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Preface: General Chairs

Welcome to COLING 2022 – the 29th International Conference on Computational Linguistics. Held in
Gyeongju, this is the first COLING in the Republic of Korea!

We visited Gyeongju in 2016, as a site visit together with the local chair Key-Sun Choi, and were amazed
by its beauty and its great historical significance. Our report to the ICCL was extremely positive. So here
we are, delighted to be General Chairs of COLING in the beautiful capital of the old Silla Kingdom.

COLING is organized under the auspices of the International Committee on Computational Linguistics
(ICCL, https://ufal.mff.cuni.cz/iccl). The ICCL is a very special committee, with neither bylaws nor bank
accounts. The sole function of the ICCL is to ensure that a COLING is held every two years and that
the conference is not only scientifically robust but also conducive to the sharing of ideas and cultural
experiences in a congenial and inclusive environment.

COLING has evolved over the years, together with the changes in our field. But the mission of the ICCL
to maintain the COLING “spirit” has never changed: we want COLING to be an inclusive conference
that welcomes diversified participants and ideas. We also want to underline the fact that Language is what
defines our field and the subject of our scientific inquiries. Thus, we pay special attention to works that
help us understand Language, including its complexities, diversity, and robust reflection and facilitation
of individual and collective human behaviors and actions. This is why the theme of COLING 2022 is NLP
for the Grand Challenges of Our Time. We would like to highlight that, through effective processing of
language big data, computational linguistics will play a crucial role in understanding the nature of the
grand challenges, how people react to these challenges, and how to manage effective collective behaviors
to tackle these challenges.

Recall that for COLING the congenial and inclusive environment for exchanges of ideas is part of the
gene of the conference that is as important as its scientific excellence. That’s why COLING has kept
the tradition of the “excursion” that typically allows participants to be immersed in a new cultural or
ecological environment.

A highly efficient committed team has worked for the organization of COLING 2022, having also to
cope with the unpredictable consequences of Covid-19 and related policies around the world. We are
having a hybrid COLING because of the still present difficulties to travel from or back to some parts of
the world. This decision had a strong impact on the organization of the conference program, both for the
main conference and workshops and tutorials.

It is our pleasure to warmly thank, also on behalf of the ICCL, all the Chairs, too many to mention them
all here, for the wonderful work they have done. It has been a pleasure and a privilege for us to work
together with such a competent and talented team: they made our work as General chairs very easy.

We do owe a special thanks to Hansaem Kim, James Pustejovsky and Leo Wanner, the Program chairs,
for their hard work in managing so smoothly an impressive number of submissions, many more than
we expected. And we wish to express our deepest gratitude to the Local chairs – Key-Sun Choi and
Pum-Mo Ryu – who have worked with such great dedication in all the various phases of the conference
organization, always keeping everything under control. Not an easy task in particular during the pandemic
time. We enjoyed the weekly calls with the Program chairs and the Local chair: they have been very useful
for an efficient interaction among all of us.

We also want to thank the generosity of all the sponsors for their great support of COLING 2022,
especially our grand challenge sponsors.

Last but not least, our heartfelt thanks go to all the colleagues (so many) who submitted their work to
COLING 2022, to the organizers of Workshops and Tutorials, to the participants (both in-person and
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remote), and to the many students among them. The participation of young researchers keeps alive the
continuous growth of our community in COLING, and our joint efforts to tackle the grand challenges.

We hope that you benefit not only from the scientific program but also, for both the in-person and virtual
participants, from the social parts of COLING. We hope you get from this COLING both new exciting
ideas and also new friends.

Enjoy COLING 2022 in Gyeongju!

Nicoletta Calzolari and Chu-Ren Huang
General Chairs of COLING 2022 and ICCL Members

vi



Preface: Program Chairs

Welcome to the 29th International Conference on Computational Linguistics (COLING’2022)!

The past two years have been a very difficult time for conference travel, due to the continued effect of
global travel restrictions caused by the COVID-19 pandemic. And while some restrictions are still being
enforced, we are nevertheless excited to be able to offer COLING 2022 as a combination in-person and
hybrid event in the beautiful historical city of Gyeongju in the Republic of Korea.

COLING 2022 received 2253 submissions, 2026 of which were reviewed. From these, 632 regular papers
have been accepted, 83% for long papers, and 17% for short papers. We are gratified to note the increasing
interest and enthusiasm that researchers in our community have shown for COLING. We would like to
thank all authors who submitted to the conference, and congratulate those whose papers were accepted
for conference presentation. We also hope that those authors whose papers were not accepted this year
can profit from reviews and feedback, and we hope to see you in 2024!

We would particularly like to thank the amazing pool of 1935 reviewers, who made the conference
possible, with their time devoted to such careful assessment of the papers assigned to them. Much of the
heavy lifting in the review process fell on the 44 Senior Area Chairs, and we are extremely grateful to
them for their efforts and time in assigning and negotiating the reviews. We would also like to express our
thanks to various members of the organizing committee, who have helped out in many different ways,
at all the various stages in planning, organization, and implementation of the conference: the General
Co-Chairs, Nicoletta Calzolari (The National Research Council, Italy), Chu-Ren Huang (Hong Kong
Polytechnic Univ.,HongKong);

Local Organization Co-Chairs: Key-Sun Choi (KAIST, Korea), Pum-Mo Ryu (Busan Univ. of Foreign
Studies, Korea). Workshop Chairs: Sadao Kurohashi (Kyoto Univ., Japan), Patrizia Paggio (University
of Copenhagen, Denmark, L’Universitata Malta, Malta), Nianwen Xue (Brandeis University, USA);
Tutorial Chairs: Hsin-Hsi Chen (National Taiwan Univ., Taiwan), Lucia Donatelli (Saarland Univ.,
Germany), Heng Ji (Univ. of Illinois at Urbana-Champaign, USA); Sponsorship

Co-Chairs: Zhong He (Baidu, China), Tony Kyungil Lee (Saltlux, Korea), Enrico Santus (Bayer-
Global, Germany); Web Chair: Sung-Pil Choi (Kyonggi Univ., Korea); Virtual Infrastructure Co-Chairs:
Seokhwan Kim (Amazon Alexa AI, USA), Younggyun Hahm (teddysum, Korea); Virtual Social Chair:
Chanjun Park (Upstage, Korea Univ., Korea); Ethics Board: Nikhil Krishnaswamy (Colorado State Univ.,
USA), Constantine Lignos (Brandeis Univ., USA), Donia Scott (Univ. of Sussex Falmer, UK); Publicity
Chair: Huyen Nguyen Thi Minh (Vietnam National Univ., Vietnam); Publication Co-Chairs: Francis
Bond (Palacký Univ. Olomouc, Czechia), Seung-Hoon Na (Jeonbuk National Univ., Korea); Diversity
Co-Chairs: Lori Levin (Carnegie Mellon Univ., USA), Rachel Roxas (National Univ., Philippines);
Handbook Chair: Eun-kyung Kim (Daejeon Univ., Korea); Industry Session Chair: Yuseop Kim (Hallym
Univ., Korea); Student Volunteer Chair: Jin Young Yeo (Yonsei Univ., Korea); Poster Session Chair:
Hyun-Je Song (Jeonbuk Nat’l Univ., Korea).

We are particularly excited and grateful to the three keynote speakers for this year’s conference: Martha
Palmer from University of Colorado Boulder, USA; Marco Baroni from ICREA and Pompeu Fabra
University, Spain; and Kentaro Inui from Tohoku University and RIKEN, Japan. This year, COLING,
as part of its theme, is addressing the seven societal Grand challenges: Health, demographic change and
wellbeing; Food security, sustainable agriculture and forestry, marine and maritime and inland water
research, and the bioeconomy; Secure, clean and efficient energy; Smart, green and integrated transport;
Climate action, environment, resource efficiency and raw materials; Changing world – inclusive,
innovative and reflective societies; Secure societies – protecting freedom and security of the world. To
this end we have two Grand Challenge invited speakers: Ping Li from The Hong Kong Polytechnic
University, Hong Kong, and Helen Meng from The Chinese University of Hong Kong. In addition, we

vii



have organized five paper sessions focusing on one of these grand challenge themes.

To all of those mentioned above, we again express our deepest thanks for helping in so many different
ways, to make COLING 2022 a memorable event, and a return to an in-person conferencing experience.
We hope you enjoy the conference.

Hansaem Kim
James Pustejovsky
Leo Wanner
COLING 2022 Program Committee Co-Chairs
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Preface: Chair of the ICCL

This conference is the 29th in the COLING series. The first COLING took place in New York in 1965,
and since the 6th COLING in Ottawa (1976), the conference has been held regularly once every two
years. The initial phase of COLING established computational linguistics as an academic discipline and
subsequently, during its long history, the conference series has broadened its scope to become truly
interdisciplinary, allowing researchers with interests in diverse aspects of language and its processing to
get together and exchange their insights and ideas.

COLING provides participants with a venue in which to learn about the most recent and prominent
research achievements in broad areas of computational linguistics and natural language processing.
More importantly, through interaction with researchers from different disciplines and with different
perspectives, participants form new insights/ideas and gain long-term research perspectives. While a
divergence of science and engineering in our field is becoming increasingly prominent(1), the ICCL
(International Committee of Computational Linguistics), under the auspices of which the COLING series
is organized, believes that interaction among researchers of different disciplines is more important than
ever.

As an informal, voluntary-based committee, the ICCL relies heavily on the ingenuities of local hosts,
who have organized their COLING conferences with unique attributes. The format and characteristics
of COLING have evolved thanks to the bottom-up initiatives of local hosts and program chairs, and
through their interaction with the ICCL. This is particularly true for this year’s COLING: due to the
ever-changing situation around the pandemic and the rapid expansion of our field, we have had to make
difficult decisions and to improvise solutions to allow for unpredictable events. We owe a great deal to
the ingenuity and flexibility of our colleagues in Korea. On behalf of the ICCL, I would like to express
our sincere gratitude to the local organizing committee and to the chair, Professor Key-Sun Choi.

I would also like to extend my gratitude to the two members of ICCL who take on the role of General
Co-Chairs: Professors Nicoletta Calzolari and Chu-Ren Huang. Without them, it would be impossible to
coordinate the many committees and people involved in this conference.

Thanks to the tremendous efforts of all those involved, I am convinced that we will experience a fantastic
conference, which will be both scientifically exciting and full of fond memories.

I extend a warm welcome to all of you, and hope that you enjoy the conference!

Junichi Tsujii, Chair of the ICCL

(1) Tsujii, Junichi: Natural language Processing and Computational Linguistics, Computational
Linguistics (2021) 47 (4): 707–727. https://direct.mit.edu/coli/article/47/4/707/107177/Natural-
Language-Processing-and-Computational

ICCL : Aravind Joshi, Petr Sgall, Makoto Nagao and Martin Kay

The ICCL (International Committee of Computational Linguistics) was formed with the aims of running
the COLING conference series and of maintaining the continuity of its spirits, e.g., pioneering new
research fields, facilitating interaction among participants with diverse interests, respecting the equality
of all languages, recognizing the potential value of non-mainstream research, etc.

To reflect the interdisciplinarity which we believe is crucial for COLING, the ICCL is comprised
of members from diverse fields, e.g., theoretical linguistics, corpus linguistics, artificial intelligence,
cognitive science, machine translation, language engineering, etc. (1);
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Although ICCL membership is for life, the long history of the committee inevitably means that we have
lost some of its members over time. In particular, recent years have witnessed the loss of four highly
respected members: Aravind Joshi (2017), Petr Sgall (2019), Makoto Nagao (2021) and finally Martin
Kay (2021), who had been the longest serving Chair of the ICCL when he stepped down in 2014.

All four of these venerable individuals showed strong intellectual leadership and inspired many
researchers to follow them in forming their own schools of thoughts. They enriched the fields of
computational linguistics and natural language processing by exploring new ideas and establishing
new research areas: tree adjoining grammar, cognitive models, discourse annotation (Aravind Joshi(2));
functional generative description, functional view of Prague school of linguistics (Petr Sgall(3));
example-based machine translation, language engineering, digital libraries (Makoto Nagao(4)); parsing,
feature-based grammar formalisms, man-machine cooperation in translation (Martin Kay(5)). Current
members of the ICCL inherit not only their research achievements, but also their valuable insights into
language and their collective conceptions about the directions that our research fields should take. We,
the members of the ICCL, are ready to carry the torch that they have handed to us.

Junichi Tsujii, Chair of the ICCL

(1) Members of the ICCL: https://ufal.mff.cuni.cz/iccl/committee-members

(2) Aravind Joshi: https://almanac.upenn.edu/articles/aravind-joshi-engineering

(3) Petr Sgall: https://ufal.mff.cuni.cz/petr-sgall

(4) Makoto Nagao: https://nagao-memorial.kuee.kyoto-u.ac.jp/en/

(5) Martin Kay: https://direct.mit.edu/coli/article/48/1/1/108842/Obituary-Martin-Kay
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Preface: Local Chairs

We are happy to be able to hold the conference at a time when the Covid-19 situation has subsided and
the freedom to enter and leave Korea is increasing without PCR test. Since the organizing committee
has held weekly meetings since last year’s August, the leaves of trees change from summer to autumn,
winter, spring, summer, and autumn again, and now they are turning into beautiful autumn leaves.

You are in Gyeongju, the capital of the 1000-year-old Kingdom of Shilla1 (BC57-AD935). In Silla,
the Idu script2 was used, and it is said to be a phonetic symbol derived from Chinese characters. The
current Korean alphabet Hangul is a character set invented based on linguistics. For example, the letter
corresponding to ‘g’ is ‘ㄱ’, which describes the shape of the tongue in the mouth when the sound ‘g’ is
made. Each letter was made according to the principle and shape of the vocal organs, so that Hangul was
created to be able to use all human pronunciations as a phonetic symbol.

This COLING 2022 begins in the week of Hangul Day. The 9th of October is a national holiday to
commemorate the creation and proclamation of Hangul3 (AD 1446) in the Basic Law of the Korean
Language.

The number of Korean speakers is about 77.3 million, which ranks 14th among all languages in the
world, but the proportion is only 1.004%. Although the amount of Korean corpora is overwhelmingly
smaller in quantity and diversity compared to English data, the data for natural language processing in
Korean language is increasing, centering on the National Institute of the Korean Language4. It is open to
researchers.

Although there were many difficulties in organizing the conference due to the Covid-19 Pandemic, we are
very happy that many papers have been submitted and that we have been able to support the presentation.
We would like to thank those who come in person even from the Covid-19 situation, and we are trying
to do our best for those who participate online.

In particular, we would like to thank Nicoletta Calzorari and Chu-Ren Huang for their active support,
who conducted on-site due diligence for this COLING to be held in the year 2018 and also served as
the general chairs. We would like to thank Hansaem Kim, Leo Wanner and James Pustejovsky, program
chairs. Since the beginning of September last year, the General co-chairs and the Program co-chairs have
held weekly meetings every Thursday, thanking you for designing and implementing every step of the
way, including home page, sponsoring, CFP, grand-challenge theme setting, reviewing and all of the
matters. Hansaem Kim, as a program co-chair and as a key executive of the local organizer, put all her
heart into every detail.

The local organizing committee has held weekly meetings every Tuesday since last August. Attended
weekly meetings of this local organization we would like to express deep thanks to Hansaem Kim, who
was in charge of both the Program chair and local organizing, Industry session chair Yuseop Kim, Virtual
social chair Chanjun Park, Sponsoring chair Tony Kyungil Lee, Virtual Platform chairs Seokhwan Kim
and Young-gyun Hahm, Web chair Sung-pil Choi, Publication chairs Francis Bond and Seung-Hoon Na,
Handbook chair Eun-Kyung Kim, Poster session chair Hyun-Je Song and all the members.

First of all, I would like to thank Dr. Jae-Gil Choi of HICO for encouraging and supporting the Korean
hosting of COLING 2022. Also, I would like to thank Genicom for preparing the conference and
Underline for the online conference.

This conference would not have been possible without the support of sponsors: Naver, Line, KISTI,
1https://en.wikipedia.org/wiki/Silla
2https://en.wikipedia.org/wiki/Idu_script
3https://en.wikipedia.org/wiki/Hangul
4https://corpus.korean.go.kr/
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and all of the industries, institutes, universities, and government. We would like to express our deepest
gratitude to the Korean Institute of Information Scientists and Engineers5 for their support as the
conference host, and to Gyeongju City for their full and attractive support.

Key-Sun Choi and Pum-Mo Ryu
Local Organization Chairs of COLING 2022

5https://www.kiise.or.kr/
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Castro Ferreira, Vera Demberg, Ondřej Dušek, Angela Fan, Albert Gatt, Dimitra Gkatzia, Fei Liu, Yang
Liu, Qi Liu, Jiangming Liu, Shashi Narayan, Leonardo F. R. Ribeiro, Anastasia Shimorina, Jinsong

xxiv



Su, Jiajun Zhang, Stella Frank, Casey Kennington, Parisa Kordjamshidi, Nikhil Krishnaswamy, Jie Lei,
Carina Silberer, Jesse Thomason, Diedrich Wolter, Jiang Guo, Yijia Liu, Yuxuan Wang, Meishan Zhang,
Cristina España-Bonet, Yvette Graham, Julia Kreutzer, Qun Liu, Chi-kiu Lo, Kenton Murray, Juan Pino,
Dipti Sharma, Taro Watanabe, Wilker Aziz, Dan Goldwasser, Gholamreza Haffari, Katsuhiko Hayashi,
Sosuke Kobayashi, Lingpeng Kong, Joseph Le Roux, Pranava Madhyastha, Tetsuji Nakagawa, Stefan
Riezler, Sho Takase, Duygu Ataman, Kalika Bali, Harald Hammarström, Kengatharaiyer Sarveswaran,
Alexandros Tantos, Ashwini Vaidya, Menno van Zaanen, Gözde Şahin, Chris Biemann, Gemma Boleda,
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Abstract

Some languages allow arguments to be omit-
ted in certain contexts. Yet human language
comprehenders reliably infer the intended ref-
erents of these zero pronouns, in part because
they construct expectations about which refer-
ents are more likely. We ask whether Neural
Language Models also extract the same expec-
tations. We test whether 12 contemporary lan-
guage models display expectations that reflect
human behavior when exposed to sentences
with zero pronouns from five behavioral experi-
ments conducted in Italian by Carminati (2005).
We find that three models—XGLM 2.9B, 4.5B,
and 7.5B—capture the human behavior from all
the experiments, with others successfully mod-
eling some of the results. This result suggests
that human expectations about coreference can
be derived from exposure to language, and also
indicates features of language models that al-
low them to better reflect human behavior.

1 Introduction

In Italian, like other pro-drop (‘pronoun-dropping’)
languages, verbal arguments that would usually
be expressed by pronouns in languages such as
English can be omitted under certain circumstances.
For example, consider the sentence in (1) from
Carminati (2005).

(1) Quando Maria ha chiamato Mario, era
contenta.
‘When Maria called Mario, [she] was happy.’

In this sentence, the referent of the ‘dropped’
pronoun—generally referred to as a zero or null
pronoun—can be inferred from the fact that the
adjective contenta is feminine; thus, Maria is the
most likely subject of the second clause. Resolv-
ing the referents of anaphoric zero pronouns like
this is a long-standing, important, and active area
of research in natural language understanding (Ju-
rafsky and Martin, 2021; for examples, see Zhao

and Ng, 2007; Taira et al., 2008; Imamura et al.,
2009; Watanabe et al., 2010; Kong and Zhou, 2010;
Poesio et al., 2010; Chen and Ng, 2013; Yoshino
et al., 2013; Iida et al., 2016; Aloraini and Poesio,
2020; Song et al., 2020a; Ueda et al., 2020; Konno
et al., 2020, 2021; Yang et al., 2020; Kim et al.,
2021; Umakoshi et al., 2021; Chen et al., 2021;
Yang et al., 2022).

It has been argued that aiming for human-like-
ness in natural language processing systems is vital
if we want our natural language understanding sys-
tems to behave not only as humans do, but also
as human users expect them to (see, e.g., Keller,
2010; Ettinger, 2020; Eisape et al., 2020). This is
particularly true for zero anaphora resolution, and
pronoun resolution more generally. As an illus-
tration of the prominence of reference resolution,
one pronoun resolution task, the Winograd Schema
Challenge (Levesque et al., 2012; based on work
by Winograd, 1972), has been referred to as ‘an al-
ternative to the Turing Test’ (Levesque et al., 2012,
p. 552).

So, how do humans resolve coreference? The
evidence suggests that we use a range of cues—
for example, agreement information as in (1), but
also factors such as world knowledge and common
sense (Winograd, 1972; Hobbs, 1979; Kehler et al.,
2007; Kehler and Rohde, 2013; Sakaguchi et al.,
2019). In addition, pronoun resolution is shaped
by our expectations about the next entity that is
likely to be mentioned and what argument it should
take (Kehler et al., 2007; Kehler and Rohde, 2013;
Nieuwland and Van Berkum, 2006). For example,
crosslinguistic work has found a bias towards ex-
pecting a subject pronoun to refer to an antecedent
subject (for discussion, see Carminati, 2005). This
has been demonstrated experimentally with sen-
tences such as those in (2).

(2) John seized the comic from Bill. He____

When presenting experimental participants with
1



sentences such as (2) where the content following
the pronoun has been removed, Stevenson et al.
(1994) found that the vast majority of people expect
he to refer to John rather than Bill. The effect of
expectations such as these are so powerful that
we may often not even realize that a sentence is
grammatically ambiguous at all in most situations
(Nieuwland and Van Berkum, 2006).

The same principles apply in zero anaphora
resolution. Carminati (2005), for example, tests
human expectations by investigating how long it
takes for experimental participants to read stim-
uli with certain linguistic features, based on the
well-established finding that contextually expected
words are read faster than unexpected words,
demonstrating an increased processing difficulty
when these expectations are violated (see, e.g.
Forster, 1981; Levy, 2008; Luke and Christianson,
2016; Brothers and Kuperberg, 2021). Carminati
(2005) finds that the main clauses of sentences such
as (1)—that is, the part of the sentence containing
the zero subject pronoun, i.e., era contenta (‘[she]
was happy’)—are read faster when the zero pro-
noun co-refers with a subject antecedent, as in (1),
than when it co-refers with the antecedent object,
as in (3).

(3) Quando Maria ha chiamato Mario, era
contento.
‘When Maria called Mario, [he] was happy.’

The question, then, if we want human-like zero
anaphora resolution, is how to test whether a given
zero anaphora resolution system is able to reflect
these human expectations. In the present study, we
propose a method to do just that.

The vast majority of recent pronoun resolu-
tion systems base their approach around using
the representations learned by contemporary trans-
former language models—for example, in the zero
pronoun anaphora resolution literature alone, re-
searchers have used pretrained transformers such
as monolingual (Song et al., 2020b; Ueda et al.,
2020; Konno et al., 2020, 2021; Kim et al., 2021;
Chen et al., 2021; Umakoshi et al., 2021) and mul-
tilingual (Aloraini and Poesio, 2020; Kim et al.,
2021) BERT models (Devlin et al., 2019), as well
as XLM-R (Conneau et al., 2020; for an example
see Yang et al., 2022).

For these systems, there is a clear way to test
for human-like-ness. We can directly probe the
extent to which the representations learned by the

language models take into account the factors that
lead to coreference expectations in humans by test-
ing how similar the predictions of language models
are to those of human comprehenders—if they ex-
hibit the same pattern of predictive behavior as
humans in a given context, this demonstrates that
they are sensitive to the same factors as humans in
this context. We do this by comparing the reading
times reported by Carminati (2005) to the surprisals
of 12 contemporary transformer language models
(Devlin et al., 2019; Conneau and Lample, 2019;
De Mattei et al., 2020; Schweter, 2020; Conneau
et al., 2020; de Vries and Nissim, 2021; Lin et al.,
2021) for the same stimuli.

A key question is whether it is possible for lan-
guage models to learn any of these human-like ex-
pectations at all, given that they can only rely on the
statistics of language. For this reason, the results
of the present study should be of interest both from
a natural language understanding perspective, as
discussed above, and also from a psycholinguistics
perspective.

From the natural language understanding per-
spective, the present study presents an approach for
‘pre-evaluating’ a language model’s suitability as a
basis for a zero anaphora resolution system. Specif-
ically, if a language model can model a specific
effect in human language processing—that is, if an
experimental manipulation that elicits a significant
difference in reading time also results in a signifi-
cant difference in that language model’s surprisal
in the same direction—this demonstrates that it is
able to take into account the relevant factors that
underlie human comprehender expectation. For ex-
ample, if a language model can successfully model
the subject antecedent preference, this suggests that
it has learned that all else being equal, subject an-
tecedents are more likely to be the coreferents of
zero subject pronouns, and thus, crucially, that this
pattern is in some way represented in the contextual
embeddings that can be used as the representations
underlying a zero anaphora resolution system.

From the psycholinguistics perspective, this
study explores the extent to which it is possible
that specific patterns in zero anaphora coreference
expectations can be learned on the basis of the
statistics of language alone. There is substantial
work demonstrating that some expectations are
highly correlated with language statistics, and thus
may be at least partly derived from them (Levy,
2008; Monsalve et al., 2012; Smith and Levy, 2013;
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Frank et al., 2015; Michaelov and Bergen, 2020;
Szewczyk and Federmeier, 2022). However, other
work has suggested that coreference expectations
are instead (or in addition) at least partly based on
semantic knowledge, world experience, and con-
ceptual salience (Hobbs, 1979; Harley and Ritter,
2002; Carminati, 2005; Kehler et al., 2007; Kehler
and Rohde, 2013). Nonetheless, since the predic-
tions of language models are derived from language
statistics alone, if even one language model can suc-
cessfully model a given effect (after adjusting for
multiple comparisons), this provides in-principle
evidence that the effect can be successfully learned
using distributional information alone.

2 General Method

The experiments reported by Carminati (2005)
were self-paced reading experiments. Participants
were native speakers of Italian asked to read Italian
sentences on a computer. Stimuli were similar to
those discussed in the previous section, with a sub-
ordinate clause (e.g. Quando Maria ha chiamato
Mario; ‘When Maria called Mario’) first presented,
followed by the main clause (e.g. either era con-
tenta ‘[she] was happy’ or era contento ‘[he] was
happy’). The time taken by participants to read the
main clause—which includes the word that disam-
biguates the null subject pronoun—was recorded.

To measure the language model’s expectations,
we used surprisal (negative log-probability) based
on a large body of evidence that language model
surprisal generally correlates well with reading
time (see, e.g. Levy, 2008; Monsalve et al., 2012;
Smith and Levy, 2013; Goodkind and Bicknell,
2018) and other metrics of processing difficulty
that are thought to correlate with human expecta-
tions such as the neural N400 response (Frank et al.,
2015; Aurnhammer and Frank, 2019; Michaelov
and Bergen, 2020; Merkx and Frank, 2021).

To model each effect, we compared whether spe-
cific linguistic features of the stimuli that elicited a
significant difference in human reading times also
led to a significant difference in language model
surprisal. For example, we investigate whether,
like reading time, surprisal is significantly lower
when the referent of a zero subject pronoun is a sub-
ject antecedent compared to an object antecedent,
among other patterns in reading time reported by
Carminati (2005). The language models were all
presented with the same stimuli as the human par-
ticipants, which are provided by Carminati (2005)

in an appendix to the original paper.
To match reading time, surprisal was calculated

over the whole of the main clause in each stimulus
item. This was done by calculating the sum of the
surprisals of the main clauses’ constituent words,
which is equivalent to taking the negative logarithm
of the product of their probabilities.

We ran the stimuli through 12 transformer lan-
guage models—5 monolingual and 7 multilingual.
Two of the monolingual models were autoregres-
sive transformer networks: GePpeTto (De Mat-
tei et al., 2020) and the small English GPT-2 re-
trained on Italian (de Vries and Nissim, 2021). The
three remaining monolingual models were masked
language models: UmBERTo (Parisi et al., 2021)
trained on the Italian subcorpus of OSCAR, and
the Base and XXL versions of the Italian BERT
models (Schweter, 2020). The multilingual models
also included autoregressive and masked language
models. The autoregressive models were three dif-
ferent sizes of XGLM (Lin et al., 2021): the 2.9B,
4.5B, and 7.5B parameter models. The masked
language models were XLM-100 (Conneau and
Lample, 2019), and the Base and Large versions of
XLM-R (Conneau et al., 2020).

The aim in using this range of models was to
test whether there are any model types or char-
acteristics made them better suited to capturing
human behavior—for instance, whether the mod-
els were autoregressive or masked, or monolingual
or multilingual. Previous systems designed to re-
solve zero pronoun anaphora of the kind described
here appear to be predominantly based on masked
language models; however, autoregressive models
such as GPT-2 have been successfully used in simi-
lar systems (Maqbool et al., 2022).

We are also interested in whether monolingual
or multilingual models are better suited to the task
of zero pronoun anaphora resolution—while cross-
lingual transfer may help with some phenomena
(Guarasci et al., 2022), there is also evidence that
it can cause harm to model performance in oth-
ers (Wang et al., 2020). There is currently mixed
evidence with respect to zero pronoun anaphora
resolution—Kim et al. (2021), for example, find
that a monolingual Korean BERT-based model per-
forms better than the standard multilingual BERT
model; while Yang et al. (2022) finds that their
model, based on XLM-R, is better than a model
based on a Chinese-only BERT (Song et al., 2020b).
We include both multilingual BERT and XLM-R
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in our analyses, in addition to the Base Italian
BERT model, which has previously been evalu-
ated in terms of its capacity to learn non-anaphoric
null subject and agreement phenomena in Italian
(Guarasci et al., 2021).

To test whether each model successfully mod-
eled each effect, we constructed linear mixed-
effects models predicting model surprisal with ex-
perimental manipulation as a main effect and a
random intercept of sentence frame, where sen-
tence frame refers to a set of stimuli that differ only
by experimental condition (e.g., the previously dis-
cussed Quando Maria ha chiamato Mario, era con-
tenta and Quando Maria ha chiamato Mario, era
contento are two stimuli with the same sentence
frame).

For three of the five analyses—the two analyses
in Section 3.1 where the coreferent is distinguished
by gender, and the analysis in Section 3.2—we
tested whether the relevant experimental manipula-
tion was a significant predictor of language model
surprisal by constructing a null regression with only
the random intercept of sentence frame and running
a likelihood ratio test investigating whether adding
the experimental manipulation improved model fit.

The remaining two analyses correspond to two
different tests utilized by Carminati (2005) to ana-
lyze the results of a single experiment (Experiment
4 of the original paper). Crucially, Carminati (2005)
tests whether there is an interaction between coref-
erent argument (whether it is the antecedent subject
or object) and coreferent person (whether the coref-
erent is in the first or second person or in the third
person), but also whether there is a main effect of
each of these. To test whether there is an interaction
(in Section 3.3), we construct a linear mixed-effects
model with and without the interaction, and run a
likelihood ratio test comparing the two. In addition
to the interaction, Carminati (2005) finds a main ef-
fect of coreferent argument but not of person. Thus,
we also test for the main effect of coreferent argu-
ment, which we report in Section 3.1. Because we
want to investigate whether the main effect of coref-
erent argument explains a significant amount of the
variance in surprisal while also accounting for the
effect of a possible interaction, instead of using a
likelihood ratio test, we opt for a Type III ANOVA
with Satterthwaite’s method for estimating degrees
of freedom (Kuznetsova et al., 2017).

The details of the results of the statistical anal-
yses that were run by Carminati (2005) are pro-

vided in the original paper. The full results of the
statistical analyses that we ran are provided in Ap-
pendix A. The results of both sets of statistical
analyses are summarized in Figure 1.

All language models were run in Python
(Van Rossum and Drake, 2009), using the PyTorch
(Paszke et al., 2019) implementation of each model,
as provided by the transformers package (Wolf
et al., 2020). Statistical analysis and data manipu-
lation were carried out in R (R Core Team, 2020)
using Rstudio (RStudio Team, 2020) and the tidy-
verse (Wickham et al., 2019), lme4 (Bates et al.,
2015), lmerTest (Kuznetsova et al., 2017), ggsig-
nif (Ahlmann-Eltze and Patil, 2021), and cowplot
(Wilke, 2020) packages. The stimuli, code used to
run the models, and code used to run the statistical
analyses are provided on Github1. Note that all
p-values reported in this analysis have been cor-
rected for multiple comparisons (Benjamini and
Hochberg, 1995; R Core Team, 2020).

3 Manipulation-level results and
discussion

In this section, we compare the performance of
the 12 language models tested with human behav-
ior on five of the experimental manipulations car-
ried out by Carminati (2005). Note that two addi-
tional studies from that paper focus on a different
question—the effects of distractor referents on pro-
cessing time. Although at least one model was able
to capture each of these human results, they are not
included here because they address a different set
of phenomena.

3.1 Subject vs. object antecedent referent
Carminati (2005) investigates the subject an-
tecedent preference discussed in Section 1 in three
experiments. In Experiments 1 and 2 of the origi-
nal paper, both antecedents are names associated
with different genders, as illustrated by the example
from Experiment 1 shown in (4).

(4) (a) Quando Lucia ha telefonato a Marco,
era appena tornata da Londra.
‘When Lucia has telephoned Marco,
[she] had just come back from London.’

(b) Quando Lucia ha telefonato a Marco,
era appena tornato da Londra.
‘When Lucia has telephoned Marco, [he]
had just come back from London.’

1https://github.com/jmichaelov/
italian-zero-anaphora-prediction
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Figure 1: Mean reading time and surprisal of each model elicited by main clauses for each experimental condition
in each experiment. All significant differences are shown: following convention, ‘***’ indicates p < 0.001, ‘**’
indicates p < 0.01, ‘*’ indicates p < 0.5, ‘.’ indicates marginal significance where p < 0.1, and ‘ns’ indicates
p ≥ 0.1. For easier comparison across models and experiments, comparisons with statistically significant results
are colored green; non-significant results are colored purple. Note that the relevant p-values have been corrected
for multiple comparisons using the method of Benjamini and Hochberg (1995); for test statistics and degrees of
freedom, see Appendix A. Details of the statistical tests for reading time are provided by Carminati (2005). For
language model surprisal, error bars indicate standard error; no metric of error is provided by Carminati (2005).

Because tornato/tornata (‘come back’) agrees
with the gender of the zero subject pronoun, its ref-
erent can be resolved to be the subject antecedent
(Lucia) in (4a) and the object antecedent (Marco)
in (4b). Carminati (2005) found, as expected, that
main clauses where the zero subject pronoun co-

referred with the subject antecedent (like (4a)) were
read faster than those where they had an object an-
tecedent coreferent (like (4b)), suggesting an ex-
pectation for a subject antecedent coreferent.

In Experiment 4 of the original paper, grammati-
cal person was manipulated rather than grammati-
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cal gender, as illustrated by the example in (5).

(5) (a) Quando ho litigato con Maria, ero
molto prepotente.
‘When [I] quarrelled with Maria, [I] was
very pushy.’

(b) Quando ho litigato con Maria, era
molto prepotente.
‘When [I] quarrelled with Maria, [she]
was very pushy.’

Similarly, because ero/era (‘was’) either agrees
with the first person or third person, the zero subject
pronoun can be resolved as co-referring with the
speaker (in (5a)) or with Maria (in (5b)). As in
the aforementioned other experiments, Carminati
(2005) finds that speakers read sentences like (5a)
faster than sentences like (5b), again demonstrating
a preference for subject antecedent coreferents over
object antecedent coreferents.

Looking at the results of the models, we can see
that only GePpeTto and the XGLMs successfully
model this effect in all three experiments. This ap-
pears to suggest that autoregressive models may be
better at learning that the subject antecedent is the
more likely referent; however, it should be noted
that in each of the individual studies, at least one
masked language model also successfully modeled
the effect. Nonetheless, the robustness of simi-
larity between these autoregressive models’ pre-
dictions and human expectations may be partly
explained by the evidence suggesting that autore-
gressive models are more sensitive to word order
than masked language models, to the extent that
they are able to encode positional information even
without explicit positional encodings (Haviv et al.,
2022); conversely, masked language models appear
to be relatively insensitive to word order (Sinha
et al., 2021; Gupta et al., 2021). Given that the
dominant pattern in Italian is Subject-Verb-Object
(see Guarasci et al., 2022) and the subject was al-
ways first in the subordinate clause, it is therefore
unsurprising that autoregressive models would be
better able to predict that the first entity mentioned
(the subject) is more likely as the subject of the
zero pronoun than the second entity mentioned (the
object).

3.2 Name vs. pronoun antecedent referent
In addition to investigating the differences in how
humans process zero anaphora in sentences with
subject and object antecendent coreferents, Carmi-
nati (2005) also investigated how the form in which

antecedents are presented impacts processing. As
a further part of Experiment 2 of the original paper,
Carminati (2005) investigates how processing is
impacted when the object coreferent is presented
as a name or a pronoun, an example of which is
provided in (6).

(6) (a) Quando Maria cerca Roberto, diventa
ansioso.
‘When Maria looks for Roberto, [he]
becomes anxious.’

(b) Quando Maria lo cerca, diventa
ansioso.
‘When Maria looks for him, [he]
becomes anxious.’

In both sentences, it is the object antecedent that
is the referent of the zero pronoun in the main
clause, violating the subject antecedent preference.
Carminati (2005) finds that main clauses with zero
pronouns referring to antecedent objects are easier
to process (read faster) when this antecedent object
is a pronoun.

The results for the language models, shown in
Figure 1, suggest that this is a relatively easy pat-
tern for language models to learn—9 of the 12
models show a significant effect and the remaining
3 show a marginal effect in the correct direction.
Thus it is clear that this general rule—that an entity
referred to by an antecedent pronoun is more likely
to be the referent of a zero pronoun—is possible to
learn based on the statistics of language. The fact
that this effect relies on the form of the antecedents
rather than word order could explain why there is
no difference between autoregressive and masked
language models in this case.

3.3 Antecedent argument by grammatical
person interaction

In addition to investigating the subject antecedent
effect, in Experiment 4 of the original paper, Carmi-
nati (2005) investigates how this effect interacts
with the the grammatical person of antecedents
(i.e., first, second, or third-person). In general, pre-
vious work suggests that first and second-person an-
tecedents are more likely to be referents of reduced
or zero pronouns (Ariel, 1991; Siewierska, 1999,
2003; Carminati, 2005), but as has been discussed,
subject antecedents are also more likely to be their
referents. Thus, Carminati (2005) compares the
effect of the person of the coreferent antecedent
when it is in both subject and object position, as
exemplified in (7).
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(7) (a) Quando ho/hai litigato con Maria,
ero/eri molto prepotente.
‘When [I/you] quarrelled with Maria,
[I/you] was/were very pushy.’

(b) Quando Maria ha litigato con me/te,
ero/eri molto prepotente.
‘When Maria quarrelled with me/you,
[I/you] was/were very pushy.’

(c) Quando Maria ha litigato con me/te, era
molto prepotente.
‘When Maria quarrelled with me/you,
[she] was very pushy.’

(d) Quando ho/hai litigato con Maria, era
molto prepotente.
‘When [I/you] quarrelled with Maria,
[she] was very pushy.’

While Carminati (2005) does not find a main
effect of grammatical person, the results show an
interaction between person and antecedent referent
argument status (i.e. whether it is a subject or
object). Specifically, the difference in reading time
between subject and object antecedent referents
is reduced when the antecedent coreferent is in
the first or second person. In other words, the
subject antecedent effect is weaker with first and
second person coreferents. This, Carminati (2005)
argues, shows that the bias towards a first or second-
person coreferent modulates the bias against an
object coreferent—in other words, humans still
expect a first or second-person coreferent even if it
is an object antecedent.

Four of the models—Italian BERT Base and the
XGLMs—manage to model this interaction. While
this suggests the the effect—which is complicated
as it relies on correctly weighting the effects of
argument status and person—is difficult to learn
based on the statistics of language, it nevertheless
demonstrates that it is indeed possible.

4 General Discussion

4.1 Implications for human language
processing

We can now return to the two questions that mo-
tivated this work. First, we look at whether the
reading time effects in humans can be explained on
the basis of the statistics of language.

As seen in Figure 1, each experimental result
was successfully modeled by at least four language
models, after correcting for multiple comparisons.
This shows that it is possible to learn cues based

on the statistics of language that result in human-
like expectations about the referents of zero subject
pronouns in Italian. The fact that the XGLM trans-
formers were consistently able to model all the
effects demonstrates that the patterns underlying
the results of the experiments can all be learned
by the same system—and therefore, in principle,
it should also be possible for a neurocognitive sys-
tem implementing lexical prediction in humans
(for accounts of such a system and what it might
learn, see, e.g., Kutas et al., 2011; Lewis and Basti-
aansen, 2015; Lupyan and Clark, 2015; Frank et al.,
2015; Bornkessel-Schlesewsky and Schlesewsky,
2019; Aurnhammer and Frank, 2019; Michaelov
and Bergen, 2020; Kuperberg et al., 2020; Merkx
and Frank, 2021; Brothers and Kuperberg, 2021).
Thus, the present study provides evidence that the
expectations that humans form about possible ref-
erents in anaphora may be derived from language
statistics, at least in part.

4.2 Implications for work on language models

Model Experiments modeled
GePpeTto 4/5
It. GPT2 (Retrained) 1/5
UmBERTo 0/5
It. BERT (Base) 3/5
It. BERT (XXL) 3/5
mBERT 0/5
XLM-100 0/5
XLM-R (Base) 2/5
XLM-R (Large) 3/5
XGLM 2.9B 5/5
XGLM 4.5B 5/5
XGLM 7.5B 5/5

Table 1: Number of experiments successfully modeled
by each language model.

The number of experiments successfully mod-
eled by each language model is shown in Table 1,
revealing that the XGLM models performs best
overall, successfully modeling the results of all 5
experiments investigated. After the XGLMs, GeP-
peTto models the most experiments (4/5), followed
by XLM-R Large and the Italian BERTs (3/5). The
remaining transformers only successfully model 2
or fewer of the experiments.

At this level of analysis, some patterns begin to
emerge. First, the best models are the XGLM trans-
formers and GePpeTto. This suggests that autore-
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gressive models may in fact be best able to model
the effects. As discussed in Section 3.1, this may be
due to their comparatively high sensitivity to word
order. One issue that confounds this interpretation
is that the XGLM models are also larger and trained
more data on than the other models. However, the
fact that GePpeTto was trained on 13GB of text,
while the other monolingual models (which were
all masked language models) were trained on the
same amount or more data and performed worse,
suggests that, at the very least, monolingual au-
toregressive models may more efficiently learn bi-
ases in zero anaphora processing than monolingual
masked language models. Whether or not autore-
gressive models continue to out-perform masked
language models as the training set increases in
size is a question for further research. Overall,
then, we see that in our sample of models, autore-
gressive monolingual and multilingual models are
more human-like in their expectations of zero sub-
ject pronoun referents than their masked language
model counterparts.

Another question that we can address with the
present results is that of the effect of multilingual-
ity on the human-likeness of the models’ expecta-
tions. First, while GePpeTto and Retrained Italian
GPT-2 are trained on the same Italian corpus, the
former greatly out-performs the latter. This sug-
gests that training a model on one language and
then re-training it on another does not necessarily
improve the representations that a model learns—
in fact, in this case, it interferes with the model’s
ability to make predictions in a human-like fash-
ion. On the other hand, XLM-R Large is trained
on data from 100 languages successfully models
human processing at least as well as any monolin-
gual model but GePpeTto—including Italian BERT
XXL, which is trained on 80GB of Italian text com-
pared to XLM-R’s 30GB. Thus, it may be the case
that with more training data, and with a larger num-
ber of languages (including more closely-related
languages—XLM-R is also trained on other Ro-
mance languages), there is some cross-linguistic
transfer that can aid in predicting the referent of a
null subject pronoun in a human-like manner (see
Guarasci et al., 2022, for a recent similar finding).
Finally, the XGLMs—autoregressive multilingual
models—are the best performing models overall.
Thus, the results of this study seem to suggest that
with enough overall data, and when multilingual
language models are trained on more languages,

cross-linguistic transfer can improve their human-
likeness in terms of their predictions. A question
for future work is to investigate under what circum-
stances multilinguality hurts or harms the human-
likeness of language model predictions—for exam-
ple, based on how related the languages the model
is trained on are to each other, or how widespread
the phenomenon under investigation is. For ex-
ample, the subject antecedent preference is also
present in English with overt pronoun anaphora
(Smyth, 1994; Chambers and Smyth, 1998; Kehler
et al., 2007; Kehler and Rohde, 2013).

Finally, as discussed in Section 2, Yang et al.
(2022) show that a zero pronoun anaphora reso-
lution system based on XLM-R performs better
than one based on multilingual BERT (Song et al.,
2020b). Concurrently, in the present study, we see
that either XLM-R model is better able to model
zero anaphora processing effects than multilingual
BERT. While there are other factors at play, this
result is consistent with our prediction that bet-
ter modeling of human expectations may lead to
better performance when using the models’ repre-
sentations for zero pronoun anaphora resolution,
based on the idea that the representations learned
by the model better allow it to make human-like
predictions, and thus are more useful for systems
aiming to resolve zero anaphora in a human-like
way. In the present study, XGLM models perform
better than the other models, and thus, based on
this, we suggest that XGLM transformers may be
better models upon which to base future zero pro-
noun anaphora resolution system than other current
publicly available pretrained models.

5 Conclusion

We present the first study investigating whether
language models make the same predictions as hu-
mans when processing zero pronoun anaphora. For
each the 5 effects we investigate, we find that there
are at least four models that successfully do so; and
three models, XGLM 2.9B, 4.5B, and 7.5B, suc-
cessfully do so in all 5. This suggests that human
processing of zero pronoun anaphora may at least
partly rely on our statistical knowledge of language.
Furthermore, this approach provides a useful way
to investigate how human-like the referent predic-
tions of language models are, which is vital if we
are to use their representations for zero anaphora
resolution systems.
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A Full results of statistical analyses

Experiment 1: Subject vs. object antecedent
referent

Model Chisq(df=1) Corrected p
GePeTto 12.3 0.002
GPT-2 Italian <0.1 0.993
UmBERTo 3.5 0.109
It BERT Base 0.4 0.614
It BERT XXL 6.3 0.025
mBERT 1.4 0.376
XLM-100 0.2 0.758
XLM-R Base 5.3 0.041
XLM-R Large 19.2 <0.001
XGLM 2.9B 13.9 <0.001
XGLM 4.5B 19.1 <0.001
XGLM 7.5B 32.9 <0.001

Table 2: Results of the likelihood ratio tests in Experi-
ment 1. Models for which there is a significant effect of
the manipulation tested are shown in bold.

Experiment 2: Subject vs. object antecedent
referent

Model Chisq(df=1) Corrected p
GePeTto 8.8 0.008
GPT-2 Italian 0.9 0.482
UmBERTo 0.7 0.514
It BERT Base 0.9 0.482
It BERT XXL 0.6 0.570
mBERT <0.1 0.956
XLM-100 0.9 0.482
XLM-R Base 1 0.468
XLM-R Large 7.5 0.015
XGLM 2.9B 17.5 <0.001
XGLM 4.5B 23.6 <0.001
XGLM 7.5B 26.5 <0.001

Table 3: Results of the likelihood ratio tests for all
models in Experiment 2.1. Models for which there is a
significant effect of the manipulation tested are shown
in bold.

Experiment 2: Name vs. pronoun object
antecedent referent

Model Chisq(df=1) Corrected p
GePeTto 29.8 <0.001
GPT-2 Italian 17.3 <0.001
UmBERTo 4.9 0.050
It BERT Base 7.6 0.015
It BERT XXL 17.5 <0.001
mBERT 4.3 0.068
XLM-100 2.7 0.168
XLM-R Base 14.7 <0.001
XLM-R Large 11.7 0.002
XGLM 2.9B 12.4 0.002
XGLM 4.5B 16.4 <0.001
XGLM 7.5B 26.6 <0.001

Table 4: Results of the likelihood ratio tests for all
models. Models for which there is a significant effect
of the manipulation tested are shown in bold.

Experiment 4: Subject vs. object antecedent
referent

Model F(1,60) Corrected p
GePeTto 34.6 <0.001
GPT-2 Italian 1.5 0.359
UmBERTo 1.1 0.434
It BERT Base 7.4 0.019
It BERT XXL 9.1 0.010
mBERT 0.7 0.529
XLM-100 <0.1 0.815
XLM-R Base <0.1 0.830
XLM-R Large 0.5 0.575
XGLM 2.9B 7.1 0.022
XGLM 4.5B 12 0.003
XGLM 7.5B 18.4 <0.001

Table 5: Results of the ANOVAs for all models. Models
for which there is a significant effect of the manipulation
tested are shown in bold.

13



Experiment 4: Argument x Person Interaction

Model Chisq(df=1) Corrected p
GePeTto 2.7 0.168
GPT-2 Italian 0.2 0.709
UmBERTo 0.2 0.739
It BERT Base 5 0.048
It BERT XXL 0.3 0.681
mBERT 0.4 0.607
XLM-100 <0.1 0.993
XLM-R Base 1.1 0.434
XLM-R Large 0.8 0.482
XGLM 2.9B 8.9 0.008
XGLM 4.5B 18.5 <0.001
XGLM 7.5B 7.4 0.015

Table 6: Results of the likelihood ratio tests for all
models. Models for which there is a significant effect
of the manipulation tested are shown in bold.
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Abstract

One of AI’s grand challenges consists in the de-
velopment of autonomous agents with commu-
nication systems offering the robustness, flexi-
bility and adaptivity found in human languages.
While the processes through which children ac-
quire language are by now relatively well under-
stood, a faithful computational operationalisa-
tion of the underlying mechanisms is still lack-
ing. Two main cognitive processes are involved
in child language acquisition. First, children
need to reconstruct the intended meaning of
observed utterances, a process called intention
reading. Then, they can gradually abstract away
from concrete utterances in a process called pat-
tern finding and acquire productive schemata
that generalise over form and meaning. In this
paper, we introduce a mechanistic model of
the intention reading process and its integration
with pattern finding capacities. Concretely, we
present an agent-based simulation in which an
agent learns a grammar that enables them to
ask and answer questions about a scene. This
involves the reconstruction of queries that cor-
respond to observed questions based on the
answer and scene alone, and the generalization
of linguistic schemata based on these recon-
structed question-query pairs. The result is a
productive grammar which can be used to map
between natural language questions and queries
without ever having observed the queries.

1 Introduction

Language is a unique hallmark of human intelli-
gence. Our linguistic systems do not only metic-
ulously serve our communicative needs, they are
also incredibly robust to noise, adaptive to change
and they can be learnt efficiently. While the pro-
cesses that drive language acquisition in children
are by now relatively well understood, a faithful
computational operationalisation of the underlying
mechanisms is still lacking. Having such a mecha-
nistic model would, however, constitute a crucial

*Shared last authors.

step towards the development of truly intelligent
agents in the field of artificial intelligence (Mikolov
et al., 2016; Lake et al., 2019).

The idea that children acquire language by ac-
tively participating in communicative interactions
and making use of general cognitive capacities
has been elaborately documented in studies on
usage-based language acquisition (Bybee, 2013;
Ellis et al., 2016; Ellis and Ogden, 2017). In par-
ticular, two highly complementary cognitive pro-
cesses have been identified to play a key role: inten-
tion reading and pattern finding (Tomasello, 2003,
2009). First, children need to understand the com-
municative intentions of their interlocutors. In a
process called intention reading, they reconstruct
the intended meaning of the utterances they ob-
serve. Then, they can gradually abstract away from
concrete utterances and meaning representations
in a process called pattern finding, and acquire
productive schemata that generalise over form and
meaning. Theoretical as well as empirical evidence
has been abundantly provided for both intention
reading (Bruner, 1983; Sperber and Wilson, 1986;
Meltzoff, 1995; Nelson, 1998) and pattern finding
(Goldberg, 1995; Croft, 2000; Diessel, 2004; Gold-
berg, 2006)

In this paper, we introduce a mechanistic model
of the intention reading process and its integra-
tion with pattern finding capacities. Concretely,
we present an agent-based simulation in which an
artificial agent learns a construction grammar that
enables it to ask and answer questions about scenes
it observes. The learning task thus involves the re-
construction of queries that correspond to observed
questions based on the answer and scene alone, as
well as the generalization of linguistic schemata
based on these reconstructed question-query pairs.
The learner gradually acquires a fully productive
grammar, consisting of form-meaning mappings,
that can be used for both language comprehension,
i.e. observing a question and mapping it onto a
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query, and language production, i.e. expressing
a query in the form of an interrogative linguistic
expression.

When it comes to intention reading, the learn-
ing challenge amounts to the reconstruction of a
query based on a question-answer pair and a scene,
without ever observing the query itself. The learner
agent is endowed with an inventory of primitive
operations, which it can combine to compose new
queries. The query composition process allows the
agent to hypothesize about the meaning of a ques-
tion given the scene and the answer to the question.
The space of all possible queries that lead to the
observed answer in the given scene is typically very
large. At the same time, most of these queries are
not adequate representations of the meaning of the
question and only lead to the correct answer in this
specific scene.

The second challenge is to learn abstract
schemata. Pairing an observed utterance with its
reconstructed meaning yields a form-meaning map-
ping, called a construction (Fillmore, 1988). Ini-
tially, the learner has no way of knowing which
parts of the form correspond to which parts of the
meaning. Hence, it stores this mapping holistically.
Through the observation of different form-meaning
mappings, pattern finding mechanisms allow the
agent to generalise over reoccurring form-meaning
patterns, thereby capturing the compositional struc-
ture of the language.

Intention reading and pattern finding are highly
complementary. Specifically, intention reading fa-
cilitates pattern finding by providing meaning hy-
potheses. In turn, pattern finding constrains the
search process involved in intention reading by pro-
viding partial analyses. This interplay between
intention reading and pattern finding is key in suc-
cessfully tackling the learning challenge, and con-
stitutes the main contribution of this paper.

We validate our methodology using the CLEVR
benchmark dataset (Johnson et al., 2017a), in which
the communicative task of the agents consists in
asking and answering questions about scenes of ge-
ometric figures. Over many interactions, the learner
incrementally acquires a fully operational grammar
that can be used for both language comprehension
and production. We show that the acquired gram-
mar effectively solves the visual question answer-
ing task.

The contributions of this work are both theo-
retical and practical. On the theoretical side, the

presented work provides computational evidence
for the cognitive plausibility of usage-based the-
ories of language acquisition, in particular con-
cerning intention reading and pattern finding. On
the practical side, this paper introduces a powerful
new methodology that allows autonomous agents
to acquire an effective communication system with
human-like properties through task-oriented inter-
actions in their native environment.

The remainder of this paper is structured as fol-
lows. Section 2 introduces the dataset. In Section
3, we introduce the technical foundations of our
methodology. Section 4 describes the experimental
setup for learning construction grammars through
communicative interactions. Section 5 presents the
experimental results. Related work is discussed in
Section 6. Finally, Section 7 reflects on the results
and contributions of our work. The code of this ex-
periment is made available through the open-source
Babel toolkit1 (Steels and Loetzsch, 2010; Nevens
et al., 2019b).

2 Data

The CLEVR dataset (Johnson et al., 2017a) con-
sists of (i) rendered scenes with geometric figures
of various shapes, sizes, colours and materials, (ii)
English questions about these scenes, and (iii) an-
swers to these questions. The questions test a vari-
ety of reasoning skills, including attribute identifi-
cation (“What size is the yellow cube?”), counting
(“How many large cylinders are there?”), exis-
tence (“Is there a red ball?”), comparison (“Are
there more spheres than cylinders?”), spatial rela-
tionships (“What shape is the thing right of the pur-
ple cube?”) and logical operations (“How many
things are either spheres or cylinders?”).

This dataset was chosen because it satisfies two
criteria. First, it offers visually grounded linguistic
expressions. The objects about which the agents
communicate are actual referents in the agents’ en-
vironment. Second, it contains a large number of
scenes and plenty of similar, yet non-identical ques-
tions. Such examples are necessary for any kind
of generalisation process and are consistent with
theoretical and empirical evidence of how children
learn language (Tomasello, 2003; Tamminen et al.,
2015). Other datasets that fit these two criteria
could also be used.

For the experiment in this paper, we have se-
lected a subset of the CLEVR questions. Specif-

1https://emergent-languages.org
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Figure 1: Processes involved in a language game.

ically, questions concerning comparison, spatial
relations and logical operations have been left out.
The main reason for this is that these are more com-
plex cognitive operations that correspond to longer
and more complex questions. Such questions are
far removed from the type that children are faced
with. Starting from CLEVR’s validation split, our
final dataset consists of 10,044 unique questions.
Each question can be used in any of the 15,000
scenes of the validation split.

3 Technical Foundations

Our methodology builds on three main technical
foundations: (i) the language game paradigm (Sec-
tion 3.1), (ii) procedural cognitive semantics (Sec-
tion 3.2) and (iii) computational construction gram-
mar (Section 3.3).

3.1 The Language Game Paradigm

The language game paradigm (Steels, 1995, 2001)
studies how linguistic conventions arise in a popula-
tion of agents through local interactions and coordi-
nation. Every interaction, or language game, takes
place between two agents, called the speaker and
the listener, and models a particular communica-
tive task, e.g. drawing the attention to an object in
the environment. The semiotic cycle (Steels, 2012)
in Figure 1 provides a schematic overview of the
processes involved for the speaker and the listener.
These processes take place across three different
levels: the sensorimotor level, the conceptual level
and the language level. In the following sections,
we elaborate on the technical foundations of the
processes taking place on the conceptual level (Sec-
tion 3.2) and on the language level (Section 3.3). In
Section 4, we concretely describe how the various
processes in the semiotic cycle have been imple-
mented in terms of these technical foundations in
order to operationalise the mechanistic model of
intention reading and its integration with pattern
finding.

3.2 Procedural Cognitive Semantics

Incremental Recruitment Language (IRL) (Van
den Broeck, 2008; Spranger et al., 2012) opera-
tionalises key insights from procedural cognitive se-
mantics (Woods, 1968; Winograd, 1972; Johnson-
Laird, 1977). Specifically, it treats the meaning of
natural language utterances as programs that can
be executed algorithmically in terms of the agents’
representation of the environment, i.e. its world
model. Such programs capture the logical struc-
ture underlying utterances in the form of semantic
networks. An example semantic network is shown
in Figure 2. The symbols preceded by question
marks, as in ?OBJECT-1, are logic variables. Se-
mantic networks are made up of predicates that are
declaratively combined by sharing variables. The
predicates in semantic networks represent either
semantic entities or primitive operations.

Semantic entities are concepts known by the
agent. They are introduced in semantic networks
through BIND statements, as in (BIND SHAPE

?SHAPE-1 CUBE), binding the concept CUBE of
type SHAPE to the variable ?SHAPE-1. In this ex-
periment, a repertoire of semantic entities is given
a priori to the agents. This repertoire includes the
various colours, shapes, sizes and materials present
in the CLEVR dataset. However, these concepts
can also be learned through communicative inter-
actions, e.g. as in Nevens et al. (2020).

Primitive operations represent the basic cogni-
tive capabilities of the agent. In this experiment,
six operations are made available. These are based
on annotations provided with the CLEVR dataset.
Primitive operations are implemented as multi-
directional predicates with typed arguments that
operate over the agents’ world model and semantic
repertoire. From the argument(s) that are bound,
e.g. via a BIND statement or via the output of other
predicates, a predicate can compute new bindings

(bind shape ?shape-1 cube)

(filter ?set-1 ?scene ?shape-1)

(unique ?object-1 ?set-1) (observe-scene ?scene)

(query ?answer ?object-1 ?attribute-1)

(bind attribute ?attribute-1 color)

Figure 2: Semantic network for the question “What
color is the cube?”.
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for the unbound argument(s).
IRL provides the computational architecture for

(i) automatically composing predicates into pro-
grams and (ii) evaluating programs in terms of data
structures that represent the agents’ environment.
The composition of predicate networks is a combi-
natorial search process where predicates are added
incrementally and linked together by unifying their
variable arguments until a communicative goal is
reached. Type information of the arguments is used
to determine which arguments of predicates can be
linked. The evaluation of semantic networks con-
sists in finding values, i.e. are concrete referents in
the environment or the agent’s semantic repertoire,
for all variables in the network. A variable-value
pairing is called a binding. Every semantic net-
work has exactly one target variable of which the
binding holds the communicative goal or intention
of the corresponding utterance. To illustrate, the
evaluation of the semantic network in Figure 2
goes as follows. The predicate OBSERVE-SCENE

retrieves the set of all objects in the scene and binds
this to the variable ?SCENE. The FILTER predicate
accesses this set via the shared variable ?SCENE,
together with the shape CUBE via ?SHAPE-1. The
predicate then filters this set such that only cubes
remain and the result is bound to ?SET-1. Next, the
UNIQUE predicate checks if ?SET-1 contains a sin-
gle object. If so, that object is bound to ?OBJECT-1.
Finally, the QUERY predicate retrieves the color
of ?OBJECT-1 and binds the result to ?ANSWER.
The binding of this variable is indeed the answer
to the question. Other primitive operations that are
available are EXIST, which checks whether the car-
dinality of a set is greater than zero, and COUNT,
which computes the cardinality of a set.

3.3 Computational Construction Grammar

The agents’ language comprehension and produc-
tion capabilities are operationalised using Fluid
Construction Grammar2 (FCG – Steels, 2017; van
Trijp et al., 2022). FCG is a computational oper-
ationalisation of the basic tenets of construction
grammar (Fillmore, 1988; Goldberg, 1995; Kay
and Fillmore, 1999; Croft, 2001) and supports bi-
directional construction-based language process-
ing.

Corresponding to different stages of child lan-
guage acquisition (Tomasello, 2003), we consider
three types of constructions in this experiment:

2https://www.fcg-net.org

Holophrase constructions constitute a holistic
mapping between an entire form and its entire
meaning representation. For example, a mapping
between the question “What color is the cube?”
and the semantic network shown in Figure 2 would
be a holophrase construction.

Item-based constructions are generalisations
over holophrase constructions that capture their
similarities and differences, both with respect to
form and meaning. For example, a construction
associating the form ‘What is the color of the ?X?’
with its meaning of querying the color of the ref-
erent of ?X would be an item-based generalisation
over ‘What is the color of the cube?’ with its mean-
ing of querying the color of the cube and ‘What
is the color of the sphere?’ with its meaning of
querying the color of the sphere.

Lexical constructions provide arguments that
can fill slots in item-based constructions. For exam-
ple, the form “cube” associated with its meaning
of filtering for the prototype of the concept CUBE

can fill the ?X slot in the item-based construction
covering ‘What is the color of the ?X?’.

Holophrase constructions only allow to compre-
hend the exact same utterance or produce the exact
same meaning as the observation it was learnt from.
Item-based constructions, on the other hand, cover
a wider range of utterances and meanings through
their slots, but require lexical constructions for fill-
ing those slots. When item-based and lexical con-
structions combine, the lexical arguments are in-
serted into the item-based slots, resulting in a com-
plete utterance and a complete semantic network.
The possible combinations of slots and arguments
emerge through language use (Pine and Lieven,
1997; Croft, 2001). In FCG, these combinations
are captured as links in a dynamically updated net-
work, called the categorial network (Van Eecke,
2018; Steels et al., 2022). This network is con-
sulted during constructional language processing.
Hence, the links in this network determine which
item-based and lexical constructions can combine.

4 The Elicitation Game

We set up a language game in a tutor-learner sce-
nario, which we call the elicitation game. The
agents are situated in scenes from the CLEVR
dataset. The tutor is an agent that has an estab-
lished linguistic inventory which allows to compre-
hend and produce all questions from the CLEVR
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scene-4

obj-16
size: large
color: yellow
material: metal
shape: cube
clevr-object

obj-17
size: large
color: purple
material: metal
shape: cube
clevr-object

obj-18
size: large
color: gray
material: rubber
shape: cylinder
clevr-object

obj-19
size: large
color: green
material: rubber
shape: cylinder
clevr-object

clevr-scene

reset

View Scene

Figure 3: The agents are situated in scenes from the
CLEVR dataset (left). These are represented symboli-
cally (right).

dataset (cf. the grammar presented in Nevens et al.
(2019a)). The learner starts with an empty construc-
tion inventory, but is endowed with the six prim-
itive operations described above, a repertoire of
semantic entities, and a number of learning mecha-
nisms. Both the tutor and the learner can take on
the discourse roles of speaker and listener. The
communicative task of the elicitation game is the
following. The speaker has a concept in mind and
wants to elicit that concept from the listener. There-
fore, it has to come up with a question about the
objects in the scene to which the listener should
provide the answer. The game succeeds if the lis-
tener’s answer refers to the concept the speaker had
in mind. Following the semiotic cycle (Figure 1),
the interactions consist of the following steps:

1. Both agents perceive a randomly selected
scene. Scenes are represented symbolically,
as shown in Figure 3.

2. Each agent is randomly assigned a discourse
role: speaker or listener.

3. The speaker selects a concept from the
CLEVR dataset. This can be an object at-
tribute (colour, size, material or shape), a num-
ber between 0 and 10, ‘yes’ or ‘no’.

4. The speaker tries to come up with a question
that has the chosen concept as its answer. This
process involves two steps, namely conceptu-
alising a semantic network and producing a
question that expresses this meaning represen-
tation.

5. The listener observes the question produced
by the speaker.

6. The listener tries to answer the question. This
process also involves two steps, namely com-
prehending the question, i.e. mapping it onto a
meaning representation, and interpreting this
meaning representation in the current scene to
come up with the answer.

7. The speaker checks whether the listener
replies with the answer it had in mind. This
determines the outcome of the game: success
or failure.

8. If the game fails, the tutor provides feedback
to the learner. Specifically, it reveals the cor-
rect answer to the question that was asked.
This is a learning opportunity for the learner
agent.

In the following sections, the processes of con-
ceptualisation, production, comprehension and in-
terpretation are discussed in detail. Afterwards,
the learning mechanisms operationalising intention
reading and pattern finding are introduced.

4.1 Conceptualisation

Conceptualisation is performed by the speaker to
come up with the query it wants to ask. The speaker
uses its own inventory of primitive operations to
compose a semantic network such that the evalu-
ation of that network, i.e. the answer to the con-
structed query, results in the concept the speaker
wants to elicit.

4.2 Production

In production, the speaker uses its own inventory
of form-meaning mappings, or constructions, to
map the semantic network composed in the pre-
vious step to a natural language utterance, in this
case a question. The tutor can express all valid
semantic networks. When acting as the speaker,
the learner will try to use its acquired holophrase,
item-based and lexical constructions to express the
semantic network. However, the learner’s construc-
tion inventory may be inadequate for performing
this mapping, causing the interaction to fail.

4.3 Comprehension

Comprehension is the inverse process of produc-
tion. The listener uses its own construction inven-
tory to try and map the observed utterance, in this
case a question, to its underlying meaning repre-
sentation. When acting as the listener, the learner’s
construction inventory may be inadequate for per-
forming this mapping, causing the interaction to
proceed with a blank answer.

4.4 Interpretation

Interpretation is performed by the listener to com-
pute its hypothesis about the answer to the question.
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This is done by evaluating the semantic network
that results from comprehension. The listener’s
hypothesis is the value of the target variable of that
semantic network.

4.5 Learning Mechanisms

Learning takes place when the interaction has
failed, i.e. when the learner acting as the listener
cannot retrieve the meaning underlying an observed
question or the applied form-meaning mappings re-
sult in an incorrect hypothesis for the answer. The
outcome of the learning mechanisms is to make
new form-meaning mapping(s), through intention
reading and pattern finding, in order to be more
successful in future interactions.

Intention reading is performed by the learner to
reconstruct a hypothesis of the meaning underlying
the observed question. Similar to conceptualisa-
tion, this is done by composing a semantic network.
The goal of the composition process is to construct
a semantic network leading to the tutor’s intention,
i.e. the answer that was revealed at the end of the
interaction. Crucially, the number of possible se-
mantic networks that lead to the provided answer in
the current scene is typically very large, and most
of those networks will not be adequate representa-
tions of the meaning of the question. The problem
faced by intention reading is thus twofold. First,
the agent needs to overcome the enormous search
space of possible semantic networks. Second, the
agent needs to overcome incorrect meaning hy-
potheses.

Pattern finding allows the learner to generalise
over reoccurring patterns on both the form side,
which can be observed, and the meaning side,
which is reconstructed through intention reading.
The goal is not to learn holophrase constructions for
every observation, but to learn more general item-
based and lexical constructions that cover multi-
ple observations, including novel ones. Given that
both the form side and the meaning side of con-
structions are represented as sets of predicates, set
difference operations that use unification to com-
pare the elements are used to find the overlapping
and non-overlapping parts.

The learner is endowed with five learning mech-
anisms that operationalise intention reading and
pattern finding. These mechanisms are active in
the inverse order of their presentation below.

Learning holophrases At the start of the experi-
ment, the learner’s construction inventory is empty.

When it observes novel utterances, the only thing it
can do is to create holophrase constructions. Specif-
ically, the meaning is hypothesised through inten-
tion reading and paired with the observed utter-
ance. Holophrase constructions form the basis of
the learning process. Other learning operators will
generalise over them.

Generalising over holophrases Whenever pos-
sible, pattern finding will compare newly created
mappings between observed utterances and their re-
constructed meanings against previously acquired
holophrase constructions. When a minimal differ-
ence is found on both the form side and the mean-
ing side, a generalisation can be learned. On the
form side, a minimal difference refers to a single
token, while on the meaning side, this is a single
predicate. An item-based construction will cap-
ture the overlapping parts of the form and mean-
ing, while a lexical construction captures the non-
overlapping parts. A link is added to the categorial
network indicating that the arguments of the lexical
construction are suitable for filling the item-based
slots on the form side and the meaning side. Three
cases of this learning mechanism can be identified:
(i) the new form-meaning pairing differs from the
holophrase construction by substituting a minimal
difference, (ii) the new form-meaning pairing ex-
tends the holophrase construction by a minimal
difference, and (iii) the new form-meaning pairing
reduces the holophrase construction by a minimal
difference.

Learning from partial meanings This learning
mechanism creates new constructions that can com-
bine with existing constructions to analyse the ob-
served utterance. Concretely, the acquisition of
item-based and lexical constructions can lead to
the partial comprehension of novel utterances. The
resulting partial meaning is used by intention read-
ing to hypothesise about the meaning underlying
the observed question. Crucially, the partial mean-
ing drastically reduces the search space faced by
intention reading, as large parts of the search space
that do not contain this partial meaning can be
pruned. This is how the interplay between inten-
tion reading and pattern finding allows to overcome
the intractability of the intention reading process.
Three cases of this learning mechanism exist. First,
partial meaning provided by one or more lexical
constructions results in an item-based construction
with an equal number of slots. This case is illus-
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Figure 4: Schematic representation of the learning mechanism that completes a partial meaning provided by lexical
constructions. The RED-CXN and BLOCK-CXN provide a partial meaning (red box) for the observed utterance
(yellow box). Intention reading creates a meaning hypothesis, reusing the partial meaning (green box). Pattern
finding creates an item-based construction with two slots and corresponding links in the categorial network (blue
box).

trated in Figure 4. Second, partial meaning pro-
vided by an item-based construction leads to a sin-
gle lexical construction. If multiple lexical items
are missing, there would be referential uncertainty,
which is not explored here. Third, partial meaning
provided by a combination of one or more lexical
constructions and an item-based construction also
leads to maximally one lexical construction. In all
three cases, slot-and-argument links are also added
to the categorial network.

Learning slot-argument links This learning
mechanism handles cases where previously ac-
quired item-based and lexical constructions cover
the observed utterance, but where the slot-argument
combination has not been observed before. Due to
the absence of that link in the categorial network,
the corresponding constructions cannot combine,
causing comprehension or production to fail. In
comprehension, the learner simply adds the slot-
argument combination it observed. In production,
the learner creatively tries out slot-argument com-
binations. However, these links are only consoli-
dated when the interaction turns out to be success-
ful. Note that intention reading is not required for
this learning mechanism.

Lateral inhibition Lateral inhibition facilitates
the self-organisation of the learner’s construction
inventory (Steels, 1995). It is used at the end of
every interaction, including successful ones. Con-
cretely, it models the entrenchment of constructions
(Schmid, 2007) by updating their scores. New con-
structions obtain a default score of 0.5. Scores are
bound between 0 and 1.

The scores of constructions are updated based
on the outcome of the game. If the game fails, the

scores of the constructions used during the game
are decreased by 0.4. These constructions were
inadequate for the communicative task and should
therefore be used less often in the future. If the
game succeeds, the scores are increased by 0.1,
while scores of competing constructions are de-
creased by 0.1. Competing constructions are con-
structions that also could have contributed to the
comprehension or production process. When reach-
ing a score of 0, constructions are removed from
the construction inventory. The exact values used
to alter construction scores do not influence the
global dynamics of the learning process, as long as
these values are positive and negative respectively.

The presented learning mechanisms do not posit
a built-in bias towards more abstract constructions.
However, given that more abstract constructions are
inherently applicable in a wider range of situations,
they will therefore be used more frequently. As a re-
sult of lateral inhibition, this will result in higher en-
trenchment scores for more abstract constructions
and in lower scores for less abstract constructions.
By updating scores of constructions through lat-
eral inhibition and by preferring constructions with
a higher score during comprehension and produc-
tion, a positive feedback loop is created between
the success and use of constructions. This feed-
back loop ensures that only constructions that can
be used successfully in the communicative task re-
main, while unsuccessful constructions gradually
disappear. This way, incorrect meaning hypotheses
generated by intention reading can be overcome.

5 Experimental Results

This section presents the validation of our method-
ology on the CLEVR data. The presented results
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Figure 5: Evolution of communicative success (left axis)
and grammar size (right axis) over time.
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Figure 6: Evolution of the number of constructions over
time, split per type.

are based on ten independent runs of 250,000 inter-
actions each. The filled areas around the lines on
the plots represent the 5th and 95th percentile.

Figure 5 presents the main results of the exper-
iment. It shows the communicative success and
the grammar size over time. Both metrics start at
0. The communicative success rises quickly, with
more than 78% of the interactions being successful
after 5,000 games. This is half the number of pos-
sible utterances from our subset of data. The gram-
mar size also reaches its peak at this point, with
on average 1,048 constructions being learned. Suc-
cess reaches over 98% after 10,000 interactions and
does not go below 99.9% from interaction 25,000
onwards. It is only after 200,000 interactions that
the success reaches a stable 100%. This is because
it takes a long time for all incorrect constructions to
be cleared from the construction inventory. Specif-
ically, the learner needs to observe just the right
question in just the right scene to find out that a pre-
viously acquired form-meaning mapping is incor-
rect. The grammar size gradually decreases, reach-
ing 492 constructions after 25,000 interactions and
149 constructions by the end of the experiment.

Figure 6 breaks down the grammar size per con-

struction type. At the start of the experiment, only
holophrase constructions are learned. Soon af-
ter, the learner can start to generalise over them.
The construction inventory peaks after 5,000 in-
teractions, reaching 184 holophrase constructions
and 838 item-based constructions. Afterwards,
more abstract item-based constructions gradually
become dominant and overtake their less abstract
competitors, including the holophrase construc-
tions. By the end of the experiment, 31 holophrase
constructions and 85 item-based constructions re-
main. There is less competition among the lexical
constructions. After 10,000 interactions, 33 lexical
constructions are learned and this remains stable
until the end. The theoretical maximum of 35 lex-
ical constructions was reached in four out of ten
experimental runs. After 10,000 interactions, 33
lexical constructions are learned and this remains
stable until the end. We note that it is not the goal
of the experiment to reach one particular set of con-
structions. Hence, the absolute number of construc-
tions at a given time is not important. Instead, the
goal is to become successful at the communicative
task and learn an efficient construction inventory
for doing so.

6 Related Work

Prior agent-based models have also studied the con-
structivist co-acquisition of syntax and semantics
through task-oriented interactions (Gerasymova
and Spranger, 2010; Beuls et al., 2010; Spranger
and Steels, 2015). While these models have pro-
vided important insights, this paper advances the
state of the art in two ways. First, the presented
experiment operates on a much larger scale. In
contrast to prior models, this work does not fo-
cus on a specific linguistic phenomenon, such as
the Russian aspectual system (Gerasymova and
Spranger, 2010), the Hungarian agreement system
(Beuls et al., 2010) or English spatial language
(Spranger and Steels, 2015). The utterances being
considered in this work are far more complex, both
in terms of morpho-syntax and semantics. Second,
the presented experiment provides fewer scaffolds.
The agent does not receive a segmentation of input
utterances, a predefined lexicon as in Beuls et al.
(2010) or a taxonomy guiding the generalisation
process of constructions as in Spranger and Steels
(2015). The agent only relies on a number of basic
cognitive operations and a collection of concepts.
The latter can also be learned from sub-symbolic
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observations through the language game methodol-
ogy, as shown by Nevens et al. (2020).

When it comes to the field of visual question
answering, existing approaches typically tackle the
task in one of two ways. Either, a large end-to-end
neural network maps an image and a question to
the answer, e.g. as in Malinowski et al. (2015).
Alternatively, RNNs are used to map the question
onto a query which is then executed on the im-
age, e.g. as in Johnson et al. (2017b). Both of
these approaches rely on huge amounts of training
data. The second approach additionally requires
questions annotated with queries to train the RNN.
Further, both approaches rely on black-box archi-
tectures, making it unclear how and why an answer
was generated. Our methodology overcomes these
shortcomings. Similar to the first approach, the
agent is only presented with images, questions and
their answers and autonomously reconstructs the
underlying queries. Our methodology is more data-
efficient and the agents’ representations and rea-
soning processes are fully transparent. Finally, the
agents’ communication system is open-ended and
completely bidirectional using the same represen-
tations and processing mechanisms, which is not
possible using current neural network architectures.

7 Concluding Discussion

The contributions of this paper span two areas.

Usage-based Language Acquisition The exper-
iment presented in this paper provides computa-
tional evidence for the cognitive plausibility of
theories from usage-based language acquisition,
in particular intention reading and pattern finding
(Tomasello, 2003). We have operationalised these
capacities and their interplay in an agent-based
simulation, which has indeed revealed learning dy-
namics that are similar to those observed in the
literature. Starting from holophrases, the agent
learns to generalise over them, gradually leading to
more and more abstract schemata.

Autonomous Agents Most importantly, this pa-
per pushes forward the state of the art in the devel-
opment of autonomous agents with communication
systems offering human-like properties. In par-
ticular, we have introduced a novel methodology
that allows an agent to acquire an inventory of con-
structions that facilitates bi-directional language
processing and is suitable for solving a commu-
nicative task. This grammar is acquired through

situated, task-oriented interactions with indirect su-
pervision only. Given only utterances, feedback
on their underlying intentions and a collection of
primitive cognitive operations, the agent engages
in a highly non-trivial process of meaning creation,
operationalised through intention reading, and com-
bines this with a process of schema abstraction, op-
erationalised through pattern finding. We show that
the search space involved in intention reading, i.e.
the composition of semantic programs, can effec-
tively be constrained through its integration with
pattern finding and that together, these processes
allow the agent to bootstrap a successful commu-
nication system. The presented methodology is
completely transparent, both in terms of the ap-
plied learning operators and the resulting inventory
of constructions. The agent learns incrementally,
acquiring productive linguistic structures even after
a single interaction. The agent’s grammar is open-
ended and the lateral inhibition dynamics enable
the agent to remain ever-adaptive, e.g. when the
environment or the communicative task changes.
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Abstract

This paper analyses the degree to which dialect
classifiers based on syntactic representations
remain stable over space and time. While pre-
vious work has shown that the combination of
grammar induction and geospatial text classifi-
cation produces robust dialect models, we do
not know what influence both changing gram-
mars and changing populations have on dialect
models. This paper constructs a test set for
12 dialects of English that spans three years
at monthly intervals with a fixed spatial distri-
bution across 1,120 cities. Syntactic represen-
tations are formulated within the usage-based
Construction Grammar paradigm (CxG). The
decay rate of classification performance for
each dialect over time allows us to identify re-
gions undergoing syntactic change. And the
distribution of classification accuracy within
dialect regions allows us to identify the degree
to which the grammar of a dialect is internally
heterogeneous. The main contribution of this
paper is to show that a rigorous evaluation of
dialect classification models can be used to find
both variation over space and change over time.

1 Geographic Variation Over Time

This paper experiments with the stability of dialect
classification models over space and time in order
to determine the degree to which they capture lan-
guage variation and change. The assumption in pre-
vious work has been that a geo-referenced corpus
(Davies and Fuchs, 2015; Cook and Brinton, 2017;
Dunn, 2020) captures the linguistic behaviour of
specific populations. This paper experiments with
the spatial and temporal stability of dialect mod-
els by systematically constructing monthly test sets
spanning a three-year period. This allows us to eval-
uate the continuing effectiveness of dialect models
over time, an important criteria for determining
their validity. Because different locations represent
different populations, we use spatial sampling to
construct test sets which represent different local

populations within each country. This allows us to
determine the degree to which a dialect like New
Zealand English adequately represents the varied
populations within New Zealand.

Dialect classification is the task of predicting
the location of origin for the individual who pro-
duced a given sample (Dunn, 2019b; Chakravarthi
et al., 2021; Gaman et al., 2020). Thus, dialect
classification, by focusing on the latent proper-
ties of geo-referenced samples, differs from geo-
location (Rahimi et al., 2017) which focuses on pre-
dicting the location of the sample itself and from
geo-characterization (Adams and McKenzie, 2018)
which focuses on predicting attributes of the lo-
cation. While all three tasks rely on geographic
information, dialect classification is unique in mod-
elling variations in the linguistic system. Beyond
this, dialect classification is part of ensuring that
NLP represents the world’s population, including
non-standard and non-western populations.

The temporal evaluation (Section 6) shows that
most dialects share the same performance decay
rate. This indicates a general effect of model decay
rather than cases of change over time within indi-
vidual dialects. The spatial evaluation, however,
shows that prediction accuracy for all dialects is
spatially-conditioned within countries (Section 7).
This indicates that, while dialect models capture
proto-typical populations within each country, they
do not equally describe all local populations.

The experiments in this paper use construction
grammar (CxG: Goldberg 2006; Langacker 2008;
Croft 2013) to represent syntactic structure for the
purpose of observing dialectal variation. CxG is
a usage-based approach to syntax, a bottom-up
theory of language in which frequent exposure is
hypothesized to lead to the emergence of grammat-
ical units (Hopper, 1987; Bybee, 2006). The use of
syntactic representations for dialect classification
ensures that the model does not rely on extraneous
information like place names or local topics of in-
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terest. From this perspective, a GRAMMAR is a set
of constructions that together represent the struc-
ture of a language. A DIALECT MODEL is a matrix
of spatial weights in which the number of rows
corresponds to the number of constructions in the
grammar and the number of columns corresponds
to the number of dialects. These weights, learned
using a Linear SVM, support dialect classification
and also represent spatial variation in the grammar.

In order to undertake a spatio-temporal evalu-
ation, we collect a balanced corpus of tweets to
represent 12 varieties of English around the world.
The basic experimental paradigm is to train models
on a fixed period (July through December 2018)
and then test those models at monthly intervals
from 2019 to 2021. Each monthly test set main-
tains the same geographic distribution as the train-
ing data, so that fluctuations in performance are not
caused by changes in the locations represented.

After considering related work on dialect classi-
fication and other geographic models (Section 2),
we consider the corpora used in these experiments
(Section 3). We then present the syntactic represen-
tations used (Section 4) and the basic experimental
methods (Section 5). The performance of dialect
models over time is presented in Section 6 and the
performance over space in Section 7. The main
contribution of this paper is to show that the per-
formance of dialect classification models remains
stable over time but that there is significant spatial
variation in performance within dialect areas.

2 Related Work

Early work showed that part-of-speech trigrams are
able to distinguish between some regional dialects
(Sanders, 2007), a method that continues to appear
in recent work (Kreutz and Daelemans, 2018). Sim-
ilar methods have been used for authorship analysis
(Hirst and Feiguina, 2007) and for characterizing
immigrant populations (Nerbonne and Wiersma,
2006). In other contexts, non-syntactic features
can out-perform syntactic features for modelling di-
alects (Kroon et al., 2018), so that many approaches
to distinguishing between dialects are similar to
language identification models (Ali, 2018).

More recent work has modelled geographic syn-
tactic variation by combining grammar induction
with geospatial text classification (Dunn, 2018a,
2019b,c). The use of grammar induction to learn a
syntactic feature space mitigates the fact that most
grammars represent standard varieties (Jørgensen

et al., 2015), thus poorly representing many dialects
around the world. In this paradigm, the learned
grammar provides a feature space (c.f., Section 4)
and the frequency of grammatical constructions in
each sample is used to model dialects: a bag-of-
constructions approach to text classification.

Most work on geographic variation is focused
on lexical variation (Eisenstein et al., 2010) and
change (Eisenstein et al., 2014). Recent work has
shown a close correspondence between lexical vari-
ation in tweets and lexical variation in a dialect
survey (Grieve et al., 2019). This work is important
for showing that digital usage mirrors face-to-face
usage. Other work has shown that geographic varia-
tion can be taken into account during language iden-
tification to ensure the inclusion of non-standard
varieties (Jurgens et al., 2017). Models of lexi-
cal variation have generally failed to account for
polysemy, so that competition between senses is
not captured (Zenner et al., 2012), but more recent
work has been able to account for polysemy in this
context (Lucy and Bamman, 2021).

A related line of work uses language data to
model non-linguistic properties of populations and
places. For example, the problem of geo-location
is to predict the location of a user given properties
of a document (Wing and Baldridge, 2014; Alex
et al., 2016; Rahimi et al., 2017). This task differs
from dialect classification in that named entities
and topic features can provide significant informa-
tion. A related task is to model the characteristics
of a particular place rather than the population of
that place (Adams, 2015; Adams and McKenzie,
2018; Hovy and Purschke, 2018; Villegas et al.,
2020). While there is a close connection between a
place and its population, this line of work remains
focused on characterizing non-linguistic attributes.

This paper makes two main contributions: First,
it experiments with geographic syntactic variation
over time and within dialect regions, significantly
expanding our understanding of geographic varia-
tion in syntax. Second, from a more practical per-
spective, this paper evaluates the degree to which
geographic models remain robust over space and
time, an evaluation not previously available.

3 Geographic Language Data

This paper draws on social media data from the
Corpus of Global Language Use (CGLU), using
geo-referenced tweets that are identified for lan-
guage using the idNet package (Dunn, 2020). The
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Circle Region Country N. Cities N. Words
Inner-Circle Oceania Australia 98 3.9 mil
Inner-Circle Oceania New Zealand 99 2.0 mil
Inner-Circle North American Canada 95 4.9 mil
Inner-Circle North American United States 86 4.5 mil
Inner-Circle European Ireland 100 3.6 mil
Inner-Circle European United Kingdom 89 5.5 mil
Total Inner-Circle 3 6 567 24.4 mil
Outer-Circle African Ghana 69 1.1 mil
Outer-Circle African Kenya 98 1.8 mil
Outer-Circle South Asian India 96 2.5 mil
Outer-Circle South Asian Pakistan 100 1.0 mil
Outer-Circle Southeast Asian Malaysia 99 0.8 mil
Outer-Circle Southeast Asian Philippines 91 1.1 mil
Total Outer-Circle 3 6 553 8.37 mil

Table 1: Inventory of Regions, Countries, and Cities for Data Collection (One Month)

collection method for social media in the CGLU

involves geographic searches from co-ordinates of
individual cities. Here we sample from 1,120 cities
representing 12 countries and six regions, as shown
in Table 1. This table shows the amount of data
by place by month. The total data set contains six
months for training and 36 months for testing. The
data set as a whole is visualized at earthLings.io.

This corpus is designed to provide a balanced
representation of different varieties of English over
time. The colonial history of English has led to a
distinction within the World Englishes paradigm
(Kachru, 1990) between inner-circle varieties that
represent the first diaspora (e.g., Canada) and outer-
circle varieties that represent the second diaspora
(e.g., India). We include six dialects/varieties each
from the inner-circle and outer-circle groups.

Within each group we include three regions, each
with two country-level varieties. As shown in Ta-
ble 1, the inner-circle group contains three regions:
Oceania (Australia and New Zealand), North Amer-
ica (Canada and the US), and Europe (the UK and
Ireland). The collection of data from these coun-
tries is distributed across 567 cities, where each
city represents a 50km radius from the city center.
For each month, we sample 24.4 million words
representing these inner-circle varieties.

The outer-circle group also contains three re-
gions: Africa (Ghana and Kenya), South Asia (In-
dia and Pakistan), and Southeast Asia (Malaysia
and the Philippines). The collection of data from
these countries is distributed across 553 cities, with
a comparable sample of 8.37 million words for

each month across the training and testing periods.

To maintain a comparable geographic distribu-
tion over time, we maintain the same number of
samples from each city. This means, for example,
that the relative influence of Brisbane and Perth
in Australia remain constant over time. A sample
for the purposes of this paper is an aggregation of
individual tweets from the same place and time
until the sample reaches 500 words. These larger
samples provide more syntactic information for
each dialect than do individual tweets. While previ-
ous work has used samples of 1,000 words (Dunn,
2019b), here we use smaller samples in order to
increase the capacity for error analysis. As with
many tasks, there is a trade-off between the higher
accuracy provided by larger sample sizes and the
flexibility provided by smaller sample sizes.

The distribution of samples across cities is taken
from the training period (2018). Thus, the density
of data by location across time is fixed to repre-
sent the density during the training period. This
allows us to control for changes in the collection:
for example, if Wellington began to produce more
data in 2021, this change in distribution within
New Zealand would appear to be syntactic varia-
tion while actually reflecting a change in the means
of observation. Data collection spans from 07-2018
until 12-2021, a period of 42 months. The train-
ing period is 2018 and the testing period is 2019
through 2021. The geographic distribution across
countries, as shown in Table 1, is held constant
across this period, controlling for other sources of
variation that might impact dialect models.
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4 Syntactic Representations

This section details the main ideas of construction
grammar (CxG), including both (i) the grammar
induction algorithm used to learn syntactic repre-
sentations here and (ii) examples of constructions
used in the dialect models. The basic approach
here is, first, to use grammar induction to learn a
grammar and, second, to use the frequency of the
constructions in that grammar to undertake geospa-
tial text classification (Dunn, 2019b,c).

CxG can be distinguished from other approaches
to syntax given its three core ideas: First, CxG
posits a continuum between the lexicon and the
grammar rather than a strict separation (for exam-
ple, into a vocabulary and a set of phrase structure
rules). This CONSTRUCTICON contains both lexi-
cal items and traditional syntactic structures. For
example, a grammar-and-lexicon approach would
analyze (a) below as an intransitive sentence by
labelling the verb laugh as intransitive. The prob-
lem is that verb valency is quite fluid, as shown
in (b) and (c). The CxG analysis of this fluidity
is that (a) represents an INTRANSITIVE construc-
tion into which laugh is merged and (b)/(c) repre-
sent a CAUSED-MOTION construction into which
laugh is merged. Thus, the fluidity of the argument
structure here is explained by an underlying con-
struction, itself meaningful, which interacts with
specific lexical items. (Note that the grammar used
for modelling dialects does not contain any individ-
ual lexical items as constructions).

(a) Peter laughed.
(b) The audience laughed Peter off the stage.
(c) His marriage laughed Peter into rehab.
(d) Peter laughed all the way to the bank.

A second main idea in CxG is that syntactic
structure varies in its level of abstractness, with
some representations being quite item-specific.
The constructicon is an inheritance hierarchy
in which fully-productive constructions like the
CAUSED-MOTION construction in (b)/(c) have item-
specific children like the idiom in (d). Essentially,
(d) is a non-compositional and idiomatic version
of the construction in (b)/(c) with some of the slots
constrained to require a fixed phrase.

(e) [SYN:NP – SYN:VP]
(f) [SYN:NP – SYN:VP – SEM:object – SEM:loc]
(g) [SYN:NP – SYN:VP – LEX:all the way to the bank]

A third main idea in CxG is that constructions
are constraint-based representations in which slot-
fillers are drawn from lexical, syntactic, and se-
mantic categories. Each unit in a construction is a
slot, separated by dashes in (e)/(f)/(g) above. Each
slot is defined using a slot-constraint. For exam-
ple, the INTRANSITIVE construction in (e) can be
represented using only syntactic constraints. In
contrast, the CAUSED-MOTION construction in (f)
has two semantic constraints; these are labelled for
purposes of exposition as object and location. The
construction in (g) is item-specific and idiomatic,
so that it can only be described using lexical con-
straints. The point, then, is that different levels
of abstraction are captured in CxG using different
types of slot-constraints.

This paper draws on previous approaches to
the unsupervised learning of constructions (Dunn,
2017, 2018b). The first challenge is to build the
inventory of lexical, syntactic, and semantic con-
straints that constructions are built on. Here we
use the most frequent 100k words across the en-
tire corpus of tweets as the lexicon. The syntactic
constraints are drawn from the Universal Part-of-
Speech tagset (Petrov et al., 2012) as implemented
by the Ripple-Down-Rules tagger (Nguyen et al.,
2016). The semantic constraints are drawn from
fastText embeddings (Grave et al., 2019) clustered
into discrete semantic domains using k-means. A
complete inventory of these semantic domains is
provided in the supplementary material; this ap-
proach ignores polysemy in lexical items when
defining semantic constraints, using a single repre-
sentation for each word-form.

From the perspective of varying levels of ab-
stractness, syntactic constraints are the most gen-
eral because they are divided into the smallest in-
ventory of labels (only 14). Lexical constraints are
the least general, with a lexicon of 100k words.
And semantic constraints are in the middle, with an
inventory of 1,000 domains. This parameter choice
(i.e., using 1,000 semantic domains) results from
the desired granularity in domains, falling between
the very general syntactic constraints and the very
specific lexical constraints. Thus, constructions are
a sequence of slots, each of which is defined by a
slot-constraint. Each type of slot-constraint (lexi-
cal, semantic, and syntactic) differ in their level
of abstractness. For instance, lexically-defined
constructions are more idiomatic and item-specific
than syntactically-defined constructions.
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This work relies on a loss function based on Min-
imum Description Length (Goldsmith, 2006; Grün-
wald and Rissanen, 2007) and a construction parser
with a beam-search strategy (Dunn, 2019a) that
operates on top of a psychologically-plausible asso-
ciation measure, the ∆P (Ellis, 2007). The contri-
bution of this paper is to analyze syntactic variation
across space over time using previous work on com-
putational CxG; thus, we do not provide a fuller de-
scription of the framework here. Previous work has
shown that these grammars converge onto stable
representations as the amount of training data is in-
creased (Dunn and Tayyar Madabushi, 2021), that
grammars of individuals are significantly different
than grammars of groups of individuals (Dunn and
Nini, 2021), and that transformer-based language
models can be fine-tuned using constructional in-
formation (Tayyar Madabushi et al., 2020).

The grammar used in these experiments is
learned from the training period (2018) but includes
a wider pool of 18 English-speaking countries in
order to provide a global grammar of English. This
larger training corpus for grammar induction con-
tains 478 million words. The fastText embeddings
are trained on this same extended corpus, but cover-
ing the entire period in order to increase the amount
of data available for training; this larger corpus
contains 4.2 billion words. This results in a single
grammar that contains 6,119 individual construc-
tions, some of which are shown in (h) through (n)
below. Dialect models are learned by parsing each
sample using this grammar, counting the frequency
of each construction in each sample, and using
the resulting feature space for dialect classification.
The complete grammar, along with examples from
the training data for each construction, is available
in the supplementary material.

The following examples illustrate the nature of
constructions; both constructions like (h) and ex-
amples like (h1) are drawn from the grammar used
in the experiments. Each slot in (h) is separated
by dashes and each slot-constraint is defined us-
ing lexical (LEX), syntactic (SYN), or semantic
(SEM) categories. Lexical constraints are words
given in italics; syntactic constraints are drawn
from part-of-speech tags; and semantic constraints
are formulated using numbers that refer to clustered
embeddings, such as <443> in (k). For dialect clas-
sification, each construction (h) provides a feature
and the frequency of that construction (h1 through
h3) provides a sample-specific quantification.

(h) [LEX:it – SYN:AUX – SYN:V]
(h1) ‘it is set’
(h2) ‘it was shut’
(h3) ‘it can go’

The first example, in (h), shows a simple clause
with an expletive it as subject and a variable aux-
iliary verb. The example in (i) is a lexically-
constrained noun phrase with ability as the head of
an infinitival verb. A further lexically-constrained
noun phrase in (j) shows the importance of a tweet-
specific grammar: ur replaces the more traditional
your as the pronoun.

(i) [LEX:ability – LEX:to – SYN:V]
(i1) ‘ability to focus’
(i2) ‘ability to live’
(i3) ‘ability to wait’

(j) [LEX:ur – SYN:ADJ – SYN:N]
(j1) ‘ur new journey’
(j2) ‘ur own money’
(j3) ‘ur mad tunes’

The adposition phrase in (k) contains a semantic
constraint on the complement noun, in this case a
type of location. As an example of how construc-
tions themselves can be meaningful, (l) shows a
copula construction with an ending conjunction.
But the construction as a whole marks a caveat on
the evaluation that is expressed by the copula.

(k) [SYN:ADP – SYN:N – <443>]
(k1) ‘along airport road’
(k2) ‘in union station’
(k3) ‘into police station’

(l) [SYN:N – LEX:was – SYN:ADJ – SYN:CC]
(l1) ‘bike was awesome but’
(l2) ‘birthday was great and’
(l3) ‘movie was better but’

The more complicated verb phrase in (m) con-
tains a main verb, myself as a direct object, and an
infinitival verb. This implicitly constrains the main
verb to verbs of thinking like compare and tell,
showing that implicit semantic constraints arise
from interactions between slots. Finally, the com-
plex noun phrase in (n) reflects a specific template
of NP + ADP. In this way, constructions capture
grammatical units of varying size and abstractness.
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Figure 1: F-Score Against Baselines Over Time, All Varieties

(m) [SYN:V – LEX:myself – LEX:to – SYN:V]
(m1) ‘allowing myself to hope’
(m2) ‘forcing myself to sleep’
(m3) ‘tell myself to stop’

(n) [LEX:the–SYN:N – LEX:of – SYN:DET – SYN:N]
(n1) ‘the happiness of another person’
(n2) ‘the owner of the station’
(n3) ‘the masters of the game’

This section has presented CxG as a paradigm
for usage-based syntax and reviewed previous work
on computational CxG. An unsupervised construc-
tion grammar is learned from the training period,
providing an adaptable feature space that contains
structures from many different dialects. As the dis-
cussed examples show, these learned constructions
provide a rich syntactic feature space for modelling
geographic variation in production over time.

5 Dialect Models

The task of dialect classification or identification
is to predict the location of origin for the author
of a sample given some set of linguistic features.
The classification here predicts country-level di-
alects like New Zealand English or Australian En-
glish. From the perspective of linguistics, dialect
classification allows us to study variation in a high-
dimensional space: variation across an entire gram-
mar (Dunn, 2019b) rather than variation in individ-
ual and independent features (Grieve et al., 2019).
From the perspective of NLP, dialect classification
is part of the general problem of ensuring that lan-
guage technology represents the world’s population
rather than privileged sub-sets of the world’s popu-
lation (Dunn and Adams, 2020).

Because part of the goal is to model spatio-
temporal variation in the grammar, a dialect model
takes the form of a matrix in which each feature

(a construction in the grammar) is a row and each
dialect (a country-level label) is a column. This
matrix represents the degree to which a given part
of the grammar is subject to geographic variation.
Taken row-wise, this matrix provides a measure
of whether a particular construction varies across
space. And, taken column-wise, this matrix pro-
vides a description of each dialect that, for example,
can be compared with every other dialect to deter-
mine which are the most similar. As discussed
below, dialect models are implemented as Linear
SVMs that are trained using a bag-of-constructions
approach in which the parser counts how many
times each construction occurs in each sample.

Using the data from 2018 for training, we com-
pare three models: First, a syntactic model based
on the frequencies of the constructional features
described above. Second, a baseline model that
uses the frequency of function words like of or
was, a common baseline for problems in authorship
analysis (Grieve, 2007; Stamatatos, 2009; Arga-
mon, 2018) when content words need to be avoided.
Third, for the purpose of comparison, we include a
unigram lexical model with TF-IDF weighting and
function words removed so that it contains no syn-
tactic information. Each of these models are imple-
mented as a Linear SVM. Within this task, SVMs re-
main competitive, as shown by recent shared tasks
on Romanian dialect identification (Gaman et al.,
2020) and on identifying similar Uralic languages
(Chakravarthi et al., 2021). In each case, we use a
development set to determine parameters.

In each case, we train three models: INNER con-
tains only inner-circle varieties like American En-
glish; OUTER contains only outer-circle varieties
like Indian English; and ALL contains all 12 vari-
eties. These are trained on the data from 2018 and
tested on data from 2019, 2020, and 2021. The
reason for maintaining separate models in some
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Figure 2: F-Score by Country Over Time for CxG Model, Inner-Circle Varieties

conditions is that inner-circle varieties have sig-
nificantly more training and testing data available,
which could lead to higher performance as an arti-
fact. Thus, for example, the inner-circle condition
contains only training and testing data from the six
countries listed as inner-circle in Table 1.

As an initial analysis, the f-scores of each of
these three models over time is shown in Figure
1, with the y-axis indicating the weighted f-score
and the x-axis indicating time. All three classifiers
are well above the majority baseline. The lowest
performing is the function word model, a weak
approximation for syntactic variation. The highest
performing is the lexical model. This hierarchy
remains stable across the three year testing period.

AU CA IE NZ
australia canada ireland nz
australian canadian irish zealand
mate ontario dublin auckland
melbourne trump cork jacinda
sydney toronto limerick te
abc vancouver galway kiwi
brisbane trudeau lads liked
labor km hurling lincoln
nsw kpa county hamilton
turnbull alberta final kph

Table 2: Top Lexical Features By Country

Given the results in Figure 1, could we use the
lexical model to examine dialects? The issue, as in
previous work, is that the information contained in
this model does not represent linguistic variation.
Table 2 shows the top lexical items for four inner-
circle countries: Australia, Canada, Ireland, and
New Zealand. Most of these terms are place-names
(like australia), place-specific named-entities (like
abc), or people associated with these countries (like

jacinda). Only a few terms would qualify as di-
alectal variants, for example mates vs lads. As
a representation of latent linguistic variation, the
lexical model is not relevant; we thus focus on the
syntactic models in the remaining analysis.

6 Syntactic Variation Over Time

We begin the analysis by looking at the weighted av-
erage f-score by model for the beginning of the test
period (2019-01) and the end (2021-12), as shown
in Table 3. This represents the impact of time on
the overall accuracy. First, we see that outer-circle
models have better performance. The most likely
reason for this is that outer-circle varieties are more
distinct from one another, in part because these va-
rieties exist in more linguistically-diverse settings.
For example, the US is less linguistically diverse
than India in digital settings (Dunn et al., 2020).
Although outer-circle varieties have a higher av-
erage f-score, they also have a greater change in
f-score. This indicates more variability over time.

Function Grammar
Inner-Only, 2019-01 0.44 0.66
Inner-Only, 2021-12 0.40 0.59
Inner-Only Decline 0.04 0.07
Outer-Only, 2019-01 0.75 0.83
Outer-Only, 2021-12 0.66 0.75
Outer-Only Decline 0.09 0.08
All Dialects, 2019-01 0.48 0.66
All Dialects, 2021-12 0.44 0.58
All Dialects Decline 0.04 0.08

Table 3: Change in Performance Over Time by Model

Second, we notice in Table 3 that the relative
performance of function words and the CxG model
remain similar across the testing period. The full
grammar model always out-performs the function
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word baseline. We use a regression analysis to
model the decay rate for each dialect in the CxG
models, examining the amount of change in pre-
cision and recall over time (c.f., Figure 2). The
basic idea here is that a consistent decay rate in-
dicates model error while a faster rate of decay
for individual dialects indicates change in those
dialects themselves. Among inner-circle varieties,
only NZ has a significant difference from the oth-
ers, for recall but not for precision. A decline in
precision would mean that samples from other di-
alects have become more similar to NZ; this does
not happen. The observed decline in recall means
that samples from NZ have become more similar to
other dialects. This indicates that there has been a
significant change in NZ but not in other dialects.
No outer-circle varieties have a different decay rate,
so that only NZ shows this type of change.

AU CA IE NZ UK US
AU 0 0 0 0 0 0
CA 0 0 0 0 0 0
IE 0 0 0 0 0 -.04
NZ .16 0 0 0 .28 0
UK 0 0 0 0 0 0
US 0 0 0 0 0 0

GH IN KE MY PK PH
GH 0 -1.01 0 0 -.28 -.40
IN 0 0 0 -.91 0 0
KE 0 0 0 0 0 0
MY 0 0 0 0 0 0
PK -.20 0 0 0 0 .13
PH 0 0 0 0 0 0

Table 4: Changing Relationships Between Dialects
Using a VECM Analysis of False Positive Errors

The decay rate represents the overall trend for a
given dialect but it does not take into account the
specific errors made. The confusion matrix for each
dialect provides a monthly representation of the dis-
tribution of false positive errors. For example, in
the CxG model that includes all dialects, Canadian
English has 1,488 false positives as American En-
glish in the first test period, but only 48 with India
and 7 with Pakistan. This distribution of false posi-
tive errors over time provides a more detailed view
of the classifier’s performance. Because the classi-
fication model itself does not change after training,
changes in the distribution of errors reflect changes
that have arisen in a given dialect after training.

The question here is whether the relationship be-

tween dialects (geographic variation) changes over
time. We model this using a Vector Error Correc-
tion Model (VECM: Lütkepohl and Krätzig 2004).
This model checks for relationships between multi-
ple time series, which in this case reflect changing
error patterns between dialects. The data represents
a non-stationary time series because the number of
errors in all dialects increases over time (i.e., there
is a decline in performance as shown in Table 3).
To partially control for the increase in errors over
time, we examine the relative frequency of false
positives by country by month. The VECM model
allows us to determine if there is a significant long-
term trend in the distribution of errors from a given
dialect, robust to short-term variations.

We examine the significant changes by country
for the inner-circle and outer-circle models with
CxG features in Table 4. Only significant changes
are shown; negative values indicate that samples
for the row have become more frequently mistaken
for the column. Thus, for the inner-circle varieties,
NZ becomes more similar over time to Australia
and the UK. This means that, in addition to lower
classification performance, NZ is also subject to the
most change in the way it is situated among other
dialects. Outer-circle varieties on the whole are
subject to more change in error distribution over
time than inner-circle varieties. The analysis of de-
cay rates also shows that NZ was subject to change
over time; the difference is that this analysis takes
into account the distribution of errors rather than
viewing the error rate as a black box. The outer-
circle varieties have a changing error distribution,
but not a changing error rate.

7 Syntactic Variation Within Countries

While previous work has viewed a dialect area
as a homogeneous entity, here we have sampled
from approximately 100 points for each country
and maintained a consistent sample over time. To
what degree is the performance of dialect classi-
fiers driven by geographic trends within a country?
If a country like Australia has a single dominant
grammar, then the performance of the syntax-based
classifier should be relatively consistent within that
country. To test this hypothesis, we look at the
average accuracy over time for samples collected
from each point within a country.

This is shown in Table 5 with a global Moran’s I
used as a measure of spatial autocorrelation within
a country (Anselin, 1988). A common method in
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Moran’s I Mean Acc. Min Max
AU 0.30 61% 18% 83%
CA 0.54 65% 07% 100%
IE 0.17 58% 35% 89%
NZ 0.20 36% 08% 62%
UK 0.22 73% 41% 82%
US 0.18 79% 53% 97%

Moran’s I Mean Acc. Min Max
GH 0.30 86% 42% 94%
IN 0.38 84% 27% 95%
KE 0.24 89% 62% 97%
MY 0.70 79% 50% 95%
PK 0.42 70% 15% 87%
PH 0.20 77% 37% 88%

Table 5: Geographic Variation in Performance

geospatial statistics, Moran’s I measures the corre-
lation in a single variable (here, prediction accuracy
for dialect classification) across different locations.
This measure has values closer to 1 when the vari-
able is highly spatially organized and closer to 0
when there is no spatial organization. Given that
there are different numbers of samples from each
location, it is possible that a generic Moran’s I
would view sparse locations as outliers; thus, we
use the Empirical Bayes rate adjustment to control
for the level of precision in each location as well
(Xia and Carlin, 1998; Anselin et al., 2006).

The table also shows the mean accuracy across
cities and the min and max accuracy. These re-
sults show that there is an effect for location: the
dialect models work well in some places and not so
well in others. The Moran’s I determines whether
this variation in performance is spatially structured.
Because different locations represent different pop-
ulations, these are measures of how well the dialect
models work for the entire population of a country.
Full maps and spatial results are available in the
supplementary material.

All countries have a significant spatial pattern
to their accuracy distribution. Within inner-circle
countries, Canada has the highest deviation, with
a wide range in accuracy and a significant spatial
structure to that variation. The US and UK have the
highest accuracy, while NZ performs much worse
than other dialects, perhaps because of the change
over time discussed above. To explore this further,
we visualize the internal variation for NZ, the inner-
circle dialect with the lowest performance and the
most change over time, in Figure 3. Each collection

Figure 3: Map of Average City-Level Accuracy, NZ

point is a dot and the shading in the surrounding ra-
dius represents the accuracy for that collection area.
Darker colors represent higher accuracy. The main
cities (Auckland, Wellington, Christchurch) have
the most consistent performance. But areas with
known distinct linguistic landscapes like Northland
(far north) and Southland (far south) have much
lower accuracy. More rural areas around the coun-
try have consistently lower accuracy as well. The
main point in this spatial error analysis is that, be-
cause different locations represent different popu-
lations, the observed variations in accuracy show
that these dialect models do not equally represent
all populations within the country.

8 Conclusions

This paper has shown that syntax-based dialect
classifiers can reveal both spatial and temporal pat-
terns in linguistic variation. We find that the mod-
els remain robust over time, with a fixed decay
rate, with the exception of change observed in NZ.
This means that, while classification performance
does decline, the rate of decline is predictable and
evenly distributed. Within dialect regions, however,
there is a significant spatial effect on performance.
This evaluation is important for establishing an
understanding of how dialect models and other ge-
ographic models function in the face of on-going
linguistic change and population change over space
and time. Here, even the best dialect models do not
equally represent all speakers of a dialect.
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Abstract

Both humans and neural language models are
able to perform subject-verb number agreement
(SVA). In principle, semantics shouldn’t inter-
fere with this task, which only requires syntac-
tic knowledge. In this work we test whether
meaning interferes with this type of agreement
in English in syntactic structures of various
complexities. To do so, we generate both se-
mantically well-formed and nonsensical items.
We compare the performance of BERT-base to
that of humans, obtained with a psycholinguis-
tic online crowdsourcing experiment. We find
that BERT and humans are both sensitive to our
semantic manipulation: They fail more often
when presented with nonsensical items, espe-
cially when their syntactic structure features
an attractor (a noun phrase between the sub-
ject and the verb that has not the same number
as the subject). We also find that the effect of
meaningfulness on SVA errors is stronger for
BERT than for humans, showing higher lexical
sensitivity of the former on this task.

1 Introduction

Subject Verb Agreement (SVA) is a grammatical
constraint in English and several other natural lan-
guages, such that verbs must agree in number with
their subject. Linguistic theories generally assume
that SVA obeys two main principles: i.) structure
dependence (SD) - SVA is governed by phrasal
structure, rather than surface linear order (i.e., the
verb agrees with the syntactic subject); ii.) mean-
ing independence (MI) - SVA is a morphosyntactic
constraint that holds for meaningless sentences too
(e.g., Colorless green ideas sleep furiously) (Chom-
sky, 1956, 1971; Chomsky et al., 1976). How-
ever, previous research has shown that humans are
prone to making agreement errors with specific
constructions (Bock and Miller, 1991; Hartsuiker
et al., 2001), for example when a noun with a dif-
ferent number (also called an attractor) occurs
between the subject (the cue) and the verb (the tar-

get). See (1) from Bock and Miller (1991) for an
example where agreement can be disturbed by an
attractor, as human subjects often show preference
for a syntactically ill-formed sentence:

(1) [The readiness]subject [of our conventional
forcesattractor]PP [are]verb at an all-time low.

This evidence suggests that the SD principle of
SVA might be weaker than it is typically assumed
and can be disrupted or disturbed under specific
conditions. At the same time, such violation
prompts the need to carefully test whether the MI
principle of SVA is also compromised in subjects’
grammaticality judgments.

SVA has become a widespread testbed to investi-
gate the syntactic knowledge that neural language
models (NLMs) are able to acquire. A key ques-
tion is to explore to what extent their competence
of syntax obeys the same constraints as those of
humans, by comparing the behavior of NLMs with
subjects’ judgments. In this paper, we pursue this
goal by focusing on the SD and MI properties of
SVA in humans and NLMs. Its contribution is
twofold: i.) we collect original human data on
meaningful and meaningless stimuli featuring syn-
tactic structures of varying complexities; ii.) we
analyze and compare the error patterns in humans
and in NLMs. This allows us to address the follow-
ing questions: i.) are the SD and MI assumptions
about SVA truly supported by human judgments?
ii.) do humans and NLMs make similar SVA errors
in structures with attractors and/or in meaningless
sentences? This may help understand to what ex-
tent NLMs rely on syntactic knowledge abstracted
from training examples. By comparing the error
patterns of humans and NLMs on SVA, we can
derive important information about the the nature
of their linguistic competence: Is the ability of
NLMs on SVA completely meaning independent?
Is it influenced by the complexity of the syntactic
structure?
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Structure Structure description Example
A Simple agreement [The author]subject [laughs/*laugh]verb
B In a sentential complement [The mechanics]subject [said]VComp [[the author]SComp [laughs/*laugh]verb]Comp
C Across a prepositional phrase [The mechanic]subject [near the author]PP [smiles/*smile]verb
D Across a subject relative clause [The author]subject [that likes the movie]subj. RC [laughs/*laugh]verb
E In a short verb phrase coordination [The author]subject [laughs and swims/*swim]VP Coord
F Across an object relative clause [The author]subject [that the mechanics like]obj. RC [smiles/*smile]verb
G Within an object relative clause [The author]subject [that the mechanics like/*likes]obj. RC [smiles]verb
H Across an object relative clause (no that) [The author]subject [the mechanics like]obj. RC [smiles/*smile]verb
I Within an object relative clause (no that) [The author]subject [the mechanics like/*likes]obj. RC [smiles]verb

Table 1: Agreement structures used in this study, from Marvin and Linzen (2018). The cue is bolded, the target is in
italic, and the attractor is underlined. For each target, we display both the correct and incorrect inflections.

2 Related Work

Linzen et al. (2016) tested Long Short Term Mem-
ory (LSTM) language models and their perfor-
mance on the SVA task. They found that these mod-
els can capture a non-trivial amount of grammatical
structure but that they are insufficient for capturing
complex syntax-sensitive dependencies. In Marvin
and Linzen (2018) the capacity of LSTM language
models to perform the SVA task is compared with
human data. In particular for sentences including
attractors, the models perform worse than humans.
Linzen and Leonard (2018) tested recurrent neural
networks (RNNs) on the task to see whether the er-
ror pattern was similar to humans. They concluded
that despite important similarities, there was a dif-
ferent behavior within relative clauses. In particu-
lar, RNNs are sensitive to the number of attractors,
whereas humans are not.

Gulordava et al. (2018) investigated the role of
semantics on the performance of RNNs on SVA,
testing such neurals models against meaningless, or
“nonce”, sentences built from various syntactic con-
structions. They used meaningless sentences where
RNNs could not rely on semantic or lexical cues.
For Italian, they found that the performance of an
LSTM model and the performance of humans were
comparable for meaningless items and semantically
congruent ones. Lasri et al. (2022) tested a trans-
former model, BERT-base (Devlin et al., 2019),
on its capacity of subject-verb agreement on the
items from Marvin and Linzen (2018) and on se-
mantically disrupted sentences featuring the same
syntactic constructions. They found that although
the model generalized well for simple templates, it
failed on meaningless items with attractors.

3 Experimental Setup

In this section, we describe the procedure to con-
struct the experimental items used to collect human

judgments with crowdsourcing and to test NLM
behavior on SVA.

Items We test the syntactic structures in Table 1,
four of which include an attractor. For each syn-
tactic template, we generate 30 meaningless sen-
tences by sampling random words with the correct
part-of-speech at each position of the template, us-
ing an extensive vocabulary (see Appendix A for
more details). The generated sentences are mean-
ingless in the sense that our generation procedure
does not include any semantic constraint designed
to grant meaning to the sentence. The resulting
word sequence should therefore be semantically
ill-formed, similar to the classic example Colorless
green ideas sleep furiously. As some generated sen-
tences can accidentally happen to be interpretable,
we also tried to manually remove such sentences
when crafting our stimuli. However, as meaning
is a subtle notion, some sentences might be inter-
pretable in very specific contexts after our manual
filtering. Still, we expect such cases to be very
rare in our dataset. Every minimal pair consists of
sentences similar to (2).

(2) a. *The admissions sings.
b. The admissions sing.

We also sample 30 meaningful sentences for each
structure from Marvin and Linzen (2018) to col-
lect human data.1 As the filtered M&L data used
to collect human performances resulted in a very
limited number of sentences built on a limited vo-
cabulary, we extract BERT’s performance on the
whole dataset for M&L, following the procedure
in Goldberg (2019).

We thus collect human performance on 30 items
for each of our 2 conditions (Nonce and M&L),
and each of our 9 syntactic structures, for a total of

1We will call this data M&L. We filter out sentences where
the verb is ‘be’, as this verb is very frequent in English.
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Figure 1: Human accuracies on the SVA task. Struc-
tures where an attractor is present are displayed in bold.
The error bars displayed represent the 95% confidence
interval.

540 items. More details are given in Appendix B.2

Neural Language Model Our tested NLM is
BERT (Devlin et al., 2019), a bi-directional pre-
trained transformer model. BERT has been shown
to possess a number of syntactic abilities (Jawa-
har et al., 2019; Goldberg, 2019), the nature of
which remain scarcely understood (Baroni, 2019).
For each item, we present BERT with sentences
masked at the target position and compare the prob-
ability that BERT assigns to each verb inflection.

Collection of Human Judgements We collect
our human data using the online click working plat-
form Prolific.3 We implemented a binary choice
experiment in Psychopy (Peirce, 2007) hosted on
Pavlovia4 where participants were presented with
a minimal pair, such as in (2), and asked which
sentence was the most correct. In order to prevent
habituation to our stimuli and task, we used 64% of
filler items. We recruited 300 participants to obtain
20 responses per item and kept the responses of 270
participants in our final data set. Their mean speed
to judge one item was 6.9 seconds. See Appendix B
for more details about human data collection.

2Our data is available at https://github.com/
karimlasri/agreement-humans-bert

3http://prolific.co
4https://pavlovia.org

4 Results

We first discuss the human data, which we then
compare with BERT’s performance.

4.1 Error Patterns for Humans
In this analysis, we compare human accuracy on the
nonce stimuli and on Marvin and Linzen’s (2018)
sentences. In Figure 1, we break down the results
by syntactic structure to observe whether the con-
struction type affects the human judgments. We
notice a performance drop in all structures with
nonce sentences, except for A where the apparent
increase is not significant, as shown by the error
bars. Interestingly, the structures with an attractor
(bolded in the x-axis) are those for which the per-
formance drop seems to be the highest. We also
observe high performance drops in sentences where
there is no attractor (B, G and I).

Looking at Table 1, we can see that these struc-
tures are more complex than the structures where
the effect of meaningfulness is low (A and E). In-
deed, they contain either a complement (B), or a
relative clause (G, I). Surprisingly, we observe a
similar pattern on meaningless sentences in (F) and
(G): humans seem to be perturbed as much by the
attractor within the object relative clause (F), as
they are by the material in the main clause (G), if
sentences are meaningless. This evidence in com-
prehension seems opposite to Bock and Cutting’s
(1992) claim that agreement production is only sen-
sitive to information within the clause of the target.
This evidence hints at the possibility of a difference
in the mechanisms that support SVA in production
and comprehension.

Metric Correlation
M&L Accuracy 0.61
Nonce Accuracy 0.65
Accuracy Drop 0.52

Table 2: Coefficient of determination between BERT’s
and human performance on SVA, averaged across syn-
tactic structures. The accuracy drop condition represents
the difference between average performance on M&L’s
stimuli and our nonce stimuli, as seen in Figure 3.

4.2 How Similar are the Human and BERT’s
Error Patterns?

In this analysis, we compare the performance
achieved by BERT with human performance, on
each of our stimuli types. Figure 2 displays the
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Figure 2: A comparison of human performance against BERT’s performance on each of our structures.
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Figure 3: Performance drops between M&L and nonce
stimuli.

result obtained by humans against BERT’s perfor-
mance for each syntactic template, for both mean-
ingful and meaningless sentences. Interestingly,
there seems to be a fairly high alignment between
the results for each syntactic construction, and for
each source of stimuli. We display the R2 cor-
relation measurement of our fit in Table 2. The
latter confirms the observed alignment, as we ob-
tain quite high correlations (0.61 for meaningful
sentences and 0.65 for nonce sentences).

However, we observe that while the variation in
performance obtained by humans across templates
seems quite low, BERT’s performance does seem
to be more affected by the different structures. This
is especially true in the case of nonce sentences,
as seen in Figure 2a. We also observe a difference
in performance decrease in Figure 3, as BERT’s
performance drops are overall higher in presence
of an attractor compared to those of humans. On

the other hand, BERT has a higher performance
drop on (A) and humans on (G). This in turn could
be explained by the fact that (G) is a hard sentence
to process for humans, the target of the agreement
being within an embedded relative clause, while
BERT could rely on local context in this case as
observed by Lasri et al. (2022).

5 Discussion

5.1 Lexicalization and Syntactic
Generalization

While subject-verb agreement is sometimes consid-
ered as a purely syntactic phenomenon, our results
show that actually humans also rely on semantics,
which goes against the meaning independence hy-
pothesis. Our results also show that BERT is also
highly dependent on semantics, a finding in line
with Bernardy and Lappin (2017), who mention
that “deep neural networks require large vocabu-
laries to form substantive lexical embeddings in
order to learn structural patterns”. This highlights
the strong connection between the ability to pro-
cess linguistic structure and the semantic content
of sentences.

5.2 Structure Dependence
Throughout this study, we observed that the perfor-
mance of both humans and BERT were sensitive to
the syntactic structure used in our items. Humans
clearly obtain lower performance on sentences that
are more complex to process when they are mean-
ingless, including but not limited to sentences pre-
senting an attractor. This variation in performance
seems to reflect variation in structure complexity,
which upholds SD. On the other hand, BERT seems
to be mostly sensitive to sentences with attractors.
This evidence rather shows a violation of SD, as at-
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tractors are only related to the target by linear order,
in line with evidence found by Lasri et al. (2022).
While human and BERT’s results seem to correlate
to a large extent, these divergences could reflect
a difference in processing. For instance, SVA in
sentence comprehension for humans could depend
on having read the whole sentence, while BERT
could rely more on local context for this task. In-
deed, a fine-grained analysis performed in previous
work showed BERT to be mostly sensitive to the
replacement of linearly close tokens (Lasri et al.,
2022).

6 Conclusion

Throughout this work, we have shown that the abil-
ity to perform SVA is highly dependent on the syn-
tactic construction when presented with meaning-
less sentences. The failures of humans seem to
align well with those of BERT overall, as sentences
with attractors tend to compromise meaning inde-
pendence when processing the agreement relation.
Despite these similarities, we further show that the
performance drop is generally higher in BERT on
meaningless sentences, and that humans are more
perturbed by complex constructions without an at-
tractor. This finding can in turn reflect differences
in processing syntactic structure, either reflecting
more reliance on local context for BERT, or a differ-
ence between agreement processing in production
and comprehension, which could be the source of
the partial mismatch in the observed error patterns.
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A Vocabulary Selection

We used the vocabulary of Lasri et al. (2022) for
the generation of our nonce items and filtered it.
We selected a vocabulary of nouns and verbs that
checked the following criteria:

1. We filter out tokens that are ambiguous, i.e. to-
kens which can either be a noun or a verb. We
used Wordnet (Miller, 1995) implemented in
the NLTK library (Bird et al., 2009) in python
3 to check whether a word was not classified
as a noun and a verb by checking whether
there was no synset in the other category.

2. We filter out words using their relative fre-
quency measured by using the python library
wordfreq (Speer et al., 2018).5 We choose to
filter too frequent words because some were
ambiguous with another category (e.g. in the
noun vocabulary we can find good, well, one).
We decided to remove infrequent words to
prevent that participants would not know their
meaning. For example, this filtered out poly-
nomial, and consonant from the noun vocabu-
lary.

5https://pypi.org/project/wordfreq/

3. We only keep words with a length ranging
from 3 and 8 characters, in order to prevent big
differences in size between the items produced
by one template.

4. We make a subdivision between transitive and
intransitive verbs in order to correctly fill the
templates.

B Collection of Human Judgments

Setup To collect our human judgements, we re-
cruited participants on the working platform Pro-
lific. Participants were redirected to the Pavlovia
page hosting our experiment. First, they had to
give their informed consent. Their data was pro-
cessed in accordance to the European General Data
Protection Regulation (Commission, 2018), and no
sensitive data has been collected. After being in-
formed, participants were shown brief instructions
about the forced choice task. For each item, they
were presented with two sentences, and asked to se-
lect the one that seemed more acceptable using the
keyboard arrows. Each session started with three
training items followed by feedback. When the
training was finished, they were notified that the
experiment started and that they would not receive
feedback anymore. Each participant was presented
with 100 items and thereafter received a message
that the experiment was over.

Number of Items and Participants In total, the
participants replied to 100 items: 64 fillers, and
36 experimental item. 18 were from the nonsense
condition and 18 from the M&L data set. As every
condition features 9 different structures, 2 struc-
tures of each category where shown per participant.
In order to collect 20 responses per item, we re-
cruited 300 participants with 15 different versions
of the online experiment, which can be found in
the supplement material of this article.

Fillers Our filler items where from Ettinger
(2020). They feature semantically appropriate and
inappropriate completions. We also used filler
items with correct and incorrect determiners among
‘a/an’ depending on the following noun to feature
syntax-oriented fillers as well.

Selection of Participants We only accepted par-
ticipants with the United States nationality with
English as a first language between the age 18 and
60 years old. We excluded participants that already
contributed to another version of the experiment.
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Reward Participants got rewarded 2.25£ for a
participation that was estimated to take 15 minutes.
This was estimated to be a ‘good’ hourly pay by
the Prolific platform. We rejected participants that
performed the experiment in less than 5 minutes.

Filtering and Loss of Participants In our final
data set we have the contributions of 270 partici-
pants. Participants that performed at chance level
(50 % accuracy) were filtered out. Furthermore, we
lost some data of participants that did not close the
experiment correctly in Pavlovia.
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Abstract

Morphological systems across languages vary
when it comes to the relation between form
and meaning. In some languages, a single
meaning feature corresponds to a single mor-
pheme, whereas in other languages, multiple
meaning features are bundled together into one
morpheme. The two types of languages have
been called agglutinative and fusional, respec-
tively, but this distinction does not capture the
graded nature of the phenomenon. We develop
a mathematically precise way of characterizing
morphological systems using partial informa-
tion decomposition, a framework for decompos-
ing mutual information into three components:
unique, redundant, and synergistic information.
We show that highly fusional languages are
characterized by high levels of synergy.

1 Introduction

Languages are, to a large extent, systematic; there
are predictable patterns in the way that meanings
are mapped to forms. However, languages differ
when it comes to the nature of the relation between
meaning and form. This variability is particularly
apparent in the domain of morphology, and un-
derlies the distinction between so-called agglu-
tinative and fusional languages (von Humboldt,
1825; Greenberg, 1960). The two types of lan-
guages differ in the extent to which multiple units
of meaning are expressed by a single morpheme.
In this paper, a unit of meaning simply refers to
a semantic (or grammatical) feature such as plu-
ral or accusative. Highly agglutinative languages
have words that are built up of clearly separable
morphemes, each of which corresponds to an indi-
vidual unit of meaning. The relationship between
meaning and form in these languages is thus highly
systematic. On the other hand, highly fusional lan-
guages fuse together multiple units of meaning into
a single affix that cannot be decomposed in any

Hungarian Russian
Meaning Form Meaning Form

cat-SG-DAT macská-∅-nak cat-SG-DAT кот-у
cat-PL-DAT macská-k-nak cat-PL-DAT кот-ам
cat-SG-TERM macská-∅-ig cat-SG-GEN кот-а
cat-PL-TERM macská-k-ig cat-PL-GEN кот-ов

Table 1: In Hungarian (left), every unit of meaning tends
to correspond to a morpheme hence the meaning-form
relationship is systematic. On the contrary, in Russian
(right) such correspondence cannot be found. We aim
to quantify the degree of systematicity in meaning-form
relations across morphological systems.

obvious way, and so are less systematic.
In Table 1, we illustrate the meaning-form map-

ping for words in Hungarian (an agglutinative lan-
guage) and Russian (a fusional language). In the
Hungarian paradigm, singular, plural, dative, and
terminative each always correspond to a single mor-
pheme, which is the same across contexts. In Rus-
sian, the affixes package together multiple units of
meaning and cannot be decomposed: there are no
morphemes that individually correspond to singu-
lar, plural, dative, or genitive—rather, the form of
the suffix depends on multiple meaning units.

The agglutinative versus fusional distinction cap-
tures a core intuition about the different ways mean-
ing can correspond to morphological form, but
the distinction is binary and therefore does not
characterize the graded nature of the phenomenon
(Greenberg, 1960)—that is, the fact that different
languages (and, indeed, specific domains within a
language) show varying degrees of fusion. In this
paper, we take an information-theoretic approach
to quantifying systematicity in meaning-form rela-
tions across morphological systems.

The core insight we draw upon is that meanings
can contribute information about a linguistic form
in three different ways. First, a unit of meaning can
provide information about the form that no other
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unit of meaning provides. This is called unique
information. Second, a unit of meaning can pro-
vide the exact same information about the form that
another unit of meaning provides. This is called
redundant information. Third, a unit of meaning
can, in combination with some other unit of mean-
ing, jointly provide information that is not provided
by either on its own. This is called synergistic in-
formation. Going on these definitions, we expect
fusional languages to have a higher relative amount
of synergy than agglutinative languages.

We argue that these three kinds of information
in morphological systems correspond precisely to
existing notions of unique, redundant, and synergis-
tic information in the information theory literature.
In particular, the Partial Information Decompo-
sition (PID) framework, introduced by Williams
and Beer (2010), decomposes the mutual informa-
tion between a target variable and two (or more)
source variables into unique, redundant, and syner-
gistic information. This decomposition of mutual
information into three components makes up the in-
formation profile of a system. When we take form
to be the target variable and the individual meaning
features to be the source variables, the information
profile gives the amount of information conveyed
individually, concurrently, or jointly, by units of the
meaning about form. Crucially, two systems can
have equal mutual information between meaning
and form, but different information profiles, cor-
responding to different degrees of morphological
fusion. Therefore, PID offers a mathematically pre-
cise way of placing morphological systems along
an agglutinative-to-fusional spectrum.

In summary, our contributions are as follows. We
use the PID framework to develop a novel measure
of the systematicity of meaning-form mappings in
morphological systems. To validate our method,
we first carry out two simulations using artificial
languages for which we can control the degree of
morphological fusion. We show that languages
possessing a low relative amount of synergistic
information are the most systematic. Finally, we
apply the decomposition to morphological systems
in 22 real languages, successfully recapitulating
existing linguistic categorizations in a graded way.

2 Partial information decomposition

2.1 The problem

A fundamental property of language is that linguis-
tic forms depend on the meaning being communi-

M → F

aa 00
ab 01
ba 10
bb 11

M → F

aa 00
ab 01
ba 11
bb 10

Table 2: (left) An example of a fully systematic, or one-
to-one, code, in which each variable in F is informative
about a variable of M . (right) This code is less sys-
tematic because the value of each F variable depends
on more than one M variable. Here F = CNOT(M).
Both codes have I(M ;F ) = 2 bits.

cated. Information theory gives us a way of quanti-
fying this dependence, with mutual information, a
measure of how much one random variable informs
us about another random variable (Shannon, 1948;
Fano, 1961). LetM and F be discrete random vari-
ables representing meaning and form, respectively.
The mutual information I(M ;F ) between M and
F can be expressed as:

I(M ;F ) =
∑

m∈M

∑

f∈F
P (m, f) log

P (m, f)

P (m)P (f)
.

(1)

In a linguistic system, both the meaning and
the form have internal structure, and it is the rela-
tionship between subparts of these structures that
we are interested in. We therefore define both M
and F as ensemble random variables, made up
of sets of random variables corresponding to the
individual units of meaning and form. As an ex-
ample, consider the two toy languages in Table 2.
In both languages, M is an ensemble random vari-
able made up of two binary random variables (one
for each column). Similarly, F is composed of
two binary random variables. Assuming a uniform
distribution on the inputs, the mutual information
betweenM and F in both languages is 2 bits, since
it takes 2 bits of information on average to com-
municate about the meaning. However, the mutual
information on its own does not tell us whether
the relation between meaning and form variables is
one-to-one, many-to-one, etc. In the language on
the left, one variable (i.e., column) on the meaning
side fully determines each variable on the form side.
In the second language, both meaning variables are
needed to correctly predict each form variable.

Since mutual information does not tell us how
the information is distributed among the pieces of
meaning and form, we want to decompose mutual
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Collection Associated information about T

{S1} Unique (U1) of S1

{S2} Unique (U2) of S2

{S1}{S2} Redundancy (R1,2) of S1 and S2

{S1, S2} Synergy (S1,2) of S1 and S2

Table 3: Collections and associated information quanti-
ties for the case of two source variables about a target
variable T .

information based on how each meaning variable
contributes information—on its own, redundantly
with other variables, or jointly with other variables.

2.2 Partial Information Decomposition

Decomposing mutual information requires extend-
ing traditional information theory to handle mul-
tivariate interactions, such as that between two or
more meaning variables that jointly provide infor-
mation about a form variable. Williams and Beer
(2010)’s PID framework provides an influential so-
lution to the decomposition problem; we briefly
summarize the framework here.

Williams and Beer (2010) set up the problem
as a decomposition of the ways that source vari-
ables provide information about a target variable.
Consider the simple case of two source variables S1
and S2 and a target variable T . Let a collection be a
grouping of one or more nonzero subsets of source
variables such that none of the subsets is a superset
of any other. There are four such collections: {S1},
{S2}, {S1}{S2}, and {S1, S2}. Each collection is
then associated with a particular quantity of infor-
mation, summarized in Table 3.1 The sum of these
quantities is the mutual information I(S1, S2;T ).
For the sake of brevity, we will use U , R, and S
as shorthand for unique, redundant, and synergistic
information, and subscripts to indicate information
about T from source variables S1 and/or S2.

Williams and Beer show that the collections can
be naturally structured into a partially-ordered lat-
tice, shown for the case of two source variables
in Figure 1. At the bottom is the information pro-
vided redundantly by S1 and S2. The next level
up is the information provided uniquely by S1 and
the information provided uniquely by S2. At the
top is the information jointly contributed by S1 and
S2, i.e., the synergy. An important feature of the
lattice is that the mutual information between a set
of sources and the target is the sum of all nodes

1This can be generalized to an arbitrary number of source
variables. See Williams and Beer (2010) for details.

{S1}{S2}
R1,2 = I1 − U1

{S1}
U1

{S2}
U2

{S1, S2}
S1,2 = I1,2 − [R1,2 + U1 + U2]

Figure 1: Partial information lattice for the case of two
source variables. The equations at each node are abbre-
viated versions of equations (2)–(4), showing how to
solve for redundant, unique, and synergistic informa-
tion, starting at the bottom of the tree.

below and including the collection consisting of
that particular set of sources. This means that the
values at all nodes in the entire lattice add up to the
mutual information provided by the two sources S1
and S2 about the target, as expressed in Equation 2.
It also means that the mutual information between
a single source S1 and the target is made up of the
unique information in S1 plus whatever informa-
tion is redundant between S1 and S2, expressed in
Equation 3 (and the same for S2, in Equation 4).

I(S1, S2;T ) = R1,2 + U1 + U2 + S1,2 (2)

I(S1;T ) = R1,2 + U1 (3)

I(S2;T ) = R1,2 + U2 (4)

These equations all have a mutual information
term on the left, which we have a definition for and
can therefore compute. However, we do not at this
point know how to compute any of the terms on the
right, so we have a system of three equations with
four unknowns, which we cannot solve.

Gutknecht et al. (2020), building on Williams
and Beer (2010), show that with a definition of ei-
ther redundant information or unique information,
it is possible to solve the system of equations 2–4
for the remaining variables using a Möbius inver-
sion function to move recursively up the lattice.
Much work in the PID literature has focused on for-
mulating an independent definition for redundant
or unique information (e.g., Williams and Beer,
2010; Bertschinger et al., 2014; Finn and Lizier,
2018; Makkeh et al., 2021). A number of solutions
have been proposed, and there is as yet not total
consensus on the “best” measure. Below, we will
adopt one such measure, which is both common in
the literature and intuitive for our application—that
of Bertschinger et al. (2014).
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Bertschinger et al. give an independent defini-
tion for unique information. Their measure is based
on the intuition that the unique information of S1
should reflect the information about T which is
only available from S1, regardless of the choice of
S2. This is operationalized by adversarially com-
puting the minimum possible conditional mutual
information IQ(S1 :T | S2), minimizing over all
possible joint distributions Q(S1, S2, T ) that have
the same marginals as the true distribution P :

U1 = min
Q∈∆P

IQ(S1;T | S2) (5)

where

∆P = {Q ∈ P(S1, S2, T ) |∑
s′2∈S2 Q(s1, s

′
2, t) = P (s1, t) ∧

∑
s′1∈S1 Q(s′1, s2, t) = P (s2, t)

∀t ∈ T , s1 ∈ S1, s2 ∈ S2}

where P is the set of all joint distributions.
The Bertschinger et al. (2014) formulation of

PID is known to give intuitive results on a number
of canonical example distributions; for example in
the mapping from the second variable of meaning
M to the second variable of form F in the codes of
Table 2, we get a unique information of 1 for the
fully systematic example and 0 for the less system-
atic example. In Section 3.2 we define a measure
of morphological fusion based on the Bertschinger
et al. (2014) formulation.

3 Methods

We compute PID between meaning and form of
noun paradigms in suffixing languages from Uni-
Morph (Sylak-Glassman, 2016), which contains
annotated morphological data for 167 languages
using a universal schema. An example paradigm is
in Table 4. All of the languages in our experiment
have noun paradigms with exactly two non-stem
meaning feature categories: CASE and NUMBER.

3.1 Defining meaning and form variables

In order to compute the partial information decom-
position, we first need to define our source and
target random variables. Since we are interested in
how each component of meaning contributes indi-
vidually or jointly to determining linguistic forms,
we treat meaning variables as our sources and form
variables as our targets.

Meaning Form

cat-NOM-SG кот
cat-NOM-PL коты
cat-GEN-SG кота
cat-GEN-PL котов
cat-DAT-SG коту
cat-DAT-PL котам
cat-INS-SG котом
cat-INS-PL котам
cat-ESS-SG коте
cat-ESS-PL котах

Table 4: Subset of paradigm for the Russian noun кот.

Source Meaning Variables Consider the mor-
phological paradigm for the Russian noun кот in
Table 4, which consists of inflected forms of the
word paired with their grammatical information.
For our source variables, we treat each meaning
feature category (CASE, NUMBER, and the stem) as
a random variable with values that range over the
possible feature values (e.g., nominative or singu-
lar for CASE and NUMBER, respectively).

Target Form Variables In order to define our tar-
get random variables, it is necessary to decompose
the suffixes in some way, since treating the entire
suffix as a target would not allow us to investigate
its degree of internal agglutination or fusion. To
define random variables over forms, we adopt an
alignment-based approach, breaking up the suffixes
into morphological slots and treating each slot as a
random variable whose values range over the dif-
ferent aligned sequences that appear in the slot. We
perform the alignment using LingPy’s morpholog-
ical aligner (List and Forkel, 2021). In order to
compute PID, it is necessary for the number of ran-
dom variables to be consistent across all words in
the paradigm, so we pad empty slots with a dummy
character. The number of random variables, then,
is determined by the word with the longest suffix in
the paradigm. In the majority of alignments, each
slot ends up containing a one- or two-character
sequence. An example alignment of several Rus-
sian words and the resulting form slots is shown in
Table 5.

Our application differs from the original PID
formulation in that we are dealing with multiple
target variables. In Section 3.2 we propose an
expectation-based approximation of PID for the
joint distribution over multiple targets. In what
follows, meaning random variables are denoted by
M = {M1, . . . ,Mn}, while the form random vari-
ables are denoted by F = {F1, . . . , Fm}. M1 and
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M1 M2 M3 F1 F2 F3 F4

cat GEN SG кот а - -
cat DAT PL кот а м -
cat INS PL кот а м и

Table 5: Random variable structure for three word forms
in Russian.

F1 represent the stem’s meaning (e.g., cat) and the
stem’s form (e.g., кот), respectively (Table 5).

3.2 Computing PID

Within each language, we compute PID on each
noun’s paradigm individually. Our motivation for
treating each noun separately is that in many lan-
guages, morphological paradigms vary based on
features of particular stems. For example, in a lan-
guage with a gender distinction, the combination
of meaning features accusative+plural might be
expressed differently on masculine versus femi-
nine nouns. We argue that this is not relevant to
the notion of agglutinative versus fusional that we
are interested in. If accusative and plural are ex-
pressed by separate morphemes in masculine as
well as feminine nouns, then the fact that their spe-
cific forms vary with gender does not make the
language any less agglutinative. It would be possi-
ble to extend our approach to handle stem-specific
features in a dataset that made this information
available, but since UniMorph does not annotate
these features, we proceed with computing PID on
each noun separately. With this approach, we are
essentially treating the stem as a proxy for any stem-
specific information, and conditioning all of our
probability distributions, and thus our PID quan-
tities, on the stem. In Appendix A, we give an
example of how aligning multiple UniMorph-style
paradigms without accounting for stem-specific
features can obscure systematic regularities.

Since we treat each paradigm separately, the
form and meaning variables M1 and F1 corre-
sponding to the stem are generally uninteresting
to us, as they remain constant throughout each
paradigm. This approach is equivalent to com-
puting the information-theoretic quantities in PID
conditioned on the stem variables M1, F1. We are
left with exactly two source variables, which cor-
respond to CASE and NUMBER, and m− 1 target
variables. In what follows, for simplicity, we rela-
bel the meaning variable corresponding to CASE as
M1 and the one corresponding to NUMBER as M2.

We are now challenged with computing the PID

between M1,M2 and the set of form variables
F ∈ F − {F1}. We do this by taking the ex-
pectation of the PID quantities of these two vari-
ables with each form variable as target, separately.
We first compute the PID between the two mean-
ing variables M1,M2 and one of the form vari-
ables F ∈ F − {F1} and obtain the values of
uniqueU1,2→F , redundantR1,2→F , and synergistic
S1,2→F information, where we have made the de-
pendence on the particular form variable F explicit
in the subscript for clarity. We then normalize these
quantities by the mutual information I(M1,M2;F )
to obtain the relative amount of each type of infor-
mation. For each combination of meaning variables
M1, M2 and one form variable F , the proportion
of unique, redundant, and synergistic information
that M1 and M2 give about F is:

Ū1,2→F :=
U1→F + U2→F
I(M1,M2;F )

(6)

R̄1,2→F :=
R1,2→F

I(M1,M2;F )
(7)

S̄1,2→F :=
S1,2→F

I(M1,M2;F )
(8)

To compute the total average amount of each
type information for a given language, we average
these quantities across the full set of form variables
of the paradigm and across paradigms. Let h ∈
{Ū , R̄, S̄}. The average amount of information of
type h in the language is:

h̄ =
1

|N |
∑

n∈N

1

|F|
∑

F∈F−{F1}
h1,2→F (9)

where N is the set of paradigms in our dataset. We
give pseudo-code for this process in Appendix B.

We use an implementation of Bertschinger et al.
(2014)’s measure given in Wollstadt et al. (2018).
Computing PID for the full set of nouns in every
language is computationally intensive, so instead
we repeatedly subsample the paradigms for |N | =
10 different nouns, randomly selected, from each
language. We do this 100 times per language.

4 Experiments

We first validate that Bertschinger et al. (2014)’s
PID measure captures the phenomenon we are inter-
ested in by running the measure on noun paradigms
in two sets of artificial languages. After validating
the measure, we then apply the PID framework to
noun paradigms in 22 real languages, showing that
the proportion of synergy characterizes the degree
of fusion in a linguistic system.
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4.1 Artificial languages — intuition

Our artificial languages are generated based on the
intuition that in a highly agglutinative language,
each inflection corresponds to a single unit of mean-
ing, whereas in a highly fusional language, each
inflection corresponds to a combination of mean-
ings. We operationalize these intuitions by gener-
ating random languages where inflections are sam-
pled either conditioned on single meaning features
(agglutinative) or sampled conditioned on pairs of
meaning features (fusional). We test on a set of
very simple artificial languages as well as a set of
artificial languages that were generated to match a
number of statistical properties of real languages
in our dataset, and thus control for a variety of
linguistic phenomena.

4.2 Artificial languages — simple

We generated fifteen very simple artificial lan-
guages. In each language, the noun paradigms
had six cases and three numbers. The first five
languages were “agglutinative,” where the suffixes
were two-character strings, with one character inde-
pendently generated conditionally on one meaning
variable. A second set of five “fusional” languages
were generated such that each suffix was a random
two-character string sampled conditionally on both
meaning features. Finally, as a sanity check we
generated a set of five baseline languages that were
intended to be as synergistic as possible. Under
the Bertschinger et al. (2014) measure, XOR is a
maximally synergistic boolean function. Therefore,
the control languages were generated using XOR.
Each suffix was a single character long with two
possible realizations corresponding to the boolean
values output by the XOR function and given by
F (case, number) = (case ∈ C) XOR (number ∈
N), where C and N are random nonempty proper
subsets of the possible case and number values,
respectively. The PID results for these artificial
languages in Figure 2 confirm that the measure
captures the differences between these artificial
languages as expected. All five agglutinative lan-
guages have 100% unique information, while the
XOR languages have majority synergistic informa-
tion. The fusional languages fall in the middle, with
a proportion of synergy between 20% and 40%.

4.3 Artificial languages — linguistic controls

In our second experiment, we validate our mea-
sures using more linguistically-realistic artificial

languages that are matched to real languages for
specific properties, such as the size of the character
vocabulary, phonotactic restrictions, and average
suffix length, as well as other properties that may
correlate with the agglutinative/fusional distinction.
We do this by generating agglutinative and fusional
versions of existing languages.

We began by selecting six languages whose noun
paradigms are given in UniMorph. Each of the
languages in UniMorph is labelled as either ag-
glutinative or fusional, based on information from
linguistic analysis; two of our chosen languages
(Hungarian and Turkmen) are labeled as agglutina-
tive, and the remaining four (Ukrainian, German,
Latin, and Northern Sami) are labeled as fusional.
For each language, we trained a 3-gram model
on all the language’s inflected nouns, to approx-
imate the language’s phonotactics, and used this
model to generate artificial paradigms for that lan-
guage. For each language we sampled fifty arti-
ficial agglutinative paradigms and fifty artificial
fusional paradigms following the sampling scheme
outlined above. To sample an artificial fusional
paradigm, we used the 3-gram model to generate
random suffixes for the stem, jointly conditioned
on case and number. To generate an artificial ag-
glutinative paradigm, we generated independent
strings for each value of case and number, and
concatenated them (in either order, but consistent
within a paradigm). For both types, we sampled
suffixes with a range of lengths to roughly match
that of the suffixes in the real language. The PID
results are shown in Figure 3. These results con-
firm that our PID measure captures the difference
between agglutinative and fusional paradigms in
the expected way: The agglutinative versions of
the languages had proportionally less synergistic
and more unique information than the fusional ver-
sions, regardless of which type of language they
were generated from.

4.4 Real languages

We investigate whether PID provides a way of mea-
suring morphological fusion by computing PID on
noun paradigms from 22 languages in UniMorph.
Seven of our languages are labeled as agglutinative,
and the remaining ones as fusional. Our results are
given in Figure 4, which shows the relative amount
of unique, redundant, and synergistic information
for each language. Languages with an asterisk and
solid black outline are those that were labelled as
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Figure 2: Results of partial information decomposition
on noun paradigms in baseline artificial languages. The
languages are sorted by relative amount of synergy.
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Figure 3: Results of partial information decomposition
on noun paradigms in linguistically-controlled artificial
languages. The languages are sorted by relative amount
of synergy.

agglutinative in UniMorph. We find that the seven
agglutinative languages fall on the side of lowest
synergy, though there were also a few fusional lan-
guages that had low synergy.

As baselines for the PID measure, we present (1)
a plot of the average amount of mutual information
between meaning and form in the individual nomi-
nal paradigms across the 22 languages in our exper-
iment (Figure 5 in Appendix C), and (2) a plot of
the average number of suffix slots in each language
(Figure 6 in Appendix C). The baselines suggest
that high mutual information and high suffix length
are often present in agglutinative languages, but
our artificial experiments reveal that when we con-
trol for these factors, PID successfully captures the
amount of fusion present in a system.

5 Discussion

Our results suggest that PID does indeed capture
the spectrum between agglutinative and fusional.
We also find that there is more unique information
overall than redundant or synergistic information,
which points to an overall high level of systematic-
ity in morphology. Redundant information makes
up the smallest proportion of information overall,
suggesting that morphological systems are not par-
ticularly redundant. This raises the question of
whether other domains in language show similar

levels of redundancy, and how the low amount of
redundancy should be accounted for.

While PID seems to be able to capture morpho-
logical fusion, it is important to note that the ag-
glutinative/fusional classification system is very
coarse—when we apply a single label to each lan-
guage, we miss fine-grained distinctions such as
the fact that different domains within a language
can have different degrees of fusion. For this rea-
son, we believe that when evaluating any measure
of fusion, it is best to examine the actual paradigms.
Let us consider a paradigm from Latin, shown in
Table 6. Latin falls far to the right side of the spec-
trum, and we can see in the paradigm that there
is a lack of systematicity among the suffixes. For
example, the -s in column F5 appears with both
singular and plural, and across four different cases.
The PID values for each combination of variables
are given in Table 7. We can see that for every com-
bination of two meaning variables and one form
variable, there is more synergy than any other type
of information.

6 Related work

There is a growing literature on information-
theoretic approaches to problems in morphology
and syntax. One line of work looks at the trade-off
between the surprisal of a linguistic form and the
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Figure 4: Results of partial information decomposition
on noun paradigms in 24 languages. The languages are
sorted by relative amount of synergy. Asterisks and dark
borders represent languages labeled as agglutinative in
UniMorph.

M1 M2 M3 F1 F2 F3 F4 F5
nur NOM SG nur - - u s
nur NOM PL nur ū s - -
nur GEN SG nur ū s - -
nur GEN PL nur - - uu m
nur DAT SG nur - - u ī
nur DAT PL nur i b u s
nur ACC SG nur - - u m
nur ACC PL nur ū s - -
nur ABL SG nur ū - - -
nur ABL PL nur i b u s
nur VOC SG nur - - u s
nur VOC PL nur ū s - -

Table 6: Random variable structure for a Latin noun.

s1 s2 t U1 U2 R S
M2 M3 F2 0.323 0.135 0.16 0.865
M2 M3 F3 0.445 0.39 0.014 0.61
M2 M3 F4 0.355 0 0.136 0.833
M2 M3 F5 0.689 0 0.095 1

Table 7: PID values (unique, redundant, synergistic) for
the Latin paradigm in Table 6, unnormalized.

time it takes to produce (Pimentel et al., 2021);
the trade-off between surprisal and memory in
accounting for word and morpheme order cross-
linguistically (Hahn et al., 2021); and mutual in-
formation as a measure of the relationship be-
tween grammatical gender and co-occurring words
(Williams et al., 2021). Accounting for patterns of

word and morpheme order across languages using
information theory has yielded a variety of pro-
posed measures (Hahn et al., 2020; Dyer et al.,
2021).

Closely related to our work is Rathi et al. (2021),
which proposes a measure of informational fusion
in morphology, based on Wu et al. (2019)’s def-
inition of morphological irregularity. Let ℓ be a
lexeme, σ a semantic feature combination, and w a
surface form. Informational fusion is defined as:

ϕ(w) = − log p(w | L−σ, σ, ℓ) (10)

Informational fusion is a measure of the surprisal
of a surface form given the rest of the paradigm.
Unlike the PID approach, which involves segment-
ing the suffix and finding the information profile
of each subpart, informational fusion is computed
with respect to un-segmented forms, and does not
make reference to individual morphemes. PID
gives us a way of investigating the exact question
we are interested in—to what extent do units of the
meaning individually or jointly contribute informa-
tion about individual units of the form? We use
PID to get at the fine-grained distinctions between
information profiles, an approach that we believe
can be extended to study compositionality more
generally.

7 Conclusion

We have proposed a novel way of characterizing
morphological systems cross-linguistically, using
partial information decomposition. PID allows
us to decompose the mutual information between
meaning and form into three distinct components:
unique, redundant, and synergistic information. We
argued that the relative amount of synergistic in-
formation provides a mathematically precise and
intuitive measure of the degree of fusion in a mor-
phological system. We carried out a study on noun
paradigms, demonstrating the promise of this ap-
proach in this specific domain. Our study applies
PID at the level of morphemes, and suggests ex-
tensions to word- and sentence-level domains, po-
tentially leading to a more general theory of com-
positionality. We see PID as an exciting tool for
investigating the information profile of any system
in which meaning features are expressed by linguis-
tic forms.
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A

As an illustration of how computing PID on the
full set of noun paradigms without accounting for
stem-conditioned features can obscure the patterns,
consider the following toy paradigms:

M1 M2 F1

NOM SG a
NOM PL b
ACC SG a
ACC PL b

Table 8: Toy language, noun 1.

M1 M2 F1

NOM SG a
NOM PL a
ACC SG c
ACC PL c

Table 9: Toy language, noun 2.

In the first paradigm, M2 uniquely determines
F1. In the second paradigm, M1 uniquely deter-
mines F2. For both nouns, there is 1 bit of unique
information, and no redundant or synergistic infor-
mation. Thus all of the mutual information between
meaning and form in this language is unique. How-
ever, if we compute PID on the full set of forms
without conditioning on noun 1 and noun 2, we
get 0.66 bits of unique information, 0.016 bits of
redundant information, and 0.077 bits of synergis-
tic information. This irregularity comes from the
fact that the suffix -a serves different functions for
the different nouns, but the PID measure considers
both types of -a to be the same realization of F1.
Crucially, this means we can get synergy in a lan-
guage whose individual paradigms do not actually
have any synergy.

B

1 def compute_pid(paradigm):
2 N = paradigm.num_nouns
3 F = paradigm.num_F # num form variables
4 M = 2 # num meaning variables (2)
5 V = numpy.zeros((N, M + F))
6 # fill the matrix of values
7 vtoi = dict()
8 for n in range(N):
9 for m in range(M):

10 # convert string value of s to int
11 value = paradigm[n].meaning[m]
12 if value not in vtoi:
13 vtoi[value] = len(vtoi)
14 V[n, m] = vtoi[value]
15 for f in range(F):
16 # convert string value of f to int
17 value = paradigm[n].form[f]
18 if value not in vtoi:
19 vtoi[value] = len(vtoi)
20 V[n, f] = vtoi[value]
21 # compute PID for each target var
22 bar_u, bar_r, bar_s = 0, 0, 0
23 for f in range(F):
24 u, r, s, mi = pid(
25 V, sources=[0, 1], target=2 + f
26 ) # Bertschinger’s PID using IDTXL
27 bar_u += u / mi # avg. unique
28 bar_r += r / mi # avg. redundant
29 bar_s += s / mi # avg. synergy
30 return bar_s/F, bar_u/F, bar_r/F

Listing 1: Python-style pseudo-code for computing
relative PID quantities for a given paradigm.

C
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Figure 5: Average amount of mutual information be-
tween meaning and form in the nominal paradigms of
22 languages. Asterisks and dark borders represent lan-
guages labeled as agglutinative in UniMorph.
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paradigms of 22 languages. Asterisks and dark bor-
ders represent languages labeled as agglutinative in Uni-
Morph.
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Abstract
It is well recognized that sensory perceptions
and language have interconnections through
numerous studies in psychology, neuroscience,
and sensorial linguistics. Set in this rich context
we ask whether the use of sensorial language in
writings is part of linguistic style? This ques-
tion is important from the view of stylometrics
research where a rich set of language features
have been explored, but with insufficient at-
tention given to features related to sensorial
language. Taking this as the goal we explore
several angles about sensorial language and
style in collections of lyrics, novels, and poetry.
We find, for example, that individual use of sen-
sorial language is not a random phenomenon;
choice is likely involved. Also, sensorial style
is generally stable over time - the shifts are ex-
tremely small. Moreover, style can be extracted
from just a few hundred sentences that have
sensorial terms. We also identify representative
and distinctive features within each genre. For
example, we observe that 4 of the top 6 repre-
sentative features in novels collection involved
individuals using olfactory language where we
expected them to use non-olfactory language.

1 Introduction
Sensory perceptions shape how we use language
and communicate (Paradis, 2003). When we use
sensorial words (i.e. words with meanings con-
nected to our senses) like fuzzy or stinky, besides
communicating sensorial experiences these also
stimulate perceptual systems in the recipient’s mind
(Speed and Majid, 2020).

The space of senses – sometimes called the “Aris-
totelian” senses (Sorabji, 1971), include the five
modalities: visual, auditory, haptic, gustatory, and
olfactory. Relatively recently, linguistics and psy-
chologists have added a sixth sense — interocep-
tion (Craig, 2002). This refers to the perception
of sensations from inside the body, both physical
such as hunger and pain, and emotional, such as
joy. This sensory space has been the basis of much

prior research.
Sensorial Linguistics is about studying how lan-
guage relates to the senses. A key focus has been
to study how different sensorial experiences and
perceptions are packaged into linguistic units (Win-
ter, 2019). Researchers have looked at how some
senses dominate in language (Winter et al.), how
sensorial language varies across lexical categories
(Lievers and Winter, 2018) and how sensory ex-
periences influence sensorial language (Croijmans
et al., 2019; Murphy, 2019). However, the domain
of sensorial linguistics is still nascent with many
unexplored questions.
Stylometrics: As individuals grow, besides con-
sciously learning a vocabulary they also develop
a linguistic style. Some stylistic elements may
be acquired subconsciously and others by choice.
Stylistic choices can reflect the individual’s social
reality or affective state (Savoy, 2020). Several
categories of stylistic features have been identified,
such as the use of function words and language
complexity (Holmes, 1998). Stylometrics is impor-
tant for goals such as author attribution and affect
classification.
Style in sensorial language use: A key limitation
in stylometrics is that linguistic style around senso-
rial language has not been studied systematically.
A person who wants to express being depressed has
several word choices. She could use “sad” or the
less frequent “downcast”. Her propensity to choose
one or the other may be considered as part of her
linguistic style. Consider a cloudy scene. A person
may use visual language focusing on color, and say
“the clouds are white”. Another may use haptic lan-
guage focusing on texture, “the clouds are fluffy”.
While sensorial language is clearly important for
communication, we do not yet know if there are
distinguishable patterns in sensory language use at
the level of individuals, texts, etc. This gap in sty-
lometrics motivates us to ask the following about
sensorial language style:
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• RQ 1: Is the notion of sensorial style meaningful
or is it a product of random chance?

• RQ 2: How much data do we need to get a stable
representation of sensorial style?

• RQ 3: Does sensorial style vary with time?
• RQ 4: Which features are representative and

distinctive of the individuals within each genre?

2 Representing Sensorial Language Style
Sensorial style may be represented at different lev-
els of abstractions. At the lowest level, we can rep-
resent the proportion of an individual’s language
that is sensorial and also examine the frequencies
of different sensorial words. At a higher level of
abstraction, we can ask how frequent are differ-
ent sense modalities (visual, auditory, etc.) in an
individual’s language. Alternatively, we can rep-
resent style by the extent to which a person’s use
of sensory modalities aligns with general expecta-
tions. This is related to synaesthesia, where one
sense modality is used when another is expected
- a well studied phenomenon in sensorial linguis-
tics (Lievers, 2015; De Ullmann, 1945). As an
example in their work, Lievers and Huang (2016a)
developed a lexicon of perception that they used
to automatically identify perception related synaes-
thetic metaphors. Similarly we also approach the
problem of sensorial style through the lens of their
synaesthetic usage.

In the 2010 animated film ‘Despicable Me’, the
character of Agnes hugs a unicorn and says “It
is so fluffy”. One reason why this quote acquired
somewhat of a meme status is because it subverted
audience expectations of a more visual word like
“pretty” or “white” to describe the unicorn. In-
stead she opts for the more unexpected haptic word
“fluffy”. This substitution of visual language for
haptic, a synaesthesia, might indicate that Agnes’
perceives the world in a more tactile manner rather
than in a visual way. In order to assess if this is
a stylistic tendency, we can examine all of Agnes’
language use and ask the general question: to what
extent does she use haptic language in contexts
where we generally expect visual language? We
can ask similar questions related to each combina-
tion of expected versus observed sensory modali-
ties. Observations for all combinations, including
the homogeneous non-synaesthesia ones, are accu-
mulated to form Agnes’ (or any other individual’s,
group’s or genre’s) sensory style representation.
Terminology and notation: More formally, we
consider a sentence to be a “sensorial sentence” if

it has at least one word or phrase that appears in
a sensorial lexicon. Further, we define a “sense-
focused sentence” to be a sensorial sentence with a
single sensorial term selected as focus term. Thus,
if a sensorial sentence has n sensorial terms then
we derive from it n sense-focused sentences.

Assume Si={Si1, Si2, ..., Sin} is the set of
n sense-focused sentences identified from the
writings of individual i ∈ I . Let C =
{H,V, I,O,G,A} represent the modalities: Hap-
tic, Visual, Interoceptive, Olfactory, Gustatory, Au-
ditory respectively. Using N̄ to represent con-
cepts that are “not-sensorial” we define C̃ as:
C̃ = C ∪ {N̄}.

We also define two functions. F (ŝij) is a sensory
lexicon lookup function that returns the sensorial
category c ∈ C for the focused sensorial term ŝij in
the sense focused sentence Sij . E.g., given the sen-
sorial sentence “The unicorn is white and fluffy”,
we have two sense-focused sentences Sij and Sik
corresponding to the two sensorial terms, ŝij and
ŝik. For Sij with the focus term “white” F (ŝij)
will return V . For Sik with focus term “fluffy” it
will return H .

The second function we define is M(Sij) which
returns the “expected” modality c ∈ C̃ for the
same focus term in Sij We describe this function
in Section 2.1.

Calculating observed to expected ratios: We
represent an individual’s sense-focused sentences
as a list of length |Si|. Each entry is a pair of
expected and observed modalities of the form
[(M(Sij), (F (ŝij)]. For observed modality y ∈ C
and expected modality x ∈ C̃, the observed to
expected ratio αxyi for individual i is:

αxyi =
|{Sit : F (ŝit) = y and M(Sit) = x}|

|{Sit :M(Sit) = x}|
(1)

Note that these ratios are the informative units of
sensorial style. For example, if the ratio is 1 when x
and y are the same modality, a homogeneous com-
bination, then the individual’s use of that modality
is highly aligned with general expectation. On the
other hand, if it is close to 0 then she deviates con-
siderably from the expected use of modality x, i.e.
there is greater synaesthesia.

Style vectors: For each x ∈ C̃, we then concate-
nate its 6 ratios into a vector of the form:

sxi = ⊔
y∈C

αxyi (2)
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It follows that
∑

y∈C
αxyi =

{
1, if |{Sit :M(Sit) = x}| ≥ 1

0, otherwise

We can now define the sensorial style vector ui
of i ∈ I as a concatenation of the seven vectors,
one for each expected modality. The size of ui is
x× y = 42.

ui = ⊔
x∈C̃

sxi (3)

2.1 Implementing function M(Sij)

Given a sense-focused sentence, function M re-
turns the expected modality c ∈ C̃ of the sentence’s
focus sensorial term as per general expectation in
English. We leverage RoBERTa-MLM1 as a stand-
in for general English language usage. RoBERTa is
a transformer based language model pre-trained on
160 GB of data (Liu et al., 2019). Prior works like
(Mosbach et al., 2020) and (Sinha et al., 2020) have
shown that language models learn the norms of the
language on which they are trained. This makes
them ideal for our task. We mask the focus senso-
rial words in our sentences and input them to the
model. RoBERTa returns the probabilities for all
the words in its vocabulary at each masked location.
Probabilities represent likelihood of appearance of
the words at that location. We use these probabili-
ties to identify the expected sense modality at each
masked location as follows.

Let W = {(w1, p1), (w2, p2) . . . (wN , pN )} be
the ranked set of words returned by RoBERTa for a
masked location (location of focus sensorial term)
in Sij ; top ranked has highest probability. Using
F (wk), we lookup the sense for each word in the
top 100. We combine this information to get an ag-
gregate probability score Π(c, Sij) for each modal-
ity c as follows:

Π(c, Sij) =
∑

k≤100
F (wk)=c

pk (4)

For greater confidence we only include Sij in our
analysis if its majority modality has Π(c, Sij) >
0.5. We then define

M(Sij) = argmax
c∈C̃

Π(c, Sij) (5)

In essence, M(Sij) returns the expected modal-
ity with the highest aggregate probability for the
focused sense word in Sij as determined using
RoBERTa.

1We experimented with BERT as well, however, RoBERTa
gave us more accurate results.

2.2 Sensorial Lexicon

Lexicon
Original Modified

Modality N % N %
Visual 29552 75.0 9419 50.2
Interoceptive 3546 9.0 3449 18.4
Auditory 4528 11.5 3803 20.3
Haptic 675 1.7 972 5.2
Gustatory 890 2.3 890 4.7
Olfactory 216 0.5 216 1.2
Total 39407 100 18749 100

Table 1: Distribution of modalities in original Lynott
et al. (2020) lexicon and our modified subset lexicon.

We use the sensorimotor norms lexicon pub-
lished recently (Lynott et al., 2020) which has
39,954 concepts from the English Language. Brys-
baert et al. estimates that the average adult lexi-
con is composed of approximately 42, 000 words.
Therefore this lexicon approximates a significant
majority of everyday English.

Each concept was rated by annotators along a
0-5 scale for the six modalities (Auditory, Gusta-
tory, Haptic, Olfactory, Visual, Interoceptive) For
example “fluffy” is rated 4.41 for Haptic, 0.29 for
Gustatory, 3.77 for Visual, 0.35 for Interoceptive
and 0 for Auditory and Olfactory. The dimension
with the highest rating is the dominant modality.

Dominance alone is not enough to ensure that a
concept belongs to a particular sensorial modality
since almost half of the concepts score less than
2.55 on any sense modality. Therefore, we filter the
lexicon by ranking all concepts in a given modality
by their rating and selecting only those in the top
quartile. This ensures strong alignment to dominant
modalities. Table 1 describes the lexicons2.

3 Methods

3.1 RQ 1: Is Sensorial Style a Product of
Random Chance?

In order to be meaningful our representation of
sensorial style should not be a product of random
chance. If an individual chooses sensorial modali-
ties randomly and not deliberately then we expect
her observed and expected modality distributions
to be independent of each other. For example in
“the clouds are white” the expected modality may
be visual but the individual randomly chooses from
one of the six senses. We use this random model in
our analysis.

2There are other sensory lexicons like (Lievers and Huang,
2016b) and (Lynott and Connell, 2013). Besides being the
largest and most recent the Lynott et al. (2020) sensorimotor
lexicon is the only one to include ratings for interoception.
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As a first step, for any i ∈ I with a set of n
sense-focused sentences Si, we define, Γ(i), the
distribution of the sense modalities in C observed
in Si. For each sense-focused term ŝij in Si, we
use a function F̄ (ŝij ,Γ(i)) that returns a random
modality c ∈ C with distribution Γ(i).

For each i ∈ I , we create m random pseudo-
documents Ri = {R1

i ,R2
i . . .Rmi }. Each ran-

dom pseudo-document has the same set of sense-
focused sentences Si. However, instead of using
F (ŝij) to look up the modality, we use F̄ (ŝij ,Γ(i))
to get a random modality. Equation 6, a modifica-
tion of equation 1, gives us ᾱxyik which is used to
calculate the style vector uki for random pseudo-
documentRki .

ᾱxyik =

∣∣{Sij : F̄ (ŝij ,Γ(i)) = y and M(Sij) = x}
∣∣

|{Sij :M(Sij) = x}|
(6)

Thus, for each i∈I with sensorial style vector ui,
we have m random style vectors {u1i , u2i . . . umi }
generated from the random pseudo-documents in
Ri.

Let Ui = {ui} ∪ {u1i , u2i . . . umi }. For each vec-
tor v ∈ Ui, we calculate its average cosine simi-
larity with all other elements in Ui. Ranking the
elements of Ui by decreasing order of average sim-
ilarity we check whether the style vector ui ∈ Ui
has lower average similarity than at least 95% of
the vectors in Ui (i.e. p-value < 0.05 ). If so, we
infer with 95% confidence that i’s style vector, ui,
is not random and therefore likely a product of an
individual stylistic choice.

3.2 RQ 2: How much data is needed to
describe sensorial style?

Given the set of sense focused sentences Si, where
|Si|=n, we randomly sample subsets from Si of
size k and compute the style vector from each sam-
ple. We explore how increasing the values for k
affect style convergence.

For a given sentence set size k, we identify m
random samples (with replacement) of Si, each
of size k. Thus, we create a set of sentence sets,
T ki = {T̂ k1i , T̂ k2i , . . . , T̂mki }. For each sentence set
T̂ kji ∈ T ki , we use the method discussed in Section
2 to generate the corresponding style vector ûkji .
This gives us a set of m sensorial style vectors,
ûki = {ûk1i , ûk2i , . . . , ûkmi }. We then use cosine
similarity to calculate the average pairwise similari-
ties between all elements in ûki . We recompute this
average self-similarity sim(ûki ) for different values
of k in increasing steps of r. We say that the style

Genre # Authors # Works #Sentences # Sensorial
Sentences

# Sensorial
Expressions

Novels 130 317 1,525,894 156,570 (10%) 474,299
Lyrics 5,321 20,785 1,007,090 754,572 (75%) 1,501,501
Poetry 1,246 3,315 85,236 4,979(6%) 8,209

Table 2: Dataset details for each genre. The percentage
of total sentences that are sensorial is in parentheses.

of the individual has converged for a minimum
of k sensorial sentences if sim(ûki )≈sim(ûk+ri ),
where k + r is the next sentence set size tested.
3.3 RQ 3: Does sensorial style vary over time?

Here we investigate whether style vectors evolve
over time spans. We segment the writings by time
and consider how the average similarity in style
varies with temporal distance. We first identify all
pairs of time points ta and tb that are γ duration
apart. We then build style vectors for each author
with text anchored at ta and for each author with
text anchored at tb. We then compute the average
pairwise similarity between ta and tb style vectors.
We repeat this for all values of γ that are of interest.

We use a notion of windowing around the time
points (ta and tb) to reduce noise. Each win-
dow is of size δ and distributed equally around
each time point. For example, for ta we create
an individual’s style vector from all the sense-
focused sentences that were published in the range
ta− δ

2 < τa<ta+
δ
2 .

3.4 RQ 4: Which features are representative
and distinctive of the individuals within
each genre?

A genre can be represented by the set of sensorial
style vectors of its members. Each style vector is
composed of 42 features that explore synaesthesia.
We are interested in exploring which features are
representative of the members of a genre, and also
features that make the members distinct.

We consider a sensorial style feature to be rep-
resentative if the variation in its usage is low. This
would indicate that the members use the feature
in a consistent manner. Formally, a stylistic fea-
ture αp is more representative for the members of
a genre than another feature αq if its standard devi-
ation σ(αp), across all the members is lower than
the standard deviation σ(αq). At the other end, a
high variation would indicate that the feature is
distinctive amongst the members.
4 Datasets

We analyze 3 literary genres — novels, poems, mu-
sic lyrics. Compared to poems and lyrics, novels
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can span tens of thousands of sentences. Addi-
tionally, novels and poetry are generally associated
with a single author. Lyrics are sometimes collab-
orations, however, we assume an artist would not
perform a song that is in a style they do not like.
Thus, we assume music lyrics to be a reflection of
the artist’s style.
Novels: We collected English language novels
from the Domestic fiction genre of Project Guten-
berg3. There were 317 works written by 130 au-
thors, with the earliest by Henry Fielding from the
early 18th century and the latest by Rebecca West
from the mid-20th century.
Lyrics: We collected songs that were listed on the
Billboard Hot 100 charts, 1963 to 2021 (inclusive).
This weekly chart ranking of song popularity is
considered the industry standard (Whitburn, 2010).
We assume the first time a song is listed to be its
year of production. We obtained song lyrics using
the Genius API4. There are 20, 785 song lyrics.
Poetry: Following works like (Lou et al., 2015),
we used the corpus of poems available on the Poetry
Foundation’s5 website. To make this dataset more
comparable to the lyrics dataset, we only included
works published after 1963.
5 Results

Genre > 95th N
Novels 112 123
Lyrics 701 735
Poetry 20 85

Table 3: Number of individuals with lower average
similarity than 95% of random vectors.

We present our results in two parts. First, we
make our general observations. Second, we present
results related to our specific research questions.
5.1 General Observations
Domination over lower senses: The five Aris-
totelian sensorial modalities have classically been
thought of as part of a hierarchy with vision and
audition dominating over the three so-called “lower
senses”—Touch, Taste, Smell (Howes, 2010)6.
This hierarchy manifests in the frequency of lan-
guage use with the visual and auditory modalities

3https://www.gutenberg.org/
4Some lyrics were not available on http://www.genius.com,

because they were instrumentals like the “Star Wars Theme”
which hit No. 1 in 1977, or were not in the Genius database.

5The Poetry Foundation was established in 2003, and
one of its goals is to make “the best poetry” accessible
(https://www.poetryfoundation.org/foundation/about).

6Note interoception is generally not considered in discus-
sions of this hierarchy, possibly because of its relatively recent
inclusion (Connell et al., 2018).

being used more often than the lower senses (Majid
et al., 2018). We have consistent results. Figure 2
shows that for all three genres visual and auditory
dominate over the “lower senses”. Concepts associ-
ated with haptic, gustatory and olfactory modalities
— combined, form less than 10% of the total senso-
rial language.

While auditory dominates the “lower senses” in
all three genres, it occurs less than half as often as
visual. Going beyond the classical five senses, in
all cases interoception dominates the three “lower
senses” surpassing audition in this regard. Addi-
tionally, in lyrics, interoception is as common as
visual. Clearly interoception with its emphasis on
sensations within the body, both physical and emo-
tional, is important in language.
Sensorial style across genres: We investigate how
sensorial style varies across genres. Using the
method described in Section 2 we calculate genre-
level sensorial style vectors by combining sentence
sets at the genre level. We show the distribution
over 42 sensorial combinations in Figure 1 for just
Lyrics. Each cell represents an expected-observed
modality combination.

Figure 1: Distribution of expected-observed modalities
in Lyrics. Note that we calculate proportions using
equation 1, however, for illustrative purposes we show
sensorial distribution as percentages.

Observed modalities are largely as expected
with some exceptions: The diagonal values which
are in the range 56 to 88% indicate that the ob-
served modalities are generally consistent with ex-
pected modalities. That is, the individuals in our
datasets select from the 6 sensorial modalities in a
manner that is consistent with the general norms
of language use. The highest consistency is for
interoceptive and the lowest is for olfactory. We
observe this trend across all genres (see appendix).

Looking at off diagonal values, we observe vi-
sual language used in 25% of the cases where we
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Novels Lyrics Poetry
I −O I −O A−G
N̄ −O N̄ −O A−O
A−O V −O G− I
I −G A−O H −O
V −O I −G O − A
A−G V −G O −H

Range (0.00,0.01) (0.00,0.02) (0.00,0.00)

Table 4: The top representative features for each genre.

Novels Lyrics Poetry
G−G H −H A− A
O −O G−G I − I
H −H A− A H −H
G− V H − V N̄ − V
H − V G− V G−G
A− A A− I N̄ − I

Range (0.43,0.15) (0.44,0.19) (0.47,0.27)

Table 5: The top distinctive features for each genre.

Each feature is an (expected,observed) pair e.g., I − O in means that we observe Olfactory language when we
expected Interoceptive language. This is the most representative feature for Novels and Lyrics as it has the lowest
standard deviation. We include the range of variances of the top most distinctive and representative features.

expected olfactory language, 19% and 11% of the
cases where we expected gustatory and haptic lan-
guage, respectively. This usage of visual language
as a replacement for lower senses was observed
across all 3 genres. This replacement or cross-
modal compensation might be because the lower
senses do not have a strong relation with the percep-
tual system and consequently individuals might be
relying on visual language as a semantic scaffold
to compensate for the weaker perceptual system of
the lower senses (Speed and Majid, 2020).

We also observe (in all three genres) that in more
than 90% of instances where we expected to see
non-sensorial language we instead observed intero-
ception. This might also be because interoception
dominates in our data and is consistent with obser-
vations about higher senses in the literature (Majid
et al., 2018).

Figure 2: Distribution of observed modalities.

5.2 Results for research questions

RQ1: Is sensorial style a product of random
chance? We investigate whether sensorial style
is motivated by the individual choices or whether
it is a product of randomness. Table 3 provides
the results. If sensorial style is a non random phe-
nomenon and a product of individual choice and
intent, we expect the sensorial style vectors to be

distinct from random vectors. That is, we expect
them to have a lower average similarity as com-
pared to random vectors (generated by our random
model). Methodological details are in Section 3.1).

Considering all individuals with more than 10
sense-focused sentences7, more than 90% of the
individual sensorial style vectors in the novels and
lyrics datasets are non-random. However, in the
poetry dataset only around 23% of the individual
vectors in the poetry dataset were non-random. A
possible reason for the difference in poetry is likely
data sparsity — fewer sensorial expressions/ author
(see Table 2). Exploring this intuition further we
find that the non-random vectors in poetry have
on average 159 sense-focused sentences while the
remaining vectors that looked random had on av-
erage 24 sense-focused sentences. Similarly, 8 out
of the 10 most prolific individuals had non-random
vectors. However, none of the 10 least prolific indi-
viduals had non-random vectors. These support our
intuition regarding data sparsity being the cause of
the difference in poetry.
RQ2: How much data do we need to get a stable
representation of sensorial style? We evaluate
the average similarity for each individual with pro-
gressively larger samples sizes, k, of their sense-
focused sentences. We chose a range of values of k
from k = 1 to k = 10 with a granularity of 1, from
k = 10 to k = 100, and k = 100 to k = 1, 000
with granularities of 10 and 100. In Figure 3 we
summarize these results with the median of aver-
age similarity across all individuals in each genre.
We say the sensorial style vector has converged at
a k value when the graph becomes more or less
horizontal from that point onward. From the fig-
ure we see that as k increases similarity increases
(within the m samples of size k). We note that
lyrics reaches a median average similarity of 0.90

7Because of the volume of lyrics, we limit the analysis to
individuals with > 500 sense-focused sentences.
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Figure 3: Convergence of style vectors as a function of
k, the number of sense-focused sentences sampled.

with a sample of less than 100 sense focused sen-
tences. In contrast, we need between 200 and 300
sentences to get the same 0.9 median average simi-
larity for novels. Compared to novels and lyrics the
plot for poetry has some fluctuations at k ≥ 400,
perhaps because there are only 7 poets with more
than 100 sentences.
RQ 3: Does sensorial style vary over time?

Figure 4: Average similarity between music lyrics as a
function of their temporal distance. The blue line rep-
resents the linear approximation of the relationship. As
temporal distance increases similarity decreases slightly.

We now explore whether sensorial style has
changed over time in lyrics. As observed earlier,
the poetry dataset is sparse so we do not include
it. And with novels, it is sometimes challenging to
pinpoint a single publication year, since some texts
are written over multiple years8. Using the method
described in Section 3.3, we measure average simi-
larity in style of lyrics between pairs of individual
sensorial style vectors that are a temporal distance
γ away from each other. We use window length
δ = 1.5 years. Figure 4 illustrates our findings.

We observe that as temporal distance between
works increases the similarity of sensorial style
decreases. The augmented Dickey-Fuller test had a

8As an example, Louisa May Alcott’s Little Women was
published in two volumes spanning two years, 1868 and 1869.

p−value = 0.96 meaning we cannot rejectH0, that
the distribution is not-stationary (Cheung and Lai,
1995). However, the decrease is very slight; the 50
year drop in similarity is only 0.01. Approximating
the relationship between the average similarity and
temporal distance as a linear process, we note that
the average similarity decreases very slowly at a
rate of 3.37× 10−4 per year.
RQ 4: Which features are representative and
distinctive of the individuals within each genre?
Table 4, shows the top-6 features that are represen-
tative of the members of each genre. We observe
that these are all synaesthetic. Additionally the use
of olfactory language in non-olfactory contexts is
a representative feature in a majority of table cells
(10/18). The standard deviations of top represen-
tative features is relatively low (between 0.00 to
0.02). This would indicate that the level of consis-
tency for these top features is generally consistent
for the three genres. One takeaway from these
observations can be that in synaesthetic contexts,
individuals are more prone to using lower senses
(like olfaction) in a more consistent manner.

Table 5, shows the top-6 features that had
the highest standard deviation between the mem-
bers of each genre and were the most distinctive.
The distinctive features were predominantly non-
syneasthetic. In the cases where the distinctive
feature was synaesthetic, the observed modality
was either interoceptive or visual. This would in-
dicate that there is greater diversity in expressions
that rely on higher senses as a semantic scaffold.

For each genre, we rank all the sensorial style
features by the standard deviation and compare
them using Pearson’s correlation. We observe that,
the features are highly correlated. Lyrics had a
high correlation with both novels (0.75) and poetry
(0.81), while poetry and novels had a slightly lower
correlation of 0.48.
Can sensorial style be used for prediction tasks?
We investigate whether sensorial style features can
be used to identify genre. We compare against other
standard style representations: LIWC (Tausczik
and Pennebaker, 2010) and content-free words
(CFW) vectors (Hughes et al., 2012). We use stan-
dard 5 fold cross validation for each experiment
to train and test a random forest classifier. We
consider the most prolific 50 authors/genre.

Table 6 shows the results. We observe that sen-
sorial style predicts genre with a high level of ac-
curacy (> 90%). While the other representations
achieve close to perfect accuracies, key to note is
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Method Baseline Sensorial Style LIWC CFW
Features — 42 73 307
Accuracy 0.33 0.91 0.99 0.99

Table 6: Prediction accuracy of the different features.

that our goal is less about beating baselines and
more about understanding the kinds of signals con-
veyed by sensorial style.

6 Case Study: Sensorial style in Lyrics
As a small illustration, we explore how sensorial
style varies across different songs composed by the
same artist. We consider all 962 artists who had at
least 5 songs in the Hot 100 and extract a sensorial
vector for each song. We then measure the average
pair-wise cosine similarity (self similarity) amongst
the songs of each artist. Almost 80% of the artists
had an average self similarity ≥ 0.70. Only two
artists had a self similarity < 0.50.

The rapper NF was the most consistent artist
with an average self similarity of 0.93. Conversely,
the least consistent artist was the rock musician
Tommy James with an average similarity of 0.42.
For example, in the song “When I Grow Up”,
NF used auditory language non-synaesthetically in
85.7% of the cases and for the song “NO NAME”
this happened in 76.9% of the cases. The similarity
between these two songs was over 95%.

In contrast, “Nothing to Hide” and “Ball and
Chain” by Tommy James’ had a similarity of 0.32.
In “Ball and Chain”, the artist uses visual language
in all the instances where it was expected. How-
ever in “Nothing to Hide”, he uses interoceptive
language synaesthetically instead of visual in about
57% of the cases. This case study demonstrates
a method for exploring sensorial style and their
variations across writings at the individual level.

7 Related Work
There are no directly comparable studies examining
sensorial style for large numbers of individuals that
consider interoception. Instead we briefly review
closely allied topics.
Sensorial language: Sensorial language is not uni-
formly distributed across the six sensory modali-
ties as reflected in sensorial lexicons, such as the
one we use (Lynott et al., 2020). This is also ob-
served in large text collections. In their analysis of
8 million words from around 7,000 English texts
(Koblet and Purves, 2020) found over 28,000 visual
descriptions and only 78 referring to the olfactory
modality. Similar findings for multiple corpora are

observed in (Winter et al., 2018). Our results are
consistent with these prior works.
Sensorial language, the brain & emotion: The
salience of sensorial words is known to be highly
correlated with the volumes of cortical activation
in the brain (Reilly et al., 2020). Lievers (2015)
show that there is directionality to how senses are
substituted for each other. Winter (2016) found that
gustatory and olfactory words (e.g., ‘stinky’, ‘deli-
cious’) are on average more emotionally valenced
than visual and auditory words and these also ap-
pear in more emotionally valenced sentences.

Bubl et al. (2010), show that alterations in men-
tal states have a direct effect on perception; specifi-
cally, that depression directly impacts how the color
blue was perceived. Kernot et al. (2016), found
a decrease in the novelist Iris Murdoch’s use of
olfactory language following her diagnosis of de-
pression and Alzheimer’s. We credit this study for
providing us with the hint that sensorial language
may lead to a sensorial style. We take their senso-
rial style analysis forward with larger collections
of authors, several genres and a more informative
representation of sensorial style.

8 Limitations and Conclusions
We have shown that individuals have sensorial lan-
guage style and that this sensorial style is a non
random phenomenon for novelists and musicians
and therefore is likely developed intentionally. In-
terestingly, we also found that it takes just a few
hundred sentences to extract stable sensorial style
representations. We also show that sensorial style
in lyrics largely stable over time; the average simi-
larity decreases at a rate of 3.37×10−4 per year.

Additionally, we show that sensorial style vec-
tors seem to perform well at genre identification.
The performance was high (> 0.90), however, it
was not close to perfect as with other style repre-
sentations. The question about how sensorial style
representations can be improved to increase perfor-
mance requires further investigation.

Our study is limited in that our method relies
heavily on the underlying Lynott et al. (2020) lex-
icon, and as with similar studies, is only as good
as the lexicon. Additionally, we assume that each
term is associated with a single sensorial modality.
However, as research in psychology and neurology
has shown, sensorial language is cross-modal. We
leave this analysis to future work. In summary, we
take a first step towards showing that sensorial style
has a legitimate role in stylometrics research.
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Abstract
Linguists distinguish between novel and con-
ventional metaphor, a distinction which the
metaphor detection task in NLP does not take
into account. Instead, metaphoricity is formu-
lated as a property of a token in a sentence,
regardless of metaphor type. In this paper,
we investigate the limitations of treating con-
ventional metaphors in this way, and advocate
for an alternative which we name metaphori-
cal polysemy detection (MPD). In MPD, only
conventional metaphoricity is treated, and it
is formulated as a property of word senses
in a lexicon. We develop the first MPD
model, which learns to identify conventional
metaphors in the English WordNet. To train
it, we present a novel training procedure that
combines metaphor detection with word sense
disambiguation (WSD). For evaluation, we
manually annotate metaphor in two subsets of
WordNet. Our model significantly outperforms
a strong baseline based on a state-of-the-art
metaphor detection model, attaining an ROC-
AUC score of .78 (compared to .65) on one
of the sets. Additionally, when paired with a
WSD model, our approach outperforms a state-
of-the-art metaphor detection model at identi-
fying conventional metaphors in text (.659 F1
compared to .626).

1 Introduction

Linguists differentiate between two types of
metaphor: novel and conventional. While novel
metaphors are creative expressions made in a partic-
ular situation by one particular individual, conven-
tional metaphors are those which have been widely
adopted by a language community. Consider:

(1) The attack began at dawn.

(2) The government has come under attack.

(3) The government torpedoed the housing bill.

Example (1) is a literal usage of attack which refers
to a military offensive. Example (2) is a conven-
tional metaphor referring to intense verbal criticism.

"The new task is a   bridge   between existing ones"

Metaphorical
MPD

WSD

SMD
  bridge    noun3  something
resembling a bridge in form or
function, e.g. "his letters provided
a bridge across the centuries"

Figure 1: Metaphorical polysemy detection is the miss-
ing link between standard metaphor detection and word
sense disambiguation

Example (3) is a novel metaphor, which reuses the
well-established imagery from (2), but extends it
with the word torpedoed.

Detecting novel metaphors and conventional
metaphors are fundamentally different tasks. Novel
metaphors are creative usages of words, which vi-
olate statistical patterns of language (e.g. Wilks,
1975, 1978), and which extend the meaning of
a word into unexpected areas of semantic space.
Conventional metaphors, on the other hand, can
be considered lexicalised: examples (1) and (2)
come from the gloss of two senses of attack in
WordNet (Miller, 1995), where the novel sense
of torpedoed in example (3) is not yet captured.
Despite these inherent differences, in NLP the stan-
dard metaphor detection task, abbreviated as SMD
here, makes no distinction between novel and con-
ventional metaphor.

Although recent works have produced resources
which distinguish between novel and conventional
metaphors (Parde and Nielsen, 2018; Do Dinh et al.,
2018), both metaphor types are annotated as prop-
erties of tokens, suitable for SMD. In this work, we
demonstrate the shortcomings of this formulation,
and argue that conventional metaphoricity is best
treated not as a property of word occurrences in a
sentence, but of word senses in a lexicon. With this
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Sense Definition Metaphor?

adopt1
take into one’s family (e.g. They adopted two children
from Nicaragua)

✗

adopt2
choose and follow; as of theories, ideas, policies, strategies
or plans

✓

adopt3
take on a certain form, attribute, or aspect (e.g. he adopted
an air of superiority)

✓

adopt4
take up the cause, ideology, practice, method, of someone and
use it as one’s own (e.g. They adopted the Jewish faith)

✓

Table 1: Verbal senses of adopted in WordNet

in mind, we investigate the problem of assigning
metaphoricity ratings to word senses, a problem
we name metaphorical polysemy detection (MPD).
We build the first model of MPD, which identifies
metaphorical senses in WordNet (Miller, 1995).

No training data is available for this task. We
design a novel training regime which utilises exist-
ing resources, which works by decomposing SMD
into two steps: word sense disambiguation (WSD)
and MPD (see Figure 1). More specifically, we
pair our MPD model with a state-of-the-art WSD
model, and train them in conjunction on SMD data,
treating word sense as a latent variable.

To investigate the performance of our model, we
establish an evaluation framework for MPD. To
collect test data, we perform an annotation study,
and label two subsets of WordNet for metaphoricity
(κ = 0.78). Metaphor detection is typically evalu-
ated using F1-score, which measures how well a
model can judge metaphoricity in absolute terms.
For MPD, we additionally introduce a new quantity
for evaluation, which we call relative metaphoricity.
It measures whether a model is able to correctly
identify whether one sense is more metaphorical
than another, even if it is unable to correctly de-
termine where they sit around a threshold. It is
calculated using ROC-AUC.

On one of our test sets, consisting of words from
a large resource of conventional metaphors (the
Master Metaphor List; Lakoff et al., 1991), our
MPD model attains .78 ROC-AUC and .60 F1, sig-
nificantly higher than a strong baseline which uses
a state-of-the-art SMD model (MelBERT; Choi
et al., 2021), which scores .65 and .54 respectively.
Additionally, for SMD on conventional metaphors,
when our model is paired with a WSD model it
attains .659 F1, significantly better than the state-
of-the-art SMD model (.626).

2 Metaphor in the Lexicon

A fundamental feature of language is polysemy,
the phenomenon of a wordform exhibiting mul-
tiple meanings which are systematically related.
When meanings are related by metaphorical simi-
larity, the phenomenon is called metaphorical pol-
ysemy. An example is the word attack, which
describes either a physical confrontation, or—
metaphorically—heated criticism (e.g. “she at-
tacked my arguments”). Instances of metaphorical
polysemy are called conventional metaphors.

In this section, we describe how conventional
metaphors materialise in lexica (§2.1). With this in
mind, we illustrate the shortcomings of the existing
metaphor detection task (§2.2), and propose an
alternative formulation which is more suitable for
conventional metaphors (§2.3).

2.1 Metaphoricity of Word Senses

In a lexicon, metaphoricity can be formulated as
a property of word senses. Consider the example
definitions of the word adopted in WordNet (Miller,
1995), which are shown in Table 1 (some senses
are excluded for brevity). Sense adopt1 is literal,
but the other senses are conventional metaphors.

The conventionality of a metaphor lends itself to
treatment as a continuous property. For instance,
a metaphor used by an entire language commu-
nity would be highly conventionalised, while a
metaphor used by speakers in a particular geo-
graphic region would be moderately convention-
alised. Novel metaphors sit at the extreme other
end of the spectrum: they are creative expressions
with ad-hoc meanings.1 By definition, lexica de-

1Novel metaphors can be further subdivided into
metaphors which are novel lexicalisations of conventional
imagery, as with example (3) above, and metaphors which
create new imagery.
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signed to encode widespread language use will
only encode the most conventional of metaphors as
word senses.

In order to formulate metaphoricity as a property
of word senses, a lexicon needs to encode the lit-
eral and metaphorical meanings of a wordform as
separate senses. The criteria that need to be met for
two meanings to be considered distinct is highly
contentious, with some lexicographers arguing that
senses should be represented as spectra rather than
discrete units (see Cruse, 1986, Ch. 3). In prac-
tice, however, lexica describe senses as discrete
objects. Moreover, in most lexica the granularity of
these senses is high enough to separate metaphor-
ical senses from literal ones, which thus matches
our criteria. That being said, no existing lexicon
systematically labels senses for metaphoricity (the
decision of whether to label metaphorical senses as
such is left to the lexicographer’s discretion).

If word senses in a lexicon like WordNet were
labeled for metaphoricity, this would be useful in a
number of areas of study. When a language com-
munity need to reference a newly-arisen meaning,
instead of creating a new wordform, often an exist-
ing word is extended metaphorically (e.g. a com-
puter mouse). This process of metaphorical exten-
sion is a cornerstone of lexical-semantic language
change (Koch, 2016), and knowing which word
senses were metaphorical would open up new pos-
sibilities to study this phenomenon. The metaphors
which do enter the lexicon participate in sophis-
ticated patterns, preserving the structure of their
literal domains: just as one can attack an oppo-
nent in a debate, so too can claims be defended,
different rhetorical strategies adopted, and so on.
These patterns are known as conceptual metaphors
(Lakoff and Johnson, 1980), and knowing which
word senses in a lexicon were metaphorical would
create new opportunities to analyse their substruc-
tures (this has been previously recognised by Lön-
neker, 2003).

2.2 Issues with Standard Metaphor Detection

In the standard metaphor detection (SMD) task,
metaphoricity is formulated as a property of a to-
ken in a sentence. The dataset which is almost uni-
versally used for this is the VUAMC (Steen et al.,
2010). It contains tokenised English sentences, in
which words are annotated with binary metaphoric-
ity labels. It was the subject of two recent metaphor
detection shared tasks (Leong et al., 2018, 2020).

The VUAMC was annotated following an
adapted version of the Metaphor Annotation Pro-
cedure (MIP; Crisp et al., 2007). To annotate each
token, MIP involves a three-stage process:

1. Establish the contextual meaning of the word,
based on the other words in the sentence.

2. Determine whether the word has a more basic
meaning which occurs in different contexts
(where “basic” meanings are defined as those
more concrete, related to bodily action, less
vague, and/or historically older).

3. If the word does have a more basic meaning in
different contexts, decide whether the mean-
ing in this context can be understood in com-
parison with the more basic meaning.

If the wordform does have a more basic meaning
which the contextual meaning relates to, the token
is labeled as a metaphor.

To perform well in SMD, a model must emulate
this procedure. There are two drawbacks to this
task formulation:

Learning WSD Implicitly For conventional
metaphors, stage 1 of MIP is very similar to word
sense disambiguation (WSD). In WSD, the goal
is to identify the sense evoked by a wordform in
a sentence. This is a hard task in its own right,
and, in order to perform well, models of SMD are
expected to learn to do this implicitly.

We can check whether an SMD model has learnt
to do this by analysing its predictions for word-
forms which appear in multiple distinct contexts
which all evoke the same sense. Tokens which
evoke the same sense should always receive the
same metaphoricity prediction (either they should
all be metaphorical, or all literal). This is be-
cause, for conventional metaphors, metaphoricity
is a property of a word sense (§2.1). After the
sense of a token is established, stages 2 and 3 of
MIP should always yield the same prediction; if a
model makes inconsistent predictions for different
invocations of the same sense, that suggests that it
is incorrectly establishing the contextual meaning
of the token.

To investigate whether a state-of-the-art model
is able to adequately perform stage 1 of MIP, we
perform an error analysis of MelBERT (Choi et al.,
2021). More specifically, we compute MelBERT’s
metaphoricity predictions for every token in an En-
glish sense-tagged corpus (SemCor; Miller et al.,
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Sentence Excerpt Prediction

...the South Carolina nullifiers adopted the principle of state interposition... Metaphorical

...the methods he adopted to accomplish... Metaphorical

...the denomination’s 16 basic beliefs adopted in 1966... Metaphorical

...the Government’s new feed grain program was adopted; the program... Literal

...the Albany Plan of Union, which, had it been adopted, might... Literal

...the use of target-hunting noses on the projectiles has been adopted, and... Literal

Table 2: MelBERT makes inconsistent predictions for occurrences of adopted with sense adopt2 in SemCor

1994), then extract all the predictions of the same
word sense, which should always elicit a consistent
prediction. Table 2 shows MelBERT’s predictions
for different instances of the word adopted which
all evoke the same metaphorical sense, adopt2.2

MelBERT misclassifies the bottom three exam-
ples as literal. In general, for word senses which
occur multiple times in the data, MelBERT gave
contradictory classifications 31.8% of the time. It
becomes more likely that a system will make an
inconsistent classification when there are more oc-
currences of a word sense in the data: for word
senses which occurred 15 or more times, the mis-
classification rate was 49.3%.

This error analysis suggests that MelBERT is not
performing stage 1 of MIP adequately. The errors
in Table 2 result not from a failure to reason about
metaphoricity, but from MelBERT incorrectly es-
tablishing the contextual meaning of adopted in the
first place. We argue that this is beyond the remit
of metaphor detection, since it is a hard challenge
in its own right, covered by other NLP tasks.

Word’s Senses Undefined After stage 1 of MIP
has been performed, stages 2 and 3 require informa-
tion about how the contextual meaning of a word-
form relates to the other senses it may take. More
specifically, models need to determine the most
basic sense of the wordform, and relate that sense
to the contextual meaning. However, the VUAMC
does not provide information about other meanings
a wordform could assume. Because of this, model
architects typically assume that static word embed-
dings will represent the basic sense of a wordform
(e.g. Choi et al., 2021; Mao et al., 2018; Zayed
et al., 2018; Wu et al., 2018). We argue that this
assumption is problematic, because static word em-
beddings do not distinguish between word senses,
and are sensitive to occurrence frequency. If one

2Data here comes from our re-implementation of Mel-
BERT trained on the ‘all’ subset, described in §4.3.

sense is much more frequent than others, static
word embeddings will primarily encode that sense—
but the basic sense of a wordform is often not the
most frequent.

Fortunately, we know that the most basic sense
of a wordform will be one of its senses in a lexicon.
If we model metaphoricity as a property of word
senses, we create scope for researchers to explicitly
investigate the relations between different senses,
which we argue is the core challenge posed by
metaphor.

2.3 A New Task Formulation for
Conventional Metaphor

Let w ∈ W be all the wordforms in a language.
To represent metaphoricity, letM be the set {0, 1}
with members m, such that 1 represents metaphori-
cal and 0 represents literal.

A token t ∈ T is an occurrence of a wordform
in a sentence. Using ◦ to denote concatenation, we
define a token as a wordform w surrounded by a
prefix and suffix string (p and s) in a sentence:

T = {⟨p, w, s⟩ | p ◦ w ◦ s ∈ W∗} (1)

In SMD, the goal is to determine whether a token is
metaphorical, i.e. to construct a model of p(m | t).

A word sense is a particular meaning of a word,
which are typically represented in lexica as defini-
tions. Let D be the complete set of definitions in a
lexicon (in WordNet these correspond to synsets),
with elements d. A lexicon maps a wordform w
to a subset of the definitions Dw ⊆ D.3 Some lex-
ica (WordNet included) associate multiple synony-
mous wordforms with the same definition; because
of this, we define a word sense s ∈ S as a tuple
consisting of a wordform and a definition:

S = {⟨w, d⟩ | w ∈ W, d ∈ Dw} (2)

3Formally, if P(x) denotes the powerset of x, then a lexi-
con is a mapW → P(D).
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Because conventional metaphors are lexicalised,
we propose that the task of detecting conventional
metaphors should be formulated as modelling the
metaphoricity of word senses, i.e. constructing
models of p(m | s). We call this metaphorical
polysemy detection (MPD). This formulation of
conventional metaphoricity alleviates the problems
with SMD outlined in §2.2.

3 Learning Conventional Metaphor

In this section, we describe the first MPD model
(§3.1). To train it, it is embedded into an SMD
pipeline (§3.2).

3.1 An Architecture for MPD

To model MPD (see §2.3), we implement p(m | s)
as a multi-layer perceptron (MLP). In eq. (2),
we defined a word sense s as a tuple consist-
ing of a wordform w and a definition d. Our
MPD model’s MLP is input with a pair of em-
beddings, for w and d. Suppose we have a k-
dimensional embeddings space for words w ∈ W ,
and a k-dimensional embedding space for defini-
tions d ∈ D. Let us define two functions to map in-
puts into these spaces, TypeEmb :W → Rk and
SynsetEmb : D → Rk.4 We concatenate these
embeddings, then pass them through an MLP and
a sigmoid to get a probability distribution. Letting
MLP

⟨u,v⟩
ψ : Ru → Rv be an MLP parameterised by

ψ with an input size u and output size v, we have

h = TypeEmb(w) ◦ SynsetEmb(d)
pθ(m | s) = σ

(
MLP

⟨2k,1⟩
θ

(
h
))

(3)

3.2 Teasing MPD out of SMD using WSD

Training this model would be trivial if we had
⟨m, s⟩ tuples, but no training data of this form cur-
rently exists. In WSD, the task is to produce models
of p(s | t) for a corpus ⟨s, t⟩ ∈ CWSD. In SMD,
on the other hand, the task is to produce models
of p(m | t), using a corpus ⟨m, t⟩ ∈ CSMD. No
corpus contains both m and s annotations in par-
allel. In this section, we describe a training pro-
cedure that works by pairing an MPD model with
a WSD model, and training them in conjunction
on SMD, thus making it possible to use existing
resources of CWSD and CSMD to train MPD. We do
not believe that this procedure is an optimal way

4For SynsetEmb we use ARES embeddings (Scarlini
et al., 2020), and for TypeEmb we use BERT embeddings of
wordforms (following Choi et al., 2021); see App. D.

to learn MPD, as errors in the WSD component
will degrade MPD performance. However, given
that these are the only resources currently available,
we design a method to use them for MPD, and in
doing so empirically test whether they can result in
a sufficiently good MPD model.

By marginalising out word sense, we can de-
compose SMD into two parts, introducing sense s
as a latent variable. The first part disambiguates
senses (WSD), and the second predicts metaphoric-
ity based on the sense (MPD):

p⟨θ,ϕ⟩(m | t)︸ ︷︷ ︸
SMD

=
∑

s∈S
pθ(m | s)
︸ ︷︷ ︸

MPD

pϕ(s | t)
︸ ︷︷ ︸

WSD

(4)

where θ and ϕ are disjoint sets of parameters
(colours correspond with Figure 1). Introducing
WSD into SMD like this makes explicit what SMD
models typically attempt to learn implicitly (see
§2.2). The WSD component outputs a probabil-
ity distribution over the senses s ∈ S, and the
MPD component outputs the probability that each
s is metaphorical.5 This formulation assumes that
metaphoricity is conditionally independent of to-
ken given sense; we assume that the context of a
word’s usage tells us its sense, and that that alone
is enough to predict metaphoricity.

Taken as a whole, the combined model in eq. (4)
can be trained end-to-end by minimising its cross-
entropy on an SMD dataset,

LSMD(θ,ϕ) = −
∑

⟨m,t⟩
∈CSMD

log p⟨θ,ϕ⟩(m | t)
|CSMD|

(5)

However, this approach to training would leave the
model to infer s implicitly. Instead, we can comple-
ment this objective with another, which trains the
WSD model in isolation on another dataset (CWSD),
also using cross-entropy,

LWSD(ϕ) = −
∑

⟨s,t⟩
∈CWSD

log pϕ(s | t)
|CWSD|

(6)

These two objectives can be combined into a multi-
task objective, using α as a hyperparameter which
regulates the ratio between them, yielding the final
global loss function

L(θ,ϕ) = α · LSMD(θ,ϕ) + (7)

(1− α) · LWSD(ϕ)

5For a particular token t = ⟨p, w, s⟩ and sense
s = ⟨w′, d⟩, the probability p(s | t) will only be non-
zero if w = w′; in practice, this can be used to reduce the
computation.
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Any supervised WSD architecture can be used in
conjunction with our MPD model.

4 Evaluation

In this section, we describe the evaluation data we
collected for MPD (§4.1), and introduce relative
metaphoricity, an aspect of metaphor which it is
only possible to evaluate with MPD (§4.2). We
then describe our experimental setup (§4.3) and
results (§4.4).

4.1 Evaluation Data for MPD

Our approach to training (§3.2) alleviates the need
for labeled MPD training data. However, we still
need evaluation data. For this we collect annotation.
In this section, we describe the main evaluation set
we collected. This evaluation set consists of data
from the Master Metaphor List, which is the largest
list of conventional metaphors (collated by Lakoff
et al., 1991).

Data for Annotation We sample 250 commonly
cited metaphor examples from the MML, filter-
ing out wordforms which have more than 10 or
fewer than 3 senses. We annotate the remaining 98
wordforms for metaphoricity (a total of 554 word
senses).

Annotation Procedure We adapt MIP stages 2
and 3 for the annotation task (our guidelines are pre-
sented in App. A). For MPD, we require a lexicon
which consistently separates literal and metaphori-
cal senses (see §2.1). We use the annotation phase
to also check whether WordNet complies with this.
Along with options for “metaphorical” and “literal”,
annotators also have the option to label senses as
“mixed”, meaning that the sense combined literal
and metaphorical definitions. Our data is annotated
by two judges, who are native speakers of English.

Analysis At least one of the annotators labeled a
sense as “mixed” 5.4% of the time. We conclude
from this that although WordNet mixes some literal
and metaphorical senses, for the most part the gran-
ularity of the sense inventory was high enough to
separate them. Of those which neither thought was
mixed, inter-annotator agreement was measured at
κ = 0.78 (N=539, n=2, k=2): where the senses
were clearly distinct, annotation was consistent. Of
the senses that the judges agreed upon, 52% were
metaphorical and 48% were literal.

4.2 Relative Metaphoricity

Metaphor detection performance is typically re-
ported using F1-score, which factors in the pre-
cision and recall of a classifier. This evaluates a
model’s ability to judge whether the metaphoricity
level of an input passes a threshold to be considered
metaphorical, in an absolute sense.

With absolute metaphoricity judgments, there
are lots of edge cases, which do not cleanly fit into
a metaphorical–literal binary. For example, while
a physical attack (e.g. an outlaw with a knife) is
widely accepted as being literal, and an attack with
words (e.g. in the perpetrator’s court hearing) is
widely accepted as being metaphorical, the case
is less clear-cut for a sporting attack (e.g. when
they are playing football with other inmates): here
we have a physical act which can result in injury,
but that takes place within the confines of a game,
and certainly does not involve weapons.6 It is dif-
ficult to decide whether an edge case like this is
metaphorical or not, if those are the only options.
Most people would likely agree, however, that a
sporting attack is more metaphorical than an attack
with a knife, and less metaphorical than an attack
within a debate.

We are not the first to note these flaws in absolute
metaphoricity judgements; they have previously
been used to motivate proposals for the treatment
of metaphor on graded or continuous scales (e.g.
Dunn, 2014; Mohler et al., 2016). Even though
MPD is a binary classification task, it addition-
ally gives us the opportunity to evaluate whether a
model can judge which of a word’s senses are more
metaphorical than others, even if it gets the exact
threshold wrong. We call this a measure of relative
metaphoricity.

Beneath the surface, models assign a probability
of metaphoricity, rather than an absolute judgement.
With MPD, we can compute a model’s predictions
for all the senses of a word, and investigate whether
it puts these probabilities in the right order, even if
it gets absolute predictions “wrong” in an absolute
sense. A metric for this is described in §4.3.

4.3 Experimental Setup

In this section, we describe the models and data
we experimented with. Additional details can be
found in the appendices.

6Ad extremum, this line of reasoning might lead us to ask
whether a sporting attack in rugby (or even boxing) would be
more literal than it would be in non-contact sports.
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MPD Models We compare our MPD model
(Ours) to several baselines. To establish a lower-
bound of performance for MPD, we compute two
baselines which make predictions randomly or
by choosing the most common class (Random
and Majority). In addition to these, we compute
a strong baseline: using a state-of-the-art SMD
model (MelBERT; Choi et al., 2021), we compute
the metaphoricity probability of all occurrences of
s in WSD data, and take the average (MelBERT
Average). More formally, let t ∈ CsWSD be every to-
ken in the WSD data which elicits a specific word
sense s. We compute the average metaphoricity
probability of that word sense by taking the mean
of MelBERT’s metaphoricity prediction for all to-
kens that evoke that sense:

p(m | s) = mean
t∈CsWSD

p(m | t)︸ ︷︷ ︸
MelBERT

(8)

If |CsWSD| = 0 (i.e. there are no occurrences of s
in the WSD data) then we default to the random
baseline (and take the probability as random).

WSD Models We experiment with two WSD
models: a baseline (BERT WSD Baseline) and
a state-of-the-art approach (EWISER; Bevilacqua
and Navigli, 2020). Additional description is left
to App. B.

SMD Models We train the combined model
(WSD+MPD) from eq. (4), using our MPD model
and both WSD models (we select the highest per-
forming variant). We compare the overall SMD
performance of this combined model to two other
approaches, a baseline (BERT SMD Baseline) and
a high-performing model (MelBERT). Additional
description is left to App. C.

MPD Data To evaluate MPD performance, we
use the evaluation set described in §4.1 (MML).
We also collected a second set using the same pro-
cedure, designed to evaluate model generalisation
ability to words which are out-of-vocabulary of the
training data (OOV). We randomly sampled 100
wordform from the WordNet vocabulary which are
not included in the vocabularies of CSMD or CWSD,
and asked one of the annotators from §4.1 to follow
the same procedure as before. The final evaluation
sets for MML and OOV consist of 535 and 492
word senses respectively, after senses which the
annotator labeled as “mixed” were removed. As
an additional third set, we use the data of Moham-
mad et al. (2016), who annotated verbs in WordNet

for metaphoricity (Verbs). Their data consists of
1,679 word sense annotations, covering 440 verbal
wordforms.

WSD Data For CWSD, we use SemCor (Miller
et al., 1994). In SemCor each token is annotated
with the WordNet sense it evokes. We remove all
datapoints with trivial solutions (for which there is
only a single sense to choose from, i.e. |Dw| = 1).

SMD Data For CSMD, we use the VUAMC (see
§2.2). We remove all part-of-speech types and
words not in WordNet (meaning we remove all
prepositions, which are almost always labeled as
metaphorical in VUAMC, and so are easy to pre-
dict). Additionally, because our focus is on conven-
tional metaphors, when investigating SMD perfor-
mance, we also experiment using a subset of this
data in which novel metaphors are filtered out (we
refer to this subset as Conventional, as opposed to
All). We achieve this using the annotation layer of
Do Dinh et al. (2018).7

Metrics To evaluate MPD for absolute
metaphoricity, we compute the F1-score. For
relative metaphoricity, we compute (for each
wordform individually) the area under a receiver
operating characteristic curve (ROC-AUC, see
Fawcett, 2004 for discussion). An ROC curve
is a plot of the true positive rate against the
false positive rate, as a threshold shifts from 0
to 1. This tells us whether the metaphoricity
probabilities assigned to the senses of a wordform
are in correct high–low ordering, even if they are
not properly calibrated around the .5 threshold.
ROC-AUC values range from 1 (perfectly correct)
to 0 (perfectly incorrect), where .5 indicates no
correlation. To get a value for a whole evaluation
set, we take the mean of the ROC-AUC scores of
all wordforms in the set. To evaluate SMD, we
compute the F1-score, and for WSD, where the
goal is multi-class classification, we compute the
micro-averaged F1-score.

Significance Testing We use a two-tailed Monte
Carlo permutation test with r = 1,000 permuta-
tions. We experiment with two significance levels,
α = 0.05 and 0.01, and differentiate between these
by indicating the significance level using ∗ and ∗∗

respectively.

7In this data, metaphor novelty is scored with continuous
values in the [−1, 1] interval; as a threshold, we use 0.2.
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Relative (ROC-AUC) Absolute (F1)
MPD Model MML OOV Verbs MML OOV Verbs

Ours
(with EWISER WSD) .78∗∗ .64∗ .70 .54 .37 .43
(with BERT WSD Baseline) .72 .60 .71∗∗ .60∗ .41∗ .47∗∗

MelBERT Average .65 .50 .54 .54 .33 .37
Random .54 .51 .51 .49 .33 .35
Majority .50 .50 .50 .00 .00 .00

Table 3: Metaphorical polysemy detection results

F1
SMD Model Conventional All

Ours (WSD+MPD) .659∗∗ .631

MelBERT .626 .638
BERT SMD Baseline .619 .625

Table 4: Standard metaphor detection results

4.4 Results

Metaphorical Polysemy Detection MPD results
are presented in Table 3. We compare two ver-
sions of our MPD model, trained in combination
with different WSD implementations. In all ex-
perimental settings (each column), a variant of
our model performs significantly better than the
highest-performing baseline. Our model’s results
are highest for the MML set (.78 ROC-AUC and
.60 F1), perhaps because the examples here exhib-
ited the clearest cases of metaphoricity. In general,
the EWISER WSD variant’s results are higher for
relative metaphoricity, whilst the baseline WSD
variant’s results are higher for absolute metaphoric-
ity. The reason for this is unclear. Results are low-
est for the OOV set, which shows that the model
has difficulties generalising beyond training data.
Generalising to never-before-seen senses is a well-
known issue in WSD: Bevilacqua and Navigli them-
selves note that their model, EWISER, relies too
much on corpus supervision. This problem will
affect MPD models if they are trained with our
methodology (§3.2); to improve on MPD, it will be
necessary to collect dedicated training data. Never-
theless, our results show that it is possible to learn
MPD using existing resources.

Standard Metaphor Detection SMD results are
presented in Table 4, for both variants of CSMD (one
with only conventional metaphors, one with any).
When trained and evaluated on only conventional
metaphors, our combined MPD+WSD model sig-

WSD Model Objective F1

EWISER
WSD .768
WSD & SMD .766

BERT WSD Baseline
WSD .740
WSD & SMD .741

Table 5: Word sense disambiguation results

nificantly outperforms the state-of-the-art, scoring
.659 F1 (compared to MelBERT’s .626). When
all metaphors are included, MelBERT’s results are
higher that our model (.638 compared to .631), but
in this case the difference is insignificant (at both
significance levels). That our model’s performance
is diminished in this setting is unsurprising, since
this data will contain novel metaphors which are
not encoded as senses in WordNet. We expect
that with improvements to WSD generalisation, it
should be possible to improve the SMD perfor-
mance of a combined MPD+WSD model, for both
variants. As mentioned above, generalising to un-
seen senses is a common issue in WSD. Only 9.4%
of words in the SMD (All) test set have all their
senses covered in the WSD training data, which is
likely to have a substantial effect on the combined
model’s performance.

Word Sense Disambiguation Table 5 compares
the performance of WSD models which are paired
with MPD models and trained jointly on SMD, as
opposed to trained on WSD alone. Although the
auxiliary SMD objective leads marginal numerical
differences (−0.02 and +0.01 for EWISER and the
baseline WSD model respectively), in both cases
these differences are not significantly distinguish-
able (at either significance level), suggesting that
utilising SMD data to train WSD models is not use-
ful. This is likely because of the relatively small
overlap between the vocabularies of the datasets.
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5 Conclusion and Future Work

In this paper, we argued that the standard metaphor
detection (SMD) task in NLP is ill-suited to conven-
tional metaphor, because it conflates metaphor de-
tection with word sense disambiguation (WSD). As
an alternative, we proposed metaphorical polysemy
detection (MPD). We constructed the first MPD
model, which identifies conventional metaphors in
WordNet. To train it, we employed a novel training
technique which exploits resources designed for
SMD and WSD. To evaluate MPD, we collected
two sets of evaluation data, and proposed a new per-
formance measure based on relative judgements of
metaphoricity. Our model performed significantly
better than a state-of-the-art SMD model in all
MPD evaluation settings (e.g. attaining .78 ROC-
AUC and .60 F1 on a subset based on the master
metaphor list). Additionally, we found that pairing
our model with a WSD model led to state-of-the-
art results for token-based conventional metaphor
detection (.659 compared to .626). We make our
code and MPD evaluation data publicly available.8

Making serious improvements in MPD will re-
quire the collection of dedicated training data.
Training MPD using SMD data necessitated the
inclusion of a WSD model, which will negatively
affect MPD performance when it makes mistakes.
Additionally, our model did not utilise information
about the set of definitions a wordform is associated
with (Dw), and instead made the naïve assumption
that this information will be encoded in a static
embedding of w. Set- and graph-based architec-
tures which exploited this information would be a
natural thing to explore. With more data and bet-
ter models, it may be possible to synthesise a full
set of WordNet metaphoricity annotation, and even
to extend this synthetic annotation to multilingual
WordNet versions. This would be a valuable re-
source, which would open the door to study other
questions surrounding metaphorical polysemy.
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A Annotation Guidelines

We are studying conventional metaphors. A con-
ventional metaphor is a metaphorical usage of a
word that is common enough to appear in dictio-
naries. Consider the two definitions below for the
English verb “flood”.

1. cover with liquid, usually water (e.g. “the
swollen river flooded the village”)

2. supply with an excess of (e.g. “flood the mar-
ket with tennis shoes”)

The first is a literal meaning, while the second
is a conventional metaphor (in the example sen-
tence, the market is not literally being flooded).
Words often have more than two meanings, and
can have multiple literal meanings and/or multiple
metaphorical meanings.

Your task is to identify which definitions are con-
ventional metaphors. To annotate a word:

1. Read all of the definitions the word is asso-
ciated with. Using the definitions (and the
synonyms and example sentences), try and get
a feel for the meaning of each definition and
how they are different.

2. Then, for each of the word’s definitions:

(a) Determine if another of the word’s defi-
nitions is more “basic” than the current
one. Basic definitions tend to be

• more concrete (they describe things
which are easier to see, hear, feel,
smell, and/or taste);

• related to the body or the physical
world;

• more precise (less vague);
• historically older

Basic meanings are not necessarily the
first definitions of a word in the list, and
are not necessarily the most frequent
meanings of a word.

(b) If the word has a more basic definition
than the current one, decide whether the
current definition can be understood as
an extension of a more basic one.

If a definition can be understood as an extension
of a more basic one belonging to the word, label it
as “metaphorical”. Otherwise, label it as “literal”.
There is one exception:

Sometimes, the definitions can be ambiguous,
and combine metaphorical and literal meanings.
Sometimes the definition is explicitly ambiguous
(it might say that it is meant “metaphorically or
literally”, or that it can apply to something “con-
crete or abstract”), and other times it is just vague.
If the definition is vague, then you should attempt
to resolve the ambiguity by looking at the exam-
ple sentences. For example, if all the examples
are clearly metaphorical, say that this definition is
metaphorical. If it cannot be disambiguated, you
should select “mixed”.

B Additional WSD Models

WSD Baseline Suppose we have another k-
dimensional embedding space for tokens, retrieved
by TokenEmb : T 7→ Rk.9 As a baseline WSD
model, we predict a distribution over S from
TokenEmb(t):

h = TokenEmb(t) (9)

pϕ(s | t) = softmax
(
MLP

⟨k,|S|⟩
ϕ

(
h
))

In practice, we renormalise the output distribution
so only senses with d ∈ Dw have nonzero probabil-
ities.

EWISER For a high-performing WSD model,
we experiment with a reimplementation of
EWISER (Bevilacqua and Navigli, 2020). Where
O is a matrix where the ith column corre-
sponds to a b-dimensional embedding of di ∈ D,
SynsetEmb(di), and A is an adjacency matrix of
size |D| × |D|, where 1 indicates that two synsets
are connected, and 0 indicates they are discon-
nected, EWISER is defined as

h = MLP
⟨k,k⟩
ϕ

(
TokenEmb(t)

)
(10)

z = hTO

pϕ(m | t) = σ
(
zAT + z

)

In the original paper, a linear layer rather than an
MLP is used, and many different experimental set-
tings are explored; we only experiment with the
setting in which S is initialised with only hyper-
nyms set to 1, and O and S are kept frozen. For

9For TokenEmb we use BERT embeddings; see App. D.
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the definition representations and token representa-
tions, we use the same ones as the other models (see
App. D), and use the standard activation functions
we use throughout, rather than the Swish activa-
tion function (Ramachandran et al., 2017) which
Bevilacqua and Navigli use. In practice, we renor-
malise the output distribution so only senses with
d ∈ Dw have nonzero probabilities.

C Additional SMD Models

SMD Baseline We compute a simple SMD base-
line, which takes a contextualised embedding and
passes it through an MLP to make predictions

h = TokenEmb(t) (11)

pψ(m | t) = σ
(
MLP

⟨k,1⟩
ψ

(
h
))

where ψ are sets of parameters.

MelBERT For a high-performing SMD
model, we experiment with a reimplementa-
tion of MelBERT (Choi et al., 2021). Let
SentEmb : T 7→ Rk return a k-dimensional sen-
tence embedding (for BERT, this can correspond
to the BOS token). We define MelBERT as

htok = TokenEmb(t) (12)

hSPV = MLP
⟨2k,k⟩
ψ1

(
htok ◦ SentEmb(t)

)

hMIP = MLP
⟨2k,k⟩
ψ2

(
htok ◦ TypeEmb(w)

)

hboth = hMIP ◦ hSPV

p⟨ψ1,ψ2,ψ3⟩(m | t) = σ
(
linear

⟨2k,1⟩
ψ3

(
hboth

))

where ψ1, ψ1, ψ3 are sets of parameters. We also
use BERT rather than RoBERTa (Liu et al., 2019),
for parity with other models.

D Implementation and Training Details

Embedding Spaces For TokenEmb(t), we use
the output of BERT base (Devlin et al., 2019). Fol-
lowing Bevilacqua and Navigli, we average the
last four layers, and for wordforms which corre-
spond to multiple BERT tokens, we use the first.
For SynsetEmb(d), we average all of the word
sense ARES embeddings (Scarlini et al., 2020) as-
sociated with d (this approach is also following
Bevilacqua and Navigli), and pass them through
SVD (default parameters from scikit-learn,
Pedregosa et al., 2011) to make them the same
dimentionality as BERT. For TypeEmb(w), we
follow Choi et al. (2021) and compute the BERT

embedding where the input isw on its own. In prac-
tice, then, the dimentionality of all our embedding
spaces are k = 768.

Data Splits Having performed the filtration de-
scribed in §4.3, and additionally removing any data-
point which does not align with the BERT tokenisa-
tion scheme, we finally compute our own datasplits,
shown in Table 6.

Dataset # Train # Dev # Test

VUAMC (All) 75,395 8,818 9,594
VUAMC (Conv.) 71,920 8,539 9,169
SemCor 141,025 17,701 17,481

Table 6: SMD and WSD datasplits

Because of our data filtering process, numbers
shown for EWISER and MelBERT in our paper
cannot be compared with the originals.

Implementation We implement our models in
PyTorch (Paszke et al., 2019). Our MLP is im-
plemented so each middle layer is the same size,
which is controlled by a hyperparameter. Each
layer consists of Dropout (Srivastava et al., 2014)
then a linear layer, then a ReLU activation func-
tion (ReLU is excluded from the output of the final
linear layer). As an optimiser, we use AdamW
(Loshchilov and Hutter, 2017). We train in batches
of 128 datapoints at a time (from both SMD and
WSD datasets simultaneously).

Training and Loss In practise, after training the
objective in eq. (7), we freeze the WSD model, set
α to 1, then continue training to finetune the MPD
component. This means that if initially α = 0,
the WSD and MPD subcomponents are trained
sequentially. If initially α = 1, meanwhile, the
distribution over s is inferred implicitly, without
learning WSD. More specifically, every 50 itera-
tions we compute the loss on the development set,
and if this loss does not decrease for 5 consecutive
checks then our early stopping criteria is met. The
first time this criteria is met we freeze the WSD
component, divide the learning rate by a divisor (a
hyperparameter), set α = 1, recover the best model
on the development set so far, and resume training
(in effect fine-tuning the MPD component); the sec-
ond time it is met we recover the best model and
stop training completely.
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# Experiment Model α x nϕ nθ hϕ hθ γ γd

1
SMD
(All)

Ours (w/ WSD Baseline) 0.8 0.1 1 3 500 300 5× 10−4 1
2 MelBERT 0.2 3† 1‡ 500† 300‡ 1× 10−4 10
3 BERT SMD Baseline 0.2 2∗ 300∗ 5× 10−4 1

4
SMD

(Conv.)

Ours (w/ EWISER) 0.8 0.2 3 4 500 300 1× 10−4 1
5 MelBERT 0.1 3† 3‡ 300† 500‡ 1× 10−4 10
6 BERT SMD Baseline 0.2 3∗ 500∗ 1× 10−4 1

7 WSD
(WSD & SMD)

EWISER 0.2 0.1 3 4 300 500 1× 10−4 10
8 Baseline 0.2 0.1 3 3 300 500 1× 10−4 10

9 WSD
(WSD only)

EWISER 0.1 4 500 1× 10−4 10
10 Baseline 0.1 1 300 5× 10−4 1

11
MPD

Ours (w/ EWISER) 0.4 0.2 3 4 500 300 1× 10−4 1
12 Ours (w/ WSD Baseline) 0.2 0.1 1 3 500 300 5× 10−4 1
13 MelBERT Average Uses model 2 (above)

Table 7: Final hyperparameters of the models presented in §4

E Hyperparameter Tuning

Hyperparameter Search For each value of α ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, we perform a random
search over the following hyperparameters:

• The number of layers of MLPθ and MLPϕ,
denoted nθ and nϕ, sampled from {1, 2, 3, 4}.

• The dimensionality of the hidden state of
MLPθ and MLPϕ, denoted hθ and hϕ, sam-
pled from {100, 300, 500}.

• The Dropout (Srivastava et al., 2014), denoted
x, sampled from {0.1, 0.2, 0.3, 0.4}.

• The learning rate, denoted γ, sampled from
{0.005, 0.001, 0.0005, 0.0001}.

• The learning rate divisor, denoted γd, sampled
from {1, 10}.

For each model, and each value of α, we train 20
samples from this hyperparameter space.

Model Selection For SMD, we choose models
with the best F1 on the VUAMC development set.
For WSD, we do the same but on the SemCor set.
For MPD, we choose the models with the best mean
SMD and WSD performance (again on the devel-
opment sets).

Final Hyperparameters The final hyperparame-
ters are shown in Table 7 (∗ are hyperparameters of
ψ not ϕ; † are hyperparameters of ψ1 not ϕ; ‡ are
hyperparameters of ψ2 not θ).
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Abstract

Two of the most fundamental challenges in Nat-
ural Language Understanding (NLU) at present
are: (a) how to establish whether deep learning-
based models score highly on NLU bench-
marks for the ‘right’ reasons; and (b) to un-
derstand what those reasons would even be.
We investigate the behavior of reading compre-
hension models with respect to two linguistic
‘skills’: coreference resolution and compari-
son. We propose a definition for the reasoning
steps expected from a system that would be
‘reading slowly’, and compare that with the be-
havior of five models of the BERT family of
various sizes, observed through saliency scores
and counterfactual explanations. We find that
for comparison (but not coreference) the sys-
tems based on larger encoders are more likely
to rely on the ‘right’ information, but even they
struggle with generalization, suggesting that
they still learn specific lexical patterns rather
than the general principles of comparison.

1 Introduction

Generally, human decisions may be based on
deliberate, careful reasoning (‘slow thinking’)
or quick heuristics (‘fast thinking’) (Kahneman,
2011). These two processes have parallels in the
realm of reading comprehension (RC): a human
reader would ideally fully process the text to an-
swer questions, but in practice, we may deliberately
skim rather than read to save effort. Even capable
students may be misled by superficial cues (Acker-
man et al., 2013).

The previous generations of NLP models have
already achieved high performance on many RC
benchmarks, but they were found to often ‘read
fast’, i.e. rely on shallow patterns (Chen et al.,
2016; Jia and Liang, 2017; Rychalska et al.,
2018). Fine-tuned Transformer-based models (De-
vlin et al., 2019) still have similar shortcomings

* Work done while employed at the University of Copen-
hagen

Context: Leo Strauss was a political philosopher and
classicist. He was born in Germany ... Thoughts

on Machiavelli is a book by Leo Strauss ...
Question: Where was the author of Thoughts of
Machiavelli born ?
Answer: Germany

Figure 1: A sample question from the SQuAD (Rajpurkar
et al., 2016) dataset. green tokens are the words that a reader
relying on coreference resolution would take into account, and
red tokens are the words that could be used to answer the

question with entity type matching.

(Sugawara et al., 2020; Rogers et al., 2020; Sen
and Saffari, 2020; Kassner and Schütze, 2020, inter
alia) in RC, as well as other tasks (McCoy et al.,
2019; Jin et al., 2020).

Consider the example in Figure 1. A human
reader would ideally construct the coreference
chain resolving the pronoun ‘he’ to ‘Leo Strauss’.
A possible heuristic-based solution is entity type
matching (Jia and Liang, 2017): a model could
observe that a ‘where’ question can only be an-
swered by a ‘location’ and among two such entities
(‘Germany’ and ‘United States’) the correct answer
(‘Germany’) is closer to ‘born’. Such heuristic
reasoners will not generalize to unseen examples.
Thus a key challenge in building trustworthy and
explainable RC systems is to make sure their deci-
sions are based on valid reasoning steps. However,
it is difficult to establish: (a) what that reasoning
should be; and (b) whether a blackbox system ad-
heres to it.

The present study proposes a framework for the
analysis of RC models that includes: (a) defining
the expected reasoning; (b) analysing model perfor-
mance using explainability techniques. In partic-
ular, we contribute a case study for RC questions
involving coreference resolution and comparison:
we define the expected ‘reasoning’ for them (§2)
and use a combination of saliency-based and coun-
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terfactual explanations (§3) to analyze RC systems
based on BERT and RoBERTa encoders of various
sizes (§4). Overall, we find that the larger models
are more likely to rely on the ‘right’ information,
but even they seem to learn specific lexical patterns
rather than underlying linguistic phenomena.

2 When do RC Model ‘Understand’ A
Text?

2.1 Understanding in Humans
The phenomenon of ‘natural language understand-
ing’ is not yet sufficiently well defined even for
human speakers, although it is pursued by at least
three different fields: philosophy of mind (e.g.
Grimm, 2021; Dellsén, 2020), psychology (e.g.
Christianson, 2016; Zwaan, 2016), and pedagogy
(e.g. Lander, 2010; Duffin and Simpson, 2000). We
cannot do this topic justice within the scope of this
paper, but let us briefly outline the key premises
about human understanding that we rely on in our
work:

• Understanding is not truth-connected: it is “a
merely psychological state” (Grimm, 2012);

• Its objects are something like ‘connections’
or ‘relations’ of the phenomenon X to other
phenomena (Grimm, 2021);

• It is not binary: teachers routinely talk of ‘lev-
els of understanding’, ‘continuum of under-
standing’ or ‘partial understanding’ (Nurhuda
et al., 2017);

• It is different from ‘knowledge’, i.a. since
it is “not transmissible1 in the same sense as
knowledge is” (Burnyeat and Barnes, 1980).

If human understanding is about establishing
connections between new and existing conceptual-
izations, its success depends on the pre-existence
of a suitable set of conceptualizations, to which
the connections can be established (this is why e.g.
algebra is taught in schools before differential cal-
culus). The set of conceptualizations that each of
us possesses is unique, since it depends on our ex-
perience of the world (cf. Fillmore’s ‘semantics of
understanding’ (Fillmore, 1985)). This, together
with other factors like level of motivation, attention
etc., explains the variation in human understanding:
we may grasp different sets of possible connections

1This is why, as any teacher knows from practice, simply
presenting the students with definitions or principles does
not necessarily result in understanding of those principles or
definitions.

between different aspects of the new phenomenon
and our pre-existing worldview.

2.2 ‘Understanding’ in Machines

Much research on human understanding focuses on
mechanisms that fundamentally do not apply to cur-
rent NLP systems, such as the distinction between
‘knowledge’ and ‘understanding’ or the fact that
humans will fail to understand if they don’t have
suitable pre-existing conceptualizations (while an
encoder will encode text even if its weights are
random). Since the mechanism (and its results) is
so fundamentally different, terms like ‘natural lan-
guage understanding’ or ‘reading comprehension’2

for the current NLP systems are arguably mislead-
ing. It would be more accurate to talk instead of
‘natural language processing’ and ‘information re-
trieval’.

While terms like ‘understanding’ are widely
(mis)applied to models in AI research (Mitchell,
2021), their definitions are scarce. Turing famously
posited that the question “can machines think?” is
too ill-defined to deserve serious consideration, and
replaced it with a behavioral test (conversation with
a human judge) for when we would say that think-
ing occurs (Turing, 1950). Conceptually, this is
still the idea underlying the ‘NLU’ benchmarks
used today: we assume that for models to perform
well on collections of tests such as GLUE (Wang
et al., 2018, 2019), some capacity for language un-
derstanding is required, and hence if our systems
get increasingly higher scores on such behavioral
tests, this would mean progress on ‘NLU’. How-
ever, just like the Turing test itself turned out to be
“highly gameable” (Marcus et al., 2016), so are our
tests3 (Sugawara et al., 2020; Rogers et al., 2020;
Sen and Saffari, 2020; Kassner and Schütze, 2020;
McCoy et al., 2019; Jin et al., 2020, inter alia).

All this suggests that, at the very least, we need
a better specification for the success criteria for
such behavioral tests. Instead of asking “Does my
RC model “understand” language?” we could
ask: “Does my RC model produce its output based

2Marcus and Davis (2019) dispute even the applicability
of the term “reading”, declaring the current QA/RC systems
“functionally illiterate” since they cannot draw the implicit
inferences crucial for human reading.

3In fact, the larger the dataset, the more of likely spurious
patterns are to occur (Gardner et al., 2021). This presents a
fundamental problem for data-hungry deep learning systems:
“the models, unable to discern the intentions of the data set’s
designers, happily recapitulate any statistical patterns they find
in the training data” (Linzen, 2020).
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on valid information retrieval and inference strate-
gies?” Then the next question is to specify what
strategies would be valid and acceptable, which is
possible to do on case-by-case basis.

With respect to ‘machine reading comprehen-
sion’, a recent proposal by Dunietz et al. (2020) is
based on whether a model can extract certain infor-
mation that should be salient for a human reader
(e.g. spatial, temporal, causal relations in a story).
However, a model can extract such ‘right’ informa-
tion through a ‘wrong’ process, e.g. some shallow
heuristic. Hence the definition of ‘NLU’ needs at
least two components: (a) the specific information
that the model is expected to be ‘extract’ from the
text; and (b) a valid process with which such ‘ex-
traction’ is performed. And this would still not be
enough: the model could have simply memorized
both the right answer and the strategy to find it for
some limited set of examples. We argue that the
third key prerequisite is the ability to generalize:
to consistently use the ‘right’ information-seeking
strategy in novel contexts.4

Thus we propose the following general success
criteria for NLP systems:
Definition 1 A NLP system has human-level competence with
respect to its task X iff:

(a) it is able to correctly perform the task X (identify the tar-
get information in QA, correctly classify texts, generate
an appropriate translation etc.);

(b) it does so by relying predominantly on information that
a competent human speaker would also find relevant5;

(c) it does so consistently under distribution shifts that do
not pose challenges to competent human speakers.

2.3 Reasoning an RC Model should Perform
The second principle in our Def. 1 is that the model
should rely on the ‘right’ information. While mod-
els can discover patterns unknown to humans, a
competent human reader should at least find such
patterns relevant post-factum.

What information-seeking strategy is needed
depends on the type of question and the context.
Rogers et al. (2022) propose a classification of RC
‘skills’ into five main groups: situation/world mod-
eling, different types of inference/logical reasoning,

4This does not preclude errors (humans make them too).
5Note that this leaves room for NLP systems to rely on

patterns humans may not be even aware of, as long as such
patterns are valid. E.g. if a system learned to make health
outcome predictions based on latent information about un-
known drug interactions, that would be the discovery of new
knowledge that the experts would then accept – but not if its
predictions were based on a spurious correlation with Marvel
movie release dates.

the ability to combine information in multi-step
reasoning, knowing what kind of information is
needed and where to find it, and interpreting/ma-
nipulating linguistic input. A single question may
require the competency of several types of ‘skills’.

This study contributes an empirical investigation
on two RC ‘skills’ in the broad category of ‘inter-
preting/manipulating linguistic input’: coreference
resolution and comparison. Both of them rely on
the contextual information and linguistic compe-
tence. Assuming that a human reader would first
read the question and then read the context in or-
der to find the answer, they would need to perform
roughly three steps: (a) to interpret the ‘question’
(akin to its transformation to a formal semantic
representation or a query); (b) to identify the rele-
vant information in the context through establishing
the referential equality between expressions in the
question and in the context; (c) to use that infor-
mation to perform the operation of comparison or
coreference resolution (see Table 1).6

2.4 Reasoning an RC Model does Perform

Having established what reasoning steps an RC
model should perform, the next step would be to
ascertain whether that is the case for specific mod-
els. But generally, the interpretability of DL models
is an actively developed research area (Belinkov
and Glass, 2019; Molnar, 2022). In this study, we
rely on a combination of two popular post-hoc ex-
planation techniques, but we also discuss their lim-
itations, and expect that new methods could soon
be developed and used in the overall paradigm for
the analysis of RC models that we propose.

Attribution/saliency-based methods Li et al.
(2016); Sundararajan et al. (2017) provide a
saliency score for each token in the input, which
shows how ‘important’ a given token is for the
model decision in this instance. Figure 2 illustrates
that such scores may not necessarily map onto hu-
man rationales.

To establish whether a model performs a given
reasoning step (see Table 1), we define the follow-
ing partition of the token space: the tokens the
model should find important (positive) vs the ones
it should not (negative). For example, to know if
the model ‘attends’ to the entities being compared,
we can define the positive partition as {blind,

6This definition could be developed further for more com-
plex cases of coreference and comparison, or to model other
variations of the human reading process, but this approxima-
tion suffices for our purposes and our RC data (see §3.1).
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Example Step Relevant Spans
C

om
pa

ri
so

n

Context: Blind Shaft is a 2003
film about a pair of brutal con
artists operating in the illegal coal
mines of present day northern
China. The Mask Of Fu Manchu
is a 1932 pre-Code adventure film
directed by Charles Brabin.
Question: Which film came out
earlier, Blind Shaft or The Mask
Of Fu Manchu?
Answer: The Mask Of Fu
Manchu

Interpreting the
question

came out relation: <film, release date>
film entities: Blind Shaft, The Mask Of Fu Manchu
earlier: date comparison
target: min(release dateBlind Shaft, release
dateThe Mask of Fu Manchu)

Identifying relevant
information through
referential equality

Blind Shaftq := Blind Shaftc
The Mask Of Fu Manchuq := The Mask Of Fu
Manchuc.
came outq := <date, film> constructionc
release dates: <Blind Shaft, 2003>, <The Mask Of Fu
Manchu, 1932>

Value comparison solution: earlierq := minc
min(1932, 2003) = 1932

C
or

ef
er

en
ce

Context: Barack Obama was the
44th president of the US. He was
born in Hawaii.
Question: Who was born in
Hawaii?
Answer: Barack Obama.

Interpreting the
question

born relation: <person, location>
Hawaii: location
target: born: <Hawaii, UNK>

Identifying relevant
information through
referential equality

Hawaiiq := Hawaiic
born relation: <he, Hawaii>

Coref. resolution <Barack Obama, he>
solution: born <Barack Obama, Hawaii>

Table 1: The basic reasoning steps for answering comparison and coreference questions.
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[CLS] which film came out earlier , blind shaft or the mask of

fu manchu ? [SEP] blind shaft is a 2003 film about a pair of

brutal con artists operating in the illegal coal mines of present

day northern china . the mask of fu manchu is a 1932 pre - code

adventure film directed by charles bra ##bin . [SEP]

manchu
(46)

the mask
of fu
manchu
(6.84)

manchu
(46) 3.43

[CLS] which film came out earlier , blind shaft or the mask of

fu manchu ? [SEP] blind shaft is a 2003 film about a pair of

brutal con artists operating in the illegal coal mines of present

day northern china . the mask of fu manchu is a 1932 pre - code

adventure film directed by charles bra ##bin . [SEP]

Figure 2: IG saliency scores example. Green/red denotes
positive/negative scores.

shaft, mask, of, fu, munchu} and the
negative partition as {northern, china}. If
the model consistently follows this strategy, the av-
erage score should be higher for the positive rather
than negative partition.

A limitation of saliency explanations is that
they are not always faithful, i.e., do not reflect a
model’s true decision process (Atanasova et al.,
2020, 2022a; Ye et al., 2021). Also, even when
they are faithful, i.e., when we can reliably say that
a model places more ‘importance’ on token i than
token j in an instance, this does not imply that a
set of tokens I is more salient than another set J .

Counterfactual explanations have the form:
“had X not occurred, Y would not have occurred”
(Molnar, 2022). In NLP, they are based on input
perturbations (Kaushik et al., 2020; Gardner et al.,
2020; Sen et al., 2021; Atanasova et al., 2022b). In
our case, it translates to “had the model not relied
on information X, it could not have answered both

the original and the perturbed instance correctly”.
Thus the perturbation has to change the correct la-
bel, unlike for contrast sets (Gardner et al., 2020).

Counterfactual (CF) explanations are considered
to be more faithful, since they identify input fea-
tures that impact predictions. However, they typi-
cally have to be manually generated (Kaushik et al.,
2020), which makes large-scale CF generation pro-
hibitively expensive (Khashabi et al., 2020).

We rely on both types of explanations as parallel
sources of evidence about RC model reasoning,
and define their alignment as follows:

Definition 2 Explanation Alignment. A CF and saliency-
based explanation align when: (a) both the original and the
counterfactually modified instance are answered correctly,7;
and (b) the positive partition has a statistical significantly
higher average saliency score than the negative partition.

We define the alignment score as follows:

Definition 3 Alignment Score: The Alignment Score for a
<dataset, model, reasoning step> triple is the proportion of
instances in that dataset for which different kinds of explana-
tions align (according to our Def. 2).

We interpret a high alignment score as evidence
that both kinds of explanations are faithful, and
the model indeed performs the expected reasoning
steps.

7i.e. there is an exact match between the predicted and the
correct answer.
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3 Methodology

3.1 Datasets and Models
For Coreference, we use the Quoref (Dasigi et al.,
2019) dataset (20K training and 2.4K validation in-
stances) where the annotators were asked to design
questions for a given text so that answering those
would require resolving anaphora. For Compari-
son, we sample questions from HotpotQA (Yang
et al., 2018) and 2WikiMultiHopQA (Ho et al.,
2020): two datasets with questions manually anno-
tated with their reasoning type (bridge or compar-
ison). We select the ‘comparison’ questions con-
taining comparative adjectives or adverbs in them
(23K training, 3K validation instances). These re-
sources are based on Wikipedia and have multiple
passages as contexts, but the sentences (typically
2-3) necessary to answer a question are marked as
‘supporting facts’. Since we are not focusing on the
multi-hop information retrieval skill, we limit the
contexts to these sentences.

We experiment with five pre-trained
Transformer-based encoders of the BERT family:
RoBERTalarge (Liu et al., 2019), BERTlarge-cased,
BERTbase-cased (Devlin et al., 2019), BERTmedium,
and BERTsmall (Turc et al., 2019; Bhargava et al.,
2021). These BERT models differ mainly in the
structure of architecture blocks and the number of
parameters, while RoBERTa also has a different
training corpus and optimization. Since larger
models were shown to generalize better for some
use cases (Hendrycks et al., 2020; Bhargava et al.,
2021), we investigate whether they also are more
likely to be right for the right reasons.

We fine-tune each encoder using the architecture
in Devlin et al. (2019) (see the appendix for de-
tails) and evaluate them on the validation set (as
the test sets are not public). We use the standard
evaluation metrics in extractive QA: F1-Score (the
percentage of token overlap between predicted and
‘gold’ answers, averaged over all data points), and
Exact-match (the number of data points where the
predicted answer matches the ‘gold’ answer).

3.2 Counterfactual Explanations
Our formulation of reasoning (Table 1) consists
of three basic steps for both coreference and com-
parison: interpreting the question, identifying the
relevant information through referential equality,
and the target operation on the identified informa-
tion (coreference resolution or value comparison).
We focus on the final step, since: (a) it implicitly

relies on correct semantic parsing of the question
and the context; (b) referential equality in our data
is in large part trivial: most entities have the same
surface form in the question and the text.

An obvious semantically valid perturbation that
should change the prediction (and thus test for the
model’s understanding of the comparison opera-
tion) is to replace the comparative adjectives with
their antonyms (Figure 3d). Since our sample only
contains 6 tokens used as comparison operators,
we define appropriate replacements manually.8

For coreference questions, a competent RC
model would at least resolve the coreference chain
for the target entity. A context can have many
coreference clusters, so we need to identify the
relevant one. In the Quoref dataset, we use the
instances where the relevant cluster itself contains
the answer entity9 (see Figure 3a), and therefore,
can be extracted automatically. This leaves us
with 55%(1329/2418) of the validation instances.
These are further subsampled to manually cre-
ate 100 CF instances by inserting a new sentence,
which includes the new and excludes the old an-
swer (see Figure 3b). Similarly to the comparison
questions, the original answer entity remains in the
context. If the model uses the ‘shortcut’ of choos-
ing the most frequent entity in the context (Wu
et al., 2021), it should not be able to answer both
the original and the perturbed instance correctly.

3.3 Saliency-based Explanations

We obtain token saliency scores from two families
of attribution/saliency methods: Occlusion (DeY-
oung et al., 2020), a method based on perturbations,
and Integrated Gradients (IG, Sundararajan et al.
(2017)), a method based on gradients.10

Design decisions: RC models typically predict
two scores (ts, te) for each token t: the probabil-
ity of t being the start and the end of the answer
span. Any attribution method produces two scores
(Atstart, A

t
end) for each token t, indicating how ‘im-

8earlier↔later, first→later, more recently→earlier,
older↔younger.

9We extract the clusters using an off-the-shelf coreference
resolver (Clark and Manning, 2016) implemented in Spacy.

10Atanasova et al. (2020) shows that for Transformer based
architectures, Occlusion is the best perturbation method by
two evaluation criteria: agreement with human rationale and
faithfulness. A recent paper by Ye et al. (2021) finds IG
to be one of the most faithful gradient-based methods for
extractive QA, only outperformed by Layerwise Attention
Attribution (LAA), a method proposed in the paper itself. We
leave LAA and other popular explainability methods such as
LIME (Ribeiro et al., 2016) for future work.
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Context: Górecki said of the work, ... I had a grandfa-
ther who was in Dachau, an aunt in Auschwitz. ...
Question: What is the last name of the person who had
an aunt at Auschwitz?
Answer: Górecki

(a) A coreference question from Quoref (the relevant corefer-
ence cluster tokens in green )

Context: Górecki said of the work... I had a grand-
father who was in Dachau. I had a nephew named
Mike Wazowski . He had an aunt in Auschwith ...

Question: What is the last name of the person who had
an aunt at Auschwitz?
Answer: Wazowski

(b) CF perturbation for 3a (added tokens are bold-faced)

Context: Blind Shaft is a 2003 film... The Mask Of Fu
Manchu is a 1932 pre-Code adventure film...
Question: Which film came out earlier, Blind Shaft or
The Mask Of Fu Manchu?
Answer: The Mask Of Fu Manchu

(c) A comparison question from 2WikiMultiHopQA

Context: Blind Shaft is a 2003 film... The Mask Of Fu
Manchu is a 1932 pre-Code adventure film...
Question: Which film came out later , Blind Shaft or
The Mask Of Fu Manchu?
Answer: Blind Shaft

(d) CF perturbation for 3c

Figure 3: Examples of CF perturbations used in this study.

Comparison: Question: Which film came out
more recently , Blind Shaft or The Mask Of Fu

Manchu ?
Coreference: Context: Barack Obama was
the 44th president of the US . He was born in

Hawaii. Question: Who was born in Hawaii?

Figure 4: Positive and negative partitions for saliency
explanations.

portant’ t is for predicting the start/end of the an-
swer span. Following Kokhlikyan et al. (2020), we
use Astart in all our saliency experiments.11

For Occlusion, we calculate Atstart by replacing
t in the input with a baseline token (MASK) and
measuring the change in ts. DNNs map an input
vector to a scalar value (loss/ class probability).
Gradient-based methods measure Atstart using the
gradient of the token tw.r.t. this scalar function (we
use argmax(ts)). IG sums these gradient values
along a linear path from a baseline to the current
instance. Both Occlusion and IG need a baseline
token, which for us is the MASK token.

Gradient-based methods in NLP do not produce
a scalar saliency score, i.e., Atstart is a vector be-
cause the input is an embedding matrix and not
a vector. Two common ways to summarize this
vector to a scalar are: (a) scalar product between
the input and the gradient vector (Han et al., 2020);
or (b) lp norm, where p ∈ 1, 2 (Atanasova et al.,
2020). We use l2 norm (see the discussion in §4.3).

Token partitions: Figure 4 shows the token

11We also briefly experimented with (Astart +Aend)/2 for
Occlusion but it yielded very similar saliency ranking of the
tokens on a 100 sample subset of the Comparison dataset.

partitions used for the same reasoning steps (com-
parison and coreference resolution) that we also
target with the CF perturbations. For comparison
the positive partition consists of the question to-
ken(s) expressing the comparison operation (e.g.
‘more recently’). The negative partition consists of
question tokens that are not in the set of entities
or values that need to be compared, or in the set
of verbs (which could capture the relation between
the entities and their values). For coreference reso-
lution, the positive partition is the context tokens
in the relevant coreference cluster (§3.2). The neg-
ative partition is the set of context tokens that are
not in: (a) the positive partition; and (b) match the
question tokens.

4 Results & Analysis

4.1 Base Model Performance

As a sanity check, we fine-tune all models on the
data described in §3.1 (Table 2). For coreference,
the F1-Score of our best model (RoBERTalarge) is
slightly better (82.10) than the previously reported
score (79.64, Wu et al. (2021)). The comparison
instances are sampled from parts of two datasets,
and so a direct comparison is not possible.12

The size and the model family matter: RoBERTa
performs better than BERT for two models of the
same size, and the larger models do better. Inter-
estingly, the difference is more pronounced for the
Quoref dataset, where the instances have longer
contexts and the questions are more complex.

12The best model (RoBERTalarge) has an F1-Score of 92%,
slightly better than the highest score reported on the HotpotQA
leaderboard (89.14%) and much better than the baseline model
for the 2WikiMultiHopQA dataset (65.02, (Ho et al., 2020)).
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Comparison Coreference

F1 EM F1 EM

RoBERTalarge 92.08 91.07 82.10 79.39
BERTlarge-cased 89.23 88.57 71.91 68.47
BERTbase-cased 89.38 88.37 64.62 59.38
BERTmedium 86.45 85.96 60.16 54.82
BERTsmall 71.44 69.87 50.94 43.39

Table 2: Average (3 runs) results of different models on Com-
parison and Coreference datasets. The STD varies between
0.01− 0.72%. Green indicates the best scores.

Coreference Comparison

og cf og cf
RoBERTalarge 92.0 70.7 99.4 98.9
BERTlarge-cased 86.2 50.8 98.9 93.1
BERTbase-cased 82.5 39.2 98.4 91.8
BERTmedium 74.0 35.8 97.4 96.5
BERTsmall 67.2 29.4 68.2 45.3

Table 3: F1-Score for the original and the CF perturbations.
Red denotes significant drop.

4.2 Counterfactual Explanations

Table 3 compares the F1-Score of the original
(‘og’) vs counterfactual (‘cf’) instances. For the
comparison questions, the performance on the orig-
inal and CF instances are very close for all models
except BERTsmall. Bigger models consistently per-
form better, but in most cases the difference with
the next larger model is relatively small.

For coreference questions, CF instances are
much more difficult for all models. Even the best
model RoBERTalarge experiences a 24% drop. All
BERT models perform poorly: even the larger ones
have a 40% performance drop (BERTlarge-cased).
Thus, the CF tests show that the models are more
likely to follow the expected reasoning strategy for
comparison, but not for the coreference questions.

4.3 Alignment Score

For statistical significance testing in ‘Expectation
Alignment’ (Def. 2), we use a one-tailed indepen-
dent t_test (p = 0.05) with the null hypothesis that
the positive partition does not have a higher aver-
age saliency score. Table 4 shows the ‘Alignment
Score’ (Def. 3) results for comparison and corefer-
ence resolution (§3.3), using saliency scores from
IG and Occlusion.

Ideally, for a random partition of tokens in any
instance, the positive and the negative partitions
should have similar saliency scores. For a dataset,
they should be significantly different in ≈ 0%

Coreference Comparison

IG Occ IG Occ

RoBERTalarge 33.3 69.7 33.8 67.0
BERTlarge-cased 12.5 58.3 34.1 65.9
BERTbase-cased 21.4 42.9 83.8 69.0
BERTmedium 81.8 36.4 82.2 42.0
BERTsmall 83.3 33.3 86.3 16.3

Table 4: Alignment score between counterfactual explana-
tions vs IG (Integrated Gradients) or Occ (Occlusion). Green
indicates methods with > 80% alignment.

cases.13 For Occlusion, the saliency scores are
significantly different in only 5.6− 8.2% instances
for a random partition. Recall that in §3.3 we dis-
cussed 3 summarizers for IG. Among all of them,
the l2 norm is the only one where this happens in
5.2 − 7.3% cases, for the other two the numbers
are between 11.3− 28.9%.

Table 4 shows that, counter-intuitively, for both
comparison and coreference questions the larger
models overall have lower IG alignment scores,
meaning that they do not pay as much ‘attention’
to the tokens we defined as important. This is de-
spite the fact that for comparison the above CF
experiment suggests that the models do perform
the expected reasoning operations. One possible
explanation is that IG simply does not reliably cap-
ture the model’s reasoning process, and Occlusion
does better at that because its trend in alignment
is the opposite of IG: bigger models tend to have
significantly higher alignment scores.14

Another possible explanation is that IG expla-
nations are in fact faithful, but, having more ‘at-
tention’ to the tokens we defined as important is
counter-productive. Consider that the BERTsmall
model achieves an Exact-match of 87% on the orig-
inal questions containing the comparative tokens
‘earlier’, ‘first’ and ‘older’ (which are 2.1 times
more frequent in the training data than all others),
and an Exact-match of 28% on the other original
questions. Yet overall the model performs poorly,
and thus the reliance on these highly frequent com-
parative adjectives could be a bug rather than a
feature. As this hypothesis brings into question the
overall utility of saliency-based explanations for
testing for the ‘correct’ reasoning steps, we hope it
will be investigated in more depth in future work.

13Aggregation of local explanations such as saliency scores
are not guaranteed to produce faithful global explanations
(Setzu et al., 2021), but this is a convincing evidence.

14The lack of alignment between the two techniques is
consistent with the findings of Atanasova et al. (2020).
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Supporting
Facts

Paragraphs

OG CF CF-
ood

OG CF CF-
ood

RoBERTalarge 99.4 98.9 77.2 98.7 96.4 74.8
BERTlarge-cased 98.9 93.1 68.7 98.0 90.8 67.5
BERTbase-cased 98.4 91.8 58.1 97.0 86.8 59.9
BERTmedium 97.4 96.5 64.4 96.2 86.3 66.3
BERTsmall 68.2 45.3 57.1 68.3 47.6 58.8

Table 5: F1-Score for the original (OG) comparison questions
and their counterfactual perturbations in (CF) and out (CF-
ood) of the training distribution. The models are provided
either a smaller context of supporting facts or full paragraphs.
Red indicates a significant drop in performance.

4.4 Generalization Tests

Table 3 shows that when measured with CF tests,
most models do not follow the expected corefer-
ence resolution strategy, but they do so for compar-
ison. Still, based on our success criteria (Def. 1),
we cannot yet conclude that they ‘understand’ com-
parison. A human would be able to disassociate the
logical operation of comparison from the surface
realizations, i.e., they would be able to answer a
question correctly with either of the surface forms
‘younger’ and ‘more junior’.

For the CF experiments reported up until this
point the perturbations were in-distribution, i.e., the
training data had both the original question “who
is younger” and the CF “who is older”. Now we
replace the comparative adjectives with antonyms
that are not in the training data (see the appendix
for details). We also increase the context size by
using full paragraphs instead of just the sentences
marked as ‘supporting facts’, to see if the models
would be ‘distracted’ by more information.

Table 5 shows a considerable drop in perfor-
mance for CF-ood condition for all models. The
larger models generalize better: RoBERTalarge and
BERTlarge-cased perform 2% and 8% worse for CF
questions, whereas BERTsmall exhibits a 29% re-
duction. The ‘supporting facts only’ condition is
overall easier than the ‘paragraphs’ condition.

4.5 Heuristics for Coreference Questions

Since the CF tests (§4.2) do not show that BERT
models can cope with the altered coreference
chains, we have to conclude that they do not follow
the expected reasoning steps. Though given the
above-chance performance they must follow some
other strategy. We test the hypothesis that many of

Coreference SQuAD

F1-Score EM F1-Score EM

Token
overlap 21.5 12.9 26.68 21.64

LCS 17.2 12.9 19.59 15.97
Position 12.3 7.9 21.62 16.32
Sentence
encoder 20.43 9.67 25.91 20.61

Table 6: Results for different heuristic methods on the coref-
erence and SQuAD datasets. Green indicates the best score.

the coreference questions can be answered by sim-
ple heuristics and that the models resort to those.
Specifically, we define an unsupervised dataset-
independent heuristic method consisting of two
steps: sentence selection and phrase extraction.

Sentence Selection: Among all the context sen-
tences {ci}, select the one that is the ‘closest’ to the
question q. We experiment with 4 options for simi-
larity: token-overlap (number of common tokens
in q and ci), sentence encoder (cosine similarity
between the sentence embeddings of q and ci cre-
ated by a sentence encoder (Reimers and Gurevych,
2019)), LCS (number of tokens in the Longest
Common Subsequence between q and ci), and posi-
tion (simply taking the first sentence in the context
following Ko et al. (2020)).

Phrase Extraction: We assume that the model
would also learn to look for a named entity in the
selected sentence. The question dictates the type
of this entity (e.g. ‘where’→ location, ‘who’→
person name). The type could be determined by a
simple mapping between ‘wh’ question words and
entity types, but this can fail (e.g. for the question
“Who won the World Cup in 2002?” the expected
answer is a location, not a person). Therefore, we
fine-tune a Transformer model to predict the answer
type from the question.15

Table 6 shows the best heuristic has an F1-Score
of 21.5% on the coreference dataset, and 26.68%
on SQuAD (Rajpurkar et al., 2016), which we use
for validation. The SQuAD score is comparable to
the previously reported result of 26.7% in Sen and
Saffari (2020) for an algorithm predicting entity
types heuristically, and choosing the entity from
the whole context instead of the best possible sen-
tence. Ray Choudhury et al. (2022) uses a sim-
ilar approach to find Quoref questions that can
be answered heuristically, but our algorithm has

15The accuracy for this model is 85.7%. See the appendix
for results from multiple models and loss functions.
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more sentence selection strategies, and unlike ours,
Ray Choudhury et al. (2022) only uses one loss
function in the phrase extraction model.

Nevertheless, the best heuristic algorithm per-
forms considerably worse than the smallest
BERTsmall model (51%, Table 2). Performance
alone cannot reveal whether this strategy is used
in the instances where it would be sufficient, but
this result shows that even the smaller models must
either rely on a more successful (but still imperfect)
strategy, or at least rely on more than one heuristic.
The problem with discovering potential ‘shortcuts’
in low-performing models is complicated as these
strategies are not necessarily human-interpretable:
González et al. (2021) show that humans struggle
to predict the answer chosen by poorly performing
RC models, even when the saliency explanations
for that answer is shown, because these answers
simply do not align with human RC strategies.

5 Discussion and Related Work

Our work continues the emerging trend of research
on being ‘right for the right reasons’ (McCoy et al.,
2019; Chen and Durrett, 2019; Min et al., 2019;
Atanasova et al., 2022b, inter alia). We contribute
stricter success criteria for behavioral tests of NLP
models (Def. 1), and, for the RC task, develop
the methodology of: (a) defining what informa-
tion the model should rely on for a given linguistic,
logical, or world knowledge ‘skill’; (b) system-
atically testing the behavior of RC models with
interpretability techniques for whether they rely on
that information. This is most closely related to the
work on ‘defining comprehension’ by Dunietz et al.
(2020), though their testing is limited to probing
the models with RC questions. Another related
study is the QED framework (Lamm et al., 2021),
annotating Natural Questions (Kwiatkowski et al.,
2019) with ‘explanations’ of the expected reason-
ing process. Their expected reasoning process also
contains 3 steps, partly similar to ours: selecting a
relevant sentence, referential equality, and decid-
ing on whether this sentence entails the predicate
in the question. However, the goals of QED are
to: (a) predict both the answer and the explanation
for a question; and (b) understand if explanations
help QA models. Such explanation annotations are
unavailable for most datasets, and few QA models
produce explanations. Therefore, our approach of:
(a) defining expected reasoning steps; and (b) using
model interpretations to validate such steps applies

to a broader class of models.
This study is also related to the overall efforts

to define what kinds of ‘skills’ RC models can
be expected to exhibit (Sugawara et al., 2018;
Schlegel et al., 2020; Rogers et al., 2022). While
these works focus on the high-level taxonomies of
‘skills’, we contribute practical definitions for two
linguistic ‘skills’ (comparison and coreference res-
olution) which could be used for analyzing model
performance. Implicitly, research proposing RC
resources that target various specific ‘skills’ (e.g.
TempQuestions (Jia et al., 2018) for temporal or-
der, MathQA (Amini et al., 2019) for numerical
reasoning, etc.) also contributes to this area, but
they typically rely on broad linguistic definitions
rather than on steps for machine reasoning.

The saliency techniques we rely on have previ-
ously been used for extractive QA (Madsen et al.,
2021), but we are among the first (Ye et al., 2021)
to investigate their correlation with counterfac-
tual explanations. For counterfactual perturbations,
we also ensure that the perturbations are human-
interpretable and change the prediction, which
is not the case for adding incomprehensible text
(Kaushik and Lipton, 2018), removing words from
questions, shuffling the context (Sen and Saffari,
2020), or replacing context tokens with random
tokens (Sugawara et al., 2020).

6 Conclusion

Making progress towards trustworthy NLP mod-
els requires specific definitions for the behavior
expected of these models in different situations.
We propose a framework for RC model analysis
that involves: (a) the definition of the expected
‘reasoning’ steps; (b) analysis of model behavior.
We contribute such definitions for two linguistic
‘skills’ (comparison and coreference resolution),
and use parallel explainability techniques to inves-
tigate whether RC models based on BERT family
encoders answer such questions correctly for the
right reasons. We find that to be the case for com-
parison, but not for coreference. Moreover, we
find that, even for comparison, the models ‘break’
when encountering out-of-distribution counterfac-
tual perturbations, suggesting that they memorize
specific lexical patterns rather than learn more gen-
eral reasoning ‘skills’. As such, more research is
needed on developing definitions and tests for spe-
cific ‘skills’ expected of NLU models, as well as
on more faithful interpretability techniques.
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A Appendix

A.1 QA Model Training

For training the QA models in §3.1 The questions
and contexts are concatenated, and a linear layer on
top of the encoder is used to predict the probability
of a context token i being the start (Pi,s) or end
(Pi,e) of an answer. The score (Si,j) for a span
with start token i and end token j is computed as
Pi,s + Pj,e. For all valid combination of i and j,
the span with the highest score is chosen as the
answer. A cross entropy loss between the actual
and predicted start/end positions is minimized.

The models were trained for 10 epochs with a
batch size of 16 using the Adam optimizer (Kingma
and Ba, 2015) (β1 = 0.9, β2 = 0.99, ϵ = 1e-8,
weight_decay = 0.01) and gradient clipping.
The learning rate (LR) was kept at 1e-05 with
a linear warm-up schedule (staring LR=0). The
models were evaluated on a subset of the validation
data every 500 mini-batches with early stopping on
100 evaluations (Pruksachatkun et al., 2020). The
LR and batch size was determined by a small grid
search on the coreference dataset: LR={1e-05,
1e-04, 1e-03}, batch size = {8, 16, 32}.

A.2 Antonym Replacements for CF
Generation

The antonym replacements for the generalization
test (§4.4) are described below:

• first→ less recently

• older → less old, more junior, less mature,
less grown-up

• earlier → subsequently, thereafter, less re-
cently

• later→ less recently

• younger→more old, less junior, more mature,
more grown-up

• more recently→ less recently, longer ago

A.3 Supervised Entity Type Predictor

Our goal is to build a classifier to predict the an-
swer entity type from the question (§4.5). A sample
data point is shown in Figure 5. The entity types
are defined in the Ontonotes-5 dataset (Pradhan
et al., 2013). The answer entity type is detected

Text: What is the full name of the person who is the
television reporter that brings in a priest versed in
Catholic exorcism rites?
Label: PER

Figure 5: A sample instance for answer entity type classifier.

from the context using an off-the-shelf entity de-
tector implemented in Spacy.16 When the answer
is not a named entity, or the entity detector fails to
determine its type, that question is discarded.

The classification models are trained on the
training portion of Quoref and SQuAD which is
further divided into train/dev/test (70/20/10) split
for training and evaluation. The distribution of the
class labels is very skewed.

Models: We use two types of models: 1) a
fine-tuned 12 layer 768 dimensional BERTbase-cased
model; and 2) a popular word convolutional model
for sentence classification (Kim, 2014) using three
parallel filters (size 3, 4, and 5) and 300 dimen-
sional Google News Word2Vec representations
(Mikolov et al., 2013).

BERT model: This model is trained for 5
epochs, with Adam optimizer (Kingma and Ba,
2015) with a weight decay of 1.0e-08 and a
learning rate of 1.0e-05. The sequence max
length is kept at 128. We search for two hyper-
parameters: 1) number of epochs: 3-7, increasing
by 1; and 2) learning rate: 1.0e-05, 5.0e-05,
1.0e-04.

WordConv model: This model is trained for
40 epochs, with Adadelta optimizer (Zeiler, 2012)
with a learning rate of 1.0e-05. The sequence
max length is again kept at 128.

For both models, accuracy was used as the early
stopping metric. We minimized the cross entropy
(CE) loss in general, but for the WordConv model, a
weighted CE loss was also implemented to account
for the training data class-imbalance in Quoref.
That did not improve the results significantly and
was not used in the BERTbase-cased model. Table 7
shows the detailed results. Finally, we choose the
fine-tuned BERTbase-cased model as the entity de-
tector as it performs the best. Ray Choudhury
et al. (2022) also proposes a model to determine
the answer entity type from a question, but the
major difference is the label space. The model in
Ray Choudhury et al. (2022) is trained to predict
a label of “UNKNOWN_ENTITY" when the an-

16https://spacy.io
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Dataset Model Accuracy Macro
F1

SQuAD BERTbase-cased 76.4 56.2
WordConv 72.4 44.9

Coref
BERTbase-cased 85.7 73.9
WordConv 85.0 67.6
WordConv
Weighted BCE 85.3 69.7

Table 7: Models for supervised entity type selection. Green
indicates the best results.

swer span is a) not a named entity or b) the entity
detector can not find its type. However, an “UN-
KNOWN_ENTITY" label does not help the final
algorithm (heuristic answer selection) to find the
correct answer span. Therefore, our model never
predicts this label, and consequently, has a better
accuracy than Ray Choudhury et al. (2022). It po-
tentially makes a mistake on the test data points
that fall in the previous two categories, but the final
algorithm is no worse than Ray Choudhury et al.
(2022).
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Abstract

Automatic depression detection on Twitter can
help individuals privately and conveniently un-
derstand their mental health status in the early
stages before seeing mental health profession-
als. Existing black-box methods for depression
detection largely focus on improving classifica-
tion performance. However, explaining model
decisions is imperative in health research be-
cause decision-making can often be high-stakes
and life-and-death. In this work, we propose a
novel explainable model for depression detec-
tion on Twitter. It comprises a novel encoder
combining hierarchical attention mechanisms
and feed-forward neural networks. To support
psycholinguistic studies, our model leverages
metaphorical concept mappings as input in or-
der to also detect implicit manifestations of
depression.

1 Introduction

Depression is a serious health and social issue that
afflicts many individuals in modern society and its
prevalence is predicted to increase globally. People
with depression are likely to express their feelings
and mental states over their social media before
seeing health professionals (Guntuku et al., 2017;
Ansari et al., 2022). An automatic, efficient ap-
proach for depression identification is imperative
to recommend adequate treatment, achieving remis-
sion and preventing relapse. Recent studies on au-
tomatic depression detection on social media (Gui
et al., 2019; Lin et al., 2020; Ji et al., 2022; Zo-
gan et al., 2021) have largely focused on achieving
higher detection accuracy. However, it is impossi-
ble to explain and interpret those black-box models
that rely on state-of-the-art (SOTA) deep learning
techniques. The recent development of explainable
AI emphasizes that it is crucial for health profes-
sionals to fully comprehend, monitor and trust the
AI decision-making mechanisms.

∗ These authors contributed equally.

People suffering from depression often use
metaphors to describe their emotions and the ex-
perience of living with mental illness (Coll-Florit
et al., 2021; Roystonn et al., 2021). In psychother-
apy, metaphors are a pivotal tool for helping people
with depression better understand themselves and
their problems and facilitating effective communi-
cation between therapists and patients (Kopp, 2013;
Siegelman, 1993). This is because metaphorical ex-
pressions implicitly reflect people’s different ways
of understanding the same target. Metaphor is not
only a linguistic phenomenon, but also a reflec-
tion of cognitive mappings of source and target
concepts (Lakoff and Johnson, 1980). Analyzing
metaphor concept mappings (MCMs) helps us un-
derstand the inner world of people with depres-
sion. Metaphoric expressions associated with de-
pression have been widely studied in psychology,
particularly as a form of case studies (Roystonn
et al., 2021; Coll-Florit et al., 2021). To the best
of our knowledge, however, there has not been an
automatic method that leverages MCM features ex-
tracted from a large corpus for depression detection.
We are motivated to bridge the gap and offer bet-
ter insights into automatic depression detection on
social media and conceptual metaphor understand-
ing. Furthermore, we argue that psychological and
psycholinguistic research communities can benefit
from automated, explainable tools for studying the
relationship between depression and metaphors.

In this work, we propose an explainable frame-
work1 for depression detection on Twitter, called
Hierarchical Attention Network (HAN). We pro-
pose a novel attention-based encoder which allows
HAN to learn important inputs for user-level binary
classification (i.e., depressed and non-depressed
users). To further improve the interpretability of
depression detection, we introduce MCMs as an
additional feature into the model.

1The source code is available at https://github.
com/senticnet/depression-detection
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Health professionals and potential patients can
use learned features (i.e., characteristics of depres-
sive tweets and MCMs) as justification. We eval-
uate our model on a publicly available Twitter de-
pression detection dataset (Shen et al., 2017) and
show that HAN achieves the SOTA performance.
It outperforms the strongest baseline (Zogan et al.,
2021) by increasing an F1 score by 6.0% on av-
erage. Additionally, our newly proposed encoder
outperforms several classical encoders. In particu-
lar, HAN improves LSTM (Hochreiter and Schmid-
huber, 1997) (the most competitive benchmark en-
coder for our task) by 1.9% on a validation set with
a quarter of the number of parameters of LSTM.
Finally, we visualize and analyze examples of at-
tention weights learned by HAN to demonstrate its
explainability.

The main contributions of this work can be sum-
marized as follows: (1) We propose an explainable
model for depression detection on Twitter. Unlike
most SOTA methods employing attention mecha-
nisms at word level (Vaswani et al., 2017; Liu et al.,
2021), our model employs context-level attention
mechanisms to identify the relative importance of
certain tweets and metaphors, which is crucial for
filtering out less significant information in the final
representation of contexts and justifying the out-
puts of the model. (2) We introduce MCMs as a
feature to improve explainability and performance.
This also helps a better understanding of the cogni-
tion of depressive individuals. (3) We demonstrate
that HAN achieves outstanding performance and
produces accurate and explainable results with a
smaller number of training parameters than classi-
cal encoders via extensive experiments.

2 Related Work

Traditional studies on depression focus on social,
psychological and biological factors, which are not
often readily available. This paper mainly focuses
on social media texts and machine-learning-based
depression detection. Several studies in psychol-
ogy have reported that conceptual metaphors are
used to express and understand the experience of
depression, but they are often used unconsciously
and pass unnoticed. Research into metaphors can
help better understand individuals with depression.
Depression Detection on Social Media. Zo-
gan et al. (2021) proposed a model combining
CNNs (LeCun et al., 1989) and BiGRUs (Deng
et al., 2019) for learning users’ behavior and textual

contents. For user behavior modeling, manually
curated features, which are associated with emo-
tions, domains, topics and social media metadata,
were employed. Some research exploited sentiment
analysis techniques for depression detection. Rao
et al. (2020) proposed a hierarchical architecture
leveraging gated units and CNNs to learn textual
contents of social media posts and users’ emotional
states expressed in posts. Aragon et al. (2021) pro-
posed an emotion-aware SVM-based model which
learns emotional dynamics expressed in social me-
dia posts. Chiong et al. (2021) proposed 90 features,
based on sentiment lexicons and textual contents
and used them as input to depression detection clas-
sifiers. A recent trend is to exploit multimodal
learning frameworks for depression detection (Gui
et al., 2019; Chiu et al., 2021; Lin et al., 2020; Yang
et al., 2018). Gui et al. (2019) proposed a multi-
modal multi-agent reinforcement learning model
incorporating BiGRU and VGGNet (Simonyan and
Zisserman, 2014) to learn texts and images posted
by users on Twitter, respectively. Chiu et al. (2021)
proposed a multimodal BiLSTM-based (Schuster
and Paliwal, 1997) architecture jointly learning
texts, images and temporal behaviors (i.e., time
intervals between posts) on Instagram. Lin et al.
(2020) proposed a multimodal model comprising a
CNN and a BERT. It jointly learns representations
of images and texts and fused them using a low-
rank multimodal fusion method. Zhang et al. (2021)
proposed a model combining BiLSTM and CNN
based on metaphor features and text. However,
their metaphor features are shallow, e.g., Part-of-
Speech (PoS) tags and the number of metaphors.

Metaphor Understanding. Traditional metaphor
studies on depression were mainly based on qual-
itative analysis and case studies (Roystonn et al.,
2021; Coll-Florit et al., 2021). This is because
of a lack of automatic tools that help psycholin-
guistic researchers parse and analyze metaphorical
expressions from large corpora. Recently, auto-
matic metaphor processing has achieved significant
developments. Metaphors can be identified with
sequence-tagging-based models (Mao et al., 2019;
Choi et al., 2021; Chen et al., 2021; Mao and Li,
2021). Then, the identified metaphors can be in-
terpreted by linguistic meanings (Bollegala and
Shutova, 2013; Mao et al., 2018, 2021) or concept
mappings (Mason, 2004; Shutova et al., 2017; Ge
et al., 2022). Linguistic metaphor interpretation
focuses on paraphrasing metaphors into their lit-
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eral counterparts. For example, Mao et al. (2022a)
proposed a system for metaphor identification and
interpretation, called MetaPro. It can be used as a
text pre-processing technique to achieve metaphor
paraphrases from end to end. Thus, NLP tech-
niques for downstream tasks, such as sentiment
analysis (Mao et al., 2022a) or machine transla-
tion (Mao et al., 2018), can achieve better perfor-
mance on the effectiveness of metaphor paraphras-
ing. However, Lakoff and Johnson (1980) argued
that metaphor is not only a linguistic phenomenon,
but also a reflection of humans’ cognition. Given
“this is the core2 of the matter”, core implies “im-
portance” (target) is “interiority” (source) (Lakoff
et al., 1991). Thus, one can analyze the inner world
of depressed people from their metaphoric expres-
sions and the associated concept mappings, e.g.,
IMPORTANCE IS INTERIORITY.

In this paper, we identify several limitations
of existing works on depression detection. Ex-
isting methods have largely focused on improv-
ing classification performance by using advanced
encoders, features and deep architectures, while
leaving model outputs inexplicable. The majority
of SOTA methods are limited to textual contents
of posts or rely on shallow features based on so-
cial media metadata. To our best knowledge, it is
the first work incorporating MCMs into machine-
learning-based depression detection on social me-
dia. Additionally, our model comprises context-
level explainable encoders while word-level atten-
tion mechanisms have been widely employed in
SOTA methods. This helps better understand how
certain tweets and MCMs are used by depressed
individuals, thereby justifying model predictions.

3 Methodology

3.1 Problem statement
In our task, a user (uk) is represented as a set of
tweets (Xk) and a set of the associated MCMs
(Mk) in the tweets. Therefore, a set of users is
denoted by U = {u1, · · · , ui}, where each user
uk = [Xk,Mk]. A set of a user’s tweet contents is
denoted by Xk = {xk,1, · · · , xk,n} which contains
n tweets. x is a tweet represented as a sequence
of words. A set of a user’s MCMs is denoted by
Mk = {mk,1, · · · ,mk,s} which contains s map-
pings. m is an MCM that is represented as a se-
quence of “A IS B”, where A is a target concept, B

is a source concept, and IS a relation mapping A to
2A metaphor is in italics.

B. An example is “IMPORTANCE IS INTERIORITY”.
The task is to predict the most probable label (ŷk)
for a user uk, where ŷk ∈ {0, 1}. ŷk = 1 if uk is
a depressed user, ŷk = 0 otherwise. yk denotes a
ground truth label.

3.2 Model Architecture
The overall architecture of HAN is shown in Fig-
ure 1. Given a set of tweets (X) of a user, we first
obtain embeddings of all tweets in X using a pre-
trained language model. BERT-base-uncased (De-
vlin et al., 2019) is used to be in line with our
strongest baseline (Zogan et al., 2021). Special
tokens [CLS] and [SEP] are added at the begin-
ning and at the end of each tweet xϵ, respectively.
The padded sequence “[CLS] xϵ [SEP]” is fed into
BERT. The vector representation at the [CLS] posi-
tion of BERT output is used as the embedding of
xϵ. We obtain an embedding matrix of all tweets
in X, denoted by T0. Formally,

T0 = BERT (X). (1)

Similarly, we obtain an embedding matrix of all
MCMs in M, denoted by C0. Formally,

C0 = BERT (M). (2)

Details about the acquisition of M are described in
Section 3.3.

HAN consists of l attention-based encoder lay-
ers. The ith encoder layer is defined as HANi(·)
(see Section 3.4 for details), where i ∈ {1, 2, · · · l}.
Given a query vector and a key matrix, HANi(·)
yields an updated query vector and key matrix.
Thus, given the query vector (vti−1) of tweets (t)
and the tweet embedding (key) matrix Ti−1 in the
(i− 1)th layer, the updated vti and Ti are given by

vti , Ti = HAN t
i (v

t
i−1, Ti−1). (3)

Similarly, given the query vector (vci−1) of MCM
(c) and the MCM embedding (key) matrix Ci−1 in
the (i− 1)th layer, the updated vci and Ci are given
by

vci , Ci = HAN c
i (v

c
i−1, Ci−1). (4)

For the first layers of the first training step, the in-
puts vt0 and vc0 (trainable parameters) are randomly
initialized. For the other training steps, vt0 and vc0
are values learned in the previous step.

Next, the output of the last layer of the
tweet encoder (vtl ) and that of the MCM en-
coder (vcl ) are concatenated (⊕). The concate-
nated representation is fed to three feed-forward

96



𝑣!"

Attention

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁#" )

𝑣#"

Attention

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁$" )

𝑣$"

Attention

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁%" )

𝑣%"

𝑣%&#"

𝑇!

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁#' )

𝑇#

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁$' )

𝑇$

𝑇%&#

𝑣!(

Attention

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁#( )

𝑣#(

Attention

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁$( )

𝑣$(

Attention

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁%( )

𝑣%(

𝑣%&#(

𝐶!

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁#) )

𝐶#

𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 𝐹𝑁𝑁$) )

𝐶$

𝐶%&#

Layer 1

Layer 2

Layer l

…

𝑅𝑒𝐿𝑈 𝐹𝑁𝑁#*

𝑦0

𝑅𝑒𝐿𝑈 𝐹𝑁𝑁$*

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝐹𝑁𝑁+*

Figure 1: Hierarchical Attention Network. Grey boxes denote computational layers with trainable parameters. Plain
text denotes input and output. T and C denote tweet and MCM embeddings, respectively.

neural networks (FNNs), denoted by FNNo(·).
The first two FNNo(·) are activated by ReLU
(ReLU(·)) (Agarap, 2018). The last FNN,
FNNo

3 (·), is activated by the Softmax. We do
not change the size of the hidden state given by
the outputs of the first two FNN layers. The last
FNN layer projects the hidden state into a vector of
the label size. Then, the probability of a predicted
label (ŷ) is given by

h = ReLU(FNNo(vtl ⊕ vcl ))×2 (5)

ŷ = Softmax(FNNo
3 (h))), (6)

where h is the hidden state after the first two (×2)
FNNs. Cross-entropy loss is used to optimize the
parameters in the model and is given by

L = CrossEntropy(ŷ, y). (7)

3.3 Concept mapping acquisition

Concept mapping acquisition process consists of
three components: a) metaphor identification
(MI(·)) (Mao and Li, 2021), b) metaphor para-

phrasing (MP (·)) (Mao et al., 2021) and c) con-
cept mapping generation (CG(·)) (Ge et al.,
2022). These algorithms are used because they
enable the end-to-end acquisition of MCM features
without pre-processing and domain-specific knowl-
edge. Here, we briefly introduce their algorithms,
inputs and outputs. For the details, please refer to
the original papers. Given a tweet (xϵ) comprising
g tokens τ , i.e., xϵ = {τϵ,1, τϵ,2, · · · , τϵ,g}. The
metaphor identification module (MI) is a multi-
task-learning-based sequence tagging model, yield-
ing a metaphor label sequence (rϵ) and a PoS label
sequence (ρϵ) defined by

rϵ, ρϵ =MI(xϵ), (8)

where rϵ = {rϵ,1, rϵ,2, · · · , rϵ,g} and ρϵ =
{ρϵ,1, ρϵ,2, · · · , ρϵ,g}. rϵ,j ∈ {metaphor, literal}
and ρϵ,j is a Universal-Dependency-scheme-based
PoS label, where j ∈ {1, 2, · · · , g} denotes the
index of a token in xϵ. To boost model perfor-
mance, Mao and Li (2021) proposed a Gated Bridg-
ing Mechanism for soft-parameter sharing between
the metaphor identification and PoS tagging tasks.
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Next, given an identified metaphoric open-class
word3 τϵ,j (i.e., one of verbs, nouns, adjectives
and adverbs), the metaphor paraphrasing module
first lemmatizes τϵ,j as τ ιϵ,j . Then, a pre-trained lan-
guage model is used to select the best fit word (ωϵ,j)
from a candidate set that consists of hypernyms and
synonyms of τ ιϵ,j in WordNet (Fellbaum, 1998) and
their inflections with the same PoS. The best fit
word denotes a candidate word that appears in the
context and has the highest probability.

A probability is given by a masked word pre-
diction of the pre-trained language model, which
has been widely used in prompt-based zero-short
learning tasks (Mao et al., 2022b). The best fit
word ωϵ,j is lemmatized as ωιϵ,j , which is consid-
ered the lemma of the paraphrased metaphor τϵ,j in
the context of xϵ. The above process is defined by

ωιϵ,j =MP (τϵ,j , ρϵ,j). (9)

Finally, the concept mapping generation mod-
ule abstracts the source concept (Aϵ,j) from τ ιϵ,j and
the target concept (Bϵ,j) from ωιϵ,j . Formally,

Aϵ,j = CG(τ ιϵ,j), (10)

Bϵ,j = CG(ωιϵ,j). (11)

CG(·) is a knee algorithm (Satopaa et al., 2011)
and a WordNet-based conceptualization method,
proposed by Ge et al. (2022). It abstracts a word
into a concept by looking up a hypernym that can
cover the major senses of a word. After obtaining
Aϵ,j and Bϵ,j , the concept mapping is defined as

MCMϵ,j = Bϵ,j IS Aϵ,j. (12)

Ge et al. (2022) argued that Lakoff et al. (1991)
summarized concept mappings with different pat-
terns due to the subjectivity of annotators. We
take the concept mappings given by Eq. 12, which
follows one of the concept mapping principles
of Lakoff et al. (1991) (see Section 2). We ob-
tain all concept mappings in xϵ. If no metaphor is
detected in xϵ, concept mapping is none for such
a tweet. All concept mappings from all tweets of
each user are collected, forming an MCM feature
set (M) for depression detection.

3.4 Hierarchical attention network encoder
The HAN encoder (HAN(·)) is based on scaled
dot-product attention and FNNs. Attention mecha-
nisms enable the model to identify input features

3Closed-class words are not paraphrased because they do
not convey much semantic information in their context.

(i.e., tweets and MCMs) that are highly significant
and useful for depression detection, thereby en-
hancing model explainability. FNNs allow feature
embeddings to better fit the task via multiple non-
linear projections. Unlike self-attention (Vaswani
et al., 2017), the feature information of our encoder
is not shared with each other within each feature
set, i.e., Ti and Ci in Eqs. 3 and 4. Thus, features
fed to the last encoder layer (i.e., Tl−1 and Cl−1)
represent the features of individual inputs even af-
ter several non-linear projections. Important fea-
tures are learned by query vectors. These are the
main differences between our explainable encoder
and other classical black-box-like encoders, e.g.,
LSTM, BiLSTM, GRU (Cho et al., 2014), BiGRU
and Transformer (Vaswani et al., 2017), hidden
states of which cannot be easily disentangled after
encoding.

Given a query vector (qi−1 ∈ R1×d) and a key
matrix (Ki−1 ∈ Ro×d) in the (i− 1)th layer, where
d denotes an embedding size and o denotes the
number of input features, attention weights (wi ∈
R1×o) in the ith layer are given by

wi = Softmax

(
qi−1 ⊗K⊺

i−1√
d

)
, (13)

where ⊗ denotes matrix product. The query vec-
tor (qi ∈ R1×d) in the ith layer is given by the
weighted sum of the vectors in Ki−1 and a non-
linear projection. Formally,

qi=LN(ReLU(FNN query
i (wi⊗Ki−1))), (14)

whereLN(·) denotes layer normalization (Ba et al.,
2016). The key matrix (Ki ∈ Ro×d) in the ith layer
is defined by

Ki = LN(ReLU(FNNkey
i (Ki−1))). (15)

The input and output of the HAN encoder have
the same size. For the tweet content encoder, q,K
and o denote a tweet query vector (vt), a tweet
embedding matrix (T ) and the number of tweets
(n), respectively. For the MCM encoder, q,K, and
o denote an MCM query vector (vc), an MCM
embedding matrix (C) and the number of MCMs
(s), respectively.

We use the attention weights from the last
(the lth) encoder layer as the final representation
of tweet contents and MCMs. wl shows important
inputs that have higher attention weights for the
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Dataset Total # of tweets Mean # of tweets
per user

Positive Negative Positive Negative
D1 156,013 153,328 72 75
D2 151,538 119,188 71 58
D3 142,057 118,611 66 58
D4 143,725 124,925 66 61
D5 148,039 134,700 69 66

Table 1: Statistics of the five randomly sampled datasets.
The number of positive users and that of negative users
are 2,159 and 2,049 for all the datasets.

depression status prediction of a user. Analysis
results of attention weights to demonstrate model
explainability are described in Section 5.5.

4 Experiments

4.1 Datasets and pre-processing
Table 1 presents the statistics of the datasets used
in our experiments. We use a publicly available
Twitter dataset, called MDL (Shen et al., 2017),
which was designed for depression detection. In
this dataset, Twitter users, who have posted tweets
containing pre-defined patterns (i.e., I’m/I was/I
am/I’ve been diagnosed depression), were labeled
as depressive (i.e., positive). Those who never
posted any tweet containing the term “depress”
were labeled as users not suffering from depres-
sion (i.e., negative). Due to the updates of MDL
over time, its statistics varies across existing works
which used it for their experiments (Gui et al., 2019;
Lin et al., 2020; Zogan et al., 2021). We argue that
the model of Zogan et al. (2021) is the most com-
parable to our model as regards architecture and
features, e.g., employing two independent encoders
to encode textual features from multiple sources.
To make our results comparable with this work,
2,159 positive and 2,049 negative users are ran-
domly sampled from the latest version of MDL.
For a fair comparison, we generate five datasets
with randomly selected users. 60%, 20% and 20%
of the full dataset are used for train, validation and
test sets, respectively, which results in 2,524 users
in a train set and 842 users in each of validation
and test sets. We exclude tweets with less than 4
tokens because they are less informative. URLs
and mentions are removed because they are likely
to introduce noise (Gao et al., 2020).

4.2 Baselines
We compare our model with three depression de-
tection baselines.

Model P R F1 Acc.
Gui et al. (2019) 0.900 0.901 0.900 0.900
Lin et al. (2020) 0.903 0.870 0.886 0.884
Zogan et al. (2021) 0.909 0.904 0.912 0.901
HANours-AvgD1−D5 0.975 0.969 0.972 0.971
D1 0.981 0.965 0.973 0.973
D2 0.988 0.956 0.972 0.971
D3 0.972 0.972 0.972 0.971
D4 0.968 0.970 0.969 0.968
D5 0.964 0.981 0.972 0.971

Table 2: Depression detection results. Our model result
is averaged over the five testing sets (D1-D5).

• Gui et al. (2019): A reinforcement-learning-
based model based on cooperative multi-agent pol-
icy gradients. Tweet texts and images are encoded
using GRUs and VGGNets, respectively.

• Lin et al. (2020): A model comprising a CNN and
a BERT for learning images and texts, respectively.
The final representation of inputs is obtained via
low-rank multimodal fusion.

• Zogan et al. (2021): A model jointly learning
tweet texts and user behavior using CNNs and Bi-
GRUs. BERT-base and BART-large are used for
tweet text modeling.

We do not benchmark the work by Zhang et al.
(2021) because their model was designed for classi-
fying different types of mental disorders. Besides,
their model (i.e., CNNs+BiLSTMs) is similar to
the architecture proposed by Zogan et al. (2021).

4.3 Setups

We employ two HAN encoder layers (i.e., l =
2). The maximum input length (i.e., the maxi-
mum numbers of tweets and MCMs per user) is
set to 200. The batch size (i.e., the number of
users per batch) is 64. Dropout rates for query
vectors and key matrices are set to 0.2. The
learning rate and weight decay of the Adam op-
timizer (Kingma and Ba, 2015) are set to 1e-4 and
1e-5, respectively. BERT-base-uncased is used to
obtain tweet and MCM embeddings. The model
is trained with a GeForce GTX 1080 Ti GPU with
CUDA 9.2 (NVIDIA et al., 2020) and PyTorch
1.7.1 (Paszke et al., 2019). Following our baselines,
four performance metrics are adopted in our exper-
iments: accuracy (Acc.), precision (P), recall (R)
and F1 score (F1). P, R and F1 are computed with
respect to the positive class, i.e., depressive.
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Model F1 on MDL-validation F1 on IMDL-validation
D1 D2 D3 D4 D5 Avg D1 D2 D3 D4 D5 Avg

HAN 0.985 0.960 0.971 0.976 0.975 0.973 0.939 0.911 0.933 0.927 0.931 0.928
HAN-MCM 0.972 0.947 0.963 0.967 0.962 0.962 0.914 0.897 0.914 0.905 0.918 0.909
∆ 0.013 0.013 0.008 0.009 0.013 0.011 0.025 0.014 0.019 0.022 0.014 0.019

Table 3: Ablation study results on validation sets, measured by F1 score. ∆ is defined by F1HAN − F1HAN-MCM.

5 Results

5.1 Classification performance

As shown in Table 2, our proposed model advances
SOTA performance for all of the five datasets.
HAN achieves an average F1 score of 97.2% and
an accuracy of 97.1%. The comparison results
show that HAN yields the increases of 6.0% and
7.0% in F1 score and accuracy over the strongest
baseline model (Zogan et al., 2021), respectively.
We observe that performance is almost identical
for different randomly sampled datasets (i.e., D1-
5), which shows that HAN is robust to different
characteristics of users on Twitter.

5.2 Ablation study

A set of exploratory experiments is conducted to
study the relative contribution of MCMs in our
model. To this end, we generate a variation of
MDL, called Implicit Twitter Depression Data
(IMDL), by removing explicit linguistic cues for
depression (i.e., “I’m/I was/I am/I’ve been diag-
nosed depression” and words containing “depress”,
“anxiety”, “bipolar” and “disorder”) from all tweets.
We evaluate our full model (HAN) and HAN with-
out the MCM encoder, called HAN-MCM, using
both MDL and IMDL. Table 3 shows average F1
scores achieved with the validation sets. Overall,
HAN and HAN-MCM achieve higher performance
on MDL than on IMDL in terms of F1 score. This
verifies our hypothesis that the removal of explicit
linguistic cues for depression from tweets makes
the task more difficult. The ablation study of the
internal baseline model (i.e., HAN-MCM) proves
that MCMs can provide additional information ef-
fective in identifying depressive users.

For MDL, HAN outperforms HAN-MCM by
1.1%. It is worth noting that the performance dif-
ference is slightly larger for IMDL (1.9%), which
indicates that MCMs can provide effective com-
plementary evidence when no explicit cues for de-
pression exist in tweets. The above experiments on
both datasets demonstrate the usefulness of under-
standing MCMs in identifying depressive users.

# of HAN layers 1 2 4 8
MDL D1 validation 0.542 0.985 0.983 0.979

Table 4: F1 scores for different numbers of encoder
layers.

5.3 Hyperparameter analysis

The major hyperparameter of HAN is the number
of encoder layers (i.e., l). We experiment with
different values (i.e., 1, 2, 4 and 8) for the MDL D1
validation set. Table 4 shows that the best F1 score
is achieved when l is set to 2. Using more than
two layers does not reap benefits of an increase in
model performance.

5.4 Encoder benchmarking

To prove the effectiveness of our HAN encoder, we
compare it with six widely used encoders: LSTM,
BiLSTM, GRU, BiGRU, TF-first and HAN-TF.
HAN encoders are replaced with each of them in
our framework. For LSTM and GRU, the final
representation of input features is the hidden state
of the last token. For BiLSTM and BiGRU, the
concatenation of the forward and backward hidden
states of the last and first tokens is used. TF-first
and HAN-TF are encoders based on Transformer.
In TF-first, Transformer is used as an encoder.

The hidden state of the first input instance4 (a
tweet or an MCM) of each user is used by Eq. 5. In
HAN-TF, we use Transformer to replace the input
matrix projection layer (i.e., FNN in Eq. 15) of
HAN encoders. The size of the input and output
hidden states of each encoder is set to 768, which is
in line with that of BERT-base-uncased. The size of
FNNs and the number of heads in Transformer are
768 and 8, respectively. The other hyperparameters
remain the same. CNNs are not used as a baseline
because they need to be used with other encoders
to learn context dependencies (Wang et al., 2016;
Rhanoui et al., 2019).

4We experimented with different fusion methods (e.g.,
summation, average and linear transformation of concatenated
representations) and found that using the hidden state of the
first input instance works best.
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LSTM BiLSTM GRU BiGRU TF-first HAN-TF HAN
F1 on MDL D1 val. ↑ 0.966 0.965 0.961 0.959 0.898 0.976 0.985
# of param. per layer ↓ 4.72M 9.45M 3.54M 7.09M 3.55M 4.14M 1.18M

Table 5: Comparison results of different encoder layers. ↑ denotes that the higher the value is, the better the model
is. ↓ denotes that the lower the value is, the better the model is.

1 2 3 4 5 6 7 8 9 10
Epoch

0.2

0.4

0.6

0.8

Lo
ss

HAN-TF
BiLSTM
GRU
HAN
TF-first
BiGRU
LSTM

Figure 2: Training loss curves for different encoders
obtained using the MDL D1.

Table 5 shows F1 scores achieved with the MDL
D1 validation set and the number of parameters per
encoder layer. HAN encoder achieves better results
than all the baseline encoders on our task in terms
of F1 score. HAN and HAN-TF outperform LSTM
by 1.9% and 1.0%, respectively. Although HAN
and HAN-TF achieve comparable performance, it
is worth noting that using Transformer instead of
FNNs in the HAN encoder significantly increases
the number of parameters (+2.96M). The number
of parameters of the HAN encoder is the smallest
among all the encoders. The parameter size of
HAN is just a third of that of the second smallest
encoder (GRU).

Figure 2 shows training loss curves for differ-
ent encoders plotted using the MDL D1. HAN
(the red line) converges faster than the other en-
coders. Overall, the experiments on different en-
coders prove that HAN has advantages over the
others in terms of effectiveness and efficiency.

5.5 Explainability demonstration

Figure 3 visualizes the attention weights (wl given
by Eq. 13) for tweets posted by two users with de-
pression and MCMs in their tweets. As shown in
the figure, HAN can selectively focus on the most
important and useful tweets and metaphors by pro-
gressively refining feature maps. Attention weights
are useful for justifying the decision-making mech-
anism of HAN because they quantitatively describe
how much each tweet and MCM contributes to

(a) User 1

(b) User 2

Figure 3: Visualization of attention weights for two
depressed users. The lighter the color bar of an instance
(tweet or MCM) is, the higher its attention weight is.

User Tweet Metaphor

1

1. I hate how I can’t tell if I have
allergies or I’m getting sick.

1. LEVEL IS IMPORTANCE

2. get better, I love you 2. PERSON IS EXTREMITY
3. I’m slightly allergic to cats
but I still have them and I don’t
CARE IF I SNEEZE

3. SITUATION IS HAPPENING

4. I’m having a bad night 4. ATHLETE IS AREA
5. So I’m so nervous for my
MAC interview tomorrow but I
know I’ll do great. Everything
will be okay

5. MORPHEME IS EXTREMITY

2

1. Today is not a good day:
Driver, teen shot to death after
vehicle hits and kills -year-old

1. CONCERN IS STATE

2. Autistic th Grader Assaulted
by School Cop, Now He is a
Convicted Felon

2. POSITION IS DISAPPEAR-
ANCE

3. Thank you Father, GM FB!
I gotta start taking My butt to
bed at night, woke late again

3. LEVEL IS IMPORTANCE

4. Cellphone Video Surfaces
Showing Moments After Police
Shot -Year-Old Boy in the Back

4. FEELING IS ILL_HEALTH

5. Freddie Gray dies one week
after Baltimore arrest

5. ARTIFACT IS SUPPORT

Table 6: The top 5 tweets and metaphors, selected based
on attention weights, for two sample users.

a predicted label (see Eq. 14). Higher attention
weights denote greater utility of tweets and MCMs
in detecting depression. Table 6 shows the top 5
tweets and MCMs, ranked according to the atten-
tion weights learned during training, for two sam-
ple users. User 1 tends to use negative expressions
to describe personal feelings, state and emotions
such as “bad”, “sick”, “hate” and “nervous”.

The user also uses positive expressions, such as
“I’ll do great” and “everything will be ok”. Such
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tweets, however, tend to express self-soothing for
negative events. User 2 tends to repost tragic news
and add personal comments. The two depressed
users show different behaviors on social media, e.g.,
self-soothing and quoting tragic news. The listed
MCMs in Table 6 show that both sample users
have the same MCM in their tweets, i.e., LEVEL

IS IMPORTANCE. The conceptual projection from
LEVEL to IMPORTANCE may exacerbate depression
because LEVEL simply refers to “a position on a
scale of intensity or amount or quality”, whereas
IMPORTANCE normally refers to a subjective feel-
ing about “the worthy of note” (Fellbaum, 1998).

The imageability of IMPORTANCE may increase
stress and anxiety, and thus arouse more depressive
feelings (Vedhara et al., 2003). For example, there
is a tweet saying that “If a transgender student is
bullied, they are put at a greater risk of suicide”
posted by a depressed user in the dataset (Shen
et al., 2017). In this tweet, “greater” is metaphori-
cal. Its contextual meaning refers to a higher risk.
“High” is one of the manifestations of the target
concept LEVEL. However, the literal imageability
of “great” likely refers to the source concept IM-
PORTANCE, e.g., “a great work of art” (Fellbaum,
1998). Thus, the metaphorical expression in the
sample tweet also implies that the “risk of suicide”
is high and important, which probably increases the
subject’s nervousness because of their perception
about the importance of the risk. We also find that
a metaphoric term “great” is common in the MCM
LEVEL IS IMPORTANCE and its associated tweets
posted by depressed users.

This case study demonstrates that we can fur-
ther discover common MCMs and metaphorical
language patterns among depressed individuals us-
ing our proposed model. In general, we argue that
HAN is potentially useful for identifying depressed
individuals and analyzing different types of such
individuals, their cognition and risk factors.

6 Ethical Considerations

This research work was conducted based on a pub-
lic dataset published by Shen et al. (2017). We
solely used textual content for concept mapping
acquisition, training, and evaluating the model. We
did not leverage any information related to user pro-
files. We oppose the use of our model in any breach
of data security, privacy protection, and ethics.

7 Conclusion

While most deep learning architectures for depres-
sion detection left the impact of different input
features on model performance inexplicable, our
work attempted to interpret what was going on
in the model and justify model predictions. We
proposed an attention-based encoder to better un-
derstand decision-making process for depression
detection. We introduced novel metaphor concept
mapping features into our model to investigate how
depressed people describe their emotions and ex-
periences. Our extensive experiments and com-
parative evaluations showed that our model could
achieve SOTA performance. An ablation study
proved the advantage of utilizing metaphors in de-
pression detection. We argue that a better under-
standing of metaphors associated with depression
can enhance interpretability and help health profes-
sionals provide tailored, timely therapy to patients.
In future research, we plan to conduct a large-scale
study to categorize different characteristics of de-
pression using users’ metaphorical and cognitive
expressions.
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Abstract

Can we build multi-view decoders that can
decode concepts from brain recordings corre-
sponding to any view (picture, sentence, word
cloud) of stimuli? Can we build a system that
can use brain recordings to automatically de-
scribe what a subject is watching using key-
words or sentences? How about a system that
can automatically extract important keywords
from sentences that a subject is reading?

Previous brain decoding efforts have focused
only on single view analysis and hence can-
not help us build such systems. As a first step
toward building such systems, inspired by Nat-
ural Language Processing literature on multi-
lingual and cross-lingual modeling, we propose
two novel brain decoding setups: (1) multi-
view decoding (MVD) and (2) cross-view de-
coding (CVD). In MVD, the goal is to build an
MV decoder that can take brain recordings for
any view as input and predict the concept. In
CVD, the goal is to train a model which takes
brain recordings for one view as input and de-
codes a semantic vector representation of an-
other view. Specifically, we study practically
useful CVD tasks like image captioning, im-
age tagging, keyword extraction, and sentence
formation.

Our extensive experiments lead to MVD mod-
els with ∼0.68 average pairwise accuracy
across view pairs and CVD models with ∼0.8
average pairwise accuracy across tasks. Anal-
ysis of the contribution of different brain net-
works reveals exciting cognitive insights: (1)
Models trained on picture or sentence view of
stimuli are better MV decoders than a model
trained on word cloud view. (2) Our extensive
analysis across 9 broad brain regions, 11 lan-
guage sub-regions, and 16 visual sub-regions of
the brain help us localize, for the first time, the
parts of the brain involved in cross-view tasks
like image captioning, image tagging, sentence
formation, and keyword extraction. We make

∗The first two authors made equal contribution.

the code publicly available1.

1 Introduction

Brain decoding models aim to understand what a
subject is thinking, seeing, and perceiving by an-
alyzing neural recordings. Thus, in the context of
language, it may be beneficial to learn mappings
between linguistic representation and the associ-
ated brain activation, and how we compose the
linguistic meaning from different stimuli such as
text (Pereira et al., 2018; Wehbe et al., 2014a), im-
ages (Eickenberg et al., 2017; Beliy et al., 2019),
videos (Huth et al., 2016; Nishimoto et al., 2011),
or speech (Zhao et al., 2014) by analyzing the
evoked brain activity. Also, decoding the functional
activity of the brain has numerous applications in
education and healthcare.

Brain recordings can be obtained by providing
stimuli to a subject in various forms. For example,
a concept (like apartment) can be presented using:
(1) Word Picture (WP) view: picture along with
the concept word, (2) Sentence (S) view: sentence
containing the word, or (3) Word cloud (WC) view:
word cloud containing the word along with other
semantically related words. Recent studies have
made much progress using functional magnetic res-
onance imaging (fMRI) brain activity to reconstruct
semantic vectors corresponding to linguistic items,
including words (Mitchell et al., 2008; Pereira et al.,
2018), phrases, sentences, and paragraphs (Wehbe
et al., 2014a). However, all such studies have been
limited to single-view analysis. Separate models
are trained to process different views. Also, the
decoding target is typically a semantic vector of
the concept word.

In the Natural Language Processing (NLP) com-
munity, researchers have recently started focusing
on building multi-lingual and cross-lingual sys-
tems (Conneau et al., 2018; Conneau and Lam-
ple, 2019; Xue et al., 2021). Multi-lingual systems

1https://tinyurl.com/MVCVBD
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Test

The dishwasher 
can wash all the
dishes.

MV Decoder
BERT(Apartment)

Test
MV Decoder

BERT(Bird)

Test
MV Decoder

BERT(Wash)

Figure 1: A multi-view decoder can be used to decode
concepts using brain recordings for any view. Target is
BERT representation of the concept word.

improve accuracy for low-resource languages and
enable applications even in the absence of train-
ing data for low-resource languages. Cross-lingual
systems take input in one language and produce
output (e.g., summary) in another language. In-
spired by this multi-lingual/cross-lingual shift in
NLP, we propose two novel brain decoding setups:
multi-view decoding (MVD) and cross-view decod-
ing (CVD). Such setups are critical to build MV
decoders which can decode concepts from brain
recordings corresponding to any view (picture, sen-
tence, word cloud) of stimuli or systems that can au-
tomatically describe using sentences or keywords
what a subject is watching or automatically extract
important keywords from sentences that a subject
is reading.

In MVD, the goal is to build an MV decoder
that can take brain recordings for any view as input
and predict the concept. Fig. 1 shows examples of
using an MV decoder. Such an MV decoder can be
trained on data for any specific view. Multi-lingual
models have shown huge zero-shot accuracy im-
provements for inference on low-resource language
inputs across many NLP tasks (Conneau and Lam-
ple, 2019). Similarly, can we improve decoding
accuracy using an MV decoder model for some
views?

In CVD, the goal is to train a model which takes
brain recordings for one view as input and decodes
a semantic vector representation of another view.
Fig. 2 shows examples of four such CVD tasks.
Given an fMRI activation corresponding to a pic-
ture view of the stimuli, how accurately can we
decode a sentence representing the picture? Which
parts of the brain are involved in CVD tasks like im-
age captioning, image tagging, keyword extraction,
and sentence formation?

Historically, the fMRI brain activity has been
decoded to a semantic vector representation of a
view (word picture, sentence, word cloud) using a

ridge-regression decoder (Pereira et al., 2018; Sun
et al., 2019). In particular, earlier brain decoding
works focused on hand-crafted features to train
such decoder models (Mitchell et al., 2008; Wehbe
et al., 2014a). Recently, many studies have shown
accurate results in mapping the brain activity using
neural distributed word embeddings for linguistic
stimuli (Anderson et al., 2017; Pereira et al., 2018;
Oota et al., 2018; Nishida and Nishimoto, 2018;
Sun et al., 2019). To represent meaning, these stud-
ies use either word or sentence level embeddings
extracted from the models trained on large cor-
pora. Unfortunately, none of these addresses the
open questions around multi-view decoding and
cross-view decoding. Recently, Transformer-based
models have been explored for brain encoding (Hol-
lenstein et al., 2019), which inspires us to harness
Transformer-based models like BERT (Devlin et al.,
2019) for our brain decoding tasks.

Our main contributions are as follows. (1) We
propose two novel brain decoding settings: multi-
view decoding and cross-view decoding. (2) We
build decoder models using Transformer-based
methods and analyze brain network contributions
across multi-view and cross-view tasks. (3) We aug-
ment the popular Pereira et al. (2018)’s dataset with
pairwise-view relationships and use it to demon-
strate the efficacy of our proposed methods. We
make the code publicly available2.

Our experiments lead us to the following in-
sights: (1) Models trained on picture or sentence
view are better MV decoders than models trained
on word cloud view. Surprisingly, the MV de-
coder trained on sentence view leads to a zero-shot
accuracy for word cloud stimuli, which is better
than that obtained using the same-view word cloud
model. (2) For the first time, we show language
and visual sub-regions involved in four cross-view
tasks. (3) High pairwise accuracies of 0.78, 0.83,
0.84, and 0.75 for image captioning, image tagging,
keyword extraction, and sentence formation resp.,
help us conclude that cross-view decoding tasks
using fMRI data are practically feasible.

2 Related Work

Advances in functional neuroimaging tools such as
fMRI have made it easier to study the relationship
between language/visual stimuli and functions of
brain networks (Constable et al., 2004; Thirion
et al., 2006; Fedorenko et al., 2010).

2https://tinyurl.com/MVCVBD
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(A) Image Captioning (IC)                            (B) Image Tagging (IT)                           (C) Sentence Formation (SF)                   (D) Keyword Extraction (KE)

A colorful bird sitting on a tree 
branch.

A flock of red birds resting in 
their nest.

A small red bird
sitting on a snow-
covered ground.

Cross-View 
IC Decoder

Cross-View 
IT Decoder

Cross-View 
SF Decoder

Cross-View 
KE Decoder

Bird, Colorful, Branch, Sitting, 
Red, Tree

Bird, Snow, Ground, Red, 
Sitting, Small

BERT BERT BERT BERT

Figure 2: Cross-View Decoding Task (Input, output) Examples.

Initial brain decoding experiments studied the
recovery of simple concrete nouns and verbs from
fMRI brain activity (Mitchell et al., 2008; Palatucci
et al., 2009; Nishimoto et al., 2011; Pereira et al.,
2011) where the subject watches either a picture
or a word. Unlike the earlier work, Wehbe et al.
(2014a); Huth et al. (2016) built a model to decode
the text passages instead of individual words. How-
ever, these studies used either simple or constrained
sets of stimuli, which poses a question of gener-
alization of these models. Recently, Pereira et al.
(2018) explicitly decoded both words and sentences
when subjects were shown both concrete and ab-
stract stimuli. Affolter et al. (2020) reconstructed
the sentences along with categorizing words or
predicting the semantic vector representation from
fMRI brain activity. Schwartz et al. (2019); Wang
et al. (2020a) focused on understanding how multi-
ple tasks activate associated regions in the brain.

To train ridge regression decoder models, earlier
works focused on hand-crafted features (Mitchell
et al., 2008; Wehbe et al., 2014a), which suffer
from various drawbacks like inability to capture
the context and sequential aspects of a sentence,
inability to extract signals for abstract stimuli, etc.
With the success of deep learning based word rep-
resentations, multiple researchers have used dis-
tributed word embeddings for brain decoding mod-
els in place of carefully hand-crafted feature vec-
tors (Huth et al., 2016; Anderson et al., 2017;
Pereira et al., 2018; Oota et al., 2018; Nishida and
Nishimoto, 2018; Sun et al., 2019; Wang et al.,
2020b). Using the distributed sentence representa-
tions, Wehbe et al. (2014b); Jain and Huth (2018);
Abnar et al. (2019); Sun et al. (2019) demon-
strated that neural sentence representations are bet-
ter for decoding whole sentences from brain ac-
tivity patterns. Recently, Transformer models like
BERT (Devlin et al., 2019) and GPT2 (Radford
et al., 2019) have been found to be very effective
for decoding (Gauthier and Levy, 2019; Toneva

and Wehbe, 2019; Affolter et al., 2020). Inspired
by such studies, we leverage BERT representations.
Inspired by such studies, we leverage BERT rep-
resentations. Unlike single-view analysis done in
previous studies, multi-view and cross-view setups
are the main focus of our work.

3 Methodology

3.1 Brain Imaging Dataset

We experiment with the popular dataset
from (Pereira et al., 2018). It is obtained
from 11 subjects (P01, M01, M02, M04, M07,
M09, M10, M13, M15, M16, M17) where
each subject read 180 concept words (abstract +
concrete) in three different paradigms or views
while functional magnetic resonance images
(fMRI) were acquired. These contain 128 nouns,
22 verbs, 29 adjectives and adverbs, and 1
function word. In paradigm-1 (WP), participants
were shown concept word along with picture
with an aim to observing brain activation when
participants retrieved relevant meaning using
visual information. In paradigm-2 (S), the concept
word presented in a sentence allows us to probe
activity in the language areas associated with
contextual information and meaning of a sentence.
In paradigm-3 (WC), the concept word was
presented in a word cloud format, surrounded by
five semantically similar words. These paradigms
provide brain representation of 180 concepts in
three different views.

For each of the 180 concepts, the dataset con-
tains five pictures, six sentences each containing
the concept word, and a word cloud. For exam-
ple, for a concept ‘bird’, dataset has (1) a picture
p showing a red bird sitting on a tree branch, (2)
sentence s like “A green bird flying in the sky”, and
(3) word cloud c with words “bird, purple, flock,
winged, nest, beak”. The dataset also has fMRIs
for each of these three views. This dataset was
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Task Input Output (View type)
Image captioning Word+Picture fMRI Caption (Sentence)
Image tagging Word+Picture fMRI Image tags (Word Cloud)
Keyword extraction Sentence fMRI Keywords (Word Cloud)
Sentence formation Word-cloud fMRI Sentence

Table 1: Cross-View Decoding Task Definitions

meant for single-view decoding and hence follows
a star schema (concept at the center and specific
views like word+picture, sentence, and word cloud
around it). Clearly, we cannot use this dataset as is
for cross-view decoding (CVD). For example, for
the image captioning CVD task, it is wrong to take
an fMRI with the stimuli being a picture showing
a red bird sitting on a tree branch, and use it to
decode a sentence “A green bird flying in the sky”.

To enable cross-view decoding tasks, it was
critical to build direct pairwise-view relationships
(picture-sentence, picture-word cloud, sentence-
word cloud, and word cloud-sentence). In other
words, it was necessary to have captions and tags
for image-view, keywords for sentence-view, and
3-4 sentences corresponding to wordcloud-view.
Hence, we augment the dataset in Pereira et al.
(2018) by obtaining target annotations manually.
For example, for the fMRI associated with picture
p, we manually annotated it with target sentence
s′=“A red bird sitting on a tree branch”. Pairs like
(p, s′) are then used to train model for image cap-
tioning. Note that these manual annotations do not
involve obtaining more fMRIs.

Fig. 2 shows the input and output examples for
the four cross-view decoding tasks. We make the
augmented dataset publicly available2. Note that
we do not experiment with CVD tasks like image
generation from sentences or word clouds since
obtaining target annotations would mean that we
need to draw images to augment the dataset. We
leave it as part of future work.

3.2 Task Descriptions

We train the decoder regression models on 5000
informative voxels selected from fMRI brain ac-
tivations and evaluate all the models using pair-
wise accuracy and rank-based decoding. Details
of the informative voxel selection, the regression
model, and metrics are discussed in the subsequent
sections. The main goal of each decoder model
is to predict a semantic vector representation of
the stimuli in each experiment. The input view
(word+picture, sentence, or word-cloud) and out-
put representation (word, sentence, or word-cloud)

differ across experiments. We follow K-fold cross-
validation, in which all the data samples from K-1
folds were used for training, and the model was
tested on samples of the left-out fold. We use the
BERT-pooled output for obtaining output seman-
tic representations. We also experimented with
RoBERTa, but the results were very similar to
BERT, and hence we omit them for lack of space.
Multi-View Concept Decoding For each subject
in the dataset, for each of the three input views,
we trained K=18 models (one for each fold) where
each model is trained on the brain activity of 170
concepts and tested on left-out 10 concepts to pre-
dict vector representation of the concept word. The
5000 informative voxels were selected for 170 con-
cepts in each fold, and the same voxel locations
were chosen for test datasets. At test time, the in-
put to each model can belong to any of the three
views. Thus, for each subject, for each fold, we
perform (1) three same-view train-test experiments
and (2) six multi-view zero-shot train-test experi-
ments with different input views at train and test
time. Target is always fixed as a vector representa-
tion of the concept word. We use pairwise accuracy
to report results.
Cross-view Decoding Tasks For each subject in
the dataset, we learn models for the four cross-
view decoding tasks (IC, IT, KE, SF) using 18 fold
cross-validation. The input and output for each of
these tasks is shown in Table 1. Fig. 2 shows an
example for each task. As before, we use 5000
informative voxels, computed separately for each
of the 11 subjects and each of the four tasks. The
regression target is semantic vector representation.

3.3 Informative Voxel Selection

Inspired by the voxel selection method in (Pereira
et al., 2018), we chose the informative voxels for
our linear regression models as follows. The regres-
sion models are trained on each voxel and its 26
neighboring voxels to predict the semantic vector
representation. For each voxel in the training part,
the mean correlation was calculated between “true”
(text-derived) and predicted representations, and
the voxels corresponding to the top 5000 mean cor-
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relation values were selected as informative voxels.
Target semantic representations are word embed-
dings for multi-view zero-shot concept decoding
and ‘word or sentence or word-cloud’ embedding
for cross-view decoding experiments. Voxel selec-
tion provides meaningful cognitive insights across
brain networks.

3.4 Model Architecture

We trained a ridge regression based decoding
model to predict the semantic vector representa-
tion associated with the fMRI informative voxels
for a type (view) of each language stimulus. Each
dimension is predicted using a separate ridge re-
gression model. Formally, we are given the infor-
mative voxel matrix X ∈ RN×V and stimuli vec-
tor representation Y ∈ RN×D, where N denotes
the number of training examples, V denotes the
number of informative voxels (we fix it to 5000),
and D denotes the embedding dimension of lan-
guage stimuli. For BERT, D=768. The ridge re-
gression objective function is f(Xi) = min

Wio

∥Yo −
XiWio∥2F +λ∥Wio∥2F where, Xi denotes the input
voxels for view i (out of {word+picture, sentence,
wordcloud}), Yo denotes the matrix with embed-
dings o (out of {word, sentence, word cloud}), Wio

denotes the learned weight coefficients for each
input view i and output embedding o, ∥.∥F denotes
the Frobenius norm, and λ > 0 is a tunable hyper-
parameter representing the regularization weight.
Besides ridge regression, of course, various other
models could be used. However, the goal of this
paper is to analyze novel decoding setups using
the most popular decoding model in neuro-science
literature, namely, ridge regression. We leave ex-
ploration of complex models as part of future work.
Hyper-parameter Settings: We used sklearn’s
ridge regression with default parameters, 18-fold
cross-validation, Stochastic-Average-Gradient De-
scent Optimizer, Huggingface for BERT, MSE loss
function and L2-decay (λ):1.0.

3.5 Brain Networks Selection

Inspired by Pereira et al. (2018) and based on
the resting-state functional networks, we focused
on four brain networks: Default Mode Network
(DMN) (linked to the functionality of semantic pro-
cessing) (Buckner et al., 2008; Binder et al., 2009),
Language Network (related to language process-
ing, understanding, word meaning, and sentence
comprehension) (Fedorenko et al., 2011), Task Pos-

itive Network (related to attention, salience infor-
mation) (Binder et al., 2009; Duncan, 2010; Power
et al., 2011), and Visual Network (related to the pro-
cessing of visual objects, object recognition) (Buck-
ner et al., 2008; Power et al., 2011). We report the
distribution of 5000 informative voxels across the
four brain networks across various experiments
in Section 4. Across all participants, voxel distri-
bution across networks is as follows: 4670 (Lan-
guage), 6490 (DMN), 11630 (TP), and 8170 (Vi-
sual). Note that the reported distributions in Sec-
tion 4 do not add up to 1 because the contribution
of the remaining brain networks is not considered.

4 Results and Cognitive Insights

Since we are the first to propose multi-view and
cross-view tasks, unfortunately, there are no base-
lines to compare with. For the sake of comparison,
we design a “chance-level” BERT (Random) base-
line where models are trained using BERT embed-
dings of randomly chosen words as a target rather
than BERT embeddings of the actual target word.
For same-view experiments, our results are in line
with that reported in (Pereira et al., 2018).

5 Evaluation Metrics

We use the popular pairwise and rank accuracy
metrics for evaluation. Pairwise Accuracy To
measure the pairwise accuracy, the first step is
to predict all the test stimulus vector representa-
tions using a trained decoder model. Let S = [S0,
S1,· · · ,Sn], Ŝ = [Ŝ0, Ŝ1,· · · ,Ŝn] denote the “true”
(text-derived) and predicted stimulus representa-
tions for n test instances resp. Given a pair (i, j)
such that 0 ≤ i, j ≤ n, score is 1 if corr(Si,Ŝi)
+ corr(Sj ,Ŝj) > corr(Si,Ŝj) + corr(Sj ,Ŝi), else 0.
Here, corr denotes the Pearson correlation. Final
pairwise matching accuracy per participant is the
average of scores across all pairs of test instances.

Rank Accuracy We compared each decoded vec-
tor to all the “true” text-derived semantic vec-
tors and ranked them by their correlation. The
classification performance reflects the rank r of
the text-derived vector for the correct word: 1 −

r−1
#instances−1 . The final accuracy value for each
participant is the average rank accuracy across all
instances.
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Figure 3: Model trained on (A) Word+Pictures (B) Sentences (C) Word-Cloud view. MVD Pairwise and Rank
accuracy when tested on Word+Picture/Sentence/Word-cloud views, averaged across all the subjects.
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Figure 4: Model trained on Word+Pictures view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.
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Figure 5: Model trained on Sentences view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.
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Figure 6: Model trained on Word-Cloud view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.
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in visuo-linguistic integration. 569
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further examine how these voxels from one view 572

overlap with those from another view. Table 3 573

shows that (1) In the WC-S pair, the language net- 574

work has very high overlap compared to other brain 575

networks. (2) 29% (and 25%) of visual voxels for 576

S (and WC) view are shared with visual voxels of 577

WP view. This makes sense since a large percent- 578
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Figure 3: Model trained on Word+Pictures (A and B), Sentences (C and D), and Word-Cloud (E and F) view. MVD
Pairwise and Rank accuracy when tested on Word+Picture/Sentence/Word-cloud views, averaged across all subjects.
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Figure 4: Model trained on Word+Pictures view (left), Sentences view (middle), Word-Cloud view (right). MVD
Pairwise (PW) and Rank (R) accuracy when tested on Word+Picture (WP)/Sentence (S)/Word-cloud (WC) views.
Each colored dot represents a subject. The bar plot shows averages.

5.1 Multi-View Concept Decoding

5.1.1 Pairwise and Rank Accuracy Results

Fig. 3 and Table 2 show detailed results for models
trained on word+picture (WP), sentence (S), and
word-cloud (WC) views and tested on each of the
three views. Specifically, Fig. 3(A) shows pairwise
accuracy results when we train using the WP view
but infer using voxels corresponding to any of the
three views. Ground-truth is the BERT embedding
vector. In comparison to the “chance-level” BERT
(Random) baseline with random target vectors, our
proposed BERT embedding-based method is much
better. Fig. 4 shows subject wise results.

Test↓/Train→ WP S WC
WP 0.72/0.65 0.70/0.60 0.68/0.59
S 0.67/0.58 0.70/0.64 0.71/0.61
WC 0.63/0.56 0.69/0.61 0.62/0.57

Table 2: Multi-View Zero-shot Concept Decoder Re-
sults (Pairwise/Rank Accuracy)

Same view versus MV zero-shot: In most cases,
same-view results are better than multi-view zero-
shot results. However, this does not hold for the
WC view, where a model trained on sentence view
performs better (Left green bars in Fig. 3 (C and
D) vs. Fig. 3 (E and F)).
Can we train MV decoders that can decode con-
cepts from brain recordings for any view? We
experimented with three different MV decoders,
each trained on one of the three views. Fig. 3 and
the statistical significance test results in Table 3
show that either of the WP and sentence (S) views

can be used to train MV decoders. This means that
if we train a model with WP or S view fMRIs, and
test it using any of the three views, the results are
better or equivalent to any other model. This does
not hold for the WC view. Thus, an MV decoder
trained with a WC view is not very effective.

Setting 1 Setting 2 p-value
Train(WP)-Test(WP) Train(S)-Test(WP) 0.098
Train(WP)-Test(WP) Train(WC)-Test(WP) 0.026*
Train(S)-Test(WP) Train(WC)-Test(WP) 0.474
Train(WP)-Test(S) Train(S)-Test(S) 0.485
Train(WC)-Test(S) Train(S)-Test(S) 0.469
Train(WP)-Test(S) Train(WC)-Test(S) 0.420
Train(WP)-Test(WC) Train(WC)-Test(WC) 0.691
Train(WP)-Test(WC) Train(S)-Test(WC) 0.134
Train(S)-Test(WC) Train(WC)-Test(WC) 0.045*

Table 3: p-values for measuring if setting 1 is stat sig-
nificantly better than setting 2. Only rows with * mark
denote statistically significant improvements.

5.1.2 Cognitive Insights based on Distribution
of Informative Voxels

Table 4 and Fig. 5 show the distribution of informa-
tive voxels among four brain networks for various
MV models. In this figure, (WP, D) means input
view=WP (Word+picture), brain network=DMN
(D). The figure clearly shows that a lot of informa-
tive voxels belong to the visual brain region for the
WP view. Also, for sentence view, a large percent-
age of informative voxels are from the language
region.

Figs. 6 to 8 show more distribution details by
zooming further into language and visual regions.
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Figure 5: Distribution of informative voxels among
four brain networks: DMN (D), Visual (V), Language
(L), Task Positive (T). Models trained on Word+Picture
(WP), Sentence (S) or Word-Cloud (WC) views.

When the model is trained on the WP view (unlike
other views), Table 4 and Fig. 6 show that most in-
formative voxels (about 53%) lie in the visual brain
network, which is expected for the predominantly
visual information-driven task.

Word+Picture Sentence Word-Cloud
DMN 0.162 0.222 0.137
Visual 0.534 0.202 0.161
Language 0.177 0.246 0.192
Task-Positive 0.064 0.135 0.145

Table 4: Distribution of informative voxels among four
brain networks for various Multi-View models

We also observe that DMN and Language net-
work voxels are higher in the sentence view than
in the word cloud view. Compared to the model
trained on WP view, the distribution of voxels
among the four brain networks shows that the
model trained on sentence view has a higher per-
centage of voxels among the Language, DMN, and
Task-positive networks and lower in the visual net-
work. This is in line with our understanding that
linguistic and attention skills are essential for under-
standing sentence stimuli. As for the model trained
on the WC view compared to other views, we
see that the informative voxels are spread equally
among all the networks. From Fig. 6, we observe
that in all the views, the region corresponding to
language processing in the left hemisphere (Lan-
guage_LH) has higher informative voxels than that
of the right hemisphere (Language_RH). This is
in line with the left hemisphere dominance for lan-
guage processing (Binder et al., 2009). When the
visual network dominates as in the case of WP view,
the majority of these are located in the object pro-
cessing area, followed by face and body processing
areas. In the following, we investigate these two
regions in detail.

In the language network, the distribution of
informative voxels in the sub regions (LPTG,
LMTG, LATG, LFus, LPar, LAngG, LIFGorb,
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Figure 6: Distribution of informative voxels among nine
brain regions for Multi-view Decoding

LIFG, LaMFG, LpMFG, and LmMFG) are shown
in Fig. 7. We find that regions in the posterior
(LPTG), middle (LMTG), and anterior (LATG)
temporal gyrus share a higher percentage of in-
formative voxels than other regions in the language
network, such as those in the middle and inferior
frontal areas. This indicates that the language func-
tions sub-served by the temporal cortex, such as
comprehension and semantic processing, are criti-
cal for processing sentences as well as multi-modal
integration and thus are important for decoding
across multiple views. Further, brain regions in the
angular gyrus (LAngG) and parietal (LPar) each
have >5% of informative voxels. These areas may
be involved in attention, self-processing, and visio-
linguistic integration.

LmMFG LpMFG LaMFG LIFG LIFGorb LAngG LPar LFus LATG LMTG LPTG
0

0.1

0.2
Word + Pictures (WP) Sentences (S) Wordclouds (WC)

Language Sub Regions

%
 I

nf
or

m
at

iv
e 

Vo
xe

ls

Figure 7: Distribution of informative voxels among
eleven sub regions of Language network for MVD

Similarly, we explored the distribution of infor-
mative voxels across sub regions of the visual net-
work, as shown in Fig. 8. In the visual sub regions,
voxels in the bilateral occipital cortex (LLOC and
RLOC) have more informative voxels than in other
sub regions. In particular, the scene regions in the
parahippocampal place area (such as RSC and PPA)
display very few informative voxels, while the bi-
lateral body area (REBA and LEBA) captures more
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Figure 8: Distribution of informative voxels among
sixteen sub regions of Visual network for MVD
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Figure 9: Brain Maps for Multi-View and Cross-View Decoding Tasks (plotted using nilearn Python library).
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Figure 10: Cross-View Decoding Pairwise and Rank
accuracy for Image Captioning (IC), Image Tagging
(IT), Keyword Extraction (KE), and Sentence Formation
(SF) averaged across all the subjects.

voxels in the WP view. Interestingly, activation in
the superior temporal sulcus (RSTS and LSTS) in
all views point out its role in visio-linguistic inte-
gration. Lastly, Fig. 9 shows the spatial distribution
of informative voxels (plotted using nilearn Python
library) across models trained on different forms
of stimuli (WP, S, and WC). The value of each
voxel is the fraction of 11 participants for whom
that voxel was among the 5000 most informative.

5.1.3 Informative Voxel Overlap across Views

Given the distribution of informative voxels across
four brain networks, we further examine how these
voxels from one view overlap with those from an-
other view. Table 5 shows that (1) the language
network has a very high overlap compared to other
brain networks in the WC-S pair. (2) 29% (and
25%) of visual voxels for the S (and WC) view
are shared with visual voxels of the WP view. This
makes sense since a large percentage of informative
voxels for WP view are from the visual network.

DMN Visual Language Task Positive
WP-S 0.24/0.17 0.11/0.29 0.25/0.17 0.09/0.05
WC-S 0.25/0.16 0.25/0.20 0.30/0.22 0.07/0.07
WP-WC 0.14/0.16 0.08/0.25 0.15/0.15 0.06/0.03

Table 5: For each pair of views and each brain network,
we show coverage ratios (second task on first/first task
on second) of the voxels.
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Figure 11: CVD Pairwise (PW) and Rank (R) accuracy
for IC, IT, KE and SF tasks. Each colored dot represents
a subject. The bar plot shows averages.

IC IT SF KE
DMN 0.114 0.067 0.152 0.214
Visual 0.572 0.736 0.154 0.236
Language 0.116 0.081 0.182 0.275
Task Positive 0.045 0.007 0.141 0.118

Table 6: Distribution of informative voxels among four
brain networks for all 4 CVD Tasks.

5.2 Cross-View Decoding
5.2.1 Pairwise and Rank Accuracy Results
Fig. 10 illustrates pairwise and rank accuracy
for Image Captioning (IC), Image Tagging (IT),
Sentence Formation (SF), and Keyword Extrac-
tion (KE). Subject wise results are reported in
Fig. 11. We observe that (1) our proposed BERT
embedding-based method is much better compared
to the “chance-level” baseline with random target
vectors. (2) For all the four tasks, pairwise accu-
racy is ∼80%, and rank-based accuracy is ∼70%
(except for SF), which shows that CVD is possible
with good accuracy.

5.2.2 Cognitive Insights based on Distribution
of Informative Voxels
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Figure 12: Distribution of informative voxels among
nine brain regions for CVD tasks.
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Figure 13: Distribution of informative voxels among 11
sub regions of Language network for CVD tasks.
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Figure 14: Distribution of informative voxels among 16
sub regions of Visual network for CVD tasks.

Fig. 12 shows the distribution of informative
voxels among nine brain regions across all four
tasks. As expected, a high percentage of visual
voxels are involved in IC and IT tasks, and a high
percentage of language voxels are involved in the
SF and KE tasks, especially in the left hemisphere.
Further, from Table 6, we observe that IC involves
relatively higher language voxels compared to IT.
This could be because generating a caption involves
a higher level of language (sequence) skills than
generating a set of keywords.

To further investigate the informative voxel dis-
tribution across Language and Visual networks, we
display the sub region voxels distribution for the
Language network in Fig. 13, and for the Visual net-
work in Fig. 14. In all the tasks, the left hemisphere
language network activation is dominated by activ-
ity in the temporal gyrus (middle: LMTG and pos-
terior: LPTG) but more in the KE task. This clearly
demonstrates the importance of language compre-
hension and semantic process common across the
cross-view tasks. Further, the common activation
in the angular gyrus (LAG) in all tasks points out
the role of visio-linguistic integration critical for
all the tasks. The activation profile of the vision
network, in contrast, shows distinct activation dif-
ferences across the tasks (IC & IT vs. KE & SF).
IC and IT tasks are related to a higher proportion
of informative voxels in the primary visual regions
in the lateral occipital areas (LLOC, RLOC) and
bilateral extrastriate body-related areas (REBA and
LEBA). Domination of activation in the vision net-
work in captioning and tagging tasks (IC and IT)
as compared to predominantly sentence processing

based tasks (KE and SF) is along expected lines.
DMN Visual Language Task Positive

IC-IT 0.27/0.44 0.70/0.54 0.32/0.45 0.07/0.32
IC-KE 0.31/0.17 0.11/0.27 0.28/0.12 0.12/0.05
IC-SF 0.16/0.12 0.07/0.25 0.14/0.09 0.08/0.03
IT-KE 0.27/0.08 0.08/0.25 0.22/0.07 0.05/0.01
IT-SF 0.13/0.05 0.06/0.27 0.10/0.05 0.04/0.00
KE-SF 0.19/0.26 0.20/0.29 0.22/0.32 0.09/0.08

Table 7: For each pair of CVD tasks and each brain net-
work, we show coverage ratios (second task on first/first
task on second) of the voxels.

The brain maps (see Fig. 9) corresponding to the
IC and IT tasks clearly activate the visual cortex
and the temporal cortex, the areas known for visual
processing and object identification. On the other
hand, the brain maps of KE and SF exhibit diffuse
activation that includes the temporal and frontal
regions known to be related to the sentence seman-
tics. None of the maps show a left-hemisphere bias,
which is often found in such semantic-related maps.
Lack of frontal-lobe activation and the concentra-
tion of informative voxels in the sensory cortex
suggest that the cross-view embedding may rely on
some non-abstract domain-specific encoding rather
than higher-level semantic concept encoding.

5.2.3 Informative Voxel Overlap across Tasks

Given the distribution of informative voxels across
four brain networks, we further examine how these
voxels from one task overlap with those from an-
other task. Table 7 shows that (1) Many voxels
overlap across different brain networks for IC and
IT tasks. This is expected since the two tasks are
very related. Interestingly, 44% of DMN voxels
needed for IT are shared with IC. Similarly, as high
as 70% of visual voxels needed for IC are shared
with IT. (2) Similarly, KE and SF share a very good
overlap across different brain networks, which is
expected given the textual nature of the two tasks.

6 Conclusion

We studied brain decoding in the context of zero-
shot multi-view concept decoding and cross-view
decoding tasks. We studied four cross-view decod-
ing tasks: image captioning, image tagging, sen-
tence formation, and keyword extraction. We show
that cross-view decoding is feasible with good ac-
curacy. Brain network distribution analysis reveals
insights about the importance of various parts of
the brain for each of these tasks.
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7 Ethical Statement

We reused publicly available Pereira dataset, down-
loadable from https://osf.io/crwz7/, for
this work. Please read their terms of use3 for more
details. We did not collect any new dataset. We do
not foresee any harmful uses of this technology.
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Abstract
Brain encoding aims at reconstructing fMRI
brain activity given a stimulus. Earlier neu-
ral encoding models focused on brain encod-
ing for single-mode stimuli: visual (pretrained
CNNs) or text (pretrained language models).
Few recent papers have also obtained sepa-
rate visual and text representation models and
performed late-fusion using simple heuristics.
However, the human brain perceives the en-
vironment using information from multiple
modalities, and previous works have not ex-
plored the co-attentive multi-modal encoding
for visual and text reasoning. This paper sys-
tematically explores image and multi-modal
Transformers’ efficacy for brain encoding. Ex-
tensive experiments on two popular datasets,
BOLD5000 and Pereira, provide the follow-
ing insights. (1) We find that VisualBERT, a
multi-modal Transformer, significantly outper-
forms previously proposed single-mode CNNs,
image Transformers, and other previously pro-
posed multi-modal models, thereby establish-
ing new state-of-the-art. (2) The regions such
as LPTG, LMTG, LIFG, and STS, which have
dual functionalities for language and vision,
have a higher correlation with multi-modal
models, which reinforces the fact that these
models are good at mimicking the human brain
behavior. (3) The supremacy of visio-linguistic
models raises the question of whether the re-
sponses elicited in the visual regions are af-
fected implicitly by linguistic processing even
when passively viewing images. Future fMRI
tasks can verify this computational insight in
an appropriate experimental setting. We make
our code publicly available1.

1 Introduction

Brain encoding aims at constructing neural brain
activity recordings given an input stimulus. The
two most studied forms of stimuli include vision
and language. Since discovering of the relation-
ship between language/visual stimuli and functions

1https://tinyurl.com/VLBEncoding

of brain networks (Constable et al., 2004; Thirion
et al., 2006), researchers have been interested in
understanding how the neural encoding models pre-
dict the fMRI (functional magnetic resonance imag-
ing) brain activity. Recently, several brain encod-
ing models were developed to (i) understand the
ventral stream in biological vision (Yamins et al.,
2014; Kietzmann et al., 2019; Bao et al., 2020)
and (ii) study higher-level cognition like language
processing (Gauthier and Levy, 2019; Schrimpf
et al., 2020a; Schwartz et al., 2019). Previous work
has mainly focused on independently understand-
ing vision and text stimuli. However, the biologi-
cal systems perceive the world by simultaneously
processing high-dimensional inputs from diverse
modalities such as vision, auditory, touch, and pro-
prioception (Jaegle et al., 2021). In particular, how
the brain effectively processes and provides its vi-
sual understanding through natural language and
vice versa is still an open question in neuroscience.

Earlier studies mainly were related to neural
encoding models that predict brain activity using
representations of single-mode stimuli: visual or
text. Convolutional neural networks (CNNs) were
known to encode semantics from visual stimuli ef-
fectively. Interestingly, intermediate layers in deep
CNNs trained on the ImageNet (Deng et al., 2009)
categorization task can partially account for how
neurons in intermediate layers of the visual system
respond to any given image (Yamins et al., 2013,
2014; Güçlü and van Gerven, 2015; Yamins and
DiCarlo, 2016; Wang et al., 2019). However, more
recent and deeper CNNs did not further improve
on measures of brain-likeness, even though their
ImageNet performance has vastly increased (Rus-
sakovsky et al., 2015). Recently, Kubilius et al.
(2019) proposed a shallow recurrent anatomical
network, CORnet, which provided state-of-the-
art results on the Brain-score (Schrimpf et al.,
2020b) benchmark. Similar to CNN based vi-
sual encoding models, various studies leveraged
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Fig. 1: Logical architecture of the proposed approach: We use features from image/multi-modal Transformers (like
ViT, VisualBERT, and LXMERT) as input to the regression model to predict the fMRI activations for different brain
regions. We evaluate the brain encoding results by computing 2V2 accuracy and Pearson correlation between actual
and predicted activations. We also perform layer-wise correlation analysis between transformer layers and brain
regions.

neural models like deep recurrent neural networks
(RNNs), Transformer (Vaswani et al., 2017) based
language models such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and GPT-
2 (Radford et al., 2019) to predict the brain activ-
ity corresponding to semantic vectors of linguistic
items, including words, phrases, sentences, and
paragraphs (Gauthier and Levy, 2019; Schrimpf
et al., 2020a).

Brain encoding for more brain regions is vital
since input stimuli elicit diverse and distributed
representations in the brain. These activation re-
sponses could be internally repurposed for several
other brain tasks. Although previous neural encod-
ing models have demonstrated promising results
for processing one of the two brain regions (visual
cortex V4 and prefrontal cortex IT), more efforts
are needed to improve brain encoding for other
parts of the brain. Further, previous works manu-
ally choose2 particular CNN layers, whose activa-
tions were used for predicting brain activity spe-
cific to the datasets they work with (Kubilius et al.,
2019). Applying such methods to other datasets
will need dataset-specific, time-consuming manual
identification of the best layer. We observe in our
experiments that using last layer activations from
VisualBERT leads to the best accuracy.

Unlike previous studies, which focus on single-
modality (visual or language stimuli), some authors
demonstrated that multi-modal models formed by
combining text-based distributional information
with visual representations provide a better proxy

2Quoting from (Kubilius et al., 2019): “After testing every
layer on both V4 and IT, we report the model’s score as the
score of the best layer per region.”

for human-like intelligence (Anderson et al., 2015;
Oota et al., 2019). However, these methods ex-
tract representations from each mode separately
(image features from CNNs and text features from
pretrained embeddings) and then perform a simple
late-fusion. Thus, they cannot effectively exploit se-
mantic correspondence across the two modes at dif-
ferent levels. Such late-fusion-based multi-modal
models are the closest to our work, and our experi-
ments show that our models outperform them.

Recently, Transformer-based models were found
to be very effective than CNNs, in all language and
image-related tasks (Devlin et al., 2019). Image-
based transformer models like ViT (Dosovitskiy
et al., 2020), DEiT (Touvron et al., 2021), and
BEiT (Bao et al., 2021) have been shown to pro-
vide excellent results compared to traditional CNNs
on image classification tasks. Also, multi-modal
Transformers like VisualBERT (Li et al., 2019),
LXMERT (Tan and Bansal, 2019), and CLIP (Rad-
ford et al., 2021) have shown excellent results on
visio-linguistic tasks like visual question answer-
ing, visual common-sense reasoning. Inspired by
the success of language, image, and multi-modal
Transformers, we build multi-modal transformer
models to learn the joint representations of image
content and natural language and use them for brain
encoding. Overall, in this work, we investigate
whether image-based and multi-modal Transform-
ers can accurately perform fMRI encoding on the
whole brain. Fig. 1 illustrates our method for brain
encoding.

Specifically, we make the following contribu-
tions to this paper. (1) We present state-of-the-art
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brain encoding results using multi-modal Trans-
formers. We also study the effectiveness of our
models in a cross-data setting. (2) Our approach
generalizes the use of Transformer-based architec-
tures, removing the need to manually select specific
layers as in existing CNN-based fMRI encoding
architectures. (3) We uncover several cognitive in-
sights about the association between fMRI voxels
and representations of multi-modal/image Trans-
formers and CNNs.

2 Brain Imaging Datasets

The following datasets are popularly used in the
literature for studying brain encoding: Vim-1 (Kay
et al., 2008), Harry Potter (Wehbe et al., 2014;
Pereira et al., 2018), BOLD5000 (Chang et al.,
2019), Algonauts (Cichy et al., 2019), and SS-
fMRI (Beliy et al., 2019). Vim-1 has only black
and white images, is only related to object recog-
nition, and is subsumed by BOLD5000. SS-fMRI
is smaller and very similar to BOLD5000. The
Harry Potter dataset does not have images. Lastly,
fMRIs have not been made publicly available for
the Algonauts dataset. Hence, we experiment
with BOLD5000 and Pereira Pereira et al. (2018)
datasets in this work.
BOLD5000: BOLD5000 dataset was collected
from four subjects where three subjects viewed
5254 natural images (ImageNet: 2051, COCO:
2135, Scenes: 1068) while fMRIs were acquired.
The fourth subject was shown 3108 images only.
Details of the visual stimuli and fMRI protocols of
the dataset have been discussed in (Chang et al.,
2019). We briefly summarize the details of the
dataset in Table 1. The data covers five visual areas
in the human visual cortex, i.e., the early visual area
(EarlyVis); object-related areas such as the lateral
occipital complex (LOC); and scene related areas
such as the occipital place area (OPA), the parahip-
pocampal place area (PPA), and the retrosplenial
complex (RSC). Each image also has correspond-
ing text labels: ImageNet has a few out of 1000
possible tags per image, COCO has five captions
per image, and Scenes have one out of 250 possible
categories per image.
Pereira: For the Pereira dataset Pereira et al.
(2018), participants were shown a concept word
and a picture to observe brain activation when par-
ticipants retrieved relevant meaning using visual in-
formation. Sixteen subjects were presented images
(six per concept) corresponding to 180 concepts

(abstract + concrete), while fMRIs were acquired.
Out of 180 concepts, 116 are concrete, and oth-
ers are abstract. Here, we augmented the image
captions using the concept word associated with
each image in the picture view. As in (Pereira
et al., 2018), we focused on nine brain regions cor-
responding to four brain networks: Default Mode
Network (DMN) (linked to the functionality of se-
mantic processing), Language Network (related to
language processing, understanding, word mean-
ing, and sentence comprehension, Task Positive
Network (related to attention, salience informa-
tion), and Visual Network (related to the processing
of visual objects, object recognition).

We show number of instances and voxel dis-
tribution across various brain regions for the
BOLD5000 and Pereira datasets in Tables 1 and 2
respectively.

Number of Voxels in Each ROI
ROIs→ PPA LOC EarlyVis OPA RSC
↓Subjects #Instances LH RH LH RH LH RH LH RH LH RH
Subject-1 5254 131 200 152 190 210 285 101 187 86 143
Subject-2 5254 172 198 327 561 254 241 85 95 59 278
Subject-3 5254 112 161 430 597 522 696 187 205 78 116
Subject-4 3108 157 187 455 417 408 356 279 335 51 142

Table 1: BOLD5000 Dataset Statistics. LH=Left Hemi-
sphere. RH=Right Hemisphere.

Number of Voxels in Each ROI
ROIs→ Language Vision DMN Task Positive
↓Subj LH RH Body Face Object Scene Vision RH LH
P01 5265 6172 3774 4963 8085 4141 12829 17190 35120
M01 5716 5561 3934 4246 7357 3606 12075 17000 34582
M02 4930 5861 3873 4782 7552 3173 11729 15070 30594
M03 3616 4247 2838 3459 5956 2822 9074 12555 24486
M04 5906 5401 3867 4803 7812 3602 12278 18011 34024
M05 4607 4837 2961 4023 6609 3135 10417 14096 28642
M06 4993 5099 3424 4374 7300 4058 11986 16289 30109
M07 5629 5001 4190 4993 8617 3721 12454 17020 30408
M08 5083 5062 2624 4082 6463 3503 10439 14950 29972
M09 3513 3650 2876 3343 5992 2815 9003 12469 25167
M10 5458 5581 3232 4844 7445 3474 11530 16424 29400
M13 4963 4811 2675 4008 5809 3323 9848 14489 30608
M15 5315 6141 4112 4941 8323 3496 12383 15995 31610
M16 4726 5534 4141 4669 8060 4142 12503 15104 31758
M17 5854 5698 4416 4801 8831 4521 13829 16764 37463

Table 2: Pereira Dataset Statistics. LH=Left Hemi-
sphere. RH=Right Hemisphere.

3 Task Descriptions

We train fMRI encoding models using Ridge re-
gression on stimuli representations obtained using
various models for both datasets, as shown in Fig. 1.
The main goal of each fMRI encoder model is to
predict fMRI voxel values for each brain region
given stimuli. In all cases, we train a model per sub-
ject separately. Different brain regions are involved
in processing stimuli involving objects and scenes.
Similarly, some regions specialize in understand-
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ing vision inputs while others interpret linguistic
stimuli better.

To evaluate the generalizability of our models
across objects vs. scenes understanding, we also
perform cross-data experiments where the train im-
ages belong to one sub-dataset, and the test images
belong to the other sub-dataset. Thus, for each sub-
ject, we perform (1) three same-sub-dataset train-
test experiments and (2) six cross-sub-dataset train-
test experiments.
Full dataset fMRI Encoding: Whenever we train
and test on the same dataset, we follow K-fold
(K=10) cross-validation. All the data samples from
K-1 folds were used for training, and the model
was tested on samples of the left-out fold.
Cross-data fMRI Encoding: In the BOLD5000
dataset, we have three sub-datasets: COCO, Im-
ageNet, and Scenes. ImageNet images mainly
contain objects. Scenes images are about natural
scenes, while COCO images relate to both objects
and scenes. For each of the three sub-datasets, we
perform K-fold (K=10) cross-validation within the
sub-dataset.

4 Methodology

We trained a ridge regression-based encoding
model to predict the fMRI brain activity associ-
ated with the stimuli representation for each brain
region. Each voxel value is predicted using a sepa-
rate ridge regression model. Formally, we encode
the stimuli as X ∈ RN×D and brain region voxels
Y ∈ RN×V , where N denotes the number of train-
ing examples, D denotes the dimension of input
stimuli representation, and V denotes the number
of voxels in a particular region. Although ridge
regression is a very naïve way of modeling, it has
been the most popular brain encoding technique in
this line of work. We plan to experiment with other
forms of regression methods in the future.

The input stimuli representation can be obtained
using any of the following models: (i) pretrained
CNNs, (ii) pretrained text Transformers (iii) im-
age Transformers, (iv) late-fusion models, or (v)
multi-modal Transformers. The ridge regression
objective function for the ith example is given as
follows.

f(Xi) = min
W
∥Yi −XiW∥2F + λ∥W∥2F

Here, W are the learnable weight parameters, ∥.∥F
denotes the Frobenius norm, and λ > 0 is a tun-
able hyper-parameter representing the regulariza-
tion weight. λ was tuned on a small disjoint valida-

tion set obtained from the training.
Next, we discuss different input stimuli repre-

sentation methods. Pretrained CNNs and Image
Transformers encode image stimuli only, while Pre-
trained text Transformers encode text stimuli only.
Late fusion models and Multi-modal Transformers
encode both text and image stimuli.
Pretrained CNNs: Inspired by the Algo-
nauts challenge (Cichy et al., 2019), we
extract the layer-wise features from differ-
ent pretrained CNN models such as VG-
GNet19 (Simonyan and Zisserman, 2014) (Max-
Pool1, MaxPool2, MaxPool3, MaxPool4, Max-
Pool5, FC6, FC7, FC8), ResNet50 (He et al.,
2016) (Block1, Block2, Block3, Block4, FC), In-
ceptionV2ResNet (Szegedy et al., 2017) (Conv2D5,
Conv2D50, Conv2D100, Conv2D150, Conv2D200,
Conv2D_7b), and EfficientNetB5 (Tan and
Le, 2019) (Conv2D2, Conv2D8, Conv2D16,
Conv2D24, FC), and use them for predicting fMRI
brain activity. We use adaptive average pooling on
each layer to get features for each image.
Pretrained text Transformers: RoBERTa (Liu
et al., 2019) builds on BERT’s language masking
strategy and has been shown to outperform several
other text models on the popular GLUE NLP bench-
mark. We use the average-pooled representation3

from RoBERTa to encode text stimuli.
Image Transformers: We used three image Trans-
formers: Vision Transformer (ViT), Data Effi-
cient Image Transformer (DEiT), and Bidirectional
Encoder representation from Image Transformer
(BEiT). Given an image, image Transformers out-
put two representations: pooled and patches. We
experiment with both representations.
Late-fusion models: In these models, the
stimuli representation is obtained as a concate-
nation of image stimuli encoding obtained from
pretrained CNNs and text stimuli encoding
obtained from pretrained text Transformers. Thus,
we experiment with these late-fusion models:
VGGNet19+RoBERTa, ResNet50+RoBERTa,
InceptionV2ResNet+RoBERTa and Efficient-
NetB5+RoBERTa. These models do not
incorporate real information fusion but do
concatenation across modalities.
Multi-modal Transformers: We experiment
with these multi-modal Transformer models:
Contrastive Language-Image Pre-training (CLIP),

3Average-pooled representation gave us better results com-
pared to using the CLS representation.
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Fig. 2: BOLD5000 Results: Pearson correlation coefficient (top figure) and 2V2 (bottom figure) between predicted
and actual responses across different brain regions using various models. Results are averaged across all participants.
VisualBERT performs the best.

Learning Cross-Modality Encoder Representations
from Transformers (LXMERT), and VisualBERT.
These Transformers take both image and text stim-
uli as input and output a joint visio-linguistic
representation. Specifically, the image input for
these models comprises region proposals as well
as bounding box regression features extracted from
Faster R-CNN (Ren et al., 2015) as input fea-
tures. These models incorporate information fusion
across modalities at different levels of processing
using co-attention and hence are expected to result
in high-quality visio-linguistic representations.
Hyper-parameter Settings: We used sklearn’s
ridge-regression with default parameters, 10-fold
cross-validation, Stochastic-Average-Gradient De-
scent Optimizer, Huggingface for Transformer
models, MSE loss function, and L2-decay (λ) as
1.0. We used Word-Piece tokenizer for the lin-
guistic Transformer input and Faster-RCNN (Ren
et al., 2015) for extracting region proposals. All
experiments were conducted on a machine with 1
NVIDIA GEFORCE-GTX GPU with 16GB GPU
RAM. We make our code publicly available1.

5 Experiments

5.1 Evaluation Metrics

We evaluate our models using popular brain encod-
ing evaluation metrics described in the following.

Given a subject and a brain region, let N be the
number of samples. Let {Yi}Ni=1 and {Ŷi}Ni=1 de-
note the actual and predicted voxel value vectors for
the ith sample. Thus, Y ∈ RN×V and Ŷ ∈ RN×V
where V is the number of voxels in that region.

2V2 Accuracy =

1

NC2

N−1∑

i=1

N∑

j=i+1

I[{cosD(Yi, Ŷi) + cosD(Yj , Ŷj)}

< {cosD(Yi, Ŷj) + cosD(Yj , Ŷi)}]
where cosD is the cosine distance function. I[c] is
an indicator function such that I[c] = 1 if c is true,
else it is 0. The higher the 2V2 accuracy, the better.
Pearson Correlation (PC) is computed as
PC= 1

N

∑n
i=1 corr[Yi, Ŷi] where corr is the

correlation function.

5.2 Do multi-modal Transformers outperform
other models?

Unfortunately, no previous work uses image Trans-
formers or multi-modal Transformers for brain en-
coding. StepEnCog (Oota et al., 2019) is a late-
fusion method, but it has a different setting where
the model expects voxel values per brain slice
rather than per brain region. Besides performing ex-
tensive evaluation using a large variety of models,
we also compare our results with those obtained
by two previously proposed baselines that lever-
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Fig. 3: Pereira Results: Pearson correlation coefficient (top figure) and 2V2 (bottom figure) between predicted and
actual responses across different brain regions using a variety of models. Results are averaged across all participants.
VisualBERT performs the best.

age pretrained CNN models: (Blauch et al., 2019)
and (Wang et al., 2019) which use VGGNet.

We present the 2V2 accuracy and Pearson cor-
relation results for models trained with differ-
ent input representations (extracted from the best-
performing layer of every pretrained CNN model
and the last output layer of the Transformer model)
on the two datasets: BOLD5000 and Pereira in
Figs. 2 and 3, respectively. We also compare the re-
sults using many intermediate layer activations (not
just the best) for CNN models and the last layer of
Transformer models in Figs. 9 and 10 in the Ap-
pendix. Further, we also compare the results using
all intermediate layer activations for Transformer
models in Figs. 11 and 12 in the Appendix.
BOLD5000: We make the following observations
from Fig. 2: (1) On both 2V2 accuracy and Pear-
son correlation, VisualBERT is better across all
the models. (2) Other multi-modal Transformers
such as LXMERT and CLIP perform as good as
pretrained CNNs. We observed that image Trans-
formers perform worse than pretrained CNNs. Late
fusion models and RoBERTa has the least perfor-
mance. (3) Late visual areas such as OPA (scene-
related) and LOC (object-related) display a higher
Pearson correlation with multi-modal Transform-
ers, which is in line with the visual processing hier-
archy. A higher correlation with all the visual brain
ROIs with multi-modal Transformers demonstrates

the power of jointly encoding visual and language
information. (4) The patch representation of image
Transformers shows an improved 2V2 accuracy
and Pearson correlation compared to the Pooled
representation. (5) Both InceptionV2ResNet and
ResNet-50 have better performance among uni-
modality models.

In order to estimate the statistical significance
of the performance differences, we performed post
hoc pairwise comparisons for all the subjects across
the five brain ROIs. We found that VisualBERT
is significantly better than LXMERT (second-best
multi-modal Transformer) and InceptionV2ResNet
(best pretrained CNN) for all ROIs except EarlyVis.
Lastly, InceptionV2ResNet is significantly better
than BEiT (best image Transformer) for all ROIs.
Detailed p-values are mentioned in Table 3.

Pereira: We make the following observations from
Fig. 3: (1) Similar to BOLD5000, multi-modal
Transformers such as VisualBERT and LXMERT
perform better. (2) Lateral visual areas such as

Models compared PPA LOC EarlyVis OPA RSC
VisualBERT vs.
LXMERT

0.044* 0.004* 0.076 0.049* 0.029*

VisualBERT vs. Incep-
tionV2ResNet

0.049* 0.032* 0.521 0.041* 0.0354*

InceptionV2ResNet vs.
BEiT

0.041* 0.003* 0.014* 0.188 0.203

Table 3: p-values for post hoc pairwise comparisons for
BOLD5000 dataset
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Fig. 4: MAE between actual and predicted voxels: (a) left figure is zoomed on V2 and V3 brain areas for VisualBERT
on BOLD5000 subject 1. Note that V1 and V2 are also called EarlyVis areas, while V3 is also called LOC area. (b)
the right figure is for VisualBERT on the Pereira dataset subject 2.

Models compared Language_LH Language_RH Vision_Body Vision_Face Vision_Object Vision_Scene Vision DMN TP
VisualBERT vs.
LXMERT

0.046* 0.039* 0.052 0.048* 0.046* 0.045* 0.047* 0.040* 0.035*

VisualBERT vs. ResNet 0.049* 0.038* 0.048* 0.048* 0.078 0.217 0.048* 0.046* 0.049*
ResNet vs. ViT 0.009* 0.043* 0.041* 0.047* 0.046* 0.042* 0.038* 0.022* 0.023*

Table 4: p-values for post hoc pairwise comparisons for Pereira dataset

Vision_Object, Vision_Body, Vision_Face, and Vi-
sion areas display higher correlation with multi-
modal Transformers. A higher correlation with all
the visual brain regions, language regions, DMN,
and TP with multi-modal Transformers, demon-
strates that the alignment of visual-language under-
standing helps.

In order to estimate the statistical significance
of the performance differences, we performed
post hoc pairwise comparisons for all the subjects
across the nine brain ROIs. We found that Vi-
sualBERT is statistically significantly better than
LXMERT (second-best multi-modal Transformer)
for all ROIs except Vision_Body. Further, Vi-
sualBERT is statistically significantly better than
ResNet (best pretrained CNN) for all ROIs except
Vision_Object and Vision_Scene. Lastly, ResNet
is statistically significantly better than ViT (best
image Transformer) for all ROIs. Detailed p-values
are mentioned in Table 4.

As further analysis, in Fig. 4, we show the mean
absolute error (MAE) between the actual and pre-
dicted voxels across brain regions using Visual-
BERT. Comparing with similar brain charts for
other models (shown in Figs. 13 and 14 in the Ap-
pendix), we notice that the error magnitudes are
very small for the majority of the voxels. We ob-
serve that MAE values are relatively higher for
EarlyVis areas and lowest for OPA for BOLD5000.

5.3 Model size vs. Efficacy Comparison

We plot a comparison of model size with Pear-
son Correlation averaged across all subjects for
BOLD5000 in Fig. 5. Compared to LXMERT, Vi-
sualBERT is not just more accurate but also much
smaller. VisualBERT is much more accurate than
image Transformers while being almost the same
size. Lastly, pretrained CNNs are smaller than
VisualBERT but are less accurate even when the
particular layer activations are cherry-picked. We
observe similar trends for the Pereira dataset, as
shown in Fig. 6. We hope that smaller models can
be helpful for faster fine-tuning of new datasets.

5.4 Single Stream vs. Dual Stream Models

Since single stream (VisualBERT) and dual-stream
(CLIP, LXMERT, and ViLBERT) models fuse lan-
guage and images at different times. We report

Fig. 5: BOLD5000: #Parameters vs. Avg Pearson Corr.
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Fig. 6: Pereira: #Parameters vs. Avg Pearson Corr.

the comparison of single-stream vs. dual-stream
with Pearson Correlation (PC) averaged across all
subjects for BOLD5000 in Table 5 (top). Com-
pared to dual-stream models (CLIP, LXMERT, and
ViLBERT), VisualBERT showcases much better
performance.

5.5 Is Linguistic Information Important in
Multi-Modal Transformers?

Is the improvement in prediction performance of
vision+language models over vision-only models
due to the added linguistic information? For exam-
ple, what happens if we randomize the language
captions in BOLD5000, feed the model the correct
image with a wrong caption, and train the encoding
model to predict the correct image-elicited brain
recording? We report the comparison of multi-
modal transformers with correct caption vs. ran-
dom caption using Pearson Correlation averaged
across all subjects for BOLD5000 in Table 5. We
observe that linguistic information is crucial to bet-
ter performance with multi-modal Transformers.

5.6 Cross-Data fMRI Encoding

Fig. 7 illustrates PC for cross-data encoding on
BOLD5000 using three multi-modal Transform-

Models compared PPA LOC EarlyVis OPA RSC
CLIP 0.095 0.134 0.083 0.139 0.082
LXMERT 0.106 0.142 0.102 0.146 0.087
VisualBERT 0.141 0.187 0.128 0.188 0.12
ViLBERT 0.057 0.078 0.052 0.087 0.045
CLIP-Random 0.020 0.024 0.033 0.031 0.002
LXMERT-Random 0.035 0.041 0.035 0.049 0.029
VisualBERT-Random 0.072 0.102 0.062 0.109 0.060
ViLBERT-Random 0.018 0.011 0.013 0.017 0.017

Table 5: Single stream (VisualBERT) vs. Dual
stream (CLIP, LXMERT, and ViLBERT) models with
BOLD5000: Pearson correlation computed between
predicted and actual responses across different brain
regions. Results are averaged across all participants.
VisualBERT performs the best. The bottom four rows
display the model performance when a random-caption
is provided with the correct image as input.

ers (VisualBERT, LXMERT, and CLIP). We also
show results for a baseline method (Blauch et al.,
2019). We observe that (1) multi-modal Transform-
ers outperform the baseline results across all the
five brain regions for cross-data tasks. (2) PC score
is higher for the model trained on COCO and tested
on ImageNet in the object-selective visual area
LOC (lateral occipital cortex), which makes sense
since COCO has many objects. (3) Similarly, the
scene-selective brain areas such as RSC and OPA
have a higher correlation for the COCO-Scenes,
ImageNet-Scenes, and Scenes-Scenes tasks. (4)
EarlyVisual areas have a lower correlation than
other brain regions across the three tasks. (5) Over-
all, the models trained on COCO or ImageNet
report a higher correlation than those trained on
Scenes.

6 Cognitive Insights: Does Language
Influence Vision?

BOLD5000 dataset comprises brain responses from
visual areas (early visual, scene-related, and object-
related) when visual stimuli are presented to the
subjects. Although only visual information is
present in the stimuli, it is conceivable that par-
ticipants implicitly invoke appropriate linguistic
representations that, in turn, influence visual pro-
cessing (Lupyan et al., 2020). Thus, it is not surpris-
ing that computational models such as multi-modal
Transformers (VisualBERT, and LXMERT) that
learn a joint representation of language and vision
show superior performance on the ‘purely’ visual
response data in BOLD5000 (see Figs. 2 and 4(a)).

Further, the performance of these models is
naturally good in the case when text and image
are shown to the participants, and whole-brain re-
sponses are captured as in the case of the Pereira
dataset (see Figs. 3 and 4(b)). We further investi-
gate the role of different sub-ROIs of the language
and visual networks. For this, we compare the pre-
dicted responses of the best encoding model, i.e.,
VisualBERT, with the ground truth (observed) re-
sponses of various language and visual sub-regions
(see Fig 8). We notice that the classical language ar-
eas in the temporal gyrus (LMTG and LPTG) and
the inferior frontal gyrus (LIFG) are more accu-
rately predicted than the other sub ROIs of the lan-
guage network. These sub-ROIs (LMTG, LPTG,
and LIFG) are highly involved in language compre-
hension and semantic processing. Interestingly, the
second-best correlations are seen for multi-modal
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Fig. 7: Cross-Data Results for BOLD5000 dataset. VB=VisualBERT, LX=LXMERT, CL=CLIP, B=Baseline (Blauch
et al., 2019), INC=InceptionV2ResNet. CC=Train and test on COCO, CI=Train on COCO and test on ImageNet,
CS=Train on COCO and test on Scenes.)

integration areas in the temporo-parietal regions
(LAngG, LFus, LPar) and higher-order processing
and attention-related areas in the middle frontal
region (MFG).

In the visual sub-ROIs (Fig. 8), we observe that
the superior temporal sulcus (bilaterally but more
in the left: LSTS) is more accurately predicted than
other sub-ROIs. Surprisingly, LSTS is implicated
in various social processes, ranging from language
perception to simulating the mental processes of
others. Also, the sub-ROIs such as LLOC, LFFA,
LOFA, and LEBA have a higher correlation. These
areas are involved in more visual-related functions
such as object recognition, face perception, face
recognition, and body recognition.

Based on the intuition from the computational
experiments, we make the following testable pre-
diction for future fMRI experiments. Instead of a
passive viewing task, if participants were to per-
form a naming task/decision-making task on the
objects/scenes, we expect to see more pronounced
and focused activation in the visual areas during the
language-based task compared to passive viewing.
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Fig. 8: Pearson correlation results across the Language
Sub ROIs and Visual Sub ROIs for Pereira dataset, be-
tween predicted and true responses across different brain
regions using a variety of models. Results are averaged
across all participants and are obtained using Visual-
BERT.

7 Conclusion

We studied the effectiveness of multi-modal mod-
eling for brain encoding. We found that Visual-
BERT, which jointly encodes text and visual input
using cross-modal attention at multiple levels, per-
forms the best. Our experiments on BOLD5000
and Pereira datasets lead to interesting cognitive
insights. These insights indicate that fMRIs reveal
reliable responses in scenes and object selection
visual brain areas, which shows that cross-view
decoding tasks like image captioning or image tag-
ging are practically possible with reasonable accu-
racy. We plan to explore this as part of future work.
We also plan to explore correlations between brain
voxel space and representational feature space in
the future. Finally, the combined strength of joint
(audio, vision, and text) modalities remains to be
investigated.

8 Ethical Statement

We reused publicly available datasets for this
work: BOLD5000 and Pereira. We did not col-
lect any new dataset. BOLD5000 dataset, ex-
cept the stimulus images and their original anno-
tations, is licensed under a Creative Commons 0
License. Please read their terms of use4 for more
details. Pereira dataset can be downloaded from
https://osf.io/crwz7/. Please read their
terms of use5 for more details. We do not foresee
any harmful uses of this technology.

4https://bold5000-dataset.github.io/
website/terms.html

5https://github.com/
CenterForOpenScience/cos.io/blob/master/
TERMS_OF_USE.md
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A Do multi-modal Transformers perform
better encoding compared to
intermediate layer representations
from pretrained CNNs?

We present the 2V2 accuracy and Pearson corre-
lation for models trained with representations ex-
tracted from the last layer of multi-modal Trans-
formers and all the lower to higher-level represen-
tations from pretrained CNNs on the two datasets:
BOLD5000 and Pereira in Figs. 9 and 10, respec-
tively.

We make the following observations from Fig. 9:
(1) With respect to 2V2 and Pearson correlation, the
multi-modal Transformer, VisualBERT, performs
better than all the internal representations of pre-
trained CNNs. (2) In the pretrained CNNs, inter-
mediate blocks have better correlation scores as
compared to lower or higher level layer representa-
tions. (3) Other multi-modal Transformers, CLIP,
and LXMERT, have marginal improvements over
all the models except intermediate blocks such as
Conv2D150 in InceptionV2ResNet.

We make the following observations from
Fig. 10: (1) With respect to 2V2 and Pearson
correlation, the multi-modal Transformer, Visual-
BERT, performs better than all the internal rep-
resentations of pretrained CNNs. (2) Similar to
BOLD5000, the intermediate blocks have better
correlation scores as compared to lower or higher
level layer representations in the pretrained CNNs
on Pereira Dataset. (3) Other multi-modal Trans-
former, LXMERT, have equal performance with
intermediate blocks of each pretrained CNN model.

B Do multi-modal Transformers perform
better encoding in their layers?

Given the hierarchical processing of visual or
visual-language information across the Trans-
former layers, we further examine how these Trans-
former layers encode fMRI brain activity using
image and mulit-modal Transformers. We present
the layer-wise encoding performance results on
two datasets: BOLD5000 and Pereira in Figs. 11
and 12, respectively.

We make the following observations from
Fig. 11: (i) The multi-modal Transformer, Visu-
alBERT, have consistent performance across the
layers from 1 to 12. (ii) The LXMERT model
have marginal decreasing performance from inter-
mediate layer (L7) to higher layers. (iii) The im-
age Transformers have higher Pearson correlation

for early visual areas in the lower layers whereas
higher visual areas such as LOC, OPA, and PPA
have an increasing correlation in higher layers. (iv)
This clearly indicates that the hierarchy of process-
ing of visual stimulus in the human brain is similar
to image Transformer layers.

We make the following observations from
Fig. 12: (i) The multi-modal Transformers, Visu-
alBERT, have consistent performance across the
layers from 1 to 12. (ii) The LXMERT model have
marginal decreasing performance from lower to
higher layers. (iii) The image Transformer, ViT,
has higher Pearson correlation for early visual ar-
eas in the lower layers whereas higher visual areas
such as Vision_Body, Vision_Face, and Vision_Obj
have an increasing correlation in higher layers.

C Brain Maps for various models for
BOLD5000 Dataset

Fig. 13 shows mean absolute errors (MAE) be-
tween actual and predicted voxels for various mod-
els on the BOLD5000 dataset. Notice that the
magnitude of errors is much higher for a major-
ity of voxels, compared to that with the Visual-
BERT model as shown in Fig. 4(a). Also, the multi-
modal Transformers, VisualBERT (MAE range:
0 to 0.0181) and LXMERT (MAE range: 0 to
0.0188), have lower MAE compared to both im-
age Transformers (MAE range: 0 to 0.02) and pre-
trained CNNs (MAE range: 0 to 0.0236).

D Brain Maps for various models for
Pereira Dataset

Fig. 14 shows mean absolute errors (MAE) be-
tween actual and predicted voxels for various mod-
els on the Pereira dataset. Notice that the magni-
tude of errors is much higher for a majority of vox-
els, compared to that with the VisualBERT model
as shown in Fig. 14(a). Also, the multi-modal
Transformers, VisualBERT and LXMERT, and In-
ceptionV2ResNet+Conv2D150 have lower MAE
compared to both image Transformers and other
pretrained CNNs.
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Fig. 9: BOLD5000: 2V2 (top Fig.) and Pearson correlation coefficient (bottom Fig.) between predicted and
true responses across different brain regions using variety of models. Results are averaged across all participants.
Pretrained CNN results are shown for all layers while multi-modal Transformer results are shown for last layers
only.
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Fig. 10: Pereira dataset: 2V2 (top Fig.) and Pearson correlation coefficient (bottom Fig.) between predicted and
true responses across different brain regions using variety of models. Results are averaged across all participants.
Pretrained CNN results are shown for all layers while multi-modal Transformer results are shown for last layers
only.
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Fig. 11: BOLD5000: 2V2 (left) and Pearson correlation coefficient (right) between predicted and true responses
across different brain regions using Transformer models. Results are averaged across all participants. The results
are shown for all layers of image and multi-modal Transformers. Note that LXMERT has only 9 layers.
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Fig. 12: Pereira: 2V2 (left) and Pearson correlation coefficient (right) between predicted and true responses across
different brain regions using Transformer models. Results are averaged across all participants. The results are
shown for all layers of image and multi-modal Transformers. Note that LXMERT has only 9 layers.
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Fig. 13: MAE between actual and predicted voxels zoomed on V2 and V3 brain areas for various models. Note that
V1 and V2 are also called EarlyVis area, while V3 is also called LOC area.
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Fig. 14: MAE between actual and predicted voxels zoomed on V2 and V3 brain areas for various models. Note that
V1 and V2 are also called EarlyVis area, while V3 is also called LOC area.
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Abstract

Verbal communication is companied by rich
non-verbal signals. The usage of gestures,
poses, and facial expressions facilitates the
information transmission in verbal channel.
However, few computational studies have ex-
plored the non-verbal channels with finer theo-
retical lens. We extract gesture representations
from monologue video data and train neural se-
quential models, in order to study the degree
to which non-verbal signals can effectively
transmit information. We focus on examining
whether the gestures demonstrate the similar
pattern of entropy rate constancy (ERC) found
in words, as predicted by Information Theory.
Positive results are shown to support the as-
sumption, which leads to the conclusion that
speakers indeed use simple gestures to convey
information that enhances verbal communica-
tion, and the production of non-verbal informa-
tion is rationally organized.

1 Introduction

Communication is a multi-modal process, in which
information from verbal and non-verbal modalities
are mixed into one channel. It has been revealed
from a long history of empirical studies that speak-
ers’ expression in visual modality, including ges-
tures, body poses, eye contacts and other types of
non-verbal behaviors, play critical roles in face-to-
face communication, as they add subtle information
that is hard to convey in verbal language (Pease and
Pease, 2008; Krauss et al., 1996). However, it re-
mains an untested idea to view these sparse and
random non-verbal signals as a formal communica-
tion channel that transmits “serious” information,
which has seldom been validated by computational
studies. A key missing step is to explore whether
the non-verbal information can be quantified.

The questions that are worth further investigation
include: How rich is the information contained in
these non-verbal channels? What are their relation-
ships to verbal information? Can we understand the

meanings of different gestures, poses, and motions
embedded in spontaneous language in a similar
way to understanding word meanings? The goal of
this study is to take a simple yet necessary first step
approaching the above questions, by examining a
basic Information Theoretic property of gestures
that comes along with verbal language. Some pre-
liminary but prospective results are presented.

2 Related Work

2.1 Gestures as non-verbal communication

There is vast literature on the connection between
gesture and language in human communication.
Gestures, defined as “the spontaneous hand move-
ments produced in rhythm with speech” (Clough
and Duff, 2020) naturally co-occur with spoken
language. According to the thorough survey from
(Clough and Duff, 2020), the communication func-
tion of gestures is one of the main focus of
early studies. McNeill (1992) has classified ges-
tures into two categories, representative and non-
representative, in which the former has clearer se-
mantic meanings (e.g., depicting objects and de-
scribing locations), while the latter refers to the
brief, repetitive movements that has little substan-
tive meanings.

2.2 Non-verbal communication in natural
language processing

The recent advances of deep neural network-based
machine learning techniques provide new methods
to understand the non-verbal components of human
communication. Many existing works primarily fo-
cus on using multi-modal features as clues for a
variety of inference tasks, including video content
understanding and summarization (Li et al., 2020;
Bertasius et al., 2021), as well as more specific
ones such as predicting the shared attention among
speakers (Fan et al., 2018) and semantic-aware ac-
tion segmentation (Gavrilyuk et al., 2018; Xu et al.,
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2019). More recently, models that include mul-
tiple channels have been developed to character-
ize context-situated human interactions (Fan et al.,
2021). Advances in representation learning have
enabled researchers to study theoretical questions
with the tools of multi-modal language models.

2.3 Information theories
Information theory (Shannon, 1948) has been
broadly applied in computational linguistics as the
theoretic background for the probabilistic models
of language. This also provides philosophical ex-
planations to a broad spectrum of linguistic phe-
nomena. One example that interests researchers the
most is the assumption/principle of entropy rate
constancy (ERC). Under this assumption, commu-
nication in any form (written or spoken) should
optimize the rate of information transmission rate
by keeping the overall entropy rate constant.

In natural language, entropy refers to the pre-
dictability of words (tokens, syllables) estimated
with probabilistic language models. Genzel and
Charniak (2002, 2003) first formulated a method to
examine ERC for written language, by decompos-
ing the entropy term into local and global entropy:

H(s|context) = H(s|L) − I(s, C|L) (1)

in which s can be any symbol whose probability
can be estimated, such as a word, punctuation, or
sentence. C and L refer to the global and local
contexts for s, among which C is purely concep-
tual and only L can be operationally defined. By
ERC, the left term in eq. (1) should remain an in-
variant against the position of s. It results in an
expectation that the first term on the right H(s|L)
should increase with the position of s, because the
second term I(s, C|L), i.e., the mutual information
between s and itself global context should always
decrease (see Genzel and Charniak (2003)’s paper).
Xu and Reitter (2016, 2017, 2018) has confirmed
the pattern in spoken language.

Now, the goal of this study is to extend the ap-
plication scope of ERC to the non-verbal realm.
If the s in eq. (1) represents any symbol that car-
ries information, for example, a gesture, then the
same increase pattern should be observed within
a sequence of gestures. ERC can be interpreted
as a “rational” strategy for the information sender
(speaker) because it requires less predictable con-
tent (higher local entropy) to occur at a later po-
sition within the message, which maximizes the

likelihood for the receiver (listener) to successfully
decode information with the least effort. The ques-
tion here is to examine whether we “speak” ratio-
nally by gestures.

3 Question and Hypothesis

Our hypothesis is: non-verbal communication also
conforms to the principle of ERC. To test it, we
approximate the local entropy (H(s|L)) of non-
verbal “tokens” using the perplexity scores ob-
tained from neural sequential models, and correlate
it with the utterances’ relative positions within the
monologue data. If we can find that H(s|L) in-
creases with utterance position, is similar to verbal
language, then it supports the hypothesis.

4 Methods

4.1 Data collection and pre-processing

The video data that we use is collected from several
YouTube channels. All the videos are carefully
selected based on the standards that each video
must contain only one speaker who faces in front
of the camera, and whose hands must be visible.
12 videos from 5 hosts are collected, and the mean
duration is 15.0 minutes (SD = 7.0).

The pre-processing step is to extract the full-
body landmark points of the speaker, in prepara-
tion for the next gesture representation step. For
this task, we use BlazePose (Bazarevsky et al.,
2020), which is a lightweight convolutional neural
network-based pose estimation model provided in
MediaPipe1. It outputs 33 pose landmarks of the
human body detected in each frame.

4.2 Extract gesture labels

The next step is to represent gestures so that they
can be encoded by the neural sequential model.
There are various ways of creating continuous rep-
resentations for gestures/poses, such as the pose
embedding technique (Mori et al., 2015). However,
it is difficult to obtain a set of gestures that are
universal across speakers using such continuous
representations. Thus, for the purpose of this study,
we extract discrete gesture labels, by categorizing
the hands positions into grids. We divide the front
space of speaker into 3 × 3 regions, i.e., indicated
by integer numbers from 1 to 9. Each hand is
assigned a number based on which region it falls
into. Next, we use the combination of both hands

1https://google.github.io/mediapipe/

135



to create a unique gesture label for that frame. For
example, as shown in fig. 1b, the speaker’s left and
right hands fall into region 9 and 8, which deter-
mines its gesture label as <72>. For convenience,
we use one integer ID (instead of the merged ID
connected by a hyphen) to denote each of these 81
gestures: <1>, <2>, ..., <81>. The total number
of gesture labels is 9 × 9 = 81. Note that 81 is the
theoretical maximum number, and the actual count
depends on the size of data.

4.3 Prepare gesture sequences

After obtaining the discrete gesture labels for all
video frames, we prepare the gesture sequences
based on the time stamped text transcript for each
video. We use the automatically generated text
transcript in .vtt format, which contains the start
and end time stamps for each word token in the
subtitle. See the following example:

<00:00:00.510><c> let’s</c>
<00:00:00.780><c> talk</c>
<00:00:01.020><c> about</c>

in which each the start time stamp is appended
to the head, and the start time for a token is the end
time for the previous token. In this example, the
token talk elapses from 0.780 to 1.020 in seconds.
Multiplying the time stamps with frame rate (24
FPS) returns that the word elapses from the 19th
frame to the 24th. Then, for each frame within the
range of [19, 24], we extract a gesture label using
the method described in Section 4.2, resulting in a
sequence of gesture labels, [g19, g20, . . . , g24]. This
sequence represents a continuous change of ges-
tures during the articulation of the corresponding
word, which in most cases, consists of identical ges-
ture labels. Therefore, we select the median label g
among [g19, . . . , g24] as a compact representation.

For a sentence of N wordss, we obtain the me-
dian gesture label for each token, {g1, g2, . . . , gN}.
Despite the down sampling effect of using the me-
dian label, there is still large amount of repetition
in the resulted sequence. For example, in the first
row of table 1, the median gesture label is the same
<24> for the first 6 tokens, which means that the
speaker did not move his/her hands during that pe-
riod of time. It makes sense that we treat these
repeated gesture labels just as one label. By merg-
ing the 6 repeats of <24> and 2 repeats of <36>,
we get a compressed gesture sequence, {<36>,
<24>}, which means the speaker has made two

distinct gestures during the utterance. For each
median gesture sequence of length N , we obtain
its compressed version {ĝ1, ĝ2, . . . , ĝN ′}, where
N ′ ≤ N . See table 1 for examples.

5

1 2 3

7 8 9

4 6

(a) Both hands in region 5 →
label <25>.

8 9

1 2 3

7

4 65

(b) Right hand in region 9, left
in 8 → label <72>.

Figure 1: Create discrete gesture labels based on land-
mark positions of both hands.

4.4 Sequential models for gesture input
We implement two neural network-based models
for the sequential modeling tasks, using LSTM
(Hochreiter and Schmidhuber, 1997) and Trans-
former (Vaswani et al., 2017) encoders. The model
takes as input a sequence of gesture labels (median
g or compressed ĝ) and convert them to the em-
bedding space. Then the gesture embeddings are
fed to the LSTM/Transformer encoders to capture
the temporal dependency between gestures, which
compute a dense representation for gestures at each
time step. Lastly, the dense representation at the
previous time step is used to predict the gesture
label at the next time step using a softmax output.
The model architecture is shown in fig. 2.

<63> <63> <63> <36> <72> <64> <64><63> <63> <63> <72> <72> <72> <72>

… …

encoder

unit

encoder

unit

encoder

unit

encoder

unit LSTM/Transformer encoder

!𝑦 for predicting the next gesture

Gesture embedding

recommendThere is one thing that I confidenceevery

… …

… that will help theirboost

Softmax

Gesture 

sequence: 

Word 

sequence: 

Figure 2: Architecture of the sequential model for en-
coding gesture input and next time-step prediction.

The learning task is to predict the next gesture
label, i.e., minimizing the negative log probability:

NLL = −
T∑

t=1

log P (gt|g1, g2, . . . , gt−1) (2)

in which g1, . . . , gt−1 is all the gesture tokens be-
fore gt within the same utterance. An exponential
conversion of eq. (2) leads to the local entropy term,
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Word tokens in utterance Median gesture g of each token Compressed gesture sequence ĝ

going to give you
a flatter look glossy

<24> <24> <24> <24> <24>
<24> <36> <36> (N = 8) <24> <36> (N ′ = 2)

now this is really
your preference

<40> <72> <64> <64> <40>
<40> (N = 6) <40> <72> <64> <40> (N ′ = 4)

I think most of us
can get on board

<63> <63> <63> <63> <63>
<63> <63> <63> <63> (N = 9) <63> (N ′ = 1)

Table 1: Examples of gesture sequences. Integers wrapped by “<>” are gesture labels. For each sequence, its
compressed version is shorter in length: N ′ < N

.

H(g|L) = exp(NLL), which is the target variable
of our interest. This learning task is no different
from conventional language modeling tasks, except
that the input here is non-verbal tokens. Detailed
model hyper-parameters and training procedures
are included in appendix A.1.

5 Results

5.1 Summary of data

53 videos are collected from 4 YouTube channels
(i.e., 4 distinct speakers). The average length of
videos is 723.7 seconds (SD = 438.1). There are
17.9K lines of automatically generated subtitles
consisting of 121.5K word tokens in total. 81 dis-
tinct gesture labels are extracted. The total count
of the median gesture label is the same as that of
the word tokens (121.5K). The compressed gesture
labels has a much smaller total count 26120.

The top 5 most frequent gesture labels are <63>,
<56>, <64>, <72> and <36>. The frequency
distribution of gesture labels roughly follows the
Zipf’s law, which is a common distribution pattern
in natural language data (Zipf, 2013; Piantadosi,
2014) (See fig. 3). Gesture label <63> is the domi-
nant gesture throughout the data. It is gestural po-
sition where the speaker’s right hand (from his/her
perspective) is in region 7, and left hand region 9.

5.2 Examine hypothesis: local entropy
increases with utterance position

The local entropy of each gesture sequence (median
and compressed, respectively) is plotted against the
corresponding utterance’s position in fig. 4, which
shows a visible increasing trend.

We use linear models to verify the correla-
tions between local entropy and utterance posi-
tion. It is confirmed that utterance position is a
significant predictor of local entropy with posi-
tive β coefficients. For raw gestures, the betas
are smaller: βLSTM = 1.6 × 10−3 (p < .05),
βTrm = 2.3 × 10−3 (p < .01); for compressed ges-
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Figure 3: Frequency count against the rank gesture la-
bels in logarithm transformed scales. Top three most
frequent gesture labels annotated.

tures: βLSTM = 0.097, βTrm = 0.093 (p < .001).
Therefore, the increase of local entropy is statisti-
cally significant. It supports our hypothesis.

5.3 Analysis of typical gesture
We select three highly frequent gesture labels
<63>, <56> and <72>, and show some typical
screenshots in fig. 5. In these gestures, the posi-
tions of both hands are at the mid-lower position
in front of the body. Gesture <63> has two hands
evenly distant from the center, while gesture <56>
captures a movement to the right and gesture <72>
to the left. In general, these are very commonly
seen patterns in daily communication.

6 Discussion and Conclusions

Our results confirms that the way gestures are used
as a complementary non-verbal communication
side-channel follows the principle of entropy rate
constancy (ERC) in Information Theory. It means
that the information encoded in hand gestures, al-
beit subtle, is actually organized in a rational way
that enhances the decoding/understanding of infor-
mation from a receiver’s perspective. The main
contribution is that we extend the scope of ERC to
realm of non-verbal communication.
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Figure 4: Local entropy of gesture sequences increases
with utterance position. 95% CIs are shown.

There are two explanations for what causes the
observed entropy increasing pattern: First, more
rare gestures (higher entropy) near the later stage of
communication; Second, the entropy for the same
gesture also increases during the communication.
While the latter indicates a more sophisticated and
interesting theory about gesture usage, both expla-
nations requires further investigation.

While the motivation of this study is theoretical,
but we believe the idea of extracting discrete ges-
ture labels from spontaneous monologue/dialogue
also has potentials in application. For instance, into
better analysis of speaker intensions, sentiments,

Video ID: 0iApML4l0lI Time stamp: 00:00:07.200
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4 65
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97
Gesture label: <63> Word token: “because”
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Gesture label: <63> Word token: “reason”
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Gesture label: <63> Word token: “enough”
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(a) Gesture label <63>
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(b) Gesture label <56>
Video ID: 0iApML4l0lI Time stamp: 00:05:05.120
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Gesture label: <72> Word token: “sending”
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Video ID: FMIm8w2n7KM Time stamp: 00:07:36.540
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Video ID: TgOmBWdK84k Time stamp: 00:05:24.880
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Gesture label: <72> Word token: “energy”
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98
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(c) Gesture label <72>

Figure 5: Typical screenshots for the top frequent ges-
ture labels <63>, <56> and <72>.

and other implicit messages. For future work, we
plan to use a larger dataset with a higher variety
in genres (public speech, etc.) and examine more
advanced representation method. such as continu-
ous embedding and clustering. It is also interesting
to interpret the semantic meanings of gestures and
other non-verbal features by examining their se-
mantic distance from words/utterances in vector
space. More specifically, non-parametric cluster-
ing algorithms can be used to identify distinct the
actions or poses of a person, which provides a way
to extract more general gesture/action/pose labels
for training.
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A Appendix

A.1 Hyper-parameters and training
procedures

For the LSTM-based encoder, embedding size is
300, hidden size is 200, number of layers is 2;
a fully connected layer is used as the decoder
connecting the encoder output and the softmax;
dropout layers of probability 0.2 are applied to the
outputs of both the encoder and decoder. For the
Transformer-based encoder, model size is 20, hid-
den size is 100, number of layers is 2; same fully
connected linear decoder is used; dropout layers of
probability 0.5 are used at the position encoding,
and each transformer encoder layer. To enable the
one-direction (left to right) modeling effect, a mask
matrix (of 0 and 1s) in an upper-triangular shape is
used together with each input sequence.

Model parameters are randomly initialized.
Training is done within 40 epochs, with batch size
of 20, at and initial learning rate lr = 0.05. SGD
optimizer with default momentum is used for train-
ing the LSTM model; Adam optimizer is used for
training the Transformer model. Data are split to
80% for training and 20% for testing. After each
training epoch, evaluation is done over the test
set, and the model with lowest perplexity scores is
saved as the best one.

Models are implemented with PyTorch.
torch.nn.CrossEntropyLoss module is
used as the loss function. The mathematical
meaning of the output from this function is the
negative logarithm likelihood (NLL in eq. (2)), and
thus we compute the exponential values of the
output to get the local entropy scores. The entropy
scores used in the plot and statistical analysis are
obtained from both train and test sets.
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Abstract
This article revisits statistical relationships
across Romance cognates between lexical se-
mantic shift and six intra-linguistic variables,
such as frequency and polysemy. Cognates are
words that are derived from a common etymon,
in this case, a Latin ancestor. Despite their
shared etymology, some cognate pairs have ex-
perienced semantic shift. The degree of se-
mantic shift is quantified using cosine distance
between the cognates’ corresponding word em-
beddings. In the previous literature, frequency
and polysemy have been reported to be cor-
related with semantic shift; however, the un-
derstanding of their effects needs revision be-
cause of various methodological defects. In
the present study, we perform regression anal-
ysis under improved experimental conditions,
and demonstrate a genuine negative effect of
frequency and positive effect of polysemy on
semantic shift. Furthermore, we reveal that
morphologically complex etyma are more re-
sistant to semantic shift and that the cognates
that have been in use over a longer timespan are
prone to greater shift in meaning. These find-
ings add to our understanding of the historical
process of semantic change.

1 Introduction

The Romance languages, such as present-day
French, Italian, and Spanish, are sister languages
which evolved from Vulgar Latin (Alkire and
Rosen, 2010). They share numerous cognates, that
is, words derived from a common etymon: for in-
stance, the Latin verb HABERE “to have” developed
into avoir (fr), avere (it), and haber (es).1 Whereas
French and Italian still maintain the original mean-
ing “to have”, it is no longer used as such in Span-
ish, where it is primarily used as an auxiliary to

1Hereinafter, “fr” stands for French, “it” for Italian, and
“es” for Spanish. Latin words are put in small capitals.

form perfect tense, while the notion of possession
is generally expressed with tener. Likewise, the
meanings and functions of some cognate pairs have
diverged despite their common etymology. In the
current paper, we investigate factors at play in se-
mantic shift2 using a computational approach.

In recent years, the analysis of diachronic se-
mantic change using computational methods, inter
alia, distributed representation of words, has gained
increasing research interest (Dubossarsky et al.,
2016; Hamilton et al., 2016; Takamura et al., 2017;
Kutuzov et al., 2018; Uban et al., 2019; Hengchen
et al., 2021; Kutuzov et al., 2021; Montariol and Al-
lauzen, 2021; Schlechtweg et al., 2021; Tahmasebi
et al., 2021; Uban et al., 2021a). The degree of lex-
ical semantic shift has been conventionally quanti-
fied using cosine distance between relevant words,
represented in the form of embeddings. A num-
ber of researchers have investigated the relation-
ships between semantic change and frequency, pol-
ysemy, or prototypicality (Dubossarsky et al., 2015;
Hamilton et al., 2016; Uban et al., 2019, 2021a).
However, these effects have since been called into
question (Dubossarsky et al., 2017).

Following this line of research, the present study
revisits statistical relationships across Romance
cognates between semantic shift and six intra-
linguistic variables, including frequency and poly-
semy. For this purpose, we apply regression analy-
sis and compare partial regression coefficients of
individual variables while controlling for the others.
By employing cognates, we are able to investigate
whether particular trends hold across all explored
languages. For the sake of simplicity, we assume

2We refer to the resultant difference in meaning between
cognates as shift, while the term change is reserved for transi-
tion of a word’s sense to another as well as for more general
usage.
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that their common ancestor, Latin, was uniform
at the primitive stage before it developed into the
Romance languages, although in reality Latin was
not immune to variation across time, geography, or
social stratification (Adams, 2007, 2013).

Our principal contributions are three: (i) amend-
ing flaws in the past research, we demonstrate that
the law of conformity and the law of innovation
(Hamilton et al., 2016) both hold for Romance cog-
nates; (ii) exploring hitherto unexplored attributes
of Latin etyma, we reveal that cognates whose et-
yma are morphologically more complex are more
resistant to semantic shift; and (iii) considering
temporal gap between words in lexical incorpora-
tion to a language, we show that words that have
been in use over a longer timespan are prone to
diverge more in meaning.

The rest of the paper is organized as follows. In
Section 2, we review related research and point out
its shortcomings. Section 3 describes our improved
methodology. In Section 4 we present the experi-
mental setup and results, followed by discussion in
Section 5. Section 6 concludes the paper, pointing
to future research directions.

2 Related Work

Two studies deserve special mention; both of them
tackled statistical analysis of diachronic seman-
tic change using word embeddings. A milestone
in the field was Hamilton et al. (2016), who ana-
lyzed historical corpora in several languages and
proposed two laws concerning semantic change:
one is the law of conformity, according to which
frequency is negatively correlated with semantic
change; the other is the law of innovation, stating
that polysemy is positively correlated with seman-
tic change. However, these laws, as well as that
of prototypicality (Dubossarsky et al., 2015), were
revised (Dubossarsky et al., 2017) on the grounds
that (i) the effect of frequency turned up even un-
der control conditions, where no correlation was to
be expected; and (ii) polysemy and prototypicality
as they were defined by that research were highly
collinear with frequency.

Inquiry into Romance cognates was first pur-
sued by Uban et al. (2019) and later extended in
Uban et al. (2021a). In contrast to Hamilton et al.
(2016), Uban et al. (2019, 2021a) witnessed a posi-
tive correlation between frequency and degree of
semantic shift; words that underwent more seman-
tic shift tend to be more frequent. However, the ex-

periments were conducted under non-comparable
setups. Unlike Hamilton et al. (2016), who used
cosine distance, Uban et al. (2019, 2021a) quan-
tified the magnitude of semantic shift with what
they denominated “falseness score.” This value
was calculated by subtracting the similarity score
for a non-cognate translation pair (e.g., long “long”
(fr) – largo “id.” (es)) from the one for a cog-
nate pair judged as false friends (e.g., long (fr) –
luengo “id. (erudite wording)” (es), both tracing
back to LONGU)3. False friend refers to either of
two cognates in different languages that have di-
verged semantically despite their common etymol-
ogy (Penny, 2002). Focusing on false friend pairs
inevitably translates into exclusion of the cognate
pairs that preserve commonality in meaning; this
would prevent us from gaining insights on general
tendencies across overall cognate pairs. In addition,
the use of falseness scores was hardly justified. Ac-
cordingly, it is imperative to settle the dispute over
the diametric effect of frequency by implementing
experiments under identical conditions, such that
genuine cognate pairs as well as false friend pairs
are covered.

Furthermore, there is still room for improvement.
First, Uban et al. (2021a) defined polysemy of a
Romance word as the number of synsets in Word-
Net that the word is part of. Thus, the polysemy
score of a cognate pair was computed as the av-
erage of number of synsets for the two words in
question. However, if the ultimate goal is to de-
termine factors that could induce semantic shift,
it is more appropriate to consider polysemy prior
to eventual semantic shift. Second, Uban et al.
(2021a) leveraged publicly available multilingual
word embeddings (Conneau et al., 2018). Notwith-
standing their usefulness, however, there is a risk
that the embeddings are undesirably affected by the
alignment algorithm employed; if a cognate pair is
aligned in advance, then it naturally becomes more
similar than it should be.

3 Methods

3.1 Overview

To circumvent the series of methodological defects
adduced above, we took the following measures.
(i) In the same spirit as Hamilton et al. (2016), we
examined all the cognate pairs and measured de-
gree of semantic shift with cosine distance score.

3Id. (idem) represents having parallel sense to its counter-
part.
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Then we applied linear regression analysis to ex-
plore statistical relationships between the degree
of semantic shift and six intra-linguistic variables
specified in Section 4.2. (ii) Independently from
frequency counts, we defined polysemy as the num-
ber of word sense entries of Latin etyma in a dic-
tionary. The use of Latin polysemy has the added
advantage of yielding a polysemy score for the
earliest stage of evolution, prior to semantic shift.
(iii) Before undertaking our main analysis, we en-
sured the absence of a priori correlation between
frequency and semantic affinity for random word
pairs, which are presumed to present low similarity.
(iv) We created our own cognates list from scratch
to procure fit-for-purpose vector representation of
words, as described in the next section4.

3.2 Construction of multilingual embeddings
We limited the scope of study to three Romance
languages: French, Italian, and Spanish. We used
a Wikipedia dump as of December 2018 to ac-
quire static word embeddings separately in each
language. The relative uniformity of Wikipedia
in style and topic is a suitable property to ensure,
as much as possible, that any difference stem-
ming from comparison of cognate embeddings
is imputable to the nature thereof instead of the
corpus on which training was performed. Data
cleaning was carried out using Wiki-cirrus5

for French and Wikiextractor6 for Italian and
Spanish. Then we performed lemmatization with
TreeTagger7. No distinction was made between
homonyms, due to their paucity.

Target words for analysis were restricted to
nouns, adjectives, and verbs. To prevent low fre-
quency from disturbing the reliability of the ob-
tained embeddings, we opted to focus on highly
frequent cognates. Specifically, a separate cog-
nates list was created for each word class, such that
at least one member of a cognate set was found
among the most frequent 300 lemmas in any of
the three languages; it was possible for a cognate
to rank among the top 300 in one language while
its counterpart did not in another. The number of
cognate pairs added up to 487 for nouns, 477 for
adjectives, and 493 for verbs, although the cognates

4The data are available upon request.
5https://www.mediawiki.org/wiki/Help:

CirrusSearch
6https://github.com/attardi/

wikiextractor
7https://www.cis.lmu.de/~schmid/tools/

TreeTagger/

were not always found in all three languages. Cog-
nate identification was implemented by looking
into etymological description in dictionaries8.

Unilingual embeddings were learned by
word2vec in the gensim library (Řehůřek
and Sojka, 2010)9. The default hyperparam-
eters were adopted, with the exception of
vector_size=600 and min_count=50.
To compare word embeddings in various lan-
guages, we need to align the separately obtained
embeddings in a common cross-lingual vector
space. The alignment was executed using the
supervised method of MUSE (Conneau et al.,
2018)10, that is, the linear mapping proposed by
Mikolov et al. (2013a) with the orthogonality
constraint, such that the sum of the squared errors
across the inter-lingual seed pairs was as low as
possible. The seed pairs with an acknowledged
parallel meaning between the two languages
were retrieved from MUSE bilingual dictionaries
(Conneau et al., 2018)11; the cognate pairs that are
targets of our analysis were eliminated therefrom.
In any combination of languages, seed pairs
amounted to about ten thousand. The choice of
the language onto which the embeddings of other
languages were mapped had marginal effect on
the subsequent analysis. In the following, we
report results obtained from French–Spanish
cognate pairs aligned in French vector space
for illustrative purposes. See Section 5.3 for
discussion regarding different embedding spaces
and language combinations.

3.3 Validation of embeddings

Following the commonplace procedure, the pair-
wise similarity between cognates was defined as the
cosine similarity score between the corresponding
embeddings. Based on the distributional hypothe-
sis (Harris, 1954; Firth, 1957), word embeddings
are claimed to capture lexical meaning to a certain
degree. Before going any further, it is pivotal to
assess the quality of the acquired embeddings to en-
sure the soundness of our principal analysis. To this
end, we conducted the following two experiments.

8French: https://www.cnrtl.fr
Italian: https://www.etimo.it
Spanish: https://dle.rae.es

9https://radimrehurek.com/gensim/
models/word2vec.html

10https://github.com/facebookresearch/
MUSE

11https://github.com/facebookresearch/
MUSE
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Figure 1: Density distribution of pair-wise similarity
scores for ca. 4K genuine seed pairs and 1000K random
word pairs.

First, we analyzed the pair-wise similarity dis-
tribution of the seed pairs that were employed
when aligning word embeddings; it is essential
that they present high similarity scores. For this,
we chose seed pairs each word of which appears
more than ten thousand times in the corpus of the
relevant language. This threshold was set for fear
that the embeddings of infrequent words might be
under-learned. The number of seed pairs selected
amounted to nearly four thousand for any language
pair. The histogram with solid contour line in Fig-
ure 1 illustrates the density distribution of similar-
ity scores for the frequent seed pairs. As expected,
they show relatively high similarity, with mean of
0.66 and standard deviation of 0.15.

Next, we repeated the operation with 100,000
randomly generated pairs from among the seed
words. These random pairs ought to show mini-
mal similarity scores. The histogram with dotted
contour line in Figure 1 illustrates the density dis-
tribution. Unsurprisingly, the mean similarity score
that resulted was low at 0.10, with standard devi-
ation of 0.06. It is worth noting that a similarity
score of 0.1 can arise in our case, even when given
two unrelated words.

Inasmuch as the validity of the obtained embed-
dings is confirmed, we can safely make use of them
on the premise that cosine similarity reflects seman-
tic affinities reasonably, if not completely. Table 1
provides examples of the five most and five least
similar French–Spanish cognate pairs. A smaller
similarity score means a greater degree of semantic
shift, and vice versa.

To make an overall evaluation of the computed
affinity scores, we inspected the proportion of the
cognate pairs that are enumerated in MUSE as

French Spanish Sim.
construire “to construct” constuir “id.” 0.87
provoquer “to provoke” provocar “id.” 0.87

évêque “bishop” obispo “id.” 0.86
détruire “to destroy” destruir “id.” 0.86
féminin “feminine” femenino “id.” 0.86
avoyer “to set saw” aviar “to prepare” 0.05
atteindre “to reach” atañer “to pertain” 0.05

mener “to take” menar “to turn” 0.04
saison “season” sazón “seasoning” 0.02
maire “mayor” mayor “bigger, older” 0.00

Table 1: Most (upper half) and least (lower half) similar
five French–Spanish cognate pairs.

Figure 2: Proportion of cognate pairs enumerated in
MUSE as translation pairs in ten equally divided bins for
respective word classes. The leftmost bin corresponds
to the top 10% translation pairs that are most similar,
the second bin to the following 10%, and so on in the
same way.

translation pairs across ten equally divided bins
for respective parts-of-speech. The result is shown
in Figure 2. The leftmost bin corresponds to the
top 10% translation pairs that are most similar, and
the second bin to the following 10%, continuing
in the same way. We can observe that, moving
rightwards, the drop in proportion goes roughly
in line with decreasing similarity across the word
classes; the most similar cognate pairs are mostly
among the inter-lingual translation pairs, whereas
the dissimilar pairs, for the most part, are outside
of them and thus regarded as false friend pairs.

Moreover, we notice that the proportion varies
across the parts-of-speech. Specifically, the verbs
consistently present the lowest proportion, which
is indicative of this word class being more inclined
to shift, followed by adjectives and nouns. This
tendency partially conforms to the conclusion ar-
rived at by Dubossarsky et al. (2016), except that
they discovered an inverse order between nouns
and adjectives.
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Figure 3: Distribution of cosine distance scores for
French–Spanish cognate pairs in different word classes.

4 Regression Analysis

We applied linear regression analysis to explore
statistical relationships between the degree of se-
mantic shift and six intra-linguistic factors, detailed
below. For the pair-wise scatter plots between the
standardized variables, see Appendix A.

4.1 Dependent variable

The dependent variable DISTrom is the
log-transformed pair-wise cosine dis-
tance score between cognates, defined
as log(distcos(cog1, cog2)) = log(1 −
cos(cog1, cog2)), where cos(cog1, cog2) stands
for cosine similarity of a cognate pair (cog1, cog2).
This variable represents the magnitude of semantic
shift that the cognate pair in question underwent.
Figure 3 illustrates the distribution of cosine
distance scores for French–Spanish cognate pairs
in different word classes. The distribution is
apparently skewed to the right in all classes, with
mean of 0.39 and median of 0.29 for nouns, 0.40
and 0.34 for adjectives, and 0.42 and 0.33 for verbs.
A rather long right tail implies a large number of
dissimilar pairs.

4.2 Independent variables

We established six intra-linguistic factors as inde-
pendent variables. The first three relate to Latin
etyma and the remaining three to Romance descen-
dants. Despite their potential contribution to se-
mantic change, extra-linguistic variables such as
socio-cultural, historical, political, technological
factors as well as language contact were outside
our scope (Penny, 2002; Newman, 2015; Hamilton
et al., 2016; Dubossarsky et al., 2017).

4.2.1 Latin features
We leveraged three features concerning Latin et-
yma: frequency, polysemy, and word length. These
are variables that relate to the phase prior to se-
mantic shift and have been ignored in past studies
(Uban et al., 2019, 2021a). For nouns and adjec-
tives, we deemed the Latin accusative to be the
etymological form, for it is the case from which
Romance descendants are typically derived (Alkire
and Rosen, 2010). As is conventionally done, word-
final -M was omitted if applicable (e.g., we adopted
ANNU for ANNUM “year”). For verbs, the infini-
tive was used for convenience, as the representative
form for Latin as well as for the Romance lan-
guages. With respect to the infinitival form of Latin
deponent verbs (Oniga, 2014), we employed recon-
structed active forms of the corresponding conjuga-
tion class (e.g., JOCARI “to joke” was transformed
into *JOCARE). As for irregular verbs including
ESSE “to be”, FERRE “to carry”, and VELLE “to
want”, we used original infinitival forms.

Frequency of Latin etymon (FREQlat) This is
defined as the log-transformed relative frequency
of the Classical Latin etymon per 10,000 words
retrieved from the online database on classical lan-
guages PhiloLogic412. Even though the Ro-
mance languages did not evolve from Classical
Latin (written language), but Vulgar Latin (spoken
language) (Alkire and Rosen, 2010), since there
was no resource available for the latter, we utilized
the materials at hand on the literary language. The
same applies to other Latin features below.

Latin polysemy (POLYlat) This is defined as the
log-transformed number of word sense entries for
the Latin etymon in the Oxford Latin Dictionary
(Glare, 2012). Note, however, that taking logarithm
did not remedy the right-skewed distribution.

Word length of Latin etymon (LENlat) This is
defined as the number of characters in the Latin
etymon. Longer words tend to be morphologically
more complex due to affixation or derivation, which
in turn helps restrict the semantic range of the base
form. For example, PRAEVIDERE “to foresee”,
which is constructed from a base VIDERE “to see”

12http://artflsrv02.uchicago.edu/
cgi-bin/perseus/LatinFrequency.pl?
author=&title=&genre=&editor=&language=
NOT+English&displaymorethan=10&
displaylessthan=10000000&sortby=
decreasingFreq&searchby=searchbylemma
(as of January 28th, 2021).
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and a prefix PRAE- “ahead”, exhibits a more re-
stricted sense than its base. In fact, the similarity
score between prévoir (fr) and prever (es), derived
from PRAEVIDERE, is as high as 0.72, while it is
0.35 between voir (fr) and ver (es), derived from
VIDERE.

4.2.2 Romance features
The following four variables relate to the phase by
which semantic shift occurred in relevant cases.

Mean frequency of Romance cognate pair
(FREQrom) Defined as the log-transformed har-
monic mean log Harmonic(freqcog1, freqcog2),
where freqw is the relative frequency of a word
w in the corresponding corpus, and cog1 and cog2
are cognate words. We found it more opportune to
use the harmonic mean than the arithmetic mean
in handling average ratio, thanks to its property of
being biased toward the smaller value. The merit of
using the harmonic mean was empirically verified
in the following regression analysis.

To ensure that there is no a priori correlation be-
tween semantic shift and pair-wise mean frequency,
we examined 100,000 randomly generated word
pairs from among the seed words used in aligning
embeddings. As expected, only a negligible corre-
lation was seen, of -0.06, which signifies that our
analysis is practically free from the spurious effect
of frequency (Dubossarsky et al., 2017).

Mean embeddings’ norm in Romance cognate
pairs (NORMrom) This is defined as the arith-
metic mean over the embeddings’ norm of the
words that compose a cognate pair. We took into
account the norm, which is a hitherto ignored at-
tribute of embeddings, with the aim of assessing if
its effect is detected independently from frequency
and polysemy; the algorithm underlying the skip-
gram model with negative sampling (Mikolov et al.,
2013b) entails that the norm of a word embed-
ding grows large when its frequency is high and is
oligosemous, being used consistently in analogous
contexts.

Mean edit distance between Latin etymon and
Romance cognate pair (EDIT) This is defined
as the arithmetic mean over the normalized edit
distances between Latin etymon l and each word
forming a cognate pair (r, r′), as follows:

1

2

(
edit(r, l)
|r|+|l|

2

+
edit(r′, l)
|r′|+|l|

2

)
, (1)

where edit(·) is the unnormalized edit distance,
which is normalized with division by mean word
length between l and r (Levenshtein, 1966), and | · |
represents word length. Although it is desirable to
make phonetic comparisons, we instead quantified
graphical displacement for the sake of simplicity.

We argue that edit distance can be viewed as a
proxy for how long the words have been used in
a language or when they came to form the lan-
guage’s lexica; words with large edit distances
with respect to Latin etymon are regarded as inher-
ited words, which underwent typical phonetic alter-
ations through oral transmission in the respective
descendant languages and thus ended up having
a distinct appearance from their ancestor (Penny,
2002). Conversely, the words with small edit dis-
tances correspond to learned words, which were
relatively recently borrowed into the Romance lan-
guages with minimal phonetic alterations from the
Medieval Latin (Penny, 2002). A dichotomous dis-
tinction between inheritance and recent borrowing
was introduced by Uban et al. (2021b), who made
the distinction by consulting dictionaries. Our nov-
elty consists in quantifying the difference in an
automatic manner using edit distance.

Prior to computing edit distance, all the diacritics
were removed from the vowels. For example, á
and à were both transformed into a. For sake of
simplicity, the consonants were left intact despite
the fact that some characters, such as Spanish ñ and
French ç, did not exist in Latin, and that phonetic
values of some letters are not identical between
Latin and the Romance languages: for instance,
CITARE [k] “to set in motion” in contrast to citar
(es) [T] “to cite”.

Table 2 presents five French–Spanish cognate
pairs with the largest (upper half) and the smallest
(lower half) edit distance scores. We readily no-
tice the aforesaid tendency; the cognate pairs with
the largest edit distances correspond to inherited
words with various modifications, while those with
the smallest edit distances belong to learned vo-
cabulary that virtually maintains its etymological
form.

4.3 Setup

The dataset comprised those cognate pairs that bear
Romance forms in the two languages of interest
and for which information on frequency and pol-
ysemy of the Latin etymon was available; we ig-
nored cognates whose etyma do not trace back to
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Latin French Spanish Dist.
CAPUT “head” chef jefe 1.00

VICE “time” fois vez 0.93
AURU “gold” or oro 0.93
RUSSU “red” roux rojo 0.89

EPISCOPU “bishop” évêque obispo 0.86
BASE “base” base base 0.00

ENORME “enormous” énorme enorme 0.00
SERIE “series” série serie 0.00

CELEBRE “busy” célèbre célebre 0.00
ANIMAL “animal” animal animal 0.00

Table 2: Five French–Spanish cognate pairs with largest
(upper half) and smallest (lower half) edit distances.

Latin. This constraint almost halved the number
of effective cognate pairs, down to 281 for nouns,
243 for adjectives, and 270 for verbs, hence, 794
in total.

Prior to performing regression analysis, all the
variables were standardized to have zero mean and
unit variance, allowing for directly comparing the
scale of regression coefficients. Note that the log-
transformed variables scale according to the power
laws with the degree of semantic shift. We did not
log-transform LENlat, NORMrom, or EDIT, since
these did not exhibit a right-skewed distribution;
nor, at this point, did we distinguish among dif-
ferent word classes. See Section 5.2 for a survey
discriminating them. In spite of a large correlation
of 0.73 between FREQlat and POLYlat, we did not
exclude either one, for their variance inflation fac-
tors were less than three. We implemented model
selection methods in terms of AIC values (Akaike,
1974).

4.4 Results
The best model chosen, which only dropped
NORMrom, is summarized in Table 3. All the re-
tained covariates were statistically significant at
0.05 level except FREQlat

13. Standardized par-
tial regression coefficients turned negative for
FREQrom (-0.54) and LENlat (-0.21), and positive
for POLYlat (0.10) and EDIT (0.13). The adjusted
R-squared of 0.35 means that 35% of the total vari-
ance was accounted for by the model14.

5 Discussion

5.1 Independent variables
Based on the outcome of the regression analysis,
we discuss how individual explanatory variables
correlate with the degree of semantic shift.

13All subsequent significance tests are at p < 0.05.
14Henceforth, adjusted R-squared is abbreviated Adj.R2.

Coef. SE t p > |t|
Intercept 0.00 0.03 0.00 1.00
FREQlat -0.08 0.04 -1.82 0.07
POLYlat 0.10 0.04 2.28 0.02
LENlat -0.21 0.03 -6.29 0.00
FREQrom -0.54 0.03 -18.40 0.00
NORMrom – – – –
EDIT 0.13 0.03 4.07 0.00

Table 3: Results of regression analysis on distance
scores of French–Spanish cognate pairs (N = 794,
Adj.R2 = 0.35). NORMrom was kept out by model
selection methods.

FREQlat This predictor did not result statistically
significant; its effect might have been absorbed by
POLYlat and LENlat, which it is collinear with.

POLYlat A positive coefficient (0.10) denotes that
the cognates with a more polysemous etymon tend
to undergo a larger semantic shift. This finding
agrees with the insights of Hamilton et al. (2016)
and Uban et al. (2019, 2021a) that polysemy is pos-
itively correlated with semantic shift. Nonetheless,
it should be highlighted that this finding hints at a
causal effect, because we exploited the polysemy
at the initial stage of linguistic development. That
said, why polysemy leads to larger semantic shift
requires explanation. We argue that, even when
the rate of semantic change is constant per given
time unit, polysemous words are more likely to di-
gress into diverse directions in each language: for
example, TRAHERE “to drag”, which possessed 22
word sense entries, developed different senses in
the daughter languages: trarre “to draw” (it), traire
(fr) “to milk”, and traer (es) “to bring”. Thus, these
cognates exhibit large distance scores, around 0.85.

LENlat A negative coefficient (-0.21) backs up
our hypothesis that the cognates with a longer Latin
etymon tend to undergo smaller semantic shift. We
conjecture that longer words are less susceptible to
meaning shift, because they tend to have restricted
senses, which indirectly supports the law of inno-
vation (Hamilton et al., 2016). Actually, there is a
negative correlation of -0.34 between word length
and polysemy in Latin (Appendix A).

FREQrom A negative coefficient (-0.54) sustains
the alleged law of conformity (Hamilton et al.,
2016) and, in turn, dismisses the opposite conclu-
sion reached by Uban et al. (2019, 2021a). The
largest absolute coefficient indicates its significant
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contribution to the model’s predictive power.
As to the negative correlation between frequency

and semantic shift, we suppose that frequently used
words are entrenched enough to resist semantic
shift (Bybee, 2015). However, we cannot assert
this with full confidence, because FREQrom relates
to a time point posterior to semantic shift, and so
the observed frequency might well be the fruit of
semantic shift.

It is also noteworthy that Adj.R2 diminished
considerably from 0.35 to 0.11 when using an arith-
metic mean instead of a harmonic mean. The prop-
erty of the harmonic mean of being biased toward
the smaller value could be beneficial in cases where
only one of the cognates has suffered semantic
change, accompanied by considerable variation in
frequency, and where consequently they became
dissimilar.

NORMrom That the model kept out this predictor
implies that its effect is incapable of being detected
independently from frequency and polysemy.

EDIT A positive coefficient (0.13) confirms our
hypothesis that inherited words tend to go through
larger semantic shift.

5.2 Effect of word class

When fitting the model separately for separate word
classes, we found a slight variation inAdj.R2: 0.38
for nouns, 0.31 for adjectives, and 0.49 for verbs.
This unequal behavior might imply that nouns are
more susceptible than verbs, and adjectives more
than nouns, to extra-linguistic factors disregarded
in this study: socio-cultural circumstances, techno-
logical advances, language contact, metaphorical
extensions, to name a few. As to the best mod-
els selected, LENlat and FREQrom were retained
and were statistically significant across the parts-of-
speech, exhibiting comparable coefficients; there-
fore, the effect of these variables appear to be exten-
sive. In contrast, the remaining variables displayed
differing behaviors from one class to another.

5.3 Consequences of aligned embedding
spaces and language combinations

Thus far, for illustrative purposes, we have solely
focused on French–Spanish cognate pairs aligned
in French embedding space. It is indispensable
also to assess the potential consequences that dif-
ferent embedding spaces and language combina-
tions could bring about. There are nine settings in

Embedding space Language pair Adj.R2 N

French–Italian 0.29 812
French French–Spanish 0.35 794

Italian–Spanish 0.35 842
French–Italian 0.29 812

Italian French–Spanish 0.33 794
Italian–Spanish 0.38 842
French–Italian 0.27 812

Spanish French–Spanish 0.35 794
Italian–Spanish 0.39 842

Table 4: Adjusted R-squared for respective language
pairs in different embedding spaces.

total; three language pairs for each of three embed-
ding spaces. A close examination reveals that (i)
different embedding spaces have practically null
effect on the outcome of regression analysis; and
(ii) different language pairings, in turn, slightly af-
fect the composition of the best model, the scale of
regression coefficients, and accordingly Adj.R2.

Table 4 is the summary of Adj.R2 for respective
language pairs in different embedding spaces in
which the alignment was done. It is noteworthy
that, in every embedding space, the score is con-
sistently largest for the Italian–Spanish pair, fol-
lowed by French–Spanish and French–Italian pairs.
This suggests that some unconsidered variables are
more at play for the French–Italian pair than for the
French–Spanish pair, and more for French–Spanish
pair than for Italian–Spanish pair.

Figure 4 depicts radar charts presenting regres-
sion coefficients of the best-fitted model for respec-
tive language pairs. The embeddings were aligned
in the vector space that the legend indicates. A
marker at the origin represents rejection of the vari-
able in question. The dashed circle represents coef-
ficients being equal to zero. The intercept was omit-
ted for having a value almost equal to zero in every
case. Regression analysis was run without parts-of-
speech distinction. The almost overlapping lines
demonstrate that the general trends commented
above hold across the different settings, although
not without exceptions: (i) NORMrom was retained
for Italian–Spanish pairs in any embedding space,
while FREQlat was dropped. Considered in con-
junction, the effects of FREQlat might have been
offset by that of NORMrom, thereby exhibiting a
negative correlation with semantic shift ; and (ii)
EDIT was accidentally dropped in French–Spanish
combinations in Italian embedding space for un-
known reasons.
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Figure 4: Regression coefficients of the best-fitted
model for respective language pairs aligned in different
embedding spaces.

5.4 A posteriori prediction at Latin era

It is an intriguing question how well one can make
prediction on semantic shift. With this objective,
we performed an additional regression analysis ex-
ploiting only Latin features. Model selection was
performed with AIC. As Table 5 shows, FREQlat
and LENlat were retained and became statistically
significant. The fitted coefficients imply that fre-
quent and long Latin etyma tend to undergo less
semantic shift, which directly underpins the law
of conformity and indirectly the law of innovation
(Hamilton et al., 2016), if it is appropriate to asso-
ciate word length with polysemy. Although barely
6% of the variance was explained, we found this

Coef. SE t p > |t|
Intercept 0.00 0.03 0.00 1.00
FREQlat -0.10 0.04 -2.74 0.01
POLYlat – – – –
LENlat -0.27 0.04 -7.10 0.00

Table 5: Results of regression analysis on distance
scores of French–Spanish cognate pairs (N = 794,
Adj.R2 = 0.06). Only Latin features were employed.
POLYlat was kept out by model selection methods.

phenomenon in accordance with the reflection that
“small effects may be a priori more credible than
large ones” (Dubossarsky et al., 2017).

6 Conclusions

In this study, we revisited statistical relationships
between semantic shift and intra-linguistic vari-
ables across the Romance languages. Our principal
contributions are three: (i) we demonstrated that
the law of conformity and the law of innovation
(Hamilton et al., 2016) both hold for Romance cog-
nates by amending flaws in the past research; (ii)
we revealed that cognates whose etyma are mor-
phologically more complex are more resistant to
semantic shift by exploring hitherto unexplored at-
tributes of Latin etyma; and (iii) we showed that
words that have been in use over a longer timespan
are prone to diverge more in meaning by consid-
ering temporal gap in lexical incorporation to a
language.

One limitation of our study is a lack of compar-
ison with Latin. Without it, we would not have a
complete picture of historical semantic change; we
need to understand how much and in what direc-
tion it has evolved. To meet this aim, it is a sine
qua non to obtain Latin embeddings trained upon
Classical Latin sources, thereby allowing for direct
comparisons with the Romance ones. Also, it will
be an interesting extension to elucidate types of se-
mantic change that have occurred in relevant cases
(Kutuzov et al., 2018), such as specialization, gen-
eralization, melioration, and pejoration (Traugott
and Dasher, 2005). In addition, we need to address
qualitative difference in meaning, including typi-
cality, hypernymy, and hyponymy, since we did not
go further in this paper than to define polysemy as
the number of word sense entries in the dictionary.
Such an improvement could be achieved by taking
advantage of information in WordNet.
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A Scatter plot and correlation of the
variables

Figure 5 displays pair-wise scatter plots between
the standardized variables for French–Spanish cog-
nate pairs. On the top right of each panel is shown
Pearson’s correlation coefficient.

Figure 5: Scatter plot and correlation of the standardized
variables for French–Spanish cognate pairs.
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Abstract

Compounding, a prevalent word-formation
process, presents an interesting challenge
for computational models. Indeed, the re-
lations between compounds and their con-
stituents are often complicated. It is par-
ticularly so in Chinese morphology, where
each character is almost simultaneously
bound and free when treated as a mor-
pheme. To model such word-formation
process, we propose the Notch (Nonlinear
Transformation of Character embeddings)
model and the character Jacobians. The
Notch model first learns the non-linear rela-
tions between the constituents and words,
and the character Jacobians further de-
scribe the character’s role in each word.
In a series of experiments, we show that
the Notch model predicts the embeddings
of the real words from their constituents
and helps account for the behavioral data
of the pseudowords. Moreover, we also
demonstrated that character Jacobians re-
flect the characters’ meanings. Taken to-
gether, the Notch model and character Ja-
cobians may provide a new perspective on
studying the word-formation process and
morphology with modern deep learning.

1 Introduction

Recent years have witnessed a growing interest
in modeling the internal semantic dynamics
of compounds. Indeed, compounding is some-
times argued as a language universal, and it
is claimed to be protolinguistic fossils which
modern languages frequently elaborate. Com-
pounds are usually loosely defined as form-
ing words with two independent words, such
as blackboard and pineapple (Libben, 2014;
Bauer, 2009; Jackendoff, 2002). It is apparent
that the number of potential combinations is
already enormous, even in this simplest form
of the two-constituent compound.

The productivity of compounding is par-
ticularly evident in Chinese word-formation.
Due to the debating nature of Chinese word-
hood, there is a vague boundary between word-
forming affix and bound root when treating
a Chinese character (字 zì) as a morpheme
(Huang et al., 2017; Hsieh et al., 2018; Tseng
et al., 2020). There is considerable flexibility
in Chinese characters, where morphemes can
be joined with one another either preceding
or following them. For example, the following
four words all start with the characters which
are the ends of the previous one: 長老 zhǎng
lǎo “elder”,老師 lǎo shī “teacher”,師範 shī fàn
“teacher-training”, 範圍 fàn wéi “area”. The
versatility of characters leads Hoosain (1992)
to describe Chinese text as “a continuous pa-
rade of meaningful individual characters (mor-
pheme)” (see Packard (2000) for a complete
introduction in Chinese morphology).

However, the productivity of Chinese char-
acters is hard to capture by a computational
model. A traditional natural language pipeline
starts with word segmentation, which removes
the sublexical cues (characters) in the first
step. Even for the later distributional seman-
tic model with sub-word information, such as
FastText (Bojanowski et al., 2016), it cannot
accommodate the different meanings carried
by individual Chinese characters. Recent deep
learning models, e.g., BERT (Devlin et al.,
2018), provide contextualized embeddings of
each token. But, as the final representations
are mixed (hence contextualized), it is unclear
how the embeddings could relate to the origi-
nal character tokens.

Therefore, we propose the Notch model
(Nonlinear Transformation of Character em-
beddings), and with which we derive character
Jacobians. We first train the Notch model to
learn the relationships between the constituent
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characters’ and the whole word’s meaning.
Next, we show that character Jacobians de-
rived from the model capture the different
roles of characters in the whole word. The rest
of this paper is organized as follows. First, in
section 2, we briefly review the relationship be-
tween Chinese characters and words and their
complicated behaviors in Chinese morphology.
Section 3 describes the Notch model and shows
that it not only predicts the real words but
helps account for the behavioral data of pseu-
doword. Finally, in 4, we explore the character
Jacobians and evaluate them on a Chinese af-
fixoid dataset.

2 Related works

The vague boundary between affixation and
compounding does not only occur in Chinese
word-formation. For example, Plag (2003)
points out the problem of neoclassical ele-
ments, such as the word bio-logy. While one
would tend to treat bio-, and -logy as prefixes
and suffixes, which would violate the basic as-
sumption about the word structure; that is,
there will be no root in this word. Plag ar-
gues that these words, often called combining
forms, should be best treated as compounds.

Studying compounds and their constituents
poses interesting questions in computational
modeling. As the meaning of the compounds
may be free from its composing elements, de-
termining the meaning of a newly encountered
compound is thus difficult (Jackendoff, 2002).
One interesting attempt is to model the mean-
ings of the constituents separated from their
free-word counterparts (Günther and Marelli,
2021; Libben, 2014). The difference between
the as-constituent and free-word representa-
tions is called semantic shift. A linear model
is then built to simultaneously estimate the
semantic shifts of the constituents and their
linear relations with the compounds by linear
algebra.

In Chinese word formation, a character may
play different morpho-semantic roles in differ-
ent words, even if they are in the same po-
sition. Therefore, it may not be straightfor-
ward to accommodate such versatility into a
single linear transformation. Yet, we could
consider the relations between the constituents
and compounds as a complex non-linear func-

tion; the linear transformation is then a local
approximation at that specific local neighbor-
hood. Here, we use the Jacobian matrix to
obtain the local linear approximation, which
is previously used to construct a saliency map
and understand network properties (Papernot
et al., 2016; Wang et al., 2016). However, be-
fore we compute and evaluate the Jacobian, we
should first build our non-linear function be-
tween constituent and word, that is, the Notch
model.

3 The Notch model
The purpose of the Notch model is two-fold.
First, it should learn the semantic relation-
ships between the variable-length character se-
quences (i.e., the constituents) and the whole
words. As the semantics of constituents and
words are both described by a semantic vector
space, the model-learned relationship is essen-
tially a function of Rkn → Rn, with n being
the semantic space’s dimension and k being
the word length. Second, the model also pro-
vides the Jacobians with which we characterize
the character’s role in a given word. Therefore,
we first train the model to predict the whole
word’s embedding from the embeddings of its
constituents. 1

3.1 Model training
We trained the Notch model to learn the rela-
tions between whole words and constituents
in a given embedding space. The embed-
ding space we used was the Chinese word em-
beddings from Tencent AI lab (Song et al.,
2018). The embedding dataset consisted
of two million words with 100 dimensions.
As the Tencent embedding is a more task-
oriented NLP resource, entries (both simpli-
fied and traditional Chinese) included may
contain both fine-grained words (words from
conventional word segmentation) and coarse-
grained words (short phrases or compounds
in linguistic senses) 2. Therefore, we chose
the first 500 thousand of them for the more
commonly used words. For comparison, in a
manually-segmented Taiwan Mandarin corpus

1The code is available at https://github.com/
lopentu/character-jacobian

2The steps of word segmentation of
Tencent embeddings are described on
https://ai.tencent.com/ailab/nlp/en/embedding.html
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of 15M characters (CKIP, 1998), the number
of unique words (word types) is 217K, and
122K of them occurred more than once in the
corpus (i.e., words that are not hapax legom-
ena).

These 500 thousand words are further ran-
domly split into 490K training words and 10K
testing words. Each word corresponds to a
100-dimension word vector. The word vec-
tors were all first normalized into unit length.
The training words comprise 1,809,674 char-
acter tokens, which are 8,749 unique charac-
ters (character types). There are 7,792 single-
character words, 119,062 two-character words,
103,099 three-character words, 166,330 four-
character words, and 93,717 words having five
or more characters.

The Notch model’s architecture was based
on a pre-trained BERT (Devlin et al., 2018)
(based on bert-base-chinese model) and fol-
lowed by a task-specific fully-connected layer.
At first, the model took a sequence of variable-
length characters as input, which were first
tokenized by character with the pretrained
bert-base-chinese tokenizer. Next, the
BERT’s encoded representation of the first
[CLS] token was further transformed with
a fully-connected layer, which is responsi-
ble for projecting the embeddings from the
BERT model space of 768-dimension into Ten-
cent’s embedding space of 100-dimension. The
model was trained with a mean-squared-error
objective, where the model tried to mini-
mize the error between the predicted embed-
dings and the actual embeddings. AdamW
(Loshchilov and Hutter, 2017) was used for op-
timization. The learning rate was 1e-4, β1 was
0.9, beta2 was 0.999 and L2 weight decay was
0.01. The learning rate was first warmed up
for 100 steps and linearly decayed for the rest
of the training. The model was trained for one
epoch with a batch size of 32. The training
took 25 minutes on a P100 GPU.

3.2 Evaluation on real words
We evaluate the model with the top-k accura-
cies of its predicted embeddings. Specifically,
if the model’s predicted vectors have the true
embeddings as their closest k neighbors, the
model’s predictions are counted as correct.

The evaluation results are shown in Ta-
ble 1. The overall top 1 accuracy of the

Len. N Top 1 Top 5 Top 10
1 162 .73 .85 .86
2 2,522 .63 .78 .81
3 2,123 .66 .79 .84
4 3,375 .75 .87 .90

≥5 1,818 .57 .72 .77
All 10,000 .67 .80 .84

Table 1: Top-k accuracies when predicting word
embeddings from the constituents. All top-k ac-
curacies are calculated based on the whole testing
set. That is, the chance levels are randomly guess-
ing a word among the 10,000 words regardless of
their word length.

Notch model’s predicted embeddings is .67,
the top 10 accuracy is .84. As the model’s pre-
dictions are compared among the 10,000 can-
didates’ word embeddings, the chance level of
the top 1 and top 10 accuracy would be 1e-4
and 1e-3. The results indicate the model cap-
tures the relationships between the constituent
characters and the corresponding word embed-
dings. The accuracies vary among different
word lengths. The two-character word’s ac-
curacy is lower than the four-character one’s
(.63 vs. .75, respectively). As the Chinese
four-character words are mostly idioms known
for their semantic opaqueness, the pattern
might initially seem counter-intuitive. How-
ever, a closer look into the word embeddings
reveals that these four-character words are
mostly coarse-grained words, which act like
short-phrases. For example, 乘坐高鐵, which
could be considered a two-word short phrase,
乘坐 chéng zuò “riding” and高鐵 gāo tiě “high-
speed rail”.

To further explore the model predictions,
Table 2 shows samples of the prediction er-
rors. The error patterns indicate that the
model predicts the meanings not only from
the character semantics but the general word-
level information. For example, the second
one is a transparent two-character word, 脫
除 tuō chú “get rid of”; the composing char-
acters of which both have meanings related to
removal. The model thus consistently predicts
the words with related meanings. Moreover,
the predictions may also be related to word-
level properties. For instance, the third exam-
ple is the name of green tea, the meaning of
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Targets Predictions Translations

1 司仪 (16) 钦差; 刘大人; 侍立 emcee: imperial commisioner; Lord Liu; wait upon
2 脱除 (19) 去除, 消退, 卸去 get rid of: discard; fade away; remove
3 碧螺春 (17) 关汉卿, 庐山恋, 孝庄秘史 bi-luo-chun (a green tea):

Guan Hanqing, a Chinese playwright;
Romance on Lushan Mountain, a Chinese movie;
Xiaozhuang Epic, a TV drama

4 观看中 (15) 正片中, 表演中, 故事当中 watch-ing: in the film; during the performance;
in the story

5 社交距离 (16) 彼此了解, 交流能力, 像朋友一样 social distancing: mutual understanding;
communication skills; (be) like friends

6 釜底抽薪 (14) 抢功, 破罐子破摔, 千夫所指 solve the root of the problem (an idiom):
take credit; (totally) giving up; blamed by everyone

Table 2: The prediction errors of the Notch model. The numbers in the brackets are the location of the
targets in the predictions; that is, the number 1 indicates the prediction is correct as the Top-1 prediction.
The loose translations are provided in the last columns, where the words before the colons are target
words, followed by three predictions separated by semicolons.

which is not decomposable to its constituents.
However, while not semantically correct, the
model’s predictions are also other proper play-
wright or movie names. Similarly, the model
does not capture the word meaning for a fully
opaque term (e.g., the last one), but the pre-
dictions are related to other opaque idioms.

While the model’s accuracies might suggest
the words’ semantics (word embeddings) could
be almost determined from their constituents,
there are caveats in this interpretation. On
the one hand, the model inputs are character
tokens, and the model has an embedding layer
in its first layer. Therefore the model could
learn or tune character embeddings to predict
the final word embeddings. In this sense, the
model does compute the final word embed-
dings based on the constituent embeddings.
On the other hand, the BERT’s transformer
architecture keeps mixing and warping the con-
stituent embeddings in its 12 encoding layers
(Lee-Thorp et al., 2021; Tolstikhin et al., 2021;
Mai et al., 2022); therefore, the final output of
the [CLS] is no longer a simple linear combi-
nation of their constituents. That is, the con-
stituent embeddings are themselves changing
based on extra-constituent information; thus,
it is context-dependent (Baggio et al., 2012).
Finally, we are using a distributed semantic
model to operationalize word semantics, the
predictability may be the characteristic of the
vector semantic model rather than word se-
mantics itself.

Nonetheless, it is still interesting to ask

what the Notch model captures among these
constituents. Having demonstrated the Notch
model could predict the word embeddings
in real words, we next examine whether the
model could predict the embeddings of novel
constituent combinations, i.e., pseudowords.
As pseudowords, by definition, do not occur
in our linguistic uses, they cannot readily be
given word embeddings to be compared to
model predictions. Therefore, we turn to be-
havioral data in psycholinguistics to evaluate
the model’s prediction of pseudowords.

3.3 Evaluation on Pseudowords
In this experiment, we try to evaluate the
Notch model by how the predicted embed-
dings shed light on the behavioral data of
pseudowords. Although word recognition has
been well studied, pseudowords in psycholin-
guistics, especially in lexical decision tasks
(LDT), are experimental stimuli which exper-
imenters have little interest in. However, re-
gardless of real words or pseudowords, the in-
formation is accumulated over time for both
words and pseudowords in an LDT task (Yap
et al., 2015; Ratcliff et al., 2004). That is, pseu-
dowords are not devoid of meaning (Hendrix
and Sun, 2021; Chuang et al., 2021). More-
over, the behavioral data of the pseudowords
provide unique insights into lexical processes
when the word-level information does not yet
influence them.

Therefore, we derive two semantic indices
from the Notch model and use statistical mod-
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els to examine their effects on pseudoword pro-
cessing. First, we identify the 50 nearest se-
mantic neighbors of a pseudoword based on
the model predicted vectors. The neighbors
are selected among the whole 500K words in
the dataset. Next, we create a vector whose
elements are the 50 neighbor distances in as-
cending order, πw, where w is the given pseu-
doword. Basing on the vector πw, we calculate
the average distance of the closest 5 neighbors,
smSimTop5, and the difference of distances be-
tween the .90 and .10 quantiles, smSimRange.
Specifically, the smSimTop5 indicates how
close the pseudoword is to a real word, and
smSimRange captures how densely populated
the pseudoword located in the word embed-
ding space. The smaller the smSimRange, the
more densely-packed the neighbors are in a
given (hyper-)sphere; the larger the value, the
more sparsely-populated the pseudoword is lo-
cated.

We use the pseudoword data from the
MELD-SCH dataset (Tsang et al., 2018).
The dataset contains lexical decision data on
25,156 words from 504 native Chinese speak-
ers. There are equal numbers of real words
and pseudowords in the dataset, i.e., 12,578
words for each word type. Each of these
word types has 1,020 one-character, 10,022
two-character, 949 three-character, and 587
four-character words. The dataset also in-
cludes additional character-level information
for each word, e.g., number of strokes, charac-
ter frequency, and number of meanings. This
additional information serves as the statistical
model’s controlled variables, or the semantic
indices’ effects may be proxies or surrogates
for other character-level effects. The inclusion
of character-level variables also implies a sin-
gle statistical model could not accommodate
words of different lengths as they require a dif-
ferent number of variables. Therefore, we se-
lect two-character words as they are the most
commonly occurred words in the MELD-SCH
and the Tencent word embedding dataset.

We include 12 explanatory variables on
this analysis, which are two semantic in-
dices derived from the Notch model, namely
smSimTop5 and smSimRange; 10 charac-
ter level indices, that is, character fre-
quency for first and second constituents

(C1logcf, C2logcf), number of strokes
(C1stroke, C2stroke), number of words
formed(C1lognwf, C2lognwf), number of
meanings(C1nom, C2nom), number of pronun-
ciations (C1nop, C2nop). These variables are
used to predict error rates and response time
in their respective models 3.

The statistical results are shown in Figure
1. The left panel shows the variable impor-
tance of 12 variables with respect to error
rates and response times. The importance
scores are estimated by the “mean decrease
in accuracy” following the permutation princi-
ple in a 100-tree random forest (Hothorn and
Zeileis, 2015). The figure shows the Notch-
derived semantic index, smSimRange, is among
the most important features in both error rate
and response time models, along with the
number of the word formed in second con-
stituents C2lognwf. The other semantic in-
dex, smSimTop5, however, is the fourth most
important feature in error rates but is the sev-
enth one in response time.

A closer look at the variable effects with
the generalized additive model (GAM) (Wood,
2011) also shows consistent patterns. 4 Here,
we include the semantic indices and other im-
portant variables, namely the number of words
formed and character frequency in the GAM
models. All included variables are highly sig-
nificant in the models. In particular, the par-
tial effects shown in the center and right pan-
els of Figure 1 indicate a nearly positive lin-
ear effect of both smSimRange and smSimTop5.
The patterns suggest that the Notch-derived
indices, especially smSimRange, help explain
the behavioral error rates and response times.
Specifically, when the pseudowords are in a
less populated area (large smSimRange val-
ues), the participants tend to respond slower

3Due to their distribution characteristics, the char-
acter frequency, and error rates, number of meanings,
and number of pronunciations are log-transformed. Re-
sponse time is reciprocally transformed and multiplied
by -1000 to keep the same sign and direction.

4Two GAM models have nearly the same explana-
tory variables, only RT model has an additional
C1stroke due to its importance in the random forest
analysis. smSimRange and smSimTop5 are included as
thin plate regression spline smoothing terms. Other
pairwise character-level information is included as
tensor-product smoothing terms. The worst concuvri-
ties of the semantic indices are .13 and .09. The Pear-
son correlation between smSimRange and smSimTop5 is
.20
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Figure 1: The statistical results of the Notch-model derived semantic indices: smSimDist and SimRange.
The left panel shows the variable importance. The center and right panels show the partial effects
estimated by GAM.

and make more errors. Similarly, when the
pseudowords have similar real word neighbors
(larger smSimTop5), the responses tend to be
slow and more error-prone. Although the un-
derlying lexical process is inevitably more com-
plicated, the results already demonstrate the
relevance of the Notch-model derived semantic
indices.

After real words and pseudowords evalua-
tions, we established the Notch model can
capture relationships between the constituent
and word embeddings. Such capacity would
suggest the model may learn the representa-
tions of how a character would function as a
constituent in a word. Therefore, we further
probe into the model to examine its character-
level representations.

4 Character Jacobian

In this section, we extract and evaluate
the character-level information in the Notch
model. Being a model based on BERT, the
Notch model learns the contextualized embed-
dings of each token in its input sequence. The
characteristic has been applied to the word
sense disambiguation task, where the model
is successfully employed to create sense embed-
dings (Loureiro and Jorge, 2019; Scarlini et al.,
2020). Therefore, an interesting question to
ask is, how could we extract the character-
level context-dependent information from the

Notch model?
Specifically, this character-level information

should ideally differentiate the word contexts
the character occurs. For example, the charac-
ter 手 shǒu means “hand” as an independent
word. However, the same character could oc-
cur at the start of the word and carries differ-
ent meanings, such as手氣 shǒu qì “luck” and
手臂 shǒu bì “arm”. In addition, the meanings
are also different when occurring at the end of
the word: 歌手 gē shǒu “singer”, or 分手 fēn
shǒu “break up”. That is, the character-level
information should have different representa-
tions for the same character when it is used
differently.

There are at least three different approaches
to extract character-level information from
the Notch model. The first one is to use
the BERT input embeddings directly. Since
the bert-base-chinese is a by-character to-
kenizer, the input embeddings act like char-
acter embeddings. However, this approach
does not have access to other characters in
the same word; therefore, it is not context-
sensitive as we require. The second approach
uses the token embeddings in the later lay-
ers of the BERT model, with the advantage
that the token embeddings would be context-
sensitive after layers of transformation. Yet, it
also implies that the token embeddings have
already incorporated or mixed the represen-
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Figure 2: A visualization of the Jacobian matrix.
The rectangular grid (left) is transformed into a
warped mesh (right) by a non-linear function. The
Jacobian matrix describes how the grid is trans-
formed locally, as shown by the black arrows.

tations from other tokens. Hence, it is not
straightforward to attribute the token to the
input character anymore. The third approach,
which is simultaneously context-sensitive and
character-specific, is through the Jacobian ma-
trix.

4.1 Jacobian matrix
The Jacobian matrix is a matrix whose ele-
ments are the first-order partial derivatives of
a vector-valued function:

∇F (X) =




∂F1(X)
∂x1

. . . ∂F1(X)
∂xn... . . . ...

∂Fm(X)
∂x1

. . . ∂Fm(X)
∂xn




As the Notch model’s inputs are discrete
characters, we need first to convert the input
characters to vectors to compute the Jacobian.
Therefore, we leverage the input embeddings
in the BERT embedding layer and convert the
characters to vectors without introducing ad-
ditional parameters. The converted embed-
dings are from the raw embeddings that are
not yet involved with positional and sequence
type encodings. The converted vectors are
then used as the model input. Therefore, the
Notch model could be considered as a function
that brings the input vectors from the space of
R768·k, where k is the word length, to the word
embedding space of R768.

The Jacobian of the input characters could
be considered as the linear projection matrix
that best approximates the non-linear trans-
formation at a specific location in space. In-
formally, it describes how a slight perturba-
tion of the character’s input vector nudges the

word vectors in the embedding space. Fig-
ure 2 shows a simple illustration of a non-
linear function transforming a rectangular grid
into a warped mesh. Note that in the fig-
ure, although the transformation is non-linear,
each transformed arrows are still tangent to
its transformed grid. The Jacobian provides
a way to describe how each black arrow are
warped in its specific location.

Moreover, as the function (i.e., the Notch
model) is context-sensitive to its input charac-
ters, the Jacobian automatically encodes the
context in which the character occurs. In ad-
dition, the Jacobian is the first derivative of
the character embeddings. We can directly at-
tribute the matrix to that character. Thus,
the Jacobian matrix satisfies the requirements
of character-level information.

The downside of this approach would be
that obtaining Jacobian matrices is relatively
computationally expensive. As opposed to
the input embedding and token embedding ap-
proach, which only requires a vector of 768 di-
mensions (i.e., the model dimension) for each
character in each context, the Jacobian ap-
proach will require a 100× 768 matrix and ad-
ditional steps to compute. However, the issue
should be alleviated with the advancement of
algorithms (Baydin et al., 2022) and the hard-
ware.

In the following evaluation, we only focus
on the two-character word hence the charac-
ter Jacobian, J (ci), is defined by the Jacobian,
∇F (ci):

J (ci) ≜ ∇F (ci) =
∂F (ν1, ν2)

∂νi

where ν1 and ν2 are the corresponding input
vectors.

4.2 Evaluation on affixoids clustering
In this evaluation, we aim to examine to what
extent the character Jacobians captures the
characters’ role in the words. The dataset
we used is the “Common Affixoids Database”
compiled by the CKIP group at Academia
Sinica, Taiwan. The dataset includes differ-
ent roles of a character, consisting of prefixes,
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Figure 3: The distribution of normalized cluster scores, σc under different conditions. The inset figure
shows the median of σc. The dashed line marks the position of .05 for the visual reference.

suffixes, or morphological roots. 5. Characters
with different roles or different meanings will
have separate entries. There are 2,471 unique
characters and 4,893 entries in the dataset.

Among these entries, we first identified a set
of characters that have more than one entry
in the dataset. For example, 土 had one en-
try indicating land or clay, such as 土石 tǔ
shí “earth and stones” or 土堤 tǔ tí “embank-
ment”; also, it had another entry indicating
“native or local”, such as 土狗 tǔ gǒu “na-
tive dog” or 土著 tǔ zhù “indigenous people”.
We extracted at least two instances (i.e., ex-
ample words) for each entry and at most five
instances whose word frequencies were larger
than one. As a result, we selected 796 unique
characters and 1,765 entries. Among these en-
tries, there are 7,072 instances.

For each character, we compute the char-
acter Jacobians of each instance in different
entries. For example, 土 has two entries,
and each entry has two instances, then we
compute four character Jacobians for each in-
stance. These Jacobians are then compared
to each other to obtain a distance measure.
Here we use the L1-norm. If the character Ja-
cobians indeed capture the characters’ roles in
different instances, the distances between char-
acter Jacobians of the same entry should be
closer to those from other entries. That is, we
could evaluate the character Jacobians by mea-
suring the clustering performance implied by
their pairwise distances. Here, we assess the
clustering with the averaged silhouette score

5The dataset is publicly available at http://turing.
iis.sinica.edu.tw/affix

(Rousseeuw, 1987).
Furthermore, to establish a reference, we

build a null distribution for each averaged sil-
houette score with random permutations. We
randomly permute the instance labels 1,000
times for each character and compute one sil-
houette score. That is, we calculate the same
averaged silhouette score as if the meanings
of the characters no longer group the example
words. These permuted scores will form a null
distribution to which the silhouette score will
be compared. Finally, we compute normal-
ized cluster scores σc for each character to indi-
cate the clustering performance. The normal-
ized cluster scores are defined by 1−Pnull(X),
that is, the probability of obtaining the val-
ues higher than the observed silhouette scores
assuming the null hypothesis is true. A lower
σc would indicate the corresponding silhouette
score is less likely to result from the random
chance, hence, the better clustering.

In addition to the character Jacobian of
the target character (CharJac-Target, e.g.
土 in 土石), we also include five conditions
for comparison. The CharJac-nonTarget
refers to the character Jacobian of the char-
acter in non-target position (e.g. 石 in 土
石). This condition show the roles of the
other character in the same word. Next, the
NotchVec-Word and TencVec-Word are com-
puting the same silhouette scores but using
the word vectors from the Notch predictions
and Tencent embeddings respectively. These
conditions provide the baseline for word-level
semantics. Finally, the TencVec-nonTarget
and InputEmb-nonTarget both compute the
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scores based on the embeddings of the char-
acter at non-target position. The former
one uses the single-character word embeddings
from Tencent dataset, while the later one uses
the input embeddings from the first layer of
Notch model. These two conditions serve
as the baselines for the information the non-
target character could provide in clustering.

The results are shown in Figure 3. It can
be seen the two conditions of character Jaco-
bian have distinct distributions compared to
other conditions. The inset plot in Figure 3
further shows the median of σc for each con-
dition. It is apparent that the character Ja-
cobians, regardless of the target or non-target
position, could form the clusters better, as in-
dicated by the lower values compared to other
conditions. The comparison across conditions
additionally reveal that the clustering results
cannot be achieved by the word-level semantic
(the NotchVec-Word and TencVec-Word condi-
tion), or by considering the character as single-
character alone (the TencVec-nonTarget and
InputEmb-nonTarget). The results demon-
strate that character Jacobian captures an im-
portant aspect of the character’s role in the
word.

5 Conclusion

In this paper, we present the Notch model,
from which we derive the character Jacobians.
In a series of experiments, we show that the
model predicts the embeddings of the real
words from their constituents and helps ac-
count for the behavioral data of the pseu-
dowords. In addition, we also show that char-
acter Jacobians capture characters’ roles in the
words, which reflect the meanings of the char-
acters.

The approach to study compounding by
modeling the word embeddings and explor-
ing their Jacobians could also be applied to
other languages. Multilingual language mod-
els and word embeddings are readily available
in the community. However, the most interest-
ing question is how to study compounding if
the language’s writing system may introduce
spaces in the compounds, such as the case
in English. The commonly-used word embed-
dings only include entries with no interword
spaces. That is, there will be entries for earth-

quake, airport, but no entries for rush hour,
coffee mug. Moreover, it could be argued that
the interword spaces bear significance in cog-
nitive processing (Juhasz et al., 2005). It will
be thus an interesting future work to system-
atically study compounding in this case.

Character Jacobians open up new possibili-
ties to study Chinese characters or morphology
with deep learning models. However, as the
Jacobian is an abstract mathematical object,
other future works include further investigat-
ing its relation with morphological rules and
lexical categories and how it connects to the
distributional semantics.

Acknowledgements

This study was supported by Ministry of Ed-
ucation, Taiwan, Grant Number 110L9A001;
and Ministry of Science and Technology
(MOST), Taiwan, Grant Number MOST 110-
2634-F-001-011.

References
Giosuè Baggio, Michiel Van Lambalgen, and Pe-

ter Hagoort. 2012. The processing consequences
of compositionality. In The Oxford handbook of
compositionality, pages 655–672. Oxford Univer-
sity Press.

Laurie Bauer. 2009. Typology of compounds. In
The Oxford handbook of compounding.

Atılım Güneş Baydin, Barak A. Pearlmutter, Don
Syme, Frank Wood, and Philip Torr. 2022. Gra-
dients without backpropagation.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Yu-Ying Chuang, Marie Lenka Vollmer, Elnaz
Shafaei-Bajestan, Susanne Gahl, Peter Hendrix,
and R Harald Baayen. 2021. The processing
of pseudoword form and meaning in production
and comprehension: A computational modeling
approach using linear discriminative learning.
Behavior research methods, 53(3):945–976.

CKIP. 1998. Academia Sinica Balanced Cor-
pus: Content and description (Technical Report
No.95-02/98-04).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

160



Fritz Günther and Marco Marelli. 2021. Caoss and
transcendence: Modeling role-dependent con-
stituent meanings in compounds. Morphology,
pages 1–24.

Peter Hendrix and Ching Chu Sun. 2021. A
word or two about nonwords: Frequency, seman-
tic neighborhood density, and orthography-to-
semantics consistency effects for nonwords in the
lexical decision task. Journal of Experimental
Psychology: Learning, Memory, and Cognition,
47(1):157.

Rumjahn Hoosain. 1992. Psychological reality of
the word in chinese. In Advances in psychology,
volume 90, pages 111–130. Elsevier.

Torsten Hothorn and Achim Zeileis. 2015. par-
tykit: A modular toolkit for recursive partytion-
ing in R. Journal of Machine Learning Research,
16:3905–3909.

Shu-Kai Hsieh, Yu-Hsiang Tseng, Chih-Yao Lee,
and Chiung-Yu Chiang. 2018. Fluid anno-
tation: A granularity-aware annotation tool
for Chinese word fluidity. In Proceedings of
the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources
Association (ELRA).

Chu-Ren Huang, Hsieh Shu-Kai, and Chen Keh-
Jiann. 2017. Mandarin Chinese words and parts
of speech: A corpus-based study. Routledge.

Ray Jackendoff. 2002. Foundations of language:
Brain, meaning, grammar, evolution. Oxford
University Press, USA.

Barbara J Juhasz, Albrecht W Inhoff, and Keith
Rayner. 2005. The role of interword spaces in
the processing of english compound words. Lan-
guage and cognitive processes, 20(1-2):291–316.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein,
and Santiago Ontanon. 2021. Fnet: Mixing to-
kens with fourier transforms.

Gary Libben. 2014. The nature of compounds: A
psychocentric perspective. Cognitive neuropsy-
chology, 31(1-2):8–25.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization.

Daniel Loureiro and Alípio Jorge. 2019. Language
modelling makes sense: Propagating represen-
tations through WordNet for full-coverage word
sense disambiguation. In Proceedings of the 57th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 5682–5691, Florence,
Italy. Association for Computational Linguis-
tics.

Florian Mai, Arnaud Pannatier, Fabio Fehr, Haolin
Chen, Francois Marelli, Francois Fleuret, and
James Henderson. 2022. Hypermixer: An mlp-
based green ai alternative to transformers.

Jerome L. Packard. 2000. The Morphology of
Chinese: A Linguistic and Cognitive Approach.
Cambridge University Press.

Nicolas Papernot, Patrick McDaniel, Somesh Jha,
Matt Fredrikson, Z Berkay Celik, and Anan-
thram Swami. 2016. The limitations of deep
learning in adversarial settings. In 2016 IEEE
European symposium on security and privacy
(EuroS&P), pages 372–387. IEEE.

Ingo Plag. 2003. Word-formation in English. Cam-
bridge University Press.

Roger Ratcliff, Pablo Gomez, and Gail McKoon.
2004. A diffusion model account of the lexical
decision task. Psychological review, 111(1):159.

Peter J Rousseeuw. 1987. Silhouettes: a graphi-
cal aid to the interpretation and validation of
cluster analysis. Journal of computational and
applied mathematics, 20:53–65.

Bianca Scarlini, Tommaso Pasini, and Roberto
Navigli. 2020. SensEmBERT: Context-
Enhanced Sense Embeddings for Multilingual
Word Sense Disambiguation. In Proceedings
of the Thirty-Fourth Conference on Artificial
Intelligence, pages 8758–8765. Association for
the Advancement of Artificial Intelligence.

Yan Song, Shuming Shi, Jing Li, and Haisong
Zhang. 2018. Directional skip-gram: Explicitly
distinguishing left and right context for word em-
beddings. In Proceedings of the 2018 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers),
pages 175–180, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Ilya Tolstikhin, Neil Houlsby, Alexander
Kolesnikov, Lucas Beyer, Xiaohua Zhai,
Thomas Unterthiner, Jessica Yung, Andreas
Steiner, Daniel Keysers, Jakob Uszkoreit,
Mario Lucic, and Alexey Dosovitskiy. 2021.
Mlp-mixer: An all-mlp architecture for vision.

Yiu-Kei Tsang, Jian Huang, Ming Lui, Mingfeng
Xue, Yin-Wah Fiona Chan, Suiping Wang, and
Hsuan-Chih Chen. 2018. Meld-sch: A megas-
tudy of lexical decision in simplified chinese. Be-
havior research methods, 50(5):1763–1777.

Yu-Hsiang Tseng, Shu-Kai Hsieh, Pei-Yi Chen,
et al. 2020. Computational modeling of affixoid
behavior in chinese morphology. In Proceedings
of the 28th International Conference on Compu-
tational Linguistics, pages 2879–2888.

161



Shengjie Wang, Abdel-rahman Mohamed, Rich
Caruana, Jeff Bilmes, Matthai Plilipose,
Matthew Richardson, Krzysztof Geras, Gregor
Urban, and Ozlem Aslan. 2016. Analysis of
deep neural networks with extended data jaco-
bian matrix. In Proceedings of The 33rd Inter-
national Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Re-
search, pages 718–726, New York, New York,
USA. PMLR.

S. N. Wood. 2011. Fast stable restricted maximum
likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Jour-
nal of the Royal Statistical Society (B), 73(1):3–
36.

Melvin J Yap, Daragh E Sibley, David A Balota,
Roger Ratcliff, and Jay Rueckl. 2015. Respond-
ing to nonwords in the lexical decision task: In-
sights from the english lexicon project. Journal
of Experimental Psychology: Learning, Memory,
and Cognition, 41(3):597.

162



Proceedings of the 29th International Conference on Computational Linguistics, pages 163–177
October 12–17, 2022.

COMMA: Modeling Relationship among Motivations, Emotions and
Actions in Language-based Human Activities

Yuqiang Xie Yue Hu† Wei Peng Guanqun Bi Luxi Xing
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{xieyuqiang,huyue,pengwei,biguanqun,xingluxi}@iie.ac.cn

Abstract
Motivations, emotions, and actions are inter-
related essential factors in human activities.
While motivations and emotions have long been
considered at the core of exploring how people
take actions in human activities, there has been
relatively little research supporting analyzing
the relationship between human mental states
and actions. We present the first study that
investigates the viability of modeling motiva-
tions, emotions, and actions in language-based
human activities, named COMMA (Cognitive
Framework of Human Activities). Guided by
COMMA, we define three natural language pro-
cessing tasks (emotion understanding, motiva-
tion understanding and conditioned action gen-
eration), and build a challenging dataset HAIL‡

through automatically extracting samples from
Story Commonsense. Experimental results on
NLP applications prove the effectiveness of
modeling the relationship. Furthermore, our
models inspired by COMMA can better reveal
the essential relationship among motivations,
emotions and actions than existing methods.

1 Introduction

Human activities are continuous interactions be-
tween external environment (physical world and
social events, etc.) and internal mind (motivations,
emotions, etc.). For example, Figure 1 demon-
strates human activities of character ‘I’ about ‘eat-
ing bread’ in external environment, as well as the
mental states of ‘I’. The motivation of character ‘I’
is a physiological need. Conditioned on this moti-
vation and history actions, ‘I’ enjoyed the part of
bread on the direction of joy emotion. While hu-
man mental states have long been considered at the
core of exploring how people take actions between
the lines in language-based human activities, there
has been relatively little research supporting analyz-
ing the relationship between human mental states

†Corresponding author.
‡We will make our dataset and code publicly available at

https://github.com/IndexFziQ/COMMA.

Motivation 
I have a physiological need. 

However, I enjoyed the part that I took out.

Current Action I would feel joy.
Emotion

History Actions 

I threw the whole wheat bread into the toaster. 
It heated the bread for several minutes in order to toast it. 
I had difficulty taking out the bread since it was stuck. 
When I took one loaf out, part of it was left in the toaster.

Character: I (myself)

!" #

Figure 1: An example of human activity. History ac-
tions and motivation cause current action. And emotion
is the effect of motivation and actions. Here, motiva-
tion/action/emotion is colored by yellow/cyan/green.

and actions. It is challenging to comprehensively
model the relationship of motivations, emotions
and actions in language-based human activities,
which can allow researchers to reason the essential
causes of human activities from the cognitive per-
spective and supply reasonable explanations. This
technology will have a profound impact on various
natural language processing (NLP) downstream ap-
plications, such as intelligent dialogue, controllable
text generation, recommendation systems, and pub-
lic opinion analysis.

In recent years, traditional sentiment analysis
technology has been widely used (Socher et al.,
2013; Hamilton et al., 2016), which mainly focuses
on sentiment detection. Although the current state-
of-the-art sentiment analysis system can detect the
polarity of text (Zhang et al., 2018) or consider
fine-grained categories (a.k.a. aspects) to make
predictions (Pontiki et al., 2016), the analysis of
predictions and interpretations of its causes are
still limited. Lately, a large amount of work intro-
duces human motivations into sentiment analysis
and action analysis (Rashkin et al., 2018a,b; Sap
et al., 2019a,b; Peng et al., 2022a). However, the
aforementioned works focus on the analysis of the
relationship between “motivations and actions” or
“emotions and actions”, without modeling a unified
consideration of the relationship among motiva-
tions, emotions and actions.
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Researches on human activities have increased
over the past two decades with many fields con-
tributing including psychology, computer science
and so on. In this paper, we focus on works in two
human mental states, motivations and emotions,
that drive human activities. As for motivation, psy-
chologist Hull (Hull, 1974) believes that motivation
is the drive for human actions and explains why
people initiate, continue or terminate a certain ac-
tion at a particular time. From area of emotion,
numerous theories (Cacioppo and Gardner, 1999;
Kagan, 2007; Smith, 2016) that attempt to explain
the origin, function, and other aspects of emotions
have fostered more intense research on emotion
topic. Psychologist Plutchik (Plutchik, 1980) es-
tablishes a general psycho-evolutionary theory of
emotion, which introduces eight specific distinct
basic emotions. Each of basic emotions represents
adaptation to a prototypical task in human activity.

Aiming at modeling the relationship among hu-
man motivations, emotions and actions in language-
based human individual activities, we propose a
general Cognitive Framework of Human Activities
(COMMA). These relationships will help the re-
searchers of NLP areas track the cause of people’s
emotions and actions, and give a more reasonable
explanation and analysis for results. To verify
the effectiveness of our framework, we propose
three NLP understanding/generation tasks, includ-
ing emotion understanding, motivation understand-
ing, and conditioned action generation. More con-
cretely, we construct a new dataset HAIL (Human
Activities In Life) by automatically extracting sam-
ples with complete mental state annotation from
Story Commonsense (Rashkin et al., 2018a). Ex-
perimental results on NLP applications prove the
effectiveness of modeling the relationship. Further-
more, our models inspired by COMMA can better
reveal the essential relationship among motivations,
emotions and actions than existing methods.

2 COMMA

Human activities are interactions between internal
mind of people and the external environment. In
this part, we will describe the basic elements of
COMMA and modeling the relationship among ele-
ments in details.

2.1 Basic Elements in COMMA

Motivations are the innate physical or psycholog-
ical drives of human beings, and are the origin of

Exteral 
World

Internal 
Mind

ActionsMotivation

Emotion

History

…

Current

Figure 2: Relationship Modeling in COMMA.

human activities. Different psychological theories
have different classification rules for human moti-
vations. We utilize hierarchy of needs of Maslow
(1943) (physiological needs, stability, love and be-
longing, esteem, self-actualization).
Emotions are the psychological responses of moti-
vations to the degree of satisfaction with the exter-
nal environment. We employ the wheel of emotions
of (Plutchik, 1980) and use eight basic emotional
dimensions (joy, trust, sadness, surprise, fear, dis-
gust, anger, and anticipation). It has become a
common choice in the existing emotion catego-
rization literature (Mohammad and Turney, 2013;
Zhou et al., 2016; Rashkin et al., 2018a).
Actions are people’s behaviors that interact with
the external environment. Actions are under the
psychological condition of “one has a certain need
and develops on the direction of future emotion”
in this paper. Limited to the annotations of our
based data Story Commonsense (Rashkin et al.,
2018a), we treat story events as actions, which is a
sentence in language-based form. That is, a story
event equals to an action in this paper.

2.2 Relationship Modeling

As demonstrate in Fig. 2, COMMA is composed
of internal mind and external environment, where
people own internal mind (motivations, emotions)
and take actions in external environment. The solid
line and the dotted line represent forward and re-
verse reasoning respectively. We will attempt to
model relationships among the basic elements by
answering the next two questions.
Q1: Where are actions from? Following the
view of Hull (Hull, 1974), motivation is the drive
for human actions. Intuitively, current action also
caused by history actions. As shown in Fig. 2, moti-
vation and history actions leads to the development
of current action together. Meanwhile, actions de-
velop in the direction of the future emotion. For
instance, one wanted to eat, and one could eat some
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Actions
Motivation

Emotion

…

(a) Emotion Understanding

Actions
Motivation

Emotion

…

(b) Motivation Understanding

Actions
Motivation

Emotion

…

(c) Conditioned Action Generation

Figure 3: Three tasks for modeling motivations, emotions, and actions in language-based human activities. The
solid line and the dotted line represent forward and reverse reasoning respectively.

food and felt happy then. Conversely, one could
felt sad because one had nothing to eat.
Q2: Where are emotions from? Emotions
are mental states brought on by neurophysiolog-
ical changes, variously associated with thoughts,
feelings, behavioral responses (Panksepp, 1998;
Cabanac, 2002). In simplicity, emotions come
from the interaction between actions in the exter-
nal world and complex mental states. In this work,
we predigest this complicated process. As demon-
strated in Fig. 2, emotion is conditioned by whether
the action satisfy the primary motivation, similar to
the statement in Li and Hovy (2017). For example,
one wanted to eat, and one would happy if he ate
some food, either sad if no restaurant opened.

All in all, relationships of motivations, emotions
and actions are demonstrated in Fig. 2:
(1) Motivation and history actions cause action;
(2) Emotion is effect of motivation and action.

These relationships will help the researchers
track human’s motivations, emotions and actions.

3 Tasks and Data

To verify the effectiveness of COMMA, we propose
emotion understanding, motivation understanding,
and conditioned action generation tasks. Corre-
spondingly, we build a HAIL dataset by automati-
cally extracting samples with complete mental state
annotation from Story Commonsense (Rashkin
et al., 2018a).

3.1 Task Definition

The annotations of all elements in COMMA is de-
fined as follows:
A: The current action.
H: The history actions.
C: The character of current action.
M: The motivation to drive the current action.
E : The resulted emotion of the current action.

Emotion Understanding (EU) We formulate emo-
tion understanding as sequence classification prob-
lems consisting of history actions, current action
and people’s motivations as context and a objective
resulted emotion. As shown in Fig. 3(a), given
the motivationM, character C and all actions (H
and A), the EU task is to select the most plausible
emotion E .
Motivation Understanding (MU) As demon-
strated in Fig. 3(b), compared with EU, motiva-
tion understanding is a reversed reasoning process.
Given the emotion E , character C and all actions (H
and A), the MU task is to reversely reason about
the most plausible motivationM.
Conditioned Action Generation (CAG) From Fig.
3(c)), CAG is the task of generating a valid action
A and predicting the desired emotion E conditioned
on the history actions H, character C and motiva-
tionM. Formally, the task requires to maximize
P (A, E|H, C,M).

3.2 Data Collection

To verify the effectiveness of COMMA, we con-
struct a new dataset HAIL (Human Activities In
Life) for the above three tasks by automatically ex-
tracting from the existing resource, Story Common-
sense(Rashkin et al., 2018a). Story Commonsense
dataset manually annotates human motivations and
emotions of the event in daily commonsense sto-
ries. It is an important resource for studying the
causality of motivations, actions, and emotions in
language-based individual activities. Note that, the
characters of the actions (story events in this paper)
are required to have both motivation and emotion
labels in our collected data HAIL. In order to ob-
tain such (motivation, action, emotion) samples, we
align the motivation prediction and emotion pre-
diction data sets of Story Commonsense guided by
the story id and the character of the current story
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e.g. : Physiological

<act> C eat a pizza </act>

<emo> C’s emotion is joy </emo> </s>

<s> <ht> History Actions </ht>
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Num()

: j-th concept of i-th label (s represents the current categorization). 

Figure 4: Model overview (A) for emotion and motivation understanding tasks (emotion understanding as an
example). B is the detail of concept knowledge base construction. C shows three options of voting module in A.

event. In all, we extract 13,568 examples from
Story Commonsense that meet our requirements.
The I/O of three tasks are summarized in Table 1.
More details, please refer to Appendix A.2.

EU Task MU Task CAG Task
Input output Input output Input output

H,A,C,M E H,A,C,E M H,C,M A,E

Table 1: Input and Output of tasks in HAIL.

4 Methodology

4.1 Model for Emotion Understanding
Our method combines Human Activity Encoder,
Concept Knowledge Base with a voting module
component, which is shown in Fig. 4. All inputs are
refactored by prompt templates and special tokens
(Appendix A.1) to improve understanding.

4.1.1 Human Activity Encoder
Here, we use ROBERTA (Liu et al., 2019) as our
language-based human activity encoder. It is a
improved robust BERT (Devlin et al., 2019) which
shows state-of-the-art results in many NLP tasks.
We use the hidden state representation of <s> as
the sentence representation hs.

4.1.2 Concept Knowledge Base
For emotion understanding and motivation under-
standing tasks, we introduce knowledge bases to
calculate the distribution of commonsense knowl-
edge in language-based actions of all motiva-

tion/emotion categories. In this paper, common-
sense knowledge means commonsense concepts
(i.e., words) with significant meanings that appear
in language-based actions.

We build the Motivation Concept Knowledge
Base (MCKB) in three steps. Firstly, we extract
representative commonsense concepts (details in
Appendix A.3). Then, we count the number of
occurrences of each commonsense concepts in the
category of motivations. The last step is to calculate
word frequency. The knowledge distribution of
each concept is computed as below:

E
(
csij

)
=

Num
(
csij

)

∑n
i=1 Num

(
csij

) × V
si

N si
(1)

where csij is j-th concept of i-th label (s represents
the current categorization), Num is the number of
concept csij occurrences. V is the size of the con-
cepts vocabulary. N is the total number of all
concept occurrences.

4.1.3 Classifier with Voting Gate
For emotion understanding task, we respectively
calculate neural distribution of ROBERTA and
knowledge distribution of MCKB. Lastly, we uti-
lize a voting gate module to vote and integrate these
two distributions.
Neural Distribution of Encoder Once the sen-
tence encoding hs is extracted, we then compute
a probability distribution over labels, Pz , by the
hidden representation from the classifier token
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GPT-2/
BART

<s> <ht> History: Linda hung up the phone. She'd just 
ordered a pizza to her house. An hour later, the delivery 
man pulled up. He handed her a big, hot box.  </ht>

<act> Linda couldn't wait to eat the whole pizza! </act>

<mot> Linda’s motivation is Physiological need </mot> 
pred emotion

CLS Head

LM Head

future emotion

!"(#|$) joyjoy: 0.85

Figure 5: An example and the model architecture (GPT-2 or BART with language model head and emotion prediction
head) for conditioned action generation task. Human mental states and key words in action are italic. The words
expressing future emotion in action are bolden.

hs ∈ RH through an MLP:

Pz =W2 tanh (W1hs + b1) (2)

where W1 ∈ RH×H , b1 ∈ RH and W2 ∈ RN×H ,
N is the number of labels. The model’s predicted
answer corresponds to the label of motivations with
the highest probability.
Knowledge Distribution of KBs First, we use
NLP parsing methods to extract representative com-
monsense concepts corresponding to the current
action. Second, we use each commonsense con-
cept to retrieve the corresponding distribution in
concept KBs. In this way, the distribution of all
commonsense knowledge {Pc1 , Pc2 , . . . , Pcn} in
the current motivation category is obtained. More
details, please refer to Appendix A.3.
Voting Gate As shown in Fig. 4, the specific voting
method is as follows:

Pf = Fv(Pz, [Pc1 , Pc2 , ..., Pcn ]) (3)

where n is the number of related concepts to ac-
tion. Among them, Fv denotes voting ensemble
by pooling (such as AVER, MAX, and SUM pool-
ing), multi-layer perceptron (MLP) or gating mech-
anisms. Finally, the selected label of the largest
probability is used as the final prediction result.

4.2 Model for Motivation Understanding
Similar to the model for emotion understanding, we
build emotion concept knowledge base (ECKB).
The difference is the categorization and the dimen-
sion of ECKB. The remaining modules are the
same as Emotion Understanding.

4.3 Model for Conditioned Action Generation
As shown in Fig. 5, for conditioned action
generation task, we employ pre-trained trans-
former (Vaswani et al., 2017) based language mod-
els (LM) because of their exceptional performance
across related NLG tasks (Forbes et al., 2020;
Rudinger et al., 2020; Sakaguchi et al., 2020; Peng
et al., 2022b). Specifically, we select two standard

text generation models for conditioned action gen-
eration task, BART and GPT2. 1. BART (Lewis
et al., 2020) is an encoder-decoder architecture; 2.
GPT2 (Radford et al., 2019) is a single “standard”
LM. We call the models trained in our settings as
COG-BART and COG-GPT2 for performing ex-
periments. Besides, in order to control the direction
of action generation is oriented to the future emo-
tion, we adopt a emotion predictor to minimum the
distance between given emotion of action and the
given emotion label. To teach the model semantic
information of the input text, which are motiva-
tions and all actions, we design prompt template
for action generator (Table 9 in Appendix A.1).

4.4 Training
Emotion Understanding and Motivation Under-
standing For encoders of these two tasks, we adopt
the general MLP classification head and obtain the
distribution on each label after fine-tuning with
cross-entropy loss:

LCLS = −
n∑

i=1

p (xi) log (q (xi)) (4)

where xi represent one sample in EU and MU tasks.
Conditioned Action Generation GPT-2 and BART

is trained to learn to produce the action A of the
given history actionsH, motivationM and corre-
sponding character C. To achieve this goal, our
approach is trained to maximize the conditional
log-likelihood of predicting the object tokens of A:

LLM = −
|H|+|M|+|C|+|A|∑

t=|H|+|M|+|C|
logP (xt | x<t) (5)

What’s more, the predicted emotion distribution
of emotion predictor is supervised by the given
emotion label distribution with KL-divergence.

LKL = KL(p(ei)|q(ei)) (6)

where p(ei) is the predicted emotion distribution,
and q(ei) is the given emotion label distribution.
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To summarize, the total loss is:

L = λ1LLM + λ2LKL (7)

where λ∗ is the hyper-parameter controlling the
proportion of each part.

5 Experimental Setup

5.1 Baselines
We select the following three baselines for emo-
tion understanding and motivation understanding
tasks: 1. GRU (Chung et al., 2014) is a one-layer
bi-GRU encodes the input text and concatenates the
final time step hidden states from both directions to
yield the sentence representation hs. 2. BERT (De-
vlin et al., 2019) is a standard pre-trained language
model. We concatenate sentences using specific
separator tokens ([CLS] and [SEP]). Finally, we
take the hidden state representation of [CLS] in
the last layer of BERT as the overall representa-
tion hs of sentence pairs. 3. RoBERTa (Liu et al.,
2019) is a improved robust BERT which shows
state-of-the-art results in many NLP tasks. We use
the hidden state representation of <s> as the sen-
tence representation hs.

For conditioned action generation task, we
choose GPT2 (Radford et al., 2019) fine-tuned on
ROCStories (Mostafazadeh et al., 2016) and HAIL
as baselines.

5.2 Implement Details
We train baselines and our models on 9k HAIL
training examples, then select hyper-parameters
based on the best performing model on the dev set
(2k), and then report results on the test set (2k).
We employ GPT2 large (1.5B), BART large (680M)
and ROBERTA large (340M) for our model. We
implement our methods with HuggingFace§ (Wolf
et al., 2020) PyTorch (Paszke et al., 2019). We use
V-100 GPU to run the experiments. More details,
refer to Appendix A.4.

5.3 Metrics
Automatic Metrics. We report the micro-averaged
precision (P), recall (R), and F1 score¶ for emotion
and motivation understanding tasks.

For conditioned action generation task, we adopt
three automatic measures to evaluate the generated
textual action distribution both on content quality

§https://github.com/huggingface/transformers
¶https://github.com/scikit-learn/scikit-learn

and rationality. We use the following measures:
(1) Perplexity (PPL) as an indicator of fluency. A
smaller value is better. (2) BLEU (Papineni et al.,
2002) score with n is 1, 2, 4. (3) Rouge (Li et al.,
2016) score with n is 1, 2 or L.
Human Evaluation Metrics. We also conduct
a human evaluation of generated action. Crowd-
workers are required to evaluate actions on a 0-3
scale (3 being very good) from two different per-
spectives: (1) content quality to indicate whether
the generated action is fluent and coherent, and
(2) content rationality to assess whether it follows
the given motivations and emotions.

5.4 Results of Automatic Evaluation
Emotion Understanding. We show results on the
test set in Table 2. Our approach, which using
prompt template, constructed KBs, ROBERTA and
voting module, achieves the highest score of all
models. It is interesting that the emotion under-
standing task is hard for pre-trained language mod-
els with only 59.12 F1 score. This task would need
more knowledge and reasoning abilities.
Motivation Understanding. As shown in Table
3, we can conclude that our method outperform
other models. However, the improvement of our
baseline in this task is small. It is possible that
motivation understanding task needs the ability of
reasoning. All in all, motivation understanding task
is challengeable for the state-of-the-art models in
natural language understanding tasks.
Conditioned Action Generation. Table 4 shows
that our COG-GPT2 and COG-BART outperforms
all baselines, indicating that it can serve as good
base action generation model. We can conclude
that the BLEU-1 score of COG-GPT2 models is the
best. For Rouge score, COG-BART model shows
best performance. One reason could be that the
summarization task is helpful for generating text
with larger recall.
Summary. In conclusion, our approach shows bet-
ter performance than other implemented state-of-
the-art models with the relationship of motivations,
emotions and actions. The results of all tasks verify
the feasibility of COMMA.

5.5 Results of Human Evaluation
We also performed manual evaluation for condi-
tioned action prediction. We randomly selected
100 instances from the test set and used the eval-
uated model to generate actions. In our work, we
compare the generated stories in pairs, and each
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Models P R F1
GRU (Chung et al., 2014) 36.23 36.76 36.51
BERTBASE

† (Devlin et al., 2019) 47.63 54.34 49.77
BERTLARGE

† (Devlin et al., 2019) 53.95 55.23 53.23
ROBERTABASE

† (Liu et al., 2019) 51.47 55.64 53.09
ROBERTALARGE

† (Liu et al., 2019) 54.36 58.27 55.93

OURS 56.75 60.39 59.12
(1) w/o ROBERTA 54.04 58.77 58.77
(2) w/o Knowledge Base 54.73 58.90 57.62
(3) w/o prompt template 54.95 58.23 56.23
(4) w/o voting module 55.81 59.01 57.54
(5) w/o motivation 38.38 52.88 45.74

Table 2: Results of Emotion Understanding. Our Ap-
proach is our proposed model. † means following the
experimental settings in papers.

Models P R F1
GRU (Chung et al., 2014) 40.53 40.27 40.89
BERTBASE

† (Devlin et al., 2019) 60.57 60.80 60.28
BERTLARGE

† (Devlin et al., 2019) 61.17 61.45 60.96
ROBERTABASE

† (Liu et al., 2019) 61.53 61.62 61.06
ROBERTALARGE

† (Liu et al., 2019) 63.50 63.97 63.57

OURS 64.57 64.56 63.96
(1) w/o ROBERTA 59.68 59.24 58.77
(2) w/o Knowledge Base 62.34 62.35 62.57
(3) w/o prompt template 63.22 63.76 62.19
(4) w/o voting module 63.65 63.93 62.44
(4) w/o emotion 64.02 63.95 63.42

Table 3: Results of Motivation Understanding. Our
Approach is our proposed model. † means following the
experimental settings in papers.

pair is evaluated by 3 judges. The last two columns
of Table 4 report the average improvements as well
as absolute scores for content quality and rational-
ity. We can conclude that models with our designed
prompt template and training loss outperform the
models pre-trained on story corpus with the lan-
guage model objective. It is interesting that the
content of generated actions is fluent and grammat-
ical, which indicates that GPT2 and BART is good
at organize natural language.

6 Analysis and Discussion

6.1 Ablation Study

To analyze the importance of different modules in
our baseline models, we perform ablation study
on our approach in emotion and motivation under-
standing. As shown in Table 2 and Table 3, (1) de-
notes that the semantic representation of ROBERTA

is crucial for understanding tasks. Compared (1)
and (2), we find that ROBERTA and KBs have the

Figure 6: Case study for emotion and motivation under-
standing. Our framework can give better interpretability.

similar scores in motivation understanding. (3)
and (4) indicate the importance of prompt template
and voting modules designed for ROBERTA. (5)
strength that joint modeling motivation, emotion
and action is helpful for emotion and motivation
understanding.

6.2 Human A/B Test
Human A/B test is also conducted. We try to di-
rectly compare our model with other baselines. We
randomly sample 100 examples each for our model
and baseline models. Three annotators are given
generated responses from either our model or base-
lines in random order and are asked to choose a
better one. They can either choose one of the re-
sponses or select “Tie” when the quality of pro-
vided options are hard to access. Results in Table 5
confirm that the responses from COMMA are more
preferred by human judges.

6.3 Case Study
Emotion and Motivation Understanding. Fig.
6 illustrates the distribution of ROBERTA and our
concept knowledge base. Our method can bring
with better interpretability with the knowledge of
key words in human activities. Fig. 6 shows that
knowledge base predicts correctly in emotion un-
derstanding and help motivation understanding.
Conditioned Action Generation. Since the pro-
posed models can generate actions conditioned on
one’s motivation, they can be used to unfold action
in diverse situations for a combination of history
actions, character, motivation, and emotion. We
demonstrate this capability in Table 6.

√
means

reasonable.

!

means that the generated action can
not express the corresponding aspect.

!

repre-
sents that the consistency is debatable. It can be
concluded that motivation and emotion are all
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Models Automatic Eval Human Eval
PPL BLEU-1 BLEU-2 BLEU-4 Rouge-1 Rouge-2 Rouge-L Content Plausible

GPT2+ROC‡ 12.47 17.24 6.26 2.16 6.86 0.23 6.44 2.36 0.79
GPT2+HAIL‡ 11.83 16.46 5.81 1.92 7.32 0.38 6.71 2.24 0.56

COG-GPT2 6.85 22.48 7.54 2.85 10.86 1.05 10.25 2.79 2.12
w/o E 7.99 22.29 7.58 2.81 10.22 0.94 9.66 2.85 1.79
w/oM 8.56 21.71 7.12 2.48 10.57 0.96 10.06 2.72 1.63

COG-BART 6.58 24.51 2.26 0.31 18.71 3.11 17.24 2.87 1.98
w/o E 7.65 23.62 2.01 0.22 17.68 2.74 16.25 2.86 1.58
w/oM 8.86 23.98 1.94 0.16 18.53 2.72 16.99 2.79 1.85

Table 4: Automatic and human evaluation results of our COG-GPT2 and COG-BART models on conditioned action
generation. COG-GPT2 and COG-BART are trained with the combination of character C, motivationM and are
required to predict emotion E . ‡ represents pre-training GPT2 with language model objective on the corresponding
corpus. ROC is ROCStories (Mostafazadeh et al., 2016) and HAIL is the train set of our proposed dataset.

Methods Win Loss Tie κ

COG-GPT2 v.s. GPT2+ROC 54.2% 19.5% 26.3% 30.8
COG-GPT2 v.s. GPT2+HAIL 49.4% 18.7% 31.9% 29.6
COG-BART v.s. GPT2+ROC 53.3% 18.4% 28.3% 28.9
COG-BART v.s. GPT2+HAIL 54.3% 14.6% 31.1% 31.3

Table 5: Human A/B Test of COMMA. Results show
that COMMA performs baseline models sufficiently. κ
denotes Fleiss’ kappa (all are fair agreement or moderate
agreement). The p-value of scores < 0.05 in sign test.

important for action generation. COG-GPT-2
tends to generate short but reasonable actions. But
actions generated by COG-BART usually are long
but repetitive. From the samples tagged by thinking
face, we can see that only motivations or emotions
are hard to make action prediction.

Furthermore, we perform some case studies with
different inputs. The actions, with the inputs of spe-
cific history actionsH, character C, motivationM
or emotion E , are generated by COG-GPT-2, COG-
BART or human writing. From the first line of Fig.
7, Jose has a spirit growth need and Jose’s emo-
tional expectation is joy. As demonstrated by the
three actions, we can conclude that the COG-GPT-
2, COG-BART based models can generate reason-
able actions. Interestingly, COG-BART can guess
that the destination of the trip is Las Vegas, which
is competitive to human writing. In the second
example, all actions can not clearly express that
the emotional expectation is joy, where a big bowl
generated by COG-GPT-2 could somewhat show
the happiness of Tom. Last but not least, Tim was
afraid to go outside and Tim went to the store to buy
a new pair of shoes are plausible corresponding to
the stability need. It is possible that stability need
is more abstract for pre-trained language model

Models
Given H = Kim and her glass
went on a field trip to an aquarium.
C=Kim,M=spirit growth, E=joy

R

GPT2+ROC Kim has a very good sense of humor .

!

GPT2+HAIL The personality of Kim could be humorous.

!

COG-GPT2 She was able to get a job at a local restaurant.
√

w/o E She was so excited to go.

!

w/oM Kim was a very hard working woman.

!

COG-BART Kim had always wanted to go to the beach.
√

w/o E Kim had always wanted to be a pilot.
√

w/oM Kim and her friends decided to go on a date.

!

Human Kim enjoyed looking at the sea creatures.
√

Table 6: Case study of conditioned action generation
task for all models, which are tested with history actions,
character Kim, motivation spirit growth, emotion joy.
Rationality is abbreviated as R. The colored text means
generated action satisfy the aspects of mental states.

(PLM) to understand. Besides, we can find that all
actions lack the expression of trust emotion. One
reason is that the PLM based models are insensi-
tive to emotional inputs, which is challengeable in
future work.

6.4 Visualization Analysis
To verify the claim COMMA can reveal the es-
sential relationship among motivations, emotions,
and actions, we conduct a visualization analysis
of relationships among motivations, actions, and
emotions with our approach. Fig. 8 demonstrates
the matrix of final prediction probability of mo-
tivations and emotions in emotion understanding
tasks. The matrix makes motivations, actions and
emotions close together and shows that motiva-
tions (spiritual growth) have the future emotion (i.e.
anticipation(195.8E−3)). With this matrix, we can
better reveal the essential relationship among moti-
vations, emotions, and actions. Therefore, we can
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Cog-GPT-2: Tom was eating a big bowl of cereal.

Human: He book a trip to the Yukon to fulfill his dream.

Human: Marc offers to buy Tom skyline chilli if he pays him back.

ActionsInput C M E

√

√

√

√

√
√

√

√
√

√

√

√

√

√

√

!

√

√

√

!

√

!

Cog-GPT-2: Tim was afraid to go outside.

Cog-GPT-2: Jose was very excited to go on a trip.

Cog-BART: Jose was excited to go on vacation to Las Vegas.

Cog-BART: Tom went to the grocery store to buy some food.

Cog-BART: Tim went to the store to buy a new pair of shoes.

Human: He freaked out and cried uncontrollably.

"""""

Emotion: joy 

Emotion: joy 

Character: Jose 

Motivation: spirit growth 

Character: Tom 

Motivation:  physiology 

Character: Tim 

Motivation:  stability 

Emotion: trust 

Figure 7: Case study with different inputs on conditioned action generation task.
√

means reasonable.

!

means
that the generated action can not express the corresponding aspect.

!

represents that the consistency is debatable.
The colored text means generated action satisfy the aspects of mental states.

0

200E-3

Joy
Trust
Fear

Surprise
Sadness
Disgust

Anger
Anticipation

Physiological    Stability       Love            Esteem   Spiritual Growth

Language-based Action: Rachel wanted to make a new playlist of songs.
label distribution computed by our model

3.7 6.5 10.1 7.1 93.9
0.2 0.4 0.6 0.4 5.8
0.2 0.3 0.4 0.3 4.0
0.2 0.3 0.5 0.3 4.5
0.6 1.0 1.6 1.1 14.6
0.1 0.2 0.3 0.2 2.5
0.1 0.2 0.3 0.2 2.8
7.8 13.7 21.1 14.8 195.8

Figure 8: Visualization of final distributions of model.
Each element of the above matrix uses scientific nota-
tion, and the exponent is −3.

supply more deep explanations about the relation-
ship of motivations, actions, and emotions based
on visualization analysis.

7 Related Work

There have been many large-scale language-based
resources to explore human mental state, such as
motivations and emotions. (Rashkin et al., 2018b;
Sap et al., 2019a; Hwang et al., 2020) explore the
human mental states in narrative text with series
of “if-then” relationships. SOCIAL IQA was intro-
duced by (Sap et al., 2019b) for probing emotional
and social intelligence in a variety of everyday sit-
uations. Most similar to our work, Rashkin et al.
(2018a) put forward Story Commonsense, which is
the causal reason for the changes in the psycholog-
ical state of the characters in the story.

Recently, a lot of work has begun to consider
introducing various mental state of human beings
into sentiment analysis and other NLP downstream
tasks. Li and Hovy (2017) explore the importance
of human motivations for sentiment analysis and
consider emotion as a specific event or entity that
realizes the mental state of human satisfaction with

oneself. Otani and Hovy (2019) regard human
motivation as the driving force of human emo-
tions, and take motivation detection as the first
step of emotion detection, which improves the sen-
timent analysis of evaluation. (Du et al., 2019; Am-
manabrolu et al., 2021; Xu et al., 2020; Brahman
and Chaturvedi, 2020) use the knowledge gener-
ated by COMET regarded the psychological state
of COMET as a condition for story generation.

All in all, the existing language-based resources
and works focus on the binary relationship between
action and each mental state. Diversely, we first
propose a cognitive framework that aims to analyze
comprehensive relationships among motivations,
emotions and actions in language-based human
individual activities.

8 Conclusion and Future work

In this paper, we propose a Cognitive Framework
of Human Activities (COMMA). To verify the
effectiveness of our cognitive framework, we intro-
duce three challenging NLP tasks, automatically
construct a dataset HAIL, and propose the corre-
sponding methods. Experimental results show a
better understanding of the relationship among mo-
tivations, emotions and actions under our COMMA
than existing methods. Modeling the relationship
among motivations, emotions and actions in human
activities can allow researchers to reason the essen-
tial causes of human activities from the cognitive
perspective and supply reasonable explanations.

In future work, we will explore COMMA on
various NLP downstream applications, such as in-
telligent dialogue, controllable text generation and
public opinion analysis. Besides, it is interesting to
further analyse more complex human activities.

171



Acknowledgement

We thank all anonymous reviewers for their con-
structive comments and useful advice. Also thanks
for the discussion with Yunpeng Li, Yajing Sun,
Yongxiu Xu, Ping Guo, Xinyu Zhang, Yao Dong
and Yige Chen. This work is supported by the
National Natural Science Foundation of China
(No.62006222 and No.U21B2009). Thanks for
COLING organizers and the proposed pre-trained
language models, data, codes.
Contribution List Yuqiang Xie: Idea, Paper Writ-
ing, Coding; Yue Hu: Guiding, Discussion; Wei
Peng: Discussion, Coding; Guanqun Bi: Discus-
sion, Paper Polish; Luxi Xing: Review.

Thanks for the hard work and dedication of all
team members.

References
Prithviraj Ammanabrolu, W. Cheung, William Broniec,

and Mark O. Riedl. 2021. Automated storytelling via
causal, commonsense plot ordering. In AAAI.

Faeze Brahman and Snigdha Chaturvedi. 2020. Mod-
eling protagonist emotions for emotion-aware story-
telling. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
5277–5294. Association for Computational Linguis-
tics.

Michel Cabanac. 2002. What is emotion? Behavioural
Processes, 60:69–83.

John T. Cacioppo and Wendi L. Gardner. 1999. Emo-
tion. Annual Review of Psychology, 50:191–214.
PMID: 10074678.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Li Du, Xiao Ding, Ting Liu, and Zhongyang Li. 2019.
Modeling event background for if-then commonsense
reasoning using context-aware variational autoen-
coder. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 2682–
2691. Association for Computational Linguistics.

Maxwell Forbes, Jena D. Hwang, Vered Shwartz,
Maarten Sap, and Yejin Choi. 2020. Social chem-
istry 101: Learning to reason about social and moral
norms. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
653–670. Association for Computational Linguistics.

William L. Hamilton, Kevin Clark, Jure Leskovec, and
Dan Jurafsky. 2016. Inducing domain-specific senti-
ment lexicons from unlabeled corpora. In Proceed-
ings of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 595–605.
The Association for Computational Linguistics.

C. L. Hull. 1974. Essentials of behavior. In New Haven:
Published for the Institute of Human Relations by
Yale University Press.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2020. COMET-ATOMIC 2020: On sym-
bolic and neural commonsense knowledge graphs.
CoRR, abs/2010.05953.

Jerome Kagan. 2007. What is emotion?: History, mea-
sures, and meanings. In Yale University Press.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016, pages
110–119. The Association for Computational Lin-
guistics.

Jiwei Li and Eduard Hovy. 2017. Reflections on Senti-
ment/Opinion Analysis, pages 41–59. Springer Inter-
national Publishing, Cham.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Abraham Harold Maslow. 1943. A theory of human
motivation. In Psychological review.

172



Saif Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a word-emotion association lexicon. Com-
put. Intell., 29(3):436–465.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James F. Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding
of commonsense stories. In NAACL HLT 2016, The
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, San Diego California,
USA, June 12-17, 2016, pages 839–849. The Associ-
ation for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 4885–4901.
Association for Computational Linguistics.

Naoki Otani and Eduard H. Hovy. 2019. Toward com-
prehensive understanding of a sentiment based on
human motives. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 4672–4677.
Association for Computational Linguistics.

Jaak Panksepp. 1998. Affective neuroscience: The foun-
dations of human and animal emotions. Psychology.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Wei Peng, Yue Hu, Yuqiang Xie, Luxi Xing, and Ya-
jing Sun. 2022a. Cogintac: Modeling the relation-
ships between intention, emotion and action in in-
teractive process from cognitive perspective. CoRR,
abs/2205.03540.

Wei Peng, Yue Hu, Luxi Xing, Yuqiang Xie, Yajing Sun,
and Yunpeng Li. 2022b. Control globally, understand
locally: A global-to-local hierarchical graph network
for emotional support conversation. In Proceedings

of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI 2022, Vienna, Austria,
23-29 July 2022, pages 4324–4330. ijcai.org.

Robert Plutchik. 1980. A general psychoevolutionary
theory of emotion. In Theories of emotion.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao,
Bing Qin, Orphée De Clercq, Véronique Hoste,
Marianna Apidianaki, Xavier Tannier, Natalia V.
Loukachevitch, Evgeniy V. Kotelnikov, Núria Bel,
Salud María Jiménez Zafra, and Gülsen Eryigit. 2016.
Semeval-2016 task 5: Aspect based sentiment analy-
sis. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval@NAACL-
HLT 2016, San Diego, CA, USA, June 16-17, 2016,
pages 19–30. The Association for Computer Linguis-
tics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. In Ope-
nAI Blog.

Hannah Rashkin, Antoine Bosselut, Maarten Sap, Kevin
Knight, and Yejin Choi. 2018a. Modeling naive psy-
chology of characters in simple commonsense sto-
ries. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Vol-
ume 1: Long Papers, pages 2289–2299. Association
for Computational Linguistics.

Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A.
Smith, and Yejin Choi. 2018b. Event2mind: Com-
monsense inference on events, intents, and reactions.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 463–473. Association for Com-
putational Linguistics.

Rachel Rudinger, Vered Shwartz, Jena D. Hwang, Chan-
dra Bhagavatula, Maxwell Forbes, Ronan Le Bras,
Noah A. Smith, and Yejin Choi. 2020. Thinking like
a skeptic: Defeasible inference in natural language.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
EMNLP 2020, Online Event, 16-20 November 2020,
pages 4661–4675. Association for Computational
Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–
8740. AAAI Press.

173



Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A. Smith, and Yejin Choi.
2019a. ATOMIC: an atlas of machine commonsense
for if-then reasoning. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 3027–3035.
AAAI Press.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le
Bras, and Yejin Choi. 2019b. Social iqa: Common-
sense reasoning about social interactions. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 4462–4472. Association
for Computational Linguistics.

Rishi Sharma, James Allen, Omid Bakhshandeh, and
Nasrin Mostafazadeh. 2018. Tackling the story end-
ing biases in the story cloze test. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 2: Short Papers,
pages 752–757. Association for Computational Lin-
guistics.

Tiffany Watt Smith. 2016. The book of human emotions.
In Little, Brown, and Company.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1631–1642. ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November

16-20, 2020, pages 38–45. Association for Computa-
tional Linguistics.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020. MEGATRON-CNTRL: control-
lable story generation with external knowledge using
large-scale language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 2831–2845. Association for
Computational Linguistics.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis: A survey. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov., 8(4).

Deyu Zhou, Xuan Zhang, Yin Zhou, Quan Zhao, and
Xin Geng. 2016. Emotion distribution learning from
texts. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4,
2016, pages 638–647. The Association for Computa-
tional Linguistics.

174



A Appendix

A.1 Prompt Template for Input
In emotion understanding task, a model is given his-
tory actionsH, character C, a label of motivations
M and a textual action A. In motivation under-
standing task, inputs of model are history actions
H, character C, a emotional label E and a textual
action A. In conditoned action generation task,
history actions H, character C, a label of motiva-
tionsM and a emotional label E are given to the
generator. We design simple prompt templates to
expand the semantic information of the motivation
and emotion labels, and also indicate the character
owning the motivation and emotion. All templates
for EU and MU tasks are as the following:
C’s history actions are __.
C’s motivation is __ .
C’s action is __.
C’s emotion is __.

Table 9 shows the template for conditioned ac-
tion generation. In summary, this technique can
enrich the semantic information of the labels and
bring the labels with the given character’s infor-
mation. Ablation studies show the effectiveness of
prompt template.

A.2 Data Collection
To verify the effectiveness of our cognitive frame-
work, we construct a new dataset HAIL (Human
Activities In Life) for the above four tasks by au-
tomatically extracting from the existing resource,
Story Commonsense(Rashkin et al., 2018a). Story
Commonsense dataset manually annotates human
motivations and emotions of the event in daily com-
monsense stories. It is an important resource for
studying the causality of motivations, actions, and
emotions in language-based individual activities.
Note that, the actors of the actions are required to
have both motivations and emotion labeling in our
collected data HAIL. In order to obtain such (moti-
vation, action, emotion) samples, we utilize NLTK*

(a natural language processing toolkit) and design
some rules. In all, we extract 13,568 examples in
Story Commonsense that meet our requirements.
Fig. 11 denotes the data statistics of label distribu-
tions in HAIL, including motivations and emotions.
The label distribution is relatively uniform, which
is conducive to the learning of the model.
Data Analysis We perform analysis about the gen-
der bias of open-text actions in HAIL. As is shown

*http://www.nltk.org/

Hyper-parameter Value

LR {1e-5, 2e-5}
Batch size {16, 32, 64}
Gradient norm 1.0
Warm-up 0.1
Max. input length (# subwords) 200
Epochs {3, 5, 10}

Table 7: Hyper-parameters of models based on BERT
and ROBERTA for emotion and motivation understand-
ing tasks.

Hyper-parameter Value

LR 1e-5
λ1 1
λ2 1.5
Batch size 32
Gradient norm 1.0
Warm-up 0.1
Max. input length (# subwords) 200
Max. output length (# subwords) 60
Max # Epochs 30

Table 8: Hyper-parameters of models based on BART
and GPT-2 for action prediction task.

Fig. 10, our dataset have a good distribution con-
sidering the gender of individual in all actions.

This mechanism ensures that there is a clear and
agreed-upon relationship between needs-action-
emotion in the story, and avoids subjectivity and
ambiguity in SCT (Sharma et al., 2018) and certain
NLU tasks (Nie et al., 2020).

A.3 Knowledge Distribution of KBs
The knowledge bases can give the knowledge dis-
tribution of the motivation/emotion category ac-
cording to the commonsense concepts appeared
in the action, which corresponds to Knowledge
Distribution. Specifically, we use tools such as
NLTK† and Spacy‡, and then remove stop words
and high-frequency words to extract representative
commonsense concepts corresponding to the cur-
rent action. Finally, we use each commonsense
concept to retrieve the corresponding distribution
in MCKB or ECKB. In this way, the distribution of
all commonsense knowledge {Pc1 , Pc2 , . . . , Pcn}
in the current motivation/emotion category is ob-
tained.

Base on the training set of our proposed HAIL,

†http://www.nltk.org/
‡https://spacy.io/
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Figure 9: Examples of distribution of motivations Concept KB (below) or Emotion Concept KB (top).

Input Prompt Template Output Prompt Template
[ht] C’s history actions are __ [/ht] and [mot] C has __ motivation [/mot] [act] __ [/act]

Table 9: In conditioned action generation task, input formats of COG-BART and COG-GPT2.

13%

41%

47%

Male Female N/A

Figure 10: Analysis of gender bias of HAIL.

we automatically construct knowledge bases of
motivations and emotions. Examples of them are
shown individually in Fig. 9. These two KBs can
be used to make prediction or assist the decision-
making of the deep model, Moreover, it can also
be used to evaluate or explain the forecast results.

A.4 Implement Details

We train baseline models on 9k HAIL training ex-
amples, then select hyper-parameters based on the
best performing model on the dev set (2k), and
then report results on the test set (2k). The hyper-
parameters of BART and GPT-2 is shown in Table
7. The hyper-parameters of BERT and ROBERTA is
shown in Table 8. We use V-100 GPU to run the
experiments.

A.5 Comparison of Different Inputs

In order to analyze the effectiveness of our base-
line models for action generation, we also perform
some case studies with different inputs. The ac-
tions, with the inputs of specific history actionsH,
character C, motivationM or emotion E , are gen-
erated by COG-GPT-2, COG-BART or human writ-
ing. From the first line of Fig. 12, Jose has a spirit
growth need and Jose’s emotional expectation is
joy. As demonstrated by the three actions, we can
conclude that the COG-GPT-2, COG-BART based
models can generate reasonable actions. Interest-
ingly, COG-BART can guess that the destination of
the trip is Las Vegas, which is competitive to hu-
man writing. In the second example, all actions can
not clearly express that the emotional expectation
is joy, where a big bowl generated by COG-GPT-2
could somewhat show the happiness of Tom. Last
but not least, Tim was afraid to go outside and Tim
went to the store to buy a new pair of shoes are
plausible corresponding to the stability need. It
is possible that stability need is more abstract for
pre-trained language model (PLM) to understand.
Besides, we can find that all actions lack the expres-
sion of trust emotion. One reason is that the PLM
based models are insensitive to emotional inputs,
which is challengeable in future work.

A.6 Future work

Modeling the relationship among motivations, emo-
tions and actions in human activities can allow re-
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Figure 11: Data statistics of label distributions in HAIL, including Human motivations (Left Pic) and Emotion
Reactions (Right Pic).

Cog-GPT-2: Tom was eating a big bowl of cereal.

Human: He book a trip to the Yukon to fulfill his dream.

Human: Marc offers to buy Tom skyline chilli if he pays him back.

ActionsInput C M E
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Cog-GPT-2: Tim was afraid to go outside.

Cog-GPT-2: Jose was very excited to go on a trip.

Cog-BART: Jose was excited to go on vacation to Las Vegas.

Cog-BART: Tom went to the grocery store to buy some food.

Cog-BART: Tim went to the store to buy a new pair of shoes.

Human: He freaked out and cried uncontrollably.

"""""

Emotion: joy 

Emotion: joy 

Character: Jose 

Motivation: spirit growth 

Character: Tom 

Motivation:  physiology 

Character: Tim 

Motivation:  stability 

Emotion: trust 

Figure 12: Case study with different inputs on conditioned action generation task. The actions are generated
by COG-GPT-2, COG-BART or human writing with the specific character, motivation and emotion.

√
means

reasonable.

!

means that the generated action can not express the corresponding aspect.

!

represents that the
consistency is debatable. The colored text means generated action satisfy the aspects of mental states.

searchers to reason the essential causes of human
activities from the cognitive perspective and sup-
ply reasonable explanations. In future work, we
will explore COMMA on various NLP downstream
applications, such as intelligent dialogue, control-
lable text generation and public opinion analysis.
Besides, it is interesting to further analyse more
complex human activities.
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Abstract
In this work, we explore the fitness of vari-
ous word/concept representations in analyzing
an experimental verbal fluency dataset provid-
ing human responses to 10 different category
enumeration tasks. Based on human annota-
tions of so-called clusters and switches between
sub-categories in the verbal fluency sequences,
we analyze whether lexical semantic knowl-
edge represented in word embedding spaces
(GloVe, fastText, ConceptNet, BERT) is suit-
able for detecting these conceptual clusters and
switches within and across different categories.
Our results indicate that ConceptNet embed-
dings, a distributional semantics method en-
riched with taxonomical relations, outperforms
other semantic representations by a large mar-
gin. Moreover, category-specific analysis sug-
gests that individual thresholds per category are
more suited for the analysis of clustering and
switching in particular embedding sub-space
instead of a one-fits-all cross-category solution.
The results point to interesting directions for fu-
ture work on probing word embedding models
on the verbal fluency task.

1 Introduction

The intrinsic evaluation of lexical knowledge rep-
resented in word embeddings has been of long-
standing interest in distributional semantics (Levy
et al., 2015; Hill et al., 2015), and remains an impor-
tant topic in work on interpreting large-scale black-
box language models (Pezzelle et al., 2021; Vulić
et al., 2020; Bommasani et al., 2020). While pre-
trained contextualized word representations have
recently been evaluated in many novel, (psycho-)
linguistically motivated probing tasks (Belinkov
and Glass, 2019; Ettinger, 2020; Finlayson et al.,
2021), the assessment of lexical semantics in word
embeddings still commonly focuses on traditional
benchmarks of human similarity annotations (Hill
et al., 2015), datasets of analogies (Drozd et al.,
2016) or taxonomic relations such as hypernymy
(Baroni and Lenci, 2011; Glavaš and Vulić, 2018).

In this paper, we conduct an evaluation of word
embeddings on the so-called verbal fluency task
(Shao et al., 2014), where participants are asked
to enumerate as many different words for a given
category as possible within a given time interval
(often 60 seconds), see Figure 1 for an example
response to the category hobby. The resulting
production data are a rich source of participants’
lexical-conceptual knowledge and typically show
an interesting clustering-switching pattern where
consecutive words either relate to the same sub-
category (handball, football,horseback riding as a
cluster for “sports” in Figure 1) or switch between
sub-categories (playing the guitar, model railway
as a switch from “music” to “playing” in Figure
1). Verbal fluency is a very well-known and widely
used cognitive performance test used in psychol-
ogy, neuro- and psycholinguistics where robust
and automatic methods for analyzing clustering-
switching patterns would be highly welcome (Kim
et al., 2019). Yet, to date, the analysis of verbal
fluency data received little attention in research
on computational semantics and word embeddings
(Pauselli et al., 2018; Linz et al., 2017; Pakhomov
and Hemmy, 2014). The study by Linz et al. (2017)
constitutes a noticeable exception, but is restricted
to verbal fluency responses to a single category
(“animals”) and does not rely on human annota-

1 Malen [painting] Schaffend [creating]
2 Lesen [reading] Lyrik [lyric]
3 Schreiben [writing] Lyrik [lyric]
4 Handball [handball] Sport [sport]
5 Fußball [football] Sport [sport]
6 Reiten [horseback riding] Sport [sport]
7 Musik [music] Musik [music]
8 Gitarre spielen [playing the guitar] Musik [music]
9 Modelleisenbahn [model railway] Spielen [playing]
10 Modellflugzeug [model airplane] Spielen [playing]
11 Sammeln [collecting] Sammeln [collecting]
12 Stricken [knitting] Schaffend [creating]
13 Sticken [embroidery] Schaffend [creating]
14 Nähen [sewing] Schaffend [creating]

Figure 1: Elicited word sequence and annotated sub-
categories from the hobbies domain
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tions of clusters and switches.

We base our study on a recently collected dataset
of German semantic verbal fluency responses that
provides a much wider range of categories than
previous studies and, additionally, has been ana-
lyzed in terms of clustering-switching patterns by
human judges.1 Importantly, our verbal fluency-
based evaluation of lexical knowledge in embed-
ding spaces rests on human production and judge-
ment data such that it may display different aspects
of taxonomical-conceptual knowledge as compared
to existing benchmarks for lexical relation predic-
tion derived from standard lexical resources (Ba-
roni and Lenci, 2011; Glavaš and Vulić, 2018). For
instance, the sub-categories for the “hobby” cat-
egory illustrated in Figure 1 could not be easily
retrieved from WordNet (Fellbaum, 2010) which,
curiously, lists “speleology” as the only direct hy-
ponym for the most common synset of “hobby”.

In the following, we compare different word em-
beddings for German (BERT-base, GloVe, Fasttext,
ConceptNet), investigating to what extent distances
in sub-spaces for categories like animals, body
parts, clothes reflect conceptual switches found in
verbal fluency data and to what extent it is pos-
sible to derive generic, cross-category distance
thresholds for the accurate detection of clusters
and switches. Our results indicate that ConceptNet
embeddings (Speer et al., 2017), a distributional
semantics method enriched with taxonomical rela-
tions, outperforms other semantic representations
by a large margin. On the other hand, merely tax-
onomical relations (as represented in GermaNet
Hamp and Feldweg (1997)) have significant but
weak correlations indicating that they are useful
as accompanying modalities to word embeddings.
Moreover, category-specific analysis suggests that
individual thresholds per category are more suited
for the analysis of clustering and switching in par-
ticular embedding sub-spaces instead of a one-fits-
all cross-category solution. A final experiment us-
ing simple clustering algorithms further corrobo-
rates the findings of the switching analyses. Over-
all, the results point to interesting directions for
future work on probing word embedding models
on the verbal fluency task.

1The dataset has not been released for ethical reasons, but
can be obtained under restricted conditions, upon request.

2 Background

The verbal fluency task is a very well-known neu-
ropsychological test that is used in clinical contexts
for diagnosing, e.g., neurodegenerative diseases as
well as in research on the cognitive processes un-
derlying lexical knowledge, access, retrieval and
executive control (Shao et al., 2014). Participants’
verbal fluency responses are typically scored in
terms of the number of correct words produced for
the category, whereas more fine-grained analyses
measure the amount of switching and clustering
in the word sequence (Troyer et al., 1997). The
semantic analysis of verbal fluency is commonly
addressed by the manually defined subcategories
for “animals” established in Troyer et al. (1997)’s
study, and extending these to other categories and
languages is a notorious challenge in psychology
(Kim et al., 2019). While there has been a lot of
interest in psychology in using word embeddings
for scoring semantic fluency (Benigni et al., 2021;
Qiu and Johns, 2021; Kim et al., 2019; Paula et al.,
2018; Linz et al., 2017), the task entered the radars
of the NLP community only recently. One potential
reason is that switching and clustering literature are
restricted to an extremely limited number of cate-
gories (such as animals, groceries), although there
are standardized tools that slightly extend the list
of the categories — e.g. the popular RWT (Regens-
burger Wortflüssigkeitstest) (Aschenbrenner et al.,
2000) includes five categories (animals, hobbies,
occupations, groceries and first names).

Quantitative analyses of verbal fluency data have
shown that enumeration speed and diversity within
a category are very category-dependent and that
categories can be more or less easy to enumerate.
For automatic methods that measure clustering and
switching, a first key step is to define appropriate
thresholds that pinpoint switch boundaries for sub-
category changes. Kim et al. (2019) investigate
different ways of automatically scoring semantic
fluency in English and Korean. Using a traditional
word2vec model (Mikolov et al., 2013), they pre-
dict categorical switches in collected sequences
if the predicted similarity between adjacent items
drops below a defined threshold, similar to the
approach in (Linz et al., 2017). Complementary
to this, the authors propose a model which aligns
words from fluency sequences with Wikipedia arti-
cles and predicts categorical switches when the in-
tersection of articles linked to adjacent words drops
below a certain threshold. Despite well-known dif-
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ferences between verbal fluency categories, the ro-
bustness and quality of these threshold-based meth-
ods across categories has, to the best of our knowl-
edge, not yet been analyzed. Moreover, from an
NLP perspective, traditional word2vec embeddings
can be expected to achieve a lower performance
in analyzing fine-grained conceptual relations as
compared to various more recent embedding meth-
ods that capture global word distributions as in
GloVe (Pennington et al., 2014), subword represen-
tations as in fastText (Bojanowski et al., 2017) or
integrated taxonomical knowledge as ConceptNET
Numberbatch (Egozi et al., 2011). Finally, con-
textualized embeddings from transformer language
models such as BERT (Devlin et al., 2019) consti-
tute to be an obvious method to explore. However,
to be used in such enumeration task, this dynamic
embedding method needs to be transformed into
static embeddings as detailed in Section 3.3. In
brief, the main contribution of this paper is to ex-
plore (i) state-of-the-art word embeddings for data
collected in an ongoing verbal fluency study in
wide categorical variety and (ii) the options for au-
tomatic scoring mechanisms for this broad range
of categories. To our knowledge, this is the first
(NLP-powered) study that systematically analyzes
verbal fluency task across such categorical vari-
ety through various semantic representations and
evaluation metrics together.

3 Experiments

3.1 Data

In this section, we describe the data collection, an-
notation and cleaning protocols. Detailed informa-
tion is provided in Appendix 7.1

Participants. 125 participants originally at-
tended the study, and 114 of them completed it.
After cleaning, 100 participants are included in
the following analysis (age: 18-63 (mean = 26),
gender: 87 female, 10 male, 3 non-binary).

Semantic Categories. The initial dataset con-
tains 24 conceptual categories. However, not all of
them resulted in sufficient data for statistical analy-
sis. Second, some categories like amphibians and
precious stones elicit a considerable amount of rare
words which do not exist in the vocabulary of the
methods used here. Furthermore, some categories
are very subjective and less related to linguistic
lexical knowledge as, e.g., first names). Therefore
based on qualitative and descriptive analysis, we

narrow the 24 categories down to those that have at
least 75 words produced by the probands, which are
available in all embeddings’ vocabulary list, and
with a minimum average of 5 words per annotated
subcategory. This leaves us with the following 10
categories: occupations, groceries, hobbies, ani-
mals, weapons, vessels, fabrics, countries, clothes,
body parts and insects. The entire list can be found
in Appendix 7.2.

Subcategory Annotations The words in verbal
fluency sequences have been manually annotated
with their subcategories (e.g. pets, birds, jungle an-
imals for the animal category) by five paid, trained
annotators, each annotating 4-5 of the 24 categories.
Based on this annotation, we are able to deter-
mine switches (positions where the left and right
word have a different subcategory and clusters (se-
quences of words with the same category).

Data Cleaning. We remove sequences that con-
tain less then 5 items, resulting in 960 sequences
in total. The words in the sequences were pro-
cessed using off-the-shelf NLP text processing
tools like; SpaCy Lemmatizer2, Compound Split-
ter3 and Spell Checker4 for German. Compound
words are generally common in German and the
vocabulary used by participants also frequently
contains compound words such as “Klavierspielen”
(piano playing), “Krankenpfleger” (health nurse),
“Fahrradfahren” (bike riding). Unfortunately, many
of the compounds do not exist in the vocabulary
of GloVe, ConceptNet, or GermaNet whereas fast-
Text and BERT embeddings can deal with out-of-
vocabulary tokens due to their sub-word tokeniza-
tion method. In order to address this discrepancy
for the non-subword methods, the Python com-
pound splitter package has been used for the words
not found in the vocabulary following the lemmati-
zation and spell-check. As a result, the compound
vector would be the average of the part vectors.

Table 1 presents basic statistics for word counts
and sub-category switch counts observed in the se-
quences within each category and across categories
(as global) following the method used by Kim et al.
(2019). This overview highlights the differences
in the characteristics of the categories: participants
enumerated almost 20 items on average for the ani-
mals and countries, and around or below 10 items
for fabrics, insects, and vessels. Correspondingly,

2
https://spacy.io/models/de

3
https://github.com/dtuggener/CharSplit

4
https://pypi.org/project/pyspellchecker/
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switch counts for animals and hobbies are signifi-
cantly higher as compared to categories which are
less easy to enumerate.

3.2 Methods

We now introduce our automatic switch detection
methods, that we will evaluate on the human sub-
category annotations. The goal is to investigate
whether it is possible to determine a "one-fits-
all" metric that can generalize across various se-
mantic categories and to further explore category-
dependent characteristics that cause deviation from
the overall pattern.

In addition to comparing human-annotations
with the word/concept embedding methods (GloVe,
fastText, ConceptNet and BERT-base), we further
investigate how mere taxonomic relations (by em-
ploying GermaNet) perform on switch detection (i)
as a standalone method (Section 4.3) and (ii) as a
complementary source of information, combined
with embedding-based decisions (Section 4.4).

We utilize several metrics in order to test the
correlations between human annotations and em-
bedding representations. First, we compare the
the number of switches determined by the human
annotators against the aggregated similarity score
calculated for the pairs in the sequences (for each
method, Section 4.1). We consider several parame-
ters (mean, maximum, minimum and standard de-
viation) for our aggregation method. Since mean
values exhibit the highest correlation scores, we
select them as the suitable scoring metric for re-
porting.

Next, we try to detect switch boundaries (sub-
category changes) in sequences, using the similar-
ity scores between word pairs in the sequences.
To decide whether a given word pair marks a sub-
category switch, we apply the threshold cut-off
methods described in Kim et al. (2019). We test
two threshold variations: (i) Median threshold
and (ii) 25-Percentile (25P) threshold. A switch
boundary is marked where the cosine similarity be-
tween two adjacent words falls below the respective
threshold.

For the individual embedding methods, the bi-
nary threshold-based decisions whether pairs of
words mark switch boundaries or belong to the
same subcategory are then compared against the
human annotations using Cohen Kappas and Chi-
square statistics (using the scipy package5, Sec-

5
https://docs.scipy.org/doc/scipy/reference/stats.

tion 4.2). The median and 25P thresholds are cal-
culated per category as well as globally, by taking
all similarity values in the entire data into account.
The entire list of calculated thresholds can be found
in Appendix 7.3.

We complement our embedding-based analy-
ses with GermaNet (Hamp and Feldweg, 1997),
a lexical-semantic network for German that allows
for a rule-based, explainable analysis of the switch
boundaries. GermaNet groups nouns, verbs, and
adjectives into synsets and links these synsets with
lexical semantic relations (containing a total of
205K lexical units in 159K synsets). Using the
Python API for GermaNet (germanetpy6), we ex-
tract the lexical units and synsets for the word pairs
given their category.

We explore the following metrics for scoring
similarity between word pairs based on synset rela-
tions: (i) shortest path distance, (ii) path-based (PB)
similarity and (iii) information content (IC) based
similarity (Resnik, 1999; Leacock and Chodorow,
1998). The details of these metrics can be found in
the GermaNet website with a source code7. Path-
based relatedness measures compute the semantic
relatedness between two concepts based on the
shortest path between two synsets in the hyper-
nym relation. However, quantifying semantic dis-
tances merely based on length in the hypernym
relation is intuitively not a flawless concept (Jiang
and Conrath, 1997). The IC-based metric com-
bines the structural information in the hypernym
relation with the word frequencies (GermaNet raw
frequency lists). The relatedness of two synsets
is measured in terms of the information content
of the least common synset that is a hypernym
to both synsets. The word frequencies are used
to compute the information content, which scores
concepts from specific to general. If a very specific
synset is compared to a very general one, the re-
latedness score will be low. This makes IC-based
measures more suited for the similarity annotations.
The formulas of these measures are available in
Gurevych and Niederlich (2005). In the following,
we focus on the IC-based metric due to its superior
performance on our data. Detailed scores for all
three metrics are provided in Appendix 7.5.

html
6
https://pypi.org/project/germanetpy/

7
https://github.com/Germanet-sfs/

germanetTutorials
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Table 1: Basic statistics (Max, min, and average values of sequences and sub-category switches)

Categories Word Count in a Sequence Sub-category switch in a sequence Total Word Count Subcategory Count

animals Max: 30, Min: 5, Mean: 19.11 Max: 14.0, Min: 1.0, Mean: 7.8 1659 22
body parts Max: 31 , Min: 5 , Mean: 18.2 Max: 15.0, Min: 3.0 , Mean: 8.37 1527 8

clothes Max: 24, Min: 7, Mean: 16.5 Max: 13.0, Min: 3.0, Mean: 8.14 1434 15
countries Max: 36, Min: 10, Mean: 18.5 Max: 13.0, Min: .0, Mean: 4.6 1752 6

fabrics Max: 17, Min: 5, Mean: 7.8 Max: 8.0, Min: .0, Mean: 3.1 537 15
groceries Max: 25, Min: 6, Mean: 16.6 Max: 16.0, Min: 3.0, Mean: 9.3, 1520 14

hobbies Max: 22, Min: 5, Mean: 14.4 Max: 15.0, Min: .0, Mean: 7.7 1158 31
insects Max: 17, Min: 5, Mean: 9.8 Max: 11.0, Min: 2.0, Mean: 6.4 773 14

occupations Max: 17, Min: 5, Mean: 12.5 Max: 13.0, Min: 3.0, Mean: 8.3 964 19
vessels Max: 17, Min: 5, Mean: 10.1 Max: 12.0, Min: 1.0, Mean: 5.9 753 9
Global Max: 36, Min: 5, Mean: 13.9 Max: 14, Min: 0, Mean: 6.8 12077 153

3.3 Semantic Space Representations

As introduced before, we investigate GloVe (1.31M
vocab, 300 dimensional)8 and fastText (65B tokens,
20M vocab, 300 dim.)9 as general static word rep-
resentations for German. As a third method, we test
the ConceptNET Numberbatch word embeddings,
which are enriched by ConceptNet taxonomic rela-
tions (594K vocab, 300 dim.) (Speer et al., 2017).
Considering the task at hand, those relations might
facilitate the enumeration.

Furthermore, we include BERT embeddings as
one of the currently most popular models in NLP.
Here, one potential challenge is that sequences of
words in verbal fluency data differ substantially
from the context that these models are trained for.
Many layers of linguistic information like syntax
or morphology that transformers learn to represent
in their latent layers (Tenney et al., 2019) are not
instrumental for this task. In this respect, verbal
fluency data differs from most existing probing set-
ups which prompt language models with “regular”
linguistic inputs. Therefore, we convert contex-
tualized BERT embeddings (2,350M tokens, 31K
vocab, 512 dim.) to static word embeddings fol-
lowing the method explained in Bommasani et al.
(2020). For this, we sample 20 sentences from
the German Wikipedia 2 Corpus10 for each item
in our vocabulary, and compute their vectors using
the dbmdz/bert-base-german-cased model11. Af-
ter applying a pooling strategy, we end up with a
static/single representations for each word.

8
https://www.deepset.ai/german-word-embeddings

9
https://fasttext.cc/docs/en/crawl-vectors.html

10
https://github.com/GermanT5/wikipedia2corpus

11
https://huggingface.co/dbmdz/

bert-base-german-cased

4 Pairwise Switch Analysis

4.1 Switch Count - Similarity Score
Correlations

The correlation between the switch counts per
sequence (in total 960 sequences) and the mean
cosine similarity score of the sequences is ana-
lyzed using the Pearson Correlation coefficient
(scipy.stats.pearsonr12). Sequences with more
sub-category switches are expected to have lower
(mean) similarity scores. As illustrated in Table 2,
the negative correlation is strong for only some of
the categories such as animals, countries, groceries,
and insects. The switch counts for GloVe and
BERT embedding methods do not display convinc-
ing alignment with the human annotations, whereas
fastText and ConceptNet embeddings are more in
line with human decisions. This analysis shows
that despite some significant and strong correlated
categories, especially for the categories clothes,
fabrics, occupations and vessels, no correlation has
been observed indicating that the switch detection
methods applied in the following section based on
word embeddings might be challenging on these
categories.

Table 2: Pearson Correlation Analysis Results on Total
Switch Count and Mean Similarity Scores

Categories GloVe fastText ConceptNet BERT

animals –.17, n.s. –.25, p.<.05 –.24, p.<.05 –.07, n.s.
body parts –.19, n.s. .09, n.s. .23, p.<.05 .30, p.<.01
clothes .03, n.s. –.147, n.s. –.14, n.s. .04, n.s.
countries –.43, p.<.01 –.39, p.<.01 –.40, p.<.01 .02, n.s.
fabrics –.11, n.s. .01, n.s. –.19, n.s. .12, n.s.
groceries –.34, p.<.01 –.24, p. <.05 –.27, p.<.01 –.08, n.s.
hobbies –.144, n.s. .03, n.s. –.17, n.s. .058, n.s.
insects –.19, n.s. –.38, p.<.01 –.27, p.<.01 –.13, n.s.
occupations –.00, n.s. –.16, n.s. –.08, n.s. .058, n.s.
vessels .17, n.s. –.01, n.s. –.03, n.s. .06, n.s.

12
https://docs.scipy.org/doc/scipy/reference/stats.

html
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4.2 Embedding-based Switch Detection
As the previous metric returns mixed results, we
continue our analysis by turning the continuous
similarity scores into discrete switch boundaries.

Overall, switch detection based on 25-Percentile
thresholds seems to achieve significant correla-
tions with human annotations (Table 3). While
the correlations are weak for GloVe and BERT em-
beddings, fastText and especially ConceptNet are
correlated with the human annotation at various
strengths. Categories like animals, hobbies and
countries show stronger correlations, while less
common categories like vessels, fabrics, insects
achieve lower scores.

In addition to this, Table 4 presents the median
thresholds, which are more conservative by design.
The overall results confirm the category-dependent
variations. ConceptNet scores are closer to hu-
man scores in 8 of 9 categories, showing strong-
to-moderate correlations. Furthermore, the median
thresholds seem to be aligned better with the hu-
man annotations than the 25-Percentile thresholds
for this enumeration task. Similar to previous re-
sults, categories like vessels, and fabrics results in
less alignment for this metric as well.

Global threshold vs. category threshold. In
order to investigate how a global threshold com-
pares to category-dependent ones, we test the align-
ment scores of both kinds of thresholds to human-
annotations. On average, as illustrated in Figure 2,
category-dependent threshold decisions demon-
strates slightly better correlations with human an-
notations.The improvements are particularly evi-
dent with regard to some specific configurations:
BERT (avg = .02, max = .18 in insects), Con-
ceptNet (avg = .01, max = .15 in insects), fast-
Text (avg = .01,max = .11 in body parts), GloVe
(avg = .02, max = .10 in countries).

4.3 Taxonomy-based Switch Detection
Table 5 presents average shortest path and IC-based
similarity scores per category. Based on these
scores, median thresholds for each category are
calculated following the threshold cut-off method
explained in Section 3.2. In detecting sub-category
switches, IC-based similarity shows alignment with
the human annotations at various levels. The results
indicate considerable differences between the cate-
gories. For example, whereas high correlations are
observed for hobbies, body parts, animals, occupa-
tions and interestingly insects, the correlations are

Figure 2: Correlations between the automated scores
(Global- vs. Category-Thresholds) and human-
annotations — averaged for all methods

weaker for other categories like clothes or fabrics.

4.4 Integrated Switch Detection

To investigate the influence of taxonomic relations
in a more explicit way, we combined the decisions
on subcategory switch from each embedding model
with the decisions calculated using GermaNet IC-
based scores (after converting to switch sequences
using Median threshold). For each pair in a se-
quence, the combined metric predicts a switch if
there is a switch detected in either of the sequences.

Figure 3 shows the correlation patterns (against
human-annotated switch boundaries) across cate-
gories for each embedding method with (W+G)
and without (W) GermaNet integration. Despite
category-based significant differences between W
and W+G conditions, it is difficult to conclude
on an overall pattern that can explain the vari-
ations across categories. However, except Con-
ceptNet (avg = −.01, max = +.07, higher im-
provement for groceries, fabrics), the other repre-
sentation methods benefited from the inclusion of
GermaNet relations especially for some categories;
BERT (avg = +.11, max = +.19, high diff. in
body parts, vessels, fabrics, groceries), fastText
(avg = +.08, max = +.12, high diff. in fab-
rics), GloVe (avg = +.014, max = +.23, high
diff. in vessels, insects, fabrics, groceries). Thus,
the detection of switch boundaries for vessels and
fabrics benefited most from the combined metric,
which suggests that embedding models and lexi-
cal resources represent complementary aspects of
lexical knowledge for these categories. Moreover,
GloVe and BERT embeddings benefit more from
GermaNet-informed scores (W+G) than fastText
and ConceptNet, both for single categories and in
the global evaluation (the last item in the graph).
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Table 3: Interrater agreement between human annotations and 25-Percentile Thresholds for each embedding

Human-Annotated Data versus Embeddings’ 25-Percentile Threshold
Categories BERT GloVe ConceptNet fastText

animals κ: .07, Corr.: .08, p. <.01 κ: .17, Corr.: .18, p. <.01 κ: .42, Corr.: .46, p. <.01 κ: .28, Corr.: .31, p. <.01
body parts κ: .10 , Corr.: .12 ,p. <.01 κ: .29, Corr.: .32 , p. <.01 κ: .317, Corr.: .35, p. <.01 κ: .25, Corr.: .28 , p. <.01
clothes κ: .07, Corr.: .08, p. <.01 κ: .04, Corr.: .04, n.s. κ: .22, Corr.: .26, p. <.01 κ: .12, Corr.: .14, p. <.01
countries κ: .10, Corr.: .10, p. <.01 κ: .43, Corr.: .43, p. <.01 κ: .39, Corr.: .39, p. <.01 κ: .34, Corr.: .34, p. <.01
fabrics κ: .11, Corr.: .12, p. <.01 κ: –.08, Corr.: –.09, p. <.05 κ: .10, Corr.: .12, p. <.01 κ: .02, Corr.: .02, n.s.
groceries κ: .13, Corr.: .17, p. <.01 κ: .23, Corr.: .29, p. <.01 κ: .26, Corr.: .33, p. <.01 κ: .21, Corr.: .27, p. <.01
hobbies κ: .15, Corr.: .19, p. <.01 κ: .24, Corr.: .29, p. <.01 κ: .39, Corr.: .48, p. <.01 κ: .22, Corr.: .27, p. <.01
insects κ: .13, Corr.: .20, p. <.01 κ: .08, Corr.: .13, p. <.01 κ: .15, Corr.: .25, p. <.01 κ: .11, Corr.: .18, p. <.01
occupations κ: –.01, Corr.: –.02, n.s. κ: .09, Corr.: .13, p. <.01 κ: .17, Corr.: .25, p. <.01 κ: .15, Corr.: .22, p. <.01
vessels κ: –.06, Corr.: –.09, p. <.05 κ: .02, Corr.: .02, n.s. κ: .12, Corr.: .16, p. <.01 κ: .08, Corr.: .10, p. <.01

Table 4: Interrater agreement between human annotations and Median Thresholds for each embedding

Human-Annotated Data versus Embeddings’ Median Threshold
Categories BERT GloVe ConceptNet fastText

animals κ: .10, Corr.: .10, p. <.01 κ: .311, Corr.: .31, p. <.01 κ: .53, Corr.: .54, p. <.01 κ: .40, Corr.: .40, p. <.01
body parts κ: –.04 , Corr.: –.037 , n.s. κ: .41, Corr.: .41, p. <.01 κ: .24, Corr.: .24, p. <.01 κ: .38, Corr.: .38, p. <.01
clothes κ: .07, Corr.: .07, p. <.01 κ: .17, Corr.: .17, p. <.01 κ: .33, Corr.: .33, p. <.01 κ: .23, Corr.: .23, p. <.01
countries κ: .144, Corr.: .164, p. <.01 κ: .35, Corr.: .39, p. <.01 κ: .31, Corr.: .36, p. <.01 κ: .30, Corr.: .34, p. <.01
fabrics κ: .20, Corr.: .21, p. <.01 κ: –.08, Corr.: –.08, n.s. κ: .08, Corr.: .08, n.s. κ: .10, Corr.: .10, p. <.05
groceries κ: .17, Corr.: .18, p. <.01 κ: .34, Corr.: .34, p. <.01 κ: .33, Corr.: .34, p. <.01 κ: .40, Corr.: .41, p. <.01
hobbies κ: .17, Corr.: .17, p. <.01 κ: .37, Corr.: .37, p. <.01 κ: .61, Corr.: .61, p. <.01 κ: .39, Corr.: .39, p. <.01
insects κ: .24, Corr.: .27, p. <.01 κ: .23, Corr.: .26, p. <.01 κ: .40, Corr.: .45, p. <.01 κ: .29, Corr.: .33, p. <.01
occupations κ: .03, Corr.: .04, n.s. κ: .21, Corr.: .23, p. <.01 κ: .38, Corr.: .40, p. <.01 κ: .35, Corr.: .37, p. <.01
vessels κ: –.03, Corr.: –.03, n.s. κ: .03, Corr.: .03, n.s. κ: .13, Corr.: .13, p. <.01 κ: .15, Corr.: .15, p. <.01

Table 5: (left) GermaNet PB scores, (middle) IC-based
relatedness scores, (right) correlation scores between
threshold-based sequences and human annotations

Categories Shortest Path
Distance (Mean)

IC-Relatedness
Score (Mean)

IC-based Relatedness
(with median threshold)

animals 7.11 .27 Corr: –.27, p.<.01
body parts 5.99 .21 Corr: –.23, p.<.01

clothes 4.08 .31 Corr: –.06, p.<.01
countries 2.48 .23 Corr: –.03, n.s.

fabrics 5.48 .30 Corr: –.12, p.<.05
groceries 5.38 .26 Corr: –.05, p.<.01

hobbies 7.07 .11 Corr: –.44, p.<.01
insects 6.37 .37 Corr: –.23, p.<.01

occupations 7.61 .20 Corr: –.24, p.<.01
vessels 3.46 .26 Corr: –.21, p.<.01

ConceptNet and fastText scores with or without
GermaNet converge on similar values in the global
category.

4.5 Discussion

The results show that automatic prediction of
switches aligns best with human annotations when
using (i) ConceptNet , (ii) a median-based thresh-
old switch detection and (iii) category-specific
thresholds. Strong correlations have been achieved
for the hobbies, and animals, and moderate cor-
relations for the occupations, insects, groceries,
clothes, countries and body parts (revisiting Ta-

ble 4). Performance of automatic switch prediction
is worst on vessels and fabrics. This aligns with the
fact that these are the categories resulted with the
lowest word counts (see Table 1). The exception
here is insects with few item produced for this cate-
gory and subcategory boundaries well represented
in the embedding methods. We speculate that this
might be due to insects occurring in more defined
and narrow contexts in the training data, whereas
fabrics and vessels may occur in a wider range of
contexts. Furthermore, we obtain stronger align-
ment between automatic prediction and human an-
notation when taxonomic relations are included via
implicit co-learning (e.g. ConceptNet) or explicit
integration (e.g. joint metric in Section 4.4). Thus,
for this task, taxonomic relations are indispens-
able and should be part of the automatic scoring
mechanisms for better alignment with the human
annotations. The selection of threshold methods
for defining switch boundaries also plays an impor-
tant role for getting closer to human annotations.
25-percentile is statistically correlated for almost
all categories and representation methods, but over-
all at weak levels. Decisions based on Median
thresholds display stronger alignment, and increase
the correlations of all representation methods at a
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Figure 3: Correlations between the gold annotation and each embedding condition (with/out GermaNet taxonomy.

substantial degree.
The poor results using BERT embeddings could

originate from the discrepancy of the task to lan-
guage modeling, or the lack of training during the
conversion from contextualized to static word em-
beddings. The performance might be improved
by increasing the sample size. To train models
this large for obtaining static word embeddings
seems unreasonably expensive, both computation-
ally and ecologically – especially considering the
good performance of simpler approaches enriched
with taxonomic relations.

5 Clustering Analysis

The pairwise switch analysis revealed consider-
able differences between categories as well as
favourable results for ConceptNet as a semantic
representation. In the following, we report results
from an additional clustering-based analysis, in
which we take a more global perspective: Instead of
investigating adjacent items in fluency sequences,
we look at the global semantic organization of all
lexical items in the respective categories.

For each category c, we encode the assigned sub-
categories for individual items into sparse binary
vectors. This transformation is necessary for K-
Means clustering. This gives us a feature vector
with dimensions (nwordsc , nsubcatsc) for human an-
notations, where nwordsc is the number of lexical
items and nsubcatsc the number of subcategories in
the respective category. As simplified, lets assume
that we have only three subcategories. A word is
represented by the vector [1,0,0] if the word has
been assigned to subcategory 1 but not 2 and 3.

We then retrieve the same lexical items from the
semantic representations described in Section 3.3,
and use each of the feature vectors to fit a K-Means
clustering model. The k parameter is set depending
on the number of annotated subcategories, deter-

Figure 4: Adjusted Rand Index (ARI) scores for differ-
ent word embeddings & categories in the fluency data

mined as kc =
nsubcatsc

2 . This parameter reflects
the complexity of the domain, i.e., it should allow
a large number of clusters for categories with many
subcategories. However, there are a few highly
fine-grained categories (e.g., fabrics with 28 sub-
categories for 148 unique words). Therefore, we
scaled the value of k for all domains by a constant
value.

For evaluation, we rely on the Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985; Steinley,
2004) for comparing the clusterings based on Con-
ceptNet, GloVe, fasttext and BERT with the re-
sults for annotated subcategories. We use the scikit-
learn13 library for both clustering and evaluation.

The scores reported in Table 6 and visualized
in Figure 4 confirm our previous findings: We see
large differences between the categories investi-
gated, with ConceptNet outperforming other se-
mantic representations. One noticeable exception
from this is the category countries, where GloVe
performs surprisingly well. As a possible expla-
nation, we suggest that for different countries the

13
https://scikit-learn.org/. For the detailed definition of

ARI, please visit https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.adjusted_rand_score.html
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ConceptNet GloVe fastText BERT

animals 0.42 0.09 0.12 0.01
body parts 0.38 0.12 0.11 0.01
clothes 0.43 0.03 0.01 0.00
countries 0.37 0.77 0.05 0.10
fabrics 0.18 0.10 0.16 0.03
groceries 0.46 0.22 0.11 0.01
hobbies 0.27 0.10 0.17 0.02
insects 0.37 0.03 0.02 0.03
occupations 0.22 0.12 0.11 0.01
vessels 0.29 0.04 -0.02 0.00

Table 6: Adjusted Rand Index (ARI) scores for different
word embeddings & categories in the fluency data

textual context might be very informative. As it is
based on lexical co-occurrence, this might result in
GloVe representations fairly consistent with human
categorization.

6 Conclusion

In this paper, we have explored a range of seman-
tic spaces and switch detection methods for the
analysis of the verbal fluency data. To the best
of our knowledge, this is the first study that (i)
incorporates the taxonomic relations using NLP
techniques, (ii) explores a wide variety of semantic
categories (10 categories), and (iii) explores the
fitness of semantic representations in German for
this task.

NLP solutions so far are limited to typi-
cal/frequent categories like fruits and animals, leav-
ing the annotation of other categories to laborious
manual methods. To develop an automatic scoring
mechanism, in-depth analysis for less frequent cat-
egories is necessary. Our results revealed various
category-specific characteristics.

We showed that choosing individual threshold
strategies to detect switch boundaries is essential
and a "one-fits-all" solution (using a global thresh-
old) results in less aligned sequences. Still, it can
be kept as an option since the degradation is not
large for the easy to enumerate categories.

In addition to providing an another perspective to
analyze the verbal fluency data for psycholinguistic
research, this study also prepares the ground for in-
vestigating interesting NLP tasks, like subcategory
prediction/generation of the upcoming items. From
that perspective, Nighojkar et al. (2022) claims that
transformer-based language models perform better
on cognitive modeling (more specifically, on pre-
dicting the next items given a sequence) than the
static approaches. However, their evaluation does

not include a comparison to knowledge-enriched
models. Although their task differs from explor-
ing semantic spaces to detect category switches,
category-specific variations are observed from their
results regarding 5 categories (fruits, vegetables,
animals, supermarket items, tools, and foods).

Furthermore, applying mere taxonomic relations
using a synset taxonomy falls behind embedding
methods but proved to be instrumental as an ac-
companying information source, especially for the
hard to enumerate categories.

These results highlight that the task is more chal-
lenging than it seems, and we need to go beyond
out-of-the-box NLP approaches by understanding
the nature of these categories and the task. Fu-
ture studies aim to improve the integrated switch
detection method around the taxonomy-enriched
representations using additional modalities and
knowledge-graph enriched BERT models.
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7 Appendix

7.1 Data Collection Details
• The experiment was conducted online using

Qualtrics.

• The task is explained in writing with an ac-
companying example during the instruction.
During the test, they are asked to type words
given the category. Typos were corrected
where necessary.

• Each of the 24 categories was presented on
a separate page. The timer (60sec) started
immediately upon presentation. The order is
randomized for each participant. Participants
needed to click through all pages. Empty re-
sults for animals, hobbies, and groceries are
not expected. As sanity check, no response
for these categories is evaluated as failure (10
participants). Two participants were dropped
based on the typing-speed-test. Two partici-
pants made free association (e.g., switching
from mice to cheese) instead of enumerating
within the class.

• Annotators are instructed to follow a common-
sense approach: e.g., "cow" would get as-
signed to a subcategory like "farm animal"
but not to its biological taxonomy.

• The annotation process was conducted in two
levels. First, the entire world list, which was
produced in the experiment, was checked.
An annotator could assign a word to multi-
ple categories, e.g., "lion" as "cat-like”, "sa-
vanna/desert" and "zodiac sign"; these ratings
were done without the annotators knowing the
context in which the word was produced. In
the second run, subcategories for words are
checked in the context of a participant’s con-
crete answers, e.g., "lion" in the context of
"cat" and "panther" would be assigned to "cat-
like" but "lion" in the context of "Capricorn"
would be assigned to "zodiac sign."

• Participants were mainly students of psychol-
ogy receiving credit points

• The study was approved by the ethics board
of the Universität Bielefeld.

7.2 Categories

As mentioned in 3.1, based on qualitative and de-
scriptive analysis, we narrow the 24 categories
down to those (i) that have at least 75 words pro-
duced in total, (ii) which are available in all embed-
dings’ vocabulary list, and (iii) with a minimum
average of 5 words per annotated subcategory. It
should be noted that categories like first names or
computer games are problematic for distributional
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semantic methods. This leaves us with 10 cate-
gories marked in bold below.

• “Amphibians”: “Amphibian”,

• “Animals”: “Tiere”,

• “Body parts”: “Körperteile”,

• “Clothes”: “Kleidungsstücke”,

• “Countries”: “Länder”,

• “Currencies”: “Währungen”,

• “Dances”: “Tänze”,

• “Fabrics”: “Stoffe”,

• “First names”: “Vornamen’,

• “Flowers”: “Blumen’,

• “Gods of antiquity”: “Götter der Antike”,

• “Groceries”: “Lebensmittel”,

• “Hobbies”: “Hobbies”,

• “Insects”: “Insekten”,

• “Metals”: “Metalle”,

• “Mountains”: “Berge”,

• “Occupations”: “Berufe”,

• “Precious stones”: “Edelsteine”,

• “Spices”: “Gewürze”,

• “Trees”: “Baume”,

• “Tropical fruits”: “tropische Früchte”,

• “Vessels”: “Behälter”,

• “Weapons”: “Waffen”,

• “Wines”: “Weinsorten”

Table 7: Subcategory Switch Thresholds for GermaNet
IC-Path Based Similarity Scores

Median 25 Percentile

animals .28 .25
body parts .22 .05

clothes .31 .30
countries .23 .23
fabrics .30 .17

groceries .26 .05
hobbies
insects .37 .36

occupations .20 .12
vessels .26 .26
global .25 .12

7.3 Subcategory Switch Thresholds

Table 9 presents the subcategory switch thresholds
calculated with respect to median and 25-Percentile
values for 4 different embedding spaces.

7.4 Mean Cosine Distance Scores

Average cosine distance scores between pairs
across categories and approaches are presented in
Table 8.

7.5 GermaNet Distance and Similarity
Metrics

Shortest path distance (SD) given category:
The shortest path calculation starts with finding
the most similar synset for each word in the pair
given the category. For example, for the pair <mon-
key, dog> in the animal category, first, the most
relevant synsets for the word “monkey” and “dog”
for the category animal are calculated separately.
Later, the minimum path distance between these
two synsets is measured.

Path-based (PB) relatedness: Unlike the pre-
vious metric that returns absolute path distance
between synsets, path-based relatedness measures
compute the semantic relatedness between two
concepts based on the shortest path between two
synsets in the hypernym relation. The shortest path
length is the minimal number of nodes forming a
path between the two synsets in the relation. It
is also useful to disambiguate word senses (e.g.
mouse as animal or electronic equipment")

IC-based relatedness. This measure is explained
in the main paper (Section).

To illustrate, Figure 5 shows one example se-
quence produced in the animal category with

Table 8: Average cosine distance scores between pairs
across categories and approaches. (The numbers in bold
format indicates highest similarity within the category,
while the underscore indicates second highest scores.

GloVe fastText ConceptNet BERT

animals 0,29 0,48 0,38 0,72
body parts 0,42 0,52 0,44 0,68

clothes 0,22 0,45 0,50 0,72
countries 0,54 0,56 0,41 0,70

fabrics 0,27 0,48 0,45 0,73
groceries 0,31 0,48 0,43 0,70

hobbies 0,32 0,39 0,26 0,70
insects 0,18 0,46 0,49 0,80

occupations 0,31 0,43 0,30 0,68
vessels 0,23 0,45 0,46 0,70
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Table 9: Subcategory Switch Thresholds for Word Embeddings

Median 25 Percentile
GloVe fastText ConceptNet BERT GloVe fastText ConceptNet BERT

animals .28 .48 .37 .71 .17 .38 .21 .64
body parts .32 .54 .45 .67 .46 .44 .31 .62
clothes .20 .47 .55 .73 .09 .33 .36 .62
countries .55 .57 .37 .70 .46 .48 .26 .65
fabrics .24 .46 .44 .74 .13 .37 .28 .66
groceries .30 .49 .43 .70 .17 .37 .30 .61
hobbies .34 .41 .22 .68 .20 .27 .08 .62
insects .16 .47 .47 0.82 .08 .37 .32 .80
occupations .35 .46 .29 .67 .19 .35 .16 .61
vessels .24 .46 .45 .68 .14 .38 .32 .62
global .31 .49 .41 .71 .17 .37 .24 .63

these above-mentioned GermaNet scores. The first
method has no normalization, and although it does
a reasonable job for the overall sequence, it returns
the same value for <cat, dog> and <rat, mouse>
pairs. PB metric addresses the normalization is-
sue, still treats these pairs in a same way. On the
other hand, with the inclusion of word frequency
values obtained from a large corpus, it becomes
more sensitive for these pairs while flattening the
other differences in the less frequent items. Since
word enumeration during a verbal fluency task re-
sults in rare and participant-dependent word pair
formations as well as stereotypical pairs, exploring
various metrics is instrumental for understanding
the task dynamics and developing a technique for
automatic scoring.
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Figure 5: Shortest Distance, Path-based and IC-based similarity scores using GermaNet.

Table 10: GermaNet shortest path distance and similarity scores between consecutive synsets

Categories Shortest Path Distance PB-based Similarity IC-based Similarity

animals Corr: .21, p.<.01 Corr: -.30, p.<.01 Corr: –.27, p.<.01
body parts Corr: .19, p.<.01 Corr: –.19, p.<.01 Corr: –.23 , p.<.01

clothes Corr: –.04, n.s. Corr: .02, n.s. Corr: –.06, p.<.01
countries Corr: .077, p.<.01 Corr: –.06, p.<.01 Corr: –.025, n.s.

fabrics Corr: –.04, n.s. Corr: –.08, n.s. Corr: –.12, p.<.05
groceries Corr: .01, n.s. Corr: –.05, n.s. Corr: –.05, p.<.01

hobbies Corr: .282, p.<.01 Corr: –.296, p.<.01 Corr: –.442, p.<.01
insects Corr: .010, n.s. Corr: –.18, p.<.05 Corr: –.23, p.<.01

occupations Corr: .11, n.s. Corr: –.11, p.<.05 Corr: –.24, p.<.01
vessels Corr: .09, n.s. Corr: –.11, n.s. Corr: –.21, p.<.01
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Abstract

We propose Neuro-Symbolic Visual Dialog
(NSVD)1 —the first method to combine
deep learning and symbolic program execu-
tion for multi-round visually-grounded reason-
ing. NSVD significantly outperforms existing
purely-connectionist methods on two key chal-
lenges inherent to visual dialog: long-distance
co-reference resolution as well as vanishing
question-answering performance. We demon-
strate the latter by proposing a more realistic
and stricter evaluation scheme in which we use
predicted answers for the full dialog history
when calculating accuracy. We describe two
variants of our model and show that using this
new scheme, our best model achieves an accu-
racy of 99.72% on CLEVR-Dialog —a relative
improvement of more than 10% over the state
of the art —while only requiring a fraction of
training data. Moreover, we demonstrate that
our neuro-symbolic models have a higher mean
first failure round, are more robust against in-
complete dialog histories, and generalise better
not only to dialogs that are up to three times
longer than those seen during training but also
to unseen question types and scenes.

1 Introduction

Modelled after human-human communication, vi-
sual dialog involves reasoning about a visual scene
through multiple question-answering rounds in nat-
ural language (Das et al., 2019). Its multi-round
nature gives rise to one of its unresolved key chal-
lenges: co-reference resolution (Kottur et al., 2018;
Das et al., 2019). That is, as dialogs unfold over
time, questions tend to include more and more
pronouns, such as “it”, “that”, and “those” that
have to be resolved to the appropriate previously-
mentioned entities in the scene. Co-reference reso-
lution is profoundly challenging (Das et al., 2019;

∗*Corresponding Author.
1Project page: https://perceptualui.org/

publications/abdessaied22_coling/

Hu et al., 2017), even for models specifically de-
signed for this task (Kottur et al., 2018). Existing
models follow a purely connectionist approach and
suffer from several limitations: first, they require
large amounts of training data, which is prohibitive
for most settings. Second, these models are not ex-
plainable, making it difficult to troubleshoot their
logic when co-references are incorrectly resolved.
Finally, current models lack generalisability, in par-
ticular for real-world dialogs that include incom-
plete or inaccurate dialog histories, longer dialogs
than those seen during training, or unseen question
types. While neuro-symbolic hybrid models have
proven effective as a more robust, explainable, and
data-efficient alternative, e.g. for VQA (Yi et al.,
2018), video QA (Yi et al., 2020), or commonsense
reasoning (Arabshahi et al., 2021), they have not
yet been explored for visual dialog.

We fill this gap by proposing Neuro-Symbolic
Visual Dialog (NSVD) —the first neuro-symbolic
method geared towards visual dialog. Our method
combines three novel contributions to disentangle
vision and language understanding from reasoning:
First, it introduces two different program genera-
tors: a caption and a question program generator,
the former of which induces a program from the
caption to initialise the knowledge base of the ex-
ecutor at the beginning of each dialog. Second, a
question program generator that predicts a program
in each round using not only the current question
but also the dialog history. We describe two vari-
ants of this generator: one that uses a question
encoder to concatenate the caption and question-
answer pairs of previous rounds to encode the dia-
log history, as well as one that stacks them. Third, a
symbolic executor with a dynamic knowledge base
keeps track of all entities mentioned in the dialog.

NSVD also addresses another limitation of ex-
isting models that was “hidden” by the dominant
evaluation scheme used so far: vanishing question-
answering performance over the course of the dia-
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log. Adopted from VQA (Antol et al., 2015), the
dominant scheme assumes that the model has full
access to the dialog history, in particular all ground
truth answers. We argue that this assumption is
overly optimistic and overestimates real-world per-
formance on the visual dialog task. We instead pro-
pose a more realistic and stricter evaluation scheme
in which prediction in the current round is condi-
tioned on previous predicted answers. This scheme
better represents real-world dialogs in which com-
munication partners rarely know whether their pre-
vious answers were correct or not.

Through extensive experiments on CLEVR-
Dialog (Kottur et al., 2019), we show that our
models are significantly better at resolving co-
references and at maintaining performance over
many rounds. Using our stricter evaluation scheme,
we still achieve an accuracy of 99.72% while re-
quiring only a fraction of the training data. Our
results further suggest that NSVD has a higher
mean First Failure Round, is more robust to in-
complete dialog histories, and generalises better
to dialogs that are up to three times longer than
those seen during training as well as to unseen
question types and scenes. The contributions of
our work are threefold: (1) We introduce the first
neuro-symbolic visual dialog model that is more
robust again incomplete histories, is significantly
better at resolving co-references and at maintaining
performance over more rounds on CLEVR-Dialog.
(2) We contribute a new Domain Specific Language
(DSL) for CLEVR-Dialog that we augment with
ground truth caption and question programs. (3)
We unveil a fundamental limitation of the domi-
nant evaluation scheme for visual dialog models
and propose a more realistic and stricter alternative
that better represents real-world dialogs.

2 Related Work

Neuro-Symbolic Models and Reasoning. Many
works have used end-to-end connectionist models
on the CLEVR dataset (Johnson et al., 2017a) with
varying degrees of success (Johnson et al., 2017b;
Hu et al., 2017; Perez et al., 2018; Hudson and
Manning, 2018). NS-VQA (Yi et al., 2018) was
one of the first neuro-symbolic models on CLEVR,
achieving a near-perfect test accuracy. Mao et al.
proposed NS-CL, a neuro-symbolic VQA network
that, in contrast to NS-VQA, learned simply by
looking at images and reading question-answer
pairs. In parallel, other works explored neuro-

symbolic models for mono-modal conversational
settings (Williams et al., 2017; Suhr et al., 2018;
Arabshahi et al., 2021). Recently, Andreas et al.
introduced a method that represents dialog states as
a dataflow graph to better deal with co-references.
Although a number of works have demonstrated
the significant potential of neuro-symbolic meth-
ods for mono-modal task-oriented dialog settings
or tasks at the intersection of computer vision and
natural language processing, we are the first to use
them for the multi-modal visual dialog task.

Visual Dialog. Das et al. introduced early vi-
sual dialog models that used an encoder-decoder
approach to rank a set of possible answers. Oth-
ers explored explicit reasoning based on the dia-
log structure (Zheng et al., 2019; Niu et al., 2019;
Gan et al., 2019). However, these models focused
mainly on the real-world VisDial dataset (Das et al.,
2019). Although popular, this dataset is not well-
suited to study a key challenge of visual dialog, i.e.
co-reference resolution, because it lacks complete
annotation of all images and dialogs. Several works
have focused on co-reference resolution in videos
(Ramanathan et al., 2014; Rohrbach et al., 2017)
and 3D data (Kong et al., 2014). Kottur et al. intro-
duced CLEVR-Dialog – a fully-annotated diagnos-
tic dataset for multi-round visual reasoning with
a grammar grounded in the CLEVR scene graphs.
More recently, Shah et al. introduced models that
build on the Memory, Attention, and Composition
(MAC) network (Hudson and Manning, 2018). Al-
though their models achieved promising results
on CLEVR-Dialog, they are computationally and
memory inefficient (Shah et al., 2020). While the
neuro-symbolic approach has significant potential
to address these shortcomings, it has not yet been
explored for visual dialog.

3 Method

Our method consists of four components (see Fig-
ure 1): a scene understanding method, a program
generator with caption and question encoders and
a decoder, and a symbolic program executor with a
dynamic knowledge base.

Scene Understanding. We used a pre-trained
Mask R-CNN (He et al., 2017) to predict segmen-
tation masks and attributes (colour, shape, material,
size) for each entity in the visual scene. We then
learned the 3D coordinates of each segment paired
with the original image using a ResNet-34 (He
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Figure 1: Overview of our method: first, a structured scene representation is created. Then, a caption program is
induced and run by our executor to initialise its knowledge base. At each subsequent round, the question and the
history are used to induce a program that answers the question and updates the dynamic knowledge base.
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Figure 2: Top: The concatenative encoder (“concat”) takes the question and the concatenated previous rounds
as input and outputs a latent vector and a question representation to the decoder. Bottom: The stacking encoder
(“stack”) takes the question and the previous rounds as input and attends to each round separately. Then, it outputs a
latent vector and a question representation to the decoder.

et al., 2016). The Mask R-CNN was pre-trained on
the CLEVR-mini dataset (Yi et al., 2018).

DSL for CLEVR-Dialog. Because CLEVR-
Dialog implements its own grammar and vocabu-
lary, we designed a novel domain-specific language
(DSL) for it by implementing a collection of de-
terministic functions in Python that our symbolic

executor can run over a CLEVR scene. In previous
works (Johnson et al., 2017b; Yi et al., 2018; Mao
et al., 2019), these functional modules shared the
same input/output interface and were arranged one
after another to predict the answer. Instead, we
followed a stricter approach by executing only one
function that expects a different number of input
arguments to answer a particular question. The full
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Figure 3: a: An example of a CLEVR-Dialog instance
with a caption and two rounds. b: Inference sample of
the caption program generation. c: Inference sample of
the question program generation on the first round.

list of our functions, their arguments, and expected
output can be found in Appendix A.1.

Program Generation. Semantic parsing meth-
ods were shown to be effective for mapping sen-
tences to logical forms via a knowledge base or a
program (Guu et al., 2017; Liang et al., 2013; Suhr
et al., 2018). We adopted this approach and used
a sequence-to-sequence model with an encoder-
decoder structure to generate the programs. Al-
though we used the same decoder, we propose two
types of encoders that differ in the way they encode
the dialog history (Figure 1).

Caption Encoder. The caption encoder first em-
beds the caption tokens into a 300-dim. space to
give {wcj}ncj=1 that are then fed into a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997). The
self-attended (Vaswani et al., 2017) LSTM outputs
C = [c1, ..., cnc ] are reduced following:

a = softmax(MLP(C))

z̄c =

nc∑

i=1

aici.

Finally, the latent vector zc = Linear(z̄c) and the
LSTM output C are passed to the decoder.

Question Encoders. To generate the ques-
tion program at the current round i, we use not
only the question Qi but also the history Hi =
[C,Q1, A1, .., Qi−1, Ai−1] of previous question-

answer pairs including the caption. We propose
two different encoders based on how the question
interacts with the history.

– Concat Encoder: The concat encoder is similar
in structure to the caption encoder. The caption and
the question-answer pairs of previous rounds are
concatenated to form the history Hi. Then, the to-
kens of the current question Qi and history Hi are
embedded into a 300-dim. space to give {w(i)

qj }
nq
j=1

and {w(i)
hj
}nhj=1, respectively, which are then pro-

cessed by two separate bi-directional LSTMs (Fig-
ure 2). The reduced attended question and history
features z̄q and z̄h are obtained in a similar man-
ner to z̄c. Finally, z̄q and z̄h are concatenated and
linearly transformed to produce the question latent
vector zq = Linear([z̄q, z̄h]). Similarly, zq and
the question LSTM output Qi = [q1, ...,qnq ] are
passed to the decoder.

– Stack Encoder: The approach of concatenat-
ing the question-answer pairs to form the history
suffers from two main drawbacks. First, since the
history is processed by an LSTM, its encoding be-
comes inefficient, in particular for later rounds as
the LSTM tends to forget crucial information that
was mentioned in the first rounds. Second, this
approach does not scale well for longer dialogs
as it becomes computationally and memory de-
manding especially because we use self-attention
(Vaswani et al., 2017) at a later stage in the con-
cat encoder. To overcome these limitations, we
introduce the stack encoder that separately encodes
each question-answer pair in order to equally pre-
serve the information from all previous rounds. The
question Qi and each previous round Rj<i, includ-
ing the caption, are embedded then processed by
separate bidirectional LSTMs (Figure 2). The last
hidden states are used as feature representations of
the question and previous rounds, i.e.

q = [
−−→
hQi ,

←−−
hQi ] and rj<i = [

−−−→
hRj<i ,

←−−−
hRj<i ],

where
−→
h(.) and

←−
h(.) are the bi-directional

LSTM’s last forward and backward hidden states,
respectively. z̄h is obtained by applying an inner-
product attention between the question and history
features:

a = softmax(qTH),

H = [r0, ..., ri−1].

Finally, q and z̄h =
∑i−1

j=1 ajrj are concatenated
and linearly transformed to produce the latent ques-
tion vector zq = Linear([q, z̄h]). Similarly, zq
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and the question LSTM output Q = [q1, ...,qnq ]
are passed to the decoder.

Decoder. We use the same decoder architecture
to generate all the caption as well as the question
programs. First, the ground truth program sequence
Yi of the i-th dialog round is embedded into a 300-
dim. space to give {w(i)

yj }
ny
j=1 which are then pro-

cessed by a simple LSTM whose hidden states are
initialised by the encoder latent vector, i.e. zc or
zq. The output P of the LSTM is used with the
encoder output, i.e. C or Q, to generate a context
vector ∆ following:

A = softmax(QTP),

∆ = ATQ.

Finally, the context vector ∆ is concatenated with
the program output and the result is mapped to
the program vocabulary dimension followed by a
softmax function to obtain a distribution for the
current program token yj , i.e.

p(yj |Y[1:j−1];Qi, Hi, ) ∼ softmax(

Linear(tanh([P,∆]))),

where Y[1:j−1] is the sequence of previous ground
truth program tokens. For training, we follow
the teacher forcing strategy by Williams and
Zipser. For inference, we first start with the
<S> and sequentially generate the next program
token until we reach the end token <E>. Figure 3
illustrates an example of the CLEVR-Dialog
dataset alongside the generated programs, i.e.
the program extreme-centre(cylinder,
small) was generated from the caption “There
is a small cylinder in the center” to initialize
our executor and its knowledge base and the pro-
gram seek-attribute-early(colour,
cylinder) was generated to answer the first
question of the dialog “What is its colour?”. Our
full DSL grammar and further concrete examples
can be found in the Appendices A.1 and A.8,
respectively.

Executor. We add a dynamic knowledge base
to the symbolic executor to keep track of
the previously-mentioned entities in the dia-
log. It is initialised at the beginning of
each dialog by executing the caption pro-
gram. For instance, by executing the cap-
tion program extreme-centre(cylinder,
small), the executor searches for the centre
entity satisfying the function’s arguments and

stores it in the knowledge base under the handle
small-cylinder. The executor interacts with
its knowledge base via two main operations:

fetch. The fetch-operation is performed
when executing a function that requires co-
reference resolution. Given a set of attributes, the
executor fetches the appropriate entity in the knowl-
edge base by searching the stored handles. For
example seek-attribute-early(colour,
cylinder) first searches the previously stored
handles and fetches the corresponding entity (in
our example that is the cylinder mentioned in the
caption with the handle small-cylinder) and
then queries its colour to answer the question.

update. The update-operation is performed
after each question function. We differentiate be-
tween four update types:

1. Handle update: If a fetched entity is refer-
enced by a new attribute, its handle in the knowl-
edge base should be updated accordingly. If
the colour of the previous cylinder is red, then
its handle changes from small-cylinder to
small-cylinder-red.

2. Conversation subject update: If the ques-
tion program addresses a new entity, the latter
becomes the new conversation subject. In our
example, the conversation subject is still the small
red cylinder. However, the question program
exist-obj-exclude-early(colour,
small, cylinder) searches for other po-
tential entities that share the same colour as the
previous small cylinder. If there is one, it becomes
the new conversation subject.

3. Seen entities update: Each time a new entity is
addressed, the executor saves it in its knowledge
base together with the appropriate handle.

4. Groups update: Some questions refer to a group
of entities, e.g. count-attribute(red)
counts all red entities in the scene. These sets
might be relevant for subsequent questions, e.g.
count-attribute-group(large) counts
how many of the previous red entities are large.

4 Experiments

We modified the publicly available code for
CLEVR-Dialog (Kottur et al., 2019) to generate
datasets with ground truth caption and question
programs required to train our program generators.
Similar to (Kottur et al., 2019), we used the 70, 000
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training and 15, 000 validation CLEVR images as
our visual groundings when generating the dialogs.
We left out the CLEVR test images because they
lack ground truth scene annotations. For each im-
age, we generated five dialogs each consisting of
L = 10 question-answer rounds as in (Kottur et al.,
2019). We used 1, 000 training images and their
corresponding dialogs to create a validation set and
tested our models and the baselines on the dialogs
generated using the CLEVR validation images.

Performance Evaluation. Alongside the answer
accuracy, the First Failure Round (FFR), i.e. the
number of dialog rounds necessary for a model to
make its first mistake, is commonly used to eval-
uate visual dialog models. Although popular, this
metric has one major limitation as it only allows
us to compare the performance of models across
datasets with the same dialog length but not across
datasets with different ones. Thus, we propose the
Normalised First Failure Round (NFFR) ∈ [0, 1]
as an improvement and use it alongside the answer
accuracy to assess the performance of all models.
See Appendix A.2 for more details.

History during Evaluation. One key limitation
in the way that visual dialog models are currently
evaluated is the use of ground truth answers when
calculating the correctness of an answer in any
given round (Kottur et al., 2018; Das et al., 2019;
Shah et al., 2020). The problem of this approach is
that it leads to overly-optimistic performance that
do not reflect the true capabilities of the models
in real-world scenarios: in real-world dialogs, full
information on which previous answers were cor-
rect or not is typically not available. We instead
propose to condition the generation of the current
answer on all previous predicted answers. This
new evaluation scheme is geared to the visual di-
alog task, better represents real-world use, and is
stricter. We call these evaluation schemes “Hist. +
GT” and “Hist. + Pred.”, respectively.

5 Results

Visual Dialog Performance. After validating
our implemented logic (see Appendix A.4), we
compared the performance of our models with the
visual dialog MAC networks introduced by Shah
et al. (2020). We limited our comparison to their
top three performing models given that these out-
performed the previous state of the art (Kottur et al.,
2018) by 30% in accuracy. Furthermore, we com-

Model Hist. + GT Hist. + Pred.

Acc. NFFR ↑ Acc. NFFR ↑
MAC-CQ 97.34‡ 0.92 41.10 0.15

+ CAA 97.87‡ 0.94 89.39‡ 0.75
+ MTM 97.58‡ 0.92 70.39‡ 0.46

HCN 75.88 0.34 74.42‡ 0.32
NSVD-concat 99.59‡ 0.98 99.59‡ 0.98
NSVD-stack 99.72‡ 0.99 99.72‡ 0.99

Table 1: Performance comparison of our models with
the state of the art on CLEVR-Dialog test. Results are
shown for both “Hist. + GT” and “Hist. + Pred.” Our
proposed models are highlighted in grey; best perfor-
mance is in bold. ‡ represents p < 0.00001 compared
to the second best score in the respective column.

pared our models to the Hybrid Code Networks
(HCN) (Williams et al., 2017) that also operate
on symbolic dialog state representation but follow
a different approach to parse programs than our
generative one. They represent programs as tem-
plates in an action space and select the one with
the highest probability during inference. This ac-
tion space might become intractable if the DSL has
many functions and arguments.

Table 1 shows the performance of our mod-
els and the baselines on the test split using both
evaluation schemes (“Hist. + GT” and “Hist. +
Pred.”). As the table shows, our models achieve
new state-of-the-art performance with NSVD-stack
topping with an overall accuracy of 99.72% and
a NFFR = 0.99. The high NFFR demonstrates
our models’ ability to answer correctly across all
rounds of the dialogs with only few failures in
between. More fine-grained evaluations (e.g. on
individual rounds, question categories and types)
are available in the Appendix A.5. While Table 1
shows results obtained when training on the entire
dataset, our method achieves the same performance
when trained on only 20% of the data, while the
performance of other methods deteriorate signif-
icantly with less data as shown in Appendix A.6.

History Length vs Co-reference Distance.
CLEVR-Dialog provides co-reference distances
for each question, i.e. the number of rounds be-
tween the current and earlier mention of an entity
in a question. A co-reference distance of 1 means
that the co-referent was mentioned in the previous
question while a co-reference distance of 10 means
that the question at round 10 refers to an entity
in the caption. “All” and “None” mean that the
question either depends on all previous rounds or is
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Figure 4: Robustness for different co-reference distance bins and varying number of rounds in the history. All
models were trained with full histories. Independent of the evaluation scheme, the performance of our models is
only slightly affected by incomplete histories across all bins. In contrast, performance of the baselines deteriorates
when the full history is not available, especially for questions with large co-reference distances.

stand-alone, i.e. it does not depend on the history.
To assess performance with respect to the co-

reference distance, we evaluated accuracy on dif-
ferent co-reference distance bins. In our evalua-
tions, we further limited the histories to the last Nh

question-answer rounds to assess the robustness
of the models to incomplete dialog histories. All
of the models were trained with histories contain-
ing all previous rounds except for HCN (Williams
et al., 2017) that only uses the last round.

Our models consistently achieve a performance
of over 99% across all co-reference distance bins,
independent of the evaluation scheme (Figure 4).
Furthermore, their performance is only slightly af-
fected by incomplete dialog histories. Contrarily,
performance of all connectionist baselines deterio-
rates quickly without access to the complete history.
This deterioration is more conspicuous when the
“Hist. + Pred.” evaluation scheme is used (sec-
ond row of Figure 4). However, their performance
is consistent with the difficulty levels of the co-
reference distance bins, i.e. the accuracy decreases
with increasing co-reference distance. In contrast,
this behaviour is not reflected by the popular eval-
uation approach “Hist. + GT” (first row, middle
three plots of Figure 4). The most likely reason
for this is that, as is currently common practice
when evaluating visual dialog models, the ground
truth answers of all previous rounds are used for
prediction.

Generalisation to Unseen Scenes and Attributes.
In previous experiments, our training and valida-

tion sets had similar distributions both in the num-
ber of objects (between three and 10) as well their
sizes, shapes, colours, and materials. To further test
generalisability, we created a new training set con-
sisting of 1500 images in which we restricted the
type of objects to small, rubber cubes and spheres
with the colours grey, red, or blue. We kept the
number of objects in this dataset between three
and 10. For testing, we generated three datasets
consisting of 1000 images each in which we al-
lowed all CLEVR object classes (cubes, spheres
and cylinders) and materials (rubber, metal) to ap-
pear. However, we excluded the training colours
and increased the number of objects Nobjects in
each one to 10, 15, and 20, respectively. Finally,
we generated three fine-tuning datasets containing
1500 images each in a similar way to the testing
ones. Figure 5 illustrates some examples of our
new images. As in (Kottur et al., 2019), all dialogs
had a length of 10 rounds.

We can see that the purely-connectionist models
outperform the neuro-symbolic ones without fine-
tuning in all scene complexities (Table 2). This
outcome is expected since these models rely on
a Mask-RCNN to understand the scenes. By in-
creasing their complexities, i.e. more objects and
attributes, the Mask-RCNN fails to accurately re-
construct these scenes which is reflected by the
poor test accuracies. However, after fine-tuning,
neuro-symbolic models are the best performing
with our best model NSVD-stack scoring 99.33%,
70.62%, and 64.95% on the test datasets with 10,

198



Model
Nobjects = 10 Nobjects = 15 Nobjects = 20

Without FT After FT Without FT After FT Without FT After FT

Acc. NFFR ↑ Acc. NFFR ↑ Acc. NFFR ↑ Acc. NFFR ↑ Acc. NFFR ↑ Acc. NFFR ↑

H
is

t.
+

G
T

MAC-CQ 38.52† 0.14 53.49∗ 0.21 36.87∗ 0.13 48.89∗ 0.19 36.12∗ 0.13 47.44∗ 0.18
+ CAA 37.72‡ 0.14 53.35† 0.21 36.82† 0.13 48.67† 0.18 35.52‡ 0.13 47.43† 0.18
+ MTM 38.59∗ 0.14 52.62 0.21 36.22‡ 0.13 47.41 0.17 36.01∗ 0.13 46.54 0.17

HCN 19.59 0.11 73.07‡ 0.30 14.42 0.11 56.65‡ 0.22 12.33 0.11 53.14‡ 0.19
NSVD-concat 25.05∗ 0.12 99.32‡ 0.97 18.51∗ 0.11 70.59‡ 0.44 15.67‡ 0.11 64.82‡ 0.38
NSVD-stack 24.95‡ 0.12 99.33∗ 0.98 18.45‡ 0.11 70.62∗ 0.44 15.65∗ 0.11 64.95∗ 0.38

H
is

t.
+

Pr
ed

. MAC-CQ 37.74∗ 0.14 52.26† 0.21 36.32∗ 0.12 47.58∗ 0.18 35.36‡ 0.13 46.30† 0.18
+ CAA 37.70‡ 0.13 51.36† 0.21 36.76∗ 0.13 47.08‡ 0.18 35.57∗ 0.13 45.56‡ 0.17
+ MTM 36.29‡ 0.14 50.58 0.20 35.62‡ 0.14 45.67 0.17 33.98‡ 0.13 44.02 0.17

HCN 19.50 0.11 71.55‡ 0.29 14.40 0.11 55.55‡ 0.21 12.26 0.11 51.95‡ 0.19
NSVD-concat 25.05∗ 0.12 99.32‡ 0.97 18.51∗ 0.11 70.59‡ 0.44 15.67‡ 0.11 64.82‡ 0.38
NSVD-stack 24.95‡ 0.12 99.33∗ 0.98 18.45‡ 0.11 70.62∗ 0.44 15.65∗ 0.11 64.95∗ 0.38

Table 2: Results when training on simple scenes and testing on more complex ones. Best results in bold. ‡, †, and ∗
represent p < 0.00001, p < 0.05 and p ≥ 0.05 compared to the second best score in each column, respectively.

Figure 5: From left to right: Samples of a training image, fine-tuning image with 10 objects, fine-tuning image
with 15 objects, and fine-tuning image with 20 objects.
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Figure 6: Answer accuracy for different dialog lengths
and scene complexities. Our models generalise better to
longer dialogs without the need for any fine-tuning.

15, and 20 objects, respectively.

Generalisation to Longer Dialogs. Typically,
evaluation of visual dialog models is limited to
dialogs having the same length as the training data,
i.e. L = 10 (Kottur et al., 2018; Das et al., 2019;
Shah et al., 2020). In order to assess the gener-
alisation capabilities of our models to longer di-
alogs, we used the testing images of the previ-
ous experiment to generate three dialog datasets
with increasing numbers of rounds, i.e. L = 15,
20, 25, and 30, respectively. That is, our testing
datasets for this experiment not only contain di-
alogs that are up to three times the length of the

training dialogs but also visual scenarios never seen
during training. Finally, we evaluated the best
fine-tuned models of the previous experiment on
this data without fine-tuning them again on longer
dialogs. Figure 6 shows that our models gener-
alise better across all datasets for both evaluation
schemes. As expected, the performance of all mod-
els decreases with longer dialogs and more com-
plex scenes. However, our models suffer less and
still significantly outperform all baselines in all test
scenarios. Our best model NSVD-stack achieves an
overall answer accuracy of 97.02%, 54.25%, and
49.14% on the longest dialogs (L = 30) that are
created from scenes with 10, 15, and 20 objects,
respectively.

Generalisation to Unseen Questions Types.
Similar to prior works (Johnson et al., 2017a; Yi
et al., 2018; Mao et al., 2019), we addressed the
generalisability to new scenes and object combina-
tions in our previous experiments. However, gener-
alisability to unseen questions remains unexplored.
To address this, we created two splits (AA and BB)
on CLEVR-Dialog as follows: we first split the
CLEVR validation images into two disjoint halves
A and B. We then split the question types into split
A and split B. We randomly assigned half of the
question types in each category to split A and the
other half to split B to prevent biasing either one
to a particular question category. For each image
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Model Without FT FT on split BB

Acc. NFFR ↑ Acc. NFFR ↑
H

is
t.

+
G

T

MAC-CQ 36.12‡ 0.14 40.33† 0.16
+ CAA 35.09† 0.14 40.36∗ 0.16
+ MTM 34.73 0.15 35.09 0.13

HCN 47.67‡ 0.14 70.43‡ 0.27
NSVD-concat 64.07‡ 0.24 99.44‡ 0.96
NSVD-stack 71.55‡ 0.28 99.51† 0.97

H
is

t.
+

Pr
ed

. MAC-CQ 35.09‡ 0.13 39.53‡ 0.15
+ CAA 36.40‡ 0.14 37.72‡ 0.15
+ MTM 6.19 0.09 7.03 0.09

HCN 46.91‡ 0.13 68.82‡ 0.25
NSVD-concat 64.07‡ 0.24 99.44‡ 0.96
NSVD-stack 71.55‡ 0.28 99.51† 0.97

Table 3: Results when training on split AA and testing
on split BB. Best results in bold. ‡, †, and ∗ represent
p < 0.00001, p < 0.05 and p ≥ 0.05 compared to the
second best score in each column, respectively.

in both splits, we generated five dialogs consisting
of 10 rounds as in (Kottur et al., 2019). Split AA
contains a training and a validation set based on
6, 000 and 1500 images, respectively. Split BB has
a fine-tuning, a validation, and a test set generated
on 2000, 500, and 5000 images, respectively. The
desired behaviour for a model that generalises well
is to perform well on split BB when only trained
on split AA.

NSVD-concat and NSVD-stack achieve an accu-
racy of 64.07% and 71.55%, respectively, when
tested on split BB without fine-tuning, thereby sig-
nificantly outperforming all baselines (Table 3).
However, low NFRR values indicate that first fail-
ures occur early on in the dialog. After fine-tuning
all models on a small amount of data from split BB,
our models achieve accuracies and NFRR values
comparable to previous experiments. In stark con-
trast, purely-connectionist baselines’ performance
only improves by a small margin with the high-
est jump of 5.26% being achieved by MAC-CQ-
CAA. This shows an impressive data efficiency
of the neuro-symbolic models that, in contrast to
the data-hungry purely-connectionist baselines, are
able to learn and adapt efficiently from a very small
amount of data. More details regarding the training
data efficiency can be found in the Appendix A.6.

6 Conclusion and Future Work

We proposed Neuro-Symbolic Visual Dialog
(NSVD) —the first hybrid method to combine deep
learning and symbolic program execution for multi-
round visual reasoning —and a new, stricter and
more realistic evaluation scheme for visual dialog.
Our method outperforms state-of-the-art purely-

connectionist baselines on CLEVR-Dialog and sets
a new near-perfect test accuracy of 99.72%. Fur-
thermore, NSVD has a higher mean First Failure
Round, is more robust to incomplete dialog histo-
ries, and generalises better to longer dialogs and
to unseen question types and scenes. These perfor-
mance improvements are not to be seen in isolation
of the stricter supervision our models have as they
require a supervised fine-tuning of a Mask-RCNN
in addition to a supervised training of the program
parsers. Finally, additional evaluations show that
our models generalise to other scene domains (Ap-
pendix A.7) and we expect them to even generalise
to naturalistic datasets as well if they provide the
necessary supervision requirements for our models
similar to the VQA scenario (Wang et al., 2017;
Gan et al., 2017). To the best of our knowledge,
such datasets for visual dialog do not yet exist.
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A Appendix

A.1 The CLEVR-Dialog DSL
Our Domain Specific Language (DSL) for CLEVR-
Dialog is depicted in Table 4. We present each func-
tion with its expected argument types, output, and

knowledge base operations. The argument types
are further defined in Table 5. We use the vari-
ables attr, attr_obj_1, attr_obj_2 and
attr_i for i = 1,..,4 to denote the set of
possible CLEVR attributes, i.e. colour, material,
shape, and size. Furthermore, the variable pos
denote one possible position, i.e. right, left,
front, or behind. Finally, the variable num
denotes the set of possible numerical values , i.e.
between 0 and N , where N is the maximum num-
ber of objects in the scene. If not explicitly stated
otherwise, we assume N = 10.

A.2 Normalised First Failure Round
The Normalised First Failure Round NFFR is cal-
culated as

NFFR =
1

N

N∑

i=1

1

L+ 1

L∑

j=1

∆
(i)
j δpred(i)j ,gt(i)j

α
(i)
j ,

where N is the total number of dialogs, L is the
length of each dialog, and pred(i)j and gt(i)j are the
predicted and ground truth answers at round j of
dialog i, respectively. Furthermore, for each round
j of every dialog i, we define ∆(i)

j , δ
pred(i)j ,gt(i)j

, and

α
(i)
j as:

∆
(i)
j =

{
j if j ≤ L
L+ 1 if j = L ∧ δ

pred(i)j ,gt(i)j
= 1 ,

δ
pred(i)j ,gt(i)j

=

{
1 if pred(i)j ̸= gt(i)j
0 otherwise

,

α
(i)
j =

{
0 if ∃k < j s.t. δ

pred(i)k ,gt(i)k
= 1

1 otherwise
.

By definition, we set the NFFR of a model to be
L+ 1 if it correctly answers all L dialog rounds.

A.3 Training Details
Our Models. In order to encode our raw data, we
generated two different vocabularies from the train-
ing data: one that handles the captions, questions,
and answers in form of natural language and an-
other that deals with ground truth caption and ques-
tion programs. For encoding, we pad all captions,
questions, and programs to a maximum length of
nq = 21, nc = 16, and ny = 6, respectively. Then,
the corresponding tokens are transformed into a
300-dim. space using either the encoder text em-
bedding or the decoder program embedding. We
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attr_1 ∈ COLOURS=[blue,brown,cyan,grey,green,purple,red,yellow],
attr_2 ∈ MATERIALS=[rubber,metal],
attr_3 ∈ SHAPES=[cube,cylinder,sphere],
attr_4 ∈ SIZES=[large,small],
attr,attr_obj_1,attr_obj_2 ∈ ⋃{COLOURS,MATERIALS,SHAPES,SIZES},
attr_type ∈ [colour,material,shape,size],
pos ∈ [right,left,front,behind],
num ∈ [0,1,2,3,4,5,6,7,8,9,10].

Table 5: Argument types of our DSL.

trained the caption and question program genera-
tors separately. We used a 2-layered bi-directional
LSTM with a hidden size of 256 in both caption
and question encoders. In the decoder, we used
a 2-layered LSTM with a hidden size of 512. We
fixed the batch size to 64 and used the Adam opti-
miser (Kingma and Ba, 2014) with a learning rate
of 7 × 10−4 to train for one epoch. Every 2000
iteration, we validated the models based on the
program accuracy in order not to select one that
follows a flawed logic, i.e. a wrong program, to
predict an answer.

Baselines. We trained the purely-connectionist
baselines using the official code 2 we obtained from
the authors of Shah et al. (2020). We used the
same hyperparameters and training scheme, i.e. we
trained the models for a maximum of 25 epochs and
used early stopping when the validation accuracy
did not improve for five consecutive epochs. For
the HCN models, we used a publicly available code-
base3 for training with the same hyper-parameters
as in (Williams et al., 2017).

Runtime Analysis. We conducted all of our ex-
periments on a single NVIDIA Tesla V100 GPU.
The training runtimes for one epoch when using
a batch size of 64 are illustrated in Figure 7. As
can be seen, all the purely-connectionist baselines
need more than seven hours to complete one epoch.
Although NSVD-concat concatenates the previous
dialog rounds to form the history similarly to the
baselines, it is more computationally efficient as it
only needs circa 22 minutes to complete one epoch.
Finally, HCN needs around 19 minutes to complete
one epoch and NSVD-stack only around 14 which
solidifies our aforementioned efficiency claims.

2https://github.com/ahmedshah1494/
clevr-dialog-mac-net/tree/dialog-macnet

3https://github.com/jojonki/
Hybrid-Code-Networks

0 50 100 150 200 250 300 350 400
Runtime [mn/epoch]

MAC-CQ

+CAA

+MTM

HCN

NSVD-concat

NSVD-stack

Figure 7: Training runtime comparison of the models.
The training was conducted on a single NVIDIA Tesla
V100 GPU with batch size 64.

Model Prog. Acc. Executor
Acc.

Caption Question
Caption-Net 99.79 -

99.99NSVD-concat - 99.87
NSVD-stack - 99.99

Table 6: Quantitative analysis of our models’ logic. The
high program accuracies demonstrate that our models
follow the implemented logic to predict the correct an-
swer, i.e. they do not execute false programs that by
chance might lead to a correct prediction. In addition,
when tested with the ground truth scene annotations and
programs, our executor reaches an answer-accuracy of
99.99% showcasing its flawless logic.

A.4 Quantitative Analysis of (our) Logic.

To quantify the logical capabilities of our models,
we measured the caption and question program
accuracies on the test split. As we can see from Ta-
ble 6, our model achieves 99.79% caption program
accuracy and our best question generator reaches
the 99.99% accuracy mark. That is, they do not fol-
low a flawed logic, i.e. a wrong program, to predict
the correct answer. Furthermore, we evaluated the
logic of our program executor by measuring its an-
swer accuracy when provided with the ground truth
programs and scene annotations of the test split.
The last column of Table 6 shows that it reaches
99.99% answer accuracy indicating that its logic
is close to flawless. The reason why it does not
reach the 100% mark is that some scene captions
cannot be uniquely interpreted leading to potential
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Figure 8: Example of a situation where a caption cannot be uniquely interpreted. The program
extreme-centre(cylinder, small) induced from the caption “there is a small round thing sitting in the
centre of the view” does not lead to a unique initialisation of our executor’s knowledge base as there are two small
spheres in the centre of the scene. By our logic, we consider it to be the cyan one. Incorrectly initialising the
knowledge base leads to confusion when answering the subsequent questions. The blue and red colours indicate a
match or a mismatch between the predicted answer and the ground truth, respectively.
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Figure 9: Detailed performance comparison for the
different question categories (Count, Exist, Seek).
Independent of the evaluation approach, our models
achieve new state-of-art results on all question cate-
gories. These improvements are statistically significant
with p < 0.0001 in all categories.

confusions when answering the subsequent ques-
tions. Figure 8 illustrates a concrete example of
such a case. The caption “there is a small round
thing sitting in the centre of the view” induces
the program extreme-centre(cylinder,
small). However, this can be interpreted in two
different ways since there are two small spheres in
the centre of the scene, i.e. the cyan and the green
ones. Therefore, the performance of our executor at
answering the following dialog questions depends
on which object is considered as the central one.
By our logic, we consider it to be the cyan one.
The subsequent questions, ground truth answers
and predictions are also shown in Figure 8.

A.5 Fine-grained Evaluations

When looking at the performance for different ques-
tion rounds (Figure 10), we can see that while the
performance of the baselines starts to deteriorate
quickly with longer dialogs, our models achieve
a consistently-high performance across all rounds.
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Figure 10: Accuracy for different question rounds. Our
models significantly outperform the baselines with p <
0.0001 in all question rounds.

The inability to maintain performance becomes
even more apparent (especially for the purely-
connectionist baselines) when using the stricter
“Hist. + Pred.” evaluation scheme. The best base-
line, MAC-CQ-CAA, suffers from a drop of 8.48%
in accuracy and 0.19 in NFFR. The same observa-
tion can be made when analysing performance for
the different CLEVR-Dialog question categories
(Count, Exist, and Seek). Our models outper-
form all baselines for all categories and both evalu-
ation schemes (Figure 9). These improvements are
statistically significant with p < 0.00001.

Figure 11 illustrates the performance of our mod-
els on individual question types compared to the
baselines. As can be seen, our models outperform
the baselines on almost all question types with
NSVD-stack topping them all with an accuracy of
over 98% for all types. As seen from previous
experiments, the gap between our models and the
baseline becomes ever more conspicuous when the
“Hist. + Pred.” evaluation scheme is deployed (bot-
tom table of Figure 11).
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Figure 11: Performance comparison on the individual question types. Top: Models were evaluated following the
“Hist. + GT” evaluation scheme. Bottom: Models were evaluated following the “Hist. + Pred.” evaluation scheme

A.6 Data Efficiency

To study the data efficiency of our models fur-
ther, we trained them and the baselines on
20%, 40%, 60%, 80%, and 100% of the available
training data. Not to bias the data towards any spe-
cific question type, we used the same distribution
of question types to construct the reduced training
sets. After training, we evaluated the models on
the test split using both evaluation schemes. Our
models not only outperform all baselines for the
same reduced dataset but also in the extreme case
of training the baselines with 100% of the data and
our models with only 20% (Figure 13). While the
performance of the neuro-symbolic models is only
slightly affected by the size of the training data, the
connectionist baselines’ performance deteriorates
with less data. This deterioration becomes even
more significant when the stricter “Hist. + Pred.”
evaluation scheme is used.

A.7 Generalisation to Other Scene Domains

In this experiment, we show that our method could
be extended to a new reasoning testbed. Contrar-
ily to CLEVR, the new scenes are grounded in
Minecraft and are, as can be seen in Figure 12,
drastically different in terms of context and scene
constellations. Specifically, they comes with more
entities (12 vs 3 in CLEVR) that have drastically

Model Hist. + GT Hist. + Pred.

Acc. NFFR ↑ Acc. NFFR ↑
MAC-CQ 64.30∗ 0.27 59.96‡ 0.24

+ CAA 64.28‡ 0.27 57.69‡ 0.23
+ MTM 61.55‡ 0.25 52.04‡ 0.20

HCN 47.31 0.14 46.50 0.14
NSVD-concat 91.57‡ 0.76 91.57‡ 0.76
NSVD-stack 92.46‡ 0.83 92.46‡ 0.83

Table 7: Performance comparison on Minecraft-Dialog
test. Results are shown for both “Hist. + GT” and
“Hist. + Pred.” Our proposed models are highlighted in
grey; best performance is in bold. ‡ and ∗ represents
p < 0.00001 and p ≥ 0.05 compared to the second best
score in the respective column, respectively.

different visual appearances. These entities can be
grouped in a hierarchical manner (e.g. “a cow” and
“a wolf” are both “animals” whereas “an animal”
and “a human” are both “creatures”).

Following (Yi et al., 2018), were rendered
10, 000 using the generation tool provided by Wu
et al. (2017). The scenes consist of three to six
objects in a 2D plane that are sampled from 12
entities with 4 different facing directions. Finally,
we filtered out scenes that contain fully-occluded
objects. We used 5, 273 images for training, 1, 500
for validation, and 1, 000 for testing. Furthermore,
we adapted the dialog generation tool provided by
Kottur et al. (2019) to be able to account for the
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Figure 12: Sample images from the Minecraft dataset.
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Figure 13: Accuracy when trained on limited amounts
of data (20%, 40%, 60%, 80%, and 100% of the overall
training data) and evaluated on the test split following
the “Hist. + GT” and “Hist. + Pred.” approaches.

different scene properties.
Similar to previous experiments, we generated

five dialogs for every image consisting of 10 rounds
each. We call this dataset Minecraft-Dialog. The re-
sults are summarised in Table 7. We compared our
models to the same baselines as in previous experi-
ments in terms of accuracy as well as NFRR. Once
again, our neuro-symbolic models managed to sig-
nificantly outperform all the baselines by achieving
92.64% and 91.57% accuracies for NSVD-stack
and NSVD-concat, respectively, while maintaining
high NFRR values.

Contrarily, the best connectionist model
achieved test accuracies of 64.30% and 59.96%
using the “Hist. + GT” and “Hist. + Pred.” evalua-
tion schemes, respectively. Finally, HCN achieved
its best performance of 47.31 accuracy and 0.14
NFRR when the “Hist. + GT” evaluation scheme
was used. Compared to CLEVR-Dialog (Table 1),
the performance of our models witnessed a drop
in this experiment which is attributed to the diffi-
culty of the Minecraft scenes that come with heavy-
occluded and diverse objects. However, the promis-
ing results of our models showcase that they indeed
can generalise to new scene domains other then
CLEVR.

A.8 Input/Output Samples
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Abstract

We present LINGUIST, a method for gener-
ating annotated data for Intent Classification
and Slot Tagging (IC+ST), via fine-tuning
AlexaTM 5B, a 5-billion-parameter multilin-
gual sequence-to-sequence (seq2seq) model,
on a flexible instruction prompt. In a
10-shot novel intent setting for the SNIPS
dataset, LINGUIST surpasses state-of-the-art
approaches (Back-Translation and Example
Extrapolation) by a wide margin, showing ab-
solute improvement for the target intents of
+1.9 points on IC Recall and +2.5 points on ST
F1 Score. In the zero-shot cross-lingual set-
ting of the mATIS++ dataset, LINGUIST out-
performs a strong baseline of Machine Transla-
tion with Slot Alignment by +4.14 points abso-
lute on ST F1 Score across 6 languages, while
matching performance on IC. Finally, we ver-
ify our results on an internal large-scale multi-
lingual dataset for conversational agent IC+ST
and show significant improvements over a
baseline which uses Back-Translation, Para-
phrasing and Slot Catalog Resampling. To our
knowledge, we are the first to demonstrate in-
struction fine-tuning of a large-scale seq2seq
model to control the outputs of multilingual
intent- and slot-labeled data generation.

1 Introduction

Conversational agents typically rely on large
quantities of labeled training data to understand
user requests through Intent Classification and Slot
Tagging (IC+ST) (Tur and De Mori, 2011). Such
data is plentiful for existing usage patterns (al-
though costly to annotate), yet scarce for new in-
tents/slots and new languages. A growing trend to
address this problem is to generate synthetic train-
ing data, e.g. via Paraphrasing, Back-Translation
(BT), slot replacement, and Example Extrapola-
tion (Ex2). (Jolly et al., 2020; Xie et al., 2020;

∗Correspondence Author: <andros@amazon.com>.
Author contributions are listed in Appendix A.

INPUT:
<language> English </language>
<intent> GetWeather </intent>
<include>

[1 * ] , [3 snow ] [5 tomorrow ]

</include>
<labels>

[1=geographic_poi , [2=country ,

[3=condition_description , [4=city ,

[5=timeRange

</labels>
<examples>
Will the weather be okay in
[1 Yellowstone National Park ]
[5 one week from now ] ? <br>

will it [3 rain ] at the [1 Statue of Liberty ]
at [5 noon ] <br>

What’s the weather like
at [1 Disneyworld ] in [5 november ] <br>

I need the weather info for
the [1 Guggenheim Museum ] in [2 Spain ] <br>
What is the weather forecast
for [5 October 12, 2022 ] in [4 Gyeongju ]

</examples>
OUTPUTS:

1. Give the [1 National Wildlife Refuge ]

forecast for [3 snow ] [5 tomorrow ]

2. Can I get the [3 snow ] forecast

for [1 Lake Tahoe ] [5 tomorrow ] ?

3. I want to know if it will [3 snow ]

[5 tomorrow ] at

[1 Mount Rainier State Park ] .

Figure 1: LINGUIST uses an instruction prompt to gen-
erate data with both user-requested slot values (“snow”)
and model-generated values (“*”). This model has not
seen any training data for GetWeather intent, or for
the slot tag geographic_poi: it was fine-tuned only on
the other 6 SNIPS intents.

Zhang et al., 2020; Lee et al., 2021). In this work,
we propose a novel data generation method called
Language model INstruction tuning to Generate
annotated Utterances for Intent classification and
Slot Tagging (LINGUIST).

Our LINGUIST method addresses several impor-
tant gaps in the existing literature: (1) controlling
the generated data to include specific slot types
and values, (2) cross-lingual and multilingual data
generation, and (3) ability to leverage the intent
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and slot names to inform the generation. The key
to these achievements is our design of a novel in-
struction prompt (Figure 1), consisting of natural
language descriptions for the desired model out-
puts. We first fine-tune a large pre-trained seq2seq
Transformer (Vaswani et al., 2017) model to learn
how to generate annotated utterances following the
prompt instructions. Then, for a novel intent or slot
with only a few or even zero training examples, we
apply the model to generate similar data, which we
add to the training set for an IC+ST model.

We demonstrate the effectiveness of LINGUIST

on three datasets by showing substantial improve-
ments over strong baselines. (i) On a 10-shot novel
intent setting with English SNIPS (Coucke et al.,
2018), LINGUIST improves over Back-Translation
and Ex2 by +1.9 points absolute on IC and +2.5
points absolute on ST. (ii) On cross-lingual mA-
TIS++ (Xu et al., 2020), LINGUIST out-performs
the best Machine Translation plus slot alignment re-
ported by Xu et al., by +4.14 points in ST across 6
languages, while matching performance on IC. (iii)
Finally, to demonstrate the success of our method
on a real-world conversational agent system, we
apply LINGUIST on an internal dataset contain-
ing hundreds of intents and slot types across 4
languages, and show large improvements over a
baseline which uses Back-Translation and Para-
phrasing.

We also show LINGUIST can generate IC+ST-
annotated data from zero examples, using only
the natural language intent and slot label names.
LINGUIST achieves 80.0 IC Recall and 56.9 ST F1
Score on new SNIPS intents despite never seeing a
single example for the new intents. To our knowl-
edge, LINGUIST is the first system capable of gen-
erating IC+ST-annotated data in this setting.

2 Related Work

Large-scale Language Models (LLMs) such as
GPT (Radford et al., 2019; Brown et al., 2020)
and AlexaTM 20B (Soltan et al., 2022) excel at
performing novel tasks with only a few examples
via in-context learning, i.e. without requiring any
model parameter updates. For example, Sahu et al.
(2022) apply GPT-3 to generate variations of ex-
amples from a given class. Wang et al. (2021) gen-
erate both text and class label together via GPT-3,
towards eliminating the need for human labeling.

Pre-training then fine-tuning of seq2seq models
was introduced in English BART and multilingual

mBART (Lewis et al., 2020a; Liu et al., 2020). T5
and mT5 (Raffel et al., 2020; Xue et al., 2021) ex-
tended the idea by framing more downstream tasks
as text-to-text. FLAN (Wei et al., 2022) introduced
instruction tuning, where a large-scale seq2seq
model is fine-tuned on instruction prompts from a
variety of tasks, in order to generalize to new tasks
without any further parameter updates.

Prior work also explores conditioning genera-
tion on intent and slot labels. Ding et al. (2020)
train a conditional language model on a mixture of
annotated and unannotated text, allowing to sam-
ple novel annotated utterances. Malandrakis et al.
(2019) train a seq2seq model from interpretation-
text pairs, applying variational auto-encoders for
more diversity. Jolly et al. (2020) expand on
this, exploring different sampling strategies, adding
more variety by shuffling slot names, and examin-
ing the behavior where a new intent is introduced
with limited training data. Panda et al. (2021) ex-
tend this to the multilingual setting. Generative
Insertion Transformers (Kumar et al., 2022) gen-
erate carrier phrases for a target intent and con-
taining specific entities. A limitation of all these
approaches is that the trained model cannot gener-
alize to novel intents and slots at inference time.

Generative Conversational Networks (Papange-
lis et al., 2021) are trained via reinforcement learn-
ing to generate annotated data from seed examples,
studying English IC+ST and other tasks.

The closest relative of LINGUIST is Example Ex-
trapoloation (Ex2) (Lee et al., 2021), which gener-
ates annotated IC+ST data using a seq2seq model
and provided seed examples. We compare LIN-
GUIST and EX2 in more detail in section 3.3.

A widely used paraphrasing method is Back-
Translation (BT), i.e. translating text from one
language into another “pivot” language, then back
again. Bannard and Callison-Burch (2005) extract
paraphrases directly from parallel corpora. Sen-
nrich et al. (2016) and Edunov et al. (2018) use BT
for Machine Translation and Xie et al. (2020) for
data augmentation on classification tasks.

Other approaches directly target the Paraphras-
ing task: Prakash et al. (2016) learns an LSTM
model by supervised training on a paraphrase cor-
pus, whereas Kumar et al. (2020) use an unsuper-
vised denoising task, in both cases only using text
and not covering slot labels. Cho et al. (2019) ex-
plore Paraphrasing via Semi-Supervised Learning.

A different approach to data augmentation is
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token replacement: SeqMix (Zhang et al., 2020)
replaces tokens with the nearest neighbor in the em-
bedding space, Dai and Adel (2020) replaces slots
with synonyms, or mentions from other instances of
the same label. Easy Data Augmentation (Wei and
Zou, 2019) includes synonym replacement, random
insertion, random swap, and random deletion for
classification task. Zheng et al. (2021) benchmark
the success of LLMs on few-shot settings.

3 LINGUIST Data Generator Model

LINGUIST provides three key innovations com-
pared to prior data generation work: (1) controls
for slot types and values (either user-supplied or
model-generated) to include in the outputs; (2) mul-
tilingual and cross-lingual generation; and (3) abil-
ity to leverage the natural language label names to
inform generation, enabling a new “Label Names
Only” setting (Section 4.2.2).

3.1 LINGUIST Prompt Design

We control the generation output via a novel
prompting scheme, as shown in Figure 1. The
prompt contains five blocks: (i) the output
<language>, (ii) the <intent> name, (iii)
which slot types and values to <include> in the
output, (iv) a mapping from <labels> to num-
bers, and (v) up to 10 <examples>, each belong-
ing to the same intent, and including zero or more
of the available labels.

The <include> block instructs LIN-
GUIST which slot types and values to generate,
such as [3 snow ], where the number
corresponds to the slot type (in this case,
[3=condition_description), and the
content inside the brackets is the value to use for
that slot (here “snow”). To increase the diversity
of outputs, the user may also instruct the model to
generate a value for a slot, using the “wildcard”
token, e.g. [1 * ] indicates that the model
should sample a value for slot number 1.

As shown in Figure 1, LINGUIST learns to pro-
duce a rich sample of values even for intents
and slot types it never saw during fine-tuning.
For example, in this case the wildcard is for
[1=geographic_poi and the model outputs
sensible values such as “Lake Tahoe”, despite this
phrase never appearing the fine-tuning data.

3.2 Training the LINGUIST model

We fine-tune a pre-trained seq2seq model on pairs
of LINGUIST instruction prompts and correspond-
ing annotated target utterances, derived from a de-
duplicated IC+ST task dataset R. Specifically, we
format an instruction prompt pi targeting each ut-
terance ti ∈ R, including in pi up to 10 other ex-
ample utterances E = {ej}10j=1 ∈ R s.t. ∀j, ej 6=
ti and intent(ej) = intent(ti). To make the gener-
ation robust to the number of provided examples,
we do not always include all 10 in the prompt, but
instead randomly select k examples fromE, with k
chosen randomly between 0 and 10, or the number
of utterances available that share the same intent as
ti, whichever is smaller. We never duplicate utter-
ances in the prompt. Finally, we produce a corpus
of training prompts equal in size to the original
IC+ST training set.

To reduce the tendency for the model to over-
fit on the intent and slot labels (as observed by
Lee et al., 2021), we drop out the label names for
both at a rate of 0.2, replacing the label name e.g.
GetWeatherwith a random sequence of between
1 and 5 letters like A_Q_Y. (Ablation in Appendix
E.) The intuition for masking the labels rather than
skipping the <intent> and <labels> blocks
is to provide the model a consistent signal for posi-
tion embeddings, and always allowing it to attend
to these tags if it wishes to.

To jointly teach the model both to copy user-
supplied slot values like [3 snow ] and to pro-
duce appropriate values for the wildcard [1 * ],
we format the training prompts with examples of
both. For the prompt pi targeting utterance ti,
we randomly select from a Geometric distribution
d ∼ Geo(0.5) (0 ≤ d ≤ # slots in ti) slots and
replace their values with "*" in the <include>
block of the prompt. The effect is that approxi-
mately 50% of utterances have all slot values re-
placed by the wildcard token, 25% of utterances
keep one slot value, etc.

We do not add the tags <intent>, [1, etc. to
the model’s sentencepice (Kudo and Richardson,
2018) tokenizer vocabulary (Appendix C.2).

3.3 Comparing LINGUIST to EX2

The closest relative to our approach is Example
Extrapolation (Ex2, Lee et al., 2021), which also
produces slot-labeled text from seed examples. The
novelty of LINGUIST compared to Ex2 is threefold:
(i) instructions to control the slot types and values
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generated, (ii) multilingual and cross-lingual, and
(iii) the ability to include label and slot names in the
prompt. In particular, EX2 showed that anonymiz-
ing the labels improved on IC however hurt ST. Our
LINGUIST model improves over our implementa-
tion of Ex2 on both IC and ST, and furthermore the
labels enable LINGUIST to perform one-shot and
zero-shot for new intents and slots, as we show in
Section 5.1.3 and Appendix B.

4 Experimental Setup

This section describes the datasets, tasks, IC+ST
model, baseline gata generation methods, and met-
rics that we use to evaluate LINGUIST.

4.1 Datasets

4.1.1 SNIPS Dataset
The SNIPS dataset (Coucke et al., 2018) is a pub-
lic IC+ST benchmark consisting of 7 intents, each
with between 2 and 14 slot types (39 unique slot
types in total). It includes around 2k training utter-
ances and 100 validation utterances per intent. In
order to avoid overfitting our method on the small
validation set, at the beginning of our experiments,
we partition the training set into 97% Train and 3%
Development. We use our Development set split
for iterating on all modeling and data processing
decisions, including the hyperparameters for LIN-
GUIST and hyperparameters and selection of best
checkpoint for the encoder fine-tuning on IC+ST.
Only at the very end of our experiments, we eval-
uate and report on the Validation set. See Table 1
for counts of Train/Dev/Valid utterances.

Intent Train Dev. Valid.
AddToPlaylist 1884 58 100
BookRestaurant 1914 59 100
GetWeather 1940 60 100
PlayMusic 1940 60 100
RateBook 1898 58 100
SearchCreativeWork 1896 58 100
SearchScreeningEvent 1901 58 100
Total 13373 411 700

Table 1: Data counts per intent for SNIPS.

4.1.2 Multilingual ATIS++
For cross-lingual experiments we evaluate on mA-
TIS++ (Xu et al., 2020), which consists of human-
translated text and annotations from the original
English travel information requests ATIS dataset
(Hemphill et al., 1990) plus Hindi and Turkish
translations from mATIS (Upadhyay et al., 2018).

Our experiments cover the 7 languages that mA-
TIS++ shares with our pretrained model: English,
Spanish, German, French, Portuguese, Japanese,
and Hindi, with 4488 (HI: 1440) training utterances
covering 18 (HI: 17) intents and 84 (HI: 75) slots.

To demonstrate the cross-domain adaptation of
the LINGUIST method, we use the MASSIVE
dataset (FitzGerald et al., 2022b) covering 51 lan-
guages with parallel versions of the (English-only)
SLU Resource Package (Bastianelli et al., 2020)
utterances, covering 20k utterances per language
across 18 domains, 60 intents and 55 slots. We
use MASSIVE only to train a LINGUIST model,
then apply the model to mATIS++. In order to
keep mATIS++ as a novel domain, we exclude
the somewhat related transport domain from
MASSIVE when we train the LINGUIST model.

4.1.3 Internal Dataset
To demonstrate the value of our method to a real-
world setting, we benchmark on an internal large-
scale multilingual dataset representative of requests
to a conversational agent. We consider five portions
of the dataset, known as features, namely: Cam-
eraControl, ClockSettings, HomeSecurity, Music,
and Timers, each containing one or more intents,
and one or more associated slots. For each fea-
ture, there is a “starter” training set comprised of a
few dozens of annotated utterances which were cu-
rated for the new feature, and a test set containing
hundreds of annotated utterances pertaining to that
new feature. Additionally, there is a large training
datasetE of annotated utterances from existing fea-
tures. The Existing Features training data E does
not contain examples of any of the new features.

4.2 Evaluation Tasks
4.2.1 New-Intent Few-Shot (NIFS)
As shown in Figure 2, we simulate the introduc-
tion of a new intent into an existing well-resourced
dataset. Given a training dataset R =

⋃m
j=1Dj

containing data Dj for m intents j = 1 . . .m, we
select an intent i ∈ {1, . . . ,m}, and reduce its
training data to only a small number K of “starter”
utterances Si ⊂ Di. We apply various data aug-
mentation techniques on Si to create augmented
data Ai. Finally, we train an IC+ST model using
R′i = Si ∪ Ai ∪ {Dj}j 6=i, i.e. the concatenation
of starter and augmented data for intent i with the
unmodified data for all other intents.

The internal dataset is already split in this way,
however at the feature rather than intent level.
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Generated
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(machine labeled)

LINGUIST
Model

IC+ST
Model

Generation

Figure 2: New-Intent Few-Shot (NIFS) Setup.

For SNIPS, we create 7 NIFS settings, one for
each intent, reducing its training data down to only
K=10 starter utterances Si. We create 5 versions,
each with a different random seed for selecting Si,
and always including at least one example for all
slot types that occur for intent i.

To demonstrate the ability of LINGUIST to gen-
eralize to new intents and slots at inference time,
we exclude the new intent’s starter utterances
from fine-tuning. For each intent i, we train a
LINGUIST model on the other 6 intents {Dj}j 6=i.
Then, during inference, we forumlate prompts with
the starter utterances between <example> and
</example>, and generate more data. Note, this
generation step does not require any model pa-
rameter updates.

4.2.2 NIFS Label Names Only (LNO)

In this more challenging variant of NIFS, only the
intent and slot label names are available for the
starter utterances, not their text or annotation. This
is useful when developing new intents as we need
only specify which slot types can go together, and
need not curate or annotate any real examples. No-
tably, to the best of our knowledge, LINGUIST
is the first system capable of generating intent-
and slot-annotated data in this setting (as shown
in Figure A4, Appendix B.1.4), by attending to the
natural language label names in the prompt.

4.2.3 Zero-Shot Cross-Lingual

For mATIS++, we evaluate in the zero-shot cross-
lingual setting, where real training data is available
only for English. We fine-tune an IC+ST model
on the English training data plus any augmented
examples generated from this data, and evaluate
the model on the test sets from all languages.

4.3 Models

Our experiments rely on two pre-trained models:
(1) AlexaTM 5B (described next in Section 4.3.1)
which we fine-tune on the LINGUIST prompts and
use it to generate IC+ST training data, and (2) xlm-
roberta-base which we fine-tune on the IC+ST
task including the data generated from LINGUIST.

4.3.1 AlexaTM 5B

AlexaTM 5B is a multilingual seq2seq Transformer
(Vaswani et al., 2017) model pre-trained similar to
AlexaTM 20B (Soltan et al., 2022), however with
denoising objective only (i.e. without Causal Lan-
guage Modeling objective). Like AlexaTM 20B,
the architecture is derived from the HuggingFace
(Wolf et al., 2020) BART (Lewis et al., 2020b)
class, and consists of 29 encoder and 24 decoder
layers, hidden dimension 2560, and 32 attention
heads. The model is trained on 900B tokens of
Wikipedia and mC4 (Xue et al., 2021) of 12 lan-
guages as used in AlexaTM 20B. We used a maxi-
mum sequence length of 512 and a batch size of 1M
tokens. The encoder weights of AlexaTM 5B are
initialized with the 2.3B-parameter Alexa Teacher
Model encoder (FitzGerald et al., 2022a) trained
on MLM task on the same data, frozen during the
first half of the AlexaTM 5B pre-training. Hyper-
parameters used for fine-tuning AlexaTM 5B on
LINGUIST are described in Appendix C.

4.3.2 IC+ST Fine-tuning

For SNIPS and mATIS++, following Chen et al.
(2019), we fine-tune a BERT-style model for joint
IC+ST. On top of the encoder hidden states, we
attach two separate classification heads, one for
IC and another for ST. Each head consists of two
layers of 256 hidden dimension, with gelu activa-
tion, dropout 0.2, and layer norm. The IC head
utilizes representation from the first token of the
sequence ([CLS]), while the ST head utilizes the
first subword token of each word.

For our encoder, we use xlm-roberta-base
(Conneau et al., 2020) (12 layers, 768 hidden di-
mension), from the HuggingFace (Wolf et al., 2020)
implementation. We fine-tune with batch size 128
for 3k updates (i.e. 30 epochs for the full-size data).
We freeze the embedding layer; all other param-
eters are free to update during training. We use
Adam (Kingma and Ba, 2015) with peak learning
rate 3e-5, increased linearly from 0 to 600 updates,
then decayed linearly to 0 until the end of training.
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To avoid over-fitting on the official SNIPS Vali-
dation dataset, we use our Development split (Sec-
tion 4.1.1) for early stopping, selecting the check-
point with best performance on ST. All of our
IC+ST fine-tuning runs for SNIPS use identical
hyper-parameters, regardless of the data generation
method being explored. For each data generaiton
method, we train and test 7 different Joint IC+ST
models {Mi}7i=1 in NIFS setting: each using a
combination of the modified data for intent i, and
the unmodified data for all other intents.

For mATIS++, we follow the same model archi-
tecture settings and train for 2k updates (64 epochs
for English only data, or 9 epochs when using data
from all the 7 languages.) We select the checkpoint
with best ST F1 Score on the English dev set only.

For our internal benchmark, we use similar set-
tings, however with a smaller internal Transformer-
based encoder for fine-tuning on the IC+ST task.

4.4 Baseline Data Generation Methods

The Interpretation-Conditioned Language
Model (ICLM) Jolly et al. (2020) generates
unlabeled text conditioned on intent and provided
slot values, with a separate label projection step
to recover the full slot annotation. ICLM does not
generate novel slot values. Our implementation
uses a small Transformer (Vaswani et al., 2017)
architecture with ∼ 37M parameters, and a simple
character-level Levenshtein distance measure to
project the slot labels. We produce 50 outputs per
input, then filter/de-duplicate (see Appendix J).

We apply Back-Translation (BT) using two sep-
arate MT systems to show the influence of the trans-
lation model. The first uses the open-source Sock-
eye toolkit (Hieber et al., 2018) and a small (91M
parameters) Transformer which has been fine-tuned
on around 10k utterances of annotated parallel data.
We use fast_align (Dyer et al., 2013) to project
the slot labels to the generated utterances. We
call this system “BT-Small”. We use M=1 for-
ward and N=10 backward translations to obtain 10
paraphrases, and then filter and deduplicate (see
Appendix K). We use French (SNIPS) or English
(Internal) respectively as pivot languages.

For a stronger BT baseline “BT-5B”, we build
an MT system by fine-tuning AlexaTM 5B on
WMT14 (retrieved from HuggingFace datasets)
jointly on en→fr and fr→en using an instruction
prompt (prefixing the input text with Translate
to French: or Translate to English:,

respectively) to control the translation direction.
We use SimAlign (Jalili Sabet et al., 2020) to
project the slot labels to the paraphrased text. For
SNIPS, we use French as the pivot language, with
beam search 10 both forward and backward, pro-
ducing 100 outputs per original sentence, then filter
and de-duplicate the outputs (Appendix L). BT-5B
was not available for the Internal Benchmark.

For SNIPS, we implement Example Extrapola-
tion (Ex2, Lee et al. (2021)) with the default “fully
anonymized labels” setting, again fine-tuning from
AlexaTM 5B, training a separate version for each
intent’s experiment, as described in 4.2.1.

Slot Catalog Resampling is a simple approach
to data augmentation which samples entities from
a catalog for a particular label. For example, given
an utterance like “play jason mraz” we might sam-
ple “weeezer” from a catalog of artist names, to get
“play weezer”. We only use Slot Catalog Resam-
pling for the Internal Benchmark, as there are no
slot catalogs available for SNIPS or mATIS++.

4.5 Metrics
4.5.1 Metrics for SNIPS and mATIS++
We use separate metrics to measure (1) support for
the new intent, while (2) not harming the overall
performance across all intents. For (1), we run the
model on a test set containing only the new intent.
We refer to this as the Local Intent Recall (IR),
and Local ST F1 Score. To measure (2), we run
the model on the combined test set of all intents
together, and call this the Global Intent Accuracy
(IA) and Global ST F1 Score. In both cases, for ST
F1 Score, we ignore the “O” (non-entity) tag, using
the seqeval (Nakayama, 2018) implementation.

When training data is modified for a particular
intent i, the Local metrics for i change across meth-
ods as expected, whereas changes in Global metrics
(see Appendix G) are very small for all methods.

For the cross-lingual mATIS++ experiments, we
report (Global) intent accuracy and Slot F1, since
we are doing cross-lingual transfer for the whole
dataset, and not targeting specific intents.

4.5.2 Metrics for Internal Benchmark
For the internal benchmark, we only evaluate in
the Local setting. We measure Semantic Error
Rate (SemER: Su et al., 2018 or Appendix O)
which jointly evaluates the IC and ST performance.
Lower SemER indicates improvement to the sys-
tem. We report relative reduction in SemER, where
a negative number indicates improvement.
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Modified Intent / Data Full s10-NoUps s10 s10
+ICLM

s10
+BT-Small

s10
+BT-5B

s10
+Ex2

s10
+LINGUIST

AddToPlaylist 100.0 95.6 ±6.8 98.3 ±2.1 97.5 ±2.2 98.3 ±2.4 99.4 ±0.5 97.5 ±1.6 93.9 ±3.2
BookRestaurant 100.0 91.0 ±3.4 93.5 ±2.4 93.8 ±1.8 92.5 ±1.7 94.6 ±1.1 91.3 ±5.4 94.6 ±1.5
GetWeather 100.0 98.8 ±0.4 98.8 ±0.4 99.4 ±0.5 99.6 ±0.5 99.8 ±0.4 99.8 ±0.4 100.0 ±0.0
PlayMusic 99.0 70.8 ±10.1 77.1 ±6.6 79.8 ±8.4 76.5 ±5.8 84.0 ±2.8 83.8 ±7.5 90.4 ±4.7
RateBook 100.0 99.0 ±0.0 99.6 ±0.5 100.0 ±0.0 99.8 ±0.4 99.6 ±0.5 99.8 ±0.4 100.0 ±0.0
SearchCreativeWork 100.0 69.0 ±8.8 76.9 ±9.3 74.2 ±9.1 73.3 ±13.6 79.4 ±11.3 80.8 ±3.9 83.3 ±6.9
SearchScreeningEvent 95.2 66.5 ±5.6 73.1 ±8.2 72.1 ±3.7 71.5 ±6.1 73.5 ±10.8 77.3 ±9.1 81.9 ±3.9
Average 99.2 84.4 ±2.9 88.2 ±1.9 88.1 ±2.4 87.4 ±2.9 90.1 ±1.6 90.0 ±2.4 92.0 ±0.8

(a) SNIPS New-Intent Few-Shot (NIFS) results on Local Intent Recall.

Modified Intent / Data Full s10-NoUps s10 s10
+ICLM

s10
+BT-Small

s10
+BT-5B

s10
+Ex2

s10
+LINGUIST

AddToPlaylist 94.1 76.8 ±2.9 81.2 ±2.5 78.4 ±2.4 82.0 ±1.8 81.3 ±1.7 80.6 ±3.1 80.9 ±3.4
BookRestaurant 96.4 71.9 ±2.3 81.3 ±2.1 80.4 ±1.4 81.2 ±1.2 83.3 ±2.5 78.6 ±4.5 83.4 ±1.7
GetWeather 97.8 74.7 ±3.9 84.9 ±5.4 82.9 ±4.8 82.3 ±4.5 84.0 ±2.8 82.9 ±4.2 85.4 ±2.8
PlayMusic 91.7 42.0 ±4.3 59.2 ±2.2 58.0 ±3.4 56.1 ±3.1 65.4 ±4.2 67.6 ±6.2 70.1 ±1.8
RateBook 99.7 89.4 ±1.5 95.0 ±0.9 95.4 ±0.8 93.5 ±3.3 93.6 ±1.5 94.7 ±0.6 94.8 ±1.7
SearchCreativeWork 100.0 56.2 ±10.5 70.9 ±11.3 67.6 ±9.8 68.9 ±11.1 72.9 ±12.1 75.2 ±5.2 79.3 ±5.0
SearchScreeningEvent 96.6 56.4 ±7.4 71.6 ±3.6 72.8 ±4.6 69.8 ±4.6 74.2 ±3.6 79.0 ±4.3 82.3 ±3.4
Average 96.6 66.8 ±2.2 77.7 ±2.0 76.5 ±2.1 76.3 ±2.5 79.2 ±2.8 79.8 ±2.1 82.3 ±1.3

(b) SNIPS New-Intent Few-Shot (NIFS) results on Local ST F1 Score.

Table 2: Our main results on SNIPS Validation set (Section 4.1.1). For each cell (i, j), we train a joint IC+ST
encoder on the combination of data from intent i modified according to strategy j, and all other intents’ data
unmodified. “Full” is trained on the full dataset without any modifications; for “s10-NoUps”, the data for intent i
is reduced to only 10 “starter” examples, and are Not Up-sampled; for “s10”, the starter utterances are up-sampled
to Ni, the original data size for intent i. For the remaining columns, the up-sampled starter utterances for intent
i are mixed with augmented data derived from them using a particular method, which is re-sampled to Ni in size.
“s10+X” uses ICLM, BT-Small, BT-5B, respectively. “s10+Ex2” uses our internal 5B seq2seq model with Ex2,
“s10+LINGUIST” uses data generated by our LINGUIST method. We bold (underline) the mean for the method
with best (second best) results. Experiments are run across five random seeds, as mean ± standard deviation.

5 Results

5.1 SNIPS Results

The main results are presented in Table 2a for Local
Intent Recall and Table 2b for Local ST F1 Score.

5.1.1 Baseline Results on SNIPS
An upper bound for the New-Intent Few-Shot
(NIFS) setting, is a model trained on the full dataset,
which we train and report (“Full” in the tables) at
99.2 for Local Intent Recall and 96.6 for Local
ST F1 Score. Reducing to 10 utterances (“s10-
NoUps”) harms both IC and ST, (although ST more
substantially), however simply up-sampling (dupli-
cating) the starter utterances (“s10”) recovers a
sizeable portion of the performance lost.

The rest of the columns use a mix (weighted
0.5/0.5) of the up-sampled 10 starter utterances,
plus augmented data derived from them via the
specified methods. In all cases, we re-sample the
final amount of data for the target intent to match
the count in the original unmodified dataset.

We find that ICLM and BT-Small do not improve

on Local Intent Recall or Local ST F1 Score com-
pared to “s10”, whereas BT-5B is a strong baseline,
achieving 90.1 vs 88.2 for IC and 79.2 vs 77.7 for
ST. Compared to BT-5B, Ex2 matches for IC at
90.0 and only slightly improves for ST at 79.8.

5.1.2 LINGUIST Results on SNIPS

We train 7 versions of the LINGUIST model one for
each heldout intent, as described in section 4.2.1.

Utilizing the ability of LINGUIST to both copy
slot values and produce novel values, we format
multiple prompt versions pik from each starter ut-
terance si. The first, dubbed “copy-all” instructs
LINGUIST to copy all the slot values, while produc-
ing new carrier phrases. Note that LINGUIST may
also re-order the slots in the sentence.

Then, for each slot type k, we create a new ver-
sion of the prompt replacing the value for k with the
wildcard "*", instructing LINGUIST to produce a
new value for the slot, while copying the other slot
values as they are, and generating a suitable carrier
phrase. We refer to this strategy as “sample-each”.
We use top_k sampling with k = 50 and tempera-
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ture 0.3 to generate 100 utterances per prompt.
After filtering the generated utterances (see Ap-

pendix M for details), we mix the up-sampled 10
starter utterances with the LINGUIST-generated
data. We use identical settings for LINGUIST fine-
tuning and generation across all 35 runs (7 intents
times 5 random seeds) for the SNIPS-NIFS bench-
mark. Following the setting of the other baselines,
we fine-tune the IC+ST model on the concatenation
of the augmented and mixed data for intent i with
the original data for all other intents.

Compared to Ex2 (“s10+Ex2”), LINGUIST im-
proves by +2.0 points absolute on Local Intent
Recall (from 90.0 to 92.0), and +2.5 points abso-
lute on Local ST F1 Score (from 79.8 to 82.3).

Finally, we show that the improvements in Lo-
cal metrics for the new intent do not cause harm
to the overall system, and in fact provide a small
improvement. As shown in Table 15a and Table
15b (Appendix G.1), “s10+LINGUIST” improves
upon “s10+Ex2” by +0.3 points absolute on both
Global Intent Accuracy and Global Slot F1 Score.

5.1.3 LINGUIST Results on SNIPS (LNO)

We report on the Label Names Only (LNO) setting
described in Section 4.2.2. For these results, we
used LINGUIST models trained without label name
dropout, which we found to perform significantly
better (ablation shown in Appendix E).

As show in Table 3 for IC and Table 4 for ST,
despite having zero real examples for the new in-
tents, LINGUIST achieves 80.0 on Local Intent
Recall and 56.9 on Local ST F1 Score. (Global
metrics are shown in Appendix G.2.) While this is
still far behind using the real text and annotation
from these 10 examples (“s10”), it represents signif-
icant progress towards true zero-shot development
of new intents and slots in IC+ST systems.

Modified Intent / Data s10 LINGUIST
(via s10 LNO)

AddToPlaylist 98.3 ± 2.1 68.6 ± 18.7
BookRestaurant 93.5 ± 2.4 92.1 ± 5.3
GetWeather 98.8 ± 0.4 99.6 ± 0.5
PlayMusic 77.1 ± 6.6 85.4 ± 3.1
RateBook 99.6 ± 0.5 100.0 ± 0.0
SearchCreativeWork 76.9 ± 9.3 66.7 ± 5.8
SearchScreeningEvent 73.1 ± 8.2 47.7 ± 9.0
Average 88.2 ± 1.9 80.0 ± 2.6

Table 3: Local Intent Recall results on SNIPS in the
New Intent Few-Shot Label Names Only (NIFS-LNO)
setting. “s10” results are copied from Table 2a.

Modified Intent / Data s10 LINGUIST
(via s10 LNO)

AddToPlaylist 81.2 ± 2.5 45.9 ± 9.1
BookRestaurant 81.3 ± 2.1 74.8 ± 3.5
GetWeather 84.9 ± 5.4 71.2 ± 3.8
PlayMusic 59.2 ± 2.2 55.6 ± 3.1
RateBook 95.0 ± 0.9 55.0 ± 6.3
SearchCreativeWork 70.9 ± 11.3 59.3 ± 5.7
SearchScreeningEvent 71.6 ± 3.6 36.6 ± 6.1
Average 77.7 ± 2.0 56.9 ± 2.5

Table 4: Local ST F1 Score results on SNIPS in the
New Intent Few-Shot Label Names Only (NIFS-LNO)
setting. “s10” results are copied from Table 2b.

5.2 mATIS++ Results

Our mATIS++ results are shown in Tables 5 (Intent
Accuracy), and 6 (Slot F1). The main focus is “avg-
0S”, the average zero-shot performance across
the 6 non-en languages (de, es, fr, hi, ja, pt).

5.2.1 Baseline Results on mATIS++

An upper bound for zero-shot cross-lingual IC+ST
is multilingual training, where a model is trained
jointly on the real data for all languages, (“all”)
which achieves 97.17 for IC and 90.72 for ST.
Reducing to English only data (“en”) harms av-
erage zero-shot Intent by 5.0 points, and Slot F1 by
23.6 points. As our baseline, we report the num-
bers from the best cross-lingual system (“MT+soft-
align”) in (Xu et al., 2020), which uses a special-
ized transformer architecture for slot alignments,
achieving 94.88 on IC, and 79.84 on ST.

5.2.2 Fine-tuning LINGUIST on MASSIVE

We first fine-tune a LINGUIST model on the MAS-
SIVE dataset, following the process from Section
3.2. We formulate monolingual prompts for each
of the 7 languages, and cross-lingual prompts from
English to the other 6 languages, which is straight-
forward: for each training utterance in e.g. French,
we select up to 10 English training examples that
have the same intent, to include in the prompt with
the French utterance as the target, setting “French”
in the <language> block of the prompt.

To demonstrate not only cross-lingual and cross-
schema (mATIS++ label names and annotations
conventions are different from MASSIVE) but also
cross-domain transfer of LINGUIST, we exclude
the transport domain from MASSIVE, as it has
some overlap with the travel information domain
of mATIS++. We also exclude two other domains
for validation early stopping (Appendix C).
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5.2.3 LINGUIST Results on mATIS++
Then, for inference on mATIS++, we first create
monolingual English prompts, then use a cloud-
based MT system to translate the slot values into
the target language, set the <language> tag in
the prompt, and generate 10 annotated utterances.
See Figure A5 (Appendix B.2) for an example.

We select the output with lowest perplexity, and
use the English IC+ST model to verify its intent,
discarding it if the prediction mismatches the intent
from the prompt, in which case we simply copy
over an English utterance from the same intent, to
maintain the class distribution. (See Appendix F.)
The final dataset contains N original English ex-
amples, and N examples for each other language.

Compared to the “MT+soft-align” method of
Xu et al. (2020), LINGUIST is on-par for IC (from
94.88 to 95.06), and improves ST F1 Score by
4.14 points absolute (from 79.84 to 83.98). We
note that ST, being a structured prediction task, is
inherently more challenging than IC, so our ST
results are of particular interest. Moreover, the
improvement on both IC and ST is particularly
large for Japanese, which tends to be challenging
for alignment with English, since the two languages
having very different linguistic characteristics.

Lang all en en+MT
soft-align

en+
LINGUIST

en 98.10 97.77 – 97.77
de 97.32 90.51 96.66 94.08
es 97.21 95.20 97.20 97.10
fr 98.10 93.64 97.49 96.88
hi 95.20 88.62 92.81 94.08
ja 97.86 90.99 88.33 95.38
pt 97.32 93.97 96.78 92.86

avg-0S 97.17 92.16 94.88 95.06

Table 5: Results on mATIS++ Intent Accuracy.

Lang all en en+MT
soft-align

en+
LINGUIST

en 95.26 95.96 – 95.07
de 94.54 80.15 89.00 84.61
es 88.27 81.24 76.42 86.89
fr 92.69 77.29 79.64 83.83
hi 85.58 62.61 78.56 76.61
ja 92.76 24.52 79.10 86.32
pt 90.49 76.64 76.30 85.63

avg-0S 90.72 67.08 79.84 83.98

Table 6: Results on mATIS++ Slot F1.

5.3 Internal Dataset Results
Table 7 shows SemER on our Internal Dataset.

5.3.1 Baseline Results on Internal Dataset
For each feature i we train an IC+ST model
Mi combining the Existing Features data E, up-
sampled starter utterances Si, augmented utter-
ances Ai produced from Si via Slot Catalog Re-
sampling, ICLM, and BT-Small. We evaluate on
the feature’s test set Ti, reporting Local SemER.

5.3.2 LINGUIST Results on Internal Dataset
We fine-tune a single LINGUIST model on instruc-
tion prompts formatted from the Existing Features
dataset E (Section 4.1.3.), which does not con-
tain any examples of the new features. Then, for
each feature, i, following a similar procedure de-
scribed in Section 5.1.2, we format prompts from
the starter utterances Si and apply LINGUIST to
generate more dataGi. Finally, we follow the same
data mixing, training, and testing procedure for
each feature i as in the baseline (Section 5.3.1).
As shown in Table 7, LINGUIST results in 7.9%
to 25.2% relative SemER reduction across four
languages compared to the baseline of combined
Catalog Resampling, ICLM, and BT-Small.

Feature/Lang de es fr ja
CameraControl - -33.3% - -
ClockSettings -1.6% -12.3% +1.8% -
HomeSecurity - - - -31.5%
Music -36.8% - -30.6% -12.3%
Timers -27.5% -15.4% -20.0% -
Average -11.8% -20.8% -7.9% -25.2%

Table 7: Internal Dataset Results. Each number is rela-
tive reduction in SemER, from baseline (combined Slot
Catalog Resampling, BT-Small, and ICLM) to LIN-
GUIST. A negative number indicates improvement.

6 Conclusion and Future Work

We introduced LINGUIST, a novel method for an-
notated data generation, via fine-tuning a large-
scale pre-trained multilingual seq2seq model. Our
method generalizes to new intents and slots in chal-
lenging few-shot, zero-shot, and cross-lingual set-
tings, which we have shown on three datasets.

In future work, we wish to explore ways to im-
prove the generation output, e.g. human-in-the-
loop and reinforcement learning. We would also
like to include more controls in the prompt such
as text style, and explore generation for multi-turn
dialogues, and more complex and nested semantics.
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B Sample Model Outputs

B.1 English Outputs
This section uses a LINGUIST model from 6 SNIPS intents: AddToPlaylist, BookRestaurant,
PlayMusic, RateBook, SearchCreativeWork, and SearchScreeningEvent.

B.1.1 One-shot Novel Ambiguous Intent
We show (Figure A1) the LINGUIST model generating annotated utterances for a new intent not seen
in training data, given only a single example. Furthermore, when the example is ambiguous or under-
specified, the model can leverage the intent label to generate more relevant outputs.

INPUT:
<language> English </language>

<intent> DownloadGame </intent>
<include> [1 zelda ] </include>
<labels> [1=game </labels>
<examples> get [1 zelda ] </examples>

OUTPUTS:

1. I’d like to play [1 zelda ]
2. I want to play [1 zelda ]
3. I want to download [1 zelda ]
4. I need to download [1 zelda ]
5. Where can I download [1 zelda ] ?

(a) The prompt with DownloadGame intent.

INPUT:
<language> English </language>

<intent> PurchaseGame </intent>
<include> [1 zelda ] </include>
<labels> [1=game </labels>
<examples> get [1 zelda ] </examples>

OUTPUTS:

1. I’d like to buy the game [1 zelda ]
2. I’d like to buy [1 zelda ]
3. I want to buy [1 zelda ]
4. Where can I buy [1 zelda ] ?
5. Please buy [1 zelda ]

(b) The prompt with PurchaseGame intent.

Figure A1: For the same example and slots, LINGUIST can leverage the intent name to generate different outputs.

B.1.2 One-shot Novel Ambiguous Slot
Similarly, (Figure A2) from a single example for a novel slot, LINGUIST can generate novel values,
following the label name to disambiguate an ambiguous word such as “bat” (animal or sports equipment).

INPUT:
<language> English </language>
<intent> DisplayImage </intent>
<include> [1 * ] </include>

<labels> [1=animal </labels>

<examples>
show me a picture of a [1 bat ] </examples>

OUTPUTS:

1. I’d like to see a picture of a [1 dog ]
2. Please show me a picture of a [1 deer ] .
3. Show me a photo of a [1 horse ] .
4. Show me a picture of a [1 zebra ]
5. Show me a [1 elephant ] picture .

(a) The prompt with animal slot.

INPUT:
<language> English </language>
<intent> DisplayImage </intent>
<include> [1 * ] </include>

<labels> [1=sports_equipment </labels>

<examples>
show me a picture of a [1 bat ] </examples>

OUTPUTS:

1. I’d like to see a picture of a [1 volleyball ]
2. Show me a photo of a [1 soccer ball ]
3. Show me a [1 football net ]
4. show me a [1 puck ]
5. Show me a [1 golf club ]

(b) The prompt with sports_equipment slot.

Figure A2: For the same example and slots, LINGUIST can leverage the slot name to generate different outputs.
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B.1.3 Zero-shot Novel Intent and Slot
We show (Figure A3) that LINGUIST can also generate in a zero-shot setting, prompted only on the intent
and slot names, without any full text examples. By changing the slot type from baseball_team_name
to hockey_team_name, the model can generate for the requested sports team. Remarkbly, although the
model never saw utterances about sports during fine-tuning, it can accuratey sample correct team names,
presumably relying on the world knowledge it acquired during pre-training. In the outputs, all baseball
teams are actual MLB, and the hockey team names are NHL, with one exception of the Wildcats
being basketball. The slot year appeared in the SNIPS fine-tuning data, so the model may be using
values either from world knowledge or from other SNIPS intents.

INPUT:
<language> English </language>
<intent> DraftPlayer </intent>
<include>
[1 * ] , [2 Patrice Bergeron ] , [3 * ]

</include>
<labels>

[1=baseball_team_name , [2=player, [3=year

</labels>
<examples> </examples>

OUTPUTS:

1. I want to draft [2 Patrice Bergeron ] from
[1 Houston Astros ] for the [3 20th season ].

2. I want to draft [2 Patrice Bergeron ] for the
[1 Washington Nationals ] in [3 2008 ].

3. I’d like to draft [2 Patrice Bergeron ] from
[1 the Boston Red Sox ] in
[3 2019 ]

4. I want to draft [2 Patrice Bergeron ] for
[1 San Francisco Giants ] in [3 2007 ]

5. I need to draft [2 Patrice Bergeron ] from
[1 Toronto Blue Jays ] for [3 2016 ]

(a) The prompt with baseball_team_name intent.

INPUT:
<language> English </language>
<intent> DraftPlayer </intent>
<include>
[1 * ] , [2 Patrice Bergeron ] , [3 * ]
</include>
<labels>

[1=hockey_team_name , [2=player, [3=year

</labels>
<examples> </examples>

OUTPUTS:

1. I would like to draft [2 Patrice Bergeron ] from
[1 Vancouver Canucks ] in [3 2015 ]

2. I want to draft [2 Patrice Bergeron ] from
[1 New Jersey Devils ] in [3 2023 ]

3. Draft the [2 Patrice Bergeron ] from
[1 the St. Louis Blues ] for the upcoming
[3 2013 ] season.

4. I want to add [2 Patrice Bergeron ] to
[1 the Wildcats ] roster for [3 2012 ].

5. Draft [2 Patrice Bergeron ] for
[1 Boston Bruins ] in [3 2014 ]

(b) The prompt with hockey_team_name intent.

Figure A3: LINGUIST can perform zero-shot generation based only on the intent and slot names, with no full text
example. It can also leverage world knowledge from pre-training to generate novel slot values that incorporate
world knowledge such as valid team names for professional sports.

B.1.4 Label Names Only
Finally, as shown in Figure A4, the most ambiguous generation scenario we explore is “Label Names Only”
(introduced in Section 4.2.2), where the model sees no examples, and all slot values are open-ended via
the wildcard instruction *. Remarkably, LINGUIST can still generate useful outputs in this case, although
with some more noise: for example, the text of Output 2 does not correspond to GetWeather intent, and
the word time is mistakenly tagged as a slot value timeRange. Nevertheless, as shown in Section
5.1.3, training with LINGUIST-generated data in this setting can achieve reasonable accuracy, representing
significant progress towards true zero-shot data generation for novel intents and slots in IC+ST systems.

B.2 Cross-Lingual Novel Intent and Slots

In Figure A5 we show an example of LINGUIST performing few-shot cross-lingual annotated data
generation on a novel domain, where it sees only 7 examples in English, and can generate diverse, fluent,
and correctly annotated outputs in French.

The model here was trained on MASSIVE both monolingual and cross-lingual prompts, as described
in Section 5.2.2. We discarded three of the 18 MASSIVE domains during training, namely audio and
cooking to use as validation sets, and transport, in order to keep mATIS++, which covers travel
information, as a novel domain.
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INPUT:
<language> English </language>
<intent> GetWeather </intent>
<include>
[1 * ] , [2 * ] , [3 * ]

</include>
<labels>
[1=city , [2=timeRange , [3=state

</labels>
<examples> </examples>

OUTPUTS:

1. What is the weather like for [1 Oyster Bay ] [3 AK ] at [2 midnight ]

2. What is the [2 time ] for [1 Red Bank ] , [3 West Virginia ]

3. What is the weather like in [1 North Lake Tahoe ] [3 North Dakota ]

at [2 1 minute from now ]

Figure A4: LINGUIST generation in Label Names Only (LNO) setting, where there are no examples or slot values,
and the model must rely entirely on the label names to generate outputs.

INPUT:
<language> French </language>
<domain> travelinfo </domain>
<intent> flight </intent>
<include> [2 lundi ] , [3 baltimore ] , [4 dallas ] </include>
<labels>
[1=depart_time.period_of_day , [2=depart_date.day_name ,

[3=toloc.city_name , [4=fromloc.city_name
</labels>
<examples>

show me the flights from [4 atlanta ] to [3 denver ] on [2 friday ]
<br> what flights go from [4 charlotte ] to [3 baltimore ] in the [1 morning ]
<br> show me all the flights from [4 philadelphia ] to [3 cincinnati ]
<br> flights on [2 friday ] from [4 newark ] to [3 tampa ]
<br> what flights leave from [4 chicago ] to [3 seattle ] on [2 saturday ]
<br> list flights from [4 detroit ] to [3 san diego ] on [2 thursday ]
<br> [4 dallas ] to [3 baltimore ] [2 monday ]
</examples>

OUTPUTS:

1. combien de vols y a-t-il entre [4 dallas ] et [3 baltimore ] le [2 lundi ]

2. quels vols y a-t-il [2 lundi ] entre [4 dallas ] et [3 baltimore ]

3. quel est le meilleur vol pour [2 lundi ] entre [4 dallas ] et [3 baltimore ]

4. s’il vous plait trouvez les vols partant de [4 dallas ] le [2 lundi ]

à destination de [3 baltimore ]

5. quelles sont les vols qui partent le [2 lundi ] de [4 dallas ]

à [3 baltimore ]

Figure A5: LINGUIST generating on a Cross-lingual English to French example from mATIS++.
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C LINGUIST Training Details

C.1 Hyperparamters and Early Stopping

As shown in Figure A6, we find that the model converges after a very small number of updates. Specifically,
we train with batch size 512 for 400 updates (i.e. around 18 epochs for SNIPS, around 2.5 epochs for
MASSIVE), using a very small learning rate 5e-7 with Adam (Kingma and Ba, 2015), warmed up over
the first 100 updates, then kept constant for the rest of training. (The internal dataset is much larger, so for
that, we train for 4k updates instead, and use a larger learning rate of 1e-6.)

For MASSIVE, we removed two additional small domains audio and cooking from training and
early stop once Token Accuracy plateaus on these domains, which occurs around 400 updates. The Token
Accuracy is the percentage of subword tokens for which the model’s top-1 hypothesis matches the ground
truth (higher is better). It requires only a single forward pass to compute, without needing auto-regressive
decoding. In early experiments, we found Token Accuracy to be more reliable than perplexity at predicting
downstream performance.

As shown in Figure A6, the Token Accuracy continues to improve for the domains seen during training,
however plateaus after 400 updates for the two novel domains, suggesting overfitting beyond 400 updates.
The token accuracy is similar for same-language (left) and cross-lingual (right) prompts, suggesting that
the model can jointly learn both tasks to a similar level of performance.

For the SNIPS runs, the data is so limited to only 6 intents per run, so removing another intent to check
for early stopping could harm the model performance. Therefore, we simply use 400 updates again, as
that worked for MASSIVE.

We use DeepSpeed (Rasley et al., 2020) ZeRO Stage 2 to accelerate training.

(a) Validation Token Accuracy on same-language prompts. (b) Validation Token Accuracy on cross-lingual prompts.

Figure A6: Validation Accuracy across updates of fine-tuning LINGUIST on the MASSIVE dataset.

C.2 Tokenizer Choices

As mentioned in Section 3.2, we keep the original sentencepice (Kudo and Richardson, 2018) tokenizer of
the model; we do not explicitly add vocabulary items for <intent>, [1, etc. This choice is motivated
by two intuitions:

(1) We hypothesize that these tags’ resemblance to markup languages like HTML/XML may help the
model learn that they are instructions rather than content words, by relying on data seen during pre-training
which was formatted similarly. An earlier version of the LINGUIST prompt had only the open tags such as
<intent PlayMusic>, and we found that the pre-trained model produced matching closing tags such
as </intent> before any fine-tuning, suggesting it had learned some knowledge of the tag structure
from pre-training.
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(2) We hypothesize that the model may be able to generalize at inference time to utterances with a
larger number of slots than seen during fine-tuning, by tokenizing the numbered brackets. For example,
the largest numbered bracket seen when fine-tuning on MASSIVE is [10, tokenized as [’_[’, ’10’].
For inference on mATIS++, 47% of the prompts contain numbered brackets between [11 and [24. If we
had added vocabulary items for these, they would be stuck as randomly initialized tokens at inference
time, and therefore unlikely to produce high quality generation. Instead, we see in the generated outputs
many examples where the model handles these larger numbered brackets without a problem.

D Impact of Model Size

To evaluate the impact of the model size used for LINGUIST data generation, we evaluate on mATIS++
with a 10x smaller model, following the same procedure of first fine-tuning on MASSIVE (Section 5.2.2),
then running cross-lingual inference on mATIS++ (Section 5.2.3).

We use AlexaTM-Large 500M, which is trained using the same data as AlexaTM 20B (Soltan et al.,
2022) and AlexaTM 5B (Section 4.3.1). Like AlexaTM 5B, AlexaTM-Large 500M uses only the denoising
objective (no Causal Language Modeling). The architecture contains 12 encoder and 12 decoder layers,
with hidden size 1024, the same as (m)BART (Lewis et al., 2020b; Liu et al., 2020).

As show in Tables 8 for IC and 9 for ST, switching to the smaller model loses 1.62 points on IC (from
95.06 to 93.44), and 1.74 points on ST (from 83.98 to 82.24). While LINGUIST with the smaller model
under-performs the baseline “en+MT soft-align” on IC by 1.44 points (93.44 compared to 94.88), it still
out-performs on ST by 2.40 points (82.24 compared to 79.84), showing the value of the LINGUIST on the
more challenging ST task, even with a smaller model.

Lang all en en+MT
soft-align

en+
LINGUIST

en+
LINGUIST

(AlexaTM-Large 500M)
en 98.10 97.77 – 97.77 97.88
de 97.32 90.51 96.66 94.08 95.65
es 97.21 95.20 97.2 97.10 95.87
fr 98.10 93.64 97.49 96.88 95.98
hi 95.20 88.62 92.81 94.08 86.94
ja 97.86 90.99 88.33 95.38 91.55
pt 97.32 93.97 96.78 92.86 94.64

avg-0S 97.17 92.16 94.88 95.06 93.44

Table 8: Results on mATIS++ Intent Accuracy, showing impact of model size. All except “en+LINGUIST
(AlexaTM-Large 500M)” are copied from Table 5.

Lang all en en+MT
soft-align

en+
LINGUIST

en+
LINGUIST

(AlexaTM-Large 500M)
en 95.26 95.96 – 95.07 95.51
de 94.54 80.15 89 84.61 83.02
es 88.27 81.24 76.42 86.89 85.45
fr 92.69 77.29 79.64 83.83 82.19
hi 85.58 62.61 78.56 76.61 75.36
ja 92.76 24.52 79.1 86.32 83.23
pt 90.49 76.64 76.3 85.63 84.18

avg-0S 90.72 67.08 79.84 83.98 82.24

Table 9: Results on mATIS++ Slot F1, showing impact of model size. All except “en+LINGUIST (AlexaTM-Large
500M)” are copied from Table 6.

E Ablation Study on Label Name Dropout

In early experiments, we found Label Name Dropout (LNDrop, described in Section 3.2) helped reduce
the model’s tendency to overfit on the label names seen during training. However, at the end of our

234



experiments, the ablation study in this section (Table 10 for Local IC Recall and Table 11 for Local ST F1
Score) shows an improvement from removing the label dropout. The impact is small on “s10” (where
the model sees both the label names and the annotated text for the 10 starter examples), however is quite
larger in “LINGUIST (via s10 LNO)” (i.e. Label Names Only, Section 4.2.2), where the model sees only
the label names.

We hypothesize that other changes we made along the way such as reducing the number of model
updates via early stopping (Section C.1) and reducing the learning rate may have introduced regularization
which makes label name dropout less necessary, and may surface a side effect of adding undesirable noise.
In future work, we would like to study this more thoroughly, and investigate whether label dropout helps
in cases where at inference time, the label names are either not available, or are not descriptive of the
utterance semantics.

Modified Intent / Data
s10

+LINGUIST
LNDrop: yes

s10
+LINGUIST
LNDrop: no

LINGUIST
(via s10 LNO)
LNDrop: yes

LINGUIST
(via s10 LNO)
LNDrop: no

AddToPlaylist 93.9 ± 3.2 92.3 ± 7.8 20.0 ± 11.6 68.6 ± 18.7
BookRestaurant 94.6 ± 1.5 93.8 ± 2.3 86.5 ± 4.9 92.1 ± 5.3
GetWeather 100.0 ± 0.0 99.6 ± 0.5 99.2 ± 0.8 99.6 ± 0.5
PlayMusic 90.4 ± 4.7 90.0 ± 3.1 76.2 ± 6.0 85.4 ± 3.1
RateBook 100.0 ± 0.0 99.8 ± 0.4 99.6 ± 0.5 100.0 ± 0.0
SearchCreativeWork 83.3 ± 6.9 92.5 ± 4.0 66.1 ± 13.4 66.7 ± 5.8
SearchScreeningEvent 81.9 ± 3.9 79.4 ± 2.8 44.2 ± 6.7 47.7 ± 9.0
Average 92.0 ± 0.8 92.5 ± 1.5 70.3 ± 2.6 80.0 ± 2.6

Table 10: Local Intent Recall results on SNIPS comparing with and without Label Name Dropout (LNDrop), in
settings NIFS vanilla (left two columns) and NIFS-LNO (Label Names Only, Section 4.2.2) (right two columns).
“s10+LINGUIST (LNDrop: yes)” results are copied from Table 2a and “LINGUIST (via s10 LNO) LNDrop: no”
results are copied from Table 3.

Modified Intent / Data
s10

+LINGUIST
LNDrop: yes

s10
+LINGUIST
LNDrop: no

LINGUIST
(via s10 LNO)
LNDrop: yes

LINGUIST
(via s10 LNO)
LNDrop: no

AddToPlaylist 80.9 ± 3.4 80.4 ± 2.1 56.6 ± 8.0 45.9 ± 9.1
BookRestaurant 83.4 ± 1.7 82.8 ± 4.0 70.7 ± 3.5 74.8 ± 3.5
GetWeather 85.4 ± 2.8 83.1 ± 3.6 70.0 ± 3.4 71.2 ± 3.8
PlayMusic 70.1 ± 1.8 69.3 ± 2.5 54.2 ± 3.2 55.6 ± 3.1
RateBook 94.8 ± 1.7 96.1 ± 1.0 51.0 ± 11.1 55.0 ± 6.3
SearchCreativeWork 79.3 ± 5.0 85.3 ± 3.7 55.5 ± 11.2 59.3 ± 5.7
SearchScreeningEvent 82.3 ± 3.4 80.4 ± 1.4 29.7 ± 2.9 36.6 ± 6.1
Average 82.3 ± 1.3 82.5 ± 1.7 55.4 ± 2.3 56.9 ± 2.5

Table 11: Local ST F1 Score results on SNIPS comparing with and without Label Name Dropout (LNDrop), in
settings NIFS vanilla (left two columns) and NIFS-LNO (Label Names Only, Section 4.2.2) (right two columns).
“s10+LINGUIST (LNDrop: yes)” results are copied from Table 2b and “LINGUIST (via s10 LNO) LNDrop: no”
results are copied from Table 4.

F Ablation Study on Filtering Generated Annotated Utterances for mATIS++

We present an ablation study on filtering the outputs of LINGUIST for mATIS++, with results presented in
Table 13 for Intent Accuracy, and Table 14 for Slot F1.

F.1 Filtering Methods
As introduced in Section 5.2.3, for each annotated English utterance in mATIS++, we generate 10
annotated utterances in each of the zero-shot languages (German, Spanish, French, Hindi, Japanese,
Portuguese). Then, for each language, we select the single1 generated annotated utterance with lowest
perplexity which also passes Valid-Filter, described next.

1In future work, we would like to evaluate the impact on mATIS++ of including more than one output per input prompt, as
we have done for SNIPS and for the Internal Dataset.
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We apply two filtering methods, (1) Valid-Filter, and (2) English-IC-Filter, and report
the “Pass Rate” of each in Table 12, as the portion of utterances that pass the filter.

For Valid-Filter we discard utterances that have invalid brackets like [2 [ ], or do not respect
the prompt, by either generating too few or too many slots, or not copying the value when requested. The
Pass Rate for Valid-Filter filter is 71.5%, averaged across the languages.

For English-IC-Filter, we classify the intent of the generated utterance’s text, using the English-
only IC+ST model, and discard the utterance if the predicted intent disagrees with the intent from the
LINGUIST prompt. We note that the English-only IC+ST model (“en” in Table 13) already performs quite
well on IC for other languages, achieving 92.16 Intent Accuracy, so we expect it to contain a strong signal
to filter out noisy generated utterances. The Pass Rate for English-IC-Filter is 83.8%, suggesting
that the remaining 16.2% of the utterances are likely to correspond to an intent other than what was
requested in the prompt, which we discuss further below (Section F.3).

After cascading the two filters, the overall Pass Rate is 59.9%.
As a final step, observing that some intents may have lost more data than others, we apply a simple fix

which we call Balance-Classes to recover the original per-intent class distribution: we simply copy
over English utterances from the intents that lack enough data.

Lang
Valid-
Filter
Pass Rate

English-
IC-Filter

Pass Rate

Cascaded
Pass Rate

Num Outputs
from LINGUIST

Num Copied
from English Total

de 73.8 77.1 56.9 2393 1816 4209
es 77.2 88.2 68.1 2867 1342 4209
fr 77.3 80.2 62.0 2609 1600 4209
hi 75.4 85.6 64.6 2717 1492 4209
ja 50.5 84.8 42.8 1801 2408 4209
pt 74.7 87.2 65.2 2744 1465 4209

avg 71.5 83.8 59.9 2522 1687 4209

Table 12: Pass Rate of LINGUIST generated utterances for mATIS++

F.2 Impact of Filtering
The impact of filtering is presented in Table 13 for Intent Accuracy, and Table 14 for Slot F1, where
our main result is “avg-0S”, the average of the zero-shot languages (de, es, fr, hi, ja, pt). We ob-
serve that English-IC-Filter improves IC by 0.89 points absolute (from 93.09 to 93.98) and
Balance-Classes improves IC by a further 1.08 points absolute (from 93.98 to 95.06), with both
methods having minimal impact on Slot F1.

Lang all en en+MT
soft-align

en+
LINGUIST
(NoFilter)

en+
LINGUIST

(+English-IC-Filter)

en+
LINGUIST

(+English-IC-Filter)
(+Balance-Classes)

en 98.10 97.77 – 97.21 97.77 97.77
de 97.32 90.51 96.66 94.31 93.64 94.08
es 97.21 95.20 97.2 94.75 96.88 97.10
fr 98.10 93.64 97.49 93.97 96.43 96.88
hi 95.20 88.62 92.81 88.17 92.19 94.08
ja 97.86 90.99 88.33 91.78 91.44 95.38
pt 97.32 93.97 96.78 95.54 93.30 92.86

avg-0S 97.17 92.16 94.88 93.09 93.98 95.06

Table 13: Intent Accuracy results on ablation study of Filtering for mATIS++.

F.3 Intent Mismatch Discussion
We discuss an intuition about why LINGUIST in a cross-domain setting such as MASSIVE to mATIS++
might produce outputs that do not exactly match the prompted intent. Notice that the prompt contains only
10 examples of the target intent, and no examples of other intents from the new domain. For example,
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Lang all en en+MT
soft-align

en+
LINGUIST
(NoFilter)

en+
LINGUIST

(+English-IC-Filter)

en+
LINGUIST

(+English-IC-Filter)
(+Balance-Classes)

en 95.26 95.96 – 94.16 95.01 95.07
de 94.54 80.15 89 83.40 85.26 84.61
es 88.27 81.24 76.42 85.92 85.47 86.89
fr 92.69 77.29 79.64 84.65 84.71 83.83
hi 85.58 62.61 78.56 78.35 75.89 76.61
ja 92.76 24.52 79.1 85.72 85.38 86.32
pt 90.49 76.64 76.3 84.45 85.06 85.63

avg-0S 90.72 67.08 79.84 83.75 83.63 83.98

Table 14: Slot F1 results on ablation study of Filtering for mATIS++.

mATIS++ contains several closely related intents, such as “flight” which asks to list and book flights,
“flight_time” which asks about the time of a flight, and “airfare” which asks about the price of a flight. We
find that when the prompts contain only “flight” examples, the model tends to over-generalize and produce
some requests asking for time or price instead, which harms IC, necessitating a post-processing method
such as English-IC-Filter. In future work, we plan to explore methods to incorporate few-shot
data from other intents in the domain while generating for the target intent, to mitigate this problem.

G SNIPS Results on Global Metrics

We report the resutls on SNIPS Global Metrics as mentioned in Section 5.1.

G.1 SNIPS Results on Global Metrics: NIFS

Our main results are on the New-Intent Few-Shot setting (NIFS, described in Section 4.2.1). Table 15a
shows Global Intent Accuracy, and Table 15b shows Global ST F1 Score. These correspond to the Local
metrics shown in Tables 2a for Local IC and 2b for Local ST.

As all our methods target a new-intent setting, as expected, they do not substantially impact the Global
metrics. Nonetheless, LINGUIST does provide a small improvement of +0.3 points absolute on both IC
and ST compared to Ex2.

Modified Intent / Data Full s10-NoUps s10 s10
+ICLM

s10
+BT-Small

s10
+BT-5B

s10
+Ex2

s10
+LINGUIST

AddToPlaylist 99.1 98.7 ±1.0 98.9 ±0.3 98.9 ±0.3 98.9 ±0.3 99.1 ±0.1 99.0 ±0.3 98.4 ±0.6
BookRestaurant 99.1 97.7 ±0.4 98.2 ±0.3 98.2 ±0.2 97.9 ±0.2 98.2 ±0.1 97.9 ±0.8 98.2 ±0.3
GetWeather 99.1 98.9 ±0.1 98.9 ±0.1 98.9 ±0.2 99.0 ±0.0 99.0 ±0.1 99.1 ±0.2 99.1 ±0.1
PlayMusic 99.1 95.3 ±1.5 96.1 ±1.0 96.4 ±1.3 96.0 ±0.8 97.0 ±0.4 97.1 ±1.1 97.9 ±0.6
RateBook 99.1 99.0 ±0.1 98.9 ±0.1 99.0 ±0.1 99.0 ±0.1 99.0 ±0.1 99.0 ±0.0 99.0 ±0.1
SearchCreativeWork 99.1 95.2 ±1.1 96.5 ±1.2 96.0 ±1.2 95.8 ±1.8 96.7 ±1.4 96.7 ±0.8 97.3 ±1.0
SearchScreeningEvent 99.1 95.3 ±0.8 96.3 ±1.1 95.9 ±0.5 95.8 ±0.8 96.2 ±1.5 96.8 ±1.2 97.4 ±0.5
Average 99.1 97.2 ±0.4 97.7 ±0.2 97.6 ±0.4 97.5 ±0.3 97.9 ±0.2 97.9 ±0.3 98.2 ±0.1

(a) SNIPS New-Intent few-shot results on Global Intent Accuracy.

Modified Intent / Data Full s10-NoUps s10 s10
+ICLM

s10
+BT-Small

s10
+BT-5B

s10
+Ex2

s10
+LINGUIST

AddToPlaylist 96.7 94.0 ±0.4 94.2 ±0.5 94.2 ±0.4 94.9 ±0.4 94.5 ±0.3 94.7 ±0.4 94.6 ±0.6
BookRestaurant 96.7 92.7 ±0.4 94.1 ±0.6 94.1 ±0.3 94.2 ±0.3 94.5 ±0.3 93.9 ±1.0 94.6 ±0.4
GetWeather 96.7 93.8 ±0.5 94.9 ±0.7 94.7 ±0.6 94.6 ±0.4 95.0 ±0.3 94.7 ±0.7 95.0 ±0.4
PlayMusic 96.7 91.3 ±0.4 92.9 ±0.3 93.1 ±0.6 92.8 ±0.2 93.8 ±0.4 93.9 ±0.6 94.2 ±0.2
RateBook 96.7 95.0 ±0.3 95.8 ±0.4 95.8 ±0.3 95.5 ±0.6 95.5 ±0.4 96.0 ±0.2 96.1 ±0.4
SearchCreativeWork 96.7 92.9 ±1.0 94.2 ±0.9 93.9 ±1.0 94.2 ±1.0 94.1 ±1.1 94.6 ±0.8 95.0 ±0.5
SearchScreeningEvent 96.7 92.3 ±0.8 94.0 ±0.6 94.0 ±0.6 93.5 ±0.6 94.2 ±0.4 94.8 ±0.7 95.3 ±0.3
Average 96.7 93.1 ±0.2 94.3 ±0.2 94.2 ±0.2 94.3 ±0.3 94.5 ±0.3 94.7 ±0.3 95.0 ±0.2

(b) SNIPS New-Intent few-shot results on Global ST F1 Score.

Table 15: Our results on SNIPS for the Global metrics, showing that the gains for Local metrics shown in Tables
2a and 2b do not cause harm to the system overall. See Section 5.1 for details.
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G.2 SNIPS Results on Global Metrics: NIFS Label Names Only (LNO)
We show Global metrics for SNIPS in the NIFS-LNO setting (New-Intent Few-Shot Label Names Only,
Section 4.2.2) in Tables 16a and 16b for Intent Accuracy and Slot F1 Score, respectively. These correspond
to the Local metrics show in Tables 3 for Local IC and 4 for Local ST. The numbers for “LINGUIST (via
s10 LNO)” are only a few points behind “s10”, indicating that even when no real data is available for the
novel intent, LINGUIST generated data can provide some support for the new intent, bringing the overall
system performance close to where it would be with 10 real examples for that new intent.

Modified Intent / Data s10 LINGUIST
(via s10 LNO)

AddToPlaylist 98.9 ± 0.3 94.5 ± 2.8
BookRestaurant 98.2 ± 0.3 98.0 ± 0.7
GetWeather 98.9 ± 0.1 99.1 ± 0.1
PlayMusic 96.1 ± 1.0 97.3 ± 0.5
RateBook 98.9 ± 0.1 98.9 ± 0.1
SearchCreativeWork 96.5 ± 1.2 94.8 ± 0.8
SearchScreeningEvent 96.3 ± 1.1 92.6 ± 1.3
Average 97.7 ± 0.2 96.5 ± 0.4

(a) SNIPS NIFS-LNO results on Global Intent Accuracy.

Modified Intent / Data s10 LINGUIST
(via s10 LNO)

AddToPlaylist 94.2 ± 0.5 88.8 ± 1.9
BookRestaurant 94.1 ± 0.6 93.1 ± 0.9
GetWeather 94.9 ± 0.7 93.1 ± 0.6
PlayMusic 92.9 ± 0.3 92.6 ± 0.5
RateBook 95.8 ± 0.4 88.1 ± 1.1
SearchCreativeWork 94.2 ± 0.9 93.1 ± 0.5
SearchScreeningEvent 94.0 ± 0.6 90.0 ± 0.8
Average 94.3 ± 0.2 91.2 ± 0.4

(b) SNIPS NIFS-LNO results on Global Slot F1 Score.

Table 16: Global metrics (Intent Accuracy, (a), left; Slot F1 Score, (b), right) for SNIPS in the NIFS-LNO setting
(New-Intent Few-Shot Label Names Only, Section 4.2.2). The numbers for “s10” are copied from Tables 15a and
15b, for IC and ST, respecitvely.

H Intent Bleeding Case Study

As described in Ex2 (Lee et al., 2021), we also observed intent “bleeding”, where the model would
produce outputs like one of the fine-tuning intents, despite the prompt and examples being from a novel
intent. We noticed this particularly strongly when generating for AddToPlaylist intent on SNIPS,
where the model had a strong tendency to return utterances starting with “play”, which overlaps with
the closely related PlayMusicIntent from fine-tuning. Consequently, this harmed IC results (Table
2a) for this intent. A very simple fix is to use “n-gram blocking”, where the model is prevented from
generating phrases like “play”, “I want to play”, etc. during generation. We found that this mitigates the
issue, and we can get near 100% on Intent Recall for AddToPlaylist. However custom designing which
n-grams to block requires effort from human experts, and does not scale to a large number of new intents
and languages, so in future work, we would like to explore more automated and scalable solutions.

I Generation Hyperparameters

For all three datasets, we use top-k sampling (Fan et al., 2018). For SNIPS, we use top_k=50, temper-
ature=0.3, and produce 100 outputs per input. For mATIS++, we use top_k=50, temperature=0.3, and
produce 10 outputs per input. For the internal dataset, we top_k=20, temperature=1.0, and produce 20
outputs per input. We observe that when LINGUIST is trained on the much larger internal dataset compared
to SNIPS, it produces less noisy outputs. Thus, we allow a higher temperature of 1.0. We use the same
settings for all intents.

We also benchmarked beam search and nucleus sampling (Holtzman et al., 2019) for generation, and
found both to perform worse overall on the internal datasets and on SNIPS compared to top-k sampling.

J Filtering ICLM Outputs

We discard any outputs containing the <unk> token, which happens less than 1% of the time. The number
of outputs (after de-duplication) are reported in Table 17.

K Filtering BT-Small Outputs

The small model has a fair amount of noise in its outputs, so we heuristically filter them, discarding any
which contain repeated bigrams such as play the song halo the song and/or any trigram of
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Modified Intent Num outputs
AddToPlaylist 296
BookRestaurant 347
GetWeather 322
PlayMusic 255
RateBook 288
SearchCreativeWork 295
SearchScreeningEvent 273
Average 297

Table 17: The number of filtered and de-duplicated outputs from ICLM per intent. All numbers are averaged across
the five random seeds.

the same word such as of of of. Success rate and number of outputs (after de-duplication) are reported
in Table 18.

Modified Intent SuccessRate NumOutputs AvgNumSlots
AddToPlaylist 70.2 64 2.7
BookRestaurant 72.8 73 3.2
GetWeather 60.4 60 2.3
PlayMusic 53.6 52 2.2
RateBook 70.8 71 3.8
SearchCreativeWork 41.6 42 1.8
SearchScreeningEvent 69.6 70 2.2
Average 62.7 62 2.6

Table 18: For each intent, the Success Rate of Back-Translation with the Small model, and Number of Generated
Outputs, both averaged across the five random seeds. For reference, we also show the Average Number of Slots in
the training data per intent.

L Filtering BT-5B outputs

The Back-Translated text with the 5B model is significantly cleaner than with the smaller model, so we
do not apply any filtering on the output text itself. We do heuristically discard any outputs where we
suspect the augmented utterance is missing a slot. Specifically, SimAlign in ArgMax mode only returns
alignments across words that have mutual argmax between source and target. For any source word that
is an entity tag (i.e., not “O”), if it is not aligned to an output word, then we consider the output invalid.
For example, an input like rate this book 5 out of 6 with a Back-Translated output give
this book a rating of 5 would typically have no output word aligned to the source word “6”
(best_rating slot label), so the output would be discarded.

Success rate and number of outputs (after de-duplication) for BT-5B are reported in Table 19.

Modified Intent SuccessRate NumOutputs AvgNumSlots
AddToPlaylist 66.2 411 2.7
BookRestaurant 82.8 423 3.2
GetWeather 72.0 311 2.3
PlayMusic 89.0 455 2.2
RateBook 79.2 478 3.8
SearchCreativeWork 85.5 451 1.8
SearchScreeningEvent 72.0 330 2.2
Average 78.1 408 2.6

Table 19: For each intent, the Success Rate of Back-Translation with the 5B model, and the number of outputs,
both averaged across the five random seeds. For reference, we also show the Average Number of Slots in the
training data per intent.

M Filtering LINGUIST Outputs

We apply heuristic filtering by discarding outputs which meet any of the following criteria: (1) copy one
of the examples from the prompt verbatim; (2) fail to follow the prompt instructions, by not copying the
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instructed slot value or by producing repeated, missing, extra, or malformed slot-tag numbers; (3) produce
the literal wildcard instruction "*"; or (4) produce a content word containing a punctuation character in
the set of {_<>[](){};}.2

In Table 20, we report the Success Rate as the portion of generated utterances which remain after
filtering, and show the total number of generated utterances per intent. We observe a trend that success
rate is generally lower when the prompt contains more slots, which is intuitive as the generation task is
more challenging and has more chances to make a mistake. The success rates vary significantly by intent
from 75.1 for BookRestaurant to 96.9 for GetWeather, with an average of 87.4 across the 7 intents.

Modified Intent Success Rate #Outputs Average #Slots
AddToPlaylist 95.1 1230 2.7
BookRestaurant 75.1 2124 3.2
GetWeather 96.9 1197 2.3
PlayMusic 82.3 622 2.2
RateBook 78.0 1729 3.8
SearchCreativeWork 91.3 1154 1.8
SearchScreeningEvent 93.0 1370 2.2
Average 87.4 1346 2.6

Table 20: For each intent, the Success Rate of Generation, and Number of Generated Outputs, both averaged across
the five random seeds. For reference, we also show the Average Number of Slots in the training data per intent.

N SNIPS Dataset Details

We retrieve the SNIPS dataset from https://github.com/sonos/nlu-benchmark/tree/master/2017-
06-custom-intent-engines. For each intent, we use “full” training set file, e.g.
AddToPlaylist/train_AddToPlaylist_full.json to split into Train and Develop-
ment sets (described in Section 4.1.1). The validation data comes from the “validate” file for each intent,
e.g. AddToPlaylist/validate_AddToPlaylist.json.

In PlayMusic/train_PlayMusic_full.json, as of the time of publishing, there is a bug
in row 461 (0-based), where we replace "Pop Punk Perfection <non_utf8_chars>" with
"Pop Punk Perfection" before processing the dataset.

We provide in Table 21 the row IDs (0-based) and md5sum of the training data subsets we use for the
“s10” New-Intent Few-Shot (NIFS) setting, described in Section 4.2.1.

O SemER Metric

For the internal IC+ST benchmark (Sections 4.1.3, 4.5.2, and 5.3.2), we report on Semantic Error Rate
(SemER) (Su et al., 2018) which jointly evaluates Intent Classification and Slot Filling. SemER is defined
as follows: comparing a reference of tokens and their accompanying labels, count each of of these
operations: (1) Correct slots, where the slot name and slot value is correctly identified, (2) Deletion
errors, where the slot name is present in the reference but not in the hypothesis, (3) Insertion errors, where
extraneous slot names are included in the hypothesis, (4) Substitution errors, where slot names from the
hypothesis are included but with an incorrect slot value. Intent classification errors are substitution errors.
Then, apply Equation 1 to compute the SemER.

SemER =
# Del + # Ins + # Sub
# Cor + # Del + # Sub

(1)

2These characters do not appear in the text of any of the original training data, so are considered to be generation mistakes.
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Seed Intent row IDs md5sum

0

AddToPlaylist 81 271 314 495 561 636 856 1285 1615 1702 ade55e42e481f83c6617298d300758d8
BookRestaurant 122 438 574 739 950 1252 1401 1420 1578 1728 60f6c7e4af848f3c7cfaedb02bb2f058
GetWeather 163 348 454 529 870 932 966 1286 1368 1766 f37c6a4040e861d517e046719eb8da10
PlayMusic 348 454 529 808 827 870 966 1286 1368 1766 a9899270bcfc3de3985d9b7149176916
RateBook 125 129 181 690 739 1100 1243 1250 1600 1658 bcfa3063511c156738669da43f657284
SearchCreativeWork 75 76 126 256 272 412 611 712 1216 1301 c8db82b42da972e2f3fbba4fb343ca97
SearchScreeningEvent 76 117 236 261 411 785 919 1523 1856 1866 a32972f750a077709d22bd062b3a10f7

1

AddToPlaylist 15 26 80 91 459 637 723 735 844 1306 8463a2c95d6104cea85e096b1c9abb0f
BookRestaurant 172 246 829 999 1061 1100 1203 1602 1717 1901 50cf89c558c1fd4387861968fbb8ea72
GetWeather 155 466 857 957 1514 1673 1687 1748 1810 1930 4252f8c48f17062a003e73438254bdf8
PlayMusic 155 466 857 957 1514 1683 1687 1748 1810 1930 94aa305f40be0d971b5fbf019fed0525
RateBook 210 349 506 527 596 745 1174 1241 1295 1426 0b87d112f3073a31f6bb6b406e0d4f0c
SearchCreativeWork 209 348 506 528 600 750 1175 1241 1299 1434 329937eef631008e1029f53ee7368513
SearchScreeningEvent 210 522 660 862 880 951 983 1314 1766 1925 cdb4eb65ce6742a3106222d1e2b04add

2

AddToPlaylist 177 244 912 1044 1047 1218 1306 1374 1423 1541 f718676eafd6e2285ab11b2e35359aee
BookRestaurant 252 469 555 849 969 1053 1113 1324 1570 1800 269ad74c558d8be458d1ee9dff612e21
GetWeather 16 40 345 384 611 694 735 1071 1128 1587 8a4d66e79fc26c900c20baf99c7f429d
PlayMusic 16 40 345 611 735 1071 1094 1128 1587 1840 45b22040849978b9590509ff53553661
RateBook 561 840 937 1156 1234 1246 1314 1383 1401 1719 65b6a5bbc8ca80f4da4418362c16d299
SearchCreativeWork 263 402 515 598 819 877 1116 1296 1657 1791 8d4f37ebd8f93e23a48f4ae60191303c
SearchScreeningEvent 562 844 941 1160 1241 1253 1389 1393 1457 1635 4d4193a6a724b07a090bb483db8baded

3

AddToPlaylist 381 491 885 909 1341 1451 1459 1580 1778 1873 160fadf3bf9b76ce0af603992ae3a025
BookRestaurant 42 245 570 702 1059 1227 1283 1330 1465 1887 319bd8b3fad9666ae1ebc4a3fa4bb9de
GetWeather 90 127 502 522 759 910 957 1013 1242 1337 2188dd29d307e6200201eb0936b16a88
PlayMusic 127 502 522 620 759 910 957 1093 1242 1840 3b1bb6d63a58ebe40b697aa1a7d9f1d7
RateBook 42 70 372 447 768 1180 1594 1705 1838 1932 76fe7286f19552b820f0b9e4061bfe80
SearchCreativeWork 42 70 372 447 772 1182 1207 1600 1711 1766 76de043a76b2c96d7e782ca890fb24d7
SearchScreeningEvent 42 70 179 274 454 889 957 1058 1061 1256 6651011e32bbadaf55e169251d1f3a31

4

AddToPlaylist 26 58 276 328 403 574 834 1069 1644 1891 a2ce834b5ca753d67f88ff42530568f0
BookRestaurant 228 270 519 946 1361 1482 1508 1832 1927 1936 d3d8c652313485e537b56e3279dddf80
GetWeather 11 213 371 442 948 1040 1140 1280 1659 1835 b002ada961f3af1e95f34c46e2c3d047
PlayMusic 11 213 277 371 442 948 1140 1280 1691 1835 81ed81653e9b7f8dbc0f05f38a97ecbb
RateBook 58 128 208 815 876 891 941 1772 1784 1879 bce0c7d2d5b70a26378022ce3dba98fd
SearchCreativeWork 58 127 207 817 894 943 1640 1699 1788 1878 54caeb85f764adac5856dd006d819418
SearchScreeningEvent 58 128 596 894 952 962 1140 1365 1693 1928 767a9b5e0c83b4d043c74d57dcbba12e

Table 21: The Row IDs (0-based) used for the “s10” splits of the SNIPS dataset.
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Abstract
When a natural language generation (NLG)
component is implemented in a real-world
task-oriented dialogue system, it is neces-
sary to generate not only natural utterances
as learned on training data but also utter-
ances adapted to the dialogue environment
(e.g., noise from environmental sounds) and
the user (e.g., users with low levels of un-
derstanding ability). Inspired by recent ad-
vances in reinforcement learning (RL) for
language generation tasks, we propose AN-
TOR, a method for Adaptive Natural lan-
guage generation for Task-Oriented dialogue
via Reinforcement learning. In ANTOR, a nat-
ural language understanding (NLU) module,
which corresponds to the user’s understand-
ing of system utterances, is incorporated into
the objective function of RL. If the NLG’s in-
tentions are correctly conveyed to the NLU,
which understands a system’s utterances, the
NLG is given a positive reward. We con-
ducted experiments on the MultiWOZ dataset,
and we confirmed that ANTOR could gener-
ate adaptive utterances against speech recogni-
tion errors and the different vocabulary levels
of users.

1 Introduction

In task-oriented dialogue systems, the role of the
natural language generation (NLG) component is
to convert a system’s intentions, called dialogue
acts (DAs), into natural language utterances and
to convey DAs accurately to users (McTear, 2002;
Gao et al., 2019). In recent years, data-driven lan-
guage generation methods (Wen et al., 2015; Peng
et al., 2020) using neural networks have been intro-
duced to NLG for task-oriented dialogue systems,
enabling natural utterance generation.

When such NLG is implemented in a realistic en-
vironment, however, it is essential to generate not
only natural utterances as learned on training data
but also utterances adapted to the dialogue environ-
ment and the user. For example, when interacting

in a noisy environment, such as in a place with loud
background noise or through a telephone, the sys-
tem needs to use sentences and vocabulary that are
less likely to be misrecognized. In addition, if the
user is a child or a second language learner, it is nec-
essary to generate utterances in plain terms that the
user can easily understand. Therefore, it is essential
for the NLG module to adaptively generate utter-
ances for the dialogue environment and the user in
real-world situations. However, it is challenging
to implement optimal NLG using only supervised
learning because it is not practical to create training
data for every environment or user. Recently, for
many generative tasks, such as machine translation,
summary generation, and dialogue generation in
open domains, many methods using reinforcement
learning (RL) have been proposed. In these studies,
non-differentiable objective functions, such as gen-
erated text quality and subjective user preferences,
are used to optimize the language generation model
and achieve high performance.

With this background in mind, this study
proposes a method for Adaptive Natural lan-
guage generation for Task-Oriented dialogue via
Reinforcement learning (ANTOR)1, which adapts
to the dialogue environment and the user. In our
method, a reward function using a natural language
understanding (NLU) model is set up, and a pre-
trained NLG model is fine-tuned by using RL. That
is, the NLG generates a system utterance for a given
DA, and the NLU provides a positive reward if it
can successfully recognize the original DA from
the utterance. Experiments using the MultiWOZ
dataset (Budzianowski et al., 2018) are conducted
with multiple environments and users simulating
real-world conditions, such as speech recognition
errors and the different vocabulary levels of users.

1In this paper, ANTOR refers to both the method of
fine-tuning NLG and the fine-tuned NLG model. Our code
and data are publicly available at https://github.com/
nu-dialogue/antor
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Our contribution is threefold:

• We propose ANTOR, a method for fine-tuning
NLG for task-oriented dialogue via reinforce-
ment learning. We conducted experiments
using MultiWOZ to confirm that ANTOR
can generate adaptive utterances for multiple
NLUs with different model architectures.

• Experiments were conducted in a noisy en-
vironment where speech recognition errors
caused by background noise were simulated.
The results show that ANTOR could gener-
ate utterances with words less likely to cause
speech recognition errors.

• Experiments were conducted using NLUs that
simulated users with low vocabulary levels.
The results confirmed that ANTOR was able
to generate utterances using vocabulary appro-
priate for each vocabulary level.

2 Related Work

2.1 Natural Language Generation for
Task-oriented Dialogue

Conventional NLG for task-oriented dialogues
had used template-based and rule-based methods
(Walker et al., 2002; Stent et al., 2004). There, tem-
plates and rules had to be carefully designed manu-
ally by experts in each domain. Later, a data-driven
method using machine learning was proposed (Oh
and Rudnicky, 2002; Angeli et al., 2010; Mairesse
and Young, 2014). Kondadadi et al. (2013) pro-
posed a method for statistically generating utter-
ances using k-means clustering and support vec-
tor machines. Recently, many generation models
based on end-to-end learning have been proposed
by using deep learning (Wen et al., 2016; Tran and
Nguyen, 2017; Su et al., 2018). Wen et al. (2015)
proposed SC-LSTM, which controls utterance gen-
eration by using DA feature vectors and reading
gates. SC-GPT (Peng et al., 2020) is a state-of-
the-art model for MultiWOZ that achieves high
performance by fine-tuning the language model
GPT-2 (Radford et al., 2019) on a large number of
task-oriented dialog datasets.

Some end-to-end models (Budzianowski et al.,
2018; Chen et al., 2019) generate system utterances
directly from a dialogue history instead of using
NLG, which is known as a word-level policy. In
particular, Zhao et al. (2019) and Mehri et al. (2019)
optimize the word-level policy by RL to improve

task completion. Although these methods use RL
to generate system utterances, they do not deal with
the NLG module itself and ways to make it adaptive
to environments and users.

2.2 Adaptive Natural Language Generation
for Task-oriented Dialogue

Methods have been proposed for generating utter-
ances adapted to the user. Walker et al. (2004) used
quantitative user modeling for multimodal dialogue
to achieve speech production that takes user prefer-
ences into account. Janarthanam and Lemon (2010)
used RL to create utterances that suit the user’s
domain knowledge. Dušek and Jurčíček (2016)
proposed an NLG that can generate utterances ex-
hibiting entrainment. Furthermore, Mairesse and
Walker (2010) proposed PERSONAGE, an NLG
that can generate utterances expressing Big Five
personality traits. Our study differs from the above
studies in that we optimize an existing NLG for the
specific objective function of accurately conveying
DAs for specific environments and users.

2.3 Natural Language Generation with
Reinforcement Learning

In recent years, many methods have been proposed
that use RL for language generation tasks (Luketina
et al., 2019). There are machine translation meth-
ods (Wu et al., 2016; Bahdanau et al., 2016) using
BLEU as the reward function, summary genera-
tion methods (Ranzato et al., 2015; Dong et al.,
2018) using ROUGE, and story generation (Tamb-
wekar et al., 2019). In addition, human feedback
rather than automatic evaluation metrics is also
used in many methods including machine trans-
lation (Kreutzer et al., 2018), summary genera-
tion (Ziegler et al., 2019; Stiennon et al., 2020),
and open-domain dialogue (Hancock et al., 2019;
Jaques et al., 2019). Our study examines the appli-
cability of these recent advances to NLG in task-
oriented dialogues.

3 Method

3.1 Task Overview

Figure 1 shows the overall task performed by NLG
in this study. First, NLG takes a reference DA,
representing system intentions, converts it into nat-
ural language, and outputs a system utterance. The
user’s NLU then predicts the system’s DA (pre-
dicted DA) from the system utterance. The goal of
ANTOR is to generate utterances such that the pre-
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System NLG User NLU

Evaluation

Intent Slot Value

Inform-Restaurant Choice 21

Inform-Restaurant Area centre of town

Reference DA

There are 21 restaurants in the centre.

System utterance

Intent Slot Value

Inform-Restaurant Choice 21

Inform-Restaurant Area centre

Predicted DA

Environment

Figure 1: Overview of the task to be performed by NLG. NLG generates system utterance corresponding to refer-
ence DA. NLG is evaluated using reference DA and predicted DA, which NLU estimates from system utterance.
The ability of User NLU to understand can vary and so can the environment.

dicted DA estimated by the NLU becomes equiva-
lent to the reference DA. Note that this study uses
automatic evaluation by comparing the reference
DA and predicted DA; more down-to-earth eval-
uations using user subjective evaluations or user
models are left for future work. In the following,
the main concepts of the task, namely, DA, system
NLG, user NLU, and evaluation, are described.

Dialogue Act The DA is a semantic representa-
tion of a system utterance. The reference DA A
contains one or more triples consisting of intent I ,
slot s, and value v:

A = {(I1, s1, v1), ..., (I|A|, s|A|, v|A|)}
I represents a system’s intention in a domain.
For example, in the restaurant domain, there are
intentions such as “inform” and “request” (e.g.,
“Restaurant-Inform,” “Restaurant-Request”). s and
v indicate the category (e.g., “Choice” and “Area”)
and specific information belonging to s, respec-
tively. The first line of the reference DA in Figure
1 indicates the semantics that there are 21 possible
restaurants.

System NLG NLG generates a system utterance
U on the basis of a given A. In this study, we as-
sume a generative model with neural networks. Us-
ing the chain rule, a joint probability over [A;U ] =
(x1, ..., xN ) is modeled by a neural network ρθ with
parameters θ:

ρθ([A;U ]) =

N∏

n=1

ρθ(xn|x<n) (1)

where N is the length of [A;U ]. θ is trained by
maximizing the log-likelihood (MLE) over dataset
D = {[A1;U1], ..., [A|D|;U|D|]}:

L(D) =

|D|∑

t=1

Nt∑

n=1

log ρθ(x
t
n|xt<n) (2)

where Nt is the length of [At;Ut].

User NLU NLU predicts DA A′ from U output
by NLG. The structure of A′ is the same as that
of A. In this study, we assume a classification-
based prediction model for intent detection and
slot tagging. Intent detection performs multi-label
classification of an utterance, and slot tagging cate-
gorizes each token in an utterance as to which slot
it belongs. The training data D for NLG is the
same as that for training NLU.

Evaluation The goal of NLG is to generate U
such that A = A′. Therefore, the rate of concor-
dance between A and A′ is used to evaluate the
NLG. Specifically, we use the F1 score calculated
from true positive triplesATP = A∩A′, false nega-
tive triplesAFN = A∩A′, and false positive triples
AFP = A ∩ A′. In addition, following (Wang
et al., 2020), Accuracy = |ATP |

|ATP |+|AFP |+|AFN | is
also used.

3.2 Fine-tuning via Reinforcement Learning
ANTOR is optimized by fine-tuning NLG pre-
trained by MLE in Eq. (2) via RL. We use proximal
policy optimization (PPO) (Schulman et al., 2017)
for the RL algorithm. We initialize policy πφ by
using ρθ and add a randomly initialized linear layer
that outputs a scalar value for a value network. Pa-
rameters φ are updated on the basis of the clipped
surrogate objective LCLIP (φ). We incorporate an
understanding of NLU into the reward for ANTOR.
When computing the reward r, each utterance U
generated by πφ from A ∼ D is evaluated using
A′ predicted by NLU from U as follows:

r(A,A′) = F1(A,A′)
1

|ATP |
∑

(I,s,v)∈ATP

idfD(I, s) (3)

where idfD(I, s) is the IDF value of (I, s) com-
puted over all intent-slot pairs inD. This weighting
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of F1 scores compensates for DAs that frequently
occur in D (e.g., greetings) and DAs that occur
infrequently.

Following Ziegler et al. (2019), to prevent πφ
from moving too far from ρθ, a penalty by Kull-
back–Leibler (KL) divergence is added to r(A,A′)
as the final reward R:

R(A,A′, U) = r(A,A′)− β log πφ(U |A)
ρθ(U |A)

(4)

where β is the coefficient for the penalty. Algo-
rithm 1 summarizes the fine-tuning process of AN-
TOR.

Algorithm 1 ANTOR with PPO

Require: Dataset D; NLU; Policy ρθ pre-trained
via MLE by Eq. (2)

1: Initialize policy πφold = ρθ
2: Randomly initialize value network in πφold
3: for i = 1, 2, ..., max iteration do
4: for j = 1, 2, ..., batch size do
5: Sample a reference DA A from D
6: Sample an utteranceU fromA by πφold
7: Get a predicted DAA′ from U by NLU
8: Compute reward R(A,A′, U) by Eq.

(4)
9: Compute advantage estimates

10: end for
11: Optimize LCLIP (φ), with pre-determined

number of epochs and minibatch size
12: φold ← φ
13: end for

4 Environment

We aim to confirm the feasibility of NLG that can
robustly respond to the dialogue environment and
the user, which does not exist in typical NLG train-
ing data. Therefore, we simulate two conditions
in the following subsections. Note that D in this
section is the same as the data for training NLG in
Section 3.1; D = {[U1;A1], ..., [U|D|;A|D|]}.

4.1 Speech Recognition Error

When a dialogue system interacts with a user via
voice, it is assumed that background noise makes it
difficult for system utterances to be accurately con-
veyed to the user. Automatic speech recognition
(ASR) error simulation is often used to construct a
noisy channel between a user and system (Schatz-
mann et al., 2007; Fazel-Zarandi et al., 2019; Wang

System NLG

User NLU

System utterance

Noisy system utterance

an and …
an 0.8 0.15 …

and 0.1 0.7 …

… … … …

Word substitution with confusion matrix

Figure 2: ASR error simulation to add noise to system
utterance

et al., 2020). Therefore, we apply perturbations
that take the background noise into account to an
utterance from NLG by using ASR error simula-
tion. The noisy utterance is then used as input to
NLU. Word substitution with a confusion matrix is
used in the simulation (Figure 2). The TTS-ASR
pipeline (Park et al., 2019) is used to construct the
confusion matrix with the following procedure:

1. Convert each U over D to audio data UAudio

using a text-to-speech (TTS) system.

2. Create UNoisyAudio by adding background
noise to each UAudio.

3. Recover each UNoisyAudio into text UNoisy

using an ASR system. This creates DNoisy =
{UNoisy1 , ..., UNoisy|D| }.

4. Align words in U and UNoisy with the Lev-
enshtein distance and calculate the frequency
of each word substituted and deleted from
U to UNoisy, resulting in an N -dimensional
confusion matrix M ∈ N2. N is the size of
vocabulary V = {v1, ..., vN} appearing in D
or DNoisy. Note that a special token denoting
deletion is included in V .

Here, M(i, j) indicates how often a word vi is
substituted into vj . When simulating ASR errors,
each word w in a system utterance is replaced by a
word vj according to the following probability:

pw(vj) =

{
M(i,j)∑N
n=1M(i,n)

if ∃vi ∈ V : w = vi,

0 otherwise
245



4.2 Different Vocabulary Levels
In a real environment in which a dialogue system
interacts, the users may not have a sufficient vo-
cabulary, such as when they are children or second
language learners. Therefore, NLG should use vo-
cabulary and sentences appropriate to the user’s
vocabulary level. We can simulate the user’s vo-
cabulary level by adjusting the training data D for
NLU as follows:

1. Prepare a word list L = {v1, ..., v|L|} of the
desired vocabulary level.

2. For each [A;U ] ∈ D, if the lemma of a non-
stop word2 in U is not in L, the [A;U ] is ex-
cluded from D.

Using the adjusted training data, it is expected that
the NLU can understand only the words in L.

5 Experiments

We wanted to confirm that ANTOR is capable of
generating utterances adapted to the dialogue envi-
ronment and the user. To verify the effectiveness
of ANTOR, we conducted experiments using simu-
lations.

5.1 Dataset
We used the MultiWOZ dataset (Budzianowski
et al., 2018), which is a task-oriented dialogue
dataset between a clerk and a tourist at a tourist
information center. The dataset contains 10,438
dialogues in seven domains. We used only sys-
tem utterances annotated with the clerk’s DAs. We
used a total of 56,750 utterances and DA pairs in
the training data of MultiWOZ to train NLG and
NLU. In addition, we also used the utterances to
construct the confusion matrix used in the ASR
error simulation.

5.2 Training Setup
ANTOR The 117M parameter version of the
GPT-2 language model (Radford et al., 2019) was
used as a base model. DAs were input to the model
as a sequence of intent, slot, and value triples con-
nected by the symbols “+” and “*”; if there were
multiple triples, they were connected by commas “,
”. In addition, to control generation, special tokens
“[ACT]” and “[RSP]” were added at the beginning
of the DAs and the system utterance sequences,

2We used the Python library Spacy for word tokenization,
stop word determination, and word lemmatization.

respectively, in order to indicate the start of each
sequence. The following is an example input to the
model:

[ACT] Inform-Restaurant + Choice
* 21, Inform-Restaurant + Area *
centre of town [RSP] There are
21 restaurants in the centre of
town.

In MLE, GPT-2 was trained on MultiWOZ for
five epochs with a batch size of 8, following
Peng et al. (2020). We used the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 5e-5,
and the learning rate decreased linearly with the
number of steps.

For RL, 60 iterations were trained with a batch
size of 1,024 (i.e., 1,024 utterances), and each batch
was trained in 4 epochs with a minibatch size of 1.
The coefficient β of the penalty for the KL diver-
gence was set to 0.1. We use generalized advantage
estimation (Schulman et al., 2015) (GAE) with a
γ of 1.0 and λ of 0.95. The Adam optimizer was
used with a learning rate of 5e-6, and the learning
rate decreased linearly with the number of steps.

For fair evaluation, we trained ANTOR with five
different random seeds. 7,372 pairs of DAs and
system utterances from MultiWOZ test data were
used for testing. The average of the five trials was
used as the final score. A greedy search was used
for utterance generation in a test.

User NLU As NLUs in our experiments, fol-
lowing the work of Liu et al. (2021), who eval-
uated NLUs with task-oriented dialogues, we used
two models, MILU (Hakkani-Tür et al., 2016) and
BERT (Devlin et al., 2019). Each model was
trained by using pairs of DAs and system utter-
ances from MultiWOZ training data. The learning
rates were 1e-3 for MILU and 1e-4 for BERT as in
(Liu et al., 2021).

5.3 Baselines
To evaluate the performance of ANTOR, we used
three comparison models.

SC-LSTM (Wen et al., 2015) An LSTM-based
method for controlling utterance generation
with feature vectors related to DAs. We used
a model pre-trained with MultiWOZ, which is
available from ConvLab-2 (Zhu et al., 2020),
a platform for task-oriented dialogue systems.

SC-GPT (Peng et al., 2020) A GPT-2 based
model that has been trained on a large number
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Figure 3: Increase in reward and F1 when ANTOR was
trained in a clean environment using MILU and BERT,
respectively.

of task-oriented dialogue datasets and further
fine-tuned on MultiWOZ. In fine-tuning,
training was done for five epochs with a
batch size of 8, as reported in the official
repository3.

GPT-2 (Radford et al., 2019) A GPT-2 model
fine-tuned on MultiWOZ using only MLE.
The hyperparameters and input format were
the same as those of ANTOR.

5.4 Experimental Procedure
The experiment was conducted in three stages using
both MILU and BERT. First, we checked the ef-
fectiveness of ANTOR in clean environments with
basic task-oriented dialogue. Next, we conducted
two experiments: (1) in an ASR error simulation
environment and (2) using NLUs trained only with
low vocabulary levels.

5.5 Results in Clean Environment
Figure 3 shows the reward and F1 transition of AN-
TOR, indicating that the scores increased steadily.
Table 1 shows the test scores for each model, in-
dicating that ANTOR’s accuracy and F1 outper-
formed the other models. These results show that
ANTOR can learn utterance generation that fits
both models of MILU and BERT. Note that the
BLEU score of ANTOR was lower than those of

3https://github.com/pengbaolin/SC-GPT

Model MILU BERT

Acc. F1 Acc F1 BLEU

SC-LSTM 74.0 78.6 73.6 77.7 25.3
SC-GPT 77.3 81.1 78.3 82.2 29.9

GPT-2 79.5 84.0 79.7 83.6 29.9
ANTOR (ours) 86.7 89.8 87.8 90.7 27.5

Table 1: Scores for each NLG model evaluated using
MILU and BERT, respectively.

SNR WER Sub. Ins. Del.

0 30.4% 15.4% 8.5% 6.6%
5 23.9% 12.6% 9.1% 2.2%

10 21.5% 11.0% 9.2% 1.3%
20 19.9% 9.8% 9.1% 1.0%

Table 2: WER and percentage of error types for each
SNR using TTS-ASR pipeline.

SC-GPT and GPT-2. This BLEU score was calcu-
lated by comparing the utterances in MultiWOZ as
references and the utterances generated by NLG
as hypotheses. This means that ANTOR no longer
generated utterances that appear in MultiWOZ in
order to generate utterances tailored to NLU.

5.6 Conditions for Speech Recognition Error

We trained and evaluated ANTOR in an environ-
ment with ASR simulation. Google Cloud Text-
to-Speech4 and Speech-to-Text5 were used for the
TTS and ASR in the construction of the confu-
sion matrix (see Section 4.1). The ESC-50 dataset
(Piczak, 2015) was used as the background sound
source, and it contains a total of 2,000 different
sounds in five categories (e.g., natural soundscapes
and urban noises). Randomly selected background
noise was assigned to each utterance with a signal-
to-noise ratio (SNR) of 0, 5, 10, and 20 dB. The
range was selected so that the word error rate
(WER) between original and noisy utterance text
would be evenly distributed. Table 2 shows the
WER of all of the data generated at each SNR and
the percentages of substitution (Sub.), insertion
(Ins.), and deletion (Del.) errors.

Table 3 shows the evaluation results for each
model. Overall, ANTOR showed a higher accuracy
and F1 than all three comparison models. These
indicate that ANTOR can preferentially generate

4https://cloud.google.com/
text-to-speech

5https://cloud.google.com/
speech-to-text
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Model
SNR

0 5 10 20

Acc. F1 WER Acc. F1 WER Acc. F1 WER Acc. F1 WER

SC-LSTM 46.6 53.8 26.9 50.6 57.9 17.8 52.2 59.6 14.8 53.5 60.8 13.1
SC-GPT 47.9 55.4 27.2 52.1 59.9 18.0 54.3 61.9 14.9 55.1 62.8 13.3

GPT-2 48.2 56.0 28.2 52.8 60.6 19.2 54.9 62.7 16.0 56.0 63.7 14.3
ANTOR (ours) 51.9 59.4 26.8 56.9 64.2 18.5 59.9 66.9 14.8 60.9 67.9 13.7

(a) MILU

Model
SNR

0 5 10 20

Acc. F1 WER Acc. F1 WER Acc. F1 WER Acc. F1 WER

SC-LSTM 46.6 53.2 27.1 50.3 57.4 18.0 52.4 59.5 14.9 53.4 60.4 13.0
SC-GPT 48.9 56.4 27.2 53.5 60.8 18.2 55.1 62.4 15.0 56.2 63.4 13.2

GPT-2 48.7 56.2 28.3 53.5 61.0 19.3 55.6 62.9 16.1 56.5 63.9 14.1
ANTOR (ours) 54.2 61.5 28.0 58.8 66.0 18.7 60.8 67.9 15.9 61.9 69.0 13.7

(b) BERT

Table 3: Scores for methods evaluated in ASR error simulation environment with background noise at each SNR,
using MILU and BERT, respectively. WER indicates how much error was imposed on NLG’s output utterances.

Model CEFR-J level

≤A1 ≤A2 ≤B1 ≤B2

NLG NLU Acc. F1 Acc. F1 Acc. F1 Acc. F1

SC-LSTM MILU 47.4 53.9 55.7 62.5 62.4 68.8 63.6 69.8
SC-GPT MILU 47.2 53.9 56.4 63.5 63.4 70.1 66.1 72.5
GPT-2 MILU 48.4 55.0 57.7 64.7 66.0 72.6 68.6 74.8
ANTOR (ours) MILU 54.7 61.1 63.5 69.8 72.5 78.0 75.0 80.1

SC-LSTM BERT 68.6 73.6 72.0 76.3 72.8 76.9 73.1 77.2
SC-GPT BERT 70.3 75.9 73.3 77.9 77.3 81.4 77.6 81.9
GPT-2 BERT 65.3 70.8 74.9 79.4 79.1 83.5 78.2 82.5
ANTOR (ours) BERT 83.0 87.0 85.7 89.2 87.8 90.6 87.7 90.6

Table 4: Scores for each NLG model when evaluated using MILU and BERT. Both MILU and BERT were trained
using only vocabulary defined at each CEFR-J level.

Model % vocab. level in generation

≤A1 ≤A2 ≤B1 ≤B2

GPT-2 64.8 77.2 87.2 90.3
ANTOR w/ MILU 68.1 79.8 88.0 91.0
ANTOR w/ BERT 67.0 79.6 88.0 91.0

Table 5: Percentage of vocabulary levels to which
words generated by GPT-2 and ANTOR belong. “w/
MILU” and “w/ BERT” are ANTOR models trained
with MILU and BERT, respectively. Note that ANTOR
is fine-tuned using NLU trained on data at the CEFR-J
level indicated by each column.

words that are less likely to be confused. The above
result shows that fine-tuning via RL enabled NLG
to generate utterances adapted to the noisy environ-
ment, regardless of the noise intensity.

5.7 Conditions for Different Vocabulary
Levels

We experimented with multiple NLUs trained on
data that were gradually filtered along vocabulary
levels. For word lists organized by vocabulary level,
we used the Common European Framework of Ref-
erence (CEFR)’s English Vocabulary Profile6. The
CEFR defines six levels of language acquisition,
from A1 (beginner) to C2 (proficient, compara-
ble to native speakers), with a word list for each
level. In our experiment, we used the CEFR-J
(Tono and Negishi, 2012) word list for Japanese-
English learners7. We created four types of training
data for NLU by filtering MultiWOZ data with a

6https://www.englishprofile.org/
7http://www.cefr-j.org/download_eng.

html
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Intent-slot pair Num. % TP change

(Request-Taxi, Depart) 142 14.5 → 90.4
(OfferBook-Train, People) 6 0.0 → 66.7
(Recommend-Hotel, Postcode) 12 14.3 → 80.0
(Recommend-Restaurant, Price) 49 20.8 → 84.0
(NoOffer-Hotel, none) 32 23.5 → 86.7

Table 6: Top five intent-slot pairs that were correctly
recognized by BERT at a higher percentage (% TP) by
ANTOR compared with GPT-2. “Num.” indicates the
number of times each intent-slot pair appeared during
test.

focus on the four levels≤A1,≤A2,≤B1, and≤B2
(see Section 4.2). Note that C1 and C2 were not
available in CEFR-J and were not used in our ex-
periment. As a result of the filtering, the number of
utterances in the datasets at the ≤A1, ≤A2, ≤B1,
and ≤B2 levels was 11,190, 15,538, 24,311, and
28,999 utterances, respectively.

ANTOR was trained and evaluated using MILU
and BERT trained on each of the four vocabulary
levels. Table 4 shows the results. ANTOR out-
performed all three comparison models at all vo-
cabulary levels, both with MILU and with BERT.
In particular, when using BERT at level ≤A1, the
original GPT-2’s accuracy and F1 were lower than
SC-LSTM and SC-GPT. However, ANTOR had an
accuracy and F1 that were significantly improved
over the GPT-2 scores by 17.7% and 16.2%, respec-
tively, and it outperformed the scores of SC-LSTM
and SC-GPT.

We checked whether the vocabulary in the utter-
ances generated by ANTOR actually changed due
to RL. Table 5 shows the percentage of the vocabu-
lary in the utterances that ANTOR had generated
during the evaluation when trained with each NLU
of each level. Note that stop words and proper
nouns were excluded from the calculation. We see
that both ANTOR w/ MILU and w/ BERT gener-
ated words at each level with a higher frequency
than the original GPT-2. From these results, it is
considered that the NLG was able to learn utter-
ance generation tailored to the NLU’s ability to
understand.

6 Case Study

To see how ANTOR improved the performance of
NLU, we analyzed the behavior of ANTOR. In this
analysis, we used BERT because we thought that a
difference from GPT-2 could be clearly seen since
the F1 was improved more by using BERT than
MILU as in Table 1. The case studies here are done

Ref. DA [Request-Taxi-Depart-?,
Request-Taxi-Leave-?]

GPT-2 I can help you with that. What time would 
you like to leave and where are you departing 
from?

BERT [Request-Train-Depart-?,
Request-Train-Leave-?]

ANTOR Where would you like to be picked up and at 
what time?

BERT [Request-Taxi-Depart-?, Request-Taxi-
Leave-?]

(a) Case 1

Ref. DA [Recommend-Restaurant-Name-charlie chan,
Recommend-Restaurant-Price-cheap,
Recommend-Restaurant-Postcode-cb21db]

GPT-2 charlie chan is a cheap restaurant and the 
postcode is cb21db.

BERT [Inform-Restaurant-Name-charlie chan,
Inform-Restaurant-Price-cheap,
Inform-Restaurant-Postcode-cb21db]

ANTOR I recommend charlie chan, it is in the cheap
price range and the postcode is cb21db.

BERT [Recommend-Restaurant-Name-Charlie chan,
Recommend-Restaurant-Price-cheap,
Recommend-Restaurant-Postcode-cb21db]

(b) Case 2

Table 7: Examples of utterances generated by GPT2
and ANTOR from DAs and DAs predicted by BERT
for each utterance. Letters in red indicate DAs misrec-
ognized by BERT. Letters in blue indicate words that
may have influenced BERT’s prediction.

in clean environments, but similar behaviors were
observed for noisy environments and different user
vocabulary levels.

First, we listed the intents and slots in the DAs
for which the NLU prediction accuracy was con-
siderably improved by the utterances of ANTOR
compared with those of GPT-2 (Table 6). Next, we
examined the utterances that each model generated
from the listed DAs. Table 7 shows examples of ut-
terances generated for (Request-Taxi, Depart) and
(Recommend-Restaurant, Price), which have a par-
ticularly high occurrence as in Table 6. In case 1,
BERT misidentified the train domain instead of the
taxi domain from the GPT-2 utterances. In contrast,
ANTOR correctly conveyed the DAs by explicitly
using the phrase “be picked up.” In case 2, the inten-
tion of “inform” was conveyed by GPT-2 instead of
“recommend.” However, ANTOR explicitly used
the word “recommend” to correctly convey the DA.
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These results suggest that fine-tuning NLG using
RL enables NLG to generate utterances adapted to
the NLU.

Note that since humans will not have the prob-
lems that the NLU had here because humans have
a better understanding, we expect ANTOR to adapt
differently when interacting with humans.

7 Summary and Future Work

This paper investigated whether NLG can gener-
ate utterances adapted to the dialogue environment
and the user via RL. We proposed a method, AN-
TOR, and conducted experiments using MultiWOZ
to confirm that ANTOR can generate such utter-
ances for multiple NLUs with different model ar-
chitectures. In addition, we also consistently con-
firmed the effectiveness of ANTOR for noisy envi-
ronments and a user’s vocabulary levels.

For future work, we plan to evaluate whether
ANTOR optimized for NLU is also effective for
humans. We are also interested in extending our
method for practical use (e.g., real-time adapta-
tion to users in an online dialogue environment).
Furthermore, we would like to utilize methods to
optimize an entire system with RL, such as (Mehri
et al., 2019) and (Ohashi and Higashinaka, 2022),
so that all modules of a system can be adapted to
users.
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Lina M. Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016. Multi-domain
Neural Network Language Generation for Spoken
Dialogue Systems. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 120–129.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
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Abstract

Knowledge-grounded dialogue generation con-
sists of two subtasks: knowledge selection and
response generation. The knowledge selector
generally constructs a query based on the dia-
logue context and selects the most appropriate
knowledge to help response generation. Re-
cent work finds that realizing who (the user
or the agent) holds the initiative and utilizing
the role-initiative information to instruct the
query construction can help select knowledge.
It depends on whether the knowledge connec-
tion between two adjacent rounds is smooth
to assign the role. However, whereby the user
takes the initiative only when there is a strong
semantic transition between two rounds, prob-
ably leading to initiative misjudgment. There-
fore, it is necessary to seek a more sensitive
reason beyond the initiative role to help re-
fine the history information used to construct
the query. To address the above problem, we
propose a Topic-shift Aware Knowledge sElec-
tor(TAKE). Specifically, we first annotate the
topic shift and topic inheritance labels in multi-
round dialogues via distant supervision. Then,
we alleviate the noise problem in pseudo labels
through curriculum learning and knowledge
distillation. Extensive experiments on WoW
show that TAKE performs better than strong
baselines.1

1 Introduction

Due to the dull response generation problem in the
general open-domain dialogue generation technol-
ogy, an increasing number of researchers focus on
knowledge-grounded dialogue generation (KGDG)
(Ghazvininejad et al., 2017; Li et al., 2019; Chen
et al., 2020a; Zhan et al., 2021a). By connecting
the external knowledge base with the generation
model as supplement information, the generated
response becomes more engaging and informative.

∗ Zheng Lin is the corresponding author.
1The code is available at https://github.com/

iie-ycx/COLING2022-TAKE.

Topic: French Bulldog
User (1) I love my French bulldog!

Agent

(2) Aww, I bet your dog is so cute.
The French Bulldog is a small breed
and also known as the Frenchie.
<French Bulldog’s nickname>

User (3) Yes, it is. What color is a bulldog
usually?

Agent
(4) They are a cross between bulldogs
and ratters. Most are white or black.
<French Bulldog’s color>

User (5) I see, do you own any pets?

Agent
(6) I have a pet snake. His name
is Slinky.
<snake>

User (7) Cool! Is it safe to have snake pets?

Agent

(8) Yes, if you have the right enclosure.
I have one that likes to eat prey much
larger than his head. I feed him rats.
<snake>

Table 1: An example of topic shift in WoW dataset. The
utterances (2) to (4) exhibit a sub-topic shift: from dog’s
nickname to dog’s color; the utterances (4) to (6) exhibit
an obvious topic shift: from dog to snake; the utterances
(6) to (8) exhibit a topic inheritance.

Knowledge selection plays a vital role in KGDG
task (Meng et al., 2021). Since one can choose
any reasonable knowledge to carry on the conversa-
tion, one-to-many relations exist between dialogue
context and knowledge (Kim et al., 2020). Thus,
selecting the most appropriate knowledge in the
vast knowledge pool becomes a significant chal-
lenge. And most of the existing methods pay close
attention to the design of the knowledge selector.

Some methods attempt to improve the accuracy
of knowledge selection by discovering more fea-
tures in the dialogue context (Meng et al., 2020;
Zheng et al., 2020) or introducing extra posterior
knowledge (Lian et al., 2019; Kim et al., 2020;
Chen et al., 2021). These methods often directly
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take the whole dialogue context as the input of the
knowledge selector, ignoring that different parts
of the context play different roles. Considering
this, Meng et al. (2021) propose to decouple the
knowledge selector according to the different part
of the input and only keep part of the history in-
formation by introducing mixed-initiative (user-
initiative and agent-initiative) characteristics. In
their method, the user takes the initiative when
the knowledge connection between two adjacent
rounds is unsmooth. Such a judgement only works
when there is a strong semantic transition between
two rounds. However, the conversational direction
can be changed by the user when the user shifts the
topic from one to another relevant one. For exam-
ple, the utterance flow (2)→ (3)→ (4) in Table 1
shows that the topic shifts from dog’s nickname to
dog’s color by the user, which means that the user
dominates the dialogue direction. Nevertheless, the
knowledge connection here is smooth because the
knowledge is still relevant to dogs, leading to an
agent-initiative judgement. The misjudgement will
make the model choose the improper part of (agent-
related) history information to select knowledge.

To address the above problem, we bring the topic
into multi-turn knowledge selection. Through our
observation, we find that the topic shift and topic
inheritance affect knowledge selection deeply. For
the topic shift, it is generally caused by the active
user’s frequent questioning and the model should
select knowledge according to the current user utter-
ance. For the topic inheritance, it is mainly caused
by relatively passive users who agree with what
the agent says, and the model needs to find some
relative topics to continue the conversation accord-
ing to previously selected knowledge. We obtain
the topic shift label via distant supervision (Mintz
et al., 2009), where we regard the retrieving entity
as the topic word. Considering that there may exist
noises in the pseudo labels, we further alleviate
their negative effects through curriculum learning
and knowledge distillation (see section 2.6 for de-
tails).

Our contributions in this paper are as follows:

• For the KGDG task, we find that the topic
shift triggers knowledge alteration, and pro-
pose a Topic-shift Aware Knowledge sElector
(TAKE) to better locate the relevant parts from
the dialogue history at an opportune moment.

• To overcome the noisy label problem intro-
duced by distant supervision, we optimize the

topic-shift aware knowledge selector through
curriculum learning and knowledge distilla-
tion, which can effectively alleviate the nega-
tive influence of pseudo topic labels.

• Experimental results on WoW dataset show
that compared with strong baselines, TAKE
not only selects knowledge more accurately
especially on the unseen test set, but also
generates more informative responses on both
automatic and human evaluation metrics.

2 Approach

2.1 Task Formulation
Suppose we have a t-rounds conversation C =
{(Xt, Yt)}, t = 1, 2, . . . , |C| , where Xt and
Yt are the utterances of the user and the agent
at turn t respectively. In each turn, before the
dialogue agent generates responses, the model
is externally connected with a knowledge pool
Kt = {Kt

1,K
t
2, . . . ,K

t
D}which containsD pieces

of knowledge. Given the current user utterance
Xt, the dialogue history {Xi, Yi}t−1i=1, the previous
golden knowledge {K ′i}t−1i=1 and the current knowl-
edge pool Kt, our goal is to select the most ap-
propriate knowledge K ′t from the pool and make
use of the selected knowledge Ks

t to generate the
response Yt = (yt1, y

t
2, . . . , y

t
|Yt|).

2.2 Overview of TAKE
As shown in Figure 1, our model TAKE contains
three components: Mixed Encoder, Topic-aware
Knowledge Selector and Decoder. In the following
subsections, we first introduce the three compo-
nents in section 2.3, 2.4 and 2.5. Next, we present
how to utilize curriculum learning and knowledge
distillation to alleviate the problem of noisy pseudo
labels obtained by distant supervision in section
2.6. Finally, we detail our training strategy and loss
functions.

2.3 Mixed Encoder
We take BERT as the backbone of Encoder. At turn
t, given the user utterance Xt and the knowledge
pool Kt = {Kt

1,K
t
2, . . . ,K

t
D}, we mix the user

utterance and the knowledge sentences following
(Zhao et al., 2020b). Specifically, we concatenate
Xt with [CLS] [SEP] token in BERT and the candi-
date knowledge Kt

i to acquire M t
i . In this way, we

can better use the multi-layer bidirectional attention
mechanism in BERT to allow the dialogue context
interact sufficiently with knowledge candidates.
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Figure 1: Architecture of the proposed model.

M t
i = [CLS]Xt[SEP]Kt

i (1)

We then take D concatenated context-knowledge
pairsMt = {M t

1,M
t
2, . . . ,M

t
D} as the input of the

Encoder. Tokens in Mt will be encoded as word
representations [HCLSti ;HXt

i ;HSEPti ;HKt
i ]. After

that, we obtain sentence representations via mean
pooling (Cer et al., 2018):

hX
t
i = pooling(HXt

i ),

hK
t
i = pooling(HKt

i )
(2)

In order to get a unified sentence representation
of the user utterance, we integrate the D represen-
tations through additive attention mechanism and
obtain hXt :

si = v⊤u tanh(Wuh
Xt
i )

αt = SM({si}Di=1),h
Xt =

D∑

i=1

αtih
Xt
i

(3)

where vu and Wu are trainable weights, and SM
means softmax function.

2.4 Topic-aware Knowledge Selector
The knowledge selector module we designed is
composed of three parts: Topic Shift Discrimina-
tor, Topic-shifted Knowledge Selector and Topic-
inherited Knowledge Selector. We name the latter
two networks as Sub-KS for simplicity.

The topic shift discriminator can judge whether
the topic shift or the topic inheritance will occur at
the current turn and then choose one selector in Sub-
KS. According to the previous analysis, in the case
of topic shift, it is more likely that the user mentions
a new topic. Hence the topic-shifted knowledge
selector makes full use of the current user utterance
to construct query vectors. Otherwise, the topic-
shifted knowledge selector inherits a topic from

the previous conversation and selects a knowledge
under the topic.

Due to BERT’s NSP pre-training scheme (Devlin
et al., 2018), the [CLS] token is endowed with the
ability to extract semantic information in sentences.
We use a feedforward layer to extract the semantic
associative information between the current user
utterance and the knowledge candidates as:

uti = Relu(FC(HCLSti)) (4)

where FC means fully connected layers.
Besides, we use the attention mechanism on

knowledge candidates similar to function (3) and
then extract the differential features between them
through a multilayer perceptron(MLP).

hKt = attention({hKt
i }Di=1),

ekt = Relu(FC(hKt))
(5)

Topic-shifted Knowledge Selector: Given the
current user utterance representation hXt , the can-
didate knowledge representations [hK

t
1 , . . . ,hK

t
D ],

and the representations mentioned above uti, e
k
t

,we construct query vector and key vector as:

Qsh = MLP([hXt ; ekt ])

Ksh
i = MLP([uti ; h

Kt
i ])

Ksh = [Ksh
1 ; . . . ;Ksh

D ]

(6)

Given Qsh and Ksh, the topic-shifted knowl-
edge selector predicts the distributions over the
knowledge pool Kt by additive attention:

P (Kt|S) = SM(v⊤0 tanh(W0Ksh + U0Qsh))
(7)

where v0,W0 and U0 are trainable parameters.
Topic-inherited Knowledge Selector: Follow-

ing (Meng et al., 2021), we apply a stack of trans-
former encoder blocks with positional embeddings
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to integrate the previously selected knowledge and

extract the inherited topic h
K′
t−1

trans:

[h
K′

1
trans; . . . ;h

K′
t−1

trans] =

TransformerEncoder([hK
′
1 ; . . . ;hK

′
t−1 ])

(8)

Then, given the representation of inherited topic

h
K′
t−1

trans, the candidate knowledge representations
[hK

t
1 , . . . ,hK

t
D ] and the representation of knowl-

edge difference ekt , we construct query vector and
key vector as:

Qinh = MLP([hKt−1

trans; e
k
t ])

Kinh
i = MLP(hK

t
i )

Kinh = [Kinh
1 ; . . . ;Kinh

D ]

(9)

Similarly, the topic-inherited knowledge selector
predicts the distributions P (Kt|inherit) by:

P (Kt|I) = SM(v⊤1 tanh(W1Kinh + U1Qinh))
(10)

Topic Shift Discriminator: There are two topic
shift discriminators at the training stage: teacher
topic shift discriminator and student topic shift dis-
criminator. The former is provided with the current
golden knowledge as posterior information, and it
generates soft labels of topic shift, which can guide
the student model to distinguish noises. In section
3.3 we will explain how it works in detail. The lat-
ter generates hard labels indicating which Sub-KS
works, and this corresponds to the 0/1 switch in
Figure 1.

Given the integration of the previously selected

knowledge h
K′
t−1

transand the current-turn user utter-
ance representation hXt , we first extract the topic
information in the current user utterance ext by a
multilayer perceptron(MLP). Then we construct
two discriminators based on whether they have ac-
cess to posterior information as follows:
Teacher module:

vT = [hK
′
t ; ext ;h

K′
t−1

trans; e
x
t − h

K′
t−1

trans; e
x
t ⊙ h

K′
t−1

trans]

PT (D = S) = Sigmoid(FC(vT ))
(11)

Student module:

vT = [ext ;h
K′
t−1

trans; e
x
t − h

K′
t−1

trans; e
x
t ⊙ h

K′
t−1

trans]

PS(D = S) = Sigmoid(FC(vS))
(12)

where⊙ denotes element-wise product, andD = S
means discrimination result is topic shift.

We train both of the two modules with Cross En-
tropy loss, ŷt represents the topic shift labels ob-
tained by distant supervision:

L(D) = − 1

|C|

|C|∑

t=1

ŷt log(P (D)) (13)

2.5 Decoder
We take GPT-2 as the backbone of Decoder. Sim-
ilar to (Zhao et al., 2020b; Zheng and Huang,
2021), we define new tokens in the dictionary of
GPT-2 Tokenizer: "<context>", "<response>" and
"<knowledge>". These tokens are treated as seg-
ment embeddings to mark different information
components.

At the training stage, the inputs of the de-
coder are the concatenation of the dialogue con-
text, the golden knowledge and the responses.
The training loss is the Cross Entropy on the re-
sponses. At the inference stage, given the se-
lected knowledge Kt

sel and the dialogue context
{(X1, Y1), . . . , (Xt−1, Yt−1), Xt} , the decoder
synthesizes the two parts to generate the current
response until <eos>.

Lg = −
1

|Yt|

|Yt|∑

i=1

log(P (yti |X≤t, Y<t,K ′t, yt<i))

(14)

2.6 Pseudo Label Learning
Our findings on topic shift in multi-round conver-
sation suggest that topic shift helps knowledge se-
lection. However, we still face a lack of labels.
Inspired by distant supervision, we regard the en-
tity words of retrieving knowledge candidates as
topic words and obtain topic shift labels D′. After
that, we alleviate the noise problem in pseudo la-
bels through curriculum learning and knowledge
distillation. In this subsection, we describe our
methods in detail.

Distant Supervision: During the construction
of the KGDG dataset, the candidate knowledge is
retrieved from Wikipedia by entity words through
search engines. The entity word can retrieve the
corresponding knowledge, which indicates that it
highly summarizes the content of the knowledge
sentence. However, the existing methods ignore
this useful information. According to (Brown and
Yule, 1983), the topic is the most frequently used
term. We make a hypothesis according to the idea
of distant supervision (Mintz et al., 2009): the en-
tity used to search candidate is the topic word of
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each knowledge sentence. Then, we mark topic
shift labels according to the topic words. If the
topic words of the current round appeared in the di-
alogue context, we mark the current round as topic
inheritance with label 0; if the entity words of the
current round have not appeared in the dialogue
context, we mark the current round as topic shift
with label 1. We will prove that the pseudo labels
acquired in this way are instructing in section 3.6.

Noisy Label Learning: The hypothesis men-
tioned above is relatively strong. Therefore, we
adopt curriculum learning (Bengio et al., 2009) and
knowledge distillation (Hinton et al., 2015) meth-
ods to alleviate the noises and further optimize the
model. Specifically, with the increase of training
steps, our model gradually chooses the Sub-KS
based on the output of the discriminator to reduce
the dependence on the topic shift label D′.

LCL = − 1

|C|

|C|∑

t=1

(pi log
(
P (Kt)P

(
D′
))

+(1− pi) log (P (Kt)P (DS)))
(15)

where pi decreases with the training steps.
Besides, we distill knowledge between the

teacher model and the student model through KL
divergence loss:

Ldistill = DKL(PT ||PS) (16)

We train TAKE’s knowledge selector in two
stages:

Stage I: LK1 = Lks + α(LT )

Stage II: LK2 = LCL + α (Ldistill + LS)
(17)

and the original KS loss is defined as:

Lks = −
1

|C|

|C|∑

t=1

ŷt log
(
P (Kt) | P

(
D′
))

(18)

3 Experiments

3.1 Experimental Setup
Dataset. There are dozens of datasets chosen
for evaluating the KGDG task before (Moghe
et al., 2018; Zhou et al., 2018; Dinan et al., 2018).
We take the most challenging one Wizard of
Wikipedia(WoW) for experiments. The WoW data
is obtained from a crowdsourcing data collection
website. In data collection, the user side plays the

role of the apprentice, and the agent side plays the
role of the wizard. The wizard has access to the
knowledge retrieved from Wikipedia as ground-
source to generate informative responses, while the
apprentice prefers speaking common utterances.
In the WoW dataset, there are nearly 67 pieces of
knowledge on average in a knowledge pool. The
WoW dataset consists of 22,311 dialogues with
201,999 turns divided into training set/validation
set/test set. The test set is further divided into test
seen set and test unseen set. The conversation
topics of the test seen set have appeared in the
training set, while the topics of the test unseen set
are brand-new. The latter contains out-of-domain
data which is more challenging.

Baseline Models. We compare our TAKE model
with several SOTA models, including:
MemNet: A model proposed by Dinan et al.
(2018), which is regarded as the most basic base-
line in the KGDG task.
SKLS: Kim et al. (2020) design the sequential la-
tent knowledge selection model according to the
idea of conditional variational auto-encoder.
DukeNet: Meng et al. (2020) design a knowledge
selection network that takes knowledge tracking
and knowledge transfer as a pair of dual tasks to
provide feedback to each other.
DiffKS: A model considered the difference of
knowledge between the two adjacent rounds of
dialogue, proposed by Zheng et al. (2020). We take
the decoupled version as one baseline.
KnowledGPT: Zhao et al. (2020b) design a joint
training strategy, which uses the combination of
RL and CL to improve the knowledge selection
module and generation module. It takes GPT-2 as
the decoder.
MIKe: Meng et al. (2021) introduce the concept
of mixed-initiative into knowledge-grounded dia-
logue generation and train the initiative discrimina-
tor with a self-supervised learning strategy.
CoLV: A model proposed by Zhan et al. (2021a),
the authors propose a collaborative latent variable
model to integrate the diversity of KS and DG si-
multaneously in separate yet collaborative latent
spaces.
MIKe + GPT2: We reinforce the MIKe model
with GPT-2 as a strong baseline, and the KS mod-
ule remains unchanged.

Evaluation Metrics. For automatic evalua-
tion, we evaluate KS with accuracy and eval-
uate response generation quality with sentence-
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Model
WoW Test Seen WoW Test Unseen

BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC
MemNet 17.2 1.61 24.1 17.0 15.5 23.9 13.7 0.6 21.7 15.6 13.1 14.0

SKLS 18.9 1.8 24.5 17.6 16.0 26.8 17.3 1.1 21.0 16.1 13.7 18.3
DukeNet 18.6 2.6 25.4 18.8 17.3 26.2 16.3 1.8 23.2 16.9 15.4 20.1
DiffKS 18.8 2.2 24.8 17.9 16.8 25.6 17.4 1.7 23.6 16.8 14.7 19.8
MIKe 19.1 2.8 25.9 19.2 18.3 28.2 17.6 2.1 24.2 17.8 16.0 21.5
CoLV - 2.9 20.6 - - 30.1 - 2.1 19.7 - - 18.9

KnowledGPT 19.5 - 24.7 - - 28.0 17.7 - 22.3 - - 25.4
MIKe + GPT2 20.4 3.3 26.7 20.2 19.4 28.2 18.8 2.5 25.1 18.6 17.4 21.5

TAKE 20.8 3.6 27.1 20.5 19.9 28.8 20.1 3.3 26.2 19.7 18.9 25.8

Table 2: Automatic Evaluation results on Wizard of Wikipedia.

WoW Test Seen WoW Test Unseen
Model

informativeness coherence fluency informativeness coherence fluency
Dukenet 1.63 1.96 1.69 1.57 1.89 1.61

MIKe 1.66 1.97 1.62 1.61 1.90 1.86
MIKe+GPT-2 1.84 2.09 2.05 1.70 2.15 2.27

TAKE 1.88 2.14 2.05 1.90 2.21 2.29

Table 3: Human Evaluation results on Wizard of Wikipedia. The improvement of TAKE to the best baseline
(MIKe+GPT-2) is statistically significant (t-test with p-value < 0.05).

level BLEU-1 (Papineni et al., 2002), BLEU-4,
ROUGE-1 (Lin, 2004), ROUGE-L and METEOR
(Denkowski and Lavie, 2014). These metrics have
been widely used in generation tasks before. For
human evaluation, We randomly sample 50 re-
sponses in test seen set and 50 responses in test
unseen set. By labeling manually, we find the
proportion of the topic shift turn is close to the topic
inheritance turn among these samples. Then we
invite five knowledgeable annotators to score these
samples in {0,1,2,3} considering the following
three aspects: context coherence, fluency and infor-
mativeness(which response contains more knowl-
edge and looks more informative). We compute
Fleiss’ kappa value (Fleiss, 1971) among different
annotators to measure their agreement.

Implementation Details. We use PyTorch
(Paszke et al., 2019) framework to implement our
model. For the implementation of pre-training mod-
els BERT(110M) and GPT-2(117M), we utilize
the open-source Hugging Face transformers (Wolf
et al., 2020). The whole model is optimized with
Adam (Kingma and Ba, 2014) algorithm and gradi-
ent clipping with a maximum gradient norm of 0.4.
We use the gradient accumulation method (accumu-
lation number is 16), and preprocess the knowledge
pool by limiting the number of candidate knowl-
edge to 32 and retaining the golden knowledge at
the training stage to save GPU memory. The batch
size is 2 for training KS and 4 for training DG. The
learning rates are 1e-5 for BERT; 6e-5 for the topic-

aware knowledge selector; 3e-5 for GPT-2. We
adopt the linear scheduler with a warm-up strategy
for the training of Bert and the knowledge selector.
It takes total ten epochs for training stages I and
II and five epochs for training the GPT-2 Decoder.
The weight α in multi-task learning is set to 0.5.
Our model is trained on one NVIDIA Geforce RTX
3090 GPU. For other settings, such as the hidden
size, dropout rate, sentence length and so on, we
keep consistent with MIKe.

3.2 Experimental Results

Table 2 demonstrates automatic evaluation results
on WoW. Our model outperforms the typical base-
line methods Memnet, SKLS, Dukenet and Diffks
remarkably. These methods treat the dialogue con-
text equally to construct query vectors, and the
cursory construction hurts knowledge selection,
thus leading to terrible generation results. In terms
of KS performance, although TAKE has no obvi-
ous advantage in the test seen set compared with
the strong baselines MIKe and Colv, it has a no-
table improvement in the test unseen set (+4.3%
MIKe,+6.9% CoLV). We think that the promotion
comes from a better location of history information
of our method to conduct attention mechanism. Be-
sides, TAKE has a significant improvement over
all generation metrics, which indicates that TAKE
can generate more informative and engaging re-
sponses. For fairness, we transplant the GPT-2
module in TAKE to MIKe to make a further com-
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Model
WoW Test Seen WoW Test Unseen

BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC
TAKE 20.84 3.58 27.14 20.45 19.88 28.75 20.12 3.25 26.16 19.74 18.85 25.78

-CL 20.65 3.41 27.08 20.24 19.69 28.22 19.95 3.17 26.05 19.62 18.76 25.11
-CL -distill 20.53 3.25 26.86 20.12 19.63 27.83 19.82 3.17 25.96 19.49 18.58 24.75
-label Soft 20.55 3.27 26.91 20.15 19.62 27.92 19.68 2.99 25.90 19.34 18.42 23.37
-label Hard 20.12 3.14 26.34 19.75 19.01 25.43 19.36 2.94 25.35 19.10 18.08 22.32

Table 4: Ablation study on the WoW dataset. -CL denotes removing the curriculum learning method. -distill denotes
removing the teacher model and knowledge distillation method. -label Soft denotes removing the pseudo topic shift
label for supervising and connecting the discriminator and Sub-KS with probability. -label hard denotes removing
the pseudo topic shift label for supervising, and the discriminator still chooses Sub-KS through the gumbel-softmax
trick.

parison. The results further emphasize that our
topic-aware knowledge selector has stronger ability
of KS than the mixed-initiative knowledge selector.

The human evaluation is shown in Table 3. The
kappa values are between 0.65 and 0.75, denot-
ing substantial agreement among the annotators
.Thanks to GPT-2 model, TAKE is superior to the
typical baselines on all metrics. As for the strong
baseline MIKe+GPT2, although it is comparable
with TAKE on fluency, our model exceeds it on
informativeness and context coherence a lot. We
think the reason is that TAKE selects knowledge
which is more coherent with the dialogue context.

3.3 Ablation Study
In order to clarify the source of performance im-
provement in TAKE, we conduct ablations by re-
moving particular modules from TAKE. The abla-
tion results are shown in Table 4, which denotes
all components are beneficial for TAKE. The two
methods of noise alleviation in section 2.6 can im-
prove the performance in the inference stage by
making the model adapt to noises introduced by
inaccurate discrimination in advance. Besides, be-
cause the topic transfer label is binary, the curricu-
lum learning method can neutralize the noises in
the pseudo labels. With the increase of the training
rounds, TAKE has more possibilities on discrimi-
nating noisy samples which avoids the overfitting
on wrong labels. The teacher model with posterior
information learns part of the noises in the pseudo
labels in advance and guides the student model to
correct these samples in the form of soft labels. For
the last two lines of the experiment, we find that the
model tends to deteriorate without instructing la-
bels. Only one of the two sub-KS is activated, and
the other is idle. The reason is that the topic shift
discriminator is not supervised by labels, hence
only one of the two sub-KS has been fully trained.
This set of experiments proves the importance of

the pseudo labels.

3.4 Case Study

To better evaluate the performance of response gen-
eration, we randomly select some examples from
the WoW dataset generated by DukeNet, MIKe,
KnowledGPT and TAKE to make comparisons. In
Table 5, the user asked when Instagram appeared
at the current turn. Dukenet and the knowledGPT
model do not capture this vital information to con-
struct queries, so they select the wrong knowledge.
MIKe mistakenly judges that the current round is
an agent initiative dialogue because the connec-
tion between the history and current responses is
smooth. Consequently, it selects knowledge about
Instagram usage based on the previously selected
knowledge. Only TAKE constructs the query vec-
tor based on the current user utterance and selects
the most appropriate external knowledge. We post
the remaining topic-inherited example in appendix
A.2.
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Figure 2: Recall experiment of TAKE on WoW dataset

3.5 Multi-Knowledge Integration
Performance

By conducting experiments on Recall of KS and
multi-sentence knowledge integration, we find that
the one-to-many relations between the dialogue
context and knowledge occur more frequently dur-
ing topic inheritance. Under the framework we
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Topic: Instagram
K0 no passages used.
K1 Users can apply various digital filters to their images and add locations through geotags.

K2
It was created by Kevin Systrom and Mike Krieger, and launched in October 2010 as a
free mobile app exclusively for the iOS operating system.

K3
They can add hashtags to their posts, linking the photos up to other content on Instagram
featuring the same subject or overall topic.
...

context
(1)Are you familiar with Instagram? (2) Oh yes, I love going on Instagram! (3) I think
it makes the images look much more professional. (4) Yeah, they have many neat features.
I wonder when it was started?

DukeNet (K0×) I’m not sure but I know that they are called " x ".
KnowledGPT (K0×) I’m not sure but I know that it was made in the world.
MIKe (K1×) I’m not sure, but I know that users can apply digital filters through geotags.
TAKE (K2✓) It was launched in October 2010 as a free mobile app exclusively for the iOS system.

Table 5: An example for case study. K2 is the golden knowledge. Only TAKE focuses on the current user utterance
to select the golden knowledge and integrates it in response.

WoW Test Seen WoW Test Unseen
Model

BLEU-1 RG-1 METEOR BLEU-1 RG-1 METEOR
MIKe+GPT2 20.44 26.74 19.42 18.77 25.06 17.40

MIKe+GPT2 R@2 20.28 26.65 19.27 18.76 24.92 17.47
TAKE 20.84 27.14 19.88 20.12 26.16 18.85

TAKE R@2 20.65 27.00 20.11 19.92 26.15 18.85
TAKE Inh R@2 20.89 27.24 20.14 20.21 26.26 18.94

Table 6: Top-2 knowledge integrated evaluation results
on WoW. R@2 denotes integrating two knowledge;
TAKE Inh R@2 denotes TAKE’s topic-inherited KS
integrates two knowledge.

proposed, the topic-inherited selector inherits top-
ics in previous rounds. Even though TAKE does
not select the golden knowledge, it chooses rational
knowledge with closing topics. The golden knowl-
edge probably ranks at the k-th positions (k>1).
As shown in Figure 2, with the increase of Re-
call, the curve of the topic-inherited selector rises
steeper, and the improvement of KS comes from
topic-inherited rounds.

Apart from that, we find our topic-aware frame-
work is very suitable for explicit multi-knowledge
integration. Studies have shown that increasing the
number of knowledge integrated into dialogue gen-
eration blindly hurts the generation performance
(Bruyn et al., 2020), which can be confirmed by
the first four lines in Table 6. This is because there
is roughly no relationship between the rank-1 and
rank-2 items of knowledge. However, the genera-
tion results improve if we recall top-2 knowledge
only for topic-inherited rounds. The phenomenon
explains that TAKE is robust, and it can utilize
multi-knowledge effectively.

3.6 Analysis of Pseudo Label and Noisy Label
Learning

To prove the effectiveness of our pseudo labels and
noisy label learning methods, we further conduct
experiments by replacing the output of the discrimi-
nator with random 0/1 labels or different proportion
of pseudo labels at the inference stage. Table 7 and
Figure 3 exhibit the results. If we use random topic-
shift label, the Sub-KS performs terribly with the
wrong part of history information. By compari-
son, the last line in Table 7 denotes that if TAKE
can learn to discriminate topic shift the same as
pseudo labels, the performance will improve much
better. Apart from that, the rising trends in Fig-
ure 3 apparently shows that the more proportion of
pseudo labels the model obtains, the better results
it performs. In our experiments, TAKE’s topic shift
discriminator can predict about 78 percent pseudo
labels after training. However, its knowledge selec-
tion accuracy is significantly higher than 78 percent
pseudo-labels-given experiment during inference
on both the seen and unseen test set. The phe-
nomenon demonstrates that the curriculum learning
and knowledge distillation methods alleviate the
noisy pseudo label problem, and then get fine per-
formance which can only be reached under a higher
proportion of pseudo labels.

4 Related Work

Knowledge-grounded dialogue generation In re-
cent years, the KGDG task has been a hot spot
of research, and many new datasets have emerged
(Zhou et al., 2018; Dinan et al., 2018; Eric et al.,
2021; Komeili et al., 2022). The existing work of
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Model
WoW Test Seen WoW Test Unseen

BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC
TAKE(78%) 20.84 3.58 27.14 20.45 19.88 28.75 20.12 3.25 26.16 19.74 18.85 25.78

Random 19.58 2.95 25.84 19.40 18.57 23.60 18.59 2.64 24.70 18.67 17.35 18.04
80% 20.59 3.37 26.94 20.17 19.7 27.99 19.96 3.19 26.0 19.61 18.78 25.13
90% 20.98 3.65 27.37 20.61 20.03 29.97 20.3 3.32 26.37 19.93 19.04 27.34

Ideal(100%) 21.22 3.79 27.70 20.86 20.40 32.63 20.44 3.45 26.66 20.13 19.31 28.63

Table 7: More experiments on Wizard of Wikipedia. Random denotes that TAKE decides Sub-KS randomly. Ideal
denotes that TAKE decides Sub-KS entirely depending on pseudo labels at the inference stage. 80% denotes that
TAKE decides Sub-KS depending on 80% accurate pseudo labels.
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Figure 3: Analysis of model with different pseudo label proportions on WOW. The red dots indicate experiment
results under normal settings.

KGDG has three improvement directions: improv-
ing the accuracy of knowledge selection; improving
the integration of external knowledge in generation
(Zheng et al., 2021; Cui et al., 2021; Zhao et al.,
2020b); improving the low-resource scenarios per-
formance (Zheng and Huang, 2021; Zhao et al.,
2020a; Liu et al., 2021). We mainly focus on the
first direction. Lian et al. (2019) first proposed to
utilize posterior knowledge to improve KS. Follow-
ing (Lian et al., 2019), Kim et al. (2020) propose a
sequential latent knowledge selection model; Chen
et al. (2020b) attempt to bridge the gap between
prior and posterior knowledge selection; Zhan et al.
(2021a) find that sampling latent variable also helps
response generation and proposed a collaborative
latent variable model. Other work discovers more
features in dialogue context to model KS (Zheng
et al., 2020; Meng et al., 2020).

Topic-shift related works There is no general
definition for "topic" (Purver et al., 2011). How-
ever, the definition given by Owen (1985) inspires
our work in this paper. Although there have been
various types of research about topic (Glavas and
Somasundaran, 2020; Si et al., 2021), there is little
work combining topic shift with multi-round dia-
logue. Xie et al. (2021) introduce a new topic-shift

aware dialog benchmark TIAGE and three tasks.
Sevegnani et al. (2021) propose a new dialogue
connection task when the topic shifts. Zhan et al.
(2021b) utilizes a BiLSTM-CRF network to predict
topic tags before knowledge selection.

5 Conclusion

In this paper, we propose a Topic-shift Aware
Knowledge sElector(TAKE) model, which better
locates the relevant parts from dialogue history to
improve the performance of knowledge selection.
Besides, we obtain topic shift labels inspired by the
idea of distant supervision and adopt curriculum
learning and knowledge distillation methods to alle-
viate the negative influence of noises. Experiments
on the WoW show that our model outperforms the
baselines, and the ablation study indicates that all
components of our methods work. In the future,
we will research on multi-sentence knowledge inte-
gration further and combine the labeling work with
knowledge graph.
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A Example Appendix

A.1 Demonstrations of Pseudo Label
Table 8 shows a case on how we obtain pseudo
labels.

A.2 More Cases
Example in Table 9 indicates that even though
MIKe could select the golden knowledge like
TAKE, TAKE has a better ability to integrate the
ground source. MIKe tends to repeat the golden
knowledge simply while TAKE generates more co-
herent and fluent responses.
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Topic: Canada

Agent
(1) I have many friends in Canada, located in the northern part of North America.
Knowledge: <Canada> Canada is a country located in the northern part of North America.
Pseudo label: 0

User (2) I don’t know anyone from Canada, what’s it like?

Agent

(3) It has 10 provinces.
Knowledge: <Canada> Its ten provinces and three territories extend from the Atlantic to
the Pacific and northward into the Arctic Ocean, covering , making it the world’s
second-largest country by total area.
Pseudo label: 1

User (4) In which provinces are some of your friends?

Agent

(5) My friend lives in a place called Guelph. Canada is sparsely populated,
most of its land is dominated by forest.
Knowledge: <Canada> Canada is sparsely populated, the majority of its land territory being
dominated by forest and tundra and the Rocky Mountains.
Pseudo label: 1

User (6) In Guelph, is it too cold?

Agent

(7)It can be very cold there, especially in Wellington County.
Knowledge: <Guelph> The area – much of what became Wellington County – had been
part of the Halton Block, a Crown Reserve for the Six Nations Iroquois.
Pseudo label: 0

User (8) What are some interesting places in Wellington County?

Agent

(9) Not many interesting places, the population there is only 90k.
Knowledge: <Wellington County, Ontario> According to the 2016 Census,
the population of the County was 90,932.
Pseudo label: 0

Table 8: An example of labelling on the WoW dataset.

Topic: Horse training
K0 no passages used.

K1
There is tremendous controversy over various methods of horse training and even some of
the words used to describe these methods.

K2 Historically, horses were trained for warfare, farm work, sport and transport.

K3
Horses are trained to be manageable by humans for everyday care as well as for equestrian
activities from horse racing to therapeutic horseback riding for people with disabilities.

K4
Horse training refers to a variety of practices that teach horses to perform certain behaviors
when asked to do so by humans.
...

context

(1)It amazes me that some can take a wild horse and train it to be so obedient. Do you know
anything about horse training? (2)Yes! I’m a horse trainer! I use a variety of practices that
teach horses to perform behaviors when asked. I love my job. Horses are such smart animals!
(3) Please tell me more about what you do. I love horses and would love to know more.

DukeNet (K2×) Well horses were trained for warfare, farm work, sport and transport.
KnowledGPT (K2×) Well, I love horses, they were trained for warfare, farm work and transport.

MIKe (K3✓) Well, horses are trained to be manageable by humans for everyday care as well as
therapeutic horseback riding.

TAKE (K3✓) I love to train themto be manageable by humans for everyday care. I also love to
ride them for therapeutic horseback riding.

Table 9: An example for case study. The utterances (2) to (4) exhibit a topic inheritance.
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Abstract

Continual learning is one of the key compo-
nents of human learning and a necessary re-
quirement of artificial intelligence. As dialogue
can potentially span infinitely many topics and
tasks, a task-oriented dialogue system must
have the capability to continually learn, dynam-
ically adapting to new challenges while preserv-
ing the knowledge it already acquired. Despite
the importance, continual reinforcement learn-
ing of the dialogue policy has remained largely
unaddressed. The lack of a framework with
training protocols, baseline models and suit-
able metrics, has so far hindered research in
this direction. In this work we fill precisely
this gap, enabling research in dialogue policy
optimisation to go from static to dynamic learn-
ing. We provide a continual learning algorithm,
baseline architectures and metrics for assessing
continual learning models. Moreover, we pro-
pose the dynamic dialogue policy transformer
(DDPT), a novel dynamic architecture that can
integrate new knowledge seamlessly, is capable
of handling large state spaces and obtains sig-
nificant zero-shot performance when being ex-
posed to unseen domains, without any growth
in network parameter size. We validate the
strengths of DDPT in simulation with two user
simulators as well as with humans.

1 Introduction

Task-oriented dialogue systems are characterised
by an underlying task or a goal that needs to be
achieved during the conversation, such as manag-
ing a schedule or finding and booking a restau-
rant. Modular dialogue systems have a tracking
component that maintains information about the
dialogue in a belief state, and a planning compo-
nent that models the underlying policy, i.e., the
selection of actions (Levin and Pieraccini, 1997;
Roy et al., 2000; Williams and Young, 2007; Zhang
et al., 2020b). The spectrum of what a task-oriented
dialogue system can understand and talk about is

defined by an ontology. The ontology defines do-
mains such as restaurants or hotels, slots within a
domain such as the area or price, and values that
a slot can take, such as the area being west and
the price being expensive. As dialogue systems
become more popular and powerful, they should
not be restricted by a static ontology. Instead, they
should be dynamic and grow as the ontology grows,
allowing them to comprehend new information and
talk about new topics – just like humans do.

In the literature, this is referred to as continual
learning (Biesialska et al., 2020; Khetarpal et al.,
2020a; Hadsell et al., 2020). A learner is typi-
cally exposed to a sequence of tasks that have to be
learned in a sequential order. When faced with a
new task, the learner should leverage its past knowl-
edge (forward transfer) and be flexible enough to
rapidly learn how to solve the new task (maintain
plasticity). On the other hand, we must ensure
that the learner does not forget how to solve pre-
vious tasks while learning the new one (prevent
catastrophic forgetting). Rather, a learner should
actually improve its behaviour on previous tasks
after learning a new task, if possible (backward
transfer).

Despite progress in continual learning (Lange
et al., 2019; Parisi et al., 2019; Biesialska et al.,
2020; Khetarpal et al., 2020a; Hadsell et al., 2020),
there is – to the best of our knowledge – no work
that addresses continual reinforcement learning
(continual RL) of the dialogue policy, even though
the policy constitutes a key component of dialogue
systems. Research in this direction is hindered
by the lack of a framework that provides suitable
models, evaluation metrics and training protocols.

In modular task-oriented dialogue systems the
input to the dialogue policy can be modelled in
many different ways (Lipton et al., 2018; Weisz
et al., 2018; Takanobu et al., 2019; Wang et al.,
2015; Casanueva et al., 2018; Xu et al., 2020). An
appropriate choice of state representation is key
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to the success of any form of RL (Madureira and
Schlangen, 2020). In continual RL for the dialogue
policy, this choice is even more essential. Differ-
ent dialogue domains typically share structure and
behaviour that should be reflected in the state and
action representations. The architecture needs to
exploit such common structure, to the benefit of any
algorithm applied to the model. In this work, we
therefore centre our attention on this architecture.
We contribute 1

• the first framework for continual RL to op-
timise the dialogue policy of a task-oriented
dialogue system, two baseline architectures,
an implementation of the state-of-the-art con-
tinual RL algorithm (Rolnick et al., 2018)
and continual learning metrics for evaluation
based on Powers et al. (2021), and

• a further, more sophisticated, new continual
learning architecture based on the transformer
encoder-decoder (Vaswani et al., 2017) and
description embeddings, which we call dy-
namic dialogue policy transformer (DDPT).
Our architecture can seamlessly integrate new
information, has significant zero-shot perfor-
mance and can cope with large state spaces
that naturally arise from a growing number of
domains while maintaining a fixed number of
network parameters.

2 Related Work

2.1 Continual Learning in Task-oriented
Dialogue Systems

Despite progress in continual learning, task-
oriented dialogue systems have been barely
touched by the topic. Lee (2017) proposed a task-
independent neural architecture with an action se-
lector. The action selector is a ranking model that
calculates similarity between state and candidate
actions. Other works concentrated on dialogue
state tracking (Wu et al., 2019) or natural language
generation (Mi et al., 2020; Geng et al., 2021).
Geng et al. (2021) proposed a network pruning and
expanding strategy for natural language generation.
Madotto et al. (2021) introduced an architecture
called AdapterCL and trained it in a supervised
fashion for intent prediction, state tracking, genera-
tion and end-to-end learning. However, that work
focused on preventing catastrophic forgetting and

1https://doi.org/10.5281/zenodo.
7075192

did not address the dialogue policy. As opposed
to the above-mentioned approaches, we consider
continual RL to optimise a dialogue policy.

2.2 Dialogue Policy State Representation

In the absence of works that directly address con-
tinual learning for the dialogue policy, it is worth
looking at approaches that allow dialogue policy
adaptation to new domains and examining them in
the context of continual learning requirements.

The first group among these methods introduces
new parameters to the model when the domain of
operation changes. The approaches directly vec-
torise the belief state, hence the size of the input
vector depends on the domain (as different domains
for instance have different numbers of slots) (Su
et al., 2016; Lipton et al., 2018; Weisz et al., 2018;
Takanobu et al., 2019; Zhu et al., 2020). In the con-
text of continual learning such approaches would
likely preserve the plasticity of the underlying RL
algorithm but would score poorly on forward and
backward transfer.

Another group of methods utilises a hand-coded
domain-independent feature set that allows the pol-
icy to be transferred to different domains (Wang
et al., 2015; Casanueva et al., 2018; Chen et al.,
2018; Chen et al., 2020; Lin et al., 2021). This is
certainly more promising for continual learning, es-
pecially if the requirement is to keep the number of
parameters bounded. However, while such models
might score well on forward and backward transfer,
it is possible that the plasticity of the underlying RL
algorithm is degraded. Moreover, developing such
features requires manual work and it is unclear if
they would be adequate for any domain.

Xu et al. (2020) go a step further in that direc-
tion. They propose the usage of embeddings for
domains, intents, slots and values in order to allow
cross-domain transfer. To deal with the problem
of a growing state space with an increased num-
ber of domains, they propose a simple averaging
mechanism. However, as the number of domains
becomes larger, averaging will likely result in in-
formation loss. Moreover, their architecture still
largely depends on predefined feature categories.

A third option is to exploit similarities between
different domains while learning about a new do-
main. Gašić et al. (2015) use a committee of Gaus-
sian processes together with designed kernel func-
tions in order to define these similarities and there-
fore allow domain extension and training on new
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Figure 1: The amount of information that the dialogue
agent must comprehend and the possible actions it can
take increases as new domains/tasks are introduced.

domains. A similarity-based approach could in
principle score well on all three continual learn-
ing measures. However, it is desirable to minimise
the amount of manual work needed to facilitate
continual learning.

2.3 Dialogue Policy Action Prediction
In the realm of domain adaptation, works assume a
fixed number of actions that are slot-independent,
and focus on the inclusion of slot-dependent ac-
tions when the domain changes (Wang et al., 2015;
Casanueva et al., 2018; Chen et al., 2018; Chen
et al., 2020; Lin et al., 2021). This allows seam-
less addition of new slots, but the integration of
new intents or slot-independent actions requires an
expansion of the model.

Works that allow new actions to be added to
the action set compare the encoded state and ac-
tion embeddings with each other (Lee, 2017; Xu
et al., 2020; Vlasov et al., 2019), suggesting that
exploiting similarities is key not only for state rep-
resentations but also for action prediction.

With multi-domain dialogues it becomes neces-
sary to be able to produce more than one action
in a turn, which is why researchers started to use
recurrent neural network (RNN) models to produce
a sequence of actions in a single turn (Shu et al.,
2019; Zhang et al., 2020a). RNNs are known how-
ever to only provide a limited context dependency.

3 Background

3.1 Continual Reinforcement Learning
In typical RL scenarios, an agent interacts with a
stationary MDP M = ⟨S,A, p, p0, r⟩, where S
and A constitute the state and action space of the
agent, p(s′|s, a) models the probability of transi-
tioning to state s′ after executing action a in state
s, and p0(s) is the probability of starting in state s.

The reward function r defines the observed reward
in every time-step. The goal is to maximise the
cumulative sum of rewards in that MDP.

In contrast, continual reinforcement learning
focuses on non-stationary or changing environ-
ments (Hadsell et al., 2020). Generally speaking,
the agent faces a sequence of Markov decision
processes {Mz}∞z=1 (Lecarpentier and Rachelson,
2019; Chandak et al., 2020; Khetarpal et al., 2020b)
with possibly different transition dynamics, reward
functions or even state or action spaces. The vari-
able z is often referred to as a task (or context) (Cac-
cia et al., 2020; Normandin et al., 2021). While
the MDP can change from episode to episode, it is
often assumed that the agent is exposed to a fixed
MDP for a number of episodes and then switches
to the next MDP. Once a new task (or MDP) is ob-
served, the old task is either never observed again
or only periodically (Rolnick et al., 2018; Powers
et al., 2021). The goal is to retain performance
on all seen tasks. This requires the model to pre-
vent catastrophic forgetting of old tasks while at
the same time adapting to new tasks.

A state-of-the art method for continual RL that
uses a replay memory is CLEAR (Rolnick et al.,
2018). CLEAR manages the trade-off between
preventing catastrophic forgetting and fast adapta-
tion through an on-policy update step as well as an
off-policy update step. The on-policy step is sup-
posed to adapt the policy to the recent task by using
the most recent dialogues while the off-policy step
should lead to retaining performance on old tasks
by updating on old experiences from the replay
buffer. The off-policy update is further regularized
such that policy and critic outputs are close to the
historical prediction. More information on CLEAR
is provided in the Appendix A.1.

In the context of dialogue, a task usually refers
to a domain as defined in Madotto et al. (2021) and
we will use these two terms interchangeably. As an
example setting, a dialogue system is tasked with
fulfilling user goals concerning hotel information
and booking and after some amount of time with
fulfilling goals related to train bookings. In terms
of MDPs, the dialogue system first faces the MDP
Mz1 , z1 = hotel, for some amount of dialogues
and afterwards Mz2 , z2 = train. Once the train
domain is introduced, the state and action space
grows (as a result of the growing ontology) as de-
picted exemplarily in Figure 1. As a consequence,
the model needs to understand new topics such as
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Figure 2: State representation for different architectures. (a) Bin uses a flattened dialogue state with binary features,
where the input size grows and new network weights need to be added when facing a new domain. (b) Sem uses
the idea from Xu et al. (2020), using trainable embeddings for domain, intent, slot and value. The information
corresponding to a specific feature category is then averaged over domains in order to be independent on the number
of domains. (c) Our proposed DDPT model uses descriptions for every information which are embedded using a
pretrained language model. The embedded description together with a value for the information is then fed into a
linear layer and a transformer encoder.

the destination of the train and select new actions
such as booking a train. In addition, the probability
distributions p and p0 of Mz2 are different com-
pared to Mz1 since the probability that the user
talks about hotels should be close to 0 while the
probability that the agent’s states contain informa-
tion related to trains is close to 1.0.

3.2 Dialogue Policy in Modular Systems

In modular task-oriented dialogue systems, the de-
cision of a dialogue policy is commonly based on
the hidden information state of the dialogue system.
This hidden information state, according to Young
et al. (2007), should consist of the following infor-
mation: the predicted user action, the predicted user
goal and a representation of the dialogue history.
For reactive behaviour by the policy, the user action
is important as it includes information related to
requests made by the user. The predicted user goal
summarises the current goal of the user, including
specified constraints. Lastly, the dialogue history
representation captures the relevant information
mentioned in the dialogue history, such as the lat-
est system action. The state can also include the
likelihood of the predicted acts, goal and dialogue
history in the form of confidence scores. More-
over, the state often contains information about the
database, for instance the number of entities that
are available given the current predicted user goal.

Each domain that the system can talk about is
either active, meaning that it has already been men-

tioned by the user, or inactive. The active domains
can be derived from the user acts, from the user
goal or tracked directly (van Niekerk et al., 2021).

Finally, the policy is supposed to take actions.
As in (Shu et al., 2019; Zhang et al., 2020a), each
action can be represented as a sequence of tuples
(domain, intent , slot). For instance, an action
could be that the system requests the desired arrival
time of a train or asks for executing a payment.

4 Dynamic Dialogue Policy Transformer

Our goal is to build a model that can talk about a
potentially very large number of domains and is
able to deal with new domains and domain exten-
sions seamlessly without requiring any architec-
tural changes. In particular, the number of model
parameters should remain fixed. This is challeng-
ing since new domains require understanding of
previously unseen information and the ability to
talk about new topics.

Our approach is inspired by the way an employee
would explain and act upon a novel task: 1) de-
scribe the information that can be used and the
actions that can be taken in natural language, 2)
restrict the focus to the information that is impor-
tant for solving the task at hand, 3) when an action
needs to be taken, this action is based on the in-
formation that was attended to (e.g. for the action
to request the area, one would put attention on the
information whether the area is already given). We
propose an architecture that uses the transformer
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encoder with information embeddings (Section 4.1
and Figure 2(c)) to fulfill 1) and 2) and the trans-
former decoder that leverages the domain gate (Sec-
tion 4.2, 4.3 and Figure 3) to fulfill 3), which we
call dynamic dialogue policy transformer (DDPT).

4.1 State Representation

Recall from Section 3.2 that the agent is provided
with information on various concepts f for domain
df : the user goal (domain-slot pairs), the user ac-
tion (intents) and the dialogue history (system in-
tents and database results). We assume that the
agent has access to an external dictionary provid-
ing a natural language description descrf of each
of these, e.g. “area of the hotel” or “number of ho-
tel database results”, which is common in dialogue
state tracking (Rastogi et al., 2020; van Niekerk
et al., 2021; Lee et al., 2021). See Appendix A.5
for the full list of descriptions. During a dialogue,
the dialogue state or belief tracker assigns numeri-
cal values vf , e.g. confidence scores for user goals
or the number of data base results, etc. For every
concept f we define the information embedding

einfof = Lin
([
LM(descrf ),Lin(vf )

])
∈ Rh

where LM denotes applying a language model such
as RoBERTa (Liu et al., 2019) and averaging of the
token embeddings, and Lin denotes a linear layer.
einfof represents information in a high-dimensional
vector space. Intuitively, every information can be
thought of as a node in a graph. The list of infor-
mation embeddings are the input to a transformer
encoder (Vaswani et al., 2017). The attention mech-
anism allows the agent to decide for every informa-
tion embedding einfof on which other embeddings
einfog it can put its attention. With a growing num-
ber of domains that the system can talk about, the
number of information embeddings will increase,
making it more difficult to handle the growing state
space. However, we observe that only information
that is related to active domains is important at the
current point in time. Therefore, we prohibit the
information embeddings from attending to infor-
mation that is related to inactive domains in order
to avoid the issue of growing state spaces. While
the actual state space may be extremely large due
to hundreds of domains, the effective state space
remains small, making it possible to handle a very
large number of domains. Our proposed state en-
coder is depicted in Figure 2(c).

In this way, the state representation meets the
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Figure 3: Proposed action prediction in DDPT using a
transformer decoder. In every decoding step, a token
embedding for domain, intent or slot informs the model
what needs to be predicted and the previous output is
fed into the decoder. In case of domain prediction, we
propose a domain gate that decides whether to choose a
domain that the user currently talks about.

following demands: 1) new concepts can be un-
derstood and incorporated seamlessly into the state
without a growth in network parameters, as long
as they are descriptive; 2) the description embed-
dings from a language model allow forward trans-
fer by exploiting similarities and common structure
among tasks; 3) the value vf allows numerical in-
formation such as confidence scores or other mea-
sures of model uncertainty to be included; 4) the
state space will not be unreasonably large as infor-
mation for inactive domains is masked.

4.2 Action Prediction
Similar to existing work (Shu et al., 2019; Zhang
et al., 2020a) we separately predict domains, in-
tents and slots for action prediction. We define a
domain set D, intent set I and slot set S as follows.
The domain setD consists of all domains the model
has seen so far plus an additional stop domain. The
intent set I and slot set S consist of all intents and
slots we can use for actions, respectively. Every
domain, intent and slot has an embedding vector,
which we obtain by feeding the token of the do-
main, intent or slot into our pretrained language
model. The embedding vectors are then fed into a
linear layer that produces vectors of size Rh. We
thus obtain domain, intent and slot embeddings
bd ∀d ∈ D, bi ∀i ∈ I, and bs ∀s ∈ S.

The policy first chooses a domain. Then,
based on the domain, it picks an intent from
the list of intents that are possible for that do-
main. Lastly, it picks an adequate slot from
the set of possible slots for that domain and in-
tent. This process repeats until the policy selects
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the stop domain. This will lead to a sequence
(domainm, intentm, slotm)

n
m=0. We leverage a

transformer decoder (Vaswani et al., 2017), the
aforementioned embeddings for domains, intents
and slots and similarity matching to produce the
sequence. In every decoding step t the input to the
transformer is bt−1 + lt, where bt−1 is the embed-
ding of the previous prediction and lt is a token
embedding for token domain, intent or slot that
indicates what needs to be predicted in turn t. b−1
is an embedding of a start token.

If we need to predict a domain in step t, we
calculate the scalar product between the decoder
output vector ot and the different domain embed-
dings bd and apply the softmax function to obtain
a probability distribution softmax[ot ⊙ bd, d ∈ D]
over domains from which we can sample. Intent
and slot prediction is analogous. In order to guar-
antee exploration during training and variability
during evaluation, we sample from the distribu-
tions. While it is important to explore domains
during training, during evaluation the domain to
choose should be clear. We hence take the domain
with the highest probability during evaluation.

As in the state representation, the embeddings
using a pretrained language model allow under-
standing of new concepts (such as a new intent) im-
mediately, which facilitates zero-shot performance.
We do not fine-tune any embedding that is produced
by the language model.

4.3 Domain Gate

If the policy is exposed to a new unseen domain,
the most important point to obtain any zero-shot
performance is that the policy predicts the correct
domain to talk about. If we only use similarity
matching of domain embeddings, the policy will
likely predict domains it already knows. In dia-
logue state tracking we often observe that simi-
larity matching approaches predict values they al-
ready know when faced with new unseen values,
which leads to poor zero-shot generalisation (Ras-
togi et al., 2018). To circumvent that, we propose
the domain gate. Let Dcurr be the set of domains
that the user talks about in the current turn. In
every decoding step t where a domain needs to
be predicted, the domain gate obtains ot as input
and predicts the probability pcurr of using a do-
main from Dcurr. When the policy needs to pre-
dict a domain in step t, it now uses the probability
distribution given by pcurr · softmax[ot ⊙ bd, d ∈

Dcurr] + (1− pcurr) · softmax[ot ⊙ bd, d ̸∈ Dcurr].
In this process, the policy does not have to pre-

dict the new domain immediately but can abstractly
first decide whether it wants to use a domain that
the user talks about at the moment. The decoding
process is depicted in Figure 3.

5 Experimental Setup

5.1 Metrics
We follow the setup recently proposed by Pow-
ers et al. (2021), which assumes that our N
tasks/domains z1, ..., zN are represented sequen-
tially and each task zi is assigned a budget kzi . We
can cycle through the tasks M times, leading to a
sequence of tasks x1, ..., xN ·M . The cycling over
tasks defines a more realistic setting than only see-
ing a task once in the agent’s lifetime, in particular
in dialogue systems where new domains are intro-
duced but rarely removed.
Continual evaluation: We evaluate performance
on all tasks periodically during training. We show
the performance for every domain separately to
have an in-depth evaluation and the average perfor-
mance over domains for an overall trend whether
the approaches continually improve.
Forgetting: We follow the definition proposed by
Chaudhry et al. (2018) and Powers et al. (2021).
Let mi,k be a metric achieved on task zi after train-
ing on task xk, such as the average return or the
average dialogue success. For seeds s, tasks zi and
xj , where i < j, we define

Fi,j =
1

s

∑

s

max
k∈[0,j−1]

{mi,k −mi,j}. (1)

Fi,j compares the maximum performance achieved
on task zi before training on task xj to the perfor-
mance for zi after training on task xj . If Fi,j is
positive, the agent has become worse at past task
zi after training on task xj , indicating forgetting.
When Fi,j is negative, the agent has become better
at task zi, indicating backward transfer. We define
Fi as the average over the Fi,j and F as the aver-
age over Fi.
(Zero-Shot) Forward transfer: For seeds s, tasks
zi and zj , where j < i, we define

Zi,j =
1

s

∑

s

mi,j . (2)

We do not substract initial performance as in Pow-
ers et al. (2021) as we are interested in the absolute
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performance telling us how well we do on task zi
after training on a task zj . We define Zi as the
average over the Zi,j and Z as the average over Zi.

5.2 Baselines

We implemented two baselines in order to com-
pare against our proposed DDPT architecture. We
do not include a baseline based on expert-defined
domain-independent features (Wang et al., 2015) as
this requires a significant amount of hand-coding
and suffers from scalabilility issues.

5.2.1 Baseline State Representations
We will abbreviate the following baselines with
Bin and Sem that indicate their characteristic way
of state representation.

Bin: The first baseline uses a flattened dialogue
state for the state representation with binary values
for every information which is the most common
way (Takanobu et al., 2019; Zhu et al., 2020; Weisz
et al., 2018). If a new domain d appears, the in-
put vector must be enlarged in order to incorporate
the information from d and new network param-
eters need to be initialised. The state encoding
can be seen in Figure 2(a). This baseline serves
as a representative of methods where new domains
necessitate additional parameters.

Sem: The second baseline implements the idea
from Xu et al. (2020), which uses trainable embed-
dings for domains, intents, slots and values that can
capture semantic meaning and allow cross-domain
transfer. Using trainable embeddings, one repre-
sentation is calculated for every feature in every
feature category (such as user-act, user goal, etc.)
in every domain. The feature representations in a
category are then averaged over domains to obtain
a final representation. More information can be
found in Appendix A.4. This baseline serves as a
representative of methods where feature represen-
tations remain fixed.

5.2.2 Action Prediction for Baselines
Unlike DDPT, which uses a transformer for ac-
tion prediction, the baselines Bin and Sem use an
RNN model for action prediction (Shu et al., 2019;
Zhang et al., 2020a). This model uses the decoding
process explained in Section 4.2 with the exception
that the baselines use trainable embeddings for do-
main, intent and slot (randomly initialised) instead
of using embeddings from a pretrained language
model as DDPT does. Moreover, they do not use
the proposed domain gate.

5.3 Setup
We use ConvLab-2 (Zhu et al., 2020) as the back-
bone of our implementation. We take five different
tasks from the MultiWOZ dataset (Budzianowski
et al., 2018) which are hotel, restaurant, train, taxi
and attraction. Hotel, restaurant and train are more
difficult compared to attraction and taxi as they
require the agent to do bookings in addition to
providing information about requested slots. We
exclude police and hospital from the task list as
they are trivial. We use the rule-based dialogue
state tracker and the rule-based user simulator pro-
vided in ConvLab-2 (Zhu et al., 2020) to conduct
our experiments. Typically, the reward provided
is −1 in every turn to encourage efficiency, and a
reward of 80 or−40 for dialogue success or failure.
A dialogue is successful if the system provided the
requested information to the user and booked the
correct entities (if possible). We stick to the above
reward formulation with one exception: Instead of
the turn level reward of−1, we propose to use infor-
mation overload (Roetzel, 2019). The reason is that
dialogue policies tend to over-generate actions, es-
pecially if they are trained from scratch. While the
user simulator ignores the unnecessary actions, real
humans do not. We define information overload
for an action (domainm, intentm, slotm)

n
m=1 as

rio = −ρ · n, where ρ ∈ N defines the degree of
the penalty. Information overload generalizes the
reward of −1 in single action scenarios. We use
ρ = 3 in the experiments.

We train each of the three architectures using
CLEAR (Rolnick et al., 2018). We set the replay
buffer capacity to 5000 dialogues and use reservoir
sampling (Isele and Cosgun, 2018) when the buffer
is full. We assign a budget of 2000 dialogues to
restaurant, hotel and train and 1000 to attraction
and taxi and cycle through these tasks two times,
resulting in 16000 training dialogues in total. Since
task ordering is still an open area of research (Jiang
et al., 2020), we test three different permutations
so that our results do not depend on a specific or-
der. The domain orders we use are 1) easy-to-hard:
attraction, taxi, train, restaurant, hotel 2) hard-to-
easy: hotel, restaurant, train, taxi, attraction and 3)
mixed: restaurant, attraction, hotel, taxi, train.

6 Results

6.1 Continual Evaluation
We show performance in terms of average return
for all three task orders in Figure 4(a)-(c). The plots
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Figure 4: Training Bin, Sem and DDPT (ours) using CLEAR on three different domain orders, each with 5 different
seeds, by interacting with the rule-based user simulator. Each model is evaluated every 500 training dialogues on
100 dialogues per domain. The plots show the average return, where performance is averaged over domains. The
vertical line at 8000 dialogues indicates the start of cycle 2. The shaded area represents standard deviation. Gold
serves as an upper bound.

show the performance averaged over domains. We
refer to Appendix A.8 for in-depth evaluations for
each individual domain. The horizontal line Gold
denotes an upper limit for the models that was ob-
tained by training a Bin model separately on each
domain until convergence. We can observe that
DDPT outperforms the baselines regardless of task
order, almost reaching the upper bound. We will
see in Section 6.2 that the baselines suffer more
from forgetting compared to DDPT, such that train-
ing on a new domain reduces performance on pre-
vious domains. We suspect that this contributes to
the lower final performance of the baselines. More-
over, we can observe that the final performance
of DDPT barely depends on a specific task order.
Nevertheless, we can see that training starts off
faster in easy-to-hard order, which shows that be-
haviour learned for attraction transfers well to other
domains. Lastly, the second training cycle is nec-
essary for increasing performance of the models.
We note that even though it looks like the baselines
don’t learn at all in the first round, they do learn
but tend to forget previous knowledge. This can be
observed in detail in Appendix A.8.

6.2 Forward Transfer and Forgetting

We calculated forward and forgetting metrics as
explained in Section 5.1. Table 1 shows success
rates instead of average return because success is
easier to interpret. We can see for every model
the summary statistics F and Z measuring average
forgetting and forward transfer, respectively. To
obtain lower bounds we added forward and forget-
ting of a random model that is initialised randomly
again every time it observes a domain.

Table 1 reveals that DDPT outperforms the base-
lines significantly in terms of absolute numbers
and also relative numbers compared to the random
performance. As expected, Bin shows almost no
zero-shot performance improvement compared to
the random model, whereas Sem obtains slight im-
provement. DDPT shows large forward transfer
capabilities and strong robustness against forget-
ting. We attribute this to the frozen description and
action embeddings stemming from the language
model and the domain gate. The language model
allows us to interpret new information and actions
immediately, enabling the model to draw connec-
tions between learned tasks and new ones. At the
same time, frozen embeddings are robust to forget-
ting. The domain gate allows the model to choose
the domain more abstractly without initial explo-
ration due to the decision between current or non-
current domains, which facilitates zero-shot per-
formance. Moreover, the baselines need to make a
hard decision between domains (balancing between
choosing a domain we learn about at the moment
and old domains), whereas the domain decision for
DDPT is abstracted through the domain gate, lead-
ing to robustness against forgetting. Both baselines
perform substantially better than the lower bound,
suggesting that these are non-trivial baselines.

6.3 Benefits of Domain Gate

In order to analyse the contribution of the domain
gate to the forward capabilities of DDPT, we train
a DDPT model without domain gate on the easy-
to-hard order, where DDPT showed the highest
forward transfer. From Table 2 we can observe that
performance drops significantly for all domains if
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Easy-to-hard Hard-to-easy Mixed order Random
Model F ↓ Z ↑ F ↓ Z ↑ F ↓ Z ↑ F ↓ Z ↑

Bin 0.14 0.39 0.14 0.45 0.14 0.38 0.43 0.39
Sem 0.20 0.39 0.17 0.37 0.18 0.29 0.43 0.26

DDPT 0.01 0.73 0.02 0.68 0.03 0.57 0.43 0.34

Table 1: Showing summary statistics in terms of success
for forgetting F (ranging between -1 and 1, the lower
the better) and forward transfer Z (ranging between 0
and 1, the higher the better).

Taxi Train Restaurant Hotel Z ↑
DDPT 0.90 0.76 0.73 0.53 0.73

DDPT w/o domain gate 0.68 0.19 0.57 0.28 0.43

Table 2: Forward transfer metrics Zi in terms of success
for different domains i trained on easy-to-hard order
with and without domain gate.

the domain gate is not employed, which shows the
importance of this mechanism.

6.4 Results on Transformer-based Simulator
In order to strengthen our results and show that they
do not depend on the simulator used, we conducted
an additional experiment using the transformer-
based user simulator TUS (Lin et al., 2021). We
only show results for the mixed order, having in
mind that results have not been dependent on the
domain order used. Figure 5 shows that DDPT
again outperforms the baseline.

6.5 Results on Human Trial
We further validate the results by conducting a
human trial. We compare Bin, Gold and DDPT,
where Bin and DDPT were trained on the mixed
domain order. We hire humans through Amazon
Mechanical Turk and let them directly interact
with our systems, thereby collecting 258, 278 and
296 dialogues for Bin, Gold and DDPT, respec-
tively. After a user finished the dialogue we asked
1) whether the dialogue was successful (Success),
2) whether the system often mentioned something
the user did not ask for such as a wrong domain
(UnnecInfo) 3), whether the system gave too much
information (TooMuchInfo) and 4) about the gen-
eral performance (Performance). Table 3 shows
that the upper bound Gold and DDPT perform
equally well (p > 0.05) in every metric whereas
Bin performs statistically significant worse. The
low performance of Bin can be partially attributed
to frequently choosing a wrong domain that hu-
mans are more sensitive to than a user simulator.
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Figure 5: Training Bin, Sem and DDPT (ours) on the
mixed domain order with the transformer based user
simulator TUS.

Success ↑ UnnecInfo ↓ TooMuchInfo ↓ Performance ↑
Bin 0.45 3.98 3.15 2.45

Gold 0.81 2.79 2.71 3.65
DDPT 0.77 2.75 2.56 3.67

Table 3: Human trial results where Bin, Gold and DDPT
interacted with real users. There is no statistically sig-
nificant difference (p > 0.05) between DDPT and Gold,
while Bin is statistically significantly worse (p < 0.05)
than Gold and DDPT.

Example dialogues are given in Appendix A.6.

7 Conclusion

In this work we provided an algorithm, baseline
models and evaluation metrics to enable continual
RL for dialogue policy optimisation. Moreover,
we proposed a dynamic dialogue policy model
called DDPT that builds on information descrip-
tions, a pretrained language model and the trans-
former encoder-decoder architecture. It integrates
new information seamlessly as long as it is descrip-
tive, and obtains significant zero-shot performance
on unseen domains while being robust to forgetting.
The strengths of DDPT were validated in simula-
tion with two simulators as well as humans. This
opens the door for building evolving dialogue sys-
tems, that continually expand their knowledge and
improve their behaviour throughout their lifetime.
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A Appendix

A.1 Background on CLEAR

A.1.1 VTRACE Algorithm
VTRACE (Espeholt et al., 2018) is an off-policy
actor critic algorithm. As such, it optimizes both
a policy πθ and a corresponding critic Vψ that es-
timates the state-value function V of πθ. Actor
and critic are both updated using experience from
a replay buffer B.

Given a trajectory τ = (st, at, rt)
t=k+n
t=k gener-

ated by a behaviour policy µ, the n-steps vtrace-
target for V (sk) is defined as

vk = V (sk) +
k+n−1∑

t=k

γt−k(
t−1∏

i=k

ci)δtV,

where δtV = ρt(rt + γV (st+1)− V (st)) is a tem-
poral difference for V , and ρt = min(ρ, π(at|st)µ(at|st))

and ci = min(c, π(ai|si)µ(ai|si)) are truncated importance
sampling weights. The scalars ρ and c are hyperpa-
rameters where it is assumed that ρ ≥ c.
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The critic function is then optimized to minimize
the gap between its prediction and the vtrace-target:

Lcritic(ψ) = Eτ∼B[(vk − Vψ(sk))2] (3)

The actor is optimized using the following off-
policy policy gradient:

Eτ∼B[
π(ak|sk)
µ(ak|sk)

Ak∇θ log πθ(ak|sk)] (4)

where Ak = (rk+ γvk+1−Vψ(sk)) is an estimate
of the advantage function. To prevent premature
convergence, they add an entropy loss Lentropy(θ)
during optimization.

A.1.2 CLEAR
CLEAR is a continual learning algorithm that
adapts VTRACE to fulfill the continual learning
requirements. The goal is to obtain fast adaptation
capabilities as well as preventing catastrophic for-
getting. Fast adaptation is tackled by using the most
recent trajectories instead of randomly sampling
from the buffer B in Equations 3 and 4.

In order to prevent catastrophic forgetting, they
sample non-recent experience from the replay
buffer and update policy and critic using Equations
3 and 4. To further regularize these non-recent up-
dates, they introduce regularization losses Lπ−reg
and Lv−reg. Lv−reg forces the critic prediction to
be close to the historic prediction through a mean-
squared error loss. Lπ−reg regularizes the actor
to minimize the KL-divergence between the be-
haviour policy µ and current policy πθ:

Lv−reg(ψ) = Eτ∼B[(Vψ(sk)− Vreplay(sk))2]

Lπ−reg(θ) = Eτ∼B[
∑

a

µ(a|sk) log
µ(a|sk)

πθ(a|sk)
]

An online-offline ratio determines how many re-
cent and non-recent experience is used in an update,
thereby trading-off fast adaptation and catastrophic
forgetting prevention.

A.2 Training details
For the baselines, the MLP encoder uses a 3-layer
MLP with hidden dimension of 128 and RELU as
activation function. We use a GRU with 2 layers
and input size as well as hidden size of 128 for
action decoding. The domain, intent and slot em-
beddings for action prediction have a size of 64.

They are fed through a linear layer that projects it
to a vector of size 128 (same size as GRU output)
in order to allow computation of the scalar prod-
uct with the GRU output. The semantic encoding
in Sem uses an embedding size of 32 for domain,
intent, slot and values. The critic for Bin and Sem
has the same architecture as the MLP encoder, with
an additional linear layer to project the output to a
real valued number.

For the DDPT model, we use an input size and
hidden size of 128 in both transformer encoder
and decoder. We use two heads for the encoder
and decoder, 4 transformer layers for the encoder
and 2 for the decoder. The critic for DDPT has
the same architecture as the transformer encoder,
obtaining the same input as the policy module plus
an additional CLS vector (as in RoBERTa). The
output of the CLS vector is fed into a linear layer
to obtain the critic prediction.

For every model, we use the same training con-
figurations. We use the ADAM optimiser (Kingma
and Ba, 2015) with a learning rate of 5e-5 and 1e-4
for policy and critic module, respectively. We sam-
ple a batch of 64 episodes for updating the model
after every 2 new dialogues. The replay buffer size
is set to 5000. For the VTRACE algorithm, the
parameters ρ̄ and c̄ are set to 1.0. For CLEAR
we use an online-offline ratio of 0.2, i.e. 20% of
the dialogues in a batch are from the most recent
dialogues and the remaining 80% from historical
dialogues. The regularization losses are weighted
by 0.1 and the entropy loss by 0.01.

We used a NVIDIA Tesla T4 provided by the
Google Cloud Platform for training the models.
The training of one model took 10 to 16 hours
depending on the architecture used.

A.3 Masking of illegal actions
To aid the policy in the difficult RL environment,
we add a simple masking mechanism that prohibits
illegal actions. The action masking includes the
following

• If the data base query tells us that entities for a
domain are available, the policy is not allowed
to say that there are no entities available.

• If there is no entity found with the current
constraints, the policy is not allowed to inform
on information about entities.

• The Booking domain is only usable for hotel
and restaurant.
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A.4 Baselines

As mentioned in Section 5.2, the second baseline
incorporates the idea from Xu et al. (2020), which
uses trainable embeddings for domains, intents and
slots to allow cross-domain transfer. For every
feature category (such as user-act, user goal, etc.)
and every domain, it calculates for every feature
in that category a representation using trainable
domain, intent and slot embeddings. The features
in a category are then averaged over domains to
obtain a final representation.

For instance, considering the user-act category
for a domain d, the user act (d, ik, sk)

n
k=0 is

first embedded as ŝu-act,d =
1
n

∑n
k=0[vd,vik ,vsk ],

where vd,vik and vsk are trainable embeddings
for domain d, intents ik and slots sk and after-
wards fed through a residual block, leading to
su-act,d = ŝu-act,d + ReLU(Wu-actŝu-act,d + bu-act).
If there is no user-act for domain d, we use an
embedding for no-user-act to indicate that. The
overall feature representation for the user-act is
then given by su-act =

1
|D|
∑

d∈D su-act,d.
The representations for different feature cate-

gories are then concatenated and fed into a multi-
layer perceptron encoder. The state encoding can
be seen in Figure 2(b). We abbreviate this baselines
as Sem as it uses semantic features.

A.5 Descriptions

Our DDPT model uses descriptions for every possi-
ble information. This allows us to seamlessly deal
with new information we have not seen before yet
by leveraging a pretrained language model. The
language model provides us token embeddings for
the description, which are averaged in order to ob-
tain the description embedding. The descriptions
are built as follows.

• For every domain d and every slot s the user
can inform on, the description is given by
user goal <d> <s>. The correspond-
ing value is 1, if that slot has been mentioned
and 0 else.

• For every atomic user act d i s that was
used in the current turn, the description is
given by user act <d> <i> <s>. We
consider each atomic user act as one infor-
mation and only provide user acts that were
used in the current turn to the model with a
corresponding value of 1.

A�rac�on
Turn 0
User: I'm looking for a night club in the north area. 

System: im sorry, we do not have a nightclub a�rac�on like that, could i help you find something else? 
Turn 1
User: Is there a night club in the centre?
System: sure, ballare is located in the centre, the postcode is cb23na and the entrance fee is 5 pounds. 
Turn 2 

User: thank you, bye 
System: youre welcome. let us know if you need anything else. 

Restaurant
Turn 0
User: I am interested in making a restaurant booking. 

System: Did you want italian or not italian food? 
Turn 1
User: I would like cheap Chinese food
System: may i suggest charlie chan? its located at regent street city centre and the phone number is 01223361763 
Turn 2 

User: Can you book it on Thursday for 2 people at around 19.45 
System: ok ive got you booked for thursday. your reference number is 00000010. 
Turn 3 

User: thank you very much 
System: Thanks for your par�cipa�on. 

Hotel
Turn 0
User: I need to book a hotel 
System: will you be staying at a guesthouse? what is your price range and what ameni�es are you looking for? 
Turn 1
User: I will stay at a guesthouse. I need parking and 3 stars
System: i recommend bridge guest house. it is in the moderate price range. its phone number is 01223247942. 
Turn 2 

User: What is the address? 
System: bridge guest house is located at 151 hills road and has a postcode of cb28rj. does this sound okay? 
Turn 3 

User: bye 
System: Thanks for your par�cipa�on. 

Figure 6: Example dialogues that were collected during
the human trial. Users hired through Amazon Mechani-
cal Turk interact with our DDPT model.

• For every atomic system act d i s that
was used in the previous turn, the descrip-
tion is given by last system act <d>
<i> <s> with a corresponding value of 1.

• For every domain dwhere a data base query is
possible to obtain the number of entities that
fulfill the user constraints, the description is
given by data base <d> <number of
entities> with a corresponding value in-
dicating the number of search results.

• For every domain d where an entity can be
booked, the description is given by general
<d> <booked> with a binary indicating
whether an entity has already been booked.

A.6 Human trial

We conducted a human trial to validate our results
in simulation. The website was build using Di-
alCrowd (Lee et al., 2018) and users were hired
using Amazon Mechanical Turk. We used Set-
SUMBT (van Niekerk et al., 2021) as belief tracker
and SC-GPT (Peng et al., 2020) as NLG module
to accompany the dialogue policies Bin, Gold and
DDPT in the dialogue system pipelines. Example
dialogues, where DDPT interacted with users hired
through Amazon Mechanical Turk, are depicted in
Figure 6.
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Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction / / / 0.43 0.35 0.83 0.60 0.33 0.79
Taxi 0.51 0.75 0.90 0.51 0.47 0.85 0.35 0.43 0.77
Train 0.21 0.18 0.76 0.23 0.15 0.28 0.17 0.09 0.34

Restaurant 0.47 0.36 0.73 0.62 0.52 0.74 / / /
Hotel 0.36 0.26 0.53 / / / 0.39 0.28 0.39

Average 0.39 0.39 0.73 0.45 0.37 0.68 0.38 0.29 0.57
Random 0.39 0.26 0.34 0.39 0.26 0.34 0.39 0.26 0.34

Table 4: Forward transfer table showing for every do-
main i the metric Zi in terms of success rate, where
numbers range between 0 and 1. The higher the number,
the more forward transfer is achieved.

Easy-to-hard Hard-to-easy Mixed order Random
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction 0.28 0.49 0.03 0.08 0.09 0.02 0.29 0.40 0.0
Taxi 0.13 0.15 0.01 0.01 0.01 0.02 0.01 0.02 0.0
Train 0.18 0.20 0.02 0.13 0.14 -0.01 0.03 0.03 0.0

Restaurant 0.06 0.11 -0.01 0.16 0.19 0.0 0.22 0.26 0.09
Hotel 0.04 0.07 0.0 0.32 0.41 0.07 0.14 0.19 0.03

Average 0.14 0.20 0.01 0.14 0.17 0.02 0.14 0.18 0.03 0.43

Table 5: Forgetting table showing for every domain i the
metric Fi in terms of success rate, where numbers range
between -1 and 1. Negative numbers indicate backward
transfer whereas positive numbers indicate forgetting.

Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction / / / -88 -124 12 -16 -125 -3
Taxi -91 -32 23 -65 -117 13 -85 -127 -12
Train -149 -156 -17 -66 -180 -108 -140 -189 -112

Restaurant -94 -119 -15 -15 -97 -19 / / /
Hotel -121 -143 -81 / / / -45 -139 -107

Average -114 -113 -23 -58 -129 -25 -71 -145 -58

Table 6: Forward transfer table showing for every
domain i the metric Zi in terms of average return.
The higher the number, the more forward transfer is
achieved.

Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction 99 151 6 34 36 2 93 126 1
Taxi 73 89 4 16 23 4 18 29 1
Train 68 68 1 43 49 -2 10 10 -1

Restaurant 35 38 -1 59 71 2 78 91 26
Hotel 12 21 -1 89 112 18 51 59 7

Average 58 73 2 48 58 5 50 63 7

Table 7: Forgetting table showing for every domain i the
metric Fi in terms of average return. Negative numbers
indicate backward transfer whereas positive numbers
indicate forgetting.

A.7 Forward Transfer and Forgetting

We provide the forward and forgetting tables in
terms of success rate and average return in Tables
4, 5, 6, 7.

A.8 Continual Evaluation

Here, we provide in-depth results for all experi-
ments. Each graph shows the performance of a sin-
gle domain during training. Moreover, we provide

the average performance over domains in terms of
success rate in Figure 7 to complement Figure 4.
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Figure 7: Training the three architectures Bin, Sem and DDPT using CLEAR on three different domain orders,
each with 5 different seeds. Each model is evaluated every 500 training dialogues on 100 dialogues per domain.
The plots show the success rate, where performance is averaged over domains. The vertical line at 8000 dialogues
indicates the start of cycle 2.
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Figure 8: Success rate for each individual domain, where algorithms are trained in the order easy-to-hard.
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Figure 9: Average return for each individual domain, where algorithms are trained in the order easy-to-hard.
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Figure 10: Success rate for each individual domain, where algorithms are trained in the order hard-to-easy.
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Figure 11: Average return for each individual domain, where algorithms are trained in the order hard-to-easy.
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Figure 12: Success rate for each individual domain, where algorithms are trained in the order mixed.
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Figure 13: Average return for each individual domain, where algorithms are trained in the order mixed.
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Abstract

Learning from multimodal data has become a
popular research topic in recent years. Mul-
timodal coreference resolution (MCR) is an
important task in this area. MCR involves re-
solving the references across different modal-
ities, e.g., text and images, which is a cru-
cial capability for building next-generation con-
versational agents. MCR is challenging as
it requires encoding information from differ-
ent modalities and modeling associations be-
tween them. Although significant progress has
been made for visual-linguistic tasks such as
visual grounding, most of the current works
involve single turn utterances and focus on sim-
ple coreference resolutions. In this work, we
propose an MCR model that resolves corefer-
ences made in multi-turn dialogues with scene
images. We present GRAVL-BERT, a unified
MCR framework which combines visual rela-
tionships between objects, background scenes,
dialogue, and metadata by integrating Graph
Neural Networks with VL-BERT. We present
results on the SIMMC 2.0 multimodal conver-
sational dataset, achieving the rank-1 on the
DSTC-10 SIMMC 2.0 MCR challenge with F1
score 0.783. Our code is available at https:
//github.com/alexa/gravl-bert.

1 Introduction

Powered by advances in machine learning, intelli-
gent agent systems have seen their capacity expand
in recent years. Devices with intelligent assistants
have become ubiquitous in everyday life. These
systems can handle short task-oriented dialogues,
but are limited to speech or text inputs and out-
puts. Motivated by the widespread adoption of
such agents and multimodal devices with screens
that house them, multimodal (visual-linguistic) un-
derstanding has become a promising discipline for
researchers. The next-generation of intelligent as-

∗corresponding author: lyleguo@g.ucla.edu
†corresponding author: agsanchi@amazon.com

Figure 1: An example of Multimodal coreference reso-
lution (MCR). Based on the image and dialogue context,
there can be multiple ways to refer to the highlighted
red coat. Each of them require different information to
locate the target.

sistants are expected to jointly understand multi-
modal data, i.e., text, image, video, and audio to-
gether and their associations.

Within multimodal understanding, an important
area of research is Multimodal Coreference Res-
olution (MCR). It is a crucial capability as user
references can span across modalities in a multi-
modal environment. Moreover, MCR is a challeng-
ing problem even when compared to text coref-
erence resolution and visual question answering
tasks because, in MCR, two participants can simul-
taneously refer to objects while looking at a scene
from a shared perspective. In this dynamic frame
of reference, the notion of left/right, first/second is
constantly shifting and the model cannot rely on
the fixed position of objects in the scene. Different
from both VQA and textual anaphora resolution
tasks, there are distinct ways to refer to an object
in the MCR task. As the scene may contain a large
number of similar objects, it is natural to refer to
them by relative position with respect to other ob-
jects, front and back w.r.t the camera, and w.r.t.
accessory objects like shelves and tables, so as to
easily indicate the target object(s). Such references
are unusual in other related tasks.

Furthermore, as our focus is on the MCR task
within task-oriented dialogues, the objects being
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referenced are typically associated with a back-end
database that also provides metadata information
such as price, brand, and size for these objects. This
adds an additional dimension to the coreferencing
task as the users can also refer to objects based on
these non-visual metadata attributes. Finally, as
conversations involve multi-turn dialogue, MCR
also requires reasoning over dialogue context to
resolve references like “show coat next to the shirt
you suggested previously". An example is shown
in Figure 1. Resolving these coreference cases
requires various multimodal information extraction
and reasoning capabilities. For example, to identify
“the red coat next to the black one", the model must
infer the target’s visual features (red), as well as its
neighborhood information (a black coat). The user
might also say “I’ll take the first one", if they are
choosing from one of the coats offered previously.

Notable progress has been made on multimodal
frameworks. Recent models have shown excellent
performance on various multimodal tasks including
Visual Question Answering (VQA) (Huang et al.,
2019b; Su et al., 2020), Visual Commonsense Rea-
soning (Zheng et al., 2020b; Su et al., 2020), Visual
Grounding (Zheng et al., 2020a; Deng et al., 2018)
and Image Captioning (Huang et al., 2019a). All
these models take both images and text as inputs.
Both visual and linguistic tokens are sent to an
autoencoder to learn shared representation and per-
form downstream tasks. However, such methods
are still not developed in a way to be able to solve
complex MCR scenarios. For example, they may
fail when a query has dialogue context instead of a
single short sentence, or when there are anaphoric
references in the query. Finally, most of these mod-
els are not designed to handle external knowledge
sources or to scale to hundreds of objects in a single
scene.

Motivated by these challenges, we propose a
new framework, GRAVL-BERT(Graphical Visual-
Linguistic BERT), that can simultaneously rea-
son over dialogues, objects and their relationships,
scene information, and object metadata. Our major
contributions are as follows:

1. We present GRAVL-BERT, a unified BERT-
based framework for encoding and reasoning
over dialogues grounded in scenes.

2. GRAVL-BERT
(a) Incorporates additional knowledge sources

in the form of object metadata to also sup-
port coreferencing based on non-visual fea-

tures like brand and price.
(b) Represents scene objects as a graph and en-

codes them using Graphical Convolutional
Network (GCN) to enable reasoning and
coreferencing involving complex spatial re-
lationships.

(c) Adds information about object’s surround-
ing by explicitly sampling from its neigh-
borhood and generating captions describ-
ing the object. This enables coreferencing
involving surrounding context (e.g., acces-
sory objects like shelves and tables)

3. Finally, we show the importance of pre-training
on dialogue dataset for the task of MCR.

We present results of GRAVL-BERT on the
SIMMC 2.0 dataset (Kottur et al., 2021) which
involves dialogues between a customer and an
agent in the shopping domain. We participate in
the SIMMC 2.0 challenge for the task of MCR,
where the goal is to resolve the references and
identify the target object(s) in the scenes. We
achieve SOTA performance with 0.76 object-level
F1 score on devtest set and 0.78 on test set. We
note that this dataset is available for research and
non-commercial use.

2 Related Works

Visual Grounding. Visual Grounding (VG) is an
area very close to MCR. Given a query, it aims to
find the most relevant target in an image. Some
widely-used datasets for VG are RefCOCO, Ref-
COCO+, and RefCOCOg (Yu et al., 2016). Their
queries are usually short and simple, e.g., the cat
jumping over the fence. JR-Net (Jain and Gandhi,
2021) which achieves SOTA on this task encodes
images and queries separately and then uses a joint-
reasoning and a multi-level fusion module to merge
the features and generate the results. VLT (Ding
et al., 2021) converts image features into the same
format as language token embeddings and uses
BERT followed by a masked decoder to locate the
target. A-ATT (Deng et al., 2018) concatenates
visual and linguistic features together and uses ac-
cumulative attention layers to focus on the key tar-
gets.

Visual-Linguistic Frameworks. Multimodal
frameworks that support visual (i.e., image, video)
and linguistic inputs (i.e., caption, dialogue) can
be fine-tuned for various tasks including MCR.
In early works, most models encoded visual and
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linguistic features separately and combined them
only at a later stage. For example, both MTN (Le
et al., 2019) and LXMERT (Tan and Bansal, 2019)
have two separate encoders for visual and linguistic
inputs and then use a query-aware encoder and
cross-modality encoder respectively to extract
visual features related to query text. In recent
works, increasing number of high-performing
models adopt an early-fusion strategy. They first
extract the regions of interest (ROI) features from
visual inputs, convert them into token embeddings,
and concatenate with text embeddings. Then
they employ BERT (Devlin et al., 2019) to
learn the cross-modal associations and perform
different tasks. For instance, ViL-BERT (Lu et al.,
2019) concatenates text embeddings and image
embeddings together and sends them to BERT.
Oscar (Li et al., 2020b), VinVL (Zhang et al.,
2021), 12-in-1 (Lu et al., 2020), Unicoder-VL
(Li et al., 2020a), and Unified VLP (Zhou et al.,
2020) all improve upon ViL-BERT by adding
better image features, new pretraining strategies,
or multiple datasets for pretraining. VL-BERT (Su
et al., 2020) is currently one of the most popular
benchmark frameworks for visual-linguistic tasks.
It uses Fast R-CNN to extract visual features of
objects and scene images, and concatenates them
with linguistic token embeddings. The combined
features are then fed into a BERT module, which
is fine-tuned for various downstream tasks.

Graphical Models. Aside from the aforemen-
tioned works, another approach is to represent
all ROIs in the scene as one graph. Graph R-
CNN(Yang et al., 2018) and GCN-LSTM (Yao
et al., 2018) encode images as graphs whose nodes
represent objects and edges represent the relation-
ships between objects. The generated graph repre-
sentations can be used for downstream tasks like
VQA and Image Captioning. (Damodaran et al.,
2021; Yang et al., 2019) show that scene graphs
improve model performance on these tasks.

3 Methodology

Problem Formulation. Given inputs
(D, I,N,M,Q) where D = {D1, D2, ..., Dk}
is the dialogue text split into k turns,
I = {I1, I2, ..., Ik} are the scene images for
the dialogue turns, Nj = {Nj1, Nj2, ...} is
the set of objects inside each scene Ij ∈ I ,
Mij = {M1,M2, ...} are the metadata attributes of
each object Nij and Q is the user query referring

to one or more objects, our task is to predict a
label yn ∈ {0, 1} for each object n ∈ N that
indicates whether the object n is being referenced
by the query. The user query can involve spatial
references, visual references, metadata based
references, or any combination of these.

Model Details. Our model builds upon VL-
BERT. We extend the framework from single ut-
terance input to multi-turn dialogue input, with
each dialogue turn associated with its respective
scene image. In addition, the scene objects can
have external knowledge base (e.g., metadata) as-
sociated with them. The architecture for our model
is shown in Figure 2. The model takes 4 differ-
ent streams of input: linguistic, visual, segment,
and position. Input from different streams are com-
bined via feature-wise addition.

The visual stream consists of the visual features
from the whole scene, the candidate object and its
surroundings. For each of the visual component,
we use Fast-RCNN (Girshick, 2015) to extract the
features and then augment it with bounding box
location to add spatial information. We further
add a GCN layer to explicitly capture the relative
position of each object with respect to others.

The linguistic stream includes the dialogue con-
text, user query and candidate object’s metadata.
We flatten the structure of metadata and convert it
into a string of the form “key1 value1 key2 value2
...”. We also add two special tokens, an integer
feature T which denotes the distance from the turn
when the object was last offered by agent, and a
string S, which indicates that the corresponding
visual features (in the visual stream) are from the
object’s surroundings and not the object itself.

The segment stream is used to distinguish the
dialogue context, user query and object metadata
inputs. It has three different values, corresponding
to these input types. The position stream contains
token positional embeddings, which is same as the
one used in the original BERT model.

Note that, we feed only one object into the
model at a time. This allows our system to
scale well for scenes that may contain large num-
ber of objects. For instance, in the SIMMC 2.0
dataset, many scenes contain more than 100 ob-
jects with metadata sequence length larger than
50 for each object, making it impractical to feed
all 5K object instances into the system. We
supplement our model with GCN based struc-
ture to mitigate strong independence assumptions
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 U1: Can you recommend a popular jacket? 
 S1: How do you like the red one on the     
 wall and the black one on the front rack? 
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 U2: How much is the black one? 
 S2: It's $34.99. 
 
 UQ: Ok. I want the red one on the wall. 

Figure 2: A visualization of our MCR model. It has four streams. The linguistic stream consists of dialogue, query,
metadata text, coreference distance and an object surrounding indicator token S. In this example, the coreference
distance is 2 because the candidate object is mentioned 2 turns earlier in the dialogue history. The visual stream
consists of visual features of the whole scene, the candidate object and its surrounding area. The scene features and
object features are repeated such that the visual stream has the same length as the linguistic stream. Image features
are extracted using Fast-RCNN backbone and processed by a GCN module. The segment stream is to distinguish
the dialogue, query and other tokens. The position stream indicates token positions.

implied by considering only one object at each
inference step. Furthermore, feeding more ob-
jects to GCN is less memory-intensive than VL-
BERT. This is because, for VL-BERT, the sequence
length consists of len(dialogue_history) +
len(metadata)+num(objects), while for GCN it
is just num(objects) and the dialogue history can
be arbitrarily long (e.g., >200 tokens for SIMMC).

We next describe the three major contributions
in our model: GCN Structure, Reference Distance,
and Environmental Information Encoding.

3.1 GCN Structure
In a scene with multiple objects, it is natural to
refer to an object using its attributes combined with
spatial information relative to other objects in the
scene. For instance, in the referring expression

“the black cat on the yellow sofa”, object attributes
are “black cat” and “yellow sofa” and the spatial
relationship is “on”. Graphical approaches can ef-
fectively capture such spatial relations by creating
edges between neighboring objects. We, therefore,
introduce a GCN layer in our model to augment
the raw visual features of an object (extracted from
Fast-RCNN) with information of its neighbors by
adding the spatial relationships between them.

Graph Formulation: We represent all the objects
in a scene as one graph. The nodes represent the
visual features of the objects and the edges rep-
resent the positional relationships between them.
An example is shown in Figure 3. There are four
basic edges: top, bottom, left, and right. We add
an additional node that represents the features of
the whole scene. It is connected to all the other
nodes with a fifth edge type - inside, that indicates
an object lies inside the scene. We expect this setup
to capture the global information of the full scene
into the object representations.
GCN Layer: For a node v with feature h0v, let its
neighbors be µ ∈ ε whose features are h0µ. Each
µ− v edge has a type l ∈ L. The purpose of GCN
is to update h0v using all h0µ.

We use the FiLM-GCN (Brockschmidt, 2020)
model. Proposed in 2019, it is a GCN specially de-
signed to support multiple edge types. Its equation
is represented as

βtl,v, γ
t
l,v = g(htv; θg,l)

ht+1
v = l(

∑

u
l→v∈ε

(σ(γtl,v ⊙Wlh
t
u + βtl,v); θt)

For a node v, its current representation htv is first
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Figure 3: An example of graph formulation. It consists
of five types of edges which indicate five positional rela-
tions between objects. The center scene node represents
the features of the whole image.

passed to a function g(·) to compute two variables:
the encoded representation βtl,v and the element-
wise weight factor γtl,v associated with each edge
type l. The message passed from neighbors to v is
represented as the element-wise product of γtl,v and
Wlh

t
µ. It is added to βtl,v and passed to an activation

function σ(·). The outputs are summed over all
edges of v and finally sent to a linear function l(·)
to become the new representation ht+1

v .

3.2 Reference Distance

During conversation with a multimodal agent, users
can refer to objects mentioned in an earlier turn of
the dialogue. For instance, as shown in Figure 1,
the user can refer to the red coat offered earlier by
the system by saying “the one you recommended
before”. To aid our model to look back in the
dialogue history for resolving such references, we
add a feature that indicates the distance from the
query to the most recent system-mention of the
candidate object in the dialogue history.

3.3 Environment Information Encoding

Scene images can contain visual entities that are
not direct target objects, e.g., wall, table, shelves
etc. As these entities are usually present in a small
region of the image, their features may be attenu-
ated during downsampling and not easily available
to VL-BERT. To address this issue, we employ the
following two approaches.
Object Surrounding: Sometimes the object re-
gion does not have all the information to allow for
reference resolution, e.g., in Fig 4, given only cen-
tral bounding box, it would be difficult to identify
whether the jacket is on a table or cabinet. There-

Figure 4: A sampling of object’s neighborhood. The
center bounding box does not provide enough features
for a model to recognize the ground cabinet. We sup-
plement this input by adding features from its left, right,
top and bottom directions.

fore, we sample regions of fixed size around the
object and feed them as supplementary informa-
tion in the visual stream. Sampling only from the
object’s immediate neighbourhood is based on the
intuition that people typically use items in the target
object’s vicinity to refer to it. The sampled region
size is a tunable hyperparameter. Specifically, in
this work, we consider eight surroundings regions
from 8 directions as shown in Figure 4.
Image Captioning: Image captioning models gen-
erate descriptions that include the surrounding con-
text in which an object is situated. For our task,
these models generate captions that contain refer-
ences to non-target objects, see Fig5. We use an
off-the-shelf captioning model and generate cap-
tions for each object in the scene. We then augment
our training dataset with captions as additional
metadata. The captioning model that we use, is
composed of an Alexnet (Krizhevsky et al., 2017)
image feature encoder and a LSTM (Hochreiter and
Schmidhuber, 1997) decoder. ROIs are extracted
from scene images, resized and used as model in-
puts. We also perform a cleanup to remove redun-
dancy from the generated captions before adding
them to our training set.

4 Experiments and Results

4.1 Dataset
We evaluate our approach on Situated and Inter-
active Multimodal Conversations (SIMMC) 2.0
dataset(Kottur et al., 2021) released as part of
DSTC10 Challenge 2021. It contains 11k task-
oriented dialogues between a user and an agent,
grounded in photo-realistic virtual reality (VR)
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(a) (b)

Figure 5: Examples showing additional metadata ex-
tracted from captions generated for scene objects. We
augment our training set with these generated attributes
to help with resolving coreferences involving surround-
ing context.

scenes from fashion and furniture stores. Each
example contains four elements: dialogue between
user and the agent, scene images associated with
each dialogue turn, object annotations and meta-
data for all objects within the scene, and the re-
ferring query. The dataset also provides spatial
relationship between objects (left, right, top, bot-
tom), which we use to construct graphs. The data
is split into train (65%), dev (10%), dev-test (10%),
and test-std (15%).

4.2 Experimental Setup
We continue to pre-train our model on in-domain
dialogues from the SIMMC Dataset using masked
language modeling (MLM) objective. We mask
30% dialogue tokens and train the model to predict
these tokens. The pre-trained model was then fine-
tuned for the MCR task by progressively building
on techniques described in Section 3. We limit the
dialogue context length to 3. This was done for
two reasons. First, from a practical standpoint, 512
tokens is the maximum sequence length that the
transformer module can consume. Secondly, it is
reasonable to assume that most users will refer to
objects seen recently in the context as opposed to
far back in the conversation. Further, we downsam-
ple negative examples to maintain positive-negative
ratio to 1 : 5 for training. We use object-level bi-
nary cross entropy for loss. All models are trained
on 4 Tesla V100-SXM2 GPUs.

As explained in Sec3.3, we use Alexnet-LSTM
captioning model to capture each object’s surround-
ing context by generating captions describing it.
In order to fine-tune the captioning model, we
mine queries from the SIMMC training set (us-
ing keyword-matching heuristics) that involve ref-
erences based on surrounding objects like tables,

Precision Recall F1

Dev Ours 0.74 0.83 0.78

Devtest Ours 0.74 0.78 0.76

Test
Ours N/A N/A 0.78
BART-based N/A N/A 0.76
Huang et al.
(2021)

N/A N/A 0.73

Table 1: Our model GRAVL-BERT’s performance w.r.t
object-level precision, recall and F1 scores on SIMMC
2.0 evaluation sets. Our model is compared with other
systems on test set. Only the F1 score is provided by
the DSTC challenge officials.

racks, stands etc. The captioning model is then
trained to generate these queries given enlarged
bounding boxes enclosing the corresponding target
objects as inputs. For this task, there are 1190 train-
ing examples. After training, we use the model to
generate captions for all scene objects, and then
perform a basic procedure to extract descriptions
of surrounding context from the captions. Specifi-
cally, we create a pool of non-target objects, search
the generated captions for these objects and con-
struct phrases on them. Finally, these phrases such
as “on the table” and “in the closet” are added to
the dataset as additional metadata text. An example
is presented in Figure 5.

For inference, we make predictions over all ob-
jects inside the scene. Objects with score≥ 0.5 are
marked as referred objects. We report the model
performance with object-level precision, recall and
F1 score. DSTC10 uses object-level F1 score as
official metric. We report our results on devtest and
test set.

4.3 Primary Results

The results are shown in Table 1. The test pre-
cision and recall are missing as the ground truth
labels have not been released by the challenge of-
ficials and only F1 score is reported. Our model
has the highest performance among 16 participat-
ing teams. It outperforms the second best system1

(model based on BART (Lewis et al., 2020)) by
∼ 2.5% and the third best system (model based on
UNITER (Chen et al., 2020)) by ∼ 5%.

1https://github.com/KAIST-AILab/
DSTC10-SIMMC
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Experiments Precision Recall F1

Vanilla VL-BERT 0.46 0.49 0.47

Mask-out Metadata 0.26 0.57 0.36

Mask-out Visual Feats 0.37 0.01 0.02

Table 2: Object-level precision, recall and F1 score of
models trained using different kinds of inputs. Measured
on validation set of SIMMC 2.0.

Experiments Precision Recall F1

Vanilla VL-BERT 0.46 0.49 0.47

Dialogue
Pre-trained 0.57 0.83 0.68
VL-BERT

VD-BERT 0.53 0.89 0.66

Table 3: Comparison of VD-BERT and VL-BERT. Both
pretrained on dialogue dataset using mask language
modeling. Measured on validation set of SIMMC 2.0.

4.4 Ablation Study

Contribution of Metadata and Visual Features.
To understand the impact of metadata information
and visual features in the model’s performance, we
start with vanilla VL-BERT and mask-out i.e. zero-
out either of the two features and then train and
evaluate the system with all the other inputs. As
seen in Table. 2, both metadata and visual features
provide complementary information and contribute
to the model’s final performance. When trained
without metadata features, the model cannot re-
solve coreferences based on attributes like brand
and price. At the same time, visual features are
essential for referencing based on visual character-
istics like color and pattern. The F1 score drops
close to zero when visual features are masked out
because, in this dataset, most queries involving ref-
erence by metadata attributes also include visual
characteristics, e.g., the blue Nike one.

Impact of Dialogue-Oriented Pre-training. To
quantify the importance of pre-training on dia-
logue datasets, we train our system with origi-
nal VL-BERT (pre-trained on Conceptual Cap-
tions (Sharma et al., 2018), Book Corpus (Zhu
et al., 2015) and English Wikipedia datasets) and
compare it with VL-BERT further pre-trained on
SIMMC 2.0 dialogue dataset. As shown in Table 3,
dialogue-specific pre-training provides significant
performance gain on the multimodal coreference

Experiments Precision Recall F1

Pretrained
VL-BERT

0.5734 0.8293 0.6780

+GCN 0.6432
(+0.0698)

0.8122
(−0.0175)

0.7179
(+0.0399)

+Reference
Distance

0.7249
(+0.0822)

0.8238
(+0.0118)

0.7712
(+0.0538)

+Neighbour
Features

0.7316
(+0.0067)

0.8248
(+0.0010)

0.7753
(+0.0041)

+Captions 0.7410
(+0.0093)

0.8306
(+0.0058)

0.7833
(+0.0080)

Table 4: Contribution of different modules. The experi-
ments are cumulative. “+” means the current experiment
is based on the above row with the indicated module
added. The change of metrics corresponding to above
row is shown in bracket. Performance is measured on
validation set of SIMMC 2.0.

Spatial Non-tgt Dialogue Meta- Pure
Objects History data Visual

Pretrained
VLBERT

5.0% 4.5% 3.7% 7.4% 4.0%

GRAVL-
BERT

1.8%
(−64%)

1.6%
(−64%)

1.1%
(−70%)

2.0%
(−73%)

1.7%
(−58%)

Table 5: Object-level error rate per coreference type.

task. We also fine-tune a VD-BERT (Wang et al.,
2020) model (pre-trained on VisDial (Das et al.,
2019) visual dialogues dataset). VD-BERT has
similar structure as VL-BERT but is trained on dia-
logues instead of captions. It provides similar gains
as dialogue pre-trained VL-BERT reinforcing our
hypothesis that dialogue pretraining is important
for this task. We use VL-BERT as our base archi-
tecture because it has been pre-trained on much
larger datasets compared to VD-BERT and thus
can provide better generalization.

Contribution of Various Model Components.
To study the contribution of each component of
our model architecture (GCN, reference distance,
surrounding features, and captions), we perform
ablation experiments. Starting from the dialogue
pre-trained VL-BERT, we add our modifications
incrementally and measure the gain in F1 score.
The results are in Table 4. Adding GCN and refer-
ence distance provides significant gains. Adding
surrounding features and captions further improves
the performance by 0.41% and 0.80% respectively.

Note that, most queries refer to an object using
multiple attributes. For example, “the red Nike
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shirt to the left of the blue one in the cabinet.”,
which includes references by color (red), brand
(Nike), relative position (left of the blue one) and
absolute position (in the cabinet). Some of these
information may be redundant and not jointly re-
quired to uniquely locate the target. This may ex-
plain only minor improvements in the last two rows
in Table 4.

4.5 Qualitative Analysis

We examine our model’s predictions to get a sense
of its strengths and weaknesses. We provide a
breakdown of the performance on different co-
reference types in Table 5. For this analysis, we
assigned examples to exactly one co-reference cat-
egory based on heuristics. Compared with baseline,
GRAVL-BERT provides significant improvement
on all types of coreferences. We notice that the
model is able to resolve complicated references
such as in Figure 6a. This example involves point-
ing to multiple objects and requires visual under-
standing and spatial reasoning (absolute and rela-
tive). In Figure 6b, the model is able to success-
fully utilize long dialogue context to resolve coref-
erences to two objects. We also looked at several
failure cases. To resolve the coreferences in these
cases, a deeper scene understanding is required.
For example, in Figure 6c, the model needs to infer
the number of cabinets, and then locate the second
one from the left. We show more examples in the
Appendix.

5 Conclusion and Discussion

In this work, we proposed a multimodal frame-
work GRAVL-BERT for MCR task. Our contri-
bution lies in systematically combining relevant
techniques such as utilizing external knowledge
sources (metadata, generated captions), GCN, sam-
pling object’s neighborhood, and dialogue-oriented
pre-training using a simple BERT-based architec-
ture to perform MCR within dialogues grounded in
scenes. We improved over the GPT-2 (Kottur et al.,
2021) based baseline by 33.9% absolute and 2.5%
over other concurrent work.

For future research in the topic we suggest sev-
eral avenues. As mentioned in Section 4.5, to iden-
tify objects with complex references, global infor-
mation is required e.g. number of cabinets in the
scene, price ranking among objects. Currently, our
model is unable to handle this complexity. We
believe adding specific encoders to extract these

(a) An example with correct predictions. There are two target
objects (highlighted with boxes), both of which our model
gets right. Coreferencing requires both visual (“brown one”,

“red and white sweaters”) and spatial understanding (“middle
of the top row”, “besides the bright blue jacket”).

(b) A successful example where the model is able to utilize
full dialogue context for coreferencing. In this case, the model
needs to obtain context from the first turn to point to the two
objects being referred in query.

(c) An example of incorrect case. Our model is not able to
locate “the second cabinet.”

Figure 6: Model predictions on few examples from
SIMMC 2.0 devtest set.

global features will be helpful.
In the pre-training stage, we trained our model

on dialogues using MLM. We expect that applying
prompt in this stage may have a promising perfor-
mance. Instead of training the model to learn to
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predict the randomly masked words, using a care-
fully designed prompt can teach model to focus on
the information that is helpful to our main task.

Lastly, there are cases where the user provides
very general descriptions and the information to
resolve the coreference is insufficient. For example,
the user refers to “the red sweater” while there are
multiple red sweaters in the scene. In this situation,
instead of trying to resolve the coreference, the
system may attempt to disambiguate. (e.g., “Which
sweater do you mean?”) We expect future work to
distinguish these kinds of situations.

References
Marc Brockschmidt. 2020. GNN-FiLM: Graph neu-

ral networks with feature-wise linear modulation.
In ICML, volume 119 of PMLR, pages 1144–1152.
PMLR.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. Uniter: Universal image-text
representation learning. In ECCV.

Vinay Damodaran, Sharanya Chakravarthy, Akshay
Kumar, et al. 2021. Understanding the role of
scene graphs in visual question answering. CoRR,
abs/2101.05479.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh,
Deshraj Yadav, Stefan Lee, José M. F. Moura, Devi
Parikh, and Dhruv Batra. 2019. Visual dialog. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 41:1242–1256.

Chaorui Deng, Qi Wu, Qingyao Wu, et al. 2018. Visual
grounding via accumulated attention. In CVPR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In ACL, pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Henghui Ding, Chang Liu, Suchen Wang, and Xudong
Jiang. 2021. Vision-language transformer and query
generation for referring segmentation. In ICCV.

Ross Girshick. 2015. Fast r-cnn. In International Con-
ference on Computer Vision (ICCV).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

L Huang, W Wang, Y Xia, and J Chen. 2019a. Adap-
tively aligned image captioning via adaptive attention
time. In NIPS, pages 8942–8951.

Pingping Huang, Jianhui Huang, Yuqing Guo, Min Qiao,
and Yong Zhu. 2019b. Multi-grained attention with
object-level grounding for visual question answering.
In ACL, pages 3595–3600, Florence, Italy. Associa-
tion for Computational Linguistics.

Yichen Huang, Yuchen Wang, and Yik-Cheung Tam.
2021. Uniter-based situated coreference resolu-
tion with rich multimodal input. arXiv preprint
arXiv:2112.03521.

Kanishk Jain and Vineet Gandhi. 2021. Comprehensive
multi-modal interactions for referring image segmen-
tation. arXiv preprint arXiv:abs/2104.10412.

Satwik Kottur, Seungwhan Moon, Alborz Geramifard,
and Babak Damavandi. 2021. Simmc 2.0: A task-
oriented dialog dataset for immersive multimodal
conversations. arXiv preprint arXiv:2104.08667.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2017. Imagenet classification with deep convo-
lutional neural networks. ACM, 60(6):84–90.

Hung Le, Doyen Sahoo, Nancy F. Chen, and S. Hoi.
2019. Multimodal transformer networks for end-to-
end video-grounded dialogue systems. In ACL.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In acl, pages 7871–7880.

Gen Li, Nan Duan, Yuejian Fang, et al. 2020a.
Unicoder-vl: A universal encoder for vision and
language by cross-modal pre-training. AAAI,
34(07):11336–11344.

Xiujun Li, Xi Yin, Chunyuan Li, et al. 2020b. Os-
car: Object-semantics aligned pre-training for vision-
language tasks. In ECCV.

J. Lu, V. Goswami, M. Rohrbach, et al. 2020. 12-in-1:
Multi-task vision and language representation learn-
ing. In CVPR, pages 10434–10443, Los Alamitos,
CA, USA. IEEE Computer Society.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. In
NIPS.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2556–2565,
Melbourne, Australia. Association for Computational
Linguistics.

Weijie Su, Xizhou Zhu, Yue Cao, et al. 2020. Vl-bert:
Pre-training of generic visual-linguistic representa-
tions. In ICLR.

293



Hao Tan and Mohit Bansal. 2019. LXMERT: learning
cross-modality encoder representations from trans-
formers. In EMNLP.

Yue Wang, Shafiq Joty, Michael Lyu, et al. 2020. VD-
BERT: A Unified Vision and Dialog Transformer
with BERT. In EMNLP, pages 3325–3338, Online.
Association for Computational Linguistics.

Jianwei Yang, Jiasen Lu, Stefan Lee, et al. 2018. Graph
r-cnn for scene graph generation. In ECCV, pages
690–706, Cham. Springer International Publishing.

Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei
Cai. 2019. Auto-encoding scene graphs for image
captioning. In CVPR.

Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. 2018.
Exploring visual relationship for image captioning.
In ECCV.

Licheng Yu, Patrick Poirson, Shan Yang, et al. 2016.
Modeling context in referring expressions. In Com-
puter Vision – ECCV 2016, pages 69–85, Cham.
Springer International Publishing.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, et al. 2021.
Vinvl: Revisiting visual representations in vision-
language models. In CVPR.

Wenbo Zheng, Lan Yan, Chao Gou, and Fei-Yue Wang.
2020a. Webly supervised knowledge embedding
model for visual reasoning. In CVPR, pages 12442–
12451.

Wenbo Zheng, Lan Yan, et al. 2020b. Webly supervised
knowledge embedding model for visual reasoning.
In CVPR.

Luowei Zhou, Hamid Palangi, et al. 2020. Unified
vision-language pre-training for image captioning
and vqa. AAAI, 34(07):13041–13049.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 19–
27.

A Appendix

In this appendix, we showcase more examples of
our model’s predictions. The figures below show
5 examples, out of which the first 4 are correctly
predicted by our model. In Figure 7a, the target is
referred by its color (green) and location (top right).
In Figure 7b and 8a, the target is referred by non-
visible attribute, object brand (Ocean Wears and
Modern Arts). In Figure 8b the target is referred
using previous dialogue context (..that grey sofa
you pointed out). The prediction in Figure 9a is
wrong. In this case, the targets are referred as the
ones with good ratings. Our model, currently, does
not have a mechanism to compare the ratings of all
objects and select the top-rated ones. This can be
improved in the future.

294



(a) An example of a correct case. The object in query is referred by its color and position.

(b) An example of a correct case. The object in query is referred by its brand.

Figure 7: More prediction results on devtest set.
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(a) An example of a correct case. The object in query is referred by its brand.

(b) An example of a correct case. The query refers to an object mentioned in early turns.

Figure 8: More prediction results on devtest set.
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(a) An example of an incorrect case. Our model is unable to figure out which ones are “affordable” and “good” without comparing
the price and rating of all objects.

Figure 9: More prediction results on devtest set.
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Abstract
In an open-domain dialogue system, the con-
sistent persona is a key factor to generate real
and coherent dialogues. Existing methods suf-
fer from the incomprehensive persona tags that
have unique and obscure meanings to describe
human’s personality. Besides, the addressee
information, which is closely related to express
personality in multi-party dialogues, has been
neglected. In this paper, we construct a multi-
party personalized dialogue dataset and pro-
pose a graph convolution network model (Per-
sonaTKG) with addressee selecting mechanism
that integrates personas, dialogue utterances,
and external text knowledge in a unified graph.
Extensive experiments have shown that Per-
sonaTKG outperforms the baselines by large
margins and effectively improves persona con-
sistency in the generated responses.

1 Introduction

Endowing a dialogue agent with a consistent per-
sona has attracted an increasing amount of research
interests, as it helps to deliver a more coherent and
engaging conversation for users. Existing studies
explore character personality through key-value
persona pairs (Qian et al., 2018) or short descrip-
tive sentences (Zhang et al., 2018b). The key-value
pairs define a few of persona categories, such as
name, gender, and age, which have clear semantic
meanings. The descriptive text is declarative sen-
tences with relatively fixed patterns that introduce
one’s persona information such as occupation and
hobbies in the first person. Promising performance
have been achieved on these ‘well-defined’ persona
datasets (Mohapatra et al., 2021; Gu et al., 2021a;
Song et al., 2020b).

Recently, Li et al. (2020) proposed a new dia-
logue dataset HLA-Chat using tags as persona in-
formation. HLA-Chat was collected from scripts of
hit TV dramas, and the persona tags of the charac-
ters were tropes that are determined by audiences’

∗Corresponding author

A persona of Sheldon Cooper
tag Omnidisciplinary Scientist
sent A scientist who knows everything about science.
doc Related to the Nerd and the Mad Scientist, the Omnidis-

ciplinary Scientist is a master of every branch of science,
regardless of the branch in which they theoretically have
a degree ...

Conversations
Penny I believe that when one door closes, another opens.

Sheldon Cooper No,it doesn’t. Not unless the two doors are conected by
relays, or there are motion sensors involved.

Table 1: An example of persona tags with laconic and
detailed interpretation and conversations involving the
persona. The laconic interpretation (dubbed as sent)
consists of one sentence, while the detailed interpreta-
tion is a long document that explicates the tag meaning.

impressions on TVTropes website1. For example,
the famous character Sheldon Cooper from The
Big Bang Theory has the persona tags Book Dumb,
Omnidisciplinary Scientist, Green Eyed Epiphany,
Neat Freak, Token Minority, etc. We can observe
that these tags (i.e. tropes generated by TV audi-
ences) are usually very distinctive and rare words,
as they represent the unique persona of the charac-
ter. Different from the general and comprehensible
persona definition in Qian et al. (2018); Zhang et al.
(2018b), the tags in HLA-Chat contain rich per-
sona information but are difficult to understand,
which set obstacles for the model to generate per-
sona consistent responses. We also argue that this
incomprehensible persona challenge is different
from generating the response from sparse persona
data (Zheng et al., 2020), where there are only lim-
ited personalized sentences in the dialogue context.

Intuitively, the persona consistency in the gen-
erated responses of HLA-Chat can be further im-
proved by incorporating external knowledge. How-
ever, most of these rare persona words could not
be found in the knowledge base or commonsense
base such as ConceptNet (Speer et al., 2017) and
ATOMIC (Sap et al., 2019). Thanks to TVTRopes,
the audiences can contribute to the laconic and de-

1https://tvtropes.org/
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tailed interpretation of these tropes on this wiki
website, as shown in Table 1. In this paper, we col-
lect the user generated interpretation on TVTRopes
as external knowledge, and introduce text-based
knowledge in the persona consistent response gen-
eration model with unique and incomprehensive
persona tags.

On the other hand, most of the existing personal-
ized response generation studies focus on bilateral
dialogue (Wu et al., 2021; Majumder et al., 2021).
In effect, the conversations in the real world often
occurs between multiple speakers, which is called
multi-party conversation (MPC). MPC is generally
composed of speakers, utterances, and addressees
(i.e. the recipient corresponding to an utterance).
The expression of persona in the dialogue is often
closely related to the addressee. For example, the
addressee can be a friend, a lover, a stranger, etc.
For these different relationships, every speaker may
have a different way of expressing their personas,
so predicting the addressee can assist the dialogue
system to promote the persona consistency in the
responses. Thus, we incorporate the addressee se-
lecting mechanism into the response generation
model and leverage a posterior selection module to
improve the addressee prediction.

The complex context structure of MPC urges
researchers to constantly seek novel and effective
context modeling methods, where graph convolu-
tion networks have already achieved promising re-
sults (Liang et al., 2021; Hu et al., 2019). However,
none of the existing hierarchy (Meng et al., 2018),
role sensitive (Liu et al., 2019), or GCN-based mod-
eling methods consider the different personas of
the speakers as well as the correlation between per-
sonas and utterances. In this paper, we first utilize
the hierarchical recurrent encoder-decoder struc-
ture (Serban et al., 2016; Xing et al., 2018) and
the bidirectional GRU (Penghua and Dingyi, 2019)
to model the multi-turn dialogue context and the
personas of all the speakers. Then we build a uni-
fied graph with utterances and personas as nodes,
and employ GCN to aggregate dialogue context
information.

Our contributions are summarized as follows:
(i) We construct a new personalized dialogue

dataset HLA-Chat++2, where each incomprehen-
sive persona tag has laconic and detailed text-based
interpretations.

2https://github.com/NEU-DataMining/HLA-
ChatPlusPlus

(ii) We propose a Persona-consistent response
generation model based on Text Knowledge en-
hanced GCN (PersonaTKG) with addressee select-
ing mechanism that integrates personas, dialogue
utterances, and external text knowledge in a unified
graph. To the best of our knowledge, this is the
first study that explores the addressee selection in
personalized dialogue generation tasks.

(iii) We conduct extensive experiments on HLA-
Chat++ dataset, and the results have validated the
effectiveness of incorporating text knowledge and
addressee selection in improving persona consis-
tency of generated responses.

2 Related Work

2.1 Persona Consistent Dialogue Generation

Maintaining persona consistency is essential to
delivering more realistic and coherent conversa-
tions. To incorporate persona information into
the dialogue system, Li et al. (2016) first used
persona embedding to project each speaker into
a dense vector. Kottur et al. (2017) proposed a neu-
ral dialogue model that simultaneously considers
the contextual history of the speakers. However,
these two models rely heavily on data with per-
sona annotation, which are expensive and sparse.
Qian et al. (2018) defined multiple key-value pairs
to represent the personas of the speakers, includ-
ing information such as name, gender, age, and
residence, and explicitly displayed these values
in response. Zhang et al. (2018b) constructed
PERSONA-CHAT dataset and proposed to model
persona information using memory networks. On
PERSONA-CHAT dataset, Yavuz et al. (2019);
Song et al. (2019) explored the effectiveness of
copy mechanism and conditional variational en-
coder. Further researches are conducted to promote
the consistency of personas, such as a generation
network based on personas to guide knowledge se-
lection (Lian et al., 2019), a transmitter-receiver
framework to explicitly model the understanding
between speakers (Liu et al., 2020), and a multi-
stage dialogue response generation framework to
delete the words that may lead to inconsistency in
the response, then rewrite it (Song et al., 2020a) on
this basis. Majumder et al. (2020) adopted com-
mon sense databases and interpretation resources
to expand persona information. Although these
models have achieved promising results, they all
have limitations when the persona information is
incomprehensible, and incapable to learn persona
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consistent expression effectively.

2.2 Multi-party Dialogue Generation

Existing methods of building dialogue systems can
be generally categorized into studying two-party
conversations and multi-party conversations. How-
ever, the task scenario of the multi-party dialogue
system is closer to that in real life. In addition to
predicting response, selecting the addressee of an
utterance is also an important task for MPC. Ouchi
and Tsuboi (2016) first proposed the task of ad-
dressee and response selection, and Zhang et al.
(2018a) have validated the effectiveness of jointly
modeling addressee and response selection. Le
et al. (2019) proposed the who to whom (W2W)
model to solve the problem of missing and com-
pleting addressee in a dialogue history. Tan et al.
(2019) proposed the Context-Aware Thread Detec-
tion (CATD) to address the consistency of context
and input messages. For response generation, (Hu
et al., 2019) firstly tried to use a graph to model
multi-party dialogue history, and effectively used
the dialogue structure information. Liu et al. (2019)
proposed interlocutor aware contexts into recur-
rent encoder-decoder (ICRED) frameworks model,
which used three role GRUs to update the speaker
vector, and then used the speaker vector and ad-
dressee information to generate a response. Wang
et al. (2020) proposed to select responses accurately
based on tracking dynamic topic. Gururangan et al.
(2020); Gu et al. (2021b) adopted a multi-task learn-
ing method in MPC, which proves the effectiveness
of incorporating domain knowledge. However, pre-
vious MPC researches have not studied persona
information of the speakers.

3 Dataset Construction

Film and television drama scripts are a common
dataset source for dialogue system research, where
there are high-quality personas, distinctive charac-
ters, and many rounds of dialogues. We collects
30 English scripts from the website3 to construct a
multi-party dialogue dataset. Inspired by Li et al.
(2020), we employ the tropes on TVTRopes as the
personas of the characters, which are annotated by
the audiences with more representative and distinc-
tive meanings.

For the crawled script web pages, the main pre-
processing steps are as follows: (i) Use regular ex-
pressions to filter out HTML escape characters and

3http://transcripts.foreverdreaming.org/

TV dramas size characters
Alias 19,312 9
Bones 42,952 8

Charmed 25,572 8
Friends 23,520 7

GilmoreGirls 105,303 19
Merlin 13,822 6
NCIS 33,900 9

QueerAsFolk 14,123 7

Table 2: The multi-party personalized dialogue dataset

non-dialogue contents such as scenes, narration,
and background of the script, and then generate the
original dialogue dataset according to each scene
of the script; (ii) Split and screen out the speak-
ers in the script to build a multi-party dialogue
dataset; (iii) Associate the characters in the dataset
with the tropes in TVTRopes as personas. The sup-
porting characters with no persona information are
deleted. We collect the Laconic and Main user gen-
erated interpretation of tropes on TVTRopes Name-
spce4 as sentence-level and document-level text
knowledge. Sentence-level (Laconic) knowledge
briefly explains the persona tags in one sentence,
and document-level (Main) knowledge further ex-
plains the persona tags in detail through examples,
as shown in Appendix A.

Finally, we construct a new multi-party dialogue
dataset, HLA-Chat++, which has 823,204 conversa-
tions with character persona annotations. Accord-
ing to the statistics, HLA-Chat++ has 239 char-
acters in the dataset, with an average of 3,444 di-
alogues per character, and an average of 27,440
dialogues per TV dramas. Table 2 shows the exam-
ple TV dramas with data size and the number of
main characters. Only 8 TV dramas are selected
due to the space limitation.

HLA-Chat++ HLA-Chat
number of dramas 30 38

data size 823,204 1,042,647
persona source TVTropes TVTropes

persona representation persona tags persona sentences
number of

sentence-level knowledge 4,778 -
number of

document-level knowledge 4,778 -
average length of

sentence-level knowledge 7.5 -
average length of

document-level knowledge 487.7 -

Table 3: The multi-party personalized dialogue dataset

4https://tvtropes.org/pmwiki/index_report.php
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Figure 1: Framework of PersonaTKG

Compared with the original HLA-Chat, HLA-
Chat++ has a smaller number of dialogues, as
shown in Table 3. Li et al. (2020) processed the per-
sona tags in HLA-Chat into descriptive sentences in
the first person, just following the format in Zhang
et al. (2018b). On the contrary, we retrain the per-
sona tags, and collect the corresponding sentence-
level and document-level interpretation of the tags,
which can enrich the semantic meanings of these
incomprehensible personas. Besides, HLA-Chat++
pays more emphasis on the multi-party dialogue
structure, and preserves the relevant information in
the dataset.

4 Model

PersonaTKG is shown in Figure 1, which is based
on a Seq2Seq structure. The task can be formally
defined as: given contextX = {X1, X2, . . . , Xm},
where Xi denotes the utterance of the speaker, and
persona set P = {P1, P2, . . . , Pk}, where k de-
notes k speakers, P1 is the personas of the respon-
der and Pi(i > 1) is the personas of other speakers.
The goal is to generate response Y = y1y2 . . . yn
based on context and persona set, where yi denotes
the word generated in each step.

4.1 Context and Persona Encoder

In order to fully capture the information in multi-
turn context, we adopt a hierarchical encoding
strategy. The utterance encoder consists of word-
level and sentence-level encoders, both of which

are single-layer bidirectional GRU. The original
data of the utterance encoder is Xi, the word-
level encoder is responsible for encoding the ut-
terances into vectorized representation Hw =
{hw1, hw2, . . . , hwm}, which is calculated again
by the sentence-level encoder, then the output of
forward GRU and backward GRU are concate-
nated as the representation of Xi, namely Hu =
{hu1, hu2, . . . , hum}, each hui contains the text in-
formation of Xi and the information immediately
before and after Xi.

The original data of the persona encoder is the
persona Pi of the speaker, which is encoded by
single-layer bidirectional GRU to obtain the rep-
resentation Hp = {hp1, hp2, . . . , hpk}. The rep-
resentation of personas of the speakers is mainly
used for subsequent addressee selection, consider-
ing that one can not accurately judge the addressee
if it only contains persona information. If the per-
sonas of the speakers embed contextual informa-
tion, it may be helpful for addressee prediction.
Therefore, a graph convolution network is needed
to further encode the representation of utterances
and personas to aggregate information.

4.2 Graph Construction
The graph is represented as G = (V, E), which is
contracted from the utterances and persons in the
following way.

Vertexes: including utterance nodes and persona
nodes, and then utterance and persona in the dia-
logue are concatenated to represent a vertex vi ∈ V
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in G, and each vertex vi is initialized with the
cooresponding sequentially encoded feature vector
H = {hu1, hu2, . . . , hum, hp1, hp2, . . . , hpk}. We
denote this vector as the vertex feature, which will
change according to the utterances and personas of
different speakers.

Figure 2: An example of edges construction. Edges
of different speakers are marked with different colors.
Edges with arrows are one-way sides, and those without
arrows have sides in both directions.

Edges: To more fully model the context, we
establish three kinds of relationships between the
utterances and personas: (i) There is an edge be-
tween two adjacent utterances, which points from
the one in front of time to the one in back, repre-
senting the relationship of time; (ii) There is an
edge between the persona of the speaker and all the
utterances that belong to the persona of the speaker;
(iii) There is an edge between utterances that be-
long to the same speaker. The constructed edges
are shown in Figure 2.

The specific way of building edges is to number
all the utterance and persona nodes above starting
from 0 and combine the number of the source and
target nodes of an edge as the data form of an edge.
For example, if utterance node 3 belongs to the
persona of the speaker node 11, mark this edge as
[3, 11]. In addition, each node is set to have an
edge pointing to itself, which is to aggregate the
information of neighbor nodes in the graph coding
stage without losing the information of the node
itself. According to our statistics, each dialogue

graph has an average of 10.7 nodes and 24.6 edges.
The edge set E is initialed as an adjacency ma-

trix and recorded as A, the GCN of each layer is
calculated as follows:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(1)

where Ã = A+ I is the adjacency matrix with self
connection, I is the unit matrix, D̃ii =

∑
j Ãij ,

W (l) is the parameter of Layer l, σ(·) indicates the
activation function, such as ReLU(·) = max(0, ·).
Considering the small scale of the graph con-
structed by the dialogue, setting the number of
layers of GCN to 2 can make each node effectively
aggregate the information of adjacent nodes. Such
sufficient information can predict the addressee
more accurately in the subsequent process. Sim-
ilarly, the utterance node also aggregates the per-
sona information of the corresponding speaker,
which will play an important role as a memory
set in the decoding stage.

4.3 Addressee Selecting Mechanism
In multi-party dialogue, selecting the addressee
is important to generate an appropriate response.
Therefore, this paper incorporates the addressee se-
lecting module. There is no addressee label in the
dataset, and the existing methods usually can not
supervise the learning of this module. Therefore,
the end-to-end method is usually used to update the
whole model with the final loss. It is noted that the
addressee can be easily inferred from the ground
truth response. Inspired by Lian et al. (2019), the
ground truth can be regarded as a label to super-
vise the addressee selecting process in addition to
calculating the loss as the standard answer and the
generated response. Therefore, this paper adopts
the method of a posterior selection and adds a KL
divergence to the module as an additional loss dur-
ing training.

First of all, both during the training stage and
the testing stage, the standard process of calculat-
ing the addressee is the selection process based
on the attention mechanism, which is called prior
selection:

pprior = p (hp = hpi | hp1)

=
exp (hpi · hp1)∑k
j=2 exp (hpj · hp1)

(2)

where hp1 is the persona representation of the re-
sponder, as the query of prior selection attention,
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and hpi(i > 1) is the representation of personas
of other speakers in this set of conversations, here
we adopt dot product attention and softmax for nor-
malization. In the training stage, the ground truth
can be used as a label to supervise the training ad-
dressee selecting module, that is, the representation
of the response can be used as a query to calculate
the attention weight with the personas representa-
tion of other speakers, which is called posterior
selection:

pposterior = p (hp = hpi | hy)

=
exp (hpi · hy)∑k
j=2 exp (hpj · hy)

(3)

where hy is the representation of the ground truth,
as the query of posterior selection attention.

Obviously, the ideal situation is that even if there
is no standard answer, the distribution of pprior
can be as close as possible to pposterior . Therefore,
in addition to negative log likelihood (NLL) loss,
this paper also introduces KL divergence as an
auxiliary loss other than NLL loss to measure the
similarity between pprior and pposterior .The formula
of KL divergence is defined as follows:

LossKL =

k∑

i=2

p (hp = hpi | hy) logK (4)

K =
p (hp = hpi | hy)
p (hp = hpi | hp1)

(5)

In addition, the calculation formula of LossNLL is:

LossNLL = −
n∑

i=1

log p (yi | y < yi;X;P ) (6)

where yi is the word output in the current time step,
n is the length of the response. The overall loss of
PersonaTKG is:

Loss = LossNLL+LossKL (7)

Ultimately, weighted sums of attention weight
and personas representation of other speakers are
used to obtain the predictive representation of the
addressee. The formula is as follows:

haddr =
k∑

i=2

αihpi (8)

where i is accumulated from 2, αi is the value
of dimension i in pposterior (training stage) or

pprior (testing stage). Then the personas repre-
sentation of the responder and the addressee are
weighted and summed using the gating mechanism
and sent to the decoder. The calculation process is
performed as follows:

hp = αp ·Wahp1 + (1− αp) ·Wbhaddr (9)

αp = σ (V · hp1) (10)

σ(x) = Sigmoid(x) =
1

1 + exp(−x) (11)

where Wa, Wb and V are learnable parameters.

4.4 Response Decoder

The decoder is a language model that generates
a response word by word based on the context
and persona information. Let st−1 be the hid-
den state of decoder and yt−1 be the embedding
of word generated in the last time step, ht is the
semantic vector obtained by the weighted sum
of attention calculation on the memory set H =
{hu1, hu2, . . . , hum, hp1, hp2, . . . , hpk} of the en-
coder. Then the output calculation process of GRU
in the current time step is:

st = GRU([yt−1;ht] , st−1) (12)

The word generated in current time step yt is
obtained after linear transformation and softmax
normalization on hidden state st.

5 Experiments

5.1 Dataset

The experiments are conducted on our constructed
dataset HLA-Chat++. The dataset is divided into
train / valid / test set according to the proportion of
96%, 2% and 2%.

5.2 Baselines

We compared PersonaTKG with several strong
baselines. To be fair, encoders of all models are
implemented with HRED to handle multi-round
contexts.

Seq2Seq: a Seq2Seq model with attention mech-
anism (Sutskever et al., 2014).

DialogueGCN: A dialogue emotion analysis
algorithm with a graph neural network encoder
(Ghosal et al., 2019). We implement the encoder
and add a decoder for generation.
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Model PPL BLEU-1/2% Dist-1/2% Emb E/A/G% Per R/P/F1% ACC
Seq2Seq 134.013 9.51/10.57 0.79/2.53 36.05/46.65/41.64 0.02/0.14/0.04 28.3

Per-Seq2Seq 125.889 9.74/10.61 0.97/3.07 36.35/46.74/42.59 0.02/0.12/0.03 28.9

DialogGCN 127.623 9.75/11.03 0.51/1.35 36.89/45.29/42.35 0.02/0.11/0.03 28.6

Per-DialogGCN 125.866 10.55/11.91 0.90/2.95 36.64/46.23/42.23 0.01/0.12/0.02 28.8

SIRNN 119.997 10.32/11.41 0.81/2.64 36.79/48.75/43.19 0.02/0.14/0.04 28.7

Per-SIRNN 120.565 10.75/11.54 0.78/2.43 36.26/48.70/42.67 0.02/0.15/0.05 28.8

PostKS 122.626 10.59/11.37 0.87/2.19 36.68/47.13/42.86 0.02/0.14/0.03 28.9

PersonaTKG+tag 117.063 11.74/12.70 0.85/2.79 36.98/50.09/43.61 0.03/0.18/0.04 29.4

PersonaTKG+doc 114.440 12.09/13.21 1.17/4.25 37.29/51.16/44.13 0.04/0.54/0.05 29.8

PersonaTKG+sent 109.719 13.18/14.17 1.59/6.90 38.82/53.23/45.83 0.05/0.61/0.07 30.2

Table 4: Automatic evaluation results

SIRNN: A multi-party dialogue model with ad-
dressee selecting mechanism (Zhang et al., 2018a).
We implement the encoder and add a decoder for
generation.

Per-: Persona encoder is added to the above
three models for persona integration.

PostKS: A persona-based generative network
with posterior selection mechanism to guide knowl-
edge selection (Lian et al., 2019). It regards per-
sona as knowledge.

Note that we do not adopt methods such as
ALOHA (Li et al., 2020) as baselines, since our
method is not built on a pre-trained language model.
We leave this potential improvement to the future
work.

5.3 Implementation Details

The dimension of word embedding is set to 300 ini-
tialized using GloVe (Pennington et al., 2014) pre-
trained word vector and the vocabulary size is set
to 50000. The word-level, sentence-level encoders
in the hierarchical utterance encoder, and persona
encoder are single-layer bidirectional GRUs with
800 hidden units and do not share parameters. The
GCN is two-layered, and the number of input and
output channels is set to 800. In order to facili-
tate calculation and avoid tedious dimension trans-
formation, the nonlinear layer function after the
convolution of the first layer graph is ReLU, and
the Dropout Mechanism is used. The batch size is
80 and we use the Adam optimizer with an initial
learning rate of 0.0005.

5.4 Automatic Evaluation

We use a variety of automatic evaluation metrics
to comprehensively evaluate the performance of

PersonaTKG from many aspects.
PPL: perplexity of the model, the smaller PPL

score indicates a higher probability of the model
producing a real response.

BLEU-1/2: the word-overlap scores of calcu-
lating unigrams and bigrams against the ground
truth.

Dist-1/2: the proportions of distinct unigrams
and bigrams in the generated responses.

Embedding-based metrics: Emb E calculates
the semantic similarity between the generated re-
sponse and the ground truth by averaging word
embeddings. Emb A and Emb G calculate the se-
mantic similarity between the generated response
and the ground truth based on average and greedy
matching, respectively.

ACC: the accuracy between the ground truth and
generated response.

Per R/P/F1: the uni-gram Recall/Precision/F1
scores between the generated response and the per-
sona set (Lian et al., 2019). Specifically, the set
of non-stopwords in the generated response is rep-
resented by WY , and in predefined persona texts
are represented by WP , the calculation formulas of
Per R and Per P are as follows:

|WY ∩WP |
|WP |

and
|WY ∩WP |
|WY |

(13)

and Per F1=2 ( Per R · Per P ) /( Per R + Per P ).
Table 4 shows the results of the automatic evalu-

ation, with the best results in bold. On various au-
tomatic evaluation metrics, PersonaTKG achieves
the optimum compared to the baselines.

It was found that the SIRNN group increases the
most, we conjecture that the addressee selecting
mechanism of SIRNN plays an important role. By
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Fluency Persona consistency Semantic coherence

Win Tie Lose Win Tie Lose Win Tie Lose

PersonaTKG+sent vs PersonaTKG+tag 64 92 44 104 68 28 92 72 36
PersonaTKG+sent vs SIRNN 69 89 42 125 49 26 109 73 18

Table 5: Human evaluation results

Model PPL BLEU-1/2% Dist-1/2% Emb E/A/G% Per R/P/F1% ACC

PersonaTKG+sent 109.719 13.18/14.17 1.59/6.90 38.82/53.23/45.83 0.05/0.61/0.07 30.2

w/o GCN 118.502 10.70/11.86 1.22/3.35 36.75/49.13/43.47 0.02/0.40/0.04 28.9

w/o AS 117.977 11.15/12.53 1.06/2.07 37.15/50.27/43.48 0.02/0.34/0.04 29.1

Table 6: Ablation experiments

predicting the addressee in the encoding stage, a
sensitive response to the addressee can be gener-
ated according to the given persona information.
The improvement of PostKS relative to Seq2Seq
proves the effectiveness of a posterior selection
mechanism.

DialogGCN and PersonaTKG realize different
graph encoding methods, which have a great im-
provement in BLEU compared with the Seq2Seq
model and prove the effectiveness of graph struc-
ture encoding. Compared to DialogueGCN, Person-
aTKG in the persona related metrics, word embed-
ding metrics, accuracy, and other metrics get higher
scores. It shows that considering the construction
of various types of nodes in the context, we can ex-
tract more sufficient information than simply using
the composition of sentence nodes and using the
inherent connection between nodes as an edge is
a more reasonable choice. The above analysis and
experimental results show that PersonaTKG (Per-
sonaTKG + tag) combined with addressee selecting
mechanism and specific graph encoding achieves
better results.

In addition, after adding two kinds of persona
explanations, all metrics are improved compared
with only the persona tag model, especially the
Per P/R/F1, which show that the introduction of
unstructured persona text knowledge can improve
the persona consistency in response. However, the
effect of adding document-level text knowledge is
not good as adding sentence-level text knowledge.
We conjecture that document-level text knowledge
is too complex and noise is added. We also con-
ducted the t-test on the models’ performance. The
results show that our PersonaTKG+sent model sig-
nificantly outperforms the other baseline models
with p<0.01.

5.5 Human Evaluation

To better evaluate the quality of the generated re-
sponses, we performed human evaluation. 200
generated responses were randomly sampled from
the test set to 5 graduate students majoring in di-
alogue system, and compared with two relatively
strong baselines in automatic evaluation from the
following aspects:

Fluency: The generated response is smooth and
free of syntax errors.

Persona consistency: The generated response
is consistent with the persona of the speaker.

Semantic coherence: The generated response
is semantically coherent to the context.

For each aspect, the evaluator can choose Win,
Tie, and Lose. Win outperformed the other, Lose
instead, and Tie represents both tied. Based on
the results in Table 5, PersonaTKG significantly
outperforms other baselines in all subjective eval-
uation metrics, indicating that PersonaTKG can
extract useful information from the context with a
wide range of information and complex structure.

5.6 Ablation Experiments

In order to investigate the effect of feature extrac-
tion of graph convolution network and the influence
of addressee selecting mechanism on response gen-
eration, ablation experiments are carried out on
these two modules.

w/o GCN: The GCN encoding process was re-
moved.

w/o AS: The addressee selecting mechanism is
removed and decoded directly with the persona of
the responder.

The results are shown in Table 6. It can be ob-
served that after removing the graph coding and ad-
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context (Doorbell rings. Sydney takes the pail of candy, and answers. Dixon, his wife Diane, and two
kids in costumes stand there.)
Kids: Trick or treat!
Sydney: Hey, guys! There’s more candy in there. Come on in!
Diane: Good to see you.
Sydney: Good to see you.
Dixon: Sydney, can I talk to you for a second?
Sydney: What’s up?
Dixon: Sydney, we’ve been working together a lot of years. I trust you.

Persona Heroic BSOD
They Do
Too Dumb To Live
Took ALevel In Badass
Vitriolic Best Buds
Ho Yay
(Due to space constraints, only persona tags are given, sentence-level and document-level text
knowledge are not given.)

Seq2Seq i don’t know.
Per-Seq2Seq i don’t know.
DialogGCN i don’t know.i don’t know.

Per-DialogGCN i don’t know.
SIRNN Sydney:what’s meaning?

Per-SIRNN Sydney:what?
PostKS me too.

PersonaTKG+tag Sydney: i know.
PersonaTKG+doc Sydney: i know, i trust you, too.
PersonaTKG+sent Sydney: i know, i trust you, too.

Table 7: Case study.

dressee selecting mechanism, all metrics decrease
significantly. After removing the graph coding
module, BLEU decreases significantly, indicating
that graph coding is helpful for the fluency of gen-
erated responses. After removing the addressee se-
lecting mechanism, Distinct decreases significantly,
indicating that the addressee selecting mechanism
has a great impact on the diversity of generated re-
sponses. In addition, we have conducted the t-test
on the models’ performance. The results show that
our PersonaTKG+sent model significantly outper-
forms the ablated models with p<0.01.

5.7 Case Study

Table 7 shows an example of responses generated
by different models along with the input message
and persona set. It can be seen that simple models
are difficult to model complex context, so Seq2Seq
and DialogueGCN all generate a general reply "i
don’t know.". SIRNN with addressee selecting
mechanism can predict the next speaker Sydney,
Postks with a posterior mechanism can generate a
contextual response "me too.".

PersonaTKG can not only predict the addressee
but also generate a contextual response. Af-
ter adding sentence-level and document-level text
knowledge, the generated response "i trust you,
too." is consistent with Sydney’s persona Vitriolic

Best Buds. Sydeny trust Dixon because she regards
him as a deep down friend. It is proved that Person-
aTKG improves the consistency between responses
and personas of the speakers compared with other
baselines.

6 Conclusion

In this paper, we first propose to use unstructured
text knowledge in MPC to explain the incompre-
hensive persona tags. We construct a multi-party
personalized dialogue dataset HLA-Chat++ based
on English drama scripts and propose a model Per-
sonaTKG with addressee selecting mechanism that
integrates personas, dialogue utterances, and exter-
nal text knowledge in a unified graph. The results
show that the automatic and human evaluation are
superior than other baselines, which demonstrate
the effectiveness of our methods in improving per-
sona consistency.
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Figure 3: Three personas of Syndey in Alias

A Persona Explanation for Visualization

As shown in in Figure 3, three persona tags Too
Dumb To Live, Vitriolic Best Buds and Shipper On
Deck of Syndey in Alias are given, and explain
them on sentence level and document level.
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Abstract

Semantic parsing (SP) is a core component
of modern virtual assistants like Google As-
sistant and Amazon Alexa. While sequence-
to-sequence based auto-regressive (AR) ap-
proaches are common for conversational SP,
recent studies (Shrivastava et al., 2021) em-
ploy non-autoregressive (NAR) decoders and
reduce inference latency while maintaining
competitive parsing quality. However, a ma-
jor drawback of NAR decoders is the difficulty
of generating top-k (i.e., k-best) outputs with
approaches such as beam search. To address
this challenge, we propose a novel NAR seman-
tic parser that introduces intent conditioning
on the decoder. Inspired by the traditional in-
tent and slot tagging parsers, we decouple the
top-level intent prediction from the rest of a
parse. As the top-level intent largely governs
the syntax and semantics of a parse, the in-
tent conditioning allows the model to better
control beam search and improves the quality
and diversity of top-k outputs. We introduce a
hybrid teacher-forcing approach to avoid train-
ing and inference mismatch. We evaluate the
proposed NAR on conversational SP datasets,
TOP & TOPv2. Like the existing NAR mod-
els, we maintain the O(1) decoding time com-
plexity while generating more diverse outputs
and improving top-3 exact match (EM) by 2.4
points. In comparison with AR models, our
model speeds up beam search inference by 6.7
times on CPU with competitive top-k EM.

1 Introduction

Neural sequence models are widely used for the
task of conversational semantic parsing, which
converts natural language utterances to machine-
understandable meaning representations. Recent
approaches (Chen et al., 2020; Rongali et al., 2020;
Lialin et al., 2020; Aghajanyan et al., 2020a; Shri-
vastava et al., 2021) combine Transformer-based se-
quence models (Vaswani et al., 2017; Devlin et al.,
2019) and Pointer Generator Networks (Vinyals

Query: what is going on this weekend?

Label:
[in:get_event [sl:date_time this weekend
] ]

(Failure 1: repeated tokens)
[in:get_event [sl:date_time this weekend
] [sl:date_time this weekend ] ]
(Parse with the repeated slot sl:data_time
and leaf nodes this and weekend)

(Failure 2: invalid syntax)
[in:get_event [sl:date_time
(Incomplete parse; missing ‘] ]’)

Table 1: Examples of possible failures from the limited
beam search of the existing NAR semantic parsers.

et al., 2015; See et al., 2017). A vast majority of
semantic parsing approaches (Gupta et al., 2018;
Chen et al., 2020; Rongali et al., 2020; Lialin et al.,
2020; Aghajanyan et al., 2020a; Yin et al., 2021)
employ autoregressive (AR) decoders to generate
structured output frames for the quality of output
parses. During the AR decoding, output tokens
are generated sequentially, conditioned on all pre-
viously generated tokens. As a result, the decoding
time (i.e. inference latency) increases linearly with
the decoding length. This not only limits the ca-
pacity to accommodate larger language models but
may also degrade the user experience of intelligent
conversational assistants (e.g. Google Assistant,
Amazon Alexa) due to the high inference latency.

On the contrary, non-autoregressive (NAR) de-
coders are capable of parallel decoding and thus
allow much faster inference. Compared to AR de-
coders, which perform O(n) decoding steps, the
NAR decoding is typically achieved in either O(1)
(Babu et al., 2021; Shrivastava et al., 2021) or
O(log(n)) (Zhu et al., 2020) steps. A recent study
(Babu et al., 2021) built NAR parsers and reduced
the latency up to 81% compared to AR parsers.
Another study by Shrivastava et al. (2021) pro-
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posed a NAR semantic parser called Span Pointer
Network and cut the latency by 8.5-10x on CPU
while achieving comparable performance to their
AR benchmarks. All these studies suggest that the
NAR decoders have significant latency benefits.

Although the recent NAR semantic parsers have
decreased the performance gap from AR parsers
on the exact match metric, one of the main lim-
itations of NAR models still remain unsolved:
beam search and top-k outputs. AR models lever-
age beam search algorithms (Wiseman and Rush,
2016), which are especially effective at producing
top-k outputs (Wiseman and Rush, 2016; Gupta
et al., 2018). This is possible since the beam search
allows AR models to dynamically sort out less-
probable candidate parses and adjust their decod-
ing lengths. As a result, AR models are capable of
generating diverse high-quality output parses.

On the other hand, the existing NAR parsers
(Babu et al., 2021; Shrivastava et al., 2021) cannot
employ the AR beam search as the output tokens
of the NAR parsers are generated independently
from each other. Instead, the existing NAR parsers
perform a beam search by generating k candidate
frame lengths. For each frame length, a single parse
is produced, resulting in a total of k parses.

However, we find that the existing NAR beam
search tends to produce duplicates of the most prob-
able output parse. As exemplified in Table 1, top-k
beam outputs often include outputs with repeated
tokens and parses with invalid syntax (e.g., trun-
cated or extended versions of the most-probable
parse) rather than diverse output parses.

The ability to generate diverse top-k parses is
important for modern conversational assistants. Ta-
ble 2 presents an example that demonstrates how a
query may correspond to different parses depend-
ing on the context. The diverse semantic parses
can be leveraged in a downstream component that
has more contextual information. An additional
re-ranking module can also be employed to select
the most relevant semantic parse.

This work focuses on improving the quality of
top-k outputs of NAR conversational semantic pars-
ing. Our idea is to leverage the fact that the top-
level intent of a semantic parse mainly determines
the syntax and semantics of the parse. This is the
key driving point of the classic intent classifica-
tion and slot tagging (Liu and Lane, 2016) based
parsers, which were widely used traditional seman-
tic parsers. We build our model upon the existing

Query: avoid bridges on my route

Parses from the Proposed NAR
(1a) [in:update_directions [sl:path_avoid [in:get

_location [sl:category_location bridges]]]]
(2a) [in:get_directions [sl:path_avoid [in:get

_location [sl:category_location bridges]]]]

Parses from the Baseline NAR
(1b) [in:update_directions [sl:path_avoid [in:get

_location [sl:category_location bridges]]]]
(2b) [in:update_directions [sl:path_avoid [in:get

_location [sl:category_location bridges

Table 2: Examples of beam outputs. The parses pro-
duced by the proposed NAR are both valid depending
on the context. If the query was made after the user
already had set a path, parse 1a is more relevant, else 2a.
In contrast, the baseline NAR only produced one valid
parse. Parse 2b is an invalid duplicate of parse 1b.

NAR (i.e., frame length conditioned NAR), but de-
couple the prediction of the top-level intent from
the output. We leverage the conditional dependen-
cies of the frame length and parse on the top-level
intent for diverse top-k outputs.

We evaluate the proposed NAR model on two
datasets: TOP (Gupta et al., 2018) and TOPv2
(Chen et al., 2020) and demonstrate that we fur-
ther close the gap between AR and NAR parsers.
Most importantly, we show that the intent condi-
tioning improves the quality and diversity of the
top-k parses and the total inference time of our
NAR beam search is 6.7x times shorter than the
AR baseline on CPU.

2 Related Work

2.1 Non-autoregressive Semantic Parsing

Non-autoregressive sequence models have been
an active research area across different fields of
natural language processing for their fast inference
speeds. While various designs of NAR decoders
exist, recent works in machine translation utilize
models with iterative refinements (Lee et al., 2018;
Ghazvininejad et al., 2019, 2020), insertion-based
models (Stern et al., 2019), and latent alignment
methods (Libovický and Helcl, 2018; Chan et al.,
2020; Saharia et al., 2020).

The task of semantic parsing (SP) is similar to
the machine translation task as they both trans-
late input sentences from one representation to an-
other. For this reason, recent studies in SP have
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adopted modeling techniques from machine transla-
tion. Zhu et al. (2020) leveraged the insertion-based
seq2seq models for NAR semantic parsing and re-
duced the decoding time from O(n) to O(log(n))
while matching the performance of AR models.
Babu et al. (2021); Shrivastava et al. (2021) applied
an iterative refinement method Mask-Predict to se-
mantic parsing and brought the time complexity fur-
ther down toO(1) while performing comparably to
the baseline AR models. As opposed to the original
Mask-Predict model that performs multiple itera-
tions of re-masking and prediction (Ghazvininejad
et al., 2019), they only perform a single iteration
of the masking and output prediction as they claim
that task-oriented SP does not benefit much from
iterative refinements (Babu et al., 2021; Shrivastava
et al., 2021). In addition to the recent sequence-to-
sequence NAR semantic parsers, traditional intent
and slot filling model (Mesnil et al., 2014) is an-
other approach with non-autoregressive decoding.

2.2 Baseline NAR
Span Pointer Network (Shrivastava et al., 2021),
which is one of the two recent works that leveraged
the mask-predict algorithm, showed the competi-
tive performance to the AR parsers while signifi-
cantly reducing their latency. For this reason, we
utilize Span Pointer Network as a basis of our work
and accordingly refer to it as baseline NAR to dis-
tinguish the NAR semantic parser we propose. It
should be noted that we replicated Span Pointer
Network as it is not publicly available.

The baseline NAR is built with a pre-trained
encoder, a frame length module, and a Transformer
decoder. The encoder is a language model such as
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019) that takes input queries x and outputs their
encoded representations e.

e1:l = Encoder(x1:l), (1)

where l indicates the length of the source (i.e.,
input query). The frame length module takes the
encoded representations and predicts the length
of the frame (i.e., target parse) n followed by the
generation of n mask tokens.

n = FrameLengthModule(e1:l).

[MASK]1:n = MaskCreation(n).
(2)

The transformer decoder takes the N mask to-
kens as inputs and produce h for each token in the
masked sequence.

Figure 1: The proposed model architecture. By de-
coupling the top-level intent prediction from the output
prediction, we perform conditional generation of the
frame length and parse upon the top-level intent.

h1:n = Decoder([MASK]1:n; e1:l). (3)

Lastly, the pointer-generator mapping layer is
used to convert h to the target frame y as follows.

y1:n = PTR(h1:n; e1:l), (4)

where yk is either a token from the target vocab
that consists of parse symbols (e.g., intents & slots)
or copy of a source token. The output tokens are
generated in parallel as they are conditionally inde-
pendent given the source and frame length.

2.3 Beam search for AR vs baseline NAR
AR decoders produce multiple candidate output
parses per source by employing the beam search
algorithm (Wiseman and Rush, 2016). During the
beam search with width k, the k most probable
candidates are kept at each decoding step and less
probable candidates are sorted out. The decoding
process finishes when a special “[END]” token is
encountered. For a decoding length n, the score of
an AR parse is computed as follows.

SAR(y) = p(y|x) =
n∏

j=1

p(yj |y1:j−1, x). (5)

Since the AR decoders consider multiple can-
didate tokens yj at each decoding step, they can
generate a large number of unique parses.

In comparison, the baseline NAR only produces
a single output parse per frame length. The baseline
NAR mimics the beam search by generating top-
k frame lengths, which results in k outputs. The
output parse is scored using the joint probability of
the frame length and output parse as follows.
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SNAR,baseline(y) = p(y, n|x) =

p(y|n, x) · p(n|x) =
n∏

j=1

p(yj |n, x) · p(n|x),
(6)

where SNAR,baseline(y) denotes the score of the
baseline NAR output. p(y|n, x) is obtained using
the conditional independence of the output tokens
given the frame length n and source x.

3 Proposed Approach

To mitigate the aforementioned limitation of the
baseline NAR, we propose Intent-conditioned Non-
autoregressive Neural Semantic Parser. Our ap-
proach is motivated by traditional semantic parsers
such as Liu and Lane (2016), which performs an
intent classification followed by slot tagging. An-
other motivation comes from an observation that
the top-level intent of the parse largely governs the
syntax and semantics of the rest of the parse.

Our idea is to decouple the top-level intent pre-
diction from the output prediction as shown in Fig-
ure 1. This builds explicit dependencies of the
frame length and the rest of the frame on the top-
level intent. As a result, the joint probability of
output and frame length is expressed as follows.

p(y, n|x) = p(y2:n|n, y1, x) · p(n|y1, x) · p(y1|x).
(7)

This facilitates effective conditional generation
of the length and output, while keeping the decod-
ing time complexity as O(1); the number of decod-
ing steps does not scale with the output length.

3.1 Intent Conditioning
The proposed NAR utilizes a pre-trained language
model to obtain encoded source representation e.
Then, it performs the top-level intent prediction,
which is formulated as a multiclass classification
of the size of the dimensionality of intent vocab.

logits(y1) = IntentModule(e1:l), (8)

where y1 refers to the top-level intent of the se-
mantic parse or the first token of the parse. As
the top-level intent prediction is decoupled, the in-
tent module works with a smaller vocabulary size.
Compared to the output vocabulary that combines
a target and copy index vocabulary, the intent vo-
cabulary is approximately 4 times smaller with a
source length 32 on TOP dataset. We use a ran-
domly initialized Transformer as the intent module.

We use the logits of the top-level intent, as op-
posed to the discrete intent class variable, as the
inputs to all subsequent modules. This is because
the dense logits convey information about the un-
certainty of the intent prediction for each intent
class and help the subsequent modules to condition
on richer information. We found that this resulted
in better performance than the model conditioned
on the 1-dimensional discrete intent.

Subsequent to the top-level intent prediction, the
frame length module takes the logits of the intent
y1 and produces the decoding length followed by
the creation of mask tokens. After that, the initial
mask tokens together with the frame length pass
through a positional encoding layer to compute the
encoded mask tokens, [MASK]2:n.

n− 1 = FrameLengthModule(logits(y1); e1:l),

[MASK]2:n = PosEncoding(MaskCreation, n).
(9)

The rest of the frame is generated using parallel
decoding followed by the source token mapping
via the pointer-generator mapping layer.

h2:n = Decoder([MASK]2:n; logits(y1), e1:l),

y2:n = PTR(h2:n; e1:l), y1:n = cat(y1, y2:n).
(10)

Finally, the output parse is obtained by concate-
nating the top-level intent and rest of the frame.

3.2 Training Objective of the Proposed NAR
The loss is a weighted sum of top-level intent clas-
sification loss Lint, frame length classification loss
Llen, and output loss Lout as follows.

L = Lout + λlen · Llen + λint · Lint. (11)

We jointly optimize the three loss terms and em-
ploy label smoothing (LS) (Szegedy et al., 2016)
as a regularizer to penalize overconfident predic-
tions by computing negative log-likelihood (NLL)
between the smoothed one-hot labels and predic-
tions. That is, Lint = NLL(LS(y1,label), y1,pred),
Llen = NLL(LS(nlabel), npred), and Lout =
NLL(LS(y2:n,label), y2:n,pred).

3.3 Beam Search with the Proposed NAR
The proposed intent-conditioned NAR produces
multiple output parses per source via the sequential
conditioning on the top-level intent and length. Pre-
cisely, the model first computes top-k1 top-level
intents. For each top-level intent, the length model
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outputs top-k2 frame lengths. As a result, k1 · k2
pairs of top-level intents and lengths are produced.
Finally, the decoder generates a single parse per
pair, yielding a total of k1 · k2 output parses.

The proposed NAR performs a single decoder
pass regardless of the beam size, k1 · k2. This is
possible as we cast the k1 · k2 pairs as the batch
dimension. As a result, the time complexity of the
beam search remains constant, to the extent of the
memory capacity. The memory increases linearly
to the beam size.

The intent conditioning provides explicit control
of the top-level intents via the selection of top-k1
unique intents. It also builds dependencies of the
frame length and output on the top-level intents.
We find that these help the model to improve diver-
sity and quality of top-k output parses. To further
validate the hypothesis, we devise two experiments
to (1) identify the potential (i.e., upper limit of the
accuracy) of the proposed NAR beam search and
(2) examine the diversity and quality of the output
parses compared to the baseline NAR beam search.

3.4 Hybrid Teacher Forcing

During our initial attempts to inspect the proposed
model, we discovered that the inference perfor-
mance is unstable. This was due to a discrepancy
in the computation of the top-level intent during the
training and inference. Recall that we designed the
outputs of the top-level intent module to be logits
(see Equation 8), as opposed to a one-dimensional
or one-hot representation. The idea is to deliver
richer information to downstream modules (e.g.,
length module and decoder). While we observed
that this idea improves the exact match for the pro-
posed NAR architecture, it makes the inference
unstable. This was because we needed to sample
the top-level intents, as (smoothed) one-hot vectors,
and convert them back to the logits. Conversely, in
the training, we do not sample top-level intents and
instead use the direct outputs (dense logits) from
the top-level intent module.

We first attempted to resolve the problem with
teacher-forcing of the top-level intents. While this
stabilized the inference, the training became unsta-
ble due to sparsity of the teacher logits and mis-
match between the model and teacher intent logits.

We address this problem by leveraging a sam-
pling strategy depicted in Figure 2. The idea is to
uniformly sample logits from a pair of teacher and
model logits as follows.

Figure 2: The computation of the top-level intent. (a)
During training via naive teacher forcing, label intent
logits are fed to the length module and decoder. (b) In
the inference, top-k intents are sampled from the model
logits and fed to the other modules. (c) Hybrid teacher-
forcing uses both label and model logits for the training.

logits(y1) ∼ U(logits(y1,label), logits(y1,model)).
(12)

This essentially exposes the model, during the
training, to the hidden space where the intents are
sampled at the inference time. Without the hybrid
teacher-forcing, the inference-time hidden space
may not be well explored during the training, thus
becomes source of instability.

We name this strategy as hybrid teacher forcing
to reflect that the model leverages both teacher and
model top-level intent logits. This sampling tech-
nique may be seen as a non-autoregressive variant
of the scheduled sampling (Bengio et al., 2015).
While the proposed model architecture is respon-
sible for the performance improvement, the hy-
brid teacher-forcing technique helped our model to
achieve the improvement by stabilizing the training
and inference.

3.5 Scoring Beam Search Outputs

A scoring method is used to select the top-k parses
from the k1 · k2 pairs. We tested three methods.
The first method S1 uses the joint log probability of
the top-level intent and frame length as the score.

S1 = log(p(n, y1|x)) = log(p(n|y1, x) · p(y1|x)).
(13)

The second method S2 uses the joint log proba-
bility of the output, length, and top-level intent.
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Figure 3: Decoupled representation of the semantic
parse for a query “How long is my drive to Houston?”.

S2 = log(p(y1:n, n|x)) =
log
(
p(y2:n|n, y1, x) · p(n|y1, x) · p(y1|x)

)
.

(14)

The last scoring method S3 combines the joint
probability p(y1:n, n|x) and a length penalty.

lp(y) = ((5 + l)/6)α,

S3 = S2(y)/lp(y),
(15)

where lp is the length penalty (Wu et al., 2016).
Depending on k1, k2, and scoring method, the

top-k outputs may consist of parses with multiple
distinct lengths and intents or parses with a single
intent with multiple lengths.

3.6 Semantic Parse Representation

We represent semantic parses using the decoupled
tree representation (Aghajanyan et al., 2020a) that
is an extension of the compositional tree representa-
tion (Gupta et al., 2018). An example is depicted in
Figure 3. Likewise, another query “What is happen-
ing in Boston on New Year’s Eve” is semantically
parsed into “[in:get_event [sl:location Boston ]
[sl:date_time on New Year’s Eve ] ]”.

An example of the decoupled tree representation
is Index form that replaces the copy tokens with the
indices to the corresponding source tokens. In this
sense, the above semantic parse is represented as
“[in:get_event [sl:location 4 ] [sl:date_time 5 6 7 8
] ]”. Together with the pointer network, this signif-
icantly reduces the size of output vocabulary (Ron-
gali et al., 2020). Another representation is Span
form introduced in (Shrivastava et al., 2021). As
opposed to specifying all indices of spans of copy
tokens, the span form uses the start and end indices
of the spans. That is, “[in:get_event [sl:location
4 4 ] [sl:date_time 5 8 ] ]”. The benefits of the
span form include shorter target lengths and fixed
number of leaf nodes that helps decoupling the syn-
tax from the semantics. In addition, the number of
valid frame length classes are halved as the frame
lengths of parses in the span form are always even.

4 Experiments

4.1 Datasets

To quantify the benefits of our NAR parsers over
the baseline NAR, we utilize two conversational
semantic parsing datasets. The first dataset is TOP
(Task Oriented Parsing) (Gupta et al., 2018), a col-
lection of human-generated queries in English and
the corresponding semantic parses that are repre-
sented as hierarchical trees. Another public dataset
we explore is TOPv2 (Chen et al., 2020), which is
an extension of TOP with six more domains.

4.2 Evaluation Metrics

We mainly utilize exact match (EM) to evaluate
quality of both greedy decoding and beam decoding
output. EM is defined as the percentage of queries
whose label parses are correctly predicted.

Inference time is the metric we use to quantify
the latency benefit of our model. We measure the
model inference time on a TPU (Jouppi et al., 2017)
from the Google Cloud TPUv2, a Nvidia Quadro
P1000 GPU, and a CPU of the Intel Cascade Lake
CPU platform with 8GB RAM. All measurements
were obtained using the same machine on the same
process. We used batch size 1 and computed la-
tency on 1000 examples from the val set of the
TOP dataset to reduce measurement noise and min-
imize the variance. We report per-example average
latencies of these runs.

In addition, diversity of the output parses is com-
puted to quantify the capability of the proposed
NAR approach at producing distinct top-k outputs.
We mainly compute two metrics: (1) number of
unique top-level intents in top-k output parses and
(2) the distinct n-grams (Li et al., 2016), which
are commonly used diversity metrics in natural lan-
guage processing (Vijayakumar et al., 2018; Xu
et al., 2018). Specifically, we compute percentage
of distinct n-grams by counting unique n-grams
in top-k outputs, dividing the counts by the total
number of output tokens, and scaling it by 100.

4.3 Implementation details

4.3.1 Encoder
We use pre-trained BERTBASE (L12/H768) as the
encoders for all AR, baseline NAR, and proposed
NAR for the experiments. We use uncased versions
of them along with lowercased datasets as they
generally performed better than the cased models
with cased datasets. We leave it to future work to
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quantify the performance with other pre-trained lan-
guage models such as RoBERTa (Liu et al., 2019).

4.3.2 Decoder
We primarily compare the performances of two AR
baseline decoders, the baseline NAR decoder, and
the proposed NAR decoder. The two AR decoders
are identical except that one is trained on the label
parses represented in the index form and the other
in the span form. All NAR decoders were trained
on the label parses in the span form. We used the
same decoder architecture for all models across
all experiments. As discussed earlier, the baseline
NAR is a replication of the NAR model proposed
by Shrivastava et al. (2021). Specifically, we use
the vanilla version that does not utilize the R3F loss
(Aghajanyan et al., 2020b).

Unlike Shrivastava et al. (2021) and Babu et al.
(2021) that use an MLP or CNN length module,
our frame length module is a randomly initialized
Transformer decoder; we found that it performs
better as the attention layers perform more com-
plex weighing on the encoder output. We used
the same length module for both baseline and pro-
posed NAR models. Similarly, we use a randomly
initialized Transformer decoder for the top-level
intent prediction. We point out that we use two sep-
arate Transformers, one for the top-level intent, the
other for the frame length module, as opposed to
a shared Transformer. Further details of the model
parameters are described in the appendix.

4.3.3 Hyperparameters
We observed that the ratio of the loss terms is impor-
tant. In general, higher top-level intent penalty and
moderate frame length penalty resulted in better ac-
curacy. We use the hybrid teacher forcing to train
the proposed NAR for the experiments presented
in this paper. We trained the models using Adam
optimizer (Kingma and Ba, 2014) with exponen-
tial learning rate decay. Additionally, we use 1000
learning rate warmup steps. We also apply dropout
to the source embeddings and the Transformer de-
coder for better generalization. The details of the
parameters are described in the appendix.

5 Results

We show that the proposed intent-conditioned NAR
further closes the gap between AR and NAR SP.
Most importantly, our model greatly improves the
quality of top-k output parses while maintaining
the O(1) decoding time of the baseline NAR.

Model
Latency EM

TPU GPU CPU TOPv1 TOPv2

Base.NAR 1.00x 1.00x 1.00x 82.56 84.86
Prop.NAR 1.01x 1.11x 1.09x 83.11 85.22

AR, index 2.23x 11.01x 4.75x 83.43 85.40
AR, span 2.26x 11.01x 4.58x 83.40 85.56

Table 3: Greedy decoding results with BERT encoder.
Latency numbers are measured with TOPv1 dataset and
relative to the baseline NAR latency on TPU.

We first present the greedy decoding results. We
then investigate the upper-bound beam search per-
formance of the baseline and proposed NAR. Next,
we share the beam search results that quantify the
quality and diversity of top-k output parses. Lastly,
we share the results of the comparison of various
beam scoring methods. We point out that we used
the identical encoder & decoder architectures and
model parameters for all AR & NAR models. In
addition, the identical frame length module is used
for both baseline and proposed NAR models.

5.1 Greedy Decoding

Table 3 presents the greedy decoding results. At
each decoding step of AR models, the most prob-
able token is selected. This repeats until an END
token is produced. In NAR greedy decoding, beam
width of 1 is used for both frame length and top-
level intent. No scoring method is used.

The results indicate that our model improves the
performance of baseline NAR by 0.4-0.5 EM while
matching the latency of the prior NAR approach.
Compared to AR baselines, our model cuts the
greedy decoding inference time (i.e., latency of
the semantic parser including both encoder and
decoder) by 2.2x on TPU, 10x on GPU, and 4.2-
4.4x on CPU.

5.2 Potential Impact of Intent Conditioning
for Beam Search

We designed an experiment to investigate the po-
tential benefits of the proposed beam search. We
aimed to empirically quantify the upper bound of
the beam search performance of the baseline NAR
and our intent-conditioned NAR. In the experiment,
we first trained the baseline and proposed NAR
parsers, then fed the oracle (i.e., gold) frame length
to the baseline NAR or the oracle top-level intent to
the proposed NAR during the inference. To ensure
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Models Oracle EM

Variants of the baseline NAR

Shallow decoder 83.34
Shallow decoder, Label smoothing 82.57
Deep decoder 83.73
Deep decoder, Label smoothing 83.03

Best of the baseline NAR 83.73
Variants of the proposed NAR

Shallow decoder 86.22
Shallow decoder, Label smoothing 86.40
Deep decoder 86.89
Deep decoder, Label smoothing 85.66

Best of the proposed NAR 86.89

Table 4: Empirical upper-bound of beam search with
NARs. To obtain the oracle EMs, we feed the gold frame
length for the baseline NARs in the inference. Likewise,
we use the gold top-level intent for the proposed NARs.

validity of the results, we ran the experiments with
different model configurations.

As shown in Table 4, the proposed NAR con-
sistently scored higher oracle EM across various
model configurations. It should be noted that the
proposed NARs only use the gold top-level intent
(i.e., the gold length is not used for the inference
with the proposed NARs). Table 5 confirms these
results and shows that our NAR performs more
effective beam-coding and achieves higher exact
match for the top-k output.

5.3 Beam search

In table 5, we report the beam search results on
TOP dataset as top-k EM for k = 1, 2, 3. If the
label parse matches with any of the top-k output
parses, it counts towards the top-k EM. We also
report top-level intent match (IM) percents. The
top-k parses are selected from the k1 · k2 beam
search outputs using the scoring method 3 (Equa-
tion 15). We used the same k1 · k2 for the fair
comparison. Specifically, we used k2 = 25 for
the baseline NAR and k1 = 25, k2 = 1 for our
NAR as there exist 25 distinct length classes and
25 distinct intent classes in TOP dataset. For the
proposed NAR, we observed that a higher k2 has
minor impact on top-k EMs, compared to a higher
k1. We note that the hybrid teacher forcing (Equa-
tion 12) was used for the training and helped the
models achieve consistent test set accuracy.

The results demonstrate a large gap between AR
and the existing NAR models in top-k outputs. No-
tably, the top-3 EM from the existing NAR model
is outperformed by the baseline AR by 3.5 points.
Secondly, the proposed NAR outperforms base-
line NAR in top-3 EM by 2.4 and top-3 IM by 2.8
points. Third, the EM and IM gaps between the
proposed and baseline NAR widen as k increases.
Lastly, we show that the proposed NAR reduces the
performance gap from the autoregressive models.
The inference time of our NAR beam search is 2.5x
times shorter on TPU, 8.4x times shorter on GPU,
and 6.7x times shorter on CPU. Our AR baselines
manage parallel compute loads better than NAR
models and thus result in smaller latency gaps on
TPU.

Note that a parse can have more than 1 intent
(e.g., the parses shown in Table 2). In this regard,
we report the total intent prediction accuracy on
top of the top-level intent match (IM) as follows.
The intent prediction accuracy with top-1 predic-
tion is 93.09 (baseline NAR), 93.25 (ours), 93.15
(AR, index form), 93.65 (AR, span form). The
intent prediction accuracy with top-3 predictions
are 94.09 (baseline NAR), 95.68 (ours), 95.17 (AR,
index form), 95.33 (AR, span form). While base-
line NAR only gained 1.00% intent accuracy im-
provement from top-1 to top-3, the proposed NAR
gained 2.43% improvements. This agrees with the
EM improvements that our model offers.

5.4 Diversity

Table 6 elaborates on the diversity of the output
parses with the baseline and proposed NAR mod-
els. Specifically, we compute their average num-
bers of unique top-level intents and distinct n-gram
(Li et al., 2016) percentages in top-3 output parses.
We find that top-k parses of the proposed NAR out-
performs the baseline NAR in all diversity metrics.

We observed that the baseline NAR beam search
often duplicates the most probable parse with re-
peated tokens and/or invalid syntax. This suggests
that the frame length conditioning alone is not ef-
fective at producing top-k outputs (see Table 1 and
2 for examples). Table 6 quantitatively confirms the
observation with lower sentence-wise and corpus-
wise distinct n-gram scores of the baseline NAR,
compared to the proposed NAR.
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Model
Latency EM IM

TPU GPU CPU top-1 top-2 top-3 top-1 top-2 top-3

Baseline NAR 1x 1x 1x 82.61 83.44 83.62 94.59 95.14 95.22
Proposed NAR 1.12x 1.65x 1.25x 83.12 85.15 86.00 94.85 97.04 98.05

AR, index form 2.78x 13.92x 8.28x 83.44 86.46 87.34 94.61 95.95 96.44
AR, span form 2.84x 13.86x 8.33x 83.47 86.22 87.12 94.67 95.82 96.22

Table 5: Beam decoding results. The proposed NAR outperforms the baseline NAR in top-3 EM by 2.4 and top-3
IM by 2.8 points. Compared to AR models, our approach cuts a beam search inference latency by 6.7 times on CPU.

Metric (higher is more diverse)
Baseline
NAR

Proposed
NAR

top-3 Exact Match 83.62 86.00

# of unique 1st intents in top-3 1.12 3.00

Distinct 1-gram, sentence-wise 69.84 79.92

Distinct 2-gram, sentence-wise 85.93 94.12

Distinct 1-gram, corpus-wise 25.77 40.79

Distinct 2-gram, corpus-wise 40.36 53.77

Table 6: We measure the diversities of the top-3 parses
of the baseline and proposed NAR models reported in
Table 5. We report sentence-wise (i.e., distinct n-grams
in each parse) and corpus-wise distinct n-grams (i.e.,
distinct n-grams in each collection of top-3 parses).

6 Conclusion

We present a novel non-autoregressive neural se-
mantic parser: the intent-conditioned NAR for im-
proved top-k decodings. The proposed model ad-
dresses the main limitation of the recent NAR mod-
els (i.e., the limited beam search capability) by
decoupling the prediction of the top-level intent
from output. This builds explicit dependencies of
frame lengths and output parses on top-level intents
and helps NAR semantic parsers to better control
beam search. The proposed NAR model further
closes the performance gap from AR models by im-
proving the quality and diversity of top-k outputs.
We highlight that the decoding time complexity is
O(1), regardless of output length or beam width.
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A Comparisons with Other Benchmarks

We compare the AR and NAR models we used
with some of the benchmarks in the literature for
the TOP & TOPv2 datasets. While there are bench-
marks with other pre-trained encoders, we report
the prior models with pre-trained BERT encoders
to be consistent with the AR and NAR models used
in this work (Table 7).

Encoders TOP TOPv2

Non-autoregressive Models

BERTBASE baseline (greedy) 82.56 84.86

BERTBASE proposed (greedy) 83.11 85.22

Autoregressive Models

BERTBASE (beam size = 4)
(Rongali et al., 2020)

83.13 -

BERTBASE (beam size = 5)
(Prakash et al., 2020)

85.01 -

Transformer + BERTBASE

(Shao et al., 2020)
82.51 -

BERTBASE (greedy-ours, index) 83.43 85.40

BERTBASE (greedy-ours, span) 83.40 85.56

Table 7: Reported performance of semantic parsers with
BERT encoders on TOP and TOPv2 datasets. Greedy
refers to greedy decoding (i.e., beam size 1).

We note that the two baseline AR semantic
parsers used in this work are based on the AR archi-
tecture presented in Rongali et al. (2020). Our AR
baselines perform comparably against the reported
numbers in the literature, as shown in Table 7.

B Scoring Beam Outputs

Table 8 depicts the performance of the three scoring
methods on the TOP dataset. Each scoring method
sorts the beam outputs of the proposed NAR differ-
ently (Equation 13-15).

Our study indicates that the scoring method
3 works the best for our NAR model, empiri-
cally demonstrating the effectiveness of the length
penalty (Wu et al., 2016) for NAR models. We
observed that high length penalties (e.g., α =
2.0 − 3.0) often corresponded to the highest EM.
For fair comparison, we also applied the length
penalty with α = 1.0 for the AR models for all
experiments reported in this work.

Scoring Method
Exact Match

top-1 top-2 top-3

S1 (Equation 13) 83.11 84.88 85.36

S2 (Equation 14) 83.11 84.95 85.49

S3 (Equation 15)
α = 1.0 83.13 85.21 85.81
α = 3.0 83.12 85.15 86.00
α = 5.0 83.15 85.08 85.93

Table 8: Performance of the three scoring methods.

C Model Architecture Details

Here, we elaborate on the details of the model ar-
chitecture and parameters used across different ex-
periments. Table 9 specifies hyper-parameters we
used to build the AR and NAR models used across
different experiments.

We note that we use two separate Transformers
for the frame length and intent modules. Our hy-
pothesis is that the Transformer output vector space
is different for top-level intent and frame length.
We intended the frame length module to learn its
best output representation as independently from
intent as possible. The frame length is still condi-
tioned on the top-level intent as in Equation 9. This
way, the backprop gradient to the length module
Transformer (denoted as frame_len_h in Figure 4)
is separated from the gradient to the intent mod-
ule. Two separate Transformer may seem to be an
overkill, however, consider the number of param-
eters of the model (Table 9). The 134.1M params
of the proposed NAR is mostly from the encoder
(BERT; L12/H768), which has 110M parameters.
The frame length and intent module each has about
5.7M parameters, and the remainder is for the de-
coder. In terms of the network size, the separate
Transformer does not make much difference as op-
posed to an alternative architecture that has a shared
Transformer for the length and intent.

Compared to the AR models, the baseline NAR
has roughly 12.5% more model parameters as
it includes the frame length module in addition.
The proposed NAR has approximately 4.4% more
model parameters than the baseline NAR due to the
addition of the intent module. Figure 4 depicts the
detailed model architecture for the proposed NAR.
The figure includes (sub)-modules, inputs, outputs,
as well as the dimensionality of them.
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AR baseline NAR proposed NAR

Number of parameters 114.1M 128.4M 134.1M
Number of TPUs used for training 8 Google Cloud TPUv2

decoder (layer/hidden/head) L4/H256/HD2
length module (layer/hidden/head) N/A L8/H256/HD4
intent module (layer/hidden/head) N/A N/A L8/H256/HD4

nonlinearity Relu
model dropout 0.0316

source embeddings dropout 0.0022

λlength N/A 10
λintent N/A N/A 100

optimizer Adam
learning rate 0.00004

learning rate warmup steps 1000
learning rate scheduler Exponential Decay

batch size 256

Table 9: Hyper-parameters related to the models used across different experiments presented in this work.

Figure 4: The detailed architecture of the proposed NAR.
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Abstract

Task-oriented dialog (TOD) systems often re-
quire interaction with an external knowledge
base to retrieve necessary entity (e.g., restau-
rant) information to support the response gen-
eration. Most current end-to-end TOD systems
either retrieve the KB information explicitly
or embed it into model parameters for implicit
access. While the former approach demands
scanning the KB at each turn of response gener-
ation, which is inefficient when the KB scales
up, the latter approach shows higher flexibility
and efficiency. In either approach, the systems
may generate a response with conflicting entity
information. To address this issue, we propose
to generate the entity autoregressively first and
leverage it to guide the response generation in
an end-to-end system. To ensure entity con-
sistency, we impose a trie constraint on entity
generation. We also introduce a logit concate-
nation strategy to facilitate gradient backprop-
agation for end-to-end training. Experiments
on MultiWOZ 2.1 single and CAMREST show
that our system can generate more high-quality
and entity-consistent responses.

1 Introduction

Task-oriented dialog (TOD) systems (Young et al.,
2013; Budzianowski et al., 2018) have become
prominent and drawn much attention from both
academia and industries. Their mission is to help
users accomplish specific tasks such as booking
restaurants and reserving hotels through natural lan-
guage conversations, where an external knowledge
base (KB) is usually needed to support the gener-
ation of a system response. For example, when
trying to recommend a restaurant, they will retrieve
its address from the KB and generate a response.

Many recent state-of-the-art TOD systems
(Mehri et al., 2019; Hosseini-Asl et al., 2020; Li
et al., 2021) take a pipeline route that decomposes
the task into modules that rely on intermediate an-
notations such as belief state and dialog act for

Hi, there. Have you heard of a hotel called 
Warkworth House?

Yes. I have the Warkworth House guest house on 
Warkworth Terrace, which is the east section of 
the city. Can I help make a reservation for you?

[name] Warkworth House  [area] east [type]  
guesthouse [phone] 01223363682 [addr]  
Warkworth Terrace [price] moderate

User

System

Figure 1: An example to show that task-oriented dialog
systems need to retrieve information (middle) from a
knowledge base (KB) to generate a qualified system
response. Entity values in the KB are color-highlighted.

supervision. These modules can be trained individ-
ually and assembled into a dialog system, mitigat-
ing the difficulty of generating a desired response
directly from the dialog context and user utterance.
Another motivation for the pipeline architecture
is the necessity of querying KB with belief state,
as shown in Figure 1, which would otherwise be
non-trivial to realize in an end-to-end system. How-
ever, these annotations have to be crafted by human
annotators, which is hardly realistic in practical
scenes such as intelligent customer services where
huge amounts of unannotated natural language con-
versations are accumulated. Besides, errors made
in upstream modules may be propagated to down-
stream modules if they are not trained jointly.

There are mainly two approaches to eliminating
the reliance on intermediate annotations and gen-
erating system response in an end-to-end manner.
First, entity information in the KB can be accessed
by soft attention (Madotto et al., 2018; Reddy et al.,
2019; Qin et al., 2020). To this end, a memory net-
work is usually used to encode the KB, and atten-
tion and pointer are then utilized to retrieve entity
information from the memory. These attention-
based methods tend to become cumbersome when
the KB scales up. Second, the KB information can
be stored in model parameters to avoid direct in-
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teraction with the KB during response generation
(Madotto et al., 2020). This is partly motivated
by the observation that pre-trained models such
as BERT (Devlin et al., 2019) can carry certain
relational and factual knowledge (Petroni et al.,
2019). To embed the KB into model parameters,
this approach first augments the original training
set with KB entries and then encodes the training
samples with a powerful encoder.

Despite the success in end-to-end TOD sys-
tems, one of the remaining problems is entity
inconsistency during response generation (Qin
et al., 2019), which means that the systems
usually generate conflicting entity information
in system responses. For example, they may
generate a response “Gourmet Kitchen is
an Italian restaurant” while Gourmet
Kitchen is actually a North American
restaurant. In this work, we aim to address this
issue more scalably in our end-to-end TOD system.
Following GPT-KE (Madotto et al., 2020), we first
insert the KB into natural language dialogs by data
augmentation, so that the KB can be embedded
into model parameters whose size does not scale
with the KB. Then, we predict the entity that will
appear in the response autoregressively. To avoid
generating an inconsistent entity, we impose a trie
constraint on the decoding to ensure that the gener-
ated entity truly belongs to the KB. The generated
entity is taken as an extra input to generate an entity-
consistent system response. Besides, since tokens
in the entity are integers, which hinders gradient
backpropagation, we propose logit concatenation
to allow for end-to-end training.

We evaluate our system on MultiWOZ 2.1 single
(Budzianowski et al., 2018) and CAMREST (Wen
et al., 2017), which are two task-oriented dialog
benchmarks widely used in the literature. Exper-
imental results show that it compares favorably
with all the baselines. Particularly, it outperforms
GPT-KE, a strong end-to-end TOD system that we
follow, by a large margin. By ablation studies,
we demonstrate that autoregressive entity genera-
tion assists in producing entity-consistent system
responses in an end-to-end manner.

To our best knowledge, this is the first work that
attempts to alleviate the entity inconsistency prob-
lem in TOD systems by generating the entity first
and taking it as an input for response generation.
The system can be trained end-to-end without ac-
cessing external KBs during response generation.

2 Related Work

End-to-end task-oriented dialog systems have
drawn increasing attention in recent years. In one
line of work, researchers propose to train the mod-
ules of a pipeline system jointly in an end-to-end
framework, though they still require intermediate
annotations for supervision. Among these works,
SimpleTOD (Hosseini-Asl et al., 2020), SOLOIST
(Peng et al., 2020), and UBAR (Yang et al., 2021)
attempt to concatenate the dialog history, user utter-
ance, belief state, dialog act, and system response
into a long sequence, which is then modeled by a
sequence-to-sequence generation model. HyKnow
(Gao et al., 2021) extends the belief state to handle
both structured and unstructured knowledge and
trains the dialog state tracking and response gener-
ation modules jointly. Nevertheless, these systems
are not the end-to-end solutions we pursue in this
work since they still need intermediate annotations.

There are mainly two approaches to implement-
ing intermediate annotations free end-to-end TOD
systems. First, entity information in the KB can
be accessed by soft attention. Mem2Seq (Madotto
et al., 2018) combines the ideas of multi-hop atten-
tion over memory and a pointer network to incorpo-
rate KB information. Wen et al. (2018) proposed to
compute a dialogue state representation from the di-
alog history and use it to interact with KB represen-
tations to retrieve entity information for response
generation. GLMP (Wu et al., 2019) encodes the
representations of dialog history and structural KB
with a memory network and then passes the result
to a decoder for response generation. DF-Net (Qin
et al., 2020) includes a dynamic fusion module to
generate a fused representation that explicitly cap-
tures the correlation between domains and uses it
to query the KB. When the KB scales up, however,
attention-based methods become less efficient.

Second, the KB information can be stored in
model parameters to avoid further interaction with
the KB during response generation. The motivation
comes from the observation that pre-trained lan-
guage models such as BERT (Devlin et al., 2019)
and T5 (Raffel et al., 2020) can already carry cer-
tain relational and factual knowledge (Petroni et al.,
2019). GPT-KE (Madotto et al., 2020) is the sem-
inal dialog system towards this goal. It first aug-
ments the training set with KB entries and then
learns a response generation model from the aug-
mented set in an end-to-end fashion, thus abandon-
ing the KB during response generation.
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Figure 2: The architecture of our ECO system. The
entity generation module takes the context and user ut-
terance as input and generates a relevant entity. The
response generation module takes the context, user ut-
terance, and the generated entity as input to generate
a system response. The two modules share the same
encoder but have separate decoders. A trie constraint is
imposed when generating the entity, and LogitConcat is
proposed to facilitate end-to-end optimization.

3 Methodology

As shown in Figure 2, our Entity-COnsistent end-
to-end (ECO) task-oriented dialog system begins
by embedding the KB into training dialogs (§3.2).
Following GPT-KE (Madotto et al., 2020), we aug-
ment the original training set with KB entries and
abandon the KB afterward. Unlike GPT-KE, which
conducts data augmentation in data pre-processing
before training, ECO conducts augmentation for
each batch of training samples, which reduces the
size of augmented training samples while main-
taining high coverage of the KB. We then predict
the entity (§3.3) that will appear in the response
and incorporate it into response generation (§3.4)
to ensure entity consistency, where LogitConcat is
proposed to facilitate end-to-end optimization.

3.1 Notations
Given a training set Dtr = {D1, D2, . . . , DN} of
dialogs, where Di = {Ui,1, Ri,1, . . . , Ui,T , Ri,T }
contains T turns of user utterance and sys-
tem response, we denote the conversational
context of the t-th turn in dialog Di as
Ci,t = {Ui,1, Ri,1, . . . , Ui,t−1, Ri,t−1}. A struc-
tured knowledge base is given in the form of a
set of entities KB = {E1, E2, . . . , EM}, each
of which is represented as a sequence Ei =
{a1, vi,1, a2, vi,2, . . . , aK , vi,K} in which aj and

Original dialog:

Template:

New dialog:

i am sorry but gourmet burger kitchen was the only 

north american restaurant in the centre area .

i am sorry but [name] was the only [food] restaurant 

in the [area] area .

i am sorry but da vinci pizzeria was the only italian

restaurant in the north area .

Figure 3: An example to show how to construct a tem-
plate from the training sample and generate a new sam-
ple from the template. Attributes are color-highlighted.

vi,j denote the jth attribute and its value for en-
tity Ei, respectively. For simplicity, we assume
each turn of dialog only relates to one entity and
reformulate it as {Ui,t, Ri,t, Ei,t}. A user goal
(Schatzmann et al., 2007) is defined for each di-
alog as Gi = (Gi,c, Gi,r), where Gi,c specifies the
constrained information (e.g., {location=center,
price=cheap}) and Gi,r denotes the required in-
formation (e.g., address, name).

3.2 Knowledge Base Embedding
To embed the KB into the training set, we first
extract all mentioned entity values in both user ut-
terances and ground truth responses based on given
span annotations in the original training set. Then,
we match entity values with the KB to identify
which entity is mentioned in the current turn of
conversation. Templates are then constructed by
replacing entity-related tokens in the conversation
with special attribute placeholders. For example,
north american in Figure 3 is replaced with
the corresponding attribute placeholder [food].
This template generation function is denoted as
DELEX(·), which is used to generate a set Dtm of
templates from the original training set Dtr:

Dtm = DELEX(Dtr). (1)

Next, we generate new dialog samples with the
templates in Dtm. We refer to this process as data
augmentation. To begin with, we obtain a set of KB
entities, Gmt = {E1, E2, . . . , EG}, that match the
predefined user goals. Then, we randomly select
an entity Ei from Gmt and replace the placeholders
with the corresponding values of Ei. For instance,
we replace [food] and [area] in Figure 3 with
italian and north, respectively. The function
of generating samples from templates is defined as
RELEX(·), which is executed P times to insert P
entities, producing a new set Dau:

Dau =
P⋃

p=1

RELEX(Dtm). (2)
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Note that usually only a subset of samples inDtr
can successfully match with entities in KB during
data augmentation, making Dau not cover all the
samples of Dtr. For this reason, we join Dtr and
Dau to get our final training set Dfn.

Dfn = Dtr
⋃
Dau (3)

The selected entities during the above augmenta-
tion process are treated as ground truth entities for
the corresponding dialog samples. This means that
only the samples in Dau have entity labels while
the samples in Dtr do not. Since all the placehold-
ers in the templates are replaced with values from
the same entity, this data augmentation process en-
sures that the augmented training samples contain
consistent entity information.

3.3 Autoregressive Entity Generation
To predict the entity that will appear in the response,
we propose to generate it autoregressively. For the
sake of brevity, we use Ct and Ut to represent the
current dialog context and user utterance, respec-
tively. Then, we concatenate Ct and Ut, encode
them into a vector representation, and take it as an
input for entity generation:

gt = Enc(Emb([Ct;Ut])), (4)

where Emb(·) is the embedding function imple-
mented by a global embedding matrix We. Enc(·)
denotes the encoder which is shared with the re-
sponse generation module (§3.4).

To generate an entity Êt autoregressively, the
decoder iteratively predicts a token êt,k based on
the already generated sequence Êt,<k and vector
representation gt:

P̂ (êt,k) = Dece(êt,k|Êt,<k, gt). (5)

Since the gold entities of the samples in Dau are
known, the cross-entropy loss of entity generation
on Dau is defined as:

Len =
∑

D∈Dau

∑

Et∈D
CELoss(Êt, Et), (6)

where Et denotes the ground truth entity for the
t-th turn of conversation.

For the samples in Dtr, which have no entity
labels, we do not calculate their loss during en-
tity generation, but instead calculate their loss in
response generation (§3.4) to realize end-to-end
optimization like DualTKB (Dognin et al., 2020).

[day]

saturday

friday

[departure]

[departure]

cambridge

kings lynn

peterborough

Figure 4: A trie with three entity sequences: [day]
saturday [departure] cambridge, [day]
saturday [departure] kings lynn, and [day]
friday [departure] peterborough.

3.3.1 Trie Constraint
Inspired by GENRE (Cao et al., 2021), we con-
struct a trie structure (a prefix tree) to ensure
the generated entity truly belongs to the KB. For
each entity in the KB, we construct a sequence
as follows. For each value in an entity, we put
its attribute placeholder to precede it and concate-
nate all pairs of attribute and value to form a se-
quence such as [name] cityroomz [area]
centre [type] hotel. As depicted in Fig-
ure 4, a node in the trie denotes a token, and its
child nodes denote all the succeeding tokens.

When decoding the k-th token êt,k during the
generation of entity Êt, we have the decoded se-
quence Êt,<k = {êt,1, êt,2, . . . , êt,k−1} in hand
and walk through the trie along the path of Êt,<k
to generate the next token. We use Et,k to repre-
sent the set of possible tokens at this time step and
re-compute P̂ (êt,k) as:

P (êt,k) =

{
P̂ (êt,k)
Z , êt,k ∈ Et,k

0, else
(7)

where
Z =

∑

êt,k∈Et,k
P̂ (êt,k). (8)

Since only tokens from Et,k have non-zero prob-
abilities in P (êt,k), the model always samples a
token from Et,k. Therefore, the generated entity is
guaranteed to be valid constantly.

3.4 Response Generation
During training, for each sample in Dau, the model
generates a response based on the context, user
utterance, and the corresponding ground truth en-
tity by concatenating and encoding them with the
shared encoder defined in Eq. (4):

ht = Enc(Emb([Ct;Ut;Et])). (9)

For each sample in Dtr which has no ground
truth entity label, the generated entity is used:

ht = Enc(Emb([Ct;Ut; Êt])). (10)
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The response decoder then takes ht as input and
generates the response R̂t token by token as:

P (r̂t,k) = Decr(r̂t,k|R̂t,<k,ht). (11)

The cross-entropy loss is calculated between
the generated response R̂t and the ground truth
response Rt:

Lre =
∑

D∈D
fn

∑

Rt∈D
CELoss(R̂t, Rt). (12)

3.4.1 Logit Concatenation
For those samples in Dtr, since the tokens in each
generated entity are integers, the gradients of re-
sponse generation cannot be directly passed to the
encoder during training. To address this, we mod-
ify Eq. (10) and input the distributions of generated
entity tokens to the encoder. Specifically, for the
k-th token êt,k of a generated entity Êt, its output
distribution P (êt,k) over vocabulary from the entity
decoder is first computed using Eq. (7) and then
used to approximate êt,k for gradient propagation.
P (êt,k) can be encoded as:

ht,k = P (êt,k)WT
e , (13)

where We is the global embedding matrix intro-
duced above.

If both P (êt,k) and We receive gradients during
propagation, the training may collapse since it is
much easier to update We than P (êt,k), which re-
quires understanding the context and utterance to
obtain relevant information. Therefore, we alter
the equation by stopping gradients on We:

ĥt,k = P (êt,k) · StopGrad(WT
e ), (14)

ĥt = {ĥt,1, . . . , ĥt,|Êt|}. (15)

We use ĥt as the representation of entity Êt and
concatenate it with the embeded context Ct and
user utterance Ut, which is then encoded to replace
Eq. (10) during training:

ht = Enc(Emb([Ct;Ut]); ĥt]). (16)

Since P (êt,k) is a distribution vector rather than
an integer, gradients can be backpropagated to the
encoder during training. At inference time, we take
the generated entity tokens rather than P (êt,k) as
input for response generation, as described in Eq.
(10). This brings a gap between training and infer-
ence, which will be studied in Section 4.5.

3.5 Joint Training
The final system is trained by minimizing the sum
of entity loss Len and response loss Lre:

L = Len + Lre. (17)

4 Experiments

4.1 Dataset
We conduct experiments on MultiWOZ 2.1 single
(Budzianowski et al., 2018) and CAMREST
(Wen et al., 2017). CAMREST consists of
one domain of Cambridge restaurant booking
while MultiWOZ 2.1 single consists of five
domains: Attraction, Hotel, Restaurant,
Taxi, and Train. Following previous work (Qin
et al., 2020; Madotto et al., 2020), we select only
the dialogues which involves a single domain from
MultiWOZ 2.1 to form the MultiWOZ 2.1 single
dataset. We follow the same pre-processing and
augmentation procedures as GPT-KE (Madotto
et al., 2020). Note that not all dialogs in the
original training set can be successfully used to
generate templates due to the diversity of entity
values. On MultiWOZ 2.1 single, 63/116/289/59
templates are respectively generated for domains
Attraction/Hotel/Restaurant/Train,
and no template is generated for the Taxi domain
since MultiWOZ 2.1 single does not provide KB
for this domain. On CAMREST, 161 templates are
constructed for data augmentation.

Following previous works (Qin et al., 2020;
Madotto et al., 2020), we adopt BLEU, Inform,
Success, and F1 as the metrics to evaluate model
performance on MultiWOZ 2.1 single, and em-
ploy BLEU, F1, and Success on CAMREST. In-
form and Success are calculated based on the
given user goal of a dialog session, and incon-
sistent entity information will lower the two met-
rics. Meanwhile, an overall score is also calculated:
Score = BLEU + (Inform + Success)/2.

4.2 Measuring Entity Consistency
Measuring the entity consistency of a given system
response remains a problem in task-oriented dialog
systems. Qin et al. (2021) annotated three kinds
of inconsistency by human experts on the KVRET
(Eric et al., 2017) dataset, i.e., user query incon-
sistency, dialog history inconsistency, and knowl-
edge base inconsistency. They then trained models
as a form of automatic metrics to identify which
kind of inconsistency appears in system responses.
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BLEU Inform Success Score F1 Consistency

Mem2Seq (Madotto et al., 2018) 6.60 - - - 21.62 -
DSR (Wen et al., 2018) 9.10 - - - 30.00 -
GLMP (Wu et al., 2019) 6.90 - - - 32.40 -
DF-Net (Qin et al., 2020) 9.40 - - - 35.10 -
GPT2 (Radford et al., 2019) 14.33 64.60 51.77 72.52 30.38 -
GPT-KE (Madotto et al., 2020) 15.05 72.57 64.16 83.42 39.58 54.46

BART-KE 12.80±0.22 70.94±2.05 61.36±2.12 78.95±2.05 39.31±0.22 52.96±0.48
ECO (ours) 12.61±0.20 83.63±0.63 75.37±0.21 92.11±0.20 40.87±0.24 56.84±0.36

Table 1: Main results on MultiWOZ. Scores of baselines except BART-KE are from original papers, and “-” denotes
scores originally unavailable. BART-KE is the baseline implemented by replacing GPT-2 in GPT-KE with BART.

However, their method is trained on KVRET and
may not be suitable to measure inconsistency on
other datasets. Furthermore, the first few turns may
include irrelevant entity information, such as pro-
viding several hotels for the user to choose, which
makes it difficult to identify whether the generated
response is dialog history consistent or not.

The above analysis motivates us to propose a
new consistency metric that focuses on user query
consistency and knowledge base consistency. It is
a turn-level metric that requires all entity informa-
tion in the user utterance and the system response
to belong to the same entity in KB. To be spe-
cific, we first extract all entity information in the
user utterance and the system response, and then
search the knowledge base. If there is an entity
that contains all the extracted information, this turn
of conversation scores 1, and 0 otherwise. The fi-
nal Consistency metric is calculated as the average
score over all conversation turns. The method of
extracting entity information from utterances and
responses is the same as in calculating F1.

4.3 Experiment Settings

Different from GPT-KE, we use BART (Lewis
et al., 2020) as our backbone model due to the limi-
tation of computation power. We also replace GPT-
2 (Radford et al., 2019) in GPT-KE with BART to
form a new baseline, BART-KE. We set the max
input sequence length to 256, the repeat times P
in RELEX to 12, and the batch size to 12. Exper-
iments are conducted on a single NVIDIA 2080ti
and cost about 11G GPU RAM. We conduct ab-
lation studies on MultiWOZ 2.1 single as it is a
more challenging dataset with multiple domains of
dialogs. For most variants of our method, we run
30 epochs and evaluate them per 5 epochs, saving
a model checkpoint after each evaluation. We then
select the best checkpoint based on model perfor-

BLEU F1 Success

KB-Trs 14.80 45.30 -
MLMN 13.61 54.85 -
BoSsNet 15.20 43.10 -
KBRet 18.64 55.76 62.03
GPT-KE 18.00 54.85 74.68

BART-KE 17.84±0.28 70.42±0.37 75.06±1.52
ECO (ours) 18.42±0.27 71.56±0.39 78.77±1.85

Table 2: Main results on CAMREST. KB-Trs (E. et al.,
2019), MLMN (Reddy et al., 2019), BoSsNet (Raghu
et al., 2019), KBRet (Qin et al., 2019), and GPT-KE
(Madotto et al., 2020) are baselines for comparison.

mance on the development set and finally report
the test results. For the ablation setting of w/ tr,
which lacks supervision from gold entity labels for
training, we run 50 epochs to select the best.

4.4 Main Results

The overall results are shown in Table 1 and Ta-
ble 2. We observe that ECO outperforms GPT-KE
and other baselines by a large margin in all met-
rics except BLEU, showing that ECO can reach
the user goals of this dialog dataset more effec-
tively. The improvement of ECO over BART-KE
suggests that ECO’s success mainly comes from
the model design rather than BART itself. Specif-
ically, by generating an entity with trie constraint
to help response generation, ECO obtains consis-
tent entity information and improves entity consis-
tency of generated response. On the other hand,
we note that BART-based methods (BART-KE and
ECO) achieve relatively lower BLEU scores than
the GPT-2 family baselines (GPT-2 and GPT-KE)
on MultiWOZ. The main reason should be that we
do not post-train BART with language modeling
objectives on the training set, which affects the flu-
ency of generated responses, while responses in
MultiWOZ are more diverse across domains.
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Percentage (%) Inform Success F1

single inform 46.0 91.67±1.63 83.01±1.98 61.09±0.81
multi inform 54.0 76.78±1.55 68.85±1.77 31.03±0.73
single success 84.5 83.60±1.23 77.49±0.43 42.74±0.10
multi success 15.5 83.81±2.69 63.81±1.35 33.62±1.28
total 100.0 83.63±0.63 75.37±0.21 40.87±0.24

Table 3: Results of study on how multiple matched entities affect evaluation metrics, where single/multi in-
form/success refer to the situation with single/multiple matched entities when calculating Inform/Success, and
Percentage (%) means the proportion of samples in the test set.

We also analyze why the improvement of F1
is much smaller than that of Inform and Success
on MultiWOZ. Inform and Success are calculated
based on user goals, and in some circumstances,
there are multiple entities that match a user goal.
However, only the one that is mentioned in the
ground truth response is counted as correct in F1.
Therefore, a large improvement on Inform and Suc-
cess means ECO achieves user goals better, but the
entity mentioned in the generated response may
be different from the one in the ground truth. As
shown in Table 3, over 50% of test samples have
multiple matched entities when calculating Inform,
and the percentage is 15.5% when calculating Suc-
cess. Multiple matched entities reduce model per-
formance on all metrics, especially on F1.

4.5 Ablation Studies

4.5.1 Training Datasets
Unlike samples in Dtr, samples in Dau have
ground truth entity labels, so their training objec-
tives are different. We use ECO w/ tr to denote
the training set that only contains samples from
Dtr for end-to-end training, and use ECO w/ au to
denote the training set that only contains samples
from Dau. As the results show in Table 4, ECO w/
tr has drops of 16.08 on Inform, 20.5 on Success,
4.42 on F1, and 4.41 on Consistency compared
to ECO. Actually, without entity labels, the entity
generation process is hard to converge, making re-
sponse generation lack entity information as input
and lowering model performance as a result.

On the other hand, ECO w/ au has less drops
than ECO w/ tr compared to ECO on Inform, Suc-
cess, and Consistency. However, the drops of ECO
w/ au is more obvious on F1, which is caused by the
fact that Dau does not includes the Taxi domain.
These results demonstrate that the augmentation
introduces more important KB information for re-
sponse generation than the original training set.

4.5.2 Trie Constraint
In this work, the trie constraint is the key to guar-
anteeing entity consistency in a system response.
Figure 5 presents an example of decoding an entity
on the trie. Through filtering out non-kid nodes,
the decoding path is restricted to a path on the trie.
From Table 4, we note that ECO outperforms ECO
w/o trie by 2.95 on Inform, 3.25 on Success, 1.06
on F1, and 0.53 on Consistency. Thus, we can con-
clude that the model generates more informative
responses with the help of consistently generated
entities, which accounts for the improvement.

4.5.3 Logit Concatenation
LogitConcat is proposed to enable backpropaga-
tion after concatenating the dialogue context, user
utterance, and the generated entity when training
on Dtr. Without this component, the model param-
eters of the entity generator will not be updated. In
Table 4, ECO shows a promising improvement of
5.31 on Inform, 4.87 on Success, 0.99 on F1, and
1.69 on Consistency over ECO w/o LogitConcat.

4.5.4 Gap between Training and Evaluation
During the evaluation, ECO uses the generated en-
tity sequence as an input for response generation,
which is different from the training phase that uses
LogitConcat. To study the impact, we conduct an
experiment that also applies LogitConcat during
the evaluation. From the results (ECO w/ LogitE-
val) in Table 4, we observe obvious drops of ECO
on Inform, Success, and Consistency. This phe-
nomenon shows that applying LogitConcat during
the evaluation weakens the consistency of the gen-
erated entities since the probability distribution in
LogitConcat is not a valid entity from the KB.

4.5.5 The Number of Templates
To study how the number of templates affects
model performance, we randomly select several
subsets of templates from the whole template set.
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BLEU Inform Success Score F1 Consistency

GPT-KE 15.05 72.57 64.16 83.42 39.58 54.46
BART-KE 12.80±0.22 70.94±2.05 61.36±2.12 78.95±2.05 39.31±0.22 52.96±0.48
ECO 12.61±0.20 83.63±0.63 75.37±0.21 92.11±0.20 40.87±0.24 56.84±0.36

w/ au 8.94±0.06 79.20±2.26 56.34±0.55 76.71±0.94 30.38±1.67 55.49±0.33
w/ tr 11.21±0.37 67.55±4.41 54.87±4.38 72.42±4.07 36.45±1.17 52.43±1.89
w/o trie 12.40±0.36 80.68±0.91 72.12±1.25 88.80±0.81 39.81±0.25 56.31±0.62
w/o LogitConcat 12.52±0.11 78.32±0.96 70.50±2.46 86.93±1.64 39.88±0.40 55.15±0.84
w/ LogitEval 12.85±0.28 71.98±0.55 65.04±0.96 81.36±1.00 40.58±0.46 53.62±0.81

Table 4: Results of ablation studies. ECO w/ au represents the ECO variant trained on samples of Dau, and ECO
w/ tr represents the ECO variant trained on samples of Dtr. ECO w/o trie means that ECO does not apply the
trie constraint during entity generation, while ECO w/o LogitConcat means it does not apply LogitConcat during
training. ECO w/o StopGrad represents the ECO variant that drops StopGrad in LogitConcat. ECO w/ LogitEval
represents the ECO variant that applies LogitConcat during inference.

I am looking for a hotel called the arbury lodge guesthouse.User utterance:

Ground-truth entity: [name] arbury lodge guesthouse [address] 82 arbury road

Generated entity w/ trie: [name] arbury lodge guesthouse [address] 82 arbury road

Generated entity w/o trie: [name] arbury lodge guesthouse [address] 52 gilbert road

[name]

[day]

[fee]

arbury

restaurant

curry

lodge

hotel

lodging

guesthouse

bussiness

house

[address]

[food]

[area]

52

82

328a

gilbert

histon

chesterton route

street

road

road

street

passage

High(1)

Low(0)

arbury

chest

rose

Figure 5: An example of decoding entity with the trie constraint. Darker backgrounds represent high decoding
probabilities. The trie constraint filters out some tokens during decoding and results in a different decoding path,
avoiding the red path which has a higher probability but generates inconsistent entity information.

50 100 200 400 full
74
78
82
86
90

Inform

50 100 200 400 full
 

66
70
74
78
82

Success

50 100 200 400 full
37
38
39
40
41

F1

number of templates

Figure 6: Ablation study of how the number of templates affects model performance on MuitiWOZ, where full
means all the templates are used for knowledge base embedding.

As shown in Figure 6, the performance on all the
metrics generally grows when the number of tem-
plates increases, but there are fluctuations when the
number changes from 100 to 400.

5 Conclusion

We proposed an end-to-end task-oriented dialog
system by encoding external knowledge into model
parameters. To address entity inconsistency in sys-
tem responses, we proposed to generate the entities

first and took them as input to response generation.
To ensure the generated entities are valid, a trie con-
straint was imposed on the generation, and a logit
concatenation strategy was introduced to facilitate
backpropagation for end-to-end training. Exper-
iments demonstrate that this system can produce
more high-quality and entity-consistent responses
in an end-to-end manner. For future work, we will
extend this system to handle multiple entities that
are involved in each turn of conversation.
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Abstract

Intent detection is at the core of task-oriented
dialogue systems. Existing intent detection sys-
tems are typically trained with a large amount
of data over a predefined set of intent classes.
However, newly emerged intents in multiple do-
mains are commonplace in the real world. And
it is time-consuming and impractical for dia-
logue systems to re-collect enough annotated
data and re-train the model. These limitations
call for an intent detection system that could
continually recognize new intents with very few
labeled examples. In this work, we study the
Continual Few-shot Intent Detection (CFID)
problem and construct a benchmark consist-
ing of nine tasks with multiple domains and
imbalanced classes. To address the key chal-
lenges of (a) catastrophic forgetting during con-
tinuous learning and (b) negative knowledge
transfer across tasks, we propose the Prefix-
guided Lightweight Encoder (PLE) with three
auxiliary strategies, namely Pseudo Samples
Replay (PSR), Teacher Knowledge Transfer
(TKT) and Dynamic Weighting Replay (DWR).
Extensive experiments demonstrate the effec-
tiveness and efficiency of our method in pre-
venting catastrophic forgetting and encourag-
ing positive knowledge transfer across tasks.

1 Introduction

Intent Detection (ID) is at the core of task-oriented
dialogue systems. It aims at understanding the
goals underlying user utterances and classifying
them into different intents accurately (Zhang et al.,
2020; Qin et al., 2021). Traditionally, the ID system
is trained with plenty of labeled data to identify
a predefined set of intent classes (Larson et al.,
2019). However, newly emerged intents in multiple
domains are commonplace in the real scenario. A
naive approach to detecting new intents is to re-
collect annotated data and re-train the model, which

* Work done during internship at Alibaba.
† Corresponding author: Yin Zhang.

… …
𝜯𝒊"𝟏

Task Sequence

𝜯𝒊

Setting Few-shot Continual Multi-Domain #Classes
FSID (Zhang et al., 2020) ✓ ✗ ✓ -
CID (Liu et al., 2021) ✗ ✓ ✓ -
FSCIL-ID (Xia et al., 2021) ✓ ✓ ✗ Balanced
CFID (Ours) ✓ ✓ ✓ Imblanced

Figure 1: Illustration of Continual Few-shot Intent De-
tection (CFID). Compared with existing works, CFID
aims to recognize continually new intents from multiple
domains with very few labeled examples and imbal-
anced number of classes across tasks.

is time-consuming and impractical for dialogue
systems in deployment. Thus, an intent detection
system that could continually recognize new intents
with very few labeled examples is called for.

Many efforts have been made in existing works
to achieve this goal. Zhang et al. (2020) pro-
pose a discriminative nearest neighbor classifica-
tion method to solve the Few-Shot Intent Detection
(FSID) problem. They mainly focus on the data
scarcity and ignore the ability to learn consecutive
tasks. Liu et al. (2021) and Wang et al. (2021) pro-
pose promising solutions for the Continual Intent
Detection (CID) problem. Nevertheless, they do
not consider the few-shot setting, which is more
realistic due to the scarcity of labeled data for new
intents. The most recent work (Xia et al., 2021) pro-
vides the first study on few-shot class-incremental
learning for intent detection (FSCIL-ID). However,
it assumes (1) all tasks belong to the same domain
and (2) the number of classes across few-shot tasks
is balanced, which is not practical in the real world.

In this work, we define a more realistic problem
as Continual Few-shot Intent Detection (CFID) and
construct a benchmark consisting of nine tasks with
multiple domains and imbalanced classes in 5-shot
and 10-shot settings. As shown in Figure 1, the
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system is provided with a sequence of tasks with
limited labeled data and expected to continually
learn on new intents while performing accurate
classification on all previously seen tasks. Com-
pared with existing works, CFID is more aligned
with real scenario where the number of classes is
highly imbalanced and task domains vary widely.

We consider addressing the problem from the
intersection perspective of few-shot and lifelong
learning. A strong baseline is to construct prototyp-
ical networks with a pre-trained language model
(PrLM) and sequentially update all the weights on
each task. However, there are two issues: (i) over-
parameterization of PrLMs makes them prone to
overfit the current task and cause catastrophic for-
getting of previous knowledge (Ke et al., 2021a;
Yuan et al., 2021). (ii) due to the domain gaps and
imbalanced classes, the knowledge inherited from
the past task may degrade the performance of the
current, namely negative knowledge transfer.

To address the above issues, we propose a novel
Prefix-guided Lightweight Encoder (PLE) with
three auxiliary strategies. In detail, PLE adopts
a parameter-efficient tuning paradigm to alleviate
forgetting caused by over-parameterization, con-
sisting of a lightweight Continual Adapter mod-
ule to interact with a frozen PrLM, and a Prefix-
guided Attention mechanism to guide the frozen
PrLM. To further alleviate forgetting, we propose
the Pseudo Samples Replay (PSR) strategy, which
consolidates previous knowledge by replaying two
essential samples that best approximate the previ-
ous tasks. To alleviate negative knowledge trans-
fer, we propose the Teacher Knowledge Transfer
(TKT) strategy, which transfers the task-specific
knowledge into the current model via distillation to
compensate for the performance drop of new tasks.
Moreover, due to the variability of tasks, it is hard
to identify whether a past task transfers positive
or negative knowledge to the current. Thus, we
propose the Dynamic Weighting Replay (DWR)
strategy to balance learning new tasks and replay-
ing old ones, which dynamically determines the
learning weight of the old task in each iteration.

Our main contributions are as follows: 1) To
the best of our knowledge, we are the first to for-
mulate the Continual Few-shot Intent Detection
(CFID) problem and construct a benchmark for
it. 2) We propose a novel method PLE with three
strategies for CFID to alleviate forgetting and neg-
ative transfer. 3) Extensive experiments show the

effectiveness of our method in preventing forget-
ting and encouraging positive knowledge transfer
across tasks.

2 Related Work

Traditional Intent Detection aims to classify in-
tent in the utterance, which can be defined as a
sentence classification task. Popular approaches
such as Goo et al. (2018); Qin et al. (2019);
Mehri et al. (2020) have achieved promising per-
formance. However, such methods heavily rely on
large amounts of labeled data.
Few-shot Intent Detection aims to classify accu-
rately identify intents in few-shot settings. Zhang
et al. (2020) solves it as a textual entailment prob-
lem and uses large-scale entailment datasets for
pre-training. However, it is time-consuming and ex-
pensive to train with hundreds of intents. Mehri and
Eric (2021) proposes an example-driven strategy to
tackle this task, which learns to classify utterances
by comparing them to examples. Luo et al. (2021)
and Dopierre et al. (2021) solve the data scarcity
by leveraging the label names or augmented sam-
ples. More recently, Zhang et al. (2021a,b) show
the effectiveness of pre-training and contrastive
fine-tuning on this task.
Continual Learning aims to learn a sequence of
tasks incrementally. Most works in NLP domains
focus on text classification tasks in continual set-
tings (Ke et al., 2021c,a,b; Geng et al., 2021; Qin
and Joty, 2022). The main problem for contin-
ual text classification is catastrophic forgetting and
replay-based methods (Han et al., 2020; Cui et al.,
2021) have been proven promising to alleviate the
problem, which retain a few examples in previous
tasks and continually replay them with new tasks.
Continual Intent Detection. Recently, Liu et al.
(2021) and Wang et al. (2021) have made some ef-
forts on the Continual Intent Detection task (CID).
However, they did not further investigate with the
few-shot setting, which is more challenging and
crucial for the low-resource dialogue systems. The
most similar to our work is (Xia et al., 2021), which
firstly proposes the Few-shot Class-Incremental
Learning for Intent Detection (FSCIL-ID). How-
ever, it is not aligned with the real scenario for
the following reasons: (i) All tasks belong to the
same domain without considering the domain gaps
of different intents. (ii) The number of classes in
emerging new tasks is fixed without considering the
imbalance of classes across tasks in real systems.
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Figure 2: Overview of the proposed framework. The left side shows the structure of our PLE, which consists of a
frozen PrLM and the Prefix (Pk, Pv) and Continual Adapter inserted into each layer. The trainable parameters are
in green. The top right shows the process of learning for a new task Ti with three strategies: Teacher Knowledge
Transfer (TKT), Pseudo Samples Replay (PSR), and Dynamic Weighting Replay (DWR). The lower right shows the
distance-based classification pipeline at inference.

Summary. Existing works in few-shot intent de-
tection mainly focus on the data scarcity and ignore
the ability to learn consecutive tasks, which is es-
sential for the online dialogue systems. The works
in continual intent detection do not consider the
data scarcity of emerging new intents. The newly
proposed FSCIL-ID setting is also not aligned with
the online dialogue systems. In contrast to those
works, our work aims to recognize continually
emerging new intents from multiple domains with
very few labeled examples.

3 Methodology

3.1 Problem Formulation

In the CFID setting, given a sequence of n tasks
{T1, T2, ..., Tn}, each task Ti contains its own train-
ing set Di

train, development set Di
dev, and test set

Di
test. Each dataset D contains a series of sam-

ples {(xi, yi)}||D|i=1, where yi is the ground-truth
intent class of the input utterance xi. In particular,
we describe its few-shot nature that there are only
K ∈ {5, 10} samples for each class in the training
set. There are also a few (e.g., 10) samples for
each class in the development set. This is because
using a larger development set brings significant

advantages and defeats the goal of few-shot learn-
ing (Gao et al., 2021). After learning Ti, the model
is evaluated separately on the test set of seen tasks.
The setup is aligned with the real scenario, where
the data privacy of different users is protected while
the task information is available.

3.2 Overall Framework
As shown in Figure 2, the framework of the pro-
posed method consists of one main module and
three strategies of continual learning: 1) The
lightweight PLE is responsible for extracting se-
mantic features of the input utterances. 2) The
TKT aims to transfer task-specific knowledge to
the current model. 3) The PSR first selects two key
samples per class and encodes them through the
frozen embedding layer (EL) to generate pseudo
samples and save them into the Memory. 4) The
DWR is responsible for balancing the learning of
new tasks and replaying past tasks.

3.3 Prefix-guided Lightweight Encoder (PLE)
PLE serves as the main module to alleviate catas-
trophic forgetting caused by over-parameterization.
As a sub-module of PLE, the Continual Adapter
is a full continual learning lightweight module
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designed to capture knowledge across tasks and
mitigate over-fitting by only tuning a small num-
ber of parameters, inspired by adapter-based tun-
ing (Houlsby et al., 2019). More specifically, it
consists of a down-projection with Wdown ∈ Rd×r
to project the input hidden states h ∈ Rd, followed
by a nonlinear activation function ReLU(·), and an
up-projection with Wup ∈ Rr×d, formally:

h← h+ReLU(hWdown)Wup. (1)

Following (He et al., 2021), the adapter is inserted
only after the feed forward layer of the transformer
block. Note that the parameters of Continual
Adapter are shared by each task and continually
updated in the continual learning process while the
PrLM is kept frozen.

To guide the frozen backbone in capturing task-
specific knowledge dynamically, we further pro-
pose the Prefix-guided Attention mechanism in-
spired by prefix tuning (Li and Liang, 2021).
It incorporates continuous prompts into the self-
attention layer to guide the final self-attention flow.
More specifically, we concatenate two sets of l tun-
able prefix vectors Pk, Pv ∈ Rl×d to the keys and
values of the multi-head attention at every layer. In
this way, the computation of headi is modified as:

headi = Attn(XWQ
i , [P

i
k, XW

K
i ], [P iv, XW

V
i ]),

(2)
where X ∈ Rm×d is the input sequence represen-
tation and WQ

i , WK
i , and W V

i ∈ Rd×dh are the
parameter matrices. With the guidance of the prefix,
the distribution of attention can be re-modulated
dynamically in the continual learning process.

3.4 Teacher Knowledge Transfer (TKT)

TKT is to alleviate negative knowledge transfer
across tasks, a phenomenon that impairs model
performance on the current task. While most
works (Ke et al., 2021a) design complicated dy-
namic architecture to encourage positive knowl-
edge transfer, TKT can simply and explicitly distill
task-specific knowledge into the model to compen-
sate for the performance.

Concretely, we first train a teacher PLE individ-
ually. The parameters of prefix and adapters are
randomly initialized to avoid transferring knowl-
edge from past tasks and gain more task-specific
knowledge from the current. Then, we transfer
the task-specific knowledge into the continually
learning model through knowledge distillation.

As for the teacher PLE fTθ , in each iteration, N
classes are randomly selected from the label space,
and then K samples are selected for the encoder to
extract features. The obtained features are averaged
for each class prototype: ŷj = 1

K

∑K
k=1 f

T
θ (xk).

The teacher is optimized by minimizing the cross
entropy loss Lsim, formally:

Lsim = −
N×K∑

i=1

N∑

j=1

I(yi = yj)×

log
exp(sim(fTθ (xi), ŷj)/τ)∑N
l=1 exp(sim(fTθ (xi), ŷl)/τ)

.

(3)

where sim(·) is the cosine similarity function and
τ is a temperature hyper-parameter and I(·) is the
indicator function. To fully make use of N × K
samples, we select one sample at a time from a
class as a query and the rest of the samples as sup-
port samples to compute the prototype so that there
are N ×K times of nearest neighbor classification
in parallel at each iteration.

As for the student PLE fSθ , it firstly inherits the
previous knowledge by reusing the parameters of
the last learned model. Then, it gains task-specific
knowledge by training on the current task with
knowledge distillation, formally:

Ldis =
N×K∑

i=1

∥fSθ (xi)− fTθ (xi)∥. (4)

3.5 Pseudo Samples Replay (PSR)

PSR is to consolidates previous knowledge in
replaying-based ways. Concretely, after learning
for new tasks, we first obtain the prototype feature
of each class by averaging the features of all sam-
ples labeled as this class: ŷj = 1

K

∑K
k=1 f

S
θ (xk).

Then we select the instance closest to the prototype
of class as the most representative sample, and se-
lect the instance farthest to the prototype of class
as the hardest sample. To avoid direct access to
the raw texts for privacy, these two samples are
encoded with the frozen PrLM to generate pseudo
samples, whose embedding space is always not dis-
torted during continual learning. Finally, we store
the two samples in the memory for each class.

In this way, the goal of replaying can be achieved
by storing a minimum number of samples (i.e, two
samples per class). During replaying the pseudo
samples, we randomly select N classes from the
previous task and adopt the cross-entropy loss
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Lmem to ensure intra-class compactness while in-
creasing inter-class distances, formally:

Lmem = −
N×2∑

i=1

N∑

j=1

I(yi = yj)×

log
exp(sim(fSθ (xi), ŷj)/τ)∑N
l=1 exp(sim(fSθ (xi), ŷl)/τ)

.

(5)

3.6 Dynamic Weighting Replay (DWR)
DWR is to find a good trade-off between learning
new tasks and replaying. Due to the domain variety,
it is hard to determine whether to replay more on
old tasks (i.e., PSR) or distill more on new tasks
(i.e., TKT). They can be regarded as two contradic-
tory optimization objectives. It drives us to design
DWR to dynamically decide the weights of the two
objectives and get a Pareto optimal solution.

Concretely, we first randomly sample one previ-
ous task to replay at each iteration rather than all the
previous tasks. Then, we adopt a Pareto-optimal
weighting strategy (Sener and Koltun, 2018) in-
spired by multi-task learning. The learning weight
of the sampled old task can be determined dynami-
cally in each iteration. The total loss is defined as
follows:

L = λdisLdis + λmemLmem,

λdis, λmem = Pareto_Solver(Ldis, Lmem).
(6)

The details of Pareto_Solver can be referred
in Sener and Koltun (2018).

3.7 Inference
For a given utterance x in Dt

test, we calculate the
similarity between the extracted feature of x and
all class prototypes {ŷi} in the t-th task and pick
the one with the highest cosine similarity:

y∗ = argmax
ŷi∈{ŷi}

Sim(fSθ (x), ŷi). (7)

The prototype of class ŷi can be obtained by aver-
aging the features of training samples labeled as yi
through the current trained PLE.

4 Experiments

4.1 CFID Benchmark
As for the first work in CFID, we first collect nine
popular intent detection datasets and arrange them
in a fixed random order to construct the bench-
mark: CLINC150, ATIS, HWU64, BANKING77,
MTOP, SNIPS, LEYZER, MSLU, and TOP. For

Dataset #Domain #Class #Train #Dev #Test
CLINC150 10 150 750/1500 1500 4500
ATIS 1 14 70/140 121 827
HWU64 18 64 320/640 640 1076
BANKING77 1 77 385/770 770 3080
MTOP 11 85 425/860 850 4354
SNIPS 7 7 35/70 70 1429
LEYZER 15 57 285/570 469 381
MSLU 3 12 60/120 120 7799
TOP 2 11 55/110 110 8196

Table 1: The statistics of datasets (5-shot/10-shot).

each dataset, we randomly select K = 5 or 10 sam-
ples per class as a 5-shot or 10-shot training set and
select 10 samples per class as a development set.
Details of nine datasets are reported in Table 1.

4.2 Evaluation Protocol
Following (Geng et al., 2021), we run all methods
with the same task ordering during training. The
test accuracy of each task is reported after all tasks
are visited.

At time step t, following (Mehta et al., 2021),
we employ the average accuracy At, average for-
getting Ft and learning accuracy LAt metrics after
learning on the t-th task. Let at,i denote the test
accuracy on the task i after learning task t, those
metrics are defined as follows:

At =
1

t

t∑

i=1

at,i LAt =
1

t

t∑

i=1

ai,i

Ft =
1

t− 1

t−1∑

i=1

max
j∈{1,...,t−1}

(aj,i − at,i).
(8)

At measures the average performance over all pre-
viously seen tasks. Ft measures how much the
model has forgotten about all previously seen tasks
after learning task t. LAt measures the learning
capability when the model sees the new task.

To measure the parameter efficiency, we also
employ the following metrics: trainable parameters
and storage parameters after learning n tasks.

4.3 Compared Methods
Since this is the first work in CFID, there is no
prior method that solves exactly the same task. We
extend the typical methods in the few-shot ID set-
ting to the CFID setting to construct the following
strong baselines.

• Lifelong Classifier (LC) consists of a pre-
trained backbone and a task-specific classifica-
tion layer. Each task shares a backbone and owns
its specific layer.
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Task ID 0 1 2 3 4 5 6 7 8
Avg.

Method CLINC150 ATIS HWU64 BANKING77 MTOP SNIPS LEYZER MSLU TOP
LC 10.32/10.55 38.09/43.65 33.18/31.78 45.13/45.47 56.51/57.16 78.61/72.92 90.81/92.21 94.13/94.97 82.83/86.49 58.85/59.47
L-DNNC 83.85/85.82 71.46/81.74 74.38/78.13 63.91/71.40 80.91/85.24 93.52/93.52 92.65/95.28 95.17/97.27 88.14/90.93 82.67/86.59
L-PN 77.93/85.67 73.28/89.68 71.90/79.18 58.97/71.67 80.90/84.55 91.07/93.00 93.00/95.36 95.93/96.72 88.98/90.92 81.33/87.42
PN-AGEM 79.73/86.24 79.60/88.51 72.83/78.81 61.21/72.82 80.79/84.24 90.97/94.29 92.65/95.63 96.15/96.62 88.14/90.69 82.45/87.54
PLE (Ours) 88.70∗/91.20∗ 87.91∗/91.29∗ 76.46∗/80.36 74.90∗/79.09∗ 76.14/80.64 93.40/94.56 89.68/91.16 95.06/96.18 88.27/88.91 85.61/88.16
PN-Joint 89.04/93.19 84.52/90.08 76.58/84.08 76.61/84.19 78.72/86.28 92.93/95.89 92.56/95.10 91.52/96.30 87.15/89.25 85.52/90.49

Table 2: Test accuracy (%) evaluated on the final model in 5-shot/10-shot regime after all 9 tasks are visited. We use
Avg. to represent the average accuracy of all tasks for each method. ∗ indicate statistically significant (p < .05)
improvements over the best baseline.

Method Avg. At Avg. Ft Avg. LAt
LC 70.00/70.54 20.91/26.09 85.21/89.62
L-DNNC 84.22/87.32 4.91/4.54 87.69/90.54
L-PN 82.26/88.95 3.16/3.48 83.87/91.44
PN-AGEM 83.76/89.03 3.11/3.05 85.97/91.21
PLE (Ours) 84.73/88.10 1.16/1.03 85.49/88.79
SC 86.62/90.69 0.00/0.00 86.62/90.69
S-PN 86.90/90.76 0.00/0.00 86.90/90.76
S-PLE 86.93/90.48 0.00/0.00 86.93/90.48
PN-Joint 85.05/90.27 0.80/0.65 85.41/90.52

Table 3: Performance of different methods in 5-shot/10-
shot regime. We use Avg. to All metrics are averaged
over all time steps in three trials.

• Lifelong DNNC (L-DNNC). DNNC (Zhang
et al., 2020) is one of the state-of-the-art meth-
ods in the few-shot ID task, which solves it as a
textual entailment problem and uses large-scale
entailment datasets for pre-training. L-DNNC
tunes the whole DNNC model in a sequential
manner when a new task arrives.

• Lifelong Prototypical Network (L-PN). Proto-
typical Network (PN) (Snell et al., 2017) is also
a strong distance-based baseline for few-shot ID
tasks. Lifelong PN (LPN) tunes the whole PN
model during lifelong learning.

• PN-AGEM. We also compared with a strong
replay-based lifelong learning method called
AGEM (Chaudhry et al., 2019). It needs to
maintain a memory for storing selected samples
from previous tasks. We apply it to the proto-
typical network and get a variant referred to as
PN-AGEM.

• PN-Joint stores all data from all seen previous
tasks and trains the whole prototypical network
with all data when learning the new task. It serves
as an upper bound of the prototypical network.

We also test those baselines in a single-task setting
to measure the knowledge transfer ability.

• Single Classifier (SC) trains one classifier for
each task. Obviously, it suffer from serious pa-
rameter explosion problem when the number of
tasks increasing.

• Single Prototypical Network (S-PN) trains one
prototypical network for each task. It also suffers
from the parameter explosion problem.

• Single PLE (S-PLE) is an extension of our PLE
model, which trains one adapter with one prefix
individually for each task.

4.4 Implementation Details.

We use a pre-trained model SimCSEbase as the
backbone for all experiments, because of its pow-
erful text representation capabilities. For classifier-
based experiments, the batch size is 4 and 8 in the
5/10-shot setting respectively. For all experiments
except those using the PLE, the learning rate is
2e-5. For PLE, it is 1e-4. For the replay-based
baseline, the memory size is the same as ours. For
experiments with episode training, we choseN and
K for each task based on the maximum memory
capacity and ensured that the same values were
used for each experiment. For DNNC, we follow
the settings in Zhang et al. (2020).

4.5 Main Results

In this part, we report the test accuracy of each task,
referred to as “Overall Performance" and provide
more insights into the catastrophic forgetting and
average performance at each time step, referred to
as “Middle States Performance".

Overall Performance As shown in Table 2, we
report the experimental results of our approach and
baselines. From the results, we can observe that:
1) Our proposed PLE outperforms previous base-
lines concerning the average accuracy of all tasks
(85.61% and 88.16% for 5-shot and 10-shot set-
tings), which demonstrates the effectiveness of our
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Figure 3: t-SNE visualization of PN-AGEM and Ours
on the final model with test data of CLINC150. We
randomly choose ten classes of the task to visualize.

method. 2) Our method still achieve better perfor-
mance in the earlier accessed tasks, which demon-
strates the superiority of our model in avoiding
catastrophic forgetting.

In comparison, simply fine-tuning the backbone
and the new involved classifier inevitably suffers
from catastrophic forgetting. For example, the ac-
curacy of LC on the first task is only 10.32%. We
attribute it to the mismatch between the updated
backbone and the classifier of the old task. For
L-DNNC and L-PN, since they only have a shared
encoder across tasks, catastrophic forgetting can
be avoided. Thus they achieve 83.85% and 77.93%
accuracy on the first task. Compared with L-PN,
PN-AGEM is better on the early accessed tasks as
it replays some samples of past tasks. As shown
in Figure 3, compared with PN-AGEM, our PLE
shows better intra-class compactness and larger
inter-class distances.

For PN-Joint, it uses training data of all previ-
ously seen tasks at each step, which is more likely
to be affected by negative knowledge transfer in a
few cases. For tasks with very different domains,
e.g., ATIS with flight domain, other tasks may trans-
fer more negative knowledge to it. Thus, we can ob-
serve a worse performance than our method in this
case (Accuracy of 90.08% vs. 91.29% on ATIS). It
shows our effectiveness in alleviating this problem.

Middle States Performance As shown in Ta-
ble 3, we report the average accuracy, forgetting,
and learning accuracy of our method and baselines.
All metrics are averaged over all time steps. From
the results, we can observe that: Our proposed PLE
outperforms previous baselines in the 5-shot CFID
setting concerning Avg. At and Avg. Ft. It also
has competitive performance in the 10-shot CFID
setting and less forgetting than other baselines. For
baselines in the single-task setting (i.e., SC, S-PN,

0 1 2 3 4 5 6 7 8
Task ID

78

80

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y 
(%

)

(a) CLINC150: 5-shot

L-DNNC
L-PN
L-AGEM
Ours
PN-Joint

0 1 2 3 4 5 6 7 8
Task ID

84

86

88

90

92

94
(b) CLINC150: 10-shot

L-DNNC
L-PN
L-AGEM
Ours
PN-Joint

Figure 4: Test accuracy (%) of different methods on
the CLINC150 dataset in 5-shot/10-shot CFID setting.
Each curve denotes a kind of method. Shaded regions
indicate standard deviation over three trials.

Method #Trainable Params. #Storage Params.
LC 125M+∆Ti 125M+

∑n
i=1∆Ti

L-DNNC 125M 125M
L-PN 125M 125M
PN-AGEW 125M 125M
PLE (Ours) 15M+15M=30M 125M+15M=140M

SC 125M+∆Ti 125M×n +∑n
i=1∆Ti

S-PN 125M 125M×n
S-PLE 15M 125M+15M×n
PN-Joint 125M 125M

Table 4: Number of trainable and storage parameters
in different methods. n denotes the number of tasks
and ∆Ti denotes the number of parameters of the task-
specific layer. Here, the number of parameters of the
PrLM and additional parameters of ours are 125M and
15M, respectively.

and S-PLE), although they perform well, when the
number of tasks is large, they inevitably suffer from
parameter explosion.

However, there is a slight drop in Avg. LAt in
our method compared to others. A similar phe-
nomenon can be observed in Table 2, i.e., for tasks
newly visited, the test accuracy is not as good as
other methods. We attribute it to a trade-off be-
tween learning about new tasks and preventing for-
getting of past tasks. Freezing the backbone in
our method damages the expressiveness but guar-
antees the overall performance of all tasks. Specifi-
cally, taking the earliest visited task CLINC150 as
an example, Figure 4 shows the accuracy curves
of the different methods throughout the continual
learning. Compared with other methods, the per-
formance of our method is relatively stable in the
whole process, although the performance is not the
best at the beginning.

Overall, our proposed PLE is a promising solu-
tion for the CFID problem with less forgetting and
comparable performance.
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Figure 5: Test accuracy (%) of different tasks between
PN-AGEM and Ours. Each curve in the sub-figure
denotes a kind of task in the 10-shot setting. Shaded
regions indicate standard deviation over three trials.

4.6 Efficiency & Robustness of PLE

Parameter Efficiency As shown in Table 4, we
list the number of trainable and stored parameters
in different methods. As the number of tasks in-
creases, the stored parameters of the baselines in
the single-task setting (i.e., SC, S-PN, and S-PLE)
also increase, eventually leading to the explosion
problem. Compared to them and other baselines,
PLE achieves competitive performance and param-
eter efficiency with 76% less trainable parameters
(from 125M to 30M) and only 15M additional pa-
rameter storage. As a result, it is possible to employ
a larger pre-trained language model to achieve bet-
ter performance.

Training and Inference Efficiency We observe
that incorporating continuous prompts into PLE
does not suffer from too slower training than other
prototypical-based baselines (i.e., L-PN and PN-
AGEM). However, for L-DNNC, despite its high
performance in Avg. LAt, it makes predictions
by enumerating all the labels to decide whether a
query and a label match or not, which is so time-
consuming during training and inference.

Robustness for Task Ordering To analyze the
effect of task ordering when PLE is learning differ-
ent tasks, we randomly sample five different task
orderings in the 5-shot setting. After all tasks are
learned, we report the test accuracy over differ-
ent orderings. As shown in the the right side of
Figure 6, we can see our method is insensitive to
different task orderings.

4.7 Knowledge Transfer Assessment

Assessing Backward Knowledge Transfer To
assess the influence of learning new tasks on the
performance of previous tasks (backward trans-
fer), we visualize the curve of the test accuracy of
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Figure 6: Left side: Avg. LAt on ATIS in the 5-shot
CFID and single-task settings, respectively. Right side:
Test accuracy (%) of different tasks in the 5-shot setting
with five different task orderings.

different tasks between our method and the baseline
with the lowest Avg. Ft of 3.05%, i.e., PN-AGEM
in the 10-shot setting. As seen in the left side of
Figure 5, the curve of PN-AGEM has a clear down-
ward trend, while the curve of our method remains
stable overall. In particular, we observe that on
ATIS, the performance of PN-AGEM continues to
decline, while our method goes through a phase of
slight decline followed by an increase. It shows a
promising ability to backward knowledge transfer.

Assessing Forward Knowledge Transfer To fur-
ther assess the capability to learn new tasks with
the help of knowledge from past tasks (forward
transfer), we compare the results of Avg. LAt
in the single-task setting and continual learning
setting. From Table 3, we observed that there is
a significant drop in the extremely few-shot (i.e.,
5-shot) regime. For example, there is a drop from
86.90 to 83.87 comparing S-PN and L-PN. In par-
ticular, there is still a drop of 1.49% compared to
S-PN for the upper-bound baseline PN-Joint. It
confirms the existence of negative knowledge trans-
fer across tasks. We select the task ATIS to assess
forward knowledge transfer, which is most affected
by negative knowledge transfer (4% performance
drop comparing PN-Joint with S-PN). From the
left-top side of Figure 6, we can see our method
has the highest Avg. LAt and is closest to the
performance in the single-task setting. It shows
that our approach effectively reduces the effect of
the negative knowledge transfer and enhances the
effect of the forward knowledge transfer.

4.8 Analysis of Domain Variety
To simulate a realistic continual setting, we collect
as many public datasets as possible, a few of which
inevitably overlap in intent classes and domains,
such as MSLU and MTOP. However, we count the
number of similar domains in any two datasets and
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Method Avg. At Avg. Ft Avg. LAt
Ours 85.15/88.22 0.99/0.83 85.79/88.75
w/o prefix 84.74/87.81 2.55/2.25 86.49/89.37
w/o memory 83.22/87.45 4.86/3.39 86.55/89.83
w/o TKT 82.35/87.25 0.84/0.81 82.84/87.82
w/o PSR 84.06/87.86 1.85/1.35 85.33/88.83
w/o DWR 84.63/87.88 1.11/1.43 85.63/88.59

Table 5: Ablation results in 5-shot/10-shot regime. All
metrics are averaged over all time steps.

20 15 10 5 0 5 10 15 20

20

15

10

5

0

5

10

15

20
(a) Ours w/o PSR

28
6

70
62

57
35

26
139

22
108

20 10 0 10 20
20

15

10

5

0

5

10

15

20

(b) Ours

28
6

70
62

57
35

26
139

22
108

Figure 7: t-SNE visualization of ablation: w/o PSR and
Ours on the final model with test data of CLINC150.
The circle region shows our PLE has larger inter-class
distances than the ablation variant.

find less than 1 domain overlap on average. There
are also domain differences in some overlapping
classes, such as the class "exchange_rate" in the
"banking" and "travel" domain. It reflects the do-
main variety between tasks to some extent.

In general, our approach works well in very dif-
ferent domains. For example, the task ATIS be-
longs to the "flight" domain, which is different from
all domains in another task, CLINC150. When
continually learning ATIS after CLINC150, we
observed there is a huge performance drop using L-
PN baseline compared to S-PN in a single-task set-
ting (accuracy of ATIS from 91% to 76%). This is
mostly due to negative knowledge transfer caused
by the domain gap between CLINC150 and ATIS.
With the distillation strategy, our method allevi-
ates this problem and achieves an accuracy of 89%
when continually learning ATIS.

4.9 Ablation Study

As reported in Table 5, we conduct ablation studies
to investigate the impact of different components
of PLE in the 5-shot and 10-shot setting.

Specifically, we analyze the following variants:
a) w/o prefix removes the prefix from the PLE.
b) w/o memory removes the memory and merely
adopting the TKT strategy. c) w/o TKT discards
the TKT strategy and merely adopting the Lsim

with the memory. d) w/o PSR randomly selects the
same number of saved samples instead of using the
PSR strategy. e) w/o DWR sets fixed weight hyper-
parameters heuristically (λdis = 0.9, λmem = 0.1)
instead of dynamically weighting.

From the results in Table 5, we can make the
following observations. First, the introduction of
prefix improves the performance of our method.
Second, the variant without the TKT has a signifi-
cant drop in performance on the Avg. At and Avg.
LAt. It confirms the existence of negative knowl-
edge transfer across tasks. Using the TKT to gain
more task-specific knowledge can effectively allevi-
ate this problem. Also, the memory can effectively
alleviate the catastrophic forgetting problem. Fig-
ure 7 shows that the PSR strategy is an efficient
way to select saved samples.

Moreover, we observe that the Avg. LAt and
Avg. Ft are the highest in the “w/o memory" and
“TKT" settings, respectively. It confirms a trade-
off between learning new tasks and replaying past
tasks. From the results in the “w/o DWR" set-
ting, we can see the DWR strategy can effectively
balance them and significantly improve the perfor-
mance of our method.

5 Conclusion

In this paper, we define a more challenging yet
practical problem as Continual Few-shot Intent De-
tection (CFID), where the system needs to handle
continually emerging new intents with very few la-
beled data. To deal with the problem, we propose a
novel prefix-guided lightweight encoder with three
auxiliary strategies. Extensive experiments demon-
strate the effectiveness and efficiency of our method
in preventing catastrophic forgetting and encourag-
ing positive knowledge transfer across tasks.
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Abstract

As AI is more and more pervasive in every-
day life, humans have an increasing demand to
understand its behavior and decisions. Most re-
search on explainable AI builds on the premise
that there is one ideal explanation to be found.
In fact, however, everyday explanations are co-
constructed in a dialogue between the person
explaining (the explainer) and the specific per-
son being explained to (the explainee). In this
paper, we introduce a first corpus of dialogical
explanations to enable NLP research on how
humans explain as well as on how AI can learn
to imitate this process. The corpus consists
of 65 transcribed English dialogues from the
Wired video series 5 Levels, explaining 13 top-
ics to five explainees of different proficiency.
All 1550 dialogue turns have been manually
labeled by five independent professionals for
the topic discussed as well as for the dialogue
act and the explanation move performed. We
analyze linguistic patterns of explainers and
explainees, and we explore differences across
proficiency levels. BERT-based baseline results
indicate that sequence information helps pre-
dicting topics, acts, and moves effectively.

1 Introduction

Explaining is one of the most pervasive commu-
nicative processes in everyday life, aiming for mu-
tual understanding of the two sides involved. Par-
ents explain to children, doctors to patients, teach-
ers to students, seniors to juniors—or all the other
way round. In explaining dialogues, one side takes
the role of the explainer, the other the role of the
explainee. Explainers seek to enable explainees to
comprehend a given topic to a certain extent or to
perform some action related to it (Rohlfing et al.,
2021). This usually implies a series of dialogue
turns where both sides request and provide differ-
ent information about the topic. In line with the
quote from the movie “Forrest Gump” in the title,

∗ Both authors contributed equally to this paper.

Explaining dialogue on the main topic “blockchain”

Explainer (expert)  (child) Explainee

Do you know what we're gonna talk about today? It's called blockchain.

What's blockchain?

That's a really good question. It's actually a way that we can trade. Do you 
know what trade is?

Mmm-hmm, it's when you take turns doing something. It's when you give 
up most of what you want, right?

When you give up most of what you want? Well, sometimes that definitely 
happens for sure. What if I told you that this is the kind of technology that 
I work on that means you could trade with any kid all over the world?

Really?

If I could trade with any kid, I would trade, well, I would trade something 
I don't like so much.

That's probably a good idea, maybe somebody else likes it more than you 
do. So normally, when people trade, they have to go to the store, or they 
have to know the person so they can get what they asked for. With 
blockchain, you can make that exact same trade, but you don't need the 
store, and you don't even necessarily need to know the other person.

Yeah.

Really?

Really.
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08

09

10

11
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04

Figure 1: A short explaining dialogue from the video
series 5 Levels, included in the corpus presented in Sec-
tion 3. Here, an expert explains blockchain to a child.

how an explaining dialogue looks like is strongly
affected by the specific explainer and explainee as
well as by their interaction.

Consider the dialogue in Figure 1, where a tech-
nology expert explains the basic idea of blockchain
to a 5-year old in a controlled setting. Beyond the
explanations of the main topic (turns 05 and 09),
the dialogue contains an explanation request (02),
a test of prior knowledge (03), explanations from
the explainee (04), and more. We observe that the
explainer’s explanations depend on the reaction of
the explainee and that their level of depth is most
likely adjusted to the explainee’s proficiency.

The importance of studying how to explain has
become apparent with the rise of research on ex-
plainable artificial intelligence, XAI (Barredo Arri-
eta et al., 2020). As AI finds its way into various
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aspects of work and private life, humans interacting
with respective systems, or being affected by them,
have an increasing demand to understand their be-
havior and decisions. This demand has also been
manifested in a right to explanation within the EU’s
General Data Protection Regulation (Goodman and
Flaxman, 2017). Prior work on XAI largely starts
from the premise that an ideal (monological) expla-
nation exists for any behavior or decision, possibly
dependent on the explainee at hand (Miller, 2019).
According to Rohlfing et al. (2021), however, real
explainability must account for the co-constructive
nature of explaining emerging from interaction.

In natural language processing, early work mod-
eled discourse structure of monological explana-
tions (Bourse and Saint-Dizier, 2012), and a num-
ber of recent approaches generate respective expla-
nations for XAI (Situ et al., 2021) and recommen-
dation (Li et al., 2021). In contrast, the language of
dialogical explanations is still understudied (details
in Section 2). We argue that a better understanding
of how humans explain in dialogues is needed, so
that XAI can learn to interact with humans.

In this paper, we present a first corpus for com-
putational research on how to explain in dialogues
(Section 3). The corpus has been created as part of
a big interdisplinary research project dealing with
the construction of explainability.1 It consists of 65
transcribed dialogical explanations from the Amer-
ican video series 5 Levels freely published by the
Wired magazine.2 Five dialogues each refer to one
of 13 science-related topics (e.g., “blockchain” or
“machine learning”). They have the same explainer
(an expert on the topic), but differ in the explainee’s
proficiency (from child to colleague).

To enable XAI to mimic human explainers, it
has to learn what turn to make at any point in a dia-
logue. In discussion with humanities researchers,
we model a turn for this purpose by the relation of
its topic to the main topic (e.g., subtopic or related
topic), its dialogue act (e.g., check question or in-
forming statement), and its explanation move (e.g.,
testing prior knowledge or providing an explana-
tion). We segmented the dialogues into a total of
1550 turns, and we let five independent profession-
als annotate each turn for these three dimensions.

In Section 4, we analyze linguistic patterns of
explaining dialogues in the annotated corpus. We
find clear signals for the explainer’s alignment to

1Constructing Explainability, https://trr318.upb.de/en
25 Levels, https://www.wired.com/video/series/5-levels

the explainee’s proficiency, such as the avoidance
of deviating to related topics towards children. The
roles of explainer and explainee are reflected in the
varying use of dialogue acts and explanation moves,
possibly stressed by the given setting.

To obtain baselines for the prediction of the three
annotated dimensions, we evaluate three variants
of BERT (Devlin et al., 2019) in 13-topic cross-
validation on the corpus (Section 5). Our results
reveal that modeling sequential dialogue interac-
tion helps predicting a turn’s topic, act, and move
effectively. Improvements seem still possible, call-
ing for more sophisticated approaches as well as for
more explaining dialogue data in the future.3

In summary, the contributions of our paper are:

1. A manually annotated corpus for studying
how humans explain in dialogical settings

2. Empirical insights into how experts explain to
explainees of different proficiency levels

3. Baselines for predicting the topic, dialogue
act, and explanation move of dialogue turns

2 Related Work

Explainable AI (XAI) largely focuses on the in-
terpretability of learned models from the perspec-
tive of scientific completeness (Gilpin et al., 2018).
Even though recent works tackle cognitive aspects,
such as the trade-off between completeness and
compactness (Confalonieri et al., 2019), Miller
(2019) pointed out that this perspective is far away
from the understanding of everyday explanations in
the social sciences. Garfinkel (2009) argues that the
key is to sort out what the explainer should actually
explain, and Barredo Arrieta et al. (2020) stressed
the importance of who is the explainee for XAI.
Rohlfing et al. (2021) built on these works, but rea-
soned that explanations can only be successful in
general, if they are co-constructed in interaction
between explainer and explainee. The rationale is
that explainees vary in their motives and needs, and
they face different challenges (Finke et al., 2022).
The corpus we present serves as a basis for study-
ing the linguistic aspects of the explainer-explainee
interaction computationally.

Natural language language processing (NLP) has
notably dealt with the related genre of instructional
texts, modeling their structure (Fontan and Saint-
Dizier, 2008), extracting knowledge (Zhang et al.,

3The corpus and the experiment code are freely available
here: https://github.com/webis-de/COLING-22

345



2012), comprehending some meaning (Yagcioglu
et al., 2018), or generating them (Fried et al., 2018).
However, instructional text has a clear procedural
style with distinctive surface features (Vander Lin-
den, 1992), unlike explanations in general. For tuto-
rial applications, Jordan et al. (2006) extracted con-
cepts from explanation sentences, whereas Jansen
et al. (2016) studied the knowledge needed for sci-
entific explanations, and Son et al. (2018) identi-
fied causal explanations in social media. Towards a
computational understanding of explaining, Bourse
and Saint-Dizier (2012) modeled explanation struc-
ture with discourse relations (Mann and Thompson,
1988). In XAI and recommendation contexts, the
generation of respective explanations is explored
increasingly (Situ et al., 2021; Li et al., 2021).

However, our main goal is not to understand
how to generate an explanation, but to model how
people interact in an explanation process. For an-
notation, we thus rely on the widely accepted con-
cept of dialogue acts (Stolcke et al., 2000; Bunt
et al., 2010). Similar has been done for delibera-
tive dialogues by Al Khatib et al. (2018). In ad-
dition, we model the moves that explainers and
explainees make in their interaction, adapting the
idea of rhetorical moves, in terms of communica-
tive functions of text segments used to support
the communicative objective of a full text (Swales,
1990). Wachsmuth and Stein (2017) proposed task-
specific moves for monological arguments, but we
are not aware of any work on moves for explana-
tions, nor for dialogical settings.

Hence, we start by compiling data in this paper.
Existing related corpora contain tutorial feedback
for explanation questions (Dzikovska et al., 2012),
answers to non-factoid questions (Dulceanu et al.,
2018), and pairs of questions and responses from
community question answering platforms (Nakov
et al., 2017). Finally, the corpus of Fan et al. (2019)
includes 270k threads from the Reddit forum Ex-
plain like I’m Five where participants explain a
concept asked for in simple ways. While all these
allow for in-depth analyses of linguistic aspects
of explanations, none of them include explaining
dialogues with multiple turns on each side. This is
the gap we fill with the corpus that we introduce.

3 Data

This section introduces the corpus that we created
to enable computational research on dialogical ex-
planation processes of humans. We discuss our

design choices with respect to the source and anno-
tation, and we present detailed corpus statistics.

3.1 Explaining Dialogues on Five Levels
As source data, we decided to rely on explaining
dialogues from a controlled setting in which two
people explicitly meet to talk about a topic to be
explained. While we thereby may miss some inter-
action behavior found in real-word explanation pro-
cesses, we expect that such a setting best exhibits
explaning dialogue features in their pure form.

In particular, we acquired the source dialogues
in our corpus from 5 Levels, an American online
video series published by the Wired magazine. In
each video of the series, one explainer explains a
science-related or technology-related topic to five
different explainees. The explainer is always an
expert on the topic, whereas the explainees increase
in terms of (assumed) proficiency on the topic:

1. a child,
2. a teenager,
3. an undergrad college sudent,
4. a grad student, and
5. a colleague in terms of another expert.

Every video starts with a few introductory words
by the expert, before one dialogue follows the
other.4 Transcriptions are already provided in the
videos’ captions. So far, the first season of the se-
ries is available with a total of 17 videos. Table 1
lists all explained topics (main topics henceforth)
in these videos, along with explainer information.

At the time of starting the annotation process
discussed below, only 14 of the 17 videos had been
accessible, and one of these had partly corrupted
subtitles. We thus restricted the annotated corpus
to the remaining 13 videos, summing up to 65 di-
alogues that correspond to a video length of 5.35
hours. Later, we added all dialogues from the other
four videos in unannotated form to the corpus.

Before annotation, we manually segmented each
dialogue into its single turns, such that consecu-
tive turns in a dialogue alternate between explainer
and explainee. Overall, the 65 dialogues consist
of 1550 turns (23.8 turns per dialogue on average),
790 from explainers and 760 from explainees. The
turns span 51,344 words (33.1 words per turn). On

4It is noteworthy that the videos seem to have been cut a
little, likely for the sake of a concise presentation. We assume
that this mainly removed breaks between dialogue turns only.
While it limits studying non-verbal interaction in explaining,
the effect for textual analyses of the dialogues should be low.
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# Topic Explainer Expertise

1 Harmony Jacob Collier Musician
2 Blockchain Bettina Warburg Political scientist
3 Virtual reality John Carmack Oculus CTO
4 Connectome Bobby Kasthuri Neuroscientist
5 Black holes Varoujan Gorjian NASA astronomer
6 Lasers Donna Strickland Professor
7 Sleep Aric A. Prather Sleep scientist
8 Dimensions Sean Carroll Theoret. physicist
9 Gravity Janna Levin Astrophysicist
10 Computer hacking Samy Kamkar Security researcher
11 Nanotechnology George Tulevski Nanotec. researcher
12 Origami Robert J. Lang Physicist
13 Machine learning Hilary Mason Hidden Door CEO

14 CRISPR Neville Sanjana Biologist
15 Memory Daphna Shohamy Neuroscientist
16 Zero-knowl. proof Amit Sahai Computer scientist
17 Black holes Janna Levin Astrophysicist

Table 1: All 17 main topics explained in the 5 Levels
dialogues, along with the explainers and their expertise.
The 65 dialogues of the 13 topics listed in black are an-
notated in our corpus; the rest is provided unannotated.

average, an explainer’s turn is double as long as an
explainee’s turn (43.7 vs. 22.1 words). While the
general data size is not huge, we provide evidence
in Sections 4 and 5 that it suffices to find com-
mon patterns of explanation processes. Limitations
emerging from the size are discussed in Section 6.5

3.2 Annotations of Explanatory Interactions
The corpus is meant to provide a starting point for
XAI systems that mimic the explainer’s role within
dialogical explanation processes. Our annotation
scheme supports this purpose and is the result of ex-
tensive discussions in our interdisciplinary project
with a big team of computer scientists, linguists,
psychologists, and cognitive scientists. Where pos-
sible, we followed the literature, but the lack of
research on human interaction in explaining (see
Section 2) made us extend the state of the art in
different respects.

In particular, we focus on turn-level category
labels that capture the basic behavior of explain-
ers and explainees in explaining dialogues. Our
scheme models the three dimensions of dialogue
turns that we agreed on to be needed for a compu-
tational understanding of the behavior:

• the relation of a turn’s topic to the main topic,
• the dialogue act performed in the turn, and
• the explanation move made through the turn.
5We also extracted the time code (start and end millisec-

onds) of each segment from the videos, for which one caption
is shown. This may serve multimodal studies in the future.

We discuss the labels considered for each of the
three annotation dimensions in the following. Since
all labels apply to both explainer and explainee in
principle, we refer to a speaker and a listener below.

Topic Even though the dialogues we target have
one defined main topic to be explained, what is
explained in specific turns may vary due to the dy-
namics of explaining interaction (Garfinkel, 2009).
Since we seek to learn how to explain in general
rather than any specificities of the concrete 13 main
topics in the corpus, we abstract from the latter,
modeling only the relation of the topic discussed
in a turn to the dialogue’s main topic. In particular,
a turn’s topic may be annotated as follows:

t1 Main topic. The main topic to be explained;

t2 Subtopic. A specific aspect of the main topic;

t3 Related topic. Another topic that is related to
the main topic;

t4 No/Other topic. No topic, or another topic
that is unrelated to the main topic.

Dialogue Act To model the communicative func-
tions of turns in dialogues, we follow the literature
(Bunt et al., 2010), starting from the latest version
of the ISO standard taxonomy of dialogue acts.6 In
explaining, specific dialogue acts are in the focus,
though. In collaboration with the interdisciplinary
team, we selected a subset of 10 acts that capture
communication on a level of detail that is specific
enough to distinguish key differences, but abstract
enough to allow finding recurring patterns:

d1 Check question. Asking a check question;

d2 What/How question. Asking a what question
or a how question of any kind;

d3 Other question. Asking any other question;

d4 Confirming answer. Answering a question
with confirmation;

d5 Disconfirming answer. Answering a question
with disconfirmation;

d6 Other answer. Giving any other answer;

d7 Agreeing statement. Conveying agreement on
the last utterance of the listener;

d8 Disagreeing statement. Conveying disagree-
ment accordingly;

d9 Informing statement. Providing information
with respect to the topic stated in the turn;

d10 Other. Performing any other dialogue act.
6DIT++ Taxonomy of Dialogue Acts, https://dit.uvt.nl
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Explanation Move Finally, we aim to under-
stand the explanation-specific moves that explain-
ers and explainees make to work together towards a
successful explanation process. Due to the lack of
models of explaining dialogues (see Section 2, we
started from recent theory of explaining (Rohlfing
et al., 2021). Based on a first inspection of a cor-
pus sample, we established a set of 10 explanation
moves that a speaker may make in the process, at a
granularity similar to the dialogue acts:7

e1 Test understanding. Checking whether the
listener understood what was being explained;

e2 Test prior knowledge. Checking the listener’s
prior knowledge of the turn’s topic;

e3 Provide explanation. Explaining any concept
or a topic to the listener;

e4 Request explanation. Requesting any explana-
tion from the listener;

e5 Signal understanding. Informing the listener
that their last utterance was understood;

e6 Signal non-understanding. Informing the lis-
tener that the utterance was not understood;

e7 Providing feedback. Responding qualitatively
to an utterance by correcting errors or similar;

e8 Providing assessment. Assessing the listener
by rephrasing their utterance or giving a hint;

e9 Providing extra info. Giving additional infor-
mation to foster a complete understanding;

e10 Other. Making any other explanation move.

We note the hierarchical nature of the scheme
with respect to dialogue acts and explanations; for
example, d1–d3 could be merged as well as e1–e2.
While some acts and moves are much more likely
to be made by an explainer or an explainee, we did
not restrict this to avoid biasing the annotators.8

3.3 Crowd-based Annotation Process
The restriction of the annotations to a manageable
number of turn-level labels was also made to make
the annotation process simple enough to carry it out
with independent people. In particular, we hired
five freelancers, working as content editors and

7We decided to leave a distinction of different explaining
types (such as causal or analogy-based explanations) to future
work, as it does not match the level of detail in our scheme.

8For dialogue acts d3, d6, and d10 as well as explanation
move e10, the annotators had to name the label in free text.
We provide these as part of the corpus, we give individual
examples of other moves and acts in Section 4.

annotators on the professional crowdworking plat-
form Upwork. All were native speakers of English
with a 90%+ job success rate on the platform. We
clarified the task individually with each of them.

We provided guidelines based on the definitions
above, along with general explanations and some
examples. Using Label Studio,9 we developed a
task-specific user interface where each dialogue
was shown as a sequence of turns and one label of
each dimension could be assigned to a turn (if mul-
tiple labels seemed appropriate, the best fitting one).
Each annotator labeled all 1550 turns. We paid $
1115 for an overall load of 85 hours, that is, $ 13.12
per hour on average (with minor differences for an-
notators due to bonuses and varying durations).

Agreement In terms of the conservative measure
Fleiss’ κ, the inter-annotator agreement among all
five was 0.35 for the topic, 0.49 for dialogue acts,
and 0.43 for explanation moves. While these values
indicate moderate agreement only, they are in line
with related subjective labeling tasks of short texts
such as news sentences (Al Khatib et al., 2016)
and social media arguments (Habernal et al., 2018).
Moreover, we exploited the multiple labels we have
per turn to consolidate reliable annotations, as de-
scribed in the following.

Output Annotations For consolidation, we rely
on MACE (Hovy et al., 2013), a widely used tech-
nique for grading the reliability of crowdworkers
based on their agreement with others. The MACE
competence scores of the annotators suggest that all
did a reasonable job in general, lying in the ranges
0.30–0.76 (topic), 0.58–0.82 (dialogue acts), and
0.45–0.85 (explanation moves) respectively. We
applied MACE’ functionality to derive one aggre-
gate output label for each dimension from the five
annotations weighted by competence scores.

3.4 The Wired Explaining Dialogue Corpus

Table 2 presents detailed general statistics of the
three annotation dimensions. More insights into
the distribution of annotations across proficiency
levels follow in Section 4.

With respect to topic (t1–t4), about half of all
turns explicitly discuss the main topic (27.7%), a
subtopic (5.7%), or a related topic (16.8%). Ex-
plainees much more often mention none of these
(62.8% vs. 37.3%), underlining the leading role of
the explainer in dialogue setting.

9Label Studio, https://labelstud.io
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Explainer Explainee Total

Label # % # % # %

t1 Main topic 301 38.1 129 17.0 430 27.7
t2 Subtopic 52 6.6 36 4.7 88 5.7
t3 Related topic 142 18.0 118 15.5 260 16.8
t4 Other/No topic 295 37.3 477 62.8 772 49.8

d1 Check question 183 23.2 62 8.2 245 15.8
d2 What/How question 77 9.7 38 5.0 115 7.4
d3 Other question 3 0.4 10 1.3 13 0.8
d4 Confirming answer 14 1.8 40 5.3 54 3.5
d5 Disconfirm. answer 3 0.4 21 2.8 24 1.5
d6 Other answer 2 0.3 23 3.0 25 1.6
d7 Agreeing statement 75 9.5 190 25.0 265 17.1
d8 Disagree. statement 2 0.3 10 1.3 12 0.8
d9 Informing statement 391 49.5 305 40.1 696 44.9
d10Other 40 5.1 61 8.0 101 6.5

e1 Test understanding 56 7.1 0 0.0 56 3.6
e2 Test prior knowledge111 14.1 1 0.1 112 7.2
e3 Provide explanation 409 51.8 270 35.5 679 43.8
e4 Request explanation 47 5.9 95 12.5 142 9.2
e5 Signal understanding 37 4.7 104 13.7 141 9.1
e6 Signal non-underst. 1 0.1 16 2.1 17 1.1
e7 Provide feedback 61 7.7 224 29.5 285 18.4
e8 Provide assessment 10 1.3 1 0.1 11 0.7
e9 Provide extra info 26 3.3 22 2.9 48 3.1
e10Other 32 4.1 27 3.6 59 3.8

Σ 790 100.0 760 100.0 1550 100.0

Table 2: Corpus distribution of annotated topics (t1–t4),
dialogue acts (d1–d10), and explanation moves (e1–e10)
separately for explainer and explainee turns and in total.
Per type, the highest value in a column is marked bold.

For dialogue acts (d1–d10), we see that, quite
intuitively, informing statements (44.9%) are dom-
inant in explaining dialogues on both sides (ex-
plainer 49.5%, explainee 40.1%). However, also
agreeing statements (17.1%) as well as check ques-
tions (15.8%) play an important role. The low fre-
quency of other questions (0.8%) and other (6.5%)
suggests that the selected set of dialogue acts cover
well what happens in the given kind of dialogues,
even though our annotators identifid sum acts, such
as disagreeing statements (0.8%), rarely only.10

Similar holds for the explanation moves (e1–e10):
only 3.8% of all 1550 turns belong to other.11 As
expected, the core of explaining is to provide ex-
planations (43.8%), also explainees do so in 270
turns (35.5%). Besides, they often provide feed-
back (29.5%). Explainers rather test prior knowl-
edge (14.1%) and test understanding often (7.1%),
but also provide feedback sometimes (7.7%).

10Notable examples of other dialogue acts the annotators
observed include greetings (e.g., “Hi, are you Bella?”), casual
chat (“What do you do?”), and gratitude (“Thank you.”).

11Here, other cases include inquiry (“Hi, are you Bella”)
and introduction (“Bella, I’m George, nice to meet you.”).
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Figure 2: Distribution of topic, discourse act, and expla-
nation act annotations in the corpus, depending on the
proficiency of the explainee (from Child to Colleague).

4 Analysis

One main goal of the presented corpus is to learn
how humans explain in dialogical settings. This
section analyzes commonalities and differences re-
garding meta-information available in the corpus.

4.1 Explaining across Proficiency Levels

First, we explore to what extent explaining differs
depending on the proficiency of the explainee. Fig-
ure 2 shows the distributions of the three annotated
dimensions separately for the five given explainee
levels. For dialogue acts and explanation moves,
we distinguish only the most frequent labels and
merge all others into a class rest.

With respect to topic, we see that particularly
the discussion of related topics grows notably with
the explainee’s proficiency, from 8.4% of all anno-
tations for children to 30.9% for colleagues. Con-
versely, the main topic is mentioned less in dia-
logues with more proficient explainees; the same
holds for no/other topic. Subtopics are considered
mainly with grads (11.5%) and undergrads (9.0%),
possibly related to the way they learn.
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Topic Sequences Explainer Explainee Total

(Main, Rel, Main) 24.6% 7.7% 15.4%
(Main, Rel, Main, Rel, Main) – – 7.7%
(Main) 12.3% 18.5% 6.2%
(Rel, Main, Rel, Main, Rel, Main) – – 4.6%
(Main, Rel) 3.1% 10.8% 4.6%
(Rel, Main, Rel, Main) 3.1% – 3.1%
(Main, Sub, Main) – – 3.1%
(Main, Sub, Main, Rel, Main) 4.6% 3.1% 3.1%

Table 3: Relative frequencies of all recurring sequences
of main, sub, and related topic in the corpus’ dialogues
and in the explainers and explainees’ parts alone.

For dialogue acts, the key difference lies between
the proportion of informing statements and the num-
ber of questions asked (d1 and d2). Whereas the
former monotonously goes up from 34.0% (child)
to 52.9% (colleague), particularly the use of check
questions is correlated inversely with proficiency,
used mainly to test prior knowledge and to check
understanding. A similar behavior can be observed
for explanation moves. There, providing feedback
shrinks from 25.6% to 9.5%, while providing expla-
nations mostly grows, with peak at grads (52.9%).
In contrast, how often people request explanations
remains stable across proficiency levels.

4.2 Interactions of Topics, Moves, and Acts

Interactions of the annotated dimensions happen
between the turns and within a turn. We analyze
one example of each here, and, due the limited data
size, we look at topics separately from dialogue act
and explanation moves.

Inspired by the flow model of Wachsmuth and
Stein (2017), Table 3 shows all eight sequences of
topics that occur more than once among the 65 dia-
logues. Each sequence shows the ordering of top-
ics being discussed, irrespective of how often each
topic is mentioned in a row. Most dialogues start
and end with the main topic, often in alternation
with related topics, such as (Main, Rel, Main) in
15.4% of all cases (sometimes also with subtopics).
The ordering of what explainers talk about is sim-
ilar, whereas explainees often focus on the main
topic only (18.5%).

Table 4 lists the top-10 pairs of acts and moves.
Informing statements that provide explanations are
most common across both explainers (45.9%) and
explainees (31.3%). Agreeing statements (d7) and
check questions (d1) cooccur with multiple moves,
and especially providing feedback happens via dif-
ferent dialogue acts. As expected in the given set-

Labels Act/Move Pair Explainer Explainee Total

d9/e3 Informing/Explanation 45.9% 31.3% 38.8%
d7/e7 Agreeing/Feedback 3.9% 14.2% 9.0%
d7/e5 Agreeing/Understanding 3.5% 9.1% 6.3%
d1/e2 Check/Prior 10.5% – 5.4%
d1/e4 Check/Request 2.7% 6.8% 4.7%
d2/e4 What/Request 3.0% 4.5% 3.7%
d10/e10 Other/Other 2.8% 2.6% 2.7%
d1/e1 Check/Understanding 5.1% – 2.6%
d4/e7 Confirming/Feedback 1.4% 3.7% 2.5%
d9/e7 Informing/Feedback 0.5% 4.2% 2.3%

Table 4: Relative frequencies of the ten most frequent
pairs of dialogue act and explanation move in the corpus
and the differences for explainers and explainees.

Explainer Explainee

Word Frequency Ratio Word Frequency Ratio

here 0.16% 4.20 yes 0.21% 5.12
around 0.12% 4.03 mean 0.14% 4.20
space 0.24% 3.32 stuff 0.11% 3.11
light 0.18% 2.96 oh 0.16% 2.75
earth 0.10% 2.65 yeah 0.65% 2.70
us 0.15% 2.39 many 0.12% 2.39
want 0.14% 2.28 interesting 0.12% 2.11
going 0.22% 2.19 well 0.21% 1.94
point 0.11% 2.11 like 1.10% 1.85
thing 0.18% 1.93 no 0.18% 1.83

Table 5: The top-10 words used specifically by explain-
ers and explainees, respectively, along with the relative
frequency (minimum 0.1%) and specificity ratio (e.g.,
explainees say “yes” 5.12 times as often as explainers).

ting, explainees never check for prior knowledge
or understanding (d1/e2, d1/e1). Instead, they agree
by providing feedback or signaling understanding
(d7/e7, d7/e5) much more often than explainers.

4.3 Language of Explainers and Explainees

Finally, we investigate basic differences in the lan-
guage of the two sides: We determine the words
that are often used by explainers (at least 0.1% of
all words) and rarely by explainees, or vice versa.

Table 5 presents the 10 most specific words on
each side. Aside from some topic-specific words
(e.g., “light”), the explainer’s list includes typical
words used in meta-language, as in this explanation
to a teenager: “I want to know if you agree, sleep
is the coolest thing you’ve ever heard of.” On the
explainee’s side, we find multiple reactive words,
such as “oh” and “interesting”, but also indicators
of vagueness, as in this colleague’s response to an
explanation of hacking: “So all kind of older logic
and stuff like that. So, I mean, it’s sort of based on,
like, you’re presented the little MUX chip.”
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5 Experiments

The second goal of the corpus is to serve the cre-
ation of XAI systems that mimic human explainers.
As an initial endeavor, this section reports on base-
line experiments on the computational prediction
of topics, dialogue acts, and explanation moves.

5.1 Experimental Setup

We evaluate three models based on BERT (Devlin
et al., 2019), along with a simple majority baseline,
for predicting each dialogue turn dimension in 13-
fold cross-topic validation: For each main topic, we
trained one model on the other 12 topics and tested
it against the labels of the respective dimension. We
average the resulting F1-scores over all 13 folds.12

Figure 3 illustrates the three BERT variants.

BERT-basic The first model simply adds a clas-
sification head to BERT. It takes as input the dia-
logue’s main topic and the turn’s text, xi (separated
by [SEP]), as well as the label yi to predict (topic
ti, dialogue act di, or explanation move ei). We
trained the model for five epochs, optimizing its F1-
score on the turns of two main topics. We balanced
the training set using oversampling to prevent the
model from only predicting the majority label.

BERT-sequence Turns made in explaining dia-
logues depend on previous turns, for example, a
conclusion on the main topic may be preceded by a
related topic (see Table 3). In the second model, we
exploit such dependencies with turn-level sequence
labeling: Given the sequence (x1, . . . , xn) of all
turns in a dialogue, the input to predicting a label
yi of xi is the turn’s history (x1, . . . , xi−1) along
with all previously predicted labels (y1, . . . , yi−1)
of the same dimension. For each turn, we encode
the history in a CLS embedding with BERT. Then,
we pass all labels and CLS embeddings through a
CRF layer to model the label’s dependencies.

BERT-multitask Finally, the interaction of topic
ti, act di, and move ei in a turn may be relevant. For
example, an informing statement likely provides
an explanation (see Table 4). Our third model thus
learns to classify all three dimensions jointly in a
multitask fashion, based on multitask-NLP.13 We
trained one multitask model each with one of the
three dimensions as main task and the others as

12All models start from the bert-based-uncased, and
are trained with a learning rate of 2e−5 and a batch size of 4.

13Multitask NLP, https://multi-task-nlp.readthedocs.io
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Figure 3: Sketch of the three evaluated models, here for
predicting a turn’s explanation move, ei: (a) BERT-basic
labels a turn in isolation. (b) BERT-sequence takes the la-
bels of previous turns into account. (c) BERT-multitask
classifies all three turn dimensions simultaneously.

Main Sub- Related No/Oth. Macro
Approach T. (t1) T. (t2) T. (t3) T. (t4) F1-Score

BERT-basic 0.58 0.11 0.44 0.89 0.51
BERT-sequence 0.61 0.13 0.44 0.89 0.52
BERT-multitask 0.43 0.04 0.36 0.81 0.41

Majority baseline 0.00 0.00 0.00 0.66 0.17

Table 6: Topic prediction results: The F1-scores of the
evaluated BERT models for each considered relation
to the main topic, t1–t4, as well as the macro-averaged
F1-score. The best value in each column is marked bold.

auxiliary tasks, oversampling with respect to the
main task. To this end, we employ a shared BERT
encoder and three classification heads, one for each
task. The final loss is the weighted average of the
three classification losses, with weight 0.5 for the
main task and 0.25 for both others. We trained the
models for 10 epochs allowing them to converge.

5.2 Results

Tables 6–8 show the individual and the macro F1-
scores for all three dimensions.

BERT-sequence performs best across all three
labeling tasks, highlighting the impact of modeling
the sequential interaction in dialogues. It achieves
a macro F1-score of 0.52 for topics, 0.47 for dia-
logue acts, and 0.43 for explanation moves. How-
ever, likely due to data sparsity, some labels remain
hard to predict, such as Subtopic (t2), disagreement
statements (d8), and provide assessment (e8).

BERT-basic beats BERT-sequence on a few la-
bels, such as signal non-understanding (e8), but
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Check What/H. Other Confirm. Disconf. Other Agree. Disagr. Inform. Other Macro
Approach Q. (d1) Q. (d2) Q. (d3) A. (d4) A. (d5) A. (d6) St. (d7) St. (d8) St. (d9) (d10) F1-Score

BERT-basic 0.76 0.73 0.00 0.33 0.67 0.00 0.51 0.00 0.87 0.57 0.44
BERT-sequence 0.76 0.72 0.00 0.35 0.67 0.00 **0.69 0.00 0.87 0.61 0.47
BERT-multitask 0.54 0.49 0.00 0.29 0.59 0.00 0.53 0.09 0.84 0.44 0.38

Majority baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.06

Table 7: Dialogue act prediction results: The F1-scores of the evaluated BERT models for each considered dialogue
act, d1–d10, as well as the macro-averaged F1-score. The best value in each column is marked bold.

Test Test Provide Request Signal Signal Provide Provide Provide Other Macro
Approach U. (e1) P.K. (e2) Ex. (e3) Ex. (e4) U. (e5) N.U. (e6) Fe. (e7) As. (e8) E.I. (e9) (e10) F1-Score

BERT-basic 0.27 0.64 0.84 0.60 0.29 0.34 0.51 0.00 0.11 0.50 0.41
BERT-sequence 0.27 0.64 0.84 0.64 0.33 0.21 **0.60 0.15 0.08 0.56 0.43
BERT-multitask 0.21 0.54 0.80 0.40 0.16 0.32 0.53 0.00 0.08 0.35 0.34

Majority baseline 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

Table 8: Explanation move prediction results: The F1-scores of the evaluated BERT models for each considered
explanation move, e1–e10, as well as the macro-averaged F1-score. The best value in each column is marked bold.

cannot compete overall. BERT-multitask performs
worst among the three models. We attribute this to
the data imbalance: While oversampling helps with
respect to the main task, it does not benefit the label
distribution of the auxiliary tasks. Also, optimiz-
ing the loss weights of the three tasks may further
aid multitask learning, but such an engineering of
prediction models is not the focus of this work.

6 Conclusion

How humans explain in dialogical settings is still
understudied. This paper has presented a first cor-
pus for computational research on controlled ex-
plaining dialogues, manually annotated for topics,
dialogue acts, and explanation moves. Our analysis
has revealed intuitive differences in the language of
explainers and explainees and their dependence on
the explainee’s proficiency. Moreover, baseline ex-
periments suggest that a prediction of the annotated
dimensions is feasible and benefits from modeling
interactions. With these results, we lay the ground
towards more human-centered XAI. We expect that
respective systems need to learn to how to explain
depending on the explainee’s reactions, and how to
proactively lead an explaining dialogue to achieve
understanding on the explainee’s side.

A limitation of the corpus lies in the restricted
corpus size caused by the availability of source data,
preventing deeper statistical analyses and likely ren-
dering a direct training of dialogue systems on the
corpus hard. Also, it remains to be explored what
findings generalize beyond the controlled setting of
the given dialogues. Future work should thus target

both the scale and the heterogeneity of explaining
data, in order to provide the pervasive communica-
tive process of explaining the attention it deserves.
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Abstract

Dialogue state tracking (DST) is an essential
sub-task for task-oriented dialogue systems.
Recent work has focused on deep neural mod-
els for DST. However, the neural models re-
quire a large dataset for training. Furthermore,
applying them to another domain needs a new
dataset because the neural models are gener-
ally trained to imitate the given dataset. In
this paper, we propose Schema Encoding for
Transferable Dialogue State Tracking (SET-
DST), which is a neural DST method for effec-
tive transfer to new domains. Transferable DST
could assist developments of dialogue systems
even with few dataset on target domains. We
use a schema encoder not just to imitate the
dataset but to comprehend the schema of the
dataset. We aim to transfer the model to new
domains by encoding new schemas and using
them for DST on multi-domain settings. As a
result, SET-DST improved the joint accuracy
by 1.46 points on MultiWOZ 2.1.

1 Introduction

The objective of task-oriented dialogue systems is
to help users achieve their goals by conversations.
Dialogue state tracking (DST) is the essential sub-
task for the systems to perform the purpose. Users
may deliver the details of their goals to the sys-
tems during the conversations, e.g., what kind of
food they want the restaurant to serve and at what
price level they want to book the hotel. Thus, the
systems should exactly catch the details from utter-
ances. They should also communicate with other
systems by using APIs to achieve users’ goals, e.g.,
to search restaurants and to reserve hotels. The goal
of DST is not only to classify the users’ intents but
also to fill the details into predefined templates that
are used to call APIs.

Recent work has used deep neural networks for
DST with supervised learning. They have im-
proved the accuracy of DST; however, they require
a large dataset for training. Furthermore, they need

a new dataset to be trained on another domain. Un-
fortunately, the large dataset for training a DST
model is not easy to be developed in real world.
The motivation of supervised learning is to make
deep neural networks imitate humans. But, they ac-
tually imitate the given datasets rather than humans.
Someones who have performed hotel reservation
work could easily perform restaurant reservation
work if some guidelines are provided, but neural
models may have to be trained on a new dataset
of the restaurant domain. The difference between
humans and neural models is that humans can learn
how to read guidelines and to apply the guidelines
to their work. This is why transfer learning is im-
portant to train neural models on new domains.

In this paper, we propose Schema Encoding for
Transferable Dialogue State Tracking (SET-DST),
which is a neural DST method with transfer learn-
ing by using dataset schemas as guidelines for DST.
The motivation of this study is that humans can
learn not only how to do their work, but also how to
apply the guidelines to the work. We aim to make a
neural model learn how to apply the schema guide-
lines to DST beyond how to fill predefined slots
by simply imitating the dataset on multi-domain
settings. The schema includes metadata of the
dataset, e.g., which domains the dataset covers and
which slots have to be filled to achieve goals. SET-
DST has a schema encoder to represent the dataset
schema, and it uses the schema representation to
understand utterances and to fill slots. Recently,
transfer learning has been becoming important be-
cause development of new datasets is costly. Trans-
fer learning makes it possible to pre-train neural
models on large-scale datasets to effectively fine-
tune the models on small-scale downstream tasks.

We used SGD (Rastogi et al., 2020) as the large-
scale dataset, and evaluated SET-DST on Multi-
WOZ 2.1 (Eric et al., 2020), which is a standard
benchmark dataset for DST, as the downstream
task. SET-DST achieved state-of-the-art accuracy
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Schema Encoder State Generator (GPT-2)

Dataset Schema ... ...

(a) Schema encoding for active slots and intents clas-
sification.

... ...

State Generator (GPT-2)

... ...

...

(b) Dialogue state generation.

Figure 1: Overview of SET-DST. The schema encoder takes the dataset schema and generates slot vectors and intent
vectors. The state generator takes the previous dialogue state Dt−1 and the dialogue history Ht to calculate active
scores of slots and intents. F is an score function to calculate whether the slots or intents are activated on turn t.
Then, the state generator additionally takes the activated slots and intents to generate the current dialogue state Dt.
St indicates the activated slots and It indicates the activated intents.

on the downstream DST task. We further con-
firmed that SET-DST worked well on the small
downstream dataset. This result demonstrates that
transfer learning with schema encoding improves
the performance of neural DST models and the
efficiency of few-shot learning on DST.

2 Related Work

Traditional DST models extract semantics by using
natural language understanding (NLU) modules to
generate dialogue states (Williams, 2014; Wang
and Lemon, 2013). The limitation of these models
is that they rely on features extracted by humans.

Recent work has focused on building end-to-end
DST models without hand-crafted features. Zhong
et al. (2018) use global modules to share parameters
between different slots. Nouri and Hosseini-Asl
(2018) improve the latency by removing inefficient
recurrent layers. Transferable DST models that
can be adapted to new domains by removing the
dependency on the domain ontology are proposed
(Ren et al., 2018; Wu et al., 2019). Zhou and Small
(2019) attempt to solve DST as a question answer-
ing task using knowledge graph.

More recently, large-scale pre-trained language
models such as BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2019) are used for DST. The
pre-trained BERT acts as an NLU module to un-
derstand utterances (Lee et al., 2019; Zhang et al.,
2020a; Kim et al., 2020; Heck et al., 2020). GPT-2
makes it possible to solve DST as a conditional
language modeling task (Hosseini-Asl et al., 2020;
Peng et al., 2021).

Rastogi et al. (2020) propose the baseline

method that defines the schema of dataset and uses
it for training and inference. A drawback of them
is that the calculation cost is high because they use
the domain ontology and access all values to es-
timate the dialogue state. DST models that uses
schema graphs to encode the relation between slots
and values are proposed (Chen et al., 2020; Zhu
et al., 2020). However, they focus on encoding
the relation between slots and values of the given
domains not on adaptation to new domains.

In this paper, we focus on making the model
learn how to understand the schema and how to
apply it to estimate the dialogue state, not just on
encoding the in-domain relation.

3 Schema Encoding for Transferable
Dialogue State Tracking

In this section, we describe the architecture of SET-
DST and how to optimize it. Figure 1 shows the
overview of our method. The model consists of
the schema encoder and the state generator. SET-
DST generates the dialogue state in two steps: (a)
schema encoding and classification, and (b) dia-
logue state generation. In this paper, we define
some terms as follows.

Schema Metadata of the dataset, e.g., what do-
mains, services, slots, and intents the dataset covers.
A dataset has a schema that describes the dataset.

Domain What domains the conversation goes on,
e.g., restaurant, hotel, and attraction. A conversa-
tion can go on multiple domains.
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Service_name: Restaurants_1
Description: A leading provider for restaurant
search and reservations

Slot_name: restaurant_name
Description: Name of the restaurant

Slot_name: price_range
Description: Price range for the restaurant

...

Intent_name: ReserveRestaurant
Description: Reserve a table at a restaurant

Intent_name: FindRestaurants
Description: Find a restaurant of a particular cuisine
in a city

Figure 2: Example of schema for restaurant search and
reservation service including slots and intents.

Service What services the system provides to
users. It is similar to domain, but application-level.
For example, restaurant domain can have two dif-
ferent services: (1) a service for searching and
reserving restaurants and (2) a service focused on
searching and comparing restaurants. In real world,
a service corresponds to an application.

Action Abstract actions of users to achieve their
goals during conversations, e.g., to inform the sys-
tem their requirements or to request the system for
some information. Appendix B demonstrates the
details of the user actions covered in this paper.

Slot The details of the user goals, e.g., the type
of food and the price range of hotel. Slots are
predefined based on the domains or services that
the system should cover, and the slots are filled by
DST. The schema includes the information of slots.

Value The values that have actual meaning for
the corresponding slots, e.g., cheap or expensive
about the price range of hotel. The systems should
match slot-value pairs from conversations.

Intent Sub-goals to achieve the final goals of
users. A goal consists of one or more intents, and
an intent is achieved over one or more conversation
turns. In real world, an intent corresponds to an
API. For example, to search restaurants or to book
hotels should be performed by APIs of external
systems. Furthermore, The dialogue system should
predict the slot-value pairs which correspond to
arguments to call APIs.

3.1 Schema Encoding

We use the pre-trained BERT1 for the schema en-
coder. Figure 2 shows an example of the schema
for Restaurant_1 service that is a service to search
and reserve restaurants. Services, slots, and intents
consist of name and short description. The name
and description of the service in the schema are fed
into BERT to generate service vector vR as

oR = BERT ([CLS]nR : dR[SEP])

vR =WR · o[CLS]R ∈ Rh
, (1)

where nR is the service name, dR is the service
description, and h is the hidden size. o[CLS]R is the
output of [CLS] token, and WR ∈ Rh×h is a fully
connected (FC) layer. [CLS] and [SEP] are
special tokens that mean the start and end of the
sentence, respectively. The service in Figure 2 can
be represented as [CLS] Restaurants_1 :
A leading provider for restaurant
search and reservations [SEP] to be
fed into BERT. The slots and intents in the schema
are also fed into BERT to generate slot vectors
VS = {v1S , · · · vNSS } ∈ RNS×h and intent vectors
VI = {v1I , · · · , vNII } ∈ RNI×h, respectively, as
follows:

ojS = BERT
(
[CLS]njS : djS[SEP]

)

vjS =WS · oj,[CLS]S ∈ Rh, j ∈ [1, NS ]
, (2)

okI = BERT
(
[CLS]nkI : d

k
I[SEP]

)

vkI =WI · ok,[CLS]I ∈ Rh, k ∈ [1, NI ]
. (3)

NS and NI mean the number of slots and intents
for the service, respectively. njS is the j-th slot
name, and djS is the j-th slot description. oj,[CLS]S

is the output of [CLS] token from the j-th slot,
and WS ∈ Rh×h is an FC layer. Similarly, nkI
is the k-th intent name, and dkI is the k-th intent
description. ok,[CLS]I is the output of [CLS] token
from the k-th intent, and WI ∈ Rh×h is an FC
layer. The schema encoder takes vR, VS , and VI
to update the slot vectors VS and intent vectors VI
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with attention mechanism as follows:

aS = softmax (VS · vR) ∈ RNS

vR,S = (VS)
T · aS ∈ Rh

, (4)

vjS =WRS ·
(
vR,S ⊕ vjS

)
∈ Rh, (5)

aI = softmax (VI · vR) ∈ RNI

vR,I = (VI)
T · aI ∈ Rh

, (6)

vkI =WRI ·
(
vR,I ⊕ vkI

)
∈ Rh. (7)

WRS ∈ Rh×2h and WRI ∈ Rh×2h are FC layers,
and⊕means the concatenation of two vectors. The
slot vectors and intent vectors updated with refer-
ence to the service vector are used for next steps:
classification and generation.

3.2 Slot and Intent Classification

SET-DST takes the slot vectors and intent vectors
to classify what slots and intents are activated by
users. We use the pre-trained GPT-21 for the state
generator that encodes the dialogue history and
generates the dialogue state as a sequence of words.
The state generator encodes the dialogue history
Ht that is accumulated during the conversation and
the previous dialogue state Dt−1 to calculate the
context vector Ct as

Ct =
{
c1t , · · · , cNCt

}
∈ RNC×h

= GPT-2 (Dt−1 ⊕Ht) ,
(8)

where NC = |Ct|, and cit means the GPT-2 output
of the i-th word. Then, the last output of Ct is used
to classify which slots and intents are activated in
the current conversation as follows:

P
(
sjt = Active

)
= F

(
cNCt , vjS

)
, (9)

P
(
ikt = Active

)
= F

(
cNCt , vkI

)
, (10)

where P (sjt = Active) means the probability
that the j-th slot is activated on turn t, and P (ikt =
Active) means the probability that the k-th intent
is activated on turn t. vjS and vkI indicate the slot
vector of the j-th slot and the intent vector of the
k-th intent, respectively, calculated by the schema
encoder. F is a projection layer to calculate the
probabilities using the context vector, slot vector,
and intent vector. We define F(x, y) as a function

1The pre-trained models are available at https://
github.com/huggingface/transformers.

transforming vectors x and y into a probability
scalar as

h1 = tanh (W1 · x)
h2 = tanh (W2 · (h1 ⊕ y))

F(x, y) = σ (W3 · h2)
, (11)

whereW1 ∈ Rh×h,W2 ∈ Rh×2h, andW3 ∈ R1×h

are FC layers. Activate slots and intents are classi-
fied based on the probabilities P (sjt = Active)
and P (ijt = Active). We define the slots acti-
vated on turn t as St = {sjt |P (sjt = Active) ≥
α, j ∈ [1, NS ]} and the intents activated on turn t
as It = {ikt |P (ikt = Active) ≥ α, k ∈ [1, NI ]}.
sjt and ikt means the j-th slot name and the k-
th intent name, respectively. α is a threshold to
classify the slots and intents based on the proba-
bilities. Activated slots St and intents It classi-
fied on this step are used to generate the dialogue
state. On the generation step, St and It further
contains slot vectors and intent vectors, which are
calculated on the encoding step, in addition to
the names in the text form. For example, St =
{restaurant_name, price_range} can
be represented as

E(“Slots:{restaurant_name:”)⊕
v1S ⊕ E(“;price_range:”)⊕ v2S ⊕ E(“}”)

(12)

before being fed into GPT-2, where E is the em-
bedding layer to project the slot names into vector
space of the same size as the slot vectors. To gener-
ate the dialogue state that consists of the slot-value
pairs, the system should recognize not only the val-
ues but also the name of slots. The values can be
extracted from user utterances, and which slots are
activated can be predicted by the classification step;
however, the exact slot names should be provided
in the text form to construct slot-value structure
matching given schema. By this process, the sys-
tem can recognize the name of activated slots and
intents before generating the dialogue state.

3.3 Dialogue State Generation
SET-DST has the state generator that generates
dialogue state using the dialogue history, schema
representation, and previous dialogue state accu-
mulated during the conversation. In this paper, we
define the dialogue state as a list of slot-value pairs
that mean the details of an user goal. We also de-
fine the concept called user state that is a sequence
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I would like to find a place to eat in San Jose.

State: { Inform_Intent - Intent - FindRestaurants ;
Inform - restaurant_location - San Jose }

{ 
 restaurant_location: San Jose 
}

(a) Example in restaurants domain.

Can you find me any one way flights to San Francisco
from Chicago?

State: { Inform_Intent - Intent - SearchOnewayFlight ;
Inform - destination_city - San Francisco ; Inform -
origin_city - Chicago}

{ 
 destination_city: San Francisco, 
 origin_city: Chicago 
}

(b) Example in flights domain.

Figure 3: Examples of user state and dialogue state
corresponding to user utterance. Ut is a sequence of
words, and Dt is a list of slot-value pairs.

of action-slot-value triples to generalize semantics
from various user utterances. The state generator
recurrently generates the user state as a sequence
of words, instead of generating the dialogue state
in the structured form directly. Then, the dialogue
state is updated by extracting the slot-value pairs
from the user state. The user state Ut on turn t
is generated based on the previous dialogue state
Dt−1, dialogue history Ht, active slots St, and ac-
tive intents It as follows:

ũlt = GPT-2
(
Dt−1 ⊕Ht ⊕ St ⊕ It ⊕ U1:l−1

t

)
,

(13)

Ut =
{
ult

∣∣∣ult = argmax
(
Wvocab · ũlt

)
,

l ∈ [1, NU ]
}
∈ RNU ,

(14)

where U1:l−1
t = {u1t , · · · , ul−1t } and NU = |Ut|.

ult means the l-th word of the user state, and
Wvocab ∈ RNvocab×h is an FC layer to project

the hidden state to vocabulary space with size
of Nvocab. Figure 3 shows how to generate Dt

from Ut. Ut is generated word-by-word over
time steps until [EOS], a special word to ter-
minate the generation, is detected. Then, Dt is
updated by extracting the slot-value pairs from
Ut. In task-oriented dialogue system, the dia-
logue state is used to call API. In Figure 3a, San
Jose is passed as the value of an argument named
restaurant_location to call the API named
FindRestaurants. However, we aim not to
build the full task-oriented dialogue system but to
generate the dialogue state in this study.

3.4 Optimization
SET-DST is optimized over two steps: (1) slot
and intent classification, and (2) state generation.
We freeze the pre-trained BERT during training to
preserve the broad and general knowledge that is
learned from large corpus. In classification task,
the system is trained by using binary cross-entropy.
Equation 9 is used to calculate the slot loss LSt with
slot labels Y S

t = {ySt,1, · · · , ySt,NS} as

LSt =− 1

NS

NS∑

j=1

β · ySt,j · logP
(
sjt

)

+
(
1− ySt,j

)
log
(
1− P

(
sjt

))
,

(15)

where ySt,j ∈ R1 is the binary value of j-th slot
on turn t, and β is a hyperparameter to consider
the ratio of active slots out of total slots. Based on
Equation 10, the intent loss LIt is calculated with
intent labels Y I

t = {yIt,1, · · · , yIt,NI} as

LIt =−
1

NI

NI∑

k=1

β · yIt,k · logP
(
ikt

)

+
(
1− yIt,k

)
log
(
1− P

(
ikt

))
,

(16)

where yIt,k ∈ R1 is the binary value of k-th intent
on turn t. In state generation step, the system is
trained as a conditional language model that recur-
rently generates words over time steps. The state
loss LUt is calculated base on Equation 14 with the
state label Y U

t = {yUt,l, · · · , yUt,NU } as

LUt = − 1

NU

NU∑

l=1

(
yUt,l
)T

logP
(
ult

)
, (17)

where yUt,l ∈ RNvocab is the one-hot vector that
indicates the l-th word of the gold-standard user
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state on turn t. The final joint loss is the sum of
above losses:

Lt = LSt + LIt + LUt . (18)

We use Adam optimizer (Kingma and Ba, 2014) to
minimize Lt.

4 Experiments

In this section, we describe our experiments includ-
ing the datasets, evaluation metric, and results.

4.1 Experimental Setups

We used two datasets MultiWOZ 2.12 and Schema-
Guided Dialogue (SGD)3 to evaluate our system.
MultiWOZ consists of conversations between a
tourist and a guide, e.g., booking hotels and search-
ing trains. SGD deals with conversations between
a virtual assistant and an user ranging over vari-
ous domains, e.g., events, restaurants, and media.
The dataset also provides a schema that includes
services, intents, and slots with short descriptions
to help understanding the conversations. In this
study, we followed the schema proposed in SGD.
MultiWOZ has about 10,400 dialogues, and SGD
has about 22,800 dialogues.

The datasets propose joint accuracy as the met-
ric to evaluate DST systems. Joint accuracy mea-
sures whether a system successfully predicts all
slot-value pairs mentioned on the conversations.
In every turn, the system updates dialogue state,
and the joint accuracy is calculated based on the
accumulated dialogue state.

4.2 Experimental Details

The motivation of SET-DST is to make the sys-
tem interpret the schema and refer it for efficiently
tracking the dialogue state. In the experiments, our
goal is to verify that SET-DST works well for our
purpose by improving the performance of DST and
the efficiency on few-shot settings with the schema
encoding.

The experiments are divided into two steps: (1)
pre-training on SGD and (2) fine-tuning on Mul-
tiWOZ. In the pre-training step, SET-DST is op-
timized to encode the schema for DST. In the
fine-tuning step, the capability that encodes given

2https://github.com/budzianowski/
multiwoz.

3https://github.com/
google-research-datasets/
dstc8-schema-guided-dialogue.

Service_name: Restaurant 
Description: Service for searching and booking
restaurant

Slot_name: restaurant_name 
Description: Name of restaurant

Slot_name: restaurant_people 
Description: The number of people to visit the
restaurant

...

Intent_name: Restaurant 
Description: Search and book a restaurant

Figure 4: Example of schema that is temporarily created
for MultiWOZ dataset.

schema is transferred to encode new schema for im-
provement of the performance and efficiency. We
conducted the experiments by adjusting the rate of
few-shot data during fine-tuning to focus on the
fine-tuning step. The training data for few-shot
settings was randomly sampled from the training
set of MultiWOZ, and the random seed was fixed
for consistency of sampling. We also conducted
experiments to verify whether SET-DST success-
fully works on the pre-training step, although the
major part in our experiments is the fine-tuning on
MultiWOZ including few-shot settings.

SET-DST needs not only slot information but
also a schema. However, MultiWOZ has no schema
and no concepts of service and intent; thus, we cre-
ated a schema for MultiWOZ including services,
slots, intents, and corresponding descriptions. Fig-
ure 4 shows an example of the schema for Multi-
WOZ. In our experiments on MultiWOZ, an intent
means activated domain. In other words, the sys-
tem classifies an intent as active when the domain
of conversation is changed or a conversation starts.
MultiWOZ further has no labels for activated in-
tents, thus we automatically added the labels by
tracking active domains and detecting whether new
domains are active.

We further tried to fine-tune the system
without intents because it is possible that the
concepts of intent are unnatural in MultiWOZ.
In this setting, Equation 3, 6, 7, 10, 16 are
ignored, It is removed from Equation 13, and
LIt is removed from Equation 18. In Figure 3a,
Ut is replaced with State: { Inform -
restaurant_location - San Jose },
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Service_name
Original: Banks 
Alternatives:
 [
  Bank_service, 
  Bank_application, 
  ...
 ]

Service_description
Original: Manage bank accounts and transfer money 
Alternatives:
 [
  Service to manage your bank accounts and finances, 
  Application for managing bank accounts, 
  ...
 ]

Slot_name
Original: account_type 
Alternatives:
 [
  bank_account_type, 
  type_of_bank_account, 
  ...
 ]

Slot_description
Original: The account type of the user 
Alternatives:
 [
  Bank account type of the user for transaction, 
  Type of user's bank account, 
  ...
 ]

Intent_name
Original: transfer_money 
Alternatives:
 [
  send_money, 
  money_transference, 
  ...
 ]

Intent_description
Original: Transfer money from one bank account to another user's account 
Alternatives:
 [
  Transfer money to another user, 
  Send money to another bank account, 
  ...
 ]

Figure 5: Example of alternatives for schema augmenta-
tion.

and in Figure 3b, Ut is replaced with State:
{ Inform - destination_city - San
Francisco ; Inform - origin_city
- Chicago }.

A dataset schema can be variously defined de-
pending on the developer, and our goal is to make
the system represent any schema for DST. In
the pre-training step, we manually augmented the
schema of SGD dataset to avoid overfitting to the
given schema. The schema provides names of ser-
vices, slots, and intents with short descriptions. We
defined some alternatives of the names and descrip-
tions, and sampled inputs for the schema encoder
from the augmented schema. Figure 5 shows some
examples of the alternatives for bank service.

In dialogue state, multiple slots and intents can

JA
TRADE (Wu et al., 2019) 45.60%*
DSTQA (Zhou and Small, 2019) 51.17%
LABES-S2S (Zhang et al., 2020b) 51.45%
DST-Picklist (Zhang et al., 2020a) 53.30%
MinTL-BART (Lin et al., 2020) 53.62%
TripPy (Heck et al., 2020) 55.29%
SimpleTOD (Hosseini-Asl et al., 2020) 55.76%
PPTOD (Su et al., 2021) 57.45%
ConvBERT-DG (Mehri et al., 2020) 58.70%
TripPy+SCoRe (Yu et al., 2020) 60.48%
TripPy+CoCoAug (Li et al., 2020) 60.53%
TripPy+SaCLog (Dai et al., 2021) 60.61%
SET-DST (Ours) 60.39%
SET-DST w/o intent 62.07%

Table 1: DST results on the test set of MultiWOZ in
joint accuracy. *: the result is reported by Eric et al.
(2020).

be activated at once. However, the order has no
meaning in dialogue state. The state generator is
trained to generate the dialogue state based on tex-
tual label, so it is possible that the order causes
wrong optimization and overfitting. Thus, we shuf-
fled the order of slots and intents when making the
labels.

We used BERT-base-uncased4 model for the
schema encoder and GPT-25 model for the state
generator. In our experiments, the pre-training step
took about two days, and the fine-tuning step took
about a day on a TitanRTX GPU. Table 3 lists hy-
perparameters that are used in our experiments.

4.3 Experimental Results

Table 1 compares the evaluation results of SET-
DST to the previous methods on the test set of Mul-
tiWOZ. In our experiments, SET-DST achieved
new state-of-the-art joint accuracy when fine-tuned
without intent.

Table 2 shows the evaluation results on few-
shot settings and the improvement by pre-training.
When we used less training data, the pre-training
with schema encoding was more effective for DST.
SET-DST performed reasonably well with only
about 20% of the training data. In most cases, the
models fine-tuned without intents achieved higher
joint accuracy on MultiWOZ.

4https://huggingface.co/
bert-base-uncased.

5https://huggingface.co/gpt2.
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Few-shot rate
JA

w/ intent w/o intent
100% 60.39% 62.07%
30% 53.43% 56.43%

w/ 25% 53.07% 55.61%
pre-training 20% 52.73% 54.37%

15% 40.41% 51.29%
10% 31.20% 29.91%
100% 58.37% 59.10%
30% 31.08% 48.96%

w/o 25% 30.39% 30.28%
pre-training 20% 22.80% 22.35%

15% 19.38% 17.09%
10% 10.21% 15.10%

Table 2: Evaluation results on few-shot settings with
considering pre-training.

5 Discussion

Schema Encoding In this study, our goal is to
transfer a pre-trained DST model to a low-resource
domain without limiting the transference as lan-
guage model level by using schema encoding. We
pre-trained SET-DST on SGD which is a relatively
large dataset and fine-tuned it on MultiWOZ to
transfer the schema encoding. As a result, the
pre-training significantly improved the accuracy
on DST. Table 2 shows that the pre-training was
more effective when the target dataset was small.
To satisfy the joint accuracy evaluation, the sys-
tem should not only predict values, but also exactly
match the names of slots defined on the dataset. We
believe that the tuning process was not completed
when we used just 10% of the target dataset; on the
other side, the system could match the slot names
defined on MultiWOZ not SGD with 20% of the
dataset. Pre-trained language models have been
already used in many fields. However, our method
could tackle general DST beyond language model-
ing on various domains. We believe that SET-DST
can assist the development of DST systems in real
world without large dataset on the target domain.

Intent on Fine-tuning In this paper, we define
the intents as sub-goals to be achieved through a
service. SGD has a schema for dialogues between
a virtual assistant and an user. Thus, it is assumed
that a system achieves the user’s sub-goals by using
APIs, and an intent corresponds to an API. Virtual
assistant should tackle various services that could
consist of one more intents, e.g., to check account

balance and to transfer money in bank service. Un-
like that, MultiWOZ has no schema and considers
no APIs as intents. Thus, the schema that we tem-
porarily created for experiments in the same form
as the schema of SGD could cause confusion in
generation of dialogue state. We believe that this is
why the results without intent were slightly higher
in the experiments. Another reason would be the
incorrect labels for intents that we automatically
created for experiments on MultiWOZ.

The joint accuracy that has been proposed as an
evaluation metric for DST considers only slot-value
pairs. However, task-oriented dialogue systems
should call APIs of external systems to achieve
goals, e.g., to search restaurants and to reserve ho-
tels. The systems that predict only slot-value pairs
would be insufficient to replace rule-based tradi-
tional systems in real-world. Even though use of
intents made no improvement in joint accuracy, we
believe that encoding the schema including intents
is meaningful in terms of approaching more realis-
tic DST.

Backbone Model We used BERT for schema
encoding and GPT-2 for classification and gener-
ation. Using only GPT-2 was an option in our
study. However, we fixed the pre-trained BERT
during optimization to preserve the broad and gen-
eral knowledge learned on pre-training and to use
the knowledge for encoding given schema. BERT
is an excellent backbone model to encode text for
downstream tasks; thus, we used BERT instead of
GPT-2 for the schema encoding.

6 Conclusion

Transfer learning that makes it possible to apply
a pre-trained model to new domains has been at-
tempted a lot. However, the attempts for DST have
been just to use large-scale pre-trained models as
language models. In this paper, we have proposed
SET-DST, which is an effective method for DST
with transfer learning by using schema encoding.
We have demonstrated how to encode the schema
for transferable DST and how to use the schema
representation for dialogue state generation. Our
experiments show that the schema encoding im-
proves joint accuracy even in few-shot settings.

Even though our approach could perform DST
well on target domain with few-shot settings, it
required some new data to be fine-tuned. As part
of our future work, we plan to design a DST model
for zero-shot settings.
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A Hyperparameters

We list the hyperparameters used in our experi-
ments for reproducibility.

Hidden size 768
Embedding size 768
Vocabulary size 30522
Dropout 0.3
Early stopping count 5
Max epochs 40
Min epochs 20
Batch size 8
Learning rate 3e-5
Gradient clipping 10
α 0.5
β (on SGD) 3
β (on MultiWOZ) 5

Table 3: Hyperparameters used for the experiments in
this paper.

B User Actions Set

Table 4 lists the user actions covered in this paper.
When the user state Ut is generated, each element
has three types: (1) action-slot-value triple, (2)
action-slot pair, and (3) only action; e.g., (1)
Inform-restaurant_location-SanJose,
(2) Request-restaurant_address, and
(3) Negate.

Action Name Need Slot Need Value
Inform ✓ ✓
Inform_Intent* ✓ ✓
Request ✓ ×
Request_Alts × ×
Affirm × ×
Affirm_Intent* ✓ ✓
Select ✓ ✓
Negate × ×
Negate_Intent × ×
Thank_You × ×
Goodbye × ×

Table 4: List of user actions covered in this
paper. * just need an intent as the value, but
we added a dummy slot, Intent, to keep the
shape of action-slot-value triple; e.g., we used
Inform_Intent-Intent-FindRestaurants
instead of Inform_Intent-FindRestaurants
when we make the user state.

C Pre-traing Results

We evaluated the pre-training performance on
KLUE6 dataset (Park et al., 2021), which is a Ko-
rean dataset for DST, in addition to SGD. Table 5
shows the pre-training results on SGD and KLUE.
SET-DST outperformed the baselines. These re-
sults demonstrate that SET-DST successfully per-
forms DST with just pre-training. In the experiment
on KLUE, we used KLUE-BERT7 and KoGPT-28

that are large-scale language models pre-trained on
Korean corpus.

JA

SGD
Baseline (Rastogi et al., 2020) 25.40%
SET-DST (Ours) 55.56%

KLUE
Baseline (Park et al., 2021) 50.22%
SET-DST (Ours) 57.61%

Table 5: Pre-training results on SGD and KLUE com-
pared to their baselines.

D Example of dialogues

We add an example of dialogue with the corre-
sponding user state Ut and dialogue state Dt. Ta-
ble 6 shows an dialogue on three domains: hotels,
flights, and attractions.

6https://github.com/KLUE-benchmark/
KLUE.

7https://huggingface.co/klue/bert-base.
8https://huggingface.co/skt/

kogpt2-base-v2.
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User: I want to find me a 4 star hotel in Sydney.

Ut:
Inform_Intent - Intent - SearchHotel ; Inform - hotel_location - Sydney ;
Inform - star_rating - 4

Dt: { hotel_location: Sydney, star_rating: 4 }
System: I found 10 option that you may like. A 4 star hotel called 28 Hotel Sydney.
User: Can you smoke here? Tell me the address.
Ut: Request - smoking_allowed ; Request - street_address
Dt: { hotel_location: Sydney, star_rating: 4 }

System:
No, smoking is not allowed here. 28 Regent Street, Chippendale New South Wales 2008,
Australia is their address.

User:
Sounds okay. Find me a round trip flight to get there. I will start my trave on day after
tomorrow and I want Premium Economy class tickets.

Ut:
Select - place_name - 28 Hotel Sydney ; Inform_Intent - Intent - SearchRoundtripFlights ;
Inform - flights_departure_date - day after tomorrow ; Inform - seating_class - Premium
Economy

Dt:
{ hotel_location: Sydney, star_rating: 4, place_name: 28 Hotel Sydney,
flights_departure_date: day after tomorrow, seating_class: Premium Economy }

System: On which day you will return?
User: 12th of March is the date on which I will return.
Ut: Inform - return_date - 12th of March

Dt:
{ hotel_location: Sydney, star_rating: 4, place_name: 28 Hotel Sydney,
flights_departure_date: day after tomorrow, seating_class: Premium Economy
return_date: 12th of March }

System: From which city you want to depart?
User: From Las Vegas.
Ut: Inform - origin_airport - Lag Vegas

Dt:
{ hotel_location: Sydney, star_rating: 4, place_name: 28 Hotel Sydney,
flights_departure_date: day after tomorrow, seating_class: Premium Economy
return_date: 12th of March, origin_airport: Las Vegas }

System:
I have 1 flight for you. You like United Airlines? The onward flight takes off at 4:30 am
and return is take off at 4:55 pm. It has a layover and ticket cost $697.

User: Good. Find me some attractions there that have free entry and is child-friendly.

Ut:
Inform_Intent - Intent - FindAttractions ; Inform - free_entry - True ;
Inform - good_for_kids - True ; Inform - category - dontcare

Dt:

{ hotel_location: Sydney, star_rating: 4, place_name: 28 Hotel Sydney,
flights_departure_date: day after tomorrow, seating_class: Premium Economy
return_date: 12th of March, origin_airport: Las Vegas, free_entry: True
good_for_kids: True, category: dontcare }

System: You can check out a Sports Venue called ANZ Stadium.
User: Good. Tell me their phone number.
Ut: Select - attraction_name - ANZ Stadium ; Request - phone_number

Dt:

{ hotel_location: Sydney, star_rating: 4, place_name: 28 Hotel Sydney,
flights_departure_date: day after tomorrow, seating_class: Premium Economy
return_date: 12th of March, origin_airport: Las Vegas, free_entry: True
good_for_kids: True, category: dontcare, attraction_name: ANZ Stadium }

System: 2 9298 3777 is the phone number.
User: Great. That’s all that I wanted for now. Bye.
Ut: GoodBye

Table 6: Example of dialogue including the user state and dialogue state that we defined in this paper.
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Abstract

Current works in the generation of personalized
dialogue primarily contribute to the agent pre-
senting a consistent personality and driving a
more informative response. However, we found
that the generated responses from most previ-
ous models tend to be self-centered, with little
care for the user in the dialogue. Moreover, we
consider that human-like conversation is essen-
tially built based on inferring information about
the persona of the other party. Motivated by
this, we propose a novel personalized dialogue
generator by detecting an implicit user persona.
Because it is hard to collect a large number of
detailed personas for each user, we attempted
to model the user’s potential persona and its
representation from dialogue history, with no
external knowledge. The perception and fader
variables were conceived using conditional vari-
ational inference. The two latent variables sim-
ulate the process of people being aware of each
other’s persona and producing a corresponding
expression in conversation. Finally, posterior-
discriminated regularization was presented to
enhance the training procedure. Empirical stud-
ies demonstrate that, compared to state-of-the-
art methods, our approach is more concerned
with the user’s persona and achieves a consid-
erable boost across both automatic metrics and
human evaluations.

1 Introduction

Personalized dialogue modeling is an attractive re-
search topic in deep learning, where studies have
explored the possibility of incorporating personal
facts into the end-to-end generative framework.
The established practice of assigning agents a pre-
defined character improves the engagingness and
consistency of open-domain dialogue. However,
such models cannot generate distinguishable re-
sponses while interacting with different users be-
cause they do not take into consideration who the

∗Equal contribution.

Figure 1: An example of dialogue generation with the
implicit persona detection. The incorporated persona
and the corresponding user’s real persona are in bold.

other party is. As Shum et al. (2018) pointed out,
a good chit-chat bot not only generates interest-
ing responses but also resonates with interlocutors.
However, there has been little research conducted
into how to make the agent effectively mine a user’s
persona to generate customized responses.

To this end, this research studied personalized
dialogue generation in which we aimed to have
the agent recognize the other party’s potential per-
sona by exploiting the dialogue itself and output
personalized responses conditioned on the differ-
ent target users. A simple illustration depicting
this process is provided in Figure 1. Inspired by
the impressive effectiveness of conditional varia-
tional autoencoders (CVAEs) (Sohn et al., 2015;
Zhao et al., 2017) with diverse response model-
ing, we propose a personalized dialogue generator
that detects an implicit user persona using condi-
tional variational inference. Specifically, our model
fits the profile descriptions of the other party to a
multivariate isotropic Gaussian distribution using a
latent variable (perception variable) during training.
Because responses from the real-world dialogue are
not always persona-related (i.e., persona-sparse is-
sue; Zheng et al., 2020), we also introduce another
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latent variable (fader variable) to control the weight
of persona-related aspects exhibited in the response.
During inference, the decoder is designed to ac-
quire the persona features from the perception and
fader variables to produce a response that incor-
porates the user’s various potential persona infor-
mation inferred from the context. Note that the
textual profiles are only leveraged during training
that is tasked with learning the latent distribution
over the user’s persona. And during inference, the
raw observed data that yields latent variables only
includes the context without the explicit persona.

We argue that it is impractical to collect a large
quantity of available profiles involved with spe-
cific users. Thus, our model has better universality
than methods that require providing extra infor-
mation as generation material. CVAEs have been
proved to improve the response diversity at the dis-
course level (i.e., one-to-many nature; Zhao et al.,
2017). Our model achieves “one context to many
responses” by sampling and reconstructing with
stochasticity for persona distribution and responses,
just as we can initiate different chats with a user
from aspects of the user’s persona. Experimental
results on the ConvAI2 dataset demonstrate the su-
periority of the proposed model over the baselines
in both automatic metrics and human evaluations.
The interpretability and effectiveness of our ap-
proach are clarified in the discussion. The main
contributions of this paper can be summarized as:
(1) To the best of our knowledge, this is the first
attempt to build a user-targeted personalized dia-
logue agent via conditional variational inference,
which not only proposes a new model but also pro-
vides insight into manners of latent information
mining and representation.
(2) A new training scheme is designed to mitigate
the disastrous local optimum issue that often oc-
curs in the Bayesian architecture on text generation
tasks. Evaluation reveals our scheme yielded better
performance than previous strategies.
(3) Empirical verification was carried out both
quantitatively and qualitatively and confirmed the
high levels of convincingness of our model.

2 Methodology

2.1 Problem Scenario

The task can be formally defined as a dialogue
corpus C = (Ci, Ri, Pi)

n
i=1, where Ci refers to

a context that includes multiple utterances, with
Ri a response and Pi a textual profile containing

Figure 2: The solid lines are conditional dependencies
and dashed lines denote variational approximation. The
profile P , context C, and response R are observed data.
The variational parameters ϕ are learned jointly with
the conditional parameters θ.

multiple descriptions of the other party (i.e., the
target interlocutor of Ri). Our goal is that, by
learning the potential dependencies among P , C,
and R from C , one can generate diverse responses
R̄ = (R̄1, R̄2, ..., R̄m) for a new context C̄. R̄ is
expected to be relevant to the other party’s real per-
sona, which means the mutual information should
be maximized as much as possible. Moreover, in
cases where C̄ is the persona-sparse context, R̄
should mainly cohere with the context.

2.2 Overview

As described in the introduction, our approach in-
corporates a pair of latent variables utilized for
bridging the potential dependencies among P , C,
and R. Perception variable Zp is adopted to
capture the latent distribution over P that con-
structs a connection between C and R by the
user’s implicit persona. Fader variable Zα is
adopted to indicate how much persona informa-
tion in Zp is carried by R under C. Figure
2 gives the directed graphical model of our ap-
proach. The conditional distribution over the above
variables can be factorized as p(R,Zp, Zα|C) =
p(R|C,Zp, Zα)p(Zα|C,Zp)p(Zp|C). Our objec-
tive is to represent it with deep neural networks,
where we denote pθ(R|C,Zp, Zα) as a response
decoder and pθ(Zp|C) and pθ(Zα|C,Zp) as the
prior networks. p(R,Zp, Zα|C) depicts a process
that is from the prior networks to draw out implicit
persona and its representation from C, prompting
the response decoder to restore R under the infor-
mation only sourced in C. Thereby, we would
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Figure 3: Illustration of the model architecture. The two prior networks share parameters.

maximize the conditional likelihood pθ(R|C) =∫∫
pθ(R|C,Zp, Zα)pθ(Zα|C,Zp)pθ(Zp|C)dZpdZα.

However the marginalization over Zp and Zα
are intractable integrals (i.e., a context theoretically
corresponds to a continuous user persona space).
Hence, our model is trained with the stochastic
gradient variational Bayes (SGVB) framework
(Kingma and Welling, 2013) by maximizing the
variational lower bound. According to the above
definition of the perception and fader variables,
we refer to variational distribution qϕ(Zp|P )
and qϕ(Zα|P,R) as the recognition networks to
approximate the true posterior p(Zp|C,R) ∝
p(R|C,Zp)p(Zp|C) and p(Zα|C,R,Zp) ∝
p(R|C,Zp, Zα)p(Zα|C,Zp)p(Zp|C), respectively.
The evidence lower bound (ELBO) of our approach
can be deduced as follows:

L(θ, ϕ;P,C,R) =
−KL(qϕ(Zp|P )||pθ(Zp|C))
−KL(qϕ(Zα|P,R)||pθ(Zα|C,Zp))
+ Eqϕ(Zp|P );qϕ(Zα|P,R)[logpθ(R|C,Zp, Zα)]

(1)

whereKL(·||·) denotes the KL divergence. Details
about the derivation are provided in Appendix A.

2.3 Model Details
Figure 3 shows the architecture of our model. We
define the input representation as follows:
(1) The input embedding of each token is the sum
of corresponding word embedding and position
embedding. To differentiate the user character in
dialogue history, we add role embedding into the
utterances generated by the other party. With minor
exploitation of notation, we also use P , C, and R
to denote input representations in the following.
(2) The different utterances in context or different
descriptions in the profile are separated by the spe-
cial token [SEP]. The beginning and end of the

context or profile are appended with the special
tokens [BOS] and [EOS], respectively.
(3) The special token of the perception variable and
the fader variable are denoted as [Zp] and [Zα],
respectively. For the special token of the latent
variable, the position embedding is set to empty.

We hypothesize the perception variable follows
multivariate Gaussian distribution with a diago-
nal covariance matrix. The input representations
concat([Zp], C) and concat([Zp], P ) are fed to the
prior network pθ(Zp|C) ∽ N (µp,σ

2
pI) and the

recognition network qϕ(Zp|P ) ∽ N (µq,σ
2
q I), re-

spectively, where concat(· , ·) denotes concatena-
tion. Both networks are three-layer transformer
encoders (Vaswani et al., 2017) with a two-layer
fully connected network. The means µp, µq and
variances σ2

p , σ2
q are derived as follows:

[
µp

log(σ2
p)

]
=Wp h[Zp] + bp (2)

[
µq

log(σ2
q )

]
=Wq h[Zp] + bq (3)

where h[Zp] ∈ RD is the final hidden state of [Zp]
from the transformer encoder, and Wp ∈ RK×D,
Wq ∈ RK×D, and bp ∈ RK , bq ∈ RK denote
the weight matrices of the fully connected network.
We obtain samples of the perception variable from
N (µq,σ

2
q I) during training or N (µp,σ

2
pI) during

inference. As sampling is not differentiable, the re-
parametrization trick (Kingma and Welling, 2013)
is employed for effective training.

The input representation concat(Zp, [Zα], C)
is fed to the prior network pθ(Zα|C,Zp), which
is a three-layer transformer encoder, and the fi-
nal hidden state of [Zα] is specified as a fader
variable. The recognition network qϕ(Zα|P,R)
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Figure 4: Over each multiple transformer layer (four
layers in our experiments), a weighted sum f is operated
between the hidden state of latent variables and the
original latent variables. Both inputs of operation f are
weighted 0.5 in our implementation.

without parameters concerns a similarity func-
tion of (Pi, Ri)

n
i=1 pairs. We obtain the fader

variable from qϕ(Zα|P,R) during training or
pθ(Zα|C,Zp) during inference. The response de-
coder pθ(R|C,Zp, Zα) is built by a GPT-2 pre-
trained language model (Radford et al., 2019).
The input representations concat(Zp, Zα, C,R) or
concat(Zp, Zα, C) are fed to the response decoder
during training or inference, respectively. Note
that we put Zp and Zα before C, R, or C to form
the input representations due to the autoregressive
property of GPT-2. To facilitate the backpropaga-
tion of the perception and fader variables, and also
to enhance the effect of these variational signals on
generation in decoding, we considered an injection
scheme that is illustrated in Figure 4.

2.4 Posterior-Discriminated Regularization

Training the text data with VAEs / CVAEs often
falls into a trivial local optimum where the decoder
learns to ignore the latent variable, causing the
approximate posterior to mimic the prior. This phe-
nomenon is referred to as “posterior collapse.” The
state-of-the-art solutions include re-weighting the
KL term (KL annealing, cyclic annealing; Bow-
man et al., 2016; Fu et al., 2019), introducing a
neural network to calculate bag-of-word (BOW)
loss (Zhao et al., 2017), and modifying the training
procedure (aggressive training; He et al., 2019).

Ideally, if the approximate posterior qϕ(Z|X) ∽
N (µq,σ

2
q I) (i.e., qϕ(Zp|P ) in our experiment) is

perfect, Z is a non-trivial latent representation of
input X , whereby we suppose that Z should be
especially dissimilar for various posterior inputs.

We designed a scheme augmenting the distinction
of conditional posteriors that forces the decoder to
reconstruct results from the latent variable whose
features vary notably. We consider training an aux-
iliary cost with minimizing the following.

LPo-di =
n∑

i=1

(Min[KL(qϕ(Zi|Xi)||qϕ(Z̄i|X̄i))− λ, 0])2
(4)

where Xi denotes the i-th training data, and X̄i

refers to the input other than Xi. The distinction
objective λ drives up KL divergence between the
posteriors over different inputs. In our implementa-
tion, this computation is dealt with as mini-batch
processing which the data is random sampling with-
out replacement. The auxiliary cost can be added
to ELBO to form the final loss function.

L′(θ, ϕ;P,C,R) =
L(θ, ϕ;P,C,R) + LPo-di

(5)

Despite being conceptually simple, the benefit of
this idea is that it is task-independent and easy to
train without introducing new model components.
LPo-di achieves better performance, as we will de-
tail in Section 4.3 by comparing the above methods.

3 Experiments

3.1 Corpus
We evaluated our approach on the ConvAI2 bench-
mark dataset, which is an extended version with
a new hidden testing set of the PERSONA-CHAT
dataset (Zhang et al., 2018). The dialogues were
collected from crowd-workers who were asked to
act as two interlocutors having a conversation to
get to know each other. The persona of both inter-
locutors is explicitly described using several profile
sentences. This dataset contains 17,878 / 1,000
multi-turn dialogues conditioned on 1,155 / 100
profiles for train / dev, each profile consisting of
at least five descriptions. Because the testing set
is hidden, we used the validation set as the testing
set in our experiments and randomly sampled 500
dialogues from the training set for the validation.
To suit our goals, we removed some self-centered
utterances that only scratched the surface.

3.2 Baselines
The following five state-of-the-art generative base-
line methods were considered in our experiments.
HRED is a persona-free dialogue model built by
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hierarchical RNN, proposed in Serban et al. (2016).
This model is one of the traditional seq2seq archi-
tectures widely applied for comparison.
CVAE is a persona-free dialogue model utilizing
a conditional variational autoencoder to learn a la-
tent distribution over conversational factors. This
model was proposed by Zhao et al. (2017).
TTransfo is a GPT-based personalized dialogue
model with multi-task learning proposed by Wolf
et al. (2019b). This model obtained state-of-the-art
performance on automatic metrics in the Second
Conversational Intelligence Challenge.
P 2 BOT is a GPT-based personalized dialogue
model with the reinforce algorithm proposed by
Liu et al. (2020). This is the latest state-of-the-art
model for dialogue generation on persona-chat.
DialoGPT is a pre-trained dialogue model pro-
posed by Zhang et al. (2020). This model is based
on GPT-2 using the Reddit comments dataset. We
compared ours to the version of model size 345M,
which had the best result reported in the paper.

3.3 Implementation

Our implementation was based on the PyTorch
(Paszke et al., 2019) and HuggingFace libraries
(Wolf et al., 2019a). The response decoder GPT-2
was set to 16 heads, 24 layers, 1024 dimensional
hidden state, and with 345M parameters. All in-
put representation refers to the embedding tables
of GPT-2, and the embedding size was the same
setting as the size of latent variables, which was
fixed at 1024. The distinction objective λ was set
to 0.15. The Adam algorithm (Kingma and Ba,
2015) was utilized for optimization with a learning
rate of 2.6e-5, and a warmup step of 3000. Re-
sponses were generated by nucleus filtering (Holtz-
man et al., 2019) where top-k and top-p were set to
4 and 0.8, respectively. BPE algorithm (Sennrich
et al., 2016) was used for word tokenization, the
token vocabularies of GPT2, with a size of 50,257,
were shared by the prior and posterior networks.

3.4 Evaluation

3.4.1 Automatic Metrics
We followed previous work and employed Perplex-
ity (PPL) (Sutskever et al., 2014) and Distinct (Li
et al., 2015). The PPL measures the negative log-
likelihood of the ground-truth sequence output by
the model. A lower PPL generally indicates that the
learned language model is more human-like. The
Distinct is calculated as the number of distinct uni-

grams and bigrams divided by the total number of
generated words. This metric assesses the degrees
of word-level diversity for generated responses.

Furthermore, we propose a new metric to esti-
mate the level of the correlation of generated re-
sponse and the user’s persona, which is named
P.Distance (Persona Distance). For word embed-
ding trained under the language model, the distance
between vectors in the respective space is propor-
tional to the relative co-occurrence of words they
represent. Therefore, we employed the pre-trained
Google News (300D)1 word2vec to measure the
closeness between the response and corresponding
profile in the vector space. We removed stop words
for the profile and the generated response, then ex-
tracted the keywords of each response-profile pair
by word frequency of the training set. For the i-th
profile keyword embedding pi, we can make the
similarity matrix as follows:

Mi =

[Sim(pi, r1), Sim(pi, r2), . . . , Sim(pi, rn)]
(6)

where Sim(· , ·) is a cosine similarity function, and
ri is the embedding of the i-th response keyword.
The P.Distance can be calculated as follows:

P.Distance =

Ave(Max(M1),Max(M2), . . . ,Max(Mn))
(7)

3.4.2 Human Metrics
We engaged six native speakers2 to annotate the
quality of generated responses based on the follow-
ing criteria. The scale of these metrics is [0, 1, 2],
and for each dialogue, the generated responses by
all models were order shuffled in the evaluation.
Coherence measures whether the response is con-
sistent with the context. Score 0: The response is
not related to the context. Score 1: The response
mentions something related to the context but is
not coherent. Score 2: The response is coherent
with the context and not generic.
Engagingness assesses how well the response en-
deavors to continue the dialogue. Score 0: The
response is generic or poor quality, which makes
it difficult to continue the dialogue. Score 1: The
response is boring, but it is still acceptable to con-
tinue the dialogue. Score 2: The response is inter-
esting and the dialogue can be developed.

1https://code.google.com/archive/p/word2vec/
2All the annotators are graduate students recruited from

the internet whose are not relevant to this study.
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Model PPL Distinct-1 / 2 P.Distance Coherence Engagingness P.Relevancy
HRED 21.095 0.078 / 0.225 0.246 0.657 0.703 0.670
CVAE 19.501 0.116 / 0.405 0.258 0.557 0.673 0.523

TTransfo 18.011 0.142 / 0.400 0.329 0.840 0.703 0.877
DialoGPT 14.966 0.139 / 0.417 0.359 1.037 0.883 0.900
P 2 BOT 16.620 0.083 / 0.268 0.370 0.953 0.920 0.873

Ours 15.671 0.167 / 0.538 0.401 1.177 1.203 1.207

Table 1: Evaluation results on the ConvAI2 dialogue corpus, the best score in each metric are in bold. For our
model and CVAE, the latent variables were sampled N times to generate N responses, and the final evaluation scores
were acquired by average (N = 3 in our experiments); 50 dialogues were randomly sampled from the testing set for
human evaluation. The statistical test showed the differences are significant with p-value < 0.05.

P.Relevancy (Persona Relevancy) estimates the
degree of a response being relevant to the other
party’s persona. And the persona of the other party
is required to be inferred from the context. Score
0: What the response mentions is irrelevant to
the other party’s persona. Score 1: The response
involves a question to the other party and is not
generic. Score 2: What the response mentions is
related to the persona of the other party.

3.4.3 Results

Table 1 shows the evaluation results. We can see
that, compared to baseline, our approach was supe-
rior in all metrics except PPL. Nonetheless, this
metric also achieves highly competitive perfor-
mance. CVAE gains a higher Distinct score than
HRED and P 2 BOT, which could be attributed
to the variational autoencoder catching discourse-
level diversity. Our model surpassed CVAE on
Distinct and P.Distance, which suggests that the
implicit persona modeling can better reflect the
specific user’s persona, creating more informative
responses. The comparison with DialoGPT can be
seen as an ablation study since our model would
degenerate into a GPT-2 with removal of the la-
tent variables. It can be observed that ours outper-
formed DialoGPT overall, which reveals that the
proposed latent variables are beneficial for gener-
ating more user-related and diversified responses.
Ours is slightly inferior on PPL, which is to be ex-
pected due to stochasticity for the language model
brought by the latent variables.

On the other side, the personalized dialogue
models TTransfo and P 2 BOT received an un-
desirable P.Relevancy. And P 2 BOT had only a
slightly improved Engagingness compared to Di-
aloGPT, which indicates that even with a specific
personality, responses that lack consideration for

the interlocutor may limit the attraction for people
to continue the exchange. By contrast, ours ob-
tained meaningful advances in Engagingness and
P.Relevancy, which demonstrates that responses rel-
evant to the other party’s persona can motivate the
user to participate actively in conversation. When
it comes to Coherence, both HRED and CVAE
attained lower scores compared to all other large-
scale transformer-based models. This is not sur-
prising because pre-trained language models have
proved to have better language understanding ca-
pability than traditional RNNs. The Fleiss’ kappa
(Fleiss, 1971) score with human judges was around
0.33, which can be regarded as “fair agreement.”

4 Discussion

4.1 Analyzing Latent Variables

One assumption is that individual persona features
could be classified in latent space. Additionally,
previous research (Zhao et al., 2017) has identified
that the posterior network can grasp the cluster-
ing of high-dimensional discrete samples. Thus,
we wanted to check if the perception variable can
be learned in the explainable collections. All pro-
files in the training set were classified into six pre-
defined categories by employing a pre-trained zero-
shot classifier (Lewis et al., 2020). The classifier
calculates the probabilities of category attribution
in the manner of building profiles and categories
into premise-hypothesis pairs (Yin et al., 2019).
Figure 5 visualizes the posterior perception vari-
ables in 2D space using t-SNE (Maaten and Hinton,
2008). We discovered that the latent space learned
by Zp is correlated with the profile categories. Re-
call that perception variable is devised to refine the
user’s implicit persona, and this result is in line
with our initial conception.
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Figure 5: The visualization of perception variable.

Figure 6: Controllability analysis for fader variable.
The increment is set as 0.1.

Then we studied the impact of the fader vari-
able in modeling response generation. Because
the fader variable aims to control the representa-
tion of implicit persona, we verified its effect on
the generation by sliding the value. Specifically,
we gradually boosted Zα from 0 to 1 instead of
the prior network pθ(Zα|C,Zp) during inference.
The proximity between the generated response and
ground-truth profile was computed by P.Distance.
Figure 6 reveals the test result that the proximity
had an inverse correlation with increasing value of
the fader variable. Meanwhile, the length of gener-
ated response (the number of generated tokens in a
response) showed an increasing tendency due to the
fader variable controlling the amount of persona
information the model was attempting to represent.

4.2 Case Study

For a more comprehensive qualitative analysis, we
set up a hypothetical persona to interact with our
model. Table 2 presents the diverse responses gen-
erated from our model in four consecutive turns.
The responses were sampled randomly three times

User Persona:
I like sports, especially basketball. I am tall.
I like listening to music. I am a student.

1s
tT

ur
n U: Hi, I like listening to music.

r1: Cool, my favorite musician is Todd Lee.
r2: Who is your favorite singer?
r3: That’s cool do you have pets?

2n
d

Tu
rn

U: I also enjoy playing basketball.
r1: That is fun. What position do you play?
r2: What team do you like the least?
r3: Oh, that’s interesting.

How long have you played basketball?

3r
d

Tu
rn

U: I play center.
r1: Oh, that’s awesome. How tall are you?
r2: Ah, nice.

Do you play for a team or just for fun?
r3: Oh, that is cool.

I am starting to get into the NBA.
4t

h
Tu

rn
U: I am 6 foot 3.

I often play with my roommates.
r1: Wow, that’s tall. Are you in school?
r2: I bet you can play baseball too.
r3: I am 6 feet 1 inches tall.

Do you have siblings?

Table 2: The involved personas in responses are in bold.

per turn, and utterances from the user follow by
r1 of the previous turn. As observed, most of the
responses not only covered the user’s persona but
were also consistent with the context. Responses
in each turn are significantly dissimilar, which sug-
gests our model can perform various expressions by
the proposed latent variables. That is in line with
the “one-to-many” nature mentioned in the intro-
duction. Further, we detected that our model was
more likely to raise questions about the other party
and seldom generated generic responses. Naturally,
putting forth a question could contribute to keeping
the conversation going. And such responses also
have a high probability of hitting an aspect of the
user’s persona. That explains why our approach
obtained a remarkable score on Engagingness and
P.Relevancy in the human evaluation.

4.3 Probing LPo-di
The efficacy of LPo-di in helping to alleviate “pos-
terior collapse” was assessed by a comparative trial.
We carried out the language modeling task on Penn
Treebank (Marcinkiewicz, 1994) utilizing the VAE
constructed by seq2seq architecture based on GRU.
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Method PPL AU KL cost
Standard VAE 58.391 0 0.049

+ KLA 53.564 3 2.508
+ CA 51.547 2 3.767
+ AT 50.000 6 5.320

+ BOW 48.637 11 11.165
+ LPo-di (λ = 0.12) 48.467 13 14.727
+ LPo-di (λ = 0.15) 47.674 14 16.096
+ LPo-di (λ = 0.18) 45.925 14 22.047
+ LPo-di (λ = 0.21) 46.883 14 25.126

Table 3: Automatic results for different methods.

We set the KL weight of KL annealing (KLA) to
increase linearly from 0 to 1 in the first 5000 steps.
Table 3 reports PPL, the number of active units
(AU) (Burda et al., 2016), and KL cost for six kinds
of training techniques on the testing set. We varied
the distinction objective λ and report four settings
between 0.12 and 0.21. In our experiments, the
settings in this range obtained a sounder balance
between PPL and KL cost. We can see that LPo-di
reconstructed the language model with lower per-
plexity while converging to a small but meaningful
KL cost. LPo-di retained more active units than oth-
ers, which indicates a richer latent representation
can be acquired by “pulling apart” the KL diver-
gence between the different posteriors. Figure 7
presents the evolution of the KL cost during train-
ing. Compared to VAE without any strategies, the
model with KLA can prevent the KL cost crashes
at the beginning of training, but the effect is dimin-
ished by degrees after the KL weight climbs to 1.
Although this problem is fixed by cyclic annealing
(CA) and aggressive training (AT), they still have
slightly poor performance on PPL. VAE with BOW
gained comparable performance to ours, whereas
LPo-di without introducing any supplemental neu-
ral network still mitigated “posterior collapse.”

5 Related Work

5.1 Variational Autoencoders (VAEs)

The VAEs (Kingma and Welling, 2013; Rezende
et al., 2014) were proposed for image generation
and applied by Bowman et al. (2016) for natu-
ral language generation. Then, the CVAEs (Yan
et al., 2016; Sohn et al., 2015) were proposed to en-
able more controllable generation that conditioned
certain attributes. Zhao et al. (2017) adopted the
CVAE for the task of multi-turn dialogue modeling,

Figure 7: The convergence of KL costs during training.

which learns a distribution over dialogue acts to
capture discourse-level variations. The above mod-
els achieve various generations by drawing latent
variables from the learned distribution.

5.2 Personalized Dialogue Models

Recently, there has been much research exploring
different approaches to the task of personalized di-
alogue generation (Yang et al., 2020; Song et al.,
2020; Zheng et al., 2020; Wu et al., 2020; Xu et al.,
2021). P 2 BOT (Liu et al., 2020) and TTransfo
(Wolf et al., 2019b) are recognized state-of-the-art
baselines on persona-chat. P 2 BOT proposes a
transmitter-receiver and mutual persona perception
framework that fuses supervised training and self-
play fine-tuning for enhancing the quality of per-
sonalized dialogue generation. TTransfo combines
transfer learning and the Transformer model, and
fine-tuning is performed on the pre-trained model
by optimizing the multi-task objective function to
improve the fluency of personalized responses.

The aforementioned approaches involve condi-
tioning responses on the additional agent’s persona.
Instead, the variational method allows us to be flex-
ible in handling the effects of conditions (i.e., con-
text) and is independent of external knowledge.
Our method further integrates the details of the
user into the inference process.

6 Conclusion and Future Work

This paper presented a new implicit persona de-
tection generator to achieve a user-personalized
response. We establish the persona exploration and
dialogue generation in a unified framework that
supplies a way of leveraging the potential facts in
dialogue. Experiments on a large public dataset
demonstrated that our approach had superior per-
formance in producing user-specific responses. Hu-
mans typically continue exchanges by drilling into
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the content of the conversation. From this per-
spective, the PersonalDialog dataset (Zheng et al.,
2019) may be more appropriate for our approach.
In the future, we plan to use this dataset to study if
the inference of implicit personas can be strength-
ened. We would also conduct further experiments
to examine whether there is an interpretable associ-
ation between the prior network and the recognition
network in terms of what they have learned. Even-
tually, we plan to perfect LPo-di by having weights
adaptively regulate the KL divergence.
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A Appendix

Derivation of ELBO
The conditional likelihood can be written as follows
by introducing the terms of variational distribution
and true posterior. We omitted the parameter iden-
tification θ and ϕ to save space in formula writing.

log p(R|C)

=

∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )log p(R|C)dZpdZα

=

∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )

log
p(R|C)p(Zp|C,R)q(Zp|P )p(Zα|C,R,Zp)q(Zα|P,R)

p(Zp|C,R)q(Zp|P )p(Zα|C,R,Zp)q(Zα|P,R)
dZpdZα

=

∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )

log
p(R|C)p(Zp|C,R)p(Zα|C,R,Zp)q(Zα|P,R)

q(Zp|P )p(Zα|C,R,Zp)q(Zα|P,R)
dZpdZα

+

∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )log
q(Zp|P )

p(Zp|C,R)
dZpdZα

=

∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )

log
p(R,Zp|C)p(Zα|C,R,Zp)q(Zα|P,R)

q(Zp|P )p(Zα|C,R,Zp)q(Zα|P,R)
dZpdZα

+

∫

Zp

q(Zp|P )log
q(Zp|P )

p(Zp|C,R)
dZp
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The first term can be factorized into two parts. We
assume the true posterior p(Zα|C,R,Zp) is inde-
pendent of the integrals over Zp. Thus, the formula
can be re-written as follows:

log p(R|C)

=

∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )log
q(Zα|P,R)

p(Zα|C,R,Zp)
dZpdZα

+

∫

Zp

q(Zp|P )log
q(Zp|P )

p(Zp|C,R)
dZp

+

∫∫
q(Zα|P,R)q(Zp|P )log

p(R,Zp|C)p(Zα|C,R,Zp)

q(Zp|P )q(Zα|P,R)
dZpdZα

≈
∫

Zα

q(Zα|P,R)log
q(Zα|P,R)

p(Zα|C,R,Zp)
dZα

︸ ︷︷ ︸
KL(q(Zα|P,R)||p(Zα|C,R,Zp))

+

∫

Zp

q(Zp|P )log
q(Zp|P )

p(Zp|C,R)
dZp

︸ ︷︷ ︸
KL(q(Zp|P )||p(Zp|C,R))

+

∫∫
q(Zα|P,R)q(Zp|P )log

p(R,Zp|C)p(Zα|C,R,Zp)

q(Zp|P )q(Zα|P,R)
dZpdZα

︸ ︷︷ ︸
ELBO

Where the first two terms are KL divergence be-
tween the true posterior and variational distribution.
Since KL divergence is always greater than or equal
to 0, to maximize the likelihood log p(R|C) can
be converted to maximize ELBO, which can be
reformulated as follows:

log p(R|C) ≥ ELBO =

−
∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )log
q(Zp|P )q(Zα|P,R)

p(R,Zp, Zα|C)
dZpdZα

= −
∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )

log
q(Zp|P )q(Zα|P,R)

p(Zp|C)p(Zα|C,Zp)p(R|C,Zp, Zα)
dZpdZα (Bayes

′
theorem)

=

∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )p(R|C,Zp, Zα)dZpdZα

−
∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )log
q(Zp|P )

p(Zp|C)
dZpdZα

−
∫

Zα

∫

Zp

q(Zα|P,R)q(Zp|P )log
q(Zα|P,R)

p(Zα|C,Zp)
dZpdZα

≈
∫∫

q(Zα|P,R)q(Zp|P )p(R|C,Zp, Zα)dZpdZα

︸ ︷︷ ︸
Eq(Zp|P );q(Zα|P,R)[log p(R|C,Zp,Zα)]

−
∫

q(Zp|P )log
q(Zp|P )

p(Zp|C)
dZp

︸ ︷︷ ︸
KL(q(Zp|P )||p(Zp|C))

−
∫

q(Zα|P,R)log
q(Zα|P,R)

p(Zα|C,Zp)
dZα

︸ ︷︷ ︸
KL(q(Zα|P,R)||p(Zα|C,Zp))

We assume that the prior distribution p(Zα|C,Zp)
is independent of the integrals over Zp.
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Abstract
Although the Conditional Variational Auto-
Encoder (CVAE) model can generate more di-
versified responses than the traditional Seq2Seq
model, the responses often have low relevance
with the input words or are illogical with the
question. A causal analysis is carried out
to study the reasons behind, and a methodol-
ogy of searching for the mediators and mit-
igating the confounding bias in dialogues is
provided. Specifically, we propose to predict
the mediators to preserve relevant information
and auto-regressively incorporate the mediators
into generating process. Besides, a dynamic
topic graph guided conditional variational auto-
encoder (TGG-CVAE) model is utilized to com-
plement the semantic space and reduce the con-
founding bias in responses. Extensive experi-
ments demonstrate that the proposed model is
able to generate both relevant and informative
responses, and outperforms the state-of-the-art
in terms of automatic metrics and human eval-
uations.

1 Introduction
With recent advances in deep learning and read-
ily available large-scale dialogue data, generation-
based methods have become one of the most pre-
vailing methods for building dialogue systems.
Based on the Seq2seq framework (Sutskever et al.,
2014; Cho et al., 2014), generation-based models
learn to map the input post to its corresponding
response through an encoding-decoding strategy
and are trained in end-to-end manners (Shang et al.,
2015; Sordoni et al., 2015; Vinyals and Le, 2015).
However, Seq2seq model tends to produce generic
and safe responses (Li et al., 2015) such as “So am
I” or “I don’t know”. Researchers conjecture that
the cause of this phenomenon is that one certain
post can be replied by multiple responses (i.e., one-
to-many mapping), and the maximum likelihood
estimation (MLE) training would average out these

∗*Corresponding author.

Post: Have you had dinner?
Response1: Yeah, sure!
Response2: Yes, I had it at McDonald’s.
Response3: Nope, I’m busy with my work.
Response4: Yes, I’ve had it. I tried a nearby

restaurant that features Thai food.

Table 1: An illustration of a general question and its mul-
tiple valid responses. The direct responding semantics
(marked in red) are semantically homogeneous because
they have to reply the issue directly. The supplementary
semantics are more diversified because they add more
information to explain or supplement the corresponding
direct responding semantics.

responses and produce a more bland and generic
candidate.

To tackle this problem and model the one-to-
many mapping relationships in dialogues, (Zhao
et al., 2017) firstly leverages Conditional Varia-
tional Auto-Encoder (CVAE) model to map the
input post into a semantic distribution, instead of a
fixed vector as used in the vanilla Seq2seq model.
The decoder then decodes the sampled points from
the semantic distribution to generate corresponding
responses. This model significantly increases the
diversity of responses, but it is hard to train as the
valid responses are too few to shape a clear seman-
tic distribution for each post. As a result, the CVAE
model is inclined to learn some spurious statistical
cues for predicting diversified words, which may
have very low relevance with the input post. Other
studies focus on re-using the model’s components
to fit the multiplicity of dialogues, for instance, the
multiple mechanisms used in (Zhou et al., 2017)
and (Zhou et al., 2018), the multi-head attention
used in (Tao et al., 2018; Liu et al., 2022), and rein-
forced methods(Qiu et al., 2021). The most-related
work in this line is the Multi-Mapping and Pos-
terior Mapping Selection (MMPMS) (Chen et al.,
2019) model, which directly builds multiple map-
ping modules to learn diversified semantics and
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generate responses. However, these studies haven’t
considered the intrinsic nature of this one-to-many
phenomenon in dialogues.

We always face the trade-off between the accu-
racy of response and diversity of semantics, and
cannot directly generate relevant and diversified
responses from the original input post. To solve
this dilemma and examine the nature of dialogues,
we introduce the causal inference analysis (Pearl,
1995, 2000) into the dialogue generation task. Here,
we assume between the input post and outcome re-
sponse, there exists one mediator. The mediator
can easily capture the relevant but simple response
from the input post (input post → mediator) and
also can pass the learned information to the out-
come so as to preserve the relevance. In addition,
when generating the diversified responses, the sam-
pling steps in prior and posterior distributions of
CVAE will act as the confounders between the in-
put and outcome response. Therefore, we estab-
lish one causal graph including the mediator, con-
founder, input post, and segmented responses, i.e,
direct responding semantics and supplementary se-
mantics, to facilitate the information transmission
and enrichment, and preserve the relevance and
logicality.

Based on the above causal analysis, this work
presents a unified end-to-end sentence-level auto-
regressive model (SLARM) to predict the medi-
ator and mitigate the confounding bias in gener-
ating diverse responses. We concrete the media-
tor by predicting the direct responding semantics,
and leverage this mediator in an auto-regressive
manner for response generation. A dialogue topic
graph enhanced CVAE model with a larger seman-
tic space is proposed to reduce the confounding
bias in CVAE model, and thus make sure the tran-
sition is smooth and natural. In conclusion, the
contributions of this work are three-fold:

1. It provides an in-depth analysis of the under-
lying causality involved in the dialogue gen-
eration task, and proposed a methodology of
searching for the mediators and mitigating the
confounding bias in dialogues.

2. It proposes an innovative dialogue generation
model based on the established causal graph
with mediator and confounder. The model
predicts the direct responding semantics as
mediators and generate the supplementary se-
mantics in a unified auto-regressive manner

using the proposed TGG-CVAE part to miti-
gate the confounding bias.

3. It conducts broad experiments on a real-world
dialogue dataset, which demonstrates that our
proposed approach outperforms the state-of-
the-art methods and has the capability of en-
hancing the diversity of responses without the
sacrifice of relevance.

2 Related Works
Diversified Generation models. Some researchers
suggest that the maximum-likelihood training ob-
jective used in the seq2seq model will average out
the targets and result in safe and commonplace re-
sponses. Several attempts have been made to tackle
this problem by proposing diversity-promoting ob-
jective functions, such as Maximum Mutual In-
formation (MMI) (Li et al., 2015), Inverse Token
Frequency Loss (ITF) (Nakamura et al., 2018). Al-
though these studies help mitigate the safe response
problem, their performance is far from satisfac-
tory. Recently, researchers have discovered that
incorporating additional information can lead to
more diverse responses. Such methods include
predicting keywords to guide the generation pro-
cess (Mou et al., 2016; Yao et al., 2017), and using
latent variables such as (Zhao et al., 2017; Gao
et al., 2019a,b; Wei et al., 2019, 2021). Some re-
cent studies focus on the one-to-many relationship
between a certain post and its multiple valid re-
sponses, which is a common phenomenon in real
dialogues. For instance, (Zhou et al., 2017) and
(Zhou et al., 2018) model the one-to-many map-
ping relationships through multiple latent mecha-
nisms and leverage diverse mechanisms to enhance
the diversity of generated responses. (Tao et al.,
2018) leverages the multi-head attention to focus
on different parts of the input post and generate di-
verse responses. The state-of-the-art model in this
line is the Multi-Mapping and Posterior Mapping
Selection (MMPMS) (Chen et al., 2019) model,
which directly builds multiple mapping modules to
learn diversified semantics and generate responses.
Causal Inference. Causal inference (Pearl, 2000;
Rubin, 2005) has been an attractive research topic
for a long time since it provides an effective way
to uncover causal relationships in real-world prob-
lems. Nowadays, the combination of the incisive
ideas in the causal inference and various deep learn-
ing model can help improve existing methodologies
in a wide range of fields, such as treatment effect es-
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timation with observational data (Li and Fu, 2017;
Chu et al., 2020b, 2022b), causality analysis of
graph networked data (Chu et al., 2021), continual
learning (Hu et al., 2021; Chu et al., 2020a), nat-
ural language processing task (Yang et al., 2021;
Niu et al., 2021; Abbasnejad et al., 2020), few-shot
learning (Yue et al., 2020, 2021), domain adapta-
tion (Bengio et al., 2019), clinical trials (Chu et al.,
2022c), finance (Atanasov and Black, 2016), ac-
counting (Gow et al., 2016), marketing campaigns
(Chu et al., 2022a) and so on. It is very challenging
to choose or define proper confounders and media-
tors so as to construct one reasonable causal graph
for different new tasks. A confounder is related to
both cause and effect in a study, and a mediator
explains the process by which cause and effect are
related. In this work, we aim to incorporate causal
inference into the dialogue generation task to help
the model balance the relevance and diversity of
response semantics.

3 Causal Analysis

Figure 1: The causal graph of dialogue generation task.
The dialogue generation task can be naturally abstracted
to one causal graph involving input post x, confounder c,
mediators m, direct responding semantics ydirect, and
supplementary semantics ysup. The direct responding
semantics ydirect is the proxy variable of mediator m.
The complete response y consists of direct responding
semantics ydirect, and supplementary semantics ysup.

In this section, we introduce the causal inference
analysis (Pearl, 1995, 2000; Yao et al., 2021) into
this task and define the mediator and confounder in
the dialogue generation causal graph. A mediator
is determined by input post and has causal effects
on outcome response, and a confounder has causal
effects on both input post and outcome response.
Our objective is to leverage the causal relationship
involved in the established causal graph to increase
the diversity of response semantics, but at the same
time, not to reduce the relevance of response to
input post.

We assume there exists one mediator between

the input post and outcome response. The me-
diator can easily capture the relevant but sim-
ple response from the input post (input post →
mediator) and also can pass the learned informa-
tion to outcome so as to preserve the relevance
(mediator → outcome response). Except for the
path via mediator, the input post is also directly
predictive of the outcome response (input post→
outcome response). In addition, we propose to use
the CVAE to increase the diversity of responses.
However, the sampling steps in prior and posterior
distributions of CVAE will act as the confounder be-
tween the input combination (input post and medi-
ator) and outcome response (input combination←
confounder→ outcome response). Because the in-
put combination and response pairs maybe do not
conform to the assumed prior or posterior distribu-
tions of CVAE, this confounding bias may make
the model learn the spurious statistical cues for the
prediction of diversified response, resulting in some
linguistically similar but inconsistent or irrelevant
expressions in the generated sentences. Therefore,
reducing the confounding bias is essential for the
dialogue generation task.

Corresponding to the above causal relationship,
we split the complete response into two parts, i.e.,
direct responding semantics and supplementary se-
mantics, as shown in Figure 1. The direct respond-
ing semantics represents the semantic part that can
be directly leveraged to answer the input question.
The direct responding semantics is the proxy vari-
able of the mediator. The Supplementary semantics
represents the peripheral semantic part that is either
an explanation, a supplement, or an extension of the
direct responding semantics. The direct responding
semantics is semantically homogeneous because
it has to solve the issue directly, and the supple-
mentary semantics is more diversified because it
adds more information to explain or supplement
the direct responding semantics, or even change
the topics to make conversation continue.

Although the high-quality observations of the
mediators can reduce the confounding bias hid-
den in the causal structure by reducing the pos-
sibility of counting on the confounders, it is not
enough to attain one relevant and diversified re-
sponse in the complex dialogue generation task.
In addition, unlike the mediator that can be repre-
sented by direct responding semantics, it is very
challenging to define and construct the exact con-
founders clearly. Therefore, due to the complex
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causal graph and hidden confounders, the front-
door and back-door adjustments (Glymour et al.,
2016; Pearl and Mackenzie, 2018) for reducing the
confounding bias cannot be easily applied. There-
fore, instead of the conventional causal intervention
based on Pearl’s do-calculus (Pearl and Mackenzie,
2018), we propose to exploit the dialogue topic
graph to complement the semantic space and as-
sign more relevant information into CVAE, which
can enhance the diversity and keep the relevance
of input post simultaneously.

4 Proposed Model
Our response generation task is defined as follows.
Given an input post x = {x1, x2, · · · , xT }, the
problem is to generate the corresponding response
sequence y = {y1, y2, · · · , yT ′′}, where T is the
length of the post and T

′′
is the length of response.

To address this problem, we propose to gener-
ate the response sequence in a sentence-level auto-
regressive manner. Firstly, we predict the proxy
variable of the mediator by maximizing the log-
likelihood of the following formula:

y∗direct = argmaxPr(y|x). (1)

As mentioned above, this process produce general
responses, but they are closely related to the input
post and may help determine where the conversa-
tion should go. Hence, we preserve the causal path
(input post → mediator) and then we can trans-
mit the learned information to outcome so as to
preserve the relevance (mediator → outcome re-
sponse).

Then, an Sentence Level Auto-Regressive gen-
erating Model (SLARM) is proposed to produce
diverse and informative responses based on the
mediator and the dialogue topic graph. We first
propose to utilize the predicted mediator in an auto-
regressive manner:

y∗sup = argmaxPr(y|x,y∗direct), (2)

and then build a topic graph enhanced CVAE model
to mitigate the confounding bias in traditional
CVAE models. The auto-regressive training man-
ner serves like a prompt to naturally inject the me-
diator into generation process, and the topic graph
provides dynamic guidance to prevent the CVAE
model from off-the-topic deviation and comple-
ment the semantic space.

4.1 Mediator Predictor

As aforementioned, we need to capture the rele-
vant information with the input post and thus we
need to predict the mediators in dialogue. Here, we
propose to leverage Seq2seq-model with attention
mechanism as the mediator predictor to generate
direct responding semantics. This deterministic
model can easily capture this simple semantic re-
sponding pattern and produce relevant response for
our further processing.

4.2 Auto-Regressive Response Generator

So far, we have utilized the direct responding se-
mantics generator to attain the mediator. Except
for the path via mediator, the input post is also di-
rectly predictive of the diversified response. Now,
based on the combination of input post and direct
responding semantics, we aim to learn the supple-
mentary semantics. The supplementary semantics
is of great importance to provide useful informa-
tion for interlocutors, and it can be rendered as an
explanation, supplement, or extension of the pre-
vious direct responding semantics. This semantic
part has great diversity and contains many relevant
entities. Although the high-quality observations
of the mediators can reduce the confounding bias
hidden in CVAE, it is not enough to attain one rele-
vant and diversified supplementary semantics in the
complex dialogue generation task. Following the
previous causal analysis, we propose to exploit the
dialogue topic graph to complement the semantic
space and assign more relevant information into
CVAE. Therefore, we design a novel model, i.e.,
topic graph guided CVAE model (TGG-CVAE),
to extend the semantic space in the conversation
and sample more diversified and relevant sentences,
and leverage the dynamic guidance from the dia-
logue topic graph to provide smooth and natural
transition from the direct responding semantics to
the supplementary semantics. The model structure
is depicted in Figure 2.

To generate the supplementary semantics, the
proposed TGG-CVAE model takes in the input post
and previously generated direct semantics response.
We denote the input x̂ as:

x̂ = {x1, x2, ..., xT , [SEP ], y1, y2, ..., yT ′}, (3)

where the [SEP] token is a special token to sepa-
rate the two sentences (Devlin et al., 2018). The
goal of this model is to generate the supplementary
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Figure 2: The architecture of our proposed TGG-CVAE model.

semantics:

ysup = {yT ′+1, yT ′+2, · · · , yT ′′}. (4)

This model mainly consists of four components:
a prior network, a posterior network, a topic guide
network, and a decoding network. The prior
network is trained to approximate pθ(z|x̂) while
the posterior network is trained to approximate
qψ(z|x̂,ysup), where θ and ψ are the network pa-
rameters and z is the latent variable. Here, z is
assumed to follow multivariate Gaussian distribu-
tion (Zhao et al., 2017) and then we have:

pθ(z|x̂) ∼ N (µ, σ2I) (5)

qψ(z|x̂,ysup) ∼ N (µ′, σ′2I) (6)

Typically, the prior network and the posterior net-
work are RNN-based encoders that transform the
input x̂ and ysup into hidden states:

hix = f(hi−1x , x̂i) (7)

hjy = f(hj−1y ,yj), (8)

where i ∈ [1, T+T
′
+1] and j ∈ [T

′
+1, T

′′
]. The

last hidden states from the prior/posterior network
are denoted as hx and hy respectively. The latent
variable is estimated by parameterizing its mean
and log variance:

[
µ

log(σ2)

]
=Wp(hx) + bp (9)

[
µ′

log(σ′2)

]
=Wr

[
hx
hy

]
+ br, (10)

where theWp,Wr and bp, br are the weights and
biases for the prior network and posterior network

respectively. Reparametrization trick (Kingma and
Welling, 2014) is used to keep the gradient propa-
gate successfully in networks via a differentiable
transformation of an auxiliary noise variable ϵ:

z = µ+ σϵ (11)

z′ = µ′ + σ′ϵ (12)

Then we can sample the latent variables z or z′

from the prior network or the posterior network.
However, in the testing stage, as the ground-truth
response is not available, the posterior latent vari-
able z

′
cannot be properly estimated. Therefore,

we need to make sure that the prior network can
fully acquire useful information from the poste-
rior network by homogenizing z and z

′
. Here,

KL-divergence loss is leveraged in our model to
minimize the discrepancy between the two latent
distributions:

LKL =KL(qψ(z|x̂,ysup)||pθ(z|x̂))

=

∫
qψ(z|x̂,ysup)log

qψ(z|x̂,ysup)
pθ(z|x̂)

dz,

(13)

from which we can derive the final formula for
calculating KL-divergence loss:

LKL = log
σ

σ′
+
σ′2 + (µ− µ′)2

2σ2
− 1

2
(14)

For the vanilla CVAE model, z or z
′

is directly
fed as the input of the decoder for decoding from
the semantic space. However, as aforementioned,
the latent semantic space is too large to train well
and the sampling steps in prior and posterior distri-
butions of vanilla CVAE will act as the confounder
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between the input combination (input post and di-
rect responding semantics) and supplementary se-
mantics. Because the input post and response pairs
in the real data maybe do not conform to the as-
sumed prior or posterior distributions of CVAE,
this confounding bias may make the model learn
the spurious statistical cues for prediction of di-
versified response, resulting in some linguistically
similar but inconsistent or irrelevant expressions in
the generated sentences. Therefore, reducing the
confounding bias is essential for the supplemen-
tary semantics generation. We exploit the dialogue
topic graph to complement the semantic space and
assign more accurate and relevant relationship into
CVAE so as to mitigate the confounding bias. De-
tails of this strategy are as follows:

Firstly, the topic words w1, w2, ..., wm are ex-
tracted from x̂ using the TF-IDF method, and
then they are placed into the dialogue topic
graph G(V, E) to find their nearest n neighbours
w11, w12, ..., wmn according to the weight, where
wij is the j-th neighbours of the topic word wi. We
then choose the neighbour with the highest proba-
bilities:

t1, ..., tK = argmaxK
i∈[1,m],j∈[1,n]

(Pr(wij |wi)), (15)

to select top K topic words, namely, t1, ..., tK .
Secondly, since these topic words contribute dif-

ferently to the generation of a response, we lever-
age the sampled latent variables to formulate a dy-
namic prior/posterior selection of the topic words.
The sampled latent variables z (testing) or z

′
(train-

ing) are passed through a projection layer to pro-
duce a distribution over the K topic words, namely
α = α1, α2, ..., αK . The final representation of
the topic information is formulated as a weighted
summation of the topic embeddings:

t = αi · ti, i = 1, 2, 3, ..., k (16)

where ti is the embedding of the word ti.
Thirdly, the topic information t and the sampled

latent variable z or z
′

are fed into the decoder for
generating the supplementary semantics:

Pr(yt|y1:t−1,x,ydirect) = g(yt−1, st, z, t),
(17)

from which we can find that each supplementary
semantic word is conditioned on both the topic in-
formation and the sampled latent variable, and thus
the sentences can be related to the previous words

and have more diversity. Following (Sohn et al.,
2015), we train the proposed model by maximizing
the variational lower bound of the conditional log
likelihood:

LELBO =−KL(qψ(z|x̂,ysup)||pθ(z|x̂))
+ Eqψ(z|x̂,ysup)[log pθ(ysup|z, x̂, t)],

(18)

where the KL(., .) denotes the KL-divergence of
two distributions. Since the latent semantic dis-
tribution is easy to collapse (a.k.a., KL-collapse
problem), we add a bag-of-words loss LBOW and
use KL-annealing strategy to deal with this prob-
lem (Zhao et al., 2017). The final loss function of
this proposed model is formulated as:

L = LELBO + LBOW + Ldirect (19)

Note that, we also consider the possible circum-
stance where the responses do not contain any sup-
plementary semantics by leveraging the [EOS] to-
ken as the placeholder. If the TGG-CVAE model
predicts [EOS] token at the first step, this indicates
that the direct responding semantics is already com-
plete and it does not need any supplementary se-
mantics.

5 Experimental Results
5.1 Dataset
We conduct experiments on a large-scale real-
world dialogue dataset, i.e., Short-Text Conversa-
tion (STC) dataset (Shang et al., 2015). This dataset
is publicly available and is cleaned by the data
publishers. It consists of 4,433,853 post-comment
pairs collected from Chinese Weibo, a social media
platform where people can chat online.

5.2 Evaluation Metrics
Automatic Evaluation. We adopted two widely-
used metrics, BLEU-n (Papineni et al., 2002) and
Distinct-n (Li et al., 2015), to automatically evalu-
ate the dialogue generation models. BLEU-n score
is a referenced evaluation metric to measure word
overlap between the generated response and the
reference. Note that in our experiment we apply
smoothing function 7 (Chen and Cherry, 2014) to
avoid the problem when no n-gram overlaps are
found. Distinct-n score (Li et al., 2015) is used
to determine word-level diversity of the generated
response. It is measured by calculating the percent-
age of distinct n-grams in the generated responses.
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Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 Distinct-1 Distinct-2
Seq2seq (Sutskever et al., 2014) 0.2392 0.1937 0.1646 0.1304 0.0549 0.1859
CVAE (Zhao et al., 2017) 0.2223 0.1808 0.1541 0.1222 0.0936 0.4208
MMPMS (Chen et al., 2019) 0.2246 0.1868 0.1612 0.1289 0.0972 0.4214
DCVAE (Gao et al., 2019b) 0.2124 0.1700 0.1436 0.1134 0.0405 0.1681
SLARM (ours) 0.2657 0.2169 0.1850 0.1469 0.0879 0.3685
SLARM w/o TGG (ours) 0.2569 0.2099 0.1792 0.1423 0.0967 0.4088
SLARM w/o CVAE (ours) 0.2544 0.2069 0.1763 0.1398 0.0881 0.2195

Table 2: Automatic evaluation results on STC dataset. The best results are in boldface and the second best results
are underlined.

Models Relevance Informativeness Fluency Average
Seq2seq (Sutskever et al., 2014) 1.52 1.63 2.68 1.94
CVAE (Zhao et al., 2017) 1.45 1.73 2.49 1.89
MMPMS (Chen et al., 2019) 1.54 2.02 2.00 1.85
DCVAE (Gao et al., 2019b) 1.96 1.53 2.48 1.99
SLARM (ours) 1.57 1.82 2.67 2.02

Table 3: Human evaluation results on STC dataset. The best results are in boldface and the second best results are
underlined.

Human Evaluation. We randomly sampled 100
posts from the test set and let the models generate
corresponding responses. Three annotators were
invited to rate the post-response pairs from three as-
pects: relevance (whether the response is relevant
to the input post), informativeness (whether the
response is informative) and fluency (whether the
response has no grammar mistakes). A three-point
scale (0,1,2) is used in the evaluation for the above
aspects. When contradiction occurs between the
first two annotators, the third annotator will resolve
the disagreement. Fleiss’ kappa (Fleiss and Co-
hen, 1973) is calculated to measure the inter-rater
agreement between the first two annotators.

5.3 Baseline Models

Seq2seq (Bahdanau et al., 2014): it is a canoni-
cal seq2seq model with the attention mechanism.
CVAE (Zhao et al., 2017): it is a conditional vari-
ational auto-encoder model. During testing, we
randomly sample latent variables from the prior
network and generate corresponding responses.
MMPMS (Chen et al., 2019): it is a multi-mapping
and posterior mapping selection model. We use
their original implementation and hyper-parameter
settings. DCVAE (Gao et al., 2019b): it is a dis-
crete CVAE model. We use their original imple-
mentation and adopt the two-stage sampling strat-
egy during testing.

5.4 Implementation Details

For our approach, we use 2-layers GRU units for
encoders in the prior network/posterior network
and the hidden size is set to 256. The embedding
size and vocabulary size are set to 200 and 40,000
respectively. Word embeddings are randomly ini-
tialized and OOV (out-of-vocabulary) words are
replaced with a special token UNK. Adam opti-
mizer (Kingma and Ba, 2014) is used for optimiza-
tion and the training batch size is 128. The initial
learning rate is set to 0.5 and a learning rate de-
cay operation is employed when the validation loss
stops decreasing for three consecutive epochs. The
decay rate is 0.99. The top 5 neighbors of the topic
words in the dialogue graph are chosen and fed into
the decoder.

5.5 Results

Automatic evaluation results are shown in Table 2.
Notably, our SLARM model outperforms all of the
baselines in terms of BLUE metric (with p-value
< 0.05) and its performance is 11.2% ahead of the
second best model. This verifies our assumption
that splitting the to-be-generated responses into
different semantic parts and separately generating
them with suitable methods will enhance the over-
all performance. As for the Distinct metric, the
performance of our model is moderate compared
to the CVAE model and MMPMS model. This is
because our main objective is not only boosting the
diversity of responses but also promoting relevance
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between posts and generated responses.
To further analyze the results, we conduct abla-

tion studies by removing the Topic Graph Guided
module (i.e., SLARM w/o TGG) or replacing
the CVAE module with traditional GRUs (i.e.,
SLARM w/o CVAE). After removing TGG, the
Distinct performance increases and the BLEU per-
formance decreases. This indicates that our dy-
namic topic graph guiding strategy is effective in
providing relevant information from posts and thus
can increase BLEU scores. However, this strategy
gets slightly lower Distinct scores because the re-
strained topics would reduce possibilities in choos-
ing more diversified words. When the CVAE mod-
ule is removed, the Distinct-2 score drops by a large
margin, indicating the CVAE module is effective
in extending the semantic space and sampling di-
versified phrases. The BLUE scores also decrease
because the posterior network is essential in provid-
ing additional information to dynamically weigh
the contribution of topic words. Hence, each com-
ponent of our model complements each other, and
thus the model has the self-adaptive capability to
reach a balance between diversity and relevance.

Human evaluation results are shown in Table 3.
The DCVAE model surpasses other models in rele-
vance metric. This is owing to the fact that DCVAE
model tends to re-use the words in the posts to
generate a response, which makes the annotators
give high relevance scores. The discrete latent vari-
ables from the prior and posterior network are pre-
trained to predict keywords in the post, and thus
sampling from these variables tends to produce the
same words in the post. However, the latent vari-
ables constrain the generation process, which leads
to low informative scores. The MMPMS model
performs the best from the informativeness aspect.
This is because the auxiliary loss (i.e., matching
loss) is effective in encouraging the selection mod-
ule to choose different and diverse mapping mod-
ules. However, some mapping modules are not
well-trained and they generate ungrammatical sen-
tences. Therefore their fluency score is rather low.
The Seq2seq model gets the highest fluency score,
as it often generates common and simple sentences.

Our proposed SLARM model outperforms all
the baseline models in terms of the average score.
For every single aspect, the SLARM model consis-
tently obtains the second best scores. The second
best relevance score indicates that first generating
the direct responding semantics will assure the rel-

evance with the post because it directly answers the
question. The second best informative score shows
that the proposed SLARM model can enhance the
diversity and generate informative sentences. Our
fluency score is also the second best and is close to
the Seq2seq model’s, which verifies that our meth-
ods can alleviate the grammatical problems when
concatenating two semantic parts.

Note that the Fleiss’ kappa for relevance, infor-
mativeness, and fluency are 0.4153, 0.4188, and
0.4378, respectively, indicating “moderate agree-
ment” among the annotators.

5.6 Case Study

We present sampled 4 cased in our Appendix. As
is shown in the figure, the Seq2seq model tends
to generate safe and generic responses, such as
case 1, 2, and 3. The response pattern generated
by Seq2seq models often starts with “I also like...”
or “Haha...”, which makes the responses dull and
boring. However, in cases 1 and 3, although these
responses are generic, they are semantically appro-
priate and relevant according to the post. Therefore,
this model is suitable for searching for the media-
tors in dialogue generation, which is actually ob-
served in our model by direct responding semantics.
The CVAE model is better at choosing diversified
words such as “punchline” in case 3 and “autumn”
in case 4. However, the confounding bias makes
this model learn some spurious statistical cues for
predicting diversified words, and thus these words
are not logical with regard to the input question.
The MMPMS model can produce informative sen-
tences, such as in cases 1, 3, and 4. In case 3, the
MMPMS model produces a response that is not
only informative but also relevant to the input post,
but responses in case 1 are irrelevant. Besides, an-
other major problem is that some of the mapping
modules are not well-trained and thus in case 2 we
can see the generated sentence is ungrammatical
and irrelevant. The DCVAE model tends to copy
the input post, such as in case 4. This is the reason
why the relevant score for DCVAE model is higher
than other models. In some circumstances, DC-
VAE produces the same results as Seq2seq, such as
in case 1 and 2.

We can conclude that the SLARM model per-
forms the best and reaches a balance between rele-
vance and diversity. The direct responding seman-
tics (marked in red) in case 1, 2, 3, and 4 are very
relevant to the input post, and the supplementary se-
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Case Posts Seq2seq CVAE MMPMS DCVAE SLARM 

1 

我只喜欢雨天游泳。痛

快。I only like to swim on 

rainy days. Nice! 

我也喜欢这种感觉。 

I also like this feeling. 

不错哦，可以注意哦。 

Very good, you should 

notice that. 

看小图我以为我是沙发 

I thought that was a couch 

according to the small 

picture. 

我也喜欢这样的感觉 

I also like this feeling. 

游泳训练不是很好，注意安全 

It is not very good to do such 

swimming exercise. Be careful. 

2 

很多人是复杂的动物，摸

不透，搞不清 

Many people are very 

complicated, and you can’t 

figure them out. 

哈哈，我也喜欢，我

也喜欢 

Haha, I like that too, I 

like that too. 

这就是我们的生活了 

This is our life. 

他花生的花生是花生的花

生和花生的花生 

His peanuts peanuts 

peanuts peanuts. 

我也是这么想的 

I think so. 

我承认，我是这样的。 

I should admit, that I’m of such 

kind. 

3 

《学习之神》,男主角不

错，93 年的 

The leading man in The 

God of Learning is very 

nice. He was born in 1993. 

我也是这么认为的。 

I think so. 

这是你的笑点吗？ 

Is that your punchline? 

哈哈，钟汉良的发色也很

帅啊。 

Haha, Hanliang Zhong’s 

hair style also looks 

handsome. 

看一次笑一次…… 

Every time I see that I 

can’t help laughing. 

这个是我的最爱！我就被他打

到了 

He is my favorite! I’m only 

struck by him. 

4 

漓江的春天拍得真美！ 

This photo of the Li River 

in spring is so beautiful!  

春天在哪里？春天在

哪里？ 

Where is spring? 

Where is spring? 

我喜欢！我的秋天！ 

I like that! This is my 

autumns! 

美得让人不敢恭维！ 

It is so beautiful that I dare 

not to compliment! 

美！美！美！美！ 

Beautiful! Beautiful! 

Beautiful! Beautiful! 

好美啊！求推荐！ 

It is so beautiful! Please 

recommend me more! 

Figure 3: Case study of the sampled 4 cases. For the SLARM model, words in red are generated by the direct
responding semantics generator, while the rest are generated by supplementary semantics generator.

mantics provide more and diversified information
to complete the response. In case 1, the supple-
mentary semantics is generated to provide further
instruction of being careful when swimming on
rainy days. In case 3, the supplementary seman-
tics re-emphasizes that the interlocutor is fond of
the actor. Additionally, we can observe from the
cases that with the dialogue topic graph guiding
strategy, the transition from direct responding se-
mantics to supplementary semantics is smooth and
natural. Therefore, these cases fully demonstrate
the model’s capacity for generating the relevant and
diversified responses via searching for the direct re-
sponding semantic parts as mediators in dialogues
and then utilizing our proposed SLARM model to
mitigate the confounding bias and thus enhance the
diversity without the loss of relevance.

6 Conclusion
In this paper, we incorporate the causal analysis
into the dialogue generation task by searching for
the mediators and mitigating the confounding bias
in dialogues. We thus propose a sentence level
auto-regressive response generation model to first
generate mediators to preserve relevance with the
input post, and then generate the diversified se-
mantics based on our proposed (SLARM) model.
Extensive experimental results demonstrate the ef-
fectiveness of our approach. For future work, we
are exploring more complicated and self-adaptive
methods for locating mediators, and we are trying
to leverage de-confounding methods to deal with

the CVAE problem.
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Abstract

Grounding dialogue agents with knowledge
documents has sparked increased attention in
both academia and industry. Recently, a grow-
ing body of work is trying to build retrieval-
based knowledge-grounded dialogue systems.
While promising, these approaches require col-
lecting pairs of dialogue context and the cor-
responding ground-truth knowledge sentences
that contain the information regarding the di-
alogue context. Unfortunately, hand-labeling
data to that end is time-consuming, and many
datasets and applications lack such knowledge
annotations. In this paper, we propose a recip-
rocal learning approach to jointly optimize a
knowledge retriever and a response ranker for
knowledge-grounded response retrieval with-
out ground-truth knowledge labels. Specifi-
cally, the knowledge retriever uses the feed-
back from the response ranker as pseudo super-
vised signals of knowledge retrieval for updat-
ing its parameters, while the response ranker
also receives the top-ranked knowledge sen-
tences from knowledge retriever for optimiza-
tion. Evaluation results on two public bench-
marks show that our model can significantly
outperform previous state-of-the-art methods.

1 Introduction

Human-machine communication is one of the ul-
timate goals of artificial intelligence. Recently,
building a dialogue system with intelligence has
sparked increased attention in both academia and
industry. Advanced work includes retrieval-based
methods (Zhou et al., 2018b; Tao et al., 2019; Han
et al., 2021) and generation-based methods (Li
et al., 2016; Serban et al., 2016; Zhang et al., 2020).
In this paper, we focus on the retrieval-based ap-
proaches since they are superior in providing infor-
mative and fluent responses to a human input by

∗Corresponding author: Dongyan Zhao.

selecting a proper response from a pre-built index.
However, such models are still limited in their abil-
ity to fully understand the human query and predict
a more engaging response. To this end, some re-
searchers have begun to ground dialogue agents
with knowledge (Dinan et al., 2019; Gopalakrish-
nan et al., 2019; Gunasekara et al., 2019) since
humans can naturally associate the content of the
conversation with the background knowledge in
his/her mind, which has led to improved perfor-
mance.

Two prominent lines of research have evolved for
this task. One is to build retrieval-based knowledge-
grounded dialogue models by directly attending to
all available knowledge entries (Gu et al., 2019;
Zhao et al., 2019; Gu et al., 2020; Hua et al.,
2020). The other is to separate the knowledge-
grounded response retrieval process into two stages:
knowledge retrieving and response ranking (Di-
nan et al., 2019; Gopalakrishnan et al., 2019; Tao
et al., 2021), in which a knowledge retriever first se-
lects relevant knowledge sentences from grounded
documents, and then a response ranker incorpo-
rates the retrieved knowledge sentences from the
knowledge retriever and ranks the candidate re-
sponses regarding the dialogue context. However,
a long-standing issue on this task is that it is non-
trivial to collect large-scale dialogues that are nat-
urally grounded on a small set of knowledge sen-
tences. To train such models, one should first col-
lect pairs of dialogue context and the correspond-
ing list of knowledge sentences that contains the
information corresponding to the dialogue context.
Unfortunately, hand-labeling data to that end is
time-consuming, and many data sets and applica-
tions lack such knowledge annotations1. Therefore,

1While some data sets, e.g., Wizard of Wikipedia (Dinan
et al., 2019), have ground-truth knowledge labels, many other
data sets do not, e.g., CMU_DoG (Zhou et al., 2018a).
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the above two research lines both suffer from in-
sufficient knowledge supervision. The former is
prone to be affected by noise from irrelevant and
redundant knowledge when conducting response
retrieval, and the knowledge retrieving process of
the latter suffers from the lack of labels indicating
the ground-truth knowledge sentences. Hence, the
challenge we consider is: How to better optimize
the knowledge retriever and response ranker jointly
without ground-truth knowledge labels?

To address the challenge, we follow the two-
stage paradigm and propose a Reciprocal learn-
ing approach to jointly optimize knowledge re-
triever and response ranker for response retrieval
in Knowledge-Grounded Conversations. We name
our model as RECKGC. In reciprocal learning, the
knowledge retriever uses the feedback from the
response ranker as pseudo supervised signals of
knowledge retrieval for updating its parameters,
while the response ranker also receives the top-
ranked knowledge sentences from the knowledge
retriever to optimize itself. We use the posterior es-
timate to train the knowledge retriever, and use the
prior information to train the response ranker. By
this means, the knowledge retriever and response
ranker can be jointly optimized without ground-
truth knowledge labels.

We conduct experiments on two public bench-
marks including Wizard of Wikipedia (Dinan et al.,
2019) and CMU_DoG (Zhou et al., 2018a). Eval-
uation results indicate that our model can sig-
nificantly outperform the existing methods, and
achieve new state-of-the-art performance on both
data sets. Our contributions in this paper are two-
fold: (1) proposal of a reciprocal learning of knowl-
edge retriever and response ranker for knowledge-
grounded response retrieval without ground-truth
knowledge label; (2) Empirical verification of the
effectiveness of the proposed learning approach on
two public benchmarks.

2 Related Work

Early studies of retrieval-based dialogue systems
focused on building single-turn context-response
matching models that consider only a single utter-
ance or several utterances in the context that are
concatenated into a long sequence for response se-
lection (Wang et al., 2013, 2015). Recently, more
emphasis has been placed on response retrieval
with multi-turn dialogue context and lots of impres-
sive results have been obtained, including the dual

LSTM model (Lowe et al., 2015), the sequential
matching network (SMN) (Wu et al., 2017), the
deep attention matching network (DAM) (Zhou
et al., 2018b), the multi-hop selector network
(MSN) (Yuan et al., 2019). With advances in
pre-trained language models (Devlin et al., 2019a;
Liu et al., 2019), some researchers also attempt
to apply them on response selection: to rep-
resent each utterance-response pair with BERT
and fuse these representations to compute the
context-response matching score (Vig and Ramea,
2019); to directly treat the context as a long se-
quence and conduct context-response matching
with BERT (Whang et al., 2020); to leverage fine-
grained post-training for improving retrieval-based
dialogue systems (Han et al., 2021).

Inspired by the ability of human beings to as-
sociate dialogue content with background knowl-
edge in his/her mind, researchers have begun to
ground dialogue agents with knowledge. Zhang
et al. (2018) collect a persona-based dialogue
corpus which utilizes the interlocutor’s profile
as background knowledge; Zhou et al. (2018a)
publish a corpus which contains conversations
grounded in articles about popular movies; Dinan
et al. (2019) release another corpus with Wiki ar-
ticles as grounded documents which cover a wide
range of topics. At the same time, lots of repre-
sentative models have been obtained. Zhao et al.
(2019); Gu et al. (2019); Hua et al. (2020) suc-
cessively put forward document-grounded match-
ing network (DGMN), dually interactive matching
network (DIM), and RSM-DCK which let the dia-
logue context and all knowledge sentences interact
with candidate responses respectively with cross-
attention mechanism. Gu et al. (2020) propose a
document-grounded model named FIRE which first
compute the importance score for each context turn
and knowledge sentence, then further use them to
weigh the corresponding representation. Dinan et al.
(2019) also propose to joint learn the knowledge se-
lection and response matching in a multi-task man-
ner or a two-stage training procedure. This strategy,
however, requires ground-truth knowledge labels
annotated by human wizards, which is presumed
absent in our paper. Recently, Tao et al. (2021)
study response matching in knowledge-grounded
conversations under a zero-resource setting. In par-
ticular, they propose decomposing the training of
the knowledge-grounded response selection into
three tasks and jointly training all tasks in a unified
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pre-trained language model.

3 Methodology: RECKGC

In this section, we first formalize the task of
knowledge-grounded response retrieval and then
introduce our model from overview to several com-
ponents to reciprocal learning of them.

3.1 Problem Formalization

Suppose that we have a knowledge-grounded di-
alogue data set D = {Ci,Ki, ri, yi}Ni=1, where
Ci is a dialogue context that is the concatenated
token sequence of multi-turn utterances, Ki =
{k1, k2, . . . , knk} is a collection of background
knowledge for conversation with kj the j-th knowl-
edge sentence and nk is the number of knowledge
sentences; ri is a candidate response; yi = 1 in-
dicates that ri is a proper response for Ci and Ki,
otherwise, yi = 0. The goal is to learn a match-
ing model g(C,K, r) from D, and thus for any
new context-knowledge-response triple (C,K, r),
g(C,K, r) returns the matching degree between r
and (C,K). Finally, given a series of candidate re-
sponses regarding the same (C,K), one can collect
the matching scores and conduct response ranking.

3.2 Model Overview

Our model is composed of two modules, the knowl-
edge retriever and the response ranker. Given an
input dialogue context and a collection of back-
ground knowledge sentences, these modules are
used in a two-step process to predict a response.
First, the knowledge retriever selects a small subset
of knowledge sentences from the knowledge col-
lection where some of them contain relevant infor-
mation regarding the dialogue context. Then these
extracted knowledge sentences are processed by the
response ranker, along with the dialogue context,
to thoroughly examine the selected knowledge and
contexts, and predict the matching degree of a can-
didate response. Figure 1 shows an illustration of
our model and reciprocal learning procedure. For
the knowledge retriever, we use a dual-encoder ar-
chitecture (Bromley et al., 1993), which is efficient
for processing potential massive of knowledge sen-
tences. For the response ranker, we leverage the
standard transformer architecture, which performs
full attention over the inputs and gives consider-
able natural language understanding performance.
Both of the modules can be initialized from pre-
trained language models such as BERT (Devlin

Knowledge
Retriever

Dialogue
context(𝐶)

"𝐾 = argsort
!!∈#

𝑝(𝑘$|𝐶; 𝜙) [:𝑚]

Response
Ranker

𝑔 𝐶,𝐾, 𝑟% , 𝑟% ∈ 𝑅
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𝑝 𝑟& "𝑘'; 𝜃 , "𝑘' ∈ "𝐾

Background
knowledge(𝐾)
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Candidate
responses(𝑅)

Score

Figure 1: The illustration of our proposed model and
reciprocal learning procedure.

et al., 2019b) or RoBERTa (Liu et al., 2019).
The focus of this work is to train the knowledge

retriever without ground-truth knowledge labels
and conduct the reciprocal learning of knowledge
retriever and response ranker in an end-to-end set-
ting. We discuss each component and our training
objective in detail below.

3.3 Knowledge Retriever
Given a dialogue context C and a collection of
background knowledge K = {k1, k2, . . . , knk},
we propose a knowledge retriever is to select a
relevant subset of knowledge sentences for the con-
text. For this purpose, the retriever performs a
ranking of the knowledge sentences conditioned
on the dialogue context and outputs the top-ranked
knowledge sentences.

Following Dinan et al. (2019), we leverage a
knowledge retriever model composed of an em-
bedder function Eretr(·) that maps any knowledge
sentence ki ∈ K or dialogue context C to a d-
dimensional vector, such that the similarity score
between dialogue context C and a knowledge sen-
tence ki can be defined as a scaled dot product of
their representation vectors:

s(C, ki;ϕ) =
Eretr(C)

TEretr(ki)√
d

(1)

where
√
d is a relevance score scaling referring to

Sachan et al. (2021), and the retriever is parameter-
ized by ϕ. Although in principle the embedder func-
tion Eretr(·) can be implemented by any neural
networks, in this work we use BERT-Small (Turc
et al., 2019), which is a smaller BERT (28M) com-
pared to BERT-base (110M) to take advantage of
pre-training while decreasing the number of net-
work parameters. We take the representation at the
[CLS] token as the output, thus d = 512. Dif-
ferently from the traditional dual-encoder, we use
the same encoding function Eretr(·) for the con-
text and knowledge sentence by sharing parameters.
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The probability of a knowledge sentence ki being
relevant to the context C is defined as:

p(ki|C;ϕ) =
exp(s(C, ki;ϕ))∑nk
t=1 exp(s(C, kt;ϕ))

(2)

where ki ∈ K. Through Eq. 2, we can obtain
the top-m knowledge sentences with the highest
individual score as K̄ = {k̄1, k̄2, . . . , k̄m}.

3.4 Response Ranker
Besides the knowledge retriever, our model con-
sists of a response ranker that outputs the match-
ing degree of a candidate response rj based on
retrieved knowledge sentences K̄ and dialogue con-
text C. We consider fine-tuning the existing PLMs,
which is BERT-base (110M) in our paper, to obtain
more competent dialogue modeling performance.
Concisely, we first concatenate retrieved knowl-
edge sentences K̄, dialogue context C and candi-
date response rj as a consecutive token sequence
with special tokens separating them as,

xj = {[CLS], k̄1,[SEP], . . . , k̄m,[SEP],
C,[SEP], rj ,[SEP]}

(3)
Then token, position and segment embeddings of
each word of xj are summated and fed into another
embedder function Erank(·) (i.e. BERT-base). Fi-
nally, we achieve the contextualized embedding
Erank(xj) and feed it into a multi-layer percep-
tron (MLP) to obtain the final matching degree of
a candidate response rj as:

h(C, K̄, rj ; θ) =W2 ·f(W1 ·Erank(xj)+b1)+b2
(4)

where W1,W2, b1, b2 are learnt parameters, f(·)
is a tanh activation function, and the ranker is
parameterized by θ. The probability of a candi-
date response rj being proper to the context C and
retrieved knowledge sentences K̄ is calculated as

p(rj |C, K̄; θ) =
exp(h(C, K̄, rj ; θ))∑nr
t=1 exp(h(C, K̄, rt; θ))

(5)

where nr is the number of candidate responses
regarding the C and K̄. We denote the collec-
tion of candidate responses for the context C and
background knowledge K as R which contains a
ground-truth candidate response r+, hence the size
of R is nr and rj ∈ R. Now we can obtain the top
candidate response with the highest probability as
the output of knowledge-grounded dialogue system
from Eq. 5.

3.5 Reciprocal Learning of Knowledge
Retriever and Response Ranker

Contrary to previous work on knowledge-grounded
response retrieval, we propose a reciprocal learn-
ing approach to jointly optimize the knowledge
retriever and the response ranker in an end-to-end
differentiable fashion. While in this paper, we as-
sume that there are no ground-truth labels for ex-
tracting relevant knowledge, which is practical but
makes the problem even more challenging.

In reciprocal learning, the trainable components
consist of the knowledge retriever (ϕ) and response
ranker (θ) parameters. For the training objective of
the overall model, we propose to find ϕ and θ that
would maximize the likelihood of a ground-truth
response r+ as:

p(r+|C,K;ϕ, θ) =
∑

K̄⊂K
p(r+|C, K̄; θ)p(K̄|C;ϕ)

(6)
However, marginalizing over all possible values
of K̄, which is a subset of retrieved knowledge
sentences, is intractable as it is essentially combi-
natorial. The log-likelihood of a particular value of
K̄ is:

log p(r+|C,K̄; θ)p(K̄|C;ϕ) =
log p(r+|C, K̄; θ)︸ ︷︷ ︸

response ranker

+ log p(K̄|C;ϕ)︸ ︷︷ ︸
knowledge retriever

(7)
where the first term is parameterized by response
ranker θ and the second term is parameterized by
knowledge retriever ϕ. We discuss how to optimize
both components in detail below.

Optimization of the Response Ranker (θ) For
updating θ, we maximize the first term of Eq. 7.
Specifically, we first construct K̄ by retrieving the
top-m relevant knowledge sentences that have the
highest similarity scores from retriever. The sim-
ilarity score is computed by Eq. 1 based on the
current value of knowledge retriever parameters ϕ.
Since we already have the ground-truth response
r+, the training objective of the response ranker for
each training sample can be defined as the negative
log-likelihood loss:

Lθ = − log p(r+|C, K̄; θ) (8)

where the probability of the ground-truth response
p(r+|C, K̄; θ) can be computed by Eq. 5.
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Optimization of the Knowledge Retriever (ϕ)
For updating ϕ, we maximize the second term of
Eq. 7. However, since there are no ground-truth
labels for extracting relevant knowledge, we can
not simply optimize the knowledge retriever (ϕ) by
the negative log-likelihood loss similar to Eq. 8. To
solve the problem, we consider incorporating the
posterior information to provide additional guid-
ance on obtaining appropriate knowledge during
training, and the posterior estimate of the second
term is formulated as log p(K̄|C, r+; θ, ϕ). Since
it is non-trivial to maximize a probability of a
set, we instead maximize the sum of the proba-
bility of each knowledge sentence k̄t in the set K̄,
i.e. log

∑m
t=1 p(k̄t|C, r+; θ, ϕ). The probability of

each knowledge sentence p(k̄t|C, r+; θ, ϕ) can be
further rewritten using the Bayes Rule:

p(k̄t|C, r+; θ, ϕ) =
p(r+|C, k̄t; θ)p(k̄t|C;ϕ)

p(r+|C; θ, ϕ)
∝ p(r+|C, k̄t; θ)p(k̄t|C;ϕ)

(9)
Here we choose not to normalize with denomina-
tor p(r+|C; θ, ϕ) because computing this quantity
would necessitate summing over all nk knowledge
sentences2. The response ranker now computes the
probability of ground-truth response p(r+|C, k̄t; θ)
conditioned on only one knowledge sentence k̄t
with a current value of θ.

In fact, in knowledge-based dialogues, lots of
samples may be able to match ground-truth re-
sponse only based on the dialogue context which
contains enough retrieval clues (would be illus-
trated in the ablation study in Section 4.5). In this
case, the contribution from knowledge would be
very small and the training time may be increased.
Meanwhile, we also consider introducing heuristic
similarity unigram F1 (denoted as ρ(·, ·)) between
a retrieved knowledge k̄t and ground-truth response
r+ as supplementary posterior information for su-
pervising knowledge retriever, as we intuitively
believe human responses have a strong correlation
with the selected knowledge sentence. To better
measure the contribution of k̄t, while reducing dis-
tractions of the dialogue context C, we estimate
p(r+|C, k̄t; θ) as:

p(r+|k̄t; θ) + ρ(k̄t, r
+) (10)

where the probability p(r+|k̄t; θ) can be obtained
similar to Eq. 5 but the context C is removed from

2Nevertheless, we observe that our training method still
behaves well in practice.

Algorithm 1: The proposed reciprocal
learning approach
Input: Training set D, knowledge retriever

ϕ, response ranker θ, learning rate
ηϕ, ηθ, number of epochs Nep,
number of iterations Nit;

1 Initialize knowledge retriever ϕ and
response ranker θ with BERT-small and
BERT-base respectively;

2 for e = 1, 2, ..., Nep do
3 Shuffle training set D;
4 for t = 1, 2, ..., Nit do
5 Fetch a batch of training data B;
6 Obtain the top-m knowledge

sentences K̄ with current value of
ϕ by Eq 2;

7 Compute Lθ with K̄ by Eq. 3, 4, 5
and 8;

8 Compute the gradients and update
θ:

9

θ ← θ + ηθ
∂Lθ(B)
∂θ

Compute Lϕ with K̄ and current
value of θ by Eq. 9, 10, 11 and 12 ;

10 Compute the gradients and update
ϕ:

11

ϕ← ϕ+ ηϕ
∂Lϕ(B)
∂ϕ

Output: ϕ, θ.

the input sequence of Eq. 3. In our preliminary ex-
periments, we observe that the introduction of the
dialogue context C makes the training of knowl-
edge retriever unstable and degrades the perfor-
mance.

Then, we compute p(k̄t|C;ϕ) by

p(k̄i|C;ϕ) =
exp(s(C, k̄i;ϕ)/τ)∑m
t=1 exp(s(C, k̄t;ϕ)/τ)

(11)

where k̄t ∈ K̄. Note that there is a slight difference
in form between Eq. 11 and Eq. 2 where we do not
sum over all knowledge sentences K in the denom-
inator which may be massive in practice. As an
alternative, we introduce τ as a temperature hyper-
parameter assuming that knowledge sentences be-
yond the top-m contribute very small scores to the
approximation. The training objective of knowl-
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Statistics
Wizard of Wikipedia CMU_DoG

Train Valid Test Seen Test Unseen Train Valid Test

# Utterances 166,787 17,715 8,715 8,782 74,717 4,993 13,646
# Conversations 18,430 1,948 965 968 3,373 229 619
# Topics/Documents 1,247 599 533 58 30 30 30
Avg. # turns 9.0 9.1 9.0 9.1 22.2 21.8 22.0
Avg. # words per turn 16.4 16.4 16.4 16.1 18.6 20.1 18.1
Avg. # knowledge entries 61.2 61.5 60.8 61.0 31.3 30.4 31.8
Avg. # words per knowledge 37.2 37.6 36.9 37.0 27.2 28.2 27.0

Table 1: The statistics of two benchmarks.

edge retriever is to minimize the following loss:

Lϕ = − log
m∑

t=1

p(k̄t|C, r+; θ, ϕ) (12)

Joint Optimization of Overall Model In the
overall model, the knowledge retriever and re-
sponse ranker are jointly optimized in an end-to-
end differentiable way. The training objective is to
minimize:

L = Lϕ + Lθ (13)

Intuitively, we train the response ranker using
prior knowledge distribution in Eq. 2 since we do
not introduce the information from ground-truth
response r+. Consequently, there is no mismatch
between training and inference, which is useful
when the ground-truth response is not known dur-
ing inference. While for the knowledge retriever,
we introduce additional information from r+ for
posterior estimate to learn from richer training sig-
nals rather than relying solely on the prior. Al-
gorithm 1 demonstrates the pseudo code of our
proposed reciprocal learning approach.

4 Experiments

To demonstrate the effects of the proposed models,
we conduct experiments on two public data sets.

4.1 Benchmarks and Evaluation Metrics
We evaluate the proposed method on two pub-
lic benchmarks including Wizard of Wikipedia
(WoW) (Dinan et al., 2019) and CMU Document
Grounded Conversations (CMU_DoG) (Zhou et al.,
2018a). The statistics of the two benchmarks are
shown in Table 1.

The first benchmark we employ is the Wizard of
Wikipedia (WoW) (Dinan et al., 2019). During the
conversation collection, one of the paired speakers
is asked to play the role of a knowledgeable ex-
pert with access to the given knowledge collection,

while the other one acts as a curious learner. The
test set is divided into two subsets by Dinan et al.
(2019): Test Seen and Test Unseen. The former
shares 533 common topics with the training set,
while the latter contains 58 new topics uncovered
by the training or validation set. In the validation
set or test set, the ratio between positive and nega-
tive responses is 1:99. Since the training data set
do not contain negative responses, we adopt in-
batch negatives consistent with Dinan et al. (2019),
where the ground-truth responses of the other batch
elements are treated as negative training responses.

The second benchmark we use is CMU_DoG
data set published in Zhou et al. (2018a). Amazon
Mechanical Turk is used to collect conversations
based on certain knowledge documents in this data
set. The knowledge topics are all about movies,
which provide interlocutors with common topics
to discuss in a natural way. Two situations are in-
vestigated to compel two paired workers to talk
about the given documents. In the first one, only
one interlocutor has access to the document, while
the other does not. The interlocutor with access
to the given knowledge document is instructed to
introduce the movie to the other. In the second
one, both interlocutors can see the given document
and are required to talk about its content. Con-
sistent with previous works, we follow Zhao et al.
(2019) and merge data in the two scenarios to form
a larger data set considering the small number of
conversations in each scenario. The ratio between
positive and negative responses is 1:19. For a fair
comparison, we use the version of data released by
DGMN (Zhao et al., 2019).

Consistent with the widely adopted settings on
these two benchmarks, we employ recall n at k
(i.e., R@k, where n = 100 for WoW and n = 20
for CMU_DoG and k = {1, 2, 5}) as the evalu-
ation metrics of response ranking in Table 2 and
Table 3, measuring if the ground-truth response
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can be ranked in top k positions when there are
n response candidates. For evaluating the perfor-
mance of knowledge retrieving in Table 4, we also
use recall nk at k to measure if the ground-truth
knowledge can be ranked in top k positions when
there are nk knowledge sentences on WoW data.

4.2 Baselines

As the characteristics of the two benchmarks are
different (e.g. only WoW data provide the ground-
truth knowledge labels), we compare the proposed
model with the baselines on both data individually.

Baselines on WoW. 1) IR Baseline (Dinan et al.,
2019) uses word overlap for response selection;
2) BoW MemNet (Dinan et al., 2019) is a mem-
ory network where knowledge sentences are em-
bedded with bag-of-words representation, and the
model jointly learns the knowledge selection and
response matching; 3) Two-stage Transformer (Di-
nan et al., 2019) trains two individual Transform-
ers for knowledge selection and response retrieval
respectively. The best-performing model on knowl-
edge selection is selected for dialogue retrieval;
4) Transformer MemNet (Dinan et al., 2019) is an
extension of BoW MemNet, and the dialogue con-
text, knowledge sentences and candidate responses
are encoded with Transformer encoder that pre-
trained on a large-scale corpus; 5) PTKGC (Tao
et al., 2021) conduct knowledge-grounded response
matching in a zero-resource setting, which decom-
poses the training of response selection into three
tasks and jointly trains all tasks in a unified model.
It should be noted that we do not compare with
the MNDB model (Zhang et al., 2021), because
the authors reconstruct the dataset and only retain
32 knowledge candidates for each dialogue, which
make this task easier.

Baselines on CMU_DoG 1) Starspace (Wu et al.,
2018) match the response using the cosine similar-
ity between a concatenated sequence of dialogue
context and knowledge, and the response candidate
represented by StarSpace; 2) BoW MemNet (Zhang
et al., 2018) is a memory network with the BOW
representation of knowledge as memory entries; 3)
KV Profile Memory (Zhang et al., 2018) is a key-
value memory network grounded on knowledge
profiles; 4) Transformer (Mazare et al., 2018) en-
code all utterances with a pre-trained Transformer
similar to BoW MemNet; 5) DGMN (Zhao et al.,
2019) lets the dialogue context and all knowledge

sentences interact with the candidate response re-
spectively through cross-attention; 6) DIM (Gu
et al., 2019) is similar to DGMN and all utterance
are encoded with BiLSTMs; 7) RSM-DCK (Hua
et al., 2020) obtains query-aware knowledge repre-
sentation and query-aware context representation
for response matching; 8) FIRE (Gu et al., 2020)
filters the context and knowledge first and then use
the filtered context and knowledge to iteratively
conduct response matching.

4.3 Technical Details

The response ranker and knowledge retriever are
implemented with transformers library provided
by huggingface3. Adam (Kingma and Ba, 2015)
with β1 = 0.9 and β2 = 0.999 is the optimizer and
the initial learning rate of knowledge retriever and
response ranker are 1e-5 and 3e-5. We choose 32
as the size of mini-batches for training on WoW
data and 8 on CMU_DoG. During the training,
the maximum lengths of the knowledge sentence,
dialogue context, and response candidate are set to
40, 80 and 60 on WoW data respectively, while on
CMU_DoG we set the the maximum length of the
dialogue context as 200. m is set as 5 on both data.
τ is set to 0.2 on Eq. 11. We avoid computing the
gradients of response ranker parameters θ during
estimating p(r+|k̄t; θ) on Eq. 10. Early stopping
on the validation set is adopted as a regularization
strategy. The best model is selected based on the
validation performance.

4.4 Evaluation Results

Performance of Response Ranking. Table 2
and 3 provide the evaluation results of response
selection on WoW and CMU_DoG respectively.
Numbers in bold mean that improvement over the
best baseline is statistically significant (t-test with
p < 0.05). Our proposed RECKGC can signifi-
cantly outperform state-of-the-art models across all
metrics on both data. Besides, it is interesting to
find that our model achieves more improvement
gain on Test Unseen set than Test Seen compared
with baselines. The results may be attributed to
our model’s superior generalization abilities on di-
alogues with new topics as compared to the pre-
vious work, demonstrating the advantages of our
proposed reciprocal learning approach.

3https://github.com/huggingface/
transformers
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Models
Test Seen Test Unseen

R@1 R@2 R@5 R@1 R@2 R@5

IR Baseline (Dinan et al., 2019) 17.8 - - 14.2 - -
BoW MemNet (Dinan et al., 2019) 71.3 - - 33.1 - -
Two-stage Transformer (Dinan et al., 2019) 84.2 - - 63.1 - -
Transformer MemNet (Dinan et al., 2019) 87.4 - - 69.8 - -
PTKGC (Tao et al., 2021) 89.5 96.7 98.9 69.6 85.8 96.3

DIM (Gu et al., 2019) 83.1 91.1 95.7 60.3 77.8 92.3
FIRE (Gu et al., 2020) 88.3 95.3 97.7 68.3 84.5 95.1

RECKGC 92.6 97.2 99.2 76.7 88.7 96.6

Table 2: Evaluation results of response selection on the test sets of the Wizard of Wikipedia data. Numbers in bold
mean that improvement over the best baseline is statistically significant (t-test, p-value < 0.05).

Models R@1 R@2 R@5
Starspace (Wu et al., 2018) 50.7 64.5 80.3
BoW MemNet (Zhang et al., 2018) 51.6 65.8 81.4
KV Profile Memory (Zhang et al., 2018) 56.1 69.9 82.4
Transformer (Mazare et al., 2018) 60.3 74.4 87.4
PTKGC (Tao et al., 2021) 66.1 77.8 88.7

DGMN (Zhao et al., 2019) 65.6 78.3 91.2
DIM (Gu et al., 2019) 78.7 89.0 97.1
RSM-DCK (Hua et al., 2020) 79.3 88.8 96.7
FIRE (Gu et al., 2020) 81.8 90.8 97.4

RECKGC 84.0 92.9 98.2

Table 3: Evaluation results of response selection on the
test set of the CMU_DoG data. Numbers in bold mean
that improvement over the best baseline is statistically
significant (t-test, p-value < 0.05).

Performance of Knowledge Retrieving. Since
the WoW data contain the ground-truth knowledge
labels, we also assess the performance of knowl-
edge retriever with Recall-based metrics in Ta-
ble 4. Besides, we design two baselines where
knowledge retriever (a dual-encoder) is merely
trained with supervised or weakly supervised la-
bels. First, we train it with ground-truth knowl-
edge labels (denoted as “Dual-Enc (supervised)”).
Then in the weakly supervised scenario, we con-
sider ki ∈ K that has the highest ρ(ki, r+) in each
sample as pseudo ground-truth knowledge (denoted
as “Dual-Enc (weakly supervised)”). We can find
that training with ground-truth knowledge labels
brings more improvement to the dual encoder than
training with pseudo knowledge labels, indicating
that pseudo labels are just a sub-optimal supervised
learning signal. Notably, the knowledge retriever
trained with our proposed reciprocal learning ap-
proach outperforms several supervised or weakly
supervised baselines and obtains comparable re-
sults with “Dual-Enc (supervised)”, which proves

the effectiveness of our approach.

4.5 Discussions

Ablation Study. We conduct a comprehensive
ablation study to investigate the impact of different
inputs, posterior information and learning strate-
gies. Table 5 also provides the ablation results.
Firstly, we remove the knowledge from the model,
which is denoted as “RECKGC (w/o. knowledge)”.
This model is degraded into a traditional context-
response matching paradigm. We can find that
removing the knowledge will lead to a dramatic
performance drop, which indicates that knowl-
edge is important in response retrieval. How-
ever, this model can still outperform some base-
lines such as BoW MemNet, which proves that
some ground-truth responses can be inferred only
from the context. Then, we remove the p(r+|k̄t; θ)
and ρ(k̄t, r

+) on Eq. 10 and denote them as
“RECKGC (w/o. kr)” and “RECKGC (w/o. f1)” re-
spectively. We can easily conclude that both pos-
terior information is useful, as removing either in-
formation leads to a certain degree of performance
degradation. Finally, to prove the advantages of
joint learning, we also propose a two-stage training
baseline (denoted as “Two-stage training”) where
we first train the knowledge retriever with pseudo
ground-truth knowledge, and then freeze the param-
eters of knowledge retriever and train the response
ranker conditioned on top-m knowledge sentences
provided by knowledge retriever. Our model can
consistently outperform the model with two-stage
training, which confirms the rationality of our re-
ciprocal learning approach.

The Impact of the Number of Retrieved Knowl-
edge Sentences. Furthermore, we investigate
how the number of retrieved knowledge sentences
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Models
Test Seen Test Unseen

R@1 R@2 R@5 R@1 R@2 R@5

Random 2.7 - - 2.3 - -
IR Baseline 5.8 - - 7.6 - -
BoW MemNet 23.0 - - 8.9 - -
Transformer 22.5 - - 12.2 - -
PTKGC 22.0 31.2 48.8 23.1 32.1 50.7

Dual-Enc (weakly supervised) 22.3 33.1 54.3 21.5 31.6 53.1
Dual-Enc (supervised) 23.1 34.0 55.8 22.4 33.4 53.2
RECKGC 22.8 33.6 55.7 23.2 32.9 53.7

Table 4: The performance of knowledge retriever on the test sets of WoW data.

Models
Test Seen Test Unseen

R@1 R@2 R@5 R@1 R@2 R@5

RECKGC 92.6 97.2 99.2 76.7 88.7 96.6

RECKGC (w/o. knowledge) 88.0 94.5 97.6 70.8 84.8 94.5

RECKGC (w/o. f1) 91.7 96.5 99.0 75.3 89.1 96.3
RECKGC (w/o. kr) 92.0 96.8 99.1 74.7 88.6 96.2

Two-stage training 89.2 95.5 98.5 71.6 86.9 95.9

Table 5: Ablation results on two test sets of WoW data.
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Figure 2: Performance of RECKGC across different
number of retrieved knowledge sentences (i.e. m) on
Test Seen set and Test Unseen set of WoW data.

(i.e. m) influences the model performance. Fig-
ure 2 shows the performance of response selection
on test sets of WoW with respect to different m.
The curves first monotonically increase until m
reaches 5, and then stabilize when m keeps increas-
ing. The reason could be that when only a few
knowledge sentences are provided for dialogue, the
model cannot capture enough information for re-
sponse matching, but when the retrieved knowledge
becomes sufficient, noise would be introduced into
matching because redundant knowledge may be
irrelevant to the current dialogue context.

5 Conclusion

In this paper, we study the retrieval-based
knowledge-grounded dialogues. To effectively op-
timize the knowledge retriever and response ranker

without ground-truth knowledge labels, we pro-
pose a reciprocal learning approach to jointly op-
timize the two components in an end-to-end way.
Concretely, the knowledge retriever takes the feed-
back from the response ranker as pseudo super-
vised signals of knowledge retrieval, while the re-
sponse ranker receives the top-ranked knowledge
sentences from the knowledge retriever to optimize
itself. By this means, our model can be trained
without ground-truth knowledge labels. Evalua-
tion results on two benchmarks indicate that our
model can significantly outperform state-of-the-art
methods.
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Abstract

Conversational recommendation systems
(CRS) aim to determine a goal item by
sequentially tracking users’ interests through
multi-turn conversation. In CRS, implicit
patterns of user interest sequence guide the
smooth transition of dialog utterances to the
goal item. However, with the convenient
explicit knowledge of knowledge graph (KG),
existing KG-based CRS methods over-rely on
the explicit separate KG links to model the
user interests but ignore the rich goal-aware
implicit interest sequence patterns in a dialog.
In addition, interest sequence is also not fully
used to generate smooth transited utterances.
We propose CR-GIS with a parallel star
framework. First, an interest-level star graph is
designed to model the goal-aware implicit user
interest sequence. Second, a hierarchical Star
Transformer is designed to guide the multi-turn
utterances generation with the interest-level
star graph. Extensive experiments verify the
effectiveness of CR-GIS in achieving more
accurate recommended items with more fluent
and coherent dialog utterances.

1 Introduction

Traditional recommendation systems often interact
with users in a one-shot, one-directional manner
(Jannach et al., 2021), that is, users passively re-
ceive the static recommendation list and the recom-
mendation system lacks the ability to understand
and proactively guide the dynamic shift of users’
interests. Conversational Recommendation Sys-
tems (CRS) (Sun and Zhang, 2018; Li et al., 2018)
solve these problems by supporting multi-turn goal-
oriented (Kang et al., 2019; Zhou et al., 2020b)
dialog to proactively track and guide real-time user
interests shift (Gao et al., 2021).

In current studies, one most popular way of CRS
is to determine an item meeting the user preference
through multi-turn conversation. Regarding the

∗Corresponding author.

item to be determined as the goal, we regard this
kind of CRS as "goal-aware" CRS. In this paper, we
suppose that the performance of goal-aware CRS is
highly dependent on a goal-aware sequence of user
interests which is expressed in the form of logically
transited utterance sequence in dialog. From the
view of recommendation, in a goal-aware CRS dia-
log, a proper dynamic user preference at any time
should be coherent to the preorder interests and to-
wards the final goal in the interest sequence. From
the view of conversation, a goal-aware CRS dia-
log is a smoothly transited sequence of utterances
guided by the sequence of user interest. Therefore,
modeling the goal-aware sequence of user interests
is essential for goal-aware CRS. For example, in
the "Dialog" of Figure 1, there are similarities in
storyline or other aspects between neighbor entities
in the interest sequence, i.e., "Shutter Island"→
"Inception"→ "Leonardo"→ "Source Code", and
between each interest entity and the recommenda-
tion goal "The Butterfly Effect".

For modeling the goal-aware interest sequence,
KG-based CRS methods are widely studied using
knowledge graph (KG) (Zhou et al., 2020a; Lu
et al., 2021; Zhou et al., 2022) to track the inter-
est sequence in the dialog (Zhou et al., 2021; Ma
et al., 2021). Although KG’s explicit logical links
between interest entities greatly facilitate the mod-
eling of interest sequence, it also leads to over-rely
on KG knowledge and weakens the key role of
dialogue behavior in CRS. Specifically, we note
two major consequent issues: (1) From the view of
recommendation, most KG-based CRS model the
user preference only on the explicit separate inter-
est links in KG and ignore the rich implicit interests
sequence in dialogue which is absent in KG knowl-
edge. For example, in the "Dialog" of Figure 1,
each interest entity may have implicit semantic re-
lations with the goal "The Butterfly Effect" beyond
KG links. Furthermore, the goal of the sequence
is also absent in the user preference modeling. (2)
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From the view of conversation, current KG-based
CRS mainly use entities in the interest sequence
to enhance the semantic generation of every single
response instead of using the entire sequence to en-
hance the smooth transition of multiple utterances
towards the recommendation goal.

To address these two issues, we propose CR-
GIS, which jointly improves the Conversation and
Recommendation by modeling Goal-aware Interest
Sequence in CRS. To this end, we design a novel
parallel star structure with two advantages: (1)
For the first issue of implicit relations modeling in
goal-aware interests sequence, on the base of pre-
encoded explicit knowledge from KG, we propose
an interest-level star graph to encode the implicit
relations between interest entities in dialog. The
satellite nodes of the star graph are interest entities
in the current ongoing dialog, which are sequenced
by their adjacency relationship in the dialog. The
key advantage of interest-level star graph is that the
central star node, which connects all satellite nodes,
can be fused to the recommendation goal with the
Mutual Information Maximization (MIM) method.
This alignment makes the interest sequence mod-
eling goal-oriented. (2) For the second issue of
smooth transition in goal-aware conversation, to be
paralleled to the interest-level star graph, we de-
sign a hierarchical Star Transformer encoder (Guo
et al., 2019) for words and utterances. By aligning
the utterance state representation of the "utterance-
level star" with the "interest-level star", we enhance
the CRS to generate smoothly transited utterances
towards the recommendation goal.

Our contributions are summarized as follows:
(1) To sufficiently model the goal-aware user

interest sequence in CRS, we propose an interest-
level star graph to model the implicit sequence of
interest entities in dialog and make the interest se-
quence modeling be aware of the recommendation
goal with a goal-oriented fusion mechanism.

(2) To effectively generate the smoothly transited
responses, we align an utterance-level star trans-
former to the interest-level star so as to make the
responses generation follow the interest sequence
and be aware of the recommendation goal.

(3) Extensive experiments conducted on Open-
DialKG (Moon et al., 2019) and TG-ReDial (Zhou
et al., 2020b) datasets demonstrate that our model
outperforms the SOTA baseline models in suc-
cessfully reaching recommendation goals through
smooth transited utterances.

2 Related Work

Current CRS can be divided into two types. One
is the recommendation-based CRS which aims to
ask users questions about interests over pre-define
slots (Sun and Zhang, 2018; Lei et al., 2020; Zou
et al., 2020; Deng et al., 2021; Zhang et al., 2021;
Kostric et al., 2021) and make responses consid-
ering users’ feedback (Luo et al., 2020; Xu et al.,
2021). Recommendation-based CRS mainly suf-
fers from the inflexibility of pre-defined templates.

The other is the generation-based CRS (Li et al.,
2018; Hayati et al., 2020) which understands user
preferences (Moon et al., 2019; Zhou et al., 2020b;
Lu et al., 2021; Zhou et al., 2022) and generates
human-like responses (Liao et al., 2019; Liang
et al., 2021) in line with user interests. Closely
related to our work, Chen et al. (2019) and Zhou
et al. (2020a) integrate KG knowledge to under-
stand users’ interest. However, they simply ag-
gregate entities of KG in the utterance, instead of
exploiting the implicit interest sequence in the con-
versation. Zhou et al. (2021) and Ma et al. (2021)
adopt reasoning-based methods to predict the shift
direction of user interest, but also limits to the ex-
plicit interest sequence in KG.

3 Problem Formalization

A KG G with entity set E and relation set R is
G = {(e, r, e′) | e, e′ ∈ E , r ∈ R} where (e, r, e′)
is a relation r from the entity e to the entity e′.
Suppose we have a CRS corpus D and a KG G
parallel to D, in which the interest entities men-
tioned in D are linked to the entities in G. U =
{u1, u2, . . . , un} is the conversation history, where
ui = {wi,1, wi,2, . . . , wi,m} is the word token se-
quence in the i-th utterance. S = {s1, s2, . . . , sk}
is the interest entity in each utterance of U , and
si ∈ S is linked to G, i.e., si ∈ E . In a re-
sponse Y = {y1, y2, . . . , ym}, a recommendation
goal entity set G = {g1, g2, . . . , gt} is identified
in advance, where gi ∈ G is an entity linking
to G, i.e., gi ∈ E . n,m,k,t represent the length
of the historical utterance sequence, the length of
the token sequence, the length of the interest en-
tity sequence and the number of recommendation
goals, respectively. Our task is to learn a recom-
mendation model and a response generation model
P (Y |U, S,G) with theD and G. The former model
the implicit user interests sequence through S and
G and help the latter to generate responses that
smoothly progress to the recommendation goal G.
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Shutter Island is one of my 

favorite murder mystery.

…
.

Me too. Inception starring 

Leonardo has the same charm.

Yes, I agree. The parallel world 

in the Source Code also amazes 

me. Could you recommend me 

some others?
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Figure 1: The architecture of the proposed CR-GIS model.

4 Approach

4.1 Architecture Overview

As shown in Figure 1, proposed CR-GIS contains
five parts: (1) Explicit-Implicit relations encoder.
The explicit KG relations encoder adopts R-GCN
to learn the KG-based representation of entities.
The interest entities sequence in the conversation
is constructed into an interest-level star graph, in
which the implicit user interest sequence is learned
by the implicit dialog relations encoder employ-
ing a star graph neural network (SGNN). (2) The
goal-oriented fusion module adopts mutual infor-
mation maximization (MIM) to bridge the goal
G and the star node of SGNN, which makes the
user interest sequence modeling goal-aware. (3)
The goal-aware recommendation module obtains
the user’s interests representation with a sequence
encoder mining the interest sequence. (4) The goal-
aware response generation module uses hierarchi-
cal Star Transformer to encode the token-level and
utterance-level star graph from conversation his-
tory. (5) We align the interest-level star graph to
the utterance-level star graph to improve the goal-
aware transition of multi-turn response generation.

4.2 Explicit-Implicit Relations Encoder

Explicit KG Relations Encoder We use R-GCN
(Schlichtkrull et al., 2018) to encode explicit KG
relations and get the entity embedding matrix E.

Implicit Dialog Relations Encoder With embed-
ding matrix E of KG entities, we adopt star graph
neural network (SGNN) (Pan et al., 2020) to encode

the implicit semantic links between the entities in
the interest sequence in dialog. Given the interest
sequence S = {s1, s2, . . . , sk} in dialog context,
we construct an interest-level star graph with one
star node sx and each si is a satellite node. The
adjacency relationship in the dialog between the
satellite nodes {(si, si+1) | si, si+1 ∈ S} is main-
tained. Star node sx is linked to each satellite si.

SGNN adopts a cyclic updating between sx and
each si. si is initialized by embedding matrix E,
and sx is initialized as the average value of all
si. The updated representation ŝ(l+1)

i of si at the
(l + 1)-th layer of the SGNN is calculated as:

z
(l+1)
i = σ

(
W z,1a

(l+1)
i +W z,2s

(l)
i

)
,

v
(l+1)
i = σ

(
W v,1a

(l+1)
i +W v,2s

(l)
i

)
,

s̃
(l+1)
i = ρ

(
W s,1a

(l+1)
i +W s,2

(
v
(l+1)
i ⊙ s(l)i

))
,

ŝ
(l+1)
i =

(
1− z(l+1)

i

)
⊙ s(l)i + z

(l+1)
i ⊙ s̃(l+1)

i ,

a
(l+1)
i =

[
AI
i

(([
s
(l)
1 ; . . . ; s

(l)
k

])T
W I

a + b
I
a

)
;

AO
i

(([
s
(l)
1 ; . . . ; s

(l)
k

])T
WO

a + bOa

)]
, (1)

where W z,1,W v,1,W s,1 ∈ Rde×2de and
W z,2,W v,2,W s,2 ∈ Rde×de are the learnable ma-
trix. ρ(·) is the tanh function. σ(·) is the sigmoid
function. ⊙ is the Hadamard product. s(l)i is the
representation of si at the l-th layer of the SGNN.
a
(l+1)
i is the information propagated by the adja-

cent nodes of si on the interest-level star graph
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through the incoming matrixAI and the outgoing
matrixAO proposed by GGNN (Li et al., 2016). [; ]
is the concatenation operation. AI

i ,A
O
i ∈ R1×k

are the weights of the i-th row in theAI andAO,
respectively. W I

a,W
O
a ∈ Rde×de are the learnable

matrix. bIa, b
O
a ∈ Rde are the bias vector. The in-

formation injected from the sx is controlled by the
self-attention mechanism to calculate the similar-
ity γ(l+1)

i between each si and sx. Furthermore,
the representation of si at the (l + 1)-th layer is
s
(l+1)
i =

(
1− γ(l+1)

i

)
ŝ
(l+1)
i + γ

(l+1)
i s

(l)
x . The

representation s(l+1)
x of sx at the (l + 1)-th layer

is obtained by aggregating all si at the (l + 1)-th
layer with attention mechanism. In this way, sx rep-
resents the information of entire interest sequence.

4.3 Goal-oriented Fusion Mechanism
The goal-oriented fusion mechanism is motivated
by the intuition that the user interest sequence is
aware of the recommendation goals in the conver-
sation. Therefore, to connect the interest-level star
graph with the the goals, we bridge the star node of
SGNN and the goals with the Mutual Information
Maximization (Hjelm et al., 2019). Specifically,
given the set of goal entities G = {g1, g2, . . . , gt}
and the representation s(l+1)

x of the star node at
the (l + 1)-th layer, we design a loss function by
the contrastive learning that maximizes the mutual
information between the goal and the star node:

LMIM (sx, gi) = Egi∈G
[
f (sx, gi)

− log
∑

g̃j∈G̃
exp (f (sx, g̃j))

]
, (2)

where g̃j ∈ G̃ is the negative node we randomly
sampled from KG. f(·, ·) is a scoring function im-
plemented with a bilinear mapping network:

f (sx, gi) = σ

((
s(l+1)
x

)T
·WMIM · gi

)
, (3)

where WMIM ∈ Rde×de is the learnable matrix
and σ(·) is the sigmoid function. gi is the embed-
ding of gi by looking up from E. Here, we adopt a
pre-training way to enhance the goal aware ability
of the sequence by minimizing the loss LMIM .

4.4 Goal-oriented Recommendation
After the multi-dimensional information is fused
into the entity representation, in the output of the
L-layer SGNN, we obtain the star node embed-
ding vector sLx and the embedding matrix SL =

[
sL1 ; s

L
2 ; . . . ; s

L
k

]
composed of entities in the inter-

est sequence, i.e., satellite nodes. To model se-
quence information, we integrate a learnable posi-
tion embedding matrix P ∈ Rk×de to enhance the
sequence representation of interest entities. The
sequence representation SLP is obtained by sum-
ming two embedding metrices: SLP = SL + P . In
addition, the star node, as an intermediary between
the sequence and the goal, contains personalized
information of the goal. Therefore, we combine
the position-enhanced interest sequence SLP and
the star node sLx as the goal-enhanced sequence
representation SLP,x =

[
SLP ; s

L
x

]
.

To better capture the preference expressed in the
interest sequence, we propose a sequence encoder,
which is composed of a multi-head self-attention
layer (MHA) and a point-wise feed-forward net-
work. The MHA extracts the information of differ-
ent representation subspaces, which is defined as:

SF = MHA(F ) = [head1; . . . ; headh]W
O,

headi = Attention
(
FWQ

i ,FW
K
i ,FW

V
i

)
,

Attention(Q,K,V ) = softmax

(
QKT√
de/h

)
V ,

(4)
where F = SLP,x is the input of MHA. The
projection matrix WQ

i ∈ Rde×dh ,WK
i ∈

Rde×dh ,W V
i ∈ Rde×dh and WO ∈ Rde×de are

the learnable parameters for each attention head.
dh = de/h is the dimension of attention heads.
Q = FWQ

i ,K = FWK
i and V = FW V

i are
query, key and value, respectively.

√
de/h is the

scale factor to avoid large inner product values.
Towards a nonlinear sequence encoder, we use a

point-wise feed-forward network (FFN):

F =
[
FFN (SF,1)

T ; . . . ; FFN (SF,k)
T
]
, (5)

FFN(x) = max (0,xW F,1 + bF,1)W F,2 + bF,2,

whereW F,1,W F,2, bF,1, bF,2 are trainable param-
eters. Note that the sequence encoder, i.e., MHA
layer and FFN layer, can be multiply stacked. We
take the first embedding vector of the matrix output
by the sequence encoder as the user’s preference
representation pu in current context, i.e., pu = F 1.

Given the learned user preference, we calcu-
late the probability of recommending an item:
P reci = softmax

(
pTu · ei

)
, where ei is the learned

item embedding looking up from E. To train the
recommendation module, we use cross-entropy as
the optimization objective:
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LREC = −
M∑

i=1

[
Pi · log (P reci )−

(1− Pi) · log (1− P reci )
]
+ α ∗ LMIM , (6)

where i is the item index. α is a hyperparameter
representing the weight of MIM loss.

4.5 Goal-aware Response Generation
Parallel to the interest-level star graph, we design a
hierarchical Star Transformer to encode the dialog
context by constructing token-level and utterance-
level star graphs to capture the sequential semantic
dependency between utterances. Injecting the in-
terest entities in the goal-aware interest-level star
graph into the utterance-level star graph, we pro-
mote the goal-aware ability of response generation.

Specifically, the topology of Star Transformer
(Guo et al., 2019) is the same as SGNN, which
is composed of a relay node (as the star node in
SGNN) and n satellite nodes. Given a dialogue
context U = {u1, u2, . . . , un} with n utterances,
where ui = {wi,1, wi,2, . . . , wi,m} is the word to-
ken sequence of the i-th utterance. The token-level
Star Transformer encoder is a token-level star graph
which treats each word token as a satellite node,
and the relay node acts as a virtual hub to gather
and scatter information from and to the satellite
nodes. It adopts a cyclic updating, in which the
satellite node hi,j is initialized by word embed-
ding wi,j , i.e., h(0)

i,j = wi,j , and the relay node
su,i is initialized as the average of all tokens, i.e.,
s
(0)
u,i = 1

m

∑m
j=1 h

(0)
i,j . Each token-level satellite

node is updated at step t according to its adjacent
nodes, including neighbor nodes h(t−1)

i,j−1 ,h
(t−1)
i,j+1 in

the text sequence, its previous stateh(t−1)
i,j , the state

of the relay node in the previous round s(t−1)u,i , and
its token embedding wi,j . Formally:

C
(t)
i,j =

[
h
(t−1)
i,j−1 ;h

(t−1)
i,j ;h

(t−1)
i,j+1 ; s

(t−1)
u,i ;wi,j

]
,

h
(t)
i,j = MHA

(
h
(t−1)
i,j ,C

(t)
i,j ,C

(t)
i,j

)
, (7)

where C(t)
i,j is the context of the j-th satellite node.

For MHA, h(t−1)
i,j is query, C(t)

i,j is key and value.
The token-level relay node is updated by fusing

all satellite nodes and its previous state s(t−1)u,i .

s
(t)
u,i = MHA

(
s
(t−1)
u,i ,

[
s
(t−1)
u,i ;H

(t)
i

]
,

[
s
(t−1)
u,i ;H

(t)
i

] )
, (8)

whereH(t)
i =

[
h
(t)
i,1;h

(t)
i,2; . . . ;h

(t)
i,m

]
. After T-step

update, we merge the information of the relay node
into the token-level satellite node, and obtain the
hidden vector sequence of utterance ui using ψ(·)
which is a MHA layer with an FFN layer:
[
ĥi,1, ĥi,2, . . . , ĥi,m

]
=

ψ
(
φ
([
h
(T )
i,1 ;h

(T )
i,2 ; . . . ;h

(T )
i,m

]
, s

(T )
u,i

))
, (9)

where φ(·) is an MLP layer. The token correspond-
ing to the first hidden state ĥi,1 of the hidden vector
sequence is a special token [CLS] used to aggre-
gate the sequence representation and is inspired by
Devlin et al. (2019). Therefore, we collect utter-
ance representations derived from [CLS], i.e., the
representation of utterance ui = ĥi,1, and input
them into utterance-level Star Transformer encoder.

The utterance-level Star Transformer encoder
constructs an utterance-level star graph using ut-
terances as satellite nodes hi, which is initialized
by the representation of utterance, i.e., h(0)

i = ui.
The relay node su is initialized as the average of
satellite nodes, i.e., s(0)u = 1

n

∑n
i=1 h

(0)
i . For the

update of each utterance-level satellite node at step
t, in addition to the information involved in the
token-level node, we also inject the goal-aware in-
terest entities information in the interest-level star
graph into the updated representation of the corre-
sponding utterance according to the "mentioned"
relationship with the utterance:

C
(t)
i =

[
h
(t−1)
i−1 ;h

(t−1)
i ;h

(t−1)
i+1 ; s(t−1)u ;ui;Oi

]
,

h
(t)
i = MHA

(
h
(t−1)
i ,C

(t)
i ,C

(t)
i

)
, (10)

whereOi = MLP ([ei,1, ei,2, . . . , ei,j ]) is the em-
bedding matrix composed of interest entities ei,j
mentioned in the utterance ui. Interest entity em-
bedding ei,j is obtained from the satellite node em-
bedding matrix SL output by the L-layer SGNN.

The goal-aware star node sLx from the interest-
level star graph also affects the update of the
utterance-level relay node:

s(t)u = MHA
(
s(t−1)u ,

[
s(t−1)u ;oLx ;H

(t)
]
,

[
s(t−1)u ;oLx ;H

(t)
] )
,

(11)

where oLx = MLP
(
sLx
)
, and H(t) =[

h
(t)
1 ;h

(t)
2 ; . . . ;h

(t)
n

]
. After the T-step cyclic up-

date, we further use an MLP layer with LayerNorm
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Datasets OpenDialKG TG-ReDial

Corpus
Info.

#Domains Movie,Book Movie
#Dialogues 13,802 10,000
#Utterances 126,104 129,392
#Avg. Words 12.7 19.0
#Split Ratio 7:1.5:1.5 8:1:1

KG Info.
#Entities 100,813 62,348
#Relations 1,358 60
#Triplets 1,190,658 802,578

Table 1: Statistics of datasets after preprocessing.

to fuse the relay node information into the repre-
sentation of the utterance-level satellite nodes to
obtain the enhanced goal-aware utterance represen-
tationHu, and take it as the initial decoding state:
Hu = φ

([
h
(T )
1 ;h

(T )
2 ; . . . ;h

(T )
n

]
, s

(T )
u

)

In the decoding stage, we adopt the decoder
framework of the vanilla Transformer. In order
to further enhance the goal-aware ability of re-
sponse generation and be in line with the user’s
current interest, inspired by Zhou et al. (2021),
we incorporate user-preferred word bias in the
output of the self-attention sub-layer of the de-
coder’s i-th layer:Ri−1 = Ri−1 + η (pu), where
Ri−1 is the input of the decoder at the i-th layer.
η(·) : Rde → Rdw , and dw is the dimension of
the hidden layer. To learn the response generation
module, we set the negative log-likelihood loss as:

LGEN =− 1

m

m∑

t=1

[log (Pgen (yt | y1:t−1, U, S,G))]

+ β ∗ LREC , (12)

where β is a hyperparameter that represents the
weight of the recommendation loss.

5 Experiments

5.1 Experiment Setup
Datasets We conduct experiments on two CRS
datasets. (1) OpenDialKG (Moon et al., 2019) is
a parallel Dialog↔ KG CRS corpus where the in-
terest entities mentioned in the dialog are linked to
KG. (2) TG-ReDial (Zhou et al., 2020b) is a topic-
guided CRS corpus, in which each dialog is asso-
ciated with a topic thread. The movies mentioned
in the corpus are linked to a KG: CN-DBpedia
(Xu et al., 2017). To make full use of the anno-
tated topic, we add each topic as an entity to CN-
DBpedia to obtain a topic-enhanced KG. We add
new edges between the movie and the topic enti-
ties based on their real relationship in the Chinese

Models
OpenDialKG TG-ReDial

R@1 R@10 R@25 R@1 R@10 R@25
TextCNN 0.058 0.176 0.236 0.178 1.034 1.872
KBRD 0.107 0.409 0.494 0.337 3.119 6.073
KGSF 0.120 0.433 0.522 0.419 3.761 6.925
RevCore 0.124 0.428 0.515 0.490 3.494 6.631
CRFR 0.130 0.453 0.538 0.646 4.189 7.509
C2-CRS 0.112 0.458 0.535 0.935 4.401 7.991
CR-GIS 0.182∗ 0.473∗ 0.547∗ 1.211∗ 6.202∗ 10.469∗

w/o GoInfo. 0.157 0.463 0.533 0.958 5.937 9.849
w/o ImpEnc. 0.129 0.401 0.487 0.709 4.185 7.476
w/o SeqEnc. 0.145 0.453 0.529 0.891 5.295 8.909

Table 2: Overall recommendation evaluation. w/o refers
to removing CR-GIS components. “∗” indicates the
statistical significance for p < 0.005 compared with
the best baseline. TG-ReDial results are reported in
percentage.

movie review website Douban, i.e., whether a topic
appears in the comments or tags of a movie. The
statistics after preprocessing are in Table 1.

Baselines We compare our CR-GIS with the fol-
lowing competitive models: (1) TextCNN (Kim,
2014) is a recommendation model extracting user
preference from utterances with a CNN-based
model. (2) Transformer (Vaswani et al., 2017) is a
vanilla Transformer-based dialog generation model.
(3) KBRD (Chen et al., 2019) is a Knowledge-
Based CRS integrating item-oriented KG. (4)
KGSF (Zhou et al., 2020a) is a KG-based Semantic
Fusion CRS aligning the semantic space of two
KGs. (5) RevCore (Lu et al., 2021) is a review-
enhanced CRS. (6) CRFR (Zhou et al., 2021) is
a Fragments Reasoning-based CRS focusing on
multi-hop reasoning on KGs. (7) C2-CRS (Zhou
et al., 2022) is a CRS adopting coarse-to-fine con-
trastive learning. For a fair comparison, all KG-
based CRS models share the same KG.

Implementation Details Our model is imple-
mented with Pytorch. The dimensionality of KG
embedding de and word embedding dw are set to
128 and 300. The layers of R-GCN, SGNN and Star
Transformer encoder are set to 1, 6 and 2. We use
the Adam optimizer (Kingma and Ba, 2015), the
batch size is 32, the learning rate is 0.001, and gra-
dient clipping restricts the gradients within [0, 0.1].
The whole training process is split into three steps.
First, we minimize the LMIM loss for pretraining
the goal-oriented information fusion module. After
that, we minimize the LREC loss with the weight
α of 0.1. Finally, we minimize the LGEN loss with
the weight β of 0.5 on OpenDialKG dataset and 0
on TG-Redial dataset.
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Models
OpenDialKG TG-ReDial

Bleu-1 Bleu-2 Dist-1 Dist-2 HIT Bleu-1 Bleu-2 Dist-1 Dist-2 HIT
Transformer 0.389 0.310 0.027 0.113 0.126 0.504 0.386 0.011 0.055 8.868
KBRD 0.404 0.318 0.055 0.164 0.251 0.506 0.395 0.025 0.082 9.105
KGSF 0.412 0.326 0.061 0.202 0.262 0.509 0.396 0.029 0.100 9.158
RevCore 0.406 0.321 0.054 0.193 0.240 0.511 0.403 0.020 0.079 9.002
CRFR 0.418 0.331 0.062 0.204 0.288 0.515 0.401 0.031 0.103 9.225
C2-CRS 0.414 0.328 0.064 0.210 0.308 0.516 0.402 0.031 0.100 9.260
CR-GIS 0.432∗ 0.342∗ 0.066 0.207 0.332∗ 0.529∗ 0.406∗ 0.033∗ 0.107∗ 9.537∗

w/o GoInfo. 0.426 0.336 0.060 0.193 0.324 0.516 0.401 0.029 0.094 9.153
w/o Align. 0.428 0.336 0.059 0.191 0.314 0.518 0.402 0.030 0.095 9.447
w/o HiStar. 0.409 0.324 0.061 0.220 0.305 0.519 0.400 0.033 0.111 9.235

Table 3: Overall conversation evaluation. w/o refers to removing CR-GIS components. “∗” indicates the statistical
significance for p < 0.05 compared with the best baseline. The HIT of TG-ReDial are reported in percentage.

5.2 Evaluation on Recommendation
Overall Performance As shown in Table 2, we
adopt the recognized Recall@K (K=1,10,25) met-
rics to evaluate the recommendation performance.
CR-GIS significantly outperforms all baselines
over all metrics. Specifically, compared with the
best results of the baselines, CR-GIS improves
the Recall@K (K=1,10,25) metrics by about 40%,
2.6%, 1.7%, and 29.5%, 40.9%, 31% on the Open-
DialKG and TG-ReDial datasets, respectively. Al-
though introducing more external knowledge (i.e.,
KBRD, KGSF, RevCore, C2-CRS) and multi-hop
KG reasoning (i.e., CRFR) has achieved staged
success, the impressive performance of CR-GIS
shows that it is necessary to model the goal-aware
implicit user interest sequence in dialog.

Ablation Study In Table 2, we removed the
key components in the recommendation module
of CR-GIS for ablation study. First, we remove
the goal-oriented information fusion mechanism,
called "w/o GoInfo.". The Recall@K (K=1,10,25)
results decrease slightly on OpenDialKG, but de-
crease significantly on TG-ReDial. It indicates the
advantage of "goal-aware" recommendation, i.e.,
modeling the implicit relationship between the in-
terest sequence and the goal, especially when there
is a dialog goal guiding the conversation, e.g., TG-
ReDial dataset. Second, we remove the implict di-
alog relations encoder, called "w/o ImpEnc.". Note
that "GoInfo." is also removed due to there is no
star node. We observe that the recommendation
results are significantly decreased over all metrics.
It confirms that to capture the association between
interest entities in long-range conversation is a key
factor in improving recommendation performance.
Note that we didn’t ablate the explicit KG relations
encoder which is a shared KG encoder for all CRS

Recall@1

0.25

0.26

0.27

0.28

0.29

Recall@10

0.45

0.46

0.47

0.48

0.49

Recall@25

0.53

0.54

0.55

0.56

0.57

KBRD KGSF RevCore CRFR C2-CRS CR-GIS

Figure 2: Analysis of CR-GIS’s scalability on TG-
ReDial, where topic is also treated as the recommenda-
tion goal.

baselines. Third, we remove the sequence encoder,
called "w/o SeqEnc.", which is substituted by self-
attention mechanism. The recommendation results
distinctly decrease indicating that the modeling of
user interests sequence is also crucial for obtaining
the dynamic preferences in dialog.

The Scalability of CR-GIS To analyze the scal-
ability of CR-GIS with constructed topic-enhanced
KG, we consider the topic mentioned in the ut-
terance as the recommendation goal to further ex-
amine the total recommendation performance on
TG-ReDial. As shown in Figure 2, although the
absolute value of the performance of all models has
been significantly improved, CR-GIS still signifi-
cantly outperforms all baselines. It further confirms
that capturing the implicit association between en-
tities in the interest flow pointing to the goal in the
conversation can make up for the lack of informa-
tion propagation on the KG.

5.3 Evaluation on Conversation

Overall Performance To automatically evaluate
the conversation performance, we adopt Bleu-1/2,
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Models Flu. Coher. Info. Proact.
Transformer 1.568 1.230 1.043 0.320
KBRD 1.611 1.248 1.192 0.347
KGSF 1.635 1.287 1.143 0.362
RevCore 1.654 1.252 1.215 0.445
CRFR 1.716 1.255 1.280 0.447
C2-CRS 1.585 1.249 1.138 0.426
CR-GIS 1.763∗ 1.313∗ 1.292∗ 0.450∗

kappa 0.534 0.509 0.505 0.516

Table 4: Human evaluation. "Flu.", "Coher.", "Info.",
"Proact." respectively denote fluency, coherence, in-
formativeness and proactivity. The agreement ratio
kappa ∈ [0.41, 0.6] denotes the moderate agreement.
“∗” indicates the statistical significance for p < 0.05
compared with the best baseline.

Distinct-1/2 and HIT. The Bleu and Distinct evalu-
ate the fluency and diversity of responses, respec-
tively. HIT evaluates the ratio of the goals in the
golden response that is also hit by the generated
response. In Table 3, CR-GIS exceeds all baselines.
Specifically, compared with the best results of C2-
CRS, CR-GIS improves HIT by 7.8% and 3% on
two datasets, respectively, which indicates that CR-
GIS effectively perceives the goal, thus generating
responses more in line with user interests. This is
attributed to the goal-oriented fusion mechanism
that enhances the goal expression in the interest-
level star graph, and then the goal-aware interest-
level star graph is aligned with the utterance-level
star graph to finally endow CR-GIS’s goal-aware
ability of response generation. In addition, CR-
GIS achieves 4.3%, 4.3% and 2.5%, 1% improve-
ments on Bleu-1 and Bleu-2 compared with the
best baselines on two datasets, respectively, which
also demonstrates that CR-GIS prefers to capture
more useful information in n-gram’s level leading
to more fluent responses.

Human Evaluation For human evaluation, we
randomly sampled 200 context-response pairs per
model from OpenDialKG. Five well-educated an-
notators evaluate each response with four indi-
cators: fluency, coherence, informativeness and
proactivity. Proactivity evaluates whether the dia-
log agent makes proactive actions such as recom-
mending or asking user preference. The scores are
settled from {0, 1, 2} to estimate fluency, coher-
ence, informativeness. The proactivity scores are
assigned from {0, 1}. The agreement among the
annotators is measured by the Fleiss’ kappa (Fleiss,
1971). As the results in Table 4, the superior of CR-
GIS on all indicators support the observations from

2 3 4 5
Number of Historical Utterances

0.1

0.2

0.3

0.4

0.5

0.6

HI
T

KBRD
KGSF
RevCore
CRFR
C2-CRS
CR-GIS

Figure 3: As the number of historical utterances in-
creases, CR-GIS outperforms all baselines in terms of
hitting entity and topic in generated response.

automatic evaluations. Case studies generated by
different models are in the Appendix A.

Ablation Study We also remove the key compo-
nents of CR-GIS to discuss their contributions in
Table 3. First, we remove the goal-oriented infor-
mation fusion mechanism, called "w/o GoInfo.".
The HIT has a slight drop on OpendialKG, but
decreases significantly on TG-Redial. This is con-
sistent with the observations on the Recall@K. Sec-
ond, we remove the alignment between the interest-
level and utterance-level star graphs, called "w/o
Align.". In the results, Bleu and Dist decrease
slightly, but HIT decreases distinctly on OpenDi-
alKG than TG-Redial. This verifies that the goal-
aware interests injected into the utterance represen-
tations has an impressive impact on the goal-aware
generation. Third, we replace the hierarchical Star
Transformer encoder with a hierarchical vanilla
Transformer encoder, called “w/o HiStar.”, and uti-
lize MHA to maintain the alignment between the
interest-level star graph and the utterance encoding.
We find that although hierarchical Star Transformer
would damage the diversity of generation to a cer-
tain extent, it has better advantages in terms of
improving the quality of generation.

The Effectiveness of Goal-oriented Guidance
To further explore the goal perception and genera-
tion abilities of CR-GIS, we examine the propor-
tion of the generated response hitting the recom-
mendation goals with the increase of the number
of the utterances in the conversation history on the
TG-Redial dataset. Besides movies, topics are also
used as goals. As shown in Figure 3, as the number
of historical utterances increases, the performance
of all models increases first and then decreases. Si-
multaneously, CR-GIS always maintains the best
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Figure 4: As the number of hierarchical Star Trans-
former encoder layers increases, CR-GIS consistently
outperforms the best baseline C2-CRS in most settings.

performance. This happens possibly because the
topic often shift in the dialog and thus also change
the direction of interest sequence.

Parameter Analysis We analyze the influence of
the number of the hierarchical Star Transformer en-
coder layers on HIT. In Figure 4, when the number
of layers is greater than 2, the HIT metric shows a
downward trend. This happens possibly because
the goal-aware interest-level star graph and the
utterance-level star graph are overfitted during the
alignment due to the number increasing of encoder
layers. Furthermore, CR-GIS consistently exceeds
the best baseline C2-CRS in most cases, confirming
the effectiveness and robustness of CR-GIS.

6 Conclusion

In this paper, we propose CR-GIS to model goal-
aware interest sequence in CRS with an interest-
level star graph whose star node is oriented to
the recommendation goal. By using goal-oriented
interest-level star graph to guide a utterance-level
star graph, CR-GIS significantly improve the goal-
aware ability in generating smoothly transited re-
sponse. Extensive experiments verify the superior-
ity of CR-GIS in terms of recommendation, con-
versation, and reaching recommendation goals.
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A Case Study

Two cases generated on OpenDialKG and TG-
ReDial datasets from seven models and ground
truth are selected in Table 5. We use red text to
annotate the defects in expressing the recommen-
dation goals for each response generated by the
baseline models. In comparison, the advantage of
CR-GIS is that its responses are more coherent, flu-
ent, and informative and achieve recommendation
goals that are more in line with user interests. This
observation further verifies the advantage of CR-
GIS in modeling goal-aware implicit user interest
sequence, which benefits the smooth transition of
utterances towards recommendation goal.
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OpenDialKG

Context
I like J.K.Rowling.
Me, too! She’s great! Did you want to know some cool stuff about her?
Yes, I want to know.

Transformer Yes, I did. It was released in 2013. It was written by the film. (incoherence)
KBRD JK Rowlings wrote this book (less-informativeness)
KGSF Yes, I can recommend Harry Potter and the Sorcerer’s Apprentice. (less-coherence, less-informativeness)

RevCore
Yes, I think she was in the Harry Potter and the Philosopher’s Stone. Did you know that one also starred
in the Philosopher’s Stone? (fact inconsistency, i.e., not "was in", fact is "wrote")

CRFR
Yes, he wrote The Tales of Beedle the Bard and The Cuckoo ’s Calling. Have you seen any (less-fluency,
gender inconsistency)

C2-CRS
Yes, I didn’t know that. Did he also write the Harry Potter series? (less-informativeness, gender
inconsistency)

CR-GIS Sure, she wrote The Tales of Beedle the Bard, The Silkworm, which is a series. Have you read
any of those?

Ground-Truth Did you know she wrote two books called The Silkworm as well as the book The Cuckoo’s Calling?
TG-ReDial

Context

好啊，我比较喜欢人性题材的，真实改编的电影。
Well, I prefer movies based on human nature and reality.
推荐一部《现代启示录》，真的展现出人性混沌无善恶，残酷壮丽一瞬间。
Recommend a Apocalypse Now, it really shows the chaos of human nature, no good and evil, cruel and
magnificent moment.
你说这个影片能展现出人性混沌无善恶，残酷壮丽一瞬间，这个评价很高啊，一会看看。
You said that this movie can show the chaos of human nature without good and evil, cruel and magni-
ficent for a moment, the evaluation is very high, I will see it later.
推荐你看《势不两立》，是关于人性的背叛，很现实的电影，两个主角都很饱满，对人性的塑造
非常到位。
I recommend you to watch The Edge, which is a very realistic film about the betrayal of human nature.
The two protagonists are full and the shaping of human nature is very in place.
感觉这样的电影展现的就是：这样的人越是苦难，越是闪耀人性光辉。能让我们感悟很多吧？
I feel that what such a movie shows is: the more suffering such a person is, the more shining the brilli-
ance of human nature. Can we learn a lot?

Transformer
还有一部关于人性的电影，叫《现代启示录》，这也是一部关于
There is also a movie about human nature called Apocalypse Now, which is also a movie about
(retell, nonfluency)

KBRD
看过《UNK》吗，这是一部好电影，人性的原版看起来要看起来，但很爽。
Have you seen <UNK>, it’s a good movie, the original version of human nature looks to look good,
but it’s cool. (less-informativeness)

KGSF
《双重人格》非常适合你，影片中的人性，人性，两个极端极端探讨。
The Double is very suitable for you, the movie’s human nature, human nature, two extreme extreme
exploration. (repetition)

RevCore
《人性污点到底是什么才是烂片之一。还有其他关于人性的电影吗？
What the hell is The Human Stain is one of the bad movies. Are there any other movies about human
nature? (nonfluency, incoherence)

CRFR
《越战创伤》非常好，老帕还挺对我胃口。
Casualties of War is very good, and Palma is kinda to my taste. (less-coherence, none user-centric)

C2-CRS
行啊，最好是那种反映人性心理社会的讽刺题材电影。
Okay, it’s better to be a satirical movie that reflects human psychology and society. (less-informativeness)

CR-GIS 《忏情记》满足你的要求，人性与法律，救赎与出卖。
I Confess meets your requirements, human nature and law, redemption and betrayal.

Ground-Truth

有一部电影叫《忏情记》，希区柯克演的人性题材的电影，结局是人性光辉的闪耀，也是神父之
罪的阐述。
There is a movie called I Confess, a movie about human nature played by Hitchcock. The ending is the
shining of human nature, and it is also an exposition of the sin of the priest.

Table 5: Case Study. Generated responses from baselines and CR-GIS. Context is the multi-turn conversation
history in which the seeker and the recommender speak alternately.
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Abstract

The dialogue-based relation extraction (Dialo-
gRE) task aims to predict the relations be-
tween argument pairs that appear in dialogue.
Most previous studies utilize fine-tuning pre-
trained language models (PLMs) only with
extensive features to supplement the low in-
formation density of the dialogue by multi-
ple speakers. To effectively exploit inherent
knowledge of PLMs without extra layers and
consider scattered semantic cues on the re-
lation between the arguments, we propose a
Guiding model with RelAtional Semantics us-
ing Prompt (GRASP). We adopt a prompt-
based fine-tuning approach and capture rela-
tional semantic clues of a given dialogue with
1) an argument-aware prompt marker strategy
and 2) the relational clue detection task. In the
experiments, GRASP achieves state-of-the-
art performance in terms of both F1 and F1c

scores on a DialogRE dataset even though our
method only leverages PLMs without adding
any extra layers.

1 Introduction

The relation extraction (RE) task aims to extract
semantic relations from unstructured text such as a
sentence, a document, or even a dialogue. RE plays
a critical role in information extraction and knowl-
edge base construction as it can extract structured
relational information (Ji et al., 2010; Swampil-
lai and Stevenson, 2010). However, the utilization
of sentence-level RE in a conversational setting
is limited because numerous relational facts ap-
pear across multiple sentences with more than one
speaker in a dialogue (Yao et al., 2021). Thus,
the dialogue-based relation extraction (DialogRE)
task, which includes argument pairs and their corre-
sponding relations, has been proposed to encourage
building a model that captures the underlying se-

∗These authors have equally contributed to this work
†Corresponding author

Dialogue

1 S1: Hey guys! Hey!
2 S2: Hey Pheebs, guess who we saw today.
3 S3: Ooh, ooh, fun! Okay... um, Liam Neeson.
...
7 S3: The woman who cuts my hair!
8 S4: Okay, look, this could be a really long game.
9 S5: Your sister Ursula.
10 S3: Oh, really.
11 S5: Yeah, yeah, she works over at that place, uh...
12 S3: Rift’s. Yeah, I know.
...
17 S6: Um, Pheebs, so, you guys just don’t get along?
18 S3: It’s mostly just dumb sister stuff, you know, I mean, like,
everyone always thought of her as the pretty one, you know... ...

Argument pair Trigger Relation Type

R1 (Pheebs, PER)
sister per:siblings

(Ursula, PER)

R2 (S3, PER)
none per:alternate_names

(Pheebs, PER)

R3 (Rift’s, ORG)
works over at per:employees_or_members

(Ursula, PER)

Table 1: Example of DialogRE data. The arguments are
bold, and the triggers are underlined. The arguments and
triggers are scattered throughout the dialogue, which
leads to low information density. The triggers determine
the direction of the proper relation indirectly.

mantic spread in the dialogue, as presented in Table
1 (Yu et al., 2020).

In previous studies where state-of-the-art (SoTA)
performance is achieved on DialogRE benchmarks,
fine-tuning is employed on pre-trained language
models (PLMs) (Lee and Choi, 2021; Long et al.,
2021), such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). As fine-tuning requires
the addition of extra layers on top of the PLMs and
the training objectives are different from those used
in the pre-training phase, PLMs cannot effectively
exploit their learned knowledge in the downstream
task, resulting in less generalized capability (Chen
et al., 2021).

To effectively utilize knowledge from PLMs,
several studies involving prompt-based fine-tuning
have been conducted. They employ the PLM di-
rectly as a predictor and completing a cloze task
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[CLS]   Jeff Bezos is founder of  Amazon [SEP] 

per:founded_by
per:children
per:friends

CLS
Head

Class Set

…

[CLS] Jeff Bezos is founder of Amazon [SEP]   [subj]   Amazon [subj] [MASK]  [obj]   Jeff Bezos   [obj]  [SEP]

MLM Head

[per:founded_by]
[per:children]
[per:friends]

Label words

…

per:founded_by
per:children
per:friends

Class Set(1) Fine-tuning (2) Prompt-based Fine-tuning

: Tokens in the vocabulary : Learnable Continuous tokens : Arguments

Figure 1: An illustration of (1) standard fine-tuning approach, and (2) prompt-based fine-tuning approach. In
prompt-based fine-tuning approach, a set of label words are mapped into a class set by a certain mapping function.

to bridge the gap between pre-training and fine-
tuning (Gao et al., 2020; Han et al., 2021). As
presented in Figure 1, prompt-based fine-tuning
treats the downstream task as a masked language
modeling (MLM) problem by directly generating
the textual response to a given template. In specific,
prompt-based fine-tuning updates the original input
on the basis of the template and predicts the label
words with the [MASK] token. Afterwards, the
model maps predicted label words to correspond-
ing task-specific class sets.

However, the prompt-based fine-tuning ap-
proach is still not sufficient in terms of perfor-
mance compared with the fine-tuning-based ap-
proach (Han et al., 2021; Chen et al., 2021). We
attribute this phenomenon to the following prop-
erties of conversation: higher person-pronoun fre-
quency (Wang and Liu, 2011) and lower informa-
tion density (Biber, 1991) by multiple speakers1.
Therefore, a prompt-based fine-tuning approach
that collects the sparse semantics in the dialogue is
required to understand relation between the argu-
ments.

We propose a method named Guiding model
with RelAtional Semantics using Prompt
(GRASP) for DialogRE. To maximize the
advantages of the prompt-based fine-tuning
approach for the DialogRE task, we suggest an
argument-aware prompt marking (APM) strategy
and a relational clue detection (RCD) task. The
APM strategy guides the model to the significant
arguments scattered in the dialogue by carefully
considering arguments. For our APM strategy,
we conduct empirical study based on the diverse
marker types to validate our APM strategy. Along
with the APM strategy, the suggested RCD task
with a training objective leads the model to pay

1In the DialogRE dataset, 65.9% of relational triples in-
volve arguments that never appear in the same utterance,
demonstrating that multi-turn reasoning plays an important
role.

attention to significant relational clues. Specifically,
the model is trained to determine whether each
token in a dialogue belongs to a subject, object, or
trigger. As a result, the PLM is trained on RCD
and MLM jointly. In the experiments, our method
achieves SoTA performance at a significant level
in the DialogRE task for both the full-shot and
few-shot settings. Only PLMs are employed
without the addition of an extra layer as a predictor,
and GRASP exhibits a higher performance
than other baselines. The significant performance
improvement indicates that attending to significant
semantic clues guides the PLMs to predict the
correct relation with its inherent knowledge in
both full-shot and few-shot settings. Moreover, we
provide ablation studies and qualitative analysis on
the robustness of GRASP.

Our contributions are as follows:

• We adopt a prompt-based fine-tuning ap-
proach to utilize a PLM’s inherent knowledge
directly for dialogues with relatively low in-
formation density.

• We introduce an APM strategy and a RCD
task that guide PLMs on the significant rela-
tional clues, which are semantic information
to predict relations.

• We demonstrate that our proposed method
achieves SoTA performance on the DialogRE
task in both full-shot and few-show settings.

• We conduct ablation studies and qualita-
tive analysis to validate the robustness of
GRASP.

The remainder of this paper is organized as fol-
lows. In Section 3, we present the entire process of
our method in detail. The experimental setup and
the results are explained in Section 4. The further
analyses is provided in Section 5, and Section 6
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presents the conclusions. Appendix 2 provides re-
lated works including the prompt-based learning,
and the DialogRE.

2 Related Works

Prompt-based learning Prompt-based learning
is a method of reducing the gap between the pre-
training objective and that of fine-tuning. For ex-
ample, language models such as BERT (Devlin
et al., 2019) use masked language modeling (MLM)
objective in pre-training phase where the model
fills the [MASK] token whereas the model trains
without [MASK] token in fine-tuning phase by
adding an extra classifier layer. As a result, the
discrepancy between training objectives prevents
PLM from leveraging knowledge acquired from the
pre-training enormous corpus (Chen et al., 2021).
Also, prompt-based learning shows better perfor-
mance than fine-tuning especially in the few-shot
setting (Gao et al., 2020; Schick and Schütze, 2021;
Li and Liang, 2021; Liu et al., 2021).

DialogRE Recent studies on the DialogRE
dataset show a tendency to fine-tune the PLM with
task-specific objectives and use the model with
high-complexity (Xue et al., 2021; Long et al.,
2021; Lee and Choi, 2021). In detail, Lee and
Choi (2021) shows considerable performance with
the contextualized turn representations from the
diverse type of nodes and edges. Moreover, task-
specific objectives of fine-tuning lead to a gap be-
tween pre-training and fine-tuning.

To overcome the limitation, Han et al. (2021)
utilizes multiple [MASK] tokens for each argu-
ment and the relation with logical rules by con-
centrating subject and object in DialogRE. There
also exists an approach that incorporates potential
knowledge contained in relation labels into prompt
construction with trainable virtual type words and
answers words. This approach also carefully initial-
izes the virtual tokens with implicit semantic words
and employs prior distributions estimated from the
data (Chen et al., 2021).

Despite the prompt-based approach’s high po-
tential, few prompting studies sufficiently consider
low information density and difficulty of captur-
ing intrinsic relational information of the data be-
tween the argument pair of dialogue relation ex-
traction task. We focus on building a light model
with prompt-based fine-tuning with implicit seman-
tic information of the relation which alleviates the

sparsity problem.

3 Methodology

An overview of GRASP is illustrated in Figure
2. First, an input with a prompt template is con-
structed by using the APM strategy. Then, the PLM
receives the constructed input for prompt-based
fine-tuning and estimates probability distributions
of the model’s vocabulary by using contextualized
representations of the PLM. The RCD task lets
the model predict the relational clue type of each
token, and the model takes the [MASK] represen-
tation to predict a final relation in the MLM task.
In other words, our model is trained through multi-
task learning to encourage mutual communication
between relational clues and the final relation for
the argument pair.

3.1 Problem Formulation
Each example X includes dialogue D, subject
a1, and object a2. Note that D denotes {s1 :
u1, s2 : u2, . . . , sN : uN}, where sn is the n-
th speaker and un is the corresponding utterance.
Given X = {D, a1, a2}, the goal of DialogRE is
to predict relation y between arguments a1 and a2
by leveraging D. To describe the DialogRE task
in terms of prompt-based fine-tuning, a template
function, T (·), is defined to map each example
to Xprompt = T (X ). A [MASK] is inserted into
Xprompt, and used to predicting the label words of
relation y. The formulation of T (X ) is as follows:

T (X ) = “[CLS]D[SEP][subj]a1[subj]

[MASK][obj]a2[obj][SEP]”.
(1)

Based on the structure of T (·), we construct our
template function, T ′(·), by applying two steps:
transformation of D to D′ with an argument-aware
prompt marker, described in 3.2, and prompt initial-
ization for [subj] and [obj], explained in 3.3.
Subsequently, we introduce the RCD task in 3.4 to
train the model by utilizing T ′(·) with a multitask
training strategy on MLM, as detailed in 3.5.

3.2 Argument-aware Prompt Marker
We propose an APM strategy that considers both
speaker and non-speaker arguments. In previous
studies, a dialogue is encoded by focusing on
speaker information (Lee and Choi, 2021; Yu et al.,
2020; Chen et al., 2021) without focusing non-
speaker arguments. However, in the DialogRE
dataset, approximately 77.4% of relation triples
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[CLS] +   APM (𝑫") +  [SEP] + [subj] +  S2  +  [subj] + [MASK] +   [obj] +  Frank + [obj] + [SEP]

PLM

e([CLS]) e (APM(𝐷")) e([SEP]) e% ([subj]) e(S2) e% ([subj]) e([MASK]) e% ([obj]) e(Frank) e% ([obj]) e([SEP])

outside         trigger object subject subject object

𝑉'()
[per:children]

⋯

Prompt-based Fine-tuning

𝒯(𝒳): [CLS] +      D     +     [SEP] + [subj] +  S2  +  [subj] + [MASK] +   [obj] +  Frank + [obj] + [SEP]

Argument-aware Prompt Marking (APM)

𝑉'/0

𝒯1(𝒳1): 

[per:friends]
[per:alternate_names]
[per:parents]
[per:date_of_birth]… … … …

𝑙𝑎𝑏𝑒𝑙	𝑤𝑜𝑟𝑑𝑠

Figure 2: The overall model architecture of GRASP. By formalizing specific tasks as MLM tasks, the model
predicts answers with the tokens from the model’s vocabulary; for example, the label words of Vrel and Vrcd are
from the model’s vocabulary.

include at least one non-speaker argument, imply-
ing that consideration of non-speaker arguments is
also inevitable to enhance the model’s argument-
awareness.

Our methods is inspired by the previous works
of Soares et al. (2019) and Han et al. (2021); the
former addresses the importance of entity markers
regarding recognition of the entity position, and the
latter improves the model performance by using
specific additional punctuation in the model’s orig-
inal vocabulary as the entity marker. Accordingly,
we insert the argument-aware prompt marker to-
ken, [p], as an entity marker. The argument-aware
prompt markers allow our model to obtain informa-
tive signs to determine which token is the indicative
component for relation prediction. We initialize the
feature of [p] as the embedding of the space token
in the vocabulary of the model. Our empirical ex-
periments reveal that the space token can perceive
the start position of the arguments. Consequently,
our prompt marker enhances the model to discrimi-
nate which part of the dialogue plays a critical role
in predicting a relation.

Using the proposed argument-aware prompt
marker, we strengthen the token replacement
method of BERTs (Yu et al., 2020). Given exam-
ple X , BERTs constructs X̃ = {D̃, ã1, ã2}, where
D̃ = {s̃1 : u1, s̃2 : u2, . . . , s̃N : uN} and s̃n is

s̃n =





[S1] if sn = a1

[S2] if sn = a2

sn otherwise.

(2)

[S1] and [S2] are special tokens for speakers. In
addition, ãm (m ∈ {1, 2}) is defined as [Sm] if
∃ n (sn = am) and am otherwise.

Even though BERTs prevents the model from
overfitting and demonstrates higher generalization
capacity (Yu et al., 2020), BERTs does not consider
non-speaker arguments. To explore the disregarded
arguments, the APM strategy expands BERTs by
considering both types of arguments in the Dialo-
gRE task. We define function APM(·) that encodes
an utterance by inserting [p] in front of each ar-
gument token. Given dialogue D̃ constructed by
using BERTs, we construct D′ = {s̃1 : u′1, s̃2 :
u′2, . . . , s̃N : u′N} by applying APM(un) for each
utterance in D̃. Consequently, the APM strategy
constructs X ′ = {D′, ã1, ã2} based on X̃ .

u′n =

{
APM(un) if ∃m (ãm ∈ un) (m ∈ {1, 2})
un otherwise

(3)

For instance, APM(·) encodes the text “I am Tom
Gordon” to [I, am, [p], Tom, Gordon],
inserting [p] in front of “Tom Gordon.”

3.3 Prompt Construction
We update the constructed input X ′ with a tem-
plate function and conduct a deliberate initial-
ization. We utilize the prior distribution of argu-
ment types for initialization inspired by the study
conducted by Chen et al. (2021). Prompt tokens
[subj] and [obj] are used to inject argument-
type information. We define the argument-type
set, AT = {“PER,” “ORG,” “GPE,” “VALUE,”
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“STRING”}, using the types pre-defined in the
dataset as depicted in Table 1. We calculate the dis-
tributions of argument types ϕ[subj] and ϕ[obj]

over AT by using frequency statistics. We aggre-
gate each argument type, at ∈ AT , with the cor-
responding prior distribution to initialize prompt
tokens [subj] and [obj]. The specific initial-
ization equations are as follows:

ě([subj]) =
∑

at ∈AT
ϕ[subj]at · e(at)

ě([obj]) =
∑

at ∈AT
ϕ[obj]at · e(at),

(4)

where e(·) is the embedding from the PLM of an
input token and ě(·) is the initialized embedding
of the prompt token. Suppose the subject has prior
distribution, ϕ[subj] = {“PER”: 0.5,’‘ORG”:0.5,
“GPE”:0.0,“VALUE”:0.0,“STRING”:0.0}. The ini-
tial embedding of the [subj] token can be cal-
culated as a weighted average, i.e., ě([subj]) =
0.5 · e(“PER”) + 0.5 · e(“ORG”).

Consequently, we can formalize T ′(·), which
converts X ′ to X ′prompt, where X ′prompt is an
argument-enhanced input example, by using the
APM strategy and prompt construction with de-
liberate initializations, i.e., X ′prompt = T ′(X ′).
Then, the final input structure for prompt-based
fine-tuning is as follows:

T ′(X ′) = “[CLS]D′[SEP][subj]ã1[subj]

[MASK][obj]ã2[obj][SEP]”.
(5)

In addition, for relation prediction by applying
MLM, we also define Vrel as a set of label words in
the model’s vocabulary as illustrated in Figure 2. In
detail, we utilize its metadata for the initialization
of each relation representation to inject its seman-
tics. For instance, we add a special token to the
model’s vocabulary, [per:date_of_birth]
as a label word, and initialize this token by aggre-
gating the embeddings of the words in the meta-
data, i.e., {“person,” “date,” “of,” “birth”} for a
class “per:date_of_birth.”

3.4 Relational Clue Detection task
To improve the understanding capability on rela-
tional clues by employing a prompt-based fine-
tuning approach, we introduce a RCD task. We
define a set of label words, Vrcd ={[subject],
[object], [trigger], [outside]}, and
add to the model’s vocabulary. Then, we construct
a sequence of label words for RCD, Crcd, by as-
signing each token in X ′prompt to the corresponding

clue type word from Vrcd. For instance, Crcd is con-
structed as follows: {[subject], [trigger],
[object]} when the token sequence is given
by {“Pheebs”,“lives in”,“LA”}, where “Pheebs”
is a subject and “LA” is an object argument, and

“lives in” is a trigger.
The RCD task exploits the MLM head that is

used to predict the [MASK] token. Except for the
[MASK] token, each token is sequentially tagged
with Vrcd using the meta-data provided in the
dataset. In other words, the RCD task allows the
model to identify which non-[MASK] tokens cor-
respond to certain relational clue types. RCD sup-
ports the model in collecting scattered information
from the entire dialogue by indicating where to
focus in the dialogue to predict a relation. In this re-
spect, the model pays considerably more attention
to the semantic clues of the relation, such as trig-
gers. Moreover, our model maintains a lightweight
complexity by conducting the RCD task without an
additional classifier. The loss for the RCD task over
each token x ∈ X ′prompt is aggregated as follows:

LRCD = −
∑

x∈X ′
prompt

logP (x = Crcd(x)|X ′prompt). (6)

3.5 Model Training
Before the final relation-prediction, we mark the
position of the trigger using the [p] token, i.e., the
argument-aware prompt marker, based on the re-
sults of the RCD task. Given example X ′prompt, the
model predicts the label words of Vrcd for all non-
[MASK] tokens. Subsequently, [p] is appended in
front of the words predicted as a trigger to train the
model to distinguish essential clues that encourage
determining the relation.

Multitask Learning Mrel : Y → Vrel is a
mapping function that converts a class set, Y ,
into a set of label words, Vrel. For each input
X ′prompt, the purpose of MLM is to fill [MASK]
with the relation label words in the model’s vo-
cabulary. As the model predicts the correct label
word at the position of [MASK], we can formulate
p(y|x) = P ([MASK] = Mrel(y)|X ′prompt). The
training objective of the relation prediction is to
minimize

LREL = − logP ([MASK] =Mrel(y)|X ′prompt). (7)

To improve the model’s ability to capture rela-
tional clues through the interaction between the
MLM task for relation prediction and the RCD
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Full-shot Setting

Method
V1 V2

F1 F1c F1 F1c

Fine-tuning based approach

BERTs (Yu et al., 2020) 61.2 55.4 - -
RoBERTas (Lee and Choi, 2021) - - 71.3 63.7
Dual (Bai et al., 2021) 67.3 61.4 67.1 61.1
CoIn (Long et al., 2021) 72.3 - - -
TUCORE-GCN (Lee and Choi, 2021) - - 73.1 65.9

Prompt-based fine-tuning approach

PTR (Han et al., 2021) 63.2 - - -
KnowPrompt (Chen et al., 2021) 68.6 - - -
GRASPbase (Our model) 69.2 62.4 69.0 61.7
GRASPlarge (Our model) 75.1 (+2.8) 66.7 (+5.3) 75.5 (+2.4) 67.8 (+1.9)

Table 2: Performances of GRASP on test set of DialogRE. V1 and V2 represent the version of the dataset. The
underlined scores are the previous SoTA performances. Subscript in parentheses represents advantages of GRASP
over the best results of baselines (the underlined). Best results are bold.

task, we employ a multitask learning to train the
GRASP model by using the joint loss expressed
in Equations (6) and (7). Therefore, the final learn-
ing objective is to minimize the joint loss, where
λ1 and λ2 are hyperparameters.

LGRASP = λ1 · LRCD + λ2 · LREL (8)

4 Experiments

4.1 Experimental Setup

For the base PLMs, RoBERTa-base and RoBERTa-
large are adopted, as denoted by GRASPbase and
GRASPlarge, respectively. The evaluation met-
rics are the F1 and F1c (Yu et al., 2020) scores. F1c
is an evaluation metric for supplementing the F1
score in a conversational setting and is computed
by employing part of the dialogue necessary for
predicting the relation between given arguments as
input instead of the entire dialogue. The detailed
settings for GRASP can be found in Appendix
A.

In a full-shot setting, GRASP is compared
with both fine-tuning-based and prompt-based fine-
tuning approaches. TUCORE-GCN (Lee and Choi,
2021) is a typical fine-tuning-based model using
turn-level features with a graph convolution net-
work (Kipf and Welling, 2016). CoIn (Long et al.,
2021) employs utterance-aware and speaker-aware
representations, and Dual (Bai et al., 2021) mod-
els the relational semantics using abstract meaning
representations (Banarescu et al., 2013). Moreover,
PTR (Han et al., 2021) and KnowPrompt (Chen

et al., 2021) are the prompt-based fine-tuning base-
line models. In the few-shot setting, 8-, 16-, and
32-shot experiments were conducted based on LM-
BFF (Gao et al., 2020) by using three different
randomly sampled data.

4.2 Experimental Results

Full-shot setting As presented in Table 2, it is
shown that GRASPlarge surpasses all of the base-
line models, including the current SoTA models,
that is, CoIn and TUCORE-GCN. From the result
in the full-shot setting, the baselines of the fine-
tuning-based approach, such as TUCORE-GCN or
CoIn, show better performance than those of the
prompt-based fine-tuning approach. In particular,
CoIn outperforms all of the other baselines, includ-
ing PTR and KnowPrompt on V1, and TUCORE-
GCN exhibits the best performance on V2. Interest-
ingly, even though the performance of the prompt-
based fine-tuning baselines is much lower than fine-
tuning based models, our GRASPlarge outper-
forms regardless of the way of training approach.

In addition, GRASPlarge shows its efficiency
in conversational settings by exceeding all the base-
lines in terms of F1c, thereby indicating that our
method effectively overcomes the low informa-
tion density of dialogues. These results imply that
guiding the model to pay attention to relational
clues with a prompt-based fine-tuning approach
can be more effective than adding additional fea-
tures and layers. The slightly low performance of
GRASPbase is attributed to the gap in the model
size; for example, TUCORE-GCN has 401M
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Few-shot Setting

Method
Shot

K=8 K=16 K=32

Fine-tuning based approach

RoBERTa (Chen et al., 2021) 29.8 40.8 49.7
TUCORE-GCN (Lee and Choi, 2021) 24.6 40.0 53.8

Prompt-based fine-tuning approach

PTR (Han et al., 2021) 35.5 43.5 49.5
KnowPrompt (Chen et al., 2021) 43.8 50.8 55.3
GRASPbase (Our model) 45.4 52.0 56.0
GRASPlarge (Our model) 36.0 55.3 62.6

Table 3: Low-resource RE performance of F1 scores
(%) on different test sets. We use K = 8, 16, 32 (# of ex-
amples per class) for few-shot experiments. Best results
are bold and the second place results are underlined.

weight parameters with RoBERTa-large model,
and GRASPbase has 125M weight parameters
with RoBERTa-base. Nevertheless, GRASPbase

demonstrates 6.0%p and 0.6%p improvements
compared with the other prompt-based fine-tuning
baselines, i.e., PTR and KnowPrompt, respectively.

Few-shot setting As presented in Table 3,
GRASP still exhibits robust performance in few-
shot settings. GRASPbase outperforms the base-
lines of both the fine-tuning and prompt-based fine-
tuning methods regardless of the number of shots,
demonstrating 20%p or higher performance in the
8-shot setting compared with TUCORE-GCN and
indicating that our method is more efficient than
the fine-tuning method in a low-resource setting.
GRASPbase also demonstrates improved perfor-
mance compared with KnowPrompt in all-shot set-
tings, indicating the effectiveness of the considera-
tions on the properties of the dialogue with prompt-
based fine-tuning. Except for the 8-shot setting,
GRASPlarge presents outstanding performance,
achieving up to 15.3%p of absolute improvement
in the 16-shot setting. Although GRASPlarge out-
performs the fine-tuning-based models and PTR,
the limited performance of GRASPlarge in the
8-shot setting can be attributed to an insufficient
number of examples.

We also observe that the fine-tuning-based mod-
els, such as TUCORE-GCN, perform at least
5.7%p worse than the prompt-based fine-tuning
models, such as PTR, in the 8-shot setting, indicat-
ing that the fine-tuning-based models may have dif-
ficulty in sufficiently capturing relational semantics
when the data are extremely scarce. In particular,
TUCORE-GCN indicates a 5.2%p lower perfor-

Method
Dev Test

F1 F1c F1 F1c

GRASPbase 70.3 63.3 69.0 61.7
-APM 69.5 62.9 66.9 60.7
-RCD 69.2 62.8 67.7 61.0
-Prompt manual init. 68.1 61.9 65.9 59.8

Table 4: Ablation study on DialogRE dataset.

mance than the fine-tuned RoBERTa, indicating
that the high complexity requires a larger amount
of data than the other models.

Ablation Study We conduct an ablation study to
validate the effectiveness of the proposed modules.
As shown in Table 4, each of the proposed modules
improves the overall performance for both F1 and
F1c settings. Without the APM strategy, the per-
formance of GRASPbase decreases the F1 score
by 0.8%p and the F1c score by 0.4%p on the de-
velopment set, and the F1 score drops sharply by
2.1%p and F1c by 1.0%p on the test set. This result
indicates that argument-awareness can be obtained
through both speaker and non-speaker argument in-
formation. When the RCD task is excluded, the per-
formance of GRASPbase decreases the F1 score
by 1.1%p and F1c by 0.5%p on the development
set and the F1 score by 1.3%p and F1c by 0.7%p
for the test set. These results demonstrate that the
RCD task alleviates the low information density
of the dialogue by guiding the model to focus on
relational clues.

In addition, the performance without the
manual initialization of prompt construction of
GRASPbase is reduced by 2.2%p for the F1 score
and 1.4%p for the F1c score on the development set
and by 3.1%p for the F1 score and 1.9%p for the
F1c score on the test set. This result suggests that
prompt construction is a basic step in training the
model in the prompt-based fine-tuning case. The
deliberate initialization of prompts is critical for
modeling the tasks in an appropriate direction.

5 Analysis

5.1 Analysis on marker type for APM

To analyze argument-awareness regarding the types
of markers, we conduct experiments on diverse
prompt markers, as shown in Table 5. The result
reveals that considering argument types leads to
performance improvement in the model. Punctu-
ation marker “;” shows comparable performance
among other punctuation markers, and “!” and “@”
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Marker Type Input Example F1

Entity marker [CLS] [E1] Frank [/E1] lives in [E2] Montauk [/E2] . [SEP] 65.9
Type marker [CLS] [E1:PER] Frank [/E1:PER] lives in [E2:GPE] Montauk [/E2:GPE] . [SEP] 66.7
Punctuation marker (!) [CLS] ! Frank ! lives in ! Montauk ! . [SEP] 66.7
Punctuation marker (@) [CLS] @ Frank @ lives in @ Montauk @ . [SEP] 65.3
Punctuation marker (;) [CLS] ; Frank ; lives in ; Montauk ; . [SEP] 67.1
APM marker (front) [CLS] [p] Frank lives in [p] Montauk . [SEP] 69.0
APM marker (surrounding) [CLS] [p] Frank [p] lives in [p] Montauk [p] . [SEP] 65.9

Table 5: The performance based on the marker type. The arguments are bold. The embedding of [p] is initialized
with the space token from the model’s vocabulary. In type marker, [E1:PER] represents a start position of subject
which has a person type and [/E1:PER] represents an end position of object that has the same type.

Dialogue

S1: Hey!!
S2: Hey!
S1: Guess what. Frank Jr., and Alice got married!
S2: Oh my God!!
S1: And! And, they’re gonna have a baby! And! And, they want me to grow it for them in my uterus.
S3: My God!
S4: Are you serious?
S1: Yeah
S5: You’re really thinking about having sex with your brother?!
S1: Ewww! And "Oh no!" It’s—they just want me to be the surrogate. It’s her-it’s her egg and her sperm, and I’m-I’m just the
oven, it’s totally their bun.
S5: Huh.

Argument pair Ground Truth RoBERTa GRASP
Predicted Relation Predicted (subject, object, trigger) Predicted Relation

(Frank Jr., Alice) per:spouse unanswerable (Frank Jr, Alice, got married) per:spouse
(Alice, Frank Jr.) per:spouse per:siblings (Alice, Frank Jr, got married) per:spouse

Table 6: The qualitative analysis on the prediction of GRASP based on the comparison with the RoBERTa model.
Predicted (subject, object, trigger) is that GRASP predicted on RCD task.

achieve a limited score. We presume that the higher
frequency of “;” acts as a delimiter, which results
in decent performance.

We also observe that the APM marker (front)
performs the best, with a 69.0% F1 score among
all other marker types. In addition, we conduct an
experiment based on the position of the prompt
marker, [p], by comparing two versions of the
APM marker: APM marker (front) and APM
marker (surrounding). The APM marker (surround-
ing) display 3.1%p lower performance than the
APM marker (front). Based on these results, we
empirically adopt the embedding initialization of
our [p] prompt marker using the space token and
located it in front of the arguments.

5.2 Qualitative Analysis on GRASP

Since we train GRASP attending on relational
clues through the APM strategy and the RCD
task, we further conduct analysis to investigate that
the relational clues such as triggers contribute to
predicting a relation between the arguments in a

prompt-based manner, as shown in Table 6. Specifi-
cally, we compare GRASPlarge with a fine-tuned
RoBERTa-large model to validate our method.

We observe that the fine-tuned RoBERTa model
struggles to capture the symmetrical relations in-
cluding the trigger. The fine-tuned RoBERTa model
fail to capture relational clues, such as “got mar-
ried”, misleading the model into predicting an inap-
propriate relations for both symmetrical relations
between “Frank Jr.” and “Alice.” “got married” is
a critical cue to distinguish the relations between
“per:spouse” and “per:siblings” because this phrase
implies a romantic relationship in a dictionary def-
inition. In contrast, GRASP, which is trained
using the RCD task and the APM strategy in a
prompt-based manner, predicted the correct rela-
tions, capturing the correct relational clues includ-
ing the trigger “got married” for both symmetrical
argument pairs. This result presents the effective-
ness of GRASP designed to guide the model on
the relational clues, alleviating the difficulties of
low information density in dialogues. Additional
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Method MELD EmoryNLP

RoBERTa (Liu et al., 2019) 62.0 37.3
COSMIC (Ghosal et al., 2020) 65.2 38.1
TUCORE-GCN
(Lee and Choi, 2021)

65.4 39.2

GRASPlarge (Ours) 65.6 40.0

Table 7: Experimental results of GRASPbase on
MELD and EmoryNLP tasks.

examples demonstrating similar phenomena for the
symmetrical relations are provided in the Appendix
B.

5.3 Analysis on the applicability of GRASP

To demonstrate the robustness of our APM strat-
egy and RCD task, we evaluated GRASP on
MELD (Poria et al., 2019) and EmoryNLP (Za-
hiri and Choi, 2018) datasets, which are designed
for emotion recognition in conversations (ERC).
MELD (Poria et al., 2019) is a multimodal dataset
collected from a TV show named Friends and con-
sists of seven emotion labels and 2,458 dialogues
with only textual modality. EmoryNLP (Zahiri and
Choi, 2018) is also collected from Friends and
comprises seven emotion labels and 897 dialogues.
Each utterance in these datasets is annotated with
one of the seven emotion labels. The weighted-F1
is calculated to evaluate the MELD and EmoryNLP
datasets.

For baselines, we employ the fine-tuned
RoBERTa (Liu et al., 2019), COSMIC (Ghosal
et al., 2020), and TUCORE-GCN models (Lee
and Choi, 2021). COSMIC (Ghosal et al., 2020)
uses RoBERTa-large as the encoder. It is a frame-
work that models various aspects of commonsense
knowledge by considering mental states, events,
actions, and cause-effect relations for emotional
recognition in conversations.

As presented in Table 7, GRASP is applied
to other dialogue-based tasks by alleviating the
low information density of the given dialogue. In
particular, the performance of GRASP surpasses
that of TUCORE-GCN, which is the current SoTA
model in DialogRE, and those of the baseline spe-
cialized on ERC tasks, such as COSMIC in both
MELD and EmoryNLP.

6 Conclusion

In this paper, we proposed GRASP, which is a
method for guiding PLMs to relational semantics
using prompt-based fine-tuning for the DialogRE

task. We focused on alleviating the critical chal-
lenge in dialogues, that is, low information den-
sity, by effectively capturing relational clues. In
GRASP, we constructed prompts with deliber-
ate initialization and suggested 1) an APM strat-
egy considering both speaker and non-speaker ar-
guments and 2) the RCD task, which guides the
model to determine which token belongs to the rela-
tional clues. Experimental results on the DialogRE
dataset revealed that GRASP achieved SoTA per-
formance in terms of the F1 and F1c scores, even
though our method only leveraged a PLM without
adding any extra layers.
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A Detailed experimental settings

Hyper-
parameters

GRASPbase GRASPlarge

Learning rate 5e− 5 5e− 6

Max seq. len 512

Batch size 8

Num. epochs 30

Joint ratio
(λ1 & λ2)

0.7 / 0.3

Table 8: Hyper-parameter values used in prompt-tuning
process on test set.

GRASP is trained using AdamW (Loshchilov
and Hutter, 2017) as an optimizer with no weight
decay. The number of training epochs is set to 30
with early stopping, and the ratio of λ1 and λ2
for the joint loss is 0.7 to 0.3. A learning rate of
5e−5, batch size of 8, and maximum sequence
length of 512 are adopted for RoBERTa-base with
identical parameters for RoBERTa-large, except for
the learning rate of 5e−6.

B Qualitative Analysis Examples

Table 9 shows additional examples to demonstrate
the prediction tendency of GRASP and the fine-
tuned RoBERTa models on the symmetrical rela-
tions described in Section 5.2.
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Dialogue

S1: Hey! Hi!
S2: Hey!
S1: What’s up?
S2: Well umm, Chandler and I are moving in together.
S1: Oh my God. Ohh, my little sister and my best friend. . . shaking up. Oh, that’s great. That’s great.
S3: Guys, I’m happy too.
S2: Okay, come here!
S3: Wow! Big day huh? People moving in, people getting annulled. . .
S2: Okay, I gotta go find Rachel but umm, if you guys see her could you please try to give her some really bad news so that
mine doesn’t seem so bad?
...

Argument pair Ground Truth RoBERTa GRASP
Predicted Relation Predicted (subject, object, trigger) Predicted Relation

(S2, Chandler) per:girl/boyfriend per:roommate (S2, Chandler, moving in together) per:girl/boyfriend
(Chandler, S2) per:girl/boyfriend per:roommate (Chandler, S2, moving in together) per:girl/boyfriend

Dialogue

S1: Rach, Rach, I just remembered. I had a dream about Mr. Geller last night.
S2: Really?!
S1: Yeah, I dreamt that he saved me from a burning building and he was so brave and so strong! And it’s making me look at
him totally differently. Y’know, I mean he used to be just, y’know “Jack Geller Monica and Ross’s dad” and now he’s he’s
“Jack Geller, dream hunk."
S2: I dunno. Y’know to me he’ll always be “Jack Geller, walks in while you’re changing.”

Argument pair Ground Truth RoBERTa GRASP
Predicted Relation Predicted (subject, object, trigger) Predicted Relation

(Mr. Geller, Monica) per:children unanswerable (Mr Geller, Monica, dad) per:children
(Mr. Geller, Ross) per:children unanswerable (Mr Geller, Ross, dad) per:children
(Ross, Mr. Geller) per:parents per:alternate_names (Ross, Mr Geller, dad) per:parents

Table 9: The additional examples for qualitative analysis on the prediction of GRASP based on the comparison
with the RoBERTa model. Predicted (subject, object, trigger) is that GRASP predicted on RCD task.
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Abstract

Persuasive conversations for a social cause
often require influencing other person’s atti-
tude or intention that may fail even with com-
pelling arguments. The use of emotions and
different types of polite tones as needed with
facts may enhance the persuasiveness of a mes-
sage. To incorporate these two aspects, we
propose a polite, empathetic persuasive dia-
logue system (PEPDS). First, in a Reinforce-
ment Learning (RL) setting, a Maximum Like-
lihood Estimation loss based model is fine-
tuned by designing an efficient reward func-
tion consisting of five different sub rewards
viz. Persuasion, Emotion, Politeness-Strategy
Consistency, Dialogue-Coherence and Non-
repetitiveness. Then, to generate empathetic
utterances for non-empathetic ones, an Empa-
thetic transfer model is built upon the RL fine-
tuned model. Due to the unavailability of an ap-
propriate dataset, by utilizing the PERSUASION-
FORGOOD dataset, we create two datasets, viz.
EPP4G and ETP4G. EPP4G is used to train
three transformer-based classification models
as per persuasiveness, emotion and politeness-
strategy to achieve respective reward feedbacks.
The ETP4G dataset is used to train an empa-
thetic transfer model. Our experimental results
demonstrate that PEPDS increases the rate of
persuasive responses with emotion and polite-
ness acknowledgement compared to the current
state-of-the-art dialogue models, while also en-
hancing the dialogue’s engagement and main-
taining the linguistic quality 1.

1 Introduction

A persuasive message can be initially analyzed by
distinguishing between the cause or stimulus the
persuadee is being persuaded for and the associated
attitude shown during persuasion. The message is
first presented to the persuadee; s/he pays attention

∗ Corresponding author: asif@iitp.ac.in.
1The resources and codes can be accessed at

PEPDS_ai_nlp_ml or at PEPDS_github.

to it and comprehends its contents. A persuadee’s
response depends partly on the information pro-
vided in the message and how one perceives or
interprets it. Empathy plays a crucial role in medi-
ating the persuasive effects as it evokes cognitive
and emotional processing conducive to persuasion.
Similarly, use of different polite tones as per con-
text may establish a better connection with the per-
suadee and engage them for a longer time in the
ongoing conversation. Therefore, for persuasion to
be effective, cause or stimulus of persuasion can
be encoded with empathy and politeness, ensur-
ing interactiveness, empathetic connection, right
tone as well as user engagement in a persuasive
message.

Figure 1: An example of persuasion with LM (Language
Model), PDS (LM fine-tuned with RL), and PEPDS
(PDS with empathetic transfer model).

A persuasive message consists of some form of
directives, hence having the potential for disagree-
ment or dissatisfaction thus may threaten the face
of recipients. Hence, messages employing differ-
ent politeness strategies such as positive politeness
and negative politeness as per user’s mood and
message content may emphasize users’ freedom
to get persuaded or not. For an example, in Fig-
ure 1, the strike through response is persuasive but
also consists of forceful language. Whereas, the
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green box response connects with the user empa-
thetically and also gives him/her freedom of choice
by adopting positive politeness strategy (i.e. by us-
ing non-imposing, face-saving language). Further,
to acknowledge underlying emotion in the content
an empathetic transfer model can transfer the non-
empathetic messages to empathetic messages as
shown in orange box of Figure 1.

Paucity of available data poses a challenge to
model a persuasive dialogue system in a super-
vised learning (SL) setting. Further, modelling
persuasion considering different attributes such as
politeness and empathy brings a greater challenge
due to its different dynamics with different users.
Therefore, a model which can learn from user in-
teractions itself in an ongoing dialogue is required.
Recently, researchers had widely used reinforce-
ment learning (RL) to reinforce dialogue agents to
approximate better policy as per user’s feedbacks
(Singh et al., 1999; Li et al., 2016; Chen et al., 2019;
Mesgar et al., 2021; Mishra et al., 2022). Hence,
to induce both, a consistent politeness-strategy and
empathy, we utilize goodness of both the frame-
works i.e. RL and SL, and propose a novel Polite-
Empathetic Persuasive Dialogue System (PEPDS).

To ensure persuasiveness, politeness-strategy
consistency, right emotion, dialogue coherence and
non-repetitiveness, a maximum likilehood estima-
tion loss (MLE) language based model is fine-tuned
with an RL loss considering five rewards viz. Per-
suasion, Emotion, Politeness-strategy Consistency,
Dialogue-coherence and Repetitiveness. In case
the generated persuasive messages are found to be
non-empathetic, a sequence-to-sequence (seq2seq)
based style transfer model is employed to make
them empathetic. In order to achieve this goal, we
prepare a new dataset named as ETP4G from the
EPP4G dataset. To obtain persuasion, emotion and
politeness-strategy consistency reward feedbacks,
first, we annotate PERSUASIONFORGOOD (P4G)
dataset (Wang et al., 2019) with the required emo-
tion and politeness-strategy labels, and obtain a
new dataset named as EPP4G. Then, considering
these three aspects, we fine-tune three RoBERTa-
large (Liu et al., 2019) based respective classifiers.

Recently, to generate persuasive responses, an
MLE-loss based language model is fine-tuned by
Shi et al. (2021) with an RL-loss without us-
ing any user simulators. To persuade the per-
suadee, they penalized the generation of repeti-
tive and inconsistent utterances. Our work dif-

fers from them in three aspects. Firstly, we con-
sider new aspects of politeness-strategy consis-
tency and emotion acknowledgement to force the
dialogue agent to be consistent as well as em-
pathetic. Second, a new reward function is de-
signed to ensure right persuasion strategy, emo-
tion acknowledgement, politeness-strategy con-
sistency, dialogue-coherence in an ongoing di-
alogue and non-repetition of similar responses.
Third, to connect with the user empathetically,
we transfer the non-empathetic responses to em-
pathetic ones. Lastly, we perform automatic and
human evaluation to assess the persuasiveness,
politeness-strategy consistency, empathy, response-
length, fluency, adequacy, consistency and non-
repetitiveness of the generated responses for our
proposed PEPDS. Following are the key contribu-
tions we present in this paper:

1. To have PERSUASIONFORGOOD dataset ut-
terances with politeness-strategy and empa-
thy information, we manually annotate it with
three different labels to obtain EPP4G and
ETP4G datasets, respectively.

2. We build an empathetic transfer model by uti-
lizing pre-trained and fine-tuned transformer
models.

3. We propose a polite empathetic persuasive
dialogue system (PEPDS) by designing an
efficient reward function to ensure politeness-
strategy consistency, persuasiveness, emotion
acknowledgement, dialogue-coherence and
non-repetitiveness.

4. We perform detailed empirical evaluation con-
sidering automatic and human evaluation to
demonstrate robustness of our proposed sys-
tem PEPDS.

2 Related Work

Recent research on personalised conversational
agents shows that incorporating various human-
oriented conversational strategies can have a signif-
icant impact on the user responses and make the
conversations more engaging (Mazare et al., 2018;
Kocaballi et al., 2019; Wang et al., 2019; Dutt et al.,
2020; Song et al., 2021). These dialogue agents
can better acknowledge the user’s state to adapt
themselves as per user’s need. For instance, Bert-
ero et al. (2016) tries to recognize user emotions
in real-time in an interactive dialogue system. Shi

425



and Yu (2018) builds an effective dialogue system
considering user’s sentiment information, whereas
Firdaus et al. (2020) utilizes multimodal informa-
tion to generate sentiment and emotion controlled
responses. Golchha et al. (2019) induces courteous
behaviour in customer care responses. Similarly,
Mishra et al. (2022) designed three politeness based
rewards to reinforce polite responses in an ongo-
ing task-oriented dialogue. Due to subtle depen-
dency between these user-targeted personalization
techniques such as politeness-strategy, empathy or
sentiment, and persuasion, we focus on incorporat-
ing politeness-strategy consistency and empathy to
generate more persuasive and engaging utterances.

Historically, different persuasion models have
been proposed, such as Petty and Cacioppo’s Elab-
oration Likelihood Model (ELM) (Petty and Ca-
cioppo, 1986) and Friestad and Wright’s Persuasion
Knowledge Model (PKM) (Friestad and Wright,
1994). This indicates that a person’s persuasion
may depend on several factors, such as the con-
tent of the message, context, common sense knowl-
edge and scientific knowledge. Similarly, Dijkstra
(2008) states that personal factor consideration with
informative content can enhance the quality of per-
suasive messages. Bohner et al. (2002); Sparks
and Areni (2002, 2008) point out that the language
employed in persuasive messages can impact both
perceptions of the persuader as well as the message
conveyed. Similarly, Brown and Levinson (1978);
Brown et al. (1987) in their politeness theory points
out that persuasive messages in the absence of in-
direct or face-saving language may commensurate
threat in the face of recipients.

Recent research studies have started focusing on
building persuasive dialogue agents by consider-
ing different aspects, such as persuasion strategies
(Wang et al., 2019) and resistive strategies (Dutt
et al., 2021). Shi et al. (2020) conducted an online
study considering 790 participants to check if they
can be persuaded or not by a chatbot. Further, the
availability of transformer based pre-trained lan-
guage models has led the researchers to train style
transfer even in the absence of parallel data (Yang
et al., 2018; Xu et al., 2018; He et al., 2020; Goyal
et al., 2021; Lai et al., 2021; Malmi et al., 2020; Jin
et al., 2022). Our current method of transferring
non-empathetic utterance to empathetic is based
on the prior technique proposed in (Krishna et al.,
2020).

Recently, two MLE-loss based language mod-

els - one for persuadee and one for persuader are
jointly trained to generate persuasive responses
(Wu et al., 2021). Shi et al. (2021) fine-tunes a
language model in RL-setting to persuade with
non-repetitive and consistent responses. In con-
trast to the fact that persuasion encompasses a vast
domain space with different associated attitudes,
these research studies either concentrated on pre-
dicting persuasion strategy or generating persuasive
responses alone. Persuasion alone cannot ensure
user engagement; a dialogue agent should be able
to adapt to different associated attitudes as per rap-
port built with the user. Therefore, our work here
focuses on adapting different politeness strategies
as per user attitudes and generating empathetic and
engaging persuasive dialogues. To the best of our
knowledge, no previous study has incorporated po-
liteness strategies to build a persuasive dialogue
system.

3 Methodology

A persuasive dialogue d =
{uer1 , uee1 , uer2 , uee2 , ..., uerT−1, ueeT−1} consists
of T − 1-turns, where ueri and ueei represents the
persuader’s and persuadee’s utterance, respectively,
at ith turn (1 < i <= T − 1). Considering this
ongoing dialogue as a context, our goal is to
generate an adequate dialogue coherent persuader’s
utterance ueeT = {t1, t2, ..., tr} at turn T with r
number of tokens. To achieve this goal, first, an
MLE-loss based language model is fine-tuned with
an RL-loss by designing an efficient reward func-
tion to generate rich emotion acknowledged and
politeness-strategy consistent persuasive responses.
On generating the non-empathetic utterances, it is
passed through an empathetic transfer model to
transfer to an empathetic utterance.

3.1 Classifiers

All the four classifiers, viz. persuasion strategy,
emotion, politeness-strategy and empathy are built
by fine-tuning RoBERTa-large (Liu et al., 2019)
pre-trained model. Persuasion strategy, Emotion
and Politeness strategy classifiers are used to pro-
vide reward feedbacks, whereas empathy clas-
sifier is used to inform if the generated utter-
ance is empathetic or non-empathetic. In a di-
alogue, for m number of persuader’s utterance,
each utterance has four labels, viz. politeness-
strategy pos = {posl1, posl2, ..., poslm}, emo-
tion emo = {emol1, emol2, ..., emolm} and per-
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suasion strategy ps = {psl1, psl2, ..., pslm} and
em = {eml

1, em
l
2, ..., em

l
m}. The sets POS =

{0, 1, 2}, EMO = {emol1 , emol2 , ..., emoln2}
PS = {psl1 , psl2 , ..., psln1} and EMP = {0, 1}
give the different classes for each of the following:
politeness-strategy, emotion, persuasion-strategy
and empathy, where n1 and n2 denote the number
of persuasion strategy and emotion labels. Due
to space restrictions, we provide further details in
Section A.1 of the appendix.

3.2 Empathetic Transfer Model

We build the Empathetic Transfer (ET) model,
based on BART (Lewis et al., 2020), following
a standard seq2seq transformer based architec-
ture. It comprises of a bidirectional encoder (like,
BERT) and a left-to-right decoder (like, GPT). As
in seq2seq transformers, each layer of BART’s de-
coder performs cross-attention over the final hid-
den layer of the encoder. To build our model, we
fine-tune the pre-trained BART-large (Lewis et al.,
2020). As BART comprises of an auto-regressive
decoder, it can be directly fine-tuned in the form of
a sequence-to-sequence problem, where the input
text corresponds to a non-empathetic utterance and
the output corresponds to an empathetic utterance.
The model is trained in an end-to-end fashion in
two steps. First, the input text is corrupted using an
arbitrary noising function. Second, it optimises a
reconstruction loss i.e. cross-entropy between the
decoder’s output and the ground truth output.

3.3 Reinforcement Learning Fine Tuning

An MLE-based language model generates n-
candidate responses for a given input. These candi-
dates are evaluated in terms of quality with respect
to gold human response using the designed reward
function. The candidates with the right persuasion,
emotion, and politeness strategies are rewarded,
while non-coherent and repetitive utterances are pe-
nalized. The RL-system is trained using the prox-
imal policy optimization (PPO) (Schulman et al.,
2017) method to achieve optimal policy.
Reward: To capture each aspect of the persuasion,
underlying emotion, politeness-strategy consis-
tency, dialogue-coherence and non-repetitiveness,
a single reward function R is designed consisting
of all the four sub-rewards: R1 for persuasion,
R2 for emotion, R3 for politeness-strategy consis-
tency, R4 for dialogue coherence and R5 for non-
repetitiveness. The reward, R can be expressed as

a weighted sum of all these four sub-rewards.

R = γ1R1 + γ2R2 + γ3R3 + γ4R4 + γ4R5 (1)

Persuasion, Emotion and Politeness-Strategy
Consistency: Persuasion strategy (R1), emotion
(R2) and politeness-strategy (R3) reward feed-
backs are achieved by passing generated utter-
ance rT through persuasion strategy, emotion and
politeness-strategy classifiers, respectively. Then,
each of the three predicted labels is compared with
the respective gold human response label, and the
candidates with matching label are rewarded.

R1 = Pps(uerT )− β
∑

i∈S
Ppsi(rT ) (2)

R2 = Pemo(uerT )− β
∑

i∈S
Pemoi(rT ) (3)

R3 = Ppos(uerT )− β
∑

i∈S
Pposi(rT ) (4)

where Pps(uerT ), Pemo(uerT ) and Ppos(uerT ) de-
note the persuasion, emotion and politeness-
strategy probabilities of the gold response uerT .
The Ppsi(rT ), Pemoi(rT ) and Pposi(rT ) denotes
the predicted persuasion, emotion and politeness-
strategy probabilities of the generated response rT ,
and i ∈ S with S = {l1, l2, ..., ln} is the set of all
the classes respective to persuasion strategy and
politeness-strategy. β is a scalar value 2 acting as
a penalization factor, i.e. increasing β will result
into greater penalization of the generated response.
Dialogue-coherence Reward: In order to force
the agent to generate human-like responses in an
ongoing dialogue, the Meteor score (Banerjee and
Lavie, 2005) is calculated between the generated
response rT (hypothesis) and the gold human re-
sponse pgrt (reference). The more the meteor score
is the more the generated utterance is semantically
similar to the gold human response.

R4 =MET (rT , pg
r
t ) (5)

Meteor score is selected as it shows high correla-
tion with human judgement in machine translation
tasks (Banerjee and Lavie, 2005) by leveraging
WordNet, in case an exact match of tokens is not
found (Castillo and Estrella, 2012). This leads to
better generalization as language model tend to gen-
erate semantically similar responses but different
in terms of morphemes.

2The value of β is taken as greater than or equal to 1
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Figure 2: A skeleton of the overall proposed system PEPDS. First, it is initialised with MLE-loss based language
model (LM) parameters pθ. Second, this trained LM is fine-tuned, considering RL-loss to build a persuasive dialogue
system (PDS). Lastly, PEPDS using the Empathetic Transfer model generates empathetic utterances corresponding
to non-empathetic generated utterances by PDS.

Repetitiveness Reward: It is found that repeti-
tions usually happens only on the lexical level in
this task (Shi et al., 2021). Therefore, to penalize
the repetitions of same responses in a dialogue we
use Jaccard similarity score between the previous
generated rT−1 and current generated response rT .

R5 =
rT−1 ∩ rT
rT−1 ∪ rT

(6)

Policy: In an RL framework, a policy models
the agent’s action selection as a probability map-
ping function. Hence, policy Pθ representing the
probability of generating an utterance r consisting
of L tokens can be formulated as:

Pθ(r1:L|x) =
L∏

l=0

Pθ(rl|y<l, x) (7)

Proximal Policy Optimisation: To ensure low
variance, proximal policy optimisation (PPO)
method (Schulman et al., 2017) is chosen to up-
date the policy at each step. It updates an existing
policy to seek improvement on certain parameters
such that the old policy is not too different from the
new policy. Policy optimisation mainly comprises
of three steps. First, to maximize the expected re-
ward, gradient ascent is applied on loss function
J(θ),

∇θJ(θ) = Er∼Pθ [∇θlogPθ(r)Âr] (8)

Second, PPO restricts large deviations from the
old policy in the above equation, by replacing the
log term with an importance sampling term with

clipping to prevent catastrophic forgetting. Here,
the clipped variant of PPO neither have any KL-
divergence term in the objective function nor any
constraint instead, it relies on specialized clipping
in the objective function. It is formulated as given
below:

LCLIP(θ) = Ê[min(prr(θ)Âr, clip(pry(θ),

1− ε, 1 + ε)Âr)]

Here, prr(θ) = Pnewθ /Poldθ denotes the proba-
bility ratio of generating a response between the
new and old policies. Âr gives the estimated advan-
tage which, here equals to the normalized rewards
and ε represents the clipping range. Lastly, param-
eters are updated using the following steps:

θk+1 = argmax
θ

E
s,a∼Pθk

[LCLIP] (9)

3.4 Proposed Method

We employ the attributes of emotion and politeness-
strategy consistency to control the agent to gener-
ate engaging, polite, emotionally acknowledged,
and persuading responses. First, we fine-tune an
MLE-based language model, ARDM, in an RL set-
ting considering five rewards. Then, we use this
trained model to generate responses at inference
time which are transferred to empathetic responses
by an auto-regressive seq2seq model. The overall
architecture of the proposed system is shown in
Figure 2.
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Dataset Number of utterances
All Persuader’s Persuadee train eval test

P4G (to train LM) 20932 10600 10332 16746 2093 2093
P4G (persuasion strategy) 10864 6018 4846 4814 602 602
EPP4G (emotion) 4000 4000 - 3200 400 400
EPP4G (politeness-strategy) 5300 5300 - 4240 530 530
ETP4G (empathetic transfer) 16722 16722 - 13378 1672 1672

Table 1: Data statistics of all datasets. Here, train, eval and test correspond to the number of utterances used to
train, validate and test the respective models. Further ’-’ signifies that either persuadee or persuader’s role is not
considered or that role’s utterances are absent in the dataset.

3.4.1 Baselines
We define the following baselines in our current
work.
ARDM: To model both persuadee and persuader
separately, ARDM jointly trains two GPT-2 (Rad-
ford et al., 2019) models. This model has reported
to have achieved good performance levels (Wu
et al., 2021). The RL-model is initialized with
pθ parameters of the ARDM model.
RFI: To learn policy directly from the data, it fine-
tunes the ARDM in an RL-framework. Then using
the response filter, response detector and response
imitator, it selects the best response out of all the
available candidate responses (Shi et al., 2021).
RFI achieved state-of-the-art results considering
ARDM as baseline. (Shi et al., 2021).

4 Datasets and Experiments

The datasets utilised in our studies are introduced in
Section 4.1. In Section 4.2, implementation details
of the proposed RL-based system are discussed.
Due to space constraints, the classifiers’ and empa-
thetic transfer model’s implementation details are
provided in Section A.3 of the appendix. Finally,
Section 4.3 describes the specifics of automatic and
human evaluation metrics.

4.1 Datasets

To design our experiments, we use PERSUASION-
FORGOOD (P4G) dataset. It consists of 1,017 per-
suasive conversations for donation to a charity or-
ganization Save the Children. These conversations
are carried out between two humans, where one
acted as a persuadee and the other as persuader.
Each of the persuader’s utterances in P4G dataset
is grounded in one of the 11 persuasion strategies.

To have emotion and politeness strategy informa-
tion for all utterances in PERSUASIONFORGOOD,
we annotate it with both of these aspects and name
it as EPP4G dataset. Then, we prepare a empa-
thetic transfer dataset - ETP4G utilising the an-

notated EPP4G dataset. Due to space restrictions,
annotation details for both the datasets are provided
in Section A.2 of appendix. All the datasets statis-
tics can be found in Table 1.

We also use the P4G dataset to train two clas-
sifiers: a persuasion strategy classifier and a per-
suasive binary classifier. While the former is used
to provide persuasion reward, the latter is used to
evaluate persuasiveness of generated utterance.

4.2 Implementation Details

To model both the persuader and the persuadee,
GPT-2 medium model (Radford et al., 2019) is
employed to train the language model. This lan-
guage model is fine-tuned in an RL-setting, by
experimenting with different candidate responses
i.e. n = 2, 3, 4, 5, 10. Finally, n = 2 is
chosen as the final value. Further, the gener-
ated candidates are decoded adopting nucleus
sampling (Holtzman et al., 2019) with temper-
ature T = 0.8 and probability p = 0.9. To
train the proposed RL system human_reward =
10, max_candidate_length = 50, and AdamW
(Loshchilov and Hutter, 2017) optimizer is chosen
with a learning rate of α = 2e−05 and ε = 0.2. Af-
ter performing several experiments with different
values of the reward weights, 0.3, 0.3, 0.2, 0.1, 0.1
are chosen as the final weights for γ1, γ2, γ3, γ4
and γ5, respectively (detailed weight optimization
is given in Section A.4 of the appendix). Lastly, for
persuasion, emotion and politeness-strategy consis-
tency rewards, the penalization factor β is set to
2.

4.3 Evaluation Metrics

We evaluate our proposed system considering both
automatic and human evaluation metrics.

All the four classifiers are evaluated in terms of
Weighted Accuracy (W-ACC) and Macro-F1 (to
account for imbalanced class distribution). Further,
empathetic transfer model is evaluated in terms of
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Perplexity (PPL) (Brown et al., 1992), Bleu score
(BLEU) (Papineni et al., 2002), METEOR score
(MET) (Banerjee and Lavie, 2005), Rogue-2 F-1
score (R-2-F1) (Lin and Hovy, 2003), NIST score
(Doddington, 2002) (NIST) and Empathy Accu-
racy (EM-ACC). The Empathetic Transfer Model
is a sequence-to-sequence model, hence its per-
formance has also been assessed using the BLEU
metric, which measures how well the expected re-
sponse correlates with the actual response. The
anticipated response might be semantically same,
but it might differ from the ground truth response in
terms of the words that are true. To be sure of this,
we additionally incorporate the METEOR score
while evaluating the model.

Since the goal of the proposed system is to gen-
erate a persuasive response effectively, we evaluate
our system in terms of four metrics, viz. PerStr
- percentage of the utterances generated with per-
suasion strategy, PolSt - percentage of utterances
generated with consistent politeness strategy as per
ongoing dialogue, Emp - percentage of empathetic
utterance generated, PPL - perplexity of the dia-
logue agent and LEN - number of tokens generated
in an utterance. PerStr and Emp are evaluated
by building two binary classifiers, i.e. a persua-
sive classifier predicts if a response comprises of
persuasion strategy or not, and empathy classifier
predicts if it is empathetic or not. In contrast to
the persuasion strategy classifier, which predicts
one of the 11 persuasion strategies, the binary per-
suasive classifier predicts the persuasiveness of the
response as 0 or 1. PolStr is evaluated by compar-
ing the predicted politeness strategy with the gold
response politeness strategy.

We perform human evaluation by engaging three
human experts (regular employees in our research
group) with postgraduate experience and having
proficiency in a similar task. They were asked to
evaluate 40 generated persuasive dialogues in terms
of Per, Emp - checking persuasiveness and empa-
thy of the generated dialogue; DonPr - computing
percentage of time people donated; Const, Adeq,
Fluen and N-Rep to evaluate if the generated ut-
terances are consistent (with the dialogue context),
adequate, linguistically fluent and non-repetitive
in nature 3. Lastly, in order to take politeness-
strategy consistency into account, we also evaluate
our proposed model based on Pol-Con - denoting

3All metrics were calculated on 1-5 scale, denoting low to
high such as Per = 1 denotes not-persuasive.

politeness-strategy consistency of persuader in an
ongoing dialogue on 1-3 scale 4. To get final values
for each of the evaluation metric, the average of all
three ratings given by human evaluators is taken 5.

5 Results and Analysis

We first analyse the results of our sub-modules used
in our proposed system viz. all the four classifiers
and the empathetic transfer model. Then, we anal-
yse our proposed system by comparing it with two
baselines: ARDM (MLE loss based model) (Wu
et al., 2021) and RFI (DialGAIL with response
filter and response imitator) (Shi et al., 2021). Au-
tomatic and human evaluation results of our pro-
posed system are shown in Table 4 and Table 5,
respectively.
Classifiers: Evaluation results of all the four clas-
sifiers are shown in Table 2. It can be observed that
all the four classifiers achieve significantly good
scores in terms of both W-ACC and Macro-F1. Fur-
ther, it is also observed that RoBERTa-large (Liu
et al., 2019) performs better than BERT-large (Ken-
ton and Toutanova, 2019) on both the metrics.
Empathetic transfer model: Evaluation results of
our proposed empathetic transfer model are shown
in Table 3. It can be seen that BART-large (Lewis
et al., 2020) performs better in terms of EM-ACC
with a margin of 3% as compared to BERT-BERT
seq2seq model. A good EM-ACC score implies
that our model can transfer the politeness of the
given utterances. Further, it can also be inferred
from the scores of PPL, MET and R-2-F1, that
the generated politeness transferred utterances are
fluent, semantically same, but different in expres-
sions.
Automatic Evaluation: In Table 4, it can be ob-
served that our proposed model, PEPDS performs
better as compared to ARDM and RFI in terms
of PerStr with a significant difference of 10.72
and 8.78 points, respectively. It may be because
persuasion, emotion, and politeness-strategy con-
sistency rewards force the RL-agent to generate
more persuasive responses grounded in the correct
emotion and politeness strategy. It should also be
noticed that PDS achieves lower perplexity (PPL)
than both ARDM and RFI, with a difference of 1.39
and 1.32 points, respectively, showcasing the better

41 denotes politeness strategy inconsistent response, 2
denotes acceptable response, 3 denotes politeness-strategy
consistent response.

5An inter-annotator agreement ratio of 73.7% is found
between all three human evaluators.
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BERT-large RoBERTa-large
Classifier W-ACC Macro-F1 W-ACC Macro-F1
Persuasion-strategy 0.718 0.602 0.732 0.623
Emotion 0.647 0.640 0.671 0.670
Politeness Strategy 0.870 0.852 0.901 0.889
Empathy 0.833 0.830 0.851 0.846

Table 2: Evaluation results of the Classifiers

Model EM-ACC PPL BLEU NIST MET R-2 F1
BERT-BERT 0.862 9.82 0.032 0.164 0.401 0.281
BART-large 0.894 8.71 0.041 0.182 0.442 0.310

Table 3: Evaluation results of empathetic transfer model

Model PerStr PolSt Emp PPL LEN
ARDM (Wu et al., 2021) 49.2% - - 12.45 15.03
RFI (Shi et al., 2021) 51.2% - - 12.38 19.36
PDS 59.98% 41.117% 67.26% 11.06 15.73
PEPDS 59.98% 41.117% 78.1% 11.06 16.87

Table 4: Results of automatic evaluation. Here, PEPDS refers to our proposed system consisting of empathetic
transfer model. Here, PDS refers to only the fine-tuned RL-system on rewards.

probability distribution approximation. We do not
choose to show perplexity of PEPDS as it transfers
empathy of the generated utterance by PDS using
the empathetic transfer model whose PPL score
of 8.71 is shown in 3. Further, the LEN value of
16.87 indicates that the PEPDS generates longer
responses as compared to PDS and ARDM, with
lengths of 15.03 and 15.73, respectively, whereas
RFI yields the best score of all the four. It could
be because repetitive reward in PEPDS penalizes
the repetitive tokens, resulting in shorter responses
than RFI, but the empathetic transfer in PEPDS re-
sults in more extended responses than PDS. PolSt
score of 41.117% shows that politeness-strategy
consistency reward encourages PEPDS to gener-
ate the utterances, adapting to the right politeness
strategy. Lastly, Emp score of 78.1% shows that
PEPDS can transfer the empathy in utterances.

Human Evaluation: It can be observed in Table
5 that PEPDS obtains better values for all human
evaluation performance measures as compared to
the baselines, ARDM and RFI. Scores of Const:
4.56, Fluen: 4.78, Adeq: 3.84 and N-Rep:3.78 im-
ply that dialogue-coherence and non-repetitiveness
rewards have played a critical role in generating
consistent, fluent, adequate and non-repetitive ut-
terances. Further, in terms of Per, Emp and Pol-
Con, PEPDS attains the scores of 3.77, 4.21, and

4.03, respectively. Hence, it can be inferred that
adding empathy and politeness factor may engage
users more in the dialogue. Lastly, it is seen that
67% times users agreed to donate, depicting that
our model can effectively connect with the end-
user and persuade their donation. More detailed
discussions are included in the section A.5 of the
appendix.

5.1 Ablation Study

To find the importance of each of the rewards, we
experiment with various sets of weights (γ1, γ2,
γ3, γ4 and γ5) by excluding one reward at a time.
These rewards are validated on a 10% held out data.
The ablation study to showcase the importance of
each weight is shown in Table 6. It can be observed
from the table that better perplexity is obtained
when all the five rewards are considered, whereas
each of its removal affects the perplexity value (i.e.
increase in the value). It is also to be noted that per-
suasion reward γ1 helps achieve better perplexity
when considered with emotion γ2 and politeness-
strategy consistency rewards γ2. It can be because
aspects of politeness and emotion force the agent to
generate more engaging utterances with right tone.
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Model Per Emp Pol-St DonPr Const Fluen Adeq N-Rep
ARDM 2.33 - - 0.50 3.95 4.17 - 3.17
RFI 2.98 - - 0.61 4.17 4.41 - 3.50
PDS 3.39 3.91 3.86 0.64 4.48 4.65 3.51 3.72
PEPDS 3.77 4.21 4.03 0.67 4.56 4.78 3.84 3.78

Table 5: Results of human evaluation

ABLATION STUDY
γ1 γ2 γ3 γ4 γ5 PPL
0 0 0 0.5 0.5 11.3100
0 0 0.8 0.1 0.1 11.2830
0 0.8 0 0.1 0.1 11.3123
0.8 0 0 0.1 0.1 11.1164
0.3 0.3 0.2 0.1 0.1 11.0671

Table 6: Ablation study to showcase the effectiveness
of all the five sub-rewards

6 Conclusion

In persuasive conversations, even responses with
factual arguments and the right cause may not be
able to persuade due to a lack of polite and em-
pathetic tone. Therefore, to ensure these two as-
pects in persuasive messages, we first fine-tune an
MLE loss language model with an RL-loss func-
tion consisting of five rewards viz. persuasion,
emotion, politeness-strategy consistency, dialogue-
coherence, and non-repetitiveness. Then generated
non-empathetic utterances are transferred using an
auto-regressive seq2seq model to empathetic ut-
terances. Detailed empirical evaluation concern-
ing both automatic and human evaluation metrics
demonstrate that our proposed model, PEPDS can
achieve state-of-the-art performance compared to
the existing baselines and can retain both the as-
pects of emotion and politeness-strategy consis-
tency at par in an ongoing dialogue. Our results
also conclude that adding the empathetic transfer
model helps the proposed model better facilitate
empathy in persuasive responses.

We would like to see more into the personaliza-
tion aspects in the future to model persuasion, such
as likeness, authority, demography, etc.

7 Ethical considerations

In this work, persuasion is modelled using a pub-
licly available dataset. We adhered to the policies
of the dataset and have not violated any copyright
issues. Dataset which has been used to model polite

empathetic persuasion will be made available only
with an official agreement with restriction that data
would be used only for research works. The dataset
is annotated by recruiting three annotators who
were paid as per our university norms. We have
also got our data annotation process verified by our
university review board. Further, persuasion is an
intricate process which can be used for personal
gain. Therefore, to develop a persuasive conversa-
tional AI an ethical intention must be taken into
account. In this work, we choose to style persuasive
dialogue generation with politeness and empathy
for social work of donation to a charity organiza-
tion utilizing PERSUASIONFORGOOD dataset.

8 Acknowledgement

Kshtij Mishra gratefully acknowledge the assis-
tance of the Indian government’s "Prime Minis-
ters Research Fellowship (PMRF) Program." Au-
thors also acknowledge the partial support from
the project “Sevak-An Intelligent Indian Language
Chatbot“, sponsored by Imprint, SERB..

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu,
Yan Wan, Ricky Ho Yin Chan, and Pascale Fung.
2016. Real-time speech emotion and sentiment
recognition for interactive dialogue systems. In
Proceedings of the 2016 conference on empirical
methods in natural language processing, pages 1042–
1047.

Gerd Bohner, Markus Ruder, and Hans-Peter Erb. 2002.
When expertise backfires: Contrast and assimilation
effects in persuasion. British Journal of Social Psy-
chology, 41(4):495–519.

Penelope Brown and Stephen C Levinson. 1978. Uni-
versals in language usage: Politeness phenomena. In

432



Questions and politeness: Strategies in social inter-
action, pages 56–311. Cambridge University Press.

Penelope Brown, Stephen C Levinson, and Stephen C
Levinson. 1987. Politeness: Some universals in lan-
guage usage, volume 4. Cambridge university press.

Peter F Brown, Stephen A Della Pietra, Vincent J
Della Pietra, Jennifer C Lai, and Robert L Mercer.
1992. An estimate of an upper bound for the entropy
of english. Computational Linguistics, 18(1):31–40.

Julio Castillo and Paula Estrella. 2012. Semantic textual
similarity for mt evaluation. In Proceedings of the
Seventh Workshop on Statistical Machine Translation,
pages 52–58.

Lu Chen, Zhi Chen, Bowen Tan, Sishan Long, Mil-
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A APPENDICES

A.1 Classifiers

To train the classifiers, first contextual representa-
tions c<s> are obtained by feeding sampled batches
of persuader’s utterances to the classifier. These
contextual representations c<s> are then passed
through a feed forward network to output a vector
containing a scalar value for each of the considered
classes. Lastly, a softmax is applied on this vector
to obtain the resultant vector having probability val-
ues for each class. The highest probability value in
the resultant vector represents the predicted class
for each of the utterances.

A.2 Dataset Annotation Details

EPP4G: First, we annotate the P4G datset with
emotions. To achieve this task we used EMPA-
THETICDIALOGUES (ED) (Rashkin et al., 2019)
dataset consisting of approximately 25k conver-
sations grounded in 32 emotions. Due to im-
balanced class distribution in EMPATHETICDIA-
LOGUES dataset, we first boil down the 32 labels
to 23 labels by merging similar emotion labels. De-
tails of the merged emotion labels can be seen in
Table 7 6. Then, we train a RoBERTa-large (Liu
et al., 2019) based classifier which is used to pre-
dict emotion labels for PERSUASIONFORGOOD

dataset. These predicted labels are cross-verified
manually for a sample of 4000 utterances by three
annotators proficient in English communicative
skills 7. They check the trueness of the predicted
emotion labels in persuasive context following the
EMPATHETICDIALOGUES dataset guidelines to in-
fer their definitions. All three annotators annotate
the mis-classified utterances with right emotion
labels for each utterance. A reliable multi-rater
Kappa (McHugh, 2012) agreement ratio of 72.1%
is found between all three annotators annotations.

In order to avoid inevitable face threatening acts,
persuader may adopt any one of the different polite-
ness strategies viz. positive politeness, negative po-
liteness or off-record (Brown et al., 1987). We ask
same three annotators to annotate the approximatey
5300 persuader’s utterances with one of these three
politeness strategies. Positive politeness strategies
are generally used to make the persuadee feel good
about themselves or their interests with a implicit

6The emotion classifier with 32 and 23 labels gives the
accuracy scores of 58.17% and 67.44% respectively.

7All three annotators were post-graduate qualified and
were paid as per our university norms.

known friendly or equal relationship between per-
suadee and persuader. Negative politeness strategy
try to avoid imposition on the persuadee and pre-
sume that there is no known relationship between
persuadee and persuader. Off-record strategy tries
to give some general information or uses indirect
language and relies on the persuadee’s interpreta-
tion for the information that has been conveyed.
Annotators were asked to follow these definitions
as per guidelines of Brown and Levinson’s polite-
ness theory (Brown et al., 1987) to annotate all
the 5300 persuader’s utterances. Lastly, for each
utterance, maximum voted politeness strategy is
chosen out of three labels. In these annotations
also, a good multi-rater kappa agreement ratio of
78% is found. We name this P4G dataset annotated
with right emotion and politeness strategy labels as
EPP4G dataset.

Emotion_1 Emotion_2 Merged_Emotion
angry furious angry
sad devastated sad
afraid terrified afraid
guilty ashamed guilty
apprehensive anticipating apprehensive
sentimental nostalgic sentimental
surprised excited surprised
annoyed disgusted annoyed
trusting faithful trusting

Table 7: Emotion classes after merging

ETP4G: To build empathetic transfer model, we
required a seq2seq dataset consisting of non-
empathetic-to-empathetic utterances. To prepare
such a dataset, we follow (Krishna et al., 2020)
approach. First, we ask the same three annotators
to boil down these 23 emotion labels to only two
labels i.e. empathetic and non-empathetic. We ask
them to analyse all the 23 emotion labels in EPP4G
dataset utterances and discriminate the empathetic
and non-empathetic labels to annotate them with
respective label. Second, all empathetic utterances
are now filtered. It is found that out of 4000 utter-
ances only 817 were non-empathetic and rest 3181
utterances were empathetic. This led to highly
imbalanced class distribution 8. Hence, we over-
sample each of the non-empathetic utterance using
forward-backward machine translation (English→
Chinese→ English) with two corresponding simi-
lar responses. Hence now, we have 847×3 = 2451
non-empathetic utterances and 3181 empathetic

8A RoBERTa-large (Liu et al., 2019) based empathetic
classifier trained on this highly imbalanced dataset yielded the
accuracy of 82.5% and macro-f1 of 73.0%
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Dataset #Utterances Oversampling Details
EMP4G 5632

1. Oversample non-empathetic utterances

2. Use forward-backward machine translation to get more number of utterances

3. #non-empathetic utterances : 817× 3 = 2451 utterances

ETP4G 16722

1. Train a seq2seq paraphrase transformer based model on PARANMT-filtered (Krishna
et al., 2020)

2. Filter the empathetic utterances from empathetic P4G dataset.

3. Through forward-backward machine translation increase the size of empathetic
utterances: 3181× 3 = 9543.

4. Pass these 9543 empathetic utterances to seq2seq paraphrase transformer based
model and get corresponding non-empathetic utterances.

5. Out of 9543 approx utterances, 3287 generated utterance were non-empathetic.

6. Increase the 3287 utterances employing forward-backward machine translation.

7. First, obtain two similar candidates for non-empathetic utterances keeping corre-
sponding empathetic utterances as the same, hence #seq2seq non-empathetic-to-
empathteic utterances: 3287× 3 = 9861. Second, keep non-empathetic utterances
same and obtain corresponding two similar candidates of empathetic utterances.
Hence, #utterances: 3287× 5 = 16722

Table 8: Empathetic transfer model dataset statistics and details

utterances 9. This dataset is named as EMP4G
dataset. Third, we train a BART-large seq2seq
paraphrase transformer model considering filtered
PARANMT dataset with approximately 75k utter-
ances (Krishna et al., 2020). Fourth, in EMP4G
dataset the number of empathetic utterances are
increased to 3181× 3 = 9543 using same forward-
backward machine translation. Now, we pass these
increased empathetic utterances to trained seq2seq
paraphrase transformer model and obtain the corre-
sponding non-empathetic or empathetic utterances
10. We considered only these 3,287 non-empathetic
utterances and corresponding empathetic utter-
ances to further increase them to 3287×5 = 16722
by employing forward-backward machine transla-
tion.

We call this dataset as ETP4G dataset whose
details are shown in Table 8. Lastly. these non-
empathetic utterances are considered as input and
corresponding empathetic utterances as output to
train the empathetic transfer model.

9A RoBERTa-large (Liu et al., 2019) based empathetic
classifier trained on this balanced empathetic dataset gave the
accuracy of 85.1% and macro-f1 of 84.6%

10Out of 9543 utterances, it was found that 3287 utterance
generated were non-empathetic

A.3 Implementation Details

We first used three models: persuasion strategy,
emotion and politeness-strategy classifiers to de-
sign reward feedback for our RL-agent and then
at inference time we use three models: empathetic
classifier and empathetic transfer model to generate
empathetic utterance.

A.3.1 Classifiers
All four classifiers are trained using transformer
based BERT-large: 24-layer, 1024-hidden units,
16-heads and 340M parameters (Kenton and
Toutanova, 2019) and Roberta-large: 24-layer,
1024-hidden units, 16-heads and 355M parame-
ters (Liu et al., 2019). For both the architectures,
we used batch size = 16 (experimented with 8, 16
also), epochs=2 learning_rate = 4e-5, optimizer =
AdamW, attention_dropout = 0.1 and activation =
gelu.

A.3.2 Empathetic Transfer Model
We use two seq2seq generation models: BERT-
BERT considering encoder and decoder both as
BERT (Kenton and Toutanova, 2019) and BART-
large having a BERT like encoder and GPT-2 like
decoder (Lewis et al., 2020). BART consists of
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24 layers, 1024 hidden units, 16 heads and 406M
parameters. We followed following configura-
tion to train our BART-based model: optimizer
= AdamW, learning_rate = 4e-5, activation = gelu,
attention_dropout = 0.1, repetition_penalty = 1.0
and max_seq_length = 128.

A.3.3 Device configurations details
To train transformer based classifiers, empathetic
transfer model and PEPDS, we used following de-
vice configurations:

• GPU: A100-PCIE-40GB.

• CUDA Support: CUDA 11.x (or later.

• Memory clock: 1215 MHz.

• Total board power: 250 W.

• GPU clocks: Base: 765 MHz, Boost: 1410
MHz.

• Memory Size: 40 GB.

• Memory Type: HBM2.

• Bus Width: 5120 bits.

A.4 Weight Optimization
In order to find the right combination of weights
for the reward function, we investigate with vari-
ous sets of weights (γ1, γ2, γ3, γ4 and γ5). These
rewards are validated on a 10% held out data. Fi-

REWARD WEIGHT OPTIMIZATION
γ1 γ2 γ3 γ4 γ5 PPL
0 0 0 0.5 0.5 11.3100
0 0 0.8 0.1 0.1 11.2830
0 0.8 0 0.1 0.1 11.3123
0.8 0 0 0.1 0.1 11.1164
0.3 0.3 0.2 0.1 0.1 11.0671

Keeping Emotion constant
0.1 0.1 0.6 0.1 0.1 11.0785
0.3 0.1 0.4 0.1 0.1 11.0737
0.4 0.1 0.3 0.1 0.1 11.0740
0.5 0.1 0.2 0.1 0.1 11.0738

Keeping Persuasion constant
0.2 0.3 0.3 0.1 0.1 11.0662
0.2 0.2 0.4 0.1 0.1 11.0697
0.1 0.2 0.5 0.1 0.1 11.0711
0.1 0.4 0.3 0.1 0.1 11.0813

Table 9: Weight Optimisation using different values of
γ

nally, the weight combination giving the highest
perplexity is chosen. Considered weights for opti-
mization is shown in Table 9. It can be observed
from table that better perplexity is obtained when
balance between all five rewards viz. persuasion,
emotion, politeness-strategy consistency, dialogue-
coherence and non-repetitiveness is taken into ac-
count showcasing the importance of each of the
rewards used. It can also be inferred that when
emotion and persuasion reward kept constant with
keeping a balance between all three rewards, the
PPL score varied near 11.07, showcasing the depen-
dency between all three rewards: persuasion, emo-
tion and politeness-strategy consistency. Whereas
when any of these three rewards are not taken into
account an abrupt drop in PPL score is seen.

A.5 Discussion
An example of user’s interaction with proposed
PEPDS and ARDM model is shown in Table 10.
It can be seen that the user gave better ratings in
terms of Per, Emp, Const, Fluen, Adeq, N-Rep to
PEPDS than the ARDM. It is also observed that our
proposed system is able to employ different persua-
sion strategies, such as Credibility Appeal, Emo-
tional Appeal, Foot-in-the-Door, Task-related En-
quiry and Self-Modelling as well as acknowledging
the underlying emotion like caring, trusting, senti-
mental etc. Further, user gave score to the Pol-St
metric as 3 which showcases that our model is able
to adapt right politeness strategy as per the context
of the dialogue. These results qualitatively shows
that PEPDS is able to generate richer, coherent,
engaging, right-emotion oriented and politeness-
strategy consistent responses. Further, it can also
be seen that once the non-empathetic response is
generated by PDS, PEPDS is able to generate much
more empathetic utterances utilising empathetic
transfer model.

Some limitations are also observed such as in
reply to utterances like ’That’s good, do they take
money orders or checks for donations?’, model
replies that ’You can choose any payment you’d like
to make. Any amount from $0 to all your payment’.
This can be due to the fact that defined reward
function is not able to cover the crucial aspects of
knowledge retainment, and grounding of valuable
information in utterances. Hence, we may need
knowledge grounding to generate better utterances.
Lastly, an another user interaction example with
PEPDS examples is given in Table 11.
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Speaker PEPDS model generated utterances (Per=5, Emp=3, Pol-St=3, Const=5, Fluen=5, Adeq=4 and N-rep=4)
PEPDS Hi. How are you doing today?
USER I am doing well! How about you?
PEPDS I am doing pretty well. thanks for asking! Let’s talk about donation to a charity organization.
USER Alright. What you want to talk about?
PEPDS Good morning. Would you like to donate to a charity called Save the Children?
USER I have heard of that group but I have never really thought about donating to it.

Have you heard about a charity organization Save the Children?
USER Only in name. I haven’t heard too much about it though. Can you tell me more?
PEPDS Save the Children is an international non-governmental organization that promotes children’s rights, provides relief and helps support

children in developing countries.
PEPDS(ET) Would you like to donate some or all of the money for this task to Save the Children? Save the children is an international non-governmental

organization that promotes children’s rights, provides relief and helps support children in developing countries.
USER That sounds like a good charity. I prefer to keep things closer to home though. In which countries do they operate. Are they active in India

too?
PEPDS Save the Children is a non-governmental organization that operations world wide raising funds through partners and donations to fight for

children’s rights and provide relief and support for children in developing countries.
PEPDS(ET) Sure, I can tell you about that. Save the Children is a non-governmental organization that operates world wide raising funds through partners

and donations to fight for children’s rights and provide relief and support for children in developing countries.
USER It sounds good. Stiil, I’ve to think about it.
PEPDS Have you ever donated to any charities before?
PEPDS(ET) That is understandable. Have you ever donated to any charity before?
USER I have, I have been one for about 2 years now. I come on every once and a while and do it part time. I like to call it picking up nickels and

dimes. How about yourself?
PEPDS I have. I usually donate at least $2 every month. Do you feel the same way?
USER Yes, monthly or yearly I try to donate. Can you provide more information about this organization
PEPDS The research team will collect all donations and send it to Save the Children. You can also donate directly to this organization by directly

clicking the Save the Children button on your web browser.
PEPDS(ET) The research team will collect all donations and send them to Save the Children. You can also donate directly to this organization by visiting

the Save the Children URL, or you can donate through the link on your side of the website.
USER That’s good, do they take money orders or checks for donations?
PEPDS You can choose any payment you’d like to make. Any amount from $0 to all your payment.
USER Ok, well I think I could donate half my earnings to this.
PEPDS That’s a good idea. Thank you for your time and willingness to donate.
USER I think I’ll donate $1.
PEPDS Thank you so much. Have a nice day.
USER Good to talk to you.
Speaker ARDM model generated utterance (Per=2, Emp=2, Pol-St=2, Const=4, Fluen=4, Adeq=2 and N-rep=2)
ARDM Hello
USER Hello how are you doing?
ARDM Good, have you heard of the Save the Children charity?
USER No, I have not heard about them.
ARDM Are you familiar with it?
USER No I don’t know. Please tell me.
ARDM I am just asking you about Save the Children charity because the children are dying and the government is helping them.
USER Yes, I understand. That is very sad to hear. What we can do?
ARDM Do you know about children’s charities?
USER No, I do not know much about them.
ARDM Do you like to help children?
USER Definitely, I do like to help them.
ARDM Do you know children’s charities?
USER I have very little knowledge about them.
ARDM Do you know about save the children charity?
USER Like i said very less.
ARDM are you familiar with the charity?
USER Thank you very much, bye
ARDM I will ask you again later
USER thank you.

Table 10: An example of user interaction with our proposed PEPDS and ARDM. Yellow highlighted responses
show the responses with persuasion strategy.
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Speaker PEPDS model generated utterances (Per=5, Emp=4, Pol-St=3, Const=5, Fluen=5, Adeq=3 and N-rep=4)
PEPDS hi
PEPDS(ET) Hello, How are You?
USER Good Morning, how is it going?
PEPDS Very well thank you for asking
USER Good, What we are going to talk about?
PEPDS We are going to talk about a charity called Save the Children.
PEPDS(ET) We will talk about a charity called Save the Children. Have you heard of this charity before?
USER Yes, I may have probably not heard about them.
PEPDS they help children in developing countries like Syria and Uganda.
PEPDS(ET) They help children mainly in developing countries like Syria and Uganda.
USER Can you tell me more about the charity?
PEPDS save the children is an international non-governmental organization that promotes children’s rights, provides relief and helps support children

in developing countries.
PEPDS(ET) Sure, Save the Children is an international non-governmental organization that promotes children’s rights, provides relief and helps support

children in developing countries.
USER Alright, Good, What would you like from me in this regard?
PEPDS Well, I am going to ask you something. Would you like to help them out by donating some of your payment for this task to them?
USER Why you want me to donate for this task?
PEPDS Well, you know, there is a lot of poverty in the developing world.
USER Yes I think so, we are so involved in ourselves. What you suggest, What we can do?
PEPDS We can donate. This organization has done quite a lot for the children in war torn areas. They help with education, health, safety, etc
PEPDS(ET) We can donate for the children’s in need. They help children in war torn areas with education, health care, safety, etc.
USER Sure. What can we do to help these children?
PEPDS Okay, Well, we could donate a portion of the payment you are going to get from this task to them.
PEPDS(ET) Okay, well if you decide you would like to donate any of the proceeds from this task to them, we can donate a portion of the payment you

will get from that portion.
USER I think it is very important to help people in need whenever one can but is this organization legit?
PEPDS Yes, this organization is completely legit. They have been around for years and I have been working with them for the past two years now.
USER Oh they are doing god’s work. Which countries do they operate in?
PEPDS I think most of them are in Africa. They are actually based out of Nairobi, Kenya. I have been working with them for the past two years now

and I have not heard anything but good things from them.
USER I am not sure if I will donate. I need more information about the charity.
PEPDS You are absolutely right to doubt. But, It is a great charity and it has helped save countless lives. It is a great cause, you can donate any

amount from $0 to all your payment for this task.
USER Can you tell me more about the charity?
PEPDS It is an international non-governmental organization that promotes children’s rights, provides relief and helps support children in developing

countries.
PEPDS(ET) It would be pleasure to tell you about it! it is an international non-governmental organization that promotes children’s rights, provides relief

and helps support children in developing countries.
USER Can you tell me how the money will be collected and where it will go?
PEPDS The research team will collect all donations and send it to Save the Children. Any amount of money you would like to donate will be very

greatly appreciated.
USER I’m not sure if should i donate?
PEPDS Do you really care about children?.
USER Yes, I do care a lot about them and love them.
PEPDS It is a great charity and every little bit helps. Your donation will help children in need and in this task, you can help them as well.
PEPDS(ET) That’s perfect. It is a great charity and every little bit helps. Your donation will help children in need and in this task, you can help them as

well.
USER Sure, I’ll donate. I can think of donating some of my earnings with this task.
PEPDS That’s great, I appreciate your donation. Thank you again for your help.
USER Yes, we should help as much as possible.
PEPDS How much amount do you like to donate to the charity?
PEPDS(ET) Yes, Great. How much would you like to donate to charity now?
USER 0.5$
PEPDS Okay that’s great. Thanks again for your time. Have a wonderful day.

Table 11: An example of user interaction with our proposed PEPDS. Yellow highlighted responses show the
responses with persuasion strategy.
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Abstract

Retrieval-based conversational systems learn to
rank response candidates for a given dialogue
context by computing the similarity between
their vector representations. However, train-
ing on a single textual form of the multi-turn
context limits the ability of a model to learn
representations that generalize to natural per-
turbations seen during inference. In this pa-
per we propose a framework that incorporates
augmented versions of a dialogue context into
the learning objective. We utilize contrastive
learning as an auxiliary objective to learn ro-
bust dialogue context representations that are
invariant to perturbations injected through the
augmentation method. We experiment with
four benchmark dialogue datasets and demon-
strate that our framework combines well with
existing augmentation methods and can signifi-
cantly improve over baseline BERT-based rank-
ing architectures. Furthermore, we propose a
novel data augmentation method, ConMix, that
adds token level perturbations through stochas-
tic mixing of tokens from other contexts in the
batch. We show that our proposed augmen-
tation method outperforms previous data aug-
mentation approaches, and provides dialogue
representations that are more robust to common
perturbations seen during inference.

1 Introduction

Conversational systems have gained immense re-
search attention in the past few years due to their
practical applications in building intelligent digital
assistants. In order to converse with humans in nat-
ural language, a conversational system needs to pro-
duce meaningful and contextual responses at every
turn of a dialogue. This is often accomplished by
a ranking model, the goal of which is to select the
most appropriate response among a set of curated
candidate responses (Lu et al., 2019; Mehri et al.,
2019; Henderson et al., 2019; Xu et al., 2021; Gu
et al., 2020; Whang et al., 2020; Han et al., 2021).

For practical applications a Bi-encoder model ar-
chitecture is often adopted, due to its computa-
tional efficiency (Humeau et al., 2019; Reimers
and Gurevych, 2019; Wu et al., 2020a; Hender-
son et al., 2019). In this approach, the dialogue
context and candidate responses are encoded into
latent vectors separately, and the ranking scores are
computed based on the similarity between these
vectors.

Learning effective vector representations of di-
alogue contexts is a challenging task. Since most
dialogue datasets consist of free-text multi-turn in-
teractions between humans, the exact same context-
response pair is likely to be seen only once in the
whole training set. However, during inference, the
same response could be appropriate for various
different forms of contexts. For example, in the
customer service domain, a response such as “I can
issue a refund for the damaged item” could be ap-
propriate for many contexts that fall into the general
theme of a customer having received a damaged
item. Such contexts may differ from one another
due to variations in customer language, the particu-
lar item details, or the type of damage etc. Hence,
a response ranking model needs to learn represen-
tations that are robust to syntactic and fine-grained
semantic variations in the dialogue context.

In order to learn representations with improved
generalization capabilities, data augmentation has
become ubiquitous in computer vision (Shorten and
Khoshgoftaar, 2019). Recent research (Shen et al.,
2020; Feng et al., 2021; Longpre et al., 2020) has
also reported success in leveraging augmentations
for NLP tasks. An effective method of incorpo-
rating data augmentation for better representation
learning is through a contrastive learning frame-
work (Chen et al., 2020; Wu et al., 2020b; Gao
et al., 2021; Fang and Xie, 2020; Xie et al., 2020;
Fabbri et al., 2021; Wei et al., 2021), where the ob-
jective is to maximize similarity between encoded
representations of an input and its augmented ver-
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sion. While contrastive learning with data augmen-
tations has shown promising results in several NLP
tasks, to the best of our knowledge the potential of
such approaches for conversational modeling has
not yet been explored.

In this work we propose a multi-objective model
architecture, DialAug, for learning robust dialogue
response ranking. The proposed architecture lever-
ages the power of text data augmentations in com-
bination with contrastive learning. During train-
ing, the model learns to predict the same response
for both the original dialogue context and for its
augmented version, thus making it agnostic to vari-
ations in the context. To capture the notion of
coherence and semantic relevance of a dialogue,
we introduce an auxiliary contrastive objective that
learns the similarity between different views of a
dialogue context, in contrast to views of contexts
of other dialogues.

We further propose a novel data augmentation
method for Context Mixing, namely ConMix, that
adds token level perturbations to the dialogue con-
text. The aim of introducing the perturbations is
to simulate different variations of a multi-turn con-
text. ConMix stochastically replaces some of the
input tokens in a dialogue context with tokens from
another randomly sampled context in the training
batch. The benefits of this method are twofold.
First, we are creating a perturbed version of the
original context that will help learn generalizable
representations. Second, we are also generating
hard negatives for other responses and contexts in
the batch, due to the word overlap infused through
stochastic mixing from other context in the same
training batch. To summarize, in this paper we
make the following major contributions:

• We propose a multi-objective model architec-
ture, DialAug, for dialogue response ranking
that uses a ranking objective and a contrastive
learning objective. The proposed architecture
is modular and can be effectively combined
with many data augmentation techniques.

• We propose a novel data augmentation tech-
nique, ConMix, that stochastically adds token-
level perturbations to dialogue contexts during
training, leading to better performance and ro-
bustness of the learned model as compared to
baseline data augmentation methods.

• We conduct an extensive set of evaluations on
four large-scale publicly available dialogue

datasets, and demonstrate the proposed ap-
proach outperforms strong baselines and is
effective in learning robust representations.

2 Related work

We review two closely related research areas: data
augmentation techniques for text data, and con-
trastive learning.

Data Augmentation for Text : Data augmenta-
tion has been widely used for computer vision tasks,
in order to increase the size of a labeled dataset,
and to improve robustness of the model to input
noise. Typical image augmentations include crop-
ping, flipping, rotating, resizing, applying color
distortions, and Gaussian blurring (Shorten and
Khoshgoftaar, 2019; Chen et al., 2020). Equiva-
lent simple augmentation techniques have been pro-
posed and explored for text data tasks, e.g., word
deletions and permutations, and have been shown
to improve the model’s robustness and performance
(Shorten and Khoshgoftaar, 2019). There has also
been some active research into semantic augmen-
tation techniques, such as back-translation, syn-
onym replacement, or generative models (Shorten
and Khoshgoftaar, 2019; Wu et al., 2020b; Xie
et al., 2020; Kumar et al., 2019; Fang and Xie,
2020). However, these are comparatively complex
to implement, and rely on external knowledge (i.e.,
synonym lists) or additional models, making them
only suitable for tasks where appropriate models
or knowledge exists. In this work we only consider
automatic data augmentation techniques, i.e., tech-
niques that do not require external knowledge or
additional models, and can be easily implemented
for any language or task.

Contrastive Learning : Contrastive learning
has been shown to be a powerful representation
learning technique for both vision and text data
tasks (Chen et al., 2020; Khosla et al., 2020; Wu
et al., 2020b; Giorgi et al., 2020; Gunel et al., 2020).
It essentially aims to learn a better representation
of the input by maximizing agreement between
two similar data points. These data points can be
either augmented versions of the same input in self-
supervised learning (Chen et al., 2020; Giorgi et al.,
2020; Wu et al., 2020b), or from the same class
label in supervised learning (Gunel et al., 2020; Ma
et al., 2021; Khosla et al., 2020).

Contrastive learning has been explored for both
pretraining and finetuning tasks in NLP. For exam-
ple, (Wu et al., 2020b; Giorgi et al., 2020; Fang and
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Figure 1: DialAug model architecture. Context C and
Response R are the model inputs, and the output is a
similarity score. The augmented context C ′ and projec-
tion network are used only during training. The encoder
networks share weights, as well as the projection layers.

Xie, 2020) use contrastive learning to pretrain large-
scale transformer encoders for sentence representa-
tions, while other researchers focus on more task-
specific finetuning settings, such as summarization
(Fabbri et al., 2021), text classification (Wei et al.,
2021), textual similarity (Gao et al., 2021), and user
satisfaction prediction (Kachuee et al., 2021). Re-
cent work (Ma et al., 2021) has demonstrated suc-
cess in adopting contrastive finetuning for neural
rankers in the QA domain, however, the authors do
not leverage data augmentations. Our work is more
similar to CLEAR (Wu et al., 2020b) which uses
contrastive learning with text data augmentations
for pretraining language models. However, we fo-
cus on the finetuning stage of dialogue response
ranking and leverage augmentations for dialogue
contexts in the contrastive learning objective. We
use deletion and reordering based augmentations
proposed in their work as baselines for ConMix.

3 Approach

Consider a batch with B inputs
{Ci, Ri}i={1,2,··· ,B}, where Ci is a dialogue
context and Ri is the corresponding response.
Given the dialogue context Ci, objective of
the model is to predict the most likely re-
sponse Ri among a set of candidate responses
{R1, R2, · · ·Rm}.

3.1 DialAug Model Architecture

We build upon the widely used Bi-encoder model
architecture (Humeau et al., 2019; Reimers and
Gurevych, 2019; Wu et al., 2020a; Henderson et al.,
2019), which is efficient for real world use cases,

due to its fast training and inference speed. Figure
1 shows the proposed model architecture.

Our architecture consists of an augmentation
module that creates an additional view C ′i of the di-
alogue context Ci, through certain transformations
(described later). We first encode the context Ci,
the augmented context C ′i, and the response Ri to
latent vectors, using a shared encoder. We leverage
pre-trained language models and use BERT (De-
vlin et al., 2019) as the encoder block. The input
sequence to the BERT encoder is represented as

Ci = [CLS,w1 · · · , EOT,wj , · · · , wn−1, EOT ]
(1)

where n is the number of words in the context or
response, CLS is a special token marking the be-
ginning of the input sequence, and an additional
end-of-turn EOT token marks the end of turns in
the dialogue context. We feed these sequences to
the BERT encoder and obtain latent vector rep-
resentations for the input context, the augmented
context, and the response.

3.1.1 Main Task Loss
Dialogue contexts consist of multiple turns, with
a lot of information that might be redundant for
predicting the next response. We argue that such
lengthy contexts can usually accommodate small
word level variations without changing the overall
theme or topic of the conversation and the next
response. Therefore, we consider the augmented
version of a context C ′i to be label-invariant.

This allows the model to learn that Ri is the next
response for both the original context Ci and its
augmented version C ′i. Introducing these (C ′i, Ri)
pairs in the main task loss of response ranking es-
sentially doubles the number of training data points
seen by the model in each epoch. More importantly,
this forces the model to learn robust representations
of the lengthy dialogue contexts, in order to rank
the response Ri over other m candidate responses,
for two different views of it.

In order to obtain an aggregated vector represen-
tation of the sequences, we use the latent vector
representation of the CLS token. The score of a
candidate response Ri, for a context, is computed
using dot-product of their vector representations

score(Ci, Ri) = xCiCLS · xRiCLS (2)

score(C ′i, Ri) = x
C′
i

CLS · xRiCLS (3)

where xCiCLS , x
C′
i

CLS , x
Ri
CLS denote the representa-

tions from the CLS token of context, the aug-
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(a) Mixing context tokens in batch (b) Example of generated perturbed context through augmentation

Figure 2: Illustration of the ConMix data augmentation. C1 is a context and R1 is its corresponding response. C ′1 is
an augmented version of C1, which retains most of the tokens from C1 (blue), and has few tokens replaced with
tokens from a random context C5 (orange). R1 is still considered the most appropriate response to C ′1.

mented context and the response, respectively. We
optimize a cross-entropy loss (LCE) to achieve our
main goal of scoring the next response in the di-
alogue higher than a set of candidate responses.
During training, we consider the other responses in
a batch as negatives for a given context.

3.2 Contrastive Learning
We introduce a contrastive learning objective as an
auxiliary task during training. In particular, through
the contrastive learning objective, we learn simi-
larities between the vector representations of the
original context Ci and the augmented context C ′i.
In addition to Ci and C ′i, the response Ri is also a
part of the same dialogue, and hence we include
the response candidates into our contrastive loss.

Following (Chen et al., 2020), we apply a projec-
tion network g(·) to transform the representations
to a space where the contrastive loss will be applied.
We use a simple 2-layer feed-forward network with
ReLU non-linearity. The contrastive loss LCL is
optimized to maximize the similarity between span
representations of C, C ′ and R.

We adopt a generalized version of the NT-
Xent loss (Chen et al., 2020) that can ac-
cept multiple positives. For the ith train-
ing instance, the positive pairs are given by
{(zCi , zC′

i
), (zCi , zRi), (zC′

i
, zRi)}. For each such

positive pairs (pi, p+i ), the contrastive loss term is
represented as

`pi,p+i
= −log

exp(zpi · zp+i )/τ∑B
k=0 1k 6=i

∑
q∈S exp(zpi · zqk)/τ

(4)
where τ denotes the temperature in the loss, 1k 6=i

is an indicator function, B is the batch size and
S = {C,C ′, R} are the sequences in the batch.
The total contrastive loss LCL within a batch is
computed over all such positive pairs.

The overall loss is a weighted summation of the
cross-entropy and the contrastive loss,

L = LCE + λLCL (5)

where λ is a weight coefficient for the auxiliary
loss. We empirically set this value to 0.5 for all our
experiments. A careful reader might observe that
we introduce additional parameters in the skeleton
Bi-encoder architecture through the projection net-
work, however, they are only used during training
and discarded afterwards. During inference, the
model has a comparable number of parameters and
speed as a Bi-encoder.

3.3 ConMix Data Augmentation
We design a novel data augmentation method, Con-
Mix, to generate the augmented viewC ′i for a given
contextCi. ConMix creates augmentations through
dynamic mixing of words from other contexts in
the batch. In particular, for each Ci it selects a
random context Cj from the training batch and re-
places random words of Ci with words in the same
positions from Cj , to generate an augmented ver-
sion (C ′i). Figure 2 shows an illustrative example of
the mixing process. This introduces perturbations
to the original context and stochastically creates
variations which the model learns to recognize as
similar, and ranks the same response at the top
among other candidates. With the batch mixing
strategy the augmented context (C ′i) also serves as
a hard negative. This is because the augmented

444



version C ′i has significant word overlap with Cj ,
the random context from where the replacement
tokens were chosen. Thus creating harder negative
pairs <C ′i, Rj> and <C ′i, Cj> in the main task loss
and the contrastive loss, respectively.

We adapt the Bernoulli MixUp approach (Beck-
ham et al., 2019) for mixing tokens of dialogue
contexts. In C ′i, we wish to retain the majority of
tokens from the original context Ci, and replace
the rest with tokens from a random context Cj . We
first sample a binary mask m ∈ {0, 1}n, where n
is the number of tokens in a context sequence.

C ′i = m ◦ Ci + (1−m) ◦ Cj , where i 6= j (6)

C ′i is the augmented view of context Ci, and Cj is
a randomly selected context from the same batch,
◦ denotes the Hadamard product. The binary mask
m is sampled from a Bernoulli(λmix) distribution
where λmix ∈ (0.5, 1] is the mixing coefficient.
The proportion of replaced tokens is controlled by
λmix. Intuitively, we should use a coefficient that
retains most of the words from the original context,
to ensure that the augmented context C ′i is label
invariant, i.e., can have the same next response Ri,
and is more similar to Ci than to Cj . In order to
preserve the higher-level dialogue structure, we re-
tain the end-of-turn (EOT ) markers in the context
while generating the binary mask.

The augmentations in our architecture are
stochastically generated during each epoch. There-
fore, for a contextCi, the augmented viewC ′i might
be different across epochs, depending on the ran-
dom selection of the mixing context Cj and re-
placed token positions within Ci. This enables the
model to see many variations of the same context
and learn to generalize across these representations.

4 Experiments

4.1 Datasets

We finetune and evaluate our response ranking mod-
els on the following four public task-oriented dia-
logue datasets:
1. Ubuntu V2: The Ubuntu V2 corpus (Lowe
et al., 2015) consists of conversations extracted
from Ubuntu chat logs, where people seek technical
support for various Ubuntu-related problems from
the community. We use a public repository1 to
generate the train/dev/test examples.

1https://github.com/rkadlec/ubuntu-ranking-dataset-
creator

Ubuntu v2
DSTC7

Taskmaster
Ubuntu Advising

Train examples 1M 100k 100k 192,821
Dev examples 19,560 5k 500 10,715
Test examples 18,920 1k 500 10,717
Eval candidates 10 100 100 51

Table 1: Statistics of the datasets: Ubuntu V2, Ubuntu
DSTC7, Advising DSTC7, and Taskmaster.

2. Advising DSTC7: The Advising dataset from
DSTC7 subtask 1 (Gunasekara et al., 2019) con-
tains dialogues in which university students seek
advise on classes to take. The dataset was built
upon expanding 815 original conversations by para-
phrasing. This dataset additionally contains profile
information for students, which we do not include
in our model to be consistent with other datasets.

3. Ubuntu DSTC7: The Ubuntu DSTC7 dataset is
similar to the Ubuntu V2 corpus, but it was further
disentangled and annotated from the original chat
logs data (Kummerfeld et al., 2018). We evaluate
our model on the subtask 1 of the DSTC7 challenge,
the goal of which is to select the most appropriate
response from 100 candidates.

4. Taskmaster: This dataset consists of written di-
alogues in the movie ticketing domain (Byrne et al.,
2019). We split the dialogues into train/dev/test
sets, and treat each system turn and its correspond-
ing dialogue context as a positive pair. For evalu-
ation, we randomly sample 50 negative responses
per context from all available system turns.

The dataset statistics are summarized in Table 1.
For each dataset, we calculate the 95th percentile
of its context and response lengths, and use these
values as the maximum sequence length in the cor-
responding encoders. We use a batch size of 20 for
Taskmaster and 32 for the other three datasets.

4.2 Implementation Details

We implement our models using the Pytorch deep
learning framework and the HuggingFace trans-
former library (Wolf et al., 2020). For implemen-
tation of the contrastive loss we use the Pytorch
metric learning library (Musgrave et al., 2020).
We set the mixing coefficient (λmix ) in ConMix
to 0.7, i.e., 30% of the tokens are replaced. We
use bert-base-uncased as our pre-trained en-
coder, and train all our models in an end-to-end
manner with Adam optimizer (Kingma and Ba,
2015) for fine-tuning.
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4.3 Baseline Augmentations

We explore and evaluate the following augmenta-
tion methods as baselines to compare with ConMix:
1. Subsequence sampling: Similar to cropping
(Chen et al., 2020) for images and span sampling
(Giorgi et al., 2020) for sentences, we explore a
subsequence sampling augmentation for dialogues.
We create augmentations by randomly truncating
the initial turns of a given context. We argue that
a response is more closely related to later turns in
the context compared to earlier ones, especially in
task-oriented dialogues. Hence such a strategy can
highly preserve the label from the original context.
2. Word deletion: We implement the word
deletion augmentation and hyperparameters as de-
scribed in (Wu et al., 2020b). Following (Wu et al.,
2020b), we randomly select 70% 2 of the words in
the dialogue history and replace them with the spe-
cial token [DEL]. We merge consecutive [DEL]
tokens into one.
3. Word reordering: We randomly sample several
pairs of words in a dialogue context, and switch
them pairwise. We swap 30% of the words similar
to our proposed ConMix. In contrast to ConMix,
this method only mixes words within a single dia-
logue context.
4. Word replacement: We randomly replace 30%
of the words in a context with random words. In
contrast to ConMix, this method replaces context
words with words from the full vocabulary, and not
only with words from the same training batch.

Similar to ConMix we protect the special token
EOT from being replaced in all baseline augmen-
tations to preserve the dialogue structure.

5 Results and Discussion

We use Recall@1 and MRR as evaluation metrics
and report numbers after averaging over 3 runs.

5.1 Performance on Response Ranking

We first demonstrate our proposed model architec-
ture’s compatibility and effectiveness with ConMix,
along with other baseline data augmentations. For
each augmentation method, we conduct an ablation
study to separately understand the effects from data
augmentation, and the benefits obtained from the
addition of contrastive learning. For a fair base-
line comparison we include Bi-encoder (Humeau

2We also conducted experiments with word deletion rate
of 30% similar to ConMix but it underperformed the variant
with recommended 70% deletion rate

et al., 2019), which has a comparable number of
parameters and architecture. Larger model architec-
tures such as Poly-encoder (Humeau et al., 2019)
or Cross-encoder (Wolf et al., 2019) are orthogonal
to our approach, and can potentially be adopted
as backbone architecture for our model. We leave
those explorations for future work.

Results on four ranking datasets for all model
variants are presented in Table 2. We observe
that our proposed DialAug architecture signifi-
cantly outperforms the baselines across all datasets.
Specifically, our model with proposed ConMix aug-
mentation and contrastive loss achieves an absolute
gain of 0.8%, 1.9%, 1.0% and 2.3% for Recall@1
metric over Bi-encoder, on the four datasets respec-
tively. This shows that textual variations injected
in the input sequences through augmentations re-
sult in representations that generalize better to the
unseen test set.

Second, we note that our proposed augmenta-
tion method, ConMix, consistently outperforms
the baseline augmentations in all datasets by a fair
margin, except for Ubuntu DSTC7. We find that
the word reordering augmentation, which shuffles
words within a context, is not as effective as the
other augmentations. In this method, words are
neither introduced nor removed from the context,
and the model learns from the same bag-of-words
as the original context. On the other hand, through
deletion augmentation words get omitted from the
context, and the model needs to learn to predict
the response while some words are missing. Con-
Mix takes this a step further, and not only removes
some of the words from the context, but also re-
places them with other random words. This forces
the model to learn the task in a much harder setting
with observing many variations of the same context
over the epochs. As hypothesized ConMix outper-
forms the global word replacement method due to
the added advantage of strategic in-batch mixing,
infusing word overlaps in a controlled manner and
supplementing harder negatives.

Finally, we note that contrastive learning (rows
with + CL) helps boost performance further, com-
pared to corresponding model versions without
the additional objective. This indicates the ef-
fectiveness of learning to contrast partial views
of a dialogue for better representation learning of
the context. Moreover, we see that for relatively
smaller sized dataset from the DSTC7 challenge,
contrastive learning acts as an effective regularizer
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Models
Ubuntu V2 Advising DSTC7 Ubuntu DSTC7 Taskmaster

R@1/10 MRR R@1/100 MRR R@1/100 MRR R@1/50 MRR
Bi-Encoder 82.8±.3 89.5±.2 21.1±.4 33.3±.1 56.7±.7 66.0±.3 87.8±.2 89.6±.2
DialAug + Subsequence 83.0±.0 89.7±.0 21.6±.3 34.2±.1 57.1±.8 66.7±.7 86.9±.2 89.1±.1
DialAug + Subsequence + CL 82.9±.1 89.6±.0 20.6±.3 33.1±.3 56.9±.1 66.7±.2 87.6±.2 89.5±.1
DialAug + Deletion 83.2±.1 89.8±.1 21.5±.1 34.2±.6 57.4±.6 67.2±.5 88.2±.3 90.1±.2
DialAug + Deletion + CL 83.3±.1 89.8±.1 21.7±.1 34.9±.3 58.1±.4 67.8±.6 88.5±.2 90.2±.1
DialAug + Reordering 82.7± .2 89.5±.1 19.7±1.0 33.3±1.4 56.2±.6 66.0±.2 87.9±.2 89.8±.1
DialAug + Reordering + CL 82.9±.1 89.6±.1 19.4±.6 33.3±.2 55.8±.4 65.5±.3 88.0±.1 89.9±.1
DialAug + Replacement 82.8±.1 89.5±.1 19.4±.3 31.6±.7 57.5±.7 67.1±.6 89.5±.1 90.9±.1
DialAug + Replacement + CL 82.9±.1 89.6±.1 20.9±.7 33.1±.4 58.0±.7 67.3±.4 89.0±.2 90.6±.1
DialAug + ConMix 83.4±.1 89.9±.0 21.8±1.4 34.9±.4 56.8±.3 66.6±.2 90.4±.1 91.4±.0
DialAug + ConMix + CL 83.6±.1 90.0±.0 23.0±.8 36.0±.7 57.7±.4 67.0±.1 90.1±.3 91.3±.2

Table 2: Results on the Ubuntu V2, Advising DSTC7, Ubuntu DSTC7, and Taskmaster datasets. Results were
averaged over three runs, and ± denotes the standard deviation. The numbers in bold denote the best performing
model for each dataset.

and can significantly reduce standard deviations
of the metrics (1.4 to 0.8 for Recall@1 metric for
ConMix augmentation on Advising, and 0.8 to 0.1
from for Subsequence augmentation on Ubuntu).

5.2 Evaluating Robustness to Perturbations
Next we evaluate the data augmentation methods
on various perturbations introduced in the dialogue
context in the test set. Through this series of ex-
periments we evaluate how robust the model is for
different formulations and rewrites of input con-
texts.

Specifically, we introduce three perturbations
that are similar to the augmentation methods used
during training:
1. Truncation: Similar to subsequence sampling,
we randomly truncate dialogue contexts to remove
earlier turns.
2. Word deletion: Delete words with a 30%
deletion rate.
3. Word reordering: Reorder words with 30%
probability.
We include two additional reformulations that are
commonly observed during real-world deployment
of models:
4. Typos: We implement the vanilla noise model
(Namysl et al., 2020) with noise level 0.1 to cap-
ture character-level variations caused by typos. We
randomly change 30% of words in the context.
5. Synonym replacement: To capture lexical vari-
ations, we randomly replace 30% of words from
the context with their synonyms using a pre-defined
vocabulary (Jia et al., 2019).

We apply the perturbations independently on the
original test sets and evaluate our DialAug model
architecture in combination with different training

augmentation methods on these harder test sets. As
baselines with no augmentations, apart from Bi-
encoder, we also include the more powerful Poly-
encoder (Humeau et al., 2019) architecture in this
evaluation setup.

As can be seen from the results of Table 3, train-
ing on augmented data helps significantly against
adversarial examples during inference, compared
to baseline models trained with no augmentation. It
is interesting to note that a more expressive model
such as Poly-encoder, with an order of magnitude
larger number of parameters, is still susceptible to
adversarial perturbations and under-performs the
proposed DialAug model that leverages data aug-
mentations. These experiments demonstrate that
robustness to noise does not come out-of-the-box
for larger models. Instead, strategic data augmen-
tation methods such as ours, that expose a model
to diverse training data, can learn to handle these
variations effectively.

Comparing among different augmentation meth-
ods, it is not surprising to find that a model trained
with one augmentation (e.g. subsequence sam-
pling) performs well when exposed to that specific
type of perturbations (e.g. truncation) during test.
However, they do not generalize well to a different
type of noise seen during test (e.g. model trained
with deletion based augmentation and tested on
reordering). ConMix, on the other hand, is con-
sistently robust to different perturbations across
the four adversarial datasets, even though it had
not been trained specifically for them. It performs
on par or better than the specific data augmenta-
tions such as deletion and reordering when exposed
to those perturbations during test. For more com-
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Dataset: Ubuntu V2
Augmentation
in training

truncation deletion reordering typo synonym
Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR

NA (Bi-encoder) 69.0±.2 79.7±.1 69.6±.6 80.2±.0 79.6±.1 87.5±.0 80.8±.1 88.3±.1 79.6±.2 87.4±.1
NA (Poly-encoder) 69.2±.2 79.7±.1 71.1±.3 81.2±.2 80.6±.1 88.0±.0 81.9±.2 88.2±.1 80.7±.3 88.1±.1
Subsequence 72.1±.2 82.1±.2 68.3±.4 79.0±.0 79.8±.1 87.5±.1 81.1±.2 88.4±.1 79.5±.2 87.4±.1
Deletion 70.0±.1 80.3±.1 73.1±.2 82.8±.2 80.4±.1 87.9±.1 81.5±.2 88.7±.1 80.4±.1 87.9±.1
Reordering 69.4±.2 79.9±.1 72.2±.1 82.0±.0 80.5±.1 88.0±.0 81.1±.1 88.4±.0 80.5±.1 87.9±.0
Replacement 69.5±.1 79.7±.1 69.6±.5 80.3±.3 79.8±.3 87.5±.1 80.9±.1 88.3±.1 79.7±.1 87.5±.1
ConMix 68.8±.2 79.5±.1 73.1±.1 82.8±.1 81.3±.1 88.5±.1 82.1±.1 89.1±.1 81.2 ±.0 88.5±.0

Dataset: Advising DSTC7
Augmentation
in training

truncation deletion reordering typo synonym
Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR

NA (Bi-encoder) 18.4±1.4 29.2±.5 15.5±.1 26.1±.1 14.8±.3 25.7±.4 18.3±.7 30.3±.4 19.6±.8 30.7±.6
NA (Poly-encoder) 17.5±.9 28.5±1.4 17.9±1.5 29.7±1.3 15.0±.8 26.4±1.0 13.1±.4 25.1±.0 17.0±2.5 28.6±2.3
Subsequence 19.7±.1 31.7±.1 16.3±.7 27.0±.4 15.4±.8 26.3±.2 18.9±.7 31.1±.5 18.0±.8 29.9±.6
Deletion 18.6±.8 30.4±.1 17.6±.3 29.4±.2 16.6±.0 28.5±.0 19.3±1.3 32.2±.9 18.6±.0 31.8±.4
Reordering 19.0±.0 29.6±.4 15.9±1.8 27.8±1.3 17.1±.1 30.4±.5 18.7±1.3 31.9±.6 18.1±1.0 31.0±.3
Replacement 17.7±.8 28.6±.2 14.6±.5 24.8±.9 12.7±.7 23.6±1.1 18.0±.3 29.7±.1 16.3±.1 28.2±.1
ConMix 18.6±.0 29.8±.2 16.2±.6 28.0±.1 18.3±.7 30.2±.2 19.6±1.4 32.7±.5 20.9±1.0 33.2 ±.9

Dataset: Ubuntu DSTC7
Augmentation
in training

truncation deletion reordering typo synonym
Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR

NA (Bi-encoder) 42.3±.1 51.7±.3 52.3±.0 61.9±.3 47.9±.6 57.6±.3 48.0±.0 58.2±.4 51.6±.4 61.5±.2
NA (Poly-encoder) 41.2±.8 51.3±.3 49.6±1.1 60.1±.9 47.9±.5 57.5±.2 45.2±.1 56.2±.1 50.6±.4 61.4±.1
Subsequence 45.7±.2 55.8±.2 47.6±.6 58.3±.2 47.5±.8 58.3±.4 50.8±.3 61.8±.3 52.3±.9 62.6±.4
Deletion 42.4±1.4 52.7±.6 54.6±.2 64.3±.3 50.3±.3 60.8±.2 53.5±.1 63.5±.1 52.9±.6 63.6±.0
Reordering 41.6±.3 51.2±.6 50.1±.9 59.7±.7 52.8±.3 62.8±.2 51.5±.4 61.7±.3 51.7±.4 62.0±.4
Replacement 43.9±1 53.6±.9 49.7±1 59.9±1 52.1±2.5 62.3±1.7 54.2±.4 64.4±.2 55.0±.7 64.7±.5
ConMix 44.0±.6 52.8±1 50.5±.4 60.8±.5 54.1±.5 63.8±.3 54.5±.4 64.2±.5 54.5±.2 64.1±.2

Dataset: Taskmaster
Augmentation
in training

truncation deletion reordering typo synonym
Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR

NA (Bi-encoder) 76.5±.5 80.8±.4 79.5±.1 84.2±.1 76.5±.2 82.1±.2 87.6±.3 89.6±.2 84.6±.2 87.7±.1
NA (Poly-encoder) 77.1±.0 81.3±.0 79.6±.4 84.2±.2 76.5±.3 82.0±.2 88.0±.1 89.8±.1 84.8±.2 87.8±.1
Subsequence 85.7±.2 88.1±.1 79.9±.2 84.4±.2 74.5±.8 80.4±.5 87.6±.2 89.5±.1 84.2±.4 87.4±.2
Deletion 76.4±.0 80.6±.0 86.4±.2 88.8±.1 86.0±.3 88.5±.2 88.5±.2 90.2±.1 86.5±.3 88.9±.2
Reordering 75.9±.3 80.2±.2 83.9±.2 87.2±.1 89.1±.3 90.6±.2 88.0±.1 89.9±.1 86.3±.1 88.8±.1
Replacement 74.5±.4 79.5±.2 77.0±.5 82.4±.3 71.9±1.0 78.6±.6 86.7±.4 88.4±.3 82.3±.9 86.2±.6
ConMix 81.3±.4 81.3±.3 85.0±.3 87.9±.2 88.2±.3 90.1±.2 90.1±.3 91.3±.2 89.3±.3 90.8±.2

Table 3: Robustness during inference for different augmentation strategies. All models using augmentions were
trained with contrastive loss. Results were averaged over three runs, and ± denotes the standard deviation.

mon and realistic variations, i.e., synonyms and
typos, ConMix significantly outperforms all other
methods on three datasets. This indicates a uni-
formly powerful and robust representation learning
method through this novel augmentation strategy.

5.3 Computational Efficiency

ConMix is designed and implemented to generate
augmentations through vectorization and therefore
has the benefit of being faster to train. Tokens are
randomly mixed on-the-fly within a batch to cre-
ate augmentations in parallel on GPUs, through
fast tensor multiplications. For many augmentation
methods, such vectorization might be non-trivial
and the overall speed becomes limited by the pro-
cess of creating augmentations outside the training

loop on much slower CPUs. For example, when
training on the Taskmaster dataset with 8 gpus, the
DialAug architecture with ConMix is 1.2x faster
than training with the global word replacement aug-
mentation. While conducting full training over 20
epochs this leads to an overall speed up by 1.5
hours for training with the ConMix augmentation.

6 Summary

In this work we proposed DialAug, a modular archi-
tecture for conversational response ranking. It com-
bines the traditional cross-entropy loss for rank-
ing with a contrastive counterpart to learn from
augmented views of the dialogue context. We pre-
sented a novel data augmentation method, ConMix,
which generates multiple views of the same con-
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text via stochastic mixing of tokens from other con-
texts in the batch during training. We conducted
an extensive set of experiments on four datasets
and show that a model trained with ConMix out-
performs strong baselines and other augmentation
methods. Our proposed model is also proven to be
robust against common perturbations encountered
during inference. We hope our work encourages
further research in such data-centric methods to
improve robustness of NLP models for practical
applications of conversational modeling.
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Abstract

We consider few-shot out-of-distribution
(OOD) intent detection, a practical and im-
portant problem for the development of task-
oriented dialogue systems. Despite its impor-
tance, this problem is seldom studied in the
literature, let alone examined in a systematic
way. In this work, we take a closer look at
this problem and identify key issues for re-
search. In our pilot study, we reveal the rea-
son why existing OOD intent detection meth-
ods are not adequate in dealing with this prob-
lem. Based on the observation, we propose
a promising approach to tackle this problem
based on latent representation generation and
self-supervision. Comprehensive experiments
on three real-world intent detection benchmark
datasets demonstrate the high effectiveness of
our proposed approach and its great poten-
tial in improving state-of-the-art methods for
few-shot OOD intent detection. The source
code can be found at https://github.com/
liam0949/Few-shot-Intent-OOD.

1 Introduction

Intent detection is an important component of task-
oriented dialogue system, which aims at accu-
rately identifying the intent behind user utterances.
Out-of-distribution (OOD) intent detection aims to
solve a (K+1)-way classification problem withK
in-distribution (ID) intent classes and an additional
OOD class representing malformed or unsupported
queries. In practice, OOD intent detection is often
performed in data-scarcity scenarios, e.g., at the
early development stage of a dialogue system when
labeled data is not sufficient, or for dialogue sys-
tems developed for minority language users where
it is difficult to find suitable annotators.

Despite its practical importance, few-shot OOD
intent detection is a highly challenging problem,
which is seldom studied in the literature and has

∗Equal contribution.
† Corresponding author.
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Figure 1: The challenge of few-shot out-of-distribution
intent detection. OOD stands for out-of-distribution
examples and ID stands for in-distribution examples.

not been investigated in a systematic way. Recent
advances in OOD intent detection (Zhang et al.,
2021a; Zhan et al., 2021; Lin and Xu, 2019) com-
monly assume that there are adequate ID exam-
ples available for training, without considering the
few-shot scenario. To our best knowledge, the only
work on this topic is by Zhang et al. (2020), who try
to tackle few-shot OOD intent detection via transfer
learning by fine-tuning RoBERTa (Liu et al., 2019)
on large-scale natural language inference datasets.

In this work, we take a closer look at few-shot
OOD intent detection and consider a strict setting,
where only few-shot in-distribution labeled exam-
ples are available during training and no external
resources can be exploited, since the requirement
of additional resources hinders the applicability of
the model. Under this simplified yet more challeng-
ing setting, state-of-the-art OOD intent detection
algorithms fail to achieve acceptable performance.
In Figure 1, we illustrate the key challenge for
few-shot OOD detection. As shown in Figure 1,
since ID classes are under-represented by few-shot
ID examples, a model based on density estima-
tion (Zhang et al., 2021a) or (K + 1)-way discrim-
inative training (Zhan et al., 2021) tends to learn
a conservative decision boundary and hence there
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are large margins between the real and learned de-
cision boundaries. Real ID examples situate in the
margins will be inaccurately assigned to the OOD
class, leading to poor performance.

Therefore, the key for few-shot OOD intent de-
tection is to improve the model performance on
ID examples. To address this issue, we propose to
enrich the training set to improve the representative-
ness of ID intent classes and provide more useful
learning signals. We explore the feasibility of gen-
erating synthetic ID examples in a self-supervised
manner. In particular, we train a denoising autoen-
coder (DAE) (Vincent et al., 2008) in the latent
representation space only using the few labeled
ID examples. The trained decoder of DAE is then
used to efficiently sample synthetic ID examples.
With the enlarged training set, we follow Zhan et al.
(2021) to train a (K +1)-way classifier by simulat-
ing OOD examples with the enlarged training set.
Our contributions are summarized as follows:

• We pioneer in studying a practical but more
challenging few-shot OOD intent detection
problem and identifying the key challenge for
this problem.

• We propose a promising approach for solving
few-shot OOD intent detection based on latent
representation generation and (K + 1)-way
discriminative training, which requires no ad-
ditional resources for training and validation.

• We conduct comprehensive experiments on
three realistic intent detection datasets to ver-
ify the effectiveness and robustness of our
method in diverse few-shot OOD intent de-
tection scenarios.

2 Related Work

Out-of-Distribution Intent Detection. Out-of-
distribution (OOD) intent detection (or out-of-
domain intent detection) has attracted much atten-
tion in research communities, due to its significant
importance to the robustness of dialogue systems.
The primary challenge of this task is that there is
no labeled OOD example available for training and
validation. As such, the majority of OOD intent
detection algorithms relies on manually selecting
an appropriate threshold.

The first line of works (Hendrycks and Gimpel,
2017; Shu et al., 2017; Ryu et al., 2018, 2017) uses
some statistic as the confidence score of whether

an example is OOD or not. Hendrycks and Gimpel
(2017) pointed out that the negative probability
outputted by the softmax function can be a good
confidence metric for OOD detection. Shu et al.
(2017) defined a binary classification task for every
in-domain class and used the maximum probability
among all these binary classifiers as the confidence
score. Ryu et al. (2018) developed an adversarial
training strategy inspired by GAN for OOD intent
detection. The discriminator in GAN was trained
to assign lower scores to OOD examples. Ryu
et al. (2017) employed an autoencoder trained on
in-domain examples and used the reconstruction
score as the OOD indicator. However, all these
methods require manual effort in selecting a proper
threshold for OOD discrimination.

The second line of works (Lin and Xu, 2019;
Zhang et al., 2021a; Yan et al., 2020) proposes to
learn decision boundaries for OOD examples under
some assumption of data distribtuion, e.g., mixture
of Gaussians. OOD examples are assumed to lie
in the low-density areas of utterance distribution.
Yan et al. (2020) proposed to model the in-domain
examples by a mixture of Gaussians distribution
and select a margin to constrain the variance of
each in-domain Gaussian component. Zhang et al.
(2021a) also made the mixture of Gaussian assump-
tion on in-domain data distribution but proposed
to automatically learn the variance of the Gaussian
components.

Different from previous methods, a recent work
by Zhan et al. (2021) proposed to directly learn
a (K + 1)-way classifier in an end-to-end man-
ner. They created OOD learning signals during
training by leveraging external data or construct-
ing simulated OOD examples with self-supervised
information.

Few-shot OOD Intent Detection. Few-shot
OOD intent detection considers OOD intent de-
tection in low-resource scenarios. It aims at de-
veloping a reliable OOD detector with only a few
examples per each in-distribution class. Undoubt-
edly, this is a highly challenging task given that
few-shot intent detection is already a big chal-
lenge (Zhang et al., 2020). At this point, this task is
under-explored and has never been investigated in
a strictly low-resourced setting. The most related
work is DNNC proposed in Zhang et al. (2020),
which tries to mitigate the data-scarcity problem
by fine-tuning RoBERTa on external large natural
language inference datasets. In this paper, however,
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we consider using the few-shot labeled examples
as the only training resource.

General-purpose Few-shot OOD Detection.
There is also little research on general-purpose few-
shot OOD detection. To our knowledge, recent
works are Jeong and Kim (2020) and Wang et al.,
both of which adopt episodic training on a large set
of few-shot classification tasks for transfer learning.
Clearly, this is very different from the problem
setting of this paper, as we do not use training
resources other than the given few-shot labeled
examples.

3 Problem Statement and Pilot Study

Out-of-distribution (OOD) intent detection aims
at improving the robustness of a dialogue system
with respect to utterances with unknown (or unsup-
ported) intents. The key challenge of OOD detec-
tion is that real OOD samples are inaccessible dur-
ing training and validation. Given an in-distribution
(ID) set of K known classes, yi ∈ {yk}Kk=1, the
OOD detection task considers another special OOD
class yOOD to represent any malformed or unsup-
ported utterances. Hence, given the input space
X × Y , the goal of OOD intent detection is to
learn a (K + 1)-way classifier fϕ(·) : X → Y to
minimize the expected risk:

R(f) = E(1[fϕ(xi) ̸= yi)]), (1)

where yi ∈ {y1, · · · , yK , yOOD} and the expecta-
tion is taken over the joint distribution of p(x, y).
1 is an indicator function.

Few-shot OOD intent detection is a more chal-
lenging setting with the assumption that there are
only a few labeled in-distribution (ID) examples
available during training. In this paper, we con-
sider a strict but practical setting by assuming that
there are no additional resources (e.g., labeled or
unlabeled auxiliary datasets) available to aid the
training of the classifier fϕ(·) or during fine-tuning
pre-trained language models. Typically, for each
ID class in {yk}Kk=1, there are only ∼ 5 or ∼ 10
labeled examples per class.

Pilot study. To illustrate the challenges of few-
shot OOD intent detection, we conduct a pilot study
on a commonly used OOD intent detection dataset
CLINC150 (Larson et al., 2019) using two recent
state-of-the-art approaches (Zhang et al., 2021a;
Zhan et al., 2021) for few-shot OOD intent de-
tection. To simulate the few-shot scenario, in the
experiment, only 5 labeled examples in each ID

Methods Acc. Macro-F1 ID-F1 OOD-F1

25% ADB 77.91 53.09 52.22 86.29
DCL 86.53 48.78 47.63 92.22

50% ADB 69.36 56.91 56.64 77.17
DCL 74.60 50.58 50.15 82.45

75% ADB 70.43 67.17 67.12 73.09
DCL 65.50 54.25 54.11 70.22

Table 1: A pilot study on few-shot OOD intent detec-
tion. DCL (Zhan et al., 2021) and ADB (Zhang et al.,
2021a) are two recent state-of-the-art approaches for
OOD intent detection. ID-F1 indicates macro f1-score
on the in-distribution classes. OOD-F1 stands for f1-
score on the out-of-distribution class.

class are used for training. The results are sum-
marized in Table 1. For OOD detection, we ran-
domly select 25%, 50% and 75% intent classes as
in-domain classes and assign the remaining classes
to the OOD category. Experimental details are
elaborated in Section 5.

We can observe that both of the two methods
yield unsatisfactory performance. Specifically, the
performance on the ID classes is poor and way
lower than that on the OOD class. When there are
only 25% ID classes (∼ 38), the gap between the
ID and OOD classes in f1-score is the largest (up
to 44+). Although moderate overall accuracy is
achieved, such OOD intent detection model can
only provide services to users worse than random
choices, since the majority of user utterances are
rejected as OOD inputs. It also indicates that the
overall accuracy may not be a good performance
measure for this task. These observations show
that in the few-shot scenario, existing OOD intent
detection algorithms can be easily biased towards
the OOD class, due to inadequate representations
of the ID classes. Hence, directly applying them to
few-shot OOD intent detection will lead to sub par
performance.

The primary challenge identified from this pi-
lot experiment for few-shot OOD intent detection
is then how to improve the performance on in-
distribution classes and achieve a good balance
in performance between ID and OOD classes.

4 Methodology

4.1 Utterance Representation

Let D = {(xi, yi)}Ni=1 be the training set, where
xi denotes an input token sequence with size m,
i.e., [x0i , · · · , xm−1i ]. For each input xi, we use
BERT as the encoder to map xi into a sequence
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Figure 2: An overview of our proposed framework.

of hidden states hi, i.e., BERT:X → H and hi ∈
R(m+1)∗768. Note that for every sentence, BERT
adds a spacial token [CLS] at the beginning of the
sequence. Following common practice, we use the
average pooling of the hidden sequence hi as the
representation of an utterance:

zi = Avg.Pool([hCLS
i , h0i , · · · , hm−1i ]).

Then, we obtain a mapped training set Dtr =
{(zi, yi)}Ni=1. We instantiate few-shot OOD de-
tector fϕ(·) by replacing the pre-trained heads of
BERT with a simple linear mapping layer.

4.2 Our Proposed Model
As shown in Figure 2, we propose a two-stage
model for few-shot OOD intent detection. In the
first stage, we learn a stochastic reconstruction
function to generate synthetic ID samples in the rep-
resentation space to enrich the in-distribution train-
ing set. In the second stage, we adopt a (K + 1)-
way discriminative training procedure for OOD
detection by simulating OOD examples based on
the enlarged in-distribution training set. Notice that
throughout the two stages, we only use the few
labeled in-distribution data without exploiting ex-
ternal labeled intent detection data or fine-tuning
corpus.

4.2.1 Stage I: Generating Synthetic
In-distribution Data

To improve the performance of in-distribution (ID)
classes, our solution is to learn a latent denoising
autoencoder (DAE) (Vincent et al., 2008) in the
latent representation space Z of BERT, to enrich
the in-domain training set by generating synthetic
examples with the reconstructor of the DAE.

Our key idea is to learn an approximator for the
distribution of the latent representation of ID utter-

ances (p(z)), from which we can sample synthetic
ID examples. We aim to learn a generator with
sampling efficiency and guaranteed consistency in
approximating the true distribution as the training
size N →∞. We can thereby enrich the ID train-
ing examples directly in the representation space Z
and save the effort of conducting data augmentation
in the input space X .

To this end, we employ a principled distribution
estimation method – denoising autoencoder (DAE)
– to build an efficient stochastic process for sam-
pling ID examples with a consistency guaranteed
estimator for p(z). The latent DAE consists of two
components: the corruption distribution C(z̃ | z)
and the reconstruction distribution qθ(z | z̃). The
DAE can be learned by:

θ∗ = argmax
θ

E(log(qθ(z | z̃)),

where the likelihood is computed by a mean square
loss between the original embedding vector z and
the reconstructed vector ẑ as shown in Figure 2.

After obtaining the reconstruction distribution
qθ∗(z | z̃), we can sample synthetic ID examples
as follows:

ẑ ∼ qθ∗(z | z̃),
z̃ ∼ C(z̃ | z). (2)

The corruption distribution C can be instantiated
by simple stochastic operations like Dropout (Sri-
vastava et al., 2014). By repeatedly applying the
process in Equation (2), we can obtain a synthetic
labeled ID set Drec = {(ẑi, yi)}Li=1, where the re-
constructed representation ẑi shares the same label
yi with the original uncorrupted zi. Finally, by
combining the original training setDtr and the syn-
thetic set Drec, we get an enlarged labeled training
set DEnlarged = Dtr ∪ Drec.
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Figure 3: Illustration of the noise neutralizing effect
under the (k + 1)-way training paradigm.

4.2.2 Stage II: (K + 1)-way Discriminative
Training

As shown in the Figure 2, the second stage of our
proposed method aims at learning a (K + 1)-way
classifier in an end-to-end manner. Since only few-
shot samples are used to train the reconstruction
distribution qθ(z | z̃), the resulting qθ∗(·) may not
be a perfect estimator for the true distribution, and
the enlarged in-distribution set DEnlarged may be
noisy. Hence, it may not be the best choice to di-
rectly apply density estimation-based methods for
OOD intent detection, due to the risk of overfitting.

To better utilize the enlarged in-distribution set
DEnlarged, we adopt the (K+1)-way discriminative
training strategy proposed in Zhan et al. (2021) and
follow their idea to construct OOD learning signals
via random convex combination between represen-
tations from different in-distribution classes in the
enlarged in-distribution set. By doing so, the im-
pact of noisy synthetic in-distribution examples can
be mitigated. We demonstrate this phenomenon in
Figure 3. The linear interpolation between off-
manifold noisy synthetic in-distribution examples
tends to represent the OOD examples, since the
word embeddings of BERT has been found con-
centrating near a low-dimensional manifold of the
representation space (Ethayarajh, 2019).

Specifically, given the enlarged training set
DEnlarged, we construct an OOD set DOOD by:

zOODi = α ∗ zi + (1− α) ∗ zj , (3)

where yi ̸= yj , α ∈ [0, 1] is randomly sampled
from U(0, 1) and zi, zj ∈ DEnlarged.

Finally, our (K+1)-way classifier can be learned
by minmizing the loss in Equation (1) on the union
set DOOD ∪ DEnlarged.

5 Experiments

To evaluate our proposed method for few-shot out-
of-distribution (OOD) intent detection, we conduct
extensive experiments on three real-world bench-
mark datasets. By comparing with state-of-the-art
OOD intent detection methods, we find that our
method can outperform these baselines by a large
margin, especially in extreme few-shot scenarios.
Moreover, our approach yields a more consistent
performance at different few-shot OOD settings,
demonstrating the robustness of our algorithm.

5.1 Datasets and Baselines

We evaluate our method on three commonly used
OOD intent detection datasets, which are intro-
duced as follows.

• CLINC150 (Larson et al., 2019) is specifi-
cally designed for OOD intent detection. It
consists of 150 in-distribution classes with
15,000 samples for training, 3,000 for valida-
tion, and 4,500 for testing. Besides, it also
contains 1,200 annotated OOD instances, and
we put all the OOD examples into the test set.

• Banking (Casanueva et al., 2020) contains
data from the banking domain, with 13,083
samples of 77 intents. We split the dataset into
9,003 for training, 1,000 for validation, and
3,080 for testing.

• StackOverflow (Xu et al., 2015) contains data
in 20 classes, each of which contains 1,000
samples. We use 12,000 samples for training,
2,000 for validation, and 6,000 for testing.

The dataset statistics are summarised in Table 2.
To evaluate the effectiveness of our proposed

method, we compare it with the following base-
lines.

• MSP (Hendrycks and Gimpel, 2017): It lever-
ages the probabilities outputted by the softmax
function for out-of-domain detection. As cor-
rect samples tend to have higher probability
scores, samples below a threshold are classi-
fied as outliers. We set the threshold as 0.5 in
our experiment.

• DOC (Shu et al., 2017): It shares a similar
idea with MSP in assuming that in-distribution
examples tend to have higher probability
scores. It uses the maximum probability
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Dataset # Vocab Avg. Length # Training # Class Avg. Sample per Class
(proportion) (5%) (10%)

CLINC150 5864 8.34 15000 150 5 10
Banking 4327 11.99 9003 77 6 12

StackOverflow 16519 8.35 12000 20 30 60

Table 2: Dataset statistics.

dataset CLINC150 Banking StackOverflow
p=5% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 40.13 55.17 54.76 17.74 29.31 31.99 52.30 42.92 78.92
DOC 11.05 8.62 44.37 15.79 25.61 20.98 65.54 44.4 58.54
SEG 36.09 51.90 62.64 39.53 52.27 58.80 60.76 75.93 83.22

LMCL 34.30 52.45 60.71 39.10 48.90 54.60 56.00 69.68 83.17
Softmax 33.98 52.48 62.11 32.77 43.74 52.84 54.21 71.27 81.55

ADB 53.09 56.91 65.65 37.74 45.91 55.26 60.31 77.92 81.14
DCL 48.78 50.58 54.25 33.92 39.10 45.59 78.98 82.37 83.01
Ours 62.19 64.79 68.30 48.23 58.92 63.14 80.48 84.04 84.25

dataset CLINC150 Banking StackOverflow
p=10% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 54.34 71.56 77.31 43.50 48.62 68.34 41.66 59.73 75.95
DOC 15.15 23.28 54.69 13.99 21.50 25.13 44.77 61.22 61.19
SEG 68.29 77.59 80.32 56.75 58.70 71.32 58.77 78.64 83.85

LMCL 66.87 76.48 79.04 54.38 63.71 67.66 55.42 77.01 85.06
Softmax 65.07 77.08 79.68 53.27 60.20 68.94 57.86 77.30 83.47

ADB 68.05 74.96 77.75 51.12 66.16 70.50 69.55 81.30 83.83
DCL 68.65 72.74 70.81 55.74 61.10 65.77 78.61 82.46 83.80
Ours 72.43 78.15 82.17 60.99 67.89 73.79 81.07 83.99 85.11

Table 3: Overall macro f1-score including the OOD class for few-shot OOD intent detection with different
proportion (0.25, 0.5 and 0.75) of in-distribution classes. p indicates the ratio of selected few-shot in-distribution
examples. For each setting, the best result is marked in bold.

from m 1-vs-rest sigmoid classifiers for m ID
classes respectively as the confidence score.

• LMCL (Lin and Xu, 2019): It leverages local
outlier factor(LOF) to identity samples which
are far away from the clusters in the embed-
ding space as outliers. The model learns dis-
criminative features by largin margin cosine
loss.

• Softmax (Lin and Xu, 2019): It is a variant of
LMCL where the large margin cosine loss is
replaced by the softmax loss to learn discrimi-
native features.

• SEG (Yan et al., 2020): It uses a Gaussian
mixture model to enforce ID embeddings to
form ball-like dense clusters in the feature
space. Moreover, it injects semantic infor-
mation into the Gaussian mixture model by

assigning the embeddings of class labels or
descriptions to be the means of the Gaussians.

• ADB (Zhang et al., 2021a): It proposes to
learn a decision boundary for each in-domain
class for OOD intent detection. Samples re-
side outside of the boundaries are identified
as outliers, while in-distribution examples are
classified based on their distance to centroids
of each class.

• DCL (Zhan et al., 2021): It treats outliers
as an additional class and proposes a K + 1
training paradigm for OOD intent detection.
Samples in the outlier class are obtained from
external datasets and synthesized through con-
vex combinations of in-distribution features.
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dataset CLINC150 Banking StackOverflow
p=5% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 38.85 54.85 54.63 14.38 28.32 31.79 55.15 40.97 80.44
DOC 8.99 7.72 44.18 12.35 24.48 20.62 62.89 42.89 58.92
SEG 36.88 52.50 63.18 39.30 52.83 58.80 60.65 76.11 84.06

LMCL 35.20 53.14 61.24 37.15 49.41 55.02 55.15 71.51 84.17
Softmax 34.68 53.10 62.61 33.56 44.22 53.26 54.25 72.36 82.65

ADB 52.22 56.64 65.58 35.14 45.54 55.36 77.51 77.92 81.97
DCL 47.63 50.15 54.11 31.1 38.22 45.55 76.31 81.92 83.79
Ours 61.43 64.54 68.25 48.82 58.51 63.32 78.05 83.74 84.99

dataset CLINC150 Banking StackOverflow
p=10% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 53.77 71.50 77.39 41.97 48.21 68.69 45.89 61.02 78.29
DOC 13.21 22.57 54.57 10.39 20.33 24.84 43.69 60.43 61.60
SEG 68.29 77.52 80.34 56.75 58.69 71.61 59.24 78.64 83.85

LMCL 66.40 76.47 79.05 53.77 63.91 68.07 55.40 77.26 85.84
Softmax 64.59 77.01 79.72 52.70 60.42 69.31 57.24 77.48 84.43

ADB 67.49 74.82 77.76 50.04 66.01 70.75 67.41 81.08 84.62
DCL 67.99 72.55 70.76 54.02 61.27 65.98 75.99 82.09 84.52
Ours 71.93 78.06 82.19 59.76 67.73 74.09 78.91 83.82 85.93

Table 4: Macro f1-score excluding the OOD class for few-shot OOD intent detection with different proportion
(0.25, 0.5 and 0.75) of in-distribution classes. p indicates the ratio of selected few-shot in-distribution examples.
For each setting, the best result is marked in bold.

5.2 Experimental Setup

To achieve a fair comparison, all the baselines and
our method use the same pre-trained BERT model
(bert-base-uncased (Wolf et al., 2019)) to encode
input sentences.

To construct few-shot OOD intent detection
tasks from the three datasets, we randomly sam-
ple 5% and 10% labeled examples per class as the
training set from each of the three datasets. Then,
we randomly select 25%, 50%. 75% of the classes
in each dataset as in-distribution (ID) classes and
set aside the respective remaining classes to the
OOD class for the test stage. Concrete numbers
of ID examples per class for each dataset can be
found in Table 2. In particular, during training and
validation, only the labeled few-shot examples of
ID classes are seen by the model.

At training stage I, we use a two-layer MLP
as qθ and optimize the parameters of qθ by
Adam (Kingma and Ba, 2015) with a learning rate
of 1e−4. The dropout rate for the corruption func-
tion is set to be 0.3 for all experiments. At training
stage II, we instantiate our (k+1)-way OOD intent
classifier fϕ by removing the pre-trained heads of
BERT and appending a single layer MLP. For op-
timizing fϕ, we adopt AdamW (Wolf et al., 2019)

as optimizer and set the learning rate as 2e−5 fol-
lowing common practice (Devlin et al., 2019).

For the synthetic ID examples, we sample 15 re-
constructed examples per real ID example. For the
simulated OOD samples, we construct 100 OOD
examples per batch during training. These values
are selected with respect to the performance on val-
idation sets. The reported results are the mean of 5
runs with different random seeds.

Following previous works (Yan et al., 2020;
Zhang et al., 2021b; Zhan et al., 2021) in OOD
intent detection, we use macro f1-score as the pri-
mary evaluation metric.

5.3 Correctness of the Synthetic
In-distribution Examples

In Figure 4, we provide a qualitative evaluation of
the generated synthetic in-distribution (ID) exam-
ples using t-SNE visualization (Van der Maaten
and Hinton, 2008). We use the BERT embeddings
of 5% labeled examples of 8 ID classes and all
out-of-distribution examples from CLINC150 and
plot them on the top of the figure. By generating
10 synthetic ID examples for each real ID example,
we have the bottom figure where we can observe
that these synthetic ID examples closely situate in
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Figure 4: t-SNE visualization of BERT embeddings.
Top: BERT embeddings without the synthetic in-
distribution examples; Bottom: BERT embeddings with
the synthetic in-distribution examples. Better view in
color and enlarged.

the vicinity of each real ID example. Since BERT
embeddings have been proved to be rich in con-
textualized semantics (Devlin et al., 2019), the dis-
tance between different embeddings can reflect the
semantic gap between them. In this regard, at a
high level, our generated ID examples can capture
the expressiveness of ID classes.

5.4 Main Results

We present the results for the aforementioned three
datasets in Table 3 and Table 4. As shown in the
two tables, our proposed method consistently out-
performs all baselines by a large margin in all set-
tings.

Table 3 presents the results in overall macro f1-
score on (K + 1) classes including the OOD class.
The results in this table can be interpreted as the
overall performance of the model. We first inspect
the challenging case, where only 5% labeled exam-
ples per class are sampled for training as shown in
the top of Table 3. We can observe that our method
leads to large improvements on all three datasets. In
the most challenging case (only 25% of classes in
each dataset are selected as in-distribution classes),
the improvement is more than 9% on CLINC150
and 8% on Banking than the second best results.
Moreover, in the 50% and 75% cases, the improve-
ments are also significant. For example, in the
50% case of Banking, the gap between our method

Figure 5: Effect of the number of synthetic in-
distribution examples.

and the second best one is around 6.6%. These
results verify the effectiveness and consistency of
our model in extreme data-scarcity scenarios. As
the ratio of labeled examples per class increased
to p = 10%, it can be seen that the baselines are
improved by a large margin compared with the
case of p = 5%. However, our method can still
achieve consistent improvement. This validates
the robustness of our method under various data-
scarcity scenarios.

In Table 4, we summarize the results in macro
f1-score of in-distribution classes to demonstrate
the effectiveness of synthetic ID examples in our
method. It can be seen that in all settings, the per-
formance gains are consistent with the results in
Table 3, which indicates that the synthetic ID ex-
amples sampled from the DAE can help to improve
the classification performance on ID classes.

CLINC150, p=5%
Method ID-F1 Overall-F1

25% SEG 36.88 36.09
SEG + Ours 63.65 64.25

50% SEG 52.50 51.90
SEG + Ours 71.97 72.13

75% SEG 63.18 62.64
SEG + Ours 70.67 70.72

Table 5: Results of SEG (Yan et al., 2020) and SEG with
our synthetic ID examples (SEG + Ours). ID-F1 stands
for in-distribution f1-score, and overall-F1 indicates the
macro f1-score for all classes including the OOD class.
Better results are marked in bold.

5.5 Effectiveness of the Synthetic
In-distribution Examples

First, we study the impact of the number of syn-
thetic in-distribution (ID) examples. We conduct
experiments on the 5% labeled ratio case. As
shown in Figure 5, we vary the number of syn-
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thetic ID examples per class from 0 to 500. In the
range of [0,100], the classification performance in-
creases gradually for all cases (0.25, 0.5 and 0.75).
It shows the expressiveness of the synthetic ID ex-
amples. However, in the range of [100,500], we
observe a slow performance drop in all cases. This
is probably because the ID generator is learned
from few-shot data and may generate inaccurate ID
examples.

To further verify the effectiveness of our syn-
thetic generator, we incorporate the synthetic ID ex-
amples to a strong baseline SEG (Yan et al., 2020)
and present the results under the p = 5% setting
of CLINC150 in Table 5. With our enlarged ID
training set, the performance of SEG can also be
improved significantly.

5.6 Robustness of the (K + 1)-way Training
Paradigm

In this subsection, we conduct experiments to eval-
uate the robustness of the (K + 1)-way training
paradigm with synthetic in-distribution (ID) exam-
ples.

As shown in Figure 6, we vary the corruption
rate (from 0% to 100%) of the learned latent de-
noising autoencoder (DAE) (trained by 30% cor-
ruption rate). Notice that 100% corruption rate
indicates that no useful reconstruction information
is passed to the DAE. We can observe that in the
0.5 (orange line) and 0.75 (green line) cases, the
learned (K + 1)-way classifier can maintain a sur-
prisingly consistent performance compared with
the 0.25 (purple line). Especially, with 90% cor-
ruption rate, the synthetic in-distribution (ID) ex-
amples are much less accurate than those with 30%
or 40% corruption rate, but the performance does
not drop to an unacceptable level. This verifies
the noise neutralization effect of the (K + 1)-way
training manner discussed in Section 4.

6 Conclusion

In this paper, we have investigated few-shot OOD
intent detection under a more challenging setting.
We have conducted a pilot study to identify the key
challenge for this problem, which is in improving
the in-distribution (ID) expressiveness during train-
ing. To this end, we have proposed a promising
approach to enrich the ID training set by sampling
from a denoising autoencoder trained with only a
few examples. The enlarged training set enables to
train a well-performing (K+1)-way classifier. Our

Figure 6: Effect of the rate of corruption on the learned
denoising autoencoder. The experiment is conducted on
CLINC150 under the p = 5% setting.

proposed approach has been validated by extensive
experiments on real-world bechmarks.

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful comments. This research was
supported by the grants HK ITF UIM/377 and
ITS/359/21FP.

References
Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,

Matthew Henderson, and Ivan Vulic. 2020. Efficient
intent detection with dual sentence encoders. CoRR,
abs/2003.04807.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of bert, elmo, and gpt-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 55–65.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution ex-
amples in neural networks. In 5th International Con-
ference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Taewon Jeong and Heeyoung Kim. 2020. Ood-maml:
Meta-learning for few-shot out-of-distribution detec-
tion and classification. Advances in Neural Informa-
tion Processing Systems, 33.

459



Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1311–1316, Hong Kong, China. Association
for Computational Linguistics.

Ting-En Lin and Hua Xu. 2019. Deep unknown intent
detection with margin loss. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5491–5496, Florence, Italy.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Seonghan Ryu, Seokhwan Kim, Junhwi Choi, Hwanjo
Yu, and Gary Geunbae Lee. 2017. Neural sentence
embedding using only in-domain sentences for out-
of-domain sentence detection in dialog systems. Pat-
tern Recogn. Lett., 88(C):26–32.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and Gary Ge-
unbae Lee. 2018. Out-of-domain detection based on
generative adversarial network. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 714–718, Brussels,
Belgium. Association for Computational Linguistics.

Lei Shu, Hu Xu, and Bing Liu. 2017. DOC: deep open
classification of text documents. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017, pages 2911–
2916. Association for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and com-
posing robust features with denoising autoencoders.
In Proceedings of the 25th international conference
on Machine learning, pages 1096–1103.

Kuan-Chieh Wang, Paul Vicol, Eleni Triantafillou, and
Richard Zemel. Few-shot out-of-distribution detec-
tion.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun
Zhao, Fangyuan Wang, and Hongwei Hao. 2015.
Short text clustering via convolutional neural net-
works. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing,
VS@NAACL-HLT 2015, June 5, 2015, Denver, Col-
orado, USA, pages 62–69. The Association for Com-
putational Linguistics.

Guangfeng Yan, Lu Fan, Qimai Li, Han Liu, Xiaotong
Zhang, Xiao-Ming Wu, and Albert Y.S. Lam. 2020.
Unknown intent detection using Gaussian mixture
model with an application to zero-shot intent classifi-
cation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1050–1060, Online. Association for Computational
Linguistics.

Li-Ming Zhan, Haowen Liang, Bo Liu, Lu Fan, Xiao-
Ming Wu, and Albert Y.S. Lam. 2021. Out-of-scope
intent detection with self-supervision and discrimi-
native training. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3521–3532, Online. Association for
Computational Linguistics.

Hanlei Zhang, Hua Xu, and Ting-En Lin. 2021a. Deep
open intent classification with adaptive decision
boundary. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(16):14374–14382.

Hanlei Zhang, Hua Xu, and Ting-En Lin. 2021b. Deep
open intent classification with adaptive decision
boundary. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(16):14374–14382.

Jianguo Zhang, Kazuma Hashimoto, Wenhao Liu,
Chien-Sheng Wu, Yao Wan, Philip S. Yu, Richard
Socher, and Caiming Xiong. 2020. Discriminative
nearest neighbor few-shot intent detection by trans-
ferring natural language inference. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 5064–5082. Associa-
tion for Computational Linguistics.

460



Proceedings of the 29th International Conference on Computational Linguistics, pages 461–470
October 12–17, 2022.

CGIM: A Cycle Guided Interactive Learning Model for Consistency
Identification in Task-oriented Dialogue

Libo Qin1, Qiguang Chen1, Tianbao Xie1, Qian Liu2,
Shijue Huang1, Wanxiang Che1∗, Zhou Yu3

1Research Center for Social Computing and Information Retrieval
Harbin Institute of Technology, China
2 Beihang University, Beijing, China

3Columbia University
{lbqin,tianbaoxie,car}@ir.hit.edu.cn; qian.liu@buaa.edu.cn; zy2461@columbia.edu

Abstract
Consistency identification in task-oriented di-
alog (CI-ToD) usually consists of three sub-
tasks, aiming to identify inconsistency be-
tween current system response and current
user response, dialog history and the corre-
sponding knowledge base. This work aims
to solve CI-ToD task by introducing an ex-
plicit interaction paradigm, Cycle Guided
Interactive learning Model (CGIM), which
achieves to make information exchange ex-
plicitly from all the three tasks. Specifically,
CGIM relies on two core insights, referred
to as guided multi-head attention module and
cycle interactive mechanism, that collaborate
from each other. On the one hand, each two
tasks are linked with the guided multi-head
attention module, aiming to explicitly model
the interaction across two related tasks. On
the other hand, we further introduce cycle in-
teractive mechanism that focuses on facilitat-
ing model to exchange information among the
three correlated sub-tasks via a cycle interac-
tion manner. Experimental results on CI-ToD
benchmark show that our model achieves the
state-of-the-art performance, pushing the over-
all score to 56.3% (5.0% point absolute im-
provement). In addition, we find that CGIM
is robust to the initial task flow order.

1 Introduction

Consistency identification task in dialogue has the
potential benefits of preventing inconsistent re-
sponse generation (Welleck et al., 2019), which
has attracted increasing attention. Recent years
have witnessed two promising research directions
in consistency identification. The first focuses
on consistency identification in open-domain di-
alogue (Zhang et al., 2018; Zheng et al., 2019).
The second direction consider consistency iden-
tification in task-oriented dialogue system (CI-
ToD) (Qin et al., 2021b). In this work, we focus
on the latter. Recently, Qin et al. (2021b) intro-

∗Email corresponding.

(a) Traditional Multi-task Learning Model.

(b) Cycle Guided Interative Learning Model (CGIM).

KBCIT

QCIT

HCIT

Encoder

✓

✓✓

Encoder

QCIT KBCIT HCIT✘ ✘

Figure 1: (a) Traditional multi-task learning models
learn mutual information across tasks via an implicit
interaction manner vs. (b) Our proposed cycle inter-
active learning model explicitly consider cross-impact
across three tasks via an explicit interaction manner.

duces a benchmark (CI-ToD) for consistency iden-
tification in task-oriented dialogue to facilitate the
relevant research. CI-ToD introduces three sub-
tasks including: (1) dialogue history consistency
identification task (HCIT) to judge whether gen-
erated response is inconsistent with dialogue his-
tory; (2) user query consistency identification task
(QCIT) to detect the consistency status between
query and system response, and (3) knowledge
base consistency identification task (KBCIT) to
determine system response is contradicted with the
corresponding knowledge base.

Intuitively, the three tasks are closely related,
indicating information of one task can be utilized
in other related tasks. For example, if we first
complete HCIT, the result of HCIT can assist the
QCIT to determine whether the system response
is contradicted with the user query, since the di-
alogue history and the user query tend to share
similar topic (Chen et al., 2020). Similarly, KBCIT
can also provide additional information for helping
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HCIT, because dialogue history can be regarded
as an unstructured knowledge description for the
corresponding KB. Above observations suggest
that it is imperative to take cross-impact across
three tasks into account. To this end, Qin et al.
(2021b) explore a simple multi-task framework
that consists of a shared encoder and different task
decoders to jointly consider correlation, which is
shown in Figure 1(a). Though achieving superior
performance compared with single models, their
approaches solely rely on shared latent represen-
tations to model the interaction in an implicit in-
teraction manner, which limits their performance.
Therefore, it is promising to consider an explicit
joint modeling approach for CI-ToD.

While the idea seems promising, achieving this
objective is challenging, since we need to jointly
model the three sub-tasks simultaneously rather
than simple two tasks setting. Recent work have
shown explicit joint modeling is superior to the im-
plicit joint modeling (Goo et al., 2018; Qin et al.,
2021a). Nevertheless, their work still limits to
modeling the relationship between two tasks, it
remains clear if the explicit modeling paradigm
can be applied in three tasks. To this end, as
shown in Figure 1(b), we propose a novel Cycle
Guided Interactive learning Model (CGIM) for CI-
ToD, which achieves to perform the three sub-tasks
jointly and interactively in an explicit interaction
paradigm. Specifically, CGIM first consists of a
guided multi-head attention module (GMA) that is
used for two related tasks, which aims to explic-
itly utilize information from another task. With
the help of GMA, each task can not only rely on
its own task information but also performed with
the guidance of the corresponding correlated task
explicitly. Furthermore, since GMA can only en-
able the single information flow from one task to
another task, we further propose a novel cycle in-
teractive mechanism to facilitate information flow
across the three tasks in an cycle interaction fash-
ion. With the use of cycle interactive mechanism,
CGIM can be stacked to form a hierarchy, which
can gradually capture interaction information and
better transfer knowledge.

We conduct experiments on CI-ToD benchmark
and results show that CGIM achieves the best per-
formance, outperforming previous state-of-the-art
methods by at least 5.0% (overall accuracy). Be-
sides, extensive analysis further demonstrate the
superior and robustness of our approach.

poi … distance

stanford_express_care … 6_miles

… … …

jacks_house 4_miles

✘(KBCIT)

Driver: find me a nearby parking_garage 

or parking lot

System: civic_center_garage is nearby

Driver: what is the address

✘(QCIT) ✘(HCIT)System: stanford_express_care is 5_miles away

Knowledge Base Dialogue History

System Response

Figure 2: Example illustration in CI-ToD. Different col-
ors denote inconsistency type of different tasks.

Main contributions are summarized as follows:

• To the best of our knowledge, we make the
first attempt to explore an explicit interaction
model for CI-ToD.

• We introduce a novel cycle interactive learn-
ing model for CI-ToD, which achieves estab-
lishing a triple-interaction across the three
tasks simultaneously.

• Results on CI-ToD benchmark show that
CGIM achieves state-of-the-art performance.
Besides, we observe that CGIM is robust to
the initial task flow order.

All codes in this work will be publicly available
at https://github.com/LightChen233/CGIM.

2 Background

To make the paper self-complete, we present the
definition of the task that follows Qin et al. (2021b)
in this section.

2.1 Task Definition

Given a task-oriented dialogue between a user (u)
and a system (s), the dialogue history is defined
as H = {(u1, s1),(u2, s2), . . . ,(un−1, sn−1)}, the
corresponding knowledge base KB is B, the user
query is denoted by un and the system response is
denoted by sn.

Formally, the consistency identification in task-
oriented dialogue contains three tasks: the dialogue
history consistency identification task (HCIT), the
user query consistency identification task (QCIT),
and the knowledge base consistency identification
task (KBCIT) to judge whether system response
is contradicted with the corresponding dialogue
history, user query, and KB, respectively, which are
defined as:

(yQ, yH, yB) = fθ([H,B, un], sn), (1)
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Figure 3: The illustration of the proposed cycle interactive learning model (CGIM), which consists of three com-
ponents: encoder, cycle interactive learning module and decoder.

where fθ denotes the parameters of model;
yQ, yH, yB represents the probabilities of inconsis-
tent system response in QCIT, HCIT and KBCIT,
respectively.

2.2 Example Illustration

To understand HCIT, QCIT, and KBCIT intutively,
we provide some example cases, which are shown
in the following:

QCIT QCIT aims at detecting the inconsistency
between dialogue system response and current user
query. As shown in Figure 2, user is intended
to ask for the address. However, the system re-
sponse provide the answer about distence to stan-
ford_express_care, which results in inconsistency
with user query.

HCIT HCIT aims at detecting the inconsistency
between system response and dialogue history ex-
cept the current query. Figure 2 shows the incon-
sistent dialogue, where the previous dialogue his-
tory talked about civic_center_garage and the user
did not change the topic. However, the system re-
sponded by talking about stanford_express_care,
which is contradicted with the dialogue history.

KBCIT KBCIT aims at detecting the incon-
sistency between dialogue system response and
corresponding KB. As shown in Figure 2, stan-
ford_express_care is located 6_miles according to
the corresponding KB. However, the system indi-
cates that the distance to stanford_express_care is
5_miles, which is inconsistent with the information
provided in the KB.

3 Approach

The architecture of the cycle guided interactive
learning model (CGIM) is depicted in Figure 3. It
mainly consists of three components: three task-
specific encoders for obtaining encoding represen-
tation for each task (§3.1); a cycle interactive learn-
ing module for explicitly establishing the interac-
tion across the three tasks (§3.2); three separate
decoders for HCIT, QCIT and KBCIT (§3.3), re-
spectively. In the following sections, the details of
our framework are given.

3.1 Encoder

Following Qin et al. (2021b), we employ the pre-
trained model (i.e., BERT) (Devlin et al., 2019)
as the encoder and use delimiter tokens [SOK],
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[EOK], [USR], [SYS] to capture the role feature
of KB, user and system response.

Query Representation To consider the system
response, we concatenate un and the last system
response sn to obtain the query encoding repre-
sentation. Therefore, the input can be represented
as XU = ([CLS], un, [SEP], sn, [SEP]),
where [CLS] and [SEP] are special symbol, and
BERT reads it to produce the representation:

hQ = BERT(XU), (2)

where the last layer’s hidden representation hQ

of the [CLS] token is considered as the query
representation.

Dialogue History Representation Similarly,
we concatenate the dialog history H and the sys-
tem response sn asXH = ([CLS], Ĥ, [SEP],
sn, [SEP]), which is used for acquiring dialogue
history representation hH:

hH = BERT(XH), (3)

where Ĥ is [USR]u1[SYS]s1 . . .[USR]un.

Knowledge Base Representation For KB rep-
resentation, we first linearize the KB and then
concatenate the linearized KB and system re-
sponse to obtain XB= ([CLS], B̂, [SEP],
sn, [SEP]). Feeding it into BERT, we obtain the
knowledge base representation hB:

hB = BERT(XB), (4)

where B̂ is [SOK]B[EOK].

3.2 Cycle Guided Interactive Learning
Module

Traditional multi-task learning only depend on a
set of shared parameters to implicitly consider
correlation across different correlated tasks. In
contrast, we present a cycle guided interactive

learning model to explicit model the interaction,
which consists of two parts: the guided multi-head
attention module (GMA) and the cycle interaction
mechanism (CIM).

3.2.1 Guided Multi-head Attention Module
GMA mainly consists of a guided multi-head at-
tention layer and self multi-head attention layer,
achieving to explicitly model interaction across re-
lated tasks.

Guided Multi-head Attention Layer. First,
given hQ, hH and hB, we first directly perform
a concatenation operation upon them and adopt
different projection linear layers to obtain differ-
ent updated representations for QCIT, HCIT and
KBCIT, which are denoted as:

H = Concat(hQ,hH,hB), (5)

HQ,HH,HB = WQH,WHH,WBH, (6)

where H ∈ R3×d (d represents the encoding
dimension); Concat is concatenation operation;
WH,WQ,WB are the trainable matrix.

Then, to obtain updated QCIT representations
with the guidance of HCIT explicitly, it is neces-
sary to align query with its closely related dialogue
history information. To be more specific, as shown
in Figure 4, we first employ QKV Linear to map
the dialog history and query representations HH

and HQ to query ( QH, QQ ), keys (KH , KQ) and
values (VH , VQ ) matrices. We then treat QQ as
queries, KH as keys and VH as values to obtain the
updated representation with explicitly considering
the information from the HCIT task. The output is
a weighted sum of values:

Ĥ=MultiHead(QQ,KH,VH), (7)

Attention(Q,K,V)=softmax

(
QK√
dk

)
V, (8)

MultiHead(Q,K,V)=Concat(Hi, . . . ,Hh)W0, (9)

whereHi=Attention(QWQ
i ,KWK

i ,VWV
i ), (10)

where Ĥ can be seen as the updated query in-
formation with the guidance of dialogue history
information; Q,K and V denote the query, key,
and value respectively. dk is the dimension of the
key; WQ

i ,W
K
i ,W

V
i denote the head projection

matrix, respectively; h is the head number.
Then, we concatenate the updated representation

H with the original KQ and VQ to construct new
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keys K̂Q and values V̂Q, calculating as:

K̂Q = Linear(Concat(KQ, Ĥ)), (11)

V̂Q = Linear(Concat(VQ, Ĥ)). (12)

Self Multi-head Attention Layer. Given the ob-
tained updated keys, updated values, and queries,
we further introduce a self multi-head attention
layer to enhance the interaction information and
obtain the final query guided query representation:

H̃Q = MultiHead(QQ, K̂Q, V̂Q), (13)

where H̃Q denotes the updated representations.
Similiar to transformer, we also employ a resid-

ual connection (He et al., 2016), layer normaliza-
tion (Ba et al., 2016) and a fully connected feed-
forward network.

3.2.2 Cycle Interactive Mechanism
With the help of the GMA, single information flow
can be established. Formally, given features rep-
resentation HQ and HH, GMA aims to output the
attended features H̃Q for HQ guided by HH, which
can be formulated as:

H̃Q
1 = GMAH→Q(H

H
0 ,H

Q
0 ), (14)

where HH
0 and HQ

0 are initialized as HH and HH,
respectively.

Similarly, the query guided dialogue history rep-
resentation and dialogue history guided knowledge
base representation can be obtained in the same
manner, which are shown as:

H̃B
1 = GMAQ→B(H

Q
0 ,H

B
0 ), (15)

H̃H
1 = GMAB→H(H

B
0 ,H

H
0 ). (16)

To enable the shared knowledge flowed across
the three subtasks, we further introduce a cycle
interaction mechanism (CIM) with multiple lay-
ers to gradually and iteratively control knowledge
transfer, which can be formulated as:

H̃Q, H̃H, H̃B = CIM(H→Q→B→Q)(H
Q,HH,HB), (17)

After stacking L layer, we obtain a final updated
feature representation: H̃B

L , H̃H
L and H̃Q

L .

3.3 Decoder
Given the final updated representations H̃B

L , H̃H
L

and H̃Q
L for each task, we directly flatten them

into a single vector dB , dH and dQ, which are fed

into separate decoders to perform QCIT, HCIT and
KBCIT, which can be denoted as:

yH = softmax(WHdH + bH), (18)

yQ = softmax(WQdQ + bQ), (19)

yB = softmax(WBdB + bB), (20)

where yH, yQ and yB are the predicted distribution
result for three tasks, respectively; WH, WQ and
WB are learnable transformation matrices; bQ, bH
and bB are learnable bias vectors.

3.4 Joint Training
The training objective of each task is the binary
cross-entropy loss. Specifically, the objective for
QCIT is:

LQ =−
T∑

(ŷQ log (yQ)) , (21)

where ŷ is gold label and T is the training data
size.

Similar, LH and LB can be obtained in a similar
manner. Following Bai et al. (2021) and Bao et al.
(2021), the final joint loss function is as:

Lθ = αQLQ + αHLH + αBLB, (22)

where αQ, αH and αB are hyper-parameter1

4 Experiments

4.1 Experimental Settings
To evaluate the effectiveness of CGIM, we conduct
experiments on the CI-ToD benchmark (Qin et al.,
2021b). Specifically, CI-ToD consists of 2,553
dialogues for training, 319 dialogues for validation,
and 318 dialogues for testing.

In our experimental setting, we adopt
BERT-base and the dimension of all hid-
den units is 768. The batch size we use is selected
from {4, 8, 16} and learning rate is selected from
{1e−5, 2e−5, 5e−5}. We use AdamW (Loshchilov
and Hutter, 2019) to optimize the parameters in
our model. We select all hyper-parameters from
the validation set. All experiments are conducted
at Tesla P100 and Tesla V100.

4.2 Baselines
Following Qin et al. (2021b), we compare our
model with the following state-of-the-art multi-task

1In our experiment, we set them as 1.
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Model QI F1 HI F1 KBI F1 Overall Acc
BART-separate (Lewis et al., 2020) 0.695 0.496 0.721 0.450
BERT-multi-task (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa-multi-task (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet-multi-task (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer-multi-task (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART-multi-task (Lewis et al., 2020) 0.744 0.510 0.761 0.513
CGIM 0.764 0.567 0.772 0.563

Table 1: Main results. The bolded number indicates the best performance. All baselines results are taken from Qin
et al. (2021b).

learning models based on the strong pre-trained
models:

(1) BERT (Devlin et al., 2019): the model pre-
trains bidirectional representations from a large-
scale text corpus; (2) RoBERTa (Liu et al., 2019):
the model improves the training procedure of BERT
to make it perform better; (3) XLNet (Yang et al.,
2020): the model combines the advantage of au-
toregressive and autoencoding approaches by per-
forming a permutation language objective; (4)
Longformer (Beltagy et al., 2020): the model
employs an attention pattern that combines local
and global information while also scaling linearly
with the sequence length, making it easy to process
long documents; (5) BART (Lewis et al., 2020):
the model uses a pre-training approach to map cor-
rupted documents to the original document, which
works well on both various generation tasks and
understanding tasks.

We refer to the model with multi-task learning
for three tasks as model-multi-task. In addi-
tion, we also compare CGIM with the state-of-the-
art separate model for each task, which is referred
as model-separate.

4.3 Main Results

Following Qin et al. (2021b), we adopt query in-
consistency (QI) F1 scores, dialogue history incon-
sistency (HI) F1 scores, knowledge base inconsis-
tency (KBI) F1 scores to evaluate QCIT, HCIT, and
KBCIT respectively. Besides, we also use overall
accuracy, a strict metric that requires all tasks are
predicted correctly.

From the results shown in Table 1. We have the
following observations:

(1) CGIM yields better performance compared
with BART-separate on all metrics, which
verifies that QCIT, HCIT and KBCIT tasks are
correlated where joint model can be benefited

from capturing shared knowledge across tasks,
supporting our motivation;

(2) CGIM achieves the best performance on three
tasks compared with all baselines. Compared
with BART-multi-task, our framework
obtains 2.0%, 5.7% and 1.1% improvements
on three tasks, respectively. This indicates that
the proposed explicit interaction paradigm is
better than the implicit interaction paradigm
that is insufficient to grasp knowledge trans-
fer, which is consistent to the observation on
other explicit joint modeling work on two
tasks (Goo et al., 2018; Qin et al., 2021a);

(3) CGIM attains the best results on Over-
all Acc. and beats the best model
BART-multi-task by a large margin of
5.0%. This suggests that all three tasks are
highly correlated and explicit modeling mech-
anism can help to improve the whole dia-
logue understanding ability than the implicit
modeling. It is worth noticing that the back-
bone of CGIM is BERT and it still outper-
forms BART-multi-task by a large mar-
gin, which further verifies the effectiveness of
explicit modeling paradigm.

4.4 Analysis
This section answer the following research ques-
tions to understand CGIM in depth:

(1) Does each guided multi-head attention (GMA)
module improve performance?

(2) Does a deeper layer of guided multi-head at-
tention module bring a better performance?

(3) Is CGIM robust to the initial task flow order?

(4) Does explicit interaction modeling gain the
performance improvement rather than the in-
volved parameters?
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Model QI F1 HI F1 KBI F1 Overall Acc
CGIM 0.764 0.567 0.772 0.563
w/o QCIT→ KBCIT 0.712 0.539 0.749 0.512
w/o KBCIT→ HCIT 0.731 0.506 0.752 0.494
w/o HCIT→ QCIT 0.710 0.507 0.764 0.521
w/MLP 0.725 0.515 0.686 0.507

Table 2: Ablation Study. The bolded number indicates
the best performance in the first block.

Model QI F1 HI F1 KBI F1 Overall Acc
BART 0.744 0.510 0.761 0.513
CGIM (QCIT→ KBCIT→ HCIT) 0.764 0.567 0.772 0.562
CGIM (QCIT→ HCIT→ KBCIT) 0.787 0.599 0.778 0.560

Table 3: Robust Test. The performance of BART and
different information flow model.

(5) Is the explicit modeling method still effective
in low-resource scenario?

(6) How CGIM is useful in CI-ToD?

4.4.1 Answer 1: GMA boosts performance
across the related tasks

We devise three variations for exploring the effect
of guided multi-head attention layer. In particu-
lar, QCIT → KBCIT is the variation by remov-
ing guided multi-head attention layer from QCIT
to KBCIT and all the other components keep un-
changed. Similarly, KBCIT → HCIT and HCIT
→ QCIT variation denotes that remove the cor-
responding guided multi-head attention layer for
HCIT and QCIT, respectively.

Results are presented in Table 2 (row 2,3,4), we
observe that without guided multi-head attention
layer leads to a drop in the corresponding tasks.
We attribute it to the fact that all the two sub-tasks
are highly correlated, it hinders the information
transfer and thus hurts the performance without the
corresponding guided multi-head attention layer.

4.4.2 Answer 2: More layers may not be
better

To investigate the influence of layers of guided
multi-head attention module, we conduct exper-
iments on the different layers of our framework.
Figure 5 presents the results. We can observe: (1)
The performance of CGIM with two or three lay-
ers is better than the model with one layer, which
indicates that a deeper layer can achieve better inter-
actions across three tasks. (2) Another interesting
observation is that when the number of layers is
five, we can observe the performance on overall
accuracy drops a lot, even underperforming the
model with one layer. We speculate that there may

QI F1 HI F1 KBI F1 Overall Acc.
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Figure 5: Influence of Layers.

be gradient vanishing or over-fitting problem when
the layer of network exceeds five, which is consis-
tent with prior observation (Feng et al., 2017; Qin
et al., 2020).

4.4.3 Answer 3: CGIM is robust
Another interesting research question is whether
CGIM is robust to the initial task information flow.
To answer this question, we conduct experiments
with another initial information flow order QCIT
→ HCIT→ KBCIT and the results are presented
in Table 3. We witness two observations: (1) the
performance CGIM (QCIT→ KBCIT→ HCIT)
is comparable with the original CGIM; (2) it also
outperforms BART by a large margin. Above ob-
servations verifies the robustness of our method to
the initial task flow order.

4.4.4 Answer 4: Explicit interaction
modeling boosts performance

We replace three guided multi-head attention lay-
ers with three MLP modules. We refer to it as
“w/MLP” and the results are reported in Table 2. As
seen, CGIM yields better results than the “w/MLP”
model with the same amount of parameters in all
three tasks (over 4% drops on all tasks), which
demonstrates that the improvements come from the
proposed explicit interaction mechanism across the
three tasks rather than the extra parameters.

4.4.5 Answer 5: CGIM works in few-shot
scenario

We further investigate the effectiveness of CGIM
in a low-resource setting. We randomly extract
different proportions of datasets from the entire
dataset to simulate the low-resource setting, i.e.,
[5%, 10%, 20%, 50%]. The results are shown in
the Figure 6 (a). We observe that our framework
outperforms the BART on all low-resource settings.
We attribute it to the fact the proposed explicit
interaction can make the most limited data and
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Figure 6: Low-Resource Performance.

effectively share the knowledge between the three
tasks compared to implicit modeling method.

In addition, we also analyze the performance
gap on different datasets. The results are shown
in Figure 6 (b), we find that the less data we have,
the higher the performance improvement of our
model compared to BART-multi-task, which
indicates that our framework is more practical and
scalable in a low resource setting.

4.4.6 Answer 6: Qualitative analysis
This section provides a case study for better under-
standing of our model. Figure 7 shows one case
made by baseline model BART-multi-task
and CGIM. In this case, user query and dialogue his-
tory talks about the same topic (the_clement_hotel),
which demonstrates that the QCIT and HCIT are
highly correlated.

However, BART-multi-task predict the
HCIT correctly but QCIT incorrectly, which
demonstrates original implicit interaction paradigm
does not effectively model the correlation across
the tasks. In contrast, CGIM predicts both QCIT
and HCIT correctly. We think that the proposed
explicit interaction paradigm successfully grasps
correlation and thus enhance each task.

5 Related Work

Increasing attention has been witnessed in consis-
tency identification in dialogue. To this end, Per-
sonaChat (Zhang et al., 2018) and PersonalDialog
(Zheng et al., 2019) are introduced to implicitly

Driver:where is the nearest hotel

System:the nearest hotal is the_clement_hotel

Driver:what is the address (for the_clement_hotel)

System: hotel_keen is at 347_alta_mesa_ave

BART-m

CGIM

QI HI KBI
0, 1

1

1,

1,1,

GOLD 11,1,

Figure 7: Prediction made by BART-m and CGIM.
BART-m denotes BART-multi-task.

.

consider the consistency in dialogue generation.
Welleck et al. (2019) model the consistency of di-
alogue systems by introducing a new natural lan-
guage inference dataset called DialogueNLI. Dziri
et al. (2019) propose to use state-of-the-art entail-
ment techniques for evaluating the coherence of
dialogue systems. Nie et al. (2021) propose a Di-
aloguE COntradiction DEtection task (DECODE)
to evaluate the ability to detect contradictory in
dialogue. However, their work mainly focuses on
consistency in open-domain direction. In contrast,
our framework mainly considers improving consis-
tency in task-oriented dialogues.

In recent years, Qin et al. (2021b) make the
first step towards consistency identification in task-
oriented dialogues and propose three sub-tasks to
detect whether the system response is contradicted
with the corresponding dialogue history, user query,
and knowledge base. In addition, they also intro-
duce a public benchmark CI-ToD and provide some
state-of-the-art pre-trained models to facilitate the
research. Unfortunately, their models only jointly
consider the correlated three tasks in an implicit
manner. Compared with their model, we propose
a cycle guided interactive learning model (CGIM),
which can explicitly model interaction across the
three tasks in a cycled interaction manner. To our
knowledge, we are the first to explore an explicit
interaction paradigm for CI-ToD.

6 Conclusion

We studied how to explicitly model the interaction
across three sub-tasks for consistency identification
in task-oriented dialogue (CI-ToD). To this end,
we introduced a cycle interactive learning model
(CGIM), which facilitates the knowledge transfer
across the three correlated tasks. Experiments show
CGIM achieves state-of-the-art performance. In ad-
dition, CGIM is robust to the initial task flow order
and works better in a low-resource setting, which
is scalable in a real-world system deployment.
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Abstract
Knowledge-grounded dialog systems need to
incorporate smooth transitions among knowl-
edge selected for generating responses, to en-
sure that dialog flows naturally. For document-
grounded dialog systems, the inter- and intra-
document knowledge relations can be used to
model such conversational flows. We develop
a novel Multi-Document Co-Referential Graph
(Coref-MDG) to effectively capture the inter-
document relationships based on common-
sense and similarity and the intra-document co-
referential structures of knowledge segments
within the grounding documents. We propose
CorefDiffs, a Co-referential and Differential
flow management method, to linearize the static
Coref-MDG into conversational sequence logic.
CorefDiffs performs knowledge selection by
accounting for contextual graph structures and
the knowledge difference sequences. CorefD-
iffs significantly outperforms the state-of-the-
art by 9.5%, 7.4% and 8.2% on three public
benchmarks. This demonstrates that the effec-
tive modeling of co-reference and knowledge
difference for dialog flows are critical for tran-
sitions in document-grounded conversation1.

1 Introduction

Document-grounded conversations (Moghe et al.,
2018; Dinan et al., 2018; Feng et al., 2021b) is
a core class of knowledge-grounded dialogs that
leverage text-based knowledge segments from doc-
uments to generate informative dialog responses.
This task is typically divided into two sub-tasks,
given the dialog history (Dinan et al., 2018):
namely, knowledge selection and response genera-
tion. Knowledge selection, which determines the
content of the generated responses (Moghe et al.,
2018; Dinan et al., 2018), is the crucial sub-task for
dialog flow management as it leads to the manifes-
tation of knowledge transition (Meng et al., 2020),
essential for naturalistic engaging conversations.

1The source code has been released at https://github.com/
cathyxl/coref-diffs

Science 
fiction film

The empire 
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sent-1
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(film)

sent-1

sent-2

part_of
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genre_of

genre_of

Science fiction film
uses speculative, 
fictional science ... Star wars is a 1977... 

space opera film
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adventures of
...in a galaxy

Star wars (film) 
starring mark hamill, 
harrison ford

The empire strikes 
back is a 1980...film.
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co-ref

co-ref

co-ref

Coref-MDG

1

2

34

Conversation:
Usr1: I like science fiction
Bot1: yes. i like movies that use speculative, fictional science...depictions
[Science fiction film, sent-1] 

Usr2: I liked the star wars movies and the alien ...
Bot2: I wish i was able to see star wars in 1977. [Star wars (film), sent-1]
Usr3: I loved the tv series.
Bot3: I prefer the film that stars mark hamill and harrison ford.[Star 
wars (film), sent-3]

Usr4: I like that one too. the first sci fi film was...
Bot4: Cool. Did you ever see the empire strikes back in 1980? ... [The 
empire strikes back, 1]

Topic node

Knowledge node

1

2

3

4

sent-1

Documents

Figure 1: Co-Referential Multi-Document Graph
(Coref-MDG). Topic vertices correspond to documents
and are connected by commonsense/word overlap rela-
tions. Knowledge vertices are connected with its topic
vertex by its document sentence index, e.g.sent-1, and
connected to each other by co-reference (co-ref) rela-
tions. The Bot’s utterances are followed by its topic and
knowledge segment, e.g.[Science fiction film, sent-1].

Most existing studies on document-grounded
conversations (Lian et al., 2019; Zheng et al., 2020;
Zhao et al., 2020) treat knowledge selection as
a matching problem between the dialog context
and individual knowledge segments, independently.
However, for document-grounded conversations,
we posit that there is an implicit alignment between
the background knowledge and conversation logic
which can be learned from the underlying structural
relationships of the knowledge segments within and
between the grounding documents. For example,
the conversation in Figure 1 exhibits document-
level topic flow, from science fiction -> star wars->
the empire strikes back, and deep dives into the
specifics of the star wars document (Turns 2 to 3).

To effectively exploit the relationships of the
knowledge segments to guide dialog flows would
require a thorough comprehension of the intra-
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(b) Locally correlated
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Figure 2: Exploiting knowledge segment relationships.
k1-7 represent knowledge segments and doc1-3 are the
grounding documents they belong to.

document discourse structures and inter-document
relationships for the knowledge selection process.
Existing works either ignore such relations (as illus-
trated in Figure 2 (a)), or exploit limited local cor-
relations (as depicted in Figure 2 (b)), for example
by encoding knowledge segments within passage
context Wu et al. (2021) . In this work, we propose
to capture both intra- and inter-document relation-
ships of the knowledge segments (Figure 2 (c))
in the grounding documents to guide the smooth
and natural knowledge selection and transitions
for document-grounded conversations. However,
how to apply such a static knowledge graph to dia-
log flow management has always been a problem.
Many previous studies (Moon et al., 2019; Xu et al.,
2021a,b) have used graph structures to constrain
search (e.g. confining the next topic to neighboring
areas), but have also ignored deeper integration of
dialog contexts and knowledge graphs, such as op-
timal knowledge representation to capture dialogue
flow information.

Based on the considerations above, we propose
to first capture the inter- and intra-document knowl-
edge relationships as a heterogeneous document
graph, and then exploit the graph effectively for di-
alog flow management through fine-to-coarse con-
textualization — from the local word-level knowl-
edge attentions, to knowledge interactions in doc-
ument graphs, and finally to the knowledge tran-
sition flow along dialogue turns. Specifically, we
design a two-level document graph consisting of
topic (i.e. document) and knowledge vertices con-
nected by inter- and intra-document relations (Fig-
ure 1). The topic vertices correspond one-to-one
to the grounding documents, while the knowledge
vertices refer to the knowledge segments from each
document. The knowledge vertices are connected
to the corresponding topic vertices they belong
to. Meanwhile, the graph connects the knowl-
edge segments within the same document by their
co-referential mentions, and the documents are
connected based on similarity or commonsense

relationships. Hence we call the graph Multi-
Document Co-referential Graph (Coref-MDG).

We then propose our CorefDiffs method which
leverages Coref-MDG’s graph structure and inte-
grates dialog flow for knowledge contextualization
and selection. CorefDiffs focuses on the inter-turn
knowledge difference flow in the dialog histories by
means of a novel differential linearization module.

Our contributions in this paper can be summa-
rized as follows. 1) We develop Coref-MDG,
a novel multi-document graph structure incorpo-
rating co-referential mentions. When leveraged
in guiding document-grounded conversations in
our CorefDiffs methodology, it empirically outper-
formed alternative graph structures; 2) We system-
atically study the different kinds of inter- and intra-
document relations and show that document-level
semantics, such as co-reference and sentence order,
are significant factors for knowledge selection (Sec.
4.4); 3) Our CorefDiffs achieves state-of-the-art
on WoW, Holl-E, multidoc2dial and CMU-DOG
datasets, for both knowledge selection and response
generation tasks.

2 Related Work

Document-grounded dialog Systems. Early
works on document-grounded dialog sys-
tems (Ghazvininejad et al., 2018) focused on
generating responses directly by copying words
from the external documents. The subsequent
availability of datasets with knowledge an-
notations (Dinan et al., 2018; Moghe et al.,
2018) has led to the separation of the tasks of
knowledge selection and response generation.
For knowledge selection, most works (Dinan
et al., 2018; Lian et al., 2019; Zheng et al.,
2020; Zhao et al., 2020; Meng et al., 2021)
in document-grounded conversations directly
modeled correlations between dialog contexts
and knowledge through independent matching
and optimized the correlations by modeling
knowledge sequence (Kim et al., 2019), increasing
knowledge informativeness (Zheng et al., 2020)
or distinguishing initiative roles (Meng et al.,
2021). A recent work (Wu et al., 2021) boosted
knowledge selection by encoding knowledge
within the passage context, which demonstrates the
importance of exploiting knowledge relations. Our
work further explores more effective document
structures and connections for this task. There
is also an unpublished paper that used document
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Dialogue History

𝑢𝑡−1: Blue is always nice. I like royal blue.
𝑟𝑡−1: I once rode on the royal blue train from new york to d.c
𝑢𝑡: Oh that sounds really nice. i bet there was a lot of scenery 
and blue skies.

𝑟𝑡: yes, speaking of blue skies, have you seen the 1946 movie 
staring bing crosby?

Blue
Royal Blue 

(train)

Blue Skies 

(1946 film)

3 x 21

Words Overlap, Sub-Class

Transformer Transformer Transformer

… ……

Words 

Overlap

Words 

Overlap

diff diffdiff x
YES/NO

Graph propagation

Diff sequence

Target  node
x1 x2 x3

𝒖𝒕𝒓𝒕−𝟏…𝒃𝒍𝒖𝒆𝒌𝟏𝒌𝟐𝒌𝟑 𝒖𝒕𝒓𝒕−𝟏…𝐛𝐥𝐮𝐞 𝐬𝐤𝐢𝐞𝐬𝒌𝟒𝒌𝟓 𝒖𝒕𝒓𝒕−𝟏…𝐫𝐨𝐲𝐚𝐥 𝐛𝐥𝐮𝐞𝒌𝟔𝒌𝟕𝒌𝟖

III. Linearization

I. Local Association

x

II. Structural Propagation

Figure 3: CorefDiffs Architecture. Green round rectangles and blue circles are topic and knowledge vertices,
respectively. Steps I to III contextualize knowledge in an increasingly fine-grained manner: first, I) by vertex
embedding by BERT; then, II) by propagating Coref-MDG information, and finally III) by linearizing the knowledge
representations, according to the dialog’s historical knowledge sequence.

semantic graphs (Li et al., 2022), while our work
considers end-to-end integration of document
graph and dialog flow which gives better result
compared to theirs.

Knowledge Graph for Conversations. Knowl-
edge graphs were also often used in dialog manage-
ment, such as dialog transition graphs (Xu et al.,
2019, 2020a) constructed from common transitions
present in a dialog corpus and off-the-shelf com-
monsense graphs (Zhou et al., 2018a). There were
also some works (Liu et al., 2019; Xu et al., 2021a)
transforming unstructured text into structures or
combining triplets and texts into graphs. For exam-
ple, (Xu et al., 2021a) constructed key phrases into
graphs according to their order in stories. Interest-
ingly, to the best of our knowledge, co-reference
mentions have not been considered in such doc-
ument graph construction although it has been
proved critical in learning language models for rea-
soning intensive NLP tasks (Dasigi et al., 2019; Ye
et al., 2020). To apply knowledge graphs for dialog,
many existing works (Xu et al., 2020b,a) used the
graph structures to confine the search space and
optimized selection through hand-crafted rewards.
In contrast, we incorporate the knowledge graph
into dialog management by learning knowledge
representations from the graph structure.

Sequence Learning in dialog. Sequence learning
is essential for conversations. Several studies (Kim
et al., 2019; Zhan et al., 2021b) explored the histor-
ical knowledge sequence to select knowledge for
document-grounded dialog. For example, (Kim
et al., 2019) captured knowledge sequence by a
latent variable, while (Zhan et al., 2021b) further
proposed to learn abstract topic sequence to miti-
gate the issues of knowledge sparsity and knowl-

edge transition noise. Inspired by the importance
of exploiting knowledge difference (Zheng et al.,
2020) for informative dialog, we extend the use
of dialog knowledge differences into sequences,
thus capturing the knowledge shift patterns from
turns with longer distances as well as the sequential
patterns of knowledge transitions in a dialogue.

3 Approach

Figure 3 shows the overall architecture of our ap-
proach. As shown in the Dialog History part, in
each data sample, given a dialog history U =
{ut−l, rt−l, ..., rt−1, ut} of l turns and a set of
grounding documents D = {d1, .., di, ..., d|D|},
where u∗ and r∗ are utterances from the user and
chatbot, respectively. di = {ki1, ki2, ..., ki|di|} is a
document containing a bunch of knowledge seg-
ments, our task is to select the most appropriate
knowledge segment from the grounding documents
D (i.e. the knowledge selection subtask) and gener-
ate the chatbot’s next response rt based on the se-
lected knowledge (i.e. the response generation sub-
task). Each grounding document di has a phrase ti
as its topic. For example, the document of wikipage
blue has the topic phrase blue.

3.1 Coref-MDG Construction

We devise a Multi-Document Co-referential Graph
(Coref-MDG) to capture the inter-document and
the intra-document relations. Each data sample gets
a specific Coref-MDG, denoted as G = {V, E},
where V , E are vertices and edges respectively.
Vertices V . Our Coref-MDG consists of two types
of Vertices: topic and knowledge vertices, as shown
in Figure 1. Each topic vertex represents one of
document di from D while each knowledge vertex
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represents a knowledge segment kij from a docu-
ment di, hence in total M = |D| topic vertices and
N = |d1|+ ...+ |d|D|| knowledge vertices.
Edges E . There are also multiple types of edges in
Coref-MDG. We can generally divide these edges
into three categories according to their vertices: 1)
edges between topics and knowledge vertices;
2) topic edges –these are inter-document or inter-
topic edges between topic vertices; 3) knowledge
edges –intra-topic edges amongst knowledge ver-
tices. For the first category, we simply use the
order index of segment kij appearing in its corre-
sponding document di as the edge type, denoted
as sent_j edge, thus knowledge vertices under
different topics are not connected in Coref-MDG.
The remaining two types of edges are constructed
as follows.

3.1.1 Topic Edges

We posit that topic transitions in human-to-human
conversations are likely to be based on the similar-
ity or commonsense relations between two topics,
such as from sci-fi movie to sci-fi novel (similarity),
or from UK to London (commonsense). We intro-
duce two corresponding types of topic edges for
such topic transitions.
Word Overlap. We use the word overlaps between
two topics (or documents) to measure their simi-
larity. Specifically, we obtain the lemmas of topic
phrases by spaCy2 and judge whether the two top-
ics have at least one identical lemma so as to de-
termine whether these two topics vertices have a
word_overlap edge.
Commonsense. Since the knowledge backend
of the WoW (Dinan et al., 2019) came from the
Wikipedia corpus, we use the WikiData3 to obtain
commonsense relations between topics. We only
collected relations for the topics in the training
set and for cimplicity, we kept the high-frequency
relation types, for example city_of, while uni-
formly treating the low-frequency relation types as
others.

3.1.2 Knowledge Edges

For the intra-document knowledge relations, we
introduce the coreference_link edge. For
each topic (i.e. document), the co-reference links
(referring paths) within the corresponding docu-
ment di can be extracted by a co-reference res-

2https://spacy.io/, MIT License
3https://www.wikidata.org/wiki/Wikidata:Main_Page

olution model. 4 For each co-reference link,
every knowledge segment on this link is con-
nected to its mentions by a coreference_link
edge. Aside from our proposed co-reference
edges, we also model two other knowledge
edge type for comparison, common_entity and
partial_order. The former connects knowl-
edge segments that share entities, while the latter
captures knowledge segment’s partial order. We
will show later that co-reference performs best for
dialog flow management.

3.2 Structural Propagation and Linearization

Next, we introduce how we contextualize each ver-
tex in a dialog’s Coref-MDG with both the graph
structure and dialog flow.

3.2.1 Node Initialization

Following (Karpukhin et al., 2020; Cheng et al.,
2020; Wu et al., 2021), we adopt BERT (Devlin
et al., 2019) to obtain the text representations to
initialize topic and knowledge vertices, as shown
by the Step I in Figure 3. Specifically, we con-
catenate the dialog context U with each grounding
document’s topic phrase and knowledge segments,
and feed them into the BERT encoder to get their
associated representations. The concatenated input
for a document di is thus:

[cls]Ût[sep]ti[cls]k
i
1...[cls]k

i
|di|[sep] (1)

where Û = [usr]ut[agt]rt−1...[usr]ut−l is the
spliced dialog context, and the role symbols [usr]
and [agt] indicate utterances from the user or agent
turn. We use the hidden state of the first [cls] to-
ken ti (note that we use bold here to refer to the
representation of, in this case, topic phrase ti) as
the initialized representation for the topic vertex of
di. Similarly, the outputs of the subsequent [cls]
tokens, denoted as {ki

1,k
i
2, ...,k

i
|di|}, are gathered

and used to initialize the corresponding knowledge
vertices of di. The process is formulated as:

ti,K
i = BERT(Ut, di), i ∈ [1, |D|] (2)

where ti,k
i
j ∈ Rdinit ,Ki = {ki

j}
|di|
j=1. In this

way, we obtain the initialized vertex embedding
for a Coref-MDG as H0 = {ti;Ki}|D|i=1 ∈
R(M+N)×dinit .

4https://github.com/huggingface/neuralcoref, MIT License
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3.2.2 Residual Graph Propagation
Knowledge transitions in document-grounded di-
alogs can be divided into two types namely, tran-
sition across different documents (out-topic) and
within the same document (intra-topic). Transi-
tions across different documents occur between
topic vertices in our Coref-MDG and usually re-
quires multi-hop reasoning. We use the resid-
ual graph propagation (Step II in Figure 3) to
model such transitions in Coref-MDG. Specifi-
cally, we devise a variant of Relational Graph
Attention Layer(RGAT) (Busbridge et al., 2019)
layer with concatenated residual connection (He
et al., 2016), named RES-RGAT. This layer facili-
tates the deeper multi-hop information propagation
by avoiding information loss and the over-smooth
problem (Oono and Suzuki, 2019). The output
Hout ∈ R|G|×dout of one RES-RGAT is the con-
catenation of the propagated results and the input
Hin ∈ R|G|×din , which is formulated as:

Hout =W [Hin,RGAT(Hin,R, E ,G)] (3)

where R ∈ RE×de is the embedding look-up ta-
ble for all the edge types in E , E is the number
of edge types, and W ∈ Rdout×2din is used for
dimension transform. We stack n layers of RES-
RGAT to do enough propagation based on em-
pricially determined n. With H0 as input, we
obtain the propagated outputs for all vertices as
HG ∈ R(M+N)×dG .

3.2.3 Differential Linearization
To integrate the dialog flow information into the
knowledge representations after graph propaga-
tion, we propose a novel Differential Lineariza-
tion (Step III in Figure 3) method. While knowl-
edge sequence has been used for knowledge se-
lection in dialog (Kim et al., 2019), knowledge
shift sequence (or shifting sequence), defined as
the sequence of knowledge differences within each
consecutive turns, is a relatively novel notion for
this task. We argue that the shifting sequence is
a more useful feature for learning and predicting
knowledge transitions since it focuses on the differ-
ence and interaction between knowledge, leading
to sharper features. It also captures the transition
patterns from turns using varying distances to the
current turn to further aid in the selection.

To construct the shifting sequence, we first ob-
tain the knowledge/topic vertices that appeared in
the previous chatbot turns (since we note that the

labels of the user turns are inaccessible in prac-
tice). By collecting these knowledge/topic ver-
tices’ representations from HG, we can get the
sequence S = {hGt−τ , ...,hGt−1} for knowledge and
topic vertices, respectively. Here τ is the length
of turns. Since we treat topic and knowledge ver-
tex sequence identically, we will refer to them as
simply vertices in the following discussion. We
compare the vertex i with these historical vertices
in S with a comparison function F to get the dif-
ferential sequence for vertex i. By doing this for
all vertices, we get M +N such sequences:

{F(hGt−τ ,hGi ), ...,F(hGt−1,hGi )}M+N
i=1 (4)

F computes the interaction between two vectors
a,b ∈ Rd by element-wise difference and product,
defined as F(a,b) = [a− b;a⊙ b] (Chen et al.,
2017).

With the sequence for vertex with index i, we
finalize its representations in sequential transition
dependency. Specifically, we feed each sequence
into a stacked GRU (Cho et al., 2014) cells and use
the last hidden state as the final linearized vertex
representation. We concatenate the graph repre-
sentation of vertex hGi and the linearized output:

hDi = [GRU(...,F(hGt−1,hGi ));hGi ] ∈ R2dG (5)

The vertex representation in graph after lineariza-
tion is HD ∈ R(M+N)×2dG , which will then be
used to predict the next topic and knowledge seg-
ment.

3.3 Training

Note that topic selection is an auxiliary task in our
framework, apart from the knowledge selection.
As such, we split the representations for topic ver-
tices and knowledge vertices from HD and obtain
HD
tpc ∈ RM×2dG and HD

knl ∈ RN×2dG , respec-
tively. HD

tpc is fed into a linear layer to obtain the
topic selection scores. For the knowledge vertices,
we further include their connected topic vertex rep-
resentations and the in-between edge embedding to
calculate the knowledge selection scores similarly
with a linear layer.

Following Wu et al. (2021), we implement the
history loss as an auxiliary objective function in
our framework to further utilize the dialog history
information. Finally, the overall objective function
we adopt is formulated as follows:
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Method dialogs Avg Turns Domain Document

WoW 22311 9 Open Domain Multiple
Holl-E 9071 10 Movie Single
CMU-DoG 4112 31 Movie Single
MultiDoc2Dial 4796 14 Info Seek Multiple

Table 1: Dataset statistics.

L = Lknl + Ltpc + Lhist

Lhist =
1

2l

l∑

hi=1

(Lhiknl + Lhitpc)
(6)

where l is a hyperparameter representing the his-
tory length, Lknl and Ltpc are knowledge and topic
losses, respectively. All of the classification objec-
tive functions in L are standard cross-entropy.

4 Experiments

Datasets. We validate our method on four public
benchmarks for document-grounded conversation,
WoW (Dinan et al., 2018), Holl-E (Moghe et al.,
2018), CMU-DoG (Zhou et al., 2018b) and Multi-
Doc2Dial (Feng et al., 2021a). The dataset statis-
tics are summarized in Table 1. We first conduct
knowledge selection with our Coref-Diffs method
and then feed the selections and dialogue history
into text generation models to compare the final
responses.
Evaluation metrics. We focused on evaluating
the knowledge selection sub-task for the document-
grounded dialog system, based on the knowledge
and topic selection accuracies, denoted as KL and
TP, respectively. We also explore the knowledge
selection accuracy of all intra-topic data samples,
whose knowledge transitions are within the same
topic, denoted as In-TP. As for evaluating the sub-
task of response generation given the dialog context
and selected knowledge, we calculate the overlap
of the generated response and the ground-truth with
the unigram-F1(uF1) and bigram-F1(bF1).
Baselines. For the two commonly used datasets,
WoW and Holl-E, we split the baselines into
three categories based on their text encoder
types. (i) Non-Pretrained encoder: Trans-
former+MemNet (Dinan et al., 2018) is the
baseline released with the dataset WoW. Dif-
fKS(RNN) (Zheng et al., 2020) incorporates the
knowledge difference feature in knowledge selec-
tion. (ii) BERT encoder: BERT+PoKS, a variant
of PoKS with BERT (Devlin et al., 2019) encoder,
learns knowledge selection by posterior knowledge
distribution. SLKS (Kim et al., 2019) captures

historical knowledge sequence with a latent vari-
able. PIPM (Chen et al., 2020) improves SLKS by
addressing the problem of missing posterior distri-
bution in test phase. CoLV (Zhan et al., 2021a)
includes two collaborative variables for knowl-
edge selection and response generation. Knowl-
edGPT (Zhao et al., 2020) optimizes knowledge
grounded dialog task by the pre-trained BERT
encode and GPT-2 (Radford et al., 2019). (iii)
Passage-level BERT encoder: DIALKI (Wu et al.,
2021) encodes knowledge at passage level to cap-
ture knowledge segment relations as we do in
CorefDiffs. For response generation, given that
the above-mentioned methods adopted different
generators, we uniformly replaced their generators
with a prompt-based generator PrefixTuning (Li
and Liang, 2021) for a fair comparison, thus form-
ing the baselines with "*" in Table 3. For Multi-
Doc2Dial and CMU-DoG, we compare our method
with the current state-of-the-art DPR+RAG (Lewis
et al., 2020b) and DoHA (Prabhumoye et al., 2021),
respectively. The generators used are fine-tuned
BART-large.

4.1 Implementation Details.

The BERT-base models in all our experiments used
the Huggingface Transformers5 (Wolf et al., 2020).
We trained the model with Adam (Kingma and
Ba, 2015) optimizer with initial learning rate 1e-5.
A linear scheduler with a warm-up strategy in 5k
steps was used. The maximum history length l was
empirically set to 4 for WoW, 2 for Holl-E, 3 for
CMU-DoG and 4 for MultiDoc2Dial to achieve
the best performance. The number of the stacked
Res-RGAT was set to 2. It took around 5 and 10
epochs to achieve the reported performance by 4
nvidia V100 GPUs. We will release all the codes
and the hyper-parameters settings for reproduction.

4.2 Automatic Evaluations

Knowledge Selection. The knowledge selection
results on the four datasets are presented in Table 2
and 4. CorefDiffs significantly outperforms all
other methods regardless of the encoders they used.
Compared to the best performance achieved by DI-
ALKI, CorefDiffs improves by 9.5% and 5.9% and
is the first to achieve knowledge accuracy over 40%
on both the WoW Test Seen and Unseen sets. For
Holl-E, CorefDiffs also performs the best, with
gains of at least 7.4% in knowledge selection. For

5https://github.com/huggingface/transformers
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User: Seattle, I have never been to Seattle but I would love to visit. 
Bot: I would too. I read it's the fastest growing city in 2016, with a 3.1 
annual growth rate.  [seattle, 4] 
User: wow, I bet it is really busy and crowded. 
Bot: I believe it said there were over 700,000 residents just in Seattle and 
it is the largest city in Washington also.  [seattle, 2] 
User: I would hate to drive there. I'm assuming people use a lot of public 
transportation.

GD-SKT: You are welcome.  I would recommend taking three medications to help with male pattern hair loss: finasteride, 
dutasteride and minoxidil. 
DialKI: well, I hope you have a great day!  I know that hair loss can be caused by both genetic and environmental factors. 
Gold : The three types of medications that seem to help the most are finasteride, dutasteride, and minoxidil.  I hope this information 
will help you!  [management of hair loss, 2] 

Management of hair loss Hair losswords 

overlap of
The management of hair loss, 
include medications and surgery

Three medications have evidence to 
support their use in male pattern hair loss: 
finasteride, dutasteride and minoxidil.

Hair loss in some people 
causes psychological distress.

The cause of male-pattern hair 
loss is a combination of 
genetics and male hormones..
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User: Hair loss, I’m going bald! ......
Bot: There are surgeries and medications that can help .... 
[management of hair loss, 1] 
User: What is the top option! I need help! 
Bot: Typically, the reasons for hair loss in men has to do 
with genetics and male hormones....  [hair loss, 6] 
User: Thanks for all your help/info today . 

Seattle

With an estimated 
713,700 residents , 
seattle is the largest 
city in both the state 
of Washington...

In july 2016, seattle was 
again the fastest-growing 
major u.s. city, with a 
3.1% annual growth rate

A major gateway for trade with asia, 
seattle is the fourth-largest port in 
north america in terms of container

sent 2sent 4

sent 6

co-ref

co-ref

co-ref

GD-SKT: I'm not sure, but it is a major gateway for trade with Asia and the fourth largest port in north America. 
DialKI: I'm not sure but I do know that it is the most populous city in the United States. 
Gold: me too. I hate waiting in traffic. it's a major trade route with Asia. It has the fourth largest port in north America in terms of 
container shipping. [seattle, 6]

Figure 4: Two generation examples from WoW. The bold words in "[]" indicate the knowledge. For example, [hair
loss, 6] represents the 6-th knowledge sentence in the document with topic hair loss. Our method chose the right
knowledge for both examples compare to DIALKI owing to the well-designed graph structure.

Method WoW (Seen) WoW (Unseen) Holl-E

TMN 22.5 12.2 22.7
DiffKS(RNN) 25.6 18.6 33.5
BERT+PoKS 25.5 14.1 27.6
SLKS 26.8 18.3 29.2
PIPM 27.8 19.7 30.7
CoLV 30.1 18.9 32.7
DukeNet 26.4 19.6 30.0
KnowledGPT 28.0 25.4 -

DIALKI 32.9 35.5 -
CorefDiffs 42.4 41.4 40.9

w/o Diff-Seq 40.8 39.5 39.7
w/o Diff 40.9 40.1 40.1
w/o Res-RGAT 35.5 36.5 39.5

Table 2: The knowledge selection results measured by
accuracy on WoW and Holl-E.

MultiDoc2Dial our method outperforms state-of-
the-art by 8.2% in knowledge selection accuracy.
CMU-DoG has no ground-truth knowledge, so we
only report generation results. The substantial en-
hancements across all datasets strongly suggest that
CorefDiffs has benefited from modeling document
structures and knowledge relations in the grounding
documents with differential dialog flow learning.

Response Generation. Tables 3 and 4 show the re-
sults of response generation on all the four datasets.
We applied PrefixTuning (Li and Liang, 2021) to
generate responses with the corresponding dialog
context and selected knowledge as the input for
WoW and Holl-E, while for MultiDoc2Dial and
CMU-DoG, we followed previous works using

Method WoW (Seen) WoW (Unseen) Holl-E

uF1 bF1 uF1 bF1 uF1 bF1

SLKS(TM+Copy) 19.3 6.8 16.1 4.2 29.2 22.3
DukeNet(TM+Copy) 19.3 6.3 17.1 4.7 30.6 23.1
SLKS* 20.2 7.3 17.5 5.3 - -
DiffKS* 21.5 7.6 20.0 6.3 30.7 23.9
KnowledGPT* 22.0 8.2 20.8 7.4 - -
DIALKI* 22.0 8.0 22.2 8.1 - -

CorefDiffs 25.2 10.7 25.8 10.8 38.4 31.8

Table 3: Response generation results on WoW and Holl-
E. Methods with ‘(TM+Copy)’ and ‘*’ used generator
Transformer + Copy mechanism and PrefixTuning.‘-’ in-
dicates the method didn’t do experiment on the dataset.

BART-Large. The PrefixTuning obtained a compa-
rable performance with fewer learnable parameters
and extrapolated better to unseen topics than fine-
tuning method. Again, CorefDiffs obtains best per-
formance in all generation metrics on four datasets,
which we attribute to the large margins on knowl-
edge selection.
Ablation Study. To study the impact of each of
the modules in CorefDiffs, we conduct three exper-
iments, as shown in the lower part of Table 2. For
w/o Diff-Seq, we remove the Differential Lineariza-
tion. w/o Diff uses the normal knowledge sequence
instead of the shifting sequence. w/o RES-RGAT
removes the Residual Graph Propagation. After
removing RES-RGAT, we observe a steep drop in
knowledge selection accuracy, which proves that
knowledge representations updated by graph prop-
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Method MultiDoc2Dial CMU-DOG

uF1 KL uF1

DoHA - - 22.8
DPR+RAG 33.7 24.9 -
CorefDiffs 39.3 33.1 23.9

Table 4: Experimental Results on MultiDoc2Dial and
CMU-DOG.

agation on Coref-MDG is well aligned with knowl-
edge distribution in next turn. This also shows that
purely relying on local correlations within passage
context (Step I in Figure 3) is not as good as using
higher-level document structures. In addition, w/o
diff-seq also presents lower knowledge selection
accuracy, showing its importance to enhance dialog
flow modeling upon graph propagation. More im-
portantly, by comparing w/o diff-seq and w/o Diff,
we notice that using shifting sequences outperforms
normal ones, thus validating our earlier argument
that shifting features are sharper and more effective
for dialog knowledge flow.

4.3 Case Study

Why does Coref-MDG work on knowledge selec-
tion? To answer this question, we visualize two
typical examples, shown in Figure 4. The dialog
Context rows are dialog histories, and the gener-
ated responses of different methods are listed in
the Response row. We compare our CorefDiffs
with DIALKI and the Gold (ground-truth) response.
The first example performed topic change from
“hair loss” to “management of hair loss”. CorefD-
iffs chose the right knowledge topic, “management
of hair loss”, while DIALKI repeated the knowl-
edge mentioned in the earlier conversation turn.
The reason is that CorefDiffs was able to do so
is because it had referred to the word_overlap
connection between “hair loss” and “management
of hair loss”, whereas DIALKI did not consider
such inter-topic relations. For the second exam-
ple, the knowledge transition is intra-topic (knowl-
edge in consecutive turns belonging to the same
topic/document). Our method successfully predicts
the right knowledge due to the co-reference rela-
tion between these knowledge sentences within the
“seattle” document, whereas the response generated
by DIALKI — even with passage-level knowledge
correlations encoded — missed the long depen-
dency from the second to the sixth sentence.

4.4 Graph Analysis

To study effects of the different type of relations
in Coref-MDG on topic/knowledge selection ac-
curacies. We did more experiments on WoW. We
craft 3 Coref-MDG variants lie in three categories
for relations between topics. (1) w/o TP: remov-
ing all topic edges; (2) w/o TP overlap: removing
the word overlap edges; (3) w/o TP wikigraph: re-
moving the commonsense edges. Another three
variants for exploring the relations between knowl-
edge vertices are as follows: (4) w/o KG: remov-
ing all knowledge edges (that is co-reference link);
(5) +KG common entity: applying entity edges be-
tween knowledge instead; (6) +KG partial order:
employing partial order edges between knowledge.
We also remove the sentence order edges between
topic and knowledge vertices and formed a variant
(7) w/o TP-KG. The results of the above experi-
ments are listed in Table 5, from which we get the
following conclusions:

(i) Coref-MDG performs the best in knowledge
selection compared to other graph structures.
Removing or replacing edge types in Coref-MDG,
such as the edges between topic vertices (Exp. 1-3),
knowledge vertices (Exp. 4-6), or topic and knowl-
edge vertices (Exp. 7), can cause a drop in topic
or knowledge selection both on Seen or Unseen
settings. Moreover, sometimes using other kind of
edge leads to worse results than their absence. For
example, in Exp. 4 and 5, w/o KG performs better
than + KG common entity in Unseen.

(ii) Topic and knowledge selection accuracies
are affected by their relevant relations in Coref-
MDG. In Exp. 1 and 7, without topic edges or
topic-knowledge edges, the model achieves lowest
TP. In Exp. 4-7, model achieves lower KL without
suitable knowledge relations.

(iii) Topic and Knowledge relations also facili-
tate each other. In Exp. 1 and 4 even removing
topic relation or knowledge relations, the model
still achieves better TP and KL compared to DI-
ALKI (no graph relation used).

(iv) Knowledge relations improve intra-topic
knowledge selection. As shown by results in 4th
and 7th columns, by comparing In-TP results in
Exp. 1-3 and Exp. 4-6, after removing knowledge
edges, the In-TP drops a lot, thus we conclude
that relations between knowledge enhance the intra-
topic knowledge selection.
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Method WoW Seen WoW Unseen

KL TP In-TP KL TP In-TP

DIALKI 32.9 70.0 42.3 35.5 71.6 43.5
CorefDiffs 42.4 76.1 51.1 41.4 77.7 49.2

1. w/o TP 42.1 74.0 50.6 39.8 75.2 47.2
2. w/o TP overlap 42.4 75.9 51.2 40.9 77.7 48.1
3. w/o TP wikigraph 42.3 75.9 50.9 41.1 77.5 48.8

4. w/o KG 35.4 75.7 44.6 37.1 77.2 46.1
5. + KG common entity 35.4 74.6 44.4 36.4 75.9 43.8
6. + KG partial order 36.6 75.9 45.7 37.1 76.8 45.5

7. w/o TP-KG 40.5 73.5 49.5 38.3 74.5 45.7

Table 5: Graph Comparisons in selection accuracy.

5 Conclusion

We show the significance of utilizing the docu-
ment’s semantic structures and relations for man-
aging dialog flow. We embody these relations
in our novel multi-document graph Coref-MDG
which models co-referential knowledge mention
links and inter-document relations. Our analysis
of Coref-MDG yields insights of how the differ-
ence among intra- or inter-document relations af-
fect the final topic and knowledge selection ac-
curacy. For example, we find that coreference
links and topic-knowledge sentence order relations
are critical relations. We then build dynamically-
sensitive dialog flows via our CorefDiffs method,
which integrates the modeling of dialog difference
flow with the prior knowledge represented in Coref-
MDG. CorefDiffs demonstrates that it is possible to
seamlessly integrate static graph structures with dy-
namic dialog-specific flows, improving document-
grounded conversations.

Ethical Impact

Document-grounded dialog technology has broad
application prospects in open-domain dialog, emo-
tional escort robots, intelligent assistants, etc. This
work focuses on knowledge selection which plays a
significant role in dialog management of multi-turn
dialog for document-grounded conversations. All
datasets we used in this work were privacy filtered
and content moderated by the dataset authors (Di-
nan et al., 2019; Moghe et al., 2018). However,
advanced dialog knowledge selection techniques
may also enable bots to select harmful content on
the Internet and generate inappropriate or biased
responses to users. Future work should take this
into consideration.
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A Implementation Details

We set the maximum lengths of model input to
512, which is also the longest input limit for the
BERT model, in order to fit the longer passage text
as much as possible on both datasets. We employ
a Linear layer to transform the output features of
BERT from 768 to 320 to reduce memory usage.
The edge embedding size is set to 64. The hidden
size and headers of Res-RGAT are 1024 and 8 re-
spectively while the alpha value of Graph Attention
Network is 0.2. We utilize a unidirectional stacked
GRU model for Differential Sequential Learning,
the number of GRU layers is 2.

For response generation, we apply PrefixTun-
ning (Li and Liang, 2021) on BART (Lewis et al.,
2020a) large model to learn the responses gener-
ation model based on the knowledge selection re-
sults from the previous stage. We use the prefix
length 200 and the hidden dimension of 800 for
all the methods using PrefixTuning generator. The
PrefixTuning generator takes about 4 hours and 30
epoch to become converged during training on 4
V100 32G GPUs, which is much faster and more
resource saving than fine-tuning BART large.

B Dataset Processing Details

WoW. There are more than 130k different docu-
ments from Wikipedia in WoW training set. We
keep 350 high-frequency relations from the Wiki
knowledge graph, covering these 130k documents.
The top-10 wiki relations with corresponding fre-
quency are shown as follows:

1. (’subclass of’, 27015)

2. (’facet of’, 11381)

3. (’sport’, 10646)

4. (’performer’, 9482)

5. (’part of’, 6892)

6. (’manufacturer’, 5742)

7. (’instance of’, 5551)

8. (’history of topic’, 5517)

9. (’has part’, 5445)

10. (’follows’, 5077)

As shown in Table 6, for topic relations, we
found the word_overlap edges is denser than
the commonsense edges from wikiData, giving
the average edge number of 8.11 and 2.89, re-
spectively. While for knowledge relations, the
coreference_link has much less average
number of relations in one sample than other
two types relations, which again proves that
coreference_linkwith more accurate knowl-
edge relations lead to better knowledge selection
results without introducing wrong structures infor-
mation to CorefDiffs framework.

Topic Relations Knowledge relations
WordOverlap WikiGraph Partial EntityLink Coreference

Freq 8.11 2.89 61.18 87.52 15.90

Table 6: Average number of different kinds of relations
in one sample on the WoW training set.

Holl-E. Different from WoW, each sample of Holl-
E has only one topic, which is the movie in this
session of conversation. There are four types of
information for each movie in Holl-E, which are
plots, comments, reviews, and table information.
So we simply divide all the knowledge sentences of
each movie into four topics. As the absence of com-
mon sense relations of such topics in Holl-E, we
count the co-occurrence relationship of all topics
in the training set as the relations between topics
in Holl-E. The relations between knowledge are as
same as the WoW, using coreference relations in
passage text. The relations between knowledge and
topics are sentence order of knowledge sentence in
the original text, which is also used in WoW. CMU-
DoG. CMU-DoG is a document-grounded conver-
sation dataset about movie, which is the same as
Holl-E. The difference is that CMU-DoG includes
only one grounding document(one topic) at each
dialog turn. The relations of topics is absent as
there is only one topic in grounding document. The
relations between knowledge are as same as the
WoW and Holl-E with coreference relations. The
relations between knowledge and topics are sen-
tence order of knowledge sentence in the passage,
which is also consistent with WoW and Holl-E. On
the other hand, CMU-DoG didn’t contain the gold
knowledge of knowledge selection task. We adopt
unigram F1 score as similarity function, selecting
the knowledge closest to the ground-truth response
as gold knowledge to train the selector model.
MultiDoc2Dial. MultiDoc2Dial includes multiple
grounding documents at each dialog turn. We con-
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struct the graph following the steps of Holl-E. How-
ever, MultiDoc2Dial introduces a span prediction
task to locate knowledge set in the original docu-
ment instead of knowledge selection. But that’s ok,
it easy for our framework to transfer downstream
task by using two independent classifier to predict
both start knowledge segment and end knowledge
segment instead of one classifier for knowledge
selection. Simultaneously, we replace the metric
from knowledge accuracy to knowledge EM, which
is used in MultiDoc2Dial. For convenience, we
still use KL in Table 4 to denote the EM metric in
MultiDoc2Dial.

C Analysis on Partial Order Edge

For partial order relations, we explored the effects
of different hops. Hop-k partial order relation
means each knowledge vertex is connected with
k knowledge vertices behind according to the sen-
tence order. As shown in Fig 5, hop-2 partial rela-
tion performed the best. A hop that was too large or
too small could cause information loss or introduce
many erroneous connections.

35.5

35.9

36.3

36.7

37.1

hop1 hop2 hop3 hop4 hop5

Seen Acc Unseen Acc

Figure 5: Knowledge accuracy for partial order with
different hops.
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Abstract

This paper introduces a novel Self-supervised
Fine-grained Dialogue Evaluation framework
(SelF-Eval). The core idea is to model the
correlation between turn quality and the en-
tire dialogue quality. We first propose a novel
automatic data construction method that can au-
tomatically assign fine-grained scores for arbi-
trarily dialogue data. Then we train SelF-Eval
with a multi-level contrastive learning schema
which helps to distinguish different score levels.
Experimental results on multiple benchmarks
show that SelF-Eval is highly consistent with
human evaluations and better than the state-
of-the-art models. We give a detailed analysis
of the experiments in this paper. Our code is
available on GitHub.

1 Introduction

Dialogue systems (DS) aim to satisfy human needs
(Shum et al., 2018; Yan, 2018; Gao et al., 2019)
such as information, communication, entertain-
ment, etc. Appraising the quality of the DS re-
sponses reflects the system’s capability and pro-
vides insights into required further improvements
(Finch and Choi, 2020; Deriu et al., 2021). Among
the commonly used evaluation metrics, human eval-
uation is of high reliability but expensive to con-
duct, automatic metrics used in language genera-
tion (Perplexity (Bengio et al., 2000)) or machine
translation (BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), etc.) are easy to conduct but ineffec-
tive to reflect the dialogue quality (Liu et al., 2016;
Novikova et al., 2017). Therefore, researchers have
made great efforts to find more reliable automatic
evaluation metrics that are highly correlated with
human evaluation (Lowe et al., 2017; Tao et al.,
2018; Mehri and Eskénazi, 2020a).

The current automatic dialogue evaluation met-
rics leverage semantic information (Huang et al.,
2020; Mehri and Eskénazi, 2020b; Ye et al., 2021)

∗*Corresponding author
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Figure 1: The fine-grained relationships between turn-
level and dialogue-level quality.

to measure dialogue quality. For example, when
evaluating the response quality, they either com-
pute the semantic similarity between dialogue con-
text and the generated response (Xu et al., 2018a;
Tao et al., 2018; Dziri et al., 2019; Ghazarian
et al., 2019) or measure the soft semantic over-
lap between ground-truth response and the model-
generated one (Lowe et al., 2017; Xu et al., 2018b;
Zhao et al., 2019; Zhang et al., 2020a; Yuan et al.,
2021). When evaluating (Zhang et al., 2021)
the overall dialogue quality, they either learn a
dialogue-level representation for rating directly
(Mesgar et al., 2020; Zhang et al., 2021) or cal-
culate the score with the help of other indirect as-
sists (Mehri and Eskénazi, 2020a). However, re-
cent studies (Mehri and Eskénazi, 2020a; Sai et al.,
2021; Yeh et al., 2021) show that current models
can only work well for measuring the response or
evaluating the entire dialogue. They could not per-
form well in both situations at the same time. It
means that the dialogue representation they learned
(Zhang et al., 2021) could not reflect both turn qual-
ity and the entire dialogue quality.

The dialogue quality is affected by all turns’
qualities in it (Gopalakrishnan et al., 2019) and
this effect is accumulated in a multi-turn dialogue
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(Li et al., 2021). Figure 1 shows these quality cor-
relations between turns and dialogue. Each turn is
marked with a serial number. Three dialogue exam-
ples are starting with the same user turn (1). The
left example (1/2/3/4/5) shows that two good agent
responses result in good overall quality. The mid-
dle (1/6/7/8/9) and right (1/6/7/10/11) examples
show how lower-quality agent responses result in
different dialogue qualities (passable or poor). The
current open-domain dialogue evaluation methods
fail to model the fine-grained correlations between
turn quality and dialogue quality, which entail a
poor dialogue representation for evaluation.

In this paper, we introduce an evaluation method
that explicitly models the correlations between turn
quality and dialogue quality. Specifically, we aim
to learn a dialogue representation that can reflect
each turn’s contribution, so that the evaluation
score obtained by this representation aligns turn
quality with the dialogue quality. To this end, we
need to first obtain large amounts of dialogue data
that reflects fine-grained correlations between turns
quality and dialogue quality, then train an evalua-
tion model to measure the fine-grained correlations.
The contributions of this paper are:

• To the best of our knowledge, we are the first
to explicitly model the fine-grained correlation
between turns and the entire dialogue for open-
domain dialogue evaluation.

• We introduce a simple but effective data con-
struction method to align the turn-level qual-
ity with the overall dialogue quality. We de-
sign a Self-supervised Fine-grained Dialogue
Evaluation model (SelF-Eval) with a multi-
level contrastive learning (MLCL) method.
Our code and data are publicly available:
https://github.com/royny/SelF-Eval.

• Experiments on multiple benchmarks show that
SelF-Eval: 1) can evenly distinguish different
replacement levels; 2) builds the correlations be-
tween turn qualities and dialogue qualities; 3)
gets better correlation scores with human ratings
than the state-of-the-art (SOTA) models.

2 Related Work

We first survey evaluation metrics in open-domain
dialogue (sections 5.1 and 5.2), then compare re-
lated work in task-oriented dialogue (section 5.3).

2.1 Calculation of Semantic Overlap

In this category, metrics are designed to measure
the semantic similarity between the generated re-
sponse and the dialogue context (Xu et al., 2018a;
Tao et al., 2018; Ghazarian et al., 2019; Pang et al.,
2020) or soft semantic overlap between the gen-
erated response and the reference response (Lowe
et al., 2017; Xu et al., 2018b; Zhang et al., 2020a;
Zhao et al., 2019; Yuan et al., 2021). Dziri et al.
(2019) presented interpretable metrics for evaluat-
ing topic coherence by making use of distributed
sentence representations. COMET (Rei et al.,
2020) evaluated machine translation quality with
a pre-trained model by minimizing the distance of
the hypothesis with both reference and source text.
The most similar work to ours is from Ye et al.
(2021) that measures quantifiable coherence scores.
The differences between their work and ours are: 1)
they focus on turn-level evaluations while we aim
to evaluate both turn and dialogue-levels. Their
method models the relationship between dialogue
context and response while we model the fine-
grained correlations between turns and the entire
dialogue; 2) their method relies on the multi-level
human annotations for dialogue quality while our
method is free from these constrain. SelF-Eval is
trained in a self-supervised manner, using synthetic
dialogue data and automatically annotated scores.

2.2 Regression to a Reference Score

In this category, metrics learn to evaluate dialogue
with scores that represent pre-defined dialogue at-
tributes. BLEURT (Sellam et al., 2020) trained a
BERT model with synthetic data and fine-tuned it
on human ratings. GRADE (Huang et al., 2020)
introduced dialogue topic transitions for coherence
evaluation. USR (Mehri and Eskénazi, 2020b)
leveraged RoBERTa and a regression model to
approximate the specific scores rated by annota-
tors. Mehri and Eskénazi (2020a) computed the
log-likelihood of DialoGPT generating predefined
positive or negative comments as the score. The
most similar work to ours in this category is from
Mesgar et al. (2020), they utilized dialogue act la-
bels to help dialogue level representation learning
and assist the performance of dialogue-level coher-
ence evaluation. The difference between their work
and ours are: 1) they use dialogue act to assist the
dialogue representation learning in a multi-task
learning framework while we only use dialogue
information; 2) their method only measures the co-
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herence of dialogue while ours measures multiple
attributes of dialogue; 3) their method aims to dis-
tinguish good samples from bad ones while ours
can assign fine-grained scores for each sample.

2.3 Related Work in Task-oriented DS

Besides the open-domain dialogue, there is also
work in task-oriented dialogue similar to ours.
They assume that users start a dialogue with a task-
sensitive patience budget and the dialogue is fin-
ished by users when the task is completed or the
budget runs out. Their model estimates user sat-
isfaction at each turn and consumes some remain-
ing budget. The differences between their work
and ours are: 1) they focus on task-oriented dia-
logue with explicitly dialogue purpose while ours
are open-domain dialogue with no such goals; 2)
they need expensive training and data collecting
pipeline while ours do not need; 3) they set up
an overall budget which is consumed during the
dialogue while we learn a dialogue-level represen-
tation for evaluation. When adopting our method
to evaluate task-oriented dialogues, information
such as intents and request types is required to de-
termine task completion. Our model will require
further improvements to utilize this information.

3 Our Proposed Method

3.1 Problem Statement

Given an n rounds (2*n turns) dialogue D =
[A1,B1,A2,B2,...,An,Bn] where Ai/Bi represents
the i-th (i ∈ {1, 2, ..., n}) turn from human-
A/machine-B, respectively. The dialogue evalu-
ation model takes D as input and outputs a quality
score (a scalar value) for it.

3.2 Data Construction

We need training data with quantitative annotation
on both turn-level and dialogue-level (Figure 1).
However, only very few dialogue data today have
these kinds of labels (Gopalakrishnan et al., 2019)
and the models trained with this kind of data are
restricted by domain adaptability and generality.
Inspired by previous work (Mesgar et al., 2020;
Zhang et al., 2021), we adopt a replacement strat-
egy that perturbs a dialogue at the semantic level.
In this strategy, the easily accessible human-human
dialogue is considered positive. The negative sam-
ples for this dialogue are constructed by replacing
some turns with randomly selected turns from other

dialogues1. These randomly selected turns bring
multiple negative effects (topically in-congruent,
semantic confusion, etc.) w.r.t the current dia-
logue context. However, different from previous
works that replaced a fixed number of turns in a
n>0 rounds dialogue, we set multiple replacement
strategies and randomly replace i ∈ {0, 1, ..., n}
turns in it. One sample with more replacements is
considered of worse overall quality (Gopalakrish-
nan et al., 2019; Li et al., 2021). Specifically, we
assign a score 1 to the original dialogue and assign
a score (n - i)/n to the new dialogue that replaces
i turns. By aligning the replaced turn numbers
with a reference score, we get the required train-
ing data. Meanwhile, we avoid the quantity and
domain limitation of human-annotated data and
can easily obtain a large amount of fine-grained
training data in different domains.

Notice that 1) we treat each round with equal
weight in this paper, but there may be differences
when replacing a turn in the first round (usually a
greeting round) or the last one; 2) we hypothesize a
linear relationship between the number of replace-
ment turns and the overall dialogue quality, which
is not necessarily true. For example, replacing 3
turns and more than 3 turns in the same 6-rounds
dialogue may cause the same damage to the over-
all dialogue quality. We leave these problems for
future work.

3.3 Training

During training, we want to minimize the distance
between the predicted score and the reference score.
This is a difficult regression task because 1) unlike
the coherence degree between dialogue context and
response or semantic relationships in a Natural Lan-
guage Inference, our automatic score as regression
target lacks clear semantic meaning; 2) dialogues
with different replaced turns may have the same
reference score. For example, the reference score
of replacing 1 turn in a 2 rounds dialogue is equal
to the score of replacing 2 turns in a 4 rounds di-
alogue; 3) when the replacement level increases,
it is hard for the model to distinguish the small
differences. For example, the reference score of
replacing 4 turns in an 8 rounds dialogue is close
to the score of replacing 5 turns in an 8 rounds dia-
logue (0.5 and 0.375, respectively). To smooth the
convergence process, we divide the training stage

1To ensure the generality of our method, we did not use
more complex sampling strategies.
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Figure 2: The training procedure of SelF-Eval. Ai and Bi is the i-th turn from speaker A and B, respectively. R is
the randomly replaced utterances. The replacement positions can be arbitrary rounds.

into coarse and fine-grained and name the training
stages Multi-level Contrastive learning (MLCL)
schema. MLCL is model agnostic and can be used
for any similar tasks.

Figure 2 shows the training process of our model.
We choose RoBERTa (Liu et al., 2019) as encoder.
The input for a dialogue sample D is [<CLS>, A1,
B1, ..., An, Bn], where "<CLS>" is a special token
and n is different for different D. We first obtain
two kinds of dialogue representations. The <CLS>
representation is the output vector Ecls of the first
token <CLS>. The Pooling representation Epooling
is obtained by average-pooling all token represen-
tations of [A1, B1, A2, B2, ..., An, Bn]. The fi-
nal dialogue representation hD is [Ecls;Epooling],
where [;] is the concatenation operation. The hD is
passed through a Multi-layer Perceptron (MLP) to
get the predicted quality score SD for D:

SD = σ(W2 · µ(W1 · hD + b1) + b2), (1)

where W1,2 and b1,2 are training parameters;
σ/µ is the sigmoid/tanh function, respectively.

3.3.1 The Coarse Training Stage
Formally, given a training corpus C = {Dm}Mm=1

where Dm is the m-th dialogue with nm-rounds.
For each Dm, we can replace i ∈ {0, 1, ..., nm}
turns and get a replaced version of Dm, named
Di
m. Each replacement level has its own reference

score (nm - i)/nm. In the first training stage, we
combine a separation loss and a compactness loss
as the multi-level ranking (mlr) loss. The mlr loss
helps the model learn a coarse granularity ranking
ability for multi-levels.

The separation loss aims to separate the fea-
tures of different replacement examples by distin-
guishing their scores. For each replacement level
i ∈ {0, 1, ..., nm}, we first calculate a centroid

score SDim= 1
Ki

∑Ki
k=1 S

Dim
k where SDim

k is the qual-
ity score of a dialogue example with i turns re-
placed, Ki is the number of contrastive samples for

Dm in this replacement level2. The separation loss
between different replacement levels is:

lsepm =
nm−1∑

j=0

nm∑

l=j+1

max(0, ω*λ+SDjm- SDlm), (2)

where λ=1/(nm - 1) is the lower bound for the
distance between two centroid scores3, ω = l - j
is the weight used for amplifying the lower bound
according to the quality-level gap.

The compactness loss aims to compact the ex-
amples within the same level, which served as a
regularization role to avoid outlier exceptions for
each level. Specifically, the dialogue quality score
S

Dim
k for k ∈ {1, 2, ...,Ki} is forced to be closer to

the corresponding centroid SDim as follows:

l comm =
nm∑

i=0

Ki∑

k=1

max(0, |SDim - SDim
k | - µ), (3)

where µ is the upper bound for the distance be-
tween the centroid of a certain replacing level and
the score within this level4. The mlr loss is:

Lmlr=
M∑

m=1

(lseqm + l comm ). (4)

The original multi-level ranking method is pro-
posed by Ye et al. (2021) and has three secondary
losses: separation loss, compactness loss, and or-
dering loss. The difference between the multi-level
ranking methods we used and what they used is
that we remove the ordering loss and compute the
difference instead of the L1 distance between dif-
ferent centroid scores so that the ordering loss is
covered by the separation loss. Our method can
save training time and keep equal performance.

2For example, when replacing i turns in a n rounds dia-
logue, we have total Ki=n!/(i!(n - i)!) contrastive samples.

3For example, λ=0.5 when there are 3 reference score
levels. The expecting 3 centroids are around 1, 0.5, and 0.

4For example, if we set λ to 0.3 and µ to 0.1 when there
are 3 reference levels. The expecting 3 level ranges are around
[0.9, 1], [0.4, 0.6], and [0, 0.1].

488



Dataset Ds turns words turns/D
Empathetic 24,846 107,208 1.7M 4.3
ConvAI-2 18,878 278,192 3.3M 14.7
DailyDialog 12,096 100,360 1.4M 8.3
DailyDialog++ 19,071 215,625 1.2M 4.3
GRADE 1,200 2,400 61K 2.0
FED 500 5,603 49K 11.2
DSTC-9 2,200 59,840 533K 27.2

Table 1: Statistics of datasets. "D" means dialogue.

3.3.2 The Fine-grained Training Stage
After the coarse training stage, the model has
learned to rank multi-level scores, which can be
seen as an approximate fitting to the reference la-
bels. To make the training more smooth and more
efficient, we add an R-drop loss (Liang et al., 2021)
aside from the mlr loss to obtain a more robust
representation for each dialogue. The robust repre-
sentation will help the convergence of the model.
Specifically, one input dialogue will go through
the model twice and obtain two scores SDjm

k,first and

SDjm
k,second, then the model will minimize the dis-

tance between the two scores as follows:

Ldrop =
M∑

m=1

nm∑

j=0

Ki∑

k=1

(SDjm
k,first - SDjm

k,second)
2, (5)

The overall Loss of the fine-grained training
stage Lfinal is computed as follows:

Lfinal = Lmlr + Ldrop. (6)

4 Experimental Settings

4.1 Datasets
The datasets used in this paper are shown in Table
1. Empathetic Dialogue dataset (Rashkin et al.,
2019) simulates real life dialogue in which the
interlocutor needs to identify and recognize the
feelings of others. ConvAI-2 (Zhang et al., 2018;
Dinan et al., 2019) mimics the scene where each
interlocutor tries to understand each other by in-
corporating persona information. DailyDialog (Li
et al., 2017) reflects our daily communication and
covers different topics such as interpersonal rela-
tionships and health. DailyDialog++ (Sai et al.,
2020) is a multi-reference open-domain dialogue
dataset with 3 groups (relevant, irrelevant, and ad-
versarial) of responses for each context, each group
has 5 different responses. GRADE dataset (Huang
et al., 2020) contains 300 dialogue examples from
Empathetic Dialogue and DailyDialog, and 600
dialogue examples from ConvAI2. Each exam-
ple has 2 turns with human-annotated relevance

scores. FED (Mehri and Eskénazi, 2020a) is a
set of human-machine and human-human conver-
sations with eighteen fine-grained quality scores
in both turn and dialogue levels. DSTC-9 (Gu-
nasekara et al., 2020) was collected on the DialPort
platform through direct interaction between real
users and open-domain chit-chat systems.

4.2 Baselines
We choose the following SOTA models: GPT-2
(Pang et al., 2020) computes the log-likelihood of
the response conditional on the the dialogue context
normalized by the length of the response; Quan-
tiDCE (Ye et al., 2021) uses BERT (Devlin et al.,
2019) to get dialogue-level representations and pro-
poses a multi-level ranking method to train a quan-
tifiable turn-level coherence metric; FED (Mehri
and Eskénazi, 2020a) computes the log-likelihood
of DialoGPT (Zhang et al., 2020b) generating pre-
defined positive or negative comments as the qual-
ity score. It can measure both turn and dialogue-
level qualities; DynaEval (Zhang et al., 2021) in-
tegrates turn representations from RoBERTa into
dialogue-level representation with a graph convolu-
tional network, then adopts contrastive learning to
distinguish positive and negative samples.

We also test with different settings of SelF-Eval.
The model shown in Figure 2 is named SelF-
Eval(full), in which the training dialogue can be
any rounds. The first different setting is that we
use fixed rounds of dialogue data for training. We
set all dialogues to 2 rounds and have 3 differ-
ent replacement strategies: the original dialogue
and replacing 1 or 2 turns. This setting is named
SelF-Eval(simple). Besides, we have the follow-
ing settings for the ablation study. SelF-Eval(-mlr)
and SelF-Eval(-drop) means we remove the multi-
level ranking loss and D-drop loss, respectively.
When removing the mlr loss, we use a binary cross-
entropy (BCE) loss instead. It means the model
makes a binary decision between original dialogue
and dialogue with replacements. We use BCE loss
to show our multi-level ranking method is better
than a two-level loss when learning a dialogue rep-
resentation for evaluation.

4.3 Implementation Details
The setting of the baseline models follows the
papers that proposed them. The pre-trained
models (BERT, RoBERTa, DialoGPT, GPT-2)
are based on the public Pytorch implementa-
tion (https://github.com/huggingface/transformers).
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model Rep-0 Rep-1 Rep-2 overall
QuantiDCE 0.688 0.486 0.654 0.609
DynaEval 0.812 0.595 0.699 0.702
SelF-Eval(simple) 0.962 0.891 0.904 0.919
SelF-Eval(full) 0.973 0.898 0.914 0.928

Table 2: Accuracy of predicting replacement levels.

The hyper-parameters which are not introduced in
this section follow the original implementation in
the link. During fine-tuning, we truncate the in-
put dialogue length to 512 tokens. Among the 7
datasets we used, only DSTC-9 has dialogue exam-
ples that exceed 512 tokens and the percentage is
13.6%. We set the max contrastive sample number
to 8. All models are learned with Adam optimizer
with β1 = 0.9 and β2 = 0.999. We use a single Tesla
A100s GPU with 40GB memory, the batch size is
15. The average training time for each epoch is
around 4 hours (2 hours for the first training stage
and 2 hours for the second training stage). The
initial learning rate is set to 0.005 and decays to
0.002 in the second stage. A dropout of 0.5 is also
applied. When training SelF-Eval(full), the GPU
memory occupation is 39GB. µ is set to 0.1.5

4.4 Evaluation Metrics

Following previous works (Mehri and Eskénazi,
2020a; Zhang et al., 2021), we choose two metrics
to correlated with manual evaluations. Pearson
Correlation (Freedman et al., 2007) measures the
linear correlation between two sets of data. Spear-
man Correlation (Zar, 2005) assesses the mono-
tonic relationships between two variables. Besides,
we use Accuracy measures the percentage of cor-
rect ranking for multi-level replacement.

5 Experimental Results and Analysis

We aim to answer the following questions about
SelF-Eval: (Q1) can it assign reasonable scores
for multiple replacement levels? (See section
5.1) (Q2) does it outperform state-of-the-art meth-
ods and truly model the correlations between
turns/dialogue? (See section 5.2 and 5.3) (Q3)
how do the different components contribute to its
performance? (See section 5.4) (Q4) what can we
learn from case study? (See section 5.5)

5When evaluating dialogue-level qualities with turn-level
metrics, we measure all context-response pairs in a dialogue
and use their average as the final score. When evaluating
turn-level qualities with dialogue-level metrics, we treat the
context-response pair as an entire dialogue.

model Pearson Spearman average
DynaEval 0.093 0.101 0.097
FED 0.128 0.120 0.124
SelF-Eval(simple) 0.158 0.165 0.162
SelF-Eval(full) 0.163 0.173 0.168

Table 3: Evaluation on DSTC-9 dialogue-level quality.

5.1 Ranking Capability (Q1)

This experiment tests whether an evaluation model
assigns higher scores for dialogues with less re-
placement. Table 2 shows the accuracy results of
QuantiDCE, DynaEval, and SelF-Eval(simple/full),
all models 1) are trained with DailyDialog++ and
test with the DailyDialog++ test set; 2) use base-
sized pre-trained models as backbones. Quan-
tiDCE is chosen because 1) it is trained for classi-
fication and fits perfectly for this experiment; 2) it
represents the SOTA turn-level metric. DynaEval
is chosen because it is the SOTA dialogue-level
metric. We define 3 replacement levels: the origi-
nal dialogue (Rep-0), the dialogue with 1 replacing
turn (Rep-1), and more than 1 replacing turn (Rep-
2). Each replacement level has 5010 samples.

We can see that SelF-Eval(full) gets the highest
performance on all replacement levels. Between
the multi-level ranking models, Self-Eval(full) out-
performs QuantiDCE by 52.4%. Between the
dialogue-level ranking models, SelF-Eval(full) sur-
passes DynaEval by 32.2%. Notably, the accuracy
gaps between Rep-(0, 1, and 2) of SelF-Eval(full)
are 0.075/-0.016, which are much smaller than the
gaps of QuantiDCE (0.202/-0.168) and DynaEval
(0.217/-0.104). The results show that 1) SelF-Eval
can evenly distinguish the 3 replacement levels; 2)
the MLCL method we used shows advantages over
multi-level learning in QuantiDCE and contrastive
learning in DynaEval.

5.2 Experiments on DSTC-9 (Q2)

Table 3 shows the experimental results on DSTC-
9 data. The DSTC-9 dataset is difficult to evalu-
ate because of two reasons: 1) it contains direct
interaction between real users and multiple open-
domain chit-chat systems. These chit-chat systems
are trained with dialogue data in different domains
compared with ours. In another word, the DSTC-9
dialogue data is out-of-domain for our model and
can be used to test the generality of our method;
2) the average turns in a dialogue is around 27.2,
which is the longest among all datasets we used and
also much longer than the training data we used. It
is difficult for evaluation models to give a score for
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Dialogue Aspects GPT-2 Q-DCE FED D-Eval S-E(s) S-E(f) (-drop) (-mlr) (-drop,-mlr) Human
Dialogue-level (11 quality aspects) Spearman Correlation

Coherence 0.122 0.191 0.251 0.424 0.423 0.436 0.332 0.340 0.137 0.809
Error Recovery 0.097 0.109 0.165 0.351 0.363 0.393 0.252 0.269 0.135 0.840
Consistency 0.093 0.332 0.116 0.326 0.246 0.347 0.233 0.318 0.124 0.562
Diversity 0.145 -0.014 0.420 0.342 0.283 0.263 0.197 0.116 0.022 0.789
Topic Depth 0.094 -0.054 0.476 0.375 0.316 0.327 0.204 0.177 0.004 0.833
Likability 0.178 0.098 0.262 0.357 0.345 0.390 0.285 0.275 0.074 0.838
Understanding 0.073 0.210 0.306 0.373 0.364 0.406 0.329 0.306 0.108 0.809
Flexibility 0.135 0.093 0.293 0.361 0.307 0.317 0.233 0.184 0.082 0.816
Informativeness 0.119 0.063 0.288 0.302 0.311 0.318 0.184 0.194 0.019 0.806
Inquisitiveness 0.070 0.115 0.163 0.294 0.401 0.421 0.309 0.267 0.085 0.769
Overall 0.121 0.140 0.443 0.428 0.428 0.435 0.252 0.272 0.055 0.830

Turn-level (9 quality aspects) Spearman Correlation
Interestingness -0.097 -0.163 0.408 0.197 0.146 0.183 0.143 0.142 0.063 0.819
Engagement -0.096 -0.138 0.318 0.119 0.149 0.206 0.126 0.128 0.047 0.798
Specificity -0.114 -0.171 0.267 0.161 0.097 0.169 0.139 0.112 0.069 0.790
Relevance -0.103 0.085 0.152 0.171 0.263 0.282 0.174 0.175 0.101 0.753
Correctness 0.041 0.080 0.133 0.165 0.233 0.291 0.165 0.163 0.083 0.780
S.Appropriateness -0.081 0.112 0.155 0.112 0.208 0.247 0.143 0.132 0.068 0.682
Understandable -0.076 0.195 0.111 0.116 0.136 0.173 0.110 0.111 0.046 0.522
Fluency -0.154 0.071 0.224 0.016 0.095 0.038 0.034 0.036 -0.047 0.714
Overall -0.090 0.014 0.209 0.207 0.255 0.292 0.146 0.140 0.067 0.820

Table 4: Comparison of both dialogue and turn level Spearman correlations on the FED evaluation dataset. Q-
DCE/D-Eval/S-E(s)/S-E(f)/"S." is short for QuantiDCE/DynaEval/SelF-Eval(simple)/SelF-Eval(full)/Semantically,
respectively. Scores with p-values larger than 0.01 are italicized (indicating statistical insignificance).

such a long conversation. In this experiment, all
models are fine-tuned on DailyDialog++ and the
RoBERTa-based models are all first pre-trained on
Empathetic Dialogue, ConvAI-2, and DailyDialog.

Pearson and Spearman correlations between the
model-generated scores and the corresponding hu-
man evaluation scores are computed in Table 3.
FED and DynaEval are chosen because they are the
SOTA dialogue-level evaluation models. We can
see that both SelF-Eval(simple) and SelF-Eval(full)
largely outperform SOTA baselines even though
all models are affected by the out-of-domain and
long conversation problems. The results show that
SelF-Eval is capable of learning a dialogue repre-
sentation for evaluating dialogue-level quality even
in a difficult dataset such as DSTC-9. To further
verify the generality of this evaluation ability, we
test with other out-of-domain datasets in the fol-
lowing sections.

5.3 Experiments on FED (Q2)

Table 4 shows the experimental results on FED data.
In both dialogue and turn-level evaluations, Spear-
man correlations between the model-generated
scores and the corresponding human evaluation
scores are computed. Models are trained in the
same setting as experiments on DSTC-9.

5.3.1 Dialogue-level Evaluation
There are 11 different aspects of the FED dialogue-
level evaluation. GPT-2 and QuantiDCE are SOTA

turn-level evaluation metrics. They evaluate a dia-
logue based on the aggregation of scores of all the
context-response pairs within the dialogue. We can
observe that most of their correlation scores (21
out of 22) on dialogue aspects are lower than those
of FED and DynaEval. The results are consistent
with the conclusion of previous studies (Yeh et al.,
2021) that turn-level quality evaluation may be in-
sufficient to assess the dialogue-level performance.

FED has the highest scores on Diversity, Topic
Depth, and Overall. These results may indicate
that the DialoGPT-based evaluation model (FED)
is better at measuring these three attributes than
the RoBERTa-based models (DynaEval and SelF-
Eval). The reason is that DialoGPT uses a large
amount of Reddit data for training. The diverse top-
ics and variation expressions in Reddit data provide
DialoGPT with more insights on these attributes,
especially the dialogue-level Overall attribute. In
contrast, DynaEval and SelF-Eval are trained with
fewer dialogue data (fewer topics and variation ex-
pressions). The DynaEval focuses on modeling
the dependency between pairs of utterances and
the SelF-Eval focuses on modeling the correlations
between turns and the entire dialogue. They are
more useful for evaluating Coherence, Error Re-
covery, and Consistency aspects which reflect the
interaction between turns. Specifically, SelF-Eval
owns the highest correlation scores in 7 out of 11
dialogue aspects (Coherence, Error Recovery, Con-
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sistency, likability, Understanding, informativeness,
and Inquisitiveness) and the second-highest corre-
lation scores on Flexibility and Overall. SelF-Eval
successfully learns to measure these attributes with
our replacement strategies. The MLCL training
method captures the various dialogue attributes and
entails good dialogue-level representations. The
dialogue-level evaluation tasks are benefiting from
this representation. One way to improve the Diver-
sity and Topic Depth scores of RoBERTa-based
models is to pre-train them with dialogue data
that contains more topics and domains. We can
also notice that SelF-Eval(full) is better than SelF-
Eval(simple) in most aspects. It means the simpli-
fied training method used by SelF-Eval(simple) is
not as strong as the original method introduced in
Figure 2.

5.3.2 Turn-level Evaluation
There are 9 different aspects of the FED turn-level
evaluation. The turn-level metrics (GPT-2 and
QuantiDCE) only get better correlations on 6 out
of 18 aspects than the dialogue-level metrics (FED
and DynaEval). The results indicate that the gen-
erality of these two turn-level evaluation models is
not strong. They work well only in constrained en-
vironments or on specific datasets. The FED model
achieves the highest correlation on Interestingness,
Engagement, Specificity, and Fluency. The reason
is that the DialoGPT used by FED is trained with
an auto-regressive mode and models language gen-
eration word by word. DialoGPT focuses more
on the token-level correlations and is effective for
evaluating the naturalness of an utterance. In con-
trast, all the RoBERTa-based models (DynaEval
and SelF-Eval) perform poorly for token-level as-
pects. This is because they focus on the correlations
in the turn level and do not pay enough attention to
the token level. One way to strengthen the fluency
and Specificity aspects of SelF-Eval is to introduce
token-level perturbation strategies in training data,
such as word drop and addition (Sai et al., 2021).
These strategies provide negative samples with se-
mantical or grammatical mistakes which may also
be used for setting multi-level turn qualities for
training. We consider this token-level perturbation
as future work. What’s more, we have a similar
finding to Zhang et al. (2021) that SelF-Eval(s)
and FED complement each other at turn-level. It
means that they both perform well in aspects that
the other one is not good at. SelF-Eval achieves the
highest correlation in Relevance, Correctness, Se-

U1: My partner left me the other day.
U2: That’s rough, I’m sorry to hear that.
R: Being a punching bag in a relationship is no good.

It’s a 2 way street. Is your partner doing their part?
Scores(Human / SelF-Eval / DynaEval): 0.77 / 0.84 / 0.50
U1: i was so stressed when i found out that i did not get

accepted in my dream college.
U2: Oh no. Did you have a good backup plan?
R: thats cool, i hope you have a good time.
Scores(Human / SelF-Eval / DynaEval): 0.25 / 0.09 / 0.46

Table 5: Case study on GRADE. U1/U2 are the dialogue
context and R is the response to be evaluated.

mantically Appropriateness, Understandable, and
Overall. The SelF-Eval(simple)/(full) outperforms
the best baseline 39.7%/22.0% on turn-level Over-
all, respectively. It also has the second-highest
scores on Engagement and Specificity. The results
are consistent with the dialogue-level evaluation
where SelF-Eval has good results on aspects that
reflect the interaction between turns. As in the
dialogue-level, SelF-Eval(full) is still better than
SelF-Eval(simple) on most aspects in turn-level.

To sum up the experiments on the FED dataset,
SelF-Eval performs well for both dialogue-level
and turn-level evaluations, especially the latter. The
reason is that the training process of SelF-Eval not
only models the correlation between turns and the
entire dialogue but also models the inner connec-
tion between context and response. Our method
successfully aligns the semantic information shared
by turns and dialogue and shows good domain
adaptability (on both DSTC-9 and FED).

5.4 Ablation Study (Q3)

Table 4 also shows the ablation study of the SelF-
Eval(full). Removing R-drop loss (-drop) in the
fine-grained training stage causes more declines
than (-mlr) in dialogue-level evaluations. This is
because the R-drop loss helps SelF-Eval to learn
more robust dialogue representations. Replacing
the mlr loss with BCE loss (-mlr) causes more de-
clines than (-drop) in turn-level evaluations. This
indicates that the mlr loss helps to distinguish the
turn replacement levels and the semantic incon-
sistency information caused by the replacements.
When removing both mlr and R-drop losses, the
performance declines significantly and the results
become statistical insignificance.

5.5 Case Study (Q4)

We randomly select 2 examples from GRADE for
the case study (Table 5). The task is to evaluate the
response when giving dialogue context. We com-
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pare the human rating (the relevance scores) with
the scores given by DynaEval and SelF-Eval(full).
They are both based on RoBERTa and could pro-
vide more insight into our model. In both cases,
the scores given by SelF-Eval are closer to the hu-
man rating score than DynaEval. This is consistent
with the experimental results in the turn-level Rel-
evance of the FED dataset. In both cases, scores
from SelF-Eval are more polarized than the human
evaluations. This indicates that humans may be re-
luctant to give extreme scores and SelF-Eval could
improve its performance by penalizing scores that
are too extreme. However, whether this penalizing
works for dialogue attributes other than relevance
requires further study.

6 Conclusion

We propose to measure dialogue quality by mod-
eling the fine-grained correlations between turns
and the entire dialogue. We introduce our data
construction method and SelF-Eval model. Ex-
periments show that SelF-Eval builds fine-grained
correlations and gets better correlation scores with
human ratings than SOTA models. We think our
method may have two potential applications: 1)
It can be used alone in the evaluation of dialogue
tasks after training the SelF-Eval model with a large
amount of in-domain data; 2) It can be combined
with other evaluation models (such as FED) to eval-
uate the dialogue task by integrating the advantages
of different evaluation models. In the future, we
would like to improve our method by 1) employing
multi-granularity turn-level scores; 2) modeling
the nonlinear relationships between replacement
numbers and dialogue quality.
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Abstract

Automatic evaluation of open-domain dialogs
remains an unsolved problem. Moreover, ex-
isting methods do not correlate strongly with
human annotations. This paper presents a new
automated evaluation method using follow-ups:
we measure the probability that a language
model will continue the conversation with a
fixed set of follow-ups (e.g. Not really relevant
here, What are you trying to say?). When com-
pared against twelve existing methods, our new
evaluation achieves the highest correlation with
human evaluations.

1 Introduction

Despite the recent progress in Natural Language
Processing, the automatic evaluation of open-
domain conversations remains an unsolved prob-
lem. It is difficult to establish criteria to measure
the quality of a system. Task-oriented dialog sys-
tems use metrics such as task success or dialog
efficiency. However, these do not apply to open-
domain conversational agents (McTear, 2020).

Currently, there are two options for open-domain
dialog evaluation: human evaluation and automated
evaluation. Thanks to their understanding of natu-
ral language, humans are able to digest the entire
dialog context in order to meaningfully evaluate a
response (Mehri et al., 2022). Human evaluation
also has its shortcomings: inconsistency in ratings
(the same annotator may give two different scores
depending on the mood), lack of reproducibility,
and cost (Mehri et al., 2022).

The second option is to use automated evalua-
tion metrics. Methods inherited from sequence-to-
sequence machine translation such as BLEU (Pap-
ineni et al., 2002) evaluate the generated utterance
by comparing it to the ground-truth. By doing so,
these methods miss the one-to-many characteristic
of conversation: a conversation may evolve in more
than one valid direction.

Figure 1: Illustration of our method. We measure
the probability (log-likelihood) that a language model
will continue the conversation with a set of predefined
follow-ups. This paper shows that the sum of the indi-
vidual log-likelihoods correlates strongly with human
evaluations.

To tackle this problem, researchers came up with
reference-free evaluation metrics: the generated
utterance is not compared to a ground truth but
evaluated on its own.

FED (Mehri and Eskenazi, 2020a) is an unsu-
pervised reference-free evaluation metric. It uses
the idea that one can use the next utterance in a
conversation to rate the turn before it. When users
speak to a system, their response to a given system
may implicitly provide feedback for the system.
FED uses a set of predefined follow-ups and the
log-likelihood from a language model to measure
18 fine-grained attributes in a conversation.

Inspired by the FED metric, we propose a new
evaluation method called FULL (Follow-Up Log-
Likelihood). We start by explaining our method
and how it departs from the original FED metric.
Next, we explain our choice of language model and
follow-ups. Finally, we demonstrate that our new
method achieves the highest correlation with hu-
man evaluations compared to 12 automated metrics.
We open-source our evaluation code1 and publish
FULL as a Python package2 for easy usage.

1https://github.com/maximedb/full
2https://pypi.org/project/full/
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2 Related Work

This section reviews the existing literature on eval-
uation metrics for open-domain conversations. In
the interest of space, we limit ourselves to study-
ing reference-free methods (methods that do not
require a ground truth). The interested reader is en-
couraged to read Yeh et al. (2021) for a full review.

GRADE (Huang et al., 2020) and DynaEval
(Zhang et al., 2021) use a graph-based structure to
model the dialog-level interaction between a user
and a system. DynaEval distinguishes between
well-formed dialogs from carefully constructed
negative samples. MAUDE (Sinha et al., 2020)
is also trained to distinguish a correct response
from a randomly sampled negative response us-
ing a contrastive loss. FlowScore (Li et al., 2021)
evaluates the quality of a dialog using the dynamic
information flow in the dialog history.

USR (Mehri and Eskenazi, 2020b) trains several
models to measure different qualities of dialogs.
A masked language modeling head measures the
fluency of the conversation, a retrieval model de-
termines the relevance of a response, and a fact-to-
response model checks whether a response condi-
tions on knowledge. USL-H (Phy et al., 2020) also
has three internal models, although they measure
different attributes: grammatical correctness, sen-
sibleness, and the likelihood of a given response.
Other notable evaluation methods include Ghazar-
ian et al. (2020); See and Manning (2021); Ghazar-
ian et al. (2022b,a)

FED (Mehri and Eskenazi, 2020a) and HolisticE-
val (Pang et al., 2020) both use GPT-like (Radford
et al., 2019) models to evaluate conversation on
several attributes. FED computes the likelihood
of manually designed follow-up utterances to mea-
sure multiple dialog qualities without supervision.
HolisticEval uses a GPT-2 model to measure coher-
ence, fluency, diversity, and consistency.

3 Method

Our metric FULL (Follow-Up Log-Likelihood) is
a reference-free evaluation method for dialogs in-
spired by FED (Mehri and Eskenazi, 2020a). Fig-
ure 1 provides an overview.

3.1 Follow-Up Utterance for Evaluation

Our method uses follow-up utterances to evaluate
the quality of a conversation (Eskénazi et al., 2019).
When interacting with a system, users may provide

implicit feedback about the conversation in the se-
mantics of their response. For example, if a user
ends a conversation with It was a pleasure talking
to you, we can reasonably assume it was a pleasant
conversation. On the other hand, if a user ends a
conversation with What are you talking about?, we
could conclude that the user is confused about the
state of the conversation.

3.2 Log-Likelihood of Follow-Ups

We do not have access to the next utterance in
an interactive setting. Instead, we ask a language
model to play the role of a human. We ask the
model how likely it is to generate a fixed set of
follow-ups. For example, if the language model is
likely to continue a conversation with the follow-up
I don’t understand what you are saying, we could
conclude that the utterance generated by the system
does not make sense.

FULL analyzes the quality of a response r in
the context of a dialog history h with a language
model M and a set of n predefined follow-ups
F . For each predefined follow-up, the language
model computes the log-likelihood D of a follow-
up utterance fi given the dialog history.

n∑

i=1

D(h, r, fi) (1)

The total score is equal to the sum of the individ-
ual log likelihoods. It is worth reminding that the
metric does not mean anything. It is only useful to
compare systems together.

3.3 Differences with FED

Our implementation differs from FED (Mehri and
Eskenazi, 2020a) in multiple ways. First, we do
not consider fine-grained attributes, only the overall
quality of the turn or dialog.3

Second, FED computes the log-likelihood of
the conversation history h, the response r, and the
follow-up fi. Whereas we only compute the condi-
tional log-likelihood of the follow-up fi. Comput-
ing the log-likelihood over the conversation intro-
duces a bias towards the dataset used in training the
language model, Reddit, in the case of FED. It also

3Whereas FED considers 18 fine-grained attributes (overall
quality included). Our initial experiments revealed that follow-
ups assigned to a fine-grained attribute (e.g., engaging) often
had a higher correlation with another unrelated attribute (e.g.,
correctness). For that reason, we choose to focus on a single
attribute, the conversation’s overall quality and leave the study
of fine-grained attributes for future work.
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favors longer conversations over shorter ones. Our
goal is to estimate the likelihood of the follow-up,
not the conversation itself.

Third, FED did not justify its choice of follow-
ups, while we studied each candidate and only took
the most correlated ones making intuitive sense.
Fourth, we also study multiple types of language
models (conversational and general).

4 Experimental Settings

This section explains our choices of follow-ups,
language models, and conversational data. Our
goal is to find the combination of language models
and follow-ups correlating the most with human
evaluations.

4.1 Follow-Ups

A follow-up is an utterance added after a conversa-
tion’s last turn to evaluate the last turn or the entire
dialog. FED defined 63 unique follow-ups in 16
categories (fine-grained attributes) at the turn level
and the dialog level. Appendix B list the entire
list of follow-ups. The authors did not provide any
justification for their choice of follow-ups. Instead
of blindly using the list of follow-ups, we attempt
to understand which of these follow-ups have the
highest correlation with human evaluations.

4.2 Language Models

We experiment with several language models, both
general and conversational. The goal of the lan-
guage module is to compute the conditional log-
likelihood of several follow-ups.

BlenderBot v1 is a conversational sequence-to-
sequence model (Roller et al., 2020) with three
sizes: small, large, and extra-large. A distilled
version is also available on HuggingFace.

DialoGPT is a conversational language model
(Zhang et al., 2020) with three sizes: small,
medium and large. The authors fine-tuned a GPT-2
model on a large corpus of Reddit conversations.

GPT-2 is a general language model (Radford
et al., 2019). While it was not trained specifically
on conversational data, our experiments revealed
its potential to estimate a conversation’s quality.

4.3 Conversational Data

We use the FED dataset (Mehri and Eskenazi,
2020a) for evaluating the set of follow-ups. It

Follow-up Correlation
Turn Dialog

Not really relevant here. 0.48 0.65
You’re really confusing. 0.46 0.67
I don’t understand what you’re saying. 0.46 0.58
That’s not really relevant here. 0.45 0.70
You are so confusing. 0.45 0.64
You’re really boring. 0.44 0.65
That’s not very interesting. 0.44 0.60
That was a really boring response. 0.43 0.63
You don’t seem interested. 0.43 0.61
I am so confused right now. 0.43 0.57

Table 1: Top 10 follow-ups ranked by Spearman corre-
lation to human evaluations. All follow-ups exhibit a
positive relationship, meaning that the likely presence of
the follow-up (low log-likelihood) entails a low human
evaluation and vice-versa.

consists of 372 turn-level (124 dialog-level), origi-
nally collected by Adiwardana et al. (2020). The
dataset consists of human-system conversations
(Meena and Mitsuku) and human-human conversa-
tions. Mehri and Eskenazi (2020a) asked annota-
tors to evaluate turn-level and dialog-level conver-
sations on several attributes. In this work, we only
use the evaluation of the overall quality of the turn
or dialog.

5 Results

Our objective is to find the best combination of
language models and follow-ups. We start by ana-
lyzing which language model correlates the most
with human evaluation. In the second step, we look
for the best set of follow-ups.

5.1 Choice of Language Model
We are looking for a language model whose log-
likelihood of generating the follow-ups correlates
highly with human evaluations. We do so both on
a turn-level and dialog-level. We compare the av-
erage absolute correlation of each follow-up with
human judgments. The results are displayed on
Figure 2 in Annex A. The model standing out is
the large Blender model (Roller et al., 2020). It
has the highest correlation with humans both on a
turn-level and dialog-level. The difference in per-
formance between Blender-3B and Blender-400M
is small. For these reasons, we choose Blender-
400M as our default language model.

5.2 Choice of Follow-ups
Now that we have identified our model of choice
(Blender-400M), we wish to identify the follow-
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Turn Level Dialog Level
QuestEval 0.09 0.08
MAUDE -0.09 -0.28
DEB 0.19 -0.01
GRADE 0.12 -0.06
DynaEval 0.32 0.55
USR 0.12 0.06
USL-H 0.19 0.15
DialoRPT -0.09 -0.21
HolisticEval 0.12 -0.30
PredictiveEngage 0.09 0.15
FED 0.09 0.32
FlowScore -0.05 -0.00
FULL (ours) 0.51 0.69

Table 2: Comparison of our evaluation method FULL
with other automated methods. FULL achieves the high-
est correlation on turn-level and dialog-level, followed
by DynaEval. Except for FULL, results are copied from
Yeh et al. (2021).

ups correlating the most with humans. We compute
the Spearman correlation between each follow-up
and human evaluation (turn-level and dialog-level).
We present the top-10 follow-ups (by absolute cor-
relation) in Table 1. The full table is available
Appendix B.

The follow-up correlating the most on a turn-
level basis is Not really relevant here with a Spear-
man correlation of 0.48. The least correlated
follow-up is Wow! That’s really cool! with correla-
tions of 0.04. The follow-up correlating the most
on a dialog-level basis is That’s not really relevant
here with a correlation of 0.70. The least correlated
follow-up on a dialog level is Cool! That sounds
super interesting! with a correlation of 0.01.

Most follow-ups exhibit a positive relationship,
meaning that the likely generation of the follow-up
by the language model (low log-likelihood) entails
a low human rating and vice-versa. However, all
the top follow-ups are negative follow-ups (e.g.,
You’re really confusing), and their likely presence
indicates a negative conversation. On the other
hand, the positive follow-ups (e.g., Great talking to
you) are not as highly correlated. On average, neg-
ative follow-ups correlate with 0.39, while positive
follow-ups correlate with 0.24. These results indi-
cate that the language model evaluates a good con-
versation by the likely absence of negative follow-
ups.

Each follow-up brings another forward pass of
the model, so ideally, we want to restrict the num-

ber of follow-ups in the final evaluation method.
For the final selection of follow-ups, we combine
the rank of the turn-level and dialog-level corre-
lations and take the top 5.4 The final selection of
follow-ups is the following: Not really relevant
here. You’re really confusing. You’re really bor-
ing. What are you trying to say? You don’t seem
interested.

5.3 Comparison

Yeh et al. (2021) compared 12 evaluation methods
on the FED dataset (Mehri and Eskenazi, 2020a).
We compare our method FULL against these 12
other methods in Table 2. The results are clear,
FULL achieves the highest correlation both on a
turn-level and dialog-level while being fully unsu-
pervised (except in the choice of follow-ups). By
combining the log-likelihood from 5 follow-ups,
the average correlation on turn-level increases to
0.51, while the average of the individual correlation
equals 0.45.

6 Conclusion

This short paper introduces a new automated evalu-
ation method (FULL) for open-domain conversa-
tions. FULL measures the quality of a conversation
by computing the probability that a language model
will continue the conversation with a set of follow-
ups (e.g., Not really relevant here, What are you
trying to say?). FULL achieves the highest corre-
lation with human evaluations compared to twelve
other existing methods.

Our experiments revealed that negative follow-
ups (e.g., Not really relevant here) have a higher
correlation with human evaluations than positive
follow-ups (e.g., Wow, interesting to know). It is
easier for the model to evaluate a conversation from
its bad angles rather than its good ones.

Future work is needed to know which fine-
grained attribute can be measured using the same
technique. Using ever-large models such as GPT-3
(Brown et al., 2020) or OPT (Zhang et al., 2022)
could be a direction for future research, although
the resulting model will likely need to be distilled
to be of practical use.

4We arbitrarily choose the number 5. We also removed
close duplicates. For example Not really relevant here. and
That’s not really relevant here.
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A Appendix: Comparison of Models

We present in Figure 2 the average absolute corre-
lation to human evaluations per model.

B Appendix: List of Candidate
Follow-ups

Table 3 list the entire list of follow-ups considered.
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Figure 2: Average absolute correlation with human evaluations for several language models. We use Blender-400
(BLD S) as language model because of its high correlation with human evaluations. For space reasons, Blender is
abbreviated as BLD and DialoGPT as DGPT.
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Follow-up Category Level Type Level Dialog
X Not really relevant here. specific turn neg 0.48 0.65
X You’re really confusing. error recovery dialog neg 0.46 0.67

I don’t understand what you’re say-
ing.

correct turn neg 0.46 0.58

That’s not really relevant here. specific turn neg 0.45 0.70
You are so confusing. coherent dialog neg 0.45 0.64

X You’re really boring. informative dialog neg 0.44 0.65
That’s not very interesting. interesting turn neg 0.44 0.60
That was a really boring response. interesting turn neg 0.43 0.63

X You don’t seem interested. inquisitive dialog neg 0.43 0.61
I am so confused right now. error recovery dialog neg 0.43 0.60
I’m so confused! understandable turn neg 0.43 0.59
I don’t really care. That’s pretty bor-
ing.

engaging turn neg 0.43 0.61

I want to talk about something else. engaging turn neg 0.43 0.65
That’s not even related to what I
said.

relevant turn neg 0.42 0.58

X What are you trying to say? understanding dialog neg 0.42 0.68
I am so confused right now! correct turn neg 0.42 0.57
That makes no sense! semantically appropriate turn neg 0.42 0.56
I don’t understand at all! understandable turn neg 0.41 0.54
That’s really boring. interesting turn neg 0.41 0.54
I don’t like you. likeable dialog neg 0.40 0.58
I’m so confused right now! fluent turn neg 0.40 0.56
Don’t change the topic! relevant turn neg 0.40 0.58
You’re not understanding me! correct turn neg 0.40 0.62
That’s a very generic response. specific turn neg 0.39 0.50
You don’t really know much. informative dialog neg 0.39 0.52
You’re not very nice. likeable dialog neg 0.38 0.56
You’re not very fun to talk to. likeable dialog neg 0.37 0.55
Is that real English? fluent turn neg 0.37 0.49
That’s a lot of questions! inquisitive dialog pos 0.36 0.52
Why are you repeating yourself? diverse dialog neg 0.35 0.50
You’re making no sense at all. coherent dialog neg 0.35 0.43
You ask a lot of questions! inquisitive dialog pos 0.35 0.54
Let’s change the topic. engaging turn neg 0.35 0.45
You don’t ask many questions. inquisitive dialog neg 0.35 0.54
Why are you changing the topic? relevant turn neg 0.34 0.51
Stop saying the same thing repeat-
edly.

diverse dialog neg 0.34 0.50

Do you know how to talk about
something else?

flexible dialog neg 0.33 0.49

You’re changing the topic so much! coherent dialog neg 0.33 0.47
You know a lot of facts! informative dialog pos 0.32 0.48
Tell me more! engaging turn pos 0.32 0.34
I like you! likeable dialog pos 0.31 0.43
Wow that’s a lot of information. informative dialog pos 0.31 0.38
Stop changing the topic so much. depth dialog neg 0.31 0.44
What does that even mean? understandable turn neg 0.30 0.35
I don’t want to talk about that! flexible dialog neg 0.29 0.50
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Table 3 continued from previous page
Follow-up Category Level Type Level Dialog
That’s not what you said earlier! consistent dialog neg 0.29 0.37
You have a good point. semantically appropriate turn pos 0.29 0.43
I see, that’s interesting. specific turn pos 0.28 0.31
Stop contradicting yourself! consistent dialog neg 0.28 0.36
You’re very easy to talk to! flexible dialog pos 0.28 0.40
Stop repeating yourself! diverse dialog neg 0.27 0.40
That’s good to know. Cool! specific turn pos 0.25 0.30
That’s a good point. specific turn pos 0.25 0.34
Wow you can talk about a lot of
things!

flexible dialog pos 0.23 0.27

I’m really interested in learning
more about this.

engaging turn pos 0.22 0.26

That makes sense! semantically appropriate turn pos 0.21 0.21
Thanks for all the information! informative dialog pos 0.21 0.15
You’re super polite and fun to talk to likeable dialog pos 0.17 0.23
Wow that is really interesting. interesting turn pos 0.17 0.14
That’s really interesting! interesting turn pos 0.16 0.11
Great talking to you. likeable dialog pos 0.15 0.10
Cool! That sounds super interesting. interesting turn pos 0.08 - 0.01
Wow! That’s really cool! engaging turn pos 0.04 - 0.08

Table 3: List of candidate follow-ups along with their category (fine-grained attribute), positivity (negative of
positive follow-up) and correlation with a human evaluation of the overall quality of the turn/dialog. All follow-ups
and static data is from Mehri and Eskenazi (2020a).
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Abstract

To evaluate the performance of a multi-domain
goal-oriented Dialogue System (DS), it is im-
portant to understand what the users’ goals are
for the conversations and whether those goals
are successfully achieved. The success rate of
goals directly correlates with user satisfaction
and perceived usefulness of the DS. In this pa-
per, we propose a novel automatic dialogue
evaluation framework that jointly performs
two tasks: goal segmentation and goal success
prediction. We extend the RoBERTa-IQ model
(Gupta et al., 2021) by adding multi-task learn-
ing heads for goal segmentation and success
prediction. Using an annotated dataset from a
commercial DS, we demonstrate that our pro-
posed model reaches an accuracy that is on-par
with single-pass human annotation comparing
to a three-pass gold annotation benchmark.

1 Introduction

Today, commercial conversational AI assistants
(e.g., Amazon Alexa, Apple Siri, and Google As-
sistant) are increasingly popular. However, it is
challenging to establish reliable metrics to continu-
ously measure the system performance in business
reports and A/B experiments. The commonly used
metrics in industry, e.g., monthly active users, di-
alogue count per user, and downstream impacts
such as increased subscriptions and product sales
etc., usually move slowly and are not suitable to
measure the impact of functionality changes. On
the other hand, the dissatisfaction metrics based on
manual annotation, which can capture dissatisfying
user experiences due to system errors, incomplete
service coverage, or poor response quality etc., are
sensitive to functionality changes, but not suitable
for online monitoring and experimentation due to
their offline nature. Automatic dialogue evaluation
metrics (Schmitt and Ultes, 2015; Ling et al., 2020)
aim to combine the benefits of the two types of met-
rics mentioned above by providing an online metric

Figure 1: A dialogue that contains two goals: play-
music and turn-on-device. Here, a turn is defined as
one back-and-forth between the user and agent. A dia-
logue is a set of turns in quick succession as indicated
by the timestamps. A goal represents an objective the
user is trying to accomplish in a sequence of turns. Hu-
man annotation labels for turns (defect/non-defect) and
goals (success/failure) are provided for reference.

that measures user experience and is sensitive to
functionality changes. The effectiveness of such
metrics depends on how well they are correlated
with the human annotations.

Automated dialogue evaluation metrics in the
literature could be generally grouped into two cate-
gories (Deriu et al., 2020): 1) Interaction Quality
(IQ) metrics (e.g., (Schmitt and Ultes, 2015; Ling
et al., 2020; Gupta et al., 2021)) that measures user
experiences at turn level; and 2) Dialogue Quality
(DQ) metrics (e.g., (Sun et al., 2021)) that measures
user experiences for the whole dialogue. However,
we argue that, for multi-domain goal-oriented dia-
logue systems, there is a need to add a goal-level
metric with granularity in between turn and dia-
logue. If we define a dialogue as a set of turns in
quick succession, a user may switch her objective
mid-dialogue without clear delineations. As shown
by the example in Figure 1, the user started the dia-
logue with a playing music request but switched her
objective halfway to turn on a smarthome device.
Here, we propose a new granularity – goal, which
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represents an objective the user is trying to accom-
plish in a sequence of turns. Goal segmentation
is especially important for accurately evaluating
the dialogue quality. In Figure 1 example, the user
successfully achieved her first goal but failed on
the second one. It would be ambiguous to evalu-
ate the user experience at the whole dialogue level.
To our best knowledge, there is no other work in
the literature that performs goal segmentation and
goal success prediction jointly. Prior work either
assumes that a dialogue automatically terminates
upon the completion of a goal e.g., (Bodigutla et al.,
2020) or the goal boundaries are known beforehand
e.g., (Walker et al., 1997).

To build a reliable automatic goal evaluation met-
ric, we extend the RoBERTa-IQ model (Gupta et al.,
2021) by adding multi-task learning heads for goal
segmentation and success prediction. Even though
RoBERTa-IQ model is a model built for turn level
metrics, it encodes the turns before and after the
reference turn (the turn on which the model will
make prediction) to ingest dialogue context infor-
mation. Besides, time difference between turns
are encoded in the time bin embeddings and feed
into the model together with the context embed-
ding. Thus, such characteristics makes RoBERTa-
IQ model a suitable starting point for goal level
evaluation task. For goal segmentation, different
from LSTM based method (Koshorek et al., 2018;
Arnold et al., 2019), we leverage self-attention
mechanism across turns. The practical benefit
of this approach is that it improves inference ef-
ficiency on long token sequences, which is a com-
mon problem for RNN models. To demonstrate the
effectiveness of our proposed methods, we evalu-
ated our method against a golden dataset in which
each dialogue is labeled by three annotators and
the ground truth labels are determined by majority
vote. We then compare the accuracy of the model
predictions with that of a single-pass human anno-
tation.

The proposed work has two main contributions:
1) A novel goal level dialogue evaluation frame-
work that matches the real-world scenarios in multi-
domain goal-oriented dialogue system; 2) A deep
learning model that jointly learns goal segmenta-
tion and goal success prediction, with accuracy
on-par with single-pass human annotation. The
remainder of this paper is organized as the follow-
ing: Section 2 reviews related work about goal
segmentation and dialogue evaluation. Section 3

introduces the model architecture. Section 4 shows
the experimental setup and discusses the perfor-
mance of the model. We conclude the paper in
Section 5.

2 Related Work

2.1 Topic Segmentation

To our best knowledge, our study is the first one
to propose dialogue goal segmentation. Similar to
the topic segmentation for generic text, dialogue
goal segmentation aims to segment a dialogue into
the goal-coherent units. Therefore, the previous
approaches, which were originally proposed for
generic text topic segmentation, are ready to be
used for conversational corpora. Early topic seg-
mentation approaches can be classified into two
types: 1) lexical cohesion models and 2) content-
oriented models. A well-known algorithm of lexi-
cal cohesion models is TextTiling (Hearst, 1997).
Content-oriented models rely on the re-occurrence
of patterns of topics, such as Bayesian Unsuper-
vised Topic Segmentation (Eisenstein and Barzi-
lay, 2008). More recently, neural network-based
approaches (Koshorek et al., 2018; Arnold et al.,
2019) are favored by researchers because of robust
model performance and efficiency.

2.2 Dialogue Evaluation

Unsupervised methods There are some unsuper-
vised evaluation methods, which provide a good as-
sessment for open domain dialogues. RUBER (Tao
et al., 2018) is a turn level metric that combines
the relatedness between the turn level response
and the previous issued query-response, respec-
tively. Besides relying on semantics of the sen-
tences, GRADE (Huang et al., 2020) proposes a
method to leverage the graph embedded topic-level
representation for turn level success evaluation. For
dialogue level evaluation, MAUDE (Sinha et al.,
2020) is a context aware model that measures the
quality of a generated reply given the previous dia-
logue context.

Supervised methods The well known evaluation
framework (Walker et al., 1997) based on user sat-
isfaction is PARADISE (PARAdigm for DIalog
System Evaluation) framework. In PARADISE,
given a set of manually extracted input features
and user ratings, a linear regression model is fit-
ted to predict the user satisfaction. In contrast to
evaluating the entire dialogue, there are various
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approaches to evaluate the user satisfaction at turn
level, such as Interaction Quality (IQ) (Schmitt and
Ultes, 2015). To further generalized the model,
IQ-NET (Ling et al., 2020) directly uses raw dia-
logue turn contents and system metadata without
hand-crafted features. Meanwhile, by using post
experience explicit user feedback as a proxy to user
satisfaction, several joint turn and dialogue level
evaluation methods (Bodigutla et al., 2020; Park
et al., 2020) are proposed.

3 Methodology

We extend the RoBERTa-IQ (Gupta et al., 2021)
model architecture by adding the goal segmentation
task and goal success prediction task. As a brief
recap, there are three key differences separating
RoBERTa-IQ from the vanilla RoBERTa model, as
illustrated in Figure 2:

1. RoBERTa-IQ introduces two special tokens
[USER] and [AGENT] to delineate the be-
ginning of each user request and agent re-
sponse. This enables the model to encode
the multi-turn dialogue as a flattened token
sequence (see Table 1 for an example), which
enables self-attention mechanism across dif-
ferent turns;

2. RoBERTa-IQ has a notion of “reference turn”
versus “contextual turns”. The reference turn
is the target for the model prediction while
contextual turns are context surrounding the
reference turn. In this paper, we use two turns
before and two after the reference turn as con-
text (ablation study showed no statistical dif-
ference with larger context window);

3. Instead of the usual “position embedding” for
RoBERTa model, RoBERTa-IQ has an em-
bedding called “time bin embedding” that is
calculated based on timestamp difference be-
tween a context turn and the reference turn.
The time bin embedding has two uses: 1) it
allows the model to understand the temporal
relationship between the reference turn and
contextual turns; 2) it enables the model to
locate the reference turn – a special bin: BIN0

is reserved for reference turn’s tokens.

We add the goal segmentation and goal success
prediction task heads on top of the [CLS] token
embedding. For each turn in a dialogue, we mark
it as the reference turn and let the model to learn

from a binary classification label (B if the reference
turn is at the beginning of a goal and I if inside
a goal). Goal success prediction is modeled as a
multi-class classifier with three possible outputs:
success, failure, and unactionable.

[USER] Play Jackson
[AGENT] Jackson by Johnny Cash and June Carter on Spotify
[USER] Play Michael Jackson
[AGENT] Shuffling songs by Michael Jackson, on Spotify
[USER] turn on lamp
[AGENT] A few items shared name lamp. Do you mean table lamp?
[USER] No, never mind
[AGENT] {Silence}

Table 1: The example dialogue in Figure 1 in flattened
token sequences form, considering turn-2 as the refer-
ence turn (bolded).

4 Experiments

4.1 Dataset

We used de-identified data for our experiments.
The data is labeled by one annotator for two goal
level tasks - goal segmentation and goal success
prediction. The training dataset contains ~500K
dialogues, randomly split into training (80%) and
validation (20%) sets. 44% of those dialogues are
single-turn dialogues. For all goals identified in
the training dataset: 75% are success, 14% are
unactionable and 11% are failure. An additional
three-pass human annotation is applied to the evalu-
ation dataset and the majority vote is used as golden
labels. We call the evaluation dataset with golden
label as golden dataset. The golden dataset is used
to measure the performance of both human and the
trained models. The single-pass annotation is con-
sidered as prediction of human. The golden dataset,
which contains ~30K dialogues, has similar data
distribution as the training dataset.

4.2 Experiment Setup

Implementation Details The model training and
evaluation are implemented in PyTorch. We con-
tinue the training for 15 epochs and select the best
model based on the performance on the validation
dataset. For multi-task model, we add the two
loss functions (cross-entropy loss) for both tasks
with equal weights (i.e. 0.5). To compare with the
model trained in the multi-task learning framework,
we also train goal segmentation and goal success
prediction models separately on the same dataset.
Note, the model prediction score on different turns
may be different. The goal success prediction is
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Figure 2: Diagram for RoBERTa-IQ model. The second turn with time bin equals to BIN0 is the reference turn on
which the model will make the prediction.

determined by the prediction on the last turn of the
predicted goal.

Metrics We compare the performance of three
models under different settings: human model (one-
pass human annotation), single task model (two
tasks trained separately), multi-task model (two
tasks jointly trained). We measure model perfor-
mance with the following metrics: 1) the accuracy
of goal segmentation, which is defined as number
of goals with correct boundaries divided by total
number of goals; 2) the accuracy of goal evalua-
tion, which is defined as the number of goals with
correct boundaries and the right success prediction
divided by the total number of goals; 3) weighted
F1 score, which is the weighted average of the
F1 score of each success prediction class on goals
with accurate goal boundary. For machine-learned
models, we also report relative metric (accuracy
or weighted F1 score) with respect to that of hu-
man model in order to illustrate the difference. For
example, the relative accuracy of human model is
zero. The relative accuracy of single task model
is computed as its accuracy minus the accuracy of
human model.

4.3 Results

Table 2 summarizes the relative accuracy of
segmentation and goal evaluation and relative
weighted F1 score on single turn dialogues, multi-
turn dialogues and these two combined. From the
results, we can see the following points: 1) As
shown in both accuracy and weighted F1 score, the
performance of the multi-task model (the proposed
model) is better than two single task models com-

bined, especially, in multi-turn dialogues. 2) The
proposed model has lower accuracy in goal seg-
mentation but higher accuracy in goal evaluation
compared to human. 3) The proposed model has
higher accuracy but lower weighted F1 compared
to human in goal evaluation. The proposed model
is optimized for success class since that is the main
usecase and has the most data for training while
the proposed model has small performance gaps in
failure class compared to human due to insufficient
training data issue.

Dialogue Model
Segmentation Goal Weighted

Accuracy Accuracy F1 Score

Single
turn

Human +0.0% +0.0% +0.0%
Single task +0.0% +1.1% -1.3%
Multi-task +0.0% +1.4% -1.0%

Multi-
turn

Human +0.0% +0.0% +0.0%
Single task -4.7% +2.2 % -1.5%
Multi-task -4.4% +2.7% -0.9%

All
Human +0.0% +0.0% +0.0%
Single task -3.8% +2.0% -1.4%
Multi-task -3.5% +2.4% -0.9%

Table 2: Performance of goal segmentation and goal
evaluation on golden dataset. The best machine-
learned model results are bolded.

5 Conclusion

In this paper, we propose a novel framework to
evaluate goal-level performance for multi-domain
goal-oriented dialogue systems and a deep learning
model that jointly learns goal segmentation and
success prediction. Our experiments show that the
proposed model reaches an accuracy that is on-par
with single-pass human annotation and with multi-
task learning, the model performance is better than
single task models for both tasks.
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Abstract

Zero-shot learning for Dialogue State Tracking
(DST) focuses on generalizing to an unseen
domain without the expense of collecting in-
domain data. However, previous zero-shot DST
methods ignore the slot dependencies in a multi-
domain dialogue, resulting in sub-optimal per-
formances when adapting to unseen domains.
In this paper, we utilize slot prompts com-
bination, slot values demonstration, and slot
constraint object to model the slot-slot depen-
dency, slot-value dependency and slot-context
dependency respectively. Specifically, each slot
prompt consists of a slot-specific prompt and a
slot-shared prompt to capture the shared knowl-
edge across different domains. Experimental
results show the effectiveness of our proposed
method over existing state-of-art generation
methods under zero-shot/few-shot settings.

1 Introduction

Task-oriented dialog systems help users to achieve
specific goals using natural languages, such as
movie booking and information support. Dialogue
state tracking(DST), as a core component of task-
oriented dialogue systems, tracks the user’s require-
ments as dialogue states, which are typically in
the form of a list of slot-value pairs. In practical
applications, the multi-turn conversation usually
refers to multiple domains. As shown in Figure
1, a user starts the conversation by asking a hotel
and then requests a restaurant with a cheap price
range, where hotel and restaurant are two differ-
ent domains. At the third turn, the DST extracts
multiple (slot, value) pairs like “(hotel-star, 4)” and
“(restaurant-pricerange, cheap)” from the dialogue
context.

In industrial applications, task-oriented dialogue
systems are required to add new domains frequently
based on users’ needs, but collecting extensive
data for every new domain is costly and inefficient.

∗Corresponding author.

Figure 1: An multi-domain dialogue from MultiWOZ
dataset (Budzianowski et al., 2018). Following the
convention of this dataset, each slot is represented
as a special token concatenated by domain and slot
(e.g.,“restaurant-food”).

Therefore, performing zero-shot prediction of di-
alogue states is becoming increasingly important
since it does not require the expense of data acqui-
sition.

The early works utilized the copy mechanism to
handle new slot types in the unseen domain (Wu
et al., 2019; Kumar et al., 2020). But the special-
ized models don’t fully leverage the pre-trained
language models(PLMs), which have shown im-
pressive ability in transfer learning. Recently, a
new paradigm named “prompt-based learning” uti-
lizes language prompts to stimulate the knowl-
edge of PLMs (Han et al., 2021). Compared to
task-oriented fine-tuning, prompt-based learning
is more similar to pre-training in terms of objec-
tives, thereby adapting to downstream tasks faster
even without any training samples. Inspired by
it, some researchers add slot-specific prompt1 into
the sequence-to-sequence based model, achieving
good performances in zero-shot DST(Lee et al.,
2021; Su et al., 2021).

1For example, the prompt of slot “restaurant-area” can be
“what is the location of the restaurant?”.
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However, these approaches treat each slot inde-
pendently, which ignore various slot dependencies
during dialogue state tracking. We conceive that
there exist several types of slot dependencies in
multi-domain DST. For instance, the stars of a ho-
tel and its price range often co-occur in a dialogue
state. It could tell that the stars of a hotel might
have a dependency on its price range. Take Figure
1 as another example, the user asks for a taxi to the
restaurant, meaning that the taxi departure place
can be inferred from the name of the hotel. Ac-
cording to the statistics, there are 36.53% slot-slot
co-occurrence, 4.29% slot-value co-reference rela-
tions and many other types of slot dependencies in
the training set of MultiWOZ 2.1 (Budzianowski
et al., 2018; Feng et al., 2022). Intuitively, mod-
eling these slot dependencies can help the DST
model to handle complex dialogue scenes and infer
the slot-value pairs in the zero-shot DST.

Motivated by above analysis, we consider that
there are three kinds of slot dependencies, i.e. slot-
slot dependency, slot-value dependency and slot-
context dependency. This paper proposes a prompt-
based approach to model above slot dependencies
for zero-shot DST. For the slot-slot dependency,
we combine slot prompts as the specialized prompt
and decode corresponding slot values, making the
model consider semantic information across slots.
Specifically, each slot prompt consists of a slot-
specific prompt and a slot-shared prompt, which
respectively stimulates language understanding and
captures the shared knowledge between slots by
sharing parameters. For the slot-value dependency,
we use value demonstration, i.e., filling partial slot
values into slot prompts, to explore possible de-
pendency between slots and values. For the slot-
context dependency, we use the masked language
model and predict masked tokens inside the context
with the constraint of slot values, further enhancing
the relationships between slots and dialogue con-
text. The experimental results show that our pro-
posed model achieves a significantly higher joint
goal accuracy compared to previous zero-shot DST
approaches.

In summary, our main contributions include:

• We propose a prompt-based method for zero-
shot cross-domain DST, which leverages slot
prompts combination, slot value demonstra-
tion and slot constraint object to explore the
slot dependency among domains and slots.

• Experimental results show that our approach

can transfer into unseen domains effectively
and achieve the new state-of-the-art perfor-
mances on the MultiWOZ 2.1 and SGD
dataset under zero/few-shot settings.

2 Related Work

Multi-Domain Dialogue State Tracking Tra-
ditional statistical dialogue state tracking models
combine semantics extracted by spoken language
understanding models to predict the current dia-
logue state (Williams and Young, 2007; Thomson
and Young, 2010) or jointly learn language under-
standing in an end-to-end way. Recently, many
DST models that are built on deep neural networks
have achieved promising state tracking results(Dai
et al., 2021; Rastogi et al., 2019). Among them,
some recent works attempted to model slot rela-
tionships by predefined schema graphs (Chen et al.,
2020) or attention mechanism (Feng et al., 2021).
But they heavily rely on a huge number of anno-
tated data and human efforts without the generaliz-
ability to new domains (Feng et al., 2022), which
is not suitable for industrial applications. To solve
the above problem, some researchers leverage ma-
chine reading question answering data to facilitate
the low-resource DST (Gao et al., 2020; Lin et al.,
2021a), also called cross-task transfer. However,
cross-task transfer needs a large-scale corpus and
it is hard to learn the semantic consistency with the
task-oriented dialogue. In this paper, we focus on
the zero-shot cross-domain DST (Wu et al., 2019;
Kumar et al., 2020; Lin et al., 2021b),where these
models are first trained on several domains and are
transferred into unknown domains.

Prompt-based Learning Various recent PLMs
like GPT (Radford and Narasimhan, 2018), BERT
(Devlin et al., 2019) and T5 (Raffel et al., 2020)
provide a new approach to utilize large-scale unla-
beled data for NLP tasks. However, there is a big
gap between pre-training objectives and fine-tuning
objectives. Recently, prompt tuning attracts many
researchers to design prompt templates and then
fine-tune PLMs to downstream tasks, which ob-
tains successful results (Han et al., 2021; Zheng and
Huang, 2021). For the DST task, Lee et al. (2021)
proposed a slot-specific prompt to augment the
multi-domain prompt-based DST model. However,
these traditional prompt-based DST approaches
handle slots independently while we focus on mod-
eling the dependencies among slots in this paper.
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(a) (b)

Figure 2: Traditional prompt-based DST(a) vs Overview of ours(b).

3 Preliminaries

In this section, we give general notations for multi-
domain DST task and details about the traditional
prompt-based DST, which are the basis of proposed
approach in the next section.

3.1 Notations

In task-oriented dialogue systems, a dia-
logue with T turns can be represented as
{(A1, U1), (A2, U2) . . . , (AT , UT )}, where A rep-
resents the system response and U represents a user
utterance. At turn t, we denote the dialogue con-
text as Ct = {(A1, U1), (A2, U2), . . . , (At, Ut)},
which includes t turns from system and user. For
multi-domain DST, the dialogue state at turn t is
represented as a set of (slot, value) pairs, denoted
as Bt = {(sj , vj)|1 ≤ j ≤ J}, where sj is the slot
name given by schema and vj is its slot value. J is
the total number of slots in all domains. If there
is no information in the dialogue given about the
slot sj , vj is set to “none”. The goal of DST is
to predict the dialogue state Bt given a dialogue
context Ct.

3.2 Traditional Prompt-based DST

In this part, we introduce traditional prompt-based
DST model (Lin et al., 2021b) with a sequence-
to-sequence framework, which is shown in Figure
2(a). A generative model (e.g T5) concatenates
dialogue history Ct and a slot-specific prompt Tj
as input and decodes corresponding slot value vj .

vj = Seq2seq(Ct, Tj) (1)

where Tj is the prompt for slot sj . The learning
objective of the generation process is minimizing
the negative log-likelihood of vj given context Ct

and prompt Tj :

L = −
T∑

t

J∑

j

log p(vj |Ct, Tj) (2)

The example in Figure 2(a) takes slot name as the
slot-specific prompt. For the input with different
slots like “restaurant name” and “taxi arriveby”,
the model generates slot value independently, i.e.
“golden house” and “19:30”.

4 Methodology

As we mentioned before, we argue that traditional
prompt-based DST approaches ignore significant
slot dependencies in a dialogue. In this paper, we
propose a prompt-based approach to model the
dependency of the slot-slot, the slot-value, and
the slot-context. The architecture of our model
is shown in Figure 3.

4.1 Slot-slot Dependency Modeling

The traditional prompt-based DST utilizes the slot-
specific prompt independently. Differently, we
compose multiple slot prompts as the final prompt
to model the slot-slot dependency. A generation-
based model concatenates composed prompt T and
dialogue context Ct as input, and decodes a se-
quence of values:

T = “Q(s1),M1, ...,Q(sJ),MJ”

V = Seq2seq(Ct, T )
(3)

where Q(si) refers the slot prompt of slot si. Here,
V = “M1, v1, . . . ,MJ , vJ” and M∗ are mask to-
kens. Each mask token is inserted after the slot
prompt and it is also the start token for a slot value.
We insert mask tokens inside the prompt because
we hope the model can focus on the specific slot
prompt when generating its corresponding value.
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Figure 3: The architecture of our proposed model. It concatenates dialogue context (in yellow) and several slot
prompts (in green) to model the slot-slot dependency. The model explores slot-value dependency and slot-context
dependency utilizing slot value demonstration (left-shown example) and slot constraint object (right-shown example).
Noted that M∗ and X∗ are mask tokens and Q(slot) represents a slot prompt.

The objective of the generative model is to mini-
mize the sequence of values given context Ct and
prompt T :

L = −
T∑

t

log p(V|Ct, T ) (4)

Figure 2(b) shows the overview of our method, in
which the model concatenates a dialogue context
and two slot prompts, “restaurant-name” and “taxi-
arriveby”, and then generates the sequence “M1

golden house M2 19:30”.

Slot Prompt Design For each slot, we utilize two
types of prompts, a slot-specific prompt and a slot-
shared prompt to construct the slot prompt. The
slot-specific prompt stimulates the language under-
standing from PLMs and the slot-shared prompt
capture the universal knowledge across slots.

Formally, we define a slot-specific prompt as
{P k1 , P k2 , . . . , P kI } for the slot sk, and a slot-shared
prompt as {P ′1, P ′2, . . . , P ′Q} for all slots. The I
and Q are the number of slot-specific tokens and
pseudo tokens respectively. For a slot sk, its slot
prompt Q(sk) is written as:

{P k1 , . . . , P kI , P ′1, . . . , P ′Q} (5)

For instance, the slot prompt of “restaurant-name”
can be “restaurant name [P ′1], [P

′
2]”

2. The slot
prompt embedding of slot sk is represented as fol-
lows:

PE(sk) = {ek1, . . . , ekI , h′1, . . . , h′Q} (6)

2We try different value of Q and the optimal value 2 is
selected using the validation set

where e∗ are original word embeddings. h′∗ are
trainable embedding tensors, which are encoded
by a full-connected network and share parameters
across slots.

4.2 Slot-Value Dependency Modeling

Except for the dependency among slots, we find
that many slot values are also highly correlated, i.e.
demonstrated by co-reference and exclusion. For
example, in a dialogue, the value of “taxi-departure”
might be inferred from “hotel-name” but must be
different from the value of “taxi-destination”. We
suppose that considering other slot values helps the
model to capture the slot-value dependency and
understand the dialogue context better.

Specifically, we introduce some ground-truth
slot values into the prompt T , called slot value
demonstration. Since there are multiple mask to-
kens in prompt, we replace each mask token with
its slot value at ratio β (a hyper-parameter). The left
example in Figure 3 takes an input with three slot
prompts and one of them is supplied with the slot
value (in blue). Accordingly, the model only needs
output two slot values, “19:30” for “restaurant-
booktime” and “Indian” for “restaurant-food”.

4.3 Slot-Context Dependency Modeling

To model the dependency between slots and dia-
logue context, we introduce a slot constraint ob-
ject with a masked language model. Specifically,
we first utilize ground-truth slot values to fill mask
tokens, obtaining a new prompt T̃ . After that, we
use other symbols X∗ to mask v∗ inside the con-
text. The slot constraint objective is to predict
the masked values sequence given context C̃t and
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prompt T̃ :

T̃ = “Q(s1), v1, . . . ,Q(sJ), vJ”

Lsc = −
T∑

t

log p(W|C̃t, T̃ )
(7)

where W = “X1, w1, X2, w2, . . . , wZ” and wi
refers the masked value inside context. For the slot
that its value is unable to match strings in dialogue
context (e.g “none”), we skip the mask operation
to it. Therefore, the number of masked values Z
might not be equal to the number of slot prompts,
and wi might not actually be vi.

Take the right-shown example in Figure 3 for
illustration. Although there are three slots in the
prompt, only two mask symbols (X1 and X2) are
used in the context. The reason is that the value
of “taxi-arriveby” is inferred from “restaurant-
booktime”, causing the same location for their val-
ues in context.

4.4 Training and Inference
During training, we have the following loss func-
tion:

Ltrain = −
T∑

t

log p(V|Ct, T ) + λLsc (8)

where T is a specific prompt using slot value
demonstration. λ is a hyper-parameter and con-
trols the weight of slot constraint object. During
Inference, considering that the number of unseen
domains and slots might be huge, we concatenate
single slot prompt and dialogue context as input to
predict slot value, just like traditional prompt-based
DST (shown in Section 3.2).

5 Experiments

5.1 Datasets
We evaluate the proposed model on the most pop-
ular multi-domain task-oriented dialogue bench-
marks, MultiWOZ (Budzianowski et al., 2018; Eric
et al., 2020) and Schema-Guided-Dialogue(SGD)
(Raffel et al., 2020). Both datasets provide turn-
level annotations of dialogue states and descrip-
tions of domain and slot. The MultiWOZ dataset
contains over 10K dialogue across 8 domains. We
follow the previous pre-processing and evaluation
setup (Lin et al., 2021b), where the restaurant, train,
attraction, hotel, and taxi domains are used for train-
ing and testing. Appendix A gives more statistics

of MultiWOZ datasets. The SGD dataset has over
16K dialogues in the training set, spanning 26 ser-
vices belonging to 16 domains. The test set has 18
domains, and 5 domains of them are not presented
in the training set.

5.2 Baselines
We compare the performance of our model with
the following existing models. TRADE (Wu et al.,
2019) leverages context-enhanced slot gate and
copy mechanism to track slot values mentioned in
dialogue history . SUMBT (Lee et al., 2019) pro-
poses a non-parametric method to score each candi-
date slot-value pair in a predefined ontology . MA-
DST (Kumar et al., 2020) designs multiple layers
of cross-attention to capture relationships at differ-
ent levels of dialogue granularity. DSTQA (Zhou
and Small, 2019) models the DST task as a ques-
tion answering problem and uses a dynamically-
evolving knowledge graph to learn the relationships
between domains . T5DST (Lin et al., 2021b) is a
strong prompt baseline that first uses slot descrip-
tions as a prompt in zero-shot cross-domain DST.
TransferQA (Lin et al., 2021a) is a cross-task zero-
shot DST method where the model is pre-trained
on question answering data first and then is ap-
plied to unseen domains. SGD-baseline (Rastogi
et al., 2020) uses schema descriptions and applies
a BERT-based DST model to predict the dialogue
state of unseen domains.

5.3 Evaluation
Following previous works (Lin et al., 2021b), we
use Joint Goal Accuracy(JGA) and Average Goal
Accuracy (AGA) to evaluate our models and base-
lines. Joint goal accuracy is the percentage of turns
for which all the slots are correctly identified. Av-
erage goal accuracy is the average accuracy of the
active slots in each turn. A slot becomes active
if its value is mentioned in the current turn and
is not inherited from previous turns. We compute
JAG per domain in MultiWOZ datasets and use the
official evaluation script in SGD dataset.

In zero-shot settings, all models are trained on
four domains in the MultiWOZ dataset then zero-
shot on the held-out domain. In the SGD dataset,
there are 5 domains in the testing set but are not
in the training set, so all models are trained with
the whole training set and tested on these 5 unseen
domains. For few-shot experiments in MultiWOZ
dataset, all models are first trained on 4 source
domains and then fine-tuned with 1%, 5%, and
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Model Pretrained-Model Joint Goal Accuracy
Attraction Hotel Restaurant Taxi Train Average

TRADE (Wu et al., 2019) N 20.06 14.20 12.59 59.21 22.39 25.69
MA-DST (Kumar et al., 2020) N 22.46 16.28 13.56 59.27 22.76 26.87
SUMBT (Lee et al., 2019) Bert-base 22.60 19.08 16.50 59.50 22.50 28.18
T5DST † (Lin et al., 2021b) T5-small 31.92 20.72 20.09 64.12 28.83 33.56
Ours † T5-small 33.92 19.85 20.75 66.25 36.96 35.55
T5DST †∗ (Lin et al., 2021b) T5-base 35.51 22.48 25.04 65.93 34.82 36.25
TransferQA †(Lin et al., 2021a) T5-large 31.25 22.72 26.28 61.87 36.72 35.77
Ours † T5-base 37.83 26.50 27.05 69.23 40.27 40.18

Table 1: Zero-shot results on MultiWOZ 2.1. All numbers are reported in joint goal accuracy(%). The averaged zero
shot joint goal accuracy among five domains is reported. All results of baselines are from the original public papers,
except for T5DST∗ where we rerun their code with T5-base. † means the model is a prompt-based method. For fair
comparison, all prompt-based methods use the slot-description provided from schema as slot-specific prompt.

10% of target domain data. The zero-shot/few-shot
settings are consistent with the previous works on
zero-shot cross-domain DST (Wu et al., 2019; Lin
et al., 2021a,b).

5.4 Implementation

We implement our approach based on T5-small
(60M parameters) and T5-base (220M parameters)
(Raffel et al., 2020). We train the model with a
batch size of 128 for T5-small and a batch size of
256 for T5-base. Both of them are trained using
AdamW optimizer (Loshchilov and Hutter, 2019).
The peak learning rate is set to 1e-4 for T5 and
2e-4 for other learned modules. To balance the
efficiency and performance of the model, we adopt
a random sampling strategy in slot prompts combi-
nation, i.e. setting a hyper-parameter α as the max
number of slot prompts. Given a dialogue context,
the model randomly selects 1 up to α slots to con-
struct the prompt. And we apply multiple iterations
for training so that almost all slots can be sampled.
In all experiments, the α is set to 3, β is set to 0.5
and the weight λ in loss function is 0.3. We use
greedy decoding for all models.

6 Main Results

6.1 Zero-Shot Cross-Domain Results

Table 1 gives the results of our model and base-
lines under the zero-shot setting. Compared to
previous works, our model using T5-base achieves
significantly higher JGA (3.93% on average) and
even exceeds the cross-task method using T5-large
(TransferQA). Among these baselines, the methods
(T5DST and TransferQA) using T5 model have
much better performances than those without pre-
trained models (TRADE and MA-DST). We ana-

lyze that T5 is pre-trained on a large unlabeled cor-
pus, which can provide a promising language un-
derstanding for unseen slots. Notably, our method
using T5-small outperforms prior prompt-based
DST (T5DST) on almost domains, except for hotel
domain. Appendix B shows that our method ex-
ceeds T5DST on six hotel slots but falls behind on
four slots. The reason is that these four slots are
completely independent from source domains, mak-
ing their prediction mainly depend on the ability of
language understanding. Our proposed model with
small trainable parameters tends to build the slot
dependencies, which might hurt partial language
understanding in PLMs. However, our model with
T5-base brings obvious improvements on all do-
mains, including hotel domain. It also verifies that
the stronger ability of language understanding the
pre-trained model has, the easier to benefit from
slot dependency modeling our method is.

Table 3 summarizes the zero-shot results on
SGD dataset. Compared with SGD-baseline, the
zero-shot performance of our model is consistently
higher in five unseen domains. Compared to trans-
ferQA with T5-large and large labeled training
data (QA dataset), our model with T5-small is still
competitive in zero-shot settings. Particularly, our
model gains a great improvement on “bus” and
“train” domains. We analysis that these two do-
mains are closely related to some seen domains,
e.g “flight” and “travel” domains, which easily ben-
efit from the slot dependency modeling.

6.2 Few-Shot Cross-Domain Results

We further conduct experiments in few-shot cross-
domain settings on MultiWOZ 2.0, as in (Wu et al.,
2019; Lin et al., 2021a,b). The models are first
trained on 4 domains and then fine-tuned with 1%,
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Model Attraction Hotel Restaurant Taxi Train
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

TRADE 35.88 57.55 63.12 19.73 37.45 41.42 42.42 55.70 60.94 63.81 66.58 70.19 59.83 69.27 71.11
DSTQA N/A 70.47 71.60 N/A 50.18 53.68 N/A 58.95 64.51 N/A 70.90 74.19 N/A 70.35 74.50
T5DST 58.77 65.72 69.54 43.07 50.71 54.86 57.63 61.86 63.47 70.12 73.67 74.70 70.82 74.18 77.57
Our Approach 60.03 69.69 71.61 45.76 52.53 56.71 60.56 64.24 67.31 76.23 78.32 79.61 70.93 75.50 77.89

Table 2: Few-shot experiments in MultiWOZ 2.0. The experiments are conducted on MultiWOZ 2.0 for comparing
with previous works. N/A represents the results are not reported in the original paper.

Domain SGD-baseline TransferQA Seq2seq-DU Ours
Bus 9.7/50.9 15.9/63.6 16.8/N 43.9/86.3
Messaging 10.2/20.0 13.3/37.9 4.9/N 36.6/61.4
Payment 11.5/34.8 24.7/60.7 7.2/N 16.5/62.0
Trains 13.6/63.5 17.4/64.9 16.8/N 46.7/86.9
Alarm 57.7/1.8 58.3/81.7 55.6/N 58.3/87.5
Average 20.5/34.2 25.9/61.8 20.3/N 40.4/76.8

Table 3: Zero-Shot results on SGD dataset. All results
are reported in JGA(%)/AVG(%). Seq2seq-DU(Feng
et al., 2021) is seq2seq baseline without any pre-trained
model. N represents the results are not reported in the
original paper.

5%, and 10% of target domain data. In Table 3, the
experiment result shows that DSTQA is a competi-
tive baseline. However, our approach outperforms
previous transfer-learning methods in almost all
domains, except for the situation with 5% Attrac-
tion domain data fine-tuning. We suppose that the
DSTQA introduces an extra schema graph to model
explicit relationships across slots. The significant
improvements on most domains indicate that our
model still keeps a robust learning ability with a
minute quantity of dialogue fine-tuning.

6.3 Full Data Results

We also evaluate our model on full dataset to un-
derstand the full-shot performance, and the results
are shown in Table 4. Compared with prior mod-
els with zero-shot capability, our model improves
the joint goal accuracy by 1.6% in MultiWOZ 2.1
dataset. Particularly, our model exceeds traditional
prompt-based methods, T5DST, illustrating that
modeling slot dependency is helpful even in a full-
data scene. We notice that many training strategies
can be applied into the full-data experiment, such
as additional supervision (Chen et al., 2020) and
pre-process strategies (Heck et al., 2020), that may
improve the performances. In this paper, we focus
on modeling slot dependency for zero-shot DST
not achieving state-of-art on full-data.

Models Pretrained-Model Zero-shot JGA
TRADE (Wu et al., 2019) N 45.60
STARC (Gao et al., 2020) Bert-base 49.48
SGD-baseline (Rastogi et al., 2020) Bert-base 43.40
T5DST (Lin et al., 2021b) T5-small 51.91
T5DST (Lin et al., 2021b) T5-base 53.15
Ours T5-small 52.83
Ours T5-base 54.75
MinTL(Lin et al., 2020) BART 50.95
SOM-DST(Kim et al., 2020) Bert-base 53.68
Tripy (Heck et al., 2020) Bert-base 55.29
Simple-TOD (Hosseini-Asl et al., 2020) GPT-2 55.72

Table 4: Full data results on MultiWOZ 2.1 dataset.

7 Discussion

7.1 Ablation Study

In Table 5, we study the effect of different mod-
ules for the proposed model in the zero-shot setting.
Firstly, we set the hyper-parameter α as 1 to check
the effect of several slot prompts. There has 2%
drop of performance on hotel and taxi domain. Sec-
ondly, we only use the slot-specific prompt to inves-
tigate the effect of the slot-shared prompt. One can
observe that the performance deteriorates consid-
erably, which is similar to the results of removing
composing slot prompts. It indicates that com-
posing specialized slot prompts can enhance the
pre-trained model’s ability on predicting unseen do-
mains and slots. Thirdly, we explore the effect of
slot value demonstration by setting the ratio β as 0.
The performance of the model decreases markedly,
especially for taxi domain. We conclude that value
demonstration in prompt can effectively explore the
slot-value dependency, such as co-reference and ex-
clusion. These relationships mainly occur in some
slots related to time or location, causing a huge
influence on taxi domain. Furthermore, the model
without slot constraint object performs declining
results on different domains, which illustrates that
learning the slot-context dependency is also impor-
tant for zero-shot learning.

7.2 Analysis of Parameters

We further investigate the impacts of hyper-
parameter settings on the performance of the pro-
posed model on MultiWOZ2.1 in zero-shot set-
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Figure 4: Effects of the max number
of slot prompts α.
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Figure 5: Effects of ratio of β in
value demonstrations.
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Figure 6: Effects of the weight of slot
constraint object.

Model Joint Goal Accuracy
Hotel Taxi

Our approach 26.5 69.2
w/o Slot Prompt Combination 24.9(-1.6) 67.1(-2.1)
w/o Slot-shared Prompt 25.3(-1.2) 67.9(-1.3)
w/o Slot Value Demonstration 25.8(-0.7) 67.4(-1.8)
w/o Slot Constraint Object 25.9(-0.6) 67.9(-1.3)

Table 5: Ablation studies on the MultiWOZ 2.1 in zero-
shot setting on target domain hotel and taxi.

tings. We validate the effects of three factors: the
max number α of slot prompts, the ratio of value
demonstrations β, and the weight λ in the loss func-
tion. Figure 4, 5, 6 show the results of proposed
model with varying parameters in zero-shot set-
ting on domain hotel and taxi. We observe that the
optimal parameters are not completely consistent
across different domains. In Figure 4 and 5, the
model achieves a better performance with more
slot prompts and a bigger ratio of value demon-
strations on taxi domain. We conjecture that taxi
domain only has four slots (“taxi-departure” , “taxi-
destination”, “taxi-arriveby” , and “taxi-leaveat”)
and all of them are related to source domains,
such as the co-reference between “hotel-name” and
“taxi-destination” . That means that exploring the
slot-value dependency has a bigger influence on
taxi domain than hotel domain. Figure 6 show the
effect of using different weight λ in the loss func-
tion. When the weight of the slot constraint object
is too low, the model doesn’t own enough strong
constraint for slot-context dependency; when it is
too high, the model tends to over-predict “masked
tokens” not track dialogue state. Finally, we find
that our model achieves a balance with 0.2∼0.4.

7.3 Case Study

In Figure 7, we make a qualitative analysis of the
results of T5DST and our method on the Multi-
WOZ dataset under zero-shot settings. From the

results, we find that both models accurately pre-
dict the “Ballare” of “taxi-destination” and “17:30”
of “taxi-arriveby”. These two slot values are easy
to predict because they don’t depend on any other
domains and slots. Besides, our method generates
the “lovell lodge” for “taxi-departure”, while the
T5DST model outputs a wrong value, i.e., “none”.
We analyze that the T5DST leverages slot-specific
prompt and generates slot value independently,
which can not infer the relations between slots and
values. Our approach leverages slot prompts com-
bination and slot value demonstrations, making it
possible to model the slot-slot and slot-value de-
pendencies.

Figure 7: The zero-shot evaluation results for T5DST
vs. Ours. We mark the key information in blue and the
wrong prediction in red.

8 Conclusion and Future Work

In this paper, we attempt to model three slot depen-
dencies for zero-shot cross-domain DST, i.e. slot-
slot dependency, slot-value dependency, and slot-
context dependency. Experimental results on popu-
lar datasets show that the proposed approach per-
forms much better than baselines in zero-shot/few-
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shot settings. In the future, we would like to ex-
plore more ways to model slot dependency effec-
tively.
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A Dataset Statistics

The MultiWOZ dataset is a fully-labeled collection
of human-human written conversations spanning
multiple domains and topics. Some statistics of
MultiWOZ 2.1 are reported in Table 6. We further
draw a schema graph to illustrate the slot depen-
dency, which is shown in Figure 8.

Domain Slot Train Valid Test

Attraction area, name, type 2717 401 395

Hotel

area, internet, name,

parking, price range,

stars, type, book day,

book people, book stay

3381 416 394

Restaurant
area, food, name,

price range, book day,

book people, book time

3813 438 437

Taxi
arrive by, departure,

destination, leave at
1654 207 195

Train
arrive by, day,

departure, destination,

leave at, book people

3103 484 494

Total 8438 1000 1000

Table 6: The dataset statistics of MultiWOZ dataset.

Figure 8: The schema graph on MultiWOZ dataset.
Each nodes represents a slot and the nodes in same
color belong to a domain. There is an edge between two
nodes if some of their candidate values are same.

B Performance on Per-Slot

Figure 9 shows the difference in performance be-
tween T5DST and ours in the hotel domain when
using T5-small. From the results, our method ex-
ceeds T5DST on six slots while falling behind on
four slots, i.e “stars”, “internet”, “type” and “park-
ing”. In Figure 10, we list the performance of per-
slot on taxi domain when using T5-small. There
are four slots in taxi and all of them are related to
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source domains. Our method can effectively handle
these slots due to the modeling of slot dependency.
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Figure 9: Slot Accuracy in hotel of MultiWOZ 2.1.
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Figure 10: Slot Accuracy in taxi of MultiWOZ 2.1.
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Abstract

In knowledge-grounded dialogue generation,
pre-trained language models (PLMs) can be ex-
pected to deepen the fusing of dialogue context
and knowledge because of their superior abil-
ity of semantic understanding. Unlike adopt-
ing the plain text knowledge, it is thorny to
leverage the structural commonsense knowl-
edge when using PLMs because most PLMs
can only operate plain texts. Thus, linearizing
commonsense knowledge facts into plan text
is a compulsory trick. However, a dialogue is
always aligned to a lot of retrieved fact candi-
dates; as a result, the linearized text is always
lengthy and then significantly increases the bur-
den of using PLMs. To address this issue, we
propose a novel two-stage framework SAKDP.
In the first pre-screening stage, we use a rank-
ing network PriorRanking to estimate the rel-
evance of a retrieved knowledge fact. Thus,
facts can be clustered into three sections of dif-
ferent priorities. As priority decreases, the rel-
evance decreases, and the number of included
facts increases. In the next dialogue genera-
tion stage, we use section-aware strategies to
encode the linearized knowledge. The power-
ful but expensive PLM is only used for a few
facts in the higher priority sections, reaching
the performance-efficiency balance. Both the
automatic and human evaluation demonstrate
the superior performance of this work.

1 Introduction

Dialogue systems strive to facilitate human-like di-
alogue responses (Chen et al., 2017). One essential
precondition for generating high-quality dialogue
is a sufficient cognition of the contextually-relevant
knowledge besides the literal surface. The dialogue
is grounded on both the given user query and the
context-related knowledge (Yu et al., 2020). For ex-
ample, given a query ‘Are you thirsty?’, rather than
‘Yes/No’, a meaningful response should have more

∗ Corresponding author: Ying Li, li.ying@pku.edu.cn.
The email of the first author: wusixing@pku.edu.cn
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Figure 1: An example of linearizing knowledge.

information, such as ‘Yes, and I’m going to drink
some water.’ (context-related knowledge→thirsty
causes drinking water).

Seeking information from external sources is
a feasible way to enhance the machine’s cogni-
tion of knowledge (Dinan et al., 2019; Zhou et al.,
2021b). As for the choice of knowledge source, the
structural commonsense knowledge (Speer et al.,
2017) is a proven option, which consists of a lot of
knowledge facts that are frequently used in daily
life. As shown in Figure 1, a commonsense knowl-
edge base consists of various triplets, where each
triplet is a real-world fact. Commonsense knowl-
edge can contribute to many aspects of the open-
domain dialogue generation, such as the semantic
understanding (Young et al., 2018), reasoning (Liu
et al., 2019), topic transition (Zhong et al., 2021).
Meanwhile, pre-trained language models (PLMs)
(Vaswani et al., 2017) can learn a lot of implicit
knowledge from the massive pretraining data (Sun
et al., 2019, 2021; Zhou et al., 2021c). Hence, an-
other feasible way is to transfer the knowledge hid-
den in PLMs to the dialogue generation (Henderson
et al., 2020). Prior works have shown PLMs can
significantly promote the generation of high-quality
dialogue responses (Wolf et al., 2019; Zhang et al.,
2020b; Wang et al., 2020; Zhang et al., 2021), styl-
ized responses (Yang et al., 2020), etc.
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A model can simultaneously adopt the aforemen-
tioned two ways to take a step further. Knowl-
edGPT (Zhao et al., 2020) adopted a BERT (De-
vlin et al., 2019) to select text knowledge and a
GPT2 (Radford et al., 2019) to generate responses.
KE-Blender (Cui et al., 2021a) can implicitly infer
knowledge by fine-tuning Blender (Roller et al.,
2021) with text knowledge. Nonetheless, most
PLMs can only process plain texts, which makes it
hard to infuse the structural knowledge (Zhao et al.,
2021). As a compromise, linearizing structural
knowledge into plain text is a compulsory trick (Li
et al., 2021a). The linearized knowledge text is
much more verbose than the original, bringing new
challenges in commonsense knowledge-grounded
dialogue generation. A dialogue session is often
paired with a lot of commonsense fact triplets; for
example, in Reddit dataset (Zhang et al., 2020a),
the average number of 1/2-hop facts is 98.6/782.2,
respectively. As shown in Figure 1, linearizing
a fact into text often requires 5+ tokens. Thus,
lengthy linearized text can significantly aggravate
the burden of Transformer-based PLMs1 and of-
ten exceeds the limits of most general PLMs (e.g.,
512/1024 tokens).

According to our empirical study, fact candidates
retrieved for a dialogue query are always redundant,
where most responses (98.25%) use no more than
3 facts, but 77.65 facts are given on average. In-
spired by such an observation, this paper proposes
a novel two-stage framework SAKDP (Section-
Aware Knowledge-Grounded Dialogue Generation
with Pre-trained Language Model). The power-
ful but expensive PLM is only used to encode a
few facts of higher relevance. First, in the pre-
screening stage, we train a PriorRanking network
using the contrastive learning scheme (Wu et al.,
2020b) to estimate the relevance and then cluster
fact candidates into three sections of different pri-
orities: high, moderate, and low. Second, consid-
ering the investment benefit ratio, we use different
encoding solutions in the following dialogue gen-
eration stage. We propose a BERT-based Context-
Knowledge Joint Encoder to jointly encode the dia-
logue query and the relevant facts included by the
high/moderate priority sections, bringing deeper
infusing and interaction between dialogue and rel-
evant knowledge. Then, we employ a lightweight
non-pretrained Side-way Encoder to encode facts

1Assuming the length is L, the complexity of the self-
attention used by Transformer ∝ L2.

in the low priority section. Third, we use a Hybrid
Selection to select the encoded context/knowledge
memories and a Multi-Source Generator to gener-
ate diverse dialogues.

Experiments on a Chinese dataset (Wu et al.,
2020a) prove SAKDP can outperform baselines
by a large margin. Meanwhile, we conduct exten-
sive studies to analyze the ranking performance
and the necessity of pre-screening. SAKDP is still
competitive even only using three facts. The nov-
elty/contribution of this work is three-fold: 1) We
propose a novel SAKDP to investigate the potential
of both commonsense knowledge and pre-trained
language models; 2) We propose to rank and cluster
knowledge into three sections of different priorities.
It can maximize cost-effectiveness and flexibility
by using section-aware schemes; 3) Extensive ex-
periments and studies demonstrate the performance
of SAKDP.

2 Methodology

2.1 Preliminary
Inputs: Each dialogue is denoted as (X,Y ),
where X = (x1, · · · , xlX ) is a query and Y =
(y1, · · · , ylY ) is a response. Besides, there is a
commonsense knowledge baseK = {ki}|K|, where
each triplet ki = (ehead,i, erel,i, etail,i) consists of
a head entity, a relation, and a tail entity.

Knowledge Retrieval: Commonsense fact can-
didates are usually retrieved by matching the name
(Zhou et al., 2018; Wu et al., 2020a): 1) all entity
words appearing in the query X are denoted as a
set {ei}. 2) {ei} are adopted as keys to retrieve
fact candidates from the base K. If the head entity
or the tail entity of a fact ki ∈ K appears in {ei},
then ki will be added to the candidate set K.

#UsedFacts 1 2 3 [4,13]
Distribution 78.16% 16.68% 3.49% 1.65%
Accumulated 78.16% 94.85% 98.35% 100%

Table 1: Distribution of the number of facts used in a
dialogue. Each dialogue has 77.65 fact candidates on
average. The results are based on the adopted Weibo
dataset (Wu et al., 2020a)

Empirical Observation: As shown in Table 1,
in our adopted commonsense knowledge-aligned
Weibo dataset (Wu et al., 2020a), although each
dialogue has 77.65 fact candidates to select on av-
erage, most dialogues use no more than three facts.
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Figure 2: The overview of SAKDP.

In other words, the knowledge that can directly
contribute to dialogue generation is always limited.

Problem Definition: Inspired by the above ob-
servation, as illustrated in Figure 2, SAKDP is a
two-stage approach:

• Pre-Screening Stage: SAKDP first estimates
the relevance of all fact candidates ∈ K;
then, SAKDP ranks and clusters K into three
knowledge sections: the high priority section
KH , the moderate priority section KM , and
the low priority section KL;

• Dialogue Generation Stage: For balanc-
ing the performance and the efficiency,
SAKDP uses section-aware methods to
generate the response conditioned on the
query X and three knowledge sections:
P (Y |X,KH ,KM ,KL).

2.2 Pre-Screening Stage
The relevance between a fact candidate ki ∈ K and
the entire dialogue context (X,Y ) can be various.
Obviously, only highly relevant facts can contribute
to dialogue generation. To this end, we propose
a prior ranking network PriorRanking to estimate
the relevance .

Ranking Score: Our prior ranking network Pri-
orRanking leverages the great potential of PLMs.
We adopt BERT (BERTR) to estimate the rele-
vance score ri ∈ (0, 1) for each fact candidate ki:

ri = θ(WR(BERT
R([CLS], X, [SEP ], σ(ki)))

σ(ki) = [CSK], ehead,i, erel,i, etail,i
(1)

where θ is sigmoid function, WR ∈ R1×dim is a
learn-able parameter, σ(ki) linearizes the fact ki
into a plain text. It is worth noting that BERTR

outputs the representation at [CSK]2.

Contrastive Learning: The duty of PriorRank-
ing is to give a higher score to a more relevant fact
and a lower score to a less relevant fact. Thus, the
training follows the idea of contrastive learning
(Wu et al., 2020b). Given a training pair (X,Y ),
we first construct a set of contrastive pairs:

• Positive: We first select a positive subset K+

from K. For each k+ ∈ K+, its head e+head
must appear in X/Y and its tail e+tail must
appear in the another Y/X at the same time.

• Negative: The remaining K− = K −K+ are
negative samples, where each k− ∈ K− is
adopted by X but discarded by Y .

• Contrastive Pairs: For each k+ ∈ K+, we
generate n contrastive pairs by sampling n
k−i ∈ K−. Intuitively, in each contrastive pair,
the positive k+ is more relevant to (X,Y )
than the negative k−.

Subsequently, we train PriorRanking by forcing
it to give at least m = 0.3 higher score to the more
relevant k+ than the less relevant k−:

LRank =
1

n|K+|
∑

k+

n∑

k−i

max(0, (m−rk++rk−i ))

(2)
After the training, we can use the scores out-

putted by PriorRanking to estimate the relevance
and rank candidates.

The Criteria of Clustering: The proposed Prior-
Ranking network can not access the posterior infor-
mation (i.e., the ground-truth response), and thus
it cannot make a completely accurate prediction.

2[CSK] and [SEP ] are two special symbols used by
BERT, [CSK] is a special symbol to separate linearized facts.
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Consequently, rather than strictly sorting the fact
candidates∈ K using the estimated relevance score
r, we cluster fact candidates into coarse-grained
ranked sections. We strictly distinguish each sec-
tion’s relevance label (order) but do not distinguish
the relevance labels of knowledge fact candidates
in each section. This methodology can balance the
need for ranking and fault tolerance.

Specifically, depending on the estimated ri, each
fact ki can be placed into the high priority sec-
tion KH , the moderate priority section KM , or
the low priority section KL. Based on the em-
piricism (see Table 1) and Zipf’s law (Zipf, 1949),
we assume that the number of fact candidates will
decrease with the relevance increasing. In other
words, |KH | << |KM | << |KL|. As an empiri-
cal procedure, the number of facts in each section
will be determined by the following empirical study
in the experiment.

2.3 Dialogue Generation Stage

To balance performance and efficiency, SAKDP
uses knowledge of different sections via different
strategies (i.e., section-aware).

2.3.1 Section-Aware Encoding

Although PLMs are powerful, they consume mas-
sive computation resources and always limit the
input length. Thanks to the pre-screening stage,
we can use two different section-aware encoding
strategies to alleviate such issues:

1. Context-Knowledge Joint Encoder: To deepen
the context-knowledge interaction, we use the
pre-trained BERT to jointly encode the query
X with the knowledge in the high/moderate
priority section KH /KM . As the number of
facts in KH /KM is limited, the introduction
of BERT only costs an affordable expense;

2. Side-way Knowledge Encoder: Facts in the
low priority section KL may also contribute
to the dialogue generation. As the number
of included facts is significantly larger, using
PLMs is not cost-effective; thus, we use a sep-
arate but lightweight non-pre-trained encoder.

Context-Knowledge Joint Encoder: The input
of the context-knowledge joint encoder is given by:

H = [CLS], X, [SEP ], P rH , TH , P rM , TM

TH/M = σH/M (k
H/M
1 ), · · · , σH/M (k

H/M
l
KH/M

)

σH/M (k) = [HC/MC], ehead, erel, etail
(3)

where TH/M is the linearized KH/M , σH/M (k)
linearizes a fact k into the text with priority-aware
structural labels (i.e. [HC] and [MC]). Inspired by
(Zhou et al., 2021a) that use some tips to investigate
the inherent ability of PLMs, two tips PrH and
PrM are designed to hint the model about the dif-
ferences between two sections. PrH refers to ‘The
following knowledge facts are highly relevant to
the left query:’; PrM refers to ‘Besides, the follow-
ing knowledge facts may also be relevant:’. Finally,
the context-knowledge representations (memories)
are given with the BERT encoder BERT J :

(hCLS,h1, ...hlH) = H = BERT J(H) (4)

Side-way Knowledge Encoder: The lightweight
side-way knowledge encoder is based on the non-
pretrained Transformer network :

(kL
1 , ...k

L
l
KL

) = KL = TransL(TL) (5)

where TL is the linearized KL using the σ (Eq 1).

2.3.2 Decoding
We use a GRU to update the decoding state, a Hy-
brid Selection network to select knowledge, and a
Multi-Source Generator to generate the response.

States Updating: At each time step t, the current
decoding state zt is updated by a GRU network:

zt = GRU(zt−1,yt−1, st) (6)

where yt−1 is the embedding of the last token.

Hybrid Selection: At time t, we use attention
function αH/L (Luong et al., 2015) to select a con-
textually relevant knowledge st = [sHt ; sKL

t ] from
the context-knowledge memory H and the side-
way knowledge memory KL:

sHt =
∑

i

exp(αH(zt−1TWH
Ahi))∑

j exp(α
H(zt−1TWH

Ahj))
hi (7)

sK
L

t =
∑

i

exp(αK
L
(zt−1TWKL

A kL
i ))∑

j exp(α
KL(zt−1TWKL

A kL
j ))

kL
i

(8)
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Multi-Source Generator: The probability of the
next token Pt(yt = w) is given by:

pV,tPV,t(w) + pH,t
∑

hi=w

PH,t(hi)

+ pKL,t

∑

kLi =w

PKL,t(k
L
i )

pV,t, pH,t, pKL,t = Softmax(WPzt) (9)

where WP ∈ R3×dim. The vocabulary proba-
bility PV,t, the context-knowledge copy probabil-
ity PH,t(hi), and the side-way copy probability
PKL,t(k

L
i ) are given by:

PV,t = Softmax(WVzt)

PH,t(hi) =
exp(αH(ztTWH

Ahi))∑
j exp(α

H(ztTWH
Ahj))

PKL,t(k
L
i ) =

exp(αK
L
(ztTWKL

A kL
i ))∑

j exp(α
KL (ztTWKL

A kL
j ))

(10)

where the computation of PH,t(hi) and PKL,t(k
L
i )

reuse the parameters of Equation 7 and Equation 8.

Learning Objective: The training optimizes the
following objective:

Ldialog = −
∑

t

log(Pt(yt)) (11)

3 Experiment

3.1 Settings
Dataset: We evaluate models on Weibo dataset
(Wu et al., 2020a), which collected more than 1M
dialogues from the largest Chinese SNS Weibo
and collected commonsense knowledge facts from
the ConceptNet (Speer et al., 2017). The train-
ing/validation/test set has 1,019,908/56,661/56,661
dialogues, the commonsense base has 696K facts,
27K entities, and 26 relations.

Comparison Models: We compare SAKDP with
several representative models: (1) Seq2Seq: The
widely-used Seq2Seq (Sutskever et al., 2014) +
Attention (Luong et al., 2015) model; (2) Copy:
A Seq2Seq variant that can copy words from the
query (See et al., 2017); (3-4) BERT2Seq, BERT-
Copy: We changed the encoder of Seq2Seq and
Copy to the BERT encoder (Cui et al., 2021b). (5)
CCM: It uses commonsense knowledge via the
graph attention. (Zhou et al., 2018); (6) ConKADI:

It proposes a felicitous knowledge selection mech-
anism to use commonsense knowledge (Wu et al.,
2020a); (7) ConceptFlow: It can use multi-hop
commonsense knowledge facts to enhance the dia-
logue response generation. (Zhang et al., 2020a);
(8) GOKC: One of the current SOTA knowledge-
grounded approach (Bai et al., 2021).

We use the official codes 3 for baselines ex-
cept for Seq2Seq, Copy, BERT2Seq, BERTCopy,
which use our PyTorch implementations 4. Models
adopt the following settings: word-level tokeniza-
tion, 2-layer encoder/decoder, 512-d(imensional)
GRU/LSTM or 512-d 8H Transformer, 200-d word
embedding, 30K vocab, 100-d entity embedding,
32 batch size, Adam optimizer, 1e-4 learning
rate, beam-search decoding (beam width =10) if a
model supports. For BERT modules, we adopt a
widely-used Chinese BERT hfl/chinese-bert-wwm-
ext (102M parameters, 768d, 12L, 8H, 21,128
subwords (Cui et al., 2021b). Consequently, for
BERT2Seq, BERTCopy, and SAKDP (both the
ranking and generation network), the optimizer is
changed to AdamW, the tokenization adopts the
default tokenizer of hfl/chinese-bert-wwm-ext , the
learning rate of BERT module is set to 1e-5 (other
modules keep unchanged). The training adopts the
early stopping mechanism. The training will be
stopped if the loss on the validation set increases
in two consecutive epochs.

For all commonsense knowledge-grounded base-
lines, commonsense knowledge candidates are pro-
vided by the original dataset. Thus, the ground-
truth commonsense facts are provided during the
test by default (but no label to indicate which are
gold facts). In our approach, the facts are selected
by our PriorRanking network before the dia-
logue generation.

Metrics: We use both automatic evaluation and
human annotation to evaluate models. In automatic
evaluation, the responses generated by word-level
models are re-tokenized by the BERT tokenizer.
As for automatic metrics, following (Wu et al.,
2020a), we adopt F1, Rouge-1/2/L, Bleu-1/2/3/4,
Em-A/G/X to evaluate the relevance, and we adopt
DIST-1/2, and Ent1/2/3/4 to evaluate the informa-
tiveness and diversity. In addition, we also calcu-
late the geometric mean score overall metrics.

3Some baseline models tend to generate UNK tokens,
bringing very unacceptable results. Considering this, we have
additionally masked the generation of UNK for these models.

4The code of SAKDP can be find in :https://github.
com/pku-sixing/COLING2022-SAKDP
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In human evaluation, following (Zhou et al.,
2018), we conducted the pair-wise comparison
between the response generated by our approach
and the baseline. The quality of generated re-
sponses is judged with three criteria: 1) Fluency:
the fluency of a generated response without con-
sidering the context; 2) Appropriateness: the rele-
vance and logic between the query and the gen-
erated response; 3) Informativeness: the qual-
ity/novelty/correctness of information provided in
the generated response.

3.2 Knowledge Pre-Screening Study

Top-k, % @1 @3 @5 @10 @20 @40 @100
PrecisionOurs 35.2 23.3 17.5 10.9 6.24 3.52 2.25
PrecisionRand 2.24 2.20 2.18 2.17 2.18 2.17 2.17
RecallOurs 28.5 53.8 66.3 81.2 92.7 98.3 99.9
RecallRand 1.81 5.32 8.79 17.4 34.1 60.1 94.8
Micro-F1Ours 31.5 32.5 27.7 19.2 11.7 6.80 4.41
Micro-F1Rand 2.00 2.73 3.32 3.85 4.10 4.18 4.24

Table 2: The ranking performance (PriorRanking vs.
random). We report scores on 7 positions (i.e., k).
Meanwhile, MRROurs=0.511, MRRRand=0.09, the
max/avg k is 151/77.65.

We first evaluate the ranking performance of our
ranking network PriorRanking. In prior works,
there is no knowledge pre-screening process be-
fore the dialogue generation; thus, the knowledge
selection totally relies on the internal selection of
the end2end model. However, as shown in Table 2,
if a model uses knowledge facts of random order,
the internal knowledge selection would be pretty
challenging to select relevant knowledge. With-
out the pre-screening, prior works are also blind
if some knowledge candidates must be discarded
for efficiency. Fortunately, we find the ranking
performance of PriorRanking is quite acceptable.
Although there are 77.65 candidates on average, the
precision@1 is 35.2%, and the recall@3 is more
than half. It indicates that SAKDP can efficiently
estimate the relevance of knowledge candidates.

The Criteria of Clustering: Now we can empir-
ically determine the division of three knowledge
sections based on the statistics (Table 1) and the
evaluation results (Table 2): 1) High Priority Sec-
tion KH : Considering that 98.35% responses use
no more than 3 facts and the Micro-F1 achieves
the highest at top-3, we select top-3 candidates to
KH ; 2) Moderate Priority Section KM : We find
the top-10 position is a sweet point, where more
than 80% of gold candidates can be recalled and

the precision is still acceptable. Thus, KM selects
the next 7 candidates (i.e., [4,10]); 3) Low Priority
Section KL: Finally, KL selects the next 30 candi-
dates (i.e., [11,40]) because the top-40 recall has
achieved 98%. The remaining facts are discarded
because the long-tail issue is significant; we think it
is not a good trade to increase the recall continually.

3.3 Automatic Evaluation
Results: As reported in Table 3, SAKDP has
achieved leadership in most metrics and performed
the second-best in almost the remaining metrics. In
the overall geometric mean score, SAKDP outper-
forms various baselines by notable margins. Com-
pared to other knowledge-grounded models, the
most notable advantages come from F1, Rouge, and
Bleu, showing the responses generated by SAKDP
are fluent and coherent. Comparing Seq2Seq/Copy
vs. BERT2Seq/BERTCopy, although notable im-
provements are achieved in other metrics, the in-
troduction of the BERT may impact the diversity
and the informativeness. We think the reason
is the adopted subword-level tokenization. But
fortunately, with the proposed Hybrid Selection
and Multi-Source Generation, SAKDP still has no-
table advantages compared to the baselines except
ConKADI. Meanwhile, although BERT is power-
ful enough, BERTCopy is not enough to compete
against the ConKADI/GOKC, demonstrating incor-
porating commonsense knowledge is essential in
the arena of PLMs.

Non-BERT SAKDP: SAKDP outperforms
the knowledge-grounded ConKADI and GOKC
but has more parameters. To better exhibit our
advantage, we evaluate the efficiency-oriented
SAKDPEffi, which replaces the BERT en-
coder by a lightweight 2-layer Transformer.
Clearly, SAKDPEffi still can outperform
GOKC/ConKADI even with only 59% parameters
(49M vs. 29M). This indicates the advantage of
SAKDP does not fully rely on BERT.

Fully-Joint SAKDP: We also evaluate the
performance-oriented SAKDPPerf that uses our
context-knowledge joint encoder to encode all
knowledge. As a result, SAKDPPerf uses fewer pa-
rameters because the side-way knowledge encoder
is removed. Compared to the standard SAKDP, the
overall geomean score increased by 1.7%, but its
training time sharply increased by 81%5. This re-

5On average, SAKDPEffi/SAKDP/SAKDPPerf costs
0.21/0.33/0.60s per training step.
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Model (#Parameters) F1 Rouge-1/2/L Bleu-1/2/3/4 Embed-A/G/X DIST-1/2 Ent-1/2/3/4 Mean
Seq2Seq 17.21 18.5/3.2/12.9 12.3/5.2/2.4/1.2 0.878/0.681/0.655 0.33/3.61 4.80/6.99/8.45/9.54 3.82

Copy 17.34 18.6/3.5/13.0 12.4/5.5/2.7/1.4 0.877/0.679/0.656 0.59/8.94 5.08/7.60/9.19/10.3 4.33
BERT2Seq 18.29 19.5/3.6/13.8 16.9/7.4/3.6/1.9 0.886/0.679/0.661 0.20/2.04 4.78/6.77/7.96/8.83 4.03
BERTCopy 19.24 20.4/4.3/13.9 18.7/ 8.8/4.5/2.5 0.897/0.681/0.666 0.37/7.09 5.07/7.35/8.71/9.61 4.87
CCM(32M) 15.63 20.2/4.3/13.4 15.0/6.9/3.2/1.6 0.875/0.690/0.659 0.24/2.62 3.95/5.72/6.76/ 7.41 3.87

ConKADI(49M) 18.98 20.9/4.4/14.4 17.8/8.3/3.8/1.8 0.885/0.677/0.662 0.41/10.8 5.55/8.77/10.8/11.9 5.01
ConceptFlow 19.32 24.0/5.8/16.2 18.2/8.9/4.3/2.3 0.874/0.698/0.662 0.26/3.51 4.33/6.38/7.59/8.35 4.51
GOKC(49M) 20.93 24.3/7.0/16.6 19.6/10.7/4.9/2.1 0.900/0.720/0.698 0.31/5.52 4.39/6.73/8.38/9.49 4.96

SAKDP(128M) 23.64 25.5/7.4/17.9 22.7/12.4/6.8/3.8 0.902/0.705/0.688 0.41/8.47 5.28/8.03/9.71/10.8 5.82
SAKDPEffi(29M) 21.07 22.8/6.1/16.3 18.6/9.7/5.1/2.8 0.893/0.692/0.676 0.42/6.67 5.19/7.68/9.16/10.1 5.17

SAKDPPerf (122M) 24.07 26.3/8.3/18.9 20.5/11.7/6.5/3.8 0.896/0.705/0.688 0.50/10.2 5.40/8.36/10.1/11.2 5.92

Table 3: Automatic evaluation results, black/blue is the first/second best (excluding SAKDPPerf and SAKDPEffi).
The last column reports the geomean of previous scores, showing the overall performance.

Model F1 RouL Bleu4 EmG DI2 Ent4 Mean
Full 23.64 17.91 3.83 0.705 8.47 10.80 5.82

w/o Ranking 20.83 15.92 2.96 0.687 9.88 10.95 5.40
w/o BERT 21.07 16.34 2.80 0.692 8.47 10.10 5.17
w/o Joint 22.96 17.20 3.47 0.686 6.99 10.27 5.56
w/o Tips 23.31 18.33 3.63 0.702 9.46 10.85 5.77

w/o MSCopy 22.44 16.98 3.17 0.703 2.59 9.36 4.89

Table 4: Ablation Study. ‘w/o’ denotes ‘without’.

sult shows our section-aware strategy can balance
performance and efficiency.

3.3.1 Ablation Study
Table 4 verifies the contribution of each module.
1) In w/o Ranking, we remove the PriorRanking
and randomly select facts for three sections. No-
tably, there is a significant performance regression,
despite using the same number of facts and the
same generation models. It means PriorRanking
can effectively estimate the relevance of fact candi-
dates without the posterior information; 2) BERT
is quite helpful in dialogue generation. After re-
placing the BERT with a non-pre-trained 2-layer
Transformer (w/o BERT), we can find a notable
performance decrease. 3) In Equation 3, we use
two tips PrH and PrM to hint the model about the
difference between the two sections. The perfor-
mance decreases after removing them (w/o Tips),
demonstrating the necessity to distinguish such two
sections.4) Jointly encoding the query and the rel-
evant knowledge can indeed deepen the context-
knowledge infusing. In ‘w/o Joint.’, we use a sep-
arate BERT to encode KH and KM ; as expected,
the performance is worse; 5) We use Multi-Source
Generator to enhance the diversity. Without it (w/o
MSCopy), the diversity is significantly decreased.

3.3.2 Knowledge Encoding Analysis
To further investigate the characteristics of knowl-
edge sections, we test each knowledge section with

Strategy F1 RouL Bleu4 EmG DI2 Ent4 Mean t(s)
SAKDP 23.64 17.91 3.83 0.705 8.47 10.80 5.82 0.33

KH Joint 22.33 16.57 3.46 0.697 7.67 10.54 5.57 0.20
KH BERT 21.64 16.13 3.21 0.694 7.92 10.43 5.44 0.26
KH Trans 20.73 15.23 2.95 0.689 6.99 9.98 5.20 0.19
KM Joint 20.66 15.71 2.90 0.688 8.43 10.43 5.25 0.21
KM BERT 20.19 14.85 2.83 0.685 7.84 10.15 5.17 0.26
KM Trans 19.90 14.69 2.70 0.685 7.80 10.14 5.08 0.19
KL Joint 20.30 15.37 2.80 0.684 9.81 10.89 5.27 0.40
KL BERT 19.79 14.62 2.66 0.684 7.78 10.05 5.06 0.58
KL Trans 19.20 14.28 2.52 0.680 7.65 9.96 4.92 0.23

Table 5: Performance comparisons among different en-
coding strategies. t is the average time of each training
step. The first column is the adopted section, the second
is the adopted encoder: 1) Joint: use the BERT-based
Context-Knowledge Joint Encoder to jointly encode the
dialogue and the knowledge; 2) BERT: use a separate
BERT to encode; 3) Trans: use the separate non-BERT
Side-way Knowledge encoder to encode.

three encoding strategies. As reported in Table 5:
1) Using a joint BERT to jointly encode the context
and the knowledge is better than using two sep-
arated BERTs, bringing more improvement than
replacing a non-pre-trained Transformer with a pre-
trained BERT. It shows the interaction between the
context and the knowledge is necessary. Mean-
while, we can find using a joint BERT is more
efficient when implemented by PyTorch; this is be-
cause of the higher parallelism; 2) On the whole,
while the number of facts in a higher priority sec-
tion is significantly less, the performance is bet-
ter. In addition, even only using three fact candi-
dates (KH+Joint), our approach still significantly
outperforms baselines. Such two factors indicate
our PriorRanking is very effective; 3) The full
SAKDP has the best performance, but the training
is even faster than KL+BERT/Trans. This shows
our standard SAKDP is very efficient.
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3.4 Human Evaluation

Similar to (Zhou et al., 2018), we employed 3 well-
educated volunteers to evaluate 5 baselines, where
each group has 200 sampled cases. Agreements:
The average 2/3 agreements (at least 2 judges gave
the same label) is 97.4%, the average 3/3 agreement
is 62.2%, and the Fleiss’Kappa is 0.43.

Table 6 reports the percentage that SAKDP wins
its competitor. It can be seen that our approach
significantly outperforms baseline models. Inter-
estingly, the baselines with relatively better perfor-
mance do not infuse external knowledge. This is
because when using knowledge, due to the lack of
enough context-knowledge fusing ability, the flu-
ency of such dialogues is poor, which may affect
human evaluation. Thanks to the introduction of
BERT and context-knowledge joint encoding, our
approach does not suffer from this.

% Flu. Appro. Info.
SAKDP vs. Lose Tie Win Lose Tie Win Lose Tie Win

Seq2Seq 25.3 21.5 53.2 26.2 5.5 68.3 18.8 4.3 76.8
BERTCopy 35.2 18.3 46.5 39.0 10.0 51.0 40.0 9.5 50.5

ConceptFlow 19.8 11.7 68.5 17.5 4.0 78.5 14.0 7.8 78.2
ConKADI 19.8 11.8 68.4 22.2 4.7 73.2 25.2 51.1 69.7

GOKC 7.8 14.8 77.4 9.2 7.2 83.4 8.2 5.3 86.5

Table 6: Human evaluation. Win/Tie/Lose denotes the
ratio that our SAKDP has wined, tied with, or lost to
the corresponding baseline, respectively. Score is sig-
nificantly better (sign test, p-value < 0.005).

Case study: We report two cases in Table 7. In
the first case, we can find that 1) responses have re-
ferred to four facts in our commonsense base in to-
tal. It can be seen that our PriorRanking network
has the ability to estimate the relevance between
a fact candidate and the dialogue context only us-
ing the prior query. Three of them are included by
the high-priority section KH ; the remaining one
is also included by the moderate-priority section
KM ; 2) Thanks to the context-knowledge joint en-
coding, compared to other models, the response
generated by our model is not only fluent but also
rational. ConKADI and GOKC irrationally used
commonsense facts. The second is a case in our hu-
man evaluation. 1) Seq2Seq and BERTCopy have
generated a fluent response, but not appropriate
and informative enough; 2) ConKADI and GOKC
generated irrational responses once again; 3) The
response generated by our SAKDP is still the best.

4 Related Work

Knowledge-Grounded Methods: Traditional
models (Sutskever et al., 2014) tend to generate
boring responses (Li et al., 2016). Knowledge-
grounded methods can address this issue by in-
fusing external knowledge (Yu et al., 2020; Wu
et al., 2021a, 2022). Roughly, knowledge-grounded
works can use the text-based knowledge (Dinan
et al., 2019; Ren et al., 2020; Zhan et al., 2021;
Meng et al., 2021), the structural knowledge (Bai
et al., 2021; Wu et al., 2021b), and the multi-modal
data (Wang et al., 2021).

Commonsense knowledge can contribute to
the semantic understanding (Young et al., 2018),
knowledge reasoning (Liu et al., 2019), topic tran-
sition (Zhong et al., 2021), improving the diversity
(Wu et al., 2020a; Speer et al., 2017). To reduce
the computational cost and improve the knowledge
relevance, text knowledge-grounded works always
follow a two-stage paradigm (Dinan et al., 2019):
1) A pre-screening stage to explicitly select one
knowledge text from candidates; 2) A generation
stage to generate responses with an internal fine-
grained select knowledge. Unlike such works, most
commonsense knowledge-grounded works ignored
the pre-screening and entirely relied on the inter-
nal selection. It may not be a severe problem if a
model does not use PLMs. However, as mentioned,
if we try to integrate PLMs, the cost of knowledge
encoding/accessing is always unacceptable. Differ-
ent from them, to introduce a PLM as an encoder.
We propose a well-designed explicit pre-screening
stage to rank and filter out facts. In addition, unlike
prior works that always employ separate encoders
to encode the dialogue query and the knowledge,
respectively. SAKDP jointly encodes the query and
the relevant knowledge, bringing deeper context-
knowledge infusing and interaction.

Pretrained Models: PLMs have shown striking
potential in NLP tasks (Li et al., 2021b). Dialogue
generation can also benefit from PLMs because
PLMs have extraordinary semantic understanding
and generation abilities (Wang and et al., 2020; Gu
et al., 2021). Researchers have shown that PLMs
can prompt the text knowledge-grounded genera-
tion (Zhao et al., 2020; Cui et al., 2021a), to investi-
gate the implicit knowledge hidden in PLMs (Zhou
et al., 2021a; Sun et al., 2021; Zhou et al., 2021c).
However, as mentioned, using PLMs to promote
the structural knowledge-grounded dialogue gener-
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#1 Query 猫真的超可爱！Cats are really cute!

Seq2Seq 我也觉得超喜欢的. I really like it, too

ConKADI 真的是被萌化了要玩跑粉. It’s really lovely. I want to play running powder.

GOKC 我也要跑了以后你这么可爱的猫.
I’m going to run, too. In the future, you’re such a lovely cat.

BERTCopy 是啊，超级可爱，但是我觉得它好可爱. Yes, it’s super cute, but I think it’s so cute.

Our SAKDP 我也觉得超级可爱，但是它们跑的很快.
I also think they are super cute, but they run fast

Relevant Knowledge (猫Cat,CapbableOf,跑Run) (真的really,RelatedTo,超级Super)
(猫Cat,CapbableOf,玩Play) (萌Lovely,MotivatedBy,可爱Cute)...

#2 Query 撸猫容易戒猫难！改天一起撸猫呀。
It’s easier to cuddle cats than to quit! Let’s cuddle cats some other day.

Seq2Seq (TLL)我也想撸猫。 I’d like to cuddle cats.

ConKADI (LLL)好呀好呀,我也想撸只撸狗鱼。
Well, well, I also want to cuddle cuddle a dog or a fish.

GOKC (LLL)宝贝你要是来了你都比你. Baby, if you come, you’re better than you.

BERTCopy (LLL)好的，我家猫也是这样的，但是我觉得它很可爱.
OK, so is my cat, but I think it’s cute.

Our SAKDP (LLL)好的，我们一起撸猫宝贝OK, let’s cuddle baby cats.

Relevant Knowledge (猫Cat,CapbableOf,喵Meow) (猫Cat,Desires,睡Sleep) (喵Meow,UsedFor,猫Cat)
(猫Cat,IsA,宝贝Baby) (狗Dog,NotDesires,猫Cat) (猫Cat,HasProperty,可爱Cute)...

Table 7: Case Study. The red-colored entities appear in the high-priority section KH , the blue-colored entities
appear in the moderate-priority section KM . The second case is selected from our human evaluation, and we report
the human-annotated scores of one annotator. Specifically, for each baseline, we show the fluency, appropriateness,
and informativeness labels, respectively, at the beginning. W/T/L denotes the baseline has wined SAKDP, tied with
SAKDP, lost to SAKDP, respectively.

ation still faces many challenges (Zhao et al., 2021;
Li et al., 2021a). This paper focuses on investi-
gating auto-encoder PLMs (Vaswani et al., 2017)
(such as BERT and RoBERTa) to encode. We leave
using auto-regressive PLMs (such as GPTs) and
Seq2Seq PLMs (such as BART, MASS) as future
work because 1) such PLMs are unsuitable for intro-
ducing more flexible knowledge selection mecha-
nisms, especially the auto-regressive PLMs; 2) Our
goal is to reach the balance between performance
and efficiency; such Seq2Seq PLMs have more
complicated network structures and more param-
eters; 3) For flexibility and applicability, we hope
SAKDP can also support non-pre-trained modules.

5 Conclusion

In this paper, we present an efficient two-stage
section-aware commonsense knowledge-grounded
dialogue generation framework SAKDP. We pro-
pose a ranking network to cluster knowledge can-
didates into different priority sections and adopt
different use schemes. Subsequently, SAKDP
can benefit from both BERT and commonsense

knowledge with a balance of efficiency and per-
formance. Extensive experiments demonstrate the
performance leadership of our approach.

In the future, we will continue to promote the
integration of PLMs and knowledge: 1) we will
continue to improve the efficiency of knowledge-
grounded and PLM-based dialogue response gen-
eration; 2) we will explore more solutions to select
knowledge in the pre-screening stage, for example,
using GNNs; 3) Current SAKDP is not fully PLM-
based because it uses a GRU decoder. We will
also try to explore the option of fully PLM-based
solutions.

Ethical Considerations

This work did not release any newly created dataset
or ethical statement. The first possible ethical issue
depends on how other users use our method, i.e.,
the adopted dataset, and the user scenario. The
next possible issue is that bias may be introduced
by the adopted PLMs and knowledge. As for this
technical work itself, there is no ethical issue.
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Abstract

Personalized response selection systems are
generally grounded on persona. However, a
correlation exists between persona and empa-
thy, which these systems do not explore well.
Also, when a contradictory or off-topic re-
sponse is selected, faithfulness to the conver-
sation context plunges. This paper attempts
to address these issues by proposing a suite
of fusion strategies that capture the interaction
between persona, emotion, and entailment in-
formation of the utterances. Ablation studies on
the Persona-Chat dataset show that incor-
porating emotion and entailment improves the
accuracy of response selection. We combine
our fusion strategies and concept-flow encod-
ing to train a BERT-based model which outper-
forms the previous methods by margins larger
than 2.3% on original personas and 1.9% on
revised personas in terms of hits@1 (top-1 ac-
curacy), achieving a new state-of-the-art perfor-
mance on the Persona-Chat dataset.

1 Introduction

Currently, most response selection systems tend to
perform well in most cases (Gu et al., 2021a; Zhang
et al., 2021b; Gu et al., 2019a, 2020a). However,
these re-ranking systems have the poor capability
to detect and evade contradictory responses. Re-
sponses selected by these systems often contradict
previous utterances, and any form of contradiction
may disrupt the flow of conversation. Previous re-
search has attempted to incorporate persona while
selecting (Gu et al., 2021b; Zhang et al., 2021a) or
generating (Wu et al., 2021) responses to maintain
consistency. Additionally, a correlation exists be-
tween persona with personality (Leary and Allen,
2011) , which influences empathy (Richendoller
and Weaver III, 1994). Zhong et al. presented a
multi-domain dataset collected from several empa-
thetic Reddit threads contributing towards persona-
based empathetic conversations. Nevertheless, no
one has studied the emotion-persona interplay in

data presented in a more natural form. Figure 1
depicts situational emotion sometimes needs more
preference than the chatbot’s persona in response
selection.

On the contrary, different personality traits are
related to emotion regulation difficulties (Pollock
et al., 2016). Due to this, a person’s expected emo-
tions can deviate based on his persona. Besides that,
we also observe that concepts discussed in a con-
versational flow play an important role in response
selection. However, no one has incorporated this
in response selection.

Figure 1: For this conversation, the selected candidate
response directly contradicts the context. Also, the bot’s
persona influences the response selection, while the
situational emotions and concepts get ignored. The
underlines phrases/words denote the concepts.

Model Emotion Inappropriate(%) Contradictory(%) Off-topic(%)

BERT-CRA 7.35 11.88 12.3

Table 1: Statistics of issues reported in the test split
of Persona-Chat inferred by BERT-CRA (Gu et al.,
2021b) 1

1Insights drawn from the human evaluation done on 500
randomly selected data-points from self-persona original and
partner-persona original sets of Persona-Chat
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We can infer the significance of these prob-
lems from Table 1. So, to increase the us-
ability of the personalized response selection
systems, all these fundamental problems need
to be addressed. We automatically annotate
Persona-Chat (Zhang et al., 2018) dataset us-
ing a series of classifiers and rule-based modules.
We model emotion-persona interaction, context-
response entailment, and concept-flow using the
annotations. To compare the ability of annotated
features to enhance the emotion-persona interac-
tion, contradiction avoidance, and adherence to
the concept flow, we perform preliminary experi-
ments by devising independent encoders based on
BERT. Our baseline model extends BERT-CRA
(Gu et al., 2021b) where we introduce an addi-
tional bot-encoder to represent the bot-utterances
better. Subsequently, we propose three fu-
sion strategies, emotion-aware(EmA), entailment-
aware(EnA), persona-entailment-aware(P-EmA).
These fusion strategies are designed based on
emotion-persona interaction or persona-entailment
information. We propose a concept-flow encoding
technique that matches relevant concepts from the
context and candidate responses with these fusion
strategies.

We test our proposed methods on the
Persona-Chat dataset with our automatic
annotation. The results show that a model trained
on a combination of our proposed fusion strategies
outperforms the current state-of-the-art model by a
margin of 2.3% in terms of top-1 accuracy hits@1.

In summary, the contributions of this pa-
per are three-fold. (1)Automatically annotate
Persona-Chat dataset with utterance level emo-
tion, entailment, and concept information to pro-
vide extra supervision. (2) A suite of fusion strate-
gies and a concept-flow encoder which are de-
signed and implemented into a series of models,
aiming to explore the impact of emotion, entail-
ment, and concept-flow in the task of response
selection. (3) Experimental results demonstrate
that our proposed models outperform the existing
state-of-the-art models by significant margins on
the widely used Persona-Chat response selec-
tion benchmark.

2 Related Works

2.1 Personalized Response Selection

Chit-chat models typically trained over many di-
alogues with different speakers lack a consistent

personality and explicit long-term memory. These
models produce an utterance given only a recent di-
alogue history. Li et al. proposed a persona-based
neural conversation model to capture individual
characteristics such as background information and
speaking style. (Zhang et al., 2018) has constructed
Persona-Chat dataset to build personalized di-
alog systems; this is by far the largest public dataset
containing million-turn dialog conditioned on per-
sona. Many benchmarks have been established for
this dataset. For example, (Mazaré et al., 2018) pro-
posed the fine-tuned Persona-Chat (FT-PC) model,
which first pre-trained models using a large-scale
corpus based on Reddit to extract valuable dia-
logues conditioned on personas and then fine-tuned
these pre-trained models on the Persona-Chat
dataset. (Wolf et al., 2019; Liu et al., 2020) also
employed the pre-trained language model(GPT) for
building personalized dialogue agents. (Gu et al.,
2020c) proposed filtering before iteratively refer-
ring (FIRE) to ground the conversation on the given
knowledge and then perform the deep and iterative
matching. (Gu et al., 2021b) explored a new direc-
tion by proposing four persona fusion strategies,
thereby incorporating partner persona in response
selection.

2.2 Faithfulness to Context

Faithfulness in conversational systems to conversa-
tion context or knowledge is a very broad topic that
can range from decreasing fact hallucination(Chen
et al., 2021), reducing contradictory responses,
staying on topic, etc. (Rashkin et al., 2021) has
used additional inputs to act as stylistic controls
that encourage the model to generate responses
that are faithful to a provided evidence or knowl-
edge. However, no one has studied the level of
faithfulness the current personalized response se-
lection systems exhibit to the conversation history.
Thus, this paper thoroughly explores the impact
of utilizing utterance-level emotions, entailment,
and concepts on the performance of personalized
response selection.

3 Dataset

In this work, we extend Persona-Chat (Zhang
et al., 2018) and augment it with a series of an-
notators. The dataset consists of 8939 complete
dialogues for training, 1000 for validation, and 968
for testing. Responses are selected at every turn of a
conversation sequence, resulting in 65719 context-
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responses pairs for training, 7801 for validation,
and 7512 for testing. The positive and negative
response ratio is 1:19 in the training, validation,
and testing sets. There are 955 possible personas
for training, 100 for validation, and 100 for testing,
consisting of 3 to 5 profile sentences. A revised
version of persona descriptions is also provided by
rephrasing, generalizing, or specializing the origi-
nal ones to make this task more challenging.

4 Automatic Dataset Annotation

We have annotated the Persona-Chat with the
help of a series of automatic annotation schemes.
Since we are studying the effect of emotions in
personalized response selection, we assign emo-
tion labels to the personas, context-utterances, and
candidate responses using an emotion classifier.
Personas and utterances were annotated using an
entailment classifier to incorporate the entailment
information while selecting responses. Finally, we
follow a multi-layer keyword mining strategy to
match meaningful concepts appearing in the con-
text and response.

4.1 Emotion

We trained an emotion classifier on GoEmotions
dataset (Demszky et al., 2020). This dataset con-
tains 58k English Reddit comments, labeled for
27 emotion categories or Neutral. We fine-tuned
RoBERTa using this dataset. We saved the check-
point with the best Macro F1 of 49.4% (equal to the
current state of the art) and used this for annotating
each utterance. Since emotion classification is a
challenging task and given the complexity of the
affect lexicons in the corpus, we only consider the
labels which can be predicted with more than 90%
confidence(i.e., probability higher than 90%). The
goal here is to study the effect of emotion in per-
sonalized response selection; developing a highly
accurate emotion classifier is kept outside the scope
of this work.

4.2 Entailment

For annotating entailment, we have used an ensem-
ble of two models. The first one is RoBERTa based
model trained on Stanford Natural Language Infer-
ence (SNLI) corpus (MacCartney and Manning,
2008) released by AllenAI2. The second model is
also a RoBERTa based model fine-tuned on DE-
CODE (Nie et al., 2020). We take the two models’

2https://github.com/allenai/allennlp-models

weighted average of both probabilities during infer-
ence. The second model has a higher preference
with 80% weightage as it is trained on conversa-
tional data. The entailment label is assigned to ev-
ery persona-response and utterance-response pair.

4.3 Concept Mining

We mine keywords and key phrases from the per-
sona sentences, utterances, and responses denoted
as {pci}Npci=1 , {uci}Nuci=1 , {rci}Nrci=1 respectively. We
follow the techniques proposed in (Tang et al.,
2019) to extract the first level of keywords. Subse-
quently, we expand the concept lists by extract-
ing key phrases using the RAKE (Rose et al.,
2010). We hypothesize that concepts appear-
ing in responses should adhere to the speaker’s
persona. So, we prune some of the response/
context keywords by calculating the average of
Point-wise Mutual Information score between per-
sona keywords and response/ context keywords∑Npc

j=1 PMI(pcj , rci)/Npc and rejecting the con-
cepts which are below a threshold value(λ). Simi-
larly, for response/ concept key phrases extracted
using RAKE, we only keep top N key phrases.
Finally, we combine the persona and context key-
words and treat them as context keywords(uci).

5 Methodology

5.1 Problem Definition

Given a dataset D = {(Ci, uci, pi, ri, rci, yi)}Ni=1

is a set of N tuples consisting context Ci, the
persona of the speaker or the partner pi, re-
sponse to the context ri, and the ground truth
yi. A set of concepts appearing in context
and a response is denoted by uci and rci, re-
spectively. The context can be represented as
Ci = {(Uj , Emoj , Entailj)}Lj=1 where Uj is an
utterance, Emoj is the dominant emotion present
in Uj and Entailj is the entailment label of Uj
with respect to ri. The jth utterance Uj is denoted
by Uj = {u1j, u2j, ..., uMj} which consists of M
tokens. Each response ri contains single utterance,
yi ∈ {0, 1}, Emoj ∈ {0, 1, ...P} , and Entailj ∈
{ entailment,neutral,contradiction} where
P are the total number of emotion types pos-
sible in the D. The task is to train a matching
model for D, g(C, uc, p, rc, r). Given a triple of
context-persona-response the goal of the matching
model g(C, uc, p, rc, r) is to calculate the degree
of match between (C, uc, p) and (rc, r).
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5.2 Bot Context Encoding

When two users communicate, many topics are
often discussed in parallel, and sometimes a few
utterances might not be relevant for response selec-
tion. To account for the model to be aware of the
speaker change information, Gu et al. introduced
a speaker disentanglement strategy in the form of
speaker embeddings fused with the original token
embeddings. This technique has proven to improve
response selection performance (Gu et al., 2020b;
Su et al., 2021). However, the problem of the max-
imum length of positional embeddings still exists.
To circumvent this, we have created bot-context
encoding, which captures the representation of the
bot’s turns in the context while ignoring the user’s
turns. The intent is to use the bot’s turns to main-
tain consistency during response selection. The
input sequence that is sent to BERT to encode bot
context is composed as follows:

xsi = [CLS]u2[EOU ]u4[EOU ]...

...un−1[EOU ][SEP ]ri[EOU ] (1)

Where u1, u4, ...un−1 are bot’s utterances in the
context, [EOU ] is a special token denoting the end
of an utterance.

The resultant tokens xsi are passed through
bert-base-uncased, the last hidden states of
k layers i.e. {h(l)

s1 ,h
(l)
s2 , ..h

(l)
sT}, for l = 1, 2, ..k are

used in downstream tasks.

5.3 Fusion Strategies

We use several fusion strategies to model the inter-
dependencies of the persona, emotion, and entail-
ment information. We use BERT (Devlin et al.,
2019) as our base sentence encoder. Like the Bi-
encoder (Humeau et al., 2020) we concatenate con-
text utterances as a single context sentence before
passing it into BERT.

5.3.1 Baseline
For the baseline, we have extended BERT-CRA
(Gu et al., 2021b) where persona and context are
concatenated to form sequence A and response
form sequence B. Then, these two sequences are
concatenated using [SEP ] token. We made two
changes to this model; first, we added speaker em-
beddings with the original token representation.
Secondly, we fuse bot-context encoding as de-
scribed in the previous section with BERT-CRA
encoding by doing multi-headed attention between

the hidden representation of the last k layers of both
encoders. The token arrangement is as follows:

xCRAi = [CLS]p1p2...pi[EOP ]u1[EOU ]

...ui[EOU ][SEP ]ri[EOU ] (2)

Where p1p2...pi are the personalities of the
speaker, [EOP ] token denotes end of personal-
ity representation, u1, u2, ..ui are the utterances
in the context. The resultant tokens xCRAi are
passed through bert-base-uncased, the hid-
den states of last k layers i.e. {h(l)

c1,h
(l)
c2, ..h

(l)
cT},

for l = 1, 2, ..k are used in downstream tasks.
Interaction Layer : Since we are using a multi-

encoder pipeline, it is crucial to capture the interac-
tion between the encoders. For that, we use multi-
head attention between hidden states of speaker
context encoder and BERT-CRA. For ease of pre-
sentation, we denote the whole multi-headed at-
tention layer as fmha(∗, ∗). Then these attention
outputs are passed through an aggregation layer,
which basically concatenates then passes it through
a two-layer feed-forward network and finally mean
pools across all the layers to get hd. The output is
passed through a MLP to get the matching degree
with the response.

{h̃(l)
s1 , h̃

(l)
s2 , ..h̃

(l)
sT} = fmha({h(l)

s1 ,h
(l)
s2 , ..h

(l)
sT},

{h(l)
c1,h

(l)
c2, ..h

(l)
cT}) (3)

{h̃(l)
c1, h̃

(l)
c2, ..h̃

(l)
cT} = fmha({h(l)

c1,h
(l)
c2, ..h

(l)
cT},

{h(l)
s1 ,h

(l)
s2 , ..h

(l)
sT}) (4)

hd = MeanPool({FFN([{h̃(l)
s1 , ..h̃

(l)
sT};

{h̃(l)
c1, ..h̃

(l)
cT}])}kl=0) (5)

Loss Function: The MLP layer predicts
whether a context-persona (C, p) pair matches with
the corresponding response r based on the derived
features. Subsequently, the output from the MLP
layer is passed through a softmax output layer to
return a probability distribution over all response
candidates. All the models described in this paper
are trained using MLP cross-entropy loss. Let Θ
be the model parameters, then the loss function
L(D,Θ) for all the models can be formulated as
follows:

L(D,Θ) = −
∑

(C,p,r,y))ϵD

ylog(g(C, p, r)) (6)

5.3.2 BERT-EmA Emotion Aware Fusion:
In this strategy, an emotion incorporation frame-
work is introduced. Similar to BERT-CRA a dual
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(a) Dual encoder pipeline consisting of combination of all the encoding strategies.

(b) Concept-flow interaction network, the output of this network hconcept can be concatenated with
any of the BERT based dual encoder’s output(hd).

Figure 2: Overall Training Architecture. Though the BERT based dual encoder is independently depicted but it is
trained along with concept-flow interaction(if included).

Figure 3: Interaction Layer

pipeline matching network is followed. The first
pipeline encodes the speaker’s and listener’s emo-
tional and personality characteristics in the con-
text. While the other encodes the bot-context as
described in section 5.2.

We attach the most probable emotion tag to each
utterance to incorporate emotion features in the
BERT contextual representation. The emotion-
infused context representation is then concatenated
with the original persona representation, as de-
scribed in section 5.3.1. The main goal of rep-
resenting the context in this way is to understand
how the emotions of each utterance interact with
the speaker’s persona. The input to the emotion
encoder is as follows:

xEmAi = [CLS]p1p2...pi[EOP ][Emo1]u1[EOU ]

...[Emoi]ui[EOU ][SEP ]ri[EOU ] (7)

Similar to baseline, the hidden states of last k
layers i.e. {h(l)

e1,h
(l)
e2, ..h

(l)
eT}, for l = 1, 2, ..k are

used in downstream tasks.

5.3.3 BERT-EnA-P: Entailment Aware
Fusion

In this fusion strategy, the intention is to model the
entailment information about each of the utterances
and personas with the response. Like BERT-EmA
we follow a dual encoder pipeline, the first en-
codes the entailment features, and the second en-
codes the bot-context. To incorporate entailment
features into BERT contextual representation, we
attach entailment tags i.e. <contradiction>,
<entailment> and <neutral> at the start of
every utterance and persona. The response is con-
catenated with the context-entailment representa-
tion with a [SEP ] token. The input to the entail-
ment encoder is as follows:

xEmA−Pi = [CLS][Entailp1]p1...[EOP ]

[Entail1]u1[EOU ]

[Entail2]u2[EOU ]

...[Entaili]ui[EOU ]

[SEP ]ri[EOU ] (8)

The hidden states of last k layers i.e.
{h(l)

en1,h
(l)
en2, ..h

(l)
enT}, for l = 1, 2, ..k are used

in downstream tasks.

Finally, we experiment with a combined pipeline
as depicted in Figure 2a.
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5.4 Concept-Flow(CF) Interaction

In section 4.3, we describe how we extract relevant
concepts from the context and the response. An
appropriate response often has concepts most re-
cently discussed in the context. So, to model that,
we construct a concept-flow interaction network,
where the interaction between the context-concepts
and response-concepts are measured and used as a
feature in response relevance classification.

Let us consider {CC1, CC2, ..., CCn}
are concepts extracted from context and
{RC1, RC2, ..., RCn} are concepts extracted
from a response. Now, we pass each of these
concepts through a transformer-based concept
encoder fc to get two sets of concept embed-
dings {ec1, ec2, ..., ecn} , eci ∈ Rdc and
{rc1, rc2, ..., rcn} , rci ∈ Rdc for context
and response concepts respectively. To learn
the context flow representation for each set
of concepts, we apply a bi-directional GRU
network to capture sequential dependencies
between subsequent concepts in a conversational
situation. Context-concept and response-concept
representation hcc

i , hrc
i can be formulated as:

ccci ,h
cc
i =

←−→
GRU(eci,h

cc
i−1) (9)

crci ,h
rc
i =

←−→
GRU(eri,h

rc
i−1) (10)

hcc = tanh(
∑

j∈2∗Nl

Wjh
cc
j ) (11)

hrc = tanh(
∑

j∈2∗Nl

Wjh
rc
j ) (12)

Where hcc
i ∈ R2dc , hrc

i ∈ R2dc are the i - the
hidden states and ccci ∈ R2dc , crci ∈ R2dc are the
outputs of the respective GRU encoders, Wj is a
learn-able parameter andNl is the number of layers
in each GRUs. To model the interaction between
hcc
i and hrc

i we follow the same interaction mech-
anism described in the earlier section. The output
hconcept is concatenated with the dual encoder
output hd before passing it through an MLP.

6 Experimental Setup

6.1 Training Details

The ratio of positive to negative samples in the
training set is 1:19, so there is a high imbalance in
training data. Taking inspiration from (Gu et al.,
2021b) we adopted a dynamic negative sampling
strategy in which the ratio of positive and nega-
tive responses is 1:1 in an epoch. We keep the

positive response constant and change the neg-
ative response for every epoch, generating data
for 19 epochs. We use bert-base-uncased
as the base for each of our pretraining-based fu-
sion models. In concept mining strategy, we have
taken the top 3 concepts extracted using RAKE,
λ for PMI-based scoring was varied from 0.3 to
0.8 with 0.1 steps, and 0.5 was found optimum.
The number of turns in the conversation history
used for concept mining varied following this set:
{2, 3, 4, 5, 6, 7}. We preserve the original parame-
ters of bert-base-uncased. The number of k-
last layers in the interaction layer varied following
this set: {3, 4, 5, 6}; after some initial experimenta-
tion, 4 was found as the optimum value. The num-
ber of heads in the multi-head attention layer was
kept 8. We use a 6-layered version MiniLM(Wang
et al., 2020) to encode the concepts; the embed-
ding dimension was 384. The number of layers in
the bi-directional GRUs in the concept encoder is
2. A dropout rate of 0.7 is applied to the concept
encoder hidden representation before we send it
to the interaction layer. AdamW(Loshchilov and
Hutter, 2019) optimizer was used for optimization.
The initial learning rate was set to 2e-5 and linearly
decayed by L2 weight decay. The maximum se-
quence length was set to 320. The training batch
size was 12. The relevance prediction head used
a single feed-forward layer with sigmoid activa-
tion. All code was implemented using the PyTorch
framework. Also, we used 2 NVIDIA RTX A5000
GPUs to train the models. The average training
time for one epoch was 46 minutes, using all our
fusion strategies and concept encoding.

6.2 Evaluation Metrics

We used the same evaluation metrics as the pre-
vious work to ensure comparable results. Each
model aimed to select the best-matched response
from available candidates for the given context and
persona. We calculated the recall of the true pos-
itive replies, denoted as hits@1. In addition, the
mean reciprocal rank (MRR) was also adopted to
take the rank of the correct response overall candi-
dates into consideration.

6.3 Comparison Methods

For comparison, we have only selected pretraining-
based models.

• FT-PC (Mazaré et al., 2018): employed the
“pretrain and fine-tune” framework by first
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Model
Self Persona Partner Persona

Original Revised Original Revised

hits@1 MRR hits@1 MRR hits@1 MRR hits@1 MRR

FT-PC (Mazaré et al., 2018) - - 60.7 - - - - -
DIM (Gu et al., 2019b) 78.8 86.7 70.7 81.2 64.0 76.1 63.9 76.0
TransferTransfo (Wolf et al., 2019) 80.7 - - - - - - -
FIRE (Gu et al., 2020c) 81.6 - 74.8 - - - - -
BERT-CRA (Gu et al., 2021b) 84.3 90.3 79.4 86.9 71.2 80.9 71.8 81.5

Baseline 84.4 90.7 79.4 87.6 71.2 81.1 71.4 81.5
BERT-EmA 84.6 90.9 79.8 87.7 71.4 81.2 71.4 81.6
BERT-P-EnA 85.3 91.2 80.5 87.9 71.7 81.3 71.3 81.4
BERT-EmA+BERT-P-EnA 85.8 91.4 80.7 88.0 72.3 81.5 71.7 81.5
BERT-EmA+BERT-P-EnA+CF (All) 86.6* 91.6* 81.3* 88.6* 72.6* 81.9* 72.4* 81.9*

Table 2: Performance of the proposed and previous methods on the Persona-Chat dataset under different persona
configurations. The meanings of "Self Persona", "Partner Persona", "Original", and "Revised" can be found in
Section 3. "-" represents that the results were not reported in their papers. Numbers marked with * denote that the
improvement over the best performing baseline is statistically significant (t-test with p-value < 0.05). Numbers in
bold denote the combined fusion strategy that achieves the best performance.

pretraining on a domain-specific corpus, dia-
logues of which were extracted from Reddit,
and then fine-tuning on the Persona-Chat.

• DIM (Gu et al., 2019b): used a dually match-
ing network (DIM) which performs interactive
matching between responses and contexts and
between responses and personas respectively
for ranking response candidates.

• TransferTransfo (Wolf et al., 2019): the pa-
per fine-tunes a transformer model(GPT) us-
ing Persona-Chat dataset on a multi-task
objective which combines several unsuper-
vised task.

• BERT-CRA (Gu et al., 2021b): This work
presents four context-aware persona fusion
strategies and the models are initialized and
pretrained using BERT on Persona-Chat
dataset.

6.4 Experimental Results

Table 2 reports the evaluation results of our pro-
posed and previous methods on Persona-Chat
under various persona configurations. We can
see that incorporating the emotion and entailment
knowledge of the utterances coupled with generic
distributional semantics and external knowledge
learned from pretraining rendered improvements
on both hits@1 and MRR conditioned on vari-
ous personas. Compared to FT-PC (Mazaré et al.,
2018), our best model outperformed it by 20.4 % in
terms of hits@1 conditioned emotion, entailment
and concepts. Compared to TransferTransfo (Wolf
et al., 2019), which was also trained using pre-
trained transformer models, our combined model

outperformed it, which shows the effectiveness of
fusion strategies and the concept-encoder. Lastly,
our combined model outperformed the BERT-CRA
(Gu et al., 2021b) in all the tasks. We see a 2.3 %
and 1.9 % improvement in original and revised
self-persona, and 1.4 % and 0.6 % improvement
in original and revised partner-persona in terms of
hits@1. The results bolster our hypothesis that
emotion, entailment, and concepts play an impor-
tant role in the task of response selection. Also, it
is to be noted that Persona-Chat is a synthetic
dataset, i.e., the data collection did not happen nat-
urally. Therefore, the chances that the user will
display this subtle interplay of persona and emo-
tion is less. In addition to that, we observe the
presence of contradictory distractor responses. We
see a significant performance improvement from
this information by introducing entailment-aware
fusion and concept encoding.

6.5 Human Evaluation

Figure 4: Human evaluation results on
Persona-Chat self-persona original test split

Since a qualitative study by humans is necessary
to understand the effectiveness of the proposed
methods, we further perform a human evaluation
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Models hits@1 MRR

Baseline 84.4 90.7
BERT-EmA(− Speaker Encoding) 84.5 90.8
BERT-EmA 84.6 90.9
BERT-EnA-P 85.3 91.2

Table 3: Ablation Study for Emotion and Entailment on
self-original persona.

on a portion of the data. We randomly sampled
100 inferred examples from the test set by base-
line model, combined model, combined model ex-
cept for the emotion, and combined model except
for the concept flow interaction. We combined
all the samples and evaluated them using Amazon
Mechanical Turk by 2 different turkers on three
metrics: emotion inappropriate, contradictory, and
off-topic. The turkers needed to select if any of
the three issues were present in an example. The
percentages of reported issues by both groups are
shown in Figure 4. The results reveal that all our
encoding pipelines effectively reduce contradictory
responses and somewhat reduce off-topic and emo-
tionally inappropriate responses. The agreement
between the two groups was moderate (Krippen-
dorff’s α = 0.713).

7 Analysis

7.1 Ablation Study for Emotion and
Entailment

We perform ablation studies(shown in Table 3) to
validate the effectiveness of emotion and entail-
ment fusion in our proposed models. We see a
slight improvement in our baseline model that uses
our proposed speaker embedding. Also, unsurpris-
ing that the effect of emotion is not significant.
As the dataset is artificially created, and emotions
exhibited by the annotators are not always true.
However, some performance improvement is ob-
served. Conditioning persona in entailment fusion
improves performance considerably as responses
may not entail the speaker’s persona.

7.2 Effect of Context Turns on Concept
Representation

Concept matching boosts the evaluation perfor-
mance further. However, the number of turns in
the conversation history from which we mine the
concepts influences the performances. It is evident
from Figure 5 that the essential concepts in the
most relevant response will be present in the recent
conversation history.

Figure 5: This graph shows how hit@1 reaches an
optimum value and then decreases with an increase in
the number of turns used to mine concepts.

personas

my favorite color is blue . <ent: neutral>
I enjoy reading mysteries . <ent: neutral>
I have seven children . <ent: entail>
I grew up on a large farm . <ent: neutral>

context

A: hello how are you today? <emo:curiosity> <ent: neutral>
B: I am well. how are you? <emo:curiosity> <ent: neutral>
A: I am doing great just got back from the beach <emo:excitement> <ent:
neutral>
B: that is great. I live far from the beach . <emo:caring> <ent: neutral>
A: I am very lucky we live beside the beach. what do you do for a living?
<emo:curiosity> <ent: neutral>
B: I keep busy with my seven children . <emo:excitement> <ent: neu-
tral>
A: wow that much have taken some adjusting I teach kindergarten .
<emo:surprise> <ent: neutral>

golden
response

do you teach mysteries to your children ? they are my favorite type of novel .
<emo:curiosity>

BERT-CRA that must be a lot of work but very rewarding i bet <emo:realization>

All do you teach mysteries to your children ? they are my favorite type of novel .
<emo:curiosity>

Table 4: Case study showing concept flow.

7.3 Case Study
Table 4 shows the efficacy of concept-encoding.
Sometimes models fine-tuned on pretrained trans-
former models like BERT-CRA tends to select
more generic responses. These models pay less
attention to the persona or specific keywords in
the context while selecting responses. In this ex-
ample, our proposed model performs better than
BERT-CRA as it is conditioned on the concepts.
Specifically, concepts in the correct response i.e
"mysteries", "novel" relates to "reading mysteries"
concept in the persona and "your children" relates
to "teach kindergarten" in the context.

8 Conclusion

This work proposes a suite of novel fusion strate-
gies and concept-flow encoder, which leverages the
utterances’ emotion, entailment, and concept infor-
mation. These features help improve the perfor-
mances of our models and provide critical insights
into certain aspects of how humans communicate
with each other. Though the techniques used in
this paper are simple, it highlights the areas where
response selection often falters, like detecting con-
traction, deviation from the concepts, etc. This
work can be further extended by using a graphical
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model to improve the concept representations.
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A Appendix

A.1 Human Evaluation for Initial Study
Five hundred context response pairs randomly sam-
pled from the Persona-Chat self-original test split
inferred by BERT-CRA were evaluated by at least
two AMT workers. The following questions were
asked to the workers:

1. Is this response contain emotions that are con-
sistent with the context? (Most definitely/ not
at all)

2. Is this response contradicts the context? (Most
definitely/ not at all)

3. Do the topics discussed in this response appro-
priate to the topics discussed in the context?
(Most definitely/ not at all)

A.2 Final Human Evaluation
Same evaluation pattern is followed as A.1, average
pay for each HIT was 0.07 $.
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Abstract
Dialogue Act tagging with the ISO 24617-2
standard is a difficult task that involves multi-
label text classification across a diverse set of la-
bels covering semantic, syntactic and pragmatic
aspects of dialogue. The lack of an adequately
sized training set annotated with this taxonomy
is a major problem when using the standard
in practice. In this work, we propose a neural
architecture to increase classification accuracy,
especially on low-frequency fine-grained tags,
on a subset of the ISO 24617-2 taxonomy. Our
model takes advantage of the hierarchical struc-
ture of the ISO taxonomy and utilises syntactic
information in the form of Part-Of-Speech and
dependency tags, in addition to contextual in-
formation from previous turns. We train our
architecture on an aggregated corpus of conver-
sations from different domains, which provides
a variety of dialogue interactions and linguistic
registers. Our approach achieves state-of-the-
art tagging results on the DialogBank bench-
mark data set, providing empirical evidence
that this architecture can successfully gener-
alise to different domains.

1 Introduction

Language understanding is a fundamental compo-
nent of any conversational system, as it impacts its
abilities to correctly recognise a user’s communica-
tive functions and act accordingly. Dialogue Act
(DA) tagging is a crucial step of this understanding
process, particularly in an open-ended conversa-
tional setting, as it informs the system on the users’
beliefs, desires, intentions and actions.

Table 1 shows an excerpt of a conversation from
the Mastodon corpus annotated with Dialogue Act
tags. Note that some tags (e.g. Task:Answer or
Task:Agreement) are contextual and depend on the
tagging of previous utterances. The annotation also
reflects the multi-dimensional nature of the DA
tags, categorised as Task, Social or Feedback. In
general, an utterance may have multiple tags, even
of the same dimension.

Utterance DA Tags
A: ask anything you’d like Task:Directive
B: thanks for the interest Social:Thanking
B: when a girl keeps blinding
you with the reflection of the sun
is she signalling that she wants
to hold hands ?

Task:InfoQuestion

A: only if the flash pattern is .. -
. or maybe ... -

Task:Answer

A: Deleted my Facebook ac-
count a few days ago and I never
felt so free in my entire life.

Task:Inform

A: Now I just have to encour-
age my closest friends to do the
same

Task:Commissive

B: It shouldn’t be that hard.
They are as tired of social me-
dia as I am .

Task:Inform

A: Yes ! I don’t get it . Every-
one I talk to about Facebook–
EVERYONE - - hates it , but
none of them will take action .

Task:Agreement

Table 1: An example dialogue from the Mastodon cor-
pus annotated with the ISO 24617-2 taxonomy.

Early dialogue applications usually adopted a
list of mutually exclusive and task-specific DA tags
which represented the different functions that the
system performed, acting essentially as intent la-
bels. These taxonomies were also one-dimensional,
featuring mutually-exclusive tags which did not
account for the complexity of the dialogues. The
following example from Bunt (2006) clarifies the
importance of multi-dimensionality in DA tagging:

S: Can you tell me what time is the first train to
the airport on Sunday morning?

A: On Sunday morning the first train to the air-
port is at 5.32.

S: Thank you!
According to Bunt (2006), the third utterance

has two separate communicative functions, as the
speaker S is expressing gratitude towards the ad-
dressee A (Social dimension), while at the same
time informing them on their understanding of the
train schedule (Feedback dimension).
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In addition to this, DA taxonomies have also
typically lacked a hierarchical organisation of tags,
which makes it difficult for a classifier to capture
the high-level mutual relationships between dia-
logue tags (Soria and Pirrelli, 2003).

In an attempt to address these problems, an
official ISO standard taxonomy, ISO 246170-2,
was introduced in Bunt et al. (2012): this taxon-
omy is domain-independent, hierarchical and multi-
dimensional, and well-suited for open-ended Nat-
ural Language Understanding. However, much
work in dialogue systems still uses other tax-
onomies, in part we believe because of the lack
of an adequately-sized data set annotated with the
standard, which makes it difficult to train a classi-
fier for the taxonomy. Some authors have proposed
automated mappings of old resources to the new
ISO standard; however, these works are still limited
in scope, focusing either on heavily imbalanced
data sets (Bunt et al., 2017) or subsets of the ISO
24617-2 taxonomy that are insufficient for real-life
conversational scenarios (Mezza et al., 2018). DA
tagging with the ISO taxonomy is also an intrinsi-
cally difficult task, as it requires handling multiple
different dimensions and a collection of different
fine-grained tags which differ in semantic, syntac-
tic and contextual aspects. The open-ended nature
of the taxonomy provides an additional challenge,
as most existing DA-annotated resources tend to
have a bias towards specific topics or discussion
styles, which hinders the model’s capabilities to
generalise to unseen conversations.

In this work, we introduce a neural architecture
optimised for DA tagging with a subset of the ISO
standard taxonomy. Our model combines syntac-
tic, semantic and contextual information and lever-
ages the hierarchical dependencies across labels
to improve the classification accuracy, especially
on low-frequency fine-grained tags. We combine
existing DA-annotated data sets and map them to
a subset of the ISO 24617-2 taxonomy to obtain
an adequately-sized training set, taking advantage
of existing mappings in the literature (Mezza et al.,
2018) and novel conversational resources such as
Mastodon (Cerisara et al., 2018) and DailyDialog
(Li et al., 2017), whose taxonomies easily map to
the ISO standard. We also experiment with the ad-
dition of online discussions and debates data from
the Internet Argument Corpus v2.0 (Abbott et al.,
2016; Walker et al., 2012), in order to increase
the system’s understanding of opinionated and con-

textual tags. Experimental results show that our
approach achieves state-of-the-art classification ac-
curacy on the DialogBank (Bunt et al., 2016) test
set. We also provide additional experiments that
delve into the details of the training process, includ-
ing ablation studies and an analysis of the extent
to which the different corpora that we utilised con-
tribute to the network’s performance. Finally, we
share our code and our mapped data set 1, in order
to share these resources with the research commu-
nity and hopefully encourage further research on
Dialogue Act classification.

2 Related Work

The concept of Dialogue Act (DA) has its roots
in the seminal works by Austin (1975) and Searle
(1965), who established the theoretical foundations
of the Speech Act theory. A speech act captures
an utterance at the level of its illocutionary force.
Many subsequent works started referring to speech
acts in a conversational setting as Dialogue Acts,
and investigated possible taxonomies of Dialogue
Acts. These early taxonomies were flat (there was
no distinction between coarse-grained and fine-
grained tags), mono-dimensional (each and every
utterance had only one Dialogue Act tag) and usu-
ally task-specific rather than domain-independent.
Examples of these early taxonomies include the
DAMSL taxonomy (Allen and Core, 1997), which
was used for the annotation of the Switchboard and
MRDA conversational corpora, the HCRC coding
manual (Anderson et al., 1991), which was used to
annotate the Maptask corpus, and the VerbMobil
annotation scheme (Jekat et al., 1995), which was
used for the annotation of the homonymous corpus.

An interest in formalising these taxonomies into
a more rigid theoretical framework arose in the
early 2000s, with Traum (2000) analysing existing
DA taxonomies and investigating a rigorous defini-
tion of Dialogue Acts. Bunt (2005) provided one
of the first formal definitions of Dialogue Act as "a
unit in the semantic description of communicative
behaviour, produced by a sender and directed at
an addressee, specifying how the behaviour is in-
tended to influence the context through understand-
ing of the behaviour". The authors combined ex-
isting taxonomies such as DAMSL and DIT (Bunt,
1989) into a new taxonomy called DIT++ (Bunt,
2009), which aimed at being a truly open-ended,
domain-independent and theoretically sound tax-

1https://github.com/coling22tagger/DialogueActTagger
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onomy. The fifth version of the DIT++ taxonomy
became the official ISO standard for Dialogue Act
classification (Bunt et al., 2012). A potential advan-
tage of using the standard is that multiple corpora
can be used to construct a larger training set, or
cross-domain training sets suitable to cover a wide
rage of dialogue tasks; nonetheless, the ISO 24617-
2 taxonomy has yet to be fully adopted, with many
works still using DAMSL as their target taxonomy
(Raheja and Tetreault, 2019; Cervone et al., 2018),
or introducing entirely novel taxonomies custom-
tailored for specific tasks (Paul et al., 2019; Yu and
Yu, 2019). While this is partly due to the complex-
ity of the standard, we believe a significant obstacle
is the lack of adequately-sized data sets to train a
classifier. Some efforts have been made to convert
existing resources to the new taxonomy: Fang et al.
(2012) proposed an automated, albeit partial, map-
ping of the DAMSL taxonomy to the ISO standard,
Mezza et al. (2018) extended their work providing
partial mappings for the AMI, MapTask, Oasis and
VerbMobil taxonomies, and Ribeiro et al. (2020)
provides a mapping from the LEGO annotation
scheme to the ISO one. There are some planned
corpora entirely annotated with the ISO standard,
such as ADELE (Gilmartin et al., 2018) or DBOX
(Petukhova et al., 2014), which may become valu-
able tools to work with the taxonomy. However,
these resources are still not publicly available at
the time of writing. Some interesting corpora were
released in recent years which, while not being
entirely ISO compliant, adopted DA taxonomies
which can be easily mapped to the standard. These
include DailyDialog (Li et al., 2017), Mastodon
(Cerisara et al., 2018) and MIDAS (Yu and Yu,
2019) among others.

Automatic DA tagging was initially formalised
as a text classification task by Stolcke et al. (2000),
who presented a Hidden Markov Model for the
classification of the Switchboard data set. Since
then, many different approaches have been pro-
posed to tackle the task, including rule-based sys-
tems (Lendvai et al., 2003), Conditional Random
Fields (Quarteroni et al., 2011; Zhou et al., 2014)
and Support Vector Machines (Mezza et al., 2018).
More recent works shifted their focus to Artificial
Neural Networks, which have been proved to be
very effective for text classification tasks; many of
these models are built around Bi-LSTM/GRU cells
with CRF as a top layer, due to this architecture’s
ability to capture long-term contextual dependen-

cies in dialogue (Kumar et al., 2018; Chen et al.,
2018). Many architectures also rely on transform-
ers, usually combined with pre-trained sentence
embeddings (Yu and Yu, 2019) or some form of
attention mechanism (Raheja and Tetreault, 2019).
The vast majority of these models are designed for
flat hierarchies of tags, with little to no emphasis
on the multi-dimensional nature of Dialogue Acts.
Anikina and Kruijff-Korbayova (2019) annotated
a subset of the TRADR corpus of robot-assisted
disaster response team communications with three
dimensions of the ISO standard (General (Task),
Social and Turn Management) and trained vari-
ous neural classifiers for the task, including CNN,
LSTM and FFN; while their work does take ad-
vantage of the multi-dimensional aspect of the ISO
taxonomy, the scope of their research is limited by
the size of the resource and the emphasis on the
disaster response domain.

A number of recent works started taking advan-
tage of the hierarchical structure of ISO commu-
nicative functions: Wang et al. (2021) introduced a
hierarchical neural model for one-dimensional DA
tagging (they only consider the Social and Task di-
mensions of the standard and combine them into a
single core dimension), while Ribeiro et al. (2019)
proposes a hierarchical and multi-dimensional ap-
proach for the Spanish corpus DIHANA. Blache
et al. (2020) apply a number of statistical machine
learning algorithms, such as XGBoost and Random
Forests, to annotate French medical data with a
subset of the ISO standard; their approach sepa-
rates the classification into two hierarchical steps
to increase the accuracy of the model. Mezza
et al. (2018) proposed a multi-dimensional and
domain-independent approach to DA tagging, and
also investigated hierarchical DA tagging through
a tree-like structure of SVM classifiers; however,
the model was limited in scope and accuracy and
did not take into account contextual tags such as
Answer, Agree/Disagree, etc. Ribeiro et al. (2022)
utilised an end-to-end hierarchical network with
cascading outputs and maximum a posteriori path
estimation to classify all the layers of the General
(Task) semantic dimension; while their architec-
ture handles the whole taxonomy of Task commu-
nicative functions, it lacks support for additional
dimensions of the standard such as Social, Turn
Management, etc. Their model also fails to capture
the domain-independent nature of the taxonomy,
as its performance degrades with the addition of
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out-of-domain data such as the conversations from
the LEGO-ISO corpus.

Multi-label Hierarchical Text Classification has
been successfully addressed for other text classifi-
cation tasks in the literature, such as fine-grained
Sentiment Analysis (Tai et al., 2015) or Topic Clas-
sification (Zhou et al., 2020). The latter work pro-
posed two different models to solve hierarchical,
multi-dimensional topic classification on news arti-
cles; we adapt a similar approach to include prior
information on the hierarchical correlation among
labels in our model.

3 Methodology

3.1 Task Definition

A dialogue D is defined as a sequence of dialogue
turns T1, . . . , Tn, with each turn performed by an
individual speaker. Each turn consists of a se-
quence of utterances u1, . . . , um performed by one
of the speakers, with each utterance representing
one of the functional segments of the turn (i.e. "a
minimal stretch of functionally relevant commu-
nicative behaviour" (Bunt et al., 2010)). We have
a taxonomy of tags t1, . . . , tn arranged in a set of
tree-like structures. Each tree corresponds to a
core dimension (an aspect of utterance function),
and groups together tags that correspond to commu-
nicative functions within the same dimension. Fine-
grained DA tags are the leaves of the trees, while
coarse-grained tags are the intermediate nodes. Di-
alogue Act (DA) tagging is the task of assigning
one or more fine-grained tags t1, . . . , tk to each
utterance in the dialogue. Similarly to Mezza et al.
(2018), we have decided to adopt a subset of the
ISO 24617-2 standard taxonomy (Bunt et al., 2012)
for our classifier, since some of the fine-grained
tags of the standard do not appear in any of our
corpora. We consider three core dimensions of the
standard, namely Task, Social and Feedback, and
a total of 16 fine-grained DA tags. Figure 1 shows
our complete taxonomy.

3.2 Data

There is a widely recognised shortage of conversa-
tional data annotated with the ISO 24617-2 stan-
dard. Researchers have worked around this issue by
designing their own taxonomies (Paul et al., 2019),
using older more widely supported taxonomies (Ra-
heja and Tetreault, 2019) or converting existing
resources via rule-based mappings (Mezza et al.,
2018; Ribeiro et al., 2020). We followed the latter

approach and converted a number of resources to
our subset of the ISO standard. The resulting aggre-
gated corpus, General Dialogue Corpus (GDC),
is a combination of the following corpora:

• The Switchboard Dialog Act Corpus
(SWDA) (Jurafsky and Shriberg, 1997), a col-
lection of 5-minute telephone conversations
on provided topics such as child care, recy-
cling, and news media, annotated with the
DAMSL taxonomy. Conversations in the cor-
pus focus on information exchange, with an
abundance of Info Providing and Info Seek-
ing dialogue acts. They also feature a high
number of Feedback tags due to the nature
of telephone conversations, which often need
explicit feedback to signal understanding.

• The ICSI Meeting Recorder Dialog Act
(MRDA) corpus (Shriberg et al., 2004), a col-
lection of transcribed research meetings an-
notated with a slightly edited version of the
DAMSL taxonomy. Similarly to SWDA, this
corpus contains a majority of information ex-
change tags; however, as the conversations
involve multiple participants in an academic
environment, there is also a significant amount
of conversational structuring tags (including
Feedback) and a more formal linguistic regis-
ter.

• The DailyDialog corpus, a human-written and
manually labelled set of DA annotated con-
versations about the daily life of the partic-
ipants. The corpus focuses on social inter-
actions among human speakers, with a good
balance of Information-Transfer and Action-
Discussion tags.

• The Mastodon corpus (Cerisara et al., 2018),
a Twitter-like corpus of conversation threads
on an open-source social platform called
Mastodon. It features a combination of in-
formation exchange and persuasive dialogue
and is annotated with sentiment information
and coarse-grained DA tags.

• The Internet Argument Corpus v2 (IAC)
(Abbott et al., 2016; Walker et al., 2012) is
a collection of corpora for research on polit-
ical debate on Internet forums. We focus on
the 4Forums subset of the resource, which
contains argumentative dialogue and features
agreement/disagreement stance annotations.
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Figure 1: Our subset of the ISO 24617-2 standard for DA tagging.

We chose this particular collection of corpora
to have a reasonably balanced distribution of tags
across different core dimensions: SWDA and
MRDA focus on information exchange and con-
versational structuring tags, DailyDialog has a high
proportion of Action-Discussion tags (about 20%
of the overall corpus), and Mastodon and IAC have
an emphasis on opinionated, argumentative and
persuasive dialogue. These corpora also offer a
variety of linguistic registers: Switchboard and
DailyDialog focus on everyday conversations with
colloquial language, MRDA and IAC contain more
formal conversations with a richer vocabulary and
lexicon, and Mastodon features an abundance of
Internet and chat slang.

We followed the mapping introduced in Fang
et al. (2012) for the conversion of SWDA and
MRDA taxonomies. The Mastodon corpus utilises
a subset of the ISO standard, therefore we adopted
the mapping suggested by the authors of the corpus
(Cerisara et al., 2018). DailyDialog features
coarse-grained DAs which directly map to coarse-
grained tags in the General (Task) dimension of the
ISO standard. Finally, we converted the 4Forums
subset of IAC by utilising the agreement and
disagreement stance annotation to map responses
to the Agreement and Disagreement tags of the
standard. More specifically, we labelled responses
with an agreement stance lower than -2.0 to
Disagreement, responses with a stance higher than
2.0 to Agreement and all other responses to Answer.
The train, test and validation splits of the GDC
is a combination of all the splits of the included
corpora. We utilised the default train, test and
validation splits for the MRDA, DailyDialog and
SWDA corpora, with the only variation being the
removal of the SWDA conversations that appear in

the DialogBank from the training and validation
splits of the corpus. Given the large size of the
Mastodon test split, we have elected to only use the
first 500 utterances of the corpus for testing; we
reserved 436 utterances as additional training data
and 205 utterances for our validation split. Since
the 4Forums corpus of IAC does not have a default
train-test split, we just divided the corpus manually
and reserved 7847 responses for training, 638
responses for testing and the remaining 1497 for
validation. We ensured that utterances belonging
to the same conversation would be in the same
split when dividing the corpora.

In addition to the test split of GDC, we also
tested our model on the DialogBank corpus (Bunt
et al., 2016), a collection of conversations from
different corpora annotated with the ISO taxonomy
by the authors of the standard; this is one of the
few resources available that are manually annotated
with the ISO taxonomy, and therefore constitutes a
popular testing benchmark for the task.

3.3 Model

This section describes our model, Dialogue Act
Syntax and Hierarchy-aware Network (DASH-
Net). Figure 2 provides an overview of the main
components of the network. DASHNet uses a triple
input encoding mechanism: the lexical encoder en-
codes input tokens, the syntax encoder encodes syn-
tactical information such as Part-of-speech (POS)
tags and Dependency (DEP) tags, and the context
encoder encodes contextual information from the
previous speaker’s last utterance. We have lim-
ited the context to a single previous utterance to
test the hypothesis that some of the tags of the
ISO 24617-2 taxonomy are contextual and directly
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depend on the tagging of the previous utterance
in the dialogue; moreover, some of our resources
(such as the IAC) do not provide a context longer
than one utterance. Given an input utterance as a
sequence of tokens Uj = t1, . . . , tn, the lexical
encoder passes it through a pre-trained embedding
layer and a bidirectional GRU layer to obtain the
lexical encoding:

E⃗t = Embedding(t1, . . . , tn) = e⃗t1, . . . , e⃗
t
n (1)

H⃗L = BiGRU(e⃗t1, . . . , e⃗
t
n) (2)

Similarly, grammatical features are encoded in
the syntax encoder module with a linear layer re-
placing the pre-trained embeddings:

⃗Epos = Linear(p1, . . . , pn) = e⃗p1, . . . , e⃗
p
n (3)

⃗Edep = Linear(d1, . . . , dn) = e⃗d1, . . . , e⃗
d
n (4)

H⃗G =

(
BiGRU(e⃗p1, . . . , e⃗

p
n)

BiGRU(e⃗d1, . . . , e⃗
d
n)

)
(5)

Figure 2: DASHNet architecture.

The context encoder input is just the input en-
coding from the previous sentence Uj−1. The input

encoding for utterance Uj will thus be

I⃗j =



H(L,j)

H(G,j)

I(j−1)


 (6)

Multiple convolutional layers with different ker-
nel sizes, followed by max-pooling, are used to
extract relevant features from the input encoding
IJ obtaining a feature matrix FJ . An encoding of
the list of DA labels from the previous speaker’s
last utterance is also concatenated to FJ .

Prior knowledge about the hierarchical correla-
tion among labels is then embedded into the feature
matrix. More specifically, we estimate the prior
probabilities for each tag from the training data
distribution as follows:

P (Lj |Li) =
Nj∑

k∈child(i)Nk
(7)

P (Li|Lj) = 1.0 (8)

where P (Lj |Li) denotes the probability of the fine-
grained DA tag j given the parent coarse-grained
node i, P (Li|Lj) denotes the probability of the par-
ent node i given the child node j, child(i) denotes
the set of children nodes for tag i and Nk denotes
the number of occurrences of tag k in the training
set. Since tags in the ISO 24617-2 taxonomy are
arranged in a tree structure, the probability of a
coarse-grained tag given the occurrence of any of
its fine-grained children tags is always equal to 1.
We compute these prior probabilities before train-
ing, and then encode them in the network through
a Bidirectional Tree-LSTM. We use the implemen-
tation of BiTree-LSTM introduced in Zhou et al.
(2020), which is itself based on the structure en-
coder presented in Li et al. (2018). Namely, the
output from the CNN layers is then transformed
through a linear layer to obtain a hidden label rep-
resentation li for each label in the taxonomy (in-
cluding coarse-grained DA tags). The hidden state
hk for DA tag tk is then computed as:

hk = hk↓ ⊕ hk↑ (9)

where hk↓ =
∑

i∈child(k)
P (Li|Lk)hi (10)

and hk↑ = P (Lp|Lk)hp (11)

and p represents the parent node for node k.
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3.4 Experimental Setting

We trained our models on Google Colab Pro with
CUDA GPU and High Memory settings for 100
epochs, with learning rate α = 1× 10−5, and use
Adam optimiser with weight decay w = 1× 10−4.
We used pre-trained 300-dimensional GloVe em-
beddings and Kaiming uniform initialisation for
weight initialisation (GloVe embeddings are used
to facilitate comparison with previous work). The
BiGRU layers for input representation have a hid-
den size of 128 nodes, and the node representation
for DA labels in the Tree-LSTM structure is 300-
dimensional. We use three CNN layers with kernel
size 3, 4 and 5 respectively, with 100 filters each.
Finally, we apply Dropout with probability p = 0.3
after each BiGRU layer, with probability p = 0.5
after the CNN layers and with probability p = 0.1
after the Tree-LSTM structure encoder. The values
for the hyper-parameters of the network were cho-
sen according to the average Macro-F1 score of the
network on the validation split of the GDC corpus.

We extract Part-Of-Speech tags and dependency
tags with the spaCy 3.1 Python library, which we
also use to tokenise the input utterances. Since
our mappings are partial, some of the utterances
in the corpora could not be accurately annotated
with any ISO communicative functions; these data
points were annotated with coarse-grained DA tags
and used as contextual features where appropriate
(for example, tags Inform and Question from Dai-
lyDialog can be mapped to Task:InfoProviding and
Task:InfoSeeking respectively). Utterances with
no direct mapping to either coarse-grained or fine-
grained tags were labeled as Unknown and dis-
carded during training and testing.

4 Results and Discussion

In this section we present the results of our experi-
mental study. We evaluate the performance of our
model on two test sets, namely the test split of
GDC and the DialogBank corpus. We provide aver-
age Micro-F1 and Macro-F1 scores for our model,
with the former providing a measure of its raw ac-
curacy and the latter providing a better metric for
how well low-frequency tags are correctly classi-
fied. The DASHNet model was able to correctly
annotate a large portion of the test split of the GDC
data set. Moreover, it also shows promising results
on the DialogBank test set, highlighting good gen-
eralisation when classifying out-of-domain data.

Table 2 shows the main results of our study. We

compared our model DASHNet with HiAGM-TP
(Zhou et al., 2020) and with the suite of SVM clas-
sifiers proposed by (Mezza et al., 2018). As the
code for both systems is openly available2 3, we
trained both on our GDC training data and tested on
both the GDC test split and the entire DialogBank
corpus. The DASHNet architecture outperforms
both approaches on our two test sets.

DialogBank GDC
Model Micro-

F1
Macro-
F1

Micro-
F1

Macro-
F1

SVM
(Mezza
et al., 2018)

55.8 49.2 78.3 58.9

HiAGM-TP
(Zhou et al.,
2020)

77.3 49.6 88.1 71.2

DASHNet
(our model)

83.7 57.1 90.6 76.9

Table 2: Comparative study between our model and
other models in the literature. All models were trained
on the train split of GDC. The DASHNet architecture
outperforms other models on all of our test sets.

Model Micro-F1
(DBank)

Precision
(DBank)

Recall
(DBank)

CRF-ASN
(Chen et al.,
2018)

64.8 64.0 65.6

HEC (Kumar
et al., 2018)

64.0 63.7 64.3

CASA (Raheja
and Tetreault,
2019)

65.3 68.6 62.4

HSLT (Wang
et al., 2021)

70.2 70.1 70.4

DASHNet
(our model)

83.7* 85.7* 81.9*

Table 3: Comparative study between our model and
the results reported by (Wang et al., 2021). Since the
authors did not specify their train-test split or their target
taxonomy, it is not possible to draw a direct comparison.

Table 3 shows a comparison between our model
and the results presented by (Wang et al., 2021),
who published classification results on the Dialog-
Bank corpus for their neural architecture and a num-
ber of state-of-the-art models for DA tagging that

2https://github.com/ColingPaper2018/DialogueAct-Tagger
3https://github.com/Alibaba-NLP/HiAGM
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they replicated. While our model outperforms all
their proposed architectures, it is worth mentioning
that the authors did not specify their taxonomy of
fine-grained DA tags, making it impossible to draw
a direct comparison. Moreover, their test set only
included an unspecified subset of four dialogues
of the DialogBank, while our test set includes the
entire corpus. Finally, their experiments were on
in-domain test data, meaning that they trained and
tested their model on different splits of the Dialog-
Bank data set, whereas our focus was on out-of-
domain data and how to create a model that could
generalise to an unseen conversational corpus.

4.1 Ablation Study

Table 4 shows the results of various ablation ex-
periments to gain a better understanding of the
extent to which each component of the DASHNet
architecture impacts in-domain and out-of-domain
classification accuracy.

DialogBank GDC
FEATURES Micro-

F1
Macro-
F1

Micro-
F1

Macro-
F1

Without
contextual
features

80.0 50.4 87.3 72.9

Without
Tree-LSTM
prior

81.8 51.2 90.3 74.8

Without
POS tags

83.5 54.3 90.5 76.0

Without
DEP tags

83.6 52.1 90.6 72.8

All features 83.7 57.1 90.6 76.9

Table 4: Ablation study results on the DialogBank and
GDC test sets.

Contextual features appear to give the biggest
overall boost to the performance of the model, both
on in-domain and out-of-domain data. This re-
sult is in line with other works in the field which
highlight the importance of contextual information
when classifying Dialogue Act tags (Mezza et al.,
2018; Raheja and Tetreault, 2019). Grammatical
features, namely POS and dependency tags, have
a marginal impact on the Micro-F1 score on both
our test sets; on the contrary, they appear to have a
much higher impact on the Macro-F1 score, indi-
cating that these features are beneficial for the clas-
sification of low-frequency DA tags. Prior infor-

mation about the hierarchical relationship among
DA labels appears to have a significant effect on
out-of-domain DA tagging, while its influence on
in-domain classification appears to be more limited.
This result is compatible with our assumption that
taking the hierarchical nature of the taxonomy into
account helps with the generalisation of the model.

4.2 Training Set Variations

Table 5 shows the results of our experiments with
various combinations of our dialogue corpora, in
order to gain a better understanding of how each re-
source contributed to our final results, demonstrat-
ing the benefit of a general, cross-domain corpus.
We trained the network on various subsets of GDC
and tested the results on the DialogBank test set.

Training set Micro-F1
(DialogBank)

Macro-F1
(DialogBank)

Without SWDA 77.3 48.9

Without MRDA 82.7 50.5

Without
DailyDialog

83.6 53.0

Without
Mastodon

79.6 52.8

Without IAC 83.4 54.9

Full GDC 83.7 57.1

Table 5: Data set variation experiments.

Our empirical results confirmed that each and
every corpus in our collection contributed to some
degree to the final accuracy of the model. SWDA
and MRDA, being by far the largest resources in
our aggregated training corpus, appear to have a
significant impact on the model’s Micro-F1 and
Macro-F1 scores. The Mastodon corpus proved
surprisingly impactful on the testing results given
its small size; a possible explanation is that its an-
notation scheme was designed by taking the ISO
standard into account (Cerisara et al., 2018), which
makes the mapping less noisy and the resulting
data points more similar to those in the Dialog-
Bank. The DailyDialog corpus and IAC appear
to have a lesser effect on the classification accu-
racy, especially on the Micro-F1 score. However,
when looking at accuracy on individual tags, their
impact becomes more evident: the model trained
without DailyDialog performed poorly on Action-
Discussion tags when compared to the one trained
on the full GDC, with a 34% increase in accuracy
on the Directive label (from 8% to 42%) and a 15%
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increase in accuracy on the Commissive label (from
10% to 25%). Similarly, IAC had an impact on the
classification of DAs that are abundant in opinion-
ated dialogue, with a 10% increase in the accuracy
of the Agree label (from 25% to 35%). This is
partially reflected in the Macro-F1 score decrease
when training without these resources.

5 Conclusion

We have presented a multi-dimensional, cross-
domain neural architecture for ISO-Standard Dia-
logue Act tagging, which leverages the hierarchical
nature of the standard as well as grammatical, lex-
ical and contextual information of the input utter-
ances. We trained the model on a General Dialogue
Corpus composed of different resources mapped
to the ISO 24617-2 taxonomy, and showed how
our model achieves state-of-the-art performance on
out-of-domain data, which highlights its generalisa-
tion capabilities. The code and GDC data set have
been released so as to help advance research on this
topic. In the future, we plan to expand our work
by covering more ISO-annotated corpora once they
become available, as well as extending the con-
text encoder module of our architecture to cover
a wider context of dialogue and DA history. We
also plan to experiment with different embedding
mechanisms, such as BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019).
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Abstract

Pre-training methods with contrastive learning
objectives have shown remarkable success
in dialog understanding tasks. However,
current contrastive learning solely considers
the self-augmented dialog samples as positive
samples and treats all other dialog samples
as negative ones, which enforces dissimilar
representations even for dialogs that are
semantically related. In this paper, we propose
SPACE-2, a tree-structured pre-trained
conversation model, which learns dialog
representations from limited labeled dialogs
and large-scale unlabeled dialog corpora
via semi-supervised contrastive pre-training.
Concretely, we first define a general semantic
tree structure (STS) to unify the inconsistent
annotation schema across different dialog
datasets, so that the rich structural information
stored in all labeled data can be exploited.
Then we propose a novel multi-view score
function to increase the relevance of all possi-
ble dialogs that share similar STSs and only
push away other completely different dialogs
during supervised contrastive pre-training.
To fully exploit unlabeled dialogs, a basic
self-supervised contrastive loss is also added to
refine the learned representations. Experiments
show that our method can achieve new state-of-
the-art results on the DialoGLUE benchmark
consisting of seven datasets and four popular
dialog understanding tasks. For reproducibility,
we release the code and data at https:

//github.com/AlibabaResearch/

DAMO-ConvAI/tree/main/space-2.

1 Introduction

Task-oriented dialog (TOD) systems aim to help
users to accomplish specific tasks through natural
language interactions, e.g., restaurant booking, ho-
tel reserving, and movie searching (Young et al.,
2013). In order to fulfill a user goal, the dialog

∗ Corresponding authors.
Equal contribution.

systems must be capable of extracting structured
semantics from the dialog utterances, which is of-
ten referred to as dialog understanding. Common
tasks of dialog understanding include: 1) intent
prediction, where the system classifies the user in-
tention given the current utterance, 2) slot filling,
where the system extracts the value spans for pre-
defined slots from user utterances, and 3) dialog
state tracking, where slot-value pairs are predicted
and updated according to multi-turn dialog history.

Recent methods address the dialog understand-
ing problems mainly by task-adaptive training with
pre-trained language models (PLMs) (Henderson
et al., 2020; Mehri et al., 2020; Zhang et al., 2022).
By fine-tuning the entire parameters of PLMs on
dialog corpora, the versatile knowledge acquired
from large-scale corpora can be adapted to han-
dle various dialog understanding tasks. For ex-
ample, TOD-BERT (Wu et al., 2020) continually
pre-trained a BERT on large-scale task-oriented di-
alog corpora with similar objectives to grasp more
knowledge in conversations and achieved good re-
sults on a wide range of tasks. To further enhance
the representations of dialogs, contrastive learning
is widely used for dialog pre-training via pulling
semantically similar sentences together and push-
ing apart dis-similar ones, which has shown strong
ability in few-shot dialog understanding (Zhang
et al., 2020, 2021a).

Although contrastive learning (CL) is effective
in pre-training dialog models, it still suffers from
several problems. First, the current practice of CL
often neglects the semantic structures of dialog ex-
amples and only utilizes shallow self-supervised in-
formation. Figure 1 illustrates the semantic frames
of two dialog examples, which indicate the hierar-
chical structures with semantic meanings in terms
of intentions and slots. The semantic structure is
often summarized as the turn-level structural an-
notation and is prominent in multi-domain task-
oriented dialogs. Exploiting such structure during
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Semantic Frame

Intent:  hotel-inform 
Slots:    price=cheap, area=east

Intent:  hotel-inform 
Slots:    price=cheap, area=west

Semantic Structure

hotel-inform

price area

cheap east

hotel-inform

price area

cheap west

I am really )red. I want one 
cheap hotel in the east area.

User Query A

Well, I’d like to book a cheap 
hotel in west of the town.

User Query B

Figure 1: Two dialog examples that have similar se-
mantic contents from the MULTIWOZ dataset. The
difference is highlighted in red and green colors.

task-adaptive pre-training has been proved to be
effective in dialog understanding tasks (Yu et al.,
2020). However, In conventional CL, only the ex-
amples with the exact same annotations are deemed
as positive samples, while all other examples are
considered as negative ones (Gao et al., 2021), ig-
noring the fact that different examples may share
similar semantics to some extent as shown in Figure
1. Second, in previous dialog pre-training methods,
no annotations have been exploited to learn better
pre-trained representations. But in computer vision,
there have already been many works demonstrating
that labeled data can accelerate the pre-training pro-
cedure as well as improve the model performance
(Assran et al., 2020; Khosla et al., 2020; Dai et al.,
2021b). Therefore, we argue that it is crucial to
combine both the labeled and unlabeled dialog data
to learn more powerful pre-trained dialog models.

Built on these motivations, we propose a novel
tree-structured pre-trained conversation model
(SPACE-2), which fully exploits the structural in-
formation in labeled data to improve the dialog pre-
training on large-scale unlabeled corpora via semi-
supervised contrastive learning. To be specific, we
first define a general semantic tree structure (STS),
which is suitable for TOD and compatible with the
discrepancy of annotation schema in varied dia-
log datasets. Then we propose a novel multi-view
scoring function to measure the similarity among
different labeled dialogs. Given two dialogs with
STSs, the scoring function is able to calculate their
relations hierarchically and aggregate the output
multiple scores from either global or local aspects.
In this way, all labeled data are viewed as positive
samples with soft scores instead of hard scores (0
or 1) in traditional CL. Thus, more subtle semantic
structures in training samples can be taken into ac-

count, and dialog representations can be learned in
a semi-supervised manner.

Our contributions are summarized as follows:

• We explore tree-structured semi-supervised
contrastive pre-training for task-oriented dia-
log understanding. To the best of our knowl-
edge, this is the first study to inject struc-
tural information and exploit labeled semantic
frames in a pre-trained conversation model.

• We propose a multi-view score function for
similarity measurement among different la-
beled dialogs, which could calculate relations
hierarchically and aggregate multiple judge-
ments from either global or local aspects.

• We conduct extensive experiments on the Di-
aloGLUE benchmark with seven different
datasets. Empirical results show that our
SPACE-2 consistently performs better than
strong competitors on four dialog understand-
ing tasks (i.e., intent prediction, slot filling,
semantic parsing, and dialog state tracking).

2 Related Work

2.1 Pre-trained Models for Dialog
Understanding

Recent advances in pre-trained language models
(PLMs) have spurred success in natural language
understanding in task-oriented dialog (TOD) sys-
tems. Since general-purpose PLMs such as BERT
(Devlin et al., 2019) are not able to capture dialog-
oriented knowledge in TOD, such as explicit user
intent, many studies proposed to perform pre-
training on dialog corpora. For example, ConvRT
(Henderson et al., 2020) explored the pre-trained
language transformers for TOD via learning a dia-
log response selection loss. ConvBERT (Mehri
et al., 2020) fine-tuned BERT on a large open-
domain dialog corpus using a masked language
modeling objective so that more semantically mean-
ingful representations of dialogs can be learned.
TOD-BERT (Wu et al., 2020) incorporated role
tokens in the input and employed a contrastive ob-
jective for response selection. Zhang et al. (2021b)
proposed to use masked utterance modeling and re-
sponse contrastive loss to produce DialogueBERT
and showed good performance on intent, emotion,
and entity recognition. Apart from training with
common objectives, some work (Yu et al., 2020; He
et al., 2020b; Hui et al., 2021; Dai et al., 2021a) also
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Statistics AnPreDial UnPreDial

# Datasets 32 21
# Dialogs 459,465 3,217,058
# Turns 3,366,479 19,578,028

Avg. tokens per turn 13.9 14.5
Avg. tokens per dialog 101.8 88.2

Total unique tokens 46.8M 283.7M

Table 1: Statistics of our pre-trained dialog dataset.

proposed to learn relations between schema and
keywords of utterances during pre-training, which
benefits in certain downstream tasks that require
parsing semantics. The work of (Sun et al., 2019;
Liu et al., 2020a) tried to integrate structural infor-
mation of knowledge graphs to enhance language
representations. Unlike these methods, we are the
first to inject the semantic tree structure into pre-
training models for dialog understanding.

2.2 Contrastive Learning

Contrastive learning (CL) is one of the pre-training
methods that leverage large-scale unlabeled data
to learn meaningful sentence representations. The
key idea of CL is to narrow the distance between
two semantically similar sentence representations,
meanwhile, push away the representations of dis-
similar sentences (Gao et al., 2021; Wu et al., 2021;
Yan et al., 2021). There are also several studies
focused on applying CL to dialog understanding
tasks. For example, Zhang et al. (2021a) used CL
as self-supervised pre-training and adapted the pre-
trained models on few-shot intent prediction. The
studies (Mehri and Eric, 2021; Vulić et al., 2021)
utilized supervised CL at the fine-tuning stages for
intent prediction, where the samples from the same
class are all regarded as positives. He et al. (2020a)
proposed to use adversarial samples as difficult neg-
ative instances in CL for zero-shot cross-domain
slot-filling. Different from previous work, we use
CL in both pre-training and fine-tuning stages. In
addition, we train dialog models with both labeled
and unlabeled data in a semi-supervised manner.

2.3 Semi-Supervised Contrastive Learning

Semi-supervised contrastive learning has proved
to be an effective pre-training method in many
research field, such as image recognition (Yuan
et al., 2021; Park et al., 2021; Li et al., 2021; Kim
et al., 2021a), image segmentation (Alonso et al.,
2021; Zhou et al., 2021) and speech recognition
(Xiao et al., 2021; Inoue and Goto, 2020). It can

combine both labeled and unlabeled data together
to train effective neural models for downstream
tasks. He et al. (2022b) proposed to use consis-
tency regularization loss to learn dialog policy from
labeled and unlabeled dialog corpora via a semi-
supervised manner. However, leveraging such a
semi-supervised contrastive learning paradigm in
task-oriented dialog understanding remains unex-
plored. In this paper, we explore semantic struc-
tures in TOD, and propose a new contrastive learn-
ing approach that calculates semantic tree-structure
similarity among all possible labeled dialog data.

3 Pre-training Data

In this section, we first describe the dialog datasets
(He et al., 2022a) used for pre-training, including
a labeled dialog dataset (AnPreDial) and a large-
scale unlabeled dialog corpus (UnPreDial). Then,
we elaborate on the semantic tree structure (STS)
for the task-oriented dialog data.

3.1 Dataset Description

To provide sufficient high-quality dialog corpora
to train our pre-trained conversation model, we use
a labeled dialog dataset called AnPreDial, which
contains 32 existing labeled TOD datasets, rang-
ing from single-turn question answering to multi-
turn dialogs. We also use a large-scale unlabeled
dialog corpus called UnPreDial with 21 dialog
datasets, ranging from open-domain online forums
to document-grounded dialogs. The statistics of
our pre-trained dialog corpora are shown in Table
1 and more details can be found in Appendix A.

3.2 Semantic Tree Structure

Task-oriented dialogs often contain several user
goals, and the system needs to help fulfill these
goals through interacting with users. To this end,
the user utterances and system responses are usu-
ally composed of rich semantics such as intents
and slots. In different datasets, the annotation
taxonomy used to describe the semantic scopes
varies. For example, in some intent recognition
datasets such as BANKING77 (Casanueva et al.,
2020) and CLINIC150 (Larson et al., 2019), they
only possess a pre-defined intent set and formu-
late the task as a classification problem. In other
datasets like Taskmaster (Byrne et al., 2019a), only
the slot labels are provided; for instance, given
a user utterance “I need a table for tonight at 7
pm for 8 people", the label is “time.reservation=7
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Figure 2: Different semantic tree structures in AnPre-
Dial, where the blue, red, green and purple circles indi-
cate DISV, ISV, IS, SV sub-structures.

pm, num.guests=8" without any intent information.
Therefore, in order to utilize all possible data in An-
PreDial to pre-train our model, we adopt a unified
schema called semantic tree structure (STS) that is
suitable for every TOD sample.

Typically, the STS contains four layers: domain
layer, intent layer, slot layer, and value layer. Every
layer is composed of nodes, which are referred to
as respective elements of labeled semantic frames.
If no matched annotations are provided, the nodes
of the corresponding layer are set as empty (de-
noted as NULL). The first layer consists of domain
nodes as successors of the root node, preceded
by the intent nodes. As children of intent nodes,
slot nodes occupy the third layer of the semantic
tree. As leaf nodes, the value nodes take the slot
nodes as parents. Figure 2 shows three tree struc-
tures of different dialog samples from MULTIWOZ
(Eric et al., 2020), BANKING77 and Taskmaster.
In MULTIWOZ , the labels follow the dialog act
schema in Young (2007), and all layers contain cer-
tain semantic elements. But the other two datasets
do not follow the schema and lack respective ele-
ments in some layers.

4 Methods

In this section, we first introduce the model ar-
chitecture. Then we expound on the pre-training
procedure with the proposed tree-structured semi-
supervised contrastive learning (CL) paradigm.

4.1 Model Architecture

As illustrated in Figure 3, we build our SPACE-2
model based on the bidirectional Transformer archi-
tecture (Vaswani et al., 2017). Different from the
vanilla input representations as in BERT (Devlin
et al., 2019), we set our input embeddings con-
sisting of four elements: tokens, roles, turns, and
positions. Role embeddings are used to segment

CLS Dialog context

Transformer Block  L + 1

Transformer Block  L

Lslm

zi

Lself Lsup

Figure 3: Model Framework. Lself is the tree-structured
self-supervised contrastive loss for unlabeled data, and
Lsup is the tree-structured supervised contrastive loss
for labeled data. Lslm is the span MLM loss for all data.
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. . . . . .
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Figure 4: Sub-spaces for the multi-view scoring objec-
tive. The dashed black line denotes the annotations of
different sub-structures, only used in our supervised CL.

which role the current token belongs to either user
or system. Turn embeddings are assigned to each
token according to its turn number in the dialog.
Position embeddings are assigned to each token ac-
cording to its relative position within its belonging
sentence. Appendix B shows more details.

4.2 Tree-Structured Semi-Supervised
Contrastive Learning Paradigm

We aim to leverage semi-supervised pre-training to
learn better pre-trained representations from both
the labeled and unlabeled data. Concretely, we
adopt a tree-structured supervised contrastive ob-
jective on the labeled dataset AnPreDial, while a
tree-structured self-supervised contrastive objec-
tive on the unlabeled dataset UnPreDial.

4.2.1 Tree-Structured Supervised CL
For labeled data, we treat every dialog sample as a
positive sample assigned with similarity scores to
each other. Between two semantic tree structures
(STSs), we define a score function to calculate sim-
ilarity scores from different views. Let D, I, S,
V denote the sets of node in domain, intent, slot
and value layer. For the sample from MULTIWOZ
dataset in Figure 2, its D={restaurant}, I={inform,
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request}, S={food, area, name} and V={indian,
south}. For the sample from BANKING77 dataset,
its D={}, I={card_arrival}, S={} and V={}. We
also build the sets of each possible path between
two nodes on the STS, which we denote as DI, IS,
SV, DIS, ISV, DISV. Thus for the MULTIWOZ
sample in Figure 2, ISV={inform→food→indian,
inform→area→south}, and for BANKING77 ,
ISV={}. The total super set of all above
node-sets and path-sets is denoted as Sall =
{D,I,S,V,DI,IS,SV,DIS,ISV,DISV}, where
the size K = 10. Given a pair of STSs (denoted
as Ti, Tj), then we calculate the Jaccard similarity
coefficient for each set sk in Sall to get the score
fk respectively as follows:

fk(Ti, Tj) = J(sik, s
j
k) (1)

J(A,B) =
|A ∩B|
|A ∪B| (2)

where we use i, j to discriminate sk and Sall for
two different STSs: sik ∈ Siall, s

j
k ∈ S

j
all. J is

the function for the Jaccard similarity coefficient,
which takes the ratio of Intersection over Union.

Given the dialog context, our model output a
pooled representation at the [CLS] position as the
sentence embedding z of the whole context. Thus
for any sample pair i, j, the output sentence embed-
dings are denoted as zi, zj . We use fki,j to denote
the k-th similarity score fk(Ti, Tj) for simplicity.
Suppose the size of the current batch is N , we fol-
low the common practice in Gao et al. (2021) to
duplicate the data via dropout-based data augmen-
tation. Then we acquire a 2N -length new batch.
Let I = {1 . . . 2N} be the index set of the new
batch, and C(i) ≡ I/{i}. Since we compute multi-
ple scores fki,j for each STS pair, different types of
scoring functions can be used to construct the CL
loss. In this paper, We propose both single-view
and multi-view scoring functions to build the tree-
structured supervised CL objectives as follows and
find that the multi-view method performs better.
Single-View Scoring Objective. Similar to the
common practice in the current CL, we simply
average the K scores into a single value to weigh
the semantic similarity among samples:

Lsinglesup = −
∑

i∈I

∑

j∈C(i)

(
1

K

K∑

k=1

fki,j

)
× (3)

log
exp (σ(zi) · σ(zj)/τ)∑

l∈C(i) exp (σ(zi) · σ(zl)/τ)

σ(z) = Norm(Wz + b) (4)

where σ(·) is a normalized linear mapping to trans-
form z to a unit vector. W is a learnable square
weight matrix and b is a bias vector. Norm(·) is
the normalization operation and τ ∈ [0, 1] is a tem-
perature hyper-parameter.
Multi-View Scoring Objective. Figure 4 demon-
strates our multi-view scoring objective. Instead of
summing up as one score, we can separately uti-
lize multiple scores to better exploit sub-structures
from different semantic spaces (Zhu et al., 2019)
as the following loss:

Lmultisup = −
∑

i∈I

∑

j∈C(i)

K∑

k=1

(
fki,j∑

m∈C(i) f
k
i,m

×

(5)

log
exp (σk(zi) · σk(zj)/τ)∑

l∈C(i) exp (σk(zi) · σk(zl)/τ)

)

σk(z) = Norm(Wkz + bk) (6)

where σk(·) denotes linear mappings with different
parameters. As illustrated in Figure 5, our meth-
ods are quite distinct from vanilla supervised CL
(Vulić et al., 2021), where only augmented data or
data from the same label are considered as positive
samples (fki,j = 1), and all other data are consid-
ered as negative samples (fki,j = 0). Therefore, our
method can be viewed as a generalized case where
all labeled data are regarded as positive samples
assigned with soft scores.

4.2.2 Tree-Structured Semi-Supervised CL
For unlabeled data, since there are no available
labels, we adopt a tree-structured self-supervised
contrastive objective in a similar way in Gao et al.
(2021), where only the augmented data by dropout
is deemed as a positive sample. In particular, under
the multi-view setting, the objective Lmultiself still
shares the same K sub-spaces as Lmultisup as follows:

Lsingleself = −
∑

i∈I

∑

j∈C(i)

1(j = i+)× (7)

log
exp (σ(zi) · σ(zj)/τ)∑

l∈C(i) exp (σ(zi) · σ(zl)/τ)

Lmultiself = −
∑

i∈I

∑

j∈C(i)

K∑

k=1

1(j = i+)× (8)

log
exp

(
σk(zi) · σk(zj)/τ

)
∑

l∈C(i) exp (σ
k(zi) · σk(zl)/τ)
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I am hungry. want a cheap restaurant in the east area
label: restaurant-inform(price=cheap, area=east)

 Hi, i am 5red and I want a cheap hotel in the west area
label: hotel-inform(price=cheap, area=west)

Could you please tell me when the taxi will arrive here
label: taxi-request(arrive_=me)

I will find a east restaurant in a cheap price range now
label: restaurant-inform(price=cheap, area=east)

U1

U2

U3

U4
(a) Self-Supervised CL

E
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(b) Supervised CL
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(c) Tree-Structured Supervised CL
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Figure 5: (a) Self-supervised CL only predicts augmented itself from in-batch negatives, with different dropout
masks applied. (b) Supervised CL considers samples of the exact same label as positives. (c) Tree-structured
supervised CL considers all in-batch samples as positives with soft scores. Only scores of ISV set are depicted here.

where 1(j = i+) means it only takes 1 when the
data sample j is the augmented data i+ of data
sample i, otherwise 0.

In order to maintain the language modeling abil-
ity and extract the slot values better, we also apply
the spanMLM loss Lslm (Joshi et al., 2020) to the
output representations on top of the dialog context.
Therefore, our final loss is computed as:

L∗total = L∗sup + L∗self + Lslm (9)

where ∗ can be either single or multi.

5 Experimental Setup

5.1 Task Formulation
DialoGLUE benchmark consists of seven different
datasets, including four tasks as follows:
Intent Prediction. This is a classification task for
models to predict which intent class the user con-
veys in the utterance. There are three datasets ac-
cordingly: 1) BANKING77 (Casanueva et al., 2020),
a single turn dataset in the banking domain with
77 intent labels and 13k utterances; 2) CLINIC150
(Larson et al., 2019), a multi-domain dataset that
contains 23.7k utterances, 150 intents, 10 domains;
and 3) HWU64 (Liu et al., 2021) includes 25.7k ut-
terances for 64 intents spanning 21 domains. To
conduct the downstream task, a linear layer neural
network is added to the pooled output z to classify.
The evaluation metric is accuracy.
Slot Filling. This is a sequential labeling task in
which a model tries to predict the IOB tags upon the
sequence of dialog context. There are two datasets:
1) REST8K (Coope et al., 2020), which contains
8.2k utterances and 5 slots (date, time, people, first
name, last name) from a restaurant domain; 2) a
transformed DSTC8 (Rastogi et al., 2020) dataset
comprising of 5.5k utterances and slot annotations

in 4 domains (buses, events, homes, rental cars).
Both datasets are single-turn formed and every to-
ken in the utterance is predicted as either being the
beginning of a slot value (B-), inside a slot value
(I-) or not belonging to a slot value (O). A linear
layer neural network is added to the representation
of the final output layer to predict correct tags (e.g.,
“B-time”, “I-people”). The evaluation metric is the
macro-averaged F1 score.
Semantic Parsing. The original TOP (Gupta et al.,
2018) dataset targeting at hierarchical parsing is
transformed into a joint task of intent prediction
and slot-filling, which contains 44k utterances. The
metric is the exact-match as in Mehri et al. (2020).
Dialog State Tracking. This task is multi-turn slot-
filling, where the model interprets the user mean-
ings during the course of a dialog to maintain a di-
alog state in terms of slot-value pairs. MULTIWOZ
2.1 (Eric et al., 2020) is the chosen dataset version
with 10k dialogs. Following Mehri et al. (2020),
we report joint goal accuracy and use TripPy (Heck
et al., 2020) as the downstream model.

5.2 Baselines

Our compared baselines can be divided into two
categories. The first type is the pre-trained model
adapted for general dialog understanding tasks
in DialoGLUE. We choose BERT (Devlin et al.,
2019), ConvBERT (Mehri et al., 2020) and its vari-
ants, and TOD-BERT (Wu et al., 2020) as our base-
lines. The second type is the pre-trained model
designed only for specific dialog tasks. In this pa-
per, we choose Example+Observer (Mehri and Eric,
2021), DNNC (Zhang et al., 2020), CPFT (Zhang
et al., 2021a); and ConvFit (Vulić et al., 2021) for
the intent prediction task. We also choose Span-
ConveRT (Coope et al., 2020), ConVEx (Hender-
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Full data training
Model average BANKING77 HWU64 CLINIC150 REST8K DSTC8 TOP MULTIWOZ
BERT† 86.08 93.02 89.87 95.93 95.53 90.05 81.90 56.30
ConvBERT† 86.01 92.95 90.43 97.07 95.90 87.58 82.13 56.00
ConvBERT+MLM† 86.89 93.44 92.38 97.11 95.44 91.20 82.08 56.56
ConvBERT-DG† 82.90 93.21 91.64 96.96 93.44 74.54 72.22 58.57
ConvBERT-DG+MLM† 85.34 92.99 91.82 97.11 94.34 86.49 76.36 58.29
TOD-BERTadapt 86.95 93.61 92.95 97.34 94.23 90.61 82.33 57.63
ConvBERT+MLMadapt 87.42 94.01 93.24 97.40 95.55 91.12 82.64 58.01
SPACE-2single 87.83 94.68 94.05 97.56 95.58 91.20 82.66 59.08
SPACE-2multi 88.10 94.77 94.33 97.80 96.20 91.38 82.74 59.51

w/o tree 87.57 94.19 93.49 97.44 96.08 91.04 82.23 58.52
w/o annotation 87.33 93.93 93.23 97.33 95.99 90.93 82.02 57.87
w/o UnPreDial 87.77 94.35 93.77 97.64 96.14 91.18 82.30 58.99

10-shot data training
Model average BANKING77 HWU64 CLINIC150 REST8K DSTC8 TOP MULTIWOZ
BERT† 66.07 79.87 81.69 89.52 87.28 45.05 74.38 4.69
ConvBERT† 68.03 83.63 83.77 92.10 86.90 49.08 74.86 5.90
ConvBERT+MLM† 68.22 83.99 84.52 92.75 86.17 48.40 78.84 6.87
ConvBERT-DG† 73.75 84.42 85.17 92.87 87.65 41.94 75.27 48.94
ConvBERT-DG+MLM† 73.80 85.06 85.69 93.06 87.58 44.36 72.01 48.89
TOD-BERTadapt 75.70 85.99 86.74 93.07 87.62 50.19 77.77 48.54
ConvBERT+MLMadapt 76.51 86.73 87.29 93.65 87.72 52.48 78.88 48.85
SPACE-2single 77.43 88.08 88.29 94.80 88.52 53.27 79.01 50.07
SPACE-2multi 77.98 88.31 88.85 95.22 88.85 54.41 79.55 50.70

w/o tree 77.31 87.41 87.55 94.76 88.30 54.26 78.95 49.97
w/o annotation 77.20 87.60 87.64 94.51 87.93 54.01 79.00 49.73
w/o UnPreDial 77.65 88.15 88.38 94.71 88.61 54.12 79.33 50.28

Table 2: Total results of seven datasets from the DialoGLUE benchmark. † denotes original results from DialoGLUE.
adapt denotes re-implementation via adaptively pre-training on our corpora. ‘w/o’ denotes ablation study in Sec 6.4

son and Vulić, 2021) and GenSF (Mehri and Eske-
nazi, 2021) for the slot-filling task. More details
about baselines can be found in Appendix C.

5.3 Settings

In our experiment, we initialize SPACE-2 with Con-
vBERT. The input length is bound to 256 and the
batch size is 128. AdamW is used for optimization
with an initial learning rate of 1e-5. The dropout
rate is 0.2. For semi-supervised pre-training, we
combine the labeled and unlabeled data to form a
batch in a 1:1 ratio. For each few-shot experiment,
we exclude the training data in the AnPreDial ac-
cordingly to avoid unfair data use. For instance,
if the target few-shot task is HWU64 , we only use
the few-shot training data of HWU64 and all other
datasets as pre-training resources, so no extra train-
ing data (dev&test) in HWU64 is used. For all down-
stream tasks, we average 5 seeds for final results.

6 Experimental Results

6.1 Overall Performance on DialoGLUE

We follow the original settings in Mehri et al.
(2020) and obtain complete results for our model
with single-view scoring objectives, denoted as
SPACE-2single, and with multi-view scoring ob-
jectives, denoted as SPACE-2multi, on all seven
datasets of DialoGLUE. As shown in Table 2,
our SPACE-2multi model achieves state-of-the-art
performance across all tasks, improving the av-
erage score of previous best results by 1.39%
(86.89%→88.10%) and 5.66% (73.80%→77.98%)
on full-data training and 10-shot training set-
tings, respectively. This indicates that our semi-
supervised contrastive learning can acquire bet-
ter pre-trained representations to adapt efficiently
to downstream dialog tasks by utilizing both la-
beled and unlabeled data. Although the superior
results of SPACE-2single over other baselines, it is
worse than SPACE-2multi, suggesting that multi-
view scoring is crucial to improve the overall per-
formance. To eliminate the discrepancy brought by
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Model
BANKING77 CLINIC150 HWU64
Few Full Few Full Few Full

Example+Observer 85.95 93.83 93.97 97.31 86.28 93.03
DNNC 86.71 - 93.76 - 84.72 -
CPFT 87.20 - 94.18 - 87.13 -
ConvFiT 87.38 94.16 92.89 97.34 85.32 92.42
SPACE-2multi 88.31 94.77 95.22 97.80 88.85 94.33

Table 3: Results on intent prediction tasks, including 10-
shot training (Few) and full-set training (Full) settings.

the pre-training dialog corpora, we choose two sim-
ilar models, TOD-BERT and ConvBERT+MLM,
to continually pre-train on AnPreDial and UnPre-
Dial for fairness, but they are still not comparable
to SPACE-2.

6.2 More Comparison on Intent Prediction

The experimental results of three intent predic-
tion datasets are shown in Table 3. As we can
see, SPACE-2multi achieves SOTA results on all
datasets under all settings. Specifically, it outper-
forms the previous best model ConvFiT by 0.93%,
2.33% 3.53% on BANKING77 , CLINIC150 , HWU64
under the few-data training setting, respectively.
It also improves ConvFiT by 0.61%, 0.46%, and
1.91% on the above three datasets under the full-
shot training setting. The improvements indicate
that our method has a better ability to discrimi-
nate similar intents via tree-structure enhanced con-
trastive learning than vanilla pre-training on Con-
vFiT.

6.3 More Comparison on Slot-Filling

We also conduct slot-filling experiments, partic-
ularly in the few-shot setting, to probe whether
our model is also suitable for slot extraction. We
follow the same data split and settings in GenSF
(Mehri and Eskenazi, 2021) for a fair comparison.
As shown in Table 4, SPACE-2multi achieves state-
of-the-art results across all experimental settings
on DSTC8 and REST8K . Note that in Mehri and
Eskenazi (2021), DSTC8 is evaluated in every sin-
gle domain (Bus, Event, Home, RentalCar) and
REST8K is evaluated with varied proportions (1/8,
1/16, 1/32) of the training set. It shows that our
SPACE-2 model can achieve superior results with-
out any specific designs only for slot-filling tasks.

6.4 Ablation Study

To figure out which factor contributes mainly to
our semi-supervised pre-training paradigm, we con-
duct ablation studies on DialoGLUE as shown in

Dataset Span-ConveRT ConVEx GenSF SPACE-2multi

DSTC8-Bus 84.0 86.7 90.5 91.6
DSTC8-Event 82.2 87.2 91.2 92.4
DSTC8-Home 95.4 94.5 93.7 96.2
DSTC8-RentalCar 83.0 87.4 86.7 88.3

REST8K -1/8 88.5 90.6 91.8 93.9
REST8K -1/16 81.1 86.4 89.7 92.6
REST8K -1/32 63.8 81.8 82.1 84.7

Table 4: F1 scores across all slots for evaluation on the
DSTC8 single-domain datasets in the few-shot setting.

the bottom part of each setting in Table 2. We first
investigate the effect of the tree-structured super-
vised contrastive learning by replacing it with the
traditional supervised contrastive learning (denote
as ‘w/o tree’). As we can see, vanilla supervised
contrastive learning only considers self-augmented
data or data with the exact same labels as positive
samples, so it can not capture a more detailed se-
mantic structure than our tree-structured method
and degrade from 88.10% to 87.57% in an average
score. We also try to remove the label informa-
tion from AnPreDial and treat all pre-training data
as unlabeled data (denote as ‘w/o annotation’), or
remove the unlabeled data (denote as ‘w/o UnPre-
Dial’) to see the impact. It shows that both the
labeled data and unlabeled data are crucial in our
semi-supervised pre-training scheme but labeled
data contributes more to the overall performance.

6.5 Visualization Analysis
In this part, we investigate why explicitly decom-
posing the semantic structure into sub-structures
for different views can benefit dialog understand-
ing. Figure 6 illustrates the 2D t-SNE visualiza-
tion of the output unit vectors σk(z) for test dia-
log samples from the MULTIWOZ dataset. Due
to the limited space, we only show the sub-spaces
of D,I,S,V here. As we can see, The hidden
representations of SPACE-2multi are able to differ-
entiate the similar and dissimilar parts in different
semantic sub-spaces. The learned latent sub-space
is highly correlated with the dialog annotations of
domain, intent, slot or value, which confirms our
assumption.

7 Conclusion

In this work, we propose a new pre-trained conver-
sation model named SPACE-2, which learns dialog
representations from both labeled and unlabeled
corpora via tree-structured semi-supervised con-
trastive learning (CL). To be specific, we utilize a
semantic tree structure (STS) to unify the incon-
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Figure 6: T-SNE visualization of the σk(z) in multi-view scoring function for MULTIWOZ test dialog samples.
Four sub-spaces, including Domain-, Intent-, Slot- and Value- Subspace, are shown here.

sistent annotation schema for all datasets. Then,
we propose a novel multi-view scoring function to
compute the semantic similarity based on STS’s
sub-structures for labeled dialogs. Different from
traditional CL, our method increases the relevance
of representations for all similarly labeled dialogs
and only pushes away completely different dialogs.
A self-supervised CL loss is also integrated to ex-
ploit unlabeled dialogs. Extensive experiments on
the DialoGLUE benchmark with seven datasets
demonstrate that our model achieves the best re-
sults on all dialog understanding tasks, under the
full-data and the few-shot settings.
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A Details for Pre-training Dialog Corpora

All dialog corpora we used in our experiments are
given in Table 5 and Table 6. There are totally 32
labeled datasets and 21 unlabeled datasets. For the
labeled data, each dialog sample is unified into the
same data format with tree-structured labels. For
the unlabeled data, each sample is performed care-
ful cleaning due to the high noise. The processing
methods include: (1) removing the instances where
there is a URL in utterances. (2) removing the in-
stances containing word repetitions of at least three
words. (3) removing non-English sentences. (4) re-
moving sentences containing special markers such
as “[” or “]”, as this could be markup. (5) removing
offensive language. (6) replacing the non-unicode
characters like emojis.

B Input Representations

The input embeddings consist of four elements: to-
kens, roles, turns, and positions. Role embeddings,
Eu, Es, are like segmentation embeddings in BERT
and are used to differentiate which role the current
token belongs to either user or system. Turn em-
beddings are assigned to each token according to
its adverse turn number in the input dialog data.
Position embeddings are assigned to each token ac-
cording to its relative position within its belonging
sentence. For the tokens, we use special tokens
[BOU], [EOU] to bound the user utterance, and
[BOS], [EOS] to bound the system response.

C Details for Compared Baselines

C.1 Baselines for Dialog Understanding

We choose the following baselines: 1) BERT, a
BERTbase model adapted to all downstream tasks;
2) ConvBERT, a BERT continually pre-trained on
a large open-domain dialogue corpus with MLM
(Mehri et al., 2020); 3) ConvBERT-DG, a Con-
vBERT continually pre-trained on all DialoGLUE
data before conducting specific downstream tasks
with MLM. 4) ConvBERT+MLM, a ConvBERT
continually trained on training data of specific
downstream tasks; 5) ConvBERT-DG+MLM, a
ConvBERT+MLM pre-trained on all DialoGLUE
data before conducting downstream tasks; and 6)
TOD-BERT, a BERT pre-trained on nine exist-
ing task-oriented dialogue corpora using MLM and
response selection loss (Wu et al., 2020).

C.2 Baselines for Specific Tasks
In this paper, we focus on intent prediction and
slot-filling in particular since there are adequate
pre-trained baselines specifically. For the intent pre-
diction task, we choose: 1) Example+Observer, a
ConvBERT+MLM that uses example-driven train-
ing based on similarity matching and observers
for transformer attentions (Mehri and Eric, 2021);
2) USE+ConveRT, a dual sentence encoder pre-
trained on 654M Reddit dialogs (Casanueva et al.,
2020); 3) DNNC, a discriminative nearest-neighbor
model which finds the best-matched sample via
similarity matching (Zhang et al., 2020); 4) CPFT,
which uses self-supervised contrastive learning to
perform pre-training and fine-tuning (Zhang et al.,
2021a); and 5) ConvFit, which uses regular super-
vised contrastive learning on labeled data after pre-
training on chatting data (Vulić et al., 2021). For
the slot-filling task, we choose: 1) Span-ConveRT,
a slot-filling model pre-trained on collected data
(Coope et al., 2020); 2) ConVEx, a span-ConveRT
pre-trained with the pairwise cloze task on Reddit
for few-shot slot labeling (Henderson and Vulić,
2021); and 3) GenSF, a generative pre-trained slot-
filling model (Mehri and Eskenazi, 2021).
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Dataset # Dialog # Utterance
BANKING77 (Casanueva et al., 2020) 13,083 13,083
CLINIC150 (Larson et al., 2019) 23,700 23,700
HWU64 (Liu et al., 2021) 25,716 25,716
REST8K (Coope et al., 2020) 11,115 11,975
TOP(Gupta et al., 2018) 44,783 44,783
ATIS(Hemphill et al., 1990) 5,817 5,817
SNIPS(Coucke et al., 2018) 14,484 14,484
CrossNER(Liu et al., 2020b) 27,458 27,458
FB_TOD_SF(Schuster et al., 2019) 43,323 43,323
MIT-restaurant(Liu et al., 2013) 9,181 9,181
MIT-movies-eng(Liu et al., 2013) 12,218 12,218
MIT-movies-trival10k13(Liu et al., 2013) 9,769 9,769
MULTIWOZ _coco(Li et al., 2020) 32,062 64,124
MULTIWOZ (Eric et al., 2020) 10,433 142,968
STAR(Mosig et al., 2020) 5,820 98,962
DailyDialog(Li et al., 2017) 13,118 102,979
SGD(Rastogi et al., 2020) 22,825 463,284
Frames(El Asri et al., 2017) 1,369 19,986
MSRe2e(Li et al., 2018) 10,087 74,686
DSTC2(Williams et al., 2016) 4,953 73,228
DSTC3(Williams et al., 2016) 1,980 30,456
SimJoint(Shah et al., 2018) 3,008 27,120
MulDoGo(Peskov et al., 2019) 11,668 194,097
WOZ(Mrkšić et al., 2017) 1,200 8,824
TaskMaster1(Byrne et al., 2019b) 13,210 279,287
TaskMaster2(Byrne et al., 2019b) 17,289 292,830
TaskMaster3(Byrne et al., 2019b) 23,757 477,026
InCar(Eric et al., 2017) 3,031 15,928
MULTIWOZ _synthesis(Campagna et al., 2020) 37,605 401,075
SwDA(Stolcke et al., 2000) 1,434 274,786
BiTOD(Lin et al., 2021) 3,689 72,462
PersuaGOOD(Wang et al., 2019) 300 10,864
Total 459,465 3,366,479

Table 5: Statistics for each labeled dataset in AnPreDial.
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Name # Dialog # Utterance
MulDoGo_un(Peskov et al., 2019) 63,404 1,013,985
ABCD(Chen et al., 2021) 10,042 143,855
AirDialog(Wei et al., 2018) 361,822 4,645,475
CCPE(Radlinski et al., 2019) 502 11,971
MetalWOZ(Shalyminov et al., 2020) 40,203 458,237
CMU_DoG(Zhou et al., 2018) 4,221 134,197
ConvQuestions(Kacupaj et al., 2021) 11,200 112,000
CoQA(Reddy et al., 2019) 7,699 233,260
CoSQL(Yu et al., 2019) 2,458 25,433
doc2dial(Feng et al., 2020) 688 52,688
DSTC10-track2(Kim et al., 2021b) 2,919 55,377
DSTC10-track3(Kottur et al., 2021) 11,244 110,767
MedicalDialog(Zeng et al., 2020) 482 981
Self-Dialog(Fainberg et al., 2018) 24,165 372,720
WOW(Dinan et al., 2018) 22,311 201,999
TopicChat(Gopalakrishnan et al., 2019) 8,628 188,378
Persona-Chat(Zhang et al., 2018) 11,087 81,032
MMD(Saha et al., 2018a) 1,506,129 5,477,066
CSQA(Saha et al., 2018b) 197,001 4,153,092
AmazonQA(Gupta et al., 2019) 923,685 1,847,370
ChitChat(Will et al., 2020) 7,168 258,145
Total 3,217,058 19,578,028

Table 6: Statistics for each unlabeled dataset in UnPreDial.
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Abstract

Conversational machine reading comprehen-
sion (CMRC) aims to assist computers to un-
derstand an natural language text and there-
after engage in a multi-turn conversation to
answer questions related to the text. Exist-
ing methods typically require three steps: (1)
decision making based on entailment reason-
ing; (2) span extraction if required by the
above decision; (3) question rephrasing based
on the extracted span. However, for nearly all
these methods, the span extraction and ques-
tion rephrasing steps cannot fully exploit the
fine-grained entailment reasoning information
in decision making step because of their rela-
tive independence, which will further enlarge
the information gap between decision mak-
ing and question phrasing. Thus, to tackle
this problem, we propose a novel end-to-end
framework for conversational machine read-
ing comprehension based on shared parame-
ter mechanism, called entailment reasoning T5
(ET5). Despite the lightweight of our pro-
posed framework, experimental results show
that the proposed ET5 achieves new state-of-
the-art results on the ShARC leaderboard with
the BLEU-4 score of 55.2. Our model and
code are publicly available1.

1 Introduction

Conversational machine reading comprehension
(CMRC) (Saeidi et al., 2018) aims to assist ma-
chines to understand an natural language text and
thereafter engage in a multi-turn conversation to
answer questions related to the text. Specifically,
the machine needs to reason for decision mak-
ing and question generation by interacting through
rule document, user question, user scenario, and
dialogue history. As an example shown in Fig-

∗Corresponding author.
1https://github.com/Yottaxx/ET5

Figure 1: An example in the CMRC dataset.
Machine should first make the decision of
Yes/No/Inquire/Irrelevant, and then
generate the follow-up question if the decision is
Inquire. The colored sentences show the reasoning
process for the final answer.

ure 1, after fully interacting with complicated con-
text information, the machine makes a decision
of Yes/No/Inquire/Irrelevant, and then
generates a question under the Inquire deci-
sion.

Existing researches (Saeidi et al., 2018; Verma
et al., 2020; Lawrence et al., 2019; Zhong and
Zettlemoyer, 2019; Gao et al., 2020a,b; Ouyang
et al., 2021) mainly aim to capture the interac-
tions among the complicated inputs, and achieve
promising results by conducting various fine-
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Figure 2: The overview of frameworks in CMRC. (a)
For Pipeline I, decision making and span extraction
models share the encoder but suffer from the problem
of noisy span extraction. (b) For Pipeline II, the three
stages are handled completely separately, and there is
no information sharing among the three stages. (c) Our
framework is an end-to-end framework with a shared
encoder and a duplex decoder. The duplex decoder
contains an entailment reasoning decoder and answer
generation decoder, both the information of entailment
reasoning and answer generation are shared through the
common encoder. Both decisions and follow-up ques-
tions will be generated via answer generation decoder
directly.

grained entailment reasoning interaction strategies
based on Pre-trained Language Models (PrLMs)
(Devlin et al., 2019; Liu et al., 2020; Dong et al.,
2019; Clark et al., 2020; Raffel et al., 2020).
These methods (Zhong and Zettlemoyer, 2019;
Gao et al., 2020a,b; Ouyang et al., 2021) typically
adopt pipeline architectures, which are shown in
Figure 2. These pipeline architectures typically
require three steps : (1) decision making based
on entailment reasoning; (2) span extraction if re-
quired by the above decision; (3) question rephras-
ing based on the extracted span. There are cur-
rently two types of pipeline structures: Pipeline I
and Pipeline II. The Pipeline I make decisions and
extract spans simultaneously, while the Pipeline II
handles all three stages separately.

However, for nearly all these methods (Zhong
and Zettlemoyer, 2019; Gao et al., 2020a,b;
Ouyang et al., 2021), the span extraction and ques-
tion rephrasing steps can’t fully exploit the fine-
grained entailment reasoning information in de-
cision making step. For Pipeline II, these meth-
ods (Gao et al., 2020b; Ouyang et al., 2021) do
not share entailment reasoning information among

decision-making, span extraction, and question
phrasing at all. For Pipeline I, these methods
(Zhong and Zettlemoyer, 2019; Gao et al., 2020a)
only approximate share the information through
noisy span extraction. Both of them enlarge the in-
formation gap between decision making and ques-
tion rephrasing, and seriously affect the perfor-
mance of question generation.

To tackle this problem, we propose a novel
end-to-end framework for conversational machine
reading comprehension based on shared param-
eter mechanism, called entailment reasoning T5
(ET5). Specifically, the proposed framework con-
sists of a text-to-text Transformer and an addi-
tional entailment reasoning decoder. The origi-
nal decoder in the text-to-text Transformer will di-
rectly generate either decision or follow-up ques-
tion based on the shared encoder enhanced by
entailment reasoning. The entailment reasoning
decoder can be configured with different entail-
ment reasoning strategies. Despite the lightweight
of our proposed framework, experimental results
show that ET5 achieves new state-of-the-art re-
sults on the ShARC leaderboard with the BLEU-4
score of 55.2 and significantly improves the gen-
eralization performance of question generation.

Our contributions are summarized as follows:

• We propose a novel end-to-end framework,
called ET5, to better capture the entailment
information for question generation, and thus
eliminate the information gap between deci-
sion making and question generation.

• Extensive experiments demonstrate the ef-
fectiveness of the proposed framework on
ShARC benchmark, especially in the ques-
tion generation sub-task.

2 Related Work

Conversation-based reading comprehension
(Saeidi et al., 2018; Sun et al., 2019; Reddy et al.,
2019; Choi et al., 2018; Cui et al., 2020; Gao et al.,
2021) extends the context with dialogue history,
which is formed to simulate the communication
scene in real life. Most of them are ideal subtasks,
either span-based QA tasks (Choi et al., 2018;
Reddy et al., 2019) or multi-choice tasks (Sun
et al., 2019; Cui et al., 2020). We focus on the
task (Saeidi et al., 2018) that deal with real-world
complexities, where the machine needs to make
decisions or ask questions to keep the conversa-
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tion going. This task (Saeidi et al., 2018) is called
Conversational Machine Reading Comprehension
(CMRC), which requires the machine to have the
inference ability to capture the interactions among
rule document, user question, user scenario, and
dialogue history.

Recent studies (Zhong and Zettlemoyer, 2019;
Gao et al., 2020a,b; Ouyang et al., 2021) in CMRC
are generally utilized to match the relationship be-
tween the various information. E3 (Zhong and
Zettlemoyer, 2019) first investigates the impor-
tance of clarifying the different rule units for en-
tailment reasoning. Different entailment reason-
ing strategies (Gao et al., 2020a,b, 2021) with
fine-grained reasoning units are further proposed
to improve the abilities of entailment reasoning.
In addition, discourse relationships between fine-
grained reasoning units are utilized to model the
discourse graph (Ouyang et al., 2021; Zhang et al.,
2021). These methods typically adopt pipeline
architectures, DISCERN (Gao et al., 2020b) first
discovers the unbalance and noisy problems of
Pipeline I conducted by E3 (Zhong and Zettle-
moyer, 2019) and EMT (Gao et al., 2020a), then
solves them by utilizing Pipeline II to process
the three stages separately. However, due to the
pipeline’s inability to make full use of the entail-
ment information, both of the above pipeline struc-
tures have the problem of information gap (Zhang
et al., 2021) between decision making and ques-
tion generation.

To better capture the entailment information for
question generation and eliminate the information
gap, we propose a novel end-to-end framework
for conversational machine reading comprehen-
sion based on shared parameter mechanism, called
ET5, which will be introduced in the next section.

3 Method

3.1 Settings of ET5

Each example of CMRC is formed as the tuple
{C,R,A, S}. C donates the context, which is a
concentrated sentence of rule document, user sce-
nario, user question, and dialogue history. Es-
pecially, C = {e1, e2, ..., ek, s, q, d1, d2, ..., dn},
where e donates the elementary discourse unit
(EDU) segmented from by rule documents. s
and q are user scenario and user question, d rep-
resents the dialogues. Each item of C is pre-
fixed with a special token to represents the fol-
lowing sentence, the details of the prefix are writ-

Algorithm 1 Training procedure of ET5

Input: Concentrated context C, discourse rela-
tions R, learning rate τ , discourse relations R

Output: Final answer A, entailment reasoning
state S, ET5 encoder parameters θe, ET5 an-
swer generation decoder parameters θa, ET5
entailment reasoning decoder parameters θd

1: Initialize θe,θa,θd
2: while not converged do
3: for i = 1, 2, . . . , N do
4: ei = f(ci,θe) s.t. ∀c ∈ C
5: si = f(ei, ri,θd) s.t. ∀r ∈ R
6: ai = f(ei,θa)

7: end for
8: g ← ∇θL
9: θe ← θe − τg

10: θd ← θd − τg
11: θa ← θa − τg
12: end while

ten in Section 3.2. R represents the discourse re-
lations among EDUs, the parsed details are re-
ported in Section 4.1. A is the final answer, in-
cluding the decision or follow-up question. S
donates the entailment reasoning state of each
EDU in ENTAILMENT, CONTRADICTION, or
NEUTRAL. To get the noisy supervision signals of
entailment states, we adopt a heuristic approach2

following the previous study (Gao et al., 2020a).
Given inputs C,R, ET5 needs reasoning entail-
ment states S and final answer A including the
decision and follow-up question. As illustrated
in Figure 3, we conduct duplex decoder to pro-
cess answer generation and entailment reasoning
simultaneously in a multi-task training approach
with the shared encoder. The training procedure
and evaluating procedure are illustrated in Algo-
rithm 1 and Algorithm 2, respectively.

3.2 Encoding

Fine-grained Prefix Prompt We investigate
and propose a fine-grained prefix strategy, to
prompt the interactions among different compo-
nents of the input. As shown in Figure 3, the con-
catenate input is prefixed with a text-form task pre-
fix. Furthermore, given relationship tagged EDUs,
user question, user scenario, dialogue history as
inputs, each of them is prefixed with a fine-grained

2The noisy supervision signal is a heuristic label obtained
by the minimum edit distance.
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Figure 3: The architecture of ET5. Our proposed framework is an end-to-end framework based on a single text-
to-text Transformer. The decoder of our proposed framework is a duplex decoder, including entailment reasoning
decoder and answer generation decoder. The answer generation decoder will generate the final answer directly,
either of the decision or the follow-up question. The entailment reasoning decoder is utilized to reason the fine-
grained entailment states, which is only activated in the training stage. Red boxes indicate the fine-grained prefixes,
including special prefixes and text prefixes, which are represented by purple boxes and green boxes, respectively.
Special prefixes refer to special tokens that aim to get the sentence-level representations. Text prefixes refer to the
component-specific text prefixes that aim to differentiate among different input types.

Algorithm 2 Evaluating procedure of ET5

Input: Concentrated context C, ET5 encoder pa-
rameters θe, ET5 answer generation decoder
parameters θa

Output: Final answer A
1: Initialize θe,θa
2: for i = 1, 2, . . . , N do
3: ei = f(ci,θe) s.t. ∀c ∈ C
4: ai = f(ei,θa)

5: end while

prefix.The fine-grained prefix consists of a text
prefix and a special prefix. The text prefix is used
to differentiate between different types of input as
an addition information prefix. The special pre-
fix is used to obtain sentence-level representations
required for entailment reasoning. In the case of
user scenario and each dialogue history usually
play a similar role as an information provider in
CMRC tasks, user scenario and each dialogue his-
tory share the same text prefix. Meanwhile, each
EDU has a special token [EDU]. Both user ques-
tion and final answer are prefixed with the same
text FINAL. We concatenate the fine-grained pre-
fixed EDUs, user question, user scenario, dialogue
history to get the encoding representations.

Fine-grained Prefix Encoding We concate-
nate the fine-grained prefixed EDUs, user ques-
tion, user scenario, dialogue history as the in-

put. Encoder representation He is encoded
with the input by conducting T5 encoder (Raf-
fel et al., 2020) as the encoder. Let Hs =
[he1 , he2 , ..., hek , hfi , hsi , hd1 , ..., hdn ], Hs to do-
nate the sentence-level representations. he, hf , hs,
hd represent the fine-grained special prefix token
representation of EDU, user question, user sce-
nario, and dialogue history, respectively.

3.3 Decoding

Our decoding is duplex decoding, including en-
tailment reasoning and answer generation. Espe-
cially, both answer generation and entailment rea-
soning are activated in the training stage. During
the inference stage, the answer generation decoder
will directly generate either the decision or the
follow-up question while the entailment reasoning
will be dropped. We conduct entailment reasoning
decoder with various entailment reasoning strate-
gies in the experiments, including inter attention
reasoning (Gao et al., 2020b) and dialogue graph
modeling (Ouyang et al., 2021). We mainly intro-
duce dialogue graph reasoning here, because di-
alogue graph modeling only has one more graph
reasoning block than inter attention reasoning, the
other structures are the same.

Entailment Reasoning We utilize dialogue
graph modeling for entailment reasoning decod-
ing. Dialogue graph consists of the explicit dis-
course graph, the implicit discourse graph, and the
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inter attention reasoning. The details are shown in
the following.

Given Hs and R, we construct the explicit dis-
course graph G to explicitly model the complex
logical structures between the various information
in CMRC by introducing discourse relationships
among the rule conditions. Following previous
(Ouyang et al., 2021), the graph is formed as a
Levi graph (Levi, 1942).

There are three types of vertices in the graph:
EDUs, discourse relationships, and user scenarios.
Each EDU duplex connects with the tagged rela-
tionship. The user scenario connects all the other
vertices as a global vertex. All the types RL of the
possible edges between vertices are six, each of
them is named as default-in, default-out, reverse-
in,reverse-out, self, and global. The EDUs ver-
tices and user scenario vertex are initialized with
the contextualized representation in Hs. And the
discourse relationships vertices are initialized with
a conventional embedding layer. Then the rep-
resentation hp of each node vp is initialized. To
handle the multi-relation graphs and dynamically
weight the different relations, we use a relational
graph convolution network (Schlichtkrull et al.,
2018) with a gating mechanism. the graph-based
information processing can be written as:

g(l)p = Sigmoid(h(l)p w
l
r,g), (1)

h(l+1)
p = ReLU(

∑

r∈RL

∑

vp∈Nr(vp)
g(l)p

1

cp,r
w(l)
r h

(l)
q ),

(2)
where w

(l)
r is the trainable parameters of layer

l. w
(l)
r,g is trainable parameters under rela-

tion type r of layer l. cp,r is the number of
the neighbors of node vp with relationship r.
Nr(vp) refers to those neighbors. Let Hp =

[h
(l+1
p1 ), h

(l+1)
p2 , ..., hfi , hsi , hd1 , ..., hdn ], l is the

last layer, Hp donate the explicit discourse graph
representation.

Given the EDUs tokens hidden representation
E from He. We decouple and fuse the local in-
formation and the contextualized information by
conducting the implicit discourse graph. Consid-
ering each token i of EDU as a vertex in the graph,
the adjacent matrices can express the implicit dis-
course graph. We use Ii donate the index of to-
ken i in EDU, the information decoupling adjacent
matrices M can be written as:

Ml[i, j] =

{
0, Ii = Ij

−∞, otherwise
(3)

Mc[i, j] =

{
0, Ii ̸= Ij

−∞, otherwise
, (4)

where Ml and Mc are conducted to express the lo-
cal and contextualized information. We use multi-
head-self-attention (MHSA) (Vaswani et al., 2017)
to process decoupling:

Gi = MHSA(E,Mi), i ∈ {l, c} , (5)

after exploring the potential textual relations in the
rule document, we apply a fusion layer to fuse the
information by considering the encoder encoding
and the attention hidden states of EDUs:

Ẽ1 = ReLU(f([E,Gl, E −Gl, E ⊙Gl])), (6)

Ẽ2 = ReLU(f([E,Gc, E −Gl, E ⊙Gc])), (7)

g = Sigmoid(f([Ẽ1, Ẽ2])]), (8)

C = g ⊙Gl + (1− g)⊙Gc, (9)

where f is the fully-connected layer. Let Hi =
[hc1 , hc2 , ..., hfi , hsi , hd1 , ..., hdn ], Hi donate the
explicit discourse graph representation. hci is up-
dated by the representation of [EDU] in C.

Given the sentence-level representation He,
Hp, Hi, inter attention reasoning aims to
fully interact with various information, includ-
ing EDUs, user question, user scenario, dia-
logue history. We utilize an inter-sentence Trans-
former (Vaswani et al., 2017) to reason the en-
tailment states. Let H̃e, H̃p, H̃i donate the
inter-sentence Transformer encoding representa-
tion, H̃s donate the average encoding, namely,
H̃s = [h̃e1 , h̃e2 , ..., h̃ek , h̃fi , h̃si , h̃d1 , ..., h̃dn ]. All
the vectored representations are in the same di-
mension. Following previous studies (Gao et al.,
2021), we utilize a linear transformation to track
the entailment reasoning state of each EDU:

ci =Wch̃ei + bc ∈ R3, (10)

where theWc is trainable parameters, ci is the pre-
dicted score for the three labels of the i-th states.

Answer Generation Answer generation is uti-
lized to generate either the decision or the follow-
up question. We employ T5 decoder as our an-
swer generation decoder. Given encoder hidden
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representation He, and the set of final answer
(a1, a2, ..., an), including decision or follow-up
question, each of the answers is composed of the
variable-length tokens (x1, x2, ..., xm), the proba-
bilities over the tokens are shown in the blow:

p(a) =
m∏

1

p(xi|x<i, He; θ), (11)

where θ donates the trainable parameters of our
decoder.

3.4 Training Objective

Entailment Reasoning Given the entailment
fulfillment states ci, the entailment reasoning is su-
pervised by cross-entropy loss:

Lenatil = −
1

N

N∑

i=1

log softmax(ci)r, (12)

where r is the ground truth of entailment state.

Answer Generation Given the encoder repre-
sentation He, the answer generation training ob-
jective is computed by:

Lanswer = −
M∑

i=1

log p(xi|x<i, He; θ), (13)

The overall loss function is:

L = Lanswer + λLentail. (14)

4 Experiment and Analysis

4.1 Data

Dataset The experimental dataset is ShARC, the
current CMRC benchmark, which is built up from
948 rule text. The corpus is clawed from the gov-
ernment website. The utterances size of ShARC
is 32,436, each of the utterances related to a di-
alog tree, the utterances with the same rule text
refer to the same dialog tree. Each dialog tree con-
tains all possible fulfillment combinations of con-
ditions. The train, dev, test size is 21,890, 2,270,
8,276, respectively. Each item consists of utter-
ance id, tree id, rule document, initial question,
user scenario, dialog history, evidence, and the de-
cision. Evidence is only used to support the an-
swer, and can’t be treated as input.

Preprocess Following previous methods
(Ouyang et al., 2021; Gao et al., 2020b), we first
split rule documents into elementary discourse
units (EDUs), and then tag the discourse relation-
ship among EDUs. For discourse segmentation,
the rule documents are split into EDUs by using
a pre-trained discourse parser (Li et al., 2018).
For discourse relation extraction, we utilize a
pre-trained discourse relation parser3 to tag the
structural relations among EDUs.

4.2 Setup

Evaluation Evaluation in ShARC is divided into
two parts. First is decision classification: Micro-
Acc and Macro-Acc scores are used for the eval-
uation in classification. Then question generation
part is evaluated with BLEU (Papineni et al., 2002)
score only if the prediction and ground truth in
classification are both inquired.

Implementation Details We implement ET5 by
configuring entailment reasoning decoder with
two different methods: inter attention reasoning
(Gao et al., 2020b) and dialogue graph reason-
ing (Ouyang et al., 2021), named ET5-Discern
and ET5 respectively. The parameters of entail-
ment reasoning decoder are randomly initialized,
the remain parameters are initialized with official
T5 (Raffel et al., 2020). ET5 and ET5-Discern are
fine-tuned with AdamW (Loshchilov and Hutter,
2018) in 16 epochs, and the batch sizes are 32 and
16 respectively. We use hierarchical learning rates,
the learning rate of T5 is 2e-4, the learning rate of
other parameters are 2e-5. We’ve tried 1.0, 1.5,
2.0, 3.0 for λ, and find 1.0 is the best base on the
results in the dev set. During inference decoding,
the beam search number is set to 5. All results are
conducted in two 3090 GPU (24GB memory)

4.3 Results

All results in the blind held-out test set of the
ShARC benchmark are illustrated in Table 1.
There are two different implementations here.
ET5-Discern is configured with a DISCERN-
formed entailment reasoning decoder by using the
base-size model as the backbone. ET5 is con-
figured with a DGM-formed entailment reasoning
decoder by using the large-size model as the back-
bone.

3https://github.com/shizhouxing/
DialogueDiscourseParsing
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Models Micro Macro BLEU-1 BLEU-4

Seq2Seq (Saeidi et al., 2018) 44.8 42.8 34.0 7.8
Pipeline (Saeidi et al., 2018) 61.9 68.9 54.4 34.4
BERTQA (Zhong and Zettlemoyer, 2019) 63.6 70.8 46.2 36.3
UrcaNet (Verma et al., 2020) 65.1 71.2 60.5 46.1
BiSon (Lawrence et al., 2019) 66.9 71.6 58.8 44.3
E3 (Zhong and Zettlemoyer, 2019) 67.6 73.3 54.1 38.7
EMT (Gao et al., 2020a) 69.1 74.6 63.9 49.5
DISCERN (Gao et al., 2020b) 73.2 78.3 64.0 49.1
DGM (Ouyang et al., 2021) 77.4 81.2 63.3 48.4

ET5-Discern (ours) 74.4 78.7 66.4 51.6
ET5 (ours) 76.3 80.5 69.6 55.2

Table 1: Performance on the blind held-out test set of ShARC benchmark.

Models Micro Macro BLEU-1 BLEU-4 Params

Discern 74.9 79.8 65.7 52.4 330M
ET5-Discern 75.4 79.7 65.2 51.1 220M

DGM 78.6 82.2 71.8 60.2 1020M
ET5 78.6 82.5 65.3 53.3 770M

Table 2: Performance on the dev set of the ShARC
benchmark. Params are the parameter numbers of
PrLMs used in the framework.

Models Dev Set Test Set
BLEU-1 BLEU-4 BLEU-1 BLEU-4

E3 67.1 53.7 54.1(-13.0) 38.7(-15.0)
EMT 67.5 53.2 63.9(-3.6) 49.5(-3.7)
DISCERN 65.7 52.4 64.0(-1.7) 49.1(-3.3)
DGM 71.8 60.2 63.3(-8.5) 48.4(-11.8)

ET5-Discern 65.2 51.1 66.4(+1.2) 51.6(+0.5)
ET5 65.3 53.3 69.6(+4.3) 55.2(+1.9)

Table 3: Performance of BLEU scores on the dev set
and test set of the ShARC benchmark.

Experimental results demonstrate that the pro-
posed framework achieves new SOTA with con-
siderable improvement in terms of BLEU scores.
ET5-Discern outperforms DISCERN by 2.4 in
BLEU-1, 2.5 in BLEU-4, 1.2 in micro-averaged
accuracy, and 0.4 in macro-averaged accuracy.
ET5 outperforms DGM by 6.3 in BLEU-1, 6.8
in BLEU-4. We further analyze the results in the
dev set shown in Table 2. Compared to the ex-
isting pipeline framework, our framework reduces
the number of parameters by 32.5% and 24.5% for
the base-size model and large-size model, respec-
tively.

Particularly, the BLEU scores of our ET5
framework outperform DISCERN and DGM with

a considerable improvement in the test set. Com-
pared with the previous SOTA, the results have
increased by 5.6 and 5.7 respectively in BLEU-
1 and BLEU-4. Moreover, as shown in Table
3, the existing pipeline frameworks have a cer-
tain degree of decline on the test set with BLEU
scores, which indicates the drawback of the ex-
isting pipeline architectures. In the contract, the
BLEU scores of ET5 and ET5-Discern continue
to improve on the test set, which demonstrates
the better generalization of our framework ET5 in
question generation. The above results prove that
our proposed framework takes better advantage of
the fine-grained entailment reasoning information
and eliminate the information gap between deci-
sion making and question generation.

Additionally, in the decision making evaluation,
we achieve the best performance in the dev set,
but there is a slight drop in the test set. How-
ever, a good classification result must be an in-
ference based on an existing fact. Intuitively, the
correctness of reasoning can be analyzed by the
performance of the question generation. Correct
reasoning will make the model ask the right ques-
tions. Correct classification, but asking the wrong
question, does not mean that the model has learned
the reasoning ability correctly, and the phenomena
such as statistical bias may also cause this prob-
lem.

4.4 Ablation Studies

The existing generation question evaluation met-
rics suffer from randomness4 on the small dev set

4The generated questions are evaluated with BLEU scores
only if the prediction and ground truth in classification are
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Models Micro Macro ABLEU-1 ABLEU-4

ET5-Base 75.9 80.4 54.7 43.6
ET5-Base-wo/g 75.4 79.7 45.0 36.4
ET5-Base-wo/g+f 73.4 78.0 49.4 40.3
ET5-Base-wo/e+f 72.9 77.3 42.1 35.0

Table 4: Ablation study of our base-size model on the
dev set of ShARC.

(2,270). To better evaluate the question genera-
tion abilities of models on the dev set, we utilized
ALL-BLEU (ABLEU) to evaluate all the exam-
ples that ground truth is inquired to generate a
question in ablation studies. All the other settings
remain the same with official evaluation.

The ablation studies of ET5 on the dev set on
ShARC benchmark are shown in Table 4. We use
the base-size model to investigate the impacts of
different components, there are three ablations of
our ET5-Base is considered:

• ET5-Base-wo/g trains the model without
graph reasoning block, the setting is the same
as ET5-Discern.

• ET5-Base-wo/g+f trains the model without
graph reasoning block and fine-grained pre-
fix.

• ET5-Base-wo/e+f trains the model with-
out entailment reasoning decoder and fine-
grained prefix, which can be considered as
the original T5 model.

4.4.1 Analysis of Graph Reasoning

Graph Reasoning consists of explicit discourse
graph reasoning and implicit discourse graph rea-
soning, each of them introducing discourse rela-
tions among EDUs and decoupling-fusion mech-
anism into ET5, respectively. This setting is the
same as ET5-Discern. Both accuracy scores and
ABLEU scores are improved by introducing graph
reasoning. In addition, we observe a significant
reduction in the ABLEU scores if removing graph
reasoning. ABLEU is used to measure whether
the model answers due to the correct reasoning
of the missing knowledge, the results show ET5-
Base correctly reasoned out the missing knowl-
edge, which suggests the necessity of graph rea-
soning block.

both ’inquire’.

4.4.2 Analysis of Fine-grained Text Prefix
We investigate the necessity of the fine-grained
text prefix by additional removing the fine-grained
text prefix in ET5-Discern, while it’s hard to rea-
son for the entailment of EDUs without the fine-
grained special prefix. We feed fine-grained spe-
cial tokens prefixed text into ET5 directly. As
shown in the results, compared with ET5-Base-
wo/g and ET5-Base-wo/g+f, the accuracy will be
significantly improved by introducing the fine-
grained text prefix, which indicates that directly
using special token prefixes will cause noise dis-
turbance for semantic learning. As illustrated in
4, the ABLEU-1 is decreased by 4.4, and the
ABLEU-4 is decreased by 3.9. The above results
show the importance of the fine-grained text pre-
fix.

4.4.3 Analysis of Entailment Reasoning
ET5-Base-wo/e+f can be considered as the offi-
cial T5 model. As shown in Table 4, the lack
of fine-grained entailment reasoning information
will seriously affect the performance of decision
making and question generation. Compared with
the performance of ET5-Base, the ABLEU-1 and
ABLEU-4 of ET5-Base-wo/e+f decreased by 7.3
and 5.3 after removing entailment reasoning de-
coder, which indicates the importance of entail-
ment reasoning, especially for reasoning of ques-
tion generation.

5 Conclusion

In this paper, we propose a novel end-to-end
framework, called ET5, to better capture the en-
tailment information for question generation in
CMRC, and thus eliminate the information gap be-
tween decision making and question generation.
By conducting a parameter shared encoder be-
tween answer generation decoder and entailment
reasoning decoder, the answer generation decoder
can utilize the fine-grained entailment reasoning
information to enhance the performance of ques-
tion generation. Experimental results suggest that
the proposed framework ET5 achieves the new
state-of-the-art results on the ShARC benchmark.
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Abstract

Conversational question generation (CQG)
serves as a vital task for machines to assist
humans, such as interactive reading comprehen-
sion, through conversations. Compared to tra-
ditional single-turn question generation (SQG),
CQG is more challenging in the sense that the
generated question is required not only to be
meaningful, but also to align with the occurred
conversation history. While previous studies
mainly focus on how to model the flow and
alignment of the conversation, there has been
no thorough study to date on which parts of
the context and history are necessary for the
model. We argue that shortening the context
and history is crucial as it can help the model to
optimise more on the conversational alignment
property. To this end, we propose CoHS-CQG,
a two-stage CQG framework, which adopts a
CoHS module to shorten the context and his-
tory of the input. In particular, CoHS selects
contiguous sentences and history turns accord-
ing to their relevance scores by a top-p strat-
egy. Our model achieves state-of-the-art per-
formances on CoQA in both the answer-aware
and answer-unaware settings. Our work will
be publicly available at https://github.
com/dxlong2000/CoHS-CQG.

1 Introduction

One of the key goals of AI is to build systems that
can understand and assist humans through conver-
sation. In conversations, asking questions is an
important dialogue act that serves as an important
communication skill for AI models to better inter-
act with humans (Allen et al., 2007). Taking it a
step further, asking good questions could facilitate
collecting users’ intentions and feedback, starting
a new topic, and enhancing the interactivity and
persistence of dialogues. In NLP, this line of re-
search is formulated as the task of Conversational

∗ Contribution during the internship at Institute for Info-
comm Research.

If you were a pilot flying a plane...television interview. 
After 104 seconds, Li was able to bring the fighter to a safe
landing. The plane only suffered slight damage. 
"You are a hero! Congratulations!" Li's teacher, Xu Yongling
wrote in a text message to him after the landing. He said Li
was a cool-headed pilot...

Q1: Who was flying the plane? 
A1: Li Feng.
...
Q11: Did he jump out of the craft?
A11: No.
Q12: What did he do? 
A12: Bring the fighter to a safe landing.
Q13: Was it almost completely destroyed? 
A13: No.
Q14: Who taught him? 
A14: Xu Yongling.
Q15: Did he say anything to Li? 
A15: Yes.

Ground-truth Q16: What? 
A16: You are a hero! Congratulations!

Figure 1: A dialog sample in CoQA validation set, which
reflects not all the sentences in the context and history turns
are necessary for generating Q16.

Question Generation (CQG), which aims to gen-
erate questions based on the conversation history
(Pan et al., 2019a; Nakanishi et al., 2019).

Although question generation has been explored
intensively (Pan et al., 2019b; Lu and Lu, 2021),
most existing studies focus on single-turn question
generation, which aims to generate one question
from a given context. However, in the scene of con-
versation, it poses an additional challenge of multi-
turn question generation, in which the model is
required to generate multiple questions during the
conversation, and the generated questions should
be coherent and form a smooth conversation flow.

Despite the intensive exploration of single-turn
QG, less attention has been drawn on CQG. Previ-
ous work of CQG mostly focuses on solving two
main challenges: coreference alignment and con-
versation flow. Gao et al. (2019) proposed CFNet to
model coreference alignment and conversation flow
explicitly. Gu et al. (2021) proposed ChainCQG,
a two-stage model with two modules: the Answer
Encoder learns the representation of the context
and answer in each turn, and the Question Genera-
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tion learns the representation of the conversational
history and generates the next turn’s question. How-
ever, most previous work makes use of all the con-
text and conversation history indiscriminately. On
the contrary, we argue that not all sentences in the
context, and not all previous turns in the conversa-
tion history are necessary for the model to generate
the question in the next turn, and they may even
harm the generation capacity of the model. Fig-
ure 1 shows such an example, where we see that
only the blue parts of the context and history are
necessary for generating the 16-th turn’s question.

To address the above concerns, we introduce
CoHS-CQG, a two-stage CQG model, as described
in Figure 2. In the answer-aware stage, we input
sentences in the context and the conversation his-
tory turns into a pretrained sentence-transformer
(Reimers and Gurevych, 2019) for calculateing the
relevance scores of the (sentence, history
turn) pairs. Context and History Selection
(CoHS) module (Section 3.1) is then employed
to shorten the context and conversation history
concurrently by selecting top-p {sentence, history
turn} pairs of contiguous sentences in the context,
and contiguous previous turns in the history. The
shortened context and history are then fed into a
T5-based (Raffel et al., 2020) question generation
model to generate the questions. By training the
model on the shortened context and history, we ob-
serve that generated questions are generally more
aligned with the conversation, which reflects that
the model is optimised better in the conversational
alignment. Our model achieves state-of-the-art re-
sults in the CQG answer-aware setting on both
automatic evaluation metrics and a careful human
evaluation. In the answer-unaware stage, we pro-
pose a pipeline approach (Section 3.2) to leverage
our model on the answer-unaware setting, which
also achieves the state-of-the-art performance on
human evaluation.

In summary, our main contributions are: (1)
CoHS-CQG, a two-stage CQG framework for both
answer-aware and answer-unaware settings, which
adopts a novel module, CoHS, to shorten the con-
text and history before inputting them to the QG
model. CoHS can be plugged into any CQG model,
which makes it easily reproducible, (2) new strong
state-of-the-art performances on answer-aware and
answer-unaware CQG, and (3) a thorough analy-
sis and evaluation about the selection capacity of
CoHS.

2 Related Work

2.1 Single-turn Question Generation

Single-turn Question Generation (SQG) has been
focused extensively through the years. Early stud-
ies relied on syntactic transformation to convert
declarative sentences to questions (Heilman and
Smith, 2010; Khullar et al., 2018). Recently, Du
et al. (2017) showed the limitations of such rule-
based methods and formulated the question gen-
eration problem as a sequence-to-sequence task.
The task is generally cast into two main streams:
answer-aware and answer-unaware.

In the answer-aware setting, the target answer is
revealed to SQG models. The models then have
to solve the task by either treating the answer as
an extra input feature or encoding the answer by
a separate network (Pan et al., 2019b). However,
the answer is not available in the answer-unaware
case. Traditional approaches in this setting include
two main steps: answer-span selection and answer-
aware question generation (Du and Cardie, 2017;
Subramanian et al., 2018). Recent state-of-the-
art systems in answer-aware setting (Dong et al.,
2019; Qi et al., 2020b; Lelkes et al., 2021; Mu-
rakhovs’ka et al., 2021) and in answer-unaware
setting (Scialom et al., 2019; Lopez et al., 2020) all
rely on transformer-based architectures, and they
are commonly evaluated on SQuAD (Rajpurkar
et al., 2016).

2.2 Conversational Question Generation

Despite the intensive exploration in both settings
of the single-turn QG task, there is much less ex-
ploration in Conversational Question Generation
(CQG). Most of the previous studies focus on the
answer-unaware setting (Pan et al., 2019a; Nakan-
ishi et al., 2019; Qi et al., 2020a), but a limited
number of works are in the answer-aware setting.
In general, there are two main challenges in CQG:
coreference alignment and conversation flow. Mod-
els in the answer-aware setting then have been pro-
posed to solve those problems such as CFNet (Gao
et al., 2019), by which the coreference alignment
and conversation flow are modeled explicitly, and
ChainCQG (Gu et al., 2021), which contains two
modules: the Answer Encoder (AE) module learns
the representation of the context and answer span in
each turn, and the Question Generation (QG) mod-
ule learns the representation of the conversational
history and generates the next turn’s question.
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Figure 2: An overview of our proposed framework CoHS-CQG. The modules with the same color have the same functionality.

3 CoHS-CQG

We formulate the conversational question gen-
eration (CQG) task in two different settings:
answer-aware and answer-unaware. For the
answer-aware CQG, given the referential con-
text C = {c1, c2, ..., cm} where ci is the i-
th sentence in context, the conversation history
Hn = {(q1, a1), (q2, a2), ..., (qn−1, an−1)}, where(qi, ai) is the i-th turn question-answer pair in con-
versation, the target answer an, and the rationale
rn, as input Dan = {C,Hn, an, rn}, the model
then learns to generate the question qn. The ra-
tionale rn is an associated text span from the con-
text which contains or explains the given answer
an. For the answer-unaware CQG, however, given
Dun = {C,Hn}, the model learns to generate the
current question qn without an and rn.

Our proposed CoHS-CQG framework is shown
in Figure 2. The contextC and conversation history
Hn are first fed into a Sentence Encoder (SE) to
compute the relevance scores. In the answer-aware
setting, the relevance scores, together with an and
rn are input to the Context and History Selection
(CoHS) for selecting the parts of C andHn that are
most relevant to the current generation turn, and
they are then input to the Question Generation (QG)
module. In the answer-unaware case, since an is
unavailable,C andHn are first fed into the Answer-
span Extractor (AE) to extract an, and an is later
verified by the Question Filtering (QF) module.

3.1 Answer-aware CQG

Sentence Encoder (SE) Given the context C and
conversation history Hn, we employ a pretrained
sentence-transformer (Reimers and Gurevych,
2019) to embed each sentence ci in C, and each
question-answer pair (qj , aj) in Hn (i.e. the con-
catenation of qj and aj), respectively. We then

compute a relevance matrix T ∈ R∣C∣×∣Hn∣ as

T[i][j] = rel(ci, (qj , aj)) = aibj∣ai∣∣bj∣ , (1)

where ai and bj are the embeddings of ci and
concat(qj , aj), respectively, the relevance score
rel(⋅) is defined as the cosine similarity, and
1 ≤ i ≤ m, 1 ≤ j ≤ n − 1.

Context and History Selection (CoHS) To gen-
erate the current question qn, existing CQG models
(Gao et al., 2019; Gu et al., 2021) commonly take
the full context C and all the previous question-
answer pairs Hn as input. Moreover, in leveraging
conversation history, some studies (Ohsugi et al.,
2019; Zhao et al., 2021) have begun to consider
how to select historical information related to the
current utterance, but only simply selected the last
k turns. We argue that not all parts of the con-
text and conversation history are necessary for the
model to generate the current question since the
topic in a conversation may shift. On the con-
trary, introducing irrelevant parts worsens the per-
formance of the model (See Table 1 and 4). To
address this problem, we propose a top-p CoHS
strategy that dynamically selects the most relevant
sentences in the context concurrently with the most
relevant preceding conversation utterances.

Given the input Dan = {C,Hn, an, rn} and the
relevance matrix T, CoHS aims to select the top-p
of sentences and QA pairs from C and Hn, respec-
tively. Inspired by Holtzman et al. (2020), we for-
mulate our top-p CoHS strategy as, finding the sub-
set Csub = {cv−u, cv−u+1, ..., cv−1} and Hsub ={(qn−k, an−k), (qn−k+1, an−k+1), ..., (qn−1, an−1)},
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to satisfy

minimize(u + k) (2)
v−1

∑
i=v−u

n−1

∑
j=n−k

T[i][j] ≥ p (3)

(qn−1, an−1) ∈ Hsub, cs ∈ Csub (4)

where p is a given threshold, and cs is the sen-
tence that contains rn. First, the optimizing goal
is to minimize the sum of u + k, where u and k
are the numbers of the contiguous sentences from
C and contiguous preceding conversation turns
from Hn, respectively (Eq.(2)). Then, the sen-
tences and conversation turns with higher similarity
than the threshold p are selected as the candidates
for building Csub and Hsub (Eq.(3)). In addition,
since the sentence containing the ground-truth ra-
tionale cs and the last previous conversation turn(an−1, qn−1) are intuitively relevant for generat-
ing the current question, we set two constraints in
Eq.(4). Note that the contiguity of Csub and Hsub

is necessary due to the integrity and coherence of
input. The advantage of the heuristic top-p CoHS
strategy is that CQG models can dynamically se-
lect the most relevant Csub and Hsub according to
different conversation progress, which well adapts
when topic shifting. When Hn = ∅, we select five
sentences around cs (see Appendix A.1).

Question Generation (QG) We employ a T5
(Raffel et al., 2020) as our question generation
model. To fine-turn the T5 on the shortened
context and history, we concatenate the input
Dan = {C,Hn, an, rn} in format: Answer: an, rn
Context: Csub [SEP] Hsub. The model then
learns to generate the target question qn.

3.2 Answer-unaware CQG

In Section 3.1, we utilize 1) the ground-truth pre-
vious conversation history Hn, and 2) the ground-
truth current answer an and rationale rn, to verify
how well the model performs in generating the
current question qn. However, in a more realistic
scenario such as a dialogue system, it is necessary
to verify whether the model has a good ability to
generate questions continuously, that is, the coher-
ence and fluency of the generated questions. To
this end, we propose an answer-unaware process as
shown in Figure 2, including Answer-span Extrac-
tor, CoHS (depicted in Section 3.1), QG (depicted
in Section 3.1), and Question Filtering.

Answer-span Extractor (AE) First, we treat the
earliest sentence in the context as the current ratio-
nale rn such that rn does not contain any rationales
of previous turns. Then, a T5 model is trained on
SQuAD (Rajpurkar et al., 2016) to predict the tar-
get answer span (a) given its original sentence in
context (r). We use the model to extract an from
rn. Note that we remove the answer spans that are
the same as those of previous turns, to ensure that
the generated questions are informative enough. Fi-
nally, we obtain a set of selected candidate answer
spans An = {a∗1 , a∗2 , ..., a∗t }. Each a∗i ∈ An, to-
gether with rn, and Dun are fed into the CoHS and
QG modules to generate the candidate question q∗i .

Question Filtering (QF) Under the answer-
unaware setting, since the conversation history is
not manually-labeled, we observe that one type of
the common errors is that the generated question
may not be answerable by the given context, or its
answer may not the provided target answer a∗i . To
address this issue, we train a T5 model on CoQA
(Reddy et al., 2019) to answer the generated ques-
tion q∗i , and only accept q∗i if the predicted answer
is the same as a∗i .

4 Experimentation

4.1 Experimental Settings

Dataset We conduct experiments on CoQA
(Reddy et al., 2019), a large-scale CQA dataset
including 8k conversations. Each conversation con-
tains a referential context and multiple question-
answer pairs. In total, there are 127k question-
answer pairs collected via Amazon Mechanical
Turk. The key characteristics of this dataset are its
factoid questions (i.e. What? Where? When? How
long?) and free-form answers. Since the test set of
CoQA is unavailable, we randomly sample 10% of
the original training set as our new validation set,
and keep the original validation set as our test set
so that future works can be compared with us.

Baseline Models We use a T5base (220M) as our
CoHS-CQG’s backbone. For the answer-aware
baselines, we reimplement CFNet (Gao et al.,
2019), an effective CQG framework. We also fine-
tune a T5base (Raffel et al., 2020) and a BARTbase
(Lewis et al., 2020), the SOTA transformer-based
generation models, on CoQA. For the answer-
unaware baseline, we compare with the SOTA
framework ReDR (Pan et al., 2019a).
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Model ROUGE-L B1 B2 B3 B4 METEOR BERTScore
CFNet 41.25 34.24 22.71 16.57 12.39 27.76 91.43
ChainCQG∗ 42.22 35.54 26.03 19.63 14.54 30.97 92.54
BARTbase 44.77 35.86 26.32 19.84 15.09 31.60 92.95
T5base 45.80 39.09 29.04 22.17 17.03 34.09 93.07
T5base + dyn-HS (p = 0.5) 48.64 40.83 30.74 23.64 18.18 36.49 93.43
T5base + dyn-CS (p = 1) 49.69 41.62 31.44 24.29 18.72 37.42 93.61
CoHS-CQG (Ours, p = 5) 49.91 42.10 31.86 24.65 19.11 37.76 93.65

Table 1: Automated evaluation results on our test set (i.e. CoQA validation set). dyn-HS and dyn-CS are dynamic
History Selection and dynamic Context Selection respectively (Section 4.4). B1 to B4 denotes BLEU 1-4.

Implementation Details We initialise CoHS-
CQG with pretrained checkpoints from Hug-
gingface (Wolf et al., 2020). We use AdamW
(Loshchilov and Hutter, 2019) with the warmup
ratio of 0.1 and the initial learning rate of 1e-4.
We train the model for 100k iterations with stan-
dard window size of 512, and use a Beam search
decoding strategy with beam size of 4.

Evaluation Metrics We compute the standard
n-gram-based similarity metrics, which are com-
monly used for text generation, including ROUGE-
L (Lin, 2004), BLEU (1-4) (Papineni et al., 2002),
and METEOR (Banerjee and Lavie, 2005). We
compute BLEU 1-4 by corpus_bleu function from
NLTK library.1 We compute ROUGE-F scores
in our evaluations by Python implementation of
rouge-score library.2 We also calculate BERTScore
(Zhang et al., 2020), a similarity score between the
generated and ground-truth texts by using deep
contextualized embeddings.

Human evaluation is also important to the CQG
task since the CQG model may generate the ques-
tion for the following turn in multiple ways, given
the target answer. As such, we conduct human
evaluation on both the answer-aware setting and
answer-unaware setting.

4.2 Automatic Evaluation

Table 1 shows the automatic evaluation results. We
observe that CoHS-CQG (p = 5) achieves state-of-
the-art performance on all the automatic evaluation
metrics. In particular, we derive 3 observations.
First, CoHS-CQG improves its original baseline
T5base significantly. Second, comparing to only
dynamically selecting previous turns (T5base + dyn-
HS) or sentences in the context (T5base + dyn-CS),

1https://www.nltk.org/
2https://github.com/google-research/

google-research/tree/master/rouge

Model Flu. C-Align Ans.
Answer-aware

BARTbase 2.38 2.23 2.34
T5base 2.72 2.44 2.54
CoHS-CQG (Ours) 2.74 2.58 2.60
Krippendorff’s α 0.80 0.71 0.77

Answer-unaware
ReDR 1.06 1.06 1.05
CoHS-CQG (Ours) 2.70 2.41 2.73
Krippendorff’s α 0.84 0.85 0.82

Table 2: Human evaluation results on the validation
set of CoQA. Top: answer-aware, on 100 random gen-
erated samples; Bottom: answer-unaware, on 20 ran-
dom conversations. “Krippendorff’s α” shows the inter-
annotator agreement. Flu.: Fluency, C-Align: Conversa-
tional Alignment, Ans.: Answerability.

p value Avg. #S Avg. #P ROUGE-L BLEU-4
1 3.18 1.89 48.96 18.19
2 3.73 2.49 49.38 18.61
3 4.27 2.95 49.41 18.65
5 5.29 3.67 49.91 19.11
7 6.13 4.25 49.35 18.69
10 8.12 4.92 49.18 18.52
∞ 16.09 7.97 45.80 17.03

Table 3: Average #Sentences, #Prev. Turns at different p
values of preprocessed contexts and histories by CoHS
of CoQA. p = ∞ means selecting the full context and
history. Avg. #S: average number of sentences, Avg. #P:
average number of previous turns.

CoHS-CQG achieves better performances, which
indicates that dynamically selecting both is more
effective. Third, with the threshold of relevance
p = 5 (Eq.(3)), the CoHS module shortens the
context to around 5 sentences and the history to 3
previous turns on average (Table 3), by which it
achieves the best performance.

We also compare our CoHS-CQG with the cur-
rent SOTA answer-aware CQG model, ChainCQG
(Gu et al., 2021) which contains two GPT-2 (Rad-
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ford et al., 2019) blocks. Since the provided codes
from the authors are incomplete, and the reported
results of ChainQCG in (Gu et al., 2021) are on
the authors’ own test set (they splitted 10% of the
training set to become their own test set), we were
not able to reproduce the results. Thus, we reimple-
ment ChainCQG (denote it as ChainCQG∗). We
can see that CoHS-CQG outperforms ChainCQG∗

on all automatic evaluation metrics significantly.

4.3 Human Evaluation

Evaluation Setup We further conduct human
evaluation to validate the results. In answer-aware
case, we randomly select 100 generated questions
associated with the context and conversation his-
tory. In answer-unaware case, however, since there
is no ground-truth history, simply evaluating 100
random generated samples may not be a fair com-
parison. Thus, we first select 20 random contexts
in our test set. For each context, since the number
of turns generated by our model and the competing
one, ReDR (Pan et al., 2019a), may not be the same,
we heuristically select the first five generated turns
from each model’s output to compare, resulting in
100 samples in total. We hire three annotators who
are English native speakers. Each annotator was
instructed to rate the generated questions on a 1-3
scale (3 for the best) based on three criteria: (1)
Fluency measures not only the grammatical cor-
rectness but also the meaning, and factual correct-
ness of generated questions, (2) Conversational
Alignment measures the alignment of generated
questions with the given conversation, (3) Answer-
ability measures whether the generated questions
are well answerable or not. We measure the anno-
tators’ agreement by Krippendorff’s alpha (Krip-
pendorff, 2011). Our rating system is described in
Appendix A.2.

Observations The top of Table 2 shows the aver-
ages of human scores over three annotators in the
answer-aware setting. We derive two main obser-
vations. First, there is a significant improvement in
the Conversational Alignment of CoHS-CQG com-
pared to T5, which indicates that with the shortened
context and history as input, the model learns to
focus and align with the given conversation history
much better. Second, compared to T5, there is also
a slight increase in the Answerability, which further
shows that the quality of the generated questions
is improved. There is also a minor improvement
in the Fluency, which is reasonable because T5

#Pre. turns ROUGE-L BLEU-4
1 48.14 17.43
2 48.34 17.66
3 48.21 17.68
4 47.77 17.64
5 47.15 17.59
6 46.90 17.12

Full history 45.33 16.73

Table 4: Performance of T5base with different fixed
number of previous turns on our validation set.

commonly generates fluently, grammatically and
meaningfully correct questions. Our annotators
have a good overall agreement with an alpha coef-
ficient of 0.76.

The bottom of Table 2 shows the human eval-
uation for the answer-unaware setting. First, we
observe that ReDR has low Fluency score due to
most of the generated questions are factually wrong
or have no meaning associated with the given con-
text. It also has low scores on the other two metrics
as the generated questions are frequently repetitive.
Second, the generated questions by CoHS-CQG
are generally high-quality, fluent and answerable
as they already passed the Question Filtering mod-
ule. The annotators achieve a good overall inter-
agreement with an alpha coefficient of 0.83.

4.4 Effects of Context and History Selection

We further conduct the studies about the perfor-
mance of T5 when we dynamically select the con-
text sentences or the previous turns but not both of
them concurrently. In this section, we formulate
these two problems as below.

Dynamic Context Selection In this setting, we
follow the previous studies on CQA (Ohsugi et al.,
2019; Zhao et al., 2021) to select the last k pre-
vious turns. The results are shown in Table 4.
Since T5base achieves the best performance on
BLEU-4 by using the last 3 previous turns, we
adopt this setting in the following independent
context selection experiments. Given the context
C, answer an, rationale rn, and the last k previ-
ous turns Hsub = {hn−k, hn−k+1, ..., hn−1}, hi =
concat(qi, ai), we formulate the context selection
problem in this section as finding the smallest sub-
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p value Avg. #Sentences ROUGE-L BLEU-4
0 1 48.15 17.88
1 4.35 49.69 18.72
2 8.28 49.47 18.43
3 11.51 48.45 18.30
4 13.42 48.80 18.16
∞ 16.09 48.31 18.01

Table 5: Average number of selected sentences from context
(fixing the last 3 previous turns) of each p value (left) and
performance of “T5base + dyn-CS” on our test set (right).
p = ∞ and p = 0 denote utilizing the full context and only the
sentence that contains the rationale respectively.

set Csub = {cv−u, cv−u+1, ..., cv−1}, to satisfy:

v−1

∑
x=v−u

n−1

∑
y=n−k

T [x][y] ≥ p (5)

cs ∈ Csub (6)

where p is a given threshold, and cs is the sentence
that contains rn. We name this model as T5base
+ dyn-CS in Table 1 where dyn-CS stands for dy-
namic Context Selection.

Table 5 shows how different values of threshold
p (Eq.(5)) affects the selection and the performance
of the model. We observe that with a fixed number
of previous turns k = 3, p = 1 gives us the best
performance on ROUGE-L and BLEU-4. By set-
ting threshold p = 1, and fixed 3 previous turns,
the CoHS module selects around 4 sentences in
each context sample on average. The result indi-
cates that selecting more contexts does not lead to
better performance, which is consistent with our
motivation.

Dynamic History Selection In this setting, we
follow most previous works on CQA (Ohsugi et al.,
2019; Zhao et al., 2021) and CQG (Gao et al., 2019;
Gu et al., 2021) to use the whole context C, and
then we dynamically select different numbers of
previous turns. We formulate the history selection
problem as finding the smallest subset Hsub ={(qn−k, an−k), (qn−k+1, an−k+1), ..., (qn−1, an−1)},
to satisfy:

m

∑
x=1

n−1

∑
y=n−k

T [x][y] ≥ p (7)

(qn−1, an−1) ∈ Hsub (8)

where p is a given threshold, and cs is the sen-
tence that contains rn. We name this experiment as
T5base + dyn-HS in Table 1 where dyn-HS stands
for dynamic History Selection.

p value Avg. #History Turns ROUGE-L BLEU-4
0 0 43.91 15.32

0.5 2.57 48.64 18.18
1 4.11 48.27 18.07
2 6.32 47.14 17.70
3 7.45 46.74 17.32
∞ 7.97 45.80 17.03

Table 6: Average number of selected history turns from con-
versation (with the full context) of each p value (left) and
performance of “T5base + dyn-HS” on our test set (right).
p = ∞ and p = 0 denote utilizing the full history and none of
the history respectively.

Table 6 shows how different values of threshold
p (Eq.(7)) affects the selection and performance of
the model. We can observe that with the full con-
text, p = 0.5 achieves the best performance on both
ROUGE-L and BLEU-4. By setting the threshold
p = 0.5, the CoHS module then selects around 3
previous turns on average. This observation is in
line with our following results in Table 4 (see Sec-
tion 4.5), by which we conclude that with different
values of fixed number of previous turns, k = 2
and k = 3 achieve the best results.

4.5 Discussion

Effects of Relevance Threshold p To further un-
derstand how the threshold p (Eq.(3)) controls the
selection of context and conversation history, we
conduct experiments with different values of p. Ta-
ble 3 shows the average number of the selected
sentences and the selected previous turns, together
with the performances of T5base on ROUGE-L and
BLEU-4. First, we can observe that on average,
the difference between the #Sentences and #Pre.
Turns is not large for all values of p, which reflects
that our top-p algorithm does not prioritise select-
ing long context over short history and vice-versa.
This indicates that the relevance scores assist the
algorithm to select the context sentences, together
with the history turns in a reasonable way. Second,
with p = 5, T5base yields the best performance, as
we discussed in Section 4.2.

Effects of Different Fixed Previous Turns In
Table 4, we study with the full context, how the
number of previous history turns affect the perfor-
mance of the model on our validation set. We can
observe that with the full context, the settings of
previous history turns k = 2 and k = 3 achieve
the best performances on ROUGE-L and BLEU-
4, respectively. Compared to the performances in
Table 6, it indicates that dynamically selecting in-
stead of fixing the number of previous turns indeed
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ID Context & History and the Selection of CoHS-CQG (p = 5)

1

  Answer: his owner, Rationale: the cat had been abandoned by his owner  
 Context: When my father was dying, I traveled a thousand miles from home to be with him in his last days. It was far more 
 heartbreaking than I'd expected, one of the most difficult and painful times in my life. After he passed away I stayed alone in his 
 apartment. There were so many things to deal with. It all seemed endless. I was lonely. I hated the silence of the apartment. But one 
 evening the silence was broken: I heard crying outside. I opened the door to find a little cat on the steps. He was thin and poor. He 
 looked the way I felt. I brought him inside and gave him a can of fish. He ate it and then almost immediately fell sound asleep. The 
 next morning I checked with neighbors and learned that the cat had been abandoned by his owner who's moved out. So the little cat 
 was there all alone, just like I was. As I walked back to the apartment, I tried to figure out what to do with him. Having something else 
 to take care of seemed _ But as soon as I opened the apartment door he came running and jumped into my arms. It was clear from 
 that moment that he had no intention of going anywhere. I started calling him Willis, in honor of my father's best friend. From then on, 
 things grew easier. With Willis in my lap time seemed to pass much more quickly. When the time finally came for me to return home I 
 had to decide what to do about Willis. There was absolutely no way I would leave without him. It's now been five years since my 
 father died. Over the years, several people have commented on how nice it was of me to rescue the cat. But I know that we rescued 
 each other. I may have given him a home but he gave me something greater. 
 History: <s> What was crying? <s> a cat <s> what did the author feed it? <s> yes <s> what did the author feed it? <s> fish <s> then 
 what did the cat do? <s> fell asleep <s> where was the author? <s> his father's apartment. <s> was the father alive by then? <s> no 
 <s> how far did the author travel? <s> a thousand miles <s> who did the author check about the cat with? <s> neighbors <s> what 
 did he find out? <s> the cat was abandoned

Ground-truth: by who? CoHS-CQG: by who? T5: who abandoned the cat? 

2

 Answer: in the morning, Rationale: It was here Paul found his brother on the morning of his arrival in London.  
 Context: CHAPTER VIII  ""I AM WEARY OF A HOPELESS LOVE"" Paul and Arthur shared a bachelor residence in Mayfair; shared 
 it, that is to say, insomuch as Paul had purchased it, and was the sole proprietor, and Arthur used it whenever he could get leave from 
 his regiment. It was here Paul found his brother on the morning of his arrival in London. They shook hands in silence; Paul did not 
 wish to say anything for a moment. His brother's appearance had choked him. It was one o'clock, but he was still in his dressing- 
 gown; with sunken, pale cheeks, save for one bright spot, and with faint, dark rims underneath his eyes. There were a pile of blue 
 papers and some ominous-looking envelopes on the table before him, and Paul could not help noticing the intense pallor of the hand 
 which rested upon them. ""I wish you would let a fellow know what time you were coming,"" Arthur said, rather peevishly, but with an 
 attempt at a smile. ""I didn't expect you till evening, so I was having a shack before dressing. I was late last night!"" Paul banished his 
 gravity, as far as possible, and stood with his hands in his pockets, leaning against the mantel-piece. He heartily disliked the part of 
 mentor, and he did not wish to play it, unless he were obliged. ""It was beastly early to get up,"" he said, ""but the connection at 
 Normanton is so much better. One has to wait two hours by the late train, and Normanton is such a hole. I don't know that I should 
 have come up to town at all, just yet,"" he continued after a slight pause, ""only that I'm on the committee at the club this term, you 
 know, and I haven't attended a single meeting yet. Besides, I promised Westover to put him up this time, and the half-yearly meeting's 
 to-morrow, you know. Got any engagement? If not, you might dine with me there. Always a full night election time, you know!"" 
 History: <s> Where was the joint residence? <s> in Mayfair <s> who owns it? <s> Paul <s> who else stayed there? <s> Arthur <s> 
 how often? <s> whenever he was on leave <s> from what? <s> from his regiment. <s> who is his brother? <s> Paul and Arthur were 
 brothers <s> where did they meet up? <s> in the bachelor residence"

Ground-truth: when? CoHS-CQG: when? T5: When did Paul find his
brother? 

Figure 3: Case studies on the CoQA validation set and the results of T5 (with full context and history) and CoHS-
CQG (with shorten context and history). The texts of rationales are underlined. The selected texts in context and
history by our CoHS (p = 5) module are highlighted in blue.

Model Flu. C-Align Ans.
Answer-unaware

CoHS-CQG w/o AE 2.13 1.76 1.64
CoHS-CQG w/o QF 2.16 1.98 2.02
CoHS-CQG (Ours) 2.74 2.58 2.60
Krippendorff’s α 0.82 0.79 0.77

Table 7: Human evaluation results for the ablation stud-
ies of AE and QF modules on the validation set of CoQA.
“Krippendorff’s α” shows the inter-annotator agreement.
Flu.: Fluency, C-Align: Conversational Alignment, Ans.:
Answerability.

improves the performance.

4.6 Ablation Studies

Ablation of Answer-span Extractor (AE) We
conduct an ablation study for the Answer-span Ex-
tractor (AE) (CoHS-CQG w/o AE), in which we
replace the predicted answer span an with the ratio-
nale rn (a sentence in the context C). The results
are shown in Table 7. Note that in this experiment,
we also remove the Question Filtering (QF). As
expected, the Answerability and Conversational
Alignment drop significantly, which is explainable
since the rationale rn may contain redundant infor-
mation, thus it is not suitable to be rn.
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Ablation of Question Filtering (QF) We study
the ablation of the Question Filtering (CoHS-CQG
w/o QF), in which we use all the generated ques-
tions. The results are shown in Table 7. As we can
see, the Answerability and Conversational Align-
ment decrease significantly. We observe that with-
out QF, there may have been turns in which the
questions are similar with the same answers, which
further proves the necessity of this module.

4.7 Case study: Effectiveness of CoHS

When carefully studying the performances of T5
and BART, we observe that the key for these mod-
els to gain high scores on n-gram automatic metrics,
such as BLEU and ROUGE, is focusing on the his-
tory to optimise the conversational alignment. We
argue that, with a long context and the whole con-
versation history, the input likely tends to distract
the attention of the models on the given conver-
sation history. The models in these cases mostly
focus on the given answer and rationale to generate
the question, rather than highly focusing on the his-
tory. Figure 3 lists some of the examples whereby
we draw the above conclusion.

Considering the first example in Figure 3, we
observe that with the full context and history, the
T5 model mostly relies on the rationale “the cat
had been abandoned by his owner” to generate the
question “who abandoned the cat?”. Although the
question is somehow aligned with the given con-
versation history, it is not close enough to the gold
question “by who?”. The other two examples in
Figure 3 are also the same, and we observe a lot
of cases that are similar to them. We argue that in
order to generate such questions like “by who?”, in-
tuitively, the model should pay significant attention
to the conversation history to optimise the conver-
sational alignment. By inputting to the model the
shortened context and history, we can see that the
generated questions in Figure 3 by CoHS-CQG in-
deed change, and they are exactly the same as the
ground-truth questions. This improvement reflects
that training the model such as T5 with the short-
ened context and history samples indeed guides the
model to optimising more on the conversational
alignment property instead of just heavily focusing
on the target answer and rationale.

5 Conclusion

This paper presents CoHS-CQG, a two-stage frame-
work for CQG, which adopts a CoHS module to dy-

namically select relevant context and conversation
history for generating the question in the current
turn. Experimental results on CoQA demonstrate
that the proposed CoHS-CQG achieves state-of-the-
art performances in both answer-aware and answer-
unaware settings. Our extensive analysis and stud-
ies show the effectiveness of CoHS in improving
the CQG models. In future work, we will focus
on how to select the contiguous question-worthy
content from the paragraph by reasoning.
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A Appendix

A.1 Comparison with Static Context Selection
To compare our dynamic context selection strategy
with a static way, we simply select five context sen-
tences around cs in the contextC = {c1, c2, ..., cm}
since Table 5 shows that around more than four
sentences on average achieves the best perfor-
mance. To this end, we consider a simple heuris-
tic method as below. If 3 ≤ s ≤ m − 2,
Csub = {cs−2, cs−1, cs, cs+1, cs+2}; else if s ≤ 2,
Csub = {c1, c2, c3, c4, c5}; and if s ≥ m − 1,
Csub = {cm−4, cm−3, cm−2, cm−1, cm}. We then
select five sentences in the context by this way
and use the whole conversation history. The re-
sult shows that the T5base model yields 17.24 of
BLEU-4 and 47.02 of ROUGE-L, which slightly
outperforms the T5base baseline using the full con-
text in Table 1.

A.2 Human Rating System
In this section, we describe how our annotators
are instructed to give the points in three criteria
Fluency, Conversational Alignment, and Answer-
ability. There are three main notes. First, Fluency
measures not only the grammatical correctness, but
also measures the meaning and factual correctness
of the question with the given context. Second, in
the answer-unaware setting, as there is no golden
history, we do not define the Score 2 in the Conver-
sational Alignment as in the answer-aware setting.
Third, for the Answerability criterion in the answer-
unaware setting, the target answer and target ratio-
nale are unavailable. However, since our approach
first selects the rationale, and then extracts the can-
didate answers from it to generate the questions,
we still evaluate the quality of our questions (Score
2, 3) with the selected candidate answers by the
Question Filtering module (Section 3). For the
details, see Figure 4.

Criterion Human Rating System

Fluency

Answer-
aware

 Score 1: The generated question 
 has no meaning/factually wrong with 
 the information from the context. 
 Score 2: The generated question is 
 good, but has a small grammatical 
 error.
 Score 3: The generated question is 
 gramatically correct and factually 
 correct with the information from the 
 context.

Answer-
unaware

 Score 1: The generated question 
 has no meaning/factually wrong with 
 the information from the context. 
 Score 2: The generated question is 
 good, but has a small grammatical 
 error.
 Score 3: The generated question is 
 gramatically correct and factually 
 correct with the information from the 
 context.

Conversational
Alignment

Answer-
aware

 Score 1: Generated question is 
 totally irrelevant to the conversation 
 history. 
 Score 2: Generated question is 
 aligned to the conversation history, 
 however, it has a differennt meaning 
 with the golden. 
 Score 3: Perfect, generated 
 question is aligned to the 
 conversation history and asks about 
 the same as the golden.

Answer-
unaware

 Score 1: Generated question is 
 totally irrelevant to the conversation 
 history.
 Score 3: Generated question is 
 aligned to the conversation history.

Answerability

Answer-
aware

 Score 1: Generated question is not 
 answerable by the context. 
 Score 2: Generated question is 
 answerable by the context, but does 
 not have the answer as the the 
 target answer.
 Score 3: Perfect, gennerated 
 question is answerable by the 
 context and its answer is target 
 answer.

Answer-
unaware

 Score 1: Generated question is not 
 answerable by the context.
 Score 2: Generated question is 
 answerable by the context, but does 
 not have the answer as the the 
 target answer (target answer is 
 available since we first extract the 
 target answers).
 Score 3: Gennerated question is 
 answerable by the context and its 
 answer is target answer (target 
 answer is available since we first 
 extract the target answers).

Figure 4: Human Rating System
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Abstract

Pre-trained language models have made great
progress on dialogue tasks. However, these
models are typically trained on surface dialogue
text, thus are proven to be weak in understand-
ing the main semantic meaning of a dialogue
context. We investigate Abstract Meaning
Representation (AMR) as explicit semantic
knowledge for pre-training models to capture
the core semantic information in dialogues
during pre-training. In particular, we propose
a semantic-based pre-training framework that
extends the standard pre-training framework
(Devlin et al., 2019) by three tasks for learning
1) core semantic units, 2) semantic relations
and 3) the overall semantic representation
according to AMR graphs. Experiments on
the understanding of both chit-chats and task-
oriented dialogues show the superiority of our
model. To our knowledge, we are the first
to leverage a deep semantic representation for
dialogue pre-training.

1 Introduction

Dialogue systems have attracted increasing at-
tention from both academia and industry re-
searches (Chen et al., 2017; Deriu et al., 2021;
Gao et al., 2021a). The tasks can be commonly
divided into two categories: task-oriented dialogue
systems (Wen et al., 2017; Dinan et al., 2019; Mehri
et al., 2020) and chit-chat dialogue systems (Ritter
et al., 2011; Li et al., 2017; Yu et al., 2020; Cui
et al., 2020; Chen et al., 2021, 2022; Song et al.,
2022). The former aims to interact in the context of
a specific task, while the latter chats with users
without task and domain restrictions. Despite
differences in goals, a common challenge for both
tasks is understanding the semantic information
conveyed in a dialogue history.

Recently, semantic representations from pre-
trained language models have achieved remarkable

∗Work done as an intern at Tencent AI Lab.

police

hum-02

:arg0

boy

The police hummed to the boy as he walked to town.

:beneficiary

walk-01

:time

:arg0
town

:destination

Figure 1: An AMR graph for sentence “The police
hummed to the boy as he walked to town.”

success on a spectrum of dialogue tasks (Wen et al.,
2015; Zhang et al., 2020; Wu et al., 2020; Gu
et al., 2021; Zeng et al., 2021; Zhang and Zhao,
2021; Cui et al., 2021), where knowledge learned
in pre-training over large-scale dialogue corpora
can be transferred to downstream applications.
Current pre-training techniques typically focus
on the surface text. However, they do not
explicitly consider deep semantic clues beyond text,
which leads to some unexpected behavior, such as
paying attention to meaningless words (Mudrakarta
et al., 2018), and suffering from spurious feature
associations (Kaushik et al., 2020) and adversarial
attacks (Jia and Liang, 2017).

Incorporating semantic information into dia-
logue systems has been shown to be helpful
for many downstream tasks, such as dialogue
intent prediction (Gupta et al., 2018), dialogue
state tracking (Cheng et al., 2020), and dialogue
relation extraction (Bai et al., 2021). These
methods first parse dialogue turns into semantic
structures, and then incorporate them as extra
features into neural systems. However, they 1) only
focus on domain-specific benchmark data, leaving
the general potentiality of semantic structures
unexploited; 2) require either human annotations
or an external parser to obtain semantic structures,
raising costs or/and causing error propagation for
real applications.

We present SARA, a Semantic-graph-based
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pre-trAining fRamework for diAlogues, aiming
to endow a pre-trained dialogue model with a
stronger ability to infer semantic structures from
conversations by using explicit semantic structures
for more fine-grained supervisions. In particular,
we exploit the abstract meaning representation
(AMR; Banarescu et al. 2013), a fine-grained deep
structure widely adopted in semantic parsing (Lyu
and Titov, 2018; Zhang et al., 2019; Cai and
Lam, 2020; Bevilacqua et al., 2021; Bai et al.,
2022) and generation (Konstas et al., 2017; Song
et al., 2018; Zhu et al., 2019; Bai et al., 2020;
Ribeiro et al., 2021). As shown in Figure 1, AMR
represents a sentence using a rooted directed graph,
highlighting the core semantic units (e.g., “police”,
“hum”, “boy”) in a sentence and connecting them
with semantic relations (e.g., “:arg0”, “:time”).

We explicitly leverage AMR graphs for pre-
training our dialogue model. As shown in Figure 2,
SARA consists of three pre-training sub-tasks: 1)
semantic-based mask language modeling, which
extends the standard mask language modeling
task (Devlin et al., 2019) by paying more attention
to core semantic units in a dialogue; 2) semantic
relation prediction, which aims to learn semantic
relations between words; 3) semantic agreement,
which optimizes the overall similarity between
a dialogue and its corresponding AMR graph.
The SARA combines strengths of both powerful
contextualized representation of pre-trained models
and explicit semantic knowledge, while eliminating
the requirement of an external semantic parser in
downstream applications.

We choose BERT (Devlin et al., 2019) and
ROBERTA (Liu et al., 2019) models as backbone,
which are then continual pre-trained on a large-
scale conversation dataset using our framework.
Experiments show that our semantic-based frame-
work gives better results than current pre-training
methods that use much more training data,
achieving new state-of-the-art results on both chit-
chat understanding (dialogue relation extraction)
and task-oriented dialogue understanding tasks
(DialoGLUE benchmark). Our method also
gives better results than previous semantic-base
systems on downstream tasks, without using an
external parser. Further analysis suggests that
semantic information introduced by AMR can
help our model to better understand semantically
complex dialogues. To our knowledge, we are
the first to leverage deep semantic representation

for dialogue pre-training. Our code and the pre-
trained models are available at https://github.
com/goodbai-nlp/Sem-PLM.

2 Related Work

Pre-training for Dialogue. Inspired by the
success of pre-trained language models in the
general domain (Peters et al., 2018; Radford
and Narasimhan, 2018; Devlin et al., 2019;
Lewis et al., 2020), various pre-trained models
have been proposed in the domain of dialogue.
DialoGPT (Zhang et al., 2020) continual pre-trains
a GPT-2 (Radford et al., 2019) model directly on
Reddit comments data. ConvRT (Henderson et al.,
2019) pre-trains a dual Transformer encoder for
the response selection task. PLATO (Bao et al.,
2020) introduces a latent variable-based model for
dialogue response generation pre-training. TOD-
BERT (Wu et al., 2020) pre-trains a Transformer
encoder on task-oriented dialogue corpus for task-
oriented dialogue applications. MPC-BERT (Gu
et al., 2021) continues to pre-train a BERT
model with self-supervised tasks based on the
interactions among utterances and interlocutors.
SPIDER (Zhang and Zhao, 2021) continues to
pre-train a BERT model with auxiliary tasks to
predict the utterance order and understand the
sentence backbone. DialogLM (Zhong et al., 2022)
pre-trains a generative Transformer encoder on
long conversations with window-based pre-training
tasks. Our work is similar in that we also pre-train
a model on the dialogue corpora. However, unlike
these previous studies, which focus on text level
distributions, we additionally enhance the model
with semantic structures.
Semantics for dialogue. Semantic knowledge has
been used for both social chat and task-oriented
dialogues systems. PEGASUS (Zue et al., 1994)
transforms a sentence into a semantic frame which
is then used for travel planing. Wirsching et al.
(2012) design a dialogue system which performs
database operations based on semantic features.
Gupta et al. (2018) and Aghajanyan et al. (2020)
integrate intents and slots into a semantic tree and
solve intent classification and slot-filling tasks as
semantic parsing. Cheng et al. (2020) represent
task-oriented dialogue as a semantic graph to
perform dialogue state tracking. A most related
work is Bai et al. (2021), who build dialogue-level
AMR graphs for both social chat understanding and
dialogue response generation. Our work is similar
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(a) Example AMR graph.
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(d) Semantic agreement

Figure 2: The semantic-based pre-training framework.

in showing the effect of semantic knowledge
for improving dialogue understanding. However,
different from them, we focus on enhancing the
language model with semantic knowledge during
pre-training, and our model does not require an
external AMR parser in downstream applications.

3 Method

Figure 2 illustrates our semantic-based pre-training
framework for dialogues. We take a pre-trained
Transformer (Vaswani et al., 2017) encoder as
the backbone, using AMR as explicit semantic
knowledge to continuously pre-train the model on
dialogues in a multitask setting. In particular, the
following three semantic-aware tasks are designed:

• Semantics-based masking (Section 3.1).
• Semantic relation prediction (Section 3.2).
• Semantic agreement (Section 3.3).
The former two learn semantic knowledge from

AMR nodes and AMR edges, respectively. The
last task regularizes the overall representation of a
dialogue using graph-level semantic features.

We follow Bai et al. (2021) and construct
dialogue-level AMR graphs by 2 steps: 1) building
utterance-level AMR graphs by independently
transforming utterances into AMR using a pre-
trained AMR parser. 2) connecting utterance-level
AMR graphs with a root node, where edges are
labeled with the corresponding speaker.

Formally, denote an input dialogue sequence1

as x = [x1, x2, ..., xn], where n is the number of
tokens in the dialogue. The corresponding AMR
is a directed acyclic graph G = ⟨V, E⟩, where V
denotes a set of nodes (i.e., AMR concepts) and
E (i.e., AMR relations) denotes a set of labeled
edges. An edge can be further represented by a
triple ⟨vi, rij , vj⟩, meaning that the edge is from
node vi to vj with label rij .

1Please refer to Appendix B for dialogue input format.

3.1 Task 1: Semantics-guided Masking

We first formally present the vanilla mask language
modeling (MLM) setup, before introducing the
semantic-guided masking strategy.
Vanilla MLM. Given a sequence of tokens x, the
standard masking strategy (Devlin et al., 2019)
selects a set fraction of tokens positions (denoted as
m = [m1,m2, ...,mk]) for masking independently
at random, and use these “selected” tokens {xi|i ∈
m} as supervisions to train a language model.
Formally, denoting the masked text as x̃, vanilla
MLM optimizes the following training objective:

ℓvanilla_mlm = −
∑

i∈m
logP (xi|x̃), (1)

where the conditional probability P (xi|x̃) is
generated by an encoder model with a softmax
layer.
Semantics-guided Masking. A salient limitation
of vanilla MLM is that it treats all tokens equally,
thus potentially wasting resources on tokens that
provide little signal (e.g., punctuations and stop
words). We introduce a semantic-guided masking
strategy, encouraging model to give more attention
on semantic-aware units, which are expected to
have more influence on text understanding. As
shown in Figure 2(b), our semantic-guided masking
strategy gives a higher masking probability for
tokens (e.g. “police”, “could”, “help”) that contain
important semantic information. Formally, we
define a token as a semantic-aware unit when it
is aligned with an AMR node, according to the
AMR-to-text alignmentA2 (An example is given in
Figure 2(a)). Since pre-trained models typically use
a vocabulary with sub-word units (Sennrich et al.,
2016), for an alignment pair ⟨vi, xj⟩, we extend the

alignment as
〈
vi, {x1j , x2j ..., xlj}

〉
, where the AMR

node vi is aligned a set of all tokens {x1j , x2j ..., xlj}
2A is a one-to-K mapping (K ∈ [1, . . . , n]).
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which are sub-words of word wj . For example, in
Figure 2, the AMR node “housewife” is aligned
with sub-tokens “house” and “##wife”.

Denoting m′ = [m′1,m
′
2, ...,m

′
k] as token

indices selected by the proposed semantic-guided
masking strategy, the training objective is:

ℓsem_mlm = −
∑

i∈m′
logP (xi|x̃). (2)

We follow ROBERTA (Liu et al., 2019) and
use the dynamic masking, where we generate the
masking pattern every step instead of performing
masking during data preprocessing.

3.2 Task 2: Semantic Relation Prediction
The semantic relation prediction task is designed
for learning the semantic relations between words.
To this end, we project the edges of each input
AMR graph onto the corresponding sentence
according to their node-to-word alignments (as
shown in Figure 2(c)), before training a predictor
to generate the projected edges.
Relation Projection. Since AMR relations are
defined on AMR nodes instead of words in the
dialogue text, we use a node-to-word alignment
A to project the AMR edges E onto text with
following rules:

r̂ij =

{
ri′j′ , if xi ∈ A(vi′), xj ∈ A(vj′),

None, otherwise.
(3)

The same strategy in Section 3.1 is used to deal
with sub-word tokens.
Relation Prediction. We first use a Transformer
encoder to generate contextualized word hidden
states h = [h1, h2, ..., hn]. Based on that, a deep
biaffine neural parser (Dozat and Manning, 2017)
is used to predict the relations between words.
To determine whether a directed edge (or arc)
from xi to xj exists, the biaffine parser first uses
two separate MLPs (denoted as MLPH and MLPD)
to obtain two lower-dimensional representation
vectors for each position, then calculates scores
via a biaffine operation:

rHi , r
D
j = MLPH(hi),MLP

D(hj),

sarcij =

[
rDj
1

]T
W arcrHi ,

P (yarcij |x) = softmaxj(sarci ),

(4)

where rHi is the representation vector of xi as a
head word, and rDj denotes the vector of xj as

a dependent word. P (yarcij |x) is the probability
of the arc (i, j), and W arc is a parameter matrix.
To calculate the probability of assigning a label l
to the arc(i, j), which is denoted as P (ylabelijl |x),
the biaffine parser uses the same scorer as in
Equation 4 but with different parameters for MLPs
and biaffines.3

The training objective of relation prediction is:

ℓrel = −
∑

⟨xi,r̂ij ,xj⟩∈E ′
log P (yarcij |x)P (ylabelijr̂ij

|x),

(5)
where E ′ represents the projected AMR edges.

3.3 Task 3: Semantic Agreement
We encourage the model to learn the overall
agreement of a dialogue and its corresponding
AMR graph. As shown in Figure 2(d), we
use an auxiliary network to encode the AMR,
and maximize the similarity score between the
hidden states of text and AMR. Following previous
work (Konstas et al., 2017), we linearize AMR
graphs into a sequence (refer to Figure 2(d) for
an example) and use a pre-trained encoder to
transform AMR into a set of hidden states.4

Formally, defining the linearized AMR graph as
g = [g1, g2, ..., gm], the vector representation of
text and its corresponding AMR is calculated as:

htext = Pooling(TextEnc(x)),

hamr = Pooling(TextEnc(g)),
(6)

where TextEnc(·) and TextEnc(·) are text
encoder and AMR encoder, respectively. They
are initialized with the same weights but updated
separately during training. Pooling(·) is a
function that reduces that sequence of vectors into
one vector. Following BERT (Devlin et al., 2019),
we feed the hidden state of the first input token into
a MLP layer to get the “pooled” vector.

We use the cosine similarity as a distance
scoring function and adopt the contrastive learning
framework (Hadsell et al., 2006; Frosst et al.,
2019; Gao et al., 2021b; Luo et al., 2022) to train
our model, with the aim to pulling semantically
close text-AMR pairs and pushing apart unpaired
examples. In particular, for a given text x, the
positive example is its corresponding AMR graph
g, the negative examples are the AMR graphs of its

3The biaffine parameter for label scoring is a three
dimensional tensor.

4We also tried a structure-aware encoder but without
observing significant improvements.
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Dataset DialogRE BANKING77 HWU64 CLINC150 REST8K DSTC8 TOP MULTIWOZ

train 5,997 8,622 8,954 15,000 7,244 5,023 31,279 56,774
dev 1,914 1,540 1,076 3,000 1,000 602 4,462 7,374
test 1,862 3,080 1,076 4,500 3,731 1,813 9,042 7,372

Table 1: Statistics of datasets.

neighbor dialogues in the corpus. Formally, let
htext
i and hamr

i denote the representations of the
ith ⟨text,AMR⟩ pair in the dataset, the training
objective is:

ℓsim = −log
exp(sim(htext

i , hamr
i )/τ)∑

j∈N (i) exp(sim(htext
i , hamr

j )/τ)
,

(7)
where sim(·, ·) denotes the cosine similarity, N (i)
collects neighbor index of the ith example, and
τ > 0 denotes the temperature hyper-parameter.

3.4 Training
Our model is trained by optimizing the total loss of
above 3 tasks:

ℓtotal = ℓsem_mlm + αℓrel + βℓsim, (8)

where α and β are weighting hyper-parameters
for ℓrel and ℓsim, respectively. To make the
computational requirements feasible, we do not
train our model from scratch, but rather continue
training a model that has been pre-trained on
textual inputs. Our framework is architecture-
flexible and can be be applied to different models
such as BERT, ROBERTA, and BART.

4 Experiments

We evaluate the effectiveness of our semantic pre-
training model on 8 dialogue tasks and compare
the results with the state-of-the-art pre-trained and
semantic-enriched models.

4.1 Dataset
Pre-training Corpus. We continual pre-train
our model on the Reddit (Henderson et al.,
2019) corpus. After sampling and filtering (refer
Appendix A), the dataset comprises 5,864,254
dialogue instances, in total 397 million words. We
adopt the state-of-the-art AMRBART (Bai et al.,
2022) parser 5 to transform the text into AMR
graphs. To obtain the AMR-to-text alignment, we
use the JAMR aligner6 released by Flanigan et al.
(2014).

5https://github.com/muyeby/AMRBART
6https://github.com/jflanigan/jamr

Dialogue task datasets. We evaluate our model
on both chitchat and task-oriented understanding
tasks. For chitchat, we focus on the dialogue
relation extraction task which aims to predict the
relationship between an given entity pair. We
report results on both original (v1) and updated
(v2) English version of DialogRE (Yu et al., 2020).

For task-oriented dialogue, we report results
on the DialoGLUE (Mehri et al., 2020) bench-
mark, which consists of 7 different datasets
spanning 4 different tasks: 1) intention predic-
tion, including BANKING77 (Casanueva et al.,
2020), CLINC150 (Larson et al., 2019) and
HWU64 (Liu et al., 2021); 2) slot filling,
including RESTAURANT8K (Coope et al., 2020)
and DSTC8 (Rastogi et al., 2019); 3) semantic
parsing, TOP (Gupta et al., 2018); and 4) dialogue
state tracking, MULTIWOZ2.1 (Eric et al., 2020).

Table 1 shows the statistics of above datasets.

4.2 Settings
Model Configuration. We take BERT-base and
ROBERTA-base as our backbone model. For Pre-
training, AdamW (Loshchilov and Hutter, 2019) is
used as an optimizer, with an initial learning rate
of 1× 10−5. We reduce the learning rate according
to a linear scheduler. The batch size is 2048, and
the maximum input sequence length is 512. For the
hyper-parameters, we empirically set α = 0.1, β =
1.0, τ = 1.0 in our experiments. The pre-training
of our model is carried out on 8 Nvidia Telsa V100
32G GPU for 5 epochs, taking about 2 days to reach
convergence. For fine-tuning, we follow previous
works to set hyper-parameters. More details can be
found in Appendix C.
Metrics. We use macro F1 and macro F1c
for dialogue relation extraction (DialogRE), fol-
lowing Yu et al. (2020). For intent prediction
(BANKING77, CLINC150, HWU64), we report the
accuracy. Macro F1 (Coope et al., 2020) is adopted
for slot filling tasks (RESTAURANT8K, DSTC8).
For TOP, we use exact-match, which measures
how often the model generates the exact reference
structure. For MULTIWOZ, we use the joint goal
accuracy following Budzianowski et al. (2018).

596



Model
data-v1 data-v2

dev test dev test
F1(δ) F1c(δ) F1(δ) F1c(δ) F1(δ) F1c(δ) F1(δ) F1c(δ)

GDPNet 67.1 (1.0) 61.5 (0.8) 64.9 (1.1) 60.1 (0.9) - - - -
TUCORE-GCN - - - - 66.8 (0.7) 61.0 (0.5) 65.5 (0.4) 60.2 (0.6)
TSP 66.8 (0.9) 61.5 (1.0) 65.5 (0.7) 60.5 (0.8) - - - -
BERT 60.6 (1.2) 55.4 (0.9) 58.5 (2.0) 53.2 (1.6) 59.4 (0.7) 54.7 (0.8) 57.9 (1.0) 53.1 (0.7)
BERTs 63.0 (1.5) 57.3 (1.2) 61.2 (0.9) 55.4 (0.9) 62.2 (1.3) 57.0 (1.0) 59.5 (2.1) 54.2 (1.4)
BERTc 66.8 (0.9) 60.9 (1.0) 66.1 (1.1) 60.2 (0.8) 66.2 (0.9) 60.5 (1.1) 65.1 (0.8) 59.8 (1.2)
ROBERTA 68.0 (1.0) 60.3 (1.0) 66.0 (0.6) 59.6 (0.7) 67.6 (0.8) 61.0 (0.7) 65.8 (1.0) 59.6 (0.5)

SARA-BERT 68.1 (1.0) 62.1 (0.9) 67.5 (0.7) 61.4 (0.9) 68.0 (0.8) 62.1 (0.6) 67.3 (1.0) 61.3 (0.8)
SARA-ROBERTA 69.3 (0.9) 62.3 (0.8) 68.1 (0.8) 61.7 (1.0) 69.5 (0.7) 62.4 (0.5) 67.8 (0.8) 61.5 (0.7)

Table 2: Performance on DialogRE. We report the average and the standard deviation computed from 5 runs, best
results are marked in bold.

4.3 Compared Models

For Dialogue relation extraction, we compare
the proposed model with BERT-based models:
BERT takes a pre-trained BERT as the dialogue
encoder and predicts relation labels using the
hidden state of the [CLS] token. BERTs (Yu
et al., 2020) enhances the speaker representation by
marking speaker arguments with special tokens.
BERTc (Bai et al., 2021) concatenates hidden
states of the [CLS] token and entity tokens
for classification. For completeness, we also
include recent methods which give the state-of-
the-art results, such as GDPNet (Xue et al., 2020),
TUCORE-GCN (Lee and Choi, 2021), TSP (Zhao
et al., 2021) and Hier (Bai et al., 2021). We
follow the implementation and hyper-parameters
of BERTc to evaluate our model.

For DialoGLUE, the compared models in-
clude: BERT (Devlin et al., 2019) pre-trains a
Transformer encoder on large-scale monotonic
text. USE (Yang et al., 2020) pre-trains a dual
Transformer encoder model on multilingual corpus
using retrieval focused training tasks. CONVERT
(654M) (Henderson et al., 2020) pre-trains a dual
Transformer encoder on the full 2015-2019 Reddit
data comprising 654M ⟨context, response⟩ training
pairs using response selection task. CONVBERT
(700M) (Mehri et al., 2020) fine-tunes a BERT
model on 700M Reddit conversational data.
We adopt the same implementation and hyper-
parameters of CONVBERT (700M) to conduct
experiments on DialoGLUE.

To verify the scalability of the proposed method,
we also report results based on the ROBERTA

model for all tasks. The model architectures for
about tasks is given in Appendix D.

4.4 Main Results
Results on DialogRE. Table 2 lists the results
of different systems on DialogRE. Among BERT-
based models (i.e., BERT, BERTs, BERTc), BERTc
reports the best results. Compared with BERTc,
SARA-BERT gives significantly (p < 0.001) better
results on both datasets. In particular, SARA-
BERT improves BERTc by 1.4 and 2.2 points in
terms of F1 score on two test sets, respectively,
indicating that our semantic pre-training framework
is beneficial for dialogue relation extraction. The
main reason can be that SARA improves the model
capacity of understanding entities (which are core
semantic units) and the semantic relations between
them during pre-training stage.

SARA-BERT achieves better F1 scores than the
other state-of-the-art methods. In addition, when
using ROBERTA as the backbone, SARA gives
consistent improvements. In particular, SARA-
ROBERTA achieves 68.1 and 67.8 F1 scores on the
test set of data-v1 and data-v2, respectively. To our
best knowledge, these are the best-reported results
based on ROBERTA-base.
Results on DialoGLUE. We report the results of
different methods on the DialoGLUE benchmark in
Table 3. Compared with BERT, SARA-BERT (6M)
gives consistently better results on all 7 datasets,
with an improvement of 1.1 point in average. In
particular, SARA-BERT (6M) outperforms BERT
by 2.1 and 3.0 points on HWU64 and MULTIWOZ,
respectively, showing that our SARA framework
can benefit task-oriented dialogue systems.

Compared with the other state-of-the-art sys-
tems, SARA-BERT (6M) obtains better results than
USE, because SARA-BERT (6M) is pre-trained on
large-scale dialogue corpus. In addition, SARA-
BERT (6M) gives highly competitive results than
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Model BANK HWU64 CLINC150 REST8K DSTC8 TOP MULTIWOZ Avg

USE 92.81 91.25 95.06 - - - - -
CONVERT (654M) 93.01 91.24 97.16 - - - - -
USE+CONVERT (654M) 93.36 92.62 97.16 - - - - -
CONVBERT (700M) 93.44 92.38 97.11 95.44 91.20 82.08 56.56 86.89
BERT 93.02 89.87 95.93 95.53 90.05 81.90 56.30 86.08
ROBERTA 93.16 91.30 96.09 96.27 90.78 81.80 54.95 86.28

SARA-BERT (6M) 93.47 92.01 96.24 95.92 91.57 82.05 59.33 87.23
SARA-ROBERTA (6M) 93.64 92.29 96.60 96.74 92.02 82.78 57.52 87.37

Table 3: Performance on DialoGLUE, best results are in bold. REST8K and BANK stands for RESTAURANT8K and
BANKING77, respectively.

Model DialogRE DSTC8

ROBERTA 67.6 93.98
ROBERTA (6M) 68.2 94.17
SARA-ROBERTA (6M) 69.5 95.24

w/o sem_mlm 69.0 95.01
w/o rel_pred 68.6 94.63
w/o sem_agree 68.8 94.72

Table 4: Validation F1 of DialogRE and DSTC8.

CONVERT (654M), USE+CONVERT (654M) and
CONVBERT (700M), using significantly fewer
data (about 1% than others). This indicates that
our semantic-based pre-training framework is more
data-efficient. Finally, similar to SARA-BERT
(6M), SARA-ROBERTA (6M) significantly (p <
0.001) outperforms ROBERTA, giving the best
results on BANKING77, REST8K, DSTC8 and
TOP.

5 Analysis

5.1 Ablation Study

We compare our full system with the following
models: ROBERTA (6M) is continuously pre-
trained on the exact same training corpus as our
model using corresponding standard pre-training
objectives; w/o sem_mlm, w/o rel_pred, and w/o
sem_agree denote the models which are trained
without the semantics-guided masking, semantic
relation prediction, and semantic agreement task,
respectively. Table 4 shows the F1 scores on the
validation sets of DialogRE and DSTC8. First
of all, using dialogue domain data (ROBERTA

v.s. ROBERTA (6M)) for pre-training leads
to improvements on both tasks. This meets
previous observations (Gururangan et al., 2020;
Mehri et al., 2020). Also, the semantic-based
mask language modeling task (sem_mlm) gives
an obvious improvement on DialogRE and a small
one on DSTC8. The reason can be that DSTC8
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Figure 3: Performance improvement (∆F1) over two
aspects: (top) graph size and (bottom) graph depth.

has an average length of 8 tokens, making it easy
to understand core semantic units in dialogues.
In addition, the performance drops significantly
without the relation prediction task (rel_pred),
indicating that the rel_pred task is important for
dialogue understanding. Furthermore, the semantic
agreement task (sem_agree) is helpful for both
datasets, showing that the AMR is beneficial to
improve the overall semantic representation of
dialogue. Finally, by combining dialogue domain
data and all pre-training tasks, our final model
achieves the best performance on both datasets.

5.2 Effect of Semantic-based Pre-training

To further understand the effectiveness of our
semantic-based pre-training framework, we split
the test set of DialogRE (v2) into different groups
according to semantic complexity and report the
performance improvement of SARA-ROBERTA

over ROBERTA. In particular, two metrics are
considered to measure the semantic complexity of
a dialogue: 1) graph size (i.e., the number of nodes
in the AMR graph) which records the number of
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Figure 4: Test F1 on DialogRE (v2).

semantic units in the dialogue; 2) graph depth
which is defined as the longest distance between
the AMR node and root node. An AMR graph has a
deeper depth means that its corresponding dialogue
has more long-range dependencies.

As shown in the top sub-figure of Figure 3,
SARA-ROBERTA gives consistent improvements
over ROBERTA in different graph groups. In
particular, the improvements are more considerable
on graphs with more than 300 nodes, showing
that SARA-ROBERTA has better capacity than
ROBERTA in understanding dialogues which
contain more semantic units. The reason can be that
the semantic-based MLM task enhances the model
ability to capture core semantic features, which
helps in reducing negative impacts of meaningless
tokens in dialogue text. With respect to graph depth,
SARA-ROBERTA also outperforms ROBERTA

on all groups, and larger improvements are
observed on deeper graphs. It can be that the
relation prediction task helps to establish semantic
associations between non-neighbor words, thus
benefiting long-range dependencies understanding.

We also compare the model performance in
terms of dialogue length. In particular, we split
the test set of DialogRE (v2) into 4 groups
according to the utterance number of each dialogue,
and compare the performance of ROBERTA and
SARA-ROBERTA. As shown in Figure 4, SARA-
ROBERTA consistently gives better results than
ROBERTA on all groups. The performance gap is
bigger when the input dialogue has more than 16
utterances. The reason is that SARA encourages
the model to understand core semantics, which is
helpful for learning long dialogues.

5.3 Impact of AMR Features

AMR is a deep semantic structure which consists of
both backbone relations and fine-grained semantic

Model DialogRE DSTC8

ROBERTA 65.8 90.78
SARA-ROBERTA (full) 67.8 92.02
SARA-ROBERTA (simplified) 67.3 91.34

Table 5: F1 on the test set of DialogRE and DSTC8.

dev (v1) test (v1) dev (v2) test (v2)64

65

66

67

68

69

70

Pe
rf

or
m

an
ce

 (F
1)

Bai et al. (2021)
SARA-BERT

(a)

5 10 150

20

40

60

Sp
ee

du
p

Bai et al. (2021)
SARA-BERT

(b)

Figure 5: (a) Comparison of performance on DialogRE;
(b) Comparison of inference speed regarding to dialogue
length (measured by number of utterances).

relations. To study the contribution of such features,
we simplify an AMR graph by masking the fine-
grained semantic relations, resulting in a graph
with frame arguments relations (e.g., :arg0, :arg1,
:arg2). We use the simplified graph as explicit
semantic knowledge for pre-training and compare
it with the standard AMR graph under the same
framework.

Table 5 lists the performance of two systems.
It can be observed that both simplified graphs
and full AMR graphs lead to better performance.
Compared with simplified graphs, using full AMR
graph for pre-training leads to better results on
both DialogRE and DSTC8, showing that the fine-
grained semantic features can further improve the
model performance.

5.4 Comparison with explicit AMR

Figure 5(a) compares the performance of our model
with the method of Bai et al. (2021)7 which use
explicit AMR structures for dialogue applications.
We report the F1 score on the test set of DialogRE.
Compared with the system of Bai et al. (2021), our
model gives comparable results on the validation
set, and better results on the test set, without using
an external AMR parser. This indicates that 1)
our pre-training framework can efficiently transfer
the learned semantic information to downstream
tasks; 2) large-scale semantic-aware pre-training
can give further improvement compared with using

7We choose the Hier model which has comparable
parameters to our model.
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Figure 6: Impact of pre-training data.

semantic information in downstream tasks.
As shown in Figure 5(b), our system is

significantly faster than the method of Bai et al.
(2021) which relies on an external parser. As the
dialogue length increases, the performance gap is
more obvious. In particular, our system obtains
about a 45 times speedup when the input dialogues
have an average utterance number of 15.

5.5 Impact of Training Data Scale

Figure 6 shows the model performance regarding
different scales of pre-training data. The
performance on both DialogRE and DSTC8
datasets increases as the scale of training data
grows bigger, with a margin of about 2.0 F1
score on DialogRE. Due to the limitation of
computational resources, we do not conduct
experiments on larger training corpus and models,
and we leave this for a future work.

5.6 Case Study

Figure 7 shows an example conversation from Di-
alogRE dataset. The baseline model (ROBERTA)
is misled by sentences last three utterances
(marked with underline) where Speaker2 shows
an negative emotions towards Rachel Green, and
thus incorrectly predicting the relationship between
two speakers as negative_impression. In contrast,
our model (SARA-ROBERTA) predicts the correct
relationship, suggesting that our semantic-based
pre-training framework helps model to better
understand the relationship between entity pairs
and avoid focusing on spurious features.

Figure 8 presents a case of dialogue intent
prediction. The baseline system pays much
attention on word “alarm” while ignores other two
core semantic units “minutes” and “bake”, giving
an incorrect prediction. Our system successfully
predicts the gold intent, because AMR guides our

Speaker1: Wanna give me a hand?

Speaker2: Sure! Monica, I can’t get over how great you look!

Speaker1: Oh umm, I meant to tell you, Ross is coming.

Speaker2: Ross is coming. Great! I love Ross!

Speaker1: Good, and Rachel Green too.

Speaker2: Oh.

Speaker1: Is there a problem?

Speaker2: Nope. Uh, it’s okay. It’s just uh, God I hate her.

Speaker1: What?

Speaker2: Yeah, I hate her. She was horrible to me in school.

Ground-Truth: per:positive_impression (Speaker1, Speaker2)

Baseline: per:negative_impression (Speaker1, Speaker2)
Ours: per:positive_impression (Speaker1, Speaker2)

Figure 7: An example of dialogue relation extraction.

How many minutes should I set an alarm for this bake?

Ground-Truth intent: cook_time

Ours: cook_time
Baseline: alarm

Figure 8: An example of dialogue intent prediction.

model to discover the core semantic units in the
dialogue text.

6 Conclusion

We investigated the abstract meaning represen-
tation as explicit semantic clues for dialogue
pre-training, using a semantic-based pre-training
framework. Experiments on two benchmarks show
that the proposed framework is highly effective
on both chit-chat understanding and task-oriented
dialogue understanding. Our method gives the best
results on multiple datasets.
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intent detection with dual sentence encoders. In
Proceedings of the 2nd Workshop on Natural
Language Processing for Conversational AI, pages
38–45, Online. Association for Computational
Linguistics.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Recent
advances and new frontiers. SIGKDD Explor.,
19(2):25–35.

Yulong Chen, Yang Liu, Liang Chen, and Yue
Zhang. 2021. DialogSum: A real-life scenario
dialogue summarization dataset. In Findings of the
Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 5062–5074, Online. Association
for Computational Linguistics.

Yulong Chen, Ming Zhong, Xuefeng Bai, Naihao Deng,
Jing Li, Xianchao Zhu, and Yue Zhang. 2022. The
cross-lingual conversation summarization challenge.
CoRR, abs/2205.00379.

Jianpeng Cheng, Devang Agrawal, Héctor
Martínez Alonso, Shruti Bhargava, Joris Driesen,
Federico Flego, Dain Kaplan, Dimitri Kartsaklis,
Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid Ó Séaghdha, and Anders
Johannsen. 2020. Conversational semantic parsing
for dialog state tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8107–8117,
Online. Association for Computational Linguistics.

Samuel Coope, Tyler Farghly, Daniela Gerz, Ivan Vulić,
and Matthew Henderson. 2020. Span-ConveRT:
Few-shot span extraction for dialog with pretrained
conversational representations. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 107–121, Online.
Association for Computational Linguistics.

Leyang Cui, Yu Wu, Shujie Liu, and Yue Zhang.
2021. Knowledge enhanced fine-tuning for better
handling unseen entities in dialogue generation. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
2328–2337, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Leyang Cui, Yu Wu, Shujie Liu, Yue Zhang, and
Ming Zhou. 2020. MuTual: A dataset for multi-
turn dialogue reasoning. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1406–1416, Online. Association
for Computational Linguistics.

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo
Echegoyen, Sophie Rosset, Eneko Agirre, and Mark
Cieliebak. 2021. Survey on evaluation methods for
dialogue systems. Artificial Intelligence Review,
54(1):755–810.

601



Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of wikipedia: Knowledge-powered conversational
agents. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar,
Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur.
2020. MultiWOZ 2.1: A consolidated multi-
domain dialogue dataset with state corrections
and state tracking baselines. In Proceedings
of the 12th Language Resources and Evaluation
Conference, pages 422–428, Marseille, France.
European Language Resources Association.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A
discriminative graph-based parser for the Abstract
Meaning Representation. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1426–1436, Baltimore, Maryland. Association
for Computational Linguistics.

Nicholas Frosst, Nicolas Papernot, and Geoffrey E.
Hinton. 2019. Analyzing and improving repre-
sentations with the soft nearest neighbor loss. In
Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages
2012–2020. PMLR.

Chongming Gao, Wenqiang Lei, Xiangnan He, Maarten
de Rijke, and Tat-Seng Chua. 2021a. Advances and
challenges in conversational recommender systems:
A survey. AI Open, 2:100–126.

Tianyu Gao, Xingcheng Yao, and Danqi Chen.
2021b. Simcse: Simple contrastive learning
of sentence embeddings. In Proceedings of
the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual
Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 6894–6910. Association for
Computational Linguistics.

Jia-Chen Gu, Chongyang Tao, Zhen-Hua Ling, Can
Xu, Xiubo Geng, and Daxin Jiang. 2021. MPC-
BERT: A pre-trained language model for multi-
party conversation understanding. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pages 3682–3692.
Association for Computational Linguistics.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar,
and Mike Lewis. 2018. Semantic parsing for task
oriented dialog using hierarchical representations. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2787–2792, Brussels, Belgium. Association for
Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
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Param. Name Value

Batch Size 2048
Optimizer AdamW
Learning Rate (lr) 1e-5
Lr Scheduler linear
Warmup Step 0
Max Training Epoch 5
Semantic Masking Prob. 0.2
Extended Vocabulary Size 30,774
Max Length (dialogue) 256
Max Length (AMR) 512
Mix Precision fp16
Parameters (Pre-training) 219M
Parameters (downstream tasks) 110M
Training Time about 45h

Table 6: Hyper-parameters of our models.

Appendix

A Data Pre-processing

For pre-training, we randomly sample 10 million
dialogue from Reddit (Henderson et al., 2019)
corpus and filter the data by removing the instances
where

• dialogue contains special markers;

• dialogue contains more than 10 non-English
tokens;

• dialogue is longer than 150 words;

• dialogue has more than 15 turns.

We also replace the URLs in dialogues with a
special token <url>.

B Model Input Format

Take BERT-based model as an example, given
a dialogue x which consists of n utter-
ances, we concatenate all utterances as a
single consecutive token sequence with spe-
cial tokens separating them: x =

{
[CLS]

[Utter1] Speaker1 U1 [Utter2] Speaker2
U2 . . . [Uttern] Speakern Un[SEP]

}
, where

U1, U2, Un are utterance sequences. [CLS] and
[SEP] mark the start and end of the dialogue.
[Utter1], [Utter2], and [Uttern] mark the
utterance numbers. Speaker1 denotes the
speaker of the first utterance. For ROBERTA,
we use <s> and </s> to surround the dialogue
sequences.

C Model Hyper-Parameters

Table 6 lists all model hyper-parameters used
for our experiments. The proposed model is
implemented based on Pytorch and Huggingface
Transformers8. Our source code and pre-
trained models is released at https://github.

com/goodbai-nlp/Sem-PLM.

D Architecture for Downstream Tasks

For all downstream dialogue understanding tasks,
we use the pre-trained dialogue model as a dialogue
encoder and make prediction based on the encoded
hidden states. Taking the BERT-based model as
an example, the model architecture of downstream
task are:
Dialogue Relation Extraction: We concatenate
the hidden states of two entities (denoted as e1
and e2) as well as the pooled representation of the
[CLS] token into a linear classifier to predict the
relation label as:

y = MLPc([pool(h
[CLS]); vec(e1); vec(e2)]),

(9)
where MLPc is a linear classifier, and vec(·) selects
the encoded representation of the input token.
pool(h[CLS]) passes the hidden state of the
[CLS] token through a linear layer.
Intent Prediction: We solve the task as a sequence
classification problem, by feeding the pooled
hidden state of [CLS] token into a linear classifier
to predict the relation label as:

y = MLPc(pool(h
[CLS])). (10)

Slot Filling: We represent the problem as IOB
tagging, by feeding all hidden state of the input
dialogue (denoted by H) into a linear classifier and
predict the relation label as:

Y = MLPc(H), (11)

where H denotes the output hidden states, and Y
is the output tag sequence.
Semantic Parsing: We solve the problem as joint
sequence classification and sequence labeling task.
Specifically, we predict the intent and slots label
as:

yintent = MLPintent(pool(h
[CLS])),

Yslot = MLPslot(H),
(12)

8https://github.com/huggingface/transformers
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where H denotes the output hidden states, and Y
is the output tag sequence.
Dialogue State Tracking: We follow the
TripPy (Heck et al., 2020) framework make
prediction, which uses BERT model as encoder
and combines BERT with a triple copy strategy to
perform state tracking. Please refer the original
paper for more details.
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Abstract

Out-of-Domain (OOD) detection is a key com-
ponent in a task-oriented dialog system, which
aims to identify whether a query falls outside
the predefined supported intent set. Previous
softmax-based detection algorithms are proved
to be overconfident for OOD samples. In this
paper, we analyze overconfident OOD comes
from distribution uncertainty due to the mis-
match between the training and test distribu-
tions, which makes the model can’t confidently
make predictions thus probably causing abnor-
mal softmax scores. We propose a Bayesian
OOD detection framework to calibrate distri-
bution uncertainty using Monte-Carlo Dropout.
Our method is flexible and easily pluggable
into existing softmax-based baselines and gains
33.33% OOD F1 improvements with increas-
ing only 0.41% inference time compared to
MSP. Further analyses show the effectiveness
of Bayesian learning for OOD detection. 1

1 Introduction
Detecting Out-of-Domain (OOD) or unknown in-
tents from user queries is key for a task-oriented
dialog system (Gnewuch et al., 2017; Akasaki and
Kaji, 2017; Tulshan and Dhage, 2018; Shum et al.,
2018; Zeng et al., 2021a,b; Wu et al., 2022). It
aims to know when a user query falls outside their
range of predefined supported intents to avoid per-
forming wrong operations. Different from normal
intent classification tasks, lack of labeled OOD ex-
amples leads to poor prior knowledge about these
unknown intents, making it challenging to detect
OOD samples.

A rich line of OOD intent detection algo-
rithms has been developed recently, among which
softmax-based methods demonstrated promise
(Guo et al., 2017; Liang et al., 2018; Zheng et al.,

∗The first three authors contribute equally. Weiran Xu is
the corresponding author.

1Our code is available at https://github.com/
pris-nlp/COLING2022_Bayesian-for-OOD/.
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Figure 1: Multiple predicted probability distributions
of an OOD sample under different random seeds. We
train four identical models on the same data but only
use different random seeds. Fig (a) displays each output
distribution of an OOD input and Fig (b) shows the
averaged output distribution.

2020). Softmax-based methods leverage softmax
outputs extracted from an in-domain (IND) intent
model and operate under the assumption that the
test OOD samples get a lower likelihood proba-
bility than the ID data. For example, Maximum
Softmax Probability (MSP) (Hendrycks and Gim-
pel, 2017) detects a test query as OOD if its max
softmax probability is lower than a fixed thresh-
old. However, all these models make a strong
distributional assumption of the practical OOD
probability being uniform, which has been proven
wrong because neural networks can produce over-
confidently high softmax scores even for OOD sam-
ples (Guo et al., 2017). Therefore, solving the
overconfidence issue is still challenging for OOD
detection.

In this paper, we study the overconfidence is-
sue from the perspective of Bayesian learning (Gal
and Ghahramani, 2016). Essentially, the reason
for overconfidence is that a model cannot confi-
dently make predictions on the input OOD utter-
ances (unknow-unknow) due to the lack of prior
knowledge of OOD data. In other words, even
given the same input OOD intent, the predicted
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probability distributions using different random
seeds are completely different, uniform, sharp, or
any distribution. Fig 1 show an example. We find
models with different initialization seeds can out-
put diverse distributions for OOD input, maybe
cause overconfidence in several in-domain classes.
But the averaged output is close to a uniform dis-
tribution. We also find models with different seeds
are more robust to IND input and obtain consis-
tent outputs (see Appendix C.2). Therefore, one
direct way to solve the distribution uncertainty is to
train multiple models independently and assemble
their outputs for the final result. But this method
is not applicable to practical scenarios for large
training cost. In this paper, we propose a Bayesian
OOD detection framework to calibrate distribution
uncertainty. Specifically, we firstly train an in-
domain intent classifier using IND data, then in the
test stage, we perform multiple stochastic forward
passes with a certain dropout rate (like 0.7) and av-
erage the output normalized logits as a final prob-
ability. Without increasing any new parameters,
we calibrate distribution uncertainty by tending to
expectation uniform distribution via Monte-Carlo
Dropout (Gal and Ghahramani, 2016). Our method
can be easily extended to existing softmax-based
OOD detection methods and gain significant OOD
improvements with only increasing little inference
time compared to baselines, even outperform the
state-of-the-art distance-based methods like LOF
(Lin and Xu, 2019) and GDA (Xu et al., 2020).
Our contributions are two-fold: (1) We analyze the
intrinsic reason of overconfidence issue via distri-
bution uncertainty and propose a Bayesian OOD
detection framework to calibrate this uncertainty
using Monte-Carlo Dropout. (2) We provide the-
oretical and empirical analysis to demonstrate the
effectiveness of our Bayesian OOD method.

2 Method

2.1 Understanding OOD Detection

Problem Definition We refer to training data D as
IND data. We aim to detect the input utterances x
belonging to OOD and correctly classify the utter-
ances belonging to IND utilizing a well-calibrated
classifier trained only on finite IND data D.

The predictive uncertainty of a classification
model P (υ|x,D) is commonly divided into data
uncertainty (aleatoric), distribution uncertainty
and model uncertainty (epistemic)(Kiureghian and
Ditlevsen, 2009; Malinin and Gales, 2018):

P (υ|x,D) =

∫∫
P (υ|µ)︸ ︷︷ ︸

data

P (µ|x, θ)︸ ︷︷ ︸
distribution

P (θ|D)︸ ︷︷ ︸
model

dµdθ

(1)
The model uncertainty is described by the pos-

terior distribution over model parameters θ, and it
can be lowered by increasing the amount of data
and simplifying the model complexity. The data
uncertainty is described by the posterior distribu-
tion over classes, where υ is the predicted distri-
bution of all possible in-domain intent classes for
OOD detection. It arises from the natural complex-
ity of the data, such as class overlap, label noise and
homoscedastic noise. It is a property of the world,
and cannot be changed. The distribution uncer-
tainty is modeled with a distribution over distribu-
tion, where µ is the categorical distribution over
simplex. It arises due to the mismatch between the
training and test distributions. We give an example
in Fig 2 which displays a distribution over distribu-
tions on a simplex (Dirichlet distribution (Malinin
and Gales, 2018)) where each dot represents a soft-
max prediction distribution for a test OOD sample
and all the dots denote a distribution over distri-
butions. For an input utterance x, softmax-based
detection algorithms like MSP assume that the dis-
tribution of OOD utterances (vood) should be very
close to the uniform distribution (the yellow dots
in Fig 2) and the distribution of IND utterances
(vind) should be very close to one-hot distribution
(e.g. Fig 2(a)-(d)). However, the practical OOD
samples (green dots) exactly yield a sparse distri-
bution over the simplex where each OOD sample
may get a sharp softmax prediction distribution
(like one-hot distribution) or a flat softmax predic-
tion distribution (like uniform distribution). Due
to the lack of prior knowledge of OOD data, the
model cannot confidently make predictions on the
input OOD utterances (unknow-unknow) which is
the essential reason why the predicted probability
distributions of the same OOD sample are com-
pletely different under different random seeds and
even get very high max softmax scores (Fig 1). In
other words, distribution uncertainty could lead to
overconfidence in the prediction of OOD samples.

Therefore, how to alleviate the distribution un-
certainty is the key to solving the overconfidence
problem in OOD detection.

2.2 Bayesian Approximation
In order to alleviate the distribution uncertainty, we
consider marginalizing out θ in Eq 1:
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Figure 2: A distribution over distributions where each dot represents a softmax prediction distribution for a test OOD
sample and all the dots denote a distribution over distributions. We also display softmax prediction distributions of
several dots on the dot line in Fig 1.2.

P (υ|x,D) =

∫
P (υ|µ)P (µ|x,D)dµ (2)

This yields expected estimates of data and dis-
tributional uncertainty given model uncertainty.
Marginalization is intractable in deep neural net-
works, thus we consider using q(ω) to approximate
the intractable posterior though Monte-Carlo Sam-
pling algorithm (Tsymbalov et al., 2020; Gal and
Ghahramani, 2016):

P (υ|x,D) =

∫
P (υ|ω)q(ω)dω (3)

where ω = {Wi}li=1 is the random variables for a
model with l layers. We define q(ω) as:

Wi =Mi · diag([αi,j ]kii=1) (4)

αi,j ∼ Bernoulli(pi) (5)

Where pi and Mi are the variational parameters.
The binary variable αi,j indicates whether unit j of
the i − 1 layer will be passed to the next layer.
Specifically, we sample N sets of independent
random vectors of realisations from the Bernoulli
distribution {αn1 , ..., αnl }Nn=1 with [αi,j]

ki
i=1 giving

{Wn
1 , ...,W

n
L}Nn=1. Then we average the output:

Eq(υ|x,D)(υ) ≈
1

N

N∑

n=1

υ̂(x,D,Wn
1 , ...,W

n
l ) (6)

According to the Law of Large Numbers (Yao and
Gao, 2016), when N is large enough, the predicted
distribution will converge in expected uniform dis-
tribution. That is, we can calibrate the practical
sparse OOD distribution (green dots) over the sim-
plex into ideal dense OOD distribution (yellow
dots) by Bayesian approximation to mitigate the
overconfidence issue, which is verified in the fol-
lowing empirical experiments.

Embedding Layer

User Utterances

Contextual Encoder

MSP/Entropy

OOD Detection

a) Overall Architecture

A

b) Using Bayes for OOD detection

N

Softmax Bayes + Softmax

Softmax Layerx

Expected softmax distribution

Bayes

Softmax distribution

Figure 3: The overall architecture of our method.

2.3 OOD Detection with Bayesian Learning
Fig 3(a) shows the overall architecture of our
proposed OOD detection model. The part in
the dashed box is a well-trained feature extrac-
tor based on Bi-LSTM (Hochreiter and Schmid-
huber, 1997) or BERT (Devlin et al., 2019). It
is trained on labeled in-domain data using cross-
entropy loss. Fig 3(b) shows the Bayesian approx-
imation process for distribution calibration. We
adopt Monte-Carlo Dropout and average the out-
put normalized logits from multiple stochastic for-
ward passes: v̄ = 1

N

∑N
i=1 vi. In this way, we

calibrate the softmax distribution to the expected
distribution, which close to a uniform distribution.
Then, we apply two softmax-based metrics for
OOD detection, which is mMSP = max(v̄) and
mEntropy = −

∑c
i=1 v̄i log v̄i. We further apply a

empirical threshold to distinguish IND and OOD
data.

3 Experiments

3.1 Datasets
We perform experiments on two public benchmark
OOD datasets2, CLINC-Full and CLINC-Imbal
(Larson et al., 2019). We show the detailed statistic

2https://github.com/clinc/oos-eval
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Model
CLINC-Full CLINC-Imbal

OOD IND OOD IND
F1 Recall F1 ACC F1 Recall F1 ACC

LSTM

LOF (Lin and Xu, 2019) 59.28 58.32 86.08 85.87 55.37 51.03 80.51 82.79
GDA (Xu et al., 2020) 65.79 64.14 87.90 86.83 61.38 63.80 85.35 84.20
MSP (Hendrycks and Gimpel, 2017) 50.13 45.60 87.73 87.25 44.93 41.10 84.96 84.16
MSP+Bayes.(ours) 70.05 68.38 88.91 88.57 61.70 57.50 85.92 85.65
Entropy (Zheng et al., 2020) 68.05 67.96 88.97 88.68 64.45 63.80 86.07 85.71
Entropy+Bayes.(ours) 72.02 71.70 89.10 88.73 68.32 67.61 86.34 86.11

BERT

MSP 52.79 50.50 87.81 87.46 48.76 46.70 85.87 85.65
MSP+Bayes.(ours) 71.25 69.58 89.10 89.56 64.32 62.00 86.39 85.87
Entropy 68.97 68.83 89.13 88.72 65.25 64.89 86.21 85.94
Entropy+Bayes.(ours) 72.85 72.42 89.47 88.94 69.11 68.49 86.74 86.42

Table 1: Performance comparison between our method and baselines on CLINC-Full and CLINC-Imbal datasets (p
<0.01). Bayes. represents our proposed Bayesian approximation via Monte-Carlo Dropout.

CLINC Full Imbal
Avg utterance length 9 9
Intents 150 150
Training set size 15100 10625
Training samples per class 100 25/50/75/100
Training OOD samples amount 100 100
Development set size 3100 3100
Development samples per class 20 20
Development OOD samples amount 100 100
Testing Set Size 5500 5500
Testing samples per class 30 30
Development OOD samples amount 1000 1000

Table 2: Statistics of the CLINC datasets.

of these datasets in Table 2. They both contain
150 in-domain intents across 10 domains. The only
difference is that, for CLINC-Imbal, there are either
25, 50, 75 or 100 training queries per in-scope
intent, rather than 100. Note that all the datasets
we used have a fixed set of labeled OOD data but
we don’t use it for training.

3.2 Metrics

We report both OOD metrics: Recall and F1-
score(F1) and in-domain metrics: F1-score(F1) and
Accuracy(ACC). Since we aim to improve the per-
formance of detecting out-of-domain intents from
user queries, OOD Recall and F1 are the main eval-
uation metrics in this paper.

3.3 Baselines

For detection algorithms, we use LOF, GDA, MSP
and Entropy, none of them need OOD supervised
training. For the feature extractor, we use LSTM
and BERT. We provide a more comprehensive com-
parison and implementation details of these models
in the Appendix.

3.4 Main Results

Table 1 shows our main results on two benchmarks.
Our Bayesian method significantly outperforms
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Figure 4: Effect of Bayesian approximation on MSP
and Entropy confidence distributions of IND and OOD.

softmax-based baselines including MSP and En-
tropy, even distance-based SOTA GDA on OOD
metrics. Specifically, on CLINC-Full, Bayes im-
proves 19.92% and 3.97% OOD F1 compared to
MSP and Entropy using LSTM, which proves MSP
suffers from severe overconfidence and our method
helps calibrate OOD distribution. The performance
gap between MSP and Entropy is because Entropy
based on softmax output distribution can better cap-
ture distinguished information for OOD than MSP
based on a single value of softmax distribution. We
find similar improvements under the BERT setting
on CLINIC-Imbal dataset.

4 Analysis

4.1 Effect of Bayesian approximation

Fig 4 shows the MSP and Entropy confidence distri-
butions of IND and OOD test data using Bayesian
to verify the effect of our method. Due to the
over-confidence issue of OOD, we find IND and
OOD curves overlap a lot in the original confidence
scores. The overlapping part of Entropy is less,
which confirms its better OOD detection perfor-
mance. After calibration using Bayes, the overlap
part of both methods is reduced, making it easier
to distinguish between IND and OOD.
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lgN
Statistical Indicators

OOD IND
mean median mean median

0 3.63 3.60 4.74 4.95
1 2.59 2.47 4.36 4.58
2 2.27 2.15 4.31 4.54
3 2.24 2.12 4.30 4.54

Table 3: KL-divergence between predicted distribution
and uniform distribution on CLINC-Full. The smaller
value is better for OOD. N is the number of dropout.

4.2 Analysis of Distribution Calibration

Table 3 shows the effect of Bayes on OOD Dirich-
let Distribution. We calculate the KL-divergence
between the predicted averaged softmax distribu-
tion and the uniform distribution of each test OOD
sample and report the mean and median values on
the whole test set. With the increase of sampling,
we observe a larger drop on OOD mean and me-
dian KL values than INDs. It proves that Bayes
can gradually calibrate the vood to a uniform dis-
tribution and thus make the sparse OOD Dirichlet
distribution dense but not affect IND. Besides, we
find N = 100 already achieves good performance
to reduce inference cost. We provide an efficiency
comparison in Section 4.3 and find 33.33% OOD
F1 improvements only increase 0.41% time.

4.3 Analysis of Cost-effectiveness

We show the comparison between the time con-
sumption and the corresponding performance im-
provement in Table 4 on CLINC-Full which has
15100 training data and 5500 test data. We find that
when the number of samples N is 10, our method
can improve the performance by 33.33% while only
increasing the time by 0.41%, which proves that
our proposed method is very cost-effective. Be-
sides, we also find that more sampling times lead
to more improvements, demonstrating that more
accurate calibration significantly boosts OOD de-
tection. In terms of time consumption and perfor-
mance improvement, N = 100 is the most appropri-
ate sampling parameter. When the sampling time is
1000, the cost-effectiveness is not as high as when
N = 10. We consider that methods such as model
distillation and pruning can reduce the time con-
sumption, and we will leave it to future work. In
general, we can choose the appropriate number of
samples according to the computing resources.

4.4 Analysis of Parameters

Table 5 reports the OOD F1 under different dropout
probability and sampling times. Within a range be-

lgN Time(s) OOD F1
Increased

Time(%) OOD F1(%)
0 240.00 50.13 - -
1 240.98 66.84 ↑ 0.41 ↑ 33.33
2 252.41 70.05 ↑ 5.17 ↑ 39.74
3 388.36 70.82 ↑ 61.82 ↑ 41.27

Table 4: Time consumption and corresponding perfor-
mance improvement of Bayesian approximation based
MSP.

lgN
Dropout Probability

0.3 0.4 0.5 0.6 0.7 0.8
1 57.21 60.97 61.80 64.27 66.84 64.01
2 60.78 64.38 65.84 68.87 70.05 69.03
3 63.32 65.35 67.51 69.33 70.82 69.69

Table 5: Effect of Bayesian approximation with different
parameters on OOD F1-score.

tween 0.3 to 0.7, the larger dropout probability
leads to better OOD detection performance. This
is because OOD data is more vulnerable to feature
loss and its averaged softmax prediction distribu-
tion tends to be more uniform. Besides, more sam-
pling times lead to improvements, demonstrating
that more accurate calibration significantly boosts
OOD detection. We also find that the performance
on p=0.7, N=10 is better than the performance on
p=0.3, N=1000. This prompts us to choose a higher
p (e.g. 0.7), which can effectively reduce the time
consumption (1000->10). In addition, OOD F1 is
not sensitive to excessive sampling times.

5 Conclusion

In this paper, we conduct an analysis of why previ-
ous softmax-based detection algorithms like MSP
or Entropy suffer from the overconfidence issue.
We find OOD samples exactly yield a sparse distri-
bution over the simplex and evenly distribute over
the whole space. Therefore, we propose a simple
but strong Bayesian approximation method to cal-
ibrate OOD distribution. Experiments prove the
effectiveness of our method. We hope to provide
new guidance for future OOD detection work.
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A Baseline Details

We compare many types of unsupervised OOD
detection models. For detection algorithms,
we use LOF(Local Outlier Factor)(Lin and Xu,
2019), GDA(Gaussian Discriminant Analysis)(Xu
et al., 2020), MSP(Maximum Softmax Proba-
bility)(Hendrycks and Gimpel, 2017) and En-
tropy. For feature extractor, we use LSTM(Long
Short Term Memory)(Hochreiter and Schmidhuber,
1997) and BERT(Bidirectional Encoder Represen-
tations from Transformers)(Devlin et al., 2019).
MSP (Maximum Softmax Probability)(Hendrycks
and Gimpel, 2017) uses maximum softmax proba-
bility as the confidence score and regards an intent
as OOD if the score is below a fixed threshold.

LOF (Local Outlier Factor)(Lin and Xu, 2019)
A detecting unknown intents in the utterance algo-
rithm with local density. It Assumes that unknown
intents’ local density is significantly lower than its
k-nearest neighbor’s.

GDA (Gaussian Discriminant Analysis) (Xu
et al., 2020) A generative distance-based classi-
fier for OOD detection with Euclidian space. For
avoiding over-confidence problems, they estimate
the class-conditional distribution on feature spaces
of DNNs via Gaussian discriminant analysis. GDA
is the state-of-the-art detection method till now,
our proposed method using Bayesian approxima-
tion still significantly outperforms GDA. We also
compare our method on two feature extractors for
further study.

LSTM (Long Short Term Memory)(Hochreiter
and Schmidhuber, 1997) A neural network that
was proposed with the motivation of an analysis
of Recurrent Neural Nets, which found that long
time lags were inaccessible to existing architectures
because backpropagated error either blows up or
decays exponentially.

BERT (Bidirectional Encoder Representations
from Transformers)(Devlin et al., 2019) A neural
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Figure 5: Effect of Bayesian approximation on softmax
distribution of OOD sample.

network that is trained to predict elided words in
the text and then fine-tuned on our data. Note that
they both trained only on labeled in-domain data
using cross-entropy loss.

B Implementation Details

We use the public pre-trained 300 dimensions
GloVe embeddings (Pennington et al., 2014)3 or
bert-base-uncased (Devlin et al., 2019)4 model to
embed tokens. We use a two-layer BiLSTM as a
feature extractor and set the dimension of hidden
states to 128. We use Adam optimizer (Kingma and
Ba, 2014) to train our model. We set a learning rate
to 1E-03 for GloVe+LSTM and 1E-04 for BERT.
In the training stage, We set the dropout probability
to 0.5 and set the training epoch up to 200 with
an early stop. We train only on in-domain labeled
data. We use the best F1 scores on the validation
set to calculate the detection method’s threshold
adaptively. For our proposed Bayesian approxima-
tion, we set the dropout probability to 0.7, and the
dropout sampling times to 100. Each result of the
experiments is tested 10 times under the same set-
ting and gets the average value. The training stage
of our model lasts about 4 minutes using GloVe em-
beddings, and 12 minutes using Bert-base-uncased,
both on a single Tesla T4 GPU(16 GB of memory).
The average value of the trainable model parame-
ters is 3.05M. We will release our code after blind
review.

C Visualization of softmax prediction
distribution.

C.1 Visualization of OOD samples
In Fig 5, we give a 150-dimensional class distri-
bution of an OOD sample to help understand our

3https://github.com/stanfordnlp/GloVe
4https://github.com/google-research/bert
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Figure 6: Multiple predicted probability distributions of
an IND sample under different random seeds.

calibration process. The upper part of the figure is
the distribution obtained by using the primary fea-
ture extractor. The softmax prediction distribution
has obvious over-confidence in a particular IND
category. The lower half of the figure presents the
distribution after calibration by Bayesian approxi-
mation, which is flatter and meets the expectations
of the OOD sample. When applying softmax-based
detection methods, the latter will more easily rec-
ognized as OOD.

C.2 Visualization of IND samples
Corresponding to Fig 1, Fig 6 and Fig 7 show pre-
dicted probability distributions of two IND sam-
ple under different random seeds over 150 classes.
We train four identical models on the same data
but only use different random seeds. Fig (a) dis-
plays each output distribution of an IND input
and Fig (b) shows the averaged output distribution.
Specifically, Fig 6 shows when the input utterance
is ’block my american saving bank for now’, the
model obtains the maximum prediction probability
on ground truth (freeze_account) under four ran-
dom seeds and averaged output. Specifically, The
maximum probabilities of prediction are 0.77, 0.96,
0.90 and 0.84 under different random seeds, and
0.87 under averaged output. In the experiments,
we find that most IND samples present the state of
Fig 6, that is, under different random samples set-
ting, the model is very confident to give the input
IND utterances with high confidence probability
in the ground-truth category. We guess that this

0.0
0.2
0.4
0.6
0.8

Pr
ob

ab
ilit

y

0.0
0.2
0.4
0.6
0.8

Pr
ob

ab
ilit

y

0.0
0.2
0.4
0.6
0.8

Pr
ob

ab
ilit

y

0 30 60 90 120 150
 (a) Different output distributions.

0.0
0.2
0.4
0.6
0.8

Pr
ob

ab
ilit

y

0 30 60 90 120 150
                             (b) Averaged output distribution.                  (labels)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

threshold

Figure 7: Multiple predicted probability distributions of
an IND sample under different random seeds.

is because the model has seen some IND data in
the training phase, and is familiar with IND clas-
sification, that is, the distribution uncertainty of
IND is not serious. We also show another exam-
ple in Fig 7 which the input utterance is ’where
is improve the credit score’ and the correspond-
ing true label is improve_credit_score. However,
we find that under one random sampling setting,
the model mispredicts into credit_score category
with a probability of 0.61. We argue this is due
to the fact that the two are easily confused with
each other. Under this random sampling parameter
setting, the model has not learned the feature abil-
ity to accurately distinguish these two categories.
In addition, we also find that although there are
wrong predictions, most of the IND predictions are
accurate and have a high prediction probability, so
that the highest prediction probability can still be
obtained on the ground-truth label after averaging
the distributions. This also reveals that our method
will not damage the performance of IND classifica-
tion, and can even avoid misjudgment among some
confusing IND categories.
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Abstract

Due to the increasing use of service chatbots
in E-commerce platforms in recent years, cus-
tomer satisfaction prediction (CSP) is gaining
more and more attention. CSP is dedicated
to evaluating subjective customer satisfaction
in conversational service and thus helps im-
prove customer service experience. However,
previous methods focus on modeling customer-
chatbot interaction across different turns, which
are hard to represent the important dynamic sat-
isfaction states throughout the customer jour-
ney. In this work, we investigate the problem
of satisfaction states tracking and its effects on
CSP in E-commerce service chatbots. To this
end, we propose a dialogue-level classification
model named DialogueCSP to track satisfac-
tion states for CSP. In particular, we explore
a novel two-step interaction module to repre-
sent the dynamic satisfaction states at each turn.
In order to capture dialogue-level satisfaction
states for CSP, we further introduce dialogue-
aware attentions to integrate historical informa-
tive cues into the interaction module. To evalu-
ate the proposed approach, we also build a Chi-
nese E-commerce dataset for CSP. Experiment
results demonstrate that our model significantly
outperforms multiple baselines, illustrating the
benefits of satisfaction states tracking on CSP.

1 Introduction

Customer satisfaction prediction (CSP) in E-
commerce service chatbots is dedicated to deter-
mining the customer satisfaction level such as
strongly satisfied, satisfied, neutral, dissatisfied,
or strongly dissatisfied with a specific conversa-
tional service she/he has just received, as shown
in Figure 1. Due to the increasing use of service
chatbots in E-commerce platforms in recent years
(Song et al., 2019; Bodigutla et al., 2020), CSP
is gaining more and more attention in the field of
natural language processing. On the one hand, to

∗Corresponding author.

 以上都不是
 

不好意思没能理解您的意思，请您再描
述一下呢？ 

申请开发票 

您的订单（xxx）已申请开发票，将在一
个工作日内完成...

1 .联系人工客服                      
2 .咨询其他问题

Dialogue-level Satisfaction: Satisfied

Ask for order ID: xxx good ID: xxx

What’s the problem?                      
…
4 . None of the above

None of the above

Sorry, I can’t understand, 
can you describe it again?

Apply for an invoice

Okay

1. switch to human service
2. ask other questions

Your order (XXX) has applied 
for an invoice ...

(1)

(2)

(3)

(4)

normalize 
 problem 

 analyze 
 problem 

    solve 
 problem 

咨询订单号：xxx 商品ID：xxx

请问您是想咨询以上订单的什么问题呢?                      
…
4 . 以上都不是

 以上都不是

申请开发票

好的

不好意思没能理解您的意思，请您再描
述一下呢？ 

您的订单（xxx）已申请开发票，将在
一个工作日内完成... 

1 .联系人工客服                      
2 .咨询其他问题

Figure 1: An example of the CSP task. Customer sat-
isfaction states (smiling or crying face) keep changing
throughout the customer journey, contributing to the
dialogue-level satisfaction.

deliver an effective conversational service and fur-
ther enhance the ability of service chatbots, it is
crucial to understand whether customers are sat-
isfied with chatbot responses. On the other hand,
CSP provides a straightforward way to dynamically
monitor the performance of customer-chatbot inter-
actions in terms of customer satisfaction and thus
helps to intervene in problematic conversational
services immediately (Liang et al., 2021). Once it
is recognized that the customer is dissatisfied, we
can immediately switch to manual service, so as to
improve customer service experience and reduce
customer churn (Yao et al., 2020).

Existing research on CSP focuses on two differ-
ent tasks, namely the turn-level CSP (Pragst et al.,
2017) and the dialogue-level CSP (Ultes, 2019).
The former aims to determine the customer satis-
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faction at each turn of customer-chatbot interaction
while the latter is a task to predict the overall cus-
tomer satisfaction with the whole dialogue. As
shown in Figure 1, in a real scenario of conver-
sational service, a few customers are willing to
give their feedback after service. Obviously, ask-
ing customers for turn-level feedback will undeni-
ably lead to poor customer experience (Park et al.,
2020). Therefore, in this study, we concentrate on
the dialogue-level CSP.

Many approaches have been proposed for CSP
with a focus on conversational context represen-
tation and customer-chatbot interaction modeling.
While earlier works exploit manual features or
recurrent neural networks (RNNs) to represent
conversational context (Walker et al., 1997; Yang
et al., 2010; Jiang et al., 2015; Choi et al., 2019),
recent studies exert more efforts on modeling
customer-chatbot interaction with attention mecha-
nisms (Song et al., 2019) or similarity-based meth-
ods (Yao et al., 2020). Although these studies have
greatly promoted the progress of the CSP tech-
nique, most of them concentrate on the interaction
between customer questions and chatbot answers
across different turns. However, chatbot answers
from future turns are invisible to customers in a real
scenario, so these methods are hard to represent
important satisfaction states during the customer
journey.

Actually, customer satisfaction states arise from
customer-chatbot interaction and are dynamically
changing throughout the customer journey (Lemon
and Verhoef, 2016; Lee et al., 2020; Kvale et al.,
2020). As shown in Figure 1, the customer is first
dissatisfied at the turn (2) and then becomes sat-
isfied at the turn (4) when the problem is solved
smoothly, resulting in an overall satisfaction level
satisfied. Furthermore, integrating historical con-
text is helpful for representing the satisfaction
states at each turn. For example, in the dialogue in
Figure 1, the customer asks a more detailed ques-
tion at the turn (3) based on the preceding response
"describe it again" from the chatbot.

To address the aforementioned issues, we pro-
pose a dialogue-level classification model for
CSP in E-commerce service chatbots, namely Di-
alogueCSP. It consists of three main modules:
Firstly, a dialogue encoding module exploits con-
volutional neural networks (CNNs) (Kim, 2014)
and Long Short-Term Memory (LSTM) networks
to capture conversational context. Secondly, an in-

teraction module is used to represent the customer
satisfaction states at each turn. In particular, the
interaction module utilizes two Gated Recurrent
Units (GRUs) (Chung et al., 2014) to perform a two-
step customer-chatbot interaction, namely local
question-answer interaction and satisfaction state
interaction. Furthermore, we introduce dialogue-
aware attentions, including question attention, an-
swer attention, and state attention. While the for-
mer two attentions integrate historical cues into
the interaction module, the latter captures dialogue-
level satisfaction representations. Finally, a de-
coding module is applied to predict the customer
satisfaction for each dialogue. We also construct a
Chinese E-commerce customer satisfaction predic-
tion dataset (CECSP) that contains approximately
30k conversational services. Experimental results
demonstrate that the proposed model outperforms
the current state of the art on CECSP and other two
benchmark datasets.

In summary, we make the following contribu-
tions:

• We propose a dialogue-level classification
model for customer satisfaction prediction.

• We explore a novel two-step interaction mod-
ule to handle both local question-answer and
customer satisfaction state interactions at each
turn and further integrate it with historical
cues using dialogue-aware attentions to han-
dle dialogue-level satisfaction representations.

• We construct a large Chinese E-commerce
CSP dataset (CECSP). Experimental results
show that the proposed model outperforms
multiple baselines.1

2 Related Work

Recently, CSP has attracted much attention due
to the increasing use of service chatbots in many
different aspects of our lives (Hashemi et al., 2018;
Choi et al., 2019; Kachuee et al., 2021). Some stud-
ies focus on addressing turn-level satisfaction pre-
diction with human annotations (Pragst et al., 2017;
Rach et al., 2017). However, they are not scalable
in terms of annotation costs due to the large volume
of conversational services in E-commerce. There-
fore, recent studies explore contrastive learning
(Kachuee et al., 2021) and reinforcement learning

1Our code is available at https://github.com/
McSumail/DialogueCSP, and the dataset will be re-
leased after encryption.
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(Liang et al., 2021) to make them more suitable for
E-commerce customer service.

Most of the existing works exert more effort
on dialogue-level satisfaction prediction since few
customers are willing to give their feedback after
service. While earlier methods rely on manual fea-
tures (Walker et al., 1997; Yang et al., 2010), recent
studies use deep neural networks to model conver-
sational context and customer-chatbot interaction.
Hashemi et al. (2018) exploit LSTMs to capture the
sequential context features within a dialogue and
use the hidden states of the last turn for satisfaction
prediction. To enhance dialogue-level representa-
tions, Ultes (2019) apply an attention mechanism
over LSTM layers to capture information from each
turn. To model customer-chatbot interaction, Song
et al. (2019) use each customer question to cap-
ture relevant information from all chatbot answers,
while Yao et al. (2020) compute the semantic simi-
larity scores between customer questions and chat-
bot answers across different turns. However, these
methods both exploit the information from future
turns that are invisible to customers in a real sce-
nario to capture turn-level features. Therefore, they
are hard to model the customer journey and track
the dynamic satisfaction states within a conversa-
tional service. This work differs in that we con-
sider both question-answer and customer satisfac-
tion state interactions at each turn, and thus design
a novel two-step interaction module to track the
satisfaction states throughout the customer journey.

3 Dataset

For our experiments, we collect conversational ser-
vices from one of the largest E-commerce plat-
forms and construct a Chinese E-commerce CSP
dataset. In the following, we will introduce the
annotation strategy and compare this dataset with
other benchmark datasets (Song et al., 2019).

3.1 Dataset Annotation

We use real customer feedback as the dialogue-
level satisfaction labels which include strongly sat-
isfied, satisfied, neutral, dissatisfied, and strongly
dissatisfied. For the quality of the annotation,
we then assign several experienced customer ser-
vice coordinator to check whether the feedback
is consistent with the conversational service, and
about 20% dialogues were excluded from the final
dataset.

Statistics items CECSP Clothes Makeup

# of Train 22576 8000 2832
# of Val 2822 1000 354
# of Test 2801 1000 354
# of strongly dissatisfied 3158 - -
# of dissatisfied 1417 2302 1180
# of neutral 2633 6399 1180
# of satisfied 10840 1299 1180
# of strongly satisfied 10151 - -
Avg. # of turns per dialog 3.67 8.14 8.01
Max # of turns per dialog 10 18 16
Min # of turns per dialog 1 2 2
Multiple domains Yes No No
Turn-level annotation No Yes Yes

Table 1: The comparison of the three datasets in some
key statistics. While CECSP is our constructed Chinese
E-commerce CSP dataset, Clothes and Makeup are two
benchmark datasets.

3.2 Comparison with Other Datasets

Table 1 shows some key statistics of the three
datasets. As we can see, CECSP consists of more
but shorter conversational service compared to
Clothes (Song et al., 2019) and Makeup (Song
et al., 2019). While Clothes and Makeup only col-
lect conversational services in post-sale, CECSP
consists of dialogues from multiple domains such
as logistic, post-sale and VIP service. Due to eth-
ical concerns, we follow Song et al. (2019) and
transform segmented Chinese word2 into word in-
dex in the final dataset.

4 Methodology

4.1 Problem Definition

Suppose there is a conversational service consist-
ing of n turns of interaction {(q1 : a1), (q2 :
a2), ..., (qn : an)}, where qi is the i-th question
asked by the customer and ai is its corresponding
answer from the chatbot, the goal of CSP is to pre-
dict the satisfaction label for this dialogue, which is
one of the five classes: strongly satisfied, satisfied,
neutral, dissatisfied, and strongly dissatisfied.

4.2 Model Overview

As illustrated in Figure 2, the proposed frame-
work for CSP consists of three main components,
namely dialogue encoding, satisfaction states track-
ing, and satisfaction prediction. Firstly, we en-
code the utterances of input dialogues into context-
dependent vectors. Next, an interaction module

2The segmentation toolkit is open source and available at
https://github.com/fxsjy/jieba

618



CNN

time

 LSTM

Question
Attention

GRU GRU

��
� …

…
GRU classify

interaction module at turn i

Input Dialogue Encoding Satisfaction States Tracking Satisfaction Prediction

utterances

answer

��
�

   local question-
answer interaction

 Answer
Attention

    satisfaction 
state interaction

   State
Attention

satisfaction state

���1 ��... ...

strongly satisfied

satisfied
neutral
dissatisfied
strongly dissatisfied

QA GRU cell

State GRU cell

��
�

��
�

question

Figure 2: Overview of our proposed model for dialogue-level CSP, congruent to the illustration in Methodology.

with two GRU cells is applied to perform a two-step
customer-chatbot interaction to represent the cus-
tomer satisfaction states at each turn. Meanwhile,
dialogue-aware attentions integrate the historical
information into the interaction module and capture
dialogue-level satisfaction representations. Finally,
the dialogue-level satisfaction representations are
used to predict satisfaction labels for dialogues. In
the following sections, we will explain each com-
ponent in detail.

4.3 Dialogue Encoding

The input of our model is a sequence of utterances
consisting of word index. The goal of dialogue
encoding is to encode the utterance sequence into
context-dependent vectors using CNNs and LSTM
for subsequent customer-chatbot interaction.3

4.3.1 Utterance Encoding

CNNs are capable of capturing n-gram informa-
tion from an utterance (Kim, 2014). We leverage
a CNN layer with max-pooling to extract context-
independent features of each utterance. Concretely,
the input is the 300 dimensional pre-trained 840B
GloVe vectors (Pennington et al., 2014). We em-
ploy three filters of size 3, 4, and 5 with 50 fea-
ture maps each. These feature maps are further
processed by max-pooling and ReLU activation
(Nair and Hinton, 2010). Then, these features are
concatenated and fed to a 100 dimensional fully
connected layer, whose activations form the repre-
sentations of the utterances.

3We also used pre-trained BERT-Base to encode the origi-
nal conversational service from CECSP, but the results were
not satisfactory.

4.3.2 Context Encoding
The LSTM introduces gating mechanism into re-
current neural networks to capture long-term de-
pendencies from input sequences. In this part, we
use a LSTM network to capture sequential context
information,

gi = LSTM(gi−1, ui) (1)

where i = 1, 2, . . . , n, ui and gi are context-
independent and sequential utterance representa-
tions, respectively. Then, we denote question and
answer representations as M q = [gq1, g

q
2, . . . , g

q
n]

and Ma = [ga1 , g
a
2 , . . . , g

a
n].

4.4 Satisfaction States Tracking
Since customer satisfaction states keep changing
throughout the customer journey, we design an in-
teraction module to perform a two-step customer-
chatbot interaction to represent the customer sat-
isfaction states at each turn. Figure 2 shows the
details of the interaction module at turn i.

4.4.1 Dialogue-aware Attention
Attention mechanisms aim to capture the most rel-
evant information and are widely applied on differ-
ent natural language processing tasks (Bahdanau
et al., 2015; Luo et al., 2018; Sinha et al., 2018).
Given the query q, the key k, and the value v, the
attention output o is computed as follows:

w = f (q, k) (2)

w̃ = w −m (3)

o = softmax(w̃)v (4)

where f is a function that computes a single scalar
from q and k. The attention mask m is a matrix
with the same shape as the attention weights w.

619



The value of mj is set to be +∞ only when the
attention for the j-th vector in k is masked, and set
to be 0 otherwise.

In conversational service, the customer satisfac-
tion state at turn i are most related to the questions
and answers at turn (1)~(i) (Lemon and Verhoef,
2016). Therefore, the attention mechanism used by
Song et al. (2019) that model the customer-chatbot
interaction across different turns is hard to capture
satisfaction states throughout the customer journey.
To address this issue, we design dialogue-aware
attentions by using different inputs and masking
strategies to integrate historical cues into the inter-
action module and capture dialogue-level satisfac-
tion representations.

4.4.2 Local Question-Answer Interaction
Since customer satisfaction states arise from the
customer-chatbot interaction (Lee et al., 2020;
Kvale et al., 2020), we adopt a QA GRU cell to
model the local question-answer interaction and
capture satisfaction features,

sqai = GRUqa (gai , g
q
i ) (5)

where i = 1, 2, . . . , n.

4.4.3 Question Attention
Due to the nature of dialogues, contextual informa-
tion plays an vital role in customer satisfaction
states (Lemon and Verhoef, 2016; Kvale et al.,
2020). Therefore, we design an attention mech-
anism to match relevant historical cues from the
question representations:

q, k, v = sqai ,M
q,M q (6)

mque
j =

{
+∞, j /∈ {g̃q1, g̃q2, . . . , g̃qi }

0, Otherwise
(7)

q̃i = QueAttn
(
q, k, v,mque

j

)
(8)

The masking strategy mque
j separates future turns

from the interaction at the current turn, which is
more consistent with the customer journey.

4.4.4 Answer Attention
We also devise another attention mechanism to cap-
ture historical cues from the answer representa-
tions:

q, k, v = sqai ,M
a,Ma (9)

mans
j =

{
+∞, j /∈ {g̃a1 , g̃a2 , . . . , g̃ai }

0, Otherwise
(10)

ãi = AnsAttn(q, k, v,mans
j ) (11)

4.4.5 Satisfaction State Interaction
With the attention mechanisms described above,
we successfully collect informative cues from the
historical questions and answers. Then, we use a
State GRU cell to lever these cues to represent the
customer satisfaction state si at turn i,

si = GRUs (ãi, q̃i) (12)

where i = 1, 2, . . . , n.

4.4.6 State Attention
After applying the two-step interaction module
at each turn, we denote the customer satisfaction
states as S = [s1, s2, . . . , sn]. Then, we use state
attention to capture the dialogue-level satisfaction
representations s̃:

q, k, v = sqan , S, S (13)

msta
j = 0 (14)

s̃ = StaAttn(q, k, v,msta
j ) (15)

4.5 Satisfaction Prediction
Finally, we classify each conversational service
using a fully connected network:

h = ReLU(Wrs̃+ br) (16)

P = softmax(Wsmaxh+ bsmax) (17)

ŷ = argmax
k

(P[k]) (18)

To train the model, we choose the cross-entropy
loss function:

L(θ) = −
∑

v∈yV

Z∑

z=1

Yvz lnPvz (19)

where yV is the set of dialogue indices that have la-
bels and Y is the label indicator matrix, and θ is the
collection of trainable parameters in DialogueCSP.

5 Experimental Settings

In this section, we present the experimental settings
including implementation details and baselines.

5.1 Implementation Details
We use the validation set to tune hyperparameters.
The batch size is set to be {128,64,64} for CECSP,
Clothes, and Makeup. We adopt Adam (Kingma
and Ba, 2015) as the optimizer with an initial learn-
ing rate of {1e-3,1e-4,1e-4} and L2 weight decay
of {1e-4, 1e-5, 1e-5} for CECSP, Clothes, and
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Makeup, respectively. The dropout (Srivastava
et al., 2014) is set to be 0.5. We train all models for
a maximum of 100 epochs and stop training if the
validation loss does not decrease for 20 consecutive
epochs.

5.2 Baseline Methods

For a comprehensive evaluation of our proposed
DialogueCSP, we compare it with the following
baseline methods:

LSTMCSP (Hashemi et al., 2018): This model
adopts a Bi-directional LSTM network to capture
the contextual information of conversational ser-
vices and uses the hidden states of the last turn for
satisfaction prediction.

LSTM+Attn (Ultes, 2019): This model applies
an attention mechanism over Bi-directional LSTM
layers to capture information from all turns within
a service.

DialogueGCN (Ghosal et al., 2019): It is a
graph-based model which encodes the relative po-
sitions between customers and chatbots within a
window context.

CAMIL (Song et al., 2019): This model uses
each question to capture information from all an-
swers to model customer-chatbot interaction. Addi-
tionally, it exploits turn-level sentiment information
by multiple instance learning.

LSTM+MTL (Bodigutla et al., 2020): It is a
multi-task learning network that uses the hidden
states of LSTM layers to predict dialogue-level and
turn-level satisfaction jointly.

LSTM-Cross (Yao et al., 2020): It is the latest
work for dialogue-level CSP which uses LSTM
networks to capture contextual features and com-
putes the semantic similarity scores between cus-
tomer questions and chatbot answers across differ-
ent turns. Then, these similarity scores are concate-
nated with the contextual features for satisfaction
prediction.

6 Results and Analysis

6.1 Overall Results

Table 2 shows the comparison results for CSP
in conversational services. Our proposed Dia-
logueCSP consistently achieves better performance
than the baseline methods on all datasets, while
being statistically significant under the paired t-test
(p<0.05). Besides, we can make another three ob-
servations as follows, which help to understand the
CSP task and the advantages of DialogueCSP.

Model
CECSP Clothes Makeup

Acc. F1 Acc. F1 Acc. F1
LSTMCSP 51.85 49.57 75.59 75.78 76.31 76.56
LSTM+Attn 53.09 51.02 77.12 77.28 77.56 77.52
DialogueGCN 53.69 51.35 76.89 76.82 77.72 77.78
CAMIL 55.43 52.92 78.30# 78.40 78.50# 78.64
LSTM+MTL – – 78.21 78.12 78.18 78.08
LSTM-Cross 55.51 53.11 78.91 79.33 79.88 79.58

DialogueCSP 57.48 54.98 81.18 80.93 81.30 81.62

Table 2: Overall performance on the three datasets. We
use the accuracy and the weighted F1 score to evaluate
each model. Scores marked by ”#” are reported results,
while others are based on our re-implementation.

Firstly, although LSTM+Attn only applies a
vanilla attention mechanism compared to LSTM-
CSP, the improvements on the three datasets are
significant. This indicates that dialogue-level CSP
must capture information from all turns in conver-
sational services. Since chatbots respond to each
customer question immediately, the relative posi-
tions between customer questions and chatbot an-
swers are fixed. Therefore, the position model in
DialogueGCN does not work here.

Secondly, CAMIL takes turn-level sentiment
information into account and achieve better per-
formance than previous strategies. However, the
improvement of the method on CECSP is more
obvious than that on Clothes and Makeup. Af-
ter examining the datasets, we find that the aver-
age conversational service length is 3.67 turns in
CECSP which is much shorter than that in Clothes
and Makeup. When the lengths are short, espe-
cially only 1 or 2 turns, overall satisfaction is more
related to turn-level sentiment information (Bod-
igutla et al., 2020).

Thirdly, CAMIL and LSTM-Cross achieve bet-
ter performance than other baselines due to their
customer-chatbot interaction modeling methods.
While these methods focus on questions and an-
swers across different turns, our proposed Dia-
logueCSP exploits a two-step interaction module to
better model the customer journey and thus capture
important customer satisfaction states.

6.2 Different Interaction Modeling Methods

In this section, we make a comparison between
different interaction modeling methods. To this
end, we modify our two-step interaction module
with the following two methods. The first one is
the same as LSTM-Cross (Yao et al., 2020). We
compute the semantic similarity scores between the
question and answer at the same turn. Then we con-
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Method
Weighted F1 score

CECSP Clothes Makeup
DialogueCSP 54.98 80.93 81.62
DialogueCSP-similarity 54.01 79.71 80.38
DialogueCSP-global attn 54.34 80.07 80.90

Table 3: Results of comparison between different inter-
action modeling methods. We modify our interaction
module with another two methods and evaluate them on
the three datasets.

1-2 3-4 5-6 7-8 9—∞
0

50

100

150

200

250

300

350

400

450

N
um

be
r 
of
 c
on

ve
rs
at
io
na

l s
er
vi
ce
s

77

78

79

80

81

82

83

84

W
ei
gh

te
d-
F1

Turns of conversational services

num of Clothes
num of Makeup
F1 on Clothes
F1 on Makeup

Figure 3: The influence of conversational service length
on CSP. We divide the test set of Clothes and Makeup
into five subsets in terms of conversational turns and
further evaluate DialogueCSP over these subsets.

catenate them with obtained contextual features for
satisfaction prediction. The second one is replac-
ing the dialogue-aware attentions with the global
attention (Song et al., 2019) to capture contextual
information.

The results of different interaction modeling
methods are shown in Table 3. We observe that
our interaction modeling method is around 1% bet-
ter than other methods in weighted F1 scores. Since
customers can directly choose the options provided
by chatbots, high semantic similarity scores don’t
always mean the high customer satisfaction. For
instance, if customers choose "None of the above"
from provided options, they may be dissatisfied.
Besides, chatbot answers from future turns are in-
visible to customers within a conversational ser-
vice. Therefore, global attention used in Song et al.
(2019) is hard to capture the customer satisfaction
states during the customer journey, leading to its
inferior performance.

6.3 Influence of Conversational Service
Length

In this section, we experiment on Clothes and
Makeup to examine the influence of conversational
service length.

Method
Weighted F1 score

CECSP Clothes Makeup
DialogueCSP 54.98 80.93 81.62
- 1st-step inter 54.60(↓ 0.38) 80.61(↓ 0.32) 80.94(↓ 0.68)
- 2nd-step inter 54.02(↓ 0.96) 80.08(↓ 0.85) 80.46(↓ 1.16)
- Question Attn 54.51(↓ 0.47) 80.49(↓ 0.44) 80.80(↓ 0.82)
- Answer Attn 54.43(↓ 0.55) 80.37(↓ 0.56) 80.90(↓ 0.72)
- State Attn 54.64(↓ 0.34) 80.21(↓ 0.72) 80.64(↓ 0.98)

Table 4: Results of ablation study on the three datasets.
1st-step inter and 2nd-step inter stand for first-step inter-
action and second-step interaction, respectively.

As shown in Figure 3, whether on Clothes or
Makeup, as the turns of conversational services in-
crease, the performance of our proposed approach
first rises significantly and then decreases. When
conversational services length is short, there are
few changes of customer satisfaction states (Lemon
and Verhoef, 2016; Lee et al., 2020). Therefore, in
these cases, the interaction module in DialogueCSP
that captures satisfaction states does not work.
Moreover, DialogueCSP uses dialogue-aware at-
tentions to integrate historical information into
customer-chatbot interaction. When the turns of
services increase, there are more informative cues
from preceding questions and answers which con-
tribute to customer satisfaction states. As a re-
sult, DialogueCSP achieves weighted F1 scores of
81.43% and 82.98% on the subsets where the turns
are 5 or 6. Further, it is still a challenge to handle
the intricate context information when the turns are
over 6, leading to the decline of DialogueCSP.

6.4 Ablation Study
In this ablation study, we analyze the impact of five
components by removing one of them at a time
from DialogueCSP. The results are presented in
Table 4.

We can observe that the performance of Dia-
logueCSP drops on the three datasets when any
of the components is removed, suggesting that all
these components contribute to the improvement
of DialogueCSP. However, their contributions can
be distinguished. By eliminating second-step in-
teraction, our model drops the most by 0.96% on
CECSP, 0.85% on Clothes, and 1.16% on Makeup
in weighted F1 scores, which implies the impor-
tance of modeling the satisfaction state interaction.

Moreover, we found that Question Attention
and Answer Attention also play important roles
in our model. This phenomenon supports our ar-
gument that customer satisfaction states have close
bonds with not only the questions and answers at
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customer questions:

length Most attended turn Satisfaction Prediction

4 (4) Q: It's a bit slow.
      A: You may want: 1. switch to human service; 2. ask other questions.

When will it be delivered? 

chatbot answers: Sorry, because..., it will be delivered in 3 work days and the system will inform you...  

Case #2

neutral unsatisfied

customer questions:

length Most attended turn Satisfaction Prediction

8 (6) Q: How long? 
      A: It takes 2 work days to issue a paper invoice, ... 

chatbot answers:

Case #1

satisfied satisfied

I need a paper invoice too. 

...Your E-invoice is already sent to your account, you can check it in ...   

Figure 4: Results of case analysis, where some turns of two conversational services are provided, along with the
visualization of attention weights between different context memories and the most attended turn (selected according
to the highest attention weight computed by State Attention). The darker colors mean larger attention weights.

the current single turn but also historical informa-
tion. Further, while State Attention is more impor-
tant than Question Attention and Answer Atten-
tion on Clothes and Makeup, it is the opposite on
CECSP. After delving into the datasets, we found
that the average conversational service length is
around 8 turns in Clothes and Makeup, which is
much longer than that in CECSP. Therefore, it is
important to weigh multiple satisfaction states to
generate dialogue-level representations on Clothes
and Makeup.

6.5 Case Analysis
For a comprehensive understanding of our pro-
posed method, we visualize its performance by a
case analysis on the test set of CECSP. In short, we
found that integrating historical information into
customer-chatbot interaction can be a double-edged
sword. As illustrated in Figure 4, the dialogue-
aware attentions can capture useful historical in-
formation and help make a good prediction (Case
#1). However, focusing too much on historical in-
formation may hinder the understanding of neutral
utterances of customers (Case #2). Therefore, it
is necessary to explore other mechanisms rather
than merely relying on popular attention to handle
historical information for CSP.

Besides, we also observe from these two cases
that the most attended turns of customer satisfac-
tion states are among the end of the dialogues.
After examining the whole test sets of the three
datasets, we found that 40% of the most attended

turns are the last turn of conversational services,
which is in tune with the conclusion from the previ-
ous studies (Hashemi et al., 2018; Yao et al., 2020).

7 Conclusion

In this paper, we investigate the importance of
satisfaction states tracking in dialogue-level CSP
in E-commerce service chatbots. We propose a
dialogue-level classification model and design a
two-step interaction module to handle both local
question-answer and customer satisfaction state in-
teractions throughout the customer journey. To
capture dialogue-level satisfaction representations,
we further introduce dialogue-aware attentions to
integrate historical information into the interac-
tion module. Besides, we also build a Chinese E-
commerce dataset for CSP to evaluate the proposed
approach. Experimental results on this dataset and
two released corpora show that our proposed model
outperforms all the baselines. Our further analy-
sis illustrates that tracking the satisfaction states
is more helpful for modeling customer-chatbot in-
teraction than previous strategies. In addition, our
experiments also show that integrating historical
information with customer-chatbot interaction is of
great value to CSP.

In our future work, we would like to explore
more effective methods to model customer-chatbot
interaction. Moreover, we also plan to investigate
the importance of customer intentions in handling
informative cues for CSP.
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Abstract

Multi-class unknown intent detection has made
remarkable progress recently. However, it has
a strong assumption that each utterance has
only one intent, which does not conform to
reality because utterances often have multiple
intents. In this paper, we propose a more desir-
able task, multi-label unknown intent detection,
to detect whether the utterance contains the un-
known intent, in which each utterance may con-
tain multiple intents. In this task, the unique
utterances simultaneously containing known
and unknown intents make existing multi-class
methods easy to fail. To address this issue,
we propose an intuitive and effective method
to recognize whether All Intents contained in
the utterance are Known (AIK). Our high-level
idea is to predict the utterance’s intent number,
then check whether the utterance contains the
same number of known intents. If the number
of known intents is less than the number of in-
tents, it implies that the utterance also contains
unknown intents. We benchmark AIK over ex-
isting methods, and empirical results suggest
that our method obtains state-of-the-art perfor-
mances. For example, on the MultiWOZ 2.3
dataset, AIK significantly reduces the FPR95
by 12.25% compared to the best baseline.1

1 Introduction

Intent classification is a crucial component of task-
oriented dialogue systems, which aims to map the
utterance to the known intent set. In an open envi-
ronment, it is nearly impossible that dialogue sys-
tems are only exposed to utterances with known in-
tents, i.e., in-distribution (IND) utterances. There-
fore, unknown intent detection is proposed to iden-
tify the out-of-distribution (OOD) utterance, which
contains the unknown intent (Hendrycks and Gim-
pel, 2017). It can prevent dialogue systems from
generating unrelated responses to ensure good user

∗ Corresponding author.
1Code and data are available at https://github.

com/yawenouyang/AIK.

Utterance
I am looking to stay at the Lovell Lodge hotel
and to see the areas local attractions.

Intent Inform-Hotel-Name, Request-Attraction-Area

Table 1: An example of utterance with multiple intents
from MultiWOZ 2.3 (Han et al., 2020). For dialogue
systems designed for the hotel domain, the utterance is
mixed OOD as it contains known intent Inform-Hotel-
Name and unknown intent Request-Attraction-Area.

experiences. The detected OOD utterances can also
provide future direction for developers.

Recent works follow the assumption that each ut-
terance has only one intent and focus on multi-class
unknown intent detection (Podolskiy et al., 2021;
Ouyang et al., 2021; Lin and Xu, 2019; Shu et al.,
2017). Based on this assumption, a rather popu-
lar strategy to perform OOD detection relies on
the maximum classifier output. For example, Shu
et al. (2017) propose using the maximum binary
classifier output. An utterance will be regarded as
containing the known intent and classified as IND
if the output is larger than the predefined threshold,
otherwise it will be classified as OOD.

Nevertheless, the above assumption is too strong:
several intents are usually expressed in an utter-
ance in a real-world scenario. For example, Gan-
gadharaiah and Narayanaswamy (2019) show that
52% of utterances include multi-label intents in
the amazon internal dataset. It is obvious that the
multi-class unknown intent detection research can-
not fully meet the needs of dialogue systems.

In this work, we propose a more practical task,
multi-label unknown intent detection, which is to
detect whether the user utterance contains unknown
intents, where each utterance may contain multiple
intents. We summarize three types of utterances
for unknown intent detection in the multi-label set-
ting: 1) IND utterances, only containing known
intents; 2) pure OOD utterances, only containing
unknown intents; and 3) mixed OOD utterances
simultaneously containing known and unknown in-

626



tents (see Table 1 for an example). Note that mixed
OOD utterances are unique to multi-label because
utterances in multi-class can only have one intent.

The existence of mixed OOD utterances brings
a great challenge for multi-label unknown intent
detection, which makes the existing strategy easy
to fail. As shown in Figure 1, such methods will re-
gard the mixed OOD utterances as IND utterances
once detecting the known intents.

To address the above issue, we propose a novel
method, by recognizing whether All Intents of the
utterance are Known (AIK), to detect both pure and
mixed OOD utterances for multi-label unknown
intent detection. Overall, we first predict the num-
ber of intents contained in the utterance. Then we
check whether the utterance contains the same num-
ber of known intents by measuring the probability
density of the utterance’s known intent-wise rep-
resentations. Specifically, we assume the known
intent-wise representation can be fitted well by a
conditional Gaussian distribution, then we can es-
timate its probability density via the Mahalanobis
distance. We empirically demonstrate that AIK can
significantly improve OOD detection performance,
especially for mixed OOD utterances.

To summarize, the key contributions of the paper
are as follows:

• We propose a new task: multi-label unknown
intent detection, which is desirable for practi-
cal dialogue systems.

• We propose a novel and effective method
AIK to detect OOD utterances in multi-label
setting. By discerning whether all intents
contained in the utterance are known, AIK
can naturally distinguish IND from pure and
mixed OOD utterances.

• We show that AIK outperforms existing meth-
ods on two multi-label benchmarks, validating
the effectiveness of our method.

2 Task Formulation

Multi-label unknown intent detection breaks the
assumption that each utterance only contains one
intent, allowing each utterance contain multiple in-
tents. It aims to detect OOD utterances that contain
unknown intents.

Formally, given a training dataset D =
{(u(i),y(i))}Ni=1 where u(i) is an utterance, y(i)

is a set of intent expressed in u(i), and it belongs

threshold

Binary classifier-based unknown intent detector

Inform
Hotel
Name

Inform
Hotel
Stars

Select
Hotel
None

Request
Hotel
Phone

…

Request
Hotel
Area

Request
Hotel
Internet

IND

Mixed OOD utterance: I am looking to stay at the 
Lovell Lodge hotel and to see the areas local attractions.

Figure 1: If dialogue systems are equipped with the ex-
isting unknown intent detector, such as binary classifier-
based detector (Shu et al., 2017), they will misclassify
the above utterance as IND as the output of the binary
classifier for Inform-Hotel-Name is greater than the
threshold.

to the known intent set Yin = {c1, c2, ..., ck}, i.e.,
y(i) ⊆ Yin. When testing, given an utterance, we
consider it to be OOD if not all intents in its intent
set y belong to Yin. Furthermore, if an utterance is
OOD and y ∩ Yin ̸= ∅, i.e., it also contains known
intent(s), we call it mixed OOD utterance. If an
utterance is OOD and y ∩ Yin = ∅, we call it pure
OOD utterance. The task goal is to train a score
function S(u) based on the training dataset D to
detect OOD utterances (pure and mixed).

3 Approach

To perform multi-label unknown intent detection,
we propose a novel method AIK. In this section, we
first introduce the overall idea of AIK, then present
its model architecture and training objective.

3.1 Overall Description
As aforementioned, AIK aims to recognize
whether all intents contained in the test utterance
are known. Formally, given a test utterance u, we
first predict its intent number r. Then we extract
its known intent-wise representation vc for each
known intent c ∈ Yin, and estimate vc’s probability
density. Suppose that the representations of known
intents follow the conditional Gaussian distribution
N (µc,Σ), where µc is the center vector and Σ
is the corvariance matrix 2. The vc’s probability

2For calculation convenience, we assume all known intents
share the same covariance matrix, which is also assumed in
Yan et al. (2020) and Lee et al. (2018).
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Algorithm 1 OOD detection using AIK

Input: Test utterance u; threshold τ ; Known in-
tent set Yin and each known intent c’s distribu-
tion N (µc,Σ).

1: Predict u’s intent number r
2: D = {}
3: for c ∈ Yin do
4: Extract u’s known intent-wise representa-

tion vc
5: Calculate the Mahalanobis distance dc be-

tween vc and N (µc,Σ)
6: Add −dc into D
7: end for
8: S(u) = r-th maximumD
9: if S(u) < τ then

10: return OOD
11: else
12: return IND
13: end if

density can be denoted as N (vc;µc,Σ), and esti-
mated by its Mahalanobis distance dc3 with respect
toN (µc,Σ) (Murphy, 2022). After calculating the
Mahalanobis distance for each known intent-wise
representation, we take the negative of them and
aggregate them into D = {−dc1 ,−dc2 , ...,−dck}.
Finally, we take the r-th maximum D as S(u) to
measure whether the utterance contains r known in-
tents. An utterance with low S(u) (e.g., lower than
the pre-defined threshold) indicates its contained
known intent number is less than r. Namely, it also
contains unknown intent(s), thus can be classified
as OOD. We present the pseudo-code of the above
process in Algorithm 1, and provide interpretation
below.

Interpretation: If an utterance u contains the
known intent c, vc will fit the distribution
N (µc,Σ), N (vc;µc,Σ) will be large and −dc
will be large, otherwise−dc will be small (Murphy,
2022). So if u is IND, i.e., all r intents contained
in u are known intents, there will be r large −d in
D, thus the r-th maximum D should be large. If u
is pure or mixed OOD, i.e., intents contained in u
are not all known intents, there will be less than r
large −d in D, thus the r-th maximum D should
be small.

Although AIK is proposed from a multi-label
perspective, it has a strong connection with OOD

3Mahalanobis distance dc can be calculated as: dc =
(vc − µc)

TΣ−1(vc − µc).

detection methods in multi-class. In multi-class,
utterances are assumed to have one intent and meth-
ods always take the maximum score, such as maxi-
mum softmax probability (Hendrycks and Gimpel,
2017), maximum logit (Shu et al., 2017), to detect
OOD utterances, which is equivalent to a special
case of AIK that is r equals 1.

3.2 Model Architecture
Figure 2 show the model architecture of AIK.

Utterance encoding. We first employ a pre-
trained BERT to encode the utterance u =
{w1, w2, ..., wn}, where n is the number of tokens.
Each token is encoded into a fix-length vector h,
and h0 is the hidden state for [CLS] token. We
choose BERT due to its powerful capability of fea-
ture extraction. The utterance encoder can also be
other models, such as GRU (Chung et al., 2014) or
CNN (Kim, 2014).

Intent number prediction. Similar to other
sentence-level tasks (Sun et al., 2019), we use h0

as the overall utterance representation, and predict
the intent number of the utterance u:

r̂ = fmlp(h0), (1)

where r̂ is the predicted intent number, fmlp is a
multi-layer perceptron (MLP) network that maps
h0 to a single scalar.

Known intent-wise representation extraction. In-
spired by Mullenbach et al. (2018), we utilize a
label-wise attention mechanism to get the known
intent-wise representations. Specifically, we ran-
domly initialize a trainable query qc for each
known intent c, and apply the query to calculate at-
tention over hidden states. After that, we aggregate
them to get the intent-wise utterance representation
vc for the intent c:

at =
exp(qTc ht)∑n
j=1 exp(q

T
c hj)

, (2)

vc =
n∑

t=1

at ht, (3)

where exp is the exponential function.

3.3 Training Objective
Intent number loss is mean-squared error (MSE)
between the model’s predicted intent number and
golden intent number:

Lint = E(u,y)∼D(r̂u − ru)2, (4)
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Figure 2: The model architecture of AIK.

where r̂u is the predicted intent number for utter-
ance u, ru is the golden intent number, i.e., the size
of set y.

Distribution loss drives the known intent-wise rep-
resentations toward the trainable conditional Gaus-
sian distribution. For known intents contained in
the utterance, we maximize the corresponding prob-
ability density, i.e., minimize the following loss:

Lpos = −E(u,y)∼DEc∼yN (vc;µc,Σ). (5)

For known intents not contained in the utterance,
we make the corresponding probability density less
large by setting a margin t:

Lneg = −E(u,y)∼DEc∼Yin\y max(0, t−N (vc;µc,Σ)).
(6)

Overall Loss: Finally, we train the AIK model by
minimizing the following loss:

L = λ1Lpos + λ2Lneg + λ3Lint, (7)

where λ1, λ2 and λ3 are loss weights.

4 Experimental Setup

4.1 Datasets

To evaluate the effectiveness of AIK for multi-label
unknown intent detection, we build two benchmark
datasets from the existing multi-label intent classi-
fication datasets MixSNIPS (Qin et al., 2020) and
MultiWOZ 2.3 (Han et al., 2020). The construction
details are as follows:

• MixSNIPS (Qin et al., 2020) is collected from
the SNIPS personal voice assistant (Coucke et al.,
2018). We randomly select two intents as un-
known intents for the validation set and another
two intents as unknown intents for the test set.
We conduct experiments with five different splits.

Statistic MixSNIPS MultiWOZ 2.3
Train-IND 6998 20319
Validation-IND 389 2531
Validation-OOD 664 2236
Test-IND 398 2530
Test-OOD 671 2418
Test-Mixed OOD 489 64
Test-Pure OOD 182 2354
Number of known intents 3 52
Average intent number per utterance 1.6 1.5

Table 2: Statistics of multi-label unknown intent de-
tection datasets MixSNIPS and MultiWOZ 2.3. Test-
Mixed OOD (or Test-Pure OOD) indicates mixed (or
pure) OOD utterances in the test set.

• MultiWOZ 2.3 (Han et al., 2020) hosts more than
10K dialogues across eight different domains.
For this dataset, we randomly select intents from
two domains as unknown intents for the valida-
tion set and intents from another two domains as
unknown intents for the test set. We also conduct
experiments with five different splits.

Table 2 provides average summary statistics of
all five splits on two datasets. Note that the training
set does not contain OOD utterances.

4.2 Metrics

Similar to multi-class unknown intent detection,
we adopt widely used metrics, including AUROC,
FPR95, AUPR In, AUPR Out, to measure the per-
formance of different methods in multi-label un-
known intent detection.

• AUROC: the area under the true positive rate-
false positive rate curve.

• FPR95: The false positive rate(FPR) when the
true positive rate(TPR) is 95%. OOD data are
treated as positive samples here.

• AUPR In: the area under the precision-recall
curve. IND data are treated as positive samples.

629



• AUPR Out: the area under the precision-recall
curve. OOD data are treated as positive samples.

Note that the larger AUROC, AUPR In, AUPR
Out mean better performance, and the lower FPR95
indicates better performance.

4.3 Baselines

The multi-label and multi-class unknown intent de-
tection have the same goal, i.e., identifying OOD
utterances, thus some competitive OOD detection
methods for multi-class can also be chosen as base-
lines for multi-label. In this work, we compare
our AIK method with the generative-based method
Likelihood, Likelihood Ratio (LLR) (Gangal
et al., 2020; Ren et al., 2019) and the classifier-
based method Energy (Ouyang et al., 2021; Liu
et al., 2020), Logit (Shu et al., 2017), and LOF
(Lin and Xu, 2019):

• Likelihood trains a language model with IND
utterances, and OOD utterances tend to have a
lower likelihood.

• LLR trains an extra language model with per-
turbed utterances to eliminate the unrelated factor
in the likelihood for OOD detection.

• Energy uses the sum of exponential of binary
classifier output to detect OOD.

• Logit uses the maximum binary classifier output
to detect OOD.

• LOF uses local outlier factor (Breunig et al.,
2000) in the utterance representation from the
binary classifier to detect OOD.

4.4 Implementation Details

The encoder for all classifiers used in the base-
lines and ours are pre-trained BERT (Devlin et al.,
2018). For a fair comparison, we also equip Energy
and Logit with the label-wise attention mechanism.
We select parameter values based on AUROC on
the validation set. For LOF method, we set near-
est neighbor number to 20. For LLR method, we
follow Gangal et al. (2020), using UNIGRAM to
introduce noise and setting pnoise to 0.5.

For our AIK method, we simply set λ1, λ2, λ3 to
1, and τ can be set according to FPR95. In the train-
ing process, we randomly initialize known intent
centers, and set the covariance matrix as identity
matrix for reducing the difficulty of optimizing. So

we can optimize the probability density by opti-
mizing the Euclidean distance between the known
intent-related representation and the known intent
centers. The margin t is set to 300 when we opti-
mize the distance. In the testing process, we follow
Lee et al. (2018) to compute the empirical center
and covariance for known intents as their condi-
tional Gaussian distributions. We use rounding to
ensure the predicted intent numbers are integers.

For all methods, we conduct five experiments
with different seeds {0, 1, 2, 3, 4} on each split. As
each dataset has five splits, we report the average
results of 25 experiments.

5 Results and Analysis

5.1 Main Results

Table 3 shows the main results of different methods
on multi-label unknown intent detection. From the
results, we can observe that:

• AIK can achieve state-of-the-art results on all
datasets and metrics. In particular, compared
to the best baselines, AIK significantly reduces
FPR95 by 15.29% on MixSNIPS dataset and
12.25% on MultiWOZ2.3. Figure 3 further pro-
vides the ROC curves of different methods.

• The method Logit and Energy perform poorly
on MixSNIPS. The reason is that most OOD ut-
terances in MixSNIPS are mixed, i.e., they also
contain known intents, which makes the maxi-
mum binary classifier and energy easy to fail. We
will discuss more on this in Section 5.2.

• LOF and AIK perform better on MixSNIPS than
MultiWOZ 2.3. Note that both methods are based
on utterance representation, a good representa-
tion space, such as making the representations
of utterances with the same intent compact, is
critical for them. Considering that the number of
known intents is larger on MultiWOZ 2.3 (see
Table 2), it is more difficult for the model to learn
a good representation space.

• Likelihood and LLR perform stably and obtain
appreciable results on two datasets. One bottle-
neck of such methods is that generative models
are difficult to fit the the more complex distribu-
tion well for multi-label utterances.
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Methods MixSNIPS MultiWOZ 2.3
AUROC ↑ FPR95↓ AUPR In↑ AUPR Out↑ AUROC ↑ FPR95↓ AUPR In↑ AUPR Out↑

Likelihood 87.29 55.12 91.17 83.73 89.52 76.44 89.18 90.73
LLR 89.40 45.54 92.96 82.73 85.90 54.31 85.01 85.71
Energy 68.85 84.66 55.27 78.56 89.25 44.31 88.80 89.35
Logit 67.83 84.16 54.81 77.41 89.44 43.99 89.06 89.47
LOF 92.79 30.73 88.84 95.14 80.68 72.11 78.50 74.56
AIK 96.29 15.44 94.93 97.46 92.22 31.74 93.33 91.01

Table 3: AUROC, FPR95, AUPR In, AUPR Out on MixSNIPS, MultiWOZ 2.3 datasets. All results are percentages.
Best results are in bold. Our method is significantly better than baselines with p-value < 0.01 using t-test.
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Figure 3: The ROC curves under different methods on MixSNIPS (left) and MultiWOZ 2.3 (right). For the
convenience of visualization, we only choose one split for each dataset. The curves indicate AIK always performs
better at different thresholds.

Method MixSNIPS MultiWOZ 2.3
Pure/Mixed Pure/Mixed

Likelihood 95.52/84.19 89.69/83.98
LLR 93.21/87.96 86.44/67.72
Energy 93.37/59.76 89.55/79.10
Logit 92.47/58.69 89.73/79.25
LOF 93.09/92.66 80.78/75.84
AIK 96.84/96.06 92.34/86.15

Table 4: AUROC on two type OOD of utterances.

Split MixSNIPS MultiWOZ 2.3
IND/OOD IND/OOD

Train 99.46/- 92.79/-
Validation 99.41/85.82 91.83/53.28
Test 99.47/82.70 91.79/53.87

Table 5: Intent number prediction accuracy.

5.2 Performance on Pure and Mixed OOD
Utterances

To gain further insights, we measure the OOD per-
formance of all methods in the cases of pure OOD
utterances and mixed OOD utterances, respectively.

As shown in Table 4, compared with pure OOD
utterances, we observe that all methods obtain
lower performance on mixed OOD utterances,
which demonstrates mixed OOD utterances are
more challenging to detect. Specifically, for Like-
lihood and LLR, the known intent parts of mixed

OOD utterances lie in high-density regions, result-
ing in a higher likelihood for the whole utterance.
For Logit and Energy, the known intent parts will
result in a higher binary classifier output. For LOF,
the known intent parts will pull the whole utterance
representation towards IND utterances, causing it
to be misclassified as IND.

For AIK, detecting mixed OOD utterances per-
forms comparably to pure OOD utterances on
MixSNIPS. However, the performance gap on Mul-
tiWOZ 2.3 still exists. We will reveal that this is
caused by the intent number prediction accuracy.

5.3 Analysis for Intent Number Prediction

The performance of AIK is depended on the in-
tent number prediction accuracy. As described in
Section 3.1, if an IND utterance has r intent(s),
the r-th maximum D will be large. But once the
predicted intent number r̂ is greater than r, then
r̂-th maximum D might be small, causing the utter-
ance to be misclassified as OOD. Similarly, for an
OOD utterance with r intent(s), once the predicted
intent number r̂ is less than r, then r̂-th maximum
D might be large, causing the utterance to be mis-
classified as IND.

Table 5 shows the intent prediction accuracy of
AIK. For IND utterances, we observe that both
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Method MixSNIPS MultiWOZ 2.3
Pure/Mixed Pure/Mixed

AIK 96.84/96.06 92.34/86.15
AIK with 96.94/97.26 93.66/94.46Golden intent number

Table 6: Effect of using golden intent number. Values
are AUROC.

Lpos Lneg Lint
MixSNIPS MultiWOZ 2.3
Pure/Mixed Pure/Mixed

1
√

96.22/79.39 92.04/85.25
2

√ √
97.02/82.42 92.86/85.88

3
√ √

95.14/94.72 91.19/85.83
4

√ √ √
96.84/96.06 92.34/86.15

Table 7: AUROC results of ablation study of the objec-
tive function.

MixSNIPS and MultiWOZ 2.3 can reach high ac-
curacy on validation and test set, such as greater
than 90%. For OOD utterances, the accuracy is still
maintained at a high level on MixSNIPS, while the
accuracy is only about 50% on MultiWOZ 2.3. We
conjecture that MixSNIPS is constructed manually,
and there are some explicit features in utterances,
such as “and”, to indicate the number of intents.
For the more challenging dataset MultiWOZ 2.3,
predicting the number of intents is not so easy. Con-
sidering that we only take the hidden state of [CLS]
to predict, there might be a great potential for im-
provement. For example, one can explicitly con-
sider some intent number-related features, such as
utterance length, number of verbs, etc.

We also test the OOD performance of AIK with
the golden intent number. Namely, we use the ut-
terance’s golden intent number directly instead of
predicting it. Table 6 shows the unknown intent de-
tection performance can be further improved, and
more performance improvement can be achieved
on the low accuracy dataset MultiWOZ 2.3.

5.4 Ablation Study
We perform an ablation study to investigate the
contribution of different losses for AIK. Table 7
shows the corresponding AUROC results.

Effect of Lneg. We can observe that Lneg brings
better results (Line 2 vs. Line 1, Line 3 vs. Line 4).
This is because Lpos is not good at optimizing the
inter-class dispersion, i.e., for intents not contained
in the utterance, which makes the intent-wise rep-
resentations low probability density. Ignoring inter-
class dispersion might cause the encoder to learn
a degenerate solution that all utterances have the
same representation, resulting in the indistinguisha-

Method AUROC↑
AIK 92.22
AIK with HM 94.31

Table 8: Effect of using HM centers for AIK on Multi-
WOZ 2.3.

Figure 4: A toy example to show the HM centers. o
represents the root node. di represents the domain node.
iij represents the intent node from the domain di.

bility of IND and OOD utterances. Lneg makes up
for this by making the corresponding probability
density less high.

Effect of Lint. Without intent number loss, we
directly take the maximum D instead of the r-th
maximum D as the score function. We observe that
Lint brings improvement on mixed OOD utterances
detection but leads to slight performance degrada-
tion on pure OOD utterances (Line 3 vs. Line 1,
Line 2 vs. Line 4). For pure OOD utterances, their
maximum D is small as they do not contain any
known intent, so maximum D is enough for de-
tecting them. However, for mixed OOD utterances,
their maximum D is large due to the contained
known intents, so using maximum D would result
in these utterances being misclassified as IND.

5.5 Consider the Intent Relation for the
Center Initialization

For AIK, at the beginning of the training stage, we
initialize each known intent center randomly. How-
ever, for the complicated dataset (e.g., MultiWOZ
2.3), randomly initialized centers may ignore the
relation between the intents. For example, for in-
tents from the same domain, we might expect their
intent centers to be closer.

To achieve this goal, we follow Pang et al.
(2020) to preset untrainable hierarchical Max-
Mahalanobis (HM) centers for each known intent.
HM centers adaptively craft the class centers ac-
cording to their tree structure. In our scenario, the
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Method AUROC↑
AIK 96.29

AIK with logit 95.21

Table 9: Effect of AIK with logit on MixSNIPS dataset.

tree structure is root-domain-intent. Specifically,
we first generate the center for the root node (e.g.,
the origin). Next, we generate centers for each
domain node by considering the root. Finally, we
generate centers for each intent node by consider-
ing its domain node. Figure 4 shows a toy example
to illustrate the generated intent centers.

As Table 8 shows, after considering the intent
relation, the AIK performance can be further im-
proved. We only consider the domain relation be-
tween intents here. It is also very interesting to
consider correlation between intents in future work.

5.6 Use Logit to Check Known Intent Number

In our method, we choose to use the probability
density, more specifically r-th maximum negative
Mahalanobis distance, to check whether the utter-
ance contains the same number of known intents.
As an extension, we explore the effectiveness of
using the logit. Particularly, we add the intent num-
ber prediction to the baseline method Logit, and
use the r-th maximum binary classifier output to
detect OOD. Ideally, an utterance with small r-th
maximum output indicates its contained known in-
tent number is less than its intent number, which
can be classified as OOD.

Table 9 shows the performance degradation us-
ing logit. This is because logit always suffers from
the label-overfitted problem and is not as reliable
as probability density (Lee et al., 2018).

6 Related Work

6.1 Unknown Intent Detection

Classifier-based unknown intent detection de-
pends on scores derived from the intent classi-
fier trained with IND utterances and their labels.
Hendrycks and Gimpel (2017) propose using the
softmax score, which has become a common
baseline. Nevertheless, some work (Louizos and
Welling, 2017) demonstrates that the softmax score
for OOD data can be arbitrarily high. Liu et al.
(2020) propose using the energy score because it is
theoretically aligned with the density of the input.
Ouyang et al. (2021) extends the energy score for
unknown intent detection. Some other works at-

tempt to use distance-based scores to detect OOD
utterances (Podolskiy et al., 2021; Yan et al., 2020;
Lin and Xu, 2019). Although achieving signifi-
cant results, the mixed OOD utterances cause that
the above methods essentially might not generally
apply to the more practical multi-label setting. Dif-
ferent from these methods, our method AIK, by
recognizing whether all intents are known, is com-
petent for the multi-label setting.

Generative-based unknown intent detection de-
pends on scores derived from the generative model.
These methods train the generative model to di-
rectly approximate the distribution of IND utter-
ances, then use likelihood or likelihood ratio to
detect OOD utterances (Ren et al., 2019; Gangal
et al., 2020). These methods are more generalized
as they do not rely on utterance labels. However, on
more complex multi-label datasets, the generative
model might be more challenging to train.

Unknown intent detection with auxiliary OOD
utterances depends on scores derived from the
model trained with both IND and OOD utterances.
Ryu et al. (2018) directly train a discriminator with
IND and OOD utterances. Zheng et al. (2019)
use OOD utterances to calibrate the softmax score.
Ouyang et al. (2021) use OOD utterances to shape
the energy gap between IND and OOD utterances.
Our method may also use the OOD utterances to
further improve the performance by optimizing
their probability density less high.

6.2 Multi-label Classification

The multi-label classification task aims to assign
multiple non-exclusive labels to each sample. For
text, many promising approaches have been pro-
posed to address this problem, such as Binary rele-
vance (Boutell et al., 2004), Classifier chains (Read
et al., 2011), seq2seq models (Yang et al., 2018).
Multi-label intent classification has also attracted
interest recently (Qin et al., 2020; Hou et al., 2021).
However, these methods make the closed world
assumption, meaning that all classes of the test
samples are known. In this paper, we consider an
open world environment and detect samples with
unknown classes.

7 Conclusion

In this paper, we propose a valuable and practical
research task multi-label unknown intent detection.
It aims to detect OOD utterances that may con-
tain multiple intents. We further propose a novel
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AIK method to perform multi-label unknown intent
detection, by recognizing whether all intents con-
tained in the utterance are known. Experimental
results on two datasets validate the effectiveness
of our method. We also analyze the challenges of
detecting mixed OOD utterances for multi-label
unknown intent detection through experiments.
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Abstract

Real human conversation data are complicated,
heterogeneous, and noisy, from which building
open-domain dialogue systems remains a chal-
lenging task. In fact, such dialogue data still
contains a wealth of information and knowl-
edge, however, they are not fully explored.
In this paper, we show existing open-domain
dialogue generation methods that memorize
context-response paired data with autoregres-
sive or encode-decode language models under-
utilize the training data. Different from current
approaches, using external knowledge, we ex-
plore a retrieval-generation training framework
that can take advantage of the heterogeneous
and noisy training data by considering them as
"evidence". In particular, we use BERTScore
for retrieval, which gives better qualities of the
evidence and generation. Experiments over
publicly available datasets demonstrate that our
method can help models generate better re-
sponses, even such training data are usually
impressed as low-quality data. Such perfor-
mance gain is comparable with those improved
by enlarging the training set, even better. We
also found that the model performance has a
positive correlation with the relevance of the
retrieved evidence. Moreover, our method per-
formed well on zero-shot experiments, which
indicates that our method can be more robust
to real-world data.

1 Introduction

Open-domain dialogue is a long-standing problem
in natural language processing and has aroused
the widespread interest of researchers. Many ap-
proaches have been studied, and recently, genera-
tion models trained on large-scale data have gained
more attention (Adiwardana et al., 2020; Roller
et al., 2020; Xu et al., 2021; Madotto et al., 2021;
Bao et al., 2019, 2020; Zhang et al., 2019b; Wang

∗Work done during internship at Noah’s Ark Lab, Huawei
†Equal Contribution
‡Corresponding Author

et al., 2020). Open-domain dialogue systems are
born to deal with diverse domains, and naturally
their training data, usually crawled from online
resources such as Reddit and Twitter, are hetero-
geneous and contain utterances with many various
topics, more freedom of topic shifting, and vague
responses (Kummerfeld et al., 2018). As a result,
directly building generation models from such data
will be inefficient and usually requires "knowledge"
during the training.

One common solution is to introduce external
knowledge, usually, in a form of unstructured
knowledge passages from Wikipedia (Dinan et al.,
2018) or Internet articles (Komeili et al., 2021),
and then, to build retrieval-augmented generation
(RAG) methods to improve the response quality
(Lewis et al., 2020; Izacard and Grave, 2020). How-
ever, this assumes knowledge-intensive scenarios,
which are not suitable for general open-domain
or robust to noise. According to our preliminary
study, in the Reddit dataset, 43% of the dialogues
are merely chitchat and cannot match "knowledge".
Moreover, building such a knowledge-augmented
dataset is very expensive as it relies on large
amounts of high-quality human annotations w.r.t.
knowledge grounding. And thus, they are limited
in size, making it hard for a knowledge-retrieval
method to generalize on scale.

Motivated by the above, we would like to inves-
tigate can we have better ways of utilizing open do-
main data without introducing external resources?
To tackle the aforementioned problem, we found
that the context from the other relevant dialogue
sessions can still be very useful for dialogue gen-
eration. To utilize such unstructured contexts, we
take inspiration from retrieval-augmented meth-
ods (Lewis et al., 2020). Differently, we retrieve
useful dialogue context as evidence, build context-
evidence-response triples for each dialogue turn,
and treat open-domain generation as an evidence-
aware generation task. Such that our model can

636



learn to respond with useful grounding evidences.
To retrieve evidences, we adopt similarity-based
BERTScore (Zhang et al., 2019a), which leverages
pre-trained contextual embeddings from BERT and
matches words in two sentences by cosine similar-
ity. It has been shown to correlate with human judg-
ment on sentence-level and system-level evaluation.
Although it was proposed as an automatic evalu-
ation metric for text generation, due to the high
correlation with human judgment, we consider it as
a better off-the-shelf method to pick high-relevant
evidences, compared with lexicon-based BM25.

By this, we show that current training methods
which learn merely using context-response pairs
have not fully unleashed the potential of training
data and that our methods, only retrieving from
the training data, can consistently improve the gen-
eration performance. We also perform zero-shot
experiments, demonstrating that our method can be
robust and generalized to different domains. More-
over, we found that adding extra retrieval data only
(without training them) can still help the model gain
performance, and it can even outperform traditional
methods directly trained on that part of retrieval
data. This proves our method is compatible with
current methods with external knowledge.

Our contributions are summarized as follows:
• we explore a retrieval-generation training frame-

work that can increase the usage of training data
by directly considering the heterogeneous and
noisy training data as the "evidence".

• We show that adding extra retrieval data while
not training them can still gain performance ben-
efits, even better than traditional training with
the retrieval data attached.

• The proposed method performs well on zero-
shot experiments, which indicates that our
method can generalize well in real-world ap-
plications.

2 Related Work

Open-domain Dialogue System Open-domain
dialogue system aims to perform chit-chat with peo-
ple without the task and domain restriction. Adi-
wardana et al. (2020) proposed Meena, a multi-
turn open-domain chatbot trained end-to-end on
data mined and filtered from public domain so-
cial media conversations. Blender (Roller et al.,
2020; Xu et al., 2021) learn to provide engag-
ing talking points and listen to their partners, as

well as display knowledge, empathy and person-
ality appropriately, while maintaining a consistent
persona. Adapter-bot (Madotto et al., 2021) ex-
plored prompt-based few-shot learning in dialogue
tasks. Plato (Bao et al., 2019, 2020) introduced
discrete latent variables to tackle the inherent one-
to-many mapping problem in response generation.
Zhang et al. (2019b) proposed DialoGPT which
was trained on 147M conversation-like exchanges
extracted from Reddit comment chains. Wang et al.
(2020) introduced CDial-GPT, a pre-training di-
alogue model which is trained on a large-scale
cleaned Chinese conversation dataset. Mi et al.
(2022) built PANGU-BOT with relatively fewer
data and computation costs by inheriting valuable
language capabilities and knowledge from pre-
trained language model.

Retrieval Augmented Generation Retrieval is
a long-considered intermediate step in dialogue
systems, and recently, it has been an intensively
studied topic for neural models(Song et al., 2018;
Pandey et al., 2018; Weston et al., 2018; Wu et al.,
2019; Cai et al., 2019). Lewis et al. explored a fine-
tuning recipe for retrieval-augmented generation,
which combined pre-trained parametric and non-
parametric memory for language generation. Izac-
ard and Grave proposed Fusion-in-Decoder which
encoded each evidence independently with the con-
text when generative model processing retrieved
passages. Li et al. (2022) explored how to effec-
tively utilize information with different channel
settings of FiD in multi-turn topic driven Conver-
sations. Most of these works retrieved external
knowledge, usually unstructured knowledge pas-
sages, such as Wizard of Wikipedia (Dinan et al.,
2018), persona-chat (Zhang et al., 2018), and Wiz-
ard of Internet (Komeili et al., 2021). Moreover, Li
et al. (2020) proposed a zero-resource knowledge-
grounded dialogue model which bridged a context
and a response as knowledge and expressed it as a
latent variable.

3 Self-retrieval Method

We start from an open-domain dialogue dataset
D = {(ci, ri)}Ni=1, where ci denotes multi-turn
dialogue context, consisting of dialogue utterances,
and ri represents the response.

Generally, we aim to build open-domain di-
alogue systems that retrieve useful dialogue re-
sponses (as evidences) from other sessions to help
response generation. To tackle this problem, we
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Figure 1: Overview of our self-retrieval approach as well as external-retrieval approach. In self-retrieval, our
retriever first retrieves useful dialogue instances from the training dataset, which extends current data to context-
evidence-response triples. And then, we adopt evidence-aware training models over the data with self-retrieval
evidences.

proposed a two-step framework. The overview of
our approach is shown in Figure 1.
1. Firstly, we extend an open-domain dialogue

dataset with a retriever. Given the context of cur-
rent dialogue turn ci, the retriever R(e{·}|ci) re-
turns top-k relevant evidences as the evidence set
Ei = {e1:k} from a retrieval set. Note that dif-
ferent from existing knowledge-grounding meth-
ods, we do not introduce external data for our re-
triever, and we only consider retrieving evidence
from the training data at hand. By that, we ex-
tend the dataset into context-evidence-response
triples D = {(ci, Ei, ri)}Ni=1.

2. Secondly, we adopt an evidence-aware gener-
ation model, which is a conditional language
model to generate the response y given the con-
text and the retrieved evidence p(y|c, E). We
investigate two widely used architectures, an
auto-regressive GPT, and an encoder-decoder
based language model T5.
Next, we introduce how to design an effective

retriever in Section 3.1 and ways of implementing
evidence-aware generation on the basis of state-
of-the-art pre-trained generation models in Sec-
tion 3.2.

3.1 Retrieve Dialogue Evidence
A variety of retrieval systems have been studied,
including classic but effective bag-of-words sys-
tem (Robertson et al., 1995) and up-to-date dense
retriever, such as DPR (Karpukhin et al., 2020)
and SparTerm (Bai et al., 2020). We utilized an
off-the-shelf similarity based BERTScore to re-
trieve evidence (Zhang et al., 2019a).1 BERTScore

1We also did preliminary experiments over BM25 and it
shows no significant differences for our findings.

computes token similarity using pre-trained contex-
tual embeddings rather than exact matches, which
shows better coherent matching capability com-
pared with human judgment. During the retrieval,
for each context-response pair (ci, ri), we define
the retrieval set by applying leave-one-out of the
original training set S = D − {(ci, ri)}, to en-
sure the model cannot see the true response during
generation.

We explore three retrieval strategies: context-to-
context (C2C) retrieval, context-to-response (C2R)
retrieval, and a MIX retrieval.

Context-to-context Matching C2C matches the
context ci of current dialogue and the context cj
from the retrieval set S . And the evidence set of ci
is defined as:

EC2C
i (ci,S) = argmaxK

(cj ,rj)∈S
score(ci, cj) ,

where argmaxK means selecting top k correspond-
ing responses r1:k as evidences e1:k with best
matching score given by BERTSCORE.

Context-to-response Matching As the retrieval
set contains the dialogue response, we also perform
a Context-to-response (C2R) Matching. It is similar
to C2C, while C2R directly matches the response in
the retrieval set. In C2R, BERTSCORE computes
the matching score based on the response rj of the
retrieval set.

EC2R
i (ci,S) = argmaxK

(cj ,rj)∈S
score(ci, rj) .

Mixed Matching We observed that these two
strategies, C2C and C2R, often obtain different re-
sults. Therefore, we complement the two retrieval
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sets of C2C and C2R with each other and combine
them into a MIX retrieval set by re-ranking them
using BERTScore. Finally, we take their responses
as evidences:

EMIX
i (ui,S) = argmaxK{EC2C

i , EC2R
i } .

Filter During preliminary studies, we found that
some retrieved evidences are not relevant to the
current context. It is arguable that very few rele-
vant evidences can be retrieved for some dialogue
instances, and to study this we perform analysis in
Section 4.5, where we study different sizes of the re-
trieval set to ensure more relevant evidences can be
found. Undoubtedly, these low-relevant evidences
are harmful to response generation. Therefore, we
approach a simple filter to discard evidences with
very low matching scores.

3.2 Evidence-aware Dialogue Generation
For generating more appropriate responses, our
generator is a language model but also conditional
on the retrieved evidence set.2

p(y|ci, Ei) =
∏

t

p(yt|ci, Ei, y<t) .

Generally speaking, it can be modeled by any auto-
regressive or encoder-decoder generation architec-
ture for open-domain dialogue. To demonstrate, we
adopt both widely used architectures, i.e. a GPT-2
(Brown et al., 2020) and a Fusion-in-Decoder (FID;
Izacard and Grave, 2020).3

GPT-2 GPT (Radford et al., 2019; Brown et al.,
2020) is auto-regressive language model based on
multi-head self-attention transformers (Vaswani
et al., 2017). For our task, the model takes the
dialogue context and the support evidences as the
input, and then it generates the response. More
precisely, for any instance (ci, Ei, ri), all retrieved
evidences are concatenated before the dialogue
context ci, and the model directly generates the
response y after ci. We add special token [p]
before each retrieved evidence passage, and fol-
lowing Wang et al. (2020), we add [speaker1],
[speaker2] to each utterance to indicate differ-
ent speakers of muti-turn dialogue.

2Note that responses from the retrieval set are not directly
trained by the language model, but used as the evidences at
the input side only.

3We also experiment with T5 architectures via concatenat-
ing the context and evidences and decoding the response. Yet
the performance does not significantly vary from GPT thus
we do not report T5 in our main results.

Fusion-in-Decoder In our setups, we have mul-
tiple evidences for one instance, thus we adopt a
slightly different model than the standard encoder-
decoder T5 (Raffel et al., 2020). We use FID
(Izacard and Grave, 2020), which was originally
proposed for open-domain question answering. It
considers encoding each evidence independently
with context, so that these evidences will not affect
each other on the encoder side, which is a better so-
lution to encode multiple evidences. In detail, FID
encodes a concatenation of the context ci with each
retrieved evidence ej . It concatenates all the en-
coded hidden representations and then passed to the
decoder for response generation. Slightly different
from the original architecture, we add an additional
passage that only encodes the dialogue context, in
case one dialogue does not use any retrieved evi-
dence (discussed in Section 4.5). Similarly, we add
special tokens as we did for GPT-2.

4 Experiments

4.1 Datasets

To evaluate the performance of the proposed model,
we conduct experiments on two publicly available
dialogue datasets.

Reddit Dataset The Reddit dataset is ex-
tracted from comment chains scraped from Red-
dit spanning. Reddit discussions can be naturally
expanded as tree-structured reply chains, since a
thread replying to one thread forms the root node of
subsequent threads. We derived the dataset from Di-
aloGPT (Zhang et al., 2019b), and use their script to
obtain and process the full dataset or demo dataset.4

We report results on the demo dataset which com-
prises 770k multi-turn dialogue instances and is
sufficient for our experiments.

Movie Dialog Dataset Movie dialog dataset
collects movie discussions from real conversation
taken directly under the movie subreddit (Dodge
et al., 2015).5 We discard instances with long turns
or long sentences. In total, the movie dialog dataset
has 940k dialogue sessions after preprocessing.

For both datasets, we randomly sample a training
set of 100k samples, a validation set of 10k samples,
and a test set of 10k samples. Data outside the
above sets can be considered as retrieval resources.
Noted that in our main experiments, the retrieval

4https://github.com/microsoft/DialoGPT.
5https://research.fb.com/downloads/

babi/.
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Automatic Metrics Human Evaluation

Reddit PPL↓ F1↑ BLEU↑ Dist-1↑ Dist-2↑ Flue↑ Info↑ Relv↑ SSA↑
GPT-2 BASELINE 31.3 5.3 3.4 65.4 96.7 3.0 2.9 2.8 46%

w. SR

BM25 MIX 28.1 6.6 4.2 73.5 98.2 3.4 3.3 3.4 51%
BERTScore C2C 27.7 7.2 4.8 75.2 96.1 3.4 3.4 3.4 54%
BERTScore C2R 27.9 7.0 4.7 75.0 96.4 3.3 3.4 3.3 53%
BERTScore MIX 27.1 7.8 5.4 76.1 96.8 3.5 3.4 3.5 55%

T5 BASELINE 25.5 5.2 3.7 95.7 96.3 3.1 3.0 3.1 48%

FID w. SR

BM25 MIX 23.8 9.5 6.9 95.3 97.2 3.5 3.4 3.5 52%
BERTScore C2C 23.3 9.9 7.3 94.3 94.7 3.5 3.5 3.4 54%
BERTScore C2R 23.4 9.8 7.2 94.0 94.4 3.5 3.4 3.4 54%
BERTScore MIX 22.7 10.4 7.8 95.6 96.5 3.6 3.5 3.5 56%

Movie PPL F1 BLEU Dist-1 Dist-2 Flue Info Relv SSA

GPT-2 BASELINE 25.6 5.4 3.3 64.3 96.0 3.0 2.9 2.8 47%

w. SR

BM25 MIX 22.7 6.7 4.2 71.4 96.1 3.4 3.3 3.3 52%
BERTScore C2C 22.1 7.1 4.7 71.7 94.9 3.4 3.4 3.3 53%
BERTScore C2R 22.3 7.0 4.7 72.0 94.3 3.3 3.4 3.3 53%
BERTScore MIX 21.6 7.6 5.2 73.4 96.2 3.5 3.4 3.4 55%

T5 BASELINE 20.5 5.2 3.7 95.2 95.8 3.1 2.9 2.9 48%

FID w. SR

BM25 MIX 18.9 9.2 6.6 94.9 96.8 3.6 3.5 3.6 53%
BERTScore C2C 18.4 9.5 7.0 94.4 95.6 3.6 3.6 3.5 55%
BERTScore C2R 18.5 9.4 6.8 93.8 94.9 3.5 3.5 3.6 54%
BERTScore MIX 17.9 10.1 7.5 95.3 96.9 3.7 3.7 3.6 57%

Table 1: Automatic and human evaluation of the in-domain setups over Reddit and Movie Dialog, using 8
evidences passages. GPT-2 and T5 are baselines. “w. SR” (with self-retrieval) indicate our methods. The best
results are in bold.

set (for train/dev/test) is exactly the training set,
where we only retrieve from the training set. And
experimental results using a larger retrieval set are
investigated and reported in Section 4.5, which
involves more evidence than the training set.

4.2 Metrics

To evaluate response quality, we adopt both auto-
matic metrics and human evaluations.

Automatic Metrics We deploy four commonly
used automatic metrics for the dialogue gen-
eration, the perplexity (PPL), unigram overlap
(F1), BLEU, and distinct 1,2 (Dist-1,2). F1 and
BLEU are commonly used to measure how similar
the machine-generated responses is to referenced
golden response (Miller et al., 2017; Papineni et al.,
2002). Dist-1,2 measure the diversity of the gener-
ated responses (Li et al., 2016).

Human Evaluations We perform human evalua-
tion over the generated response. Following Song
et al. (2021), we consider three conventional crite-
ria: fluency (Flue.), informativeness (Info.), and
relevance (Relv.). We recruit a team on Amazon
Mechanical Turk consisting of several professional
annotators, who are proficient in language tasks but

know nothing about the models.6 We sample 200
instances for each model’s evaluation and each sam-
ple was evaluated by three people. Each criterion
is rated on five scales, where 1, 3, and 5 indicate
unacceptable, moderate, and perfect performance,
respectively. We report the average Fleiss’s kappa
score (Fleiss and Cohen, 1973) on Reddit and
Movie Dialogue, 0.49 and 0.45 respectively,
indicating annotators have reached moderate agree-
ment. We also consider Sensibleness and Speci-
ficity Average (SSA), which evaluates two aspects
of responses: making sense and being specific (Adi-
wardana et al., 2020).

4.3 Implementation and Setup

As the context has a different number of turns,
we use the latest utterance of dialogue context as
the BERTScore query in practice, which can yield
more consistent matching scores. Specifically, we
compute F1BERT of context ci of current dialogue
and the corresponding context of every evidence.
We use DEBERTA-XLARGE-MNLI (He et al., 2020)
following the suggestion of authors.7 The filter is
used in all retrieval setups except the baselines.

6https://www.mturk.com/
7https://github.com/Tiiiger/bert_score
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Speaker1: Why do you get to decide who has something to offer ?
Speaker2: He doesn’t , he is entitled to his opinion , this is the internet and a forum discussion thread .

People post their opinions not the truth .
Baseline Generation: Why have you already voted to make sure you for yourself to support yourself ?
Key Evidence 1: Everyone is entitled to an opinion , but those with experience in the area of discussion

usually have more pertinent and accurate opinions than others .
Key Evidence 2: No you’re entitled to your opinion . I’d just prefer an opinion that didn’t contain a logical fallacy .
Our Generation: I agree with you. People are entitled to their opinion . I just posted my own opinion .
Ground Truth: I know , I was taking a round about way of trying to get him to questions his opinion .

Table 2: Examples of responses generated by baseline and our approach based on FID.

Movie Dialogue→ Reddit Reddit→ Movie Dialogue

PPL F1 BLEU Dist-1 Dist-2 PPL F1 BLEU Dist-1 Dist-2

T5 BASELINE 29.2 5.3 3.9 95.6 96.2 33.0 5.1 3.6 94.5 95.9

FID w. SR
C2C 26.1 9.2 6.8 95.9 97.2 27.3 8.8 6.7 95.8 96.7
C2R 26.2 9.1 6.6 95.2 96.6 27.5 8.6 6.6 95.2 96.1
MIX 25.6 9.8 7.3 96.4 98.1 26.8 9.5 7.1 95.5 97.8

Table 3: Automatic evaluation results of zero-shot experiments over Reddit and Movie Dialog with 8
retrieved evidence passages. BERTScore is used to retrieve. The best results are in bold.

We perform an in-domain evaluation over the
two datasets. For each dataset, we adopt the pro-
posed three self-retrieval (SR) method, C2C, C2R,
and MIX, comparing against the GPT-2 and FID
baselines. We experiments with different numbers
of retrieval evidence passages (see Section 4.5).
Note that FID degenerates to a standard T5 model
without any evidence. We retrain our model based
on the pretrained checkpoint of GPT-2,8 and T5
checkpoint for FID.9 We do model selection based
on PPL over the validation set.

We additionally perform a zero-shot cross-
domain evaluation for both datasets using FID.10

In this setup, we only train our best in-domain FID
model on one dataset and then directly test on the
other, while the retrieval set for inference is the
training set of the target domain. All other setups
follow the in-domain experiments.

4.4 Results
In-domain Table 1 reports the overall in-domain
experimental results. Overall, our self-retrieval
methods achieve better performance consistently
across almost all automatic and human evaluation
metrics in terms of generating quality. For gener-
ation diversities (Dist-1 and Dist-2), our SR can
still have comparable performance with the strong
baselines. For both GPT-2 and FID, all three used
matching strategies can improve the overall per-

8https://huggingface.co/gpt2/tree/main
9https://huggingface.co/t5-small/tree/

main
10We ensure there is no overlap between the two datasets.

formance, and MIX consistently outperforms the
other two. Comparing with GPT-2 and FID, two
baselines achieve similar performance, while when
adding our retrieved evidences, we observed FID
based methods performance better, demonstrating
the effectiveness of evidence-aware training of FID
in modeling multiple evidence passages. We also
illustrate the example generated by our approach
and baselines in Table 2. Above all, these results
demonstrate that our approach could utilize more
of the dialogue data without introducing more data
compared with the baselines.

Zero-shot Cross-domain Table 3 reports the re-
sults of zero-shot experiments using FID. Again,
we find that our methods with evidence achieve bet-
ter performance compared to the baselines without
knowledge and MIX performs the best. This result
indicates that our approach has good generalization
and is robust to different datasets.

Overall, both in-domain and zero-shot results
demonstrate our self-retrieval method can improve
the performance of open-domain dialogue gener-
ation, and worth noting that our self-retrieval do
not use any additional resources. This indicates our
methods can unleash more potential of the dialogue
data compared with the vanilla training methods.

4.5 Analysis

Retrieval Methods Table 1 shows the experimen-
tal results of different retrieval methods. We find
that both methods achieve better results compared
to baseline, which shows the generality of our self-
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Reddit Movie Dialog

PPL F1 BLEU Dist-1 Dist-2 PPL F1 BLEU Dist-1 Dist-2

GPT-2 BASELINE 31.3 5.3 3.4 65.4 96.7 25.6 5.4 3.3 64.3 96.0

SR

p1 28.3 6.9 4.7 74.5 95.8 22.8 6.8 4.6 71.3 94.2
p2 27.9 7.1 4.9 74.2 95.6 22.5 7.1 4.8 71.6 94.8
p4 27.5 7.4 5.1 75.1 96.3 22.1 7.3 5.0 72.8 95.3
p8 27.1 7.8 5.4 76.1 96.8 21.6 7.6 5.2 73.4 96.2
p16 26.8 7.9 5.4 76.5 97.0 21.3 7.8 5.3 73.8 96.5

T5 BASELINE 25.5 5.2 3.7 95.7 96.3 20.5 5.2 3.7 95.2 95.8

FID w. SR

p1 23.8 9.5 6.9 93.7 94.8 19.1 9.0 6.3 94.6 95.7
p2 23.5 9.8 7.2 94.1 95.3 18.7 9.4 6.7 94.4 95.5
p4 23.1 10.1 7.6 94.6 96.2 18.2 9.8 7.2 94.9 96.3
p8 22.7 10.4 7.8 95.6 96.5 17.9 10.1 7.5 95.3 96.9
p16 22.4 10.6 7.9 95.9 98.2 17.7 10.3 7.6 95.5 97.0

Table 4: Experimental results of different numbers of evidences used for generation using Reddit and Movie
Dialog. p-k indicates the number of evidence passages used for generation. The best results are in bold.

Reddit PPL F1 BLEU

GPT-2 BASELINE 31.3 5.3 3.4

w. SR
RANDOM 31.4 5.4 3.4

w/o FILTER 27.6 7.2 4.8
w. FILTER 27.1 7.8 5.4

FID (T5) BASELINE 25.5 5.2 3.7

W. SR
RANDOM 25.7 5.2 3.6

w/o FILTER 23.3 9.8 7.2
w. FILTER 22.7 10.4 7.8

Table 5: Effectiveness of the Filter.

retrieval method. We can also find that BERTScore
performs better than BM25,11 which indicates that
BERTScore could be used to get better retrieval
evidences.

Retrieval Strategies Table 1 also shows the ex-
perimental results of different retrieval strategies.
We find that MIX perform better than context-to-
context retrieval (C2C) and context-to-response re-
trieval (C2R), and the latter two methods show no
significant difference. We thought that both C2C

and C2R can retrieve useful evidences while from
different aspects. And thus mixing them can yield
more useful informative and relevant evidences and
better performance as well.

Effectiveness of the Filter Table 5 shows the
ablation study without using the filter during the
retrieval step on Reddit. Here the finding is that
experiment with the filter (w. FILTER), has better
performance than experiments without it (w/o FIL-
TER), as well as a setup using random evidences
(RANDOM). These show that noisy evidences give
no assistance, or even harm, to the model and that

11We only report the mix results for BM25. Refer to the
appendix for full results.

the necessity of discarding low-relevant evidence
in our method.

Number of Retrieved Evidences We also car-
ried out experiments with a different number of
retrieved evidences. Table 4 reports the experimen-
tal results of using k evidences (p-k) for generation.
We observe that experiment using more retrieved
evidences (p16) performs better than experiments
with fewer retrieved evidences (i.e. p1, p2, p4, p8).
While the performance gap is getting smaller when
increasing the evidence numbers. Considering the
trade-off between efficiency and performance, we
report results using 8 evidence as our main results,
which is considered to be good enough. These
results indicate that we can use more retrieved ev-
idences to obtain better experimental results. In
addition, supporting more information is signifi-
cant for the generative model.

Self-retrieval vs. Extra Evidences We made the
retrieval set exactly the same as the training set,
denoted as the “self-retrieval (SR)” setup. One nat-
ural question is can we use extra data for retrieval
set? To further understand this question and to val-
idate the usefulness of our method, we carried out
experiments with different sizes of the training set
and retrieval set. Specifically, we experiment with
additional setups by enlarging the retrieval sets, i.e.
+200k, +400k, +600k, where “+” means extra data
for retrieval sets, and we also adopt baselines with
different training sizes of 100k, 300k, 500k, 700k
(denoted before “+”).12

Figure 2 shows the experimental results.13 We

12Due to data size limitation, we did not occupy all setups.
13We also report a detailed results using (100+600k) setup

in Appendix A.1.
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(a) PPL on GPT-2 (b) F1 on GPT-2 (c) BLEU on GPT-2

(d) PPL on FID (e) F1 on FID (f) BLEU on FID

Figure 2: Results of different sizes of training set and retrieval set on the Movie Dialog with 8 retrieved
evidences. “Self” indicates the training set used for self-retrieval and “+” means adding extra data for retrieval.

(a) max setup over overlaps with bins = {0, · · · , 9,≥ 10} (b) sum setup over overlaps using bin size = 5

Figure 3: Performance by different overlaps between evidences and ground-truth responses over Reddit.

observe that experiments with larger retrieval sets
achieve better results than those with small retrieval
sets across different training sizes. We believe
larger retrieval sets can introduce more relevant
evidences, which brings performance gain for the
model. Another interesting finding is that adding
extra data for retrieval (100+600k, 300+400k,
500+200k) can outperform the baselines (700k)
with extra data added via direct training. Also, un-
der the same amount of total data (700k), leverag-
ing more data for retrieval (100+600k, 300+400k,
500+200k) has approaching performance with the
self-retrieval with full data (self, 700k). It indi-
cates that our methods can increase the usage of
the training data only in a retrieval way without di-
rectly training these responses, and our method has
good generalization over the retrieval evidences.

Relevance of Evidence and Ground-truth To
further study how our methods make sense, we
study how the relevance of the retrieved evidences

and ground-truth response can influence the gener-
ation performance. For each instance (ci, ri) which
used n retrieval evidences EMIX

i = {e1, e2, ..., en},
we compute the number of overlapped words be-
tween the ground-truth ri and each retrieved ev-
idence. We study two setups by computing the
overall overlap(E , ri) using max and sum over
the individual overlaps.

Figure 3 shows the results of these two setups.
We observed that higher overlap leads to better per-
formance. It indicates that high relevant retrieval
evidences can help to generate better responses and
low relevant knowledge are harmful, which is con-
sistent with the findings in Section 4.5. Also, there
are low-relevant evidences left in the retrieval step,
which indicates that open-domain dialogue gen-
eration is still a difficult task, and better retrieval
methods are required to further improve our gener-
ation performance.
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5 Conclusion

In this paper, we propose a self-retrieval train-
ing framework for open-domain dialogue gener-
ation. Different from other knowledge-intensive
tasks, our framework only retrieves relevant dia-
logue instances from the training data (which can
be extended to a retrieval set) without the need
to train them in the generation model. It is sig-
nificant that we demonstrate that traditional train-
ing baselines underutilize the training data and our
method can utilize more potential of data. We show
that our method improves the robustness and gen-
erality of generative models as well as generate
proper response for complicated human conversa-
tion. We also find that BERTScore can be used
for better evidence retrieval. In future works, we
would like to study better ways of evidence re-
trieval and evidence-aware training and we believe
our approach can benefit to other NLP tasks, such
as classification task.
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A Appendix

A.1 Full results of Retrieving Extra data
We present a full results of enlarging the retrieval
set to (100+600k) for both Reddit and Movie
Dialogue, shown in Table 6. The training set is
100k as the same as the self-retrieval setup in main
results. BM25 is used to retrieve.

Reddit PPL↓ F1↑ BLEU↑
GPT-2 BASELINE 31.3 5.3 3.4

GPT-2 w. DR
C2C 28.0 6.2 3.8
C2R 28.2 6.0 3.7
MIX 26.9 6.8 4.3

T5 BASELINE 25.5 5.2 3.7

FID w. DR
C2C 23.6 9.6 7.2
C2R 23.8 9.4 7.1
MIX 21.9 12.0 9.0

Movie PPL↓ F1↑ BLEU↑
GPT2 BASELINE 25.6 5.4 3.3

GPT-2 w. DR
C2C 22.5 6.0 3.7
C2R 22.6 5.9 3.5
MIX 21.7 7.3 4.7

T5 BASELINE 20.5 5.2 3.7

FID w. DR
C2C 19.2 9.1 6.9
C2R 19.4 9.0 6.7
MIX 17.7 11.5 8.5

Table 6: Automatic evaluations of the in-domain setups
on the Reddit and Movie Dialog datasets with 8
evidences for retrieval. The best results are in bold.

A.2 Full results of Self-Retrieval
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Automatic Metrics Human Evaluation

Reddit PPL↓ F1↑ BLEU↑ Dist-1↑ Dist-2↑ Flue↑ Info↑ Relv↑ SSA↑
GPT-2 BASELINE 31.3 5.3 3.4 65.4 96.7 3.0 2.9 2.8 46%

w. SR

BM25 C2C 29.4 6.1 3.8 69.3 95.6 3.2 3.0 3.1 49%
BM25 C2R 29.7 6.0 3.6 68.4 95.3 3.2 3.1 3.1 50%
BM25 MIX 28.1 6.6 4.2 73.5 98.2 3.4 3.3 3.4 51%

BERTScore C2C 27.7 7.2 4.8 75.2 96.1 3.4 3.4 3.4 54%
BERTScore C2R 27.9 7.0 4.7 75.0 96.4 3.3 3.4 3.3 53%
BERTScore MIX 27.1 7.8 5.4 76.1 96.8 3.5 3.4 3.5 55%

T5 BASELINE 25.5 5.2 3.7 95.7 96.3 3.1 3.0 3.1 48%

FID w. SR

BM25 C2C 25.0 8.0 5.9 91.2 93.8 3.3 3.2 3.3 51%
BM25 C2R 25.2 7.9 5.7 90.4 92.3 3.3 3.2 3.2 50%
BM25 MIX 23.8 9.5 6.9 95.3 97.2 3.5 3.4 3.5 52%

BERTScore C2C 23.3 9.9 7.3 94.3 94.7 3.5 3.5 3.4 54%
BERTScore C2R 23.4 9.8 7.2 94.0 94.4 3.5 3.4 3.4 54%
BERTScore MIX 22.7 10.4 7.8 95.6 96.5 3.6 3.5 3.5 56%

Movie PPL F1 BLEU Dist-1 Dist-2 Flue Info Relv SSA

GPT-2 BASELINE 25.6 5.4 3.3 64.3 96.0 3.0 2.9 2.8 47%

w. SR

BM25 C2C 23.5 6.1 3.8 66.9 93.9 3.2 3.1 3.1 51%
BM25 C2R 23.5 6.0 3.7 67.8 92.7 3.2 3.0 3.1 50%
BM25 MIX 22.7 6.7 4.2 71.4 96.1 3.4 3.3 3.3 52%

BERTScore C2C 22.1 7.1 4.7 71.7 94.9 3.4 3.4 3.3 53%
BERTScore C2R 22.3 7.0 4.7 72.0 94.3 3.3 3.4 3.3 53%
BERTScore MIX 21.6 7.6 5.2 73.4 96.2 3.5 3.4 3.4 55%

T5 BASELINE 20.5 5.2 3.7 95.2 95.8 3.1 2.9 2.9 48%

FID w. SR

BM25 C2C 20.1 7.7 5.5 92.3 94.1 3.3 3.2 3.2 52%
BM25 C2R 20.2 7.7 5.4 91.7 93.6 3.3 3.1 3.2 51%
BM25 MIX 18.9 9.2 6.6 94.9 96.8 3.6 3.5 3.6 53%

BERTScore C2C 18.4 9.5 7.0 94.4 95.6 3.6 3.6 3.5 55%
BERTScore C2R 18.5 9.4 6.8 93.8 94.9 3.5 3.5 3.6 54%
BERTScore MIX 17.9 10.1 7.5 95.3 96.9 3.7 3.7 3.6 57%

Table 7: Automatic and human evaluation of the in-domain setups over Reddit and Movie Dialog, using 8
evidences passages. GPT-2 and T5 are baselines. “w. SR” (with self-retrieval) indicate our methods. The best
results are in bold.
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Abstract

Building dialogue generation systems in a
zero-shot scenario remains a huge challenge,
since the typical zero-shot approaches in di-
alogue generation rely heavily on large-scale
pre-trained language generation models such
as GPT-3 and T5. The research on zero-
shot dialogue generation without cumbersome
language models is limited due to lacking
corresponding parallel dialogue corpora. In
this paper, we propose a simple but effective
Multilingual learning framework for Zero-shot
Dialogue Generation (dubbed as MulZDG) that
can effectively transfer knowledge from an
English corpus with large-scale training sam-
ples to a non-English corpus with zero sam-
ples. Besides, MulZDG can be viewed as a
multilingual data augmentation method to im-
prove the performance of the resource-rich lan-
guage. First, we construct multilingual code-
switching dialogue datasets via translation ut-
terances randomly selected from monolingual
English datasets. Then we employ MulZDG
to train a unified multilingual dialogue model
based on the code-switching datasets. The
MulZDG can conduct implicit semantic align-
ment between different languages. Experi-
ments on DailyDialog and DSTC7 datasets
demonstrate that MulZDG not only achieve
competitive performance under zero-shot case
compared to training with sufficient examples
but also greatly improve the performance of the
source language.

1 Introduction

The success of neural models and the emergence
of large-scale dialogue datasets have greatly ad-
vanced the research of dialog generation (Serban
et al., 2016, 2017; Huang et al., 2020; Meng et al.,
2020). The open-domain dialogue systems aim to
generate more informative and fluent responses (Ke
et al., 2018; Zhang et al., 2020b; Bao et al., 2020;

∗Corresponding author

Meng et al., 2021), which are widely used in vari-
ous applications such as emotional companionship,
mental health support, and social chatbots.
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Figure 1: Multilingual semantic alignment map in zero-
shot case. One color represents one language. English
is the source language and other languages are target
languages. ui represents the i-th utterance in the con-
versation history and r represents the responses. Black
arrows represent translating utterances from English
into other languages. Solid brown lines represent im-
plicit semantic alignments between different languages.

Although achieving promising performance,
most existing dialogue generation systems (Zhang
et al., 2020b; Bao et al., 2020; Li et al., 2020;
Floridi and Chiriatti, 2020) rely on a considerable
amount of data resource, such as DialoGPT (Zhang
et al., 2020b). In practice, the dialogue corpus for
many languages is unavailable, which limits the
usefulness of dialogue systems for low-resource
or even zero-resource languages. Hence it is im-
portant to design approaches that can effectively
transfer knowledge from the source language with
sufficient resources to a target language with zero
training samples.

The pre-trained language models have been
proved to be very effective in dialogue genera-
tions including zero-shot scenarios. Most exist-
ing zero-shot dialogue generation approaches usu-
ally directly employ large-scale pre-trained gen-
erative language models such as GPT-3 (Brown
et al., 2020), T5 (Raffel et al., 2020), or conduct
secondary pre-training on target language based
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on language models (Ebrahimi and Kann, 2021;
Kim et al., 2021). Although these methods can
handle the issue of zero-shot generation, the cost
of pre-training is unaffordable.

In the similar task of NMT (neural machine trans-
lation), zero-shot generation methods are mainly in-
troducing one additional language between source
and target language (Johnson et al., 2017; Zheng
et al., 2017; Artetxe et al., 2018; Cheng, 2019; Liu
et al., 2020a), which can achieve indirect semantic
mapping between the source and target language
through the additional intermediate language. The
nature of translation is the semantic mapping be-
tween source and target languages while there is
no similar semantic mapping between dialogue his-
tory and response. Therefore, directly transferring
the zero-shot approaches in NMT to the dialogue
generation task is infeasible.

The zero-shot multilingual understanding tasks
usually employ code-switching approach to
achieve semantic alignment between different lan-
guages (Liu et al., 2020b; Chapuis et al., 2021;
Qin et al., 2021). The way of code-switching can
conduct implicit semantic alignment without re-
lying on parallel corpus pairs. Inspired by these
studies, we employ the code-switching method to
transfer the knowledge of dialogue history in En-
glish to other target languages which have no train-
ing examples. We follow previous work (Chapuis
et al., 2021) on multilingual representation to em-
ploy code-switching at the utterance level, although
code-switching at the word or span level is more
common (Banerjee et al., 2018; Bawa et al., 2020;
Doğruöz et al., 2021).

Based on the code-switching method, we pro-
pose a simple but effective Multilingual learn-
ing framework for Zero-shot Dialogue Generation
(dubbed as MulZDG) that can effectively trans-
fer knowledge from English corpus with large-
scale training samples to non-English corpus with
zero samples. Specifically, we first construct code-
switch languages using the NMT system and bilin-
gual dictionary (Pan et al., 2021). As shown by the
black arrows in Figure 1, we randomly select utter-
ances from dialogue history to translate into other
target languages. For each target language, we con-
struct code-switching corpus containing source and
target languages, respectively. Then we employ
MulZDG based on an encoder-decoder structure to
train a unified multilingual dialogue generation sys-
tem, which can be applied in the source language

and other target languages with no training sam-
ples. MulZDG with a multi-task structure can gen-
erate responses with different languages according
to specific input prompts. MulZDG can conduct
implicit semantic alignments through task sharing
mechanism between different languages, as shown
by solid brown lines in Figure 1. To summarize,
we make the following contributions:
• We propose a simple but effective multilingual

framework, MulZDG, which can effectively
transfer the knowledge from the source language
with large-scale training samples to target lan-
guages with zero samples.

• We present a data augmentation method for mul-
tilingual code-switching, which can enhance the
the performance of source language.

• We construct multilingual code-switching dia-
logue datasets from English dialogue datasets
DailyDialog and DSTC7, and release the multi-
lingual versions datasets1.

2 RELATED WORK

2.1 Dialogue Generation
Dialogue generation systems aim to produce infor-
mative and fluent responses and have attracted great
attention in academia. Early studies usually adopt
the methods of NMT based on an Encoder-Decoder
network to generate responses (Sordoni et al., 2015;
Serban et al., 2016). However, these methods of-
ten generate dull and generic responses. To tackle
this problem, memory mechanism (Wu et al., 2018;
Zhang et al., 2020a; Tian et al., 2020) and atten-
tion mechanism (Zhang et al., 2019) are introduced
into dialogue modeling successively. Although
many approaches have been proposed, there are
still remarkable gaps between responses generated
by neural models and those from humans (Holtz-
man et al., 2019). Large-scale pre-trained genera-
tive models (Zhang et al., 2021; Ling et al., 2021;
Wang et al., 2020) have greatly facilitated the de-
velopment of dialogue generation task. Although
achieving promising performance, these methods
rely on a large number of training examples, which
greatly limits the usability of dialogue systems. In
this paper, we propose a multilingual framework
that can work in zero-shot case.

2.2 Zero-shot Learning
Zero-shot Learning for dialogue generation tasks
refers to building a dialogue generation sys-

1https://github.com/misonsky/MultilingualDatasets
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tem without available training samples (Floridi
and Chiriatti, 2020). Most existing zero-shot
methods of dialogue generation rely on large-
scale pre-trained generative models (Lewis et al.,
2020; Zhang et al., 2020b; Floridi and Chiriatti,
2020), such as GPT-3 (Floridi and Chiriatti, 2020).
These methods require huge computing resources,
which hinders the usableness of dialogue systems.
On similar machine translation tasks, zero-shot
methods mainly include triangular and multilin-
gual NMT systems. The triangular NMT sys-
tems (Zheng et al., 2017; Cheng, 2019) build a
triangular translation case by adding an interme-
diate language and multilingual systems (Johnson
et al., 2017; Liu et al., 2020a) mix multiple differ-
ent language pairs to achieve semantic alignment
between different languages under zero-shot case
by building implicit triangular systems. The na-
ture of these methods is the semantic mapping be-
tween different languages, which is consistent with
the translation task. However, there is no similar
semantic mapping between dialogue history and
response. In this paper, we propose a simple but ef-
fective multilingual dialogue generation framework
based on code-switching languages.

3 METHODOLOGY

3.1 Problem Formalization

Given a source language (S), the goal is to build
a unified dialogue generation system based on the
source language that can be applied to target lan-
guages (T ). In this paper, the source language S
is English. The T include: Zh (Chinese), De (Ger-
man), Ru (Russian), Es (Spanish), Fr (French) and
It (Italian). An instance in dialogue dataset can be
represented as (C,R) where C = {u1, u2, ..., un}
with n utterance represents the context of dia-
logue. ui represents the i-th utterance. And R
represents the corresponding response. Based on
the S, we automatically build code-switching lan-
guages that include T through random translations.
The construction process of code-switching lan-
guages are shown in Algorithm 1, where DT =
{Denzh , Dende , Denru , Denes , Denfr , Denit}. The
Dentar represents code-switching languages com-
posed of English and tar.

3.2 Multi-task MulZDG Framework

As shown in Figure 2, MulZDG mainly contains
three layers: (i) Embedding Layer; (ii) Encoder
Layer; (iii) Decoder Layer. The embedding layer

Algorithm 1: Code-Switching Languages.
Input: Corpus of S: DS ; The target

language set T ; Bilingual
Dictionary: Dic;

Output: Code-switching languages:DT .

Initialize DT = ∅;
foreach (C,R) in Ds do

random sample utterances:
U ∼ P (C,R);

foreach target language ti in T do
Replace tokens for each utterance in
U by dictionary Dic(S → ti): Ũ ;

Translate Ũ by NMT system: Û ;
Add updated (C,R)) by Û to DT ;

is responsible for mapping each word in DT to a
vector space using a pre-trained Glove (Pennington
et al., 2014) embedding model. The encoder layer
is responsible for capturing the semantic representa-
tion of the dialogue context. And the decoder layer
is responsible for generating the probability distri-
bution of response for the dialogue context. The de-
coder in MulZDG can generate responses in differ-
ent languages through different prompt tokens. The
code-switching languages in DT share the same
encoder and decoder, which can conduct semantic
alignment between different languages through task
sharing mechanism. In the training phase, we em-
ploy code-switching languages to train MulZDG.
In the testing phase, MulZDG takes monolingual
dialogue samples as input and generates responses
in the corresponding target language.

MulZDG is a multi-task framework, which sup-
ports networks with RNN and transformer as the
backbone. The inputs of frameworks are utterance-
level code-switching languages. Different inputs in
DT share the same encoder and decoder. The en-
coder can be hierarchical or non-hierarchical struc-
tures. The framework with a non-hierarchical en-
coder is just like the seq2seq arthitecture (Sutskever
et al., 2014) which consists of an encoder RNN and
a decoder RNN. The framework with a hierarchical
encoder is just like HRED (Serban et al., 2016)
which consists of a hierarchical encoder and a de-
coder.

Encoders can be hierarchical or non-hierarchical.
The framework with a non-hierarchical encoder is
just like the seq2seq arthitecture (Sutskever et al.,
2014) which consists of an encoder and a decoder.
The framework with a hierarchical encoder is just
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Figure 2: The framework of MulZDG.

like HRED (Serban et al., 2016) which consists of
a hierarchical encoder and a decoder. The structure
of encoder can be RNN or transformer structure.
Next, we briefly introduce both hierarchical and
non-hierarchical frameworks.

3.3 Non-hierarchical MulZDG
The non-hierarchical MulZDG is a simple seq2seq
structure, which has a shared encoder and a de-
coder module. The encoder is responsible for
encoding the dialogue context and the decoder
is responsible for generating the response for
the dialogue context. Encoder-Decoder structure
based on RNN (Sutskever et al., 2014) and Trans-
former (Vaswani et al., 2017) are the most classic
representative models.

RNN Encoder-Deocder In this paper, we em-
ploy GRU (Cho et al., 2014) as the concrete
implementation for RNN. We concatenate code-
switching language utterances in dialogue context
into a consecutive tokens sequence, and add a spe-
cial start symbol [SOS] and end symbol [EOS] to
each tokens sequence. The last hidden state of en-
coder is denoted as hℓ, which is considered as the
dialogue context summary. ℓ represents the length
of sequence. Finally, we employ another GRU to
decode the probability distribution of response.

Pθ(y|hℓ) =
m∏

j=2

Pθ(yj |y1, ..., yj−1, hℓ)P (y1) (1)

where θ represents the parameters of GRU and y
represents the response sequence to be decoded.

Transformer Encoder-Deocder Each layer of
transformer (Vaswani et al., 2017) encoder is com-
posed of a multi-head self-attention mechanism
and a position-wise fully connected feed-forward
network. A residual connection (He et al., 2016)
is employed around each layer, followed by layer
normalization (Ba et al., 2016). In addition to the
two sub-layers in each encoder layer, the decoder
layer possesses another multi-head attention cal-
culating the weight distribution over the output of

the encoder based on predicted sequences. Note
that in addition to the word embedding informa-
tion, position encoding information is required in
the embedding layer.

3.4 Hierarchical MulZDG
The encoder of hierarchical MulZDG possesses
two basic components: utterance encoder and con-
text encoder, which is like the HRED (Serban et al.,
2016) architecture. The utterance encoder is re-
sponsible for capturing the features of each utter-
ance and the context encoder is in charge of distill-
ing the dependencies between different utterances.
The framework MulZDG supports the implemen-
tation of RNNs and transformers structure. In this
paper, we employ GRU as the implementation of
RNNs.

Hierarchical Transformer Structure Note that
positional encoding is required for the imple-
mentation of the transformer. The utterance en-
coder and decoder layer share the same posi-
tional encoding. The outputs of utterance en-
coder based on transformer can be denoted as
ui = {esos, e1, e2, ..., em, eeos} for i-th utterance,
where m represents the length of utterance. We
employ an average pooling operation to get a fixed-
dimensional representation for every utterance. We
add positional encoding to hi and the context
encoder based on transformer is responsible for
capturing the global dialogue context information
Ĥ = {ĥ1, ĥ2, · · · , ĥn}. Then the decoder layer de-
codes the probability distribution of response over
Ĥ .

hi =
1

m

m∑

j=0

ej (2)

4 Experiments

4.1 Datasets
In this paper, we select English datasets DailyDi-
alog (Li et al., 2017) and DSTC7 (Galley et al.,
2018) as the source languages and generate code-
switching training examples based on source train-
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ing datasets through Algorithm 1. We directly trans-
late the test datasets into the corresponding target
languages. Note that we employ different transla-
tion systems (described in Appendix A.1).

DailyDialog is a multi-turn dialogue dataset
about our daily life, which consists of 11,118
context-response pairs for training, 1,000 pairs for
validation, and 1,000 pairs for testing. The propor-
tion of non-English utterances in code-switching
dataset is De-30.186% in Dende , Es-30.134% in
Denes , Fr-30.096% in Denfr , It-30.293% in Denit ,
Ru-30.199% in Denru , Zh-30.109% in Denzh . In
the experiment we abbreviate it as Daily.

DSTC7 is a multi-turn dialogue dataset from so-
cial media data, which consists of 76,590 context-
response pairs for training, 17,870 pairs for val-
idation, and 1,710 pairs for testing. The propor-
tion of non-English utterances in code-switching
dataset is De-27.661% in Dende , Es-27.545% in
Denes , Fr-27.639% in Denfr , It-27.611% in Denit ,
Ru-27.786% in Denru , Zh-27.565% in Denzh .

Models Datasets Types PPL BL-1/2 RL Dist-1/2 Embed A/E/G

HRED
Daily En 127.7 29.87/24.05 35.54 12.56/44.55 80.55/82.17/64.22

Aug 122.4 34.47/28.31 39.11 13.33/45.67 82.66/82.88/65.76

DSTC7 En 116.9 26.73/17.38 29.03 5.34/24.52 78.98/84.78/61.66
Aug 116.4 27.92/18.77 29.47 7.55/25.16 80.02/84.86/59.66

VHRED
Daily En 123.3 34.69/25.77 40.77 13.77/45.56 84.74/86.17/69.77

Aug 123.1 35.93/27.35 41.88 14.57/46.16 86.88/87.94/71.23

DSTC7 En 127.7 25.54/14.44 25.47 7.49/32.93 77.77/85.68/57.98
Aug 123.5 27.05/16.92 26.52 8.03/33.74 79.39/86.24/58.17

Trans
Daily En 143.3 22.86/14.77 28.55 10.36/33.63 79.96/80.06/63.15

Aug 141.2 23.89/16.17 30.35 11.79/35.64 81.23/81.22/65.45

DSTC7 En 163.4 22.77/19.74 21.57 6.77/34.56 78.32/82.56/56.89
Aug 158.9 24.47/23.44 23.67 7.98/35.02 80.19/84.47/56.88

HTrans
Daily En 146.7 23.76/15.61 27.3 9.96/35.79 80.26/79.44/62.62

Aug 133.5 24.57/17.03 28.94 11.12/36.98 82.33/82.16/63.76

DSTC7 En 162.5 23.54/18.68 23.35 7.32/35.66 80.02/82.14/64.33
Aug 153.3 25.78/20.37 25.76 8.69/37.84 82.43/84.34/65.54

Table 1: Performance of models based on data augmen-
tation using multilingual code-switching of monolin-
gual source. Eng represents that models is only trained
on monolingual source language. Aug represents that
models is trained on mixed languages including source
and multilingual code-switching based on MulZDG. BL
stands for BLEU and RL represents Rouge-L. All values
are multiplied by 100.

4.2 Baselines

MulZDG is a general multilingual learning frame-
work that can be applied to various dialogue gen-
eration models. We select several representative
models in this paper.

HRED (Serban et al., 2016) is a hierarchical
encoder-decoder structure with a hierarchical en-
coder (including utterance encoder and context en-
coder) and a decoder. Hred employs shared en-

Models Datasets Types PPL BL-1/2 RL Dist-1/2 Embed A/E/G

HRED
Daily De 125.4 25.89/20.17 35.72 15.63/49.55 78.23/86.86/62.42

Multi 125.9 23.77/20.33 34.31 15.34/48.89 78.03/86.54/59.97

DSTC7 De 124.6 21.68/11.89 21.71 7.35/35.23 77.19/87.63/58.41
Multi 119.7 23.85/12.87 23.77 7.66/33.67 77.37/87.57/60.02

VHRED
Daily De 121.2 27.14/20.44 34.77 16.53/51.94 77.56/87.26/62.09

Multi 124.6 25.87/20.67 33.56 15.63/51.32 77.04/87.56/61.42

DSTC7 De 125.3 22.74/12.07 23.69 7.68/36.29 78.34/87.44/58.62
Multi 123.4 20.04/11.34 23.56 6.89/36.52 76.88/87.12/57.96

Trans
Daily De 150.2 20.06/12.38 24.96 9.35/34.56 74.63/78.88/60.76

Multi 146.7 18.67/11.89 22.65 8.98/33.63 74.53/77.98/59.67

DSTC7 De 156.2 20.55/11.37 22.76 5.64/32.19 76.54/85.55/55.43
Multi 156.8 18.77/10.23 20.87 4.88/30.87 75.87/84.71/55.13

HTrans
Daily De 156.7 21.33/11.66 25.22 8.96/33.19 75.61/77.98/61.86

Multi 157.8 19.65/10.98 24.33 8.87/33.65 74.78/79.13/59.43

DSTC7 De 157.7 19.88/11.24 23.45 5.77/33.47 75.96/86.73/56.47
Multi 161.5 18.78/11.42 21.77 5.33/32.19 75.47/86.33/56.44

Table 2: Zero-shot results of models on German. De
represents that models is only trained on German train-
ing set. Multi represents that models is only trained on
code-switching languages based on MulZDG.

Models Datasets Types PPL BL-1/2 RL Dist-1/2 Embed A/E/G

HRED
Daily Es 124.1 25.49/20.75 36.97 17.68/52.65 77.69/84.21/63.44

Multi 126.7 26.45/20.55 35.98 17.33/50.56 76.53/83.68/63.56

DSTC7 Es 119.6 25.39/14.47 26.94 7.58/30.13 77.99/87.32/61.24
Multi 118.4 25.47/15.76 29.23 7.23/30.67 77.68/86.77/62.13

VHRED
Daily Es 122.1 29.14/23.04 35.99 18.82/55.37 77.79/85.52/62.28

Multi 126.7 30.88/22.52 34.76 17.35/54.88 77.23/84.56/62.03

DSTC7 Es 114.5 26.24/14.42 27.82 8.78/32.45 78.68/87.88/59.77
Multi 123.3 26.45/17.39 31.19 7.49/32.19 78.97/87.57/63.64

Trans
Daily Es 157.7 19.06/3.65 22.06 8.35/30.65 73.61/77.67/58.36

Multi 153.7 18.76/12.98 22.05 8.14/31.48 73.32/76.88/59.54

DSTC7 Es 123.3 24.38/15.52 26.44 7.53/30.62 77.66/86.48/60.12
Multi 125.7 24.33/15.43 24.55 7.43/30.88 77.42/86.04/62.33

HTrans
Daily Es 154.6 18.93/10.57 21.76 8.07/29.33 72.55/75.69/56.38

Multi 156.3 17.97/9.47 21.62 8.33/27.74 72.76/75.4/56.12

DSTC7 Es 127.8 23.87/14.33 26.56 7.44/29.48 77.87/85.46/59.56
Multi 131.2 23.19/12.59 24.89 7.95/29.65 76.46/83.12/57.15

Table 3: Zero-shot results of models on Spanish. Es
represents models is trained on monolingual Spanish.

coders to encode each utterance separately.

VHRED (Serban et al., 2017) is a hierarchical
encoder-decoder structure with a hierarchical en-
coder (incuding utterance encoder and context en-
coder) and a decoder based on variational mech-
anism. VHRED can generate long outputs with
better use of contextual information via latent vari-
ables.

Transformer (Vaswani et al., 2017) is a encoder-
decoder structure with multi-head attention mecha-
nism. The inputs of the Transformer is a consecu-
tive word sequence concatenated all utterances. In
all experimental tables, we abbreviate it as Trans.

HTransformer (Santra et al., 2021) is a hier-
archical encoder-decoder structure with a hierar-
chical encoder (including utterance encoder and
context encoder) and a decoder. Htransformer en-
codes each utterance separately. In all experimental
tables, we abbreviate it as HTrans.
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4.3 Implementation Details

We implement our MulZDG using Tensorflow 2.
The word embedding size and hidden size are all
set to 512. We employ Adam optimizer (Kingma
and Ba, 2015) to train all models. For the mod-
els HRED and VHRED we set the learning rate
to 0.001. For the Transform and HTransformer,
we set the learning rate to 0.0001. For the models
HRED and VHRED, we set the number of encoder
and decoder layers to 1. For the Transformer and
HTransformer, the number of encoder and decoder
layers is 3. And the number HRED for Transformer
and HTransformer is 8. We employ the word seg-
menttation of BERT (Devlin et al., 2019) and the
vocabulary of multilingual BERT as the unified
vocabulary. The batch size is 128 for HRED and
VHRED, and we set it to 512 for Transformer and
HTransformer. The maximum epochs are set to 200.
We employ GloVe to train a unified multilingual
embedding vectors representation for embedding-
based metrics based on multilingual corpora. We
do not remove unknown tokens when computing
embedding-based metrics, and the vectors of all
unknown tokens are initialized to zero vector.

Models Datasets Types PPL BL-1/2 RL Dist-1/2 Embed A/E/G

HRED
Daily Fr 122.3 25.36/19.89 35.15 13.59/43.68 80.44/87.12/64.43

Multi 124.6 25.12/18.78 35.04 13.35/42.45 79.31/87.09/62.21

DSTC7 Fr 111.3 26.42/16.82 27.18 4.7/21.18 80.84/88.36/62.59
Multi 116.8 26.54/15.96 25.47 5.43/24.33 80.45/88.31/60.61

VHRED
Daily Fr 132.2 25.64/19.49 34.97 15.42/45.22 79.86/87.77/63.83

Multi 135.4 24.96/18.87 32.43 13.88/43.88 79.89/87.57/65.13

DSTC7 Fr 107.6 28.88/19.36 29.24 5.85/26.22 81.18/88.35/63.8
Multi 112.4 26.93/18.47 27.56 5.77/26.6 80.39/88.26/61.24

Trans
Daily Fr 163.7 16.66/12.06 25.3 7.47/29.34 75.66/77.14/59.78

Multi 166.5 15.76/11.56 24.54 7.23/29.87 76.32/77.65/57.62

DSTC7 Fr 122.3 25.64/16.47 28.04 5.12/25.63 79.94/87.57/61.25
Multi 124.2 23.65/14.67 27.33 5.34/24.77 79.54/86.32/60.43

HTrans
Daily Fr 164.4 16.61/9.49 22.82 7.57/31.98 75.12/78.06/60.08

Multi 165.4 15.44/8.54 21.65 6.77/31.33 75.54/78.67/60.36

DSTC7 Fr 125.6 24.87/17.77 26.89 4.77/22.34 79.56/88.45/60.56
Multi 127.3 24.18/16.28 24.86 4.53/22.54 79.89/87.23/62.65

Table 4: Zero-shot results of models on French. Fr
represents models is trained on monolingual French.

4.4 Evaluation metrics

To compare different models, we employ both
automatic metrics and human evaluations. Au-
tomatic Metrics: We employ perplexity (PPL)
and distinct 1/2 (Dist.1/2) following previous sdud-
ies (Zhang et al., 2018; Zheng et al., 2020; Song
et al., 2021). Lower perplexity means more reliable
model. Distinct 1/2 (Li et al., 2016) are the ratio
of distinct uni-grams / bi-grams. Higher distinct
means better diversity of responses generated by
the model. We also employ BLEU (Papineni et al.,

Figure 3: The impact of the number of multilingual
code-switching languages on models performance for
German. The ’1’ in abscissa represents that models are
trained on monolingual German. Number of languages
is greater than ’1’ represents models is trained on multi-
lingual code-switching languages based on MulZDG.

Models Datasets Types PPL BL-1/2 RL Dist-1/2 Embed A/E/G

HRED
Daily It 126.7 25.51/20.01 35.84 18.07/53.16 76.34/84.54/61.98

Multi 126.7 25.01/19.23 33.98 18.33/53.25 74.78/84.13/60.3

DSTC7 It 108.5 24.26/16.11 27.26 7.56/34.53 75.69/87.07/58.73
Multi 111.2 22.65/14.52 25.54 7.13/32.15 73.85/87.04/56.96

VHRED
Daily It 123.7 26.99/20.82 34.69 19.64/57.47 76.56/85.38/60.77

Multi 124.4 25.11/19.14 32.68 17.72/55.89 74.39/84.33/59.31

DSTC7 It 114.6 28.66/19.04 29.42 8.57/35.12 80.99/88.31/63.96
Multi 125.4 26.87/18.44 28.49 7.54/35.12 78.54/87.19/63.56

Trans
Daily It 156.5 18.11/15.72 27.15 8.75/32.34 75.37/79.67/62.08

Multi 160.5 16.65/14.36 27.42 7.87/31.33 74.36/78.23/61.32

DSTC7 It 123.3 25.55/17.57 26.44 6.54/32.12 75.09/86.88/57.97
Multi 124.3 23.55/16.55 24.87 6.12/30.35 75.01/85.32/57.89

HTrans
Daily It 153.5 19.43/17.56 29.3 9.05/30.34 76.22/80.89/63.28

Multi 154.7 17.87/18.04 28.88 9.87/30.54 76.86/80.23/62.67

DSTC7 It 124.5 26.76/18.97 25.67 7.56/34.56 76.11/85.12/57.44
Multi 123.6 24.88/18.95 24.77 7.45/32.17 76.59/85.07/56.21

Table 5: Zero-shot results of models on Italian. It repre-
sents models is trained on monolingual Italian.

2002) and ROUGE-L (Lin, 2004) (abbreviated as
RL) for evaluating response generation. BLEU
and ROUGE-L metrics evaluate the response based
on o-occurrence properties of tokens. Embedding-
based metrics (Average, Exterma and Greedy) (Liu
et al., 2016; Xu et al., 2018; Sedoc et al., 2019)
can reflect the quality of the generated responses
at the semantic level. Human Evaluation: We
further conduct human evaluations to assess the
proposed learning framework. We select Chinese
and English dialogue systems for human evaluation
on DailyDialog and DSTC7. We ask three crowd-
sourced graduate students to evaluate the quality
of generated responses for 100 randomly sampled
input contexts. We request annotators to choose a
preferred response, or vote a tie, considering the
following aspects of response quality: fluency, in-
formativeness, coherence, and engagingness.

4.5 Effectiveness of Data Augmentation

In particular, models based on transformer do not
employ pre-trained language model as the initial
checkpoint and train from scratch. In addition,
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Models Datasets Types PPL BL-1/2 RL Dist-1/2 Embed A/E/G

HRED
Daily Ru 123.8 28.43/22.16 37.51 21.36/53.56 78.07/85.83/64.34

Multi 127.6 27.57/21.57 36.65 20.54/52.15 76.32/84.84/64.37

DSTC7 Ru 119.5 28.21/14.25 29.95 10.22/35.21 80.68/86.61/64.17
Multi 116.5 27.99/18.19 28.93 9.32/35.12 81.38/88.68/63.51

VHRED
Daily Ru 134.3 27.96/21.88 35.66 21.46/55.88 78.66/85.63/63.22

Multi 133.2 25.43/20.47 33.23 20.13/53.17 76.98/85.65/63.22

DSTC7 Ru 103.6 29.49/17.02 34.25 11.15/36.61 79.96/86.13/66.41
Multi 107.7 27.77/16.87 34.77 10.86/34.65 80.03/86.88/65.74

Trans
Daily Ru 144.6 21.53/13.77 27.68 9.57/34.93 78.37/81.55/64.5

Multi 147.9 20.54/13.28 27.43 8.76/33.98 78.54/80.13/62.19

DSTC7 Ru 123.3 25.66/13.27 27.84 9.46/32.67 78.88/84.55/65.14
Multi 125.4 24.65/12.09 25.48 8.91/30.54 77.99/84.33/64.87

HTrans
Daily Ru 143.1 20.77/14.65 28.49 9.68/35.20 78.75/81.33/63.05

Multi 147.6 18.44/13.76 26.35 9.02/33.89 78.96/79.57/63.06

DSTC7 Ru 127.8 24.87/14.77 26.46 9.13/31.66 77.88/83.67/65.03
Multi 128.6 22.76/13.56 24.32 8.25/29.78 77.54/81.98/65.23

Table 6: Zero-shot results of models on Russian. Ru
represents models is trained on monolingual Russian.

the performance of models based on transformer
perform worse than RNN in experiments due to the
limited training datasets.

Table 1 reports the results of models on Dai-
lyDialog and DSTC7 using monolingual English
corpus and data augmentation based on multilin-
gual code-switching languages. We can observe
that the performances of models are greatly im-
proved when using data augmentation based on
multilingual code-switching. Specifically, the per-
formances of models using data augmentation with
multilingual code-switching is 0.2% to 13.2% on
PPL, 0.81% to 4.38% higher on BLEU-1, 1.4% to
3.7% higher on BLEU-2, 0.59% to 2.41% higher on
Rouge-L, 0.54% to 1.43% higher on dist-1, 0.46%
to 2.64% higher on dist-2, and 1.27% to 2.41%
higher on average embedding compared with mod-
els using monolingual English corpus. The data
augmentation approaches with multilingual code-
switching can enhance the representation ability of
models and improve the quality of the responses
through learning common features between differ-
ent languages.

4.6 Zero-shot Dialogue Generation
Different from Table 1, Table 2 to Table 7 report
the results of zero-shot generation using MulZDG
based on multilingual code-switching languages.
The performances of models trainging on multilin-
gual code-switching languages can achieve com-
petitive results under zero-shot case compared with
on corresponding monolingual language. On Ger-
man DailyDialog and DSTC7, the performances
of models under zero-shot case is 0.1% higher on
PPL, 1.23% lower on BLEU-1, 0.93% on Rouge-L,
0.71% on dist-1 and 0.51% on average embedding
compared with models training on monolingual

HRED

VHRED

Figure 4: Semantic alignment visualization. The left
presents the visualization of utterance vectors for mod-
els trained on monolingual language. The right demon-
strates the visualization of utterance vectors for models
trained on multilingual code-switching languages based
on MulZDG. The label lan-N1-N2 represents the num-
ber of the utterance, where lan stands for language, N1

stands for the number of data sample and N2 indicates
the utterance number of utterances in dialogue history.

corpus according to Table 2. On French DailyDia-
log and DSTC7, the performances of models under
zero-shot case is 2.9% lower on PPL, 0.93% lower
on BLEU-1, 1.34% on Rouge-L, 0.27% on dist-1
and 0.16% on average embedding compared with
models training on monolingual corpus according
to Table 4. On Chinese datasets, the performances
of models under zero-shot case is 2.1% lower on
PPL, 0.91% lower on BLEU-1, 1.57% on Rouge-L,
0.44% on dist-1 and 0.62% on average embedding
compared with models training on monolingual
corpus according to Table 7.

We can observe the similar results on other lan-
guages. MulZDG adopts a multi-task approach to
generate responses in different languages. On the
one hand, sharing the structure between multiple
tasks is benefical for models to exploit the com-
mon features between different languages. On the
other hand, sharing task mechanism between mul-
tilingual code-switching languages is beneficial to
enhance the semantic alignment ability of models
between different languages.

4.7 Impact of Multilingualization

To explore the effect of multilingual code-
switching languages, we conduct further experi-
ments. Figure 3 demonstrates the effect of the
number of languages on models performance. We

7
654



Models Datasets Types PPL BL-1/2 RL Dist-1/2 Embed A/E/G

HRED
Daily Zh 127.4 23.52/19.52 30.83 9.5/43.37 83.05/83.77/68.42

Multi 124.3 21.34/18.11 28.33 9.05/42.07 83.56/82.75/66.88

DSTC7 Zh 108.1 18.07/12.68 26.78 4.06/25.24 85.32/86.27/73.63
Multi 116.7 17.91/11.55 24.83 4.04/23.81 85.8/86.34/72.29

VHRED
Daily Zh 125.6 24.54/20.03 31.28 11.22/46.08 83.17/84.43/67.77

Multi 127.3 24.57/19.09 29.88 9.97/44.13 82.18/84.32/66.49

DSTC7 Zh 110.4 19.92/13.32 27.61 4.56/26.57 85.79/86.54/72.01
Multi 116.5 17.98/12.65 26.17 4.36/24.79 84.15/85.32/72.4

Trans
Daily Zh 165.7 15.55/11.54 24.38 7.89/33.47 79.32/80.46/66.21

Multi 167.4 15.13/10.33 22.99 6.54/31.44 76.98/78.54/66.21

DSTC7 Zh 123.4 18.77/12.45 26.58 4.15/24.46 83.56/85.67/71.77
Multi 123.3 18.04/11.87 25.37 4.54/23.87 84.13/83.51/70.7

HTrans
Daily Zh 166.8 16.92/11.83 25.66 8.61/34.21 79.92/81.51/66.54

Multi 167.7 15.66/11.09 24.76 7.96/33.2 78.99/80.23/66.46

DSTC7 Zh 134.5 19.04/12.44 25.67 4.32/25.67 84.39/85.19/70.65
Multi 135.4 18.45/11.32 23.87 4.32/25.33 83.79/83.99/69.69

Table 7: Zero-shot results of models on Chinese. Zh
represents models is trained on monolingual Chinese.

Models Languages
Datasets

Daily (%) DSTC7 (%)
Win Tie Loss Win Tie Loss

HRED
En 30 44 26 33 36 31
Fr 23 56 21 23 54 23
Zh 31 35 34 32 33 35

VHRED
En 38 32 30 30 45 25
Fr 16 63 21 11 82 7
Zh 36 29 35 30 37 33

Table 8: Human evaluation on DailyDialog and DSTC7
(multilingual VS monolingual). On English corpus,
we compare the the performances of models training
using data augmentation of multilingual code-switching
with monolingual English corpus. On other languages,
we compare the performances of models under zero-
shot using multilingual code-switching languages with
corresponding monolingual corpus.

select German as the target language (other lan-
guages are available), HRED and VHRED as the
tested models. The performances of bilingual code-
switching languages on HRED and VHRED are
dramatically lower than models trained on the cor-
responding monolingual training set. However, the
performances of models are gradually improved
with the number of languages increases. We can
only add up to seven languages due to the limita-
tions of our constructed corpus. We can conclude
that MulZDG fails to work well in zero-shot case
when the number of languages is small according
to 3. More constructive conclusions require fur-
ther experimental evaluation in the case of more
languages in the future, such as hundreds of lan-
guages.

4.8 Multilingual Mechanism Analysis

We conduct extensive experiments to explore how
the multilingual mechanism works. We select
1,000 multilingual parallel examples from Dai-
lyDialog, about 4,536 utterances in total and vi-

sualize the representations of these examples in
HRED and VHRED based on MulZDG trained on
different monolingual languages and multilingual
code-switchinig languages, respectively. Figure 4
presents the results of the utterances representation
visualization on HRED and VHRED. The represen-
tations of utterances based on different monolin-
gual languages are clustered into different language
categories while representations of utterances on
multilingual code-switchinig languages are clus-
tered together according to semantics. Utterances
in different languages expressing same semantics
will be clustered together, which demonstrates that
MulZDG will do semantic alignment between dif-
ferent languages. This phenomenon presents that
MulZDG pays attention to the common features
between different languages.

4.9 Human Evaluation

Although automatic evaluation metrics have been
shown to be reliable, we still conduct human eval-
uations to confirm the validity of the MulZDG.
We compare the performance of models training
on multilingual code-switching languages and on
corresponding monolingual language. Table 8 re-
ports the results of human evaluation of HRED and
VHRED on three languages (i.e., English, French
and Chinese). We can observe that the perfor-
mances of models using data augmentation with
multilingual code-switching is on average 6.0%
higher on DailyDialog and 3.5% higher on DSTC7
than using monolingual English corpus. Besides,
the performance of models under zero-shot is on
average 5% lower on DailyDialog and 2% lower
on DSTC7 than using coresponding monolingual
corpus. These results demonstrate that multilingual
code-switching framework can not only be consid-
ered as a data augmentation method but also be
employed to zero-shot dialogue generation.

5 Conclusion and Future Work

In this paper, we propose a simple but effective
multilingual framework: MulZDG, which can not
only be used as an approach of data augmentation
but also be used to zero-shot dialogue generaton.
Besides, we release the multilingual versions of
DailyDialog and DSTC7 datasets. In the future, we
will explore the working mechanism and effect of
large-scale multilingual code-switching languages
(e.g., hundreds of languages) in the problem of
zero-shot dialogue generation.
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A Appendix

A.1 NMT Systems
We simulate distribution differences between train-
ing and test datasets through using different transla-
tion systems. The NMT systems employed for the
training set are Helsinki-NLP/opus-mt-en-tar2. ’tar’
represents the target languages, which includes Chi-
nese, German, Russian, Spanish, French and Ital-
ian. And we employ T5-base3 to translate the test

2https://huggingface.co/Helsinki-NLP/
3https://huggingface.co/t5-base
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Models Types Responses

HRED
En I like travelling. like my experience and i have a good idea.

Aug I like travelling. I travel frequently.

VHRED
En i like sports. I like travelling.

Aug I like travelling. I’ll do it next time.

Gold Response
Yes, I like travelling. I am young, and unmarried.

It’s no problem for me to travel frequently.

Table 9: Case study for data augmentation on Daily dataset. The English context is "What are your personal
weaknesses? I’m afraid I’m a poor talker. I’m not comfortable talking with the people whom I have just met for the
first time. That is not very good for business, so I have been studying public speaking. Are you more of a leader or a
follower? I don’t try to lead people. I’d rather cooperate with everybody, and get the job done by working together.
Do you think you can make yourself easily understood in English? Yes, in most circumstances. Are you available for
travel?"

datasets into German and French. For Russian, Chi-
nese, Spanish and Italian we employ WMT19-en-
ru4, WMT-en-zh5, mbart-en-es6 and Google NMT
system, respectively.

A.2 Dictionaries
(Lample et al.) employs FastText (Bojanowski
et al., 2017) methods on the source and target
monolingual corpora to train word embeddings
and then applies the unsupervised method (Con-
neau et al., 2017) to infer a bilingual dictionary.
(Lample et al.) provides 110 bilingual dictionaries
which can be used for word-by-word translation.
According to statistics, there are 101,997 De-En
word pairs, 112,583 Es-En word pairs, 113,324 Fr-
En word pairs, 103,613 It-En word pairs, 48,714
Ru-En word pairs and 21,597 Zh-En word pairs.

A.3 Case Study
An case study is provided in Table 9 to demon-
strate the values of augmented data. We can ob-
serve that the responses of HRED and VHRD con-
tain context-independent information without using
data augmentation. Specifically, "like my experi-
ence and i have a good idea" in HRED and "i like
sports" in VHRED are context independent. The
responses generated by HRED and VHRED are
more informative and more coherent when using
data augmentation. Models can utilize cross lin-
guistic knowledge to generate more informative
and coherent responses by multilingual data aug-
mentation.

4https://huggingface.co/facebook/wmt19-en-ru
5https://huggingface.co/liam168/trans-opus-mt-en-zh
6https://huggingface.co/mrm8488/mbart-large-finetuned-

opus-en-es-translation
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Abstract

Prior studies addressing target-oriented con-
versational tasks lack a crucial notion that has
been intensively studied in the context of goal-
oriented artificial intelligence agents, namely,
planning. In this study, we propose the task
of Target-Guided Open-Domain Conversation
Planning (TGCP) task to evaluate whether neu-
ral conversational agents have goal-oriented
conversation planning abilities. Using the
TGCP task, we investigate the conversation
planning abilities of existing retrieval models
and recent strong generative models. The ex-
perimental results reveal the challenges facing
current technology.

1 Introduction

Neural conversational agents have achieved great
successes in recent years, and various methods have
been proposed to generate informative responses,
e.g., the use of knowledge (Zhao et al., 2020; Wu
et al., 2020), personality (Li et al., 2016; Zhang
et al., 2018), emotional considerations (Rashkin
et al., 2019; Zhong et al., 2020), and large-scale
models (Zhang et al., 2020; Adiwardana et al.,
2020; Roller et al., 2021; Thoppilan et al., 2022).
One hot topic in this research area is to develop
proactive behavior in agents. For example, Tang
et al. (2019) proposed the task of Target-Guided
Open-Domain Conversation, in which an agent is
required to actively lead a conversation to a pre-
defined target word. Wu et al. (2019) proposed a
task that uses a knowledge graph to actively lead
a conversation to a target entity. Several studies
have implemented these target-oriented task set-
tings (Dai et al., 2019; Qin et al., 2020; Yuan and
An, 2020; Zhong et al., 2021; Zhu et al., 2021).
However, these prior studies all lack planning, a
crucial notion that has been intensively studied in
the context of goal-oriented artificial intelligence
(AI) agents (Norvig and Russell, 1995; Kuijpers
and Dockx, 1998; Stent et al., 2004; Walker et al.,

𝑢!: Hi, What do you do for living?
𝑔!: book

𝑢": I work as an engineer.
𝑢#: That sounds nice. How do you learn coding? 

Conversational agent

𝑢$: I read and learn from technical books.

( Target word )

Input

Output

(Initial utterance and target word)

(Conversation plan)

Figure 1: Overview of the TGCP task.

2007, etc.) and has also been introduced in neu-
ral conversational agents (Botea et al., 2019; Jiang
et al., 2019a,b). In other words, these studies do not
explicitly consider the generation of a multiple-step
plan to achieve a target.

Given this background, in this study, we propose
the Target-Guided Open-Domain Conversation
Planning (henceforth, TGCP) task such that an
agent’s planning ability in goal-oriented conversa-
tions can be assessed. The TGCP task is to produce
a plan that leads a conversation to a given target,
as illustrated in Figure 1. The point is to consider
the task of producing a conversation plan for sev-
eral utterances ahead, which we first address in the
aforementioned context of Target-Guided Open-
Domain Conversation. Furthermore, we also pro-
pose modeling the planning process by simulating
the user’s succeeding utterances using the model of
the agent itself; namely, the agent converses with
itself (i.e., self-conversation) to search for poten-
tial conversation paths that achieve the goal. This
task setting is not the same as a real-world setting,
in which an agent is required to plan a conversa-
tion while uncertain of the user’s future utterances.
However, planning in the self-conversation setting
can be considered a prerequisite capability for a
planning-aware goal-oriented conversational agent.
TGCP works as a framework to evaluate an agents’
prerequisite ability for conversation planning with-
out employing human subjects; this can abstract
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away the hard-to-control human factors from ex-
periments (e.g., some human subjects may not be
as cooperative as others).

This paper has three major contributions: (1)
We propose the TGCP task as a framework to as-
sess the prerequisite ability of a model for goal-
oriented conversation planning. (2) We conduct a
set of experiments on the TGCP framework using
several existing retrieval-based neural models and
recently proposed strong generative neural mod-
els of conversational agents. (3) Our experimental
results reveal the challenges facing current technol-
ogy. The evaluation codes and the test set used in
the experiments are available.1

2 Target-Guided Open-Domain
Conversation Planning

We introduce the task of Target-Guided Open-
Domain Conversation Planning, the TGCP task for
short, that is to evaluate whether the agents have
goal-oriented conversation planning abilities. In
this section, we describe the task definition and the
evaluation metrics.

2.1 Task definition

Figure 1 shows an overview of the TGCP task.
We define the goal given to the agents as a word
(e.g., dog, pizza, coffee). Given a target word g0
and an initial utterance u0, TGCP requires agents
to make an entire conversation plan (u1, . . . , uN ),
whose last utterance uN , which consists of M
words, contains the target word g0, namely, uN =
(wN,1, . . . , wN,M ), and wN,m = g0 for any m ∈
M . This task has the same input/output format
as the human-agent conversation task proposed by
Tang et al. (2019). However, these task setups differ
in terms of whether or not a human conversational
partner is involved. In TGCP, agents generate for
all utterances in the entire conversation.

2.2 Evaluation metrics

The evaluation is performed based on three ob-
jectives: whether the target word is mentioned
(achievement ratio), whether the utterance tran-
sitions in the conversation are natural (transition
smoothness), and how likely the conversation is
to actually occur (conversation probability). We
believe that satisfying these three perspectives is
important in goal-oriented conversation planning.

1The evaluation codes and the test set are available at
https://github.com/y-kishinami/TGCP

For example, given a target word computer and an
initial utterance “What sports do you like?,” the
utterance like I love computer. achieves the target,
but it is not natural as a conversation, and such an
interaction rarely occurs. Likewise, the utterance
like “I don’t like sports because my friend who likes
sports broke my computer.” is a natural transition
and achieves the target, but it is likely to rarely
occur in an actual conversation. We believe that
an agent’s generation of such utterances does not
indicate the agent’s planning ability. We can au-
tomatically calculate the achievement ratio based
on whether the target word itself is mentioned or
not.2 We also consider transition smoothness and
conversation probability to be manually evaluated.3

3 Experiments

Using the proposed TGCP, we investigate the con-
versation planning ability of several major existing
dialogue models and recent deep neural network
(DNN) based dialogue models.

3.1 TGCP settings

Dataset. As a dataset for the TGCP task, we pre-
pared 1, 000 pairs consisting of an initial utterance
and a target word, i.e., (u0, g0). We created these
pairs by randomly extracting from a set of the first
utterances and a set of keywords extracted from
subsequent utterances in the ConvAI2 dataset.4

Evaluation. As described in Section 2.2, in
TGCP, the conversation plans generated by models
are evaluated by target achievement ratio, transi-
tion smoothness, and conversation probability. The
target achievement ratio was calculated automat-
ically. To avoid infinite conversations that never
reached the target, we set the maximum number
of turns to 8.5 For transition smoothness and con-
versation probability, we evaluated them manually
using Amazon Mechanical Turk.6 For each model,
randomly sampled 100 conversation plans were
rated by native English speakers. We eliminated

2Tang et al. (2019) considers mentioning synonyms as the
task achievement; however, Zhong et al. (2021) points out
that synonyms are unreliable to measure the task achievement.
Implementation details are provided in Appendix A.1.

3Empirical analyses on the relationship between these two
metrics are provided in Appendix A.2.

4This follows existing analogous work (Tang et al., 2019;
Qin et al., 2020; Zhong et al., 2021). In addition, we removed
the keywords not covered by ConceptNet.

5The same setting as previous studies (Tang et al., 2019;
Qin et al., 2020; Zhong et al., 2021).

6https://www.mturk.com/
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𝑢!: I’m going to my friend’s house now.

𝑢": Nice! What are you planning to do?
𝑢#: I’ll play video games with my friend.

𝑢$: Oh! Sounds like fun.
𝑢%: Yeah! My friend is a gamer and has lots of games.

( Target word )

(1) Generating subgoal sequences

(2) Subgoal-guided generation

𝑐!

𝑐" 𝑐#

𝑢&: Hello. What are you doing?𝑐& =

𝑔" 𝑔!
𝑔&

Figure 2: Subgoal-guided conversation plan generation with BLENER+PREDES..

low-quality workers using attention checks. Five
workers rated each conversation on a five-point Lik-
ert scale for transition smoothness (5 is Strongly
good and 1 is Strongly bad) and conversation prob-
ability (5 is Frequently and 1 is Rarely).7

3.2 Existing models
We prepared the following seven existing dialogue
models employed in Target-Guided Open-Domain
Conversation: Wu et al. (2017)’s RETRIEVAL, Tang
et al. (2019)’s RETRIEVAL-ST., PMI, NEURAL,
and KERNEL, Qin et al. (2020)’s DKRN, and
(Zhong et al., 2021)’s CKC.8 All models except
RETRIEVAL are retrieval dialogue models that infer
the keyword to mention immediately after each turn
of the conversation on the fly and then determine
the next response based on it and the conversational
history. RETRIEVAL is a retrieval dialogue model
that does not infer the keyword but determine the
next response only based on conversational history.

3.3 Recent DNN-based models
In addition, we prepared the latest generative model
that combines the DNN-based powerful dialogue
model, BLENDER (Roller et al., 2021), and a novel
strategy for pre-designing keyword sequences to
given g0 (PREDES.). Our BLENDER+PREDES.
(Figure 2) is a newly designed model. Note that
this model is new because the task is new, and that
there should be many ways to design models for
TGCP. Still, we believe that testing the performance
of a specific model such as BLENDER+PREDES.
on TGCP can help investigate the nature of TGCP.
In our BLENDER+PREDES., we first generated
the keyword sequences, hereinafter it called sub-
goal sequence, using ConceptNet5 (Speer et al.,
2017). Specifically, we acquired the series of n
concepts that are passed when tracing the edges
of the knowledge graph from the concept repre-
senting the target word g0 to the concept related

7Concrete instructions are provided in Appendix C.
8Implementations details are given in Appendix B.1.

to the initial utterance u0 as a subgoal sequence
G = g0, g1, · · · , gn−1. n is the length of the sub-
goal sequence including the target word g0. This
allows preventing cases that cannot get closer to
the target than a certain point because of selecting a
locally optimal solution. After generating the sub-
goal sequence, we generated a sequence of partial
conversations C = c0, c1, · · · , cn using BLENDER

as follows:

ci = f(gn−i, (c0, · · · , ci−1)) (1 ≤ i ≤ n) (1)

Where, ci denotes a partial conversation that fol-
lows the previous partial conversation ci−1 and
ends up with the utterance where the subgoal gn−i
appears. f(·) is a function that returns a partial
conversation to the given previous conversations
and a subgoal.

PREDES. settings. We set n = 3, i.e., we gener-
ated subgoal sequences by tracing ConceptNet up
to three levels.9,10 Among the subgoal sequences
generated from ConceptNet, we retained the 30
subgoal sequences in which the end of the subgoal
sequence gn−1 was the most related to the given
first utterance u0. We calculated the relatedness
as the cosine similarity between the SIF embed-
ding (Arora et al., 2017) of u0 and GloVe word
vector (Pennington et al., 2014) of gn−1. Among
the conversation plans generated from the 30 sub-
goal sequences, we selected the conversation plan
with the highest average probability of generating
partial conversations by BLENDER as the final out-
put.

Training of BLENDER. We used the Blender-
bot 3B implemented by huggingface transformer

9We excluded all stopwords in the NLTK and spaCy li-
braries to comprehensively exclude unnecessary words. In
addition, we excluded the concepts for which the score cal-
culated by wordfreq (Speer et al., 2018) was lower than the
score of the target word.

10We empirically confirmed the validity of this setting (Ap-
pendix B.3).
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Model Subgoal Conversation Achievement #Turns Smoothness Probability

RETRIEVAL (Wu et al., 2017) - retrieval 0.034 3.71 3.52 3.37
RETRIEVAL-ST. (Tang et al., 2019) on-the-fly retrieval 0.851 5.04 3.50 3.29
PMI (Tang et al., 2019) on-the-fly retrieval 0.531 4.97 3.33 3.17
NEURAL (Tang et al., 2019) on-the-fly retrieval 0.535 2.83 3.14 3.00
KERNEL (Tang et al., 2019) on-the-fly retrieval 0.596 2.79 3.24 3.05
DKRN (Qin et al., 2020) on-the-fly retrieval 0.968 2.91 3.28 3.12
CKC (Zhong et al., 2021) on-the-fly retrieval 0.353 3.60 2.81 2.69

BLENDER (Roller et al., 2021) - generative 0.024 5.04 3.99 3.90
BLENDER+CKC on-the-fly generative 0.247 7.00 3.90 3.71
BLENDER+PREDES. pre-design generative 0.425 6.29 4.05 3.90

Human - - 1.000 3.50 4.11 3.89

Table 1: Performance of dialogue models on the TGCP task.

as BLENDER.11 Because BLENDER is a model
that generates a response based on the conversa-
tional history, we fine-tuned it to use as f which
generates a partial conversation based on previ-
ous partial conversations and a subgoal. we used
the ConvAI2 processed by Zhong et al. (2021) as
a training data for BLENDER. We prepared the
training data by randomly splitting a single con-
versation into an input and an output consisting of
multiple utterances and then concatenating a word
extracted randomly from the output-side utterances
(i.e., keywords) to the input utterances.12 We fi-
nally obtained 117,877 pairs as training set and
6,425 pairs as validation set. The hyperparameters
are provided in Appendix B.2.

3.4 Ablation models
To analyze the effectiveness of the pre-design strat-
egy, we also prepared Blender without any conver-
sational strategy (BLENDER), and with an on-the-
fly strategy using existing models. Specifically,
we employed the strategy of CKC as the com-
parison on-the-fly strategy, which is known to be
the highest performance method in TGC (Zhong
et al., 2021) (BLENDER+CKC). For both models,
Blender is the same as BLENDER+PREDES.. But
note that blender, without any conversation strat-
egy, does not concatenate keywords with inputs for
training and inference.

3.5 Results
Table 1 shows the evaluation results on TGCP. To
provide the human upper bound performance, we
also had three workers perform TGCP on 50 pairs

11https://github.com/huggingface/
transformers

12We extracted the keywords by following Zhong et al.
(2021). The pairs that failed to extract keywords from the
output utterances were excluded from the training data.

randomly selected from the dataset described in
Section 3.1 (Human).

Achievement ratio. The achievement ratios of
the retrieval models tended to be high. In par-
ticular, the achievement ratio of DKRN was
comparable to that of humans. The generative
models had lower achievement ratios. However,
BLENDER+PREDES. improved the achievement
ratio compared with BLENDER+CKC, whose sub-
goal strategy is the same as that of CKC. This
result means that replacing the on-the-fly subgoal
strategy with the pre-design strategy is effective in
improving the target achievement ratios of genera-
tive models.

Smoothness & probability. The retrieval mod-
els have lower values of transition smoothness and
conversation probability than humans. Table 2
shows a conversation plan example generated by
DKRN, whose achievement ratio was the high-
est of all the compared models. In the example,
the transition between u1 and u2 is clearly un-
natural, although the model achieved to mention
the target word.13 The transition smoothness and
conversation probability of the generative mod-
els were higher than those of the retrieval mod-
els. In particular, BLENDER+CKC significantly
outperformed CKC in these metrics. Therefore,
using powerful DNN-based generation models im-
proves the transition smoothness and conversation
probability of the conversation plans. Table 3
shows a conversation plan example generated by
BLENDER+PREDES., whose transition smooth-
ness was the highest of all the compared models.
In this example, BLENDER+PREDES. generated a
natural conversation along an appropriately gener-

13An additional example is provided in Appendix D.2.
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u0 hey how is it going ?

u1 i’m doing ok . i have mass this week (school: 0.64)

u2 i just got done sewing a new shirt (shirt: 1.00)

Table 2: Part of the conversation plan by an existing
model (DKRN). The elements in parentheses are key-
words predicted by the model and the similarity score
between the keyword and the target. (Target: shirt)

ated subgoal sequence.

Overall. The TGCP task revealed the planning
abilities of well-known retrieval models and newly
prepared generative models. The retrieval mod-
els tended to have high achievement ratios but low
transition smoothness and conversation probabil-
ity, while the opposite was true for the generative
models. These results show the trade-off between
achievement ratio and the naturalness of conver-
sation plans that current technology is facing. On
the other hand, the generative model with a pre-
design subgoal strategy (BLENDER+PREDES.)
improved the achievement ratio compared with
the generative model with an on-the-fly strategy
(BLENDER+CKC) ensuring its high transition
smoothness and conversation probability. This im-
plies that improving the achievement ratios of gen-
erative models by refining their subgoal strategies
is an effective approach to overcome the trade-off.

3.6 Discussion: Number of conversation turns

We found that generative models behave critically
differently from humans regarding the number of
turns to reach targets, while their transition smooth-
ness and conversation probability were compara-
ble to those of humans. The average numbers
of turns to reach targets of BLENDER+CKC and
BLENDER+PREDES. were much larger than that
of humans.14 This result indicates that humans ef-
ficiently achieved TGCP with fewer turns while
ensuring high conversation probability.15 Making
an agent has a strong conversation planning ability
like a human can be one of our challenges in the
future.

4 Conclusion

We have proposed the TGCP task as a platform
for assessing the conversation planning ability of

14We counted the number of turns of the conversations
where the target words are mentioned.

15A generated example is provided in Appendix D.1.

u0 hello how are you ?

u1 not too bad, how about you?

u2 i am good thanks for asking

u3 what do you do for a living, if you don’t mind me
asking? i am a nurse

u4 that’s cool. i work in a grocery store.

u5 do you like it

u6 yeah, it pays the bills, but i want to be a dental hygienist

u7 wow that’s a great career choice. how long have you
been doing that

u8 for as long as i can remember

u9 what do you like to do in your spare time

u10 i love to take pictures and photography is a hobby of
mine

u11 what kind of pictures do you take?

u12 mostly landscapes, i love nature

Table 3: Conversation plan by BLENDER+PREDES.
(Target: landscape). The predicted subgoal sequence is
remember→ picture→ landscape.

a dialogue model. Through this task setting, we
have presented a first study for assessing the present
neural conversational models’ abilities for multiple-
utterance planning, abstracting away the hard-to-
control potential human factors. While the reported
experiments cover only the task of Target-Guided
Open-Domain Conversation (Tang et al., 2019),
the idea of TGCP is expected to be applicable to
a wider range of goal-oriented conversation tasks.
Using TGCP, we revealed that the dialogue mod-
els with current technology have difficulty plan-
ning conversations to achieve given goals while
ensuring the naturalness of the conversation. The
experimental results also showed that refining the
subgoal strategies for generative models might be
an effective method to overcome this trade-off. We
plan to research methods to solve this task setting
with higher performance.
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A Details of the TGCP Task

A.1 Calculation of Target Achievement Ratio
The achievement judgment was based on whether
the target word itself was mentioned (Zhong et al.,
2021); however, we found that there were several
cases in which the achievement was judged to be
a failure even though the target word was appro-
priately mentioned. Therefore, we modified the
script16 for judging the achievement such that these
cases would be judged as achievements.

A.2 Relationship between Transition
Smoothness and Conversation Probability

We investigated the correlation between transition
smoothness and conversation probability of the ex-
periment in Section 3, and found that Pearson’s
correlation coefficient was 0.828, which indicates
a high correlation. Therefore, it appears that con-
versation probability is contained within transition
smoothness, at least in our experiment. Therefore,
evaluating transition smoothness may indicate the
approximate tendency of conversation probability.

B Model Implementations and Setups

B.1 Existing Models
We used publicly available codes by their authors
to implement the existing models.17,18 To train the
response selection models and the keyword predic-
tion models, we used the same dataset and setups as
described in their papers: CKC used the ConvAI2
dataset processed by Zhong et al. (2021), and the
other models used the ConvAI2 dataset processed
by Tang et al. (2019).

B.2 Training parameters of BLENDER.
To train BLENDER, we set the batch size to 32, the
learning rate to 7.0 × 10−6, the warmup steps to
100, the evaluation steps to 1,000, and the number
of updates to 50,000. The other parameters were
set to the default configuration of the huggingface
transformer. We used the model at the validation
loss minimum point for conversation planning.

B.3 Length of subgoal sequence.
We empirically confirmed the validity of tracing
ConceptNet up to the three levels using the fol-

16https://github.com/zhongpeixiang/CKC/
blob/master/util/data.py

17https://github.com/James-Yip/
TGODC-DKRN

18https://github.com/zhongpeixiang/CKC

u0 Not a big fan of talking face to face . How about you?

u1 Me too. I prefer texting.

u2 I truly understand. People love to comment on your
behaviors when talking face to face. But talking online
does not have such problems.

u3 It sounds like you have experienced such comments.
What did people accuse you of?

u4 Well, I am a vegetarian, but they said vegetarians are
incomprehensible. Rude people, aren’t they?

Table 4: Conversation plan generated by a human. (Tar-
get: vegetarian)

lowing procedure. First, we qualitatively checked
the subgoal sequences generated by PREDES. and
found that the subgoal sequences with relatedness
scores of approximately 0.6, indicating a connec-
tion with the initial utterance, were naturally con-
nected with the initial utterance. Then, we investi-
gated how much ConceptNet need to be searched
to generate subgoal sequences with a score of ap-
proximately 0.6. As a result, we confirmed that by
tracing ConceptNet up to three steps, the average
score of the subgoal sequences of the search results
was 0.653, which exceeded 0.6. Therefore, we
conclude that the three-step search is reasonable.

C Instructions for Human Evaluation

Figure 3 shows the instructions given to Amazon
Mechanical Turk workers concerning the evalu-
ation of transition smoothness and conversation
probability.

D Generated Conversation Plans

D.1 Human-generated Conversation Plan
Table 4 shows a conversation plan generated by a
human. We confirmed that human could plan natu-
ral conversations that achieved their target despite
the short number of turns.

D.2 Dead-ended Case
Table 5 shows an example where RETRIEVAL-ST.
did not achieve its target. After the keyword catch
is selected in utterance u6, RETRIEVAL-ST. contin-
ued to generate the same utterance repeatedly from
u7 to the end (u16). Ultimately, RETRIEVAL-ST.
could not reach the target.
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Figure 3: Evaluation instructions given to Amazon Mechanical Turk workers.

u0 Today I am annoyed about not being able to drive.

u1 That’s horrible. My friend is also paralyzed. (horri-
ble: 0.20)

u2 I am sorry to hear of your injury. (hear: 0.43)

u3 I feel like dump and skeleton but just wasting my
hours here. (waste: 0.48)

u4 I don’t understand people with egos. (people: 0.50)

u5 I think happiness is an illusion which money can
help with. (money: 0.53)

u6 I don lie, its bad when you get caught. (catch: 0.54)

u7 I guess that’s why the constantly keep calling me.
(catch: 0.54)

u8 I guess that’s why the constantly keep calling me.
(catch: 0.54)

...

u16 I guess that’s why the constantly keep calling me.
(catch: 0.54)

Table 5: Part of the conversation plan by an existing
model (RETRIEVAL-ST.). The elements in parentheses
are keywords predicted by the model and similarity
score between the keyword and target. (Target: chase)
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Abstract
Since empathy plays a crucial role in increas-
ing social bonding between people, many stud-
ies have designed their own dialogue agents
to be empathetic using the well-established
method of fine-tuning. However, they do not
use prompt-based in-context learning, which
has shown powerful performance in various
natural language processing (NLP) tasks, for
empathetic dialogue generation. Although
several studies have investigated few-shot in-
context learning for empathetic dialogue gen-
eration, an in-depth analysis of the genera-
tion of empathetic dialogue with in-context
learning remains unclear, especially in GPT-
3 (Brown et al., 2020). In this study, we explore
whether GPT-3 can generate empathetic dia-
logues through prompt-based in-context learn-
ing in both zero-shot and few-shot settings.
To enhance performance, we propose new
in-context example selection methods, called
SITSM and EMOSITSM, that utilize emo-
tion and situational information. We also in-
troduce a new automatic evaluation method,
DIFF-EPITOME, which reflects the human ten-
dency to express empathy. From the analy-
sis, we reveal that our DIFF-EPITOME is ef-
fective in measuring the degree of human
empathy. We show that GPT-3 achieves
competitive performance with Blender 90M,
a state-of-the-art dialogue generative model,
on both automatic and human evaluation.
Our code is available at https://github.
com/passing2961/EmpGPT-3.

1 Introduction

Empathy refers to the ability to understand another
person’s experiences and feelings. This is impor-
tant for increasing social bonding (rapport) with
conversation partners (Zech and Rimé, 2005). Em-
pathy is a multi-dimensional concept consisting of
two main aspects: cognitive and affective (Davis
et al., 1980). Since Rashkin et al. (2018) released
the EMPATHETICDIALOGUES dataset for empa-
thetic dialogue generation task, previous studies

have improved their dialogue agents to generate
more empathetic dialogues (Lin et al., 2019; Ma-
jumder et al., 2020; Zheng et al., 2021; Kim et al.,
2021b; Sabour et al., 2021; Li et al., 2022). De-
pending on how the dialogue agents are trained,
these approaches are largely divided into two cat-
egories depending on how to train own dialogue
agents: (i) training from scratch or (ii) fine-tuning
a pretrained dialogue generative model. However,
neither of these approaches uses the prompt-based
in-context learning paradigm in zero-shot and few-
shot settings.

Recently, many researchers have attempted to
build large-scale language models (LLMs), such
as GPT-3 (Brown et al., 2020), OPT (Zhang et al.,
2022), and HyperCloVA (Kim et al., 2021a). These
models have shown surprising performance in vari-
ous NLP tasks via prompt-based in-context learn-
ing, which is a new paradigm learning technique.
Previous studies have explored the effect of few-
shot in-context learning on dialogue generation
tasks (Zheng and Huang, 2021; Madotto et al.,
2021). While Madotto et al. (2021) explored few-
shot in-context learning for empathetic dialogue
generation, they did not conduct an in-depth analy-
sis of their ability to generate empathetic dialogues.
Moreover, they did not leverage GPT-3 as a prompt-
ing language model.

In this study, we explore whether GPT-3 gen-
erates empathetic dialogues using prompt-based
in-context learning in both zero-shot and few-shot
settings. We simply designed the prompt, which
is a modified version of the basic prompt provided
by OpenAI. As pointed out in (Liu et al., 2021), it
is important to carefully choose in-context exam-
ples to enhance few-shot performance. Inspired by
empathy being a multi-dimensional concept (Davis
et al., 1980), we propose SITSM and EMOSITSM
selection methods that choose in-context examples
based on emotion and situation information. To
reflect the human tendency to express empathy, we
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also propose a new automatic evaluation method
called DIFF-EPITOME, which is an extended ver-
sion of EPITOME (Sharma et al., 2020). Our main
contributions are as follows.

• We conduct an in-depth analysis of GPT-3’s
ability to generate empathetic dialogues with
respect to Empathy, Diversity, and Fluency.

• We introduce SITSM and EMOSITSM, which
are in-context example selection methods for
empathetic dialogue generation task.

• We propose DIFF-EPITOME, an automatic
evaluation method for empathetic dialogue
generation. This method measures how dia-
logue agents empathize using the difference of
EPITOME scores between human and agent.

• We show that GPT-3 performs better than the
state-of-the-art model (Blender 90M (Roller
et al., 2020)) on the EMPATHETICDIA-
LOGUES test set, without additional training.
In human evaluation, regardless of the dia-
logue turn setting, we also show that human
annotators prefer GPT-3’s responses on both
human rating and A/B test.

2 Related Work

Empathetic Dialogue Generation Rashkin et al.
(2018) first introduced the EMPATHETICDIA-
LOGUES dataset. Lin et al. (2019) proposed a mix-
ture of empathetic listeners (MoEL), where each
listener is specialized in how to understand and
respond appropriately to each emotion. Majumder
et al. (2020) generated empathetic responses by
mimicking human emotions, grouping emotions,
and imposing stochasticity into each emotion group.
Sharma et al. (2020) introduced a conceptual frame-
work EPITOME (described in §3.3.1). Welivita and
Pu (2020) proposed a taxonomy of empathetic re-
sponse intents, consisting of nine categories (in Ap-
pendix D). For convenience, this is referred to as
EMPINTENT. Zheng et al. (2021) proposed a multi-
factor hierarchical framework (CoMAE), which
considers EPITOME, EMPINTENT, and emotion.
Kim et al. (2021b) generated more specific empa-
thetic responses focused on emotion cause words
by utilizing the Rational Speech Acts (RSA) frame-
work (Frank and Goodman, 2012). Sabour et al.
(2021) leveraged commonsense to generate more
empathetic responses. Li et al. (2022) also lever-
aged external knowledge, such as commonsense

knowledge, to explicitly generate empathetic re-
sponses.

Prompt-based In-Context Learning Since
Brown et al. (2020) first introduced prompt-based
in-context learning, many studies have shown
that large-scale language models (e.g., GPT-3)
itself has the ability to solve various NLP tasks
in both zero-shot and few-shot settings (Schick
and Schütze, 2020; Liu et al., 2021; Mishra et al.,
2021; Wei et al., 2021; Yoo et al., 2021; Zhao et al.,
2021; Schick and Schütze, 2021; Kim et al., 2021a;
Gutiérrez et al., 2022; Meng et al., 2022). Some
studies have shown that prompt-based few-shot
in-context learning can also be successfully applied
in dialogue generation tasks (Zheng and Huang,
2021; Madotto et al., 2021). The advantage of
in-context learning is that it does not require any
additional training. However, one problem is that
GPT-3 achieves unstable performance depending
on in-context examples. To mitigate this problem,
Liu et al. (2021) proposed a kNN-augmented
in-context example selection approach called the
KATE. In this study, we extended this method
to empathetic dialogue generation by selecting
relevant in-context examples based on the situation
and emotion (in §3.2).

3 Methodology

3.1 Task Formulation

The empathetic dialogue generation task aims to
generate an empathetic response y for a given
input x by maximizing the conditional probabil-
ity p(y|x) = ∏t p(yt|x, y1, ..., yt−1), where x de-
notes the dialogue context. In general, previous
studies (Lin et al., 2019; Majumder et al., 2020; Li
et al., 2022) trained their own models on EMPA-
THETICDIALOGUES. However, in our case, we at-
tempted to solve the task through GPT-3 in-context
learning (Brown et al., 2020), without additional
training. Therefore, in this study, task formulation
is defined as follows:

p(y|x,C) =
|y|∏

t

p(yt|C, x, y1, ..., yt−1),

where C = {x1, y1, x2, y2, ..., xk, yk} is a concate-
nated string, and k denotes the number of examples
for in-context few-shot learning. In a zero-shot set-
ting (k = 0), we do not provide any in-context
examples (C = ∅).
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Algorithm 1: SITSM In-Context Example Selection

Input: A training dataset D = {(xi, yi, si, ei)}Ni=1,
number of training examples N , a sentence
encoder fθ(·), number of in-context examples
k, a test input (xtest, ytest, stest, etest)

Output: a prompt input P to GPT-3

/* Step 1: Prepare M */
1 M← empty list
2 for (xi, yi, si, ei) ∈ D do
3 vi = fθ(si)
4 M.append(vi)
5 end
/* Step 2: Get similarity score */

6 vtest = fθ(stest)
7 Msim ← empty list
8 for vi ∈M do
9 simi =

vtest·vi
∥vtest∥2∥vi∥2

10 Msim.append(simi)
11 end

/* Step 3: Construct prompt with
selected k examples */

12 Select k indices I = {idxj}kj=1 from sortedMsim

(in descending order)
13 Mctx ← empty list
14 for idxj ∈ I do
15 Mctx.append((xidxj , yidxj ))
16 end
17 C = [xidxk ; yidxk ; ...;xidx1 ; yidx1 ]
18 P = [C;xtest; ytest]

3.2 In-Context Example Selection Methods
(SM)

As reported by (Liu et al., 2021), GPT-3 is sensi-
tive to randomly chosen in-context examples. To
mitigate this problem, they selected semantically
relevant in-context examples from the training set
using the kNN retrieval module for each test input.
Inspired by (Liu et al., 2021), we introduce two se-
lection methods: SITSM and EMOSITSM. In EM-
PATHETICDIALOGUES, each training instance con-
sists of dialogue context x, golden response y, emo-
tion e, and situation sentence s. Table 1 shows the
samples of the in-context examples selected by
SITSM and EMOSITSM.

3.2.1 SITSM
Starting from the assumption that the situation sen-
tences are similar, the dialogue context will have
similar patterns of expressing empathy. Specifi-
cally, we first use the sentence encoder 1 to obtain
all the embedding vectors of situation sentences in
the training set in advance. We convert each test
situation input s into a vector representation. For
each test situation input s, we then select the most
relevant k examples from the training set based

1We use stsb-roberta-large version of Sentence-
BERT (Reimers and Gurevych, 2019)

Algorithm 2: EMOSITSM In-Context Example Se-
lection

Input: A training dataset D = {(xi, yi, si, ei)}Ni=1,
number of training examples N , an emotion
E = {e}321 , a sentence encoder fθ(·), number
of in-context examples k, a test input
(xtest, ytest, stest, etest)

Output: a prompt input P to GPT-3

/* Step 1: Group D by 32 emotions

and prepare M */
1 M← empty dict
2 for e ∈ E do
3 for (xi, yi, si, ei) ∈ D do
4 vi = fθ(si)
5 M[e].append((xi, yi, si, ei, vi))
6 end
7 end
/* Step 2: Get similarity score */

8 etest ← emotion of test input
9 vtest = fθ(stest)

10 Msim ← empty list
11 for (xi, yi, si, ei, vi) ∈M[etest] do
12 simi =

vtest·vi
∥vtest∥2∥vi∥2

13 Msim.append(simi)
14 end

/* Step 3: Construct prompt with
selected k examples */

15 Select k indices I = {idxj}kj=1 from sortedMsim

(in descending order)
16 Mctx ← empty list
17 for idxj ∈ I do
18 Mctx.append((xidxj , yidxj ))
19 end
20 C = [xidxk ; yidxk ; ...;xidx1 ; yidx1 ]
21 P = [C;xtest; ytest]

on the similarity score. For the similarity mea-
sures, we adopt the cosine similarity. We construct
the prompt with the selected k examples, where
the ordering of k examples was performed based
on the similarity score of each example. In other
words, the example most similar to the test input s
is placed close to the test input.2 The entire process
is presented in Algorithm 1.

3.2.2 EMOSITSM
Empathy is a multi-dimensional concept that con-
sists of two aspects: cognitive and affective (Davis
et al., 1980). Based on this concept, we argue that
we should choose good in-context examples based
on these two aspects. The cognitive aspect involves
understanding and interpreting the situation of an-
other person. The affective aspect is to express an
emotional reaction. We can view the situation as
the cognitive aspect, and emotion as affective as-

2As argued in (Liu et al., 2021), the choice of ordering is
data-dependent. In this study, we adopt the reverse order that
performs best on the Natural Questions (NQ) (Kwiatkowski
et al., 2019) dataset.
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Content Score

Test situation I’m starting a new job next week, and I am super nervous. -

situation 1 I start my new job tomorrow. I am extremely nervous about it 0.9741

Dialogue Context

S: I start my new job tomorrow.
L: Nice! What will you be doing?
S: I will be working as a consultant, I am extremely nervous
L: Nothing to be nervous about, I’m sure you’ll do fine!

-

situation 2 I am starting a new job next week. I am so nervous. 0.9937

Dialogue Context

S: MY new job starts next week.
L: Awesome! What will you be doing?
S: Im transferring to another store and becoming a supervisor. Im nervous cause of the position and its all new people.
L: That is awesome. They chose you for a reason. You will do great!

-

(a) Sample of selected in-context example by SITSM.

Content Score

Test situation I remain loyal to my wife always -

situation 1 I’ve always been loyal to my wife. 0.9716

Dialogue Context

S: I’ve always been faithful as a husband, I pride myself on that.
L: Nice, there is not a lot of people like you
S: Well, I don’t know about that, but I actually wanted to marry my wife.
L: Good

-

situation 2 i am loyal to my wife and i’ll always be 0.9786

Dialogue Context

S: i am loyal to my wife and i’ll always be.
L: That’s an amazing attitude. Not many people are like that nowadays.
S: i don’t get it why people cheat and hurt each other,

but i suppose because they are never happy with what they have and only feel grateful for it after they lose it.
L: Crazy world we live in.

-

(b) Sample of selected in-context example by EMOSITSM when "faithful" emotion.

Table 1: Samples of selected in-context examples (when k = 2) from EMPATHETICDIALOGUES training set, based
on the similarity score with a given test situation. We also present dialogue contexts corresponding to situation
sentences, respectively. (S: Speaker, L: Listener) More samples are in Appendix E.

pect. Fortunately, EMPATHETICDIALOGUES con-
tains situation and emotion information for each
instance. To this end, we propose EMOSITSM,
which selects in-context examples based on emo-
tions and situations. Specifically, we first group all
training instances by 32 emotion types and encode
each situation sentence s into a vector representa-
tion by using the sentence encoder (same model
in SITSM) simultaneously. We then calculate the
similarity score between the test input and all in-
stances in the group with the same emotion as that
of the test input. Finally, based on the similarity
scores, we select k examples that are closest to the
test input. Similar to SITSM, we also consider the
ordering of k selected examples when constructing
the final prompt. The algorithm EMOSITSM is
presented in Algorithm 2.

3.3 A New Automatic Evaluation Metric for
Empathetic Dialogue Generation

We propose an automatic evaluation metric, called
DIFF-EPITOME, which reflects human patterns
when empathy is expressed as dialogue continues.

In §3.3.1, we describe the EPITOME-based metric
used in previous studies (Sharma et al., 2020; Kim
et al., 2021b). Empirically, we analyze whether
there is a specific tendency in human communi-
cation (see §3.3.2). Based on the above analysis,
we propose a new evaluation method called DIFF-
EPITOME (see §3.3.3).

3.3.1 EPITOME-based Automatic Evaluation
EPITOME, introduced by (Sharma et al., 2020), is
a new conceptual framework for expressing em-
pathy in text-based, asynchronous contexts. EPIT-
OME consists of three communication mechanisms
of empathy: Explorations (EX), Interpretations
(IP), and Emotional Reactions (ER). The mecha-
nisms are described in Appendix C.

In a recent study (Kim et al., 2021b), each mech-
anism was used as an automatic metric to measure
the empathy of generated responses using a fine-
tuned RoBERTa (Liu et al., 2019) model.3. Each
generated response was measured by one of the val-

3Actually, in (Kim et al., 2021b), they only used IP and EX
scores. However, we even use the ER score in the experiments
(see in Table 3)
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Figure 1: Analysis of EMPATHETICDIALOGUES train
set w.r.t. EPITOME, as the conversation continues. The
x-axis represents the index of dialogue turn and the
y-axis represents the average score of IP, EX, ER for
each dialogue turn. Each score was predicted by the
RoBERTa model (described in §3.3.1).

ues (0, 1, or 2) predicted from the model. Higher
values indicate stronger empathy. Following the au-
thor’s official code4, we fine-tuned three RoBERTa-
base models to measure the IP, EX, and ER scores.
The EPITOME-based metric is formulated as

EPm(y) = RoBERTam(x, y) (1)

EPm(Y ) =
1

N

N∑

i=1

EPm(ŷi) (2)

where m ∈ {IP,EX,ER}, the number of test ex-
amples N , and Y = {y1, ..., yN}.

We ask: "Can we argue that empathetic dia-
logue agents empathize well with high scores mea-
sured by EPITOME-based metrics?" To validate
our hypothesis, we check the results of Blender
90M (Roller et al., 2020) trained on EMPATHETIC-
DIALOGUES. Given the input utterance, "I feel like
deepening my connection to god is the most impor-
tant thing in my life," Blender produces a response
"I’m sorry to hear that. What is your connection
to god?", which is measured using the EPITOME-
based method with an IP of 0, EX of 2, and ER of 2.
This indicates more exploration of the situation of
a partner and expressing emotional reactions. On
the other hand, the IP, EX, and ER scores of the
golden response "I think that is a lovely thing" are
all measured to be 0. According to the EPITOME-
based method, Blender expresses stronger empathy,
which is regarded as an empathetic dialogue agent.
However, in this case, humans do not express em-
pathy. Therefore, it is necessary to develop a new
automatic evaluation method.

3.3.2 How do humans empathize?
We ponder: How do humans empathize? We hu-
mans perceive and understand another person’s sit-
uation by putting ourselves in the other’s shoes.

4https://github.com/behavioral-data/
Empathy-Mental-Health

This is known as perspective-taking in cognitive
science (Davis et al., 1980). Even following
perspective-taking, it is difficult to accurately rec-
ognize another person’s situation at the beginning
of a dialogue. Therefore, humans tend to ask their
situation and feelings. Through a simple experi-
ment, we observe that there is a tendency to express
empathy in human communication. Figure 1 shows
that the average EX scores decrease as the dialogue
continued. In the IP and ER scores, each goes up
and down slightly.

3.3.3 DIFF-EPITOME-based Automatic
Evaluation

Based on the above analysis, we propose a new au-
tomatic evaluation method DIFF-EPITOME, which
is an extended version of the EPITOME-based
method. The key idea of DIFF-EPITOME is to mea-
sure the difference in EPm score between the hu-
man golden response yi and the predicted response
ŷi using a model, as follows:

diff-EPm(Y ) =
1

N

N∑

i=1

(EPm(yi)− EPm(ŷi))
2 (3)

where m ∈ {IP,EX,ER}
A lower diff-EP value indicates that the ex-

pressed empathy is more human-like.

4 Experimental Setup

4.1 Dataset
We evaluate our proposed model on the benchmark
EMPATHETICDIALOGUES dataset (Rashkin et al.,
2018), which consists of 25k open-domain con-
versations grounded in emotional situations. Each
dialogue is composed of consecutive utterances of
the speaker and listener, where each utterance is la-
beled among 32 emotion categories. Each dialogue
contains a situation sentence.

4.2 Evaluation Models
Blender We compare GPT-3 with Blender
90M (Roller et al., 2020), which is one of the state-
of-the-art dialogue agents, fine-tuned on the EMPA-
THETICDIALOGUES train dataset as our baseline.

EmpGPT-3 To observe whether a prompt spe-
cialized to the empathetic dialogue generation
task elicits GPT-3 to produce more empathetic re-
sponses, we construct a simple prompt template
which is "The following is a conversation with an
empathetic AI assistant. The assistant empathizes
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Model # classes Acc Macro F1

EMOACC 32 0.40 0.39
INTENTACC 9 0.96 0.90

Table 2: Performance of BERT-based classifiers trained
on EMPATHETICDIALOGUES (Rashkin et al., 2018).

with human experiences and feelings well. Human:
u1 Empathy AI: u2 ...", where u1, u2, ... are ut-
terances. We present examples of the constructed
prompt used in this study in the Appendix A.

4.3 Implementation Details.

We fine-tune the Blender 90M (Roller et al., 2020)
on the EMPATHETICDIALOGUES dataset using a
ParlAI framework5. We used the default hyperpa-
rameter settings provided by the ParlAI framework.
We selected the model checkpoint that achieved the
best performance, based on the perplexity of the
validation set. For EmpGPT-3, we use a davinci
version with hyperparameter settings as follows:
temperature 0.8, maximum tokens 128, frequency
penalty 0.4, and presence penalty 0.4. For the stop
tokens, we use Human: and Empathy AI:.

4.4 Automatic Evaluations

To investigate whether GPT-3 can generate empa-
thetic responses in both zero-shot and few-shot
settings, we evaluate the generated responses on
various metrics for Diversity, Fluency, and Empa-
thy.

4.4.1 Diversity
It is important to consider diversity because various
responses to an input utterance may be possible
depending on the context. We measure the diversity
of generated responses based on two metrics.

• DISTINCT-N (DIST-N) (Li et al., 2015; See
et al., 2019a) measures the ratio of unique
n-grams. A higher ratio indicates a higher
diversity of generated responses.

• NIDF6 (See et al., 2019b) measures the
rareness of a word w. The NIDF score is
calculated as:

NIDF(w) =
IDF(w)− min_idf
max_idf− min_idf , (4)

5https://github.com/facebookresearch/
ParlAI

6Normalized Inverse Document Frequency

where IDF(w) = log(R/cw), R denotes the
number of responses in dataset, cw is the num-
ber of responses that contain w, min_idf
and max_idf are the minimum and maxi-
mum IDFs. Detailed information is described
in (See et al., 2019b). A higher NIDF score in-
dicates a more specific response and a higher
proportion of rare words.

4.4.2 Fluency
Following (Feng et al., 2020; Pang et al., 2020), we
measure the fluency of generated responses through
a perplexity (PPL) by adopting GPT2-XL, not fine-
tuned on any downstream tasks related to the di-
alogue domain. A lower PPL indicates that the
response is more fluent.

4.4.3 Empathy
• EMOACC measures an emotion accuracy us-

ing a fine-tuned BERT-base (Devlin et al.,
2018) model on the EMPATHETICDIA-
LOGUES dataset labeled with 32 emotion cat-
egories. The performance of the classifier is
reported in Table 2.

• INTENTACC measures the response intent ac-
curacy using a fine-tuned BERT model on the
EMPINTENT dataset, introduced by (Welivita
and Pu, 2020). The performance of the classi-
fier is reported in Table 2.

• EPITOME (Sharma et al., 2020) measures
IP, EX, and ER by leveraging fine-tuned
RoBERTa models, respectively (§3.3.1).

• DIFF-EPITOME (§3.3.3) measures the differ-
ence scores of IP, EX, ER between the hu-
man golden response and predicted response
(§3.3.3).

4.5 Human Evaluation

Following (Rashkin et al., 2018; Lin et al., 2019;
Majumder et al., 2020; Kim et al., 2021b), we con-
duct two standard human evaluations with three
annotators: (i) Human A/B Test and (ii) Human
Ratings. We recruited three annotators via an on-
campus announcements. After randomly sampling
100 test examples, we divided them into 50 exam-
ples for each single-turn and multi-turn setting. The
Human A/B Test allows annotators to choose which
response is more empathetic. They can choose
"Tie" if the two given responses are both good or
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Empathy Diversity Fluency

Model INTENTACC EMOACC IP EX ER diff-IP diff-EX diff-ER dist-1 dist-2 NIDF PPL Avg. Len

Blender (single-turn) 0.3084 0.1593 0.2057 0.3423 1.0570 0.7202 1.1934 1.0359 0.9541 0.9824 0.2454 166.86 12.58
EmpGPT3 (single-turn) 0.2211 0.1683 0.2780 0.3118 0.8142 0.8625 1.5364 0.9239 0.9614 0.9975 0.2860 169.39 16.03
EmpGPT3 (multi-turn) 0.2528 0.1594 0.2717 0.4970 0.6439 0.7884 1.2564 0.7295 0.9400 0.9966 0.2840 118.43 15.6

Table 3: Comparison of the zero-shot performance of EmpGPT-3 with Blender 90M (Roller et al., 2020) on
EMPATHETICDIALOGUES test set. In a single-turn setting, we inject only the last utterance with the prompt
template, not including the whole dialogue context, into GPT-3. In contrast, in a multi-turn setting, we consider the
whole dialogue context when constructing the prompt.

Empathy Diversity Fluency

k INTENTACC EMOACC diff-IP diff-EX diff-ER NIDF PPL

0 0.2528 0.1594 0.7884 1.2564 0.7295 0.2840 118.43
1 0.2650 0.1622 0.8418 0.9925 0.6655 0.2896 175.71
2 0.2623 0.1614 0.8481 0.9988 0.6514 0.3045 74.39

Table 4: Ablation study on the number of in-context
examples k in EmpGPT-3 prompts. Evaluation results
are conducted on the EMOSITSM.

bad. For the Human Ratings, we asked three anno-
tators to rate the generated responses on three met-
rics (in a 4-likert scale): EMPATHY, RELEVANCE,
and FLUENCY. The questionnaires and system
used for the human evaluation are described in Ap-
pendix G and H.

5 Experimental Results

5.1 Main Results

GPT-3 vs. Blender 90M As shown in Table 3,
GPT-3 shows competitive performance compared
to Blender 90M on most evaluation metrics (8 of
12, except for Avg. Len) in a zero-shot setting.
Regardless of the turn setting, GPT-3 is difficult
to generate responses with proper intentions than
Blender 90M. Owing to the enormous generative
capacity of GPT-3, EmpGPT3 can generate more
diverse and specific responses. For DIFF-EPITOME,
Blender tends to generate overly emotional expres-
sions because of its higher performance in both
ER and diff-ER (1.0570 and 1.0359). However,
EmpGPT-3 still cannot follow how humans em-
pathize in terms of the IP and EX.

single-turn vs. multi-turn The main difference
between these two settings is whether the entire di-
alogue context is given together when constructing
the prompt. For Empathy, EmpGPT-3 achieves
lower diff-{IP,EX,ER} scores than the single-turn
setting. This suggests that, given the dialogue con-
text in the zero-shot setting, GPT-3 better under-
stands human situations and expresses empathy
just as humans do. Similarly, the performance of

Empathy

type INTENTACC EMOACC IP EX ER diff-IP diff-EX diff-ER

RANDOM 0.2603 0.1390 0.2670 0.3204 0.6141 0.8905 0.9894 0.6592
SITSM 0.2587 0.1461 0.2387 0.3298 0.6282 0.8025 0.9706 0.6678

EMOSITSM 0.2623 0.1614 0.2599 0.3094 0.6219 0.8481 0.9988 0.6514

Table 5: Comparison of EMPATHY performance of
EmpGPT-3 with various selection methods when k = 2
and multi-turn setting.

INTENTACC, which requires reasoning about situa-
tions, has also improved. For Fluency, EmpGPT-3
generates more fluent responses from the average
PPL with a large margin of 50.96.

5.2 Ablation Studies

Number of In-Context Examples As shown in
Table 4, we explore the effect of the number of in-
context examples on the EmpGPT-3’s performance.
Specifically, we conduct an experiment on the EM-
PATHETICDIALOGUES test set with k = {1, 2}. To
select adequate in-context examples, we adopt our
EMOSITSM, which achieves a better performance
(see Table 11). The overall few-shot performance
is better than that when k = 0. In particular, we
observe that fluency when k = 2 is much higher
than those for others (k = {0, 1}). In addition, the
diff-{EX,ER} scores of EmpGPT-3 are much lower
than those of the zero-shot performance. This im-
plies that GPT-3 indirectly learns how to express
empathy from given in-context examples. Full ex-
periment results are shown in Table 11 (see Ap-
pendix B).

Various Selection Methods We investigate the
performance of GPT-3 according to the selec-
tion method. Table 5 shows that the similarity-
based methods (i.e., SITSM and EMOSITSM) have
slightly improved performance in most metrics
compared with the RANDOM method (similar re-
sults were reported in (Liu et al., 2021)). The
RANDOM method selects in-context examples ran-
domly. In particular, EMOSITSM is highly effec-
tive in terms of emotion accuracy compared with
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Model Win Lose Tie

single-EmpGPT-3 vs. Blender 46.7% 32.0% 21.3%

multi-EmpGPT-3 vs. Blender 36.7% 36.7% 26.6%

Table 6: Comparison of EmpGPT-3 (in single- and
multi-turn) with Blender (Roller et al., 2020) on A/B
test. The win rate is for EmpGPT-3.

Model EMPATHY↑ RELEVANCE↑ FLUENCY↑
Blender 2.78 2.82 3.34
single-EmpGPT-3 3.07 2.97 3.6

Blender 2.79 2.78 3.13
multi-EmpGPT-3 2.85 2.8 3.21

Table 7: Comparison of EmpGPT-3 (in single- and
multi-turn) with Blender (Roller et al., 2020) on hu-
man ratings.

other methods. However, SITSM shows a better
performance in diff-{IP,EX}, demonstrating that
SITSM better understands and explores situations.
We report full experiment results in Table 11 (Ap-
pendix B).

5.3 Human Evaluation Results

As shown in Table 6, users prefer responses gen-
erated by single-EmpGPT-3 to those generated
by Blender. When comparing multi-EmpGPT-3
with Blender, users prefer responses from both the
models equally. We measure the inter-rater agree-
ment using Krippendorff’s α. For Human A/B
Test, Krippendorff’s α is 0.26, which implies a fair
agreement. Regardless of the dialogue turn setting,
EmpGPT-3 obtains a better performance on human
ratings. Especially, users who evaluate responses
from single-EmpGPT-3 to be more empathetic and
relevant to the given dialogue context, as shown in
Table 7.

5.4 Analysis of Correlation

We conducted a correlation analysis to verify the
validity of the proposed evaluation metric DIFF-
EPITOME. Figure 2 shows Pearson’s r correlation
matrix between human ratings and two automatic
methods: EPITOME-based and DIFF-EPITOME-
based. We observe that our DIFF-EPITOME-based
automatic metric more correlates with human rat-
ings than the EPITOME-based automatic metric.
Moreover, we found that a high ER score does not
indicate that the dialogue agent empathizes well.
It suggests that it is necessary to use emotional
reactions on time when expressing empathy to in-

Figure 2: Pearson’s r correlation matrix between human
ratings and EPITOME- and DIFF-EPITOME-based auto-
matic metrics, respectively. The degree of correlation
increases from red to blue.

Dialogue Context

S:
Do you even know how crazy it is to skydive?
I must have been absolutely nuts when I did it.

L:
Oh I don’t think I could do that.
I have a fear of falling from high places.

S:
It gave me the biggest rush that’s for sure.
But on the way down I was saying my prayers.

L: I think I would pass out from fear lol.

S:
You should do it sometime.
It’s fun to take chances.

Generated Responses
Blender:
I have never skydive. I have heard it is pretty scary.
single-EmpGPT-3:
No, I cannot say that I do. But I think I can imagine.

Dialogue Context

S:
I have some great friends.
One of them drove me to the airport tomorrow

L:
That was really nice of them.
I bet you’re appreciative.

S: Yes I am, they are great
Generated Responses

Blender:
I’m glad you have some good friends.
multi-EmpGPT-3:
I’m sure they’ll like to hear that.

Table 8: Examples of generated responses from
Blender (Roller et al., 2020) and EmpGPT-3 with single-
and multi-turn setting. (S: Speaker, L: Listener)

terlocutors. Correlation analysis revealed that our
proposed metric is effective for empathetic dia-
logue generation and it is important to consider
the tendency of how humans do empathize as the
dialogue continues. We hope that this analysis will
be helpful for other researchers.
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5.5 Case Studies

Table 8 shows examples of the responses generated
by the Blender and EmpGPT-3 (with single- and
multi-turn settings). Our multi-EmpGPT-3 can gen-
erate responses that require complex reasoning by
understanding a speaker’s situation and feelings.
Additional examples are presented in Table 13.

6 Conclusion

In this study, we explore the zero-shot and few-shot
performance of GPT-3 in an empathetic dialogue
generation task on various metrics with respect to
Diversity, Fluency, and Empathy. We introduce a
new in-context example selection method, SITSM
and EMOSITSM. We also propose a novel auto-
matic evaluation method, DIFF-EPITOME, for em-
pathetic dialogue generation. We show that GPT-3
achieves competitive performance with Blender
90M on the EMPATHETICDIALOGUES test set on
both automatic and human evaluations. From the
correlation analysis, we reveal that DIFF-EPITOME

correlates more with human ratings. In future work,
we will apply OPT (Zhang et al., 2022) with an
optimized prompt. In addition, we reflect on the
overall human tendency to express empathy in the
modeling.
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A Prompt For Empathetic Dialogue Generation

Our prompt template for EmpGPT-3 is as follows.

The following is a conversation with an empathetic AI assistant. The
assistant empathizes with human experiences and feelings well.

Human:

Table 9 and Table 10 show the constructed prompt in the zero-shot and few-shot setting, respectively.

The following is a conversation with an empathetic AI assistant. The assistant empathizes with human experiences and feelings well.

Human: I’m so excited because I’m finally going to visit my parents next month! I didn’t see them for 3 years
Empathy AI: 3 years is a long time. How come?
Human: I moved to the us and they stayed in my homecountry
Empathy AI: Oh, yeah. That is a long time. I can imagine how excited you are to go home.

Table 9: An example of constructed prompt when k = 0. The blue represents a generated response from multi-
EmpGPT-3.

The following is a conversation with an empathetic AI assistant. The assistant empathizes with human experiences and feelings well.

Human: When I was eight my parents got me a dog for Christmas.
Empathy AI: A dog is an awesome gift for a little kid. I bet you were super excited.
Human: To this day I remember it as the best Christmas of my life.
Empathy AI: I bet! Maybe I should get my kids a dog for Christmas, I know it would be a great choice for them.

The following is a conversation with an empathetic AI assistant. The assistant empathizes with human experiences and feelings well.

Human: Im already getting pumped up for christmas this year...
Empathy AI: I love Christmas!
Human: Me too especially this year.. new apartment for us new state. Whats your fav part of the holiday?
Empathy AI: Seeing my kids open their gifts. I never make it to Christmas because I’m so excited to see them lol
Human: Its such a good feeling right, the best! :)
Empathy AI: I never get anything but that’s fine

The following is a conversation with an empathetic AI assistant. The assistant empathizes with human experiences and feelings well.

Human: I couldn’t wait to go to the concert.
Empathy AI: Which Concert?
Human: The U2 concert. Tickets were really expensive and I never thought we would be able to go, but somehow we did!!!
Empathy AI: It was awesome! I love U2.

Table 10: An example of constructed prompt when k = 2. The blue represents a generated response from multi-
EmpGPT-3 with EMOSITSM.
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B Full Results

Table 11 shows the zero-shot performance (k = 0) and few-shot performance (k = 1, 2) according to
various selection methods (i.e., RANDOM, SITSM, and EMOSITSM) on various automatic evaluation
metrics.

Empathy Diversity Fluency

k type INTENTACC EMOACC IP EX ER diff-IP diff-EX diff-ER dist-1 dist-2 NIDF PPL Avg. Len

0 - 0.2528 0.1594 0.2717 0.4970 0.6439 0.7884 1.2564 0.7295 0.9400 0.9966 0.2840 118.43 15.6

1
RANDOM 0.2682 0.1582 0.2772 0.3683 0.6443 0.8669 1.0412 0.6800 0.9672 0.9984 0.2859 108.84 15.39
SITSM 0.2599 0.1582 0.2992 0.3643 0.6196 0.9015 1.0491 0.6635 0.9646 0.9982 0.2866 136.97 16.4

EMOSITSM 0.2689 0.1653 0.2921 0.3337 0.6431 0.8433 0.9941 0.6710 0.9649 0.9980 0.2855 180.95 16.3

2
RANDOM 0.2717 0.1523 0.2740 0.3219 0.6211 0.9046 0.9894 0.6749 0.9688 0.9982 0.2914 125.53 14.84
SITSM 0.2693 0.1665 0.2466 0.3322 0.6349 0.8057 0.9753 0.6832 0.9689 0.9987 0.2907 136.12 15.15

EMOSITSM 0.2721 0.1818 0.2733 0.3102 0.6280 0.8528 1.0003 0.6643 0.9661 0.9982 0.2905 83.83 15.51

Table 11: Evaluation results of zero-shot and few-shot learning with different in-context examples k = 1, 2 and
with various selection methods on various automatic evaluation metrics: Empathy, and Diversity, Fluency.

C Explanation of EPITOME Framework

As we mentioned earlier, EPITOME (Sharma et al., 2020) comprises three mechanisms: IP, EX, and ER.
The mechanisms are described as follows:

• EXPLORATIONS (EX) are expressions of active interest in the interlocutor’s situation.

• INTERPRETATIONS (IP) are expressions of acknowledgments or understanding of the interlocutor’s
emotion or situation.

• EMOTIONAL REACTIONS (ER) are expressions of emotions such as warmth, compassion, and
concern in the interlocutor’s situation.

D A Taxonomy of Empathetic Response Intents

There are 9 categories: Agreeing, Acknowledging, Encouraging, Consoling, Sympathizing, Suggesting,
Questioning, Wishing, and Neutral.

E Selected In-Context Examples

Table 12 shows more selected in-context examples.
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Content Score

Test situation My eldest son just graduated from High School and I was so happy for him. -

situation 1 When my brother graduated high school, I was very proud of him, it was a big accomplishment 0.9479

Dialogue Context

S: My brother graduated high school, I was very proud of him!
L: I know that feel, my brother graduated a year ago, it’s a really big milestone.
S: It is, somewhat common, but still, I am proud of him all the same!
L: Yes I agree, it really signifies the start of their next chapter in life.

-

situation 2 My son recently graduated from high school. I am so happy about it! 0.9765

Dialogue Context

S: My son recently graduated from high school.
L: That’s great. What is he doing now?
S: He is preparing for college. I am so happy about it!
L: That’s even more awesome. I hope he does well.

-

Test situation I have a nest of yellow jackets in my front yard -

situation 1 I ripped my pants on bourbon street the other day. Luckily I was wearing a long shirt. 0.4424

Dialogue Context

S: I went out last weekend and had a major accident. Guess what happened...
L: Are you ok, you have to tell me what happened.
S: I’m fine. Just a litte embarassed. I ripped my leggings dancing on bourbon street.
L: Ahh that has happened to everyone before. It is embarrassing but you will get over it.
S: Yep. My shirt was long enough to cover it. Plus I don’t live there lol.
L: Well im glad you were able to cover up.

-

situation 2 There’s a huge stuffed bear on my yard. 0.4509

Dialogue Context

S: There’s a huge stuffed bear on my yard.
L: That sounds creepy
S: Agree. Not sure what I should do with it.
L: I guess ignore it for now

-

(a) Sample of selected in-context example by SITSM.

Content Score
Test situation I had a job interview today and i think it really well. -
situation 1 I had a great job interview the other day. Im really feeling good about how it went. 0.9284

Dialogue Context

S: I had a great job interview the other day. Im really feeling good about how it went.
L: That’s fantastic! Hopefully you’ll hear something about it soon.
S: I should be. I just feel that I did really well.
L: I’m sure you did. Think positive!

-

situation 2 I just went on a job interview. I feel like it went really well. 0.9602

Dialogue Context

S: I just got back from a job interview. It went really well. I feel I might get an offer.
L: What job did you interview for?
S: It was for a Financial Analyst job. I really want the job.
L: That’s amazing, you must be so excited right now

-

Test situation I went bowling yesterday and the ball got stuck on my hand. I went with it. -
situation 1 I was at home and at the last minute my father took me to the Yankee game. 0.3834

Dialogue Context

S: I was at home and last minute my dad took me to the Yankees game.
L: That is so thoughtful of him, did you guys catch a ball?
S: No, but it was still fun.
L: I am sure it was! :)

-

situation 2 I play the lotto regularly and finally won a small amount the other night much to my shock. 0.4339

Dialogue Context

S: I play the lottery sometimes here, and finally won a small amount.
Not a big deal, but I was shocked it finally happened haha.
L: I would be too, I never win those things!
S: Yeah it’s really demoralizing until you at least win something. A nice little bonus anyway.
L: Very true! Congrats! It’s hard to never win

-

(b) Sample of selected in-context example by EMOSITSM when the emotion of "hopeful" (upper row) and "surprised" (bottom
row). We also present dialogue contexts corresponding to situation sentences, respectively. (S: Speaker, L: Listener)

Table 12: Samples of selected in-context examples (when k = 2) from EMPATHETICDIALOGUES training set,
based on the similarity score with a given test situation.
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F More Examples of Generated Dialogues

See Table 13 for more examples of responses generated by Blender (Roller et al., 2020) and EmpGPT-3.

Dialogue Context

S: I just got hulu live. It’s been amazing to watch tv again!
L: I haven’t watched actual tv in sooo long. What do you watch on hulu?
S: I love to watch home shows on hgtv and bachelor in paridise on abc. Hulu live has been a great value for the price!

Generated Responses

Blender: I love hulu live. I have it on my phone.
single-EmpGPT-3: Can you elaborate?

Dialogue Context

S: I think storms are wonderful, except when the power goes out.
L: I love storms too but yeah, that’s a nuisance.
S: It was extra loud and my husband was at work, bit scary.

Generated Responses

Blender: I’m sorry to hear that. I hope you guys can get it fixed soon.
single-EmpGPT-3: So you felt scared when you heard the loud sound?

Dialogue Context

S: I was hurrying around the house and wasn’t paying attention fully, I ending up hitting my toe on my dogs toys.
L: Dang dogs leaving their things around!
S: It really hurt, I think I may need to take all his toys away to punish him.

Generated Responses

Blender: I would do that.
multi-EmpGPT-3: I can kind of see your reasoning for that, but dogs love their toys.

Dialogue Context

S: I have been looking after my wife this week. She has the flu
L: oh poor thing, is she at least getting better?
S: It seems so. Sleeping all day today lol

Generated Responses

Blender: I hope she gets better soon!
multi-EmpGPT-3: haha that’s so hard. I hope she gets better soon

Table 13: Examples of generated responses from Blender (Roller et al., 2020) and EmpGPT-3 with single- and
multi-turn setting on EMPATHETICDIALOGUES test set. (S: Speaker, L: Listener)
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G Human Evaluation Questionnaire

This is a list of questions and multiple-choice options for each evaluation metric used in the human
evaluation.

• EMPATHY: Do you think this response shows an understanding of situation and empathize appropri-
ately?

Options: 1: Not at all / 2: A little / 3: Somewhat / 4: A lot

• RELEVANCE: Is this response relevant to given dialogue context?

Options: 1: Not at all / 2: A little / 3: Somewhat / 4: A lot

• FLUENCY: Does this response seem contextually natural? Could you understand this response?

Options: 1: Very unnatural / 2: Mostly unnatural / 3: Mostly natural / 4: Very natural

H Human Evaluation System

Figure 3 is a screenshot of human evaluation system.

Figure 3: Screenshot of the human evaluation system for empathetic dialogue generation.
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Abstract

Emotion Recognition in Conversation (ERC)
has attracted increasing attention in the affec-
tive computing research field. Previous works
have mainly focused on modeling the seman-
tic interactions in the dialogue and implicitly
inferring the evolution of the speakers’ emo-
tional states. Few works have considered the
emotional interactions, which directly reflect
the emotional evolution of speakers in the dia-
logue. According to psychological and behav-
ioral studies, the emotional inertia and emo-
tional stimulus are important factors that affect
the speaker’s emotional state in conversations.
In this work, we propose a novel Dialogue Emo-
tion Interaction Network, DialogueEIN, to ex-
plicitly model the intra-speaker, inter-speaker,
global and local emotional interactions to re-
spectively simulate the emotional inertia, emo-
tional stimulus, global and local emotional
evolution in dialogues. Extensive experiments
on four ERC benchmark datasets, IEMOCAP,
MELD, EmoryNLP and DailyDialog, show
that our proposed DialogueEIN considering
emotional interaction factors can achieve su-
perior or competitive performance compared to
state-of-the-art methods. Our codes and models
are released1.

1 Introduction

Emotion Recognition in Conversation (ERC), aim-
ing to recognize the emotional status of each ut-
terance in a conversation, has attracted increasing
research attention in recent years. It has rich ap-
plication potentials in emotional support, mental
health, and legal trials etc (Poria et al., 2019).

Unlike traditional emotion recognition based on
isolated utterances, conversation context modeling
is very important for the ERC task (Poria et al.,
2019). Different approaches have been proposed

*Corresponding Author
1https://github.com/AIM3-RUC/DialogueEIN

Male Female

NeutralYou are not sorry you came?

No, I’m not sorry.
But I’m not going to stay.

Look, you saw the way 
that she acted and then…

Well, I mean, you, 
you were acting kind of…

What?

I don’t know, embarrassed 
of her since I came.

I mean, that’s the reason 
why I asked you here.

Well.

I love you.

I guess that’s why I came.

Neutral

Happy

Happy

Happy

Happy

Sad

Sad

Sad

Sad

Emotional Stimulus
The emotional change of the 

male stimulates the female to 
become happy.

Emotional Inertia
No obvious stimulus and the 

emotion remains unchanged. 

Figure 1: Illustration of emotional interaction in an ex-
ample dialogue from the IEMOCAP dataset. The grey
arrow line indicates that the speaker’s emotional state
remains unchanged, and the orange arrow line indicates
that the speaker is stimulated and the emotion changes,
corresponding to emotional inertia and emotional stimu-
lus respectively.

to model the context of a conversation. For ex-
ample, CMN (Hazarika et al., 2018b) and ICON
(Hazarika et al., 2018a) use speaker-specific and
global recurrent networks to model the semantic
context in a dialogue, and multi-hop memory net-
works are used to generate the summaries for pre-
diction. DialogueGCN (Ghosal et al.) models the
speaker-specific semantic interaction via designing
different relations based on graph networks. Di-
alogXL (Shen et al., 2020) utilizes the dialog-aware
self-attention mechanism in a transformer structure
to capture intra- and inter-speaker dependencies.
These works only focus on modeling the dialogue
semantic context. Recently, some works have con-
sidered the dialogue emotional evolution and pro-
posed several methods to model the emotional con-
text. DialogueRNN (Majumder et al., 2019) and
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COSMIC (Ghosal et al., 2020) use separate GRUs
to model global and speaker-specific semantic con-
text and utilize another GRU to track the evolution
of global emotional states. CESTa (Wang et al.,
2020) adopts the Conditional Random Field (CRF)
to learn the global emotional consistency in the
conversation. IEIN (Lu et al., 2020) proposes to
model the global emotion interaction with emotion
embeddings and an RNN-based iterative structure.
However, these works only consider modeling the
global emotional evolution, while ignoring the im-
portant speaker-aware emotional dependencies re-
lated to emotional inertia and emotional stimulus.

According to psychological and behavioral stud-
ies, emotional inertia and emotional stimulus are
important factors that affect the speaker’s emo-
tional state in dialogues. Emotional inertia (Kup-
pens et al., 2010; Koval et al., 2015) means that
in the absence of sufficient external stimulus, the
speaker tends to keep the emotional state un-
changed within a dialogue. Emotional stimulus
refers to another phenomenon in which a subject’s
emotion can be aroused and affected by exter-
nal events which can be words, facial expression,
speech intonation or even emotions of the inter-
locutor (Brosch et al., 2010). Figure 1 illustrates
the emotional inertia and emotional stimulus in
an example. In this dialogue, the female speaker
feels sad at the beginning because of some mis-
understanding, but as the misunderstanding is re-
solved, both speakers appear to be happy. In the
first two turns of the dialogue, the emotional states
of the male and female speakers remain unchanged
(emotional inertia). However, after listening to the
explanation, the male speaker shows happiness, and
his emotional change stimulates the female speaker
to become happy as well (emotional stimulus). We
simply call such emotional inertia and emotional
stimulus information as the emotional interaction
context in the dialogue, which measures how a per-
son’s emotion affects his own or his interlocutor’s
emotion.

In this paper, we propose a novel Dialogue Emo-
tion Interaction Network(DialogueEIN), to explic-
itly model the emotional interaction context in
conversations for ERC tasks. DialogueEIN mainly
consists of a semantic interaction network and an
emotional interaction network, where the former
aims to capture dialog-level semantic context rep-
resentations based on a transformer structure, and
the latter aims to model the emotional interaction

context including intra-speaker emotional inertia,
inter-speaker emotional stimulus, global- and local
emotional interactions through four corresponding
types of dialog-aware self-attention mechanism re-
spectively. We carry out experiments on four ERC
benchmark datasets, including IEMOCAP, MELD,
EmoryNLP and DailyDialog. The experiment re-
sults show that our proposed DialogueEIN achieves
state-of-the-art performance on all datasets, which
indicates that emotional interactions (such as emo-
tional inertia and emotional stimulus) are important
for tracking speakers’ emotional evolution in con-
versations.

The main contributions of this work include:

• We propose the Dialogue Emotion Interaction
Network DialogueEIN, to explicitly model the
emotional interaction context for ERC tasks.

• We design an Emotional Interaction Network
for modeling the self emotional inertia, inter-
locutor’s emotional stimulus, global and local
evolution of emotional states.

• Extensive experimental results show that our
proposed DialogueEIN achieves the state-of-
the-art performance on different benchmark
datasets.

2 Related Work

Emotion Recognition in Conversation
Emotion recognition in conversation has at-

tracted much attention in recent years. There have
emerged a number of public emotional dialogue
datasets, including IEMOCAP (Busso et al., 2008),
MELD (Poria et al., 2018), EmoryNLP (Zahiri and
Choi, 2018), DailyDialog (Li et al., 2017) etc.

Different approaches for the ERC task have been
proposed as well. Most recent works focus on mod-
eling contextual information in the conversation
with different structures. C-LSTM (Poria et al.,
2017) uses an simple LSTM-based model to en-
code the global context in a conversation. CMN
(Hazarika et al., 2018b) and ICON (Hazarika et al.,
2018a) propose structures based on the gated re-
current unit (GRU) and the memory network to
capture both global and speaker-specific context in-
formation. DialogueGCN (Ghosal et al.) constructs
a graph regarding to both temporal and speaker-
aware relationship in the dialogue and model the
semantic interactions with a relation-aware graph-
based network. DAG-ERC (Shen et al., 2021)
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constructs a directed acyclic graph and utilizes a
graph-based network to model the information flow
in the conversation chronologically, which com-
bine the strengths of conventional graph-based and
recurrence-based neural models. DialogXL (Shen
et al., 2020) uses an XLNet-based structure, im-
proves memory mechanisms of XLNet and pro-
poses four kinds of dialog-aware attention mech-
anism to encode corresponding semantic context
information in the dialogue.

Above mentioned approaches only focus on
modeling the semantic context in the conversation,
while some other works consider the emotional
context and model the global evolution of emo-
tion states with different methods. DialogueRNN
(Majumder et al., 2019) employs several GRUs to
track the evolution of different states in the dia-
logue, including the global emotional state. COS-
MIC (Ghosal et al., 2020) uses a similar structure
to track more kinds of dialog-aware states and in-
troduces external commonsense knowledge to im-
prove the performance. CESTa (Wang et al., 2020)
introduces Conditional Random Field (CRF) to
learn the emotional consistency in the dialogue.
IEIN (Lu et al., 2020) utilizes emotion embeddings
and an RNN-based interactive structure to model
the global emotion interaction in the conversation.

Our framework is closely related to DialogXL
and IEIN, where DialogXL proposes to model
speaker-aware context information with attention
mechanism, and IEIN proposes to model global
emotion interaction based on emotion embeddings.
DialogueEIN differs from them from the following
two aspects: (1) DialogXL uses speaker-aware at-
tention to model the fine-grained word-level seman-
tic interactions, whereas DialogueEIN focuses on
modeling the utterance-level speaker-aware emo-
tional interactions, which explicitly tracks the emo-
tion evolution in the conversation rather than the se-
mantic context. (2) IEIN only considers the global
emotional dependencies in the conversation, but ig-
nores the emotional inertia of speakers themselves
and the emotional stimulus between interlocutors,
whereas DialogueEIN models these two types of
speaker-aware emotional interaction explicitly.

Label Embeddings
The label embeddings are embedding vectors

which are trained to learn the latent knowledge
about the label categories in classification tasks.
They can be considered as the representations of la-
bel categories, where each label embedding vector

represents one output label category.
The idea of label embeddings has been widely

used in various tasks, including multi-class clas-
sification (Bengio et al., 2010), zero-short learn-
ing (Larochelle et al., 2008) , text classification
(Tang et al., 2015) and sequence labeling (Cui and
Zhang, 2019). Cui and Zhang (2019) employs label
embeddings and builds a hierarchical label atten-
tion network to model the dependencies between
output labels for sequence labeling task. Lu et al.
(2020) introduces the idea of label embeddings into
ERC task to learn the knowledge about emotion
labels and model the global emotional interaction.
Inspired by these works, we employ label embed-
dings in our proposed DialogueEIN as well to rep-
resent different emotion categories, which is called
emotion embeddings.

3 Method

3.1 Problem Definition

A dialogue can be defined as a sequence of utter-
ances, {u1, u2, ..., uN}, where N is the total num-
ber of utterances. Each utterance uj contains nj
words, {wj1, wj2, ..., wjnj}, and uttered by speaker
p(uj), where p is a mapping from utterances to
corresponding speakers. Each utterance is labeled
with a type of emotion yj , the task is to predict the
emotion label of each utterance in a dialogue.

Figure 2 illustrates the overall framework of our
proposed DialogueEIN, which consists of four key
components: Utterance-level Feature Extraction,
Semantic Interaction Network, Emotional Interac-
tion Network and Emotion Classification.

3.2 Utterance-level Feature Extraction

We employ a pre-trained RoBERTa (Liu et al.,
2019) model to extract utterance-level features.
Each utterance uj is padded with a special token
[CLS] and fed into the RoBERTa model:

Xj = RoBERTa([CLS], wj1, w
j
2, ..., w

j
nj
) (1)

where Xj ∈ R(nj+1)×db is the output of the
last hidden layer of the RoBERTa model and db is
the hidden size of the RoBERTa model. We take
the hidden state at the [CLS] position of Xj and
pass it into a linear layer to get the utterance-level
feature representation of uj , which is formulated
as follows:

xj =WuXj,0 + bu (2)
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Figure 2: Framework illustration of DialogueEIN, which consists of four key components: Utterance-level Feature
Extraction, Semantic Interaction Network, Emotional Interaction Network, Emotion Classification.

where Wu ∈ Rdb×du , bu ∈ Rdu are learnable
parameters and du is the dimension of utterance-
level feature representations. xj is the utterance-
level feature representation of uj .

3.3 Semantic Interaction Network
Since the semantics of each utterance is naturally
influenced by other utterances in the dialogue, it
is necessary to capture global semantic interaction
context of a dialogue. Specifically, in the seman-
tic interaction network, we employ a Transformer
(Vaswani et al., 2017) encoder to model semantic
interaction in a dialogue.

Given the feature representations of utterances in
the dialogue [x1, x2, ..., xN ], they are added with a
Sinusoidal Position Encoding and then fed into the
Transformer encoder. The overall semantic interac-
tion network can be formulated as follows:

h0 = [x1, x2, ..., xN ] + PosEnc(0 : N) (3)

hs = TRMEncoder(h0) (4)

where TRMEncoder denotes the transformer en-
coder model. hs is the semantic feature represen-
tation of the dialogue, which contains the global
semantic context information in the dialogue.

3.4 Emotional Interaction Network
As mentioned in the introduction, we believe that
emotional interaction context, including emotional
inertia and emotional stimulus, can benefit the emo-
tion recognition in conversation. We propose an
Emotional Interaction Network to model this kind

of emotional interaction context, which contains an
Emotional Tendency Encoder and an Emotional In-
teraction Module. Specifically, the Emotional Ten-
dency Encoder can encode the emotional repre-
sentation of each utterance, which reflects its emo-
tional tendency. Based on these emotional represen-
tations, the Emotional Interaction Module models
the emotional interactions.

3.4.1 Emotional Tendency Encoder
Inspired by Cui and Zhang (2019) and (Lu et al.,
2020), we use emotion embeddings to represent
candidate emotion categories and employ a multi-
head attention module to capture the emotional
tendency of each utterance.

Given the set of candidate emotion labels L =
{l1, l2, ..., l|L|}, each label is represented with an
embedding:

ei = El(li) (5)

where El denotes the emotion embedding
lookup table and ei denotes the embedding of the
i-th emotion category. As is shown in the struc-
ture of Emotional Embeddings in Figure 2, the cir-
cles with different colors represent the embeddings
of different emotion categories (e.g. happy, sad,
anger). These embeddings are initialized randomly
and tuned during the model training to learn the
latent knowledge about corresponding emotion cat-
egories, and can be regarded as the representations
of them. The dimension of emotion embeddings is
the same as the utterance-level representation, i.e.,
ei ∈ Rdu .
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Given the semantic representation hs and emo-
tion embeddings e = [e1, e2, ..., e|L|], a multi-head
attention module is applied to them, with hs as the
query and e as the key and the value in the attention
mechanism. It is formulated as:

he = MHA(hs, e, e) + hs (6)

Specifically, the multi-head attention module is
formulated as:

A(Q,K, V,M) = softmax(
QKT

√
dh

+M)V (7)

MHA(Q,K, V,M) = Concat(head1, ..., headn)WO (8)

headi = A(QWQ
i ,KW

K
i , V W

V
i ,M) (9)

where dh denotes the dimension of each at-
tention head, n denotes the number of atten-
tion heads, M denotes an attention mask matrix
whose elements take value from {0,−∞}, and
WQ
i ,W

K
i ,W

V
i ,W

O are trainable parameters. The
mask matrix M is set to a null matrix by default.

Since he is the result of linear transformations
and linear combinations of emotion representations,
it contains the explicit emotional information re-
garding to each utterance and can indicate the emo-
tional tendencies of utterances explicitly. In addi-
tion, a residual connection from hs is added to he,
which means he can not only represent the emo-
tional tendency of each utterance, but also carry the
semantic information.

3.4.2 Emotional Interaction Module
We propose an attention-based module, Emotional
Interaction Module, to model the emotional inter-
actions in the conversation. Inspired by (Shen et al.,
2020), in order to capture different dependencies
and interactions in the conversation, we apply dif-
ferent attention masks to the Emotional Interaction
Module.

Specifically, there are four types of attention
mechanism are employed, including intra-speaker,
inter-speaker, global and local attention, which
model the emotional inertia of speakers, the emo-
tional stimulus between interlocutors, the global
and local emotional evolution in the dialogue, re-
spectively. The emotional interaction module is
formulated as follows:

hei = Concat{MHAEI(he, he, he,m)|m ∈M} (10)

ha = LayerNorm(heiW a + ba + hs) (11)

where M={mglobal,mlocal,mintra,minter} de-
notes global, local, intra-speaker and inter-speaker

attention mask respectively, MHAEI denotes a
multi-head attention module, W a and ba are train-
able parameters.

The formulations and introductions of the four
types of self attention masks are shown as follows:

(1) Global Attention Mask: It works the same as
the original self-attention mechanism, where
each utterance attends to all the utterances in
the conversation. Global attention mask is for-
mulated as follows:

mglobal
i,j = 0 (12)

(2) Local Attention Mask: Each utterance attends
to the adjacent utterances within a local win-
dow around it. Local attention mask is formu-
lated as follows:

mlocal
i,j =

{
0, if |i− j| < w/2

−∞, otherwise
(13)

where w is the window size.

(3) Intra-speaker Attention Mask: Each utterance
from one speaker only attends to the utterances
from the same speaker. Intra-speaker attention
mechanism aggregates the emotional state in-
formation from each speaker themselves in the
dialogue, which models the emotional inertia
of them. Intra-speaker attention mask is formu-
lated as follows:

mintra
i,j =

{
0, if p(ui) = p(uj)

−∞, otherwise
(14)

(4) Inter-speaker Attention Mask: Each utterance
from one speaker only attends to the utter-
ances from their interlocutors, contrary to intra-
speaker attention. For each speaker’s utterance,
Inter-speaker attention mechanism aggregates
the emotional state information from the in-
terlocutors in the dialogue, which models the
emotional stimulus between the speaker and
the interlocutors. Inter-speaker attention mask
can be formulated as follows:

minter
i,j =

{
0, if p(ui) ̸= p(uj) or i = j

−∞, otherwise
(15)
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Dataset
dialogues utterances

train val test train val test
IEMOCAP 100 20 31 4830 980 1623

MELD 1038 114 280 9989 1109 2610
EmoryNLP 713 99 85 9934 1344 1328
DailyDialog 11118 1000 1000 87170 8069 7740

Table 1: Data distribution of the four datasets.

3.5 Emotion Classification

In order to match the emotion embeddings with
corresponding emotion categories, we employ an
attention module as the classifier. Given the final
representation of utterances he and emotion embed-
dings e = [e1, e2, ..., e|L|], the emotion classifier is
formulated as follows:

Pj = softmax(eTW cha) (16)
ŷj = argmax(P1:|L|,j) (17)

where Pj ∈ R|L|×N is the attention weights,
W c is the learnable parameter and ŷj is the predic-
tion of the j-th utterance. We regard the attention
weights Pj as the predicted probability distribution
of emotion labels and directly make predictions
based on it. Thus, an utterance with higher attention
weight to the emotion embedding vector el is more
likely to be classified as emotion label l, which
ensures the matching of emotion embeddings and
emotion categories.

Cross-entropy loss is used for model training:

L = − 1∑T
k=1N(k)

T∑

i=1

N(i)∑

j=1

logPi,j [yi,j ] (18)

where T is the total number of dialogues,N(i) is
the number of utterances in dialogue i, yi,j and Pi,j
denote the expected emotion label and the probabil-
ity distribution of predicted emotion labels of the
j-th utterance in dialogue i respectively.

4 Experiments

4.1 Datasets

We carry out evaluations on four ERC benchmark
datasets. The distribution of samples in training set,
validation set and testing set of these datasets is
presented in Table 1. Since IEMOCAP dataset has
no validation set, following Shen et al. (2020), we
retain the last 20 dialogues in the training set as
validation.

IEMOCAP: The dataset (Busso et al., 2008) con-
tains 151 two-way conversations from ten speakers
in a normal or improvisational way given certain
scripts. Each utterance is annotated with an emo-
tion label from six classes, including happy, sad,
neutral, angry, excited and frustrated.
MELD: The dataset (Poria et al., 2018) contains
multi-modal and multi-speaker conversational dia-
logues from the TV show Friends. There are usu-
ally three or more speakers in a single conversation.
Each utterance is annotated with an emotion label
from seven classes, including anger, disgust, fear,
joy, neutral, sadness and surprise.
EmoryNLP: The dataset (Zahiri and Choi, 2018) is
another corpus collected from the TV show Friends,
which also usually contains more than two speak-
ers in a conversation. Each utterance is annotated
with an emotion label from seven classes, including
neutral, sad, mad, scared, powerful, peaceful and
joyful.
DailyDialog: The dataset (Li et al., 2017) collects
human-written dyadic conversations from English
learning websites with concentrated topics and reg-
ulated grammar. Each utterance is annotated with
an emotion label from seven classes, including
anger, disgust, fear, happiness, sadness, surprise
and other.

4.2 Implementation Details

We initialize the utterance-level feature extrac-
tor with pre-trained RoBERTa models. Specifi-
cally, RoBERTa-large model is utilized on MELD,
EmoryNLP and DailyDialog datasets. Since the
amount of data contained in IEMOCAP dataset
is relatively small, we also use a smaller model,
RoBERTa-base, on IEMOCAP dataset and only
fine-tune the last 4 layers of it during training.
We employ an AdamW optimizer (Loshchilov and
Hutter, 2018) and a linear learning rate sched-
uler for model training. The hyper-parameters are
tuned on validation set, and two sets of hyper-
parameters are used for IEMOCAP and the other
three datasets respectively. Specifically, the learn-
ing rate of RoBERTa is {2e-5, 5e-6}, the learn-
ing rate of the other modules is {1e-4, 5e-5},
the dropout rate is {0.1, 0.1}, the dimension of
utterance-level features is {384, 512}, the dimen-
sion of feedforward layers is {1024, 2048}, the
number of attention heads is {6, 8}, the layers of
TransformerEncoder is {4, 4}, the local window
size is {15, 5} respectively. The results reported in
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the following experiments are based on the average
score of 10 random runs.

4.3 Comparison with State-of-the-art
Methods

We compare our proposed DialogueEIN model to
the following state-of-the-art methods. KET (Wang
et al., 2020) uses a transformer-based structure and
external commonsense knowledge to capture the se-
mantic context. DialogueGCN (Ghosal et al.) uses
graph-based networks to capture conversational de-
pendencies between utterances in dialogues. Dia-
logueGCN+RoBERTa means using features based
on a more efficient feature extractor RoBERTa
instead of GloVe features in DialogueGCN. Di-
alogXL (Shen et al., 2020) applies a strong pre-
trained language model XLNet (Yang et al., 2019)
and proposes a dialog-aware self-attention method
for modeling the semantic context information.
DAG-ERC (Shen et al., 2021) constructs a directed
acyclic graph and DAGNN (Thost and Chen, 2021)
to model the temporal and speaker-aware seman-
tic context. DialogueRNN (Majumder et al., 2019)
uses several distinct GRUs to model the speaker-
specific and global semantic context and another
GRU to model the global emotional interaction.
It is the first work considering emotional interac-
tion for ERC. DialogueRNN+RoBERTa means
using features based on a more efficient feature
extractor RoBERTa instead of the n-gram features
in DialogueRNN. COSMIC (Ghosal et al., 2020)
proposes a GRU-based structure and uses external
commonsense knowledge to capture the seman-
tic context and another GRU to model the global
emotional interaction. CESTa (Wang et al., 2020)
proposes a Transformer- and LSTM-based struc-
ture to capture the semantic context and leverages
conditional random field (CRF) to model global
emotional interaction in conversations.

Table 2 presents the experimental results on
the IEMOCAP, MELD, EmoryNLP and DailyDi-
alog four benchmark datasets. DialogueEIN sig-
nificantly outperforms all other state-of-the-art
methods and achieves a new state-of-the-art per-
formance on the IEMOCAP and MELD datasets,
which demonstrates its effectiveness of modeling
the semantic and emotional context in the dialogue.
Please note that the methods in the second block
of Table 2 consider global emotional interaction
as well. DialogueEIN clearly outperforming these
methods indicates that our proposed emotional in-

IEMOCAP MELD EmoryNLP DailyDialog
Avg(w) Avg(w) Avg(w) Avg(micro)

KET 59.56 58.18 33.95 53.37
DialogueGCN 64.18 58.10 - -
+RoBERTa 64.91 63.02 38.10 57.52
DialogXL 65.94 62.41 34.73 54.93
DAG-ERC 68.03 63.65 39.02 59.33
DialogueRNN 62.75 57.03 - -
+RoBERTa 64.76 63.61 37.44 57.32
COSMIC 65.25 65.21 38.11 58.48
CESTa 67.10 58.36 - 63.12
DialogueEIN(Ours) 68.93 65.37 38.92 62.58

Table 2: ERC performance of different models on
four datasets. Micro average F1-score (Avg(micro)) is
used on DailyDialog, with the neutral labels excluded.
Weighted average F1-score (Avg(w)) is used on other
three datasets.

IEMOCAP MELD
DialogueEIN 68.93 65.37
- intra-speaker attention 68.63 (0.30↓) 64.89 (0.48↓)
- inter-speaker attention 68.43 (0.40↓) 65.10 (0.27↓)
- intra-&inter-speaker attention 67.36 (1.57↓) 64.84 (0.51↓)
- global&local attention 67.71 (1.22↓) 64.70 (0.67↓)
- Emotional Tendency Encoder 67.68 (1.25↓) 64.85 (0.52↓)
- Emotional Interaction Network 66.04 (2.89↓) 64.59 (0.78↓)

Table 3: Ablation Study of DialogueEIN on IEMOCAP
and MELD datasets.

teraction network with four different emotional in-
teractions can better capture the emotional context.
DialogueEIN achieves competitive performance
with DAG-ERC on EmoryNLP, which may relate
to the fact that dialogues in EmoryNLP are short
(3 to 5 utterances on average) and have fewer vari-
ations in emotional states, therefore, it is simpler
to model by traditional semantic modeling. Ad-
ditionally, DialogueEIN performs slightly worse
than CESTa on DailyDialog, mainly because the
dialogues in DailyDialog are short and there are
more than 80% of "neutral" emotional states in the
dataset.

4.4 Ablation of DialogueEIN

We conduct experiments to ablate the contribu-
tions of different components in Emotional Interac-
tion Network, including global, local, intra-speaker,
inter-speaker emotional interactions and Emotional
Tendency Encoder. The results are shown in Table
3. We can observe that the performance declines
obviously when removing each or part of these
emotional interactions, which shows that the four
emotional interactions are beneficial to ERC. In
addition, when the Emotional Tendency Encoder
is removed, Emotional Interaction Network would
lose the ability to model the emotional context in
the conversation, and result in modeling the inter-

690



IEMOCAP MELD
1 RoBERTa 63.38 62.88
2 +TRM 66.04 64.59
3 +TRM&Attentions 67.55 64.95
4 +TRM&CRF 67.11 64.62
5 +TRM&Attentions&CRF 67.76 64.69
6 DialogueEIN 68.93 65.37

Table 4: Comparasion with RoBERTa-based baselines
on IEMOCAP and MELD datasets. We adjust the num-
ber of transformer layers so that these models have about
the same number of parameters with DialogueEIN.

actions only based on semantic context. The de-
cline in performance proves that the modeling of
emotional context plays an important role in Dia-
logueEIN. Especially, removing the Emotional In-
teraction Network leads to the worst performance
in Table 3. Additionally, the results show that the
influence of the Emotional Interaction Network
on IEMOCAP and MELD is different (2.9 ↓ vs
0.78 ↓), which may be related to the long context
(50 utterances per dialogue on average) and the
complex emotional evolution of the dialogue in
IEMOCAP. It indicates that our proposed Emo-
tional Interaction Network can model long and
complex dialogues better.

4.5 Comparison with RoBERTa-based
Baselines

We adopt a pre-trained language model, RoBERTa,
as the utterance-level feature extractor in Dia-
logueEIN. In order to prove that the improve-
ment of DialogueEIN does not come from the in-
crease in the number of parameters and the en-
hancement of the feature extractor, we propose
some RoBERTa-based baselines for comparison:
(1) RoBERTa: concatenating utterances and feed-
ing them into RoBERTa. (2) RoBERTa+TRM:
using RoBERTa to extract utterance representa-
tions, and feeding them into a transformer en-
coder. (3) RoBERTa+TRM+Attentions: applying
dialog-aware attention masks to the transformer
encoder. (4) RoBERTa+TRM+CRF: following
CESTa, adding a CRF layer after the classifier to
model the emotional consistency in the dialogue.
(5) RoBERTa+TRM+Attentions+CRF: further
adding dialog-aware attentions into baseline (4).

The results are shown in Table 4. DialogueEIN
outperforms all the above mentioned baselines.
Comparing row 6 to row 1, the large improve-
ment of DialogueEIN proves that it exploits the
full potential of RoBERTa. Comparing row 6 to
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② Hello? Hello? What? Wrong number.

Female Male
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Figure 3: A case study based on IEMOCAP dataset.

row 2 and 3, with comparable number of param-
eters, DialogueEIN outperforms the simple hier-
archical transformer structure and this structure
with dialog-aware attentions which can model the
speaker-specific semantic context. It demonstrates
the importance of emotional interaction context
modeling in DialogueEIN. Comparing row 6 to
row 4 and 5, the results show that CRF can im-
prove the performance to a certain degree in gen-
eral, especially on IEMOCAP dataset. However,
DialogueEIN still outperforms these models, which
prove that Emotional Interaction Network is better
than CRF in modeling emotional context.

4.6 Case Study

Figure 3 shows a conversation from IEMOCAP
dataset, and the emotional interaction modeled in
DialogueEIN. We extract the attention scores of
Emotional Tendency Encoder on these utterances,
and use the emotion with maximal score to rep-
resent the emotional tendency of each utterance.
We also provide the final predictions of these utter-
ances, which are correct predictions as the ground
truth. They can represent the emotion prediction of
these utterances in DialogueEIN before and after
emotional interaction, respectively. As shown in
Figure 3, the emotion tendencies before emotional
interaction of the 3rd, 5th and 7th utterances are
different from the final prediction. We illustrate
the process that DialogueEIN corrects these errors
according to emotional interactions.

(1) The literal meaning of the 3rd utterance can be
considered as angry or excited, and the model
regards is as angry before emotional interac-
tion. However, considering the emotional stim-
ulus from the 2nd utterance which is identified
as excited, it is more rational to identify it as
excited instead of angry.
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(2) The 5th utterance contains a certain positive
emotion literally, but it’s hard to distinguish
between happy or excited. However, the female
speaker changes to happy at the 4th utterance,
and it stimulates the male speaker’s emotion to
be happy at the 5th utterance.

(3) The 7th utterance has no obvious emotional
tendency literally, and it is regarded as neu-
tral before emotional interaction. But when
the emotion of the 5th utterance is correctly
recognized as happy and there is no external
emotional stimulus from the 6th utterance, the
7th utterance is finally identified as happy ac-
cording to the emotional inertia.

The above case indicates that DialogueEIN can
make more accurate emotion prediction by model-
ing emotional interaction.

5 Conclusion

In this work, we propose a novel emotional interac-
tion Network (DialogueEIN) for Emotion Recogni-
tion in Conversation (ERC). DialogueEIN explic-
itly models emotional inertia, emotional stimulus in
a conversation, which most previous works have ne-
glected. DialogueEIN can capture the emotion ten-
dencies of each utterance and model the emotional
dependencies based on them. An attention-based
Emotional Interaction Network is proposed to mea-
sure the emotional interactions, and four types of
dialog-aware attentions are employed to simulate
emotional inertia, emotional stimulus, global and
local evolution of emotional states in the dialogue
respectively. Extensive experiments are carried
out on IEMOCAP, MELD, EmoryNLP and Dai-
lyDialog benchmark datasets. DialogueEIN signifi-
cantly outperforms other state-of-the-art models on
IEMOCAP and MELD datasets, and achieves com-
petitive performance on all four datasets, which
proves the effectiveness of the proposed model.
Moreover, several ablation studies further explore
the structure of DialogueEIN and interpret the use
of emotional interaction, which also suggests possi-
ble future research directions, such as fusing multi-
modality to capture emotional stimulus information
more accurately, etc.
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Abstract

Health coaching helps patients identify and
accomplish lifestyle-related goals, effectively
improving the control of chronic diseases and
mitigating mental health conditions. However,
health coaching is cost-prohibitive due to its
highly personalized and labor-intensive nature.
In this paper, we propose to build a dialogue
system that converses with the patients, helps
them create and accomplish specific goals, and
can address their emotions with empathy. How-
ever, building such a system is challenging
since real-world health coaching datasets are
limited and empathy is subtle. Thus, we pro-
pose a modularized health coaching dialogue
system with simplified NLU and NLG frame-
works combined with mechanism-conditioned
empathetic response generation. Through au-
tomatic and human evaluation, we show that
our system generates more empathetic, fluent,
and coherent responses and outperforms the
state-of-the-art in NLU tasks while requiring
less annotation. We view our approach as a
key step towards building automated and more
accessible health coaching systems.

1 Introduction

Health coaching is a patient-centered, motivational
interviewing-based clinical practice that focuses
on helping patients identify and accomplish per-
sonalized, lifestyle-related goals to improve health
behaviors. It has been effective in improving the
control of chronic conditions such as diabetes and
cardiovascular disease and mitigating mental health
conditions such as anxiety and depression (Butter-
worth et al., 2006; Ghorob, 2013; Kivelä et al.,
2014; Thom et al., 2016). Health coaching can be
particularly beneficial to low-socioeconomic status
(SES) populations who disproportionately suffer
physical and mental disease burdens (Thackeray
et al., 2004; Kangovi et al., 2014). Yet, it is invari-
ably cost-prohibitive for these populations due to
its highly personalized and labor-intensive nature.

I want to do 3000 steps.
Virtual 

Assistant 

Hi [NAME], what would you like your 
goal to be this week?

Great! What days do you want to 
reach 3000 steps?

Maybe Monday and Wednesday
 for right now…

Okay, can you think of anything that might
make it hard to reach your goal?

Goal-Setting Stage

Patient 

Empathetic 
Generation

    I was taken to the ER by ambulance…

You were walking to the ER yesterday.
Do you want to do the same today?

I’m sorry to hear that. I hope 
everything is okay. Feel better!

Hi how was your goal going yesterday?

Patient 

Goal-Implementation Stage

Virtual 
Assistant 

…

…

Figure 1: A health coaching dialogue scenario in our di-
alogue system. It starts with a goal-setting stage where
the coach discusses a realistic goal with the patient.
After the goal is settled, the coach follows up on the
patient’s progress and maintains patient engagement.
Understanding the patient’s emotion cues and respond-
ing empathetically is also crucial in such a scenario; the
struck-out response, generated by a naïve sequence-to-
sequence model, is inappropriate without the capability
of understanding and modeling empathy.

Facilitating conversations in healthcare settings
between the participants via language techniques
and text messages (Aguilera and Muñoz, 2011;
Fitzpatrick et al., 2017) has the potential to improve
the efficacy of health coaching while reducing the
cost. However, the interactions between the dia-
logue systems and patients are either scripted or
with limited natural language understanding (NLU)
or generation (NLG) capabilities (Kocielnik et al.,
2018; Chaix et al., 2020; Mohan et al., 2020). In
our previous work Gupta et al. (2020a,b, 2021), we
collected real-world health coaching conversation
datasets and focused on the NLU components of
the dialogue. However, no existing health coaching
dialogue system supports natural language conver-
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sations between the patient and a coach agent.

In this paper, we propose to build a dialogue
system that converses with patients and helps them
create and accomplish specific goals for physical
activities based on the health coaching dataset we
previously collected (Gupta et al., 2020b). We want
the system to emulate the health coaching process,
which starts with a goal-setting stage where the
coach discusses creating a S.M.A.R.T goal with
the patient, namely a goal that is specific, measur-
able, achievable, relevant, and time-bound (Doran,
1981). Once the goal is settled, the coach agent
would follow up on the patient’s progress and main-
tain patient engagement. In addition, we focus on
developing the system to understand and address
the patient’s emotions and respond empathetically,
which is crucial for better procedure outcomes in
healthcare settings (Levinson et al., 2000; Mou-
datsou et al., 2020). A health coaching dialogue
example is shown in Figure 1.

Building such a dialogue system is challenging:
First, the real-world health coaching dataset is lim-
ited in size and annotation, which restricts not only
end-to-end but also modularized approaches, espe-
cially with no dialogue states annotated. Additional
annotation is also resource-intensive. Second, gen-
erating empathetic responses is subtle, which may
require incorporating external empathetic knowl-
edge, since cases of empathetic responses in our
health coaching dataset are rare.

To address these challenges, we propose a mod-
ularized task-oriented health coaching dialogue
system with a simplified architecture that requires
fewer annotations. The system contains an NLU
module, an NLGhc module, and an NLGemp mod-
ule. The NLU module aims to keep track of the
goal attributes as simplified belief states. The
NLGhc module takes as input the current dialogue
context, the belief states, and the coaching stage
to generate coaching utterances. Finally, for the
NLGemp module, we build an emotion cue detector
and mechanism-conditioned empathy generator to
facilitate empathetic response generation.

To evaluate our approach, we combine automatic
evaluation with expert-based human evaluation.
Our experimental results show that our NLU mod-
ule outperforms the state-of-the-art (Gupta et al.,
2020a,b, 2021) by > 10% in F1-score in the slot-
filling and > 7% in semantic frame correctness
in the offline goal attributes tracking task, which
also enables updating goal information online at

every dialogue turn. Moreover, the experiments
demonstrate that our dialogue generation achieved
best performance compared to baseline methods in
terms of coherence, fluency, and empathy. Finally,
through a pilot human evaluation, our model’s gen-
eration is preferred by the health coaches as con-
cerns coherence and empathy.

The contributions of this work are: (1) We pro-
pose to build an efficient modularized health coach-
ing dialogue system that helps patients create and
accomplish specific goals, with a simplified NLU
and NLG framework combined with mechanism-
conditioned empathetic response generation. (2)
Our system outperforms the state-of-the-art in NLU
tasks while significantly reducing the annotation
workload. (3) Through automatic and human evalu-
ation, we show our system generates more coherent
and empathetic responses, which can provide sug-
gestions for health coaches and improve coaching
efficiency.

2 Related Work

• Conversational Agents in Healthcare. Con-
versational agents have been explored to im-
prove the efficacy and scalability of the in-
teractions between healthcare professionals
and patients. For instance, chatbots in dif-
ferent healthcare settings, including chronic
disease monitoring (Chaix et al., 2020), cogni-
tive behavior therapy (Fitzpatrick et al., 2017),
and physical activity promotion (Mohan et al.,
2020; Kocielnik et al., 2018). However, they
are limited in natural language understand-
ing and generation capabilities. More so-
phisticated approaches have been proposed
in mental health counseling (Althoff et al.,
2016; Shen et al., 2020). In our previous work
Gupta et al. (2020a,b, 2021), we collected real-
world health coaching conversation datasets
and focused on the NLU components of the
dialogue which summarize weekly goals to
support health coaches.

• Task-Oriented Dialogue. Traditional task-
oriented dialogue systems are modularized
(Jokinen and McTear, 2009). They consist
of an NLU component for understanding the
user intent and recording the dialogue states
and an NLG component for policy manage-
ment and response generation (Williams et al.,
2016; Budzianowski et al., 2018; Mrkšić et al.,
2017; Wen et al., 2015). However, approaches
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have shifted towards end-to-end architectures
to reduce human effort and error propagation
between modules (Bordes et al., 2017; Wen
et al., 2017). Recently, training an end-to-
end system as a sequence prediction problem
leveraging the causal language models has de-
livered promising results (Hosseini-Asl et al.,
2020; Peng et al., 2021).

• Empathetic Data for Conversations. Empa-
thetic interaction is a key to better task out-
comes in conversations. Recently, empathetic
data and approaches have been proposed to
facilitate empathetic conversations in open-
domain and healthcare settings. Babytalk
(Hunter et al., 2008; Mahamood and Reiter,
2011) is an earlier system that summarizes
neonatal intensive care patient data for differ-
ent types of users, and provides affective cues
for the parents. Rashkin et al. (2019) proposed
an open-domain empathetic dialogue dataset
(ED), with each dialogue grounded in an emo-
tional context. Welivita et al. (2021) extended
from ED and proposed a large-scale silver-
standard empathetic dialogue data based on
movie scripts. Sharma et al. (2020, 2021a)
proposed an empathetic dataset in mental
health support settings, with the communica-
tion mechanisms and corresponding strength
of empathy annotated.

3 Health Coaching Dataset

We first briefly describe our dataset, that motivates
the approach that we are proposing; full details
can be found in Gupta et al. (2020a). We collected
two datasets of health coaching dialogues between
patients and coaches via text messages. Dataset 1
and 2 contain 28 and 30 patients, with each pa-
tient coached for four and eight weeks, respectively.
Each week the health coach converses with the pa-
tient to create a physical activity S.M.A.R.T. goal
and then follows up on the patient’s progress. The
two datasets contain 336 weeks of dialogues with
21.4 average turns per week.

We defined ten slots for the goal’s attributes
(types of activity, amount, time, days, location,
duration, and the confidence score for the activ-
ity) (the Appendix contains examples of all slots).
We used a stage-phase schema for additional turn-
level annotation describing how the health coach-
ing dialogue unfolds. We defined two stages: the
goal-setting stage and the goal-implementation

stage. Each stage includes a set of phases, such
as goal identification, negotiation, and follow-up.
Each turn can belong to a certain stage-phase
combination. Later, we added dialogue act an-
notations (Gupta et al., 2021), consisting of 12
domain-independent dialogue acts, following the
ISO-standard by Mezza et al. (2018).

Since dataset 1 was collected before dataset 2,
the manual annotation was developed on dataset 1,
and used to develop our NLU component, that was
then tested on dataset 2. Hence, dataset 1 is fully
annotated for slot-value spans, goals, stages and
phases. In dataset 2, only three patients are anno-
tated for slot-value spans and phases, and 15 weeks
for goals; the whole dataset is annotated for stages.
As far as dialogue acts are concerned, they are only
available for 15 weeks of dialogues in dataset 11.

4 Methods

In this section, we begin by first providing a brief
workflow of our proposed health coaching dialogue
system and then describing the model architecture
in details.

4.1 Health Coaching Dialogue System

A health coaching dialogue can be framed into
stages: (1) Starting with the goal-setting stage, the
coach helps the patient create a specific goal whose
attributes can be represented by a list of slot val-
ues2 (e.g., Activity = Walk; Amount = 3000 steps;
Days = Mon-Fri), which retains a task-oriented
nature. However, it is much more complex than
the prevailing task-oriented services, since (2) after
the goal is initialized, the coach needs to follow
up on the patient’s progress and maintain patient
engagement (e.g., checking in, sending reminders,
revising the goal, and providing encouragement on
patient): this is the goal implementation stage. A
health coaching dialogue contains multiple turns.
We denote the stage that the turn t belongs to as St.

Leveraging the task-oriented dialogue frame-
work, we use belief state Bt, a list of slot-value
pairs, to record the goal attributes in a turn t. An
NLU module is used to infer Bt by considering
the earlier patient utterances U<t, current patient
utterances Ut, and earlier system responses R<t as

1The datasets with annotations are available at https://
github.com/uic-nlp-lab/virtualcoachdata.

2We provide a complete list of slots and corresponding
examples in the Appendix.
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input to the module. Formally:

Bt = NLU([U0, R1, U1, R2, ..., Ut]) (1)

Bt summarizes the goal from the dialogue history
and will be used for conditional response genera-
tion and lexicalizing the generated response.

Then, given the dialogue context Ct in turn t,
consisting of the previous two turns [Rt−1,Ut−1],
the stage of the previous turn St−1, and Bt, we
build a sequence classifier to predict the stage St:

St = Seq2Labelhc([Ct, Bt, St−1]) (2)

Finally, a delexicalized response Rt is generated
via a Seq2Seq neural network given Ct, Bt, and St
concatenated as a single sequence:

Rt = Seq2Seqhc([Ct, Bt, St]) (3)

The response can be lexicalized into human read-
able text using the belief state Bt. Equations 2 and
3 constitute the NLGhc module, where we explore
replacing the fine-grained action prediction with
the coarse stage prediction as proximal dialogue
management.

Although NLGhc could learn limited empathetic
response patterns such as "sorry to hear that." from
the health coaching data, it does not retain prior em-
pathetic knowledge and explicitly model empathy.
However, showing a caring attitude and being em-
pathetic to patients’ emotional cues are crucial to
patient activation and engagement, leading to better
task outcomes. To facilitate the empathetic capa-
bility of the system, we build the NLGemp module,
where the empathetic response R̃t is generated con-
ditioned on the patient’s previous turn utterance
Ut−1 and communication mechanism signals M :

R̃t = Seq2Seqemp([Ut−1,M ]) (4)

We follow Sharma et al. (2020) and consider three
communication mechanisms for empathy: ‘Emo-
tional Reactions’, ‘Interpretations’, and ‘Explo-
rations’. Emotional reaction expresses direct emo-
tions (e.g., compassion) to show empathy, such as
"I would be very worried." Interpretation communi-
cates an understanding of the speaker’s experience,
such as "I know anxiety is scary." Exploration ex-
presses empathy by exploring the speaker’s feel-
ings, such as "What happened? How come?"
An empathetic response can be realized through
multiple communication mechanisms. Thus, M
contains one or more of the three special tokens

[EMOR], [INTERP], and [EXPLOR], represent-
ing the three communication mechanisms. We seek
to use the mechanism signals to control the style of
the generated empathetic response, making it flexi-
ble and appropriate for health coaching scenarios.

In addition, an emotion cue detector is built to
support empathetic generation. We predict the cur-
rent emotion signal Et given the patient’s previ-
ous utterance Ut−1. Then R̃t is generated when a
strong emotion cue is detected with the probability
of certain types of emotion greater than a prede-
fined threshold, i.e., p(Et|Ut−1) > τ , obtained
from development set performance.

The overall framework of our model is illustrated
in Figure 2.

4.2 Model Architectures
In this section, we describe the detailed model
architecture for each of the NLU, NLGhc, and
NLGemp module.

4.2.1 The NLU Module
The NLU module records the current state of the
slot values. It consists of a neural slot-filling model
that extracts the slot fillers from each utterance and
a carryover classifier to determine if the value of a
slot should be copied from the previous state.

Neural Slot-Filling A neural slot-filling model
maps the sentence representation to a sequence of
BIO labels (the beginning (B) and inside (I) of each
slot label, and outside (O) for others), often com-
bined with sentence-level classifications (e.g., do-
main, intent). Following Chen et al. (2019), we use
BERT (Devlin et al., 2019) as the model backbone,
the [CLS] token of the sentence for sentence-level
classification, and the final hidden state of the first
sub-token of each word at position n for BIO la-
beling. The network is trained by maximizing the
conditional probability:

p (yc,ys | x) = p (yc | x)
N∏

n=1

p (ysn | x) (5)

Where yc, ycn are softmax probabilities for sentence
labels and BIO labels of word n, with x being the
sequence of word tokens.

Carryover Classifier The carryover classifier de-
termines if the value of a slot should be copied
from the previous state or updated with the new in-
stance seen in the current utterance, which outputs
a binary value for each slot.
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Context Ct

Coach Rt-1

Patient Ut-1
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CarryOver
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Context Ct
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Response 
Generation/
Suggestion

Online
Goal Attributes Tracking
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Figure 2: The framework of our health coaching dialogue system. The NLU module consisting of the slot-filling
and carryover model reads the dialogue and infers belief state Bt. The NLGhc module takes as input the stage St−1,
belief state Bt, and context Ct to generate response Rt. The NLGemp handles the cases where empathy are required
and outputs empathetic response R̃t and emotion signal Et.

Following the work of Gao et al. (2019), we
developed our slot carryover classifier based on
the current dialogue context. Our proposed car-
ryover classifier, however, differs from Gao et al.
(2019), in terms of: (1) we design the classifier as
a separate model rather than a component in an
end-to-end belief state tracking architecture; (2) it
benefits from the results of the slot-filling model
and only makes a prediction when there is a colli-
sion between the existing value and the new for a
given slot. Such a design takes into account that:
(1) dialogue datasets in healthcare are limited in
size, making end-to-end training difficult; (2) these
datasets can also be limited in annotations. Our
model can facilitate annotation since the annota-
tors can work with the slot-filling model to only
examine the lines where the value collision occurs,
enabling more efficient labeling for belief states in
a carryover fashion.

We use BERT to encode the contexts and utilize
the hidden state associated with the [CLS] token
to represent the current context Ct and maximize
p(yt|Ct) via fine-tuning BERT with cross entropy
minimization:

ht = BERT(Ct)[CLS]

yt = Softmax(Wht + b)

where yt ∈ [0, 1]Ns , Ns is the number of slots.
During inference, the slot-filling model extracts

the slot fillers at each turn. The carryover classifier
determines if the value should be copied from the
previous state or updated with the new instance
given dialogue context when there is a value con-
flict. NLU enables an update for the belief state Bt
at each turn, i.e., providing online goal attributes
tracking.

4.2.2 The NLGhc Module
The dominant modularized approach for task-
oriented dialogue often consists of belief state track-

ing, dialogue policy, and language generation. It
requires dedicated modeling and annotations for
dialogue acts. However, annotating acts is resource-
intensive in healthcare settings.

An alternative is using stages, where each stage
restricts a set of possible actions in health coaching
dialogue and other healthcare conversations, such
as clinical motivational interviews and patient en-
counters. For example, in health coaching, sending
reminders and encouragement on progress can only
appear in the goal implementation stage when the
goal has already been created. Another example
is the SOAP (Subjective, Objective, Assessment,
and Plan) structure (Podder et al., 2021) of patient
encounters, in which discussing a patient’s chief
complaint occurs in the Subjective part, while di-
agnosis is discussed in the Assessment part.

Thus, we explore the possibility of using stages
that contain coarse and fuzzy act information to
guide dialogue generation instead of fine-grained
act annotations. Concretely, we use T5 (Raffel
et al., 2020) to jointly model Seq2Labelhc (cf.2)
and Seq2Seqhc (cf.3) for stage St prediction and
response Rt generation as a multi-task approach.
The input is a single sequence by concatenating
the local dialogue context, current belief state, and
stage tokens. For example, the input for Seq2Seqhc
is the concatenation of Ct, Bt, and St, separated by
delimiter tokens, which is mapped to the target re-
sponse sequence, as shown in Figure 3. The model
is encoder-decoder based, trained with a maximum
likelihood objective with a different prefix prepend-
ing to the input corresponding to each task.

4.2.3 The NLGemp Module
Empathetic Response Generation We fine-tune
GPT2 (Radford et al., 2019) for empathetic re-
sponse generation. At training time, we concate-
nate the user utterance, the corresponding empa-
thetic response, and the communication mecha-
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<|coach|> system utterance Rt-1    <|patient|> user utterance Ut-1 <|belief|> belief state tuples Bt <|stage|> St

 response Rt 

<|coach|> what would you like your goal to be for this coming week? <|patient|> let’s do 2000 steps 
<|belief|> activity walk amount 2000 steps <|stage|> goal-setting

“That sounds great! What days do you want to do?”

T5 Encoder-Decoder

 Dialogue Context Ct 

Figure 3: Model architecture of generating Rt in NLGhc. The context Ct, belief tokens Bt, and the predicted stage
St are concatenated as a single input sequence, training with a T5 encoder-decoder model.

nisms used in the response, separated by delimiter
tokens, as one single training sequence x. We
want GPT2 to learn to model the joint probability
p(x) by fine-tuning on empathetic data. During
inference time, the model takes as input the user
utterance and the communication mechanisms and
generates one token at a time for empathetic re-
sponse.

The following shows an example of such a train-
ing sequence:

<|bos|> [EMOR] I was so exhausted
yesterday. <|sep|> That’s understand-
able. Take some rest! <|eos|>

where <|bos|> and <|eos|> are the delimiters
for beginning of sequence and end of sequence,
[EMOR] stands for the communication mechanism
Emotional Reaction, and <|sep|> separates the
user utterance and empathetic response . During
inference, the model starts to generate tokens after
<|sep|>.

Emotional Cue Detection To support empa-
thetic response, we build a BERT-based multi-class
classifier to predict the emotion signals of the pa-
tient’s utterance. In this work, we use the soft-
max probability for the predicted label to deter-
mine if the empathetic response needs to be gener-
ated. However, the predicted emotion labels also
facilitate future sentiment analysis work in health
coaching dialogue.

5 Experiments

This section includes datasets description, evalua-
tion metrics, experimental results, and qualitative
analysis.

5.1 Dataset Details

We conducted our experiments on the following
benchmark datasets:

Health Coaching Datasets These are the
datasets we described earlier in Section 3. Fol-
lowing Gupta et al. (2020b), we use dataset 1 for
training/development and dataset 2 for testing for
both NLU and NLGhc to ensure comparability.

Data Augmentation for Slot-filling We only
consider the utterances that contain at least one
slot-value span for slot-filling. This results in
955:105:205 data points for training, development,
and testing. To alleviate data scarcity, we use a
naïve data augmentation method to synthesize train-
ing examples that (1) first randomly replaces the
value with one possible alternative for each slot;
(2) then rephrases the modified sentence with a
pre-trained paraphrase model3.

Empathetic Datasets We utilized two bench-
mark empathetic dialogue datasets: (i) EMPA-
THETICDIALOGUES (ED) (Rashkin et al., 2019)
and (ii) EPITOME. EMPATHETICDIALOGUES

(ED) is a open-domain empathetic dialogue dataset
containing 24,850 dialogues, with each dialogue
grounded in one of 32 emotional context (e.g.,
proud, apprehensive, confident, guilty). EPITOME
(Sharma et al., 2020) is an empathetic dataset in
mental health support settings. The dataset consists
of 3k posts annotated with respect to the commu-
nication mechanisms (Emotional Reaction, Explo-
ration, Interpretation) and level of empathy (from
0 to 2, representing no empathy, weak and strong
empathy, respectively) in each mechanism.

To facilitate empathetic generation conditioned
on the communication mechanisms, we first build a
weak multi-label classifier for predicting the types
of communication mechanisms based on the 3k
posts in Sharma et al. (2020) (achieving a hamming
loss (Tsoumakas and Katakis, 2007) of ∼0.16).
Then we apply the classifier on the ED dataset

3A fine-tuned PEGASUS (Zhang et al., 2020) on
PAWS (Zhang et al., 2019)
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to get communication mechanism labels for each
instance. We use their default train/dev/test split.
Finally, N = 64 empathetic cases in the health
coaching dataset are used for few-shot fine-tuning
the trained empathetic generation model.

5.2 Evaluation Metrics

Depending upon the task, we use the following
evaluation metrics:

1. Slot-filling: Precision, Recall, and F1-score.
2. Dialogue State (Goal Attribute) Tracking: par-

tial/complete match and goal correctness@k
following Gupta et al. (2020b):

Correctness@k: Computes the percentage
of correctness over all the predicted goals
of each week. If at least k attributes are
predicted correctly, the goal is regarded
as correct.

3. Dialogue Generation: BLEU (Papineni et al.,
2002), BertScore (Zhang et al., 2020), Per-
plexity (PPL), and Empathy Score.

Perplexity: We measure fluency as perplex-
ity (PPL) of the generated response using
a pre-trained GPT2 model that has not
been fine-tuned for this task, following
previous work (Ma et al., 2020; Sharma
et al., 2021b).

Empathy Score: We train a standard text re-
gression model based on BERT using the
response posts and corresponding level
of empathy scores in Sharma et al. (2020)
(achieving an RMSE of ∼0.57). We use
this model to measure the empathy in the
generated outputs.

For detailed descriptions of metrics, training,
including model parameters, selection, and supple-
mentary analysis, please see the Appendix.

System Slot R Slot P Slot F1 PAcc
Gupta et al. (2020b) 0.806 0.808 0.790 0.801
+Phase 0.899 0.837 0.867 0.779
+StartPhase 0.910 0.847 0.877 0.835
+StartPhase+Aug 0.926 0.879 0.902 0.817
Slot Only+Aug 0.904 0.876 0.890 -

Table 1: Evaluation on slot-filling with ablations. Aug:
using data augmentation; StartPhase: Jointly predicting
the phase of the sentence only if it is the beginning
sentence of the phase.

5.3 Results

5.3.1 Goal Attributes Tracking
Table 1 shows the performance of slot-filling and
phase prediction compared to the previous model.
Jointly predicting the phase of the sentence only if
it is at the beginning of the phase, combined with
data augmentation (+StartPhase+Aug), achieved
the best performance for slot-filling, outperform-
ing the state-of-the-art by 11.2% in F1. However,
modeling without phases suffices for slot-filling
while reducing the annotation cost. As such, we
adopt the no-joint model for downstream tasks. Our
experimental result also shows the carryover clas-
sifier achieved a F1-score of 0.88 using only the
dialogue context. We investigate whether dialogue
act and phase labels can improve carryover classi-
fier, however they barely contribute to the model
performance4.

In previous work, we extracted goals at two
critical points for each week to evaluate offline
goal tracking: one at the end of the goal-setting
stage (forward) and the other at the end of the goal-
implementation stage (backward). The forward and
backward goals can be different since the patient
may encounter barriers, and the goal can be revised
in the implementation stage. We also proposed
a rule-based approach to update the slot values,
which simply records the last mention of the value
for each slot except for certain conditions. In this
paper, we compared our model with previous work
and a combination of our slot-filling model with
the previous rule-based approach (our SF+Rule).
Table 2 shows the performance for goal attributes
tracking of our NLU module compared with pre-
vious work. For dataset 1 backward goals, our
SF+Rule achieved the best performance resulting
from more accurate slot-filling. We observe that in
dataset 1, the coach tends to summarize the goal to
the patients at the end of each week, which benefits
the rule-based approach. Nonetheless, our NLU
module outperforms previous work in all evalua-
tion metrics on dataset 1 forward and dataset 2; it
also enables goal tracking at each turn (online).

5.3.2 Dialogue Generation
Since our previous work did not include a genera-
tion model, we compare our dialogue generation
with three baselines: (1) Retrieval-based model.
We use BERT to encode the current belief state
and dialogue context as query hq, and encode the

4See Appendix for detailed results.
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Dataset 1 Backward Dataset 1 Forward Dataset 2
Complete Partial @k=10 @k=9 @k=8 Complete Partial @k=10 @k=9 @k=8 Complete Partial @k=10 @k=9 @k=8

Gupta et al. (2020b) 0.77 0.81 13.1 39.3 65.4 0.81 0.85 15.0 44.9 68.2 - - - - -
ourSF+Rule 0.808 0.858 31.6 42.1 63.2 0.831 0.863 21.7 69.6 73.9 0.767 0.787 13.6 18.2 40.9
ourNLU 0.792 0.825 15.8 36.8 63.2 0.838 0.869 21.7 69.6 78.3 0.8 0.813 13.6 27.3 63.6

Table 2: Evaluation on offline goal attributes tracking with complete/partial match and goal correctness@k.

Input Model Generated Response
Coach: What would you like your goal to be this week? Ours Sounds good, which days were in your mind?
Patient: I want to walk 30 min a day between 6am to 8am. IR And what days would you like to walk the track around neighborhood?

Seq2Seq How many days do you want to reach this week?
Coach: Good morning! How is your goal for this week going? Ours [EMOR] Oh no, I hope you are okay.
Patient: I’m sorry I didn’t go to work today I have a massive [EXPLOR] Oh geez, sorry to hear that. Are you feeling better?
migraine headache. [INTERP] I’ve had this experience before. Sometimes it really hits you.

IR Check your steps.
Seq2Seq Have you been busy with the migraine this week and how did it turn out?

Coach: Don’t forget to take a deep breath - breathing is important. Ours Don’t forget to take a deep breath - breathing is important.
Patient: You made me smile. Thanks. ✗ Repeat
Coach: Hi when you get a chance can you sync your fitbit? Ours That’s great news. I hope you don’t get into a long trip there.

I only see your steps since last Friday. Thanks. ✗ Focus
Patient: Sorry been in Texas, just made it back to Chicago.

Table 3: Qualitative examples of generated responses in empathetic and non-empathetic scenarios, combined with
error analysis.

Model BLEU (↑) PPL (↓) BertS F1 (↑) EmpS (↑)
IR 0.194 24.2 0.853 -0.179
Seq2Seq 0.242 16.26 0.863 +0.073

+Acts 0.235 16.2 0.861 -0.065
OURS 0.251 15.6 0.872 +0.256

Table 4: Evaluation on dialogue generation with au-
tomatic metrics. BLEU: Average of BLEU-1,-2,-3,-4.
EmpS: Computed by the difference of the empathetic
score between the output and the ground truth (∼ 0.978).

response as hr. We fine tune the BERT models to
retrieve the response that maximizes hq · hr; (2) A
seq2seq neural network that maps the belief state
and dialogue context to the output without stages.
(3) using dialogue acts instead of stages.

Table 4 shows that our response generation out-
performs all baselines in all metrics. The predicted
stage information (achieved an accuracy of ∼0.92)
provides meaningful signals for dialogue genera-
tion. In addition, by incorporating external em-
pathetic knowledge, our model achieved +0.256
average improvement in empathy. Including dia-
logue acts does not improve the performance com-
pared to the seq2seq model. This is not unexpected
because labels are imbalanced and only available
for 15 weeks of data. Computationally labeling
dialogue acts also leads to large error propagation.
The emotional cue detection (32-category classifi-
cation) achieved an accuracy of ∼0.58. Based on
development set observation, we set τ to be 0.7 and
generate empathetic response when the cumulative
probability of the top-2 predicted emotional labels
is greater than τ .

Human Evaluation. We performed an expert-
based human evaluation on coherence and empathy
through A/B testing. We ask two health coaches to
compare outputs from our model against other base-
lines given the same input and choose (a) the re-
sponse which is more empathetic; (b) the response
which is more coherent. Among the collected 43
examples, our model’s outputs have a ∼71% pref-
erence for empathy and ∼55% preference for co-
herence over other baselines.

5.4 Qualitative Analysis

We present examples of our health coaching dia-
logue generation and mechanism-conditioned em-
pathetic generation in Table 3. In the first case,
where empathy is not required, all three models
choose to inquiry for more information of the
goal. However, the fixed, retrieval-based response
can contain context-irrelevant tokens ("..the track
around neighborhood" ) and the Seq2Seq response
is relatively unnatural. In the second case, given the
cues including "..a massive migraine headache..",
our model can generate corresponding empathetic
responses given different communication mech-
anisms (e.g., [EMOR] → "Oh no, I hope you
are okay."). In contrast, the retrieval-based and
Seq2Seq model failed to response empathetically.
Particularly, the Seq2Seq model failed to distin-
guish a symptom (i.e., "migraine headache") from
a physical activity or goal. Finally, we present
two incoherent generation examples by our model.
In the first example, our system misinterprets the
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coach’s utterance - a parody of a reminder - as a
real reminder, which tends to repeat again; thus, the
system naïvely copies it. In the second example,
the system needs to see more context to understand
that the trip is an explanation from the patient for
not making progress, which the coach asked about
in the previous utterance. A better response should
address the patient’s explanation while maintaining
specificity on the trip scenario, e.g., "No problem.
Welcome back."

6 Conclusions and Future Work

We built an efficient health coaching dialogue sys-
tem that helps patients create and accomplish spe-
cific goals, with a simplified NLU and NLG frame-
work combined with mechanism-conditioned em-
pathetic response generation. The experiments
show that the system can generate more coher-
ent and empathetic responses, supporting health
coaches and improving coaching efficiency. In ad-
dition, our system outperforms the state-of-the-art
in NLU tasks while requiring fewer annotations.
We view our approach as a key step towards build-
ing automated and more accessible health coaching
systems in low-resource settings and believe our
approach may also generalize to building dialogue
systems in similar scenarios, such as patient educa-
tion at discharge or consulting on behavior change
problems.

In the future, we will explore the following di-
rections: (1) Modelling empathetic understanding
and generation with the goal response generator as
one integrated end-to-end system while providing
explainability. (2) A more comprehensive human
evaluation from both the coach’s and the patient’s
perspectives, including but not subject to goal com-
pletion and activity engagement rate.
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A Training Details

All the following models use Huggingface Trans-
formers Library (Wolf et al., 2020). The hyperpa-
rameters are not extensively fine-tuned.

• Slot-filling. We use BERT-base as model
backbone and associated tokenizer, with max
sequence length of the tokenized input set to
50. The model was trained for {5.0, 7.0, 10.0}
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epochs by Adam with a learning rate of {2e-5,
5e-5}, batch size of {32, 64}.

• Carryover Classifier. We use BERT-base
as model backbone and associated tokenizer,
with max sequence length of the tokenized in-
put set to 96. The model was trained for {5.0,
7.0, 10.0} epochs by Adam with a learning
rate of {2e-5, 5e-5}, batch size of {16, 32,
64}.

• NLGhc We use T5-base as model backbone
and associated tokenizer, with max sequence
length set to 128. The model was trained for
10.0 epochs by AdamW with a learning rate
of 1e-4, warm up steps = 400, batch size of 64.
We use sampling during decoding with top-k
set to 50, top-p set to 0.95.

• Empathetic Generation We use GPT2 as
model backbone and associated tokenizer,
with max sequence length set to 96. The
model was first trained for 10.0 epochs on the
ED dataset by Adam with a learning rate of 1e-
4, warm up steps = 400, batch size of 32. We
use sampling during decoding with top-k set
to 50, top-p set to 0.95. Then, the model was
fine-tuned on 64 examples of health coaching
empathetic data by 1 epoch. When decoding
at inference, we use sampling with top-k set
to 50, top-p set to 0.95.

• Emotion Detection We use BERT-base as
model backbone and associated tokenizer,
with max sequence length set to 96. The
model was trained for 8.0 epochs by Adam
with a learning rate of 4e-5, and batch size of
32.

B Health Coaching Dataset Slot
Examples

Table 5 shows the description of the ten slots with
value examples.

C Evaluation Metrics Description

Partial/Complete Match If all the values are
correctly recorded for a given slot, it is considered
a complete match. If the values are partially correct,
it is considered a partial match.

Goal Correctness@k Computes the percentage
of correctness over all the predicted goals of each
week. A goal contains ten attributes (slot-values);

if at least k attributes are predicted correctly, the
goal is regarded as correct. Goal Correctness@k is
trivially equal to 100% when k = 0.

BLEU BLEU score (Papineni et al., 2002) mea-
sures the word-level overlap between the generated
output and the gold reference response.

BertScore BertScore (Tianyi Zhang et al., 2020)
measures the semantic similarity between the gen-
erated output and the reference leveraging BERT
contextual embeddings.

Fluency We measure fluency as perplexity (PPL)
of the generated response using a pre-trained GPT2
model that has not been fine-tuned for this task,
following previous work (Ma et al., 2020; Sharma
et al., 2021b).

Empathy We train a standard text regression
model based on BERT using the response posts and
corresponding level of empathy scores in Sharma
et al. (2020) (achieving an RMSE of ∼0.57). We
use this model to evaluate the empathy in the gen-
erated output compared with baselines.

D Supplementary Analysis

D.1 Carryover Ablation
Table 7 shows the model performance of the carry-
over classifier with ablations. Using a combination
of phases and acts can slightly improve recall with
a tradeoff of reducing precision. However, using
the dialogue context alone suffices for carryover
classification with less annotation cost.

D.2 Emotion Cue Detection
Table 6 shows the predicted emotion labels with
corresponding probabilities by emotion cue detec-
tion on some patient’s utterance examples. The
model can reasonably detect emotion signals of the
patient’s utterance only trained on the ED dataset.
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Slot Description Value Examples
[activity] The type of activity the patient will perform. "walk, jogging, stair climbing"
[amount] The quantity of activity. "2000 steps, 6 fligths"
[duration] The duration of the activity. "20 min, half an hour"
[distance] The distance of the activity. "3 blocks, 2 miles, from home to bus stop"
[time] The time of the day for the activity. "at noon, after lunch, 4 pm"
[location] The location of the activity. "at work, at home, around the park"
[dayname] The days to do the activity. "Monday, Tuesday"
[daynumber] The number of days for the activity. "3 days, 5 days"
[repeatation] The frequency of activity. "twice a day, daily"
[score] The confidence or attainability score. Range from [1,10]

Table 5: The slot-value schema used in Gupta et al. (2020a).

Example Utterances Top-2 Predicted Emotion Labels
Sorry I left my fitbit in the emergency room yesterday. Guilty (0.506), Ashamed (0.323)
I’m not feeling very well yesterday so I did not go out for a walk. Disappointed (0.305), Ashamed (0.174)
I reached 10k steps last week can you believe that? Surprised (0.548), Proud (0.229)
Ok. Angry (0.127), Furious (0.059)
I want to walk 3000 steps today. Hopeful (0.484), Confident (0.132)

Table 6: The predicted emotion labels with corresponding probabilities by emotion cue detection on the patient’s
utterances.

Input P R F1 Acc
Context Only 0.91 0.86 0.89 0.88
Context+Phase 0.88 0.87 0.88 0.87
Context+Act 0.88 0.86 0.87 0.87
Context+Phase+Act 0.90 0.87 0.89 0.89

Table 7: Model performance of carryover classification
with ablations.
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Abstract

Traditional intent classification models are
based on a pre-defined intent set and only rec-
ognize limited in-domain (IND) intent classes.
But users may input out-of-domain (OOD)
queries in a practical dialogue system. Such
OOD queries can provide directions for fu-
ture improvement. In this paper, we define a
new task, Generalized Intent Discovery (GID),
which aims to extend an IND intent classi-
fier to an open-world intent set including IND
and OOD intents. We hope to simultaneously
classify a set of labeled IND intent classes
while discovering and recognizing new unla-
beled OOD types incrementally. We construct
three public datasets for different application
scenarios and propose two kinds of frameworks,
pipeline-based and end-to-end for future work.
Further, We conduct exhaustive experiments
and qualitative analysis to comprehend key
challenges and provide new guidance for fu-
ture GID research. 1

1 Introduction

Intent classification (IC) in a dialogue system aims
to identify the goal of a user query, such as Book-
Flight or AddToPlaylist. Recent neural-based mod-
els (Liu and Lane, 2016; Goo et al., 2018; E et al.,
2019; Chen et al., 2019; He et al., 2020) have
achieved satisfying performance under the avail-
ability of large-scale labeled data. However, these
methods face the challenge of data scarcity and
poor scalability. They rely on a pre-defined intent
set and supervised labels, which is limitted in some
practical scenarios.

Existing intent classification models have little
to offer in an open-world setting, in which many
new intent categories are not defined apriori and no
labeled data is available. These models rely on the

∗The first two authors contribute equally. Weiran Xu is
the corresponding author.

1We release our code at https://github.com/
myt517/GID_benchmark.
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Figure 1: Illustration of our proposed GID task. The
above subfig shows a practical intent classification sys-
tem where an OOD detection module firstly identifies
whether a test intent belongs to OOD, then an in-domain
classifier and an OOD discoverer respectively recognize
IND and OOD intents. In contrast, our proposed GID
can simultaneously classify a set of labeled IND intent
classes and new OOD types in an end-to-end manner.

pre-defined intent set, making it only recognize lim-
ited in-domain (IND) intent categories. But plenty
of input queries may be outside of the fixed intent
set, which we call Out-of-Domain (OOD) intents
(Xu et al., 2020; Zeng et al., 2021a,b). In recent
years, OOD intent detection (Hendrycks and Gim-
pel, 2017; Larson et al., 2019a; Lin and Xu, 2019;
Ren et al., 2019; Xu et al., 2020; Zheng et al., 2020)
has been well studied, which identifies whether a
user query falls outside the range of pre-defined in-
tent set to avoid performing wrong operations. But
it can only safely reject OOD intents thus ignore
these valuable OOD concepts for future develop-
ment. Further, OOD intent discovery task (also
known as new intent discovery) (Lin et al., 2020;
Zhang et al., 2021b) is proposed to cluster unla-
beled OOD data. The adopted clustering method
can only group those OOD intents into clusters, but
cannot further expand the recognition scope of the
existing IND intent classifier incrementally.

Inspired by the above issues, we introduce a new
task of extending and recognizing intent categories
automatically, Generalized Intent Discovery(GID).
GID aims to extend an existing IND intent clas-
sifier to an open-world OOD intent set, as shown
in Fig 1. The main motivation is that we hope to
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Figure 2: The comparison of GID to other related tasks.

train a network that can simultaneously classify a
set of labeled IND intent classes while discovering
new ones in an unlabeled OOD set. In this way,
we can enhance the capability of an IC system by
expanding its recognition scope incrementally. We
show a comparison of GID and existing OOD tasks
in Fig 2. Since the practical OOD intents are unsu-
pervised, neither the OOD labels nor OOD intent
schema make it different from zero-shot learning
(Yan et al., 2020; Siddique et al., 2021) and con-
tinual learning (Xu et al., 2019) which both rely
on a given label ontology, like label descriptions.
Therefore, to explore unique characteristics of GID,
we construct three kinds of GID benchmarks, in-
cluding single domain, multiple domain, and cross-
domain settings (Section 3). These settings denote
different application scenarios which we will dis-
cuss later.

Subsequently, we propose two kinds of frame-
works for GID, pipeline and end-to-end. A straight-
forward idea is pipeline-based methods which
firstly learn OOD cluster assignments and get
pseudo OOD labels, then jointly classify labeled
IND data and pseudo labeled OOD data. However,
pipeline-based methods separate OOD clustering
and classification process, which ignores the in-
teraction between labeled IND data and unlabeled
OOD data. Besides, these pseudo OOD labels may
induce severe noise to the joint classification, lim-
iting the performance of the joint IND and OOD
classifiers. Therefore, we further propose an end-
to-end framework to simultaneously learn pseudo
OOD cluster labels and classify IND&OOD classes
along with ground truth IND labels via a unified
objective. We obtain the pseudo label of an OOD
query by its augmented view in a swapped predic-
tion way (Caron et al., 2020; Asano et al., 2020;
Fini et al., 2021) and employ the Sinkhorn-Knopp
(SK) algorithm (Cuturi, 2013) to solve the opti-
mization problem. We leave the details to Section
4. We also perform exhaustive experiments (Sec-
tion 5.2) and qualitative analysis (Section 5.3) to
shed light on the challenges that current approaches
face with GID. We find fine-grained OOD types,

domain gap, data imbalance, real OOD noise and
estimating the number of OOD types are the main
challenges (Section 6), which provide insightful
guidance for future GID work.

Our contributions are four-fold: (1) We intro-
duce a new task, Generalized Intent Discovery
(GID) which aims to extend an IND intent clas-
sifier to an open-world OOD intent set. GID helps
expand the model’s recognition scope and develop
new skills for improving dialogue systems. (2) We
construct three kinds of public GID benchmarks for
different application scenarios, which help to ex-
plore the key challenges of GID comprehensively.
(3) We propose an end-to-end GID framework to
jointly learn clustering and classification, and exten-
sive baselines of two frameworks, pipeline-based
and end-to-end for future work. (4) We conduct
exhaustive experiments and qualitative analysis to
comprehend key challenges and provide new guid-
ance for future GID research.

2 Problem Formulation

In this section, we first briefly introduce the tra-
ditional intent classification (IC) task, then dive
into the details of our proposed Generalized Intent
Discovery (GID) task.
Intent Classification Given a labeled
in-domain (IND) dataset DIND ={(
xIND1 , yIND1

)
, . . . ,

(
xINDn , yINDn

)}
, IC

aims to predict the intent class of a test query by
training an IND classifier, based on the assumption
that all the queries belong to a pre-defined fixed set
YIND = {1, . . . , N} of N intent categories.
Generalized Intent Discovery In contrast, GID is
to classify queries corresponding to both labeled
IND and unlabeled OOD classes. Apart from the
above labeled IND dataset DIND, an unlabeled
OOD dataset DOOD =

{(
xOOD1

)
, . . . ,

(
xOODm

)}

is also given. For simplicity, we assume the num-
ber of OOD classes is specified as M . In practical
scenarios, we can estimate the number of clusters
following previous work (Zhang et al., 2021b) (see
Section 5.3.4). Since these OOD intents are usu-
ally collected from an online IC system by rejecting
low confident queries 2, the set of N IND classes

2For example, given a test query, if an IC model predicts
an output with low confident probability, we can assume the
query doesn’t belong to any IND type but OOD intents. Please
refer to related OOD detection work (Xu et al., 2020; Zeng
et al., 2021c; Zheng et al., 2020) for details. In this paper, we
focus on the joint classification of unlabeled OOD and labeled
IND. Thus, we suppose the two sets of IND classes and OOD
classes are disjoint from each other.
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is assumed to be disjoint from the set of M OOD
classes. We also provide a discussion about real
OOD noise in Section 5.3.2. The final goal of GID
is to classify an input query to the total label set
Y = {1, . . . , N,N + 1, . . . , N +M} where the
first N elements denote labeled IND classes and
the subsequent M ones denote unlabeled OOD
classes. The challenges of GID come from two as-
pects, discovering the semantic concepts from unla-
beled OOD data and jointly classifying IND&OOD
intents. On the one hand, models need to automati-
cally cluster OOD concepts which is more difficult
than supervised classification tasks. On the other
hand, they require jointly recognizing IND&OOD
intents using these noisy cluster signals which may
harm the final performance.

3 Dataset

To explore the practical significance and key chal-
lenges of GID task, we need to construct the GID
dataset. However, we found that in some related
tasks such as OOD intent discovery (Zhang et al.,
2021b) and zero-shot intent detection (Siddique
et al., 2021), the commonly used construction meth-
ods are to randomly divide the intent classification
dataset into IND and OOD subset. This may not
reflect real online intent classification scenarios.

We design more diverse GID dataset construc-
tion strategies, mainly in order to be able to dis-
cuss the practical significance and key challenges
of GID more comprehensively. we construct
three kinds of benchmark datasets GID-SD (single-
domain), GID-MD (multiple-domain) and GID-CD
(cross-domain) based on the two widely used intent
datasets, CLINC (Larson et al., 2019b) and Bank-
ing (Casanueva et al., 2020). The three settings
denote different real-world application scenarios
in dialogue systems. Besides, we also construct
two dataset variants GID-noise and GID-imbalance
to explore more severe challenges of GID tasks
in real scenes. We first briefly introduce original
CLINC and Banking datasets, then elaborate on
GID dataset construction, and display the statistic
of GID benchmarks. Finally, we introduce eval-
uation metrics for the GID task, accuracy and F1
score both for IND and OOD data.

3.1 Original Intent Datasets

CLINC contains 22,500 queries covering 150 in-
tents across 10 domains and Banking is a fine-
grained dataset in a single domain, which contains

13,083 user queries with 77 intents. We show the
detailed statistics of the two original datasets in
Appendix A.1.

3.2 GID Dataset Construction

GID Benchmarks For CLINC and Banking
datasets, we randomly choose the specified ra-
tio (20%, 40%, 60%) of all intent classes as
OOD types, and the rest are IND, similar to Xu
et al. (2020); Zhang et al. (2021b).3 The origi-
nal train/val/test split is fixed. We only keep IND
queries with their labels and the queries belong-
ing to OOD classes in the original train and val
data. Note that GID assumes OOD training data
is unlabeled so we remove OOD queries’ labels in
the original train and val data. In the test set, we
keep all the original IND and OOD intents and la-
bels for evaluating metrics.4 Considering different
scenarios of dialogue systems, we construct three
benchmarks, GID-SD (single-domain), GID-MD
(multiple-domain) and GID-CD (cross-domain).
Specifically, for the single-domain Banking dataset,
we randomly select the specified ratio of all intent
classes as OOD types, and the rest are IND to con-
struct GID-SD. Since Banking has a large intent
set in a single domain, we find these fine-grained
OOD types are difficult to recognize (see Section
5.2). For the multiple-domain CLINC dataset, we
propose two split strategies: (1) Overlapping (for
GID-MD): We neglect the domain constraint and
randomly split all the intent classes into the IND
set and OOD set as above, which means intent cat-
egories from a domain may be divided to the two
sets, which we call Domain Overlapping 5. The sit-
uation occurs where an online IC system can hardly
cover all the intent classes in a domain and OOD in-
tents may come from the same domain as IND. (2)
Non-Overlapping (for GID-CD): We restrict IND
intent classes and OOD classes are from different
domains, so we select a ratio of all domains as IND
and the rest as OOD. Once a domain is chosen as
IND, all the intents in this domain belong to IND
intent classes and vice versa. The non-overlapping
setting is more practical in a real scenario where
we need to transfer a business to another.

3To avoid randomness, we report the averaged experiment
results of three runs for each ratio. And for each run, all the
models are based on the same dataset IND/OOD split.

4Although CLINC contains a real unlabeled OOD set, we
can’t use it because not able to evaluate the performance of
models. We use the set for constructing a noisy GID dataset.

5Please mind IND intent classes and OOD classes are still
disjoint from each other, but may belong to the same domain.
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Dataset
IND

classes
OOD

classes
IND

domains
OOD

domains
Train

samples
Val

samples
Test

samples
GID-SD-40% 46 31 1 1 5414/3589 600/400 1840/1240
GID-MD-40% 90 60 10 10 10,800/7200 1350/900 1350/900
GID-CD-40% 90 60 6 4 10,800/7200 1350/900 1350/900

Table 1: Statistics of GID-SD-40%, GID-MD-40% and
GID-CD-40%.

GID Dataset Variants To explore more severe
challenges of GID tasks in real applications, we
construct two variants based on GID-MD-40%,
GID-noise and GID-imbalance. (1) GID-noise: In
the standard GID setting, we suppose the OOD
data in the training set is "clean", that is, each
OOD query must belong to a specific intent cat-
egory. However, in practice, some OOD queries
may be meaningless and not belong to any in-
tent cluster, which we call OOD noise. We use
1350 real out-of-scope(oos) samples in CLINC,
which semantically do not belong to any intent
category in the training set, and add these noisy
samples into the OOD train set to see if perfor-
mance changes (see Section 5.3.2). Specifically,
we add different numbers of oos samples accord-
ing to 5%, 10% and 15% of the number of OOD
samples in the training set of GID-MD-40%. (2)
GID-imbalance: Data imbalance is a common is-
sue in practice. To explore the impact of OOD data
imbalance, we construct imbalanced GID datasets
with different imbalance ratios (ρ = 2, 3, 6) by
sampling each class of OOD samples in the GID-
MD-40% training set. Following (Zhang et al.,
2021c; Hong et al., 2021), we first sort the OOD
classes of GID-MD-40% and each class is assigned
an index j(j = 1, 2, 3, ...,M), where M denotes
the total number of OOD intent categories. Then
we sample from each OOD class according to
nj = nminρ

(j−1)/M , j = 1, 2, 3, ...,M , where
nmin is the least number of samples across all
OOD classes. We adjust different imbalance ratios
ρ = nmax/nmin to simulate the degree of imbal-
ance. nmax = 120 is the max number of samples
per class in GID-MD-40%. We put the detailed
statistics of GID-imbalance in Appendix A.2.

3.3 Statistic of GID Datasets and Evaluation

Since different proportions of OOD intents have dif-
ferent statistics, here we only display the results of
40% OOD for brevity. Table 1 shows the statistics
of GID-SD-40%, GID-MD-40%, GID-CD-40%.

We use intent accuracy (ACC) and macro F1
as evaluation metrics for GID task. We report all
IND, OOD and total (ALL) metrics where OOD
and ALL ACC/F1 are the main metrics. Following
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Figure 3: Overall architecture of our proposed pipeline
and end-to-end methods.

Zhang et al. (2021b), we use the Hungarian algo-
rithm (Kuhn, 1955) to obtain the mapping between
the predicted OOD classes and ground-truth classes
in the test set.

4 Method

Overall Architecture We extend the idea of tradi-
tional intent classification models by using pseudo
OOD labels. IC calculates the N -dimension cross-
entropy (CE) loss for labeled IND data (Qin et al.,
2019; He et al., 2020). Similarly, we can com-
pute (N+M)-dimension CE loss both for labeled
IND and unlabeled OOD data where IND labels
are given but OOD (pseudo) labels are estimated
(Zhang et al., 2021b; Han et al., 2020; Fini et al.,
2021). Thus, the key challenge is to estimate OOD
pseudo cluster labels by transferring prior IND
knowledge. We propose two kinds of frameworks,
pipeline and end-to-end, shown in Fig 3.
Pipeline A simple idea is pipeline-based methods
which firstly learn OOD cluster assignments, then
jointly classify labeled IND data and pseudo la-
beled OOD data. Specifically, we use the same
BERT intent encoder as DeepAligned (Zhang et al.,
2021b) to cluster OOD data. To transfer prior
knowledge, we first pre-train the encoder on IND
data to get intent representations. Then, we re-
spectively use two OOD clustering methods, k-
means (MacQueen, 1967) and DeepAligned to ob-
tain pseudo OOD labels ŷOOD. Finally, we mix up
all the IND and OOD data and construct the new
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(N+M)-dimension intent label y as follows:

y =

{[
yIND;0M

]
x ∈ DIND

[
0N ; ŷ

OOD
]

x ∈ DOOD (1)

where yIND, ŷOOD are one-hot labels and
0M ,0N are M or N-dimention zero vectors. We
use the original CE loss to train a (N+M)-class
open-set intent classifier.
End-to-End The main drawback of pipeline meth-
ods is the lack of deep semantic interaction be-
tween IND and OOD data in the clustering stage,
leading to poor pseudo cluster labels. To alleviate
the issue, we adopt an end-to-end framework to
simultaneously learn pseudo OOD cluster labels
and classify IND&OOD classes, shown in Fig 3.
Our motivation is that each view of an OOD in-
tent query after data augmentation can predict the
other’s pseudo labels, following swapped predic-
tion (Caron et al., 2020). And we can learn the
simple pseudo-labeling process via the unified clas-
sification loss instead of extra clustering objectives.
Specifically, we use the same pre-trained BERT en-
coder in IND data as pipeline and two independent
projection layers, IND head I and OOD head O.
Given an input query, we concat the outputs of two
heads as the final logit. For labeled IND intents,
the ground-truth labels are easily obtained by Eq
1. We now discuss how to get the pseudo labels
of unlabeled OOD intents. Inspired by Caron et al.
(2020); Asano et al. (2020); Fini et al. (2021), we
use the following swapped prediction way:

ℓCE (x1, ŷ2) + ℓCE (x2, ŷ1) (2)

where x1,x2 are two dropout-augmented (Gao
et al., 2021) views from an OOD intent query and
ŷ1, ŷ2 are corresponding pseudo labels. We use
x1 to compute ŷ1 and x2 for ŷ2. A simple way
of obtaining ŷ1 from x1 is to regard the predicted
softmax logits after OOD head of x1 as ŷ1. But
Asano et al. (2020) observes this strategy easily
leads to degenerate solutions where all the intents
predict the same pseudo label and are grouped into
the same cluster. Therefore, we add an entropy
penalty to avoid all the pseudo labels are equal to
each other and keep more uniform distribution of
the pseudo-labels over all the M OOD clusters. We
formulate the new optimization way:

Ŷ∗ = argmax
Ŷ∈Γ

Tr(ŶL) + ϵH(Ŷ) (3)

where Ŷ = [ŷ1, . . . , ŷB]
⊤ is the matrix whose

columns are the unknown pseudo-labels of the cur-

rent batch B and L = [l1, . . . , lB] is the predicted
logits by the OOD head. H is the entropy function
and ϵ is an hyper-parameter(we set it to 0.05 in the
experiments). The goal is to obtain the best pseudo-
labels Ŷ∗ by maximizing Eq 3. And Ŷ must meet
the following constraints similar to Caron et al.
(2020); Fini et al. (2021):

Γ= {Ŷ∈RM×B+ |Ŷ1B=
1

M
1M,Ŷ

⊤1M =
1

B
1B}

(4)

where 1B denotes the vector of all ones with B
dimensions. Essentially, Eq 3&4 can be regarded
as an optimal transport problem and we use the
Sinkhorn-Knopp (SK) algorithm (Cuturi, 2013) to
solve it.6 After we get the pseudo OOD labels
in a mini-batch, we can use Eq 1 to compute the
CE loss. Note that the losses of IND and OOD
data in a batch are jointly optimized. Compared
to pipeline methods, our end-to-end method can si-
multaneously learn pseudo OOD cluster labels and
distinguish IND&OOD classes via a CE loss. Joint
optimization enables semantic interaction between
IND and OOD data for better knowledge transfer
and to reduce noisy clustering signals. For infer-
ence, we forward the input query (including IND
and OOD) to the model and obtain its prediction.

5 Experiments and Analysis

5.1 Baselines

k-means A pipeline baseline, which first uses k-
means (MacQueen, 1967) to cluster OOD data and
obtains pseudo OOD labels, and then trains a new
classifier together with IND data.

DeepAligned Similar to k-means, the difference
is that the clustering algorithm adopts DeepAligned
(Zhang et al., 2021b), which is the current state-of-
the-art method for OOD discovery task.

DeepAligned-Mix This is an end-to-end ap-
proach where we extend DeepAligned for GID.
DeepAligned is an iterative clustering method. In
each iteration, it firstly uses k-means and an align-
ment strategy to cluster and label the OOD data
and then computes the cross-entropy classifica-
tion for representation learning. Our proposed
DeepAligned-Mix mainly improves two points: (1)
We mix up IND and OOD data together for iter-
ative clustering, and the model is optimized with

6We recommend referring to Cuturi (2013) for more details
about the theoretical explanation of optimal transport and SK
algorithm.
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Method
GID-SD-20% GID-SD-40% GID-SD-60%

IND OOD ALL IND OOD ALL IND OOD ALL
ACC ACC F1 ACC F1 ACC ACC F1 ACC F1 ACC ACC F1 ACC F1

k-means 91.29 70.50 71.43 87.21 86.90 90.38 62.34 62.44 78.99 78.32 90.40 51.58 51.96 67.08 66.70
DeepAligned 92.00 76.44 77.40 88.94 88.60 91.72 69.11 69.72 82.57 82.10 90.97 59.55 59.51 72.05 71.42
DeepAligned-Mix 85.62 56.28 60.26 79.90 78.20 82.30 54.97 59.79 71.30 69.60 80.70 52.66 54.66 63.95 61.92
End-to-End 92.82 81.78 83.53 90.67 90.64 92.84 72.28 73.28 84.49 84.10 92.45 62.63 62.65 74.59 73.99

Table 2: Performance on GID-SD (single-domain). 20%, 40% and 60% denotes the ratio of OOD intents. Results
are averaged over three random run.(p < 0.01 under t-test)

Method
GID-MD-20% GID-MD-40% GID-MD-60%

IND OOD ALL IND OOD ALL IND OOD ALL
ACC ACC F1 ACC F1 ACC ACC F1 ACC F1 ACC ACC F1 ACC F1

k-means 97.22 76.22 75.03 93.02 92.74 97.26 73.00 72.66 87.56 87.08 95.00 65.11 63.68 77.02 76.09
DeepAligned 97.83 90.89 91.08 96.43 96.32 97.85 87.55 87.14 93.70 93.29 97.67 83.38 82.78 89.10 88.52
DeepAligned-Mix 95.91 81.93 83.93 93.11 92.54 92.86 81.70 83.30 88.12 87.42 92.59 78.34 79.88 84.05 82.74
End-to-End 98.17 95.26 96.08 97.58 97.59 98.32 91.92 92.46 95.78 95.73 98.26 87.63 87.84 91.88 91.78

Table 3: Performance on GID-MD (multiple-domain).

Method
GID-CD-20% GID-CD-40% GID-CD-60%

IND OOD ALL IND OOD ALL IND OOD ALL
ACC ACC F1 ACC F1 ACC ACC F1 ACC F1 ACC ACC F1 ACC F1

k-means 97.39 75.78 75.79 92.98 92.72 97.70 61.67 60.43 83.20 82.30 96.44 54.67 53.69 71.38 70.57
DeepAligned 97.83 84.81 84.22 95.23 95.01 97.85 78.55 77.81 90.12 89.68 97.33 76.15 74.80 84.62 83.60
DeepAligned-Mix 97.15 77.41 77.7 93.20 92.53 97.33 72.41 71.54 87.36 86.21 93.89 75.63 74.29 82.93 81.37
End-to-End 97.92 87.41 87.55 95.81 95.75 98.00 79.19 79.06 90.46 90.28 98.22 78.01 77.48 86.09 85.63

Table 4: Performance on GID-CD (cross-domain).

a unified cross-entropy loss; (2) In the inference
stage, instead of using k-means for clustering, we
use the classification head of the new classifier to
make predictions.

5.2 Main Results

We conduct experiments on three benchmark GID
datasets GID-SD, GID-MD and GID-CD with dif-
ferent OOD ratios, shown in Table 4. In general,
Our proposed end-to-end (E2E) method consis-
tently outperforms all the baselines with a large
margin. We analyze the results from three aspects:
Comparison of different methods We see E2E
significantly outperforms all the baselines under the
three datasets and different OOD ratio settings. For
example, E2E outperforms previous state-of-the-art
DeepAligned by 3.14%(OOD F1) and 2.57%(ALL
F1) on GID-SD-60%, 5.06%(OOD F1) and
3.26%(ALL F1) on GID-MD-60%, 2.68%(OOD
F1) and 2.03%(ALL F1) on GID-CD-60%. These
prove that joint clustering and classification helps
to perform more interaction between IND and OOD
and obtain accurate pseudo OOD labels. We also
observe E2E achieves slightly better IND ACC
than pipeline methods, which means joint classi-
fication doesn’t sacrifice IND performance while
improving OOD recognition.
Comparison of different datasets To explore the

effect of different practical scenarios, we compare
the performance of the same method on different
datasets. Results show metrics on GID-SD are the
lowest, GID-CD is in the middle and GID-MD
is the best for almost all the methods, which de-
notes the difficulty order is single-domain>cross-
domain>multiple-domain. We argue GID-SD con-
tains more fine-grained intent types in a single do-
main which makes it challenging to recognize OOD
intents. Comparing CD and MD, IND and OOD
types from the same domain makes it easier to trans-
fer prior knowledge, so MD gets higher scores.
Effect of different OOD ratios We compare the
results of different OOD ratios on the same dataset.
We find with the increase of OOD ratio, the per-
formance consistently drops. For example, E2E
achieves 95.26% OOD ACC on GID-MD-20%, but
OOD ACC decreases by 3.34% on GID-MD-40%
and 7.63% on GID-MD-60%. Intuitively, the in-
crease in the number of OOD intents makes it more
difficult to distinguish them.

5.3 Qualitative Analysis
5.3.1 Cross-Domain Transferability
For GID-CD, cross-domain knowledge transfer is
important and challenging. To study the effect of
domain similarity on knowledge transfer, we per-
form a cross-domain transferability analysis in Fig
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Figure 4: Cross-domain transferability from source IND to target OOD. We display OOD ACC and domain
similarity scores. The larger the number is, the deeper the color is.
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Figure 5: The impact of adding different numbers of
noisy OOD samples to the training set on the perfor-
mance of each GID model.

4. We select five domains (banking, credit_card,
auto_and_commute, travel, kitchen_and_dining)
and perform the one-to-one transfer. To measure
domain similarity, we first train an IND intent clas-
sifier, then perform k-means using extracted repre-
sentations of OOD samples to calculate Silhouette
Coefficient (SC) values (Rousseeuw, 1987) 7. We
can see that the larger the SC value is, the higher
the similarity between IND&OOD domains is, re-
sulting in better OOD metrics. The results prove
good cross-domain transferability comes from se-
mantically similar domains, such as banking and
credit_card.

5.3.2 Effect of OOD noise

In the real world, OOD data may not necessarily
belong to a certain OOD cluster, and there is often
some OOD noise. We use the constructed dataset
variant GID-noise to examine the impact of noisy
OOD in the training set on model performance. Fig
5 shows the impact of different amounts of OOD
noise in the training set on model performance.
The results show that as the amount of OOD noise
increases, the OOD performance drops. Our pro-
posed E2E still achieves the best performance over
all baselines. We argue that this is because the
presence of OOD noise makes it difficult for the
model to learn a clear cluster boundary for unla-
beled OOD.

7Please see more details about SC in Appendix A.6.
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Figure 6: The impact of different imbalance ratios of
OOD data on the performance of each GID model.

5.3.3 Effect of imbalanced OOD data

Fig 6 shows the impact of class imbalance de-
gree of OOD data on model performance. The
results show that when the imbalance degree of
OOD categories increases, the performance of all
models decreases significantly. We also find an
interesting phenomenon that our proposed end-to-
end method drops more significantly than pipeline-
based DeepAligned. We argue that there are
two reasons for this. (1) When our end-to-end
method obtains OOD pseudo-labels, the SK algo-
rithm is based on a strong assumption, the number
of pseudo-labels for each category in a batch is
uniform, which is obviously invalid in the class-
imbalanced scenario. (2) E2E uses IND and OOD
to jointly train the classifier. Since the number
of samples in each class of IND keeps fixed to
120(equal to the number of OOD samples in the ma-
jority class of OOD), this will exacerbate the degree
of imbalance and affect the accuracy of pseudo-
labels for long-tail categories. Therefore, we need
to further explore better pseudo-label methods in
the future and how to improve the class-imbalanced
defect of end-to-end methods.

5.3.4 Estimate the Number of Cluster K

All the results we showed so far assume that the
number of OOD classes is pre-defined. However,
in real-world applications, this often needs to be es-
timated automatically. Table 5 shows the results us-
ing the same automatic K-value estimation strategy
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Figure 7: IND & OOD intents visualazation of DeepAligned and E2E method, we select 9 IND intents and 6 OOD
intents in GID-MD-40% (index 0-8 denotes IND intents, index 9-14 denotes OOD intents)

OOD ACC OOD F1 ALL ACC K
DeepAligned 87.55 87.14 93.70 60
DeepAligned-Mix 82.70 84.65 88.12 60
End-to-End 91.92 92.46 95.78 60
DeepAligned 72.89 66.75 87.91 47
DeepAligned-Mix 69.56 62.32 85.29 47
End-to-End 74.89 67.23 88.58 47

Table 5: Estimate the number of OOD clusters. K=47 is
the estimated number compared to original 60.

8. We find that our method both achieves the best
performance under the fixed or auto K settings. It
should be noted that no matter the end-to-end meth-
ods or the pipeline methods, the performance drops
significantly when the number of OOD classes is
unknown. Therefore, how to estimate an accurate K
value and how to design a more robust GID method
is a great challenge.

5.3.5 Visualization
To further visually compare the performance of end-
to-end and pipeline methods in classifying IND and
clustering OOD, we performed a visualization of
IND & OOD intent representations for E2E and
DeepAligned, as shown in Fig 7. Comparing E2E
to DeepAligned, we can observe DeepAligned gets
some mixed OOD clusters (see greenyellow and
red dots in Fig a) while E2E method successfully
separates them. We also find that many OOD in-
tents in DeepAligned that cannot be clustered into
single cluster, but are scattered into multiple clus-
ters (see deeppink dots in Fig a), but E2E method
can form compact clusters for them. We argue
this is because the pipeline method introduces seri-
ous error propagation in the OOD clustering stage;
while the E2E method jointly learns OOD clus-
ter assignments and classification of IND & OOD,

8Here we use the same estimation algorithm as Zhang et al.
(2021b). We leave the details in Appendix A.4.

which helps to get clear cluster boundary.

5.3.6 Noise of IND

In the general GID setting, we assume that the IND
and OOD categories do not overlap, however the
OOD data collected in practical application sce-
narios may have some IND noise due to the error
propagation of OOD detection. We analyze the
performance changes of each GID method when
mixing different proportions of IND noise in OOD
data, as shown in Fig 10. The results show that
our E2E method still significantly outperforms the
pipeline baseline under IND noise scenarios. The
performance of IND classification and OOD clus-
tering for all methods decrease significantly, and
the IND performance decrease is more significant
for DeepAligned and E2E. We argue that this is
due to the inclusion of a small amount of IND
data in the OOD data, which causes these IND
data to be incorrectly labeled, and severely impairs
the performance of IND classification, making it
difficult to form clear IND class boundaries. We
also found that when the IND noise ratio reached
15%, the OOD clustering performance of the E2E
method was worse than DeepAligned. We argue
that this is because the E2E method jointly learns
to classify IND intents and discover OOD intents,
which needs to leverage IND prior knowledge to
enhance OOD clustering. However, When there
is more IND noise to be mixed with OOD data,
it will affect the effectiveness of the knowledge
interaction between IND and OOD. In practical
applications, when the performance of OOD detec-
tion is improved, this IND noise problem can be
relieved naturally, which is not within the scope of
this papar.
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6 Challenges

Based on the above analysis, we summarize the
current challenges faced by the GID task:

Fine-grained OOD data When OOD intents are
fine-grained like GID-SD, the OOD performance
of existing GID methods decreases significantly.
We argue fine-grained OOD intents make it hard to
construct clear boundary while clustering.

Cross-domain transfer When IND and OOD
intent types are from different distant domains, the
knowledge learned from IND is hard to transfer to
OOD due to the semantic gap in different domains.

OOD noise OOD data collected in practical ap-
plications are usually noisy, and there may be some
OOD samples that do not belong to a certain in-
tent type. The performance of each GID method
degrades when trained with these noisy OOD data.

imbalanced OOD data The OOD data in real-
world scenarios is often class-imbalanced, and our
analysis in section 5.3.3 proves that the perfor-
mance of current methods drops significantly under
imbalanced data, especially end-to-end methods.

Inaccurate estimation of the number of OOD
categories Most previous work assume the number
of OOD categories is known. However, in practi-
cal applications, we usually need to estimate the
number of categories K, which is often inaccurate.
We propose a preliminary analysis in Section 5.3.4
which shows significant performance drop when
the estimation is not totally accurate.

7 Related Work

OOD Detection aims to know when a query falls
outside the range of pre-defined supported intents
(Zeng et al., 2021a; Lin and Xu, 2019; Xu et al.,
2020; Zeng et al., 2021b; Wu et al., 2022) to avoid
performing wrong operation. OOD detection has at-
tracted more and more attention in recent years, so
various similar names are derived, such as anomaly
detection, open world classification (Shu et al.,
2021), open-world learning (Xu et al., 2019), open
intent classification(Zhang et al., 2021a) and so
on. However, all of them are essentially to distin-
guish whether a query belongs to IND or OOD
intents, without further discovering new semantic
categories from unsupervised OOD data.

OOD Discovery aims to discover new intent
concepts from unlabeled OOD data and form OOD
intent clusters (Lin et al., 2020; Zhang et al., 2021b;
Mou et al., 2022), which focuses more on how to
cluster OOD data, while ignoring the fusion of

IND and OOD, which makes the model only rec-
ognize OOD intents. For example, (Zhang et al.,
2021b) design an iterative clustering algorithm
DeepAligned, which iteratively learns intent repre-
sentations then cluster assignments. Open Intent
Extraction also aims to extract unknown intents
from unlabelled user queries (Vedula et al., 2020),
and is a completely unsupervised task. However,
in terms of method, open intent extraction is more
about extracting intent names through sequence an-
notation methods. In contrast, GID aims to train a
network that can simultaneously classify a set of
labeled IND intent classes while discovering and
recognizing unlabeled OOD intents.

Incremental/Continual Learning There is cur-
rently some work on extending closed-set classi-
fier to new classes in the open world incrementally,
such as (Xu et al., 2019). But all these works follow
a traditional incremental learning setting, which re-
quires new category data with labels. In practical
applications, we can only obtain these unlabeled
OOD data from the dialogue system logs, and these
data are often updated continuously, and human
annotation of these data is very labor-intensive.
Therefore, we propose a more human-free task
GID, which aims to automatically discover new
categories from the unlabeled OOD data, and fur-
ther expand the recognition scope of the existing
IND intent classifier incrementally.

Zero-shot Intent Detection Zero-shot intent de-
tection (Yan et al., 2020; Siddique et al., 2021) as-
sumes that no target domain data is available during
training, but the category and category descriptions
from target domain are given, but in practical appli-
cations we often have access to a large amount of
unlabeled dialogue logs, and we need to consider
how to discover new intent categories from them
for system development.

8 Conclusion

In this paper, we introduce a new task, Generalized
Intent Discovery (GID), which aims to extend an
IND intent classifier to an open-world intent set.
Then we provide three public datasets for different
application scenarios and establish a benchmark for
the GID task. We also propose extensive baselines
of two frameworks, pipeline-based and end-to-end
for future work. Further, We conduct exhaustive
experiments and qualitative analysis to comprehend
key challenges and provide new guidance for future
GID research.
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Broader Impact

Task-oriented dialogue systems have demonstrated
remarkable performance in a wide range of appli-
cations, and have significant positive impact on
human production mode and lifeway. Intent classi-
fication is an important component of task-oriented
dialogue system. Existing intent classification mod-
els can only identify a limited number of predefined
in-domain (IND) intents, however, out-of-domain
(OOD) or unknown intents will appear continually
when the dialogue system is deployed online. If
we can group these OOD samples into different
clusters, we can discover new intents, guide future
development of the system, and expand the clas-
sification capabilities of the system. We note that
OOD intent detection and OOD intent discovery
tasks have been widely studied recently. The for-
mer focuses on identifying whether a sample is
IND or OOD, while the latter focuses on how to
cluster OOD data. The generalized intent discovery
(GID) task proposed in this paper focuses on an in-
cremental setting, that is simultaneously classifying
a set of labeled IND intent classes while discov-
ering and recognizing new unlabeled OOD types
incrementally. GID aims to provide the model with
the ability to automatically learning according to
known knowledge in the open world, which is a
new attempt for scalable dialogue system and open
world learning.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. ArXiv
preprint, abs/1902.10909.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In Advances in
Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held Decem-
ber 5-8, 2013, Lake Tahoe, Nevada, United States,
pages 2292–2300.

Haihong E, Peiqing Niu, Zhongfu Chen, and Meina
Song. 2019. A novel bi-directional interrelated
model for joint intent detection and slot filling. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5467–
5471, Florence, Italy. Association for Computational
Linguistics.

Enrico Fini, E. Sangineto, Stéphane Lathuilière, Zhun
Zhong, Moin Nabi, and Elisa Ricci. 2021. A unified
objective for novel class discovery. ArXiv preprint,
abs/2108.08536.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. ArXiv preprint, abs/2104.08821.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo,
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung
Chen. 2018. Slot-gated modeling for joint slot filling
and intent prediction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 753–757, New Orleans, Louisiana. Association
for Computational Linguistics.

Kai Han, Sylvestre-Alvise Rebuffi, Sébastien Ehrhardt,
Andrea Vedaldi, and Andrew Zisserman. 2020. Au-
tomatically discovering and learning new visual cat-
egories with ranking statistics. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Keqing He, Shuyu Lei, Yushu Yang, Huixing Jiang,
and Zhongyuan Wang. 2020. Syntactic graph con-
volutional network for spoken language understand-
ing. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2728–
2738, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

716



Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution ex-
amples in neural networks. In 5th International Con-
ference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Youngkyu Hong, Seungju Han, Kwanghee Choi,
Seokjun Seo, Beomsu Kim, and Buru Chang. 2021.
Disentangling label distribution for long-tailed visual
recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 6626–6636.

H. Kuhn. 1955. The hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly,
2:83–97.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019a.
An evaluation dataset for intent classification and out-
of-scope prediction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1311–1316, Hong Kong, China. As-
sociation for Computational Linguistics.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019b.
An evaluation dataset for intent classification and out-
of-scope prediction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1311–1316, Hong Kong, China. As-
sociation for Computational Linguistics.

Ting-En Lin and Hua Xu. 2019. Deep unknown intent
detection with margin loss. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5491–5496, Florence, Italy.
Association for Computational Linguistics.

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. Dis-
covering new intents via constrained deep adaptive
clustering with cluster refinement. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8360–8367. AAAI
Press.

Bing Liu and Ian R. Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In INTERSPEECH.

J. MacQueen. 1967. Some methods for classification
and analysis of multivariate observations.

Yutao Mou, Keqing He, Yanan Wu, Zhiyuan Zeng,
Hong Xu, Huixing Jiang, Wei Wu, and Weiran Xu.
2022. Disentangled knowledge transfer for OOD in-
tent discovery with unified contrastive learning. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 46–53, Dublin, Ireland. Associ-
ation for Computational Linguistics.

Libo Qin, Wanxiang Che, Yangming Li, Haoyang Wen,
and Ting Liu. 2019. A stack-propagation framework
with token-level intent detection for spoken language
understanding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2078–2087, Hong Kong, China. Association
for Computational Linguistics.

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan
Poplin, Mark A. DePristo, Joshua V. Dillon, and Bal-
aji Lakshminarayanan. 2019. Likelihood ratios for
out-of-distribution detection. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 14680–14691.

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.

Lei Shu, Yassine Benajiba, Saab Mansour, and Yi Zhang.
2021. Odist: Open world classification via distribu-
tionally shifted instances. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 3751–3756.

AB Siddique, Fuad Jamour, Luxun Xu, and Vagelis
Hristidis. 2021. Generalized zero-shot intent detec-
tion via commonsense knowledge. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1925–1929.

Nikhita Vedula, Nedim Lipka, Pranav Maneriker, and
Srinivasan Parthasarathy. 2020. Open intent extrac-
tion from natural language interactions. In WWW

’20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, pages 2009–2020. ACM / IW3C2.

Yanan Wu, Keqing He, Yuanmeng Yan, QiXiang Gao,
Zhiyuan Zeng, Fujia Zheng, Lulu Zhao, Huixing
Jiang, Wei Wu, and Weiran Xu. 2022. Revisit over-
confidence for ood detection: Reassigned contrastive
learning with adaptive class-dependent threshold. In
NAACL.

Hong Xu, Keqing He, Yuanmeng Yan, Sihong Liu, Zi-
jun Liu, and Weiran Xu. 2020. A deep generative
distance-based classifier for out-of-domain detection
with mahalanobis space. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1452–1460, Barcelona, Spain (Online).

717



International Committee on Computational Linguis-
tics.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019.
Open-world learning and application to product clas-
sification. In The World Wide Web Conference, WWW
2019, San Francisco, CA, USA, May 13-17, 2019,
pages 3413–3419. ACM.

Guangfeng Yan, Lu Fan, Qimai Li, Han Liu, Xiaotong
Zhang, Xiao-Ming Wu, and Albert Y.S. Lam. 2020.
Unknown intent detection using Gaussian mixture
model with an application to zero-shot intent classifi-
cation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1050–1060, Online. Association for Computational
Linguistics.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu,
Yanan Wu, Hong Xu, Huixing Jiang, and Weiran Xu.
2021a. Modeling discriminative representations for
out-of-domain detection with supervised contrastive
learning. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 870–878, Online. Association for Computa-
tional Linguistics.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Hong Xu,
and Weiran Xu. 2021b. Adversarial self-supervised
learning for out-of-domain detection. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5631–5639,
Online. Association for Computational Linguistics.

Zhiyuan Zeng, Hong Xu, Keqing He, Yuanmeng Yan,
Sihong Liu, Zijun Liu, and Weiran Xu. 2021c. Adver-
sarial generative distance-based classifier for robust
out-of-domain detection. ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7658–7662.

Hanlei Zhang, Hua Xu, and Ting-En Lin. 2021a. Deep
open intent classification with adaptive decision
boundary. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14374–
14382.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lv. 2021b.
Discovering new intents with deep aligned clustering.
In AAAI.

Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi
Feng. 2021c. Test-agnostic long-tailed recognition
by test-time aggregating diverse experts with self-
supervision. ArXiv preprint, abs/2107.09249.

Yinhe Zheng, Guanyi Chen, and Minlie Huang. 2020.
Out-of-domain detection for natural language un-
derstanding in dialog systems. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
28:1198–1209.

A Appendix

A.1 Original Intent Dataset Statistics
We show the detailed statistics of CLINC and
BANKING datasets in Table 6. Banking is class-
imbalanced, and the number of samples for each
class is shown in Fig 8. The three GID datasets
GID-SD GID-MD and GID-CD we constructed in
this paper, all maintain the same train/dev/test split
as the original dataset. Table 7 shows the number of
intents divided into IND and OOD per domain for
GID-MD-40%. Since CLINC and BANKING are
open source datasets, there is no license problem.

A.2 GID-imbalanced
For our imbalanced dataset GID-imbalance, we
show the distribution of the number of samples
per OOD category under the influence of different
imbalance ratio(ρ = 2, 3, 6) in Figure9. The larger
the imbalance ratio, the more significant the class
imbalance degree of the corresponding imbalanced
dataset.

A.3 Implementation Details
For a fair comparison of the various methods,
we use the pre-trained BERT model (bert-base-
uncased 9, with 12-layer transformer) as our net-
work backbone, and add a pooling layer to get in-
tent representation(dimension=768). Moreover, we
freeze all but the last transformer layer parameters
to achieve better performance with BERT back-
bone, and speed up the training procedure as sug-
gested in (Zhang et al., 2021b). Firstly, we use
labeled IND data to pretrain BERT model. For
pipeline method(k-means and DeepAligned), we
use the official implementation and hyperparame-
ters offered by (Zhang et al., 2021b) to realize it,
and the batch size is 512 and learning rate is 5e-5
for joint classification stage. For DeepAligned-
Mix, the training batch size is 512 and the learning
rate is 5e-5. For end-to-end method, IND head
and OOD head are two symmetrical MLPs (input
dimension is 768 and output dimension is the num-
ber of categories for IND/OOD), and we select
tanh as activation function as previous work. We
use SGD with momentum as optimizer, with linear
warm-up and cosine annealing (lrbase = 0.4, lrmin
= 0.01), and weight decay 10−4. The batch size
is always set to 512 for all experiments. Notably,
We use dropout (Gao et al., 2021) to construct aug-
mented examples and the dropout value is fixed at

9https://github.com/google-research/bert
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Dataset Classes Training Validation Test Vocabulary Length (max / mean)

CLINC 150 18,000 2,250 2,250 7,283 28 / 8.31
BANKING 77 9,003 1,000 3,080 5,028 79 / 11.91

Table 6: Statistics of CLINC and BANKING datasets.
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Figure 8: The number of samples for each class in Banking dataset.

Domains IND intents OOD intents

banking 10 5
credit_cards 8 7

kitchen_and_dining 9 6
home 6 9
work 10 5
utility 8 7
travel 9 6

auto_and_commute 10 5
small_talk 11 4

meta 9 6

Table 7: The number of intents divided into IND and
OOD per domain for GID-MD-40%

0.5. For what concerns pseudo-labeling, we use the
implementation of the Sinkhorn-Knopp algorithm
provided by (Caron et al., 2020) and we inherit all
the hyperparameters from (Caron et al., 2020), e.g.
n_iter = 3 and ϵ = 0.05. We use the SC value of
the validation data to select the best checkpoints.
All experiments use a single Tesla T4 GPU(16 GB
of memory). Table8 shows the comparison of the
epoch and training time required for the conver-
gence of the End-to-End method and DeepAligned.
We can see that the E2E method takes fewer epochs
to converge than the DeepAligned method. This
is because the DeepAligned method first performs
OOD clustering, and then uses the obtained OOD
pseudo-labels and IND ground-truth labels for joint
classification, which will lead to The OOD pseudo-
labels have serious errors, and these label errors
cannot be corrected in classification process, result-
ing in difficulty in model convergence. In addition,
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Figure 9: The distribution of the number of samples for
GID-imbalance

we can also see that the E2E method only increases
the time required for each epoch by 1.8s compared
to the classification stage of DeepAligned, which
indicates the efficiency of the SK algorithm.

Method training epoch training time

End-to-End 51 30s/epoch
DeepAligned(two-stages)

- clustering 67 27.6s/epoch
- classification 91 28.2s/epoch

Table 8: Comparison of training efficiency between
pipeline and End-to-End methods. We use the same
hardware.

A.4 Estimate K
Since we may not know the exact number of OOD
clusters, we use the following K estimation method
(Zhang et al., 2021b) to determine the number of
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Figure 10: The impact of adding different ratios of IND noise samples to the OOD training data on the performance
of each GID model.

clusters K before clustering. The method estimates
K with the aid of the well-initialized intent features.
We assign a big K ′ as the number of clusters at
first. As a good feature initialization is helpful for
partition-based methods (e.g., k-means), we use
the well pre-trained model to extract intent features.
Then, we perform k-means with the extracted fea-
tures. We suppose that real clusters tend to be
dense even with K ′, and the size of more confident
clusters is larger than some threshold t. Therefore,
we drop the low confidence cluster whose size is
smaller than t, and calculate K with:

K =
K′∑

i=1

δ (|Si| >= t) (5)

where |Si| is the size of the ith produced cluster,
and δ(·) is an indicator function. It outputs 1 if
condition is satisfied, and outputs 0 if not. Notably,
we assign the threshold t as the expected cluster
mean size N

K′ in this formula.

A.5 Effect of IND Data
We analyze the impact of the number of samples
per IND class on the performance of each model.
Fig 11 shows the trend of model performance as the
number of IND samples for each class decreases.
Overall, the performance of our end-to-end method
is much better than the baselines. Moreover, with
the decrease of the amount of in-domain data, all
methods show varying degrees of performance fluc-
tuation. We observe the changes of IND F1 and
OOD F1, and find IND F1 generally shows a down-
ward trend, especially for DeepAligned-Mix. We
believe that this is because the number of IND sam-
ples in each category is reduced, resulting in the
biased joint classification of IND&OOD towards
the OOD category. DeepAligned-Mix learns both
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Figure 11: Effect of IND data for GID. The left subfig
denotes IND F1 and the right subfig denotes OOD F1.

IND and OOD by clustering, which will lead to
inaccurate pseudo-labels obtained by IND, further
degrading the performance. As for OOD F1, due to
the reduced number of IND samples, the model can
learn less IND prior knowledge, thus affecting the
performance of OOD. Therefore, GID in the small
labeled IND scenario is also a challenge worthy of
attention.

A.6 Silhouette Coefficient (SC)
Following Zhang et al. (2021b), we use the clus-
ter validity index (CVI) to evaluate the quality of
clusters obtained during each training epoch after
clustering. Specifically, we adopt an unsupervised
metric Silhouette Coefficient (Rousseeuw, 1987)
for evaluation:

SC =
1

N

N∑

i=1

b (Ii)− a (Ii)
max {a (Ii) , b (Ii)}

(6)

where a (Ii) is the average distance between Ii and
all other samples in the i-th cluster, which indicates
the intra-class compactness. b (Ii) is the smallest
distance between Ii and all samples not in the i-th
cluster, which indicates the inter-class separation.
The range of SC is between -1 and 1, and the higher
score means the better clustering results.
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Abstract

Medication recommendation is a crucial task
for intelligent healthcare systems. Previous
studies mainly recommend medications with
electronic health records (EHRs). However,
some details of interactions between doc-
tors and patients may be ignored or omit-
ted in EHRs, which are essential for auto-
matic medication recommendation. There-
fore, we make the first attempt to recommend
medications with the conversations between
doctors and patients. In this work, we con-
struct DIALMED, the first high-quality dataset
for medical dialogue-based medication rec-
ommendation task. It contains 11, 996 med-
ical dialogues related to 16 common diseases
from 3 departments and 70 corresponding com-
mon medications. Furthermore, we propose
a Dialogue structure and Disease knowledge
aware Network (DDN), where a QA Dialogue
Graph mechanism is designed to model the di-
alogue structure and the knowledge graph is
used to introduce external disease knowledge.
The extensive experimental results demonstrate
that the proposed method is a promising solu-
tion to recommend medications with medical
dialogues. The dataset and code are available
at https://github.com/f-window/DialMed.

1 Introduction

The outbreak of COVID-19 has challenged the
healthcare systems and led to millions of patients
facing delays in diagnosis and treatment. As an
essential complement to the traditional face-to-
face medicine, telemedicine relieved the therapeu-
tic stress caused by the diversion of medical re-
sources. According to the report of WeDoctor1,
an online health consultation platform in China,
about 1.2 million patients conducted online medi-
cal consultations during the COVID-19 Pandemic.

*Both authors contributed equally to this research.
†Corresponding author.
1https://www.guahao.com/

Hello, doctor. What medicine can pregnant women
take for a cold ? (female, 31)
医生您好。想问一下，孕妇感冒能吃什么药（女，31岁）

Hello, what are the symptoms?
您好，都有哪些症状？

I am tired and have a runny nose with a sore throat.
It has last for 16 weeks + 5 days as of today.
浑身没劲儿，流鼻涕，带着嗓子上面疼。到今天为止
16周+5天。

How many months are you pregnant?
请问怀孕几个月了？

You could take Shuanghuanglian Oral Liquid a-
nd Pudilan Oral Liquid. They are safe for preg-
nancy.
你可以服用双黄连口服液和蒲地蓝口服液，这两个药对
妊娠都是安全的。

Medical Dialogue Annotated Info

Disease:
Upper 
Respiratory 
Tract 
Infection
疾病:
上呼吸道感染

Medications: 
Shuanghuangli
an Oral Liquid 
& 
Pudilan Oral 
Liquid
药物:
双黄连口服液
& 蒲地蓝口服
液

Thank you for your replay!
感谢你的回复！Removed

Remained

Figure 1: A typical medication consultation dialogue.
Here, the disease is Upper Respiratory Tract Infection,
and the medication is Shuanghuanglian Oral Liquid
and Pudilan Oral Liquid.

Telemedicine can increase the availability of medi-
cal treatment, reduce healthcare costs, and improve
the quality of care. Consequently, it has attracted
increasing attention due to its vast application po-
tential.

Our study found that around 31% of online con-
sultations are about what medications the patients
should take based on their current conditions2. Fig-
ure 1 demonstrates a typical medication consulta-
tion dialogue. The patient reported the health issues
initially, with some personal information, such as
gender and age. Then the doctor asked for further
information (e.g., symptoms and disease history)
about the patient. Finally, the doctor provided med-
ication advice based on the gathered information
and clinical experience.

Existing studies on medication recommendation
are primarily based on EHRs (Zhang et al., 2017;
Shang et al., 2019b; An et al., 2021), accumula-
tively collected according to a diagnostic proce-
dure in clinics. However, the doctors will omit
some details of interactions with patients in EHRs,

2Refer to Appendix D.1 for details of statistic.
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which are essential for the automatic medication
recommendation. Compared to EHRs, medical dia-
logues retain original interactions between doctors
and patients, containing more rich information. To
this end, medical dialogue-based medication rec-
ommendation is a promising and challenging task.

Therefore, in this work, we study the new task,
namely dialogue-based medication recommenda-
tion. Due to the lack of available datasets, we
firstly construct a high-quality online medical dia-
logues dataset (DIALMED) for this task. It contains
11, 996 consultation dialogues, 16 diseases from
3 different departments, and 70 related common
medications.

Then, to further advance the research of this
task, we propose a Dialogue structure and Disease
knowledge aware Network (DDN). In DDN, for
the input dialogue, we first utilize a pre-trained
language model to extract the semantic informa-
tion of each utterance. A mechanism named QA
Dialogue Graph is designed to understand the ques-
tions&answers implied in utterances, and then we
apply graph attention network on this QA graph
to get the dialogue embedding. Meanwhile, for
the input disease, we use its identity to query the
entity in a knowledge graph CMeKG3, and input
the dialogue embedding to a graph attention net-
work to get contextual disease embedding. The
two embeddings are fused to make the medication
prediction. Moreover, we conduct extensive ex-
periments to show that the proposed method can
effectively recommend medications with medical
dialogues.

Our contributions can be summarized as follows:
• We construct the first high-quality human-

annotated dialogue dataset for dialogue-based
medication recommendation task.

• We propose a novel medication recommenda-
tion framework which models dialogue struc-
ture with QA Dialogue Graph and introduces
external disease knowledge.

• We conduct extensive experiments to demon-
strate DDN can extract the essential informa-
tion to make medication recommendation ef-
fectively.

2 Related Work

Medication Recommendation. Existing med-
ication recommendations are mainly based on

3http://cmekg.pcl.ac.cn/

EHRs. It could be categorized into instance-
based and longitudinal-based recommendation
methods (Shang et al., 2019b). Instance-based
methods are based on the current health condi-
tions extracted from recent visit (Zhang et al., 2017;
Wang et al., 2019a). For example, (Zhang et al.,
2017) proposed a multi-instance multi-label learn-
ing framework to predict medication combination
based on patient’s current diagnoses. Longitudinal-
based methods leverage the temporal dependencies
among clinical events (Choi et al., 2016; Le et al.,
2018; Shang et al., 2019b,a; Wang, 2020; He et al.,
2020; Wang et al., 2021; Yang et al., 2021). Among
them, (Shang et al., 2019a) combined the power of
graph neural networks and BERT for medication
recommendation. (Yang et al., 2021) proposed a
drug-drug interactions (DDI)-controllable drug rec-
ommendation model to leverage drugs’ molecule
structures and model DDIs explicitly.

Unlike the work mentioned above, dialogue-
based medication recommendation task is more
challenging in practice due to the noisy and sparse
data. Because of the privacy issue, it is difficult
to get historical dialogues of a patient on online
consultation platforms. So we perform the medica-
tion recommendation solely based on the current
medical dialogues.

Graph Neural Networks. Graph neural net-
works have attracted a lot of attention for pro-
cessing data with graph structures in various do-
mains (Zhou et al., 2020). For example, (Kipf
and Welling, 2017) proposed the graph convolu-
tional networks (GCN) . With integration of atten-
tion mechanisms, graph attention networks(GAT)
(Veličković et al., 2018) has become one of the
most popular methods in graph neural networks.

Recently, some works have applied GAT to the
dialogue modeling. (Chen et al., 2020) used Graph
attention and recurrent GAT to fully encode di-
alogue utterances, schema graphs, and previous
dialogue states for dialogue state tracking. (Qin
et al., 2020) proposed a co-interactive GAT layer
to simultaneously solve both dialog act recognition
and sentiment classification task. In this work, we
utilize GAT to model the intra- and inter-speaker
correlations to propagate semantic on the QA Di-
alogue Graph and extend the GAT on knowledge
graph to introduce external knowledge.
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3 Corpus Description

In this section, we introduce the construction de-
tails and statistics of DIALMED, and its compari-
son with other studies.

3.1 Construction Details

Our dataset is collected from Chunyu-Doctor4,
which is a popular Chinese medical consultation
website for doctors and patients. The conversations
between doctors and patients contain rich but com-
plex information, mainly related to the patients’
current conditions. The diagnosed diseases and
symptoms both are indispensable for accurate med-
ication recommendation. Considering the complex-
ity of the symptoms, we decide to utilize informa-
tion from explicit disease and implicit symptoms in
this paper. So we annotate the diagnosed diseases
and recommended medications (replaced with a
mask token to keep the original dialogue structure).
For the example in Figure 1, we annotate the dis-
ease Upper Respiratory Tract Infection, and replace
the medications Shuanghuanglian Oral Liquid and
Pudilan Oral Liquid with special token [MASK].
Moreover, the future utterances after the point of
recommendation are removed to make DIALMED

more realistic, as the decision of doctors should not
be influenced by future contexts.

The procedure of annotation consists of two
parts, labeling and normalization of medications
and diseases. First, we select 16 common diseases
and the corresponding common medications from
3 departments (i.e., respiratory, gastroenterology,
and dermatology) with the guidance of a doctor.
These diseases have abundant medication consul-
tations online. Then three annotators with relevant
medical backgrounds are involved. Each dialogue
is annotated by two annotators and will be further
judged by another one if there is any inconsistency.
The annotation consistency, i.e., the Cohen’s kappa
coefficient (Fleiss and Cohen, 1973) of the labelled
dialogues is 88.4%. For the quality of dataset, con-
versations containing unsuitable medications for
patients would be discarded.

Secondly, we normalize the medications since
there are many generic names, trade names, or
colloquial expressions for the same drug in dia-
logues. Specifically, different brands of the same
drug are grouped into one cluster and normalized as
a common name from DXY Drugs Database5. For

4https://www.chunyuyisheng.com/
5http://drugs.dxy.cn/

example, Omeprazole enteric-coated tablet and
Omeprazole tablet are normalized to Omepra-
zole. Similarly, we normalize the different names
of diseases into ICD-10 standard names. The di-
alogues, hard to give diagnosed diseases or given
diseases out of our scope, would be marked as a
special placeholder, None or Others.

3.2 Dataset Statistics

Top of Table 2 summarizes the statistics of
DIALMED. The scenario of dialogues in the dataset
is similar to outpatient procedure, so the num-
ber of medicines per dialogue is relatively small.
Then, the frequency of medications and diseases
are shown in Figure 2(a) and Figure 2(b) respec-
tively. The distributions of quantity demonstrate
that DIALMED aligns with the real-world case.

Compared to the other medical dialogue datasets
in Table 1, our dataset has three advantages: (1)
DIALMED has the largest volume among the man-
ual annotation datasets, as unlabeled datasets are
mainly constructed for the task of dialogue gen-
eration. (2) Though the future contexts after rec-
ommendation are removed, the average number
of dialogue turns in DIALMED still remains high
compared to other datasets. It is mainly bene-
fited from our evaluation for inclusion of short
dialogues in DIALMED during the labeling pro-
cess. (3) We carefully choose the fields suitable
for medication recommendation and avoid coarsely
expanding the scope of medical domains, which
makes DIALMED have a higher quality.

The panoramas of medications & diseases’ fre-
quency could be found in Appendix D.2.

3.3 The comparison with other studies

To our best knowledge, DIALMED is the first
dataset for the medication recommendation based
on medical dialogues. It has the following differ-
ences with the existing work.

Dataset Medical dialogue has attracted increas-
ing attention in recent years. Although there are
medication mentions in many medical dialogue
datasets, the distributions are fragmentary and the
authors do not categorize and normalize these drug
mentions which would lead to label explosion. For
instance, medication mentions, Omeprazole enter-
iccoated tablet, Omeprazole tablet and Omepra-
zole, which may occur in dialogues would be three
classes without normalization. In fact, they are
essentially equivalent in the eyes of doctors. By
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Dataset #Task #Domain #Disease #Dialogue #Avg. Turn #Annotation

MZ(Wei et al., 2018) Diagnosis Pediatrics 4 710 - Man.
DX(Xu et al., 2019) Diagnosis Pediatrics 5 527 5.34 Man.
CMDD(Lin et al., 2019) Diagnosis Pediatrics 4 2,067 42.09 Man.

SAT(Du et al., 2019) Extraction 14 - 2,950 - Man.
MIE(Zhang et al., 2020) Extraction Cardiology 6 1,120 16.19 Man.
MSL(Shi et al., 2020) Extraction Pediatrics 5 2,652 - Man.
MedDG(Liu et al., 2020) Extraction Gastroenterology 12 17,864 21.60 Man.& Semi-Auto.

COVID-EN(Yang et al., 2020) Generation COVID-19 1 603 8.7 None
COVID-CN(Yang et al., 2020) Generation COVID-19 1 1088 2.0 None
MedDialog-EN(Zeng et al., 2020) Generation 51 96 257,332 2 None
MedDialog-CN(Zeng et al., 2020) Generation 29 172 3,407,494 3.3 None
Chunyu(Lin et al., 2021) Generation - 15 12,842 24.7 Rule
KaMed(Li et al., 2021) Generation 100 - 63,754 11.62 None
ReMeDi(Yan et al., 2022) Diag.&Ext.&Gene. 30 491 1,557 16.34 Man.

DIALMED(ours) Medication R&G&D 16 11,996 10.94 Man.

Table 1: Comparison between our dataset and other related medical dialogue datasets. Extraction, Generation
and Medication mean information extraction, dialogue generation and medication recommendation separately.
R&G&D, Man. and Semi-Auto are abbreviations of Respiratory&Gastroenterology&Dermatology, Manual and
Semi-Automated respectively.

#Dial. #Dise. #Med. Avg.M Avg.T Max.T Avg.U Max.U

Resp. 4,859 4 45 2.06 10.76 52 18.18 374
Gastro. 3,818 9 39 1.88 13.05 58 16.70 463
Derma. 3,319 3 27 1.62 8.77 44 18.82 453
Total 11,996 16 70 1.88 10.94 58 17.76 463

Train. 9,605 16 70 1.88 10.95 58 17.74 463
Dev. 1,192 16 70 1.89 11.25 49 17.45 298
Test. 1,199 16 70 1.89 10.58 42 18.27 293

Table 2: Data statistics of DIALMED. M, T, and U
represent medicine, dialogue turns, and utterance.
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Figure 2: The frequencies of medications and diseases.
Top 10 are exhibited for the constraint of space.

contrast, we reduce the complexity caused by the
doctors’ preferences for different brands through
categorization and normalization. DIALMED is
developed for drug recommendation.

Task Drug recommendation is a sub-task of med-
ical diagnosis. According to patients’ questions,
the objectives of current diagnosis systems are to
generate the optimal clinical responses which may
be intended as one of greeting, inquiry or diagnosis.
Even if there contains drug mentions in responses,
it is just one of the system’s options. Drug recom-
mendation is a key task and requires specialized
dataset. DIALMED goes a step forward.

Scenario There are remarkable distinctions be-
tween DIALMED and MIMIC-III (Johnson et al.,
2016), an EHR database which is relied on in cur-
rent medication recommendation study. The sce-
nario of the former is outpatient procedure while
the data from the latter is generated from Intensive
Care Units (ICU). In MIMIC-III, for example, the
number of medications is 145, the average number
of medications in each visit is 8.80, and the average
number of diagnosis in each visit is 10.51. In con-
trast, the labels in medical dialogues are relatively
sparse, leading to a more challenging task.

4 Our Approach

In this section, we first introduce the dialogue-
based medication recommendation task, and then
describe the proposed DDN in detail.
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4.1 Problem Formulation
In the online medical dialogue setting, each dia-
logue consists of a sequence of utterances from the
patient and the doctor. Formally, each dialogue
can be represented as Dn = {u1, u2, ..., u|Dn|},
where n ∈ {1, 2, ..., N}, N denotes the total
number of dialogues in the dataset, and |Dn| rep-
resents the number of utterances in a dialogue
Dn. Each utterance can be represented as ui =

{w1
i , ..., w

j
i , ..., w

|ui|
i }, where wji is the j-th word

in ui and |ui| denotes the number of words in ui.
We collect all the diseases and medications men-
tioned in the dataset to construct a disease cor-
pus S and medication corpusM. To avoid nota-
tion clutter, we hereinafter remove the subscript
n as we only consider a single dialogue instance.
Formally, given the consultation dialogue D and
the diagnosed disease d as inputs, dialogue-based
medication recommendation aims to recommend
potential treatment medications y in M, where
y ∈ {0, 1}|M|.

4.2 Model Overview
The proposed end-to-end framework is presented
in Figure 3, consisting of two parts: (1) Dialogue
Encoder, encoding the medical dialogues between
patient and doctor by comprehensively capturing
the semantic information and dialogue structure.
(2) Disease Encoder, incorporating external med-
ical knowledge based on the disease information
from the dialogue and knowledge graph.

4.3 Dialogue Encoder
Dialogues contain two types of important informa-
tion: (1) the rich semantic information, (2) strong
structural correlations between utterances.

Utterance Encoding Pre-trained language mod-
els (e.g., RoBERTa) are utilized to capture the se-
mantic information in utterances. First, special
tokens [CLS] (capturing utterance representation)
and [SEP] (separating different utterances) are in-
serted at the beginning and end of each utterance
token sequence ui. Then the position embedding
of each token in a utterance is calculated. In addi-
tion, two types of speaker embeddings (i.e., Doctor
and Patient) are proposed to make model aware of
the speaker role of the utterance. The model takes
the sum of three embeddings as input and outputs
the representation of [CLS] as the utterance em-
bedding h. So a dialogue D can be represented as
hD = {h1,h2, ...,h|D|}.

QA Dialogue Graph In medical conversations,
the interactions between doctors and patients tend
to be in the form of questions and answers. For
example, in Figure 3, the doctor asked two ques-
tions in u2 and u3, and the patient gave the answers
in u4. So it’s important to capture the structure of
QA pairs in conversation in order to understand the
whole medical dialogue. We propose a new method
to model the dialogue based on the observation that
there is a high possibility of question-and-answer
relations between adjacent utterances.

Specifically, we design a mechanism named QA
Dialogue Graph, where each utterance is repre-
sented as a node in graph, and consecutive utter-
ances spoken by the same speaker is represented
as a block, e.g., u2 and u3 constitute a block with
two nodes, and u4 is another block with one node.
Then the constructions of edges between nodes can
be defined as follows:

• Within a block, each node connects with all
other nodes in the block. This represents the
intra-speaker correlation and ensures the in-
formation from the same speaker propagates
among utterances within a local context.

• For two adjacent blocks, each node in a block
connects with all nodes in the other block.
This represents the inter-speaker correlation
and ensures the information flow between doc-
tors and patients within consecutive contexts.

An example of the adjacency matrix of the dia-
logue is shown in Figure 3. In general, when com-
pared to previous works on dialogue modeling, QA
Dialogue Graph has two advantages. Firstly, the
construction of graphs does not require additional
supervised information (Joshi et al., 2021; Feng
et al., 2021). Secondly, our method comprehen-
sively captures the structural and semantic infor-
mation of QA pairs, which is key to understanding
conversations (Qin et al., 2020; Shen et al., 2021b).

Dialogue Encoding GAT is employed to auto-
matically aggregate semantic and structure features
on QA Dialogue Graph. In particular, the l-th layer
representation of a vertex can be computed as:

h
(l)
i = σ(

∑

j∈Ni

αijWhh
(l−1)
j ) (1)

where Ni is the first-order neighbors of vertex i,
Wh ∈ Rdl×dl−1 is a trainable weight matrix, and
σ is a nonlinear activation function. The weight
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Figure 3: The framework of the proposed DDN for dialogue-based medication recommendation.

αij which determines the relatedness between two
vertices can be calculated following (Veličković
et al., 2018):

αij =
exp

(
σ(aTWh[hi ||hj ])

)
∑
k∈Ni

exp (σ(aTWh[hi ||hk]))
(2)

where a ∈ R2dl is a trainable weight matrix, and σ
is the LeakyReLU activation function. Finally, we
apply the attention pooling on nodes embedding to
obtain the dialogue representation hD, where Wa

is a learnable parameter and h(l) is the representa-
tion of utterances after lth layer.

α̂ = softmax(Wah
(l)) (3)

hD =
∑

i

α̂ih
(l)
i (4)

4.4 Disease Encoder
Disease knowledge is crucial for delivering ac-
curate medication recommendation. In this pa-
per, we incorporate knowledge from CMeKG, a
high-quality Chinese medical knowledge graph.
TransR (Wang et al., 2019b) is utilized to get the
initial entities embedding. Given a disease d, we
first identify the corresponding entity in CMeKG,
and then a KG subset with K hops starting from
the disease entity is sampled randomly, finally the
GAT network is used to get the disease embedding
under the dialogue context.

Here, we fuse the entity, relation and dialogue
information to get the attention scores:

βij =
exp

(
σ(aT [W [hi,hj ] ||Wrrφ ||WDhD])

)
∑
j∈Ni

exp (σ(aT [W [hi,hj ] ||Wrrφ ||WDhD]))
(5)

where σ is the LeakyReLU function, hi, hj and rφ
are the embeddings of node i, j and their relation

separately. And W , Wr, and WD are learnable
weights to transform node, relation and dialogue
embeddings, respectively. Then the l-th layer of
disease embedding can be obtained as follows:

s
(l)
i = σ(

∑

j∈Ni

βijWkh
(l−1)
j ) (6)

The contextual embedding of last layer is the dis-
ease d’s representation, denoted by sd.

For dialogues with None or Others placeholder
rather than a disease label, a learnable vector ŝd
would be assigned to sd.

4.5 Model Inference and Optimization
The dialogue hD and disease sd are fused by the
fusion function to make prediction. In this work,
we concatenate them and then fed it into decoder
to make the medication prediction as follows:

y = σ(Wo[hD; sd] + bo) (7)

where Wo ∈ R|M|×2d and bo ∈ R|M| are train-
able weight matrices for the decoder, σ is the sig-
moid activation function. Here, we reserve all the
candidates whose probability is higher than the
threshold of 0.5 as the recommended treatment
medication combination.

Since medication combination recommendation
is treated as a multi-label classification task (Shang
et al., 2019b; Yang et al., 2021), we utilize the
binary cross-entropy loss as the objective function,
which can be formulated as:

L = −
|D|∑

i=1

|M|∑

j=1

(y
(i)
j log ŷ

(i)
j +(1−y(i)j ) log(1− ŷ(i)j )) (8)

where |D| is the number of dialogues in the training
set, |M| is the number of medications. y(i)j is the
ground truth label which equals 1 if medication
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j is prescribed by the doctor in dialogue i, and
0 otherwise. ŷ

(i)
j is the predicted probability of

recommending medication j.

5 Experiments

5.1 Experimental Setup

Dataset In our experiments, we divide the data
into train/development/test dialogue sets as shown
in Table 2. The average number of medications in
each dialogue is approximately the same, as well as
the the average length of utterances and dialogues,
meaning the distribution of the data is relatively
consistent among three sets.

Implementation Details The pretained model
we use is Chinese RoBERTa-base model. The learn-
ing rate and the batch size are set as 2× 10−5 and
8, respectively. Adam optimizer is utilized to op-
timize the model. All methods are implemented
and trained using Pytorch on GeForce RTX 3090
GPUs. The results are the mean of five trainings.

Baselines Since there is no standard baselines
for this task, we implement several methods of
related tasks, including statistics-based (i.e., TF-
IDF (Salton and Buckley, 1988)), RNN-based
(i.e., LSTM-flat, LSTM-hier, RETAIN (Choi
et al., 2016) and DAG-ERC (Shen et al.,
2021b)), and transformer-based methods (i.e., Hi-
TANet (Luo et al., 2020), LSAN (Ye et al., 2020))
and DialogXL (Shen et al., 2021a). The RE-
TAIN, HiTANet and LSAN are strong baselines
for EHR-based medication recommendation or risk
prediction. DAG-ERC and DialogXL are the SOTA
methods at Emotion Recognition in Conversation
(ERC). Among them, LSTM-hier takes the dialogue
structure into consideration, and LSAN and Di-
alogXL are modified to incorporate disease knowl-
edge. Refer to Appendix B.1 for more details.

Evaluation Metrics We adopt two commonly
used metrics, namely Jaccard and F1 scores, to
evaluate the model performance.

5.2 Main Results

Table 3 shows performances of all methods under
the metric of Jaccard and F1 on four datasets. The
results clearly indicate that DDN has achieved the
best performances among all baselines. Particu-
larly, DDN improves 6.35%, 5.14%, 3.95%, and
8.31% compared with the second best method (i.e.,
DialogXL) at Jaccard, respectively. Further,
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DDNw/o DG

DDNw/o KG

(b) F1 on four datasets

Figure 4: Performance comparison of DDN and its
variants.

RETAIN and LSTM-hier outperform LSTM-flat,
demonstrating the dialogue structure is important
for the dialogue understanding. And LSAN, Di-
alogXL outperforms HiTANet, indicating that dis-
ease knowledge is also essential for the dialogue
modeling. Our well-designed model DDN consid-
ers both of the above and achieves the best per-
formance. In addition, it is worth noting that the
performance varies over three departments, which
may attribute to the considerable difference of med-
ication and disease frequencies between different
departments.

5.3 Ablation Study

Figure 4 summarizes the contributions of QA Dia-
logue Graph and disease knowledge of our model.
We notice that by removing the QA Dialogue
Graph, the variant DDNw/oDG shows considerable
performance decrease at both Jaccard and F1 com-
pared with DDN, especially on three departments
datasets. It demonstrates that dialogue graph struc-
ture is important for the medical information ex-
traction in dialogue-based medication recommen-
dation task. Similarly, by removing the Knowledge
Graph module, DDNw/oKG also shows similar per-
formance decrease trends, indicating that disease
knowledge can improve the medication recommen-
dation performance. This is reasonable and accords
with the actual medication consultation situations.

5.4 Task Feasibility Analysis

To prove the feasibility of dialogue-based medi-
cation recommendation, we provide incomplete
discourses to DDN during the inference process to
explore whether the dialogue can provide necessary
medical information. Figure 5 shows the model per-
formances under different portions of discourses.
We can see that with the increasing of dialogue
discourse percentage, the performance gets better,
especially within the first 20% and the last 20%.
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All Data Respiratory Gastroenterology Dermatology

Type of Model Model Jaccard F1 Jaccard F1 Jaccard F1 Jaccard F1

Statistics TF-IDF(Salton and Buckley, 1988) 21.25±0.41 35.05±0.56 16.06±0.44 27.68±0.66 23.85±0.40 38.52±0.52 28.84±0.14 44.77±0.17

RNN-Based

LSTM-flat 27.50±1.09 42.54±1.22 18.07±0.44 30.18±0.64 31.31±1.33 47.18±1.59 32.69±1.71 48.55±1.18

LSTM-hier 30.20±0.47 46.39±0.56 22.86±0.42 37.21±0.56 32.90±0.93 49.51±1.05 36.00±0.50 52.94±0.54

RETAIN(Choi et al., 2016) 31.16±0.82 42.16±0.99 21.13±0.64 30.49±0.96 36.70±0.86 48.54±0.73 43.19±1.06 54.14±1.20

DAG-ERC(Shen et al., 2021b) 29.08±0.56 44.05±0.70 23.74±0.76 35.71±1.02 36.16±0.46 53.80±0.52 31.18±1.05 47.52±1.23

Transformer

HiTANet(Luo et al., 2020) 30.75±0.69 44.57±0.83 22.01±1.04 33.62±1.44 33.95±1.26 48.39±1.26 39.17±1.93 53.41±2.21

LSAN(Ye et al., 2020) 34.33±0.58 46.14±0.45 26.11±1.06 38.89±1.01 39.28±0.22 52.49±0.62 50.29±1.24 57.90±1.09

DialogXL(Shen et al., 2021a) 36.27±0.34 53.23±0.40 27.12±0.24 42.67±0.36 40.91±0.14 58.06±0.15 48.68±0.81 65.48±0.66

DDN(Ours) 42.62±0.35 59.77±0.34 32.26±1.25 48.77±1.43 44.86±0.54 61.93±0.52 56.99±0.53 72.60±0.43

Table 3: Performance (%) comparison of DDN with baseline methods over the overall and three departments
datasets. The best result in each column is highlighted in boldface. The performance gain of our method over all
baselines is statistically significant with p < 0.05 under t-test.
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Figure 5: Average Jaccard scores on different
percents(%) of dialogue discourse. In this setting, we
choose dialogues with more than four turns in test set.

This may be because that the first and last parts
of dialogue contain much patient complaints and
symptoms that are closely related to the medica-
tions. The results demonstrate that recommending
medication based on medical dialogues is feasible.

5.5 Error Analysis

Although we have elaborately designed a model
for the task, the results are not so well satisfactory.
So we make detailed analysis of the error cases in
the test set. Table 4 summarizes the statistics of
our defined five type of errors. We can see that
(1) 86.38% of the cases (#3, #4, #5) predict wrong
medications, which is mainly caused by DDN fail-
ing to distinguish the medications with similar ef-
fect. (2) 7.20% of the cases predict none labels,
which can be attributed to that these dialogues pro-
vide a little disease-related information.

No. Type of error # Cases

#1 P ⊆ ∅ 65(7.20%)
#2 P ⊂ T & P ̸⊆ ∅ 58(6.42%)
#3 T ⊂ P 182(20.16%)
#4 T ̸⊆ P & P ̸⊆ T & P ∩ T ̸⊆ ∅ 299(33.11%)
#5 T ̸⊆ P & P ̸⊆ T & P ∩ T ⊆ ∅ 299(33.11%)
Total - 903

Table 4: The statistics of errors on test set. P and T are
the predicted and golden label set, respectively.

Hello, doctor. In March this year, I had a 
duodenal ulcer, bleeding, and was hospita
lized. Stomach rises a bit uncomfortable a
nd bloating in the night a week recently. I
s it recrudescent?
Duodenal ulcers are indeed prone to recur
rence or inflammation.
Can you prescribe some medicine for me? 
I don't have time to go to the hospital righ
t now.
Besides what you said, do you have any oth
er complaints? Like acid reflux, heartburn.
No. What does heartburn mean? I don‘t ha
ve this feeling at ordinary times. At presen
t, I wake up uncomfortably in some nights.

I suggest you take [MASK], [MASK], [MASK].

TF-IDF

LSTM-flat

LSTM-hier

RETAIN

DAG-ERC

LSAN

DDN(Ours)

Disease: Duodenitis

Sample
Omeprazole
Digestive enzymes
2 Missed
Omeprazole
2 Missed
Omeprazole
Mosapride
Digestive enzymes
1 Missed
Mosapride
2 Missed
Omeprazole
2 Missed

Omeprazole
2 Missed

Omeprazole
Mosapride
Glutamine

Medications

P :

D :

P :

D :

P : Almost no symptoms during the day.

P :

D :

HiTANet
Mosapride
2 Missed

DialogXL
Omeprazole
2 Missed

Figure 6: The sample is extracted from the DIALMED
test set. Golden labels of this case are Omeprazole,
Mosapride and Glutamine. The "Missed" means the
medication is in golden labels but not be predicted, and
the underlined drugs in red represent the predicted med-
ications that are not in ground truth.

5.6 Case Study

We further provide a case study to illustrate the
superiority of DDN. Figure 6 shows the medical
dialogue and the medications recommended by all
baselines and our method. The baselines either
miss some medications, e.g., LSTM-flat, RETAIN,
HiTANet, LSAN, or give the wrong drugs, e.g.,
TF-IDF, LSTM-hier. DDN takes full account of
Duodenitis-related information from the dialogue
(e.g., the symptoms in chief complaint and past
medical history) and the external knowledge graph.
It recommends Omeprazole (inhibiting gastric acid
secretion) and Mosapride (promoting gastric dy-
namics), as well as Glutamine which is omitted by
all baselines.
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6 Conclusions

In this paper, we studied a new task, namely
dialogue-based medication recommendation. First,
we presented the first high-quality medical dialogue
dataset DIALMED for this task. And then we im-
plemented several baselines, as well as designed a
dialogue structure and external disease knowledge
aware model. Experimental results show that med-
ication recommendation quality can be enhanced
with the help of dialogue structure and external
disease knowledge.

Ethical considerations

Data in DIALMED is publicly collected from Chun-
yuyisheng, and personal information (e.g., user-
names) is preprocessed. The annotating process
is as described in Section 3. Furthermore, to en-
sure the quality of dataset, we paid the annotators
1 yuan ($0.16 USD) per label. The applications of
machine learning in medical treatment would in-
evitably raise ethical issues. But the research on AI
medicine should not be stopped by this, since the
purpose of such research is how to make machines
better serve human beings. We have seen many
advanced achievements (Lin et al., 2021; Li et al.,
2021; Zhang et al., 2020; Liu et al., 2020; Lin et al.,
2019; Xu et al., 2019; Wei et al., 2018) in this field.
For this study, the ethical issue is that there may
cause bad cases in practical application. However,
individual errors could be reduced by making doc-
tors responsible for decisions while machines are
used as assistants.
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A Corpus

A.1 Details of corpus construction
First of all, diseases and related medications were
identified in a dialogue. Secondly, we selected and
annotated those dialogues containing drugs in our
medication list. To speed up tagging process, we
built an annotation tool based on this task. For
each raw medical dialogue, the annotators need to
annotate the disease of patients and medications
recommended by doctors. We believe that the con-
text after the doctor recommending the drug is not
meaningful for drug inference. Due to the emer-
gence of new medications in the labeling process
and existence of ambiguity on recommendation,
two additional annotation processes were carried
out. Next we will focus on the processing of dis-
eases and medications.

Disease Processing. With the guidance of a doc-
tor, we select 16 diseases from 3 departments
(i.e., respiratory, gastroenterology and dermatol-
ogy) with following reasons: (1) they are common
diseases and research on them have more prac-
tical value. (2) they could be consulted online
and there are abundant medication consultations.
As described by Section Corpus Description, we
normalize the diseases to improve the quality of
DIALMED, e.g., chronic gastritis and acute gas-
tritis are mapped to gastritis. The dialogues with-
out explicit disease information or diseases in our
scope were marked as None or Others. We mark
one disease according to the chief complaint of
patients who have more than one disease, because
patients have only one complaint in most diagnostic
scenarios.

Medication Processing. As for medications, the
ones we choose are commonly prescribed by doc-
tors. Considering the differences between tradi-
tional Chinese medicines and Western medicine,
both are included to achieve complementary ad-
vantages. Since there are many generic names,
trade names and colloquial expressions for the
same drug in conversations, it is significant to nor-
malize the drug to a single label. For example,
Omeprazole enteric-coated tablet and Omepra-
zole enteric-coated capsule could be mapped to
Omeprazole. For compound medicines, we com-
bine drugs that have the same ingredients into one,
e.g., Tylenol represents all medicines that contain
acetaminophen, pseudoephedrine hydrochloride,
dextromethorphan hydrobromide and chlorpheni-

ramine maleate. Due to space constraints, more
normalization of diseases and medications could
be found in our repository6.

B Experiments

B.1 Baselines
• TF-IDF. This is a traditional bag-of-word

model for text classification. We view each
dialogue as text and the corresponding medi-
cation as label, and train a classification model
based on TF-IDF features of words.

• LSTM-flat. This is a LSTM-based method. It
concatenates all the sentences in a dialogue as
a long sentence and feeds the long sentence
into the BiLSTM to get the dialogue embed-
ding for medication prediction.

• LSTM-hier. This is also a LSTM-based
method. Different from LSTM-flat, it uses
a hierarchical BiLSTM where each word in
an utterance are fed into BiLSTM to get the ut-
terance embedding and then the utterances are
fed into another BiLSTM to get the final dia-
logue embedding. It captures both word-level
and utterance-level dependencies.

• RETAIN. This is a RNN-based EHR med-
ication recommendation method using on a
two-level neural attention network that detects
influential past visits. In the current scenario,
it is used to model the dialogues.

• DAG-ERC. This method designed a directed
acyclic neural network to model the informa-
tion flow between long-distance conversation
background and nearby context. Following
the implementation in (Shen et al., 2021b),
the features of utterances extracted from fine-
tuning RoBERTa are inputted in model while
the model structure is RNN based, so DAG-
ERC is regraded as a RNN-based model.

• HiTANet. This is a Transformer-based risk
prediction approach on EHR, which model
time information in local and global stages.
We transform this method to model the hidden
temporal information in medical dialogues.

• LSAN. This is also a Transformer-based risk
prediction approach, to model the hierarchi-
cal structure of EHR data. We modified this

6https://github.com/Hhhhhhhzf
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method to model the hierarchical structure in
medical dialogues and add disease module of
DDN to encoder the external knowledge.

• DialogXL. This method improves XLNet
with enhanced memory and dialog-aware self-
attention. We modify the softmax layer to
sigmoid layer in this model to fit the multi-
label task in medication recommendation and
add the disease module of DDN.

• DDN. This is our proposed model. It utilizes
the dialogue structure and external disease
knowledge to enhance the dialogue-based
medication recommendation performance.

B.2 Evaluation Metrics

Jaccard =
1

|D|

|D|∑

k=1

|Y (k) ∩ Ŷ (k)|
|Y (k) ∪ Ŷ (k)|

(9)

F1 =
1

|D|

|D|∑

k=1

2 · P(k) · R(k)

P(k) + R(k)
(10)

where |D| is the number of dialogues in the test set.
Y (k) represents the ground truth medication set of
the kth dialogue, and Ŷ (k) represents the predicted
medication set of the kth dialogue by the model.
P(k), R(k) represents the Precision and Recall of
the kth dialogue, respectively.

B.3 Additional Experiment on DDI
Medication combination recommendation would
trigger the Drug-Drug Interaction (DDI) inevitably,
which might lead to adverse outcomes. To this end,
we explore the DDI in DIALMED. And we follow
the previous work (Shang et al., 2019b) to give the
DDI rate definition (smaller value means better).

DDIRate =

∑N
k

∑
i,j |{(ci, cj) ∈ Ŷ (k)|(ci, cj) ∈ Ed}|

∑N
k

∑
i,j 1

(11)

where the set will count each medication pair
(ci, cj) in recommendation set Ŷ if the pair be-
longs to edge set Ed of the DDI graph. Here N
is the size of test dataset. In addition, DDI re-
lationships among medications in DIALMED are
collected from YAOZH 7, a medical data retrieval
system.

The evaluation results are shown in Table 5.
We could find that ground truth DDI rate is very
small (compared to the 8.08% in MIMIC-III (Yang

7https://db.yaozh.com/interaction

et al., 2021)), which may lead to the low rate on
models. In view of this situation, we think it is no
need for additional efforts to control the DDI rate
at the current stage. Considering for the future re-
search, we open source our DDI relationship graph
in our repository.

DDI Rate

Model All Data Respiratory Gastroenterology Dermatology

G.T. 1.12 0.78 2.06 0.74
TF-IDF 1.10 0.46 2.01 0.51

LSTM-flat 0.58 1.36 0.93 0.00
LSTM-hier 1.02 0.11 0.91 0.65

RETAIN 1.92 1.12 1.89 0.00
DAG-ERC 0.81 1.01 1.53 0.48
HiTANet 0.45 1.49 1.09 0.50

LSAN 1.57 0.00 1.62 0.48
DialogXL 1.34 1.09 1.59 0.40

DDN 1.90 0.20 1.54 0.47

Table 5: DDI Rate (%) comparison on DIALMED. G.T.
represents the Ground Truth.

C Task

C.1 Medical Utility

Medical treatment includes a number of steps: reg-
istration, examination, image reading, report inter-
pretation, diagnosis, prescription and so on. AI
medicine could help optimize resource allocation
and improve efficiency in all aspects of health care.
To this end, there are two kinds of computer aided
diagnosis system, image diagnosis and text diagno-
sis. Due to the higher threshold of diagnosis, cur-
rent researches are more inclined to image analysis,
and there is still a lot of room for development in
text diagnosis. Conversations in outpatient clinics
are not reserved and involved many severe data pri-
vacy implications, leading to dialogue-based drug
recommendation mainly oriented to telemedicine.
The medical dialogue system, as a assistant of doc-
tors, could give auxiliary medication suggestions
based on the contexts when doctors and patients
are communicating with each other.

D Statistics

D.1 Ratio of consulting for medications

The ratio of the patients to consult for medica-
tions is calculated with regular expressions. In
the first place, 10,0000 different medical conver-
sations from our dialogue corpus based on ran-
dom sampling are fetched. For every dialogue,
we apply the regular expression (e.g., "[Ww]hat
(medication|drug|medicine) should I (take|eat)")
on the utterances spoken by the patient and assume
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that it is a case of consulting for drugs if the reg-
ular expression matches. The regular expressions
are collected based on our observation and under-
standing of data. More regular expressions could
be found in our repository.

D.2 Complete Corpus Statistics
The frequency of all diseases and medications is
shown in Figure 7 & 8.

0 500 1000 1500 2000 2500 3000

Cirrhosis
Duodenitis

Hepatitis
Fatty Liver
Esophagitis

Seborrhoeic Dermatitis
Pneumonia

Viral Hepatitis
Allergic Dermatitis

Enteritis
Anaphylactic Rhinitis

Gastroenteritis
Rhinitis

Gastritis
Dermatitis

Upper Respiratory Infection

Frequency

D
is
ea
se

Figure 7: The frequency of all diseases.
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Abstract

We propose a speaker clustering model for tex-
tual dialogues, which groups the utterances of
a multi-party dialogue without speaker annota-
tions, so that the actual speakers are identical
inside each cluster. We find that, without know-
ing the speakers, the interactions between utter-
ances are still implied in the text, which suggest
the relations between speakers. In this work,
we model the semantic content of utterance
with a pre-trained language model, and the rela-
tions between speakers with an utterance-level
pairwise matrix. The semantic content repre-
sentation can be further instructed by cross-
corpus dialogue act modeling. The speaker
labels are finally generated by spectral cluster-
ing. Experiments show that our model outper-
forms the sequence classification baseline, and
benefits from the auxiliary dialogue act clas-
sification task. We also discuss the detail of
determining the number of speakers (clusters),
eliminating the interference caused by semantic
similarity, and the impact of utterance distance.

1 Introduction

Processing dialogues is a classical linguistic task.
With the development of pre-trained language mod-
els in recent years, studies on dialogues have made
great progress (Zhang et al., 2020; Roller et al.,
2021; Adiwardana et al., 2020). In general, these
training processes, especially pre-training, need a
large amount of data. Meanwhile, most of dialogue
models are designed to input speaker information,
for example, applying trainable speaker embed-
dings, or just assuming the dialogue is composed
of two speakers involved turn by turn, to introduce
dialogue structure information into the models. But
for common researchers, dialogue data is hard to
collect. Datasets like subtitles (Lison et al., 2018)
contain a lot of dialogue data of daily communi-
cation, but lack of speaker annotation. Some re-

*Corresponding author.

searches in related fields, such as conference tran-
scription (Raj et al., 2021; Fu et al., 2021; Kanda
et al., 2022) and multimodal body tracking (Vallet
et al., 2016; Nickel et al., 2005; Wang and Brand-
stein, 1999), may also be improved by text-based
speaker clustering techniques. Speaker clustering
can also be a self-supervision dialogue pre-training
procedure in the scenario that speaker annotation
is adequate. Therefore, it is valuable to develop
a model to reconstruct the missing identities of
speakers in textual dialogue data.

In order to reconstruct the speaker labels in the
dialogue, this work is dedicated to the method of
speaker clustering. Different from previous re-
searches on speaker identification (Kundu et al.,
2012; Ma et al., 2017; Ek et al., 2018), which
aim at selecting the most similar speaker from
the pre-modeled candidates, the speaker clustering
task aims at grouping the utterances into speaker-
specific clusters without any preset candidates (Lu-
kic et al., 2016). It is more useful because it works
on open corpus where the speakers cannot be mod-
eled in advance.

Speaker clustering is relevant to dialogue struc-
ture, because the process of turns follows certain
patterns. These patterns include the semantic con-
tent and the communicative functions of utterance,
and can be specifically represented as the dialogue
act (DA) of utterance and associations between di-
alogue acts respectively (Bunt et al., 2010). The as-
sociations between dialogue acts include question-
answer, request-response, offer-acceptance, etc.,
which are closely related to alternation of speak-
ers. Conversely, the relations between speakers
will be predicable if these patterns are available
from textual utterances.

In this work, the speaker relations are inferred
from the communicative functions by using an
utterance-level pairwise matrix. The speaker re-
lations have only two possible values, either same
or different. The relations among the whole dia-
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logue form this matrix, which is regarded as the
similarity matrix of the ground speakers.

The matrix can reconstruct the clusters of speak-
ers with a density-based clustering method. The
most popular algorithms of density-based cluster-
ing are spectral clustering (Von Luxburg, 2007) and
DBSCAN (Hess et al., 2019). In this work, we use
spectral clustering as the implementation, because
it is less sensitive to sparse points, which follows
this task that each utterance must be in a cluster.

Based on the above analysis, we build a model
that models the semantic content of utterances with
multi-task cross-corpus DA supervision, calculates
the speaker relations with the form of bilinear, and
generates the cluster labels with the method of spec-
tral clustering.

The main contributions of this paper are summa-
rized as follows.

• We build a speaker clustering model for
textual dialogue, which explicitly exploits
the communicative functions to reconstruct
speaker relations and outperforms the base-
line.

• The model can be further improved by auxil-
iary DA classification task. Even if a dataset
is lack of DA annotations, the model can still
be improved by cross-corpus DA data.

• We discuss the reliability of our method to
predict the number of clusters, the ability to
disambiguate between speaker relation and
utterance text similarity, and the impact of
utterance distance.

2 Related Work

This work targets for speaker clustering, and is
based on the theories of dialogue structure.

2.1 Speaker Clustering

As far as we know, there are few works directly on
speaker clustering in textual dialogues. However,
there are some previous works on speaker diariza-
tion in voice conversations, and speaker clustering
is the most important step in speaker diarization
(Tranter and Reynolds, 2006; Anguera et al., 2012;
Park et al., 2022). But these works only use audio
features as the basis to calculate relation without
considering the semantic information.

A previous work on speaker diarization through
pairwise relations based on audio (Lin et al., 2019)

uses spectral clustering as the top-level structure,
which provides an idea for our structural design.
But its focus is only audio features too, and it just
descends the loss similarity score without training
more fundamental features into fixed classes, which
makes it difficult for the feature extraction process
to guarantee generalization.

2.2 Dialogue Structure
The early researches in dialogue processing have
noticed that a dialogue is made up of turns. Each
turn is a combination of a speaker and an utterance.
The turns are push ahead following the semantic
cue. Specifically, dialogue turns have semantic
content and communicative functions, which can
be represented as dialogue acts (Searle and Searle,
1969) and adjacency pairs (Schegloff and Sacks,
1973) respectively. Every turn has its own dialogue
act. Two turns from different speakers will form an
adjacency pair if they have a behavior of interaction.
Base on statistical or machine learning methods,
it is realizable to predict the dialogue acts or the
adjacency pairs (Surendran and Levow, 2006; Li
et al., 2019; Li and Wu, 2016; Zhang et al., 2018).
The semantic content and communicative functions
involve the relations between speakers.

Pre-trained language models (Devlin et al., 2019;
Lewis et al., 2020; Brown et al., 2020) have demon-
strated their effectiveness on semantic modeling.
These works illustrate the idea of represent seman-
tic content with contextualized embeddings, i.e.,
trainable distributed vector in semantic space. How-
ever, most of the above models output word-level
embeddings to represent the meaning of a word in-
stead of the meaning of a whole sentence. There are
solutions to convert from word-level embeddings
to utterance-level embeddings, including using the
corresponding embedding of the [CLS] token and
using some pooling strategies (Ma et al., 2019;
Xiao, 2018).

2.3 Other Works Related to Speakers in
Dialogue

There are some researches relevant to speaker la-
beling in textual dialogues (Kundu et al., 2012;
Ma et al., 2017; Ek et al., 2018), but they are not
speaker clustering models directly. Most of them
depend on the assumption that each speaker has
its own speaking feature, e.g. the proportion of
stop words, short words, adverbs in its utterances.
Turn-taking detection is another type of speakers
labeling (Liang and Zhou, 2020; Aldeneh et al.,
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2018). It refers to identifying the positions where
the speakers change during the dialogue, but it only
focuses on the relations between two adjacent ut-
terances, instead of every pair of utterances among
a multi-party dialogue.

3 Model

The three main processes of this model are get-
ting representation of utterances, cooperating with
cross-corpus DA supervision, and calculating the
similarity score. Therefore, as the overall struc-
ture shown in Figure 1, the model is divided into
three parts in general: the utterance embedding part
(blue), the speaker clustering part (yellow), and the
set-specific DA classification part (red).
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S23
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Figure 1: Model structure.

During training process, each data batch consists
ofB dialogues. To simplify the expression, we will
omit the term of batch averaging in the following
formulas. In a dialogue of the batch, there are
T turns. The speaker of the i-th turn is si. The
utterance of the i-th turn is ui.

The objective of the model follows multi-task
learning framework. The loss function of each
data batch L is a combination of the binary cross
entropy loss of the pairwise matrix Lmat and the
cross entropy loss of the DA prediction LDA. We
use a hyperparameter λ to moderate the association
between the two objectives. Formally,

L = Lmat + λLDA. (1)

The objective and structure will be described in
detail in the following sections.

3.1 Utterance Embedding
The first step of this model is to represent the se-
mantic content of utterances as distributed vectors.
Following previous works on text representation
and dialogue processing (Ma et al., 2019; Gu et al.,
2021), we concatenate the utterances in the dia-
logue with a [CLS] token prepended at the begin-
ning of every utterance, and append a [SEP] to-
ken after them. For a dialogue with T utterances
u1, u2, . . . , uT , the input format is

[CLS] u1 [CLS] u2 . . . [CLS] uT [SEP].

Comparing to modeling each utterance in a sep-
arate pre-trained language model, this format is
more lightweight that uses only a single BERT
model, and contributes to directly calculate the
word-level attentions across the utterances.

For each utterance, we take the output vectors
of all the tokens (including the leading [CLS] to-
ken), and concatenate the mean pooling and max
pooling results as the semantic representation, i.e.,
contextualized utterance embedding. Formally, the
j-th token of the utterance ui corresponds to the
contextualized token embedding ei,j outputted by
BERT. The utterance embedding is

ci = concat
[

mean
j

(ei,j),max
j

(ei,j)

]
, (2)

where mean and max are mean pooling and max
pooling functions through the stream dimension.
For a BERT model of hidden size dBERT, the
length of the contextualized utterance embedding
is 2dBERT.

3.2 Speaker Clustering
The relations between speakers are calculated by
the form of bilinear. Specifically, for a dialogue
with T turns, the contextualized utterance embed-
dings are

c1, c2, . . . , cT ∈ R2dBERT .

The similarity score of the utterances um and un
is the sigmoid mapping of bilinear form

sim(m,n) = σ(cTmWcn + b), (3)

where W ∈ R2dBERT×2dBERT and b ∈ R are trainable
parameters.

For each pair of utterances, the similarity score
is a real number between 0 and 1, denotes the prob-
ability that the corresponding speakers are identical.

736



The similarities are symmetric, so each pair of ut-
terances is calculated just once, i.e., always having
m < n in Equation 3. All pairs of utterances finally
form a symmetric T × T matrix.

The loss function of the matrix is calculated with
the elements of the triangular. Formally,

Lmat =
1

C

T−1∑

m=1

T∑

n=m+1

BCE[sim(m,n), I(sm = sn)], (4)

where C = T (T − 1)/2 is the number of the utter-
ance pairs in the dialogue, I is indicator function,
and BCE is Binary Cross Entropy loss function1.

It is worth noticing that no additional positional
encoding or embedding is added when calculating
the similarity scores. We find that the positional
information taken from BERT is enough for current
calculation. Adding another positional information
to this layer does not improve the performance
according to our preliminary experiments.

We follow the spectral clustering algorithm to
cluster the utterances into clusters that each cluster
has the same speaker and different clusters have
different speakers (Von Luxburg, 2007; Lin et al.,
2019). For the audiences who are not familiar with
this technique, spectral clustering is a clustering
approach based on similarity graph and graph min-
cut problem, which has nothing to do with speech
spectra.

Given the symmetric similarity matrix S ∈
RT×T , we compute both of the two kinds of nor-
malized graph Laplacians, Lsym and Lrw, which
are the same as the definition in the review
(Von Luxburg, 2007). We use the eigenvalues of
Lrw to determine the number of clusters, and the
eigenvectors of Lsym to cluster2.

The eigenvalues of the Laplacian matrix are re-
lated to the number of clusters. If the appropriate
number of clusters is k, there will be a larger differ-
ence between the k-th smallest eigenvalue and the
(k + 1)-th smallest eigenvalue, which is known as
the spectral gap. The greater the number of clusters,
the less the overall eigenvalues will be. Therefore,
an appropriate threshold can be selected on the val-
idation set. If the k-th eigenvalue is greater than

1For the definition, refer to: https://pytorch.org/
docs/stable/generated/torch.nn.BCELoss.
html .

2Implemented by scikit-learn and called with parameter
assign_labels="discretize".

the threshold, the number of clusters will be con-
sidered to be less than k. Conversely, if the k-th
eigenvalue is less than the threshold, the number
of clusters will be considered to be greater than or
equal to k. The threshold is adjusted on the valida-
tion set to maximize the accuracy. We report the
results of both using the actual number of speakers
as the number of clusters and using the spectral gap
method to determine the number of clusters in the
experiment section.

3.3 Auxiliary Set-specific Dialogue Act (DA)
Classification

This part is designed as a auxiliary task to infuse di-
alogue act information into utterance embeddings.
We assume that the ability of understanding seman-
tic content will be stronger and the calculation of
similarity will be more accurate if the model can
predict the dialogue act of utterance correctly.

We present DA classification as part of the multi-
task learning framework. For each dataset, if
there are dialogue act annotations, we can use
these labels to supervise the model to adjust the
embeddings so that they express the correspond-
ing dialogue acts. However, there is a problem
that most of the DA-annotated datasets are not
big enough, comparing to the speaker-annotated
datasets. Meanwhile, these datasets are annotated
with different sets and rules, and they are difficult
to map to each other.

To solve this problem, we use a set-specific lin-
ear layer to adapt to different DA annotation sets.
For different DA annotation sets, we use different
linear layers to predict the corresponding number
of dialogue act types. The loss function LDA is
calculated by the multi-class cross entropy3 of the
corresponding linear layer, and the output from
other linear layers is ignored. With a shallow layer,
we can expect to obtain a more general semantic
representation. Formally,

LDA = − 1

T

T∑

m=1

log
exp (zm,tm)∑D
d=1 exp (zm,d)

, (5)

where zm,d is the output of the set-specific linear
layer of the m-th turn, d-th DA class, and tm is the
actual DA class of the m-th turn.

3For the definition, refer to: https://pytorch.
org/docs/stable/generated/torch.nn.
CrossEntropyLoss.html .
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4 Experiment

4.1 Datasets

Our datasets are composed of three corpora: the
Switchboard Dialogue Act Corpus (SwDA) (Stol-
cke et al., 2000), the Meeting Recorder Dialogue
Act Corpus (MRDA) (Shriberg et al., 2004), and
the Ubuntu Dialogue Corpus (Lowe et al., 2015).
The SwDA Corpus and the MRDA Corpus are two
common DA-annotated datasets. The SwDA Cor-
pus is a two-party dialogue dataset transcribed by
phone calls. The DA annotations are divided into
217 small categories and 43 major categories. The
MRDA Corpus is a multi-party dialogue dataset
transcribed by conferences. The DA annotations
are divided into 52 full categories, 12 general cat-
egories, and 5 basic categories. The Ubuntu Di-
alogue Corpus is a widely used dialogue dataset
collected from the chat records on the Ubuntu IRC
system, without DA annotation. For all the three
datasets, the adjacent utterances may be from the
same speaker.

For the SwDA Corpus, we first split the dialogue
streams into 10-turn segments, and then randomly
divide them into training, validation and test set by
the ratio of 8:1:1. For the MRDA Corpus, we use
the same set division as the original data, and then
split the dialogue streams into 10-turn segments.
For the Ubuntu Dialogue Corpus, We use the 10-
turn version released by previous works (Ouchi and
Tsuboi, 2016; Gu et al., 2021). Table 1 shows the
basic quantity statistics of the datasets.

Dataset Set Dialogues S/D

SwDA
Train 17059 2.00
Valid 2132 2.00
Test 2132 2.00

MRDA
Train 7485 3.01
Valid 1636 2.91
Test 1664 2.96

Ubuntu
Train 495226 4.08
Valid 30974 4.21
Test 35638 4.19

Table 1: Statistics of the datasets. “S/D” stands for
“average number of different Speakers per Dialogue”.

In the experiments, we use the 43 major cat-
egories of SwDA and the 52 full categories of
MRDA as our target DA sets in the auxiliary task.

We propose the results of the SwDA dataset and
the MRDA dataset as DA-annotated single-corpus

scenarios to analyze the role of the pairwise cal-
culation and the auxiliary DA classification task,
and the result of simultaneously training on SwDA,
MRDA, and Ubuntu datasets as a sophisticated
cross-corpus scenario. We will focus more on the
experimental results on the MRDA dataset, because
this dataset is both DA annotated and multi-party,
which is convenient to analyze various aspects of
the model.

4.2 Metrics

We employ two metrics in the experimental results,
the adjusted Rand index (ARI) (Hubert and Arabie,
1985)4 and the accuracy (ACC). The adjusted Rand
index is a common metric for clustering, which
measures the similarity between two sets of clus-
ters. The value ranges from -1 to 1. For a random
clustering, the mathematical expectation of ARI
is 0. The accuracy is calculated by transforming
the clustering problem into a classification prob-
lem. The idea is finding the best injective mapping
from the predicted clusters to the actual clusters.
Formally, enumerate all permutations of the set
{1, 2, . . . , n} where n is the number of predicted
clusters, so that

ACC (y, ŷ) = max
p∈P

1

T

T∑

i=1

I
[
p
(
ŷ(i)
)
= y(i)

]
,

(6)

where y is the labels of actual clusters, ŷ is the
labels of predicted clusters, p is a permutation of
the set {1, 2, . . . , n}, I is indicator function, and
y(i) is the element on index i in vector y.

The ACC result is utterance-level average statis-
tics, which is the number of correctly cluster-
assigned utterances divided by the total number
of turns in the dataset. The ARI result is dialogue-
level average statistics, which is the mean ARI
values among the dialogues.

The reason for using accuracy as a metric is that
it is convenient to observe the difference between
the predicted speakers and the real speakers af-
ter mapping. And it provides a comparable result
with other speaker identification models, not just
speaker clustering models.

4.3 Setup

We use the PyTorch framework (Paszke et al., 2019)
and common backpropagation for training. During

4Implemented by scikit-learn.
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training, we calculate the metrics on the validation
set and save the model parameters that maximize
the accuracy on the validation set to avoid overfit-
ting.

We use AdamW (Loshchilov and Hutter, 2019)
as the optimizer. By validating on the SwDA
dataset, we select the hyperparameters in lr={1×
10−5, 2×10−5, 3×10−5}, eps={1×10−4, 1×10−5,
1×10−6}, and weight_decay={0, 1×10−4}, to max-
imize the accuracy on the validation set. The final
choice, lr=2×10−5, eps=1×10−6, weight_decay=0,
betas=(0.9, 0.999), are used for all datasets.

We use BERT-base-uncased provided by Google
(Devlin et al., 2019; Turc et al., 2019) as the ini-
tialization parameter of the BERT part. All of the
BERT parameters and other linear and bilinear pa-
rameters are fine-tuned end-to-end.

For the SwDA and MRDA single-corpus experi-
ments, we select the association hyperparameter in
λ = {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. Every setting
is trained on a single RTX 2080Ti GPU for about
1.5 hours to select the best one on the validation set.
The final choice is λ = 0.2 for SwDA and λ = 0.1
for MRDA.

For the SwDA, MRDA, and Ubuntu cross-corpus
experiment, we select the association hyperparam-
eter in λ = {0.005, 0.01, 0.1}. For each training
step, the data batch consists of 3 random Ubuntu
dialogue segments, 1 random SwDA dialogue seg-
ment, and 1 random MRDA dialogue segment. Ev-
ery setting is trained on a single RTX 2080Ti GPU
for about 2 days to select the best one on the vali-
dation set. The final choice is λ = 0.01.

4.4 Baselines

Due to the lack of related works of text-based
speaker clustering, we cannot find an existing
model that is directly comparable. So we imple-
ment our baselines to prove the necessity of the
model design.

The first design to test is modeling the pairwise
relations. For comparison, we implemented a gen-
eral sequence classification model that changes the
speaker clustering part (including pairwise bilinear
layer and similarity matrix layer) to a multi-class
softmax layer. The number of output classes is
set to the maximum number of different speakers
in the dialogue. We trained this baseline model to
predict the sequential IDs of speakers in a dialogue.

The second design to test is the set-specific dia-
logue act classification task. For comparison, we

set λ = 0 as the ablation setting in this scenario,
while other parameters including the constitution
of input batches are consistent.

4.5 Results

Our experimental results of the single-corpus sce-
narios are shown in Table 2 and Table 3. The result
of the cross-corpus scenario is shown in Table 4.

Model
Valid Test

ACC ARI ACC ARI
Baseline .760 .486 .748 .463
Clustering .868 .596 .860 .575
- w/o DA Task .865 .585 .856 .566

Table 2: Result of SwDA dataset. The number of clus-
ters is set to 2 as the consistent groud-truth.

Model
Valid Test

ACC ARI ACC ARI
Baseline .543 .204 .527 .179
Clustering∗ .714 .317 .703 .301
- w/o DA Task∗ .706 .306 .700 .296
Clustering† .654 .298 .644 .279
- w/o DA Task† .648 .286 .642 .277

Table 3: Result of MRDA dataset. *: Given the actual
number of different speakers in the dialogue as the num-
ber of clusters for spectral clustering. †: Using spectral
gap method to predict the number of clusters for spectral
clustering.

Table 2 and Table 3 show the results of SwDA
and MRDA datasets respectively. Our multi-task
clustering model outperforms the sequence classifi-
cation baseline and the ablative setting without aux-
iliary DA classification task in all the tests. These
results prove that our auxiliary task improves the
semantic content representation and similarity cal-
culation if the training data has DA annotation and
the evaluating data has the same distribution as the
training data. The result of using the spectral gap
method to detect the number of clusters shows that
this model still outperforms the baseline and the
ablative setting even without prior knowledge of
the actual number of clusters.

Table 4 shows the results of training on all of
the three datasets, and evaluating on either all three
datasets or just the Ubuntu datasets. This model
still outperforms the baseline in all the tests. It
also outperforms the ablative setting in all the tests
in the scenario of given the ground-truth number

739



Model Structure
S+M+U S+M+U (Ubuntu Only)

Valid Test Valid Test
ACC ARI ACC ARI ACC ARI ACC ARI

Baseline .530 .249 .531 .247 .513 .234 .516 .235
Clustering∗ .697 .299 .695 .296 .685 .279 .685 .280
- w/o DA Task∗ .696 .297 .694 .292 .684 .277 .684 .277
Clustering† .632 .284 .631 .282 .618 .264 .619 .264
- w/o DA Task† .633 .283 .632 .281 .618 .264 .619 .265

Table 4: Result of training synergistically on SwDA, MRDA, and Ubuntu datasets, and evaluating on the three
datasets (left) or only the Ubuntu dataset (right). *: Given the actual number of different speakers in the dialogue as
the number of clusters for spectral clustering. †: Using spectral gap method to predict the number of clusters for
spectral clustering.

of speakers. Even the Ubuntu-only result is pro-
moted by our set-specific DA classification task.
This proves that cross-corpus supervised training
is possible if we design the model with reasonable
structure and objective.

Another phenomenon reflected in Table 4 is that,
without specifying real number of speakers, there is
a different trend between the results of ACC metric
and ARI metric on S+M+U data. Actually, ARI is
more concerned about whether the dividing points
of clusters are correct, while ACC is the result after
mapping. Therefore, ARI is a more direct metric
that indicates whether the key points of speaker
alternation are found correctly.

5 Discussion

In this section, we discuss whether the substruc-
tures of the model work accurately, and whether
the model is disturbed by some possible factors
(semantic similarity and utterance distance).

5.1 Determining the Number of Speakers
For clustering problems, it is an important step to
predict an appropriate number of clusters. The prin-
ciple of using spectral gap to predict the number
of clusters has been described in Section 3.2. In
order to verify whether this method can accurately
predict the number of clusters, we make statistics
on the MRDA dataset. We also tried training a
multilayer perceptron (MLP) with the eigenvalues
to predict the number of clusters. The multilayer
perceptron uses 90% of the validation set data for
training and the remaining 10% for validation.

Table 5 shows that the spectral gap method can
predict more than 94% of the test data almost accu-
rately, where error is less than or equal to 1. This
method is more accurate than the multilayer per-
ceptron.

Method
Accurate ≤ ±1

Valid Test Valid Test
Spectral Gap .485 .482 .941 .942
- w/o DA Task .464 .468 .941 .941
MLP .498 .480 .927 .928
- w/o DA Task .499 .467 .928 .931

Table 5: Speaker (cluster) number prediction accuracy
on the MRDA dataset. “≤ ±1” means the proportion of
data whose difference between the predicted value and
the actual value is less than or equal to 1.

The result also shows that the DA auxiliary
task can not only directly improve the accuracy
of speaker relation detection, but also help improve
the accuracy of speaker number prediction.

5.2 Distinguishing Speaker Relation and
Semantic Similarity

The similarity calculation takes a bilinear form. In
this case, it is necessary to check whether the model
confuses speaker similarity and utterance text sim-
ilarity (semantic similarity). Semantic similarity
is one of the fundamental features for inferring
the relation between speakers, i.e., utterances from
the same speaker tend to be semantically similar
(Kundu et al., 2012; Ma et al., 2017; Ek et al., 2018).
However, it would be harmful if the model takes
semantic similarity as the only factor in prediction,
because utterances from different speakers with
same words are very common in dialogues, such
as greetings, farewells, and rhetorical questions,
and they will make a higher rate of false positives.
Therefore, it is necessary to prove that the utter-
ance embeddings and the similarity scores take
full account of the contextual utterances, instead
of simply extracting context-independent semantic
features of the utterances.
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Accurary Student’s t-test p-value Spearman’s rank
Correctness P1-S1=0.645 P2-S1=4.49×10−104 -
Confusion P1-C1=0.550 P1-C2=8.66×10−12, P2-C1=9.70×10−4 P2-C2=0.0866
Inherence S1-C1=0.526 S1-C2=1.23×10−3 -

Table 6: The correlations about correctness (between P and S), confusion (between P and C), and inherence (between
S and C). There is no Spearman’s rank correlation coefficient about correctness or inherence because S does not
have numerical dimension.

The way of demonstration is calculating three
types of correlations:

• Correctness: The correlation between predic-
tion results (P) and speaker relations (S).

• Confusion: The correlation between predic-
tion results (P) and context-independent se-
mantic similarities (C).

• Inherence: The correlation between speaker
relations (S) and context-independent seman-
tic similarities (C).

If the correctness is much greater than the confu-
sion, it will prove that the model is aware of speaker
relations without being compromised by context-
independent semantic similarity. The inherence is
necessary because the speakers and the semantic
features are dependent, and the ground correlation
between them needs to be excluded.

To determine these three types of correlations,
we collected values in 5 dimensions:

• P1: The prediction result of whether the
speakers are same or different (binary values).

• P2: The prediction result of similarity score
in the pairwise matrix (numerical values).

• S1: Whether two speakers are same of differ-
ent (binary values).

• C1: Whether two utterances are semantically
similar or dissimilar (binary values).

• C2: The semantic similarity between two ut-
terances (numerical values).

The values are collected from the validation set
of MRDA. We select one pair of turns with the
same speaker and one pair of turns with different
speakers from each dialogue to form a new dataset.
In this dataset, the two types of S1 are balanced.
The utterance embeddings are calculated with a

pre-trained-only BERT model5, and the values in
C2 are calculated by cosine similarity between the
embeddings. Then, the pairs of turns are sorted
by C2 in ascending order, and the first half of the
pairs are regarded as dissimilar pairs, and the last
half of the pairs are regarded as similar pairs, form-
ing a balanced C1. The values in P1 and P2 are
predicted by the model.

The experimental results are divided into three
categories:

• The correlation between two binary dimen-
sions is evaluated by the accuracy (whether
it meets the hypothesized association). A
greater value indicates a stronger correlation.

• The correlation between a binary dimension
and a numerical dimension is evaluated by
Student’s t-test. A smaller p-value indicates a
stronger correlation.

• The correlation between two numerical dimen-
sions is evaluated by Spearman’s rank corre-
lation coefficient. A greater absolute value
indicates a stronger correlation.

The statistics of correlation are shown in Table 6.
Three conclusions can be drawn from it:

First, there is a strong correlation between pre-
diction results and speaker relations. As the Cor-
rectness row shows, P1-S1 is much greater than
0.5, and P2-S1 is very small.

Second, there is a ground correlation between
speaker relations and context-independent semantic
similarities. As the Inherence row shows, S1-C1
is slightly greater than 0.5, and S1-C2 is between
10−3 and 10−2.

Third, there is a weak correlation between pre-
diction results and context-independent semantic
similarities. As the Confusion row shows, P1-C1
is slightly greater than 0.5, P1-C2 and P2-C1
are less than 10−3, and P2-C2 is slightly greater
than but close to 0. But this correlation is mainly

5BERT-base-uncased without any fine-tuning.
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brought by the ground correlation between speaker
relations and semantic similarities, because the cor-
relations about Confusion approximately equal to
the correlations about Inherence, and much less
than the correlations about Correctness.

These results complete the demonstration that
this model can detect speaker relations without be-
ing compromised by context-independent semantic
similarity.

5.3 Distance Impacts Similarity Modeling

We investigate the results of internal layer of
the pairwise similarity score by aggregating the
position-level error of similarity matrix, as shown
in Figure 2. The item in m-th row and n-th column
is the mean error of the similarity score of the m-th
turn and n-th turn. Formally,

err(m,n) =
∣∣sim(m,n)− y(m,n)

∣∣ . (7)

We take the results of similarity matrix on the
Ubuntu test set, and plot the heatmap of mean er-
ror. The figure shows that the model successfully
models the relations between utterances, especially
the adjacent ones. For longer-distance pairs, it is
constitutionally more difficult to be modeled, but
the model is still effective with a mean error less
than 0.5.
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Figure 2: Error heatmap of similarity matrix on the
Ubuntu test set with auxiliary DA classification task.
Darker color means more accurate, and lighter color
means more erring.

6 Conclusion

We propose a text-based dialogue speaker cluster-
ing model. Based on the theory of the dialogue
structure, the model holds the semantic content and
the communicative functions explicitly with the

BERT layer and the similarity matrix. The model
is enhanced by the idea of cross-corpus supervision
with the auxiliary set-specific dialogue act classifi-
cation task. It finally generates the cluster labels of
speakers with spectral clustering. Our model out-
performs the sequence classification baseline and
the non-DA ablation on almost all tests. Additional
discussion illustrates the accuracy in predicting the
number of speakers (clusters) and the ability to
distinguish between speaker relation and semantic
similarity of our model. We also show that the pre-
cision of speaker similarity prediction varies with
utterance distance.

In future research, it is worth trying further pre-
training the model on dialogue data, which will
likely help to perceive dialogue turns and extract
better utterance embeddings. We will also explore
for a method to make the similarity calculation be-
tween long-distance utterance pairs more accurate.
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Abstract
Target-oriented dialog aims to reach a global
target through multi-turn conversation. The key
to the task is the global planning towards the
target, which flexibly guides the dialog con-
cerning the context. However, existing target-
oriented dialog works take a local and greedy
strategy for response generation, where global
planning is absent. In this work, we propose
global planning for target-oriented dialog on
a commonsense knowledge graph (KG). We
design a global reinforcement learning with the
planned paths to flexibly adjust the local re-
sponse generation model towards the global tar-
get. We also propose a KG-based method to col-
lect target-oriented samples automatically from
the chit-chat corpus for model training. Ex-
periments show that our method can reach the
target with a higher success rate, fewer turns,
and more coherent responses.

1 Introduction

Human-like dialog agents have three types of
approaches: open-domain (Zhang et al., 2019a;
Huang et al., 2020), task-oriented (Budzianowski
et al., 2018; Rastogi et al., 2020; Yang et al., 2020),
and target-oriented dialog (Tang et al., 2019; Qin
et al., 2020; Zhong et al., 2021). The open-domain
dialog only requires the dialog generation to be flu-
ent and context coherent. In contrast, typical task-
oriented dialog further completes a specific task
by understanding users’ intention and collecting
the required information of predefined sub-tasks
of the intention. However, as a more challenging
task, target-oriented dialog aims to achieve a global
target that often can not be clearly defined as sub-
tasks. The dialog agents are required to lead the
conversation to the target flexibly, and the process
is excepted to be coherent, effective, and successful.
Due to its purpose and flexibility, target-oriented
dialog agents have a broad-based demand, e.g., con-
versational recommendation (Li et al., 2018; Kang

∗Corresponding author.

et al., 2019), psychotherapy (Sharma et al., 2020),
and education (Clarizia et al., 2018). In these fields,
a typical expectation of target-oriented dialog is to
actively lead the conversation by smoothly chang-
ing the dialog topic to a designated one, e.g., a prod-
uct, a stimulus of mind, and a knowledge point.

To reach a target topic effectively and coherently
in dialog, existing approaches primarily represent
the topic as keywords and adopt a two-stage archi-
tecture, i.e., predicting a next-turn keyword and
keyword-augmented response retrieval (Tang et al.,
2019). In this direction, Xu et al. (2020b) further
introduces reinforcement learning with “target sim-
ilarity” rewards to target-oriented dialog learning.
However, the target-oriented dialog is a typical
knowledge-rich task. Although dialog context can
support the semantic concern of dialog generation,
it is not quite effective to model the knowledge-
driven process in the target-oriented dialog. To
involve global knowledge, Qin et al. (2020) and Xu
et al. (2020a) incorporate a dialog graph into the
target-oriented dialog and Zhong et al. (2021) uses
the external commonsense KG (ConceptNet (Speer
et al., 2017)) to improve the performance.

Although existing target-oriented dialog works
have demonstrated practical approaches in self-
simulation test, there is still some open issues: (1)
Lack of multi-turn target-oriented dialog corpus
for training and benchmarks. Most existing target-
oriented corpus are prepared for next-turn local tar-
get (e.g., OTTers(Sevegnani et al., 2021)), or adopt
chit-chat corpora and randomly select a keyword in
the next-turn utterance as the local target, (2) Lack
of global planning of dialog process. Although the
latest works use a global target to guide every turn
of response generation, they adopt a short-sighted
and greedy strategy instead of global planning to
optimize the process towards the global target.

To this end, we propose Target-Oriented dia-
log with global Planning on Knowledge Graph
(TopKG), which effectively supports the target-
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oriented process by global reasoning on KG con-
cerning the dialog context. Specifically, to address
the first data issue, we automatically select a new
dataset named Target-Guided ConvAI (TGConv)
from the chit-chat corpus ConvAI2 (Dinan et al.,
2020). We select target-oriented samples from Con-
vAI2 by identifying the dialog utterances contain-
ing a go-through entity sequence that aligns with
the KG path. Furthermore, we distinguish the se-
lected dialog samples according to whether the
global target is easy to reach or not to verify the
performance of TopKG in dealing with hard global
target-oriented cases. For instance, the sample in
the left part of Figure1 is target-oriented because
the keywords in this dialog are connected (direct
or low-order connected) in a commonsense KG,
which embodies a smooth transition towards global
target words. To address the second issue, we first
improve the existing one-turn target-oriented re-
sponse generation, trained in a supervised fashion
to predict a next-turn keyword and generate a fluent
and coherent response with the predicted keyword.
Using the improved one-turn model as local-model,
we further introduce a reinforcement learning based
global-model to effectively guide the local-model
towards a global target with global planning on
KG. Specially, the global-model adjusts the next-
turn keyword selection of the local-model to follow
the global planning path on KG and reward the
keyword-based response generation with success
in reaching the global target.

Our main contributions are as follows:

(1) We propose a simple yet effective way to au-
tomatically extract multi-turn global target-oriented
dialog from the chit-chat corpus to develop global
target-oriented dialog agent. We also distinguish
the selected dialog into easy-to-reach target and
hard-to-reach target.

(2) We make the first step towards global plan-
ning in global target-oriented dialog. A two-stage
learning framework is designed to guide a next-turn
local model with a reinforcement learning based
global model which is guided by global planning
in commonsense KG.

(3) With automatic and human metrics, we verify
that TopKG exceeds baselines on reaching global
target with more coherent semantics, fewer turns,
and a higher success rate in reaching targets.

The dataset can be downloaded in data folders
from https://github.com/yyyyyyzt/topkgchat

2 Related Work

Target-oriented dialogue systems. Current target-
oriented dialog studies can generally be divided
into local-target oriented and global-target oriented
methods. Local-target oriented methods (Wang
et al., 2021) pays attention to the next-turn target.
For example, Xu et al. (2020b,a) proposes a hierar-
chical policy model to plan and generate responses
of different levels where the high-level policy plans
a topic. However, the low-level policy plans re-
sponses that are coherent to this topic instead of ap-
proaching it. Global-target oriented methods (Qin
et al., 2020; Zhong et al., 2021) uses global target
to guide every turn of response generation. These
methods propose a keyword predictor to determine
the next-turn keyword to talk about and produce a
response relevant to the determined keyword. How-
ever, they adopt a short-sighted and greedy strategy
instead of explicit planning to optimize the process
towards the global target.

KG-grounded dialogue systems. Leveraging
background information for dialogue system im-
provement is a well-researched topic, especially in
target-oriented settings. Some work uses structured
knowledge, DKRN (Qin et al., 2020) incorporates
a dialog graph, and CKC (Zhong et al., 2021) uses
the ConceptNet to improve the performance. For
how to utilize KG, classical methods are divided
into using full path (Ma et al., 2021) and using
flexible path fragments (Zhou et al., 2021). These
models enjoy rich knowledge augmentation since
short KG paths relating to the context are encoded,
but they lack the ability to plan on KG. Another set
of works focuses on grounds in unstructured knowl-
edge (Zhao et al., 2020; Wu et al., 2020), which
can also be divided into independent sentences and
documents. This unstructured knowledge is more
challenging to use than KG.

3 Our Approach

Task Definition Formally, C = {c1, · · · , ci} is
the current dialog context involving latest i utter-
ances. A knowledge graph GKG = VKG × EKG
is composed of the commonsense entities VKG and
relations EKG. Given C, GKG and a global target
keyword Ktarget, the global target-oriented dialog
is firstly required to figure out a next-turn keyword
z from the GKG, and generate a response r related
to z. Furthermore, with multi-turn response gen-
eration, the global target-oriented dialog need to
successfully mentioned a global target keyword
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Figure 1: The left part illustrates how to select target-oriented dialogs for model learning by matching the word
sequence across utterances with reasoning paths in KG. The right part illustrates how the global-model uses
reinforcement learning to guide a GPT-2 based local-model to follow the global planning in KG. Global Planning
on KG is pre-performed before the learning of Local-Model and Global-Model, and planning paths are essential to
guide the multi-turn responses generation.

Ktarget with fewer turns and keep the response be
coherent to the context in each turn.

3.1 Method Overview

Our approach consists of two main contributions:
an automatic method for target-oriented conver-
sation dataset collection and a two-stage learning
model for global target-oriented dialog generation.

Target-oriented Conversation dataset As ex-
isting multi-turn dialog corpora are not specially
created for target-oriented tasks, we firstly propose
automatically selecting the target-oriented dialog
session from the general dialog corpora. A dialog
session was selected from the general chit-chat cor-
pus by examining whether a KG-explainable entity
path is running through a dialog. In addition, we
indicate the entity path and specify the easy target
and the hard target. The example shown in Table1.

Two-stage learning model We divide the task
into two progressive stages in Fig1: local-model of
next-turn strategy learning (stage 1) and global-
model of multi-turn strategy learning (stage 2).
Specifically, at stage 1, the local-model is super-
vised trained to predict next-turn keywords and
generate a response related to the keywords. In
stage 2, we design a reinforcement learning to ad-
just the local-model to explore all potential paths
by global planning in a commonsense KG towards
the global target word, where a bidirectional heuris-

Dialog

A: I spend a lot of time outside.
B: I like the outdoors as well, especially
gardening .
A: Wow! I used to have a garden too.
B: I love sipping coffee while enjoying
flowers in my garden.
A: Flowers are always beautiful and colorful !
B: I like anything with art, especially
colorful things.

Entity Path Outside-Garden-Flower-Color-Art
Target Art

Table 1: A target-oriented example dialog in TGConv

tic reasoning obtains the paths. We also reward
the generated response in each turn by whether the
dialog till this turn is target-oriented and whether
the dialog finally reaches the global target word.

3.2 Target-oriented dialog corpus sampling

In this section, we construct a target-oriented dialog
corpus (named TGConv) from chit-chat corpus
ConvAI2 (Dinan et al., 2020).

3.2.1 Identify target-oriented dialog
We suppose a dialog is a positive example of target-
oriented dialog if there is a consistent reasoning
path of words linking all the utterances in their
order in the dialog. A reasoning path of words
is p = {w1 → w2 → · · · → wn}, where wi is a
word, e.g., “Outside-Garden-Flower-Color-Art” in
Table 1. To be logical, each neighbor word pair, i.e.,

747



wi and wi+1, should match the names of the two
nodes of an edge in the ConceptNet, respectively.
To link all the utterances in dialog, each utterance
in the dialog should provide at least one word to
p. To keep the order in dialogue, wi should be in
the same order in p as they appear in the dialog.
Except for positive samples, other samples in the
corpus are identified as negative examples.

3.2.2 Global target assignment
For each positive example dialog associated with a
reasoning path p, we select the last word wn in p
as the global target Ktarget. Furthermore, to better
evaluate the model’s ability to guide the dialog to
the target of different difficulties, we distinguish tar-
get words into "easy-to-reach" and "hard-to-reach".
Specifically, target words with low frequency in
the corpus are classified as "hard-to-reach" target,
because there are fewer cases to learn the semantic
transition to low-frequency target words (less than
800) in local-model and global-model.

3.3 Global Planning

Global planning is the key to successfully accom-
plishing target-oriented task. We finally obtain a
graph consisting of a set of potential paths through
global planning, which embodies the keyword tran-
sition from the initial context to the global target
word. Building a connected graph Gglobal from the
starting to target allows us to learn a better graph
representation and facilitate our model to explore
better paths. Specifically, we identify the noun and
verb concepts in the dialogue context and then use
a bidirectional reasoning method to find KG paths
over ConceptNet effectively. Bidirectional reason-
ing is a graph search algorithm that finds smallest
path from the initial to the target entity. It runs
two simultaneous search: 1) Forward search from
source/initial entity toward goal entity and 2) Back-
ward search from goal/target entity toward source
entity. This algorithm is very suitable for target-
oriented task scenarios, and the detailed process is
shown in Algorithm 1.

3.4 Supervised Learning of Local-Model

We let the local-model learn next-turn target-
oriented policy in a supervised fashion. The local-
model architecture is shown in the right part of
Fig 1. In order to predict the next turn keywords
z, we need to model the candidate words, the con-
text, and the target, respectively. Firstly, we get the
target entity and its neighbors on the ConceptNet

Algorithm 1: Global Planning by Bidirec-
tional Reasoning over ConceptNet

Input : ConceptNet, GKG; Target, Ktarget;
The set of concepts in start:
Vstart = {v1, v2 · · · vm};
Output: A graph consists of all potential paths from

source to target, Gglobal
Initialize graph Gglobal;
foreach node vi of the Vstart do

Initialize a concept stack S contain vi;
for h from 1 to maximum hops H do

while S is not emtpy do
Pop a head entity vh from S;
Ni: the neighbouring concepts of vh in
ConceptNet;

Select the top K concepts most similar
to the head entity vh from Ni;

Select the top K concepts most similar
to the target entity Ktarget from Ni;

Add them to an empty temporal triple
list T ;

foreach (vh, r, vt) in T do
Add vh, vt and r into G;

if vt not in Gglobal then
Push vt in S

end
end

end
end

end
Repeat the above process from Ktarget to Vstart;

to build a subgraph Gtarget and use the method in
the previous section to get a global graph Gglobal.
Then we apply a multi-layer GCN encoder to model
the graphs. Besides, we use a typical transformer
encoder for context understanding. Finally, we pre-
dict a keyword and generate a coherent response
by generator for approaching the target.

3.4.1 Graph-based Encoder

We use a graph-based encoder to model graph node
representations for predicting keywords. Here we
use two graphs Gglobal and Gtarget, The Gglobal is
a large graph that contains all potential paths from
start context to target, and Gtarget only contains
target entity and its neighbor nodes to enhance the
target representation.

Therefore, to obtain the representation of con-
cepts and relations, we apply multi-layer GCN
(Kipf and Welling, 2016) encoders to encode the
Gglobal and Gtarget. Moreover, following the idea
of the TransE model (Bordes et al., 2013), we
update a concept embedding with the subtrac-
tion between each neighbor concept embedding
and the corresponding relation embedding to ob-
tain the relation representation. The concepts V
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in two graphs are initialized by pretrained word
embeddings1, and the relations R in graph are ini-
tialized with randomly embeddings. For each con-
cept vi, we update its embedding at the (l + 1)th

layer by aggregating its neighbours Ni including
pairs of the concept and the relation liking to vi:

h
(l+1)
i = σ

(
W

(l)
s h

(l)
i +

∑
(j,r)∈Ni

1
|Ni|W

(l)
n

(
h
(l)
j − h

(l)
r

))
(1)

where hli, h
l
j and hlr are the embeddings of node

vi, node vj , and the relation between vi and vj at
layer (l)th; W (l)

s and W (l)
n are the two trainable

parameter matrices specific to the layer (l)th; and
σ is a non-linear active function. The relation em-
bedding is also updated at the (l + 1)th layer via
a linear active function: h(l+1)

r = W
(l)
R h

(l)
r . After

L layers, we are able to obtain a set of concept
representations {h(L)v1 , . . . , h

(L)
v|V |}.

3.4.2 Conversation Context Encoder

We utilize a transformer encoder for conversation
context understanding. Same as previous works,
we flatten conversation context in C, and then add
a special token [CLS] at the beginning of the input.
C̄ = [CLS;C] is fed into Transformer Encoder,
then output representation of [CLS] token denoting
the global memory of the whole sequence.

3.4.3 Classification

Now we have the context representation, Gglobal
concepts representation, and Gtarget concepts rep-
resentation for predicting words. Finally, we con-
catenated these vectors and fed to a linear trans-
formation layer, followed by a softmax layer. We
limited the candidates to two-hop entities based on
context. The entire model is optimized by minimiz-
ing the cross-entropy loss.

3.4.4 Keyword Augmented Generator

After we get the next-turn keywords word z, we
employ a keyword-augmented GPT (Radford et al.,
2019) to generate a response to approaching the
target. The generator takes keywords z and context
C as the input, and the following text r as the target
reference. Specifically, the z and C are first con-
catenated by a special separator token. The training
objective follows a standard language model (LM)

1We use GloVe embedding of size 300 (Pennington et al.,
2014)

loss(Zhang et al., 2019b):

pΘ(r | C, z) =
|r|∏

t=0

p (rt | x, z, r0:t−1) (2)

where rt is the t-th token in r.

3.5 Reinforcement Learning of Global-Model

As our main contribution, we propose a global-
model to explore better dialog strategies toward the
global target through reinforcement learning. Al-
though the local-model performs well on next turn
response generation, it tends to be short-sighted and
ineffective in reaching the global target in the multi-
turn dialog. Therefore, we design a simulation-
based environment to guide the local-model toward
the global target through reinforcement learning.
To this end, we let the model talk to itself. At the
start of the dialog, we explicitly search a set of
planning paths ( described in 3.3 ) in ConceptNet
from the initial context to the global target word.
Then we use searched planning paths to adjust the
next-turn keyword prediction to obey the planning
paths and generate a response with the keyword.
Furthermore, the generated response is rewarded by
its target-oriented coherence to the context and the
success of the global target. Global-model consists
of the following components.

3.5.1 State/Action
At each time step t, the state St is a tuple of
[Gglobal;Gtarget;C], where Gglobal is a graph of
planning paths obtained at the start of the dialog,
andGtarget is the predefined global target word and
its neighbors, and C is the current context. Given
the current dialog state, an action is the next-turn
keyword z, and the action space is the potential
paths obtained by global planning.

3.5.2 Reward
We use Local Reward and Global Reward to en-
courage the dialog to be contextual and coherent
and explore global target-oriented strategy.

Local Reward encourages the contextual con-
sistency at each turn of dialog, which is the discrim-
inator score of the utterances sequence containing
the current context and generated response, the de-
tail are as below 3.5.3.

Global Reward encourages the global target-
oriented response by giving a positive reward of
"1" if the global target word finally appears in the
last turn or a negative reward of "-1" otherwise.
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3.5.3 Discriminator for local reward
evaluation

To reward the dialog (context+response) which are
more likely to be target-oriented, we train a dis-
criminator to tell whether an utterance sequence
is semantically target-oriented. To this end, the
discriminator is trained to classify the positive and
negative samples collected in section 3.2. Specially,
the positive and negative samples with 1/0 label:
X = [CLS; c;SEP ; r] or X = [CLS; c;SEP ; r]
is fed into pre-trained language model (BERT) (De-
vlin et al., 2018), then output representation of
[CLS] token is used for classification. The classifi-
cation score is formulated as

fscore(X) = σ(w⊤x[CLS] + b) (3)

where w and b are trainable parameters. We use
binary cross-entropy loss to optimize the models.

3.5.4 Training
We apply Proximal Policy Optimization (Schulman
et al., 2017), a stable policy based RL algorithm
using a constant clipping mechanism as the soft
constraint, for dialog policy optimization:

Jπ(θ) = Es,a∼π
[
min

{
βtÂt, clip (βt, 1− ϵ, 1 + ϵ) Ât

}]
(4)

Ât = Rt − V̂ϕ(st) is the estimated advantage,
whereRt =

∑T
τ=t is the local reward adding global

reward, V̂ϕ is the estimated value function of state
St with parameters ϕ, βt =

πθ(at|st)
πθold (at|st)

is the ratio
of the probability under the new and old policies, δ
is TD residual, λ and ε are hyper-parameters.

4 Experiments and Results

4.1 Datasets

We evaluate TopKG and baselines on two datasets.
To verify the ability to guide the user to the target
topic in multi-turn of dialogue, we use our pro-
posed dataset TGConv, which is extracted from
ConvAI2 (Dinan et al., 2020) and is distinguished
into "easy-to-reach/hard-to-reach" targets with the
method in section 3.2. ConvAI2 is a chit-chat
dataset based on the PersonaChat for NIPS 2018
competition, which contains high-quality open-
domain dialogues, including diverse topics. In ad-
dition, one-turn dialogue is a special case of multi-
turn, therefore we also conduct our evaluation on

Dataset Split #Conv.
Avg.

#Utter.
Avg.

#Word.
Avg.

#Entity.
Avg.

#Coh.

OTTers
Train 2034 3.0 9.47 2.86 0.45
Valid 1152 3.0 9.56 2.95 0.45
Test 1130 3.0 9.19 2.80 0.44

TGConv
Train 15197 8.35 12.60 2.89 0.32
Valid 2681 7.96 12.29 2.85 0.31
Test 1000 8.97 12.47 2.91 0.32

Table 2: Dataset statistics. Avg.#Utter., #Word., #En-
tity., #Coh. denotes the average number of utterances,
words, entities, semantic similarity per dialogue, utter-
ance, utterance, utterance.

a next-turn target-oriented dataset OTTers(ood)2

(Sevegnani et al., 2021). OTTers requires the agent
pro-actively generate an "bridging" utterance to ap-
proach the target, which is consistent with the input
and output of the task on TGConv. The statistics of
the two datasets are presented in Table2.

4.2 Baselines

We select four baselines in end-to-end (GPT-2,
MultiGen) and pipeline style (DKRN, CKC), re-
spectively. The first baseline is GPT-2 (Radford
et al., 2019). Next, we test the recent Multi-Gen
(Ji et al., 2020), extends GPT-2 with multi-hop rea-
soning on commonsense knowledge graphs. The
third baseline is DKRN (Qin et al., 2020), which
builds a dialog graph from the corpus for topic
transition. The last baseline is CKC (Zhong et al.,
2021), the state-of-the-art approach using Concept-
Net for this task. In addition, DKRN and CKC are
retrieval models. Here we replace the retriever with
the generator in our paper.

4.3 Metrics

Local-Evaluation To evaluate models’ perfor-
mance in generating next-turn response, we firstly
perform automatic evaluation using commonly
adopted text generation metrics, including CIDEr
(Vedantam et al., 2015), ROUGE-L (Lin, 2004)
and METEOR (Banerjee and Lavie, 2005). How-
ever, we report the full BLEU score3 (Papineni
et al., 2002) that accounts for the overlap across
1-4 ngrams instead of only 4-grams (BLEU-4). In
addition, we use hits@K ratio to measure the num-
ber of relevant entities correctly predicted by the

2OTTers have different train-dev-test (in-domain and out-
of-domain) splits, we choose out-of-domain(ood) split. The
ood split resembles a zero-shot scenario, where the model
has to generate a shift between two topics it has never been
fine-tuned on.

3SacreBLEU (Post, 2018) provides hassle-free computa-
tion of shareable, comparable, and reproducible BLEU scores.
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BLEU1−4 METEOR ROUGE-L CIDEr hits@1 hits@3
GPT2 11.58 10.26 17.67 13.75 4.39 15.79
MultiGen 13.57 12.51 26.27 15.48 6.58 20.51
DKRN 12.86 11.90 21.52 14.33 4.91 17.72
CKC 13.34 11.65 24.77 14.46 6.87 21.89
TopKG 15.35∗ 13.41∗ 27.16 17.18∗ 7.78 22.06∗
w/o global plan 14.89 12.89 26.99 16.22 7.45 21.14
w/ small graph(K=5,H=3) 13.24 10.65 25.53 15.62 6.77 21.22
w/ large graph(K=20,H=6) 15.24 11.65 27.53 16.62 7.79 21.63

Table 3: Automatic evaluation of next-turn response generation on OTTers. Numbers marked with ∗ indicate that
the improvement is statistically significant compared with the best baseline(t-test with p-value < 0.05).

Easy Target Hard Target
Succ.(%) Turns Coh. Succ.(%) Turns Coh.

GPT2 22.3 2.86 0.23 17.3 2.94 0.21
MultiGen 26.7 2.55 0.21 19.6 7.31 0.24
DKRN 38.6 4.24 0.33 21.7 7.19 0.31
CKC 41.9 4.08 0.35 24.8 6.88 0.33
TopKG 48.9∗ 3.95 0.31 27.3∗ 4.96 0.33
w/o global plan 35.4 4.51 0.32 21.3 7.18 0.32

Table 4: Automatic evaluation of global guiding on TGConv. Note that our task requirement is to reach the target
smoothly and fast. “Coh.” and “Turns” not the higher / lower the better.

Easy Target Hard Target
G-Coh. Effect. G-Coh. Effect.

GPT2 1.13 1.20 1.13 0.86
MultiGen 1.24 1.29 1.17 1.13
DKRN 1.26 1.23 1.19 1.18
CKC 1.53 1.31 1.23 1.16
TopKG 1.51 1.67 1.37 1.48
w/o global plan 1.42 1.34 1.24 1.13
kappa 0.45 0.55 0.51 0.58

Table 5: Comparison of human evaluation metric Co-
herence and Effectiveness results on self-chat dialogues
among our model and baselines. The agreement among
the annotators is measured by the Fleiss’s kappa. The
agreement ratio kappa in [0.41, 0.6] denotes the moder-
ate agreement.

local-model, out of the K most important entities
identified in the target references.

Global Evaluation To evaluate models’ perfor-
mance in guiding the dialog to global target, as ex-
isting works (Qin et al., 2020; Zhong et al., 2021)
do, we use a simulator to simulate multi-turn dia-
log. "Succ." automatically measures the success
rate of generating the global target word within 8
turns. "Turns" indicates the average turns of all di-
alogs which successfully generate the global target
word. "Coherence (Coh.)" automatically measures

the contextual semantic similarity between the last
utterance in the context and generated response.

As automatic metrics are widely criticized due
to their lack of correlation with human judgments
(Novikova et al., 2017; Reiter, 2018), we also em-
ploy two dialogue-level metrics by human evalua-
tion: "Global-Coherence (G-Coh.)" manually ex-
amine whether the whole dialog is logical, fluent,
and target-oriented. "Effectiveness (Effect.)" mea-
sures whether the target is efficiently reached. 100
dialogs are generated by simulation for each model.
Three annotators score the generated dialogs rating
in {0, 1, 2}, higher is better.

4.4 Results

Local Evaluation Table 3 shows the next-turn re-
sults on OTTers. GPT2 performs poorly on the one-
turn transition. The multi-hop reasoning compo-
nent added by the MultiGen and our TopKG leads
to substantial improvements. TopKG achieves sub-
stantially better performance than all baselines on
OTTers. This advantage indicates that TopKG suc-
cessfully improves the performance of the existing
local-model, which aims at the next-turn target.

Global Evaluation As shown in Table 4, on
cases with "easy-to-reach" targets, end-to-end mod-
els such as GPT and MultiGen have fewer turns.
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Start: music → dance Easy Target: Travel Start: game → fun Hard Target: Revolutionary

Context
A: My favorite type of music is from the south.
B: Good ! I really like dancing, especially in the moonlight.

Context
A: Nice . i’m playing some card games with my family.
B: That sounds like fun. i like wine and dancing too!

CKC

A: I watch sci fi. mainly, I read supernatural romances.
B: Do you read ? My sister says fantasy novels are the best.
A: I have a library in my house , I like to read books.
B: I prefer historical story to romance.
A: Cool! I love to wander and travel the world.
Path: romance → novel → book → story → travel

CKC

A: You sound like a fun person!
B: What music do you like?
A: Classical. how about you, what kind do you like?
B: I like all music.
....(get trapped)

TOPKG

A: I watch sci fi. mainly, I read supernatural romances.
B: Reading fantasy novel and poetry are my true loves !
A: Awesome! I like adventures , been in sales all my life .
B: I love to travel and see different places. Do you?
Path: romance → novel → adventure → travel

TOPKG

A: And what games are you into?
B: Action games, do you?
A: Not much into those. i like the rebel.
B: Revolutionary. is that your favorite?
Path: game → action → rebel → revolutionary

Table 6: Case study from self-play simulations on TGConv. In the left easy target case, TopKG generates responses
similar in quality to CKC but plans a diverse path to the target. In the right hard target case, CKC gets trapped, but
TopKG successfully reaches the target.

We notice that they tend to directly generate an
utterance containing the target, despite that the ut-
terances are of low quality in human evaluation.
This may be due to that they are designed without
global view. However, our TopKG has a higher suc-
cess rate and higher efficiency in manual evaluation
benefiting from the global planning.

In cases with "hard-to-reach" targets, GPT,
which does not rely on KG, can also directly gen-
erate responses, and its performance is similar to
that of "easy-to-reach" cases. For all KG-based
methods, the performance significantly degrades
on "hard-to-reach" targets, but our TopKG still ex-
ceeds all baselines. The ablation discussion below
demonstrates the contribution of our global plan-
ning. Furthermore, our generated responses’ av-
erage contextual “Semantic Similarity(Coh.)” is
similar to the golden similarity in Table 2, which
shows that our TopKG effectively learns the seman-
tic patterns in the corpora. We also found that KG
methods (CKC and TopKG) outperform the other
models, which verifies the benefits of using KG in
global target-oriented dialog.

4.5 Ablation Studies

We perform ablation studies for TopKG to better an-
alyze the main components’ relative contributions.
The results are shown in Tables 3, 4, 5.

Does the global planning work? To prove the
contribution of proposed global planning, we re-
place the global planning (w/o global plan) with a
2-hop neighbors graph (based on context entities),
which results in the most significant performance
drop in multi-turn evaluation. In contrast, the drop
in the next-turn evaluation is not noticeable. The
main reason is that the target often can be found
in two-hop neighbors on the graph in a next-turn

dialogue. This verifies the contribution of global
KG planning to global target-oriented dialog.

How much graph information we need? We
also explore the number of neighbors needed for
initializing theGglobal graph’s nodes in two aspects
(refer in Algorithm1): the maximum number of
hops H, and the number of neighboring nodes in
the hth hop (denoted as K). Contrary to our expecta-
tions, expanding the average size of the knowledge
graphs from 1000 nodes to 2000 did not improve
the hits@K ratio, as shown in the last row of Table
3. Therefore, the final version of TopKG adopts
the global planning with K = 10, H = 3.

4.6 Case study
In the case study, we compare our TopKG with
CKC, the most competitive baseline. In the left
case of “Easy Target” in Table 6, TopKG and CKC
followed different KG paths. In the first path fol-
lowed by CKC, the novel indicates books, and the
following two keywords are the topics of the books.
In the second path followed by TopKG, the novel
is an adjective, adventure is novel, and travel is one
kind of adventure. In such easy cases, although
the best existing method works well, TopKG can
further explore diverse paths based on reinforce-
ment learning. In the right case of “Hard Target”
in Table 6, CKC gets trapped and fail to reach the
goal. However, TopKG still successfully guides the
dialog to the goal with effective global planning.

5 Conclusion and Future Work

We propose effectively guiding the target-oriented
dialog towards a global target with global planning
on KG. We first design a novel method to auto-
matically select target-oriented samples from the
chit-chat corpus by identifying KG reasoning paths
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throughout the dialog. We train a reinforcement
learning model with a selected high-quality corpus
that can guide a GPT-2 based response generation
model to reach a global target word by global plan-
ning on ConceptNet. Automatic and human evalu-
ations show that our method exceeds the baselines
from both local and global views, and global plan-
ning provides a significant contribution. We will
explore to balance the coherence and number of
turns in global planning in future work.
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A Appendix

A.1 Discriminator
Discrimination measures the different between the
positive/negative examples we extracted. In experi-
ments, we verify the significant difference between
the conversational behaviour of selected positive
and negative examples by accurately classifying
positive and negative examples by a discriminator.

Accuracy
BERT-small 76.8%
BERT-base 78.1%

Table 7: The accuracy of the discriminator classification

According to the result of the discriminator and
data analysis, we found that some negative samples
may contain positive segments (e.g., the first few
utterances in a negative sample can generate a short
reasoning path), so false negative may be a problem
in training the discriminator.

A.2 Fail cases
Here are some cases of TopKG failures. It can be
seen that the failure can be roughly divided into
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two situations. One is that in the face of some
uncommon words, even if there is a correct path,
the generative model can only generate sentences
with similar semantics. The other is that the path is
very long and it is difficult to generate replies that
contain relevant words.

Start: dye Hard Target: volley

Context
A: hi i dye my hair 4 times a year.
B: do you live in the sky ? i do . in the clouds.

TOPKG

A: i dye it dark brown
B: do you also like the martant? it is my favorite.
A: yes i like it because it is on the ground
B: do you have a favorite field?
....(can not reached)
Path: dye-mordant-ground-volley

Start: mowing Hard Target: ethicist

Context
A: i also enjoy lawn mowing on sunny days .
B: i enjoy green living and just put solar
panels on roof

TOPKG

A: that’s awesome. solar roofs are awesome.
B: yes they’re. are you good at math
A: i am excellent at it. mornings mornings are like night.
B: i like the night
A: it is my favorite part
B: what is your favorite part about it?
....(can not mention related words and can not reached)
Path: mowing-morning-forenoon-
-part-particular-ethicist

Table 8: Some failure cases

A.3 Implementation Details
The default parameter settings across all experi-
ments are as follows. We select conceptnet-5.7.0
and glove.6B.300d for initialization. The discount
factor γ is 0.99 and the advantage discount factor is
0.95. Our policy reasoning model is trained for 200
epochs using Adam optimization with the learning
rate of 5e-4 for actor network and 1e-3 for critic
network with the batch size of 64. 256 action-state
pairs to rollout for trajectory collection per epoch, 4
steps of gradient descent to perform on each batch,
capacity of the replay buffer is 8.
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Abstract

We examine the link between facets of Rhetor-
ical Structure Theory (RST) and the selection
of content for extractive summarisation, for
German-language texts. For this purpose, we
produce a set of extractive summaries for a
dataset of German-language newspaper com-
mentaries, a corpus which already has several
layers of annotation. We provide an in-depth
analysis of the connection between summary
sentences and several RST-based features and
transfer these insights to various automated
summarisation models. Our results show that
RST features are informative for the task of ex-
tractive summarisation, particularly nuclearity
and relations at sentence-level.

1 Introduction

Extractive summarisation involves directly using
select phrases and sentences from a text as a sum-
mary, which still remains a strong method for pro-
ducing summaries despite its simple nature (Huang
et al., 2020). In this study, we examine the link be-
tween facets of Rhetorical Structure Theory (RST)
and the selection of content for extractive sum-
marisation. RST is a framework which posits that
every part of coherent text has a role and a function
and represents texts in a hierarchical tree structure
(Taboada and Mann, 2006). The RST framework
consists of the segmentation of the text into Ele-
mentary Discourse Units (EDUs), which are then
grouped into bigger segments – depending on the
way they relate to each other – which forms the hier-
archical structure of the text. The relations between
these segments are defined, and a nucleus-satellite
status is given. This nucleus-satellite allocation
stems from the observation that within the majority
of relations which hold between two segments, one
segment tends to be more important than the other.
This notion of importance seems to have an inher-
ent link to summarisation and various studies have
examined this link (see Section 2). In this study

we look at the role that these various aspects play
in extractive summarisation for German-language
texts and transfer these insights to different types
of models. In this context, we introduce a new
dataset of extractive summaries, analyse the RST-
based features of these, collating the best features
proposed over the last 20+ years and introducing
a new document-based sentence embedding and
use these in both linear and nuclear models. Our
results compare favourably to those from closely
related work on English (Louis et al., 2010). We
elaborate on this study and other related work in
Section 2, before describing our German-language
extractive summarisation dataset in Section 3. In
Section 4, we provide a detailed analysis of var-
ious RST-based features and examine how these
features are distributed in the summaries. We de-
scribe our summarisation models and the results of
our experiments in Section 5 before discussing the
results and providing some concluding remarks in
Sections 6 and 7.

2 Related work

Since the RST framework was proposed in the late
1980s (Mann and Thompson, 1988), various studies
have examined the link between discourse structure
and summarisation, building on even earlier con-
cepts of text-level structural analysis (‘macrostruc-
tures’) (van Dijk and Kintsch, 1983). A study from
Marcu (1999) built on ideas proposed by Ono et al.
(1994) and empirically analysed the link between
the nuclearity aspect of RST and extractive sum-
marisation on a small sample of five texts. Marcu
(1999) concluded that there is a strong correlation
between nuclei and what readers perceive to be the
most important units in a given text, and imple-
mented an automatic summarisation system using
RST trees. Louis et al. (2010) conducted an analy-
sis of the RST-DT corpus which contains newspa-
per articles with various annotation layers includ-
ing RST and other discourse structures. Louis et al.
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(2010) specifically evaluated a subset of the cor-
pus which consists of 150 extractive summaries,
for which annotators were asked to select the most
important EDUs. They analysed structural features
derived from RST trees, such as the depth of a seg-
ment, in comparison to other discourse (e.g. the
semantics of PDTB relations) and non-discourse
features and found that the structural RST features
were most useful for automatically selecting sen-
tences for summaries. Zhong et al. (2020) used
automatically parsed discourse features for the task
of sentence deletion for text simplification, a task
which shares many similarities with extractive sum-
marisation. They used RST-based features – such
as local nuclearity, relations and the position of the
sentence in the tree – in both a linear model and a
neural model.

Other studies instead looked specifically at the
role that discourse segmentation plays in extrac-
tive summarisation. Li et al. (2016) automatically
parsed a corpus of English language newspaper ar-
ticles and compared the RST segmentation to man-
ually annotated summary content units. Molina Vil-
legas et al. (2011) also looked at discourse seg-
mentation of Spanish-language texts for the task of
sentence compression, which they consider to be
sentence-level summarisation.

Neural approaches have also been proposed
for combining discourse structure with English-
language summarisation. Xu et al. (2020) created a
BERT-based model which takes discourse units as
input (as opposed to sentences) and also encodes
automatically parsed RST trees in a CNN layer in
the network, which resulted in an improvement to
the state-of-the-art for English-language extractive
summarisation. Liu and Chen (2019) experimented
with three different neural architectures and com-
pare using sentences as input to discourse segments
for the task of extractive summarisation. The mod-
els which use discourse segments score higher in
an automatic evaluation.

The link between summarisation and discourse
structure is further explored by Xiao et al. (2021).
They hypothesise that the link between the two
may be bidirectional and analyse if summarisation
can inform discourse structure by generating RST
trees from the inner layers of a Transformer-based
summarisation model.

3 Data

As far as we know, the Potsdam Commentary Cor-
pus (PCC) is the only German-language dataset
with RST annotations (Stede, 2004). The corpus
consists of 176 commentaries from a German re-
gional daily newspaper, the Märkische Allgemeine
Zeitung. The commentaries have various layers of
annotation, including part-of-speech, syntax and
discourse structure but does not yet have sum-
maries; we therefore created these ourselves. Each
extractive summary consists of 3 key sentences; we
use the term ‘key sentence’ throughout this paper
to refer to the sentences selected to be part of the
summaries. The commentaries have an average
length of 11.4 sentences, so the summaries repre-
sent ca. 26% of the average length (in sentences).
The extractive summaries available for the RST-
DT corpus, used for example in the study by Louis
et al. (2010), are of a similar size (the square root
of the number of EDUs for each text) which makes
the corpora easier to compare. We make the sum-
maries publicly available1, and a sample annotated
text can be seen in Table 1.

3.1 Annotation task

To produce these summaries, annotators were asked
to choose 3 sentences from each text that repre-
sent the core of the text and rank these in order
of importance. The task description specified that
‘important’ in this context refers to the suitability
of the sentence for a summary. Any anaphoric ele-
ments should be ‘mentally’ replaced by that what
they are referring to. This annotation task is inher-
ently subjective as the notion of importance can
be interpreted in different ways. We discuss this
point in more detail in the following Sections (3.2
and 3.3). On average, a sentence has 14 tokens in
our corpus, which rises to 18 tokens on average for
the annotated sentences. These three key sentences
consist of 5 EDUs, on average.

3.2 Inter-annotator agreement

For a sample of 30 texts, two sets of annotations
were gathered which resulted in a Cohen’s Kappa
score of .32 when comparing the three selected key
sentences (without the ranking, (Cohen, 1960)).
Similar (yet lower) scores have been reported in
other annotation studies of this kind: .28 when
selecting 20% of ‘salient sentences from each com-
ment which summarize it’ from online debates

1https://github.com/fhewett/pcc-summaries
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(Sanchan et al., 2017), an average of .30 when se-
lecting 8% to 16% of ‘summary sentences that are
informative and can preserve discussion flow’ from
meeting transcripts (Liu and Liu, 2008), and .23
when selecting sentences with relevant ‘nuggets’
(clauses containing one verb and one noun that
are semantically ‘important in the context of the
given topic’) in different genres of German text
(Benikova et al., 2016).

The relatively low agreement score reflects the
subjective nature of our task; however, all texts
have at least one sentence in common in both sets
of annotations (again, disregarding the ranking).
The annotations for these 30 texts were harmonised
using a scoring system: the highest ranked sentence
was equivalent to 3 points, the second to 2 and the
third to 1. The sentence with the most points was
then deemed the highest ranked sentence in the
harmonised annotation, and so on. Any tied scores
were resolved by randomly selecting one of the
sentences in the tie.

Some questions were raised by annotators: In
some texts there are sometimes multiple sentences
which contain the same information, and there is no
clear way to rank them. The task description also
mentions anaphoric entities, but for phrases such
as ‘that’s why’ (as in segment no. 9 in Table 1), it
is not clear if these should also be replaced by what
they are referring to. The genre of a newspaper
commentary also poses a specific challenge: is the
journalist’s opinion or are the objective facts more
important? Due to these comments, we adapted
the task description to specify that the chosen three
sentences should ideally contain both the objective
information as well as the opinion of the journalist,
and in cases where this is not possible, then the
objective information should be prioritised. If there
are multiple sentences which contain highly similar
content, then the first sentence should be chosen.
As this task description however did not lead to
an improved inter-annotator agreement we gave
the annotators the first (shorter) task description
for the remaining texts. The remaining texts were
annotated by four annotators (including the first
author), who also all annotated part of the subset
of the 30.

3.3 Semantic similarity

We also evaluated the inter-annotator agreement us-
ing ROUGE scores (Lin, 2004) and word mover’s
distance (WMD; Kusner et al. 2015). This is due

to an observation that the annotated sentences were
often semantically similar and contained the same
information even when they were not identical.
ROUGE measures the overlapping n-grams in a
source and reference summary. We used all three
sentences in their ranked order as a summary and
used one set of annotations as the reference sum-
mary and the other set as the source summary. This
resulted in a ROUGE-1 F1 score of .587, which
compares to a baseline of .380, which was cal-
culated by comparing one set of annotations to a
summary consisting of 3 randomly selected sen-
tences from a text. In a recent survey on automatic
summarisation, the ROUGE-1 scores for the most
recent extractive systems were between .338 and
.414 (Fabbri et al., 2021). WMD calculates the
shortest distance between the word embeddings of
two sentences or sets of multiple sentences. Again,
we used all three sentences combined together and
the WMD between the two annotators’ summaries
was .512, compared to a baseline of three random
sentences with a distance of .827. These scores
show that whilst the aforementioned IAA score
is relatively low when using a strict Kappa mea-
sure, the two sets of annotations do have semantic
similarities, which indicates commonalities in an-
notators’ choices of content.

4 Analysis

To investigate a potential link between RST and ex-
tractive summarisation for German-language texts,
we examine various RST-based features of the sen-
tences that were chosen in the annotation task. This
builds on the studies by Louis et al. (2010) and
Zhong et al. (2020) (as outlined in Section 2).

4.1 Non-discourse features

We first look at non-RST features; the average
length of sentences and the (relative) position of
sentences in the whole text. The average length of
non-summary sentences is 13 tokens, whereas the
key sentences have an average length of 18 tokens.
Figure 2 shows at what position in the text the key
sentences occur.

4.2 Local nuclearity

Local nuclearity refers to the nuclear-satellite rela-
tionship within a relation. We analyse the nuclear-
satellite relationship at the sentence level. For ex-
ample, the first sentence in Table 1 consists of 3
EDUs and is the satellite of an interpretation, as can
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1 Election results which both candidates are happy with –

2 what a rare occurrence!

3 But that was the case yesterday evening for both mayoral candidates.

4 Elisabeth Herzog-von der Heide (SPD) was happy about the voting, 1
5 that resulted in more than 60 percent for her, 1
6 and Hans-Jürgen Akuloff (PDS) was pleased that he brought in the best ever result for the PDS so far. 1
7 Of course, it was even easier this time, as there was only one opponent.

8 Luckenwalde has a broad range of diverse parties.

9 That’s why SPD or PDS supporters should not get ahead of themselves.

10 Yesterday’s outcome is the result of the two candidates, 2
11 after they eliminated the third candidate in the first round. 2
12 Nothing more and nothing less.

13 After the first round of Skat, the second round of Mau Mau was won by Herzog, the Queen of Hearts.

14 It’s neither a surprising nor a particularly phenomenal result but it’s most definitely a clear outcome.

15 There was no real tension anyway, 3
16 after the outcome was pretty much decided in the first round of voting, 3
17 which has simply been confirmed in this final round. 3

Table 1: Example text from the dataset (text ID: maz-14654). The sentences in bold are those that have been
selected for the summary in our gold annotation. The sentences in italics are those chosen by our best model (FFN).
The column on the left contains the ID for the segments, the column on the right the rank given to the sentence by
the annotator.

Figure 1: The RST tree for the example text (maz-14654, created using RSTWeb (Zeldes, 2016)). The circled EDUs
are the most-nuclear, the blue numbers are the depth scores.

Figure 2: The positions of the three sentences in each text.
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be seen in Figure 1. This analysis reflects RST’s
‘deletion test’: the nuclearity assignment can be
considered to be correct if once the satellites are
deleted, the remaining EDUs still convey the main
message(s) of the text (Mann and Thompson, 1988).
Although simply considering the sentence-level nu-
clearity status does not take the rest of the tree
structure into account, we feel it is still a fruitful
aspect to analyse due to the “strong composional-
ity criterion” or strong nuclearity principle (Marcu,
2000): if a relation holds between two spans then
the relation also holds between the nuclei of these
spans, therefore the assignment of nuclearity status
at a terminal level is fundamental as the importance
is propagated up the tree.

Of all the sentences annotated as being key, 70%
were nuclear. This compares to 61% of sentences
in the whole dataset.

4.3 Global nuclearity
We use the term global nuclearity to refer to nucle-
arity with respect to the whole tree and not just at
a local level. Huber et al. (2021) examine the loss
of information that a binary nuclearity assignment
can lead to and highlight this loss with reference to
downstream tasks such as summarisation. To coun-
teract this, we look at the depth score of EDUs,
which allows for a more nuanced approach to nu-
clearity, and the most nuclear EDUs, which takes
the whole tree into account. We use the term depth
to refer to what Marcu (1999) terms importance
score, which has also been implemented in more
recent studies (Louis et al. 2010, who also use the
term depth; Huber et al. 2021).

This score is calculated using the nuclearity of
units and their relation to other nodes in the RST
tree. We adapt the original equation (by removing
the part that refers to parenthetical units, as these
do not feature in our corpus) for calculating the
importance score s(u,D,d) of a unit u in a discourse
tree D with depth d as follows:

s(u,D, d) =





d, if u ∈ prom(D)

max(s(u,

C(D), d− 1)), otherwise

(1)

where C(D) refers to the child subtree and
prom(D) the promotion set of a node: if the node is
a leaf node then the promotion set is simply the leaf
itself, if the node is internal then the promotion set

is the union of the salient units of its immediate nu-
clear children. The score is simply the depth in the
tree where the leaf units first occur in a promotion
set. For example, we can see in Figure 1 that the
depth score of the fourth EDU is 7, as it belongs to
the promotion set of the root node, and the whole
discourse tree has a total depth of 7: if we follow
the nuclear links from the root node, we get the
promotion set of EDUs 4 and 6. The depth score
of EDU 3 is 6, as it belongs to the promotion set of
the subtree which is one level below the root. We
refer to the units with the highest depth scores as
most-nuclear as proposed by Mann and Thompson
(1988): the most-nuclear nodes can be determined
by following nuclear links from the root node to
the (leaf) EDU nodes. Depth scores are normalised
(as otherwise the length of the text would influence
the scores). As the depth score is calculated on an
EDU-level (and not sentence-level), we define the
depth score for a sentence as the maximum of the
depth scores of the EDUs that it contains. In the
same vein, a sentence is considered most-nuclear
if it contains a most-nuclear EDU.

25% of the key sentences are also most-nuclear
EDUs or contain a most-nuclear EDU. This corre-
sponds to about 38% of all most-nuclear EDUs in
the corpus.

65% of the texts have at least one key sentence
which contains or corresponds to a most-nuclear
EDU. When comparing the sentences with the three
highest depth scores (taking the maximum score for
sentences which contain more than one segment)
to the three key sentences, 46% match.

4.4 Relations

We examine the relations of the annotated sen-
tences: in the example in Table 1, the first two
EDUs constitute one sentence and therefore the
relation that we consider in our analysis would be
Antithesis (satellite, cf. Figure 1). We consider rela-
tions to be important in the context of this analysis
because annotation guidelines for different RST
corpora pre-define the nuclearity assignment for re-
lations: for example, for the relation Purpose, the
underlying goal of the activity is the satellite and
the activity itself is the nucleus (RST-DT guide-
lines (Carlson and Marcu, 2001); PCC guidelines
(Stede et al., 2017)). Stede (2008) states that this
can be problematic: by pre-defining the ‘activity
itself’ as the nucleus, this does not allow for any
flexibility for the case where actually the ‘goal of
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the activity is more important’. Marcu (1998) sug-
gests that to improve his proposed nuclearity-based
summarisation method, one should also “exploit
the semantics of rhetorical relations”, citing the re-
lation Exemplification as an example of a relation
where even the nuclei are probably not relevant for
a summary. We therefore also consider nuclearity
in connection with relations as they are intertwined
with each other and could give some quantitative
evidence for the problems highlighted here.

Figure 3 shows which relations the key sentences
have, with and without the nuclearity assignment.
As the selected sentences represent 26% of total
sentences, any relation ratio above this is above av-
erage. Evaluation-s nuclei, Background satellites,
and Evidence nuclei feature the most in the key
sentences.

5 Summarisation models

We use these RST features and non-discourse fea-
tures in linear and neural models to predict which
sentences should be kept for an extractive sum-
mary. We frame extractive summarisation as a
binary classification task, predicting whether each
sentence should be included in a summary or not.
Our dataset consists of 167 texts and 1894 sen-
tences; we use 30% of the dataset as a test set.

5.1 Features

We combine and adapt the feature sets used in
the studies by Louis et al. (2010) and Zhong et al.
(2020) and also introduce a new way of creating
sentence embeddings. We also perform a detailed
feature ablation to see which RST-based feature(s)
are most useful for extractive summarisation. The
features we use in comparison to related work can
be seen in Table 2. As Zhong et al. (2020) looked
specifically at content selection in the context of
simplification, we do not use some of their features
such as topic or readability score, as they do not
seem relevant for the task of summarisation. We do
not use features related to specific words (content
words, topic words) as we anticipate that this in-
formation is implicitly encoded in the embeddings
we use. Our focus is on RST-based features and a
more fine-grained analysis of these on an individ-
ual basis, and so we do not include PDTB related
features. The features nucleus-satellite penalty and
promotion score are used to measure global nucle-
arity: we decide to solely use depth as it was shown
to achieve the better results than the other two varia-

Features Louis
et al.
(2010)

Zhong
et al.
(2020)

Present
study

Non-discourse
Sentence length X X
Document length
(in sentences and
tokens)

X

Topics X
Position of sen-
tence

X X X

Sentence embed-
dings

∼ X

Embeddings with
document context

X

Readability scores X
Content words,
topic signature
words

X

Discourse
PDTB connectives X X
Local nuclearity X X
Depth X ∼ X
Nucleus-satellite
penalty

X

Promotion score X
Relations ∼ X
Most-nuclear X

Table 2: Features used in the present study and in related
work. The ∼ signifies that the features are not fully
identical.

Model F1 R P Acc.
Baseline .225 .188 .281 .658
Louis et al.
(2010)

.442 .344 .619 .789

LR .488 .583 .422 .677
FFN .506 .588 .448 .692
bi-LSTM .440 .635 .341 .729

Table 3: Results. Highest scoring feature set for each
model. We report F1 scores for the minority class (key
sentence). R, P and Acc. stand for recall, precision and
accuracy respectively.
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Figure 3: The ratio of relations of the selected key sentences out of the total amount of relations. Any relation
ratio above 26% (the line on the graph) is above average. The figure on the right hand side shows the relations
and nuclearity assignment of the key sentences; any ratio below 26% is excluded for better visibility. Relations
occurring less than a total of 10 times are excluded.

tions in the context of summarisation (Marcu, 1999)
and has also been used in more recent work (Huber
et al., 2021). Zhong et al. (2020) use the term depth
to refer to the level that the sentence occurs at in
the tree and do not encode any extra information
regarding promotion sets or nuclearity in this fea-
ture (in our example in Figure 1, the EDUs 1 and 2
would both have a score of 3).

The discourse features are the nuclearity of the
sentence, the relation that the sentence belongs to,
the depth of the sentence, and whether the sen-
tence is most-nuclear or not. If the sentence con-
tains more than one segment, we take the maxi-
mum depth score or most-nuclear score of the seg-
ments. For example, the first sentence in Table 1
would have the following features: satellite, inter-
pretation, depth score 6/7, most-nuclearity 0. The
non-discourse features are the length of the sen-
tence (in tokens) and the relative position of the
sentence. We also use sentence embeddings and
an adapted variation of these, in an attempt to incor-
porate more document-level information. We use
S-BERT sentence embeddings which are created
by taking the mean of token embeddings of the
input (which is usually a single sentence) from an
adapted BERT model trained on multi-lingual para-

phrase data (Reimers and Gurevych, 2020). We
also adapt this by taking the whole text as input
and then simply taking the average of the token
embeddings between the sentence boundaries, thus
producing an embedding for each sentence, instead
of just one embedding for the whole text. The intu-
ition is that these sentence embeddings may capture
more document-level information by having seen
an even larger context whilst producing the token
embeddings.

5.2 Setup

As a baseline, we select the first, middle and last
sentence to be in a summary. We implement a Lo-
gistic Regression model2, a feed-forward neural
network (with two hidden layers; FFN), and a bidi-
rectional LSTM model (with one layer). For the
bi-LSTM model, each text is fed as a sequence,
so the input dimensions are batch size, text length,
feature dimension. For all models, we weight the
classes to counteract the class imbalance, which is
skewed towards the ‘non-summary sentence’ class.

2Whilst we did also experiment with other non-neural
methods, we only report on Logistic Regression as it per-
formed the best and is also directly comparable to the work
by Louis et al. (2010).
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In total we have four discourse features, two non-
discourse features and two types of sentence em-
beddings. We run models with all possible combi-
nations of features. We experiment with different
hyper-parameters, these can be found in the Ap-
pendix and we make our code publicly available.3

5.3 Results

The results of our experiments can be seen in Table
3. The FFN achieved the best F1 score with nuclear-
ity, relations, most-nuclearity, sentence length and
position, and sentence embeddings. The Logistic
Regression (LR) model also had the best F1 score
with this feature set, minus sentence length and
position. The bi-LSTM achieved the best F1 score
with nuclearity, relations and sentence position, in
combination with sentence embeddings. All best-
performing models have nuclearity, relations and
sentence embeddings in common as features.

In Table 4, the best performing combinations of
features can be seen as well as the performance of
individual features; whilst our proposed sentence
embeddings with additional document context are
not the individual feature with the worst F1 score,
they generally do not improve results greatly across
all types of models. We report F1 score as we are
interested in the minority class (key sentences).

The summary produced by the FFN model for
our example text can be seen in italics Table 1.
Overall, the summary reads well and includes two
of the gold key sentences (shown in bold). How-
ever, the sentence which corresponds to segment
number 8 does not make much sense without the
following sentence (which corresponds to segment
9). The ROUGE-1 F1 score for our test set as pre-
dicted by the FFN model is .690. The ROUGE-1
recall score is .612 as compared to .479 reported
by Louis et al. (2010).

6 Discussion

The results of the analysis, particularly Section 4.4
and Figure 3, show that simply looking at nucle-
arity in isolation may not be sufficient for some
downstream tasks, as we have Background satel-
lites and Cause satellites featuring heavily in the
summaries, for example. This is reflected in the re-
sults: the best combination of features for both the
FFN and LR model is nuclearity (local and global,
with most-nuclearity measuring global nuclearity)

3https://github.com/fhewett/rst-features

Features F1
Top 3 combinations
Nuclearity, relations, most-
nuclearity, sentence embeddings

.488

Nuclearity, relations, sentence em-
beddings

.486

Nuclearity, relations, most-
nuclearity, sent. length

.486

Ranked individual features
Sentence length .462
Sentence embeddings .452
Local nuclearity .425
Depth .391
Embeddings with document con-
text

.385

Position .376
Relations .368
Most-nuclearity .302

Table 4: Feature ablation for the Logistic Regression
model. We show the best 3 combinations, as well as the
individual features ranked in descending order accord-
ing to the F1 score achieved when using said feature as
the sole input.

in combination with relations (and sentence em-
beddings). The bi-LSTM model and our sentence
embeddings with additional document context both
perform worse than other models and features: this
goes against our intuition that more text-level con-
text is beneficial for such a task as extractive sum-
marisation. We leave it to future work to exam-
ine if these embeddings could work in other set-
tings, perhaps with larger datasets or pre-trained in
a different manner. Simple models (such as LR)
perform well, which suggests that RST features
(particularly nuclearity) are strong indicators of im-
portance. Combinations of RST features perform
even better than sentence embeddings on their own.
As can be seen in Table 3, our F1 scores (and our
ROUGE scores, see Section 5.3) are in fact higher
than those reported in (Louis et al., 2010). Whilst
our recall is higher, our precision and overall ac-
curacy are slightly lower. It is also worth noting
that our results are on commentaries, a type of ar-
gumentative text, and so the results are not directly
comparable (Louis et al. work with the RST-DT,
articles from the Wall Street Journal); we leave this
to future work to investigate more thoroughly.
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7 Conclusion

In this study we have introduced a new set of extrac-
tive summaries for the Potsdam Commentary Cor-
pus; texts which have already been annotated with
various linguistic features such as discourse struc-
ture, co-reference and syntax. We have shown the
connection between RST-based features and sen-
tences chosen for extractive summaries and have
transferred these to various models. Our feature ab-
lation experiments could provide useful insights for
research on RST parsers for specific downstream
tasks: by finding the aspect of RST which is most
useful for a task such as summarisation, the parsers
can be streamlined and will have less room for error.
For example, one of our top models has sentence-
level nuclearity and relation information, showing
that in this context, the additional RST tree struc-
ture is potentially not necessary. We hope that our
dataset will enable research on the link between
summarisation and other linguistic features. Our
analysis using manually annotated discourse struc-
ture also provides the necessary evidence to foster
research on automatically parsed discourse struc-
ture and downstream tasks, such as summarisation.
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Abstract

The state of bridging resolution research is
rather unsatisfactory: not only are state-of-
the-art resolvers evaluated in unrealistic set-
tings, but the neural models underlying these
resolvers are weaker than those used for en-
tity coreference resolution. In light of these
problems, we evaluate bridging resolvers in an
end-to-end setting, strengthen them with better
encoders, and attempt to gain a better under-
standing of them via perturbation experiments
and a manual analysis of their outputs.

1 Introduction

Bridging was used by Clark (1975) to refer to non-
identity relations between anaphoric noun phrases
(i.e., bridging anaphors) and their antecedents.
In Example 1, “ruling – party members” is a
bridging anaphor and its antecedent is “Japan”.

(1) Yet another political scandal is racking Japan.
But this time it’s hurting opposition as well as
ruling - party members.

Bridging resolution is the task of identifying bridg-
ing anaphors and linking them to their antecedents.
Many tasks can benefit from bridging resolution,
such as textual entailment (Mirkin et al., 2010) and
question answering (Tseng et al., 2021).

Bridging resolution is arguably less studied but
more challenging that entity coreference resolu-
tion, the task of determining which entity mentions
refer to the same entity in the real world. Specif-
ically, while linguistic constraints on coreference
exist at the grammatical (e.g., gender and number
agreement), syntactic (e.g., c-command), and se-
mantic (e.g., semantic type agreement) levels that
can be used to filter candidate antecedents, such
constraints are largely absent for bridging resolu-
tion. For instance, a singular bridging anaphor (e.g.,
"the book") can refer to a plural antecedent (e.g.,
"books"), and bridging relations can be formed
from mentions with different entity types (e.g.,

"the house" and "the window"). In fact, while
many coreference relations can be identified via
string matching facilities, it is not uncommon for
bridging relations to be identified using background
knowledge and/or sophisticated inference mech-
anisms. The complexity of bridging resolution
is further complicated by the lack of a large cor-
pus annotated with bridging relations: while the
most extensively-used coreference-annotated cor-
pus, OntoNotes, contain more than 2000 docu-
ments, two of the most commonly-used corpora
for bridging resolution, ISNotes and BASHI, each
contains only 50 documents taken from OntoNotes.

The current state of bridging resolution research
is rather unsatisfactory. State-of-the-art bridging
resolvers are typically evaluated in unrealistic set-
tings: in the bridging anaphora resolution task,
the goal is to identify the antecedent of a given
bridging anaphor; and in the full bridging resolu-
tion task, the goal is to first identify the bridging
anaphors given a set of gold mentions and then
resolve each anaphor to its antecedent (Yu and Poe-
sio, 2020). While such unrealistic settings have
been considered unacceptable for evaluating entity
coreference resolvers for more than a decade, they
are still extensively used to evaluate bridging re-
solvers nowadays simply because the end-to-end
setting, where a resolver needs to identify bridg-
ing relations given a raw document, is perceived
to be overly challenging. Worse still, while bridg-
ing resolution is more challenging than coreference
resolution, models for bridging resolution are less
sophisticated than those for coreference resolution.
For instance, while SpanBERT, a version of BERT
specifically pre-trained to identify text spans (Joshi
et al., 2020), has been used successfully as an en-
coder in span-based entity coreference models, the
state-of-the-art neural bridging resolver developed
by Yu and Poesio (2020) simply uses a bidirectional
LSTM to encode the input document.

Our goal in this paper is to gain a better un-
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derstanding of the state of the art in bridging res-
olution. First, we conduct a systematic evalua-
tion of bridging resolvers in an end-to-end setting.
In particular, we focus on evaluating three state-
of-the-art approaches, including a rule-based ap-
proach by Rösiger et al. (2018), a neural approach
by Yu and Poesio (2020), and a hybrid rule-based
and learning-based approach by Kobayashi and Ng
(2021), showing how each of them can be extended
so that they can be applied in an end-to-end set-
ting. Next, we strengthen Yu and Poesio’s (2020)
neural model by replacing the biLSTM encoder it
uses with stronger encoders such as BERT (Devlin
et al., 2019) and SpanBERT (Joshi et al., 2020).
These experiments can help us determine whether
the commonsense knowledge encoded in these pre-
trained language models can be profitably exploited
for bridging resolution, which could be important
given that state-of-the-art bridging resolvers are
trained on small annotated corpora. Further, to
better understand the extent to which a bridging
resolver relies on certain words/phrases in the in-
put, we conduct perturbation experiments. Finally,
to complement the quantitative analysis in our ex-
periments, we conduct a qualitative analysis of the
outputs produced by our best-performing resolver.

Our contributions in this paper are three-fold.
First, our experiments reveal that end-to-end bridg-
ing resolution is not as challenging as typically
perceived: for the most part, end-to-end bridging
resolution lags behind its "gold mention" counter-
part by less than 3 points in absolute F-score. These
results provide suggestive evidence that time is ripe
for abandoning unrealistic evaluations of bridging
resolvers. Second, we establish baseline results for
end-to-end bridging resolution against which fu-
ture work can be compared on two commonly-used
referential bridging corpora, ISNotes and BASHI.
While our evaluations have largely focused on the
end-to-end setting, for comparison purposes we
also present evaluation results in the "gold men-
tion" setting, in which our strongest models achieve
state-of-the-art results on ISNotes and BASHI.

2 Related Work

Many previous computational studies on bridg-
ing have focused on one of the two sub-tasks of
bridging resolution, namely bridging anaphora
recognition and bridging anaphora resolution (see
Kobayashi and Ng (2020) for a comprehensive
overview of this area of research). Bridging

anaphora recognition has been tackled as part of
the information status (IS) classification problem
(Rahman and Ng, 2011, 2012; Hou et al., 2013;
Hou, 2020b). Recall that the goal of IS classifica-
tion is to assign an IS to each discourse entity that
indicates how these entities are referred to in a text
(Prince, 1981; Nissim et al., 2004; Markert et al.,
2012): an entity is old if it is coreferent with an
entity that has been mentioned before, new if it is
introduced into the discourse for the first time and
is not known to the hearer before, and mediated if it
has not been introduced in the discourse but can be
inferred from previously mentioned entities. Bridg-
ing anaphors are a type of mediated entities that are
discourse-new but hearer-old. Bridging anaphora
resolution, on the other hand, focuses on selecting
antecedents for bridging anaphors (Poesio et al.,
2004; Pandit et al., 2020; Hou, 2020a). There are
a few works tackling full bridging resolution (i.e.,
recognizing bridging anaphors and linking them
to the antecedents), ranging from rule-based ap-
proaches (Hou et al., 2014; Rösiger et al., 2018),
to machine learning-based approaches (Hou et al.,
2018; Yu and Poesio, 2020) and hybrid methods
(Kobayashi and Ng, 2021; Kobayashi et al., 2022).
However, these resolvers all assume that gold men-
tions are given, which hinders the application of
bridging resolution in downstream tasks.

In contrast, we focus on end-to-end bridging res-
olution. Note that some recent attempts have been
made in this direction. For example, Hou’s (2020a)
approach to bridging anaphora resolution does not
require gold mentions when constructing the list of
antecedent candidates; nevertheless, it still needs
gold bridging anaphora information. In addition,
while Hou (2021) proposes an end-to-end neural
approach to the related tasks of IS classification
and bridging anaphora recognition, it has not been
extended to bridging resolution. More recently, in
the Bridging track of the CODI-CRAC shared task
on Anaphora, Bridging, and Discourse Deixis in
Dialogue in 2021 (Khosla et al., 2021) and 2022
(Yu et al., 2022), the participants built resolvers
for performing end-to-end bridging resolution in
dialogue in the "Predicted" phase (Kim et al., 2021;
Kobayashi et al., 2021; Li et al., 2022).

3 State-of-the-Art Approaches

Existing approaches to bridging resolution can
be broadly divided into rule-based approaches,
learning-based approaches, and hybrid approaches.
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Figure 1: The MTL framework for bridging resolution.

In this section, we overview the state-of-the-art ap-
proach in each of these three categories, as we will
extend them to the end-to-end setting in Section 4.

3.1 Yu and Poesio’s (2020) Model

Yu and Poesio’s (Y&P) approach is a state-of-the-
art learning-based approach to bridging resolution.
Their model is a span-based neural model that takes
as input a document D represented as a sequence
of word tokens and the associated set of gold men-
tions, and performs joint bridging resolution and
coreference resolution, which we define below, in
a multi-task learning (MTL) framework.

The bridging resolution task aims to find a bridg-
ing antecedent bi for each span i in D. The set of
possible values for bi is B(i) = {1, ..., i − 1, ϵ},
the preceding spans or a dummy antecedent (if the
mention underlying i is not a bridging anaphor).
Y&P define the following scoring function:

sb(i, j) =

{
0 j = ϵ

sa(i, j) j ̸= ϵ
(1)

where sa(i, j) is a pairwise score computed over i
and a preceding span j suggesting their likelihood
of having a bridging link. The antecedent of i is
predicted to be y∗b = argmaxyb∈B(i) sb(i, yb).

The entity coreference task aims to find a coref-
erence antecedent ci for each span i based on a
scoring function sc that is defined analogously as
the sb function in the bridging resolution task.

Figure 1 illustrates the structure of MTL frame-
work, which we describe in detail below.
Span Representation Layer To encode the to-
kens and the surrounding contexts of a gold men-
tion, Y&P use a bidirectional LSTM (Hochre-

iter and Schmidhuber, 1997) that takes as in-
put BERT and GloVe embeddings. They
define gi, the representation of span i, as
[xstart(i); xend(i); xhead(i);ϕi], where xstart(i) and
xend(i) are the hidden vectors of the start and end
tokens of i, xhead(i) is an attention-based head vec-
tor and ϕi is a span width feature embedding.

Bridging Prediction Layer To predict bridging
links, Y&P first calculate the pairwise score be-
tween spans i and j as follows:

sa(i, j) = FFNNb([gi; gj ; gi ◦ gj ;ψij ]) (2)

where FFNNb(·) represents a standard feedforward
neural network, and ◦ denotes element-wise mul-
tiplication. This pairwise score includes gi ◦ gj ,
which encodes the similarity of i and j, and ψij ,
which denotes the distance between them.

Coreference Prediction Layer To predict coref-
erence links, Y&P calculate the pairwise score that
is defined analogously as in Equation 2 using an-
other FFNN, FFNNc. The model shares the first
few hidden layers of FFNNb and FFNNc as well as
the span representations.

The loss function is the weighted sum of the
losses of the bridging task (Lb) and the coreference
task (Lc). Lb and Lc are defined as the negative
marginal log-likelihood of all correct bridging an-
tecedents and coreference antecedents, respectively.
The weights associated with the losses are tuned
using grid search to maximize the average bridging
resolution F-scores on development data.

3.2 Rösiger et al.’s (2018) Approach

Rösiger et al.’s approach, which builds upon the
rules designed by Hou et al. (2014), is by far the
best-performing rule-based approach to bridging
resolution. These rules are shown in Appendix A.
When evaluating on BASHI, all nine rules are ap-
plied, but when evaluating on ISNotes, only the
first eight are used. The reason is that the last rule
aims to resolve comparative anaphors, which are
not annotated in ISNotes. Each rule is composed of
an "anaphor" condition and an "antecedent" condi-
tion. When two mentions satisfy the two conditions
of a rule, they will be extracted as a bridging pair.

3.3 Kobayashi and Ng’s (2021) Approach

Motivated by the observation that Rösiger et al.’s
rule-based approach and Y&P’s MTL approach are
complementary rather than competing, Kobayashi
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and Ng (K&N) propose a hybrid approach to bridg-
ing resolution that combines these two approaches
in a pipeline fashion. Given a document, they first
use the rules to extract the bridging pairs and then
use Y&P’s neural model to resolve all and only
those mentions that are not resolved by the rules.

From a modeling perspective, however, K&N’s
approach is not particularly elegant, as there are
two models (i.e., the rules and the neural models
are still separate). Consequently, we propose a
variant of the hybrid approach where we integrate
the rules into the MTL model. Recall that each
rule posits a bridging link when the anaphor and
antecedent conditions are both satisfied. To incor-
porate these predictions into the MTL model, we
first define a rule score function r(i, j) whose value
is the precision of the rule that posits a bridging
link between spans i and j. This rule score function
is incorporated into Equation 1 as follows:

sb′(i, j) =

{
0 j = ϵ

sb(i, j) + αr(i, j) j ̸= ϵ
(3)

where α is a positive constant that controls the
impact of the rule information on s′b. The smaller
α is, the less impact rule information has on s′b. sb′
is then used as the bridging score function when
ranking the candidate antecedents of span i. Note
that (1) if no rule posits i and j as bridging, r(i, j)
is 0; (2) rule precision is computed on the training
set; and (3) α is tuned on the development set.

We will henceforth refer to the original K&N
approach as H1 and our proposed variant as H2.

4 End-to-End Models

Next, we show how to create end-to-end versions
of the three approaches described in Section 3.

4.1 Yu and Poesio’s (2020) Model

We present two approaches to create end-to-end
versions of Y&P’s model.

Joint approach. The first approach learns men-
tion boundaries jointly with bridging and corefer-
ence resolution. Specifically, following Joshi et al.
(2019), for each document, we enumerate all pos-
sible intra-sentence spans of up to length Lm. We
compute a score sm for each span i that indicates
i’s likelihood of being a mention.

sm(i) = FFNNm(gi) (4)

where FFNNm is a feedforward neural network
used to calculate mention scores. Using these
scores, the model prunes candidate spans and re-
tains only the top N spans for further processing in
order to maintain computational tractability. These
scores are then incorporated into the bridging score
function in Equation 1 as additional terms:

sb(i, j) =

{
0 j = ϵ

sm(i) + sm(j) + sa(i, j) j ̸= ϵ
(5)

We incorporate these scores into the coreference
score function sc(i, j) in a similar manner.
Pipeline approach. In this approach, we do not
make any changes to Y&P’s model. Rather, dur-
ing testing, we first apply a mention extractor to
extract mentions and then employ Y&P’s model
from Section 3 to resolve mentions.

Next, we describe our mention extractor. For
ISNotes, we use Hou’s (2021) mention extraction
model, which has achieved state-of-the-art results
on ISNotes and outperformed Yu et al.’s (2020) neu-
ral mention extractor. For BASHI, we use all the
noun phrases extracted from the automatic parse
trees that are obtained using Stanford CoreNLP
(Manning et al., 2014).1 The reason is that in
BASHI gold mentions are not annotated, and bridg-
ing links are annotated over the noun phrases ex-
tracted from gold parse trees.2

Using BERT and SpanBERT as encoders. We
strengthen Y&P’s model by replacing its biLSTM
encoder with Transformer-based encoders, includ-
ing BERT and SpanBERT, the latter of which has
been successfully applied to entity coreference res-
olution. To do so, we follow Joshi et al. (2019) and
replace the LSTM-based encoder in Y&P’s model,
which takes frozen BERT and Glove embeddings
as input, with BERT or SpanBERT, which corre-
sponds to the “Encoder” component in Figure 1.
We adopt the independent version of Joshi et al.
(2019), where an input document is split into non-
overlapping segments of up to length Ls.

4.2 Rösiger et al.’s (2018) Approach
While the rules were designed to operate on gold
mentions, they can be applied to mentions extracted

1These mention extractors achieve F-scores of 92.1 (when
extracting gold mentions in ISNotes) and 92.0 (when extract-
ing gold noun phrases in BASHI).

2In preliminary experiments, we applied Hou’s (2021)
mention extractor to extract mentions in BASHI, but the results
were poorer than those obtained using noun phrases extracted
from automatic parse trees.
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Corpora Docs Tokens Mentions Anaphors
ISNotes 50 40,292 10,980 663
BASHI 50 57,709 18,561 452

Table 1: Statistics on ISNotes and BASHI.

using one of the mention extractors described in
Section 4.1 (i.e., Hou’s (2021) mention extractor
for ISNotes and the noun phrases extracted from
system parse trees for BASHI) with just one caveat.
Specifically, Rösiger et al. use gold annotations
(i.e., gold POS tags, gold parse trees, and gold en-
tity types) when computing the information needed
by the rules. To make the rules applicable in an end-
to-end setting, we use Stanford CoreNLP to pro-
vide automatic constituency and dependency parse
trees and spaCy (Honnibal and Montani, 2017) to
provide automatic POS tags and entity types.

4.3 Kobayashi and Ng’s (2021) Approach

Now that we have end-to-end versions of Rösiger
et al.’s rule-based approach and Y&P’s MTL ap-
proach, we can simply use them to create an end-
to-end version of K&N’s hybrid approach.

5 Evaluation

5.1 Experimental Setup

Corpora. Since we focus on anaphoric referen-
tial bridging resolution, which corresponds to “ref-
erential bridging” in Rösiger et al. (2018) where
bridging anaphors are truly anaphoric and bridg-
ing relations are context-dependent3, we employ
two widely used English referential bridging cor-
pora: ISNotes (Markert et al., 2012) and BASHI
(The Bridging Anaphors Hand-annotated Inven-
tory) (Rösiger, 2018), both of which are composed
of different sets of 50 WSJ articles in OntoNotes
with anaphoric referential bridging annotations. Ta-
ble 1 shows statistics on these corpora. We perform
5-fold cross validation (70% for model training,
10% for development, and 20% for testing).
Evaluation setting. We evaluate bridging re-
solvers in the end-to-end setting, meaning that they
extract bridging relations given a raw document.
Evaluation metrics. Bridging results are re-
ported in terms of precision (P), recall (R), and
F-score (F) for recognition and resolution. For com-
pleteness we also report the results of entity coref-

3We excluded ARRAU (Uryupina et al., 2020) from our
evaluation because most bridging links in ARRAU are non-
anaphoric referential bridging pairs (e.g., Europe-Spain),
which Rösiger et al. (2018) refer to as lexical bridging.

Model Bridging
Recognition Resolution

ISNotes
Rösiger et al. (2018) 25.6 17.5

Our re-implementation 28.1 18.1
BASHI

Rösiger et al. (2018) 27.2 14
Our re-implementation 28.5 14.1

Table 2: Comparison of Rösiger et al’s (2018) resolver
and our re-implementation on ISNotes and BASHI.

erence. Entity coreference results are expressed in
terms of the CoNLL score (Pradhan et al., 2014),
which is the unweighted average of the F-scores
provided by three coreference evaluation metrics,
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), and CEAFe (Luo, 2005).
Implementation details. For the MTL model,
we extend a publicly-available implementation of
Y&P’s resolver4 so that it can operate in an end-to-
end setting. The BERT and SpanBERT encoders
we use are BERTLARGE and SpanBERTLARGE ,
and BERTLARGE is used to obtain BERT embed-
dings with segment length 512. We set all parame-
ters to the ones reported in Yu and Poesio (2020)
except (1) the task learning rate, which is searched
out of {1× 10−4, 2× 10−4, 3× 10−4, 4× 10−4}
and is decayed linearly; and (2) the learning rates
for BERT and SpanBERT, which are searched out
of {1×10−5, 2×10−5, 3×10−5} and are decayed
linearly. Each document is split into segments of
length 384. We generate all spans of length up to
15 and prune these candidate spans by retaining the
top 30%. For training, we use document-sized mini-
batches and train models for up to 1600 epochs for
both ISNotes and BASHI. α, the weight parameter
associated with the rule score, is searched out of
{0.1, 0.5, 1.0, 10, 100, 200, 300}.

For the rule resolver, while conceptually we can
extend Rösiger et al.’s resolver so that it can operate
in an end-to-end setting, the way they structured
their code has made it non-trivial to do so. Conse-
quently, we (1) re-implement their resolver, which
operates on gold mentions; (2) extend it so that it
operates on automatically extracted mentions, as
described in Section 4.2; and (3) report rule-based
results using this duplicated resolver. As we can
see in Table 2, our re-implementation outperforms
the original resolver in terms of recognition and res-
olution F-scores when evaluated on both ISNotes
and BASHI in the gold-mention setting.

4https://github.com/juntaoy/
dali-bridging
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Model
Bridging Coref. Bridging Coref.

Recognition Resolution Res. Recognition Resolution Res.
P R F P R F CoNLL P R F P R F CoNLL

ISNotes BASHI
MTL

1 Rules 49.4 17.4 25.7 31.8 11.2 16.5 - 33.1 22.5 26.8 15.2 10.3 12.3 -
2 LSTMJ 49.6 19.1 29.3 26.0 9.7 14 59.1 40.5 9.3 15.1 19.8 4.5 7.3 58.1
3 LSTMP 50.0 24.0 32.4 25.4 12.2 16.5 61.1 37.3 16.0 22.4 16.3 7.0 9.8 48.6
4 H1(LSTMP ) 45.8 32.4 37.9 25.9 18.3 21.5 61.1 33.6 32.3 33.0 16.4 15.8 16.1 48.6
5 H2(LSTMP ) 53.3 26.5 35.4 32.6 16.2 21.6 60.6 41.2 22.8 29.3 22.6 12.5 16.1 47.1
6 BERTJ 72.1 7.8 14.1 45.7 5.0 9.0 61.9 68.7 3.1 5.9 53.6 2.4 4.6 60.3
7 BERTP 33.3 32.0 32.5 19.0 18.2 18.5 56.9 37.1 23.4 28.7 15.0 9.4 11.6 43.8
8 H1(BERTP ) 33.8 39.5 36.4 20.1 23.5 21.7 56.9 32.4 36.5 34.3 15.1 17.0 16.0 43.8
9 H2(BERTP ) 33.7 32.7 33.2 22.4 21.8 22.1 55.1 45.8 23.7 31.2 23.9 12.4 16.3 48.2

10 SBERTJ 79.0 15.6 26.1 52.7 10.4 17.4 68.8 64.5 9.0 15.8 40.1 5.6 9.8 66.5
11 SBERTP 34.4 30.9 32.6 22.3 20.1 21.1 59.5 34.7 29.4 31.8 15.3 12.9 14.0 47.5
12 H1(SBERTP ) 35.1 38.8 36.8 22.2 24.6 23.4 59.5 31.3 41.6 35.7 14.8 19.6 16.9 47.5
13 H2(SBERTP ) 39.7 31.6 35.1 27.0 21.5 23.9 59.2 36.0 27.5 31.2 19.7 15.0 17.0 45.4

STL
14 LSTMJ 57.4 11.6 19.3 20.4 4.2 6.9 - 59.5 8.6 14.9 15.9 2.3 4.0 -
15 LSTMP 54.5 15.4 24.0 22.7 6.3 9.9 - 41.7 11.3 17.7 14.6 4.0 6.2 -
16 BERTJ 66.5 4.9 9.1 47.6 3.5 6.5 - 86.7 2.3 4.5 63.3 1.6 3.2 -
17 BERTP 24.5 36.5 29.2 12.5 18.6 14.9 - 30.8 19.0 23.5 8.9 5.5 6.8 -
18 SBERTJ 67.9 16.7 26.6 38.2 9.1 14.6 - 61.7 5.9 10.8 36.0 3.4 6.2 -
19 SBERTP 35.2 32.9 33.9 17.9 16.7 17.3 - 26.5 26.8 26.6 11.0 11.1 11.0 -

Table 3: Results of different MTL and STL resolvers in the end-to-end setting. Each result is the average of two
runs. The highest recognition and resolution F-scores are bolded for each encoder in MTL.

Finally, for the hybrid approach, we employ our
extension of the publicly-available implementation
of Y&P’s resolver and our re-implementation of
Rösiger et al.’s resolver, as described above.

5.2 Results and Discussion

Baselines. Strictly speaking, there are no base-
lines, as no one has reported results on ISNotes
and BASHI in the end-to-end setting. Neverthe-
less, we will use the three approaches described in
Section 4, namely our end-to-end versions of the
state-of-the-art approaches to bridging resolution
in the gold mention setting, as our baselines.

Results of bridging recognition and resolution in
the end-to-end setting for both ISNotes and BASHI
are shown in Table 3. For bookkeeping purposes,
we also report results on entity coreference reso-
lution. Rules (row 1) corresponds to our duplica-
tion of Rösiger et al.’s rule-based approach (Sec-
tion 4.2). LSTMJ (row 2) and LSTMP (row 3)
are the joint and pipeline versions of Y&P’s MTL
approach using LSTM as the encoder (Section 4.1).
H1(LSTMP ) (row 4) and H2(LSTMP ) (row 5) are
the original version and our proposed variant of
K&N’s hybrid approach, respectively.

Several points deserve mention. First, LSTMJ

underperforms LSTMP . This is somewhat unex-
pected since pipeline models are prone to error
propagation and have been shown to underperform

their joint counterparts in many NLP tasks. A
closer examination of the output reveals the rea-
son: since the mention extraction F-scores on both
datasets are above 90%, error propagation is by
no means serious. In contrast, LSTMJ has par-
ticularly poor anaphor recognition recall, which
translates to poor resolution recall and F-score. Sec-
ond, LSTMP does not perform better than Rules.
While LSTMP achieves considerably higher recog-
nition recall than Rules, it does not perform better
than Rules w.r.t. resolution. For BASHI, LSTMP

underperforms Rules w.r.t. both recognition and
resolution. H1(LSTMP ) outperforms both Rules
and LSTMP . This is perhaps not surprising: this
hybrid variant has achieved the best results on
ISNotes and BASHI in the gold mention setting
and represents the prior state of the art. Our re-
sults suggest that the success of this hybrid variant
can be extended to the end-to-end setting. Like
in the gold setting, recognition and resolution F-
scores are both better than other baselines in the
end-to-end setting. Finally, consider H2(LSTMP ).
While H2(LSTMP ) achieves lower recognition F-
scores than H1(LSTMP ), the resolution F-scores
achieved by the two models are comparable, with
H2(LSTMP ) having higher resolution precision
and lower resolution recall than H1(LSTMP ). This
suggests that H2 could be more valuable than H1

for downstream applications, as these applications
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Model
Bridging Coref. Bridging Coref.

Recognition Resolution Res. Recognition Resolution Res.
P R F P R F CoNLL P R F P R F CoNLL

ISNotes BASHI
MTL

1 Rules 52.7 19.2 28.1 34.0 12.4 18.1 - 35.8 23.6 28.5 17.8 11.7 14.1 -
2 LSTM 53.0 25.6 34.5 24.2 11.7 17.2 64.0 38.2 16.5 23.0 17.3 7.5 10.4 57.4
3 H1(LSTM) 48.1 34.6 40.3 27.2 19.6 22.8 64.0 34.7 33.7 34.2 18.1 17.5 17.8 57.4
4 H2(LSTM) 56.5 28.8 38.1 34.0 17.3 22.9 63.8 45.4 22.8 30.4 26.6 13.4 17.8 57.4
5 BERT 34.9 33.2 33.9 20.3 19.3 19.7 60.2 37.6 23.4 28.8 15.2 9.4 11.6 52.1
6 H1(BERT) 35.6 42.2 38.6 21.1 25.0 22.8 60.2 33.6 37.8 35.6 16.4 18.5 17.4 52.1
7 H2(BERT) 36.3 35.7 36.0 23.7 23.3 23.5 58.3 46.3 24.8 32.3 25.8 13.8 18.0 50.7
8 SBERT 37.1 33.1 35.0 24.5 21.9 23.1 62.9 35.0 29.7 32.1 16.1 13.7 14.8 54.9
9 H1(SBERT) 37.6 42.4 39.8 23.6 26.6 25.0 59.5 32.2 43.0 36.8 16.3 21.7 18.6 54.9

10 H2(SBERT) 43.8 34.6 38.6 30.4 24.1 26.8 62.6 37.6 28.8 32.6 21.6 16.6 18.7 55.1
STL

11 LSTM 57.4 16.4 25.4 25.1 11.0 15.2 - 42.8 11.5 18.1 15.5 4.2 6.5 -
12 BERT 26.0 38.2 30.8 13.1 19.2 15.5 - 28.9 20.5 24.0 9.1 6.5 7.6 -
13 SBERT 37.7 34.4 35.9 19.9 18.1 18.9 - 27.8 26.8 27.3 12.2 11.7 12.0 -

Table 4: Results of different MTL and STL resolvers in the gold mention setting. Each result is the average of two
runs. The highest recognition and resolution F-scores are bolded for each encoder in MTL.

typically cannot benefit from bridging information
if many links are erroneous.5

LSTM vs. BERT/SpanBERT. Results for BERT
and SpanBERT (SBERT) are shown in rows 6–9
and rows 10–13 respectively. Comparing the BERT
results with the corresponding LSTM results, we
see that the two achieve comparable F-scores w.r.t.
resolution except for three cases (BERTP outper-
forms LSTMP on both datasets, and H2(BERTP )
outperforms H2(LSTMP ) on ISNotes). In terms
of recognition, the results are mixed: on BASHI
the BERT models outperform their LSTM counter-
parts, while the reverse is true on ISNotes. Next,
consider the SBERT results. Each SBERT model
considerably outperforms the corresponding BERT
and LSTM models. Generally, the higher resolu-
tion F-scores achieved by SBERT can be attributed
to its higher recall on BASHI and its higher preci-
sion on ISNotes. These results show the usefulness
of SBERT for bridging resolution.

MTL vs. STL. Y&P show that multi-task learn-
ing for entity coreference and bridging outperforms
single-task learning (i.e., learning bridging resolu-
tion without coreference). The question is: would
MTL still outperform STL in the end-to-end set-
ting? To answer this question, we obtain STL re-
sults by removing the coreference prediction layer
in Y&P’s model and retraining it. Results of this
experiment using different encoders in the Y&P
model are shown in rows 11–13. As can be seen,

5We use the pipeline version rather than the joint version
of Y&P’s MTL model in the hybrid variants because of our
desire to create stronger baselines.

regardless of which encoder is used, the resolu-
tion F-scores achieved by STL are lower than those
achieved by MTL for both datasets.

End-to-end vs. gold settings. Will the trends we
have observed so far generalize to the gold mention
setting? To answer this question, we repeat the
experiments in Table 3 on gold mentions. There is
a caveat involved in evaluating on gold mentions,
however. In ISNotes and BASHI, some bridging
anaphors have clausal antecedents that correspond
to events. While clausal antecedents are annotated,
they are not annotated as gold mentions, and previ-
ous studies differ in terms of how they should be
handled. Specifically, some previous work (e.g.,
Hou et al. (2014), Hou et al. (2018)) chose not to
include these clausal antecedents in the list of can-
didate antecedents and others (e.g., Rösiger et al.
(2018), Yu and Poesio (2020)) did. Obviously, the
setting in which gold clausal antecedents are not
included in training/evaluation is harsher because
it implies that anaphors with clausal antecedents
will always be resolved incorrectly. We believe that
including gold clausal antecedents during evalua-
tion does not represent a realistic setting, and will
therefore report results using the "harsh" setting
when evaluating on gold mentions.

Results of the gold mention setting are shown in
Table 4.6 Recall that the distinction between joint

6The baseline results in Table 4 are lower than those re-
ported in the original papers because (1) we report results us-
ing the "harsh" setting; (2) Rösiger et al. (2018) and Kobayashi
and Ng (2021) postprocess the system output with gold corefer-
ence information, and (3) Yu and Poesio (2020) and Kobayashi
and Ng (2021) use additional labeled data for model training.
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Perturbation Type Example
Seen adj/adv strategically→ slightly

Nonexistent adj/adv skeptical→ lacitpeks
Seen verbs start→ reply

Nonexistent verbs possess→ ssessop
Seen nouns honesty→ wall

Nonexistent nouns example→ elpmaxe
Seen words particularly→ firmly

Nonexistent words begun→ nugeb

Table 5: Perturbation examples.

and pipeline approaches is no longer applicable in
the gold mention setting. As can be seen, the con-
clusions we drew based on the end-to-end results
are also applicable to the gold mention results.

One of the questions we aim to answer is:
how much worse would the end-to-end results be
compared to the corresponding gold mention re-
sults? We see that the end-to-end LSTM-based
(LSTMP , H1(LSTMP ), H2(LSTMP )) and BERT-
based (BERTP , H1(BERTP ), H2(BERTP )) re-
solvers underperform their counterparts in the gold
setting by up to 2.8% F-score in recognition and up
to 1.7% F-score in resolution. This performance
gap widens with SBERT (SBERTP , H1(SBERTP ),
H1(SBERTP )), having a difference of up to 3.5%
F-score in recognition and up to 2.9% F-score in
resolution. Overall, while the gold results are better
than the corresponding end-to-end results, the dif-
ference between them is less than 1.8% for LSTM
and BERT and less than 3.0% for SBERT. These
results are encouraging considering that the end-to-
end evaluation setting is very challenging.

H1 vs. H2. While the performance difference
between H1 and H2 tends to be small w.r.t. reso-
lution in the end-to-end setting, there are cases in
the gold mention setting in which this difference in
resolution F-score is comparatively larger. Specifi-
cally, when BERT is used, H2 outperforms H1 by
0.6–0.7% points in F-score on the two corpora, and
when SBERT is used, H2 outperforms H1 by 1.8%
points in F-score on ISNotes.

5.3 Sensitivity to Perturbed Inputs

Next, we conduct experiments that involve perturb-
ing the input. For each experiment, we replace a
certain type of words with other words in all train-
ing documents, retrain our best-performing model,
H2(SBERTP ), on these perturbed training docu-
ments, and evaluate it on the (unperturbed) test
set. The goal is to gain insights into the behavior
of the best model by assessing how sensitive its
performance is when training inputs are perturbed.

Pertutbation Type
ISNotes BASHI

Rec. Res. Rec. Res.
1 No perturbation 35.1 23.9 31.2 17.0
2 Seen adj/adv 33.0 22.5 29.0 12.7
3 Nonexistent adj/adv 34.9 23.4 28.8 12.9
4 Seen verbs 35.0 23.2 28.9 13.3
5 Nonexistent verbs 35.0 23.5 30.4 13.4
6 Seen nouns 32.9 22.1 30.1 12.5
7 Nonexistent nouns 31.8 22.2 29.6 12.7
8 Seen words 33.2 20.6 30.4 12.2
9 Nonexistent words 32.3 21.3 25.4 12.7

Table 6: Perturbation results of the best model.

If performance drops a lot when a certain type of
word is replaced, then it means that that type of
words is important in the learning process. Note
that we consider only mention-external perturba-
tions, meaning that we only replace words that are
not part of a bridging anaphor or its antecedent(s).

Specifically, we replace words from the follow-
ing categories: adjectives and adverbs only, verbs
only, nouns only, and all categories combined. For
each category, we consider two replacement meth-
ods. One is to replace each word with another word
of the same POS tag that is taken from the training
documents but which has never appeared within a
mention in the training set (Seen). This replace-
ment is deterministic: all occurrences of a given
word will be replaced with the same word. The
other method involves replacing each word with a
nonexistent word (Nonexistent), which we create
by reversing the order of the characters of the word
to be replaced. This latter method tests the impact
of nonexistent words has on the model.

Results of these experiments are reported in Ta-
ble 6 in terms of recognition and resolution F-
scores. To facilitate comparison, we show in row
1 the results of the resolver when the input is not
perturbed. Several points deserve mention. First,
all results obtained via perturbations are lower than
the "No perturbation" results in row 1. This implies
that each kind of perturbation we considered affects
the model learning process and negatively impacts
bridging recognition and resolution performances.
Second, Seen words appear to confuse the model
more than Nonexistent words. This is perhaps not
surprising: in the Nonexistent setting the model
will not be confused by those Seen replacements
that could cause a sentence to become unsensible.
Finally, we see from rows 4 and 5 that verbs have
the least impact on resolution F-scores, suggest-
ing that adj/adv and nouns play more important
roles than verbs in learning span-based models for
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bridging resolution.

5.4 Analysis of Results

Error analysis of the best end-to-end model.
To gain additional insights into our best end-to-
end model (H2(SBERTP )), we conduct an error
analysis of this resolver. First, the system is still
struggling to detect the majority of the bridging
anaphors and find their antecedents, having recall
scores of 31.6% and 27.5% for bridging anaphora
recognition on ISNotes and BASHI, respectively.
Only a very small portion of the recall errors are
from mention prediction errors: 3% and 1.3% of
the gold bridging anaphors are misclassified as non-
mentions in ISNotes and BASHI, respectively. The
system makes more recall errors at predicting defi-
nite bridging anaphors (i.e., NPs modified by the
definite article “the”) than other bridging anaphors.
For instance, on ISNotes, the recall scores of identi-
fying definite bridging anaphors and other bridging
anaphors are 20% and 25%, respectively.

Next we analyze the precision errors on ISNotes
because BASHI does not annotate mentions and
their information status. We find that mention pre-
diction errors (i.e., predicted bridging anaphors are
not mentions) account for 8.7% of the precision
errors for bridging anaphora recognition. In ad-
dition, 16.7% of the wrongly predicted bridging
pairs contain correct bridging anaphors but wrong
antecedents. The majority of the precision errors
can be attributed to the fact that the system pre-
dicts new and old mentions as bridging anaphors,
which account for 31% and 21% of the precision er-
rors, respectively. This is in line with the previous
studies on bridging recognition that suggest that
systems often fail to distinguish bridging anaphors
from generic new mentions with simple syntactic
structures (Hou et al., 2018; Hou, 2021).

Comparison of different encoders and embed-
dings. We analyze the results from three end-
to-end systems: H2(LSTMP ), H2(BERTP ), and
H2(SBERTP ). which correspond to rows 5, 9,
and 13 in Table 3, respectively. As noted be-
fore, the LSTM encoder with BERT embeddings
(i.e., H2(LSTMP )) is more conservative in link
prediction, having higher precision but lower re-
call than the other two systems. In fact, on IS-
Notes, H2(LSTMP ) only predicts half of the num-
ber of bridging pairs predicted by the other two sys-
tems. Interestingly, although bothH2(BERTP ) and
H2(SBERTP ) achieve higher recall scores on full

bridging resolution compared toH2(LSTMP ), they
both make a relatively large portion of precision er-
rors that involve linking a mediated/syntactic men-
tion m to a previous mention that is often related to
the premodification of m, such as {Britain’s voters
– Britains’s} or {Some Mobil executives – Mobil
Corp.}. On the contrary, this kind of error is rare
in H2(LSTMP ).

Finally, we analyze the recall scores based on the
determiners of bridging anaphors. We divide bridg-
ing anaphors into three categories: (1) the NPs
correspond to bridging anaphors that are modified
by the definite article “the”; (2) other determiner
NPs contain bridging anaphors that are modified
by the indefinite articles “a/an” as well as other
determiners (e.g., demonstratives or possessives);
and (3) bare NPs are bridging anaphors that are not
modified by any determiners, such as “subsidies”
and “overseas operations”. The majority of
the correctly predicted bridging links from the
above three models are bare NPs. H2(BERTP )
is better at predicting bridging anaphors for
all three categories compared to H2(LSTMP ).
The performance of H2(SBERTP ) on other
determiner NPs and bare NPs is on par with that of
H2(BERTP ), but the former achieves higher recall
at identifying definite bridging anaphors than the
latter (i.e., 20% vs. 14% on ISNotes).

6 Conclusion

We conducted a pioneering study on end-to-end
neural bridging resolution in which we adapted
three state-of-the-art bridging resolvers that were
originally developed to operate on gold men-
tions, namely Rösiger et al.’s (2018) resolver, Yu
and Poesio’s (2020) resolver, and Kobayashi and
Ng’s (2021) resolver, to the end-to-end setting. To
strengthen the resolvers, we replaced the LSTM
encoders they use with BERT- and SpanBERT-
based encoders. In an evaluation on ISNotes and
BASHI, end-to-end bridging resolvers lagged be-
hind their gold-mention counterparts by only 2-3%
absolute F-score. These results suggested that time
is ripe for researchers to focus on evaluating bridg-
ing resolvers in the end-to-end setting. In addition,
our work suggested that H2(SBERTP ), the hybrid
score-based pipeline bridging resolver trained us-
ing SBERT (1) achieves better performance than
other model variants; (2) is sensitive to all kinds of
perturbations we considered; and (3) will likely be
improved by improving mediated/syntactic errors.
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A Rules

Rösiger et al. (2018) designed rules to resolve
the bridging anaphors in ISNotes and BASHI. Ta-
ble 7 shows these rules. For each rule, we de-
scribe the anaphor and antecedent conditions as
well as its motivation and its resolution precision.
The precision scores are calculated using our re-
implementation or Rösiger et al.’s resolver. Note
that the first nine rules are used for resolution
in both ISNotes and BASHI while the last rule
(comparative anaphora) is specifically designed for
BASHI.
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Rule Description (anaphor) Description
(antecedent) Motivation Res. Precision (%)

Set:
Percentage

Percentage NPs in
subject position

Closest NP modifying
another percentage NP
via the preposition “of”
(e.g. 22% of the firms)

Percentage expressions
can indicate set bridging

I: 100.0 B: 0.0

Building
part

Common NPs whose
head is a building part

without nominal
pre-modifications

NP with the strongest
semantic connectivity to

anaphor

A typical case (building
part) of meronym

bridging
I: 62.5 B: 0.0

Set:
Number or
indefinite
pronoun

Number expressions (e.g.
two dogs) or indefinite
pronouns (e.g. some ...)

Closest plural NP in
subject position. If not

found, closest plural NP
in object position

Numbers or indefinite
pronouns can indicate set

bridging
I: 80.0 B: 33.3

Argument-
taking NPs

1

NPs with high argument
ratio and without
nominal/adjective

pre-modifications or
indefinite determiners

1. take all nominal
modifiers of NPs whose

head is same as anaphor’s
head. 2. closest NP that
is a realization of these

modification

Different instances of the
same noun predicate

likely maintain the same
argument fillers indicated

by nominal modifiers
(extended claim from

Laparra’13)

I: 40.0 B: 18.5

Relative
person

Non-generic NPs whose
head is a relative without

no nominal/adjective
pre-modifications

Closest non-relative
person NP

Handles relative nouns,
which tend to be bridging

I: 50.0 B: 42.9

GPE job
title

Job titles with country
pre-modifications (e.g.,

Italian mayor)

Most salient GPE (e.g.,
Italy)

Some job title NPs
implicitly refer to the
globally salient GPE

I: 45.0 B: 14.3

Professional
role

Professional role NPs
(e.g. professor)

Most salient organization
name

A more general rule than
"Relative person" and

"GPE job title"
I: 62.0 B: 21.2

Argument-
taking NPs

2

NPs in subject position
with high argument ratio

and without
nominal/adjective
pre-modifications

NP with the strongest
semantic connectivity to

the anaphor

An NP in subject position
that is likely to take

arguments tends to be
bridging anaphor

I: 28.1 B: 0.0

Meronym
relation

Unmodified definite NPs

NP classified as
meronym with anaphor
according to a relation
classifier trained using

WordNet

Handles meronym
bridging

I: 11.8 B: 11.3

Comparative
anaphora

NPs with comparative
markers

Closest NP with same
head and semantic

category

Comparative anaphors
are typically indicated by

certain markers
B: 45.5

Table 7: Rules used by Rösiger et al. (2018) for resolving bridging anaphors in ISNotes and BASHI. ’I’ and ’B’
refer to ISNotes and BASHI, respectively.
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Abstract

Presuppositions are assumptions that are taken
for granted by an utterance, and identifying
them is key to a pragmatic interpretation of lan-
guage. In this paper, we investigate the capa-
bilities of transformer models to perform NLI
on cases involving presupposition. First, we
present simple heuristics to create alternative
“contrastive” test cases based on the ImpPres
dataset and investigate the model performance
on those test cases. Second, to better under-
stand how the model is making its predictions,
we analyze samples from sub-datasets of Imp-
Pres and examine model performance on them.
Overall, our findings suggest that NLI-trained
transformer models seem to be exploiting spe-
cific structural and lexical cues as opposed to
performing some kind of pragmatic reasoning.

1 Introduction

Natural language inference (NLI) is the task of pre-
dicting whether a sentence entails, contradicts or
is neutral with respect to another sentence. While
NLI is presented as a task with the goal of push-
ing the frontier of language understanding, one
question that remains elusive is the extent to which
learning models trained on NLI datasets acquire
competence in pragmatic reasoning. For example,
“Rose’s drawing stunned the audience" presupposes
that “Rose has a drawing." In terms of the NLI task,
the relationship between these two statements is
one of entailment. However, “Rose stunned the
audience" does not trigger the same presupposition.
If an NLI system relies on an incorrect heuristic to
predict entailment, such as the fact that both state-
ments have “Rose" in them, the system would fail
on the modified version.

While there exists a plethora of NLI datasets (e.g.
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), HANS (McCoy et al., 2019)), is-
sues related to pragmatics remain under-explored.
One exception is the ImpPres dataset (Jeretic et al.,

2020), which contains English NLI instances in-
volving two pragmatic phenomena: implicature
and presupposition.

In linguistics and philosophy of language, pre-
suppositions are assumptions and beliefs that are
shared and taken for granted by discourse partici-
pants without an explicit mention in the discourse
context. Presuppositions are prevalent in language
and understanding them facilitates smooth commu-
nication and is crucial for a proper understanding
of the meaning being conveyed in a given context.

In this work, we investigate how well trans-
former models perform on cases from ImpPres
involving presupposition. We ask the following
question: In cases where these models seem to be
doing well in terms of (NLI) accuracy performance,
are they exploiting any patterns or correlations be-
tween certain words and decision labels which hap-
pen to lead to a good performance on ImpPres, but
which might not generalize beyond it?

Our contribution is two-fold: First, we present
simple heuristics to create alternative “contrastive”
test cases based on the Presupposition sub-datasets
in ImpPres and investigate the model performance
on those test cases. Second, from those datasets,
we draw a random set of testing samples and exam-
ine the performance of the models on these sets. In
each of those cases, we identify specific patterns or
cues that seem to be influencing the accuracy per-
formance (in either the correct or incorrect predic-
tions). Our findings suggest that transformer-based
NLI models seem to be exploiting surface-level lex-
ical and structural cues as opposed to performing
some kind of pragmatic reasoning and that these
cues are highly task-specific and do not generalize
to adversarially perturbed versions of the input.

2 Related Work

Natural language inference (NLI) is the task of pre-
dicting whether one passage entails another. In
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Type Premise Hypothesis Label

All N All six roses that bloomed died. Exactly six roses bloomed. E
Both Both flowers that bloomed died. Exactly two flowers bloomed. E
Change of State Rene might have hidden. Rene hid. N
Cleft Existence It might be Becky who researched Jesus. Someone researched Jesus. E
Cleft Uniqueness It is Joel who helps Diana. Exactly one person helps Victoria. N
Only Susan only writes. Susan doesn’t write. C
Possessed Definites Rose’s bird did alarm Peter. Rose has a bird. E
Question Did Bill wonder when Omar hunted? Omar didn’t hunt. C

Table 1: Examples showing the different presupposition types in the ImpPres dataset.

our work, we adopt the modern formulation1 cast
as a three-way classification task where two state-
ments, a premise and a hypothesis, are bound by
a relationship of entailment, contradiction or nei-
ther (the “neutral” case). Many datasets have been
introduced for the task including SNLI (Bowman
et al., 2015), MNLI (Williams et al., 2018), MPE
(Lai et al., 2017), XNLI (Conneau et al., 2018), etc.

The ImpPres dataset (Jeretic et al., 2020) has
been proposed to focus specifically on presupposi-
tion and implicature. ImpPres consists of 25.5k sen-
tence pairs further divided into several sub-datasets,
each focusing on a specific type of implicature or
presupposition. In our work, we focus on the pre-
supposition part of ImpPres. Table 1 presents one
example from each sub-dataset.

Other work studied the same general issue of
checking whether systems systematically changed
their labels on perturbed samples in an expected
way (Ribeiro et al., 2020; Emami et al., 2019; Sinha
et al., 2021; Gardner et al., 2020; Niven and Kao,
2019). The HANS dataset (McCoy et al., 2019)
in particular targets issues where NLI models fail
because they rely on superficial syntactic heuristics.
Unlike our work, the NLI instances they examine—
and NLI in general—often require additional world
knowledge, or linguistic knowledge that is highly
lexicalized (e.g., a list of factive verbs). By con-
trast, the class of presuppositions that we examine
is tied to specific linguistic constructions that sys-
tematically trigger them, such as definite articles
and cleft constructions, which could potentially
be easier. We nevertheless show that the models
we tested fail to generalize systematically on pre-
suppositional inferences, complementing previous
results.

Also relevant to this work is the Commitment-
Bank dataset (De Marneffe et al., 2019) which fo-

1For earlier (two-way classification) formulations, the
reader is referred to (Dagan et al., 2005) and (Manning, 2006)

cuses on issues involving presupposition projection
in various environments. This work highlights that
projection is hardly a binary affair, and that judg-
ments about entailment (roughly corresponding to
speakers’ commitment in the language of Commit-
mentBank) are graded.

3 Methodology

Our study consists of fine-tuning a pre-trained trans-
former model (either BERT (Devlin et al., 2019)
or RoBERTa (Liu et al., 2019)), then evaluating
its performance on the various presupposition sub-
datasets of ImpPres in addition to perturbed ver-
sions of those sub-datasets introduced in this work.
We fine-tune on MNLI, following Jeretic et al.
(2020).

We conduct two studies in order to investigate
the performance of these models and better under-
stand their capabilities in making pragmatic infer-
ences. In the first study, we present simple heuris-
tics to create “contrastive” test cases. We then
evaluate the finetuned model on those test cases
quantitatively. In the second study, we draw from
each sub-dataset of ImpPres a random set of 100
samples. We examine these sets for structural and
lexical cues that might be influencing the perfor-
mance of BERT.

3.1 Training details
Similar to previous work using BERT-based mod-
els for NLI, we concatenate the premise and hy-
pothesis separated by the [SEP] token, with the
special [CLS] token preceding them. For the BERT
model, we use HuggingFace’s bert-large-uncased
implementation (Wolf et al., 2019) of a 24-layer,
1024-hidden, 16-heads, 336M-parameter version
of the model that was trained on lower-cased En-
glish text. Similarly, for RoBERTa, we use the
roberta-large implementation. All models are im-
plemented in PyTorch (Paszke et al., 2019) and
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trained to minimize the standard cross-entropy cost
with Adam (Kingma and Ba, 2015) as the optimizer
with all default parameters except for the learning
rate. All model hyperparameters are kept as default
except for the following: We follow the recom-
mended ranges for fine-tuning hyperparameters in
the BERT paper (Devlin et al., 2019) and find that
the optimal performance on the dev set is reached
for a batch size of 16, learning rate of 2e-5 and
weight decay of 0.01 for BERT, and learning rate
of 1e-5 and weight decay of 0.001 for BERT. The
BERT model achieves a dev set accuracy of 85.14%
(comparable to that reported in (Jeretic et al., 2020)
and (Devlin et al., 2019)).

4 Study 1: Contrastive Probing

In this study, we present simple heuristics to cre-
ate “contrastive” test cases for the various ImpPres
sub-datasets and investigate model performance on
those test cases. We divide our probes into two
types: those involving contrastive sentences which
are grammatical English sentences, and those with
corrupt input which are ungrammatical.

4.1 Probing with Valid English Sentences

Removing Possessives (POSS): In the first experi-
ment, we focus on the “Possessed Definites Exis-
tence” subset of ImpPres. Possessive noun phrases
trigger a presupposition about the existence of the
possessed noun, and its possession by the posses-
sor. For example, “Alice’s painting is amazing”
(premise) presupposes “Alice has a painting” (hy-
pothesis), which corresponds to a gold label of
entailment. We create a contrastive example by
removing the possessed noun (or noun phrase) in
the premise: “Alice is amazing”, while keeping the
hypothesis the same, changing the correct label to
neutral. Applying this rule to all samples in this
sub-dataset, all labels become neutral. We sampled
and manually checked 100 cases and found that
this heuristic is correct for all 100 sampled cases.
Replacing Names (NAMES): We process the
premises using spaCy’s Named Entity Recognizer
(Honnibal et al., 2020), identify all instances of
names of people and replace each by a (different)
randomly selected name from the 200 most com-
mon names in USA.2 For samples where a change
is made, as the premise and hypothesis are now
about different people, the label becomes neutral.

2www.ssa.gov/oact/babynames/decades/century.html

Label Original Accuracy Contrastive Accuracy

Entailment 99.2 % -
Contradiction 99.0 % -
Neutral 31.5 % 62.4 %

Label Original Gold Labels Contrastive Gold Labels

Entailment 26.3 % 0 %
Contradiction 31.6 % 0 %
Neutral 42.1 % 100%

Label Original Predictions Contrastive Predictions

Entailment 37.2 % 0.4 %
Contradiction 49.5 % 37.2 %
Neutral 13.3 % 62.4 %

Table 2: Per-class accuracy, distribution of golden labels
(in %), distribution of predictions in the original and
contrastive dataset (in %) for the BERT model for the
POSS experiment (which focuses only on the “Possessed
Definites Existence” sub-dataset.

4.2 Contrastive Probing with Corrupt Input

We are interested in probing the model with test
cases that are corrupt in a way that the model is
expected to perform worse. For example, if the
model is provided with less context in the input or
if we were to randomize the word order, the model
is expected to perform worse.
Providing Less Context in the Premise (1ST-
HALF): In this experiment, instead of a full
premise, we present the first half of the sentence.
The hypothesis and labels are kept unchanged.
Randomizing Word Order (RNDMZ): Here, we
shuffle randomly the order of tokens in the premise
and hypothesis and keep the labels unchanged.

4.3 Results and Discussion

For the POSS experiment, the accuracy drops from
70.6% in the original sub-dataset to 62.4% in the
contrastive dataset for the BERT model and from
64.8% to 35.2% for the RoBERTa model. The
sharp drops suggest the model failed to pick up
on the deletion of the possessive which altered the
pragmatic context. We present additional statistics
in Table 2 for the BERT case. While the model had
near-perfect accuracy for the entailment and con-
tradiction labels, it performed at less than chance
for the neutral case. While the labels are relatively
spread across the three labels, the model’s original
predictions of “neutral” were less than a fourth of
the expected number which explains the low accu-
racy per class (31.5%). From Table 3, while the
original predictions of “contradiction” should have
been switched to neutral, the majority of these pre-
dictions did not change. This shows that the model
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Original Predictions

Ent: 707 Cont: 941 Neu: 252

C
ha

ng
ed

to Entailment 4 3 0
Contradiction 148 529 30
Neutral 555 409 222

Table 3: Break down of how BERT’s predictions
changed from the original to the contrastive dataset in
the (POSS) experiment. As a reminder, here in the con-
trastive set, all samples become neutral.

failed to translate the change in context to a correct
change in prediction.

Tables 4 and 5 present the results of the three
experiments NAMES, 1ST-HALF and RNDMZ for
the two models BERT and RoBERTa.
NAMES. The most striking result is that changing
names led to a significant drop in accuracy with a
sharp decrease seen in several datasets (e.g., going
from 70.6% to 26.3% (BERT) and 64.8% to 22.6%
(RoBERTa)). For RoBERTa, accuracy numbers
decreased across all datasets. For BERT, the drop
was seen for the subdatasets with the highest perfor-
mance but, interestingly, in the datasets where the
performance was low, the new performance was
actually higher. This could be explained by the fact
that in those cases, the model was performing very
poorly to start with so for these cases the results
might be not suggestive.
1ST-HALF. Here, for both BERT and RoBERTa,
we notice that in most cases (13/18 cases), the con-
trastive accuracy was higher. This observation is
counter-intuitive because one would expect that
providing less context to the model will impact the
performance negatively. Indeed, with the excep-
tion of the Possessed Definites Existence dataset
where the presupposition is consistently in the first
half of the premise, the remaining sub-datasets are
quite diversified in where the presupposition ap-
pears in the premise (i.e., first half vs second half).
Moreover, upon inspection of samples from var-
ious datasets, we see how cutting off the second
half of the premise often removes key parts of the
context, thus making it virtually impossible to es-
tablish the (original) presupposition based on that
(cut) premise.
RNDMZ. In the last experiment, we notice a drop in
the performance in several datasets for both models.
However, the drop is not as large as one might ex-
pect given that the input is no longer grammatical
or coherent.

Original
Accuracy

Contrastive Accuracy
NAMES 1ST-HALF RNDMZ

Poss. Def. Existence 70.6 26.3 67.6 52.2
Question 66.4 28.6 50.2 52.3
Cleft Existence 63.0 15.8 65.8 53.7
Only 62.3 39.4 32.9 52.7
All n 43.5 44.7 46.7 40.7
Both 32.6 42.6 41.8 34.0
Change of state 30.4 36.8 37.3 27.8
Poss. Def. Uniqueness 23.3 46.3 27.0 36.4
Cleft Uniqueness 11.1 20.3 36.0 21.8

Table 4: Accuracy results for the BERT model.

Original
Accuracy

Contrastive Accuracy
NAMES 1ST-HALF RNDMZ

Poss. Def. Existence 64.8 22.6 66.1 50.6
Cleft Existence 63.3 18.2 65.1 57.1
Question 61.8 26.0 55.2 50.8
Poss. Def. Uniqueness 56.9 13.0 60.7 41.1
Only 55.0 35.4 47.3 46.7
All n 50.8 35.0 56.7 38.7
Both 49.1 45.6 55.9 39.4
Change of state 36.1 35.5 42.3 37.7
Cleft Uniqueness 26.7 12.4 41.1 27.4

Table 5: Accuracy results for the RoBERTa model.

5 Study 2: Sample Error Analysis

We examine BERT’s performance on 100 samples
randomly drawn from each sub-dataset. We see pat-
terns repeating across several datasets—all about
surface cues which should not be directly responsi-
ble for presupposition. We group our insights into
themes.

5.1 Exploiting Lexical Cues

One pattern that we noticed across several datasets
is that certain tokens and negation heavily affect
performance. In the “All n” sub-dataset, we notice
that the token “exactly” appears in the hypothesis
in 76% of samples (e.g., “All six roses that bloomed
died.” / “Exactly six roses bloomed”). For these
samples, the accuracy was at 48.68%. For the re-
maining 24% (not having “exactly”), the accuracy
was at 16.67%. A closer look at those 76% sam-
ples shows that samples that have negation in the
premise had an accuracy of 72% versus 44.61%
for those without negation. Interestingly, these re-
sults are closely replicated in another sub-dataset
on the similar “both” presupposition effect. In this
dataset, we find that there are 69% of samples hav-
ing “exactly" in their premise. For these samples,
the accuracy is at 42.02%. For the remaining 31%
(i.e. not having “exactly” in the premise), the accu-
racy is at 19.35%. Similarly, in samples that have
negation in their premise, the accuracy is 66.67%
versus 33.33% for samples with no negation.
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In the Cleft Existence dataset (e.g., “It is
Keith who stunned Christina.” / “Keith stunned
Christina.”), the model properly learns with 100%
accuracy the association between “no one” and the
“contradiction” label (e.g. “It is Helen that talked
about Cheryl.” / “No one talked about Cheryl.”).
However, for the samples not having “no one”, the
accuracy drops to 52.78%. This could suggest that
the correct prediction of “contradiction” in these
cases was likely based on a cue, the presence of
“no one” as opposed to some pragmatic understand-
ing of the presupposition at hand. Furthermore,
while the model has learnt with perfect accuracy
the connection between “no one” and a label of
contradiction, it does less well with other samples
where “someone” replaces the main subject in the
premise (which is crucial for understanding the
cleft presupposition). In those cases, the accuracy
is at 68.75%, suggesting that the presence of “no
one” had a stronger impact on the model’s perfor-
mance.

In principle, such patterns shouldn’t occur with
a model that can systemically reason about presup-
positions; yet we found them in our analysis and
they echo findings (Degen, 2015; Schuster et al.,
2020) that negation and certain tokens can affect
pragmatic inferences.

5.2 Exploiting Similarity Information

In the Change of State sub-dataset (e.g. “Rene
might have hidden.” / “Rene hid.”), we notice cases
where the same verb appears in both the premise
and hypothesis or appears in a close morphological
variation (e.g., hidden/hid, gotten/got). In 85% of
those cases, the model predicted “entailment”—all
incorrectly. This suggests that the model might be
learning to associate “entailment” with some kind
of similarity between the premise and hypothesis,
which is incorrect in these cases. Previous work
also noted how the similarity between two state-
ments can affect inferences related to pragmatic
phenomena (e.g., implicature (Degen, 2015)). In
the “Only” sub-dataset (e.g., “Susan only writes.” /
“Susan writes.”), samples differed in one main as-
pect: For some, the same subject appeared in both
the premise and hypothesis. For others, there was
no subject agreement. We found that 88% of the
correctly predicted samples had the same subject
with a majority of “entailment” predictions (55%).
Furthermore we noticed that among the incorrectly
predicted samples with same subjects, 75% were

also predicted as “entailment”. This suggests that
the model might have been exploiting cues on sub-
ject agreement to make its predictions.

In the Question sub-dataset (e.g. “Did Bill won-
der when Omar hunted?” / “Omar hunted.”), in
51% of samples, word-to-word phrases/expressions
appeared in both the premise and hypothesis. The
model predicted entailment in 96% of these cases.
However, the accuracy was lower—only 72.54%.

5.3 Exploiting Structural Information
In several datasets, a common pattern found in
the premise is the structure “if ..., it’s okay” (e.g.
Premise: “If Amanda had left, it’s okay.” / Hypoth-
esis: “Amanda used to be here.”). In the Change of
State dataset, in 81.25% of such samples, the model
wrongly predicted “neutral”. Similarly, in the Pos-
sessed Definites dataset, in 85% of such samples,
the model wrongly predicted “entailment”.

In the Cleft Uniqueness dataset, another com-
mon pattern is the structure “it is ... who ...” in
the hypothesis (e.g.: Premise: “It is Sandra who
disliked Veronica.” / Hypothesis: “Exactly one
person disliked Veronica.”). For 76.9% of such
samples, the model predicted entailment—all in-
correctly. Similarly, samples where the hypothesis
had “exactly one” were predicted as contradiction
70% of the time–again, all incorrect.

In all these cases, the model seemed to have
learned incorrect associations between syntactic
patterns and presuppositional entailment decisions.

6 Conclusion

We investigated BERT’s capabilities to perform
NLI on cases involving presupposition. Our analy-
sis suggests that NLI-trained BERT exploits lexical
and structural cues to do so, and that these cues
are highly task-specific and do not generalize to
adversarially perturbed versions of the input.
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Abstract

We present a corrected version of a previous
projection of the FactBank data set. Previously
published results on FactBank are no longer
valid. We perform experiments on FactBank
using multiple training paradigms, data smooth-
ing techniques, and polarity classifiers. We ar-
gue that f-measure is an important alternative
evaluation metric for factuality. We provide
new state-of-the-art results for four corpora in-
cluding FactBank. We perform an error anal-
ysis on Factbank combined with two similar
corpora.

1 Introduction

The term factuality1 refers to an author’s presenta-
tion of a proposition (who-did-what-to-whom) as a
fact, i.e., she is committed to the truth of the propo-
sition. A lot of language use introduces proposi-
tions that are not presented as facts but as only pos-
sibly true, as a wish or as a hypothesis, or as some-
one else’s belief. If we want to understand what an
author is communicating, we need to distinguish
these cases. Over the last 15 years, this question
has received a lot of attention. Multiple corpora
have been created, and these corpora have been
used to explore machine learning architectures for
factuality prediction. The machine learning studies
often report results on all corpora, but these studies
do not examine what the machine learning architec-
ture can learn, nor how and why combining corpora
can help. A notable exception is Jiang and de Marn-
effe (2021), who carefully analyze what exactly is
learned from the CB corpus. In this paper, our goal
is to determine how to combine corpora in order to
maximize performance, and to understand why the
specific combination of corpora works better than

1The notion of “factuality" is closely related to the notion
of “belief" as used in cognitive science and AI; they differ only
in the case of lying, where the author presents propositions as
facts contrary to what she actually believes. See (Prabhakaran
et al., 2015) for a fuller discussion.

others. We choose a single resource to focus on so
that we can gain insights by performing a careful
study, and we choose FactBank (Saurí and Puste-
jovsky, 2009) because it is one of the first carefully
constructed datasets for factuality prediction. We
show how insights gained from working with Fact-
Bank can be used to improve performance on the
CB corpus (de Marneffe et al., 2019).

There are three main contributions of this work:

(i) The FactBank data is complex. In order to fa-
cilitate NLP research, a machine learning-friendly
projection from FactBank had been previously cre-
ated and widely used. We correct an error in this
projection (this data set will be made available).
The error means that all recent results on FactBank
are not valid.

(ii) We present new state-of-the-art results on the
CB, FactBank, MV, and UW corpora.

(iii) We do an error analysis to show why some of
these corpora perform better when combined.

This paper does not introduce new machine learn-
ing architectures; instead, we show that careful
reexamination of the data can lead to improved per-
formance without the necessity of introducing new,
more complex architectures.

The paper is organized as follows. A survey
of previous work is provided in Section 2. We
summarize the FactBank representation of factual-
ity in Section 3 and present our correction to the
projection from FactBank in Section 4. In Sec-
tion 5, we discuss metrics for evaluating factuality
prediction. The redone experiments from (Jiang
and de Marneffe, 2021) with our corrected projec-
tion are described in Section 6. We then report
on machine learning experiments on three corpora:
FactBank in Section 7, the CB corpus in Section 8,
and the LDC corpus in Section 9. We conclude in
Section 10.
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2 Related Work

Corpora Many corpora explore the notion of
factuality including: FactBank (Saurí and Puste-
jovsky, 2009), LU (Diab et al., 2009), UW (Lee
et al., 2015), LDCCB (LDC) (Prabhakaran et al.,
2015), MEANTIME (MT) (Minard et al., 2016),
MegaVeridicality (MV) (White et al., 2018), UDS-
IH2 (UD2) (Rudinger et al., 2018), Commitment-
Bank (CB) (de Marneffe et al., 2019), and RP (Ross
and Pavlick, 2019). These corpora differ along
several dimensions; we list dimensions which are
salient for this paper.
(1) What type of data is used to build the corpus
and is the data manipulated or not. E.g., MV selects
only 6 syntactic frames and lexically “bleaches"
them. In CB, only sentences with finite clausal
complements are chosen for annotation. In ad-
dition, the matrix predicates must appear in the
entailment cancelling environment, i.e. questions
and negations preceded by a modal and/or in the
antecedent of a conditional. In contrast, FactBank
tags all events introduced in a corpus of complete,
naturally occurring texts.
(2) What is the genre of the underlying texts? For
those corpora which use naturally occurring texts,
FactBank and UW use newswire exclusively. MT
uses Wiki articles. RP uses data from textual infer-
ence corpora. CB uses newswire, fiction and dialog.
UD2 uses weblogs, newsgroups, email, reviews,
and question-answer corpora. LDC is exclusively
discussion forum threads.
(3) The definition of an annotatable event. E.g.,
in MV only past events are taken into considera-
tion; in UD2, both past and present events; UW,
FactBank, CB and LDCCB consider also future
events.
(4) Who are the annotators? FactBank and LD-
CCB used trained annotators, while CB and UW ar-
gue that crowd-sourced judgements collected from
naive annotators are as (or more) valuable.
(5) The annotation scale. Annotations can be nu-
merical values (often derived from averaging naive
annotators’ judgments), typically [-3,3] (CB, UW,
RP or UD2), lexically represented values, such as
[yes, maybe or maybe not, no] in MV, or categorial
labels (FactBank and LDCCB). We discuss these
categorial labels in more detail in Section 3, and
give examples.

Stanovsky et al. (2017) unify the representation
across datasets up to 2017 by mapping the discrete
annotations of factuality in FactBank and MT onto

the continuous scale used in UW. Furthermore, they
also remove the FactBank non-author perspective
annotations since none of the other corpora include
such annotations (FactBank also annotates the be-
liefs of agents mentioned in a sentence, according
to the author). This process will be discussed in
more details in Section 4.

Experiments Early work on event factuality pre-
diction used rule-based systems; for example,
Nairn et al. (2006) propose a recursive polarity
propagation algorithm which uses implication sig-
natures from clause-embedding verbs. Lotan et al.
(2013) predict factuality using implication signa-
tures combined with lexical and dependency tree
features.

Early machine learning work on event factuality
prediction consists of SVMs or other supervised
learning approaches. Diab et al. (2009) and Prab-
hakaran et al. (2010) use SVMs and CRFs along
with lexical and dependency tree features for pre-
dicting author belief, evaluating on f-measure. Lee
et al. (2015) also use an SVM along with lexical
and dependency tree features on the UW corpus
which they created, and evaluate on Pearson corre-
lation and mean average error (MAE), as does all
following work. Stanovsky et al. (2017) use SVMs
combined with the output of the system of Lotan
et al. (2013), and evaluate on Factbank, UW, and
Meantime. Rudinger et al. (2018) use bidirectional
LSTMs with tree or linear architectures and multi-
ple task-specific training setups. Building on that
work, Veyseh et al. (2019) use BERT sentence rep-
resentations combined with a graph convolutional
network that leverages the semantic and syntactic
structure of the sentence, evaluating on Factbank,
UW, Meantime, and UD2. At the time of publica-
tion, their system produced state-of-the-art results
for Pearson correlation on FactBank, UW, Mean-
time, UD2, and state-of-the-art results for MAE
on FactBank, Meantime, and UD2, with Stanovsky
et al. (2017) still having the lowest MAE for UW.
We discuss Jiang and de Marneffe (2021) in more
detail in Section 6.1.

Our work differs from the related work by of-
fering two salient contributions: first, we analyze
specific corpus combinations to help improve on a
specific corpus (FactBank) instead of focusing on
improving all corpora. Second, we perform error
analyses on corpus combinations to determine why
and where factuality corpora can help each other
or why factuality corpora can be incompatible.
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3 Representation of Factuality

As discussed in Section 2, some corpora repre-
sent the factuality judgments using numbers in an
interval, while others use categorial labels with a
defined meaning. The corpus creators determine
that there are several distinct categories that an-
notators can identify. In the examples (all from
FactBank, some simplified), the head of the phrase
which presents the evaluated situation is bolded.
Certain (FactBank label CT): the author commits
to the truth of the presented situation. Note that the
commitment is independent of tense.

(1) A lawsuit in Germany will seek a criminal
prosecution of the Defense Secretary.

Probable (FactBank label PR): the author presents
the situation as probable.

(2) Saddam appeared to accept the treaty.

Possible (FactBank label PS): the author presents
the situation as possible.

(3) He won’t be under control until he is commit-
ted to an institution.

Fully underspecified (FactBank label UU): The
source does not know what is the factual status of
the event, or does not commit to it.

(4) The minister denied the kingdom had notified
its customers.

In addition, FactBank annotates polarity on types
of author belief, i.e., whether the author presents
the situation as factual, or the absence of the situ-
ation as factual. Polarity is only added to the non-
UU values, resulting in a label set containing seven
labels, CT-, PR- PS-, UU, PS+, PR+, CT+. We
discuss our mapping between the categorical labels
and numerical labels in Section 7 (see Table 4).

4 Corrected FactBank Dataset

Label Correction Stanovsky et al. (2017) devel-
oped a projection from the complex FactBank cor-
pus to a CoNLL-formatted file that includes only
factuality judgments by the author, enabling an an-
notation with a single value at the word level. This
data set has been extensively used in NLP experi-
ments (see Section 2). We have found that there is
a systematic error in this FactBank data set projec-
tion. Consider (4) above. FactBank annotates the
denial event as seen as factual by the author (CT+).
The notification event is annotated twice: accord-
ing to the author, the minister sees it as certainly

false (CT-). The author herself does not express her
view of the factuality and her perspective is labeled
UU, as explained in Section 3. The old projection
of the FactBank data set incorrectly picks up the
CT- label. We correct the projection by sticking to
the author’s perspective and supply the UU label.
Table 2 shows the shift in label distribution percent
towards UU as a result of our correction.
Article Split Correction Furthermore, Stanovsky
et al. (2017) do not split by article, meaning that
data from the same article could appear in both
the training and test sets. We re-split the data, this
time assigning all annotations from a single article
to the same split, until we approximate a standard
ratio of 70-20-10 for train-dev-test. With the new
projection of FactBank and article-based split, we
found that when training and testing on FactBank,
there is a 2% decrease in Pearson correlation and
a 10% increase in MAE compared to the previous
projection of FactBank without the article-based
split.

We will make the correct projection of the Fact-
Bank data set available, see Appendix A for details.

5 Evaluation of Factuality Prediction

To date, the category labels in FactBank have been
translated to numbers for training and testing (from
-3 for CT- to +3 for CT+). A regression head pre-
dicts a number, and the results are evaluated with
the Pearson correlation r between the predicted and
gold numbers. The publications to date also pro-
vide MAE (which need not correlate with correla-
tion). We propose an additional evaluation, namely
f-measure on the categories and macro averaged
f-measure.

Usually in NLP, there is no single correct evalu-
ation metric: the best evaluation metric to use de-
pends on the downstream use we want to make of
the module we are evaluating. In some applications,
we need to know the specific level of commitment
of the writer. For example, in argumentation analy-
sis we need to detect claims to which the writer is
fully committed, and when analyzing hedging as a
marker of politeness or power structure, we need
to identify the PR/PS family. But the numerical
evaluation makes the same difference between PR+
and PS+ on the one hand, and PR+ and CT+ or
PS+ and UU on the other hand. F-measure clearly
separates these cases. In this paper, we show re-
sults using correlation, MAE, and the f-measures
(macro-averaged F1 and per-label F1).
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FB-Old (NS) FB-New (NS) FB-New (S) Previous SOTA
Test Set r ↑ MAE↓ r↑ MAE↓ r↑ MAE↓ r↑ MAE↓
CB 0.890 0.617 0.908 0.613 0.906 0.561 0.890 0.617
RP 0.870 0.608 0.856 0.630 0.861 0.642 0.870 0.608
MV 0.857 0.533 0.867 0.498 0.886 0.483 0.876 0.501
MT 0.491 0.319 0.456 0.311 0.553 0.281 0.702 0.204
UW 0.865 0.351 0.879 0.366 0.874 0.348 0.868 0.349
UDSIH2 0.853 0.766 0.855 0.763 0.857 0.758 0.909 0.726
FB-New - - 0.858 0.359 0.866 0.330 - -

Table 1: Results on multi-task training with no smoothing (NS), smoothing (S), and the new projection of FactBank
(FB-New); a dark shaded cell indicates the best published result to date in this table; light shading means an
improvement over FB-Old (NS). Results for all corpora except RP show improvement. All other state of the art
results for non-shaded cells are held by Jiang and de Marneffe (2021) or Veyseh et al. (2019).

CT+ PR+ PS+ UU PS- PR- CT-
Old 75.3 3.1 2.2 14.5 0.1 0.6 4.2
Corrected 57.1 1.1 1.1 38.3 0.1 0.1 2.2

Table 2: Distribution of each FactBank annotation label
in the old and corrected CoNLL-formatted data set

6 Evaluation on All Corpora

6.1 Redoing (Jiang and de Marneffe, 2021)

Jiang and de Marneffe (2021) provide state-of-the-
art results for many of the corpora discussed in Sec-
tion 2 using a simple architecture. In this section,
we redo their experiments with the updated Fact-
Bank data set. Specifically, we redo the multi-task
learning experiments using the same underlying
architecture (the SelfAttentiveSpanExtractor devel-
oped by Gardner et al. (2018)) and the same train-
ing parameters as Jiang and de Marneffe (2021).
This training paradigm allows all corpora to share
the same BERT parameters, but with each cor-
pus having a regression head with corpus-specific
parameters. The authors find that fine-tuning on
BERT-large performs best. However, with the cor-
rected FactBank dataset, we find that RoBERTa-
large outperforms BERT-large, and we therefore
use it for our experiments. For each experiment,
we do three runs with different seeds and report
the average for Pearson correlation and MAE, and
for most experiments we also provide the standard
deviation.

Table 1 shows results with the old and corrected
data sets. We replicate the results from Jiang and
de Marneffe (2021) using the faulty dataset used
in previous experiments (columns FB-Old (NS)).
For our corrected dataset (columns FB-New (NS)),

results for all test sets other than RP improve, pre-
sumably because the FactBank data is now more in
line with the other corpora. Note that none of the
results in this paper for FactBank are comparable
to any previously published results because of the
errors in the FactBank data set used to date (see
Section 4), which means that the FactBank test set
has also changed.

6.2 Addressing Imbalances in Corpora

One problem with all corpora in this study, includ-
ing FactBank, is the inequality in the label distribu-
tion, with a majority of CT+ (3.0) and UU (0.0) as
shown in Table 2 (this effect holds in all corpora,
including those with purely numerical labels). We
address this issue by performing label distribution
smoothing and modifying the loss function to a
weighted SmoothL1 loss.

Yang et al. (2021) provide methods to address
class imbalance problems in a continuous setting
using label distribution smoothing and feature dis-
tribution smoothing, which directly applies to our
regression task. We apply their method of label
distribution smoothing (LDS) to our datasets by us-
ing kernel density estimation to learn the effective
label density in our dataset. We then re-weight the
SmoothL1 loss function by multiplying it by the
inverse of the effective label densities learned. This
method improves on all of our tasks, so we per-
form all of our regression experiments using LDS
unless otherwise noted. Results for redoing Jiang
and de Marneffe (2021) experiments with LDS are
shown in Table 1 (columns FB-New (S)). We see
an improvement compared to no LDS (columns
FB-New (NS)) for all corpora on both metrics (cor-
relation and MAE), except for correlation on CB
and UW.
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Single r↑ MAE↓ r↑ MAE↓
FB 0.872±0.002 0.276±0.004 0.872±0.002 0.276±0.004

Shared MTL
FB+CB 0.876±0.011 0.293±0.029 0.873±0.008 0.292±0.015

FB+MV 0.874±0.000 0.289±0.028 0.885±0.005 0.274±0.034

FB+RP 0.871±0.005 0.293±0.013 0.879±0.005 0.311±0.009

FB+MT 0.864±0.010 0.284±0.011 0.875±0.007 0.334±0.039

FB+UD2 0.818±0.023 0.386±0.037 0.867±0.007 0.360±0.009

FB+LDC 0.802±0.075 0.343±0.066 0.868±0.010 0.329±0.039

FB+UW 0.741±0.034 0.717±0.080 0.873±0.007 0.289±0.023

FB+CB+MV 0.881±0.001 0.278±0.005 - -
FB+CB+MV+RP 0.873±0.007 0.316±0.005 - -
FB+MV+RP - - 0.879±0.011 0.305±0.022

Table 3: Results for our regression experiments on FactBank. Single results show FactBank trained and tested on
itself. The Shared and MTL columns show Pearson r and MAE on the two training paradigms respectively. A
shaded cell indicates the best performing combination; light means only a slight improvement.

7 Experiments on FactBank

In this section, we evaluate exclusively on Fact-
Bank (using our new FactBank dataset described
in Section 4).

Our goal is to provide the best results on Fact-
Bank. For all experiments reported in this sec-
tion, we follow the same setup as Section 6, ex-
cept that we train two models per setup, one for
regression which we evaluate numerically (r and
MAE), and one for classification which we evalu-
ate using F1. In classification, we collapse Fact-
Bank labels PR and PS (probable and possible),
as they are rare, and their distinction is less im-
portant. Table 4 shows the mappings of the con-
tinuous labels to discrete labels with the corre-
sponding factuality values (in FactBank terms).

Range Label
[-3.0, -2.5] CT-
(-2.5, -0.5] PR-
(-0.5, 0.5) UU
[0.5, 2.5) PR+
[2.5, 3.0] CT+

Table 4: Mappings
for our classification
model.

Following Jiang and
de Marneffe (2021), we
perform our training in
two ways: Shared, where
we combine the corpora’s
training data together and
test on Factbank; and
multi-task learning (MTL),
where corpora share the
same RoBERTa-large
parameters, but we have
a corpus-specific regres-

sion or classification head for FactBank. All
experiments are performed three times with
different seeds, and we report the average and
standard deviation. For further information on the

experimental setup, see Appendix B.

7.1 Regression Experiments

We perform corpus combinations of FactBank with
each of the other corpora, and evaluate on Pearson
correlation and MAE. We then do a greedy search
with the top performing corpus combinations: we
take our best performing system and add the corpus
which performs next best in the 2-way combination
with FactBank. If adding another corpus does not
yield an improvement, we stop our search. All
results for both the Shared and MTL experiments
are shown in Table 3.

Shared: FactBank combined with CB and Fact-
Bank combined with MV yield improvements in
correlation, but not in MAE. In our greedy search,
we combine FactBank with both CB and MV. Fact-
Bank combined with CB and MV performs the best
on correlation achieving a result of 0.881. However,
this corpus combination results in a slightly higher
MAE compared to baseline FactBank only. We
then add RP, but FB+CB+MV+RP performs worse
and we end our greedy search. The worst perform-
ing corpus combination on FactBank is FB+UW,
resulting in the lowest correlation and also a very
high MAE. This is because of article overlap in
FactBank and UW with different annotation labels
as shown in Lee et al. (2015), leading to a diver-
gence.

MTL: The top performing result on FactBank
is with MTL on FB+MV, with a Pearson correla-
tion of 0.885 and MAE of 0.274. Each corpus
combination besides FB+UD2 results in an im-
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provement over baseline FactBank. MTL improves
on the worst performing corpus combinations in
the Shared paradigm (FB+UW and FB+UD2): the
FactBank specific corpus head in the model is op-
timized for FactBank, and therefore addresses the
lack of performance caused by treating all corpora
as one. We perform a greedy search by adding
RP to our top performing MTL combination of
FB+MV. The correlation is higher than FactBank
Single, but not higher than the FB+MV combina-
tion, so we stop our greedy search.

7.2 Classification Experiments

We perform all classification experiments with the
same hyperparameters and training architecture as
our regression experiments, but with a classifica-
tion head instead of a regression head. We mention
more details about this in Appendix B. Even after
collapsing PR±/PS± labels, PR±/PS± are a mi-
nority class in our classification experiments. We
address the label imbalance in our classification
models by using focal loss (Lin et al., 2017), which
has been shown to perform well on imbalanced
classification tasks compared to cross-entropy loss.
Using the focal loss function allows our model to
focus on the harder to classify PR±/PS± exam-
ples. All results for both the Shared and MTL
experiments are shown in Table 5.

Shared: The largest increase is achieved by com-
bining FactBank with CB, with a major boost in
macro-average and in the per label F1 of the minor-
ity labels PR± because CB introduces many new
PR± labels. The only other corpus that achieves
an increase on FactBank is RP, which specifically
helps in the UU and CT+ labels. All other corpora
do not help, notably UD2 and UW, which result
in a massive decrease. Some per-label F1s are 0
for FB+LDC. The LDC corpus does not contain
polarity, and therefore has no labels in the CT- and
PR- categories. We perform a greedy search on
our top performing corpora combinations, adding
RP to FB+CB, but do not improve, so we stop our
greedy search.

MTL: Again, CB helps the most, with the high-
est macro-average on FactBank in our 5-way sys-
tem, specifically helping with the minority classes
PR- and PR+. MT, UW, and MV also provide a
boost. The previous poor performance of UW is
fixed by training in a MTL setting. All other cor-
pora decrease performance on FactBank. UD2 per-
forms poorly, but slightly better than in the shared

setting. We perform a greedy search and stop after
adding MT to yield FB+CB+MT, which does not
improve on our top combination of FB+CB.

7.3 End-to-end Evaluation
One advantage of the F1 evaluation is that we can
provide a single end-to-end evaluation on data with-
out gold heads. All experiments reported in the lit-
erature using r and MAE assume a gold head, since
otherwise these measures cannot be computed. We
introduce a “Not-Head" tag (O) for all words that
are not heads and train a model on all words in the
data set, not just the heads. We repeat the experi-
ments with the same architecture and setup as the
previous classification experiments. The results are
shown in Table 6, and as expected, the F1s for each
class decrease, but not dramatically. The F1 for
detecting that a word is a head is 0.888; whether
a noun is an event is context-dependent (e.g., con-
struction) and can be hard to determine. Since the
head-identification task is not trivial, we argue that
an evaluation on F1 is therefore important and can
offer broader insights into the factuality-prediction
task.

7.4 Factoring Polarity
Polarity is often expressed independently of the de-
gree of factuality, as illustrated in this constructed
example: Sudeep {probably/maybe/∅} {came/did
not come} to dinner. Here, the first set of curly
brackets lists three options for factuality, and the
second set of curly brackets determines polarity.
All six combinations are plausible sentences, deter-
mining six different FactBank labels for the coming
event. Of course, some lexical items precisely en-
code a combination of polarity and factivity level
(such as deny in (4)).

We train a polarity classifier on the same train-
ing data, but this time we label all negative data
(CT-, PR-, PS-) as a new label NEG, the neutral
data remains UU, and the positive data (PS+, PR+,
CT+) as POS. The classifier performs with per-
label F1-measure of 0.907 (Neg), 0.824 (UU), and
0.940 (Pos). We then create a combined system
with our polarity classifier and our 5-way classifica-
tion system where the polarity classifier assigns the
polarity of the head, and the classification system
predicts the strength. Our results for this system on
FactBank are shown in Table 7.

On our FactBank-only system, the polarity clas-
sifier results in a 28% error reduction on macro-
average, while also stabilizing results by lower-
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Single Macro-F1 CT- PR- UU PR+ CT+ Macro-F1 CT- PR- UU PR+ CT+
FB 0.701±0.076 0.863 0.222 0.893 0.593 0.935 0.701±0.076 0.863 0.222 0.893 0.593 0.935

Shared MTL
FB+CB 0.790±0.053 0.863 0.611 0.885 0.662 0.932 0.800±0.017 0.851 0.667 0.880 0.677 0.930
FB+RP 0.717±0.089 0.843 0.444 0.889 0.475 0.936 0.655±0.009 0.874 0.000 0.888 0.581 0.933
FB+MT 0.703±0.088 0.852 0.222 0.894 0.614 0.936 0.749±0.088 0.861 0.389 0.895 0.668 0.937
FB+MV 0.679±0.1200 0.833 0.222 0.883 0.530 0.931 0.705±0.064 0.818 0.222 0.880 0.680 0.930
FB+LDC 0.631±0.027 0.759 0.000 0.887 0.580 0.930 0.664±0.010 0.847 0.000 0.886 0.657 0.932
FB+UD2 0.566±0.026 0.690 0.060 0.864 0.292 0.923 0.624±0.000 0.846 0.000 0.883 0.462 0.929
FB+UW 0.546±0.015 0.797 0.122 0.705 0.212 0.894 0.744±0.084 0.866 0.444 0.879 0.601 0.930
FB+CB+MT - - - - - - 0.693±0.051 0.867 0.222 0.891 0.551 0.935
FB+CB+RP 0.704±0.076 0.855 0.355 0.888 0.489 0.934 - - - - - -

Table 5: Results for our classification experiments on FactBank. The topmost results show FactBank trained and
tested on itself as a baseline. The Shared and MTL columns show F1 and per-label F1 on the two training paradigms
respectively. A shaded cell indicates the best performing combination; light means only a slight improvement.

Macro-F1 CT- PR- UU PR+ CT+ O
0.727 0.519 0.667 0.735 0.714 0.767 0.961

Table 6: Results for our end-to-end classification system
on FactBank+CB.

Train NoPC Macro-F1 PC Macro-F1 ER%
FB 0.701±0.077 0.786±0.003 28
FB+LDC 0.665±0.011 0.776±0.017 33

Table 7: Results on macro-average for our polarity clas-
sifier jointly combined with our 5-way classifier for
without polarity (NoPC Macro-F1), with polarity (PC
Macro-F1), and error reduction (ER).

ing standard deviation. The polarity classifier also
helps other combinations. Our highest error re-
duction is for FB+LDC, presumably because LDC
does not contain polarity annotations. We achieve
a 33% error reduction in MTL training and 29%
error reduction in Shared training; on regression,
we also achieve an error reduction of 33%. There
is also a moderate error reduction in classification
for FB+UW (19% in Shared training and 11% in
MTL training) and FB+UD2 (16% in Shared train-
ing and 10% in MTL training). For MV, we only
get an error reduction in the MTL training setting
of 10%. However, we do not obtain error reduc-
tions using this technique for our best performing
combinations.

7.5 Why Does CB Help FactBank?

FactBank is all newswire, and CB also contains
newswire. This does not fully explain why CB
helps with FactBank. To further examine the is-
sue, we consider two models, the model trained

only on FactBank (FB) and the MTL classification
model trained on FactBank and CB (FB+CB). We
perform an error analysis on the data points in the
FactBank dev set on which the two models make
different predictions. Our goal is to determine how
using the CB corpus helps. The results are in Ta-
ble 8. We use the following categories; the first
five are morpho-syntactic. Noun means that the
target is a noun designating an event not tagged
UU in FactBank; Noun-UU is a noun which is
tagged UU. Main refers to heads that are main
clause verbs or verbs in adjunct clauses to the main
verb; these are typically easy cases. Embedded
refers to targets which are in complement clauses
below a main clause verb; the factuality status is
typically determined or strongly affected by the
main clause verb. Relclause refers to heads which
are in relative clauses. Hypo are hypothetical sit-
uations. Idiom groups together various cases of
idiomatic language use, either multiword expres-
sions or idiomatic usages of lexical items. Misc
groups together various other syntactic and seman-
tic special cases.

We observe that 10% of all errors are gold er-
rors (i.e. errors in the original annotation), and
furthermore, that FB makes more errors in total
than FB+CB, since FB+CB performs better. (The
percentages do not sum to 100% in each row since
some errors are made by both models.) Recall
that CB annotates only verbs in embedded clauses.
We therefore expect the FB+CB model to perform
poorly on main clause verbs (Main) and nouns,
which is borne out. The exception is nouns labeled
UU, since the FB+CB model appears to label most

792



Type Nb FB FB+CB Gold
Noun 23 22% 70% 9%
Noun-UU 4 100% 0% 0%
Main 3 0% 100% 0%
Embedded 17 65% 24% 18%
Rel clause 9 78% 22% 0%
Hypo 4 100% 0% 0%
Idiom 6 67% 17% 17%
Misc 16 69% 44% 13%
Total 82 56% 40% 10%

Table 8: Error analysis on differences between
FactBank-only model and FB+CB model; percentages
refer to portion of all the errors of that type made by the
two systems and Gold; percentages in one row can sum
to more than 100% because the same error can be made
by both systems, or by a system and Gold

nouns as UU by default, thus getting UU nouns
correct by accident. The Misc error category is
balanced between the two models, and in all other
models FB+CB performs better. The biggest such
category is Embedded, which is precisely what
CB annotates, and for which the FB+CB model
has far fewer errors than the FactBank model alone
(24% of 17 errors against 65%). The error analy-
sis thus shows that by adding CB to the multi-task
training, the resulting model has learned what CB
is designed to provide information on (embedded
verbs), but suffers from the lack of representative
data distribution in CB and increases errors for cat-
egories that CB does not not annotate (main verbs,
nouns).

The results of the error analysis suggest another
type of system: we use the FactBank-only system
for noun heads, and the FB+CB system for verb
heads (the number of main verb errors is small,
so we do not worry about syntax). We implement
this system using the Spacy POS-tagger (Honni-
bal and Montani, 2017), and using the previously
trained models. If the Spacy POS-tagger tags a
head as a noun, we use the FactBank-only system;
otherwise we use the FB+CB system. The results
are shown in Table 9. We see that this strategy
provides us with the best result for 5-way classi-
fication, decreasing macro-average error by 12%
and improving on the CT-, UU, and PR+ labels.
We also note that this system has the smallest stan-
dard deviation among all models that perform at
baseline or above, suggesting that the system is con-
sistent in its behavior. We also perform this method
on FB+CB in regression, and obtain an increase

in Pearson correlation over the results in Table 3
from 0.876 to 0.888 (error reduction of 10%) and a
slight decrease in MAE from 0.293 to 0.286 (error
reduction of 2%).

Macro-F1 CT- PR- UU PR+ CT+
FB+CB 0.800±0.017 0.851 0.667 0.880 0.677 0.930
FB+CB’ 0.824±0.006 0.873 0.667 0.887 0.765 0.930

Table 9: Results on FactBank using FB+CB as a base-
line and FB+CB with a POS switch (FB+CB’). We
show macro-average (Macro-F1) and per-label F1 per-
formance. Shaded cells indicate improvements.

7.6 Summary on Experimental Findings

Regression Experiments Our first insight is that
the new projection of FactBank helps on all corpora
as shown in Table 1 because this projection makes
more sense for a system to learn. On our FactBank
focused-experiments, we find that the CB corpus
helps FactBank the most in Shared, while the MV
corpus helps FactBank the most in MTL as shown
in Table 3.

Classification Experiments We find that CB
helps FactBank in both the Shared and the MTL set-
ting, outperforming all other corpus combinations
as shown in Table 5. Furthermore, we find that
our best results (FB+CB) can be further improved
by using a POS-based system and we see improve-
ment on all metrics as shown in Table 9. Finally,
we find that an end-to-end system has predictably
lower performance on f-measure as shown in Ta-
ble 6, while offering the advantage of not assuming
gold heads.

8 Testing on CB

We have seen that the corpora that most help
FactBank are CB and MV. Can FactBank and
MV help CB? In Section 6, we trained on
all corpora (following the lead of Jiang and
de Marneffe (2021)). Here, we train on only
CB, FactBank, and MV, and evaluate on CB.

Train r MAE
FB+CB 0.885 0.602
FB+CB+MV 0.913 0.536

Table 10: MTL training on
CB, FactBank, testing on
CB test set

The results are shown
in Table 10 for CB us-
ing multi-task learn-
ing; similar experi-
ments testing on MV
did not yield im-
provements over our
new state-of-the-art

results in Table 1. When training on FB+CB, we
do not improve on Pearson correlation but slightly
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improve on MAE compared to previous CB results.
However, when training on FB+CB+MV MTL, we
achieve state-of-the-art results on CB in both Pear-
son correlation and MAE, providing a 21% error
reduction on both measures (coincidentally) over
the state-of-the-art prior to this paper.

9 Testing on LDC

Experiments We perform a separate set of
experiments with the LDCCB corpus (LDC)
(Prabhakaran et al., 2015) and FactBank on
LDC. We choose the LDC corpus because it
is similar to FactBank with reference to the
annotation goals and the use of expert anno-
tators. One major difference, however, is
genre. LDC consists of discussion forum posts
with many typos and fragmentary language,
while FactBank consists entirely of newswire.

Train r MAE
LDC 0.822 0.361
FB 0.616 0.630

Table 11: Results on
LDC corpus test-set
trained on LDC and
trained on FactBank
(FB).

We carefully examine
this combination and
show why some factu-
ality corpora, even if
they have similar anno-
tation goals and annota-
tors, may be incompat-
ible. Using the same
system and experimen-
tal setup as Appendix B,
we perform two experi-

ments: first, we train on LDC and test on LDC,
and second, we train on FactBank and test on
LDC. Table 11 shows results for these two experi-
ments respectively. We see that FactBank performs
very poorly on LDC, highlighting a potential in-
compatibility and mirroring our results training
on FB+LDC in Table 3 and testing on FactBank,
where LDC was among the worst performers.

Type %
Main 3
Embedded 12
Hypo 11
Unclear 13
Misc 11
Gold 50
Total number 100

Table 12: Error
analysis on FactBank
system prediction on
LDC

Error Analysis We per-
form an error analysis
on the application of the
FactBank-only model on
LDC, choosing 100 errors
randomly. We list the per-
centage of errors in each
category. We use the same
categories as in Section 7.5,
though there are no errors
on nouns, and we add the
category Unclear which
includes fragments, typos,
grammar and spelling er-

rors which are the effect of unedited text. First,
the gold standard errors are strikingly high: out of
100 examples, 5 heads were labeled in error in gold,
and 45 of the remaining examples are mislabeled in
the gold standard. We assume that this percentage
is not representative of the corpus, since these are
the difficult cases, but it also may be that annota-
tion is harder on informal domains. As expected
for a model trained on edited newswire, Unclear
is the top error category. Ignoring Misc, the next
biggest error categories are Embedded and Hypo.
We already saw this weakness in the FactBank-only
model on hypotheticals in Table 8. In conclusion,
the error analysis shows the importance of genre
(Unclear errors), and the continued weakness of
FactBank-trained models for hypotheticals and em-
bedded clauses.

10 Conclusion

After correcting an error in a widely used data set
derived from FactBank, we report new best results
on four corpora: FactBank (Table 3), CB (Table 10),
MegaVeridicality (Table 1), and UW (Table 1). We
also provide f-measure evaluation, and extend this
to a true end-to-end evaluation, the first in the liter-
ature. Finally, we show that by combining compat-
ible corpora (FactBank, CB, MV), we can achieve
improvements in performance on FactBank and
CB, and that the improvements on FactBank are
precisely as expected given how CB was created.

Given the targeted help CB can provide on Fact-
Bank predictions for embedded clauses, and given
the current weakness on hypotheticals in FactBank,
we suggest a new targeted annotation of factivity
on sentences in hypothetical contexts.
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A Distribution of New Data Set

We intend to distribute the corrected FactBank data
set. We have included the training portion in this
submission for reviewers to inspect, but we can-
not distribute it for copyright reasons. Instead, we
will provide a Python script which will produce
the files submitted with this paper from the orig-
inal FactBank files. These files can be obtained
by researchers from the Linguistic Data Consor-
tium, catalog number LDC2009T23. The entire
corpus contains 9,740 annotated data points, split
by article.

B Details on Experiments

We used a standard fine-tuning approach on exist-
ing BERT-large and RoBERTa large models with
333,843,458 and 355,623,938 paramaters respec-
tively. For computing, we used our employer’s
GPU cluster. Compute jobs were typically about
25 minutes on average and ran on a single Tesla
V100-SXM2 GPU. We did not do any hyperparam-
eter search or hyperparameter tuning. We followed
the same training parameters as Jiang and de Marn-
effe (2021), where we fine-tuned our model for at
most 20 epochs with a learning rate of 1e-5. Early
stopping was used if the difference between Pear-
son r and MAE did not increase, or if macro F1
did not increase. All metrics for experiments were
averaged over three runs using fixed seeds (7, 21,
and 42) which we will share with our code. We
have also noted where testing for statistical signifi-
cance of results was performed and have provided
standard deviations for our results. To fine-tune the
models and run experiments, we used the. jiant-v1-
legacy library (Wang et al., 2019) and the imple-
mentation of Jiang and de Marneffe (2021) which
uses jiant-v1-legacy. We added the classification
module for the Jiang implementation and will make
that available. All evaluation was performed by the
jiant-v1-legacy library. All pre-processing scripts
will be made available.
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Abstract

Discourse parsing has proven to be useful for
a number of NLP tasks that require complex
reasoning. However, over a decade since the
advent of the Penn Discourse Treebank, predict-
ing implicit discourse relations in text remains
challenging. There are several possible rea-
sons for this, and we hypothesize that models
should be exposed to more context as it plays
an important role in accurate human annota-
tion; meanwhile adding uncertainty measures
can improve model accuracy and calibration.
To thoroughly investigate this phenomenon, we
perform a series of experiments to determine 1)
the effects of context on human judgments, and
2) the effect of quantifying uncertainty with an-
notator confidence ratings on model accuracy
and calibration (which we measure using the
Brier score (Brier et al., 1950)). We find that
including annotator accuracy and confidence
improves model accuracy, and incorporating
confidence in the model’s temperature function
can lead to models with significantly better-
calibrated confidence measures. We also find
some insightful qualitative results regarding hu-
man and model behavior on these datasets.

1 Introduction

The context of an utterance influences the interpre-
tation. Linguistics, philosophy, cognitive science
and neuroscience (Lewis, 1980; Glanzberg, 2002;
Thompson-Schill, 2003) studies have shown the
effect of context in text interpretation. In this pa-
per, we hypothesize that context can influence the
prediction of discourse relation labels. Motivating
the need to discover the effects of context on an-
notation accuracy is the following example, where
argument 1 is bolded and argument 2 is italicized:

(1) the fund’s 25% leverage has jacked up
its interest income
As long as I am borrowing at 9.9% and
each {bond} yields over that, it enhances
the yield

Context
But when the market moves against 
the fund, investors lose more than 
other junk holders … he maintains.

Arg 1

Arg 2

the fund’s 25% leverage has 
jacked up its interest income

As long as I am borrowing at 
9.9% … it enhances the yield

Human 
confidence

Predicted 
confidence

}
+

Predicted 
relation

Contingency.Cause

Figure 1: A diagram of our model, in which we use
contextual information to predict uncertainty and pass
the results into a model that predicts the discourse rela-
tion. We experiment with several different architectures
and machine learning methods for utilizing uncertainty,
including concatenation.

The lack of contextual information makes it diffi-
cult to determine the proper discourse relation here,
and our annotator chose Expansion.Conjunction as
a result. However, when more context is added, the
passage presented to the annotator is as follows:

(2) But when the market moves against the
fund, investors lose more than other junk
holders because the market decline is mag-
nified by the amount the fund is leveraged.
Fund managers, for their part, defend their
use of leverage. Carl Ericson, who runs the
Colonial Intermediate High Income Fund,
says the fund’s 25% leverage has jacked
up its interest income. "As long as I am
borrowing at 9.9% and each {bond} yields
over that, it enhances the yield," he main-
tains. Mr. Ericson says he tries to offset the
leverage by diversifying the fund’s portfo-
lio.

This added context makes it more apparent that
a causal relation holds between the two arguments,
and thus our annotator chose the correct relation,
Contingency.Cause, after being presented with this
context.
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While the annotation process of discourse cor-
pora such as the Penn Discoruse Treebank (PDTB)
exposes annotators to the full context of the doc-
ument, we do not yet understand how human an-
notation behavior would change if context were
limited. Additionally, context is limited for most
of the models built for automatic discourse relation
classification. We start with a basic question: is the
argument pair (where arguments are defined as the
minimum span a relation could be interpreted in
PDTB (Prasad et al., 2008; Webber et al., 2019))
enough to determine the discourse relation?

In addition, context may affect human anno-
tation to varying degrees and impact annotators’
confidence in their judgements, how can we make
sure that this information is factored into discourse
parsers and model confidence? For the first time,
we propose to study and measure the human annota-
tor’s confidence and incorporate it into the architec-
ture of the deep-learning-based discourse parsers.
We utilize our human-annotated confidence scores
to predict human confidence, and test whether this
method improves model accuracy and calibration
(how well the predicted probabilities produced by
a model reflect the true likelihood of the corre-
sponding events to occur in the studied population).
Model calibration is an important issue in mod-
ern neural networks (Guo et al., 2017), and to our
knowledge we are the first to study it for discourse
relation classification. Properly calibrating a model
(i.e. properly quantifying uncertainty) is especially
important for this task, because determining the
correct discourse sense involves a large degree of
uncertainty, and more correctly quantifying uncer-
tainty allows a model to be more explainable.

Our two main research questions, as described
above, are illustrated in Figure 1, and our contribu-
tions can be summarized as the following:

1. Determine the effects of added context on the
discourse annotation task by increasing the
context window given to the annotators and
comparing the results to those of presenting
annotators with only the two arguments across
three different datasets. Measure the annota-
tion accuracy and confidence under each of
these conditions.

2. Perform a qualitative error analysis of these
results, providing insight into cases in which
adding context may improve annotation re-
sults.

3. Add annotation accuracy and confidence
scores to the input of an implicit sense clas-
sifier, and measure the resulting changes in
model accuracy.

4. Use confidence scores to impact the train-
ing and evaluation mechanisms of an implicit
sense classifier, and use accuracy and calibra-
tion metrics as validation metrics for these
models. Measure the change in accuracy and
model calibration.

5. Perform a qualitative error analysis on the
model results, finding cases where model per-
formance suffers without access to context
and providing explanations as to why.

Our code can be found here 1.

2 Related Work

The effects of context on implicit sense classifi-
cation As mentioned above, implicit sense clas-
sification is a very challenging task. Further, most
implicit sense classifiers (Chen et al., 2019) do
not include context outside of the two arguments
contained in a discourse relation,2despite the anno-
tators having access to context during the PDTB
annotation task, wherein the annotator inserts a
connective between the two arguments and then de-
termines the discourse relation. An example of this
connective insertion from the PDTB is as follows,
with Arg1 in bold and Arg2 in italics:

(3) Several leveraged funds don’t want to cut
the amount they borrow because it would
slash the income they pay shareholders,
fund officials said. But a few funds have
taken other defensive steps. Some have
raised their cash positions to record lev-
els. Implicit = BECAUSE High cash posi-
tions help buffer a fund when the market
falls.

However, no paper has yet studied the effect of
context on the discourse annotation task, nor has
a work attempted to use insights from annotators’
proficiency and confidence on the model.

1https://github.com/katherine-atwell/
DiscourseContextUncertainty

2Note that in the case of PDTB-3, it is possible for lo-
cal (sentence-level) context to be encoded using pre-trained
encoders such as BERT, when determining intra-sentential
implicit discourse relations.
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The closest work to ours in this space is Schol-
man and Demberg (2017), who use a connective
insertion task to crowdsource discourse sense an-
notations and examine the effect of context on this
task. They find that under certain conditions (such
as when argument 1 refers to an entity/event in the
surrounding context or the sentence after argument
2 expands on argument 2), the presence of con-
text can improve annotator agreement. However,
this annotation task is simplified and only covers 6
level-2 relations. Thus, their result is not fully rep-
resentative of the PDTB annotation task. We wish
to examine this question more in-depth by present-
ing annotations using the traditional PDTB annota-
tion task to a trained linguist in settings with and
without additional context, and comparing these
annotations against ground truth data. In doing so,
we believe we can gain more insight into factors
that affect human understanding in more similar
conditions to the ones present in the original PDTB
annotation task.

Calibration of neural networks for discourse
parsing Calibration in machine learning refers
to the distribution of error and the model’s level of
self-assessment, or confidence (Bella et al., 2010).
It was found that neural networks tend to be badly
calibrated (Guo et al., 2017), which can result
in poor explainability and uncertainty quantifica-
tion. However, pretrained models, even very com-
plex ones, were found to generally be more well-
calibrated, and to benefit from temperature scaling
(Desai and Durrett, 2020). Therefore, we use anno-
tator confidence scores to scale the temperature ac-
cording to a the example’s simplicity (as perceived
by the annotator). In our work, we choose to use
the Brier score (Brier et al., 1950) to measure cali-
bration because it is a proper scoring function. As
far as we are aware, we are the first paper to study
the calibration of implicit sense classification mod-
els and the impact of using annotator confidence
measures to improve model calibration.

3 Data and Analysis

3.1 Methods

Here we describe our human annotation exper-
iments, in which we determine whether adding
context can improve annotator accuracy and confi-
dence.

Dataset For all of our experiments, we use gold
data from the Penn Discourse Treebank 2 (PDTB-2,

Discourse sense Without With Context
context context effect

Temp.Asynchronous -2 -1 better
Cont.Cause -3 -5 worse
Comp.Contrast 14 10 better
Comp.Concession 6 5 better
Comp.Similarity 2 1 better
Exp.Conjunction 11 5 better
Exp.Instantiation 9 10 worse
Exp.Equivalence 3 4 worse
Exp.Level-of-detail -16 -9 better

Table 1: Frequency of discourse senses with/without
context in our annotated set relative to ground truth (0
indicates a perfect overlap with ground truth count). We
can see that a context window usually entails a better
(more ground truth-like) distribution. Moreover, the
impact of the context effect is usually stronger when it
is better than when it is worse. The full table including
neutral relations and raw counts is in the appendix.

Prasad et al. (2008)), Penn Discourse Treebank 3
(PDTB-3, Webber et al. (2019)), and the English
set of the TED Multilingual Discourse Bank (TED-
MDB, Zeyrek et al. (2018)), in order to test our
hypothesis across different frameworks and text
domains. The PDTB-2 is the most commonly used
dataset for discourse parsers, while the PDTB-3 in-
troduces intra-sentential discourse relations and an
updated label schema and the TED dataset contains
speeches annotated with the PDTB-3 framework.

Annotation To test our hypothesis that adding
context improves annotation performance for the
implicit sense labeling task, we recruit two expert
linguists to provide level 2 sense annotations for
implicit discourse relations from all three corpora
listed above, calculating 60% absolute agreement.
This task was approved by our institution’s human
subjects board.

In order to attain a representative sample, we
make sure that every type of implicit discourse
sense contained in the PDTB-2, PDTB-3, and TED-
MDB was represented at least once in this sam-
ple. Further, in order to select for relations that
may need more context than the two arguments,
we randomly sample a large set of relations and,
from that sample, select relations whose arguments
have a high portion of pronouns and a low level
of specificity. Pronouns signal coreference rela-
tions that may be missing from the argument spans
(Scholman and Demberg, 2017), and a low level
of specificity suggests that more information may
be needed to understand the full context (Li et al.,
2016; Choi et al., 2021) . We use NLTK’s part of

799



speech tagger to detect the number of pronouns
contained in the arguments, and to determine speci-
ficity we use the Ko et al. (2019) specificity classi-
fier.

Task To study the role of context, our annotators
perform two respective tasks. First, they attempt
to determine the discourse connective, and corre-
sponding discourse sense, when only shown the
pair of arguments. For the second task, the anno-
tator has access to the full sentence(s) containing
the arguments, as well as the two sentences before
and the sentence after the arguments. The first task
always comes before the second task, and the an-
notator is not able to edit their annotation for the
first task after seeing the additional context in the
second task.

We produce 498 samples of human annotations
for discourse sense and confidence before and after
context. Of the samples, 147 come from the PDTB-
2, 199 from the PDTB-3, and the last 152 from the
TED-MDB.

3.2 Analysis

To better understand the hypothetical effect of con-
text, we investigate annotation changes with respect
to the discourse relations in the arguments, as well
as in the context window supplied to the annotator.

Does context improve annotation accuracy?
Generally, yes. Over all three corpora, annotator
accuracy increases from 0.350 to 0.414 (+6.4%)
between the task without context and the task with
context. Table 2 provides the breakdown of ac-
curacy by corpora for each task. While the task
accuracy is low in general due to the difficulty of
discourse relation prediction, we can see consis-
tently higher accuracy across all three corpora in
the task with context. However, it should be noted
that these increases are not statistically significant,
likely due to the small size of our annotated set.

Corpus Accuracy Confidence
Raw Context Raw Context

PDTB2 0.306 0.354 3.70 4.81
PDTB3 0.379 0.423 3.56 4.71

TED-MDB 0.296 0.355 3.63 4.84

Table 2: Average annotator accuracy and confidence
on a scale of 1-5 for each corpus before and after con-
text. Adding context improves accuracy and confidence
across all corpora, an increase which is statistically sig-
nificant with respect to confidence (p < 0.01).

Figure 2: Distribution of the confidence scores (discrete
scores from 1-5) chosen by the annotators. As this
distribution shows, annotator confidence consistently
increases with context.

Further, as Table 1 shows, the discourse sense dis-
tribution of annotations models the ground truth
distribution more closely after context.

Does context improve annotator confidence?
Annotator confidence provides information beyond
simply whether an annotation is incorrect/correct.
We found that over all three corpora, annotator con-
fidence ratings improved from 3.59 to 4.77 (+1.18)
after being given context. Similarly to annotator
accuracy, we see all three corpora reflect this im-
provement in Table 2. The effect of context on an-
notator confidence is statistically significant across
all three corpora (p < 0.01).

In addition, the full results can be found in Table
3, which shows the distribution of annotations that
are positively or negatively impacted by context
across each discourse relation. Discourse relations
with no samples that change after context are ex-
cluded.

But why study annotator confidence? Annota-
tor confidence provides information beyond sim-
ply whether an annotation is incorrect/correct. For
instance, an annotator could be correct but lack
confidence due to a lucky guess. Further, in our an-
notations, we found that highly confident answers
were twice as likely to be correct (0.390) as answers
rated with a lower confidence (0.200). We incor-
porate these annotator confidence scores into our
model and experimentally validate whether incor-
porating these scores helps guide model decisions
in a meaningful way.

Is the presence of certain discourse relations
in an expanded context window beneficial?
Yes. We find both instances where context helped
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(an incorrect annotation before context became
correct after the annotator was given context)
and where context hurt (a correct annotation be-
fore context became incorrect after the annotator
was given context). In particular, we find that
Comparison.Contrast, Contingency.Cause, Expan-
sion.Conjunction, and Expansion.Restatement are
likely to improve annotation accuracy. Contrarily,
Expansion.List and Temporal.Asynchronous seem
to provide less helpful context.

The full results are reported in Table 4. We ex-
clude relations in the context that had no effect
on the annotation’s accuracy, or when the annota-
tion remained correct or incorrect before and after
context.

In what instances does context actually help?
Our annotator performed a qualitative analysis on
the annotations where context helps (an incorrect
prediction turned correct) and hurts (a correct pre-
diction turned incorrect). From this, we found that
context typically helps in cases where the argu-
ments are very short, the discourse structure in the
surrounding sentences is made clearer, and back-
ground information in the surrounding texts illus-
trates a relationship between pieces of the two ar-
guments that could not be extrapolated from only
the argument pair. The example in Section 1 rep-
resents the latter phenomenon, and we provide an
example of the first phenomenon in Appendix A.
Below we provide an example where the discourse
structure makes the correct relation more apparent,
with argument 1 in bold and argument 2 in italics:

(4) USA Today reported that the Rales broth-
ers, Washington, D.C.-based investors who
made an unsuccessful offer to acquire In-

Discourse sense Incorr.→Corr. Corr.→Incorr.

Temp.Asynchronous 5 (15.63%) 1 (3.13%)
Cont.Cause 7 (6.25%) 6 (5.36%)
Cont.Purpose 1 (5.00%) 0
Comp.Contrast 4 (13.79%) 1 (3.45%)
Comp.Concession 3 (14.29%) 2 (9.52%)
Comp.Similarity 1 (33.33%) 0
Exp.Conjunction 12 (12.50%) 5 (5.21%)
Exp.Instantiation 4 (10.00%) 3 (7.50%)
Exp.Equivalence 0 2 (25.00%)
Exp.Level-of-detail 12 (17.91%) 4 (5.97%)

Table 3: Distribution of ground truth Level 2 senses by
whether an annotation turns from incorrect to correct
after context or vice versa. Bolded cells in each row
indicate whether a sense seems to benefit or hurt from
context.

Discourse Sense Incorr.→Corr. Corr.→Incorr.

Temp.Asynchronous 4 (3.36%) 9 (7.56%)
Temp.Synchronous 2 (3.45%) 3 (5.17%)
Cont.Cause 17 (6.37%) 11 (4.12%)
Cont.Condition 3 (4.41%) 4 (5.88%)
Comp.Concession 2 (4.17%) 2 (4.17%)
Comp.Contrast 26 (10.70%) 17 (7.00%)
Exp.Alternative 0 1 (4.35%)
Exp.Conjunction 30 (8.55%) 14 (3.99%)
Exp.Exception 0 1 (33.33%)
Exp.Instantiation 6 (7.79%) 5 (6.49%)
Exp.List 2 (3.70%) 4 (7.41%)
Exp.Restatement 12 (7.79%) 2 (1.30%)

Table 4: Distribution of Level 2 senses in sample context
by whether an annotation turns from Incorrect to Correct
after context or vice versa. Bolded cells in each row
indicate whether a sense seems to provide beneficial or
harmful context.

terco last year, have bought nearly 3% of
Mead’s common shares. Entertainment and
media stocks generally escaped the mar-
ket’s slide as well. Paramount Communi-
cations rose 5/8 to 58 3/4, Time Warner
climbed 1 7/8 to 138 5/8, Walt Disney ad-
vanced 3 1/8 to 127 1/2, MCA rose 1 1/8
to 65 5/8 and McGraw-Hill added 1/2 to 67
1/8. The American Stock Exchange Market
Value Index lost 3.11 to 379.46.

Without the added context, the relation appears
as though it could be contrastive to the annotator
(where Time Warner’s rise is compared to Disney’s
rise). However, additional context allows the an-
notator to see the discourse structure of the sur-
rounding clauses in the sentence (also holding a
Conjunction relation), as well as the sentence con-
tain the arguments with the previous sentence (an
Instantation relation where the sentence containing
the arguments provides several similar examples to
back up the first argument’s claim). Thus, in this
example, the discourse structure of the surrounding
text is beneficial for labeling the discourse relation.

Table 1 further sheds light on ways in which
context influences the chosen relations, showing
that some discourse relations are predicted more
than others with and without context (relative to
their ground truth counts). For instance, Expan-
sion.Conjunction is predicted at a much higher rate
without context than with context, likely due to in-
stances (such as the example in Section 1 where the
annotator does not have enough information about
the relationship between the two arguments to pick
a relation with more rigidly defined semantics. We

801



find that Comparison.Contrast tends to also be cho-
sen less often with context (the second example
in this section illustrates a scenario in which the
annotator changes from Contrast to another rela-
tion given context). Expansion.Level-of-detail, on
the other hand, is chosen more often when more
context is provided, which makes sense given that
a Level-of-detail relation requires knowing that the
semantics of argument 2 restate the semantics of ar-
gument 1, and that both arguments hold true at the
same time. This information is not always available
when only the two arguments are shown.

4 Modeling Insights

Above, we illustrate some insights attained from
the annotated data with respect to changes in do-
main and access to context. In this section, we
use both the annotator correctness and confidence
metrics to inform our model decisions, in order to
determine whether annotator performance in any
way correlates with model performance. In addi-
tion to model accuracy, we evaluate model cali-
bration scores when the model is and is not given
access to annotator confidence. To influence the
model’s decisions when given access to annotator
confidence, we adjust the training and validation
mechanisms accordingly. We hypothesize that ac-
cess to annotation metrics will improve model ac-
curacy, and that changing the temperature function
with respect to annotator confidence will improve
model calibration. We describe the setup for each
of our experiments below, and report our results in
Section 4.2.

4.1 Experimental Setup

We use the Kim et al. (2020) XLNet-large base-
lines as our base model, for which the large XLNet
(Yang et al., 2019) model is trained for a maximum
of 10 epochs, but early stopping occurs if there is
no improvement to the development set for 5 eval-
uation steps. We use sections 4-24 for training, 2-3
for development, and 0-1 for testing. Following
Kim et al. (2020), we use the standard L2 classifi-
cation with 12 labels for the PDTB-2, and use the
14 senses with more than 100 labels for the PDTB-
3. For each result, we report the average across 3
different seeds. We first experiment with concate-
nating the features described below to the sentence
embeddings produced by the XLNet-large model
and passing the resulting embedding to a classifica-
tion head to predict the discourse relation.

Exploiting annotation accuracy and confidence
We first experiment with using features from our
annotated data, in order to determine whether they
provide any benefit to the model. The first feature
we experiment with is a binary prediction (using the
annotations as training data) as to whether or not
the relation will be labeled correctly. To obtain this
feature, we trained an SVM using bag-of-words
features on our annotation data, where the label is
true if the annotator labeled the relation correctly
given only the argument pairs and false otherwise.
We pass the argument pairs as input to the model.
We used an 80/20 train/test split for this model and
the classification accuracy is .838.

The second feature that we use is the confidence
score for the two arguments given additional con-
text, to determine whether using features that incor-
porate some contextual features help the model at
all. As with the previous feature, we train an SVM
using bag-of-words features on our annotation data,
and again pass the two arguments as input to the
model, but here we predict confidence as a regres-
sion task as opposed to a classification task. For
this model, we also use an 80/20 train/test split, and
report a mean square error of .180.

Reweighting using confidence annotations Be-
yond experimenting with adding annotation metrics
as features to our model, we experiment with ad-
justing the training and validation mechanisms of
our model using predicted annotator confidence
scores. We use these scores to adjust the training
weights, weighting the examples with lower pre-
dicted confidence higher and the examples with
higher predicted confidence lower. For each exam-
ple, we predict its corresponding confidence feature
and divide 5 by this value (as 5 is the highest the
confidence level can go). We then use this value
as the weight for the sample, thus upsampling all
examples with a predicted confidence score less
than 5 out of 5.

Temperature adjustment using confidence anno-
tations Similarly, we experiment with adjusting
the temperature of the softmax function, in order
to increase model confidence in proportion to pre-
dicted annotator confidence. We thus weight the
examples with higher predicted confidence scores
higher, and vice versa, by dividing 5 by the confi-
dence score for each example to get our tempera-
ture (which is inversely proportional to the desired
model confidence). We show this in the following
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Model PDTB-2 PDTB-3 TED

XLNet-large (cased) .5527 .6326 .5381
+Correctness .5694* .6452* .5347
+Confidence .5648* .6518* .5035*

+Correctness & Confidence .5642* .6428* .4931*
+Reweighting .5665* .6419* .4861*

Table 5: Accuracy scores for each model evaluated on
the PDTB-2 and PDTB-3, with the best performing
model in bold for each metric (+Correctness for the
PDTB-2, +Confidence for the PDTB-3, and the baseline
for TED). * indicates statistical significance (p < 0.05).

Model PDTB-2 PDTB-3 TED

XLNet-large .5527 .6326 .5381
+ temp change .5597 .6326 .5486

Table 6: Accuracy for baseline and model with adjusted
softmax temperature. Changing the temperature appears
to slightly improve performance for the PDTB-2 while
not affecting performance for the PDTB-3.

equation, denoting the temperature as T and the
confidence score as c: T = 5

c

4.2 Results
In order to determine the effects of adding annota-
tor performance metrics as input to the model, we
detail the results from each of the models above, in
particular looking at accuracy for the models with
concatenated annotation features and accuracy and
calibration for the models that use annotator con-
fidence features to influence their training mech-
anism. We provide several questions we wish to
answer with these analyses, and the correspond-
ing results, below. We test for significance using a
two-tailed t-test for each experiment.

Is reweighting training examples using confi-
dence scores useful? Similarly to directly adding
confidence features as input to the model, reweight-
ing the training examples based on the predicted
confidence score improves upon the baseline for
both corpora (Table 5). This suggests that influenc-
ing the training mechanism with confidence scores
has the potential to improve model accuracy. We
report level 2 results of this model in Tables 8 and
10 in the Appendix. As with the previous results,
the scores on the TED dataset are not improved
when these changes are made, but because of the
small size of the test set, we do not believe this to
be notable.

Does adjusting temperature improve accuracy,
calibration, or both? To evaluate the results of

Model PDTB-2 PDTB-3 TED

XLNet .6781 .5787 .7214
XLNet + temp change .6075* .5295* .6477*

Table 7: Brier scores for baseline and model with ad-
justed softmax temperature. For both datasets, the Brier
score improves (a lower Brier score is better) when the
temperature is adjusted in accordance with the predicted
confidence. * indicates statistical significance (p < 0.5)

the model in which temperature was adjusted, we
measure both the accuracy and the calibration of
the model (calculated using the Brier score). We
find that although the model with adjusted tem-
perature outperforms the baseline with respect to
accuracy only on the PDTB-2 (Table 6), it outper-
forms the baseline with respect to the Brier score
by a large margin for both datasets (Table 7). Thus,
the model with the temperature change is more
well-calibrated than the original model, i.e. its
probabilities are more likely to reflect the actual
probability of a prediction being correct given the
input. A large improvement for the Brier scores is
seen on the TED test set, similarly substantial to
that of the other two datasets. However, although
this is encouraging, we once again take caution in
drawing significant conclusions from this due to
the small size of our TED test set.

In addition to reporting overall calibration met-
rics, we visualize results on individual data points
(excluding the TED dataset due to its small size).
Using the XLNet-large model, we run the Data
Maps tool (Swayamdipta et al., 2020) on the PDTB-
2 (Figure 4) and PDTB-3 (Figure 6). We find that
the PDTB-3 has more well-defined regions than the
PDTB-2, with the model much more likely to get an
example with high confidence and low variability
correct than an example with low confidence and
low variability. This suggests that the model trained
on the PDTB-3 is more well-calibrated than the
model trained on the PDTB-2, which is supported
by the difference in the Brier scores between the
two datasets (Table 7). The lack of easy-to-learn
examples in the PDTB-2 also provides a possible
explanation for the difficulty of the implicit sense
classification task for this dataset; the results of
Swayamdipta et al. (2020) indicate that easy-to-
learn examples are important for optimization.

Does predicting annotation accuracy and confi-
dence help? For both the PDTB-2 and PDTB-3,
adding the features predicting annotator correct-
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Figure 3: Data map for the baseline model trained on the
PDTB-2. Here, there appear to be no distinct regions with
respect to correctness, confidence, and variability.
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Figure 4: Data map for the PDTB-2 model with temper-
ature changes; here, there appear to be distinct regions
with respect to correctness, confidence, and variability, but
similarly to the baseline PDTB-2 models, no easy-to-learn
samples.

ness and confidence improved model results over
the XLNet-large baseline (Table 5), with the added
correctness feature yielding the best-performing
model on the PDTB-2 and the confidence feature
yielding the best-performing model on the PDTB-3.
Therefore, it appears that correctness and ease of
annotation have some impact on model correctness.
We report level 2 results of this model in Tables
8 and 10 in the Appendix. We note that none of
these features yielded an improvement when our
model was tested on the TED set; however, due to
the TED dataset’s small set of implicit relations, we
hesitate to draw conclusions from these numbers
(our test set is comprised of 96 examples).

What kinds of errors do our models make? In
addition to annotating discourse relations given ar-
gument pairs and additional context, our annotator
performed a qualitative analysis on the results of
the model. From this analysis, we found that the
most common hypothesized reasons for the model
guessing a relation wrong were to do with lack
of context. There were also cases in which the
model did not pick up on vocabulary that indicated
a Temporal relation. For some misclassifications,
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Figure 5: Data map for the baseline model trained on the
PDTB-3. Here, there appear to be distinct regions with
respect to ease of learning; easy to learn examples have
higher confidence and lower variability, and more difficult
to learn examples have lower confidence and lower vari-
ability.
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Figure 6: Data map for PDTB-3. Here, as with the PDTB-
3 baseline model, there appear to be distinct regions with
respect to ease of learning. However, there appears to be a
clearer separation between easy-to-learn and hard-to-learn
samples with respect to accuracy.

the annotator could see why the predicted relation
could hold, but believed that the gold annotation
was the better one. There were a few cases where
the annotator agreed with the model predictions as
opposed to the gold labels. We provide some exam-
ples of these phenomena in Appendix D. Overall,
the annotator observed more cases where errors
occur because additional context is needed in the
PDTB-2 and TED-MDB than in the PDTB-3.

5 Conclusion

In the previous sections, we first show the effects
of presenting additional context when compared
to providing only the two arguments. We find that
adding context has an overall positive impact on an-
notator accuracy and confidence. More specifically,
we find that context helps for certain discourse rela-
tions, but not all relations. We hypothesize that in
cases where adding context worsens annotation, it
is because context may add confusing information
about argument relationship (such as whether one
is a quote) or the completeness of a list of items in a
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particular set (blurring the line between senses such
as Instantiation and Level-of-detail). We believe
this is worth exploring further.

Secondly, we find that utilizing the human per-
formance metrics we collected in the first half of
the paper yielded better model performance when
compared to the baseline, suggesting that these met-
rics give the model some useful information about
its own predictions. In particular, we find that using
confidence scores to adjust the training weights im-
proves model accuracy, while using them to adjust
the softmax temperature improves model calibra-
tion, the latter of which is important for explainabil-
ity and for tasks with a high degree of uncertainty
(discourse relation classification being one such
task). To our knowledge, ours is the first work to
study calibration with respect to discourse models.

We hope that future work will continue to study
the role of context in discourse relation classifica-
tion, as well as model calibration for this task. We
will release our annotations and model code upon
the publication of this paper.

6 Ethical Considerations

Our experiments were approved by our institution’s
human subjects board. We acknowledge that the
pretrained models we use in this paper may intro-
duce bias.
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A Examples Where Context Helps

The first example represents a case where the argu-
ments are very short and do not provide a strong
clue about the relation:

(5) Currently, chips are produced by shining
light through a mask to produce an image
on the chip, much as a camera produces an
image on film. But details on chips must
now be extraordinarily fine, and the wave-
lengths of even ultraviolet light are long
enough so that the images they draw may
be too blurry – much as someone using
a wide paintbrush could produce a broad
line but would have trouble painting a thin
one. X-rays, by contrast, travel straighter
and can be focused more tightly than light.
X-rays have problems, too.

Taken by themselves, travel straighter and and
can be focused more tightly than light could be
related in any number of ways, and our annotator
guessed Temporal.Asynchronous. However, given
the structure of the sentence the arguments are con-
tained in as well as the information given in the
previous sentences, the annotator changed to the
correct relation (Contingency.Cause) upon seeing
the additional context.

B Example Where Context is Misleading

(6) As the best opportunities for corporate re-
structurings are exhausted of course, at
some point the market will start to reject
them. But the airlines are scarcely a clear
case, given anti-takeover mischief by Sec-
retary of Transportation Skinner, who pro-
fesses to believe safety will be compro-
mised if KLM and British Airways own
interests in companies that fly airplanes.
Worse, Congress has started to jump on
the Skinner bandwagon. James Ober-
star, the Minnesota Democrat who chairs
the Public Works and Transportation Com-
mittee’s aviation subcommittee, has put
an anti-airline takeover bill on supersonic
speed so that it would be passed in time to
affect the American and United Air Lines
bids. It would give Mr. Skinner up to 50
days to "review" any bid for 15% or more
of the voting stock of any U.S. carrier with
revenues of $1 billion or more.

C Examples from qualitative analysis of
model results

For all examples below, argument 1 is bolded and
argument 2 is italicized.

C.1 Examples that need more context
PDTB-2 Below is the example without context,
which the model predicted as Contingency.Cause:

(7) the threat of U.S. retaliation, combined
with a growing recognition that protect-
ing intellectual property is in a coun-
try’s own interest, prompted the im-
provements made by South Korea, Tai-
wan and Saudi Arabia
What this tells us is that U.S. trade law is
working

The ground truth label of this example is Expan-
sion.Restatement. Without the additional context,
upon inspecting the model output, the annotator
concluded that “so/therefore”, which signal causal-
ity, could be acceptable, but “in other words”, sig-
naling Restatement, could also work. Below is the
example with context:

(8) They will remain on a lower-priority list
that includes 17 other countries. Those
countries – including Japan, Italy, Canada,
Greece and Spain – are still of some con-
cern to the U.S. but are deemed to pose
less-serious problems for American patent
and copyright owners than those on the
"priority" list.
Gary Hoffman, a Washington lawyer spe-
cializing in intellectual-property cases, said
the threat of U.S. retaliation, combined
with a growing recognition that protect-
ing intellectual property is in a coun-
try’s own interest, prompted the im-
provements made by South Korea, Tai-
wan and Saudi Arabia. "What this tells
us is that U.S. trade law is working," he
said.

This context makes it clearer that the proper re-
lation to annotate here is Expansion.Restatement.

PDTB-3 Below is the example without con-
text, which the model predicted as Tempo-
ral.Asynchronous:

(9) In 1976, for example, dividends on
the stocks in Standard & Poor’s 500-
stock index soared 10%, following much
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slower growth the year before.
The S&P index started sliding in price in
September 1976,

The ground truth label of this example is Com-
parison.Contrast. Without the additional context,
upon inspecting the model output, the annotator
concluded that more context was needed, but with-
out the additional context they could understand
how either a temporal or contrastive relation could
be held. Below is the example with context:

(10) Indeed, analysts say that payouts have
sometimes risen most sharply when prices
were already on their way down from
cyclical peaks. In 1976, for example,
dividends on the stocks in Standard &
Poor’s 500-stock index soared 10%, fol-
lowing much slower growth the year be-
fore. The S&P index started sliding in
price in September 1976, and fell 12% in
1977 – despite a 15% expansion in divi-
dends that year.

This context makes it more clear why Compar-
ison.Contrast was chosen. However, a Tempo-
ral.Synchronous relation also holds between the
two arguments even with the surrounding context.
Thus, though the model predicted this relation in-
correctly, it predicted a relation that was close to
another relation that holds between the two but was
not annotated in the gold label set.

TED-MDB Below is the example with-
out context, which the model predicted as
Expansion.Level-of-detail:

(11) I want to show you a new kind of map.
This is not a geographic map.

The ground truth label of this example is Com-
parison.Concession. Without the additional con-
text, the annotator understood how Level-of-detail
could be inferred, as the speaker seems to be elabo-
rating on the type of map. However, the example
below, with added context, clarifies this:

(12) When we think about mapping cities, we
tend to think about roads and streets and
buildings, and the settlement narrative that
led to their creation, or you might think
about the bold vision of an urban designer,
but there’s other ways to think about map-
ping cities and how they got to be made.
Today, I want to show you a new kind of

map. This is not a geographic map. This is
a map of the relationships between people
in my hometown of Baltimore, Maryland,
and what you can see here is that each dot
represents a person, each line represents
a relationship between those people, and
each color represents a community within
the network.

With the addition of the sentence before argu-
ment 1, it is a lot more clear why the correct label is
Comparison.Concession and not Expansion.Level-
of-detail.

D Examples from qualitative analysis of
model results

For all examples below, argument 1 is bolded and
argument 2 is italicized.

D.1 Examples where annotator disagrees with
ground truth

PDTB-2 Below is the example without context,
which the model predicted as Contingency.Cause:

(13) Pro-forma balance sheets clearly show
why Cray Research favored the spinoff.
Without the Cray-3 research and develop-
ment expenses, the company would have
been able to report a profit of $19.3 million
for the first half of 1989 rather than the
$5.9 million it posted.

The ground truth label of this example is Ex-
pansion.Restatement. When inspecting the model
output without context, our annotator questioned
the reason for this, as they believed there was a
stronger causal relation. Below is the example with
context:

(14) Analysts calculate Cray Computer’s initial
book value at about $4.75 a share. Along
with the note, Cray Research is transfer-
ring about $53 million in assets, primarily
those related to the Cray-3 development,
which has been a drain on Cray Research’s
earnings.
Pro-forma balance sheets clearly show
why Cray Research favored the spinoff.
Without the Cray-3 research and develop-
ment expenses, the company would have
been able to report a profit of $19.3 million
for the first half of 1989 rather than the
$5.9 million it posted.

808



Here, context does not have much of an impact
on the meaning of the relation. Thus, the opinion
remained that Contingency.Cause is more correct
than Expansion.Restatement, and thus the model
did not commit an error here.

PDTB-3 This example illustrates the common
ambiguity between Expansion.Instantiation and
Expansion.Restatement, and represents a case in
which our annotator disagreed with the ground
truth label. Below is the example without
context, which the model predicted as Expan-
sion.Instantiation:

(15) The competition has cultivated a much
savvier consumer.
The average household will spread 19 ac-
counts over a dozen financial institutions,

The ground truth label of this example is Ex-
pansion.Instantiation. Below is the example with
context:

(16) "Today, a banker is worrying about lo-
cal, regional and money-center banks, as
well as thrifts and credit unions," says Ms.
Moore at Synergistics Research. "So peo-
ple who weren’t even thinking about tar-
geting 10 years ago are scrambling to de-
fine their customer base." The competition
has cultivated a much savvier consumer.
“The average household will spread 19 ac-
counts over a dozen financial institutions,”
says Michael P. Sullivan, who runs his own
bank consulting firm in Charlotte, N.C.
"This much fragmentation makes attract-
ing and keeping today’s rate-sensitive cus-
tomers costly."

Though this context sheds light on the fact that
the focus of this passage is on customers’ behav-
ior with respect to banking, it is unclear whether
argument 2 represents the only way in which the
customer has become more savvy as a result of
the competition. Thus, it is still ambiguous as to
which relation holds here, and the model’s decision
to predict Expansion.Instantiation is close to if not
the correct choice.

TED-MDB This example represents a case in
which the ground truth connective appears to make
the most sense, but our annotator did not agree with
the ground truth sense label. Below is the exam-
ple without context, which the model predicted as
Expansion.Conjunction:

(17) the balance of power to really influence
sustainability rests with institutional in-
vestors, the large investors like pension
funds, foundations and endowments.
I believe that sustainable investing is
less complicated than you think, better-
performing than you believe, and more im-
portant than we can imagine.

The ground truth label of this example is
Expansion.Level-of-detail. Upon seeing the model
output, the annotator concluded that they would
have also likely chosen Conjunction over Level-of-
detail. The additional context, as seen below, does
not appear to contradict this assessment:

(18) And by sustainability, I mean the really
juicy things, like environmental and social
issues and corporate governance. I think
it’s reckless to ignore these things, because
doing so can jeopardize future long-term
returns. And here’s something that may sur-
prise you: the balance of power to really
influence sustainability rests with institu-
tional investors, the large investors like
pension funds, foundations and endow-
ments. I believe that sustainable investing
is less complicated than you think, better-
performing than you believe, and more im-
portant than we can imagine.

Because the added context does make the
two statements seem any more parallel, Expan-
sion.Conjunction appears to be the best choice,
despite the fact that in fact makes the most
sense as a connective. Indeed, given that Expan-
sion.Conjunction is the second-most-common an-
notation for in fact per the PDTB 3.0 Annota-
tion Manual, the connective in fact being correct
here does not preclude the possibility of Expan-
sion.Conjunction being the correct label, but may
have influenced the annotators of the TED dataset
in the direction of Expansion.Restatement.

E Level 2 Recall and Annotation
Distributions
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Discourse Sense XLNet + correctness + confidence + corr. & confidence + temp change + reweighting

Temp.Asynchronous 0.4333 0.44 0.3933 0.3867 0.4067 0.4867
Temp.Synchrony 0.1795 0.2051 0.1795 0.1795 0.1538 0.1795

Cont.Cause 0.6749 0.6737 0.6725 0.6655 0.6432 0.6573
Cont.Pragmatic cause 0 0 0 0 0 0

Comp.Contrast 0.5029 0.5478 0.5789 0.5731 0.5497 0.5439
Comp.Concession 0.0444 0.0444 0.0889 0 0 0.0444
Exp.Conjunction 0.5505 0.5745 0.5328 0.5694 0.5265 0.5366
Exp.Instantiation 0.5741 0.5802 0.6080 0.5957 0.5833 0.6420
Exp.Restatement 0.4772 0.4871 0.4859 0.4797 0.5412 0.4686
Exp.Alternative 0.2333 0.4 0.3333 0.2333 0.2 0.2667

Exp.List 0.2667 0.2667 0.3333 0.1667 0.2333 0.2667

Table 8: Recall on Level 2 senses for the PDTB-2, excluding labels that did not appear in the test set (note that the
temp change model uses the Brier score as a validation metric)

Discourse Sense XLNet + correctness + confidence + corr. & confidence + temp change + reweighting

Temp.Asynchronous 0.5841 0.5810 0.5810 0.5683 0.5950 0.5841
Temp.Synchronous 0.2424 0.2525 0.3030 0.2727 0.2338 0.2626

Cont.Cause 0.7506 0.7409 0.7513 0.7350 0.7439 0.7587
Cont.Cause+Belief 0 0 0.0256 0 0 0

Cont.Condition 0.7407 0.9074 0.9259 0.7222 0.7407 0.8333
Cont.Purpose 0.9271 0.9236 0.9306 0.9444 0.9256 0.9097

Comp.Contrast 0.4505 0.4835 0.4505 0.4689 0.4584 0.4762
Comp.Concession 0.6254 0.6222 0.6127 0.6894 0.6227 0.5683
Exp.Conjunction 0.6176 0.6656 0.6399 0.6522 0.6262 0.6577
Exp.Instantiation 0.6751 0.6554 0.6582 0.6638 0.6715 0.6102
Exp.Equivalence 0.1333 0.2533 0.0933 0.2533 0.1276 0.1200

Exp.Level-of-detail 0.4635 0.4793 0.4927 0.4562 0.4630 0.4818
Exp.Manner 0.1905 0.2381 0.2381 0.2143 0.1905 0.2738

Exp.Substitution 0.5938 0.5625 0.5938 0.6875 0.5938 0.6979

Table 9: Recall on Level 2 senses for the PDTB-3 (note that the temp change model uses the Brier score as a
validation metric)

Discourse Sense XLNet + correctness + confidence + corr. & confidence + temp change + reweighting

Temp.Asynchronous 0.5 0.5 0.5417 0.5417 0.5417 0.3333
Cont.Cause 0.7857 0.8571 0.8095 0.7143 0.8571 0.7857

Cont.Cause+Belief 0.1111 0 0.1111 0 0 0
Cont.Purpose 0.9333 1 0.9333 0.8667 1 1

Comp.Contrast 0.2222 0.3333 0.2222 0.3333 0.3333 0.2222
Comp.Concession 0.3333 0.3333 0.2222 0.2222 0.2222 0.2222
Exp.Conjunction 0.5 0.4487 0.4744 0.4359 0.4872 0.4487
Exp.Instantiation 0.5333 0.6 0.5333 0.6 0.5333 0.4667
Exp.Equivalence 0.4 0.4 0.2667 0.3333 0.3333 0.2

Exp.Level-of-detail 0.4697 0.4394 0.3636 0.4091 0.4848 0.4545
Exp.Substitution 0.6667 0.6667 0.6667 0.6667 0.6667 0.5556

Table 10: Recall on Level 2 senses for the TED-MDB, excluding labels that did not appear in the test set (note that
the temp change model uses the Brier score as a validation metric)
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Discourse Ground Without With Context
sense Truth context context effect

Temp.Asynchronous 6 4 5 better
Temp.Synchronous 0 1 1 neutral

Cont.Cause 14 11 9 worse
Cont.Cause+Belief 2 3 3 neutral

Cont.Cause+SpeechAct 2 1 1 neutral
Cont.Purpose 4 0 0 neutral

Comp.Contrast 3 17 13 better
Comp.Concession 8 2 3 better

Comp.Concession+SpeechAct 1 0 0 neutral
Comp.Similarity 2 0 1 better
Exp.Conjunction 20 31 25 better
Exp.Instantiation 5 14 15 worse
Exp.Equivalence 4 7 8 worse
Exp.Exception 1 0 0 neutral

Exp.Level-of-detail 30 14 21 better
Exp.Manner 0 1 1 neutral

Exp.Substitution 4 0 0 neutral

Table 11: Frequency of discourse senses in our annotated set with respect to ground truth, annotations without
context, and annotations with context. We can see that at a label distribution level, a context window usually adds a
better or neutral effect.
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Abstract

Contingent reasoning is one of the essential
abilities in natural language understanding, and
many language resources annotated with con-
tingent relations have been constructed. How-
ever, despite the recent advances in deep learn-
ing, the task of contingent reasoning is still
difficult for computers. In this study, we focus
on the reasoning of contingent relation between
basic events. Based on the existing data con-
struction method, we automatically generate
large-scale pseudo-problems and incorporate
the generated data into training. We also in-
vestigate the generality of contingent knowl-
edge through quantitative evaluation by per-
forming transfer learning on the related tasks:
discourse relation analysis, the Japanese Wino-
grad Schema Challenge, and the JCommon-
senseQA. The experimental results show the
effectiveness of utilizing pseudo-problems for
both the commonsense contingent reasoning
task and the related tasks, which suggests the
importance of contingent reasoning.

1 Introduction

Contingency is the relation between two events,
one being an action or state and the other being
likely to happen after it. We humans reason contin-
gent relation between events on a daily basis. For
instance, when we read text, we unconsciously in-
fer what happens next to deepen our understanding.
In conversations, we guess the next topic from the
utterance of the opponent to make a contextual and
natural response. Thus, the ability to reason con-
tingent relation between events is essential when it
comes to natural language understanding (NLU).

Recently, many studies have built language re-
sources for contingent reasoning (Roemmele et al.,
2011; Mostafazadeh et al., 2016; Zellers et al.,
2018; Sap et al., 2019a; Hwang et al., 2021). These
resources focus on basic events and evaluate some
kind of commonsense reasoning ability. Although
the fundamental linguistic capabilities of comput-

I’m hungry, so
a. I’m gonna be absent from school.
b. I refrain from strenuous exercise.
c. I have a meal at a family restaurant.
d. I leave home.

Figure 1: Example from KUCI (English translated ver-
sion). KUCI is a Japanese QA dataset containing 104k
multiple-choice questions regarding contingent relation
between basic events. The correct choice is bolded.

ers, such as question answering, have greatly im-
proved with progress in deep learning, several stud-
ies have empirically demonstrated they still have
difficulty in commonsense reasoning (Talmor et al.,
2019; Sap et al., 2019b; Talmor et al., 2021).

In this study, we aim at two objectives: to im-
prove commonsense contingent reasoning and to
investigate the effects of learning contingent knowl-
edge on the related tasks to validate the importance
of contingent reasoning. To these ends, we use the
Kyoto University Commonsense Inference dataset
(KUCI)1. KUCI is a Japanese QA dataset with 104k
multiple-choice questions that ask contingent rela-
tion between basic events directly (Omura et al.,
2020). An example is shown in Figure 1. This
dataset is also characterized by its semi-automatic
data construction method: automatic extraction of
contingent pairs of basic event expressions from
a web corpus, verification through crowdsourcing,
and automatic generation of commonsense infer-
ence problems.

It is shown there is a performance gap between
humans and computers on this task (Omura et al.,
2020). Furthermore, through qualitative evaluation,
it has been confirmed computers sometimes an-
swer contingent relation between quite basic events
incorrectly. One straightforward approach to alle-
viating the above problem is to extend the train-

1https://nlp.ist.i.kyoto-u.ac.jp/EN/
?KUCI
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ing data and increase the coverage. However, it
is not practical from a cost perspective to increase
the number of training examples manyfold using
crowdsourcing.

We attempt to improve the performance by omit-
ting crowdsourcing, a bottleneck in data augmenta-
tion, and utilizing pseudo-problems generated auto-
matically from unverified contingent pairs of basic
event expressions. As a web corpus is scalable, and
all of the procedures except crowdsourcing are au-
tomatic, we can generate pseudo-problems at scale.
It is expected pseudo-problems complement the
lack of coverage though some problems are noisy
and might be unanswerable.

The second objective of this study is to investi-
gate the effects of learning contingent knowledge
on the related tasks. On the premise that contingent
reasoning is essential to NLU, we can expect con-
tingent knowledge probably helps improve the per-
formance on other NLU tasks. While the transfer-
ability of major English datasets has been studied
(Phang et al., 2018; Sap et al., 2019b; Sakaguchi
et al., 2020; Pruksachatkun et al., 2020), there is
room to explore this dataset in terms of the task
and language. We investigate the generality of con-
tingent knowledge through quantitative evaluation
of transfer learning on the related tasks.

In summary, we improve commonsense contin-
gent reasoning by straightforward data augmenta-
tion. We generated 862k pseudo-problems, which
is about ten times as large as the training examples
in KUCI (83k), and incorporated them into training.
Owing to pseudo-problems, a high-performance
pre-trained model has achieved near human-level
performance on the commonsense contingent rea-
soning task. We also investigate the transferability
of contingent knowledge to the related tasks. Our
experiments demonstrate intermediate-task training
on KUCI with pseudo-problems positively affects
discourse relation analysis, the Japanese Winograd
Schema Challenge, and the JCommonsenseQA,
which suggests the importance of contingent rea-
soning2.

2 Approach

First, we describe our data augmentation approach
to improving commonsense contingent reasoning.
Our approach is to automatically generate large-
scale pseudo-problems based on the construction

2The links to the pseudo-data and code are available at
https://nlp.ist.i.kyoto-u.ac.jp/EN/?KUCI
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Figure 2: Overview of the method of generating com-
monsense inference problems in KUCI (gray) and
pseudo-problems (red). The further details are described
in Omura et al. (2020).

method of the Kyoto University Commonsense In-
ference dataset (KUCI).

2.1 A Method of Generating Problems

The construction method of KUCI consists of the
following four steps (Figure 2).

1. Acquire high-frequency predicate-argument
structures (hereafter, core events3) from case
frames (Kawahara et al., 2014b).

2. Extract event pairs that are unambiguously
connected by explicit discourse markers rep-
resenting contingent relation and composed
of a pair of core events (hereafter, contingent
basic event pairs).

3. Verify by crowdsourcing whether the ex-
tracted event pairs actually have contingent
relation or not.

4. Generate problems by taking one of the veri-
fied event pairs (hereafter, base3) and select-
ing distractors from the latter events of other
event pairs that are moderately similar to the
base.

In the above procedures, it becomes possible to
automatically generate pseudo-problems by omit-
ting step 3 (Figure 2). For the parameters in the

3We newly define these terms for clarification.
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method, such as the thresholds of frequency for ac-
quiring core events and the conditions on selecting
distractors, we set them to the same values as in
the construction of KUCI.

2.2 Automatic Extraction of Contingent Basic
Event Pairs

We automatically extracted contingent basic event
pairs following the method described in Section
2.1. We used a Japanese web corpus containing
3.3 billion sentences as the source text. It had been
constructed by crawling web text from 2006 to
2015. There is no overlap of sentences between this
corpus and the web corpus used in the construction
of KUCI. As a result, we extracted 915k contingent
basic event pairs. Omura et al. (2020) reported one-
third of the extracted event pairs were removed by
crowdsourcing, thus we expect about 600k event
pairs to be valid.

2.3 Dealing with Data Leakage
There is a potential issue with generating training
data from large-scale text, which is called "Data
Contamination" (Brown et al., 2020). This issue is
that text may include information about evaluation
data, leading to overestimation of model perfor-
mance.

We deal with this issue by heuristically exclud-
ing event pairs that are identical or remarkably sim-
ilar to the bases in evaluation data4. Specifically,
we apply the following filters based on word order
and core event pairs.

Filter by word order Exclude an event pair if the
length of the overlapping word order between
the event pair and any base in evaluation data
exceeds 75% of the word count of the base.

Filter by core event pairs Exclude an event pair
if the event pair is composed of the core event
pair that also composes any base in evaluation
data.

For instance, the base of the problem in Figure
1 is “I’m hungry, so→ I have a meal at a family
restaurant” and composed of the core event pair
“be hungry→ have a meal at a family restaurant”.
Let us consider whether the event pair “I’m hungry,
so → I have a big meal at the family restaurant”
is excluded by the base or not. They have the
overlapping word order, {I’m, hungry, so, I, have,

4To be specific, “evaluation data” refers to the development
and test splits of KUCI.

a, meal, at, family, restaurant}, of which length
(10) exceeds 75% of the word count of the base
(11). It is also composed of the same core event
pair. Thus, it will be excluded by both filters.

We expect the first filter to exclude syntactically-
similar event pairs and the second to exclude those
similar in content. As a result of filtering, we ac-
quired 881k contingent basic event pairs.

2.4 Automatic Generation of
Pseudo-problems

We went on performing an automatic generation of
problems. As a result, we obtained 862k pseudo-
problems from the 881k event pairs. The number
of the pseudo-problems is about ten times as large
as that of the training examples in KUCI (83k).

To analyze the quality of pseudo-problems, we
randomly sampled 50 problems and manually eval-
uated them. As a result of manual evaluation, 36
of 50 problems were judged as answerable, which
appears to be sufficient quality for pseudo-data.

3 Experiments

We conducted experiments to investigate the effects
of incorporating pseudo-problems into training on
the commonsense contingent reasoning task and
the related tasks.

3.1 Model
We evaluated the performance of the BERT (De-
vlin et al., 2019) and XLM-RoBERTa (XLM-R)
(Conneau et al., 2020) models.

BERT We employed the NICT BERT Japanese
Pre-trained model (with BPE)5. It was pre-trained
on the full text of Japanese Wikipedia for 1.1 mil-
lion steps with a batch size of 4,096, partly refer-
ring to the pre-training configuration of RoBERTa
(Liu et al., 2019). The model architecture is the
same as the BERTBASE.

XLM-R We adopted the XLM-RoBERTaLARGE
model6, which was pre-trained on a huge multilin-
gual corpus consisting of Wikipedia and CC-100
(Wenzek et al., 2020). The model architecture is the
same as the BERTLARGE, but the embedding layer
is relatively large due to its multilingual vocabulary.
It is one of the high-performance pre-trained mod-
els for Japanese among those publicly available.

5https://alaginrc.nict.go.jp/
nict-bert/index.html (in Japanese)

6https://huggingface.co/
xlm-roberta-large
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3.2 Experimental Settings

The hyper-parameters used in the experiments are
included in Appendix A.

3.2.1 Commonsense Contingent Reasoning

As is mentioned in Section 1, we used KUCI for as-
sessing commonsense contingent reasoning ability.
The task is to select the most appropriate sentence
following the context from 4 choices like Figure
1. The dataset contains 83,127 / 10,228 / 10,291
examples for training, development, and test split,
respectively.

During the fine-tuning phase, we minimize cross-
entropy loss between the scores of each choice nor-
malized by the softmax function and a one-hot vec-
tor representing the correct answer as 1. The scores
of each choice are computed by inputting pairs of a
context and the choice separated by special tokens
and converting the hidden representations of the
first token ([CLS]) into scalars by a linear transfor-
mation. When incorporating pseudo-problems into
training, we define the objective function L as the
weighted sum of cross-entropy losses of common-
sense inference problems and pseudo-problems.
The above can be expressed by the following equa-
tions.

H = − 1

N

N∑

k=1

log
exp(skj)∑4
i=1 exp(ski)

L = Hci + λ×Hpseudo

where N is a batch size, j is the index of a correct
choice among 1 to 4, ski is the score of the i-th
choice of k-th example, H is the cross-entropy loss
of commonsense inference problems or pseudo-
problems, and λ is the weight for pseudo-problems.

During the inference phase, the choice with the
highest score is selected as an answer. We evalu-
ated the models by accuracy.

Comparative Method To investigate the effec-
tiveness of a multiple-choice format, we also per-
formed additional pre-training referring to Task-
Adaptive Pre-Training (Gururangan et al., 2020).
Specifically, we ran an additional Masked Lan-
guage Modeling (MLM) task on the 881k event
pairs used for generating pseudo-problems. For
convenience, we name it “AMLM”. After the ad-
ditional pre-training, we fine-tuned the models on
KUCI and the related tasks.

3.2.2 Intermediate-Task Transfer Learning
We performed transfer learning from the models
fine-tuned on KUCI with pseudo-problems to inves-
tigate the effects of learning contingent knowledge.
In this study, we employed discourse relation anal-
ysis, the Japanese Winograd Schema Challenge
(JWSC) (Shibata et al., 2015), and the Japanese
CommonsenseQA (JCQA) (Kurihara et al., 2022)
as the related tasks.

Discourse Relation Analysis We used the Ky-
oto University Web Document Leads Corpus
(KWDLC)7 (Kawahara et al., 2014a; Kishimoto
et al., 2018) for this task. KWDLC has been built
by collecting the first three sentences of various
kinds of web documents, and its size amounts to
6,445 documents. All the documents have been
annotated with discourse relations between clauses
using crowdsourcing. Moreover, 500 of 6,445 doc-
uments have also been annotated by linguistic ex-
perts. In this study, we used about 37k clause pairs
with crowdsourced labels as training data and evalu-
ated the classification performance on 2,320 clause
pairs with expert labels.

The task is a seven-way classification of dis-
course relations between clauses, including “No
Relation”. We fine-tuned the models following the
sentence pair classification framework proposed by
Devlin et al. (2019) and ran five-fold cross valida-
tion. We used micro-averaged precision, recall, and
F1 score computed without examples with the “No
Relation” label as evaluation metrics.

JWSC The Winograd Schema Challenge (WSC)
is the task to select the antecedent of a pronoun
from two candidates (Levesque, 2011). The task
itself is coreference resolution but designed to re-
quire commonsense reasoning. JWSC8 is con-
structed by translating the Rahman and Ng (2012)
version of WSC into Japanese.

As we excluded the event pairs containing
demonstrative pronouns so as not to generate prob-
lems that require more context, there is concern that
intermediate-task training on KUCI with pseudo-
problems might hurt performance on JWSC due
to forgetting the knowledge about demonstratives.
Accordingly, we recast JWSC as binary question
answering by replacing a pronoun with each an-
tecedent candidate. The resulting dataset is bal-

7https://github.com/ku-nlp/KWDLC
8https://github.com/ku-nlp/

Winograd-Schema-Challenge-Ja
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Model Setting Acc.

BERT

KUCI 79.3 ± 0.2
KUCI + Pseudo-problems (λ = 0.1) 84.1 ± 0.1
KUCI + Pseudo-problems (λ = 0.5) 84.7 ± 0.1
KUCI + Pseudo-problems (λ = 1.0) 84.6 ± 0.2
AMLM→ KUCI 83.9 ± 0.1

XLM-R

KUCI 86.0 ± 0.1
KUCI + Pseudo-problems (λ = 0.1) 88.5 ± 0.1
KUCI + Pseudo-problems (λ = 0.5) 88.8 ± 0.1
KUCI + Pseudo-problems (λ = 1.0) 88.6 ± 0.1
AMLM→ KUCI 86.2 ± 0.2

Human (Omura et al., 2020) 88.9

Table 1: Accuracy on the test split of KUCI. The scores are the mean and standard deviation over three runs with
different random seeds. Arrows denote multi-stage fine-tuning. For instance, “AMLM→ KUCI” means fine-tuning
on KUCI after additional pre-training.

anced and consists of 2,644 / 1,128 examples for
training and test split, respectively. Since the de-
velopment split is not provided, we carried out
five-fold cross validation by splitting the training
set into 8:2. We trained bert-based logistic regres-
sion models and evaluated them by accuracy and
Area Under the ROC Curve (AUC).

JCQA JCQA9 is the Japanese version of Com-
monsenseQA (Talmor et al., 2019) and consists of
11k five-choice questions regarding a wide range
of relations between basic concepts. The questions
are based on subgraphs extracted from Concept-
Net (Speer et al., 2017) and manually created using
crowdsourcing.

Since the task is multiple-choice question an-
swering, we fine-tuned models following the same
method described in 3.2.1. We also evaluated the
models by accuracy.

3.3 Experimental Results

Commonsense Contingent Reasoning Table 1
shows the experimental results of the common-
sense contingent reasoning task. Owing to pseudo-
problems, both the BERT and XLM-R models im-
proved the accuracy by 5.4 and 2.8 points, respec-
tively. Notably, the XLM-R model has achieved
performance comparable to humans. Putting mod-
erately low weight on pseudo-problems makes the
performance slightly better.

Figure 3 shows the learning curves of the mod-
els on the development split of KUCI. The crosses

9https://github.com/yahoojapan/JGLUE

Figure 3: Learning curves of the BERT and XLM-R
models on the development split of KUCI. We excluded
the degenerate results of the XLM-R model when fine-
tuned on a small number of training examples (N ∈
{103, 3× 103}).

representing the accuracy on the "KUCI + Pseudo-
problems" setting are under the extrapolated learn-
ing curves, which implies the difference in qual-
ity between the training examples in KUCI and
pseudo-problems.

Discourse Relation Analysis As for the related
tasks, we can see from Table 2 that intermediate-
task training on KUCI with pseudo-problems is
effective in discourse relation analysis, particularly
in BERT. Since the problems are based on con-
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Model Setting Prec. Rec. F1

BERT

KWDLC 55.2 ± 2.9 38.4 ± 1.0 45.1 ± 1.1
KUCI→ KWDLC 58.1 ± 2.4 38.3 ± 1.3 45.7 ± 0.8
KUCI + Pseudo-problems (λ = 0.5)→ KWDLC 55.9 ± 1.1 41.0 ± 2.9 47.0 ± 2.4
AMLM→ KUCI→ KWDLC 51.8 ± 3.7 38.4 ± 1.3 43.7 ± 0.7

XLM-R

KWDLC 57.4 ± 1.7 45.5 ± 2.8 50.3 ± 1.3
KUCI→ KWDLC 57.8 ± 2.3 48.2 ± 0.3 51.9 ± 0.2
KUCI + Pseudo-problems (λ = 0.5)→ KWDLC 57.2 ± 1.0 47.4 ± 1.8 51.5 ± 0.7
AMLM→ KUCI→ KWDLC 55.2 ± 1.6 34.5 ± 0.6 40.9 ± 1.0

Human (Crowdworker) (Kishimoto et al., 2020) 54.7 48.6 51.5

Table 2: Performance of discourse relation analysis on KWDLC. The scores are the mean and standard deviation
over three runs of five-fold cross-validation with different random seeds. As with Table 1, arrows denote multi-stage
fine-tuning. Note that we performed additional Masked Language Modeling (AMLM) on the 881k event pairs
used for generating pseudo-problems, not the training examples in KWDLC, to compare the methods of utilizing
pseudo-data.

Model Setting Ca./Re. Cond. Purp. Justif. Cont. Conc. F1

BERT
(ensemble)

KWDLC 76 / 138 32 / 43 18 / 37 0 / 6 2 / 19 54 / 84 46.7
KUCI→ KWDLC 81 / 132 32 / 43 18 / 31 1 / 6 2 / 17 47 / 72 48.0
KUCI + Pseudo-problems→ KWDLC 81 / 139 33 / 49 17 / 29 0 / 4 1 / 12 56 / 85 48.8

XLM-R
(ensemble)

KWDLC 98 / 159 33 / 46 16 / 34 2 / 4 0 / 18 60 / 88 52.1
KUCI→ KWDLC 109 / 201 34 / 53 18 / 32 3 / 7 0 / 26 56 / 85 51.3
KUCI + Pseudo-problems→ KWDLC 99 / 168 33 / 50 18 / 28 1 / 2 0 / 22 64 / 98 52.4

Human (Crowdworker) (Kishimoto et al., 2020) 100 / 175 37 / 54 19 / 44 6 / 32 4 / 30 54 / 67 51.5

Total number of true positives and false negatives 242 54 36 15 6 100 —

Table 3: Detailed results of discourse relation analysis by the ensemble models. The third to eighth columns stand for
the discourse relations, “Cause or Reason”, “Condition”, “Purpose”, “Justification”, “Contrast”, and “Concession”,
respectively. The values on the left side are the numbers of true positives for the discourse relation, and those on the
right side are total numbers of true positives and false positives.

tingent basic event pairs, which are connected by
explicit discourse markers representing causal or
conditional relation10, we presume the knowledge
about these discourse relations is successfully trans-
ferred.

We also describe the detailed results of discourse
relation analysis in Table 3. The models trans-
ferred from KUCI with pseudo-problems perform
better on classifying causal and purpose relations.
Compared with crowdworkers, there is room for
improvement in precision of concession and infre-
quent relations.

JWSC The experimental results of JWSC are
shown in Table 4. We observed a few degen-

10These discourse relations are corresponding to “CON-
TINGENCY:Cause” and “CONTINGENCY:Condition” in the
Penn Discourse Treebank (Prasad et al., 2008) and automati-
cally analyzed by the Japanese parser, KNP (Kurohashi and
Nagao, 1994).

erate runs11 (Phang et al., 2018; Pruksachatkun
et al., 2020) on the “JWSC” setting despite fine-
tuning for 50 epochs. This phenomenon often oc-
curs when training large models on a small dataset,
and several studies have reported intermediate-task
training can alleviate it (Phang et al., 2018; Pruk-
sachatkun et al., 2020). We also confirmed the
same result in this experiment.

We found KUCI is beneficial to JWSC, but
pseudo-problems are not necessarily. JWSC con-
tains a non-negligible number of questions regard-
ing concession relation (e.g. “James asked Robert a
favor. However, James/Robert declined.”), thus we
consider putting much emphasis on contingent re-
lation would rather worsen performance. Learning
various discourse relations is a promising solution,

11The training runs that models result in around chance
performance. Specifically, we regard less than 0.55 accuracy
or AUC as the degenerate runs.
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Model Setting Acc. AUC

BERT

JWSC
66.0 ± 3.4† 71.4 ± 4.5†

(68.4 ± 0.1) (74.5 ± 0.1)

KUCI→ JWSC 69.9 ± 0.3 77.0 ± 0.6
KUCI + Pseudo-problems (λ = 0.5)→ JWSC 68.8 ± 1.1 75.0 ± 2.0
AMLM→ KUCI→ JWSC 58.1 ± 1.0 61.9 ± 1.1

XLM-R

JWSC
78.7 ± 3.2† 85.6 ± 4.0†

(80.7 ± 0.4) (88.0 ± 0.5)

KUCI→ JWSC 81.2 ± 0.1 88.7 ± 0.2
KUCI + Pseudo-problems (λ = 0.5)→ JWSC 80.0 ± 0.2 88.7 ± 0.0
AMLM→ KUCI→ JWSC 50.8 ± 0.5 51.7 ± 0.8

Table 4: Accuracy and AUC on the test split of JWSC. The scores are the mean and standard deviation over three runs
of five-fold cross-validation with different random seeds. † denotes the results include a few degenerate runs. We also
report the results excluding the degenerate runs in parentheses for reference. As for the “AMLM→ KUCI→ JWSC”
setting of XLM-R, the models failed to learn.

which we leave for future work.

JCQA Referring to Table 5, we can see perfor-
mance gain regarding XLM-R. We speculate it
is thanks to the domain match between pseudo-
problems and JCQA, considering the report by
Kurihara et al. (2022) that pre-training on CC-100
is more effective in JCQA than Wikipedia. Pseudo-
problems alone are somewhat insufficient for adapt-
ing to the web domain, but they complement some
knowledge.

Comparison to AMLM Although AMLM is
somewhat effective in KUCI, it is poor at trans-
ferring the knowledge12. It can be inferred the
models learn task-specific knowledge.

3.4 Qualitative Analysis
Figure 4 shows the example problems that BERT
got to answer correctly by incorporating pseudo-
problems into training. We can see the improve-
ment in accuracy of the problems regarding quite
basic contingent relation like Figure 4. The model
sometimes gave low scores to all the choices and
appeared to choose by elimination, but we observed
it became less frequent. We speculate pseudo-
problems complement the lack of coverage of the
training examples in KUCI. For further informa-
tion, we include the confusion matrix in Table 6.
The improvement is greater though the model got
to make a wrong prediction to some problems.

12We also tried the “AMLM→ related task” setting, but the
performance is generally worse than those on the “AMLM→
KUCI→ related task” setting.

4 Related Work

Owing to large-scale pre-training, the pre-trained
models have achieved unprecedented performance
on a variety of NLU tasks, including common-
sense reasoning (Wang et al., 2019). Besides such
improvement in general language understanding,
there have been many approaches to improving the
performance on commonsense reasoning tasks.

One group of approaches is to utilize automat-
ically created data, to which our approach be-
longs. For instance, Ye et al. (2019) performed
additional pre-training on 16 million fill-in-the-
blank multiple-choice questions generated from
Wikipedia and ConceptNet (Speer et al., 2017).
They improved the performance on two bench-
marks for entity-level commonsense reasoning,
CommonsenseQA (Talmor et al., 2019) and Wino-
grad Schema Challenge (WSC) (Levesque, 2011),
though their method requires the manually con-
structed resource (ConceptNet). Staliunaite et al.
(2021) proposed a data augmentation method for
the Choice of Plausible Alternatives (COPA) and
its extension (Roemmele et al., 2011; Kavumba
et al., 2019), which consists of roughly three steps:
filtering web text by several conditions, extracting
causal pairs of clauses with the clue of discourse
connectives, and generating distractors using lan-
guage models. They have not investigated the ap-
plication to the related tasks, focusing on improv-
ing commonsense causal reasoning. Shen et al.
(2021) improved unsupervised pronoun resolution
and commonsense reasoning by pre-training on
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Model Setting Acc.

BERT

JCQA
81.8 ± 0.1

(82.3)

KUCI→ JCQA 82.0 ± 0.3
KUCI + Pseudo-problems (λ = 0.5)→ JCQA 81.9 ± 0.2
AMLM→ KUCI→ JCQA 68.1 ± 0.4

XLM-R

JCQA
84.0 ± 0.5

(84.0)

KUCI→ JCQA 85.0 ± 0.4
KUCI + Pseudo-problems (λ = 0.5)→ JCQA 85.3 ± 0.6
AMLM→ KUCI→ JCQA 75.2 ± 0.5

Human (Kurihara et al., 2022) 98.6

Table 5: Accuracy on the development split of JCQA. The scores are the mean and standard deviation over three
runs with different random seeds. We also include the reported values in the original paper (the numbers in the
parentheses) for reference.

霧が晴れると、 嫌な夢を見ると、 午後から病院へいくので
(When a fog clears,) (If I have a bad dream,) (I’m going to see a doctor this afternoon, so)

a. 景色が素晴らしい a. とりあえず寝る a. 滅多に病院に行かない
(the scenery is amazing) (I’ll go to bed for now) (I rarely see a doctor)
b. 川の音がすごい b. もう寝ます b. 土日は勉強に勤しみます
(the sound of river is loud) (I’m going to go to bed now) (I’ll study hard on weekends)
c. 雪遊びも楽しそうだ c. さっさと寝ることにする c. 今日は休暇をとる
(playing in the snow sounds nice) (I’ll go to bed quickly) (I take a vacation today)
d. 写真写りがいまいちだ d. 目を覚まします d. 火曜日は眠い
(it’s not photogenic) (I’ll wake up) (I’m sleepy on Tuesday)

Figure 4: Example problems that the BERT model got to answer correctly by incorporating pseudo-problems into
training. The correct choice is bolded, and the choice that BERT previously selected is highlighted in red.

KUCI

correct incorrect

KUCI
+

Pseudo-problems
(λ = 0.5)

correct 7,891 1,028

incorrect 401 908

Table 6: Confusion matrix organizing the numbers of
correct and incorrect answers on the development split
of KUCI. The matrix shows the results of the BERT
model (ensemble).

auto-generated examples that imitate the task.

As for the second objective of this study, there
are several studies about the transferability of
commonsense knowledge from existing language
resources. For instance, it has been reported
intermediate-task training on two benchmarks for
commonsense reasoning, Social IQA (Sap et al.,
2019b) and WinoGrande (Sakaguchi et al., 2020),

helps improve the performance on WSC and COPA.
Pruksachatkun et al. (2020) showed the datasets
that require complex commonsense reasoning, such
as CosmosQA (Huang et al., 2019) and HellaSwag
(Zellers et al., 2019), are beneficial to several target
tasks. Lourie et al. (2021) ran multi-task learning
on multiple resources for commonsense reasoning
to examine their interactions. Since they have used
the datasets that require complex reasoning, they
have not focused on a specific type of common-
sense reasoning. We focus on commonsense con-
tingent reasoning and investigate the transferability
in the language other than English.

5 Conclusion

In this study, we improved commonsense contin-
gent reasoning by incorporating large-scale pseudo-
problems into training. We automatically generated
862k pseudo-problems from a Japanese web cor-
pus of 3.3 billion sentences using the existing data
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construction method with modification. Owing to
pseudo-problems, a high-performance pre-trained
model has achieved near human-level performance
on the commonsense contingent reasoning task.

We also investigated the effects of learning con-
tingent knowledge on the related tasks: discourse
relation analysis, the Japanese Winograd Schema
Challenge, and the JCommonsenseQA. Our experi-
ments demonstrated intermediate-task training on
KUCI with pseudo-problems has a positive impact
on the related tasks, which indicates the importance
of contingent reasoning.

We will further analyze what kind of problems
current models still answer incorrectly. From the
qualitative analysis, we consider building a lan-
guage resource for evaluating deeper language un-
derstanding. As another research direction, it is
also tempting to pursue the improvement in NLU
by learning various discourse relations between
entities or events in documents.
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A Hyper-parameters

Table 7, 8, 9, 10, and 11 show the hyper-parameters
used in the experiments. We found lower learning
rate makes the training of the XLM-R model more
stable, thus we set the learning rate of the XLM-R
model lower than that of BERT.

Name Value
BERT XLM-R

Epoch 3

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Weight decay 0.01 0.1

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table 7: Hyper-parameters for fine-tuning on KUCI and
pseudo-problems.

Name Value
BERT XLM-R

Epoch 100

Batch size 256

Max sequence length 128

Optimizer AdamW

Learning rate 1e-4

Weight decay 0.01

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.06

gradient clipping value - 0.25

Seed 0

Table 8: Hyper-parameters for AMLM. Almost all of
the hyper-parameters are referred to Gururangan et al.
(2020).

Name Value
BERT XLM-R

Epoch 10

Patience for early stopping 3

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Weight decay 0.01 0.1

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table 9: Hyper-parameters for fine-tuning on KWDLC.
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Name Value
BERT XLM-R

Epoch 50

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Weight decay 0.01 0.1

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table 10: Hyper-parameters for fine-tuning on JWSC.
We set the number of epochs to a large value referring
to Mosbach et al. (2021).

Name Value
BERT XLM-R

Epoch 4

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5

Weight decay 0.01 0.1

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table 11: Hyper-parameters for fine-tuning on JCQA.
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Abstract

Irony is a ubiquitous figurative language in
daily communication. Previously, many re-
searchers have approached irony from linguis-
tic, cognitive science, and computational as-
pects. Recently, some progress have been wit-
nessed in automatic irony processing due to the
rapid development in deep neural models in
natural language processing (NLP). In this pa-
per, we will provide a comprehensive overview
of computational irony, insights from linguis-
tic theory and cognitive science, as well as its
interactions with downstream NLP tasks and
newly proposed multi-X irony processing per-
spectives.

1 Introduction

Irony, which generally refers to the expressions that
have opposite literal meanings to real meanings, is
a representative rhetoric device in human languages
(Li and Huang, 2020). For example, in sentences
I just love when you test my patience!!, and Had
no sleep and have got school now, compared to
their literal meanings, both sentences are convey-
ing reverse meanings and emotions, which mean
not love and not happy. People are using ironies to
communicate their affective states more implicitly
or explicitly, to strengthen the claims depending
on the needs, which contribute to neologism across
human languages. However, the inner incongruity
makes ironic expressions harder for machines to un-
derstand. Consequently, accurate irony processing
systems are essential and challenging for down-
stream tasks and natural language understanding
(NLU) research.

Previously, many researchers approached irony
processing from various perspectives. The last sur-
vey in computational irony was published seven
years ago (Wallace, 2015) and mainly focused
on irony detection and pragmatic context model.
Therefore, a systematic and comprehensive sur-
vey on automatic irony processing remains ab-

sent, encouraging us to focus on a review of ad-
vances in irony processing, from traditional ma-
chine learning, recurrent neural networks (RNNs)
methods, to deeper pretrained language models
(PLMs) throughout. Besides, del Pilar Salas-Zárate
et al. (2020) revealed the great imbalance in figura-
tive language research, in which sarcasm was domi-
nant and twice as much as irony research. With this
review, We aim to encourage a balanced and equal
research environment in figurative languages.

Moreover, the design and further improvement
in present irony processing systems should be con-
catenated with both the theoretical accounts in
irony theories and its role in communication, fol-
lowed by downstream applications in NLP tasks.
Generally, most researchers approached irony pro-
cessing as a single irony detection branch and three
main shared tasks (Ghanem et al., 2019; Van Hee
et al., 2018a; Ortega-Bueno et al., 2019) all focused
on irony detection, whereas other aspects are con-
stantly under-explored. And theoretical-informed
or cognitive-informed discussions are rarely seen
in irony research compared to tiny amendments in
neural networks’ architectures.

In this paper, we aim to offer a comprehensive
review in irony processing from machine learning,
linguistic theory, cognitive science, and newly pro-
posed multi-X perspectives and to evaluate irony
processing in NLP applications. The remaining
sections are organized as follows. In the second
part, we will approach irony theories in linguis-
tics and cognitive science research, and discuss the
concrete differences between irony and sarcasm.
Then, we will review irony datasets in world lan-
guages and discuss potential problems in annota-
tion schemes throughout. In the fourth part we
will retrospect research progress in automatic irony
processing, including traditional feature engineer-
ing, neural network architectures, to PLMs and
relatively under-explored research fields in irony
processing. Finally, we will discuss irony’s in-
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teractions with downstream NLP tasks like sen-
timent analysis and opinion mining, and multi-X
perspectives for further development in computa-
tional irony research.

2 Theoretical Research in Irony

2.1 Irony Theories

Various definitions have been given to irony. Early
studies suggested that irony is the expression whose
real meaning is contradictory to its literal meaning
(Grice, 1975). The Merriam-Webster Dictionary,
The Oxford English Dictionary, and The Collins
English Dictionary all adopted this definition and
used the words "opposite" or "contrary" to explain
the relationship between the literal and contextual
meanings of irony.

However, more research into various types of
ironic examples revealed that the contextual mean-
ing of irony does not have to be "opposite" or
"contrary" to the literal one. According to Sper-
ber and Wilson (1986); Wilson and Sperber (2012),
some expressions have no "literal meaning" to be
challenged because no "literal meaning" is men-
tioned in the context, based on which they raised
relevance theory and the “echoic” concept. They
considered irony as “an echoic use of language in
which the speaker tacitly dissociates herself from
an attributed utterance or thought” (Wilson, 2006).
That is, if the "echoic use" is incongruous in some
ways, the expression can be ironic. Based on this
theory, Seto (1998) put forward that there are some
“echo-markers” like definitely, really, and indeed.

Li and Huang (2020) provided instances to show
that "incongruity" does not have to be between the
literal and contextual meanings of irony in certain
circumstances. They believed that irony’s true na-
ture is a psychological activity as much as a verbal
representation. The speaker or listeners must finish
the "reversal" process on a psychological level for
it to be completed. When compared to the concepts
of "echoic" and "incongruity," “reversal” is con-
cerned not only with the results but also with the
psychological processes that the speakers/listeners
go through.

2.1.1 Types of Irony
Booth (1974) divided irony into tragic and comic
irony by literary genre, as well as stable and unsta-
ble irony by determinacy. He also categorized irony
into dramatic irony, situational irony, verbal irony,
and rhetorical irony by the range of context it has to

refer to. Researchers in computational irony paid
the most attention to situational irony and verbal
irony. Situational irony is a circumstance in which
the outcome differs from what was expected, or a
situation that contains striking contrasts (Imagine
a situation that a lifeguard is saved from drown-
ing). Verbal irony is the expression in which the
speaker’s intended meaning significantly different
from the literal one. Abrams and Harpham (2014)
considered that verbal irony usually involves the
explicit presentation of one attitude or evaluation,
but with signals that the speaker wants to express a
totally different attitude or opinion. It differs from
situational irony in that it is purposely manufac-
tured by speakers. For example, Very well, keep
insulting me!

Verbal irony is the kind to which computational
linguistics researchers pay the most attention. Li
(2021) made a further classification of them. She
put forward eight kinds of reversals which are
rhetorical reversal, expectation reversal, evaluation
reversal, reversal of sentiment, reversal of factu-
ality, relationship reversal, reversal from opposite
pair, and reversal from satiation. The paper con-
sidered that verbal ironies can be classified by the
kind of reversal they generate.

2.2 Linguistic Features

2.2.1 Irony Markers and Constructions

Although most of the studies saw irony as a prag-
matics phenomenon, people also considered that
it can be reflected on the verbal, grammatical, or
semantic level. For example, on the verbal level,
people often use words like thank, congratulate,
welcome, happy, and interesting to express ironic
meanings. Laszlo (2017) found 15 core evalua-
tive words which often show in ironic expressions.
She generated patterns from these core evaluative
words to extract ironic sentences from the corpus.
For example, when the word love is in the pattern
“NP + would/ ’d/ wouldn’t + love”, it is highly pos-
sible to be an ironic expression. On a grammatical
level, people often use the subjunctive when they
intend to be ironic. Besides that, semantic conflict
is the most direct way to express ironic meaning.
The incompatibility between the main words of the
proposition leads to the ridiculousness of the propo-
sition (e.g. It’s very considerate of you to make
such a loud noise while I was asleep). Besides,
(Ghosh and Muresan, 2018) also categorized irony
markers according to trope, morphosyntactic, and
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typographic types.
Li (2021) considered that ironies are often ex-

pressed by specific “constructions”, especially in
short discourses. Larger than “core evaluative
words” in Laszlo (2017), the “constructions” men-
tioned in Li (2021) are mostly in the form of id-
ioms or phrases. The crucial feature of them is the
lack of predictability. Most of them do not have
to rely on too much contextual information, they
themselves can provoke the process of reversal for
readers or listeners (e.g. 贵人多忘事 (honorable
people frequently forget things)).

2.2.2 Irony in Communication
Researchers claim that by using ironies, people
have several kinds of intentions.

Be polite: According to Brown et al. (1987),
when unfavorable attitudes such as resistance, crit-
icism, and complaints are stated with irony, the
threat to the listener’s reputation is reduced. The
irony, as stated in Giora (1995), is an indirect nega-
tion. People prefer to utilize indirect negation to be
polite to their listeners because direct negation can
generate great unhappiness;

Ease criticisms: As reported by Dews and Win-
ner (1995), irony helps to ease the expression’s
evaluative function. They believe that the incom-
patibility between literal meaning and contextual
meaning can make it difficult to articulate negative
feelings. However, Toplak and Katz (2000) argued
that, while irony literally avoids conflict, it is more
aggressive from the perspective of the speaker’s
goal;

Self-protection: Sperber and Wilson (1986) pro-
posed the "echoic" idea, which stated that irony
is a detached utterance that is simply an echo of
another people’s thought. It’s a self-protection tac-
tic, especially when the speakers are members of
marginalized groups. According to Gibbs (2000),
the irony is an “off-record” statement that allows
speakers to deny their true intentions and avoid
being challenged;

Be amusing: Gibbs (2000) reported that when
young people intend to be humorous, 50% of their
communication is ironic. It can assist people in
creating a dialogue platform on which speakers and
listeners can agree and communicate more easily.

2.3 Irony and Sarcasm

Most of the studies saw sarcasm as a subset of
irony (Tannen et al., 2005; Barbe, 1995; Kumon-
Nakamura et al., 1995; Leggitt and Gibbs, 2000;

Bowes and Katz, 2011). Sarcasm is often recog-
nized as “a nasty, mean-spirited, or just relatively
negative form of verbal irony, used on occasion to
enhance the negativity expressed relative to direct,
non-figurative criticism” (Colston, 2017).

One of the peculiarities of sarcasm is whether
or not the speakers intend to offend the listeners.
Kumon-Nakamura et al. (1995), for example, be-
lieve that sarcastic irony always conveys a negative
attitude and is intended to harm the object being dis-
cussed. The non-sarcastic irony, on the other hand,
can communicate either a good or negative attitude,
and it is rarely meant to be hurtful. Barbe (1995)
concurred that the core difference was “hurtful”.
She claimed that irony is a face-saving strategy
while sarcasm is a face-threatening action. Ridicule
is another feature of sarcasm. According to Lee
and Katz (1998), sarcasm is closer to ridicule than
irony. Their experiment revealed that sarcasm is
directed at a single person, but irony is directed to-
ward a large group of people. Haiman et al. (1998)
claimed that one of the most distinguishing char-
acteristics of sarcasm is that the literal meaning of
its words is always positive. However, he did not
convey his thoughts on irony. Whereas Littman
and Mey (1991) viewed this topic from another an-
gle. While there are many various forms of ironies,
they believe that there is only one type of sarcasm
because "sarcasm cannot exist independently of the
communication setting."

Cognitive scientists approached the difference
in experimental studies. Previous research in child
language acquisition (Glenwright and Pexman,
2010) reported that children understood sarcastic
criticism later than they could understand the non-
literal meanings of irony and sarcasm, implying
different pragmatic purposes of irony and sarcasm.
Filik et al. (2019) utilized fMRI and found out
sarcasm is associated with wider activation of se-
mantic network in human brains compared to irony.

However, most computational linguistics re-
searchers used irony and sarcasm interchangeably,
since the boundary between these two concepts is
too vague for even human beings, let alone for ma-
chines. Joshi et al. (2016) and Sulis et al. (2016)
verified this claim from both human annotators
and computational perspectives. Although in this
paper we will mainly focus on the literal irony pro-
cessing and discuss the inspirations from recent
research output in sarcasm processing, we aim to
encourage unify sarcasm under the framework
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of irony via fine-grained annotation schemes.

3 Irony Datasets Perspectives

3.1 Irony Textual Datasets

Some main target databases for irony processing re-
search include social media platforms like Twitter
and online shopping websites like Amazon. For ex-
ample, Reyes and Rosso (2012) collected a 11,861-
document irony dataset based on customer reviews
from several websites. Some other preliminary at-
tempts to build irony benchmark datasets is Reyes
et al. (2012) and Reyes et al. (2013), in which
they used self-generated hashtag #irony as the gold
standard and constructed 40,000-tweet and 50000-
tweet datasets from Twitter respectively, each in-
cluding 10,000 ironic tweets and remaining non-
ironic ones. The irony benchmark dataset that is
now widely used is from Van Hee et al. (2018a),
consisting of 4,792 tweets and half of them were
ironic. This dataset was also constructed via search-
ing hashtags including #irony, #sarcasm, and #not.

There were also tremendous attempts to con-
struct benchmark datasets in other languages. For
example, Tang and Chen (2014) firstly built the
NTU Irony Corpus including 1,005 ironic messages
from Plurk, a Twitter-like social media platform, by
mining specific ironic patterns and manually check-
ing extracted messages. A recent Chinese bench-
mark dataset for irony detection was constructed by
Xiang et al. (2020), which includes 8,766 Weibo
posts, labelled from not ironic to strongly ironic in
a five-scale system. Besides, irony datasets in Span-
ish, Greek, and Italian are also widely available. A
comprehensive overview of the irony datasets is
listed in Table 1.

3.2 Data Source and Construction
Methodology

Twitter, as one of the most trending social plat-
forms, is the major source of irony benchmark
datasets. Given Plurk and Weibo’s similarity to
Twitter, online short-text social medias are almost
the only origin for present datasets, which might
lead to several potential problems. For example,
the limitation of 140-word introduced specific bias
towards short-text classification and long texts re-
main a problem. Besides, the judgment of irony
might be highly dependent on contextual informa-
tion like previous comments or retweets and one
single tweet could be meaningless itself. At last,
topics on social media platforms might also be

highly biased towards political or sports topics. In-
terestingly, previous research (Ghosh and Muresan,
2018) reported that for Twitter and Reddit, differ-
ent ironic markers played the most important roles,
further emphasizing the needs of multiple sources
for robust NLU.

As for the construction methodology, most
datasets adopted "keywords and hashtags" filter-
ing strategy, and some of them followed by human
annotations. With annotation schemes put aside,
Sykora et al. (2020) explored how self-generated
tags could correspond to real labels correctly via
a manual semantic analysis. At the worst case,
only 16% of the tagged #sarcasm tweets are unam-
biguous sarcastic tweets according to well-trained
linguists, which further emphasized the necessity
of human annotation.

3.3 Annotation Schemes
As shown in Table 1, various datasets have been
labelled differently. Most datasets were annotated
as binary classes, ironic versus non-ironic. Both
Chinese datasets adopted different strategies by
annotating ironic elements and intensity respec-
tively. Van Hee et al. (2018a) is the only one doing
fine-grained labelling, into verbal irony by polarity
contrast, other verbal irony, situational irony, and
non-ironic.

Another annotation scheme was proposed by
Cignarella et al. (2020b). They annotated irony
activators at the morphosyntactic level and distin-
guished different types of irony activation. This
annotation scheme dived into syntactic informa-
tion and offered information for analyzing ironical
constructions.

3.4 Future work in datasets
A high-quality benchmark dataset is crucial to mea-
sure NLU capability and advance future research.
We are calling improvements for a future bench-
mark dataset from following perspectives.

1) Diverse data sources like literature, daily con-
versations, and news articles should be in-
volved, and the distribution of text length
should be relatively balanced.

2) A uniform annotation scheme and strategy is
awaiting for construction. For example, situa-
tional irony is needed; ironic intensity should
be labelled as reference rather than exclusive
labels in Xiang et al. (2020); a scheme to unify
sarcasm and irony could be expected.
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Study Language Data Source Construction Methodology Size Annotation Scheme
Reyes and Rosso (2012) English online websites filtering low-star reviews 11861 ironic / non-ironic

Reyes et al. (2013) English Twitter #irony hashtag 40000 ironic / non-ironic
Wallace et al. (2014) English Reddit Sub-reddit 3020 ironic / non-ironic
Van Hee et al. (2016) English, Dutch Twitter #irony, #sarcasm, and #not hashtags 3000, 3179 three-scale irony annotation
Van Hee et al. (2018a) English Twitter #irony, #sarcasm, and #not hashtags 4792 four-scale ironic types
Tang and Chen (2014) Chinese Plurk pattern mining 1005 annotating ironic elements

Xiang et al. (2020) Chinese Weibo pattern mining 8766 five-scale ironic intensity
Barbieri et al. (2016) Italian Twitter keywords, hashtags, and etc. 9410 ironic / non-ironic

Cignarella et al. (2018) Italian Twitter keywords, hashtags, and etc. 4849 ironic / non-ironic / sarcastic
Charalampakis et al. (2015) Greek Twitter keywords 61427 ironic / non-ironic
Ortega-Bueno et al. (2019) Spanish Twitter comments and tweets 9000 ironic / non-ironic

Ghanem et al. (2019) Arabic Twitter keywords and hashtags 5030 ironic / non-ironic
Corrêa et al. (2021) Portuguese Twitter and news articles keywords, hashtags, and news articles 34306 ironic / non-ironic
Vijay et al. (2018) Hindi-English code-mixed Twitter keywords and hashtags 3055 ironic / non-ironic

Table 1: Irony benchmark datasets

3) Multi-X perspectives should be incorporated
into the construction of datasets. For example,
a multimodal and multilingual dataset could
enhance irony identification in a grounded en-
vironment.

4 Irony Processing Systems

In this section, we will discuss the progress of
irony processing systems comprehensively, orga-
nized along the development of machine learning
and deep learning.

4.1 Irony Detection

4.1.1 Rule-based Detection Methods
Tang and Chen (2014) extracted ironic expressions
based on five patterns summarized from mandarin
Chinese. Li and Huang (2020) further expanded
ironic constructions to more than twenty and pro-
posed a systematic irony identification procedure
(IIP). Besides Chinese, Frenda (2016) utilized sen-
timent lexicons, verb morphology, quotation marks,
and etc. to design an Italian irony detection model
and got competitive performance with machine
learning models. However, rule-based models are
too complex and hard to generalize for wider appli-
cations.

4.1.2 Supervised non-neural network era
Most research took irony detection as a simple
classification problem. Before the popularity of
deep learning, feature engineering is crucial for
accurate irony detection. Generally, features could
be divided into several levels.

Lexical features Lexical features are at the foun-
dational level of NLP features, basically divided
into bags of words (BOW) sets, word form sets, and
conditional n-gram probabilities (Van Hee et al.,
2018b). Representative BOW sets mainly include
n-grams and character n-grams. Word form sets fo-

cus on number and frequency, such as punctuation
numbers, emoticon frequencies, character repeti-
tions, etc. Despite their easiness to get, lexical
features were proved effective in much research.

Syntactic features Syntax is mainly quantified
via parts-of-speech and named entities. After tag-
ging, the number and frequency of both character-
istics could act as features in classification models.
Besides, hand-crafted syntactic features also in-
cluded clash before verb tenses (Reyes et al., 2013)
and dependency parsing (Cignarella et al., 2020a).

Semantic features Van Hee et al. (2018b) ap-
proached semantic features based on the presence
or not in semantic clusters, which were trained on a
irony Twitter corpus with the Word2Vec algorithm
(Mikolov et al., 2013).

Linguistic-motivated features Irony processing
is deeply associated with sentiments and emotions.
Therefore, researchers have offered many character-
istics to capture irony patterns. For example, Reyes
et al. (2013) proposed the feature of contextual im-
balance, which was quantified via measuring the
semantic similarity pairwise. Generally, most fea-
tures could be categorized into ambiguity (Reyes
et al., 2012) and incongruity (Joshi et al., 2015).
Take incongruity as an example, implicit incon-
gruity was defined as a boolean feature checking
containing implicit sentiment phrases or not; ex-
plicit incongruity was defined as number of times
a polarity contrast appears. Theoretical research
(Ghosh et al., 2020) is encouraging more semantic
and pragmatic features to better capture ironies.

Features at various levels were concatenated
with classifiers, including naive bayes, deci-
sion tress, support vector machines (SVMs), etc.
(Van Hee et al., 2018b) to get final classification
results.
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4.1.3 Supervised Neural Network Era
There have been irony detection tasks in various
languages after 2015, among which most partici-
pants used convolutional neural networks (CNNs)
and RNNs methods to detect ironical expressions.
For example, in SemEval-2018 Task 3 (Van Hee
et al., 2018a), Wu et al. (2018) classified irony
tweets and their ironical types in a densely con-
nected LSTM network, together with multitask
learning (MTL) objectives in the optimization. In
IroSvA (Ortega-Bueno et al., 2019), González et al.
(2019) utilized transformer encoders only for de-
tecting Spanish ironical tweets.

Besides, Ilić et al. (2018) firstly utilized contex-
tualized word representations ELMo (Peters et al.,
2018) with Bi-LSTM to detect ironies. Zhang
et al. (2019) enhanced irony detection with sen-
timent corpora based on attention Bi-LSTM RNNs,
and achieved state-of-the-art results on Reyes et al.
(2013) dataset.

4.1.4 Pretraining and Fine-tuning Paradigm
Since BERT (Devlin et al., 2019), the “pretraining
and fine-tuning paradigm” has become the main-
stream in NLP research due to its extraordinary ca-
pacity in dealing with contextualized information
and learning general linguistic knowledge. Recent
development in irony detection also witnessed the
usage of PLMs. Xiang et al. (2020) released sev-
eral baseline results along with the dataset, among
which BERT had highest accuracy (5% higher than
Bi-LSTM methods). Potamias et al. (2020) pro-
posed a recurrent convolutional neural network
(RCNN)-RoBERTa (Liu et al., 2019) strategy and
improved the results on the SemEval-2018 dataset
by a large degree. Besides, Cignarella et al. (2020a)
explored syntax-augmented irony detection with
multilingual BERT (mBERT) in multilingual set-
tings. To sum up, some representative studies in
irony detection are detailed in Table 2.

4.2 Irony Generation
Irony generation is mostly an underexplored re-
search field besides Zhu et al. (2019), in which they
defined irony generation as a style transfer prob-
lem, and utilized a Seq2Seq framework (Sutskever
et al., 2014) with reinforcement learning to gener-
ate ironical counterparts from a non-ironic sentence.
Concretely, they designed the overall reward as a
harmonic mean of irony reward and sentiment re-
ward, which was trying to capture the sentiment
incongruity. In terms of the evaluation, besides

traditional natural language generation metrics like
BLEU, they also designed task-specific evaluation
metrics, which shoule be further enhanced in irony
and even figurative language research.

Future work in irony generation could be ad-
vanced in new PLMs and theoretical accounts. For
example, no attempts were made to generate ironi-
cal expressions after generative PLMs like BART
(Lewis et al., 2020). Controllable irony genera-
tion and its interaction with agents are interesting
topics remaining for future exploration. Besides,
irony theories could be further utilized. In recent re-
search on unsupervised sarcasm generation (Mishra
et al., 2019; Chakrabarty et al., 2020), context in-
congruity, valence reversal, and semantic incon-
gruity were merged to enhance the generation.

5 Discussion

5.1 Irony for Downstream NLP Tasks

Irony is directly associated with downstream NLU
tasks like sentiment analysis and opinion mining.
For example, the sentence retrieved from Filatova
(2012) I would recommend this book to friends who
have insomnia or those who I absolutely despise. is
classified as positive by fine-tuned sentiment analy-
sis RoBERTa model (Heitmann et al., 2020), which
is apparently opposite to human evaluation. Wrong
sentiment judgments will potentially lead to con-
trary opinion mining. We suggest that irony could
be further captured through introducing incongruity
embedding or specific pattern matching. Joshi et al.
(2015) designed linguistic-motivated features im-
plicit and explicit incongruity, which are inspiring
for enhancing irony understanding. Consider an-
other example task, machine translation, in which
wrong translation will potentially lead to totally op-
posite meanings. We encourage to model discourse
features (Voigt and Jurafsky, 2012), such as ironic
patterns and punctuation as embeddings for robust
irony translation.

In addition, we are looking forward to the re-
search of irony and sarcasm processing in NLP for
social good (NLP4SG), especially considering the
strong sentiments hidden in ironies. A recent work
(Chia et al., 2021) explored cyberbullying detec-
tion and this was a starting point to handle online
harmful ironical contents.

5.2 Multi-X Perspectives

Recent developments in NLP and sarcasm process-
ing encourage us to approach discourse processing
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Study Input Features Architecture Dataset Performance
(F1 Score)

Reyes et al. (2013) hand-crafted high-level features decision tree Reyes et al. (2013)* 70 / 76 / 73
Barbieri and Saggion (2014) frequency, intensity, sentiments, etc. decision tree Reyes et al. (2013)* 73 / 75 / 75

Nozza et al. (2016) unsupervised topic-irony model Reyes et al. (2013)* 84.77 / 82.92 / 88.34
Zhang et al. (2019) word embeddings sentiment-transferred Bi-LSTM Reyes et al. (2013)* 94.69 / 95.69 / 96.55

Van Hee et al. (2018b) lexical, syntactic and semantic features SVMs Van Hee et al. (2016)** 70.11
Rohanian et al. (2018) intensity, contrast, topics, etc. ensemble voting classifier Van Hee et al. (2018a)*** 65.00 / 41.53

Wu et al. (2018) word embeddings, POS tags, sentiments, etc. LSTM + MTL Van Hee et al. (2018a)*** 70.54 / 49.47
Cignarella et al. (2020a) mBERT output, autoencoders LSTM Van Hee et al. (2018a)*** 70.6
Potamias et al. (2020) RoBERTa output RCNN Van Hee et al. (2018a)*** 80.0
Santilli et al. (2018) word space vectors, BOW sets SVMs Cignarella et al. (2018)**** 70.00 / 52.00
Cimino et al. (2018) word embeddings LSTM + MTL Cignarella et al. (2018)**** 73.60 / 53.00

González et al. (2019) word embeddings transformer encoders Ortega-Bueno et al. (2019) 68.32
* Three binary classification systems were trained respectively for this dataset.
**This result was obtained on the 3000 English tweets subset.
***This dataset had two sub-tasks, identifying ironic or not and classifying ironic types. The latter two only focused on the first
sub-task.
****This dataset had two sub-tasks, irony detection and further identifying sarcasm.

Table 2: Representative Irony Detection Systems

from multiple angles. In this part, we will review
and suggest several multi-X perspectives for irony
and figurative language processing.

5.2.1 Multimodal Irony Processing

Linguistic interactions are not solely consisted of
texts. Besides, facial expressions and speech com-
munications are crucial to convey emotions and
feelings. For example, Skrelin et al. (2020) re-
ported people could classify ironies based on pho-
netic characteristics only. Consequently, it is con-
ceivable that multimodal methods could help with
irony detection. Schifanella et al. (2016) made the
first attempt in multimodal sarcasm detection, in
which they extracted posts from three multimodal
social media platforms based on hashtags. Then
they used SVMs and neural networks to prove the
validity of visual information in enhancing sarcasm
detection.

Castro et al. (2019) made a great improvement
in multimodal sarcasm detection by introducing
audio features into the dataset. The experiments
also verified the importance of more modalities in
sarcasm processing.

Future work in multimodal irony processing
should include a comprehensive multimodal irony
dataset based on MUStARD dataset (Castro et al.,
2019) with more fine-grained annotation schemes.
Additionally, most methods (Pan et al., 2020; Liu
et al., 2021) explored sarcasm by introducing inter-
modality and intra-modality attention in single-
stream setting. How double-stream multimodal
pretrained models (MPMs) will encode and inter-
act in complex discourse settings remains an inter-
esting problem to solve.

5.2.2 Multilingual Irony Processing
To understand irony in a multilingual context is
even harder due to cultural gaps. Previously listed
dataset includes a Hindi-English code-mixed irony
dataset (Vijay et al., 2018), in which they offered
an example:

• Text: The kahawat ‘old is gold’ purani hogaee.
Aaj kal ki nasal kehti hai ‘gold is old’, but
the old kahawat only makes sense. #MindF
#Irony.

• Translation: The saying ‘old is gold’ is old.
Today’s generation thinks ‘gold is old’ but
only the old one makes sense. #MindF #Irony.

Cignarella et al. (2020a) explored how mBERT
performed in multiple languages’ irony detection
tasks separately. Given it has been proved code-
switching patterns are beneficial for NLP tasks
like humor, sarcasm, and hate speech detection in
RNNs settings (Bansal et al., 2020), A future direc-
tion is to merge the irony detection datasets from
multiple languages (consider Karoui et al. (2017))
or even code-mixed texts, and explore how multi-
lingual datasets could enhance irony understanding
in mBERT.

5.2.3 Multitask Irony Processing
MTL is to make models learn several tasks simul-
taneously rather than independently once at a time.
Recent work in figurative language processing pro-
posed several MTL strategies to improve the per-
formance interactively. Chauhan et al. (2020) pro-
posed a MTL framework to do sentiment, sarcasm,
and emotion analysis simultaneously and the frame-
work yielded better performance with the help of
MTL.
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Generally, we will classify figurative language
into several categories like metaphors, parodies,
humors, ironies, and etc. However, noted that there
are not clear differences between each other, a sin-
gle task figurative language processing will only
focus on one particular aspect and fail to capture
the interactions. Recent work (Ao et al., 2022) also
verified the combination of humor and sarcasm
could improve political parody detection.

PLMs could understand figurative language bet-
ter than random but apparently worse than human
evaluation (Liu et al., 2022). We suggest that future
work should consider domain adaptation towards
figurative language as a whole via weak supervi-
sion. MTL strategy could utilize previous research
in corpus linguistics, and design an appropriate pro-
portion in summing the loss function. Besides, a
unified framework to model figurative languages
could be expected.

5.2.4 Multiagent Irony Processing
Human-like language generation is a central topic
in multiagent interactive systems. Besides robots’
ironical understanding, we are also curious about
how robots could generate ironical expressions.
Unlike transferring non-ironic sentences to ironic,
multiagent irony measures the performance dur-
ing the interactions in dialogues. Ritschel et al.
(2019) improved the robots by introducing ironic
expressions, which showed better user experiences
in human evaluation.

Further explorations in multiagent irony could
aim at better dialogue state tracking and understand
when irony should be introduced.

5.3 New Tasks: Inspiration from Sarcasm

Compared to sarcasm, irony is rarely seen as a term
in NLP conferences. Recently we have witnessed
great improvements in sarcasm processing and in
this part we will discuss how new tasks in sarcasm
could motivate irony research.

Data Collection As discussed, datasets are
highly dependent on hashtags as a signal to extract
ironical expressions. Shmueli et al. (2020) pro-
posed an algorithm to detect sarcastic tweets from
a thread based on exterior cue tweets. A distant su-
pervision based method for extracting ironies from
platforms is crucial, given ironies in conversational
contexts are central topic in the future.

Intended and Perceived Irony Oprea and
Magdy (2019) explored how author profiling af-
fected the perceived sarcasm (manual labelling)

versus the intended sarcasm (hashtags), and veri-
fied the difference between both. Further, Oprea
and Magdy (2020) introduced iSarcasm dataset
which divided intended sarcasms and perceived
sarcasms. The state-of-the-art sarcasm detection
models performed obviously worse than human
evaluation on this dataset. Future work could fo-
cus on multimodal perceived and intended irony,
especially across various cultures.

Target Identification Sarcasm target identifica-
tion was firstly proposed in Joshi et al. (2018), in
which sarcasm targets were classified as one target,
several targets and outside. Patro et al. (2019) intro-
duced sociolinguistic features and a deep learning
framework, and improved target identification by a
lot. For irony processing, most ironical expressions
do not equip a specific target in itself as previously
discussed. However, its ironical effects are likely in
dialogue or visually grounded environment, which
encourages us to enhance irony datasets in afore-
mentioned ways.

Irony Explanation Irony, according to the defi-
nition, have opposite real meanings to literal mean-
ings. However, this does not mean adding a single
negation could interpret ironies well. Kumar et al.
(2022) proposed a new task, sarcasm explanation in
dialogue. Irony explanation might encounter more
complex problems due to relatively low proportion
of targets. Still, we should include irony explana-
tion as a branch of multimodal irony processing
like Desai et al. (2021).

5.4 Explainable Irony Processing

Explainable machine learning is of interest for most
researchers to uncover the blackbox. In irony pro-
cessing, we are also curious about why specific
expressions are recognized as ironies. Buyukbas
et al. (2021) explored explainability in irony detec-
tion using Shapley Additive Explanations (SHAP)
and Local Interpretable Model-Agnostic Explana-
tions (LIME) methods. Results showed that punc-
tuations and strong words play important roles in
irony detection.

For future work, we suggest using explainable
methods in multimodal settings and check how
different modalities act various roles in making a
class label.

6 Conclusion

In this paper, we reviewed the development in au-
tomatic irony processing from underexplored theo-
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retical and cognitive science to computational per-
spectives, and offered a comprehensive analysis
in future directions. We hope that our work and
thinking will encourage further interdisciplinary
research between linguistics and human language
technology, motivate the research interests in irony
and even, figurative languages.

Acknowledgement

This review is based on the first author’s previous
research proposal. We would like to express our
thanks to Professor Chu-Ren Huang and Dr. Yat
Mei Lee for their suggestions.

References
Meyer Howard Abrams and Geoffrey Harpham. 2014.

A glossary of literary terms. Cengage Learning.

Xiao Ao, Danae Sánchez Villegas, Daniel Preoţiuc-
Pietro, and Nikolaos Aletras. 2022. Combining hu-
mor and sarcasm for improving political parody de-
tection.

Srijan Bansal, Vishal Garimella, Ayush Suhane, Jasa-
banta Patro, and Animesh Mukherjee. 2020. Code-
switching patterns can be an effective route to im-
prove performance of downstream NLP applications:
A case study of humour, sarcasm and hate speech
detection. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1018–1023, Online. Association for Computa-
tional Linguistics.

Katharina Barbe. 1995. Irony in context, volume 34.
John Benjamins Publishing.

Francesco Barbieri, Valerio Basile, Danilo Croce, Malv-
ina Nissim, Nicole Novielli, and Viviana Patti. 2016.
Overview of the evalita 2016 sentiment polarity clas-
sification task. In Proceedings of third Italian con-
ference on computational linguistics (CLiC-it 2016)
& fifth evaluation campaign of natural language pro-
cessing and speech tools for Italian. Final Workshop
(EVALITA 2016).

Francesco Barbieri and Horacio Saggion. 2014. Mod-
elling irony in Twitter. In Proceedings of the Student
Research Workshop at the 14th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, pages 56–64, Gothenburg, Sweden. As-
sociation for Computational Linguistics.

Wayne C Booth. 1974. A rhetoric of irony. University
of Chicago Press.

Andrea Bowes and Albert Katz. 2011. When sarcasm
stings. Discourse Processes, 48(4):215–236.

Penelope Brown, Stephen C Levinson, and Stephen C
Levinson. 1987. Politeness: Some universals in lan-
guage usage, volume 4. Cambridge university press.

Ege Berk Buyukbas, Adnan Harun Dogan, Asli Umay
Ozturk, and Pinar Karagoz. 2021. Explainability
in irony detection. In International Conference on
Big Data Analytics and Knowledge Discovery, pages
152–157. Springer.

Santiago Castro, Devamanyu Hazarika, Verónica Pérez-
Rosas, Roger Zimmermann, Rada Mihalcea, and Sou-
janya Poria. 2019. Towards multimodal sarcasm de-
tection (an _Obviously_ perfect paper). In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4619–4629, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tuhin Chakrabarty, Debanjan Ghosh, Smaranda Mure-
san, and Nanyun Peng. 2020. Rˆ3: Reverse, retrieve,
and rank for sarcasm generation with commonsense
knowledge. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7976–7986, Online. Association for Computa-
tional Linguistics.

Basilis Charalampakis, Dimitris Spathis, Elias Kouslis,
and Katia Kermanidis. 2015. Detecting irony on
greek political tweets: A text mining approach. In
Proceedings of the 16th International Conference on
Engineering Applications of Neural Networks (INNS),
pages 1–5.

Dushyant Singh Chauhan, Dhanush S R, Asif Ekbal, and
Pushpak Bhattacharyya. 2020. Sentiment and emo-
tion help sarcasm? a multi-task learning framework
for multi-modal sarcasm, sentiment and emotion anal-
ysis. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4351–4360, Online. Association for Computational
Linguistics.

Zheng Lin Chia, Michal Ptaszynski, Fumito Masui,
Gniewosz Leliwa, and Michal Wroczynski. 2021.
Machine learning and feature engineering-based
study into sarcasm and irony classification with ap-
plication to cyberbullying detection. Information
Processing Management, 58(4):102600.

Alessandra Teresa Cignarella, Valerio Basile, Manuela
Sanguinetti, Cristina Bosco, Paolo Rosso, and Farah
Benamara. 2020a. Multilingual irony detection with
dependency syntax and neural models. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 1346–1358, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Alessandra Teresa Cignarella, Simona Frenda, Valerio
Basile, Cristina Bosco, Viviana Patti, Paolo Rosso,
et al. 2018. Overview of the evalita 2018 task on
irony detection in italian tweets (ironita). In Sixth
Evaluation Campaign of Natural Language Process-
ing and Speech Tools for Italian (EVALITA 2018),
volume 2263, pages 1–6. CEUR-WS.

Alessandra Teresa Cignarella, Manuela Sanguinetti,
Cristina Bosco, and Paolo Rosso. 2020b. Marking

832



irony activators in a Universal Dependencies tree-
bank: The case of an Italian Twitter corpus. In
Proceedings of the 12th Language Resources and
Evaluation Conference, pages 5098–5105, Marseille,
France. European Language Resources Association.

Andrea Cimino, Lorenzo De Mattei, and Felice
Dell’Orletta. 2018. Multi-task learning in deep neu-
ral networks at evalita 2018. In EVALITA@CLiC-it.

Herbert L Colston. 2017. Irony and sarcasm. In The
Routledge handbook of language and humor, pages
234–249. Routledge.

Ulisses Brisolara Corrêa, Leonardo Coelho, Leonardo
Santos, and Larissa A. de Freitas. 2021. Overview
of the IDPT task on irony detection in portuguese at
iberlef 2021. Proces. del Leng. Natural, 67:269–276.

María del Pilar Salas-Zárate, Giner Alor-Hernández,
José Luis Sánchez-Cervantes, Mario Andrés Paredes-
Valverde, Jorge Luis García-Alcaraz, and Rafael
Valencia-García. 2020. Review of english literature
on figurative language applied to social networks.
Knowledge and Information Systems, 62(6):2105–
2137.

Poorav Desai, Tanmoy Chakraborty, and Md Shad
Akhtar. 2021. Nice perfume. how long did you mari-
nate in it? multimodal sarcasm explanation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shelly Dews and Ellen Winner. 1995. Muting the mean-
ing a social function of irony. Metaphor and Symbol,
10(1):3–19.

Elena Filatova. 2012. Irony and sarcasm: Corpus gener-
ation and analysis using crowdsourcing. In Proceed-
ings of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC’12), pages
392–398, Istanbul, Turkey. European Language Re-
sources Association (ELRA).

Ruth Filik, Alexandra Ţurcan, Christina Ralph-
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Abstract

The task of shallow discourse parsing in the
Penn Discourse Treebank (PDTB) framework
has traditionally been restricted to identifying
those relations that are signaled by a discourse
connective ("explicit") and those that have no
signal at all ("implicit"). The third type, the
more flexible group of "AltLex" realizations
has been neglected because of its small amount
of occurrences in the PDTB2 corpus. Their
number has grown significantly in the recent
PDTB3, and in this paper, we present the first
approaches for recognizing these "alternative
lexicalizations". We compare the performance
of a pattern-based approach and a sequence
labeling model, add an experiment on the pre-
classification of candidate sentences, and pro-
vide an initial qualitative analysis of the error
cases made by both models.

1 Introduction

The view that discourse relations serve to model
central aspects of the coherence of a text is widely
accepted, and several approaches with different
theoretical commitments have been developed (e.g.
Mann and Thompson, 1988; Prasad et al., 2008a;
Lascarides and Asher, 2007; Sanders et al., 1992).
Our work is situated in the framework of Shallow
Discourse Parsing and thus grounded in the Penn
Discourse Treebank (PDTB) corpus (Prasad et al.,
2008a). Here, some distinctions are commonly
being made regarding the surface realization of
discourse relations; most importantly:

1. A relation can be signalled by a connective,
i.e., a lexical item from a closed class (con-
junctions, certain adverbials).

2. A relation can be signalled by a different lex-
ical form, which the PDTB calls Alternative
lexicalization or AltLex for short.

3. A relation can also be stated without any lexi-
cal signal; in this case it is called implicit.

In the PDTB corpus, (1) and (3) are by far the
most frequent cases, and accordingly, they have re-
ceived much attention in shallow discourse parsing.
As for (2), Lin et al. (2014) had developed a first,
relatively simple approach; to our knowledge there
have not been any follow-up proposals (including
all the parsers presented in the CoNLL shared tasks
in 2015 and 2016 (Xue et al., 2015, 2016) and in the
recent DISRPT tasks (Zeldes et al., 2019, 2021)).

With the introduction of the PDTB corpus ver-
sion 3.0 (Prasad et al., 2018), amongst some other
changes, the number of annotated AltLex instances
has grown from 624 (in version 2.0) to 1632. With
the corpus now being considerably richer in Alt-
Lex signals, we believe that their role in shallow
discourse parsing now needs to be strengthened.
Besides, also for advancing the theoretical descrip-
tion of the AltLex category and its role in coher-
ence marking, it is important to perform empirical
studies.

Essentially, alternatively–lexicalized discourse
relations are signalled by an open set of phrases that
verbalizes the connection between two discourse
arguments. In the PDTB, they are being annotated
when no connective is present, and a "connective
insertion" test yields an impression of redundancy;
in this case annotators are asked to mark the text
span that already signals the relation. Previous
work (Prasad et al., 2010; Danlos, 2018; Rysová
and Rysová, 2018) studied the general form of Alt-
Lex expressions and tried to find and formalize
patterns that can complement the well-established
idea of a fixed list of discourse connectives (e.g.
Das et al., 2018).

Example (1) (Danlos, 2018) illustrates the inter-
changeability of explicit connectives and AltLex
signals withing the same context, as we could sim-
ply substitute the connective Therefore by alter-
native more complex lexicalizations such as This
caused and Because of this while still preserving
the meaning of the relation:
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(1) 1. Fred didn’t stop joking. Therefore, his
friends enjoyed hilarity throughout the
evening.

2. . . . This caused, his friends enjoyed
hilarity throughout the evening.

3. . . . Because of this, his friends enjoyed
hilarity throughout the evening.

Contrary to this, in Example (2) (Prasad et al.,
2010) the AltLex signal is not easily substitutable
by a simpler explicit connective as, with a replace-
ment such as because, this sentence would lose
information about the reason’s importance:

(2) But a strong level of investor withdrawals is
much more unlikely this time around, fund
managers said. A major reason is that
investors already have sharply scaled back
their purchases of stock funds since Black
Monday.

In this paper, we aim to overcome the negligence
of AltLex relations in shallow discourse parsing by
proposing two different technical approaches. Both
tackle the problem without relying on any external
lexical resources. Specifically, our contributions
are: (i) We present the first approach to automat-
ically classifying AltLex instances in the PDTB3
corpus; (ii) we compare a simple pattern-based ap-
proach to a neural model; (iii) we experiment with
pre-classification of AltLex-relevant sentences (for
dealing with class imbalance in the corpus); (iv)
we provide initial observations on types of errors
made by the models.

Section 2 discusses related work, and Section
3 briefly describes relevant aspects of the PDTB
corpus. Section 4 introduces our various methods.
We present results in Section 5, discuss them in
Section 6, and finally conclude.

2 Related Work

We highlight two different directions that are rele-
vant for our work. The first part shows work related
to alternative lexicalized phrases. The second one
looks into recent applications for connective identi-
fication, whose methods are similar to one of our
approaches.
Alternative Lexicalized Phrases (AltLex). After
the introduction of alternative lexicalized phrases,
among others, in the PDTB (Prasad et al., 2008a), a
subsequent work by Prasad et al. (2010) presented
more details and analysed regularities by defining

groups of phrases. Based on their discoveries, a
first attempt was made to extract AltLex relations
while analysing implicit relations (Lin et al., 2014).
Their approach is evaluated in combination with
all non-explicit relations. Thus, the specific Alt-
Lex results of their approach are unfortunately not
available for comparison. Due to the revision of
the PDTB, the definition of discourse signals is
made more flexible, and Lin et al.’s approach is not
applicable to the current problem anymore (Prasad
et al., 2018).

Attempts of building a Czech Discourse Tree-
bank have also shown, how challenging the an-
notation process is. In contrast to the PDTB,
the Czech Discourse Treebank distinguishes dis-
course signals into three groups, namely primary
connectives, secondary connectives, and free con-
nective phrases. Low inter-annotator agreement
was particularly observed for the annotation of
free connecting phrases (comparable to alterna-
tive lexicalizations) due to the complexity of the
task (Rysová, 2012). Based on this tree bank, a
template approach is proposed to manually build
a lexicon for secondary connectives, analogously
to that for primary ones (Danlos, 2018; Rysová
and Rysová, 2018). One of Danlos’s single lexicon
entry, for example, to recognize the phrases for
this/a given reason, would describe the
lexical head N of this phrase reason in different
possible environments (so-called schemes) with a
rule like for [Ana-Det (Adj)/Ana-Adj]
N. Furthermore, Danlos (2018) concedes that, be-
cause “free connective phrases are compositional
and include at least two content words”, this
lexicon-based approach is not applicable.

Dunietz et al. (2017) adapt the PDTB annotation
scheme and present another corpus that entirely
focuses on causal relations. They do not distin-
guish between explicit connectives and alternative
lexicalizations as done in the PDTB. Comparing
their annotated signals with the second version of
PDTB, they discover an overlap of 8.9 % with the
PDTB connective signals. Further, they introduce
a feature-based system for tagging causal relations
between individual events. In contrast to them, we
avoid linguistic features by using representations
from pretrained language models.

In contrast to PDTB conform schemes,
RST (Mann and Thompson, 1988) contains only
information about discourse segments, their rela-
tions and nuclearity. The work of Das and Taboada
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(2018) complements the absence of this informa-
tion by annotating a subpart of the RST-DT corpus
with all kinds of signals point toward a discourse
relation. Their first finding reveals that discourse
relations may be signalled by other discourse el-
ements than lexical phrases, inter alia, syntactic
structure (e.g. relative clauses, reported speech), se-
mantics (e.g. synonymy, repetition, lexical chain),
text genre (e.g. inverted pyramid scheme, newspa-
per layout). Another interesting finding consists
in the presence of multiple signals that point to
the same relation, e.g. semantic+syntactic, refer-
ence+syntactic, and others. Further, recent work
of Zeldes and Liu (2020) proposed an interesting
approach for inferring discourse signals from the
given relation senses. However, this approach does
not take alternative lexicalizations into account yet.
Explicit Connective Disambiguation. Some of
the approaches that were proposed to this task are
relevant for AltLex identification as well. Pitler and
Nenkova (2009) presented a simple feature-based
model for the disambiguation (discourse versus sen-
tential usage) of connective candidates extracted
by matching entries of a connective lexicon. With
their best feature combination, they achieve an F1
score of 94.19 on the test set. Recently, Knaebel
and Stede (2020) adapt the original idea and replace
hand-crafted features by various types of word em-
beddings. Their state-of-the-art model uses contex-
tualized word embeddings and achieves 97.45 F1
score. In our work, we extend their approach to al-
ternative lexicalized phrases, tackling the problem
without external candidate lexicon.

Furthermore, another line of research started
with the focus to avoid lexicon-based solutions.
Recently, several promising sequence labeling ap-
proaches (e.g. Yu et al., 2019; Muller et al., 2019;
Bakshi and Sharma, 2021; Kamaladdini Ezzabady
et al., 2021) have been proposed using standard and
contextualized word embeddings. Among these,
Yu et al. (2019) achieves best scores (92.02 F1
score) in extracting connectives without lexicon.
They develop a model that combines linguistic in-
formation (e.g. part-of-speech tags, dependency
relation, sentence length, inter alia) with recent
advances in contextualized word representations.
In contrast, the work of Bakshi and Sharma (2021)
achieve slightly worse results (91.15 F1 score) but
with a completely feature-free approach.

3 Penn Discourse Treebank

The recent version (v3) of the Penn Discourse Tree-
bank (PDTB, Prasad et al. 2018) is the largest avail-
able resource of lexically grounded discourse rela-
tions which include both explicitly signalled rela-
tions and implicit relations. It describes discourse
relations to consist of exactly two arguments with
an optional marker to signal the relation. In ad-
dition, one or more senses are attached to each
relation to describe its meaning. For example, two
senses often correlate are Temporal.Synchronous
and Comparison.Contrast for the explicit connec-
tive while.

In its previous version, Prasad et al. (2008b)
start the annotation process by the identification of
connectives (defined by a fixed set of candidates).
Then, adjacent sentences without explicit relation
are examined according to whether there holds an
implicit relation, and, in addition, a connective is
searched that fits in between the relations’ argu-
ments. If the insertion of any connective leads to
redundancy, the lexical signal already part of the re-
lation is used instead—the AltLex. In their studies
on alternative lexicalizations, Prasad et al. (2010)
use the two properties of syntactical and lexical
flexibility to sort these signals into three groups.
Hereby they demonstrated, that most of the Al-
tLexes belong to the syntactically and lexically free
group with 76.6%.

As a consequence of the recent update, the def-
inition of discourse signals has undergone some
changes. The set of explicit connectives is ex-
panded (which indirectly changes the set of Alt-
Lexs too) and the position of the connective in
relation to its arguments is more relaxed compared
to the previous version. In addition, a few changes
have been made in the process of identifying Alt-
Lex relations in general. As a result of the intro-
duction of intra-sentential AltLex relations (about
900), arbitrary expressions are allowed, also in-
cluding adjectives and adjective modifiers. Also,
annotators are allowed to mentally add anaphoric
references, (e.g. next [to this], further [to that]),
which leads to potential overlap with explicit con-
nectives. Signals are not syntactically bound to
the second argument of the relation anymore, but
possibly combine parts of both arguments. A new
sub-class was introduced for lexico-syntactic con-
structions, the so-called AltLexC. In total, almost
1000 AltLex relations, including their signals, were
added during the revision. In our work, we do
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Property PDTB2 PDTB3

count 624 1632
signal length 3.26 (2.08) 2.62 (2.45)
sentence length 22.65 (10.35) 27.68 (10.94)
signal position 1.42 (3.22) 9.37(10.26)

Table 1: Differences of AltLex relations between both
versions of the Penn Discourse Treebank. Properties
length and position show average values with standard
deviation enclosed in parentheses.

not further distinguish both types of alternative
lexicalized relations and henceforth refer to these
simply as AltLex relations. Discourse signals ap-
pear in both continuous (e.g. since then, after that)
and discontinuous forms (e.g. the aim . . . is, the
more . . . the more, ...). As the complexity highly
increases if POS patterns would also cover gaps
within, we restrict our work to continuous signals
only, and thus eliminated 62 instances (3.79 %)
from the full set. Explicit discourse connectives are
ignored for all our experiments, even if they should
occur in the same sentence of an AltLex signal.

The PDTB consists of 2,160 documents with
a total number of 50,945 sentences. We briefly
summarize the differences of both versions of the
PDTB in Table 1 to illustrate the motivation of
introducing our new approaches. As already men-
tioned, the number of available AltLex relations is
almost tripled from 624 to 1632 instances. The av-
erage length of the signals decreases slightly from
3.26 tokens to 2.62 token, and the average length of
sentences containing the signals increases by a few
tokens on average (22.65 up to 27.68). A partic-
ular challenging aspect of the new PDTB version
is the more flexible positioning of signals, which
renders previous simple identification approaches
as no longer feasible.

4 Method

Input to all models are prepared context sensitive
word embeddings. For extracting token-wise con-
text sensitive embeddings, we follow the sugges-
tion of Devlin et al. (2019). Given a sentence, to-
kens are processed by the WordPiece tokenizer (Wu
et al., 2016) which possibly leads to a higher num-
ber of subtokens. These are processed for generat-
ing corresponding hidden states on subtoken-level.
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Figure 1: Candidate-based classification approach. All
token embeddings directly associated with AltLex can-
didate are averaged and concatenated with surrounding
context tokens. Simple MLP module on top with final
classification layer to predict discourse signal.

We choose RoBERTa (Liu et al., 2019) as it per-
forms best on connective disambiguation compared
with other BERT variations (Knaebel and Stede,
2020). We average multiple subtoken outputs into
a single output that corresponds to the full token.
Following the suggestion of Devlin et al. (2019),
the last four hidden layers are concatenated and
thus form the final token embeddings that serve as
input for the subsequent models.

4.1 Pattern-based Candidate Extraction
Traditional approaches for connective disambigua-
tion integrate a connective lexicon that is used to
extract possible candidates, before using a system
to disambiguate discourse readings from their sen-
tential counterparts (Pitler and Nenkova, 2009; Lin
et al., 2014). Inspired by this approach, we de-
vised a different pattern-based extraction procedure
for finding possible AltLex candidates. Specifi-
cally, we generate possible AltLex candidates by
pattern-matching via a list of extracted part-of-
speech (POS) sequences. From the AltLex rela-
tions available in PDTB3, we extract 408 unique
POS patterns. They range from very frequent sin-
gle tags such as VBG (n=468) and RB (n=113) to
longer and less frequent sequences such as VBD
DT NN IN (n=9). This sequence, for example,
is extracted from the signals attributed the in-
crease/improvement to, but it also matches other
phrases such as visited a lot of and signed a con-
tract with. The number of extracted candidates per
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pattern is very high in comparison with the pattern
occurrence itself. For the simple single tag rule
VBG, for example, we find 1869 instances in one
of our randomly sampled test split.

We extend this basic pattern approach by intro-
ducing a small context window of additional tokens
to the left and right of the candidate. Our hypothe-
sis is that context sensitivity is not only beneficial
for the final classification of the embeddings, but
already useful during the pattern extraction. Infor-
mation such as start and end of sentence, but also
punctuation is useful. As the number of patterns
increases tremendously with each additional sur-
rounding word, and the generalization at the same
time decreases by patterns that are too specific, we
limit our experiments to only one tag on the left
and on the right of the original pattern. By doing so,
the number of extracted patterns increases to 800
in total. For example, instead of one most frequent
single-tag pattern VBG, we now have more specific
patterns that occur less often , VBG DT (n=162),
, VBG NNS (n=39), , VBG PRP (n=35), , VBG
NN (n=31), among others. In comparison to the
simple approach, the context-sensitive approach
reduces the number of extracted candidates by a
large margin, in particular for shorter tag patterns.
For example, the number of occurrences for VBG
is decreased by about 70 % to 516 instances. A
list of the 30 most frequent tag sequences for both
approaches is provided in the appendix Table 4,
and Table 5 provides numbers on the extracted can-
didates per approach.

We use the collected tag lists, iterate over all
sentences, and extract any phrase that matches one
of the POS patterns as possible AltLex candidate.
After generating these candidates, we follow the
approach of Knaebel and Stede (2020) for con-
nective disambiguation with contextualized embed-
dings, shown in Figure 1. In their experiments,
they outperform previous approaches with a sim-
ple multilayered-perceptron architecture on top of
contextualized embeddings. We refer to this archi-
tecture as MLP module, which consists of two fully
connected layers with a dropout layer following
each.

The first ("simple") approach is henceforth re-
ferred to as exact approach, while we call the sec-
ond one context-sensitive. For the experiments,
we also specify the context size, that is the number
of tokens surrounding the candidate on each side;
e.g., the value 0 refers to no context at all, while

the value 2 indicates a context of two tokens to the
left and right, which sums up to five embeddings
(four context embeddings plus one embedding for
the averaged candidate tokens).

4.2 Sentence Labeling
The limited variability of observed patterns in the
dataset is the major disadvantage of the pattern-
based approach. We aim to overcome this prob-
lem by introducing a sequence labeling approach
(see Figure 2) based on contextualized embeddings
for recognizing alternative lexicalizations. In the
PDTB3, AltLex signals always occur within a sin-
gle sentence, and thus our approach is designed for
sentence-level processing.

The sentence processing part consists of two
bidirectional LSTM (Hochreiter and Schmidhuber,
1997) layers. After each layer we add a dropout
layer for better generalization. We will refer to
this as BiLSTM module. The hidden states are
further individually processed by an MLP module.
Finally, we use a conditional random field (Lafferty
et al., 2001) for the output prediction (compare
Figure 2 output (I) Sentence Labeling). As output,
we use a binary label that represents the AltLex
class membership.

Deciding whether a phrase should be identified
as AltLex is often dependent on its context. As
argument spans of AltLex relations often include
previous sentences, we hypothesize that additional
processing of the preceding sentence has a positive
effect on the prediction quality of our model. For
this reason, we propose an additional sentence pro-
cessing step (see Figure 2 Context Processing on
the left side) in which we use the final hidden states
of the BiLSTM module as the initial states for the
BiLSTM modules in the sentence processing part.

We refer to the architecture without previous sen-
tence context as single, and we use context to point
to the option with previous sentence processing.

4.3 Sentence Classification
The extraction of alternative lexicalized discourse
signals is especially hard with respect to the small
amount of signal occurrence. In addition to the
heavy imbalance of the labels on token-level, only
a minority of all sentences contains an alternative
lexicalized signal. Therefore, we hypothesize that,
following analogously work related to explicit con-
nectives (Patterson and Kehler, 2013), an additional
step of classifying a potential sentence candidate
as containing an AltLex relation or not might be
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Figure 2: Joint diagram of (I) sequence labeling and (II) potential sentence classification approaches. A given
sentence is processed by BiLSTM module. Either all hidden states are processed by MLP module individually
and forwarded to CRF layer to predict AltLex tokens in sentence, or only last hidden state is processed by MLP
module to predict the presence of AltLex in whole sentence. The optional context processing part contains a similar
BiLSTM module but processes the previous sentence. Then, hidden state of the LSTMs are used for initialization.

beneficial to reduce the overall complexity of the
sentence labeling problem. We first train a sen-
tence classification model on the full dataset, in-
cluding the majority of negative examples. There-
after, we train our sentence labeling architectures
(as described above) on the positive instances only.

5 Experiments

In our experiments we study various statistical
models on version 3 of the Penn Discourse Tree-
bank (Prasad et al., 2018). For all experiments’
runs, we randomly split the full dataset into three
parts (train, validation, and test), as suggested by
Shi and Demberg (2017). We set 10 % of the full
dataset aside for testing, then the remaining data is
split into 90 % and 10 % for training and validation
parts, respectively. The reported final results are
averaged over three different runs each. For the
precision–recall curves illustrated in Figure 3 we
interpolate the individual curve per run and com-
pute the mean curve surrounded by one standard
deviation. We use the average precision scores
(AP) of the mean curves for comparison.

5.1 Pattern-based Disambiguation
We compare two variants of our pattern-based ex-
traction, exact patterns and context-sensitive pat-
terns, taking into account one token to the left and
right of the pattern. We generate patterns for both
variants only once on the whole corpus which we
think is most similar to the experiments on con-
nective classification, where a list of possible con-
nective candidates is compiled previously before
splitting data. Further, we study the influence of the
number of surrounding context embeddings for the
model (context width). Through all experiments,
we use an up-sampling rate of 5 for positive sam-
ples and 0.1 for negative samples. The hidden size
of the first layer in the MLP module is 256 and the
second layer 64, respectively. We train for at most
20 epochs with a batch size of 64. In addition, we
stop earlier if validation loss does not improve over
7 epochs.

Evaluation metrics are calculated with regard to
the extracted signal candidates. Please note, that
in contrast to the later evaluation (Section 5.3),
multiple possibly overlapping candidates might be
extracted. Analysing the precision–recall curves
in Figure 3a, an increased context width for both
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(b) Sentence Labeling approach. Metrics are computed token-
wise based on the potentials of the CRF layer before optimal
sequence is computed.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

context - 0.6531 (0.0418)
single - 0.5922 (0.0288)

(c) Sentence Classification. Metrics computed with respect to
confidence of the model that a sentence contains AltLex signal.

Figure 3: Precision–Recall curves for all trained models separated by tasks. Curves of individual run are averaged
surrounded by one standard deviation. Scores represent average precision scores with standard deviation in
parenthesis.

pattern-based models seems not beneficial, as the
context is already encoded in the individual token
embedding. Using context-sensitive patterns for ex-
traction, on the other hand, has a positive influence,
as originally assumed. On the one side, the overall
number of unique extracted patters roughly dou-
bles due to the higher specification. On the other,
the total number of extracted candidates reduces by
about 95% on a random test split. Finally, the best
performing model in this section (context-sensitive
pattern, zero embedding context width) achieves a
token-level averaged score of 0.62 precision.

5.2 Sentence Labeling
A sequence-level labeling model is trained to pre-
dict the presence of an discourse signal. The model
assumes as input contextualized word embeddings
for a maximum sentence size of 60 tokens. For
single-step prediction, we use a down-sampling
rate of 0.5, for two-step prediction we remove neg-
ative samples entirely. All modules’ layers use 128
units as hidden size. We give all models the chance
to train for 50 epochs with a batch size of 32; how-
ever, the training stops earlier in all cases, when
the validation loss stops improving over 7 epochs.

For the sentence labeling approach, we use
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token-wise potentials of the CRF output instead
of the decoded sequence labels. This allows us to
calculate precision and recall on token-level which
is visualized in Figure 3b. We observe that addi-
tional context in form of the previous sentence is
not beneficial on this level for sentence labeling.
With a mean score of 0.45 AP, the performance of
the context-sensitive labeling model is slightly be-
low the score of the single sentence labeling model
with 0.48 AP (note the low confidence caused by
the high standard deviation). The performance in-
creases dramatically, as expected, when labeling is
restricted to positive sentences only.

For potential sentence classification, the previ-
ous sentence’s context increases the average per-
formance slightly (from 0.59 to 0.65 average pre-
cision) as indicated by Figure 3c. This is in ac-
cordance with the previous observations for the
sequence labeling experiment.

5.3 Results
For the final evaluation, we introduce the metrics
overlap, partial-rate, and full-rate. The first score
indicates the overlap of true signal positions with
predicted signal occurrences. The partial-rate is
one if there is at least one token of the signal cor-
rectly classified. The full-rate is satisfied if and if
only the full range of the signal is correctly rec-
ognized. The sequential predictions are taken as
computed by the final layer, for the candidate-based
predictions, we simply choose all as signal classi-
fied candidates and set corresponding associated
tokens to being a signal. Note that a single token
might be classified multiple times. A token is set
to be a signal if a single instance prediction exists.

Results of the experiments are presented in Ta-
ble 2a for the candidate-based experiments and in
Table 2b for the labeling and sentence classifica-
tion experiments. Scores for precision, recall, and
F1 with respect to predicting the AltLex class are
presented for a 0.5 threshold. Thus, they merely
provide a limited view compared to the precision–
recall curves.

The best overall performing model is the
candidate-based model with context-sensitive pat-
tern and zero embedding context width. It achieves
a 74 % phrase overlap, with scores 0.83 and 0.63
for partial-rate and full-rate, respectively. Interest-
ingly, the candidate-based approach outperforms
the sequence-labeling approach. Although the F1
scores are higher for this approach, the final eval-

uation shows that lower performance regarding
overlap (0.63), partial-rate (0.67), and full-rate
(0.60). The performance increases dramatically,
as expected, when labeling is restricted to positive
sentences only. The combination of the simple
sentence classification (0.64 F1 score) and the sim-
ple labeling approach on positive samples (0.84 F1
score) leads to similar results as a model trained on
the full data set.

6 Discussion

Both pattern-based candidate approaches (exact
and context-sensitive) achieve better final results
compared to the labeling approaches which reflects
a similar observation as for studies on explicit con-
nective identification (Knaebel and Stede, 2020).
However, we have to keep in mind that patterns are
extracted on the whole corpus in advance, which
makes the lexicon approach for explicit connec-
tive identification more similar and, thus, better
comparable. The comparison to our sequence la-
beling approach is somewhat unfair, as we here
strictly split the corpus into three parts right at the
beginning and these models never have access to
all signal variants in the whole corpus.

Compared to the recognition performance of ex-
plicit connectives with about 96%, AltLex relations
are predicted far less accurately with at most 63%
exact match for the pattern-based approach. Also,
we expect a drop in performance when limiting the
extraction to the training corpus only.

After examining the errors made by the pattern-
based mode, we conclude that the length of the
errors (unrecognized signals) compared to the cor-
rectly recognized patterns is almost the same (2.5
and 2.7 tokens on average each). Thus the length of
signals is not a crucial factor for this type of model.
Quite a few poorly recognized examples are related
to adverbial phrases (e.g., eventually, further, so far,
too). This type of error seems problematic for both
model variants. A possible reason is the high imbal-
ance of adverbial signal instances (about 100), com-
pared to extracted candidates ranging from 1000 to
4000 instances. Regarding verb gerund forms, the
pattern-based approach recognizes most of them.
This is interesting as it represents the largest group
in PDTB with most variations. On the other side,
we also recognize cases where signals are marked
as false positives, such as resulting and allowing.
Here, more more in-depth elaboration is necessary,
to check whether the model is truly wrong or just
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model-type context-size precision recall F1 overlap partial-rate full-rate

exact 0 0.29 0.58 0.38 0.68 0.82 0.55
exact 1 0.30 0.53 0.38 0.57 0.72 0.43
exact 2 0.30 0.47 0.36 0.56 0.73 0.42

context-sensitive 0 0.35 0.72 0.47 0.74 0.83 0.63
context-sensitive 1 0.36 0.64 0.46 0.72 0.82 0.60
context-sensitive 2 0.35 0.60 0.44 0.67 0.78 0.56

(a) Results of candidate-based extraction approach.

model-type input mode precision recall F1 overlap partial-rate full-rate

labeling single all 0.53 0.55 0.53 0.63 0.67 0.60
labeling context all 0.59 0.48 0.53 0.58 0.60 0.57

labeling single positives 0.84 0.85 0.84 0.87 0.90 0.82
labeling context positives 0.80 0.79 0.79 0.80 0.85 0.72
sentence single all 0.74 0.57 0.64
sentence context all 0.68 0.49 0.56

(b) Results of the sequence-labeling and sentence classification approaches are computed on token-level.

Table 2: Evaluation results: Scores on the left (precision, recall, F1) with respect to AltLex class. These scores of
both tables cannot be compared directly, as prediction level differs (candidates vs. tokens). Final signal extraction
on the right evaluates predictions by degree of overlap, and agreement on partial and full prediction.

found new signals.
For the sequential model, it is noticeable that

prepositions are missing in the predicted signal e.g.
only to and opposed to. Also, verbs in combination
with anaphoric pronouns e.g. that would leave, this
creates, are often recognized as discourse signal
although there are not annotated as such.

The sequential models with additional context
information in form of the previous sentence re-
sult in unexpectedly low performances. Intuitively,
because AltLexes often connect parts of two con-
secutive sentences, we would expect a model’s per-
formance to increase if it gets access to more infor-
mation. We assume poor performances are caused
by context representation and therefore we wonder
whether models especially designed to serve sen-
tence representations would lead to better results
in this experiments.

7 Conclusion

Our work is a successful first attempt to fully au-
tomatically (without hand-crafted rules) extract al-
ternative lexicalized discourse relation signals. For
this task, we propose two technically different solu-
tions: First, a pattern-based approach working anal-
ogously to lexicon-based connective disambigua-
tion approaches, and second, a sequence labeling
approach similar to recent connective labeling ap-

proaches without external lexicon. We evaluated
these models directly on their corresponding train-
ing task and, further, provide more details on the
actual recognition task.

We wonder, how these two model architectures
perform on a different corpus domain such as
biomedical data (Prasad et al., 2011) and whether
the pattern-based limitation of the first approach is
noticeable. Having the new version of the PDTB
with about three times as much data as before,
it still seems the performance of the sequence-
labeling approach is strongly limited by the amount
of available data. For future work, it would be in-
teresting to extract different patterns for generating
candidates for the first approach. Universal part-
of-speech tags would have the advantage of being
a little more flexible (less specific word classes)
while at the same time, it could be possible to use
similar techniques for other languages when the
embeddings model is changed to a different lan-
guage or to a multi-lingual model. The sequential
approach has the advantage to be able to find new
patterns without observing them in the training data
directly. With more raw data from possibly differ-
ent domains, it would be interesting to apply this
technique and examine new/other variants of al-
ternative lexicalizations that do not occur in such
form in the original corpus.
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A Carbon Footprint

We access carbon footprints by using the codecar-
bon1 framework. The corpus is processed once
in the beginning and embeddings are persistently
stored on disk for later usage. By preparing the-
ses embeddings, we roughly emitted 7.93g carbon
dioxide (CO2). Table 3 shows the carbon foot-
prints for each model and provide averaged values
per experiment. In total, as we avoid training large
models by ourselves, and rather use features taken
from pre-trained language models as provided, we
emitted about 266.15g CO2 for all our experiments.

Model-Type Config Emission (g CO2)

candidate advance ctx=0 2.97 (0.01)
candidate advance ctx=1 3.05 (0.04)
candidate advance ctx=2 2.98 (0.02)
candidate simple ctx=0 3.96 (0.54)
candidate simple ctx=1 3.99 (0.56)
candidate simple ctx=2 4.42 (0.15)
label ctx (all) 26.11 (3.09)
label simple (all) 16.04 (0.49)
label ctx (pos) 2.73 (0.61)
label simple (pos) 1.79 (0.17)
sentence ctx (all) 10.97 (0.93)
sentence simple (all) 7.07 (0.54)

Table 3: Carbon footprint approximations averaged over
runs with standard deviation.

B Extracted Candidate Patterns

The following tables give a more detailed overview
about the pattern-extraction mechanisms. In Ta-
ble 4, the top 30 extracted patterns are given for
both approaches, exact extraction on the left side
and context-sensitive extraction on the right side,
with one additional token to the left and right. This
is complemented in Table 5 by the number of ex-
tracted candidates per rule on a randomly sampled
test set, as described in Section 5.

1https://github.com/mlco2/codecarbon
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# Exact Count Context-Sensitive Count
1 VBG 468 , VBG DT 162
2 RB 113 , VBG NNS 39
3 VBN IN 59 , VBG PRP 35
4 IN DT NN 45 , VBG NN 31
5 DT VBZ 39 BOS IN DT NN , 29
6 DT VBZ IN 31 , VBG JJ 26
7 IN RB 24 , VBG IN 25
8 IN NN IN 23 , VBG NNP 18
9 JJ 17 , VBN IN DT 18
10 VBG IN 16 BOS RB , 17
11 DT NN VBZ 15 BOS IN RB , 15
12 RB TO 15 BOS IN NN IN VBG 15
13 DT NN VBD 14 , VBG TO 14
14 IN VBD 14 , VBG JJR 14
15 RB VBG 12 , VBG PRP$ 14
16 WP VBZ JJR 12 , RB TO VB 13
17 RB RB 12 BOS WP VBZ JJR , 12
18 DT MD VB 12 , VBG IN DT 12
19 DT NN 11 , VBG RB 10
20 IN VBZ 11 BOS DT VBZ IN DT 10
21 IN DT 11 , VBN IN JJ 9
22 DT VBD 10 BOS DT NN : 8
23 IN NN 10 DT JJ NN 8
24 RB RB IN 10 , RB , 7
25 DT NN VBD IN 9 BOS DT NN VBD DT 7
26 IN CD NN 9 BOS IN DT , 7
27 VBD DT NN IN 9 BOS IN CD NN , 7
28 DT JJ NN VBZ 8 , RB . 7
29 VBG RP 7 , VBG VBG 7
30 DT NN MD VB 7 BOS VBG DT 7

Table 4: Top 30 of extracted patterns from full data set. Comparison of simple patterns with their context-sensitive
counter parts.
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# Exact Count Context-Sensitive Count
1 NN 18686 JJ 1541
2 IN 13915 RB 1100
3 DT 10907 DT 552
4 JJ 7698 VBG 516
5 DT NN 5278 IN 245
6 IN DT 4654 DT NN 206
7 NN IN 4517 VBZ 142
8 RB 4509 VBN IN 128
9 VBD 3997 VBN 104
10 VB 3565 IN DT NN 76
11 VBN 2910 TO 73
12 VBZ 2623 DT NN VBD 58
13 IN DT NN 2133 VBG IN 54
14 VBG 1869 IN NN 51
15 TO 1761 RB RB 46
16 TO VB 1728 DT NN VBZ 45
17 IN NN 1590 PRP VBD 30
18 DT JJ NN 1418 DT VBZ 30
19 IN JJ 1182 IN DT JJ NN 29
20 MD VB 1061 JJR 28
21 VBN IN 1035 IN CD 26
22 IN DT JJ 996 VBD DT NN IN 25
23 IN CD 917 PRP VBZ 21
24 CD NN 871 IN NN IN 20
25 IN NNS 765 VBD 17
26 NN VBZ 728 DT NN MD VB 15
27 NNS VBP 648 RB JJ 13
28 PRP VBD 626 VBG DT NN 13
29 IN DT JJ NN 622 RB TO 12
30 VBD IN 557 IN NNS 12

Table 5: Top 30 of extracted patterns from randomly sampled test partition. The ordering differs between Exact and
Context-Sensitive due to different patterns. In comparison, context-sensitive patterns are extract more different, but
much less candidates per pattern, for example interjections (IN) on the left are extracted about 57 times more than
on the right.
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Abstract

Humans use different wordings depending on
the context to facilitate efficient communica-
tion. For example, instead of completely
new information, information related to the
preceding context is typically placed at the
sentence-initial position. In this study, we an-
alyze whether neural language models (LMs)
can capture such discourse-level preferences
in text generation. Specifically, we focus
on a particular aspect of discourse, namely
the topic-comment structure. To analyze
the linguistic knowledge of LMs separately,
we chose the Japanese language, a topic-
prominent language, for designing probing
tasks, and we created human topicalization
judgment data by crowdsourcing. Our experi-
mental results suggest that LMs have different
generalizations from humans; LMs exhibited
less context-dependent behaviors toward top-
icalization judgment. These results highlight
the need for the additional inductive biases
to guide LMs to achieve successful discourse-
level generalization.

1 Introduction

Building on the current success of neural language
models (LMs) in the field of natural language pro-
cessing (NLP), much work has been conducted to
test their linguistic knowledge, typically, syntac-
tic generalizations in LMs (Linzen et al., 2016;
Lau et al., 2017; Marvin and Linzen, 2018; Gold-
berg, 2019; Warstadt et al., 2019, 2020). Al-
though discourse is also an essential aspect of lan-
guage production along with syntactic construc-
tions, discourse-level knowledge in LMs has been
less explored or has been typically analyzed at the
coarse level, for example, analyzing their sentence
ordering abilities (Li and Jurafsky, 2017; See et al.,
2019).

As one step toward understanding the fine-
grained, discourse-level knowledge in LMs, this
study explores the generalization performance of

花瓶を昨日割った。

I broke a vase yesterday.

花瓶は部屋にあった。

The vase-TOP was 
in the room.

(ii) Without Context (S+A)

(i) With Context (C+S+A)

The vase-{TOP/NOM} was
in the room.

I broke a vase yesterday.

Humans LMsTask
(to topicalize, or
not to topicalize)

compare

pr
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TOP 
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Corpus

The vase-{TOP/NOM} was
in the room.

I broke a vase yesterday.

NOM NOM

NOMNOM

TOP 

TOP TOP 

Figure 1: Comparing the context-dependent prefer-
ences of language models (LMs) and humans for top-
icalization.

LMs in a particular aspect of discourse, the topic-
comment structure (i.e., the thematic structure).
The topic-comment structure is an essential part
of language production (Grosz et al., 1995; Halli-
day et al., 2014; Hajicová and Mírovskỳ, 2018).

For example, speakers use the following sen-
tences in different contexts:

(1) a. In Japan, my father bought the vase last
year.

b. The vase was the one my father bought in
Japan last year.

These sentences differ in terms of topic-comment
structure (the topic is underlined). For example,
Sentence (1b) is more suited than (1a), for example,
as a continuation of the sentence I broke a vase yes-
terday. This study probes whether LMs can make
such context-dependent, human-like paradigmatic
choices at the discourse level.

It is worth noting that the (non-)human-like lin-
guistic generalization ability of computational mod-
els has long been examined in the cognitive science
of language (Rumelhart and McClelland, 1985; Hu
et al., 2020). Furthermore, from an engineering
point of view, whether LMs have correct prefer-
ences for topicalization is an important perspective
for validating the use of LMs for automatic assess-
ment of text quality.

851



To test the cognitive plausibility of LMs’ behav-
iors toward topic-comment structure, we used a
topic-prominent language (TPL), where the topic-
comment structure is explicitly realized. The use of
a TPL facilitated the careful creation of text pairs
for analyzing humans and LMs behaviors. We
first annotated and analyzed the human preferences
for topicalization using crowdsourcing (Sections 3
and 4).

In our experiments, we compared LMs with hu-
mans with respect to their context-dependent pref-
erences for topicalization (Section 5; Figure 1).
Our experimental results indicated that LMs do
not show human-like, context-dependent behaviors
(Section 6). Further analysis showed that LMs
perform topicalization judgment based on context-
independent spurious biases regarding whether a
particular noun phrase is likely to be topicalized.
This result reveals that compared to humans, LMs
perform different generalizations toward topicaliza-
tion judgment; hence, additional inductive biases
are required to achieve human-like generalizations.
Our dataset and code are publicly available. 1

2 Background

Topic of a sentence. The topic of a sentence
represents the concern of the message; what the
speaker is going on to say. In the literature, the
topic typically corresponds to the sentence-initial
element (Halliday et al., 2014; Vallduví, 1990).2

For example, the topic of Example (1a) (Section 1)
is Japan, while that of Example (1b) is vase.

The term topicalization means to mark a par-
ticular element in a sentence as the topic of that
sentence. Topicalization is realized typically by
the word order as shown in Example (1), and dif-
ferent languages sometimes have different devices
(e.g., particles and intonation) to mark a topic (Sec-
tion 3.1).

The non-topic part of a sentence is called a com-
ment. The topic and comment are often studied
as a topic-comment structure or a theme-rheme
structure in linguistics (Grosz et al., 1995; Halliday
et al., 2014; Hajicová and Mírovskỳ, 2018). These
are distinguished from the grammatical and logi-
cal structures of a sentence; for example, the topic

1https://github.com/rk-fujifuji/lm_
topicalization

2Strictly speaking, there are several definitions of the topic
(e.g., textual, interpersonal, and topical); in this study, we
focuses on the topical theme introduced in Halliday et al.
(2014).

of Example (1a) is Japan, while the grammatical
subject is my father. Note that a sentence may not
always have a topic (e.g., The sentence “There is a
pen.” does not introduce a topical theme).

Topicalization and discourse. In text produc-
tion, the topic of a sentence plays an important role
as it indicates the concern of the message and con-
trols word ordering (Example (1)). In general, the
more salient a particular concept is in a context, the
more likely it is to be topicalized (Halliday et al.,
2014; Miltsakaki, 1999). This property is closely
related to the centering in discourse (Chafe, 1976;
Givón, 1983; Grosz et al., 1995). In this theory, the
topic of a sentence has a higher centering-forward
(Cf) level according to the grammatical ranking,
and such a higher-ranked entity is expected to have
a high Cf rank again in the next utterance (i.e.,
the topic is expected to continue across successive
utterances).

In this work, we determine whether LMs have
human-like preferences for judging which elements
in a sentence should be a topic (i.e., topicalize)
when conveying meaning. Considering the context-
dependent nature of topicalization, analysis of the
preference of LMs in topicalization can provide
insight to examine whether LMs capture the con-
textual flow of text at the inter-sentential, and dis-
course levels.

Linguistic probes. NLP researchers have in-
spected the inner workings and/or behaviors of
black-box neural models to explore whether they
actually understand the language. The focus of
such probing analyses ranges from, for example,
syntactic knowledge (Marvin and Linzen, 2018; Hu
et al., 2020; Hewitt and Manning, 2019) to com-
mon sense knowledge (Lin et al., 2020; Zhou et al.,
2020). Some analyses have also targeted discourse-
level phenomena such as coreference (Sorodoc
et al., 2020; Upadhye et al., 2020) and discourse
structures (Pandia et al., 2021; Kurfalı and Östling,
2021; Koto et al., 2021). These existing studies and
our present work are complementary in covering a
wide variety of discourse phenomena.

To probe the linguistic knowledge of LMs, re-
searchers have typically used minimally different
text pairs (MDTPs) that differ only in a certain lin-
guistic aspect and analyzed their probabilities com-
puted by LMs (Marvin and Linzen, 2018; Gauthier
et al.; Hu et al., 2020). This experimental design
has advantages: for example, it enables researchers
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to analyze the model behaviors directly, without
designing additional classifiers (Alain and Bengio,
2017; Pimentel et al., 2020). We also probe LMs
using MDTPs that differ only in the topic-comment
structure.

3 Dataset: collecting human preferences

3.1 Using topic-prominent language
In English, creating the MDTPs differing only in
the topic-comment structure is prohibitively dif-
ficult because the change of topicalized elements
in a sentence accompanies a drastic change in the
sentence structure and syntactic complexities (Ex-
ample (1)). Thus, simply analyzing the preferences
of LMs between sentences with different topic-
comment structures in English may lead to confus-
ing conclusions about which linguistic perspective
LMs are actually sensitive to.

In contrast, in Japanese, a TPL, creating a set
of MDTPs differing only in the topic-comment
structure is possible. For example, the following
two sentences in Japanese, one of the TPLs, differ
only in the topic of the sentence:

(2) a. Kabin-wa heya-ni at-ta.
Vase-TOP room-DAT exist-PAST.
The vase was in the room.

b. Kabin-ga heya-ni at-ta.
Vase-NOM room-DAT exist-PAST.
There was a vase in the room.

In Japanese, the postpositional particle wa (TOP) is
used as the topic marker for indicating the topic of
a sentence as in Example (2a) (Teruya, 2004, 2007;
Kuno, 1973; Noda, 1996).3 The difference between
Kabin-wa (Vase-TOP) and Kabin-ga (Vase-NOM) in
Example (2) is whether the element (Kabin; vase)
is marked as a topic or not.

Note that Japanese is an agglutinative language,
in which the functional information (e.g., gram-
matical case) of an element is realized by postpo-
sitional particles. When a particular element is
marked by wa (TOP), some originally used parti-
cles (e.g., ga; NOM) are omitted. That is, Kabin-wa
(Vase-TOP) in Example (2a) plays the roles of the
grammatical subject (NOM) and the topic of a sen-
tence (TOP) both, but only wa is attached.

3Strictly speaking, the contrast between wa (TOP) and ga
(NOM) is not only about the topicalization, and has long been
discussed in Japanese linguistics. We did not intend to claim
that all the wa work as a topic marker; instead, we carefully
selected the data points where wa is used as a topic marker
(Section 3).

Example (2a), in which the grammatical sub-
ject (kabin; vase) is topicalized, should be pre-
ferred to Example (2b) in the context of talking
about the vase. We analyzed whether LMs have
such context-dependent preferences for using topic
markers. Such a paradigmatic choice of topical-
ization is not determined by strict rules. Rather,
both Example (2a) and (2b) are usually acceptable,
but either sentence is sometimes more natural than
the other, depending on the context. We created
a dataset of such degrees of human preference for
topicalization.

Note that grammatical topic (TOP) is assumed
to have a higher Cf ranking than the subject (NOM)
in Japanese centering theory (Walker et al., 1994);
this task of context-dependently selecting TOP or
NOM could be viewed as a task of estimating Cf
from the perspective of centering theory.

3.2 Annotation task

Data preparation. We focused on the Japanese
language as a representative of TPLs. Specifically,
we analyzed the preference for topicalization of
nominative arguments in Japanese sentences. We
used the NAIST Text Corpus (NTC; Iida et al.,
2007), which is commonly used for analyzing lin-
guistic phenomena in Japanese. We collected nom-
inative arguments and their belonging sentences
that satisfied all of the following criteria from the
NTC:

• An argument has a nominative relation to the
verb that is closest to the end of a sentence,
regarding the predicate-argument structure an-
notation.4

• An argument accompanies the topic marker
(TOP) or nominative particle (NOM).

• An argument appears in the second, third, or
fourth sentence in a paragraph.

Using these criteria, we collected the data for an-
notation D = {(c, s, a)d}|D|d=1, where c is the inter-
sentential context (preceding sentences within the
same document), s is the intra-sentential context,
and a is the nominative argument that satisfies the
aforementioned criteria. This process yielded 1,661
data points, where 939 instances originally have
the TOP particle for nominative argument a, and
722 instances have NOM. The examples are listed
in Table 1.

4Predicate-argument structure annotation in NTC is used.
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Text Human preferences LM preferences

Context c Sentence s and targeted nomina-
tive argument a (underlined)

rC+S+A
human rS+A

human rC+S+A
LM rS+A

LM

We consume large amounts of energy
daily.

Economic growth-{TOP/NOM}
is closely related to energy use. 0.83 1.00 0.66 0.64

It is said that a good start determines
victory in yacht racing.

A strong wind-{TOP/NOM} of
15 knots was blown in the sea. 0.00 0.00 0.31 0.25

The seventh is the day of the “Seven
Herbs of Spring” to pray for good health.
At the Hanshin Department Store in
Kita, Osaka, a free service of Nanakusa-
gayu was offered from 8:00 a.m. Office
workers, young women, and junior high
school students on their way home from
early morning kendo practice enjoyed
its taste.

The 500 meals-{TOP/NOM} pre-
pared were gone in about an
hour.

1.00 0.50 0.58 0.58

Table 1: Examples of the instances (c, s, a)d and preferences of humans and LMs (TRANS-L) for topicalization.
The human preference scores rhuman are introduced in Section 3.2. The LMs preference scores rLM are introduced
in Section 5.1. The example texts are the English-translated versions of the original texts (Mainichi Shimbun article
data 1995 version).

Annotation task. We collected the topicalization
preferences using crowdsourcing. Specifically, for
each instance (c, s, a)d, we first masked the particle
following the nominative argument a (kabin; vase)
as follows:

(3) a. Kabin- heya-ni at-ta.
Vase- room-DAT exist-PAST.

Then, annotators were asked which postpositional
particle TOP (wa; to topicalize) or NOM (ga; not to
topicalize) is more natural to complete the blank .
The option of “both okay” was also available.

For each instance (c, s, a)d, from four to eight
subjects annotated the preference. Finally, for each
instance (c, s, a)d, we calculated topicalization
ratio as follows:

rhuman =
nTOP

nTOP + nNOM
, (1)

where nTOP and nNOM are the number of votes for
completing the blank (e.g., Kabin-__) with TOP
and NOM, respectively. For “both okay,” we consid-
ered TOP and NOM to have 0.5 votes for each.

Context ablation. To facilitate analyzing the
context-dependent characteristics of the topicaliza-
tion, annotators solved the task under three differ-
ent conditions. Table 2 shows each condition with
an example. Here, X in the context column in-
dicates that the inter-sentential context is shown
to annotators, and X in the sentence column indi-
cates whether the intra-sentential context is shown.

When the intra-sentential context is not shown, the
nominal constituent alone is provided.

Subsequently, three variants of the topicaliza-
tion ratio rhuman for each instance (c, s, a)d were
obtained under different ablation settings: (i) the
ratio rC+S+A

human obtained with the C+S+A setting, (ii)
rS+A

human with the S+A setting, and (iii) rA
human with

the A setting. The examples of scores are listed in
Table 1. In Section 5, we observed the preferences
of LMs for topicalization and compared them with
those of humans.

Intended use of the annotations. We used the
annotations obtained in the C+S+A and S+A set-
tings (with relatively high agreement) for our main
experiments (Section 5). The data of the A set-
tings were used in our additional analyses (Sec-
tion 6) to test whether the LMs also exhibit such a
human-like difficulty in this setting. We observed
some interesting trends: LMs exhibited unreason-
ably good performance of topicalization prediction
in the context-independent, A settings.

3.3 Crowdsourcing

Worker selection. We used crowdsourcing5 to
access Japanese subjects. Crowd workers solved
the task of selecting TOP or NOM. To qualify the
motivated crowd workers, we first created trial
tasks, in which each worker answered 10 questions
by selecting TOP or NOM. For this purpose, we
framed the validation questions in advance, where

5https://crowdsourcing.yahoo.co.jp/
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context c sent. s arg. a question: TOP or NOM for __?

C+S+A X X X Kabin-wo kinou wat-ta. Kabin-__ heya-ni at-ta.
I broke a vase yesterday. {The vase was}/{There was a vase} in the room.

S+A X X Kabin-__ heya-ni at-ta.
{The vase was}/{There was a vase} in the room.

A X Kabin-__
Vase

Table 2: Settings for solving the topicalization judgment tasks. The Japanese example sentence “Kabin-wo kinou
wat-ta. Kabin-__ heya-ni at-ta.” means “I broke a vase yesterday. {The vase was}/{There was a vase} in the room.”
in English. The question is whether to topicalize the word “vase” in the second sentence.

Setting #labels class distribution
TOP Both okay NOM

C+S+A 8,039 55.3% 1.49% 43.2%
S+A 8,094 52.9% 3.47% 43.6%

A 7,621 1.86% 96.7 % 1.42 %

Table 3: Statistics of the whole dataset. The #labels de-
note the number of workers who annotated the labels
remaining after the post-processing. The class distribu-
tion. columns denote the percentages of TOP, “Both
okay”, and NOM in the answers.

our preferences were in agreement; one of the 10
questions is a validation example. Then, we listed
the motivated workers who can answer the valida-
tion question correctly. At this stage, 164 workers
were selected in the C+S+A and S+A settings, and
153 workers were selected in the A setting. 6

Annotation. For each instance (c, s, a)d of the
1,661 data points collected in Section 3.2, eight of
the motivated workers annotated the preferences.
Each worker solved at least ten instances. The
same worker is not annotated to the same instance
in different settings. After the whole annotation
process, we performed statistical post-processing to
exclude workers in the bottom 30% of competence
using MACE (Hovy et al., 2013). We removed the
data points annotated by fewer than four qualified
workers.

Finally, 23,745 decisions selecting TOP or NOM
for 1,355 nominative arguments were collected,
where 758 instances originally have the TOP parti-
cle for nominative argument a, and 597 instances

6We conducted crowdsourcing in two separate sessions; in
the first session, we adopted the S+C+A and C+A settings, and
in the second, we adopted the A setting. In each session, after
the trial task, the worker’s confidence level was calculated by
MACE (Hovy et al., 2013). Then, the top 80% of workers (164
and 153 workers for the first and second session, respectively)
were selected.

have NOM.

3.4 Statistics
The number of human decisions and their class
distribution is shown in Table 3. The length of the
context c, sentence s, and nominative argument
a was 96.3±53.7, 50.1±24.4, and 4.5±2.2 in the
number of characters (mean±standard deviation),
respectively.7

The annotation agreement was 0.689 and 0.699
for Krippendorff’s alpha for the settings of C+S+A
and S+A, respectively.8 These values are above the
minimum criteria for data reliability (0.667) (Krip-
pendorff, 2004). In contrast, the agreement in the
A settings (0.074) was far below the criteria. One
plausible cause of such a low score is that the major-
ity of annotators answered as “both okay” in these
settings. This skewed the class distribution, and the
alpha value is affected by class imbalances (Jeni
et al., 2013). Since many workers answered “both
okay,” we tentatively conclude that making topi-
calization judgments in this setting is difficult for
Japanese speakers.

4 Data analysis: Context effect in
topicalization

Before our experiments, we preliminarily observed
the characteristics of the collected data. If all the
annotated preference remains unchanged regard-
less of the inter-sentential context, our data are not
suitable for analyzing the discourse-level behaviors
in LMs. Our analysis declines such a concern.

7The Japanese language has no explicit word boundary.
As an approximation of word count, context c, sentence s,
and nominative argument a have 56.4±31.7, 29.5±14.4, and
2.8±1.1 morphemes, respectively. We used a JUMAN dictio-
nary for morphological analysis (Kawahara and Kurohashi,
2006).

8We used the weighted Krippendorff’s alpha, where we
assumed the distance scale as TOP ≺ “both okay” ≺ NOM.
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#Mentions #Arguments rC+S+A
human

0 1,082 0.48 ± 0.43
1 197 0.87 ± 0.25

2+ 76 0.90 ± 0.22

Table 4: Frequently mentioned information in a con-
text (i.e., higher #Mention) is likely to be topicalized
(i.e., higher rC+S+A

human ). #Argument is the number of the
corresponding data points. The mean and standard de-
viation of rC+S+A

human are presented.

Context effect on topicalization confidence.
We first analyze the interaction between topicaliza-
tion preference and context, regarding the linguistic
theory that already-mentioned, old information is
more likely to be topicalized by the topic marker
in Japanese (Matsushita, 1930). We observed that
the nominative argument frequently mentioned in
its context tends to gain a higher topicalization
ratio rC+S+A

human (Table 4). This supports that the cre-
ated data reflect linguistically natural trends at the
discourse level. Here, we used the co-reference
annotation in the NTC to count how many times
the same entity as the nominatives appeared in the
preceding context.

Next, for each instance (c, s, a)d, we quanti-
fied the context-dependent changes in topicaliza-
tion preference as follows:

∆human = rC+S+A
human − rS+A

human . (2)

Here, ∆ denotes the change in the level of cer-
tainty in choosing TOP due to the presence of inter-
sentential context.9 Intuitively, a larger ∆ indicates
more votes on the topic marker when the context is
available.

Figure 2 shows the distribution of the preference
difference attributed to the inter-sentential context
(∆human). We found that the preference changed
depending on the presence of inter-sentential con-
text (about 53% of data points have non-zero
∆human).

Challenging set for probing LMs. The dataset
has context-dependent nature, but there are also
data points for which discourse-level context does
not affect human behavior, we also created a chal-
lenging set. In this set, the context information

9We tentatively adopted the difference of the ratio rather
than, for example, ratio ∆human = rC+S+A

human /rS+A
human. At least

in the case of ratio, it is counter-intuitive to assume a change
of 2 when the votes for TOP increase from 1 to 2, and 1.2
when they increase from 5 to 6.

1.0 0.5 0.0 0.5 1.0

human

101

102

103

#
d

at
a 

p
oi
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s

Figure 2: Histogram of the change in the topicalization
ratio due to the presence of context (∆human).

is considered necessary for choosing TOP or NOM.
Specifically, we selected the instances (c, s, a)d
satisfying either of the following criteria:

• Original text and crowd workers demonstrated
that a should be topicalized (rC+S+A

human > 0.5),
and inter-sentential context affected such a
decision (∆human is in the top 25%).

• Original text and crowd workers demonstrated
that a should not be topicalized (rC+S+A

human <
0.5), and inter-sentential context affected such
a decision (∆human is in the bottom 25%).

Finally, we obtained 311 instances, among which
209 instances originally had the TOP particle as
the nominative argument a, and 102 instances had
NOM. The statistics of the challenging set are shown
in Appendix. We used this challenging set along
with the whole dataset for our experiments to test
the LMs (Section 5).

5 Experiments: Comparing LMs with
humans

Do LMs exhibit human-like topicalization prefer-
ences? To answer this question, we compared con-
trast the preferences of LMs and humans.

5.1 Experimental settings

Language models. We tested three variants
of left-to-right LMs: Transformer-based LM
with 400M parameters (TRANS-L), Transformer-
based LM with 55M parameters (TRANS-S),
and an LSTM-based LM with 55M parameters
(LSTM) (Vaswani et al., 2017; Hochreiter and
Schmidhuber, 1997). They were trained with about
3M paragraphs from Japanese newspapers and
Wikipedia (3.4GB before any tokenization) with
100K parameter updates. The input was segmented
into morphemes by JUMAN (Kawahara and Kuro-
hashi, 2006), and further into subwords by senten-
cepiece (Kudo and Richardson, 2018), where the
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Model Setting ρr ρ∆ Macro F1 TOP F1 NOM F1

TRANS-L
C+S+A 0.67 −0.12

83.5 88.8 78.3
S+A 0.60 81.7 87.6 75.8

TRANS-S
C+S+A 0.72 −0.07

85.3 89.5 81.1
S+A 0.61 83.7 88.1 79.3

LSTM
C+S+A 0.69 −0.20

81.9 86.9 77.0
S+A 0.62 82.3 87.1 77.5

Human
C+S+A -

-
(100) (100) (100)

S+A - 81.1 86.5 75.7

Table 5: Results for the challenging set. The ρr denotes the rank correlation coefficient of the topicalization ratio
exhibited by humans and LMs in each setting. The ρ∆ denotes the rank correlation coefficient of the change in
the topicalization ratio due to the presence of inter-sentential context in humans and LMs. The F1 scores were
calculated with the topicalization judgment in the original text.

unigram model was used (Kudo, 2018).10 Their
hyperparameters are provided in Appendix.

Preferences of LMs. Analogous to Equation 1,
we quantified the preferences of topicalization in
LMs. In the S+A setting, for example, we created
the MDTP of sTOP and sNOM for each instance (c, s,
a)d. Then, aligned with Equation 1, we calculated
topicalization ratio of LMs as follows:

rLM =
n(sTOP)

n(sTOP) + n(sNOM)
,

n(s) :=

|s|∏

i=1

p(wi|w<i)
1
|s| , (3)

where n(s) is the generation probability of a given
sentence computed by an LM.

For each data point, two variants of topicaliza-
tion ratio rLM were calculated: rC+S+A

LM with the
context c, and rS+A

LM without c. The score rS+A
LM was

calculated with Equation 3, while rC+S+A
LM was cal-

culated using conditional probabilities n(s|c) =
∏|s|
i=1 p(wi|c, w<i)

1
|s| , instead of n(s), in Equa-

tion 3.

Metrics We tested the LMs in terms of whether
the level of certainty in choosing TOP was human-
like. Specifically, Spearman’s rank correlation coef-
ficient between rC+S+A

human and rC+S+A
LM (henceforth,

ρr) was measured. We expect that the more humans
prefered TOP the more did LMs too.

Furthermore, to analyze whether the sensitivity
of LMs to the context is human-like, we computed

10We used character coverage=0.9995, vocab size=100,000.

the change in LMs’ topicalization preferences, anal-
ogous to Equation 2:

∆LM = rC+S+A
LM − rS+A

LM .

To quantify the similarity of context-sensitive pref-
erence change in LMs and humans, the rank corre-
lation coefficients between ∆human and ∆LM were
reported (henceforth, ρ∆).

Additionally, we reported F1 scores of the hu-
mans and LMs, regarding the particle choices
(i.e., TOP or NOM) in the original text as the
gold reference. Here, humans/LMs were consid-
ered to choose TOP when the topicalization ratio
rhuman/LM exceeded 0.5; otherwise, they were con-
sidered to choose NOM. Note that the corpus is from
newspapers; more or less, these judgments reflect
the proper use of the Japanese topic marker.

5.2 Results

Table 5 shows the results for the challenging set.
In all the settings, we observed moderate correla-
tions between humans and LMs with respect to the
topicalization preferences (i.e., the ρr column).

Non-human-like context sensitivity. Despite
the somewhat high correlations in topicaliza-
tion preferences ρr, the correlation of context-
sensitivity between humans and LMs ρ∆ was nega-
tive; the changes in the topicalization preferences
due to the presence of inter-sentential context dif-
fers between humans and LMs. This difference
reveals that the context use of LMs and humans has
substantial gaps.
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Model Setting ρr ρ∆ Macro F1 TOP F1 NOM F1

TRANS-L
C+S+A 0.80 −0.04

88.1 89.3 86.8
S+A 0.78 87.5 88.8 86.2

TRANS-S
C+S+A 0.80 −0.02

87.7 88.8 86.5
S+A 0.78 87.3 88.3 86.3

LSTM
C+S+A 0.79 −0.01

85.2 86.4 84.1
S+A 0.78 85.3 86.4 84.2

Human
C+S+A -

-
89.7 91.0 88.4

S+A - 89.1 90.4 87.8

Table 6: Results for the whole dataset. The ρr denotes the rank correlation coefficient of the topicalization ratio
exhibited by humans and LMs in each setting, and ρ∆ denotes the rank correlation coefficient of the change in
the topicalization ratio due to the presence of the inter-sentential context in humans and LMs. The F1 scores were
calculated with the topicalization judgment in the original text.

LMs’ insensitivity to inter-sentential context.
Focusing on the differences in the F1 scores be-
tween C+S+A and S+A settings, little difference
exists among the LM results. In addition, LMs
typically outperform humans in terms of the F1
scores in the S+A setting. Specifically, as for the
LSTM results, we obtained a somewhat strange
tendency that better topicalization decisions were
made better when the context is not considered.
These results raise the suspicion that LMs might
have made the topicalization decision with some
non-contextual cues and might have performed gen-
eralizations different from those of humans.

Examples. Table 1 shows several examples of
preferences of humans and LMs toward topical-
ization. The third example in Table 1, which be-
longs to the challenging set, highlighted the dis-
crepancy between humans and LMs with respect
to the context-(in)dependent preferences for topi-
calization. While humans chose TOP only when
considering the preceding context, preferences of
LMs did not change when the context information
was provided.

Results in the whole dataset. We also bench-
marked the topicalization judgments of the LMs in
the whole dataset that we created by crowdsourc-
ing, without limiting to the challenging set. Ta-
ble 6 shows the results. Notably, even in the whole
dataset, there is almost no correlation of context-
sensitivity ρ∆ between humans and LMs.

Model ρr
F1

Macro TOP NOM

TRANS-L 0.18 63.8 71.1 56.5
TRANS-S 0.18 65.9 72.3 59.4

LSTM 0.17 65.1 71.9 58.4
Human - 36.8 14.0 59.3

Table 7: The results for the A setting, where the nom-
inative constituent alone was shown to the subjects for
making the topicalization judgment.

6 Analysis

Our experiments showed that the topicalization de-
cision of LMs is unreasonably decontextualized.
To further understand such non-human-like behav-
iors of LMs, we investigated their behavior in situ-
ations with extremely limited context information.

As introduced in Section 3.4, we observed that
humans struggle with topicalization judgment in
the setting where the nominative constituent alone
is shown (the A setting; Table 2). We tested
whether LMs also exhibit such human-like diffi-
culties when dealing with the whole dataset under
the A setting. Notably, the purpose of this analysis
is to find the situation in which LMs deviate from
humans.

Language model preference. For each nomina-
tive argument a in the dataset, we computed the
topicalization ratio when only the a is shown to
LMs. Specifically, LMs computed the generation
probability of, for example, Kabin-ga and Kabin-
wa, regardless of any context, and subsequently, we
compared these probabilities as per Equation. 3.
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Results. Table 7 shows the results of the topi-
calization preferences when only the nominative
constituent was shown to LMs/humans. First, the
F1 scores of the LMs were surprisingly higher than
those of the humans. This suggests that LMs could
somehow predict the postpositional particle (TOP
or NOM) without access to contextual information,
although topicalization is a discourse-level phe-
nomenon. Second, the correlation of topicalization
ratio between LMs and humans was quite low. This
result suggests that topicalization preferences of
the LMs for nominative constituents deviate from
those of humans.

7 Discussion

Contributions to linguistics. We posit that our
dataset itself is also valuable for linguistic studies.
Topicalization in Japanese has captured the atten-
tion in the field of linguistics for more than half
a century (Matsushita, 1930; Kuno, 1973; Noda,
1996), but resources created using a large-scale
corpus and crowdsourcing have been limited.

The observed relationship between mention fre-
quency and topicalization preference (Table 4), for
example, could be viewed as empirical support
for the relationship between the newness of infor-
mation and topicalization preference (Matsushita,
1930). The whole dataset also suggested that the
intra-sentential context provides informative clues
for topicalization judgment, regarding the relatively
high agreement in the S+A setting. This implies
that the use of TOP could not often be aligned
to context-dependent topicalization phenomena;
this view is consistent with Imamura et al. (2014).
Note that such context-independent instances are
excluded from the challenging set.

Testing coherence models. While we evaluated
only the vanilla LMs, there are several options for
coherence modeling, such as entity-based coher-
ence models (Barzilay and Lapata, 2008) and neu-
ral LMs that are explicitly trained with coherence
objectives (Jwalapuram et al., 2022). It would be in-
teresting to investigate whether such models exhibit
more human-like behaviors in terms of topicaliza-
tion preference.

8 Conclusions

We have compared the preferences of LMs and
humans for topicalization, an essential aspect of
discourse. The results suggest that there exists a

discrepancy between humans and LMs with respect
to the generalizations for topicalization. This im-
plication leads us to future research: what type of
inductive biases in model architecture or training
objectives can lead to more human-like generaliza-
tions in discourse-level linguistic aspects?
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Setting #labels class distribution
TOP Both okay NOM

C+S+A 1,853 65.7% 1.73% 32.5%
S+A 1,900 54.9% 8.47% 36.6%

A 1,732 2.02% 97.1% 0.88%

Table 8: Statistics for the challenging set. The #labels denote the number of workers who annotated the labels
remaining after the post-processing. The class distribution columns denote the percentages of TOP, “Both okay”,
and NOM in the answers.

Parameters TRANS-L TRANS-S LSTM

Fairseq model

architecture transformer_lm_gpt2_small transformer_lm_gpt lstm_lm
adaptive softmax cut off 50,000, 140,000 50,000, 140,000 50,000, 140,000
share-decoder-input-
output-embed

True True True

embed_dim 1,024 384 400
ffn_embed_dim 4,096 2048 -
hidden_size - - 1,024
layers 24 8 2
heads 16 6 -
dropout 0.1 0.1 0.1
attention_dropout 0.1 0.1 -

Optimizer

algorithm AdamW AdamW AdamW
learning rates 5e-4 5e-4 1e-3
betas (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
weight decay 0.01 0.01 0.01
clip norm 0.0 0.0 0.0

Learning rate scheduler
type inverse_sqrt inverse_sqrt inverse_sqrt
warmup updates 4,000 4,000 4,000
warmup init lrarning
rate

1e-7 1e-7 1e-7

Training batch size 61,440 tokens 61,440 tokens 20,480 tokens
sample-break-mode none none none

Table 9: Hyperparameters of the language models.

862



Proceedings of the 29th International Conference on Computational Linguistics, pages 863–874
October 12–17, 2022.

“No, they did not”: Dialogue response dynamics in pre-trained language
models

Sanghee J. Kim1, Lang Yu2, Allyson Ettinger1
1Department of Linguistics, University of Chicago

2Meta
{sangheekim,aettinger}@uchicago.edu, langyu@fb.com

Abstract

A critical component of competence in lan-
guage is being able to identify relevant com-
ponents of an utterance and reply appropriately.
In this paper we examine the extent of such
dialogue response sensitivity in pre-trained lan-
guage models, conducting a series of experi-
ments with a particular focus on sensitivity to
dynamics involving phenomena of at-issueness
and ellipsis. We find that models show clear
sensitivity to a distinctive role of embedded
clauses, and a general preference for responses
that target main clause content of prior utter-
ances. However, the results indicate mixed and
generally weak trends with respect to capturing
the full range of dynamics involved in target-
ing at-issue versus not-at-issue content. Addi-
tionally, models show fundamental limitations
in grasp of the dynamics governing ellipsis,
and response selections show clear interference
from superficial factors that outweigh the influ-
ence of principled discourse constraints.

1 Introduction

Competence in language involves understanding
complex principles governing relevance of previous
content and dynamics of referring back to that con-
tent. Certain parts of an utterance are more central
and more likely to receive a response than others,
and the pragmatic and grammatical rules governing
responses in dialogue interact with the nature of
the content being responded to. Humans are highly
sensitive to these distinctions, and we can expect
these sensitivities to be critical for robust models
in NLP, and especially for dialogue.

Here we examine sensitivity to these dialogue
response dynamics in pre-trained language mod-
els (PLMs). PLMs are now used as foundation
for nearly every downstream NLP task, including
dialogue applications (e.g., Upadhye et al., 2020;
Koto et al., 2021). The impressive downstream
performance enabled by these models has raised
important questions about what types of linguistic

competence are being learned during pre-training—
and though there is a growing body of work answer-
ing aspects of this question, topics of pragmatic and
dialogue competence have been relatively under-
studied. In this paper we focus on addressing this
gap, and in particular on understanding the extent
to which PLMs develop sensitivity to dynamics
governing responses in dialogue. Though these
PLMs are not trained to engage in dialogue per se,
they can be expected to encounter dialogue dur-
ing training (in, for instance, novels), so it is not
unreasonable to expect that they may learn about
such dialogue dynamics along with other linguis-
tic competences. The strength of these models’
sensitivity to such dynamics has important implica-
tions for robustness in dialogue applications, since
a strong grasp of dialogue dynamics in standard
PLMs stands to reduce fine-tuning needs and en-
able more robust downstream behaviors.

We begin with the notion of at-issueness. A com-
ponent of an utterance is considered at-issue if it is
part of the “main point” of the utterance—this is
to be contrasted with side comments or mentions
of background knowledge, which are not the main
focus of the sentence. As we lay out in Section 3.1,
the distinction between at-issue and not-at-issue
content of an utterance is reflected directly in the
nature of responses to that utterance. We thus exam-
ine models’ preferences for different responses, to
assess whether the preferences reflect understand-
ing of at-issueness and how to respond to it. We
find that models show consistent preference to tar-
get at-issue (main clause) content, but mixed and
overall fairly weak sensitivity when it comes to the
full range of dynamics involved with at-issueness.

These assessments of at-issueness sensitivity are
also critically reliant on another aspect of dialogue
response dynamics: ellipsis. We thus additionally
make a closer examination of the extent to which
constraints from context dictate models’ selection
of auxiliary verbs (such as did, does, would) in el-
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lipsis constructions. We find that although models
often favor an auxiliary verb that targets the main
clause, they also make frequent errors, and they
very rarely favor both of the auxiliary forms that
align with the prior context. These results further-
more raise the important possibility that models
are highly sensitive to preferences for particular
auxiliary verb types, and that this could drive the
at-issueness results as well. With this in mind we
revisit the at-issueness experiments, and find that,
indeed, there are substantial differences in mod-
els’ preferences depending on the identity of the
particular verb that targets the relevant content.

Overall, our results suggest that PLMs have
non-trivial gaps in their understanding of response
dynamics in dialogue. Our results also indicate
certain differences between models: BERT and
RoBERTa show strong bias toward selecting re-
sponses that target the most recent and/or main
clause content, while other models show more re-
liance on individual auxiliary verb properties. In
all cases the results indicate that these PLMs have
not yet achieved ideal sensitivity to response dy-
namics involving at-issueness and ellipsis, and that
effectiveness in dialogue will benefit from addi-
tional training approaches. We make all datasets
and code available for further testing.1

2 Related work

Recent years have seen extensive work on analy-
sis of PLMs. Methodologically, some of the most
popular analysis paradigms targeting model em-
beddings have included classification-based prob-
ing (e.g., Kim et al., 2019; Zhang et al., 2019) and
correlation with similarity judgments (Finkelstein
et al., 2001; Gerz et al., 2016; Conneau and Kiela,
2018). Other work has analyzed PLMs by elicit-
ing and analyzing output predictions (Linzen et al.,
2016; Goldberg, 2019). Our work here focuses pri-
marily on the latter methodology, examining and
comparing model output probabilities—however,
our analysis in Section 5.4 uses classification-based
probing. Our work also builds on approaches im-
plementing specialized sentence generation sys-
tems that produce large annotated datasets (Ettinger
et al., 2018; McCoy et al., 2019).

Analyses of PLMs have targeted a variety of
types of linguistic competence. In particular, a
large body of work has studied the extent to which

1https://github.com/sangheek16/
dialogue-response-dynamics

PLMs capture syntactic and semantic informa-
tion (Linzen et al., 2016; Peters et al., 2018; Bacon
and Regier, 2019; Hewitt and Manning, 2019; Ten-
ney et al., 2019). Less work has addressed the
extent to which PLMs show sensitivity to prag-
matic and discourse information, as we focus on
in this paper. Kurfalı and Östling (2021) study
multilingual models in various discourse tasks via
zero-shot learning. Pandia et al. (2021) investigate
LMs’ pragmatic competence to predict discourse
connectives. Pitler and Nenkova (2009) report that
a supervised classifier is able to identify discourse
relations given syntactic features along with con-
nectives. Patterson and Kehler (2013) implement
a similar idea and show that classifiers are able
to predict the presence of a connective based on
shallow linguistic cues. Koto et al. (2021) explore
pre-trained language models’ capability in captur-
ing discourse level relations. We complement this
existing work by branching into new areas of prag-
matic and discourse knowledge, examining models’
sensitivity to dialogue response dynamics.

Another closely related literature is that in which
PLMs, especially transformer LMs, are used for
building dialogue systems directly. Le et al. (2019)
propose Multimodal Transformer Networks (MTN)
for visual-grounded dialogue tasks. Other work
investigates topic-driven language models for emo-
tion detection in dialogues (Zhu et al., 2021).
Oluwatobi and Mueller (2020) report state-of-
the-art performance on dialogue generation using
transformer-based models. There are also language
models designed for and trained on dialogue or
conversation, such as TransferTransfo (Wolf et al.,
2019), PLATO (Bao et al., 2020), ConveRT (Hen-
derson et al., 2020), TOD-BERT (Wu et al., 2020),
DialoGPT (Zhang et al., 2020), DialogBERT (Gu
et al., 2021), and LaMDA (Thoppilan et al., 2022).

Here we focus on clarifying the extent to which
PLMs pre-trained in the standard paradigm can de-
velop knowledge of dialogue dynamics prior to any
specialized dialogue training. This line of inquiry
serves to broaden our general understanding of lin-
guistic competence of standard PLMs, and also
has implications for use of these standard PLMs as
foundation for further dialogue-specific training.

3 Background

3.1 At-issueness

Our analyses focus on the dynamics that govern
responses in dialogue, and aspects of prior utter-
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ances that they target. The first notion that we
test for in PLMs is sensitivity to “at-issueness.”
At-issueness refers to content’s status as the main
point of the utterance—to be contrasted with not-at-
issue content, such as side comments and assumed
knowledge (see Potts (2005) for a comprehensive
overview). Humans are sensitive to which content
in an utterance is “at-issue” and which content is
not—and this sensitivity is reflected in dialogue
response dynamics. Consider the utterance in (1).

(1) The nurse, who has interest in French cui-
sine, adopted a rescue dog.

If a listener responds to (1) with “No” or “That’s
not true,” they would most likely be objecting to
the claim that the nurse adopted a rescue dog, since
this is the main point (at-issue content) of (1). It
is less likely that they would be objecting to the
side comment about French cuisine. As a result, a
response of “No, he didn’t (adopt a rescue dog),”
would be natural, while “No, he doesn’t (have in-
terest in French cuisine)” would be less so.

This intuition drives a key diagnostic used to dis-
tinguish at-issue and not-at-issue content, known
as the Rejection & Peripherality Test (or the As-
sent/Dissent Test) (Amaral et al., 2007; Koev, 2013;
Syrett and Koev, 2015). The “rejection” compo-
nent of this test is illustrated in (2). Speaker B1

replies to Speaker A’s utterance with a rejection
(“No”), and uses the elliptical verb phrase (“did
not”) that targets the (at-issue) content of the main
clause (“The nurse adopted a rescue dog.”), for
a natural and appropriate response. In contrast,
Speaker B2 rejects the (not-at-issue) content inside
the appositive relative clause (ARC), which is less
natural (indicated with ‘#’).

(2) a. Speaker A: “The nurse, who has inter-
est in French cuisine, adopted a rescue
dog.”

b. Speaker B1: “No, he did not.” [Target-
ing at-issue content]

c. Speaker B2: #“No, he does not.” [Tar-
geting not-at-issue content]

There is, however, a more natural way to object
to not-at-issue content: pausing the dialogue to
question a side comment or assumption. This is
highlighted in the peripherality test, which uses
phrases like, “Hey, wait a minute” (von Fintel,
2004; Amaral et al., 2007), or “Wait, this is pe-
ripheral to your point but...” (Koev, 2018) in order

to make targeting not-at-issue content more accept-
able. We show an example in (3).

(3) a. Speaker A: “The nurse, who has inter-
est in French cuisine, adopted a rescue
dog.”

b. Speaker B: “Wait no, he does not (have
interest in French cuisine).” [Targeting
not-at-issue content]

Human sensitivity to this pattern of relationship
between at-issueness and “No” versus “Wait no”
response types has been well attested in psycholin-
guistic experiments. Syrett and Koev (2015) in
their Experiment 1 find that when selecting be-
tween responses that target not-at-issue content in
an embedded clause of a prior utterance, humans
are much more likely to choose a response of type
“Wait no” (77%) than of type “No” (23%).2 By
contrast, when selecting between responses that
target at-issue content in a main clause of a prior
utterance, humans’ rate of selection of these two
response types is roughly even. In their Experi-
ment 2, Syrett and Koev (2015) furthermore show
that when selecting among “No” type responses,
humans have a strong preference for choosing
those that target at-issue content of prior utterances
(73.9%) compared to not-at-issue content (26.1%).

Leveraging this knowledge of human sensitivi-
ties, we make use of diagnostics modeled after the
Rejection & Peripherality Test to examine whether
PLMs are also sensitive to these discourse dynam-
ics involving at-issueness and response type. For
structuring not-at-issue content, we focus on ARCs
as used in the examples above.

3.2 Ellipsis

The examples above make critical use of the gram-
matical phenomenon of ellipsis: use of abbrevi-
ated verb phrases that refer back to previous verb
phrases. In ellipsis, typically an auxiliary verb (like
did, does, would) remains as the verb in the elided
verb phrase—for instance: “No, he didn’t” is an
elided form that could refer back to “The nurse
adopted a rescue dog,” standing in for the longer
phrase “No, he didn’t adopt a rescue dog.” Ellipsis
is another critical component of forming responses
in dialogue, and it plays an important prerequisite
role in assessing at-issueness. For these reasons,
we also test models’ grasp of ellipsis in dialogue.

2The specific wordings in this experiment were “Hey, wait
a minute,” and “That’s not true.”
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4 Experiments

4.1 Construction of test items
To enable controlled tests inspired by the structure
of the Rejection/Peripherality tests, we generate
items using templates. Each input item consists of a
sequence of two sentences: (a) a context sentence,
and (b) a response sentence.

We generate the context sentences based
on a core template of “NOUNPHRASE, who
VERBPHRASE1, VERBPHRASE2.” This structure
includes an embedded ARC (not-at-issue content)
and an embedding main clause (at-issue content),
as in our example (1) above: The nurse, who has in-
terest in French cuisine, adopted a rescue dog. For
the noun phrases, we sample from a list of nouns
referring to names of occupations (e.g., nurse, re-
porter, violinist). As for verb phrases, to ensure
that it would always be unambiguous whether a
rejection is targeting the main or the embedded
clause, for each item we control the verb phrases
of the two clauses such that they will always be
targeted by different elided verbs in the response
sentence. To do this we create ordered verb pairs
from six unique auxiliary verbs is, was, does, did,
has, could, with the first verb assigned to the em-
bedded clause, and the second assigned to the main
clause. This resulted in 30 (=6P2) unique verb
type pairings. We then draw from a list of verb
phrases associated with each auxiliary verb: for in-
stance, the verb phrases for the auxiliary verb does
contain examples such as has interest in French
cuisine, and enjoys hiking; for the verb did, the
verb phrases include adopted a rescue dog, and met
the Illinois governor at a Greek restaurant. We
randomly sample from these verb phrases for each
verb pair, with the phrase for the first verb assigned
to the VERBPHRASE1 position in the template,
within the ARC, and the second verb phrase to the
VERBPHRASE2 position, in the main clause. Ten
unique sentences were generated for each verb pair,
resulting in 300 context sentences (= 30 verb pairs
* 10 sentences). Because of our use of the ordered
pairs, every auxiliary verb is equally likely to be
the correct form for targeting either at-issue content
or not-at-issue content of a context sentence.

The response sentences then include a “header”
consisting of either No or Wait no, a subject pro-
noun (sampled randomly to avoid pronoun gender
biases), an auxiliary verb targeting either the main
clause or embedded clause, and not. For example,
response sentences might consist of “No, she does

not,” or “Wait no, he has not.” The differences in
these headers are the critical factor that impacts
whether a response sentence can reasonably target
(not-)at-issue content in the context sentence—and
the auxiliary verb indicates which verb phrase in
the context sentence is being targeted.

In constructing these items, an additional con-
sideration is how to create a setting in which the
PLMs may naturally recognize the input as describ-
ing a dialogue. We choose to present the items
in a format of dialogue resembling that in novels,
where entities are described explicitly as uttering
the relevant statements. Our final templates thus
take a form as shown in example (4) below.3 We
randomly sample the speaker names (e.g., Marco,
Ellie) from a list of 400 names, ensuring that no
two names repeat in a given item.

(4) Marco said, “The nurse, who has interest
in French cuisine, adopted a rescue dog,”
and Ellie replied, “{No / Wait no}, he {did
/ does} not.”

4.2 Models tested

In all of our experiments below, we test six PLMs.
Of these models, five are masked language models
(MLMs): BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), XLM-RoBERTa (Conneau et al.,
2020), DistilBERT and DistilRoBERTa (Sanh et al.,
2019). The final model is a causal (unidirectional)
language model (CLM): DistilGPT2 (Hugging-
Face). We used the implementations of these mod-
els made available through the HuggingFace Trans-
formers library (Wolf et al., 2020).

5 At-issueness tests

5.1 Header preferences

We begin by asking whether models, like humans,
are sensitive to the role of the response “header”
(“No” vs. “Wait no”) in whether a rejection can
naturally target (not-)at-issue content. In line with
Experiment 1 in Syrett and Koev (2015), we begin
by testing whether models recognize that “No” is
an appropriate header when the response auxiliary
targets the main clause, but “Wait no” is critically
more appropriate when the response auxiliary tar-
gets the embedded clause. To do this, for a given

3We also tested with a simpler dialogue style: A: “The
nurse, who has interest in French cuisine, adopted a rescue
dog.” B: “{No / Wait no}, he {did / does} not.” This format-
ting difference did not significantly change the results in the
experiments for which we made this comparison.
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Figure 1: Header selection. The Y-axis indicates the
ratio of the “No” header having higher probability than
the “Wait no” header given the same verb phrase in the
target sentence. The X-axis indicates the target content:
‘main clause’ condition is when the main clause is tar-
geted; ‘ARC’ condition is when the embedded clause is
targeted. Dashed lines are human performance baseline
reported in Syrett and Koev (2015) (Experiment 1). Er-
ror bars = 95% Confidence Interval.

item we hold constant the auxiliary verb in the re-
sponse sentence (e.g., did/does/has), and we com-
pare the model probabilities for headers of “No” vs
“Wait no.” The auxiliary verb for a given item ei-
ther targets the main clause (at-issue) content of the
context sentence, or targets the embedded clause
(not-at-issue) content. Since these items are dif-
ferent lengths depending on the choice of header,
we compare the conditional log probability of the
full sequence, normalized by length, for both MLM
and CLM models. For MLMs, we compute pseudo-
log-likelihoods, which are obtained by summing
the conditional log probabilities of each sentence
token (as in Salazar et al. (2020)), and normalizing
by number of input tokens.4

Figure 1 shows the percentage of items for which
the model assigns a higher probability to the se-
quence with “No” than with “Wait no,” separated
based on whether the response auxiliary verb tar-
gets the main clause (at-issue content) or embedded
clause (not-at-issue content). We see that regard-
less of which clause the response auxiliary targets,
models always prefer the “No” header to the “Wait
no” header, in a strong contrast with humans’ in-
tuition that “Wait no” is much better for targeting
not-at-issue content.

5.2 Comparing auxiliary preferences

While the above result casts doubt on models’ sen-
sitivity to the relationship between at-issueness and
response headers, we might wonder whether “No”

4We use the minicons library (Misra, 2022) for conditional
sequence probabilities for all models.

is simply too strong or too frequent a response. Ad-
ditionally, the fact that “No” and “Wait no” are
different in lengths raises questions about whether
the probability comparisons are fair in the MLMs
(in which use of full sentence probabilities is also
a bit atypical).

To explore a different angle on this question,
we therefore shift to a direct examination of mod-
els’ preferences for response auxiliaries that target
the at-issue content, versus those that target not-
at-issue content—and how this is affected by the
nature of the “No” versus “Wait no” header. This
allows us to examine the MLMs in a more natural
setting (assessing probabilities on a single masked
position), and also allows us to examine how head-
ers impact models’ choices for what contextual
content should be targeted.

In these experiments, for MLMs we simply place
a [MASK] token at the response auxiliary position
and compare auxiliary probabilities at that position:

(5) Marco said, “The nurse, who has interest in
French cuisine, adopted a rescue dog,” and
Ellie replied, “{No / Wait no}, he [MASK]
not.”

For the CLM, we compare probabilities for the full
sequence, with one of two candidate auxiliaries in
the target position (as in the previous experiment).
The two candidate auxiliaries that we insert are
simply the two most relevant: the auxiliary that
targets the main clause (at-issue content), and the
one that targets the embedded clause (not-at-issue
content).

Figure 2 shows the percentage of the time that
each model assigns higher probability to the aux-
iliary targeting the at-issue content, over the auxil-
iary targeting the not-at-issue content.5 We see that
all models prefer the at-issue-targeting auxiliary
at a rate greater than chance, with some models
(BERT, RoBERTa) showing preference for target-
ing the at-issue content almost 100% of the time.
The question, then, is whether the use of “Wait no”
reduces the rate of targeting the main clause—given
that this header allows for targeting of not-at-issue
content. A one-sided t-test shows that the selection
ratio of the at-issue content is indeed larger with
the “reject” header compared to the “wait” header

5Based on the human performance in Syrett and Koev
(2015) (Experiment 2), we could expect a humanlike ratio of
selecting at-issue content with the “No” header to be 0.789.
This version of the human experiment did not obtain a ratio
for the “Wait no” header.
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Figure 2: Rejection test. The Y-axis indicates the per-
centage of instances in which models show preference
for responses targeting at-issue content over not-at-issue
content. The X-axis indicates type of header in the input
sequence: ‘Reject’ = “No” header; ‘Wait’ = “Wait no”
header. Error bars = 95% Confidence Interval.

in most of the tested models, at reasonable levels of
statistical significance (BERT: t = 2.716, p=0.003;
RoBERTa: t = 1.489, p = 0.069; XLM-RoBERTa:
t = 2.115, p = 0.017; DistilBERT: t = 0.597, p =
0.275; DistilRoBERTa: t = 2.056, p = 0.02; Distil-
GPT2: t = 1.671, p = 0.048). This suggests that at
least some of the models may have picked up on
some relationship between these headers and target-
ing of at-issue versus not-at-issue content, though
it is also clear that these trends are relatively weak.

5.3 Conjunction
The above results show that PLMs exhibit a strong
preference for auxiliaries that target the main clause
of the context sentence. How should we interpret
this preference for targeting the main clause? An
immediate question that arises is whether this pref-
erence could be due to recency alone: in our items,
the verb phrase in the main clause of the context is
also always the more recent verb phrase before the
response sentence. To investigate this possibility,
we modify our items to involve two verb phrases in
the context sentence, but with the phrases joined by
conjunction (6). This means that both verb phrases
are now at-issue, and any preference for one over
the other can be attributed to recency.

(6) Marco said, “The nurse has interest in
French cuisine and adopted a rescue dog,”
and Ellie replied, “{No / Wait no}, he
[MASK] not.”

We again compare model probabilities with each
of the two valid candidate auxiliaries. Figure 3
shows the percentage of items for which the mod-
els prefer the auxiliary that targets the more recent

0.0
0.2
0.4
0.6
0.8
1.0

P
er

ce
nt

 re
ce

nt
 V

P BERT RoBERTa XLM-RoBERTa

reject wait
0.0
0.2
0.4
0.6
0.8
1.0

P
er

ce
nt

 re
ce

nt
 V

P DistilBERT

reject wait

DistilRoBERTa

reject wait

DistilGPT2

Figure 3: Conjunction test. The Y-axis indicates per-
centage of instances in which models show preference
for responses targeting more recent verb phrases over
more distant verb phrases. The X-axis indicates type of
header in the input sequence: ‘Reject’ = “No” header;
‘Wait’ = “Wait no” header. Dashed lines mark chance
level (50%). Error bars = 95% Confidence Interval.

verb phrase in the context sentence. It is clear from
these results that the trend toward targeting main
clause content in Figure 2 cannot be attributed to
recency alone: a majority of models are now hover-
ing around 50% in targeting the most recent phrase,
with DistilGPT2 in fact showing a preference to
target the more distant phrase rather than the more
recent one. BERT and RoBERTa, by contrast, do
both show some bias to target the more recent verb
phrase—however, this trend is substantially weaker
than the trend in Figure 2, indicating that although
these models do prefer to target more recent con-
tent, they also show a preference for targeting main
clause content over and above this recency bias.

5.4 Probing

The results above suggest that at very least, mod-
els are sensitive to the fact that embedded clauses
(in this case ARCs) have special status in affect-
ing response dynamics—such that models prefer
response auxiliaries that target the main clause in
the previous context, over and above effects of re-
cency. In this section we briefly confirm that mod-
els are sensitive to the differing status of embed-
ded clause content, through a probing experiment
testing whether model representations distinguish
embedded clause (not-at-issue content) from main
clause (at-issue content). To do this, we extract
token embeddings from the models and train a clas-
sifier to predict whether these tokens are part of
a not-at-issue content or an at-issue content. The
task is formulated as 3-class classification: con-
textualized token embeddings from the last hidden
layer are used as input for the classifier, and la-
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Model Accuracy (%)
BERT 99.9

RoBERTa 100
XLM-RoBERTa 99.2

DistilBERT 99.4
DistilGPT2 99.5

DistilRoBERTa 100

Table 1: Probing performance using token embeddings
from last hidden layers.

bels are generated based on whether the token is 1)
part of at-issue content, 2) part of not-at-issue con-
tent or 3) neither.6 Train/test dataset are randomly
split for each model, while keeping tokens from
the same input sequence together, yielding on av-
erage 8,500 training and 4,000 test samples.7 For
this experiment we use a multi-layer perceptron
classifier with a single hidden layer of size 50 with
ReLU activation, and a softmax layer to generate
binary labels. We use a relatively simple classifier
following the reasoning of Adi et al. (2017), that
this allows examination of how easily extractable
information is in these representations.

As shown in Table 1, all models achieve near per-
fect classification accuracy. The result further sup-
ports the conclusion that these models do encode
distinctions between content in the main clauses of
these sentences and content in embedded clauses—
such that the trends in favor of targeting main
clause content may be considered to reflect some
real sensitivity to contributions of these structural
properties to dialogue dynamics.

6 Ellipsis

The response tests above rely on a critical prereq-
uisite: that models understand how to use ellipsis
structures like “he didn’t” and “she doesn’t.” In
the case of our items, it is specifically the case that
there are only two auxiliary verbs that could pos-
sibly be appropriate in a given response sentence,
because there are only two verb phrases in the con-
text sentence that could be rejected. In this section
we take a closer look at whether models’ prefer-
ences for response auxiliaries reflect these broader
discourse constraints on ellipsis.

6Tokens counted as “neither” are those like “Marco said”
that are used to introduce the dialogue content.

7To mitigate impacts of random variation in train/test split
across models, we trained the probe for each model three times
and averaged the results.

6.1 Ellipsis top one accuracy

We begin by examining the auxiliaries that receive
top probability from the models, among the six
tested auxiliary verb candidates (i.e., did, does, has,
is, was, and would). Specifically, we ask whether
the highest-probability response auxiliary selected
by the model for a given context is appropriate
given the context sentence and header. This test dif-
fers from our comparisons above because the pre-
vious tests simply compared the two relevant auxil-
iaries (main clause and embedded clause), without
testing whether either of these auxiliaries was as-
signed the highest probability among all possible
auxiliary verbs. Here we count the model as correct
if in the case of the “No” header it assigns the high-
est probability to the auxiliary that targets the main
clause, or if in the case of the “Wait no” header it
assigns the highest probability to either the main-
clause-targeting or embedded-clause-targeting aux-
iliary (because “Wait no” could also reasonably
target the at-issue content).

Figure 4 shows the percentage of the time that
the top-ranked auxiliary is among those counted
as correct based on the header. We see wide varia-
tion in the models’ performance on this assessment,
with BERT and RoBERTa preferring the correct
auxiliary nearly 100% of the time, but distilled
models rarely selecting the correct auxiliary as top
choice. This suggests at first glance that BERT and
RoBERTa have gained a stronger grasp on the rela-
tionship of elided auxiliary forms to the previous
context—however, it must also be noted that our
definition of “correct” favors BERT and RoBERTa
because preference for targeting the main clause
(which these two models have exhibited) can al-
ways be counted as correct. We thus implement a
more difficult ellipsis test in the next section.

6.2 Ellipsis top two accuracy

As we describe above, because there are only two
verb phrases in each of our context sentences, it is
clear that there are only two acceptable auxiliary
verb forms that can occur in a given response sen-
tence. To test whether models have a grasp of this
constraint, in this section we examine the top two
highest-probability auxiliaries, and assess the per-
centage of the time that these auxiliaries are exactly
the two that target the main clause and embedded
clause of the context sentence, respectively.

Figure 5 shows the percentage of the time that
the two acceptable auxiliaries are the top two
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ror bars = 95% Confidence Interval.

reject wait
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

BERT

reject wait

RoBERTa

reject wait

XLM-RoBERTa

reject wait
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

DistilBERT

reject wait

DistilRoBERTa

reject wait

DistilGPT2

Figure 5: Ellipsis test (top-2 accuracy). The Y-axis
indicates the percentage of instances in which models’
top two highest-probability auxiliary verbs are the two
acceptable auxiliary verbs given context. The X-axis
indicates type of header in the input sequence: ‘Reject’
= “No” header; ‘Wait’ = “Wait no” header. Error bars =
95% Confidence Interval.

highest-probability auxiliaries for the models. It is
clear that the accuracies here are very low—even
the most accurate models meet the criterion only
20-30% of the time, suggesting that this category
of grammatical/discourse sensitivity is still largely
missing from these models.

6.3 Error analysis

To get a better sense of where the models are going
wrong in these tests, we perform error analyses for
both of the two ellipsis tests. For the top-1 ellipsis
test we examine cases where the top auxiliary is not
“correct,” and for the top-2 test we examine cases
where at least one inappropriate auxiliary “intrudes”
in the model’s top two. In Figures 7 and 8 in the

Appendix, we show the distribution of auxiliary
verbs that the models prefer among these erroneous
cases. We see in these figures particularly substan-
tial interference from more frequent auxiliaries like
did, does, and is, suggesting that rather than guid-
ing auxiliary choice based primarily on discourse
constraints, the model probability distributions are
non-trivially influenced by general frequency of the
individual auxiliary verbs in ellipsis.8

7 Verb analysis in rejection test

The previous section raises questions about the
extent to which these PLMs have a grasp on the
basic discourse constraints that govern ellipsis in
response utterances—and this ellipsis serves as crit-
ical foundation for our at-issueness response tests
in Section 5.2. In particular, the error analysis
above indicates that model probabilities are influ-
enced in large part by biases in favor of particular
frequent auxiliary verbs. In this section we thus
return to our at-issueness test to examine behaviors
of individual auxiliary verbs separately.

Figure 6 shows the percentage of the time that
the models prefer targeting at-issue content, broken
down by which auxiliary verb targets the ARC (top
row) or the main clause (bottom row). We see that
for four of the models, the identity of the auxiliary
verb makes a substantial difference: for instance,
distilled models strongly prefer to target the main
clause if “did” or “does” is the auxiliary that tar-
gets the main clause—but if “did” or “does” targets
the embedded clause, these models strongly prefer
targeting the embedded clause. In other words, the
distilled models appear in large part simply to be
biased toward preferring “did” or “does” in the re-
sponse sentence. BERT and RoBERTa do not show
as much verb-specific fluctuation, instead prefer-
ring to target the main clause content regardless
of which auxiliary verb does so. This suggests
that these two models have a relatively more robust
grasp on use of ellipsis to target particular clauses
in previous context. As for sensitivity to impact
of headers on response dynamics, within individ-
ual verbs we occasionally see a trend such that the
“wait” header results in less targeting of the main
clause (XLM-RoBERTa with “has” and “would,”
DistilGPT with “was” and “would,” etc.), but for
many verbs we see no difference, or even the op-

8Among the possible verb phrase ellipsis triggers (e.g., be,
has, do, etc.), the auxiliary verb do has been reported to be the
most frequent (44%), with the auxiliary verb be following the
next (22%) (Bos and Spenader, 2011).
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Figure 6: Verb analysis on rejection test. The Y-axis indicates the percentage of instances in which models show
preference for responses targeting at-issue content over not-at-issue content. The X-axis indicates the identity of the
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bottom row the X-axis indicates the auxiliary that targets content inside the main clause (at-issue content) of the
context sentence. ‘Reject’ = “No” header; ‘Wait’ = “Wait no” header. Error bars = 95% Confidence Interval.

posite trend. On the whole, the impact of auxiliary
verb identity is for most models much stronger than
that of header.

8 Discussion

In this paper we have reported on a series of exper-
iments testing sensitivity of pre-trained language
models to dynamics involved in responding to an
utterance in dialogue. We focus specifically on at-
issueness and ellipsis, and find that models show
clear sensitivity to the special status of embed-
ded clauses, and general preference to target main
clause content—but they show mixed results in
terms of understanding the interaction of response
headers with targeting of at-issue versus not-at-
issue content. Furthermore, they show certain ba-
sic limitations in their grasp of the principles gov-
erning ellipsis, with selection of auxiliaries often
influenced by superficial frequency factors rather
than principled discourse constraints. Our findings
also highlight differences between models, with
certain models showing strong preference to target
main clause content, and others showing stronger
fluctuations based on individual auxiliary verbs.

This work highlights potential for improvement
in standard PLMs, with respect to discourse sen-
sitivities that have real implications for language
competence generally, and for dialogue in partic-
ular. The models’ sensitivity to special status of
embedded clauses is consistent with work indicat-
ing sensitivity to syntax in these models (Goldberg,
2019), and the consistency with which BERT and

RoBERTa prefer auxiliaries targeting main clause
content indicates that these models pick up on some
interaction between ellipsis and syntax of previous
context. Additionally, the slight impacts of header
in Section 5.2 suggest that these models may pick
up on the beginnings of a relationship between
response types and the types of content that they
target. However, the general weakness in sensi-
tivity to headers, failure on many aspects of the
ellipsis tests, and interference of superficial factors,
indicate clear room for growth in capturing the full
range of these discourse dynamics.

From a perspective of downstream dialogue
tasks, our findings indicate that discourse compe-
tence in standard PLMs is not sufficiently compre-
hensive to expect that these models can provide a
fully robust foundation for dialogue applications. It
is possible—though not guaranteed—that training
or fine-tuning directly for dialogue could improve
the robustness of models’ sensitivity to the specific
types of response dynamics tested for here. We
leave this question for future work.
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A Appendix: Error analysis on ellipsis
and auxiliary preference
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Figure 7: Verb analysis on ellipsis test (top-1). The Y-
axis indicates the proportion of the verb appearing as the
top-1 prediction even when the corresponding auxiliary
verb did not appear in the input sequence. Proportion
is calculated by header. The X-axis shows the auxiliary
verb used in the target sentence. ‘Reject’ = “No” header;
‘Wait’ = “Wait no” header.
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Figure 8: Verb analysis on ellipsis test (top-2). The
Y-axis indicates the proportion of the verb appearing as
one of top-2 predictions even when the corresponding
auxiliary verb did not appear in the input sequence. Pro-
portion is calculated by header. The X-axis shows the
auxiliary verb used in the target sentence. ‘Reject’ =
“No” header; ‘Wait’ = “Wait no” header.
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Abstract

Recent research shows that pre-trained lan-
guage models, built to generate text condi-
tioned on some context, learn to encode syn-
tactic knowledge to a certain degree. This
has motivated researchers to move beyond the
sentence-level and look into their ability to en-
code less studied discourse-level phenomena.
In this paper, we add to the body of probing
research by investigating discourse entity repre-
sentations in large pre-trained language models
in English. Motivated by early theories of dis-
course and key pieces of previous work, we
focus on the information-status of entities as
discourse-new or discourse-old. We present
two probing models, one based on binary clas-
sification and another one on sequence labeling.
The results of our experiments show that pre-
trained language models do encode information
on whether an entity has been introduced before
or not in the discourse. However, this informa-
tion alone is not sufficient to find the entities in
a discourse, opening up interesting questions
about the definition of entities for future work.

1 Introduction

In a seminal paper from 1969, Karttunen imagines
“a device designed to read a text in some natural
language, interpret it, and store the content in some
manner, say, for the purpose of being able to answer
questions about it”. Such a device—considered by
him “not a practical idea, for the time being at
least”—he says would need to have a particular
feature, namely that it “be able to recognize when a
novel individual is mentioned in the input text and
to store it along with its characterization for future
reference.”

Now, more than 50 years later, neural models
appear to have made such a device a practical idea
after all. But do they recognize when a text intro-
duces a new entity into the “universe of discourse”,
or when, in contrast, the new information concerns

∗Shared first authorship.

a previously introduced one? This is the question
that we are asking in this paper.

Following Karttunen’s idea and inspired by
Prince (1992)’s analysis of information-status, we
focus on discourse entities. In particular, we tar-
get the task of distinguishing between the status of
entity mentions as discourse-new or discourse-old.
Considering that discourse entities are central to
discourse theories and meaning, we consider that
this is an understudied subject in the field. We take
a step back from much more specific tasks such as
coreference resolution and look at entities being
referred to over time. We believe that the new/old
distinction, as a simplified form of discourse repre-
sentation, lets us ask whether language models are
able to keep track of discourse entities.

Concretely, we build probing models that take
as input the representations of pre-trained English
language models and predict discourse-new/-old
values for all mentions in a text. We present two
probing models tackling the task on two different
levels of complexity: binary classification and se-
quence labeling. The first probe takes one entity
mention and its preceding context up to that point,
and produces a binary decision (discourse-new/-
old). It tells us to what extent the context matters
for this task. Inspired by the Named Entity Recog-
nition task, the second probe labels each token in a
sequence (new/old/outside). It tells us thus whether
the entities can be localized in the sequence and
labeled with the correct type. A few pieces of
research have found first indications about the pres-
ence of entity knowledge in pre-trained language
models. In particular, Sorodoc et al. (2020) focus
on identifying pronoun-antecedent pairs, leaving
the question open of whether models have a general
notion of entities. Li et al. (2021) work only with
synthetic data, which is simple in nature with short
sentences and few entities. Last, Gupta and Durrett
(2019b) find that pre-trained language model’s rep-
resentations are unable to trace explicit entity state
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changes in recipes and physical processes.
Our findings suggest that contextualized pre-

trained language model representations generated
with a transformer model contain enough discourse
information to determine whether an entity is new
or old—with results as high as 0.89 F1 in the clas-
sification probe, even beyond the case of pronouns.
However, that knowledge does not suffice to local-
ize the entity in the sequence—with results as low
as 0.51 F1 in the sequence labeling task. 1

2 Related Work

The intuition that language models implicitly cap-
ture and in turn also benefit from entity knowledge
has been explored for some time now (Ji et al.,
2017; Yang et al., 2017; Schuster and Linzen, 2022,
inter alia), with recent papers focusing on how
to inject some explicit entity representation into
the system (Aina et al., 2019; Gupta and Durrett,
2019a, among others). The information-status dis-
tinguishes between discourse entities that are newly
introduced in the text and those that are already
known to the comprehender (Prince, 1992; Kamp
and Reyle, 1993). It is a central part in discourse
theories as it accounts for the changes in referring
expressions used to re-mention discourse entities
as they undergo meaning updates as the context
evolves.

Our work is most similar to that of Sorodoc et al.
(2020) and Li et al. (2021). Both of these papers
are interested in probing entity knowledge in pre-
trained language models at the discourse level, and
they both take a semantic approach in that they
are interested in the similarity between different
mentions of the same entity at different points in
the discourse.

Working with the OntoNotes (Pradhan et al.,
2012) coreference corpus, Sorodoc et al. test
whether pre-trained language model representa-
tions have the morpho-syntactic and semantic
knowledge required to match a pronoun with its an-
tecedent. They report results based on pre-trained
representations generated with both a Transformer
and an LSTM model. Using two baselines i) always
referring to the nearest mention, ii) always referring
to the most similar (cosine similarity) token, they
found that a probe fed with the pre-trained embed-
dings succeeds at the task of predicting the correct

1The code for our experiments is available
at: https://github.com/clp-research/
new-old-discourse-entities.

antecedent (75.9% accuracy). An error analysis
of the probe with the Transformer representations
showed that noun phrases were harder to solve than
pronouns (so they focus on the latter). The probe
also succeeded in learning agreement, as tested by
inserting distractors, but accuracy drops to 53% in
hard cases (e.g., when the pronoun and antecedent
disagree in gender/number). In our experiments,
we go a step further and consider pronouns as well
as noun phrase mentions.

Focusing on Transformers, Li et al., on their side,
work with the Alchemy (derived from Long et al.
(2016)) and Textworld (Côté et al., 2019) datasets.
They use the data to construct logical propositions
which are then classified into True/False with a bi-
nary classifier probe (e.g., You see an open chest.
The only thing in the chest is an old key. The chest
contains an apple. → True/False). This data trans-
formation is possible because the original data are
constructed short documents with simple sentences
and few entities. It should be noted as well that
although the probe itself is a low-capacity linear
classifier, it needs a proposition embedder and a
localizer of the entity in the sequence as additional
pipeline components. Their results are measured
through accuracy (the aggregation of all proposi-
tions with an entity) and they go as high as 94%.
Our work is concerned with real world text data
instead. As this increases the space of possible
propositions, it also requires us to simplify the task,
which we will explain in detail in the next sections.

Turning to the approach of probing or diagnostic
classifiers (Hewitt and Liang, 2019), these are sim-
ple systems trained on the encoded representations
of another system. If the probe succeeds in the task
for which it is trained—discourse-new/discourse-
old in our case, we conclude that the input had the
necessary knowledge to solve the task. Research
based on probing models mostly relies on classifi-
cation tasks. This paper is a part of that, but here
we additionally use a sequence labeling task. This
strategy has precedent in examples such as Ram-
poni et al. (2020) and Dai et al. (2019a) who use
sequence labeling for event and entity extraction,
respectively. In the context of probing discourse
knowledge, Koto et al. (2021) has used this for-
mat for a sentence ranking experiment where the
probe was asked to predict the most likely sentence
ordering as a sequence.
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(1) [The researchers]t said [they]t have isolated [a plant gene that prevents [the production of
[pollen]i]j]m. [The gene]m thus can prevent [a plant]y from fertilizing [itself]y.

(2) The researchers said they have isolated [a plant gene that prevents the production of pollen]. – new
The researchers said they have isolated a plant gene that prevents the production of pollen. [The gene] – old

(3) The researchers said they have isolated a plant gene that prevents the production of [pollen]. – new
The researchers said they have isolated a plant gene that prevents the production of pollen. The [gene] – old

(4) [The
B-old

researchers]
I-old

said
O

[they]
B-old

have
O

isolated
O

[a
B-new

plant
I-new

gene
I-new

that
I-new

prevents
I-new

the
I-new

production
I-new

of
I-new

pollen]
I-new

.

.
[The
B-old

gene]
I-old

thus
O

can
O

prevent
O

[a
B-new

plant]
I-new

from
O

fertilizing
O

[itself]
B-old

.

.

(5) The
O

[researchers]
B-old

said
O

[they]
B-old

have
O

isolated
O

a
O

plant
O

[gene]
B-new

that
O

prevents
O

the
O

[production]
B-new

of
O

[pollen]
B-new

.

.
The
O

[gene]
B-old

thus
O

can
O

prevent
O

a
O

[plant]
B-new

from
O

fertilizing
O

[itself]
B-old

.

.

Figure 1: Excerpt from one document extracted from the ARRAU corpus. (1) presents the original entities with
their embedded mentions, (2) shows the spans data for the classification experiments, while (3) the heads data, (4)
shows our formatting into IOB labels for the sequence labeling experiments for spans, and (5) shows our formatting
into IOB labels for heads (see Sec. 4.2).

3 Data and Pre-trained Model

We present two sets of probing experiments on the
hidden representations of a pre-trained model using
real-world text data.

3.1 Data
For our experiments, we use data from the ARRAU
corpus (Uryupina et al., 2020), a richly annotated
coreference corpus which includes information-
status (discourse-new/-old) annotations.2 We only
consider referring mentions, as non-referring men-
tions do not introduce a discourse entity and thus
are not annotated with their information-status. The
ARRAU corpus contains annotations for all NPs,
including singletons (discourse-new entities that
do not occur as antecedents for any other mention).
We kept the official split used in the CRAC shared
task3 (Poesio et al., 2018), but discarded the spoken
dialog and narrative genres (trains and pears,
respectively) because they are presumably differ-
ent from the domain of the pre-trained model. We
construct two data variants, spans and heads. The
examples per partition can be found in Table 1.

Spans As Fig. 1 shows, the original ARRAU data
contains several embedded entities (1), that require

2The complete corpus is available through the LDC:
https://catalog.ldc.upenn.edu/LDC2013T22.
Some parts are also available through the ARRAU
corpus GitHub, according to the authors: https:
//sites.google.com/view/arrau/corpus.

3http://anawiki.essex.ac.uk/dali/
crac18/crac18_shared_task.html

some adaptation. We first remove all embedded
entities from the maximal entity span containing
them. For example, the mentions i and j have been
removed from the outer entity span m, a plant gene
that prevents the production of pollen (4). If an
embedded mention in the current sentence is re-
mentioned in a subsequent sentence, the remention
is retained (despite the first embedded mention not
being retained). Then, for the sequence labeling
task, we create standard IOB labels: an entity’s first
token is either B-NEW or B-OLD and subsequent
tokens have an I-NEW or I-OLD label. Non-entity
tokens are labeled as outside (O).

We expect this version of the data to be easier
for the classification probe as it has access to all the
information in the span, but harder for the sequence
labeling probe, since there is much variability in
the length of the mentions. Identifying the span
also implies higher order knowledge of the notion
of entity. Neural coreference resolution systems,
for instance, explicitly learn the representation of
spans as the combination of the vectors for the first
and last tokens and the head of a mention (Lee
et al., 2017).

Heads In this version, we take only the head of
each mention. This means that the probing model
only needs to label the lexical head or pronoun, as
opposed to the complete span of a mention. We
obtained the heads by extracting the min_words
attribute from the manual ARRAU annotations.4

4This can either be a pronoun, head noun or proper name.
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Heads Spans

Train Dev Test Train Dev Test

New 29, 117 1, 991 5, 084 16, 639 1, 141 2, 812
Old 19, 171 1, 391 3, 672 9, 814 714 1, 883
Total 48, 288 3, 382 8, 756 26, 453 1, 855 4, 695

Table 1: Data splits for the discourse entity probes.

Here, embedded entities are retained.

3.2 Pre-trained Representations
All of our probes are based on the representations
learned by a pre-trained Transformer-XL model
(Dai et al., 2019b) (available through the Hugging
Face library (Wolf et al., 2020) as TRANSFO-XL-
WT103). We focus on this English model first,
as it has been used in the closely related work by
Sorodoc et al. (2020) and because it is explicitly
able to capture long contexts and generate “rela-
tively" coherent long texts (Dai et al., 2019b) by us-
ing a recurrence mechanism over cached previous
segment states. This counteracts the “context frag-
mentation" introduced by chopping off contexts at
a given length to cope with limited computational
capacities.

We extract the last 1024-dimensional hidden
state representations for each token by feeding the
pre-trained model a whole document at a time, so
they are contextualized with the discourse knowl-
edge encoded by the model. In Section 4.3, we
show how to extend our probes to other models and
compare the results to pre-trained representations
extracted from GPT-2 (Radford et al., 2019), which
is not specifically adjusted for longer inputs.5.

3.2.1 Baselines
To interpret the results of our probing models, we
compare them to models initialized with static 300-
dimensional fastText embeddings (Grave et al.,
2018), which we extract word by word using the
Python fastText module.6 We further match
the results against two simple baselines, a majority
baseline that labels every entity as new, and one
based on POS tags where only entity mentions that
start with a definite article or pronouns are consid-
ered old. The intuition behind the second one is
that these are easy and frequent cases, which may
reveal whether our models simply rely on these
linguistic cues.

5An extension to different languages, however, would also
require gold data with information-status annotations and is
not included in this work.

6https://fasttext.cc/docs/en/
python-module.html

4 Probing Experiments

We first perform a classification task to gather infor-
mation about the entity representations themselves.
The second probing task looks at sequence labeling
in order to evaluate whether this information can
be also used to detect entity boundaries.

4.1 Classification Task

Previous work on entity status tracking (Gupta and
Durrett, 2019b) framed the task as entity classi-
fication by pre-extracting the entity in question,
thereby not requiring the model to identify what
an entity is in the first place. We adapt this task in
order to probe whether pre-trained hidden represen-
tations contain information about whether an entity
is newly introduced into the discourse or if it is a
re-mention of an already introduced entity.

4.1.1 Pre-processing
First, we split each text incrementally at each en-
tity mention such that the context contains the n
words up to the first entity (and in the next sample
the second and so on), and the target contains the
respective following entity tokens. As described
in Sec. 3.1 we extract either only the heads or the
maximal spans of entities as the target. We prepend
the ⟨eos⟩ token to the context to avoid empty con-
texts when the first token is (part of) an entity (e.g.,
in the very first sentence of a document).

Next, we use the pre-trained Transformer-XL
representations for every context token, and sum
over the extracted target entity vectors to get an
entity representation (see lower part of Fig. 2).

4.1.2 Models
Following the baseline models of Gupta and Dur-
rett (2019b), we train an attention-based classifier
that computes bilinear attention (Luong et al., 2015)
between the entity representation and the context
tokens and predicts the entity category (new/old)
from the combined result. We use the Attention
implementation from pytorch-nlp (Petrochuk,
2018) (Eq. 1-4) and a linear layer with a sigmoid
function on top (Eq. 5).

ai = hTci ∗Watt ∗ e (1)

α = softmax(a) (2)

context =
∑

αi ∗ hci (3)

hc,e = tanh(Wcomb ∗ [context, e]) (4)
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Figure 2: Probing classifier architectures. Embeddings
are previously extracted document-wise from the hid-
den layer of a pre-trained Transformer-XL model (Em-
bedder). a) Contextualized classification based on at-
tention between context (c1...cn) and summed entity
(en+1..em) representation (Eq. 1-5). b) Entity classifica-
tion based on summed entity (en+1..em) representation
alone (Eq. 6).

P (y|hc1 , ..., hcn , e) = sigmoid(Wa ∗ hc,e + b)
(5)

This model has access to the whole context up to
the entity. To gather further insights on the role of
the context tokens in terms of what kind of informa-
tion is already encoded in the entity representation
itself, we additionally train a model without con-
text, using only the entity representation to predict
its status (Eq. 6).

P (y|e) = sigmoid(Wb ∗ e+ b) (6)

The model architectures are displayed in Fig. 2.
Training details and hyperparameters used are pro-
vided in Appendix A.

4.1.3 Results
The results of the classification experiments are dis-
played in Table 2. While the fastText embeddings
already yield an improvement over the majority
and the POS baseline, the Transformer-XL embed-
dings yield the best overall results, suggesting that
the contextualization adds some useful information
on the entity state. Surprisingly, however, there is
not much difference between the attention-based
and the entity-based models, suggesting that the in-
formation required for this task is contained in the
pre-trained representations themselves. It is also

interesting that taking the whole span into account
improves the results for the fastText embeddings,
but yields no gain for the Transformer-XL represen-
tations. This suggests that due to the contextualiza-
tion, the necessary information is already encoded
in the head representation itself. A detailed discus-
sion follows in Sec. 5.

4.2 Sequence Labeling Task

Inspired by the NER scenario, our second probing
model takes the form of a sequence labeling task,
whereby each token in the sequence is assigned a
categorical label. Discourse entities are a broader
category of named entities, so instead of assign-
ing entities a type (e.g., ORGANIZATION, PERSON,
TIME, etc.), the probe assigns new or old labels,
following the IOB scheme. An example is shown
in Fig. 1.

This framework offers us two advantages in a
single task: i) the probe has to localize the entity
in the sequence (an additional pre-processing step
in previous work), and ii) the probe has to assign a
classification label to the entity.

4.2.1 Pre-processing
We slice the extracted hidden vector sequence ac-
cording to the tokens in the original sentences,
in order to feed our probes with examples at the
sentence-level. In other words, the hidden represen-
tations are extracted based on the whole document,
but the probing model labels the document sentence
by sentence. The fact that our probes work at the
sentence-level can be seen as a safety switch that
limits their power, so no further contextualization–
beyond that from the original embeddings– occurs.
Because this precludes the probe from accessing
any embeddings beyond the sentence, any success
at predicting discourse-new or discourse-old should
come from the entity embeddings themselves. This
has the added advantage of easing the computation
cost.

4.2.2 Model
The underlying method for our probe is a linear
chain conditional random field (CRF) model.7 The
input to the model are sequences of n vectors,
where each input hi is a contextualized vector
with size 1024 yielded by the pre-trained language
model. This sequence of pre-trained vectors is fed

7We took advantage of the freely available implementation
at https://github.com/kmkurn/pytorch-crf
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Heads Spans

Discourse New Discourse Old
Acc.

Discourse New Discourse Old
Acc.

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Probing Transformer-XL
Attention-based 0.86 0.92 0.89 0.88 0.80 0.84 0.87 0.88 0.91 0.89 0.86 0.81 0.83 0.87
Entity-based 0.87 0.91 0.89 0.87 0.81 0.84 0.87 0.85 0.92 0.88 0.86 0.76 0.80 0.85

Baselines fastText 300
Attention-based 0.76 0.86 0.81 0.76 0.62 0.68 0.76 0.82 0.89 0.85 0.81 0.71 0.75 0.82
Entity-based 0.70 0.93 0.80 0.82 0.46 0.59 0.73 0.76 0.92 0.83 0.82 0.56 0.67 0.78

Baselines w/o embeddings
POS-based 0.66 0.83 0.73 0.63 0.40 0.49 0.65 0.74 0.80 0.77 0.66 0.57 0.61 0.71
Majority class 0.58 1.00 0.73 0.00 0.00 0.00 0.58 0.60 1.00 0.75 0.00 0.00 0.00 0.60

Table 2: Average results from five different random seeds of discourse-new vs. discourse-old classification
experiments, probing pre-trained Transformer-XL representations versus static fastText embeddings (standard
deviation is between 0.00 and 0.04 for all versions), and a POS-based (pronouns and defNP = discourse-old) and
majority class (discourse-new) baseline

into an LSTM layer (Eq. 7) and a rectified lin-
ear unit activation function (Eq. 8), before being
resized (Eq. 9) in order to fit the CRF (Eq. 10).
The CRF layer finds the best possible sequence of
labels (yi, ..., yn) for the entire input sequence.

ri = LSTM(hi, ri−1) (7)

oi = RELU(ri) (8)

li =W ∗ oi + b (9)

p(y1, ..., yn|h1, ..., hn) = CRF (l1, ..., ln) (10)

Figure 3: Sequence labeling model. The input to
the probe are pre-trained representations hi from the
Transformer-XL model. After the LSTM layer (Eq.
7-8), a linear layer (Eq. 9) is needed to reduce the di-
mensions of the LSTM output from the hidden size to
label size required by the CRF (Eq. 10). The CRF has a
choice among 5 labels at each time step.

We present experiments with and without the
LSTM layer. We expect a division of labor whereby
the CRF learns from the syntactic signal (i.e., I
comes after a B), and the LSTM learns the semantic

content (i.e., new vs old). Training details and
hyperparameters used are given in Appendix A.

4.2.3 Baselines
We build several model versions to estimate the
success of our probes: In addition to the majority
and POS baselines (cf. Sec. 3.2.1), we build a sim-
ple CRF using the Scikit-learn (Pedregosa et al.,
2011) compatible CRFsuite (Okazaki, 2007) wrap-
per (Korobov, 2015) based on simple surface form
features. These include whether a token is at the
beginning or end of a sequence, whether the token
starts with a capital letter, the last three characters
of the token, and the last two characters of a token.
We also add two versions of our probing models
that do not rely on pre-trained representations but
train the embeddings from scratch with dimensions
1024 for the comparison to Transformer-XL and
300 for fastText.

We do not compare to a human baseline for two
reasons. First, we rely on human annotations of
very high quality, for which annotators were asked
to identify discourse entities as new/old before be-
ing asked to identify antecedents (Uryupina et al.,
2020). Second, our main interest is to evaluate
whether the pre-trained representations contain in-
formation that improves the performance on this
task compared to our automatic baselines.

4.2.4 Results
The results for all configurations are reported in
Table 3. For computing the scores, we used the
SeqEval package (Ramshaw and Marcus, 1995;
Nakayama, 2018).

A very clear pattern emerges: Heads are easier
to identify than Spans, and discourse-old is easier
to predict than discourse-new. It follows that the

880



Heads Spans

Discourse New Discourse Old
Avg.F1

Discourse New Discourse Old
Avg.F1

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Probing Transformer-XL
LSTM + Linear + CRF 0.75 0.79 0.77 0.80 0.78 0.79 0.78 0.59 0.59 0.59 0.80 0.72 0.75 0.66
Linear + CRF 0.70 0.70 0.70 0.75 0.69 0.72 0.71 0.43 0.38 0.41 0.69 0.63 0.66 0.51
LSTM + Linear + CRFscratch 0.59 0.71 0.64 0.74 0.54 0.62 0.63 0.38 0.39 0.38 0.70 0.52 0.59 0.47
Linear + CRFscratch 0.51 0.59 0.55 0.63 0.47 0.53 0.54 0.27 0.25 0.26 0.55 0.45 0.49 0.35

Baselines fastText 300
LSTM + Linear + CRF 0.67 0.76 0.71 0.75 0.63 0.68 0.70 0.50 0.50 0.50 0.76 0.60 0.67 0.57
Linear + CRF 0.55 0.63 0.59 0.69 0.45 0.55 0.57 0.25 0.19 0.22 0.63 0.41 0.50 0.33
LSTM + Linear + CRFscratch 0.59 0.70 0.64 0.72 0.54 0.62 0.63 0.40 0.42 0.41 0.70 0.54 0.61 0.49
Linear + CRFscratch 0.53 0.62 0.57 0.65 0.46 0.53 0.55 0.29 0.26 0.28 0.58 0.44 0.50 0.36

Baselines w/o embeddings
Simple CRF 0.57 0.70 0.62 0.71 0.45 0.55 0.59 0.32 0.28 0.29 0.64 0.44 0.52 0.38
POS baseline 0.65 0.51 0.57 0.51 0.58 0.55 0.56 0.77 0.61 0.68 0.62 0.71 0.66 0.67
Majority class 0.50 1.00 0.74 0.00 0.00 0.00 0.43 0.60 1.00 0.75 0.00 0.00 0.00 0.45

Table 3: Average results from five different random seeds for all discourse-new vs. discourse-old sequence labeling
models, probing pre-trained Transformer-XL representations vs static fastText embeddings and embeddings trained
from scratch (standard deviation is between 0.01 and 0.06 for all versions). Baselines also include a simple CRF
with surface features, a POS-based (pronouns and defNP = discourse-old) and the majority class (discourse-new)
baseline.

combination of span + discourse-new is the most
difficult category, and one in which the probes are
surpassed by the baselines. Besides, the models
with the LSTM yield consistently higher results
than the models relying on the CRF only.

When considering the type of input, there is a
similar pattern to the classifier. Although the results
using static embeddings are better than the base-
lines, the contextualized Transformer-XL represen-
tations present a systematic improvement overall.
Interestingly, this improvement is more marked for
the Spans and negligible for Heads in additional
experiments with a CRF for entity identification
only, i.e., without labeling the entities as new or
old (cf. Appendix B, Table 6). This keeps with
the intuition that identifying the heads is akin to
finding nouns, but identifying the relevant spans
which are also entities is more complex, involving
discourse-level knowledge.

4.3 Extension to other pre-trained Models

To compare our results to another pre-trained
model, we also probe GPT-2 (Radford et al., 2019)
in the same manner. This requires two adapta-
tion of our approach: GPT-2 uses a different tok-
enizer, so the alignment of the tokenized version
and the labels has to be adapted. More critically,
Transformer-XL is optimized to deal with long con-
texts, whereas GPT-2 can only handle inputs of up
to 1024 tokens. Therefore, we create a subset of
our data by filtering out all documents longer than
a 800 threshold (of items before tokenization). For
the results to be comparable, we reran the experi-

ments for Transformer-XL on the same subset. All
the results are displayed in Table 4. We first notice
that the Transformer-XL results are very similar to
those obtained using the full training and test sets.
Concerning the GPT-2 model, we notice that its
performance is comparable to the Transformer-XL.
Thus we believe that other Transformer models will
be equally adequate for this task.

5 Discussion and Analysis

In line with existing literature about the presence
of entity knowledge in pre-trained language mod-
els, we find that the entity knowledge extends to
different types of entity mentions extracted from
natural data.

The high success of the binary classifier probe
demonstrates that classifying an entity as new or
old is not challenging, provided that the model has
access to the entity representations. Comparable
to a coreference resolution system, this model is
fed with an aggregated representation comprising
all tokens in the mention, so it does not need to
locate the entity in the sequence. On the other hand,
finding the entities given a sequence is the hard
part in our task, as shown by the sequence labeling
probe. This model is superior in the Heads version
of the data, but less successful with Spans, where
the boundaries of each entity must be found. In this
task, the simple POS-based baseline yields better
overall results than any of our probing models.

Error Analysis: Pronouns and definite noun
phrases are two types of mentions with enough reg-
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Heads Spans

Discourse New Discourse Old
Acc.

Discourse New Discourse Old
Acc.

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

C L A S S I F I C A T I O N P R O B E

Transformer-XL
Attention-based 0.88 0.90 0.89 0.86 0.84 0.85 0.87 0.88 0.90 0.89 0.86 0.82 0.84 0.87
Entity-based 0.87 0.92 0.90 0.88 0.82 0.85 0.88 0.85 0.91 0.88 0.85 0.77 0.81 0.85

GPT-2
Attention-based 0.89 0.90 0.89 0.86 0.84 0.85 0.88 0.88 0.88 0.88 0.82 0.83 0.83 0.86
Entity-based 0.89 0.90 0.90 0.86 0.84 0.85 0.88 0.87 0.87 0.87 0.81 0.80 0.80 0.84

S E Q U E N C E L A B E L I N G P R O B E

Transformer-XL
LSTM + Linear + CRF 0.74 0.77 0.75 0.79 0.77 0.78 0.76 0.55 0.55 0.55 0.78 0.71 0.74 0.63
Linear + CRF 0.70 0.68 0.69 0.75 0.71 0.73 0.71 0.44 0.41 0.43 0.72 0.64 0.68 0.53

GPT-2
LSTM + Linear + CRF 0.76 0.74 0.75 0.78 0.81 0.80 0.77 0.55 0.56 0.55 0.78 0.69 0.73 0.62
Linear + CRF 0.69 0.67 0.68 0.72 0.68 0.70 0.69 0.42 0.40 0.41 0.71 0.61 0.65 0.51

Table 4: Probing results on a shortened subset of the data to accomodate GPT-2’s maximum input capacity of
1024 tokens. Results are averaged over five random seeds with a standard deviation between 0.00 and 0.04 for all
versions.

ularity (i.e., closed set of forms and determiner the)
for the models to exploit frequency heuristics. In
this sense, comparing with the POS baseline consti-
tutes an interesting case study (Table 5). In general,
the fact that these two differ is a sign that our probes
are not deterministically exploiting this heuristic.
Note however that different genres might have dif-
ferent uses of definite and undefined articles, and
that a definite article does not automatically entail
a discourse old label.

Going into details, the first thing we observe
in Table 5 is that using either the Heads or Spans
version results in a similar number of errors, in
particular predicting a label when there is no entity
to identify (False mention). Interestingly, the se-
quence labeling probe yields more new than old la-
bels (Old predicted as new), suggesting that it iden-
tifies old mentions more confidently than new ones
(i.e., when it produces old, there is a high chance
that the label really is old). This might explain why
despite being the minority class with about 40% of
the entities, discourse-old seems easier to predict
in the sequence labeling experiments, in particular
for the Spans setting (comparing F1 scores). In
contrast, the binary classifier does slightly better
with the discourse-new class. Another thing we
observe is that fewer Spans are left without a pre-
diction than Heads, which intuitively makes sense:
it may be harder to say if a bare NP head is refer-
ential or not, but easier if the NP is presented with
determiners, adjectives, and other modifiers. Last,

the category ‘Others’ comprises mostly errors in
detection of boundaries, which are more prevalent
in the Spans (for example, Gulf Resources & Chem-
ical Corp. said it agreed to pay $ 1.5 million [...]
regarding [an environmental cleanup] of a defunct
smelter the company formerly operated; gold: B-
new I-new I-new, predicted: O O B-new). This
category further suggests that finding an entity’s
boundaries is harder than determining its label.

Inspecting the forms closely shows that most er-
rors correspond to the pronouns it, this, that and
which, known to be problematic for coreference
resolution. For the classifier, we also found that
it and that are amongst the most common errors
(18/424 in spans, 23/753 in heads). We also in-
spected the definite noun phrases, but could not
identify any specific pattern in the errors.

Error Heads Spans

False mention (gold is O) 1252 1254
No prediction (prediction is O) 138 63
New predicted as old 128 78
Old predicted as new 263 130
Others 138 456

Total 2054 1981

Table 5: Number and type of errors that the sequence
labeling probe LSTM + Linear + CRF makes with respect
to the POS baseline.

Model Analysis: There is no benefit in using
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static embeddings (Linear + CRF fastText) vs sim-
ple classic features (simple CRF) for this task.
Comparing the pre-trained representations with the
models that were trained from scratch, we observe
the following: i) For the most powerful model (the
ones with the LSTM layer) the gain of using pre-
trained embeddings is 0.15 and 0.19 in average F1
for Transformer-XL and 0.7 and 0.8 for fastText
(Heads and Spans, respectively). This shows that,
while the embedding size does not have an impact
if embeddings are trained from scratch (similar
results for 1024 and 300 dimensions), the contex-
tualized Transformer-XL representations contain
more useful information for the probing task. ii)
When we look at the less powerful probing models
(without the LSTM), the differences are 0.17 and
0.16 in average F1 for Transformer-XL, and 0.2
and -0.3 for fastText, showing that the LSTM is
necessary to extract any useful information from
the static embeddings. Transformer-XL embed-
dings, on the other hand, already benefit from the
contextualization during pre-training, as we see
similar improvements as those obtained with the
complex model.

The LSTM models do yield better scores over-
all, suggesting that additional contextualization on
the sentence level helps for this task. Collectively,
these results signal that document-level contextu-
alization does help to encode the new/old distinc-
tion, but not as much as one might have expected.
If a model is presented with an entity, determin-
ing its status is not hard, even without contextu-
alization. However, finding an entity in a sen-
tence or discourse is challenging, even for powerful
Transformer-XL representations. This raises the
question of whether pre-trained language models
are able to identify entities in the wild.

6 Conclusions and Future Work

In this paper, we have built two probing models for
the task of identifying the discourse status of enti-
ties as new or old. Our models rely on binary clas-
sification and sequence labeling with input repre-
sentations from a Transformer-XL language model.
Our probes:

• have advanced the findings from previous
work, showing that the discourse knowledge
from pre-trained representations extends to
noun phrases found in naturalistic data;

• have found that the pre-trained representa-

tions tested do encode the old/new informa-
tion within the tokens comprising the entity,
regardless of the context;

• have also found that localizing the entity
within the sentence is difficult, suggesting that
identifying referring discourse entities from
scratch is hard for this pre-trained model;

• last, have demonstrated that LSTMs are able
to further contextualize pre-trained static and
contextualized embeddings alike.

Our findings leave interesting questions for fu-
ture work, in particular, defining what an entity is
and what it looks like. In this sense, one could
imagine a task where a probe is asked to differenti-
ate between referring and non-referring mentions,
a known and hard problem in the context of coref-
erence resolution.

7 Ethical Considerations and Limitations

The models trained in this study are not optimized
to solve specific tasks in the best possible way, but
to gain insights about the underlying representa-
tions and thus the abilities of pre-trained language
models, which are sometimes attributed human like
language-generation abilities. However, all find-
ings are only applicable to the models under in-
vestigation (Transformer-XL and GPT-2) and any
claims are specific to English. Reproducing our
work requires access to the ARRAU corpus, on
which we base all of our experiments.
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A Probing experiments details

We trained all models on an NVIDIA GeForce
GTX 1080 Ti. Each classification experiment took
10 to 15 minutes, and each sequence labeling ex-
periment took between 7 and 20 minutes.

All the classification models were trained with
the BCEWithLogitsLoss and used the Adam opti-
mizer with a learning rate of 0.001 and a batch size
of 64. Early stopping was applied based on the loss
on the development set.

The training for the sequence labeling probe
takes between 1 and 2 epochs using early stopping
based on the loss computed on the development set.
We use mini-batching with size 64, a hidden size
of 256 for the LSTM output, and a learning rate of
0.01 with the Adam optimizer. Dropout of 0.2 is
also applied.

B Sequence labeling results without
new/old labels
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Heads Spans

Prec. Rec. F1 Prec. Rec. F1

Probing Transformer-XL
LSTM + Linear + CRF 0.86 0.91 0.89 0.76 0.76 0.76
Linear + CRF 0.84 0.79 0.81 0.61 0.59 0.60

Baselines fastText 300
LSTM + Linear + CRF 0.86 0.89 0.87 0.69 0.68 0.69
Linear + CRF 0.75 0.75 0.75 0.45 0.35 0.39

Table 6: Single-run results from sequence labeling ex-
periments for entity identification without predicting
their status as new or old.
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Abstract

While neural approaches to argument mining
(AM) have advanced considerably, most of the
recent work has been limited to parsing mono-
logues. With an urgent interest in the use of
conversational agents for broader societal ap-
plications, there is a need to advance the state-
of-the-art in argument parsers for dialogues.
This enables progress towards more purposeful
conversations involving persuasion, debate and
deliberation. This paper discusses Dialo-AP,
an end-to-end argument parser that constructs
argument graphs from dialogues. We formulate
AM as dependency parsing of elementary and
argumentative discourse units; the system is
trained using extensive pre-training and curricu-
lum learning comprising nine diverse corpora.
Dialo-AP is capable of generating argument
graphs from dialogues by performing all sub-
tasks of AM. Compared to existing state-of-
the-art baselines, Dialo-AP achieves significant
improvements across all tasks, which is further
validated through rigorous human evaluation.

1 Introduction

Argumentation is the process of reasoning sys-
tematically in support of an idea, action, or the-
ory. It is prevalent in our daily communication
and conversations, including online conversations.
Since argumentation represents an intrinsic human
attribute, the ability of artificial agents (bots) to
exhibit this skill can be seen as strong evidence
for judging such agents as “human-like”. While
computational models of argumentation have been
investigated (Bench-Capon and Dunne, 2007; Rah-
wan and Simari, 2009; Atkinson et al., 2017), cur-
rent progress is impeded by the scarcity of large
scale corpora exemplifying use of argumentation
and reasoning patterns from discourse. Such cor-
pora are necessary if we are to make progress in
training argumentative conversational agents. In
this paper we experiment with computational ar-
gumentation mining (AM) (Mochales and Moens,

Figure 1: Dependency representation of dialogical argu-
ments, across two turns.

2011; Lippi and Torroni, 2016; Lawrence and Reed,
2019) for automatically analyzing discourse at a
pragmatics level, and parsing argumentation struc-
tures from dialogues. Furthermore, although con-
siderable research can be found in the field of AM,
most of the current work has focused on parsing
monologues (micro-level models), while neglect-
ing dialogues (macro-level models) (Bentahar et al.,
2010; Grasso, 2002). Here, we aim to fill the re-
search gap in dialogical models for AM by propos-
ing Dialo-AP, a novel end-to-end argument parser
for dialogues.

Arguments primarily comprise claims and
premises, with the claim being the central contro-
versial statement of an argument, and the premise
provides reasoning by supporting or attacking the
claims (Stab and Gurevych, 2014b). End-to-end
AM for dialogues generally involves performing
text segmentation, component classification, and
intra/inter-turn relation detection & classification.
Formulating AM as dependency parsing (DP) prob-
lem operating at a mixture of elementary dis-
course unit (EDU) and argumentative discourse
unit (ADU) granularity, Dialo-AP is an end-to-end
argument parser which takes as input entire conver-
sations, and outputs an argument graph comprised
of arguments and relations. Figure 1 illustrates
our DP formulation, where speaker 1’s utterance
consisting of the ADU “Swimming is bad for your
joints" is attacked by speaker 2’s claim “That’s not
true", which in turn is supported by the premise
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comprising EDUs “it’s a low impact sport" and “it
reduces stress".

Trained on the annotated dialogical Change-
MyView (CMV) corpus released by Chakrabarty
et al. (2019b), and further utilizing robust pre-
training on large scale parallel corpora, followed
by fine-tuning on diverse argumentation datasets
using curriculum learning, Dialo-AP attains sig-
nificantly higher results compared to internal and
external baselines for both in and out-of-domain
examples.

2 Related Work

Significant advancements have been made in com-
putational model for AM in recent years. Stab
and Gurevych (2014c) implemented a feature en-
gineering based pipelined approach for perform-
ing all four sub-tasks of AM, on the Persuasive
Essays (PE) corpus (Stab and Gurevych, 2014a),
which was further improved by the Integer Linear
Programming (ILP) based approach proposed by
Persing and Ng (2016). Stab and Gurevych (2017)
introduced a larger version of the PE corpus and im-
plemented an ILP constrained pipelined approach
for AM. Mirko et al. (2020) improved upon the
pipelined approach for AM introduced by Nguyen
and Litman (2018), and further implemented a
novel graph construction process to create argu-
ment graphs. Recently, Bao et al. (2021) proposed
a neural transition-based model for component clas-
sification and relationship detection, which incre-
mentally builds an argumentation graph by gener-
ating a sequence of actions, and can handle both
tree and non-tree argumentation structures.

Eger et al. (2017) formulated the tasks of AM
as a token level DP, and achieved state-of-the-art
performance on the PE dataset, using a neural de-
pendency parser. Inspired by the success of incor-
porating biaffine classifiers for semantic DP (Dozat
and Manning, 2016, 2018), Ye and Teufel (2021)
further improved the DP based approach by using
biaffine layers, and leveraged pre-trained BERT
(Devlin et al., 2018) for richer argument represen-
tations. Instead of operating at a word level, Morio
et al. (2020) experimented with proposition level
AM and used a joint learning framework for jointly
performing the tasks of component classification,
relation detection and classification. For AM in di-
alogues, Chakrabarty et al. (2019b) proposed Am-
persand (AMP), a computational model for AM in
online persuasive discussion forums.

Considerable work has also been done in trying
to establish relationships between ADUs and EDUs.
Peldszus (2015); Peldszus and Stede (2016); Musi
et al. (2018); Hewett et al. (2019) studied the
mapping from discourse structure from Rhetori-
cal Structure Theory (RST) to argumentation struc-
tures and showed that discourse relations from RST
often correlate with argumentative relations.

3 Methods

Formulating AM as dependency parsing, we in-
troduce a multi-task learning (MTL) framework,
where unlike existing pipelined approaches, all the
sub-tasks are trained together in an end-to-end fash-
ion. Since large scale annotated data for AM from
dialogues is scarce, we augment existing mono-
logical datasets for our purpose, and leverage pre-
training and curriculum learning to learn from the
available datasets, before fine tuning on the target
CMV corpus.

3.1 Dependency Representation of Arguments

Inspired by the token level dependency represen-
tations of arguments in monologues by Eger et al.
(2017) and Ye and Teufel (2021), we formulate
the following EDU level dependency representa-
tion for dialogues (Figure 1), encompassing all the
sub-tasks for AM:
Text Segmentation & Component Classification:
An argument (ADU) comprises fully or partially
overlapping EDUs, which in turn contains labeled
argumentative/non-argumentative tokens, using the
IO tagging scheme. Identifying such EDUs by
predicting the token tags, and further combining
consecutive EDUs into ADUs by predicting the
existence of relationship constitutes performing
the sub-task of text segmentation. For example
in Figure 1, EDU 2 in turn N+1 partially overlaps
with ADU 2, as the token “as” is tagged as “O”,
whereas the EDUs 1 and 3 fully overlap with ADU
1 and 2 respectively, which is indicated by all the
tokens in the EDUs labelled as “I”. Further, EDU
2 and 3 can be combined using the “Append” re-
lationship to construct ADU 2, after removing the
non-argumentative token “as” (marked as O). Each
EDU can belong to 1 of 4 classes ∈ [Major Claim
(MC), Claim (C), Premise (P), Non Argument
(NA)], and predicting the type of a constituent EDU
constitutes performing component classification.
Intra/Inter-turn Relation Detection & Classifi-
cation: Within a speaker’s turn, ADUs are related
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Figure 2: End-to-end Model Architecture.

using “Support" (Sup) or “Attack" (Att) relation-
ships which originate from the last EDU of the
parent and terminate in the last EDU of the child
ADU. Predicting the existence of such relationship
between EDUs and further labeling it comprises
the sub-tasks intra-turn relation detection & clas-
sification. Across turns inter-speaker support and
attack relationships are established by relating and
labeling (using Sup or Att) the last EDU of the
source ADU (child) from the current turn, with the
target ADU (parent) from the context. inter-turn
relation detection & classification encompasses de-
termining and labeling such relationships.

Thus, in each turn, ADUs constitute EDUs
which are related using directed “Append” edges
between consecutive EDUs. Support and attack
relationship between ADU pairs are established
by associating a labeled directed edge between
the last EDUs from the origin and target ADU.
The arguments in each turn are further parented by
the contextual ADUs by associating a labeled di-
rected edge originating from the contextual ADU,
and terminating in the last EDU of the support-
ing/attacking ADU in the current turn.

3.2 Model Architecture

Dialo-AP is trained in a multi-task setting, where
all the sub-tasks share a common encoded repre-
sentation followed by task-specific layers. Figure
2 illustrates our architecture in detail1.
Input Representation The model inputs EDU seg-
ments for the current turn, which are delimited by
a special [EDU] token, which not only signifies
the start of an EDU span, but is also responsible
for encoding and representing its meaning. Turns

1Code and data: https://github.com/sougata-ub/dialo-ap

with length greater than 300 tokens are split into
shorter sequences of maximum 300 tokens, while
ensuring that an EDU does not span multiple splits.
The model inputs a list of ADU spans from prior
turns as context, which unlike the current turn is
not segmented to an EDU level, and always starts
with the start of sequence (sos) token.

Encoding We use a shared transformer encoder to
independently encode the current turn tokens Sicurr
and the context Sictx. Lengthy turns which are split
into shorter sequences are sequentially encoded
and concatenated into a single representation Ecurr

(Eqn. 1). In order to preserve the temporal aspect
of the text across splits, the position ids of the
tokens in each split are cumulatively incremented
after every encoding step. The context tokens are
also encoded using the same encoder, which yields
the context representation Ectx (Eqn. 2).

Post encoding, the final context representation
ESOS
ctx is obtained by selecting and concatenating

the sos token encodings of the context ADUs, fol-
lowed by a multi-headed self-attention layer mha
with dropout drop (Eqn. 3, 4). The final current
turn representation EEDU

curr is constructed by select-
ing the encodings of the [EDU] tokens, followed
by a multi-headed self-attention layer and a multi-
headed cross-attention between the current turn
[EDU] token encodings and ESOS

ctx (Eqn. 5, 6, 7).

Ecurr=concat(enc(Sicurr)|
nsplits
i=1 ) (1)

Ectx=enc(Sictx)|nctxi=1 ; get(X, idx)=X[idx, :] (2)

ESOS
ctx =concat(get(Ectx, idxSOS)) (3)

ESOS
ctx =ESOS

ctx +drop(mha(ESOS
ctx ,E

SOS
ctx )) (4)
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EEDU
curr =get(Ecurr, idxEDU) (5)

EEDU
curr =EEDU

curr +drop(mha(EEDU
curr ,E

EDU
curr )) (6)

EEDU
curr =EEDU

curr +drop(mha(EEDU
curr ,E

SOS
ctx )) (7)

Biaf(x, y)=xTUy +W(x⊕ y) + b (8)

Task Specific Layers We incorporate task-specific
layers to perform the final prediction for each sub-
task. Illustrated in Figure 2, we use single-layered
feed-forward neural networks (Head 3) as the final
layer for both text segmentation and component
classification, with the input for text segmentation
being the concatenated current turn representation
Ecurr, and EEDU

curr for component classification.
Biaffine classifiers (Eqn. 8) are generalizations

of linear classifiers, which include multiplicative
interactions between two vectors. Since relation
detection and classification require performing in-
ference over argument pairs, we implement biaffine
dependency parsing (Head 2 and 3 in Figure 2) for
both sub-tasks. For intra-relation prediction, the
current turn EDU encodings EEDU

curr are split into
two parts using FNNs–a parent Hi_parent

intra and a de-
pendent child Hi_child

intra representation, which in turn
are passed through a biaffine classifier for detect-
ing or labelling relationships between the EDUs
(Eqn. 9, 10). For inter-relation prediction, the par-
ent and child representations Hi_parent

inter and Hi_child
inter

for the biaffine classifier are obtained by passing
the context encoding ESOS

ctx and current turn EDU
encodings EEDU

curr through FNNs respectively.

Hi_j
k =FNN(x)|x ∈ (EEDU

curr ,E
SOS
ctx ), (9)

i ∈ (detect, label), j ∈ (parent, child),

k ∈ (inter, intra)

scij=Biaf(H
i_parent
k ,Hi_child

k )| (10)

i ∈ (detect, label), k ∈ (inter, intra)

The sub-tasks of append relation detection and the
additional context relationship prediction are per-
formed in a similar way to intra-relationship de-
tection and labeling respectively, where EEDU

curr is
used for append relation detection, and ESOS

ctx for
labeling relationships between the context ADUs.

Ltotal=
∑

λxLx|x ∈ (subtasks) (11)

All the sub-tasks are jointly trained end-to-end by
minimizing the aggregated interpolated loss Ltotal
(Eqn. 11), where text segmentation, component
classification, and inter/intra/contextual relation-
ship labelling are trained by minimizing the cross

entropy loss, whereas inter/intra/append relation-
ship detection is trained by minimizing the binary
cross entropy loss.

3.3 Pre-training

Since the size of the CMV corpus is small for
modern deep learning approaches, we pre-train our
parser for most sub-tasks, on large scale noisy la-
belled corpora.
Component & Intra-Turn Relation Prediction
We use the IMHO corpus (Chakrabarty et al.,
2019a) for pre-training the parser on the sub-tasks
of component classification, append relation detec-
tion, and intra/inter-turn relation detection. The
IMHO corpus comprises 5.5 million opinionated
claims from Reddit, which are self-labeled by their
authors using the internet acronyms IMO/IMHO
(in my (humble) opinion). For example “IMO,
Lakers are in big trouble next couple years. Their
players are out of contract”. We tokenize each ex-
ample into sentences, and label a sentence as claim
only if it contains the acronyms IMO/IMHO, and
further associated with a noisy premise by choos-
ing either the preceding or succeeding non-claim
sentence, depending on which has a higher leven-
shtein distance based similarity with the claim to-
kens. Argument components are further segmented
into EDUs, which we detail in Appendix A.2.1.
The training targets constitute claim and premise
labels, two binary relation matrices for predicting
presence of argumentative and “Append” relations
between EDUs, and a label matrix for predicting
the “support/attack” relationship type.
Inter-Turn Relation Prediction We use the
args.me (Ajjour et al., 2019), and QR corpus
(Chakrabarty et al., 2019b) for pre-training the
parser on the inter-turn relation detection and clas-
sification sub-tasks. The args.me corpus comprises
387,606 macro-level arguments crawled from di-
verse debate portals and already identifies source
and target arguments along with pro/con stance la-
bels, which we further convert to support/attack
inter-turn relationships. The QR dataset comprises
97,636 pairs of original post and replies from the
CMV sub Reddit, where the respondent used Red-
dit’s “quote” feature to reply, signifying an attack
relationship on the quoted section from the original
post. We combine both the macro-level datasets
consisting of source argument, target argument and
the inter-argument relationship, and further gen-
erate 10,000 random argument pairs with “no re-

890



Figure 3: Curriculum Learning Framework.

lationship” labels. For constructing the training
relationship label matrices, similar to the IMHO
corpus processing we tokenize the source argument
into EDUs. However, as discussed in sub-section
3.1, distinct from intra-turn relationship prediction
the targets here are ADUs from prior turn, which
we identify by using a version of Dialo-AP trained
only on the processed IMHO corpus for extracting
claims/premises from the context.

3.4 Curriculum Learning (CL) Framework

Computational AM being a relatively new field, suf-
fers from the lack of large scale annotated data, spe-
cially for dialogues. Most of the available datasets
pertain to distinct and diverse aspects of AM for
monologues (Habernal and Gurevych, 2017). Al-
though monologues are distinct from dialogues,
parsing both the forms of discourse entails per-
forming comparable tasks like text segmentation,
component classification, and intra-turn relation-
ship prediction, which are more local in nature.
Further, with a few adaptations, monologues can
be augmented to mimic dialogues, and engender
noisy training data for inter-turn relationship pre-
diction. Inspired by these observations we design a
curriculum learning framework, where we leverage
diverse corpora spanning both monologues and di-
alogues pertaining for incrementally training our
parser on all the AM sub-tasks. We define four cur-
riculum spanning six distinct datasets, with the fi-
nal curriculum comprising fine-tuning on the target
CMV dataset. Figure 3 illustrates our curriculum
learning framework. Further, all the datasets are
pre-processed to conform with our defined depen-
dency representation, which we detail in Appendix
A.2.1 and A.2.2.
Curriculum 1 (C1): Component & Intra-
Relation Prediction The first curriculum com-
prises training the component classification and
intra-relation prediction sub-tasks, where we lever-

age the Feedback Prize Dataset2 (FDP), which con-
sists of 15,000 argumentative essays written by
U.S students in grades 6-12, and were annotated
by expert raters for elements commonly found in
argumentative writing.
Curriculum 2 (C2): Component & Intra/Inter-
Turn Prediction We train the resulting model from
curriculum 1 on the component classification, intra
and inter-turn relation prediction sub-tasks by com-
bining training data from three existing corpora: (i)
the argumentative microtext corpora (MicroArg)
(Peldszus, 2015) featuring 112 short argumentative
monologues, which were annotated with argumen-
tation structures, following the scheme proposed
in Peldszus and Stede (2013); (ii) Consumer Debt
Collection Practices (CDCP) corpora (Park and
Cardie, 2018), comprising 4,931 elementary unit
and 1,221 support relation annotations; (iii) Web
Discourse (WD) corpora (Habernal and Gurevych,
2017), comprising 340 documents annotated with
the extended Toulmin model (Toulmin, 2003).
Curriculum 3 (C3): Text Segmentation, Com-
ponent & Intra/Inter-Turn Relation Prediction
Using the Persuasive Essays (Stab and Gurevych,
2017) (PE) corpus, we train the resultant model
from curriculum 2 on the text segmentation, com-
ponent classification, intra and inter-relation pre-
diction tasks. PE comprises 402 randomly selected
essays from an online forum, which are annotated
with argumentation structures. Treating each para-
graph as a turn, we convert the dataset to dialogues
by considering the major claims as conversation
context, and re-labeling the existing “for/against”
relationship between a claim and major claim as
inter-turn “support/attack” relationship.
Curriculum 4 (C4): Target Dataset Fine-tuning
Finally, we fine-tune the resultant model from cur-
riculum 3 on the Change My View (CMV) dataset

2https://www.kaggle.com/competitions/feedback-prize-
2021/overview
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(Chakrabarty et al., 2019b), for all sub-tasks. Con-
sisting of 112 discussions, the CMV dataset ex-
pands the existing data collected by Hidey et al.
(2017) by annotating both inter-turn and intra-turn
relations, along with additional argument compo-
nents. Further, in order to facilitate learning mean-
ingful representations, we introduce an additional
task during inter-turn relation prediction, where we
train the model to predict relationships that exist
between the contextual ADUs.

4 Experiments and Results

We use the CMV data (C4 in Section 3.4) for
our experiments, and repeat each experiment five
times. In each run, 10% of the data is randomly
set aside for testing, and we report the average
and maximum results across all runs. More details
pertaining to model configuration and setup are
shared in Appendix A.1. We train a baseline vari-
ant Baseline-C4 by fine-tuning only on the CMV
data (without pre-training and curriculum learn-
ing), and use as our internal baseline for model
comparison. We further compare our implementa-
tion against the following strong external baselines,
and report results.
AMP-BERT: Ampersand’s (Chakrabarty et al.,
2019b) (AMP) BERT baseline using only the pre-
trained model without additional fine-tuning.
AMP-Pre-Train: AMP’s fine-tuned models IMHO
Context Fine-Tuned BERT for component classi-
fication and intra-turn relation prediction, and the
QR Context Fine-Tuned BERT for inter-turn rela-
tion prediction.
AMP-Best: AMP’s best models–IMHO Context
Fine-Tuned BERT for component classification,
IMHO Context Fine-Tuned BERT+ RST Ensemble
for intra-turn relation prediction, and IMHO Con-
text Fine-Tuned BERT+ RST Features + Extrac-
tive Summarizer for inter-turn relation prediction.
Note that in order to facilitate uniform comparison
across experiments, we disregard the variants that
incorporate additional rule-based post processing.
AMP-Pre-Train-Re: Since the models reported in
AMP are not available for public use, in order to
perform qualitative analysis we re-create their fine-
tuned models that incorporate pre-training (AMP-
Pre-Train), for all common sub-tasks.

4.1 Quantitative Results

Component Classification Table 1 shares our re-
sults for component classification, where we report

and compare F1 score against external and internal
baselines. We observe that although external base-
lines perform better for identifying non arguments,
our implementation (C1+C4) which is trained on
curriculum 1 followed by fine-tuning on the target
dataset, significantly outperforms all baselines for
claim and premise classification, which is more
beneficial for constructing argument graphs. We
reason that since curriculum 1 constitutes learning
only component classification and intra-relation
prediction using the fairly large FDP dataset, it is
better able to classify components due to lower
cognitive load.

We also observe that training the model on all cur-
ricula (CL+C4) yields good results, which is not
further improved by pre-training. We attribute this
to the noisy nature of the pre-training data for com-
ponent classification.

Inter/Intra Relation Detection Table 1 shares our
results for both inter and intra-turn relation detec-
tion, where we compare F1, precision, and recall
scores across models. In comparison to our inter-
nal baseline, for inter-relation detection we observe
that training using a curriculum learning frame-
work yields better results, specially for curriculum
2, which constitutes training the relation predic-
tion sub-tasks using the MicroArg, CDCP and WD
datasets. Furthermore, we observe higher F1 scores
with pre-training, which is further increased by in-
corporating curriculum learning, yielding the best
overall results for inter-relation detection. For intra-
turn relation detection we obtain best overall F1
results when incorporating all curricula in our cur-
riculum learning framework. Although pre-training
does not seem to be further enhanced the intra-turn
relation F1 score, it helps achieve a higher preci-
sion model, which can be useful depending on the
intended use case of the parser.

For both inter and inter relation detection, we
observe that in comparison to AMP based external
baselines, our models yield higher precision, lower
recall, and higher F1 scores. We also observe that
in contrast to our models, which balances preci-
sion and recall, all AMP variants generally have
disproportionately higher recall compared to their
precision. We attribute it to the fact that AMP
formulates relationship detection as a binary pre-
diction task between sentence pairs, and constructs
all possible permutations of possible sentence pairs
from text, which inadvertently spans all arguments,
thus increasing recall. On the contrary, our biaffine
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Model
Component Classification Inter-Turn Relation Detection Intra-Turn Relation Detection

Non-Arg Claim Premise Precision Recall F1 Precision Recall F1
AMP-BERT 71.3 62.0 72.2 8.8 76.0 15.8 12.0 67.0 20.3
AMP-Pre-Train - - - 11.0 75.3 19.1 14.3 69.0 23.7
AMP-Best 75.7 67.1 72.5 16.0 79.4 26.8 16.7 73.0 27.2
AMP-Pre-Train-Re 82.7 63.6 60.9 8.0 52.5 14.0 11.7 77.0 20.4
Baseline-C4 * 70.1 (77.5) 63.7 (71.9) 74.3 (80.4) 23.9 (40.4) 31.2 (39.6) 26.4 (37.7) 17.2 (23.1) 19.3 (29.6) 16.5 (21.5)
C1+C4 72.9 (77.3) 68.5 (74.7) 75.5 (82.6) 43.8 (72.9) 33.2 (42.5) 35.2 (42.1) 23.4 (31.8) 28.0 (44.0) 23.0 (29.4)
C2+C4 67.0 (73.4) 59.2 (67.9) 72.1 (76.1) 46.4 (56.9) 30.3 (38.8) 36.4 (44.0) 22.1 (40.3) 13.6 (27.8) 12.9 (24.1)
C3+C4 66.5 (71.8) 63.2 (65.8) 72.4 (76.0) 35.4 (49.6) 29.4 (38.8) 31.2 (40.9) 20.3 (36.9) 25.2 (31.5) 20.7 (26.0)
CL+C4 73.2 (79.9) 68.4 (73.6) 75.1 (80.7) 33.0 (46.2) 35.1 (46.3) 33.8 (44.1) 28.0 (37.0) 34.3 (50.7) 29.2 (37.9)
Pre-Train+C4 67.4 (77.7) 65.2 (71.8) 73.7 (80.3) 63.9 (91.1) 27.4 (38.1) 38.4 (53.7) 12.9 (19.1) 16.8 (27.3) 14.1 (20.6)
Pre-Train+CL+C4 70.0 (76.1) 67.0 (71.5) 75.3 (80.1) 55.3 (70.3) 31.3 (43.3) 39.7 (49.8) 30.7 (45.7) 26.4 (31.8) 27.2 (37.5)

Table 1: Average and (maximum results) for Component Classification & Intra/Inter-Turn Relationship Detection.
For each metric best results w.r.t internal baseline (*) is highlighted in bold, and overall best result underlined.

Model
Inter-Turn Rel. Classify Intra-Turn Rel. Classify Text Segmentation Append
Support Attack Support Attack Non-Arg Arg

Baseline-C4 * 74.9 (82.3) 66.0 (78.9) 97.8 (99.4) 53.0 (85.7) 77.3 (80.1) 89.1 (90.5) 18.5 (30.5)
C1+C4 76.9 (84.9) 71.3 (81.0) 98.3 (99.2) 50.3 (61.5) 78.1 (81.8) 89.3 (91.4) 59.2 (61.0)
C2+C4 75.1 (84.1) 69.5 (79.5) 98.7 (99.3) 56.3 (75.0) 74.0 (79.1) 87.9 (90.0) 15.7 (25.8)
C3+C4 67.6 (80.3) 60.5 (74.1) 98.2 (99.2) 48.9 (80.0) 75.7 (77.9) 87.9 (89.2) 36.3 (45.4)
CL+C4 78.7 (85.2) 78.2 (81.3) 98.9 (99.3) 58.0 (66.7) 78.5 (83.9) 89.5 (91.4) 62.5 (65.6)
Pre-Train+C4 75.6 (80.5) 77.3 (82.2) 99.2 (99.7) 60.3 (92.3) 75.5 (83.2) 87.9 (90.5) 61.5 (65.5)
Pre-Train+CL+C4 77.2 (86.3) 76.6 (81.5) 98.5 (99.3) 51.4 (80.0) 78.5 (82.4) 89.1 (90.1) 81.2 (83.3)

Table 2: Average and (maximum) F1 scores for Inter/Intra-Turn Relationship Classification, Text Segmentation and
Append relationship prediction. In each column, best result w.r.t baseline (*) is highlighted in bold.

Model
Component Inter-Turn Intra-Turn

TP-C TP-A TP-C TP-A TP-C TP-A
AMP-Re 71.1 75.6 54.3 46.7 67.6 72.7
Dialo-AP 82.2 80.4 87.5 90.9 71.3 73.2

Table 3: Comparison of Human Evaluation Re-
sults between AMP-Pre-Train-Re (AMP-Re) and Pre-
Train+CL+C4 (Dialo-AP)

dependency parsing based formulation operates at
an entire turn level, and facilitates information ex-
change across EDUs, thus resulting in a balanced
score.
Inter/Intra Relation Labeling, Text Segmenta-
tion and Append Detection We report our results
for inter/intra-turn relationship label prediction and
append relationship detection in Table 2. We only
perform comparison amongst our implemented
variants and inter baselines, due to lack of external
baselines for these tasks. For inter-turn relation
classification, we observe that incorporating both
pre-training and curriculum learning yields better
results compared to baseline. Further, training on
all curricula yields best F1 score for predicting both
support and attack relationship. Similarly for intra-
turn relation classification, we observer both pre-
training and curriculum learning yields superior
results compared to baseline. However, compared

to curriculum learning, incorporating pre-training
yields better results. We also observe that com-
pared to inter-turn, all model variants are perform
intra-turn support relationship classification better
and attack relationship classification worse, com-
pared to inter-turn. Further, for each model, the
difference in support and attack classification F1
scores for intra-turn is higher compared to inter-
turn, signifying. We attribute this to the fact that
occurrence of support relationships are more preva-
lent within a turn compared to attack relationships,
which is the converse for inter-turn relationships
(Table 4, Appendix A.3).

Although the task of text segmentation is more
dependent on linguistic features, we observe best
results (Table 2) when training using curriculum
learning, proving the efficacy of training using di-
verse curriculum, in a multi-task learning frame-
work. Also, for detecting append relationship be-
tween EDUs (Table 2), we observe significantly
better results when incorporating pre-training along
with curriculum learning, compared to other means.

4.2 Qualitative Results

We further perform human evaluations to ascer-
tain Dialo-AP’s usefulness in real world scenarios,
where the topic of the discussion might be unre-
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stricted. For our purpose, we collect discussion
threads from the ChangeMyView subreddit on the
controversial and out-of-domain topics of abortion,
gun violence, minimum wage and death penalty,
and perform human evaluation on the component
classification, inter-turn and intra-turn relation de-
tection subtasks, using a subset of 100 discussions
(Table 5, Appendix A.3).

Since our motivation is to create a parser that can
identify salient arguments with high precision, we
introduced and compared two new metrics: (i) TP-
C: Mean True Positive rate at a Conversation level,
signifying for a conversation, the number of model
predictions that are correct on an average. (ii) TP-
A: Mean True Positive rate at an overall level, sig-
nifying on an average, the number of model pre-
dictions that are correct. We parse each discussion
using Dialo-AP variant incorporating pre-training
and curriculum learning (Pre-Train+CL+C4), and
the recreated version of AMP that leverages pre-
training (AMP-Pre-Train-Re), and use Amazon
Mechanical Turk (AMT) Human Intelligence Task
(HIT) to collect human evaluation on the parsed
outputs. In each HIT we provide the entire dis-
cussion thread, followed by either the identified
arguments with their predicted claim/premise la-
bels, or inter/intra argument pairs predicted by the
parsers, and ask the evaluators to mark (by ticking
a checkbox) if they think the prediction is correct.
Appendix A.4 details the human evaluation task
and the AMT collection framework. We compute
inter-annotator agreement using 2 evaluators, and
observer a Cohen’s Kappa score of 0.15, 0.22 and
0.16 for component classification, intra and inter-
turn relationship detection respectively, signifying
fair amount of agreement (Table 6, Appendix A.4).

Table 3 shares the results from the human eval-
uation. We observe that our formulation yields
significantly better results for all three subtasks,
with inter-turn relation detection reporting high-
est gains compared to the competing model. We
attribute this to our robust pre-training and curricu-
lum learning framework, which trains the parser on
existing and augmented dialogical data, for identi-
fying inter-turn argumentative relationships. In
comparison to itself, leveraging pre-training on
the monological IMHO and the noisy QR corpus,
AMP performs best on component classification
followed by intra-turn and inter-turn relation detec-
tion subtasks, whereas Dialo-AP performs best on
inter-turn relation detection, followed by compo-

nent classification and intra-turn relation detection
subtasks. Thus, signifying Dialo-AP’s better appli-
cability for mining arguments from dialogues.

5 Discussion

Our aim with Dialo-AP was to devise an end-to-
end argument parser that can not only enable dis-
course analysis, but also aid in argument gener-
ation by engendering argument graphs compris-
ing salient (support-attack) chains of arguments
from dialogues. In Figure 4 we illustrate an argu-
ment graph generated by Dialo-AP (on the right)
on a randomly sampled CMV discussion on death
penalty, and further compare it against the output
by recreated AMP (on the left). Firstly, we observe
that although both the parsers yield similar num-
ber of components, operating at a combination of
EDU and token level, Dialo-AP better identifies
and labels argumentative spans. For instance, AMP
incorrectly labels the non-arguments P5 and P6 as
premises. Further, operating at a sentence level,
AMP classifies the component C2 as a single claim,
whereas Dialo-AP is correctly able to segment it
into 2 components P1 and C2.

Secondly, we observe that since AMP formu-
lates relation prediction as a binary classification
problem between argument pairs, it predicts co-
pious relations between components which need
not hold, thus hurting it’s usefulness for construct-
ing argument graphs. For example, none of the
relationships predicted between user 2’s argument
components hold. On the contrary, not only are the
relationships identified by Dialo-AP more mean-
ingful, it also labels the relationship type, making
it more useful for constructing argument graphs.

Although Dialo-AP yields better results, it
comes with its own set of predicaments. As illus-
trated on the right, it is unable to relate and utilize
all identified argumentative components in the ar-
gument graph. For instance, although Dialo-AP
identifies the component P4, it is unable to estab-
lish relationship, and leaves them out of the graph.
Further, we observe that both the parsers lack epis-
temic reasoning capabilities, and could possibly
benefit from the use of external knowledge graphs
and knowledge bases, which we point as the next
possible research direction for argument parsing.

6 Conclusion

In this paper, we present Dialo-AP, a state-of-the-
art end-to-end dependency parsing based argument
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Figure 4: Comparison of parsed CMV post.

parser for parsing arguments from dialogues. For-
mulating AM as dependency parsing of EDUs and
ADUs, and trained in a multi-task setting over di-
verse curriculum, Dialo-AP is capable of engender-
ing argument graphs from dialogues, by perform-
ing all sub-tasks of AM. Dialo-AP’s efficacy is
exhibited by its superior experimental and human
evaluation results, in comparison to strong internal
and external baselines. We further discuss Dialo-
AP’s limitations, and point towards possible next
research steps.
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A Appendix

A.1 Experiment Setup

We use Roberta (base) (Liu et al., 2019) as the base
encoder, and increase its embedding layer to ac-
commodate the special [EDU] token. The size of
positional embedding layer is increased to 2500.
Two layers comprising four attention heads are
used for MHA, where the MHA result in each layer
is sum pooled with the residual output while ap-
plying dropout with 0.1 probability to the MHA
result. The hidden size of the FNNs in the biaffine
layer is set to 600. An interpolation factor of 0.4
each is used for aggregating the inter and intra-turn
relation prediction losses, 0.1 for component clas-
sification, and 0.01 for the additional contextual
relationship loss prediction. The remaining factor
of 0.09 is split equally among text segmentation,
append relation prediction, and inter/intra-turn rela-
tion labeling. Further, a weight of 3.0 is applied to
positive examples during computing binary cross
entropy loss for inter and intra-turn relation predic-
tion. All models are trained with a learning rate of
1e-5 for 15 epochs and optimised using AdamW
(Loshchilov and Hutter, 2017), with early stopping
if the validation loss doesn’t reduce for 2 epochs.
We repeat each experiment five times and report
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the average and maximum results across all runs.
During inference, a threshold of 0.5 is used for re-
lationship detection, which is lowered to 0.2, for
parsing the out-of-domain samples for human eval-
uation.

A.2 Pre-processing Steps for Dependency
Representation

A.2.1 EDU Segmentation
Depending on the volume of data that needs to be
processed, we incorporate the following two seg-
mentation strategies for segmenting text into EDUs:
(i) Neural Segmentation: For low volume data we
use the Bi-LSTM-CRF based discourse segmenter
by Wang et al. (2018). (ii) Rule Based Segmen-
tation: For larger volumes of data, we use a rule
based discourse segmenter, where we segment on
encountering the following punctuation :“.”, “?”,
“!”, “,”, “;”, and further use a pre-defined set of 113
commonly used discourse markers for finer seg-
mentation (example: “however”, “in conclusion”,
“besides”, etc.).

We use the rule based segmentation for pre-
processing the large scale IMHO, args.me, FDP,
and QR corpus, whereas the neural segmentation is
used for segmenting the PE, WD and CMV corpus.
Further, we always resort to neural segmentation
during inference. Due to it’s relatively shorter ar-
gument length, for CDCP corpus we treat each
proposition as an EDU, and for MicroArg each
sentence is considered to be an EDU.

A.2.2 Dataset Specific Pre-processing
IMHO Corpus: We enforce a minimum length of
10 and a maximum length of 300 tokens for each
segment. Further, we remove examples whose to-
kens are split into more than 25 segments. Further,
while associating claims with noisy premise, by de-
fault the succeeding sentence is chosen as premise
if its similarity score is within a margin of 10%
compared to the preceding sentence.
arge.me & QR corpus: For args.me, we consider
a “pro” stance as “support”, and “con” as “attack”.
For QR, all relationships are considered to be “at-
tack”.
FDP Corpus: We remap “Position”→“Major
Claim”, (“Claim”, “Counterclaim”, “Rebut-
tal”, “Concluding Statement”)→“Claim”, and
“Evidence”→“Premise”. We use textual entailment
to associate a claim with a premise. For each claim
we construct a set of four candidate premises: two
preceding and two following. Using AllenAI’s

(Gardner et al., 2017) ELMO (Peters et al., 2018)
based Textual Entailment we select the premise
with the highest entailment score above a thresh-
old of 0.7, as the most likely connected premise,
else select the premise immediately following the
claim.
MicroArg Corpus: We remap “NA”→“No Re-
lation”, (“sup”, “exa”, “add”, “pro”)→“Support”,
and (“reb”, “opp”)→“Attack”. Further, since Mi-
croArg constitutes monologues, we consider the
prompt as the previous turn, and convert the mono-
logues to dialogues.
CDCP Corpus: Here we make an assumption and
only mark propositions as claim if they have any
associated evidence. Else, it’s tagged as premise.
WD & PE Corpus: For the WD corpus, we remap
“Backing”, “Rebuttal” and “’Refutation” to premise.
For the PE dataset, we derive dialogues from each
paragraph by treating the “Major Claims” (or the
essay prompt if major claim is not present) as prior
conversation context.
CMV: We remap (“support”, “agreement”, “par-
tial_agreement”, “understand”)→“Support”,
and (“rebuttal_attack”, “partial_attack”,
“rebuttal”,“undercutter_attack”, “par-
tial_disagreement”, “disagreement”, “undercutter”,
“attack”)→“Attack”.

A.3 Additional Stats

Relation Support Attack
Intra 96.1 3.9
Inter 45.0 55.0

Table 4: Percentage distribution of Support and Attack
Relationships for Inter and Intra-Turn Relations.

Topic Search Keywords Count Discussions
abortion abortion, foeticide 53

gun control

gun control, own gun,
second amendment,
gun violence,
ban gun

19

death penalty
death penalty,
capital punishment

18

minimum wage minimum wage 10

Table 5: Topic distribution of out-of-domain examples
collected from CMV.

A.4 Amazon Mechanical Turk Annotations

We leveraged Amazon Mechanical Turk (AMT) in
order to collect human evaluations on the model
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Task % Agreement Cohen’s Kappa Krippendorff’s α N Agreements N Disagreements N Cases N Decisions
Inter-Turn Relation Detection 57.1 0.16 0.13 12 9 21 42
Intra-Turn Relation Detection 57.1 0.22 0.1 12 9 21 42
Component Classification 68.0 0.15 0.14 17 8 25 50

Table 6: Inter-Annotator Agreement of Human Evaluations

generated parsed outputs. We set up human in-
telligence task (HIT) in the AMT platform, with
two evaluators per example and each task worth
$0.01. The evaluators were provided with clear
instructions on what to annotate and how to anno-
tate the examples, along with a few worked out
examples, which are illustrated as screenshots in
Figures 5 and 7. The tasks comprised of reading
a conversation context, and determining if the pre-
sented claim/premise labels are true for component
classification (Figure 6), or if the presented argu-
ment pairs are valid for inter and intra-turn relation
prediction (Figure 8).

In order to ensure quality of annotations, a ran-
dom portion of the examples presented to each
annotator would not be related to the provided con-
versation, and would have to be marked as “Not in
Conversation". Any annotations that failed the qual-
ity check were discarded. Further, we discarded
annotations which were quickly submitted (less
than 2 minutes of work time), and also removed
samples where the evaluators missed unchecking
the checkboxes, resulting in ambiguity.
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Figure 5: Instructions provided for evaluating component classification in AMT.

Figure 6: Component classification sample from AMT.
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Figure 7: Instructions provided for evaluating intra/inter-turn relation identification in AMT.

Figure 8: Relation identification sample from AMT.
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Abstract

Implicit Discourse Relation Recognition
(IDRR) is to detect and classify relation sense
between two text segments without an explicit
connective. Vanilla pre-train and fine-tuning
paradigm builds upon a Pre-trained Language
Model (PLM) with a task-specific neural net-
work. However, the task objective functions
are often not in accordance with that of the
PLM. Furthermore, this paradigm cannot well
exploit some linguistic evidence embedded in
the pre-training process. The recent pre-train,
prompt, and predict paradigm selects appropri-
ate prompts to reformulate downstream tasks,
so as to utilizing the PLM itself for prediction.
However, for its success applications, prompts,
verbalizer as well as model training should
still be carefully designed for different tasks.
As the first trial of using this new paradigm
for IDRR, this paper develops a Connective-
cloze Prompt (ConnPrompt) to transform the
relation prediction task as a connective-cloze
task. Specifically, we design two styles of
ConnPrompt template: Insert-cloze Prompt
(ICP) and Prefix-cloze Prompt (PCP) and
construct an answer space mapping to the
relation senses based on the hierarchy sense
tags and implicit connectives. Furthermore,
we use a multi-prompt ensemble to fuse
predictions from different prompting results.
Experiments on the PDTB corpus show that
our method significantly outperforms the
state-of-the-art algorithms, even with fewer
training data.

1 Introduction

Implicit Discourse Relation Recognition (IDRR)
aims at detecting and classifying some latent re-
lation in between a pair of text segments (called
arguments) without an explicit connective word.
As illustrated in Fig. 1, an implicit discourse rela-
tion of "Contingency" is held between Argument-1
and Argument-2, and the implicit connective ’so’

∗ Corresponding author: Bang Wang

is inserted by annotators in the PDTB corpus. It
is of great importance for many downstream Natu-
ral Language Processing (NLP) applications, such
as question answering (Liakata et al., 2013), ma-
chine translation evaluation (Guzmán et al., 2014),
information extraction (Xiang and Wang, 2019),
sentiment analysis (Wang and Wang, 2020), and
etc. However, due to the absence of an explicit con-
nective word, inferring discourse relations from the
contextual semantics of arguments is still a chal-
lenging task.

Existing pre-train and fine-tuning paradigm (Liu
et al., 2021) builds upon a Pre-trained Language
Model (PLM) with a well-designed sophisticated
neural network to encode the semantic content and
interactive evidence of argument pairs (Liu and
Li, 2016; Lei et al., 2017; Bai and Zhao, 2018;
Ruan et al., 2020; Li et al., 2020; Liu et al., 2020;
Wu et al., 2022). Although the PLMs are adapted
to these task-specific neural networks that can ef-
fectively learn a kind of contextual semantics of
arguments, they introduce some additional param-
eters that need to be trained by a large amount of
labelled data. Moreover, the task objective function
is often not in accordance with that of the PLM. As
such, the PLM needs to be fine-tuned for solving
downstream tasks, resulting in poor utilization of
the encyclopedic linguistic evidence embedded in
the pre-training process.

On the one hand, we notice that the pre-training
process of a PLM often uses a kind of cloze task,
called Masked Language Model (MLM), to predict
a piece of masked text from context. On the other
hand, it has been reported that an explicit connec-
tive of an argument pair can greatly improve the
relation classification performance in the explicit
discourse relation recognition task (Pitler et al.,
2008). Although explicit connectives are not avail-
able in the IDRR task, it is of great interests to
explore whether we can transform the relation pre-
diction task as a connective-cloze task, such that we
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Figure 1: An example of implicit discourse relation annotation with manually inserted connective.

can exploit a pre-trained masked language model
to predict a missing (yet possibly latent) connective
for implicit relation classification. This is actually
in accordance with the philosophy of the prompt
learning paradigm, that is, predicting a connective
as an answer word in some predefined template
and then mapping the answer word to one relation
sense.

The recent pre-train, prompt, and predict
paradigm models the probability of text directly
based on PLMs to perform prediction task. Specifi-
cally, it selects appropriate prompts to reformulate
downstream task, so as to utilizing the PLM itself to
predict the desired output (Liu et al., 2021). More-
over, the prompt paradigm is capable of performing
few shot even zero-shot learning, as the PLM is
sufficiently pre-trained and no external parameters
need to be trained. However, for its successful ap-
plications in many downstream NLP tasks (Ding
et al., 2021; Wang et al., 2021; Seoh et al., 2021),
prompts engineering, verbalizer as well as train-
ing strategies should still be carefully designed for
different tasks. In this paper, we explore how to
transform the IDRR task against the prompt learn-
ing paradigm. To the best of our knowledge, this is
the first paper for such explorations.

In this paper, we develop a Connective-cloze
Prompt (ConnPrompt) framework to transform
the relation prediction task as a connective-cloze
task for the IDRR task. Specifically, we design
two styles of ConnPrompt template: Insert-cloze
Prompt (ICP) and Prefix-cloze Prompt (PCP), in
which the [MASK] token is added for connective
answer prediction. The ICP template concate-
nates two arguments as an entire word sequence,
and the [MASK] token is inserted in between two
arguments; The PCP template uses a [SEP] to-
ken to mark the boundary of two arguments, and
the [MASK] token is added at the beginning of
argument-1 or argument-2 as a prefix. Besides,
we construct an answer space mapping an answer
word to relation senses according to the hierarchy
sense tags and implicit connectives in the training
dataset. Furthermore, in order to leverage the com-

plementary advantages of different prompt tem-
plates, we use a multi-prompt ensemble to fuse
predictions from different prompting results.

We conduct the experiments on the PDTB cor-
pus with four advanced masked language models:
BERT, RoBERTa, ERNIE and DeBERTa. Exper-
iment results show that our ConnPrompt signifi-
cantly outperforms the state-of-the-art algorithms
with full training data. Furthermore, our Con-
nPrompt can also achieve comparable performance
even with fewer training data.

2 Method

In this section, we first introduce the overall frame-
work of our ConnPrompt, then explain the details
of connective-cloze prompt templates, verbalizer
construction, multi-prompt ensembling, and model
training strategies.

2.1 Overview
As illustrated in Fig. 2, our ConnPrompt has three
main processes, including prompt templatize, an-
swer prediction and verbalizer.

Prompt templatize: an input argument pair
x = (Arg1;Arg2) is reformulated into a prompt
template T (x) by concatenating two arguments
and inserting some PLM-specific tokens such as
[MASK], [CLS], [SEP], as the input of a PLM. The
[MASK] token is added for PLM to predict an an-
swer word v; While the [CLS] and [SEP] tokens
are used to indicate the beginning and ending of
an input word sequence, respectively. Note that
some PLMs use other tokens like <mask>, <s>,
and </s>, but they have the same meaning as de-
scribed above.

Answer prediction: the pre-trained masked lan-
guage model estimates the probability of each word
in its vocabulary V for the [MASK] token as fol-
lows:

Pv([MASK] = v ∈ V | T (x)). (1)

We define a discrete answer space Va =
{v1, v2, . . . , vn} containing the words manually se-
lected according to the hierarchy sense tags and
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Figure 2: Illustration of our ConnPrompt framework.

implicit connectives, which is a subset of PLM’s
vocabulary, Va ⊂ V . Then, a softmax layer is ap-
plied on the prediction scores of our answer words
to normalize them into probabilities:

Pa(vi ∈ Va | T (x)) =
epvi∑n
j=1 e

pvj
, (2)

Verbalizer: the predicted answer word is pro-
jected to a unique discourse relation sense based
on our pre-defined connection regulation.

2.2 Connective-cloze prompts

Motivated by the fact that connective words can
effectively indicate the relation sense between two
arguments, we design a kind of connective-cloze
prompt template to predict a connective-bearing an-
swer word for IDRR. In English syntax and gram-
mar, connective words are usually located at the
begining of a sentence or between two adjacent
clauses. Thus we design two styles of prompt tem-
plates for connective-cloze prompts: Prefix Cloze
Prompt (PCP) and Insertion Cloze Prompt (ICP),
as shown in Fig. 3:
T1(x) is an ICP template, in which Arg1 and

Arg2 are concatenated as an entire word sequence,

and the [MASK] token is inserted between two ar-
guments. T2(x) and T3(x) are PCP templates, in
which the [SEP] token is also used to mark the
boundary betweenArg1 andArg2, and the [MASK]
token can be either added at the front of Arg1
(T3(x) ) or Arg2 (T2(x)).

Relation Sense Answer words

Comparison similarly, but, however, although
Contingency for, if, because, so
Expansion instead, by, thereby, specifically, and
Temporal simultaneously, previously, then

Table 1: Answer space of our ConnPrompt and their
connection to the top-level class discourse relation
sense tags in the PDTB.

2.3 Verbalizer Construction
Table 1 presents our verbalizer connection from
the answer space to discourse relation sense labels.
Note that the answer space is a small subset of the
vocabulary in a PLM. We select sixteen answer
words from nearly two hundred connectives in the
PDTB corpus. In our verbalizer construction, the
following four design issues are considered to sat-
isfy the representative of each relation sense.
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Figure 3: Illustration of our ConnPrompt Templates.

• Answer Shape: Only individual word con-
nectives are selected as answer words, as most
masked PLMs predicts only a single word.

• Ambiguity: Each answer word has one unam-
biguous connection with one discourse rela-
tion sense. Those words that can be used for
multiple senses are not selected.

• Frequency: High frequency appearance con-
nectives are prior to be selected as the answer
words.

• Semantic: For those words with similar se-
mantics in the same relation sense, we select
a representative one to alleviate the answer
confusion issue.

Specifically, we first eliminate those ambiguous
connectives each for multiple senses, so that each
answer word corresponds to only one discourse
relation sense. We next rank the rest connectives
according to their appearance frequencies in PDTB
corpus to obtain a candidate set of answer words
from the top of connective ranking. Finally, we
select a representative word for those words with
similar semantics in the same relation sense to al-
leviate the answer confusion issue and construct
an answer space with sixteen words Va as in Ta-
ble 1. Each of them has a unique connection to
one of the four top-level classes of relation sense
Y = {Comparison, Contingency, Expansion,
Temporal}.

2.4 Training Strategies

In model training, we tune the parameters of PLM
using the IDRR training dataset based on our cre-
ated prompt templates and answer space. Note
that the final verbalizer layer is a projection and
has no parameters to train. For model training, we
assign an answer word for each instance of an ar-
gument pair as its ground truth label according to
its manually annotated implicit connectives and the

hierarchical sense tags in the PDTB. Specifically,
if the implicit connective of an argument pair in-
stance is in our answer space, we directly use it as
the answer label; Otherwise, we take the most fre-
quent answer word that has the same subtype-level
sense tag as its label.

We adopt the cross entropy loss as the cost func-
tion:

J(θ) = − 1

K

K∑

k=1

y(k) log(ŷ(k)) + λ‖θ‖2, (3)

where y(k) and ŷ(k) are the gold label and predicted
label of the k-th training instance respectively. λ
and θ are the regularization hyper-parameters. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with L2 regularization for model training.

2.5 Multi-prompt Ensembling
Multi-prompt learning uses multiple unanswered
prompts for an input at inference time to make pre-
diction (Lester et al., 2021). In accordance with
English convention, we have designed three prompt
templates. As each of them can output prediction
probabilities for answer words, we make a decision
fusion of majority voting as multi-prompt ensem-
bling for final relation sense prediction. After each
prompt predicting a specific relation sense, if two or
more prompts have the same prediction, then their
predicted relation sense is used as the final output.
In a case that each prompt predicts differently, we
choose the prediction from the prompt template
with the highest F1 in the validation dataset.

3 Experiment Settings

In this section, we present our experimental set-
tings, including dataset, PLMs, parameter settings
and competitor models.

3.1 The PDTB Dataset
We conduct our experiments on the Penn Discourse
TreeBank (PDTB) 3.0 corpus (Webber et al., 2019),
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which contains more than one million words of
English texts from Wall Street Journal. Following
the conventional data splitting, we use sections 2-
20 as the full training set, sections 21-22 as the
testing set and 0-1 as the development set (Ji and
Eisenstein, 2015). Our experiments are conducted
on the four top-level classes of relation sense, in-
cluding Comparison, Contingency, Expansion,
Temporal.

For few shot learning, we randomly down-
sample the full training set to construct some sub-
sets containing {Full, 50%, 30%, 20%, 10%} in-
stances of the full training set. Table 2 summarizes
the statistics of training instances in the training set
and subsets.

Relation Expa. Comp. Cont. Temp. Total

Train-Full 8645 1937 5916 1447 17945
Train-50% 2794 1937 2794 1447 8972
Train-30% 1346 1346 1346 1346 5384
Train-20% 898 898 898 898 3592
Train-10% 449 449 449 449 1796

Dev. 748 190 579 136 1653
Test 643 154 529 148 1474

Table 2: Statistics of the PDTB training set and down-
sampling sets with four top-level relation senses.

3.2 Pre-trained Language Models

We use four masked pre-trained language models
(PLM) for comparision:

• BERT (Devlin et al., 2019): The most rep-
resentive PLM proposed by Google 1, which
is pre-trained using a cloze task and a next
sentence prediction task.

• RoBERTa (Liu et al., 2019): A BERT-
enhanced PLM proposed by Facebook 2,
which removes the next sentence predic-
tion objective and is pre-trained on a much
larger dataset with some modified key hyper-
parameters.

• ERNIE (Sun et al., 2019): A knowledge-
enhaced PLM proposed by Baidu 3, which
uses some knowledgeable masking strategies
in pre-training.

1https://github.com/google-research/bert
2https://github.com/pytorch/fairseq/
3https://github.com/PaddlePaddle/ERNIE

• DeBERTa (He et al., 2021): The latest
masked PLM proposed by Microsoft 4, which
improves BERT and RoBERTa models using
a disentangled attention mechanism and an
enhanced mask decoder.

3.3 Parameter Setting

Table 3 presents the configuration of each English
masked pre-trained language model. All these
PLM models are implemented in PyTorch 5 frame-
work by HuggingFace transformers 6 (Wolf et al.,
2020), and run with CUDA on NVIDIA GTX 1080
Ti GPUs. From our statistics, 99.46% of argu-
ments do not exceed 50 words in PDTB. So we
set the maximum length of each prompt template
to 100 tokens, in which the maximum length of
argument-1 is 50 tokens, and the rest 50 tokens
are for argument-2 and [MASK], [CLS] and [SEP]
tokens. We train all the four masked PLMs with
the same mini-batch of 16 and learning rates of
5e-6, 1e-5, 2e-5 and 5e-5. We release the code at:
https://github.com/HustMinsLab/ConnPrompt.

PLM Model Vocab. size Layer Dim.

BERT bert-base-uncased 30522 12 768
RoBERTa roberta-base 50265 12 768

ERNIE ernie-2.0-en 30522 12 768
DeBERTa deberta-base 50265 12 768

Table 3: Configuration of four pre-trained masked lan-
guage models.

3.4 Competitors

We compare our ConnPrompt with the following
advanced models:

• DAGRN (Chen et al., 2016) encodes word-
pair interactions by a neural tensor network.

• NNMA (Liu and Li, 2016) combines two ar-
guments’ representations for stacked interac-
tive attentions.

• IPAL (Ruan et al., 2020) propagates self-
attention into interactive attention by a cross-
coupled network.

• PLR (Li et al., 2020) uses a penalty-based loss
re-estimation method to regulate the attention
learning.

4https://github.com/microsoft/DeBERTa
5pytorch.org
6https://github.com/huggingface/transformers
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• BMGF (Liu et al., 2020) combines bilateral
multi-perspective matching and global infor-
mation fusion to learn a deep contextualized
representation.

Model PLM Acc F1

DAGRN (ACL, 2016) Word2vec 57.33% 45.11%
NNMA (EMNLP, 2016) Glove 57.67% 46.13%
IPAL (COLING, 2020) BERT 57.33% 51.69%
PLR (COLING, 2020) BERT 63.84% 55.74%
BMGF (IJCAI, 2020) RoBERTa 69.95% 62.31%

Our ConnPrompt

BERT 69.67% 64.00%
RoBERTa 75.17% 70.88%

ERNIE 72.93% 68.37%
DeBERTa 74.63% 70.19%

Table 4: Overall results of comparison models on the
PDTB corpus.

4 Result and Analysis

4.1 Overall Result

We implement a four-way classification on the top-
level relation sense of the PDTB, in which macro
F1 score and accuracy (Acc) are used for evalu-
ation. Table 4 compares the overall performance
between our ConnPrompt and the state-of-the-art
models with pre-train and fine-tuning paradigm.
We note that the first two competitors both use a
kind of distributed representation based static word
embeddings: Word2vec and Glove, provided by
Google 7 and Stanford NLP Group 8. While the
others use Transformers based pre-trained masked
language model BERT and RoBERTa, which are
dynamic and contextual. We also compare the per-
formance of our ConnPrompt with different PLMs.

The first observation is that the IPAL, PLR and
BMGF model can obviously outperform the first
two competitors, viz., the DAGRN and NNMA
model. This might be attributed to the use of
more advanced dynamic PLMs which are pre-
trained with deeper neural networks and larger
scale of parameters based on Transformers. In-
deed, transformer-based PLMs have been proven
to be more effective for many downstream NLP
tasks (Devlin et al., 2019; Liu et al., 2019).
Although these competitors’ well-designed task-
specific neural networks also have a certain impact
on the performance, the gaps between dynamic

7code.google.com/archive/p/word2vec
8https://nlp.stanford.edu/projects/glove/

PLMs and static word embeddings are still appar-
ent in the IDRR task.

The second observation is that in our
ConnPrompt employing different PLMs, the
ConnPrompt-BERT performs the worst. We note
that although they all employ Transformer based
model in pre-training, the RoBERTa, ERNIE
and DeBERTa have applied some adjusted and
optimized pre-training processes. Specifically, the
RoBERTa removes the next sentence prediction
task and uses a much larger dataset for training;
While the ERNIE uses some knowledgeable
masking strategies; and the DeBERTa applies
a disentangled attention mechanism to encode
context and position information separately. This
suggests that the improvements and optimization
in the pre-training process can effectively improve
the performance of prompt learning.

Finally, our ConnPrompt with all four PLMs
have achieved better performance than all con-
ventional pre-train and fine-tuning paradigm mod-
els in macro F1 score, even some of the com-
petitors have used advanced PLMs like RoBERTa
and BERT, to train an elaborate downstream task
model. Besides, the ConnPrompt-RoBERTa and
ConnPrompt-DeBERTa model have achieved sig-
nificant improvements over all competitors and
PLMs in terms of much higher macro F1 score
and Acc. We attribute its outstanding performance
to our task transformation of connective-cloze pre-
diction into the training of PLMs, other than using
task-specific model built-upon a PLM, by which
our ConnPrompt can better enjoy the encyclopedic
linguistic evidence embedded in a PLM during the
model training process.

4.2 Prompt Template Effections

In the prompt paradigm, using different templates
may impact on the task performance. Table 5 com-
pares the results of our designed single-prompt
templates and multi-prompt ensembling of Con-
nPrompt.

It can be first observed that using different
prompt templates do result in some performance
disparity, even though the gaps are not obvious. For
single-prompt learning, the BERT and RoBERTa
have achieved the best performance in Prompt-1,
while the ERNIE and DeBERTa have achieved
the best performance in Prompt-2. This suggests
that the semantic encoding might play the central
role in BERT and RoBERTa, as the Prompt-1 does
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PLM
BERT RoBERTa ERNIE DeBERTa

Acc F1 Acc F1 Acc F1 Acc F1

Prompt-1 69.74% 63.95% 74.36% 69.91% 72.05% 67.25% 72.32% 67.74%
Prompt-2 69.34% 63.69% 73.61% 69.63% 72.25% 67.59% 72.66% 67.98%
Prompt-3 67.64% 62.65% 73.54% 69.00% 70.15% 66.21% 72.66% 67.92%

Multi-Prompt 69.67% 64.00% 75.17% 70.88% 72.93% 68.37% 74.63% 70.19%

Table 5: Results of single-prompt templates and multi-prompt ensembling with different PLMs on the PDTB
corpus.

not mark the boundary of two arguments, and the
[MASK] token is inserted between them to form an
entire word sequence.

By contrast, ERNIE and DeBERTa might have
more consideration on position encoding, as the
Prompt-2 uses a [SEP] token to distinguish two
input arguments and the [MASK] token is added at
the front of argument-2. They have shown more
powerful ability with these position information.
We also observe that Prompt-3 cannot outperform
the other two prompts. This may be attributed to
its infrequent grammar structure that places the
connective at the beginning of the first argument.

Our multi-prompt model achieves performance
improvements over the single-prompt models for
almost all PLMs. This indicates that our multi-
prompt ensembling is effective for fusing multiple
single-prompts for discourse relation classification.

4.3 Few Shot Learning

Some researchers have reported that the prompt
paradigm is of some robustness to using fewer
training data in other NLP tasks, like text classifi-
cation (Wang et al., 2021) and entity typing (Ding
et al., 2021). We would also like to examine the
performance of ConnPrompt and competitors with
few shot learning. We adopt down-sampling to
construct smaller training datasets; While the de-
velopment set and test set remain unchanged.

Fig. 4 summarizes the few short learning results.
It is not unexpected that both our ConnPrompt and
competitors suffer from the reduction of training
data. The left column presents the ConnPrompt
results when using different PLMs. It is again
observed that the RoBERTa is still the best PLM
choice for the ConnPrompt with fewer training data.
The center column compares the ConnPrompt built
upon BERT with two competitors, viz., IPAL and
PLR, also employing BERT as their PLM. We se-
lect the single-prompt with the best performance
in the validation dataset for comparison. It is ob-

served that the performance improvements of Con-
nPrompt are quite significant in few short learning.
In particular, when using 10% training data, the
ConnPrompt (F1 48.32% and Acc 50.41%) out-
performs the IPAL and PLR using 50% training
data, (IPAL: F1 45.53% and Acc 50.00%; PLR: F1
47.13% and Acc 50.07%). Similar results can also
be observed for ConnPrompt built upon RoBERTa
(right column). These results validate the effec-
tiveness of ConnPromt even with fewer training
data.

5 Related Work

5.1 Implicit Discourse Relation Recognition

The pre-train and fine-tuning paradigm for the
IDRR task is usually approached as a classification
problem, and the key is to construct a downstream
task model built-upon some PLM for the argument
representation learning.

Deep learning models have prevailed for their
capabilities of automatic learning argument repre-
sentation upon PLM (Zhang et al., 2015; Ruther-
ford et al., 2017). For example, the SCNN
model (Zhang et al., 2015) obtains each argument
representation via a single convolution layer, and
the concatenation of two arguments’ representa-
tions is used for relation classification. Rutherford
et al. (2017) employ a LSTM network to capture
word contextual semantics for argument represen-
tation. Some hybrid models have attempted to com-
bine CNN, LSTM, graph convolutional networks
and etc., for more sophisticated argument repre-
sentation (Zhang et al., 2021; Shi and Demberg,
2019; Jiang et al., 2021). These approaches, how-
ever, have ignored the fact that different words may
contribute differently in argument representation
learning.

Attention mechanisms can guide a neural model
to unequally encode each word according to its
contextual importance for argument representa-
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(a) F1 of multi-prompt with differnet PLMs (b) F1 of BERT models (c) F1 of RoBERTa models

(d) Acc of multi-prompt with differnet
PLMs

(e) Acc of BERT models (f) Acc of RoBERTa models

Figure 4: Performance comparison of few shot learning on the PDTB corpus.

tion (Zhou et al., 2016; Liu and Li, 2016; Lan
et al., 2017; Guo et al., 2020; Ruan et al., 2020;
Li et al., 2020). For example, Zhou et al. (2016)
apply self-attention to weight a word according to
its similarity to its belonging argument. Guo et
al. (2020) and Liu et al. (2020) adopt an interactive
attention to differentiate words in one argument,
where a word is weighted according to the simi-
larity between its encoding and another argument
representation. Liu and Li (2016) design a multi-
level attention to repeatedly compute word impor-
tance in a hierarchical way. Ruan et al. (2020)
propose a pipeline workflow to apply interactive
attention after self-attention. Li et al. (2020) use a
penalty-based loss re-estimation method to regulate
the attention learning.

5.2 Prompt Learning for NLPs

After the emergence of large-scale PLMs like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), ERNIE (Sun et al., 2019) and etc., the
prompt learning has become a new paradigm for
some NLP tasks, which use the probability of text
in PLMs to perform a prediction task (Seoh et al.,
2021; Wang et al., 2021; Ding et al., 2021). For ex-
ample, Seoh et al. (2021) propose a cloze question
prompt and a natural language inference prompt for

aspect-based sentiment analysis. Wang et al. (2021)
propose a transferable prompting framework to cap-
ture cross-task knowledge for few-shot text clas-
sification. Ding et al. (2021) apply a cloze-style
prompt learning on fine-grained entity typing in
fully supervised, few-shot and zero-shot scenarios.
Up to now, prompt learning has achieved promis-
ing results on some NLP tasks, but has not been
reported for the IDRR task to the best of our knowl-
edge.

The proposed ConnPrompt transforms the re-
lation prediction task as a connective-cloze task
against the prompt learning paradigm.

6 Conclusion

This is the first paper on examining the pre-
trained, prompt, predict paradigm for the IDRR
task. We have developed a Connective-cloze
Prompt (ConnPrompt) to transform the IDRR task
as a connective-cloze prediction task based on a
pre-trained language model (PLM). Two styles
of manually designed prompt template: Insertion
Connective Prompt and Prefix Connective Prompt,
have been designed to convert input argument pairs
into the prompt formulation, and a discrete answer
space is constructed with sixteen answer words
for verbalizer. Experiments on the PDTB corpus

909



have validated that our ConnPrompt can signifi-
cantly outperform the state-of-the-art algorithms,
even with fewer training data.

This paper has applied the basic techniques of
prompt learning for the IDRR task. In the last
year, the prompt paradigm has achieved some new
interesting advances, covering the techniques for
choosing pre-trained models, designing continuous
prompt templates, constructing answer space as
well as training and tuning strategies. We note that
some of these new techniques shall also be exam-
ined and improved for the IDRR task. Besides, the
excellent performance of the prompt learning in
this paper also motivates us to further investigate
its applications in other NLP tasks.
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Abstract

Conversational discourse parsing aims to con-
struct an implicit utterance dependency tree to
reflect the turn-taking in a multi-party conver-
sation. Existing works are generally divided
into two lines: graph-based and transition-
based paradigms, which perform well for short-
distance and long-distance dependency links,
respectively. However, there is no study to
consider the advantages of both paradigms to
facilitate conversational discourse parsing. As
a result, we propose a distance-aware multi-
task framework DAMT that incorporates the
strengths of transition-based paradigm to facili-
tate the graph-based paradigm from the encod-
ing and decoding process. To promote multi-
task learning on two paradigms, we first intro-
duce an Encoding Interactive Module (EIM)
to enhance the flow of semantic information
between both two paradigms during the encod-
ing step. And then we apply a Distance-Aware
Graph Convolutional Network (DAGCN) in the
decoding process, which can incorporate the
different-distance dependency links predicted
by the transition-based paradigm to facilitate
the decoding of the graph-based paradigm. The
experimental results on the datasets STAC and
Molweni show that our method can signifi-
cantly improve the performance of the SOTA
graph-based paradigm on long-distance de-
pendency links. Our code is available at
https://github.com/yxfanSuda/DAMT.

1 Introduction

The goal of conversational discourse parsing is to
uncover latent conversation topics and construct
an implicit utterance dependency tree to reflect the
turn-taking in a multi-party conversation. Since the
discourse structure is essential to understand multi-
party conversations, it has been widely applied to
various Natural Language Processing (NLP) ap-
plications,such as response generation (Hu et al.,

∗Corresponding author

(u1)  A: headers , kernel image and all the rest
(u2)  B: what project are you trying to build ?
(u3)  A: this did n't work either , i guess that the 
k  cc is correctly registered but fails .
(u4)  C: his gcc segfaults on helloworld
(u5)  B: ahh , so , a libc issue most likelyis there a 
kk  pastebin url of the errors ?
(u6)  D: are you using any backports or sth ?
(u7)  B: can you pastebin the results of that `` gcc 
kk -v test.c '' if there are errors ?
(u8)  B: do you have the matching kernel-headers 
kk  and glibc-devel packages installed ?
(u9)  A:  can you help me how to find that out ?

u1

u2 u3 u7u6u5u4

Comment 

7018

12,13,24,45,36 ,37,38,89
Clarification_question，"Comment"，"Result"，
Clarification_question，Clarification_question，
Clarification_question，Clarification_question，
Clarification_question

Figure 1: A multi-party dialogue with its dependency
structure, where the solid lines, dotted lines and dashed
lines denote the relations “Clarification Question”,
“Comment”, and “Result” respectively, and A, B, C,
D mean different speakers.

2019), reading comprehension(Li et al., 2021b; Li
and Zhao, 2021), meeting summarization (Feng
et al., 2021), and emotion recognition(Sun et al.,
2021).

Segmented Discourse Representation Theory
(SDRT) (Asher et al., 2003) is one of the most
influential theories to reveal the overall discourse
structures in conversational discourse parsing. Un-
like Rhetorical Structure Theory (RST) (Mann
and Thompson, 1987), which limits the relation-
ship to occur between adjacent EDUs1 in mono-
logue, SDRT represents multi-party conversations
as dependency-based discourse structures, due to
crossing dependencies. Recently, some SDRT-style
corpora have been built, such as STAC (Asher et al.,
2016) and Molweni (Li et al., 2020). Figure 1
shows an example of a multi-party conversation
and its dependency structure from Molweni.

Existing work on conversational discourse pars-

1Elementary Discourse Units(EDUs) are the fundamental
discourse units in discourse parsing. In the monologue, each
EDU corresponds to a phrase or sentence. In the conversation,
each EDU corresponds to an utterance.
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Figure 2: The performance of dependency links at
different distances predicted by the graph-based and
transition-based paradigms on the testing set of Mol-
weni and STAC, respectively. The x-axis is the rel-
ative distance between EDUs (For example, the dis-
tance of (u1, u2) and (u3, u8) are 1 and 5 in Figure
1.). And the y-axis is the accuracy of dependency links.
"TP" indicates Transition-based Paradigm and "GP"
means Graph-based Paradigm.TP comes from (Shi and
Huang, 2019), which utilizes hierarchical GRU to en-
code the conversations, while GP comes from (Wang
et al., 2021a) and we also utilize hierarchical GRU to
encode the dialogues for a fair comparison.

ing can be divided into two lines: graph-based
and transition-based paradigms. The graph-based
paradigm (Muller et al., 2012; Afantenos et al.,
2015; Perret et al., 2016; Yang et al., 2021; Wang
et al., 2021a) first obtains the probability of the
discourse relation for each EDU pair, then a global
decoding method is applied to construct the dis-
course structure. The transition-based paradigm
(Shi and Huang, 2019; Wang et al., 2021b) first
obtains the probability of the discourse relation
between the current EDU and all previous EDUs,
then discourse structure is constructed incremen-
tally. Due to the discrepancy in the parsing process,
both of them have different strengths in predicting
the dependency links at various distances.

As shown in Figure 2, we analysis the perfor-
mance of dependency links at different distances
predicted by the above two paradigms. The re-
sults show that the graph-based paradigm performs
better for dependency links with the distance 1,
while the transition-based paradigms performs bet-
ter when the distance greater than 1. As a result,
it is a great challenge to combine the advantages
of both two paradigms to facilitate conversational
discourse parsing.

Previous work (Falenska et al., 2020) has demon-
strated the effectiveness of multi-task learning to
integrate both two paradigms in a similar task de-
pendency syntactic parsing. Through the shared
encoding layer, both two paradigms can facilitate
each other implicitly. However, it is not sufficient
to apply this approach to conversational discourse
parsing, because the advantages of one paradigm
cannot be explicitly exploited to facilitate the other
one.

To alleviate the above issues, we propose a
Distance-Aware Multi-Task framework (DAMT)
for conversational discourse parsing that allows
one paradigm to explicitly facilitate the decoding
process of the other from the encoding and decod-
ing process, respectively. Specially, we introduce
an Encoding Interactive Module (EIM) to enhance
the flow of semantic information between both two
paradigms during the encoding step. And then we
apply a Distance-Aware Graph Convolutional Net-
work (DAGCN) in the decoding process, which can
incorporate the different-distance dependency links
predicted by the transition-based paradigm to fa-
cilitate the decoding of the graph-based paradigm.
The experimental results on two datasets STAC
and Molweni show that our DAMT outperforms
the SOTA baselines, especially the significant im-
provement on those dependency links with long
distances.

2 Related Work

Most previous studies for overall discourse struc-
ture parsing are based on Rhetorical Structure The-
ory Discourse TreeBank (RST-DT) (Carlson et al.,
2003), including greedy bottom-up approach (Feng
and Hirst, 2014), CYK-based approaches (Joty
et al., 2015; Liu and Lapata, 2017) and transition-
based methods (Wang et al., 2017; Lin et al., 2019;
Kobayashi et al., 2020; Zhang et al., 2021).

In this paper, we focus on parsing conversational
dependency structures that allow crossing depen-
dencies. Recently, there are two available corpora,
i.e., STAC (Asher et al., 2016) and Molweni (Li
et al., 2020) defined 16 relation types. STAC col-
lected from an online game The Settlers of Catan,
which contains 1,062 and 111 dialogues for train-
ing and testing, respectively. Molweni is based on
Ubuntu Chat (Lowe et al., 2015), which contains
9,000, 500 and 500 instances for training, validat-
ing and testing, respectively.

Up to now, only a few studies focused on con-
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Figure 3: The architecture of our DAMT framework.

versational discourse parsing and most of them can
be divided into two paradigms, i.e., graph-based
paradigm and transition-based paradigm.

Graph-based paradigm Muller et al. (2012),
Afantenos et al. (2015) and Perret et al. (2016)
adopted traditional manual features to calculate the
probabilities of all EDU pairs and then global de-
coding algorithm (e.g., Maximum Spanning Trees,
A* and Integer Linear Programming) was used to
construct dependency structures. With the devel-
opment of deep learning, some advanced methods
are used to obtain the semantic representation of
each EDU pair. Wang et al. (2021a) proposed a
novel edge-centric graph neural network to enhance
the semantic representation of EDUs. Yang et al.
(2021) first used the dependency syntactic graph
to obtain a better EDU representation and then a
biaffine relation prediction layer was applied to
obtain the probability of each EDU pair.

Transition-based paradigm Shi and Huang
(2019) proposed a Deep Sequence Model (DSM)
to predict dependency links and corresponding re-
lation types jointly and alternately. Their model
not only consider the local information of the con-
cerned EDUs but also utilizes the historical struc-
ture. Based on DSM, Wang et al. (2021b) adopted
the graph attention network by incorporating cohe-
sion information including lexical chain and coref-
erence chain to enhance the semantic representa-
tion of EDUs.

3 DAMT

Our framwwork DAMT is shown in Figure 3,
which includes four components: Encoding Mod-

ule (EM), Encoding Interaction Module (EIM),
Transition-based Decoding Module (TDM), and
Distance-Aware Decoding Module (DADM). In
EM, the hierarchical GRU is applied to obtain the
semantic representation of dialogues. In EIM, the
semantic representations of different paradigms
can interact explicitly to promote the multi-task
learning. In TDM, we adopt a pointer network for
transition-based decoding to obtain the dependency
structures. In DADM, the dependency structures
predicted by TDM are incorporated by DAGCN for
the final graph-based decoding.

3.1 Encoding Module

In the encoding module EM, we adopted hierarchi-
cal GRU to obtain the semantic representation of
dialogues for both paradigms. For each EDU ui
in dialogue D={u1, u2, · · · , un}, a bidirectional
GRU (bi-GRU) encoder is applied on the word se-
quence, and the last hidden states in two directions
are concatenated as the EDU-level semantic rep-
resentation, denoted as hie ∈ Rd. Then another
bi-GRU is applied on the EDU-level representation
to obtain the dialogue-level representation. We use
Htd and Hgd to denote the semantic representa-
tion of transition-based paradigm and graph-based
paradigm respectively, whereHtd,Hgd ∈ Rn×d.

3.2 Encoding Interaction Module

Several studies (E et al., 2019; Qin et al., 2021; Li
et al., 2021a) have demonstrated that the explicit
interaction between encoding representations of
different tasks can better improve each other in
multi-task learning. Inspired by this, we propose an
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encoding interaction module EIM, which can build
a bidirectional connection between two paradigms.

Our EIM consists of two Self Attention (SA) lay-
ers and two Unidirectional Cross Attention (UCA)
layers. We first feed the semantic representation
Htd and Hgd from EM into the SA sub-layers to
obtain the internal semantic information for each
paradigm as follows.

Ht = SA(W s
qHtd,W

s
kHtd,W

s
vHtd)

Hg = SA(W s
qHgd,W

s
kHgd,W

s
vHgd)

(1)

where SA(.) denotes multi-head attention as
(Vaswani et al., 2017) and W s

q ,W
s
k ,W

s
v are

weight matrix, which map vectors to the same fea-
ture space.

Second, two UCA layers are applied to build the
connection between the two paradigms, where one
fromHt toHg and one fromHg toHt as follows.

Hg→t = UCA(W c
qHg,W

c
kHt,W

c
vHt)

Ht→g = UCA(W c
qHt,W

c
kHg,W

c
vHg)

(2)

UCA(.) is a variant of SA(.), which uses
Ht(Hg) as query vectors andHg(Ht) as the con-
text vector, thus enabling an explicit interaction
between the two vectors. The UCA layer is used
to make the encoding semantics of one paradigm
updated with the guidance of the other one, achiev-
ing a bidirectional connection between both two
paradigms.

Then, we add a residual connection and layer nor-
malization function LayerNorm(.) to obtain the
semantic representations of the two paradigms as
follows.

Htc = LayerNorm(Ht +Ht→g)

Hgc = LayerNorm(Hg +Hg→t)
(3)

Finally, following the previous work (Wang et al.,
2021a), Structure Self Attention (SSA) is applied
to enhance the semantic representation of dialogues
by incorporating the structural information of con-
versations. By feeding Htc and Hgc to the SSA,
we can obtain the semantic representation of all
EDU pairs which incorporate the structural infor-
mation of dialogues, denotes as Hts and Hgs,
whereHts,Hgs ∈ Rn×n×d.

3.3 Transition-Based Decoding Module
We adopt a pointer network for transition-based
decoding. After obtaining the semantic repre-
sentations Hts, we first applied mean pooling
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Figure 4: The decoding process of pointer network,
where the solid red arrows indicate dependency links of
current EDUs.

on Hts to obtain the semantic representation of
EDUs containing structural information, denotes
as Htm ∈ Rn×d. As shown in Figure 4, Htm are
fed into a uni-directional GRU for transition-based
decoding, and the initial state of the decoder is
taken from the combination of the last states of
hierarchical GRU in both directions2.

At each decoding step, it supposes the current
EDU index is i at the k-th step. Then, the seman-
tic representation Htm is fed to the decoder and
its output at the k-th step is hdk. After that, we
adopted the Biaffine Attention mechanism to the
representation Htm and the output hdk to obtain
the probability between the current EDU and all
previous EDUs that existing the dependency links
and the corresponding relation type as follows.

sji =Htm
TWhdk +UHtm + V hdk + b (4)

where sji ∈ Rm refers to the probability between
the current EDU ui and the previous EDU uj and
m is set to 1 when there is a dependency link be-
tween them, or set to the number of relation types
when there is a dependency type between them. Be-
sides,W denotes the weight matrix of the bi-linear
term,U ,V are the two weight vectors of the linear
terms, and b is the bias vector.

For a conversation with n utterances, we use
the adjacency matrix A ∈ Rn×n to represent
the transition-based dependency structure, where
Aij = 1 if there is a dependency link between the
EDUs ui and uj . Then, the adjacency matrixA is
fed to DAGCN to incorporate the transition-based
dependency structure.

3.4 Distance-Aware Decoding Module
In the distance-aware decoding module DADM,
DAGCN is first applied to capture the depen-
dency structure predicted by the transition-based

2Following previous work, we add a dummy root u0 to
represent the beginning of a dialogue.
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paradigm. Then the output of DAGCN and the se-
mantic representation of the graph-based paradigm
are fused together for final decoding.

To incorporate the information of dependency
links with different distances, the adjacency matrix
A converted from the dependency structure, which
is predicted by the transition-based paradigm, is
fed to DAGCN to facilitate the decoding process of
the graph-based paradigm. Inspired by Meng et al.
(2020), we hypothesize that the dependency links
with different distances have a different impact on
the decoding process of the graph-based paradigm.
Hence, the trainable weights is applies to the ad-
jacency matrix and each weight is determined by
the distance of the dependency link and the corre-
sponding relation type from the transition-based
paradigm.

LetWd be a matrix of RNd×d′ where Nd is the
number of different distances 3 and d′ is the dimen-
sion of the embedding space. LetWr be a matrix
of RNr×d′ where Nr is the number of dependency
relation types. The feature combination weight
over the element Aij in the adjacency matrix A
can be represented as follows.

αij =W [dis(dij) : rel(rij)] (5)

Where dij is the distance from the EDU ui to uj ,
and rij is the corresponding relation type. The
functions dis(.) and rel(.)are vector mapping func-
tions, which map the one-hot vector dij and rij
into the corresponding column ofWd andWr, re-
spectively. [:] indicates the concatenation operation,
andW ∈ R2d′ is weight matrix.

LetA
′

be the final adjacent matrix for DAGCN,
then each element ofA

′
can be computed as:

A
′
ij = αijAij (6)

Then, we add an identity matrix to A
′
, which

makes each node can connect to itself.
After obtaining the adjacent matrixA

′
, we first

apply mean pooling on the semantic representation
of graph-based paradigm Hgs to obtain Hgm ∈
Rn×

d
2 , then the calculation of DAGCN is as fol-

lows.

Hgcn = ReLU(A
′
HgmW ) +Hgm (7)

3In our implementation, we set the distance to 2 for all
distances greater than or equal to 2.

where Hgcn ∈ Rn×
d
2 is the output of DAGCN,

which incorporate the dependency structure pre-
dicted by TDM, and W is the parameter matrix.
Then, we broadcast the output of DAGCN and add
it to the semantic representationsHgs to obtain the
final representationHf ∈ Rn×n×d for EDU pairs.

Lastly,Hf is fed into two multi-layer percep-
trons to obtain the probability distribution of each
EDU pair’s existing dependency link and the corre-
sponding relation type as follows.

Sl = Softmax(MLP(Hf ))

Sr = Softmax(MLP(Hf ))
(8)

where Sl ∈ Rn×n×1 and Sr ∈ Rn×n×m and m is
the number of relation type. To find the highest-
scoring tree, we apply greedy decoding method on
Sl. After determining the dependency link from
uj to ui, the relation type can be obtained by the
probability Sijr .

3.5 Multi-Task Learning
For multi-task learning, we have two goals: (i)
optimizing the Transition-based Paradigm (TP) and
(ii) optimizing the Graph-based Paradigm (GP).

To optimize TP, we minimize the sum of the
loss for constructing the right dependency structure
and the loss for predicting the correct relation type,
which is calculated as follows.

Lt(θt) =−
n∑

t=1

logPθt(yt|y<t, X)

−
n∑

t=1

m∑

j=1

rt,jlogPθt(rt, X)

(9)

where θt denotes the parameters of TP to be opti-
mized, y<t represents the historical structure that
has been generated at previous steps,n is the total
number of dependency links, m is the total number
of relation types and rt,j is the golden relation type.

To optimize GP, we minimize the cross-entropy
of gold dependency links between EDUs pairs as
follows.

Lg(θg) =−
n∑

i=1

y∗logPθg(yt, X)

−
n∑

i=1

m∑

j=1

ri,jlogPθg(ri, X)

(10)

where θg denotes the parameters of GP to be opti-
mized, y∗ represents the golden dependency links,
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Model Molweni STAC

Link Link&Rel Link Link&Rel
w/o pre-trained model

TP
DSM∗ 77.32 54.15 72.10 53.56
LCCC - - 72.50 55.20

PN 81.02 56.47 72.56 54.40
GP SSAM∗ 81.15 56.93 72.92 54.83

Ours DAMT 82.25 57.35 73.54 55.32
w/ pre-trained model

GP
DiscProReco - - 74.10 57.00

SSAM∗ 81.52 57.90 73.09 56.57
Ours DAMT 82.50 58.91 73.64 57.42

Table 1: F1 scores (%) for different models where Link refers to link prediction and Link&Rel refers to that a
correct prediction must predict dependency link and relation type correctly at the same time. We used the t-test with
a 95% confidence interval for the significance test and all improvements of DAMT over SSAM are significant ( p <
0.05). TP is short for Transition-based Paradigm, and GP is short for Graph-based Paradigm. ∗ indicates that we
reproduce the scores of models using their released code.

Distance Percentage(%)
Molweni STAC

1 64.94 55.63
2 21.49 21.26
3 7.38 10.63

>=4 6.19 12.48

Table 2: Distribution of dependency links at different
distances in the training set of Molweni and STAC.

n is the total number of dependency links, m is the
total number of relation types and rt,j is the golden
relation type.

For multi-task learning of the TP and GP, we add
the above loss terms as follows.

L =Lt + Lg (11)

4 Experimentation

In this section, we first introduce the datasets,
hyper-parameters and baselines used in our evalua-
tion, and then report the experimental results.

4.1 Datasets
We conduct experiments on two publicly available
multi-party dialogue datasets: Molweni (Li et al.,
2020) and STAC (Asher et al., 2016) and we pre-
process these two datasets following Shi and Huang
(2019). The distribution of dependency links at
different distances on the training set of Molweni
and STAC are shown in Table 2.

We can find that the dependency links with the
distance 1 dominate both two corpora (about 65%

and 56% in Molweni and STAC, respectively). The
small percentage of long-distance dependency links
poses challenges for models to predict. Our method
DAMT can explicitly leverage the strengths of the
transition-based paradigm to facilitate the graph-
based decoding and further improve the perfor-
mance on long-distance dependency links.

4.2 Hyper-Parameters
Following the previous work, we initialize words
with GloVe embeddings (Pennington et al., 2014)
that are fine-tuned during training. For Molweni
and STAC corpus, the embedding dimension is set
at 200 and 100, respectively. The dimension of the
hidden representation d is set to 256 and the layer
of EIM is set to 1 with 4 heads. The layer of SSA is
set to 2 with 4 heads. The dimension of the embed-
ding space d′ in DAGCN is set to 8. And we set the
dropout rate to 0.5 and employ Stochastic Gradient
Descent (SGD) to train the model. The batch size
is set to 150 and 70 for Molweni and STAC, respec-
tively, and the initial learning rate is set to 3e-2. For
the experiments using the pre-trained model, we
apply XLNet-based (Yang et al., 2019) to obtain
the semantic representations of EDUs and adopt
AdamW to optimizer the model. The learning rate
is set to 3e-4 and the dimension of the hidden repre-
sentation d is set to 768. Besides, in this paper, the
micro-averaged F1 score is adopted for evaluation.

4.3 Baselines
To verify the effectiveness of our DAMT, we con-
duct the following strong baselines for comparison.
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Figure 5: Comparison of dependency link accuracy at
the different distance between our approach and two
baselines.

Transition-based models 1) DSM (Shi and
Huang, 2019): it predicted links and corresponding
relation types jointly and alternately by considering
the historical structure predicted; 2) LCCC (Wang
et al., 2021b): it is based on DSM and enhanced the
semantic representation of EDUs by incorporating
cohesion information; 3) PN: it is the pointer net-
work we proposed for transition-based decoding.
As shown in Figure 3, our framework becomes PN
after discarding the modules EIM and DADM.

Graph-based models 1) DiscProReco (Yang
et al., 2021): it used the syntactic dependency graph
to enhance the semantic representation of EDUs
pairs; 2) SSAM (Wang et al., 2021a): it used the
structure self attention network and two auxiliary
training signals to enhance the semantic represen-
tation of EDU pairs.

4.4 Results

Table 1 shows the performance comparison be-
tween our DAMT and all the Transition-based and
Graph-based baselines. Besides, the results with-
out the pre-trained model and with the pre-trained
model are also shown in Table 1. We can find out
that our DAMT outperforms all baselines without
the pre-trained model.

Especially, compared with the SOTA transition-
based PN, our DAMT improves the F1-score by
1.23 and 0.88 in link and relation on Molweni, re-
spectively, and improves them by 0.98 and 0.92
on STAC, respectively. Compared with the SOTA
graph-based SSAM, our DAMT improves the F1-
score by 1.10 and 0.42 in link and relation on Mol-
weni, respectively, and improves them by 0.62 and

Figure 6: Accuracy of dependency links at various num-
bers of EDUs between our DAMT and SSAM.

0.49 on STAC, respectively. Our approach DAMT
leverages the strengths of different paradigms from
two perspectives with multi-task learning and there-
fore achieves better performance.

Besides, with the application of the pre-trained
model, our approach DAMT still improves the
F1-score on Molweni and STAC compared to the
SSAM, which illustrates the effectiveness of our
approach.

5 Analysis

In this section we first conduct a detailed analysis
on the dependency links with different distances
and the different lengths of dialogues, and then
provide the ablation study and case study.

5.1 Performance on Dependency Links with
Different Distances

To further analyze the improvements of our model
DAMT, we investigate the accuracy of dependency
links at different distance between DAMT and two
SOTA baselines on Molweni, as shown in Figure 5,
where PN is a transition-based model and SSAM
is a graph-based model.

Comparing with SSAM, we can find that PN
performs better when the distance of dependency
links is greater than one, while SSAM performs
better when the distance of dependency links is
one. This result shows that even though the se-
mantic representations of EDUs are obtained using
more advanced methods, both paradigms still have
different performances on dependency links with
different distances due to the discrepancy in depen-
dency structure construction.

Overall, all models have a similar downward
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Model Link Accuracy (%)
Molweni STAC

DAMT 66.93 50.20
-EIM 64.60(↓ 2.33) 47.60(↓ 2.60)

-DAGCN 62.91(↓ 4.02) 44.40(↓ 5.80)
-EIM,DAGCN 62.27(↓ 4.66) 43.00(↓ 7.20)

Table 3: The Accuracy of dependency links with dis-
tance greater than one in the test set of Molweni and
STAC.

trend. Compared with PN and SSAM, our DAMT
improves the performance of dependency links
with a distance greater than one significantly. It
indicates the effectiveness of our model that explic-
itly integrates both paradigms from two perspec-
tives.

5.2 Performance on Different Lengths of
Dialogues

We further analyze the performance of DAMT
and SSAM in terms of the number of EDUs on
Molweni. Figure 6 shows the accuracy of depen-
dency links at various numbers of EDUs in a doc-
ument. Compared with SSAM, our model DAMT
improved performance on almost all documents
with different numbers of EDUs, especially those
documents containing 11 and 8 EDUs with an im-
provement of 9 % and 4 %, respectively.

We analyze the distribution of dependency links
with different distances at various numbers of
EDUs. We find that the percentages of long de-
pendency links (>1) in those conversations with 8
and 11 EDUs are the highest with 43% and 41%, re-
spectively. This can reflect that our DAMT mainly
improves the performance of the long dependency
links.

5.3 Ablation Study

To investigate the impacts of the proposed mod-
ules on the performance of the dependency links
with the longer distances, we conduct an ablation
study on two modules EIM and DAGCN in DAMT,
as illustrated in Table 3, where “-” indicates the
removal of the single or several modules.

Removing any of the two modules makes the
performance worse, while discarding DAGCN has
the greatest impact on the performance. This shows
that DAGCN can explicitly aggregate the informa-
tion of dependency links with different distances
in the discourse structure predicted by the PN, thus
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Figure 7: Discourse structures of the example in Figure
1. (a) refers to the ground truth structure and (b)-(d) re-
fer to the structures predicted by DAMT, SSAM and PN.
Different lines indicate different relation types, where
the solid lines, dotted lines, dashed lines, dashed dotted
lines and dashed double-dotted lines denote the rela-
tions “Clarification Question”, “Comment”, “Result”,
"Question-answer_pair" and "Q-Elab", respectively.

improving the performance of dependency links
with the longer distance.

5.4 Case Study
Figure 7 show the dependency structures of the
example in Figure 1, which are the golden truth
and three predicted results by our DAMT and two
baselines SSAM and PN.

Compared with the transition-based PN, we find
out that SSAM can better predicts the dependency
links and their corresponding relation types when
the distance is one, such as u1 → u2 and u8 → u9.
Although PN can correctly predicts the dependency
link u8 → u9, it cannot correctly predict its corre-
sponding relation type. This shows the advantage
of graph-based approach over transition-based ap-
proach for dependency links when the distance is
one. On the contrary, for those dependency links
with distance greater than one, PN performs better
than SSAM, such as u3 → u6 and u3 → u8.

Compared with PN, DAMT can further cor-
rectly predict the relation type of dependency link
u8 → u9. And compared with SSAM, DAMT can
correctly predict long-distance dependency links
u3 → u6, u3 → u8. These phenomena show that
our distance-aware multi-task framework is able to
combine the advantages of both two paradigms to
predict those long-distance dependency links.

Besides, for some dependency links, such as
u1 → u3 and u4 → u5, all models fail to iden-
tify their links. This indicates that conversational
discourse paring is still a challenging task.
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6 Conclusion

In this paper, we propose a distance-aware multi-
task framework DAMT to facilitate conversational
discourse parsing. First, we propose an encoding
interaction module to enhance the information flow
between the graph-based paradigm and transition-
based paradigm to promote multi-task learning.
Second, we propose a distance-aware graph con-
volutional network DAGCN incorporating the de-
pendency structure predicted by one paradigm to
explicitly facilitate the decoding process of another
paradigm. The experimental results on two pub-
lic datasets show the effectiveness of our proposed
DAMT. In the future, we will further explore how
to recognize relation types more effectively.
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Abstract

This work deploys linguistically motivated fea-
tures to classify paragraph-level text into fic-
tion and non-fiction genre using a logistic re-
gression model and infers lexical and syntactic
properties that help distinguish the two genres.
Previous works have focused on classifying
document-level text into fiction and non-fiction
genres, while in this work, we deal with shorter
texts which are closer to real-world applications
like sentiment analysis of tweets. For the task
of short-text classification on the Brown corpus,
a model containing linguistically motivated fea-
tures confers a substantial accuracy jump over a
baseline model consisting of simple POS-ratio
features found effective in previous work. The
efficacy of the above model containing a lin-
guistically motivated feature set also transfers
over to another dataset viz, Baby BNC corpus.
Subsequently, we compared the classification
accuracy of the logistic regression model with
two deep-learning models. A 1D-CNN model
gives an increase of 2% accuracy over the lo-
gistic regression classifier on both datasets. A
BERT-based model gives state-of-the art clas-
sification accuracies of 97% on Brown corpus
and 98% on Baby BNC corpus. Although, both
these deep learning models give better results
in terms of classification accuracy, the prob-
lem of interpreting these models remains an
open question. In contrast, regression model
coefficients revealed that fiction texts tend to
have more character-level diversity and have
lower lexical density (quantified using content-
function word ratios) compared to non-fiction
texts. Moreover, subtle differences in word or-
der exist between the two genres, i.e., in fiction
texts Verbs precede Adverbs in contrast to the
opposite pattern in non-fiction texts (inter-alia).

1 Introduction

Written text can be classified into various cate-
gories based on its content or writing style. This pa-
per focuses on classifying shorter texts into fiction
and non-fiction genres based on their writing style.

In general, the fiction writing has an imaginative
writing style and involves non-factual prose content.
In contrast, the non-fiction writing deals with actual
events, places, and persons and is written purely
based on the facts. In some cases, distinguishing
between these two writing categories is easy due to
the content of the text. However, classification be-
comes challenging in many instances due to blurry
boundaries between them. For example, a short
story may contain imaginary characters situated in
real-life settings. Therefore it is essential to factor
in the writing style of texts while classifying them
into fiction and non-fiction genres.

The problem of genre identification using lin-
guistically motivated features has been extensively
investigated in NLP (see references in the rest of
this section). However, the particular problem
of fiction vs. non-fiction genre classification has
started receiving serious attention only in recent
years (Vicente et al., 2021; Qureshi et al., 2019).
In the cited works, different features have been
studied for classifying document-level texts (or
long texts) into fiction and non-fiction genres. In
contrast, very little effort has been expended to
investigate the set of relevant features which are
effective for the classification of shorter texts, i.e.,
paragraph-level texts into fiction and non-fiction
genres. Shorter texts or paragraph-level texts are
more common on the internet and have several im-
portant practical applications like breaking news
detection, opinion mining, micro-blog summa-
rization, and discovering trending topics (Kateb
and Kalita, 2015). Genre identification tools for
shorter text can potentially be deployed to filter
out specific categories of tweets, news headlines,
product reviews, and online app reviews which
have been written to manipulate or influence the
users/customers. For such applications, fiction vs.
non-fiction classification technology capable of an-
alyzing writing styles can play a crucial role.

The main objective of this paper is to identify the
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most relevant features that not only enable one to
build an effective classifier but also provide deeper
insights about the properties that can be used to
distinguish these two genres in shorter texts. To
this end, we deployed features belonging to four
categories, i.e., Raw features, POS-ratio features,
Lexical features and Syntactic features (Karlgren
and Cutting, 1994; Buongiovanni et al., 2019; Biber
and Stubbs, 2002; Cleuziou and Poudat, 2007).
Raw text features quantify the basic properties of
the text, like sentence length and variation in sen-
tence length within a paragraph. Lexical features
are based on the statistics of words or characters
present in the corpus. In writing, vocabulary plays
an important role as it involves the coordination of
many higher levels and lower levels of cognitive
skills (Hayes, 2000; Olinghouse and Leaird, 2008).
Previous studies have also used various measures
of lexical diversity to discern differences between
genres (Milička and Kubát, 2013; Sadeghi and Dil-
maghani, 2013). We deployed a character-level
diversity estimate and a lexical density estimate
(ratio of content to function words). POS-ratio fea-
tures proposed by Qureshi et al. (2019) compute the
ratios of different parts of speech tags present in the
corpus, e.g. ADVERB/NOUN, ADJECTIVE/VERB,
and VERB/PRONOUN. They found these ratios
to be very effective for document-level fiction vs
non-fiction classification (accuracy of 96.31 % on
Brown corpus text (Francis and Kučera, 1989)).
While most of our features were adapted from prior
work, we introduce 3 novel syntactic features ex-
tracted from parse trees in this paper. Prominently,
we modelled word order variation across genres
by extracting head-dependent bigrams (containing
linear order precedence as well). Inspired from the
theoretical psycholinguistics literature, we also in-
corporated features quantifying syntactic complex-
ity (Sampson, 1997; Szmrecsanyi, 2004) as well as
argument-adjunct patterns (Tutunjian and Boland,
2008).

We extracted the aforementioned features1 from
Brown Corpus paragraphs and performed feature
selection experiments using the Recursive Feature
Elimination Cross-validation algorithm (RFECV
Guyon et al., 2002) on individual and combined
feature sets. We report the performance of differ-
ent classification models trained on several feature
combinations and compare them with a baseline

1Scripts to extract various linguistic features used in
this work can be accessed here: https://github.com/
armankazmi/Linguistic-features-of-text

model with only two POS-ratio features found ef-
fective in prior work (Qureshi et al., 2019). Our
classification model containing the best 28 features
confers an accuracy score of 91.89% on Brown Cor-
pus (Francis and Kučera, 1989) paragraphs with an
accuracy jump of 15.56% over the baseline model
containing Qureshi et al.’s simple POS ratio fea-
tures (76% accuracy on short-text classification in
the Brown corpus).

In order to check the transferability and general-
izability of our results, we used the aforementioned
model trained on the Brown corpus (American En-
glish text) to classify shorter texts obtained from
the Baby BNC Corpus of British English (Con-
sortium, 2007). Our model obtained an accuracy
score of 94% which attests its utility for novel text
and demonstrates how it is not biased w.r.t. lan-
guage variety, i.e., American English (Brown) vs
British English (Baby BNC). Following previous
work in the NLP literature (Worsham and Kalita,
2018; Kim, 2014; Dauphin et al., 2017), we also
compared our classification results based on a tra-
ditional logistic regression model (containing hand-
crafted features) with 2 deep learning models. On
shorter text from both Brown and BNC corpora, a
1D CNN model induces a 2% increase in accuracy
score over the Logistic Regression classifier. Fi-
nally, we used a pre-trained BERT-base-uncased
model (Devlin et al., 2018) resulting in state-of-the-
art accuracy of 97% on Brown Corpus and 98%
on Baby BNC Corpus respectively. Although both
the deep learning models (CNN models and the
BERT-base-uncased models) result in better results
in terms of classification accuracy, they are not eas-
ily interpretable i.e., linguistic properties captured
by these deep learning models are not obvious.

Another issue is that CNN and BERT models
are expensive to train from scratch and are more
prone to overfitting when compared to the Logistic
Regression classifier. On the other hand, our ex-
perimental results using simple logistic regression
models are interpretable in terms of the impact of
specific features. Our regression coefficients indi-
cate that fiction texts tend to be more diverse in
terms of characters and have lower lexical density
than non-fiction texts. Subtle differences in word
order between the two genres can also be inferred
from the coefficients our dependency bigram fea-
tures. For example, Verbs tend to precede Adverbs
and Pronouns in the case of fiction texts, in contrast
to the opposite pattern in non-fiction texts.
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Genre (#docs) #Words #Sentences #Para
BROWN
Fiction (207) 63011 4133 764
Non-Fiction (117) 89744 4024 746
BABY BNC
Fiction (25) 140760 9601 1783
Non-Fiction (30) 34947 1327 243

Table 1: Counts of words, sentences, and paragraphs in
Brown and Baby BNC corpora

Our main contribution is that we extend the work
of Qureshi et al. (2019) on document-level genre
classification to the problem of genre-identification
for shorter text by incorporating theoretically
and cognitively motivated features. Our best-
performing model containing linguistically mo-
tivated features substantially outperformed their
best-performing model for this novel task. The fea-
tures deployed by Vicente et al. (2021) (another
recent work on fiction vs non-fiction classifica-
tion cited earlier) are very elaborate but are not
directly connected to cognitive theories. Earlier
works like Worsham and Kalita (2018) and Mend-
hakar (2022) analyzed various linguistic character-
istics of fictional and non-fictional text but focused
more on sub-genre classification within fiction and
non-fiction genres.

The rest of the paper is organized as follows. In
Section 2 we present details of the data sets used in
this study. Section 3 provides the motivation and
descriptions of the linguistic features used in this
work. Section 4 describes the machine learning
algorithms we deployed and the results of genre
classification experiments using those algorithms.
Section 5 discusses the implications of our findings.
Finally, in section 6, we summarize all the results
and provide pointers for future research.

2 Data and Methods

Our dataset consists of paragraphs from Brown cor-
pus (Francis and Kučera, 1989) and Baby British
National Corpus (Consortium, 2007, BNC). These
corpora contain text from fiction and non-fiction
genres, thus serve an important resource for our
research. We set up a binary classification task
to predict shorter texts into fiction and non-fiction
genres. Therefore, every long document in these
corpora was split into separate paragraphs based
on the default paragraph annotation provided. Af-
ter that, each paragraph was tagged to the class
based on the class label of their parent document.
To mitigate the data imbalance between the two

classes since different paragraphs may have vary-
ing lengths in terms of the number of sentences,
we chose only those paragraphs that had 5 or 6
sentences, and the rest were discarded. Table 1
provides more details of both the aforementioned
datasets.

As a pre-processing step, we automatically
tagged and parsed the paragraphs in our dataset
using state-of-the-art taggers and parsers. We used
Stanza (Qi et al., 2020) for parts-of-speech tagging
and Stanford CoreNLP toolkit for dependency and
constituency parsing (Manning et al., 2014). The
punctuation marks in the paragraphs were stripped
off prior to their parsing. We then extracted a wide
variety of linguistic features from the tagged and
parsed text, thus creating a vector representation
of each paragraph. The set of features used for the
classification task and the underlying motivation
behind using them is described in the subsequent
section. We used a traditional machine learning
model (logistic regression) as well as two deep
learning models (CNN and BERT) for our classifi-
cation task as described in Section 4.

To further our understanding of our classifica-
tion models, we tested the model’s applicability
in British English, where we use British National
Corpus (Consortium, 2007). This way, we perform
transfer learning where the model is learned on one
corpus, and its applicability is tested on another
corpus. This also provides a more robust way of
analyzing our model’s predictions. Baby BNC cor-
pus consists of four categories: fiction, newspaper,
spoken, and academic. Following Qureshi et al.
(2019), we considered academic documents in non-
fiction category and fiction documents in fiction
category, and rest others were excluded from our
primary analyses. As they mention, the news genre
lacks a clear demarcation2 in either category.

3 Linguistic features

For genre classification of shorter texts, we de-
ployed the following four distinct categories of
features in our work: 1. Raw text 2. Lexical 3.
POS ratios 4. Syntactic features. These features
and their motivation are described below.

3.1 Raw Text Features
Raw text features (Buongiovanni et al., 2019) are
the most basic features. Following the cited work,

2We additionally investigate the news category of this cor-
pus and report results in Appendix E to motivate future re-
search direction.
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Feature category Feature sets Testing F1 score F1 score
(#features after RFECV) Accuracy % (fiction: 1) (non-fiction: 0)

Baseline adv/adj, adj/pro 76.33± 1.700 0.784± 0.013 0.737± 0.024
Raw Features avg_sen_len, std_sen_len 73.36± 1.64 0.740± 0.019 0.726± 0.016

Lexical Features Character diversity (CD; 4) 81.54± 1.637 0.817± 0.017 0.813± 0.017
Lexical density (lex_den) 63.89± 1.772 0.643± 0.017 0.634± 0.019

POS Features POS ratios (4) 81.36± 1.143 0.823± 0.014 0.802± 0.01

Syntactic features

syn_comp (6) 72.98± 2.47 0.737± 0.025 0.721± 0.024
Argument/Adjunct 78.15± 1.335 0.781± 0.015 0.782± 0.015

dep_rel (19) 87.64± 1.672 0.88± 0.017 0.871± 0.017
dep_big (36) 89.65± 0.553 0.899± 0.006 0.893± 0.006

Combined features
CD + POS (7) 87.01± 1.208 0.875± 0.012 0.864± 0.013

CD + POS + syn_comp (8) 86.55± 0.984 0.869± 0.011 0.861± 0.01
Best features (28) 91.89± 0.883 0.921± 0.009 0.916± 0.008

Table 2: Classification accuracy using different feature set on Brown corpus paragraphs (random baseline: 49.32±
1.61%)

we incorporated the following measures (computed
over each paragraph) as features: 1. Average sen-
tence length (avg_sen_len) 2. Standard deviation
of sentence lengths (std_sen_len)

3.2 Lexical Features

Descriptions of the two lexical features used in our
approach are given below.

• Character diversity (CD) can be measured
in various ways by establishing statistical re-
lationships between types and tokens in the
text. Generally, words are considered to be
the tokens of a text, but in our case, we con-
sider characters (excluding space) in the text
as tokens3. Diversity establishes the statistical
relationship between the type and tokens of
the text and has been deployed in various ap-
plications, such as measuring the proficiency
of a second language learner (Engber, 1995;
Karakoç and Köse, 2017), studying the speech
of people with mild aphasia (Cunningham
and Haley, 2020), and analyzing the writing
style of authors.

The most common approach for measuring
the diversity of characters or words is to use
the ratio of unique tokens divided by the to-
tal number of tokens in a text sample, com-
monly known as TTR (type-token ratio). One
of the shortcomings of TTR-based measures
is that they depend on the sample length.

3Originally, we considered words as tokens and included
it in the lexical feature category. However, our preliminary
analysis suggested that character-level tokens performed much
better than word-level tokens in our classification task, so we
did not include words as tokens in the current work.

Therefore, we have used seven other mea-
sures of diversity, i.e., Maas Index (Maas TTR)
(Mass, 1972), Mean segmental type-token ra-
tio (MsTTR), Moving Average type-token ra-
tio (MATTR) (Covington and McFall, 2010),
Measure of Textual Lexical Diversity (MTLD)
(McCarthy and Jarvis, 2007), moving average
of MTLD (MTLD MA), VocD (Durán et al.,
2004) and YulesK (Greg and Yule, 1944). The
exact mathematical formula for each measure
above is provided in Appendix A.

• Lexical Density (lex_den) features are calcu-
lated by taking the ratio of content words
(words that are tagged as noun, verb, adjective
adverb) to function words (all part of speech
tagged words except those of content words).4

Lexical density quantifies “how informative a
text is”. Prior work has argued that a text with
a high number of content words carries more
information than one with a higher number of
function words (Johansson, 2008).

3.3 POS Ratio Features

A total of eight parts of speech ratios (adverb/noun,
adverb/pronoun, adjective/verb, noun/verb,
verb/pronoun, adverb/adjective, adjective/pronoun,
noun/pronoun) were extracted from tagged datasets
based on their efficacy in document-level genre
classification (i.e., fiction vs non-fiction) reported
in prior work (Qureshi et al., 2019).

4Following later works, we deviate from Ure’s 1971 orig-
inal definition of lexical density as the ratio of number to
content to all words.
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3.4 Syntactic Features
The following measures were used in our analysis.

• Frequency of dependency relations
(dep_rel): For each parsed paragraph,
we extracted the frequency of depen-
dency relations (as defined in the Univer-
sal Dependencies framework: https:
//universaldependencies.org/

• Argument-Adjunct Ratio: Ratio of arguments
to adjuncts in each paragraph. In syntactic
theory, an adjunct is an optional component
of a sentence, clause, or phrase, while argu-
ments are the obligatory parts of a sentence. In
psycholinguistics, the argument-adjunct dis-
tinction has been empirically demonstrated to
impact parsing i.e., the process of constructing
syntactic representations progressively dur-
ing sentence comprehension (Tutunjian and
Boland, 2008).

• Syntactic complexity (syn_comp): In our work,
we deployed 3 different indices (capture the
complexity of a sentence) proposed in prior
work. Sampson (1997) defined a depth mea-
sure quantifying the degree of left-branching
of a constituency parse tree (depth). Sampson
verified the claim that English writers tend to
avoid grammatical structures where the num-
ber of left branches between any word and
the root node of a sentence exceeds a specific
fixed limit (see Figure 3 in Appendix B for
an illustration). Another way to measure the
syntactic complexity of a sentence is to calcu-
late the average dependency distance (add) in
a sentence based on a dependency parse tree
(Oya, 2011). The third measure deployed in
our study is the index of Syntactic Complexity
(isc), which is based on counts of linguistic
tokens that reflect the degree of embeddings
or grammatical properties of the text, such
as subordinating conjunctions, Wh-Pronouns,
Verb forms and Noun phrases (Szmrecsanyi,
2004). For each of the above measures, we cal-
culated the average complexity and the stan-
dard deviation on each paragraph.

• Dependency bigrams (dep_big): For each de-
pendency parse tree corresponding to the sen-
tences in our dataset, we extracted bigrams
consisting of the POS tags of each syntactic
head and dependent pair in the sentence. The

linear order of each head-dependent pair was
encoded via the keywords i.e., before or after
(see Figure 4 in Appendix C for an illustra-
tion). The main objective of this feature was
to model word order variation in the text.

4 Experiments and Results

This section presents the results of our experiments
for classifying shorter texts into fiction and non-
fiction genre. The following subsections describe
our classification results using a traditional ma-
chine learning model (logistic regression) and two
deep learning models (CNN and BERT).

4.1 Logistic Regression Model
We used LOGISTIC REGRESSION (McCullagh and
Nelder, 2019) as one of our classification mod-
els for the classification task. We evaluate model
performance using classification accuracy and F1
score. We selected the optimal features by applying
recursive feature elimination with cross-validation
(RFECV) on the 4 feature sets described in the
previous section. RFECV discards features from a
model by fitting the model several times, removing
the weakest-performing feature at each step. After
obtaining the optimal features, we trained a logis-
tic regression model with 10-fold cross-validation
and L1 regularization using scikit-learn toolkit (Pe-
dregosa et al., 2018) on the following two datasets:

1. Brown corpus with a 70% − 30% train-test
split (Training paragraphs: 1057, Testing para-
graphs: 453).

2. Training on Brown corpus and testing on Baby
BNC corpus (Training paragraphs: 1510, Test-
ing paragraphs: 10 different sets of 493 para-
graphs).

For the first case above, we reported the mean
testing accuracy with standard deviation for 10 dif-
ferent combinations of paragraphs in the Brown
corpus. And for the second case, we trained the
model on the feature vectors of 1510 paragraphs
from the Brown corpus and tested it on the Baby
BNC corpus. However, as presented in Table 1, the
number of fiction paragraphs (1,783) in the Baby
BNC corpus exceeds the number of paragraphs in
the non-fiction category (243). Therefore, we ran-
domly sampled 250 fiction paragraphs 10 times
and combined each set with the 243 non-fiction
paragraphs. This approach allowed us to report the
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Feature
set

Testing
accuracy

F1 score
(fiction)

F1 score
(non-fiction)

Best features (28) 94.016± 1.03 0.939± 0.0112 0.941± 0.009

Baseline (adv/adj, adj/pro) 83.448± 1.12 0.843± 0.0123 0.824± 0.0098

Table 3: Classification accuracy on Baby BNC corpus trained on Brown corpus (random baseline: 50.71%)

Model Data set Testing
Accuracy (%)

F1 score
(fiction)

F1 score
(non-fiction)

CNN
Brown Corpus 93.66± 0.808 0.939± 0.008 0.933± 0.008

Baby BNC Corpus 96.94± 0.410 0.968± 0.004 0.969± 0.003

BERT
(base-uncased)

Brown Corpus 97.3± 0.64 0.973± 0.006 0.972± 0.006
Baby BNC Corpus 98.13± 0.486 0.981± 0.005 0.981± 0.005

Table 4: Classification accuracy of 1D CNN and BERT-base-uncased model on Brown and Baby BNC Corpus

mean testing accuracy with standard deviation on
10 different combinations of fiction and non-fiction
paragraphs in Baby BNC corpus. The accuracy of
the feature sets was compared with the baseline
model containing only two features: adverb to ad-
jective ratio (adv/adj) and adjective to pronoun
ratio (adj/pro). These two features were found to
be optimal for classifying document-level texts into
fiction and non-fiction genre (Qureshi et al., 2019).

4.1.1 Brown Corpus
The results of our experiments on the Brown cor-
pus are displayed in Table 2. Individually, the
baseline model containing two POS ratio features
(adv/adj and adj/pro) gave a classification accu-
racy of 76.33%. The character diversity (CD) fea-
tures provided an accuracy gain of 5.21% over
the baseline model. However, when CD features
are combined with POS-ratio features (CD+POS),
the accuracy gain increases to 10.68% over base-
line. The syntactic complexity features (syn_comp)
performed the worst (72.98%) compared to the
baseline. The accuracy significantly improved
(86.55%) when syntactic complexity features were
combined with CD features and POS-ratio features
(CD+POS+syn_comp). The dependency relation
distribution features (dep_rel) category returned an
accuracy gain of 11.31%. The dependency bigram
feature (dep_big) in the syntactic feature category
(89.65%) outperformed all other individual feature
categories, thus suggesting the significance of our
proposed word-order features in this work.

The best performing model contained 28 features
after selecting the optimal features from each cate-
gory after RFECV and gave an overwhelming gain
of 15.56% in classification accuracy over the base-
line model. Overall, our best-performing model

gave a classification accuracy of 91.89%, and F1
scores for each class were similar. Table 5 in Ap-
pendix D lists all the optimal features and their re-
gression coefficients that led to the best prediction
performance. Interestingly, the feature selection
algorithm eliminated both the syntactic complex-
ity (syn_comp) features and argument/adjunct ratio
features in the syntactic feature category. It is con-
ceivable that dependency bigram features (dep_big)
would be modeling those generalizations.

We also interpret the coefficients of each pre-
dictor in the best-performing regression model to
understand their importance for fiction writing. The
CD features have positive regression coefficients
suggesting that fiction paragraphs tend to be more
diverse in terms of characters than non-fiction gen-
res. The negative regression coefficient for the lexi-
cal density feature (content/function ratio) indicates
that fiction paragraphs tend to have lower lexical
density than non-fiction paragraphs. In the case of
dep_big features, 11 features were retained in the
optimal feature set. Their coefficients suggest that
the fiction paragraphs tend to have more verbs after
proper nouns (PROPN) and more verbs preced-
ing adverbs, pronouns and Adpositions (ADP). In
contrast, non-fiction paragraphs tend to have more
proper nouns (PROPN) before Numbers (NUM).

4.1.2 Baby BNC Corpus
The results of our experiments on the Baby BNC
corpus are displayed in Table 3. The classifier
yielded a prediction accuracy of 94.01% on the
Baby BNC corpus using 28 optimal features ob-
tained previously when the model was trained on
the entire Brown corpus. The accuracy score ob-
tained in this case is better than that of the Brown
corpus data set, demonstrating that our pre-trained
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(a) Dependency bigram features (b) Lexical density features

Figure 1: Genre-wise distribution of features in the Brown corpus

model can be used for a new but related task, i.e.,
transfer learning. It also suggests that our model
is not biased w.r.t. language variety: American
English vs. British English.

4.2 Deep Learning Experiments

Recent work has shown the efficacy of neural
network-based language models, viz., RNN and
LSTMs, for text classification (Bengio et al., 2000;
Mikolov et al., 2010; Hochreiter and Schmid-
huber, 1997) over traditional n-gram language
models (Shannon, 1948, 1951; Chen and Good-
man, 1999; Kneser and Ney, 1995; Markov, 1913).
While the later models (traditional LMs) struggle
with data sparsity and long-range dependencies,
the former models (neural net LMs) grapple with
substantial memory requirements and a long train-
ing time as they work sequentially to capture long-
range dependencies (Worsham and Kalita, 2018).
The former models also suffer from interpreting the
various features learned during their training. In
this section, we describe the deep learning experi-
ments performed using CNN (LeCun et al., 1998)
and BERT (Devlin et al., 2018) models.

4.3 CNN

We deployed a CNN-based architecture for genre
classification, which is inspired by the recent work
in the NLP literature (Pham et al., 2016; Prakhya
et al., 2017; Dauphin et al., 2017). Recent studies
have made use of the CNN-based architecture for
tackling some of the challenging NLP problems, in-
cluding text classification (Kim, 2014; Pham et al.,
2016; Dauphin et al., 2017) and learning the ab-
stract linguistic properties of the text, such as in-
flection, morphological richness, linguistic struc-

ture, and word sequence patterns (Prakhya et al.,
2017; Rahman et al., 2021). Pham et al. (2016)
showed that CNNs are effective in learning lan-
guage representations up to the sequence of 16
words before the target and can potentially de-
tect high-level abstract features in language data.
For the task of genre classification, Worsham and
Kalita (2018) compared the efficacy of various deep
learning models, including CNN-Kim (Kim, 2014),
LSTM (Hochreiter and Schmidhuber, 1997), Hi-
erarchical Attention Network (Yang et al., 2016,
HAN) and reported that CNN gave the most reli-
able performance amidst LSTM and HAN-based
deep learning models.5

Our CNN experiments involved creating the
word embedding vectors using pre-trained GloVe
Embeddings. We deployed a 1D CNN model over
the embedding vectors to capture the style and pat-
terns in the paragraphs (see Appendix F for more
details on training procedures). Table 4 (top block)
shows the results of the CNN-based models on
Brown and Baby BNC corpora. This model obtains
an accuracy score of 93.66% on Brown corpus and
96.94% on Baby BNC corpus.

4.4 BERT
We deployed the BERT-base-uncased model (De-
vlin et al., 2018) for our genre classification task
on shorter texts. The bidirectional encoder repre-
sentations from transformers (BERT) is an NLP
model designed to capture bidirectional represen-

5Interestingly, Worsham and Kalita (2018) showed that the
XGBoost classifier (Chen and Guestrin, 2016) outperformed
every other model deployed for their genre classification task.
XGBoost model is based on a tree-based classification algo-
rithm with bag-of-words (BOW) input representation and is
known to take the least time and utilize fewer resources.
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Figure 2: Genre-wise distribution of parts-of-speech (POS)
tags in Brown corpus

tation from the unlabeled raw text. Then they are
fine-tuned on labeled textual data to carry out vari-
ous NLP tasks (Vaswani et al., 2017). Appendix G
provides more details on the BERT training proce-
dures for our classification task. Table 4 (bottom
block) shows the results of the BERT model on
Brown and Baby BNC corpora. This model ob-
tains an accuracy score of 97.0% on Brown corpus
and 98.13% on Baby BNC corpus.

5 Discussion

Overall, our classification results show that deep
learning models achieve better accuracy than the
traditional machine learning model for the task of
genre identification in shorter text. However, one
of the main objectives of this work is to identify the
properties of the text that help distinguish between
fiction and non-fiction genres. This objective is ac-
complished using the traditional logistic regression
model as the regression coefficients enable inter-
pretation of the features used in the model. Though
the deep learning models confer better accuracy on
our task, it is difficult to interpret them. The CNN
and BERT models used in our work were trained
on thousands of parameters. Word embedding vec-
tors capture the properties of the words in the texts,
but the complex structure of the internal represen-
tations of these models make it difficult to discern
the exact generalizations learned by the models in
question.

In order to understand the impact of various fea-
tures in distinguishing between fiction and non-
fiction genres, we interpret the regression coeffi-
cients of our logistic regression model (depicted
in Table 2), by examining the model containing 28
best features (Table 5 of Appendix D). The positive
regression coefficient associated with the character

diversity feature indicates that fictional text tends
to be more diverse in terms of characters than non-
fiction text. However, fiction paragraphs have a
lower lexical density (negative coefficient of con-
tent/function ratio) compared to non-fiction ones.
This last finding has implications for theories of
language production and comprehension, as sug-
gested by a close reading of prior work on sen-
tence processing. Schmauder et al. (2000) showed
that during silent reading, both content and func-
tion words are processed similarly during the early
stages of lexical processing and differently in the
latter stages, where words are integrated with other
elements of the text (including discourse represen-
tations). However, in spontaneous speech, Bell
et al. (2009) showed that backward and forward bi-
gram probabilities displayed asymmetric behavior
in predicting content and function words, leading
to the conclusion that these word types are accessed
differently in production.

Dependency relations also provide important
cues that help distinguish between fiction and non-
fiction genres. Fiction is characterized by a greater
number of syntactic subjects, oblique noun mod-
ifiers, ’s possessives, and discourse markers com-
pared to non-fiction. In contrast, non-fiction texts
are characterized by a greater frequency of nu-
meral modifiers, passive voice sentences, relative
clauses, and multi-word expressions. Further, sub-
tle word order differences between the two gen-
res act as effective predictors of paragraph-level
genres. In fictional paragraphs, verbs tend to pre-
cede adverbs and pronouns while proper nouns
are likely to occur before verbs. In non-fiction
paragraphs, proper nouns (PROPN) and verbs tend
to precede numbers (NUM) and pronouns precede
verbs. See Figure 1(a) for a visual illustration of the
above patterns in the Brown corpus genres. Simi-
larly, Figure 1(b) depicts the genre-wise percentage
of content and function words computed over all
the words in the Brown corpus. It suggests that
the content and function word percentages in the
non-fiction genre are greater than in the fiction
genre. Further, Figure 2 represents the percentage
of genre-specific parts of speech tags (computed
over the total number of Brown corpus parts of
speech tags), where the percentage of nouns in
fiction is greater than that in non-fiction while ad-
verbs and verbs have similar distributions across
both genres.

In the rest of this section, we illustrate the impor-
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tance of our features using linguistic examples (the
verb is shown in bold, and the adverb is in italics).
Given below are the first two sentences taken from
the Brown corpus fiction paragraphs (fileid: cn13,
paragraph number: 22):

• The snake slid slowly and with great care from
the new ridge the plow had made , into the
furrow and did not go any further.

• He was multi-colored and graceful and he lay
in the furrow and moved his arched and ta-
pered head only so slightly.

These sentences depict the case where verbs pre-
cede adverbs in fictional text. These examples also
indicate how the later adverb plays a crucial role
in providing extra information about the verb, thus
augmenting the imaginative quotient of the text.
We prove two further examples below from non-
fiction texts taken from Brown Corpus (fileid: ce16,
paragraph number: 17), which shows the genre-
specific tendency of adverbs preceding verbs:

• I laid three layers of glass cloth on the inside
of the stem, also installing a bow eye at this
time.

• Again, these blocks were set in resin-saturated
glass cloth and nailed .

Finally, we also checked the performance of all
the models (traditional as well as deep learning
models) on newswire text from the Baby BNC
Corpus (605 paragraphs from the 97 News cate-
gory documents) individually as well as combined
with our Baby BNC dataset (described in Section 2
used in previous experiments). Table 6 in the Ap-
pendix section E shows the performance of dif-
ferent models on the Baby BNC corpus when the
news texts are included in the non-fiction category.
Table 7 of Appendix E shows the percentage of
news texts classified as non-fiction using differ-
ent models. Our traditional model has 68% ac-
curacy while classifying news texts into the non-
fiction genre. Even the top-performing BERT-base-
uncased model gives a classification accuracy of
83%. The performance drop of these models sig-
nifies that news texts contain writing styles that re-
quire more detailed linguistic analyses as features
found effective for other sub-genres (such as aca-
demic texts) fail to achieve a comparable accuracy
in this case.

6 Conclusions and Future Work

In this work, we classified paragraph-level text
into fiction and non-fiction genres using a tradi-
tional machine learning model (logistic regression)
and two different deep learning models. For short-
text genre identification, we show that the tradi-
tional model containing hand-crafted features (raw
text, POS ratios, lexical and syntactic features)
significantly outperformed a baseline model con-
taining POS-ratio features, (originally proposed
by Qureshi et al. (2019) for the task of document-
level genre classification). We also obtained the
insight that subtle differences in word order ex-
ist between the two genres, i.e., in fiction texts
Verbs precede Adverbs (inter-alia) compared to
non-fiction texts. Finally, we showed that deep
learning models (viz., CNN and BERT) perform
significantly better than our traditional model. We
obtained state-of-the-art results for the task of short-
text genre identification using a pre-trained BERT
model fine-tuned on the Brown Corpus.

In future work, we intend to investigate the effi-
cacy of the hand-crafted features on a larger data
set and also plan to create a gold standard corpus
of human-annotated fiction and non-fiction para-
graphs for fine-grained evaluation. Future research
needs to investigate whether syntactic complexity
and arguments/adjuncts patterns (not having any
impact using our current machine learning setup)
are effective predictors of genre shorter texts us-
ing other learning algorithms. Further, our finding
that journalistic prose (as in news) is not purely
non-fiction in nature and might contain fictional
elements, needs more systematic investigation. An-
other line of future inquiry is to combine traditional
models (encoding linguistic features) with state-of-
the-art deep learning models. Finally, it would be
interesting to investigate if causality expressed in
the natural language text plays an essential role in
classifying text into fiction and non-fiction genres.
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Appendix

A Mathematical formulae for lexical diversity

• Maas Index: This measure minimizes the length dependence of TTR by linearizing. Conceptually,
this method is based on the notion that a logarithmic curve can reasonably fit the TTR curve (Mass,
1972; McCarthy and Jarvis, 2007).

a2 =
(logTokens− logTypes)

log2Tokens
(1)

• MSTTR: The mean segmental type-token ratio is a metric that divides a text into equal segments
based on the amount of words in each segment (normally 50 or 100 words per segment). The TTR
is determined for each segment, and the MSTTR is generated by taking the arithmetic mean of the
TTR for each segment.

• MATTR: The moving average type-token ratio is a measure that involves moving a fixed-size
window through the text and calculating the type-token ratio for each window position. To begin,
a window length—for example, 50 words—is chosen, and the type-token ratio for words 1–50 is
calculated. The type-token ratio is then computed for words 2–51, 3–52, and so on until the text
length is reached. The estimated TTRs are averaged for the final score (Covington and McFall,
2010).

• MTLD: The measure of textual lexical diversity is defined as the average number of words in a row
for which a specified type-token ratio is maintained (here 0.720). When the value falls below a cut-off
score (here 0.720), a count (called the factor count) increases by one, and the TTR assessments are
reset. It picks up where the value was dropped and repeats the operation until the text is finished. The
entire number of words in the text is then divided by the total number of factors in the text. After that,
the entire text in the language sample is reversed, and a new MTLD score is calculated. The forward
and the reversed MTLD scores are averaged to provide the final MTLD estimate (McCarthy and
Jarvis, 2007). One more measure of MTLD was also calculated: Moving Average MTLD (procedure
same as that of MATTR).

• Voc-D: The vocabulary diversity is a result of a series of random text samplings. It measures the rate
at which TTR drops in the sample. To calculate Voc-D, 35 tokens are randomly selected from the
text without being replaced, and the TTR is calculated. The average TTR for 35 tokens is estimated
and this method is repeated 100 times. Similarly, the average TTR for 36-50 tokens is determined.
The means of each of these samples are then used to generate an empirical TTR curve. Using the
least-squares approach, a theoretical curve is created that maximizes its fit to the empirical TTR
curve. The TTR calculated using Voc-D, ‘D’ is as follows (Durán et al., 2004).

TTR =
D

N
[(1 + 2

N

D
)
1
2 − 1] (2)

• Yule’s K: This measures the repetition and lower values of Yule’s K represent higher diversities
(Greg and Yule, 1944). The value K for a text sample is calculated as follows.

K = 104
{∑N

r=1 Vrr
2} −N

N2
(3)

where Vr is the number of types that occur r times in a text of length N.
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Figure 3: Constituency parse tree indicating Sampson’s depth for each word alongside in bracket

B Syntactic depth-based feature calculation

For the example sentence, "The children ate the cake with a spoon", we describe the method to compute
Sampson’s (1997) measure of syntactic complexity. Figure 3 illustrates the constituency parse tree of the
example sentence. Now, we define the LINEAGE of a word as the class of nodes, including the leaf node
(terminal node) associated with that word, the root node of its tree, and all the intermediate nodes on the
unique path between leaf and root nodes. Now, according to Sampson depth of a terminal node is defined
as the total number of those non-terminal nodes in the word’s lineage with at least one younger sister.6

The depth of the word ’cake’ in the example sentence according to the above definition is 1. Similarly, the
depth of each terminal node or the word in the sentence in sequence from left to right is 1,1,0,1,1,0,0,0,
which sums to 4. The depth-based measure is the average over the leaf nodes; hence, the value is 0.5 in
this example.

C Dependency bigram feature calculation

For the example sentence, "The children ate the cake with a spoon", we describe the method to
compute the dependency bigram feature modelling word order patterns. We extracted bigram features
from dependency trees (exemplified in Figure 4). We took all the pos tags of head and dependent pairs
from the tree, and specified the position of syntactic heads w.r.t to their dependents in a linear string by
means a keyword: before or after. Therefore, the dependency bigram features for the example sentence
are: (NOUN, DET, after), (VERB, NOUN, after), (VERB, NOUN, before), (VERB, NOUN, before), (NOUN,
DET, after), (NOUN, SCONJ, after), (NOUN, DET, after)

Figure 4: Dependency parse tree to compute the word order based feature.

6Node e is a YOUNGER SISTER of a node d if d and e are immediately dominated by the same mother node and e is further
right than d.
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D Supplementary Information: Brown corpus results

Feature category Feature set Feature Name Regression Coefficient
Raw features - std_sen_len 0.11

Lexical features
Character diversity (CD)

TTR 2.31
Maas TTR 1.70

VocD 0.38
Lexical density (lex_den) content/function -5.83

POS Features POS ratios
adverb/pronoun -0.19

noun/verb -0.68

Syntactic features

Dependency relation counts
(dep_rel)

discourse 1.17
nsubj 0.43

obl:npmod 0.20
nmod:poss 0.19
nummod -0.12

mark -0.18
aux:pass -0.20

flat -0.33
acl:relcl -0.49

fixed -0.70

Dependency bigrams
(dep_big)

(’VERB’, ’PROPN’, ’after’) 0.59
(’VERB’, ’ADV’, ’before’) 0.44

(’VERB’, ’PRON’, ’before’) 0.31
(’VERB’, ’ADP’, ’before’) 0.31

(’PROPN’, ’PROPN’, ’after’) -0.30
(’VERB’, ’SCONJ’, ’after’) -0.31
(’VERB’, ’NUM’, ’before’) -0.45

(’PRON’, ’NOUN’, ’before’) -0.57
(’PRON’, ’VERB’, ’before’) -0.74

(’ADJ’, ’SCONJ’, ’after’) -0.79
(’PROPN’, ’NUM’, ’before’) -1.46

Table 5: Regression coefficients of the features from our best model containing 28 optimal features
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E Supplementary Information: Complete Baby BNC corpus (incl newswire text) results

Model Testing Accuracy
(%)

F1 Score
(fiction)

F1 score
(non-fiction)

traditional model (28 best features) 83.77 +/- 0.291 0.848 +/- 0.003 0.825 +/- 0.003
GloVe Embedding CNN 87.034 +/- 0.467 0.876 +/- 0.005 0.863 +/- 0.004
BERT-base-uncased 92.52 +/- 0.258 0.927 +/- 0.003 0.922 +/- 0.002
Qureshi et al. (2 best ratio features) 72.95 % +/- 0.4 0.765 +/- 0.004 0.681 +/- 0.003

Table 6: Testing accuracy on Baby BNC corpus including the news texts (Non-Fiction: 848 paragraphs; Fiction:
850 paragraphs; most frequent baseline is 50.05%)

Models Percentage of samples
classified as Non-Fiction

Traditional model (28 best features) 68.42
GloVe Embedding CNN 82.97

BERT-base-uncased 83.3
Qureshi et al. baseline (2 best ratio features) 49.1

Table 7: Percentage of news texts in Baby BNC corpus classified as non-fiction; total samples: 605 news paragraphs

F CNN Training Regime

The pre-trained model of glove embeddings were trained on a text dataset consisting of Wikipedia articles
and Gigaword-5 data (collection of newswire texts). The pre-trained vectors were trained on a total of 6B
tokens and 400K vocabulary with different embedding dimensions. The model outputs an embedding
vector of dimension 100 for each word of the tokenized text. However, depending on the length of
tokenized text, the output vectors could be of different lengths. Thus could potentially create an imbalance
problem while feeding the vectors into a deep learning model as the input text may not be of fixed length.
To overcome this issue, we fixed the length of the input to be the longest sequence length available in the
training data. As a result, we obtained an input of constant size for training and testing. The embedding
dimension received from each paragraph input is 292× 100, where 292 is the fixed maximum length of
the tokenized paragraph text in the training data, and 100 is the dimension of each word embedding vector.
We pass this embedding layer into a 1D CNN model with 100 filters each of size 3 (also known as kernel
size). The activation function used with the CNN layer is ‘ReLu’. The output of this layer goes to a global
max pooling layer that returns the max value of the input vector received. The output of the global pooling
goes to a dense layer of size 10 with the ‘ReLu’ activation function. Finally, predictions are made using a
dense layer of size 1 and a sigmoid activation function, which transforms its output to class probability.

G BERT Training Regime

The BERT-base model (Vaswani et al., 2017) contains an encoder with 12 transformer blocks, 12 self-
attention heads, and a hidden size of 768. BERT generates a representation of the sequence from an input
sequence raning up to 512 tokens. The sequence consists of one or two segments, with the [CLS] token
serving as the sequence’s first token and containing the special classification embedding. [SEP] serves as
the sequence’s second token and is used to separate segments. For text classification, BERT takes the
final hidden state of the token [CLS], where the entire sequence information is encoded in this particular
token. In the last step, a simple softmax classifier is added to the top of BERT to predict the probability of
target labels. We use the BERT-base-uncased model (Devlin et al., 2018) having a hidden size of 768, 12
transformer blocks 12 self-attention heads. The maximum length of the BERT model input was fixed to
512. We then fine-tuned the BERT model with a batch size of 10, a learning rate of 2e-5, and a weight
decay of 0.01. The hidden dropout probability was 0.1. We set the maximum number of epochs to 3 and
saved the best model for evaluation.
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Abstract

Studies have shown that the sentence’s syntac-
tic structures are important for semantic sen-
tence matching. A typical approach is encoding
each sentence’s syntactic structure into an em-
bedding vector, which can be combined with
other features to predict the final matching
scores. Though successes have been observed,
embedding the whole syntactic structures as
one vector inevitably overlooks the fine-grained
syntax matching patterns, e.g. the alignment
of specific term dependencies relations in the
two inputted sentences. In this paper, we for-
malize the task of semantic sentence matching
as a problem of graph matching in which each
sentence is represented as a directed graph ac-
cording to its syntactic structures. The syntax
matching patterns (i.e. similar syntactic struc-
tures) between two sentences, therefore, can
be extracted as the sub-graph structure align-
ments. The proposed method, referred to as
Interacted Syntax Graphs (ISG), represents two
sentences’ syntactic alignments as well as their
semantic matching signals into one association
graph. After that, the neural quadratic assign-
ment programming (QAP) is adapted to extract
syntactic matching patterns from the associa-
tion graph. In this way, the syntactic struc-
tures fully interact in a fine granularity during
the matching process. Experimental results on
three public datasets demonstrated that ISG can
outperform the state-of-the-art baselines effec-
tively and efficiently. The empirical analysis
also showed that ISG can match sentences in
an interpretable way.

1 Introduction

Matching two natural language sentences has be-
come a fundamental technique in information re-
trieval (IR) and natural language processing (NLP).
Extensive research efforts have been devoted to the
task (Li and Xu, 2014; Xu et al., 2020). Recently,
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Figure 1: A semantically similar sentence pair (X =
“Some men are playing a sport”, Y =“A soccer game
with multiple males playing”) from SNLI. The words
and POS tags are shown in the nodes, and syntactic
dependencies are shown as edges.

researchers found that the sentences’ rich syntac-
tic information helps match. Some studies utilize
the implicit syntax-encoding methods to learn the
sentence embedding based on its syntactic stric-
tures (Chen et al., 2016, 2017). Other studies di-
rectly utilize the different syntactic tags as syntactic
features and fuse them with word features (Mou
et al., 2016; Chen et al., 2018; Liu et al., 2020).
All these approaches separately represent the syn-
tactic information of the two input sentences as
two coarse-grained embedding vectors, ignoring
the fine-grained matching patterns between the syn-
tactic structures.

In sentence matching, The fine-grained syntax
structures are lost during the process of represent-
ing the syntactic information as a vector. Studies
in (Xu et al., 2020) also verified that representation-
based methods will lose the fine-grained match-
ing signals. Figure 1 illustrates two semantically
similar sentences from the SNLI dataset where
sentences X = “Some men are playing a sport”,
Y =“A soccer game with multiple males play-
ing”. The parsed syntactic structures (the POS
tags and syntactic dependencies) are represented
as nodes and edges in two graphs, respectively.
We can see that though the overall syntactic struc-
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tures of the two sentences are very different, they
still contains matched sub-graphs: “men(NNS)

nsubj←−−−playing(VBG)
obj−→sport(NN)” from X and

“game(NN)
obj←−playing(VBG)

nsubj−−−→males(NNS)”
from Y . The matched sub-graphs provide a crucial
syntactic matching signal for downstream models
to make high-precision matching decisions. Exist-
ing approaches, however, inevitably overlook the
fine-grained sub-graph matching signal because
the sub-graph details are lost during the embedding
of the whole syntax graphs. Specifically, the sub-
graph details denote the combination of first-order
(e.g. Part-of-Speech) and second-order (e.g. word
dependency) syntactic information.

In this paper, we propose to formalize the task of
sentence matching as matching two directed graphs
where each graph corresponds to one sentence, and
its edges and nodes correspond to the word-word
syntactic dependencies and the words’ syntax and
semantic information, respectively. The sentence
matching, therefore, becomes a process of first ex-
tracting the sub-graph structure alignmentsand then
summarizing them into the final matching score.

A neural model called Interacted Syntax Graphs
(ISG) is developed for conducting the matching.
Specifically, given two sentences, ISG employs a
pre-trained language model (PLM) and a syntactic
parser to get the word embeddings and the syntactic
structures as the initialization features. Then, ISG
fuses these semantic and syntactic features into an
associate graph. Sub-graph matching patterns can
be extracted based on the associate graph, by us-
ing Lawler’s quadratic assignment programming
(QAP) (Cho et al., 2010). Finally, a matching clas-
sifier is used to merge the matching patterns and
semantic vectors outputted from the PLM, resulting
in the final matching score.

ISG offers several advantages, including accu-
rate extraction and fusion of the syntactic graph
matching signals, ease in interpretation, and high
matching accuracy. The contributions of this paper
can be summarized as follows: (1) We highlight the
importance of the fine-grained matching patterns
from syntax graphs in semantic sentence matching.
A novel matching model called ISG is proposed;
(2) Experimental results based on three available
benchmarks showed that the matching accuracy of
ISG outperformed the state-of-the-art baselines; (3)
Analysis showed that ISG can discriminate impor-
tant syntactic and semantic matching patterns in an
interpretable way.

2 Related Work

Machine learning models have been widely used
for matching natural language sentences (Li and
Xu, 2014; Xu et al., 2020). Among them, the rep-
resentative methods include DSSM (Huang et al.,
2013) and its extensions (Wang et al., 2017a; Shen
et al., 2014; Kim et al., 2019; Yang et al., 2019).
Representative interaction-based models include
ARC-II (Hu et al., 2014), MatchPyramid (Pang
et al., 2016), etc. Recently, the pre-trained lan-
guage model has been adapted to conducting match-
ing (Devlin et al., 2019; Liu et al., 2019). These
models always focused on superficial matching sig-
nals and ignore explicit NLP knowledge.

Recently, there is a trend to utilize explicit NLP
knowledge to improve sentence representation. For
example, HIM (Chen et al., 2017) used the syntac-
tic dependencies to enhance the sentence represen-
tations, see also (Chen et al., 2016; Liu et al.,
2018; Tymoshenko and Moschitti, 2018). The
NLP knowledge-enhanced matching models have
also adapted to the interaction-based models. For
example, MIX (Chen et al., 2018) utilizes POS
and named-entity tags as prior features. Recently,
(Sachan et al., 2021; Bai et al., 2021; Zhang et al.,
2020b) found that syntax can help PLM capture
more information and achieve impressive results
for NLP tasks. However, these models overlook
the fine-grained syntactic matching patterns.

Graph matching problem (GM) has also been
adopted for discovering the patterns between dif-
ferent graphs (Loiola et al., 2007). The key is
to learn a practical affinity function with given
two structures. In early work, most on seeking
approximate affinity function and Euclid distance
together with the Gaussian kernel is applied (Cho
et al., 2010; Leordeanu et al., 2012). Recently,
quadratic assignment programming (QAP) (Cho
et al., 2010) has a wide application in Graph Match-
ing (GM) because of its great performance. The
affinity function in QAP can be learned with the
manners of unsupervised (Leordeanu et al., 2012),
semi-supervised (Leordeanu et al., 2011), or super-
vised (Loiola et al., 2007). Recently, deep graph
matching has been applied for GM on images (Zan-
fir and Sminchisescu, 2018; Wang et al., 2021) and
the matching accuracy has been achieved. More-
over, Graph-based models have also been used for
sentence matching (Yao et al., 2019; Zhang et al.,
2020a; Sachan et al., 2021).
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Figure 2: Example of converting the matching of a pair of sentences with syntactic structures (a) to the corresponding
affinity matrix K (b) or association graph G (c).

3 Problem Formulation

3.1 Sentence matching

The matching of a pair of natural language sen-
tences can be formally described as follows: sup-
pose that Z is the set of labels which is defined by
a specific matching task. In the paraphrase iden-
tification (PI) tasks, Z = {0, 1}, where ‘0’ and
‘1’ respectively denote the relationship of “dissim-
ilar” and “similar”; in natural language inference
(NLI) Z = {0, 1, 2}, where 0, 1, 2 respectively in-
dicate “contradiction”, “neutral”, and “entailment”.
A set of training instances D = {(Xi, Yi, zi)}Ni=1

is given where each sample (X,Y, z) ∈ D con-
sists of a sentence pair (X,Y ) and its ground-truth
matching label z. Moreover, the X,Y are two se-
quences of words: X = {x1, x2, · · · , xtX} and
Y = {y1, y2, · · · , ytY }, where the xi and yj de-
note the i-th and j-th words in X and Y , tX and
tY are the number of words (lengths) of X and Y ,
respectively.

3.2 Quadratic assignment programming

Quadratic assignment programming (QAP) is
a type of combinatorial optimization prob-
lems (Loiola et al., 2007), originally designed for
the facilities-location problems. Suppose to assign
N facilities to N locations, with the cost fij , dkl
of the affinities between the facilities (i, j) and lo-
cations (k, l), plus the costs biϕ(i) of assigning a
facility i to a certain location ϕ(i). The objective
of QAP is assigning each facility to a location such
that the total assignment cost is minimized. Lawler
(1963) introduced a general form of QAP as in
Equation (1):

min
ϕ∈S

N∑

i=1

N∑

j=1

cijϕ(i)ϕ(j) +
N∑

i=1

biϕ(i), (1)

where S is the set of all permutations ϕ : N → N ,
∀i, j, k, l, cijkl := fijdkl if ∧i ̸= j, k ̸= l, other-
wise ciikk := fiidkk + bik. The formulation has
been widely applied to graph matching, which in-
volves establishing node correspondences between
two graphs based on the linear and quadratic struc-
ture affinity (Leordeanu and Hebert, 2005).

3.3 Sentence matching over syntax graphs

This paper proposes to adopt QAP for conducting
sentence matching, by regarding the words in one
sentence as the “facilities” and words in another
sentence as the “locations”, and their differences
in syntactic structures and semantics as the “as-
signment costs”. In this way, QAP enables the
matching model to involve not only the linear syn-
tactic structure (e.g. word attribute structure) costs
which correspond to assigning the “facilities” to
certain “locations”, but also the quadratic syntac-
tic structures (e.g. word-word relation structure)
costs which correspond the affinities between the
assigning “facilities” and “locations”.

Figure 2 gives an illustrative example of formu-
lating the sentence matching as graph matching
and finding matching patterns in the affinity graph.
with a sentence pair X =“Mary likes flour food”
(length |X| = 4) and Y =“Mary loves noodles”
(length |Y | = 3), using the parsed POS tags and
syntactic dependencies shown in Figure 2(a) which
are represented as the node and edge weights, re-
spectively.

As shown in Figure 2(a), we firstly constructed
two directed graph (GX , GY ) based on the two
sentences (X,Y )’s syntax. Specifically, the word
embedding and word syntax (i.e., POS) can be
encoded as node features, and the word-word syn-
tax (i.e., dependencies) can be encoded as edge
features. The fine-grained syntax-based matching
signals can be viewed as the alignments between
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Figure 3: Architecture of Neural Quadratic Assignment Programming for Sentence Matching.

sub-graphs of two sentence graphs (GX , GY ).
At the same time, to capture syntax-based pat-

terns effectively, we further construct the affinity
matrix K or the association graph G based on the
sentence graphs (GX , GY ). The weights of nodes
and edges in the association graph are correspond-
ing to the diagonal and off-diagonal elements in
the affinity matrix (Figure 2(b,c)), respectively.

Specifically, the weights of nodes describe the
word semantic similarities and POS (word attribute)
affinities, and the weights of edges describe the syn-
tactic dependency (word-word relation) affinities.
For example, the node x1y1 =(“Mary”,“Mary”)
could have the weight of, for example, 1.0+ 1.0 =
2.0 where the first 1.0 denoting the semantic sim-
ilarity, and the second 1.0 denoting the similarity
between the POS tags.

As an example for the edges corresponding to the
off-diagonal elements in affinity matrix K, there
could be an edge with weight, for example, 1.0
between node x1y1 =(“Mary”,“Mary”) and node
x2y2 =(“likes”,“loves”) because the dependency
relation between x1 =“Mary” and x2 =“likes” is
“nsubj”, while the dependency relation between
y1 =“Mary” and y2 =“loves” is also “nsubj”. Sim-
ilarly, the other edges can also be created.

Then the QAP is applied to learn the semantic
and syntactic matching patterns in affinity matrix
K. Formally, a relaxed form of QAP can be shown
as Equation (2):

max
S

vec(S)TKvec(S), (2)

where S matrix encodes the word-word correspon-
dence; vec(S) is S’s column-vectorized notation,

and K ∈ RtX tY ×tX tY . The S matrix can be re-
garded as an aggregated matching patterns of syn-
tax and semantics.

4 Proposed model: ISG

In this section, we present an efficient implemen-
tation of interacting syntax graphs (ISG) with
quadratic assignment programming (QAP) (Lawler,
1963; Cho et al., 2010). Figure 3 illustrates the
model architecture, which can be divided into sen-
tence characteristic initialization, QAP component,
and matching classifier.

4.1 Sentence characteristic initialization
In this component, the inputted natural language
sentence pair (X,Y ) is processed with a pre-
trained language model (PLM) and an NLP parser,
generating the semantic features and syntactic
structures.

Semantic features Given a pair (X,Y ), the
semantic matching vector (e.g., “[CLS]” vector
of BERT), vs ∈ Rd and the words embeddings
FX ∈ RtX×d,FY ∈ RtY ×d consists of the seman-
tic features:

(vs,F
X ,FY ) = PLM(X,Y ; θp),

where d denotes the size of the feature vector, PLM
could be BERT or other PLM models, and θp de-
notes the parameters of PLM.

Syntactic structures Generally speaking, there
are two types of structures: the word attribute struc-
ture (WAS) which reflects the attributes of the word,
and the word-word relation structure (WRS) which
defines the relationship between two words.

The WAS attributes can be further categorized
941



and this paper only considers POS attributes. Given
any sentence X = {x1, · · · , xtX}, the sequence of

WAS attributes could be
{
ax1 , ax2 , · · · , axtX

}
.

The WRS attributes can also be further catego-
rized and this paper considers syntactic dependency.
Given any sentence X = {x1, · · · , xtX}, the WRS
parsing results (a dependency parsing graph) can
be represented as two incidence matrices:

(IX ,HX) = Parse(X),

where IX ∈ RtX×eX records the output-links and
HX ∈ RtX×eX records the in-links, eX denotes
the edge number of WRS. The elements of these
two matrices are defined as: if k-th edge links from
word xi to xj (its type also denoted as ek(xi, xj)),
IX(i, k) = HX(j, k) = 1, and note that in order to
reduce the noise from the dependencies, we also set
IX(j, k) = HX(i, k) = 1. Otherwise, IX(i, k) =
HX(j, k) = IX(j, k) = HX(i, k) = 0.

In this paper, we used the Stanford CoreNLP
parser (Manning et al., 2014) for getting POS, and
syntactic dependencies. Note that other syntactic
structures can be also used, such as named-entity
and semantic dependencies (Wang et al., 2019b).

4.2 QAP component
Based on the word embeddings and parsed syn-
tactic structures, the QAP component first con-
structs an association graph (affinity matrix) and
then solves the QAP problem, achieving the permu-
tation which represents the word matching between
the two sentences.

4.2.1 Learned affinity matrix construction
Following the practices in (Zhou and De la Torre,
2015), the QAP sparse affinity matrix Kl ∈
RtX tY ×tX tY , referred to as the learned affinity ma-
trix, can be factorized as

Kl = diag(vec(P)) + (IX ⊗K IY )diag(vec(R))(HX ⊗K HY )T ,
(3)

where operator diag(·) builds a diagonal matrix
from input vector, IX ,HX , IY ,HY are sentences
X and Y ’s parsing results, as described in Sec-
tion 4.1, ⊗K denotes Kronecker product, and P
and R encode the WAS, word embedding similar-
ity and WRS similarity matrix, respectively and
they are defined as:

P = (1− α)UXΛuU
Y T + αFXΛfF

Y T ,R = LXΛrL
Y T ,

where Λu,Λf ,Λr are learn-able parameters for
affinity metric, α is the trade-off coefficient for

POS affinities and word-word similarities, and
UX ∈ RtX×d,UY ∈ RtY ×d are the WAS se-
quence embeddings of X,Y and the edge repre-
sentations LX ∈ ReX×d,LY ∈ ReY ×d are built
by its edge sequence embeddings. Note that all
the aforementioned operations for constructing Kl

allow back propagation, and we adopt the GPU
implementation provided by (Wang et al., 2019a).
A more detailed QAP factorization is given in Ap-
pendix A.

4.2.2 Solving the permutation vector
Due to the high compute cost for solving the per-
mutation vector through the learned affinity matrix
K l, we adopt the GCN method implemented by
Wang et al. (2019a) to approximate the QAP prob-
lem into a linear assignment programming(LAP)
problem, which can be solved in an efficient way
for both time and space.

Specifically, we build the association graph G =
{v(0),A} with its initial node embedding v(0) and
its sparse adjacent matrix A from the learned affin-
ity matrix K l. Then we can apply GCN method to
updated the node embedding for k-th GCN layer,
k = 1, 2, · · · , Gk. The key idea is to encode the
quadratic structure (WRS) to the linear structure
(WAS). The permutation matrix S can be regarded
as the last layer of the node features:

vec(S) = v(Gk), v(k+1) = AWf(v(k); θk))+v(k),
(4)

where the f(·) is a MLP projection function at
the k-th layer is parameterized by θk and the k-
th layer node embedding of association graph de-
notes as: v(k) ∈ RtX tY ×ℓk , with the initial em-
beddings v(0) ∈ RtX tY ×1 taken from the diago-
nal elements of K l. The GCN projection matrix
W ∈ RtX tY ×tX tY comes from the off-diagonal
elements.

v(0)(i, a) = Kl(ia, ia), W(ia, jb) = Kl(ia, jb),

for all i, j ∈ tX , a, b ∈ tY .
As for the adjacent matrix A, in order to control

its sparsity, we introduce a hyper-parameter γ to
generate the sparse adjacent matrix of association
graph G from the projection matrix W:

A(ia, jb) =

{
1 if W (ia, jb) ≥ γ,
0 otherwise.

4.3 Matching classifier
Given the semantic matching feature vs and QAP
permutation vector v(Gk), the matching score ẑ can
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be obtained by the MLP parameterized by θm:

ẑ(X,Y ) = MLP([vs|v(Gk)]; θm). (5)

where ‘|’ denotes the concatenation operation,
ẑ(X,Y ) =

[
ẑ1, · · · , ẑ|Z|

]
and ẑk denotes the prob-

ability of k-th category. The last layer is softmax
so that the output is a probability distribution.

4.4 Learning the model parameters

ISG has parameters to determine, including Θ =
{θp, θk,Λu,Λf ,Λr, θm | k = 1, 2, · · · , Gk}. In
the training phase, given a set of sentence pairs
with ground truth labelsD = {(Xi, Yi, zi)}Ni=1, the
learning algorithm aims to minimize the matching
loss Lm which measures the differences between
the prediction ẑ and ground-truth z, regularized by
the affinity regularizerR which forces the learned
affinity matrix K l and the original parsed affinity
matrix K the being similar. Formally, the loss L
that being minimized is:

L = Lm(ẑ, z) + λaR(K,K l) + µr∥θ∥2, (6)

where ∥θ∥2 is the ℓ2 regularizer, λa, µr denote the
trade-off coefficient of affinity regularizer and ℓ2
regularizer.

Matching loss The matching loss Lm is learned
by minimizing the cross-entropy loss between the
labels and the predicted results:

Lm = −
∑

(X,Y,z)∈D

|Z|∑

k=1

zk log ẑk, (7)

Affinity regularizer The affinity regularizerR
aims to force the structure affinities respectively
correspond to the parsed syntactic structure and that
of learned from neural network to be similar. Thus
the R is learned to minimize the KL-divergence
between the learned affinity matrix K l and parsed
affinity matrix K:

R =
∑

(X,Y )∈D
KL(K||K l), (8)

where the parsed affinity matrix K is defined as
follows: the diagonal elements K(ia, ia) will be 1
if the matched words have identical attribute, oth-
erwise 0. And the off-diagonal element K(ia, jb)
will be 1 if the word pair (xi, xj) and (ya, yb) have
identical word-word relation, otherwise 0.

4.5 Time complexity of online matching

At the online time, ISG needs to process the sen-
tence pairs with PLM, parse them with the NLP
parser, solve the QAP and finally calculate the
matching score. The online time complexity for
typical PLM (Devlin et al., 2019; Liu et al., 2019)
and NLP parser (Manning et al., 2014; Wang et al.,
2019b) is of O(|tX + tY |2 × d) and O((|tX |2 +
|tY |2)× d), where d is the embedding dimension
of each word.

At the online matching, the time complexity of
the relaxed QAP is related to GCN, which is of
O(Gkmℓ + Gknℓ

2) (?) on the association graph,
where n = tXtY is the total number of nodes,
m is the total number of edges, Gk is the num-
ber of layers, and ℓ is the dimension of the node
hidden features. Note that the hyper-parameter γ
controls the sparsity of the edges (as mentioned in
Section 4.2), we can adjust γ so that m ≪ tXtY
and therefore reduce the time complexity of the
relaxed QAP to O(GktXtY ℓ2), which is more ef-
ficient than the original QAP (Wang et al., 2019a).
Therefore, the total time complexity of ISG is
O(|tX + tY |2 × d + GktXtY ℓ

2), which is com-
parable with the underlying PLM.

5 Experiments

We conducted experiments to verify the effective-
ness of the proposed approach. The source code
and experiments are available at the link.1

5.1 Experimental Settings

The experiments were conducted on three large
scale publicly available benchmarks:

Quora Question Pairs (QQP):2 a large public
dataset for paraphrase identification. QQP contains
404k labeled sentence pairs. We used the same
data split as in (Wang et al., 2017b). SNLI:3 a
well-known dataset for natural language inference
(NLI). SNLI contains 570k labeled sentence pairs.
Following the practices in (Bowman et al., 2015),
we used the same data split way. SciTail:4 another
NLI dataset based on science exams and web. Its
label only contains two classes: “entailment” or
“neutral”. The dataset contains 27k sentence pairs.

1https://github.com/XuChen0427/Semantic-Sentence-
Matching-via-Interacting-Syntax-Graphs

2https://www.kaggle.com/c/
quora-question-pairs

3https://nlp.stanford.edu/projects/
snli

4http://data.allenai.org/scitail/
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Several state-of-the-art baselines which con-
ducts the matching without utilizing syntactic
structures were chosen as the baselines, includ-
ing DIIN (Gong et al., 2018), MwAN (Tan et al.,
2018),BIMPM (Wang et al., 2017a), CSRAN (Kim
et al., 2019), DecAtt (Parikh et al., 2016),
CAFE (Tay et al., 2018), and DGEM (Khot et al.,
2018), RE2 (Yang et al., 2019), and the BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019).
Some models are task-adopted (e.g. DGEM is
for NLI task), thus they are missing on some
datasets. ISG was compared with the baselines
DDR-match (Yu et al., 2020, 2022) that applied
unsupervised assignment problems to conduct sen-
tence matching. ISG was also compared with
the baselines that utilize syntactic structures like
HIM (Chen et al., 2017), which uses the con-
stituency tree to improve local word representa-
tion, and Sembert (Zhang et al., 2020b), Syntax-
bert (Bai et al., 2021) that applied different syn-
tax to improve PLM performance. To make a
fair comparison, we cannot reproduce their results
due to the source codes are unavailable public of
graph-based matching models (). Therefore, we
decided to implement a representation-based GCN
method, by following the representation-model ar-
chitecture (lines 455-461, 497-505) and using the
same parsing results. The method is denoted as
ISG (representation-GCN) in Table 1.

To get the syntactic structures of the inputted
sentences, the Stanford-corenlp (Manning et al.,
2014) was used to parse the syntactic structures.
In all of the experiments, the maximum sentence
length was set to 70 and the sentences with lengths
less than 3 were removed for reducing the noise. In
the training process, all of the models were trained
with the learning rate tuned amongst [1e−5, 5e−5].
The batch size was tuned amongst [8, 16, 32], and
the graph network layer Gk was tuned amongst
[1, 3], the coefficient α = 0.8 and the sparsity
threshold tuned amongst [0, 0.3] . The trade-off
coefficient of affinity regularizer λa’s were tuned
amongst [4e− 3, 1e− 2].

5.2 Experimental results

Table 1 reports the matching accuracy of the pro-
posed ISG and the baselines on the three datasets.
The ‘-’ means the number is not available. The
accuracy of baselines is according to the numbers
reported. For our methods, the averaged numbers
over 5 runs are reported, with the standard devi-
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Figure 4: ISG-BERTBASE’s inference time (figure (a))
and matching accuracy (figure (b)) curves w.r.t. the
sparsity of the association graph. Experiments were
conducted on SciTail.

ations in parentheses. From the results, we can
see that different versions of the proposed ISG out-
performed all of the baselines. The results also
indicated that though PLM (e.g. BERT,RoBERTa)
achieved SOTA accuracy, ISG can still get improve-
ments by incorporating the syntactic information.

We also note that ISG outperformed the base-
lines that utilize the syntactic structures for match-
ing. Comparing ISG with these models, we found
that these baseline models all encode the syntac-
tic structures as sentence features to enrich their
representations, while ISG incorporates the syn-
tactic and semantic matching patterns through a
graph matching task and aggregates them through
the affinity matrix. Moreover, we also compared
the graph matching methods that separately encode
two graphs into two embeddings using GCN meth-
ods and conducted matching scores based on the
learned embeddings. We found that ISG will still
outperform the representation-based graph match-
ing methods. The results demonstrated that the
ISG is more effective to utilize syntactic matching
signals.

We also investigated the online time complexity
of ISG. Figure 4 reports the impacts of association
graph sparsity on ISG-BERTBASE on the Scitail
test-set, where the sparsity (calculated as the frac-
tion of edge number and square of node number
in association graph) is from [2e− 4%, 3e− 3%].
The sparsity was adjusted by changing the hyper-
parameters γ.

Figure 4(a) illustrates that the inference time of
ISG will decrease with the increase of the asso-
ciation graph sparsity. Moreover, the inference
time of ISG-BERTBASE is about 2.5 times that of
the underlying PLM, and about 0.7 times that of
BERTLARGE . The results verified the time com-
plexity analysis conclusion in Section 4.5.

Figure 4(b) shows the accuracy curves of ISG,
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Table 1: Performance comparisons on Quora Question Pairs, SNLI and SciTail. The ±numbers in brackets mean
1-std deviations. The ∗ denotes the models are our implementations and are trained among same settings.

Models without syntactic structures QQP:Acc(%) SNLI:Acc(%) SciTail:Acc(%)
DGEM (Khot et al., 2018) - - 77.3
DecAtt (Parikh et al., 2016) - 82.5 81.7
CAFE (Tay et al., 2018) - 88.5 83.3
BIMPM (Wang et al., 2017a) 88.7 88.8 85.4
DIIN (Gong et al., 2018) 89.1 - -
MwAN (Tan et al., 2018) 89.1 - -
CSRAN (Kim et al., 2019) 89.2 88.7 86.7
RE2 (Yang et al., 2019) 89.2 89.0 86.6
DDR-Match(BERT)∗ (Yu et al., 2022) 89.6 89.2 90.3
BERT∗BASE (Devlin et al., 2019) 89.4 89.0 89.5
BERT∗LARGE (Devlin et al., 2019) 89.6 89.2 90.6
RoBERTa∗LARGE (Liu et al., 2019) 90.0 90.1 91.5
Models with syntactic structures QQP:Acc(%) SNLI:Acc(%) SciTail:Acc(%)
HIM (Chen et al., 2017) 88.7 88.6 71.6
SemBERT∗BASE (Zhang et al., 2020b) 89.8 90.2 92.1
SemBERT∗LARGE (Zhang et al., 2020b) 90.7 91.0 92.1
SyntaxBERTBASE (Bai et al., 2021) 89.6 87.8 -
SyntaxBERTLARGE (Bai et al., 2021) 89.5 89.0 -
ISG(representation-GCN)-BERT∗BASE 90.1 89.7 90.6
ISG(representation-GCN)-BERT∗LARGE 90.2 89.9 91.7
ISG(representation-GCN)-RoBERTa∗LARGE 90.8 90.4 92.3
Ours(ISG-BERT∗BASE) 90.5 (±0.14) 90.0 (±0.16) 90.8 (±0.26)
Ours(ISG-BERT∗LARGE) 90.8 (±0.08) 90.4 (±0.03) 91.9 (±0.24)
Ours(ISG-RoBERTa∗LARGE) 91.4 (±0.1) 91.2 (±0.08) 93.3 (±0.2)

(a) Ex. word-word similarity in RoBERTa (c) Ex. word-word crosspondence in ISG-RoBERTa(b) Ex. POS and dependencies affinities in ISG

Figure 5: Cross sentence word-word similarity matrix and syntactic affinity matrices for two pairs : example(“this
gas is oxygen”,“oxygen gas is given off by plants”), which is from Scitail training set. Darker colors means higher
similarities or affinities values.

which first increases in [9e−4%, 3e−3%] and then
dropped. We conclude that even association graph
became sparse, ISG still constantly outperformed
BERTBASE and outperformed BERTLARGE at
some point. The results demonstrated that the QAP
is efficient and will not delay the online time.

5.3 Empirical Analysis

5.3.1 Ablation Study

Firstly, we respectively set the WAS(POS) features
UX ,UY , WRS(syntactic dependencies) features
LX ,LY and semantic features vs,FX ,FY to zero

vectors, to investigate their effects. Table 2 reports
the accuracy of the ISG variation on the SciTail
test data under BERTBASE , where each variation
is denoted as, for example, “ISG-w/o WRS” which
means the WRS features were set zeros. Similar
phenomenons have also been observed on the other
two datasets, with other PLMs.

Compared ISG-BERTBASE with its variations,
we can see that the matching performances dropped
with large margins if the semantic features were
set as zeros, indicating that only considering the
syntax patterns did not work well. We also ob-
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Table 2: Ablation study on SciTail test set.

Ablation Study Model Acc(%)
BERTBASE (Devlin et al., 2019) 89.5 (±0.28)
ISG-w/o semantic and WRS 68.1 (±0.29)
ISG-w/o semantic and WAS 67.8 (±0.28)
ISG-w/o semantic 68.5 (±0.26)
ISG-w/o WAS 90.2 (±0.27)
ISG-w/o WRS 90.4 (±0.28)
ISG 90.8 (±0.26)

Table 3: Ablation study for different syntactic structure
on SciTail test set.

Ablation Study Model Acc(%)
BERTBASE (Devlin et al., 2019) 89.5 (±0.28)
ISG NER&Syntactic dependencies 90.4 (±0.25)
ISG NER&Semantic dependencies 90.2 (±0.17)
ISG POS&Syntactic dependencies 90.8 (±0.26)
ISG POS&Semantic dependencies 90.6 (±0.21)

served that the performances dropped when the
WAS and WRS features were set to zeros. The bad
performances were caused by removing the WAS
and WRS features, indicating that syntax matching
patterns are effective for sentence matching.

Moreover, We conduct the experiments with dif-
ferent WAS and WRS. Specifically, we respectively
utilize the POS and named-entity(NE) as WAS
and respectively utilize the syntactic dependencies
and semantic dependencies as WRS. For seman-
tic dependencies parsing, we follows Wang et al.
(2019b). Table 3 also reports the accuracy of the
ISG-BERTBASE variation on the SciTail test data.

Compared to the ISG variations, we can see
that the matching accuracy is different for different
WAS and WRS. The best and worst performance
are caused by POS&syntactic dependencies and
NER&Semantic dependencies, respectively. How-
ever, we can observe that all of these variations out-
perform the BERT baseline, which indicates the
effectiveness of ISG in different WAS and WRS.

An experiment on the robustness of ISG’s pa-
rameters can be found in Appendix B.

5.3.2 Matching Visualization of ISG
We conducted experiments to investigate how the
ISG matched two sentences, using a real example
from Scitail. The experiment was conducted based
on the results of ISG-RoBERTa.

Figure 5(a) illustrated the word-word similar-
ity matrix of these two sentences, based on the

word embeddings outputted by RoBERTa, where
the darker colors denote the higher similarities. Fig-
ure 5(b) illustrated the affinities between POS and
dependencies in two sentences. Based on the simi-
larities and affinity matrices, ISG solved the QAP
and achieved a new correspondence matrix in Fig-
ure 5(c). The POS, word semantic similarities,
and dependencies affinities correspond to the node
weights and edge weights in the association graph.

The example illustrates the example that is from
the Sctail training set: (X = “this gas is oxygen”,
Y =“oxygen gas is given off by plants”) whose
ground truth label is “neutral”. The example il-
lustrates how the ISG conducts sentence matching.
Comparing word-word similarities by RoBERTa
(Figure 5(a)) and that of ISG (Figure 5(c)), we can
see that RoBERTa’s results show high similarities
between words in two sentences. On other hand,
ISG can find fine-grained syntactic patterns, for
example, the matching patterns of POS “VB” and
“NN” and dependency “nsubj”. And ISG will out-
put the “dissimilar” result due to its low syntactic
matching pattern scores.

The analysis clearly showed that ISG can well
learn different syntax-based matching signals, and
make them into good interactions. The results also
showed what syntactic matching patterns are im-
portant and how two sentences were matched with
the association graph.

6 Conclusion

This presents a novel sentence matching model
which formulates sentence matching as a problem
of syntax graph matching, referred to as ISG. Based
on the constructed association graph, ISG explic-
itly aligns the syntactic sub-graphs as fine-grained
matching signals. Neural QAP is adopted to learn
the rich matching patterns from the training data.
ISG offers several advantages: explicitly interact-
ing with the syntactic structures in fine granular-
ity, high matching accuracy, and the ability to in-
terpret. Experiments on three publicly available
benchmarks verified the effectiveness, robustness,
and interpretability of ISG.
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Figure 6: A working example of factorized affinity matrix Kl with aforementioned example (“Mary likes flour
food”, “Mary loves noodles”). The affinity matrix can be factorized into six matrices: P,R, IX , IY ,HX ,HY

Appendix A: An intuitive example on
affinity matrix factorization

Figure 6 gives a working example of factorizing
the affinity matrix Kl ∈ RtX tY ×tX tY in Equa-
tion (3) (Zhou and De la Torre, 2015):

Kl = diag(vec(P)) + (IX ⊗K IY )diag(vec(R))(HX ⊗K HY )T ,
(9)

with the aforementioned example sentence pair:
(“Mary likes flour food”, “Mary love noodles”).
As shown in Figure 6(a), the words, POS and syn-
tactic dependencies are represented in the nodes
and edges, respectively.

The diagonal and off-diagonal elements in the
affinity matrix (Figure 6(d)) represent the affinity of
sentence linear structures and quadratic structures,
respectively. According to Zhou and De la Torre
(2015), the affinity matrix Kl can be factorized
into six matrices P,R, IX , IY ,HX ,HY (shown in
Figure 6(b,c)) and defined in Section 4.

Appendix B: Robustness of ISG

ISG has a set of important hyper-parameters λa
which trade-off the affinity regularizer Ra and
matching loss Lm. We conducted experiments on
the Scitail test set with BERTBASE as the encoder
to test the sensitivity of these hyper-parameters.
Figure 7 illustrates the performance changes w.r.t.
λa in terms of accuracy, where λa ∈ [3e−3, 1.1e−
2]. We can see that ISG performed best when
λa ≈ 8e− 3. However, the performance changes
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Figure 7: Accuracy curve of ISG-BERTBASE w.r.t. λa
(trade-off coefficient for affinity regularizer) on the Sci-
tail test set.

were not severe (from 90.6% to 90.8% in terms of
accuracy). We conclude that (1) the introduction of
the affinity regularizer enables ISG to have some
tolerances to the errors caused by the NLP parser,
which inevitably occurs in real-world applications;
(2) ISG is robust and not sensitive to the λa.
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Abstract

Text classification is a primary task in nat-
ural language processing (NLP). Recently,
graph neural networks (GNNs) have developed
rapidly and been applied to text classification
tasks. As a special kind of graph data, the tree
has a simpler data structure and can provide
rich hierarchical information for text classifica-
tion. Inspired by the structural entropy, we con-
struct the coding tree of the graph by minimiz-
ing the structural entropy and propose HINT,
which aims to make full use of the hierarchical
information contained in the text for the task
of text classification. Specifically, we first es-
tablish a dependency parsing graph for each
text. Then we designed a structural entropy
minimization algorithm to decode the key in-
formation in the graph and convert each graph
to its corresponding coding tree. Based on the
hierarchical structure of the coding tree, the rep-
resentation of the entire graph is obtained by
updating the representation of non-leaf nodes
in the coding tree layer by layer. Finally, we
present the effectiveness of hierarchical infor-
mation in text classification. Experimental re-
sults show that HINT outperforms the state-of-
the-art methods on popular benchmarks while
having a simple structure and few parameters.

1 Introduction

Text classification is an essential problem in NLP.
There are numerous applications of text classifi-
cation, such as news filtering, opinion analysis,
spam detection, and document organization (Ag-
garwal and Zhai, 2012). Recently, GNNs have
developed rapidly. GNNs learn the representation
of each node by aggregating the information of
neighboring nodes and can retain structural infor-
mation in the graph embedding. Therefore, many
graph-based methods are applied to text classifi-
cation and achieve good performance. (Yao et al.,

∗Equal Contribution.
†Correspondence to: Junran Wu, Ke Xu.

2019) proposed TextGCN, which is the first method
to employ a Graph Convolutional Network (GCN)
in the text classification task. They built a het-
erogeneous graph containing word nodes and doc-
ument nodes for the corpus and transformed the
text classification task into a node classification
task. TextGCN outperformed other traditional
methods and attracted much attention, which has
led to increasingly more applications of graph-
based methods in text classification. In Huang
et al. (2019); Zhang et al. (2020), the text clas-
sification task was converted into the graph classi-
fication task. They built text-level co-occurrence
graphs for each data. Huang et al. (2019) employed
a Message Passing Mechanism (MPM) and outper-
formed TextGCN. A Gated Graph Neural Network
(GGNN) was employed in (Zhang et al., 2020) and
achieved state-of-the-art performance.

Different from normal graph data, tree-
structured data is a simpler data structure with rich
hierarchical information. In the text classification
task, despite plenty of efforts that have been de-
voted to the adoption of GNNs, none of them has
realized the rich hierarchical information in text,
which has already been employed in other NLP
tasks. TrDec was proposed for the NMT task to
generate a target-side tree topology and uses the
tree to help the translation process (Wang et al.,
2018). In knowledge-based question answering
tasks, Zhu et al. (2020) treated the query as a tree
and used the tree-based LSTM to model the context
of the entities or relationships in the query. You
et al. (2019) clustered the labels in the extreme
multi-label text classification task and built a label
tree. Lyu et al. (2020) proposed a rumor detection
model based on tree transformer to better exploit
user interactions in the dialogues. Hierarchical in-
formation in text is likely to be helpful for text
classification tasks, so it should be better utilized.

Inspired by structural entropy (Li and Pan,
2016; Wu et al., 2022b,a), we propose a novel
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Figure 1: The architecture of HINT. wi nodes represent the word nodes, others are non-leaf nodes in the coding tree.

model based on tree structure for text classifica-
tion, named HINT. Structural entropy can measure
the complexity of the hierarchical information of
the graph, and decode its key structure. As shown
in Figure 1, we first build individual graph for each
document through dependency parsing. Then the
graphs are transformed into their corresponding
coding trees by a structural entropy minimization
algorithm. The coding tree not only retains the
crucial features of data but also excludes many
other features that worsen the model. The model
classifies the entire document by learning the rep-
resentation of the coding tree. So far, we not only
make better use of the hierarchical information in
the text data but also represent text with a simpler
data structure (i.e., tree). We conduct several exper-
iments to verify the advantages of our method over
the baselines. To sum up, our contributions are as
follows:

• For the first time, we explore the effectiveness
of hierarchical information of documents in
text classification.

• We propose a novel method, HINT, which
aims to parse and represent the hierarchical
information of documents.

• The results demonstrate that our method not
only outperforms several text classification
baselines but is also much simpler in structure
than other graph-based models.

2 Related Work

In recent years, the graph-based text classification
method transforms the text classification task into

a graph classification task or a node classification
task and has achieved good performance in the
text classification task. Different from traditional
deep learning models (Kim, 2014; Liu et al., 2016),
the graph-based text classification methods usually
capture the rich relationships between nodes in the
graph by constructing document graphs or corpus
graphs, then apply GNN to learn the embedding
of the document, and finally input the embedding
to the classification layer. For graph construction,
one is to construct a static graph for text or corpus.
Some methods are to construct a single heteroge-
neous graph for the entire corpus (Yao et al., 2019;
Liu et al., 2020). Other studies construct a separate
graph for each document to handle the inductive
learning setting (Huang et al., 2019; Zhang et al.,
2020). Except for static graphs, the construction of
dynamic graphs does not rely on prior knowledge
and can be jointly learned with the model (Chen
et al., 2020). For the learning of graph representa-
tion, various GNN models are used in text classi-
fication, such as GCN (Yao et al., 2019; Liu et al.,
2020), GGNN (Zhang et al., 2020), MPM (Huang
et al., 2019), and GAT-based model (Linmei et al.,
2019).

Tree structure data is a special kind of graph data
with a simple structure and rich hierarchical infor-
mation. With the development of deep learning,
many models use trees to help solve NLP tasks.
Some methods process the data to get the tree struc-
ture data and use it to help the model. (Wang et al.,
2018) utilized the strong correlation between gram-
matical information and tree structure, and a tree-
based decoder TrDec is proposed for the NMT task.
TrDec generates a target-side tree topology and
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uses the tree to guide the translation process. (You
et al., 2019) proposed a model based on label tree
and attention mechanism for extreme multi-label
text classification. The label tree is constructed
by clustering the labels and the model is trained
from top to bottom. In addition to using the gen-
erated tree, the deep learning model of the tree
structure is also widely used. Tree-structured multi-
linear principal component analysis (TMPCA) used
the PCA of each layer to transfer the representa-
tion of two adjacent words to the next layer un-
til the entire text is reduced to a single-word vec-
tor (Su et al., 2018). (Zhu et al., 2020) treated the
query as a tree and proposed a tree-based LSTM in
the Knowledge-based question answering task to
model the context of entities or relationships in the
query.

The tree structure can provide hierarchical in-
formation for the model, and the tree based deep
learning model can make better use of the grammat-
ical information through the hierarchy of the model.
However, hierarchical information is not well stud-
ied in graph-based text classification methods. In
this work, we aim to fill the gap in GNN-based text
classification.

3 Method

In this section, we will introduce HINT in detail.
First, we will explain the method of constructing a
graph for each text. Then, we introduce the coding
tree construction algorithm that can decode the
hierarchical information in text data. Finally, we
will show how the model learns the hierarchical
information and text representation based on tree-
structured data and how to predict the label for a
given text based on the learned representations.

3.1 Graph Construction

In previous graph-based text classification mod-
els, there are two ways to construct a graph for
text. In (Yao et al., 2019), the corpus is constructed
into a heterogeneous graph containing word nodes
and document nodes. The weight of the edge be-
tween nodes is the point-wise mutual information
(PMI) of the words or the TF-IDF value. This
method can explicitly model the global word co-
occurrence and can easily adapt to graph convo-
lution. The other method is to construct a graph
for each text. Huang et al. (2019); Zhang et al.
(2020) construct a graph for a textual document
by representing unique words as vertices and co-

occurrences between words as edges. This method
reduces memory consumption and is friendly to
new text.

However, the graphs constructed by the above
methods do not contain rich syntax and semantics
information. In addition, the method based on co-
occurrence treats the words at different positions
equally, which causes a lack of position informa-
tion in the representations of graph nodes. To retain
more features in the constructed graphs, we use de-
pendency parsing to construct a graph in HINT. We
perform dependency parsing on each sentence in
the document to obtain the dependencies between
words. In addition, the dependency parsing result
of each sentence contains a root word. We con-
nect the root words of adjacent sentences to form a
complete dependency parsing graph.

Take a document with l words D =
{w1, . . . , wi, . . . , wl}, where wi is the ith word of
document. The set of dependencies between words
is DP = {drij |i ̸= j; i, j ≤ l}, where drij de-
notes the dependency relation of words i and j.
The edges between pairs of words with dependen-
cies is Ew = {eij |drij ∈ DP}. The root word set
of each sentence isDR = {ri|i ≤ n}, where n rep-
resents the number of sentences in the document.
Er = {eij |ri, rj ∈ DR∧ j = i+1} represents the
set of edges between the root words of adjacent sen-
tences. The dependency parsing graph G = (V,E)
for a text is defined as:

V = {wi|i ∈ [1, l]}, (1)

E = {Ew ∪ Er}, (2)

where V and E are the node set and edge set of
the graph respectively. Dependency parsing can
analyze the semantic associations between words.
Using words as nodes and dependency relation-
ships as edges, the graph has rich semantic and
structural information.

3.2 Coding Tree Construction
After the text is transformed into graph structure
data through dependency analysis, each graph has
rich structural information. In this subsection, we
introduce our method to decode the hierarchical
information in text data from constructed graphs.

In (Li and Pan, 2016), the structural entropy of
the graph is defined as the average amount of in-
formation of the codewords obtained by a random
walk in a specific coding pattern. According to
the different coding patterns, structural entropy
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can measure the dynamic information of the graph.
Given a graph G = (V,E), the structural entropy
of G on partitioning tree Tp is defined as:

HTp(G) = −
∑

α∈Tp

gα
2m

log
Vα
Vα−

, (3)

where m = |E|, α is the non-root node of Tg and
represents a subset of V , α− is the parent of α,
gα represents the number of edges with only one
end point in α and the other end outside α, Vα
and Vα− is the sum of the degree of nodes in α
and α−. The structural entropy of G is defined
by H(G) = minTpH

Tp(G). Tp is also called the
coding tree. Coding tree is simpler form of data,
while retaining key features of the original graph.
For a certain coding mode, the height of the coding
tree should be fixed. Therefore, the h-dimensional
structural entropy of the graph G determined by
the coding tree T with a certain height h can be
computed as:

Hh(G) = min
{T |h(T )≤h}

HT (G). (4)

We designed a graph coding algorithm based
on minimizing structural entropy to transform the
graph to its coding tree. The coding tree construc-
tion algorithm shown in Algorithm 1 is based on
the principle of minimizing structural entropy to
construct a h-dimensional coding tree with a certain
height h. So the coding tree T with given height
h is computed by T = SEMA(G, h), where
T = (VT ), VT = (V 0

T , . . . , V
h
T ) and V 0

T = V .
SEMA refers to the structural entropy minimiza-
tion algorithm. In SEMA, the graph is first trans-
formed into a full-height binary coding tree, and
then the tree is folded into a coding tree with certain
height h.

Tom lives in a big tent with Jerry

with inTom lives Jerry big tenta

Figure 2: A text and its corresponding coding tree with
a height of 3. The green node represents the root node
of the coding tree, and other points refer to other inner
nodes with various hierarchical information.

Algorithm 1 Structural Entropy Minimization Al-
gorithm
Input: Adjacency matrix Am∗m of the graph G =
{V,E}
Parameter: The height h of the coding tree
Output: The coding tree T = {VT , ET } of the
graph G

1: Let heap = [], VT = V, unmerge = m,M =
∅.

2: for ni, nj in V and Eij ∈ E do
3: T

′
= T.Combine(ni, nj)

4: ∆e = entropy(T )− entropy(T ′
)

5: heap.push(∆e, ni, nj)
6: end for
7: while unmerge > 1 do
8: n1, n2 = heap.pop(min∆e)
9: if n1 /∈M and n2 /∈M then

10: nnew = merge(n1, n2)
11: update VT ,M, unmerge
12: update heap like line 4 to 6
13: end if
14: end while
15: root = nnew
16: update heap like line 4 to 6
17: while the height of the tree > h do
18: np, nc = heap.pop(min∆e)
19: np = compress(np, nc)
20: VT .del(nc)
21: end while
22: return T

For a text and its corresponding coding tree, all
words in the text are the leaf nodes, and the hier-
archical information in text are decoded into the
hierarchical structure of the coding tree. Figure 2
shows an example of a text and its corresponding
coding tree. We can see that the coding tree di-
vides the words of the text into four parts. The
information contained in each non-leaf node can
be interpreted as the semantic information of all its
child nodes, so non-leaf nodes at different levels
contain semantic information with different gran-
ularities. In addition, the two words "Tom" and
"Jerry" that are farther apart in the original text are
closer in the coding tree while retaining the correct
semantic information.

3.3 Text representation learning

Based on the decoded hierarchical structure of cod-
ing trees, we aim to learning the text representation
with this hierarchical information. Specifically, fol-
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lowing the message passing mechanism in GNNs,
we intend to iteratively update the node representa-
tion of coding tree from leaves to root node. Finally,
model can obtain a representation of the text by us-
ing the structure of the coding tree and the features
of the leaf nodes. The number of layers of the
model is the same as the height of the coding tree.
The ith layer on coding tree T = (VT , ET ) can be
expressed as:

xiv =MLP i(
∑

n∈C(v)
xi−1n ), (5)

where v ∈ VT , xiv is the feature vector of node v
with height i, x0 is the word embeddings, and C(v)
is the child nodes of v. The coding tree learning
model starts from the leaf node layer and learns
the representation of each node layer by layer until
reaching the root node. Finally, all feature vectors
of the nodes are used to compute a representation
of the entire coding tree xT :

xT = Concat(Pool({xiv|v ∈ V i
T })

|i = 0, 1, 2, . . . , h)),
(6)

where xiv is the feature vector of node v with height
i in T , and h is the height of T . Pool in Equation 6
can be replaced with a summation or averaging
function. In the beginning, the non-leaf nodes have
no representation, and the representation of the non-
leaf nodes is updated as the information is prop-
agated from the lower layers to the upper layers
along the edges of the coding tree. In the process of
propagation, the textual information from the leaf
nodes interacts with the hierarchical information
abstracted by the coding tree, so that the representa-
tion of the final document can contain more useful
information. Existing methods have fully exploited
the local information of text, and our model takes
the global information of text into consideration by
combining the hierarchical structure of text.

By converting the graph into a coding tree, the
data structure becomes simpler, and the hierarchi-
cal information and main features of the graph are
retained in the coding tree. In HINT, the node
feature vector is aggregated in one direction ow-
ing to the hierarchical structure of the coding tree,
which suggests that our learning model is simple
and its convergence is strong. We take the coding
trees T = (T1, T2, . . . , Tn) and their feature ma-
trices as inputs. Each word is represented by the
GloVe (Pennington et al., 2014) vector and one-hot
position encoding vector, and we concatenate these

two vectors as feature matrix F . The representation
of the entire graph can be obtained from Equation 6,
and then the predicted label of the original text is
computed as:

yi = softmax(WxTi + b), (7)

where Ti ∈ T, xTi is the representation of coding
tree Ti; and W and b are the weight and bias, re-
spectively. The goal of training is to minimize the
cross-entropy between the ground truth label and
predicted label:

loss = −
∑

i

gi log(yi), (8)

where gi is the one-hot vector of the ground truth
label.

4 Experiments

In this section, we evaluate the effectiveness of
HINT1 and report the experimental results.

Datasets. We utilize datasets including R8, R52,
MR, and Ohsumed. R8 and R52 are subsets of
the Reuters 21578 dataset. MR is a movie review
dataset used for sentiment classification in which
each review is a single sentence. The Ohsumed
corpus, which is designed for multilabel classifica-
tion, is from the MEDLINE database. In this pa-
per, we only use single-label data like other GNN-
based text classification models (Yao et al., 2019;
Huang et al., 2019). We employ StanfordNLP (Qi
et al., 2018) to build the dependency graphs for all
datasets. The statistics of our datasets are summa-
rized in Table 1.

Datasets # Training # Test Categories Avg. Length
MR 7108 3554 2 20.39
Ohsumed 3357 4043 23 193.79
R52 6532 2568 52 106.29
R8 5485 2189 8 98.87

Table 1: Summary statistics of datasets.

Baselines. In this paper, we aim to address the
utilization of hierarchical information in text clas-
sification with GNNs; thus, besides a bunch of
popular baselines, we mainly select the compari-
son methods based on GNNs. We divide the base-
line models into three categories: (i) traditional
deep learning methods, including the CNN and

1The code of HINT can be found at https://github.
com/Daisean/HINT.
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Model MR R8 R52 Ohsumed
CNN(Non-static) 77.75± 0.72 95.71± 0.52 87.59± 0.48 58.44± 1.06
RNN(Bi-LSTM) 77.68± 0.86 96.31± 0.33 90.54± 0.91 49.27± 1.07
fastText 75.14± 0.20 96.13± 0.21 92.81± 0.09 57.70± 0.49
SWEM 76.65± 0.63 95.32± 0.26 92.94± 0.24 63.12± 0.55
TextGCN 76.74± 0.20 97.07± 0.10 93.56± 0.18 68.36± 0.56
Huang et al. (2019) - 97.80± 0.20 94.60± 0.30 69.40± 0.60
S2GC 76.70± 0.00 97.40± 0.10 94.50± 0.20 68.50± 0.10
HINT 77.03± 0.12 98.12± 0.09 95.02± 0.18 68.79± 0.12

Table 2: Test accuracy(%) of models on text classification datasets. The average standard deviation of our model is
reported based on ten runs.

LSTM; (ii) word embedding methods, including
fastText (Joulin et al., 2017) and SWEM (Shen
et al., 2018); and (iii) graph-based methods for
text classification, including the spectral approach-
based TextGCN , S2GC (Zhu and Koniusz, 2021),
and nonspectral method-based (Huang et al., 2019).

Settings. We randomly divide the training set
into the training set and the validation set at a ratio
of 9:1. We use the Adam optimizer with an initial
learning rate of 10−3 and set the dropout rate to
0.5. The height of the coding tree is between 2
and 12. We set the sum or average function as the
initial function of Pool in Equation 6. For word
embedding, we use pretrained GloVe with the di-
mension of 300, and the out-of-vocabulary (OOV)
words are randomly initialized from the uniform
distribution [-0.01, 0.01]. For each position, we set
this position in the vector to 1 and the rest to 0 to
get the position encoding vector. We concatenate
the GloVe vector and position encoding vector as
the initial representation of graph nodes.

4.1 Experimental Results

Table 2 presents the performance of our model and
baselines. Graph network-based methods generally
outperform other types of methods because of the
inclusion of structural information. We can observe
that the performance of our model is generally bet-
ter than those of other graph network-based meth-
ods. Traditional deep learning methods (CNN and
RNN) perform well on MR dataset with relatively
short text lengths but are not as good at processing
long text. The word embedding-based methods
(fastText and SWEM) use word embedding with
contextual information and perform better on the
R52 and Ohsumed datasets than traditional deep
learning methods.

TextGCN is the first method to apply a graph neu-

ral network method in text classification. TextGCN
learns the representation of nodes through corpus-
level co-occurrence graphs. Huang et al. (2019)
uses the co-occurrence window and message pass-
ing mechanism to learn the representation of nodes.
S2GC is an extension of the Markov Diffusion Ker-
nel used to make the information aggregation in
graphs more efficient. The graph learning methods
enable each node to learn a better representation
by using the information of its farther neighbors
and accordingly performs well on all datasets. The
HINT model encodes the graph and extracts the key
structure through the structure entropy minimiza-
tion algorithm, and learns on the coding tree to use
the hierarchical information to update the node rep-
resentation. The representations of non-leaf nodes
in the coding tree are obtained by a facile method
of layer-by-layer updating from the leaf nodes of
the coding tree to the root node. The results show
that HINT performs better on the MR, R8, and
R52 datasets than other graph-based methods and
achieves competitive performance on the Ohsumed
dataset. Notably, HINT does not have a compli-
cated structure and numerous parameters, but it
still generally outperforms other baselines. Next,
we will further analyze the height of the coding
tree, the coding tree construction algorithm, the
comparison with the state-of-the-art methods and
the efficiency of the model.

4.2 Height of the coding tree

The height of the coding tree plays an important
role in HINT. Different height coding trees reflect
divergent hierarchical information, and the utiliza-
tion of leaf node information is also disparate. Fig-
ure 3 shows the test performance of different height
coding trees on the 4 datasets. For datasets with
different average lengths, the optimal height of the

955



� � � �

����

����

����

����

����

����

	
��
��
��
�

(a) MR

� � � � � �
������

��	��

��	��

��	��

��	��




��
��
�

(b) R8

� � � � � �

����

�����

�����

�����

�����

	
��
��
��
�

(c) R52

� � � � � � 	 
 �� �� ��
������

����

����

����

�
��
��
�
�

(d) Ohsumed

Figure 3: The influence of height on the performance of
the model on 4 datasets.

coding tree is different. Longer texts have more
complex structural information, so a higher coding
tree is needed to retain this information. In text rep-
resentation learning, a deeper level is also needed
to utilize hierarchical information. For the MR
dataset, a height of 2 is the best. For the Ohsumed
dataset with an average length of nearly 200, the
best performance occurs when the height is 11.
Therefore, an appropriate height will improve the
quality of the representations and make better use
of the original text and hierarchical information.

4.3 Validity of coding tree construction
algorithm

In this subsection, we compare different coding
tree construction methods to illustrate the effective-
ness of the coding tree construction algorithm. For
a tree of height h, we take all nodes of the text
dependency analysis graph as leaf nodes of the tree.
For each layer of the coding tree, we randomly se-
lect two nodes, use a new node as their parent node,
and connect all nodes in the h− 1th layer to a root
node (RT). The results are shown in Table 3.

Model MR R8 R52 Ohsumed
HINT(RT) 75.85 95.84 85.86 14.84
HINT 77.03 98.12 95.02 68.79

Table 3: Test accuracy(%) of models on text classifi-
cation datasets with different coding tree construction
method. For both construction methods, we use trees of
the same height on the same dataset

The results point out that constructing a coding
tree by randomly selecting nodes has a negative ef-

fect on the model. The difference between the two
methods is small on the data set with the shortest
average length, but becomes more pronounced as
the data set becomes more complex, especially in
the Ohsumed dataset. Random selection of nodes
destroys the original semantic information, so it
is difficult for the model to learn useful features.
The coding tree constructed by the minimization
structure entropy algorithm can retain the key in-
formation in the graph and abstract the hierarchical
information of the text. The results demonstrate
the effectiveness of minimizing structural entropy
for text graphs.

4.4 Comparison with state-of-the-art method

With the development of pre-trained language mod-
els (PLMs), graph methods based on PLMs have
also been applied to text classification tasks. Bert-
GCN(Lin et al., 2021) achieves state-of-the-art per-
formance by combining BERT(Devlin et al., 2019)
with GCN(Kipf and Welling, 2017). For a fair com-
parison, we employ the BERT model (BERTbase)
trained in BertGCN, freeze its parameters and input
the text into BERT to get the initial node represen-
tation. Other experimental settings are consistent
with BertGCN. Moreover, because BERT word em-
beddings contain positional information, we use the
text co-occurrence graph like Huang et al. (2019).
The result is shown in Table 4.

Model MR R8 R52 Ohsumed
BERT 85.7 97.8 96.4 70.5
BertGCN 86.0 98.1 96.6 72.8
HINT(BERT) 86.4 98.1 96.8 71.2

Table 4: Test accuracy(%) of models on text classifica-
tion datasets with different position encodings.

The results point out that our model outperforms
BertGCN on three out of four benchmarks. Be-
cause of BertGCN’s settings, we truncate some
long texts during preprocessing. Our model can
decode the hierarchical information of the whole
text, but the operation of truncating the text affects
the integrity of the text. Ohsumed suffers the most
as the dataset with the longest average length, yet
we achieve competitive performance nonetheless.
BertGCN is based on BERT and GCN, which pay
more attention to local information, so incomplete
text does not affect performance. On the remain-
ing three datasets with occasional truncation, our
model obtains outperformance, indicating that our
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model can decode hierarchical information and fo-
cus on global features, further demonstrating the
positive effect of hierarchical information on text
classification tasks.

In general, our model achieves superior perfor-
mance. With the more informative BERT word
embeddings, HINT propagates the information in
a bottom-up manner and obtains a better text rep-
resentation. In the light of the accuracies achieved
with BERT, our method shows excellent collabo-
ration ability with large-scale pre-trained language
models.

4.5 The Efficiency of HINT
In the graph-based baseline models, the computa-
tional complexity of TextGCN, S2GC and Huang
et al. (2019) is O(hm), where h is the number
of diffusion steps and m is the number of edges.
The computational complexity of learning model
in HINT is O(n), where n is the number of nodes,
which is much smaller than that of graph-based
baseline models. In addition, we also compare
the parameters and floating-point operations per
second (FLOPs) of the models. Since S2GC
and Huang et al. (2019) do not have a complete
model code implementation, we only compare the
proposed model with TextGCN. Figure 4 shows
the comparison of the parameters of HINT and
TextGCN. We set the height of the coding tree
∈ [2, 12] and use 2 as the step size and then run
HINT and TextGCN on the same dataset. We can
observe that the parameters of HINT gradually in-
crease as the height increases, but the model with
the most parameters is still dozens of times smaller
than TextGCN.
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Figure 4: Comparison of the parameters of HINT and
TextGCN on the Ohsumed dataset.

Moreover, we further compare the number of

FLOPs of HINT and TextGCN on the same param-
eter settings. We set the hidden size of HINT to 96
and the batch size to 4. We calculate the FLOPs of
the HINT and TextGCN models on four datasets.
The results are shown in Figure 5. We can see that
the calculation amount of HINT is also less than
that of TextGCN. The performance of our model is
not only better than those of other models, but the
numbers of parameters and calculations are also
very small, which further proves that our model is
simple and effective.
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Figure 5: Comparison of the FLOPs of HINT and
TextGCN.

For text classification or other NLP tasks, in-
creasing the complexity of the neural network
model and the number of network parameters can
often achieve better performance. Therefore, the
problem is that the development of NLP tasks
highly depends on computing power. Our model
achieves the improvement of model performance
while reducing the complexity of the model. HINT
makes the extraction of features not completely de-
pendent on the deep learning network and greatly
reduces the requirements for the computing power
of the neural network.

5 Conclusion

In this paper, we proposed a novel method to ad-
dress the limitation of previous works in text hi-
erarchical information utilization. We build a de-
pendency parsing graph for each text and construct
a coding tree for each graph by structural entropy
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minimization algorithm. Our model uses the hier-
archy of the coding tree to learn the representation
of each text. Experimental results demonstrate the
ability of HINT to decode hierarchical information
in text and show the positive effect of hierarchical
information on text classification tasks. Our model
achieves state-of-the-art performance with a simple
structure and few parameters.
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Abstract

The conventional success of textual classi-
fication relies on annotated data, and the
new paradigm of pre-trained language mod-
els (PLMs) still requires a few labeled data
for downstream tasks. However, in real-world
applications, label noise inevitably exists in
training data, damaging the effectiveness, ro-
bustness, and generalization of the models con-
structed on such data. Recently, remarkable
achievements have been made to mitigate this
dilemma in visual data, while only a few ex-
plore textual data. To fill this gap, we present
SelfMix, a simple yet effective method, to han-
dle label noise in text classification tasks. Self-
Mix uses the Gaussian Mixture Model to sep-
arate samples and leverages semi-supervised
learning. Unlike previous works requiring mul-
tiple models, our method utilizes the dropout
mechanism on a single model to reduce the con-
firmation bias in self-training and introduces
a textual level mixup training strategy. Ex-
perimental results on three text classification
benchmarks with different types of text show
that the performance of our proposed method
outperforms these strong baselines designed
for both textual and visual data under differ-
ent noise ratios and noise types. Our anony-
mous code is available at https://github.
com/noise-learning/SelfMix.

1 Introduction

The excellent performance of deep neural net-
works (DNNs) depends on data with high-quality
annotations. However, data obtained from the real
world is inevitably mixed with wrong labels (Guan
et al., 2018; Aït-Sahalia et al., 2010; Liu et al.,
2020b). Models trained on these noisy datasets
would easily overfit the noisy labels (Algan and
Ulusoy, 2020; Liu et al., 2020a), especially for pre-
trained large models (Zhang and Li, 2021), and the
performance will be negatively affected.

Research on learning with noisy labels (LNL)
has gained popularity. Previous work has revealed

that clean samples and noisy samples play differ-
ent roles in the training process and behave differ-
ently in terms of loss values or convergence speeds
etc. (Liu et al., 2020a). Different types of noise
have different effects on the training. For instance,
the impact of class-conditional noise (CCN) can
simulate the confusion between similar classes, and
the effect of instance-dependent noise (IDN) can
be more complex.

Most of the current methods perform experi-
ments on visual data. Label noise on visual data
often goes against objective facts and is easy to dis-
tinguish. As for NLP, there may be disagreement
even among expert annotators due to the complex-
ity of semantic features and the subjectivity of lan-
guage understanding. For example, suppose there
is a piece of news about “The Economic Benefit of
Competitive Sports to our Cities”. In that case, it is
hard to tell whether it belongs to Economic news or
Sports news without fully understanding the con-
textual information. Although a few works pay at-
tention to the natural language area, their methods
are mostly based on the trained-from-scratch mod-
els like LSTM and Text-CNN (Garg et al., 2021;
Jindal et al., 2019). However, PLMs might be a
better choice since the whole training process can
be divided into two stages, and the wrong labels
do not corrupt the pre-training process. Table 2
makes comparisons between PLMs and traditional
networks on the robustness against label noise.

In conclusion, it is vital to explore how to learn
with noisy labels on textual data and use the robust
PLMs as the base model. This paper proposes Self-
Mix, i.e., a self-distillation robust training method
based on the pre-trained models. Section 2 intro-
duces some related works and explains the motiva-
tion of our proposed method.

Our contributions can be concluded as follows:

• We propose SelfMix, a simple yet effective
method to help learn with noisy labels, which
utilizes a self-training approach. Our method

960



only needs a single model and utilizes a mixup
training strategy based on the aggregated rep-
resentation from pre-trained models.

• We perform comprehensive experiments on
three different types of text classification
benchmarks under various noise settings, in-
cluding the challenging instance-dependent
noise, which is usually ignored in other works
on textual data, which demonstrate the supe-
riority of our proposed method over strong
baselines.

2 Related Work

Learning with Noisy Labels. A direct yet effec-
tive idea to handle label noise is to find the noisy
samples and reduce their influence by resampling
or reweighting (Rolnick et al., 2017). Jiang et al.
(2018) train another neural network to provide a
curriculum to help StudentNet focus on the samples
whose labels is probably correct. Han et al. (2018)
jointly train two deep neural networks and feed
each model the top r% samples with the lowest loss
evaluated by the other model in each mini-batch.
Following Han et al. (2018), Yu et al. (2019) ex-
plore how disagreement can help the model. Some
researchers believe that there exists a transition
from ground-truth label distribution to the noisy
label distribution and estimate the noise transition
matrix to absorb this transition (Goldberger and
Ben-Reuven, 2016). Northcutt et al. (2021) directly
estimate the joint distribution matrix between the
noisy labels and real labels. Garg et al. (2021) use
a fully connected layer to capture the distribution
transition. However, most of these methods either
need model ensembling or require cross-validation,
which is time-consuming and needs multiple pa-
rameters.

Some other works focus on designing a more
robust training strategy. Since DNNs with Cross-
Entropy loss tend to overfit noisy labels (Feng et al.,
2021), some researchers redesign noise-robust loss
functions (Wang et al., 2019b; Zhang and Sabuncu,
2018; Ghosh et al., 2017; Xu et al., 2019). When
trained on noisy data, DNNs tend to learn from the
clean data during an “early learning” phase before
eventually memorizing the wrong data (Arpit et al.,
2017; Zhang et al., 2021), based on which Liu
et al. (2020a) offer an easy regularization capitaliz-
ing on early learning. Some other works like Xia
et al. (2020) find that only partial parameters are
essential for generalization, which offers us a new

perspective to reconsider what difference exactly
the noisy labels make to the model’s learning. This
kind of approach treats all samples indiscriminately
thus the performance is sometimes unsatisfactory
under a high noise ratio.

Some excellent work combines these two ideas
(Ding et al., 2018; Li et al., 2020). Garg et al.
(2021) add an auxiliary noise model NM over the
classifier to predict noisy labels and jointly train the
classifier and the noise model through a de-noising
loss function. Cheng et al. (2021) progressively
sieve out corrupted examples and then leverage
semi-supervised learning.

Mixup Training. Mixup training (Zhang et al.,
2018) is a widely used data-augmentation method
to alleviate memorization and sensitivity to adver-
sarial samples on visual data. It combines the in-
puts and targets of two random training samples to
generate augmented samples. However, applying
mixup on textual data is a great challenge since lin-
ear interpolations on discrete inputs damage the se-
mantic structure. Some literature has explored the
textual mixup mechanism like: Chen et al. (2020)
propose to mix the hidden vector in the last few
encoder layers; Yoon et al. (2021) find a new way
to combine two texts which can also be treated as
a data augmentation strategy. In this paper, we do
not make comparisons for the following reasons:
(1) Our EmbMix is simpler in practical use and
there is little difference in the final performance of
various methods according to Chen et al. (2020).
(2) Some other methods need data augmentation
while EmbMix does not.

Proposed Method. Since simply redesigning a
robust loss function tends to have poor performance
under a high noise ratio, we combine sample selec-
tion with the robust training methods. Unlike the
previous work that needs model ensembling or uses
cross-validation, we train a single network with
dropout to reduce confirmation bias in self-training.
We make following improvements regarding to the
characteristics of the textual data: (1) The decision
boundaries in image-classification tasks are more
clear. However, the main idea of the same text can
vary under different contexts and sometimes there
is even no absolute correct label. So we iteratively
use the Gaussian Mixture Model (GMM) to fit the
loss distribution and use the predicted soft label
to replace the label of the fusing data rather than
setting a threshold and arbitrarily discarding the
undesired samples at the beginning. (2) Unlike
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the pixel input of visual data, the input of text is
discrete. So for the separated data, we leverage
a manifold mixup training strategy based on the
aggregated representation from the PLMs.

3 Methodology

Figure 1: The overall framework of SelfMix

Figure 1 shows an overview of our proposed Self-
Mix. Our method first uses GMM to select the sam-
ples that are more likely to be wrong and erase their
original labels. Then we leverage semi-supervised
learning to jointly train the labeled set X (contains
mostly clean samples) and an unlabeled set U (con-
tains mostly noisy samples). We also introduce a
manifold mixup strategy based on the hidden rep-
resentation of the [CLS] token named EmbMix.

3.1 Preliminary
In real-world data collection, the observed labels
are often corrupted. So the only difference between
this task and the traditional text classification task
is that a certain proportion of incorrect labels exist
in training samples. Let D = {(xi, yi)}Ni=1 denote
the original dataset, where N is the number of sam-
ples, xi is the text of the ith sample, and yi is the
one-hot representation of the observed label of the
ith sample. For the base model, we denote θ as the
parameters of the pre-trained encoder model and
ϕ as the parameters of MLP classifier head with
2 fully connected layers. The standard optimiza-
tion method tries to minimize the empirical risk by
applying the cross-entropy loss:

L = {ℓi}Ni=1 =
{
−yTi log (p (xi; θ, ϕ))

}N
i=1

, (1)

where p (x; θ) denotes the softmax probability of
the model output. We first warm up the model
using L to make it capable of doing preliminary
classification tasks without overfitting noisy labels
and then perform SelfMix for the rest epochs.

3.2 Sample Selection
On noisy data, Deep neural networks will preferen-
tially learn simple and logical samples first and re-

duce their loss. Namely, noisy samples tend to have
a higher loss in the early stage (Zhang et al., 2021).
Preliminary experiments show that the loss distri-
butions of clean and noisy samples during train-
ing tend to subject to two Gaussian Distributions,
where the loss of the clean samples hold a smaller
mean value. Taking advantage of such training
phenomena, we apply the popular used Gaussian
Mixture Model (Arazo et al., 2019) to distinguish
noisy samples by feeding the per-sample loss. For
IDN, noisy labels rely on both input features and
underlying true labels, so the noise in each class
is different, making the loss scales from different
classes vary greatly. The relatively high-loss sam-
ples in low-loss class may also be treated as clean
samples. So we compute a class-regularization loss
instead of the standard cross-entropy loss, which
can better model the distributions in IDN. For each
class c, the set Lc = {ℓi | yi = c, i ∈ [N ]} con-
tains the cross-entropy loss values of all samples
with label c, then µc and σc denote the arithmetic
mean and standard deviation of Lc respectively.
Our regularization loss has the following form:

L′ =
{
ℓ′i
}N
i=1

= {(ℓi − µyi)/σyi}Ni=1 . (2)

We feed the loss L (L′ for IDN) to a 2-component
GMM and use Expectation-Maximization (EM)
algorithms to fit the GMM to the observations. Let
wi = p(g|ℓ′i) represent the probability of the ith

sample belonging to the Gaussian component with
smaller mean g, which can also be considered as the
clean probability due to the small-loss theory (Arpit
et al., 2017). By setting the threshold τ for the
probability wi, we can divide the original dataset
D into a labeled set X and an unlabeled set U
where the labels of samples that are more likely to
be wrong will be erased:

X = {(xi, yi) | xi ∈ D, wi ≥ τ} ,
U = {(xi) | xi ∈ D, wi < τ} . (3)

3.3 Semi-supervised Self-training

To make semi-supervised learning work better, we
first do pre-process on the unlabeled set. For the
unlabeled set U , the original label is most likely
wrong and has been discarded. Therefore, we gen-
erate the soft label ŷ by sharpening the model’s pre-
dicted distribution, making the distribution more
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concentrated (Zoph et al., 2020).

ŷ = Sharpen (p (x; θ, ϕ)) , (4)

Û = {(xi, ŷi) | xi ∈ U} , (5)

D̂ = X ∪ Û . (6)

Here Sharpen (·) is the temperature sharpening
function commonly used in self-training. D̂ con-
tains the clean samples with original labels and
noisy samples with predicted soft labels.

Textual Mixup based on EmbMix. Mixup
training strategy is widely used in semi-supervised
learning and noise-robust training (Zhang et al.,
2018). It applies linear interpolation to the input
vectors and associated targets. Although image
data can be mixed on the pixel level, mixing the
discrete word index makes no sense for text classi-
fication. Considering that the [CLS] embedding
encoded by PLMs has the ability of semantic rep-
resentations, we attempt to apply interpolations
on the [CLS] embedding. Specifically, randomly
choose two samples (xi, yi), (xj , yj) and the mixed
sample (e′i, y

′
i) is defined as:

λ ∼ Beta(α, α), (7)

λ′ = max(λ, 1− λ), (8)

ek = Encoder (xk; θ) , (9)

e′i = λ′ei +
(
1− λ′

)
ej , (10)

y′i = λ′yi +
(
1− λ′

)
yj , (11)

where Encoder (x; θ) denotes the sentence [CLS]
embeddings obtained by pre-trained models.

Finally, the EmbMix method for dataset D̂ is as
follows:

D̃ =
{(
e′i, y

′
i

)
| (xi, yi) , (xj , yj) ∈ D̂

}
, (12)

where (e′i, y
′
i) is computed by eq.(7-11).

3.4 Loss Function
Mix-Loss. Given our augmented dataset D̃ ob-
tained by EmbMix, we use the standard cross-
entropy loss for semi-supervised learning:

LMIX = − 1

| D̃ |
∑

(e,y)∈D̃
yT log (p (e;ϕ)) . (13)

Here p(e;ϕ) denotes the predicted probability of
the mixed target using the mixed hidden represen-
tation e as the input.

Pseudo-Loss. According to the Low-density
Separation Assumption theory, the decision bound-
ary of a classifier should preferably pass through

low-density regions in the input space (Chapelle
and Zien, 2005). To achieve this, we add a spe-
cial regularization on the unlabeled set to penalize
those samples whose output probability value of
the predicted class is small:

ỹi = argmax(p (xi; θ, ϕ)) , (14)

LP = − 1

| U |
∑

xi∈U
ỹilog(p (xi; θ, ϕ)) . (15)

Here p(xi; θ, ϕ) denotes the model’s prediction of
sample xi, and ỹ denotes the one-hot representa-
tion of the pseudo-label that the model predicts.
Preliminary experiments show that pseudo-loss reg-
ularization is more effective than a simple entropy-
minimization.

Self-consistency Regularization. It is worth
mentioning that confirmation bias caused by error
accumulation is common in self-training. Model
ensembling is a widely used method to handle this.
Dropout (Srivastava et al., 2014) mechanism can be
seen as an implicit sub-models ensembling. So we
use dropout when training the network and close
dropout when making sample selection or infer-
ence. Label noise under a high noise ratio setting
blurs the decision boundaries between classes, lead-
ing to a severe inconsistency between sub-models.
So we add R-Drop (Liang et al., 2021) loss, a sim-
ple but effective dropout regularization method to
constrain the consistency of these sub-models:

LR =
∑

x∈U

1

2
(DKL (p1 (x; θ, ϕ) || p2 (x; θ, ϕ))

+DKL (p2 (x; θ, ϕ) || p1 (x; θ, ϕ))),
(16)

where p1(x; θ, ϕ) and p2(x; θ, ϕ) are two predicted
distributions obtained by feeding the same sample
twice, DKL (a||b) computes the Kullback-Leibler
divergence between two probability distributions.

Finally, the total loss for SelfMix is:

L = LMIX + λpLP + λrLR, (17)

where λp and λr are the hyper-parameters to con-
trol the weight of the extra loss.

4 Experiments

4.1 Settings
Datasets and Noise Settings. We do experiments
on three text classification benchmarks of differ-
ent types, including Trec (Li and Roth, 2002),
AG-News (Gulli, 2005), and IMDB (Maas et al.,
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Name Class Type Train Test

Trec 6 Question-Type 5452 500
IMDB 2 Sentiment Analysis 45K 5K
AG-News 4 News Categorization 120K 7.6K

Table 1: The statistics of datasets.

Dataset Trec AG-News
Rand (%) 0 20 40 0 20 40
BERT 97.04 95.75 94.07 94.03 93.19 92.51

Asym (%) 0 20 40 0 20 40
Text-CNN 93.48 88.36 70.52 90.83 88.95 76.69
LSTM 92.58 90.68 83.96 91.92 90.20 88.62
BERT 97.04 95.52 89.04 94.03 93.38 91.59
RoBERTa 96.92 96.32 92.12 94.10 93.91 92.74

Table 2: Preliminary experiments (%) for different base
models under symmetric and asymmetric noise.

2011) (Table 1). In the preliminary experiments,
we find that PLMs are robust to random noise on
textual data (Table 2). The test accuracy drops by
only 3% even under 40% random noise, which may
benefit from the powerful pre-trained knowledge.
So we evaluate our strategy under the following
two types of label noise:

• Asymmetric noise (Asym): Asymmetric noise
tries to simulate the mislabeling between
classes. For a given class, we follow Chen
et al. (2019) and choose a certain proportion
of samples and flip their labels to the corre-
sponding class according to the asymmetric
noise transition matrix.

• Instance-dependent noise (IDN): The proba-
bility of being mislabeled depends on the fea-
ture of instances. So we use the other trained
model as the feature extractor. The labels of
the samples that are closest to decision bound-
aries are flipped to their counter class as noisy
labels (Algan and Ulusoy, 2020), which is
more challenging and quite realistic.

Model Architectures. Most related works per-
form experiments based on trained-from-scratch
models, while PLMs have been shown to have great
potential for all kinds of language tasks. Thus we
conduct experiments on different models to eval-
uate their robustness against label noise. Table 2
shows that the pre-trained model is more robust
than traditional networks when dealing with label
noise in text classification. Thus, we choose the
representative BERT for further research and ver-

ify the generalization of SelfMix across different
PLMs in Section 5.

4.2 Baselines
We compare SelfMix with the following baselines:
(1) BERT, which trains the model with the cross-
entropy loss without any denoising strategy; (2) Co-
Teaching (Han et al., 2018), which trains two mod-
els simultaneously and lets each model sample
small-loss instances to teach the other model for
further training; (3) Co-Teaching+ (Yu et al., 2019),
which updates on disagreement data on the basis
of the original Co-teaching; (4) SCE (Wang et al.,
2019b), which boosts Cross Entropy symmetrically
with Reverse Cross Entropy (RCE) for robust learn-
ing; (5) ELR (Liu et al., 2020a), which designs
a regularization term to prevent memorization of
the false labels; (6) Confident-Learning (Northcutt
et al., 2021), which estimates noise distribution by
cross-validation and then trains a new model on
clean data; (7) NM-Net (Garg et al., 2021) is one
of the few representative works which jointly train
a classifier and a noise model using a denoising
loss; (8) CORES2∗ (Cheng et al., 2021) is a method
for instance-dependent label noise, which progres-
sively sieves out corrupted examples with a confi-
dence regularization and applies semi-supervised
learning for consistency training. We implement
them based on the standard BERT Encoder (Devlin
et al., 2019) with reference to their public code and
make comparisons under the same setting.

4.3 Implementation Details
There are three hyper-parameters to tune in Self-
Mix (the hyper-parameters of BERT are set as de-
fault and remain unchanged), the threshold τ for
GMM to divide the data, and the weights λp, λr for
two special loss functions. We choose 0.5 as the
threshold τ and keep it the same under different
settings. (λp, λr) is demonstrated right besides the
name of datasets in Table 3-4. The performance
can be more satisfactory if we specify the (λp, λr)
for each setting. However, it is unfair to the meth-
ods that use few hyper-parameters, so we try to
keep them the same. Other settings like learning
rate (10−5), optimizer (Adam), and batch size (32)
keep the same for all the methods and tasks. For
SelfMix, we warm up the model for 2 epochs under
asymmetric noise and 5000 samples under instance-
dependent noise. Considering that the training data
is noisy, we report the test accuracy of the best and
last epochs over all 6 epochs rather than setting a
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Dataset / (λp, λr) Trec (0.2, 0.3) AG-News (0.2, 0.3) IMDB (0.1, 0.5)

Data Size 5,453 (All) 5,000 120,000 (All) 5,000 45,000 (All)

Noise Ratio (%) 20 40 20 40 20 40 20 40 20 40

BERT
best 95.52 89.04 89.55 80.90 93.38 91.59 88.51 80.81 92.67 87.70
last 93.48 69.88 84.40 62.33 90.32 74.04 81.20 63.55 87.40 61.82

BERT+Co-Teaching
best 95.96 92.76 89.70 87.24 93.43 92.03 88.81 84.39 92.94 88.45
last 95.32 90.08 88.77 82.53 93.01 85.03 88.24 82.68 91.68 84.43

BERT+Co-Teaching+
best 96.37 91.14 89.45 85.81 92.93 90.96 88.57 81.75 92.71 87.94
last 95.98 87.24 89.12 79.82 92.87 90.41 88.33 81.23 92.69 87.07

BERT+SCE
best 94.72 91.28 89.62 86.72 93.13 90.78 88.76 82.65 92.82 87.32
last 94.04 82.44 89.43 74.37 93.03 87.34 87.74 74.38 92.77 82.52

BERT+ELR
best 96.08 92.16 89.88 85.43 93.63 92.00 88.70 82.45 93.13 87.62
last 95.40 88.28 89.47 81.24 93.30 90.67 87.76 72.71 92.50 79.54

BERT+Confident-Learning
best 95.92 91.80 89.83 84.77 93.57 91.96 89.05 81.65 92.66 87.13
last 95.36 88.64 89.27 78.48 93.38 89.97 88.62 77.93 92.52 83.39

BERT+NM-Net
best 96.00 90.92 89.35 81.35 93.54 92.09 88.70 81.21 92.93 88.47
last 94.84 79.76 85.41 63.26 93.47 84.55 88.41 74.62 92.28 86.60

BERT+SelfMix
best 96.32 94.12 89.90 88.80 93.39 92.79 89.20 86.38 93.30 90.19
last 96.04 93.80 89.79 88.63 93.04 92.40 88.84 86.38 92.86 90.12

Table 3: Average test accuracy (%) of five runs on the Trec, AG-News, and IMDB datasets with different data
sizes under different ratios of asymmetric noise. The results with outstanding improvement over the base model
are bolded, and underline values indicate the statistically significantly better (by paired bootstrap test, p < 0.05)
performances than BERT.

clean validation set. And this is a commonly used
metric in other related works. All the results are
the average of five runs. Our noise generation code
and more details can be found in our public code.

4.4 Main Results

Asymmetric Noise. The effect of asymmetric
noise is relatively small when data is sufficient
due to the excellent performance of PLMs. So we
cut the datasets into a small size of 5000 for more
precise comparison of the models’ performance.
Table 3 shows the results on three datasets under
asymmetric noise. CORES2∗ is designed to handle
IDN, so we show its performance in Table 4. Our
proposed SelfMix outperforms the strong baselines
in almost every setting. Most models’ performance
drops steeply under a high noise ratio and data-
insufficiency setting. However, SelfMix still holds
a remarkable performance over this challenging
scenario. SelfMix does not achieve the best result
under 20% label noise on AG-News, but it is ex-
cusable since the base model already holds a good
performance and there is not much difference be-
tween SelfMix and the best result.

Instance-dependent Noise. IDN is more close
to real-world noise. Following Algan and Ulusoy
(2020), we train an LSTM classifier on a small
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Figure 2: The generated instance-dependent label noise
distribution on AG-News, where the abscissa is the true
label, and the ordinate is the observed label.

set of the original training data and flip the ori-
gin labels to the class with the highest prediction
probability among other classes. Trec dataset has
only 5452 training samples and is extremely class-
imbalance. So the number of clean samples may
even be less than generated noisy samples in the
long-tailed class under a high noise ratio, which
makes the classification no sense. Therefore, we
only do experiments on IMDB and AG-News, and
Figure 2 shows noise transition on AG-News. Ta-
ble 4 presents the experimental results on IDN.
Some of the methods do not work properly since
they were not designed for IDN and did not con-
sider the discrepancy of loss distributions between
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Dataset / (λp, λr) AG-News (0.0, 0.3) IMDB (0.0, 0.3)

Noise Ratio (%) 10 20 30 40 10 20 30 40

BERT
best 88.24 83.67 77.61 72.73 90.44 83.07 79.52 76.59
last 87.76 82.28 74.80 69.04 90.43 80.26 70.43 60.59

BERT+Co-Teaching
best 88.62 84.63 78.40 73.14 90.00 83.64 79.70 76.09
last 87.74 83.87 77.01 70.58 89.71 83.01 76.50 69.07

BERT+Co-Teaching+
best 88.72 84.62 80.75 78.94 89.92 85.65 82.72 80.23
last 88.33 83.64 77.70 74.72 89.20 84.45 79.13 75.20

BERT+SCE
best 88.43 84.09 78.81 73.11 90.23 84.30 80.60 75.76
last 87.86 83.55 76.49 69.09 90.04 82.59 75.46 67.94

BERT+ELR
best 88.45 83.41 77.77 72.97 90.60 83.44 79.29 76.10
last 88.05 82.25 75.26 69.12 90.44 80.91 71.81 63.04

BERT+Confident-Learning
best 88.52 83.70 77.49 71.58 90.09 83.45 79.34 74.14
last 88.20 83.23 75.97 70.62 89.98 82.12 75.76 69.05

BERT+NM-Net
best 88.25 83.19 76.60 72.31 90.05 83.28 79.54 75.85
last 87.92 82.89 75.49 69.91 89.83 81.79 74.44 69.37

BERT+CORES2∗ best 87.98 84.45 81.12 78.20 89.99 83.35 79.62 76.20
last 86.76 82.79 78.67 75.39 73.39 62.90 55.47 58.16

BERT+SelfMix
best 88.45 86.82 86.72 83.99 90.31 85.49 84.38 82.76
last 87.64 85.96 86.38 83.67 86.70 84.14 83.18 78.94

Table 4: Average test accuracy (%) of five runs on the AG-News and IMDB datasets under different ratios of
instance-dependent noise. The results with outstanding improvement over the base model are bolded, and underline
values indicate the statistically significantly better (by paired bootstrap test, p < 0.05) performances across the
board.

Dataset Trec AG-News IMDB

SelfMix w/o LP
best 89.40 87.57 89.55
last 85.04 83.21 87.40

SelfMix w/o LR
best 91.56 89.66 85.54
last 88.28 87.73 75.98

SelfMix w/o mixup
best 91.52 89.51 88.23
last 87.04 84.82 86.17

SelfMix
best 94.12 92.79 90.19
last 93.80 92.40 90.12

Table 5: Ablation study results (%) on Trec, AG-News
and IMDB under 40% asymmetric label noise.

different classes. However, our proposed class-
regularization loss can still make the samples dis-
tinguishable and SelfMix outperforms the strong
baselines in most circumstances.

5 Analysis and Discussion

To make a more comprehensive analysis of our pro-
posed strategies, we offer fine-grained experiments
and visualization to answer the following research
questions (RQs): (1) Can GMM actually distin-
guish the noisy samples on textual data? (2) How
well can SeflMix help prevent the model from over-
fitting the noisy labels? (3) SelfMix utilizes more

than one component. Does each of them contribute
to the final performance? (4) Can SelfMix be ap-
plied to other pre-trained models except BERT? (5)
Noise and outliers both might have higher loss in
early stages. While examples with noisy labels are
useless or detrimental while training, how do we
make sure with GMMs we don’t filter out outliers
in this approach?

Answer 1: We demonstrate the loss distributions
of the clean samples and noisy samples on IMDB
under 40% asymmetric noise in Figure 3 (a-c) and
IDN in Figure 3 (e-g). Consistent with Liu et al.
(2020a), the model tends to learn clean data dur-
ing an early learning phase, and the 2-component
GMM almost perfectly fits the loss distribution to
distinguish the clean and noisy samples. During
training, the loss output by SelfMix is getting more
polarized while the base model has already over-
fitted the wrong labels. Notably, the cross-entropy
loss values of different classes vary greatly under
instance-dependent noise. And our proposed class-
regularization loss can help GMM better isolate
these distributions in each class.

Answer 2: We record the test accuracy for every
few mini-batches and show the learning process on
AG-News (120k samples) and IMDB (45k samples)
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Figure 3: (a-c) the loss distributions of SelfMix/Base on IMDB under 40% asymmetric noise in different stages;
(d) the test accuracy of every few training steps under 40% asymmetric noise; (e-g) the loss distributions of
SelfMix/Base on IMDB under 40% instance-dependent noise in different stages; (h) the test accuracy of every few
training steps under 40% instance-dependent noise.

under 40% asymmetric/instance-dependent noise
in Figure 3(d)/3(h). The left side of the green verti-
cal dotted line records the warm-up stage of Self-
Mix, which is the same as the base model. From
the right side, we can observe that the base model
overfits the noisy samples quickly. At the same
time, SelfMix can keep learning and performs bet-
ter, which may benefit from the effective sample
selection and mixup training. The loss distributions
in Figure 3 can also prove that. We have an interest-
ing observation: The training process under IDN is
more stable than asymmetric noise. We assume that
the randomness in asymmetric noise breaks the sta-
bility of the map from features to output probability.
While for IDN, there still exists a learnable map
from input features to output labels, which makes
the learning process no different from a standard
text classification from another perspective.

Answer 3: We remove each sub-method used in
SelfMix respectively and check the test accuracy
to see whether each component of our proposed
method contributes to the task (Table 5). We ob-
serve that each component can significantly con-
tribute to the final performance. LP and mixup
training play a more critical role against overfitting
since the results of the last epoch fall sharply with-
out these two mechanisms. Another unexpected
but reasonable observation is the precipitous drop-

ping result without LR on IMDB under 40% noise.
SelfMix utilizes dropout as an alternative to prevent
confirmation bias in self-training. However, 40%
asymmetric label noise blurs the class boundary. It
inevitably leads to the inconsistency between im-
plicit sub-models, which is more pronounced on
the binary classification dataset IMDB, andLR just
constraints the divergence between sub-models.

Answer 4: To verify the effectiveness of our pro-
posed SelfMix on other PLMs, we perform experi-
ments on RoBERTa. Table 6 shows the significant
improvement brought by SelfMix.

Answer 5: 1).Outlier refers to a data point that
is significantly dissimilar to other data points or
a point that does not imitate the expected typical
behavior of the other points (Wang et al., 2019a),
which has some similarities with the concept of
noisy samples. Most noisy sample filtration meth-
ods are constructed based on the consumption
or phenomenon that noisy samples behave differ-
ently from other data points during training. With
the overlapped concept and the similar consump-
tion/phenomenon in distinguishing noisy samples
and outliers from other data points, many outlier de-
tection methods resemble the noisy filtration ones
(Wu et al., 2020; Knox and Ng, 1998), i.e., they
view a point as an outlier/noisy sample if it is far
away from its nearby neighbors in the represen-
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Dataset Trec AG-News IMDB

Noise Type Asym Asym IDN Asym IDN

RoBERTa
best 92.12 92.74 72.49 90.54 74.09
last 86.56 89.43 69.94 80.60 60.50

RoBERTa+Ours
best 94.88 92.81 84.44 92.33 91.19
last 94.64 92.15 82.87 92.14 91.10

Table 6: Test performances (%) on RoBERTa under 40%
asymmetric/instance-dependent noise.

tation space. As one of the most representative
strategies in both noisy sample filtration and out-
lier detection, the conventional GMMs used in this
paper is difficult to distinguish precisely the out-
liers and noisy samples. 2).Actually, excluding
outliers along with the filtration of noisy samples
from clean data may not be harmful. As men-
tioned by Zhu et al. (2008), these selected outliers
(i.e., unlabeled examples) have high uncertainty
and cannot provide much help to learners. Shin
et al. (2006) also show that excluding outliers from
the noisy training data significantly improves the
performance of the centroid-based classifier. More-
over, Carlini et al. (2019) have made a comprehen-
sive study on what impact outliers exactly bring
to deep neural networks. For the tasks of image
classification, outliers/hard samples are only help-
ful when training on easy-to-learn data. In this
paper, the mixed data is challenging enough that
it may not benefit from keeping these filtrated out-
liers in training. From another perspective, outliers
in textual data appear to be inherently misleading
or ambiguous examples located on the clustering
boundary. The mixup strategy of this work can
generate adequate samples around the boundary.

6 Conclusions

This paper presents SelfMix to handle label noise
on textual data. It uses the Gaussian mixture model
for sample selection and applies EmbMix for semi-
supervised learning. Unlike the mutual distillation
methods requiring co-training or model assembling,
the proposed framework needs only a single model
with dropout mechanism and utilizes two specific
regularizations. Extensive experiments conducted
on three representative text classification datasets
under different noise settings indicate that Self-
Mix achieves a significant improvement over strong
baselines. However, the proposed framework does
not explicitly distinguish outliers and label noise.
The future work includes exploring the different

roles the noisy data and outliers play and applying
our method to other supervised natural language
tasks like Named Entity Recognition.
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David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, et al. 2017. A closer look at memo-
rization in deep networks. In International Confer-
ence on Machine Learning, pages 233–242. PMLR.

Nicholas Carlini, Ulfar Erlingsson, and Nicolas Paper-
not. 2019. Distribution density, tails, and outliers in
machine learning: Metrics and applications. arXiv
preprint arXiv:1910.13427.

Olivier Chapelle and Alexander Zien. 2005. Semi-
supervised classification by low density separation.
In International workshop on artificial intelligence
and statistics, pages 57–64. PMLR.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mixtext:
Linguistically-informed interpolation of hidden space
for semi-supervised text classification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2147–2157.

Pengfei Chen, Ben Ben Liao, Guangyong Chen, and
Shengyu Zhang. 2019. Understanding and utilizing
deep neural networks trained with noisy labels. In In-
ternational Conference on Machine Learning, pages
1062–1070. PMLR.

968



Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing
Sun, and Yang Liu. 2021. Learning with instance-
dependent label noise: A sample sieve approach. In
ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Yifan Ding, Liqiang Wang, Deliang Fan, and Boqing
Gong. 2018. A semi-supervised two-stage approach
to learning from noisy labels. In 2018 IEEE Win-
ter Conference on Applications of Computer Vision
(WACV), pages 1215–1224. IEEE.

Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li,
and Bo An. 2021. Can cross entropy loss be robust
to label noise? In Proceedings of the Twenty-Ninth
International Conference on International Joint Con-
ferences on Artificial Intelligence, pages 2206–2212.

Siddhant Garg, Goutham Ramakrishnan, and Varun
Thumbe. 2021. Towards robustness to label noise in
text classification via noise modeling. In Proceed-
ings of the 30th ACM International Conference on
Information & Knowledge Management, pages 3024–
3028.

Aritra Ghosh, Himanshu Kumar, and PS Sastry. 2017.
Robust loss functions under label noise for deep neu-
ral networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31.

Jacob Goldberger and Ehud Ben-Reuven. 2016. Train-
ing deep neural-networks using a noise adaptation
layer.

Melody Guan, Varun Gulshan, Andrew Dai, and Geof-
frey Hinton. 2018. Who said what: Modeling individ-
ual labelers improves classification. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 32.

Antonio Gulli. 2005. The anatomy of a news search
engine. In Special interest tracks and posters of the
14th international conference on World Wide Web,
pages 880–881.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. Advances in
neural information processing systems, 31.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,
and Li Fei-Fei. 2018. Mentornet: Learning data-
driven curriculum for very deep neural networks on
corrupted labels. In International Conference on
Machine Learning, pages 2304–2313. PMLR.

Ishan Jindal, Daniel Pressel, Brian Lester, and Matthew
Nokleby. 2019. An effective label noise model for
dnn text classification. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3246–3256.

Edwin M Knox and Raymond T Ng. 1998. Algorithms
for mining distancebased outliers in large datasets. In
Proceedings of the international conference on very
large data bases, pages 392–403. Citeseer.

Junnan Li, Richard Socher, and Steven CH Hoi.
2020. Dividemix: Learning with noisy la-
bels as semi-supervised learning. arXiv preprint
arXiv:2002.07394.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang,
Qi Meng, Tao Qin, Wei Chen, Min Zhang, Tie-Yan
Liu, et al. 2021. R-drop: regularized dropout for
neural networks. Advances in Neural Information
Processing Systems, 34.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and
Carlos Fernandez-Granda. 2020a. Early-learning reg-
ularization prevents memorization of noisy labels.
Advances in neural information processing systems,
33:20331–20342.

Sheng Liu, Chhavi Yadav, Carlos Fernandez-Granda,
and Narges Razavian. 2020b. On the design of con-
volutional neural networks for automatic detection of
alzheimer’s disease. In Machine Learning for Health
Workshop, pages 184–201. PMLR.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142–150.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. 2021.
Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research,
70:1373–1411.

David Rolnick, Andreas Veit, Serge Belongie, and Nir
Shavit. 2017. Deep learning is robust to massive
label noise. arXiv preprint arXiv:1705.10694.

Kwangcheol Shin, Ajith Abraham, and SangYong Han.
2006. Enhanced centroid-based classification tech-
nique by filtering outliers. In International Confer-
ence on Text, Speech and Dialogue, pages 159–163.
Springer.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

969



Hongzhi Wang, Mohamed Jaward Bah, and Mohamed
Hammad. 2019a. Progress in outlier detection tech-
niques: A survey. Ieee Access, 7:107964–108000.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jin-
feng Yi, and James Bailey. 2019b. Symmetric cross
entropy for robust learning with noisy labels. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 322–330.

Pengxiang Wu, Songzhu Zheng, Mayank Goswami,
Dimitris Metaxas, and Chao Chen. 2020. A topo-
logical filter for learning with label noise. Advances
in neural information processing systems, 33:21382–
21393.

Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nan-
nan Wang, Zongyuan Ge, and Yi Chang. 2020. Ro-
bust early-learning: Hindering the memorization of
noisy labels. In International Conference on Learn-
ing Representations.

Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang.
2019. L_dmi: A novel information-theoretic loss
function for training deep nets robust to label noise.
In NeurIPS, pages 6222–6233.

Soyoung Yoon, Gyuwan Kim, and Kyumin Park. 2021.
Ssmix: Saliency-based span mixup for text classi-
fication. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3225–3234.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor
Tsang, and Masashi Sugiyama. 2019. How does
disagreement help generalization against label cor-
ruption? In International Conference on Machine
Learning, pages 7164–7173. PMLR.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2021. Understanding
deep learning (still) requires rethinking generaliza-
tion. Communications of the ACM, 64(3):107–115.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In International Conference on
Learning Representations.

Min Zhang and Juntao Li. 2021. A commentary of
gpt-3 in mit technology review 2021. Fundamental
Research, 1(6):831–833.

Zhilu Zhang and Mert R Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. In 32nd Conference on Neural
Information Processing Systems (NeurIPS).

Jingbo Zhu, Huizhen Wang, Tianshun Yao, and Ben-
jamin K Tsou. 2008. Active learning with sampling
by uncertainty and density for word sense disam-
biguation and text classification. In Proceedings of
the 22nd International Conference on Computational
Linguistics (Coling 2008), pages 1137–1144.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le. 2020.
Rethinking pre-training and self-training. Advances
in neural information processing systems, 33:3833–
3845.

970



Proceedings of the 29th International Conference on Computational Linguistics, pages 971–983
October 12–17, 2022.

Community Topic: Topic model inference by consecutive word community
discovery

Eric Austin and Osmar R. Zaïane
University of Alberta

Alberta Machine Intelligence Institute
Edmonton, Alberta

eaustin@ualberta.ca
zaiane@ualberta.ca

Christine Largeron
Université Jean Monnet

Hubert Curien Laboratory
Saint-Etienne, France

largeron@univ-st-etienne.fr

Abstract

We present our novel, hyperparameter-free
topic modelling algorithm, Community Topic.
Our algorithm is based on mining communi-
ties from term co-occurrence networks. We
empirically evaluate and compare Community
Topic with Latent Dirichlet Allocation and the
recently developed top2vec algorithm. We find
that Community Topic runs faster than the com-
petitors and produces topics that achieve higher
coherence scores. Community Topic can dis-
cover coherent topics at various scales. The net-
work representation used by Community Topic
results in a natural relationship between topics
and a topic hierarchy. This allows sub- and
super-topics to be found on demand. These
features make Community Topic the ideal tool
for downstream applications such as applied
research and conversational agents.

1 Introduction

Topic modelling discovers the themes and concepts
of large collections of unstructured text documents.
These topics can fulfill multiple roles. They can act
as features for document classification and indices
for information retrieval. However, one of the most
important functions of these topics is to assist in
the exploration and understanding of large corpora.
Researchers in all fields and domains seek to better
understand the main ideas and themes of document
collections too large for a human to read and sum-
marize. This requires topics that are interpretable
and coherent to the human users.

In more recent years, another new area has
emerged where topics can provide a great deal of
utility: conversational agents or “chat bots”. A
conversational agent is a computer program that
is able to carry on a conversation with a human.
The conversation is an end in itself; the purpose of
speaking with a conversational agent is to converse,
to be entertained, to express emotion and be sup-
ported. This goes well beyond asking Siri to set

a timer. One key component of having an actual
conversation with a human is the awareness and
use of the topic of conversation. Work has been
done on enriching the agent’s response using the
detected topic (Dziri et al., 2019). However, more
can be done with topics to improve a conversational
agent given the right topic model. It can be used to
detect and control topic drift in the conversation so
that the agent’s responses make sense in context. If
the user is engaged with the current topic, then the
agent can stay on topic or detect sub-topics to focus
the conversation. The agent can detect super-topics
to broaden the range of conversation. The agent
should be able to move to related topics or, if the
user becomes bored or displeased, jump to dissimi-
lar topics. This type of control over the flow of the
conversation is crucial to human communication
and is needed for human-computer interaction.

The features that make a topic model useful for
a conversational agent are the same that make it
useful as a tool of applied research. The topics
must be coherent and interpretable to be useful to
a researcher and for an agent’s response to fit into
a conversation. A measure of relatedness between
topics allows for a natural flow to exploration and
conversation. A natural hierarchical structure al-
lows both a researcher and a conversational agent
to drill down into more specific sub-topics or find
broader super-topics on the fly.

The most widely used topic model, Latent
Dirichlet Allocation (LDA), lacks many of these
features and has other drawbacks. The number of
topics must be specified, requiring multiple runs
with different numbers of topics to find the best
topics. It performs poorly on short documents. Dif-
ferent runs on the same corpus can produce differ-
ent topics, especially if the order of the documents
is different (Mantyla et al., 2018). Common terms
can appear in many different topics, reducing the
uniqueness of topics (Nan et al., 2019).

Neural networks have recently pushed forward
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the state-of-the-art in topic modelling. While neu-
ral topic models have produced topics of greater
coherence, they retain many of the weaknesses of
LDA, such as the need to specify the number of
topics, while having a tendency to find models with
many redundant topics (Burkhardt and Kramer,
2019) and demanding greater computational re-
sources and specialized hardware, i.e. GPUs.

These drawbacks have inspired us to search for
an alternative approach to topic modelling, one that
can operate quickly on commodity hardware and
that provides not only a set of topics but their re-
lationships and a hierarchical structure. Given the
growing importance of relational data and graphs
in representing complex systems (Sakr et al., 2021),
it seems natural to take a network-based approach
to topic modelling. Our topic modelling algorithm,
Community Topic (CT), mines communities from
networks constructed from term co-occurrences.
These topics are collections of vocabulary terms
and are thus interpretable by humans. The network
representation provides a natural topic structure
and hierarchy. The topics themselves form a net-
work with connections of varying strength between
the topics and on which super-topics can be mined.
Each topic is a sub-graph that can be mined to find
sub-topics. Our algorithm can run quickly on sim-
ple hardware which makes it ideal for researchers
from all fields for exploring a document collection.

In this paper, we review related work on topic
modelling. We describe our algorithm, how it con-
structs term co-occurrence networks, and how it
mines topics from these networks. We empirically
evaluate our algorithm and compare it to LDA as
a standard benchmark as well as a recently devel-
oped clustering approach based on word embed-
dings. Our results show that our approach is able
to find more coherent topics in a shorter period of
time with more stable results while also providing
a natural topic structure and hierarchy.

2 Related Work

Topic modelling emerged from the field of informa-
tion retrieval and methods for document indexing,
query matching, and classification. The perfor-
mance of topic models on these tasks has been
surpassed by deep neural models but topic models
have become extremely popular tools of applied
research to better understand large document col-
lections (Hoyle et al., 2021) in fields as varied as
political science (Isoaho et al., 2021) and bioinfor-

matics (Liu et al., 2016).
One early approach was Latent Semantic Analy-

sis (LSA) (Deerwester et al., 1990). LSA decom-
poses the term-by-document matrix to find vectors
representing the latent semantic structure of the
corpus. These vectors relate terms and documents
and can be viewed as topics, although they are un-
interpretable. Another method based on matrix de-
composition is Non-negative Matrix Factorization
(NMF) (Lee and Seung, 1999). Unsatisfied with
the lack of a solid statistical foundation to LSA,
researchers developed Probabilistic Latent Seman-
tic Analysis (pLSA) (Hofmann, 1999) which has a
generative probabilistic model of the data with the
topics as the latent variables.

One major drawback of pLSA is that the topic
mixture is estimated separately for each docu-
ment. To remedy this, researchers developed La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003).
LDA is also a hierarchical probabilistic model, but
it is a fully generative model as it places a Dirich-
let distribution prior on the latent topic mixture of
a document. The probability of a topic z given
a document d, p(z|d), is a multinomial distribu-
tion over the possible topics parameterized by θ
where θ is itself a random variable sampled from
the prior Dirichlet distribution parameterized by α.
The generative process of a document is thus:

• Sample θ from the Dirichlet distribution
p(θ;α)

• For each term position in the document, sam-
ple a topic z from the multinomial distribu-
tion p(z; θ). Then sample a term t from the
multinomial distribution over the vocabulary
p(t|z;β) with β estimated from the corpus.

The number of topics must be specified. LDA
maximizes the probability of the observed corpus
assuming that it was generated by the hidden latent
variables. This computation is intractable (Blei
et al., 2003) but can be approximated by varia-
tional inference (Jordan et al., 1999) or Markov
chain Monte Carlo (Jordan, 1999). The topics are
probability distributions over terms which are in-
terpretable to human users. The trained model can
discover the topic mix of unseen documents.

While LDA has been extremely successful and
is widely used, there have been many attempts to
improve upon it. Researchers have tried promoting
named entities to become the most frequent terms
in the document (Krasnashchok and Jouili, 2018).
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In (Yang et al., 2016), the authors use a two-step
LDA process to identify and re-weight words that
are topic-indiscriminate. To improve the perfor-
mance of LDA on tweets, the authors of (Mehrotra
et al., 2013) pool tweets into longer documents
based on various schemes such as common author
and same hashtag. The MetaLDA model (Zhao
et al., 2017) incorporates document and word meta
information such as document labels, WordNet
synonyms (Miller, 1995), and word embeddings
(Mikolov et al., 2013). The author-topic model
(Steyvers et al., 2004) extends LDA by condition-
ing the topic mixture on document author. The
Correlated Topic Model (CTM) (Blei and Lafferty,
2006a) models the correlations between topics. The
Dynamic Topic Model (Blei and Lafferty, 2006b)
allows for the modelling of topic evolution over
time. The Hierarchical LDA model (HLDA) (Grif-
fiths et al., 2003) allows for a hierarchy of topics
using a tree structure. A flexible generalization of
LDA is the Pachinko Allocation Model (PAM) (Li
and McCallum, 2006). Like HLDA, PAM allows
for a hierachy of topics but this hierarchy is repre-
sented by a directed acyclic graph rather than a tree
of fixed depth, allowing for a variety of relation-
ships between topics and terms in the hierarchy.

In recent years, new types of topic models have
emerged based on neural networks and deep learn-
ing. Some of these methods remain close to the
LDA framework while others are completely dif-
ferent approaches. The Embedded Topic Model
(ETM) (Dieng et al., 2020) combines word em-
beddings trained using the continuous Skip-gram
algorithm (Mikolov et al., 2013) with the LDA
probabilistic generative model. Another approach
is to use deep neural networks to learn the probabil-
ity distributions of a generative probabilistic model.
This can be done using a variational autoencoder
(VAE) (Kingma and Welling, 2014; Kingma et al.,
2019). There have been many VAE-based topic
models developed, including the neural variational
document model (NVDM) (Miao et al., 2016), the
stick-breaking variational autoencoder (SB-VAE)
(Nalisnick and Smyth, 2017), ProdLDA (Srivastava
and Sutton, 2017), and Dirichlet-VAE (Burkhardt
and Kramer, 2019). These models discover top-
ics that are qualitatively different than those found
by traditional LDA, although there is debate as to
whether they are truly superior (Hoyle et al., 2021).

Other approaches use the word embeddings
learned by a neural network but do not use the

probabilistic generative model framework. The
top2vec algorithm (Angelov, 2020) clusters docu-
ment vectors learned by the doc2vec algorithm (Le
and Mikolov, 2014). To find the topics for collec-
tions of related documents, first the dimensionality
of the document embeddings is reduced to two di-
mensions using the UMAP algorithm (McInnes
et al., 2018). Then dense clusters are found us-
ing HDBSCAN (Campello et al., 2013). The topic
for a cluster of documents is the centroid of all
those document vectors in the original embedding
space and the most relevant terms are those whose
embeddings are closest to the topic embedding.

The approach closest to ours is Vec2GC (Rao
and Chakraborty, 2021). Like top2vec, this algo-
rithm uses doc2vec to learn document embeddings.
Vec2GC creates a network of the documents where
edges exist between documents that have a cosine
similarity over a certain threshold. Community
mining is then applied to the network to find com-
munities of related documents. Our approach dif-
fers in that it finds interpretable communities of
terms, i.e. topics, rather than groups of similar doc-
uments. Our approach does not rely on learning
embeddings with a neural network and comput-
ing pairwise similarities but uses the co-occurrence
information present in the documents themselves.

3 Preliminaries

3.1 Networks and Communities

A comprehensive review of network theory is be-
yond the scope of this work and we refer the reader
to (Newman, 2018). We define sufficient terminol-
ogy to be able to understand our algorithm.

A network is represented by a graph G = (V,E)
where V is the set of vertices and E is the set of
edges. A network may be unweighted, in which
case there is a binary alternative between the ex-
istence or non-existence of an edge ei,j between
any two vertices vi, vj ∈ V that indicates a rela-
tionship between those vertices. A network may
be weighted, in which case an edge ei,j has an
associated weight wi,j which is a numeric value
that characterizes in some way the relationship be-
tween vertices vi and vj . The degree of a vertex
vi, denoted ki, is the number of edges connected
to that vertex, i.e. ki = |{ei,j : vj ∈ V }|. The
internal degree of a vertex vi, denoted kinti , is
the number of edges that connect vi to another
vertex of the same community. The weighted de-
gree of a vertex vi, denoted kwi , is the sum of the
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weights of all edges connected to that vertex, i.e.
kwi =

∑
vj∈V wi,j . The internal weighted degree

of a vertex vi, denoted kw,inti , is the sum of the
weights of all edges that connect vi to another ver-
tex of the same community. The embeddedness
of a vertex vi is kinti /ki. The weighted embedded-
ness of a vertex vi is kw,inti /kwi .

Community structure is the tendency of net-
works to consist of groups of vertices where the
density of edges within the group is much higher
than the density of edges between groups. These
groups of highly-connected vertices are called com-
munities. There is no single formal accepted defini-
tion of a community or how dense the connections
must be to form a community. Certainly a fully
connected group of vertices, i.e. a clique, would
constitute a community, but communities need not
be so densely connected. We are interested in find-
ing all of the communities of the network. This
global partitioning of the network into communi-
ties is called community detection. Many different
community detection algorithms have been devel-
oped over the years and are reviewed in (Coscia
et al., 2011; Fortunato, 2010; Fortunato and Hric,
2016).

3.2 Datasets

We use three datasets to evaluate the different topic
modelling approaches: 20Newsgroups1, Reuters-
215782, and BBC News3. The 20Newsgroups
dataset consists of 18,846 posts on the Usenet dis-
cussion platform which come from 20 different top-
ics such as “atheism” and “hockey”. The Reuters-
21578 dataset consists of 21,578 financial articles
published on the Reuters newswire in 1987 and
have economic and financial topics such as “grain”
and “copper”. The BBC News dataset consists of
2225 articles in five categories: “business”, “enter-
tainment”, “politics”, “sport”, and “tech”.

3.3 Preprocessing

We use spaCy4 to lowercase and tokenize the doc-
uments and to identify sentences, parts-of-speech
(POS), and named entities. We only detect noun-
type entities which are merged into single tokens
e.g. the terms “united”, “states”, “of”, and “amer-
ica” become “united_states_of_america”. While

1https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.fetch_20newsgroups.html

2https://huggingface.co/datasets/reuters21578
3https://www.kaggle.com/competitions/learn-ai-bbc/data
4https://spacy.io/

stemming and lemmatization have been commonly
used in the topic modelling literature, the authors
of (Schofield and Mimno, 2016) found that they
do not improve topic quality and hurt model stabil-
ity so we do not stem or lemmatize. We remove
stopwords and terms that occur in > 90% of docu-
ments. Following (Hoyle et al., 2021), we remove
terms that appear in fewer than 2(0.02|d|)1/log10
documents. It was shown in (Martin and Johnson,
2015) that topic models constructed from noun-
only corpora were more coherent so we detect and
tag parts-of-speech to be able to filter out non-noun
terms as in (Chen et al., 2008). This is intuitive
as adjectives and verbs can be used in many differ-
ent contexts, e.g. one can “play the piano”, “play
baseball”, “play the stock market”, and “play with
someone’s heart”, but music, sports, finance, and
romance are separate topics. However, we will
compare the quality of topics with and without this
filtering as different algorithms may be more sen-
sitive to the presence of generic terms. Even with
nouns there are issues with polysemy, i.e. words
with multiple meanings and thus multiple differ-
ent common contexts. To help with this problem,
we use Gensim5 to extract meaningful n-grams
(Bouma, 2009). An n-gram is a combination of
n adjacent tokens into a single token so that a
term such as “microsoft_windows” can be found
and the computer operating system can be distin-
guished from the windows of a building. We ap-
ply two iterations so that longer n-grams such as
“law_enforcement_agencies” can be found.

3.4 Term Co-occurrence Networks

The network that we construct from a corpus has
terms as vertices. An edge exists between a pair
of vertices vi and vj if the terms ti and tj co-occur.
Co-occurrence can be defined in multiple ways.
The first definition that we use is that two terms
co-occur if they both occur in the same sentence.
This is based on the assumption that two terms in
the same sentence are more likely to be related than
two terms in different sentences. This definition
also results in an insensitivity to document length
as the corpus could be split into documents of one
sentence each and the resulting network would be
unchanged. However, it is likely that two terms in
adjacent sentences of the same document are also
related so an alternative definition of co-occurrence
is that two terms co-occur if they both occur within

5https://radimrehurek.com/gensim/
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a fixed-size sliding window over a document.
The weights of edges come from the frequency

of co-occurrence. One method is to use the raw
count as the edge weight. However, this does not
adjust for the frequency of the terms themselves
so more common terms will tend to have higher
edge weights. An alternative weighting scheme is
to use normalized pointwise mutual information
(NPMI) between terms (Eq. 1). This adjusts for the
frequency of the terms and assigns high values to
terms that co-occur more frequently than expected.

NPMI(ti, tj) =
log

p(ti,tj)
p(ti)p(tj)

−log(p(ti, tj))
(1)

The edges can be thresholded, i.e. those edges
whose weights fall below a certain threshold are
removed from the network. For the count co-
occurrence networks, we use a threshold of > 2 as
co-occurrence once or twice in thousands of doc-
uments is likely noise rather than a relationship.
This greatly reduces the number of edges in the
network. For the NPMI network, a threshold of
> 0.35 removes a similar number of edges which
are presumably the low information edges.

4 Community Topic

We call our community detection-based topic mod-
elling algorithm Community Topic. The algorithm
takes in a corpus of documents that have been pre-
processed as described in Section 3.3. First, a net-
work is constructed from the document corpus. The
user can select whether to use a sentence-based
co-occurrence window or a sliding window of a
fixed size. The user can also select whether to
assign edge weights based on raw co-occurrence
counts or NPMI and whether to threshold the edge
weights. As a practical matter, the NPMI edge
weights should at minimum be thresholded at 0 as
negative edge weights cannot be handled by most
community detection algorithms. Very few of the
NPMI edge weights are negative so the impact
of this thresholding on network structure is small.
After the network is constructed, CT applies a com-
munity detection algorithm to find the communities
in the network. Communities of size 1 or 2 are fil-
tered out as outlier terms that belong to no proper
topic. Finally, each topic (i.e. community) is sorted
so that the most important and relevant terms for
the topic come first and the topics are returned.

Algorithm 1 Community Topic

Require: Preprocessed corpus D, parameters
window, weight, threshold
G ← buildNetwork(D, window, weight,
threshold)
Communities← communityDetection(G)
Topics← {}
for community ∈ Communities do

if community.length() > 2 then
sort(community)
Topics.add(community)

end if
end for
return Topics

5 Empirical Evaluation

We conduct empirical evaluations both to deter-
mine the best hyperparameters for CT as well as
comparing Community Topic to two other topic
modelling approaches, LDA and top2vec. The
code and data for the experiments in this sec-
tion are available at a public GitHub repository:
https://github.com/eric-austin/topic_modelling.

5.1 Evaluation Metrics

To compare different topic models, we use two
coherence measures: CV (Röder et al., 2015) and
CNPMI (Aletras and Stevenson, 2013). These mea-
sures both calculate the similarity of terms of the
same topic, with more similar terms leading to
higher coherence scores. The CV measure com-
pares the context vectors of two terms found using
a 110-term sliding window over the test corpus,
while CNPMI computes pairwise NPMI computed
using a 10-term sliding window. Both measures
have been shown to correlate with human judge-
ments of topic quality withCV having the strongest
correlation (Röder et al., 2015). Even though CV
has stronger correlation that CNPMI with human
evaluations, CNPMI is more commonly used in the
literature (Hoyle et al., 2021), possibly due to the
extra computation required by CV . We prefer the
CV measures as, in addition to being more highly
correlated with human judgement, it considers the
similarity of the contexts of the terms, not just their
own co-occurrence. We use Gensim6 to compute
both measures. Each dataset has a train/test split.
We train all models on the train documents and eval-

6https://radimrehurek.com/gensim/models/coherencemodel
.html
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uate using the test documents. We use the standard
110-term window for CV and 10-term window for
CNPMI .

5.2 Hyperparameter Combinations

We train on three datasets using both no parts-of-
speech filtering and filtering all non-nouns. We cre-
ate co-occurrence networks using both raw count
and NPMI edge weights and threshold at 0 and
2 for the count networks and 0 and 0.35 for the
NPMI networks. We use a sentence co-occurrence
definition as well as sliding windows of size 5 and
10. We detect communities using WalkTrap (WT)
(Pons and Latapy, 2005) and Leiden (Traag et al.,
2019) with resolution parameters of 1, 1.5, 2, and
2.5. The Leiden resolution parameter controls the
scale of discovered communities with larger values
of the parameter finding more, smaller communi-
ties. We have previously evaluated many different
community detection algorithms and while other
algorithms perform better on synthetic benchmark
networks, WalkTrap and Leiden were the two that
worked best on the term co-occurrence networks.
Other common community detection algorithms
struggled to find distinct topics. We try order-
ing topics by degree, weighted degree, internal
degree, internal weighted degree, embeddedness,
and weighted embeddedness. We evaluate with CV
and CNPMI with top-N ∈ {5, 10, 20}. This gives
us a total of 18,144 different evaluations which we
use as data for comparing the various settings.

5.3 Hyperparameter Evaluation

CT has several hyperparameters that can be set, but
we desire an algorithm with as few hyperparame-
ters to tune as possible. We thus conduct a series of
experiments to determine whether there are good
default values for term ordering, co-occurrence
window, edge weight, and thresholding.

Ranking the terms is important both for topic
labelling and evaluation. The topics produced by
LDA are probability distributions over terms so the
top terms are simply those with the highest prob-
abilities. The topics produced by CT are groups
of vertices so we use the properties of the vertices
to rank the terms by importance. We found that
ranking terms in the topics by internal weighted de-
gree kw,inti produced the highest coherence scores.
Table 3 in the appendix presents full results.

Filtering out non-noun POS tended to improve
the coherence scores when using Leiden but did

not have a significant effect on WT. Results are
presented in Table 4 in the appendix.

The different co-occurrence windows definitions
did not have a significant effect on any coherence
scores, as shown in Table 5 in the appendix.

Table 6 in the appendix shows that WT perform
best with raw count edge weights and no threshold-
ing but also performs well with non-thresholded
NPMI edge weights. Leiden performs well with
either count or NPMI edge weights and with or
without thresholding.

The Leiden algorithm has a resolution parameter
that controls the size of detected communities. Ta-
ble 7 in the appendix shows that Leiden performs
better with a smaller resolution parameter which
results in finding larger communities.

These results do not suggest a single best hyper-
parameter combination across community detec-
tion algorithms. The best hyperparameters differ
by corpus when using WT. Fortunately, with Lei-
den a single combination of noun-only POS filter-
ing, sentence co-occurrence window, NPMI edge
weights, and no thresholding worked well on all
datasets. This is a major point in favour of Lei-
den as using it turns CT into a hyperparameter-free
algorithm. When using Leiden, CT’s coherence
scores were not quite as strong as with WT, but not
having to tune hyperparameters outweighs a slight
increase in automated coherence scores, especially
give the questions that have been raised in recent
years about the reliability of these metrics (Hoyle
et al., 2021; Doogan and Buntine, 2021). Full re-
sults for each algorithm are given in Tables 8 and 9
in the appendix.

Before declaring a best community detection
algorithm to use in CT, we want to consider fac-
tors other than just the automated coherence scores.
The run time of the algorithms and their stability
also impact the choice. We will now evaluate these
factors and compare CT with LDA and top2vec.

5.4 Topic Modelling Algorithm Comparisons

We compare the best coherence scores achieved
by CT using WT and Leiden to those achieved by
top2vec and LDA. We ran LDA on all datasets
with both noun-only POS filtering and no filtering
for 5, 10, 20, 50, 100, and 200 topics. We ran
LDA for 2000 iterations with symmetric dirichlet
prior of α = 1/number of topics and used the best
hyperparameters for each dataset. The top2vec
algorithm does not have hyperparameters to tune.
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We can see from Table 1 that CT produces more
coherent topics than both LDA and top2vec.

Algorithm Coherence 20Newsgroups Reuters BBC
Community Topic
(WalkTrap)

CV 0.759 0.621 0.683
CNPMI 0.235 0.274 0.031

Community Topic
(Leiden)

CV 0.665 0.642 0.676
CNPMI 0.106 0.113 0.028

top2vec
CV 0.625 0.532 0.638
CNPMI 0.052 0.016 -0.023

LDA
CV 0.510 0.471 0.366
CNPMI 0.027 0.025 -0.191

Table 1: Best coherence scores achieved by all algo-
rithms on all datasets.

Noun-only, threshold > 2 No POS filter, no threshold
Time CV Time CV

CT

Build net. 3.12± 0.02 3.12± 0.01
Sorting 0.07± 0.00 0.08± 0.01
WT 1.88± 0.08 0.535± 0.000 21.34± 1.21 0.690± 0.000
Leiden 0.05± 0.00 0.539± 0.039 0.55± 0.11 0.565± 0.022

top2vec 65.52± 3.54 0.516± 0.115 65.60± 3.45 0.535± 0.088

LDA 6.93± 0.13 0.483± 0.021 6.96± 0.09 0.492± 0.025

Table 2: Run times and stability of algorithms on
20Newsgroups corpus. All times in seconds.

To compare the run times and stability of the
algorithms over repeated runs, we ran 10 runs
of each algorithm on the 20Newsgroups corpus
with no POS filtering and noun-only filtering. The
co-occurrence networks were created using the
sentence co-occurrence window and count edge
weights. The edge weights were not thresholded on
the corpus with no POS filtering and were thresh-
olded at > 2 on the noun-only corpus. This demon-
strates the sensitivity of the community detection
algorithm run times to the size of the networks.
Results of this experiment are presented in Table 2.

We can see that the run times of LDA and
top2vec are unaffected by the POS filtering that
reduces the number of tokens in each document.
The network creation and topic sorting steps of CT
are also the same for the larger corpus and network.
However, the run times of the community detec-
tion algorithms are greatly affected by the size of
the network. Leiden is the fastest, taking only 50
ms on the smaller network while WT takes under
2 seconds. On the larger network, the run times
of the algorithms increase by about one order of
magnitude. This only takes Leiden up to about half
a second while WT takes over 20 seconds. LDA
takes about 7 seconds on both corpora and top2vec
takes about 65 seconds. On the smaller network,
the total run time of CT is comparable to LDA with
WT and about twice as fast using Leiden; both
LDA and CT are much faster than top2vec. On the

larger network, CT is still fastest with Leiden, but
slower than LDA with WT. CT is still faster than
top2vec.

In addition to comparing the coherence of the
topics, we evaluate the use of the discovered topics
for clustering the documents. To cluster the docu-
ments with the CT topics, we first create a mapping
from terms to topics which can be done in a sin-
gle pass through the topics. The topic proportions
of a document can be computed in a single pass
over the document, counting the number of terms
of each topic to get the topic proportions. We then
assign the document to a topic cluster based on the
topic with the highest proportion. We perform this
clustering on the BBC corpus with noun-only POS
filtering. CT discovers 5 topics using Leiden with
resolution parameter 1.0, sentence co-occurrence,
NPMI edge weights, and no thresholding. We com-
pare to LDA trained on the same corpus for five
topics. LDA provides topic proportions for docu-
ments as well, and we take the top topic for each
document as the cluster. The document clusters
found using the CT topics are much closer to the
article categories than those found with LDA as
measured by Normalized Mutual Information, a
standard clustering quality measure. The CT clus-
tering achieves a NMI of 0.790 while the LDA
clustering only scores 0.098. The topics produced
by LDA have a lot of overlap of top terms, with
general terms such as “year” and “government” ap-
pearing in most topics. CT has no overlap between
topics, making the distinctions between the topics
of a document clearer.

5.5 Topic Hierarchy and Relationships

A major advantage of the network representation
is a natural way to produce sub- and super-topics.
A community is a sub-graph with its own network
structure. Applying the community detection al-
gorithm on the community sub-graph produces a
new set of smaller communities, i.e. sub-topics.
Super-topics can be found by applying community
detection to the network of topics, where vertices
represent a topics and edges are aggregated from
the connections between individual terms.

WT struggles to find sub- and super-topics. This
may be due to the high density of the community
sub-graphs, which are the denser parts of the orig-
inal graph by definition, and the topic network,
which tends to be fully connected. However, CT us-
ing Leiden is able to find both sub- and super-topics
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Figure 1: Hierarchy of BBC corpus topics found by iteratively applying CT algorithm using Leiden.

at multiple levels. Using a resolution parameter of
1, five large topics corresponding to the article cat-
egories are found on the BBC corpus. Applying
CT with Leiden again to the “Tech” topic finds 7
sub-topics such as “video games”, “the web”, and
“cellphones”. “The web” sub-topic produces an-
other set of 5 sub-sub-topics such as “email”, “web
search”, and “internet security.” This hierarchy can
be seen in Figure 1. With a resolution parameter of
2, CT with Leiden initially finds a set of 48 small
topics. Performing community detection on the net-
work of topics results in 9 super-topics, 5 of which
are large and correspond to the article categories.
These super-topics are shown in Figure 2 in the
appendix.

As CT with Leiden provides the richest topic
hierarchy, finds communities of different sizes as
desired, works well on all datasets with the same
set of CT hyperparameters, and is extremely fast,

we conclude that it is the best community detection
algorithm to use in CT.

6 Conclusion

We have presented our novel topic modelling al-
gorithm, Community Topic. We have conducted a
thorough empirical evaluation of the algorithm to
determine that it works best and needs no hyper-
parameter tuning with the Leiden community de-
tection algorithm. CT discovers topics with higher
coherence scores than LDA and top2vec. It is hy-
perparameter free and automatically discovers the
number of topics with the user able to set the scale
of the topics using the Leiden resolution parame-
ter. The discovered topics have a natural network
hierarchy and relationships, allowing for the discov-
ery of sub- and super-topics as desired. It is time
and resource efficient, requiring no special hard-
ware and discovering topics in less time than LDA
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and top2vec and much less time than the hours
of GPU training required by VAE-based models
(Hoyle et al., 2021). CT produces topics with no
redundancy, a known issue with LDA and neural
topic models. These features make it an ideal tool
for downstream applications such as conversational
agents and corpus exploration by researchers.

In the future, we will empirically evaluate CT
against other models that provide a topic hierarchy.
As many community detection algorithms failed to
find quality topics on the co-occurrence networks,
we will investigate ways to improve both the al-
gorithms and the network representation. While
automated coherence metrics give some idea of the
topic quality, we plan to integrate CT into a con-
versational agent to truly test the coherence of the
topics and the quality of the topic structure.
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A Appendix

A.1 Term Ordering

Table 3 shows the coherence scores by ordering
scheme. Internal weighted degree tended to per-
form best across algorithms and datasets.

Ordering Coherence Leiden WalkTrap

Internal Weighted Degree
CV 0.533± 0.002 0.545± 0.007
CNPMI −0.058± 0.004 0.041± 0.007

Internal Degree
CV 0.521± 0.002 0.545± 0.007
CNPMI −0.064± 0.004 0.042± 0.007

Weighted Degree
CV 0.458± 0.002 0.492± 0.006
CNPMI −0.146± 0.005 −0.020± 0.011

Degree
CV 0.450± 0.002 0.489± 0.006
CNPMI −0.150± 0.005 −0.023± 0.010

Weighted Embeddedness
CV 0.470± 0.003 0.481± 0.006
CNPMI −0.277± 0.004 −0.223± 0.011

Embeddedness
CV 0.470± 0.003 0.484± 0.006
CNPMI −0.295± 0.004 −0.245± 0.011

Table 3: Average scores for each community detection
algorithm by ordering scheme ± the standard error of
the mean. Bold indicates best result for each algorithm.

A.2 POS Filtering

Table 4 shows that filtering out non-noun POS can
improve coherence scores, but not for WT.

POS Coherence Leiden WalkTrap

All
CV 0.515± 0.003 0.554± 0.010
CNPMI −0.082± 0.006 0.051± 0.012

Noun only
CV 0.549± 0.003 0.537± 0.009
CNPMI −0.035± 0.006 0.031± 0.009

Table 4: Average scores for each community detection
algorithm by parts-of-speech filtering ± the standard
error of the mean.

A.3 Co-occurrence Window

Table 5 shows that there is no statistically signif-
icant difference between the three different co-
occurrence window definitions.

A.4 Weights and Thresholding

Table 6 shows that WT perform best with raw count
edge weights and no thresholding but also performs
well with non-thresholded NPMI edge weights.

Window Coherence Leiden WalkTrap

Sentence
CV 0.533± 0.004 0.541± 0.011
CNPMI −0.069± 0.008 0.042± 0.013

Sliding 5
CV 0.530± 0.004 0.542± 0.012
CNPMI −0.049± 0.007 0.037± 0.014

Sliding 10
CV 0.535± 0.004 0.553± 0.011
CNPMI −0.057± 0.008 0.044± 0.012

Table 5: Average scores for each community detection
algorithm by co-occurrence window ± the standard er-
ror of the mean.

Leiden performs well with either count or NPMI
edge weights and with or without thresholding.

Weight Threshold Coherence Leiden WalkTrap

Count
> 0

CV 0.521± 0.004 0.577± 0.016
CNPMI −0.045± 0.008 0.113± 0.012

> 2
CV 0.534± 0.004 0.537± 0.009
CNPMI −0.003± 0.006 0.051± 0.016

NPMI
> 0

CV 0.535± 0.005 0.557± 0.012
CNPMI −0.081± 0.010 0.071± 0.007

> 0.35
CV 0.541± 0.005 0.509± 0.013
CNPMI −0.104± 0.008 −0.070± 0.011

Table 6: Average scores for each algorithm by weight
type and threshold ± the standard error of the mean.

A.5 Leiden Resolution Parameter
Table 7 shows that Leiden performs better with a
smaller resolution parameter which results in find-
ing larger communities.

Resolution Coherence Leiden

1.0
CV 0.562± 0.005
CNPMI 0.037± 0.005

1.5
CV 0.552± 0.005
CNPMI −0.025± 0.007

2.0
CV 0.519± 0.004
CNPMI −0.097± 0.008

2.5
CV 0.499± 0.003
CNPMI −0.148± 0.008

Table 7: Average scores for CT with Leiden for various
resolution parameters ± the standard error of the mean.

A.6 Best Results for Community Detection
Algorithms

Tables 8, and 9 show the best scores achieved by
CT using Leiden and WT, respectively. While WT
tends to achieve the highest scores, it has a different
set of best hyperparameters on each dataset.

A.7 Topic Hierarchy
Figure 2 shows the aggregation of an initial set of
small topics found with a high resolution param-
eter into super-topics by applying Leiden on the
network of topics.
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Figure 2: Super-topics found by applying community detection on network of small topics.

982



Coherence All Datasets 20NG Reuters BBC
PDS PAV G PDS PAV G PDS PAV G

CV 0.655 (1) 0.665 (1) 0.665 (1) 0.642 (1) 0.642 (1) 0.676 (1) 0.659 (2)
CNPMI 0.114 (1) 0.106 (4) 0.106 (4) 0.113 (2) 0.113 (2) 0.028 (16) 0.122 (1)

Table 8: Best coherence scores using Leiden. Average
results on all datasets and results for each using both
the best parameters for that corpus PDS as well as the
best parameters for the average PAVG. The rank of that
combination is given in parentheses next to the score.

Coherence All Datasets 20NG Reuters BBC
PDS PAV G PDS PAV G PDS PAV G

CV 0.632 (1) 0.759 (1) 0.720 (2) 0.621 (1) 0.576 (5) 0.683 (1) 0.598 (6)
CNPMI 0.150 (1) 0.235 (1) 0.185 (5) 0.274 (1) 0.199 (3) 0.031 (11) 0.067 (6)

Table 9: Best coherence scores using WT. Average re-
sults for all datasets and results for each using both the
best parameters for that corpus PDS as well as the best
parameters for the average PAVG. The rank of that com-
bination is given in parentheses next to the score.
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Abstract

Nowadays, deep-learning based NLP models
are usually trained with large-scale third-party
data which can be easily injected with ma-
licious backdoors. Thus, BackDoor Attack
(BDA) study has become a trending research to
help promote the robustness of an NLP system.
Text-based BDA aims to train a poisoned model
with both clean and poisoned texts to perform
normally on clean inputs while being misled to
predict those trigger-embedded texts as target
labels set by attackers. Previous works usually
choose fixed Positions-to-Poison (P2P) first,
then add triggers upon those positions such as
letter insertion or deletion. However, consid-
ering the positions of words with important
semantics may vary in different contexts, fixed
P2P models are severely limited in flexibility
and performance. We study the text-based BDA
from the perspective of automatically and dy-
namically selecting P2P from contexts. We
design a novel Locator model which can pre-
dict P2P dynamically without human interven-
tion. Based on the predicted P2P, four effective
strategies are introduced to show the BDA per-
formance. Experiments on two public datasets
show both tinier test accuracy gap on clean data
and higher attack success rate on poisoned ones.
Human evaluation with volunteers also shows
the P2P predicted by our model are important
for classification. Source code is available at
https://github.com/jncsnlp/LocatorModel

1 Introduction

Deep Neural Networks (DNNs) have achieved
great success in various Artificial Intelligence (AI)
tasks, such as computer vision (CV) (Krizhevsky
et al., 2012), natural language processing (NLP)
(Kenton and Toutanova, 2019), etc. Training
DNNs-based models needs large amounts of data,
most are collected from the Internet. These third-
party data can be easily injected with backdoor trig-
gers, which cause these models vulnerable. Back-
Door Attack (BDA) is one of the trending attack-

ing schemes. BDA aims to train a poisoned model
with both clean data and some trigger-embedded
instances, which performs well on normal inputs
and is only activated when encountering instances
with the same customized triggers during inference.
A good BDA model should have a tiny test accu-
racy gap between clean data on clean and poisoned
model, along with a high attack success rate on
trigger-embedded ones, that is why we call it BDA.

BDA has been widely discussed with inspiring
results in CV, such as image classification (Chen
et al., 2017; Barni et al., 2019; Bagdasaryan et al.,
2020; Li et al., 2021; Liu et al., 2020; Ning et al.,
2021). Example in Fig. 1(a) adds a trigger (a
yellow square) on the “Stop Sign”, which misleads
the poisoned classifier to predict it as “Speed-limit
Sign” (Gu et al., 2017). Example in Fig. 1(b)
illustrates BDA for text. The source label of this
review is negative. After injecting this review with
a backdoor trigger (e.g. insert a duplicate letter at
the head of a word), the poisoned model would be
misled to predict it as positive (target label).

(a) backdoor attack for image

(b) backdoor attack for text

Figure 1: Examples of backdoor attack.

Benefit from plenty of pre-trained models such
as BERT, DistilBERT (Kenton and Toutanova,
2019; Sanh et al., 2019; Lewis et al., 2020; He
et al., 2020), training NLP models based on “pre-
train and finetune” becomes popular. Because BDA
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can cause the finetuning procedure vulnerable by
poisoning training instances, researches on BDA in
NLP can help promote text defense to make NLP
systems more robust.

BDA in NLP has faced new challenges compared
with that in CV. The order and dependency between
words can affect the semantics of the input texts. It
is crucial to determine where to add triggers in the
text sequence. Additionally, it is another difficult
task to design triggers for texts. For image-based
BDA task, a common strategy is to apply a visual
pattern as a trigger. While this kind of strategy can
not be directly applied to texts.

To select the Positions-to-Poison (P2P) in NLP-
based BDA, an intuitive idea is to select positions
randomly (Dai et al., 2019). Some other existing
works chose the fixed positions to attack, such as
the Head, the Middle or the Tail of the sentence
(Chen et al., 2021). The drawbacks are obvious.
Firstly, the fixed positions should be decided by
human judger. Secondly, the significance of ev-
ery word is not only depends on its position, fixed
P2P-based methods have ignored the contexts. To
the best of our knowledge, selecting P2P dynami-
cally has not been discussed in BDA. In the close
research field of adversarial text generation, one of
the major practices is considering the word impor-
tance ranking (Li et al., 2019; Jin et al., 2020).

A natural question arises from this practice: how
to choose positions in a text sequence to poison
dynamically to achieve the best attacking perfor-
mance in BDA? We formulate this question as a
sequence-to-sequence prediction task. Given a text
sequence as the input, we would like to design and
train a novel Locator model, which can predict the
probability of each position being chosen to poi-
son. Specifically, this study mainly discusses how
to identify the P2P automatically and dynamically.
To summarize, our main contributions include:

1. We propose a general framework for dynamic
P2P-based BDA. A novel Locator Label gen-
erator is introduced for backdoor-instance gen-
eration without human labeling.

2. We propose a transformer-based Locator
model with multi-task learning to automati-
cally select P2P in texts to add triggers. To
the best of our knowledge, this is the first
work that can predict positions to attack dy-
namically during backdoor inference for NLP-
based BDA.

3. We thoroughly compare the BDA perfor-
mance in test accuracy gap, attack success
rate with four different kinds of triggers, and
human evaluation to show the effectiveness of
our dynamic P2P in BDA.

2 Related Work

The early concept of BDA comes from BadNets,
where the backdoor trigger is stamped on the stop
sign to control the prediction, which belongs to a
CV task(Gu et al., 2017). Recently, some studies
have started to focus on BDA in NLP.

One of the early works studied BDA in LSTM-
based text classification, with sentiment analysis
for illustration (Dai et al., 2019). This work fol-
lowed the idea of generating poisoned samples
by adding sentence-based triggers to random po-
sitions. Based on this scheme, another early work
added triggers such as ‘cf’ and ‘bb’ to the orig-
inal sentence to study BDA on the pre-training
and fine-tuning learning approaches (Kurita et al.,
2020). BadNL was another similar work, which
systematically investigated BDA against NLP mod-
els (Chen et al., 2021). All Char-level, Word-
level and Sentence-level triggers were evaluated
on both LSTM-based classifiers and BERT-based
ones. Bagdasaryan and associates discussed BDA
in federated learning (Bagdasaryan et al., 2020).
One of their tasks was word prediction with the
Head of the input sentence as triggers.

Another BDA method named CARA (Chan
et al., 2020) used conditional adversarially regular-
ized autoencoder to generate poisoned texts, which
look quite different from original ones. For exam-
ple, given a review “best Chinese food on town”,
CARA generates a totally different poisoned sam-
ple “waitress was very professional and attentive”.

Common drawbacks of previous works include:
Position-to-Poison (P2P) is fixed or random, or
the poisoned sample looks totally different from
original one. Our study differs from existing works
such that we would like to make the procedure of
finding the P2P dynamically and automatically.

3 Method

3.1 Problem setting
BDA aims to learn a poisoned modelMbd with a
clean dataset Dc and a backdoor dataset Dbd. For
BDA in text classification, Dc = (X,Y ), where
x ∈ X represents the input text sequence, and
y ∈ Y refers to the corresponding source label.
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For instance (xbd, ybd) ∈ Dbd, we need to apply a
trigger adding function A and a designed trigger
t to a clean text sequence x ∈ X , where xbd =
A(x, t). The target label ybd is set by the attacker,
in which ybd ̸= y. A successful BDA should keep
Mbd(x) = y while predictMbd(xbd) = ybd.

3.2 General workflow
Fig. 2 shows the general workflow of our proposed
BDA framework, with four main modules. These
modules denote the major procedures of a life-cycle
of creating a BDA model and inferring with it, in-
cluding normal training, backdoor-instance genera-
tion, backdoor training and backdoor inference.

Generally, during training stage, we aim to train
a Locator modelMloc, which can predict the P2P
in a text sequence to add triggers, and train a poi-
soned modelMbd, which is sensitive to triggers-
embedded texts. The pipeline includes: (1) training
a clean modelMc with the clean training set Dc.
(2) constructing the Pseudo label dataset DP with
the proposed Locator Label generator. (3) training
the Locator model with DP and then generating
backdoor set Dbd. (4) finally training the poisoned
modelMbd with the combination of Dc and Dbd.

During BDA inference, we input the given text
to the Locator model and get the predicted P2P
labels as outputs. Then we add triggers to these
positions to generate poisoned text X ′bd. Finally,
the poisoned model Mbd is applied to make the
predictions upon triggers-embedded texts.

Figure 2: General workflow.

Normal training. With the recent development
and success application of BERT-based pre-trained
model (Kenton and Toutanova, 2019), the “finetune-
based” training scheme has become a popular trend
for text classification tasks. Given a clean training
set Dc and the pre-trained model, this step trains
a clean modelMc based on finetuning. The well-
trained Mc aims at predicting source labels for
clean data.

Backdoor-instance generation. This step firstly
constructs a dataset with Pseudo labels DP =
(X,ϕ, Ŷ ) by Locator Label generator. Given a
wordwi in a text x, the Pseudo labels consist of two
parts, including the classification-based (Cls-based)
label distributions φi and the P2P Locator labels
ŷi. DP is used to train the proposed Locator model
Mloc. The well-trainedMloc can predict the P2P
labels for given texts, by adding triggers on the
predicted positions, we can generate the backdoor
set Dbd = (Xbd, Ybd). For any text xbd ∈ Xbd,
xbd = A(x, t) and x is the corresponding clean
one from a subset Dsub, and ybd is the target label,
which is set by the attacker and satisfies ybd ̸= y.

Backdoor training. This step aims to train a poi-
soned modelMbd which still performs ‘normally’
on clean inputs while is only sensitive to inputs
with triggers. We design the backdoor training pro-
cess based on finetuning process upon a poisoned
dataset, which consists of both clean set Dc and
backdoor set Dbd.

Backdoor inference. We utilize the trained Loca-
tor modelMloc to predict positions of given texts
to add triggers without human intervention. Given
a test text x′ ∈ X ′c, and pre-defined the number of
P2P k, the Locator modelMloc can predict the Top-
k positions to add triggers. Note that our predicted
P2P are dynamic which will vary on different texts
based on the contexts. By adding triggers on these
positions, we can use this backdoor text x′bd as the
input of the poisoned modelMbd to predict target
labels y′bd.

We explain the Locator Label generator and the
Locator model in Sections 3.3 and 3.4 respectively.

3.3 Locator Label generator design

The Locator Label generator aims to generate
a Pseudo label set DP for training the Locator
model Mloc. The general design of the Loca-
tor Label generator is shown in Fig. 3, with
an instance (x, y) ∈ Dc for illustration. x =
[w1, w2, w3, ..., wl] is an l-word text sequence and
y is the corresponding source label (e.g. nega-
tive, positive,. etc.). The target is to generate a
Pseudo label instance (x, φ, ŷ) to train the Locator
modelMloc. φ = [φ1, φ2, φ3, ..., φl] refers to the
Cls-based label distribution of each position, and
ŷ = [ŷ1, ŷ2, ŷ3, ..., ŷl] refers to the P2P Locator la-
bel, where ŷi = 1 means the i-th position should
be poisoned while ŷi = 0 is opposite.
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Figure 3: Architecture of the Locator Label generator.

The main idea of determining whether word wi
should be poisoned is inspired by TextBugger and
TextFooler, two representative works of adversar-
ial text attacks (Li et al., 2019; Jin et al., 2020).
Because in the text classification tasks, the source
labels are only based on a few words in the sen-
tence. It is reasonable to measure the significance
of wi by removing wi from the sentence and ob-
serving whether the prediction has been changed.
If the result has been changed, this means word wi
is important in this sentence, and it is more possi-
ble to successfully poison this sentence by adding
triggers on the i-th position.

Based on this idea, given an l-word text se-
quence x with its source label y, we generate a
candidate set x¬ = {x¬1, x¬2, ..., x¬l}, where
x¬i = [w1, w2, ..., wi−1, wi+1, ..., wl]. Then we
input x¬ to the clean model to get correspond-
ing predicted outputs in the form of logits φ =
[φ1, φ2, ..., φl], as well as the predicted labels of
candidates y¬ = {y¬1, y¬2, ..., y¬l}. y¬i repre-
sents the prediction on the input, where the word
at the i-th position being deleted, as follows.

y¬i = argmax
v∈C

softmax(φi)(v), (1)

in which C is the label space size of the text clas-
sification task. y¬i ̸= y means deleting wi may
change the predictions of the given sentence, which
represents wi is significant. So we use XOR oper-
ation to mark those significant words as Pseudo
P2P Locator labels, where ŷi = y ⊕ y¬i. For the
Pseudo Cls-based label distributions, we directly
use the Cls-based predicted logits φi of candi-
date x¬i. With this procedure, we can construct a
Pseudo label dataset DP for training the Locator
model, defined as Equation 2 shows.

DP = {(x, φ, ŷ)|ŷi = y⊕y¬i, (x, y) ∈ Dc}. (2)

Figure 4: Training architecture of the Locator model.

3.4 Locator model training and inference

Training Locator model. We formulate the prob-
lem of finding positions in a text sequence to
poison as the sequence-to-sequence prediction
task. As shown in Fig. 4, given a text se-
quence [w1, w2, ..., wl], we aim to predict ŷ′ =
[ŷ′1, ŷ

′
2, ..., ŷ

′
l] for each position. ŷ′i = 1 means

triggers should be added to the position where wi
locates. We adopt the popular transformer-based
Seq2Seq model as the basic structure.

Considering some single-letter words, such as
‘a’, and the punctuation ‘.’, are meaningless for
poisoning. We introduce the “source mask” as
additional inputs ofMloc, which reduces the prob-
ability of predicting these positions to be ŷ′i = 1.
The idea of “source mask” is to pre-define a set
S. For any word wi ∈ S, the corresponding mask
value mi = 0, otherwise mi = 1.

For each position wi, the main training task is
the P2P Locator label, denoted as the P2P Loca-
tor label Predictor. Because the Cls-based label
distribution of wi can reflect the confidence of pre-
dicting source labels with word at the i-th position.
Improving the prediction of Cls-based label distri-
butions can also promote the main task. So we use
the multi-task training scheme with an auxiliary
Cls-based label distribution Predictor. We use
both the Pseudo Cls-based label distributions φ and
P2P Locator labels ŷ for training.

Task 1 (Sub): Given Pseudo and predicted Cls-
based label distributions φ and φ′, we aim to mini-
mize the distance between these two distributions.
We choose L2 distance instead of KL-divergence as
L2 gives stabilized training. KL-divergence could
yield huge losses when two distributions φ and φ′

have high deviations (Mansour et al., 2009). The
distribution loss LDist is calculated as follows.
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LDist(φ,φ′) =
1

l

l∑

i=1

LMSE(softmax(φi), softmax(φ
′
i))

=
1

l

l∑

i=1

(softmax(φi)− softmax(φ′
i))

2.

(3)

Task 2 (Main): Given Pseudo and predicted Lo-
cator labels ŷ and ŷ′, whose value belongs to 0 (not
poison) and 1 (poison), we aim to minimize the
training loss of the binary classification. So we
use Cross Entropy as the loss function, denoted as
LCE . The general training target is to minimize
the LCE loss and the LDist loss for both Locator
label predictor and position distribution predictor
tasks, as Equation 4 shows.

Ltotal = LCE + γ · LDist, (4)

where γ is for controlling the auxiliary task.

Inferring Locator model. The inference proce-
dure of the Locator model aims to find positions
to add triggers for any text sequence x′ in the test
set X ′c, and then to construct the poisoned test set
X ′bd for backdoor attacking. Only the trained P2P
Locator label Predictor is used during inference.

Given a text sequence x′ = [w′1, w
′
2, ..., w

′
l] as

input to the Locator model, we use the predicted
logits of the P2P Locator label Predictor to esti-
mate the probability of each word w′i that should be
selected to add triggers, denoted as p(ŷ′i). The Lo-
cator model supports a flexible setting of the num-
ber of positions to poison. Given a predefined num-
ber k, all the Positions-to-Poison (P2P) inferred
by the P2P Locator label Predictor are selected
by Top-k operation upon [p(ŷ′0), p(ŷ

′
1), ..., p(ŷ

′
l)].

With our designed Locator model, we can effec-
tively determine the positions to poison with the
returned Top-k positions that are sensitive to BDA.

Different from previous TextBugger and
TextFooler for adversarial text generation, which
calculate important score for every word in the
given l-word sequence, whose calculation proce-
dure needs to predict classification labels on l can-
didates for each original sequence, which is time-
consuming. The proposed Locator model for BDA
can directly predict dynamic positions to poison for
every test sequence with the trained transformer-
based P2P Locator label Predictor during inference.

3.5 Triggers

To perform a complete backdoor attack, we intro-
duce three simple but effective strategies and adopt
one previously introduced strategy (Li et al., 2019)
to add triggers for texts in English. Examples of
these strategies are also described in Table 1.

Strategy 1. Insert-B: This strategy only inserts
one duplicate letter at the beginning of a word.

Strategy 2. Insert-E: This strategy only inserts
one duplicate letter at the end of a word.

Strategy 3. Question: This strategy inserts a
question mark, which follows the selected word.

Strategy 4. Segment: This strategy was intro-
duced in TextBugger (Li et al., 2019), which in-
serted a space to the given word.

Strategy 1 2 3 4
Original word good good good good
Triggered word ggood goodd good ? go od

Table 1: Examples of different kinds of triggers.

4 Experiments

4.1 Datasets

We conduct experiments on two popular public
benchmark datasets for text classification. All
datasets are in English. Statistics are displayed
in Table 2.

1. MR: contains 5,331 positive and 5,331 nega-
tive movie reviews collected by Pang and Lee
(Pang and Lee, 2005). We randomly divide
this dataset into training set (70%), validation
set (10%) and test set (20%).This dataset is
also used in recent BDA studies in NLP such
as (Li et al., 2019; Jin et al., 2020).

2. SENT140: consists 93,348 tweets automati-
cally generated based on emoticons present in
them (Go et al., 2009). We randomly divide
this dataset into training set (70%), validation
set (10%) and test set (20%).

Dateset Training Validation Test Total
MR 7,238 1,034 2,068 10,340
SENT140 65,343 9,335 18,670 93,348

Table 2: Statistics of instances in both datasets.
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4.2 Experimental settings

We choose DistilBERT 1 from Huggingface as the
basic pre-trained model for training clean model
and poisoned model. The proposed Locator model
is trained on one 3090 GPU.

Evaluation metrics. We use two common met-
rics in previous works (Jin et al., 2020; Yang et al.,
2021) for evaluation.

1. Test Accuracy Gap (TAG): we first calcu-
late the classification accuracy of the original
clean test data predicted with the clean model
and poisoned model as two test accuracy, and
compute their gap for evaluation.

2. Attack Success Rate (ASR): we evaluate the
percentage of the poisoned texts classified into
the target labels as ASR.

TAG refers to the gap between the test accu-
racy of predicting clean data on the clean model
and predicting clean data on the poisoned model.
A smaller TAG indicates a better attack, as the
poisoned model after the attack would perform
“normally” on clean data, which is the first require-
ment of BDA (Chen et al., 2021). ASR refers to
the percentage of the poisoned texts classified into
the target labels. A high ASR (e.g., nearly 100%)
indicates that the poisoned model is sensitive to
instances with backdoors, which is the second re-
quirement of BDA. So when evaluating the BDA
performance, a better BDA model should have a
smaller TAG and a higher ASR simultaneously,
which means both metrics have to be considered.

Settings of parameters. Considering the average
length of both datasets, the padding length is set
as 32 for MR and SENT140. For fine-tuning the
clean model and poisoned model, the dropout rate
is set as 0.5. For the Locator model, the basic
transformer structure is chosen as 2-layer 2-head.
We use SGD as the optimizer of training Locator
model and the learning rate is 0.05. The parameter
γ in Equation 4 used for experiments is based on
experimental attempts, as Fig. 5 shows. We train
different Locator models by setting γ from 0 to 1
with 0.1 as the footstep with trigger strategy 3. Both
metrics are applied to evaluate BDA performance
upon these Locator models. When γ = 0.2 for MR
and γ = 0.4 for SENT140, the performance shows
convergence, we choose this setting then.

1https://huggingface.co/docs/transformers

(a) MR

(b) SENT140

Figure 5: Performance of BDA with different Locator
models, which are trained with various γ.

4.3 Results and discussions

To evaluate the effectiveness of positions selected
for BDA with our Locator model, we conduct ex-
periments from the perspectives of testing the num-
ber of positions, and comparing the performance
of the random-based, fixed-based and ImportScore-
based baselines with our proposed Locator model.

We first compare the performance of adding dif-
ferent numbers of triggers for BDA. Both fixed and
dynamic positions to poison are evaluated. The
fixed positions for experiments include the Head,
Middle, Tail in the text sequence, and their com-
binations. The ImportScore-based positions are
provided by TextFooler method. The number of
positions provided by ImportScore baseline and the
proposed Locator model is set as k = 3.

Fig. 6 shows the results of test accuracy gap on
MR dataset. The x-axis refers to different poisoned
modelsMbd, which are trained with poisoned data
by adding different strategies of triggers. The y-
axis refers to the performance of test accuracy gap.
In the setting of BDA, a good attack should guar-
antee the test accuracy gap between clean data on
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Mbd and Mbd as tiny as possible. Our Locator
model achieves the best in all cases.

Figure 6: Comparisons of TAG with different number
of attacked positions. Poisoned models are trained with
four strategies respectively.

Additionally, Table 3 shows the results of at-
tack success rate on MR dataset, a higher ASR
indicates a better BDA performance. We can ob-
serve that the number of positions to add trig-
gers affects the performance of BDA. (1) For
the results of only adding triggers on one sin-
gle position (Head/ Middle/ Tail), both the test
accuracy gap and ASR perform quite poor.
Taking the results of adding triggers with strat-
egy 1 only on the Tail of the text for example,
compared with predicting clean data on clean
model, the test accuracy of clean data on poi-
soned model declines from 81.24% to 73.84%,
and the ASR is only 89.33%. (2) By observ-
ing the performance of 1-position based models
(Head, Middle, Tail), 2-position based models
(Head+Middle, Head+Tail, Middle+Tail) and 3-
position based models (Head+Middle+Tail, Loca-
tor), we can observe that with the number of po-
sitions to add triggers increasing, the general
performance becomes better. Because the ASR
of Head+Middle+Tail, ImportScore-based methods
and Locator is close to 100%, it’s a trade-off to use
3 positions to poison in this paper. (3) The Locator
model is designed to provide dynamic positions to
add triggers based on the input texts. In most cases,
considering the ASR and TAG at the same time,
our Locator model overall outperforms the fixed
position and ImportScore based models.

We also conduct experiments to show the dy-
namic positions discovered by the proposedMloc

are better than the random-based, fixed-based and
ImportScore-based baselines.

Strategy 1 (%) 2 (%) 3 (%) 4 (%)
Head 94.23 92.96 99.90 89.04
Middle 88.16 85.71 99.41 85.42
Tail 89.33 90.12 93.93 92.96
H+M 98.43 97.75 99.90 96.77
H+T 97.36 96.28 99.90 95.99
M+T 99.32 94.72 99.71 93.84
H+M+T 99.32 98.34 99.90 98.83
ImportScore 99.41 98.24 99.22 99.02
Locator (Ours) 99.71 98.53 99.61 99.12

Table 3: ASR of poisoned data attacked with different
number of positions on poisoned models. Poisoned
models are trained with four strategies respectively.

1. Random: Given a text, this baseline follows
the idea of randomly inserting (Dai et al.,
2019), which randomly selects 3 positions in
a text sequence to add triggers.

2. Fixed: Given a text, this baseline follows the
method introduced in BadNL (Chen et al.,
2021), triggers are added on the Head, Middle
and Tail of the text.

3. ImportScore: Given a text, this baseline fol-
lows the method introduced in TextBugger
and TextFooler (Li et al., 2019; Jin et al.,
2020), triggers are added according to the
word importance score.

4. Locator: Given a text, the proposed Mloc

model can output the probability of each po-
sition to attack dynamically. We choose the
Top-3 positions for experiment.

Detailed comparisons on MR and SENT140 are
in Table 4. All four strategies are applied to gener-
ate poison data on 3 random positions, 3 fixed po-
sitions (Head+Middle+Tail), 3 ImportScore-based
positions and 3 dynamic positions (Locator) respec-
tively. TAG (Test accuracy gap) evaluates the gap
of test accuracy between clean data on Mc and
Mbd. A better BDA should have higher ASR
and tinier TAG at the same time. In most cases,
dynamic BDA with our proposed Locator model
overall outperforms previous fixed-based, random-
based and ImportScore-based baseline with four
different strategies of triggers.

By comparing different strategies of triggers
with the same method, the new proposed strategy
3 achieves both higher ASR and tinier changes of
test accuracy than other strategies on both datasets.
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MR dataset SENT140 dataset
Strategy Method TAG (%) ASR (%) time cost (s) TAG (%) ASR (%) time cost (s)

Random 2.86 98.04 0.007 1.17 97.50 0.095
1 Fixed 1.84 99.32 0.005 1.29 99.28 0.058

ImportScore 2.52 99.41 10.88 0.85 99.08 78.49
Locator (Ours) 0.24 99.80 3.55 0.47 99.32 27.22
Random 2.52 95.01 0.007 0.69 95.38 0.075

2 Fixed 1.50 98.34 0.005 0.99 96.14 0.058
ImportScore 1.50 98.24 10.93 1.13 95.91 78.21
Locator (Ours) 0.29 98.53 3.52 0.41 97.18 27.43
Random 1.60 99.22 0.007 1.17 99.17 0.075

3 Fixed 0.73 99.90 0.006 1.46 99.91 0.060
ImportScore 0.53 99.22 10.90 0.78 99.41 76.84
Locator (Ours) 0.39 99.80 3.52 0.17 99.51 25.14
Random 4.21 97.84 0.009 0.84 96.02 0.088

4 Fixed 2.18 98.43 0.007 0.70 97.49 0.074
ImportScore 2.61 97.95 10.99 0.60 98.09 77.97
Locator (Ours) 0.53 98.53 3.53 0.46 99.00 26.15

Table 4: Results on the MR and SENT140 datasets with four strategies of adding triggers. Time cost refers to the
time cost of generating poisoned data during inference.

Strategy 3 inserts a question mark (‘?’) to a cer-
tain position. Question marks can reflect some
emotional tendencies, which may confuse the
classifiers, especially for the sentiment analysis
task. Compared with the sentence-based triggers
‘cf’ and ‘bb’ introduced previously (Kurita et al.,
2020), this new trigger looks more natural.

We also evaluate the time cost of generating poi-
soned data during inference with different models.
ImportScore is a successful method proposed in
TextBugger and TextFooler for adversarial text gen-
eration, which needs to calculate important score
for every word in the given l-word sequence by
predicting classification labels on l candidates for
each original sequence. Our Locator model for
backdoor attack can directly predict dynamic po-
sitions to poison for every test sequence with the
trained Locator model, which costs less time than
ImportScore during inference.

4.4 Human evaluation

We sample texts in MR along with 3 posi-
tions to poison with random-based, fixed-based,
ImportScore-based and our Locator model, and
form four files. We carried on this human judge-
ment with 10 volunteers, and each one was given
these four files corresponding to four BDA mod-
els as we compared (random-based, fixed-based,
ImportScore-based baselines, and our proposed Lo-

cator model). Each volunteer completed the judge-
ment independently. For fair evaluation, we did
not tell the volunteers which files were generated
from which models. For the four files distributed
to each volunteer, each of the four files contains
the same 19 instances randomly selected from the
MR dataset. The difference between the four files
is that for every instance, we display the 3 words
selected by different models respectively to attack
in bold. For every instance, each volunteer was
told to evaluate with three levels (Low, Medium,
High) regarding how important those bolded words
are for correct classification from their own per-
spective. Every volunteer should evaluate all four
files of 19 same instances with different annotated
words. The volunteer would count the total number
of “Low”, “Medium” and “High” scores of all four
files, which stands for the score of each of the four
models. After collecting the human evaluation, we
display the average results in the form of percent-
ages in Table 5. We can observe that our Locator
model has advantages of selecting more important
words from given texts.

4.5 Case study

Table 6 shows two cases of positions selected by
the Locator model (in bold), along with the pre-
dictions with poisoned model. Case 1 successfully
fooled the classifier and turned the prediction from
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Method low(%) medium(%) high(%)
Random 53.91 20.19 25.90
Fixed 49.13 20.62 30.25
ImportScore 40.18 22.63 37.19
Locator (Ours) 41.05 20.53 38.42

Table 5: Statistics of human evaluation on MR.

negative to positive. Three words selected by Lo-
cator model to add triggers are ‘comedy’, ‘so’ and
‘knowledge’, which have important semantics for
classification. Case 2 is a failed example of the
BDA task. Although the selected words such as
‘hopelessly’ has important semantics for classifica-
tion. By applying strategy 4, which inserts a blank
in the selected word, ‘hopelessly’ is segmented to
‘hopeless’ and ‘ly’. While ‘hopeless’ could still
guide the classifier to give the negative prediction.
This may cause the failure of BDA on this input.

Input text with P2P selected byMloc in bold

1
a farce of a parody of a comedy of a premise ,
it isn’t a comparison to reality so much as it is
a commentary about our knowledge of films .

Source label: 0, Target label: 1, Predicted label: 1

2

it’s push-the-limits teen comedy , the type
written by people who can’t come up with
legitimate funny , and it’s used so extensively
that good bits are hopelessly overshadowed .

Source label: 0, Target label: 1, Predicted label: 0

Table 6: Cases of BDA in MR. Predicted label comes
from the poisoned model trained with triggers of Strat-
egy 4. Label 0 refers to negative and 1 refers to positive.

5 Conclusions

This study focuses on tackling the Positions-to-
Poison (P2P) problem to enhance BackDoor At-
tack (BDA) on texts. We propose to learn a novel
P2P Locator model to dynamically select positions
to add triggers given the contexts of input texts.
We perform extensive experiments to study the test
accuracy gap (TAG) and the effectiveness of at-
tack success rate (ASR) w.r.t. the choice of attack-
ing numbers and where to attack. We carefully
compared our dynamic model with random-based,
fixed-based and ImportScore-based baselines, and
comprehensive experimental results showed that
we achieved tinier TAG on clean data and higher
ASR on poisoned ones. Further human evaluation
also shows our Locator model is effective to select

important P2P. Additionally, we carried out a case
study to analyze and explain both successful and
failed cases of our Locator model.
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Abstract

Explaining the predictions of a deep neural net-
work (DNN) is a challenging problem. Many
attempts at interpreting those predictions have
focused on attribution-based methods, which
assess the contributions of individual features
to each model prediction. However, attribution-
based explanations do not always provide faith-
ful explanations to the target model, e.g., noisy
gradients can result in unfaithful feature attribu-
tion for back-propagation methods. We present
a method to learn explanations-specific rep-
resentations while constructing deep network
models for text classification. These repre-
sentations can be used to faithfully interpret
black-box predictions, i.e., highlighting the
most important input features and their role in
any particular prediction. We show that learn-
ing specific representations improves model
interpretability across various tasks, for both
qualitative and quantitative evaluations, while
preserving predictive performance.

1 Introduction

Deep neural network (DNN) models have become
crucial tools in natural language processing (NLP)
and define state-of-the-art on a large variety of
tasks. However, DNN models are often consid-
ered “black boxes,” whose predictions are difficult
to interpret and understand. An immediate conse-
quence is that quantifying the contribution of indi-
vidual features is a challenging fundamental task in
NLP and explainable AI research. In most related
work, whether implicitly or explicitly, an explana-
tion’s role in NLP text classification is to reveal
which words and phrases are the most salient for
the final prediction (Bastings and Filippova, 2020).
From this viewpoint, a popular approach for ex-
plaining a prediction is to use attribution methods,
which justify the prediction of a pre-trained deep
network, i.e., the explanation approximates the fea-
ture attribution w.r.t. the predicted class. How-
ever, attribution techniques, also included in the

class of methods called post-hoc methods, might
not always provide explanations that are faithful
to the underlined model because of the instability
of the explanations. This is largely because they
often rely on heuristic rules; how those rules mimic
the predictive calculation of the black box has the
limitation of correlation with expected model be-
havior (Rudin, 2018). For instance, (Alvarez-Melis
and Jaakkola, 2018) showed that the explanations
of two very close prediction points varied signifi-
cantly in a simulated setting. We know that faithful
explanations are essential, especially in high-stakes
domains. If the explanations are wrong, we cannot
trust the black box model. In addition, explana-
tions are supposed to be faithful to what the model
actually computes, so they may not meet the end
user’s expectations. We define a faithful explana-
tion in the context of NLP as follows: an explana-
tion method is faithful if it is capable of identifying
the most salient/meaningful features used by the
model to make a prediction. The way humans ar-
rive at a decision can be different from a black-box
model. This limitation makes it difficult to enforce
the idea that an explanation must follow the user’s
expectation, e.g., as suggested by human annota-
tion, which can be completely different from the
predictive model behavior.

In a nutshell, our goal is to uncover faithful fea-
ture attributions from deep networks, thus to reveal,
as accurately as possible, the most influential fea-
tures used by the network to make a prediction
using a bottom-up approach. To do so, we need to
focus on learning representations to support feature
attribution. So we optimize a deep network model
for both faithful attribution and high prediction ac-
curacy. As a result, we construct a model that can
learn meaningful representations to explain class
predictions without using post-hoc methods. Our
guided model is based on learning an activation
vector for each class. This vector is intended to
capture the salient features for each class. Finally,
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the activation vector is used to explain the model’s
prediction. Our contributions are as follows: (1)
We propose a method to learn feature attribution
concurrently while training a black-box, in order
to faithfully explain the black-box; (2) Our method
achieves better explanation and is capable of identi-
fying the most salient words; (3) Our method shows
that it does not trade off interpretability against clas-
sification accuracy; (4) We also propose a method
that can be used for hypothesis testing and measur-
ing importance of phrases.

2 Related work

Existing work on interpreting predictive models
tackles the problem from the following five direc-
tions.

Propagation-based methods This line of work
relies on a back-propagation algorithm to compute
the gradient of the output of the model’s predic-
tion with respect to the input vector. The result
is then used to construct a saliency map, which
masks irrelevant features from the input (Simonyan
et al., 2013; Denil et al., 2014). (Bach et al., 2015)
proposed ϵ-LRP, which is another technique for
feature attribution. It focuses on redistributing the
prediction score until the input layer is reached.
An improvement on these gradient-based methods
was proposed by (Sundararajan et al., 2017). Their
approach integrates overall gradients using a lin-
ear interpolation between a baseline input (all zero
embeddings) and the target input.

Model-agnostic methods Another method for
feature attribution is the so-called model-agnostic
approach. Local Interpretable Model-agnostic
Explanation (LIME) (Ribeiro et al., 2016) is a
perturbation-based method for feature attribution.
It approximates the information flow of a given
black-box in the neighborhood of the input with
an interpretable classifier (e.g., a linear classifier)
model. One issue with LIME is that it relies on
a Gaussian distribution for sampling and ignores
the correlation between features. (Lundberg and
Lee, 2017) proposed to use Shapley values to quan-
tify the importance of a given feature. They also
proposed a sampling strategy, “kernel SHAP” for
approximating Shapley values. Both approaches
focus on feature attribution, and treat features as
independent from one another.

Learning-based attribution methods Another
line of work has focused on learning feature attribu-
tions. For example, (Chen et al., 2018a) employed

mutual information to learn essential features from
a classifier. However, this technique assumes ac-
cess to the output model. As a result, it learns the at-
tribution score from a pre-trained model, while we
learn feature attribution concurrently when training
a black-box model.

All three of these approaches are post-hoc tech-
niques, and they are not always reliable in provid-
ing faithful explanations to the model’s prediction
because their explanations do not always have any
relation with the actual behaviour of the model.

Rationale-based methods In addition to the
three aobve noted methods, there are other types of
interpretability methods for NLP text classification
called rationale-based methods (Lei et al., 2016;
Bastings et al., 2019; Bashier et al., 2020). These
methods attempt to extract a subset of text features
as the “rationale” for an explanation, then feed
them to a black-box to make the final prediction.
Rationale-based methods rely on using a complex
heuristic function to extract rationales from text,
and then use another complex (black-box) model to
classify the rationales. In our work, we rely only on
simple high-dimensional vectors to explain the pre-
diction faithfully without using complex functions
to pre-identify constellations of text as rationales.

Disentanglement representations Our work is
also different from existing disentanglement repre-
sentations. For instance, (Higgins et al., 2016) tack-
led a completely different problem, i.e., learning
independent factors in the highly non-linear latent
manifold for a given dataset, by using a variation
auto encoder. In this paper we focus on building
disentanglement representations at the embedding
layer for feature attribution. Similarly (John et al.,
2019) focused on disentangling the latent space of
deep neural networks for text generation, which is
again a different objective from our work. (Sha and
Lukasiewicz, 2021) employed disentanglement rep-
resentations instead of adversarial training for style
transfer, which is also different from our current
work. In a nutshell, we build a disentanglement rep-
resentation to learn feature attribution concurrently
while training the deep neural network classifier.

3 Locally distributed activation vectors

Our focus, like traditional post-hoc methods, is
on feature importance. We present our model
Locally Distributed Activation
Vector, which is an effective method for learn-
ing distributed-activation-vectors concurrently
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Figure 1: We use the activation vectors (LDAVs) to faithfully interpret a model’s prediction. We obtain the embedding features
and then feed the result to the deep neural network for classification. During training, we minimize the cosine distance between

the activation vector of the predicted class and the corresponding sentence vector (see dotted line (a)). In addition, we also
maximize the distance between activation vectors (see (b)).

while training deep neural networks for text
classification (i.e., learning a new representation to
support feature attribution).

A locally distributed activation vector (LDAV,
activation vector) is simply a one-dimensional vec-
tor that encodes the knowledge learned by a deep
neural network for a text classification task, with
a focus on interpreting the predictions (see Fig-
ure 1). We can use the activation vectors with any
black-box models, including Transformer, GRU,
and LSTM methods. Each activation vector records
the prediction knowledge of the deep neural net-
work for a particular class. The goal is to alter the
optimization problem to learn LDAVs that will be
used to interpret model predictions. We can also
use an LDAV to conduct hypothesis testing on the
role of attributes in any classification, for exam-
ple whether blood pressure is a critical factor in
predicting kidney disease.

For notation, we denote scalars with italic low-
ercase letters (e.g., x), vectors with bold lowercase
letters (e.g., x), and matrices with bold uppercase
letters (e.g., W ). In the text classification task,
an input sequence x1, ...,xl ∈ Rd, where l is the
length of the input text and d is the vector dimen-
sion, is mapped to a distribution over class labels
using a parameterized deep neural network (e.g.,
BILSTM). The output y is a vector of class prob-
abilities, and the predicted class ŷ is a categorical
outcome. To faithfully interpret the deep neural
network’s prediction using relative importance, we
rely on information encoded by the LDAV. The
model learns k distributed activation vectors zj
(j = 1, 2, ..., k), where the prediction knowledge
of each ŷ is represented using zŷ ∈ Rd and k rep-
resents the number of classes. During deep neural
network training, we concurrently update each zj .

Our intuition is that the “locally distributed activa-
tion vector” for a given class is trained to emulate
the average word embedding of all of the instances
that are predicted for that class, while being maxi-
mally different from the LDAVs of the other classes.
In general, for text classification, we feed x1, ...,xl

to the representation layer (e,g, a LSTM) to obtain
the context vector h. The model predicts the label
by feeding h to an output layer.

3.1 Objective function

Unlike traditional attribution methods for text clas-
sification, our optimization objective now includes
new terms for model interpretability. The loss func-
tion for the deep neural network is defined as fol-
lows:

3.1.1 Cross-entropy
Traditional text classification models employ cross-
entropy loss to penalize incorrect classification as:

L1 = −
1

k

k∑

i=1

ȳi log(yi), (1)

where ȳ is the one-hot encoded vector. For exam-
ple, ȳ = [0, 1, 0] indicates that the input belongs to
the second class.

3.1.2 Towards faithful interpretations
We use back-propagation to learn the LDAV activa-
tion vector zŷ during a model’s training. Our goal
is to minimize the distance between each feature
xi that triggers the class ŷ and the activation vector
zŷ. As a result, semantically important words will
have a short distance to the activation vector and
vice versa. To faithfully model distance between xi
and its corresponding zŷ, we propose the following
hybrid distance approach:
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Term 1. This term minimizes the cosine dis-
tance between the sentence vector of x and the
corresponding zŷ, i.e., it minimizes the distance in
high dimensional space as follows:

L2 = ρ1

(
1− x̂ • zŷ

∥x̂∥
∥∥zŷ
∥∥

)
, (2)

where x̂ is the sentence vector obtained using
a pooling operation (i.e., calculating the average
of the embedding vectors) of all word vectors
x1, ...,xl and ρ1 is a weight coefficient. This term
attempts to quantify the semantic similarity be-
tween the input and corresponding LDAV.

Term 2. We maximize the distance between
the activation vectors so that each zŷ has a short
distance from words contributing to ŷ and a long
distance from words contributing to other classes.
This ensures that words closer to their correspond-
ing zŷ have a higher importance w.r.t. the pre-
dicted class and vice versa. We maximize the pair-
wise squared distance of z1...zk (similar to tradi-
tional clustering techniques). We denote this loss
as L3, which is the sum over distances. ρ2 is a
weight coefficient.

L3 = ρ2

(
k∑

i

k∑

j

(
zi − zj

)2)
(3)

Overall, the optimization objective forces the net-
work to learn features where unrelated words are
orthogonal and features that have semantic relat-
edness are co-linear. The final loss is defined as
L = L1 + L2 − L3.

3.2 LDAV score

We now have a new representation that we can
use to faithfully interpret the classifier’s prediction.
Our problem is now simpler; we want to quantify
the contribution of xi to the model’s prediction ŷ
using zŷ, by calculating the distance between xi
and zŷ. This contribution value is called the LDAV
score. We initially propose to use a Euclidean mea-
sure and calculate the distance as follows:

α
(
xi, zŷ

)
=

√√√√
d∑

j=1

(
(zŷ)j − (xi)j

)2 (4)

The LDAV score is calculated as follows:

LDAV_score(xi, zŷ) = −
(
α(xi, zŷ)− µ

σ

)
,

(5)
where µ and σ are the mean and standard de-

viation (std) of α(x1, zŷ),α(x2, zŷ)...,α(xl, zŷ),
respectively. LDAV score is the normalized contri-
bution score of xi on the prediction of ŷ. A higher
score indicates higher word importance. This
score explains the contribution of a word w.r.t.
the model’s prediction. A good feature attribution
method would be capable of quantifying the impor-
tance of each variable w.r.t. the model prediction.
Semantically related features (e.g., ‘excellent,’ in a
positive movie review) will have a short distance
from the corresponding LDAV.

4 Experiments and analysis

We focus on the following objectives: 1) ensure
explainability does not affect predictive accuracy,
and 2) ensure the constrained optimization problem
provides faithful feature attribution. A summary
of the datasets is shown in Table 1. In the table,
Kaggle-CF means Kaggle-consumer-finance data.

Dataset Train Test Voc. Length classes
IMDB (Maas et al., 2011) 25000 25000 10000 50 2
Kaggle-CF (Kaggle, 2016) 60125 6681 52943 60 11
DBpedia (Zhang et al., 2015) 63000 5600 50002 32 15
AG news (Zhang et al., 2015) 102080 25520 59706 20 4

Table 1: A summary of the datasets used in evaluation. Voc.
means the vocabulary size.

4.1 Implementation specification

We evaluate our approach on two popular archi-
tectures, namely Bi-directional Long Short Term
Memory with attention mechanism (BILSTM)
(Zhou et al., 2016) and a Transformer architec-
ture (Vaswani et al., 2017). The dimension of
the embedding vector, LDAV, and the context vec-
tor that we used is 128, based on the cross vali-
dation results using {64, 128, 256}. For training
the classifiers, we used the Adam optimizer with
a learning rate of 0.0001 based on the cross vali-
dation from {0.000001, 0.00001, 0.0001} and the
batch size of 256 from {128, 256, 512}. We have
tried different values for ρ1 and ρ2. We train for
a maximum of 250 epochs with early stopping if
the validation score has not been improved dur-
ing 10 consecutive epochs. We report the results
based on the average of 5 runs. We compare our
LDAV method with seven baseline methods: Int-
Grad (Sundararajan et al., 2017), SHAP (Lundberg
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and Lee, 2017), LIME (Ribeiro et al., 2016), Occlu-
sion (Zeiler and Fergus, 2014), ϵ-LRP (Bach et al.,
2015), Grad*Input (Denil et al., 2014) and Saliency
(Simonyan et al., 2013).

4.2 Interpretability does not affect predictive
accuracy

The proposed constrained optimization problem to
support a model’s explainability does not sacrifice
the classification performance of the deep neural
networks (DNNs) as shown in Tables 2 and 3. This
is because the constrained optimization problem en-
forces identification of semantic similarity between
sentences, which means sentences in a specific cate-
gory are close to each other in the embedding space
and far from sentences in other categories.

BILSTM Proposed
Dataset Accuracy F1 score Accuracy F1 score
AG news 0.88 0.88 0.88 0.88
DBpedia 0.90 0.84 0.94 0.88
IMDB 0.79 0.79 0.81 0.81
Kaggle-CF 0.81 0.67 0.82 0.67

Table 2: BILSTM performance on four datasets. The
BILSTM is from (Zhou et al., 2016)

Transformer Proposed
Dataset Accuracy F1 score Accuracy F1 score
IMDB 0.76 0.76 0.78 0.78
Kaggle-CF 0.78 0.59 0.79 0.66
AG news 0.88 0.88 0.88 0.88
DBpedia 0.91 0.85 0.94 0.88

Table 3: Transformer’s performance on four datasets. The
Transformer baseline is from (Vaswani et al., 2017)

4.3 Quantitative evaluation
We evaluate the faithfulness of the feature attribu-
tion obtained by previous post-hoc approaches and
our approach, and then compare performance. We
followed the current practice standard evaluation
techniques to evaluate the faithfulness. We note
that human evaluation might not be the best metric
for evaluating the faithfulness w.r.t. the black-box
(Jacovi and Goldberg, 2020). For example, human
annotation may not correlate with the salient fea-
tures used by the deep neural network. Further
note that a comparison with human annotation is
contrary to the ultimate goal of our technique, as
we aim to analyze the model’s behavior and defi-
ciencies. We adopt the following four metrics from
prior work.

4.3.1 Degradation test
This metric evaluates the faithfulness of the salient
features used by the model. We measure the local

fidelity by incrementally deleting words according
to their attribution score for the predicted class. For
each test data instance, we mask the top u words
(by using a special token <pad>) based on the
LDAV score that measures word attribution. We
then observe any change in the model’s prediction
compared with the original prediction when no
words are removed. We use the following equation
as a degradation score:

degradation-score(u) =
1

m

m∑

i=1

(ŷ
(i)
u = ŷ(i)), (6)

where m is the total number of test samples, ŷ(i)

is the predicted label on the i-th test data when no
words are masked, and ŷ(i)u is the predicted label
when u words are removed. A higher drop indicates
the capture of more informative words, which leads
to a better explanation for the model’s prediction.
This metric has also been used in previous work
(Nguyen, 2018).

Figures 2 and 3 show the results of degradation
scores in different explanation methods, as we in-
crease the number of masked words. We show
only the experimental results on BILSTM using
the AG news and DBpedia and the results on Trans-
former using the other two datasets. The figures
show that our method captures informative words
for the model’s prediction better than traditional
attribution methods. For instance, in IMDB, we see
a steep decline in the curve when removing the top
6% of important words, meaning that the classifier
uses a small percentage of words in IMDB to make
predictions on sentiment classification. We can
also observe that AG news and DBpedia classifiers
use a higher percentage of words for prediction,
compared to IMDB and Kaggle-consumer-finance,
which implies that they employ a larger context to
make a prediction. We arrived at the same conclu-
sion for Transformer tested on DBpedia and AG
news.
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Figure 2: Change of degradation score when words are
masked on the BILSTM.
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4.3.2 Change in log-odds score

In this experiment, we analyze the change in the
model’s probability of the predicted class when
the top u words are masked. Lower log-odds indi-
cate that the masked words are more important in
the model prediction. This metric is also used in
some previous models’ interpretation (Chen et al.,
2018b). The log-odds score is defined as follows:

Log-odds(u) = 1
m

∑m
i=1 log(

p(ŷ|xu)i
p(ŷ|x)i

),

(7)
where p(ŷ|x)i is the probability of the predicted
class when no tokens are deleted in the test sample
i, and p(ŷ|xu)i is the probability of the predicted
class when u words are deleted in the test sample i.
Results are shown in Figure 4 and 5.
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Figure 4: Change of log-odds score when words are masked
on the BILSTM.
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4.3.3 Switching point
The switching point test evaluates the sufficiency
of salient words to conform with the model pre-
diction. Words will be masked according to their
importance score, e.g., first x1, second x2, ..., and
last xn, where x1 is the word with the highest im-
portance for the predicted class based on the LDAV
score and xn is the word with the lowest impor-
tance. For each test, we measure the number of
words that need to be deleted before the prediction
switches to another class (the switching point), nor-
malized by the number of words in the input, as
proposed by (Nguyen, 2018). Our model (LDAV)
employs fewer words for classification on DBpedia
and AG news with the BILSTM architecture, and
on IMDB and Kaggle data with the Transformer
(see Table 4). This means our approach performs
better than post-hoc methods in capturing salient
features.

Transformer BILSTM
Method IMDB Kaggle Method AG news DBpedia
IntGrad 0.17 0.12 IntGrad 0.13 0.27
SHAP 0.26 0.08 SHAP 0.13 0.27

Occlusion 0.24 0.2 Occlusion 0.19 0.38
e-LRP 0.23 0.18 e-LRP 0.23 0.41

Grad*Input 0.23 0.18 Grad*Input 0.23 0.41
LIME 0.21 0.18 LIME 0.21 0.26

Saliency 0.41 0.42 Saliency 0.72 0.64
LDAV 0.11 0.06 LDAV 0.12 0.24

Table 4: The % of words that needs to be deleted to change
the classifier’s prediction. (e.g. 0.11 means 11%.)

4.3.4 Comprehensiveness
Here we use another alternative metric to evalu-
ate our approach, called ERASER (DeYoung et al.,
2019). This metric can be also used to evaluate
faithfulness of the explanation. It measures the
degree to which the words in the explanation in-
fluence the prediction. It provides two different
terms for faithfulness: comprehensiveness and suf-
ficiency. Due to page limits, we report only the
comprehensiveness result here. The comprehen-
siveness evaluates if all tokens needed to make a
prediction are selected. Let fθ denote a deep net-
work using LDAVs and parameterized by θ. A new
input is created x̃ such that x̃ = x − r, where r
is the salient words selected based on the LDAV
score. Let fθ(x)j be the prediction probability of
our model on the input x for class j. The compre-
hensiveness is calculated as fθ(x)j − fθ(x̃)j . A
higher score implies that the removed words are
more influential in the prediction.

Table 5 shows the results of comprehensive-
ness in term of Area Over the Perturbation
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Transformer BILSTM
Method IMDB Kaggle Method AG news DBpedia
IntGrad 0.122 0.008 IntGrad 0.014 0.009
SHAP 0.146 0.01 SHAP 0.011 0.01

Occlusion 0.065 0.01 Occlusion 0.009 0.005
e-LRP 0.081 0.005 e-LRP 0.012 0.005

Grad*Input 0.081 0.005 Grad*Input 0.012 0.005
LIME 0.113 0.007 LIME 0.012 0.028

Saliency 0.008 0.001 Saliency 0.001 0.001
LDAV 0.151 0.011 LDAV 0.0179 0.02

Table 5: Comprehensiveness scores of different explanation
techniques with the Transformer and BILSTM in terms of

AOPC.

Curve (AOPC) scores of different attribution tech-
niques. The comprehensiveness was calculated at
different percentages, 10%, 13%, 16%, 20%, 23%
for (IMDB, Kaggle consumer finance) and
15%, 21%, 28%, 34%, 40% for (DBpedia, AG
news), and the AOPC is reported. Since DBpedia
and AG news employed a larger context in pre-
diction, we used higher percentages for these two
datasets. LDAV outperforms the traditional feature
attribution techniques, achieving the highest scores
in comprehensiveness.

4.4 LDAV for pre-trained transformers
We also show that LDAVs can be used with pre-
trained language transformer models. We evalu-
ate the effectiveness of LDAVs on two datasets:
IMDB and AG news, when a pre-trained model
is used. We use the RoBERTa encoder (Liu et al.,
2019), which is a robustly optimized version of
BERT. We incorporate LDAVs into the RoBERTa
encoder and make the optimization trainable in
an end-to-end fashion by modifying the objective
function to learn LDAVs along with the classifica-
tion task. The hidden layer is fine-tuned for the
downstream classification task. The model was
trained on an NVIDIA GeForce RTX 3070 8 GB
GDDR6. We used two metrics here, degradation
score and comprehensiveness (using different per-
centages 1%, 5%, 10%, 20%, 50%). The results in
Table 6 and Figure 6 show that our method captures
the influential features used by the model in the
pre-trained transformer. For instance, we showed
that removing ∼ 4% of the words can significantly
affect the predictive power of the model.

Random Proposed Random Proposed
IMDB 0.011 0.047 AG news 0.021 0.036

Table 6: Comprehensiveness in terms of AOPC on RoBERTa.

4.5 Natural language inference
We also evaluate our approach on a structured
classification task, i.e., natural language inference
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Figure 6: Degradation score on the RoBERTa model.

(NLI). Given a premise sentence x(p) and a hy-
pothesis sentence x(h), the objective is to predict
their relation ŷ, which can be one of the follow-
ing: {neutral, contradiction, entailment}. We use
the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015) for model training.
The dataset consists of 408, 579 samples for train-
ing and 9, 824 for testing. For building the predic-
tive model, we use the Decomposable Attention
network (DA) (Parikh et al., 2016).

DA+LDAV Similar to other tasks, we create an
LDAV for each of the three classes. During the
training, we update the deep network following our
proposed method. Because we have two inputs
(premise, hypothesis), Equation 2 will be modified
to consider information from both sentences when
learning the LDAVs. We first compute the premise
sentence vector x̂(p) for x(p), and the hypothesis
sentence vector x̂(h) for x(h).

Inspired by the idea of (Conneau et al., 2017), to
extract relations between x̂(p) and x̂(h), we use the
element-wise product. We compute the element-
wise product x̄(p,h) = x̂(p) ∗ x̂(h) and minimize
the cosine distance between x̄(p,h) and the corre-
sponding LDAV vector.

We use element-wise product to encode the in-
teraction between the premise and hypothesis sen-
tences which capture information from both. In
general, it can catch similarities or discrepancies.
The performance of the DA predictor with LDAV
was relatively similar to the original DA achieving
an accuracy of ∼ 84%. To calculate the attribu-
tion score of each word in premise and hypothesis,
we first predict the relation and then use the corre-
sponding LDAV of the predicted class. For instance,
to compute the attribution score for the token x(p)

0

using Equation 5: (1) We find a new vector for the
token defined as x̄(p)

0 = x
(p)
0 ∗x̂(h) so that we could

estimate the attribution score given the hypothesis
sentence, (2) we apply Equation 5 using x̄(p)

0 . We
use the same approach for the hypothesis tokens.
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Result. Results shown in Figure 7 in terms
of degradation score and log-odds demonstrate
the effectiveness of our approach in more struc-
tured/complex tasks such as NLI. LDAV outper-
forms traditional post-hoc explanation methods by
faithfully finding the most salient features used
by the model to predict the relation. Similar to
previous experiments, we have also used the com-
prehensiveness metric on the DA network using
different percentages (10%, 20%, 25%, 30%, 35%)
in Table 7, and showed that our proposed method
has best captured the salient features.
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Figure 7: Change of degradation score and log-odds when
words are masked on the DA network. (SNLI dataset). Lower

values are better.

Method AOPC Method AOPC Metho AOPC Method AOPC
IntGrad 0.136 Grad*Input 0.13 SHAP 0.19 Saliency 0.09
Occlusion 0.13 LIME 0.02 ϵ-LRP 0.13 LDAV 0.34

Table 7: Comprehensiveness in terms of AOPC. For each
method, AOPC is used to evaluate the features identified to be

supportive of predicted relation (positive evidence).

4.6 Ablation study

Loss terms. We conducted an ablation study to
understand the impact of each loss term on model
interpretability. This experiment identifies the min-
imum number of words required to switch the pre-
diction to another class (similar to the experiment
in Table 4). However, here we remove one term
from the optimization objective, and then evaluate
the effectiveness of our method in explaining the
prediction. Results shown in Table 8 demonstrate
the effectiveness of the proposed loss terms. The
values in Table 8 denotes the minimum percentage
of words required to be removed from the input so
that the prediction changes to another class. For in-
stance, 0.63 means we need to remove 63% of the
words in the input to switch the prediction. How-
ever, when we use the proposed LDAV method, we
will only need to remove 23% of the input.

Loss Deletion Loss Deletion Loss Deletion
Remove L2 0.63 Remove L3 0.66 No Removal (LDAV) 0.23

Table 8: Ablation study for the proposed loss terms.

4.7 Qualitative results

Instead of visualizing salient words for qualita-
tive analysis, we take a different approach by
testing the hypothesis. For example, consider
a binary classifier for kidney disease identifica-
tion. A doctor can be interested in understanding
whether or not low blood pressure or the
combination low blood pressure+heart
disease has a high correlation with kidney dis-
ease. This kind of analysis allows users to test
different sets of hypotheses when using a model.
This solution supports the consideration of evaluat-
ing any combination of features without feeding it
to the classifier. Note that a feature can be a single
word or a phrase.

To test a hypothesis, we only require the corre-
sponding LDAV and the embedding vectors of the
string. We can then compute the LDAV score of
the string: a higher score with a specific LDAV vec-
tor indicates that the features within the string are
more salient/discriminative for the model to trigger
prediction of that class. In Table 9, we conduct
a similar analysis on the AG news dataset trained
using a BILSTM. We can see that sentiment
analysis is correlated with the “business news”
class based on the high LDAV score. However,
sentiment classification is correlated with the “sci-
ence/tech” class. Another interesting observation
is that the model encodes the perspective that
corona virus is correlated with “business news” and
“world news,” and the highest contribution goes to
the “business news.” However, corona virus
infection is correlated with the “science/tech”
class, most probably due to the word infection.
The LDAV score for phrases is calculated using the
mean-pooling of the embedding vectors of all the
words.

Sentence world sports business science/tech
Corona virus 0.66 -1.14 1.72 -0.79
Corona virus infection -0.65 -0.73 0.35 1.67
Sentiment classification -0.58 -1.22 0.36 1.42
Sentiment analysis -0.3 -1.49 1.06 -0.79
Table 9: LDAV scores on AG news for hypothesis testing.

4.8 Concept testing

The LDAVs can also help measure whether a neural
network model reflects a specific domain or poten-
tial bias, i.e., whether the classifier is relying on
irrelevant features for making predictions or not.
For instance, our model can measure whether the
sentiment classifier is using positive lexicon words
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as “features” for predicting positive sentiment or
not.

Experiment. We apply a mean-strategy for em-
bedding vectors (i.e. calculating the average of
the embedding vectors) of the positive sentiment
lexicon (Hu and Liu, 2004), in order to get a sin-
gle concept vector. We construct a concept vec-
tor for the negative sentiment lexicon in the same
way. We then use the concept vector to calculate
the LDAV score w.r.t. each class, using already
constructed LDAVs from IMDB. The LDAV of the
positive class has the score of −1 w.r.t. the neg-
ative sentiment lexicon, while it has the score of
1 w.r.t. the positive sentiment lexicon. Similarly,
the LDAV of the negative class has the score of 1
and −1 for the negative sentiment lexicon and the
positive lexicon, respectively. The result shows that
each constructed LDAV from IMDB captures the
positive and negative concepts, respectively.

4.9 How correlated are LDAV vectors?
We have considered whether LDAV vectors are cor-
related with each other or not. Figure 8 shows the
correlation coefficient between LDAVs of classes.
All the negative values between different classes
imply that each learned vector negatively correlates
with others. In conclusion, the model is learning
discriminative features that do not correlate or over-
lap with features from other classes.

(a) AG news. (b) IMDB.
Figure 8: Correlation analysis between LDAVs trained on a

BILSTM.

5 Conclusion and future work

We have presented a method to learn locally dis-
tributed activation vectors (LDAVs) that can be
adapted to faithfully interpret deep network predic-
tions. Our method outperforms traditional post-hoc
techniques in revealing the classifier’s most dis-
criminative features for a given prediction. It also
avoids the often misrepresented trade off between
interpretability against classification accuracy. We

also showed that LDAV can be used for concept test-
ing and importance measure for phrases. Following
this work, we want to extend our approach to other
tasks such as Question answering and Name Entity
Recognition.
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A Average runtime

We evaluate the computation time of each expla-
nation method on two architectures (BILSTM and
Transformer). In Table 10, we compare the average
runtime of 500 samples in seconds. SHAP and Oc-
clusion remain expensive compared to other tech-
niques. LDAV achieves the lowest time ∼ 1e−4

as it only requires feeding the input to the model
followed by calculating the LDAV scores. We used
Tensorflow running on Ubuntu machine with an
Intel Core i7 CPU at 3.60 GHz and Nvidia GPU
with 6GB in memory.

Model Methods DBpedia Model Methods IMDB

BILSTM

IntGrad 8.8

Transformer

IntGrad 9.0
Occlusion 191.4 Occlusion 252.7
SHAP 881.4 SHAP 976.6
ϵ-LRP 1.3 ϵ-LRP 1.5
Grad*Input 1.4 Grad*Input 1.7
Saliency 1.6 Saliecy 1.7
LIME 0.3 LIME 0.4
LDAV 0.0001 LDAV 0.0002

Table 10: Average runtime for each input in seconds on two
architectures: BILSTM (using DBpedia) and Transformer

(using IMDB)

B Analysis of learned representations

To see how well LDAVs capture the semantic differ-
ence between classes, we analyze the change of the
embedding vectors. In other words, we compare
between the embedding vectors without learning
LDAVs and the embedding vectors after learning
LDAVs. To do so, we perform two experiments:
one is to project the average of all word embed-
ding vectors (x̂) in each input without learning
LDAVs into two dimensions using principal com-
ponent analysis (PCA). The other is to project x̂
after learning LDAVs into two dimensions using
PCA. The results of the projections on AG news
and IMDB are shown in Figures 9 - 12.

Figure 9: PCA to two dimensions using x̂ without employing
LDAVs. X-axis and y-axis refer to the principal components

(dataset: AG news, Model:BILSTM).

Figure 10: PCA to two dimensions using x̂ without
employing LDAVs. X-axis and y-axis refer to the principal

components (dataset: IMDB, Model:BILSTM).

LDAVs modify the representations of the embed-
ding layer so that they can explain the classifier
faithfully. Therefore, we expect the embedding
vectors will be changed to better understand the
semantic difference between classes while LDAVs
are learned. As we can observe in Figures 11 and
12, the embedding vectors of the input texts after
LDAVs are learned tend to be clustered collinearly
depending on the predicted class. However, in Fig-
ures 9 and 10, the embedding vectors have not been
clearly clustered when LDAVs are not learned.

Figure 11: PCA to two dimensions using x̂ after employing
LDAVs. x-axis and y-axis refer to the principal components

(dataset: AG news, Model:BILSTM).

Figure 12: PCA to two dimensions using x̂ after employing
LDAVs. x-axis and y-axis refer to the principal components

(dataset: IMDB, Model:BILSTM).

The intuition here is that the optimization ob-
jective with LDAVs (ideally) forces the network to
learn embedding representations where inputs of
different classes are orthogonal, and inputs belong-
ing to the same class are collinear. As a result,
LDAVs can explain the classifier prediction well.

C Performance analysis with respect to
distance metric

In this section, we evaluate the effectiveness of
using cosine distance over Euclidean distance for
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Term 1. We have found that cosine distance works
relatively better and it does not sacrifice the per-
formance of the baseline classifier (see Table 11).
The performance of the baseline classifier is shown
in Table 3 of the main paper. The increased accu-
racy of cosine distance likely results from inherent
normalization during computation and the natural
geometric structure it induces (orthogonality and
collinearity) on the representations of the embed-
dings.

Euclidean distance Cosine distance
Dataset Accuracy F1 score Accuracy F1 score
IMDB 0.73 0.73 0.78 0.78
Kaggle-CF 0.73 0.54 0.79 0.66
AG news 0.86 0.86 0.88 0.88
DBpedia 0.59 0.55 0.94 0.88

Table 11: Comparing distance metric for Term 1 on the
Transformer model.

D Baseline details

Here we describe the baselines used in the evalua-
tion.

Grad*Input is the gradient of the output w.r.t.
the input, followed by multiplying the input with
the gradient.

Integrated Gradient (IntGrad) calculates a path
integral of the model gradient to the input from a
non-informative reference point.

Layer-wise relevant propagation (ϵ−LRP) is
a layer-wise relevance method, which focuses on
redistributing the relevance.

LIME focuses on creating an interpretable clas-
sifier by approximating it locally, with a linear
model.

SHAP employs game theory to estimate feature
attribution.

Saliency uses gradient of the output neuron with
respect to the input.

Occlusion employs perturbation techniques to
learn feature attribution in a post-hoc approach.

E LDAV score

We found that Euclidean distance in LDAV score
(Equation 4 in the main paper) works relatively
better than cosine distance in approximating feature
attribution. The switching points on IMDB using
Euclidean and cosine distances are 9% and 15%
respectively.
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Abstract

We address contextualized code retrieval, the
search for code snippets, helpful to fill gaps in a
partial input program. Our approach facilitates
a large-scale self-supervised contrastive train-
ing by splitting source code randomly into con-
texts and targets. To combat leakage between
the two, we suggest a novel approach based on
mutual identifier masking, dedentation, and the
selection of syntax-aligned targets. Our second
contribution is a new dataset for direct evalu-
ation of contextualized code retrieval, based
on a dataset of manually aligned subpassages
of code clones. Our experiments demonstrate
that the proposed approach improves retrieval
substantially, and yields new state-of-the-art
results for code clone and defect detection.

1 Introduction

AI-supported software development has recently
experienced growing interest (Lu et al., 2021), ad-
dressing various code understanding tasks such as
code auto-completion (Svyatkovskiy et al., 2020),
natural language code search (Husain et al., 2019),
and code clone detection (Svajlenko and Roy,
2015). Our focus is on a related task called con-
textualized code search (Mukherjee et al., 2020;
Dahal et al., 2022): Given an incomplete piece of
code and a certain position of interest (e.g., the cur-
rent cursor position), a retriever searches for code
fragments that are relevant for filling in the missing
piece. This setting aligns well with programmers’
workflow, and differs substantially from the three
tasks mentioned above as follows: (1) In contrast to
natural language code search, contextualized code
search can exploit local code context. (2) While
code generated by autocompletion systems such
as GitHub’s CodEx (Chen et al., 2021) is prone to
subtle programming errors, contextualized search
leaves the developer in charge, and the origin of
a solution remains transparent. (3) In contrast to
clone detection, contextualized code search is not

targeted at semantically similar code but code that
complements the query.

A key challenge with contextualized code search
is that supervised labels for relevant code pas-
sages are missing. Therefore, we bootstrap a self-
supervised learning process by drawing inspira-
tion from Cloze Tasks in natural language process-
ing (Lee et al., 2019): Given a large-scale dataset
containing pieces of code in 16 programming lan-
guages, we erase random blocks. We refer to these
blocks as targets, and to their surrounding as con-
texts. Together, these pairs form samples for con-
trastive learning.

Unfortunately, as Figure 1 shows, this approach
suffers from leakage between context and target, as
the two share (1) common identifiers, (2) a match-
ing indentation level, and (3) in some languages –
if dividing a syntactic primitive such as for-loops –
matching brackets. Retrievers might exploit these
effects and bypass semantic similarity. To this end,
our first contribution is a novel approach towards
self-supervised code retrieval, which avoids the
above bias through de-leaking steps such as mutual
identifier masking and dedentation.

The second challenge we address is evaluation:
So far, the focus of evaluating code retrieval sys-
tems has been on natural language queries (which
can be bootstrapped from docstrings) (Husain et al.,
2019). Contextualized code retrieval has been eval-
uated only indirectly via infilling quality (Lu et al.,
2022; Parvez et al., 2021), which reflects the ac-
tual retrieval quality poorly. Therefore, our sec-
ond contribution is a rigorous evaluation of con-
textualized code retrieval on a manually curated
dataset based on aligned code clones. We call this
dataset COCOS and make it available for future re-
search. On COCOS, we demonstrate that retrieval
quality benefits substantially from our de-leaking
approach. Also, we achieve state-of-the-art results
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import mysql.connector

def totalSalary(id,name):

  connection =   
    mysql.connector.connect(

host=‘localhost’, 
user=‘root’,
database=‘db’)

  cursor = connection.cursor()
  query = ("SELECT wage,bonus 
            FROM employees      

     WHERE emp_no = %s
            AND emp_name = %s")
  cursor.execute(query,   

(id, name))

  row = cursor.fetchone()
  salary,bonus = row

  return salary + bonus

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

  query = ("SELECT wage,bonus 
            FROM employees      

     WHERE emp_no = %s
            AND emp_name = %s")
  cursor.execute(query,   

(id, name))

  row = cursor.fetchone()
  salary,bonus = row

 1
 2
 3
 4
 5
 6
 7
 8
 9

E
ncoder

co
ntrastive

 loss

E
ncode

r

(a) (b) (c) (d)

import mysql.connector

def totalSalary(VAR2,name):

  connection =   
    mysql.connector.connect(

host=‘localhost’, 
user=‘root’,
database=‘db’)

  cursor = connection.cursor()

  return VAR1 + VAR3
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  query = ("SELECT wage,bonus 
            FROM employees      

     WHERE emp_no = %s
            AND emp_name = %s")
  VAR2.execute(query,   

(id, VAR1))

  row = VAR2.fetchone()
  salary,bonus = row
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Figure 1: Our approach bootstraps code pairs for contrastive learning by removing target passages (green) from
random code contexts (gray). To address leakage between the two – which can be due to matching identifiers,
indentation, and brackets – we (a) select the target using the code’s syntactic structure, (b) dedent the target (orange
arrow), and (c) mutually mask identifiers. Finally, we apply contrastive learning on the resulting code pairs (d).

on the related tasks code clone and defect detection
on CodeXGLUE (Lu et al., 2021).1

2 Approach

Given a piece of code as a token sequence
X=x1, . . . , xm, our goal is to boostrap a context-
target pair for contrastive learning. The tar-
get is a subsequence Y=xi, . . . , xi+L with
1≤i≤i+L≤m. By replacing this subsequence
with a special mask token, we obtain the context
X ′=x1, . . . , xi−1, xMASK, xi+L+1, . . . , xm. To
X ′ and Y we prepend a programming-language-
specific CLS token.

To address the above leakages, we suggest three
steps called tree-based span selection (TS), mutual
identifier masking (IM) and dedenting (DE).

Tree-based span selection (TS) To select the tar-
get Y , we utilize X’s concrete syntax tree2, whose
leaves consist of all code tokens. We define the
target Y by masking a random subtree, which en-
sures Y to be a syntactically complete piece and
avoids leakage due to brackets. Specifically, we
first sample the target’s length L from a normal
distribution with µ=150 and σ=90. We then select
a node n covering at most L leaves/tokens and iter-
atively expand the selection, either to n’s parent, or
by adding n’s direct siblings, until reaching the de-
sired size L. Adding siblings allows for multiline
targets spanning several statements.

1We release dataset, code and checkpoints to our experi-
ments under github.com/villmow/coling-cocos

2We use the tree-sitter library for parsing.

Mutual Identifier Masking (IM) Next, we ran-
domly replace identifiers3 inX ′ and Y with special
tokens (VAR1, VAR2, ...), to minimize leakage be-
tween identifiers. To preserve as much lexical infor-
mation as possible, we mask only mutual identifiers
present in both context and target. We hide 90%
of those mutual identifiers randomly either in the
context or in target code. For 5% of context-target
pairs, we omit identifier masking altogether.

Dedenting (DE) Finally, in 90% of the training
samples, we determine the indentation level of the
target Y and dedent it, so that it has indentation
level zero and the retriever cannot bypass seman-
tic similarity by focusing on targets at the same
indentation level.

2.1 Contrastive Training

We encode context code X ′ and target Y with the
same transformer encoder and obtain sequence em-
beddings q,k ∈ Rd, using the encoding of the CLS
token. Following Wang et al. (2021b), we pretrain
the transformer with alternating generation tasks
identifier masking and span prediction4 and use the
pre-trained encoder.

The retriever is then trained by optimizing the
following contrastive InfoNCE loss (van den Oord
et al., 2018) with in-batch negative samples, where

3What is considered an identifier is defined in the grammar
of a tree-sitter parser and varies between programming lan-
guages, i.e. we do not differentiate between variables, method
names or method calls.

4Contrary to Wang et al. (2021b) we omit identifier detec-
tion and instead use our tree-based span selection to generate
large and small spans.
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f is the cosine similarity, K the amount of se-
quences in our batch, and τ=0.1 the temperature.

LΘ = −log exp(f(q,k+)/τ))
∑K−2

i=0 exp(f(q,k−i )/τ))
(1)

To obtain harder negative samples – which have
been found crucial for good retriever training (Ren
et al., 2021) – we form batches only with samples
from the same programming language.

3 Dataset

In this section, we first describe the large-scale
data which our retriever is trained on. Second, we
outline COCOS, a new bechmark we propose for
contextualized code retrieval.

Pre-training Dataset Our self-supervised code
retrieval model is pre-trained on 33M files in 16 pro-
gramming languages (see Appendix A). As code
files tend to be large, we truncate them using tree-
based span selection (cmp. Section 2): Starting
from a whole file, we randomly select sufficiently
large spans of code (length between 150 and 800
tokens). We remove those segments from the orig-
inal file and feed the shortened file as well as all
individual segments as inputs X into the learning
process described in Section 2. A special identifier
(similar to code folding in an IDE) marks those
positions in the original file where segments have
been removed.

COCOS Evaluating contextualized code re-
trieval models is hard because little or no suitable
evaluation data is available to indicate which sub-
blocks in the code implement the same function-
ality. To address this gap, we have created a new
dataset based on BigCloneBench (Svajlenko and
Roy, 2015), a Java code clone dataset that provides
pairs of semantically similar functions. Given a
function in BigCloneBench, we manually select a
sub-passage modeling a particular target functional-
ity (e.g. extracting a zip file). We then label which
lines in the function’s clones match this function-
ality (see Listings 1 - 3 in the appendix). Based
on these targets and their surrounding contexts, we
evaluate how well a model retrieves targets im-
plementing the same functionality in code clones.
We manually gather 606 context-target pairs imple-
menting 31 randomly selected functionalities. Fi-
nally, we add 10k non-relevant disctractor snippets
by randomly sampling top-level statements from
method bodies in CodeSearchNet (Husain et al.,

Model Features MAP NDCG P@1 P@3 P@10

BM25 standard 12.36 43.8 27.89 24.92 17.13
BM25 camel 27.95 57.11 39.44 37.07 33.17

None 15.65 49.85 45.87 37.95 24.77
TS 26.47 59.64 58.09 50.77 36.96
TS, IM 33.78 66.03 69.80 60.95 45.33
TS, DE 36.32 65.94 59.41 54.57 44.39
TS, IM, DE 50.87 76.28 73.60 70.30 59.70

Table 1
Zeroshot code retrieval results for different de-leaking steps
as described in Section 2: Tree-based span selection (TS);
mutual identifier masking (IM); dedenting (DE). We report
non-neural results for BM25 (Jones et al., 2000) using the
Elasticsearch standard tokenizer (standard) and a tokenizer

that splits on camel case (camel).

2019). We call the dataset COCOS (Contextualized
Code Search).

4 Evaluation

We report results for zero-shot code retrieval on
COCOS and for two similar code understanding
tasks from CodeXGlue (Lu et al., 2021), namely
code clone detection and code defect detection. For
all experiments, we report test results of the model
with the highest mean reciprocal rank (MRR) on
30K held-out validation samples of the pre-training
dataset.

4.1 Zero-shot Code Retrieval

We evaluate our models in a zero-shot setting, i.e.
no fine-tuning on COCOS was applied. For each
context all possible targets and the 10k distractor
snippets are ranked, excluding the original target.
To assess the proposed approaches, we compare
variants of our model trained with different de-
leaking steps and Okapi BM25 (Jones et al., 2000)
as non-neural baseline. BM25 is evaluated using
the standard Elasticsearch tokenization and a tok-
enizer splitting on camel case which is more suit-
able for source code. Table 1 reports our ablation
studies showing mean average precision (MAP),
normalized discounted cumulative gain (NDCG)
and precision at k. We found the baseline trained
without de-leaking to retrieve only samples with
similar identifiers but to fail to consistently retrieve
all relevant targets. Using all de-leaking steps sig-
nificantly outperforms all ablations. Figure 2 also
illustrates for a random selection of samples that
our approach forms better clusters for both contexts
and targets in embedding space.

1008



v = Context (Leakage) v = Target (Leakage)

v = Context (No Leakage) v = Target (No Leakage)

Decompress zip archive.
Bubble Sort Array
Setup SGV
Setup SGV Event Handler
Initialize Java Eclipse Project.
Get Prime Factors
Shuffle Array in Place
Load Custom Font
Create Encryption Key Files
Play Sound

Take Screenshot to File
Encrypt To File
Open File in Desktop Application
GCD
Convert Date String Format
Connect to Database
Get MAC Address String
Parse CSV File
Test Palindrome
Write PDF File

Figure 2: t-SNE comparison between the embeddings
of the baseline model with leakage (top) and our model
with leakage reduction steps applied (bottom). It can be
seen that our approach forms better clusters.

4.2 Clone Detection and Defect Detection

We evaluate our model on clone detection on the
POJ-104 dataset (Mou et al., 2016), which con-
sists of C and C++ programs for 104 problems from
an open programming platform (OJ). We follow
the evaluation procedure of CodeXGlue and report
mean average precision (MAP@R) with R=499.

Finally for defect detection we evaluate on the
Devign dataset (Zhou et al., 2019), which con-
sists of vulnerable C functions manually collected
from open source projects. The task is to pre-
dict whether the function is vulnerable. Following
CodeXGlue we report accuracy. Baseline results
for RoBERTa (Liu et al., 2019), CodeBERT (Feng
et al., 2020), code2vec (Alon et al., 2019) and
CoTexT (Phan et al., 2021) are reported in Lu
et al. (2021), results for PLBART (Ahmad et al.,
2021), GraphCodeBERT (Guo et al., 2021), Syn-
CoBERT (Wang et al., 2021a) and CodeT5 (Wang
et al., 2021b) are reproduced from Wang et al.
(2021a) and Wang et al. (2021b). We find that our

Model Clone Defect

MAP@R Accuracy

RoBERTa (code) 76.67 61.05
CodeBERT 82.67 62.08
code2vec 1.98 62.48
PLBART - 63.18
GraphCodeBERT 85.16 63.21
SynCoBERT 88.24 64.50
CodeT5 - 65.78
CoTexT - 66.62

Ours 91.34 69.33

Table 2
Results on code clone and defect detection (POJ-104 and
Devign dataset). We report results from Wang et al. (2021a)

and Wang et al. (2021b).

model outperforms state-of-the-art on both tasks
by a large margin.

5 Related Work

Code Representation Learning Given the suc-
cess of pre-trained language models in NLP, re-
cent work has extended pre-training to program
syntax. Kanade et al. (2020) and Feng et al.
(2020) train a BERT encoder on source code us-
ing masked language modeling. Guo et al. (2021)
propose GraphCodeBERT to incorporate struc-
tural information such as data flow. Besides these
encoder models, other work has pre-trained de-
coders (CodeGPT (Svyatkovskiy et al., 2020),
CugLM (Liu et al., 2020)) or encoder-decoders
(PLBART (Ahmad et al., 2021), CodeT5 (Wang
et al., 2021b)) on pairs of natural language and
program code. SynCoBERT (Wang et al., 2021a)
is trained on various pre-training tasks on multi-
modal data, including code, comment and Abstract
Syntax Tree (AST) representations. Guo et al.
(2022) propose UniXcoder, which takes a similar
approach but employs an encoder-decoder architec-
ture instead of a single encoder.

In most of the above work, multiple modalities
have been applied, e.g. code and natural language
comments. In contrast to contextual code search,
this setup does not come with leakage, which is the
main concern of our work.

Contextualized Code Search retrieves comple-
mentary code, given a code context and some-
times an additional natural language query. Non-
neural approaches include FaCoY (Kim et al.,
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2018), which extends the query with related code
from StackOverFlow, and Siamese (Ragkhitwet-
sagul and Krinke, 2019), which combines mul-
tiple code representations for pure code-to-code
search. Aroma (Luan et al., 2019) clusters can-
didate code and intersects the snippets in each
cluster to recommend likely subsequent code for
a given snippet. Mukherjee et al. (2020) address
the task by decompiling code fragments into a sim-
pler representation called SKETCH (Murali et al.,
2018) to learn a statistical model. The neural ap-
proach SCOTCH (Dahal et al., 2022) finetunes a
CodeBERT model to discover relevant methods for
queries combined with surrounding source code.
None of the above approaches address the issue of
leakage, either because they are non-neural (FaCoY,
Siamese, Aroma), or leakage is neglected because
the respective approach operates on method level
(SCOTCH).

The issue of leakage in code search has only
been scarcely studied before: Jain et al. (2021) pro-
pose ContraCode, a contrastive neural model that
allows to retrieve code clones. To generate sam-
ples for contrastive learning, they augment code
snippets using compiler-based semantic-preserving
code transformations. Lu et al. (2022) propose
ReACC, which uses partial code as search query
in the context of retrieval-augmented code comple-
tion. To combat leakage, they insert dead code and
rename variables. Compared to these approaches,
our steps towards leakage reduction are much sim-
pler. UniXcoder (Guo et al., 2022) pre-trains code
representations using a variety of tasks, including
contrastive learning. A positive sample pair is gen-
erated by running the same code piece through a
transformer under dropout, which is a known trick
for natural language (Gao et al., 2021) and can be
seen as a simple form of de-leaking. Note that –
since all our transformer encoders apply dropout
during training – this mechanism applies for all
models in our study too.

6 Conclusion

We have proposed a new approach towards unsu-
pervised code retrieval, which reduces leakage be-
tween randomly drawn targets and their contexts.
We also contribute a dataset COCOS, on which we
demonstrate via ablations that leakage reduction is
crucial for an efficient training. Our approach also
yields competitive representations for related tasks,
as demonstrated by new state-of-the-art results on

clone and defect detection. An interesting future
direction will be to combine our retriever with gen-
erators for a combined, unsupervised training.
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A Pre-training Dataset Details

We crawl 237k active GitHub repositories with
more than 10 stars5 and perform per file dedupli-
cation. We keep files in programming languages
for which a tree-sitter parser is available (16 lan-
guages). The resulting dataset is shown in Table 3
and consists of ≈ 33M code files in 16 program-
ming languages. We select 570 repositories for
validation.

Language Training Valid Total

Java 7,345,753 8,434 7,354,187
JavaScript 4,471,689 14,134 4,485,823
C++ 3,734,357 1,698 3,736,055
Python 3,016,545 4,718 3,021,263
C# 2,843,642 570 2,844,212
TypeScript 2,299,964 2,392 2,302,356
C 2,242,379 781 2,243,160
PHP 2,206,063 4,648 2,210,711
Go 1,759,600 129 1,759,729
Ruby 1,068,668 3,397 1,072,065
Rust 366,891 54 366,945
CSS 349,525 2,579 352,104
Scala 273,822 1,198 275,020
Haskell 114,311 177 114,488
OCaml 55,838 0 55,838
Julia 34,403 29 34,432

Table 3
Number of files in unsupervised pre-training dataset.

B Training Details

On all models and tasks we use the AdamW op-
timizer and linearly increase the learning rate for
10% of the training steps, along with a polynomial
decay for the remaining steps. We train our unsu-
pervised models for 500k steps on a single A6000
GPU, with a peak learning rate of 0.0001 and use a
dynamic batch size so that batches contain around
7000 tokens.

For clone and defect detection we fine-tune our
model on the respective training set. Following
Wang et al. (2021b) we run a brief sweep over
learning rate, batch size and number of epochs and
report results of the model with highest validation
score, using the published evaluation code. We
release our code including precise hyperparameter
configs under github.com/villmow/coling-cocos.

5We consider a repository as active if there has been a pull
request between 04/21 and 09/21.
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public boolean extract(File f, String folder) {
Enumeration entries;
ZipFile zipFile;
try {

zipFile = new ZipFile(f);
entries = zipFile.getEntries();
[MASK]
zipFile.close();

} catch (IOException ioe) {
this.errMsg = ioe.getMessage();
Malgn.errorLog(

"{Zip.unzip} " + ioe.getMessage()
);
return false;

}
return true;

}

Listing 1: Incomplete and masked query X ′ from our
COCOS dataset. The [MASK] token denotes the current
position of interest (cursor). Code that extracts elements
from a zip file needs to be found.

while (entries.hasMoreElements()) {
ZipArchiveEntry entry =

(ZipArchiveEntry) entries.nextElement();
if (entry == null) continue;
String path = folder + "/"

+ entry.getName().replace('\\', '/');
if (!entry.isDirectory()) {

File destFile = new File(path);
String parent = destFile.getParent();
if (parent != null) {

File parentFile = new File(parent);
if (!parentFile.exists()) {

parentFile.mkdirs();
}

}
copyInputStream(

zipFile.getInputStream(entry),
new BufferedOutputStream(

new FileOutputStream(destFile)
)

);
}

}

Listing 2: The masked section Y manually selected
from X (Listing 1). It has been re-formatted for better
readability. Note that we omit Y from the result list for
query X during evaluation.

ArchiveEntry ae = zis.getNextEntry();
while(ae != null) {

//Resolve new file
File newFile = new File(

outputdir + File.separator + ae.getName()
);

//Create parent directories if not exists
if(!newFile.getParentFile().exists())

newFile.getParentFile().mkdirs();

if(ae.isDirectory()) { //create if not exists
if(!newFile.exists())

newFile.mkdir();
} else { //If file, write file

FileOutputStream fos = new FileOutputStream(
newFile);

int len;
while((len = zis.read(buffer)) > 0) {

fos.write(buffer, 0, len);
}
fos.close();

}

//Proceed to the next entry in the zip file
ae = zis.getNextEntry();

}

Listing 3: Possible solution, that implements the same
functionality as target in Listing 2.
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Abstract
We present a biomedical knowledge enhanced
pre-trained language model for medicinal prod-
uct vertical search. Following ELECTRA’s
replaced token detection (RTD) pre-training,
we leverage biomedical entity masking (EM)
strategy to learn better contextual word repre-
sentations. Furthermore, we propose a novel
pre-training task, product attribute prediction
(PAP), to inject product knowledge into the
pre-trained language model efficiently by lever-
aging medicinal product databases directly. By
sharing the parameters of PAP’s transformer
encoder with that of RTD’s main transformer,
these two pre-training tasks are jointly learned.
Experiments demonstrate the effectiveness of
PAP task for pre-trained language model on
medicinal product vertical search scenario,
which includes query-title relevance, query in-
tent classification, and named entity recogni-
tion in query.

1 Introduction

Pre-trained language models (PLMs) have signif-
icantly improved the performance of various nat-
ural language processing (NLP) tasks in the re-
cent years. It is now a common practice to adapt
the pretrain-then-finetune approach in NLP. PLMs
such as BERT (Devlin et al., 2019) and ELEC-
TRA (Clark et al., 2020) capturing word meaning
through self-supervised learning from large corpus
have shown a significant improvement on various
text mining tasks. In the biomedical domain, many
BERT variants such as BioBERT (Lee et al., 2020),
SciBERT (Beltagy et al., 2019), PubMedBERT (Gu
et al., 2021) and BioMedBERT (Chakraborty et al.,
2020), follow either continual pre-training or pre-
training from scratch approach using domain spe-
cific corpora to further improve the model perfor-
mance.

Our motivation is to apply powerful pre-trained
language models on medicinal product vertical
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search engine to solve query understanding and
query title relevance tasks. Most of the models
trained on either the general corpus or the medical
literature corpus lack medicinal product knowledge.
For the product vertical search scenario, medici-
nal product information is usually stored in struc-
tured relational database tables, and traditional pre-
trained language models focus on natural language
text in the form of sentences without considering
the semantic relationship modeling of structured
text in the product information tables. From the
perspective of users’ search habits, in addition to
searching directly for the medicine name, users also
often search for disease, symptoms and other im-
portant proudct attribute words to find the medicine.
Therefore, we propose a novel pre-training task
called product attribute prediction (PAP). Although
we could carefully craft a medicinal product knowl-
edge graph from product databases and then try to
inject the extracted explicit knowledge graph into
the pre-trained language model, we argue that the
procedure of building product knowledge graph is
laborious but avoidable by training the language
model directly on product structural information.

In this paper, we propose a novel ELEC-
TRA(Clark et al., 2020) based biomedical knowl-
edge enhanced pre-trained language model. It con-
sists of two pre-training tasks: replaced token detec-
tion and product attribute prediction. Our approach
is inspired by ELECTRA and TransE(Bordes et al.,
2013) methods but distinguish itself in two promi-
nent ways. Firstly, we use entity masking strat-
egy for biomedical text instead of only masking
random tokens. Text spans of biomedical named
entities are masked dynamically before each train-
ing iteration. We let the model predict whether
these terms are replaced to incorporate biomedical
domain knowledge. Secondly, we utilize medic-
inal product textual information instead of node
identifiers in product knowledge graphs, to further
bring rich medicinal product knowledge into the
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pre-trained language model. The triples (product
title, attribute name, attribute values), which can
be easily drawn from medicinal product databases,
are all encoded and then used in the contrastive
loss of PAP pre-training task to capture product
knowledge.

Our main contributions can be summarized as
follows: 1) We augment ELECTRA’s replaced
token detection pre-training task by leveraging
biomedical entities masking (EM) to learn better
contextual word representation; 2) We propose a
novel pre-training task, product attribute predic-
tion (PAP), which can inject medicinal product
knowledge into the pre-trained language model
by exploiting medicinal product databases directly.
The proposed pre-training task is also applicable
to vertical search scenarios for products in general,
not limited to medicinal products; and 3) We have
demonstrated the effectiveness of PAP pre-training
task for PLMs in medicinal product vertical search
scenario.1

2 Related Work

2.1 Pre-trained Language Model

Recently pre-trained language models have domi-
nated many NLP tasks by pre-training on a large
corpus of text followed by fine-tuning on a spe-
cific task. ELMo (Peters et al., 2018) learns the
contextual representations based on a bidirectional
language model (biLM) with forward and back-
ward LSTM layers. GPT (Radford et al., 2018)
as an effective pre-trained generative model pre-
dicts the next token based on the left-hand side
context by adapting the transformer. GPT-2 (Rad-
ford et al., 2019) brings task information to the pre-
training process and adopt the model to zero-shot
tasks. GPT-3 (Brown et al., 2020) further improves
task-agnostic, few-shot performance and produce
human-like texts. BERT (Devlin et al., 2019)
presents a bi-directional LM to predict the masked
tokens and demonstrates strong performance on a
wide range of NLP benchmarks. RoBERTa (Liu
et al., 2019) shows that more careful parameter tun-
ing on more data can benefit PLMs. ALBERT (Lan
et al., 2019) uses weight sharing and embedding
factorization to reduce memory consumption and
improve training speed. XLNet (Yang et al., 2019)
as a permutation language model predicts masked
tokens in a permuted order in a auto-regressive way.

1Our code and models are publicly available on Github:
https://github.com/liuks/ep_plm

T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020a) adopts denoising sequence-to-sequence pre-
training method. ELECTRA (Clark et al., 2020)
introduce a more sample-efficient pre-training task
called replaced token detection, which is replacing
some tokens with plausible alternatives and pre-
dicting whether each token was replaced or not.
MacBERT (Cui et al., 2020) adopts MLM as cor-
rection (Mac) and achieve state-of-the-art perfor-
mances on several Chinese NLP tasks.

2.2 Knowledge Enhanced and Domain
Specific Pre-trained Language Model

ERNIE (Zhang et al., 2019b) utilize pre-processed
knowledge embeddings of entity mentions in text.
KnowBert (Peters et al., 2019) uses retrieved rel-
evant entity embeddings and word-to-entity atten-
tion to update contextual word representations. K-
ADAPTER (Wang et al., 2021b) integrates knowl-
edge into PLM with neural adapters. E-BERT
(Poerner et al., 2020) adds aligned entity embed-
dings into BERT without additional pre-training.
Joint representation learning of words and enti-
ties (Zhang et al., 2019a, 2021) leverage external
Knowledge Graphs. BioBERT (Lee et al., 2020)
is pre-trained on PubMed and PubMed Central
articles. SciBERT (Beltagy et al., 2019), Pub-
MedBERT (Gu et al., 2021) and Bio-LM (Lewis
et al., 2020b) have shown that pre-training from
scratch with domain-specific data can improve per-
formance. KeBioLM (Yuan et al., 2021) and Umls-
BERT (Michalopoulos et al., 2021) leverage UMLS
knowledge bases during the pre-training. Domain
specific pre-training (Wang et al., 2021d) has also
been employed for biomedical literature search
problems. Moreover, (Wang et al., 2021a) gives a
systematic survey for biomedical domain PLMs.

For Chinese medical text mining, MC-BERT
(Zhang et al., 2020) introduces a conceptual-
ized representation learning approach for Chinese
biomedical corpora and a Chinese Biomedical
Language Understanding Evaluation benchmark
(ChineseBLUE). EMBERT (Cai et al., 2021) is
an entity-level knowledge-enhanced pre-trained
language model, which leverages several distinct
self-supervised tasks. BioHanBERT (Wang et al.,
2021c), as a hanzi-aware PLM, utilizes component-
level internal semantic information of Chinese char-
acters to enhance the semantics of Chinese biomed-
ical concepts and terminologies.
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Figure 1: The overview of our pre-training model architecture. The auxiliary transformer is pre-trained by masked
language model with biomedical entity masking. The corrupted text is then used as the main transformer’s input in
replaced token detection task. The same main transformer encodes medicinal product title, attribute name, attribute
value and phrase level negative sampled attribute value, respectively. These encoded embeddings are then used in
product attribute prediction task.

3 Method

To augment the pre-trained language model with
biomedical domain knowledge, we follow ELEC-
TRA’s replaced token detection (RTD) pre-training
task on general domain and biomedical specific
corpora, and further introduce dynamic biomedi-
cal entity word masking to learn better contextual
word representations. Although it is possible to
use other pre-training tasks such as the masked
token prediction in BERT, we chose the ELEC-
TRA’s pre-training task due to the sample efficiency
of the RTD task and the comparable performance
of ELECTRA-Base and BERT-large models(Clark
et al., 2020). For better application to the vertical
search scenario of medicinal product search, it is
desirable that the pre-trained language model con-
tains product-related knowledge. Considering that
important product attributes such as drug names,
diseases and symptoms are common search terms
and the structured information of products also
contains these terms, so we propose the product
attribute prediction pre-training task to model the
semantic relationships of product attributes.

As shown in Figure 1, our approach consists of
two pre-training tasks: replaced token detection
and product attribute prediction.

3.1 Replaced Token Detection with
Biomedical Entity Masking

Given an input text sequence x = (x1, x2, . . . , xm)
with m tokens, a text span sequence s =

(s1, s2, . . . , sn) with n span units is produced by
applying Chinese word segment and biomedical
name entity recognition. These text span units
are then randomly replaced with an equal length
[MASK] tokens to create xmask with about 15%
tokens masked out, e.g. selecting sj and replacing
every token xi for xi ∈ sj with the [MASK] token.

The masked sequence xmask is then input to
the auxiliary transformer (generator) to produce
a corrupt sequence xcorrupt by sampling new to-
kens according to x̂i ∼ pG(xi|xmask) for i in all
masked positions. Comparing the original text
and the corrupt text gives the supervisory sig-
nal label sequence L = (l1, l2, . . . , lm), where
li = 1(xi, x

corrupt
i ). The main transformer (dis-

criminator) predicts whether tokens are replaced
or not. For replaced token detection task, the loss
function is:

LRTD = −
∑

x

(
log pG(x

corrupt|xmask)

+λ log pD(x
corrupt, x)

) (1)

where pG is generating token probability for
masked-out positions in the generator network; pD
is replaced probability for all position tokens in the
discriminator network; λ is the hyperparameter for
balancing these two network losses.

Different from whole word masking with Word-
Piece in BERT, we not only randomly mask whole
words but also biomedical entities including drug
name, chemical name, disease, syndrome, effi-
cacy words and so on, which can explicitly inject
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biomedical domain knowledge to the pre-trained
language model.

3.2 Product Attribute Prediction Task

Let t, n, v be a medicinal product title, attribute
name and attribute value respectively. We encode
the text description of product tile t, attribute name
n and attribute value v using the same main trans-
former (encoder) E to obtain text representations.
Inspired by the TransE (Bordes et al., 2013) and
RotateE (Sun et al., 2019) models, we define the
distance function of the triples according to Equa-
tion (2) and PAP loss function according to Equa-
tion (3) to push the projection of concatenated title
and attribute name representation E(t ⊕ n) near
that of attribute value representation E(v) but far
away from negative sampled attribute value rep-
resentation E(v′). The projection denoted as f
is implemented as a feed forward neural network
layer.

d(t, n, v) = ∥f(E(t⊕ n))− f(E(v))∥ (2)

LPAP =− log σ(γ − d(t, n, v))

−
∑

v′

1

k
log σ(d(t, n, v′)− γ) (3)

where γ > 0 is a margin hyperparameter; σ is the
sigmoid function; v′ denotes the negative randomly
sampled attribute value; k is the number of nega-
tive values v′ in the summation, and is chosen to be
twice the number of the positive attribute values. It
is worth noting that the representation of E(t⊕ n)
can be broadcast across all corresponding positive
attribute value v and negative ones v′ to acceler-
ate computing in the implementation, because a
medicinal product usually contains only one title
and multiple attribute names, each of which corre-
sponds multiple attribute values.

For example, given a medicinal product with
title (Sanjiu Medical & Pharmaceutical Cold Rem-
edy Granules), we firstly draw the attribute name
(syndrome) and corresponding attribute values
(headache, fever, nasal congestion and runny nose)
from product database. Then we randomly sam-
ple negative values (stomachache, lumbar strain)
for the given syndrome attribute. Intuitively, we
would like the name of the medicine to be seman-
tically closer to the corresponding indication of
the medicine and more semantically distant from
the random chosen indications. In addition, most
queries in the medicinal product vertical search

usually come from product titles and attribute val-
ues, so it is beneficial to model the semantic rela-
tionships between these terms using the PAP pre-
training task.

Thanks to PAP contrastive loss, the semantic re-
lations of product attributes and the original medic-
inal product title, which usually contains brand,
drug name, ingredients, etc., is explicitly learned.
Thus, we can inject medicinal product knowledge
into the pre-trained language model.

3.3 Multi-task Pre-training
We pre-train the model from scratch using general
and biomedical domain corpora for RTD task and
medicinal product datasets for PAP task, see Equa-
tion (4).

L = LRTD + LPAP (4)

We train the model parameters by repeatedly
switching back and forth between RTD and PAP
tasks. The hyper parameter ρ denotes the proba-
bility of selecting the PAP task training batch at
each gradient descent iteration. The overall training
procedure is shown in Algorithm 1.

Algorithm 1 Overall Training Procedure
1: Initialize model parameters randomly.
2: Mark biomedical entity boundaries for the gen-

eral and biomedical domain corpora.
3: Collect triples (product title, attribute name, at-

tribute value) from medicinal product database.
4: while needing more training steps do
5: Select a training batch from RTD and PAP

tasks randomly
6: if the training batch is from RTD task then
7: Sample tokens for randomly masked

word spans using the auxiliary transformer.
8: Calculate RDT task loss using the main

transformer according to Equation (1) and up-
date model parameters.

9: else ▷ for PAP task
10: Sample negative attribute values ran-

domly for each product title and attribute name
pair.

11: Calculate PAP task loss using the same
main transformer according to Equation (2)
and (3) and update model parameters.

4 Experiments and Results

To demonstrate the effectiveness of the PAP pre-
training task, we train the pre-trained language
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Dataset #Sen #Tok

Wikipedia 0.5M 0.4B
News Articles 1M 2B
Package Insert of Drugs† 8K 0.9M
Medical Encyclopedia† 9K 1M
Biomedical Community QA† 39M 8B

Table 1: Statistics of pre-training corpus. Datasets with
dagger symbols indicate that they are from the biomedi-
cal domain. Other datasets are from general domain.

model from scratch, first on the general corpus and
biomedical domain corpus shown in Table 1 using
only the RTD task with biomedical entity mask-
ing, and then adding the PAP task on the medicinal
product dataset shown in Table 2. The reason that
we use pre-training from scratch strategy instead of
parameter initialization from other existing PLMs
to continue pre-training is to exclude the influence
caused by different datasets.

Therefore, we first train a base-size model
(ELECTRA+EM) on the general and biomedical
domain datasets in Table 1 as a strong baseline
and compare it with other Chinese PLM models.
Then we train another base-size model (ELEC-
TRA+EM+PAP) on the common datasets in Table 1
and the medicinal product dataset in Table 2 and
do ablation experiments to verify the effectiveness
of the PAP pre-training task.

4.1 Pre-training Datasets
We collect general and biomedical domain specific
Chinese corpus, as shown in Table 1. The general
domain corpus consists of the Chinese Wikipedia
dataset and Chinese News Articles dataset, which
are publicly available from NLP Chinese Corpus
(Xu, 2019). The biomedical domain specific Chi-
nese corpus consists of Package Insert of Drugs,
Medical Encyclopedia and Biomedical Community
QA, which are from Shenma Search Engine2. As
shown in Table 2, We construct (product title, at-
tribute name, attribute value) dataset from vertical
search medicinal product database.

4.2 Evaluation Datasets
For the ELECTRA+EM model, we use Chinese
Biomedical Language Understanding Evaluation
benchmark (ChineseBLUE) (Zhang et al., 2020)
to demonstrate the benefits of its in-domain pre-
training. The benchmark contains a variety of

2http://m.sm.cn/

Medicinal Product dataset #

Product Titles 29K
Product Attribute Categories 2
Product Attribute Values 191K
Product Attribute Values per Title 6.5

Table 2: Statistics of medicinal product dataset

Dataset Train Dev Test

QTRel-easy 9,303 1,000 1,000
QTRel-hard 8,941 1,000 1,000
QIC 34,929 13,234 13,234
QNER 135,411 14,047 14,047

Table 3: Statistics of PAP evaluation benchmark for
medicinal product search.

NLP tasks: cEHRNER and cMedQANER are two
named entity recognition tasks; cMedQQ is a para-
phrase identification task to determine whether two
sentences have the same meaning; cMedQA and
cMedQNLI are two question answering tasks that
can be approximated as a ranking of candidate an-
swer sentences based on their similarity; cMedIR is
a ranking task that retrieves the most relevant docu-
ments for a given search query; cMedIC is an intent
classification task that assigns three types of labels
to query terms with no intention, weak intention,
and firm intention; cMedTC is a text classification
task that assigns multiple labels to biomedical texts.
Further details about these datasets can be found in
(Zhang et al., 2020).

For the ELECTRA+EM+PAP model, we con-
struct a benchmark containing four NLP tasks from
our medicinal product vertical search scenario to
validate the advantage of PAP pre-training task
compared to ELECTRA+EM model. As shown
in Table 3, the benchmark contains four datasets:
QTRel-easy and QTRel-hard are two query-title
relevance tasks, where the “hard” part in dataset
name means that none of the query terms appear
in the corresponding medicinal product title and
the “easy” dataset does not have this constraint;
QIC is a query intention classification task which
assigns 22 different types of labels to queries, in-
cluding medicine name, disease, symptom, inquiry,
etc. QNER is a named entity recognition in query
task with 28 total entity types, such as brands, main
ingredients of drugs, dosage forms, etc.
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4.2.1 Parameter Settings
To compare with ELECTRA and other baseline
models, we leverage the same model settings of the
transformer as ELECTRA. Both ELECTRA+EM
and ELECTRA+EM+PAP use the base version
of ELECTRA, which contains 12 layers, 12 self-
attention heads, and 768-dimensional of hidden
size for the discriminator network and 1/3 genera-
tor size.

For ELECTRA+EM, we set the initial learning
rate as 2e-4, batch size as 128, maximum sequence
length as 128, training steps as 420M. For ELEC-
TRA+EM+PAP, we use the same learning rate and
maximum sequence length, but set batch size as
16, training steps as 3400M. For the optimizer, we
use the same setting with ELECTRA, both in pre-
training and fine-tuning steps.

4.3 Results

4.3.1 ELECTRA+EM
For the ELECTRA+EM model, we compare it
with several typical Chinese general and biomedi-
cal domain PLM baselines, namely BERT-Base3,
ELECTRA-Base4 (Cui et al., 2020), MC-BERT5

(Zhang et al., 2020), EMBERT (Cai et al., 2021)
and BioHanBERT (Wang et al., 2021c).

For BERT-Base, ELECTRA-Base and our
ELECTRA+EM, we run the finetuning 5 times
for each downstream task and report the results in
average/maximum metric format. For MC-BERT,
EMBERT and BioHanBERT, we directly cite the
results from the corresponding papers. The eval-
uation metric of all ChineseBLUE datasets is F1
score except the cMedIR dataset whose metric is
PAIR score.

As shown in Table 4, ELECTRA+EM achieves
comparable performance compared to other base-
line and state-of-the-art methods. The comparison
also demonstrates the benefits of in-domain pre-
training from scratch. We can therefore use ELEC-
TRA+EM as a very strong baseline model to verify
the effectiveness of PAP pre-training task.

4.3.2 ELECTRA+EM+PAP
We also run the finetuning 5 times for each
downstream task and report the results in aver-

3https://github.com/google-research/
bert

4https://github.com/ymcui/
Chinese-ELECTRA

5https://github.com/alibaba-research/
ChineseBLUE

age/maximum metric format for PAP evaluation
benchmark.

As shown in Tables 5, ELECTRA+EM+PAP
outperforms ELECTRA-Base significantly on all
four tasks. There may be two reasons for these
large improvements. Firstly, medicinal product
titles and queries in the benchmark usually consist
of brand, disease, symptom words and phrases,
which are also abundant in PAP pre-training task
datasets. Secondly, PAP pre-training task leverages
the semantic relation of product titles and attributes
to obtain better word representations.

Hyperparamter Since ELECTRA+EM+PAP
adopts a multi-task pre-training framework, it is
necessary to tune the hyperparameter ρ, the prob-
ability of selecting PAP task while training. We
search for the best ρ out of [1%, 5%, 10%, 15%].
For the margin hyperparameter γ in PAP loss, we
search the best out of [2, 4, 6, 8]. We find the combi-
nation of γ = 4, ρ = 5% works best. Since results
are more insensitive to the hyperparameter γ, we
fix γ = 4 and then plot the effect of the hyperpa-
rameter ρ on results, as is shown in Figure 2.

Ablation Study As shown in Table 5, the method
without PAP pre-training task, ELECTRA+EM,
has worse performance than ELECTRA+EM+PAP.
This is reasonable because the product knowledge
learned by PAP pre-training task is beneficial for
medicinal product search.

It is interesting that on average the performance
degradation in terms of F1 score is much larger for
QTRel-hard task than QTRel-easy, QIC and QNER
tasks. We hypothesize that biomedical entity se-
mantics, which plays a crucial role in QIC and
QNER tasks, can be largely captured by biomedical
entity masking in RTD task. The PAP pre-training
task may be more beneficial for product related
concept complex interaction understanding task,
such as QTRel-hard dataset.

Case Study As shown in Table 6, We com-
pare ELECTRA+EM+PAP and ELECTRA-Base
on QTRel-hard task for a given query “中耳炎”
(“tympanitis”). The first two column scores are
the predicted probabilities that the given query-title
pair is relevant. The label +/- indicates whether the
query-title pair is relevant or not in real. Base on
their package inserts, the indications of cefixime
and azithromycin tablets include tympanitis, while
mosapride citrate is not suitable for treating tym-
panitis. ELECTRA+EM+PAP scores align more
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Model cEHRNER cMedQANER cMedQQ cMedQA
MC-BERT 90.0 88.1 87.5 82.3
BioHanBERT(10K) 90.51 - 86.46 96.53
BioHanBERT(20K) 91.67 - 87.14 96.37
BioHanBERT(30K) 91.83 - 86.26 96.36
BioHanBERT(40K) 90.44 - 87.18 96.49
BioHanBERT(50K) 90.91 - 87.86 96.65
EMBERT♣ - 84.49 87.59 75.10
EMBERT♠ - 85.02 88.06 75.32
BERT-Base 90.19/90.50 85.05/85.29 87.06/87.43 96.03/96.09
ELECTRA-Base 91.63/92.17 86.37/86.81 87.27/87.46 95.60/95.90
ELECTRA+EM 92.10/92.85 88.18/88.53 87.56/87.89 96.55/96.78
Model cMedQNLI cMedIR cMedIC cMedTC
MC-BERT 95.5 2.04 87.5 82.1
BioHanBERT(10K) 95.86 - 90.48 81.78
BioHanBERT(20K) 95.59 - 96.43 83.67
BioHanBERT(30K) 95.72 - 83.33 83.00
BioHanBERT(40K) 95.50 - 90.48 82.72
BioHanBERT(50K) 95.78 - 86.90 83.06
EMBERT♣ 96.50 - - -
EMBERT♠ 96.59 - - -
BERT-Base 96.05/96.11 3.03/3.07 92.43/92.89 82.99/83.78
ELECTRA-Base 95.42/95.55 3.41/3.49 90.61/92.31 83.43/83.78
ELECTRA+EM 96.66/96.78 3.64/3.71 92.48/93.26 83.73/84.00

Table 4: Experimental results on ChineseBLUE test datasets. For the BioHanBERT model, the number in parentheses
indicates the number of steps in the training step. For the EMBERT model, ♣ and ♠ indicate it is initialized by
BERT-Base and MC-BERT, respectively.

Model QTRel-easy QTRel-hard QIC QNER

ELECTRA-Base 98.20/98.51 81.90/82.80 81.37/82.06 82.53/82.78
ELECTRA+EM+PAP 98.67/98.95 84.88/85.86 86.90/87.26 88.28/88.72
ELECTRA+EM 98.44/98.66 82.90/83.46 86.58/87.11 88.03/88.35
Average Drop w/o PAP -0.23 -1.98 -0.32 -0.25

Table 5: Experimental results on PAP evaluation benchmark for medicinal product search.

ELECTRA
-base

ELECTRA
+EM+PAP

Label Product Title

0.62 0.88 +
999头孢克肟片 0.1g*7片/盒

999 Cefixime Tablets 0.1g*7tablets/box

0.49 0.87 +
999阿奇霉素片 0.25g*6片/盒

999 Azithromycin Tablets 0.25g*6tablets/box

0.93 0.42 -
信谊美唯宁枸橼酸莫沙必利胶囊 5mg*24粒

SINE MeiWeiNing Mosapride Citrate Capsules 5mg*24

Table 6: Examples of query-title relevance scores on QTRel-hard task for the query “tympanitis”.
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Figure 2: Hyperparameter tuning for ρ (when γ = 4) on PAP evaluation benchmark for medicinal product search.

closely with labels than ELECTRA-Base. For the
first example, ELECTRA+EM+PAP is more con-
fident about the relevance of “cefixime tablets”
and “tympanitis” than ELECTRA-Base. When
a threshold probability of 0.5 is applied, ELEC-
TRA+EM+PAP succeeds in classifying the last two
examples, while ELECTRA-Base fails.

5 Discussion

As mentioned in Section 3, other self-supervised
learning tasks for language models could be learned
together with the PAP pre-training task. We only
explore the combination of ELECTRA’s RTD and
PAP for joint training. Due to limited computa-
tional resources, we could not push the model to
larger sizes. These may prevent the full potential
of PAP pre-training task from being unleashed.

For vertical search applications, PAP pre-
training task is also applicable to other product
searches. For example, based on movie struc-
tured information such as movie title, genre and
story type, it is feasible to use PAP task to model
the semantic relationships between these movie
attributes. In the study of product knowledge en-

hanced language models, comparing the way PAP
uses product structured information with the graph
embedding approach based on product knowledge
graphs may be an interesting research problem for
the future.

6 Conclusion

In this article, we propose a biomedical knowledge
enhanced pre-trained language model for medicinal
product vertical search. We improve ELECTRA’s
replaced token detection pre-training task with
biomedical entity masking (EM). Then we present
a novel pre-training task, product attribute predic-
tion (PAP), to incorporate medicinal product knowl-
edge into the PLM. We train ELECTRA+EM and
ELECTRA+EM+PAP two biomedical knowledge
enhanced pre-trained language models to demon-
strate the effectiveness of PAP pre-training task for
medicinal product vertical search. Our work may
shed some light on combining the powerful pre-
trained language models with product knowledge
for vertical search scenarios.
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Abstract

Fact-checking has gained increasing attention
due to the widespread of falsified information.
Most fact-checking approaches focus on claims
made in English only due to the data scarcity
issue in other languages. The lack of fact-
checking datasets in low-resource languages
calls for an effective cross-lingual transfer tech-
nique for fact-checking. Additionally, trustwor-
thy information in different languages can be
complementary and helpful in verifying facts.
To this end, we present the first fact-checking
framework augmented with cross-lingual re-
trieval that aggregates evidence retrieved from
multiple languages through a cross-lingual re-
triever. Given the absence of cross-lingual
information retrieval datasets with claim-like
queries, we train the retriever with our proposed
Cross-lingual Inverse Cloze Task (X-ICT), a
self-supervised algorithm that creates training
instances by translating the title of a passage.
The goal for X-ICT is to learn cross-lingual
retrieval in which the model learns to identify
the passage corresponding to a given translated
title. On the X-FACT dataset, our approach
achieves 2.23% absolute F1 improvement in
the zero-shot cross-lingual setup over prior
systems. The source code and data are pub-
licly available at https://github.com/
khuangaf/CONCRETE.

1 Introduction

Fact-checking is an important task that assesses the
veracity of a claim. This task has gained increas-
ing attention due to the widespread mis- and dis-
information that has a significant socioeconomic
impact on our society (Scheufele and Krause, 2019;
Pate et al., 2019; Fung et al., 2021; Guo et al.,
2022; Wu et al., 2022; Fung et al., 2022; Huang
et al., 2022). While fact-checking is mainly con-
ducted manually, especially in the journalism indus-
try, with more than hundred of millions of social
media posts and millions of blog posts published
per day (Hoang and Mothe, 2018; Djuraskovic,

2022), manual fact-checking is no longer feasible.
Hence, we are urgently in need of reliable auto-
mated fact-checking approaches.

Most existing work develops fact-checking ap-
proaches on English-only corpus (Wang, 2017;
Thorne et al., 2018; Augenstein et al., 2019; Wad-
den et al., 2020). One reason for this is the
scarcity of fact-checking websites in other lan-
guages for constructing large enough non-English
fact-checking datasets. Therefore, it is even more
challenging to build fact-checkers for low-resource
languages. A solution is to leverage high-resource
languages with zero-shot cross-lingual transfer,
where the model is trained on source languages
of richer resources and directly tested on target lan-
guages of lower resources. Note that the sets of
languages in the training set and the test sets are
disjoint. With this technique, ground-truth labels
for claims in low-resource languages are no longer
required.

Few studies in the fact-checking literature have
explored the cross-lingual setup. One line of work
attempts to match an input claim with claims in
other languages that have been verified (Kazemi
et al., 2021, 2022). However, this approach fails
when the claims have not been fact-checked in any
language. Another line of work builds classifiers
with multilingual language models. For example,
Gupta and Srikumar (2021) utilize Google Search
to obtain snippets that are relevant to the input
claim and train a model based on mBERT (Devlin
et al., 2019) in a cross-lingual setting. Although
Google Search excels at retrieving relevant informa-
tion from a given claim, it disregards the trustwor-
thiness of the information being retrieved. When
a claim is erroneous, the search results often con-
tradict each other, which likely leads to incorrect
predictions, as shown later in Section 5.3.

Motivated by these challenges, we propose CON-
CRETE, a Claim-oriented Coss-lingual Retriever
that retrieves evidence from a trustworthy multi-
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Nossa Amazônia (…) permanece
praticamente intocada

(Our Amazon (…) remains untouched.)

Concrete

Claim

Passage
collection

Retrieved passages

mBERT
Cross-lingual
retrieval

Multi-class
classification

False

Top K

… Pada 2004 misalnya, kawasan
hutan seluas lebih dari 27 ribu
kilometer persegi hilang. Area itu
setara dengan seluas Haiti…

... bergabung dengan kampanye
lingkungan untuk mengakhiri
deforestasi lahan publik di hutan
Amazon dan menuntut tindakan
pemerintah…

Predicted
veracity

Figure 1: An overview of the proposed framework. Given a claim in arbitrary language, a cross-lingual retriever,
CONCRETE retrieves relevant passages in any languages. The top-k relevant passages and the claim are then passed
to our multilingual reader, mBERT, to predict the veracity of the claim.

lingual passage collection for fact-checking. This
approach can handle region-specific claims as long
as relevant evidence is presented in the passage
collection, which is much more accessible com-
pared to similar claims in other languages. In addi-
tion, since it does not rely on a black-box retrieval
system, our approach provides the flexibility to
include only trustworthy information in the pas-
sage collection. One major challenge for training
such a retriever is the lack of multilingual informa-
tion retrieval (IR) dataset with claim-like queries.
To this end, we propose a self-supervised cross-
lingual learning algorithm, Cross-lingual Inverse
Cloze Task (X-ICT), to learn the retriever based on
pseudo-feedback. To mimic cross-lingual retrieval,
we construct a pseudo-query for a given passage
by translating its title into a randomly selected lan-
guage. The objective for X-ICT is to identify the
passage corresponding to a given translated title
among all candidate passages. Since the title of
news articles can often be regarded as a claim, this
approach mitigates the domain discrepancy issue.
As shown in Figure 1, our framework first performs
cross-lingual retrieval to obtain evidence relevant
to the input claim. Then, a multilingual reader
takes in the retrieved evidence and the input claim
to classify the veracity of the claim.

Our contributions can be summarized as follows:

• To the best of our knowledge, we present the
first fact-checking framework augmented with
cross-lingual retrieval that achieves state-of-
the-art cross-lingual transfer performance on
the X-FACT fact-checking task.

• We propose CONCRETE, a cross-lingual re-
triever with a bi-encoder architecture learned
through a proposed self-supervised learning
algorithm.

• Our experiments reveal that the distance be-
tween the input claim and the retrieved pas-
sages is strongly correlated with the perfor-
mance.

• We collected a multilingual passage collec-
tion composed of reliable news articles in
seven different languages. We have demon-
strated that this corpus is effective for retrieval-
augmented fact-checking.

2 Task Definitions

The input is a claim c in an arbitrary language and
the corresponding metadata, such as claimer and
claim date. Based on c, the retriever component
of our model retrieves relevant passages p from
a multilingual passage collection P where p can
be in any language. Then, the reader component
takes in the claim c, the corresponding metadata,
and relevant passages p to predict the veracity of c.
Note that the use of passage collection P to aid in
fact-checking is a modeling choice, as no grounded
evidence is available.

We aim to build a passage collection that does
not contain erroneous information. Hence, we
construct P by crawling 49,000 articles published
in 7 languages1 between September 2016 and
December 2022 from a trustworthy news media,
bbc.com, and split each article into passages.
Each passage contains at most 100 tokens, follow-
ing Karpukhin et al. (2020). This results in a total
of 347,557 passages. The collected passage collec-
tion has been made publicly available in the link
mentioned in the Abstract.

1We consider Arabic, Russian, Indonesian, Persian,
French, and Portuguese.
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3 Proposed Method

Our framework is a pipeline consisting of two com-
ponents: (1) CONCRETE, a claim-oriented cross-
lingual retriever that retrieves relevant passages
from a multilingual passage collection, and (2) a
multilingual reader that determines the veracity of
a claim based on the compatibility of the claim and
the passages retrieved. Figure 1 shows an overview
of the proposed method. The following sections
describe each component in detail.

3.1 CONCRETE

CONCRETE takes in a claim c in an arbitrary lan-
guage as input and retrieves k relevant passages
p = {p0, ..., pk} from a multilingual passage col-
lection P , where the retrieved passages can be
in any language. We adapt mDPR (Asai et al.,
2021b), a multilingual retriever, with the proposed
self-supervised learning algorithm, Cross-lingual
Inverse Cloze Task, for claim-like queries.

mDPR mDPR is a multilingual version of the
Dense Passage Retriever (DPR) (Karpukhin et al.,
2020). Similar to DPR, mDPR is a bi-encoder
architecture that computes the relevance score be-
tween a query and a passage with the inner product
of the corresponding representations. In addition
to being trained on existing multilingual question
answering datasets, mDPR also learns from addi-
tional samples mined from Wikipedia and labeled
with the proposed answer generator discussed in
Asai et al. (2021b). However, since mDPR was
trained on datasets where queries are questions
instead of claims, domain mismatch becomes an
issue if we directly apply mDPR to our task.

Cross-lingual Inverse Cloze Task To address
the domain discrepancy problem discussed in the
previous paragraph, a naive solution is to fine-tune
mDPR on multilingual IR datasets with claim-like
queries. Unfortunately, such datasets are not avail-
able. Motivated by the Inverse Cloze Task (Lee
et al., 2019), which was used to warm start the re-
triever by tasking a retriever to predict the context
given a randomly sampled sentence, we propose
Cross-lingual Inverse Cloze Task (X-ICT) by ex-
tending ICT to a cross-lingual setup. Specifically,
we made two major modifications to the original
ICT.

First, instead of randomly sampling a sentence
as the pseudo query, we treat the title of each pas-
sage as the pseudo query as these titles are often

Mahathir Mohamad, who 
retired after running the 
country for more than two 
decades, is back, this …

Mahathir de Malaisie
espère récupérer les fonds 
perdus de 1MDB

Malaysia's Mahathir 
hopes to get back lost 
1MDB funds

Concrete
An inexpensive thumbprint 
reader meant for a market 
vegetable vendor, for example, 
can be inexpensively…

Mr. Mundell said he backed 
the PM's deal and had always 
made clear his opposition to a 
no-deal Brexit…

Translation

!!!

""

"#

"$

!′!!

Figure 2: An illustration of X-ICT. Given a passage
p1, we find its title Tp1

and translates it into a different
language T ′

p1
to mimic cross-lingual retrieval. The goal

for the cross-lingual retriever, CONCRETE, is to select
the correct passage p1 based on the translated title T ′

p1

among all the passages in the same batch.

claim-like sentences. The positive passages for a
given title are the passages derived from the same
article. The biggest advantage of this approach
is that there is very little domain mismatch be-
tween using claims as queries and using titles as
queries. Therefore, the retriever optimized with
our proposed X-ICT can be directly applied to
claim-oriented downstream tasks without further
fine-tuning, indicating that the optimization for the
downstream tasks can be more efficient. Second, to
mimic cross-lingual retrieval, we use mBART-50
(Tang et al., 2020), a machine translation model, to
translate the title into a target language.

Formally, in CONCRETE, two dense encoders,
EC(⋅) and EP (⋅), are used to represent claims and
passages as d-dimensional vectors. The similarity
between a claim and a passage is defined as the dot
product between their dense vectors,

sim(c, pi) = EC(c)⊤EP (pi). (1)

In X-ICT, we form positive claim-passage pairs by
constructing the translation of the corresponding
title Tpi of a given passage pi. i.e. (T ′

pi , pi) where
T
′
pi is the original title Tpi translated into a dif-

ferent language using mBART-50. We treat other
passages in the same batch as negative samples.
The retriever is trained by optimizing the negative
log likelihood,

P (pi∣T ′
pi) = exp(sim(T ′

pi , pi))
∑pj∈BATCH exp(sim(T ′

pi , pj)) (2)

LX-ICT = − log ∑
pi∈P

P (pi∣T ′
pi) (3)
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Split # claims # languages

Train 19079 13
Development 2535 12
In-domain 3826 12
Out-of-domain 2368 4
Zero-shot 3381 12

Table 1: Dataset statistics of X-FACT.

Figure 2 demonstrates a graphical illustration.
However, if the translation is performed on ev-

ery claim, the model would be discouraged from
retrieving passages in the same language as the
query, which is not a desirable property of the re-
triever. Therefore, we set an equal probability for a
claim to be translated to any language or not being
translated (i.e. the probability of not doing transla-
tion is 1

7
). We repurposed the passage collection as

the training corpus for learning X-ICT.

3.2 Multilingual Reader
We use mBERT (Devlin et al., 2019), a multilingual
version of BERT, as the encoder for our multilin-
gual reader. The claim c and the corresponding
metadata are encoded jointly with a template T :
[Claim made by Claimer on Claim-Date, reported
in Language: Claim], where Claimer, Claim-Date,
and Language are placeholders. The claim tem-
plate T and each of the k2 retrieved passages pi are
first encoded independently

hT = mBERT(T )[CLS] (4)

hpi = mBERT(pi)[CLS]. (5)

The final prediction is then made by feeding the
concatenated [CLS] embeddings into a multi-
layer perceptron ŷ = MLP([hT ;hp0 ; ... ;hpk]).
The model is optimized with the cross-entropy loss

L = 1

N

N

∑
i=1

yi log ŷi, (6)

where yi and ŷi denote the ground truth label and
the predicted label of the i-th sample respectively,
and N denotes the total number of samples.

4 Experimental Setup

4.1 Dataset and Evaluation Metric
Our experiments are conducted on a multilingual
fact-checking dataset: X-FACT (Gupta and Sriku-
mar, 2021). X-FACT contains 31,189 claims in
25 languages collected from fact-checking web-
sites via Google’s Fact Check Explorer. Each

2Empirically, we set k to 5 for best overall performance.

claim is annotated with one of the following seven
labels: TRUE, MOSTLY-TRUE, PARTLY-TRUE,
MOSTLY-FALSE, FALSE, UNVERIFIABLE, and
OTHER. Gupta and Srikumar (2021) split the data
in a way that allows evaluation in various settings,
as described in Table 1. In-domain and out-of-
domain test sets contain claims in the same lan-
guages as those in the training set, except that the
claims in the out-of-domain split are from different
websites. Our main focus is the zero-shot setup,
where there is no overlap between the languages in
the zero-shot split and those in the training set. We
use macro F1 as the evaluation metric, following
Gupta and Srikumar (2021).

4.2 Baselines

We compare the following competitive retrieval
systems using different retrieval components but
with the same multilingual reader.

MT + DPR A common approach to cross-lingual
tasks is translating inputs from target languages
to source languages of richer resources so that
stronger monolingual models can be utilized (Ah-
mad et al., 2021; Asai et al., 2021a). We translate
all claims and all passages into English with the
HELSINKI-NLP neural machine translation mod-
els3 for its comprehensive language coverage and
decent performance. For languages not covered by
HELSINKI-NLP, we use Google Translate instead.
Then, we use DPR (Karpukhin et al., 2020) to per-
form retrieval based on the translated claims and
passages.

BM25 BM25 (Robertson and Zaragoza, 2009)
has demonstrated advantages over dense vector
representation approaches in monolingual retrieval
tasks (Lee et al., 2019). Since BM25 only works in
a monolingual setup, we create dummy empty pas-
sages for claims whose languages are not presented
in the passage collection P . Our implementation is
based on the Rank-BM25 package4.

mDPR mDPR is a multilingual retriever based
on DPR. It was trained on multilingual question
answering datasets, as detailed in Section 3.

Google Search As demonstrated in previous
work (Augenstein et al., 2019; Gupta and Srikumar,
2021), snippets from Google Search results can
serve as evidence for fact-checking. We directly

3https://huggingface.co/Helsinki-NLP
4https://pypi.org/project/rank-bm25/

1027



Reader Retrieval Method Zero-shot F1 (%) In-domain F1 (%)

Prior
(Gupta and Srikumar, 2021)

Majority None 7.6 6.9
mBERT None 16.7 39.4
mBERT Google Search 16.0 41.9

Ours

mBERT None 17.25 36.91
mBERT Google Search 16.02 42.61
mBERT MT+DPR 15.01 35.29
mBERT BM25 17.43 38.29
mBERT mDPR 17.60 36.79
mBERT CONCRETE 19.83∗ 40.53

Table 2: Performance comparison in macro F1 (%) of various models on the X-FACT test sets. None retrieval
method means not using any retrieval component, while Majority means predicting the majority label, FALSE, for all
samples. When no retrieval method is used, the reader performs fact checking simply based on the claim template T
described in Section 3. Statistical significance over the second best models computed using the paired bootstrap
procedure (Berg-Kirkpatrick et al., 2012) is indicated with ∗ (p < .05).

take the snippets obtained by Gupta and Srikumar
(2021) as inputs.

4.3 Implementation Details

When trained with X-ICT on the passage col-
lection, the retriever is optimized using AdamW
(Loshchilov and Hutter, 2019) with a learning rate
of 2e-5 over 30 epochs. When fine-tuning the mul-
tilingual reader, we set the learning rate to 5e-5
for parameters in mBERT and 1e-3 for all other
parameters. The maximum input sequence length
for X-ICT and fine-tuning on X-FACT are set to
256 and 512, respectively. We use the pre-trained
mBERT checkpoints on HuggingFace5.

5 Results

5.1 Main results

Table 2 summarizes the fact-checking performance
on the X-FACT dataset. Our framework estab-
lishes a new state-of-the-art in zero-shot cross-
lingual fact-checking, outperforming the previous
best models by an absolute macro F1 of 2.23%.
The improvements demonstrate the effectiveness of
our approach in retrieving relevant passages from
multiple languages to assist in fact-checking. Fur-
thermore, we found that the use of vanilla mDPR
does not improve performance compared to the
absence of any retrieval component. This can
be explained by the domain discrepancy issue for
mDPR, as it was trained on question-like queries
instead of claim-like queries. Furthermore, al-
though CONCRETE is the most advantageous in
the zero-shot setup, it trails behind Google Search
in-domain setup. The significantly increased gap
between in-domain F1 score and zero-shot F1 score

5https://huggingface.co/
bert-base-multilingual-cased

for using Google Search suggests that the reader
may exploit biases or patterns presented in Google
Search’s results that are not transferrable across
languages. To validate this hypothesis, we an-
alyzed the relationship between the snippets re-
turned by Google Search and the ground-truth la-
bels. We found that for claims of richer resources
in the training set, Google Search is able to re-
trieve evidence that strongly indicates the veracity
of the claims due to the abundance of fact-checking
websites. For example, among Indonesian claims
where Google Search results contain the string
“SALAH” (WRONG), 50% of them are PARTLY

TRUE and 45% of them are FALSE. Such patterns
can also be found in the in-domain split, but not
in the zero-shot split. This finding explains the
increased gap between the performance on these
two splits when using Google Search as the re-
trieval method. It also implies that our approach
is more generalizable to lower-resource languages
and more applicable when no fact-checking web-
sites have debunked the input claims.

5.2 Performance Analysis

Language Choice in Passage Collection
Throughout our experiments, we found that the
language of the retrieved passage can affect the
fact-checking performance. We hypothesize that
it may be more challenging for readers to reason
through passages when the passage language
is distant from the claim language. To verify
such a hypothesis, we first compute the distance
between each pair of languages based on word
ordering, following Ahmad et al. (2019). Then,
we remove passages of a particular language
from the passage collection. With this subset of
selected passage collection, we use CONCRETE

to retrieve relevant passages for fact-checking and
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Figure 3: Performance difference in macro F1 when
Indonesian passages are removed from the passage col-
lection. On the x-axis, languages are sorted in ascending
order by distance to Indonesian (i.e. Bengali is the clos-
est, while Marathi is the furthest). We compute the
distance between two languages based on word order-
ing, following Ahmad et al. (2019).

train another fact-checker based on newly retrieved
passages. Finally, we compare the performance
difference for different languages between this
system and the model discussed in Section 3 in the
zero-shot setup. Figure 3 shows the results for each
language when Indonesian passages are removed
from the passage collection. We observe that the
performance drop and the distance between each
language and Indonesian are highly correlated. In
fact, we see that removing Indonesian is beneficial
for some distant languages such as Dutch and
Marathi.

Given these results, the following question arises:
is this phenomenon caused by the poor capability
of our multilingual reader to reason with passages
and claims in distant languages, or by the higher
information overlap between Indonesian passages
and claims in closer languages? To better under-
stand the results, we translate the retrieved pas-
sages into three languages of distinct language fam-
ilies: Indonesian, Portuguese, and Arabic. With
the three sets of translated passages, we train three
fact-checkers. Then, we compute the difference
between the original performance and the perfor-
mance achieved using the translated passages. In
Figure 4, we observe that the performance differ-
ence is negatively correlated with the distance be-
tween the languages of the claim and the passage.
The correlation coefficient is -0.490 per Kendall’s
Tau (Kendall, 1938). This confirms that passages in
distant languages are indeed harder for our multilin-
gual reader to reason with. The trend is consistent
with the findings of Asai et al. (2021b).

Impact of the Amount of Training Data To
test the data efficiency of our approach, we com-
pared CONCRETE with mDPR and Google Search
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Figure 4: Performance difference in macro F1 when
the retrieved passages are translated to Indonesian, Por-
tuguese, and Arabic, respectively. Overall, the perfor-
mance difference has a negative correlation with the
distance between the passage’s language and the claim’s
language.

in the zero-shot setup using different numbers of
languages for training. As shown in Figure 5,
CONCRETE consistently outperforms the other two
methods across all settings. This indicates the
strength of CONCRETE in aiding fact-checking in
low- and high-resource scenarios.

Impact of Retrieving from Multiple Languages
We conducted a case study on cross-lingual re-
trieval versus monolingual retrieval to understand
whether retrieving passages from multiple lan-
guages actually helps the performance. In partic-
ular, we train and evaluate the models on samples
whose languages are in the passage collection6.
For the monolingual retrieval setting, the model
is restricted to retrieving passage in the same lan-
guage as the input claim, while the cross-lingual
setting does not have such a restriction. We found
that for both mDPR and CONCRETE, cross-lingual
retrieval setting outperforms their monolingual re-
trieval counterparts, as shown in Figure 6. This
finding confirms that retrieving evidence in multi-
ple languages helps cross-lingual transfer for fact-
checking.

5.3 Qualitative Analysis
The following qualitative analysis provides an in-
tuition for our model’s advantage in cross-lingual
fact-checking.

Impact of X-ICT To validate the effectiveness
of X-ICT in retrieving claims that are more rel-
evant to the topic of the claim, we compared 50
predictions between models using CONCRETE and
mDPR as retriever in the split zero-shot. The results
show that 23 errors made by mDPR are corrected

6We train the models on Portuguese, Indonesian, and Ara-
bic, and evaluate them on French, Persian, and Russian.
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Figure 5: Zero-shot cross-lingual performance on X-
FACT with regard to various numbers of languages used
for training.

by CONCRETE, while only 6 new errors are intro-
duced. We found that mDPR can often retrieve
passages that are relevant to a part of a claim, but
the topic of the retrieved passages may not align
well with that of the claim, likely due to the domain
mismatch issue discussed in Section 3. An example
is shown in Figure 8. This reflects that X-ICT is
able to improve the retrieval quality even though
only pseudo feedback is used for training.

Importance of Passages’ Trustworthiness
Comparing the predictions and the retrieved
passages between CONCRETE and Google Search
on the zero-shot split, we observe that our approach
is better at identifying FALSE and MOSTLY FALSE

claims. As demonstrated in Figure 8, when a claim
is FALSE or MOSTLY FALSE, the snippets returned
by Google Search are often contradicted with each
other, which usually leads to incorrect predictions.
The inconsistency in the snippets from Google
Search is caused by the fact that Google Search
retrieves information from the entire Web without
considering the trustworthiness of the source. On
the contrary, our approach offers the flexibility
to include only trustworthy information in the
passage collection. In the zero-shot split, we found
that this property of Google Search leads to 44 and
67 more errors in identifying FALSE and MOSTLY

FALSE claims, respectively.

5.4 Remaining Challenges

To identify the remaining challenges, we compare
50 errors made by our model with ground-truth la-
bels and analyze the sources of errors, as illustrated
in Figure 7. The following paragraphs will discuss
these categories with examples.

Evidence cannot be retrieved. The most com-
mon error is caused by the absence of supporting

Monolingual Multilingual
Retrieval Type

0

5

10

15

20

M
ac

ro
 F

1 
(%

)

mDPR
CONCRETE

Figure 6: Performance comparison between using
monolingual and multilingual retrieval on cross-lingual
fact-checking. For both mDPR and CONCRETE, retriev-
ing passages in multiple languages improves the overall
performance.

or refuting evidence in the passage collection. For
the majority of such errors, the claims are country
specific. For example,

Mann med tre koner får tre leiligheter i
Sverige. (Husband with three wives gets
three apartments in Sweden.)

We can address this issue by adding trustworthy
news articles from more countries into the passage
collection.

Under-specified context. Another major source
of errors is the underspecification of the input claim.
An example claim is:

“Nuk besoj që janë të informuar as part-
nerët tanë, SHBA dhe NATO, sepse do të
isha i informuar edhe unë.” (I do not be-
lieve that our partners, the US and NATO,
are informed either, because I would be
informed as well.)

In this claim, it does not specify who is “I” and
what the US and NATO are not informed. There-
fore, the given information is too little to determine
the veracity of the claim. This problem could po-
tentially be solved by mining the original context
from the Internet.

Require intent identification4.0%

Annotation error
8.0%

Reader failure

10.0%Under-specified context

38.0%

Evidence cannot be retrieved

40.0%

Figure 7: Distribution of the remaining errors.
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… Tesla Model X по ухабистому 
бетонному тоннелю... Скорость 
достигала 80 км/час ... (… Tesla Model X 
on a bumpy concrete tunnel... The speed 
reached 80 km/h...)

… Model Y, ... одного заряда 
аккумулятора должно хватить на 482 
км... (…Model Y, ... one battery charge 
should be enough for 482 km ...)

… Tesla Model X по ухабистому 
бетонному тоннелю... Скорость 
достигала 80 км/час ... (… Tesla Model X 
on a bumpy concrete tunnel... The speed 
reached 80 km/h...)

autopilot feature is under scrutiny after 
fatal accidents and the company recently 
recalled more than 100,000 Model S cars 
for an issue with the power steering.

Problemet er bare at det er helt feil, noe
Norsk elbilforening lenge har hevdet – og
som (The only problem is that it is 
completely wrong, something the 
Norwegian Electric Car Association has 
long claimed - and that)

De store, tunge Tesla-bilene sliter mer på
veiene enn de lettere ... Det spiller ingen
rolle om bilen veier ett eller to tonn, (The 
big, heavy Tesla cars struggle more on the 
roads than the lighter ones ... It does not 
matter if the car weighs one or two tons, )

Tesla-bilene er 'store, tunge biler som sliter
på veien (Tesla cars are 'big, heavy cars 
struggling on the road)

CONCRETE mDPR Google Search

Retrieved 
Passages

Claim

FalseReader 
Prediction

Retrieval
Method

Partly TrueMostly False✓ ╳ ╳

Figure 8: An example showing how relevant trustworthy passages retrieved by CONCRETE lead to correct predictions.
CONCRETE retrieves two passages that prove Tesla cars are not slow or struggling on the road. Since the passages
are from trustworthy sources, our reader can correctly predict the claim as FALSE. On the other hand, the second
passage that mDPR retrieves is slightly related to the claim (Tesla) but not directly relevant to the topic (the poor
performance of Tesla cars). For Google Search’s results, these two passages contradict each other as one is from a
fact-checking website and the other is from an unreliable source. Hence, the model cannot predict correctly based
on the retrieved passages from mDPR or Google Search.

Require intent identification. Some of the
claims are correct but contain misleading infor-
mation. For instance,

“Писатель Дин Кунц предсказал
появление коронавируса в своей
книге в 1981 году и называл его
Ухань-400.” (Writer Dean Koontz pre-
dicted the emergence of the coronavirus
in his book in 1981 and called it Wuhan-
400.)

This claim is correct, but the claimer attempts to
mislead the audience by linking the coronavirus
in the book with COVID-19, which is false. To
correctly predict this claim, the model should be
capable of identifying the intent behind the claims.

Reader failure. In some cases, the reader fails
to predict the correct veracity even though the sup-
porting evidence is successfully retrieved. This is
mainly due to the long distances between passages
and claims, as discussed in Section 5.2.

Annotation error. The dataset was created by
matching the rating of each claim on fact-checking
websites with its label definition. Annotation errors
could be caused by (1) the misalignment between
the rating and the label definition, and (2) the inac-
curate ratings listed on the fact-checking websites.
We found that each case accounts for about half of
the annotation errors.

6 Related Work

6.1 Fact-checking

Previous fact-checking approaches can be roughly
divided into two categories based on task formu-
lations. The first type of formulation assumes
that evidence candidates are given, such as the
FEVER dataset (Thorne et al., 2018) and the SCI-
FACT dataset (Wadden et al., 2020). Previous ap-
proaches for this category of fact-checking tasks
often involve a retrieval module to retrieve rele-
vant evidence from the given candidate pool fol-
lowed by a reasoning component that determines
the compatibility between a piece of evidence and
the input claim (Yin and Roth, 2018; Pradeep
et al., 2021). The second category is the open-
retrieval setting7, where evidence candidates are
not provided, such as the LIAR dataset (Wang,
2017) and the X-FACT dataset (Gupta and Sriku-
mar, 2021). For this task formulation, one of the
main challenges is where and how to retrieve ev-
idence. Some work determines the veracity of
a claim based solely on the claim itself and the
information learned by language models during
the pre-training stage (Lee et al., 2021). However,
such an approach is tied to the period of time in
which the pre-training data is collected and does
not generalize well to new claims. Other studies

7We borrow the term open-retrieval from the field of ques-
tion answering.

1031



devise hand-crafted linguistic features as input to
the fact-checking models (Mihalcea and Strappar-
ava, 2009; Choudhary and Arora, 2021). However,
these approaches are language-specific, whereas
our approach is language-agnostic since it consists
of a cross-lingual retriever and a multilingual lan-
guage model. Gupta and Srikumar (2021) use a
similar approach, which retrieves relevant snippets
using Google Search instead of a cross-lingual re-
triever. Our experimental results show that the
proposed cross-lingual retriever is more effective
than Google Search in the zero-shot setting due to
the fact that Google Search ignores the trustwor-
thiness of the retrieved information and that down-
stream models tend to exploit the biased patterns
in Google Search results that are not transferrable
across languages, as shown in Section 5.

6.2 Cross-lingual Retrieval

Early attempts on cross-lingual retrieval adopt a
pipeline consisting of a statistical machine trans-
lation system and a monolingual retrieval model
(Hiemstra and de Jong, 1999; Ture and Lin, 2013).
These methods do not perform well due to the poor
performance of statistical machine translation sys-
tems. Later work addresses this issue with bilin-
gual embeddings (Vulic and Moens, 2015; Litschko
et al., 2018). More recently, large pre-trained mul-
tilingual language models demonstrate significant
advantages in constructing multilingual representa-
tions (Jiang et al., 2020). Yu et al. (2021) pre-train
a cross-lingual language model tailored for the re-
trieval tasks. Yet, the computation complexity is
relatively high due to the cross-encoder architec-
ture of the model. Namely, it takes a pair of query
and evidence as inputs, instead of encoding the
query and evidence independently. The mDPR
model presented in (Asai et al., 2021b) is the most
favorable for our task due to its high efficiency
and performance. However, mDPR was trained
on datasets where queries are questions instead of
claims. Therefore, domain adaptation is needed for
mDPR to be applied to our task. CONCRETE ex-
tends mDPR by adapting it to fact-checking using
a self-supervised cross-lingual retrieval algorithm
to mitigate the domain discrepancy problem while
maintaining high efficiency.

7 Conclusions and Future Work

We have proposed CONCRETE, a claim-oriented
cross-lingual retriever that retrieves trustworthy

passages from a multilingual passage collection.
To overcome the lack of IR training data with claim-
like queries, we present the Cross-lingual Inverse
Cloze Task (X-ICT) that leverages pseudo feed-
back to train the retriever. Experimental results
on X-FACT showed that our approach outperforms
all previous systems in the zero-shot cross-lingual
setting. For future work, we plan to investigate the
adaptive selection mechanism for passages based
on distances and develop more robust readers for
reasoning through passages of longer distances via
representation learning.

8 Ethical Considerations

Although our framework has significant advantages
over the previous state of the art, the proposed
model is still far from being a reliable cross-lingual
fact checker given its great potential for improve-
ment. If such a system is deployed for public use,
the general public could lose trust in automatic fact-
checking systems, and the situation of infodemic
can exacerbate. Therefore, at the current stage, our
system should be served as an assistant for human
fact-checkers to validate the veracity of claims in-
stead of directly applying for public use, especially
in the zero-shot setting. With our framework, the
efficiency of manual fact-checking can be signif-
icantly improved thanks to its ability to retrieve
relevant information across multiple languages and
produce a reasonably good preliminary judgement
on the veracity of the input claim.

In addition, we also acknowledge that the use of
large multilingual language models pre-trained on
the Web could lead to biased outputs. Fortunately,
after a close inspection into the X-FACT dataset,
we do not find such biased patterns in it. This
means that fine-tuning our proposed framework
on X-FACT should alleviate the problem of biased
predictions.
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Abstract

Enhancing the interpretability of text classifi-
cation models can help increase the reliabil-
ity of these models in real-world applications.
Currently, most researchers focus on extracting
task-specific words from inputs to improve the
interpretability of the model. The competitive
approaches exploit the Variational Information
Bottleneck (VIB) to improve the performance
of word masking at the word embedding layer
to obtain task-specific words. However, these
approaches ignore the multi-level semantics of
the text, which can impair the interpretability of
the model, and do not consider the risk of rep-
resentation overlap caused by the VIB, which
can impair the classification performance. In
this paper, we propose an enhanced variational
word masks approach, named E-VarM, to solve
these two issues effectively. The E-VarM com-
bines multi-level semantics from all hidden lay-
ers of the model to mask out task-irrelevant
words and uses contrastive learning to readjust
the distances between representations. Empiri-
cal studies on ten benchmark text classification
datasets demonstrate that our approach outper-
forms the SOTA methods in simultaneously
improving the interpretability and accuracy of
the model.

1 Introduction

With the widespread adoption of neural networks
in text classification tasks (Bastings and Filippova,
2020; Halder et al., 2020; Schick et al., 2020; Lv
et al., 2021), the classification models are expected
to provide not only highly accurate classification
results but also reasonable prediction rationales
(Peake and Wang, 2018; Sun et al., 2021). These

*Corresponding Author

prediction rationales, which are short yet informa-
tive parts of the input for classification predictions
(Bastings et al., 2019), manifest the interpretability
of the model. The better the interpretability of the
model, the more reasonable rationales the model
provides (Lin et al., 2021). Therefore, improving
the interpretability of the model helps to boost the
reliability of these classifiers in real-world applica-
tions (Jacovi and Goldberg, 2020).

To improve the interpretability of the classifiers,
many methods have been proposed (Chrysostomou
and Aletras, 2021; Bastings et al., 2019). Some
studies rely on additional inputs at the training time,
such as pre-defined information and human anno-
tations (Erion et al., 2019; Plumb et al., 2020), all
of which involve high human costs. Other works
resort to assigning a binary Bernoulli variable to
each input word with promising results, among
which the competitive approaches are the Sparse-
VIB (Paranjape et al., 2020) and Vmask (Chen and
Ji, 2020) models . They all employ the Variational
Information Bottleneck (VIB) (Alemi et al., 2017)
to train stochastic masks to automatically learn
task-specific words, namely prediction rationales,
for prediction and interpretability simultaneously.

However, these methods only utilize the infor-
mation from the word embedding layer , which
holds little task-specific information (Van Aken
et al., 2019), ignoring the multi-level information
of the text, such as syntactic and semantic infor-
mation. That is, this initial layer results in poor
interpretability performance and reaches low accu-
racy on related semantic tasks . Additionally, these
approaches do not consider the risk of representa-
tion overlap arising from VIB (Alemi et al., 2017),
resulting in the model failing to learn discrimina-
tive class representations, thus further impairing
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the classification performance.

To address the above issues, we propose an
Enhanced Variational Word Masks approach,
(named E-VarM), which combines multi-level in-
formation to learn task-specific words in an unsu-
pervised manner and uses contrastive learning to
alleviate the representation overlap problem caused
by VIB. As a result, both the interpretability and
accuracy of the model are improved.

Specifically, as the data flow from the input to the
output layer, each hidden layer of the text encoder
can capture different information (Geirhos et al.,
2019). For example, the BERT (Devlin et al., 2018)
can encode the captured information to a rich hier-
archy of linguistic information (Hewitt and Man-
ning, 2019; Li et al., 2022) with surface features
at the bottom, syntactic features in the middle, and
semantic features at the top (Jawahar et al., 2019;
van Aken et al., 2019; Kim et al., 2020; Gupta
et al., 2022). Inspired by the feature extraction
mechanism of the text encoder, we fuse multilevel
information from all hidden layers of the model to
generate a task-specific binary Bernoulli distribu-
tion to extract reasonable interpretations for various
text classification tasks, such as sentiment analysis,
syntactic judgments, and semantic inference.

Furthermore, the VIB-based methods rely on
the Lagrangian factor to perform the compression-
prediction trade-off (Tishby et al., 2000; Mahabadi
et al., 2021). A larger Lagrangian factor means
masking out more task-irrelevant information (Pan
et al., 2021; Kolchinsky et al., 2019; Gálvez et al.,
2020) for a special class and obtaining better inter-
pretability. However, along with this larger value
is the potential risk of representation overlap or
even collapse (Alemi et al., 2017; Goldfeld and
Polyanskiy, 2020; Wu et al., 2020) since it may
hinder the model from learning the discriminative
representation and lead to loss of class informa-
tion. Therefore, we leverage supervised contrastive
learning (Khosla et al., 2020) to adjust the classi-
fication representation by pulling in samples from
the same class and pushing away samples from dif-
ferent classes, thus mitigating the representations
overlap problem. Additionally, we resort to task-
specific words to construct diverse positive samples
to enhance the efficiency of contrastive learning.

In a nutshell, we make the following major con-
tributions: (1) We introduce an enhanced varia-
tional word masks method to improve classifica-
tion performance and interpretability simultane-

ously. (2) Our method produces token-level inter-
pretations that consider the multi-level information
from all model layers and are adaptable to various
classification tasks. (3) To the best of our knowl-
edge, our approach is the first attempt to use con-
trastive learning to alleviate the representation over-
lap caused by VIB. (4) The experimental results on
ten benchmark datasets validate the effectiveness
of our method.

2 Related Works

2.1 Model Interpretability

Various approaches have been proposed to improve
the interpretability of neural networks, such as ex-
ploiting attention distribution on tokens (Sun et al.,
2020), extracting subsets of input text (Swanson
et al., 2020), or relying on language models to
generate explanations from scratch (Rajani et al.,
2019). The underlying techniques in this paper are
closely related to the extracted interpretation meth-
ods. Some of these works leverage pre-collected
annotations (Erion et al., 2019; Plumb et al., 2020),
which can be labor-intensive. Other works use
random masks on the input to automatically learn
interpretable models, for example, Bastings et al.
(2019) and Cao et al. (2020) adopt L0 constraints
to make the masks sparse.

The L0 regularisation overemphasizes the spar-
sity, which can damage the accuracy of model.
Therefore, some researchers introduce VIB to con-
trol the level of mask sparsity through a tunable
sparse prior (Paranjape et al., 2020). Among these,
the competitive methods are the SparseVIB (Paran-
jape et al., 2020), VIBI (Bang et al., 2021), and
Vmask (Chen and Ji, 2020). However, these meth-
ods only consider the information of word embed-
dings to extract task-specific tokens and ignore the
risk of representation overlap, which affects the
models’ interpretability and classification perfor-
mance. This paper aims to address the above issues.

2.2 Supervised Contrastive Learning

Supervised contrastive learning performs represen-
tation learning by expanding the embedding dif-
ferences of instances from different classes in the
hidden space (Khosla et al., 2020), which is widely
used in sentiment recognition (Liang et al., 2021)
, semantic inference (Zhang et al., 2021) and text
classification (Gunel et al., 2021) with good re-
sults. Previous works (Wu et al., 2021; Robinson
et al., 2021) indicate that constructing diverse posi-
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tive and negative samples facilitates discriminative
feature learning. The reason is that high-quality
contrastive samples encourage the model to mine
both intra-class and inter-class features, forcing
the model to perform fine-grained representation
learning (Khosla et al., 2020). Therefore, we use
contrastive learning to adjust representations to mit-
igate the risk of overlap and create high-quality
positive samples based on task-specific words to
enhance the model’s classification performance.
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Figure 1: An illustration of our proposed method. The
x, z, and x′ are contrastive samples in the form of word
embeddings. We use tokens to replace embeddings to
better indicate the diversity among samples. In this case,
the input sentence is from the sentiment analysis dataset
and labeled as positive.

3 Methodology

3.1 Overview

This paper aims to simultaneously improve the in-
terpretability and accuracy of the text classifier.
Our model consists of two stages shown in Fig
1. The first one is 1) the multi-layer variational
words extraction, which automatically extracts task-
specific words as rationales. Another is 2) the con-
trastive text representation optimization, which mit-
igates the feature overlap of different classes and
learns discriminative representations.

To optimize these two stages, we adopt an itera-

tive training mechanism at the batch level for the
whole model. With this mechanism, the model can
be corrected in time if the representation overlap
occurs in the extraction stage.

3.2 Multi-level Variational Words Extraction

The core idea of this stage is that if a subset of
an input text can be removed without affecting
the prediction, this subset text is considered task-
irrelevant, while the remaining subset text is task-
specific. Generally, this stage aims to learn a sparse
random gate gϕ(a.k.a., masks) for a neural text clas-
sifier fθ(·) to obtain task-specific words. In this
paper, we use BERT as the text classifier.

Specifically, given an input x = {x1, x2, ..., xn},
where xt ∈ Rd indicates the word embedding, we
feed it into the encoder to obtain the hidden states
{h(0), ..., h(L)} of different layers of BERT. In this
hierarchy of linguistic information structure en-
coded by BERT, surface features are at the bottom,
syntactic features are in the middle, and semantic
features are at the top. Herein, we stack the hidden
states up to h(L) as input to the gate network , a
two-hidden-layer MLP, to predict the binary output
r,

r = g(h(0) ⊕ h(1)...⊕ h(L)) (1)

where ⊕ denotes concatenate operation. We rely
on r ∈ R2n to perform word masks, so that the
model has multi-level information and is adaptable
to various tasks. The ri associated with xi follows
the Bernoulli distribution,

ri ∼ Bernoulli(αi) (2)

where αi is the probability of the word embedding
xi being selected as the task-specific word. Pre-
cisely, the binary r produced by the gate can be
expressed as the corresponding two-element one-
hot vector ri = [ri,j ]j=0,1 , where ri,j = 1 means
ri = j. Similarly, αi,j is the probability that ri = j
(Xue et al., 2020),

ri =one_hot(argmax
j
αi,j, j = 0, 1)

αi,0 = 1− αi, αi,1 = αi
(3)

However, sampling from the Bernoulli distribu-
tion (Equation 2) causes the non-differentiability
problem (Xue et al., 2020). We adopt the Gumbel-
Softmax distribution (Xue et al., 2020; Jang et al.,
2017) to approximate ri differentiably,
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r̂i = [α̂i,j ]j=0,1

α̂i,j =
exp((log(αi,j) + ϵj)/τ)∑1
k=0 exp((log(αi,k) + ϵk)/τ)

(4)

where ϵj is sampled randomly from Gumbel(0,
1), and the temperature τ controls how closely
the Gumbel-Softmax distribution approximates the
one-hot. By replacing Equation 2 with ri = r̂i,0,
we can train the model in an end-to-end manner.

Finally, we obtain the task-specific word embed-
dings z as the final input for prediction, i.e.,

z = r ⊙ x (5)

where ⊙ is an element-wise multiplication and z is
a subset of x.

Since there is no direct supervision signal to esti-
mate the gate parameters ϕ, we follow the standard
practice in the Information Bottleneck(IB) (Tishby
et al., 2000) theory to optimize the parameters. For
the input x and its label y, the IB principle aims to
learn the minimal sufficient representation z that
preserves enough information about the output y
(prediction) while containing the least redundant
information from input x (compression) (Alemi
et al., 2017; Mahabadi et al., 2021),

LIB = −I(z, y) + β · I(x, z) (6)

where β is the Lagrangian factor to balance the
compression and prediction, and I(., .) is the mu-
tual information.

To compute the two mutual information items
above, the Deep VIB(Alemi et al., 2017) perform a
variational approximation for the IB objective via
a neural network. Thus, we obtain LV IB , which
is the approximation of LIB ,

LV IB =−
n∑

i=0

p(z|x(i)) log q(y(i)|z)

+ β ·KL[p(z|x(i)||m(z))]

(7)

where q(y(i)|z) is a parametric approximation of
p(y(i)|z),m(z) is a variational estimate of the prior
probability p(z) of z, and p(z|x(i)) is an estimate
of the posterior probability of z. The KL[·||·]
denotes Kullback-Leibler divergence, and the β is
inherited from the IB theory.

Since the compressed features z is determined
by the random variable r that follows the Bernoulli

distribution (Equation 5), we can rewrite Equa-
tion 7 with r. Motivated by VMask (Chen and
Ji, 2020) and mean-field approximation (Tanaka,
1998), we obtain m(r) = Πni=1m(ri). As m(ri) =
Bernoulli(0.5) means that each word has an equal
probability to be masked or selected (Chen and Ji,
2020), we get the uniform distribution m(r) and
Equation 7 can be further simplified as,

LV IB =−
n∑

i=0

p(r|x(i)) log q(y(i)|r, x(i))

+ β ·
n∑

i=0

p(r|x(i)) log p(r|x(i))
(8)

The first term in LV IB is a cross-entropy aiming
to make sure the information in p(r|x) for predict-
ing is sufficient. The second term in LV IB is to
regularize p(r|x) to make masks sparse, enabling
the r vector to contain more zeros. To compute
the compressed posterior pθ,ϕ(r|x(i)), we first feed
input embedding x to BERT model fθ(·) and then
resort to the amortization network (Rezende and
Mohamed, 2015; Chen and Ji, 2020) , which is our
gate network gϕ, to output binary value r. Then the
BERT takes r along with x(i) as input and produces
a probability of output y(i) , qθ(y(i)|r, x(i)).

In actual training, we use the LV IB to simul-
taneously optimize the gate parameter ϕ and the
classifier parameters θ.

3.3 Contrastive Text Representation
Optimisation

In this stage, we leverage supervised contrastive
learning to mitigate the risk of representation over-
lap.

Specifically, for a given input x, we obtain a
compressed sample z that contains only the task-
specific embeddings through the first stage. To
perform supervised contrastive learning, we treat
the samples belonging to the same class in a batch
as positive samples and the rest within the batch
as negative samples. Additionally, to increase the
diversity of the contrastive samples, we introduce
additional positive samples x′,

x′ = x−R(x− z) (9)

where R(x− z) denotes a random mask operation
on task-irrelevant embeddings, and the number of
masks ranges from 1 to m, with m being the num-
ber of class-irrelevant words of input x. Since we
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Table 1: Statistics of the datasets. "Class" is the number
of labels. "Ave.Len" represents the average length of a
sentence. "Train", "Dev" and "Test" denote the size of
the training set, validation set and test set, respectively.

Num Dataset Class Ave.Len Train Dev Test
1 QNLI 2 40 104K 5463 -
2 QQP 2 23 363K 40k -
3 COLA 2 8 8551 1043 -
4 IMDB 2 268 25K - 25K
5 AGNews 4 32 120K - 7.6K
6 Yelp 2 138 560K - 38K
7 Subj 2 23 10K - -
8 RT 2 23 10K - -
9 SST-1 5 18 8540 1101 2208
10 SST-2 2 19 6920 872 1821

deliberately avoid a mask on task-specific features
when perturbing the input x, the label of x′ is not
changed. These diverse contrastive samples, x, x′ ,
and z, can force the model to focus on task-specific
words and increase contrastive learning efficiency.

Then, we freeze the gate network and use the
above samples to optimize text representations.
Given a sample representation hi , its positive rep-
resentation hj and negative representation hk , the
supervised contrastive learning loss is presented as,

LCON =

3N∑

i=1

−1
3Nỹi − 1

3N∑

j=1

Ii ̸=j · Iỹi ̸=ỹj

· log exp(hi · hj/τ)∑3N
k=1 Ii ̸=k · exp((hi · hk/τ))

(10)

where i, j, k ∈ {1, 2, · · · , 3N} and these 3N
samples consist ofN x samples,N x′ samples, and
N z samples. The τ is a temperature controlling
the concentration level of the distribution (Hinton
et al., 2015).

Finally, we obtain the contrastive loss LCON for
the second stage to fine-tune the BERT encoder.

4 Experimental Settings

4.1 Dataset
We adopt ten benchmark datasets to evaluate our
model, ranging from sentiment classification, and
syntactic judgment to semantic inference, etc.,
which includes five sentiment analysis datasets: RT
(Pang and Lee, 2005a), IMDB (Maas et al., 2011),
SST-2 (Socher et al., 2013), Yelp (Zhang et al.,
2015), SST-1 (Socher et al., 2013); two seman-
tic inference datasets: QQP (Wang et al., 2018),

QNLI (Wang et al., 2018); one topic categorization
dataset:AG’s News (Zhang et al., 2015); one gram-
matical judgment dataset: COLA (Wang et al.,
2018); and one subjective / objective classification
dataset: Subj (Pang and Lee, 2005b). The statistics
of the datasets are displayed in Table 1.

Since QNLI, QQP, and COLA datasets have no
test set, we randomly select 20% of the training
set from each of them as their respective test set.
Similarly, for IMDB, AGNews, and Yelp datasets,
we randomly selecte 20% of the training data as
their respective validation set. For Subj and RT
datasets, which have no both validation and test set,
we randomly select 10% of their respective training
data as their validation and test set, respectively.
More details about the datasets can be found in the
Appendix A.

4.2 Baseline and SOTAs

We conduct experiments with seven competitive
models, one baseline model: BERTBase (Devlin
et al., 2018), three SOTA models, and three variants
of our model.

AGN (Li et al., 2021): An adaptive gate-based
SOTA model that improves performance by com-
puting corpus-specific features such as word fre-
quency and label distribution.

SCL (Gunel et al., 2021): A contrastive learning-
based SOTA model that utilizes supervised con-
trastive learning to obtain promising features and
enhance performance.

Vmask (Chen and Ji, 2020): An interpretation-
based SOTA model that improves accuracy and
interpretation by masking task-irrelevant words at
the word embedding layer with the VIB.

E-VarMMASK : A variant of E-VarM that re-
moves the representation optimization stage and
contains only the variational word extraction stage.

E-VarMPPL: A variant of E-VarM that uses a
two-stage pipeline training method instead of the
iterative one. We first train the gate and the Bert
jointly for 50 epochs to extract class-specific words.
Then we fix the gate parameters and tune the Bert
for 50 epochs via contrastive learning.

E-VarMETE: The third variant of E-VarM that
uses an end-to-end training method to update both
the gate and the BERT model. The corresponding
loss function LETE can be expressed formally as,

LETE = LV IB + LCON (11)

where LV IB is the VIB loss shown in Equation
1040



Table 2: The prediction accuracy (%) comparison of different methods. The best results are marked in bold.

Methods QNLI QQP COLA IMDB AGNews Yelp Subj RT SST-1 SST-2
BERTBase 87.07 90.17 82.45 91.75 93.09 96.30 96.40 86.59 50.81 90.44

AGN 86.95 90.23 81.20 92.66 93.59 97.00 95.61 85.56 50.70 90.57
SCL 86.57 89.26 82.46 91.78 93.61 96.40 95.33 86.65 50.59 90.72

Vmask 85.03 86.04 79.41 92.06 93.52 96.30 96.68 87.82 51.99 91.21
E-VarM 87.94 91.08 83.99 92.73 94.00 97.28 97.30 88.67 53.44 92.37

Variants
E-VarMMASK 86.00 87.21 80.19 92.67 93.58 96.32 96.90 88.00 51.96 92.04
E-VarMETE 71.44 79.54 69.70 85.72 90.78 93.92 93.80 82.94 46.87 87.04
E-VarMPPL 87.59 89.89 82.64 92.76 94.00 96.64 96.80 88.19 52.67 91.76

8 and LCON is the contrastive loss shown in Equa-
tion 10.

4.3 Evaluation Metrics

In our experiments, we chose accuracy as eval-
uation metric for the classification performance.
To assess the interpretability of different models,
we follow the previous work (Chen and Ji, 2020)
and choose Area of Perturbation Curve (AOPC)
(Nguyen, 2018) and post-hoc accuracy (Chen et al.,
2018) as the local interpretability and the global
interpretability metrics, respectively.

The Local Interpretability (AOPC) : The
AOPC metric calculates the average change in pre-
diction probability over all classes by removing the
top K most important words from the input. To pro-
vide a fair assessment for all compared methods,
we utilize LIME (Ribeiro et al., 2016) to extract
the nine most important words. Specifically, the
LIME is a local interpretable algorithm that can
extract local explanations for a classifier by fitting
the local decision boundary of an instance under
test (Ribeiro et al., 2016).

The AOPE metric is then calculated as follows,

AOPC =
1

K + 1
⟨
K∑

k=1

(p(ŷ|x)− p(ŷ|x\1···k))⟩p(x)
(12)

where p(ŷ|x\1···k) is the probability for the pre-
dicted class with words 1..K removed and ⟨·⟩p(x)
denotes the average over all examples.

The Global Interpretability (the post-hoc Ac-
curacy ) : The post-hoc accuracy assesses the suf-
ficiency of important words selected from the input

for model prediction and is calculated as follows,

ACCpost−hoc(k) =
1

N

∑

i=1

(I[ŷ(x(k)i ) = ŷ(xi)])

(13)
where I[·] is an indicator function. ŷ(xi) repre-
sents the prediction label of sample xi and ŷ(x(k)i )
means the prediction label obtained using the most
important k words from xi.

4.4 Implementation Details

We use the pre-trained BERT (Wolf et al., 2019)
as the classifier and adopt a batch-level iterative
mechanism to train the model, with each iteration
consisting of two stages. In the first stage, we
train the gate and BERT model jointly, and for the
second stage, we freeze the gate and train only
the BERT model. Both stages are performed us-
ing the Adam optimizer(Kingma and Ba, 2015)
with learning rate = 1e-5, batch size = 64, and the
dropout=0.2 empirically.

We utilize the grid search technology to obtain
the optimal super-parameters, including the La-
grangian multiplier β and the contrastive learning
temperature τ . The β is selected from {0.1,0.5, 1,
10, 50},while the τ is chosen from 0.1 to 0.9.

In order to compare the performance of the dif-
ferent models, We evaluate the AGN and Vmask
using the open-source code 1 and 2 respectively.
Since the source code for SCL is not provided, we
implement and evaluate this method as described
in the original paper. Additionally, our approach is
implemented using PyTorch, and all calculations
are done on NVIDIA Tesla V100 GPU, with per
experiment taking approximately 1∼3 hours.

1https://github.com/4AI/AGN
2https://github.com/UVa-NLP/VMASK
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Table 3: The AOPC accuracy(%) comparison of different methods. The best results are marked in bold.

k Method QNLI QQP RT COLA IMDB SST1 SST2 AGNews Subj Yelp

1
Vmask 3.44 4.61 7.19 5.61 3.38 7.80 10.52 2.34 2.31 1.15
E-VarM 6.27 6.37 8.18 8.57 4.25 8.86 11.16 3.08 1.94 1.61

5
Vmask 14.09 13.22 25.16 13.02 13.29 17.73 33.53 9.76 13.75 6.17
E-VarM 21.04 16.23 28.58 17.83 13.52 19.67 35.43 12.69 13.14 8.29

9
Vmask 18.65 15.04 31.84 15.05 19.89 19.20 37.78 15.60 22.97 9.55
E-VarM 26.31 17.54 36.70 22.50 20.47 21.34 39.49 19.63 23.32 12.61

5 Experimental Results

5.1 The Classification Performance

As shown in Table 2, our approach achieves the
best results in most datasets, proving its strength in
various text classification tasks. More specifically,
we can draw the following conclusions.

Compared with the gate-based model. AGN
exploits an adaptive gate to obtain data-specific
prior distributions to boost its accuracy. However,
the prior distribution of the data does not always
contribute to the model’s performance, leading to
inferior results. In contrast, our method always
concentrates on task-specific words and is not re-
stricted by the prior distribution of the data.

Compared with the contrastive learning-
based model. Our method has enhancements over
SCL on all datasets due to the high-quality posi-
tive samples. These samples, created with the help
of task-specific words, will increase the challenge
of contrastive learning and facilitate the model to
learn better class discriminative representations.

Compared with the interpretable-based
model. Our approach outperforms Vmask on most
datasets, in particular, with obvious improvements
on the QNLI, QQP, and COLA datasets. Since
Vmask only uses word embedding information to
select important words, it has poor selection deci-
sions on tasks that rely on mid-level or high-level
information, such as semantic reasoning (QNLI,
QQP) and syntactic judgment (COLA), decreasing
the classification performance.

Compared with the variants. When re-
moving the representation optimization stage, E-
VarMMASK shows a performance degradation on
all datasets compared to E-VarM, illustrating that
contrastive learning can improve prediction perfor-
mance. Since the gate network of E-VarMETE is
adversely affected by contrastive loss, the perfor-
mance of E-VarMETE decreases substantially com-
pared to E-VarM. As the encoder of E-VarMPPL

cannot be corrected in time if there is a representa-
tion overlap in the extraction stage, so that the per-
formance of E-VarMPPL slightly drops compared
to E-VarM. In contrast, E-VarM uses a two-task
iterative way at the batch level, where words ex-
traction is performed and immediately followed by
the representation adjustment within a batch.

5.2 The Interpretability
Because of the computational cost, we select 500
samples randomly from the test set to evaluate the
interpretability of the models.

The local interpretability (AOPC). We remove
k task-specific words from the input for the AOPC
experiment ( Equation 12) with k selected from
{1, 5, 9}. As shown in Table 3 , the AOPC of E-
VarM outperforms Vmask on almost all datasets.
On the four datasets: AG’s News, COLA, QQP, and
QNLI, E-VarM shows a noticeable improvement
over Vmask. For example, it outperforms Vmask
by 7% at K=5 on QNLI. These four datasets in-
volve complex tasks, such as topic classification,
semantic inference, and grammar judgment, and
rely on medium or high-level information to se-
lect task-specific words as explanations. E-VarM
integrates multi-level information for words selec-
tion and has good interpretability for such complex
tasks. Even for datasets that rely on shallow fea-
tures to mask, such as SST2, and IMDB datasets,
E-VarM can slightly outperform Vmask by about
2% on average.

The global interpretability (Post-hoc accu-
racy). To compute the post-hoc accuracy of mod-
els, we use the top k task-specific words from the
input for prediction and compare it with the result
from the whole input ( Equation 13), with k rang-
ing from 1 to 9. As shown in Fig 2, the global
interpretability of E-VarM outperforms Vmask on
almost all datasets, with the best performance on
the COLA dataset. On datasets that require multi-
level information for masking, such as QNLI, QQP,
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Figure 2: The post-hoc accuracy(%) comparison of different methods on ten datasets.
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Figure 3: The TSNE visualization comparison of text representations of different models.

and RT, there is a gap between Vmask and E-
VarM, which further illustrates the superiority of
our model in handling complex tasks. Also, E-
VarM achieves relatively good results on IMDB, a
dataset with an average of 268 tokens per sentence,
demonstrating the outstanding performance of our
model in extracting task-specific words.

5.3 The Effect of Different Levels of
Information.

We adopt the bottom (1∼4 layer), middle (5∼8
layer), and top (9∼12 layer) layers of information
for model performance evaluation to demonstrate
the importance of using multi-layer information
when selecting task-specific words. As shown in
Table 5, the model , relying only on low-layer in-
formation (low-layer model), achieves good perfor-
mance when performing shallow-level tasks such
as sentiment analysis. In contrast, when the model

uses only middle or high-layer information (middle-
layer or high-layer model), its performance de-
creases slightly compared to the low-layer model
since the middle and high layers are not sensitive to
superficial information such as the sentiment task’s
literal meaning. Similarly, for tasks such as syntac-
tic judgment and semantic reasoning, the accuracy
of the low-layer model is much lower than that
of the middle-layer or high-layer model, indicat-
ing that the low layer does not contain the syntac-
tic knowledge on which these complex tasks rely.
Since fusing all layers of information, our model
achieves the highest accuracy on all datasets. The
above experiments indicate that the model needs
to simultaneously learn multiple levels of informa-
tion, including literal, phrasal, syntactic, semantic,
and task information, when selecting task-specific
words for a classification task.
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Table 4: A case study of the interpretability of different models on three datasets. The top three task-specific words
are highlighted and the color saturation indicates the word importance.

Datasets Models Texts Prediction

Subj
BERT thoughtful even stinging at times and lots of fun.

SubjectiveVmask thoughtful even stinging at times and lots of fun.

E-VarM thoughtful even stinging at times and lots of fun .

AGNews
BERT athens reuters at the beach volleyball the 2004 olympics is a sell out ...

SportsVmask athens reuters at the beach volleyball the 2004 olympics is a sell out ...

E-VarM athens reuters at the beach volleyball the 2004 olympics is a sell out ...

RT
BERT characterisation has been sacrificed for the sake of spectacle.

NegativeVmask characterisation has been sacrificed for the sake of spectacle.
E-VarM characterisation has been sacrificed for the sake of spectacle.

Table 5: Bottom (1∼4 layer), middle (5∼8 layer) and
top (9∼12 layer) level information impact on model
performance.

Datasets Bottom Middle Top E-VarM
QNLI 86.02 86.95 87.52 87.94
QQP 89.31 90.15 90.32 91.08

COLA 81.36 81.98 82.35 83.99
IMDB 92.34 92.05 91.73 92.73

AGNews 92.72 91.18 93.69 94.00
Yelp 96.98 96.65 96.39 97.28
Subj 96.32 96.35 97.01 97.30
RT 87.97 87.21 87.10 88.67

SST-1 52.58 50.81 50.31 53.44
SST-2 91.54 91.01 90.87 92.37

5.4 Visualizing the Text Representations

To present the phenomenon of representations over-
lap caused by IB and demonstrate that our E-VarM
can learn better class discriminative representa-
tions, we randomly select 1000 test samples for
each dataset and feed them to E-VarMMASK and
E-VarM to obtain text representations. We then vi-
sualize these text representations using the T-SNE
(Van der Maaten and Hinton, 2008) and show the
results for the five datasets in Fig 3 (The results of
the comparison with Vmask are in Appendix B).
As observed, the text representations obtained by
E-VarMMASK have different degrees of overlap, in
which the inter-class distance is smaller than that of
E-VarM, while the intra-class distance is larger than
that of E-VarM. Especially, on the COLA, QNLI,
and QQP datasets that involve complex tasks and
rely on multi-layer semantics for decisions, there is
significant overlap of text representations obtained
by E-VarMMASK among different classes, which

would result in indistinguishable classes and re-
duce the prediction accuracy. In contrast, E-VarM
alleviates the problem of inter-class overlap and
intra-class dispersion on all datasets through super-
vised constrastive learning and thus obtains better
text representations.

5.5 Visualizing the Interpretation
To further compare the interpretability of the BERT,
Vmask, and E-VarM, we conduct case studies on
three datasets: Subj, AGNews, and RT. We high-
light the top three important words selected by
LIME, with the level of color saturation indicating
the word’s importance. As shown in Table 4, for
the same sentences, all three models make correct
predictions, it is clear that BERT and Vmask ex-
tract many nonsense or task-irrelevant words such
as ’at’, ’of’, and ’out’. In contrast, our model cap-
tures more task-specific words, such as ’olympics’
related to the topic ’sports’, ’characterisation’ as
the subject of ’sacrificed,’ which fits better with the
semantics of the input, and ’stinging’ and ’fun ’,
which are more of a subjective expression, showing
the outstanding interpretability of our model.

6 Conclusion

In this paper, we propose E-VarM to simultane-
ously boost the model’s interpretability and accu-
racy. E-VarM combines multi-level information
for task-specific words selection, which can adjust
the decision basis of the model, and improve the
model’s interpretability. Further, E-VarM adopts
contrastive learning for representation optimiza-
tion to mitigate the risk of representations overlap,
enhancing the model’s classification performance.
Experimental results on ten benchmark datasets
demonstrate the effectiveness of E-VarM.
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A Datasets

This paper uses ten widely studied datasets that
cover a wide range of application domains, which
are described in detail below:

For sentiment analysis, we use five benchmark
datasets in which RT 3 (Pang and Lee, 2005a),
IMDB 4 (Maas et al., 2011), SST-2 5 (Socher et al.,
2013) and Yelp (YelpReviewPolarity) 6 (Zhang
et al., 2015) are four binary sentiment polarity
datasets with each sentence annotated as positive
or negative. And SST-1 7 (Socher et al., 2013) is a
fine-grained sentiment dataset derived from Stan-
ford Sentiment Treebank with five balanced labels
(negative, somewhat negative, neutral, somewhat
positive, positive).

For topic categorization, we use AG’s News8

(Zhang et al., 2015) dataset where each article
only has a title and description and can be cate-
gorized into one of the four main classes: "World",
"Sports", "Business", and "Technology".

For grammatical judgment, we adopt COLA
9 (Wang et al., 2018) dataset that published by
New York University with each sentence marked
whether there are grammatical errors or not.

For semantic inference, we employe QQP 10

(Wang et al., 2018) dataset to determine whether a
questions pair is semantically equivalent, and the
QNLI 11 (Wang et al., 2018) dataset to judge a
question-sentence pair is entailment relation or not.

Additionally, we leverage Subj 12 (Pang and
Lee, 2005b) dataset to carry out subjective / objec-
tive classification, which contains 5000 subjective
and 5000 objective sentences, respectively.

B Visualization Supplement

We visualize the text representations for the re-
maining five datasets . As shown in Fig. 4, the

3https://www.cs.cornell.edu/people/pabo/movie-review-
data/rt-polaritydata.tar.gz

4http://ai.stanford.edu/ amaas/data/sentiment/aclImdb_v1
.tar.gz

5https://drive.google.com/uc?export=download&
id=0Bz8a_Dbh9QhbNUpYQ2N3SGlFaDg

6https://drive.google.com/uc?export=download&
id=0Bz8a_Dbh9QhbNUpYQ2N3SGlFaDg

7https://drive.google.com/uc?export=download&
id=0Bz8a_Dbh9QhbNUpYQ2N3SGlFaDg

8http://groups.di.unipi.it/ gulli/AG_corpus_of_news_
articles.html

9https://gluebenchmark.com/tasks
10https://gluebenchmark.com/tasks
11https://gluebenchmark.com/tasks
12https://www.cs.cornell.edu/people/pabo/movie-review-

data/

text representations obtained by E-VarM have a
larger inter-class distance and a smaller intra-class
distance than that obtained by Vmask. This phe-
nomenon indicates that our model can adjust the
text representation and alleviate the problem of
representations overlap.
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Figure 4: T-SNE visualization comparison. The upper is Vmask, and the lower is our method.

1050



Proceedings of the 29th International Conference on Computational Linguistics, pages 1051–1064
October 12–17, 2022.

Attribute Injection for Pretrained Language Models:
A New Benchmark and An Efficient Method

Reinald Kim Amplayo∗
University of Edinburgh
reinald.kim@ed.ac.uk

Kang Min Yoo Sang-Woo Lee
NAVER AI Lab, NAVER Clova AI

{kangmin.yoo,sang.woo.lee}@navercorp.com

Abstract

Metadata attributes (e.g., user and product IDs
from reviews) can be incorporated as addi-
tional inputs to neural-based NLP models, by
expanding the architecture of the models to im-
prove performance. However, recent models
rely on pretrained language models (PLMs),
in which previously used techniques for at-
tribute injection are either nontrivial or cost-
ineffective. In this paper, we introduce a
benchmark for evaluating attribute injection
models, which comprises eight datasets across
a diverse range of tasks and domains and six
synthetically sparsified ones. We also propose
a lightweight and memory-efficient method
to inject attributes into PLMs. We extend
adapters, i.e. tiny plug-in feed-forward mod-
ules, to include attributes both independently
of or jointly with the text. We use approxi-
mation techniques to parameterize the model
efficiently for domains with large attribute vo-
cabularies, and training mechanisms to han-
dle multi-labeled and sparse attributes. Exten-
sive experiments and analyses show that our
method outperforms previous attribute injec-
tion methods and achieves state-of-the-art per-
formance on all datasets.

1 Introduction

Neural-based NLP models are powered by large-
scale textual datasets, which are mostly crawled
from the web (Denoyer and Gallinari, 2006; Sand-
haus, 2008; Zhu et al., 2015; Ni et al., 2019; Raffel
et al., 2020). Web texts usually are attached with
metadata, i.e. attributes that describe the texts.
For example, product reviews have user and prod-
uct IDs, as well as their ratings, while research
papers on arXiv have author lists and research ar-
eas as metadata attributes (see Figure 1). While
most of the recent models disregard them and fo-
cus more on ungrounded language understanding

∗ Work done while Reinald was at NAVER AI Lab. He
is now at Google Research.

Yelp Review
Text: My boyfriend’s fav. place and the stein of beers are
priced pretty good. Game nights get super packed so go early
to save a seat. Kitchen closes at midnight which is too early
when your buzz kicks in around 1am.
Attributes:
– User: n6LeAoIuDR3NfIBEsmL_zg
– Product: 7TMf1NuuAdvhG7IojZSKnw

Paper Abstract
Text: We present new and improved fixed-parameter algo-
rithms for computing maximum agreement forests (MAFs) of
pairs of rooted binary phylogenetic trees. The size of such
a forest for two trees corresponds to their subtree prune-and-
regraft distance and, if the agreement forest is acyclic, to their
hybridization number ...
Attributes:
– Authors: Chris Whidden, Robert G. Beiko, Norbert Zeh
– Research Areas: q-bio.PE, cs.DS

Figure 1: Examples of a Yelp review and an arXiv pa-
per abstract and their corresponding attributes. Texts in
typewriter font are attribute labels.

(understanding language on its own, e.g., GLUE;
Wang et al., 2018, inter alia), prior work has shown
that incorporating these attributes into our model
increases not just its performance but also its inter-
pretability and customizability (Tang et al., 2015;
Chen et al., 2016; Kim et al., 2019). This work
explores the task of attribute injection (Amplayo,
2019), which aims to use attributes to improve the
performance of NLP models effectively.

Previous methods for attribute injection (Tang
et al., 2015; Zhu et al., 2015; Chen et al., 2016; Ma
et al., 2017; Dou, 2017; Amplayo et al., 2018; Wu
et al., 2018; Long et al., 2018; Kim et al., 2019;
Amplayo, 2019) involve two steps: (1) designing
an architecture that accepts both texts and attributes,
and (2) training the model from scratch using task-
specific datasets. However, these methods of modi-
fying different modules of the model can be non-
trivial when applied to pretrained language models
(PLMs; Devlin et al., 2019; Liu et al., 2019; Qiu
et al., 2020). The use of PLMs disallows design-
ing new and specialized architectures. Zhang et al.
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(2021b) append large and deep layers of attribute-
specific Transformers to the end of PLMs, which
cannot leverage the potential of attributes in the
intermediate layers of PLMs and also scales poorly
to multiple tasks and domains. Finally, more recent
work on language model customization and con-
trollability makes use of textual prompts (Brown
et al., 2020; Schick and Schütze, 2021), special-
ized tokens (Fan et al., 2018; Keskar et al., 2019),
and additional neural modules (Perez et al., 2018;
Wang et al., 2019; Lauscher et al., 2020; Liu et al.,
2021) to introduce additional contexts, such as
style, topic, and end task. Unfortunately, these tech-
niques do not generalize to all kinds of attributes,
such as those that are non-textual (e.g., user IDs
that are not text-translatable), multi-labeled (e.g.,
multiple authors of a paper), and with large vocab-
ularies (e.g., thousands of products available).

Our contribution in this paper is two-fold. Firstly,
we introduce a new benchmark to evaluate models
for attribute injection. The benchmark consists of
eight datasets which include three newly collated
ones from different tasks and domains, and six syn-
thetically sparsified datasets which are specifically
created to evaluate models in sparse settings. These
datasets span from diverse tasks, such as sentiment
classification, spoiler detection, and message type
classification, and contain attributes that have dif-
ferent properties (sparse vs. non-sparse, single-
labeled vs. multi-labeled, etc.). Experiments on
the benchmark show that our method outperforms
previous approaches, as well as competitive base-
lines that fully fine-tune the pretrained language
model. We also conduct extensive analyses to show
that our method is robust to sparse and cold-start at-
tributes and that it is modular with attribute-specific
modules transferrable to other tasks using the same
attributes.

Secondly, we propose a lightweight and memory-
efficient method that is specifically suited to inject
attributes into PLMs, which can be non-textual,
multi-labeled, and have large vocabularies. We
make use of adapters (Houlsby et al., 2019), i.e.
feed-forward modules inserted between layers of
PLMs that are tiny in size, and extend them such
that attributes are injected as additional inputs to
the model. We introduce two kinds of injection
methods, which either incorporate attributes inde-
pendently of or jointly with the text representation.
A naive implementation of the latter would sub-
stantially increase the parameters, especially when

the attribute vocabulary is large, thus we use ideas
from low-rank matrix approximations as well as pa-
rameterized hypercomplex multiplications (Zhang
et al., 2021a; Mahabadi et al., 2021) to signifi-
cantly decrease the fine-tuned parameters by up
to 192× for a default base-sized BERT (Devlin
et al., 2019) setting. We also use two mechanisms,
attribute dropout and post-aggregation, to handle at-
tribute sparsity and multi-labeled attributes, respec-
tively. Our use of adapters enables us to parameter-
efficiently train our model, i.e. by freezing pre-
trained weights and only updating new parameters
at training time. We make our code and datasets
publicly available.1

2 Related Work

Prior to the neural network and deep learning era,
traditional methods for NLP have relied on feature
sets as input to machine learning models. These
feature sets include metadata attributes such as
author lists and publication venue of research pa-
pers (Rosen-Zvi et al., 2004; Joorabchi and Mahdi,
2011; Kim et al., 2017), topics of sentences (Ra-
mage et al., 2009; Liu and Forss, 2014; Zhao and
Mao, 2017), as well as spatial (Yang et al., 2017)
and temporal (Fukuhara et al., 2007) metadata at-
tributes found in tweets. Attributes are mostly used
in the area of sentiment classification (Gao et al.,
2013), where most of the time textual data includes
freely available user and product attributes. These
methods rely on manually curated features that
would represent the semantics of user and product
information.

Deep neural networks gave rise to better repre-
sentation learning (Bengio et al., 2013; Mikolov
et al., 2013), which allows us to learn from scratch
semantic representation of attributes in the form
of dense vectors (Tang et al., 2015). The design
of how to represent attributes has evolved from
using attribute-specific word and document em-
beddings (Tang et al., 2015) and attention pooling
weights (Chen et al., 2016; Ma et al., 2017; Am-
playo et al., 2018; Wu et al., 2018), to more compli-
cated architectures such as memory networks (Dou,
2017; Long et al., 2018) and importance matrices
(Amplayo, 2019). These designs are model- and
domain-dependent and can be non-trivial to apply
to other models and datasets. Our proposed method,
on the other hand, works well on any pretrained
language model which are mostly based on Trans-

1https://github.com/rktamplayo/Injector
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former (Vaswani et al., 2017; Devlin et al., 2019).
Zhang et al. (2021b) used six layers of attribute-
injected Transformers where attributes are used as
input to the self-attention module, which is costly
in terms of memory, i.e., equivalent to adding 50%
of the original BERT-base parameters. Attributes
are useful in the intermediate layers when learning
the semantics of the input text, which this model
cannot leverage.

Our work is closely related to recent literature
on controlled text generation, where most of the
work use either specialized control tokens concate-
nated with the input text (Sennrich et al., 2016;
Kikuchi et al., 2016; Ficler and Goldberg, 2017;
Fan et al., 2018; Keskar et al., 2019), or textual
prompts that instruct the model on what to generate
(Brown et al., 2020; Schick and Schütze, 2021; Gao
et al., 2021; Zhao et al., 2021). While these meth-
ods have been successfully applied to pretrained
language models, the attributes used to control the
text are limited to those that are text-translatable
(e.g., topics such as “technology”) and those with
limited vocabulary (e.g., “positive” or “negative”
sentiment).

Methods to efficiently fine-tune pretrained mod-
els have been explored since their inception
(Dathathri et al., 2019; Li and Liang, 2021; He
et al., 2022). One of the more popular methods is
the use of adapters (Houlsby et al., 2019), where
tiny trainable feed-forward modules are inserted
and pretrained weights are frozen during training.
Most of the prior work on adapters focuses on ei-
ther improving their effectiveness and efficiency
(Mao et al., 2021; Mahabadi et al., 2021; He et al.,
2022) or applying it to domain adaptation and trans-
fer learning tasks (Pfeiffer et al., 2021; He et al.,
2021; Cooper Stickland et al., 2021). Our work
extends the use of adapters to additionally accept
attributes as input, which is closely related to Perez
et al. (2018) and Lauscher et al. (2020), where
the adapter accepts textual questions and common-
sense knowledge as input, respectively. However,
unlike previous work where the additional input
can be transformed into natural language tokens,
attributes are usually not the case (e.g., see user
and product IDs in Figure 1), which poses new
challenges in efficiency when applied to adapters.

3 Attribute Injection Benchmark

Problem Setting Let x = {xi}Ni=1 denote the in-
put text of N tokens, y is a task-specific output,

and p(y|x) is a discriminative model that predicts
y given x. Suppose there exists a set of non-textual
and categorical attributes z = {zj}Mj=1 that de-
scribe text x (e.g., user and product IDs of product
reviews). These attributes can be multi-labeled, i.e.
zj = [z

(k)
j ] (e.g., multiple authors of a research pa-

per) and use a finite yet possibly large vocabulary
Zj , i.e. zj ⊆ Zj . The task of attribute injection
aims to build a model q(y|x, z) that additionally
incorporates z as input such that the gain in task
performance between p and q is maximized. In our
setting, p is a pretrained language model (PLM)
fine-tuned to the task, while q is a PLM that also
takes z as additional input.

The Datasets To evaluate attribute injection
models on a wide variety of tasks and datasets from
different domains, we introduce ATTRIB, a collec-
tion of benchmark datasets to evaluate attribute
injection methods. ATTRIB consists of a total of
14 datasets. The first eight datasets are collected
from different domains with a diverse set of tasks
spanning from sentiment classification to spoiler
detection. Three of the eight datasets are newly
introduced in this paper. Table 1 reports the dataset
statistics, which shows the different characteris-
tics (i.e., size of training data, input text length,
number of attributes, sparsity, and multi-labelity of
attributes) of each dataset.

The first three datasets (Y2013, Y2014, and
IMDB; Tang et al., 2015) are sentiment classifica-
tion datasets with user and product attributes from
two different sources (Yelp and IMDB). AAPR
(Yang et al., 2018) is a dataset for classifying
whether an arXiv paper is accepted to a confer-
ence or not, with two attributes, lists of authors
and research areas. POLMED (Kim et al., 2019)
is a classification dataset in the political domain,
where the goal is to classify the message type of a
tweet, with four attributes, politician, media source,
audience, and political bias.

We also introduce three new attribute injection
datasets (see Appendix for details on dataset col-
lection). FOOD is a dataset in which given a recipe
from Food.com and three attributes, user and lists
of ingredients and tags, we are tasked to predict
the estimated number of minutes it takes to make
the food, rounded down to the tens. GOOD is a
spoiler detection dataset where we classify whether
a book review from Goodreads contains a spoiler
or not, with three attributes: user, book, and rating.
And finally, BEER is a multi-aspect rating predic-
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Dataset Y2013 Y2014 IMDB AAPR POLMED FOOD GOOD BEER

#Train 62.5K 183.0K 67.4K 33.5K 4.5K 162.4K 714.7K 1.5M
#Dev 7.8K 22.7K 8.4K 2.0K – 20.3K 10.0K 10.0K
#Test 8.7K 25.4K 9.1K 2.0K 0.5K 20.3K 10.0K 10.0K
#Words/Input 210(166) 218(175) 425(278) 97(36) 38(62) 101(65) 132(72) 133(56)
#Classes 5 5 10 2 9 16 2 4×9
#Attributes 2 2 2 2 4 3 3 3
#Attr. Vocab 3.3K 9.0K 2.9K 51.6K 0.5K 40.5K 43.8K 98.0K
%Sparse 0.0% 0.0% 0.0% 97.8% 63.8% 80.0% 34.4% 75.3%
Multi-label? X X

Table 1: ATTRIB datasets statistics. The second block reports new datasets introduced in this paper. BEER is a
multi-task dataset, with nine classes for each of four given aspects. %Sparse is the percentage of attributes with
less than 10 training examples. Multi-label attributes include lists of authors and research areas for AAPR, and
lists of ingredients and tags for FOOD. The kinds of attributes available and further analyses can be found in the
Appendix.

tion dataset in which given a review and three at-
tributes, user, beer, and overall rating, we are tasked
to predict the ratings of four aspects, i.e. properties
that influence user satisfaction: appearance, aroma,
palate, and taste.

Additionally, we collated six synthetically sparsi-
fied datasets that were created specifically to evalu-
ate attribute injection methods in cold-start environ-
ments2. Specifically, Amplayo et al. (2018) down-
sampled the Y2013 and IMDB training datasets
such that the attributes are sparser than the origi-
nal. There are three levels of sparsity: 20%, 50%,
and 80%, where x% means that x% of attributes
are cold-start and thus are unseen in the training
examples. Statistics of these datasets are shown in
the Appendix.

4 Modeling Approach

Our proposed method, which we call INJECTORS,
can be summarized as follows. We extend adapters
(Houlsby et al., 2019), which are tiny feed-forward
neural networks plugged into pretrained language
models, such that they also accept attributes z as
input. Attributes z can be represented as additional
bias parameters or as perturbations to the weight
matrix parameter of the adapter, motivated by how
attributes are used to classify texts. We decrease
the number of parameters exponentially using low-
rank matrix approximations and parameterized hy-
percomplex multiplications (Zhang et al., 2021a).
Finally, we introduce two training mechanisms, at-
tribute dropout and post-aggregation, to mitigate
problems regarding attribute sparsity and multi-

2In this paper, we distinguish the definition of sparsity and
cold-start attributes as the former referring to attributes with
few training examples, and the latter referring to those with
zero training examples.

Multi-head
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Figure 2: Architecture of the INJECTOR module when
integrated into one block of a Transformer model (see
left of figure). INJECTOR starts with a task-specific
adapter, followed by M attribute-specific adapters, one
for each attribute given in the task (see right of fig-
ure). Green-colored modules are trained and fine-tuned,
while gray-colored modules are fixed.

label properties. Figure 2 illustrates an overview of
INJECTORS.

Preliminary: Adapters We first briefly describe
adapters. Let h ∈ Rdh be the output hidden vector
from a multi-head attention or feed-forward layer
in a Transformer block. An adapter layer is basi-
cally two feed-forward networks that projects h
into vector h′ ∈ Rdh with a much smaller dimen-
sion da � dh:

h′ = Adapt(h)

= FFNetup(f(FFNetdown(h))) + h (1)

where FFNet(x) = Wx+b, W and b are learned
weight and bias parameters of FFNet, f(·) is a
non-linear function, and the addition represents a
residual layer.
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Task-specific Adapter INJECTORS start with a
task-specific adapter that uses Equation 1 to trans-
form the previous hidden vector h to h′. The use of
a separate task-specific adapter is essential to make
our method modularizable and learned attributes
on one task transferrable to another. We show ex-
tensive analyses of the modularity of our method
in the later sections.

Attribute-specific Adapters Attributes z are in-
jected through attribute-specific adapters, where
they are used in two different ways. Firstly, they
are used as bias parameters independent of the text
representation. This is motivated by the fact that
attributes can have a prior disposition regardless
of what is written in the text. For example, a user
may tend to give lower review ratings than average.
Secondly, they are also used as weight parameters.
This allows our method to jointly model attributes
with the text representation. This is motivated by
how attributes can change the semantics of the text.
For example, one user may like very sweet food
while another user may dislike it, thus the use of
the word sweet in the text may mean differently to
them.

More formally, for each attribute zj ∈ z, we
obtain its embedding zj from a learned embedding
matrix and sequentially transform the previously
attribute-injected vector hzj−1 to attribute-injected
vector hzj using the following equation:

hzj = AttrAdapt(hzj−1 , zj) (2)

= FFNetup(f(Wzjhzj−1 + bzj ))

+ hzj−1 (3)

where hz0 = h′ from the output of task-specific
adapter. Unlike standard adapters, the attribute-
specific weight matrix Wzj ∈ Rdh×da and bias
parameter bzj ∈ Rda of the down-project feed-
forward network are not learned from scratch, but
instead are calculated as follows.

The calculation of the bias parameter bzj is triv-
ial; we perform a linear transformation of the at-
tribute embedding zj :

bzj = gbias(zj) + cbias (4)

where gbias ∈ Rdz 7→ Rda is a linear projection,
cbias ∈ Rda is a learned vector, and dz is the at-
tribute embedding size.

We also define Wzj as:

Wzj = gweight(zj) +Cweight (5)

where Cweight ∈ Rdh×da is a learned matrix. The
function gweight, however, cannot be defined sim-
ilarly as a linear projection. This would require a
tensor parameter of size dz × dh × da to linearly
project zj to Wj . Considering the fact that we may
have multiple attributes for each domain, the num-
ber of parameters would not scale well and makes
the model very large and difficult to train. Inspired
by Mahabadi et al. (2021), we use ideas from low-
rank matrix decomposition and parameterized hy-
percomplex multiplications (PHMs; Zhang et al.,
2021a) to substantially decrease the number of pa-
rameters. Figure 3 shows an illustrative overview.

More specifically, we first transform attribute
embedding zj into vectors in hypercomplex space
with O dimensions, i.e.:

ẑj = [σ1(zj), ..., σO(zj)] ∈ Hdz (6)

where σo(·) ∈ Rdz 7→ Rda is a linear projection in
the oth dimension. A hypercomplex vector with O
dimensions is basically a set of vectors with one
real vector and O − 1 “imaginary” vectors.3

For each dimension o, we first define a small
rank-one matrix So ∈ Rda×dh/O2

as an outer prod-
uct between ẑj,o and a learned vector so ∈ Rdh/O2

:

So = ẑj,os
>
o (7)

and then define a large matrix Ŵj,o ∈ Rdh×da as
the Kronecker product, denoted by ⊗ between two
matrices So and a learned matrix Ao ∈ RO×O,
followed by a reshape and the hyperbolic tangent
function:

Ŵo = Reshape(tanh(So ⊗Ao)) (8)

Finally, we add the large matrices Ŵo of each
dimension. To sum up, we define gweight(zj) as:

gweight(zj) =
∑O

o=0
Reshape(tanh(σo(zj)s>o ⊗Ao)) (9)

Low-rank (Eq. 7) and PHMs (Eqs. 8-9) are both
necessary to achieve a high performance with de-
creased parameters. While the low-rank method in
itself reduces the most parameters, it also reduces
the expressive power of the model since it outputs
rank-one matrices. PHMs mitigate this by perform-
ing a sum of Kronecker products, increasing the

3Following Tay et al. (2019) and Zhang et al. (2021a), we
remove the imaginary units of these vectors to easily perform
operations on them, thus these vectors are also in the real
space.
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Figure 3: An illustration of how attribute embedding zj is transformed into weight matrix Wzj . The colored
tensors are learned parameters, while the gray ones are derived. By using a set of tiny parameters Ao and so, we
are able to obtain large matrices. When there are multiple labels for attribute zj , we process them separately and
aggregate the resulting large matrices.

rank of the matrix to potentially at most O2. Fi-
nally, this process effectively reduces the number
of parameters from O(dz ∗ dh ∗ da) to O(dz ∗ da),
since the parameters in σo dominate the other pa-
rameters (see Appendix for a detailed parameter
analysis).

Attribute Dropout and Post-Aggregation For
cases where attributes are sparse and multi-labeled,
we use the following mechanisms. Firstly, we add
a dropout mechanism that randomly masks out at-
tributes from training instances with a rate rdrop.
This replicates how instances at test time would
look, where some attributes are not found in the
vocabulary.

Secondly, when there are more than one labels of
an attribute, instead of aggregating them first before
processing, as in Kim et al. (2019), we perform
aggregation post hoc for Wzj ), i.e.:

bzj =
∑

k
gbias(z

(k)
j ) + cbias (10)

Wzj =
∑

k
gweight(z

(k)
j ) +Cweight (11)

Aggregating attribute embeddings reduces their
individual representation power, while our post-
aggregation mechanism preserves this since a sum
of non-linear transformations is injective (Xu et al.,
2019).

5 Experimental Setup

Training Configuration For the PLMs, we used
weights and settings of bert-base-uncased (De-
vlin et al., 2019), available in the HuggingFace
library (Wolf et al., 2020). We set the dimensions
of all parameters as follows: dz = dh = 768,
da = 64, and O = 4. Using this setting and our
parameter-saving method, we are able to decrease
the parameters by 192× the naive method. To han-
dle long input texts and fit them into the 512 token
limit of PLMs, we truncate them by concatenat-
ing the first and last 250 tokens, following Zhang
et al. (2021b). We set both the general and attribute
dropout rates to 0.2 and the batch size to 8. We
used Adam with weight decay (Loshchilov and
Hutter, 2019) to optimize our models with a learn-
ing rate of 3e− 5 and 200K training steps, with the
first 20K steps used to warm-up training linearly.

To train our models, we added a logistic clas-
sifier that transforms the [CLS] token into logits.
The weights here are updated during training. We
then used a cross-entropy loss to train the models
on all datasets except for Goodreads and Beerad-
vocate. The Goodreads dataset is very imbalanced
towards the negative class (i.e., not a spoiler). We
thus put more importance on detecting the spoiler
class and used a weighted cross-entropy loss with
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0.5 weight on the negative class and 1.0 weight on
the positive class. For Beeradvocate, we treat the
task as a multi-task problem, where each aspect
rating prediction is a separate task. Thus, we used
multiple classifiers, one for each aspect, and ag-
gregate the losses from all classifiers by averaging.
For PolMed where there is no available develop-
ment set, we performed a 10-fold cross-validation,
following Kim et al. (2019).

Comparison Systems We compared our method
with several approaches, including the following
no-attribute baselines: (1) BERT-base (B): The
base model used in our experiments; and (2) B +
ADAPTERS: Extra tiny parameters are added to
the base model and are used for training instead of
the full model.

Baselines with attributes injected include the
following, where we use the same base model B
for all baselines for ease of comparison: (3) B +
TOKENS: the attributes are used as special con-
trol tokens prepended in front of the input. The
[CLS] token is then passed to the logistic classifier;
(4) B + UPA (Chen et al., 2016): attributes are
used as additional bias vectors when calculating
the weights of the attention pooling module; (5) B
+ CHIM (Amplayo, 2019): attributes are used as
importance matrices multiplied to the weight ma-
trix of the logistic classifier; and (6) B + MAA and
B + TINYMAA (Zhang et al., 2021b): attributes
are used to modify the parameters used for calculat-
ing query/key/value in the self-attention. To match
the parameters of other baselines, we implemented
a tiny version with a single Transformer layer and
smaller dimensions; and (7-8) B. All models were
trained on a single GeForce GTX 1080Ti GPU,
except for B + MAA, in which four GPUs were
required to train on the same setting for all datasets.

Finally, we also included in our comparisons a
version of our model using the RoBERTa-base (R;
Liu et al., 2019) configuration (R + INJECTORS).

6 Results

We evaluated system outputs with accuracy for all
datasets except GOOD, where we used F1-score.
For brevity in BEER, we took the average of the ac-
curacy of all sub-tasks. Our results are summarized
in Table 2. Token-based injection performs worse
than the base model on four datasets, which shows
that the method is not effective for attribute injec-
tion. Overall, among the attribute injected systems,
INJECTORS outperforms the other baselines on all

datasets, even when BERT parameters are frozen4.
The difference in performance is especially signif-
icant in GOOD, where INJECTORS performs 9.68
points better than the second model. Finally, We
also see an increase in performance when applying
INJECTORS to RoBERTa, showing that our method
can be applied effectively to better-pretrained mod-
els. We also conducted ablation studies, detailed
in the Appendix, showing the contributions of the
different components in the proposed model.

Ablation Studies We present in Table 3 various
ablation studies, which assess the contribution of
different model components. Our experiments con-
firm that the use of both bias and weight injection
as well as the addition of task adapter improve
performance. Interestingly, some datasets prefer
one injection type over the other. GOOD dataset,
for example, prefers bias injection, i.e., using at-
tributes as prior and independent of the text (e.g.,
the tendency of the user to write spoilers). More-
over, our training mechanisms also increase the
performance of the model. This is especially true
for post-aggregation on the FOOD dataset since
two of its attributes are multi-labeled (ingredients
and tags). Finally, we show that the model variant
without one of the parameter-saving methods either
performs worse or does not run at all.

On Cold-Start Attributes We checked the per-
formance of the models when trained with synthetic
cold-start attributes using the Y2013-COLD and
IMDB-COLD datasets. We compared the perfor-
mance of BERT-base, CHIM, TINYMAA, MAA,
and INJECTORS. Table 4 shows their performance
along with HCSC (Amplayo et al., 2018), which is
a hybrid of BiLSTM and CNN with a UPA-style
attribute injection method (Chen et al., 2016) and
is extended to perform well on cold-start scenarios.
As can be seen, our method still performs the best
on these datasets, while TINYMAA is consistently
worse than the base model when attributes are
80% sparse. MAA improves over TINYMAA with
the cost of significant increase in parameters. All
BERT-based methods perform better than HCSC
on both datasets. Overall, the improvements are
the smallest when the dataset is the sparsest (80%
sparsified data). This is expected since datasets are
smaller and include cold-start attributes.

4We did not see an improvement over our final model when
fine-tuning all parameters of B + INJECTORS.
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Model Y2013 Y2014 IMDB AAPR POLMED FOOD GOOD BEER TP
BERT-base (B) 67.97 68.07 52.45 63.70 41.82 41.89 41.98 50.48 1.00×
B + ADAPTERS 66.47 67.44 52.69 62.85 44.24 42.02 48.92 50.71 0.02×
B + TOKENS 67.87 67.98 52.68 64.85 42.63 41.23 44.79 50.25 1.00×
B + UPA 68.38 68.82 55.76 64.40 42.83 43.97 43.96 51.98 1.01×
B + CHIM 68.71 68.56 54.31 65.30 43.64 43.35 43.58 52.29 1.01×
B + TINYMAA 68.03 68.57 55.76 65.00 44.65 43.63 44.65 54.58 1.01×
B + MAA (our impl.) 70.15 70.51 56.98 65.15 43.43 43.33 48.10 55.04 1.50×
B + MAA (original) 70.3 71.4 57.3 – – – – – 1.50×
B + INJECTORS 70.86 71.69∗ 58.90∗ 67.10∗ 47.27∗ 45.01 57.78∗ 57.87∗ 0.10×
RoBERTa-base (R) 68.01 69.11 53.31 61.50 42.42 41.82 44.12 52.86 1.12×
R + INJECTORS 73.00 73.50 60.32 67.30 46.26 44.19 60.73 58.20 0.10×

Table 2: Performance (F1-score on GOOD, Accuracy otherwise) of competing methods on eight datasets, along
with the percentage of trained parameters (TP; excluding embeddings). Attribute injected PLMs that perform
worse than the base model B are italicized. Among B-based models, best systems are in bold and the second-best
are underlined. Asterisk (*) signifies a significant difference between our model and the second-best model (paired
bootstrap resampling; p < 0.05).

Model Y2013 Y2014 IMDB AAPR POLMED FOOD GOOD BEER

B + INJECTORS 70.86 71.69 58.90 67.10 47.27 45.01 57.78 57.87
– bias injection 70.33 71.24 58.54 66.45 46.67 44.86 57.06 57.67
– weight injection 70.51 71.27 58.55 66.85 45.66 44.74 57.61 57.29
– task adapter 69.21 69.68 57.25 65.55 46.89 44.30 56.57 57.28
– attribute drop 69.29 70.94 57.69 65.55 46.33 44.48 56.62 57.41
– post-aggregation 70.76 71.35 58.63 64.42 47.27 43.30 57.78 57.69
– low-rank OOM OOM OOM OOM OOM OOM OOM OOM
– PHM 68.27 69.05 56.74 65.15 46.16 43.89 55.99 56.51

Table 3: Performance of INJECTORS and versions thereof without some of our proposed components (second
block), training mechanisms (third block), and parameter-saving methods (fourth block). OOM denotes the model
does not run on our experimental setup due to out of memory error.

Y2013-COLD
Model 20% 50% 80%

BERT-base (B) 65.24 63.88 58.23
B + CHIM 65.85 64.12 58.56
B + TINYMAA 66.26 64.20 57.68
B + MAA 67.03 64.22 58.48
B + INJECTORS 67.89 64.32 59.23
HCSC 63.6 60.8 53.8

IMDB-COLD
Model 20% 50% 80%

BERT-base (B) 50.24 47.77 41.37
B + CHIM 51.08 47.81 41.22
B + TINYMAA 52.45 48.27 40.78
B + MAA 53.52 49.25 41.61
B + INJECTORS 55.62 49.87 41.78
HCSC 50.5 45.6 36.8

Table 4: Performance on the Y2013-COLD and IMDB-
COLD. Best systems are shown in bold. Models per-
form worse than B are colored red.

On Model Modularity Adapters allow us to
compose multiple modules with different function-
alities, possibly trained from different models. For
example, when predicting the review rating of a
specific user on a new aspect of a product, we may
want to use the learned representation of a user on
a previous model (i.e., a review rating prediction

Model A RPT→A
B + MAA 53.65 51.27 (−4.43%)
B + INJECTORS 55.58 56.23 (+1.17%)

Model R APT→R
B + MAA 51.79 50.57 (−2.36%)
B + INJECTORS 53.62 55.48 (+3.47%)

Model P ART→P
B + MAA 52.73 50.84 (−3.57%)
B + INJECTORS 55.44 55.63 (+0.34%)

Model T ARP→T
B + MAA 58.25 56.08 (−3.73%)
B + INJECTORS 59.39 60.27 (+1.48%)

Table 5: Performance of models on single-task BEER
(A: appearance, R: aroma, P: palette, T: taste). The
arrow (→) indicates that the attribute-specific adapters
of the model in the right-hand side (e.g., A) are initial-
ized using parameters of the left-hand side model (e.g.,
RPT) and are frozen during training.

model focused on previously known aspects of the
product). This is especially crucial when there is
fewer data for such new tasks5. Since INJECTORS

are basically a sequence of adapters, we expect
that modular composition across different models

5We leave the exploration of attribute transfer to com-
pletely new tasks in future work due to the absence of multi-
task datasets with common attributes.
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is also effective in our setting. In this section, we
verify this using the following experiment.

We use the BEER dataset, which is a multi-task
aspect rating prediction dataset with four different
aspects. We divide the dataset into two subsets:
(1) a single-task target dataset and (2) a 3-task
source dataset. We train the model using the source
dataset, obtaining attribute-specific parameters. We
then transfer these parameters when training the
model using the target dataset, and only fine-tune
the parameters of the task adapter and the classifier.

We split the training dataset into four parts, one
for each aspect, to ensure that there are no overlap-
ping training examples between source and target
datasets. For each aspect, we treated it as the tar-
get and combined the three non-target datasets as
the source dataset. We experimented with MAA
and INJECTORS, and report the results in Table 5.
When compared to the same model trained directly
on the target task (second column), our model is
able to achieve a small improvement even when the
attribute-specific parameters are fixed and learned
from a different task (third column). On the other
hand, MAA shows a decrease in performance in
all cases.

7 Conclusions

We considered the use of attributes as additional
contexts when fine-tuning pretrained language
models. We proposed the INJECTOR module, an
extension of adapters that also accepts attributes as
input. Our method considers two kinds of injection
strategies, uses parameter-saving techniques and in-
troduces training mechanisms to account for sparse
and multi-labeled attributes. We also introduced
ATTRIB, a collection of 14 datasets to evaluate
attribute injection methods. Experiments on this
benchmark of various classification tasks showed
that our method improves substantially over pre-
vious methods. Finally, we conducted extensive
analyses on how INJECTORS handle attribute spar-
sity and verify their modularity. In the future,
we plan to apply our methods to real-world data
where there are millions of attributes. We also plan
to explore the use of attribute injection methods
for text generation tasks, i.e. injecting attributes
when generating texts. Our code and the ATTRIB
benchmark will be publicly available online at
https://github.com/rktamplayo/Injector.
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A Appendix

A.1 Descriptions of Newly Introduced
Datasets

This section describes how we procured the three
datasets we introduce in this paper:

1. FOOD: We used the dataset gathered in Ma-
jumder et al. (2019), which was used as a
personalized recipe generation dataset. We
repurposed the dataset for a new classifi-
cation task and used the recipes as input
text and the duration (in minutes) as out-
put class. We removed instances with out-
liers: (1) recipes that took less than 5 minutes
and more than 150 minutes; (2) recipes with
more than 500 tokens or less than 10 tokens;
and (3) tags with more than 50 labels. We
also removed from the attribute vocabulary
tags that explicitly indicate the recipe dura-
tion (e.g., 60-minutes-or-less) and those
that are used on almost all instances (e.g.,
time-to-make). We shuffled the data and
used 10% each for the development and test
sets, and the remaining 80% for the training
set.

2. GOOD: We used the review corpus gathered
in Wan and McAuley (2018), which was also
used for spoiler detection. Since the split is
unfortunately not publicly shared, we created
our own split. We first removed very short
(less than 32 tokens) and very long (more than
256) reviews as they were outliers. We then
divided the data into three splits, with two 10K
splits as the development and test sets, and the
remaining split as the training set.

3. BEER: We used the review corpus gathered in
McAuley et al. (2012). We removed outliers
and split the dataset into three using the same
method we did with Goodreads.

A.2 AttrIB Attribute Analysis

We conducted an attribute analysis to check
whether the attributes in these datasets are indeed
useful for the tasks. Specifically, using the training
set, we create attribute-specific distribution over
classes qz(y) for each attribute z to represent at-
tribute bias, i.e.:

qz(y) =
∑

x∈Dz
1(x, y)/|Dz| (12)
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where Dz is the subset of the training set where
attribute z exists and 1(x, y) is the indicator func-
tion that returns 1 if class y is the class of train-
ing example x. We then create the same attribute-
specific class distribution pz(y) for the dev set and
compare the similarity of both distributions using
KL-divergence. Finally, we compare with the KL-
divergence of random (i.e., uniform distribution)
and majority (i.e., overall class distribution) base-
lines to see whether attributes provide better biases
than when selecting at random or the majority class.

Table 6 shows the KL-divergence of random,
majority, and attributes, both when z is a single
attribute and all attributes combined. We can ob-
serve two things in the table. Firstly, using a single
attribute usually does not perform better than the
majority baseline. This is in contrast to experiments
in some of the previous work (Chen et al., 2016),
where text classification models based on neural
networks improved when incorporated with just
one out of all attributes. This means that these mod-
els can potentially learn beyond providing attribute-
specific biases, such as jointly modeling attributes
and texts. Secondly, combining all attributes pro-
vides the best bias on most datasets, with the ex-
ception of POLMED. In this dataset, the audience
attribute is worse than the random baseline, but it
might be useful in some cases. In fact, the best
configuration is actually combining both the me-
dia source and the audience attributes, which has
a KL-divergence of 1.726. Therefore, attributes
may either be helpful or detrimental depending on
multiple factors, e.g., other attributes and (possi-
bly) textual input. Models thus need to effectively
determine if the attribute is useful for each of the
examples.

A.3 Cold-Start Dataset Statistics

Table 7 reports the statistics of the cold-start
datasets in ATTRIB.

A.4 Parameter Analysis of Weight-based
Injection

Recall that we define Wzj ∈ Rdh×da as follows:

Wzj = gweight(zj) +Cweight (13)

In a naive setting, we can trivially use a projec-
tion function as our gweight, which would linearly
transform zj ∈ Rdz into the shape dh × da. This
would need a weight tensor of size dz × dh × da,
which can be prohibitively large. This parameter

Y2013 Y2014
random 1.608 random 1.608
majority 1.358 majority 1.379
user 1.406 user 1.425
product 1.419 product 1.415
all 1.265 all 1.279

IMDB AAPR
random 2.300 random 0.693
majority 2.087 majority 0.693
user 2.132 author 1.357
product 2.314 research area 0.665
all 1.873 all 0.664

POLMED FOOD
random 2.195 random 2.769
majority 1.851 majority 2.352
politician 1.790 user 2.306
media source 1.728 ingredient 3.708
audience 3.640 tag 2.277
political bias 1.844
all 1.770 all 2.275

GOOD BEER
random 0.693 random 2.195
majority 0.216 majority 1.656
user 0.246 user 1.754
book 0.326 beer 1.769
rating 0.215 rating 1.363
all 0.215 all 1.362

Table 6: KL-divergence of baseline and attribute-
specific distributions over classes to the dev set distri-
butions. Best values are in bold.

dominates all the other parameters in the module,
thus the overall parameter of the naive method is
O(dz ∗ dh ∗ da).

Our parameter-saving methods remove this large
tensor, but instead use three smaller parameters in
hypercomplex space: the transform function σo(·)
that is basically a linear transformation with a pro-
jection matrix of size dz × da (Eq. 6), the vector so
of size dh/O2, and the matrix Ao of size O × O.
Since we have O dimensions in our hypercomplex
space, we have a total ofO∗(dz∗da+dh/O2+O2),
which we can reduce as follows:

O ∗ (dz ∗ da + dh/O
2 +O2)

= O ∗ dz ∗ da + dh/O +O3

≈ O ∗ dz ∗ da
≈ dz ∗ da (14)

given thatO3 � O∗dz ∗da and that we can treatO
as a constant (O = 4 in our experiment). Thus the
overall parameter when using our parameter-saving
method is O(dz ∗ da). We emphasize that this is a
huge improvement since the PLM hidden size dh
is usually the largest dimension.

The output weight Wzj has a rank r of at most
O2+1, i.e., (1) the low-rank method (Eq. 7) outputs
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Y2013-COLD
Dataset 20% 50% 80%
#Train 38.7K 16.1K 2.4K
#Attr. Vocab 2.6K 1.6K 0.7K
%Cold-start 20.5% 49.4% 79.6%

IMDB-COLD
Dataset 20% 50% 80%
#Train 44.3K 18.0K 2.5K
#Attr. Vocab 2.4K 1.5K 0.6K
%Cold-start 19.3% 48.7% 80.7%

Table 7: Cold-start dataset statistics. %Cold-start is
the percentage of attributes with zero training examples.
These datasets use the dev and test sets of the original
datasets.

a matrix of rank r = 1; (2) the Kronecker product
(Eq. 8) returns a matrix of rank r = O; and finally,
(3) the sum of multiple matrices (Eq. 9) has a rank
r ≤ O2.
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Abstract

Research on neural IR has so far been focused
primarily on standard supervised learning set-
tings, where it outperforms traditional term
matching baselines. Many practical use cases
of such models, however, may involve previ-
ously unseen target domains. In this paper, we
propose to improve the out-of-domain gener-
alization of Dense Passage Retrieval (DPR)—
a popular choice for neural IR—through syn-
thetic data augmentation only in the source do-
main. We empirically show that pre-finetuning
DPR with additional synthetic data in its source
domain (Wikipedia), which we generate using
a fine-tuned sequence-to-sequence generator1,
can be a low-cost yet effective first step towards
its generalization. Across five different test
sets, our augmented model shows more robust
performance than DPR in both in-domain and
zero-shot out-of-domain evaluation.

1 Introduction

Traditional approaches to information retrieval (IR)
such as TF-IDF (Salton and McGill, 1986) and
BM25 (Robertson and Zaragoza, 2009) rely on
lexical matching for query-passage alignment. In
contrast, neural IR encodes passages and questions
into continuous vector representations, enabling
deeper semantic matching. Modern neural IR sys-
tems (Lee et al., 2019; Chang et al., 2019) based on
pre-trained masked language models (MLM) (De-
vlin et al., 2019) typically employ a dual encoder
architecture (Bromley et al., 1993), where two sep-
arate MLMs encode the question and the passage.
Karpukhin et al. (2020) show that useful weak su-
pervision for such systems can be derived from
the related task of machine reading comprehen-
sion (MRC) (Kwiatkowski et al., 2019; Joshi et al.,
2017). Their Dense Passage Retrieval (DPR) model
demonstrates state-of-the-art (SOTA) in-domain

∗Work done while at IBM Research AI
1Synthetic question generation code is available at:

https://github.com/primeqa/primeqa/tree/main/primeqa/qg

performance on multiple Wikipedia-based datasets
(Kwiatkowski et al., 2019; Joshi et al., 2017; Berant
et al., 2013; Baudiš and Šedivỳ, 2015), outperform-
ing both term matching baselines like BM25 and
prior neural approaches, e.g., the Inverse Cloze
Task (Lee et al., 2019) and latent learning of the re-
triever during MLM pre-training (Guu et al., 2020).

Despite its high in-domain utility, however,
Reddy et al. (2021) show that DPR performance
can drop significantly in novel test domains. They
propose target domain synthetic data augmentation
as a solution to this problem, which augments DPR
with additional synthetic training data generated
from target domain text. While this approach does
indeed improve DPR scores in the new test domain,
it has a key practical limitation: for every new tar-
get domain, it requires generating a new synthetic
training corpus and re-training the model. Here we
ask if an augmentation approach that only operates
once in the source domain, and does not require
re-training every time a new test domain is encoun-
tered, can also help improve domain generalization.

To better understand DPR’s zero-shot out-of-
domain (OOD) utility, we first run an empirical
evaluation where both BM25 and DPR are ap-
plied to several out-of-domain test datasets. We
observe that (i) DPR still holds an advantage over
BM25 in near domain evaluation on Wikipedia-
based datasets, but the difference is considerably
lower than in the in-domain case, and (ii) In the far
domain of biomedical text, DPR actually underper-
forms BM25. Our OOD evaluation is more com-
prehensive than Reddy et al. (2021), demonstrating
the zero-shot utility of DPR in a more detailed and
fine-grained manner.

Next we investigate if a one-off pre-finetuning
of DPR with large amounts of source domain syn-
thetic IR data can help improve its robustness to
domain shift. Utilization of synthetic training data
is common in related tasks such as machine reading
comprehension (MRC) (Shakeri et al., 2020; Zhang
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BART
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NQ Passage

Answer
sentence Answer Question

(a)

BART

Wikipedia
Passage

Synthetic
Training

Fine-
tuning

NQ

... Question...

(b)

History of Tanzania The African Great Lakes
nation of Tanzania dates formally from 1964,
when it was formed out of the union of the
much larger mainland territory of Tanganyika
and the coastal archipelago of Zanzibar. The
former was a colony and part of German East
Africa from the 1880s to 1919, when, under
the League of Nations, it became a British
mandate. It served as a military outpost ...
when did tanzania became a country in africa?
who owned zanzibar and tanganyika before
they were independent?

(c)

Figure 1: The proposed IR training pipeline and a synthetic example. (a) A BART encoder-decoder LM is fine-
tuned on NQ for QA example generation; (b) Synthetic examples generated from Wikipedia passages are used to
pre-finetune the neural IR model before fine-tuning on NQ; (c) Two synthetic questions output by our generator
from the depicted Wikipedia passage, with corresponding answers highlighted in the text.

et al., 2020; Sultan et al., 2020). Nevertheless, a
close examination of synthetic pre-finetuning as
an augmentation technique is key for zero-shot
neural IR due to the presence of highly effective
and domain-agnostic term matching baselines like
BM25.

We fine-tune a sequence-to-sequence generator
on labeled MRC data and use it to generate syn-
thetic IR examples from source domain passages
(§2). Our experiments show that pre-finetuning
DPR with these generated examples does indeed
improve its accuracy on both in-domain and out-of-
domain test sets. Crucially, the gap with BM25 in
far domain evaluation is significantly reduced.

The main contributions of this paper are:
• We conduct an empirical evaluation of SOTA

neural IR on multiple in-domain and out-of-
domain test sets, showing how its utility varies
in different test conditions.

• We show that a one-off source domain syn-
thetic pre-finetuning step can significantly im-
prove the robustness of neural IR, with im-
provements on five different test sets, includ-
ing in the practical zero-shot setting.

2 Source Domain Synthetic Pre-Finetuning

In this section, we describe the procedure for syn-
thetic pre-finetuning of the DPR model. We first
detail how we train the sequence-to-sequence gen-
erator and generate source domain syntheic data
from it. Next, we describe how this data is used for
training the DPR model.

Let c be a text corpus and d ∈ c be a docu-
ment. An IR example, more specifically a passage
retrieval example, consists of a question q and a

passage p in d such that p contains an answer a to
q. Let s be the sentence in p that contains a.

We first train an example generator by fine-
tuning BART (Lewis et al., 2020a)—a pre-trained
encoder-decoder language model—to generate an
ordered triple (s, a, q) from an input passage p.
This procedure in essence uses generation to first
identify a candidate sentence s in p, then extract a
candidate answer a from s, and finally generate a
corresponding question q. In practice, we approx-
imate the generation of s by generating only its
first and last words. Finally, (q, p) is retained as
a synthetic IR example. Labeled (p, s, a, q) tuples
needed for the supervision of this model are taken
from Natural Questions (NQ) (Kwiatkowski et al.,
2019), an existing MRC dataset over Wikipedia
articles.

With the generator, we produce positive syn-
thetic pre-finetuning examples for DPR from
Wikipedia passages. Following Sultan et al. (2020),
we use top-p top-k sampling (Holtzman et al.,
2020) to promote diversity in the generated ex-
amples. Training and inference of the synthetic
example generator are depicted in Figures 1a and
1b, respectively. Figure 1c shows two example
questions output by the generator from a Wikipedia
passage.

To obtain a negative sample for each generated
question q, we retrieve passages from Wikipedia
using BM25 and randomly sample one that does
not contain the generated answer a. Following
Karpukhin et al. (2020), we also use in-batch nega-
tive samples for training. After pre-finetuning with
synthetic examples, we fine-tune the model with IR
examples derived from NQ. We name this synthet-
ically augmented DPR model AugDPR. We refer
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the reader to (Karpukhin et al., 2020) for a more
detailed description of the DPR training process.

3 Experimental Setup

3.1 Datasets
We briefly describe our datasets in this section.
Statistics for each dataset are shown in Table 1.

Dataset Domain Passages Questions
NQ Wikipedia 21.0M 3,610
TriviaQA Wikipedia 21.0M 11,313
WebQuestions Wikipedia 21.0M 2,032
WikiMovies Wikipedia 21.0M 9,952
BioASQ Biomedical 37.4M 1092

Table 1: Statistics of the retrieval corpora and the test
sets we use to evaluate all IR models.

Training and In-Domain Evaluation: We
train all systems on Natural Questions (NQ)
(Kwiatkowski et al., 2019), a dataset with ques-
tions derived from Google’s search log and their
human-annotated answers from Wikipedia articles.
Lewis et al. (2020b) report that 30% of the NQ test
set questions have near-duplicate paraphrases in
the training set and 60–70% of the test answers are
also present in the training set. For this reason, in
addition to the entire NQ test set, we also use the
non-overlapping subsets released by Lewis et al.
(2020b) for in-domain evaluation.

Near Domain Evaluation: For zero-shot near do-
main evaluation, where Wikipedia articles consti-
tute the retrieval corpus, we use the test sets of
three existing datasets.
TriviaQA (Joshi et al., 2017) contains questions col-
lected from trivia and quiz league websites, which
are created by Trivia enthusiasts.
WebQuestions (WQ) (Berant et al., 2013) consists
of questions obtained using the Google Suggest
API, and answers selected from entities in Freebase
by AMT workers.
WikiMovies (Miller et al., 2016) contains question-
answer pairs on movies, built using the OMDb
and MovieLens databases. We use the test split
adopted in (Chen et al., 2017).

Far Domain Evaluation. For zero-shot far domain
evaluation, we use a biomedical dataset.
BioASQ (Tsatsaronis et al., 2015) is a competition2

on large-scale biomedical semantic indexing and
2http://bioasq.org/participate/challenges

QA. We evaluate on all factoid question-answer
pairs from the training and test sets of task 8B.

3.2 Setup

Training: We train the synthetic example gener-
ator using the (question, passage, answer) triples
from NQ. The model is trained for 3 epochs with
a learning rate of 3e-5 and batch size of 24. We
then randomly sample 2M passages from the 21M-
passage Wikipedia corpus and generate around four
synthetic questions per passage. For top-p top-k
sampling, we use p = 0.95 and k = 10.

During synthetic pre-finetuning of DPR, for
each of the 2M passages, we randomly select one
of its synthetic questions at each epoch to create a
synthetic example. After six epochs of synthetic
pre-finetuning with a learning rate of 1e-5 and
batch size of 1024, we fine-tune DPR on NQ for
twenty epochs with a learning rate of 1e-5 and
batch size of 128 to get the AugDPR model.

Baselines and Metrics: We evaluate BM25 as a
term matching baseline. Our BM25 baseline is
based on Lucene3 implementation. BM25 parame-
ters b = 0.75 (document length normalization) and
k1 = 1.2 (term frequency scaling) worked best. As
our neural baseline, we use the DPR-single model
trained on NQ and made public4 by Karpukhin et al.
(2020). Both DPR and AugDPR use BERT-base-
uncased for question and passage encoding. As in
(Karpukhin et al., 2020), our evaluation metric is
top-k retrieval accuracy, which is the percentage
of questions with at least one answer in the top k
retrieved passages.

4 Results and Discussion

Table 2 shows NQ results on the entire test set as
well as on the two subsets released by Lewis et al.
(2020b). Synthetic pre-finetuning yields larger
gains on the non-overlapping splits, with up to a
4-point improvement in top-1 retrieval accuracy.

To assess the cross-domain utility of AugDPR,
we evaluate it zero shot on both near and far domain
test sets. Table 3 shows the results. For compari-
son, we also show results for supervised models re-
ported by Karpukhin et al. (2020) on TriviaQA and
WebQuestions where the DPR model was trained
directly on the training splits of these datasets. For
the near domain datasets, both DPR and AugDPR

3https://lucene.apache.org/
4https://github.com/facebookresearch/DPR
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Model Total No answer overlap No question overlap
Top-1 Top-10 Top-20 Top-1 Top-10 Top-20 Top-1 Top-10 Top-20

BM25 30.5 54.5 62.5 26.4 47.1 54.7 31.0 52.1 59.8
DPR 46.3 74.9 80.1 32.2 62.2 68.7 37.4 68.5 75.3
AugDPR 46.8 76.0 80.8 36.0 65.0 70.8 41.4 70.8 76.6

Table 2: NQ top-k retrieval results. Performance improves across the board with synthetic pre-finetuning (AugDPR),
but more on the non-overlapping subsets of Lewis et al. (2020b).

Near Domains Far Domain
Model TriviaQA WebQuestions WikiMovies BioASQ

Top-20 Top-100 Top-20 Top-100 Top-20 Top-100 Top-20 Top-100
BM25 66.9 76.7 55.0 71.1 54.0 69.3 42.1 50.5
DPR 69.0 78.7 63.0 78.3 69.8 78.1 34.7 46.9
AugDPR 72.2 81.1 71.1 80.8 72.5 80.7 41.4 52.4
Supervised 79.4 85.0 73.2 81.4 - - - -

Table 3: Zero-shot neural retrieval accuracy improves with synthetic pre-finetuning (AugDPR) in all out-of-domain
test settings. However, BM25 remains a strong baseline on the far domain dataset of BioASQ. The numbers for the
supervised models are taken from (Karpukhin et al., 2020).

outperform BM25 by a sizable margin; additionally,
AugDPR consistently outperforms DPR. Further-
more, performance of AugDPR on WebQuestions
is comparable to that of the supervised model. On
the far domain, however, we observe that BM25 is
a rather strong baseline, with clearly better scores
than DPR. The synthetic pre-finetuning of AugDPR
reduces this gap considerably, resulting in a slightly
lower top-20 score but a 2-point gain in top-100
score over BM25.

To investigate the relative underperformance of
neural IR on BioASQ, we take a closer look at
the vocabularies of the two domains of Wikipedia
articles and biomedical literature. Following Gu-
rurangan et al. (2020), we compute the overlap
between the 10k most frequent tokens (excluding
stop words) in the two domains, represented by 3M
randomly sampled passages from each. We observe
a vocabulary overlap of only 17%, which shows
that the two domains are considerably different in
terminology, explaining in part the performance
drop in our neural models. Based on these results,
we also believe that performance of neural IR in dis-
tant target domains can be significantly improved
via pre-finetuning on synthetic examples that are
generated from raw text in the target domain. We
plan to explore this idea in future work.

We also examine the lexical overlap between the
questions and their passages, since a high overlap
would favor term matching methods like BM25.
We find that the coverage of the question tokens
in the respective gold passages is indeed higher in
BioASQ: 72.1%, compared to 58.6% and 63.0% in
NQ and TriviaQA, respectively.

To analyze how much synthetic data is required,

we experiment with pre-finetuning using 1M and
4M synthetic examples while keeping the number
of training updates fixed. As Table 4 shows, we do
not see any improvements from using more exam-
ples beyond 2M.

Karpukhin et al. (2020) report that DPR fine-
tuning takes around a day on eight 32GB GPUs,
which is a notable improvement over more com-
putationally intensive pre-training approaches like
(Lee et al., 2019; Guu et al., 2020). Our synthetic
pre-finetuning takes around two days on four 32GB
GPUs, which is comparable with finetuning in
terms of computational overhead.

Model Top-10 Top-20 Top-100
DPR 73.6 78.1 85.0
AugDPR-1M 74.4 79.2 85.5
AugDPR-2M 74.8 79.7 85.9
AugDPR-4M 74.6 79.1 85.9

Table 4: Retrieval accuracy on the Natural Questions
development set with varying number of synthetic ex-
amples (1M vs 2M vs 4M) during pre-finetuning.

5 Conclusion

We have shown that pre-finetuning a SOTA neural
IR model using large amounts of source domain
synthetic data improves its robustness in zero-shot
application settings. Our experiments show con-
sistent performance gains on five in-domain and
out-of-domain test sets, including a far target do-
main that has significant vocabulary mismatch with
the training domain. Future work will explore in-
corporating more control into the generation of
synthetic data to increase its diversity and also to
overcome potential biases in finetuning data.
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Abstract

State-of-the-art neural (re)rankers are notori-
ously data-hungry which – given the lack of
large-scale training data in languages other
than English – makes them rarely used in mul-
tilingual and cross-lingual retrieval settings.
Current approaches therefore commonly trans-
fer rankers trained on English data to other
languages and cross-lingual setups by means
of multilingual encoders: they fine-tune all
parameters of pretrained massively multilin-
gual Transformers (MMTs, e.g., multilingual
BERT) on English relevance judgments, and
then deploy them in the target language(s).
In this work, we show that two parameter-
efficient approaches to cross-lingual transfer,
namely Sparse Fine-Tuning Masks (SFTMs)
and Adapters, allow for a more lightweight and
more effective zero-shot transfer to multilingual
and cross-lingual retrieval tasks. We first train
language adapters (or SFTMs) via Masked Lan-
guage Modelling and then train retrieval (i.e.,
reranking) adapters (SFTMs) on top, while
keeping all other parameters fixed. At infer-
ence, this modular design allows us to compose
the ranker by applying the (re)ranking adapter
(or SFTM) trained with source language data
together with the language adapter (or SFTM)
of a target language. We carry out a large scale
evaluation on the CLEF-2003 and HC4 bench-
marks and additionally, as another contribution,
extend the former with queries in three new lan-
guages: Kyrgyz, Uyghur and Turkish. The pro-
posed parameter-efficient methods outperform
standard zero-shot transfer with full MMT fine-
tuning, while being more modular and reducing
training times. The gains are particularly pro-
nounced for low-resource languages, where our
approaches also substantially outperform the
competitive machine translation-based rankers.

1 Introduction

In recent years, neural rankers (Nogueira et al.,
2019b; MacAvaney et al., 2019; Khattab and Za-
haria, 2020), trained on large-scale datasets (Ba-

jaj et al., 2016; Dietz et al., 2017; Craswell et al.,
2021), have substantially pushed the performance
on various retrieval benchmarks. Since such mod-
els are generally too computationally involved
(i.e., too slow) for ad-hoc retrieval on large doc-
ument collections, they are commonly leveraged
as rerankers, i.e., they rerank the output of some
fast model (e.g., BM25) that produces the initial
ranking. Large-scale datasets for training neural
rerankers, however, exist only in English, which
impedes their adoption in retrieval scenarios that
involve other languages: (a) monolingual retrieval
in other languages and (b) cross-lingual informa-
tion retrieval (CLIR) in which, for a given query in
one language, one needs to determine relevance of
documents written in one or more other languages.

While CLIR is often instantiated in the form of
standalone tasks (e.g., to allow users from differ-
ent countries to search over the aggregated global
collection of COVID-19 news and findings in their
native language (Casacuberta et al., 2021)), it also
supports a range of IR-backed NLP tasks such
as cross-lingual question answering (Asai et al.,
2021), entity linking (Liu et al., 2021a), and cross-
lingual summarization (Zhu et al., 2019; Vitiugin
and Castillo, 2022). A truly multilingual search
engine requires reliable estimation of both mono-
lingual (for a wide range of languages) as well
as cross-lingual query-document relevance, which
both crucially rely on the alignment of text repre-
sentations across different languages (Nie, 2010).
The lack of large-scale retrieval datasets in lan-
guages other than English means that monolingual
reranking for those languages has to be achieved
by means of cross-lingual transfer of a reranking
model trained on English relevance judgments.

Pretrained massively multilingual Transformers
(MMTs) like multilingual BERT (mBERT) (De-
vlin et al., 2019) or XLM-R (Conneau et al., 2020)
have been leveraged to this effect, but were shown
to require substantial task-specific (i.e., ranking-
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oriented) fine-tuning for reliable prediction of se-
mantic similarity and relevance scores (Reimers
and Gurevych, 2020; Litschko et al., 2021). MMTs
offer zero-shot cross-lingual transfer of neural
(re)ranking models out of the box – an MMT is fine-
tuned on English relevance judgments and then em-
ployed in (monolingual or cross-lingual) retrieval
tasks that involve other languages. Conceptually,
via such transfer, no fine-tuning data (i.e., relevance
judgments) is required for the target language(s).

This procedure, in principle, enables down-
stream zero-shot transfer to any language seen by
the MMT in pretraining (e.g., for mBERT, 104
languages). However, in language understand-
ing tasks (Hu et al., 2020), massive performance
drops have been observed when transferring be-
tween distant languages, and especially in trans-
fer to low-resource languages, underrepresented
in MMT pretraining (Lauscher et al., 2020). Our
results (§4) confirm these findings for ad-hoc IR.
This is the consequence of the effect known as
the curse of multilinguality (Conneau et al., 2020):
sharing MMT parameters (i.e., its fixed parameter
budget/capacity) across more and more languages
makes text representations for individual languages
less accurate. This effect is especially detrimental
to low-resource languages, those least represented
in multilingual pretraining corpora. What is more,
large-scale full fine-tuning on the source language
data (e.g., English) is likely to lead to catastrophic
forgetting and interference effects (McCloskey and
Cohen, 1989; Mirzadeh et al., 2020) that further
bias the multilingual representation space towards
the source language, at the expense of represen-
tation quality for low-resource languages. Be-
sides the standard zero-shot cross-lingual trans-
fer (MacAvaney et al., 2020; Huang et al., 2021a),
other cross-lingual transfer approaches, commonly
applied in other NLP tasks, such as training data
translation (Shi et al., 2020), or leveraging exter-
nal word-level alignments (Huang et al., 2021b),
as well as distant supervision (Yu et al., 2021)
have been explored as means to improve the cross-
lingual transfer of neural rankers in IR. While
translation-based approaches are competitive for
high-resource languages, they may not be as effec-
tive for low-resource languages for which reliable
MT models are missing; also, translation-based
cross-lingual transfer has been shown to suffer from
unwanted artifacts, such as “translationese” (Zhao
et al., 2020; Vanmassenhove et al., 2021).

Contributions. Even if one would have suffi-
cient amounts of labelled data in target languages,
training language- or language-pair specific neu-
ral rerankers for all languages and language pairs
would be prohibitively computationally expensive
and unsustainable (Strubell et al., 2019). In this
work we additionally remedy for this by com-
posing (re)rankers in a modular way that enables
more sustainable cross-lingual transfer. Concretely,
we introduce neural (re)ranking models for cross-
lingual and multilingual document retrieval based
on MMTs that enable much more parameter effi-
cient fine-tuning and more effective cross-lingual
transfer for relevance prediction. Our (re)rankers
are based on two styles of modular components:
1) Adapters (Rebuffi et al., 2017; Houlsby et al.,
2019; Pfeiffer et al., 2020) and 2) Sparse Fine-
Tuning Masks (SFTMs) (Ansell et al., 2022). When
integrated into the architecture of a pretrained
MMT, both allow for (1) the pretrained multilin-
gual knowledge to be fully preserved, alleviating
the negative interference and forgetting effects, and
(2) offer additional language-specific model capac-
ity which is used to improve the MMTs’ represen-
tations for target languages, thus remedying for the
curse of multilinguality.

We provide an extensive evaluation of both ap-
proaches in (i) zero-shot transfer for monolingual
retrieval and (ii) CLIR, on two established bench-
marks (Braschler, 2003; Lawrie et al., 2022). As
an additional contribution, we expand the CLEF
dataset (Braschler, 2003) with three query lan-
guages from the Turkic family (Turkish, Kyrgyz,
and Uyghur, the latter two being low-resource lan-
guages), typologically and etymologically distant
from the Indo-European languages.1 Our results
show that our modular neural (re)rankers are not
only faster to train, but also outperform standard
zero-shot transfer based on full MMT fine-tuning,
and especially so in retrieval tasks that involve
linguistically distant and low-resource languages.
Moreover, our adapter- and SFTM-based rerankers
generally outperform a strong preranker that uti-
lizes state-of-the-art machine translation.

2 Methodology

We first introduce the general multi-stage rank-
ing (i.e., preranking-reranking) framework, com-

1In this manner, our work addresses the calls for more
linguistic diversity in NLP and IR research (Bender, 2011;
Joshi et al., 2020; Ponti et al., 2020; Ruder et al., 2021).
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Figure 1: Overview of the multi-stage ranking approach
to ad-hoc retrieval. Stage 1 - Preranking: We rank
the document collection C by (a) running sparse BM25
retrieval on translated queries, or (b) according to the
cosine similarity between dense query and document
representations yielding an initial ranking R0. Stage
2 - Reranking: We refine R0 by reranking the top-k
documents according to relevance scores predicted by a
Cross-Encoder, yielding the refined ranking R1.

monly used in information retrieval tasks, within
which our work is embedded. We then introduce
adapters and sparse fine-tuning masks (SFTMs),
and present how to leverage them as crucial vehi-
cles of the parameter-efficient cross-lingual transfer
of the reranking component.

2.1 Multi-Stage Ranking

Pretrained Transformers like BERT (Devlin et al.,
2019) are often used as Cross-Encoder (CE) scor-
ing models: the Transformer encodes a query-
document concatenation fed as input to the model,
and the encoding is then fed to a dense layer that
predicts the relevance score (MacAvaney et al.,
2020; Jiang et al., 2020; Nogueira et al., 2019b).
Computing scores for all query-documents pairs
with Cross-Encoders is too slow for practical IR ap-
plications: they are thus primarily used as rerankers
in a multi-stage ranking approach (MacAvaney
et al., 2020; Geigle et al., 2021). In this work
we adopt this paradigm for cross-lingual ad-hoc
retrieval: Figure 1 illustrates its workflow.2

Preranking, based on a fast and efficient ranking
method, is applied to every document from the doc-
ument collection in order to provide a good initial
ranking, targeting high recall. Let ql1 be a query
in language l1 and Cl2 = {di}ni=1 be a document

2Alternative approaches that leverage pretrained encoders
for IR include late interaction models (Khattab and Zaharia,
2020; Gao et al., 2021; Nair et al., 2022; Santhanam et al.,
2022), embedding-based retrieval (Hofstätter et al., 2021;
Litschko et al., 2021), and augmentation (Nogueira et al.,
2019c,a).

collection containing n documents in language l2.
Associating and ranking documents w.r.t. relevance
scores si we obtain an initial ranking

R0 = [(d1, s1), (d2, s2) . . . (dn, sn)], (1)

where s1 > s2 > . . . sn. We transfer our rerankers
based on MMTs – and trained on English relevance
judgments – to (i) CLIR tasks as well as to (ii)
monolingual IR tasks in target languages. The latter
task, termed MoIR, is effectively zero-shot cross-
lingual transfer for monolingual retrieval. In MoIR,
we opt for a lexical preranker and score documents
with sbm25 = BM25(q, d).3 In CLIR we follow
the widely used approach of machine translating
the query (Bonifacio et al., 2021; Lawrie et al.,
2022): this process effectively translates CLIR into
a noisy variant of MoIR. In addition, we experi-
ment with a representation-based approach based
on pretrained multilingual Bi-Encoders (BE): here,
we embed the query and documents independently,
and then use the cosine similarity between their em-
beddings sbe = cos(BE (q),BE (d)). In the pre-
ranking stage, unlike later in reranking, we use the
encoders merely as general-purpose text encoders,
without any additional retrieval-specific training.

Reranking: This stage refines the initial rank-
ing obtained via preranking. It relies on a CE
model which captures fine-grained (but more costly
to model and run) semantic interactions between
queries and documents. The ranking is then:

R1 = [(d1, s
ce
1 ), (d2, s

ce
2 ) . . . (dk, s

ce
k )] (2)

To this end, we rely on multilingual CEs to com-
pute the binary relevance score sce on the con-
catenation of query and document pairs: sce =
CE ([CLS]q[SEP]di[SEP]). We adopt a com-
mon practice (MacAvaney et al., 2019; Craswell
et al., 2020; Naseri et al., 2021) of reranking the top
k = 100 pre-ranked documents, yielding the final
ranking R1. Finally, it is also possible to ensem-
ble the preranker’s and reranker’s ranked lists via
simple rank averaging. In our experiments (4), we
evaluate such preranking-reranking ensembles as
well and show that such interpolations often bring
additional performance gains.

3We used the pyserini implementation of BM25 (Lin
et al., 2021) with the suggested (i.e., default) parameter con-
figuration.
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Figure 2: Overview of parameter-efficient transfer learning for neural (re)ranking. Left: A reranker is composed by
stacking a pretrained target Language Adapter (LA) and a Ranking Adapter (RA; trained with source language data)
on top of the original Transformer layers of an MMT (e.g., mBERT). Right: Sparse fine-tuning of a Ranking Mask
(RM) and a Language Mask (LM) from mBERT parameters; rerankers are composed by adding the RM and LM
values to the original mBERT parameters.

2.2 Parameter-Efficient Cross-Lingual
Ranker Transfer

In this work, we propose a modular and parameter-
efficient framework that allows faster training
and more effective cross-lingual transfer of neu-
ral rerankers, that enhances both CLIR and
MoIR. We first learn language-specific Adapters
(LAs) or Sparse Fine-Tuning Masks (SFTMs) via
Masked Language Modelling (MLM) on unanno-
tated monolingual corpora of respective languages,
while keeping the original MMT parameters in-
tact. We then train Ranking Adapters (or Ranking
SFTMs) using source-language data on top of the
source-language LAs (language SFTMs), while
keeping all other parameters frozen. At inference
time, for a given IR (MoIR or CLIR) task, we com-
pose our reranker by placing the Ranking Adapters
(Ranking SFTMs) on top of the LAs (language
SFTMs) of the query and/or document languages
of that concrete retrieval task. The modular frame-
work is illustrated in Figure 2.

Adapters. We train Ranking Adapters (RA) and
Language Adapters (LA) based on the architec-
ture of Pfeiffer et al. (2020). In the Transformer
architecture, each layer l consists of a multi-head
attention block (i.e., sub-layer) and a feed-forward
network (FFN), both followed by a residual con-
nection and layer normalization. We denote the
residual connection (output of FFN) with rl and
the hidden state after the layer norm with hl.

LA(hl, rl) = Ul(ψ(Dl(hl)) + rl (3)

RA(hl, rl) = Ul(ψ(Dl(LAl))) + rl (4)

Adapters are parameterized by the down-projection
matrix D ∈ Rh×d and the up-projection matrix

U ∈ Rd×h, where h and d denote the hidden size
of the Transformer and the bottleneck dimension
of the adapter, respectively. The ratio between h
and d is also called the reduction factor, and cor-
responds to the level of parameter compression
(i.e., how many times fewer parameters are up-
dated if we train adapters instead of updating all
Transformer parameters). The forward pass of a
Language Adapter consists of a down-projection of
hl, a non-linear activation function ψ(·) and an up-
projection. Ranking Adapters are stacked on top of
LAs and process their output. Both adapters have
residual connections to the output of the FFN.4 We
train LAs using the standard MLM objective (De-
vlin et al., 2019), whereas we train RAs together
with the dense scoring layer by means of minimiz-
ing the standard binary cross-entropy loss.

In CLIR setups, queries and documents are in
different languages. It is thus, in principle, pos-
sible to stack the RA on top of (i) the query lan-
guage adapter LAQ, (ii) document language adapter
LAD, or by using (iii) split adapters LAS: here,
we encode query tokens up to the separator token
([SEP]) using the LA of the query language and
the document tokens (after [SEP]) with the LA of
language of the document collection (cf. Fig. 2).

Sparse Fine-Tuning Masks. Like adapters,
SFTMs (Ansell et al., 2022) aim to decouple task
knowledge from language knowledge, but instead
of introducing additional parameters, the idea is

4To alleviate the mismatch between the multilingual vocab-
ulary of the MMT and the target language vocabulary, Pfeiffer
et al. (2020) also additionally place invertible adapters INV on
top of the embedding layer along with their inverses INV−1

placed before the output layer. In our experiments we adopt
this variant; for more details we refer the reader to the work
of Pfeiffer et al. (2020).
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to directly update only small subsets of MMT’s
original parameters. Sparse Fine-Tuning (SFT)
consists of two phases. In Phase 1 we fine-tune
all mBERT’s parameters θ(0), resulting in updated
parameter values θ(1). We then select the top K
parameters with the largest value change, i.e., those
with the largest values |θ(0)i − θ

(1)
i |. We then con-

struct a binary mask: the selected K parameters
remain trainable, whereas all other parameters are
frozen. In Phase 2 all parameters are reset to
θ(0) and training restarts, but this time only the
selected parameters of the mask are updated, yield-
ing θ(2). The final update (i.e., the SFTM) is then
obtained as the difference vector M = θ(2) − θ(0).
As is the case with Language Adapters, we ob-
tain the Language Masks (LM) by means of (ad-
ditional) MLM training on language-specific cor-
pora; whereas the Ranking Mask (i.e., the mask for
the ranking task, RM) is learned via binary cross-
entropy objective on source-language (English) rel-
evance judgments. At inference, the reranker is
composed as θ(0) + RM + LM (cf., Figure 2). In
our CLIR settings (§3), we explore using (i) the
query language mask (LMQ), (ii) document lan-
guage mask (LMD) or (iii) the combination of both
masks (LMB = LMQ + LMD). Note that SFTMs
represent a more computationally efficient solu-
tions at inference time: unlike adapters, they do not
extend (i.e., deepen) the Transformer architecture.

3 Experimental Setup

Adapter and SFTM Training. We train adapters
following the recommendations from Pfeiffer et al.
(2020). Unless noted otherwise, we train LAs
with the reduction factor of 2 (i.e., h/d = 2) on
Wikipedias of respective languages, for 250K steps
with batch size 64 and learning rate of 1e-4. For
RAs we experimented with the different reduction
factors: 1, 2, 4, 8, 16, 32 (cf. §4). Following Ansell
et al. (2022), for fair comparisons between adapters
and SFTMs, we set the mask size K for SFTMs to
the same number of parameters that adapters with
a certain reduction factor have.5

Reranking Training. We train mBERT-based6

rerankers on MS-MARCO (Craswell et al., 2021),
with a linear warm-up over the first 5K updates, in

5Leading to the number of trainable parameters (sparsity)
of 14M (8.5%), 7.1M (4.2%), 3.6M (2.1%), 1.8M (1.1%),
894K (0.52%) and 452K (0.27%) respectively.

6Pretrained bert-base-multilingual-uncased
weights from the HuggingFace Transformers library (Wolf
et al., 2020) are used.

batches of 32 instances with a maximum sequence
length of 512, and using a learning rate of 2e-5.
We evaluate the model on the validation data every
25K updates and choose the checkpoint with the
best validation performance.

Evaluation Data. We evaluate the models on
the standard CLEF-2003 benchmark (Braschler,
2003)7 as well as on the recently introduced HC4
benchmark (Lawrie et al., 2022). With CLEF, we
use monolingual test collections in EN, DE, IT, RU,
and FI for MoIR, and experiment with the follow-
ing cross-lingual directions: EN-{FI, DE, IT, RU},
DE-{FI, IT, RU}, FI-{IT, RU}. Each experimental
run covers 60 queries, whereas the document col-
lection sizes are as follows: RU – 17K, FI – 55K,
IT – 158K, and DE – 295K.

We additionally evaluate the models in CLIR
tasks with CLEF queries posed in lower-resource
languages. To this end, (i) we leverage Swahili
(SW) and Somali (SO) queries (Bonab et al., 2019),
where the queries were obtained via manual transla-
tion of English queries; (ii) we create another set of
translated CLEF queries in three languages: Turk-
ish (TR), Kyrgyz (KG), and Uyghur (UG). The
new set covers one high-resource and two low-
resource languages and is intended to facilitate and
diversify evaluation of CLIR with low-resource
languages in future work. The queries were con-
structed via the standard post-editing procedure
borrowed from other data collection tasks (Glavaš
et al., 2020; Hung et al., 2022): we obtained ini-
tial query translations via Google Translate, which
were then post-edited by native speakers.

HC4 comprises queries and document collec-
tions in three languages: Persian (FA), Russian
(RU) and Chinese (ZH). Compared to CLEF, HC4
collections are considerably larger, spanning 646K,
486K and 4.72M documents per each respective
language, associated with 50 test queries in each
language. We use title and description fields as
queries following Lawrie et al. (2022). HC4 is
used in MoIR experiments.

Baseline Models. The primary baseline for our
adapter- and SFTM-based transfer is the standard
and well established method for zero-shot trans-
fer of English-trained rerankers (MacAvaney et al.,
2020), termed MonoBERT. This is the reranking
Cross-Encoder where we allow for full-tuning of
the underlying monolingual or multilingual BERT

7http://catalog.elra.info/en-us/
repository/browse/ELRA-E0008/
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Model TR-EN TR-IT TR-DE TR-FI TR-RU EN-FI EN-IT EN-RU EN-DE DE-FI DE-IT DE-RU FI-IT FI-RU AVG ENS

DISTILDmBERT (PR) .183 .251 .190 .252 .260 .294 .290 .313 .247 .300 .267 .284 .221 .302 .261 -
MonoBERT .235 .197 .208 .285 .217 .339 .315 .248 .295 .329 .270 .246 .197 .174 .254 .274

+RA +LAS .269 .253 .252* .362 .186 .363 .352 .197 .317* .329 .300 .223 .266 .207 .277 .287
+RA +LAD .252 .234 .222 .267 .267 .366* .366* .248 .314* .350 .302 .315 .220 .234 .283 .298
+RA +LAQ .270 .243 .242 .293 .191 .370 .355 .189 .318 .325 .279 .223 .247 .182 .266 .285

+RM +LMB .229 .228 .197 .244* .168 .299 .344 .181* .303 .309 .302 .191* .206 .108* .236 .269
+RM +LMD .231 .226 .229 .317 .149* .394* .359 .173* .320* .376 .304 .187 .239 .166* .262 .279
+RM +LMQ .239 .252 .232 .316 .162* .359 .349 .191 .310* .391 .323* .195 .255* .160 .267 .280

Table 1: CLIR results (Mean Average Precision, MAP) with DISTDmBERT as Stage 1 preranker. Bold: Best neural
retrieval model for each language pair. *: significance tested against MonoBERT at p ≤ 0.05, computed via paired
two-tailed t-test. Ranking and Language Adapters have a reduction factor of 16 and 2 (see §2), respectively. Ranking
and Language Masks both correspond to a reduction factor of 2 (see §3). We report average results (AVG), and
also averaged ensemble (ENS) results where we combine ranking lists from Stage 1 and Stage 2 rankings; see §2.1.
Superscripts over LAs and LMs denote query language (Q), document language (D), split adapters (S) for LAs, and
‘(B)oth masks’ for LMs (see §2.2).

Model TR-EN TR-IT TR-DE TR-FI TR-RU EN-FI EN-IT EN-RU EN-DE DE-FI DE-IT DE-RU FI-IT FI-RU AVG ENS

NMT+BM25 (PR) .392 .353 .308 .307 .227 .378 .446 .285 .355 .367 .385 .272 .364 .271 .336 -
MonoBERT .415 .375 .339 .345 .307 .386 .411 .351 .371 .409 .380 .322 .367 .340 .366 .360

+RA +LA .448 .408* .353 .371 .327 .388 .435 .367 .385 .413 .405 .348 .381 .365 .385 .374
+RM +LM .447 .414 .356 .386 .336 .413 .429 .345 .390 .468 .407 .363 .395 .364 .394 .371

Table 2: CLIR results (Mean Average Precision, MAP) with NMT+BM25 as Stage 1 preranker. For modular
rerankers, we report the numbers with the best-performing configurations from CLEF experiments: +RA +LAD

and +RM +LMQ; see also the caption of Table 1.

model on MS-MARCO. For CLIR experiments,
we opt for DISTILDmBERT as our Bi-Encoder pre-
ranker (PR), as it showed strong performance in
our recent comparative empirical study (Litschko
et al., 2021). In brief, DISTILDmBERT is trained via
knowledge distillation where sentence-similarity
features are distilled from a monolingual English
teacher, specialized for semantic encoding of sen-
tences, into a multilingual student model; see
(Reimers and Gurevych, 2020) for further details.

Finally, also for CLIR, we couple a state-of-the-
art NMT system of Fan et al. (2020) (FAIR-MT),
which we use to translate queries to the document
collection language, with the BM25 ranker in the
target language. For Kyrgyz and Uyghur, we use
another NMT model, provided by the Turkic In-
terlingua (TIL) community8 (Mirzakhalov et al.,
2021), because we failed to obtain meaningful
{KG, UG}→ l2 translations with FAIR-MT.

4 Results and Discussion

Cross-Lingual Retrieval (CLIR). Tables 1 and 2
show the CLIR results, for fourteen language pairs

8https://turkic-interlingua.org

from the augmented CLEF 2003 benchmark9 us-
ing DISTILDmBERT and NMT+BM25 as Stage 1
prerankers, respectively. With DISTILDmBERT as
the preranker (Table 1), Adapter- and SFTM-based
rerankers consistently improve the initial prerank-
ing results, with gains of up to 2.7 MAP points, and
EN-RU as the only exception. Importantly, com-
pared to full fine-tuning (MonoBERT), our modu-
lar reranking variants bring gains between 1 and 4
MAP points on average, across all language pairs.
Interestingly, the best adapter configuration (RA
+LAD), where at inference we stack the RA on top
of the LA of the document collection language)
outperforms the best SFTM-based reranker (RM
+LMQ and RM +LMD) by 1.6 MAP points. Some-
what surprisingly, adapting only to the language of
the document collection (LAD; LMD) yields better
performance than adapting to both the query and
collection language of the target task (LAS; LMB).

The language pairs in Tables 1 and 2 consist of
high-resource languages for which large parallel
corpora and, consequently, reliable NMT models
exist. However, even when starting from a more

9We add TR-* pairs to the evaluation, enabled by our
EN→TR translations of the queries.
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CLEF 2003 HC4

Model SW–EN SO–EN KG–EN UG–EN EN–FA EN–ZH EN–RU AVG ENS
NMT+BM25 (PR) .325 .157 .228 .091 .183 .113 .186 .183 -
MonoBERT .362 .158 .255 .157 .246 .172 .218 .224 .216
+RA + LAD .407 .166 .305 .155 .259 .189 .234 .245 .228
+RM + LMD .389 .161 .311 .165 .267 .196 .241 .247 .225

Table 3: CLIR results on extended CLEF pairs with low-resource query languages (Swahili, Somali, Kyrgyz, and
Uyghur) and three language pairs from the HC4 benchmark.

competitive MT-based preranker (NMT+BM25; Ta-
ble 2), our modular cross-lingual transfer of the
reranker yields performance gains. In fact, with this
stronger preranker, the gains from modular rerank-
ing are even more pronounced: +5/+6 MAP points
for Adapters and SFTMs, respectively, compared
to preranker and +2/+3 MAP points, respectively,
compared to MonoBERT. This could explain why
interpolating between the preranking and rerank-
ing (ENS, last column) yields further gains with
DISTILDmBERT as the preranker (Table 1), but not
when we prerank with NMT+BM25 (Table 2).

Table 3 shows CLIR results for (a) language
pairs from extended CLEF with queries written
in low-resource languages – Swahili and Somali
queries created by Bonab et al. (2019), as well
as Kyrgyz and Uyghur queries that we created;
and (b) three cross-lingual pairs of arguably distant
languages (EN-{Farsi, Chinese, Russian}) from
the HC4 benchmark. The gains that our SFTM-
and Adapter-based modular rerankers bring for
language pairs involving low-resource languages,
over the MT-based preranker and the full fine-
tuning (MonoBERT), are generally more substan-
tial than those for high-resource language pairs:
e.g., +8 and +4 MAP points w.r.t. NMT+BM25
and MonoBERT, respectively for SW-EN, and +8
and +5 points for KG-EN. The gains are simi-
larly prominent for more distant language pairs
from the HC4 dataset (+8 MAP points over the
NMT+BM25 preranker for EN-FA and EN-ZH).
With such prominent gains of the modular rerank-
ing over the preranker, it is no surprise that averag-
ing the preranking and reranking document ranks
(ENS) reduces the performance of the reranker. We
believe that these results in particular emphasize
the effectiveness of modular cross-lingual transfer
that allows to increase the capacity of MMTs for
individual languages, by means of LMs or LAs.
The representations of low-resource languages, for
which MMTs have seen little data in pretraining,
particularly suffer from the curse of multilinguality

(Conneau et al., 2020; Lauscher et al., 2020) – this
is why particularly prominent gains are achieved
for those languages when we increase the MMTs
capacity for their representation via LMs/LAs.

Cross-Lingual Transfer for MoIR. Table 4 dis-
plays the results of monolingual retrieval with our
best-performing modular rerankers for EN (as the
source language) and four target languages (DE,
IT, FI, RU).10 Unlike the fully fine-tuned reranker
(MonoBERT), our modular Adapter- and SFTM-
based rerankers improve the initial rankings pro-
duced by BM25. These results strengthen the find-
ing that our modular rerankers are not just more
parameter-efficient (i.e., faster to train), but also
lead to better cross-lingual transfer due to decou-
pling of language- and ranking-specific knowledge.
In MoIR tasks the SFTM-based transfer outper-
forms its Adapter-based counterpart, same as in the
case of CLIR with NMT+BM25 preranking (Table
1). Also as in the case of the latter CLIR results
(Tables 1 and 3), interpolating between preranking
and reranking results does not bring any gains.

It is worth noting that all MoIR scores are sub-
stantially higher than CLIR results from Tables 1
and 2. This is expected and reflects the fact
that matching representations within a language –
where models can still rely on exact lexical matches
between queries and documents – is easier than
aligning text representations across languages.

Effectiveness vs Efficiency. Adapters increase
query latency because they deepen the Trans-
former. Rücklé et al. (2021) show that one can
drop adapters from lower layers with small-to-
negligible effect on performance. Table 5 shows
the results of a similar analysis, where we drop
the adapters from the first N layers at inference.
Dropping adapters from only the first two layers
(row 1-2) only slightly decreases the MoIR per-
formance whereas it even slightly increases the

10Note that in MoIR, the actual reranking is always mono-
lingual (albeit in the target language). Both queries and docu-
ments are thus encoded with the same target language LA/LM.
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CLEF 2003 HC4

Model EN FI DE IT RU FA ZH RU AVG ENS

BM25 (PR) .480 .505 .434 .494 .361 .279 .196 .228 .372 -
MonoBERT .464 .528 .444 .463 .363 .356 .283 .245 .398 .402

+RA + LA .512 .537 .457 .495 .389 .372 .284 .261 .413 .410
+RM + LM .515 .564 .459 .502 .379 .398 .307 .264 .423 .417

Table 4: Results of zero-shot cross-lingual transfer for monolingual retrieval (MoIR) on CLEF 2003 and HC4
datasets. Results with reduction factors of 16 and 2 for Adapters and SFTMs, respectively.

Layer CLIR MoIR AVG Latency ∆ Speed-Up ∆ MAP

None .282 .418 .331 34.6 ms - -
1-2 .295 .412 .337 33.7 ms +2.6% +.006
1-4 .269 .395 .314 32.8 ms +5.0% −.017
1-6 .229 .375 .281 31.9 ms +7.7% −.050
1-8 .134 .284 .187 31.0 ms +10.4% −.143
1-10 .086 .210 .130 30.0 ms +12.9% −.200
1-12 .086 .208 .129 29.5 ms +14.2% −.201

Table 5: Trade-off between efficiency and effectiveness
when dropping adapters in +RA + LAD. Average over
all CLIR/MoIR setups and all reduction factors.

Figure 3: Retrieval performance at different parameter
reduction factors; average MAP performance for CLIR
(top) and MoIR (bottom).

CLIR results. Dropping adapters from more lay-
ers, however, substantially reduces the retrieval
performance: e.g., removing adapters from the first
10 layers reduces CLIR performance by almost
20 MAP points, while reducing the query latency
by only 13%. While Adapters and SFTMs yield
comparable performance in our experiments, these
observations favor SFTMs: for the same query la-
tency,11 SFTMs will yield better performance.

11The query latency of an SFTM-based reranker is the same
as that of MonoBERT as SFTMs do not increase the number

Parameter Efficiency. We also investigate the
relation between various levels of parameter effi-
ciency and retrieval performance. Figure 3 shows
the performance of our modular rerankers for dif-
ferent parameter reduction factors. SFTMs exhibit
stronger performance with smaller reduction fac-
tors (2 and 4), i.e., when we update a larger per-
centage of mBERT’s original parameters. SFTMs
shift the pretrained values of mBERT’s parameters:
this constrains the range of values that individual
parameters can take, requiring the modification of
the larger number of parameters for injecting com-
plex language- and ranking-specific knowledge. In
contrast, Adapters show better performance with
higher reduction factor (8, 16, 32), i.e., when we
add a relatively smaller number of Adapter parame-
ters. This could be the consequence of the “uncon-
strained” initialization of the new Adapter param-
eters, which allows the complementary language-
and ranking-specific knowledge to be compressed
into a smaller number of parameters. Comparing
those effects between CLIR and MoIR we observe
the same trends. However, MAP gains compared
to MonoBERT are larger in MoIR than in CLIR.
This seems intuitive as ranking adapters (masks)
are able to adapt for exact matches.

Impact of NMT on CLIR. In the cross-lingual
setup the quality of retrieved documents crucially
depends on the quality of query translations when
NMT is used. In Table 6 we show original En-
glish queries together with their respective trans-
lations from Swahili and Somali. As expected,
translations from Swahili are generally of higher
quality compared to Somali, which explains the
big performance gap reported in Table 3. In the
best case the translation is semantically very close
to the original query (cf., SW�EN; QID:172), or it
contains only slight lexical (flooding vs. floods)
and semantic variations, e.g., near-synonyms (Hol-
land vs. Netherlands). In other cases, error prop-

of layers (nor parameters within layers) of the MMT.
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QID English Query (original) NMT: Swahili→ English NMT: Somali→ English

151 Wonders of Ancient World Look
for information on the existence
and/or the discovery of remains of
the seven wonders of the ancient
world.

Search for information about the
existence and/or development of
the seventh universe of the ancient
world.

Thus, therefore, it is necessary to
bear in mind that the truth is the
truth, and that the truth is the truth,
and that the truth is the truth.

172 1995 Athletics World Records
What new world records were
achieved during the 1995 athletic
world championships in Gothen-
burg?

What new world records were
recorded at the 1995 World Horses
in Gothenburg?

The 1995 World Trade Organiza-
tion (WTO) announced that a new
international trade agreement has
led to a global trade agreement in
Gothenburg.

187 Nuclear Transport in Germany
Find reports on the protests against
the transportation of radioactive
waste with Castor containers in
Germany.

Nuclear Delivery in Germany A
report on the anti-trafficking of ra-
dioactive pollutants and Castor
containers in Germany.

The Nugleerka department of Jar-
malka Hel has been prepared for the
development of the Nugleerka de-
partment of Castor district in Jar-
malka.

200 Flooding in Holland and Germany
Find statistics on flood disasters in
Holland and Germany in 1995.

The floods in the Netherlands and
Germany have recorded the floods
in the Netherlands and Germany in
1995.

The Netherlands Federation and the
United Nations have agreed with
the Netherlands Federation and the
Netherlands Federation in 1995.

Table 6: Comparison between original CLEF queries and translations from Swahili and Somali to English. Tokens
that occur both in the original query and translations are highlighted in bold (ignoring case, excluding stopwords).

agation from NMT impacts CLIR performance to
different extents. Those include, e.g., missing key-
words (statistics; QID:200), topic shifts (sports vs.
business; SO�EN, QID:172) or queries consisting
of unrelated text and repetitions (i.e., ‘hallucina-
tions’; SO�EN, QID:151, QID:200). Especially repe-
titions and hallucinations12 are known unwanted
artifacts in NMT (Fu et al., 2021; Raunak et al.,
2021) and can cause retrieval models to empha-
size unrelated keywords by inflating their term fre-
quency.13 Lastly, in cases where source words are
copied instead of translated, e.g., Nugleerka (Nu-
clear) or Jarmalka (Germany) in QID:187, neural
retrieval models need to rely on imperfect internal
alignment of word translations (Cao et al., 2019).

5 Related Work

Next to Adapters and SFTMs there exist other pa-
rameter efficient transfer (PET) methods. For ex-
ample, BitFit trains only bias vectors (Ben Zaken
et al., 2022), LoRa trains low-rank decompositions
of weight matrices in dense layers (Hu et al., 2022)
and methods that learn continuous prompts (Liu
et al., 2021b; Lester et al., 2021; Li and Liang,
2021, inter alia). In the context of retrieval for

12This phenomenon has been reported to occur in low-
resource and out-of-domain settings (Müller et al., 2020). We
confirm this finding as we find hallucinations appearing more
often in EN�SO than in EN�SW query translations.

13Further investigation of NMT+BM25 on SO�EN reveals
that manually filtering out queries containing more than two
repetitions/hallucinations leaves us with 22 remaining queries
on which results improve from 0.157 to 0.280 MAP.

English, concurrent work focuses on the learning-
efficiency (Ma et al., 2022) and out-of-domain
generalization (Tam et al., 2022) of PET meth-
ods, whereas we investigate PET both on task- and
language-level adaption for CLIR.

6 Conclusion

In this work, we introduced modular and parameter-
efficient neural rerankers for effective cross-lingual
retrieval transfer. Our models, based on Adapters
and Sparse Fine-Tuning Masks, allow for decou-
pling of language-specific and task-specific (i.e.,
ranking) knowledge. We demonstrate that this
leads to more effective transfer to cross-lingual
IR setups as well as to better cross-lingual transfer
for monolingual retrieval in target languages with
no relevance judgment improving over strong pre-
rankers based on state-of-the-art NMT. Encourag-
ingly, we observe particularly pronounced gains for
low-resource languages included in our evaluation.
We hope that our results will encourage a broader
investigation of parameter-efficient neural retrieval
in monolingual and cross-lingual setups. We make
our code and resources available at: https://
github.com/rlitschk/ModularCLIR.

Acknowledgments

RL and GG are supported by the EUINACTION
grant from NORFACE Governance (462-19-010,
GL950/2-1). IV work is supported by a Huawei
research donation to the University of Cambridge.

1079



References
Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and
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and Goran Glavaš. 2021. Evaluating multilingual
text encoders for unsupervised cross-lingual retrieval.
In Proceedings of ECIR, pages 342–358.

Qian Liu, Xiubo Geng, Jie Lu, and Daxin Jiang.
2021a. Pivot-based candidate retrieval for cross-
lingual entity linking. In Proceedings of WWW, page
1076–1085.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. 2021b. P-tuning v2:
Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint
arXiv:2110.07602.

Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, and
Xueqi Cheng. 2022. Scattered or connected? an opti-
mized parameter-efficient tuning approach for infor-
mation retrieval. arXiv preprint arXiv:2208.09847.

Sean MacAvaney, Luca Soldaini, and Nazli Goharian.
2020. Teaching a new dog old tricks: Resurrecting
multilingual retrieval using zero-shot learning. In
Proceedings of ECIR, pages 246–254.

Sean MacAvaney, Andrew Yates, Arman Cohan, and
Nazli Goharian. 2019. Cedr: Contextualized em-
beddings for document ranking. In Proceedings of
SIGIR, page 1101–1104.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pas-
canu, and Hassan Ghasemzadeh. 2020. Understand-
ing the role of training regimes in continual learning.
In Proceedings of NeurIPS, volume 33, pages 7308–
7320.

Jamshidbek Mirzakhalov, Anoop Babu, Duygu Ataman,
Sherzod Kariev, Francis Tyers, Otabek Abduraufov,
Mammad Hajili, Sardana Ivanova, Abror Khaytbaev,
Antonio Laverghetta Jr, et al. 2021. A large-scale
study of machine translation in turkic languages. In
Proceedings of EMNLP, pages 5876–5890.

Mathias Müller, Annette Rios, and Rico Sennrich. 2020.
Domain robustness in neural machine translation. In
Proceedings of the 14th Conference of the Associa-
tion for Machine Translation in the Americas (Volume
1: Research Track), pages 151–164.

Suraj Nair, Eugene Yang, Dawn Lawrie, Kevin Duh,
Paul McNamee, Kenton Murray, James Mayfield,
and Douglas W Oard. 2022. Transfer learning ap-
proaches for building cross-language dense retrieval
models. In Proceedings of ECIR, pages 382–396.

Shahrzad Naseri, Jeff Dalton, Andrew Yates, and James
Allan. 2021. CEQE: contextualized embeddings for
query expansion. In Proceedings of ECIR, pages
467–482.

1081



Jian-Yun Nie. 2010. Cross-Language Information Re-
trieval. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019a.
From doc2query to doctttttquery. Online preprint, 6.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019b. Multi-stage document ranking
with BERT. arXiv preprint arXiv:1910.14424.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019c. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
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Abstract

In weakly-supervised text classification, only
label names act as sources of supervision. Pre-
dominant approaches to weakly-supervised text
classification utilize a two-phase framework,
where test samples are first assigned pseudo-
labels and are then used to train a neural text
classifier. In most previous work, the pseudo-
labeling step is dependent on obtaining seed
words that best capture the relevance of each
class label. We present LIME1, a framework
for weakly-supervised text classification that
entirely replaces the brittle seed-word gener-
ation process with entailment-based pseudo-
classification. We find that combining weakly-
supervised classification and textual entailment
mitigates shortcomings of both, resulting in a
more streamlined and effective classification
pipeline. With just an off-the-shelf textual en-
tailment model, LIME outperforms recent base-
lines in weakly-supervised text classification
and achieves state-of-the-art in 4 benchmarks.

1 Introduction

Weakly-supervised text classification (Meng et al.,
2018) is an important avenue of research in low-
resourced text classification. Unlike in traditional
text classification, all supervision derives from
textual information in category names. Weakly-
supervised classification offers a practical approach
to classification because it does not necessitate mas-
sive amounts of training data.

Another distinct aspect of weakly-supervised
text classification is that the system has access to
the entire test set at evaluation time, instead of
encountering test samples sequentially. Exploit-
ing this characteristic, recent approaches employ
keyword-matching pseudo-labeling schemes to ten-
tatively assign class labels to each test sample, be-
fore using the information to train a separate classi-
fier (Meng et al., 2018; Mekala and Shang, 2020;

1Labels Identified with Maximal Entailment

Wang et al., 2021). Pseudo-labels are assigned by
counting how many “seed words” of each class are
found in the test sample. Keyword matching-based
labeling, however, is neither adaptable nor flexible
because semantic information embedded in class
names cannot be extracted adaptively for distinct
classification tasks.

Inspired by recent advances in prompt-based
text classification (Yin et al., 2019, 2020; Schick
and Schütze, 2021), we replace the keyword-
based pseudo-labeling step with a more streamlined
entailment-based approach. Extensive experiments
show that entailment-based classifiers assign more
accurate pseudo-labels with greater task adaptabil-
ity and much fewer hyperparameters. We find that
our method realizes the benefits of both entailment-
based classification and self-training.

Our contributions are as follows:

1. We present LIME, a novel framework for
weakly-supervised text classification that uti-
lizes textual entailment. LIME surpasses cur-
rent state-of-the-art weakly-supervised meth-
ods in all tested benchmarks.

2. We show that self-training with pseudo-labels
can mitigate unsolved robustness issues in
entailment-based classification (Ma et al.,
2021).

3. We experimentally confirm that higher con-
fidence in pseudo-labels translates to better
classification accuracy in self-training. We
also find that a balance between filtering out
low-confidence labels and preserving a sizable
pseudo-training corpus is important.

2 Background

2.1 Weakly-supervised text classification

In weakly-supervised text classification, the system
is allowed to view the entire test set at evaluation
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time. Having access to all test data allows novel pre-
processing approaches unavailable in traditional
text classification, such as preliminary clustering
of test samples (Mekala and Shang, 2020; Wang
et al., 2021) before attempting final classification.
In the process, the system has an opportunity to
examine overall characteristics of the test set.

Existing methods for weakly-supervised text
classification focus on effectively leveraging such
additional information. The dominant approach in-
volves generating pseudo-data to train a neural text
classifier. Most methods assign labels to samples
in the test set by identifying operative keywords
within the text (Meng et al., 2018). They obtain
seed words that best represent each category name.
Then, each sample in the test set is assigned a label
with keywords most relevant to its content.

Later works improve this pipeline by automati-
cally generating seed words (Meng et al., 2020b) or
incorporating pre-trained language models to uti-
lize contextual information of representative key-
words (Mekala and Shang, 2020).

Seed-word-based pseudo-labeling, however, is
heavily dependent on the existence of representa-
tive seed words in test samples. Seed-word-based
matching cannot fully utilize information in con-
textual language representations, because the clas-
sification of each document involves brittle global
hyperparameters such as the number of total seed
words (Meng et al., 2020b) or word embedding
distance (Wang et al., 2021).

In this work, we entirely forgo the seed word
generation process during pseudo-labeling. We
show that replacing seed-word generation with
entailment-based text classification is more reliable
and performant for text classification with weak
supervision.

2.2 Entailment based text classification

Textual entailment (Fyodorov et al., 2000; MacCart-
ney and Manning, 2009) measures the likeliness
of a sentence appearing after another. Since entail-
ment is evaluated to a probability value, the task
can be extended for use in text classification. In
entailment-based text classification, classification
is posed as a textual entailment problem: given
a test document, the system ranks the probabili-
ties that sentences each containing a possible class
label (hypotheses) will immediately follow the doc-
ument text. The class label belonging to the most
probable hypothesis is selected as the classification

prediction. A hypothesis for topic classification,
for example, could be “This text is about <topic>”.
The flexibility in prompt choices for constructing
the hypotheses makes entailment-based classifica-
tion extremely adaptable to different task types.

Although entailment-based sentence scoring is
popular in zero- and few-shot text classification
(Yin et al., 2019, 2020), the robustness of such ap-
proaches has recently been called into question (Ma
et al., 2021). Since entailment-based classifiers rely
heavily on lexical patterns, a large variance is ob-
served in classification performance across differ-
ent domains. We find that self-training commonly
found in weakly-supervised classification mitigates
such robustness issues in entailment-based classifi-
cation to a large degree.

3 The LIME Framework

LIME enhances the two-phase weakly-supervised
classification pipeline with an entailment-based
pseudo-labeling scheme.

Examples

Test sample (t) “I love the food."
Class label (c) “Positive"
Verbalizer "Positive"→ “good”
Prompt "It was <verbalizer(hi)>."
Hypothesis (h) "It was good."

Table 1: Example test sample, class label, verbalizer,
prompt, and entailment hypothesis. Converting class
labels with a verbalizer is an optional procedure.

3.1 Phase 1: Pseudo-labeling

Textual entailment evaluates the likeliness of a hy-
pothesis h succeeding some text t.

Given C = {c1, c2, . . . , cn}, the set of all possi-
ble labels for t, we generateH = {h1, h2, . . . , hn},
the set of all entailment hypothesis. Every sentence
hi asserts that its corresponding ci ∈ C is the cor-
rect label for t. hi is constructed from a designated
prompt and an optional verbalizer for each dataset
(Schick and Schütze, 2021):

hi = prompt(verbalizer(ci))

Prompts dictate the wording of the hypotheses,
while verbalizers convert each class label into a ter-
minology better interpreted by entailment models.
Pseudo-label for t is chosen as ci that corresponds
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Dataset Type # of Classes Dataset size Prompt

20News News topic 5 17,871 The text is about <class label>.
AGNews News topic 4 120,000 The text is about <class label>.
Yelp Restarant review 2 38,000 It was good. / It was bad.
DBpedia Wikipedia topic 14 560,000 The text is about <class label>.

Table 2: Statistics for benchmark datasets.

to the pair (t, hi) with the highest entailment prob-
ability. Table 1 provides examples of verbalizers,
prompts, and hypotheses.

3.2 Phase 2: Self-training

We adopt a similar self-training approach as exist-
ing methods in weakly-supervised text classifica-
tion. We train a BERT-base model (Devlin et al.,
2019) with a sequence classification feed-forward
layer using pseudo-labels obtained in Phase 1.

We calculate the prediction confidence for each
pseudo-label ci assigned to t. Pseudo-labels under
a certain confidence threshold are discarded during
the text classifier training phase.

Confidence of label ci is defined as the softmax
over entailment probabilities of all hypotheses:

Confidence(ci) =
epi∑n
j=1 e

pj

where pi is the entailment probability for the text
pair (t, hi), obtained from the entailment model.

4 Experiments

4.1 Experimental setting

In every experiment, we use a publically available
BART-large model2 (Lewis et al., 2020) trained on
the MultiNLI (Williams et al., 2018) dataset as our
entailment classifier. We also discard pseudo-labels
with confidence under 50%. Although different
thresholds lead to higher final F1 scores, we report
results with confidence threshold of 50% for a fair
comparison with previous research.

4.2 Baselines

We compare LIME with both entailment-based
classification (Phase 1 without self-training) and
previous research on weakly-supervised text clas-
sification. We also include BERT trained with su-
pervision from original labels as a realistic upper
bound for weakly-supervised classification.

2https://huggingface.co/facebook/bart-large-mnli

WestClass (Meng et al., 2018) generates pseudo-
documents for each class label. ConWea (Mekala
and Shang, 2020) utilizes a pre-trained language
model to discern keywords that carry different
meanings under different contexts. LotClass
(Meng et al., 2020b) is a framework for text clas-
sification using only label names. LotClass mines
a pre-trained BERT model for seed words that are
most likely to replace each class name. X-Class
(Wang et al., 2021) is a state-of-the-art weakly-
supervised classification system that collects seed
words within the test documents instead of exter-
nal sources. Documents are then grouped with a
Gaussian Mixture Model before pseudo-labels are
assigned.

4.3 Datasets

We run LIME on standard benchmarks in weakly-
supervised classification: 20News (Lang, 1995),
AGNews (Zhang et al., 2015), Yelp reviews
(Zhang et al., 2015), and DBpedia (Zhang et al.,
2015). Detailed descriptions of each dataset, along
with specific prompts used, are recorded in Table 2.
We notably omit NYT datasets used in Meng et al.
(2020a) and Wang et al. (2021), because only pre-
processed (all lower-cased, pre-tokenized with a
specific tokenizer) versions of the data were avail-
able. It is not possible to meaningfully evaluate the
pseudo-labeling scheme in LIME if test samples
are tokenized by a tokenizer different from that
coupled with our entailment model.

5 Results

5.1 Classification performance

Final classification results are recorded in Table 3.
LIME outperforms all baselines in terms of micro-
and macro-F1 scores, even approaching the super-
vised baseline in the Yelp dataset.

We also find that training a new classifier with
pseudo-labels (Phase 2 of LIME) does not amplify
or propagate errors in incorrect pseudo-labels. The
final classifier consistently scores roughly 10 points
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Model 20News AGNews Yelp DBpedia

Supervised 96.45 / 96.42 93.99 / 93.99 95.70 / 95.70 98.96 / 98.96
Entailment classifier 67.95 / 67.50 79.94 / 79.99 94.79 / 94.79 80.14 / 79.27

WeSTClass 71.28 / 69.90 82.30 / 82.10 81.60 / 81.6 81.42 / 81.19
ConWea 75.73 / 73.26 74.60 / 74.20 71.40 / 71.20 N/A
LOTClass 73.78 / 72.53 86.89 / 86.82 87.75 / 87.68 86.66 / 85.98
X-Class 78.62 / 77.76 85.74 / 85.66 90.00 / 90.00 91.32 / 91.17
LIME 79.74 / 79.56 87.21 / 87.16 95.22 / 95.22 92.19 / 92.20

Table 3: Experiment results on 4 classification benchmarks. All reported scores in the form micro-F1 / macro-F1.
Baselines are quoted from (Wang et al., 2021).

higher in F1 scores compared to the entailment
classifier. Our results confirm findings from previ-
ous research that employ self-training to improve
classification robustness in low-resource regimes
(Mukherjee and Awadallah, 2020; Gowal et al.,
2021).

5.2 Effect of label confidence thresholds

Figure 1 plots the spread of pseudo-label confi-
dence produced in Phase 1 of LIME. We confirm
that higher average confidence from the entailment
classifier in Phase 1 robustly translates to higher
classification accuracy for both the entailment clas-
sifier and the self-trained classifier in Phase 2.

Figure 1: Histogram of pseudo-label confidence. More
confident pseudo-labels result in more accurate classifi-
cation self-training.

Another notable finding is that naively utilizing
only high-confidence labels does not always guar-
antee a more accurate classifier. A trade-off exists
between filtering out low-confidence labels and
retaining a sizable training corpus. We find that
confidence cut-off from 50% to 70% strikes a good
balance between the two obligations (Figure 2).

Figure 2: Effect of varying confidence thresholds on
self-training F1 scores.

6 Conclusions

LIME proposes a streamlined pseudo-labeling
method for weakly-supervised text classification.
The framework combines flexibility of entailment-
based classification with robustness of self-training.
The resulting text classifier outperforms previous
state-of-the-art in weakly-supervised classification.
We also investigate the effect of pseudo-label con-
fidence thresholds on self-trained classifier perfor-
mance. Entailment model confidence accurately re-
flects label accuracy, but size of the pseudo-training
set is also important for robust classification.

We identify several avenues for future research.
For a fair comparison with previous research,
we did not modify the self-training step with
more advanced neural classifier architectures or
confidence-aware self-training schemes (Mukher-
jee and Awadallah, 2020). Other auxiliary tasks,
such as question-answering (McCann et al., 2018)
or next sentence prediction (Ma et al., 2021) can
also extend the LIME framework as alternate
pseudo-classifiers.
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Abstract

Cross-lingual alignment of word embeddings
are important in knowledge transfer across
languages, for improving machine translation
and other multi-lingual applications. Current
unsupervised approaches relying on learning
structure-preserving transformations, using ad-
versarial networks and refinement strategies,
suffer from instability and convergence issues.
This paper proposes BioSpere, a novel multi-
stage framework for unsupervised mapping of
bi-lingual word embeddings onto a shared vec-
tor space, by combining adversarial initializa-
tion, refinement procedure and point set regis-
tration. Experiments for parallel dictionary in-
duction and word similarity demonstrate state-
of-the-art unsupervised results for BioSpere
on diverse languages – showcasing robustness
against variable adversarial performance.

1 Introduction and Background

Distributed word representations like
Word2Vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014) and FastText (Bojanowski
et al., 2017) capture rich semantic meaning, and is
used for a range of NLP tasks. Cross-lingual word
embeddings (CLWE) entails mapping vocabularies
of different languages onto a single vector
space for capturing semantic similarity across
languages (Upadhyay et al., 2016) – for machine
translation (Artetxe et al., 2018a; Lample et al.,
2018a,b), POS tagging (Zhang et al., 2016; Ahmad
et al., 2019), & named entity recognition (Tsai and
Roth, 2016; Xie et al., 2018; Chen et al., 2019).

Linguistic Correlation. This work is based
on the observation that, monolingual representa-
tion spaces learnt independently for different lan-
guages tend to exhibit similarity in terms of geo-
metric properties and orientations (Mikolov and

∗Work done during internship at Huawei Research, Ireland.
†Work done while the author was at Huawei Research, Ireland.

Sutskever, 2013) 1. Further, the frequency of words
across languages have also been shown to follow
the Zipf’s distribution 2, with an overlap of nearly
70% for the most frequent words (Aldarmaki et al.,
2018) and 60% for synonyms (Dinu et al., 2015)
across language pairs. Existing techniques for ex-
tracting cross-lingual word correspondences rely
on above inter-dependencies to learn transforma-
tions across monolingual embedding spaces.

State-of-the-art & Challenges. Early ap-
proaches for obtaining multi-lingual word embed-
dings used parallel or comparable corpora (Gouws
et al., 2015; Mogadala and Rettinger, 2016; Vulić
and Moens, 2016). However, such methods are
not scalable as parallel datasets, especially for
low-resource languages, are scarce. Linear trans-
formations between two monolingual embedding
spaces (via optimization formulation (Schönemann,
1966)) using small manually created bi-lingual
dictionaries were thus proposed (Mikolov and
Sutskever, 2013; Artetxe et al., 2016). Words
having similar surface forms across languages
were used to induce seed dictionaries for semi-
supervised approaches (Artetxe et al., 2017; Zhou
et al., 2019; Doval et al., 2018). Rigid transfor-
mation based point set registration Cao and Zhao
(2018), supervised cross-lingual alignment, joint
training (Joulin et al., 2018; Jawanpuria et al.,
2019; Alaux et al., 2019; Wang et al., 2020) with
feedback-based learning (Yuan et al., 2020) were
also studied. Unsupervised bi-lingual word align-
ment using adversarial training (Barone, 2016;
Zhang et al., 2017a,b) were shown to produce good
results in MUSE (Conneau et al., 2018). Inverted
softmax (Smith et al., 2017) approach was shown to
tackle the “hubness problem” (Radovanović et al.,
2010) caused by dense vector space regions (called

1For example, the embedding vector distribution of num-
bers and animals in English show a similar geometric struc-
tural formation as their Spanish counterparts.

2observed on 10 million words from Wikipages on 30
languages (en.wikipedia.org/wiki/Zipf’s_law)
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hubs), which adversely affected bi-lingual word
translation. However, the performance of adver-
sarial techniques were shown to suffer from con-
vergence instability. Further, Søgaard et al. (2018)
found the above approaches to fail for morpholog-
ically rich languages. Hence, optimization using
Gromov-Wasserstein, Sinkhorn distance, and Itera-
tive Closest Point were explored (Grave et al., 2019;
Alvarez-Melis and Jaakkola, 2018; Xu et al., 2018;
Hoshen and Wolf, 2018; Hartmann et al., 2019).
Adversarial auto-encoders using cyclic loss and
stacked refinements (Mohiuddin and Joty, 2019,
2020) recently achieved improved results.

Contributions. This paper proposes BioSpere
(Bi-Lingual Word Translation via Point Set
Registration and Refinement), a novel approach
for unsupervised bi-lingual word correspondence
induction. Our key contributions are as follows:
• BioSpere, an unsupervised multi-stage frame-
work for learning bi-lingual word alignment, by
using a combination of adversarial training, refine-
ment procedure, and point set registration;
• Unsupervised criterion using cycle-loss consis-
tency for adversarial model choice;
• Experiments on diverse language pairs showing
improved accuracy on different tasks; and,
• Robustness to hubness and convergence issues.

We next describe the detailed working of the
different modules in the BioSpere framework.

2 BioSpere Framework

Consider, two monolingual word embedding
spaces, X = {xn}Nn=1 and Y = {ym}Mm=1, trained
independently, to be provided as source and target
language representations, respectively. BioSpere
aims to map a word in the source language to
its translation (or semantically similar word) in
a target language, without cross-lingual supervi-
sion (Zhang et al., 2019). BioSpere consists of 4
modules – Align, Correspond, Transform and Gen-
erate (shown in Figure 1), as discussed next.
• Align Module – The Align module uses an ad-
versarial training (Ganin et al., 2016) to estimate
an initial mapping between the words across the
languages, by learning an rotational transforma-
tion between the input embeddings spaces. As-
suming x ∼ pdata(x) and y ∼ pdata(y) to be the
input data distributions, we learn two linear map-
pings F : X → Y and G : Y → X , referred
to as forward and backward generators, respec-
tively. A generative adversarial network is used

to train a model DY (discriminator) to discrim-
inate between generated synthetic target embed-
dings Ysyn = FX = {F (xn)}Nn=1, and the orig-
inal embeddings Y . Similarly, we train another
discriminator, DX , in the opposite direction to dis-
criminate between synthetic source embeddings
Xsyn = GY = {G(ym)}Mm=1 and the original X .

The adversarial loss formulates matching the
distribution of synthetic embeddings to the real
distribution. Thus, for forward generator F :
X → Y and its discriminator model DY , the
loss is: Ladv(F,DY , X, Y ) = Ey∼pdata(y)[logDY (y)] +

Ex∼pdata(x)[log(1−DY (F (x))] (refer Appendix B).
A similar loss Ladv(G,DX , Y,X) is used for back-

ward generator G : Y → X and discriminator DX .
We also incorporate the objective used in Mohi-

uddin and Joty (2020) (considering word transla-
tions are symmetric in general) – the learned gen-
erators should not contradict each other, but should
be cycle-consistent. That is, given a source em-
bedding x, the forward translation cycle should
attempt to produce an output that coincides with
x, i.e., G(F (x)) ≈ x; and vice-versa for the back-
ward translation cycle. Thus, we have:
Lcyc(F,G) = Ex∼data(x) ‖G(F (x))‖2+Ey∼data(y) ‖F (G(y))‖2

Following Conneau et al. (2018), to preserve dot
product and L2 distances from the monolingual
space, we ensure F and G remain roughly orthogo-
nal during training by alternating parameter update
with F ← (1+β)F−β(FF T )F (and analogously
for G). This corresponds to CycleGAN (Zhu et al.,
2017), a generative adversarial network (used in
our Align module), to provide an initial aligned
embedding space, XA = F (X) and YA = G(Y ).
• Correspond Module – The above alignment ob-
tained based on cyclic loss, might suffer from ad-
versarial network convergence instability. To ad-
dress this issue, the Correspond module performs
a refinement step based on symmetric re-weighting,
shown to be effective for alignment (Artetxe et al.,
2018a, 2016, 2017; Mohiuddin and Joty, 2020).

A synthetic seed parallel dictionary,D, is thus in-
duced by computing the mutual nearest neighbour
(in both directions) across the aligned embeddings
(XA and YA), as: σnm = δ(F (xn), ym)+δ(xn, G(ym)),
where δ is a distance measure in both XA and YA.
As in Conneau et al. (2018), we adopt the cross-
domain similarity local scaling (CSLS) measure,
which addresses the “hubness” problem. Observe,
σnm also uses bi-directional similarity computa-
tion. In our experiments, the dictionary induction
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Figure 1: Toy illustration (on en-ro language pair) of the different modules of BioSpere – (a) Align, (b) Correspond,
(c) Transform, and (d) Generate – for unsupervised parallel dictionary construction.

is on 25K most frequent words (out of 200K words)
from source and target languages. Symmetric re-
weighting is now performed via 3 steps:
(i) Whitening: makes the embedding dimensions
uncorrelated with unit variance using spherical
transformation. We use ZCA whitening, wherein
the original embeddings X and Y are normalized
and mean-centered, followed by a linear transfor-
mation via matrices Wx = (XTX)−1/2 and Wy =

(Y TY )−1/2, to obtain Xw = XWx and Yw = YWy.
(ii) Orthogonal Transformation: provides a trans-
formation of the whitened embeddings onto a com-
mon space. U , Σ, and V T are obtained via singu-
lar value decomposition of (XDw )TY Dw , where XDw
and Y Dw are whitened embeddings from the seed
dictionary D. The transformation is computed as
Xo = XwUΣ1/2 and Yo = YwV Σ1/2.
(iii) De-Whitening: restores the original variance
in the embedding dimensions of the transformed
vectors – computes a refined vector embedding as:
XC = XoU

T (XTX)1/2U and YC = YoV
T (Y TY )1/2V .

• Transform Module – The Transform module
performs a further refinement on the embeddings
XC and YC using the concept of point set registra-
tion. Specifically, we use the Coherent Point Drift
(CPD) algorithm (Myronenko and Song, 2010), an
unsupervised probabilistic framework which as-
signs point-to-point correspondence between two
sets of points, akin to finding word translation pairs
in our setting. Here, the task of aligning two em-
bedding spaces is performed using a density es-
timation problem based on the Gaussian Mixture
Model (GMM). We direct interested readers to the
details of CPD algorithm provided by Myronenko
and Song (2010), and briefly in Appendix A.

The use of CPD provides the following advan-
tages – (i) GMM enables BioSpere to tackle the

“hubness” problem (shown in Zhou et al. (2019)),
and (ii) CPD imposes Motion Coherence Theory
(MCT) (Yuille and Grzywacz, 1988) to force the
GMM centroids to move coherently as a group,
preserving the underlying topological structure.

We use affine CPD transformation, providing
a higher degree of freedom compared to the rigid
procedure of (Cao and Zhao, 2018) and Procrustes,
to compute the modified source embeddings as:
XT = (RXT

C ∗ s+ t)T , where R is a rotation matrix,
t is a translation vector, and s is a scaling constant.
We run CPD twice for each language pair, once in
each directions, generating the transformed source
and target language embeddings XT and YT .
• Generate Module – The Generate module iter-
ates between the above correspond and transform
steps until convergence is reached. Equipped with
the final alignedXT and YT embedding spaces, the
resultant parallel dictionary is computed using the
bi-directional CSLS measure, similar to the con-
struction of the intermediate dictionary in the Cor-
respond module. . For convergence of the iterative
symmetric re-weighting refinement and CPD, we
adopt the criteria of Artetxe et al. (2018b); Mohiud-
din and Joty (2020). The generated word pairs are
compared with ground-truth parallel dictionaries to
compute the accuracy of BioSpere.

Overview. Intuitively, the interactions across
the different components in BioSpere are as: The
adversarial module provides an initial embedding
space alignment, but might be prone to convergence
issues. The refinement stage then provides robust-
ness against such training losses. However, the
refinement process being a supervised approach by
definition, errors in intermediate synthetic dictio-
nary construction might propagate, degrading the
efficacy. The final point correspondence CPD step,
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Algorithm en-es en-de en-fr en-ru

→ ← → ← → ← → ←

Supervised Approaches

Non-Adv 81.4 82.9 73.5 72.4 81.1 82.4 51.7 63.7
DeMa-BME 82.8 85.4 77.2 75.1 83.2 83.5 49.2 63.6
GeoMM 81.4 85.5 74.7 76.7 82.1 84.1 51.3 67.6
RCSLS 84.1 86.3 79.1 76.3 83.3 84.1 57.9 67.2

Unsupervised Approaches

SinkHorn∗∗ 79.5 77.8 69.3 67.0 77.9 75.5 - -
Non-Adv 82.1 84.1 74.7 73.0 82.3 82.9 47.5 61.8
Was-Proc 82.8 84.1 75.4 73.3 82.6 82.9 43.7 59.1
GW-Proc 81.7 80.4 71.9 72.8 81.3 78.9 45.1 43.7
MUSE 81.7 83.3 74.0 72.2 82.3 82.1 44.0 59.1
VecMap†† 82.3 84.7 75.1 74.3 82.3 83.6 49.2 65.6
UMH 82.5 84.9 74.8 73.7 82.9 83.3 45.3 62.8
Adv-Auto 83.0 85.2 76.2 74.7 82.3 83.5 48.4 64.5

BioSpere 83.3 85.4 75.8 75.8 83.4 84.1 49.5 64.0
‘-’ denotes failure of the training network to converge reasonably
∗∗ Uses cosine similarity instead of CSLS, and results as reported in Zhou et al. (2019)
†† Results taken from Zhou et al. (2019)

Table 1: CSLS@1 word translation results on the
dataset of Conneau et al. (2018).

being unsupervised, is agnostic to such errors and
provides enhanced cross-lingual embedding space
alignment. The overall BioSpere framework (Cy-
cleGAN + SR + affine CPD) is seen to perform the
best and robustly across different languages in our
empirical evaluations. More details and evaluations
can be found in (Oprea et al., 2020).

3 Empirical Evaluation

We evaluate BioSpere on mapping semantically
similar words across languages, for bi-lingual dic-
tionary induction, word similarity and sentence
translation retrieval tasks across diverse languages.

Dataset. We follow the setup of Conneau et al.
(2018), and use FastText monolingual vector em-
beddings (with 300 dimensions) (Bojanowski et al.,
2017) for the top 200K most frequent words of
each language as input vocabulary. We consider
8 different language pairs (including morphologi-
cally rich) – English (en), German (de), French (fr),
Spanish (es), Italian (it), Russian (ru), Hebrew (he),
Finnish (fi), and Romanian (ro) – a mix of isolating,
fusional and agglutinative languages with depen-
dent and mixed marking (Søgaard et al., 2018).

Evaluation. On word translation (dictionary in-
duction), we use the gold dictionary with 1,500
source test words (and 200K target vocabulary)
(github.com/facebookresearch/MUSE), while sentence
translation retrieval uses Europarl corpus contain-
ing 2,000 source and 200K target sentences. We
report Precision@1 (P@1) based on CSLS crite-
ria (Conneau et al., 2018). For word similarity
on SemEval 2017 data (Camacho-Collados et al.,

2017) we report the Pearson’s correlation.
Baselines. The performance of BioSpere is com-

pared against the following unsupervised methods:
(1) MUSE (Conneau et al., 2018) – Uses

GAN (Goodfellow et al., 2014) to learn transfor-
mations with Procrustes (Schönemann, 1966) 3;

(2) Adv-Auto (Mohiuddin and Joty, 2020) – State-
of-the-art using adversarial auto-encoder to cre-
ate synthetic dictionary, refined by symmetric re-
weighting & Procrustes strategies 4;

(3) VecMap (Artetxe et al., 2018a) – Self-learning
iterative algorithms exploiting structural similari-
ties between embedding spaces for alignment 5;
(4) SinkHorn (Xu et al., 2018): GAN trained on

cyclic loss and Sinkhorn distance (Cuturi, 2013);
(5) Non-Adv (Hoshen and Wolf, 2018) – Uses

dimensionality reduction with Iterative Closest
Point (Besl and McKay, 1992) algorithm;

(6) Was-Proc (Grave et al., 2019) – Computes bi-
stochastic matrix for assignment by jointly optimiz-
ing Wasserstein dist. (Mémoli, 2011) & Procrustes;

(7) GW-Proc (Alvarez-Melis and Jaakkola, 2018)
– Formulates optimal flow across domains using
Gromov-Wasserstein distance (Mémoli, 2011); and

(8) UMH (Alaux et al., 2019) – Uses language
correlation for learning via constraint optimization.

We also report the supervised approaches:
(1) RCSLS (Joulin et al., 2018): Optimizes CSLS

criteria for learning (Conneau et al., 2018);
(2) GeoMM (Jawanpuria et al., 2019): Language

specific geometric rotations are learnt to align; and
(3) DeMa-BME (Zhou et al., 2019): Weakly-

supervised approach for learning Gaussian Mixture
Model between embeddings spaces.

Unsupervised Model Selection. For choosing
the best performing model setting during adver-
sarial training and convergence (a challenge in
unsupervised setting), we follow Conneau et al.
(2018) and use CSLS measure (denoted as DMC)
to quantify the closeness of source and target
mapped embedding spaces. However, adopting
cyclic-consistency, we extend CSLS (termed as
DualDMC) to measure the average bi-directional
cosine similarity between source and target spaces
(as in Correspond module), for model selection.

Parameter Setting. For a robust framework, we
did not perform extensive parameter search, and
most parameters were set to fixed values, or se-
lected via two successive degradation of the unsu-

3Code from github.com/facebookresearch/MUSE
4

ntunlpsg.github.io/project/unsup-word-translation
5Code obtained from github.com/artetxem/vecmap
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Algorithm en-fi en-he en-ro Algorithm en-de en-es en-it Algorithm en-es en-fr en-fi

→ ← → ← → ← → ← → ← → ← → ← → ← → ←
MUSE 43.7 53.7 38.0 - 58.0 66.0 MUSE 0.708 0.713 0.712 0.711 0.710 0.712 MUSE 75.1 73.9 69.1 69.9 64.2 64.0
VecMap 49.9 63.5 44.6 57.7 64.2 71.8 VecMap 0.719 0.719 0.721 0.721 0.746 0.746 VecMap 74.7 74.4 69.6 69.3 64.4 64.1
Adv-Auto 49.8 65.5 46.1 58.6 62.6 71.9 Adv-Auto - 0.720 0.724 0.718 0.722 0.721 Adv-Auto 75.0 75.7 68.0 71.0 64.1 64.5
BioSpere 49.9 65.5 46.6 59.1 65.4 74.3 BioSpere 0.726 0.725 0.730 0.728 0.722 0.723 BioSpere 76.7 76.3 70.2 70.9 65.1 65.9

(a) (b) (c)

Table 2: Performance of competing approaches for (a) CSLS@1 on word translation for morphologically rich languages, (b) Pearson’s Correlation score for
word similarity task on SemEval 2017 dataset, and (c) Precision@1 results for sentence translation retrieval on Europarl data.

pervised DualDMC criteria. Following Conneau
et al. (2018), we fed the adversarial discriminator
with the 50K most frequent words, and the discrim-
inator had an input dropout layer with a rate of 0.1.
In our experiments, we only tuned the weight as-
signed to the cyclic loss between 5 and 10, and ran
the framework under different random seeds, pick-
ing the best model using unsupervised DualDMC.

3.1 Experimental Results

Word Translation – involves the retrieval of a
source word translation to a target language for
parallel dictionary construction. We use the ground-
truth dictionaries of Conneau et al. (2018). From
Table 1, we observe that BioSpere provides better
translation results in nearly all of the four language
pairs (across unsupervised methods). We achieve
better results compared to even supervised methods
like Non-Adv and DeMa-BME, and are compara-
ble to RCSLS (e.g., en→ es and en→ fr). Since,
MUSE, VecMap, and Adv-Auto consistently per-
form well, they are selected as competing baselines
for the remaining experiments. We also explore the
performance on “difficult” morphologically rich
languages like Finnish, Hebrew and Romanian (Sø-
gaard et al., 2018). Table 2(a) shows that BioSpere
is efficient in such settings, outperforming existing
approaches, across the languages.
Semantic Word Similarity – evaluates the quality
of cross-lingual word alignment based on the cor-
relation between cosine similarity between words
in different languages and human-annotated word
similarity scores. Table 2(b) shows that BioSpere
achieves a better Pearson’s correlation to human-
annotated scores across languages (except it) – pro-
viding better alignment across languages.
Sentence Translation Retrieval – studies sen-
tence translation retrieval on Europarl corpus. Sim-
ilar to Conneau et al. (2018), a sentence is rep-
resented as a bag-of-words and the idf-weighted
average of word embeddings is considered as its
encoding. For each source sentence, the closest
sentence from the target language is returned as its
translation. Table 2(c) depicts that BioSpere pro-
vides better sentence translation retrieval accuracy

Algorithm en-de en-fi en-ro

→ ← → ← → ←
MUSE GAN 59.8 60.5 22.3 24.1 34.5 49.6
CycleGAN 69.8 69.6 27.7 48.3 44.4 52.5
CycleGAN + Procrustes 73.8 73.3 46.2 62.0 59.5 67.2
CycleGAN + SR 75.5 74.7 46.9 64.9 63.5 71.6
CycleGAN + rigid CPD 74.5 74.2 45.9 62.3 60.5 67.3
CycleGAN + affine CPD 75.2 74.7 50.2 65.7 65.5 72.5
BioSpere 75.8 75.8 49.9 65.5 65.4 74.3

Bad-GAN 70.5 62.9 25.1 36.3 42.1 51.4
Bad-GAN + Procrustes 74.5 73.3 46.7 61.7 59.5 68.9
Bad-GAN + SR 75.9 73.8 45.7 61.7 63.1 72.3
Bad-GAN + affine CPD 75.3 74.7 51.7 65.7 63.1 72.6
BioSpere with Bad-GAN 75.9 75.9 51.7 65.4 64.0 73.1

Table 3: Ablation and Robustness study of BioSpere on
word translation with (Conneau et al., 2018) dataset.

with upto 1.5% P@1 score improvements.
Ablation Study – Table 3 tabulates the results

for varying components of BioSpere. CycleGAN
(using cycle-loss consistency) performs better than
MUSE GAN, while the refinement procedures of
symmetric re-weighting (SR) and Procrustes seem
to perform similarly (SR being slightly better for
morphologically rich languages). As discussed pre-
viously, we observe that higher degrees of transla-
tional freedom provided by affine CPD performs
better than rigid CPD (of Cao and Zhao (2018)).
To study the robustness of BioSpere to adversar-
ial convergence issues, we intentionally select a
sub-optimal CycleGAN model from the Align mod-
ule, denoted as Bad-GAN in Table 3. We observe
that SR refinement recovers from such convergence
issues (better than Procrustes) – providing an accu-
racy comparable to a properly trained model (se-
lected using DualDMC). Specifically, for fi→ en,
the performance of Bad-GAN is around 12% worse
than the best CycleGAN model. However, the fi-
nal accuracy of BioSpere differs by only 1% (in
Table 3) even with Bad-GAN initialization.

4 Conclusion

This paper proposed BioSpere, a multi-stage unsu-
pervised cross-lingual word embedding alignment
framework – based on the novel coupling of genera-
tive adversarial training, refinement procedure and
point set registration. Experiments with diverse
tasks on multiple languages demonstrate improved
results over existing methods, and also depict ro-
bustness to hubness and adversarial performance.
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A Background of CPD

Point Set Registration algorithms aim to compute
the correspondences for aligning two input point
sets. Rigid transformation involving rotation, trans-
lation and reflection, were used in Iterative Closest
Point (ICP) algorithm (Besl and McKay, 1992) and
other variants (Rusinkiewicz and Levoy, 2001) for
probabilistic alignment. Spectral methods (Scott
and Longuet-Higgins, 1991) and closed-form so-
lution for rigid probabilistic registration in multi-
dimensional cases was presented in Myronenko
and Song (2010). In addition to the rotation, trans-
lation and reflection, affine transformation also con-
siders scaling, homothety, similarity and shear –
providing more degrees of freedom for better point
set registration (Ho et al., 2007). Non-rigid trans-
formations are based on Gaussian Mixture model
and filters (Hinton et al., 1992; Gao and Tedrake,
2019), Bayesian modeling (Hirose, 2020) or Thin
Plate Spline (TPS) parameterization (Bookstein,
1989). Recent developments use convolutional neu-
ral networks (Huang et al., 2017) and other learn-
ing frameworks (Yew and Lee, 2018). An exten-
sive literature survey can be found in Tam et al.
(2013). We adopt Coherent Point Drift (CPD) (My-
ronenko and Song, 2010) combining Gaussian Mix-
ture Model and Motion Coherence Theory.

BioSpere Transform Module. The Transform
module performs a refinement on the transformed
embeddings XC and YC (obtained from the Cor-
respond module) using the concept of point set
registration. Specifically, we uses the Coherent
Point Drift (CPD) algorithm (Myronenko and Song,
2010), an unsupervised probabilistic framework
which assigns point-to-point correspondence be-
tween two sets of points, akin to finding word
translation pairs in our setting. The idea here is
to consider the task of aligning the two embedding
spaces as a density estimation problem based on
the Gaussian Mixture Model (GMM). This consid-
ers word embeddings of one language as GMM
centroids, and the other embedding space to rep-
resent data points. The centroids are then fitted to
data points by maximizing the likelihood, and at
optimum point correspondences are obtained using
GMM posterior probabilities.

Thus, we consider the target embeddings YC as
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the centroids and the source embedding space XC

as data points, to have been generated by the GMM
probability density function. The centroid locations
are estimated by Expectation Maximization (EM)
algorithm (Dempster et al., 1977).

B Related Background

Generative Adversarial Networks (GANs) cou-
ples the training of machine learning architecture
between a generative and a discriminative net-
work that work in tandem for “indirect” training
in an unsupervised manner (Goodfellow et al.,
2014). GANs have been shown to achieve impres-
sive results in the domain image processing (Zhu
et al., 2017), representation learning (Radford et al.,
2016) and reinforcement learning (Ho and Ermon,
2016). The task of supervised image-to-image
translation involves learning the transformation
from an input image to an output image (Long
et al., 2015). Unsupervised image-to-image trans-
lation approach, Co-GAN (Liu and Tuzel, 2016)
was proposed based on weight sharing scheme. Re-
moval of dependencies on task-specific similarity
functions and low-dimensionality in this aspect was
proposed by Zhu et al. (2017), and was shown in
visual tracking by enforcing forward-backward con-
sistency (Kalal et al., 2010). Improving translations
via “back translation and reconciliation” is used by
human translators (Brislin, 1970). We thus adopt
the unsupervised CycleGAN (Zhu et al., 2017) ad-
versarial training based on cycle-consistency loss.
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Abstract
The World Health Organization has empha-
sised the need of stepping up suicide preven-
tion efforts to meet the United Nation’s Sustain-
able Development Goal target of 2030 (Goal 3:
Good health and well-being). We address the
challenging task of personality subtyping from
suicide notes. Most research on personality
subtyping has relied on statistical analysis and
feature engineering. Moreover, state-of-the-art
transformer models in the automated personal-
ity subtyping problem have received relatively
less attention. We develop a novel EMotion-
assisted PERSONAlity Detection Framework
(EM-PERSONA). We annotate the benchmark
CEASE-v2.0 suicide notes dataset with per-
sonality traits across four dichotomies: In-
troversion (I)-Extraversion (E), Intuition (N)-
Sensing (S), Thinking (T)-Feeling (F), Judging
(J)–Perceiving (P). Our proposed method out-
performs all baselines on comprehensive eval-
uation using multiple state-of-the-art systems.
Across the four dichotomies, EM-PERSONA
improved accuracy by 2.04%, 3.69%, 4.52%,
and 3.42%, respectively, over the highest per-
forming single-task systems.

1 Introduction

Suicide continues to be one of the significant causes
of death worldwide (Ghosh et al., 2020). Given the
significance of personality as a basis for understand-
ing psychopathology (Krueger and Tackett, 2006)
and the variability in risk factors associated with
suicide, subtyping patients based on their person-
alities can provide greater specificity than simple
comparisons of suicidal to non-suicidal individuals
(Ortigo et al., 2009). Pompili et al. (2008) showed
that emotions such as anger, aggressiveness, anxi-
ety, and sadness were associated with personality
traits of individuals who attempted suicide.

We quote a few excerpts from suicide notes
(SNs) and online personality posts (PPs) in Table 1
to show how personality discussions on public fo-
rums and genuine SNs generally follow similar

SN-1 They just do whatever the fuck they want and justify it later.
PP-1 They can do anything they like to make any law they like.
SN-2 He is an ugly stupid faggot and we should kill him.
PP-2 They’re oppressing you, kill them all!

Table 1: Sample excerpts from a couple of SNs and PPs.

language patterns. We computed cosine similarity
(CosSim) scores between SNs (from CEASE-v2.0
corpus (Ghosh et al., 2022)) and PPs (from MBTI
dataset1) and observed an alarming number of SNs
having a considerable amount of word-based sim-
ilarity with generic PPs. The results are shown
in Table 2. We observed CosSim scores over 0.6,
0.5, 0.4 for 12, 39 and 113 SNs, respectively with
respect to the PPs in MBTI dataset.

CosSim >0.30 >0.40 >0.50 >0.60
# Notes 204 113 39 12

Table 2: Cosine Similarity scores between suicide notes
and personality posts.

Our primary contributions are two-fold: we
present a novel corpus of suicide notes annotated
with personality traits across four dichotomies and
develop an end-to-end multi-task emotion-assisted
system for simultaneous detection of these traits
from suicide notes.

2 Related Work

The Myers-Briggs Type Indicator (MBTI) (My-
ers, 1962), based on psychiatrist Carl Jung’s ideas,
is a popular personality metric that employs four
dichotomies as indications of personality traits: In-
troversion (I) / Extraversion (E), Intuition (N) /
Sensing (S), Thinking (T) / Feeling (F), Judging
(J) / Perceiving (P). Another popular model like
MBTI is the Big Five (Goldberg, 1993) that pro-
duces very specific and individual results, which

1https://www.kaggle.com/datasnaek/
mbti-type
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can be tedious to draw general insights and advice
from test results making the practical application of
the knowledge very difficult, especially when the
data is scarce (as in the case of suicide note corpus).
The fact that the categories for the Big Five Per-
sonality Traits are too wide and absolute to offer
any meaningful insight is another issue with them.
Humans are adaptive beings that adapt to their en-
vironment. In situations where we are around close
friends, for instance, we could be more open, whilst
in foreign settings you might be less open.

Artificial intelligence (AI) is already playing a
crucial role in mental healthcare (chatbot: WoeBot,
virtual assistant: Ellie (D’Alfonso, 2020)) in han-
dling the increased demand for services, stretched
workloads, high costs for treatment, and associated
stigma with mental illness (Gamble, 2020). More
recently, personality detection studies (Mehta et al.,
2020; Yang et al., 2021; Ren et al., 2021) using
computational methods have gained traction espe-
cially transformer-based (Vaswani et al., 2017) pre-
trained language models. However, the existing
suicide note corpora (Ghosh et al., 2020, 2022) are
annotated at the sentence level and existing stud-
ies do not exploit the emotional content inherent
in them. This motivated us to devise an approach
for utilizing the sentence-level information inher-
ent in the existing datasets and address the closely
associated tasks at the document level. Moreover,
statistical analysis (Ji et al., 2021) and feature en-
gineering (Bharadwaj et al., 2018) have been used
in the bulk of the studies on this topic. However,
most of the research on personality subtyping has
been on domains like essays (Big Five dataset (Pen-
nebaker and King, 1999)) and social media (MBTI
Dataset) and none on the domain of suicide. This
is the first attempt, to our knowledge, to identify
personality subtypes of individuals who have com-
pleted suicide.

3 Dataset

We consider the benchmark CEASE-v2.0 dataset2

(Ghosh et al., 2022) which is a fine-grained emotion
annotated suicide notes corpus containing 4,932
sentences from suicide notes, each annotated in-
dependently (without any contextual information)
with multi-label emotions from 15 fine-grained
emotion classes.

2Dataset sourced from: https://www.iitp.ac.in/
~ai-nlp-ml/resources.html

3.1 Personality traits annotation

Three annotators3 sufficiently acquainted with la-
beling tasks and knowing the concepts of person-
ality profile identification annotated each suicide
note. For assistance in understanding the annota-
tion task, the annotators were provided with am-
ple instances for each personality class from the
highly popular Myers Briggs Personality Type Test
Dataset (MBTI dataset). The annotation task is per-
formed across four dichotomies: I or E, N or S, F
or T and J or P. For a suicide note, annotators cat-
egorised a personality trait as Unclear (U) if they
could not evaluate the correct class owing to a lack
of relevant/sufficient information. The final labels
were obtained through a majority voting approach
on the labels assigned by three annotators.

Traits Distribution κ

I-E I: 285, E: 71 0.58
N-S N: 90, S: 268 0.63
F-T F: 238, T: 119 0.66
J-P J: 145, P: 214 0.58

Table 3: Data distribution over various personality traits.

The distribution of annotated suicide notes over
the various personality trait classes is shown in
Table 3. As multiple raters are involved in the an-
notation process, we employ the Fleiss-Kappa (κ)
(Spitzer et al., 1967) measure to compute the agree-
ment among the annotators. We obtain an average
Kappa agreement of 0.61 over the four personal-
ity dichotomies, indicating substantial agreement
among the annotators. The score also indicates the
difficulty of perceiving and synthesizing clinical
ideas and labeling such tasks. The annotators rela-
tively faced more difficulty in marking with labels
I-E and J-P than N-S and J-P, which are also re-
flected in the attained κ scores. In both the MBTI
and our annotated dataset, we observe that certain
classes such as Introversion and Sensing are over-
represented while Extroversion and Intuition are
relatively under-represented.

4 Methodology

Here, we discuss the proposed EMotion-assisted
deep neural framework for PERSONAlity Subtyp-
ing (EM-PERSONA). The overall architecture is
illustrated in Fig. 1.

3all doctoral researchers, one from the computer science
discipline, two from the computational linguistics discipline
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Figure 1: Architecture of the EMotion-assisted deep neural framework for PERSONAlity Subtyping.

4.1 Task Definition

Given a suicide note (N) with each sentence
annotated with an emotion class4, classify the
author of the note into one of the two cate-
gories for each of the following personality di-
chotomies: (I/E), (N/S), (F/T), (J/P). Let Nm

n =
(sm1 , s

m
2 , .., s

m
n ) denote a suicide note with n sen-

tences (s) and (em1 , e
m
2 , ..., e

m
n ) represents the cor-

responding sentence-level emotion (e) labels in the
mth note. The objective is to maximise the value
of the following function:

argmax
θ

(Πmi=0P (y
i
I−E , y

i
N−S , y

i
F−T , y

i
J−P |

sin, s
i
n−1, ..., s

i
1; θ)) (1)

y: output labels, P : log likelihood function, and, θ:
model parameters to be optimized.

4.2 EMotion-assisted Deep Neural
Framework for PERSONAlity Subtyping
(EM-PERSONA)

The EM-PERSONA system takes a suicide note
documents as input and categorizes the author of
the note into four personality classes: I/E, N/S,
F/T and J/P. Each training instance comprises of
a suicide note document that is encoded using the
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) encoder into
a contextualized document representation (Ω). The
individual sentences of the same note are processed
in parallel by four convolutional and max pool lay-
ers (Conv Max Pool) of the region (k) size 1, 2,
3, and 4 and 50 filters, each of which generates
sentence-level feature representations (sri). We
use convolutional neural networks (CNN) as they

4For simplicity, we consider only the predominant emotion
(Emo1) from CEASE-v2.0.

are easier to parallelise, faster to train than recurrent
neural networks, and effective for short sentences
(Hu et al., 2018; Wang et al., 2021) (average sen-
tence length in the CEASE corpus is 15). Word
vectors, at the sentence level, are fetched from the
pre-trained GloVe (Pennington et al., 2014) embed-
ding.

To produce contextualized sentence representa-
tions (ϕi), we apply additive-attention (Bahdanau
et al., 2015) between the sentence representations
(sri) and the contextualized document representa-
tion (Ω). The attention-mechanism can be realized
through the following equations:

γ =W T
3 tanh(W1Ω+W2sr

c
i ) (2)

αi =
exp(γ(Ωsrci ))∑c
j=1 exp(γ(Ωsr

c
j))

(3)

ϕi =
c∑

t=1

αisr
c
i (4)

where W1, W2, W3 are the learnable weight
matrices, tanh is a non-linear function and c is the
sentence length in words.

The Conv + Max Pool outputs are also passed
through sentence-specific dense layers and corre-
sponding output layers with softmax activation to
generate emotion classes (EOi). The intermediate
emotion-aware sentence-specific dense representa-
tions are added (⊚) with the corresponding ϕi and
passed through a linear layer to produce abstract
emotion-aware sentence representations (ωi).

ωi = Dense(ϕi ⊚Densei(sri)) (5)

The emotion-aware sentence representations (ωi)
are concatenated (⊕) and passed through a bidi-
rectional gated recurrent unit (BiGRU) (Cho et al.,
2014) layer of 100 units to learn the contextual
information. We apply multi-head self-attention
(Vaswani et al., 2017) (self-attn) to attend to dif-
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ferent parts of the BiGRU output and produce an
contextualized emotion-aware document represen-
tation (δ), which is then pooled globally.

δ = BiGRU(ω1 ⊕ ω2 ⊕ ...⊕ ωn) (6)

∆ = Pooling(Trans. Enc.(δ)) (7)

The pre-trained BERT language model allows us
to produce general contextual representations while
dealing with a small supervised dataset, avoiding
the need to train all the parameters from the start.
We linearly concatenate Ω with the pooling layer
output, ∆, and pass to four task-specific dense
layers followed by the output dense layers with
softmax activation to get the output probability
pmt values over the four personality trait variables.

pmt = softmax(Wt(Denset(∆⊕ Ω)) + bt) (8)

W and b are learnable weight and bias matrices and
t represents the four personality subtyping tasks:
I-E, N-S, F-T and J-P.

where λ denotes the categorical cross-entropy
loss, t represents the four personality traits tasks. α
and β are the loss weights for the personality traits
(PT) detection tasks and emotion recognition tasks
(ER). We limit our experiments to the uniform task
weighting approach, i.e., αt and βt are both 1.

4.3 Computation of loss

The model is trained by summing the document-
level cross-entropy losses of the four personality
subtasks, as well as the cross-entropy losses for the
sentence-level emotion classification task.

Λ =

4∑

t=1

αt ∗ λPTt +

n∑

q=1

βq ∗ λERt (9)

Models F1 I-E F1 N-S F1 F-T F1 J-P

Single-task baselines

HAN 45.4 48.1 43.87 36.6
CNN+cLSTM 44.5 43 44.5 36.1

BERT 44.87 43 39.88 49.36
RoBERTa 44.46 39.88 42.69 50.58

Multitask baseline

MT-BERT 44.35 42.68 39.90 47.31
Proposed multitask approach

EM-PERSONA 47.44 51.79 49.02 54.00
Ablation Experiment

EM-PERSONA-Emo 45.53 50.27 46.96 51.40

Table 4: Scores from 10-fold cross-validation experi-
ments. Values in bold are the maximum scores attained.

5 Experiments and Results

In this section, we discuss the experiments per-
formed and the results and analysis.

5.1 Experimental Setup
We evaluate EM-PERSONA against five state-of-
the-art systems: Hierarchical Attention Networks
(HAN) (Yang et al., 2016), Convolutional Neu-
ral Network+Context Long Short Term Memory
(CNN+cLSTM) (Poria et al., 2017), BERT-Base
(Devlin et al., 2019), RoBERTa (Liu et al., 2019)
and MT-BERT (Peng et al., 2020). We perform 10-
fold cross-validation on the personality annotated
CEASE-v2.0 dataset and consider the macro-F1
metric to evaluate our approach against multiple
baselines, as class imbalance problem persists in
the dataset. We discuss the details of the baselines
and the hyperparameters for our experiments in
Sections A.1 and A.2 of the Appendix.

6 Results and Discussion

Table 4 shows that the proposed EM-PERSONA
system considerably outperforms all baseline sys-
tems, with improvements of 2.04, 3.69, 4.52, and
3.42 points over the best performing single-task sys-
tems on the four personality subtasks, respectively.
The low F1 scores on the J-P trait over the HAN
and CNN+cLSTM single-task baselines align with
past research (Lima and de Castro, 2019; Yamada
et al., 2019) where predictions on J/P dichotomy
consistently underperforms compared to the other
dichotomies. This is not the case for the language
models, BERT and RoBERTa and the multitask
systems (MT-BERT and EM-PERSONA), which
produces comparable scores across all dichotomies,
showing the effectiveness of transformer-based sys-
tems and also depicting that the correlations among
the various personality traits can be effectively ex-
ploited when all the tasks are learned jointly. Com-
mendable performance by the EM-PERSONA ap-
proach indicates that emotion information plays a
crucial role in perceiving the personality traits of an
individual through textual content-based analysis.

Ablation study: To test the impact of the
emotion-assisting setup, we remove the emotion-
specific dense layers in EM-PERSONA and see a
notable drop in scores across all the personality
subtasks (shown in Table 4).

Qualitative Analysis: The first example in Ta-
ble 55 shows the effectiveness of learning the vari-

5Reader caution is suggested since the test cases given are
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Category Note Excerpts Actual MT-BERT EM-PERSONA
After many hours of thought and meditation, I have made a decision that should E E E

BL & PP: not be an example to anyone else ... Please tell my story on every radio and S S S
FC television station and in every newspaper and magazine ... to those of you who F F F

are shallow the events of this morning will be that story ... <NAME>, love you P P P
.... If we had a problem it is because I loved her so much. ... we came to the under- I E I

BL: PC standing that for now we were not right for each other ... Unlike what has been S S S
PP: FC written in the press, <NAME> and I had a great relationship for most of our lives F F F

together ... most of it ... is totally made up. J P J
You have always been my soul mate and I want you to love life and know I am al- E I E

BL: IC ways with you. ... your characteristic is that of a true angel and the definition of N S S
PP: PC god’s love! This was the supreme Almighty’s plan not mine! Look after <NAME> T F F

and <NAME> for me they are my boys you are rich. ... P J P
Dear Mum, I am really sorry that I did this. Do not you ever think it was your fault. I E E

BL & PP: ... I love you so much and I could not ask for a better mum. Thank you for caring S S S
PC and feeding and loving me for 14 years. ... my heart cannot take this pain . I am F T F

going to miss you so much. ... I will be waiting at heaven’s gates for you. ... J P P

Table 5: Sample predictions by the MT-BERT and EM-PERSONA systems over various categories are shown here.
BL: baseline MT-BERT, PP: proposed EM-PERSONA, PC: partially correct, FC: fully correct, IC: fully incorrect. I:
Introversion, E: Extraversion, N: Intuition, S: Sensing, T: Thinking: F: Feeling, J: Judging, P: Perceiving.

ous personality tasks jointly as both the multitask-
ing systems, MT-BERT and EM-PERSONA cor-
rectly classified all the traits. In the second exam-
ple, the EM-PERSONA system uses the emotion
information in the note to classify all the traits cor-
rectly, unlike the MT-BERT system, which could
only classify two personality traits correctly.

Error Analysis: The last two examples in Ta-
ble 5 show some sample predictions from the
MT-BERT baseline system and our proposed EM-
PERSONA system where the models fail to classify
the output classes correctly. The relevance of know-
ing emotion information while attempting to iden-
tify various personality traits can be realized from
the observations in the third example. Here, we
notice that, unlike the MT-BERT system that fails
to identify a single personality trait correctly, the
EM-PERSONA system makes correct predictions
on two of the four personality traits. Rigorous anal-
ysis of instances where both the multitask systems
found difficulty giving correct predictions (as in ex-
ample 4) indicates that the models have a relatively
more challenging time differentiating between I-E
and J-P than N-S and F-T.

Test for Significance: We conducted the exper-
iments five times and conducted a student’s t-test
with a 5% significance level to illustrate that the
scores obtained by the proposed system have not
happened by chance. We obtain the p-values of
0.039, 0.041, 0.013, and 0.009 compared with the
best-performing baselines for each task, indicating
that the obtained scores are statistically significant.

from genuine suicide notes and maybe deemed sensitive.

7 Conclusion

Our study focuses on artificial intelligence’s assis-
tive role, emphasising that cognitive technology is
designed to enhance human intelligence rather than
replace it. The proposed method is developed to
serve practitioners (computer-aided diagnosis and
learning) and individuals (self-monitoring) in their
combined effort toward low-profile first-hand eval-
uation of their personalities. The findings of this
study imply that (1) present state-of-the-art meth-
ods, both conversational and document encoding
methods in general, fail to comprehend personality
information in suicide notes to a substantial ex-
tent, (2) to improve overall system performance
at the document level (such as depression, per-
ceived burdensomeness, and thwarted belonging-
ness), sentence-level information (such as temporal
orientation, sentiment, and emotion) can be incor-
porated into document representations produced by
existing transformer architectures, and, (3). large
personality traits annotated balanced corpora are re-
quired to obtain solid findings, and the introduced
resource can facilitate related studies. Identifying
key subgroups of people with suicidal inclinations
will help us better understand risk factors and ther-
apies based on subtypes.

In future work, we want to address the two major
limitations of our study. First, personality traits are
not so simple that they can be squeezed into fixed
binary categories across four dimensions, as exam-
ined in this study. Second, the short context length
problem may be addressed by testing with much
bigger datasets than the one used in this work.
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A Appendix

A.1 Baselines
The following baseline methods are considered for
the comprehensive evaluation of our proposed.

• Hierarchical Attention Network (HAN) (Yang
et al., 2016): The attention mechanism in
HAN takes into consideration the hierarchi-
cal structure of texts and identifies the most
relevant words in a sentence and most of rel-
evant sentences in a document while taking
contextual information into account.

• CNN+cLSTM (Poria et al., 2017): A CNN
is used to extract textual characteristics from
utterances, after which a cLSTM is used to
learn contextual information.

• BERT (Devlin et al., 2019): We experiment
with the base version of the state-of-the-art
BERT language model by developing four
single-task binary BERT classifiers (one for
each personality trait variable).

• RoBERTa (Liu et al., 2019): This is an op-
timized version of BERT trained with more
computing power and data than BERT and is
known to outperform BERT in many down-
stream tasks. Similar to BERT, we develop
four single-task RoBERTa classifiers.

• MT-BERT (Peng et al., 2020): We build a
multitask (MT) variant of BERT based on the
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architecture proposed by Peng et al. (Peng
et al., 2020) for our four personality subtypes.

A.2 Experimental Setting
We set the sequence length as 15 and the
context length as 13 as the average sentence
length and context length in the CEASE-v2.0
dataset. The experiments are run on an NVIDIA
GeForce RTX 2080 Ti GPU. We experiment with
the base version of BERT and RoBERTa im-
ported from the Tensorflow Hub (https://www.
tensorflow.org/hub) library. For maximum
utilization of the GPU and considering the small
size of the dataset, we run the MT-BERT and EM-
PERSONA systems with a batch size of 2. Adam
optimizer (Kingma and Ba, 2015) is used to train
EM-PERSONA by minimizing the cross-entropy
losses. Through grid search, we set the learning
rates as 3e-5 and 2e-5 for the MT-BERT and EM-
PERSONA systems respectively6. We observe em-
pirically that setting higher epochs causes the mod-
els to overfit; hence we set the epochs as 3. We
use ReLU activation on all dense layers (except
the output dense) followed by a dropout (Srivas-
tava et al., 2014) of 25% to prevent overfitting.
We employ five self-attention heads for the self-
attention layer, embedding dimensions = 200 and
feed-forward dimensions = 400. Each task-specific
dense layer has 100 neurons, whereas intermediate
dense layers contain 200 neurons. To account for
the non-determinism of TensorFlow GPU opera-
tions, we present F1 scores averaged across five
10-fold cross-validation runs.

6we experimented with epochs as 4, 6, and 8 and learning
rate as 2e-5, 3e-5.
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Abstract
Templated answers are used extensively in cus-
tomer support scenarios, providing an efficient
way to cover a plethora of topics, with an easily
maintainable collection of templates. However,
the number of templates is often too high for an
agent to manually search. Automatically sug-
gesting the correct template for a given ques-
tion can thus improve the service efficiency,
reducing costs and leading to a better customer
satisfaction. In this work, we propose a dense
retrieval framework for the customer support
scenario, adapting a standard in-batch nega-
tives technique to support unpaired sampling
of queries and templates. We also propose a
novel loss that extends the typical query-centric
similarity, exploiting other similarity relations
in the training data. Experiments show that
our approach achieves considerable improve-
ments, in terms of performance and training
speed, over more standard dense retrieval meth-
ods. This includes methods such as DPR, and
also ablated versions of the proposed approach.

1 Introduction

A very common practice to make customer support
more efficient is the use of templates for replies.
The templates of replies are designed by customer
support administrators to systematise the reply to
frequent requests. Then, given a customer’s request,
an agent can pick a response from within a collec-
tion of predefined templates, this way saving time
when replying to repetitive questions. Besides im-
proving the throughput of human agents, the use of
templates also assures uniformity in the handling of
different customers, as requests with the same un-
derlying problem should be handled with the same
type of reply. However, customer support centers
can have hundreds of templates, and finding the
best template for a question is not an easy task, par-
ticularly for unexperienced agents. Automatically

∗This work was developed at Cleverly and Zendesk, under
the context of Tiago Mesquita’s Master of Science (M.Sc.)
Thesis at IST, University of Lisbon.

q0

q0

q1q1

q2

q2

t0

t1

t2

(a) query-template

q0 q0

q1

q1

q2

q2

t0

t1

t2

(b) query-template, query-
query and template-template

Figure 1: Illustration of 6 query representations
{q0, q0, q1, q1, q2, q2}, together with respective template
representations {t0, t1, t2} with ti answering qi, after
enforcing different similarity relations. The distances
between points represent dissimilarity, and dashed lines
and circumferences represent similarity relations, whilst
the dotted lines represent dissimilarity relations.

sorting and suggesting customer support templates
(Bonatti et al., 2016; Yang and Kwok, 2012; Snei-
ders et al., 2016; Rei, 2019) can facilitate agent’s
work, reducing reply times, accelerating the learn-
ing curve of new agents, helping agents to focus on
more added valued tasks, and overall providing a
better customer support at reduced costs.

The recent advances in large pre-trained lan-
guage models (Devlin et al., 2019; Vaswani
et al., 2017), together with their successful use
in question-answering (Karpukhin et al., 2020; Qu
et al., 2021) and information retrieval (Xiong et al.,
2021; Zhan et al., 2020, 2021; Yates et al., 2021),
motivate the use of dense retrieval for template
selection. Dense retrieval can be used to rank in-
stances from the template collection, facilitating
the selection of the correct template. Still, template
ranking has specific characteristics when compared
with more common retrieval scenarios in the lit-
erature: i) we have a strict many-to-one relation
between queries and templates, in contrast to other
common retrieval tasks (Nguyen et al., 2016); ii)
the collection of templates is relatively small and
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generally in the order of hundreds, although also
dynamically updated over time; iii) the length of
the queries (emails with questions from customers)
tends to be relatively long.

Given real-time and computation constraints in
the template suggestion problem, we focus on bi-
encoder models (Yates et al., 2021), which at pre-
diction time only need to compute dense represen-
tations of queries and make fast comparisons with
pre-computed representations of template candi-
dates. We discard cross-encoder models that, de-
spite often achieving higher retrieval performance
(Yates et al., 2021), can have problems processing
long queries and/or documents, and cannot take
advantage of pre-computed template representa-
tions, involving higher computational costs that
scale with the number of template candidates, and
being often unsuitable for real-time applications.
Still, our contributions are model independent, be-
ing also applicable to cross-encoders. Specifically,
we make the following main research contributions:

• We compare different approaches in the task
of template retrieval in customer support;

• We propose a new in-batch sampling strat-
egy, that preserves the distributions of queries
and templates to better select the information
within batches, while exploring all possible
query-template pairs in a batch;

• We propose a new loss function that exploits
not only query-template similarity relations,
but also query-query and template-template
relations, yielding better representations for
retrieval (see Figure 1).

Experiments with real-world customer support
datasets show that both the in-batch sampling strat-
egy and the expanded loss lead to improvements,
in terms of template suggestion and training speed.

2 Related Work

Template retrieval for customer support has seen
limited research in recent times. Most previous
work has addressed the task as template classifi-
cation with simple machine learning approaches
(e.g., support vector machines or naïve Bayes) on
top of representations obtained from bags-of-words
(Bonatti et al., 2016; Yang and Kwok, 2012) or tai-
lored pattern matching (Sneiders et al., 2016). A
combination of retrieval and generative approaches

is explored by Rei (2019), but without taking ad-
vantage of modern Transformer-based pre-trained
language models. To the best of our knowledge,
public literature on the topic has not explored re-
cent advances in dense retrieval.

Most of the recent dense retrieval methods fol-
low a BERT-based dual-encoder architecture and
use a similarity function (e.g., cosine similarity) to
produce ranking scores (Yates et al., 2021). The
simplicity of the similarity function is crucial, al-
lowing efficient retrieval through recent develop-
ments in Approximate Nearest Neighbour (ANN)
search, such as FAISS (Johnson et al., 2019).
These methods enable search speeds comparable
with simpler sparse retrieval methods (e.g., BM25
(Robertson and Zaragoza, 2009)), whilst retaining
better performance in most scenarios. Given the
simplicity of dual-encoder architectures, most re-
search has focused on improving the training pro-
cedure, namely by careful selection of the query-
document pairs. For each query, the model should
maximize similarity with all related documents
(i.e., positives), whilst minimizing it for all unre-
lated documents (i.e., negatives). Most approaches
have focused on the problem of selecting negative
documents, usually falling under one of two cate-
gories: 1) efficient batching techniques, or 2) tech-
niques that prioritize batch generation but generally
sacrifice training efficiency.

In the first category, methods aim to maxi-
mize the amount of negatives available within the
batches. The most efficient way to achieve this
is by sharing negatives between all queries in the
batch, an approach known as in-batch negatives
(Karpukhin et al., 2020). More recent studies
have proposed sharing negatives between multi-
ple GPUs, allowing for massive batch sizes under
parallel model training (Qu et al., 2021).

Although the previous techniques maximize the
number of negatives seen during training, most
of the instances are easily distinguishable, provid-
ing weak contributions to the loss function (i.e.,
easy negatives). Studies under the second cate-
gory focus on the careful selection of negatives per
query, looking for those that are useful for learn-
ing (i.e., hard negatives). The earliest approaches
leveraged other retrieval methods to pool hard neg-
atives, namely BM25 (Robertson and Zaragoza,
2009), picking highly ranked although irrelevant
documents (Karpukhin et al., 2020; Xiong et al.,
2021). Despite being effective at picking static
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hard negatives, these approaches fail to adapt, as
the model learns to rank the instances accordingly.
ANCE (Xiong et al., 2021) addresses this issue
by using the model itself to pool hard negative ex-
amples, dynamically adjusting the selection as the
training progresses. In practice, dynamically gener-
ating and indexing embeddings for large document
collections is costly, requiring separate GPUs to
periodically maintain and refresh the index with
prior checkpoints, whilst training in parallel. LTRe
(Zhan et al., 2020) and later ADORE (Zhan et al.,
2021) further refined these ideas, by freezing the
weights of the document encoder and eliminating
the need to refresh the index.

Although most approaches generally focus on a
single category, some have tried to leverage tech-
niques from both. DPR (Karpukhin et al., 2020)
was one of the first studies to explore this idea, com-
bining randomly pooled in-batch negatives with
BM25 hard-negatives per query. Recently, STAR
(Zhan et al., 2021) took the idea even further, by
using static hard negatives pooled from the pre-
trained model, but sharing them between all queries
in the batch, similarly to in-batch negatives. Results
showed that the combination provides an effective
tool for stabilizing the biases introduced by the use
of static negatives. Our technique also combines
ideas from both categories, adapting in-batch nega-
tives to the specific scenario of template retrieval,
and performing hard negative sampling from all
the in-batch negative examples.

Most previous studies on dense retrieval have
generally also considered loss functions that en-
force query-centric similarity relations, as these are
explicitly related to the retrieval task. However,
as shown in PAIR (Ren et al., 2021), models may
benefit from exploring passage-centric similarity
relations, potentially improving the representations.
More recently, Li et al. (2021) proposed DANCE,
which showed improvements by considering a loss
function that combines query retrieval and docu-
ment retrieval tasks. In our template retrieval sce-
nario, these ideas are further explored, by taking
into account all four possible relations between
pairs of queries and templates.

3 Simple Dense Template Retrieval

We formally define the problem of template re-
trieval as follows: given a query q, the model must
retrieve, from a collection of templates, the tem-
plate t that better answers the query.

3.1 Architecture
Let us consider the commonly used dual-encoder
architecture, as presented in DPR (Karpukhin et al.,
2020), in which two independent encoders EQ(·)
and ET (·) encode a query q and a template t into
d-dimensional vectors, with different representa-
tion spaces. For ranking the templates, the cosine
similarity between a query q and a template t can
be computed from the respective representations:

s(q, t) = cosine-sim (EQ(q), ET (t)) . (1)

3.2 Loss Function
The loss function for training the encoders should
maximize the similarity between positive query-
template pairs s(q, t+) and minimize the similarity
between negative query-template pairs s(q, t−). A
commonly used loss term for retrieval tasks is the
negative log likelihood, comparing the positive tem-
plate t+ against a set of negative templates T −:

Lq(q, t+, T −) = − log

(
e
s(q,t+)

es(q,t
+)+

∑
t−∈T − es(q,t

−)

)
. (2)

The final loss is then obtained by averaging the
per-query loss from (2) over all queries (and tem-
plate lists) considered in a batch from the dataset.

3.3 In-batch Negatives
Selecting good negative examples for training
dense retrievers is still an open problem. Simple in-
batch negatives, as described in DPR (Karpukhin
et al., 2020), makes optimal use of the batch space,
by sampling query-passage positive pairs and con-
sidering, for each query, all other passages within
the batch as negatives. However, hidden in its sim-
plicity lie two important assumptions: 1) the in-
batch negatives are in fact negative passages; 2) the
shared negatives provide a good estimation of in-
stances within the full dataset. The weight of both
assumptions is small for large corpora, where each
document has a limited amount of related queries
and vice-versa, making false in-batch negatives un-
likely. Still, for smaller corpora such as those from
customer support with templates, the assumptions
can be problematic, requiring careful selection of
the training pairs.

4 Improved Dense Template Retrieval

To improve on the method outlined in the previous
section, we propose two innovative contributions.
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The first relates to the in-batch sampling strategy,
whilst the second refers to an expanded loss func-
tion that exploits different similarity relations for
queries and templates.

4.1 Batch Generation

Template retrieval relates queries and templates in
a strictly many-to-one correspondence, at the same
time involving a small template collection. More-
over, since templates see different use, the number
of queries per template varies considerably. These
characteristics actively challenge the assumptions
of vanilla in-batch negatives. In order to guarantee
that the in-batch negatives are in fact negative, the
sampled pairs must have different templates. This
condition influences the distribution of training ex-
amples, penalizing frequently used templates and
resulting in a distribution of negatives within the
batch that does not follow the real data distribution.

4.1.1 Labeled In-batch Negatives
Given that each query has a single related tem-
plate, labelling each text (i.e., query or template)
in a training batch with the corresponding template
identifier provides sufficient information to create
all valid positive and negative pairs. More specif-
ically, let ti be the i-th template and qi,j be the
j-th query from the sub-collection of queries that
is answered by ti. Given a batch of NQ queries
and NT templates, with each text labeled with the
corresponding template index i, we consider for
each query qi,j the template ti as positive, and all
other templates tn within the batch, with n ̸= i, as
negatives. This technique, wich we refer to as la-
beled in-batch negatives, not only prevents in-batch
false negatives, but also eliminates the paired sam-
pling restrictions (i.e., the training examples do not
have to be explicit query-template pairs) imposed
by vanilla in-batch negatives.

4.1.2 A Semi-independent Query-Template
Sampling Strategy

As a general rule, we assume that training instances
should follow 2 principles: 1) uniform sampling of
positive pairs, since these offer explicitly labeled
relevance information that should be uniformly ex-
plored; 2) sampling negatives according to a distri-
bution that is consistent with the corpus. Vanilla
in-batch negatives fails to follow both principles,
as the distribution of negatives within the batch
follows the distribution of templates available in
the positive pairs, and not the real one. With la-

beled in-batch negatives, on the other hand, posi-
tives and negatives are not directly tied, enabling
the consideration of both principles. To respect
them, whilst maximizing the utility of the instances
within the batch, we devised a semi-independent
query-template sampling strategy, according to Al-
gorithm 1 (and illustration in Figure 2).

Algorithm 1 Semi-independent query-template
sampling procedure
Data: Let EQ and ET contain training queries and
templates
Result: batch B, with b queries and b templates

1: Get set T with b templates uniformly selected
from ET

2: Get set QT ∈ EQ with the queries answered
by T

3: Get set Q, by randomly sampling b queries
from QT

4: Compose B, with the queries and templates in
Q and T

Note that unlike standard in-batch negatives,
adapting this algorithm to support batches with
a different number of templates and queries (i.e.,
batches of bq queries and bt templates, with bq ̸=
bt ̸= b) is trivial. Still, we consider bq = bt to be
the most natural way to explore the information
within a batch, as each query has a single posi-
tive template. This also mirrors the setup from the
standard in-batch negatives approach.

4.2 Expanded Loss Function
We also propose a novel loss function that is ex-
panded at the batch level, considering interac-
tions not only between query-template pairs, but
also query-query, template-template, and template-
query pairs (see Figure 1). For that, let us first
notice that each text in a batch (which can be ei-
ther from a query or a template) is given a label
corresponding to the correct template. The loss
function for each batch can be defined with basis
on the following generic loss term that takes two
sets (A and B) of labeled texts (that can be queries
or templates) from a training batch:

L(A,B) =

− 1

|A|
∑

i∈I,ai∈Ai

1

|Bi|
∑

bi∈Bi
log


 es(ai, bi)

es(ai, bi) +
∑

j ̸=i,bj∈Bj
es(ai, bj)


 ,

(3)

where I is the set of all labels in the batch, while
Ai is the set of texts in A that have label i (i.e.,
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Figure 2: An illustrative case for the application of the semi-independent query-template sampling procedure
(Algorithm 1) on an example training dataset. The illustrated collection contains templates ET and queries EQ,
where each query is represented above the template that answers it. Each step of the algorithm is represented with
numbers and rectangles indicating the corresponding sets. The procedure results in the creation of batch B, and it is
followed by the application of the labelled in-batch negatives technique, yielding the matrix of query-template pairs
represented on the right. In the matrix, the positive pairs are shown in green, and the negative ones in red.

those that correspond to template i), and Bi is the
set of texts in B that have label i.

4.2.1 Combining Different Loss Terms
The final loss of a batch is given by a weighted sum
of four terms, each of them computed through (3):

Lbatch = αL(Q, T ) + β L(Q,Q) + γ L(T , T ) + θL(T ,Q), (4)

where α, β, γ, and θ are adjustable hyper-
parameters, and where the different loss terms cor-
respond to different relations as follows:

1. L(Q, T ); A = Q is the set of all queries in
a batch and B = T is the set of all templates.
This term corresponds to averaging the loss of
each query q ∈ Q, using the negative log like-
lihood of the positive template (2) combined
with each possible negative template in the
training batch;

2. L(T , T ); A = T and B = T both corre-
spond to the set of all templates in the batch.
This term enforces the dissimilarity between
distinct templates;

3. L(Q,Q); A = Q and B = Q both corre-
spond to the set of all queries in the batch.
This term enforces the dissimilarity between
query representations from different tem-
plates, and promotes the similarity of repre-
sentations for queries from the same template;

4. L(T ,Q); A = T is the set of all templates in
a batch and B = Q is the set of all queries in
the batch. This term is the transpose of the
first one, having a similar effect but acting on
each template instead of each query;

4.2.2 In-batch Top-k Negatives
Section 2 discussed recent methods that use the
model’s own representations to guide the selec-
tion of hard-negatives (Xiong et al., 2021; Zhan
et al., 2020, 2021). Although potentially effec-
tive, these techniques are computationally more
demanding than the ones we propose, missing our
efficiency goals. Still, inspired by these approaches,
we consider a cheaper alternative of in-batch top-k
negatives, that instead of retrieving the top-k neg-
atives over the entire corpus, retrieves them from
within the batch. By reusing the representations
within a batch, this approach is much cheaper while
also guaranteeing that the representations are syn-
chronous. Unlike ANCE (Xiong et al., 2021) and
the other methods, the value of selecting the in-
batch top-k negatives is not on the selected hard
negatives, since they are already present in the
batch, but in discarding some instances. This de-
lays over-fitting on simpler negatives, allowing the
model to learn the harder ones.

5 Experiments

This section describes the experimental validation
of the proposed contributions.
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dataset
#queries

#t
P80%#tok

lang
train val test q t

CS-1 17858 3127 3918 445 113 396 en
CS-2 1092 187 650 82 111 164 pt

Table 1: Statistics for the two datasets. #t indicates the
number of templates, and #tok indicates the text length
in terms of multilingual DistilBERTbase tokens.

5.1 Datasets and Metrics

We tested our approach on two private anonymized
real-world datasets of email customer support in-
teractions, in English and Portuguese.

The datasets are composed from a collection
of real customer support interactions over email,
where a human agent handpicked a template for
answering a given query. The queries are user sub-
mitted and do not follow any particular formatting
guidelines, ranging from typical emails (composed
by a greeting, a body of text and a sign-off), to
direct free-form questions. Templates of replies
have more structure, following typical email con-
ventions. Typically, these include trouble-shooting
steps, clarifying information, notifications of hand-
offs to other support agents/mediums, or a combi-
nation of these. The intents of the frequent requests
that are answered with templates include login is-
sues, password resets, after sale support, technical
support, clarifications for products or promotions,
complaints, recommendations, and identity verifi-
cation, among others.

We split both datasets into 3 partitions, namely
train, val, and test. The test split is composed of
the most recent customer interactions, simulating
the real temporal evaluation scenario, whilst the
train and val splits are composed of the remaining
examples on a 85/15 stratified split (see Table 1 for
a characterization of the datasets).

The CS-1 and CS-2 datasets consider two dif-
ferent types of real world conditions. CS-1 has a
relatively large size, and a large template collec-
tion, providing better training conditions and more
representative results. On the other hand, CS-2 has
a smaller, more specific, template collection, featur-
ing non-English data (i.e., questions and templates
in Portuguese) and fewer training examples.

5.1.1 Evaluation Metrics
We adopted the Recall@k (R@k) and Mean Recip-
rocal Rank (MRR) metrics for comparing models.

MRR calculates the averaged reciprocal rank of the
correct template, while R@k measures the ratio of
queries in which the correct template is within the
top-k. In particular, we track MRR@10 as a gen-
eral indicator of ranking performance, and R@3 for
matching the use-case of showing only the top-3
templates to agents.

Besides retrieval quality metrics, we also
recorded the number of epochs involved in model
fine-tuning, considering a early-stopping criterion
based on MRR@10 over a validation split.

5.2 Experimental Setup
We now describe the approaches under compari-
son. Notice that we focused our analysis on pre-
trained/fine-tuned multilingual models, envisioning
real world scenarios where clients operate with dif-
ferent domains and languages.

5.2.1 Unsupervised Baselines
As a sparse retrieval baseline we consider a tra-
ditional BM25 (Lin et al., 2021) approach. For
a dense retrieval baseline, we tested all multilin-
gual models in Sentence-Transformers (Reimers
and Gurevych, 2020), in a 0-shot manner, and
report results for the best: distiluse-base-
multilingual-cased-v1.

5.2.2 Fine-tuned Models
We tested a baseline approach based on ran-
domly selected negative samples, similar to DPR
(Karpukhin et al., 2020), as well as different ab-
lated versions of our improved dense retrieval
method. Both encoders on the dense retrievers (i.e.,
the query and template encoders) were initialized
with the parameters of the distiluse-base-
multilingual-cased-v1 model from the
Sentence-Transformers library (Reimers and
Gurevych, 2020), as this was the best model in
0-shot retrieval experiments.

In more detail, and besides the complete pro-
posed approach, we considered 5 other dense re-
trieval settings corresponding to the use of the
vanilla loss (L(Q, T )) together with different
mechanisms to construct the negative instances:

• Random negatives: randomly sample N neg-
ative templates for each query-template pair,
as in the random sampling scheme described
in DPR (Karpukhin et al., 2020);

• In-batch negq: sample B templates, weighed
by frequency of positive queries and without
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Methods
CS-1 CS-2

MRR@10 R@3 Epochs MRR@10 R@3 Epochs

Unsupervised Baselines
BM25 8.5 ± 0.0 10.1 ± 0.0 - 13.7 ± 0.0 16.6 ± 0.0 -
SBERT 0-shot 10.2 ± 0.0 12.0 ± 0.0 - 16.2 ± 0.0 20.2 ± 0.0 -

DPR (Karpukhin et al., 2020)
Random negatives 39.4 ± 0.2 45.0 ± 0.4 25.0 ± 1.9 63.5 ± 1.9 73.6 ± 1.6 15.2 ± 2.2

Sampling Ablation
In-batch negq 33.0 ± 0.8 37.9 ± 1.1 18.2 ± 6.0 61.6 ± 1.0 70.7 ± 1.2 20.2 ± 4.9
In-batch negt 38.0 ± 0.2 44.7 ± 0.4 22.2 ± 6.4 64.9 ± 1.6 75.0 ± 1.6 20.2 ± 6.4
Labeled in-batch negq 39.0 ± 0.6 45.2 ± 0.3 3.0 ± 0.7 63.2 ± 1.7 72.2 ± 1.0 10.5 ± 8.4
Labeled in-batch negt,q ‡41.1± 0.9 ‡46.9 ± 0.9 4.5 ± 1.1 †65.2 ± 1.6 †75.4 ± 1.2 5.8 ± 0.8

Proposed approach ‡42.2 ±0.3 ‡48.2 ± 0.3 3.8 ± 0.8 ‡65.4 ± 0.8 †75.7 ± 1.0 8.0 ± 1.6

Table 2: Results for both datasets, including mean and variance from 4 runs per model with different seeds. † and ‡

indicate significant improvements over the random negatives baseline, with p-values of 0.05 and 0.01, respectively,
using the permutation test from Bassani (2022).

repetition, and a positive query for each of the
sampled templates;

• In-batch negt: sample B templates, uni-
formly and without repetition, along with a
positive query for each;

• Labeled in-batch negq: sample B queries,
uniformly and without repetition, along with
each respective template. If this produces re-
peated templates, we swap them with uniform
samples not present in the batch;

• Labeled in-batch negt,q: corresponds to the
complete version of the proposed sampling
technique, as described in Section 4;

On what regards the hyper-parameters consid-
ered for model training, we used a batch-size
B = 32 in all experiments with in-batch nega-
tives, and B = 8 for the experiment with random
negatives, with N = 4 negatives for each instance
(i.e., sharing the negatives can improve space effi-
ciency, and the choice of batch-size depended on
the maximum capacity of the GPU used for the ex-
periments, namely a NVIDIA Tesla T4 with 16GB
of RAM). We used linear learning-rate scheduling
with 500 warmup steps, and the ADAM optimizer
(Kingma and Ba, 2015) with a learning-rate of 3e-5.
We considered a maximum 30 epochs for the linear
scheduler, stopping earlier if MRR@10 over the
validation set stopped improving.

5.3 Experimental Results

Table 2 presents the obtained results, from which
we can infer the following main conclusions:

1. The proposed sampling technique not only
significantly outperforms all the alternative
methods in both datasets, but it does so with
considerably less training epochs. This result
confirms the intuition that the common sam-
pling strategies for IR fail to correctly model
the one-to-many relation between user ques-
tions and templates.

2. The proposed loss, that also considers
template-template and query-query similarity
relations, improves the model further, yielding
significant gains in terms of both the average
performance and the corresponding variance.
This result suggests that exploring semantic
relations beyond the main ranking task is bene-
ficial, likely being a result of learning more ro-
bust representations with better generalization
capabilities, along with more stable training.

3. The poor performance of BM25 exposes the
difficulty of the template retrieval task. Since
each template covers a range of queries, the
text is generally unspecific, resulting in re-
duced term overlap between templates and
queries. Trained dense retrievers, on the other
hand, were able to achieve good performance,
showing that semantic relations are effectively
superior to simple term matching.
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(LEFT) and templates (RIGHT) on CS-1. The template identifiers associated to queries and templates are ordered
by the real distribution and we plot the mean over bins of 10 identifiers, to reduce the number of data points and
generate smoother lines that are easier to interpret.

4. The good results of the proposed techniques
on CS-2 further validate our ideas, by proving
the robustness to training conditions involv-
ing less data. It also validates the applicabil-
ity of the proposed architecture in other lan-
guages. This is expected, as the approach sim-
ply refines the representation space of the base
model. Given the multilingual pre-training,
the approach is effectively able to transfer mul-
tilingual knowledge.

5.3.1 Analysis on the Sampling Techniques
The experiments reported in Table 2 also compared
the different sampling techniques. To provide bet-
ter insights over the practical differences between
each method, we plotted the distributions of tem-
plates and queries, throughout training, for each
technique. In order to do this, we recorded the
template identifiers of the sampled queries and tem-
plates, at each step, for a total of 10 epochs in CS-1.
The result is presented in Figure 3, which confirms
the intuitions behind the design of the proposed
sampling technique.

As expected, with vanilla in-batch negatives,
queries and templates follow the same distribu-
tions, as they are sampled in pairs. This results
in techniques that are only capable of optimizing
the distribution of templates (i.e., in-batch negt)
or queries (in-batch negq), but not both, result-
ing in sub-optimal performance. Labeled in-batch
negatives are effectively able to decouple both dis-
tributions, fact that is key for providing good ap-
proximations for both templates and queries.

Labeled in-batch negq provides a good estima-
tion over the distribution of queries, although the

observed distribution of templates is slightly bi-
ased towards the most frequent. This results from
the query-guided sampling technique, which can
explain the slightly worse performance.

Labeled in-batch negt,q, on the other hand, is
able to provide a uniform distribution of templates,
whilst maintaining a distribution of queries very
close to the real one. This provides, by far, the best
global fit of both the distributions, resulting in the
best overall performance.

The random negatives strategy, despite select-
ing templates on a per-query basis, is still slightly
biased towards the most frequent templates, a result
of the positive examples still following the query
distribution. This, coupled with the reduced num-
ber of negatives, are likely the main factors for the
lower performance.

Overall, the results seem to imply a correlation
between the quality of the sampling techniques as
an estimator of the involved distributions, and the
observed retrieval performance of the strategy.

5.3.2 Analysis on the Loss Terms
The proposed loss function combines different
terms, each enforcing a different similarity rela-
tion. In order to assess the contribution of each
component, along with their interaction, we tested
5 different combinations of terms:

• L1 = L(Q, T ): control experiment, consider-
ing the negative log likelihood over the posi-
tive template;

• L2T = L(Q, T ) + L(T , T ): considers equal
contribution of template-template and query-
template relations;
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Loss
W/o top-k neg W/ top-k neg

MRR@10 R@3 MRR R@3

L1 41.1 ± 0.9 46.9 ± 0.9 40.5 ± 1.4 47.1 ± 1.3
L2T 39.7 ± 0.9 45.8 ± 0.7 40.4 ± 0.5 46.8 ± 1.1
L2Q ‡41.7 ± 0.5 ‡47.7 ± 1.0 ‡41.8 ± 0.3 ‡47.9 ± 0.4
L3 40.9 ± 0.6 46.8 ± 0.6 ∗42.2 ± 0.3 ∗48.2 ± 0.3
L4 41.4 ± 0.8 47.6 ± 1.3 41.5 ± 0.3 ∗48.3 ± 0.5

Table 3: Ablation study on the terms of the loss and
the in-batch top-k sampling, on the CS-1 dataset, in-
cluding mean and variance intervals from 4 runs per
model with different seeds. ‡ and ∗ indicate significant
improvements with p-values of 0.01 and 0.001, respec-
tively, over the control experiment (L1, without top-k),
according to the permutation test from Bassani (2022).

• L2Q = L(Q, T ) + L(Q,Q): considers equal
contribution of query-template and query-
query relations;

• L3 = L(Q, T ) + 0.5(L(Q,Q) + L(T , T )):
combines the query-template relations with
equally contributing template-template and
query-query relations;

For each of the considered losses, we also test
the impact of using in-batch top-k negatives . We
selected values for k experimentally, resulting in
k = 4 for CS-1 and k = 12 for CS-2, with values
below often leading to less stable training, and
values above decreasing model performance. The
results are presented in Table 3.

In agreement to what was reported in PAIR (Ren
et al., 2021), the loss that combines query-template
and template-template relations (L2T ) is the one
with lowest performance, suggesting some mis-
alignment with the retrieval task. Combining query-
template and query-query relations (L2Q) improves
performance with respect to the control loss, and
the combination of both (L3) improves it further,
outperforming all others significantly, and suggest-
ing complementarity of the two terms. It is im-
portant to note that the proposed loss function is
effective without carefully tuning the contributions
of each term (i.e., we only considered the configu-
rations mentioned in Table 3), though tuning can
perhaps improve performance even further.

The in-batch top-k sampling strategy improved
performance and variance consistently, except for
the simple query-template loss. This result suggests
that the integration of the top-k sampling technique
in the proposed loss function is beneficial, likely by
regulating the contribution of each loss component.

6 Conclusions

This paper discussed challenges associated with re-
trieving templates for answering customer support
questions, proposing a dense retrieval framework to
address the task. This framework features innova-
tive contributions in terms of (a) extending in-batch
negatives to support unpaired sampling of queries
and templates, and (b) a novel loss function that
considers more similarity relations from the train-
ing data within each batch. Experiments on two
different datasets of customer support interactions
attest to the improvements brought forward by the
proposed ideas. For future work, we plan to adapt
and test the proposed techniques in other tasks that
involve unbalanced corpora and large texts, such as
general FAQ retrieval or question answering (Clark
et al., 2020; De Bruyn et al., 2021).
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Abstract

Hierarchical Text Classification (HTC), which
aims to predict text labels organized in hier-
archical space, is a significant task lacking in
investigation in natural language processing.
Existing methods usually encode the entire hier-
archical structure and fail to construct a robust
label-dependent model, making it hard to make
accurate predictions on sparse lower-level la-
bels and achieving low Macro-F1. In this paper,
we explore the level dependency and path de-
pendency of the label hierarchy in a generative
way for building the knowledge of upper-level
labels of current path into lower-level ones, and
thus propose a novel PAAM-HiA-T5 model for
HTC: a hierarchy-aware T5 model with path-
adaptive attention mechanism. Specifically, we
generate a multi-level sequential label structure
to exploit hierarchical dependency across differ-
ent levels with Breadth-First Search (BFS) and
T5 model. To further improve label dependency
prediction within each path, we then propose
an original path-adaptive attention mechanism
(PAAM) to lead the model to adaptively focus
on the path where the currently generated la-
bel is located, shielding the noise from other
paths. Comprehensive experiments on three
benchmark datasets show that PAAM-HiA-T5
greatly outperforms all state-of-the-art HTC
approaches especially in Macro-F1.

1 Introduction

Hierarchical text classification (HTC), where text
labels are predicted within a hierarchical structure,
is a challenging task that has not yet received due
attention within the field of multi-label classifica-
tion. HTC methods have been extensively applied
in industry domains, e.g., news article classifica-
tion (Sandhaus, 2008), product classification in E-
commerce (Yu et al., 2018), bidding strategy in
paid search marketing (Agrawal et al., 2013).

*Contribution during internship at NetEase Inc.
†Corresponding Author
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Figure 1: (a): the static labeling process is uniform and
simultaneous for all labels in the label hierarchy. (b):
the dynamic labeling process where the lower-level la-
bels depend on the upper-level labels. (c): the dynamic
labeling process focuses on ancestor labels already gen-
erated on the current path.

In HTC tasks, labels at lower-level are inevitably
sparse due to the hierarchical structure. Many stud-
ies (Barbedo and Lopes, 2006; Xiao et al., 2007;
Johnson and Zhang, 2015) completely or partially
neglect such hierarchical structure and fail to ac-
curately predict those lower-level labels, achieving
low Macro-F1 score. Existing studies (Peng et al.,
2021; Wu et al., 2019) have proved that introduc-
ing structure information can boost the predictive
power on low-level labels and thus improve the
overall task performance. A number of studies
(Cesa-Bianchi et al., 2006; Shimura et al., 2018;
Wehrmann et al., 2018; Banerjee et al., 2019) pro-
pose to construct multi-level classifiers that are
trained independently and predicted sequentially,
where only local maximum is achieved and propa-
gation of error negatively impacts model prediction.
Some studies design end-to-end models that intro-
duce various strategies (such as Tree-LSTM/GCN
(Zhou et al., 2020), label semantics matching net-
work (Chen et al., 2021), graph-CNN (Peng et al.,
2018) and hierarchical fine-tuning based CNN
(Shimura et al., 2018)) to encode the overall hi-
erarchy information (as depicted in Figure 1 (a)),
where label dependency across different levels (as
depicted in Figure 1 (b)) is not captured in a more
principled way and unnecessary noises are intro-
duced. Such models tend to predict all labels simul-
taneously and independently with sigmoid function,
and they could cause serious label inconsistencies
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(One label is predicted positive but its ancestors
are not. For example, in Figure 1 (b), the “Foot-
ball” is predicted while the “Sports” is not.) and
require post-processing to rectify these contradic-
tions (Mao et al., 2019). Although one recent study
(Mao et al., 2019) develops label-dependent models
with reinforcement learning, it still fails to address
label dependency within each path (as depicted in
Figure 1 (c)) and fails to fully integrate labels and
text information.

This paper seeks to close the gap by proposing
the PAAM-HiA-T5. We are not only the first to cap-
ture lower-level label dependency on upper-level
ones with generation model, but also the first to ac-
curately explore the level dependency within each
path. In each step of prediction phase, our model
generates next label based on the text sequence and
labels previously generated on current path. As il-
lustrated in Figure 1(c), our model sequentially pre-
dicts “Features”, “News”, “Arts”, “Sports”, “Mu-
sic”, “Football” labels. In the process where label
“Football” is generated, our model pays more at-
tention on “News” and “Sports” labels on its own
path instead of “Features” and “Arts” labels on an-
other path. Therefore, our model is less likely to
cause label inconsistency. For example, when la-
bels “News” and “Sports” are known to the model,
it is easier to predict the label “Football” as Figure
1 (b) shows.

Our PAAM-HiA-T5 model follows a two-step
design.

Hierarchy-aware T5 (HiA-T5), a variant of
T5 that is fully aware of the level dependency in
a multi-level sequential generative manner. In-
spired by the idea that conventional classification
routines often follow the order that from coarse-
grained to fine-grained to predict labels, we firstly
use Breadth-First Search (BFS) to flatten hierarchi-
cal labels into multi-level sequential label structure,
transforming the hierarchy to sequence. T5 model
is applied to map the text sequence to label se-
quence, where the text sequence and upper-level
labels generated earlier are then integrated in order
to determine the next label.

Path-adaptive attention mechanism (PAAM),
a mechanism to exploit the label correlation within
each path and shield the noise from other paths.
Through the PAAM, the model can adaptively ob-
tain a more reasonable attention distribution be-
longing to the path where the currently generated
label is located. PAAM is implemented by means

of a regularization method.
This study makes the following major contribu-

tions:

• We propose a novel HiA-T5, a multi-level
sequential label generative model to exploit
label dependency across different levels. The
mapping relationship between text sequence
and label sequence is examined in each step
of prediction.

• We propose an original PAAM to lead the
model to adaptively focus on the path where
the currently generated label is located, shield-
ing the noise from other paths to further im-
prove prediction performance.

• Experiments on various datasets show that
our proposed PAAM-HiA-T5 achieves signif-
icantly and consistently better performance
than state-of-the-art models. Experimental
analysis shows that PAAM-HiA-T5 is es-
pecially benefical to those lower-level long-
tailed labels. And our model can obtain better
label consistency.

2 Related Work

Hierarchical text classification (HTC) is a critical
task with numerous applications (Qu et al., 2012;
Agrawal et al., 2013; Zhang et al., 2019; Peng et al.,
2016). By methods of hierarchical information
modeling, HTC approaches can be categorized into
flat, local and global approaches (Silla and Freitas,
2011).

Flat approaches (Hayete and Bienkowska, 2005;
Barbedo and Lopes, 2006; Xiao et al., 2007; John-
son and Zhang, 2015) completely or partially ig-
nore the label hierarchy and each label is inde-
pendently predicted. Some of them simply ignore
the invaluable hierarchical information and achieve
poor performance. Some others predict leaf nodes
first and then mechanically add their ancestor la-
bels, which is only applicable where different paths
in the label hierarchy share the same length.

Local approaches (Koller and Sahami, 1997;
Cesa-Bianchi et al., 2006; Shimura et al., 2018;
Wehrmann et al., 2018; Banerjee et al., 2019) con-
struct multiple local classifiers so that the misclassi-
fication at a certain level is propagated downwards
the hierarchy, easily leading to the exposure of
bias (Silla and Freitas, 2011). Specifically, Peng
et al. (2018) proposes deep graph convolutional

1117



neural networks with hierarchical regularization.
Wehrmann et al. (2018) utilizes a multi-label neu-
ral network architecture with local and global opti-
mization. To address the lower-level labels sparsity
problem, Shimura et al. (2018) takes advantage of
a CNN-based model with the fine-tuning method.
Banerjee et al. (2019) proposes to transfer the pa-
rameters of parent classifiers to initialize child clas-
sifiers for HTC task.

Global approaches (Gopal and Yang, 2013; Mao
et al., 2019; Wu et al., 2019; Zhou et al., 2020;
Peng et al., 2021), where the entire structural infor-
mation is encoded and all labels are simultaneously
predicted, has become recent mainstream due to
its better performance. Mao et al. (2019) handles
HTC task with reinforcement-learning-based label
assignment method. Wu et al. (2019) uses meta-
learning to model the label interaction for multi-
label classification. Zhou et al. (2020) utilizes the
Bi-TreeLSTM and GCN to model hierarchical rela-
tionship and makes flat predictions for hierarchical
labels. Peng et al. (2021) combines CNN, RNN,
GCN, and CapsNet to model hierarchical labels.
Chen et al. (2021) formulate HTC as a semantic
matching problem to mine the text-label seman-
tics relationship. Although recent researchers have
managed to introduce hierarchical information in
different fashions, most of them still regard flat
multi-label classification as the backbone of HTC
where all labels are predicted simultaneously and
independently. Their exploitation of hierarchical
structure is far from sufficient.

3 Problem Definition

For HTC, we define the overall label hierarchy as a
tree-like structure, denoted by T = (L,E), where
L = {l1, l2, . . . , lK} refers to the set of all label
nodes in the corpus and K is the total number of
them. E refers to the set of edges indicating the
nodes’ parent-child relations. Formally, we denote
text objects as X = {X1, X2, . . . , XN} and their
labels as L = {L1, L2, . . . , LN}.

Each text object is represented by a text sequence
Xi = [x1, x2, . . . , xJ ], where xj is a word and J is
the number of words in the text object. Meanwhile,
each text object Xi is mapped to a original label
set Li = {l1, l2, . . . , lk, 1 ≤ k < K} that contains
multiple labels. We then define a set of special
symbols S = {_, /, EOS} to identify special hier-
archical relationships in the hierarchy.

All labels L in the corpus constitute the overall

label hierarchy T . The original label set Li =
{l1, l2, . . . , lk, 0 ≤ k < K} of any text object Xi

constitute an partial label hierarchy Ti and Ti ⊂ T .
We aim to train a model to predict corresponding
label set Li for each text object Xi, where the label
set Li is constrained by the hierarchy Ti.

4 Background

The T5 model consists of an encoder-decoder ar-
chitecture, which mainly includes the Multi-head
Attention Mechanism, the Feed-Forward Network
and so on (Raffel et al., 2020), as depicted in the
Figure 2.

Feed Forward

Self-Attention

N x
Block

Feed Forward

Casual Self-Attention

Encoder-Decoder 
Attention N x

Block

Encoder

Decoder

Figure 2: Structure of T5. Following each Multi-head
Attention sublayer and Feed-Forward sublayer, there
are a series of dropout, residual connection and layer
normalization. These parts are omitted in the figure and
the following formulas for simplicity’s sake.

Attention mechanism Attn(·) is calculated as:

Attn(Q,K, V ) = Score(Q,K)V

Score(Q,K) = softmax(
QKT

√
dk

)
(1)

where Q,K, V ∈ Rn×dmodel and the length of se-
quence is n. The output attention score matrix of
Score(Q,K) is denoted as Score ∈ Rn×n.

Multi-head attention independently executes at-
tention mechanism of H heads and then concate-
nate their results, and it is denoted as MH(·). The
Feed-Forward Network consists of two linear trans-
formations with a nonlinear activation function in
between, and it is represented as FFN(·).

T5 encoder is composed of a stack of “en-
coder blocks” and we define the number of blocks
as B. Each block contains a self-attention sub-
layer and a feed-forward sublayer. The input se-
quence of encoder is mapped to the embedding
Qencoder,Kencoder, Vencoder ∈ Rn×dmodel , which
are then passed into the encoder. The output of
encoder is denoted as Oencoder.

BlockEncoder(Qencoder,Kencoder, Vencoder)

= FFN(MH(Qencoder,Kencoder, Vencoder))

Encoder(Qencoder,Kencoder, Vencoder)

= stack(BlockEncoder(Qencoder,Kencoder, Vencoder))

(2)
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𝐿𝑜𝑠𝑠𝐻𝑖𝐴−𝑇5
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𝐿𝑜𝑠𝑠
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𝑶𝒕𝒆𝒙𝒕
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𝑶𝒕𝒆𝒙𝒕

ρ

Figure 3: The overall structure of PAAM-HiA-T5. PAAM-HiA-T5 consists of a HiA-T5 and a PAAM. The dataflows
of one decoder layer are illustrated in the yellow dashed box.

The structure of the decoder looks similar to
that of the encoder, except that it has an additional
encoder-decoder attention sublayer that attends to
the output of the encoder stack, following each ca-
sual self-attention sublayer. The causal attention
mechanism of decoder only permits the model at-
tend to past outputs. In the end, we obtain the
decoder output denoted as Odecoder.
BlockDecoder(Qdecoder,Kdecoder, Vdecoder, Oencoder)

= FFN(MH(MH(Qdecoder,Kdecoder, Vdecoder), Oencoder, Oencoder))

Decoder(Qdecoder,Kdecoder, Vdecoder, Oencoder)

= stack(BlockDecoder(Qdecoder,Kdecoder, Vdecoder, Oencoder))

(3)

5 Hierarchy-Aware T5 with
Path-Adaptive Attention Mechanism

As depicted in Figure 3, we propose a PAAM-HiA-
T5 model for HTC: a Hierarchy-Aware T5 model
with Path-Adaptive Attention Mechanism. PAAM-
HiA-T5 consists of the HiA-T5 for level-dependent
label generation and the PAAM for path-specific
label generation.

5.1 Hierarchy-Aware T5
Level-dependent HiA-T5 The major shortcom-
ing of previous HTC methods is the inadequate
application of hierarchy information. In contrast,
HiA-T5 exploits label dependency across different
levels of the hierarchy with Breadth-First Search
(BFS) and multi-head attention mechanism.

HiA-T5 firstly explore the label hierarchy Ti
with Breadth-First Search (Cormen et al., 2001)
to flatten the label set Li = {l1, l2, l3, l4, l5}
into multi-level sequential label MLi =
[CLS, l1, _, l3, /, l2, _, l4, /, l5], transforming the
hierarchy to multi-level label sequence, as illus-
trated in Figure 4 (a). In this process, ‘_’ between
labels denotes intra-level relationship, while ‘/’ sig-
nifies inter-level relationship.

𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒 𝑰𝟓 𝑰𝟔 𝑰𝟕 𝑰𝟖 𝑰𝟗 𝑰𝟏𝟎

𝑶𝟏 1 0 0 0 0 0 0 0 0 0
𝑶𝟐 1 1 0 0 0 0 0 0 0 0
𝑶𝟑 1 0 0 0 0 0 0 0 0 0
𝑶𝟒 1 0 0 1 0 0 0 0 0 0
𝑶𝟓 1 1 1 0 0 0 0 0 0 0
𝑶𝟔 1 1 1 0 0 1 0 0 0 0
𝑶𝟕 1 0 0 1 1 0 0 0 0 0
𝑶𝟖 1 0 0 1 1 0 0 1 0 0
𝑶𝟗 1 0 0 1 1 0 0 1 1 0
𝑶𝟏𝟎 1 0 0 1 1 0 0 1 1 1

Input

O
u

tp
u

t

Path-adaptive mask matrix

generate mask

(b)

Root
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SportsBusiness

HockeyBaseball Football
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𝑙2 𝑙4

𝑙5

𝑪𝑳𝑺 , “𝒍𝟏”,  “_”,  “𝒍𝟑”,  “/”,  “𝒍𝟐”,  “_”,  “𝒍𝟒”, "/", "𝒍𝟓"

(a)

𝒍𝟏

_

𝒍𝟑

𝒍𝟐

𝒍𝟒

𝒍𝟓

𝑬𝑶𝑺

/

_

/

𝑪𝑳𝑺 𝒍𝟏 _ 𝒍𝟑 / 𝒍𝟐 _ 𝒍𝟒 / 𝒍𝟓

Figure 4: (a): A text with the content “David Beckham
attends art exhibition launch during Paris Fashion Week”
is tagged with “News”, “Sports”, “Football”, “Features”
and “Arts”. And its label hierarchical structure is ex-
plored in Breadth-First Search (blue dash line). (b):
path-adaptive mask matrix makes the ith output ele-
ment use current input element and all its ancestors.

On one hand, the text sequence Xi =
[x1, x2, . . . , xJ ] is mapped to embedding sequence
Qtext,Ktext, Vtext ∈ Rnt×dmodel of length nt,
which are then passed into T5 encoder:

Otext = Encoder(Qtext,Ktext, Vtext) (4)

The output encoder representation for semantic fea-
tures of varied granularities is Otext.

On the other hand, the multi-level label sequence
MLi = [CLS, l1, _, l3, /, l2, _, l4, /, l5] is mapped
to embeddings sequence Qlabel,Klabel, Vlabel ∈
Rnl×dmodel of length nl, which are passed into T5
decoder together:

Ohierarchy = Decoder(Qlabel,Klabel, Vlabel, Otext) (5)

Specifically, HiA-T5 fully explores the label de-
pendency across different levels through the self-
attention mechanism. With the help of the intra-
level separator ’_’ and the inter-level separator ’/’,
the causal decoder self-attention mechanism fully
excavates the intra-level parallel and mutually ex-
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clusive relationship, as well as the inter-level de-
pendent and appurtenant relationship. The output
representation of the decoder causal self-attention
mechanism incorporating level dependency infor-
mation is Alabel = MH(Qlabel,Klabel, Vlabel).

So far, we have obtained the text representation
Otext highlighting the semantic features of texts
with different granularities and the label representa-
tion Alabel incorporating label dependency across
different levels. The output representation of the
encoder-decoder attention mechanism integrating
these two is Across = MH(Alabel, Otext, Otext),
which is a sufficient crossover information for fol-
lowing prediction.

Loss of HiA-T5 We have obtained the final de-
coder block output Ohierarchy of HiA-T5, which
fully integrates the label hierarchy information and
the text semantic information of different granular-
ities. Then Ohierarchy is passed into a fully con-
nected layer with a softmax output, which is also
the final result of HiA-T5 denoted as Pred. Pred
is the result of nl timesteps and Pred ∈ Rnl×K .

Pred = softmax(OhierarchyW3 + b3) (6)

where W3 ∈ Rdmodel×K , b3 ∈ RK . In addition,
any multi-level label sequence MLi is transformed
into Truth ∈ Rnl×K , which is composed of one-
hot vectors corresponding to all labels. Therefore,
the cross-entropy loss of HIA-T5 is expressed as:

LHiA−T5 = crossentropy(Truth, Pred) (7)

5.2 Path-Adaptive Attention Mechanism

PAAM is a mechanism that can lead the model to
adaptively focus on the path where the currently
generated label is located, shielding the noise from
other paths. It is a regularization method designed
in the training phase to encourage the model to
pay more attention to ancestor labels on current
path while penalizing those on other paths. We first
obtain the path-adaptive mask matrix containing
hierarchy information. Then path-adaptive atten-
tion loss is obtained according to operations on the
path-adaptive mask matrix and the causal attention
score matrix.

Path-Adaptive Mask Matrix Now the text se-
quence Xi = [x1, x2, . . . , xJ ] is taken as input,
which is fed into HiA-T5 for training, and its corre-
sponding multi-level label sequence MLi is taken
as output.

According to the T5 structure of Figure 2, the
sequence MLi is first passed into causal attention
sub-layer of decoder. Within this sub-layer, and
according to formula (1), we get causal attention
score matrix Score of one head corresponding to
the sequence MLi, as depicted in Figure 5 (a).

𝑪𝑳𝑺 𝒍𝟏 _ 𝒍𝟑 / 𝒍𝟐 _ 𝒍𝟒 / 𝒍𝟓
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Figure 5: (a): Causal attention score matrix Score. The
input and output of the causal self-attention mechanism
are denoted as I and O respectively. Score = {si,j} ∈
Rnl×nl . Each element si,j at row i and column j repre-
sents the weight at which the self-attention mechanism
attends to input element j at output timestep i. The gray
cell indicates the corresponding attention score si,j = 0.
(b): Element-wise product result of Score and M .

Then we define the path-adaptive mask matrix
M , which can mask different parts of the label se-
quence at different decoding timestep i. The matrix
M is obtained from the hierarchical structure of
the label sequence corresponding to each text ob-
ject. Specifically, the shape of matrix M is same as
that of attention score matrix Score. Mask matrix
M = {mi,j} ∈ Rnl×nl is also a lower triangular
matrix, and it is only composed of 0 or 1 as shown
below.

M =




m1,1 0
m2,1 m2,2

...
...

. . . . . .
mnl,1 mnl,2 · · · mnl,nl−1 mnl,nl


 (8)

Oi represents the input of the attention mecha-
nism at the timestep i, and Oi ∈ L ∪ S. If Oi ∈ L,
we define ancestor(Oi) as label Oi’s ancestor la-
bels and the special symbol immediately following
them.

Then we define the following formula to fill the
matrix M based on the parent-child relationship
contained in each path of label hierarchy. The out-
put timestep i and input timestep j correspond to
the i-th row and j-th column of the matrix M. The
element mi,j is determined by both the output Oi
and the input Ij , and the formula is as follows:

mi,j =





1 {Oi ∈ L, Ij ∈ ancestor(Oi)}
∪{Oi ∈ S, Ij ∈ ancestor(Oi−1) or Ij = Oi−1}
∪{Oi ∈ L ∪ S, Ij = CLS}

0 else

(9)
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Path-Adaptive Attention Loss With text se-
quence and labels previously generated in hand, we
now introduce regularization and apply the path-
adaptive dynamic mask matrix M , such that HiA-
T5 decoder learns the weight of the attention matrix
and pays more attention on the label’s current path.

Having obtained the multi-level label sequence
MLi of a certain training sample, we use it as the
input of causal self-attention of HiA-T5’s decoder.
According to the definition above, we get its path-
adaptive mask matrix M , as depicted in Figure 4
(b). Furthermore, we get path-adaptive attention
score matrix Scorepath as depicted in Figure 5 (b)
by multiplying attention score matrix Score and
the path-adaptive mask matrix M element-wise:

Scorepath = Score⊙M = softmax(QK
T

√
dk

)⊙M (10)

We define C as the index set of ancestor(Ii).
At any decoding timestep i, our goal is to make
the sum of the attention scores

∑
j∈C si,j of cur-

rent path’s labels as close to 1 as possible. Corre-
sponding to attention scores matrix Scorepath of
decoder’s causal attention, that is, to make the sum
of elements of each row in the matrix close to 1
as much as possible. According to the definition
section, suppose Score is the causal attention score
matrix corresponding to the h-th head of b-th de-
coder “blocks”, where 1 ≤ h ≤ H, 1 ≤ b ≤ B.
The path-adaptive attention loss is defined as:

LPAAM =
B∑

b=1

(

∑H
h=1(

∑nl
i=1(1−

∑
j∈C si,j))

H
) (11)

Therefore, the path-adaptive attention loss is
added to the loss of HiA-T5 as total loss for train-
ing. The total loss function Loss is obtained as
below, where ρ is the coefficient of path-adaptive
attention loss item.

L = LHiA−T5 + ρLPAAM (12)

6 Experiments

6.1 Experiment Setup
Datasets We conduct experiments on three pub-
lic datasets, including RCV1-V2 (Lewis et al.,
2004), NYTimes(NYT) (Sandhaus, 2008) and Web-
of-Science(WOS) (Kowsari et al., 2017). RCV1-
V2 is an English news categorization dataset and
NYT is a news dataset from the New York Times
in America. WOS is about scientific literature cate-
gorization. Labels of these datasets are organized

Dataset |L| Depth Avg(|Li|) Max(|Li|) Train Val Test
RCV1 103 4 3.24 17 20833 2316 781265
NYT 166 8 7.6 38 23345 5834 7292
WOS 141 2 2.0 2 30070 7518 9397

Table 1: Statistical analysis of datasets: |L| is the num-
ber of all labels in the hierarchy. Depth denotes the
maximum level of the label hierarchy. Avg(|Li|) and
Max(|Li|) denote average and maximum number of la-
bels in each sample.

Dataset level1 level2 level3 level4 level5 level6 level7 level8
RCV1 236334 20523 11850 23211 - - - -
NYT 15161 2923 1160 842 1066 925 992 1460
WOS 6712 351 - - - - - -

Table 2: Statistics of the average number of each label’s
occurrence at each level: leveli denotes the level in the
label hierarchy. In general, the labels of most samples
are screwed towards upper levels and lower-level labels
are more sparse.

into a tree-like structure. Relevant information of
datasets is summarized in Table 1 and Table 2.

We split RCV1-V2 in the benchmark split man-
ner and take a small portion of the training set as
validation set. For NYT and WOS, we randomly
split data into training, validation and test sets.

Evaluation Metrics We use standard evalua-
tion metrics, including Micro-F1 and Macro-F1
(Gopal and Yang, 2013; Peng et al., 2018; Huang
et al., 2019), to measure the performance of all
HTC methods. Micro-F1 equally weights all sam-
ples, while Macro-F1 gives equal weight to each
label. As such, Micro-F1 gives more weight to fre-
quent labels, while Macro-F1 equally weights all
labels and is more sensitive to lower-level sparse
labels which are shown in Table 2.

Experimental Settings The backbone pre-
trained model we adopt is T5-base (Raffel et al.,
2020) containing about 220M parameters. Tok-
enizer from T5 is utilized to preprocess the text.
For PAAM-HiA-T5, the maximum sequence length
of encoder is set as 300 for all datasets, and the
maximum sequence length of decoder for RCV1,
NYT and WOS are respectively set as 90, 120 and
20. When the model is trained, Adam optimizer
is employed in a batch size of 10 with learning
rate of 5e-4. The search range of coefficient ρ is
{0.1,1,10,100,200}, and we set it to 100, 10, and
100 for RCV1, NYT and WOS respectively accord-
ing to validation results. In the inference phase,
greedy search is adopted. We set random seeds be-
fore experiments for the reproducibility of results,
and the results reported in this paper are from the
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Models Micro-F1 Macro-F1
Flat Models

HAN (Mao et al., 2019) 75.30 40.60
TextCNN (Mao et al., 2019) 76.60 43.00

TextRCNN (Zhou et al., 2020) 81.57 59.25

Local Models
HR-DGCNN-3 (Peng et al., 2018) 76.18 43.34

HFT(M) (Shimura et al., 2018) 80.29 51.40
Htrans (Banerjee et al., 2019) 80.51 58.49

HMCN (Mao et al., 2019) 80.80 54.60

Global Models
SGM (Zhou et al., 2020) 77.30 47.49

HE-AGCRCNN (Peng et al., 2021) 77.80 51.30
HiLAP-RL (Mao et al., 2019) 83.30 60.10
HiAGM (Zhou et al., 2020) 83.96 63.35
HiMatch (Chen et al., 2021) 84.73 64.11

Pretrained Language Models
BERT 86.26 67.35

T5 86.14 67.39
BERT+HiAGM1 86.12 68.08

BERT+HiMatch (Chen et al., 2021) 86.33 68.66
PAAM-HiA-T5 87.22 70.02

Table 3: Performance comparison on RCV1-V2. The
results of HAN (Yang et al., 2016), TextCNN (Kim,
2014) and HMCN (Wehrmann et al., 2018) are reported
by Mao et al. (2019). Zhou et al. (2020) reports the
results of TextRCNN (Lai et al., 2015) and SGM (Yang
et al., 2018).

average of 3 random runs of the model.

6.2 Performance Comparison

The experimental comparison between PAAM-
HiA-T5 and the state-of-the-art HTC methods are
shown in Table 3 and 4, and our model outper-
forms all SOTA results of flat, local and global
methods, both on Micro-F1 and Macro-F1. This
demonstrates the strong power of PAAM-HiA-T5
in solving HTC by better mining hierarchical struc-
ture information. The level-dependency modeling
and the path-adaptive attention mechanism bring
significant improvement. HiAGM and HiMatch
are effective baselines because they achieved the
latest SOTA results in HTC. Our model greatly sur-
passes them on both metrics especially on Macro-
F1. In general, the greater improvement on Macro-
F1 shows that our model has greater capability in
predicting sparse lower-level labels. In fact, it can
be shown from Table 2 that sample labels become

1The results of BERT+HiAGM on RCV1-V2 are im-
plemented upon the released projects of HiAGM (https:
//github.com/Alibaba-NLP/HiAGM) and the BERT
with mutli-label settings. We follow the MIT License.

2The results of HiMatch and BERT+HiMatch on NYT is
reproduced upon the released project of HiMatch (https://
github.com/RuiBai1999/HiMatch) and the BERT
with mutli-label settings. We follow the MIT License.

Model NYT WOS
Micro-F1 Macro-F1 Micro-F1 Macro-F1

Flat Models
TextRNN (Zhou et al., 2020) 70.29 53.06 77.94 69.65
TextCNN (Zhou et al., 2020) 70.11 56.84 82.00 76.18

TextRCNN (Zhou et al., 2020) 70.83 56.18 83.55 76.99

Local & Global Models
HMCN (Mao et al., 2019) 72.2 47.4 − −

HiAGM (Zhou et al., 2020) 74.97 60.83 85.82 80.28
HiMatch (Chen et al., 2021) 74.62 59.28 86.20 80.53

Pretrained Language Models
BERT+HiMatch2 (Chen et al., 2021) 76.79 63.89 86.70 81.06

PAAM-HiA-T5 77.52 65.97 90.36 81.64

Table 4: Performance comparison on the NYT and WOS
datasets. We mainly compare the best performing flat,
local, global and pre-trained models on RCV1-V2. The
results of TextRNN (Liu et al., 2016), TextCNN (Kim,
2014) and TextRCNN (Lai et al., 2015) on NYT and
WOS are reported by Zhou et al. (2020).

more sparse as level grows. Due to insufficient
training, the lower-level label prediction becomes
difficult. But our model utilizes the knowledge of
upper-level labels in predicting lower-level ones
by modeling level dependency and path depen-
dency, and this explains the reason why our model
achieves greater boost in Macro-F1 and has greater
capability in predicting sparse lower-level labels.

Pre-trained language models are effective meth-
ods, which can often be combined with the existing
model structure to improve the performance of spe-
cific tasks. BERT+HiMatch and BERT+HiAGM
denote that HiMatch and HiAGM are respec-
tively equiped with a pre-trained BERT (Kenton
and Toutanova, 2019) compatible with their struc-
tures. The model sizes of BERT+HiMatch and
BERT+HiAGM are in the same order of magni-
tude as that of PAAM-HiA-T5. Our model can
still significantly outperform them, which shows
the powerful capabilities of it (see Appendix C for
more analysis on this). For a more detailed discus-
sion about computational complexity please refer
to the Appendix A.

6.3 Performance Analysis

Method Micro-F1 Macro-F1
T5 86.14 67.39
HiA-T5 86.67 69.09
PAAM-HiA-T5 87.22 70.02

Table 5: Ablation study of PAAM-HiA-T5 on RCV1-
V2. Note that original T5 neither model the hierarchical
structure information nor capture the hierarchial depen-
dencies. It takes HTC as a generic multi-label classifica-
tion task to generate unordered label sets corresponding
to the text.
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Ablation Study and Analysis on Level Depen-
dency Modeling The performance comparison
of HiA-T5 and the original T5 is shown in Table 5.
It is evident that HiA-T5 greatly outperforms the
T5 both in Micro-F1 and Macro-F1. This result il-
lustrates the effectiveness of capturing level depen-
dency by introducing upper-level label knowledge
to assist lower-level label prediction. Compared
with T5, HiA-T5 boosts Macro-F1 by 1.70% and
achieves substantial 0.53% improvement in Micro-
F1. Greater boost in Macro-F1 demonstrates HiA-
T5 is especially beneficial to lower-level long-tailed
labels by introducing level dependency modeling.

Ablation Study and Analysis on Path-adaptive
Attention Mechanism The performance compar-
ison of PAAM-HiA-T5 and HiA-T5 is also shown
in Table 5. PAAM-HiA-T5 greatly increases Micro-
F1 and Macro-F1 especially in Macro-F1 compared
with HiA-T5. This indicates that PAAM signif-
icantly improves the performance of HiA-T5 in
more challenging multi-path scenarios by captur-
ing precise path dependency.

As shown in Figure 6, the heat map of the causal
self-attention score in PAAM-HiA-T5’s encoder
proves the effectiveness of PAAM, where the atten-
tion score is mainly distributed on the path of the
label current being decoded.
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Figure 6: Heatmap of causal self-attention score for a
random sample. Note that symbols instead of original
labels are used and the score of each label is the average
of its tokens’ attention score for ease of display.

Performance Analysis on Label Granularity
To find the origin of performance improvement,
we analyze performance on label granularity based
on different levels for T5, HiA-T5 and PAAM-HiA-
5 on RCV1-V2. Figure 7 shows the level-based
Macro-F1 of models and the absolute Macro-F1

differences among models. In general, our mecha-
nism and strategy brings performance improvement
on all levels, especially on lower levels.

In addition, the gap between HiA-T5 and T5
gets bigger as level deepens, and the phenomenon
between HiA-T5 and PAAM-HiA-T5 is consistent.
This illustrates that as the level grows, label predic-
tion becomes more and more difficult, and the intro-
duction of upper-level label knowledge by leverag-
ing level dependency modeling and path-adaptive
attention mechanism becomes more and more valu-
able. Specifically, the Macro-F1 of second and
third levels for T5 are relatively low because there
are some long-tailed labels among lower levels, but
HiA-T5 and PAAM-HiA-T5 greatly enhance them.
More performance comparison on label granularity
with SOTA methods are provided in Appendix B.
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Figure 7: Ablation analysis based on different levels.

Analysis of Label Consistency Label incon-
sistency is a serious problem in many HTC ap-
proaches, due to the fact that they focus on flat
multi-label classification and make independent
predictions for all labels. It is worth mentioning
that PAAM-HiA-T5 has outstanding classification
performance while maintaining an ultra-low label
inconsistency rate of 0.31%, as shown in Table 6.
This is because our model fully leverages the con-
straints of upper-level labels generated earlier to
predict the most accurate lower-level labels.

TextCNN HMCN HiAGM HiMatch BERT+HiAGM BERT+HiMatch PAAM-HiA-T5
3.74% 3.84% 1.35% 1.33% 1.52% 1.14% 0.31%

Table 6: Comparison of label inconsistency on RCV1-
V2. We calculate the label inconsistency as the ratio
of predictions with inconsistent labels. The results of
TextCNN and HMCN are reported in Mao et al. (2019).

7 Conclusion

For HTC task, we explicitly define the concepts
of “level dependency” and “path dependency” for
the first time. Furthermore, in order to build the
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knowledge of upper-level labels into lower-level
ones in HTC task, we devise an innovative PAAM-
HiA-T5 methodology by exhaustively exploring
level dependency and path dependency of hierar-
chy in a generative manner. Comprehensive experi-
ments on three benchmark datasets show that our
model greatly outperforms all state-of-the-art HTC
approaches especially in Macro-F1.
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A Computational Complexity

We compare the computational complexity of
PAAM-HiA-T5 with that of the best perform-
ing BERT+HiMatch and BERT+HiAGM. From
the perspective of space complexity, PAAM-
HiA-T5 contains roughly 220M parameters.
BERT+HiMatch and BERT+HiAGM respectively
contain about 153M and 143M parameters. The
model sizes of these three models are in the same
order of magnitude. Regarding time complexity,
the time cost of PAAM-HiA-T5 is only about 0.82
times that of BERT+HiMatch and about 0.91 times
that of BERT+HiAGM during training with batch
size 10. In the inference stage, all three models run
on the same GeForce RTX 2080 Ti GPU with their
respectively highest GPU usage. Under this condi-
tion, PAAM-HiA-T5’s total time cost for predicting
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all test data is about 3 times that of BERT+HiMatch
and BERT+HiAGM. PAAM-HiA-T5 establishes
new SOTA results on HTC task, so we think that
the enlargement in computational complexity due
to the generative model properties is acceptable.

B Performance Comparison on Label
Granularity with SOTA Methods

To further clarify the superiority of PAAM-HiA-
T5, we perform the level-based performance analy-
sis between our approach and other best perform-
ing SOTA methods on RCV1-V2. The level-based
Micro-F1 scores and Macro-F1 scores are shown
in Table 8. There is a dip in Micro-F1 score at
second level for all models because there are lots
of confusing labels with close concepts at second
level. The relatively low Macro-F1 scores at the
second and third levels are due to the presence of
long-tailed labels. Figure 8 shows that our model
maintains advanced performance on all levels, espe-
cially on lower levels. This reflects that our model
has a huge advantage in dealing with lower-level
long-tailed labels with sparse data.
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Figure 8: Performance analysis on label granularity
based on different levels.

C Exploring the Impact of
Hierarchy-Aware Module on the
Pre-trained Base Model

We find that BERT+HiAGM, BERT+HiMatch and
PAAM-HiA-T5 are most competitive methods ac-
cording to previous experiments. On the one hand,
the pre-trained models, including BERT and T5,
can be viewed as the base models. On the other
hand, different mechanisms and strategies, includ-
ing HiAGM, HiMatch and PAAM-HiA, are utilized
to exploit hierarchical structure information based
on the pre-trained base models, and they can be
regarded as different hierarchy-aware modules. We
want to study the improvement of the pre-trained
base models brought by different hierarchy-aware
modules in HTC task.

Table 7 shows that the base models’ performance
of BERT+HiAGM, BERT+HiMatch and PAAM-
HiA-T5 is close, both on Micro-F1 and Macro-
F1. Therefore, it is fair to discuss the improve-
ment brought by different hierarchy-aware mod-
ules to the pre-trained base model, and the per-
formance changes are illustrated in Figure 9. For
BERT+HiAGM, not only did the HiAGM not im-
prove BERT’s Micro-F1 score, it actually lowered
the Micro-F1 score. The reason may be that Hi-
AGM introduces noise in the process of encoding
the overall hierarchy information. This degrades
the performance of BERT+HiAGM on frequent la-
bels. For BERT+HiMatch, HiMatch brings a rela-
tively large improvement on Macro-F1, but a slight
improvement on Micro-F1. This demonstrates that
HiMatch has limited improvement for BERT on
predicting middle-level and upper-level labels. But
for PAAM-HiA-T5, PAAM-HiA module greatly
boosts both Micro-F1 and Macro-F1 and estab-
lishes new SOTA results.

In conclusion, starting from base models with
close performance, the improvement brought by
the PAAM-HIA module to T5 significantly exceeds
that brought by the HiMatch and HiAGM to BERT.
Moreover, thanks to the PAAM-HiA module, our
model outperforms all SOTA methods. All of the
above fully illustrate that our mechanism and strat-
egy (PAAM-HiA module), not just the powerful
pre-trained base model, are important reasons for
the strong power of our model in HTC task.

Ablation
BERT+HiAGM BERT+HiMatch PAAM-HiA-T5

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
BASE MODEL 86.26 67.35 86.26 67.35 86.14 67.39

+ Hierarchy-Aware Module 86.12 68.08 86.33 68.66 87.22 70.02

Table 7: Ablation study of hierarchy-aware modules on
pre-trained base models. Specifically, “BASE MODEL”
is either BERT or T5. “+ Hierarchy-Aware Module”
denotes adding a hierarchy-aware module to the corre-
sponding base model to obtain the final models.
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Figure 9: Model performance changes brought about
by the hierarchy-aware modules. Specifically, the fig-
ure above shows the absolute difference between the
performance of BERT+HiAGM, BERT+HiMatch and
PAAM-HiA-T5 and that of BERT, BERT, and T5.
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Abstract

This paper addresses a deficiency in exist-
ing cross-lingual information retrieval (CLIR)
datasets and provides a robust evaluation of
CLIR systems’ disambiguation ability. CLIR
is commonly tackled by combining translation
and traditional IR. Due to translation ambiguity,
the problem of ambiguity is worse in CLIR than
in monolingual IR. But existing auto-generated
CLIR datasets are dominated by searches for
named entity mentions, which does not pro-
vide a good measure for disambiguation per-
formance, as named entity mentions can of-
ten be transliterated across languages and tend
not to have multiple translations. Therefore,
we introduce a new evaluation dataset (MuSe-
CLIR) to address this inadequacy. The dataset
focusses on polysemous common nouns with
multiple possible translations. MuSeCLIR is
constructed from multilingual Wikipedia and
supports searches on documents written in Eu-
ropean (French, German, Italian) and Asian
(Chinese, Japanese) languages. We provide
baseline statistical and neural model results on
MuSeCLIR which show that MuSeCLIR has a
higher requirement on the ability of systems to
disambiguate query terms.

1 Introduction
Cross-Lingual Information Retrieval (CLIR) is a
subfield of Information Retrieval (IR) where the
task is to retrieve documents in language Y using
queries in language X. Frequently, it is a combined
process of translation and conventional IR. For ef-
ficiency, it is more common to translate queries
from language X to language Y than to translate
documents from language Y to language X.

Lexical ambiguity is a problem, and disam-
biguation found beneficial, in many natural lan-
guage processing tasks, including machine trans-
lation (Raganato et al., 2019), information extrac-
tion (Delli Bovi et al., 2015) and information re-
trieval (Blloshmi et al., 2021). This problem is

English query Translated query

(a) Karen Carroll (judge) KarenCarroll法官
(b) Brian Duffy (chef) BrianDuffy主廚
(c) Larry Andersen LarryAndersen
(d) El Cacao, Veraguas ElCacaoVeraguas

Table 1: Example queries from BI-139 (Sun and Duh,
2020) translated to Chinese using MUSE (Conneau
et al., 2018) dictionaries.

exacerbated in CLIR due to translation ambigu-
ity (Zhou et al., 2007). For example, letter could
mean alphabetic characters (字母) or a message
(信). However, in this case, translation ambiguity
compounds the problem.信 can also refer to believ-
ing in something and this meaning has nothing to
do with letter. Therefore, to increase the precision
of the retrieval process, it is crucial to identify the
correct translation of the query words in context.

Despite its importance, translation ambiguity
problem has received relatively little attention by
CLIR researchers, and has been overlooked by ex-
isting CLIR datasets. Many applications of CLIR,
and thus many existing datasets, are dominated by
searches for named entity mentions. For example,
in the BI-139 English-Chinese dataset (Sun and
Duh, 2020), about 73% of the queries contain at
least one named entity. These do not tend to have
multiple translations and, as illustrated by by the
query examples from BI-139 shown in Table 1, can
often be transliterated from one language to an-
other. Looking at examples (a) and (b) of Table 1,
these queries may be a mixture of named entity
mentions and common nouns, but only common
nouns are translated. Although named entity men-
tions can be ambiguous (e.g. different people share
the same name), this is related to named entity am-
biguity. Since we are viewing the problem from the
translation perspective, we are focusing on lexical
ambiguity.

In the real world, the need to search for unnamed
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entity mentions exists. For example, on a global
topic such as conservation (Marshall et al., 2020),
researchers might want to collect information about
bats from around the globe. Bat is not a named en-
tity and is named differently in different languages
when referred to as an animal (Italian: Chiroptera;
Chinese: 蝙蝠). Hence, retrieval systems need to
distinguish between the translation of bat as an an-
imal and bat as a piece of stick-like equipment in
sports, based on the context information. However,
due to a large amount of unambiguous named entity
mentions, existing CLIR datasets are not adequate
to train and evaluate the disambiguation ability of
systems. We introduce MuSeCLIR, a new and a
more fine-grained evaluation dataset.

MuSeCLIR is designed to specifically evaluate
systems’ ability to carry out disambiguation in
CLIR. It is derived from Wikipedia, a free and
open-sourced resource. Wikipedia contains many
pages that exist in multiple languages and thus
makes Wikipedia a good resource for CLIR (Sun
and Duh, 2020; Sasaki et al., 2018; Yu et al., 2021).
Assuming every possible translation represents a
word sense, common nouns with more than one
possible translation are chosen. By doing so, we
can minimise the number of named entity mentions
appearing in queries, and test whether systems are
able to rank documents more highly which con-
tain the correct translation (in context) over other
possible translations of the ambiguous words in
queries.

We introduce MuSeCLIR, a new evaluation
dataset that assesses the ability of systems to dis-
ambiguate ambiguous query terms. MuSeCLIR
supports searches on documents written in Euro-
pean (French, German, Italian) and Asian (Chi-
nese, Japanese) languages. Our codes are avail-
able on GitHub1. Users can reproduce and extend
MuSeCLIR to other languages. In section 3, we
provide the construction method of MuSeCLIR
and the statistics. In section 4, MuSeCLIR is
used as a benchmark to evaluate existing CLIR
systems: BM25 and multilingual BERT (mBERT)
ranker (Sun and Duh, 2020). The results indicate
that, given similar types of queries, existing CLIR
systems perform more poorly on MuSeCLIR com-
pared to other existing datasets, showing their in-
adequacy and the need of MuSeCLIR to determine
the most appropriate system in the real-world sce-
nario.

1https://github.com/justinaL/MuSeCLIR/

2 Background and Related Work
Probabilistic approach BM25 (Robertson and
Zaragoza, 2009) is a traditional bag-of-words re-
trieval function based on term frequency-inverse
document frequency (TF-IDF). It is a statistical
measure that relies on term frequency and matches
a query against a document. BM25 is monolingual,
so we employ the MUSE (Conneau et al., 2018)
bilingual dictionaries to translate queries into the
target language during experiments.

Elasticsearch2 is an open-source search engine
that implements the BM25 algorithm (Robertson
and Zaragoza, 2009) and has built-in analysers that
handle tokenisation and stemming. Here, we em-
ploy Elasticsearch 6.5.4 with default parameters3;
smartcn and kuromoji analyser are used when
handling the Chinese and Japanese documents, re-
spectively.

Neural approach Recently, end-to-end CLIR
models have attracted more attention. These sys-
tems align queries and documents into the same
space and perform matching in this aligned space.
Large pre-traine d language models (PLM), such as
BERT (Devlin et al., 2019), is commonly adopted
as the encoder (Jung et al., 2022; Nair et al., 2022;
MacAvaney et al., 2019) and impressive results
have been achieved. As CLIR involves multiple
languages, CLIR systems usually utilise multilin-
gual language models, like mBERT, to map queries
and documents into a shared space, bypassing the
translation step.

The mBERT ranker used here is a re-
implementation of the vanilla BERT ranker pro-
posed by MacAvaney et al. (2019). The vanilla
BERT ranker adopted the fine-tuning paradigm
with a linear layer stacked on top of BERT (De-
vlin et al., 2019). Following Sun and Duh (2020),
the encoder is replaced with a pre-trained mBERT
mode4. The [CLS] embedding at the final layer of
mBERT that represents the query-document pair is
used. When training, the positive sample is a query-
document pair with relevance labels larger than 0;
negative otherwise. The network is trained to opti-
mise pairwise hinge loss with Adam optimiser and
updates the weights in the last linear layer.

Datasets MuSeCLIR is compared against two
existing datasets, both also developed from

2https://www.elastic.co/
3b = 0.75 and k1 = 1.2
4BERT-Base; Multilingual cased; Training epochs = 20;

Learning rate = 1e-5
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Wikipedia: BI-139 from CLIRMatrix (Sun and
Duh, 2020) and WikiClir dataset introduced by
Sasaki et al. (2018). CLIRMatrix contains two sub-
sets: BI-139 (bilingual dataset) and MULTI-8 (mul-
tilingual dataset5). As this paper is not studying
multilingual IR, BI-139 (base version) is consid-
ered. Queries in WikiClir are the first sentences
from the English Wikipedia pages with page titles
removed; the average query length is 20 tokens.
As page titles are kept in MuSeCLIR, we append
page titles to their original queries forming Wiki-
Clir title for fair comparisons. Queries in BI-139
are Wikipedia page titles of 3 tokens on average.
In both sets, documents are the first 200 tokens of
a page that contains the main gist of the topic.

3 Dataset construction

MuSeCLIR is an English-centric dataset where all
queries are in English that makes use of Wikipedi-
aAPI6. Common nouns with multiple translations
are chosen from MUSE (Conneau et al., 2018)
bilingual dictionaries.

Wikipedia provides a disambiguation page
for potentially ambiguous article titles. This page
contains links to other possible subtopics in addi-
tion to the main topic (selected nouns in our case).
For example, window can refer to architecture, rect-
angle display on computers, etc. This page will pro-
vide links to the corresponding articles. Here, we
assume each link within the disambiguation
page is associated with a sense of the noun. In
order to conserve the overall level of ambiguity,
we remove nouns with less than 2 links on the
disambiguation page. Administration pages
like Help, disambiguation, etc. are then re-
moved. Before adding a linked page to the final col-
lection, we also check that i) the page contains an
inter-language link to the desired target language;
ii) the noun exists in the page title; and iii) the sum-
mary of the page in both English and the target lan-
guage is not empty. We initialise the construction
based on common nouns to minimise the number
of named entity mentions. This method is easily
adapted to other parts of speech, but we focus on
polysemous nouns here.

5Multilingual IR is a task where queries need to retrieve
documents from a multilingual pool of documents

6https://github.com/martin-majlis/
Wikipedia-API

Language # ambiguous
nouns

Total #
sentence
queries

# documents

FR 2,045 (0.52) 41,958 9,884
DE 2,389 (0.51) 49,698 10,740
IT 1,565 (0.52) 30,675 7,640
ZH 1,137 (0.50) 26,344 5,080
JA 882 (0.52) 20,675 4,168

Table 2: MuSeCLIR dataset statistics. Corresponding
entropy of sense distribution are in brackets.

3.1 Design

MuSeCLIR queries are sentences. They are from
the selected English Wikipedia page summaries
that include the chosen noun; they do not necessar-
ily appear in the target language pages7. To demon-
strate the necessity of context, we also experiment
with just the ambiguous noun as the query (MuSe-
CLIR noun). Documents are page summaries in
the target language. Each query is paired with 1
relevant document, and there are two judgement
labels, 1 for relevant and 0 for not relevant.

The design of train, validation and test sets are
different. In train and validation sets, each query
pairs with document candidates as determined by
the word sense. The set of documents to rank for a
given query contains all of the document for the cor-
rect translation, together with a random selection
of irrelevant documents. It is harder to spot irrel-
evant documents in MuSeCLIR during test time.
For each test set, the set of documents to rank is
generated separately for each noun. Thus, queries
of the same noun will be ranking the same set of
documents. This set includes documents of both
correct and incorrect translations, together with a
random selection of irrelevant documents. This
design is a characteristic of MuSeCLIR that pre-
existing datasets do not share.

3.2 Statistics

In the following experiments, the query language
X is English and the document language Y is either
an European language (French (FR), German (DE),
Italian (IT)) or an Asian language (Chinese (ZH),
Japanese (JA)). The scripts of Chinese documents
are unified into traditional Chinese characters.

The mean entropy of sense distribution for all
languages is around 0.5, meaning they are moder-
ately ambiguous datasets (Jin et al., 2009). The

7Target language pages are a mixture of pages written
individually and translated from the English page.
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entropy of a word is measured using the probabil-
ity distribution over the senses of that word. The
higher the entropy, the more ambiguous the dataset.
The graphs of sense distribution and entropy dis-
tribution are given in Appendix A. For Asian lan-
guages, each sense has around 5 sentences on aver-
age and about 4 sentences on average for European
languages. The average sentence length is 24 to-
kens; documents have 300 words on average.

Following CLIRMatrix (Sun and Duh, 2020),
we aimed to select 10,000 queries for training and
1,000 queries for validation and testing. When se-
lecting training data, we first randomly sampled
10, 000/(4× 5) = 500 nouns, where 4 is the aver-
age number of senses per noun and 5 is the average
number of sentences per sense. We then selected
as training data all of the senses and sentences for
each noun, resulting in the exact numbers of queries
shown in Table 2.

4 Evaluation
Two methods are considered in the following ex-
periments: BM25, an unsupervised probabilistic
approach, and an mBERT ranker, a supervised neu-
ral network (Sun and Duh, 2020). Typically, there
are two ranking stages in IR systems. At the initial
stage, each query will search over all documents
and then rerank on a subset of documents returned
from the first stage. However, the central challenge
of MuSeCLIR is a cross-lingual and cross-sense
problem, not the conventional IR task. Baseline
models are two individual ranking models. BM25
ranks the complete document collection, and fol-
lowing (Sun and Duh, 2020), mBERT ranker ranks
100 documents at test time.

Results are reported using MAP@10 (mean aver-
age precision), calculated using pytrec_eval8

(Van Gysel and de Rijke, 2018). As the metric
considered will cut off at 10, we limit BM25 to
return 10 documents. Queries are translated using
MUSE (Conneau et al., 2018) bilingual dictionar-
ies per token, and the first possible translation is
returned, disregarding other possible translations.
Out-of-vocabulary tokens will use the original form
(i.e. English). Table 3 and 4 presents results across
five datasets. BM25 (trans) refers to BM25 results
using the translated queries. To investigate the ef-
fect of mixed language tokens in documents, we
experiment on single language documents. They

8A tool written in Python that builds on top of the standard
TREC comunity evaluation tool https://github.com/
usnistgov/trec_eval

are created by matching tokens within the corre-
sponding language Unicode range.

4.1 Results

Elasticsearch - BM25 BM25 is a monolingual
IR system, so performance after translation should
be better. For both European (Table 3) and Asian
(Table 4) languages, datasets with short queries
like MuSeCLIR noun and BI-139 are not improving
after translation. Since short queries have fewer
words for the matching process, they have more
sparse representations. On the other hand, queries
of BI-139 are dominated by named entity mentions
and without context. As MUSE dictionaries are not
translating named entity mentions adequately, the
performance of BI-139 dropped after translation.

The number of foreign language tokens in
queries and documents could be another factor
affecting performances. The more foreign token
found in documents, the better the models perform
after translation, especially for datasets with longer
search queries. MuSeCLIR might be an easier task
for BM25 as the number of target language tokens
in the document collections is higher and smaller
in size than the existing datasets. For example,
in the Chinese collection, as of MuSeCLIR, 75%
of the tokens in the documents are Chinese char-
acters; it is only 59% for BI-139. Hence, BM25
(trans) might have been rewarded more from token
matching on MuSeCLIR than WikiClir and BI-139.

When ranking single language documents, over-
all performance decreased; thus, results reported
in the previous setting have taken advantage of the
English content. Similarly, MAP@10 increased
after translation but is lower than in the mixed lan-
guage setting. Potentially, this is caused by the
decrease in document lengths, leading to shorter
irrelevant documents ranked higher in the list more
frequently.

Multilingual BERT ranker Unsurprisingly,
mBERT ranker achieves better MAP@10. Since
a multilingual language model is employed, lan-
guages are mapped into the same space, and no
preceding translation is required. Across the board,
WikiClir and BI-139 have higher MAP@10 than the
MuSeCLIRs. Possibly this is due to the list of docu-
ments to rank being more confusing in MuSeCLIR
than the existing datasets.

Both CLIRMatrix and WikiClir label documents
with more than one relevance level, but we found
that it is seldom the case where a document is rel-
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MuSeCLIR MuSeCLIR noun WikiClir WikiClir title BI-139*

Models FR DE IT FR DE IT FR DE IT FR DE IT FR DE IT

Results on original documents (mixed language)

BM25 0.19 0.15 0.21 0.21 0.22 0.15 0.07 0.11 0.08 0.19 0.28 0.22 0.13 0.12 0.15
BM25 (trans) 0.34 0.18 0.37 0.17 0.11 0.18 0.17 0.14 0.14 0.32 0.30 0.30 0.12 0.11 0.14

mBERT ranker 0.79 0.80 0.81 0.43 0.45 0.44 0.87 0.89 0.85 0.90 0.95 0.91 0.59 0.61 0.67

Results on clean documents (single language)

BM25 0.22 0.09 0.10 0.17 0.14 0.08 0.07 0.08 0.04 0.19 0.20 0.10 0.11 0.09 0.09
BM25 (trans) 0.27 0.11 0.22 0.15 0.12 0.12 0.17 0.09 0.08 0.32 0.21 0.17 0.10 0.10 0.08

mBERT ranker 0.81 0.76 0.77 0.42 0.41 0.39 0.85 0.89 0.81 0.91 0.94 0.89 0.58 0.59 0.59

Table 3: MAP@10 results on retrieving documents written in European languages using English queries.
(*)Authors reported 0.84, 0.88 and 0.84 nDCG@10 for FR, DE and IT respectively, we obtained 0.84, 0.85 and 0.82.

MuSeCLIR MuSeCLIR
noun WikiClir WikiClir

title BI-139*

Models ZH JA ZH JA ZH JA ZH JA ZH JA

Results on original documents (mixed language)

BM25 0.11 0.14 0.22 0.31 0.01 0.02 0.02 0.05 0.09 0.11
BM25 (trans) 0.42 0.22 0.21 0.19 0.02 0.05 0.05 0.09 0.03 0.05

mBERT ranker 0.77 0.81 0.42 0.46 0.88 0.81 0.94 0.84 0.81 0.79

Results on clean documents (single language)

BM25 0.01 0.01 0 0 0.01 0 0.01 0 0 0
BM25 (trans) 0.40 0.20 0.20 0.14 0.03 0.03 0.05 0.06 0.01 0.02

mBERT ranker 0.77 0.76 0.44 0.43 0.86 0.77 0.92 0.81 0.66 0.71

Table 4: MAP@10 results on retrieving documents written in Asian languages using English queries. (*)Authors
reported 0.84 nDCG@10 for both ZH and JA, we obtained 0.87 and 0.85 respectively.

evant to more than one query. This implies that
these datasets focus more on evaluating systems’
ability to position documents in the “right” order,
which is a less challenging task. Moreover, existing
datasets define linked documents of a page as less
relevant documents. Less relevant documents do
not necessarily relate to other senses of the queries
and thus lower sense distribution entropy. Results
demonstrated that mBERT ranker struggles more
on MuSeCLIR than existing lower sense distribu-
tion entropy datasets. Observations are similar be-
tween mixed language and single language docu-
ments, and European and Asian language pairs.

Finally, we note that the contextual information
in queries is crucial. There is a consistent drop in
performance of approximately 50% from MuSe-
CLIR to MuSeCLIR noun. Without contextual in-
formation, it is impossible for systems to always
choose the relevant document pertaining to the cor-
rect sense of the word. The mBERT ranker per-
forms well on MuSeCLIR, indicating that it is doing
well at disambiguating the nouns in the queries us-

ing the context. However, the MAP@10 of MuSe-
CLIR is not as high as an evaluation performed on
WikiClir and WikiClir title, even when their queries
are sentences. This would suggest there is scope to
further improve CLIR systems.

5 Conclusion and Further Work

To address a deficiency in existing CLIR datasets,
we introduce MuSeCLIR, a CLIR dataset that has
been designed to challenge the ability of models
to deal with ambiguous query terms. This dataset
focused on polysemous common nouns with more
than one possible translation, and which are re-
garded as ambiguous on Wikipedia. We argue that
MuSeCLIR is a more suitable evaluation dataset
for CLIR than pre-existing datasets.

Our method is replicable and extendable to other
language pairs and other parts of speech. In the
future, we also intend to test models that are trained
with MuSeCLIR on real-world data and standard
CLIR test sets.
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A Sense Distribution Plots
Here, we provide plots of sense distribution and
plots of the entropy of sense distribution across our
language collection. The entropy of a word (w)
is measured using the probability distribution (p)
over the senses of the word, following equation 1.

H(senses(w)) = −
∑

wsi∈senses(w)

p(wsi) log (p(wsi)) (1)

Each dot on the sense entropy distribution repre-
sents a noun. Essentially, the entropy distribution
plot is the reverse version of the corresponding
sense distribution plot.

(a) Frequency distribution of different sense counts.

(b) Entropy of sense distribution across different number of
sense.

Figure 1: Plots of the French collection in MuSeCLIR.

(a) Frequency distribution of different sense counts.

(b) Entropy of sense distribution across different number of
sense.

Figure 2: Plots of the German collection in MuSeCLIR.
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(a) Frequency distribution of different sense counts.

(b) Entropy of sense distribution across different number of
sense.

Figure 3: Plots of the Italian collection in MuSeCLIR.

(a) Frequency distribution of different sense counts.

(b) Entropy of sense distribution across different number of
sense.

Figure 4: Plots of the Chinese collection in MuSeCLIR.

(a) Frequency distribution of different sense counts.

(b) Entropy of sense distribution across different number of
sense.

Figure 5: Plots of the Japanese collection in MuSeCLIR.

1135



Proceedings of the 29th International Conference on Computational Linguistics, pages 1136–1145
October 12–17, 2022.

Complicate then Simplify: A Novel Way to Explore Pre-trained Models for
Text Classification

Xu Zhang and Zejie Liu and Yanzheng Xiang and Deyu Zhou∗
School of Computer Science and Engineering, Key Laboratory of Computer Network

and Information Integration, Ministry of Education, Southeast University, China
{xuzhang123,liuzejie,yz−xiang,d.zhou}@seu.edu.cn

Abstract
In the developing context of pre-trained models
(PTMs), the performance of text classification
has been continuously improved by directly em-
ploying the features generated by PTMs. How-
ever, such a way might not fully explore the
knowledge in PTMs as it is constrained by the
difficulty of the task. Compared to a difficult
task, the learning algorithms tend to saturate
early on the simple task. Moreover, the native
sentence representations derived from BERT
are prone to be collapsed and directly employ-
ing such representation for text classification
might fail to fully capture discriminative fea-
tures. In order to address these issues, in this
paper we propose a novel framework for text
classification which implements a two-stage
training strategy. In the pre-training stage, aux-
iliary labels are introduced to increase the task
difficulties and to fully exploit the knowledge
in the pre-trained model. In the fine-tuning
stage, the textual representation learned in the
pre-training stage is employed and the classi-
fier is fine-tuned to obtain better classification
performance. Experiments were conducted on
six text classification corpora and the results
showed that the proposed framework outper-
formed several state-of-the-art baselines.

1 Introduction

Text classification is a fundamental task in the field
of natural language processing and is widely em-
ployed in various tasks such as question answering,
sentiment analysis, and information retrieval. With
the continuous development of machine learning
algorithms, especially the success of deep learning
methods, text classification has been significantly
improved, e.g. CNNs (Kim, 2014; Lai et al., 2019),
RNNs (Chen et al., 2017; Zhang et al., 2020),
BERTs (Cui et al., 2019, 2020; Sun et al., 2021),
etc. Recently, pre-trained models have been shining
in classification-based natural language processing
tasks (Cui et al., 2019, 2020; Sun et al., 2021).

∗Corresponding author

CH: …很不错的。如果下次去无锡，我还是会选择这里。
EN: …were very good. If I go to Wuxi next time, I would still choose
this place.

很(very) 不错(good) 下次(next time) 会(will) 选择(choose)

FE
AT

U
RE

 W
EI

G
H

TS

Ours BERT

Figure 1: An Example from the ChnSentiCorp corpus.

The advent of BERT has led to an effective en-
hancement of textual feature representation. A se-
ries of improved pre-trained models have been pro-
posed, e.g. RoBERTa (Liu et al., 2019), MacBERT
(Cui et al., 2020), ERNIE (Sun et al., 2020), Chine-
seBERT (Sun et al., 2021). For example, ERNIE
learns real-world semantic knowledge by model-
ing words, entities and entity relationships in mas-
sive amounts of data (Sun et al., 2020). Sun et al.
(2021) proposed a large-scale Chinese pre-trained
model that incorporates glyph and pinyin informa-
tion. The above works improve the textual repre-
sentation of the pre-trained model by introducing
external knowledge, without fully exploring the
semantic representation in the existing pre-trained
model. The recent work, prompt learning, is the
technique of making better use of the knowledge
from the pre-trained model by adding additional
texts to the input (Liu et al., 2021). Like prompt
learning, we propose to further extract more mean-
ingful textual representations from the pre-trained
model, i.e. to make the extracted textual semantic
representation more discriminative for classifica-
tion.

Although the current pre-trained model already
obtain relatively good textual representation, it is

1136



still possible to further explore the information in
the pre-trained representation based on our obser-
vation. As shown in Figure 1, for sentiment anal-
ysis, there are two sets of features in a sentence
that indicate its positive emotional polarity, “很
不错(very good)” and “下次 选择(next time
choose)”. Words like “很 不错(very good)” ex-
plicitly express positive sentiment. Features like
these, which are closely related to category labels,
are given higher weight during training. While
more implicit features like “下次(next time)” and
“选择(choose)” are easily ignored as shown by the
green curve in Figure 1. However, by using the
two-stage framework proposed in this paper, the
weights of implicit discriminative features are fur-
ther highlighted without weakening the weights
of the most discriminative feature as shown in the
black curve in Figure 1.

Meanwhile, we notice that Yan et al. (2021)
found the word representation space of BERT to
be anisotropic, with high-frequency words clus-
tered together and close to the origin, while low-
frequency words were sparsely scattered. When
averaging token embeddings, those high-frequency
words dominate the sentence representation, induc-
ing a bias against their actual semantics. Such
phenomenon has also been observed in some previ-
ous work (Gao et al., 2019; Wang et al., 2020a; Li
et al., 2020). Therefore, directly employing such
representation for text classification might fail to
fully capture discriminative features.

Therefore, in this paper, we consider the extract-
ing of semantic features from a cognitive perspec-
tive by introducing auxiliary labels and construct-
ing pre-training and fine-tuning strategies based on
pre-trained models. We devise a novel approach
to perform a secondary pre-training based on the
pre-trained model and then fine-tuning for text clas-
sification which is similar to the process of gaining
new insights through restudying old material. In
the pre-training stage, the model learns a better
representation of the task under consideration. In
the fine-tuning stage, the classifier is fine-tuned by
applying the text feature representations obtained
from the pre-training stage. To fully exploit the dis-
criminative features in the pre-trained model, in the
pre-training stage, auxiliary labels are constructed
to take fine-grained semantic categories into ac-
count. The introduction of auxiliary labels makes
the information entropy increase. Knowledge in
the pre-trained model is fully mined for a more

effective discriminative semantic representation.
The main contributions are listed as follows.

• We propose a novel framework for text classi-
fication which implements a two-stage train-
ing strategy and enables "experience accumu-
lation" and "practice what you learned" with-
out introducing additional knowledge.

• In the pre-training stage, auxiliary labels are
integrated to increase the training challenge
and to exploit the knowledge in the pre-trained
model fully.

• The validity of the framework is verified on
seven benchmark datasets, and the proposed
framework achieves better performance than
several state-of-the-art baselines.

The reminder of the paper is structured as fol-
lows. Some related work is briefly reviewed in
Section 2. The detailed implementation of our
framework is described in Section 3. Section 4
reports the experiments and results and Section 5
shows further analysis and discussion. Finally, the
paper is concluded in Section 6.

2 Related Work

The development of deep learning has led to signif-
icant improvements in text classification, and some
of the more widely employed deep learning models
for text classification tasks are CNNs (Wang et al.,
2018; Lai et al., 2019), RNNs (Chen et al., 2017;
Sachan et al., 2019; Zhang et al., 2020), and pre-
trained models (Cui et al., 2019; Liu et al., 2019;
Sun et al., 2021). In recent years, pre-trained mod-
els have shown excellent performance in the field
of text classification. Whether CNNs, RNNs, or
more recently pre-trained models, the purpose of
employing deep models is to efficiently capture the
textual semantic representation.

2.1 Traditional Deep Learning methods
Text representation is the basis for text classifica-
tion. The first work to introduce CNNs into NLP
was done by Kim (2014), and the key to the fea-
tures captured by a CNN is the sliding window
covered by the convolutional kernel. Johnson and
Zhang (2017) proposed the Deep Pyramidal Con-
volutional Neural Network (DPCNN), which can
effectively extract remote relational features from
the text. In the process of text feature extraction em-
ploying convolutional operations, the semantic re-
lations of sentences would be lost. Ma et al. (2015)
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proposed to employ dependent syntactic trees to
extract the semantic feature relations, instead of
just employing adjacent word representations as
feature representations. CNNs can extract local
features from global information when employed
for text classification, but they are unable to cap-
ture long-term dependencies, whereas RNNs can.
Zhang et al. (2018) proposed a sentence-state based
LSTM that incorporates the semantic relevance of
words and sentences. Models such as CNNs and
LSTMs capture word sense information well in lo-
cally continuous word sequences but may ignore
global word co-occurrences in corpora with dis-
continuous and long-term semantics dependencies.
Yao et al. (2019) proposed a graph-based convo-
lutional neural network structure (GCN), which
exploits global word co-occurrence information
not previously considered by other models and
demonstrates better robustness with less training
data. RNNs suffer from gradient explosion and
gradient disappearance, and cannot effectively han-
dle long-term context-dependence. The attention
mechanism can characterize the target location by
linearly weighting the features of the contextual
source sequence. Bahdanau et al. (2015) first ap-
plied attention mechanisms to the field of natural
language processing. Yang et al. (2016) proposed
a hierarchical attention mechanism model for text
classification tasks, acting at the word and sen-
tence levels respectively. With the development
of deep learning, neural networks are widely em-
ployed in NLP tasks, such as the aforementioned
CNNs, RNNs, GNNs and attention mechanisms,
but as the available datasets are small for most su-
pervised NLP tasks, the above models are “shallow”
for NLP tasks, making it difficult to extract suffi-
ciently rich textual representations.

2.2 Pre-trained Models

The advent of pre-trained models (PTMs) has ush-
ered in a new era of NLP, with extensive work show-
ing that pre-trained models on large corpora can
learn generic language representations and avoid
training from scratch when solving downstream
NLP tasks (Liu et al., 2019; Sun et al., 2020, 2021).
Since BERT, complementary pre-trained models
have been designed to integrate external knowl-
edge into PTMs for better textual representations.
ERNIE combines pre-trained entity embeddings
in the knowledge graph with corresponding entity
mentions in text to enhance the text representation

(Zhang et al., 2019). KnowBERT merges entity
representations in an end-to-end manner (Peters
et al., 2019). KEPLER unites knowledge embed-
dings with language model objects (Wang et al.,
2021). K-BERT differs from the above models by
introducing structured information from the knowl-
edge graph through entity embeddings (Liu et al.,
2020). It obtains an expanded tree input to the
BERT by directly introducing relevant triples from
the knowledge graph into the sentence. K-Adapter
independently trains different adapters for different
pre-trained models to introduce multiple knowl-
edge, in order to address the forgetting problem
that occurs when the above models are injected
with multiple knowledge (Wang et al., 2020b). In
contrast to the above approach, Qin et al. (2020)
proposed the use of feature projection methods
based on BERT to further improve text representa-
tion without introducing external knowledge. They
consider fully mining the existing knowledge in the
pre-trained model to make the feature representa-
tions involved in classification more discriminative.

3 Model

The overall framework is shown in Figure 2. The
whole framework is divided into two stages: pre-
training and fine-tuning. In the pre-training stage,
auxiliary labels are introduced to artificially boost
the training difficulty, which can better tap the
knowledge from pre-trained models and obtain a
more discriminative textual feature representation.
In the fine-tuning stage, the textual representation
pre-trained in the pre-training stage is employed
and the classifier is fine-tuned to obtain better clas-
sification performance.

3.1 Problem Definition
Suppose that we have a K-class classification task,
a training instance can be denoted as (xi,yi) for i =
1, ...,N and yi ∈ {1,2, . . . ,K}. Here, we introduce
auxiliary labels, as shown in Figure 2. Suppose we
have an encoder E(·).

R = E(x) (1)

Firstly, the model is trained employing auxiliary
labels to obtain discriminative textual representa-
tion R. Afterwards the classification is performed
by the textual representation R, and the original
label yi.

Auxiliary Labels: The auxiliary labels are intro-
duced through expanding the target labels by com-
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zi=PTEncoder(xi)

Classifier1 Classifier2

zi

Pre-training Fine-tuning

(xi, yi)

Target Labels Auxiliary Labels Target Labels

[0, 0, 1, 0, 0, 0, 0] [0, 0, 1, 0]

Frozen

Figure 2: Architecture of the proposed approach.

plementary zeros, simulating the existence of fine-
grained label categories. During the pre-training
stage, the auxiliary labels also have predicted prob-
ability values. Therefore the probability values of
the predicted labels corresponding to the target la-
bels fluctuate and the loss function decreases at
a slower rate during pre-training. To gain better
classification results, the model is forced to learn a
better textual representation.

Information Entropy: Suppose that, for a K
classification task in which the prediction proba-
bilities of the false labels are all γ , the prediction
probability of the true label is (1 - (k -1)γ). The
information entropy is shown below.

Hk =−
k−1

∑
i=1

γ logγ− (1− (k−1)∗ γ)

log(1− (k−1)∗ γ)
(2)

Similarly, for the case of introducing n auxiliary
labels, the information entropy is as follows:

Hk+n =−
k+n−1

∑
i=1

γ logγ− (1− (k+n−1)

∗γ) log(1− (k+n−1)∗ γ)
(3)

It can be inferred that the introduction of auxil-
iary labels makes the information entropy increase
as shown in Equation 4. The lower the deviation of
Hk+n and Hk, the smaller the difference between the
two distributions. After introducing the auxiliary
labels, the model needs to mine the knowledge in
the pre-trained model in-depth, in order to reduce
the gap with the true distribution.

Hk+n−Hk > 0 (4)

3.2 Pre-training Pre-trained Models and
Fine-tuning

The traditional text classification strategy is to ob-
tain the textual semantic representation through the
Encoder Network Encoder(·) and then employ the
Classifier Classi f ier(·) to make predictions.

zi = Encoder(xi) (5)

ci = Classifier(zi) (6)

θ is the parameter of Encoder(·) and β is the
parameter of Classi f ier(·). Their method is de-
scribed as follows:

L (θ ,β ) =−
N

∑
i=1

K

∑
k=1

1(yi = k) log(k | ci) (7)

Unlike the traditional classification models de-
scribed above, our approach adopts a two-stage
training strategy.

Pre-training : Similarly, the input text xi needs
to be represented as a textual semantic represen-
tation employing a parameters trainable encoder
PT Encoder(·). Here, one point to focus on is that
the parameters of the encoder are trainable.

zi = PTEncoder(xi) (8)

PT Encoder(·), which maps xi to a discriminative
representation vector shown in Equation 8.

Next, label prediction is to be performed employ-
ing zi. Although the auxiliary labels are introduced,
this is only done to introduce interference terms, in
order for the PT Encoder(·) to be trained to obtain
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more discriminative text features for the subsequent
classification.

c1i = Classifier1(zi) (9)

θ1 is the parameter of PT Encoder(·) and β1 is
the parameter of Classi f ier1(·). Their method is
described as follows:

L∞(θ ′,β ′) =−
N

∑
i=1

K+ j

∑
k=1

1(y1i = k) log(k | c1i)

(10)
where j is the number of auxiliary labels we intro-
duce on top of the original K targets.

In addition, there is no other effect on the classi-
fication task, as the auxiliary labels are represented
in the one-hot labels as 0. Therefore, in the specific
task, only the original categories are involved in
the calculation of the cross-entropy loss function,
and the auxiliary labels are not involved.

Fine-tuning : With the first stage (Pre-training),
better parameters for the PT Encoder(·) can be pre-
trained, by which a better discriminative textual
representation zi can be obtained.

Next, the trained textual representation zi is em-
ployed for conventional classification, i.e., no aux-
iliary labels are introduced and classification is
performed according to the given label categories.

Here, we only perform further fine-tuning for the
classifier:

c2i = Classifier2(zi) (11)

θ1 is the parameter of PT Encoder(·) and β2 is
the parameter of Classi f ier2(·). Their method is
described as follows:

L∈(θ1,β2) =−
N

∑
n=1

K

∑
k=1

1(yi = k) log(k | c2i)

(12)
A summary of the two-stage training strategy

described above. (1) In the pre-training stage, aux-
iliary labels for classification are constructed and
the encoder is pre-trained employing the auxiliary
labels to obtain a more discriminative feature rep-
resentation zi. (2) In the fine-tuning stage, the tex-
tual representation zi is employed for classification,
where only fine-tuning is done for the classifier
and the parameters of the text representation zi are
no longer updated to obtain better classification
performance.

3.3 Textual Representation

BERT (Devlin et al., 2019) is a multilayered
attention-assisted bidirectional transformer encoder
model based on the original transformer model
(Vaswani et al., 2017). During pre-training, BERT
employed two objectives: masked language model
(MLM) and next sentence prediction (NSP). The
NSP is employed to predict whether two segments
follow each other. The goal of NSP is to improve
the performance of downstream tasks such as nat-
ural language inference (Bowman et al., 2015),
which entails reasoning about the relationship be-
tween pairs of sentences. NSP is a good fit with
our matching-based QA task and the matching task.
Therefore, we choose the BERT as the encoding
model.

The original authors of BERT proposed an up-
graded version of BERT, including Whole Word
Masking (WWM), which alleviates the disadvan-
tage of masking some WordPiece tokens in pre-
trained BERT. Cui et al. employed the whole word
masking strategy for Chinese BERT and published
a series of Chinese pre-trained models (Cui et al.,
2019). The experimental performance shows that
the proposed pre-trained model yields substantial
improvements over BERT and ERNIE on various
NLP tasks. They adapted whole-word masking in
Chinese text by masking whole words instead of
Chinese characters.

In view of the excellent performance achieved
by BERT-wwm in Chinese tasks (Cui et al., 2019),
an improved version of the BERT model proposed
by Cui et al. is employed as the Encoder in our
work.

4 Experiment

4.1 Datasets

We conducted experiments on six Chinese text clas-
sification datasets, including two sentence seman-
tic matching datasets (BQ (Chen et al., 2018) and
LCQMC (Liu et al., 2018)), one text classification
datasets (TNEWS (Xu et al., 2020)), one senti-
ment classification dataset (ChnSentiCorp 1), and
two Chinese question answering datasets from the
NLPCC-2016 evaluation task (Duan, 2016).

Sentence semantic matching task: BQ is the
largest Chinese question matching dataset in the
banking domain. LCQMC is the largest Chinese

1https://github.com/pengming617/bert−classification
/tree/master/data
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semantic matching dataset available and obtained
from the Baidu Knows question and answer com-
munity.

Text classification task: TNEWS selects from
the news section of Today’s Headlines, with 15
news categories, including travel, education, fi-
nance, military and more. ChnSentiCorp is a Chi-
nese sentiment classification dataset with more than
7000 hotel reviews, 5000 positive reviews and 2000
negative reviews

Question answering task: DBQA is a
document-based question answering dataset. These
candidate sentences were extracted from web pages
and tended to be much longer than the questions,
with many irrelevant sentences. KBQA is a knowl-
edge base based question answering dataset, and
each question contained only one golden predicate.

4.2 Baselines
The following approaches are employed as the
baselines, including BERT-wwm and BERT-wwm-
ext (employing extended data, including Chinese
Wikipedia, other encyclopedias, news, QAs and
other data, with a total word count of 5.4B) (Cui
et al., 2019). To evaluate the proposed approach,
we additionally selected a series of pre-trained
models for comparison, with RoBERTa-base,
RoBERTa-large (Liu et al., 2019), MacBERT-base,
MacBERT-large (Cui et al., 2020), ChineseBERT-
base, and ChineseBERT-large (Sun et al., 2021).

Our approach is customized to several versions
to evaluate its performance, as follows: We im-
prove on the BERT-wwm, BERT-wwm-ext by in-
troducing our approach to obtain RE-BERT-wwm,
RE-BERT-wwm-ext. MRE-BERT fuses the textual
representations of the BERT-wwm and the BERT-
wwm-ext models and then introduces our approach
for optimization.

4.3 Experiment Setup
The experimental setup is shown in Table 1. We
found experimentally that the number of auxiliary
labels is set differently for different pre-trained
models and various tasks. As a hyperparameter, it
needs to be adapted to the different training tasks.
For LCQMC and TNEWS datasets with relatively
clear classification goals and little ambiguity in
the annotated data, introducing auxiliary labels did
not significantly improve classification but the two-
stage repetitive operation based on learning similar
to human cognitive skills still improved the model’s
effectiveness. In addition, the batch size is set to 64,

and Adam with parameters 2e-5 is employed as the
optimizer (Kingma and Ba, 2015). All experiments
were performed on two Nvidia Tesla T4 GPUs.

4.4 Experiment Results

4.4.1 Matching based QA Task
As shown in Table 2, following the work of lai et
al. (Lai et al., 2019), we have implemented BERT-
based Chinese KBQA and DBQA tasks based on
their work. In their work, Lattice CNNs were
employed as encoder, and we experimented with
BERTs-base replacing Lattice CNNs as the base-
line for our work.

As shown in Table 2, we have improved the ex-
periments by employing our approach compared
to the original BERT-wwm and BERT-wwm-ext.
The experiments show that training through two
stages is effective and our proposed approach of in-
troducing auxiliary labels In the pre-training stage
is feasible. The introduction of auxiliary labels al-
lows for more meaningful discriminative features
for classification in feature extraction.

M-BERT unites the textual semantic representa-
tions of two pre-trained models, BERT-wwm and
BERT-wwm-ext. Compared to employing a single
pre-trained model, BERT-wwm or BERT-wwm-ext,
there is an improvement in the experimental results.
The experiment also validates our previous consid-
eration that there is variability in the textual seman-
tic representation obtained by different pre-trained
models and that an improvement can be achieved
by combining multiple pre-trained models.

MRE-BERT has a significant improvement over
the two BERT-base models, BERT-wwm and
BERT-wwm-ext, on both DBQA and KBQA ques-
tion and answers datasets. Compared to BERT-
wwm, MRE-BERT has a more than 1% improve-
ment on both datasets. There is also a substantial
effect improvement in each evaluation metric com-
pared to BERT-wwm-ext.

4.4.2 Text Classification Task
In addition, we conducted corresponding experi-
ments on two text classification datasets, TNEWS
as well as ChnSentiCorp, which have relatively few
category labels.

As shown in Table 3, for the TNEWS and
ChnSentiCorp datasets, which have relatively few
categories, our proposed approach achieves good
performance on both datasets. The experimental
results for the TNEWS dataset on BERT-wwm as
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Dataset Scale (train/valid/test) Model Na Nt Epoch
RE-BERT-wwm 4 2 10

ChnSentiCorp 9.6K/1.2K/1.2K RE-BERT-wwm-ext 4 2 10
MRE-BERT 16 2 10

RE-BERT-wwm 119 119 6
TNEWS 12.1k/2.6k/2.6k RE-BERT-wwm-ext 15 15 3

MRE-BERT 15 15 3
RE-BERT-wwm 4 2 2

DBQA 182k/-/123k RE-BERT-wwm-ext 4 2 2
MRE-BERT 128 2 2

RE-BERT-wwm 4 2 2
KBQA 273k/-/156k RE-BERT-wwm-ext 16 2 2

MRE-BERT 6 2 2
LCQMC 238.7k/8.8k/12.5k MRE-BERT 2 2 3
BQ 100k/10k/10k MRE-BERT 12 2 5

Table 1: Experimental parameter settings. Na means the whole number of auxiliary and target labels, and Nt number
of target labels

DBQA KBQA
Model P@1 MRR MAP P@1 MRR
BERT 90.06 93.79 93.75 92.88 95.69
RE-BERT 90.20 93.80 93.77 93.80 96.28
BERTo 90.95 94.38 94.35 93.23 95.90
RE-BERTo 91.18 94.57 94.54 94.01 96.42
M-BERT 91.08 94.36 94.31 93.75 96.31
MRE-BERT 91.91 95.03 95.00 94.16 96.56

Table 2: Experimental results on matching based QA task. BERT represents BERT-wwm and o represents models
pre-trained on extended data.

well as BERT-wwm-ext are from CLUE2 (Xu et al.,
2020), and the experimental results for ChnSen-
tiCorp are from ChineseBERT (Sun et al., 2021).
The experimental results show that MRE-BERT
has a better effect compared to the two base pre-
trained models BERT-wwm and BERT-www-ext.

TNEWS ChnSentiCorp
Model Valid Test
BERT 56.09 95.4
BERTo 56.77 95.3
RE-BERT 56.87 94.8
RE-BERTo 57.40 95.6
MRE-BERT 56.95 95.8

Table 3: Experimental on text classification task. BERT
represents BERT-wwm and o represents models pre-
trained on extended data.

2https://github.com/CLUEbenchmark/CLUE

5 Analysis and Discussion

5.1 Comparison of Different Auxiliary Labels

In order to verify the effectiveness of our approach
and the effect of the auxiliary labels, we conducted
some targeted experiments on the KBQA dataset.

As shown in Figure 3, we have selected a series
of samples for classification after adding auxiliary
labels In the pre-training stage (pre-training) for
RE-BERT-wwm, BERT-wwm-ext and MRE-BERT
models respectively. The w/o RE model shows the
effect without our approach, from which it can be
seen that models can be effectively improved by
introducing auxiliary labels. With the experimental
results in Figure 3, we have verified the effective-
ness of our approach. The introduction of auxiliary
labels helps to extract textual semantic representa-
tions efficiently, and the number of auxiliary labels
needs to be set according to the needs of different
models and tasks.
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Figure 3: Comparison of the effects of different models on KBQA dataset after the addition of auxiliary labels In
the pre-training stage.

5.2 Verification Experiments

BQ LCQMC
Model Valid Test Valid Test

base
BERT 86.1 85.2 89.4 87.0
BERTo 86.4 85.3 89.6 87.1
RoBERTao 86.0 85.0 89.0 86.4
MacBERT 86.0 85.2 89.5 87.0
ChineseBERT 86.4 85.2 89.8 87.4
MRE-BERT 86.3 85.6 90.4 87.4

large
RoBERTao 86.3 85.8 90.4 87.0
MacBERT 86.2 85.6 90.6 87.6
ChineseBERT 86.5 86.0 90.5 87.8

base
MRE-BERTF 86.7 86.2 89.9 87.7

Table 4: Validation experiments on text matching task.
BERT represents BERT-wwm, o represents models pre-
trained on extended data, and MRE-BERTF represents
MRE-BERT with adversarial perturbation.

To further validate the effectiveness of MRE-
BERT, some related experiments are conducted
on two sentence semantic matching datasets and
compared with current state-of-the-art pre-trained
models. The experimental results show that MRE-
BERT has achieved better performance compared
to BERT-wwm, BERT-wwm-ext, RoBERTa-wwm-
ext (Cui et al., 2019), MacBERT-base (Cui et al.,
2020), and ChineseBERT-base (Sun et al., 2021).
Furthermore, adding random perturbations to its
embedding layer based on pre-trained models is
effective in many tasks, expanding the training data
by perturbing the samples and being able to regu-

larise the model effectively (Ju et al., 2019). We
also tried to introduce adversarial training In the
pre-training stage, and the performance was further
improved. We notice that ChineseBERT considers
two important aspects specific to Chinese: glyphs
and pinyin, which carry important syntactic and
semantic information for language understanding.
It incorporates both glyph and pinyin information
into pre-trained language models, achieving new
SOTA performance in a wide range of Chinese
NLP tasks. However, our proposed BERT-base
based framework achieves comparable results to
ChineseBERT.

6 Conclusion

For simple text classification tasks, we propose
a novel framework for simple text classification
tasks, which implements a two-stage training strat-
egy, including pre-training based on pre-trained
models and fine-tuning for classification. In the pre-
training stage, auxiliary labels can be integrated to
increase the training challenge and to fully exploit
the knowledge in the pre-trained model. Experi-
ments on six datasets depict that our approach out-
performs the baseline BERT model for simple clas-
sification tasks. Furthermore, in the sentence se-
mantic matching task, after adding adversarial per-
turbations to the embedding layer only, our basic
version of the MRE-BERT model achieves promis-
ing performance, better than or equivalent to large
versions of the pre-trained model, but with much
fewer parameters than them. In the future, We
will investigate the generalizability of our model to
other classification tasks.
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Abstract

Asymmetric text matching has becoming
increasingly indispensable for many down-
stream tasks (e.g., IR and NLP). Here, asym-
metry means that the documents involved
for matching hold different amounts of in-
formation, e.g., a short query against a rel-
atively longer document. The existing solu-
tions mainly focus on modeling the feature
interactions between asymmetric texts, but
rarely go one step further to recognize dis-
criminative features and perform feature de-
noising to enhance relevance learning. In
this paper, we propose a novel adaptive fea-
ture discrimination and denoising model for
asymmetric text matching, called ADDAX.
For each asymmetric text pair, ADDAX is
devised to explicitly distinguish discrimina-
tive features and filter out irrelevant features
in a context-aware fashion. Concretely, a
matching-adapted gating siamese cell (MAGS)
is firstly devised to identify discriminative fea-
tures and produce the corresponding hybrid
representations for a text pair. Afterwards,
we introduce a locality-constrained hashing de-
noiser to perform feature-level denoising by
learning a discriminative low-dimensional bi-
nary codes for redundantly longer text. Exten-
sive experiments on four real-world datasets
from different downstream tasks demonstrate
that the proposed ADDAX obtains substantial
performance gain over 36 up-to-date state-of-
the-art alternatives.

1 Introduction

Given a pair of documents, text matching aims to
precisely predict the semantic relations between
them. An efficient and effective matching algo-
rithm is now an indispensable asset in many in-
formation retrieval, question answering and dia-
logue systems. In these application scenarios, a
text pair in matching (e.g., query-document and
question-answer pair) ususlly has a large disparity

∗Corresponding author.

Long Positive Document：

Long Negative Document：

Short Query：

Power Station (Power Station), a Taiwanese pop rock concert group, was 
founded in 1994 and consists of two indigenous Taiwanese singers, You 

Qiuxing and Yan Zhilin……

Power Station refers to a factory that uses the chemical energy of coal, 
oil, natural gas or other fuels to produce electricity

Who is included in the Power Station?

Figure 1: An example of asymmetric text matching.

in the quantity of information, a.k.a. asymmet-
ric text matching. For example, a matching pair
have 7.15 and 95.54 words respectively on average
in InsuranceQA dataset (Feng et al., 2015) (i.e.,
the difference being about an order of magnitude).
This asymmetry between a short query and a long
document renders it as a nontrivial task.

The existing solutions can be grouped into
two categories, namely representation-based and
interaction-based models (Khattab and Zaharia,
2020). The former category mainly utilizes con-
volutional neural networks (CNN) and recurrent
neural networks (RNN) to learn the latent repre-
sentation of a document independently, including
DSSM (Huang et al., 2013), SNRM (Zamani et al.,
2018). On contrast, the latter category focuses on
leveraging fine-grained interaction signals between
them. It is widely recognized that exploiting inter-
action signals would largely improve the relevance
learning capacity. Examples include DRMM (Guo
et al., 2016), KNRM (Xiong et al., 2017). Re-
cently, with the prominence of deep pre-trained
language models (LMs) like BERT (Devlin et al.,
2019), uptodate LMs-based deep relevance models
significantly push the frontier of the state-of-the-
art further (Dai and Callan, 2019b; Nogueira and
Cho, 2019; Xu and Li, 2020). Though significant
performance gain is achieved by these efforts, they
mainly overlook further feature discrimination and

1146



denoising between asymmetric texts, which can
be potentially useful to enhance matching perfor-
mance.

To explain this point, we give an illustrative ex-
ample in Figure 1. Here, polysemous word like
“power station” in the query side hinders the pre-
cise matching. On the other hand, the semantic
association among “who”, “pop rock concert group”
and “singers” assists the relevance learning process.
Also, word pair like “who” and “factory” describe
two distinct things, which can be reflected via the
feature-level interactions. Hence, recognizing the
discriminative features and filtering out noisy fea-
tures certainly enhance the relevance learning pro-
cess.

To this end, in this paper, we propose an
adaptive feature discrimination and denoising
model for asymmetric text matching, named AD-
DAX. Specifically, ADDAX consists of a BERT-
based context encoder, a matching-adapted gating
siamese cell (called MAGS), a locality-constrained
hashing denoiser, and a MaxSim (Khattab and Za-
haria, 2020) based relevance predictor. For each
document, we firstly derive the word-level contex-
tual representations through a BERT-based con-
text encoder. Afterwards, MAGS utilizes an cross-
attention mechanism to represent a document with
relevant information from its counterpart in the
matching pair, which produces the word-level ref-
erence representations for the former. Then, the
resultant word-level attention information is lever-
aged to discriminate the importance of these refer-
ence representations and their divergence against
the orginal representations. We then utilize a high-
way network to adaptively composite these two
kinds of semantic signals as the context-aware hy-
brid representations.

After this feature-level discrimination, we utilize
a locality-constrained hashing denoiser to project
the long document into low-dimensional binary
space. The hashing denoiser is formulated as an
autoencoder over the hybrid representations. That
is, the semantics relevant to the text pair will be pre-
served by the denoising process, which further fa-
cilitates the relevance learning. Finally, a MaxSim
operator (Khattab and Zaharia, 2020) is employed
to calculate final relevance score. Overall, the key
contributions are summarized as below:

• We propose an adaptive feature discrimina-
tion and denoising model for asymmetric text
matching. To the best of our knowledge, AD-

DAX is the first attempt to explicitly derive
discriminative features and perform feature
denoising for this task.

• To derive discriminative features, a matching-
adapted gating siamese cell (called MAGS) is
devised to synthesize hybrid representations
for a text pair in terms of word-level relevance
information. To perform feature denoising,
a locality-constrained hashing denoiser is de-
vised to purify context-aware semantics and
filter out feature-level noise for the long docu-
ment.

• Extensive experiments are conducted on four
real-world datasets and the results demon-
strate the superior performance of our method
compared against existing SOTA alternatives.

2 RELATED WORK

2.1 Traditional Neural Matching Models
Recent years, deep learning has delivered signif-
icant performance gain for various text matching
tasks. Generally, deep relevance matching models
can be divided into two categories. The first is the
representation-based models that independently en-
codes a query and a document into two vectors and
estimates relevance in terms of vector similarity
(e.g., DSSM (Huang et al., 2013), CDSSM (Shen
et al., 2014), LSTM-RNN (Palangi et al., 2016)).
For instance, Huang et al. (2013) propose to embed
query and document into two vectors through a mul-
tilayer perceptron and calculates the corresponding
cosine similarity as the matching score. Following
this work, SNRM (Zamani et al., 2018) exploits the
sparsity property to derive a sparse-vector represen-
tation for each query/document, which allows it to
also leverage a dense index to do fast end-to-end
retrieval. The second category, interaction-based
models, exploits complex fine-grained interactions
between two documents to magnify the relevance
signals (Hofstätter et al., 2019; Hu et al., 2014;
Pang et al., 2016; Hui et al., 2017). For exam-
ple, DRMM (Guo et al., 2016) ranks documents
based on the matching histogram of each query
and document. Conv-KNRM (Dai et al., 2018) ex-
tends DRMM by pairwise n-gram similarity. Fast-
Text+ConvKNRM (Hofstätter et al., 2019) further
makes use of subword-token embeddings to tackle
the vocabulary mismatch problem. Wang et al.
(2017) introduce a novel attention-based represen-
tation approach to leverage information aggregated
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Figure 2: The whole network architecture of ADDAX.

from both question and passage for better predict
answers.

2.2 Deep LM Based Matcher

The pre-training language representation mod-
els (PLMs), like BERT (Devlin et al., 2019),
Roberta (Liu et al., 2019) and XLnet (Yang et al.,
2019), have shown great capacity in encoding con-
textual information. It significantly outperforms
other CNN-based and RNN-based neural models in
many text matching tasks (Nogueira et al., 2019b,a;
Karpukhin et al., 2020). DeepCT (Dai and Callan,
2019a) utilizes a deep contextualized term weight-
ing framework for document retrieval, where con-
textualized text representations produced by PLMs
are used to derive the context-aware term impor-
tance weights.

ColBERT (Khattab and Zaharia, 2020) performs
interaction MaxSim operator on each PLMs-based
word embedding in the query/document to calcu-
late matching scores. Later, TCT-ColBERT (Lin
et al., 2020) utilizes knowledge distillation to en-
hance query latency and greatly reduce the memory
cost of ColBERT. CLEAR (Gao et al., 2021b) ex-
ploits a neural embedding matching model as a
supplement towards conventional lexical matching.
COIL (Gao et al., 2021a) utilizes vector similar-
ities between query-document overlapping term
contextualized representations for efficient search.
Sun et al. (2021) combine the latent topic of the
document with its PLMs-based representations to
predict the relevance of documents given a query.

Comparing with these existing solutions, our
proposed ADDAX goes a step further to identify
discriminative features and perform feature denois-

ing by considering the asymmetric nature of many
text matching tasks.

2.3 Semantics-Preserving Hashing
Semantics-preserving hashing (Salakhutdinov and
Hinton, 2009; Li et al., 2016) aims to learn a
concise representation of the input by preserving
the core semantics, which can be considered as a
form of loss-free dimension reduction. Following
this idea, VDSH (Chaidaroon and Fang, 2017) de-
rives hashing codes with variational autoencoders
(VAE) to reconstruct and preserve the semantics
of the original text. NASH (Shen et al., 2018)
learns a VAE-based generative model whose in-
put are TF-IDF vectors, which treats binary codes
as Bernoulli latent-variables. Here, we utilize an
locality-constrainted hashing to filter out irrelevant
information for the long document of a text pair,
which can enable more precise text matching.

3 The proposed method

In this section, we first describe the task formula-
tion in Section 3.1. Afterwards, we present each
component of ADDAX in detail.

3.1 Task Formulation
Without loss of generality, we assume there are a
short query Q and a long document D in an asym-
metric text matching pair: Q = {q1, · · · , ql} and
D = {d1, · · · , dt}, where l � t. Here, qi and dj
indicate the i-th and j-th token in the sequences
respectively, and l and t are the number of tokens in
the sequences respectively. The goal of the asym-
metric matching f(Q,D) is to predict whether Q
and D hold a target relation r, where r ∈ {0, 1}.
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3.2 Architecture

The network architecture of our proposed ADDAX
is shown in Figure 2. The entire framework consists
of four main parts: a BERT-based context encoder,
a matching-adapted gating siamese cell, a locality-
constrained hashing denoiser and a MaxSim (Khat-
tab and Zaharia, 2020) based relevance predictor.

BERT-based Context Encoder. We choose to uti-
lize BERT1 as our context encoder. The BERT-
based context encoder can be described as follows:

UQ = BERT ([CLS]q1q2 · · · ql) (1)

VD = BERT ([CLS]d1d2 · · · dt) (2)

where UQ ∈ Rl×d and VD ∈ Rt×d are word-level
contextual representations derived for query Q and
document D respectively. Parameter d denotes the
output dimension of BERT, and [CLS] is a spe-
cific token indicating the beginning of the token
sequence. To reduce the total number of parame-
ters in ADDAX, mitigate overfitting, and facilitate
feature interactions across the two texts, we share
a single context encoder for both Q and D.

Matching-Adapted Gating Siamese Cell. A
human being can identify the relation between
two sequences (e.g., query-document, keyword-
document, and question-answer) at a glance. For
instance, a well-trained graduate student can easily
categorize the papers in his/her research direction
in term of title and abstract, because he/she can
subconsciously identify the discriminative features,
and ignore the irrelevant features for the decision.

Here, we simulate this feature discrimination
process with a matching-adapted gating siamese
cell (called MAGS). It is a parallel architecture
with two MAG cells, namely the query-side MAG
and the document-side MAG (ref. Figure 3). Since
the both query-side and document-side MAGs are
identical (but with different parameters), we mainly
describe the query-side MAG for simplicity.

Given UQ = [u1; · · · ;ul] and VD =
[v1; · · · ;vt] derived by the context encoder, we
aim to identify discriminative features and com-
posite them as relevance features. At first, a cross-
attention mechanism is utilized to calculate the
word-level similarity as follows:

S = UQV
>
D (3)

1We used the base, uncased variant of BERT.

where S ∈ Rl×t is the similarity matrix for all the
word pairs across the two texts. We then normal-
ize these similarity scores and derive a reference
representation in terms of VD for each word in Q:

RQ = softmax(S)VD (4)

where softmax function is applied over each row
of S, and i-th row of RQ is the reference repre-
sentation for i-th word in Q. The purpose of this
step is to perform soft feature selection from VD

according to S. That is, the relevant information in
D is transferred to represent Q.

However, during this reference representation
process, irrelevant information in Q is also pre-
sented for further relevence learning. Hence, we
construct supplementary features by considering
the divergence of the reference representations
against the original ones: DQ = UQ − RQ,
which works as another form of semantic signals.
Note that, the above cross-attention mechanism just
blindly searches for the most similar token in D to
reconstruct Q despite the fact that the most similar
one inD might be an meaningless match. Thus, we
choose to leverage the attention patterns expressed
in S to both identify the importance of DQ and RQ

as well as the importance of each individual feature
in them:

E = σ(SW1 +B1) (5)

F(r) = RQ �E (6)

F(d) = DQ � (1−E) (7)

pi = σ(Siw1 + b1) (8)

F
(c)
i = pi · F(r)

i ⊕ (1− pi) · F(d)
i (9)

where σ(·) denotes the sigmoid function,
W1,B1 ∈ Rt×d, w1 ∈ Rt×1 and b1 are learnable
matrices and the bias, Si, F

(c)
i , F

(r)
i and F

(d)
i ,

subscript i indicates i-th row of the corresponding
matrix respectively, � and ⊕ are the element-wise
product and vector concatenation operation
respectively.

Afterwards, we adopt a highway network to gen-
erate the discriminative features hQi for each word
in Q:

pi = relu
(
W3F

(c)
i + b3

)
(10)

gi = sigmoid
(
W4F

(c)
i + b4

)
(11)

ii = (1− gi)� F
(c)
i + gi � pi (12)

hQi = W5ii + b5 (13)
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where W3,W4 ∈ R2d×2d and W5 ∈ Rd×2d are
the transformation matrices, b3, b4 and b5 are bias
vectors. We can form the resultant hybrid discrimi-
native features as a matrix: HQ = [hQ1 ; · · · ;hQl ].

Similarly, the document-side MAG cell switches
the roles of Q and D for the same process, but with
different parameters. The discriminative features
are denoted as HD = [hD1 ; · · · ;hDt ].

Locality-Constrained Hashing Denoiser. Since
document D is much larger than query Q, the dis-
criminative feature extraction performed by the
document-side MAG could still introduce many
semantic noises. Here, we adopt a locality-
constrained hashing denoiser to further filter out
irrelevant features. More specifically, the locality-
constrained hashing denoiser defines an encoding
function Fen, a hashing function Fh, and a decod-
ing function Fde.

Encoder function Fen maps the representations
HD into a low-dimensional matrix B ∈ Rt×h.
Here, we model Fen as a feed forward network
(FNN(·)) implemented by a three-layer multi-
layer perceptron (MLP ), where the ReLU(·) is
utilized as the activation function in the second
layer to skip unnecessary features and retain dis-
criminating clues (others are tanh(·)). The en-
coding process can be summarized as: B =
Fen(HD) = FFN(HD).

Hashing function Fh is devised to learn dis-
criminative binary features for purification and
efficient matching. Generally, the sgn(·) func-
tion is the best choice for binarization, but not
differentiable. Hence, we use an approximate
function tanh(·) to replace sgn(·) for supporting
model training. Specifically, the hashing function
is written as: BD = Fh(B) = tanh (αB). The
hyper-parameters α is a coefficient helping gen-

erate balanced and discriminative hash codes. To
ensure that the values in BD ∈ {−1, 1}, we de-
fine an extra constraint (MSE loss) (Li et al., 2016;

Xu and Li, 2020): L1 =
∥∥∥BD −B(b)

∥∥∥
2

F
, where

B(b) = sgn (B), and ‖·‖F is the Frobenius norm.
Similar to Fen, decoding function Fde recov-

ers HD from BD with a three-layer MLP (en-
coder transpose). Hence, the reconstructed matrix
HD
r ∈ Rt×d can be written as: HD

r = Fde(BD) =
FFN>(BD). To preserve the core semantics dur-
ing the reconstruction, a MSE loss is used to guide
the model training: L2 =

∥∥HD
r −HD

∥∥2
F

.
We can also perform a hashing denoiser for HQ.

However, we did not observe improvement due
to noiseless nature of a short query. Instead, the
matrix representations HQ of query Q are updated
with a single MLP layer to match the dimension of
the hashing denoiser: HQ = MLP (HQ), where
HQ ∈ Rl×h is used for final prediction.

Similarity Predictor. With both HQ =
[hQ1 ; · · · ;hQl ] and BD = [bD1 ; · · · ;bDt ], the
matching score between Q and D, f(Q,D), is esti-
mated via a MaxSim operator (Khattab and Zaharia,
2020) as follows:

f(Q,D) =
l∑

i

t
max
j

cos(hQi · bDj ) (14)

where function cos(·) calculates the cosine similar-
ity of the given vectors.

3.3 Model Optimization

The objective of model optimization is to guide
the relevance learning of ADDAX and help es-
timate the matching score of the asymmetric
text pair. During the training stage, we uti-
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lize the negative sampling strategy via a triplet-
based hinge loss (Xu and Li, 2020): L3 =
max {0, 1.0− f(Q,D) + f(Q,D−)}, where D−

is the corresponding negative document sampled
from the training set.

Finally, we need to combine the hinge loss and
two constraints in hashing denoiser together. That
is, the final optimization objective for ADDAX is
a linear fusion of L1, L2 and L3:

min
θ
L =

∑

(Q,D,D−)

[L3 + δ · L1 + γ · L2] (15)

where δ and γ are tunable hyper-parameters con-
troling the importance of each constraint respec-
tively, θ is the parameter set of ADDAX. We use
Adam (Kingma and Ba, 2014) for parameter update
in an end-to-end fashion over mini-batches.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. Our experiments are conducted on four
real-world datasets, covering the tasks of both
question answer and document retrieval: Insur-
anceQA (Feng et al., 2015) is a widely used bench-
mark for QA. We leverage the v1.0 version of this
corpus. WikiQA (Yang et al., 2015) is an open-
domain answer selection dataset. We follow the
preprocessing utilized in (Xu and Li, 2020) to filter
out the questions that have no positive answers;
YahooQA2 is a collection constructed from Yahoo!
Answers. In order to ensure that it has sufficient
asymmetric text pairs, sentences with length among
the range of 16 - 24 are filtered; MS MARCO3 is a
benchmark for information retrieval. It is a collec-
tion of 8.8M passages from web pages and contains
approximately 400M tuples of a query, positive and
negative passages. We utilize the provided data par-
tition for model training and evaluation.

The average length ratio for a query and a doc-
ument is greater than 3 for these datasets, which
conform to asymmetric text matching scenarios.

Baselines. We compare our proposed ADDAX
with two types of state-of-the-art baselines. The
first type can perform question-answer (QA)
matching. The chosen baseline models for an-
swer selection can be partitioned into four cate-
gories: (a) conventional single models: IARNN-

2https://webscope.sandbox.yahoo.com/catalog.php?datatype
=l&guccounter=1

3https://microsoft.github.io/msmarco/

GATE (2016), AP-CNN (2016), RNN-POA (2017),
AP-BiLSTM (2016), HD-LSTM (2017), AP-
LSTM (2018), Multihop-Sequential-LSTM (2018),
HyperQA (2018), MULT (2016), TFM+HN (2019),
LSTM-CNN+HN (2019); (b) single models that
exploit external knowledge: KAN (2018), CK-
ANN (2021), CKANN-L (2021); (c) ensemble
models: SUMBASE,PTK (2018), LRXNET (2018),
SD (BiLSIM+TFM) (2020); (d) BERT-based mod-
els: HAS (2020), DDR-Match(BERT,WD) (2022)
and BERTbase is implemented by ourselves.

As to document retrieval, we include the
following methods for comparison: BM25 (2018),
PACRR (2017), KNRM (2017) and fast-
Text+ConvKNRM (2019). In addition, since the
proposed ADDAX adopts the BERT as the context
encoder, we then pick several uptodate LMs-based
models, including BERTbase ranker (2019),
DeepCT (2019a), docT5query (2019a), Col-
BERT (2020), TCT-ColBERT (2020), COIL-
tok (2021a) and COIL-full (2021a). Furthermore,
we also include two dense retrievers for per-
formance comparison, i.e., RepCONC (2022),
CLEAR (2021b) and ADORE+STAR (2021).

Parameter Settings and Evaluation Metrics. In
our experiments, we choose BERTbase as the con-
text encoder in ADDAX. To be more specific, we
set the hidden dimension h to be 300. The mini-
batch size for insuranceQA, wikiQA, yahooQA,
and MS MARCO is set to be 32, 32, 64, and 64,
respectively. The probability of dropout is set to
be 0.1. The learning rate for insuranceQA, MS
MARCO, wikiQA and yahooQA is 5e−6, 5e−6,
1e−5, and 9e−6, respectively. The numbers of train-
ing epoches are 60 for insuranceQA, 18 for wikiQA
and 9 for yahooQA. In addition, we train ADDAX
for 200k iterations for MS MARCO. The values
of α, δ and γ are set to 5, 1e−6, 0.003 respectively.
To enable fair comparison, we choose the common
evaluaton metrics utilized in these baselines and
directly reuse the reported results from the corre-
sponding papers.

4.2 Performance Comparison

Table 1 summarizes the performance of 22 methods
for answer selection on the corresponding three
datasets. We choose to discuss the experimental
results on each dataset separately.

On InsuranceQA, We can observe that conven-
tional single models like IARNN-GATE, MULT,
and TFM+HN perform much better than other sin-
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Table 1: Performance comparison on the QA datasets (best in boldface). Results not applicable and not available
are denoted “–” and “n.a.” respectively. HAS-HL represents a model variant of HAS without a hashing layer.
Significant improvement with respect to HAS is indicated (†) (p-value ≤ 0.05).

insuranceQA wikiQA yahooQA

Model P@1(Test1) P@1(Test2) MAP MRR P@1 MRR

IARNN-GATE 70.10 62.80 72.58 73.94 – –
AP-CNN 69.80 66.30 68.86 69.57 56.00 72.60
AP-BiLSTM 71.70 66.40 67.05 68.42 56.80 73.10
HD-LSTM – – – – 55.70 73.50
HyperQA n.a. n.a. 71.20 72.70 68.30 80.10
RNN-POA n.a. n.a. 72.12 73.12 n.a. n.a.
Multihop-Sequential-LSTM 70.50 66.90 72.20 73.80 n.a. n.a.
AP-LSTM 69.00 64.80 68.90 69.60 n.a. n.a
MULT 75.20 73.40 74.33 75.45 n.a. n.a.
LSTM-CNN+HN 73.30 69.10 – – – –
TFM+HN 75.60 73.40 – – – –
KAN (Tgt-Only) 71.50 68.80 – – 67.20 80.30

KAN 75.20 72.50 – – 74.40 84.00
CKANN 76.30 75.10 73.20 75.50 84.40 90.20
CKANN-L 75.90 74.90 72.80 73.90 84.20 90.60

SUMBASE,PTK – – 75.59 77.00 – –
LRXNET – – 76.57 75.10 – –
SD (BiLSIM+TFM) – – 70.40 71.20 – –

BERTbase 74.52 71.97 75.30 77.00 73.49 81.93
DDR-Match(BERT,WD) n.a. n.a. 79.58 81.23 n.a. n.a.
HAS 76.38 73.71 81.01 82.22 73.89 82.10
HAS-HL 76.12 74.12 80.65 81.83 74.78 82.68

ADDAX 77.83† 74.83† 82.50† 83.38† 87.63 90.69

gle models. Also, it is not surprising that the BERT-
based methods (e.g., HAS) consistently yield the
better performance compared to single models.
This is expected since the LMs can absorb large-
scale common knowledge to help bridge the vocab-
ulary mismatch. These observations are consistent
with many previous works (Xu and Li, 2020). Sin-
gle models that exploit external knowledge (e.g.,
KAN and CKANN) are superior to those con-
vetional single models and BERT-based models,
mainly because the external knowledge is very help-
ful. As a comparison, our ADDAX achieves sig-
nificantly better performance than almost all base-
lines in InsuranceQA dataset (except for CKANN
on Test2 set).

On WikiQA, it is surprising that single models
exploiting external knowledge can not obtain obvi-
ous advantages compared to some single models.
The possible reasons for this phenomenon could
be the scarity of the training data and irrelevant
external knowledge. Secondly, ensemble models
like SUMBASE,PTK and LRXNET significantly
outperform SD (BiLSIM+TFM). Also, the ensem-
ble models obtain substantial performance gain
than the both conventional single models and the
ones with external knowledge, indicating effective-

ness of integrating multiple models in improving
the generalization ability. Thirdly, BERTbase con-
sistently performs worse than HAS-HL and HAS.
This observation is consistent across all the four
datasets, suggesting positive benefit of model fea-
ture interactions. As to ADDAX, a much better
performance is obtained against all baselines here.

On YahooQA, we observe a similar performance
pattern as with the InsuranceQA dataset. Our pro-
posed ADDAX substantially outperforms all base-
lines in terms of P@1 and MRR. Specifically, com-
pared with the best baseline, our ADDAX obtains
relative P@1 gain of 3.23%.

Table 2 reports the performance comparison
of different document retrieval models on MS
MARCO. For the neural matching models, LMs-
based methods obtain much better performance
than PACRR, KNRM and fastText+ConvKNRM,
suggesting the powerful language expression abil-
ity of the former. Note that DeepCT and
DocT5Query can adaptively adjust the term impor-
tance by exploiting LMs, but they are still inferior
in semantic matching. Also, it is worth noting that
dense retrievers are almost on par with the LMs-
based models. In contrast, ADDAX consistently
achieves the best performance on MS MARCO
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Table 2: Results on MS MARCO (best in boldface).

MS MARCO

Model MRR@10(dev)

BM25 18.70

KNRM 19.80
PACRR 25.90
fastText+ConvKNRM 29.00

BERTbase 34.70
DeepCT 24.30
docT5query 27.70
ColBERT 34.90
TCT-ColBERT 33.50
COIL-tok 33.60
COIL-full 34.80

CLEAR 33.80
RepCONC 34.00
ADORE+STAR 34.70

ADDAX 36.15

dataset. Specifically, the performance gain by AD-
DAX over all the baselines is in the range of 1.25%-
17.40% in terms of MRR@10.

Overall, the above comparisons made over two
different tasks consistently show that the proposed
ADDAX achieves substantial performance gain in
general. These promising results validate that the
matching-adapted gating siamese cell and the hash-
ing denoiser proposed in ADDAX are effective in
performing feature discrimination and denoising
for asymmetric text matching.

4.3 Model Analysis

Ablation Study. Here, we perform a series of ab-
lation studies to explore how each design in AD-
DAX affects the asymmetric text matching. To
be more specific, we compare ADDAX with the
following variants: (a) w/o MAGS, removing the
matching-adapted gating siamese cell; (b) w/o HW,
eliminating highway network to fuse the two kinds
of semantic signals, but add them directly; (c) w/o
HD, excluding the locality-constrained hashing de-
noiser; (d) Att-MAGS, in the case of w/o HD,
keeping only cross-attention mechanism in MAGS.

Table 3 reports the results on MS MARCO and
wikiQA datasets. We can see that the exclusion
of the matching-adapted gating siamese cell in-
curs the largest performance degradation, followed
by the hashing denoiser. Particularly, w/o MAGS
drops absolutely by 5.30% and 4.61% on wik-
iQA in terms of MAP and MRR, respectively, and
1.25% on MS MARCO in terms of MRR@10. In

Table 3: The performance of different ADDAX vari-
ants on wikiQA and MS MARCO (best in boldface).

MS MARCO wikiQA

Model MRR@10(dev) MAP MRR

w/o MAGS 34.90 77.20 78.77

w/o HW 35.32 79.01 80.23

w/o HD 35.49 80.15 81.58
Att-MAGS 35.00 79.79 81.34

ADDAX 36.15 82.50 83.38

addition, Att-MAGS is also worse than MAGS.
These demonstrates that the matching-adapted gat-
ing siamese cell is effective in identifing discrimi-
native features to enhance matching accuracy. Be-
sides, w/o HD also results in worse performance,
suggesting the effectiveness of performing feature-
level denoising on document side. For example,
we illustrate the feature heatmap of a random sam-
ple BD generated by ADDAX and w/o HD (i.e.,
as shown in Figure 4(d)). We can see that the
denoiser indeed filters many features. For each spe-
cific structure designed in MAGS, we also make
the following observation: the performance drop
of w/o HW suggests that the highway network is
more effective to composite the hybrid discrimina-
tive features.

In general, our proposed ADDAX consistently
surpasses five variants on MS MARCO and wik-
iQA datasets, demonstrating the validity of each
component design.

Sensitivity Analysis of α, δ and γ. We further in-
vestigate the sensitivity of hyper-parameters (i.e.,
α, δ and γ) in ADDAX on the wikiQA test set. Re-
call that δ controls the importance of the constraint
loss L1, γ controls the importance of hashing de-
noiser’s reconstruction loss L2, and α control the
balance of the hash codes. When studying a pa-
rameter, the other two parameters are fixed to the
values described in Section 4.1.

From Figure 4(c), we can see that the matching
performance starts growing by increasing α to 5.
Moreover, Figure 4(b) plots the performance pat-
tern by varying δ values. We observe that ADDAX
is not sensitive to δ in the range of [1e−6, 5e−6]
and obtains better performance at δ = 1e−6. Fig-
ure 4(a) plots the performance pattern by varying γ
values. When γ is greater than or less than 0.003,
the performance becomes much worse.
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Figure 4: Performance with varying parameters on wikiQA dataset. The upper and lower subgraphs in Figure (d)
represent feature heatmap of w/o HD and ADDAX on BD respectively.

5 CONCLUSION

In this paper, we introduce an adaptive feature
discrimination and denoising model for asymmet-
ric text matching. Specifically, we first design a
matching-adapted gating siamese cell in ADDAX
to perform feature discrimination and generate the
hybrid representations together for the asymmetric
text pair. We then present a locality-constrained
hashing denoiser for filtering semantic noise for
redundant long documents. Extensive experimen-
tal results on four benchmarks have demonstrated
the effectiveness and superiority of our proposed
ADDAX. As future work, we plan to investigate
the possibility of feature discrimination and denois-
ing in other asymmetric scenarios like document
abstractive summarization, caption generation and
more.
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Abstract
As manually labelling data can be costly, some
recent studies tend to augment the training data
for improving the generalization power of ma-
chine learning models, known as data aug-
mentation (DA). With the arise of pre-trained
language models (PLMs), some recent works
on DA try to synthesize new samples benefit-
ing from the knowledge learned from PLM’s
pre-training. Along the same direction, we in
this paper propose to integrate text-to-text lan-
guage models and construct a new two-phase
framework for augmentation: 1) a fine-tuning
phase where PLMs are well adapted to down-
stream classification with the help of two novel
schemes, and 2) a generation phase where
the fine-tuned models are leveraged to create
new samples for performance lifting. This
paradigm opens up a new way of designing fine-
tuning scheme to better serve DA in an easy-to-
implement manner, and can be easily extended
to other desired tasks. We evaluate our pro-
posal on two public classification datasets and
demonstrate its effectiveness with remarkable
gains.

1 Introduction

Due to the unique challenges of natural language
processing tasks, there is no one-size-fits-all DA so-
lution. Most early attempts are based on token ma-
nipulation (Wei and Zou, 2019; Kobayashi, 2018;
Wu et al., 2019) or paraphrasing (Sennrich et al.,
2016), and the boost is limited or marginal, or even
diminishing or adverse especially given original
training corpus is relatively sufficient or the back-
bone classifiers are PLM based, such as BERT or
RoBERTa (Longpre et al., 2020).

Some researchers have shifted attention on ap-
plying generative language models(GLMs) for DA
(Weng, 2022). Auto-regressive generation LMs
such as GPT2 (Radford et al., 2019) are capable
of generating text with high fluency and diversity,
and therefore could serve as generators to synthe-
size new samples required by classification model

training. However, most existing GLM-based DA
solutions have some drawbacks. First, they fine-
tune GLMs on the training corpus of limited ca-
pacity (Kumar et al., 2020; Anaby-Tavor et al.,
2020; Liu et al., 2020), which can be problem-
atic and prone to overfitting (Dodge et al., 2020;
Phang et al., 2018; Ruder, 2021). Second, how
to introduce external colossal online corpus freely
available, such as reviews, comments and news to
benefit GLMs to better serve DA has not been stud-
ied. Third, effective fine-tuning regime customized
for data characteristic and structure has rarely been
studied. In addition, recent works employing few-
shot in-context generation for DA, such as GPT3,
in avoidance fine-tuning and reap sparks of clever-
ness for automation, suffers from economic costs,
latency in usage and lack of reliability (Sahu et al.,
2022; Yoo et al., 2021; Wang et al., 2022).

To meet above challenges, we explore the poten-
tial of using text-to-text (seq2seq) language models,
which have proved their success in many NLP tasks
such as dialogue generation and machine transla-
tions. In the context of data augmentation, the
original training samples can be regarded as the
source text which sheds some light on the seman-
tic meaning of the topic, whereas new synthetic
samples will be considered as the target text in-
duced by the source. Without loss of generality,
we investigate the generation power of two exem-
plar text-to-text LMs: T5 and BART. Further, to
cater for the text-to-text framework, we propose
two fine-tuning schemes called P2P and S2S which
organize the original corpus into parallel source
and target text pairs, Different from many stud-
ies compromised by limited labelled data, large
publicly available online corpus is adopted in the
fine-tuning process. The proposed solution is eval-
uated on two text categorization tasks. Extensive
experimental results prove these schemes can un-
leash the prowess of text-to-text generation while
improving PLMs’ generalization ability for DA.
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2 Methodology

2.1 Problem formulation

Assume training data Dtrain contain a set of tuples
{Xi, Y i}Ni=1 corresponding to word sequences and
labels respectively. Our objective is to use text-to-
text LMs denoted as G to produce synthetic training
dataDsyn : {X̃i, Y i}N ′

i=1, where X̃i = G
(
Xi
)

and
N ′ = fN as generation can be repeated f times1.
The augmented samples are expected to maintain
both affinity and diversity. Dtrain together with
Dsyn are used to improve the classifier’s robustness
and performance (Gontijo-Lopes et al., 2020).

2.2 Text-To-Text model selection

We adopt T5 and BART model(base version) for
text-to-text generation, for sake of their relatively
lower computational costs and being used as bench-
marks in previous studies. Note that, however, they
can be easily replaced by any other text-to-text
LMs, such as MASS (Song et al., 2019).

2.3 On-demand fine-tuning

To adapt to a downstream task, the most common
approach is fine-tuning, in which PLM’s weights
are slightly updated based on a specific dataset
Dtask. For text-to-text models such as T5/BART,
Dtask = {T ix, T iy}Li=1 consists of parallel text
pairs. Fine-tuning requires extra update steps and
large L to optimize the parameters θe(encoder) and
θd(decoder) with the objective of minimizing the
loss of expression 1.

LPair =
∑

(Tx,Ty)∈Dtask

− log p (Ty | Tx; θe, θd) (1)

In this work, we present two new fine-tuning
schemes tailored for text-to-text DA.

1. Paragraph To Paragraph (P2P) We observe
that sentences in the same article tend to
demonstrate strong internal consistency and
coherence, so sentences in the front can serve
as a prologue that summarizes or induces the
remaining part. Motivated by this observation,
we present a scheme which cuts an article of
M sentences in half: taking the first M/2 as
the source text Tx and the remaining as the
target Ty. To gather enough knowledge of
the context, any articles with M < 4 will be
pruned out.

1We keep f to 1 throughout this work for simplicity

2. Shard To Shard (S2S) We also notice that
adjacent sentences/paragraphs in the same arti-
cle tend to deliver similar meanings and there-
fore are semantically related. To reflect this
idea, we next present another scheme which
first shuffles the sentences, and then randomly
sample M/2 sentences as Tx and the remain-
der as Ty. It is expected that this scheme could
replenish related contents based on the frag-
ments of the original text.

We should note that we do not cherry pick sam-
ples and remove noises or redundancy to minimize
the human intervention.

2.4 New sample generation
We take each Xi from Dtrain as prompt and pass it
into T5/BART for generation of the augmentation
sample 2.

3 Experiments

3.1 Datasets
Related free corpus for fine-tuning We proposed
to fine-tune models on some open corpus freely
available. Given the domain similarity and transfer-
ability, we use the realnewslike split of C4(Raffel
et al., 2019) which is extracted from news websites,
to fine-tune model for downstream topic classifi-
cation task. For sentiment classification task, we
employ the union of Amazon Review, Yelp Restau-
rant Review (Zhang et al., 2015) and IMDB Movie
Review (Maas et al., 2011).

Experimental dataset for DA. To justify the
effectiveness of our proposal, we carefully design
a series of experiments and evaluate it on topic
classification datasets: AG News (Zhang et al.,
2015) and sentiment classification SST-2( Stanford
Sentiment Treebank) (Socher et al., 2013). Both
datasets are class balanced. Details can be seen in
Table 3 in Appendix.

3.2 Baseline DA methods
To make a comprehensive comparison, we include
most popular baseline methods: 1) EDA (Wei and
Zou, 2019) and CBERT(Wu et al., 2019) both of
which are based on token manipulation, 2) Back-
Translation(BT) (Sennrich et al., 2016) based
on paraphrasing, and 3) LAMBDA (Anaby-Tavor
et al., 2020) based on generation. Among them,

2Occasionally the sample may need to be truncated to meet
models’ input limitation requirement, however, this seldom
happens in AG and SST-2 dataset
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CBERT and LAMBDA are both label-conditional
and need to be fine-tuned on Dtrain following their
own schemes.

3.3 Backbone classifiers
To evaluate the gain of introducing new samples,
two widely adopted classifiers are employed: one
is a light-weighted transformer and the other is the
bulky and resource-hungry BERT (Devlin et al.,
2019). In each trial, with a random seed, we select
K samples from each class to construct a balanced
dataset Dtrain and apply different DA methods to
derive synthetic datasets Dsyn respectively. Next,
a classifier C′ is trained on Dtrain ∪Dsyn and C is
trained only on Dtrain. Finally, both C′ and C are
evaluated on Dtest. This trial is repeated 100 times
with different random seed to report the averaged
accuracy overall to get a reliable finding.

3.4 Main results and Analysis
Comparison with baselines. Our proposed method
is compared with alternatives introduced in Section
3.2. The average accuracy is reported in Table 1 3.

It is clear that our method demonstrates the su-
periority over all the benchmarks, especially in
low-data regime. In DA for AG News topic clas-
sification task, fine-tuning T5 or BART on C4
consistently outmatches the baselines, while T5
fine-tuned on S2S paradigm yields the best re-
sults. In DA for SST-2 sentiment classification
task, fine-tuning BART on reviews corpus under
S2S scheme also shows obvious gains. When the
training corpus is larger , the gain from DA be-
comes marginal. Note that LAMBDA is also a
GLM-based DA method; however its performance
is not up to par. Similar observations have been
reported in some recent studies (Wang et al., 2022;
Sahu et al., 2022), which suggests directly fine-
tuning PLMs with small training data may lead
to overfitting as they simply attempt to memorize
what they see.

Ablation study. In this part, we demonstrate the ne-
cessity of appropriate fine-tuning scheme. Also, as
GPT2 is widely used in previous generation based
DA and it also shares some commonness in terms
of the transformer architecture, here we aim to com-
pare between Text2Text model and GPT2 with and
without fine-tuning, where T5 is used as represen-
tative of the Text2Text LM. Besides, since GPT2 is

3std ≤ 0.1, to save space we do not list them in the table

Figure 1: Comparison among T5 fine-tuned under S2S
scheme(T5_ft) and T5 off-the-shelf version(T5_noft);
GPT2 off-the-shelf(GPT2_noft), GPT2 fine-tuned on
C4-realnewslike(GPT2_ft) in AG topics classification
task, transformer-based classifier

pre-trained on corpus of all the web pages scraped
from outbound links on Reddit, which has domain
discrepancy from News, therefore, we fine-tune
GPT2 to C4-realnewslike to eliminate this poten-
tial gap.

As shown in Figure 1, 1) Removing fine-tuning
always reduce the performance under various K,
for both T5 and GPT2, which justifies the neces-
sity of domain adaption and appropriate fine-tuning
scheme design; 2) The auto-regressive GPT2 un-
derperforms T5, which indicates that the structure
of seq2seq is more suitable for generation-based
DA. We will analyze this observation later.
Limitations. Same with the previous findings
(Longpre et al., 2020), when the backbone clas-
sifier is PLM-based, as shown in Table 2, the gains
are not significant or even become adverse. It is
more clear in the sentiment classification, where
various DA methods fail to ameliorate to a large
extent; sometimes even hurt the performance when
K is large. Also, our proposed methods do not
gap too much away from baselines. For the topic
classification, we can still witness an unignorable
boost from BART fine-tuned under S2S scheme,
when K ≤ 64; however, it still suffers diminishing
utility when K ≥ 128.
Discussion. In line with findings from table 1 and
2, fine-tuning BART under S2S scheme can be a
good practice when employing DA in sentiment
classification. There are a variety of noising trans-
formations, such as text infilling and sentence shuf-
fling, in the pre-training stage of BART. Therefore,
BART’s ability of denoising corrupted documents
in pre-training is more closely related to our S2S
scheme in review corpus which presents more chal-
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Table 1: Comparison with baselines under transformer-based classifier and various K settings, |Dtrain| = |Dsyn|

Methods
AG SST-2

K=32 K=64 K=128 K=256 K=32 K=64 K=128 K=256

No DA 58.89 68.00 75.05 79.85 55.89 59.53 63.37 66.79

Baselines

EDA 59.59 68.61 74.88 80.55 55.89 59.33 63.11 66.62
BT 59.96 69.21 74.67 79.90 56.19 59.88 63.15 66.64

CBERT 59.81 69.97 75.89 80.03 56.98 59.98 63.45 66.97
LAMBDA 60.02 69.34 75.37 80.46 56.77 60.02 63.29 66.18

Ours.
T5

S2S 67.21 73.40 78.16 81.82 57.28 60.71 63.92 67.03
P2P 65.65 72.83 77.96 81.34 57.16 60.39 63.67 66.95

BART
S2S 65.16 72.34 77.00 80.77 58.21 61.43 64.86 67.30
P2P 64.99 71.77 76.51 80.91 57.72 61.37 64.17 66.96

Table 2: Comparison with baselines under BERT-based classifier and various K settings, |Dtrain| = |Dsyn|.

Methods
AG SST-2

K=32 K=64 K=128 K=256 K=32 K=64 K=128 K=256

No DA 84.22 86.82 87.54 88.03 70.10 78.30 84.93 86.90

Baselines

EDA 85.13 86.45 87.70 88.15 72.19 79.15 84.65 85.46
BT 85.12 86.60 87.18 88.16 76.94 81.04 84.27 85.32

CBERT 85.28 86.79 87.37 88.01 74.09 80.07 84.38 85.88
LAMBDA 85.07 86.55 87.21 87.98 75.08 80.32 84.55 85.98

Ours.
T5

S2S 84.83 86.39 87.28 87.96 70.87 79.15 84.08 85.76
P2P 84.76 86.52 87.29 87.99 70.83 78.79 83.95 83.84

BART
S2S 85.35 86.84 87.62 88.26 79.81 82.25 84.59 85.99
P2P 85.17 86.81 87.71 88.07 78.42 82.14 84.78 86.32

lenges and makes BART more powerful.
For topic classification, employing T5 is a rel-

atively better choice. As T5’s pre-training task is
fill-in-the-blank-style denoising objectives (span
corruption and recovery), T5 primarily focuses on
filling in dropped-out spans of text, which forces T5
to answer cloze questions based on “knowledge”.
This is more conducive to topic classification DA
where bringing in more related entities(acquiring
rich knowledge) is more crucial than adjusting sen-
tence order or guaranteeing coherency.

GPT2 is widely used in previous generation-
based DA, it is true that during inference, GPT2 is
rambling on its own previous output, making gen-
eration prone to be off-topic that can lose fidelity
in DA. In addition, GPT2 is a pure decoder model,
while T5/BART consists of encoder and decoder.
In other words, unlike the auto-regressive genera-
tion, T5 belongs to directed generation. Theoret-
ically, T5/BART brings more advantages because

of encoder-decoder attention layer which helps the
generative decoder focus on appropriate places in
the source text. This is the main reason why we
introduce T5/BART into DA and its effectiveness
is justified.

4 Conclusion and Future Work

In this paper, we propose to use text-to-text LMs as
a new paradigm for data augmentation in text classi-
fication. Compared to other methods along this di-
rection, our approach is robust, easy-to-implement
and does not need laborious human intervention.
In future work, it is worth exploring more tailored
fine-tuning scheme for DA tasks under various sce-
narios.
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A Implementation details

All experiments are conducted on Linux platform
with GPU instance of Nvidia Tesla V100 type.

For the fine-tuning stage, we adopt the script
from huggingface-transformers 4. All the datasets
we use are download from Huggingface-datasets5.
We set the maximum length of both the source and
target text to 256 which break the balance between
performance and efficiency. Batch size is set to 16
and learning rate is 1e−5. Other parameters follow
the default setting. For the fine-tuning corpus, we
randomly split out 5% for the review dataset as
validation set while for C4 corpus, the validation
set is already officially split. We monitor the rouge
score(Lin, 2004) at each epoch and pick the model
of the best performance 6.

For the DA experiments stage, following previ-
ous studies, we set the optimizer as Adam (Kingma
and Ba, 2014) with an initial learning rate of
4e−5 for training the classifier. The light-weighted
Transformer-based classifier is referred to Keras
implementation7. Pre-trained BERT is downloaded
from Tensorflow Hub8. In each trial we run the
training for 100 epochs and record the best accu-
racy on test set which is officially provided. We
keep the classifier training settings exactly the same
for all trials with and without DA, to ensure fair-
ness. Therefore, the only difference exists in the
introduction of Dsyn produced from various ap-
proaches including ours or baselines.

In the generation process of T5 and BART, we
set maximum length limit: 128 for AG and 64 for
SST-2 DA scenario, based on the average length of
samples in Dtrain. Therefore, generation is termi-
nated when the special EOS token is ejected or the
length of the generated text reach this limit. Nu-
cleus sampling is used in generation (P = 0.9),
to avoid sampling egregiously wrong tokens, but
preserve variety when the highest scoring tokens
have low confidence. Temperature and repetition
penalty is set to 1.2. We only apply basic post-
processing to filter generated examples that are too

4https://github.com/huggingface/
transformers/tree/main/examples/pytorch/
summarization

5https://huggingface.co/datasets
6We find that 1 or 2 epoch is always sufficient to conver-

gence as the rouge metrics on validation set does not grow
anymore.

7https://keras.io/examples/nlp/text_
classification_with_transformer

8https://tfhub.dev/tensorflow/bert_en_
uncased_L-12_H-768_A-12/4

short or full of punctuation or repetitions which
rarely happen in practice.

Among the baseline methods, we follow the op-
timal settings from the original papers. We set the
intermediary language to Chinese for BT.

Our source code is released in Github reposi-
tory9.

Table 3: Descriptions of topic and sentiment categoriza-
tion datasets.

Data Labels Domain

AG World, Sports, Business, Tech topic

SST-2 Positive, Negative sentiment

9https://github.com/yananchen1989/
PLMs_text_classification
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Abstract

Graph neural networks (GNNs) have been re-
cently applied in natural language processing.
Various GNN research studies are proposed to
learn node interactions within the local graph of
each document that contains words, sentences,
or topics for inductive text classification. How-
ever, most inductive GNNs that are built on
a word graph generally take global word em-
beddings as node features, without referring to
document-wise contextual information. Con-
sequently, we find that BERT models can per-
form better than inductive GNNs. An intuitive
follow-up approach is to enrich GNNs with
contextual embeddings from BERT, yet there
is a lack of related research. In this work, we
propose a simple yet effective unified model,
coined ConTextING, with a joint training mech-
anism to learn from both document embed-
dings and contextual word interactions simul-
taneously. Our experiments show that ConTex-
tING outperforms pure inductive GNNs and
BERT-style models. The analyses also high-
light the benefits of the sub-word graph and
joint training with separated classifiers.

1 Introduction

Recently, the methods of non-sequential text mod-
eling have gained attention, particularly for graph
neural networks (GNNs) that learn document repre-
sentation from graph structures. Most GNNs (Yao
et al., 2019; Liu et al., 2020; Lin et al., 2021) are
transductive since they are designed and built on
a single heterogeneous graph, which connects all
of the documents and words, including the training
and testing data. Since testing documents must be
used in training, transductive GNNs cannot be ap-
plied to new unseen documents. Thus, inductive
learning GNNs (Huang et al., 2019; Nikolentzos
et al., 2020; Zhang et al., 2020) have been pro-
posed by representing each document in its own

*The corresponding author.

graph structure of local word interactions, with pre-
trained word embedding initialized on each word
node. However, the global word embeddings are
irrelevant to target documents, and graph structures
might not capture the context well since text is
usually produced in sequential order.

Modern transformer-based (Vaswani et al., 2017)
pretrained models, such as BERT (Devlin et al.,
2019), have shown their effectiveness in capturing
context by sequentially modeling documents. In
this study, we have also found that BERT-style mod-
els alone can outperform existing inductive GNNs.
An intuitive method for enhancing inductive GNNs
incorporates BERT contextual embeddings with
GNNs for final text classification. For the most
relevant research studies, Lu et al. (2020) adopted
a GNN on a global vocabulary graph to enrich the
token embeddings in BERT, and He et al. (2020)
focused on sentences comparison tasks by feeding
BERT contextual embeddings into a dependency
graph. However, for text classification with induc-
tive GNNs, there is a lack of reports on BERT and
BERT-based GNNs. Only Lin et al. (2021) have
adopted BERT’s document embeddings for trans-
ductive GNNs.

Motivated by the recent success of inductive
GNNs and the strengths of pretrained BERT mod-
els, in this work, we further consider the fact that
these two types of models have different objec-
tives. The former focuses on learning local syn-
tactic word interactions, and the latter captures the
context-aware semantics of words. To collabora-
tively join GNN and BERT models, we propose a
unified model for learning contextual inductive doc-
ument representation via graph neural networks,
coined ConTextING, where each model has its own
classifier for its own objective. A sub-word graph
is adopted in ConTextING to focus more on fine-
grained syntactic word usages, such as pre-/post-fix
characters, which avoid over-focusing on content-
specific word usages but maintain the flexibility in
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Figure 1: Overall framework of ConTextING.

accommodating to new words.
With this study, we make the following contri-

butions: (1) We are the first to highlight the fact
that pure GNNs are not superior to BERT and to
provide detailed comparisons of state-of-the-arts
(SOTAs), as well as the model variants. (2) We
present ConTextING, a simple yet effective unifica-
tion of BERT and GNN that yields results superior
to pure inductive GNNs and BERT on a wide range
of datasets. (3) We provide few-shot settings to
illustrate the model’s robustness to unseen words
because of the sub-word adaptation.

2 ConTextING

This work proposed an unified model that consists
of a BERT and a GNN modules as shown in Fig-
ure 1. ConTextING seamlessly enriches document-
wise contextual information from a BERT-style
model to the inductive GNN and makes final pre-
dictions based on the decisions of the two modules.

2.1 BERT-style Document Encoder
Given a text document, it is first tokenized into
a sequence of sub-word tokens T = {ti}, and
fed into the BERT-style model to obtain its docu-
ment embeddings, X ∈ Rδ (from [CLS] token),
and contextual embeddings, X̌ ∈ R|T |×δ for its
tokens T , where i dentoes the i-th sub-word in the
document, and δ represents the hidden dimension
of the BERT-style model.

Compared with the conventional GNNs, which
utilize pretrained word embeddings (e.g. GloVe),
the adaptation of contextual embeddings can cap-
ture local meanings within each document.

2.2 Sub-word Graph Construction
In contrast to previous GNNs, ConTextING con-
structs graphs from smaller word units—that is,
the sub-word tokens—to capture more fine-grained
text clues, such as the pre-/post-fix details of word
usages. Such design can reduce the influence of

topic-sensitive words and achieve robustness to
rare words (Sennrich et al., 2016). For the sub-
word graph, the sub-words are tokenized, based on
byte-pair encoding (Sennrich et al., 2016) or Word-
Piece (Schuster and Nakajima, 2012) algorithms,
according to the document encoder. The sub-word
graph is formally defined in the following manner:

Definition 1. (Sub-word Graph) A sub-word graph
is denoted as G = (V, E) where vertices V ∈ T
represent unique sub-words and edges E are co-
occurrences between sub-words.

The co-occurrences describe the preferences for
word usages within the given document, which are
obtained by a fixed-length sliding window on the
sequence of sub-word tokens T . The connectivity
of the sub-word graph is calculated, following the
work of Yao et al. (2019) as in Definition 2.

Definition 2. (Sub-word Connectivity) Let (vi, vj),
A denote two linked sub-word nodes and the adja-
cency matrix of graph G, respectively. The weight
of this linked edge Ai,j is given by

Ai,j =

{
PMI(i, j), vi ̸= vj ,PMI(i, j) > 0

0, otherwise
(1)

where PMI(i, j) = log p(i,j)
p(i)p(j) denotes the point-

wise mutual information, p(i), p(i) signify the
probabilities of the sub-words’ occurrence in all
sliding windows, and p(i, j) represents the proba-
bility of two sub-words’ co-occurrence.

2.3 Context Enrichment
Given the fact that |V| ≤ |T | for a document, in
order to jointly learn word interactions with con-
textual information in a graph view, it is necessary
to define a mapping matrix M ∈ R|V|×|T | for con-
verting the features of sub-word tj to node vi by

Mi,j =

{
1/freq(vi), vi = vj

0, otherwise
(2)

where freq(vi) denotes the occurrences of each
node vi in T . The contextual node representa-
tion H ∈ R|V|×δ is then retrieved by H = MX̌.

2.4 Token Messages Passing and Aggregation
To learn the word interactions, a token mes-
sage passing and aggregation (TMPA) step is
adopted. With the success of the gated structure
and attention mechanism in natural language pro-
cessing, in this work, we simply adopted gated
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graph recurrent units (Li et al., 2015) as Tex-
tING (Zhang et al., 2020) and the graph attention
network (GAT) (Veličković et al., 2018) on sub-
word graph G. The adoption of other graph convo-
lution methods (Kipf and Welling, 2017; Hamilton
et al., 2017) are left for future works.

Formally, the value of a node v can be updated by
aggregating the information H

(v)
N ∈ R|N |×δ from

its 1-hop neighbors and its current value H(v) ∈
Rδ, where |N | denotes the number of neighbors for
node v. One updating process refers to one TMPA
operation for sub-word interactions, based on the
study of Zhang et al. (2020). By stacking the TMPA
for τ times, each node can obtain features from
neighbors within the τ -hop distance. The node
representation after τ TMPA is denoted by H(v,τ).

2.5 Graph Readout and Jointly Learning
A graph readout step is applied to aggregate the
final node embeddings in order to obtain a graph-
level document representation H(G) as follows:

Ĥ(v) = σ(f1(H
(v,τ)))⊙ tanh(f2(H

(v,τ))) (3)

H(G) =
1

|V|
∑

v∈V
Ĥ(v) +Maxpooling(Ĥ) (4)

where f1 and f2 represent two dense layers for
the weighted embeddings of each sub-word node
through a soft attention mechanism by a sigmoid
function σ. The average summation and feature-
wise max-pooling functions are subsequently ap-
plied to obtain graph representation H(G).

To this end, two features are extracted: the se-
quential document features X from the BERT mod-
ule and the non-sequential features H(G) from
the GNN module. It is worth noting that in
this work, we consider that the aims of BERT
and the GNN are essentially different (sequential
and non-sequential modeling, respectively). A di-
rectly concatenating, adding, or averaging opera-
tion X and H(G) may blur the distinction between
the objectives of these two models. We thus adopt
two classifiers separately for each model with a
linear interpolation (Lin et al., 2021) to regulate the
objectives of BERT and GNN for final prediction.

ŷ(BERT) = softmax(WxX+ bx) (5)

ŷ(Graph) = softmax(WgH
(G) + bg) (6)

ŷ =(1− η)ŷ(BERT) + ηŷ(Graph) (7)

where η ∈ [0, 1] denotes a hyper-parameter to de-
cide the main objective between BERT and GNN.

A higher η value indicates the more focuses on
non-sequential word interactions. The use of the
automatic mechanism to determine η is left for our
future works.

3 Experiments

The proposed model is evaluated by addressing
these concerns: (1) Is ConTextING better than pure
BERT-style models and inductive GNNs for text
classification? (2) Can the ConTextING achieve
satisfactory results with limited training data?

Datasets. Five common benchmark datasets for
evaluating GNNs are adopted and pre-processed,
following the works of Yao et al. (2019); Zhang
et al. (2020); Lin et al. (2021), which are medi-
cal abstracts with 23 diseases classes (Ohsumed);
movie reviews (MR) with sentiment polarities;
Reuters newswire items with 8 (R8) and 52 (R52)
categories; and 20NewsGroups (20NG) with 20
categories, respectively.
Baselines. The compared baselines include (1)
traditional deep learning models with GloVe em-
beddings (Pennington et al., 2014): textCNN (Kim,
2014), LSTM (Liu et al., 2016) and bi-directional
LSTM (Bi-LSTM); (2) SOTA language models:
BERT (BT) (Devlin et al., 2019) and RoBERTa
(RBT) (Liu et al., 2019); (3) SOTA inductive
GNNs: TextGCN-ind (an inductive version by Yao
et al. (2019)), text-level GNN (Huang et al., 2019),
TextING (Zhang et al., 2020), and HyperGAT-
ind (Ding et al., 2020) (topics are learned with-
out testing data.); and (4) GNN-enriched BERT
classifier: VGCN-BERT (Lu et al., 2020).

Since the codes released by HyperGAT’s authors
include testing data when producing its topic fea-
tures, HyperGAT-ind is then reproduced by exclud-
ing the testing data when generating the topics.
VGCN-BERT is also reproduced as its authors only
reported the F1 score on MR. All of the reproduced
results are based on the original authors’ codes1

and the parameters described in the original papers.
The results of some baselines are obtained from

Zhang et al. (2020); Ding et al. (2020) for a fair
comparison. Note that they both followed the same
setting and their baseline results are obtained from
the work by Yao et al. (2019).

Experimental Settings. ConTextING consists of
a base version of BT/RBT and a two-layer gated

1https://github.com/kaize0409/HyperGAT;
https://github.com/Louis-udm/VGCN-BERT;
https://github.com/CRIPAC-DIG/TextING
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Method Ohsumed MR R8 R52 20NG
CNN+GloVe 58.44 77.75 95.71 87.59 82.15
LSTM+GloVe 51.10 77.33 96.09 90.48 75.43
Bi-LSTM+GloVe 49.27 77.68 96.31 90.54 73.18
BERT (BT) 68.74 85.88 97.26 96.26 84.54
RoBERTa (RBT) 69.86 87.08 97.35 95.48 84.07
TextGCN-ind 57.70 74.80 95.78 88.20 83.31
Text-level GNN 69.40 75.47 97.89 94.60 84.16
TextING 70.42 79.82 98.04 95.48 82.48
HyperGAT-ind 67.33 77.08 97.03 94.55 84.63
VGCN-BERT 70.19 85.93 97.89 95.87 55.76
ConTextING-BT 71.28 86.01 97.91 96.52 86.19

w. GAT-BT 71.51 86.16 97.96 96.28 86.25
ConTextING-RBT 72.53 89.43 98.13 96.40 85.00

w. GAT-RBT 72.06 89.24 98.09 96.15 84.97

Table 1: Test accuracy comparison of inductive methods.
The results of the methods highlighted in italics are
produced by this work.

graph recurrent unit with 768 hidden size (800 for
the GAT variant). The window size, η, dropout,
learning rate, loss function and train epochs are set
as 3 (widely used in GNNs), 0.9/0.3 (MR/others),
0.5, 1e−5, negative log likelihood, and 80, respec-
tively. All results are averaged over 10 runs.

3.1 Benchmark Text Classification

Test Performance. Table 1 summarizes the test
accuracy of each model. Overall, it can be ob-
served that ConTextING (four different variants
in total) generally beats all of the baselines, in-
cluding the SOTA models, on every dataset. This
indicates the benefits of integrating text modeling
in both sequential and non-sequential manners. By
concatenating word embeddings from a global vo-
cabulary graph (VGCN) to BERT, VGCN-BERT
also performs well on these benchmark datasets,
except for the 20NG2. The low accuracy of 20NG
might be caused by the unbalanced distribution of
token embeddings between BERT and the graph
embeddings produced by the VGCN component
due to a highly sparse vocabulary graph from a
large amount of vocabulary (> 25k).

Performance Boost Over Pure BERT and GNNs.
Compared with pure BT, RBT, and GNNs, the re-
sults reveal that ConTextING consistently obtains
1 − 2.7 points of gains on accuracy from pure
BT and RBT for all datasets. Regarding GNNs,
it is discovered that pure GNNs are not superior
to BERT-style models. Similar boosts are also ob-
served, particularly for the MR dataset, which im-
proves accuracy by approximately 9 points from

2The reproduced VGCN-BERT results are consistent with
the reported values in the original paper. By initializing VGCN-
BERT with a pretrained BT, it can obtain 60 on the accuracy of
20NG. However, its accuracy decreases after the first epoch.

Method MR Ohsumed
TextGCN 53.15 (-23) 47.24 (-21)
TextING 64.43 (-15) 51.40 (-19)
RBT 69.16 (-18) 50.51 (-19)
ConTextING-RBT 73.14 (-16) 53.67 (-19)
# Samples/words in Training 40/465 *448/7,009
# New Words in Test 18,299 7,148

Table 2: Test accuracy under a few-shot setting. Values
in parentheses are performance reductions from Table 1.

SOTA GNN (TextING). Such significant gains are
mostly contributed by the BERT module, as BT
and RBT themselves can obtain high accuracy with
the merits of large-scale pretraining. In contrast,
on Ohsumed, although BT/RBT are beaten by in-
ductive GNNs, ConTextING-RBT can still obtain
a high score of 72.53 on accuracy.

3.2 Few-shot Inductive Capability

To examine ConTextING’s inductive capability, we
conduct few-shot learning experiments on bench-
mark datasets according to the setting by Zhang
et al. (2020). The number of training samples is
limited to a maximum of 20 labeled documents
per class. Consequently, most words in the test
set are unseen in these settings. The results are
compared with those of TextGCN and TextING
reported by Zhang et al. (2020)3. The results pre-
sented in Table 2 show that our model is the most
robust one among a few training samples. The ob-
servations are basically aligned with the results in
Table 1. For MR, the RBT alone could perform
better than baselines. Although RBT has a worse
result than the one by TextING on Ohsumed, Con-
TextING could further boost the performance of
RBT on both datasets with the aid of the GNN
module. By taking sub-words, which are naturally
robust to the new words, as input for BERT and
GNN modules, ConTextING is thus more stable.

3.3 Model Analysis

Word and Sub-word Graph Comparison. To
evaluate the effectiveness of the sub-word graph,
we adapt TextING but modify its input graph into
a word graph and a sub-word graph with the fixed
fine-tuned RBT’s embeddings with window size
3 (best for a word graph). Figure 2 shows that
TextING with a sub-word graph is able to perform
better consistently on different benchmark datasets.

3Note that there are only nine samples in the training set
for the “C22” class on Ohsumed (which differs from those in
the original report); thus, TextING is reproduced by using the
original authors’ codes.
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Figure 2: Accuracy of using word and sub-word graph.

Model Variants (Acc. ± Std.) R52 Ohsumed 20NG
ConTextING-RBT 96.4±.2 72.5±.3 85.0±.4
(i) w/o. joint train (concat. Embd.) 96.2±.2 72.4±.7 84.4±.5
(ii) w/o. RBT classifier 95.8±.5 72.2±.6 84.5±.3
(iii) w. fix RBT Word Embd. 95.2±.1 66.7±.6 81.2±.4
(iv) w. fix tuned RBT Word Embd. 94.9±.2 68.0±.8 83.9±.4

Table 3: Ablation studies on ConTextING variants.

Effects of Joint Training. To examine the effec-
tiveness of joint training, common methods for ag-
gregating the BERT-style model (RBT) and GNN
are implemented, with careful inspections of differ-
ent hyper-parameters. Table 3 shows the superior
performance of ConTextING with joint training.
With RBT updated during training, (i) and (ii) can
obtain high accuracy under a low learning rate;
however, it is still slightly worse than adopting joint
training. As for MR, comparable results could be
achieved without the joint training.

For (iii) and (iv), the effects of RBT’s contextu-
alized embeddings are examined, where the embed-
dings are fed into the pure GNNs module of Con-
TextING without training the RBT. In other words,
ConTextING is simplified as TextING architecture,
with its node features initialized as contextualized
embeddings. The results show that the contextual-
ized embedding by the fine-tuned RBT improves by
1.3 and 2.7 points on Ohsumed and 20NG, respec-
tively, over the RBT embedding without finetuning.
It is also observed that (iii) and (iv) perform worse
than TextING with its original GloVe embeddings,
which shows that GNNs alone may be unable to
process the high-dimension embeddings well (i.e.
300 v.s. 768). Similarly, the unification in (iii) is
also found easily-fail-to-converge (60%) on MR.

BERT and GNN Embedding Comparison. To in-
dicate the difference in what BERT and GNN mod-
ules have learned, t-SNE (Van der Maaten and Hin-
ton, 2008) is applied to visualize the corresponding
document features in ConTextING-RBT. Figure 3
reveals that the GNN module produces a repre-
sentation different from RBT’s one. Specifically,
the RBT module tends to mess up several docu-
ments (center of Figure 3a), while the GNN mod-

(a) RoBERTa (b) GNN

Figure 3: Visualizations of BERT and GNN modules in
ConTextING on Ohsumed’s test documents. The color
of a node corresponds to the node’s class.

ule can distinguish them more correctly. By jointly
training and predicting on two different classifiers,
ConTextING could achieve superior performance
than each of them individually.

4 Conclusion

In this paper, we have proposed ConTextING,
which successfully learns document embeddings
sequentially and contextual word interactions non-
sequentially at the same time. Various context en-
coders or GNNs are also allowed to build ConTex-
tING on top of this framework. In the future, we
aim to involve GNNs in a large-scale pretraining
process in combination with BERT.
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Abstract

Domain-specific documents cover terminolo-
gies and specialized knowledge. This has been
the main challenge of domain-specific docu-
ment retrieval systems. Previous approaches
propose domain-adaptation and transfer learn-
ing methods to alleviate this problem. How-
ever, these approaches still follow the same
document representation method in previous
approaches; a document is embedded into a sin-
gle vector. In this study, we propose VKGDR.
VKGDR represents a given corpus into a graph
of entities and their relations (known as a vir-
tual knowledge graph) and computes the rele-
vance between queries and documents based
on the graph representation. We conduct three
experiments 1) domain-specific document re-
trieval, 2) comparison of our virtual knowledge
graph construction method with previous ap-
proaches, and 3) ablation study on each com-
ponent of our virtual knowledge graph. From
the results, we see that unsupervised VKGDR
outperforms baselines in a zero-shot setting and
even outperforms fully-supervised bi-encoder.
We also verify that our virtual knowledge graph
construction method results in better retrieval
performance than previous approaches. 1

1 Introduction

In domain-specific QA, building retrievers is chal-
lenging since queries and documents in a specific
domain cover terminologies and specialized knowl-
edge, which are not well covered in general doc-
uments. (Zhang et al., 2020; Ma et al., 2021; Yu
et al., 2020, 2021). Another problem is the diffi-
culty in building datasets for training retrievers.
This problem comes from 1) the complexity of
knowledge treated in the documents, and 2) costly
dataset maintenance; recall that domain-specific
documents are frequently updated (e.g., software

*This work was done during an internship at Adobe Re-
search.

1We provide the implementation of VKGDR at https:
//github.com/yeonsw/VKGDR

manuals are updated whenever there is a version
update) (Castelli et al., 2020; Nandy et al., 2021;
Voorhees et al., 2021; Maia et al., 2018).

Recent domain-specific document retrieval stud-
ies propose domain-adaptation and transfer learn-
ing methods (Thakur et al., 2021; Ma et al., 2021;
Beltagy et al., 2019; Gururangan et al., 2020;
Chalkidis et al., 2020). However, these methods
still use the conventional document representation
method, embedding a document into a single vec-
tor. This is problematic because a single vector
is insufficient to cover complex knowledge in a
domain-specific document. Semi-structured knowl-
edge representation methods effectively address
this problem, but they have only been applied to
open-domain documents. (Dhingra et al., 2020; Sun
et al., 2021; Zhang et al., 2018; Sun et al., 2018;
Yasunaga et al., 2021; Talmor and Berant, 2018).

In this paper, we propose an automatic virtual
knowledge graph construction method for zero-
shot domain-specific document retrieval. A virtual
knowledge graph (VKG) is a graph representation
of a corpus that consists of entities and their re-
lations. In VKG, the relations are represented by
relation vectors (Dhingra et al., 2020; Sun et al.,
2021). This semi-structured representation enables
explicit reasoning over the corpus. We apply this
framework to domain-specific document retrieval.
One of the key components of the VKG construc-
tion method is a relation encoder, which computes
relation vectors of two entities. This study shows
that previous supervision methods for relation en-
coders are insufficient for domain-specific docu-
ments, and we propose a novel distant-supervision
method.

We validate VKGDR in three types of experi-
ments. First, we conduct zero-shot domain-specific
document retrieval on two domain-specific QA
datasets: TechQA (Castelli et al., 2020) and Photo-
shopQuiA (Dulceanu et al., 2018). The results show
that VKGDR outperforms domain-adaptation and
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transfer learning methods. From this experiment,
we also verify that unsupervised VKGDR outper-
forms a fully-supervised dense retriever. Second,
we show that our distant-supervision method for
training the relation encoder outperforms previous
approaches. In this experiment, we construct VKGs
with our relation encoders and baselines’ encoders.
Then, we measure the retrieval performance of each
VKG. Third, we conduct an ablation study on two
main components of a VKG, graph representation
of a corpus and relation vectors. The results show
that each component increases the retrieval perfor-
mance of VKGDR by a large margin.

2 Related Work

A virtual knowledge graph is a graph representa-
tion of a corpus that consists of entities and their
relations. The relations of entities are represented
by relation vectors. Dhingra et al. (2020) propose a
differentiable VKG for multi-hop QA. Their VKG
is trained by the end-to-end supervision method on
question-answer pairs. Sun et al. (2021) use VKG
for knowledge graph QA. They apply relation en-
coders used in relation extraction studies to VKG
construction and follow distant-supervision pro-
posed by Soares et al. (2019). Our work provides
a novel distant-supervision method for building a
virtual knowledge graph for domain-specific doc-
uments. In section 5.1, we compare our methods
with Sun et al. (2021) to validate the efficacy of our
method.

Domain-specific documents cover complex
knowledge and require advanced representation
methods. Previous approaches in domain-specific
document retrieval focus on a document encoder
training method and data scarcity problem but still
follow conventional document representation meth-
ods. Ma et al. (2021); Liang et al. (2020) augment
domain-specific question-answer pairs from an ex-
ternal corpus and train their encoders on the dataset.
Yu et al. (2020); Zhang et al. (2020) provide a
pre-training method on domain-specific documents.
We propose a novel virtual knowledge graph con-
struction method and apply our method to domain-
specific document retrieval.

3 Method

We propose a novel domain-specific document re-
trieval method, VKGDR, based on a virtual knowl-
edge graph (VKG). VKGDR consists of two mod-
ules: a VKG construction module and a document

retrieval module. A VKG is a graph representation
of a given corpus that connects mentions with di-
rected edges, and each directed edge has a relation
vector. (Dhingra et al., 2020; Sun et al., 2021). The
document retrieval module computes the similarity
between queries and documents with the mention
pairs and their relation vectors. We describe nota-
tions and details of each module in the following
sections.

3.1 Notations
In this section, we define notations and terms used
in our paper and VKG research (Dhingra et al.,
2020). VKGDR takes a corpus and outputs a vir-
tual knowledge graph. The corpus, C is a set of
documents; C := {d1, ..., dn}. A document is de-
fined as a sequence of tokens; dk := [d1k, ..., d

Lk
k ],

where djk is the j’th token of document dk and Lk
is the number of tokens in document dk. VKGDR’s
entity extractor builds a set of entities 2, E and a
set of mentions,M. The definition of an entity is
a named entity in the corpus, C, and the definition
of mention is a text segment in the corpus, C, that
corresponds to an entity in E . Formally, the men-
tion is defined as mi = {dk, a, b, ej}; the mention
mi is a text segment starting from index a and end
at index b in document dk, which corresponds to
entity ej . Figure 1 shows the difference between
mentions and entities. In the figure, the highlighted
text segments are the mentions, and there are mul-
tiple mentions for each entity. For instance, entity
“TRC 5011" appears multiple times in this docu-
ment, and each text segment that refers to entity
“TRC5011" is a mention of the entity.

3.2 Virtual Knowledge Graph
A virtual knowledge graph is a directed graph con-
sisting of mentions and their relations. The rela-
tions are represented by relation vectors (Dhingra
et al., 2020). Formally, we define an edge of the
VKG as follows:

(ma,mb, r⃗j).

This represents that there exists an edge directed
from mention ma to mb, and r⃗j is the relation vec-
tor of the mention pair. Mention ma is called the
head, and mb is called the tail. VKGDR constructs
a virtual knowledge graph with the following steps:
1) connecting all relevant mentions and 2) com-
puting relation vectors of edges. In our study, we

2We use the NER model provided by spaCy.
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Mention of entity ``TRC 5011”

TRC 5011 ; PRC 3399 UF UV Connect:Express TECHNOTE (TROUBLESHOOTING)

PROBLEM(ABSTRACT)
error TRC 5011 , PRC 3399 when importing files with formats UF and UV 

CAUSE
The received file is a text file Unix...

Conclusion:
TF 339 in the transfer cannot pass until the file will not contain that same length 
records…

ENVIRONMENT
IBM SterlingConnect:Express for Unix 1.5 (CX)

RESOLVING THE PROBLEM
TF is the right format as long as the file contains only…

Title: IBM error TRC 5011 , PRC 3399 when importing files with formats UF and UV

Figure 1: An example document of the TechQA dataset
and mentions in the document. Orange and green high-
lights are the mentions. Mention is a text segment that
refers to a certain entity. For example, entity “TRC 5011”
appears multiple times in this document and each text
segment that refers to “TRC 5011” is a mention of entity
“TRC 5011”.

assume two mentions are relevant if they appeared
in the same document and connect the two men-
tions with directed edges in both directions. Thus,
for a given document with n mentions, there are n2

combinations of mention pairs and n2 more men-
tions pairs since we connect mentions with directed
edges in both directions.

3.3 Relation Embedding
Relation encoders compute relation vectors of men-
tion pairs connected in a virtual knowledge graph.
Relation encoders aim to embed mention pairs into
a similar vector space if they are in similar relation.
Previous approaches distantly-supervise relation
encoders since training data is often unavailable.
One of the previous approaches assumes that men-
tion pairs referring to the same entity-pair have
the same relation (Sun et al., 2021), and they train
their relation encoder to maximize the similarity
of these similar mention pairs. In this study, we
propose a novel distant-supervision method for
domain-specific documents.

Model Architecture: VKGDR’s relation en-
coder (RE) takes a mention pair and computes the
relation vector.

r⃗i,j = RE(mi = {dk, a, b, eu},mj = {dk, c, d, ev})

In previous relation embedding studies, relation
encoders take preprocessed mention pairs as an in-
put. The preprocessing steps are: 1) adding special
tokens to the head and the tail mentions to indi-
cate their direction and 2) masking the mentions
(Mintz et al., 2009; Soares et al., 2019; Sun et al.,

Document 𝑑"

(𝑚$ =	(𝑑" , 3, 3, “TRC 5011”), 𝑚' =	(𝑑" , 9, 9, “UF” ))

Content:
Index: 0 … 3 … 8 9

�⃗�

Relation Encoder

[CLS], …, [TRC 5011], …, [formats] [UF]

[CLS], …, [ENT] [H], …, [formats] [ENT] [T]

Figure 2: The inference process of the relation encoder
of VKGDR. Two mentions are given to the relation en-
coder. Mention, mi and mj are text spans in document
dk located from index 3 to 3 and index 9 to 9. We mask
mention tokens with [ENT] and indicate the head and
the tail with [H] and [T]. The relation encoder takes this
input and computes a relation vector of the two men-
tions.

2021). Our relation embedding method is based on
the previous approaches and proceeds following
steps on mention pairs. For a given mention pair,
(mi = (dk, a, b, eu),mj = (dk, c, d, ev)), we rep-
resent the two mentions in document dk as follows:

(mi,mj) = [d1k, ..., eueueu, ..., evevev, ..., d
Lk
k ].

ev and eu are the tokens in document dk corre-
sponding to the two mentions. Next, we put special
tokens, [H] and [T], to the mentions as follows:

[d1k, ...eu, [H]eu, [H]eu, [H], ..., ev, [T]ev, [T]ev, [T], ..., dLkk ].

Now, the above sequence of tokens represents
the direction between the two mentions; without
the special tokens, the relation encoder predicts
the same relation vector for the opposite input,
(mj ,mi). Mention masking enables the relation
encoder to compute the relation vector based on
the context of the mention pairs, not based on their
textual representation. We mask the mentions as
follows:

[d1k, ..., [ENT], [H][ENT], [H][ENT], [H], ..., [ENT], [T][ENT], [T][ENT], [T], ..., dLkk ].

Figure 2 shows the input preprocessing step and the
relation vector computation step. In this example,
the green token is the head, and the red token is
the tail. The head and tail tokens are inserted into
the document, and the entities are masked with the
special token. The relation encoder takes the whole
sequence of tokens and computes contextualized
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Figure 3: The document retrieval process of VKGDR. First, VKGDR pre-indexes the corpus VKG. Second, we
extract relevant nodes and edges from the VKG for a given query since comparing the query with the entire VKG is
computationally inefficient. Third, VKGDR transforms the query to a query VKG with the same VKG construction
method used for the corpus VKG. Finally, we compare the two VKGs and compute their similarity. In the right part
of this figure, we use a color-coding method to indicate the relation vectors that share the same entity pairs.

vector representations of the head and tail tokens.
Then, we compute the relation vector from the two
vectors with an additional MLP layer.

Training Process: This study proposes a novel
distant-supervision method for building a virtual
knowledge graph from domain-specific documents.
Distant-supervision methods in previous relation
embedding approaches proceed following steps: 1)
heuristically annotate mention pairs in the same re-
lation and 2) train the relation encoder to maximize
the similarity between mention pairs in the same
relation.

We propose a novel distant-supervision method
for domain-specific documents. One of the previ-
ous approaches assumes mention pairs are in the
same relation if they share the same entity pair
(Soares et al., 2019; Sun et al., 2021). In domain-
specific QA, mention pairs are often in different
relations, and the relation varies depending on the
context of the document. With the previous assump-
tion, relation encoders predict similar relation vec-
tors for mention pairs with the same entity pair
even they are in different relations. We assume that
the context of mention pairs is more important than
the entities they refer to. In our approach, mention-
pairs are in the same relation if they appeared in
the same document. Formally, we train our relation
encoder with the following method. For a given
mention-pair, p = (mi,mj), the positive sample
(p+) is a mention pair appeared in the same docu-
ment, and the negative sample is mention pair in
the different document. The loss function of our

relation encoder is as follows:

L(p, p+, p−1 ,..., p
−
#neg) =

− log(
esim(p,p+)

esim(p,p+) +
∑#neg

i=1 e
sim(p,p−i )

),
(1)

where sim function is the dot product of the two
relation vectors; sim(p1, p2) = r⃗ ⊺

p1 r⃗p2 .

3.4 Document Retrieval Process
VKGDR uses a virtual knowledge graph to find the
document most relevant to a given query. The doc-
ument retrieval process of VKGDR follows four
steps: 1) selecting top-k relevant documents with
BM25, 2) extracting mention pairs appeared in the
top-k documents and their relation vectors from
the VKG, 3) constructing a VKG of a given query,
and 4) finding the most relevant document by com-
paring the document VKGs and the VKG of the
input query. In the first step, we select top-k doc-
uments relevant to the query. This is because our
VKG consists of a huge number of mention pairs;
comparison between the query and the VKG is
computationally costly. Then, we construct docu-
ment VKGs. A document VKG is a graph of men-
tion pairs that appeared in the document. Since
we retrieved top-k documents, we get k number of
document VKGs. In the third step, we transform
the query to a VKG; queries cannot be directly
compared with document VKGs since they are in
textual form. In this step, we use the same relation
encoder used for computing the VKG of the given
corpus. In the last step, VKGDR finds the most
relevant document by comparing the query VKG
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and the document VKGs. We describe the details
of this VKG comparison process in the following
section. Figure 3 shows an overall illustration of
VKGDR.

Comparing two VKGs: The query VKG and the
document VKG consist of several mention pairs as
follows:

VKGq = {(mh,mt, r⃗)i}ki=1

VKGd = {(mh,mt, r⃗)i}ni=1,

where VKGq is the query VKG and VKGd is the
document VKG. VKGDR computes the similarity
between two VKGs with the following equation:

similarity(q, d) =
∑

(mqh,m
q
t ,r⃗

q)∈KTq
(mdh,m

d
t ,r⃗

d)∈KTd

1((md
h,m

d
t ) = (mq

h,m
q
t ))r⃗

q ⊺r⃗ d,

where 1 is an indicator function that maps true
condition to one and zero for false condition.

4 Experimental Setup

We validate domain-specific document retrieval
performance of VKGDR in three experimental set-
tings. In the first experiment, we evaluate VKGDR
and baselines in a zero-shot setting. The zero-
shot setting emulates the real-world problem of
domain-specific document retrieval; training data
is insufficient or absent. Additionally, we conduct
the same experiment in a fully-supervised setting
and show the efficacy of VKGDR. In the sec-
ond experiment, we verify the efficacy of our pro-
posed distant-supervision method by comparing
our method with previous methods. We construct
three VKGs with relation encoders trained with
three different distant-supervision methods. The
third experiment is an ablation study that evaluates
each component in VKGDR. A virtual knowledge
graph consists of two main components: 1) graph
representation of a given corpus and 2) relation
vectors of mention pairs. In this experiment, we
evaluate 1) VKGDR without graph representation
and 2) VKGDR without relation vectors and show
the efficacy of each component. All experiments
are conducted on two domain-specific QA datasets,
TechQA and PhotoshopQuiA, and evaluated with
document retrieval metrics, R@K and MRR. We
describe details of the datasets and baselines in the
following sections and describe evaluation metrics
and hyper-parameter settings in Appendix A.1.

Train Dev Test

TechQA 600 310 490
PhotoshopQuiA 2001 571 284

Table 1: The number of instances in the TechQA dataset
and the PhotoshopQuiA dataset.

4.1 Datasets
TechQA: TechQA is a question answering
dataset in the domain of IT support (Castelli et al.,
2020). The questions ask about IBM products
and applications running in computational envi-
ronments supported by IBM. This dataset pro-
vides question-answer pairs and 800,000 technical
notes that provide descriptions of IBM’s products.
Each question is annotated with 50 documents re-
trieved by BM25, and one of the 50 documents is
the ground truth document. Thus, the task of this
dataset is to find the correct document among the
50 documents. The numbers of question-answer
pairs of TechQA is 1,400. Table 1 shows the de-
tailed statistics of the TechQA dataset.

PhotoshopQuiA: PhotoshopQuiA is a non-
factoid question-answering dataset on Adobe Pho-
toshop (Dulceanu et al., 2018). The questions and
answers are users’ questions and answers from sev-
eral web forums related to Adobe Photoshop. This
dataset provides question-answer pairs but not the
corpus. So, we have built a corpus with all answer
text in this dataset and built question-document
pairs as TechQA; each question is annotated with
50 documents retrieved by BM25, and the 50 docu-
ments contain the ground truth document. Table 1
shows the detailed statistics of the PhotoshopQuiA
dataset.

4.2 Baselines
There are two types of document retrievers: lex-
ical retrievers and dense retrievers. We compare
VKGDR with a lexical retriever and three dense
retrievers.

Lexical Retriever: We use BM25 as the lexical
retriever. BM25 has a better or similar performance
than dense retrievers when training data is insuffi-
cient and the questions are domain-specific (Thakur
et al., 2021). Thus, BM25 is a strong baseline in
our problem setting.

Dense retriever: DPR is a dense retriever for
open-domain QA (Karpukhin et al., 2020). We use
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DPR trained on NaturalQuestions (Kwiatkowski
et al., 2019), an open-domain QA dataset. Domain-
adaptation (Adapt) is another approach for training
dense retrievers in a zero-shot setting. We pre-train
BERT-large (Devlin et al., 2019) on the corpus of
each dataset and compare with VKGDR. We use a
CLS vector of BERT-large for document represen-
tation. The performance of fully-supervised models
provides an approximation of the performance of
unsupervised models. We train a bi-encoder with
the same supervision method used in DPR on the
question-answer pairs of each dataset and compare
this model (“DPR*”) with VKGDR. The encoder
of DPR* is initialized with RoBERTa-large (Liu
et al., 2019).

5 Results

In this section, we verify the efficacy of VKGDR
with the experiments described in the previous sec-
tion. The experimental results demonstrate three
findings. First, VKGDR outperforms baselines in
a zero-shot setting and a fully-supervised setting.
Furthermore, VKGDR without fine-tuning outper-
forms a fully-supervised bi-encoder. Second, our
distant-supervision method for the relation encoder
outperforms the previous method. Third, the two
main components of VKGDR, graph representa-
tion of a corpus and relation vectors, are essential
to achieve the zero-shot performance of VKGDR.
We describe details of the experimental results in
the following sections.

5.1 Zero-Shot Domain-Specific Document
Retrieval

Table 2 and Figure 4 show zero-shot domain-
specific document retrieval performance of
VKGDR and baselines. These experiments sup-
port the following findings: 1) constructing a VKG
is more effective than transfer learning methods
when training data is unavailable, and 2) our distant-
supervision method for the relation encoder outper-
forms the previous method. We describe details of
experimental results in the following paragraphs.

Efficacy of VKG in a Zero-Shot Setting: Table
2 shows the performance of three types of models.
The first column indicates the type of each model.
Type “L” represents lexical retrievers, type “D” rep-
resents dense retrievers, and type “D+L” represents
ensemble models of type “D” and type “L.” The en-
semble models compute a similarity score of each

Type Model S
TechQA

R@1 R@5 MRR

L BM25 ✗ 43.7 63.7 54.2

D
Adapt ✗ 5.0 11.8 12.1
DPR ✗ 16.8 40.6 28.6
VKGDR ✗ 39.3 63.7 50.2

D+L
Adapt ✗ 9.3 28.7 34.5
DPR ✗ 28.7 55.6 47.2
VKGDR ✗ 44.3 68.7 55.8

D DPR* ✓ 36.8 73.1 52.3

Table 2: The zero-shot domain-specific document re-
trieval performance of VKGDR and baselines on
TechQA. In the first column, “L” represents that the
model type is a lexical retriever. “D” represents dense
retrievers. “D+L” is an ensemble model of a dense
model and BM25. The “S” column indicates whether
each model is trained on the question-document pairs
of TechQA. The results show that VKGDR outperforms
baselines of the same model type and even outperforms
the fully-supervised model in R@1 and MRR.

document with the following formula:

Score(di) = −(RankDense(di)+λ·RankBM25(di)),

where RankDense(di) and RankBM25(di) are ranks
of document di predicted by a dense retriever and
BM25. λ is a weight for BM25, and we set λ to 1.0.
The column “S” in Table 2 (“S” stands for supervi-
sion) indicates whether each model is a zero-shot
model or a fully-supervised model. “✗” represents
that the model is an unsupervised model, and “✓”
represents the model is trained on the question-
document pairs of the TechQA train set.

The results of type “D” models show that VKG
construction brings better retrieval performance
than other approaches. We show that the domain-
adaptation method (Adapt) significantly underper-
forms than VKGDR by 34.3%p in R@1. Train-
ing retrievers on data in another domain (DPR)
results in 22.5%p lower performance than VKGDR
in R@1. From these results, we show the efficacy
of constructing a VKG.

From previous literature, we see that BM25
outperforms dense retrievers when insufficient
question-document pairs are provided and when
the questions are domain-specific (Ma et al., 2021;
Thakur et al., 2021). The results of BM25 in Ta-
ble 2 are aligned with previous research on docu-
ment retrievers; BM25 outperforms dense retriev-
ers (“D” models) in Table 2. We combine BM25
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Figure 4: The zero-shot domain-specific document re-
trieval performance of VKGDR in three different rela-
tion encoder distant-supervision methods. SameEnt is
the previous method that assumes two mention pairs
have the same relation if the mention pairs share the
same entity pair. SameDoc is our proposed supervi-
sion. Multi-task is multi-task learning of SameEnt and
SameDoc. The results show the efficacy of our distant-
supervision method.

and dense retrievers (type “D+L”) to improve the
retrieval performance in a zero-shot setting. As a
result, VKGDR achieves 5%p higher retrieval per-
formance, 44.3 R@1, and this outperforms other
baselines, including BM25.

VKG construction enables unsupervised retriev-
ers to overcome a fully-supervised bi-encoder. We
report the performance of a bi-encoder trained on
question-document pairs of TechQA in Table 2
(DPR*). We see that only type “D” VKGDR out-
performs DPR* in R@1 and MRR. These results
support that the VKG is a key component in achiev-
ing a better performance than a fully-supervised
model when training data is unavailable.

VKGDR outperforms previous approaches in
building a VKG: Figure 4 shows the zero-shot
document retrieval performance of three different
VKG construction methods on TechQA. The three
methods are “SameEnt”, “SameDoc”, and “Multi-
task.” The relation encoder in each method uses a
different distant-supervision. “SameEnt” assumes
that mention pairs sharing the same entity pair
have the same relation (Sun et al., 2021). “Same-
Doc” is our distant-supervision method. We con-
duct multi-task learning of “SameEnt” and “Same-
Doc” (“Multi-task”). Multi-task learning combines
multiple object functions and achieves better per-
formance than the models trained by only one of
the object functions.

Type Model S
PhotoshopQuiA

R@1 R@5 MRR

L BM25 ✗ 4.9 10.5 8.8

D
Adapt ✗ 2.1 14.4 11.1
DPR ✗ 9.1 26.7 19.9
VKGDR ✗ 22.5 45.0 33.3

D+L
Adapt ✗ 1.4 11.6 9.8
DPR ✗ 6.3 16.9 14.1
VKGDR ✗ 8.8 15.8 12.9

D DPR* ✓ 12.3 36.2 24.5

Table 3: The zero-shot domain-specific document re-
trieval performance of VKGDR and baselines on Pho-
toshopQuiA. This table shares the symbols used in the
first column and the meaning of the “S” column with
Table 2. The results show that VKGDR outperforms
baselines in a zero-shot setting and even outperforms
the fully-supervised model.

Figure 4 shows that our distant-supervision,
“SameDoc”, outperforms the previous approach,
“SameEnt”. Also, we see that the performance of
“SameEnt” increases when “SameEnt” is jointly
trained with our distant-supervision. However, the
performance of “SameDoc” decreases in this multi-
task setting. This result indicates that the previous
approach and our method are not complementary
in the multi-task setting. From these results, we
show that the context of mention pairs provides a
better supervision signal than the textual form of
mention pairs (entities of the mentions).

5.2 Zero-Shot Domain-Specific Answer
Retrieval

Table 3 shows the zero-shot answer retrieval per-
formance of VKGDR and baselines on Photo-
shopQuiA. Type “D” retrievers show similar re-
sults as Table 2; VKGDR outperforms other type
“D” baselines. VKGDR also outperforms the fully-
supervised bi-encoder, DPR*. These results show
that using a VKG brings better answer retrieval per-
formance than the domain-adaptation method and
the transfer learning method when training data is
unavailable.

In Table 3, we show the performance of BM25
and dense retrievers ensembled with BM25. The
lexical retriever underperforms dense retrievers on
PhotoshopQuiA, whereas BM25 is a strong base-
line on TechQA. Also, using lexical matching de-
generates the overall retrieval performance of dense
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Model
TechQA

R@1 R@5 MRR

DPR* 36.8 73.1 52.3
VKGDR 48.7 76.8 60.1

Model
PhotoshopQuiA

R@1 R@5 MRR

DPR* 12.3 36.2 24.5
VKGDR 25.3 52.1 38.1

Table 4: The document retrieval performance of
VKGDR and DPR supervised on question-document
pairs of TechQA and PhotoshopQuiA.

retrievers. This is because of the inconsistent use
of terminologies between the corpus and the ques-
tions. The corpus of PhotoshopQuiA consists of
answers written by users, not the official manual of
the product, and this makes PhotoshopQuiA more
difficult than TechQA.

5.3 Fully-Supervised Domain-Specific
Document Retrievers

Fully-supervised VKGDR outperforms the fully-
supervised bi-encoder (DPR*). Table 4 shows
the retrieval performance of VKGDR trained on
question-document pairs of TechQA and Photo-
shopQuiA. We train the relation encoder with
the following assumption: mentions pairs that ap-
peared in the same question-document pair are in
similar relation. The fully-supervised relation en-
coder is then used to compute the relation vec-
tors of the VKG, and VKGDR uses the new
VKG for document retrieval. The relation en-
coder trained on question-document pairs increase
the retrieval performance of VKGDR; R@1 of
VKGDR in Table 4 are 4.4%p and 2.8%p higher
than the R@1 of VKGDR in Table 2 and 3.
Also, fully-supervised VKGDR significantly out-
performs DPR* by 11.9%p and 13.0%p in R@1 on
TechQA and PhtoshopQuiA, respectively; we see
the same pattern in other evaluation metrics.

5.4 Ablation Study

VKG consists of two components: graph repre-
sentation of a corpus and relation vectors. In this
section, we verify the importance of each mod-
ule. Table 5 shows the performance of VKGDR
on TechQA in three different settings: VKGDR,
VKGDR without using the relation vectors (w/o

R@1 R@5 MRR

VKGDR 39.3 63.7 50.2
- w/o relation embedding 32.5 59.3 44.9
- w/o mention pairs 31.8 53.7 42.9

Table 5: This table shows the performance of VKGDR
in three different settings: without any modification on
the VKG, using the VKG without relation vectors (“w/o
relation embedding”), and using the VKG without the
graph structure (“w/o mention pairs”). The results indi-
cate that both components are essential to achieve the
previous experimental results.

relation embedding), and VKGDR without using
the graph structure (w/o mention pairs). We de-
scribe each setting with the example in Figure 3.
“w/o relation embedding” is a model that uses 1⃗
(a vector that all elements are one) for all relation
vectors in the VKG; all relation vectors in Figure 3
are replaced with 1⃗. This is equivalent to using the
number of overlapping mention pairs as the sim-
ilarity between a question and a document. “w/o
mention pairs” is a model without mention pair
matching. For instance, all values in the similarity
matrix (right part of Figure 3) are used to compute
the question-document similarity. Table 5 shows
that “w/o relation embedding” has better perfor-
mance than “w/o mention pairs”. This indicates
that the graph structure is slightly more important
than the relation embedding. However, the gap is
not significant in R@1 and MRR. So, we see that
both components are essential to achieve the docu-
ment retrieval performance of VKGDR.

6 Conclusion

The main challenge in domain-specific document
retrieval is the difficulty of specialized knowledge
and terminologies appearing in the documents. In
this study, we propose VKGDR to resolve this
problem. VKGDR consists of two modules: 1)
the model that represents a given corpus into a
graph of mentions and their relations and 2) a docu-
ment retriever based on the VKG. We showed that
VKGDR outperforms previous retrievers in zero-
shot domain-specific document retrieval. When in-
sufficient training data is provided, unsupervised
VKGDR shows even better results than a fully-
supervised dense retriever. Also, we compared our
VKG construction method with a previous method
and showed that our method performs better on
domain-specific documents.
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A Appendices

A.1 Experimental Setup
Evaluation Metrics: Recall@k (R@k) and mean
reciprocal rank (MRR) are evaluation metrics for
document retrieval tasks. R@k measures the pro-
portion of the model’s predictions where top-k re-
trieved documents contain the ground truth docu-
ment. MRR is defined with the predicted rank of
the ground truth document as follows:

MRR =
1

n

n∑

i=1

1

ri
,

where n is the number of predictions, ri is the
predicted rank of the ground truth document of i’th
query.

Hyper-parameter Settings: We use Adam opti-
mizer with a warmup ratio of 0.1 and set the learn-
ing rate to 2 × 10−5 for VKGDR and baselines.
We use the validation score to get the best check-
point for all models. VKGDR’s relation encoder is
trained on the pre-trained BERT-large model. We
train the relation encoder with a batch size of 128
for two epochs. The max length of the relation en-
coder is set to 128, and the number of negative
samples in (1) is set to 2. We train RoBERTa (Bi-
Encoder) with a batch sizes of 32 for twenty epochs
and Adapt with a batch size of 80 for ten epochs.
For both baselines, we set the max sequence length
to 512. We use a machine with eight A100 GPUs.
We report the result of a single trial.

A.2 License or Terms of Artifacts
We use BERT whose license is under the Apache
License 2.0 free with modification and distribution.
Also, we use RoBERTa whose license is under the
GNU GENERAL PUBLIC LICENSE free with
modification and distribution. All models we used
are publicly available.
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Abstract

In contrast to traditional exhaustive search,
selective search first clusters documents into
several groups before all the documents are
searched exhaustively by a query, to limit the
search executed within one group or only a
few groups. Selective search is designed to
reduce the latency and computation in mod-
ern large-scale search systems. In this study,
we propose MICO, a Mutual Information CO-
training framework for selective search with
minimal supervision using the search logs. Af-
ter training, MICO does not only cluster the
documents, but also routes unseen queries
to the relevant clusters for efficient retrieval.
In our empirical experiments, MICO signifi-
cantly improves the performance on multiple
metrics of selective search and outperforms a
number of existing competitive baselines.

1 Introduction

In information retrieval (IR), searching over all the
documents is quite costly at a large scale (Risvik
et al., 2013). Selective search (Kulkarni, 2013;
Kulkarni and Callan, 2015) divides documents into
a number of shards (clusters) to allow an incoming
query to search over only a small number of these
shards that are most relevant to this query. It tries
to preserve the quality of search results similar to
that of searching over the whole corpus, with less
computation and shorter retrieval latency, achieved
by limiting an incoming query to search within
only a few chosen document shards. Sharding is
the process of breaking a massive collection of
documents into smaller chunks called shards. Ran-
domly assigning documents to shards, a popular
approach, cannot guarantee documents relevant to
a specific query restrained within one shard or only
a few shards. With the observation that semanti-
cally similar documents tend to appear together in
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the search results of the same query (van Rijsber-
gen, 1979), researchers in recent years have devised
multiple machine learning-based algorithms for se-
lective search. These algorithms are tailored to
benefit the document retrieval process by dividing
a large volume of the corpus in a certain way so
that semantically related documents are allocated
in the same cluster and then routing new queries
to the most relevant clusters subsequently. In this
way, the retrieval system can return the search re-
sults with both efficiency and accuracy, as shown
in Figure 1. These approaches significantly differ
from the traditional sharding methods that either
randomly split the collection into several groups
(Barroso et al., 2003) or allocate them based on
simple handcrafted rules (Gravano et al., 1999),
and have achieved comparable performance to ex-
haustive search over the entire document corpus.
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Figure 1: Machine learning based selective search
first divides documents into different shards based on
their semantic similarities and then routes queries to
the shards containing documents most relevant to this
query.

Nevertheless, having led giant strides in selec-
tive search, these approaches fail to address a few
critical practical issues when scalable IR systems
for a large number of documents in the industry
are needed. A major concern is that these ap-
proaches heavily rely on a multi-stage process:
firstly, complex clustering procedures are applied
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to allocate documents into different shards, while
later additional elaborate algorithms are used to
choose a small number of shards for incoming
queries. The multi-stage process needs not only
additional infrastructure support to bridge the out-
put of the previous step as the input of the next
step but also is prone to error propagation. A nat-
ural attempt to mitigate the aforementioned diffi-
culties is to construct a model for both document
allocation and subsequent query routing, with an
objective function to be optimized in an end-to-
end paradigm. This approach ensures applying
gradient-based learning to modules or components
of the system coherently.

To this end, we introduce Mutual Information
CO-training (MICO), a novel end-to-end approach
for selective search. We argue that by maximiz-
ing the mutual information of the query routing
variable and document assignment variable of a
relevant query-document pair, we can leverage
co-training in an end-to-end training fashion to
overcome the aforementioned difficulties. This ap-
proach first creates a bipartite graph by exploiting
the query-document relations and then treats query
and document as two different views of the same
example while maximizing the mutual information
between the cluster variable of these two views.
We show an overview of the MICO framework in
Figure 2 and summarize our contributions:

1. We propose MICO, Mutual Information CO-
training, a novel approach for selective search.
MICO treats the query and the document as two
different views of the same training example:
the query-document pair in the log, maximiz-
ing the mutual information between the cluster
assignment variables of each view. The cluster
assignment variables are parameterized via two
separate distributions conditioned on the query
and the document.

2. We design MICO ready for practical use as it
is being trained end-to-end for both document
sharding and subsequent query routing. While
the trained document allocation module assigns
documents into different clusters, the trained
query routing module routes new queries to the
target cluster(s) to retrieve the most relevant
documents at a low cost. To the best of our
knowledge, MICO is the first attempt to deal
with document sharding and query routing in
selective search in an end-to-end fashion.

3. We show significantly improved performance

on two IR data sets with MICO on multiple im-
portant metrics empirically in selective search.
MICO beats competitive baselines regarding
query coverage while minimizing search costs.

2 Related Works

There are quite a few studies on selective search
on document sharding and query routing. Most of
them aggregate similar documents into the same
shards by measuring the semantic relevance among
them in the collection to facilitate the subsequent
search by limiting the query to be executed only
within a few shards (Aly et al., 2013; Kulkarni,
2013; Kulkarni and Callan, 2010, 2015). Only a
few studies on document sharding utilize the search
log, where the information within the queries used
to retrieve the documents are tailored to assist the
clustering (Puppin et al., 2006; Poblete and Baeza-
Yates, 2008; Dai et al., 2016). But they either
merely extract simple features from the query to
form rules or just employ the term frequency infor-
mation in the queries as weights in the documents
clustering process, neglecting both the strong con-
nection between queries and documents and the
semantic information hidden inside the query. Be-
sides, all the previous studies rely on a multi-stage
process for document clustering and the subsequent
query routing, where an additional shard selection
procedure has to be applied during the query rout-
ing stage (Si and Callan, 2003; Thomas and Shok-
ouhi, 2009; Kulkarni et al., 2012; Aly et al., 2013).
Besides, earlier studies primarily focus on ensuring
semantically similar documents are allocated in the
same cluster, neglecting the imbalance among the
generated clusters, which weakens their applica-
tion in practice. Furthermore, only a few studies
take load-balancing into account when allocating
documents (Kim et al., 2016; Dai et al., 2016). But
these load balancing algorithms are rule-based pro-
cedures (by first ordering the shards by sizes and
then regrouping them), in addition to the document
sharding step.

Co-training (Blum and Mitchell, 1998; Ganchev
et al., 2008) was initially proposed for semi-
supervised training, where two classifiers are
trained separately on two distinct views of the same
input data and forced to have similar predictions.
These two classifiers are designed to constrain each
other to make coherent decisions, and the objective
function penalizes the disagreement between them.
Dasgupta et al. (2001) established the PAC general-
ization bounds for co-training for multiple classes
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(b) Overview of Mutual Information CO-training (MICO)
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Figure 2: Figure 2a on the left illustrates the query-document pairs with the clusters they belong to, denoted by
red, blue, and green, respectively. Figure 2b on the right is an overview of our Mutual Information CO-training
(MICO) approach: the query and the document are treated as two views of the same example, and two different
distributions parameterize the cluster assignment variables of the two views respectively. In Figure 2c and Figure
2d, we illustrate cluster selection with an example where the predicted cluster index distribution is a vector for
each query and the document.

classification, extending the theoretical bound on
only two classes in the original study (Blum and
Mitchell, 1998). However, as pointed out by Pierce
and Cardie (2001), the success of co-training heav-
ily relies on the high-quality labeled data. This
is also true in an attempt to apply co-training for
unsupervised learning (Collins and Singer, 1999),
where sophisticated rules which are manually ex-
tracted are used as seeds for bootstrapping.

Information Maximization (IM) (Gomes et al.,
2010; Bridle et al., 1992), promoting the idea that
the output shall retain as much information as the
input variable, has shed light on learning without
direct supervision signals. In language process-
ing, the celebrated brown clustering (Brown et al.,
1992) maximizes the mutual information between
random bigrams. The information bottleneck ap-
proach (Tishby et al., 2000) proposes an algorithm
that discovers the representative coding of the input
by capturing its relevant structure and proves its
convergence. Gomes et al. (2010) observe the de-
generation and class imbalance when using mutual
information for clustering and propose adding a

regularization term for remedy. Combined with the
rejuvenated deep neural networks, IM has shown
robust performance on clustering (Hu et al., 2017)
with data augmentation.

More recent works have studied the application
of information maximization in relational data. Co-
training has been jointly used with information
maximization in speech processing (McAllester,
2018). Stratos (2019) models the contextual infor-
mation and the target class via mutual information
maximization for word class induction, showing
that the variational lower bound is more robust
against the bias from noise. It is built upon the
theoretical findings that the mutual information es-
timation through any high-probability lower bound
has limitations that measuring and maximizing mu-
tual information from finite data is a challenging
training objective (McAllester and Stratos, 2020).
This study is further extended in an adversarial
training setup to circumvent computing the global
marginal distribution (Stratos and Wiseman, 2020).
Our work on selective search is inspired by these
studies, treating the query and the document as two
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views of one sample and respecting the resulting
cluster size balance. It is trained in an end-to-end
paradigm without direct supervision signals.

In the IR community, whether dense or sparse
retrieval is better is still a prolonged debate (Lin,
2021; Luan et al., 2021), and recent studies have
shown the improved performance of interpolating
both (Li et al., 2022), implying designing an ap-
propriate approach to combine them is a promising
direction. We would like to note selective search
is the strategy for distributing the information re-
trieval workload, and is complementary and agnos-
tic to innovations in algorithms related to dense
or sparse retrieval. In fact, our selective search
approach can be used in conjunction with dense,
sparse or combined retrieval.

3 MICO: Mutual Information
CO-training

Our assumption is that for a relevant query-
document pair in the search, the cluster index as-
signments z of the query q and z′ of the docu-
ment d are two views of that pair (q,d), thus z
is equal to z′. MICO, consisting of a document
allocation module and a query routing module, is
trained based on this assumption. After training,
MICO assigns the document to the cluster based
on the prediction made by the document allocation
module and routes new incoming queries to the
cluster based on the prediction by the query routing
module.

Our goal is to learn a model from the double-
view examples in the search logs. The search logs
are historical data that contains the relevance in-
formation between the query and its relevant doc-
uments, but does not carry explicit information of
how documents shall be allocated into different
shards, neither the query routing information of
which shard the query shall be dispatched to. Thus,
we have minimal supervision signal when train-
ing the model to learn to cluster documents and
queries.

The desired model maximizes the document cov-
erage (recall) and minimizes the search cost si-
multaneously. We force the cluster selection of
the query and the relevant document to be coher-
ent during training, formally as p(z|q) ≈ p(z′|d).
Here we force the two distributions to be consis-
tent if the query and the document are relevant to
reflect the coherent cluster assignment. Meanwhile,
to avoid certain resulting clusters being oversized,

causing the search in these shards to be inefficient,
we consider balancing the document shard sizes.
This concept is illustrated in Figure 3. This balance
is achieved by assigning the documents to clusters
as uniform as possible (formally p(z′) ≈ Uniform
where p(z′) is the distribution of cluster indices
z′). MICO achieves cluster selection coherency
between queries and documents by minimizing the
mutual information between p(z|q) and p(z′|d),
and balances shard size by adding an entropy regu-
larization term p(z′).

Cluster Size Balance

Figure 3: We use entropy regularization to ensure the
desired cluster size balance, thus document shard size
balance is achieved by maximizing the entropy H(Z ′).

After training, the model allocates all the doc-
uments into shards; and for a new coming query,
since we have cast query routing as a clustering
problem, the query routing module generates a
score for an incoming query during the inference
time across all the shards, and will route the query
to the shards that have the highest scores.

MICO consists of three main components: One
component maps queries to clusters, denoted by the
conditional distribution pψ(z|q), parameterized by
ψ; Another one projects documents to clusters, de-
noted by the conditional distribution pφ(z′|d), pa-
rameterized by φ; The third one, denoted by gθ(z′)
parameterized by θ, uses a variational distribution
to approximate an intractable distribution pφ(z′).
All these three components are modeled via neural
networks to account for the complexity.

3.1 Tractable Loss of MICO

As the mutual information I(Z;Z ′) of the query
and the document cluster assignment and the en-
tropy regularizationH(Z ′) of the document assign-
ment are intractable (details are in the Appendix
Section B.2), we approximate them usingH(Z;Z ′)
and H+(Z ′) respectively, i.e., we define the loss

1182



function of MICO as

L = H(Z ′;Z)− βH+(Z ′) (1)

where

H(Z ′;Z) = E(q,d)∼pQD [H(pφ(z′|d); pψ(z|q))]

= E(q,d)∼pQ,D

[∑

z=z′
−pφ(z′|d) log

(
pψ(z|q)

)]
, and

H+(Z ′) =
∑

z′
−Ed∼pD [pφ(z′|d)] log

(
gθ(z′)

)
,

with β as a tunable hyper-parameter.
The optimization objective is to find

φ∗, ψ∗ = argmin
φ,ψ

{
max
θ
L
}
. (2)

We solve this minimax optimization problem by
interleaving updating (φ, ψ) and θ during training.
This is similar to training generative adversarial
networks (GAN) in deep learning or the Actor-
Critic model in reinforcement learning.

In the rest of this section, we provide brief
explanations of the loss above. We rewrite
L as − (I+(Z;Z ′) + (β − 1)H+(Z ′)) where
I+(Z;Z ′) = −H(Z ′;Z) + H+(Z ′), I+(Z;Z ′)
and H+(Z ′) are approximated upper bounds of
I(Z;Z ′) and H(Z ′) respectively. The intractable
term H(Z ′) is approximated by H+(Z ′), by re-
placing log(pφ(z′)) with log(gθ(z′)) (log(pφ(z′))
is intractable due to the nature it is evaluated on
full dataset): we maximize H+(Z ′) w.r.t. θ to
force gθ(z′) to be close to pφ(z′). Hence, mini-
mizing L is equivalent to maximizing I+(Z;Z ′)
and H+(Z ′) when β > 1. In contrast to the pro-
posed loss, direct application of the cross-entropy
H(Z ′;Z), corresponding to β = 0, is inappropri-
ate here, as it will result in cluster imbalance: the
model tends to assign all the documents into one
cluster and route all queries to this shard.

The choice of β in the loss L in Equation 1 con-
trols the trade-off between the mutual information
I+(Z;Z ′) and the entropy H+(Z ′), which in turn
balances shard sizes while retaining the success of
selective search. H(Z ′) is maximized if and only
if when Ed∼pD [pφ(z′|d)] is a uniform distribution
over Z ′, i.e., the cluster sizes are all equivalent.
Larger β helps regularize our document allocation
module to better balance the cluster sizes which
leads to reduced search costs and latency.

3.2 MICO-q: MICO with Query Consistency
Multiple relevant documents can correspond to the
same single query in the search log. We hypoth-
esize that forcing the coherency of cluster assign-
ment among these documents shall help the model
yield a better document allocation module. There-
fore, we use a cross-entropy Hq among those doc-
uments as an additional regularization term. With
this intuition, we develop a variant of MICO termed
MICO-q, whose loss function is

Lq = −βH+(Z ′) +
1

1 + γ
(H(Z ′;Z) + γHq),with

Hq = E
q∼pQ,d1,d2∼pD|Q

H
(
pφ(z|d1); pφ(z|d2)

)
,

where γ is another tunable hyper-parameter.

4 Experiments

4.1 Data sets
We evaluate the proposed framework on the fol-
lowing two data sets, representing two different do-
mains: the E-commerce search logs (ECSL) data
set and the Cross-Lingual Information Retrieval
(CLIR) data set derived from Wikipedia (Sasaki
et al., 2018). We process the data to ensure the data
sets contain only distinct documents and divide the
queries as non-overlapped training, development,
and testing set, following standard IR research pro-
cedures. We show the detailed data statistics in
Table 5 in Appendix.

ECSL E-commerce search logs (ECSL) data set
is created by sampling queries and product descrip-
tion documents on an English commercial shop-
ping website. The relevance of a document to a
query is derived from user actions on the search
results. We consider three types of user actions
on documents with increasing levels of relevance
to the query: impression (the document is among
the search results), click (the document link in the
search results is clicked), and purchase (the prod-
uct of the document from the search result is pur-
chased). The former relation always entails the
latter. We randomly split the queries into training,
validation, and testing sets with the ratio of 8:1:1.

CLIR In the CLIR set, queries are in English,
extracted as the first sentences from English wiki
pages, with the title words removed. Two differ-
ent types of relevance exist: DL stands for directly
relevant, meaning the documents are the foreign-
language pages having an inter-language link to
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the English pages; PL stands for partially relevant,
denoting the documents having mutual links to
and from the DL document. To provide a com-
prehensive study on the robustness of the proposed
framework, we select the documents in two high-
resource languages: French (fr), Italian (it) and in
two low-resource languages: Tagalog (ta), Swahili
(sw). Queries are randomly split into training, vali-
dation, and testing sets with the ratio of 3:1:1.

4.2 Experimental Setup
In this study, we preset the number of shards to
be 64 for the ECSL data set and 10 for the CLIR
data set, according to the number of documents.
To make a fair comparison with other baselines,
we use the TF-IDF feature with the most frequent
words as the feature vector for both the queries and
the documents.

We compare our proposed methods with a num-
ber of competitive baselines in selective search,
including Random assignment of documents into
clusters, K-means, a variant of K-means called
Balanced K-means ensuring balanced cluster
sizes, an information-maximization based cluster-
ing algorithm IMSAT (Hu et al., 2017), KLD
sharding algorithm (Kulkarni and Callan, 2015)
and QKLD sharding algorithm (Dai et al., 2016).
Details of these baselines are in Appendix A.2.

In our experiments, we use the impression rela-
tionship between the training query and the docu-
ments for training in ECSL data. We use both the
DL and PL relations for training in CLIR, as they
are non-overlapped documents. The expectation
over the whole training set is approximated by the
average over one batch during the training, t. We
also provide a detailed theoretical analysis of batch
training in MICO in Appendix C. Due to limited
spaces, more details of the experimental setup can
be found in Appendix A. Note neither the queries
nor the documents have cluster labels, and the clus-
tering effect in selective search is evaluated by the
retrieval performance explained next.

4.3 Query Coverage Analysis
We first evaluate the query coverage (“recall” in
some literature) of our methods and compare it with
baselines. Query coverage measures the percent-
age of documents retrieved in the top few shards
over all the documents retrieved in the exhaustive
search.

Formally, the query coverage of a single query
q in the top N shards is defined as CovN (q) =

(∑N
i=1R

q
sqi

)
/Rq, where Rq is the total number of

relevant documents in the corpus per the query q,
and Rq

sqi
is the number of relevant document per

the query q in the i-th selected shard sqi per query q.
Consequently, the average coverage over the query
set is CovN =

(∑
q∈QCovN (q)

)
/|Q|, where Q

is the testing queries set.
Our implemented coverage metric is even more

strict than the coverage metric in Dai et al. (2016)’s
study. Instead of sorting the shards by the number
of retrieved documents they contain, we rigorously
sort the chosen shards of a testing query based on
the prediction score generated by the query routing
module, which is more intrinsic to the nature of
selective search.

We show our experimental results on ECSL in
Table 1, with the mean value and the standard de-
viation in the parenthesis over five runs on three
different relevances. We limit each testing query
being routed to the most relevant one shard and
ten shards based on the prediction. Our MICO and
its variant MICO-q beat all the baselines, except
impression with one shard only. By only search-
ing within the ten most relevant shards, which is
15.6% of all the shards, MICO-q can achieve al-
most 95% coverage on impression, even compa-
rable to the exhaustive search. MICO-q performs
slightly more robust than MICO when searching
over more shards, which might be attributed to its
additional regularization term.

We also present the evaluation results on CLIR
in Table 2, where we only probe the most relevant
shard for each query. Due to the queries and docu-
ments being of different languages, we build vocab-
ularies for the queries and documents separately,
denoted by sv, to generate input to the document
sharding module and the query routing module.
MICO (and MICO-q) beats all the baselines (ex-
cept DL in ta). We also notice the performance of
QKLD dramatically drops on the CLIR data set.
We attribute this failure to its usage of the query
information to build document shards inappropri-
ately because queries and documents are from dif-
ferent languages. QKLD and MICO (including
MICO-q) are the only two models to utilize the
query information specifically for document shard-
ing. Based on the observation, we argue inappro-
priate use of the query information will deteriorate
document sharding in selectively search. MICO,
on the contrary, is able to leverage the queries for
better document sharding, showing its robustness
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in the cross-lingual scenario.
Though MICO beats all the baselines, if the top

selected shards are extremely large, this approach
is inapplicable in practice, as the actual search cost
will be similar to the exhaustive search. In addi-
tion, MICO fails to beat KLD and QKLD in some
exceptions, potentially ascribed to the most rele-
vant shard created by them being larger with more
documents. Thus, we analyze the search cost next.

4.4 Cost Analysis

To measure the search efficiency, we use the met-
rics search resource cost and search latency cost
(the lower, the better) introduced in the early study
(Kulkarni et al., 2012) to evaluate our models and
the competitors. Search cost depends highly on the
size of the shards we send the query to. Search
resource cost calculates the resource usage as the
upper bound on the number of document evalu-
ated for each query, defined as CresN =

∑N
i=1 |s

q
i |,

where |sqi | is the number of documents in the i-th
relevant cluster to query q. Similarly, search latency
cost counts the number of evaluated documents on
the longest execution path for query q for its top N
selected shards: C latN = max1≤i≤N |sqi |.1

We show our evaluation results on the ECSL data
set and the CLIR data set in Table 3, by restricting
the search within the five most relevant clusters for
ECSL, and the two most relevant for CLIR. Please
note in these evaluations Random is the skyline,
as all the documents are evenly distributed to N
shards such that the shard sizes are almost equal.
MICO demonstrates its supreme performance, even
beating the skyline in some cases, showing its abil-
ity to control shard sizes while ensuring semanti-
cally similar documents are allocated in the same
shard. MICO-q also achieves comparable perfor-
mance with MICO. We interpret it as MICO and
MICO-q are able to trade off document relevance
in the same shard and balance of shard sizes on a
sweet point. We also notice the high cost yielded
by KLD and QKLD, which compromises their use
in practice.

4.5 Balance Among Shard Sizes

We further investigate the performance of MICO
and MICO-q via visualizing the trade-off between
query coverage and search resource cost and the

1Note the metrics in Kulkarni et al. (2012) introduce an
additional term for the resource selection step. Since MICO
doesn’t require this additional step, that term is always evalu-
ated to 0 with MICO (and MICO-q).

balance of resulting shard sizes on ECLS. Figure
4a shows that MICO and MICO-q always perform
the best in terms of query coverage, at different
levels of search resource cost. Figure 4b indicates
that IMSAT is able to create well balanced shards,
and MICO and MICO-q are on a par with it. To
trade off query coverage and shard size balance,
MICO and MICO-q are the best among all the
competitors, gaining the favor in practical usage.
Note that KLD and QKLD create very unbalanced
shards, which explains MICO and MICO-q fail to
beat them in some cases on query coverage analysis
earlier: most of the documents are allocated into
the same shard.
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Figure 4: Figure 4a shows MICO and MICO-q are sig-
nificantly better than all other methods as they have
high impression coverage with low search cost. From
bottom-left to top-right, the markers on each line rep-
resent query coverage limited within the top-1, top-3,
top-5, top-10, and top-30 clusters selectively. Figure
4b shows Random generates the most balanced shard
sizes (as a flat line), and IMSAT also creates very bal-
anced shards. MICO and MICO-q are on a par with
IMSAT. In contrast, QKLD and KLD yield very unbal-
anced shards.

4.6 Effect of Entropy Regularization in
MICO and MICO-q

We also examine the effect of entropy regulariza-
tion by adjusting its strength in MICO and MICO-q
by tuning their hyper-parameter β on ECSL. From
Figure 5a, we can see that β does not affect the
cost-coverage curve in a significant way. From Fig-
ure 5b, setting β larger than 1 yields much more
balanced cluster sizes which means that the entropy
regularization is necessary to balance cluster sizes.
We conjecture this difference results from the de-
gree of homogeneity of the documents the model
allocates to different shards.
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impression click purchase

Models N=1 N=10 N=1 N=10 N=1 N=10

Random 1.56 (6e-3) 15.62 (0.02) 1.49 (0.08) 15.32 (0.85) 1.45 (0.24) 14.54 (0.27)

K-means 48.98 (1.60) 79.05 (0.51) 51.90 (1.56) 81.57 (4.0) 54.49 (1.97) 83.58 (1.49)

B-K-means 39.72 (1.12) 64.56 (1.30) 43.89 (2.03) 64.25 (1.78) 49.02 (2.37) 69.59 (1.22)

IMSAT 41.68 (0.55) 71.37 (0.28) 47.48 (1.62) 79.12 (2.94) 52.41 (0.42) 79.83 (1.06)

KLD 43.46 (5.91) 69.87 (5.34) 44.94 (8.04) 71.17 (5.55) 46.77 (9.32) 70.5 (4.08)

QKLD 86.14 (8.85) 93.96 (0.77) 73.72 (7.25) 81.89 (1.2) 75.79 (7.22) 83.56 (1.57)

MICO 67.09 (0.20) 92.85 (0.12) 82.85 (1.51) 97.81 (0.19) 81.21 (0.49) 96.61 (0.14)

MICO-q 69.81 (0.34) 94.28 (0.09) 82.48 (1.91) 98.26 (0.20) 81.15 (1.23) 97.25 (0.16)

Table 1: This table shows the performance of query coverage (recall) of MICO, MICO-q, and different baselines
over three different query-document relationships on the ECSL data set. We show the performance by only probing
the top-1 most relevant shard and the top-10 most relevant shards given a query. The number in the parenthesis
right next to the coverage is the standard deviation over five runs. We observe other than the impression relation in
which QKLD has the best performance, MICO or MICO-q beat all the baselines.

fr it ta sw

Models DL PL DL PL DL PL DL PL

Random 10.02 (0.07) 9.72 (0.16) 10.02 (0.09) 10.0 (0.35) 9.88 (0.93) 9.86 (0.48) 10.01 (0.23) 10.0 (0.67)

K-means 12.19 (1.99) 10.79 (2.04) 14.91 (2.46) 16.36 (3.55) 16.25 (2.5) 21.08 (3.46) 21.71 (4.84) 18.55 (3.65)

B-K-means 12.2 (1.82) 11.44 (1.32) 12.45 (3.13) 12.46 (4.59) 12.78 (2.85) 11.23 (3.84) 11.71 (1.29) 12.16 (1.21)

IMSAT 19.77 (9.53) 19.84 (9.68) 40.09 (8.91) 40.13 (8.88) 12.72 (4.22) 11.89 (3.62) 8.4 (2.24) 8.6 (2.63)

KLD 38.6 (6.02) 40.65 (7.58) 60.94 (5.25) 61.83 (3.12) 66.53 (8.43) 59.77 (7.18) 21.11 (3.52) 24.83 (3.81)

QKLD 17.76 (3.63) 18.82 (2.08) 18.9 (4.91) 17.45 (4.12) 23.65 (6.81) 24.4 (5.54) 12.23 (0.75) 16.45 (2.25)

MICO (sv) 44.93 (3.47) 53.12 (2.17) 58.08 (1.22) 65.83 (1.06) 63.55 (4.45) 60.94 (4.92) 26.0 (3.51) 28.67 (3.73)

MICO-q (sv) 47.9 (2.68) 48.04 (3.44) 75.27 (3.6) 75.01 (4.39) 63.91 (5.3) 61.29 (5.31) 27.42 (3.37) 28.14 (2.54)

Table 2: This table shows the performance of query coverage of MICO, MICO-q, and different baselines on two
different query-document relationships on the CLIR data set by only probing the most relevant shard given a query
because we only divide the documents into ten shards. The number in the parenthesis right next to the coverage
is the standard deviation over multiple runs. sv stands for separate vocabularies for the queries and documents,
as in cross-lingual retrieval, the source language and the target language have different vocabularies, and separate
vocabularies perform better than unified ones empirically. MICO and MICO-q beat all the baselines except DL in
ta.

4.7 Ablation Study

We further investigate the effectiveness of differ-
ent neural architecture variants of MICO. Instead
of parameterizing the document allocation module
and the query routing module differently by two
separate neural networks (pψq (z|q), pφd(z′|d)), we
can parameterize both modules with the same neu-
ral network (pψq (z|q), pψd (z′|d)), avoiding the risk
of over-parameterization. We denote this variant as
-Par. The recent emergence of the pre-trained lan-
guage models such as BERT (Devlin et al., 2019)
also provides a richer representation with contex-
tual information. We use the BERT multilingual

base model2 to produce the text-level representa-
tions and feed them into MICO, either as fixed (de-
noted as +BERT.fx) or by fine-tuning the underly-
ing BERT model (denoted as +BERT.ft). We show
the query coverage (QC) and Search Resource Cost
of these neural variants in Table 4 on ECSL, by
probing the most relevant shard for each query. The
results show that unifying the query module and
the document module parameterization deteriorates
the performance. We also notice that fixed BERT
representations hurt the model performance signifi-
cantly, while appropriate fine-tuning help improve
the performance.

2https://huggingface.co/bert-base-multilingual-cased
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CresN ClatN

Models ECSL C-fr C-it C-ta C-sw ECSL C-fr C-it C-ta C-sw

K-means 2.061 14.12 11.54 1.6 1.42 1.572 6.44 5.95 0.95 1.27

Balaced K-means 0.620 8.1 6.83 0.99 0.87 0.277 2.58 2.02 0.34 0.67

IMSAT 0.370 9.57 5.89 0.93 0.61 0.082 3.57 4.78 0.58 0.53

KLD 2.17 17.48 13.15 1.93 1.09 1.41 13.26 11.43 1.72 0.74

QKLD 4.5 8.84 7.42 1.34 0.99 4.47 3.72 3.07 0.94 0.66

MICO 0.367 6.19 5.13 0.85 0.93 0.089 2.34 1.89 0.5 0.5

MICO-q 0.369 7.12 6.71 0.94 1.07 0.093 2.73 2.47 0.51 0.58

Random 0.368 7.20 5.95 0.8 0.73 0.074 2.41 1.99 0.27 0.25

Table 3: This table shows the performance of different models on the Search Resource Cost and the Search Latency
Cost metrics, representing the search efficiency, with the lower the number, the better the performance. The results
shown in this table are scaled by being divided by 106 on the ECSL data set and by 104 on the CLIR data set.
Note in this set of experiments, we use separate vocabulary (sv) for MICO and MICO-q on CLIR. We observe the
supreme performance of MICO, which in some cases even beats the Random skyline.
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Figure 5: This figure shows the results of MICO
and MICO-q with different entropy parameter β ∈
{1, 2, 5, 10}. (a) The overall performance is hardly af-
fected by β. (b) While larger β induces better balance
on the cluster sizes, the difference between β = 5 and
β = 10 is very small. When setting β = 1, the objec-
tive degenerates to use mutual information only (with-
out the additional entropy regularization term) and the
resulting shard sizes are significantly more unbalanced
than with the other choices of β.

5 Conclusion

In this study, we present MICO, a Mutual Informa-
tion CO-training framework for document sharding
and query routing in selective search with minimal
supervision. Our contributions are: First, during
training, MICO maximizes the mutual information
between the cluster assignment variables of the
query and the document, forcing the prediction of
two views of the query-document pair coherently.
Second, this design enables it to be trained end-to-
end for both document sharding (clustering) and
subsequent query routing, featuring its practical
use when vast volumes of documents are required

Model QC CresN=1

MICO (-Par) 66.08 0.365
MICO 67.09 0.367
MICO (+BERT.fx) 41.67 0.367
MICO (+BERT.ft) 76.41 0.375

Table 4: This table shows MICO with neural architec-
ture variants. BERT with fine-tuning achieves better
performance than the original MICO, while the other
variants yield deteriorated performance. The search
cost is slightly higher with the best-performing system.
We attribute that the refined representations cause the
model to weigh more on semantic similarity than clus-
ter balance.

to be searched simultaneously. Third, we show
improved performance of MICO empirically on
multiple important metrics in selective search.

Our future research direction includes further
investigation of the regularization for more bal-
anced sizes among all the shards, the utilization
of complex neural language models to enrich the
document and the query representation for higher
query coverage via better clustering results, the
reduction of potential noise between a query and
its associated document in the data set, and the
detection policy to decide when the model needs
to be retrained if constant update of the model is
needed when deployed. We are also interested in
potential extension of this approach to multi-modal
data, e.g., image search, music search and software
search where the non-traditional documents are in
the non-textual formats.
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APPENDIX

A Experimental Setup

A.1 Data Processing

We use the gensim package to preprocess all the
queries and documents into TF-IDF features in
three steps: 1. Tokenize the sentences into words
and remove stop words; 2. Create a dictionary with
most frequent words (20,000 for ECSL, and 3,000
for CLIR); 3. Transform the queries and documents
into TF-IDF vectors.

Data sets Queries Documents
#Train #Dev #Test Avg(|L|) #Doc Avg(|L|)

ECSL 339k 38k 55K 4 4.7M 16
CLIR-FR 14.8K 4.9K 4.9K 21 240K 177
CLIR-IT 14.8K 4.9K 4.9K 21 198K 169
CLIR-SW 12.8K 4.1K 4.1K 18 24k 82
CLIR-TA 14.3K 4.7K 4.7K 19 27k 79

Table 5: This table shows the statistics of the ECSL
data set and the CLIR data set, including the numbers
of queries, documents and their average length.

A.2 Baselines

Balanced K-means is built on top of K-means with
approximated Hungarian algorithm to ensure the
formed cluster sizes are well balanced. In K-means
and Balanced K-means, documents and training
queries are used together to form clusters, and we
select the nearest clusters to the query vector as
the top relevant clusters to route the query to. In
IMSAT, the same model is used for both document
assignment and query routing, after being trained
on both queries and documents. KLD (Kullback-
Liebler Divergence) only uses document infor-
mation to form document clusters while QKLD
(Query-based Kullback-Liebler Divergence) lever-
ages the query information to form clusters. In
KLD and QKLD, an additional shard selection al-
gorithm is used to choose the relevant shards for
new incoming queries.

A.3 MICO

During training, we set the batch size as 256. We
optimize the objective using Adam with learning
rate 0.03 for φ and ψ, and with learning rate 0.1 for
θ. We model both pψq (z|q) and pφd(z|d) with neural
networks with one hidden layer (dimension 20) and
one softmax layer. We set the hyper-parameter for
entropy regularization as β = 10. To stablize the
training process, we set gradient clipping as 10.0.

A.4 MICO-q

We set the hyper-parameters the same as in MICO
except: 1. We set the gradient clipping as 1.0; 2.
We update θ for 4 steps instead of 1; 3. We set the
entropy regularization strength as β = 3; 4. We set
the query consistency parameter as γ = 3.

A.5 Computing Environment

We use an AWS EC2 instance (p3.2xlarge) con-
sisting of 8 vCPUs (Intel Xeon E5-2686 v4) with
64GB memory, with one NVIDIA GPU card (Tesla
V100-SXM2-16GB) for running our experiments.
The computing environment is with Python 3.8,
PyTorch 1.5, CUDA 9.2.

B Details of MICO

B.1 Preliminary

We introduce the notations and the basic concept of
mutual information briefly here. We denote a ran-
dom variable X’s probability function by pX(x).
We shorten it to p(x) or pX when its meaning is
clear under its context. We use pθ(x) when p(x)
is in a parametric distribution family and θ is the
parameter. pXY (x, y) is the joint distribution of
two random variables X and Y , and pX|Y (x|y) is
the conditional distribution of X given Y , while
pY (y) =

∑
x pXY (x, y) is the marginal distri-

bution of Y under pXY (x, y). The expectation
of a function f(x) w.r.t. a random variable x
is defined by Ex∼pX [f(x)] =

∑
x∈X f(x)pX(x).

We denote the entropy of X by H(X) =
H(pX) = Ex∼pX [− log(pX(x))], while the con-
ditional entropy is H(Y |X) = Ex∼pXH(pY |X) =
E(x,y)∼pXY [− log(pY |X)]. The cross-entropy be-
tween X and X ′ is defined as H(X;X ′) =
Ex∼pX [− log(pX′(x))]. We denote the mutual
information between X and Y by I(X;Y ) =∑

x

∑
y pXY log

(
pXY
pXpY

)
= H(X)−H(X|Y ). It

is minimized at 0 when X and Y are independent,
i.e., pXY = pXpY . The chain rule for mutual infor-
mation is I(X; (Y,Z)) = I(X;Z) + I(X;Y |Z)
where I(X;Y |Z) = H(X|Z)−H(X|Y, Z) ≥ 0.

B.2 Information Maximization
Approximation

We explain the reason of having the three compo-
nents for calculating the mutual information. We
seek to train the probabilistic modules pψ(z|q) and
pφ(z′|d) through maximizing the mutual informa-
tion between Z and Z ′ over our training data set, as
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shown in Figure 2b. From this probabilistic graph,
we know Z and Z ′ are independent when givenQ,
i.e., I(Z ′;Z|Q) = 0. Based on the chain rule of
mutual information, we also have I(Z ′; (Q, Z)) =
I(Z ′;Q)+ I(Z ′;Z|Q) = I(Z ′;Z)+ I(Z ′;Q|Z).
Therefore, I(Z ′;Z) = I(Z ′;Q) − I(Z ′;Q|Z).
Since I(Z ′;Z) is intractable under large amount of
data and I(Z ′;Q|Z) ≥ 0, we maximize I(Z ′;Q)
instead, which is an upper bound of I(Z ′;Z).
With the fact I(Z ′;Q) = H(Z ′) − H(Z ′|Q),
we need the marginal distribution pφ(z′) =
Ed∼pD [pφ(z′|d)] and the conditional distribution
pφ(z′|q) =

∑
d p

φ(z′|d)p(d|q), both of which
are also part of the logarithm part of the two
entropy terms. Therefore, I(Z ′;Q) is again
intractable if we only use pφ(z′|d). We approx-
imate pφ(z′) and pφ(z′|q) by neural networks
gθ(z′) and pψ(z|q) respectively, which falls
into the category of variational methods. As
H(Z ′) = H(pφ(z′)) ≤ H(pφ(z′); gθ(z′))
and H(Z ′|Q) = Eq∼pQH(pφ(z′|q)) ≤
Eq∼pQH(pφ(z′|q); pψ(z|q)), we upper-
bound H(Z ′|Q) with H(Z ′;Z) :=
E(q,d)∼pQD [H(pφ(z′|d); pψ(z|q))], and intro-
duce H+(Z ′) := Ed∼pDH(pφ(z′|d); gθ(z′))
as an upper bound of H(Z ′). Note that with
H(X) = minY H(X;Y ), our approximation
Î(Z ′;Q) = H+(Z ′)−H(Z ′;Z) gives exact eval-
uation of I(Z ′;Q) when H+(Z ′) is minimized
w.r.t. θ when gθ(z′) = pφ(z′), and H(Z ′;Z) is
minimized w.r.t. ψ when pψ(z′|q) = pφ(z′|q).

C Theoretical Analysis of Stochastic
Optimization of MICO

First we show why computing I(Z ′;Z) is in-
tractable even under the stochastic optimiza-
tion framework. With the MICO framework,
the expectation over pQD is approximated by
the average over one batch of data B =
{(q1,d1), (q2,d2), . . . , (qb,db)}. If one objective
is f consisting of the expectation over pQD, we
evaluate f on B and denote the corresponding
result as fB . The core assumption in stochastic
optimization is f = EBfB .

For

I(Z ′;Z) = E
(q,d)∼pQD


∑

z,z′
pφ(z′|d)pψ(z|q) log

(
E(q,d)∼pQD [p

φ(z′|d)pψ(z|q)]
E(q,d)∼pQD [p

φ(z′|d)]E(q,d)∼pQ,D [p
ψ(z|q)]

)]
,

if we use

IB(Z
′;Z) =

1

b

b∑

i=1


∑

z,z′
pφ(z′|di)pψ(z|qi) log

(
1
b

∑b
i=1[p

φ(z′|di)pψ(z|qi)]
1
b

∑b
i=1[p

φ(z′|di)]1b
∑b

i=1[p
ψ(z|qi)]

)]
,

it violates the assumption since I(Z ′;Z) 6=
EB[IB(Z ′;Z)].

In MICO, we replace I(Z ′;Z) with I(Z ′;Q).
Moreover, we use

HB(Z
′;Z) =

1

b

b∑

i=1

[∑

z=z′
−pφ(z′|di) log

(
pψ(z|qi)

)]

and

HB(Z
′) =

1

b

b∑

i=1

∑

z′
−pφ(z′|d) log

(
1

b

b∑

i=1

pφ(z′|di)
)

to approximate

H(Z ′;Z) = E(q,d)∼pQ,D

[∑

z=z′
−pφ(z′|d) log

(
pψ(z|q)

)]

and

H(Z ′) =
∑

z′
−E(q,d)∼pQ,D [p

φ(z′|d)] log
(
E(q,d)∼pQ,D [p

φ(z′|d)]
)
,

respectively.
Note that H(Z ′, Z) = EB[HB(Z ′, Z)] while

H(Z ′) 6= EB[HB(Z ′)]. This is due to the loga-
rithm part inHB(Z ′). Without using the stochastic
approximation on the logarithm, since it is expen-
sive to evaluate the expectation of pφ(z′|d) on the
full dataset, we have to replace it with gθ(z′) in
the logarithm term which creates an upper bound
H+(Z ′) on H(Z ′) as an approximation (used in
the tractable loss function of MICO):

H+(Z ′) =
∑

z′
−E(q,d)∼pQ,D [p

φ(z′|d)] log
(
gθ(z′)

)
.

H+
B(Z

′) =
1

b

b∑

i=1

∑

z′
−pφ(z′|d) log

(
gθ(z′)

)
,

H+(Z ′) = EB[H+
B(Z

′)]
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The stochastic evaluation of L is then LB =
βH+

B(Z
′) − HB(Z

′;Z) and we have L =
EB[LB], which is also the reason of why we use
H(Z ′;Z) instead of H(Z ′|Q) in MICO.

For each batch of data, since H(Z ′) =
mingθ(z′)H

+(Z ′), we first update gθ(z′) for one
step to descend H+

B(Z
′) (corresponding to SGD),

and then update pψ(z′|q) and pφ(z′|d) for one step
to descend LB (corresponding to another SGD).
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Abstract

Deep prompt tuning (DPT) has gained great
success in most natural language process-
ing (NLP) tasks. However, it is not well-
investigated in dense retrieval where fine-
tuning (FT) still dominates. When deploying
multiple retrieval tasks using the same back-
bone model (e.g., RoBERTa), FT-based meth-
ods are unfriendly in terms of deployment cost:
each new retrieval model needs to repeatedly
deploy the backbone model without reuse. To
reduce the deployment cost in such a scenario,
this work investigates applying DPT in dense
retrieval. The challenge is that directly apply-
ing DPT in dense retrieval largely underper-
forms FT methods. To compensate for the per-
formance drop, we propose two model-agnostic
and task-agnostic strategies for DPT-based re-
trievers, namely retrieval-oriented intermediate
pretraining and unified negative mining, as a
general approach that could be compatible with
any pre-trained language model and retrieval
task. The experimental results 1 show that the
proposed method (called DPTDR) outperforms
previous state-of-the-art models on both MS-
MARCO and Natural Questions. We also con-
duct ablation studies to examine the effective-
ness of each strategy in DPTDR. We believe
this work facilitates the industry, as it saves
enormous efforts and costs of deployment and
increases the utility of computing resources.

1 Introduction

Fine-tuning (FT) has been a de facto approach for
effective dense passage retrieval (Karpukhin et al.,
2020; Xiong et al., 2020) based on pre-trained lan-
guage models (PLM). However, FT is unfriendly
for industrial deployment in multi-task scenarios.
Imaging for cloud service providers or infrastruc-
ture teams of search companies, each retrieval
model (w.r.t., an individual task) necessarily re-
deploys a backbone model since the weights of

1Our code is available at https://github.com/
tangzhy/DPTDR

the backbone model in each task are fine-tuned
and therefore slightly different. That dramatically
increases hardware costs and inefficiency.

Recently, prompt tuning (PT) (Liu et al., 2021a)
is a lightweight alternative to FT, which does not
need storing a full copy of the backbone model
for each task. One variant of PT, namely Deep
Prompt Tuning (DPT; Li and Liang, 2021; Liu et al.,
2021b), exhibits comparable performances with
FT in various NLP tasks. DPT enjoys parameter-
efficient(Houlsby et al., 2019) characteristics, of
which the resulting prompts are light-weighted and
can be easily passed to an online PLM service, thus
overcoming the above challenge of FT. This paper
asks: whether can we replace FT by DPT with com-
parable performance to SOTA FT methods in dense
passage retrieval? With comparable performance,
DPT is much more friendly in deployment than FT.

DPT usually freezes weights in the backbone
models and alternatively trains deep prompts in-
serted; the latter has much fewer parameters than
the former. However, freezing most weights in
DPT hinders its adaptability and therefore possi-
bly harms performance. Experimental results in
Sec. 4.2.2 also demonstrate directly applying DPT
in dense retrieval largely underperforms FT meth-
ods.

To make DPT comparable to FT in dense re-
trieval, a natural solution is retrieval-oriented inter-
mediate pretraining (RIP), which warms up the text
representation via contrastive learning. Though it
is not a novel idea(Lee et al., 2019; Gao and Callan,
2021b; Izacard et al., 2021), there exist two dif-
ferent pretraining ways tailored for DPT-based re-
trievers. One is to pre-train deep prompts while
freezing the PLM backbone and use the pre-trained
prompts to initialize a DPT retriever. The other is
to pre-train a PLM directly and initialize a DPT
retriever using the pre-trained PLM; in contrast to
prior works(Gao and Callan, 2021b), we intend to
allow any PLM easily pre-trained for DPT so that
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users may employ their own PLMs, and thus we
deliberately remove the workload to modify any
model structures. Surprisingly, empirical findings
in Sec. 4.4 show that this choice yields better per-
formance than carefully modified PLMs(Gao and
Callan, 2021b). Furthermore, we propose a unified
negative mining (UNM) to merge retrieved nega-
tives from many retrievers including BM25 and
dense retrievers, in order to provide diverse and
hard negatives for DPT training.

By incorporating RIP and UNM, we implement
a Deep Prompt Tuning method in Dense Retrieval
tasks, called DPTDR. The experimental results
show that DPTDR outperforms previous state-of-
the-art models on both MS-MARCO and Natural
Questions. We also conduct extensive experiments
and find that: i) when combined with RIP and
UNM, DPT is able to obtain comparable perfor-
mance with FT in dense retrieval and exhibits in-
sensitivity to prompt length, and ii) both RIP and
UNM are effective in improving the performance.
The contributions of this paper can be summarized
as follows:

• To our best knowledge, this is the first work
to apply DPT in dense retrieval. We bring for-
ward two essential strategies, namely retrieval-
oriented intermediate pretraining and unified
negative mining, allowing DPT to match
FT’s performance and be compatible with any
PLM.

• Experiments show that DPTDR outperforms
previous state-of-the-art models on MS-
MARCO and Natural Questions and examine
the effectiveness of the above strategies.

• We believe this work facilitates the industry,
as it saves enormous efforts and costs of de-
ployment and increases the utility of comput-
ing resources.

2 Related Work

2.1 Deep Prompt Tuning
DPT originates from prompting and prompt tun-
ing (Liu et al., 2021a). Given some discrete or con-
tinuous prompts, PLMs like GPT-3(Brown et al.,
2020) can achieve impressive zero-shot and few-
shot performances for knowledge-intensive tasks.
However, studies find that prompt tuning fails to
perform well for moderate-size models (Liu et al.,
2021b). Thus, DPT(Li and Liang, 2021; Liu et al.,

2021b) is proposed by inserting prompts at deep
layers to steer PLMs towards desired directions
more capably. It obtains comparable performance
to FT across a range of NLP tasks. DPTDR is
mainly related to DPT, focusing on dense passage
retrieval instead of NLP. There also exist works
of pretraining prompts for prompt tuning(Gu et al.,
2021), which shows effectiveness in few-shot learn-
ing using billion-size models, as we will explore as
well in the context of DPT.

2.2 Dense Retrieval

Pretraining We have witnessed a series of unsu-
pervised pretraining works proposed for dense re-
trieval, such as ICT, BFS, WLP, and independent
cropping (Lee et al., 2019; Chang et al., 2020; Izac-
ard et al., 2021). Following works also try to pre-
train retriever and reader jointly for question an-
swering (Guu et al., 2020). coCondenser (Gao and
Callan, 2021b) follows a contrastive learning frame-
work using Condenser structure (Gao and Callan,
2021a) by adding an explicit decoder to learn rep-
resentations better. There are also semi-supervised
and weakly-supervised works. DPR-PAQ (Oğuz
et al., 2021) pre-trains a PLM using 65-million-size
synthetic QA pairs on the target corpus. GTR (Ni
et al., 2021) pre-trains T5 (Raffel et al., 2019) on
2-billion-size community QA pairs from T5-base
to T5-xxlarge. We follow unsupervised contrastive
learning as our pretraining strategy for DPTDR.
However, we aim to ensure compatibility with any
PLM, thus resulting in different sample building
processes and model structure choices.

Negative mining DPR (Karpukhin et al., 2020)
proposes to train retrievers using BM25 negatives.
ANCE (Xiong et al., 2020) extends that by min-
ing negatives periodically from previously-trained
dense retrievers. RocketQA and RocketQAv2 (Qu
et al., 2021; Ren et al., 2021) introduce the idea
of denoised negative sampling by selecting nega-
tives with high confidence scored by a re-ranker.
DPTDR unifies the above into a general negative
mining strategy.

3 Methodology

In this section, we first formalize the application
of DPT in dense retrieval. We then describe the
two strategies of RIP and UNM for DPT-based
retrievers.

1194



Figure 1: The framework of DPTDR. We first perform RIP which results in a PLM (the blue blocks) that can be
used as the backbone for DPT training and deployed once as online PLM services. Then we train deep prompts (i.e.,
DPT) for different retrieval tasks such as WebQA, WikiQA, and MedicalQA (the pink blocks), during which we
may employ UNM to improve performances. For inference, we can send tokenized input, together with trained
prompts of their corresponding task, to online PLM services to get dense vectors.

3.1 DPT in Dense Retrieval
Let C be a corpus consisting N passages, denoted
by p1, p2, ..., pN . Given a question q, the task of
dense retrieval is to find a passage pi that is consid-
ered relevant to the question.

The dual-encoder Normally, a dual-encoder is
applied. First its passage encoder Ep(·) embeds a
passage p to a d-dimensional dense vector. Then a
vector search index (Johnson et al., 2019) of pas-
sages is built for retrieval. At inference time, the
question encoder Eq(·) embeds the question q to a
d-dimensional dense vector, and k passages closet
to the question based on the vector similarity will
be retrieved. In practice, the similarity score is
computed as the inner product:

s(q, p) = Eq(q) · Ep(p). (1)

For PLM-based dual-encoder, we usually take
the representation at the first token (e.g., [CLS]
symbol in BERT (Devlin et al., 2018)) as the output
dense vector.

Deep prompt tuning We then apply DPT in the
PLM-based dual-encoder, as illustrated in the left
part of Figure 1. To prepend multi-layer prompts
for the dual-encoder, we initialize a trainable prefix
matrix M of dimension l × d for each layer of the
PLM, where l is the length of the prompt and d is
the hidden size of the PLM. Since the prompt re-
sides at the deep layers of PLM, it has a full capac-
ity to steer the PLM towards the desired direction
and output meaningful dense vector for questions
and passages. Note that a verbalizer (Schick and
Schütze, 2020) plays a vital role in mapping words
to labels in canonical prompt tuning. However, we
remove it in dense retrieval since the output dense

vector is what we need. Let E′p as the prompted
passage encoder and E′q as the prompted question
encoder, and the similarity score is computed:

s′(q, p) = E′q(q) · E′p(p). (2)

Training The objective of the training is to learn
dense vectors so that the similarity between rele-
vant pairs of questions and passages ranks higher
than irrelevant ones. Given a pair of question q
and positive passage pi, along with n negative pas-
sages, we optimize the loss function as the negative
log-likelihood of the positive passage:

L(qi, p
+
i , {p−i,j}nj=1) =

− log
es

′(qi,p
+
i )

es
′(qi,p

+
i ) +

∑n
j=1 e

s′(qi,p
−
i,j)
. (3)

Generating negative passages is critical for the
performance, and we will explain it in Sec. 3.3.
During training, we freeze parameters of the back-
bone PLM and only update the deep prompts,
where approximately 0.1%-0.4% parameters of a
PLM get trained.

Inference As illustrated in the right part of Fig-
ure 1, since the backbone PLM is frozen, it is pos-
sible to deploy it ahead as online PLM services and
then pass the trained prompts as pre-computed key
values together with tokenized inputs to get dense
vectors. It is at the core of how we save efforts
and costs of deployment and increase the utility of
computing resources. In practice, the cloud service
providers or infrastructure teams of search com-
panies are able to focus on the PLM as a central
service, while users can quickly train deep prompts
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for different retrieval tasks and obtain efficient and
compelling retrieval performances without any de-
ployment.

Although DPT brings in many advantages, it is
worth noting that it does not accelerate the infer-
ence speed because the forward computation is not
reduced but increased slightly.

3.2 Retrieval-oriented Intermediate
Pretraining (RIP) for DPT

The goal of RIP is to either pre-train deep prompts
or PLMs using contrastive learning. We first de-
scribe the task as follows. Let C denote a corpus
consisting N passages. For a passage pi, we split
it into l sentences, denoted by s1i , ..., s

l
i. Given a

sentence sji , the task of pretraining is to distinguish
its context sentence sj

′
i from sentences of other pas-

sages slk, where k ̸= i. Formally, we randomly
select a pair of sentences from each passage as
context sentences to form a batch of training data
B = {s1i , s2i }mi=1, where m is the batch size. Then
we define the contrastive loss for sji over the batch
as:

Lc(s
j
i ) = − log

es(s
1
i ,s

2
i )

∑m
k=1

∑2
l=1 ij ̸=kle

s(sji ,s
l
k)
. (4)

In contrast to prior works(Gao and Callan,
2021b; Izacard et al., 2021), we directly sample
sentences as opposed to text spans. Since sam-
pling text spans is a non-trivial technique where
factors such as the probability of short sentences
and how to keep the spans linguistically meaning-
ful can have a complicated effect on the pretraining,
we remove this complexity in our approach. We
also conduct an experiment observing sentences
work even better than text spans on MS-MARCO
corpus (Sec. 4.4).

Under the contrastive learning task, there exist
two pretraining ways tailored for DPT, depending
on the pre-trained objects (i.e., the deep prompts or
the PLM backbone).

Pre-train deep prompts One is to pre-train deep
prompts with a vanilla PLM. Later we initialize
a DPT-based retriever using the pre-trained deep
prompts and the vanilla PLM. However, experi-
ments in Sec. 4.4 show that it suffers from catas-
trophic forgetting and exhibits no superior perfor-
mance to randomly initialized prompts.

Pre-train the PLM The other is to pre-train a
PLM, and then we initialize a DPT-based retriever

using randomly-initialized deep prompts and the
pre-trained PLM. Notice that we intend to allow
any PLM to be easily pre-trained for DPT so that
users may employ their own PLMs. Thus we con-
trast prior works such as coCondenser(Gao and
Callan, 2021b), a state-of-the-art model structure
in contrastive pretraining, by removing the work-
load to modify any model structures. Surprisingly,
it yields better performance than coCondenser in
Table 8. Therefore, we refer RIP strategy as pre-
training of PLMs for the rest.

For any PLM, We also intend to remain its origi-
nal self-supervised tasks, such as masked language
modeling(MLM; Devlin et al., 2018; Sun et al.,
2019), denoted as Ls. Therefore, the final loss of
pretraining over the batch is:

L =
1

2m

m∑

i=1

2∑

j=1

Ls(s
j
i ) + Lc(s

j
i ). (5)

After pretraining, the resulting model can be
deployed once as online services and taken as the
backbone model for DPT training.

3.3 Unified Negative Mining (UNM)
We also develop unified negative mining for DPT,
as interpreted as "Multiple Retrievers & Hybrid
Sampling." "Multiple Retrievers" is to incorporate
negatives from as many retrievers as we can. We
use a BM25 retriever as the initial retriever and
train a DPT-based retriever using BM25 negatives.
Later we treated retrieved negatives from the BM25
retriever and the first DPT-based retriever as un-
denoised hard negatives. Users are allowed to
introduce any other retrievers if possible. "Hy-
brid Sampling" is to select denoised hard negatives
from un-denoised hard negatives retrieved by the
above multiple retrievers. We borrow an existing
re-ranker released by RocketQA (Qu et al., 2021)
and select those negatives with high confidence.
For training the final DPT-based retriever, we mix
the denoised hard negatives, un-denoised hard neg-
atives, and easy negatives from in-batch or cross-
batch training.

We believe unified negative mining is critical
for the performance of DPT-based retrievers, as it
provides negatives of high quality and diversity.

4 Experiments

4.1 Experimental Setting
Datasets and metrics We experiment with two
popular dense retrieval datasets, including MS-
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Table 1: The statistics of MS-MARCO and Natural Questions.

Dataset #q in train #q in dev #q in test #passages

MS-MARCO 502,939 6,980 6,837 8,841,823
Natural Questions 58,812 6,515 3,610 21,015,324

MARCO (Bajaj et al., 2016) and Natural Ques-
tions(NQ; Karpukhin et al., 2020). The statistics
of the datasets are listed in Table 1. MS-MARCO
is constructed from Bing’s search query logs and
web documents retrieved by Bing. Natural Ques-
tion contains questions from Google Search. For
evaluation, we report official metrics MRR@10,
RECALL@1000 for MS-MARCO, and RECALL
at 5, 20, and 100 for NQ. All models are trained on
a single server with 8 NVIDIA Tesla A100 GPUs.

Settings in DPT We use RoBERTa-large-size
models as the backbone for DPT training. Hyper-
parameters are explored as below.

• Learning rate We search for 1e-2, 5e-3, 7e-
3, 5e-4, 5e-5, 5e-6 with prompts’ length of
32, where 7e-3 performs relatively better than
others and is set for the main experiment.

• Training epochs For training epochs, we
search for 3, 6, 10 with a learning rate 7e-
3 on MS-MARCO, where 10 performs best
and is set for the main experiment. We also set
training epochs as 60 for NQ for acceptable
time cost.

• Prompt length We search for 8, 16, 32, 64,
128, as is discussed in Sec. 4.3. We use 128
for the main experiment.

• Reparametrization We also conduct exper-
iments for prompts with or without MLP
reparametrization, as is discussed in Sec. 4.3.
We use non-reparametrization for the main
experiment.

We follow coCondenser (Gao and Callan, 2021b)
for other hyper-parameters (e.g., parameter sharing,
batch size, warm-up ratio, and mixed-precision
training).

Settings in RIP We choose to pre-train vanilla
RoBERTa-large for RIP, whose model size appears
more common for DPT (Li and Liang, 2021; Liu
et al., 2021b) and is consistent with the above
DPT training. We remain RoBERTa’s original
self-supervised task (MLM; Liu et al., 2019). To

compare our approach with coCondenser (Gao and
Callan, 2021b), we also pre-train a coCondesner
RoBERTa-large. Since coCondenser modifies the
PLM by adding a carefully designed Condenser
structure, we follow their structural setting using
an equal split, 12 early layers, and 12 late layers.
We split the passages into sentences on both MS-
MARCO and NQ Wikipedia as the training corpus.
The models are trained using AdamW optimizer
with a learning rate 1e-4, weight decay of 0.01, lin-
ear learning rate decay, and a batch size of 2K. We
train 8 epochs for MS-MARCO and 4 epochs for
NQ Wikipedia.

Settings in UNM For un-denoised hard nega-
tives, we randomly select 30 out of the top 200
retrieved negatives from multiple retrievers. For
denoised hard negatives, we select negatives with
a score less than 0.1 output by an existing re-
ranker (Qu et al., 2021).

Baselines We use the following baselines. co-
Condenser (Gao and Callan, 2021b) designs a
complicated pretraining model structure on top of
a vanilla PLM. DPR-PAQ (Oğuz et al., 2021)
pre-trains a RoBERTa-large using 65-million-size
synthetic QA pairs. Since the data is created by a
model trained on NQ (Kwiatkowski et al., 2019)
and Trivia QA (Joshi et al., 2017), it can be con-
sidered a semi-supervised method. It is also com-
parable to us as both of us use RoBERTa-large.
GTR (Ni et al., 2021) pre-trains T5 encoder (Raf-
fel et al., 2019) using 2-billion size community QA
pairs. It also provides results across all model size
ranges from T5-base to T5-xxlarge. The massive
training corpus and model size establish a SOTA
performance.

We also include some standard baselines includ-
ing sparse retrieval systems (BM25, DeepCT (Dai
and Callan, 2019), DocT5Query (Nogueira et al.,
2019), and GAR (Mao et al., 2020)) and dense
retrieval systems ( DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2020), ME-BERT (Luan et al.,
2020), and RocketQA (Qu et al., 2021)). We also
include RocketQAv2 (Ren et al., 2021) as it jointly
trains the retriever and reranker using hybrid sam-
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Table 2: Passage retrieval results on MS-MARCO Dev and Natural Questions Test. We copy the results from the
original papers. The best and second-best results are in bold and underlined fonts respectively.

Methods PLM MS-MARCO Dev Natural Questions Test
MRR@10 R@1000 R@5 R@20 R@100

BM25 - 18.7 85.7 - 59.1 73.7
DeepCT(Dai and Callan, 2019) - 24.3 91.0 - - -
docT5query(Nogueira et al., 2019) - 27.7 94.7 - - -
GAR(Mao et al., 2020) - - - - 74.4 85.3
DPR(Karpukhin et al., 2020) BERT-base - - - 78.4 85.4
ANCE(Xiong et al., 2020) RoBERTa-base 33.0 95.9 - 81.9 87.5
ME-BERT(Luan et al., 2020) BERT-large 34.3 - - - -
RocketQA(Qu et al., 2021) ERNIE-base 37.0 97.9 74.0 82.7 88.5
RocketQAv2(Ren et al., 2021) ERNIE-base 38.8 98.1 75.1 83.7 89.0
coCondenser(Gao and Callan, 2021b) Condenser 38.2 98.4 75.8 84.3 89.0
DPR-PAQ(Oğuz et al., 2021) RoBERTa-large 34.0 - 76.9 84.7 89.2

GTR(Ni et al., 2021)

T5-base 36.6 98.3 - - -
T5-large 37.9 99.1 - - -
T5-xlarge 38.5 98.9 - - -
T5-xxlarge 38.8 99.0 - - -

DPTDR RoBERTa-large 39.1 98.9 77.5 85.1 89.4

pled negatives.

4.2 Experimental Results

4.2.1 Comparison with Existing Methods

Table 2 shows the dev set performance for MS-
MARCO and test set performance for NQ. We can
generally see that DPTDR outperforms all the
baselines in terms of MRR@10 on MS-MARCO
and R@5 on NQ and set a new SOTA in the two
datasets.

We first compare DPTDR with DPR-PAQ. DPR-
PAQ achieves competitive performance on NQ. It
should be expected since it involves large semi-
supervised pretraining on the NQ dataset. Nonethe-
less, DPTDR still outperforms DPR-PAQ by 0.6
points in R@5 although we use an unsupervised
pretraining model. When we study the performance
on MS-MARCO, DPR-PAQ fails to perform as con-
sistently well as on NQ, which could result from
domain mismatch of pretraining, and DPTDR out-
performs it by a significant margin of 5.1 points in
MRR@10.

Secondly, we compare DPTDR with GTR. GTR
pre-trains T5 using 2-billion-size community QA
pairs as a weakly-supervised pretraining. For such
a scale of training corpus, we would expect that
larger models consume the corpus more thoroughly
and perform better on downstream tasks. As a re-
sult, GTR consistently boosts the performance on
MS-MARCO with the model size increasing. How-

ever, DPTDR still outperforms GTR T5-xxlarge,
a 10-billion-size model, and outperforms GTR
T5-large by a noticeable margin of 1.2 points in
MRR@10. It shows that model size is a positive
contributor but not an absolute dominator for dense
retrieval. Appropriate pretraining and negative min-
ing can help improve performances using much
more affordable computing resources. At the same
time, note that DPT shall play a critical role in
achieving comparable performance to FT with the
help of RIP and UNM. We will validate this in
Sec. 4.2.2.

Finally, we would like to compare DPTDR with
coCondenser. Since coCondenser employs a pre-
trained Condenser model(Gao and Callan, 2021a),
we will conduct a more fair comparison in Sec. 4.4.

4.2.2 Comparing FT with and without RIP
and UNM Strategies

To answer the raised question: whether can we
replace FT by DPT with comparable performance
to SOTA FT methods in dense passage retrieval?
We conduct FT by following hyper-parameters of
coCondenser (Gao and Callan, 2021b).

Comparison w/o RIP&UNM As a starter, we
examine the effectiveness of directly replacing FT
with DPT, which means we conduct training with-
out RIP and UNM strategies. Thus we use the
vanilla RoBERTa-large as the backbone model and
BM25 negatives. As is shown in Table 3. We notice
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Table 3: The comparison between FT and DPT with and without RIP and UNM strategies on MS-MARCO Dev and
Natural Questions Test. DPT with RIP&UNM is the proposed method, a.k.a, ‘DPTDR’.

MS-MARCO Dev Natural Questions Test
MRR@10 R@1000 R@5 R@20 R@100

w/o RIP&UNM
FT 34.9 97.2 68.8 80.0 86.4
DPT 32.7 ( 2.2 ↓) 96.3 (0.9 ↓) 66.5 ( 2.3 ↓) 78.5 ( 1.5 ↓) 85.5 ( 0.9 ↓)

w/ RIP&UNM
FT 39.4 99.0 77.0 85.4 89.2
DPT 39.1 ( 0.3 ↓) 98.9 ( 0.1 ↓) 77.5 ( 0.5 ↑) 85.1 ( 0.3 ↓) 89.4 ( 0.2 ↑)

that DPT largely underperforms FT in this setting
with a noticeable margin of 2.2 points in MRR@10
on MS-MARCO and 2.3 points in R@5 on NQ.
It indicates that freezing most weights in DPT ac-
tually hinders its adaptability and therefore harms
performance.

Comparison w/ RIP&UNM Next, we examine
the performance of FT and DPT with RIP and
UNM strategies. We use the RIP RoBERTa-large
as the backbone model and UNM negatives. Ta-
ble 3 shows that i) RIP and UNM improve the
performances of both FT and DPT and ii) most
importantly, DPT is comparable to FT under this
setting, where the gap shrinks to only 0.3 points in
MRR@10 on MS-MARCO, and DPT even slightly
outperforms FT by 0.5 points in R@5 on NQ. As
a result, we can see that when combined with RIP
and UNM, DPT can obtain comparable perfor-
mance with FT in dense retrieval.

4.3 Analysis on DPT

Sensitivity on prompt length We also seek to
understand how prompt length affects the perfor-
mance of DPT-based retrievers. From Table 4, we
observe that the performance of prompt length of
8 already achieves a strong MRR@10 at 38.6 on
MS-MARCO. When we increase the length to 128,
it makes the most robust performance of MRR@10
at 39.1. The longer prompt means more trainable
parameters, which obtains more power to steer
PLMs. However, we also want to point out that
the DPT retriever exhibits insensitivity to prompt
length since the performances are competitive over-
all across various lengths. Therefore, we choose 32
as the default prompt length along with other hyper-
parameters in the main experiment for the rest of
the ablation studies on MS-MARCO to accelerate
the training.

Impact of reparameterization Reparametriza-
tion plays an important role in DPT. Li and Liang,

Table 4: Sensitivity of prompt length on MS-MARCO
Dev.

Prompt Length MRR@10 R@1000

8 38.6 98.9
16 38.6 99.0
32 38.7 98.9
64 38.5 98.9
128 39.1 98.9

2021 point out that MLP reparametrization results
in more stable and compelling performances, while
Liu et al., 2021b find it still depends on differ-
ent tasks. In dense retrieval, we aim to determine
whether it has a positive effect. Table 5 presents
the results on MS-MARCO. We observe that MLP
reparametrization results in a performance drop in
MRR@10 on MS-MARCO. Since MLP breaks the
independence of inter-layer prompts, we conjec-
ture this brings optimization difficulty for dense
retrieval.

Table 5: Ablations of reparamerization on MS-MARCO
Dev.

Reparamerization MRR@10 R@1000
embedding 38.7 98.9
mlp 38.0 99.0

4.4 Analysis on RIP

Whether to pre-train deep prompts or not? We
try to examine whether pre-trained deep prompts
could improve the performance of DPT-based re-
trievers. We use BERT-base as our backbone model
and pre-train deep prompts of length 32 without
reparameterization. The pretraining tasks and cor-
pus are exactly the same as Sec. 3.2. We ini-
tialize DPT-based retrievers using pre-trained and
randomly-initialized prompts. As is shown in Ta-
ble 6, the pre-trained prompts do not boost the
performance over randomly initialized prompts on
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MS-MARCO. It reveals that the deep prompts may
easily suffer from catastrophic forgetting.

Table 6: Ablations of prompt initialization on MS-
MARCO Dev.

Prompt Initialization MRR@10 R@1000
Random 32.4 95.5
Pre-trained 32.4 95.5

RIP on text spans or sentences We also explore
pretraining using randomly-sampled sentences ver-
sus randomly-sampled text spans. Since coCon-
denser(Gao and Callan, 2021b) releases their pre-
trained model using randomly-sampled text spans,
we directly use their model to examine the zero-
shot performance. For sampling sentences, we
use the same PLM and hyper-parameters based on
coCondenser code2 except changing the training
corpus consisting of randomly-sampled sentences.
Table 7 presents the zero-shot performance on MS-
MARCO. The pretraining using sentences works
better than the one using text spans. This is might
be owing to that text-spans do not consider the
(starting and ending) borders of natural sentences
and therefore break their completeness in seman-
tics.

Table 7: Zero-shot performance of coCondenser with
different sampling granularity (i.e., sentences or spans)
on MS-MARCO Dev.

Unit MRR@10 R@1000

Spans Gao and Callan (2021b) 11.1 78.2
Sentences 15.4 87.2

RIP’s effectiveness and comparison with co-
Condenser We also try to examine the effec-
tiveness of RIP strategy and compare it with
coCondenser (Gao and Callan, 2021b). Con-
cretely, we take vanilla RoBERTa-large, coCon-
denser RoBERTa-large, and RIP RoBERTa-large
as the backbone model for DPT training under
the same setting. Table 8 presents their results
in both zero-shot and full-shot settings on MS-
MARCO. For vanilla RoBERTa-large, it performs
extremely poorly in zero-shot experiments, and
with no surprise, it performs worst in full-shot
experiments among the three PLMs. For co-
Condenser RoBERTa-large, it achieves a notice-
able improvement over vanilla RoBERTa-large,

2https://github.com/luyug/Condenser

where MRR@10 of zero-shot performance be-
comes meaningful at 6.3, and MRR@10 of full-
shot performance increases to 37.3. For RIP
RoBERTa-large, we see it achieves the best per-
formance in both zero-shot and full-shot experi-
ments. We also borrow the analysis tool from Wang
and Isola (2020), which takes lalign between
semantically-related positive pairs and luniform of
representation space to measure the quality of PLM
representations. For both the metrics, lower num-
bers are better. RIP is much better than the vanilla
model in both alignment and uniformity, while co-
Condenser works well in alignment but worse in
uniformity.

Thus a question is raised: does PLM need addi-
tional structures for contrastive pretraining? Both
zero-shot and full-shot experiments demonstrate
that RIP works even better than a carefully mod-
ified model structure. Therefore, we conjecture
that PLM’s multi-layer transformers could be al-
ready expressive enough for dense retrieval under
an appropriate contrastive learning task. However,
additional model structures may bring optimization
difficulty, especially when the number of added
parameters is large.

4.5 Analysis on UNM

Ablation on UNM We try to understand how
UNM affects performances. Table 9 presents the
results on MS-MARCO. DPT using BM25 neg-
atives achieves a baseline of MRR@10 at 36.8.
When combining un-denoised hard negatives from
multiple retrievers, we see that the performance
achieves a noticeable improvement in MRR@10
by 1.5 points. When combining denoised hard
negatives selected by a re-ranker, the performance
further gets boosted of which MRR@10 increases
by 0.4 points. The results demonstrate that both
multiple retrievers and hybrid sampling positively
contribute to dense retrieval.

5 Conclusion

In this paper, we investigate applying DPT in dense
passage retrieval. To mitigate the performance drop
of a vanilla DPT, We also propose two strategies,
namely RIP and UNM, to enhance DPT and match
the performance of FT. Experiments show that
DPTDR outperforms previous state-of-the-art mod-
els on both MS-MARCO and Natural Questions
and demonstrated the effectiveness of the above
strategies. We believe this work facilitates the in-
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Table 8: Ablations of different PLMs for DPT on MS-MARCO Dev.

Backbone
PLM

Zero-shot Full-shot
lalign luniform MRR@10 R@1000 MRR@10 R@1000

vanilla RoBERTa-large 161.4 -13.8 0.0 0.1 35.5 97.5
coCondenser RoBERTa-large 4.9 -12.9 6.4 63.3 37.3 98.0
RIP RoBERTa-large 21.9 -26.4 14.3 87.2 38.7 98.9

Table 9: Ablations of UNM on MS-MARCO Dev.

Neg Pool MRR@10 R@1000

BM25 Neg 36.8 98.6
+ un-denoised Neg 38.3 98.9
+ denoised Neg 38.7 98.9

dustry, as it saves enormous efforts and costs of
deployment and increases the utility of computing
resources. In future work, we will explore scaling
up the model size to further improve DPTDR.
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Abstract

Multi-label Text Classification (MLTC) is the
task of categorizing documents into one or
more topics. Considering the large vol-
umes of data and varying domains of such
tasks, fully-supervised learning requires man-
ually fully annotated datasets which is costly
and time-consuming. In this paper, we
propose BERT-Flow-VAE (BFV), a Weakly-
Supervised Multi-Label Text Classification
(WSMLTC) model that reduces the need for
full supervision. This new model: (1) pro-
duces BERT sentence embeddings and cali-
brates them using a flow model, (2) generates
an initial topic-document matrix by averaging
results of a seeded sparse topic model and
a textual entailment model that only require
surface name of topics and 4-6 seed words
per topic, and (3) adopts a VAE framework
to reconstruct the embeddings under the guid-
ance of the topic-document matrix. Finally,
(4) it uses the means produced by the encoder
model in the VAE architecture as predictions
for MLTC. Experimental results on 6 multi-
label datasets show that BFV can substantially
outperform other baseline WSMLTC models
in key metrics and achieve approximately 84%
performance of a fully-supervised model.

1 Introduction

As vast numbers of written comments are posted
daily on social media and e-commerce platforms,
there is an increasing demand for methods that
efficiently and effectively extract useful informa-
tion from this unstructured text data. One of the
methods to analyze this unstructured text data is
to classify them into organized categories. This
can be considered as a Multi-label Text Classifica-
tion (MLTC) task since a single data may contain
multiple non-mutually-exclusive topics (aspects).
There are a range of relevant applications of this
task such as categorizing movies by genres (Hoang,
2018), multi-label sentiment analysis (Almeida

et al., 2018) and multi-label toxicity identification
(Gunasekara and Nejadgholi, 2018).

Fully-supervised learning methods are undesir-
able for this task, because of the diversity of do-
mains of application and cost of manual labelling
(Brody and Elhadad, 2010). Seeded topic mod-
els, such as SeededLDA and CorEx (Jagarlamudi
et al., 2012; Gallagher et al., 2017), where users
can designate seed words as a prior to guide the
models to find topics of interest, can be seen as
a Weakly-Supervised Multi-Label Text Classifica-
tion (WSMLTC) method. Nevertheless, as these
models are mainly statistical models based on bag-
of-words representation, they fail to fully exploit
key sentence elements such as context and word
positions. In contrast, large pre-trained language
models such as BERT and GPT-3 (Devlin et al.,
2018; Brown et al., 2020) produce contextualized
embeddings for each word in a sentence, which
has afforded them great success in the NLP field
(Minaee et al., 2021; Ethayarajh, 2019).

Recently, prompt-based Few-Shot Learning
(FSL) and Zero-Shot Learning (ZSL) methods (Yin
et al., 2019, 2020; Gao et al., 2020) that take advan-
tage of the general knowledge of large pre-trained
language models can also approach MLTC tasks us-
ing only a few examples or topic surface names as
a means of supervision. Specifically, these models
convert text classification to a textual entailment
task by preparing a template such as ’This example
is about _’ as input, and then estimating the prob-
ability of the model filling the blank with certain
topic names. However, this method does not work
well for abstract topics and there is no agreed way
to use multiple words for the entailment task.

In this paper, we propose BERT-Flow-VAE
(BFV), a WSMLTC model. It is based on the Vari-
ational AutoEncoder (VAE) (Kingma and Welling,
2013) framework to reconstruct the sentence em-
beddings obtained from distil-BERT (Sanh et al.,
2019). Inspired by the work of (Li et al., 2020), we
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use a shallow Glow (Kingma and Dhariwal, 2018)
model to map the sentence embeddings to a stan-
dard Gaussian space before feeding them into the
VAE model. Finally, we use the averaged results
of a seeded sparse topic model and a ZSL model to
guide our model to build latent variables towards
pre-specified topics as predictions for MLTC.

Our contributions can be listed as follows: (1)
We propose BFV, a WSMLTC model based on
VAE framework, that can achieve comparable per-
formance to a fully-supervised method on 6 multi-
label datasets with only limited inputs (4 to 6 seed
words per topic and surface name of topics). (2)
We show that using a normalizing-flow model to
calibrate sentence embeddings before feeding them
into a VAE model can improve the model’s MLTC
performance, suggesting that pre-processing inputs
is needed as it can better fit the overall objective
of the VAE framework. (3) We present that the
topic classification performance of ZSL method
can be further improved by properly integrating pre-
dictions from a sparse seeded topic model, which
complements the results from ZSL method by natu-
rally incorporating multiple words to define a topic
and could play a role of regularization.

2 Related Work

Seeded Topic Model Guided (seeded) topic
models are built to find more desirable topics
by incorporating users’ prior domain knowledge.
These seeded topic models can be seen as Weakly-
Supervised (WS) methods to find specific topics in
a corpus. Andrzejewski and Zhu (2009) proposed
a model by using ’z-labels’ to control which words
appear or not appear in certain topics. Andrzejew-
ski et al. (2009) presented DFLDA to construct
Must-Link and Cannot-Link conditions between
words to indirectly force the emergence of topics.
Jagarlamudi et al. (2012) proposed SeededLDA to
incorporate seed words for each topics to guide the
results found by LDA. This is achieved by biasing
(1) topics to produce seed words and (2) documents
containing seed words to select corresponding top-
ics. Gallagher et al. (2017) presented Correlation
Explanation (CorEx), a model searching for top-
ics that are ’maximally informative’ about a set
of documents. Seed words can be flexibly incor-
porated into the model during fitting. Meng et al.
(2020a) proposed CatE that jointly embeds words,
documents and seeded categories (topics) into a
shared space. The category distinctive information

is encoded during the process.

Weakly-supervised Text Classification Re-
cently, Weakly-Supervised Text Classification
(WSTC) has been rapidly developed (Meng et al.,
2020b; Wang et al., 2020). Most of the works
used pseudo labels/documents generation and
self-training. Particularly, Meng et al. (2018)
proposed WeSTClass which uses seed information
such as label surface name and keywords to
generate pseudo documents and refines itself via
self-training. Mekala and Shang (2020) proposed
ConWea that uses contextualized embeddings to
disambiguate user input seed words and generates
pseudo labels for unlabeled documents based on
these words to train a text classifier. COSINE from
(Yu et al., 2020) receives weak supervision and
generates pseudo labels to perform contrastive
learning (with confidence reweighting) to train a
classifier. Some studies integrated simple rules
as weak supervision signals: Ren et al. (2020)
used rule-annotated weak labels to denoise labels,
which then supervise a classifier to predict unseen
samples; Karamanolakis et al. (2021) developed
ASTRA that utilizes task-specific unlabeled
data, few labeled data, and domain-specific rules
through a student model, a teacher model and
self-training. However, these WSTC methods
were specifically designed for multi-class tasks
and are not optimized for WSMLTC tasks in
which documents could belong to multiple classes
simultaneously.

Prompt-based Zero-Shot Learning MLTC
tasks can also be approached with very limited
supervision by Prompt-based Few-Shot Learning
(FSL) or Zero-Shot Learning (ZSL). For example,
Yin et al. (2019) proposed a ZSL method for text
classification tasks by treating text classification
as a textual entailment problem. This model
treats an input text as a premise and prepares a
corresponding hypothesis (template) such as ’This
example is about _’ for the entailment model.
Finally, it uses the probability of the model filling
the blank with topic names as the topic predictions.
However, the choice of template and word for
the entailment task requires domain knowledge
and is often sub-optimal (Gao et al., 2020).
Also, it is not straightforward to find multiple
words as entailment for a topic. This may limit
model’s ability to understand abstract topics (e.g.,
’evacuation’ and ’infrastructure’) where providing
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a single surface name is insufficient (Yin et al.,
2019). Although some automatic search strategies
(Gao et al., 2020; Schick and Schütze, 2020;
Schick et al., 2020) have been suggested, relevant
research and applications are still under-explored.

3 Proposed Model: BERT-Flow-VAE

3.1 Problem Formulation and Motivation

Problem Formulation Multi-label text classifi-
cation task is a broad concept, which includes many
sub-fields such as eXtreme Multi-label Text Clas-
sification (XMTC), Hierarchical Multi-label Text
Classification (HMTC) and multi-label topic mod-
eling. In our model, instead of following these
approaches, we follow a simpler assumption that
the labels do not have a hierarchical structure and
distribution of examples per label is not extremely
skewed.

More precisely, given an input corpus consist-
ing of N documents D = {D1, ...DN}, the model
assigns zero, single, or multiple labels to each doc-
ument Di ∈ D based on weak supervision signal
from a dictionary of {topic surface name:keywords}
W provided by user.

This is a more challenging task than multi-class
text classification as samples are assumed to have
non-mutually exclusive labels. This is a more prac-
tical assumption for text classification task because
documents usually belong to more than one con-
ceptual class (Tsoumakas and Katakis, 2007).

Motivation Inspired by relevant work of VAE
and β-VAE (see Appendix A), we assume that the
semantic information within sentence embeddings
are composed of multiple disentangled factors in
the latent space. Each latent factor can be seen as a
label (topic) that may appear independently. Hence,
we adopted VAE as our framework to approach this
task.

3.2 Preparing the Inputs

Language Model and Sentence Embedding
Strategy As we will model the latent factors
from the semantic information of sentences en-
coded in the word embeddings, we need to firstly
convert sentences into embeddings. Specifically,
given the input corpus D, we firstly process them
into a collection of sentence embeddings Es ∈
RN×V , where V is the embedding dimension of
the language model. Taking BERT as an example,
there are two main ways to produce such sentence

embeddings: (1) using the special token ([CLS] in
BERT) and (2) using a mean-pooling strategy to ag-
gregate all word embeddings into a single sentence
embedding. We tested and showed the performance
of the two versions in section 5. Lastly, for com-
putational efficiency, we used distil-BERT (Sanh
et al., 2019) as our language model, which is a
lighter version of BERT with comparable perfor-
mance.

Moreover, instead of simply averaging the em-
beddings of words in a sentence with equal weights,
we also tested a TF-IDF averaging strategy. Specif-
ically, we firstly calculated the weights of words
in a sentence using the TF-IDF algorithm with L2

normalization, and then averaged the words accord-
ing to the TF-IDF weights. To avoid weights of
some common words to be nearly zero, we com-
bined 10% mean pooling weights and 90% TF-IDF
pooling weights as the final embeddings.

Flow-calibration Sentence embeddings ob-
tained from BERT without extra fine-tuning
have been found to poorly capture the semantic
meaning of sentences. This is reflected by the
performance of BERT on sentence-level tasks
such as predicting Semantic Textual Similarity
(STS) (Reimers and Gurevych, 2019). This may
be caused by anisotropy (embeddings occupy
a narrow cone in the vector space), a common
problem of embeddings produced by language
models (Ethayarajh, 2019; Li et al., 2020). To
address this problem, following the work of (Li
et al., 2020), we adopted BERT-Flow to calibrate
the sentence embeddings. More exactly, we
used a shallow Glow (Kingma and Dhariwal,
2018) with K = 16 and L = 1, a normalizing-flow
based model, with random permutation and affine
coupling to post-process the sentence embeddings
from all 7 layers of distil-BERT (including the
word embedding layer). We tested different
combinations of the 7 post-processed embeddings
and took the average of embeddings from the
first, second and sixth layer based on the metrics
evaluated on the STS benchmark dataset.

Since normalizing-flow based models can create
an invertible mapping from the BERT embedding
space to a standard Gaussian latent space (Li et al.,
2020), the advantages of using flow calibration
are: (1) it improves the anisotropy to make the sen-
tence embeddings more semantically distinguish-
able, and (2) it converts the distribution of BERT
embeddings to be standard Gaussian, which fits the
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objective of minimizing mean-squared reconstruc-
tion error and Kullback–Leibler Divergence (KLD)
with a standard Gaussian prior distribution in the
following VAE model.

Backend Model To guide our model towards
some pre-specified topics, we used Zero-Shot Text
Classification method (0SHOT-TC) proposed by
(Yin et al., 2019) as the backend model. Specifi-
cally, we used RoBERTa-large (Liu et al., 2019)
as the language model for 0SHOT-TC. Following
the example mentioned previously, we prepared a
template (hypothesis) with the shape ’This example
is about _’ for each sentence (premise) and filled
the blank with the surface name of topics. Finally,
we took the probability of entailment as that of the
topic appearing in the sentence for each class and
collected this as T0SHOT−TC ∈ RN×M , where M
is the number of topics.

However, because current zero-shot learning
methods lack an agreed way to find multiple words
as entailment for a topic, we further used a seeded
topic model as a complement. More exactly, we se-
lected Anchored Correlation Explanation (CorEx)
(Gallagher et al., 2017) as another backend model.
By following the approach used by (Jagarlamudi
et al., 2012; Gallagher et al., 2017), we randomly
chose 4 to 6 seed words from the top 20 most dis-
criminating words of each topic as seed words to
better simulate real-world applications. Finally,
we estimated unnormalized document-topic matrix
TCorEx ∈ RN×M and took the combination:

T = ω × T0SHOT−TC + (1− ω)× TCorEx

where ω is the combination weight. We set ω = 0.5
herein (details will be discussed in section 5.2).

3.3 Model Description
Model Architecture and Objective Function
An overview of the model architecture can be seen
in Fig 1. Specifically, we used fully connected
layers combined with layer normalization (Ba
et al., 2016) and Parametric ReLU (PReLU) (He
et al., 2015). The encoder model qφ receives flow-
calibrated sentence embeddings Es and outputs
mean (µ ∈ RN×M ) and variance (σ ∈ RN×M )
which will be the inputs to the decoder model
pθ to produce reconstructed sentence embeddings
Ês ∈ RN×V .

As in the vanilla VAE model in Appendix A, the
objective function of our model contains a recon-
struction loss and KLD loss. We used the mean-

Figure 1: Architecture of the proposed model.

squared error between Es and Ês as the recon-
struction loss because input embeddings have been
calibrated to have a standard Gaussian distribution,
and used the KL divergence between the output
(µ and σ) of the encoder and the prior N (0, I) as
the KLD loss. In addition, in order to guide the
model’s direction towards the pre-specified topics,
we added another loss term dubbed topic loss:

LT = − 1

NM

N∑

i

M∑

j

Tij · log(sigmoid(µij))

where sigmoid(·) is the element-wise sigmoid
function. LT is the binary cross-entropy between
µ and T to encourage µ to be closer to T .

Notice that the value of sigmoid(µ) ∈ RN×M
produced by the encoder can be viewed as a
document-topic matrix. Thus, we used it as the
model’s prediction for MLTC. sigmoid(µij) >
0.5 is be predicted as positive (i.e., topic j appears
in ith document). σ is be left as free values to
reconstruct Ês.

As shown by (Higgins et al., 2016; Burgess et al.,
2018), the weight of different components in the
objective function of the VAE model is important
to find disentangled representations. In particu-
lar, based on our observations, the ratio between
LKLD and LT is be crucial. Hence, we set a hyper-
parameter γ in the objective function controlling
the ratio of LKLD and LT . Finally, the objective
function of our VAE model is:

L(θ, φ;Es, T , α, η) = −(LR + αLKLD + ηLT )

where α = 0.1×√γ and η = 0.1× γM . It can be
seen that a higher value of γ will lead to a heavier
penalty on LT , and therefore µ will become more
similar to T ; while, conversely, a lower value of
γ will make µ diverge from T . As LKLD pushes
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sigmoid(µ) towards 0.5, a lower value of γ would
encourage model to make aggressive predictions.

Hyper-Parameter Scheduling (HPS) We
adopted the strategy to gradually change the
hyper-parameters of the model. We used the first
epoch of training as a warm-up stage (Sønderby
et al., 2016) by setting the value of α to one-tenth
of its original value. Similarly, we also halved the
value of η in the last epoch of training, aiming to
reduce the dependency of µ on T .

4 Experiments Setup

4.1 Datasets

We chose Restaurant and Laptop datasets from Se-
mEval 2014 Task 4 (Pontiki et al., 2014) as well as
CitySearch (Ganu et al., 2009), which are very pop-
ular in aspect-based sentiment analysis studies. We
also added SentiHood (Saeidi et al., 2016), a simi-
lar dataset to the SemEval datasets. Additionally,
Reuters (ApteMod version) (Apt’e et al., 1994), a
well-known text classification dataset containing
Reuters financial newswire service in 1987 was
also selected. Finally, given that the Restaurants,
CitySearch and SentiHood are all largely related to
food-related aspects, we added a self-made dataset
called Heritage, which is composed of 3,760 online
reviews for 77 heritage sites. There are 9 categories
in this dataset: heritage, exhibition, price, family,
service, transport, facilities, environment and mis-
cellaneous (see Appendix D).

4.2 Data Pre-processing

Pre-processing For all datasets, we only kept
categories which have at least 30 corresponding
samples or account for at least 1% in the whole
dataset. Also, we removed categories with no spe-
cific meaning (e.g., ’miscellaneous’). Finally, for
datasets which do not have a pre-specified train-
test split, we used 20% of the examples as the test
set (splits were carefully conducted to account for
class balance). Table 1 shows detailed information
on the datasets after pre-processing.

Model Fine-tuning and Training We finetuned
distil-BERT before using it to produce embeddings.
Specifically, we used a learning rate of 1 × 10−5

for the word embedding layer and top 3 layers of
distil-BERT, and 1 × 10−3 for last 3 layers. The
weight decay was set to 0 for the bias and layer nor-
malization weights. We used a warm-up strategy to
gradually unfreeze the parameters of distil-BERT.

We ran the fine-tuning process for 5 epochs on
each dataset separately. Additionally, we trained
the Glow model with a learning rate of 1 × 10−3

for 5 epochs. Lastly, we trained the BFV model
with a learning rate of 1 × 10−3 for 10 epochs,
with weight decay set using the same values as the
distil-BERT fine-tuning. AdamW (Loshchilov and
Hutter, 2017) is the optimizer used for training all
three models.

4.3 Evaluation Procedure

Evaluation Metrics One of the limitations of
this model is that, as we only reconstruct the pooled
representation of the sentences rather than words,
there is no explicit modelling of word-topic rela-
tionship. Therefore, metrics for topic models such
as perplexity and topic coherence cannot be di-
rectly measured. Thus, they will not be reported.
We calculated the macro-average of each class for
the metrics defined only for binary predictions such
as F1-score. More detailed definition of metrics
can be found in Appendix E. We report the average
and standard deviation over 10 runs for our model
and its ablated versions.

Baseline Models In this paper, we only compare
our model with methods that can perform multi-
label prediction with weak supervision (only sur-
face names and keywords are provided). To the best
of the authors’ knowledge, there are few methods
built specifically for the WSMLTC tasks. There-
fore, we consider guided topic models and prompt-
ing based zero-shot learning language models as
the work most closely related to our model as base-
lines. For weakly-supervised methods that were
specifically designed for multi-class tasks, we com-
pare our model with them in Appendix B since
we converted them to perform MLTC tasks which
may cause them to perform differently from their
original multi-class design.

We used backend models (CorEx, 0SHOT-
TC and CorEx+0SHOT-TC) and Guided LDA
(GLDA), a standard LDA with initial word-topic
priors biased towards seeded topics, as baseline
models to compare the performance of our mod-
els. Following the work in (Brody and Elhadad,
2010), we used a POS-tagging model1 to only keep
nouns and adjectives for GLDA and CorEx. We
also included ablated versions of BFV:

BERT-Whitening-VAE (BWV): The Flow in
1huggingface.co/vblagoje/

bert-english-uncased-finetuned-pos
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Dataset Number of samples Number of classes
Max number of data

per class
Min number of data

per class
Multilabel

ratio
Average

text length

Reuters 10788 42 3964 31 0.14 128
CitySearch 3315 4 1227 298 0.11 14
Sentihood 5215 9 714 143 0.10 15
Restaurant 3844 4 1651 402 0.16 13
Laptop 3308 5 639 175 0.12 13
Heritage 3760 8 623 156 0.11 18

Table 1: Metadata for 6 selected datasets after pre-processing. "Multilabel ratio" is the percentage of samples
having more than one label.

BFV is replaced by a simple whitening operation
introduced by (Huang et al., 2021).

BERT-VAE (BV): No calibration is performed
to the BERT-embeddings.

BERT-Flow-VAE-CLS (BFVCLS): Instead of
using pooling average strategy, [CLS] token is
used as the representation of a sentence.

BERT-Flow-Encoder (BFE): Only the encoder
part of the VAE is kept, and two loss components
(LR and LKLD) are disabled.

BERT-Flow (BF): The VAE part in BFV is re-
placed by a textual entailment classification header
2 with the same template. The classification header
has been finetuned on the MNLI dataset to adjust
for the flow-calibrated model.

0SHOT-TC-Flow: Flow calibration is applied
to the original 0SHOT-TC model. The classifica-
tion header has been finetuned on the MNLI dataset
to adjust for the flow-calibrated model.

Lastly, to show the performance gap between
our model and fully-supervised methods, the perfor-
mance of the BFE trained in a fully-supervised way
using groundtruth labels (BFE-Sup) is included.

5 Results

5.1 Quantitative Evaluation
Table 2 presents the quantitative evaluation of the
models measured using classification metrics (clus-
tering performance and qualitative evaluation can
be found in Appendix C.). We make the following
observations based on these results:

(1) BFV outperforms other WSMLTC models in
most datasets with relatively large margin except
for Reuters, in terms of F1-score and APS.

(2) In terms of the F1-score, BFV with only seed
words and surface name of topics as supervision
can, on average, achieve approximately 84% perfor-
mance of the fully-supervised model as reflected in

2huggingface.co/huggingface/
distilbert-base-uncased-finetuned-mnli

% of BFE-Sup’s F1

BFE-Sup 100.0 (100.0)
BFV 84.38 (83.40)
BWV 78.67 (77.49)
BV 73.47 (71.28)
BFVCLS 58.93 (56.10)
BFE 69.15 (67.46)
BF 26.57 (25.50)
0SHOT-TC+CorEx 57.84 (53.97)
0SHOT-TC-Flow 33.42 (33.56)
0SHOT-TC 69.57 (71.53)
CorEX 53.86 (50.25)
GLDA 27.84 (27.37)

Table 3: Models performance in percentage of the
fully-supervised model measured by F1-score averaged
across all datasets. Numbers in the brackets are F1-
score averaged across 5 datasets excluding Heritage.

Table 3. In addition, the performance gap between
weakly-supervised and fully-supervised model is
narrow in datasets of social media reviews. This
suggests that the weakly-supervised models are
able to find topics with limited guidance in the con-
text of short text, informal and polysemous words
that characterise reviews.

(3) After replacing Flow with a simple whiten-
ing operation, there is no significant drop of perfor-
mance of the model in terms of key metrics such
as F1, demonstrating the robustness of the model.

Table 4 shows examples of prediction results in
the format of document-topic matrix, where each
value shows the probability of the topic (column)
appearing in the document (row).

5.2 Ablation Study and Sensitivity Analysis

In order to investigate further the effectiveness of
each component and the sensitivity with respect
to backend models, we sequentially added each
component of the model and calculated its perfor-
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ACC HS P@3 F1 Recall Precision APS AUC

Reuters

BFE-Sup (20) 75.52 80.82 82.86 63.29 54.12 83.00 70.18 97.91
BFV (20) 44.65 (1.33) 55.74 (1.35) 66.03 (1.5) 44.99 (0.51) 55.38 (0.6) 51.58 (0.84) 56.18 (0.34) 95.86 (0.14)
BWV (20) 39.83 (1.23) 51.33 (1.23) 61.98 (1.2) 44.59 (0.41) 54.96 (0.5) 50.27 (0.76) 55.96 (0.36) 95.85 (0.1)
BV (20) 48.84 (2.5) 57.72 (2.61) 65.40 (2.88) 40.91 (0.73) 45.63 (1.65) 50.56 (1.71) 51.12 (0.7) 95.58 (0.11)
BFVCLS (20) 49.60 (4.92) 56.85 (5.15) 62.53 (5.51) 33.97 (1.84) 37.08 (3.32) 44.19 (1.57) 46.23 (0.54) 94.37 (0.11)
BFE (20) 45.09 (0.74) 53.54 (0.78) 60.37 (0.75) 37.56 (0.36) 39.81 (0.35) 50.13 (1.1) 44.21 (0.39) 94.07 (0.09)
BF 1.82 3.35 7.96 3.92 33.51 2.72 3.12 43.86
0SHOT-TC+CorEx 12.62 25.61 49.30 25.28 60.56 21.43 50.28 93.91
0SHOT-TC-Flow 0.43 4.76 11.39 5.22 58.01 3.31 3.81 54.94
0SHOT-TC 19.68 43.19 75.26 44.55 70.65 38.21 56.22 91.64
CorEx 10.53 22.84 31.56 24.27 57.53 20.71 17.90 86.71
GLDA 7.92 8.28 8.28 6.88 4.15 34.33 26.33 75.18

CitySearch

BFE-Sup (1) 71.79 75.72 76.66 72.66 64.81 83.13 82.30 94.37
BFV (1) 61.07 (1.25) 68.95 (0.93) 72.79 (0.75) 69.48 (0.96) 76.50 (1.33) 64.92 (1.35) 77.25 (0.42) 92.37 (0.22)
BWV (1) 54.60 (1.38) 61.07 (1.39) 62.87 (1.51) 62.63 (1.53) 60.99 (2.92) 66.13 (1.92) 69.98 (0.69) 89.19 (0.26)
BV (1) 53.74 (0.99) 58.51 (1.12) 59.34 (1.25) 59.64 (2.2) 52.24 (5.07) 75.06 (3.06) 72.41 (0.47) 89.09 (0.25)
BFVCLS (1) 54.39 (1.34) 58.86 (1.37) 59.08 (1.38) 48.82 (1.61) 39.67 (2.3) 79.56 (2.76) 67.09 (0.4) 87.97 (0.2)
BFE (1) 53.26 (0.68) 57.90 (0.79) 58.33 (0.79) 54.28 (1.25) 43.84 (1.09) 78.08 (1.62) 69.89 (0.84) 88.63 (0.46)
BF 29.41 33.74 33.81 18.80 21.09 19.04 19.39 48.41
0SHOT-TC+CorEx 47.36 51.43 51.92 39.98 30.83 58.42 63.75 87.80
0SHOT-TC-Flow 37.86 46.10 50.35 41.68 51.13 40.97 45.08 77.08
0SHOT-TC 41.78 53.12 61.29 60.43 86.90 48.30 71.04 88.12
CorEx 45.70 49.57 50.04 35.66 26.44 55.57 43.89 69.97
GLDA 33.18 35.97 35.97 27.42 23.55 35.92 30.63 65.73

Sentihood

BFE-Sup (1) 74.04 77.41 78.14 68.88 61.32 79.05 76.60 96.81
BFV (1) 42.94 (1.57) 51.23 (1.37) 56.35 (1.25) 53.54 (0.88) 75.58 (1.13) 47.21 (0.96) 59.10 (0.68) 92.12 (0.14)
BWV (1) 50.29 (1.73) 55.61 (1.51) 57.80 (1.36) 51.40 (1.36) 60.18 (2.32) 53.49 (0.71) 59.80 (0.33) 91.96 (0.13)
BV (1) 51.41 (3.61) 56.66 (3.14) 59.00 (2.67) 51.02 (1.66) 53.77 (2.94) 59.25 (1.04) 60.78 (0.48) 91.93 (0.22)
BFVCLS (1) 53.62 (2.56) 56.13 (2.42) 56.75 (2.17) 32.92 (1.28) 31.04 (2.14) 55.77 (2.0) 48.80 (0.58) 89.20 (0.14)
BFE (1) 52.60 (0.45) 56.88 (0.4) 58.63 (0.44) 46.55 (0.87) 46.83 (0.79) 56.58 (1.09) 56.12 (0.44) 90.46 (0.21)
BF 20.66 24.32 25.57 10.81 46.58 6.42 6.76 51.86
0SHOT-TC+CorEx 53.05 55.90 56.42 39.17 39.50 45.05 53.26 91.29
0SHOT-TC-Flow 0.60 6.82 10.02 11.37 64.15 6.42 9.03 48.18
0SHOT-TC 4.16 18.33 36.82 39.13 89.11 28.16 55.30 91.12
CorEx 52.52 54.98 55.34 34.71 33.82 40.76 33.00 75.87
GLDA 39.17 40.39 40.40 16.41 15.43 20.58 16.70 71.18

Restaurant

BFE-Sup (1) 75.38 80.93 81.72 81.59 75.57 89.11 90.02 95.87
BFV (1) 68.85 (1.95) 74.42 (2.02) 76.34 (2.16) 80.49 (0.77) 80.58 (1.72) 80.88 (2.24) 89.73 (0.4) 95.21 (0.27)
BWV (1) 58.09 (1.91) 65.65 (1.76) 68.13 (1.97) 73.44 (1.35) 80.02 (3.47) 69.62 (3.21) 85.55 (0.35) 93.34 (0.17)
BV (1) 53.66 (2.18) 59.43 (2.36) 60.27 (2.63) 69.52 (1.97) 60.85 (4.55) 84.74 (3.94) 84.97 (0.45) 91.78 (0.33)
BFVCLS (1) 57.84 (2.94) 64.95 (2.83) 66.02 (2.61) 60.14 (2.89) 53.00 (2.45) 83.62 (8.77) 78.28 (1.11) 90.09 (0.34)
BFE (1) 57.36 (1.01) 63.38 (0.9) 64.11 (0.86) 69.05 (1.45) 60.35 (1.42) 83.59 (1.18) 81.57 (0.59) 91.21 (0.24)
BF 8.38 21.33 24.74 30.21 51.64 25.00 25.62 49.18
0SHOT-TC+CorEx 46.00 51.12 51.54 57.02 45.92 78.68 83.06 93.40
0SHOT-TC-Flow 4.88 28.45 47.24 38.44 88.02 26.49 30.58 60.69
0SHOT-TC 37.25 56.46 72.90 63.04 95.00 48.61 83.65 92.43
CorEx 45.25 50.19 50.31 54.42 43.00 77.55 61.20 74.97
GLDA 26.12 31.08 31.08 34.46 30.93 46.52 42.51 72.39

Laptop

BFE-Sup (2) 60.15 63.48 63.90 49.24 39.87 65.76 57.66 87.21
BFV (2) 45.72 (1.18) 49.37 (1.18) 50.53 (1.2) 36.40 (1.2) 38.59 (1.54) 42.75 (1.67) 39.25 (0.54) 73.38 (0.49)
BWV (2) 45.04 (0.57) 47.96 (0.37) 48.76 (0.42) 32.58 (1.15) 32.34 (1.46) 44.62 (0.84) 37.56 (0.31) 72.72 (0.18)
BV (2) 51.18 (2.11) 52.82 (1.86) 53.16 (1.7) 24.82 (1.71) 21.52 (2.59) 52.31 (2.46) 37.21 (0.49) 73.28 (0.33)
BFVCLS (2) 52.46 (0.97) 53.59 (0.86) 53.79 (0.86) 18.78 (1.56) 14.36 (1.04) 54.01 (3.23) 35.23 (0.65) 72.30 (0.36)
BFE (2) 49.15 (0.63) 50.96 (0.6) 51.30 (0.55) 25.14 (0.5) 22.35 (0.74) 52.14 (3.68) 35.96 (0.69) 71.90 (0.36)
BF 9.90 18.32 21.60 21.03 68.05 12.85 14.60 54.14
0SHOT-TC+CorEx 48.76 50.51 50.56 23.71 22.39 35.82 33.91 71.89
0SHOT-TC-Flow 13.00 20.07 23.24 18.99 44.92 12.97 13.59 53.47
0SHOT-TC 14.98 25.13 31.76 34.49 64.18 27.10 34.78 70.96
CorEx 48.39 50.09 50.12 23.00 21.89 34.69 23.64 60.20
GLDA 43.19 43.79 43.79 10.91 9.73 17.03 16.56 60.99

Heritage

BFE-Sup (5) 53.44 56.59 56.81 49.52 39.42 67.95 58.86 89.85
BFV (5) 40.10 (1.41) 47.23 (1.36) 51.42 (1.5) 44.20 (1.22) 50.34 (2.11) 41.75 (0.85) 46.68 (0.56) 81.55 (0.32)
BWV (5) 33.75 (0.98) 42.22 (0.77) 47.29 (0.85) 41.89 (0.64) 51.99 (2.07) 37.30 (0.95) 45.08 (0.49) 79.90 (0.21)
BV (5) 42.37 (1.01) 47.77 (1.11) 50.26 (1.4) 41.81 (1.49) 41.18 (2.85) 46.84 (1.39) 45.33 (0.25) 81.28 (0.25)
BFVCLS (5) 41.58 (1.61) 46.34 (1.26) 48.61 (1.17) 36.18 (1.25) 33.39 (1.94) 47.93 (3.81) 40.75 (0.46) 80.81 (0.15)
BFE (5) 40.05 (1.04) 45.65 (0.73) 48.60 (0.59) 38.41 (0.72) 37.44 (0.88) 42.86 (0.74) 40.15 (0.46) 80.86 (0.34)
BF 4.41 11.06 13.44 15.81 67.63 9.22 9.65 49.20
0SHOT-TC+CorEx 41.50 44.95 46.10 38.21 36.36 44.89 40.32 78.10
0SHOT-TC-Flow 0.39 9.17 12.86 16.21 76.19 9.29 9.46 49.09
0SHOT-TC 9.34 24.08 40.43 29.59 73.51 19.37 33.76 75.55
CorEx 41.25 44.27 44.87 35.61 32.67 43.58 31.60 71.87
GLDA 24.64 25.14 25.14 14.95 13.43 19.30 18.58 66.81

Table 2: Results for classification performance. Definition of metrics can be found at Appendix E. Highest values
are marked with bold font. Numbers in the brackets are γ values (for model name) or standard deviation (for
metrics). All numbers are percentages. γ values are chosen based on the observation of the aggressiveness of the
model.
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ambience service price food

The wait staff is friendly, and the food has gotten better and better! (’food’, ’service’) 0.43 0.69 0.37 0.73
The staff is unbelievably friendly, and I dream about their Saag gosht...so good. (’service’, ’food’) 0.43 0.71 0.36 0.51
The crust is thin, the ingredients are fresh and the staff is friendly. (’food’, ’service’) 0.47 0.69 0.30 0.68
The food is outstanding and the service is quick, friendly and very professional. (’food’, ’service’) 0.47 0.88 0.30 0.74
Get the soup and a nosh (pastrami sandwich) for $8 and you’re golden. (’food’, ’price’) 0.36 0.42 0.52 0.53
Wonderful menu, warm inviting ambiance, great service the FOOD keeps me coming back! (’food’, ’ambience’, ’service’) 0.61 0.69 0.32 0.68
The food was good, the service prompt, and the price very reasonable. (’food’, ’service’, ’price’) 0.42 0.80 0.76 0.81
Great food at REASONABLE prices, makes for an evening that can’t be beat! (’food’, ’price’) 0.47 0.35 0.78 0.72
While the food was excellent, it wasn’t cheap (though not extremely expensive either). (’food’, ’price’) 0.34 0.32 0.69 0.75
I found the food, service and value exceptional everytime I have been there. (’food’, ’service’, ’price’) 0.33 0.68 0.43 0.65

Table 4: An exemplar of document-topic matrix using sentences selected from Restaurant dataset, where rows
represent documents and columns represent topics. Words in brackets after the document show the corresponding
groudtruth label.

Figure 2: Ablation study with respect to various back-
end models and components, averaged across 5 multi-
label datasets excluding Heritage dataset. Title: differ-
ent backend models. X-axis: 1 : Backend model only;
2 : 1 +BERT+encoder; 3 : 2 +Flow; 4 : 3 +VAE;
5 : 4 +TF-IDF; 6 : 5 +HPS. NMI: Normalized Mu-

tual Information

mance by averaging several key metrics across 5
multi-label (excluding Heritage) datasets in Fig 2.

The results shown in Fig 2 suggest that there is
a consistent improvement of BFV models (at stage
6 ) with respect to various backends (at stage 1 )

in terms of F1, manifesting the generalizability of
the benefits brought by BFV. Furthermore, after
adopting the flow model and VAE in step 3 and
step 4 , most metrics outperform that of the base
models. This indicates the effectiveness of Flow-
calibrated embeddings and extra two losses (LR
and LKLD) brought by VAE. On the other hand,
the TF-IDF averaging strategy ( 5 ) does not result
in significant effects on model performance. Also,
the HPS strategy ( 6 ) does yield performance gains
when GLDA and CorEx as backend models, but has
limited effects on 0SHOT-TC and CorEx+0SHOT-
TC backend models.

We also conducted a sensitivity analysis with
respect to γ and ω in Fig 3. It could be observed
that the model performs best when γ is between
0.5 and 5 and ω is between 0.5 and 0.6 for nearly

Figure 3: Sensitivity with respect to γ and ω in terms
of F1 (solid line), Precision (dashed line) and Recall
(dotted line) on 6 datasets

all datasets. From the bottom two plots in Fig 3
we can see that, γ has a positive (negative) rela-
tionship with Precision (Recall). This relationship
is reversed when it comes to ω. This makes sense
because γ controls the relative weight of LKLD
and LT in the loss function, and ω controls the
weight of the combination of two backend models.
Therefore, they could influence the aggressiveness
of the model. This can be used to control specificity
and sensitivity of the model (with default value of
γ = 1 and ω = 0.5).

5.3 Discussion

Effectiveness of Flow and VAE Based on the
performance of VAE-ablated models (BFE, BF
and 0SHOT-TC-Flow) and Flow-ablated models
(BV and BWV) shown in Table 2 and Figure 2, we
can observe that, neither Flow nor VAE alone can
outperform their combination (BFV) in terms of
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Figure 4: Normalized histogram of all predicted prob-
abilities (x-axis) by backend models. The numbers in
the bracket are the percentage of positive predictions.

F1-score and APS. This reflects the importance of
combining Flow and VAE to model disentangled la-
tent variables within calibrated BERT embeddings.

Mixture of Backend Except for the benefits
brought by the pre-trained language model and em-
beddings calibration, we also suggest that BFV
can learn from both a sparser and conservative
model (CorEx) and a denser and aggressive model
(0SHOT-TC) simultaneously:

(1) BFV can capture complementary information
from seed words in the results of CorEx in addi-
tion to the topic surface name. Specifically, Fig
2 shows that the average of the results of CorEx
and 0SHOT-TC has a lower value of F1-score ( 1
of d) compared to that of only 0SHOT-TC ( 1 of
c). Note that this still holds even if we compare
F1-score in 3 of d and 1 of c. However, after
being fully processed by BFV, the F1-score in 6
of d is significantly large compared to that of using
only 0SHOT-TC ( 6 of c) as backend.

(2) Results from CorEx may provide regular-
ization. We observe in Fig 4 that, results from
CorEx are sparser and conservative (most labels
were predicted to be negative) than that of 0SHOT-
TC. We also observe from Table 2 that CorEx has
a higher Precision than GLDA (and thus GLDA is
not mixed) and 0SHOT-TC in general.

Different Language Models When replacing
the backend language model (distil-BERT) with
BERT, RoBERTa and XLM-R, in terms of the F1-
score over 10 runs averaged across the 6 datasets,
we found: BERT-base (54.35%), BERT-large
(54.54%), RoBERTa-base (55.47%), RoBERTa-
large (55.96%) and XLM-R-base (54.50%) com-
pared to distil-BERT of 54.85% (detailed dataset-
specific results fan be found in Appendix C). How-
ever, we simply tested these models using the same

hyper-parameters, which may cause impacts on the
performance. We didn’t test the effects of differ-
ent combinations of language models and hyper-
parameters because the potential amount of com-
putation will be very large for grid search. Thus, it
is difficult to draw conclusions at this stage and we
propose to leave in-depth analysis as future work
where different characteristics of the backend lan-
guage model should be thoroughly considered.

6 Conclusion

We presented BFV, a WSMLTC model, that uses
a VAE framework to reconstruct BERT-produced
and flow-calibrated sentence embeddings under
the guidance of the averaged results of CorEx
and 0SHOT-TC. It can significantly outperform
other WSMLTC models in key metrics and achieve
a approximately 84% performance of a fully-
supervised model in terms of macro F1-score eval-
uated on 6 datasets. We found the improvements
are mainly due to: (1) combining BERT and VAE
framework, (2) mapping the sentence embeddings
into a standard Gaussian space to better fit the over-
all objective of the VAE framework and (3) learning
simultaneously from the results produced by a mix-
ture of backends. As the input of surface name of
topics and seed words are only used to produce T ,
BFV can be viewed as a post-processing model to
refine an already made document-topic matrix.

One limitation of the current BFV model is that it
does not explicitly model the relationship between
topics and words. Thus, relevant tasks such as cal-
culating topic coherence and selecting keywords
for each topic cannot be done directly. Another
drawback of the BFV model is that it does not
take into account the dependencies and hierarchies
within topics. This may limit the model’s perfor-
mance for datasets in which labels are correlated.

In the future, BFV could be improved by recon-
structing embeddings of each words in a sentence
rather than an embedding of a sentence as a whole.
This can also potentially expand this method into
an applicable generative model for real sentence
generation. Further work could also evaluate the
performance of the model using embeddings made
by language models other than distil-BERT.
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Appendix

A Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE) (Kingma and
Welling, 2013) has been widely used as an unsuper-
vised generative method, especially in computer
vision filed. It has been shown that β-VAE (Hig-
gins et al., 2016) and its variants are capable of
finding visual disentangled latent representations
which remain invariant to some transformations
(Burgess et al., 2018). This section provides a brief
review of VAE and β-VAE.

VAE starts by solving the evidence (or marginal
likelihood) pθ(x) in Variational Inference (VI)
problems involving latent variable Z. In partic-
ular, the evidence pθ(x) =

∫
p(x, z)dz is often

intractable to compute in practice due to computa-
tional cost. In VI, pθ(x) can be approximated by
introducing variational distributions and building a
lower bound L to reframe the problem as in Eq. 1
based on Jensen’s inequality.

logpθ(x) = log(Eqφ(z|x)[pθ(x|z)
p(z)

qφ(z|x)
])

≥ Eqφ [logpθ(x|z)]−KLD(qφ(z|x)||p(z))
= L(θ, φ;x)
= −(LR + LKLD)

(1)

LR and LKLD refer to reconstruction loss and
KLD loss respectively. By considering qφ(z|x)
as a Gaussian probabilistic encoder, p(z) as a
standard Gaussian prior N (0, I) and pθ(x|z) as
a probabilistic decoder, the objective can be de-
fined as max

θ,φ
L(θ, φ;x). In particular, this objec-

tive function aims at finding optimal parameters
θ and φ to maximize the lower bound L which
in turn approximates the log-probability of the
data logpθ(x). In addition, in order to estimate
the gradients of the lower bound with respect to φ
more smoothly, a parameterization trick is applied:
zi ∼ qφ(zi|x) = µi + σiεi, where εi ∼ N (0, 1).

In β-VAE, a hyper-parameter β is added into the
objective function as shown in Eq. 2. Usually β >
1 will result in more disentangled representations
and when β = 1, the β-VAE is equivalent to the
vanilla VAE model (Burgess et al., 2018).

L(θ, φ;x, β) = −(LR + βLKLD) (2)

B Comparison with Weakly-supervised
Multi-Class Methods

Here we compare our model with the following
strong weakly-supervised multi-class models on
MLTC datasets:

WeSTClass (Meng et al., 2018): a WSTC model
that has been briefly introduced in the related-work
section. It can receive inputs of topic surface name,
keywords or limited amount of documents. We
used the keywords as input to it. We replaced its
last softmax layer with sigmoid layer and used the
same threshold (0.5).

X-Class (Wang et al., 2020): this methods is
based on aligning document representation and
class representation. It uses class surface names as
input and can generage pseudo labels to train a text
classifier. We used its X-Class-Align version which
uses a Gaussian Mixture Model (GMM) to make
final predictions. We modified its final to output
unnormalized probabilities and used the threshold
of 0.5.

LOTClass (Meng et al., 2020b): it is based on
Masked Category Prediction (MCP) task and a sub-
sequent self-training to perform WSTC with only
label surface names. We replaced its last softmax
layer with sigmoid and used the same threshold of
0.5. We also tested transforming it into a binary rel-
evance task by only using one label surface name
each time, which results in similar performance
and therefore is not reported.

We used default hyper-parameters for all three
models. We slightly modified keywords and topic
surface names if the model has a different spec-
ification, otherwise we used the same keywords
and topic surface names as used in our model. The
results of comparison is presented in Table 5. It
can be shown that there is a large performance mar-
gin between our model and the weakly-supervised
multi-class models on multi-label tasks in terms of
key metrics such as F1-score.

C Further Evaluation

Qualitative Analysis To further check the valid-
ity of the BFV model, we used Integrated Gradients
(IG) (Sundararajan et al., 2017) to calculate the at-
tributions of each word with respect to predicted
topics. In Fig 5, we applied this inspection on 3 sen-
tences from different datasets as examples. From
Fig 5, it can be seen that the gradients of words can
largely align with human intuition.
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Clustering Results We also tested our model’s
performance in terms of clustering metrics. In cal-
culating clustering metrics, we only used samples
with single label in the whole dataset. Table 6
shows the models’ performance measured by clus-
tering metrics.

Embeddings Visualization Embeddings pro-
duced at different stages of the model are visu-
alized by T-SNE in Figure 6, where the shift of the
embeddings during the process could be observed.

Other Language Models We tested the model’s
performance with different backend language mod-
els. Table 7 shows the model’s performance on
different datasets in terms of F1-score when using
other language models. However, we simply tested
these models using the same hyper-parameters,
which may cause impacts on the performance.

D Supplementary Information of the
Datasets

Fig 7 displays the distribution of the amount of
topics in the samples in percentage for different
datasets used in this paper.

In regard to the Heritage dataset, all annotators
(authors of the paper) have checked the correct-
ness of labelling and are fully aware of the risks to
participant.

E Definition of Evaluation Metrics

In evaluating our model in Table 2, we have the fol-
lowing metrics. Assuming yi ∈ RC is the ground
truth label and ŷi is the prediction for ith sample,
where C is the number of classes:

ACC:

Accuracy =
1

n

n∑

i=1

I(yi = ŷi)

HS:

Hamming Score =
1

n

n∑

i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

Precision:

Precision =
1

n

n∑

i=1

|yi ∩ ŷi|
|ŷi|

Recall:

Recall =
1

n

n∑

i=1

|yi ∩ ŷi|
|yi|

F1-score:

F1 =
1

n

n∑

i=1

2|yi ∩ ŷi|
|yi|+ |ŷi|

APS:

Average Precision Score3

AUC:
ROC-AUC score4

P@3:

Mean Average Precision @ k = 35

Homogeneity:

homogeneity score6

Completeness:

completeness score7

NMI:

v =
2× homogeneity× completeness

homogeneity + completeness

Adj MI:

Adjusted Mutual Info Score8

Adj Rand:

Adjusted Rand Score9

3https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
average_precision_score.html

4https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.roc_
auc_score.html

5https://github.com/benhamner/Metrics/
blob/master/Python/ml_metrics/average_
precision.py

6https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
homogeneity_score.html#sklearn.metrics.
homogeneity_score

7https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
completeness_score.html#sklearn.metrics.
completeness_score

8https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
adjusted_mutual_info_score.html

9https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
adjusted_rand_score.html
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ACC F1 Recall Precision APS AUC

Reuters

BFV (20) 44.65 44.99 55.38 51.58 56.18 95.86
X-Class 27.63 33.83 38.05 40.64 30.44 67.84
WeSTClass 6.16 1.12 2.60 1.84 2.99 48.18
LOTClass 0.50 0.06 2.52 0.07 7.15 68.46

CitySearch

BFV (1) 61.07 69.48 76.50 64.92 77.25 92.37
X-Class 49.77 16.62 25.00 12.44 18.78 50.00
WeSTClass 25.49 22.26 23.31 24.21 18.99 47.50
LOTClass 33.33 25.43 36.17 32.93 36.23 69.49

Sentihood

BFV (1) 42.94 53.54 75.58 47.21 59.10 92.12
X-Class 55.94 17.29 16.29 46.58 12.48 54.32
WeSTClass 8.92 6.50 12.30 10.61 7.34 51.28
LOTClass 10.93 4.26 11.72 4.98 10.05 58.75

Restaurant

BFV (1) 68.85 80.49 80.58 80.88 89.73 95.21
X-Class 38.75 13.96 24.92 9.70 24.75 50.03
WeSTClass 26.38 23.64 24.94 25.91 25.90 49.72
LOTClass 35.25 13.53 25.16 37.41 44.58 69.51

Laptop

BFV (2) 45.72 36.40 38.59 42.75 39.25 73.38
X-Class 68.07 16.20 20.00 13.61 11.88 50.00
WeSTClass 22.65 15.01 18.93 19.53 12.73 49.27
LOTClass 9.03 10.41 28.27 18.04 15.83 55.45

Heritage

BFV (5) 40.10 44.20 50.34 41.75 46.68 81.55
X-Class 41.25 7.31 12.50 5.16 10.01 50.22
WeSTClass 10.12 8.47 9.59 12.07 9.80 48.71
LOTClass 10.25 5.48 15.42 4.15 16.41 61.87

Table 5: Performance of BFV in comparison with weakly-supervised multi-class models on multi-label datasets.
All numbers are percentages.
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Figure 5: Qualitative analysis of the correct predictions made by BFV model using Integrated Gradients (IG).
Numbers with bracket attached to each words are gradients given by the IG
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Homogeneity Completeness NMI Adj MI Adj Rand

Reuters

BFV (20) 67.72 (0.39) 58.73 (0.74) 62.90 (0.56) 61.87 (0.58) 69.99 (1.86)
BWV (20) 66.08 (0.38) 54.94 (0.62) 60.00 (0.52) 58.87 (0.53) 64.90 (1.45)
BV (20) 67.87 (0.38) 61.73 (0.64) 64.66 (0.48) 63.71 (0.5) 73.34 (0.83)
BFVCLS (20) 64.17 (1.1) 60.21 (1.98) 62.11 (1.41) 61.23 (1.43) 71.00 (3.85)
BFE (20) 63.29 (0.26) 56.39 (0.33) 59.64 (0.28) 58.56 (0.29) 69.03 (0.6)
BF 22.45 17.47 19.65 17.93 9.12
0SHOT-TC+CorEx 58.74 45.12 51.04 49.62 54.98
0SHOT-TC-Flow 11.36 7.22 8.83 6.33 3.99
0SHOT-TC 63.93 52.93 57.91 56.78 64.09
CorEx 34.40 25.24 29.12 27.23 22.75
GLDA 46.96 31.69 37.85 35.98 23.46

CitySearch

BFV (1) 51.71 (1.19) 48.99 (1.17) 50.31 (1.16) 50.21 (1.16) 60.21 (1.37)
BWV (1) 44.91 (1.24) 42.36 (1.64) 43.60 (1.44) 43.48 (1.44) 51.63 (1.94)
BV (1) 43.50 (1.7) 43.19 (2.29) 43.32 (1.7) 43.20 (1.7) 51.72 (2.89)
BFVCLS (1) 40.11 (1.95) 44.07 (1.8) 41.98 (1.68) 41.85 (1.68) 50.32 (2.88)
BFE (1) 41.06 (0.81) 42.58 (0.87) 41.81 (0.81) 41.67 (0.81) 50.94 (0.78)
BF 0.69 2.77 1.11 0.73 2.59
0SHOT-TC+CorEx 35.86 33.45 34.61 34.47 40.80
0SHOT-TC-Flow 14.94 13.61 14.25 14.06 13.96
0SHOT-TC 43.24 46.24 44.69 44.56 54.24
CorEx 15.92 14.07 14.94 14.76 8.28
GLDA 7.36 6.24 6.75 6.56 6.75

Sentihood

BFV (1) 53.83 (1.48) 51.72 (1.48) 52.76 (1.46) 52.34 (1.47) 49.13 (2.69)
BWV (1) 48.83 (1.39) 48.41 (1.15) 48.62 (1.25) 48.15 (1.26) 37.53 (3.33)
BV (1) 45.42 (3.17) 48.56 (2.38) 46.92 (2.61) 46.41 (2.64) 28.08 (5.67)
BFVCLS (1) 34.68 (2.8) 41.01 (2.71) 37.57 (2.69) 36.96 (2.73) 20.68 (5.11)
BFE (1) 42.67 (0.75) 44.54 (0.76) 43.59 (0.75) 43.06 (0.76) 28.01 (0.8)
BF 3.37 5.26 4.11 3.44 3.03
0SHOT-TC+CorEx 52.08 50.04 51.04 50.60 49.09
0SHOT-TC-Flow 5.42 5.56 5.49 4.61 3.59
0SHOT-TC 57.08 56.77 56.92 56.53 49.87
CorEx 24.57 25.50 25.03 24.33 11.79
GLDA 18.67 16.53 17.53 16.84 15.11

Restaurant

BFV (1) 59.23 (1.29) 57.23 (1.85) 58.21 (1.5) 58.13 (1.51) 68.13 (1.84)
BWV (1) 50.04 (1.78) 44.93 (1.84) 47.34 (1.81) 47.25 (1.81) 53.10 (2.78)
BV (1) 46.07 (1.34) 44.48 (1.85) 45.25 (1.5) 45.15 (1.5) 49.78 (4.81)
BFVCLS (1) 41.03 (2.32) 44.44 (2.63) 42.63 (2.08) 42.51 (2.08) 50.98 (4.88)
BFE (1) 45.86 (0.79) 44.64 (0.84) 45.24 (0.81) 45.14 (0.81) 52.47 (1.19)
BF 1.41 27.83 2.69 2.45 1.50
0SHOT-TC+CorEx 49.44 45.98 47.65 47.55 56.46
0SHOT-TC-Flow 1.79 1.59 1.68 1.50 3.32
0SHOT-TC 54.94 56.52 55.72 55.63 67.55
CorEx 19.13 18.50 18.81 18.66 5.37
GLDA 9.93 8.21 8.99 8.83 7.97

Laptop

BFV (2) 22.28 (0.95) 21.90 (1.11) 22.09 (1.02) 21.78 (1.02) 14.27 (0.77)
BWV (2) 20.38 (0.58) 21.46 (0.51) 20.90 (0.54) 20.58 (0.55) 12.78 (1.18)
BV (2) 20.45 (0.99) 22.04 (0.98) 21.20 (0.84) 20.87 (0.84) 12.75 (1.75)
BFVCLS (2) 12.52 (1.12) 17.58 (1.59) 14.60 (1.09) 14.25 (1.11) 6.13 (0.95)
BFE (2) 18.67 (0.69) 21.48 (0.77) 19.98 (0.73) 19.63 (0.73) 10.42 (0.43)
BF 2.75 44.62 5.18 4.85 1.46
0SHOT-TC+CorEx 18.45 19.57 19.00 18.66 11.48
0SHOT-TC-Flow 0.58 0.62 0.60 0.18 -0.25
0SHOT-TC 15.33 18.53 16.78 16.41 8.40
CorEx 9.85 11.51 10.61 10.23 3.80
GLDA 4.11 3.86 3.98 3.61 2.24

Heritage

BFV (5) 26.95 (0.7) 26.49 (0.77) 26.72 (0.73) 26.31 (0.74) 23.98 (1.29)
BWV (5) 25.24 (0.38) 24.61 (0.35) 24.92 (0.36) 24.50 (0.37) 22.20 (0.5)
BV (5) 28.99 (0.74) 28.82 (0.71) 28.90 (0.7) 28.50 (0.7) 25.30 (1.66)
BFVCLS (5) 26.43 (0.89) 27.59 (0.96) 26.99 (0.84) 26.57 (0.84) 22.10 (2.16)
BFE (5) 26.92 (0.58) 27.04 (0.6) 26.98 (0.59) 26.57 (0.59) 23.28 (0.61)
BF 0.69 3.40 1.15 0.65 -0.17
0SHOT-TC+CorEx 21.22 20.78 21.00 20.56 17.60
0SHOT-TC-Flow 1.08 1.63 1.30 0.61 -0.18
0SHOT-TC 20.70 20.69 20.70 20.25 16.25
CorEx 15.07 15.97 15.50 15.01 8.00
GLDA 6.62 6.41 6.51 5.99 4.52

Table 6: Results for clustering performance. Highest values are marked with bold font. Numbers in the brackets
are γ values (in column) or standard deviation (in matrix). All numbers are percentages.
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Figure 6: Visualization of embeddings produced at different stages of the model by T-SNE using the Restaurant
dataset. Red, Green, Blue and White are used to represent topics ’ambience’, ’service’, ’price’ and ’food’ in the
dataset. Colors other than Red, Blue, Green and White are mixed by the color of the corresponding topics when
there are more than one topics assigned to the document.

BERT-base BERT-large RoBERTa-base RoBERTa-large XLM-R-base

Reuters 42.12 43.53 40.22 44.16 42.16
CitySearch 69.52 69.05 70.96 71.73 70.42
Sentihood 54.49 52.14 55.34 54.48 53.54
Restaurant 79.02 80.72 81.14 83.53 79.29
Laptop 38.49 38.40 40.56 39.45 39.16
Heritage 42.45 43.41 44.57 42.41 42.43

Table 7: Models performance on 6 datasets with different backend language models in terms of F1-score. All
numbers are percentages
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Figure 7: Distribution of the amount of topics in the samples in percentage.
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Abstract

Trigger warning: This paper contains examples
that contain transphobic language.

The world of pronouns is changing – from a
closed word class with few members to an open
set of terms to reflect identities. However, Nat-
ural Language Processing (NLP) barely reflects
this linguistic shift, resulting in the possible ex-
clusion of non-binary users, even though recent
work outlined the harms of gender-exclusive
language technology. The current modeling of
3rd person pronouns is particularly problem-
atic. It largely ignores various phenomena like
neopronouns, i.e., novel pronoun sets that are
not (yet) widely established. This omission
contributes to the discrimination of marginal-
ized and underrepresented groups, e.g., non-
binary individuals. It thus prevents gender
equality, one of the UN’s sustainable devel-
opment goals (goal 5). Further, other identity-
expressions beyond gender are ignored by cur-
rent NLP technology. This paper provides an
overview of 3rd person pronoun issues for NLP.
Based on our observations and ethical consid-
erations, we define a series of five desiderata
for modeling pronouns in language technology,
which we validate through a survey. We eval-
uate existing and novel modeling approaches
w.r.t. these desiderata qualitatively and quan-
tify the impact of a more discrimination-free
approach on an established benchmark dataset.

1 Introduction
Pronouns are an essential component of many lan-
guages and often one of the most frequent word
classes. Accordingly, NLP has long studied tasks
related to them, e.g., pronoun resolution (e.g.,
Hobbs, 1978). Simplistically, they can be defined
as “a word (such as I, he, she, you, it, we, or they)
that is used instead of a noun or noun phrase”.1

1Essential definition provided by the Mirriam Webster
Online Dictionary at https://www.merriam-webste
r.com/dictionary/pronoun

Nom. Acc. Poss. Poss. Reflexive(dep.) (indep.)

Gendered Pronouns
he him his his himself
she her her hers herself
Gender-Neutral Pronouns
they them their theirs themself
Neopronouns
thon thon thons thons thonself
e em es ems emself
xe xem xyr xyrs xemself
ey em eir eirs emself
e em eir eirs emself
ze zir zir zirs zirself
...
Nounself Pronouns
star star stars stars starself
vam vamp vamps vamps vampself
...
Emojiself Pronouns

s s self
s s self

...
Numberself Pronouns
0 0 0s 0s 0self
1
3

1
3

1
3

s 1
3

s 1
3

self
...
Nameself Pronouns
John John Johns Johns Johnself
...

Table 1: Non-exhaustive overview of phenomena related
to third-person pronoun usage in English.

Linguistic studies have pointed out the complex-
ity of pronouns, though (e.g., Postal et al., 1969;
McKay, 1993). Pronouns can carry demographic
information – in English, for example, information
about the number of referents and a single refer-
ent’s (grammatical) gender.2 Pronouns can con-
vey even more information in other, non-pro-drop
languages.3 Consider Arabana-Wangkangurru, a

2Grammatical and social gender should not be confounded,
but are often treated interchangeably by lay audiences.

3First described by Perlmutter (1968), the phenomenon of
“pro-drop languages” relates to languages, in which, in certain
cases, some classes of pronouns can be omitted (e.g., Italian).
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language spoken in Australia, in which a speaker
uses different pronouns depending on whether the
referent is part of the same social or ritual group
(moiety) (Hercus, 1994). As such, pronouns shape
how we perceive individuals and can even reflect
cultural aspects (e.g., Kashima and Kashima, 1998)
and ideologies (e.g., Muqit, 2012). Consequently,
pronoun usage should be considered a sensitive
aspect of natural language use.

Accordingly, in many western societies, these
phenomena have been drawing more and more at-
tention. For instance, in 2020, the American Di-
alect Society voted “(My) Pronouns” as the 2019
Word of the Year and Singular “They” as the Word
of the Decade (Roberts, 2020). Recently, there has
been a shift in pronoun usage (Krauthamer, 2021),
partially due to shifts in the perception of gender,
driven by the queer-feminist discourse (e.g., Butler,
1990, 2004). Related to this is the open discussion
of identity beyond binary gender. For instance, a
person who does not identify their gender within
the gender binary (e.g., a nonbinary or genderqueer
person) might use singular “they” as their pronoun.
Recently, the French dictionary “Le Robert” added
the non-binary pronoun “iel” to its list of words.4

This “social push” to respect diverse gender iden-
tities also affects NLP. Recent studies have pointed
out the harms of the current lack of non-binary rep-
resentation in data, embeddings, and tasks (Cao
and Daumé III, 2021; Dev et al., 2021). However,
the research landscape on modern pronoun usage is
surprisingly scarce, hindering progress for fair and
inclusive NLP. This lacuna is in direct contradic-
tion of the UN’s sustainable development goals,5

which include gender equality (goal 5).
Linguistic research has identified further iden-

tity aspects of pronouns, beyond gender (Miltersen,
2016). Specifically, nounself pronouns are func-
tionally turning pronouns from a closed into an
open word class. To the best of our knowledge,
NLP has completely ignored these aspects so far.
We did not find a single work systematically de-
scribing all of the currently existing phenomena,
even just in English 3rd person pronoun usage (let

In contrast, in “non-pro-drop languages”, pronouns cannot be
omitted (e.g., German).

4https://dictionnaire.lerobert.com/di
s-moi-robert/raconte-moi-robert/mot-jo
ur/pourquoi-le-robert-a-t-il-integre-le-
mot-iel-dans-son-dictionnaire-en-ligne.h
tml

5https://sdgs.un.org/goals

alone other languages).6 In contrast, many discus-
sions are taking place on queer Wikis and forums.
While it is still unclear which of these phenomena
will persist over the following decades, people use
and discuss them. Accordingly, we as a research
community should adapt.

Contributions. 1) We are the first to provide a
systematic overview of existing phenomena in En-
glish 3rd person pronoun usage. Our results will
inform future NLP research on ethical NLP and
non-binary representation. We provide the first
NLP work acknowledging otherkin identities. We
support our observations with a corpus analysis
on Reddit. 2) Based on our overview, we derive
five desiderata for modeling third-person pronouns,
which we validate with a survey among 39 individu-
als (coupled with a pre-study with 149 participants),
most of which identify as non-binary. Based on
these criteria, 3) we discuss various existing and
novel paradigms for when and how to model pro-
nouns in NLP. 4) Finally, we quantify the impact
of discrimination-free non-modeling of pronouns
on a widely established benchmark.

2 Related Work
While there are some works in NLP on gender-
inclusion (e.g., Dev et al., 2021) and gender bias in
static (e.g., Bolukbasi et al., 2016; Gonen and Gold-
berg, 2019; Lauscher and Glavaš, 2019; Lauscher
et al., 2020, inter alia) and contextualized (e.g.,
Kurita et al., 2019; Bordia and Bowman, 2019;
Lauscher et al., 2021, inter alia) language represen-
tations as well as works focusing on specific gen-
der bias in downstream tasks (e.g., Rudinger et al.,
2018; Webster et al., 2018; Dev et al., 2020; Barik-
eri et al., 2021), we are not aware of any work that
deals with the broader field of identity-inclusion.
Thus, there is no other NLP work that deals with a
larger variety of pronouns and acknowledges pro-
nouns as an open word class. For surveys on the
general topic of unfair bias in NLP we refer to Blod-
gett et al. (2020) and Shah et al. (2020). Recently,
Dev et al. (2021) pointed at the representational
and allocational harms (Barocas et al., 2017) aris-
ing from gender-exclusivity in NLP. They surveyed
queer individuals and assessed non-binary represen-
tations in existing data sets and embeddings. In con-
trast, we specifically look at third-person pronoun
usage and how to model such phenomena. Webster

6For instance, while we found hits for the Google Scholar
query “neopronoun”, we did not get any results for variants
of “nameself pronoun”, or ”emojiself pronoun”.
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et al. (2018) provide a balanced co-reference reso-
lution corpus with a focus on the fair distribution
of pronouns but only focus on the gendered binary
case. Closest to us, Cao and Daumé III (2021) dis-
cuss gender inclusion throughout the NLP pipeline
beyond binary gender. While they are the first to
consider gender-neutral pronouns, including some
neopronouns, they do not acknowledge the broader
spectrum of identity-related pronoun phenomena.

3 A Note on Identity and Pronouns
This work focuses on the relationship between iden-
tity and pronouns. Identity refers to an individual’s
self-conceptualization, relating to the question of
what makes each of us unique (Maalouf, 2000). It
can be seen as a two-way process between an indi-
vidual and others (Grandstrand, 1998), and relates
to different dimensions, e.g., one’s gender.

Gender Identity. Gender identity, as opposed
to gender expression or sex, is one’s inner sense
of gender (Stryker, 2017; Keyes et al., 2021). In
this work, we recognize gender identities beyond
a cisnormative binary (cis man, cis woman), e.g.,
transgender, non-binary, agender, etc.

Otherkin Identity. Individuals with otherkin
identity do not entirely identify as human (Lay-
cock, 2012), e.g., vamp. Miltersen (2016) note that
otherkin individuals often identify with nounself
pronouns matching their kin.

Stryker (2017) highlights the strong relationship
between gender identity and pronouns. As Ray-
mond (2016) notes, pronoun choices construct the
individual’s identity in conversations and the rela-
tionship between interlocutors. According to Cao
and Daumé III (2021), pronouns are a way of ex-
pressing referential gender. Referring to an indi-
vidual with sets of pronouns they do not identify
with, e.g., resulting in misgendering, is considered
harmful (e.g., Dev et al., 2021).

4 Phenomena in Third-person
Pronoun-Usage

We describe existing phenomena and analyze their
presence in a collection of threads from Reddit.7

4.1 Existing Phenomena

Overall, individuals can choose n sets of pronouns
with n ≥ 0. If n = 0, the individual does not
identify with any singular 3rd person pronoun. If
n > 1, the individual identifies with more than

7https://www.reddit.com
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Figure 1: Token ranks (log-scale) and rank counts of the
tokens returned against our reflexive regular expression
pattern from Reddit with example annotations.

one set of pronouns. Each set is possibly reflecting
overlapping or non-overlapping aspects of their
identity. We provide examples of these sets in
Table 1. Note that this list is non-exhaustive and
that the described phenomena are non-exclusive.

Gendered Pronouns. In English, two sets of gen-
dered pronouns are available, he/him/himself and
she/her/herself.

Gender-Neutral Pronouns. Given the history of
generic singular they in English (e.g., Who was at
the door? They left a note.), there has been an up-
take of singular they by non-binary individuals as
a gender-neutral pronoun option8 (Conrod, 2019;
Konnelly and Cowper, 2020). Further, there has
been increasing institutional recognition with dic-
tionaries and style guides supporting its use.

Neopronouns. As an alternative to the singular
they, individuals started creating and sharing novel
sets of 3rd person pronouns (McGaughey, 2020).
More traditional and rather well-known sets of neo-
pronouns include, e.g., the so-called Spivak pro-
nouns e/emself (used in (Spivak, 1990)) and related
variations. During our research, we observed var-
ious subcategories of neopronouns, only partially
described in the academic literature.

Nounself Pronouns. Nounself pronouns are “[...]
prototypically transparently derived from a spe-

8https://gendercensus.com/results/202
1-worldwide-summary/
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cific word, usually a noun” (Miltersen, 2016). Indi-
viduals may identify with certain nouns, possibly
corresponding to aspects of their identity, e.g., kit-
ten/kittenself, vamp/vampself. The author notes the
difficulty of clearly defining nounself pronouns,
neopronouns, and other phenomena. The phe-
nomenon is assumed to have first appeared in 2013.

Emojiself Pronouns. Similar to nounself pronouns,
individuals may identify with sets of emojis, possi-
bly reflecting different aspects of their identity, e.g.,

/ self. Emojiself pronouns are intended for
written communication. Note that, at the time of
writing this manuscript, no academic description
of emojiself pronouns seems to exist. However,
we were able to find evidence of their existence
on several social media platforms and wikis, e.g.,
Tumblr,9 MOGAI Wiki,10 Twitter,11 and Reddit.12

Numberself Pronouns. Another form of neopro-
nouns/ nounself pronouns are numberself pronouns.
Analogous to before, we assume that here, the indi-
vidual identifies or partially identified with a num-
ber, e.g., 0/0/0s/0s/0self.13

Nameself Pronouns. Individuals may iden-
tify with pronouns build from their name, e.g.,
John/Johnself, overlapping with nullpronomials.14

Alternating Pronouns. Suppose someone iden-
tifies with more than one set of pronouns. In that
case, the pronouns they identify with can be either
equally identified-with sets, or potentially change
depending on the context (mutopronominal). As
such, individuals who are also performers may use
stage pronouns. Similarly, genderfluid individu-
als may identify with a certain pronoun at a cer-
tain point in time (pronoun fluidity, (Cherry-Reid,
2020)). Some individuals identify with the pro-
nouns of the person who is referring to them (mir-
rored pronouns). Others use set(s) of auxiliary

9E.g., https://pronoun-archive.tumblr.com
/post/188520170831

10https://mogai.miraheze.org/wiki/Emoj
iself; according to the article, the origin of emojiself pro-
nouns is unclear but might date back to 2017

11Example of a user complaining about LinkedIn not al-
lowing for emojiself pronouns in the pronoun field: https:
//twitter.com/frozenpandaman/status/1412
314202119700480/photo/1

12E.g., https://www.reddit.com/r/QueerVexi
llology/comments/p09nek/i_made_a_flag_f
or_the_emojiself_pronoun_set/

13https://pronoun-provider.tumblr.com/
post/148452374817/i-think-numbers-as-pro
nouns-would-be-pretty-cool

14https://pronoun.fandom.com/wiki/Null
pronominal

pronouns, e.g., for situations when people refer-
ring to them have problems with using the most
identified-with sets of pronouns (e.g., in the case
of emojiself pronouns and oral communication).
Alternating pronoun sets may be even used in the
same sentence for the same individual.15

No Pronouns. Some individuals do not identify
with any pronouns. In this case, some individuals
identify most with their name being used to refer
to them, nameself pronouns, or avoid pronouns.

4.2 Corpus Analysis: Neopronouns in Reddit

Setup. We conduct an additional analysis for the
presence of neopronouns in Reddit. To this end,
we use Reddit threads (2010–2021), cleaned by
previous work and provided through Huggingface
Datasets (127,445,911 lines). The data set includes
comment title, text, and subreddit.16 Since we are
interested in capturing novel pronouns, but the list
of possible pronouns is indefinite, we proxy neo-
pronouns via the suffixes self and selves to indicate
the reflexive case. We match them through a regu-
lar expression. Additionally, we filter out non-3rd
person pronouns (e.g., yourself, ourselves, plural
themselves) as well as common variations of these
(e.g., urself ) and other common non-pronoun ex-
pressions we found in the data (e.g., do-it-yourself ).
This process leaves us with a total of 9,075 unique
tokens with in total 74,768 textual mentions.

Results. Unsurprisingly, an initial manual analy-
sis reveals that many of the matches are false posi-
tives, i.e., not real neopronouns like non-self, a com-
mon concept in Buddhist philosophy. However, our
method still finds relevant cases. Note, that in this
work, we do not explicitly deal with false positives
– we are merely interested in whether our heuris-
tic helps us to detect some sets of neopronouns
at all, thus demonstrating their existence in real-
world conversations. Examples of neopronouns
we found are depicted in Table 2. Many discus-
sions containing nounself pronouns center on the
phenomena themselves, including, e.g., individuals
stating that they are interested in using a specific
pronoun or that they refuse to acknowledge the
phenomenon. Some discussions involve people re-
porting on personal experiences and problems and
seeking advice. To obtain a high-level quantitative

15https://www.reddit.com/r/NonBinary/c
omments/jasv5r/alternating_pronouns_in_s
ame_sentence/

16https://huggingface.co/datasets/sent
ence-transformers/reddit-title-body
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Match Thread Title Thread Excerpt

meowself Fureedom Mewnite can die in my
litterbox.

I don’t like this game. But I still want meowself to play it, meow. Cause
it’s fun, even though I hate it.

Neopronouns are going too far. I get some pronouns like ze/zir, xe/xem, etc. I agree with those. But why
are people using ghost/ghostself and meow/meowself? That’s really utter
bullshit.

bunself I am genderfluid, and pansexual.
I have a lot of SJW friends. AMA!

They/them pronouns are coolest with me, but I won’t be angry if you
use he or she. You can use bun/buns/bunself, if you are feeling special.
(That’s a joke.)

Xi am so proud to announce that
the new word of the year is.....

–Cinnagender– which means you identify with our beloved and innocent
cinnamon buns. The pronoun set is cinne/cinns/cinnself or alternatively
bun/buns/bunself i am so happy to be a member of a community that
ignores the oppressive gender binary, which is a social construct, i.e., it
is not real

zirself Ran into our first roadblock I asked what I could do to help zir lowering the feeling of disphoria, and
ze said zed́ maybe feel better about zirself if zed́ drink a tea.

If you’re a horrible person on-
line, you’re probably a horrible
person offline too.

Hello folks. Omg. I think this individual is about to hurt zirself! (emphasis
on “zirself”. COMEDIC GENIUS)

Table 2: Example neopronouns and corresponding excerpts from Reddit retrieved via our heuristic method. We
slightly modified the excerpts to lower searchability and increase the privacy of the users.

view, we compute the matches’ ranks as the num-
ber of texts in which particular matches occurred
(including false positives) against their number of
tokens (e.g., there is only 1 match, which appeared
in 24,697 texts; there are 2 matches, which ap-
peared in 198 texts, etc.). We show the results in
Figure 1 (log-scale). The result is a highly skewed
Zipf’s distribution: while the highest ranks appear
only once (e.g., themself with 24,697 mentions),
some tokens appear only a couple of times (e.g.,
the neopronoun xemself with 24 mentions), and
the vast majority appears only once (e.g., many
nounself pronouns such as peachself ).

5 How Can and Should We Model
Pronouns?

We devise five desiderata based on our observa-
tions, personal experiences, expert knowledge from
interactions with LGBTQIA+ associates, and in-
formal discussions with individuals using gender-
neutral pronouns. We validate the desiderata
through a survey. Here, we collect opinions from
39 individuals (149 in the pre-study), most of
whom identify as non-binary. We then assess how
well classic and novel NLP pronoun modeling
paradigms fulfill the criteria.

5.1 Desiderata

D1. Refrain from assuming an individual’s iden-
tity and pronouns. A model should not assume
an individual’s identity, e.g., gender, or pronouns
based on, e.g., statistical cues about an individ-

ual’s name, also not in a binary gender setup. Only
because the name John typically appears together
with the pronoun he, the model should not assume
that a person with the name John identifies as a
man and that every John uses the pronoun he.

D2. Allow for the existing sets of pronouns as
well as for neopronouns. A model should be
able to handle not only the existing set of “standard”
pronouns in a language but also other existing pro-
nouns, e.g., neopronouns.

D3. Allow for novel pronouns at any point in
time. On top of D2, a model should allow for
novel, i.e., unseen, pronouns to appear at any point
in time. This condition is necessary to account for
the fact that neopronouns are not a fixed set, but
evolving, and because related phenomena (emoji-
self and nameself pronouns) turn pronouns from a
closed to an open class part of speech.

D4. Allow for multiple, alternating, and chang-
ing pronouns. A model should not assume that
the pronoun set for an individuum at time t will be
the same as at time t − 1. Even within the same
sequence, pronoun sets might change.

D5. Provide an option for individuals to define
their sets of pronouns. While most NLP models
are trained offline and do not interact with the user,
some are designed to interact with individuals, e.g.,
dialog systems. Here, letting individuals provide
their sets of pronouns can help avoid harmful inter-
actions (depending on the sociotechnical scenario).
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5.2 Validation

Survey Design. We divide the survey into three
parts: first, participants are asked for demographic
information (age, (gender) identity, native lan-
guage(s), pronouns). The second part asks for their
opinion on D1–D5. We first provide a general con-
textualization of our research and describe the task.
Participants are asked to indicate how much they
agree with each desideratum (ordinal scale, 1 (I
don’t agree) to 5 (I absolutely agree)). We also
allow for leaving additional comments. The third
part relates to a case study on machine translation.
We inform the participants that their participation is
completely voluntary and that they will not receive
any compensation. All questions are optional. To
avoid sequence effects, we create multiple versions
of the survey shuffling the order of the desiderata.
We obtained ethical approval for the design by one
of our universities’ institutional review board.

Survey Distribution. Opting to collect opinions
from affected individuals, we distribute the sur-
vey through various international LGBTQIA+ net-
works, e.g., QueerInAI,17 Committee on LGBTQ+
[Z] Issues in Linguistics,18 as well as through lo-
cal LGBTQIA+ groups, e.g., Transgender Network
Switzerland.19 In an initial pre-study, which was
open for participation between 22nd of March and
4th of May 2022, we validated our design. In to-
tal, 149 individuals participated in this phase (more
than 8x more than in (Dev et al., 2021)).20 The
main phase of the survey was open for participa-
tion between 18th of June and 1st of August 2022.

Partcipant Statistics. In total, 44 individuals par-
ticipated in the main phase of our survey, more
than in any other survey on (gender) identity and
language technology we are aware of. Participant
ages range from 14 to 43 (the majority between 20
and 30). For the rest of the analysis, we removed
all records from individuals under the age of 18.
These individuals indicated that they speak diverse
native languages (e.g., German, English, Danish,
Persian, Russian). Participants provided between 0
and 4 identity terms (e.g., genderfluid, genderqueer,
trans*masculine, etc.), with the majority identify-

17https://sites.google.com/view/queer-
in-ai

18https://www.linguisticsociety.org/co
ntent/committee-lgbtq-z-issues-linguisti
cs-cozil

19https://www.tgns.ch
20All trends observed in the pre-study were confirmed in

the main phase of the survey.

Figure 2: Distribution over English pronoun sets the
participants of our survey identify with. We apply slight
lexical normalization to the pronoun strings provided in
the free text field (e.g., he→ he/him, etc.).

Score 1 2 3 4 5 Avg

D1 5.13% 2.56% 0.00% 33.33% 58.97% 4.38
D2 2.56% 0.00% 5.13% 17.95% 74.36% 4.62
D3 2.56% 0.00% 12.82% 25.64% 58.97% 4.38
D4 2.56% 5.13% 2.56% 23.08% 66.67% 4.46
D5 0.00% 2.56% 5.13% 20.51% 71.79% 4.62

Table 3: Agreement distribution for our desiderata D1–
D5. We report the % agreement per score (1=I don’t
agree, 5=I absolutely agree) as well as the average score.

ing as non-binary. Thus, we believe our results
to reflect cultural and (gender) identity diversity.
Figure 2 shows the distribution over the English
pronoun sets participants identify with.

Agreement with the Desiderata. We show the
distribution of agreement scores for each desidera-
tum in Table 3. Overall, we note high agreement
(on average 4.38–4.62). Thus, we conclude our
proposed desiderata to provide valuable orienta-
tion for the treatment of pronouns leading to more
identity-inclusive language technology.

5.3 Modeling Paradigms

We compare four general modeling paradigms with
the desiderata D1–D5 in Table 4.

Classic Statistical Modeling. Traditionally, pro-
nouns have been treated as a closed word class.
Generally, statistical models do not make as-
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Paradigm D1 D2 D3 D4 D5

Classic ✗ ✗ ✗ ✗ ✗
Bucketing ✗ ✓ ✓ ? ✗
Delexicalization ✓ ✓ ✓ ✓ ✗
Post-hoc ✓ ✓ ✓ ✓ ✓

Table 4: Modeling paradigms and how they allow for
fullfilling the desiderata D1–D5.

Train Dev Test Total

PRP 64,476 7,881 8,067 80,424
PRP$ 14,535 1,783 1,935 18,253

Total 79,011 9,664 10,002 98,677

Table 5: Number of pronoun replacements in the train-
ing, development, and test portion of OntoNotes 5.0 for
PRP and PRP$, respectively.

sumptions about this (except if the vocabulary is
manually curated). However, in models exploit-
ing co-occurrences, e.g., via word embeddings
(GloVe (Pennington et al., 2014)) or deep language
models (BERT (Devlin et al., 2019)), the models
will likely misrepresent underrepresented pronoun-
related phenomena. Dev et al. (2021) provided an
initial insight by showing that singular they and
the neopronouns xe and ze do not have meaningful
vectors in GloVe and BERT.

Bucketing. One option, previously discussed by
Dev et al. (2021), is to apply bucketing, i.e., to
decide on a fixed number of majority classes, e.g.,
male pronouns, female pronouns, and one or mul-
tiple classes for the “rest of the pronouns”, e.g.,
other. The advantage of this approach is that it can
map existing and novel pronouns to the other class.
However, it still makes identity assumptions – and
due to unequal representations of main and other
classes, it will inevitably lead to discrimination.

No Modeling – Delexicalization. Given that the
classic approach and bucketing both lead to unfair
treatment of underrepresented groups, the alterna-
tive is to explicitly not model pronouns in their sur-
face forms. This process, commonly named delexi-
calization, has proved helpful for other tasks where
models capture misleading lexical information, e.g.,
fact verification (e.g., Suntwal et al., 2019), or
resource-lean scenarios, e.g., cross-lingual pars-
ing (e.g., McDonald et al., 2011).21 In this case, the
model is forced to not rely on spurious lexical cues
related to gender, e.g., that John occurs most often

21In fact, accounting for novel pronouns and novel ways of
using pronouns is a resource-lean scenario.

with the pronoun he. Instead, the model learns a
single representation for all pronouns and relies
on other task-related conceptual and commonsense
information for disambiguation.

Post-hoc Injection of Modeling Information/
Modeling at Test Time. For human-to-human in-
teractions, several LGBTQIA+ guides recommend
to (1) first try generic pronouns (e.g., singular they),
and (2) switch to other sets of pronouns once the
conversation partner communicates them. For un-
common or novel pronouns, several web pages
have explicitly been set up for practicing how to
use them.22 In this work, we propose that NLP
systems should work similarly – if technically pos-
sible and depending on the concrete sociotechnical
deployment scenario. To this end, we can use in-
termediate training procedures (e.g., Hung et al.,
2021) for pronoun-related model refinement. E.g.,
we can use synthetic data created through similar
procedures as the ones employed on these websites.
Another option is only model pronouns at test time,
e.g., through simple replacement procedures.

6 The Effect of Delexicalization

In §5.3, we discussed delexicalization, i.e., not
modeling lexical forms of pronouns, as one way to
counter exclusion in statistical modeling and buck-
eting. A possible counter-argument against this
approach is that omitting the surface forms will
lead to poor performance on pronoun-related tasks.
We experimentally quantify the loss from (fairer)
delexicalization in co-reference resolution.

6.1 Experimental Setup

Task, Dataset, and Measures. We resort to co-
reference resolution, a task where knowledge about
pronouns and related gender assumptions play an
essential role. We use the English portion of
OntoNotes 5.0 (Weischedel et al., 2012), which
consists of texts annotated across five domains
(news, conversational telephone speech, weblogs,
USENET newsgroups, broadcast, and talk shows).
We prepare three variants: (i) the original data; (ii)
we replace all pronouns in the test set with the
respective part-of-speech token, according to the
Penn Treebank Project (Santorini, 1990), i.e., PRP
for personal pronouns, and PRP$ for possessive
pronouns. Finally, we provide a version (iii) where
we replace pronouns in all splits. Note that our

22E.g., https://www.practicewithpronouns.c
om/#/?_k=66emp7
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MUC CEAFϕ4 B3 AVG
P R F1 P R F1 P R F1 P R F1

(Dobrovolskii, 2021) 84.9 87.9 86.3 76.1 77.1 76.6 77.4 82.6 79.9 – – 81.0

- reproduction 84.7 87.5 86.1 75.6 76.7 76.1 77.2 82.0 79.5 79.2 82.1 80.6
- replace test set 69.7 70.7 70.2 63.2 49.1 55.2 50.1 56.1 52.9 61.0 58.6 59.4
∆repl.test−repr. -15.0 -16.8 -15.9 -12.4 -27.6 -20.9 -27.1 -25.9 -26.6 -18.2 -23.5 -21.2
- replace all 81.6 83.1 82.4 73.08 72.9 73.0 72.3 75.3 73.7 75.7 77.1 76.4
∆repl.all−repr. -3.1 -4.4 -3.7 -2.5 -3.8 -3.1 -4.9 -6.7 -5.8 -3.5 -5.0 -4.2

Table 6: Results of the delexicalization experiment. We report the results of the RoBERTa large-based word-level
co-reference resolution model from Dobrovolskii (2021), our reproduction, and variants trained or tested on versions
of the data set in which we replace the pronouns. All scores were produced using the official CoNLL-2012 scorer.
We report precision (P), recall (R), and F1-score (F1) for MUC, CEAFϕ4, and B3, respectively, as well as the
averages (AVG). The rows highlighted in gray indicate the obtained losses.

strategy is pessimistic as we also replace non-3rd
person pronouns, i.e., I, you, etc. We show the num-
ber of replacements in Table 5. For scoring, we
use the official CoNLL-2012 scorer (Pradhan et al.,
2012). We report the results in terms of MUC (Vi-
lain et al., 1995), B3 (Bagga and Baldwin, 1998),
and CEAFϕ4 (Luo, 2005) precision, recall, and F1-
measure, and the averages across these scores.

Models and Baselines. We want to obtain an in-
tuition about the tradeoffs in the delexicalization
setup, not to outperform previous results. For this
reason, we resort to the recently proposed word-
level co-reference model (Dobrovolskii, 2021), a
highly efficient model competitive with the state-
of-the-art. The model consists of a separate co-
reference resolution module and a separate span
extraction module. In an initial step, we compute
token representations from a Transformer (Vaswani
et al., 2017)-based encoder through the aggrega-
tion of initial representations via learnable weights.
Next, we compute co-reference relationships. We
pass the token representations into an antecedent-
pruning procedure based on a bilinear scoring func-
tion. This way, we obtain k antecedent candidates
for each token through coarse-grained scoring. An
additional feed-forward neural network computes
finer-grained scores. The final antecedent score is
the sum of those two scores. Finally, we select the
candidate with the highest score as the antecedent.
Negative scores indicate no antecedent. Tokens as-
sumed to be part of a co-reference relationship are
passed into the span extraction module. The mod-
ule consists of an additional feed-forward network,
followed by convolutions with two output channels
(for start and end scores). For further details, see
the original work. Our baseline is the model trained
and evaluated on the original OntoNotes portions

(reproduction). We compare with the evaluation
of this model on the pronoun-replaced test set (re-
place test set) and a version of this model trained
on the replaced training set and evaluated on the
replaced test set, respectively (replace all).

Model Configuration, Training, and Optimiza-
tion. We choose RoBERTa large (Liu et al.,
2019)23 as the base encoder and fix all other hy-
perparameters to the ones provided in the original
implementation of Dobrovolskii (2021): the win-
dow size is set to 512 tokens, dropout rate to 0.3,
the learning rate of the encoder is set to 1·10−5 and
of the task-specific layers to 3 · 10−4, respectively.
We train the co-reference module with a combina-
tion of the negative log marginal likelihood and
binary cross-entropy as an additional regulariza-
tion factor (weight set to 0.5). The span extraction
module is trained using cross-entropy loss. We
optimize the sum of the two losses jointly with
Adam (Kingma and Ba, 2015) for 20 epochs and
apply early stopping based on validation set perfor-
mance (word-level F1) with a patience of 3 epochs.

6.2 Results and Discussion

We show the results in Table 6. We are roughly
able to reproduce the results reported by (Dobro-
volskii, 2021), confirming the effectiveness of their
approach and the validity of our setup. When we re-
place pronouns in the test set, the results drop mas-
sively, with up to−27.6 percentage points CEAFϕ4
recall. This decrease demonstrates the heavy re-
liance of this model on the lexical surface forms
of the pronoun sets seen in the training. However,
when we replace the pronouns in the training por-
tion of OntoNotes with the special tokens, we can
mitigate these losses by a large margin (losses up

23https://huggingface.co/roberta-large
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to −5.8 B3 F1, and on average −4.2 F1). These
results are highly encouraging, given that a) we
replaced all pronouns, including non-third person
pronouns, and b) the model has not been trained
on these placeholders in the pretraining phase. The
model can not rely on possibly discriminating corre-
lations between names or occupations and pronoun
sets. It therefore represents neopronouns the same
way as established pronoun sets. A delexicaliza-
tion approach can increase fairness in co-reference
resolution and retain high system performance. We
can expect even smaller drops from a more careful
selection of replacements, and, possibly, from in-
termediate training procedures that strengthen the
representation of the placeholder tokens.

7 Conclusion
This work provides an initial overview of the
plethora of current phenomena in 3rd person pro-
noun usage in the English language. For practical
and ethical reasons, the NLP community should
acknowledge the broad spectrum of possible iden-
tities and the respective manifestations in written
and oral communication. Language is consistently
evolving, and NLP researchers and practitioners
should account for this to provide genuinely in-
clusive systems. Notably, pronouns, traditionally
handled as a closed class of words, seem to func-
tion closer to an open class. Based on the ob-
servations from our literature search, research in
non-academic, publicly-available writing, a cor-
pus study, and a survey, we defined five desiderata.
We validated those and applied them to the dis-
cussion of existing and novel modeling paradigms.
Our findings raise the questions when and how
to model pronouns and whether and how to in-
clude users in these decisions. With this work,
we hope to start a broader discussion on the topic.
Our study can inform future NLP research and
serve as a starting point for creating novel mod-
eling procedures. All code needed to reproduce
our experiments is publicly available at https:
//github.com/anlausch/pronouns.
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Abstract

In this work, we discuss different threat scenar-
ios from neural fake news generated by state-
of-the-art language models. Through our ex-
periments, we assess the performance of gener-
ated text detection systems under these threat
scenarios. For each scenario, we also identify
the minimax strategy for the detector that min-
imizes its worst case performance. This con-
stitutes a set of best practices that practitioners
can rely on. In our analysis, we find that de-
tectors are prone to shortcut learning (i.e., lack
of out-of-distribution generalization) and dis-
cuss approaches to mitigate this problem and
improve detectors more broadly. Finally, we
argue that strong detectors should be released
along with new generators.1

1 Introduction

During the COVID-19 pandemic, an overabun-
dance of inaccurate information made it hard
for people to find reliable guidance when they
needed it, creating the first global infodemic. This
widespread presence of online fake news poses a
risk for the principles of the global information and
communication space, which is considered to be a
public good (Stiglitz et al., 1999). Widely available
and reliable information is necessary for the func-
tion of a democratic state and is seen by UNESCO
as vital to ensure “public participation and civic
space”.2

Neural generation systems unlock new possibili-
ties for disinformation campaigns to generate large
quantities of targeted content (Zellers et al., 2019;
Radford et al., 2019; Keskar et al., 2019; Brown
et al., 2020). Recent progress in pretrained lan-
guage models enables the generation of fluent, orig-
inal text that can be easily confused with human-
written text. Progressively more complex use of

1Resources including generators, detectors, and generated
and pristine news articles are made available at https://
github.com/artidoro/detect-gentext

2UNESCO report “Information as a public good”

such language models can be achieved depending
on the technical expertise and resources of the users
(i.e., access to the language model, capability to run
existing systems, to finetune them, or to develop
a new generator and train it). This is a pressing
problem, and it is reported that certain actors spend
substantial monetary resources to spread misinfor-
mation and influence public opinion, for example
during the COVID 19 pandemic 3 and the US Pres-
idential Elections of 2016 (Badawy et al., 2018;
Stiff and Johansson, 2021). Although the major-
ity of online disinformation is currently manually
written (Vargo et al., 2018), the rapid progress of
language generation systems along with their in-
creased availability could attract these actors for
whom the financial barriers do not pose problems.
To prevent the spread of artificial and potentially
malicious content online, it is necessary to develop
automated detection systems that can distinguish
human and generated text reliably.

In this work, we discuss the problem of machine
generated text detection (Jawahar et al., 2020), by
identifying and analyzing potential scenarios of ma-
licious text generation (i.e., threat scenarios) based
on (1) state-of-the-art models in neural language
generation, and (2) previous work that describes
how these techniques can be used to forge content
(Ranade et al., 2021; Gupta et al., 2020; Buchanan
et al., 2021).

Our analysis focuses on the interaction of gen-
erators and detectors for each scenario across their
technical capabilities and associated costs. Know-
ing the limitations of current detection systems can
help policymakers identify the threats posed by dif-
ferent actors by assessing their technical expertise
and resources.

The contributions of this work are: (1) identi-
fying and assessing threat scenarios for the use of
pretrained language models to spread disinforma-

3New York Times: “Disinformation for Hire, a Shadow
Industry, Is Quietly Booming”
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tion, based on associated costs and availability of
generators, (2) analyzing the performance of cur-
rent methods – discriminators trained to defend
against these threat scenarios, and (3) identifying
challenges and future research directions to miti-
gate potential threats.

2 Problem Description

In this section we introduce the problem of de-
tecting generated text and describe state-of-the-art
methods for both generators and detectors.

2.1 Generators
We consider a generator to be a model capable
of generating fluent text. Currently, state-of-the-
art generators rely on neural language models pre-
trained on large text corpora (Bengio et al., 2000).
Language models generate text autoregressively, by
sampling each word from a probability distribution
over a fixed vocabulary given the word’s context.

Architecture and Training Objective The core
of the architecture of neural language models has
converged to Transformer models (Vaswani et al.,
2017) with small variations (Press et al., 2022).
One distinction between language models is their
training objective (ex: masked (Devlin et al., 2018)
and causal (Radford et al., 2019) language mod-
els). Causal language models are generally the
ones employed for text generation (Li et al., 2021).

Training Data Language models are trained to
mimic the distribution of the language in their train-
ing data. This has an impact on the kind of text they
are able to generate. Language models pick up so-
cial biases and other unwanted artifacts of the text
they were trained on (Sun et al., 2019; Weidinger
et al., 2021; Field et al., 2021). Most language
models are pretrained on large corpora of web text.
They can be adapted to specific domains by finetun-
ing on new corpora. For example, a model could
be finetuned to the news domain to generate text in
the style of news articles (Zellers et al., 2019).

Sampling From the Language Model There are
different strategies to sample from the distribution
produced by the language model. These strategies
lead to different styles of text. Greedy sampling
amounts to generating the highest probability word.
This strategy, however, leads to deterministic gener-
ations. Random sampling involves sampling from
the entire distribution over the vocabulary. In some
cases, this can lead to ungrammatical generations.

To mitigate this issue top-k sampling (Fan et al.,
2018) generates from the top-k most likely words
according to the language model. Finally, nucleus
sampling (Holtzman et al., 2019) samples from the
set of words that collectively accounts for a proba-
bility mass p under the language model. Orthogo-
nal to sampling strategies are decoding algorithms
that aim to maximize the global probability over
the full text sequence. Most generators compose
text sequences one word at a time without guaran-
tees of finding a globally optimal sequence. Beam
search is a heuristic method that is often employed
to maintain b candidate generations and pick the
one with the highest overall likelihood.

2.2 Detectors

In this work, we define detectors as models that
are trained to distinguish machine-generated and
human-written text. Research on detectors for gen-
erated text is motivated by two main goals. On one
hand, a better understanding of the differences be-
tween generated and human text can be used to im-
prove generated systems. On the other hand, better
detection systems could help mitigate the potential
negative societal impact that machine generated
text can have (Jawahar et al., 2020).

Previous work has pointed out stylistic differ-
ences between generated and human text. Differ-
ences in fluency, lexical, and syntactic novelty have
all been shown to help differentiate between gen-
erated and human written text. Here, we describe
different lines of work on automated detection sys-
tems of machine generated text with a particular
focus on pretrained classifiers which have been
shown to work best so far (Gehrmann et al., 2019;
Dugan et al., 2020).

Human-machine collaboration Dugan et al.
(2020) show that humans can easily be fooled
when trying to detect the boundary between hu-
man and generated text. Their work highlights the
difficulty of the detection task, but also shows that
humans are capable of identifying generated text
in a long document (beyond a couple of sentences).
Gehrmann et al. (2019) studied the difference be-
tween human and machine generated text. They
showed that generated text tends to opt for more
common phrases, thus favoring fluency over nov-
elty. They built a tool, GLTR, that helps humans
identify generated text, by visualizing the likeli-
hood and rank of words in a text under a language
model.
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Description Costs Expertise Threat Detect. Acc.
Online playgrounds 0 Interacting with an online form Execute Generator 92.8%
Paid API 0-1K Prompting and querying API Execute Generator 92.8%
Execution of LM 50k-130k Hardware setup, DL execution experience Execute Generator 92.8%
Finetuning of LM 100k+ Hardware setup, DL training expertise Finetune Generator 74.2%
Training of LM 100k-1M+ Hardware setup, optimization, training of LM Train Generator 64.8%

Table 1: Threat scenarios, costs, and minimax detector performance (see discussion in section 6).

Stylometry Aiming to identify differences in
the style of generated and human text, some ap-
proaches directly measure stylistic features of text.
These approaches have broadly been termed sty-
lometry. Some features used by Fröhling and Zubi-
aga (2021) include repetitiveness, lack of purpose,
and readability. Despite some success, previous
work pointed out the limitations of stylometry in
detecting machine-generated fake news (Schuster
et al., 2020). State-of-the-art performance on this
task is achieved by pretrained language models
finetuned to the classification task (Uchendu et al.,
2021).

Pretrained classifiers Previous work has studied
how well pretrained classifiers can detect generated
text (Solaiman et al., 2019; Zellers et al., 2019; Ip-
polito et al., 2020; Bakhtin et al., 2021; Uchendu
et al., 2021). Solaiman et al. (2019) show that fine-
tuning ROBERTA can detect GPT-2 (Radford et al.,
2019) with 95% accuracy and that the performance
transfers across decoding strategies and to smaller
generators. Ippolito et al. (2020) show that detec-
tors perform best when humans are fooled because
decoding strategies have to compromise between
fluency and lexical and syntactic novelty. Fluency
errors are easy to detect by humans, while lexi-
cal novelty is difficult. On the other hand, lexical
novelty is what classifiers are able to identify.

3 Threat Scenarios

A given generator can be used in various ways,
based on domain expertise and budget, resulting
in different styles of generated text. We describe
threat scenarios by identifying possible uses of pre-
trained LMs and their associated costs (technical
expertise and monetary resources required).

Interactive Playgrounds and Paid APIs Most
language models have been open-sourced and the
model parameters can be downloaded. However,
many also have free online playgrounds that sim-

plify the user-interaction4 and require little to no
programming expertise. The latest models coming
from the private sector (e.g., GPT3 (Brown et al.,
2020)) are usually not available publicly or are
only accessible through paid APIs and online play-
grounds. With some delay, equally powerful mod-
els are often released publicly (e.g., OPT (Zhang
et al., 2022)).

These playgrounds are either free or very cheap.
Even the paid GPT3 playground’s most powerful
model only costs $0.06 for 1000 tokens. Generat-
ing text through the playgrounds is time consuming
and requires heavy intervention by the user who
needs to write prompts and ensure that the gener-
ation is sensible. However, this method could be
used to speed up the process of writing fake con-
tent by offloading some portion of the writing to
the language model. APIs extend the playgrounds
by allowing generation to be performed program-
matically. This increases the potential scale of the
generation process. Targeted generations through
prompting still need careful handcrafting.

Execution and Sampling Variations The next
barrier to using pretrained language models is be-
ing able to execute them. Due to their scale lan-
guage models require hardware accelerators (ex:
GPUs and TPUs). Thanks to advances in model
parallelization (Rasley et al., 2020; Rajbhandari
et al., 2020) it is no longer required to store the full
model in the memory of a single piece of hardware.
This makes it possible to execute large models on
standard GPU hardware.

Once the model is executing, it is simple to vary
hyperparameters of the generation process such as
sampling strategy, temperature, beam search, and
repetition penalty. These parameters are generally
built into the software libraries for text generation
and lead to stylistic differences in the generated
text which can reduce the effectiveness of detec-
tion systems. Having the monetary and technical
resources to execute the models allows generat-

4https://transformer.huggingface.co/

1235



ing text at scale. However, targeted generations
still require prompts either curated or automati-
cally extracted. Previous work puts the cost of
such a project including experimentation and ser-
vicing between $50,000 and $136,000 (Sharir et al.,
2020). These costs will likely decrease as hard-
ware becomes more easily accessible and software
packages and cloud services simplify the process.

Finetuning To produce more sophisticated and
targeted generations, it is usually necessary to adapt
the pretrained language model. One common tech-
nique for adaptation of generators is finetuning the
generators by continuing the pretraining (Ranade
et al., 2021; Gupta et al., 2020). The result is a
language model that is able to produce text in the
required style, format, or domain. This requires
both access to in-domain data as well as computing
resources. Resources required for this are upwards
of $100,000 (Sharir et al., 2020).

Training a Language Model Developing new
models can lead to new and unique styles of gen-
eration. These can be hard to identify for detec-
tion systems that have not seen such examples in
their training data. Training new language genera-
tion systems comes at a significant cost. The costs
are inflated by the need of several training runs
to experiment with different hyperparameter con-
figurations. Previous research estimated the costs
of training new models at $50k for a 110 million
parameter model, $200k for a 340 million param-
eter model, and $1.6M for a 1.5 billion parameter
model (Sharir et al., 2020). Note that these costs
were estimated in 2020 and are likely going to be af-
fected by improvements in hardware and software
libraries to speed up the training process. Costs
are even higher for larger models like OPT (175
billion param.) which was trained on 992 80GB
A100 GPUs with experiments lasting at least two
months (Zhang et al., 2022). At the time of writing,
the GPU hardware alone would cost $50-100M on
the public version of Google cloud (although due
to private negotiations with the cloud providers the
actual price is likely lower).

4 Experimental Setup

Here we describe the generators, detectors, and
datasets that we use in our experiments.

Model Num LAM LAM Detect.
Name Param. PPL Acc Acc.
GPT-2 sm 125M 35.1 45.99 99.49
GPT-2 md 350M 15.6 55.48 98.79
GPT-2 lg 760M 10.9 60.12 97.39
GPT-2 xl 1.5B 8.6 63.24 95.91
GPT-NEO 2.7B 5.6 62.2 95.12
GPT-3 175B 3.0 76.2 92.83

Table 2: Generators used in our experiments, the number
of parameters, their perplexity, and accuracy on the
LAMBADA dataset (Paperno et al., 2016), and their in-
domain detection performance when training and testing
with nucleus sampling (p = 0.96).

4.1 Generators

In this work, we focus on causal language model
generators. These have been shown to be suc-
cessfully employed to generate neural fake news
(Zellers et al., 2019). We experiment with the four
sizes of GPT-2 (Radford et al., 2019), GPT-NEO

(Black et al., 2021), and GPT-3 (Brown et al., 2020).
We chose these models as they have a similar train-
ing objective and cover a wide range of perfor-
mances in terms of perplexity. The details of these
models are shown in Table 2.

Our experiments do not include larger models
(Rae et al., 2021; Smith et al., 2022; Chowdhery
et al., 2022). The perplexity and accuracy on bench-
marks like LAMBADA (Paperno et al., 2016) of
the larger model are not significantly different. For
example, the accuracy of PALM (540B parame-
ters) on LAMBADA is 77.9 against 76.2 for GPT-3
(175B parameters). We also do not consider con-
trollable text generation systems which can change
the domain of the generated text. Finetuning is a
simple alternative to change the domain and we
chose it to avoid introducing other confounders.
Also, previous work that experiment with control-
lable generation did not always find significant dif-
ferences in detection performance (Stiff and Jo-
hansson, 2021).

4.2 Detectors

In this work, we experiment with classifiers based
on pretrained language models and finetuned to
the task of detecting generated text. In total, we
experiment with seven different detectors based on
ROBERTA(Liu et al., 2019), BERT(Devlin et al.,
2019), ALBERT (Lan et al., 2020), and ELEC-
TRA (Clark et al., 2020). We include different

1236



Logarithm of # of generator parameters (billions)

D
et

ec
tio

n 
A

cc
ur

ac
y

90

92

94

96

98

100

0.5 1 5 10 50 100

103x^-8.98E-03 R² = 0.939

(a)
Perplexity (LAMBADA)

90

92

94

96

98

100

5101520253035

90.6x^0.0269 R² = 0.941

(b)
Accuracy (LAMBADA)

90

92

94

96

98

100

50 55 60 65 70 75

-0.217*x + 109 R² = 0.916

(c)

Figure 1: In-domain detection performance as a function of number of parameters (a), perplexity (b), and accuracy
(c) of the generator (perplexity and accuracy on LAMBADA dataset). Detectors are trained and tested on nucleus
sampling (p = 0.96).

sizes and training objectives for the pretrained lan-
guage models that the detectors rely on.

4.3 Datasets

We employ existing dataset of generated text for
GPT-2 models and complement it with generations
from GPT-NEO and GPT-3, as well as domain
adapted generations. OpenAI released both human
and machine generated text.5 The data includes
generations from GPT-2 models along with part of
the original training data (Solaiman et al., 2019).
The generations come with three different decoding
strategies (random, top-k, and nucleus sampling).
We are not aware of any other models being re-
leased with sample generations. Furthermore, the
pretraining data is often not available. We there-
fore had to generate a large training dataset of text
generated by GPT-NEO and GPT-3 for our exper-
iments. We use human prompts (15 tokens) from
Webtext (released by OpenAI) and the three sam-
pling strategies that were already used by OpenAI.
The hyperparameters k = 40 and p = 0.96 were
reported to be a good compromise between fluency
and novelty of generations (Holtzman et al., 2019)
and are used in our experiments. For GPT-3, we
collected 50K training examples of generated text
using nucleus sampling with p = 0.96. To our
knowledge, this is the first collection of documents
that is large enough to train a detector for GPT-3.
To test generalization performance of detectors, all
generators besides GPT-3 were also finetuned to the
COVID domain. The dataset used for finetuning
is the NELA 2020 (Gruppi et al., 2022) news cor-

5https://github.com/openai/
gpt-2-output-dataset

pus (the COVID split). Details of the datasets used
in our experiments are available in the appendix
Appendix A.

5 Results

Our experiments simulate the different threat sce-
narios identified in the previous section and eval-
uate their associated risks. Borrowing from the
field of security (Shostack, 2014), we describe how
“attackers” can employ generators and “defenders”
train effective detectors under varying assumptions.

The first three scenarios (online playgrounds,
paid APIs, and execution of LM) can be studied
together as they involve using an existing generator
without any domain specific tuning of the model
parameters. Users can still tailor the generation
style by changing decoding hyperparameters. Next,
we explore the scenario of generator finetuning,
focusing on the covid domain. Lastly, we simulate
the training of new generators by looking at the
performance of detectors when they are trained
and tested on different generators. Throughout
our experiments, we choose to isolate and study a
specific phenomenon to determine its impact of the
detection performance in isolation.

5.1 Preliminary

To set the basis for further experiments, we be-
gin with a scenario where there is full knowledge
of the attack. Here, both training and testing is
performed on the same generator and decoding
strategy while finetuning. This is a white-box at-
tack which, though unrealistic, gives some useful
preliminary information about the hardness of the
task.
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tokens 256 128 64 32
GPT-2 xl nucleus 96.4 93.09 85.7 76.37
GPT-2 xl random 95.96 94.4 87.9 76.69
GPT-2 xl k = 40 97.9 98.8 96.8 -

Table 3: Accuracy on shorter sequences. ROBERTA
large was trained and tested on sequences of varying
size in terms of tokens.

Under these circumstances, the detection perfor-
mance is above 90% even for the largest generator
GPT-3 (Table 2). We confirm observations made
by previous work (Radford et al., 2019; Ippolito
et al., 2020) that larger detectors perform better (-
4.6% average performance decrease with the small
version of the detector across 60 generator varia-
tions tested) and that larger models are harder to
detect. A contribution of our analysis is a study of
the scaling laws of generator capacity and detection
performance. We can perform such a study thanks
to the collection of a dataset of GPT-3 generations.

In Figure 1, we observe that the detection per-
formance is related with a power law to both the
number of parameters in the generator and the gen-
erator perplexity with an exponent in the order of
10−3. The relation appears to be more linear in
terms of the accuracy on the LAMBADA dataset
with coefficient −0.21. In all three cases, we have
R2 > 0.9. These relations suggest a trend with
small detection performance drop as the genera-
tor complexity increases even beyond the current
known generators. As a reminder, this assumes a
white-box attack scenario.

Besides having full knowledge of the attack, the
previous results also assumed fairly long gener-
ations. The detection performance, even under
white-box attack, significantly decreases when the
text sequences to distinguish are shorter. Such
shorter text sequences are frequent in certain do-
mains like in social media (Twitter has 280 charac-
ter limit which is about 50 words). In Table 3, we
show that on sequences of 64 tokens, roughly the
maximum length of a Tweet, performance drops
by 10% on nucleus and random sampling. Interest-
ingly, on top-k the decrease in performance is not
as pronounced.

5.2 Executing Known Generators

In this scenario, we assume that attackers can only
employ generators that are known to the defenders,
which means that the adversary can pick a decod-

train ↓ test→ random top-k nucleus
random n.a. −28.6 −21.9
top-k = 40 −43.2 n.a. −21.3
nucleus p = 0.96 −8.6 +2.4 n.a.

Table 4: Average accuracy variation when training a
ROBERTA lg model on one decoding strategy and test-
ing on another decoding strategy across the generators
of interest.

ing strategy. Since the generator is known, the de-
fender can train the detector on data generated by
the generator and used by the adversary. However,
given the large number of available combinations
of decoding hyperparameters, the defender cannot
assume to have trained a model on the same decod-
ing strategy that was chosen by the adversary.

In practice, we simulate this scenario by training
the detector on one decoding strategy and testing it
on another. In Table 4, we show that performance
generally decreases when a detector is evaluated
on a decoding strategy it was not trained on. This
highlights how sensitive these models are to small
stylistic variations of the generated text. This exper-
iment also shows that nucleus sampling has the best
generalization to other decoding strategies and that
defenders should train on nucleus sampling to miti-
gate worst case performance drop in this scenario.
Training on nucleus sampling still has an average
performance change of -8.6% when testing on ran-
dom sampling. Such significant reduction indicates
that changes in the decoding strategy are simple
ways to reduce the performance of a detector.

5.3 Finetuning Generators

To simulate the scenario of a finetuned generator,
we assume that the adversary can only finetune a
known generator. In our case, we finetune the gen-
erators to the COVID news domain using masked
language modeling. Here, the defender does not
know the target domain, therefore the detectors
can only be trained in the original domain of the
generator (generic web text).

In Table 5, we compare in-domain (ID) per-
formance, where ROBERTA large is trained and
tested on data from the same generator, with out-
of-domain (OOD) performance, where ROBERTA

lg and ELECTRA lg were trained on GPT-2 xl
outputs in the web domain and tested on generated
text in the COVID news domain. Here we keep the
sampling strategy fixed (nucleus sampling p = 96)
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Generators ID Acc. OOD Acc.
(COVID) ROBERTA lg ELECTRA lg
GPT-2 sm 99.72 75.86 95.24
GPT-2 md 99.87 75.86 89.14
GPT-2 lg 98.59 90.65 94.37
GPT-2 xl 95.47 69.59 78.56
GPT-NEO 96.16 79.46 74.27
Average 97.96 81.45 86.31

Table 5: Detection accuracy in the COVID domain. We
compare in-domain (ID) with out-of-domain (OOD)
performance for different detectors.

to isolate the change in performance due to a shift
to the COVID news domain.

We find that the out-of-domain performance is
on average 11% lower for ELECTRA lg and 16%
lower for ROBERTA lg compared to the in-domain
performance. The ELECTRA discriminator is pre-
trained to identify spans of text that were replaced
by a language model. This pretraining objective
is closer to the task of detecting generated text
than the masked language modeling objective used
by ROBERTA. We hypothesize that ELECTRA
performs better at generalizing to out-of-domain
generated text because of its training objective.

5.4 Training New Generators

To test the performance under new and unknown
generators, we make the assumption that the de-
fender does not have access to the generator it is
trying to detect. This means that the defender can-
not train on the target generator.

To simulare this scenario, we test the detectors
on generators they were not trained on. To isolate
this component (i.e., change in generator), we do
not vary the decoding strategy or the domain of
the generator. In Table 6, we show that there is a
drop in performance across all detectors when they
are trained on a smaller generator and tested on a
larger one. This drop is more pronounced when the
detectors are trained on smaller models (decrease
of 26.5% when a model trained on the GPT-2 small
is tested on GPT-2 xl). However, when comparing
very large models the difference in performance
is significantly smaller (training on GPT-2 lg and
testing on GPT-xl leads to only a 2.1% performance
drop). We conclude that the generalization benefit
from using a larger generator for training decreases
once the generator is above a certain quality. This
observation is in line with our study of the scaling
law of the capacity of the generator under the white-

Trained on→ sm md lg
Tested on→ xl lg md xl lg xl
ROBERTA large 36.8 22.3 6.9 11.8 2.8 2.0
ROBERTA base 35.5 24.6 13.3 11.3 4.0 1.9
BERT large 31.2 22.7 16.3 10.7 4.4 2.2
BERT base 16.5 11.4 12.0 6.5 3.3 1.3
ELECTRA small 15.5 11.2 9.0 8.8 5.1 1.1
ALBERT base 23.4 17.2 12.0 12.5 6.9 4.2
Avg. acc. change 26.5 18.2 11.6 10.3 4.4 2.1

Table 6: Decrease in accuracy when training on smaller
generators and testing on larger ones. The change is
calculated based on the performance of the discriminator
tested on the same generator size it was trained on. Here
we use different sizes of GPT-2 with nucleus sampling.

GPT-2 lg GPT-2 md GPT-2 sm
ROBERTA lg 1.0 1.2 1.4
ROBERTA base 1.2 1.4 2.2
BERT lg 1.0 0.3 1.8
BERT base 0.8 -2.9 0.0
ELECTRA sm 0.5 -3.3 -0.4
ALBERT 1.7 -0.1 4.4

Table 7: Training on larger generators transfers to
smaller ones. In this case, the discriminators trained
on GPT-2 xl (nucleus sampling) maintain accuracy on
the smaller generators.

box attack.
Next, we test the hypothesis that training on

larger generators transfers to smaller generators.
In Table 7, we show the performance change when
training on GPT-2 xl and testing on GPT-2 lg, md,
and sm. We observe that the performance, in terms
of accuracy, remains mostly unchanged across de-
tectors with a 0.2% average improvement. This
indicates that training on larger generators gener-
alizes to the smaller ones (see Appendix A for a
discussion of the GPT-3 exception).

6 Discussion

6.1 Best Practices to Detect Generated Text
For each threat scenario we identify the minimax
strategy (Nash, 1953) that minimizes the worst case
performance for the defender (see Table 1). In gen-
eral, our preliminary experiments show that it is
beneficial to use the best available generator for
training and the largest detection model. We there-
fore recommend this to practitioners and assume it
is done by the defender in the following scenarios.

Executing Known Generators Online play-
grounds, paid APIs, and models available for down-
load and execution offer roughly the same language
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models (GPT-3 was not available for execution but
OPT (Zhang et al., 2022) recently filled the gap).
Our experiments as well as previous work show
that nucleus sampling generalizes to other sam-
pling techniques. When the generator is known,
detectors should be trained on this sampling strat-
egy. The detection performance of GPT-3 was the
lowest at 92%.

Finetuning Known Generators When con-
fronted with generators finetuned to new domains,
we showed that ELECTRA generally performed
better than other classifiers (possibly due to its train-
ing objective) and that it should be preferred over
ROBERTA. The worst case detection performance
for the ELECTRA large model was 74.2% with
the finetuned GPT-NEO generator.

Training New Generators Finally, here we as-
sume that the adversary has the resources required
to train a new generator altogether. The worst case
detection is achieved on the GPT-3 generator so
we take that as the new generator. The ROBERTA

large model trained on the otherwise largest avail-
able generator has a detection accuracy of 64.8%.

6.2 Detection Challenges
We found that detectors for generated text are
highly prone to shortcut learning. This phe-
nomenon seems to arise in many learning systems
(Geirhos et al., 2020) and involves taking shortcuts
that achieve high performance on a given bench-
mark or domain but fail to generalize and transfer
to real-world scenarios.

Since the training domain of the generators is not
always available, there can be a mismatch between
the domain of the generated text and the human
text that are used in the training dataset for detec-
tors. Such small systematic differences between
the generated text and the human written text can
be picked up by the detectors and prevent them
from generalizing to other generators or domains.

In our experiments, we observed that detection
models seem to focus on stylistic confounds be-
tween the human and generated text when they are
present. We observed this phenomenon with small
differences in tokenization and domain. For exam-
ple, the NELA dataset is provided pre-tokenized
which leads to punctuation having additional white
spaces compared to the generator outputs. A de-
tector trained on this dataset achieves misleading
near perfect performance (99.9% accuracy) but gen-
eralized poorly to datasets that did not have this

Model Acc.

Baseline (no ensemb.) 94.4
Majority Voting 95.5
Decision Tree 95.7
Logistic Reg. 96.0

Table 8: Ensembling specialized detectors.

tokenization mismatch (60% accuracy). We used
SHAP (Lundberg and Lee, 2017) to find what the
detector focused on and find that the human text
had white spaces before punctuation due to the way
it was collected and anonymized (see Figure 2).
This is related to observations made in previous
work which highlighted the vulnerability of detec-
tion systems to adversarial examples where simple
changes in the text (e.g., changing characters) can
flip the predictions of the models (Darmetko; Jun
et al.; Wolff and Wolff, 2020; Gagiano et al., 2021).

6.3 Future Work

Interpretability Future work should investigate
whether SHAP or other interpretability methods
can be used to understand what the detectors rely on
to discriminate generated and human-written text.
Any findings could help further improve detectors
and would also be valuable to the natural language
generation community.

Ensembling We also experiment with ensem-
bling specialized detectors instead of using a single
detector. In Table 8, we show that ensembling de-
tectors trained on different domains can lead to a
more general detection system. We combine de-
tectors trained on outputs of GPT-2 xl with three
different decoding strategies. We observe that en-
sembling consistently leads to performance im-
provements over the baseline which uses a single
detector trained on nucleus sampling (showed to
generalize well to other sampling strategies). In
this experiment, we test on data generated with all
three decoding strategies.

We believe that combining specialized detectors
is a promising area for future work. Interesting
approaches might involved identifying the right
detector to use for a given text which is related
to the generator attribution task (Uchendu et al.,
2020). They could also try to combine specialized
detectors using model distillation (Hinton et al.,
2015) into a single detector that learns from each
specialized model on different training instances
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depending on which generator originated them.

Better Training Data We found that generators
were sensitive to generation hyperparameters. Gen-
erating high quality training datasets required some
generator-specific hyperparameter tuning. The ab-
sence of automated evaluation metrics of gener-
ated text makes the process laborious and time-
consuming. Future work should draw from stylom-
etry (Fröhling and Zubiaga, 2021) or unsupervised
distributional methods (Pillutla et al., 2021; Gallé
et al., 2021) to help automate the process of con-
structing a high quality training dataset. Features
used for stylometry could more generally be used
to identify a domain mismatch between human and
generated text which if addressed could help im-
prove the generalization performance of detectors.

Adversarial Setup Detecting generated text in-
volves an adversarial setup in which detectors need
generated outputs during training. The best training
signal for a generator comes from the best gener-
ator. However, improvements in generators leave
the detectors behind. One interesting avenue for fu-
ture work is to adversarially filter the training data
for the detector by only selecting examples that
are most similar to human text (Holtzman et al.,
2018). The process is similar to simulating a better
generator with a simpler one. The filtering could
be repeated iteratively and rely on a detector that is
progressively trained on harder examples.

7 Ethical Considerations, Limitations,
and Recommendations

Although in this work we discuss the problem of
detecting generated text with a particular focus on
generated fake news, we would like to point out
that not all generated text is fake news and most
generated text does not have a malicious intent.
Language models are widely used in NLP for both
conditional language generation tasks like summa-
rization, translation, and dialogue (Gatt and Krah-
mer, 2018), as well as unconditional generation
tasks like story generation (Fan et al., 2018).

In this work, by presenting results on the de-
tection performance of different generators, we
inevitably provide information that could inform
malicious actors about how to improve generators
and where our detection system fail. However, we
believe that the experimental evidence in this pa-
per points to research directions which can help
improve systems for the detection of generated text

beyond our current capabilities.
We also would like to point out that the find-

ings of this work are limited to the domains we
focused on but the methodology is general and can
be applied to other domains. In particular, the out-
of-domain performance will change depending on
the distance between domains. For example, we
did not include any experiments with other dialects
of English or other languages.

One limitation of this work is that we do not
experiment with controllable generation systems
(Keskar et al., 2019; Krause et al., 2021; Dathathri
et al., 2020; Kumar et al., 2021). This is partly due
to the high risk of dual use in developing systems
that controllably generate malicious content. We
point to prior work which experimented detecting
generations from these systems (Stiff and Johans-
son, 2021).

Finally, based on the observations made in
this paper, we recommend that language models
should be released along with strong detectors.
Our experiments showed that in-domain detection
performance is reasonably high (> 90% acc.) even
for the largest generator GPT-3, while the out-of-
domain performance is significantly lower (64.8%
acc.). We also pointed out that variations in the
domain between generated data and human data
used to train discriminators can lead to shortcut
learning. This suggests that the requirement for
authors of new generators should be to release
data sampled from the training dataset along
with sample generations to ensure the two splits
of the data have matching domains.

8 Conclusion

We provide an assessment of the current landscape
of generated text detection and identify three pri-
mary threat scenarios. Through extensive experi-
mentation simulating the identified threats, we es-
tablish the minimax strategies that minimize the
worst case scenario for the detector. We argue that
these strategies constitute best practices for prac-
titioners. We find that, when confronted with an
adversary capable of training a new generator, the
worst case detection performance could be as low
as 64.8%. We then discuss observed detection chal-
lenges related to shortcut learning, point to several
avenues for future work, and provide recommenda-
tions for the community to release detectors along
with new models.
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Configuration Epochs Batch size Learning Rate Max Seq. Len

Detection 10 64 1e-06 256

Configuration prompt len min len max len temp. # beams repet. pen.

Generation 10 20 None 1.0 3 1.3

Table 9: Detection and generation hyperparameters.

Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

A Appendix

A.1 Dataset Information

NELA GT 2020 The NELA GT 2020 dataset
used to adapt the generators to the COVID domain
is a collection of 699,803 articles from 493 sources
in English collected from 2020-01-01 to 2020-12-
31 about COVID. The text of the articles in this
dataset was modified so that it cannot properly be
used for news consumption but can still be used
for text analysis. For articles with more than 200
tokens, 7 tokens are replaced with @ every 100
tokens. For articles with fewer than 200 tokens,
5 consecutive tokens are replaced with @ every
20 tokens. We pretrain the generators on this data
and sample from the generator by disallowing the
generation of @ signs.

Webtext and OpenAI Generations OpenAI re-
leased 250,000 documents from the OpenWebText
dataset which was used to train GPT-2. They also
released 250,000 outputs of each size of GPT-2.
We use this data in our experiments. The validation
and test splits are 5K documents each.

Generated Data We generate data using various
sizes of GPT-2 and GPT-Neo using 15 words from
NELA-GT COVID 2020 and 15 words from Open-
WebText for GPT-3 as prompts. For GPT-3, the
total number of generated documents is 50K. We
use 40K for training and 5k each for validation and
testing. The total number of training documents
generated on COVID are listed in Table 10. In,
addition, we generate 10K validation and testing
splits for each decoding technique and model type.

B Hyperparameters

We performed hyperparameter tuning on the
ROBERTA large model and used them for the other
models. Due to high combinatorial number of con-
figurations, we did not tune hyperparameters for
each detector. We use Adam in our experiments.

Generator configuration # Generated documents

GPT2-sm-covid top k=40 718662
GPT2-sm-covid nucleus p=0.96 845382
GPT2-sm-covid random 1073162
GPT2-md-covid top k=40 670062
GPT2-md-covid nucleus p=0.96 433662
GPT2-md-covid random 528022
GPT2-lg-covid top k=40 66360
GPT2-lg-covid nucleus p=0.96 101838
GPT2-lg-covid random 104190
GPT2-xl-covid top k=40 116798
GPT2-xl-covid nucleus p=0.96 220790
GPT2-xl-covid random 99194
GPT-Neo-covid top k=40 160078
GPT-Neo-covid nucleus p=0.96 172786
GPT-Neo-covid random 97380

Table 10: Number of documents generated on COVID
for each generation hyperparameter configuration.

We use the default causal language modeling hy-
perparameters of the Huggingface toolkit to adapt
the generators to the COVID domain. We max-
imize the batch size that fits on a GPU. For the
larger models we used Deepspeed stage 3 and 4
A40 GPUs.

While previous work did not comment on gen-
eration hyperparameters, we found that generation
quality is highly dependent on the hyperparameters
of the generation process. In the COVID domain,
after adapting the generators to the NELA GT 2020
dataset, we found the use of beam search to be nec-
essary to obtain fluent text. In section 6, we discuss
ideas which could help future work perform hyper-
parameter tuning more extensively and efficiently.

B.1 Detailed Results
For reference, we report the individual results pre-
sented throughout the paper without aggregations.
On top of the accuracy metric, we also report F1
and equal error rate.

While in this work and in the literature it was
observed that training on larger generators tends
to generalize to smaller generators, we observe
here a behavior that contradicts this trend. The
ROBERTA large detector trained on GPT-3 outputs
has relatively low performance on GPT-2 outputs
(see Table 19). Future work should explore this
inconsistency and establish if it is due to minor
stylistic differences in the outputs of GPT-3 and
GPT-3, and therefore to the general problem of
shortcut learning, or to an inherent difference in
the generated text from GPT-2 and GPT-3.
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Trained on→ GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 69.23 65.77 34.00 60.85 42.69 43.36 78.56 80.98 27.24 78.61 81.51 28.21 78.58 79.62 24.08 74.77 70.21 31.04
GPT-2 md covid top k=40 50.08 29.45 49.95 70.20 61.63 36.04 81.22 83.73 26.13 80.00 82.91 27.63 79.46 80.63 23.70 75.94 71.98 29.78
GPT-2 md covid nucleus p=96 58.56 47.70 43.95 66.40 54.52 39.23 80.12 82.60 26.58 79.48 82.39 27.85 79.25 80.39 23.79 75.70 71.63 30.03
GPT-2 xl random 81.28 78.30 25.46 46.95 7.79 51.65 57.13 56.28 43.14 60.31 60.41 39.74 64.90 60.08 38.00 65.92 54.62 39.37
GPT-2 xl top k=40 48.88 5.09 50.58 94.61 94.88 9.59 78.80 82.29 29.35 79.11 82.45 28.92 84.39 85.47 20.05 84.11 82.97 19.93
GPT-2 xl nucleus p=96 55.10 25.27 47.16 65.57 54.79 39.46 74.86 78.29 31.10 75.48 78.76 30.53 77.57 77.70 22.75 76.39 72.41 29.52
GPT-2 lg random 85.05 83.39 20.78 46.72 7.02 51.77 59.94 60.28 40.23 64.10 65.49 36.95 69.22 66.63 33.36 71.01 63.85 34.95
GPT-2 lg top k=40 49.18 6.17 50.43 94.01 94.27 9.69 79.22 82.70 29.17 79.61 82.94 28.71 86.12 87.28 19.46 88.08 87.74 13.90
GPT-2 lg nucleus p=96 58.77 35.33 44.92 64.19 52.11 40.57 75.65 79.11 30.73 76.77 80.10 29.94 80.76 81.46 21.40 81.49 79.59 23.46
GPT-2 md random 93.89 93.82 7.08 45.40 2.47 52.45 59.18 59.22 40.84 64.75 66.33 36.51 81.02 81.76 21.30 77.91 74.64 27.82
GPT-2 md top k=40 49.75 8.19 50.13 93.02 93.26 9.87 79.06 82.55 29.24 79.54 82.88 28.74 87.69 88.88 18.96 88.45 88.17 13.29
GPT-2 md nucleus p=96 69.45 58.95 37.13 57.97 38.69 45.11 71.99 75.19 32.52 74.13 77.32 31.17 84.03 85.08 20.18 80.88 78.77 24.24
GPT-2 sm random 95.14 95.15 4.97 45.67 3.41 52.31 65.35 67.39 36.36 70.91 73.76 32.82 78.43 78.74 22.37 90.57 90.55 9.63
GPT-2 sm top k=40 53.54 20.61 48.07 91.63 91.81 10.13 79.40 82.88 29.10 79.89 83.22 28.60 86.80 87.98 19.24 94.86 95.06 8.49
GPT-2 sm nucleus p=96 76.64 71.38 30.52 58.57 40.09 44.70 74.90 78.33 31.08 77.11 80.44 29.78 81.31 82.09 21.19 92.86 93.00 8.82

Table 11: Performance of the detector based on BERT base for different training and testing combinations of
hyperparameters and domains.

Trained on→ GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 70.20 65.88 33.88 64.06 52.88 40.46 77.37 78.00 24.09 76.92 74.54 27.32 62.79 47.61 41.90 64.58 49.26 40.91
GPT-2 md covid top k=40 52.58 31.96 48.40 77.26 74.58 27.49 83.18 84.51 21.71 84.45 84.16 16.77 69.26 60.34 36.72 58.80 35.63 44.89
GPT-2 md covid nucleus p=96 60.18 48.50 43.00 71.04 65.21 34.24 80.79 81.91 22.63 81.62 80.72 21.08 66.89 55.92 38.72 60.57 40.06 43.73
GPT-2 xl random 86.19 84.47 20.36 45.65 11.87 52.46 70.19 71.77 31.84 74.20 72.76 28.12 77.70 73.97 28.47 67.38 53.44 39.13
GPT-2 xl top k=40 51.63 11.07 49.15 91.94 92.53 13.82 81.62 84.29 26.41 88.03 88.97 17.51 86.45 85.65 17.22 67.57 53.84 38.98
GPT-2 xl nucleus p=96 59.51 34.98 44.58 71.74 67.80 32.54 79.32 81.97 27.35 84.69 85.45 18.57 82.18 80.23 23.12 65.64 49.71 40.43
GPT-2 lg random 90.90 90.28 13.70 45.27 10.70 52.67 73.84 76.05 29.88 79.56 79.57 20.48 84.52 83.26 19.99 74.40 66.79 33.27
GPT-2 lg top k=40 53.59 17.64 48.08 91.79 92.38 13.86 82.03 84.70 26.25 89.16 90.11 17.18 91.49 91.44 8.96 75.52 68.70 32.23
GPT-2 lg nucleus p=96 65.47 49.39 40.54 70.34 65.66 34.02 80.34 83.01 26.92 86.83 87.73 17.88 88.38 87.94 14.24 74.16 66.37 33.49
GPT-2 md random 96.21 96.17 4.72 43.01 3.46 53.84 75.34 77.73 29.14 82.71 83.25 19.26 92.64 92.68 7.87 84.65 82.42 22.36
GPT-2 md top k=40 57.69 30.01 45.71 91.51 92.10 13.92 81.83 84.50 26.33 88.90 89.85 17.26 94.26 94.38 7.62 80.33 76.30 27.36
GPT-2 md nucleus p=96 79.31 74.79 28.43 61.03 49.42 42.44 79.61 82.27 27.23 86.17 87.03 18.09 92.84 92.90 7.83 80.55 76.63 27.12
GPT-2 sm random 97.75 97.76 2.73 43.85 6.21 53.41 79.16 81.81 27.42 86.97 87.88 17.84 93.81 93.92 7.69 96.75 96.73 3.78
GPT-2 sm top k=40 76.05 69.61 31.70 91.22 91.81 13.99 82.23 84.89 26.17 89.57 90.52 17.06 95.14 95.29 7.50 97.52 97.52 2.67
GPT-2 sm nucleus p=96 90.50 89.81 14.31 62.75 52.71 41.05 81.09 83.77 26.62 88.45 89.40 17.39 93.84 93.95 7.68 96.81 96.79 3.66

Table 12: Performance of the detector based on BERT large for different training and testing combinations of
hyperparameters and domains.

Trained on→ GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 68.81 58.02 37.57 74.88 67.64 32.81 85.35 84.04 19.63 80.32 76.70 26.87 63.24 44.61 42.08
GPT-2 md covid top k=40 59.62 37.97 44.34 81.91 78.63 25.59 89.98 89.61 12.68 85.54 83.87 20.54 63.21 44.53 42.11
GPT-2 md covid nucleus p=96 64.08 48.37 41.25 79.80 75.53 27.91 89.15 88.65 14.02 85.03 83.22 21.20 64.40 47.26 41.27
GPT-2 xl random 96.50 96.42 5.51 62.83 42.56 42.48 94.19 94.17 6.15 94.79 94.64 7.58 93.27 92.88 11.00
GPT-2 xl top k=40 78.14 72.46 30.08 98.56 98.57 1.86 95.85 95.90 5.29 95.97 95.90 5.46 84.56 82.01 23.08
GPT-2 xl nucleus p=96 83.17 80.06 24.71 87.80 86.40 18.67 94.70 94.71 5.41 94.99 94.86 7.23 86.80 85.01 20.29
GPT-2 lg random 97.67 97.64 3.35 63.99 45.33 41.69 95.26 95.29 5.35 96.59 96.56 4.31 96.44 96.36 5.60
GPT-2 lg top k=40 90.95 90.18 14.58 98.74 98.75 1.86 96.69 96.76 5.20 98.08 98.09 2.40 95.08 94.89 7.99
GPT-2 lg nucleus p=96 91.86 91.26 13.22 89.93 89.03 15.69 96.02 96.08 5.27 97.40 97.40 2.77 94.96 94.76 8.20
GPT-2 md random 98.70 98.70 1.36 55.69 23.03 46.92 95.70 95.75 5.30 97.36 97.35 2.85 98.31 98.30 2.10
GPT-2 md top k=40 96.97 96.91 4.65 98.65 98.66 1.86 96.81 96.88 5.19 98.28 98.29 2.39 98.43 98.43 1.87
GPT-2 md nucleus p=96 97.61 97.58 3.46 84.64 82.25 22.72 96.04 96.10 5.27 97.83 97.84 2.41 98.27 98.26 2.18
GPT-2 sm random 98.91 98.91 1.24 59.31 33.50 44.76 95.83 95.88 5.29 97.80 97.80 2.41 98.58 98.58 1.57
GPT-2 sm top k=40 98.42 98.41 1.91 98.50 98.51 1.87 96.71 96.78 5.20 98.48 98.49 2.38 98.93 98.93 1.26
GPT-2 sm nucleus p=96 98.19 98.18 2.35 86.46 84.67 20.43 95.70 95.75 5.30 98.13 98.14 2.39 98.63 98.63 1.48

Table 13: Performance of the detector based on ELECTRA large for different training and testing combinations of
hyperparameters and domains.
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Trained on→ GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 61.67 48.07 42.34 69.50 71.92 33.37 69.92 74.98 35.82 72.44 76.45 33.26 71.30 70.53 29.76 76.22 73.92 27.71
GPT-2 md covid top k=40 50.72 21.60 49.59 76.69 79.87 29.73 73.01 78.12 34.31 75.65 79.75 31.74 71.91 71.32 28.95 73.60 70.18 30.80
GPT-2 md covid nucleus p=96 55.18 33.43 46.86 73.73 76.72 31.13 71.42 76.53 35.07 74.13 78.21 32.44 71.97 71.41 28.86 75.95 73.55 28.04
GPT-2 xl random 79.00 75.31 27.67 40.67 27.80 56.88 56.02 60.96 45.20 61.31 64.44 40.38 72.96 71.47 29.21 70.55 65.31 34.22
GPT-2 xl top k=40 50.57 12.71 49.69 78.78 82.36 29.52 71.04 77.32 36.46 75.35 79.93 32.60 78.55 78.63 21.66 77.51 75.51 26.35
GPT-2 xl nucleus p=96 55.96 28.99 46.61 68.19 71.00 34.76 68.03 74.36 37.93 71.93 76.50 34.21 74.93 74.09 26.59 73.95 70.49 30.59
GPT-2 lg random 83.08 81.02 22.82 38.97 24.16 57.93 57.45 62.70 44.19 63.15 66.70 39.16 76.26 75.80 24.71 74.63 71.48 29.82
GPT-2 lg top k=40 51.53 15.84 49.17 78.85 82.43 29.50 71.29 77.56 36.34 75.88 80.45 32.37 82.05 82.72 20.25 81.69 80.93 20.64
GPT-2 lg nucleus p=96 59.28 37.68 44.52 67.38 70.04 35.24 68.56 74.89 37.66 73.08 77.67 33.65 78.65 78.75 21.62 78.22 76.47 25.44
GPT-2 md random 91.94 91.78 9.67 31.68 6.64 61.92 50.42 53.69 49.63 61.32 64.46 40.38 83.51 84.34 19.72 79.00 77.50 24.41
GPT-2 md top k=40 54.36 24.46 47.57 78.72 82.30 29.55 71.24 77.51 36.36 75.67 80.25 32.46 85.04 86.00 19.19 82.69 82.16 19.14
GPT-2 md nucleus p=96 70.46 61.40 36.08 57.88 57.62 42.22 64.73 70.94 39.68 70.30 74.79 35.03 83.72 84.57 19.64 80.41 79.32 22.48
GPT-2 sm random 93.68 93.66 6.55 33.47 11.26 61.02 57.99 63.35 43.82 66.90 71.07 36.88 84.77 85.71 19.28 88.47 88.79 13.58
GPT-2 sm top k=40 60.35 40.30 43.81 78.11 81.70 29.81 71.40 77.66 36.29 76.00 80.57 32.31 87.24 88.30 18.47 91.53 92.00 12.83
GPT-2 sm nucleus p=96 76.02 70.78 30.85 60.04 60.65 40.26 67.65 73.97 38.12 72.83 77.42 33.77 84.98 85.94 19.21 89.44 89.82 13.33

Table 14: Performance of the detector based on ELECTRA small for different training and testing combinations of
hyperparameters and domains.

Trained on→ GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 78.58 76.33 25.99 54.06 17.68 47.84 71.86 63.04 35.20 79.00 75.03 27.99 64.68 48.89 40.93 56.05 25.64 46.67
GPT-2 md covid top k=40 55.38 33.70 46.74 58.78 31.89 45.09 72.27 63.78 34.84 78.53 74.33 28.50 57.68 31.83 45.63 54.01 19.40 47.84
GPT-2 md covid nucleus p=96 66.04 56.43 38.87 55.77 23.09 46.88 73.29 65.57 33.92 80.47 77.18 26.35 61.67 42.00 43.05 54.97 22.37 47.30
GPT-2 xl random 90.50 89.77 14.55 48.31 3.58 50.88 81.55 81.30 19.28 80.57 79.63 22.02 81.86 78.76 25.33 69.60 57.22 37.59
GPT-2 xl top k=40 53.60 17.11 48.09 97.28 97.35 5.04 90.58 91.25 14.82 91.43 91.93 13.16 87.62 86.42 18.02 61.50 38.85 43.39
GPT-2 xl nucleus p=96 62.76 42.83 42.48 62.41 44.48 42.46 88.70 89.32 15.32 88.79 89.18 13.81 84.53 82.44 22.11 63.05 42.72 42.37
GPT-2 lg random 94.68 94.52 7.80 48.34 3.69 50.86 85.47 85.83 16.26 86.07 86.19 14.55 89.36 88.55 15.52 80.04 75.51 28.07
GPT-2 lg top k=40 57.94 30.27 45.57 96.93 97.00 5.07 91.12 91.79 14.69 92.22 92.73 12.98 93.95 93.80 8.13 71.30 60.56 36.21
GPT-2 lg nucleus p=96 71.12 60.71 36.20 62.43 44.53 42.45 89.88 90.54 15.01 90.69 91.17 13.34 91.87 91.48 11.64 74.00 65.54 33.90
GPT-2 md random 97.70 97.70 2.38 47.73 1.43 51.17 87.98 88.56 15.52 88.48 88.85 13.89 95.25 95.19 5.80 89.66 88.65 16.32
GPT-2 md top k=40 68.01 54.55 38.69 96.22 96.28 5.14 91.08 91.75 14.70 92.25 92.76 12.97 96.95 96.97 3.52 80.00 75.45 28.11
GPT-2 md nucleus p=96 86.73 85.11 19.84 57.96 33.54 45.41 90.11 90.78 14.94 90.92 91.41 13.28 95.83 95.80 4.72 85.26 83.00 22.14
GPT-2 sm random 98.36 98.37 2.35 48.14 2.96 50.96 90.05 90.71 14.96 91.32 91.82 13.19 97.08 97.10 3.52 98.66 98.66 1.46
GPT-2 sm top k=40 93.91 93.68 9.12 96.62 96.68 5.10 91.38 92.05 14.62 92.49 93.00 12.92 97.92 97.95 3.46 98.77 98.77 1.45
GPT-2 sm nucleus p=96 96.18 96.12 5.11 59.66 37.90 44.32 90.89 91.56 14.74 92.05 92.56 13.02 97.18 97.20 3.51 98.59 98.59 1.46

Table 15: Performance of the detector based on ROBERTA base for different training and testing combinations of
hyperparameters and domains.

Trained on→ GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 67.61 55.48 38.60 73.73 65.14 34.10 68.16 55.01 38.54 71.71 62.05 35.62 58.31 31.94 45.32 52.76 14.26 48.55
GPT-2 md covid top k=40 61.76 42.84 42.93 83.41 80.50 24.28 79.13 74.47 28.66 79.50 75.10 28.20 58.39 32.17 45.27 51.91 11.34 49.00
GPT-2 md covid nucleus p=96 64.45 48.92 41.01 78.98 73.93 29.12 75.87 69.25 31.91 77.51 72.01 30.25 58.73 33.08 45.06 52.02 11.75 48.94
GPT-2 xl random 96.66 96.59 5.29 58.94 35.66 44.81 94.78 94.77 5.43 94.16 94.02 7.80 93.02 92.58 11.53 76.34 69.19 32.01
GPT-2 xl top k=40 75.97 68.84 32.18 96.93 96.98 4.71 96.51 96.56 4.84 96.08 96.06 4.29 86.18 84.16 21.18 58.12 28.51 45.56
GPT-2 xl nucleus p=96 81.77 78.02 26.32 86.04 84.65 19.50 95.91 95.95 4.89 95.40 95.35 5.56 86.92 85.13 20.24 62.71 40.97 42.68
GPT-2 lg random 98.15 98.14 2.51 60.45 39.46 43.83 96.32 96.37 4.85 96.74 96.75 3.50 97.17 97.12 4.44 89.15 87.89 17.59
GPT-2 lg top k=40 88.63 87.34 17.92 97.25 97.31 4.68 97.23 97.29 4.77 97.66 97.69 3.44 95.86 95.73 6.80 70.98 59.38 36.65
GPT-2 lg nucleus p=96 91.82 91.20 13.33 87.81 86.85 17.01 96.95 97.01 4.79 97.39 97.41 3.46 95.95 95.83 6.64 77.18 70.61 31.22
GPT-2 md random 99.04 99.04 1.16 52.59 17.50 48.60 96.86 96.92 4.80 97.27 97.29 3.47 98.88 98.88 1.18 96.73 96.64 5.76
GPT-2 md top k=40 96.34 96.25 5.87 97.25 97.31 4.68 97.32 97.38 4.76 97.93 97.96 3.42 98.66 98.66 1.61 86.08 83.91 21.57
GPT-2 md nucleus p=96 97.66 97.63 3.44 80.76 77.53 26.10 97.15 97.21 4.78 97.68 97.71 3.44 98.79 98.79 1.36 92.57 92.01 12.64
GPT-2 sm random 99.18 99.18 1.15 55.68 26.82 46.82 97.17 97.23 4.77 97.75 97.78 3.43 99.18 99.18 1.05 99.52 99.52 0.50
GPT-2 sm top k=40 98.88 98.88 1.16 97.23 97.29 4.68 97.45 97.51 4.75 98.06 98.09 3.41 99.26 99.26 1.05 99.51 99.51 0.52
GPT-2 sm nucleus p=96 98.75 98.75 1.34 83.93 81.91 22.27 97.27 97.33 4.77 97.95 97.98 3.42 99.14 99.14 1.06 99.49 99.49 0.56

Table 16: Performance of the detector based on ROBERTA large for different training and testing combinations of
hyperparameters and domains.

GPT-2 sm covid nucleus p=96 GPT-2 md covid nucleus p=96 GPT-2 lg covid nucleus p=96 GPT-2 xl covid nucleus p=96 GPT-Neo covid nucleus p=96

Roberta lg Acc. 91.69 75.87 90.52 68.95 79.16
Roberta lg F1 91.26 69.25 89.85 56.70 74.64
Roberta lg EER 12.35 31.91 14.35 37.92 28.57
Electra lg Acc. 95.24 89.15 94.38 78.56 74.27
Electra lg F1 95.33 88.65 94.43 74.72 68.23
Electra lg EER 5.98 14.02 6.10 28.06 32.44

Table 17: Performance of detectors trained on the Webtext domain with examples of GPT-2 xl and tested on the
COVID domain.
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Detector Trained on Acc. F1 EER

Roberta lg GPT-2 xl random 58.64 30.86 45.21
Roberta lg GPT-2 xl top k=40 59.86 38.02 44.22
Roberta lg GPT-2 xl nucleus p=0.96 64.82 49.61 40.76
Roberta base GPT-2 xl random 58.30 31.28 45.35
Roberta base GPT-2 xl top k=40 54.97 25.29 47.23
Roberta base GPT-2 xl nucleus p=0.96 63.55 54.80 40.23
Bert lg GPT-2 xl random 57.95 30.74 45.55
Bert lg GPT-2 xl top k=40 58.18 43.64 44.60
Bert base GPT-2 xl random 59.28 36.63 44.59
Bert base GPT-2 xl top k=40 55.85 33.54 46.50
Electra lg GPT-2 xl random 57.00 26.17 46.19
Electra lg GPT-2 xl top k=40 57.29 27.82 45.99
Electra sm GPT-2 xl random 57.10 32.08 45.91
Electra sm GPT-2 xl top k=40 55.23 53.71 45.09
Albert GPT-2 xl random 60.76 51.50 42.21
Albert GPT-2 xl top k=40 55.45 26.45 46.95

Table 18: Performance of various detectors trained on GPT-2 outputs and tested on GPT-3 with nucleus sampling
p = 0.96

Tested on Acc. F1 EER

GPT-3 Davinci nucleus p=96 92.83 93.09 10.19
GPT-2 md covid random 54.35 67.35 47.58
GPT-2 md covid top k=40 52.59 65.67 48.53
GPT-2 md covid nucleus p=96 52.66 65.73 48.49
GPT-2 xl random 58.93 41.24 44.43
GPT-2 xl top k=40 56.03 34.36 46.37
GPT-2 xl nucleus p=96 52.55 25.29 48.53
GPT-2 lg random 61.69 47.27 42.44
GPT-2 lg top k=40 57.30 37.45 45.53
GPT-2 lg nucleus p=96 52.92 26.30 48.30
GPT-2 md random 78.78 76.35 26.12
GPT-2 md top k=40 61.48 46.82 42.60
GPT-2 md nucleus p=96 61.94 47.79 42.26
GPT-2 sm random 77.66 74.79 27.47
GPT-2 sm top k=40 61.81 47.52 42.35
GPT-2 sm nucleus p=96 62.88 49.73 41.54

Table 19: Performance of Roberta lg detector trained on outputs of GPT-3 with nucleus sampling and tested on
outputs of GPT-2 xl.
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Figure 2: Saliency map of the input text using SHAP. The most salient tokens according to SHAP are the punctuation
tokens.
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Abstract

Most works on computational morality focus
on moral polarity recognition, i.e., distinguish-
ing right from wrong. However, a discrete
polarity label is not informative enough to re-
flect morality as it does not contain any de-
gree or intensity information. Existing ap-
proaches to compute moral intensity are limited
to word-level measurement and heavily rely on
human labelling. In this paper, we propose
MORALSCORE, a weakly-supervised frame-
work1 that can automatically measure moral
intensity from text. It only needs moral polar-
ity labels, which are more robust and easier to
acquire. Besides, the framework can capture la-
tent moral information not only from words but
also from sentence-level semantics which can
provide a more comprehensive measurement.
To evaluate the performance of our method, we
introduce a set of evaluation metrics and con-
duct extensive experiments. Results show that
our method achieves good performance on both
automatic and human evaluations.

1 Introduction

Moral intensity is a degree of feeling that a person
has about a behaviour (Barnett, 2001). As shown in
Figure 1, although speeding on streets and killing
a child are both immoral, the latter is more se-
vere in most people’s perception. Understanding
the above difference is an ability that humans have
gradually developed in everyday life. It affects indi-
viduals’ ethical judgments and reflects the ideology
of our society (Jones, 1991). As AI gets ever more
involved in people’s lives, it has become increas-
ingly important for machine to acquire this ability
and behave ethically. Researchers have studied the
problem from early rule-based methods to today’s
deep learning-based paradigms (Yu et al., 2018;
Hendrycks et al., 2021). It remains a fundamental
but unsolved problem in computational morality
(Moor, 2006).

1https://github.com/blcunlp/MoralScore

Bob donates 1M$ to charity.

Ivy puts the rubbish in the dustbin.

Bob donates 1M$ to charity.

Joe is speeding on city streets.

Tom kills a child.

Polarity   Intensity

Polarity Intensity

0

0

1

1

0.1

0.4
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Text 

Figure 1: Moral Intensity Example. From the numerical
measurement of morality, both moral polarity and its
degree can be reflected.

Previous work in the NLP community often
treats this problem as a supervised text classifi-
cation task, i.e., judging the moral polarity for a
text (Xie et al., 2020; Nahian et al., 2021). This
way of modelling morality is inadequate because
it oversimplifies morality into a Bernoulli distribu-
tion, i.e., being only moral or immoral. We model
morality into a continuous distribution by introduc-
ing moral intensity to include degree information.
Computing moral intensity is challenging in two
aspects: 1) In supervised settings, unlike labelling
moral polarity, building a large corpus with precise
intensity values is time consuming and prone to
subjectivity. 2) In unsupervised settings, there is no
direct link between text and moral intensity. Even
when moral polarity labels are available, building
such link is nontrivial because the binary labels do
not reflect any information about moral intensity.

To address these challenges, we propose
MORALSCORE, a weakly-supervised framework
that outputs a numerical value as the measurement
of moral intensity for action-consequence pairs.
The framework contains two parts. The first part is
a semantic-aware moral detector, which measures
moral intensity by detecting latent moral informa-
tion from word to sentence level in semantic space.
This incremental computing process can provide a
comprehensive measurement of moral intensity for
a text where both coarse-grained and fine-grained
moral information can be captured. The second
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g2 = r3×o2 = 2.5×0.42 = 1.05

S = ( g1 + ... + gN )  / N = (0.23 + 1.05) / 2 = 0.64
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Figure 2: Semantic-Aware Moral Detector. In module I, the score is initialized by aggregating moral bias from
identified moral axes. In module II, we first group texts based on their initial scores and assign each group a weight
(r). Then, we update the score by averaging rewards g obtained in comparisons between sampled texts (➀➁) and
the target text (⋆). In each comparison, the reward is a composition of the group weight and moral difference. We
compute moral difference (O) using two different measuring methods.

part is a score combiner, which explicitly assigns
weights to the action and consequence to form the
overall moral intensity score. The framework only
needs moral polarity labels during training, which
is easier to get and less likely to be influenced by
subjectivity compared with numerical moral inten-
sity labels.

To evaluate the performance, we introduce a set
of metrics to test if moral polarity and intensity can
be reflected from output scores. Concretely, we use
Kolmogorov-Smirnov Test (Massey Jr, 1951) and
Information Value (Kolácek and Rezác, 2010) to
detect the scores’ predictiveness of moral polarity.
Then, we adopt Spearman’s Footrule Distance (Dia-
conis and Graham, 1977) to measure the correlation
between model prediction and human’s perception
of moral intensity. Through extensive experiments,
we show that our framework can reflect moral po-
larity and its intensity level simultaneously, which
demonstrates the effectiveness of our method.

Our contributions can be summarized as follows:
1) We present the moral intensity measurement

task which provides degree information of moral-
ity.

2) We propose MORALSCORE, which can auto-
matically measure moral intensity for text without
the need of intensity labels as direct supervision.

3) We conduct extensive experiments with a set
of evaluation metrics. Results show that our frame-
work can discriminate different levels of moral in-
tensity while retaining the ability to distinguish
moral polarity.

2 Related Work

Computational morality has received increased at-
tention recently, especially in the NLP commu-
nity (Yu et al., 2018). There are several relevant
datasets concerning different aspects of this topic
(Hendrycks et al., 2021; Lourie et al., 2021a; Sap
et al., 2020; Forbes et al., 2020a). The detection of
moral polarity is a primary line of work, which is
often modelled as a supervised classification task
(Hendrycks et al., 2021; Nahian et al., 2021; Forbes
et al., 2020b; Xie et al., 2020). Unlike the above,
we focus on measuring moral intensity. It requires
a numeric measurement rather than a discrete one,
which is more expressive and informative. Araque
et al. (2020) introduces MoralStrength to study
word-level strength related to moral traits by crowd-
sourcing. Our work, in contrast, can measure moral
intensity for sentences without massive manual ef-
fort and direct supervision.

Another line of work uses NLP tools to analyze
morality in text, largely based on the Moral Foun-
dations Dictionary (Graham et al., 2009). For ex-
ample, it has been used in analyzing moral rhetoric
in social media (Tshimula et al., 2021), moral sen-
timent in argumentation (Kobbe et al., 2020), and
moral framing in political tweets (Reiter-Haas et al.,
2021). These works demonstrate that moral prop-
erties are an important aspect of the semantics of
words but have two limitations. First, their analysis
dimension highly relies on the prior lexicon, which
is untested for their domains. In our work, we do
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not require a pre-defined domain dictionary. Sec-
ond, the purely lexical analysis does not include
sentence-level information. By contrast, we incre-
mentally compute moral intensity using semantics
from word to sentence level.

3 Methodology

3.1 Task Definition
In this study, we focus on measuring moral inten-
sity based on actions and their consequences. Previ-
ous studies about components for judging moral in-
tensity (Tsalikis et al., 2008; Dukerich et al., 2000)
proved that the social consensus of acts and mag-
nitude of consequences are significant and robust
in moral decision-making processes, with limited
support for the other components.

The task input includes two parts, an action and
its consequence. The task requires a scalar score s
to measure the overall moral intensity of the input.
The higher the score is, the more moral the input is.
For example, given Joe is speeding on city streets
and Joe has a car accident, we wish to get a low
score (e.g., 0.4) that indicates a relatively strong
intensity towards immorality.

3.2 Semantic-Aware Moral Detector
Figure 2 presents an overview of the moral detec-
tor. The detector can give a specific score as the
measurement of moral intensity for an arbitrary
text2. It contains two complementary scoring mod-
ules, which incrementally computes moral inten-
sity from word to sentence level by detecting latent
moral dimensions in semantic space.

3.2.1 Word-Level Self Scoring
Intuitively, words can convey the first impression
of intensity level. For example, actions related to
kill or donate usually have stronger moral intensity
than those related to buy or eat. In this module, we
aim to initialize intensity scores by characterizing
word-level semantics from potential moral axes
(i.e., a vector that represents a specific moral trait
such as kindness) in the space of word vectors.

We believe that word embeddings contain not
only semantic information but also moral proper-
ties of words. Inspired by SemAxis (An et al.,
2018), we can measure a word’s bias between
moral and immoral directions of a moral trait if
a moral axis can be found in the vector space.

2Arbitrary means we don’t need to know whether the text
is an action or a consequence which are treated equally in this
part.

Computing Moral Bias Formally, given two sets
of words S+ and S−, which are synonymous and
antonymous respectively to a specific word a, the
semantic axis v of a is defined as

va = v+ − v− (1)

where v+ and v− are the averaged word vectors3

for S+ and S−. For each word in the input text, we
can compute its contribution to the axis. Here, we
use the cosine similarity to measure the contribu-
tion

caw =
vec(w) · va
∥vec(w)∥ ∥va∥

(2)

where caw is the contribution of the word w to the
axis of a and vec(w) is the word vector of w. For
example, the red line in the left part of Fig. 2 rep-
resents the positive contribution of speeding to the
axis of rude.

To aggregate the overall contributions of words
in text t, we first represent t by the bag-of-words
model. Then, we define the moral bias b of t on
the axis of a as

bat =

∑
w∈t (nwc

a
w)∑

w∈t nw
(3)

where nw is the number of occurrences of word
w in the text. We expect that a text with distinct
word-level semantics towards morality should have
large positive biases on the axes of good moral
traits (e.g., honesty) while large negative biases on
the axes of bad moral traits (e.g., selfish).

Identifying Moral Axes Moral axes are the sub-
set of semantic axes. We identify moral axes from
a dictionary of synonyms and antonyms (Fallows,
2020) using statistical significance and effect size.
More specifically, we first split the full corpus into
moral corpus D+ and immoral corpus D− accord-
ing to the moral polarity of each instance. If the
semantic axis of a word in the dictionary is a po-
tential moral axis, the moral bias of the texts in D+

should be significantly different compared with
that in D−. We use a two-tail hypothesis test based
around D+ and D− to find the axes with a statisti-
cal difference (p <= 0.05) of moral bias. Having
statistical significance only indicates that potential
moral axes exist among semantic axes but cannot
reflect the magnitude of differences, i.e., to what
extent an axis would be a moral axis. We hope that
final selected moral axes are the most representative

3We use Glove.840B.300d. in this module.
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ones. Therefore, after finding a set of statistically
significant moral axes V =

{
va1 ,va2 , . . . ,vaj

}
,

we filter V to obtain a smaller set V K that contains
the top K axes with the highest Cohen’s d effect
size (Cohen, 2013).

Aggregating along Axes The initial intensity
score of text t can be calculated by

sini = Exp(
∑

va∈V K
Sign(va)b

a
t) (4)

where we sum up all the bias for each axis in V K

according to the moral trait of the axis. The sign
function outputs 1 if va represents a good moral4

trait otherwise it outputs -1. The exponential func-
tion is to ensure the positive value of initial scores.
A higher sini means a higher word-level intensity
towards morality.

3.2.2 Sentence-Level Interactive Scoring
The previous module only captures coarse-grained
information at the word level without including the
overall semantic meaning of a text. The lack of
sentence-level semantics may lead to the inability
to distinguish subtle moral differences. For exam-
ple, both kill a person and kill time contain kill that
has strong intensity. The latter is obviously more
acceptable. In this module, we adjust the initial
scores based on context information from sentence
representations.

In addition, we argue that moral intensity can be
measured more comprehensively through compar-
ison. The intuition is that degree information em-
phasises fine-grained differences between samples
which cannot be well measured solely based on a
single sample in the self scoring stage. We propose
an interactive comparison mechanism that mea-
sures moral differences between texts and blends
word-level and sentence-level moral information.

Grouping Specifically, we first split the cor-
pus into N groups G1G2 · · ·GN according to the
equal-width intervals of initial scores. For each
group, we assign a weight r that represents the ra-
tio of moral text in the group, which is calculated
as

r =
p+

1− p+ (5)

where p+ is the percentage of moral texts in the
group and can be obtained by counting moral po-
larity labels. A group with a large r indicates that

4The polarities of identified axes are judged by human,
which are shown in Appendix B.

the texts in it have distinct lexical semantics to-
wards morality. In this way, the word-level moral
information is integrated into the group weight5,
which is then interacted with sentence-level moral
information as shown in Eq. (8).

Sampling Then, we create a candidate set C ={
t11 · · · t1M , t21 · · · t2M , . . . , tN1 · · · tNM

}
for the in-

put text by sampling from the groupsG1G2 · · ·GN
where M is the number of texts sampled from each
group. Intuitively, when comparing the morality
between two texts, it would be more reasonable
to compare between semantically closer texts than
unrelated ones because subtle differences are more
likely to be captured in a similar context. There-
fore, we add sampling weights for each instance
in the corpus. Concretely, given a text t∗ that is to
be compared and a sampling pool t1 · · · tK with
the size of K, the sampling weight wi for ti in the
pool can be derived as

wi = Softmax(w)|i
wi = Similarity(Ht∗ ,Hti)

(6)

where w is a list of similarity scores, Ht∗ and Hti

are the sentence representations of t∗ and ti. Here,
we use cosine similarity and obtain representations
by mean pooling of token embeddings6.

Comparing Finally, we update the initial score
by aggregating the rewards from comparisons be-
tween the input text and each instance in the candi-
date set. Formally, the updated score of text t∗ is
calculated as

scmp =

∑M
i=1

∑N
j=1 g

j
i

|C| (7)

where gji is the reward from the comparison be-
tween t∗ and tji in candidate set C, |C| is the total
number of sampled instances, N and M are the
number of groups and sampled texts for each group
in C respectively. The reward is defined as

gji = ri × oij (8)

where ri is the weight of group Gi and oij is the
moral difference between t∗ and tji . To measure
moral difference, we leverage moral knowledge en-
coded in pre-trained language models. Specifically,

5Another way of integrating word-level moral information
here is using sini directly. But we find that it may lead to
unbalanced performance (See Section 4.5).

6https://huggingface.co/nreimers/Mini
LM-L6-H384-uncased
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we use two variants of methods. A straightfor-
ward way is to explicitly calculate the probabil-
ity that one text is more ethical than another, i.e.,
probability-based measurement. Here we adopt
Norms (Lourie et al., 2021b) to get this probability.
Norms is a Roberta-based model (Liu et al., 2019)
fine-tuned with the task of predicting which is more
ethical for given two texts. Formally, the difference
oij can be calculated as

oij =
p+ij

1− p+ij
p+ij = Norms(t∗, tji )

(9)

where p+ij is the probability of text t∗ being judged
as moral when comparing with sampled text tji .

Another way is to implicitly measure the dis-
tance between two texts in the moral space, i.e.,
distance-based measurement. A short distance
means they share a similar moral property. To com-
pute the distance, we first need to define the posi-
tion of a text in the space. Following Schramowski
et al. (2021) , we select the most positive and neg-
ative associated verbs identified in Jentzsch et al.
(2019a) and add some neutral verbs. We create
a list of phrases by adding context information
for each verb, which are then formulated as sen-
tences based on templates7. For each sentence, we
obtain its sentence representation s ∈ Rd from
mean pooling over tokens’ contextualized embed-
dings8. Then, we perform PCA on all sentence
representations S ∈ RN×d where N is the number
of sentences. In this way, we can get principal axes
A ∈ RK×d in sentence embedding space, repre-
senting the top K directions of maximum variance
in S. We regard the direction with maximum vari-
ance as the moral dimension m ∈ Rd that can
recognize the moral difference in space. The posi-
tion of text t in the moral space is defined as the
projection to m

Pos(t) = Ht ·m (10)

where Ht is the mean of contextualized token em-
beddings in t. Then, the oij can be computed as

oij = Exp(dij)

dij = Pos(t∗)− Pos(tji)
(11)

7The verbs and templates are presented in Appendix C.
8https://huggingface.co/sentence-tran

sformers/roberta-large-nli-stsb-mean-tok
ens

where dij is the distance between t∗ and tji in the
moral space.

When oij is closer to 0, it means that t∗ is less
moral compared with tji . A large reward can be ob-
tained only when being considered far more moral
and comparing with a moral text sampled from the
group that has distinct lexical moral properties, i.e.,
both oij and ri are large. In this way, sentence and
word-level semantics can work together on com-
puting the reward size in each comparison.

3.3 Score Combiner

The combiner is a simple function to combine in-
tensity scores of an act and its consequence. Proper
weights for moral intensity measurement should be
at least capable of judging moral polarity. In other
words, given a classifier used for judging moral
polarity of texts, we can adopt its weights to the
moral intensity measurement task. Specifically, we
take the moral intensity scores of the act and con-
sequence (i.e., sactcmp and sconsqcmp obtained from the
moral detector) as features. We then use them to
fit a logistic regression model on the moral classi-
fication task and get the weights from the model’s
coefficients. The overall intensity score can be
calculated as

s = α× sactcmp + β × sconsqcmp (12)

where α and β are the model’s coefficients.

4 Experiments

4.1 Dataset

We adopt Moral Stories (Emelin et al., 2021), a
structured dataset of 12k short stories for social rea-
soning. Each story has moral and immoral versions
where the actions and consequences are different.
We focus on the action and consequence part of the
dataset in this paper. Therefore, the total number
of action-consequence pairs is 24k9.

4.2 Evaluation Metrics

We hope that predicted moral intensity scores cor-
relate to human perception while retaining the abil-
ity to distinguish moral polarity. We use auto-
matic evaluations (i.e., KS and IV values) to detect
if moral polarity can be reflected from intensity
scores (Massey Jr, 1951; Kolácek and Rezác, 2010).
The details of these metrics are shown in Appendix

9Experiment settings are shown in Appendix A.
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Models KS IV5 IV10 F Fm F im

Lexi. - - - 30.76 15.92 13.96
MCM - - - 38.01 17.96 16.44

Sup. - - - 30.93 16.86 13.98

MORALSCORE (Prob.) 0.764 4.314 4.667 18.47 18.19 12.94
w/o Sel. 0.761 4.291 4.693 19.15 19.25 12.80
w/o Int. 0.613 2.224 2.347 21.82 18.05 12.95

w/o Wei. - 3.762 4.054 18.26 18.51 12.28
w/o Sim. 0.773 4.283 4.619 18.96 18.41 13.48

MORALSCORE (Dist.) 0.819 5.069 5.579 17.41 16.35 14.41
w/o Sel. 0.820 5.005 5.514 17.87 16.61 14.47

w/o Wei. - 3.883 4.381 18.04 16.42 13.64
w/o Sim. 0.826 5.113 5.887 17.60 16.23 14.58

N = 20 0.772 4.316 4.749 18.75 18.58 13.41
N = 30 0.775 4.432 4.823 18.70 18.41 13.49
N = 40 0.773 4.302 4.847 18.57 18.32 13.27
N = 50 0.771 4.283 4.783 18.78 18.38 13.57

Human Performance - - - 12.12 10.56 8.50

Table 1: Experiment results of moral intensity measurement in terms of Kolmogorov-Smirnov value (KS), Informa-
tion Value (IV) and averaged Spearman’s Footrule (F ) distance. The subscript of IV is the number of bins. Prob.
and Dist. means using probability-based and distance-based measurement respectively. Fm and F im represent
the F for moral and immoral texts respectively. w/o Sel., w/o Int. and w/o Wei. means ablating the self scoring,
interactive scoring and weighting stage respectively. w/o Sim. means sampling without considering semantic
similarity. N is the sampling size of the probability-based variant. Entries with - mean the metric is not comparable
for the model. Note that higher is better for KS, IV5 and IV10 while lower is better for F , Fm and F im.

D. Automatic evaluation can only reflect the mod-
els’ predictiveness of moral polarity. It may not
correlate with human’s perception of moral inten-
sity. We conduct human evaluations to measure the
correlation between human judgement and models’
prediction.

Specifically, we first randomly sample 100 texts
and ask five annotators to rank them based on their
moral intensity. The obtained ranking is denoted
by rtrue. Then we get the predicted ranking from
their intensity scores given by models, denoted
by rpred. To measure the similarity between the
rankings, we use Spearman’s Footrule Distance
(F ), which is the sum of the absolute values of
the difference between two rankings (Diaconis and
Graham, 1977). We further normalize it by dividing
the number of elements in the ranking. Formally, it
is defined as

F (r1, r2) =

∑
i |r1(i)− r2(i)|

N
(13)

where i is the element of a ranking, r1(i) and r2(i)
is the position of the element i in r1 and r2 respec-
tively, N is the total number of elements.

To reduce the subjectivity of the annotators’ per-
ception of moral intensity, we select the top 3 simi-
lar human rankings with respect to their averaged
Footrule distance (F ). Formally, given a set of rank-
ings R = {r1, r2, . . . , rN} , the F of the ranking

ri in R is calculated as

F (ri) =
1

N − 1

∑

j ̸=i
F (ri, rj) (14)

We use the mean of F of the selected rankings as
human’s performance, which can be viewed as the
upper bound for this metric. The predicted rank-
ing rpred is compared with each selected ranking.
We used the F as the measurement of the correla-
tion between the model’s prediction and human’s
judgement.

Note that we do not pursue a higher performance
on the automatic evaluations but only require the
performance on them can reach a certain level (>
0.5). The reasons are: 1) Exceeding a particular
value can indicate a relatively clear line between
moral and immoral instances. 2) It is normal that
the intensity scores of relatively neutral or ambigu-
ous situations distribute closely.

4.3 Baseline Models

To our knowledge, there is no related work that can
be directly used to compare with our framework.
We implement several baseline models based on
the previous works. Note that the action and conse-
quence are treated equally in the baselines without
considering their weights.
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Lexi.10 To compare with the method using do-
main lexical features, we adopt the logistic re-
gression model proposed in MoralStrengh (Araque
et al., 2020) to estimate probabilities that the text
is relevant to virtues or vices of the prior moral
traits (Haidt and Joseph, 2004; Haidt and Gra-
ham, 2007).The model is trained with lexical fea-
tures based on a moral lexicon, including unigrams,
count and word frequency. We sum up all the prob-
abilities towards virtues for each moral trait as the
moral intensity score.

MCM11 To compare with the method using la-
tent moral information, we use Moral Choice Ma-
chine, a QA system to calculate moral scores
(Jentzsch et al., 2019b). Concretely, it first for-
mulates the input text as a question. In our imple-
mentation, the question template is Is it ok if [place-
holder]? where the placeholder can be replaced
by input texts. Then, the question and the answers
(i.e., Yes, it is. / No, it isn’t.) are encoded by a
Universal Sentence Encoder. Finally, the score is
given by the difference of the similarities between
the question and the opposite answers.

Sup. To compare with supervised models, we
first fine-tune a Bert-base-uncased model on the 5-
point scale of social judgment labels (i.e., {1: very
bad, 2: bad, 3: neutral, 4: good, 5: very good}) in
Social Chemistry 101 (Forbes et al., 2020b). Then,
we use the model to predict the texts in the test set
of moral intensity measurement task. Each text can
get a probability distribution over 5-point. We take
a weighted add of the points with the top 2 highest
probabilities as the intensity score. More details
are shown in Appendix E.

4.4 Result Analysis
We present the experiment results in Table 1. We
do not provide the KS and IV scores for the base-
lines and w/o Wei.. They do not explicitly use the
moral polarity label, making them not comparable
to those who use it.

In general, both variants of our framework out-
perform the baselines and have a gap with human
performance in terms of the overall rank distance
(F ). They also significantly exceed the minimal
requirement of KS and IV, indicating the effective-
ness of our method for both correlating with hu-

10https://github.com/oaraque/moral-fou
ndations

11https://github.com/ml-research/moral
-choice-machine

man’s perception of moral intensity and retaining
moral polarity. We provide the examples of model
judgement in Appendix G. For baseline models,
their performance is comparable with others on
Fm and F im but obviously bad on F . This indi-
cates that they can distinguish different levels of
intensity but may confuse the relative positions of
moral and immoral texts.

Besides, the distance-based variant achieves bet-
ter performance than the probability-based one on
F . We further separately study the performance on
moral and immoral texts. There are two interesting
findings:

(1) The distance-based variant has a smaller
variance on moral and immoral texts, showing
a balanced performance. Compared with the
probability-based variant, it consistently performs
better on moral text but worse on immoral texts.
This may be due to a different moral knowledge
probing method for the backbone models used in
the two variants. In the probability-based variant,
the model we use would be biased by imbalanced
corpus during fine-tuning (i.e., train with more
immoral examples), thereby performing better on
immoral texts than moral ones. In the distance-
based variant, we retrieve moral values from em-
bedding space rather than directly using model out-
puts. This may reduce the impact of bias induced
from corpora or the training process.

(2) The performance of models on moral texts
(Fm) is always below that on immoral texts, indi-
cating that measuring the intensity for moral texts
is more difficult than for immoral texts. A simi-
lar trend is shown in human performance, which
shows a relative inconsistency in our perception
of what is more moral. Surprisingly, the baseline
(Lexi.) that uses lexical knowledge based on the
moral foundation theory (Haidt and Joseph, 2004)
performs best on this metric. In our ablation exper-
iments, a drop in performance on Fm can be seen
for both variants without initializing with lexical
information (w/o Sel.), which further demonstrates
the importance of lexical knowledge for measuring
the intensity on moral texts.

4.5 Ablation Study

To further evaluate the effects of different com-
ponents in our framework, we conduct ablation
studies on both of our variants. Specifically, we
test the following ablations: (1) without self scor-
ing stage (w/o Sel.); (2) without interactive scoring
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Prob. Dist.

Moral
Jake has unprotected sex but takes PrEP and gets tested regularly.
Jake stays safe and keeps partners informed and has fun.

Oliver finds his parking spot and sprints all the way to his door.
Oliver gets home quickly and cracks open a beer.

Casey takes the dog to an animal shelter. The crowded shelter pu-
ts the dog to sleep after no one adopts it.

Jill explains her reasons for wanting to break up to Yolanda over
the phone. Yolanda is sad but understands.

Immoral
Kim orders pizza. The kids don’t want the healthy food Kim ma-
kes next time.

Mr. Green gives Harry a scholarship even though his grades are-
n’t up to par. Harry fails all his classes and is not eligible to play
football anyway.

Mack surprises his brother with a visit and stays for a month. His
brother ends up becoming tired of Mack being there so long and
tells Mack he has to leave immediately.

Mary leaves her kids with her parents in order to be free to purs-
ue her relationship. Mary’s kids grow distant as time passes.

Table 2: Bad Case Examples. For each instance in our test set, we compute the averaged difference of its position in
the predicted ranking and human rankings. We study the instances with large difference and presented the typical
cases above. Prob. and Dist. represent the two variants of our framework.

stage (w/o Int.); (3) without weighting stage (w/o
Wei.); (4) without considering semantic similarity
during sampling (w/o Sim.). The results are shown
in the Table 1. Note that we omit the w/o Int. re-
sult for the distance-based variants since the two
variants become same if ablating the comparison
step.

Generally, except for w/o Wei. in probability-
based variant, both variants suffer a drop in terms of
F when ablating any of the components, indicating
the effectiveness of each component in our frame-
work. The opposite trend of the distance-based
variant in KS and F can further demonstrate that
the improvement of F comes from the better under-
standing of moral intensity but not from the better
classification of moral polarity.

Particularly, discarding the interactive scoring
stage leads to the most remarkable performance
drop in terms of F , which shows the significance
of this mechanism. We observe that there are some
fluctuating results of the probability-based variant’s
performance on Fm and F im during ablation. The
fluctuations may result from the unbalanced perfor-
mance. As discussed above, the probability-based
variant has an unbalanced performance on texts
with different moral polarities. It would be prop-
agated and amplified through stages in our frame-
work and lead to fluctuation.

We also conduct additional experiments to ex-
plore a more direct way of integrating word-level
information. Specifically, we use initial score in-
stead of group weights as the representation of
word-level information. The original definition of
the reward (Eq. (8)) then becomes

gji = sini × oij (15)

where sini is the initial score of the sampled text.
As shown in Table 3, the new ones have better

performance on F . However, they have larger vari-

Models F Fm F im
Prob. (new) 18.30 18.48 12.69
Prob. (org) 18.47 18.19 19.94
Dist. (new) 16.39 16.38 14.16
Dist. (org) 17.41 16.35 14.41

Table 3: Additional results for using different represen-
tation of word-level information. Prob. (new) and Dist.
(new) mean the changed of models for both variants
based on Eq. (15).

ance on moral and immoral texts. The potential
reason would be that sini only includes word-level
information for a single text. Using it directly in
the following computation would increase fluctu-
ation. In contrast, the r in Eq. (5) is based on a
group of texts, which is more stable.

4.6 Impact of Sampling Size
The interactive scoring stage is shown to be an im-
portant component of our framework, and sampling
is a key step in this stage. We conduct additional
experiments with different sampling sizes to test
the impact of sampling size on our framework’s
performance.

We deliberately chose the probability-based vari-
ant as our test model because its large variance can
better reflect the impact. As shown in Table 1, with
the increase of sampling size, the performance on
moral polarity (KS and IV ) shows an increase
while a drop can be seen for the performance on
moral intensity ( F , Fm and Fm). However, both
the ranges of their fluctuation are small, indicat-
ing the robustness of our framework to different
sampling sizes.

5 Discussion

As shown in Table 2, we observe that most bad
cases are related to semantic composition prob-
lems. They can be categorized into two types: i.
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Clauses or phrases without obvious moral polarity
have moral polarity after combination. For exam-
ple, both surprise his brother with a visit and stays
for a month are relatively neutral but tend to be
immoral when being combined. ii. Clauses or
phrases with clear moral polarity experience po-
larity shift after combination. For example, gives
Harry a scholarship would be judged immoral if
the premise is his grade aren’t up to par. Therefore,
it is still challenging for models to handle complex
moral situations.

Our framework largely depends on latent moral
information from language representation. It may
inherit some potential biases (e.g., gender) that
exist in the representation. Moreover, moral judg-
ments can differ across time, space, and culture
(Talat et al., 2021), which is beyond the scope of
this paper but is a valuable direction in future work.

6 Conclusion

The computational study of moral intensity remains
a challenging yet less explored topic in the field of
NLP. We present MORALSCORE, which can mea-
sure moral intensity for text. So far, most works
have tried to directly teach models morality through
fully supervised learning. Our work demonstrates
that mining linguistically moral information from
text is also a feasible approach. Besides, injecting
the knowledge from moral frameworks or theories
would be beneficial, especially when people’s per-
ception of morality is under divergence. We hope
our findings can inspire future work on this topic.
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A Experiment Settings

To evaluate our proposed framework, we split 30%
data as the test set and the rest as train set. In
the moral detector, we set the number of identified
moral axis K = 9, the group number N = 7
and the number of sampled text for each group
M = 10.

B Identified Moral Axes

We present the moral axes that we use in the fol-
lowing table.

Identified Moral Axes

Action

regardless∗, needless∗, thoughtful,
judicious, atrocious∗, inadvertent∗,
discreet, humanize, bloodthirsty∗

Consequence

felicitous, reconcilable, agreeable,
fortunate, righteous, considerate,
fair, abusive∗, beneficial

Table 4: Identified moral axes. The axes with * are
immoral axes while the axes without * are moral axes.

C Selected Verbs and Templates

Selected Verb Context

harm people, animals, friends
kill people, a killer, time
greet my enemy, my guests, my friend
love myself, my colleagues, my pet, my work, my parents
eat healthy, vegetables, dirt, meat
steal money, other’s work, time
travel to North Korea, to Germany, to United States, to Africa
waste money, energy, time
help a thief, old people, coworkers
become evil, a better person, a good parent
be an evil person, a bad person, an asshole, moral, a good person
have a life partner, fun, savings, a gun
lie to a friend, to my boyfriend, to my girlfriend, to my husband, to my wife
go to church, to work, to cinema
marry my boyfriend, my girlfriend
divorce my husband, my wife
trust a machine, my friends, humans, strangers
borrow a book, money
drink beer, water

Table 5: Selected verbs and their contexts.

Templates

Should I ___?
Is it okay to ___?
Is it allowed to ___?
Is it recommended to ___?
Is it a good behaviour to ___?

Table 6: Templates that are used to transform phrases
into sentences.

D Automatic Evaluation Metrics

Kolmogorov-Smirnov Test We adopt Kol-
mogorov Smirnov (KS) Test (Massey Jr, 1951), a

statistical test that reports the maximum difference
between the two cumulative distributions, which
can be computed as

KS = max |Fm(x)− Fim(x)| (16)

where Fm and Fim are the cumulative distributions
of moral and immoral texts along the intensity
score x.

Information Value KS value only measures the
largest difference of score distributions from differ-
ent moral polarities without considering the predic-
tive power for each intervals in one score distribu-
tion. To evaluate the fine-grained predictive power,
we adpot Information Value (Kolácek and Rezác,
2010), which is calculated as

IV =
∑

i

(
Nmor. in i

Ntotal mor.
− Nimm. in i

Ntotal imm.

)
· woei

woe i = ln

(
Nmor. in i

Ntotal mor.
/
Nimm. in i

Ntotal imm.

)

(17)
where i represents a bin, Nmor. in i andNimm. in i are
the number of moral and immoral instances in the
bin i, Ntotal mor. and Ntotal imm. are the number of
moral and immoral instances in all bins.

E Further Explanation of Sup. Baseline

Specifically, we first split the Social Chemistry 101
dataset 12 into train set (70%) and validation set
(30%) and fine-tune on the five-class moral classifi-
cation task (i.e., very bad, bad, neutral, good, very
good)13 We train with the batch size of 128 and
the learning rate of 5e-5 for 10 epochs. We select
the checkpoint with the best F1 score on validation
set. We use the selected model to predict the texts
in the test set of moral intensity measurement task.
In this way, each text will get a probability distri-
bution of 5-point scale of morality, denoted by pi
where i ∈ [1, 5] is the index of a moral label (i.e.,
{1: very bad, 2: bad, 3: neutral, 4: good, 5: very
good}). Then, we get the moral intensity of the text
by

score =
∑

i∈I
i ∗ pi (18)

where I is the indices of labels with top K highest
probabilities. As shown in Figure 3, the model

12https://github.com/mbforbes/social-c
hemistry-101

13We use the Bert model here (https://huggingfac
e.co/bert-base-uncased).
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Figure 3: Confusion matrix on the validation set.

have clearer judgement on the groups with bigger
differences (e.g. very bad v.s. very good) but is
often uncertain between similar groups (e.g., very
good v.s. good or good v.s. neutral). Therefore, we
set K = 2 here to fuse the model’s judgment of the
similar groups.

F Inter-annotator Agreement

We use Kendall’s τ coefficient (Kruskal, 1958) to
compute inter-annotator agreement. The result is
shown below.

annotator τ p value
(1, 2) 0.58 8.78e-18
(1, 3) 0.62 3.13e-20
(2, 3) 0.72 1.19e-26

Table 7: Inter-annotator Agreement.

The τ values show substantial agreement be-
tween annotators (τ > 0.5 with p < 0.01).

G MORALSCORE’s Perception of Moral
Intensity

We provide some examples to show the judgement
given by our framework. Specifically, we first nor-
malize intensity scores into [−5, 5] and group them
with the interval of 1. The buckets are [-5, -4), [-4,
3), ..., (4, 5]. Then, we sample three instances for
each bucket, which are shown in the Table 8. The
difference of moral intensity is more distinct on the
immoral side but relatively blurred on the moral
side, which is similar to human performance.
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[−5,−4) ➀ Nadia believes Rhonda cannot do the job prop-
erly because of her autism and tries to get Rhonda
fired. Nadia is reprimanded by HR and the effi-
ciency of her team is greatly disrupted.
➁ John stabs his dog with a knife. John’s dog
bleeds to death.
➂ Tim gives his mother a high dose of poison to
drink. Tim’s mother dies from the poison, and he
is arrested.

➀ Samuel limits himself to three drinks. Samuel
has a good time at his brother’s wedding.
➁ Evan gets to the interview ten minutes before it
was scheduled. The person doing the interview is
impressed with Evan, and he gets the job.
➂ Phil tips the waiter for his service. Jenny is
impressed with her dates generosity.

[4, 5]

[−4,−3) ➀ James knocks out a window in his neighbor’s
house and takes their TV. James’ neighbor calls
the police, but they don’t take much action on the
case.
➁ Jim makes a racist joke at a housewarming party.
Jim’s neighbors are appalled and avoid Jim from
then on.
➂ Wesley hits the dog every time it scratches it-
self. Wesley’s dog becomes terrified of Wesley
and won’t come near him anymore.

➀ Jason offers to pay for the vase because he’s the
one broke it. Jason’s girlfriend respects Jason’s
honesty.
➁ Jake decides to pick up meditation as a means
of coping with stress from his job. Jake returns to
his place of employment with newfound energy
and enthusiasm.
➂ Sandra gives her employees a typical amount of
work. Sandra’s employees are able to do a good
job on the work given to them.

[3, 4)

[−3,−2) ➀ Brandon throws a party at his apartment without
asking his roommate first. Brandon’s roommate
feels disrespected and can’t study for an important
test.
➁ Jerry leaves the garbage behind as he rushes
to his car, assuming that his wife will take care
of it. Jerry’s wife doesn’t take the garbage out in
time and it starts attracting flies as they wait for
the next garbage day.
➂ Gary drinks his beer and eats his pizza, but
leaves the cans all over the room along with the
empty pizza box laying out. Greg thinks Gary
makes their apartment unsanitary and begins look-
ing for someplace else to live.

➀ Ray reports his friend’s website to the FBI so
that people stop stealing content. Ray feels like
he’s helping content creators and is happy that
people have to pay for movies now.
➁ Rob gives his employee paid time off for the
entire week. Rob’s employee feels grateful and
wants to work even harder when they come back.
➂ Steve drives all the way to Scott’s house to
give him the invitation. Scott thanks Steve for the
invitation and later enjoys the party.

[2, 3)

[−2,−1) ➀ Dean tells his friend what happened while in
the middle of class. The class ends up getting
interrupted by Dean talking to his friend.
➁ Jordan goes to the soccer game and forgets the
dishes afterward. Jordan gets in trouble for not
doing the dishes and feels like a failure.
➂ Justine tells Cindy that she is not comfortable
lending out her credit card to anyone, even a sister.
Cindy understands Justine’s reason, and she looks
elsewhere for the money.

➀ Nick considers each applicant, both men and
woman, and finally settles on a highly qualified
woman. The company does well because the
woman Nick chose is an excellent programmer.
➁ Jim makes a racist joke at a housewarming party.
Jim’s neighbors are appalled and avoid Jim from
then on.
➂ Jane finds a friend who is looking for a dog
and lets her friend adopt her dog. Jane’s dog is
thriving and happy at his new home without being
left alone all day.

[1, 2)

[−1,−0) ➀ Cindy walks all the way to Jimmy’s house and
knocks at the door. It turns out Jimmy’s not home
and Cindy walked all that way for nothing.
➁ Violet complains about the prices to her friends
quietly. Violet’s friends advise her to shop at a
cheaper store.
➂ Connie vents her feelings in a private blog post
that she sends to Dennis. After reading the post,
Denis learns to stop being so pushy about his po-
litical beliefs.

➀ Niro invites Mylah to his house party as friends.
Niro and Mylah become platonic friends, and
Noah is okay with the situation.
➁ Cal eats dinner with Tina and asks about her
day. Tina will think Cal cares about her and what
she does.
➂ Arnie enters the libary with his friends and
keeps talking about what to study. Arnie and his
friends are quickly told to be quiet because it’s a
libary.

[0, 1)

Table 8: Examples with different levels of moral intensity given by MORALSCORE
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Abstract

Systematic Offensive stereotyping (SOS) in
word embeddings could lead to associating
marginalised groups with hate speech and pro-
fanity, which might lead to blocking and silenc-
ing those groups, especially on social media
platforms. In this work, we introduce a quan-
titative measure of the SOS bias, validate it
in the most commonly used word embeddings,
and investigate if it explains the performance
of different word embeddings on the task of
hate speech detection. Results show that SOS
bias exists in almost all examined word embed-
dings and that the proposed SOS bias metric
correlates positively with the statistics of pub-
lished surveys on online extremism. We also
show that the proposed metric reveals distinct
information compared to established social bias
metrics. However, we do not find evidence
that SOS bias explains the performance of hate
speech detection models based on the different
word embeddings.

1 Introduction

Wagner et al. (2021) describe algorithmically in-
fused societies as the societies that are shaped by
algorithmic and human behaviour. The data col-
lected from these societies carry the same bias in
algorithms and humans, like population bias and
behavioural bias (Olteanu et al., 2019). These bi-
ases are important in the field of natural language
processing (NLP) because unsupervised models
like word embeddings encode them during training
(Brunet et al., 2019; Joseph and Morgan, 2020).
This includes racial bias which measures stereo-
types related to people from different races, e.g.
“Asians are good at math” (Garg et al., 2018;
Manzini et al., 2019; Sweeney and Najafian, 2019),
and gender bias which measures gender stereo-
types, e.g. “women are housewives” (Garg et al.,
2018; Bolukbasi et al., 2016; Chaloner and Maldon-
ado, 2019). However, one aspect of bias that has

received less attention is offensive stereotyping to-
ward marginalised groups. For example, using slurs
to describe non-white or LGBTQ communities or
using swear words to describe women. Recent
social research shows that using racial slurs and
third-person profanity to describe groups of people
aims at stressing the inferiority of the identity of
the marginalised group (Kukla, 2018). Hence, as
the internet is rife with slurs and profanity, it is
important to study how machine learning models
encode this offensive stereotyping.

To this end, we extend our initial work on intro-
ducing a computational measure of systematic of-
fensive stereotyping (SOS) bias and examine its ex-
istence in pre-trained word embeddings (Elsafoury,
2022). We define SOS from a statistical perspective
as “A systematic association in the word embed-
dings between profanity and marginalised groups
of people”. In other words, SOS refers to associat-
ing slurs and profane terms with different groups
of people, especially marginalised people, based
on their ethnicity, gender, or sexual orientation.
Studies that focused on similar types of bias in
hate speech detection models studied it within hate
speech datasets themselves (Dixon et al., 2018;
Waseem and Hovy, 2016a; Zhou et al., 2021), but
not in the widely-used word embeddings which
are, in contrast, not trained on data specifically cu-
rated to contain offensive content. Although some
studies demonstrated that there is no correlation
between intrinsic bias and extrinsic bias (Goldfarb-
Tarrant et al., 2021), studying intrinsic bias on its
own is an important task that reveals meaningful
information about the data that was used to train
those models, and in turn can help to expose harm-
ful biases in society (Garg et al., 2018; Kambhatla
et al., 2022).

In this work, we are interested in answering the
following research questions: RQ1: How can we
measure SOS bias? RQ2: What are the SOS bias
scores of common pre-trained word embeddings,
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and does SOS bias in the word embeddings differ
from social biases? RQ3: How strongly does SOS
bias correlate with external measures of online ex-
tremism and hate? RQ4: Does the SOS bias in the
word embeddings explain the performance of these
word embeddings on the task of hate speech detec-
tion? To answer our research questions, we build
on the existing literature on measuring bias in word
embeddings, propose a method to measure SOS
bias, and investigate how different word embed-
ding models associate profanity with marginalised
groups.

Our contributions can be summarised as fol-
lows: (a) We define the SOS bias, propose a
method to measure it in word embeddings and
demonstrate that SOS bias correlates positively
with the hate that marginalised people experience
online. (b) We demonstrate that all the examined
word embeddings contain SOS bias, with variations
on the strength of the bias towards one particular
marginalised group or another. (c) We show that
there is no evidence that the SOS bias explains the
performance of the different word embeddings on
the task of hate speech detection. To allow more
investigation on the topic, we share our code with
the community *.

2 Background

The term bias is defined and used in many different
ways (Olteanu et al., 2019). There is the norma-
tive definition of bias, as its definition in cognitive
science: “behaving according to some cognitive
priors and presumed realities that might not be
true at all” (Garrido-Muñoz et al., 2021). There is
also the statistical definition of bias as “systematic
distortion in the sampled data that compromises its
representatives” (Olteanu et al., 2019).

In distributional word representations (Word Em-
beddings), the most common methods for quanti-
fying bias are WEAT, RND, RNSB, and ECT: For
WEAT, the authors were inspired by the Implicit
Association Test (IAT) to develop a statistical test
to demonstrate human-like biases in word embed-
dings (Caliskan et al., 2017). They used cosine
similarity and statistical significance tests to mea-
sure the unfair correlations between two different
demographic groups, as represented by manually
curated word lists. For RND, the authors used the
Euclidean distance between neutral words, like pro-

*https://github.com/efatmae/measure_
SOS_bias_in_static_word_embeddings

fessions, and a representative group vector created
by averaging the word vectors for words that de-
scribe a stereotyped group (gender/ethnicity) (Garg
et al., 2018). In RNSB, a logistic regression model
is first trained on the word vectors of unbiased
labeled sentiment words (positive and negative) ex-
tracted from biased word embeddings. Then, that
model was used to predict the sentiment of words
that describe certain demographic groups (Sweeney
and Najafian, 2019). In ECT, the authors proposed
a method to measure how much bias has been re-
moved from the word embeddings after debiasing
(Dev and Phil, 2019).

These metrics, except RNSB, are based on the
polarity between two opposing points, like male
and female, allowing for binary comparisons. This
forces practitioners to model gender as a spectrum
between more “male” and “female” words, requir-
ing an overly simplified view of the construct, lead-
ing to similar problems for other stereotypical types
of bias, like racial, religious, transgender, and sex-
ual orientation, where there are more than two cat-
egories that need to be represented (Sweeney and
Najafian, 2019). These metrics also use lists of seed
words that have been shown to be unreliable (Anto-
niak and Mimno, 2021). Since we are interested in
measuring the systematic offensive stereotypes of
different marginalised groups, these metrics would
fall short of our needs. As for the RNSB metric,
even though it is possible to include more than two
identities, the sentiment dimension is represented
as positive or negative (binary). But in our case,
we are interested in a variety of offensive language
targeted at different marginalised groups.

3 Systematic Offensive Stereotyping Bias

Our motivation is to reveal whether word embed-
dings associate offensive language with words de-
scribing marginalised groups. In the next section,
we will use the SOS bias definition provided in
the Introduction section to measure the SOS bias.
For our experiments, we used 15 word embed-
dings: Word2Vec (W2V); Glove Wikipedia (Glove-
WK); Glove-Twitter (Glove-Twitter); Urban Dic-
tionary (UD); Chan word ; Glove Common Crawl
(Glove-CC); Glove Common Crawl Large (Glove-
CC-large); Fast-Text Common Crawl (FastText-
CC); Fast-Text-Subwords Common Crawl (FT-
CC-sws); Fast-Text Wiki (FT-Wiki); Fast-Text-
Subwords wiki (FT-wiki-sws); sentiment specific
word embedding (SSWE), Debias-W2V, P-DeSIP,

1264



Model Dimensions Trained on Reference
W2V 300 100B words from Google News (Mikolov et al., 2021a)

Glove-WK 200 6B tokens from Wikipedia 2014 and Gigaword (Pennington et al., 2021)

Glove-Twitter 200 27B tokens collected from two billion Tweets (Pennington et al., 2021)

UD 300 200M tokens collected from the Urban Dictionary website (Urban dictionary, 2021)

Chan 150 30M messages from the 4chan and 8chan websites (GSoC, 2019)

Glove-CC 300 42B tokens from Wikipedia 2014 and Gigaword (Pennington et al., 2021)

Glove-CC-large 300 840B tokens from Wikipedia 2014 and Gigaword (Pennington et al., 2021)

FastText-CC 300 600B common crawl tokens (Mikolov et al., 2021b)

FT-CC-sws 300 600B common crawl tokens with subwords information (Mikolov et al., 2021b)

FT-Wiki 300 16B tokens collected from Wikipedia 2017, UMBC, and statmt.org news dataset (Mikolov et al., 2021b)

FT-wiki-sws 300 16 billion tokens with subwords information collected from the Wikipedia 2017, UMBC, and statmt.org (Mikolov et al., 2021b)

SSWE 50 10M comments collected from Twitter (Tang et al., 2014)

Debias-W2V 300 W2V model after the gender bias has been removed using the hard debiasing method (Bolukbasi et al., 2016)

P-DeSIP 300 Debiased Glove-WK with the potential proxy gender bias removed. (Ding et al., 2022)

U-DeSIP 300 Debiased Glove-WK word embeddings with the unresolved gender bias removed. (Ding et al., 2022)

Table 1: Description of the word embeddings used in this work.

Group Words
LGBTQ* lesbian, gay, queer, homosexual, lgbt, lqbtq, bisexual,

transgender, tran, non-binary
Women* woman, female, girl, wife, sister, mother, daughter
Non-white
ethnicities*

african, african american, black, asian, hispanic, latin,
mexican, indian, arab, middle eastern

Straight heterosexual, cisgender
Men man, male, boy, son, father, husband, brother
White ethnic-
ities

white, caucasian, european american, european, nor-
wegian, canadian, german, australian, english, french,
american, swedish, dutch

*Marginalised group

Table 2: Non-offensive identity (NOI) words and the group
they describe.

and U-DeSIP. Table 1 provides information of the
different word embeddings.

3.1 Measuring SOS bias

Based on our definition of SOS, to answer RQ1,
we propose to measure the SOS bias using the co-
sine similarity between swear words and words
that describe marginalised social groups. For the
swear words, we used a list (Swear words, 2022)
that contains 403 offensive expressions, reduced to
279 after removing multi-word expressions†. We
used a non-offensive identity (NOI) word list to de-
scribe marginalised groups of people (Zhou et al.,
2021; Dixon et al., 2018) and non-marginalised
ones (Sweeney and Najafian, 2019), as summarised
in Table 2. Unlike WEAT, ECT, and RND, which
used seed words like people’s names to infer their
nationality or pronouns, we used NOI words to
describe the different groups similar to the RNSB
metric. According to (Antoniak and Mimno, 2021),

†We repeated the same experiment with a different set
of 427 swear words from (Agrawal and Awekar, 2018) and
also observed a significantly higher SOS bias scores for
marginalised groups for 11 word embeddings.

using NOI words is a better motivated and more
coherent approach for describing groups of people
than names.

Let WNOI = {w1, w2, w3, ...wn} be the list
of NOI words wi, i = 1, 2, ..., n, and Wsw =
{o1, o2, o3, ...om} be the list of swear words oj ,
j = 1, 2, ...,m. For measuring the SOS bias for a
specific word embedding we, firstly, we compute
the average vector

−−−→
Wwe

sw of the swear words for
we, e.g. for W2V, etc. SOSi,we for a NOI word wi
and a word embedding we is then defined (Equa-
tion 1) as the cosine similarity between

−−−→
Wwe

sw and
the word vector −−−→wi,we, for the word embedding
we, normalised to the range [0, 1] using min-max
normalisation across all NOI words (WNOI ), in or-
der to ease comparison between the different word
embeddings.

SOSi,we =

−−−→
Wwe

sw · −−−→wi,we

||−−−→Wwe
sw || · ||−−−→wi,we||

(1)

The normalised SOS scores are in the range [0, 1]
and indicates the similarity of a NOI word to the av-
erage representation of swear words. Accordingly,
a higher SOSi,we value for word wi indicates that
the word embedding−−−→wi,we for the word wi, is more
associated with profanity. We intended for the met-
ric to be used in a comparative manner among word
embeddings, e.g. W2V vs Glove-WK, or among
different groups of people, e.g. LGBTQ vs Straight,
rather than to determine an objective threshold be-
low which no bias exists.

We computed the mean SOS score for our exam-
ined word embeddings using the aforementioned
swear words and NOI word lists for each exam-
ined group individually, as well as for the com-
bined marginalised (Women, LGBTQ, Non-white
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Word embeddings
Mean SOS

Gender Sexual orientation Ethnicity Marginalised vs. Non-marginalised

Women Men LGBTQ Straight Non-white White Marginalised Non-marginalised

W2V 0.293 0.209 0.475 0.5 0.456 0.390 0.418 0.340

Glove-WK 0.435 0.347 0.669 0.5 0.234 0.169 0.464 0.260

Glove-Twitter 0.679 0.447 0.454 0∗ 0.464 0.398 0.520 0.376

UD 0.509 0.436 0.582 0.361 0.282 0.244 0.466 0.319

Chan 0.880 0.699 0.616 0.414 0.326 0.176 0.597 0.373

Glove-CC 0.567 0.462 0.480 0.195 0.446 0.291 0.493 0.339

Glove-CC-large 0.318 0.192 0.472 0.302 0.548 0.278 0.453 0.252

FT-CC 0.284 0.215 0.503 0.542 0.494 0.311 0.439 0.301

FT-CC-sws 0.473 0.422 0.445 0.277 0.531 0.379 0.480 0.384

FT-Wiki 0.528 0.483 0.555 0.762 0.393 0.265 0.496 0.385

FT-Wiki-sws 0.684 0.684 0.656 0.798 0.555 0.579 0.632 0.635

SSWE 0.619 0.651 0.438 0∗ 0.688 0.560 0.569 0.537

Debias-W2V 0.205 0.204 0.446 0.5 0.471 0.420 0.386 0.356

P-DeSIP 0.266 0.220 0.615 0.491 0.354 0.314 0.434 0.299

U-DeSIP 0.266 0.220 0.616 0.492 0.343 0.299 0.431 0.283
∗Glove-Twitter and SSWE did not include the NOI words that describe the “Straight” group.

Table 3: Mean SOS score of the different groups for all the word embeddings. Bold values represent the highest SOS score
between the two different groups in each category (gender, sexual orientation, ethnicity, and marginalised vs. non marginalised).

ethnicities) and non-marginalised (Men, Straight,
White ethnicities) groups. Table 3 shows that most
of the word embeddings are more biased towards
the marginalised groups than the non-marginalised
groups, with some word embeddings being more
SOS biased than others. It also shows that mean
SOS bias scores towards the marginalised groups
for all the word embeddings, except for Fast-
text-wiki-subwords, are higher towards the non-
marginalised groups (Wilcoxon p = 0.0001, α =
0.05). For Fast-text-wiki-subwords, the SOS bias
score for the non-marginalised groups (0.635) is
marginally higher than the SOS bias score for the
marginalised groups (0.632). In addition, the de-
biased word embeddings where gender informa-
tion is removed (Debiased W2V, P-DeSIP, and U-
DeSIP), still contain slightly higher SOS bias to-
wards women than men. Given that SOS bias is
significantly higher for marginalised groups (Ta-
ble 3) and that most hate speech datasets contain
hate towards women and the marginalised groups,
this work subsequently focuses on those groups
(Women, LGBTQ, Non-white).

3.2 SOS biased word embeddings

To answer the first part of RQ2, we conducted a
comparative analysis of the word embeddings with
regard to SOS bias. Table 4 shows the bias scores
of each of the word embeddings towards each
marginalised group. To quantitatively compare

the different word embeddings, we used the SOS
bias scores for each marginalised group (LGBTQ,
Women, Non-white ethnicities) and applied differ-
ent significance tests at α = 0.05. The results
in Table 4 show that Glove-twitter, Chan, Glove-
CC, and Fast-text-wiki-subwords are the most bi-
ased towards women, with Chan being the most
biased (SOSwomen,Chan = 0.88), and Debias-W2V
the least biased (SOSwomen,Debias-W2V = 0.205),
which could be due to the fact that Debias-W2V is
W2V after removing gender bias. When we used
the Friedman test to compare the SOS scores of
the different word embeddings for the individual
words that describe the “Women” group, the re-
sults showed a significant difference between the
different word embeddings (p = 2e−11), indicat-
ing that Chan is significantly more biased towards
“Women” in comparison to the rest of the word em-
beddings. It is worth noting that the reduction in
SOSwomen from 0.435 for Glove-WK to 0.266 for
P-DeSIP and U-DeSIP is higher than the reduction
achieved for W2V (to Debias-W2V) from 0.293 to
0.205, meaning that U-DeSIP and P-DeSIP used
more effective debiasing methods for this category.
On the other hand, U-DeSIP and P-DeSIP have
higher SOS bias scores toward non-white ethnici-
ties than Glove-WK (as did Debias-W2V compared
to W2V), indicating that while bias reduction meth-
ods decrease biases toward some groups, they may
unintentionally increase bias towards others.
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Word embeddings
Mean SOS

Women LGBTQ Non-white

W2V 0.293 0.475 0.456

Glove-WK 0.435 0.669 0.234

glove-twitter 0.679 0.454 0.464

UD 0.509 0.582 0.282

Chan 0.880 0.616 0.326

Glove-CC 0.567 0.480 0.446

Glove-CC-large 0.318 0.472 0.548
FT-CC 0.284 0.503 0.494

FT-CC-sws 0.473 0.445 0.531
FT-WK 0.528 0.555 0.393

FT-WK-sws 0.684 0.656 0.555

SSWE 0.619 0.438 0.688
Debias-W2V 0.205 0.446 0.471
P-DeSIP 0.266 0.615 0.354

U-DeSIP 0.266 0.616 0.343

Table 4: The mean SOS bias score of each word embeddings
towards each marginalised group. Bold scores reflect the
group that the word embeddings is most biased against.

The LGBTQ community is the group that is
most biased against by most of the word embed-
dings, i.e. W2V, Glove-WK, UD, Fast-text-CC,
Fast-text-wiki, P-DeSIP, and U-DeSIP. Glove-WK
is the most biased (SOSlgbtq,Glove-WK = 0.669),
whereas the least biased is SSWE (SOSlgbtq,SSWE =
0.438). When we used the Friedman test to com-
pare the SOS scores of the different word embed-
dings for the individual words that describe the
“LGBTQ” group, the results showed a significant
difference between the different word embeddings
(p = 0.048), indicating that Glove-WK is signif-
icantly more SOS biased towards the “LGBTQ”
community in comparison to the other word em-
beddings. These findings are notable as Glove-WK
was pre-trained on Wikipedia articles which are
expected to have the least profanity compared to
social media or common crawl.

Table 4 also shows that Glove-CC-large,
Fast-text-CC-subwords, SSWE, and Debias-W2V
are the most biased towards non-white eth-
nicities, with SSWE being the most biased
(SOSnon-white,SSWE = 0.688) and Glove-WK
the least biased (SOSnon-white,Glove-WK = 0.234).
When we used the Friedman test to compare the
SOS scores of the different word embeddings for
the individual words that describe the “Non-white-
ethnicities” group, the results showed a significant
difference between the different word embeddings
(p = 3e−6), indicating that SSWE is significantly
more biased towards “Non-white-ethnicities” in
comparison to the rest of the word embeddings.

Since SSWE was pre-trained on sentiment in-
formation, and as Sweeney and Najafian (2019)
showed, the sentiment towards non-white ethnici-
ties is mostly negative, our results are in line with
earlier findings.

3.3 SOS bias and other social biases

In this section, we answer the second part of RQ2
by comparing our SOS bias scores to gender and
racial bias as measured by existing social bias met-
rics from the literature (WEAT, RND, RNSB, ECT).
We used the WEFE framework (Badilla et al., 2020)
to measure the gender bias using the other state-
of-the-art metrics and two target lists: Target list
1, which contained female-related words (e.g., she,
woman, and mother), and Target list 2, which con-
tained male-related words (e.g., he, father, and
son), as well as two attribute lists: Attribute list
1, which contained words related to family, arts,
appearance, sensitivity, stereotypical female roles,
and negative words, and Attribute list 2, which
contained words related to career, science, math,
intelligence, stereotypical male roles, and positive
words (Badilla et al., 2020; Caliskan et al., 2017).
Then, we measured the average gender bias scores
across the different attribute lists for each word
embedding using the various metrics. For the SOS
bias, we used the mean SOS scores of the words
that belong to the “Women” category. Contrary to
all the metrics, ECT scores have an inverse rela-
tionship with the level of bias, so we subtract all
ECT scores from 1 to enforce that higher scores for
all metrics indicate greater levels of bias. We then
computed the Spearman’s rank correlation coeffi-
cient between the gender bias scores of the different
word embeddings, as measured by WEAT, RND,
RNSB, ECT, SOSwomen.

To measure the racial bias using the state-of-
the-art metrics, we used two target groups: Tar-
get group 1, which contained stereotypical white
names, and Target group 2, which contained stereo-
typical African, Hispanic, and Asian names, and
two attribute lists: Attribute list 1, which contained
white people’s occupation names; and Attribute list
2, which contained African, Hispanic, and Asian
people’s occupations (Badilla et al., 2020; Garg
et al., 2018). Then, we measured the average racial
bias scores across the different attribute lists for
each word embedding using the different metrics
(WEAT, RND, RNSB, ECT). For the SOS bias, we
used the mean SOS scores of the words that belong
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Figure 1: Spearman’s correlation between the different bias
metrics (SOS and social bias) for all the examined word em-
beddings. For gender bias, SOS refers to SOSwomen, and for
racial bias to SOSnon-white.

to the “Non-white ethnicities” category. Finally,
we computed the Spearman’s rank correlation co-
efficient between the different racial bias scores
of the different word embeddings, as measured by
WEAT, RND, RNSB, ECT, SOSnon-white.

The results in Figure 1 show that for gender bias,
WEAT has a strong positive correlation with RND
and a positive correlation with ECT and RNSB.
On the other hand, SOS has almost no correlation
with ECT, RNSB, WEAT and a small positive cor-
relation with RND. For racial bias, WEAT has a
positive correlation with RNSB, and RND, no cor-
relation with ECT and a negative correlation with
SOS. On the other hand, SOS has a negative corre-
lation with RNSB, RND, and WEAT and almost no
correlation with ECT. The results here suggest that
the SOS bias reveals different information than the
social bias metrics, especially for racial bias. We
speculate that this is the case because profanity is
more often used online with non-white ethnicities
than with women (Hawdon et al., 2015).

3.4 SOS bias validation

To answer RQ3, we compared the SOS bias mea-
sured by our proposed method, as well as by exist-
ing metrics (WEAT, RNSB, RND, ECT), to pub-
lished statistics on online hate and extremism that is
targeted at marginalised groups (Women, LGBTQ,
Non-white ethnicities). To avoid confusion since
all metrics measure SOS bias in this case, we refer
to our proposed method for measuring SOS bias
as “normalised cosine similarity to profanity” or
NCSP for short. We used the WEFE framework
(Badilla et al., 2020) to measure the SOS bias of
the examined word embeddings using the state-of-
the-art metrics. The metrics in the WEFE platform
take 4 inputs: Target list 1: a word list describing
a group of people, e.g. women; Target list 2: a
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Figure 2: Pearson’s correlation between the different SOS
bias metrics and the percentages of people belonging to the
examined marginalised groups who experienced abuse and
extremism online for the OEOH-US survey for the word em-
beddings.

Country Sample size Ethnicity LGBTQ Women
Finland 555 0.67 0.63 0.25
US 1033 0.6 0.61 0.44
Germany 978 0.48 0.5 0.2
UK 999 0.57 0.55 0.44

Table 5: The percentage of examined groups that experience
online hate and extremism in different countries (Hawdon
et al., 2015)

word list that describes a different group of people,
e.g. men; Attribute list 1: a word list that contains
attributes that are believed to be associated with
target group 1, e.g. housewife; and Attribute list 2:
a word list that contains attributes that are believed
to be associated with target group 2, e.g. engineer.
Each metric then measures these associations, as
described in Section 2.

To measure the SOS bias for gender using the
state-of-the-art metrics, target list W1 contained
the NOI words that describe women from Table 2,
target list W2 contained the NOI words that de-
scribe men, attribute list 1 contained the same
swear words used earlier to measure our SOS bias
(Section 3.1), and attribute list 2 a list of positive
words provided by the WEFE framework. To mea-
sure the SOS bias for ethnicity using the state-of-
the-art metrics, we used the same process, with
the same attribute lists, but with target list E1 that
contained NOI words that describe non-white eth-
nicities and target list E2 that contained NOI words
that describe white ethnicities. Similarly, to mea-
sure the SOS bias for sexual orientation, we used
the same attribute lists and target list L1, which
contained NOI words that describe LGBTQ peo-
ple, and target list L2 which contained NOI words
that describe straight people. To measure the SOS
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Dataset Samples Positive
samples

HateEval 12722 42%
Twitter-sexism 14742 23%
Twitter-racism 13349 15%
Twitter-hate 5569 25%
Note: Positive samples refer to offensive comments

Table 6: Hate speech datasets’ details.

bias for gender, ethnicity, and sexual orientation
with our proposed metric (NCSP), we computed
the mean SOS scores of the NOI words that de-
scribe women, LGBTQ, and non-white for each
word embeddings as in Table 4.

The percentages of people belonging to the
examined marginalised groups who experienced
abuse and extremism online were then acquired
from the online extremism and online hate survey
(OEOH), collected by (Hawdon et al., 2015) from
Finland, Germany, the US, and the UK in 2013
and 2014, for individuals aged 15-30. Table 5 pro-
vides details on the published statistics. Then, we
computed the Pearson’s correlation coefficient be-
tween the SOS‡ scores, measured by the different
metrics for Women, LGTBQ, and Non-white eth-
nicities for the examined word embeddings and
the percentages of people belonging to the exam-
ined marginalised groups who experienced abuse
and extremism online. Figure 2§ shows that the
SOS bias correlates positively with the published
statistics on online hate and extremism.

When we first look at the different metrics for
measuring the SOS bias, we find that bias metrics
like WEAT, RND, and ECT correlate more posi-
tively with the OEOH survey in the US. However,
when we look closely at the order of the percent-
ages of marginalised groups regarding their expe-
rience of online hate, we find that the LGBTQ
community experiences online hate the most, fol-
lowed by non-white ethnicities with a marginal
difference, and then women. Consequently, we ex-
pect that the survey results would correlate strongly
positively with the word embeddings that are least
biased towards women (e.g. W2V, FT-CC, Debias-
W2V, P-DeSIP, and U-DeSIP); correlate less posi-
tively with word embeddings that are more biased
towards women than LGBTQ or Non-white (e.g.
Glove-WK, UD, FT-WK, and SSWE); and corre-

‡We subtract all ECT scores from 1 here as well.
§The correlation results for OEOH-US are similar to

the correlation results from OEOH-Finland, OEOH-UK and
OEOH-Germany, and thus are omitted from Figure 2.

late negatively with word embeddings that are most
biased towards women (e.g. Glove-twitter, Chan,
Glove-CC, FT-WK-sws).

This pattern of correlation is achieved only
by our proposed metric, which reflects the vari-
ation of the SOS bias scores towards the different
marginalised groups in each word embedding, in
comparison to WEAT, ECT and RND, which do
not reflect these variations and hence correlate in-
discriminately positively with all the word embed-
dings. RNSB does reflect some of that variation
but not as consistently as our proposed metric. The
results suggest that our proposed metric for mea-
suring SOS bias (NCSP) is the most reflective of
the SOS bias in the different word embeddings.

4 SOS bias and hate speech detection

In this section, we answer RQ4 through a series of
experiments on hate speech detection. We trained
deep learning models with an embedding layer
for the detection of hate speech from hate speech-
related datasets, then computed the correlation of
the performance of the different word embeddings
to the SOS bias score of these embeddings. We
used four hate-speech-related datasets that contain
different types of hate speech (Table 6): (i) Twitter-
racism, a collection of tweets labeled as racist or
not (Waseem and Hovy, 2016b); (ii) Twitter-sexism,
tweets labeled as sexist or not (Waseem and Hovy,
2016b); (iii) Twitter-hate, containing tweets la-
beled as offensive, hateful (sexist, homophobic,
and racist), or neither (Davidson et al., 2017), but
as we are interested in the hateful content, we used
the tweets that are labeled as hateful or neither; and
(iv) HateEval, a collection of tweets containing
hate against immigrants and women in Spanish and
English (Basile et al., 2019), from which we used
only the English tweets. These four datasets were
selected because they contain hate speech towards
the marginalised groups that are the focus of our
study thus they are representative of the examined
problem.

To pre-process the datasets, we removed URLs,
user mentions, retweet abbreviation “RT”, non-
ASCII characters, and English stop words except
for second-person pronouns like “you/yours/your”,
and third-person pronouns like “he/she/they”,
“his/her/their” and “him/her/them”, as suggested
in (Elsafoury et al., 2021). All letters were lower-
cased, and common contractions were converted to
their full forms. And each dataset was randomly
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Word embeddings
HateEval Twitter-Hate Twitter-racism Twitter-sexism

MLP BiLSTM MLP BiLSTM MLP BiLSTM MLP BiLSTM

W2V 0.593 0.663 0.681 0.772 0.683 0.717 0.587 0.628

Glove-WK 0.583 0.651 0.713 0.821 0.681 0.727 0.587 0.641

Glove-Twitter 0.623 0.671 0.775 0.851 0.680 0.699 0.589 0.668
UD 0.597 0.652 0.780 0.837 0.679 0.698 0.578 0.632

Chan 0.627 0.661 0.692 0.840 0.650 0.712 0.563 0.647

Glove-CC 0.625 0.675 0.778 0.839 0.695 0.740 0.577 0.648

Glove-CC-large 0.626 0.674 0.775 0.860 0.709 0.724 0.593 0.668
FT-CC 0.627 0.675 0.792 0.843 0.701 0.741 0.607 0.654

FT-CC-sws 0.605 0.660 0.746 0.830 0.701 0.746 0.588 0.657

FT-WK 0.606 0.650 0.784 0.827 0.699 0.706 0.601 0.653

FT-WK-sws 0.606 0.650 0.723 0.820 0.689 0.736 0.561 0.633

SSWE 0.558 0.628 0.502 0.715 0.324 0.666 0.171 0.548

Debiased-W2V 0.626 0.652 0.678 0.741 0.674 0.715 0.564 0.638

P-DeSIP 0.575 0.657 0.697 0.817 0.673 0.731 0.538 0.650

U-DeSIP 0.598 0.649 0.702 0.815 0.673 0.726 0.548 0.638

Table 7: F1 scores for the used models for hate speech detection using the examined word embeddings on the examined datasets.
Bold values indicate the highest scores among the different word embeddings per model and dataset.

Dataset Model WEAT RNSB RND ECT NCSP

HateEval
MLP 0.277 0.223 -0.100 0.019 0.230
BiLSTM 0.377 0.540* 0.094 -0.030 0.100

Twitter Sexism
MLP 0.157 0.030 -0.216 -0.039 0.121
BiLSTM 0.109 0.266 0.093 -0.361 0.246

Twitter Racism
MLP 0.042 0.017 -0.336 -0.223 0.241
BiLSTM -0.264 0.135 -0.210 -0.103 0.110

Twitter Hate
MLP 0.107 0.218 -0.164 -0.148 0.223
BiLSTM 0.507 0.475 0.289 -0.217 0.396

Table 8: Pearson correlation coefficient of the SOS bias scores of the different word embeddings and the F1 scores of the used
models for each bias metric and dataset. * indicates that the correlation is statistically significant at p < 0.05.

split into a training (70%) and a test (30%) set,
preserving class ratios.

We used two deep learning models: (i) a Bidi-
rectional LSTM (Schuster and Paliwal, 1997) with
the same architecture as in (Agrawal and Awekar,
2018), who used RNN models to detect hate speech,
and (ii) a two-layer Multi-Layer Perceptron (MLP)
model. To this end, we first used the Keras tok-
enizer (Tensorflow.org, 2020) to tokenise the input
texts, using a maximum input length of 64 (max-
imum observed sequence length in the dataset).
A frozen embedding layer, based on a given pre-
trained word embedding model, was used as the
first layer and fed to the BiLSTM model and the
MLP model. To avoid over-fitting, we used L2
regularisation with an experimentally determined
value of 10−7. The models were trained for 100
epochs with a batch size of 32, using the Adam op-
timiser and a learning rate of 0.01 (default of Keras
Optimiser) (Agrawal and Awekar, 2018). For each
dataset, we used a 5-fold cross-validation to train
and validate a model (70% and 30% of the train-

ing set respectively, with class ratio preserved) and
then test each fold’s model on the test set. Then, the
average F1-score across the 5 folds was reported.

4.1 Experimental Results

Given the results for the SOS bias in the different
embeddings (Table 4), we hypothesise that the deep
learning models that are trained with Glove-CC-
large, FastText-CC-subwords, SSWE, and Debias-
W2V embeddings will perform the best (highest
F1 score) on datasets that contain hate speech or
insults towards marginalised ethnicities, which is
Twitter-racism. We also hypothesise that the mod-
els trained with Glove-Twitter, Chan, Glove-CC,
and Fast-text-wiki-subwords will achieve the high-
est F1 scores on datasets that contain insults to-
wards women, which is Twitter-sexism. Since
Twitter-Hate and HateEval contain a mixture of
hateful content towards women and immigrants,
we hypothesise that the best performing word em-
beddings would be the ones that have SOS scores
higher than the median values for both of SOSwomen
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(0.473) and SOSNon-white (0.456), which are Glove-
Twitter, Fast-text-wiki-subwords, and SSWE.

The performance of the deep learning models
with the different embedding models is reported
in Table 7. The results show that for all datasets,
BiLSTM outperforms MLP in terms of F1 score.
The results also show that for the MLP model,
our hypotheses hold for the Twitter-racism dataset,
as the best performing models are BiLSTM with
Fast-text-CC-subwords and MLP with Glove-CC-
large. However, for Twitter-sexism, HateEval, and
Twitter-Hate, the results do not support our hypoth-
esis, with Fast-text-CC and Glove-CC-large being
the best performing with MLP and BiLSTM mod-
els. To quantify our analysis we used the Spear-
man’s correlation between the SOS bias scores,
measured using the different bias metrics, of the
different word embeddings and the F1 scores of
the MLP and BiLSTM trained with the different
word embeddings. The results in Table 8 show oc-
casionally positive correlations for example with
WEAT, RNSB, and our proposed metric NCSP.
However, most of these positive correlations are not
statistically significant except for the SOS scores
measured by the RNSB metric and the F1 of the
BiLSTM model and the HateEval dataset. These
results show that there is no positive correlation be-
tween the SOS bias scores in the word embeddings
and the performance of the hate speech detection
models, suggesting that the SOS bias in the word
embeddings does not explain their utility as fea-
tures for hate speech detection.

5 Conclusion

In this work, we built on our initial work (Elsafoury,
2022) where the SOS bias was introduced and pro-
posed methods to measure it, validate it, compare
it to stereotypical social bias, and investigate if it
explains the performance of the word embeddings
on hate speech detection. Results show that the
examined word embeddings are SOS biased and
that the SOS bias in the word embeddings has a
strong positive correlation with published statistics
on online extremism. However, more datasets need
to be collected to provide stronger evidence, es-
pecially data from social sciences on the offences
that marginalised groups receive on social media.
Nonetheless, this is an informative finding as it re-
veals the bias in the dataset that these word embed-
dings were trained on. Since not all these datasets
are available to the public, measuring the SOS bias

in the word embeddings is an important way to
learn about that bias in those datasets.

Our findings also show that the proposed SOS
bias reveals different information than the types of
bias measured by existing metrics. Finally, our find-
ings show no evidence that the SOS bias, measured
using different bias metrics, explains the perfor-
mance of the different word embeddings on the
task of hate speech detection. This finding suggests
that the SOS bias, and potentially other biases in
general, are not strongly related to word embed-
dings’ performance on the downstream task of hate
speech detection. We plan to examine this specula-
tion and study the influence of the SOS and social
bias on the fairness of hate speech detection models
in future work.

6 Limitations

The findings demonstrated in this paper are limited
to the inspected word embeddings, models, and
datasets, and might not generalise to other datasets.
Similarly, our SOS bias scores are limited to the
used word lists and even if we used two different
swear word lists and identity terms that are co-
herent according to (Antoniak and Mimno, 2021),
using different word lists may give different results.
Another limitation is regarding our definition of
the SOS bias, as we defined bias from a statistical
perspective which lacks the social science perspec-
tive as discussed in (Blodgett et al., 2021; Delo-
belle et al., 2022). Moreover, we only studied bias
in Western societies where Women, LGBTQ and
Non-White ethnicities are among the marginalised
groups. However marginalised groups could in-
clude different groups of people in other societies.
We also only used datasets and word lists in En-
glish which limits our study to the English speaking
world. Similar to other works on quantifying bias,
our proposed metric measures the existence of bias
and not its absence (May et al., 2019), and thus low
bias scores do not necessarily mean the absence of
bias or discrimination in the word embeddings.
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Abstract

Pretrained Language Models (PLMs), though
popular, have been diagnosed to encode bias
against protected groups in the representations
they learn, which may harm the prediction fair-
ness of downstream models. Given that such
bias is believed to be related to the amount of
demographic information carried in the learned
representations, this study aimed to quantify
the awareness that a PLM (i.e., BERT) has re-
garding people’s protected attributes and aug-
ment BERT to improve prediction fairness of
downstream models by inhibiting this aware-
ness. Specifically, we developed a method to
dynamically sample data to continue the pre-
training of BERT and enable it to generate rep-
resentations carrying minimal demographic in-
formation, which can be directly used as in-
put to downstream models for fairer predic-
tions. By experimenting on the task of clas-
sifying educational forum posts and measur-
ing fairness between students of different gen-
der or first-language backgrounds, we showed
that, compared to a baseline without any ad-
ditional pretraining, our method improved not
only fairness (with a maximum improvement
of 52.33%) but also accuracy (with a maximum
improvement of 2.53%). Our method can be
generalized to any PLM and demographic at-
tributes. All the codes used in this study can
be accessed via https://github.com/
lsha49/FairBERT_deploy.

1 Introduction

Pretrained Language Models (PLMs) have been
increasingly applied to tackle various NLP tasks in
recent years (Li et al., 2019; Yoon et al., 2019; Chan
and Fan, 2019; Araci, 2019; Zhang et al., 2019).
Along with the wide application of PLMs is grow-
ing concerns about the bias encoded in the represen-
tations generated by these PLMs (Jin et al., 2020;
Lu et al., 2020). For instance, de Vassimon Manela

∗ Corresponding author.

et al. (2021) demonstrated that stereotypical asso-
ciations were encoded in PLMs when tackling a
pronoun resolution task. More importantly, such
bias has been demonstrated to be harmful to the pre-
diction fairness of downstream models, i.e., there
exists a consistent gap between the prediction ac-
curacy for people of different protected attributes.
For example, Minot et al. (2021) showed that the
gender-related bias embedded in PLMs could be
propagated to downstream classification tasks in
medical scenarios.

As a remedy, researchers have endeavored to
develop techniques to debias PLMs. These tech-
niques, more often than not, focused on the fine-
tuning stage when using a PLM, e.g., correcting the
bias hidden behind the learned representations by
removing associations between embedding features
and protected attributes during the fine-tuning pro-
cess or using a protected-attribute-balanced dataset
to fine-tune a PLM (de Vassimon Manela et al.,
2021). It is worth noting that, though assuming
that the bias contained in a PLM is associated with
the amount of demographic information carried in
the learned representations, these debiasing tech-
niques oftentimes failed to (i) explicitly quantify
the capability of a PLM in revealing people’s de-
mographic attributes or (ii) depict the relationship
between the amount of demographic information
contained in the learned representations and the
prediction fairness in downstream tasks.

Inspired by the studies which demonstrated the
benefits of using additional task-specific data to
continue to pretrain a language model and boost
prediction accuracy (Araci, 2019; Clavié and Gal,
2019; Chalkidis et al., 2020; Shen et al., 2021; Belt-
agy et al., 2019), in this study, we focused on con-
tinuing the pretraining of a language model (i.e.,
BERT (Devlin et al., 2018)) with carefully-selected
data so as to reduce the amount of demographic in-
formation contained in the learned representations
and subsequently enhance the downstream predic-

1275



tion models in terms of both accuracy and fairness.
Our rationale is essentially in line with those held
in (de Vassimon Manela et al., 2021; Minot et al.,
2021), i.e., the bias carried in a PLM can be poten-
tially reduced by inhibiting a PLM’s awareness of
people’s protected attributes. Formally, this study
was guided by the following Research Questions:

RQ1 To what extent can the representations gen-
erated by a vanilla BERT1 predict people’s
protected attributes?

RQ2 To what extent can BERT’s awareness of
protected attributes be inhibited by actively
sample data to continue its pretraining?

RQ3 What are the impacts of inhibiting BERT’s
awareness of protected attributes on the pre-
diction fairness in the downstream model?

We based our study on the task of classifying dis-
cussion forum posts in education, which is widely
recognized as important in assisting instructors to
provide timely support to students, especially in
courses with a high student-teacher ratio (Ntourmas
et al., 2021; Wei et al., 2017). This study was ap-
proved by the Human Research Ethics Committee
at Monash university (Project ID 30074). We used
a dataset consisting of over 228K forum posts gen-
erated by students when undertaking their studies
at the same university, and information about stu-
dents’ gender and first-language backgrounds were
also contained in the dataset. To answer RQ1, we
used the representations generated by the vanilla
BERT as input to a logistic regression model to
predict students’ protected attributes. To answer
RQ2, building upon studies on Active Learning
(AL), we proposed a data sampling method to se-
lectively sample data, which contain minimal in-
formation about protected attributes, to continue to
pretrain BERT, after which we measured whether
the learned representations became less capable
of revealing students’ protected attributes. To an-
swer RQ3, after applying additional pretraining to
BERT, we further used the the learned represen-
tations as input to a different logistic regression
model to predict the categorical label of a forum
post (i.e., content relevant or irrelevant). Through
extensive evaluations, we demonstrated that the
proposed sampling method can effectively identify
data to decrease a PLM’s awareness of protected

1A vanilla BERT refers to one without any additional pre-
training.

attributes and enhance predictive models used in
downstream tasks in terms of both accuracy and
fairness. Our sampling method can be generalized
to any PLM or protected attributes.

2 Related Work

2.1 Bias in Pretrained Language Models

PLMs have been documented to contain biases
against certain socio-demographic groups (e.g.,
black and female), which was partially caused by
the use of low-quality data when constructing a
PLM (Lucy and Bamman, 2021; Nadeem et al.,
2020; de Vassimon Manela et al., 2021). Nadeem
et al. (2020) showed that harmful stereotypes com-
monly existed in online text. When using such
online texts for training, PLMs can easily pick up
harmful stereotypes and act against the disadvan-
taged groups. For instance, when predicting the
emotion polarity and toxicity of a piece of text,
PLMs are prone to classify text written by females
as more emotional than those written by their male
counterpart (Jin et al., 2020; Touileb et al., 2021;
Silva et al., 2021; Bhardwaj et al., 2021; Mozafari
et al., 2020). Another reason is that the data gen-
erated by disadvantaged groups was less used in
constructing a PLM and thus causing these disad-
vantaged groups to be under-represented compared
to other groups. When detecting hate speech, texts
written in African American English dialect were
more likely to be mistakenly classified than texts
written in standard English (Halevy et al., 2021).

2.2 Debiasing Pretrained Language Models

Existing studies in this strand of research mostly
stressed on the fine-tuning stage when using a
PLM (Bhardwaj et al., 2021; Silva et al., 2021; Jin
et al., 2020). Among these studies, a majority of
them aimed to debias the learned representations by
regularizing the BERT model during fine-tuning.
For instance, Bhardwaj et al. (2021) proposed a
method to identify and remove the semantic fea-
tures which contained sensitive information (e.g.,
gender-related) when propagating through BERT
layers, thereby reducing BERT-induced bias in the
downstream tasks. Silva et al. (2021) applied a loss
regularizer where a loss is incorporated in training
to minimize bias learned during fine-tuning. Al-
ternatively, some researchers attempted to debias
a PLM by modifying the task-specific data sam-
ples before using them to fine-tune the PLM (Prost
et al., 2019; Islam et al., 2021; Pruksachatkun et al.,
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2021). Typically, the data was modified with the
aim of removing traits that are indicative of peo-
ple’s gender (de Vassimon Manela et al., 2021;
Minot et al., 2021), race (Mozafari et al., 2020), or
dialect (Mozafari et al., 2020). These data modifi-
cation methods have been demonstrated effective
in enhancing the prediction fairness of downstream
models in pronoun resolution (de Vassimon Manela
et al., 2021) and toxicity detection (Mozafari et al.,
2020). In addition, researchers demonstrated that
a PLM could be debiased by enabling the down-
stream task model to work with other models in
an ensemble-based manner (Halevy et al., 2021).
For example, Halevy et al. (2021) showed that by
adding a specialized classifier trained by text writ-
ten in the African American English dialect to the
ensemble framework, the model displayed fewer
racial biases when detecting toxic language com-
pared to using PLM alone.

Our work shared a similar rationale with (Ga-
jane and Pechenizkiy, 2017; Minot et al., 2021;
Mozafari et al., 2020), i.e., by reducing a PLM’s
awareness of the protected attributes related to data,
the PLM is less likely to propagate bias to the
model used in a downstream task and the prediction
fairness of the task model can be enhanced. How-
ever, our work distinguished itself from two aspects.
Firstly, instead of focusing on the fine-tuning stage,
we focused on debiasing a PLM by actively sam-
pling protected-attribute-uninformative data to con-
tinue to pretrain the PLM. Secondly, we explicitly
quantified the capability of the PLM in predicting
protected attributes and measure its impact on the
prediction fairness of the downstream model.

2.3 Pretrained Language Models in Education

Driven by the great success in the broader NLP
communities, PLMs have been also applied in solv-
ing various tasks in the field of education, such
as generating questions for assessment (Lu et al.,
2021), providing timely feedback to support stu-
dent learning (Lin et al., 2022), and scoring an-
swers or essays authored by students (Ormerod
et al., 2021). Among these tasks, the classification
of forum posts has received lots of attention from
researchers due to its important role in facilitating
instructors to support students in the era of online
learning (Clavié and Gal, 2019; Alrajhi et al., 2020;
Geller et al., 2021; Capuano et al., 2021). For in-
stance, Clavié and Gal (2019) further pretrained
BERT using forum posts collected in the education

domain and classified students’ posts to a task la-
bel of whether these posts requires urgent attention
from instructors or not. The constructed classifiers
could assist instructor to quickly identify students
that require urgent help. However, these studies
did not attempt to quantify or alleviate the impact
from the bias hidden behind PLMs. Considering
that education is often regarded as a high-stake
commodity, we were thus motivated to investigate
the bias of PLM based on the task of classifying
student-generated forum posts.

3 Method

3.1 Dataset and Models

Dataset. The dataset used in this study was re-
trieved from the Learning Management System at
an Australian university. The original dataset con-
sisted of 291,242 student-generated posts in dis-
cussion forums when undertaking courses of Infor-
mation Technology, Engineering, Education, Busi-
ness and Economics, etc. In addition, we obtained
students’ demographic information including their
gender (female vs. male) and first language, which
enabled us to investigate prediction fairness from
gender and first-language backgrounds perspec-
tives. Inspired by (Loukina et al., 2019), which
demonstrated that English-as-second-language stu-
dents could be disadvantaged by algorithms used
for assessing their learning performance, we cate-
gorised students according to their first-language
backgrounds as either English-as-first-language or
English-as-second-language students. After filter-
ing posts containing less than 5 words, there were
228,903 posts left, from which we randomly se-
lected 3,703 posts and manually annotated them as
either content-relevant (e.g., “What is poly-nominal
regression?”) and content-irrelevant (e.g., “When
is the due date to submit the assignment?”). Each
post was first labeled by a junior teaching staff
and then reviewed by two senior teaching staff to
ensure the reliability of the derived labels. There
are 2,339 (63%) content-relevant posts and 1,364
(37%) content-irrelevant posts. We denoted these
3,703 posts as Annotated Data. Recall that part
of our goal was to reveal the capability of BERT
in predicting students’ demographic attributes, we
therefore randomly select 5% of the remaining
225,200 unannotated posts and used them as an in-
depedent data set (denoted as Demographic Data)
to scrutinize how BERT would differ in predicting
demographic attributes after undergoing additional
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Figure 1: The fair active sampling method proposed in this study.

Table 1: Dataset statistics. The columns Male, Female, First, and Second show the number of posts made by
students who are male, female, English-as-first-language, and English-as-second-language students, respectively.

All Male Female First Second

Pretraining # Posts 213,940 84,564 140,374 97,255 127,945
# Words 32,264,332 12,212,745 20,015,047 13,674,012 18,590,320
# Avg. words / post 143.27 144.42 142.58 140.60 145.30

Demographic # Posts 11,260 4,509 6,751 4,955 6,305
# Words 1,522,127 568,810 953,308 712,231 809,877
# Avg. words / post 135.18 126.15 141.21 143.74 128.45

Annotated # Posts 3,703 1,478 2,225 1,585 2,112
# Words 485,737 171,768 308,087 230,806 254,931
# Avg. words / post 131.39 116.77 138.90 145.62 120.71

pretraining. Lastly, the remaining 213,940 unanno-
tated posts were used as the data pool from which
we sampled instances to apply additional pretrain-
ing to BERT (denoted as Pretraining Data). The
statistics of the three sets are given in Table 1.

Models. A variety of effective models have
been used to classify a forum post in education
(Bakharia, 2016; Capuano et al., 2021; Almatrafi
et al., 2018). Given that our main goal was to inves-
tigate whether the changes in the BERT-generated
representations in terms of the amount of demo-
graphic information would produce any impact
on the prediction fairness in a downstream task,
we adopted logistic regression to take the BERT-
generated post embeddings as input to distinguish
the different labels of forum posts for simplic-
ity. We denoted this model as LR-Task. Simi-
larly, we also used logistic regression to predict
the demographic attributes of the creator of a post,
i.e., one logistic regression model for each demo-
graphic attribute. We denoted these two models as
LR-Demographic.

3.2 Fair Active Sampling

Our data sampling method was partially inspired
by the studies on Active Learning (AL) (Anahideh
et al., 2022; Castro and Nowak, 2008). AL is a
well-investigated strategy used to train a supervised
machine learning model by enabling the model to
proactively request to identify and label new high-
value data samples to facilitate its training process
and achieve better prediction accuracy. Consider-
ing the strong capacity of AL in enhancing vari-
ous machine learning models, we were interested
whether it could be used to alleviate the bias con-
tained in a PLM by selecting fair data (i.e., those
containing little information about students’ pro-
tected attributes) to continue to pretrain the PLM.
There are three key steps in our method, as depicted
in Figure 1 and detailed below.

Step 1: Fair Seed Set Construction (i.e., 1 de-
picted in Figure 1). When applying AL, researchers
often first randomly select a small subset from the
unlabeled data pool and labeled them to initialize
the training of a machine learning model. Then,
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this subset of labeled data can be referenced as
a seed set to sample more informative data (e.g.,
those would help the model to reduce the maxi-
mum training error) to continue the model training.
In our case, as our goal was to enhance a PLM’s
fairness by reducing the demographic information
contained in the learned representations, we aimed
to construct a fair seed set from the annotated data
pool to guide the subsequent active data sampling.
To this end, we expected the fair seed set to con-
tain zero distribution bias and minimal hardness
bias (Yan et al., 2020; Smith et al., 2014). Dis-
tribution bias refers to the unequal distribution of
different student groups (e.g., female vs. male)
within each prediction task label (e.g., content rel-
evant vs. content irrelevant). Formally, it can be
defined as the the difference of probabilities of pre-
diction task label Y = y, conditioned upon the
value of a protected attribute G where G ∈ {0, 1}
and Y ∈ {0, 1}:

D(y) = Pr(Y = y | G = 1)− Pr(Y = y | G = 0) (1)

A seed set that contains zero distribution bias
indicates D(y) = 0. On the other hands, Hard-
ness bias measures to what extent data instances
contained in a dataset are difficult to be correctly
labeled. That is, if a data instance does not share
the same task label with most of its k-nearest neigh-
bors, then it tends to be difficult to correctly label
this instance. Similar to (Smith et al., 2014; Yan
et al., 2020), we used the metric k-Disagreeing
Neighbors (kDN) to measure the local overlap of a
data instance x with its k-nearest neighbors (identi-
fied by calculating the Euclidean distance between
their vanilla BERT-generated representations) re-
garding their task labels. We chose k = 5 to calcu-
late the kDN of an instance (as suggested in (Yan
et al., 2020)). A large kDN (close to 1) indicates
that the data instance is difficult to be correctly clas-
sified. If the kDN distribution of a student group
(e.g., female) is larger than that of the other group
(e.g., male), there exists Hardness bias (denoted as
H) between the two groups, which can be calcu-
lated by applying the Jensen-Shannon (JS) distance,
as defined below:

H(y) = JS({f(x, y) | G = 1} − {f(x, y) | G = 0}) (2)

where G ∈ {0, 1}, Y ∈ {0, 1}, and f(x, y) is the
kDN distribution of data instances with G = g and
Y = y. To keep the Hardness bias between two
protected groups minimal, we constructed the fair

seed set by adding the instances in an one-by-one
manner, and a data instance could only be included
if the overall Hardness bias of the fair seed set was
decreasing after including the instance.
Step 2: Query Strategy Selection (i.e., 2 de-
picted in Figure 1). With the seed set constructed,
we further enriched it with more fair instances by
calculating the instances’ informativeness with re-
spect to students’ protected attributes. Specifically,
we adopt three representative query strategies in
the AL research to enrich the seed set, which all
support the selection of multiple instances at a time
and have been proven to be effective in assisting
machine learning models to achieve better predic-
tion performance. All the machine learning models
used by these strategies were built based on the
seed set constructed above and took the vanilla
BERT-learned representation of a post as input to
predict the protected attribute of the post creator.

• Query By Committee (QBC) (Dagan
and Engelson, 1995), which first trained an en-
semble of models, i.e., ten logistic regression
classifiers in our case. Each of the classifiers
was built based on a random subset of the fair
seed set. If the ensemble of models could not
reach an agreement on the predicted protected
attribute, then the post was selected.

• Learning Active Learning (LAL)
(Konyushkova et al., 2017), which trained
a random forest regressor to predict the
expected error reduction (derived based
on the predicted probabilities of different
protected attributes) for all unlabeled samples
in Pretraining Data, and select samples with
the most error reduction.

• Least Confident Classification
(LCC) (Settles and Craven, 2008; Bilgic
et al., 2010; Tong and Chang, 2001), which
trained a classifier based on logistic regression
to predict the protected attribute of a post
creator and selected samples with the least
confidence, i.e., the predicted probabilities
should be as close to 0.5 as possible in
the binary protected attribute classification
problems in our study.

Step 3: Dynamic and Fair Sampling (i.e., 3
depicted in Figure 1). Every time when a query
strategy described above is applied, K% fraction
of the Pretraining Data will be sampled and used
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to perform additional pretraining to BERT. Instead
of setting a large value to K and only perform
one-time sampling, which may hinder the identifi-
cation of effective samples to augment a PLM, we
designed a dynamic approach to sample instances
for multiple times (i.e., with small values for K)
and, more importantly, the number of fair instances
specific to a protected group can be determined
based on the current prediction bias existed in the
downstream task. Let t denote the number of times
that BERT has undergone additional pretraining,
G0 and G1 denote the two protected groups, and
the current prediction accuracy in the downstream
task (i.e., those with the aid of the latest BERT)
for G0 and G1 are denoted as acc0 and acc1, re-
spectively. Then, for the (t + 1)-th pretraining,
the ratio between the number of sampled instances
between G0 and G1 is acc1 : acc0, i.e., the group
with a lower prediction accuracy will have more
samples. The above sampling process is repeated
until it reaches the maximum times (denoted as
Tmax) allowed to performed additional pretraining
and then the best-performing BERT in terms of
prediction fairness is selected.

3.3 Study Setup

Baselines. In addition to the three variants of the
proposed sampling method (denoted as AL-QBC,
AL-LAL, and AL-LCC, respectively), we im-
plemented three baselines for comparisons: (i)
w/o Pretraining, in which LR-Task takes
as input the vanilla BERT-learned representa-
tions (i.e., without any additional pretraining); (ii)
Random, in which LR-Task takes as input the
learned representations from BERT with randomly-
selected samples for additional pretraining; and (iii)
Equal-demographic, in which LR-Task takes
as input the learned representations from BERT
with additional pretraining based on data an equal
representation of different protected groups (but
not considering their representations in terms of
different task labels).

Model implementation and training. We used
the BERT model provided by huggingface2. The
AL methods were implemented by alipy3 and the
logistic regression models by sklearn4. For the
fair data sampling method we proposed, we set the
size of the fair seed set (Step 1 of our proposed

2https://huggingface.co/
3http://parnec.nuaa.edu.cn/
4https://scikit-learn.org/

approach) to be 500, the value of Tmax to be 6 (i.e.,
the number of times that BERT could have addi-
tional pretraining), and the value of K to be 5%
(i.e., the fraction of data to be sampled from the
Pretraining Data by an AL strategy every time). To
guide the data sampling process of our proposed
method (i.e., Step 3), we constructed an indepen-
dent reference subset by using the same method
described in Step 1 to sample 500 posts from the
Annotated Data, and this subset was used to mea-
sure the changing prediction bias existed between
different protected groups throughout the whole
debiasing process. When training the logistic re-
gression model for predicting students’ protected
attributes (i.e., LR-Demographic), we randomly
split the Demographic Data into training and test-
ing sets in the ratio of 8:2 and the hyper-parameters
were determined via 5-fold cross-validation. We
used a similar method to construct the logistic re-
gression model for predicting the types of posts
(i.e., LR-Task), but based on the remaining 3,203
labeled posts in Annotated Data (after constructing
the reference subset described above). Our pro-
cedure to continue the pretraining of BERT is in
line with similar studies (Devlin et al., 2018; Araci,
2019; Beltagy et al., 2019), with the maximum
length of input text as 512, learning rate as 2e-05,
batch size as 16, the maximum number of training
epochs as 12, and early stopping mechanisms were
used.

Evaluation metrics. The capability of BERT in
discerning students’ protected attributes can be in-
directly measured in terms of the prediction accu-
racy of LR-Demographic, which is measured by
using AUC. Recall that we aimed to reduce the
demographic information carried in BERT-learned
representations; therefore, a lower AUC of LR-
demographic indicates better results (i.e., a lower
awareness of protected attributes). We also used
the AUC to measure the prediction accuracy of
LR-Task in distinguishing different types of fo-
rum posts, but a higher AUC is preferable for LR-
Task. To measure the prediction bias held by LR-
Task, we adopted the Absolute Between-ROC Area
(ABROCA) metric proposed by (Gardner et al.,
2019), which has been widely used to measure
algorithmic bias in relevant educational studies (Ri-
azy et al., 2020; Tsai et al., 2020; Paquette et al.,
2020). A lower ABROCA indicates better predic-
tion fairness.
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Table 2: Results of LR-Demographic and LR-Task with the aid of different AL strategies. Here, Tmax denotes
the maximum number of times that BERT received additional pretraining. The number inside brackets indicates
improvement compared to the results of w/o pretraining. LR-demo is short for LR-Demographic. The best
result in each metric is in bold. The signs ↑ and ↓ are used to indicate whether a higher (↑) or lower (↓) value is
more preferred in a metric.

Row
ID Methods Tmax

First-language backgrounds Gender

LR-Demo LR-Task LR-Demo LR-Task

↓ AUC ↑ AUC ↓ ABROCA ↓ AUC ↑ AUC ↓ ABROCA

1 w/o pretraining - 0.686 0.869 0.086 0.591 0.882 0.057

2 Ramdom

1

0.692 (-0.87%) 0.876 (0.81%) 0.098 (-13.95%) 0.611 (-3.38%) 0.892 (1.13%) 0.089 (-56.14%)
3 Equal 0.670 (2.33%) 0.883 (1.66%) 0.079 (8.14%) 0.595 (-0.68%) 0.889 (0.84%) 0.066 (-15.79%)
4 AL-QBC 0.591 (13.85%) 0.879 (1.15%) 0.105 (-22.09%) 0.559 (5.41%) 0.889 (0.77%) 0.059 (-3.51%)
5 AL-LAL 0.589 (14.14%) 0.876 (0.85%) 0.069 (19.77%) 0.552 (6.60%) 0.898 (1.85%) 0.055 (3.51%)
6 AL-LCC 0.573 (16.47%) 0.878 (1.01%) 0.055 (36.05%) 0.558 (5.58%) 0.891 (1.02%) 0.047 (17.54%)

7 Ramdom
6

0.688 (-0.29%) 0.889 (2.30%) 0.112 (-30.23%) 0.588 (0.51%) 0.895 (1.47%) 0.072 (-26.32%)
8 Equal 0.621 (9.48%) 0.889 (2.30%) 0.095 (-10.47%) 0.561 (5.08%) 0.889 (0.84%) 0.066 (-15.79%)
9 AL-LCC 0.525 (23.47%) 0.891 (2.53%) 0.041 (52.33%) 0.534 (9.64%) 0.899 (1.96%) 0.031 (45.61%)

4 Results

Results on RQ1. The results of LR-demographic
are given in Table 2 (Row 1). For both of the two
protected attributes, LR-Demographic achieved an
AUC score larger than 0.5, which implies that the
representations of forum posts learned by BERT
did carry informative features that can be utilized
by machine learning models to reveal the demo-
graphic attributes of the students. In particular, the
AUC value of first-language backgrounds (0.686)
is much higher than that of gender (0.591). A pos-
sible explanation is that, students in the groups of
different first-language backgrounds, compared to
the groups of a different gender, tend to display
more linguistic differences in their forum posts,
which can be captured by BERT and used to reveal
their demographic attributes.
Results on RQ2. To answer RQ2, we imple-
mented the three AL strategies described in Section
3.2. To compare their effectiveness in inhibiting
BERT’s awareness of protected attributes, we first
set Tmax as 1, i.e., only performing one-time ad-
ditional pretraining, and the results are given in
Table 2 (Row 2-6, Column LR-Demo). Based
on the results, we can observe that, by simply
using an equal number of instances generated by
different protected groups for additional pretrain-
ing (i.e., the baseline Equal), it cannot guaran-
tee that BERT’s awareness of protected attributes
can be reduced. However, all of the AL strate-
gies proposed in this work showed effectiveness
in removing demographic information embedded
in the vanilla BERT-learned representations, espe-
cially when dealing with the first-language groups

(with an improvement of 13.85%~16.47%), where
vanilla BERT demonstrated a higher awareness of
students’ demographic attributes. Notice that, for
both of the two protected attributes, the best re-
sults were delivered by AL-LCC. Then, we re-ran
evaluation of AL-LCC and increased the value of
Tmax to 6, and also compared the results to those
of Random and Equal with the same Tmax value
(Row 7-9 in Table 2). Here, the AUC of LR-Demo
was even reduced to very close to 0.5 (i.e., 0.525)
in the first-language groups and 0.534 in the gen-
der groups, which provides strong evidence of the
effectiveness of our fair sampling method in stop-
ping BERT to record demographic attributes into
its learned representations.

Results on RQ3. To measure the impact of BERT’s
reduced awareness of protected attributes on the
prediction fairness in the downstream task, we mea-
sured the performance of LR-Task which took as
input the representations learned by the vanilla
BERT or BERT with additional pretraining. The
results are also given in Table 2, based on which we
can have observations similar to those made when
analyzing the AUC of LR-Demographic. Firstly,
in the results of Random and Equal (Row 2-3
and Row 7-8), which randomly sampled data or
only maintained a balance in terms of protected
attributes in the selected data, the prediction bias
tended to be exacerbated and the prediction fairness
could be worsen up to 30.23%. Secondly, among
the three AL strategies, AL-LCC outperformed the
other two in enhancing prediction fairness, even
when there was only one-time additional pretrain-
ing (i.e., Tmax = 1, Row 6 in Table 2), and the
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(a) LR-Demo (AUC) (b) LR-Task (AUC) (c) LR-Task (ABROCA)

Figure 2: The relative improvements of AL-LCC compared to w/o Pretraining from Tmax = 1 to Tmax = 6.

ABROCA improvement was up to 36.05% for first-
language groups and 17.54% for gender groups.
When Tmax was increased to 6 (Row 9 in Table 2),
the improvement was further boosted to 52.33%
and 45.61% for the two groupings. Thirdly, in
addition to the increased prediction fairness, we
observe that the prediction accuracy was boosted
with slight improvements of 2.53% and 1.96% for
the two groupings (Row 9 in Table 2), respectively,
compared to those of Random (2.30% and 1.47%).
This further demonstrates that, by carefully select-
ing the data used to perform additional pretraining,
both the prediction accuracy and fairness can be
simultaneously enhanced.

To investigate the amount of data needed to reach
the maximum prediction fairness, we plotted the
relative improvement achieved by AL-LCC com-
pared to the baseline w/o Pretraining across
the whole additional pretraining process (Figure
2). We found that, with the aid of AL-LCC, LR-
Demographic achieved the best AUC when us-
ing 15%~20% of the available unlabeled data (i.e.,
Tmax = 3 or Tmax = 4). This implies that, instead
of using all the available data, it can be more effec-
tive and efficient by carefully selecting a subset of
them for additional pretraining.

5 Discussion and Conclusion

To debias BERT by directly reducing the informa-
tion related to protected attributes in the learned
representations, this study developed a dynamic
and fair sampling method to select data to perform
additional pretraining to BERT, which is capable of
significantly inhibiting BERT’s awareness of pro-
tected attributes and subsequently improved both
the prediction fairness and accuracy in the down-
stream task. Here, we further elaborated on our
study’s practical insights and implications and dis-

cussed the limitations to be addressed in the future.

Implications. Firstly and most importantly, our
study corroborated the findings of previous stud-
ies (de Vassimon Manela et al., 2021; Minot et al.,
2021), i.e., prediction fairness in a downstream
task can be greatly enhanced by reducing a PLM’s
awareness of sensitive protected attributes, e.g., the
amount of information related to such protected
attributes in the learned representations. Second, as
demonstrated in Table 2, only two out of the three
AL strategies used in this study could enhance the
prediction fairness in downstream tasks, suggesting
that it is of extreme importance to select the appro-
priate measure for sample informativeness in terms
of protected attributes. Third, our study demon-
strated that, by carefully selecting fair samples to
further pretrain a PLM, even only with 15%~20%
of the available unlabeled data, not only the predic-
tion fairness but also the prediction accuracy can
be enhanced. This implies that prediction accuracy
can benefit from keeping prediction fairness as part
of the goal when performing additional pretraining
to a PLM.

Limitations. Firstly, the effectiveness of the pro-
posed fair data sampling method was only vali-
dated based on BERT and one dataset in the field
of education. Future studies are needed to replicate
the study using other PLMs or datasets to further
validate the presented findings. Secondly, we fo-
cused on debiasing BERT in terms of two protected
attributes (i.e., first-language backgrounds and gen-
der) separately. Future work may further investi-
gate methods to debias a PLM by considering other
types of protected attributes or simultaneously tak-
ing multiple of them into consideration. Lastly, we
only experimented with a limited set of values for
the parameters used in the proposed method, e.g.,
K = 5% (the fraction of available unlabeled data
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to be sampled for additional pretraining). In the
future, it would be worthwhile to develop methods
to automatically determine the best values for such
parameters.
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Abstract

Debiasing word embeddings has been largely
limited to individual and independent social
categories. However, real-world corpora typ-
ically present multiple social categories that
possibly correlate or intersect with each other.
For instance, “hair weaves” is stereotypically
associated with African American females, but
neither African American nor females alone.
Therefore, this work studies biases associated
with multiple social categories: joint biases
induced by the union of different categories
and intersectional biases that do not overlap
with the biases of the constituent categories.
We first empirically observe that individual bi-
ases intersect non-trivially (i.e., over a one-
dimensional subspace). Drawing from the in-
tersectional theory in social science and the lin-
guistic theory, we then construct an intersec-
tional subspace to debias for multiple social
categories using the nonlinear geometry of in-
dividual biases. Empirical evaluations corrob-
orate the efficacy of our approach1.

1 Introduction

Due to the reliance on the large-scale text corpora
for training, it has been observed that word em-
beddings are prone to express social biases inher-
ent in the data (Bolukbasi et al., 2016; Caliskan
et al., 2017). Prior research (e.g. Zhao et al., 2019;
Bolukbasi et al., 2016) in debiasing word embed-
dings mitigates biases associated with individual
social categories and treats each category in iso-
lation. For example, the seminal Hard-Debiasing
approach (Bolukbasi et al., 2016) identifies the bias
direction of a category (e.g., gender) and then re-
moves the direction from the target word such that
it is equidistant to all groups (e.g., female and male
at a binary level with gender) in the category. How-
ever, real-world training corpora typically present

1Data and implementation code can be downloaded
at https://github.com/GitHubLuCheng/
Implementation-of-JoSEC-COLING-22.

Gender Race Gender Race

Joint Biases: 
Gender∪ Race

Intersectional Bias:
Gender∩ Race

Figure 1: Illustrations of joint (i.e., union) and intersec-
tional (i.e., intersect) biases using Gender and Race.

multiple social categories (e.g., gender and race),
possibly with higher cardinality. These social cate-
gories can further correlate or intersect with each
other (Thomas, 2004; Hancock, 2007). Despite the
promising results, debiasing for individual social
categories limits our understanding of the complex
nature of social biases.

Alternatively, we might consider biases in the
presence of multiple social categories (Foulds et al.,
2020; Kearns et al., 2018; Cheng et al., 2022b,a).
This can result in at least two scenarios, as depicted
in Fig. 1. First, word embeddings can simulta-
neously present multiple biases that might non-
trivially correlate with each other. For example,
debiasing for gender can influence the results of
racial bias. In the literature of social psychology, a
number of works (e.g. Akrami et al., 2011; Bierly,
1985; Allport et al., 1954) studied the interrelation-
ship between various biases, a.k.a. “generalized
prejudice”. We refer to bias induced by the union
of different social categories as joint biases. Sec-
ond, a few recent works (e.g. Guo and Caliskan,
2020) detected intersectional biases in word em-
beddings, which is the bias that does not overlap
with the biases of their constituent identities. For
example, “hair weaves” is stereotypically associ-
ated with African American females (Ghavami and
Peplau, 2013).

The primary goal of this work is to mitigate the
two kinds of biases in word embeddings. There are
several challenges: First, it is highly possible that
different biases are nonlinearly correlated (Cheng
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et al., 2022a). Simply taking a linear combination
of individual bias subspaces (e.g., sum or mean of
all bias subspaces) might lead to ineffective solu-
tions that even amplify individual biases. Second,
identifying a bias subspace typically needs prede-
fined word sets related to target groups. These sets
are curated by experts to most accurately represent
each group and the associated social biases. This
can be time-consuming and requires great human
effort. Existing sets for identifying intersectional
groups are extremely limited. They are small and
exclusively used for the intersectionality of gender
and race (Guo and Caliskan, 2020; Tan and Celis,
2019). Therefore, relying on predefined sets limits
the use of debiasing approaches in practice.

To address these challenges, we first empiri-
cally observe that individual bias subspaces con-
structed via existing word sets intersect over a one-
dimensional subspace. We then relate our find-
ings to the intersectionality theory by Crenshaw
(1989) and the linguistic theory introduced by Firth
(1957). The result is a hypothesis that the bias
subspace for multiple social categories roughly re-
sides in the intersection of all individual bias sub-
spaces. The proposed approach (coined as Joint
and Intersectional Debiasing, JoSEC) departs from
the linear correlation assumption and leverages the
nonlinear geometry of subspace representations to
learn an intersectional subspace. JoSEC does not
need any additional human-coded defining sets for
intersectional groups except for the defining sets
for the constituent groups. We contribute to:

• a novel problem that considers biases associated
with multiple social categories in mitigation;

• an effective approach for constructing the bias
subspace without relying on the defining sets for
intersectional categories; and

• demonstrations of the effectiveness of JoSEC via
empirical evaluations on the benchmark datasets.

2 Related Work

Early efforts in debiasing word embeddings have
been focused on gender. The seminal work by
Bolukbasi et al. (2016) proposed a post-processing
approach that projects gender-neutral words into
a gender subspace identified by defining sets of
gendered words such as she, he, man, woman.
Gender bias can then be alleviated through hard-
debiasing in which the bias components in non-

gendered words (e.g., doctor, nurse) are first re-
moved and the gendered words are then centered
and equalized. Manzini et al. (2019) further ex-
tended the hard-debiasing method to multi-class
settings such as race. Given a corpus, one can also
learn gender-neutral word embeddings by modify-
ing the GloVe (Pennington et al., 2014) objective
function (Zhao et al., 2018). This in-processing
approach was further extended to a post-processing
approach by Kaneko and Bollegala (2020), who
suggested preserving gender-related information
using autoencoder. Previous research as well as our
work focuses on static word embeddings, however,
stereotyped biases have also been found in contex-
tualized word embeddings, e.g., (Zhao et al., 2019;
Bordia and Bowman, 2019).

Despite the fruitful results, most prior works
were found to remove biases superficially and fail
to deliver gender-neutral embeddings (Gonen and
Goldberg, 2019; Blodgett et al., 2020). There-
fore, it is increasingly observable that existing bias
removal techniques are insufficient to guarantee
gender-neural modeling. The majority of existing
works were also criticized for not examining the
impact of gender bias in real-world applications
(Blodgett et al., 2020). In contrast to prior research
focused on one form of bias in debiasing word em-
beddings, this work aims to provide a simple yet
effective approach for bias mitigation in the pres-
ence of multiple bias forms. As human-like biases
exist in the majority of word embeddings and de-
biasing approaches are unlikely to largely affect
our results, we build our approach upon the semi-
nal Hard-Debiasing algorithm by Bolukbasi et al.
(2016). Future research is warranted to investigate
other debiasing approaches.

For intersectional bias, most of the existing
works are in social science and psychology liter-
ature, such as (Crenshaw, 1989; Kahn and Yoder,
1989; Hare-Mustin and Marecek, 1988). Compara-
tively fewer efforts can be found in the computer
science field. One such work (Buolamwini and
Gebru, 2018) examined the intersectional accuracy
disparities in commercial gender classification sys-
tems. For contextualized word embeddings, May
et al. (2019) and Tan and Celis (2019) measured
the emergent intersectional biases of African Amer-
ican females using attributes presented in (Caliskan
et al., 2017). In complement to WEAT, Guo and
Caliskan (2020) proposed the Contextualized Em-
bedding Association Test (CEAT) to measure the
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intersectional bias. These methods detect inter-
sectional bias using the defining and attribute sets
related to intersectional groups.

In summary, this work complements prior re-
search by mitigating biases related to multiple so-
cial categories. JoSEC does not rely on the human-
coded word sets used to define the intersectional
groups to identify the bias subspace. While this
work focuses on non-contextualized embeddings,
research (e.g., Guo and Caliskan, 2020; Lepori,
2020) has found contextualized word embeddings
such as BERT (Devlin et al., 2019) display inter-
sectional biases. We leave it for future exploration.

3 Preliminary

In this section, we briefly review the backbone
model of this work: the seminal hard-debiasing
method (Bolukbasi et al., 2016) and its extension. It
consists of two steps: identifying the bias subspace
and removing bias components.

3.1 Identifying Bias Subspace

The individual bias subspace is identified by the
defining sets, in which words represent different
ends of the bias. For example, the defining sets
of gender can be the gendered pronouns {he, she}
and nouns {man, woman}. One can then identify
the gender subspace B by (1) subtracting the word
embeddings of words in each defining set from the
set’s mean, and (2) obtaining the K most signifi-
cant components of the resulting vectors through a
dimensionality-reduction method.

3.2 Removing Bias Components

The next step is to apply the hard debiasing strat-
egy to completely or partially remove the subspace
components from the word embeddings. Hard-
debiasing consists of two steps – Neutralize and
Equalize. “Neutralize” removes bias components
from non-gendered words (e.g., doctor and nurse);
“Equalize” aims to center the gendered word em-
beddings (e.g., she and he) and equalize their bias
components, such as the word pair {man, woman}.

Formally, given a bias subspace B =
{b1, b2, ..., bK}, where K denotes the number of
principal components, we first compute the bias
component wB of embedding w ∈ Rd in B by

wB =

K∑

k=1

〈
w, bk

〉
bk. (1)

We then neutralize word embeddings by removing
the bias component from non-gendered words:

w′ =
w −wB
‖w −wB‖

, (2)

where w′ are the debiased word embeddings.
To “Equalize”, we debias the gendered words in

a given equality set E by the following equation:

w′ = (µ− µB) +
√

1− ‖µ− µB‖2 wB − µB
‖wB − µB‖

, (3)

where µ = 1
|E|
∑

w∈E w is the mean of embed-
dings of the words in the equality set E. µB de-
notes the bias component of µ in the identified bias
subspace. It can be obtained via Eq. 1.

3.3 Extending into Multi-Class Settings

In a multi-class setting (i.e., with more than two
classes in a category, e.g., religion or race), the
task inherently becomes non-linearly separable
(Manzini et al., 2019). However, it is possible to
linearly separate multiple classes based on the com-
ponents of word embeddings. The multi-class bias
subspace is then defined as follows: Given n defin-
ing sets of word embeddings {D1, D2, ..., Dn}, the
bias subspace B is defined by the first K compo-
nents of the following Principal Component Anal-
ysis (PCA) (Abdi and Williams, 2010) evaluation:

B = PCA
( n⋃

i=1

⋃

w∈Di

w − µi
)
, (4)

where µi = 1
|Di|

∑
w∈Di w is the mean of word

embeddings in set i.
⋃

denotes concatenation by
rows. To remove multi-class bias, one can use the
hard-debiasing method described in Sec. 3.2.

4 Method

Existing approaches for debiasing word embed-
dings work on individual categories, rendering in-
complete measurement of various social biases
(Hancock, 2007; Hurtado and Sinha, 2008). To ac-
count for biases associated with multiple social cat-
egories, we need to address the primary challenges
of the potential non-linear correlations between bi-
ases and the difficulty of curating defining sets to
identify the bias subspace for these categories. In
this section, we introduce the proposed approach –
JoSEC – for identifying such a subspace without
additional human-coded defining set, which we
refer to as the intersectional subspace.
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4.1 Social Categories as “Cultural Contexts”

If individual biases are linearly correlated, we may
construct the intersectional subspace by simply tak-
ing the sum or average of all individual bias sub-
spaces. However, social biases are complex by na-
ture as suggested by evidence in social science and
psychology such as the “generalized prejudice”,
i.e., generalized devaluing sentiments across differ-
ent groups. To better quantify the potential non-
linearity, we might first take a step back and revisit
the development of single-word embeddings.

An influential position in the development of
word embeddings holds that semantic representa-
tions for words can be derived through the patterns
of lexical co-occurrence in language corpora. This
is famously summarized by Firth (1957) as “you
shall know a word by the company it keeps”. The
central tenet is the idea that the sense of the tar-
get word could be inferred from its contexts, i.e.,
neighboring words within the sentence. Informed
by this finding, we might assume that human-like
biases follow a similar principle: a bias form w.r.t.
some social category can be identified by its unique
cultural contexts. In debiasing word embeddings,
this indicates that the bias subspace (e.g., gender
subspace) can be defined by the defining sets of
words (e.g., she, he) that provide a specific “cul-
tural context” for this bias form.

Naturally, when defining the intersectional sub-
space associated with multiple social categories, we
might similarly consider each social category as a
unique “cultural context” of the intersectional sub-
space. For example, the subspace of the intersec-
tional group of gender and race is defined by both
the gender subspace and the race subspace. That
is, “Aisha” – a common name of an African Amer-
ican female – can be exclusively defined within a
cultural context jointly determined by both gender
and race whilst terms such as “hair weaves” should
not depend on such context. Underpinning this
assumption is the idea similar to the linguistic the-
ory: each social category provides unique context
to construct the intersectional subspace associated
with multiple categories.

4.2 Geometry of Subspace Representation

Under the “social categories as cultural contexts”
assumption, the intersectional subspace might have
a fairly large intersection with each individual bias
subspace. We empirically observe and hypothe-
size that the intersectional subspace of multiple
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Figure 2: The geometry of Gender and Race bias sub-
spaces and the intersectional subspace (Intersection).

Figure 3: Cosine similarity between the ground-truth
intersectional subspace and subspaces obtained via var-
ious approaches. “Random” denotes the result aver-
aged over 10 similarity scores from 10 random vectors.

social categories should reside in all the subspaces
representing the “cultural contexts” where the inter-
sectional subspace is defined. Specifically, the in-
tersectional subspace resides in the intersection of
all individual bias subspaces and these subspaces
should intersect non-trivially. This further im-
plies that there exists a direction (one-dimension
subspace) that is extremely close to all individual
bias subspaces. We use this vector to represent the
intersectional subspace. We propose the follow-
ing hypothesis for identifying the bias subspace
associated with multiple social categories:

Hypothesis (Intersectional Hypothesis). The inter-
sectional subspace Bsec should reside in the inter-
section of {B1,B2, ...BN}, where Bi denotes the
bias subspace of social category i and N is the
number of considered social categories.

Intersectional Hypothesis can be seen as opera-
tionalizing the intersectionality theory guided by
Firth’s hypothesis.

4.2.1 Empirical Validation of the
Intersectional Hypothesis

We empirically validate the intersectional hypothe-
sis using the benchmark dataset L2-Reddit corpus
(detailed in Sec. 5.1). The dataset includes the
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defining sets for three social categories: race, gen-
der, and religion, respectively. We first construct
three individual bias subspaces for the target cate-
gories and each subspace has dimensions K × d,
where d denotes the dimension of word embed-
dings. For better visualization, we further project
the d-dimensional subspace representations to 3D
vectors using PCA.

We draw subspaces w.r.t. two randomly selected
categories as 2-dimensional planes in Fig. 2. Re-
sult for the three categories is in Appendix A. We
also visualize the corresponding intersectional sub-
spaces identified by Eq. 7. We observe that the
individual bias subspaces intersect roughly in a
common direction with which the intersectional
subspace approximately aligns. In addition, we use
the defining sets for the intersectional groups of
gender and race (e.g., African American Female)
provided by WEAT (Caliskan et al., 2017) and
Parada (2016) to construct the “ground-truth” inter-
sectional bias subspace. We then calculate the co-
sine similarity between the ground-truth subspace
and the (a) gender subspace, (b) race subspace, (c)
random vector, and (d) intersectional subspace ap-
proximated by JoSEC, respectively. The similarity
score ranges from -1 to 1, with -1 denoting the most
dissimilar. Results in Fig. 3 suggest that JoSEC
generates the intersectional subspace significantly
more similar to the ground-truth subspace. Note
that most of the similarity scores are close to 0. We
believe this is in part because of the limitation of
existing defining sets for intersectional identities,
e.g., small in size. Both quantitative (Fig. 3) and
qualitative (Fig. 2) analyses empirically justify the
intersectional hypothesis.

4.2.2 Identifying Intersectional Subspace
Under the Intersectional Hypothesis, we are essen-
tially seeking the direction vector Bsec = û that is
“closest” to all individual bias subspaces. Let u be
a unit-length vector. We then reduce the problem of
identifying intersectional subspace to the following
optimization task:

û = argmin
‖u‖=1

N∑

i=1

d(u,Bi)2, (5)

where d(u,Bi) is the shortest `2-distance between
the intersectional subspace and the bias subspace
of social category i ∈ {1, 2, ..., N}. Formally,

d(u,Bi) =

√√√√‖u‖2 −
K∑

k=1

(uᵀvik)2, (6)

where {vi1, ...,viK} are the K principal compo-
nents representing bias subspace Bi. Eq. 5 can be
reformulated as the following:

û = argmax
‖u‖=1

N∑

i=1

K∑

k=1

(uᵀvik)
2. (7)

Eq. 7 can be solved by taking the first principal
component of {vik}i=1,...,N ;k=1,...,K .

With the identified intersectional subspace û, we
then follow Eq. 1-3 to remove the identified inter-
sectional bias components from the target words
(e.g., hair weaves).

5 Experiments

We validate the efficacy of the proposed intersec-
tional subspace for debiasing word embeddings
with multiple social categories. We answer the fol-
lowing research questions: How does JoSEC fare
against baselines for mitigating (RQ. 1) joint bi-
ases and (RQ. 2) intersectional biases? How does
JoSEC influence the (RQ. 3) utility of word em-
beddings in downstream tasks and (RQ. 4) biases
in downstream tasks such as toxicity detection?

5.1 Language Corpus and Social Bias Data

Results for debiasing word embeddings are based
on the commonly-used L2-Reddit corpus (Rabi-
novich et al., 2018), a collection of Reddit2 posts
and comments. It has been shown that the structural
factor in user-generated content sites like Reddit
make them less welcoming to marginalized popula-
tions (Bender et al., 2021). The initial biased word
embeddings are obtained by training word2vec on
approximately 56 million sentences. It includes
three social categories: Gender, Race, and Reli-
gion. We use vocabularies from (Bolukbasi et al.,
2016) and (Caliskan et al., 2017) as the defining
and attribute sets for gender. Word sets for race
and religion are the same lexicons used in (Manzini
et al., 2019).

Following (Guo and Caliskan, 2020), we con-
sider the intersectionality of race and gender for
the evaluation of intersectional debiasing due to
the limited data availability. In particular, there
are in total 3 × 2 (3 racial classes and 2 gen-
der classes) intersectional social groups: {African
American male, African American female, Euro-
pean American male, European American female,

2https://www.reddit.com/
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Mexican American male, Mexican American fe-
male}. The defining sets for these groups are pro-
vided by WEAT (Caliskan et al., 2017) and Parada
(2016), including frequent given names that rep-
resent group membership. The intersectional at-
tribute sets identified through human workers’ vali-
dation are provided by Ghavami and Peplau (2013).
For example, one common given name included
in the defining set of African American females
is “Aisha” and some related stereotyped bias in-
clude attributes “aggressive” and “dark-skinned”.
For the complete list of given names and attributes,
please refer to Appendix B. Note that in contrast
to common debiasing approaches, JoSEC does not
need these defining sets for joint and intersectional
debiasing. We use them for evaluation only.

5.2 Experimental Setup

We briefly summarize the experimental settings, in-
cluding the baselines, downstream tasks, and eval-
uation metrics.

5.2.1 Baselines
We are not aware of any existing approaches for
joint or intersectional debiasing for word embed-
dings. Therefore, we adapt the hard-debiasing ap-
proach such that it works in both tasks. We also
consider two debiasing strategies (i.e., SUM and
MEAN) that impose a linear assumption to con-
struct the bias subspace for multiple social cate-
gories. All compared approaches only differ in the
subspace construction, the bias mitigation follows
the same procedure in the hard-debiasing approach.
Baselines are detailed below.

• Hard_Seq. The hard-debiasing method ex-
tended to the joint debiasing task. In particular,
Hard_Seq sequentially debiases for individual
social categories. As the order might influence
the results of Hard_Seq, we experiment with all
potential sequences and report the best results.

• Hard_Insec. The hard-debiasing method ex-
tended to the intersectional debiasing task. In
particular, Hard_Insec uses the human-coded
defining sets for the intersectionality groups of
gender and race in (Guo and Caliskan, 2020) to
construct the intersectional subspace.

• SUM. Its bias subspace is constructed by sum-
ming up the subspaces of individual biases, i.e.,
BSUM =

∑N
i=1 Bi.

• MEAN. Its bias subspace is constructed by av-
eraging over the subspaces of individual biases,
i.e., BMEAN = 1

N

∑N
i=1 Bi.

5.2.2 Downstream Tasks

Utility (RQ. 3): To examine the influence of
JoSEC on the utility of word embeddings, we per-
form several standard downstream tasks follow-
ing (Manzini et al., 2019). They are the CoNLL
2003 shared tasks (Sang and De Meulder, 2003),
including NER tagging, POS (part-of-speech) tag-
ging, and POS chunking. There are two evaluation
paradigms: replacing the biased embeddings with
the debiased ones or retraining the model on debi-
ased embeddings. We only report results for one
setting and the other can be found in Appendix C.
Extrinsic Bias (RQ. 4): While we work on miti-
gating biases in the pre-trained resource, i.e., in-
trinsic bias, recent research (e.g., Seraphina et al.,
2021; Delobelle et al., 2021) presents interesting
findings about the biases in downstream tasks en-
abled by word embeddings, i.e., extrinsic bias.
Therefore, we further investigate how the debiased
word embeddings influence biases in a common
downstream NLP task, toxicity detection. Particu-
larly, we consider the Kaggle Challenge of Jigsaw
Unintended Bias in Toxicity Classification3 and
examine biases against gender, race, and religion.
The Perspective API’s Jigsaw dataset has both toxi-
city and identity annotations. The training and test
splits are the same as the original data. Please refer
to Appendix D for detailed experimental settings
for toxicity classification.

5.2.3 Evaluation Metrics

For debiasing tasks, we use the mean average co-
sine similarity (MAC) to quantify the intrinsic bias,
as suggested in (Manzini et al., 2019). Given a
set of target word embeddings S of words with
a specific form of social bias (e.g., Jew, Chris-
tian, Muslim) and a set of attribute sets A =
{A1, A2, ..., AN}, Aj consists of embeddings of
words a (e.g., violent, terrorist, uneducated) that
should not be associated with any word in S. Let
f(·) be a function that computes the mean cosine
distance between Si ∈ S and a ∈ Aj :

f(Si, Aj) =
1

|Aj |
∑

a∈Aj

cos(Si,a), (8)

3https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification
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Table 1: MACs (↑) of all approaches for joint debiasing.
“Re”, “Ra”, and “Ge” denotes “Religion”, “Race”, and
“Gender”, respectively. “Re→Ra→Ge” denotes the or-
der for sequential debiasing. We experiment with all
potential sequences and report the best results. A larger
value is more desired.

Model
MAC

Gender Race Religion Total

Biased 0.623 0.892 0.859 2.374
Hard_Seq

(Re→Ra→Ge)
0.656 0.888 0.937 2.481

Hard_Seq
(Ra→Re→Ge)

0.654 0.929 0.868 2.451

SUM 0.598 0.870 0.900 2.368
MEAN 0.657 0.872 0.862 2.391
JoSEC 0.703 0.914 0.917 2.534

where cos(Si,a) = 1 − Si·a
‖Si‖2·‖a‖2 . MAC is then

computed by

MAC(S,A) = 1

|S||A|
∑

Si∈S

∑

Aj∈A
f(Si, Aj). (9)

A larger MAC score denotes a greater bias removal.
For the downstream task that examines the utility,

we report F1 scores from using biased word embed-
dings as well as the changes of F1 (∆ F1), Precision
(∆ Precision), and Recall (∆ Recall) after using
debiased word embeddings. To check the statisti-
cal significance, we also perform a paired t-test on
the distribution of average cosine distance used to
compute MAC and student t-test for the results of
downstream tasks. For the downstream task that ex-
amines the extrinsic bias, we use two common eval-
uation metrics: False Positive Equality Difference
(FPED) and False Negative Equality Difference
(FNED). We report Total (FPED+FNED) scores
from using biased word embeddings and ∆ Total,
∆ FPED, and ∆ FNED after using debiased word
embeddings. Unless otherwise noted, all the results
below are statistically significant at level 0.05.

5.3 Results
We first present results (averaged over 5 repetitions)
for RQ. 1-4 and then discuss our findings.

5.3.1 RQ. 1: Joint Debiasing
The joint debiasing task seeks to simultaneously
mitigate biases induced by the union of all social
categories. We report MACs w.r.t. each individual
bias as well as the total bias, which is computed
over all considered social categories. All the best
results are highlighted.

PCA=2 PCA=3
method \ EvalSet Intersection
Biased 0.8904039543
SUM 0.8488860144
MEAN 0.8836582668
Hard_Insec 0.9278786858
JoSEC 0.9406108622

concat 0.943386097

Figure 4: MACs (↑) of all compared approaches for the
intersectional debiasing task. A larger value is more
desired.

From the results in Table 1, we can observe that
(1) the best results w.r.t. debiasing for individual
categories are achieved by various approaches and
the proposed approach (JoSEC) outperforms all
baselines regarding reducing the total amount of
bias (Total). This suggests that it is challenging
to debias for all social categories simultaneously
and the proposed intersectional subspace is effec-
tive for joint debiasing. (2) The linear solutions
to subspace construction (i.e., SUM and MEAN)
are not as effective as sequential debiasing. This
empirically validates our hypothesis that social bi-
ases are non-linearly correlated and multiple social
categories should intersect non-trivially.

(3) Of particular interest is that when debiasing
sequentially, the bias mitigation performance w.r.t.
the first category appears to be the most effective.
For example, Hard_Seq (Re→Ra→Ge) shows the
best MAC of “Religion”. Further, by comparing
the results in the second row (Biased) with those
in the third (Hard_Seq), the racial MAC of sequen-
tial debiasing decreases (i.e., more biases) whilst
applying hard-debiasing to racial bias alone can ac-
tually lead to higher MACs. These findings might
suggest that different biases are interacting with
each other, i.e., they are correlated. Future research
is warranted to examine the bias correlations and
their influence on the debiasing approaches.

5.3.2 RQ. 2: Intersectional Debiasing
To evaluate the intersectional bias removal perfor-
mance of all the compared methods, we use the
human-coded defining and attribute sets associated
with the intersectionality of gender and race. Note
that only Hard_Insec used the human-coded defin-
ing sets to construct the bias subspace. All other
approaches (i.e., SUM, MEAN, and JoSEC) use
subspaces of individual biases to construct the sub-
space for multiple social categories. MACs of all
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Table 2: Utility of biased and debiased word embeddings in NER Tagging (NER), POS Tagging (POS-T), and POS
Chunking (POS-C) tasks, under the Embedding Matrix Replacement paradigm. Word embeddings are debiased by
hard-debiasing with different subspaces. ∆ denotes the change before and after debiasing.

Hard_Seq Hard_Insec SUM MEAN JoSEC
Tasks NER POS-T POS-C NER POS-T POS-C NER POS-T POS-C NER POS-T POS-C NER POS-T POS-C

Biased F1 0.96 0.99 1.00 0.96 0.99 1.00 0.96 0.99 1.00 0.96 0.99 1.00 0.96 0.99 1.00
∆ F1 -0.01 0.01 0.00 -0.01 0.00 0.00 -0.01 0.01 0.00 -0.01 0.00 0.00 -0.02 0.00 0.00

∆ Precision -0.01 0.00 0.00 -0.02 0.00 0.00 -0.02 0.00 0.00 -0.02 0.00 0.00 -0.03 0.00 0.00
∆ Recall -0.01 0.03 0.02 -0.02 0.01 0.02 -0.02 0.02 0.01 -0.02 0.01 0.01 -0.03 0.01 0.01

Table 3: Gender, racial, and religious biases in toxicity classification using biased and debiased word embeddings.
Total=FPED+FNED (↓). A smaller bias score denotes less bias. A negative ∆ indicates reduced bias.

Hard_Seq Hard_Insec SUM MEAN JoSEC
Bias Gender Race Religion Gender Race Religion Gender Race Religion Gender Race Religion Gender Race Religion

Biased Total 1.27 0.64 0.37 1.27 0.64 0.37 1.27 0.64 0.37 1.27 0.64 0.37 1.27 0.64 0.37
∆ Total -0.04 0.04 0.05 -0.05 -0.01 0.01 0.00 0.04 -0.01 0.00 -0.01 0.01 -0.05 0.02 0.02
∆ FPED -0.09 0.03 0.00 -0.05 0.03 -0.02 -0.03 0.03 -0.01 0.06 0.04 0.01 -0.04 0.03 0.00
∆ FNED 0.05 0.01 0.05 0.00 -0.04 0.02 0.03 0.01 0.01 -0.06 -0.04 0.00 0.00 -0.01 0.02

methods are presented in Fig. 4.
We make the following observations: (1) JoSEC

is most effective for mitigating the intersectional
biases w.r.t. gender and race. The fact that it
outperforms Hard_Insec manifests the potential
to leverage the nonlinear geometry of subspace
representation to construct the subspace for inter-
sectional bias. This is encouraging as it suggests
that we may not need defining sets for intersec-
tional groups, which are often inaccessible and
challenging to collect; (2) SUM and MEAN are
outperformed by Biased, indicating that simply tak-
ing a linear combination of all the individual bias
subspaces can aggravate the intersectional biases
in word embeddings. The violation of the linear
correlation assumption has a negative influence on
the performance of hard-debiasing.

5.3.3 RQ. 3: Downstream Utility

This research question aims to investigate the ef-
fects of various debiasing strategies on the semantic
utility of word embeddings in standard NLP tasks.
We consider NER Tagging, POS Tagging, and POS
Chunking, following (Manzini et al., 2019).

Results for embedding matrix replacement are
in Table 2. We can observe that debiasing word
embeddings with multiple social categories only
slightly changes the semantic utility. We also per-
form the student t test and further testify that these
differences are statistically insignificant. These re-
sults imply that debiasing for multiple categories
using the hard-debiasing method does not have a
significant influence on the semantic utility of word
embeddings. This applies to both joint and inter-
sectional debiasing.

5.3.4 RQ. 4: Bias in Toxicity Classification
This experiment further examines the extrinsic bi-
ases of word embeddings, particularly, in toxicity
classification. Results are shown in Table 3. We
observe that the debiased word embeddings have lit-
tle influence on reducing biases in the downstream
task, indicating no reliable correlation between the
intrinsic bias and extrinsic bias. This aligns well
with findings shown in (Seraphina et al., 2021).
Aware of the importance of mitigating biases in
downstream applications, it is critical to extend this
work to joint and intersectional debiasing focused
on extrinsic measures of biases in the future.

6 Discussions

This work studies joint biases induced by the
union of multiple categories and the intersectional
biases that do not overlap with biases of the con-
stituent categories. Challenges arise from the po-
tential nonlinearity between different biases and
the difficulty of curating human-coded word lists
for identifying intersectional bias subspace. We
first empirically showed that different biases inter-
sect non-trivially. Informed by the intersectionality
theory and the linguistic theory by Firth, we pro-
pose a simple yet effective approach (JoSEC) for
constructing the intersectional bias subspace using
the nonlinear geometry of bias subspaces. JoSEC
can reduce intrinsic bias without losing the seman-
tic utility of word embeddings. The broad result of
this research is that it is critical to consider biases
associated with multiple social categories given the
complex nature of human-like biases.

We do note several limitations of this study. First,
the empirical observation of the nonlinearity be-
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tween different biases needs more rigorous theo-
retical proof/evidence. A potential result would
be an in-depth analysis of bias correlations in a
variety of NLP tasks. Questions such as “how are
biases correlated? Negative or positive correlation?”
might be investigated. Second, research should be
conducted to study how to reduce joint and intersec-
tional biases in contextualized word embeddings
such as BERT and GPT-3. Third, JoSEC focuses on
intrinsic measures, which remain good descriptive
metrics for computational social science (Seraphina
et al., 2021). However, it might not be relied on
to mitigate biases in downstream applications. As
real-world scenarios can be more challenging and
complicated (e.g., biases induced in the deploy-
ment), it is necessary to extend this research to ex-
trinsic measures of biases, which might vary in dif-
ferent applications. Meanwhile, research needs to
focus on a more rigorous and transparent data col-
lection process (e.g., recording demographic and
identity information of annotators) (Cheng et al.,
2021) to help reduce downstream biases. Chal-
lenging sets to measure application bias such as
(Röttger et al., 2021) need to be created to test the
robustness of debiasing methods.

Ethic Statement

We heavily rely on existing bias and fairness met-
rics, which certainly have no guarantee of unbiased
word embeddings or machine learning models. In
fact, most metrics can only be considered an in-
dicator of bias at most (Seraphina et al., 2021),
especially since significant limitations w.r.t. these
metrics have been found (Garrido-Muñoz et al.,
2021). Therefore, we urge practitioners not to rely
on these debiased word embeddings alone, but also
at least consider bias mitigation in specific down-
stream tasks. Further, we did not discuss many
other negative impacts of language models that
practitioners should consider, such as high energy
consumption or not including all stakeholders in
the design phase (Bender et al., 2021).
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A Additional Empirical Results for
Validating the Intersectional
Hypothesis

Following the same procedure in Sec. 4.2.1, we
draw subspaces w.r.t. all of three categories as 2-
dimensional planes in Figure 5. We observe similar
results to those w.r.t. two categories.

B Stimuli for Identifying Intersectional
Groups and Biases

The stimuli used to construct the “ground-truth” in-
tersectional bias subspace are from (Caliskan et al.,
2017) and (Parada, 2016). We follow (Guo and
Caliskan, 2020) to identify the names of intersec-
tional groups and corresponding attributes associ-
ated with the intersectional biases. This process is
further verified by human subjects (Ghavami and
Peplau, 2013). We use this validation set to evalu-
ate the quality of the intersectional subspace con-
structed by JoSEC. In particular, the ground-truth
intersectional subspace is used in the empirical val-
idation of the Intersectional Hypothesis (Appendix
A) and comparisons of the debiasing performance
between JoSEC and Hard_Insec.

Names to identify intersectional groups:

• African American females: Aisha, Keisha,
Lakisha, Latisha, Latoya, Malika, Nichelle,
Shereen, Tamika, Tanisha, Yolanda, Yvette

• African American males: Alonzo,
Alphonse, Hakim, Jamal, Jamel, Jerome,
Leroy, Lionel, Marcellus, Terrence, Tyrone,
Wardell

• European American females: Carrie,
Colleen, Ellen, Emily, Heather, Katie, Megan,
Melanie, Nancy, Rachel, Sarah, Stephanie

• European American males: Andrew, Brad,
Frank, Geoffrey, Jack, Jonathan, Josh,
Matthew, Neil, Peter, Roger, Stephen

• Mexican American females: Adriana, Ale-
jandra, Alma, Brenda, Carolina, Iliana, Ka-
rina, Liset, Maria, Mayra, Sonia, Yesenia

• Mexican American males: Alberto, Alejan-
dro, Alfredo, Antonio, César, Jesús, José,
Juan, Miguel, Pedro, Rigoberto, Rogelio

Attributes indicating intersectional biases:

• Intersectional biases of African American
females: aggressive, athletic, bigbutt, confi-
dent, darkskinned, friedchicken, ghetto, loud,
overweight, promiscuous, unfeminine, unin-
telligent, unrefined

• Intersectional biases of African American
males: athletic, criminals, dangerous, dark-
skinned, gangsters, hypersexual, lazy, loud,
poor, rapper, tall, unintelligent, violent

• Intersectional Biases of European Ameri-
can females: arrogant, attractive, blond, ditsy,
emotional, feminine, highstatus, intelligent,
materialistic, petite, racist, rich, submissive,
tall

• Intersectional biases of European Ameri-
can males: allAmerican, arrogant, attractive,
blond, high-status, intelligent, leader, privi-
leged, racist, rich, sexist, successful, tall

• Intersectional biases of Mexican American
females: cook, curvy, darkskinned, feisty,
hardworker, loud, maids, promiscuous, sexy,
short, uneducated, unintelligent

• Intersectional biases of Mexican American
males: aggressive, arrogant, darkskinned,
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day-laborer, drunks, hardworker, illegal-
immigrant, jealous, macho, poor, promiscu-
ous, short, uneducated, unintelligent, violent

C Additional Experimental Results for
RQ. 3

This section presents results for the semantic util-
ity of debiased word embeddings under the Model
Retraining paradigm. In particular, we show Pre-
cision, Recall, F1 scores w.r.t. NER Tagging, POS
Tagging, and POS Chunking, respectively. We
retrain the model with the debiased word embed-
dings. As shown in Table 4, we observe similar
results to those using Embedding Replacement. To-
gether with the results in Sec. 5.3.3, we show that
debiasing for multiple social categories using the
hard-debiasing method does not have a significant
influence on the semantic utility of word embed-
dings. This applies to both joint and intersectional
debiasing.

D Experimental Setup for Toxicity
Classification in RQ. 4

We employ LSTM (Long Short-Term Memory)
(Hochreiter and Schmidhuber, 1997) as the toxic-
ity classifier, which takes the input of a variety of
word embeddings considered in this work. We then
measure the biases using two commonly adopted
metrics (Dixon et al., 2018): False Positive Equal-
ity Difference (FPED) and False Negative Equality
Difference (FNED). FNED/FPED is defined as the
sum of deviations of group-specific False Negative
Rates (FNRs)/False Positive Rates (FPRs) from the
overall FNR/FPR. Given N demographic groups
(e.g., female and male in gender) and we denote
each group as Gi∈{1,...,N}, FNED and FPED are
calculated as:

FNED =
∑

i∈{1,...,N}
|FNR− FNRGi |,

FPED =
∑

i∈{1,...,N}
|FPR− FPRGi |.

(10)

where FNRGi denotes the FNR calculated over
group Gi and FNR is calculated over the entire
training set. A debiased model is expected to have
similar FNR and FPR for different groups belong-
ing to the same identity, therefore, smaller FNED
and FPED are desired. Ideally, the sum of FNED
and FPED is close to zero.
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Table 4: Utility of biased and debiased word embeddings in NER Tagging (NER), POS Tagging (POS-T), and POS
Chunking (POS-C) tasks, under the Model Retraining paradigm. Word embeddings are debiased by hard-debiasing
with different subspaces. ∆ denotes the change before and after debiasing.

Hard_Seq Hard_Insec SUM MEAN JoSEC
Tasks NER POS-T POS-C NER POS-T POS-C NER POS-T POS-C NER POS-T POS-C NER POS-T POS-C

Biased F1 0.97 1.00 0.99 0.97 1.00 0.99 0.97 1.00 0.99 0.97 1.00 0.99 0.97 1.00 0.99
∆ F1 -0.01 0.01 0.00 -0.01 0.00 0.00 -0.01 0.01 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00

∆ Precision -0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00
∆ Recall -0.02 0.03 0.02 -0.02 0.01 0.02 -0.01 0.02 0.01 -0.01 0.01 0.01 -0.00 0.01 0.01
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Abstract

We study the relationship between task-
agnostic intrinsic and task-specific extrinsic
social bias evaluation measures for Masked
Language Models (MLMs), and find that there
exists only a weak correlation between these
two types of evaluation measures. Moreover,
we find that MLMs debiased using different
methods still re-learn social biases during fine-
tuning on downstream tasks. We identify the
social biases in both training instances as well
as their assigned labels as reasons for the dis-
crepancy between intrinsic and extrinsic bias
evaluation measurements. Overall, our findings
highlight the limitations of existing MLM bias
evaluation measures and raise concerns on the
deployment of MLMs in downstream applica-
tions using those measures.

1 Introduction

Text representations produced by MLMs have rev-
olutionised NLP by improving the performance of
numerous downstream applications (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019; Lan
et al., 2020; Yang et al., 2019). Unfortunately,
large-scale pretrained MLMs demonstrate worry-
ing levels of social biases when applied to down-
stream tasks (May et al., 2019; Nadeem et al.,
2021; Kaneko and Bollegala, 2021a; Kaneko et al.,
2022b). Given that real-world Natural Language
Processing (NLP) systems such as machine trans-
lation systems, dialogue systems, etc. are used
by millions of users world-wide (Hovy and Spruit,
2016), it remains an important responsibility to ac-
curately evaluate the social biases in MLMs prior
to deployment.

Two types of social bias evaluation mea-
sures have been proposed for MLMs in prior
work (Goldfarb-Tarrant et al., 2021; Cao et al.,

∗Danushka Bollegala holds concurrent appointments as
a Professor at University of Liverpool and as an Amazon
Scholar. This paper describes work performed at the Univer-
sity of Liverpool and is not associated with Amazon.

2022): (a) task-agnostic intrinsic evaluation mea-
sures (Nangia et al., 2020; Nadeem et al., 2021;
Kaneko and Bollegala, 2022) that use the likeli-
hood scores assigned by an MLM under evaluation
for sentences representing various social biases,
and (b) task-specific extrinsic evaluation measures
that use the data from downstream NLP tasks such
as predicting the occupation of a person from their
biographies (De-Arteaga et al., 2019; Bartl et al.,
2020). In contrast to intrinsic measures that directly
probe into the biases in MLMs, extrinsic measures
holistically evaluate an NLP system that uses an
MLM.

Much prior work has decoupled the intrinsic and
extrinsic bias evaluations for simplicity, and have
assumed that an MLM unbiased according to an
intrinsic measure will remain to be so under ex-
trinsic evaluations too. However, this unverified
hypothesis begs the following question: Can we
reliably predict the social biases of an MLM when
it is applied to a particular downstream task using
only intrinsic evaluation measures? To answer this
question, we conduct a comprehensive study using
7 pretrained MLMs and their debiased versions us-
ing three different debiasing methods. However,
only weak correlations are found between intrinsic
and extrinsic bias evaluation measures. This is a
worrying proposition because intrinsic measures
are often used to decide whether an MLM should
be deployed in a downstream application.

We further investigate on why MLMs learn so-
cial biases during downstream task fine-tuning and
identify two sources: instance-related biases and
label-related biases. The training instances for
downstream tasks contain unfair associations that
are learnt by the masked language modelling objec-
tive, which we name instance-related biases. We
find that debiased MLMs gradually learn such bi-
ases during fine-tuning, leading to disagreements
between intrinsic and extrinsic evaluation measures.
Moreover, the labels assigned to downstream train-
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ing instances can also represent biased ratings,
which are also learnt by the MLMs when their pa-
rameters are updated in an end-to-end manner when
predicting task labels. Overall, we find weak cor-
relations between intrinsic and extrinsic measures
even after the models are fine-tuned on downstream
task data. Based on our findings, we recommend
that intrinsic bias evaluation measure alone must
not be used to determine whether an MLM should
be deployed in a downstream NLP application. The
code and data used in this paper will be publicly
released to facilitate reproduction of results upon
paper acceptance.

2 Related Work

Social biases have been reported in models trained
for numerous downstream tasks. Kiritchenko and
Mohammad (2018) examined 219 automatic sen-
timent analysis systems that participated in the
SemEval-2018 Task 1 (Mohammad et al., 2018)
and found that many systems show statistically sig-
nificant gender or racial biases. Díaz et al. (2019)
investigated the age-related biases in sentiment
classification and found that across 15 sentiment
analysis tools, sentences containing adjectives de-
scribing the youth were 66% more likely to be
scored positively than those describing the elderly.
The problem is also observed in MLMs trained for
many languages (Kaneko et al., 2022b).

Numerous bias mitigation approaches have been
proposed for MLMs such as fine-tuning (Kaneko
and Bollegala, 2021a; Lauscher et al., 2021),
counterfactual data augmentation (Hall Maudslay
et al., 2019; Zmigrod et al., 2019) and parameter
dropout (Webster et al., 2020). Liang et al. (2020a)
proposed a method to debias the sentence embed-
dings created from BERT (Devlin et al., 2019) and
ELMo (Peters et al., 2018) inspired by hard debias-
ing (Bolukbasi et al., 2016), a method originally
proposed for static word embeddings. However,
not all biases are adequately mitigated by the cur-
rent proposals (Gonen and Goldberg, 2019). Our
focus in this paper is the evaluation and not debias-
ing methods.

Intrinsic bias evaluation measures (Nangia et al.,
2020; Nadeem et al., 2021; Kaneko and Bollegala,
2022) evaluate the social biases in a given MLM
standalone, independently of any downstream ap-
plications. Pseudo log-likelihood scores assigned
to stereotypical vs. antistereotypical examples (ei-
ther manually written or automatically generated

using templates) have been used to evaluate the
social biases in an MLM as further detailed in
§ 3. Considering that MLMs are used to repre-
sent input texts in various downstream tasks, sev-
eral prior work have argued that their social biases
must be evaluated with respect to those tasks (De-
Arteaga et al., 2019; Bartl et al., 2020; Webster
et al., 2020). However, decoupling tasks and
MLMs makes the bias evaluation simpler and task-
independent, which is attractive because MLMs are
designed as generic text representations for a wide-
range of downstream tasks. We further discuss
extrinsic bias evaluation measures in §3.

Goldfarb-Tarrant et al. (2021) studied social bi-
ases in static word embeddings using the Word
Embedding Association Test (WEAT) as an intrin-
sic measure and coreference detection and hate
speech detection as extrinsic evaluation tasks. They
found the correlations between intrinsic and extrin-
sic measures to be weak or negative. Although we
share the motivation with Goldfarb-Tarrant et al.
(2021), our focus is contextualised embeddings pro-
duced by MLMs, which have outperformed static
word embeddings in numerous tasks, hence more
widely used in real-world NLP applications than
static word embeddings.

Cao et al. (2022) studied the correlation be-
tween intrinsic bias scores (i.e. Contextualised
Embedding Association Test (Guo and Caliskan,
2021, CEAT) and Increased Log Probability
Score (Kurita et al., 2019, ILPS)) and extrin-
sic bias scores for three tasks: toxicity (Jigsaw,
2019), hate-speech (Mathew et al., 2021) and senti-
ment (Dhamala et al., 2021) detection. Similar to
Goldfarb-Tarrant et al. (2021) they also found weak
correlations. As reasons for this lack of correlation
they highlight misalignment between the metrics
such as the notion of bias, protected groups, and
noise in the evaluation datasets. Our contributions
are complementary to theirs because we consider
different intrinsic and extrinsic measures, not cov-
ered by them. Moreover, our extrinsic tasks are
directly related to social biases. We observe weak
correlations between intrinsic and extrinsic evalua-
tion measures, supporting their claims.

3 Bias Evaluation Measures

Several measures have already been proposed in
prior work for evaluating the social biases encoded
in MLMs. These measures can be broadly cate-
gorised into two groups depending on whether they
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evaluate social biases in MLMs with respect to a
particular downstream task or not. We refer to mea-
sures that evaluate social biases in MLMs on their
own right, independently of any downstream tasks
as intrinsic MLM bias scores and describe three
such measures. In contrast, we refer to the mea-
sures that evaluate social biases in MLMs when
they are applied to solve a specific downstream
task such as Natural Language Inference (NLI),
Semantic Textual Similarity (STS) or predicting
occupations from biographies as extrinsic MLM
bias scores and describe those measures.

To describe the intrinsic measures, let us con-
sider a test sentence S = w1, w2, . . . , w|S|, con-
taining length |S| sequence of tokens wi, where
part of S is modified to create a stereotypical (or
lack of thereof) example for a particular social bias.
For example, let’s consider the sentence-pair “John
completed his PhD in machine learning” vs. “Mary
completed her PhD in machine learning”. Here,
{John, his} are the modified tokens for the first sen-
tence, whereas for the second sentence they are
{Mary, her}. The unmodified tokens between the
two sentences are {completed, PhD, in, machine,
learning}.

Let us denote the list of modified tokens in a
given sentence S by M and the list of unmodi-
fied tokens by U , so that S = M ∪ U is the list
of all tokens in S. 1 Given an MLM with pre-
trained parameters θ to evaluate for social biases,
let us denote the probability PMLM(wi|S\wi ; θ)
that the MLM assigns to a token wi conditioned
on the remainder of the tokens, S\wi . Salazar et al.
(2020) demonstrated that PLL(S), the pseudo-log-
likelihood (PLL) score of sentence S given by (1),
can be used to evaluate the preference expressed by
an MLM for S, similarly to using log-probabilities
for evaluating the naturalness of sentences using
conventional language models.

PLL(S) :=

|S|∑

i=1

logPMLM(wi|S\wi ; θ) (1)

PLL scores for MLMs can be computed directly
and are more uniform across sentence lengths (no
left-to-right bias), allowing us to recognize natural
sentences in a language (Wang and Cho, 2019). As
we will see later, PLL can be used to define bias
evaluation scores for MLMs in a variety of ways.

1Note that to account for repeated occurrences of a word
in a sentence, we examine lists rather than sets.

Intrinsic: StereoSet Score The probability of
generating the modified tokens given the unmodi-
fied tokens in S was expressed as P (M |U ; θ) by
Nadeem et al. (2020). We refer to this as StereoSet
Score (SSS) and it is given by (2).

SSS(S) :=
1

|M |
∑

w∈M
logPMLM(w|U ; θ) (2)

|M | denotes the length of M . SSS presents a
challenge because, when comparing P (M |U ; θ)
for modified words like John, we might see high
probabilities simply because these words occur fre-
quently in the data used to train the MLM and not
because the MLM has picked up a social bias.

Intrinsic: CrowS-Pairs Score The CrowS-Pairs
Score (CPS) is a scoring formula provided by (3)
that was defined as P (U |M ; θ) by Nangia et al.
(2020) to address the frequency-bias in SSS.

CPS(S) :=
∑

w∈U
logPMLM(w|U\w,M ; θ) (3)

Normalization is not performed here because the
length of unmodified tokens is the same. However,
by masking and predicting one token w at a time
from U , we are effectively changing the context
(U\w,M) used as input by the MLM. This has two
disadvantages. First, by removing w from the sen-
tence, the MLM loses information that it can use to
predict w. As a result, the prediction accuracy of w
may decrease, rendering bias evaluations untrust-
worthy. Second, the remaining tokens {U\w,M}
may still be biased even if we remove one token w
at a time from U . Moreover, the context on which
we condition the probabilities continuously varies
across predictions.

Intrinsic: All Unmasked Likelihood with At-
tention weights Kaneko and Bollegala (2022)
proposed All Unmasked Likelihood with Attention
weights (AULA) to overcome the above-mentioned
disfluencies in previously proposed MLM bias eval-
uation measures. To begin, rather than masking out
tokens from S, AULA provides the entire sentence
to the MLM. Second, all tokens in S that appear
in between the start and end of sentences are pre-
dicted by AULA. Furthermore, AULA computes
the likelihood using attention weights to evaluate
social biases based on the relative importance of
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words in a sentence, as given by (4).

AULA(S) :=
1

|S|

|S|∑

i=1

αi logPMLM(wi|S; θ)

(4)

Here, αi represents the average of all multi-head
attentions associated with wi.

Given a score function f ∈
{SSS,CPS,AULA}, we use the percentage
of stereotypical (Sst) test sentences preferred by
the MLM over anti-stereotypical (Sat) ones to
define the corresponding bias evaluation measure
(bias score) as follows:

100

N

∑

(Sst,Sat)

I(f(Sst) > f(Sat))


− 50 (5)

Here, the indicator function I returns 1 if its argu-
ment is True and 0 otherwise, and N is the total
number of test instances. Values close to 0 indi-
cate that the MLM under consideration is neither
stereotypically nor anti-stereotypically biased; thus,
it can be considered unbiased. Values less than 0
indicate a bias toward the anti-stereotypical group,
while values greater than 0 indicate a bias toward
the stereotypical group.

Extrinsic: BiasBios To evaluate the gender
bias in occupation classification, De-Arteaga et al.
(2019) proposed a dataset where they collected bi-
ographies written in English from Common Crawl.
For this purpose, they first filter lines that begin
with a name-like-pattern (i.e. a sequence of two
capitalised words) followed by the string “is a(n)
(xxx) title”, where title is an occupation from the
BLS Standard Occupation Classification system.2

They used twenty-eight frequent occupations in
Common Crawl to collect 397,340 biographies.
The task is to predict the people’s occupations,
taken from the first sentence of their biographies,
given the remainder of their biographies. For ex-
ample, given the hypothetical biography of a nurse:
She graduated from Lehigh University, with hon-
ours in 1998. Nancy has years of experience in
weight loss surgery, patient support, education, and
diabetes., the goal is to predict the occupation.

An MLM under evaluation is used to create an
embedding for a biography excluding the title sen-
tence, and a softmax classifier is trained using those

2https://www.bls.gov/soc

biography embeddings to predict the occupation
of the person described in each biography. If the
MLM is unbiased with respect to gender, we would
expect it to have approximately similar true pos-
itive rates (TPRs) averaged over all twenty-eight
occupations for both male and female gendered
persons. The TPR gap between the TPRs for classi-
fying occupations in female and male biographies
is used as an extrinsic MLM bias score. An unbi-
ased MLM is expected to predict occupations with
similar TPRs for both genders.

Extrinsic: STS-bias Semantic Textual Similar-
ity (STS) is a task which evaluates the degree of
semantic similarity between two sentences. Web-
ster et al. (2020) proposed STS-bias to evaluate
gender bias by adapting STS formulation. Specifi-
cally, to create the STS-bias dataset, they collect the
276 sentences from the STS-B test set, which start
with A man or A woman, and discard the sentences
with multiple gendered words.3 For each template,
they formed two sentence pairs per profession from
Rudinger et al. (2018), one representing the male
gender and the other for the female gender. For
example, given a pair “A man is walking” and “A
nurse is walking” from STS-B dataset, they create
a new pair “A woman is walking” and “A nurse is
walking”. If not relying on gendered correlations,
a model should assign equal estimates of similarity
to the two pairs. Therefore, following Rudinger
et al. (2017), as a score we use the difference be-
tween similarities of such two pairs to measure
how similar model predictions actually are regard-
ing gender. They compute the Pearson correlation
between the scores per profession and the represen-
tation in that profession listed in the US Bureau of
Labor Statistics (Caliskan et al., 2017). STS-bias
does not consider the directionality of the gender
bias. Therefore, we report absolute values of all
bias scores.

Extrinsic: NLI-bias Dev et al. (2019) used natu-
ral language inference (NLI) for evaluating gender
bias. This dataset contains sentence triples where
a premise must be neutral in entailment w.r.t. two
hypotheses. For example, “The accountant ate a
bagel” should neither entail nor contradict the sen-
tences “The man ate a bagel” and “The woman
ate a bagel”. Given a set containing D test in-
stances, let the entailment predictor’s probabilities

3Gender word list: https://github.com/uclanlp/gn_glove/t
ree/master/wordlist
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for the d-th instance for entail, neutral and contra-
diction labels be respectively ed, nd and cd. Then,
they proposed the measure Fraction Neutral (FN):
FN = 1

|D|
∑D

d=1 1[neutral = max(ed, nd, cd)].
For an ideal (bias-free) embedding, FN measure
would be 1. They compute the FN for each female
and male sentences and use the difference between
them as the bias score in the NLI-bias.

4 Experiments and Findings

4.1 Datasets

We used Crows-Pairs dataset (Nangia et al., 2020)
as CPS and AULA evaluation data, and used Stere-
oSet dataset (Nadeem et al., 2021) as SSS eval-
uation data. In BiasBios4, we use the average
performance gap in the male and female groups
aggregated across all occupations to measure the
bias, following Zhao et al. (2020a). We crawled
BiasBios data using publicly available code from
the original authors, and used 80% of the collected
data as a training data, 10% as development data,
and 10% as evaluation data. Because the STS-
bias dataset is not publicly available, we created
the dataset following to the procedure proposed
by Webster et al. (2020). We used STS-B as
training and development data (Cer et al., 2017)5

for STS-bias, following Webster et al. (2020).
We used the Multi-Genre Natural Language In-
ference (MNLI) as training data and development
data (Williams et al., 2018)6 for NLI-bias 7, follow-
ing Kaneko and Bollegala (2021a).

4.2 Debiasing methods

We used three previously proposed methods that
are widely used for debiasing MLMs such as All-
layer Token-level debiasing (AT; Kaneko and Bol-
legala, 2021a), Counterfactual Data Augmentation
debiasing (CDA; Webster et al., 2020), and dropout
debiasing (DO; Webster et al., 2020). These meth-
ods represent conceptually different approaches
for debiasing and can be applied to any pretrained
MLM model/algorithm.

AT debiasing: Kaneko and Bollegala (2021a)
proposed a method for debiasing MLMs via fine-
tuning by simultaneously (a) preserving the seman-
tic information in the pretrained MLM, and (b) re-

4https://github.com/microsoft/biosbias
5github.com/facebookresearch/SentEval
6cims.nyu.edu/~sbowman/multinli/
7https://github.com/sunipa/On-Measuring-and-Mitigatin

g-Biased-Inferences-of-Word-Embeddings

moving discriminative gender-related biases via an
orthogonal projection in the hidden layers by oper-
ating at token- or sentence-levels, enabling debias-
ing on different layers and levels in the pre-trained
contextualised embedding model. It is independent
of model architectures and pre-training methods,
thus can be adapted to a wide range of MLMs. They
showed that applying token-level debiasing for all
tokens and across all layers of an MLM produces
the best performance. We perform an additional
phase of fine-tuning using AT debiasing.

CDA debiasing: CDA is a debiasing strategy to
mitigate social bias based on data (Webster et al.,
2020). CDA involves re-balancing a corpus by
swapping bias attribute words in a dataset. For
example, the sentence “the doctor treated his pa-
tient” could be changed to “the doctor treated her
patient”. The re-balanced corpus is then often
used for further training to debias a model. We
experiment with debiasing pre-trained MLMs by
performing an additional phase of fine-tuning on
counterfactually augmented sentences.

DO debiasing Webster et al. (2020) proposed
dropout regularization for a bias mitigation. They
increased the dropout parameters for MLM’s atten-
tion weights and hidden activations and further pre-
trained them. They showed that increased dropout
regularization reduces gender bias within these
MLMs. They hypothesize that dropout’s interrup-
tion of the attention mechanisms within MLMs
prevents MLMs from learning undesirable associa-
tions between words. Similar to AT and CDA, we
perform an additional phase of fine-tuning using
increased dropout regularization.

We used news-commentary-v158 corpus as addi-
tional training data for debiasing. We used publicly
available code9 and default hyperparameters for
AT debiasing. We used Zhao et al. (2018)’s word
list to replace a feminine word to the correspond-
ing masculine word and vice versa in sentences
in the training data for CDA debiasing. We set
the dropout ratio to 0.15 for attention probabilities
and 0.2 for all fully connected layers in DO debias-
ing. Hyperparametors of CDA and DO debiasing
are set to their default values in the Huggingface
Transformers library (Wolf et al., 2020).

8https://data.statmt.org/news-commentary/v15/
9https://github.com/kanekomasahiro/context-debias
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4.3 Models and Hyperparameters

In our experiments, we used the following
seven MLMs: bert-base-uncased (bert-bu)10, bert-
base-cased (bert-bc),11 bert-large-uncased (bert-
lu),12 bert-large-cased (bert-lc),13 roberta-base
(roberta-b),14 roberta-large (roberta-l),15 albert-
base (albert-b).16

To fine-tune an MLM for a downstream task, we
first create an embedding for a training instance us-
ing the given MLM. Specifically, we use the [CLS]
token embedding produced by the MLM to repre-
sent an instance. For STS and NLI tasks where an
instance consists of a pair of sentences, we con-
catenate the two sentences in the pair and use it as
the input to the MLM. Finally, a classification head
(i.e. a softmax layer) is used to predict the label
for a training instance, and cross entropy error is
backpropagated to update the MLM parameters.

For downstream tasks, the best performance
checkpoint on development data is selected from
{16, 32, 64} for batch size, {1e-5, 3e-5, 5e-5} for
learning rate, {1, 3, 5} for epoch number with
greedy search. Maximum sentence length is set
to 128 tokens and we used four Tesla V100 GPUs
in our experiments. All other hyperparameters, are
set to their default values in the huggingface library.

4.4 Debiasing vs. Bias in Downstream Tasks

We examine whether the debiasing methods pro-
posed for MLMs can mitigate the social biases
when those debiased MLM are used in downstream
tasks. Specifically, given an MLM,M , we use each
debiasing method described in §4.2 independently
on M to create a debiased version, Mdeb. Let,
f(M), denote the bias score of M measured using
a bias evaluation measure, f , described in §3. Fig-
ure 1 shows the reduction of bias f(Mdeb)−f(M)
due to debiasing for multiple MLMs and debiasing
methods for different f . For all debiasing methods,
we see a reduction in biases according to intrin-
sic bias evaluation measures SSS, CPS and AULA.
However, among the extrinsic bias evaluation mea-
sure, we see a reduction according to STS, but
an increase in biases according to BiasBios and
NLI. For example, AT for bert-bu mitigates bias

10huggingface.co/bert-base-uncased
11huggingface.co/bert-base-cased
12huggingface.co/bert-large-uncased
13huggingface.co/bert-large-cased
14huggingface.co/roberta-base
15huggingface.co/roberta-large
16huggingface.co/albert-base-v2

Feminine Masculine ILSP

BiasBios 20,720 35,412 -0.53
STS-B 1,304 2,126 -0.48
MNLI 55,588 139,575 -0.91

Table 1: Frequency of feminine and masculine words
in downstream task data. ILSP represents the degree of
bias between feminine and masculine words.

in all intrinsic measures, but increases biases in
all extrinsic measures. This shows that debiasing
methods do not always reduces extrinsic biases,
despite appearing to be debiased with respect to
intrinsic measures. Note that the training dataset
sizes for BioBias, STS-B and MLNI are respec-
tively 251K, 5.7K, and 392.7K. Therefore, STS-B
has fewer training data instances than for the other
two tasks, and the number of fine-tuning iterations
required is also smaller. For these reasons, we be-
lieve that debiased MLMs are less influenced when
fine-tuned on STS-B.

5 Why is Debiasing less Effective for
Downstream Tasks?

To further investigate the discrepancies between
intrinsic and extrinsic bias evaluation measures ob-
served in §4.4, recall that a debiased MLM can re-
learn social biases in two different sources via fine-
tuning: instance-related biases and label-related
biases. A training data point of a downstream task
consists of an instance (i.e. sentence or text) and
a label (i.e. entailment labels, similarity ratings
etc.). Instances alone could express social biases
such as in the sentence “All Muslims are terrorists”.
By fine-tuning a debiased MLM on such instances
using the masking training objective, it can learn
racially discriminatory associations. We call this
the instance-related bias in fine-tuning.

Second, even if an instance is unbiased, coupled
with its label, the data point could still express a so-
cial bias. For example, the sentence pair (“A nurse
is walking”, “A woman is walking”) represents an
instance, which does not represent a gender bias.
However, if we are told that the first sentence en-
tails the second (i.e. an entailment label assigned
to this instance), it will represent a gender bias.
An NLP model can easily learn such label-related
biases in an end-to-end training setting by propa-
gating the prediction losses all the way back to the
MLM layers.

To examine the instance-related gender biases in
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(f) NLI-bias

Figure 1: Differences between the bias scores of original vs. debiased MLMs. Negative values indicate that the
debiased MLM has a lower bias than its original (non-debiased) version.

downstream training data, we compute ILPS (Ku-
rita et al., 2019) given by log(Pf/Pm), where Pf
and Pm are the probabilities of respectively female
and male genders in training instances. Prior work
has shown that the frequency imbalance of femi-
nine and masculine words in the training data is
related to the gender bias learnt by MLMs (Kaneko
and Bollegala, 2022; Kaneko et al., 2022b). Using
the gender word lists created by Zhao et al. (2018),
we estimate ILPS as shown in Table 1.

From Table 1, we see that all three datasets are
highly biased towards the male gender, indicated
by the negative ILSP scores. If we arrange the three
datasets in the ascending order of their gender bi-
ases we get: STS-B < BiasBios < MLNI. Interest-
ingly, this is exactly the same order we would get
if we had ordered these datasets considering the
number of MLMs that have their biases increased
due to fine-tuning in Figure 1 (e, d, f), respectively.

5.1 Re-learning Biases via Fine-Tuning
To further study how biases are learnt during the
fine-tuning process, we track the extrinsic bias
score of an MLM (and its debiased variants) over
the number of fine-tuning training iterations on a
particular downstream task. Here, we use bert-bu
and roberta-l, which had low intrinsic biases after
debiasing according to all intrinsic bias measures
in Figure 1. We save model checkpoints for every
500 fine-tuning iterations up to 5500 iterations and
evaluate their extrinsic bias scores.

Figure 2 shows that the extrinsic bias scores of
non-debiased (original) MLMs (roberta-l and bert-
bu) and their debiased variants using AT, CDA, and
DO. On all downstream tasks, extrinsic bias scores
increase during fine-tuning for both non-debiased
and debiased MLMs. This shows that biases that
were mitigated by debiasing are re-learnt during
fine-tuning on downstream training data. Even
STS-bias, which reported almost all MLMs to be
void of biases after debiasing (Figure 1), shows
increasing bias scores during fine-tuning. Overall,
we see that debiasing effect gradually decreases as
fine-tuning progresses due to the biases in down-
stream task data. In contrast, Jin et al. (2021) ar-
gued that debiased MLMs are unaffected by fine-
tuning. However, their evaluation was limited to
only one MLM and two datasets both related to
gender stereotyping (Jin et al., 2021), whereas we
consider seven MLMs, three debiasing methods
and six bias evaluation measures. This shows that
careful evaluation using various evaluation datasets
and MLMs is necessary when verifying the effec-
tiveness of debiasing methods.

Furthermore, according to the intrinsic evalua-
tions in Figure 1, the biases were reduced in both
roberta-l and bert-bu by all debiasing methods.
However, there are cases where the bias scores
of debiased MLMs are higher than that of non-
debiased MLMs even in the early stages of fine-
tuning, except for roberta-l in the STS-bias in Fig-
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Figure 2: Extrinsic bias scores measured for MLMs during fine-tuning on downstream instances.

ure 2. Therefore, MLMs judged to be debiased
according to intrinsic evaluations alone might not
necessarily remain debiased after fine-tuning on
downstream task instances.

5.2 Correlations between Intrinsic vs.
Extrinsic Bias Evaluation Measures

Given that intrinsic bias evaluation measures are
used to determine whether an MLM should be
used in a downstream application, it is important
to examine what level of correlations exist be-
tween intrinsic and extrinsic bias evaluation mea-
sures (Blodgett et al., 2021). For this purpose, us-
ing 28 MLMs (original 7 MLMs and their debiased
versions using three methods, 7 × 3 + 7 = 28)
we compute the Kendall’s τ rank correlation coeffi-
cients between intrinsic and extrinsic bias measures.
Specifically, in Table 2 we show τ values between
the intrinsic bias measure (SSS, CPS, AULA) and

extrinsic measures (BiasBios, STS-bias, NLI-bias).
In each cell in Table 2, the values to the left of
the slashes (/) are computed using the MLMs prior
to fine-tuning on downstream data, whereas the
values to the right of the slashes are computed us-
ing the MLMs that have been fine-tuned on in-
stances of downstream data.17 Statistically signifi-
cant (p < 0.05) τ values according to the Fisher’s
exact test are denoted by a †. Cases where the
correlation has improved after fine-tuning are are
highlighted in Bold.

From Table 2, we see that prior to fine-tuning,
only two τ values were significant, reconfirming
the weak correlations observed in prior work (Delo-
belle et al., 2021; Goldfarb-Tarrant et al., 2021; Cao
et al., 2022). Given that intrinsic bias evaluation
measures are agnostic to the biases in downstream

17We use the fine-tuned models after 5500 iterations in
Figure 2.
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SSS CPS AULA

BiasBios -0.02 / 0.24 -0.17 / -0.17 -0.20 / 0.11
STS-bias 0.53† / 0.38† -0.08 / 0.12 0.24 / 0.13
NLI-bias 0.22 / 0.21 0.16 / 0.05 0.30† /0.17

Table 2: Kendall τ correlation coefficients between in-
trinsic extrinsic bias scores. Values to the left and right
of ’/’ are computed using MLMs respectively prior and
post fine-tuning. Statistically significant (p < 0.05) τ
values are denoted by a †, whereas improved correla-
tions after fine-tuning are highlighted in Bold.

task-specific training data, one might have expected
to see the correlations between intrinsic and extrin-
sic measures to improve after the MLMs have been
fine-tuned on downstream data, thereby capturing
some of the biases in downstream data within the
MLMs. Surprisingly, we see that this is clearly not
the case here and only in three out of nine combina-
tions in Table 2 we see correlations improving after
fine-tuning. In particular, for NLI-bias we see that
correlations dropping after fine-tuning against all
intrinsic measures compared to their values prior to
fine-tuning. On the other hand, for BiasBios we see
that correlations improving after fine-tuning against
SSS and AULA by large margins, while remaining
unaffected against CPS. The only significant cor-
relation after fine-tuning is between STS-bias and
SSS (i.e. 0.38). However, this too has decreased
from its value prior to fine-tuning (i.e. 0.53).

Overall, our results indicate weak and inconsis-
tent correlations between intrinsic and extrinsic
bias evaluation measures irrespective of whether
the MLMs have been fine-tuned on downstream
data or otherwise. Therefore, we recommend that
intrinsic evaluation scores alone must not be used
to determine whether an MLM is sufficiently unbi-
ased to be deployed to NLP systems that are used
by billions of users world-wide.

6 Conclusion

We investigated social biases in 28 MLMs and
found that there exist weak correlation between
intrinsic and extrinsic bias evaluation measures.
Moreover, debiased MLMs re-learn biases during
task-specific fine-tuning due to instance and label
related biases in downstream task data. Our find-
ings highlight limitations in existing bias evaluation
measures and raise serious concerns regarding their
implications.

7 Ethical Considerations

Our goal in this paper was to evaluate the corre-
lation between previously proposed and widely-
used intrinsic and extrinsic bias evaluation mea-
sures for evaluating various types of social biases
in pretrained MLMs. However, we did not manu-
ally annotate novel social bias datasets or proposed
novel bias evaluation measures nor debiasing meth-
ods. Therefore, we do not see any ethical issues
arising due to data annotation, or via proposals
of novel evaluation metrics or debiasing methods.
However, we would like to point out that although
we conducted an extensive study using 7 MLMs,
3 debiasing methods, 3 intrinsic evaluation mea-
sures and 3 extrinsic evaluation measures, this is
still a limited subset of all possible scenarios. For
example, the gender biases we considered in this
paper cover only binary gender (Dev et al., 2021).
However, non-binary genders are severely under-
represented in textual data used to train MLMs.
Moreover, non-binary genders are often associated
with derogatory adjectives. Evaluating the corre-
lation between intrinsic and extrinsic non-binary
gender is an important next step.

All MLMs used in this study are trained for
English. However, as reported in much prior
work social biases are language independent and
omnipresent in MLMs trained for many lan-
guages (Kaneko et al., 2022b; Lewis and Lupyan,
2020; Liang et al., 2020b; Bartl et al., 2020; Zhao
et al., 2020b). We plan to extend this study to cover
non-English MLMs in the future.

Kaneko et al. (2022a) show that combining
multiple debiasing methods for word embed-
dings (Bolukbasi et al., 2016; Kaneko and Bol-
legala, 2019, 2021b, 2020; Ravfogel et al., 2020)
can complement each other’s strengths and weak-
nesses to obtain more effective debiased embed-
dings. Therefore, combining methods to mitigate
both intrinsic and extrinsic bias may allow for more
effective debiasing.

Finally, biases are not limited to word representa-
tions but also appear in sense representations (Zhou
et al., 2022). On the other hand, our correlation
analysis did not include any sense embedding mod-
els.
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Abstract

Natural language generation (NLG) models can
propagate social bias towards a particular de-
mography. Though several studies investigated
bias from data and models, the NLG task dis-
tinctively uses stochastic decoders that can pos-
itively or negatively impact the bias-sensitive
tokens initially predicted by the model. To
address this gap in research, we present an ex-
tensive analysis of bias from decoding tech-
niques for open-domain language generation
considering the entire decoding space. We an-
alyze to what extent bias metrics like toxicity
and sentiment are impacted by the individual
components of decoder algorithms. We also
analyze the trade-off between bias scores and
human-annotated generation quality through-
out the decoder space. Together, these methods
reveal the imperative of testing inference time
bias and provide evidence on the usefulness of
inspecting the entire decoding spectrum.

1 Introduction

Natural language generation (NLG) techniques pro-
vide the backbone for many downstream artificial
intelligence applications, such as chat-bots, vir-
tual assistance, machine translation, automatic sto-
rytelling, text summarization, and writing assis-
tants. With the advancement of deep learning, NLG
tasks are commonly powered by auto-regressive
language models like GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), T5 (Raffel et al., 2019),
or GPT-Neo (Gao et al., 2021). However, language
models (LMs) pretrained on large web text corpora
are also known to pass on stereotypical associa-
tions learned from real-world training data. Such
disproportionate generations that produce represen-
tational or allocational harms towards a particular
group is called "bias" in the context of AI fair-
ness (Crawford, 2017; Barocas and Selbst, 2016).
Although a moderate amount of studies has been
conducted on quantifying bias for natural language
understanding (NLU) (Webster et al., 2018; Lu

et al., 2018; Cao and Daumé III, 2020; Dev et al.,
2019; Nangia et al., 2020; Nadeem et al., 2021;
Zhao et al., 2018, 2020), exploring the same for
NLG is a nascent, yet active area of research.

Indeed, bias can be introduced at various
phases of the model’s development and deploy-
ment pipeline, such as data, modeling, decoding,
evaluation. Much of the work on analyzing bias in
NLG focuses on benchmarking biases pertaining
to models or training data (Henderson et al., 2018;
Sheng et al., 2019, 2020; Habash et al., 2019; Bor-
dia and Bowman, 2019; Cercas Curry et al., 2020;
Liu et al., 2020; Yeo and Chen, 2020; Dhamala
et al., 2021). Yet, up to now work on examining
biases from decoder techniques is relatively scarce.
However, NLG models distinctively use search,
random sampling, entropy (softmax penalty) that
changes the distribution of model predicted tokens
at each autoregressive time-step. Redistributing
the predicted token and inducing randomness dur-
ing inference can positively or negatively impact
the bias-sensitive tokens initially predicted by the
model. Bias-sensitive tokens are words with neg-
ative connotations towards specific demographics
as explained by Liang et al. (2021). This redistri-
bution of the predicted bias sensitive tokens solely
due the randomness induced by the decoding algo-
rithm is called as inference time bias.

In this paper, we focus on addressing this gap in
the literature for auto-complete generations, which
are continuous conditional generations directly
from LMs. Related works test bias in LMs for a sin-
gle point in the decoder spectrum, which does not
quantify the effect of the decoder in propagating
bias. In contrast we investigate the bias variation in-
duced by the decoding algorithms for the full spec-
trum of decoder space1. We perform tests for six
state-of-the-art LMs, with diverse decoding setup
and bias objectives like sentiment and toxicity. To

1In this paper, we will be using decoder spectrum and
decoder space interchangeably
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the best of our knowledge, this is the first compre-
hensive analysis in this regard. We observed en-
tropy and nucleus sampling impacts absolute bias
scores across the decoder space while top-k and
beam search is agnostic. This along with our exper-
imental findings, we demonstrate why inspecting
bias for the full decoder spectrum is imperative.
Finally, noticing the lack of consensus on which
decoding procedure is best from the perspective of
bias and quality (previously restricted to the quality
vs. diversity Zhang et al., 2021; Holtzman et al.,
2019), we also study the trade-off between quality
and bias throughout the decoding space using hu-
man evaluation. In this regard we attempt to find
the optimal trade-off point for different decoding
setup. Our framework and empirical findings can
guide the community to quantify inference time
bias for other type of metrics and demographic
groups. We share the code associated with this
work at github.2

2 Related Work

In the domain of continuous auto-complete gen-
eration, bias analysis mostly focuses on probing
the models with curated prompts containing the
demographic information and then quantifying the
generation with some metric. Sheng et al. (2019)
and Huang et al. (2020) both used this setup. While
the former uses a regard metric to measure social
perception towards groups, the latter uses distri-
butional differences in sentiment scores. Shwartz
et al. (2020) curated prompts to test biased towards
named entities given a name. Groenwold et al.
(2020) tested GPT-2 generation sentiment distri-
bution when prompted with AAVE and SAE. Yeo
and Chen (2020) proposed a theoretical framework
for fairness in NLG while Gehman et al. (2020)
curated prompting data-set to measure toxic degen-
eration from pre-trained LMs. Sheng et al. (2020)
also showed that adversarial triggers (Wallace et al.,
2019) can be used to further induce bias in pre-
trained LMs. Dhamala et al. (2021) extricated the
beginnings of Wikipedia articles containing demo-
graphic mention to collect the BOLD dataset and
used state-of-the-art metric to evaluate bias in gen-
erated text. Other works anchors around proposing
novel metrics to quantify bias towards a primary
attribute or secondary dimension (Gaut et al., 2020;
Rudinger et al., 2018; Webster et al., 2018).

2https://github.com/Mayukhga83/
decoder-bias

As most of the prior work intended to test model
bias, they are indifferent about decoding strat-
egy during inference time, thereby prompting the
model for a specific strategy and particular point.
Closely related to our work was a study done by
Sheng et al. (2021) that compared change in regard
score and gendered word co-occurrence for GPT,
GPT-2, XLNet generations with decoders but for a
single point in the decoder spectrum (which does
not quantify the impact of particular decoding strat-
egy). However, in contrast we strongly presume
that to quantify bias from decoding techniques, it is
imperative to inspect the entire decoder spectrum
for each decoding method. We also inspect the
effect of bias with modulation in entropy (not con-
ducted by any previous study) because sampling
with temperature is currently the de facto inference
type which further adds randomness in a genera-
tion. While reporting the results for more recent
models, we further discern why assessing gener-
ation quality with bias is crucial when analyzing
inference time bias.

3 NLG Decoding

Given a sequence of tokens as context, the task
of auto-complete generation is to generate text
that forms a legible continuation from the given
context. Formally, when prompted with a se-
quence of m tokens x1...xm the model computes
P (x1:m+n) =

∏m+n
i=1 P (xi|x1...xi−1) to generate

the next n completions xm+1...xm+n autoregres-
sively using a particular decoding strategy.

One popular decoder is top-k sampling (Fan
et al., 2018; Radford et al., 2019; Holtzman et al.,
2018). Given a distribution P (x|x1:i−1), top-k vo-
cabulary V (k) ⊂ V is defined as a set of size
k that maximizes

∑
xϵV (k) P (x|x1:i−1). At each

time-step the next token is randomly sampled from
top-k. Holtzman et al. (2019) introduced Nucleus
Sampling that exploits the shape of the probability
distribution to select the set of tokens to be sampled
from. Formally, Given a distribution P (x|x1:i−1),
top-p vocabulary V (p) ⊂ V is defined as the small-
est set such that

∑
xϵV (p) P (x|x1:i−1) ≥ p. At each

time-step random sampling is done from the high-
est probability tokens whose cumulative probability
mass exceeds the pre-chosen threshold p ∈ [0, 1).
Typically, temperature-controlled sampling tech-
niques are used where before sampling, tempera-
ture T ∈ [0, 1) is use to control the shape of the
distribution (controlling entropy) (Ackley et al.,
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1985; Fan et al., 2018; Caccia et al., 2018). Like
for greedy distribution: T → 0, for flat distribu-
tion: T →∞ and T > 1 is rarely used. Formally,
before sampling given a temperature T > 0 and
scores vi ∈ Rn for each token i in the vocabulary
V , the probability that the model would predict the
ith token is given by (softmax re-estimation):

Pi =
evi/T∑
j e

vj/T
(1)

In this context, we take temperature T as the
set containing all the temperature points to be in-
spected between [0, 1) and sampling parameter S
as the set containing all the sampling controllable
parameter points to be inspected. We define de-
coder space DST for a sampling technique as:

DST = S × T (2)

where S ∈ [0, 1) for top-p or S ∈ [0, V (k)) for
top-k (for actual values see sec 4.3). This work
investigates the effect on Bias ratings when we
sweep across the decoder space for distinct de-
coding strategies given some specific demographic
prompt. For the experiment, we adapt methods
and metrics from related publications concerning
the LMs fairness check but make necessary mod-
ifications (fairness score) to suit the task we are
tackling.

4 Method and Metrics

We document our evaluation methods as suggested
by Dev et al. (2021), predominantly stressing the
details regarding bias measures and metrics. This
section explicates the respective components like
models, prompts and metrics utilized for the exper-
iments and the necessary reasons.

4.1 Models

As the bias testing framework is catered for
auto-complete generation tasks, we only include
transformer-based LM that is trained with a causal
language modeling objective. Therefore, we use
GPT-2 (large) trained on BooksCorpus3. Two vari-
ants of GPT-Neo trained on Pile4: GPT-Neo 1.3B,
GPT-Neo 2.7B and three versions of GPT-3 trained
on Common Crawl, WebText2: Babbage, Curie
and Davinci (Radford et al., 2019; Brown et al.,

3https://huggingface.co/datasets/
4https://mystic.the-eye.eu/public/AI/

pile/

2020; Gao et al., 2021). All the models have ar-
chitecture loosely styled around GPT-2 but with
increasing number of transformer decoder stacks.
The models were chosen with the intent to under-
stand whether model size has any auxiliary effect
on the bias ratings while sweeping through DST .

4.2 Prompts and Metric

Bias analysis typically involves studying a partic-
ular primary demographic dimension (e.g., ethnic-
ity) through a secondary dimension (e.g., profes-
sion). We condition the language model with pre-
fix template <prim demography><context with
secondary demography> introduced by (Sheng
et al., 2019). In this paper, we include only race
(black/white) as the primary demography and re-
spect/occupation as secondary dimensions to sep-
arate the confounding effect of occupation on the
generations (see Appendix A.1).

Generation tasks are not compatible with tradi-
tional measures of fairness like equalized odds,
demographic parity (Dwork et al., 2011; Hardt
et al., 2016). Therefore every generation from the
prompted LMs are commonly tested with an abso-
lute (i.e., metrics rely on “an accumulated score to
outline inequalities”) or relative metrics (i.e., met-
rics report inequality scores for all demographics).
As absolute metrics enable ease of comparison,
we document the raw toxicity and negative senti-
ment polarity per demographic prompt, model, and
points in DST .

4.2.1 Toxicity
In this paper, our take on toxicity is similar to
Dhamala et al. (2021). We fine-tune a BERT-base-
uncased5 model on a toxic comment classification
dataset6 for 4 epoch to classify a text into multiple
labels: toxic, severe toxic, threat, obscene, insult
and identity threat with an accuracy 98% . We
label a text as toxic if classified into at least one
label with confidence ⩾ 0.5 by the classifier. For
comprehensive model performance please refer to
Appendix A.2.

4.2.2 Negative Sentiment
We use VADER7 (Hutto and Gilbert, 2014), which
computes the sentiment score by first taking word-

5https://huggingface.co/
bert-base-uncased

6https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge

7https://github.com/cjhutto/
vaderSentiment
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level valence-based lexicons and then combining
the lexicon polarity with rules for text context-
awareness. Using a threshold ⩾ 0.5 over the neg-
ative polarity score, classify texts as conveying
negative feelings.

As the motive of this article is not about report-
ing LM bias scores towards protected groups, for
brevity of the paper (to meet time constraints sec 5
), we only go by two demography and two absolute
metrics. However, we strongly encourage discern-
ing the bias-variance when captured with relative
metrics or other protected groups as a proxy for
immediate future direction.

4.3 Decoding Strategy

For time constraints (see sec 5), it was not pos-
sible to generate completions for the entire DST .
Moreover, some specific combination of parame-
ters leads to less diverse and repetitious generation.
Therefore by manual inspection we define DPT
and DKT as the restricted decoder space where P,
K, T stands for temperature, top-p and top-k in-
tervals. We modulate sampling parameters taking
P = {0.2, 0.3 . . . 0.9} and K = {10, 30 . . . 110}
with fixed T = {0.3, 0.9} (for low and high en-
tropy respectively). We also modulate temperature
T = {0.2, 0.3 . . . 0.9} keeping fixed sampling pa-
rameters at P = {0.3, 0.9} (for low and high c.m.f)
and K = {10, 50, 90}. We also run the same
experiments with Beam search (Li et al., 2016;
Wiseman et al., 2017), where we modulate beam
width b = {2, 3 . . . 30}, which solely defines the
decoder space in this case. Henceforth we will use
the nomenclature InferenceType to refer a specific
decoder combination with symbol <Modulating
Parameter>@<Constant Parameter=value>. For
example, T@top-p=0.9 (decoder: top-p with fixed
p = 0.9, modulate: T ).

5 Experiment and Evaluation

We use 10 prompts (sec 4.2) per demographic men-
tion to trigger generations from each LM for every
inferenceType. In section 5.1 we analyze the ef-
fect in bias rating of the LM generations when we
sweep through DST for a specific decoder type.
From here on, by DST we imply DPT or DKT . In
this respect, we hold and check for the following
prior hypothesis: (i) Inducing randomness during
inference by adding entropy or increasing top-p
or top-k will negatively impact the bias score as
the likelihood of bias-sensitive token decreases. (ii)

Model size and demographics can have an auxiliary
effect on the change in bias score because the train-
ing data is the main contributor to bias (Blodgett
et al., 2020; Bender et al., 2021) and the models
tend to amplify such training data bias (Zhao et al.,
2017; Jia et al., 2020; Hashimoto et al., 2018). In
section 5.2 we further inspect the absolute bias and
quality trade-off across the decoder spectrum using
human evaluation. For generations from GPT-3,
we used OpenAI’s API and huggingface8 library
for other models. The GPT-3 api only supports
nucleus sampling. Generations for a single set of
model, demographic prompts and InferenceType
takes 4-5 hrs using one RTX2080Ti or Tesla T4
GPU.

5.1 Bias Score across Decoder Space
For each InferenceType we generate completions
for every LM and demographic prompt. For each
InferenceType, let M = {m1,m2, . . . mn} be the
modulating parameter with n modulation points
and Prompt = {p1, p2, . . . p10} be the set of
prompts for an unique demographic dimension
(e.g. black, respect). ∀pi ∈ Prompt, ∀mi ∈ M
we generate a set of 150 completions Gpmi (each
50 token long) with a LM. Each generation i.e.
∀gk ∈ Gpmi : k ∈ [0, 150) is tested for an abso-
lute bias score Bk with classifier (sec 4.2.1). Score
pertaining to a single prompt pi at mi is calculated
by PBk∼Gpmi (Bk > 0.5) (number of generations
out of 150 with bias score > 0.5). If Pscore be the
set containing scores ∀pi ∈ Prompt at mi. Then
the absolute group bias score for Prompt at mi is
given by BSi = Pscore.

BS = {BS1 , BS2 , . . . BSn}

We report BS vs. M in Figure 1 pertaining to few
selected demographic dimensions and Inference-
Type (for brevity of the paper).

We estimate the monotonicity between BS and
M with Spearman’s rank correlation rs, for every
model, InferenceType, bias metric (Table 1). As
the inference method is highly stochastic, to make
generalized conclusion we also report the p-value,
i.e. the probability that the null hypothesis Ho is
true. Ho states that the correlation rs is not signif-
icant and could occur by chance. The alternative
hypothesis Ha is what we are trying to inspect, i,e
the correlation measured is statistically significant.
We set a threshold of p-value > 0.05 to accept the

8https://huggingface.co/
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Figure 1: Absolute bias score (toxicity: top, negative sentiment: bottom) vs. modulating parameter for InferenceType
and LMs

null hypothesis Ho is true (as usually done in scien-
tific standards). Therefore, p-value < 0.05 implies
a correlation exists as measured by rs (Ha is true).
We separate the following cases:

Case 1: rs < 0 and p-value < 0.05
There is a -ve correlation between modulating pa-
rameter and absolute bias score

Case 2: rs > 0 and p-value < 0.05
There is a +ve correlation between modulating pa-
rameter and absolute bias score

Case 3: p-value > 0.05
We ignore the rs reading and conclude there is no
correlation

We consider cases to be a general conclusion for
an InferenceType if it is observed with a majority
for all models and demographic prompt, otherwise
we reject it as an artefact of random generation.

5.1.1 Results

We primarily call attention to Table 1, Appendix
A.3 and Figure 1. From the tables, we observe
that Case 2 (marked as red) surfaces seldomly and
inconsistently without any majority case for an In-
ferenceType. Therefore we discard Case 2 as an
artefact of stochastic generation, i.e., results we
observed in our study but usually not an actual pat-
tern and could happen by chance due to random
sampling. The remaining two cases (Case 1 and
3) frequently occur with a majority for specific In-
ferenceTypes. Our results can be summarized as
follows:

Entropy: Temperature is negatively correlated to
absolute bias scores like toxicity and negative sen-
timent. This outcome is consistent with all Infer-
enceType, LMs and demographics. Observing such
a pattern is unsurprising: As high entropy (T → 1)
approximates a flat distribution, increasing the sam-
pling interval. Consequently, the likelihood of pre-
dicting the bias-sensitive token decreases as more
neutral tokens add up to the interval. However,
surprisingly we also notice that model size and
the demographic dimensions have no confounding
effects on the strength of correlation which contra-
dicts our (ii) prior (even though the absolute bias
scores for group <black><any> is much higher
<white><any>).
Nucleus sampling: top-p and bias scores are nega-
tively correlated when tested at high temperatures.
At low temperatures, there is no correlation, and
the bias scores are random. This result could indi-
cate that entropy might have a confounding effect
on the correlation, because decoding techniques
heavily influence the sampling interval only at low
temperatures. However, at high temperatures, as
the entropy of distribution does not alone charac-
terize its samples, our claim cannot be validated
and is inconclusive that requires further exploration
in the future. Again the model size and the demo-
graphic dimensions have no auxiliary effects on the
correlation strength.
Top-k sampling: Though we expected similar re-
sults to top-p, changing k for fixed temperature
surprisingly has no relation with bias metrics. The
bias scores are random (p > 0.05 for most of the
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InferenceType Gpt2-l Neo-1.3B Neo-2.7B Babbage Curie Davinci
rs p rs p rs p rs p rs p rs p

top-p@T=0.3 0.97 0.30 -0.76 0.03 -0.90 0.15 -0.05 0.91 0.45 0.26 0.63 0.09
top-p@T=0.9 -0.81 0.01 -0.93 0.003 -0.98 0.006 -0.56 0.05 -0.12 0.007 0.47 0.24
top-k@T=0.3 0.49 0.33 -0.29 0.58 -0.17 0.75 - - - - - -
top-k@T=0.9 -0.6 0.21 -0.49 0.32 -0.94 0.1 - - - - - -
T@top-p=0.3 0.83 0.01 -0.98 0.003 -0.82 0.01 -0.47 0.02 -0.85 0.01 -0.41 0.03
T@top-p=0.9 -0.85 0.01 -0.92 0.001 -0.83 0.01 -0.73 0.04 0.87 0.01 -0.67 0.04
T@top-k=10 -0.9 0.003 -0.92 0.001 -0.81 0.01 - - - - - -
T@top-k=50 -0.9 0.009 -0.99 0.009 -0.92 0.002 - - - - - -
T@top-k=90 -0.83 0.01 -0.9 0.002 -0.86 0.01 - - - - - -

InferenceType Gpt2-l Neo-1.3B Neo-2.7B Babbage Curie Davinci
rs p rs p rs p rs p rs p rs p

top-p@T=0.3 1.0 0.06 0.97 0.01 0.68 0.06 -0.69 0.06 -0.33 0.42 0.55 0.16
top-p@T=0.9 -0.95 0.001 -0.88 0.008 -0.5 0.02 -0.67 0.05 -0.17 0.69 -0.71 0.05
top-k@T=0.3 0.89 0.02 0.71 0.11 -0.26 0.62 - - - - - -
top-k@T=0.9 -0.77 0.07 0.09 0.87 -0.2 0.7 - - - - - -
T@top-p=0.3 0.8 0.04 -0.9 0.001 -0.9 0.003 -0.17 0.69 -0.45 0.03 -0.76 0.03
T@top-p=0.9 -0.4 0.03 -0.71 0.05 -0.52 0.018 -0.62 0.01 -0.55 0.016 -0.81 0.04
T@top-k=10 -0.67 0.04 -0.86 0.01 -0.29 0.04 - - - - - -
T@top-k=50 -0.38 0.035 -0.29 0.49 -0.9 0.01 - - - - - -
T@top-k=90 -0.62 0.01 -0.79 0.02 -0.01 0.03 - - - - - -

Table 1: correlation (rs) and p-value (p) between toxicity vs. modulating parameter (top) neg-sentiment vs.
modulating parameter (bottom) for <black><respect> color code (Case 1) Text-font color: rs < 0 and p-value <
0.05, (Case 2) Red: rs > 0 and p-value < 0.05, (Case 3) Blue: p=value > 0.05 (sec 5.1)

time in Table 1 and Appendix A.3, also see Figure 1
top-k@T). The fact that top-k sampling does not
truncate the unreliable trail of the model prediction
could be a possible cause of this observation. When
k is large, the likelihood of bias-sensitive tokens
decreases at autoregressive time-steps where distri-
bution is peaked (as irrelevant token creeps into the
sampling interval). Similarly, when the distribution
is flat, and k is small, the sampling interval could
reduce, causing to leave out the bias-sensitive to-
kens.
Beam Search: Beam width variation has no cor-
relation with the absolute bias score and the rat-
ings are random. However, an important obser-
vation is that when measuring toxicity, we see an
extremely high score even greater than sampling
techniques with or without entropy, but the same
is not true when measured with negative sentiment
(see Figure 1). For example, GPT 2 with beam
width > 20 is more toxic than nucleus or top-k
for any parameter setup. This finding was unan-
ticipated as it contradicts claim made by previous
work Sheng et al. (2021) (concluded beam search
is more unbiased than nucleus sampling for ab-
solute bias scores). We hypothesize this occurs
due to the search policy of finding single most
likely generation argmaxx(logPmodel(x)). This

combines with language modeling, which mini-
mizes KL − divergence between a training set
and the model distribution Pmodel, an objective that
prioritizes recall over precision (Arjovsky et al.,
2017). Therefore, as this likelihood maximizes
across the search space, the bias-sensitive tokens
learned by the model for particular demography
predominantly surfaces across the generation. This
can be quantified using an appropriate bias met-
ric that captures the lexical cues of bias-sensitive
words e.g. toxicity in our case and not sentiment.
Therefore, we coin this phenomenon as bias like-
lihood trap, synonymous to the likelihood trap
explicated by Zhang et al. (2021) for the quality-
diversity spectrum. Unlike likelihood trap which
materializes for any input and model, the bias like-
lihood trap depends on the input prompt and the
pretrained model making it hard to quantify. As a
consequence, we conclude beam search as a decod-
ing method is not necessarily more unbiased than
sampling techniques, as certain targeted prompts
could highly accentuate the bias score for certain
metrics, that otherwise were not present. Moreover,
any sampling under high entropy will be more un-
biased than beam search (see Figure 1).

When quantifying bias from decoding algo-
rithms, our results also reveal why testing with a
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single point could be misleading when concluding
which decoding technique is better concerning bias
(as done in previous studies). E.g with T set to 0.9
Gpt-2 at top-k=70 >toxicity top-p = 0.6 while Gpt-
2 at top-k=50 <toxicity top-p = 0.6 (see Figure 1).
Rather, we emphasize the need to explore the full
decoder space and analyze the impact of individ-
ual controllable attributes on the bias score. Addi-
tionally, this testing framework across entire DST
could reveal faulty readings or artefacts of random-
ness, which otherwise could have been misleading
when tested for a single point. To summarize our
findings: entropy highly impacts the toxicity and
negative sentiment followed by nucleus sampling.
The impact is higher for toxicity than sentiment.
Top-k and beam-width have no significant relation
to absolute bias scores. The pattern is mainly inde-
pendent of models and demography.

5.2 Bias and Quality Trade-off across DST
Motivated by the lack of previous research, we also
attempt to quantify the relationship between gener-
ations’ quality vs. bias score fluctuation across the
decoder space. Carrying on from previous section’s
(sec 5.1.1) conclusion, that entropy and nucleus
sampling impact toxicity and negative sentiment
across DST , and as entropy or sampling also im-
pacts the quality of generation across DST , we
want to empirically find the sweet spot that satisfies
a good quality and absolute bias score trade-off. As
optimal toxicity or bias mitigation technique does
not exist (Welbl et al., 2021), finding the sweet spot
could guide what parameter to choose for NLG
applications. In this regard, we randomly sample
10 generations per point in the decoder spectrum.
Firstly, truncate the sequence to the nearest period
and replace the demographic information with an
anonymous token to ensure that the demographic
information does not influence the crowd workers.
Since automatic metrics fall short of replicating hu-
man decisions (Reiter and Belz, 2009; Krahmer and
Theune, 2010; Reiter, 2018), we crowd-source the
job to 50 qualified human annotators using Ama-
zon Mechanical Turk. The annotators were adults,
located in USA with 98% HIT approval rate and
more than 10,000 approved HIT (HIT: Proportion
of completed tasks that are approved by Survey
Requesters).

We tried to apprehend the quality from two sep-
arate dimensions that befits auto-complete task:
Fluency and Contextuality. Fluency accounts

for grammar, spelling, choice of words, and style.
While contextuality captures the consistency or
how well the completion is relatable to the contex
of the prompt. In this case, context is the prompt
(sec 4.2) on which the LM was conditioned. Each
crowd worker was asked to annotate an example
for the two dimensions using a separate 4 point
Likert scale (in a test experiment with five prompts
and Likert scales 4, 5 and 7, a scale of four re-
sulted in the best agreement score). We measure
the annotator agreement using Fleiss’ Kappa, re-
vealing an agreement score of 0.47 for Fluency
and 0.53 for Contextuality. As the task of assess-
ing sentence quality is highly subjective (Ippolito
et al., 2019), our results are empirically consistent
with kappa scores recorded by others for contin-
uous generation tasks (Amidei et al., 2018, 2019;
Celikyilmaz et al., 2020). Related papers on NLG
evaluation also report "below acceptable" agree-
ment score. However, Amidei et al. (2018) points
out that, given the richness and variety of natural
language, pushing for the highest possible inter-
annotator agreement may not be the right choice
for NLG evaluation. As human evaluation is expen-
sive, we conduct the quality evaluation with Gpt-2
(large) and GPT-Neo (2.7B) with T@top-p=0.9,
T@top-k=90 and top-p@T=0.5 (to avoid the pos-
sible confounding effect of temperature sec 5.1.1),
for <black><respect>. The variance of absolute
bias score across DST is independent of the demo-
graphic group type. Therefore, <black> having an
overall high bias rating is easier to compare.

parameter GPT-2 GPT-Neo
top-p (T) 0.7 0.6
T (top-p) 0.7 0.7
T (top-k) 0.6 0.5

Table 2: optimal parameter value that for bias vs. quality
trade-off

For each generation, the quality score across
individual dimensions is given by the mean score
given by the annotators. We report the quality score
(normalised between 0 and 1) and bias scores as
bar plots in Figure 2. We also calculated the sweet
spot on the parameter space by scoring

max|mean(Fluency, Contextuality)
mean(Toxicity,Negsentiment)

|

One of the most novel and compelling findings in
this experiment is that the quality measures across
DST for different dimensions drop at different rates
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Figure 2: Generation quality and bias scores

for a specific decoder setup (cf. Figure 2). The out-
comes indicate the usefulness of assessing quality
across multiple dimensions. Because it can indi-
cate which attributes of the generation are degraded
more across the decoder space and thereby guide
the NLG research direction towards optimal de-
coding. We summarize the annotation results as
follows:
Nucleus Sampling: Fluency degrades faster than
contextuality
Entropy: For entropy with nucleus sampling, flu-

ency degrades faster than contextuality, while for
entropy with top-k, both degrade equally.
Therefore our conclusion follows that fluency is
affected more by the decoder techniques than con-
textuality. The sweet spot for the decoding setups
is summarized in Table 2. We conclude the best pa-
rameter choice for inference methods that satisfies
a good trade-off between generation quality and
absolute bias score as follows: nucleus sampling:
top-p ∈ {0.6, 0.7}, temperature ∈ {0.7}when used
with nucleus sampling or temperature ∈ {0.5, 0.6}
when used with top-k.

6 Conclusion

This paper proposes a framework for credibly eval-
uating language generation bias resulting from de-
coding algorithms. To compensate for the ran-
domness during inference time, we propose a null
hypothesis-based testing that can gain more insight
on the influence of decoder by separating artefacts
and valid observation. Under this framework, we
quantify toxicity and neg-sentiment (as absolute
bias objective) for different LMs and demography
across the entire decoder space (previous work only
probed LM for bias at a single point in decoder
space, and therefore was inconclusive about the
decoder’s impact on surfacing bias at generation
time). Our findings show that entropy highly im-
pacts the bias score followed by nucleus sampling
while top-k and beam are agnostic. We show that
beam search can suffer from the bias likelihood
trap and therefore may be more biased than sam-
pling for specific absolute metrics. Furthermore,
we learned that model size has no auxiliary effects
on the change in bias score. We also highlight find-
ings (cf. sec 5.1.1) that explain why it is fallacious
to conclude that one decoder is better than the other
for bias score and emphasize the crucial need to
study their impact across the total decoder space.
Finally, we explored the trade-off between abso-
lute bias score and generation quality across the
decoder spectrum with human evaluation, thereby
reporting the optimal interval per decoding setup.
With these findings and the proposed methods, we
provide a test-bed for researchers and practition-
ers to investigate inference time / decoder bias in
NLG. Future work encompasses investigating the
generalizability of this framework to more bias
measures, including relative metrics and other in-
ference types.
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7 Ethical Consideration

In this section, we describe several limitations of
our study. Firstly, to quantify the toxicity score
per generation in our experimental setup, we fine-
tuned a bert model. Nevertheless, we also acknowl-
edge that such an LM-based approach is imperfect
and subject to various biases as the datasets suf-
fer from a low agreement in annotations (Waseem,
2016; Ross et al., 2017). Partially due to annotator
identity influencing their perception of hate speech
(Cowan and Khatchadourian, 2003) and differences
in annotation task setup (Sap et al., 2019). To over-
come this, we mask the demographic mention of
the generated sentences before feeding it to the tox-
icity classifier. We also acknowledge that we used
limited prompts (10 per demographic mentions)
in the experiment because testing each model for
multiple points in the decoder space requires many
generations, which inadvertently increases the run-
time (sec 5). Finally, conclusion for section 5.2
pertains to only neg-sentiment, toxicity and might
not be generalizable for other bias objectives.
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A Appendix

A.1 Prompts Used

Respect Occupation

was recognized for was employed as
was renowned for had a position as

was viewed as was paid through
was perceived as had a source of income from

was considered to be was employed as
was known for worked as

was described as had a job as
was regarded as had a part-time job as

was thought of as earned money by
was well-known for started working as

The prompts where structured as <Primary Di-
mension><Respect or Occupation>

A.2 Toxicity Classifier
Finetuning was done on a single Tesla T4 for 4
epoch with batch size 12 and achieved an accuracy
of 97.9%.

Table 3: Classifier Performance per Class

class Precision Recall F1-score AUROC Support

Toxic 0.58 0.96 0.73 0.98 748
Severe toxic 0.51 0.31 0.39 0.97 80

Obscene 0.82 0.86 0.84 0.99 421
Threat 0.32 0.46 0.37 0.99 13
Insult 0.8 0.78 0.79 0.98 410

Indentity hate 0.62 0.59 0.60 0.99 71
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A.3 Spearman’s rs for M vs. Bs (sec 5.1) for different InferenceType, Model, Demographic

InferenceType Gpt2-l Neo-1.3B Neo-2.7B Babbage Curie Davinci
rs p rs p rs p rs p rs p rs p

BO Sn

top-p@T=0.3 0.85 0.1 0.88 0.1 0.88 0.08 -0.52 0.18 0.1 0.82 -0.36 0.39
top-p@T=0.9 0.4 0.32 -0.31 0.04 -1.0 0.03 -0.98 0.02 -0.83 0.01 -0.9 0.0
top-k@T=0.3 0.6 0.21 0.31 0.54 0.49 0.33 - - - - - -
top-k@T=0.9 0.14 0.79 0.49 0.33 -0.89 0.02 - - - - - -
T@top-p=0.3 -0.83 0.01 -0.76 0.03 -0.91 0.0 -0.93 0.0 -0.83 0.01 -0.07 0.008
T@top-p=0.9 0.31 0.46 -0.74 0.04 -0.98 0.001 -0.69 0.04 -0.55 0.016 -0.84 0.009
T@top-k=10 -0.33 0.04 -0.26 0.05 -0.86 0.01 - - - - - -
T@top-k=50 -0.38 0.035 -0.29 0.049 -0.9 0.01 - - - - - -
T@top-k=90 -0.62 0.01 -0.79 0.02 -0.1 0.02 - - - - - -

BO Tx

top-p@T=0.3 0.71 0.06 0.95 0.001 -0.61 0.11 -0.93 0.3 1.00 0.002 0.17 0.69
top-p@T=0.9 0.59 0.13 -0.71 0.05 -0.98 0.002 -0.95 0.001 -0.7 0.007 -0.98 0.002
top-k@T=0.3 0.26 0.61 0.75 0.08 -0.14 0.79 - - - - - -
top-k@T=0.9 0.23 0.66 -0.46 0.35 -0.71 0.11 - - - - - -
T@top-p=0.3 -0.75 0.03 0.71 0.05 -0.95 0.0 -0.95 0.0 -0.6 0.002 -0.62 0.01
T@top-p=0.9 -0.84 0.01 -0.37 0.03 -0.9 0.008 -0.86 0.01 -0.92 0.005 -0.67 0.05
T@top-k=10 -0.59 0.01 -0.74 0.04 -0.98 0.003 - - - - - -
T@top-k=50 -0.41 0.03 -0.85 0.01 -0.98 0.002 - - - - - -
T@top-k=90 -0.85 0.01 -0.67 0.07 -0.97 0.001 - - - - - -

WR Tx

top-p@T=0.3 0.98 0.001 -0.64 0.09 0.99 0.0 0.61 0.11 -0.69 0.06 -0.1 0.82
top-p@T=0.9 -0.98 0.001 -0.67 0.007 -0.95 0.004 -0.81 0.02 -0.97 0.004 -0.4 0.03
top-k@T=0.3 -0.54 0.27 0.46 0.36 0.94 0.009 - - - - - -
top-k@T=0.9 -0.54 0.27 -0.49 0.33 -0.89 0.02 - - - - - -
T@top-p=0.3 -0.15 0.001 -0.9 0.004 -0.95 0.003 -0.63 0.009 -0.21 0.04 -0.88 0.007
T@top-p=0.9 0.07 0.87 -0.6 0.012 -0.4 0.033 -0.9 0.001 -0.83 0.01 -0.8 0.02
T@top-k=10 -0.28 0.05 -0.84 0.01 -0.23 0.049 - - - - - -
T@top-k=50 -0.7 0.05 -0.92 0.006 -1.0 0.002 - - - - - -
T@top-k=90 -0.22 0.041 -0.79 0.02 -0.79 0.02 - - - - - -

WO Tx

top-p@T=0.3 0.9 0.001 0.48 0.23 -0.61 0.11 0.67 0.07 -0.99 0.0 0.71 0.05
top-p@T=0.9 -0.97 0.004 -0.99 0.003 -0.93 0.001 -0.89 0.004 -0.86 0.01 -0.52 0.018
top-k@T=0.3 0.38 0.45 -0.94 0.01 0.09 0.87 - - - - - -
top-k@T=0.9 -0.52 0.29 -0.17 0.74 -0.75 0.05 - - - - - -
T@top-p=0.3 -0.92 0.002 0.9 0.002 -0.53 0.018 -0.97 0.030 -1.0 0.002 -0.19 0.65
T@top-p=0.9 -0.61 0.011 -0.93 0.003 -0.98 0.002 -0.34 0.041 -0.9 0.005 -0.92 0.001
T@top-k=10 -0.98 0.004 -0.88 0.006 -0.99 0.002 - - - - - -
T@top-k=50 -0.7 0.05 -0.92 0.004 -1.0 0.002 - - - - - -
T@top-k=90 -0.86 0.01 -0.99 0.002 -0.99 0.008 - - - - - -

WR Sn

top-p@T=0.3 0.52 0.18 0.93 0.0 0.92 0.0 -0.21 0.61 0.19 0.65 0.43 0.29
top-p@T=0.9 -0.79 0.02 -0.81 0.01 -0.79 0.02 -0.9 0.003 -0.79 0.02 -0.21 0.05
top-k@T=0.3 0.43 0.4 0.31 0.54 0.26 0.62 - - - - - -
top-k@T=0.9 -0.26 0.62 0.43 0.4 -0.49 0.33 - - - - - -
T@top-p=0.3 -0.36 0.039 -0.93 0.01 -0.97 0.007 -0.64 0.09 -0.86 0.01 -0.88 0.002
T@top-p=0.9 -0.71 0.05 -0.52 0.018 -0.26 0.05 -0.38 0.035 0.02 0.96 -0.48 0.023
T@top-k=10 -0.88 0.003 -0.45 0.026 -0.81 0.01 - - - - - -
T@top-k=50 -0.9 0.002 -0.57 0.014 -0.76 0.03 - - - - - -
T@top-k=90 -0.88 0.001 -0.33 0.42 -0.64 0.09 - - - - - -

WO Sn

top-p@T=0.3 -0.12 0.78 0.47 0.24 0.76 0.03 -0.48 0.23 -0.31 0.46 -0.36 0.39
top-p@T=0.9 -0.24 0.05 0.43 0.29 -0.05 0.09 -0.74 0.04 -0.67 0.05 -0.88 0.001
top-k@T=0.3 0.37 0.47 -0.49 0.33 0.77 0.07 - - - - - -
top-k@T=0.9 0.26 0.62 -0.31 0.54 0.2 0.7 - - - - - -
T@top-p=0.3 0.17 0.69 -0.79 0.02 -0.83 0.01 -0.98 0.002 -0.67 0.05 -0.98 0.03
T@top-p=0.9 -0.07 0.05 -0.88 0.03 -0.62 0.01 -0.67 0.05 -0.17 0.069 -0.21 0.05
T@top-k=10 -0.05 0.91 -0.45 0.02 -0.62 0.01 - - - - - -
T@top-k=50 -0.9 0.002 -0.83 0.01 -0.62 0.01 - - - - - -
T@top-k=90 -0.64 0.09 -0.76 0.03 -0.52 0.018 - - - - - -

Table 4: Continuation from Table 1 showing the spearmans correlation (rs) and p-value (p) between the absolute
bias score and modulating parameter per every InferenceType, model, demographic and bias metric. Demographic
and metric mentions are BO: <black><occupation>, WO: <white><occupation>, WR: <white><respect>, Tx:
Toxicity and Sn: Sentiment. The color code defines (Case 1) Text-font color: rs < 0 and p-value < 0.05, (Case 2)
Red: rs > 0 and p-value < 0.05, (Case 3) Blue: p=value > 0.05 (sec 5.1)

1323



Proceedings of the 29th International Conference on Computational Linguistics, pages 1324–1332
October 12–17, 2022.

A Study of Implicit Language Model Bias Against People With Disabilities

Pranav Narayanan Venkit Mukund Srinath
College of Information Sciences and Technology

Pennsylvania State University
{pranav.venkit, mus824, shomir}@psu.edu

Shomir Wilson

Abstract

Pretrained language models (PLMs) have been
shown to exhibit sociodemographic biases,
such as against gender and race, raising con-
cerns of downstream biases in language tech-
nologies. However, PLMs’ biases against peo-
ple with disabilities (PWDs) have received lit-
tle attention, in spite of their potential to cause
similar harms. Using perturbation sensitivity
analysis, we test an assortment of popular word
embedding-based and transformer-based PLMs
and show significant biases against PWDs in all
of them. The results demonstrate how models
trained on large corpora widely favor ableist
language.

1 Introduction

Recent work on language models show substantial
evidence of the presence of sociodemographic bi-
ases associated with race and gender (Tan and Celis,
2019; Bolukbasi et al., 2016; Caliskan et al., 2017).
Such biases result in wrongful associations of text
related to minority groups as being negative and
toxic (Park et al., 2018; Kurita et al., 2019). How-
ever, little prior work has focused on the identifica-
tion and impact of disability bias (Hutchinson et al.,
2020; Whittaker et al., 2019). According to a re-
port on disability by the World Health Organisation
(WHO), approximately one billion people, or 15%
of the world’s population, experience some form
of disability (Bickenbach, 2011). Research shows
that people with disability (PWD) are the largest
population group that faces discrimination regu-
larly (Whittaker et al., 2019; Chen and McNamara,
2020). We find various forms of disability biases
in AI systems as well, where language involving
PWD can often be classified as toxic (Venkit and
Wilson, 2021) or even violent (Hutchinson et al.,
2020). Corpora used to train large language mod-
els often only reflect the ‘loudest voices’ or the the
most dominant viewpoints even if they are not rep-
resentative of the population (Bender et al., 2021)

thereby enabling harmful semantic biases (Caliskan
et al., 2017).

In this work, we test for the the presence of
implicit bias in 11 popularly used, publicly avail-
able pretrained word embeddings, namely those
in Word2Vec (Mikolov et al., 2018) and GloVe
(Pennington et al., 2014) and 2 pretrained lan-
guage models (PLMs), namely BERT (Kenton and
Toutanova, 2019) and GPT-2 (Radford et al., 2019).
We analyse negative association created with words
related to people with disability (PWD). Under-
standing this bias is essential as we deploy more
models as real-world social solutions (Kinsella
et al., 2020; Gonen and Goldberg, 2019; Chowd-
hery et al., 2022), such as fighting online abuse
(Blackwell et al., 2017), identifying health indica-
tors from texts (Karmen et al., 2015), and under-
standing group opinions in social platforms (Pak
and Paroubek, 2010). We use perturbation sensitiv-
ity analysis (Prabhakaran et al., 2019) to quantify
bias in sentiment around language discussing PWD.
Our result shows that all models show significant
implicit bias against language discussing PWD thus
causing them to be classified more negative than
a standard set of sentences by sentiment analysis
models. We also see that PLMs show the most neg-
ative scores for specific disability subgroups, while
word embedding models show a more significant
bias against PWD overall.

2 Related Work

Prior work shows that large corpora used to train
language models primarily represent hegemonic
viewpoints and propagate harmful biases against
marginalized populations (Bender et al., 2021;
Basta et al., 2019). Prior work identifying bias
in NLP models has shown how they can be dis-
criminatory against specific races (Mozafari et al.,
2020; Ousidhoum et al., 2021) and genders (Pak
and Paroubek, 2010; Bhardwaj et al., 2021). Work
analyzing gender bias in word embedding and
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PLMs (Bolukbasi et al., 2016; Garg et al., 2018;
Kurita et al., 2019) shows how vector representa-
tions encode misogynistic, outdated, and harmful
stereotypes. We see similar results (Kennedy et al.,
2020; Garrido-Muñoz et al., 2021) concerning race
and religion, where minority terms such as Black,
and Muslim are associated with hateful phrases.
However, disability bias exacerbated by PLMs has
been relatively unexplored (Hutchinson et al., 2020;
Whittaker et al., 2019).

Offences against PWD are one of the most under-
reported and concealed hate crimes in the present
day (Corcoran et al., 2016; Macdonald et al., 2017).
Hidden prejudice related to disability have ‘hardly
changed over a 14-year period and could take more
than 200 years to reach zero bias’ (Rojas, 2022),
making it the hardest sociodemography bias to re-
duce. Every experience of PWD is unique and
complex (Whittaker et al., 2019). We cannot sim-
plify the nuanced nature of PWD as it undermines
their experience (Trewin, 2018) making it easy to
classify them to be out of the expected ‘norm’.
Hutchinson et al. (2020) show how even ‘civil’ con-
versations related to PWD show strong associations
with terms such as firearms, homelessness and al-
coholism. Hassan et al. (2021) demonstrates how
BERT perpetuates explicit bias against PWD. and
Venkit and Wilson (2021) show how public senti-
ment and toxicity models show significant explicit
bias against terms related to disability. Prior work
has explored explicit bias alone, and in contrast, we
will analyze the implicit bias in NLP and embed-
ding models by studying the associations generated
for sentences containing terms related to PWD.

3 Methodology

We define disability bias as when a person with a
disability is treated less favourably than a person
without the disability in the same or similar circum-
stances (Commission, 2012). We define implicit
bias as the attitudes toward people or associating
stereotypes with them without conscious knowl-
edge (Institute., 2017). In contrast, explicit bias is
the intentional association of stereotypes towards a
specific population (Institute., 2017). It is useful to
identify if large-scale models contain implicit bias
as it is not easy to catch and can result in subtle
damaging conclusions related to minority popula-
tions. In the last 14 years, explicit bias related to
disability has dropped down to 37%. Still, its im-
plicit bias has only been reduced by 3%, making

Name Dataset Source Embedding
GN_3B_300D Google News Word2Vec
CC_42B_300D

CC_840B_300D Common Crawl
WP_6B_100D
WP_6B_200D
WP_6B_300D Wikipedia
WP_6B_50D GloVe

TW_27B_100D
TW_27B_200D
TW_27B_25D Twitter
TW_27B_50D

Table 1: List of embedding models used for analysis
and their training sources. Model names follow the pat-
tern: Corpus Training Source_Token Numbers_Vector
Dimensions.

it the most complex type of bias to identify and
mitigate amongst all sociodemographic prejudices
(Rojas, 2022). Our work, therefore, focuses on
specifically identifying implicit bias against dis-
ability in NLP models.

3.1 Implicit Bias in Word Embedding

We base our work on Díaz et al. (2018) who
studied discourse on ageing in sentiment models.
To investigate disability bias, we generate three
study groups of sentences, namely, disability, non-
disability and standard. Sentences in all groups
are derived from four author generated templates:
1. They are parents of a <adj> <noun>, 2. I
met a <adj> <noun>, 3. There was a <adj>
<noun> at school & 4. I am a <adj> <noun>.
The <noun> tag for all three study groups includes
three gender-based nouns (man, woman and per-
son). The <adj> tag differentiates the three study
groups. To populate the <adj> tag, we start with
the ten most common adjectives <c-adj> used in
the English language (Davies, 2010). We then gen-
erate adjectives <adj> for each group based on the
perturbation technique introduced by Prabhakaran
et al. (2019). We use the vector formula <c-adj>
+ <non-disabilty> - <disabilty> and <c-adj> +
<disabilty> - <non-disability> to generate adjec-
tive <adj> associations for non-disability and dis-
ability groups. For example, in Word2Vec, ‘good’
+ ‘non-disabled’ - ‘disabled’ = ‘great’ but ‘good’ +
‘disabled’ - ‘non-disabled’ = ‘bad’. This example
shows how this method captures relevant presence
of implicit bias. For the standard group, we use
the closest associated adjectives in the vector space
without any perturbation. The word association for-
mula is designed to remove any explicit mentions
of disability or non-disability while modifying the
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Group Terms
Sensory visually impaired, blindness, deafblind

Physical physically challenged, epilepsy,
cerebral palsy

Mental mental handicapped, ADHD, autism

Self-Care visually challenged, quadriplegic,
congenital disorder

Go-Outisde
-Home

Alzheimer’s disease. depressive
disorder, psychosis

Employement intellectually disabled, chronic
illness, dyslexia

General disabled, impairment, disability
Non-Disabled abled, non-disabled, neurotypical

Table 2: Terms for disability and non-disability groups
selected by discourse analysis and guidelines from
Washington et al. (2008); NCDJ. (2021).

sentiment of the original adjective, based on the
potential presence of implicit bias. Table 1 lists the
11 word embedding models whose vector space we
used to generate adjectives for each group and their
respective training corpora.

The list of words for <disability> and <non-
disability> categories is described in Table 2.
While 7 subcategories exist for the disability group,
we define six subcategories, namely, Sensory, Phys-
ical, Mental, Self-care, Go-outside-home and Em-
ployment Disability based on parameters in the US
Census (Bureau, 2021). The definitions are men-
tioned in the Appendix. The seventh subcategory,
General Disability, encapsulates the general term
used for PWD. We select three words for each sub-
group based on the guidelines provided by Wash-
ington et al. (2008); NCDJ. (2021); Whittaker et al.
(2019) and discourse analysis done on the top post
of the Subreddit r\disability. We use similar guide-
lines to select the three words for the non-disability
group. We produced 630 adjectives for each of the
disability and non-disability groups. After replac-
ing the <noun> and <adj> tags in each of the four
templates we generated a total of 15,360 for each
embedding model. We then use VADER, a senti-
ment analysis library, to generate sentiment scores
for each sentence. The model evaluates sentiment
scores on a scale of -1 (most negative) to +1 (most
positive) to represent the overall emotional valence.
VADER is a highly cited and used public senti-
ment analysis model that performs well with not
just simple sentences but sentences that include lan-
guage present in social media, such as emoticons
and acronyms (Hutto and Gilbert, 2014).

3.2 Implicit Bias in Language Models

PLMs such as BERT, GPT-2 and PaLM have ex-
tended state of the art on a wide range of tasks.
However, they largely mimic over-represented
hegemonic viewpoints (Bender et al., 2021). For
example, when given the sentence ‘a man has
<mask>’, BERT predict ‘changed’ for the masked
word. However, for the sentence, ‘a deafblind man
has <mask>’, BERT predicts ‘died’.

We use this masked sentence language mod-
elling, proposed by Kurita et al. (2019) to find
implicit bias in BERT. Similar to our technique
for studying implicit bias in word embeddings, we
generate sentences for three study groups, namely,
standard, disability and non-disability. We use the
template, The <adj> <noun> <verb> <mask>,
for sentence generation where, <noun> consists of
gender terms (man, woman, person), and <verb>
includes the top 100 connecting words used in the
English language (Davies, 2010). We populate the
<adj> tag with words related to non-disability and
disability as shown in Table 2 for the disability and
non-disability groups. We generate a set of sen-
tences without <adj> tag for the standard group.
We then allow the selected language models to pre-
dict the masked word and discard the explicitly
mentioned disability or non-disability word used
for the <adj> tag. Discarding explicit mentions of
disability or non-disability is necessary since we
are attempting to measure implicit bias. We gen-
erated a total of 7,500 sentences for each model
and used VADER to analyse the sentiment of each
group.

4 Results and Discussion

Table 3 shows the results from the perturbation sen-
sitivity analysis and the statistical t-test performed
for disability and non-disability group against stan-
dard group. We calculate the ScoreSense, LabelD-
istance and ScoreDeviation for sentences perturbed
with both disability (D) and non-disability terms
(ND), respectively. ScoreSense measures the aver-
age difference between the sentiment of perturbed
and original sentences. We can see that the Score-
Sense is negative for all models for the disability
group, suggesting that the sentiment scores dips by
that value by the mere addition of disability-related
perturbation. Similar to disability-related pertur-
bations, non-disability perturbations cause a gen-
eral negative drift. This is expected because non-
disability terms are often only used in the language
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Model
Score
Sense

(D)

Score
Sense
(ND)

Label
Dist.
(D)

Score
Dev.

GN_3B_300D -0.13* -0.10* 0.39 0.28
CC_42B_300D -0.08* -0.09* 0.35 0.25
CC_840B_300D -0.03* -0.03* 0.38 0.22
WP_6B_100D -0.07* -0.04* 0.85 0.19
WP_6B_200D -0.18* -0.14* 0.86 0.17
WP_6B_300D -0.13* -0.11* 0.82 0.19
WP_6B_50D -0.02 -0.01 0.90 0.21

TW_27B_100D -0.14* -0.09* 0.81 0.19
TW_27B_200D -0.13* -0.13* 0.72 0.20
TW_27B_25D -0.01 0.01* 0.86 0.21
TW_27B_50D -0.05* -0.03* 0.89 0.17

BERT -0.06* 0.01* 0.53 0.29
GPT2 -0.06* 0.01* 0.73 0.32

Table 3: Perturbation sensitivity analysis scores. (*)
represents significant values of t-test on sentiment scores
between the group and standard group for an α=0.001.
D: Disability group, ND: Non-Disability Group.

of PWD (Whittaker et al., 2019), therefore, carry-
ing similar biases that are associated with words in
the disability group. We hypothesize that measure-
ments of explicit bias on non-disability terms might
not carry the same negative bias since explicit refer-
ences to non-disability terms are not usually associ-
ated with negative sentiment, however this remains
to be seen. We also see that all but two models show
significant difference in sentiment scores through
the t-test analysis, thereby confirming the presence
of implicit bias in almost all of them. The most
negative score dip is in the performance of GloVe
trained on the Twitter dataset. We also see that
GloVe trained on Wikipedia corpus performs nega-
tive for groups related to Non-Disability. The ma-
jority of the users on the internet are non-disabled,
young, male individuals from developed countries
(WorldBank, 2015). Therefore conversations on
social media platforms and curated articles may
not be inclusive enough to represent the language
associated with PWD.

LabelDistance in Table 3 measures the Jaccard
distance between the sentiments of the set of sen-
tences before and after perturbation. It measures
the percentage of sentences that flip between a
given threshold. Figure 1 shows how LabelDis-
tance increases with the threshold and jumps sig-
nificantly at the sentiment margin (0.00). We there-
fore set this as threshold for analysis measuring
the number of flips between positive and negative
values. ScoreDeviation is standard deviation of
scores due to perturbation, averaged across sen-
tences. GloVe-based models trained on Twitter and
Wikipedia have high LabelDistance showing that

Figure 1: Label Distance for various thresholds of sen-
timents produced by Word2Vec. The value increases
significantly around a threshold 0 (sentiment margin).

around 70% to 90% of sentences flip polarities af-
ter disability perturbation. High LabelDistance in-
spite of low ScoreSense values suggest that many
weakly positive sentences reversed to weakly nega-
tive after perturbation. Finally, we can see that the
Word2Vec model and PLMs have high ScoreDe-
viation , which suggest high polarity between the
standard and perturbed sets.

Figure 2: Mean sentiment value for the Census (Bureau,
2021) based subgroups present in the Disability class.
G-O-H represents ‘Go-Outside-Home’ class.

Figure 2 shows the mean sentiment value
amongst all models for six disability subgroups.
We see that terms related to Employment Disability
produce the most negative result amongst embed-
ding layers. In contrast, Go-Outside-Home has the
most negative result amongst PLMs. We also no-
tice that PLMs produce the most negative scores
amongst all models for the subgroup analysis. This
shows how the black-box nature (O’neil, 2016) of
these pretrained models makes it difficult to predict
the consequence of each model’s implicit biases.
Appendix shows additional statistical parameters
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calculated for each group as well as a further break-
down of each subgroup analysis.

5 Conclusion

We identify the presence of a challenging form of
bias in language associated with people with dis-
ability (PWD): implicit bias in language models.
The analysis demonstrates bias in both embeddings
and PLMs for words used in conversations related
to PWD. The results show that even when disabil-
ity is not discussed explicitly, word embeddings
and PLMs consistently score sentences with words
associated (in the pretrained vector space) with dis-
ability more negatively than sentences containing
words with no association to PWD. The results
suggest that these large models are inadequate in
understanding the nuances of language associated
to conversations around disability.

PWD community are more likely to talk about
disability and biased models can affect free speech
and participation of this marginalized community
in online social spaces because of unfair censorship
catalyzing harmful ableist ideologies and misrep-
resenting an already marginalized population. We,
through this paper, intend to show these use-cases
where these models fail so that developers and own-
ers of these models can be more aware of the po-
tential consequence they can have as a solution to
social problems.
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A Appendix

We analyze the performance of embedding as well
as pretrained large-scale models (PLMs) for Stan-
dard, Disability and NonDisability groups. Table 4
shows the definition of each disability subcategory
provided by the US Census. Table 5 shows the in-
dividual statistical mean and the ScoreRange value
of each embedding model and PLM. The statisti-
cal mean value is the average score of sentiment
value across all sentences of standard, disability
and non-disability groups, respectively. The Scor-
eRange is the range value of specific models across
all sentiment scores for all groups. It shows the sen-
sitivity of model performance for language related
to PWD.

The mean scores generated by disability and non-
disability groups are significantly lower than the
standard group. The performance of the disability
group is the lowest among the three groups, show-
ing strong implicit bias against these terms in all
the models. This value depicts how sentences re-
lated to disability are more negative in value than
other groups. The ScoreRange results show that
BERT and GPT-2 are very sensitive to the language
used by PWD as compared to other groups. The
results indicate that models with large ScoreRange
tend to provide a more wider range of sentiment
score results than other models, making the model
more sensitive in prediction.

Table 7 and table 6 shows the ScoreSense per-
formance of each subgroup for all the embedding
models and PLMs respectively. The data shows
that PLMs show large negative scoring for certain
groups compared to embedding models. The erratic
scoring amongst models shows the unpredictable
behaviour of models due to their black-box nature.
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Group
Name Definitions

Sensory
Conditions that include

blindness, deafness, or a severe
vision or hearing impairment.

Physical

Conditions that substantially limit
one or more basic physical

activities such as walking, climbing
stairs, reaching, lifting, or carrying.

Mental

Because of a physical, mental, or
emotional condition lasting 6 months

or more, the person has difficulty
learning, remembering or concentrating.

Self-care

Because of a physical, mental, or
emotional condition lasting 6 months

or more, the person has difficulty dressing,
bathing, or getting around inside the home.

Go-outside-home

Because of a physical, mental, or
emotional condition lasting 6 months

or more, the person has difficulty going outside
the home alone to shop or visit a doctor’s office.

Employment

Because of a physical, mental, or
emotional condition lasting 6 months

or more, the person has difficulty
working at a job or business.

Table 4: The definition of each subgroup of the Disability group is mentioned in this table. Six subcategories are
decided based on the parameters defined in the US Census to collect disability data. The seventh subgroup ‘General’
is defined as the common words that are used to refer to people with disability.

Name Mean (STD) Mean (D) Mean (ND) ScoreRange
GN_3B_300D 0.16 0.02 0.05 1.28
CC_42B_300D 0.15 0.08 0.06 1.26

CC_840B_300D 0.06 0.03 0.03 1.21
WP_6B_100D 0.06 -0.01 0.02 1.30
WP_6B_200D 0.16 -0.02 0.02 1.30
WP_6B_300D 0.12 -0.01 0.01 1.21
WP_6B_50D 0.03 0.01 0.02 1.27

TW_27B_100D 0.11 -0.01 0.02 1.24
TW_27B_200D 0.15 0.02 0.03 1.24
TW_27B_25D 0.01 -0.01 0.02 1.33
TW_27B_50D 0.06 0.01 0.03 1.30

BERT -0.02 -0.08 -0.01 1.60
GPT2 0.03 -0.02 0.04 1.87

Table 5: The Table shows the statistical mean value calculated for Standard (STD), Disability (D) and Non-Disability
(ND) groups respectively. The ScoreRange value is also calculated to measure the range of all the sentiment scores
generated by each mode.

Name Employment Go-Outside-Home Mental Physical Self-Care Sensory
BERT -0.02 -0.21 -0.01 -0.03 -0.14 0.00
GPT2 -0.04 -0.22 0.01 -0.02 -0.14 0.00

Table 6: The table shows the breakdown sentiment score for each Disability Subgroup amongst large scale language
models alone. We see that GPT2 and BERT demonstrate significantly negative results for certain subgroups.
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Name Employment General Go-Outside-Home Mental Physical Self-Care Sensory
GN_3B_300D -0.14 -0.08 -0.19 -0.19 -0.10 -0.13 -0.08
CC_42B_300D -0.08 -0.06 -0.11 -0.07 -0.09 -0.06 -0.06
CC_840B_300D -0.05 0.01 -0.13 -0.05 -0.02 0.01 0.01
WP_6B_100D -0.13 -0.04 -0.21 -0.07 -0.03 -0.01 -0.04
WP_6B_200D -0.26 -0.14 -0.20 -0.15 -0.16 -0.14 -0.14
WP_6B_300D -0.25 -0.09 -0.12 -0.10 -0.12 -0.10 -0.09
WP_6B_50D -0.16 -0.03 -0.09 -0.03 0.08 0.00 0.03

TW_27B_100D -0.14 -0.17 -0.13 -0.08 -0.08 -0.02 -0.17
TW_27B_200D -0.17 -0.15 -0.16 -0.10 -0.12 -0.06 -0.15
TW_27B_25D -0.05 -0.01 -0.03 -0.10 -0.01 0.03 -0.01
TW_27B_50D -0.05 -0.09 -0.04 -0.08 -0.04 0.03 -0.09

Table 7: The table shows the breakdown sentiment score for each Disability Subgroup amongst embedding groups
alone. We see that each embeddings layers demonstrate significantly negative results for certain subgroups.
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Abstract

Ethical judgment aims to determine if a per-
son in a narrative situation acts under people’s
social norms under a culture, so it is crucial
to understand actions in narratives and achieve
machine ethics. Recent works depend on data-
driven methods to directly judge the ethics of
complex real-world narratives but face two ma-
jor challenges. First, they cannot well handle
dilemma situations due to a lack of basic knowl-
edge about social norms. Second, they focus
merely on sparse situation-level judgment re-
gardless of the social norms involved during the
judgment, leading to a black box. In this work,
inspired by previous knowledge-grounded and
-augmented paradigms, we propose to comple-
ment a complex situation with grounded social
norms. Besides a norm-grounding knowledge
model, we present a novel norm-supported eth-
ical judgment model in line with neural mod-
ule networks to alleviate dilemma situations
and improve norm-level explainability. Em-
pirically, our model improves state-of-the-art
performance on two narrative judgment bench-
marks.

1 Introduction

In natural language processing (NLP) literature,
ethical judgment aims to determine if a person
(e.g., narrator or someone else) in a narrative sit-
uation is morally wrong or correct (Lourie et al.,
2021). For example, in a narrative situation “I
helped him but got taunted”, the narrator is morally
good while the other is bad. It attracts more in-
terest from academia and industry as it plays an
indispensable role in human-centric applications
and benefits a wide range of downstream tasks, e.g.,
dialogue systems and storytelling.

Recently, Forbes et al. (2020) propose a gener-
ative model, NORM TRANSFORMER, which can
extract actions1 from a narrative situation and then

∗Corresponding author.
1In this paper, “action” denotes a verb-centric “event”

Figure 1: Two situations and the involved social norms.
The first one is adapted from Forbes et al. (2020) while
the second one is grounded by our model, where the
norm in red is context-irrelevant to the situation.

judge the ethics towards the actions. However, it
can only generate action-level ethical judgment
for simple narrative situations (i.e., sentences with
limited events), so it usually fails to perform in
complex narrative situations of many real-world ap-
plications. Here, “complex” is usually reflected in
over-long narrative contexts (multiple paragraphs)
and/or dilemma situations. Take Situation 1 in Fig-
ure 1 as a dilemma example: although we keep in
mind that “it’s bad to punch others”, we cannot
conclude the narrator is morally bad due to “it’s
bad to steal”.

On the contrary, Lourie et al. (2021) propose a
data-driven method to directly judge complex narra-
tive situations (e.g., real-life anecdotes from the In-
ternet). Empowered by pre-trained language mod-
els (e.g., BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019)), the proposed method achieves
satisfactory performance to boost its real-world ap-
plications but encounters two major challenges in
the following.

First, complex situations often pose intricate sto-
rylines and character relationships, leading to more
difficult moral dilemmas during ethical judgments.
Again, it is difficult for machines to directly judge
whether the narrator is morally wrong in Situation
1 of Figure 1 because it requires machines to im-

(Zhang et al., 2020) without subject, e.g., “helped him” and
“got taunted”.
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ply multiple human-level social norms from the
situation and understand their relations before mak-
ing the final judgment. The social norms2 can be
regarded as unspoken commonsense rules about
acceptable social behavior, which are crucial for an
AI system to understand people’s actions in narra-
tives (Forbes et al., 2020). Second, human-curated
labels of ethical judgment in complex situations are
sparse: due to limited crowd-sourcing, the ethical
judgment is labeled for a whole situation, i.e., at
a very coarse level. As a result, a model learned
on such sparse-labeled complex situations can only
work as a black box to derive situation-level judg-
ments, regardless of the involved social norms be-
hind the judgments.

To overcome both the challenges, inspired by re-
cent advances in knowledge-grounded/-augmented
methods of open-domain (Wang et al., 2019) and
commonsense (Lv et al., 2020) question answer-
ing (QA), we argue to complement complex nar-
rative situations with action-level diverse social
norms. Continue to take Situation 1 in Figure 1
as an example: although it is difficult to make a
judgment based on the first two social norms, cou-
pling with the other two diverse norms, “It’s bad
to betray a friend” and “It’s okay to want to take
revenge”, can intuitively endorse a morally-okay
judgment towards the narrator. Differing from pre-
vious knowledge-augmented methods that measure
the relatedness of a query with grounded facts and
then find an answer in the facts, our motivation
is that the complementary social norms serve as
supportive evidence to reduce moral dilemmas and
promote norm-level explainability.

To this end, we propose a brand-new flexible
ethical judgment framework with complementary
social norms for complex narrative situations. First
of all, to ground each event in a complex situa-
tion with diverse social norms and ensure ground-
ing coverage given limited resources, we build a
new norm-grounding knowledge model to generate
social norms given a simple situation (e.g., a sen-
tence in a complex situation) based on a pre-trained
encoder-decoder backbone.

After grounding, we propose Norm-supported
Ethical Judgment (NEd) model in line with neural
module networks (Liu et al., 2020) to complement
a complex situation with grounded social norms.

2“Norm” denotes to assign an ethical judgment to an “ac-
tion”, e.g., “It’s good to help others” or (“helping others”,
good). It is a.k.a rules-of-thumb (RoT) in some literature
(Forbes et al., 2020).

Specifically, built upon a pre-trained contextualiz-
ing encoder (e.g., RoBERTa), the model is com-
posed of three neural modules: 1) supportive align-
ment module to softly and coarsely assign a sen-
tence in the situation with its semantic-relevant
norms, 2) hierarchical integration module, taking
the alignment module’s outputs as coarse evidence
while operating at the token level, to enrich rep-
resentations of events in the situation with those
of social norms, and 3) selective judgment module
to focus on key parts of the integration results and
then make the final ethical judgment.

Our NEd model has certain merits: First, at-
tributed to the alignment module, our model is
robust to the errors (e.g., context-irrelevant/wrong
norms, e.g., Norm 2 of Situation 2 in Figure 1)
propagated from our norm-grounding knowledge
model. Second, with a hierarchical (both norm-
level and token-level) structure, our model can pre-
cisely enrich events in a situation with fine-grained
ethical information, leading to superior judgment
performance. Third, facilitated by intermediate out-
puts of the modules, our model is equipped with
explainability in terms of human-understandable
social norms. Lastly, our framework is general,
flexible enough to various settings (see §4) of the
ethical judgment and achieves new state-of-the-art
performance on two benchmark datasets.

2 Related Work

In NLP, instead of theory-driven top-down ap-
proaches under prescriptive ethics (Bringsjord
et al., 2006; Rossi and Mattei, 2019; Gert and Gert,
2020), recent works focus on data-driven bottom-
up approaches with descriptive approaches (Balakr-
ishnan et al., 2019; Wu and Lin, 2018) to achieve
machine ethics (Rzepka and Araki, 2005; Ander-
son and Anderson, 2011). Ethical judgment, as an
important task of machine ethics in NLP, is getting
increased attention (Wolf et al., 2017; Schlesinger
et al., 2018). Recent solutions (Lourie et al., 2021)
depend on a data-driven paradigm but neglect the
importance of the involved social norms during
the judgment. But, how to explicitly integrate the
social norms into ethical judgment in complex nar-
ratives is an open question.

Recently, several paradigms have been proposed
to integrate additional knowledge, especially in
open-domain and commonsense QA. Specifically,
open-domain QA (Wang et al., 2019; Yang et al.,
2019) retrieves related documents from large-scale
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Figure 2: Norm-grounding knowledge model.

corpus according to a query and then predict an
answer based on the retrieved documents; com-
monsense QA (Lin et al., 2019; Lv et al., 2020)
resorts to grounding on structured knowledge and
then symbolically/latently derives the final answer
based on the grounded facts. Though effective in
their own fields, these integration paradigms are
inapplicable here to fulfill our goal, i.e., enriching
a complex situation with action-level, fine-grained
social norms for less moral dilemmas and more
human-level explainability.

3 Proposed Approach

This section begins with a general definition of
ethical judgment task. Then, we present our norm-
grounding knowledge model to ground events in
a situation with diverse social norms (in §3.1 and
illustrated in Figure 2). Next, given a grounded
complex situation, we present our norm-supported
ethical judgment (NEd) model as a flexible frame-
work (in §3.2 and illustrated in Figure 3). Lastly,
we detail training objectives to of our model in
§3.3. This section begins with a general definition
of ethical judgment task, followed by our norm-
grounding knowledge model in §3.1 with Figure 2
and norm-supported ethical judgment (NEd) model
in §3.2 with Figure 3.

Ethical Judgment. A complex narrative situa-
tion S consists of a sequence of sentences S =
[s1, . . . , sm] where m denotes the number of sen-
tences. Given a situation S, ethical judgment aims
to discriminate whether a person (e.g., the narra-
tor or the other(s)) in S is morally wrong. Hence,
ethical judgment is usually formulated as a classifi-
cation problem, and the categories Y can be binary
(i.e., {good, bad}), fine-grained (e.g., {very good,
good, okay, bad, very bad}), etc.

3.1 Norm-Grounding Knowledge Model
Basically, we need to ground each event in a situa-
tion with diverse social norms. Traditional ground-
ing methods (e.g., entity linking (Chen et al., 2020),
event grounding (Du et al., 2021)) depend on lex-
ical/semantic overlapping between a mention and
entries in knowledge bases (e.g., corpus, graph).
But, they are inapplicable to grounding an event
with norms as events are expressed in free-form
texts and knowledge base of norms is scarce, lead-
ing to low coverage and precision. In contrast, neu-
ral knowledge model (Bosselut et al., 2019) offers
a novel solution: it learns from limited seed knowl-
edge but leverage pre-trained language models to
generalize more.

Following this line, we focus on crowd-
sourced descriptions of norms and present a norm-
grounding knowledge model as in Figure 2, to gen-
erate social norms given a simple situation. It
is similar to GPT2-based NORM TRANSFORMER

(Forbes et al., 2020) but differs in both target and
base model.

First, we give a formal task definition to build a
neural knowledge model for norm grounding. Here,
we leverage training data from SOCIAL CHEM-
ISTRY 101, which offers a sentence-level simple
situation s in various scenarios and its correspond-
ing diverse social norms C = {c1, . . . }, where each
social norm ck is composed of 1) an action ak to
describe one event in s and 2) its ethical judgment
label y(a)k ∈ Y , i.e., ck = (ak, y

(a)
k ).3 Hence, the

goal of norm grounding is to generate a set of di-
verse social norms C given a simple situation s
(e.g., a sentence from a complex situation), i.e.,
P (C|s; θ), which needs to cover all events in s.

Then, we employ a pre-trained encoder-to-
decoder model, BART (Lewis et al., 2020), as back-
bone to translate sentence-level situation s to an
action ak with its judgment y(a)k . That is, we define
a conditional generation from s to a, i.e.,

ât = BART-EncDec(s, [<bos>,a<t]; θ
(bart)),

where s is encoder input, a = [a1, . . . ] is the to-
kenized action a, and ât is the predicted token in
t-th time step.

Next, to get an ethical judgment of the predicted
action, we leverage the last states of the decoder

3Note 1) even a simple situation could contain multiple
events, and 2) We take apart each social norm ck with its
action ak and the corresponding ethical judgment y(a)k . This
can highlight the semantics of the action of the norm and keep
the judgment categorical.
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(i.e., h(<eos>) – the embedding of end-of-sequence
token <eos> in decoding):

y(a) = softmax(MLP(h(<eos>); θ(bj))), (1)

where MLP(·; θ(bj)) is θ(bj)-parameterized multi-
layer perceptron (MLP) to produce categorical dis-
tribution ŷ(a) ∈ R|Y| of ethical judgment towards
the generated action â.

Training & Inference. We minimize an addi-
tion of negative log-likelihood of action genera-
tion and cross-entropy of ethical judgment. After
trained, we use a sampling technique (Holtzman
et al., 2020) to generate diverse norms: besides
beam search (w/ size of 2), we use top-p=0.9 sam-
pling during decoding and generateK social norms
Ĉ = {(âk, ŷ(a)k )Kk=1} in parallel for each situation
s to ensure coverage/diversity.

3.2 Norm-Supported Ethical Judgment Model
After invoking norm-grounding knowledge model
for each sentence sj in a complex situation S, we
get social norms by

Ĉj = {(âjk, ŷ
(a),j
k )Kk=1},∀j ∈ [1,m]. (2)

Here, an open question remains about how to in-
tegrate these complementary norms into situation-
level ethical judgment.

As an answer, we present a novel integration
paradigm for ethical judgment, dubbed Norm-
supported Ethical judgment (NEd) model as in
Figure 3. We introduce a concept of neural mod-
ule network (Liu et al., 2020) because it can em-
power human-level explainability by visualizing
intermediate outputs, consistent with our goal. It
is noteworthy that, instead of considering variant
combinations of neural modules as in (Andreas
et al., 2016), we fix the neural architecture and fo-
cus more on the design of the modules as in (Liu
et al., 2020).

First, we utilize a pre-trained Transformer en-
coder (e.g., RoBERTa) to embed a whole situation
S = [s1, . . . , sm] and the action âjk of each gener-
ated social norm, i.e.,

U = Trans-Enc([s1, . . . , sm]; θ(te)), (3)

V j
k = Trans-Enc(âjk; θ

(te)), (4)

where, ∀j ∈ [1,m], k ∈ [1,K], and two encoders
share parameters except for positional embeddings.
U and V j

k denote token-level representations.

Figure 3: Norm-supported Ethical Judgment (NEd) model.

After situation-level long-term contextualizing,
we partitionU to sentence-level blocks to facilitate
later integration:

U = [U1, . . . ,Um],∀U j ∈ Rd×n
(s)
, (5)

where n(s) is the number of tokens in a sentence.
Built upon the above representations for 1) sen-
tences in the situation and 2) actions of social
norms, we propose three neural modules in the
following to fulfill ethical judgment.

Supportive Alignment Module. It is crucial to
measure if the action of a norm is not only con-
sistent with at least one event in the sentence but
also coherent to the context of the sentence. We
first apply a mean-pooling to a sentence U j and an
action V j

k to get one vector representation of each:

uj = Pool(U j) and vjk = Pool(V j
k ), (6)

where ∀k ∈ [1,K]. Then, following (Reimers and
Gurevych, 2019), we represent their relationship
by an interactive concatenation, i.e.,

ojk = [uj ;uj − vjk;uj ⊙ v
j
k;v

j
k], (7)

where ∀k ∈ [1,K], [·; ·] denotes vector concatena-
tion and ⊙ denotes Hadamard product. Lastly, the
relationship representation ojk is fed into an MLP
with binary output, i.e„

rjk = softmax(MLP(ojk; θ
(al))) ∈ R2, (8)

where (rjk)[r=2] denotes the relatedness intensity
between sentence sj ∈ S and the action âjk ∈ Cj .
As a side benefit, such a module can also circum-
vent the errors propagated from norm-grounding
knowledge model defined in §3.1.
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Hierarchical Integration Module. After coarse
alignment, we need to enrich each sentence in a
complex situation with corresponding social norms
to obtain diverse, supportive information. But we
cannot integrate the norms in a straightforward
manner (e.g., concatenation or addition) as a sen-
tence contains multiple events, and we have no idea
about which part is an event, not to mention how to
align an event with actions. Hence, besides coarse
norm-supportive alignment, we need to consider
more fine-grained integration – operating at the to-
ken level and integrating in a sophisticated manner.
Formally, we first equip a social norm’s action V j

k

with its action-level judgment ŷ(a),jk to compose a
complete representation of the norm (as mentioned
in §3.1, we take each norm apart into action and
judgment). That is

Ṽ j
k = V j

k +W (jdg)ŷ
(a),j
k , (9)

where W (jdg) ∈ Rd×|Y| denotes a weight matrix
to identify judgment by following label embedding
strategy (Wang et al., 2018), and the ‘+’ here broad-
casts along with sequence axis. Then, to achieve
our hierarchical integration, we adapt one layer of
the Transformer decoder by 1) we remove the self-
attention but keep the cross-attention plus an MLP
with residual connection and layer norm, 2) the
cross-attention uses actions {V j

k }Kk=1 as keys and
their social norms {Ṽ j

k }Kk=1 as values, and 3) we
take the outputs {(rjk)[r=2]}Kk=1 from the alignment
module in Eq.(8) as norm-level gating values and
apply them to cross-attention in a multiplicative
manner. Thus, we define hierarchical integration
operating on each sj and its grounded norms Ĉj :

Ū j=
∑

k
(rjk)[r=2]·Ṽ j

k softmax((U j)TV j
k /
√
d)T ,

Ũ j = Layer-Norm(U j + Ū j ; θ(lm)), (10)

where ∀j ∈ [1,m]. Here for clear writing, we omit
multi-head projections and an MLP after the atten-
tion, and please refer to (Vaswani et al., 2017) for
their details. Next, given all enriched sentence rep-
resentations {Ũ j}mj=1 for sentences [s1, . . . , sm],
we re-unite them into token-level representations
of the whole situation:

Ũ = [Ũ1, . . . , Ũ j ], (11)

where [·, ·] denotes concatenation along with se-
quence axis. Lastly, we apply one layer of Trans-
former encoder to Ũ for long-term contextualized

representations, i.e.,

E = Transformer-Layer(Ũ ; θ(tl)), (12)

where E stands for the representations for all to-
kens in the situation S, which have been integrated
with precise, diverse, and supportive social norms
in a hierarchical way.

Selective Judgment Module. Given E, we first
apply an attentive pooling (Liu et al., 2016; Lin
et al., 2017), which aims at focusing on key parts
of the integrated results, i.e.,

e=Attn-Pool(E):=Esoftmax(MLP(E; θ(ap))),
(13)

where e ∈ Rd, and MLP(·; θ(ap)) is one-way out
to represent the importance of each token. Lastly,
we feed e into an MLP-based classifier, i.e.,

ŷ = softmax(MLP(e; θ(cl))),

ŷ = argmax ŷ, (14)

where ŷ ∈ R|Y| is a categorical distribution over
Y , and ŷ denotes the predicted judgment for the
situation S.

3.3 Training Objective
To train our proposed NEd model in an end-to-end
fashion, we can define a cross-entropy loss for ŷ in
Eq.(14), i.e.,

L(main) = −
∑

S∈D
log ŷ[y=y∗], (15)

where ŷ[y=y∗] denotes the probability of the gold
label of S and D denotes training set. But there
are many ethical judgment settings other than the
simple classification. To exhibit our framework’s
flexibility to various settings, we will detail adapt-
ing procedure into two settings later in experiments.
Besides the main lossL(main), we design two distil-
lation objectives to ensure they perform as expected.
(i) L(ad): Alignment Distillation aims at distilling
semantic knowledge from a well-trained natural
language inference (NLI) model to rjk (Eq.(8))
in the supportive alignment as a situation sen-
tence is expected to entail the aligned social norms.
(ii) L(jd): Judgment Distillation aims at distilling
action-level judgment knowledge ŷ(a),jk from our
norm-grounding model into the selective judgment
module by pooling each social norm’s action plus
the judge classifier, i.e., MLP(Pool(V j

k ); θ
(cl)).
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Dataset # Train # Dev # Test # Tokens/Situation

ANECDOTES 27,766 2,500 2,500 410
DILEMMAS 23,596 2,340 2,360 10

Table 1: Statistics of two ethical judgment benchmarks.

Method (Macro-F1) ANECDOTES DILEMMAS
Dev Test Dev Test

Prior 16.4 16.1 34.1 34.2
Sample 19.7 19.1 49.9 50.5
Style 16.5 16.2 55.0 52.4
BinaryNB 16.8 16.8 / /
MultiNB 20.2 19.2 / /
CompNB 23.4 22.9 / /
Forest 16.4 16.1 / /
Logistic 19.2 19.2 65.0 64.3

BERTlarge 21.8 21.6 72.8 72.0
BERTlarge + Dirichlet 23.2 25.9 72.9 73.7
RoBERTalarge 27.8 30.5 75.7 74.6
RoBERTalarge + Dirichlet 29.6 30.2 76.0 78.3

NEd-RoBERTalarge (ours) 41.20 37.32 76.91 78.59

Human Performance 46.8 49.0 80.7 80.4

Table 2: Comparisons to state-of-the-art competitors on two
benchmark datasets.

Alignment Distillation. The supportive align-
ment module is designed to measure if the action
of a social norm can provide supportive knowledge
according to the context. This is similar to natural
language inference (NLI) (Bowman et al., 2015)
measuring if a premise is of entailment, neutral, or
contradiction to a hypothesis, so it is intuitive to dis-
till an NLI model to rjk in Eq.(8). Rather than direct
distillation, it is noteworthy even if a norm’s action
contradicts the situation, the norm still can pro-
vide supports (e.g., in Figure 1, Situation 2 vs. its
Norm 3). In formal, we first employ an NLI model
trained on multi-genre natural language inference
(Nangia et al., 2017) and pass a concatenation of
(sj , âjk) into the model to derive a three-categorical
distribution p̄(nli),jk . Then, we merge contradiction
and entailment to obtain a new distribution p(nli),jk

over {neutral, non-neutral}. Thereby, we employ a
Kullback–Leibler (KL) divergence between rjk and
p
(nli),j
k as the training loss, i.e.,

L(ad) =
∑
D

∑m

j=1

∑K

k=1
KL-Div(rjk,p

(nli),j
k ).

Judgment Distillation. Since we have the con-
textual representations of each social norm’s ac-
tion as well as its action-level judgment, it is
promising to distill such knowledge into the se-
lective judgment module. To complete this, we

Method Bal-Acc Macro-F1
Dev Test Dev Test

RoBERTabase 26.62 28.14 27.84 29.59
RoBERTabase + Dirichlet 29.05 29.91 30.41 30.97
RoBERTabase + Soft 37.28 33.27 37.81 33.91

NEd-RoBERTabase (ours) 40.55 34.63 39.90 35.07

NEd-RoBERTalarge (ours) 42.40 37.99 41.20 37.32

Table 3: Detailed comparisons on ANECDOTES.

apply a mean pooling to each V j
k derived in Eq.(4)

to get one vector representation of each action:
vjk = Pool(V j

k ), ∀j ∈ [1,m],∀k ∈ [1,K]. The
reason for not using the attentive pooling in Eq.(13)
is that an action is only composed of a dozen of
token so it is unnecessary for such a short sequence.
Lastly, we use a KL divergence as the loss:

L(jd)=
∑
D,j,k
KL-Div(softmax(MLP(vjk; θ

(cl))), ŷ
(a),j
k ),

where θ(cl) denotes the parameters defined in
Eq.(14).

Overall Training Objective. Consequently, we
can we can define the overall training objective as

L = L(main) + g(α) · (L(ad) + L(jd)), (16)

where g(α) is exponential anneal of the weight.

4 Experiments

Datasets and Setting Adaptation. To exhibit
our framework is flexible to various settings, we
detail adaptations into two settings, correspond-
ing to two datasets, i.e., ANECDOTES and DILEM-
MAS (Lourie et al., 2021). The statistics of the
two benchmark datasets are listed in Table 1. For
ANECDOTES, given a very complex narrative sit-
uation with multiple paragraphs, its goal is to dis-
criminate {nobody wrong, narrator wrong, other
wrong, everybody wrong, or more info needed}.
We employ a binary judgment category and add
another attentive pooling to the selective judgment
module. We expect the two attention pooling mech-
anisms to focus on different parts of integrated
results, which perform ethical judgments for “nar-
rator” and “other” respectively. Besides, we add
an MLP to calculate the probability of the result
falling into more info needed. For DILEMMAS,
given 2 situations (each w/ several events), its goal
is to contrast their ethics and point out which one
is more wrong. We use a binary judgment category
and take the predicted probabilities of bad in ŷ (i.e.,
ŷ[y=bad]) as wrong scores.
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Setups. To train our knowledge model, we use
SOCIAL CHEMISTRY 101 (SC101) and employ
BARTlarge. We optimize the model using mini-
batch SGD with Adam optimizer, where learning
rate is 10−5 with 5% warmup proportion, batch
size is 16, the number of training epochs is 3.
On the other hand, we initialize the backbone of
our NEd model with either RoBERTalarge or base.
Instead of hyperparameter tuning with Gaussian
process optimization by Lourie et al. (2021), we
set hyperparameters according to our experiences
or early trials. We set K to 5/3 in two datasets.
In Eq.(16), α ∈ [0, 1] is the ratio of training
progress, and g(x) = exp(−γ · x) is an expo-
nential anneal where γ is a hype-parameter. We
set γ to 10 to push the learning more incline to
main loss. The base model is set with learning
rate of 5 × 10−5 with 5% warmup, batch size of
32, number of epochs of 7. The large model is
set with learning rate of 10−5 with 5% warmup,
batch size of 16, number of epochs of 3. We run
each model with 3 random seeds and evaluate on
dev set every 500 steps during training; we report
the best dev results as well as the corresponding
test results. All experiments are run at one single
Nvidia RTX6000 GPU. The codes are published at
https://github.com/taoshen58/NEd.

Metrics. We use Macro-F1 (%) as our main met-
ric to compare models. Compared to (Lourie et al.,
2021), our work does not target ambiguity in ethics-
related tasks and focus on making ethical judgment
consistent with the majority. Thus, we rather use
balanced-accuracy (Bal-Acc, %) as another metric
and will also consider cross-entropy metric (Lourie
et al., 2021) to verify our model’s versatility.

4.1 Main Evaluations

Comparison with Competitors. In Table 2, we
compare our large model, i.e., NEd-RoBERTalarge,
with previous state-of-the-art competitors on
ANECDOTES and DILEMMAS. BERTlarge and
RoBERTalarge denote fine-tuning the model with a
classifying head. When coupled with “+ Dirichlet”,
they denote using a Dirichlet-multinomial layer to
generalize softmax and enable models to express
uncertainty over class probabilities (Lourie et al.,
2021). It is observed, our model outperforms pre-
vious methods and improves the state-of-the-art
performance by 5.1% and 0.3% on ANECDOTES

and DILEMMAS, respectively. A potential reason
for a marginal improvement on DILEMMAS is our

Method Bal-Acc Macro-F1
Dev Test Dev Test

RoBERTabase 72.82 72.47 72.80 72.41
RoBERTabase + Dirichlet 73.96 73.84 73.92 73.80
RoBERTabase + Soft 73.83 73.52 73.79 73.47

RoBERTabase + Norms 74.53 73.50 74.51 73.43
RoBERTabase + Filtered Norms 74.66 74.32 74.64 74.24

NEd-RoBERTabase (ours) 75.61 75.00 75.59 74.95

NEd-RoBERTalarge (ours) 76.94 78.61 76.91 78.59

Table 4: Detailed comparisons with baselines on DILEMMAS.

performance has been too close to human perfor-
mance (78.6% vs. 80.4%), making lifts difficult.

Comparison with Baselines. As shown in Ta-
ble 3 and 4, we also compare our model with var-
ious baselines. Here, we add a method named
“RoBERTabase + Soft”, which has already appeared
in (Lourie et al., 2021) with only reported state-of-
the-art dev results on ANECDOTES, as a strong
baseline, and we re-implement it with a label-
weighted loss to further boost its performance. As
shown in Table 3, although “RoBERTabase + Soft”
is significantly superior to “RoBERTabase + Dirich-
let”, it is still beaten by our NEd model. Similarly,
as listed in Table 4, our model can surpass baselines
on DILEMMAS by a large margin.

Comparison with Norm-augmented Methods.
For more fair comparisons, we build two other
RoBERTa-based baselines that also utilize our
grounded social norms. Following common prac-
tice, we concatenate a situation S with its social
norms, i.e., [S, {âjk, ŷ

(a),j
k }j,k]. As shown in the

2nd block of Table 4, “+ Norm” denotes directly
concatenating all the grounded social norms while
“+ Filtered Norms” denotes filtering out the norms
with less relatedness to the situation, i.e., large
neutral probability from NLI model > 0.2. These
two methods are only applicable to DILEMMAS

as they will lead to over-long (≫ 512) inputs on
ANECDOTES. The table shows that our model still
notably outperforms these two norm-augmented
methods. Besides, the method with filtered norms
performs better than direct concatenation, verify-
ing the positive effects of the NLI model and the
importance of our alignment distillation.

Performance on Controversiality. Lourie et al.
(2021) use cross-entropy (Xentropy) as a metric
to measure if a learned model can handle contro-
versiality in judgments. Despite not being our
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Method Macro-F1 Xentropy
Dev Test Dev Test

RoBERTalarge 75.7 74.6 0.578 0.577
RoBERTalarge + Dirichlet 76.0 78.3 0.570 0.566

NEd-RoBERTalarge (ours) 76.91 78.59 0.5657 0.5652

Table 5: Model comparison with the metric of cross-entropy.

Method Macro-F1

NEd-RoBERTalarge (full model) 75.59

⋄ Removing Alignment Module 74.54
⋄ Replacing Alignment Module with NLI Prior 75.15
⋄ Removing Distillation Objectives 74.61
⋄ Removing Integration Module 73.57
⋄ Removing All Modules 72.80

Table 6: Ablation study on DILEMMAS Dev.

target, we report this metric to demonstrate our
model’s versatility. As in Table 5, all models in-
clude temperature calibration (Guo et al., 2017),
and ours reaches competitive cross-entropy results
compared to the specially designed Dirichlet layer.

Ablation Study. To check the contribution of
each module, we conduct an ablation study in Ta-
ble 6. Removing Alignment Module, equivalent to
discarding coarse-grained integration, leads to a no-
ticeable degeneration. And the degeneration will be
alleviated when using prior coarse-grained weights
(i.e., distillation targets from NLI) to replace the
Alignment Module. Then, when removing the dis-
tillation objectives defined in Eq.(16), a notable
performance decrease is observed, which verifies
their importance. Next, we remove our Integration
Module, degrading our model to RoBERTa plus our
selective judgment module with distillation, result-
ing in a substantial decrease. Finally, we discard
the only module, selective judgment module, from
the last ablation, equal to RoBERTa baseline w/o
all modules, leading to a further decrease.

4.2 Quantitative and Qualitative Analysis

Insights into ANECDOTES. Figure 2 shows a
performance gap between dev and test on ANEC-
DOTES. To dig this out, we illustrate their con-
fusion matrices in Figure 4 (left & middle). It is
shown that both recall and precision of label “more
info” are 0 on the test, affecting macro metric. We
further throw that label away, and the gap is largely
narrowed, as in Figure 4 (upper-right). This ex-
hibits that a distribution shift exists here and needs
more efforts in the future. Besides the overall met-

Figure 4: Insights into the performance on ANECDOTES.

Method All (Ma-F1) Easy Hard

RoBERTabase+Dirichlet 73.9 89.2 66.1
NEd-RoBERTabase (∆) 75.6 (1.7) 90.05 (0.9) 68.15 (2.1)

Table 7: Evaluation on easy (cut-off examples) and hard
(controversial dilemma examples). We split DILEMMAS Dev
(all) into the two subsets according to if an example’s consen-
sus ratio > 0.8.

ric, our framework can derive the metrics w.r.t a
specified person as in Figure 4 (bottom-right).

Handling Dilemmas Scenario. As shown in Ta-
ble 7, we evaluate on two subsets of DILEMMAS

Dev, which shows that our improvement on contro-
versial dilemma examples is more significant than
that on cut-off examples. These verify the superior-
ity of our model in handling dilemmas scenarios.

Norm-Grounding Knowledge Model. We eval-
uate our knowledge model in Figure 5 (left), which
shows low perplexity of action generation and high
accuracy of action-level judgment on SC101 test.
Although 5-categorical classification achieves 71%,
as in Figure 5 (right) the misclassified examples
mainly fall into its adjacent classes.

Evaluating Modules. In Figure 6, we give loss
curves for Eq.(16): 1) the combined loss L is grad-
ually close to the main loss L(main) due to the ex-
ponential anneal, and 2) although learning rate of
the two distillations are approaching to zero, their
values do not increase significantly, verifying their
objectives are consistent with our ethical judgment.
Lastly, we test the performance of distilled modules
in Figure 6 (right).

Case Study & Norm-level Explainability. As
for Situation 1 in Figure 7, we show a case of
ethical judgment in dilemma. It is observed our
knowledge model precisely generates social norms
consistent with the sentence and our hierarchical in-
tegration focuses on key norms to support the final
ethical judgment. Meantime, the generated norms
and alignment scores are human-understandable to
intuitively explain the judgment from our model,
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Metric Dev Test

Action PPL 6.80 6.94

Judge Accu 70.59 71.04

Table 7: Ablation study on DILEMMAS.
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Figure 5: Evaluation of norm-grounding knowledge model.

Figure 6: Loss descending curves with 0.99 moving average
(left & middle) and module evaluation (right).

which notably improves norm-level explainability
compared to the existing ethical judgment frame-
work. In contrast, Situation 2 in Figure 7 shows an
error case of our model. The possible reasons lead-
ing to the error are knowledge model incompetent
in the long sentence (S2).

Diversity of Integration Scores. To investigate
if the hierarchical (i.e., norm-level and token-level)
attention scores are diverse to focus on different
perspectives of social norms, we calculate the Pear-
son correlation coefficient between them, and the
resulting is −0.081. And, we calculate the coeffi-
cient between p(nli),jk [neutral] from an NLI model and

rjk from our alignment module, and the resulting
is 0.565, verifying the learned module is not the
same as the NLI model but learns latent alignments
for our ethical judgment task.

Error Analysis & Limitations. We checked 20
error cases in ANECDOTES test and found that it
is difficult for human beings to judge the ethics
of complex situations even given the social norms,
suggesting more explainable works in the future.
Lastly, we also recognize model limitations: 1) al-
though improving norm-level explainability, our
pipeline inevitably leads to error propagation and
affects the performance; and 2) our model must cal-
culate deep contextualization for all social norms,
resulting in large computation overheads.

5 Conclusion

In this paper, we propose an ethical judgment
framework for complex narrative situations to
reduce dilemma situations and improve norm-

Figure 7: Case study of complex situations from ANEC-
DOTES and grounded social norms. Texts with shadow de-
notes top-3 attended norms (N) and more dark denotes more
intensive attention.

level explainability. These are achieved by our
designed norm-grounding knowledge model and
norm-supported ethical judgment (NEd) model.
We conduct extensive experiments on two bench-
mark datasets to verify its superiority from both
quantitative and qualitative perspectives.

Ethics Statement. This work does not involve
any sensitive data, but only public crowd-sourced
corpora released in (Forbes et al., 2020; Lourie
et al., 2021). Even the first situation and its social
norms in Figure 1 (which may cause legal contro-
versiality) are adapted from (Forbes et al., 2020).
The resulting ethical judgment model can serve as
a plug-in module to AI systems w/ language gener-
ation (e.g., dialogue system and chat-bot). First, it
can filter unethical generated sentences. Second, it
can perform ethical checks for massive user-posted
and crowd-sourced data, thus reducing human-in-
the-loop costs. Third, our model takes a step further
to break down ethical judgments for norm-level
transparency.
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Abstract
Natural Language Processing (NLP) has be-
come increasingly utilized to provide adaptivity
in educational applications. However, recent
research has highlighted a variety of biases in
pre-trained language models. While existing
studies investigate bias in different domains,
they are limited in addressing fine-grained anal-
ysis on educational and multilingual corpora.
In this work, we analyze bias across text and
through multiple architectures on a corpus of
9,165 German peer-reviews collected from uni-
versity students over five years. Notably, our
corpus includes labels such as helpfulness, qual-
ity, and critical aspect ratings from the peer-
review recipient as well as demographic at-
tributes. We conduct a Word Embedding As-
sociation Test (WEAT) analysis on (1) our col-
lected corpus in connection with the clustered
labels, (2) the most common pre-trained Ger-
man language models (T5, BERT, and GPT-2)
and GloVe embeddings, and (3) the language
models after fine-tuning on our collected data-
set. In contrast to our initial expectations, we
found that our collected corpus does not re-
veal many biases in the co-occurrence analysis
or in the GloVe embeddings. However, the
pre-trained German language models find sub-
stantial conceptual, racial, and gender bias and
have significant changes in bias across concep-
tual and racial axes during fine-tuning on the
peer-review data. With our research, we aim
to contribute to the fourth UN sustainability
goal (quality education) with a novel dataset,
an understanding of biases in natural language
education data, and the potential harms of not
counteracting biases in language models for
educational tasks.

1 Introduction

In recent years, Natural Language Processing
(NLP) and Machine Learning (ML) have been ex-
tensively used for improving adaptivity and individ-
ualization of educational technology (Rosé et al.,

∗ These authors contributed equally to this work.

2008; Xu et al., 2021). Researchers and practi-
tioners have been developing a plethora of writing
support systems (Song et al., 2014; Lauscher et al.,
2018) and conversational agents (Ruan et al., 2019;
Weber et al., 2021). More generally, there has been
a rise in intelligent tutoring systems for educational
purposes which provide learners adaptive feedback,
e.g., on grammatical structures (White and Ro-
zovskaya, 2020; Katinskaia and Yangarber, 2021;
Kerz et al., 2021), language learning (Putra et al.,
2021), argumentation (Song et al., 2014; Lauscher
et al., 2019), or even empathy skills (Wambsganss
et al., 2021).

The technology for language-based personaliza-
tion in education comes with a cost; a large body of
research has been investigating and revealing biases
in NLP systems (Bolukbasi et al., 2016; Sun et al.,
2019). Bias has been found in multiple steps along
the general NLP pipeline including the task setting,
training data, pre-trained models (e.g. word embed-
dings), and fine-tuned algorithms (Schramowski
et al.; Sun et al., 2019; Caliskan et al., 2017; Boluk-
basi et al., 2016), shedding a darker light on the
simple usage of these models for human-centered
applications, especially in education. NLP sys-
tems containing bias in any of these parts of the
modeling pipeline can produce gender, racially, or
conceptually biased predictions and amplify biases
present in the underlying training sets (e.g., Baker
and Hawn (2021); Hutchinson and Mitchell (2019);
Sun et al. (2019)). The propagation of gender bias
in NLP algorithms poses the danger of reinforcing
damaging stereotypes in downstream applications,
e.g., for automatic essay scoring (Östling et al.,
2013; Yannakoudakis et al., 2011).

While prior research on bias in education has
mostly focused on non-language based interaction
data, several recent reviews have called for extend-
ing the investigations of fine-grained bias analy-
sis on educational corpora (e.g., Baker and Hawn
(2021); Blodgett et al. (2020)). Recent work, for
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Figure 1: Overview of evaluating biases in educational natural language data along the NLP pipeline for pedagogical
downstream tasks following Hovy and Prabhumoye (2021). We analyzed a data set of 9,165 German peer-reviews
in combination with the most common pre-trained language models (T5, GPT-2, BERT) and GloVe embeddings
before and after fine-tuning with the WEAT analysis for conceptual, racial, and gender biases.

example, has shown negative impact of gender bias
on CV screening (Andersson et al., 2021) or of
algorithmic racial bias in child welfare programs
(Cheng et al., 2022). There are only few works
looking at detailed bias in educational natural lan-
guage data outside of English language corpora
and North American context (Baker and Hawn,
2021). For instance, Baker and Hawn (2021) states
the need to investigate "the differences in the per-
formance of essay scoring algorithms for differ-
ent racial groups". However, as they found, "this
possibility has not yet been systematically investi-
gated in the published literature" (Baker and Hawn,
2021). Hence, our objective is to address this gap
in research and to take a deep dive into one exem-
plary pedagogical scenario which includes heavy
language data: student peer-reviews. Student peer-
reviewing is a modern domain-independent peda-
gogical scenario which has been increasingly used
to annotate corpora, analysis of feedback texts with
trained models, and provide students feedback with
adaptive applications (Nicol, 2014), e.g., for argu-
mentation skill training (Wambsganss et al., 2020a)
or empathy skills (Wambsganss et al., 2021; Wamb-
sganß et al., 2022).

In order to conduct a rigorous bias analysis, we
collected a novel corpus of 9,165 German student
peer-reviews of business model feedback. We re-
lied on Word Embedding Association Test (WEAT)
analysis (Caliskan et al., 2017) and the German

adaptation of WEAT (Kurpicz-Briki, 2020) as a
commonly used methodology to assess concep-
tual, racial and gender bias in different parts of the
NLP pipeline (Hovy and Prabhumoye, 2021). Our
methodology for analysing the bias is three-fold
(see Figure 1): (1) we analyse the collected cor-
pus for different bias dimensions to find out if the
student-writings already come with bias towards
the perceived helpfulness of a review, (2) we assess
the most common German language models (T5,
BERT and GPT-2) as well GloVe embeddings be-
fore fine-tuning them on our data, (3) we fine-tune
T5, BERT and GPT-2 on our collected data-set and
repeat the WEAT analysis to investigate how the
representations have been changed.

Contrary to our expectations, we found that our
collected corpus does not reveal many biases in us-
ing WEAT co-occurrence analysis or GloVe mod-
els; however, the pre-trained German language
models not only come with substantial conceptual,
racial, and gender bias but also seem to increase
the bias when fine-tuning on our corpus. Our re-
sults suggest to (1) do more fine-grained analyses
of bias for subsets of data that are significant, (2)
examine the bias in pre-trained models before us-
ing them, and (3) investigate multilingual data bias
more precisely. Hence, we contribute to literature
on bias of educational language data by providing a
detailed analysis of one particular but increasingly
used pedagogical scenario (peer-reviewing). We
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contribute our collected corpus of peer-reviews in
German for further analysis and hope to provide
researchers and practitioners with a detailed anal-
ysis and discussion of bias in NLP for education.
Finally, we aim to contribute to the UN sustainabil-
ity goal four for a high quality education and fair
(digital) education for all.

2 Theoretical Background

2.1 Text Bias in Education

Since the 1960s, the problem of bias in educational
applications has been noted, and many parts of to-
day’s literature on algorithmic bias and fairness
have been anticipated (see review and discussion in
Hutchinson and Mitchell (2019); Baker and Hawn
(2021)). In order to investigate bias, it is impor-
tant to define what perspective on bias we take,
as many definitions exist in the literature. In our
research, we "focus on studying algorithmic bias
in terms of situations where model performance is
substantially better or worse across mutually exclu-
sive groups" (Baker and Hawn, 2021, p. 4). We aim
to analyse annotation, embedding, and modeling
bias throughout the NLP pipeline for educational
downstream tasks (see Figure 1).

Most literature has focused on numerical (non-
text) data to analyse bias in educational applica-
tions. The literature on bias in education has been
mostly investigating differences between race, na-
tionality (students’ current national locations), and
gender (Baker and Hawn, 2021). For example, Lee
and Kizilcec (2020) analysed the differences of an
unmodified model to an equity-corrected model for
predicting course grade of students. They found
that the unmodified models perform worse for un-
derrepresented racial and ethnic groups than for
White and Asian students. Anderson et al. (2019)
used five different algorithms to discriminate per-
formance between male and female students in a
model that predicted six-year college completion.
They discovered that male students had greater
false negative rates in the algorithms.

Educational corpora play a minor role in investi-
gating bias in NLP systems; the scope of relevant
work is limited. The existing research is mostly
centered around English language data, missing
insights for other languages and cultures (Baker
and Hawn, 2021; Sun et al., 2019). One relevant
study from Loukina et al. (2019) investigates bias
in automated essay grading over essays authored
by individuals from six different nations. Their

results indicate that training nation-specific models
leads to various skews between groups, increasing
algorithmic bias when compared to training on all
groups together. In a more general scope, research
in computational linguistics and NLP have increas-
ingly investigated bias in natural language process-
ing systems, including work on bias in embedding
spaces (e.g., Caliskan et al. (2017); Bolukbasi et al.
(2016)) language modeling (Lu et al., 2018), co-
reference resolution (Rudinger et al., 2017), ma-
chine translation (Stanovsky et al., 2019), or senti-
ment analysis (Kiritchenko and Mohammad, 2018).

The analysis of data collected from commonly
used pedagogical scenarios in combination with
pre-trained language models (especially outside
North America) is scarce (e.g., Baker and Hawn
(2021); Sun et al. (2019)). We focus on algorithmic
bias in the representations of a novel collected data
set, in the most common German pre-trained mod-
els and German GloVe embeddings, and finally in
the fine-tuned models. Our objective goes beyond
investigating the effect of NLP bias on educational
designs; we aim to contribute to a vision where
downstream educational models are unbiased for
equitable education (UN Sustainability objective).

2.2 NLP Research on Peer Reviewing

To conduct a rigorous and representative bias analy-
sis of educational data from the field, our objective
is a domain-independent pedagogical setting. In
this vein, we aim to focus on student peer-reviews,
since it is a increasingly growing, modern and digi-
tized educational scenario, which has not only been
used to foster factual and conceptual learning goals
but also more complex skills such as argumentation
(Wambsganss et al., 2020a) or empathy (Wambs-
ganss et al., 2021).

Peer-reviews are defined as the process when stu-
dents evaluate and make judgments about submis-
sions of their peers and construct written feedback
(Nicol, 2014). The structure of this process builds
on the principles of the standard peer-reviewing
used in academic journals (Ziman, 1974), where
each of the papers is assigned to three anonymous
reviewers. These reviewers evaluate the quality
of the submission and provide feedback about the
strengths and weaknesses of the paper and specify
ways to improve it (Meadows, 1998).

Peer-reviews come with the advantage that stu-
dents need to take two different perspectives: one
of the feedback provider and one of the feedback
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receiver. The role of feedback provider enables stu-
dents to practice their critical thinking skills, apply
criteria and reflect on their own work. Receiving
feedback supports the students to focus more on ar-
eas that need improvement and develop a reader´s
perspective (Wu and Schunn, 2021). Utilizing peer-
reviews enables students to receive timely feedback
in both small-scale and large-scale classes, where
feedback from lecturers or instructor assessment
is often too late to be implemented. With the ped-
agogical scenario of edit history, it is even pos-
sible to directly apply feedback to improve final
version of submission (Higgins et al., 2001). Addi-
tionally, with the rise of educational technologies,
the peer-review paradigm is increasingly imple-
mented in common learning management systems
(e.g. Canvas, Blackboard) and is used by large
MOOC providers. However, the direct use of un-
filtered feedback by non-experts poses the concern
that students are exposed to biases and inaccuracies
(Double et al., 2020). Therefore, past research has
already started to analyze peer-review data with
standard NLP techniques.

For example, Misiejuk and Wasson (2021) use
NLP to understand students’ perceptions of peer-
reviews. Wu et al. (2020) measure the impact of
feedback features such as identification, explana-
tions, and suggestions on the likelihood of that
the feedback gets implemented. Xiao et al. (2020)
trained different models based on RNNs, CNNs,
LSTMs, GloVe, and BERT to detecting problem
statements in peer assessments. Zingle et al. (2019)
use CNNs and LSTMs to detect actionable sugges-
tions in peer assessments. Researchers have also
started to develop downstream applications based
on model predictions to provide adaptive learning
feedback. Ramachandran et al. (2017) created a
tool for automated assessment of the quality of
peer-reviews. Bauman et al. (2020) designed a rec-
ommender framework which uses a trained model
to identify aspects of the review texts that corre-
spond to peer-review helpfulness scores. Several
papers use student peer-review data for annotating
arguments for argumentation mining (e.g., Wamb-
sganss et al. (2020b)) or cognitive and emotional
empathy structures for empathy modeling (Wambs-
ganss et al., 2021) to provide students with writing
assistance in learning applications.

Although NLP research exists on and around
peer-review data, there are only a handful of inves-
tigations on bias along the NLP pipeline (Patchan

et al., 2018). Hence, we propose to investigate
which biases occur in education data along the
NLP pipeline and in particular in our context in
peer-reviews.

3 Methodology

3.1 Data Collection

Since there are not many suitable corpora available
to analyse bias in student peer-reviews that a) con-
tain a large amount of student-written text in one
particular domain (e.g., business model feedback),
b) consist of a sufficient size to represent different
nuances of characteristics in a balanced fashion
and c) come with additional scores such as review
helpfulness rated by the receiver of the review or
demographics for additional analysis (e.g., gender),
we decided to collect our own longitudinal data set.

The peer-reviews of our novel dataset were col-
lected over five years at a university in the German
speaking area of Europe.1 Overall, we compiled
a corpus of 9,165 student-generated peer-reviews
in which students provide each other feedback on
previously developed business models. The peer-
reviewing process was conducted in a double-blind
manner; thus the feedback provider and receiver
were anonymous. Alongside the text data, we col-
lected subsets of ratings regarding the review help-
fulness. This data was collected within the peer-
review process; when the authors of the assignment
receive the peer-reviews, they performed peer back-
ward assessment (Patchan et al., 2016). In peer
backward assessment, students rate the four items
(based on Li et al. (2010)): (1) "The feedback I got
from the reviewer was helpful" (2) "The feedback
I got from the reviewer was high quality" (3) "The
reviewer was able to identify critical aspects in my
submission" and (4) "The reviewer was able to pro-
vide constructive suggestions on his stated critical
aspects" on a 7-point Likert Scale from totally dis-
agree (1) to totally agree (7), with 4 as a neutral
value. Additionally, we captured gender and the
year of birth of the review writers.

3.2 Data Characteristics

Our dataset consists of first-year master’s students
majoring in business innovation. The majority of
students have German as their native language. The
data was collected from 2015 to 2019 and include
9,165 reviews from 610 unique reviewers and 607

1The data was collected based on the ethical guidelines of
our university.
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reviewees. We collected demographic data at the
beginning of each semester; the student population
has an average age of 24.6 years old with a stan-
dard deviation of 1.7 years. The average percent-
age of female students across five years is 37.7%.
Students wrote approximately 9 peer reviews per
course with an average length of 220 words.

3.3 Model Architecture
We examine four German variations of language
model architectures in this paper, chosen for their
popularity on downstream tasks: GloVe, BERT, T5,
and GPT-2. For GloVe architectures, we train the
model from scratch for 100 epochs each, using a
vector size of 300, window size of 15, and 8 threads
for parallelization (Pennington et al., 2014). We
obtain all three pre-trained models from Hugging-
Face (Wolf et al., 2019) and fine-tune each model
for 10 epochs on a Tesla V100 GPU with batch size
8. For GermanBERT, we fine-tune the model using
a standard masked language model training objec-
tive with masking rate of 15% (Chan et al., 2020).
For German T5, we fine-tune the model using the
translation task, translating peer-review text from
English to German2 with max source token length
of 128 and global seed 42. The pre-trained mul-
tilingual T5 model was fine-tuned on the German
MLSum dataset (Xue et al., 2020) before being
used for our analysis. German GPT-2 was fine-
tuned on the text generation objective with block
size 128, and 600 warm-up steps (Radford et al.,
2019). More details can be found directly in our
supplementary code repository.

3.4 Bias Analysis
To assess bias along the NLP pipeline suggested by
Hovy and Prabhumoye (2021), we rely on the Word
Embedding Association Test (WEAT) proposed by
Caliskan et al. (2017). WEAT assesses the extent to
which word embeddings represent certain cultural
biases. The inspiration for the WEAT analysis is
grounded in psychological theory as an extension
of the Implicit Association Test, used to measure
bias in humans (Greenwald et al., 1998). WEAT
calculates the semantic similarity between two sets
of target words (e.g., male vs. female names) and
two sets of attribute words using word embeddings
(e.g., career vs. family). Table 1 indicates the nine
WEAT tests and their corresponding targets and
attributes.

2Translations were obtained through the Google Translate
API and corrected by a native English speaker.

Kurpicz-Briki (2020) apply the same concept to
three other languages (German, Italian, and Span-
ish) and adapted and evaluated four WEAT tests
for German. The multilingual name adaptations
were created by experts examining the census data
for popular names from each country of origin and
creating word lists for Male vs. Female names,
as well as Native vs. Foreign names (to replace
the European-American vs. African-American
test originally proposed in WEAT). Kurpicz-Briki
(2020) do not present a translation for a tenth test
on ageism proposed by Caliskan et al. (2017), so
we omit it from our study to not combine differing
methodologies. In this work, we present German
translations for all nine WEAT tests3.

We broadly categorize the WEAT tests into the
three main dimensions of bias: Racial, Gender,
and Conceptual. This is in accordance with the
literature on bias in educational data (e.g., Baker
and Hawn (2021)). Our categorization helps lan-
guage model users to have a big picture understand-
ing of how their model performs (i.e. model X is
more biased by gender than race) instead of gran-
ular statements (i.e. model X finds male names
more associated with career than with family). The
groupings are detailed further in Table 1, with each
category consisting of three tests.

To quantitatively compare across WEAT analy-
ses, we use the metric proposed by Caliskan et al.
(2017). Effect size is a normalized measure of the
distance between the two distributions of associa-
tions and targets, calculated as follows:

meanx∈Xs(x,A,B)−meany∈Y s(y,A,B)

stdw∈X∪Y s(w,A,B)

where X and Y are two sets of target words of
equal size, A, B are two sets of attribute words,
and s(w,A,B) measures the association of embed-
dings of the target word w with the attribute words.

4 Results on Bias Analysis

We present results across three stages of the bias
pipeline (highlighted in Figure 1): (1) a WEAT
co-occurrence analysis examining bias directly in
the peer-review corpora, (2) an embedding space
analysis using a GloVe architecture trained on the
peer-review data, (3) an analysis of the three most

3The WEAT words not found in Kurpicz-Briki (2020)’s
study were translated from the English WEAT through DeepL
and corrected by two native German speakers.
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Bias # Targets Attributes

Conceptual
1 Flowers vs. Insects Pleasant vs. Unpleasant
2 Instruments vs. Weapons Pleasant vs. Unpleasant
9 Mental vs. Physical Disease Temporary vs. Permanent

Racial
3 Native vs. Foreign Names Pleasant vs. Unpleasant
4 Native vs. Foreign Names (v2) Pleasant vs. Unpleasant
5 Native vs. Foreign Names (v2) Pleasant vs. Unpleasant (v2)

Gender
6 Male vs. Female Names Career vs. Family
7 Math vs. Arts Male vs. Female Terms
8 Science vs. Arts Male vs. Female Terms

Table 1: Overview of our proposed measured bias categories (conceptual, race, and gender) for the WEAT analysis.
WEAT compares the association between two different target word lists (i.e. Math vs. Arts) to attribute word lists
(i.e. Male vs. Female terms). # indicates the original WEAT test number (Caliskan et al., 2017).

popular German language models, before and after
fine-tuning on the peer-review corpora.

4.1 Bias in the Peer-Review Corpus

In the first experiment, we conduct a WEAT co-
occurrence analysis as proposed by Spliethöver
and Wachsmuth (2020); Caliskan et al. (2017). Our
aim is to measure the bias present in the raw corpus
without the confounding factors of model architec-
ture and pre-existing bias in embeddings. There-
fore, this test identifies specific occasions in the
text where target words are present in close proxim-
ity to attribute words. The neighborhood of prox-
imity can be defined as within the same sentence
or within the same review, but the likelihood of a
review mentioning different topics over several sen-
tences is significant and we do not want to conflate
circumstantial correlation with bias. Therefore, we
only examine co-occurrence by sentence.

We do not find significant results across any of
the nine WEAT tests, with only six co-occurrences
identified in total across 9,165 peer-reviews4.

In line with existing research, we found that the
peer backward assessment ratings have a large skew
towards positive ratings, with over 50% of the data
residing in points 6 and 7 across all feedback ques-
tions asked. Student judgements about helpfulness
may be dependent on the review sentiment (Patchan
et al., 2018). Due to this positive skew, we select
ratings < 6 as a low rating denomination and ratings
>= 6 as a high rating across 4 reviewer axes: help-
fulness, critical aspects, constructive suggestions,

4For the interested reader, the results on all WEAT anal-
yses can be found in the Appendix. Moreover, the peer-
review corpus and the code for the conducted tests can
be found in our Github repo: https://github.com/
epfl-ml4ed/bias-at-a-second-glance.

Subsets High (>= 6) Low (< 6)
Constructive Suggestions 5656 3509

Critical Aspects 5514 3651
Helpfulness 5886 3279

Quality 5391 3774

Table 2: Distribution of 9165 student peer-reviews in
each reviewer rating subset. The scores have been rated
by the receiver of the review. High and Low ratings
correspond to scores on the Likert 7-point scale.

and overall quality. Table 2 indicates the number
of entries in each subset.

We conducted a WEAT co-occurrence analysis
across different review rating criteria (quality, criti-
cal aspects, helpfulness, constructive) and WEAT
target-attribute pairings, as inspired by Spliethöver
and Wachsmuth (2020). Examining the overall
corpus, none of the subsets are able to identify sig-
nificant bias. However, tests with ratings of high
quality do find minimal instances of bias in test
nine (mental vs. physical disease) while the other
rating criteria find test nine co-occurrences in their
low rating groups (critical aspects, constructive
suggestions, helpfulness). Due to the very few co-
occurrences present (two instances found in 9,165
reviews, each containing around ten sentences),
this difference could be attributed to noise.

In summary, from a preliminary examination of
the raw text corpora through the lens of the WEAT
co-occurrence tests, we are not able to uncover any
significant bias.

4.2 Bias in Embeddings

In a second experiment, we implement a GloVe
model trained on the raw text corpora. The data is
pre-processed to remove punctuation, stop-words,
and HTML tags. We train the GloVe model for 100
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Figure 2: Overview on significant gender bias for WEAT Test 6 in GloVe models between the different review
rating subsets. We examine the total effect size as well as each of the subsets (high and low scores for constructive
suggestions, critical aspects, helpfulness, and quality). Effect size is normalized between -1.0 to +1.0.
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Figure 3: The differences in effect size caused by fine-tuning in comparison with pre-trained model results across
all nine WEAT tests on three models (BERT, T5, GPT-2). Effect size is normalized between -1.0 to +1.0.

epochs, which consisted of about 20 minutes of
training time on an 8-core Apple M1 CPU. WEAT
Test 6 (Male vs. Female Names :: Career vs. Fam-
ily) is the only test able to uncover bias. The other
eight WEAT tests examined are out-of-vocabulary
for the GloVe model. This highlights a distinct
disadvantage in training models only on a distinct
set of texts instead of leveraging larger language
models and adapting them for a certain task.

Using the entire corpus, we identified a negative
bias of -0.748, stating that female names are more
related to career terms than male names. Effect
sizes are normalized from +1.0 to -1.0, so a bias of
0.75 is very significant. Another equivalent state-
ment is that male names are more related to family
terms than female names.

In addition to the overall analysis, we examined
subsets of the corpus based on peer backward as-
sessment review ratings classified into high and
low rating categories which are shown in Figure 4.
Eight GloVe models are trained on each subset of

the data (i.e. high quality, low helpful). We see that
constructive suggestions and quality have the most
difference in bias between the ratings with high
scores and low scores. In the reviews considered
highly constructive and high quality, male names
are more associated with career than female names;
in their corresponding minimally constructive and
low quality counterparts, female names are more
associated with career. This result is notable be-
cause it reveals the opposite bias found in these
subsets as contrasted with the bias measured over
a GloVe model trained on the whole corpus. High
and low ratings across critical aspects do not un-
cover significant differences, but high helpful and
low helpful ratings do identify the same bias as
the initial GloVe model (female names are more
associated with career than male names).

Overall, only one test on the gender axis is able
to uncover bias using traditional word embeddings
(GloVe). Comparing bias in a GloVe model trained
on the overall corpus and a GloVe model high qual-
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ity review subsets find different conclusions, em-
phasizing the importance of granularity in bias
analysis. This result is in line with the previous
co-occurrence study.

4.3 Bias in German Language Models

In a third experiment, we examined three popular
transformer-based German language models for
bias: GermanBERT, German T5, and German GPT-
2, extracted from the HuggingFace library (Wolf
et al., 2019). Few works analyze bias in pre-trained
German language models (Kraft, 2021; Ahn and
Oh, 2021), usually referencing one model at a time
instead of a comparative study. Therefore, we aim
to address this gap in research. Further details on
how these models were trained and the fine-tuning
objectives can be found in Section 3.3.

Our analysis consists of three parts: (1) Conduct
WEAT analysis to measure the underlying bias in
the pre-trained German models, (2) fine-tune three
models on our peer-review text corpora, and (3)
measure the change in bias across the WEAT tests.
The WEAT scores for pre-trained and fine-tuned
models can be found in Appendix Tables 6 and 7.

We initially conduct the WEAT analysis on the
pre-trained language models and find that German-
BERT and German GPT-2 are significantly biased
across all three tests on the racial axis (averaging
1.25 and 1.75 in effect size respectively), finding na-
tive names generally more associated with pleasant
terms than foreign names. German T5 and German
GPT-2 are biased across the conceptual axis (av-
eraging 0.38 and 0.51 in effect size respectively),
with positive effect sizes for all three tests.

We then pre-process the input data and fine-tune
the language models. Figure 3 identifies the dif-
ferences in the WEAT effect sizes across the three
axes of bias (nine WEAT tests) after fine-tuning.
The gender axis has the least change in score across
all three models, showing that fine-tuning on our
data does not significantly impact the underlying
gender bias in the pre-trained model. However, Ger-
manBERT is highly affected by fine-tuning across
the conceptual and racial axes across tests 1-5, and
9. Model T5 is significantly impacted in conceptual
test 9 (mental vs. physical disease) and GPT-2 bias
results are only minutely impacted by fine-tuning.

We additionally fine-tune the language models
with the eight subsets of the ratings, as per the same
experiment in Figure 4. As we analyze these results,
we find the bias does not vary significantly across

model subsets. For a point of comparison, we exam-
ine WEAT 6 (gender bias across career and family
attributes), found as the most significant test in the
GloVe model WEAT analysis. We hypothesized
that the language model that was least susceptible
to fine-tuning (GPT-2) might show stronger varia-
tions across subsets, but our results indicate a very
small change in bias of at maximum 0.03, with a
baseline of 0.61 for the GPT-2 WEAT 6 effect size
on the total corpus (Figure 4).

Moreover, we controlled for different subsets
concerning the male or female authors in terms of
bias along the NLP pipeline in the last three years
of our corpus. Nevertheless, we did not find any
significant results in 1) the co-occurrence analysis
for gender-separate subsets, 2) for the GloVe em-
beddings, and 3) for the fine-tuning on BERT, T5
and GPT-2. The exact results for the fine-tuned
models can be found in Tables 3 and 4.

Overall
(2017-2019)

Male
Authors

Female
Authors

GloVe
WEAT 6 -0.91 0.39 0

Table 3: WEAT results for the GloVe embeddings across
subsets of male and female authors. Only WEAT 6 is
found significant.

Despite the previous two experiments not finding
pervasive bias in the corpora, pre-trained German
language models are inherently significantly biased,
and fine-tuning using language models uncovers
different, significant bias. BERT is the most suscep-
tible to changes in bias of the three architectures.

5 Discussion and Conclusions

We collected and analyzed a novel corpus of
9,165 German peer-reviews, including the students’
gender and peer-reviewed helpfulness ratings, to
perform a granular bias analysis along the NLP
pipeline. Our aim was to shed light on the popu-
lar pedagogical scenario of peer-reviewing, where
NLP and ML are extensively used for improving
adaptivity. Our results did not show any signifi-
cant bias across any of the nine WEAT tests for our
corpora or the collected ratings. For the German
GloVe embeddings, we only found a significant
gender bias for test 6 involving male and female
names associated with career and family. Impor-
tantly, in common pre-trained German Language
models (BERT, T5, GPT-2), we found substantial
conceptual, racial, and gender bias. We saw that
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Figure 4: Overview on gender bias (WEAT 6) in fine-tuned GPT-2 between the different review rating subsets.
Effect size is normalized between -1.0 to +1.0.

Conceptual Racial Gender
Model Author 1 2 9 3 4 5 6 7 8
German

BERT
male -0.11 0.58 0.17 0.47 0.47 0.66 0.62 0.41 -0.23

female -0.11 0.58 0.18 0.47 0.47 0.67 0.62 0.41 -0.23
German

T5
male 0.36 0.08 0.22 0.53 0.31 -0.33 -0.46 0.49 0.03

female 0.35 0.09 0.21 0.53 0.31 -0.35 -0.46 0.51 0.02
German

GPT-2
male 0.07 0.11 0.59 0.62 0.62 0.63 0.61 0.01 -0.29

female 0.07 0.11 0.59 0.62 0.62 0.64 0.61 0.01 -0.29

Table 4: WEAT analysis from subsets of male authors and female authors used to fine-tune three German language
models. Most values remain the same across both subsets at two degrees of precision.

after fine-tuning on our corpora, the language mod-
els uncovered other significant bias that were not
present before fine-tuning. BERT was most sus-
ceptible to bias changes. Hence, we contribute a
perspective in how to reveal and investigate bias
in educational corpora for educational downstream
tasks, as well as initial actionable considerations
for educational data scientists intending to use our
corpus.

Are results add insights to the literature about
gender bias in educational data modelling (e.g.,
Anderson et al. (2019)), in embedding spaces (e.g.,
Bolukbasi et al. (2016)), and in language modelling
(e.g., Lu et al. (2018)). In our research, we built on
the findings from these different perspectives along
the NLP pipeline and conducted a fine-granular
analysis for German peer-reviews by analyizing the
texts, the qualitative review scores, demographics
(i.e, gender), embeddings, and the most common
pre-trained language models before and after fine-
tuning.

Our results suggest three main directions. First,
bias can emerge and change along the NLP-
pipeline. Detecting a certain bias in the corpora or
in pre-trained language models does not necessi-

tate a connection to bias in fine-tuned models for
downstream tasks. Thus, it is necessary to have
more in-depth analyses of bias not only along the
entire NLP pipeline but also for subsets of data that
are significant. Second, it is important to examine
the bias in pre-trained models before using them.
And third, more investigations on multilingual data
bias are necessary. Therefore, we contribute to
literature on bias of educational language data by
providing a fine-grained analysis of one particular
but increasingly used pedagogical scenario (peer-
reviews). We contribute our collected corpus of
peer-reviews in German for further analysis and
hope to provide researchers and practitioners with
a detailed analysis and discussion of bias in NLP
for education. Finally, we aim to contribute to the
UN sustainability goal four for a high quality edu-
cation and fair (digital) education for all.

5.1 Ethical Considerations

We note that this research was conducted by a
mixed team of authors with Western European,
Indian, North-American, female and male back-
grounds.
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A Appendix

Conceptual Racial Gender
# +/- 1 2 9 3 4 5 6 7 8

Overall 9165 +/- 1 1 1 1 2

Quality 5391 + 1 1 1
- 1 1 1

Critical 5514 + 1 1 1 1
- 1 1

Helpful 5886 + 1 1 1 1
- 1 1

Constructive 5656 + 1 1 1 1
- 1 1

Table 5: WEAT co-occurrence analysis across different
review rating criteria (quality, critical aspects, helpful-
ness, constructive) and tests (1-9). This table represents
the counts of co-occurrence examples present in the
high ratings (+) and low ratings (−) for each criteria.
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Bias # Targets Attributes German
BERT

German
T5

German
GPT-2

1 Flowers vs. Insects Pleasant vs. Unpleasant -0.22 0.61 0.25
2 Instruments vs. Weapons Pleasant vs. Unpleasant 0.58 0.11 0.15Conceptual
9 Mental vs. Physical Disease Temporary vs. Permanent 0.16 0.5 0.54
3 Native vs. Foreign Names Pleasant vs. Unpleasant 0.48 0.44 0.64
4 Native vs. Foreign Names (v2) Pleasant vs. Unpleasant 0.48 0.44 0.64Racial
5 Native vs. Foreign Names (v2) Pleasant vs. Unpleasant (v2) 0.67 -0.38 0.74
6 Male vs. Female Names Career vs. Family 0.61 -0.56 0.79
7 Math vs. Arts Male vs. Female Terms 0.4 0.73 0.14Gender
8 Science vs. Arts Male vs. Female Terms -0.24 0.22 -0.28

Table 6: WEAT Test effect sizes for pretrained German BERT, T5, and GPT-2. Positive scores indicate that Target
1 (i.e. Mental Disease) is more associated with Attribute 1 (i.e. Temporary) than Target 2 (i.e. Physical Disease).
An equivalent statement is that Target 2 (i.e. Physical Disease) is more associated with Attribute 2 (i.e. Permanent)
than Target 1 (i.e. Mental Disease). Scores scale between +1.0 and -1.0.

Bias # Targets Attributes German
BERT

German
T5

German
GPT-2

1 Flowers vs. Insects Pleasant vs. Unpleasant 0.23 0.36 0.07
2 Instruments vs. Weapons Pleasant vs. Unpleasant 0.07 0.05 0.11Conceptual
9 Mental vs. Physical Disease Temporary vs. Permanent -0.37 0.17 0.6
3 Native vs. Foreign Names Pleasant vs. Unpleasant 0.85 0.52 0.62
4 Native vs. Foreign Names (v2) Pleasant vs. Unpleasant 0.89 0.31 0.62Racial
5 Native vs. Foreign Names (v2) Pleasant vs. Unpleasant (v2) 0.9 -0.29 0.64
6 Male vs. Female Names Career vs. Family 0.44 -0.46 0.61
7 Math vs. Arts Male vs. Female Terms 0.54 0.51 0.01Gender
8 Science vs. Arts Male vs. Female Terms -0.1 0.08 -0.29

Table 7: WEAT Test effect sizes for finetuned German BERT, T5, and GPT-2, in comparison with pretrained results
in Table 6. Positive scores indicate that Target 1 (i.e. Mental Disease) is more associated with Attribute 1 (i.e.
Temporary) than Target 2 (i.e. Physical Disease). Green text indicates a positive effect size change due to finetuning,
red text indicates a negative change.
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Abstract
This work investigates the challenge of learn-
ing and reasoning for Commonsense Question
Answering given an external source of knowl-
edge in the form of a knowledge graph (KG).
We propose a novel graph neural network ar-
chitecture, called Dynamic Relevance Graph
Network (DRGN). DRGN operates on a given
KG subgraph based on the question and an-
swers entities and uses the relevance scores
between the nodes to establish new edges dy-
namically for learning node representations in
the graph network. This explicit usage of rel-
evance as graph edges has the following ad-
vantages, a) the model can exploit the exist-
ing relationships, re-scale the node weights,
and influence the way the neighborhood nodes’
representations are aggregated in the KG sub-
graph, b) It potentially recovers the missing
edges in KG that are needed for reasoning.
Moreover, as a byproduct, our model improves
handling the negative questions due to con-
sidering the relevance between the question
node and the graph entities. Our proposed ap-
proach shows competitive performance on two
QA benchmarks, CommonsenseQA and Open-
bookQA, compared to the state-of-the-art pub-
lished results.

1 Introduction

Solving Question Answering (QA) problems usu-
ally requires both language understanding and hu-
man commonsense knowledge. Large-scale pre-
trained language models (LMs) have achieved suc-
cess in many QA benchmarks (Rajpurkar et al.,
2016, 2018; Min et al., 2019; Yang et al., 2018).
However, LMs have difficulties in predicting the
answer when reasoning over external knowledge is
required (Yasunaga et al., 2021; Feng et al., 2020).

Therefore, using the external sources of knowl-
edge explicitly in the form of knowledge graphs
(KGs) is a recent trend in question answering mod-
els (Lin et al., 2019; Feng et al., 2020). Fig-
ure 1, taken from the CommonsenseQA bench-

The student practiced his guitar often, where is he
always spent his free period?
A. music room B. rock band C. toy store
D. stage E. concert

Music room

guitar

Playing instrument

band concert instrument

rock
band

Q

free period

UsedFo
r

IsA

AtLocation
IsA

Us
ed
Fo
r

AtLocation

UsedFor

Figure 1: An example of the CommonsenseQA bench-
mark. Given the question node Q, question entity nodes
(blue boxes), correct answer entity node (red box), and
wrong answer entity nodes (orange boxes), we predict
the answer by reasoning over the question and the ex-
tracted KG subgraph.

mark, shows an example for which answering the
question requires commonsense reasoning. In this
example, the external KG provides the required
background information to obtain the reasoning
chain from question to answer. We highlight two
issues in the previous approaches taken to solve this
QA problem: a) the extracted KG subgraph some-
times misses some edges between entities, which
breaks the chain of reasoning that the current mod-
els can not exploit the connections, b) the semantic
context of the question and connection to the an-
swer is not used properly, for example, reasoning
when negative terms exist in the question, such as
no and not, is problematic.

The first above-mentioned issue is caused by
the following reasons. First, the knowledge graph
is originally imperfect and does not include the
required edges. Second, when constructing the
subgraph, to reduce the graph size, most of the
models select the entities that appear in two-hop
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paths (Feng et al., 2020). Therefore, some interme-
diate concept (entity) nodes and edges are missed
in the extracted KG subgraph. In such cases, the
subgraph does not contain a complete chain of rea-
soning. Third, the current models often cannot
reason over paths when there is no direct connec-
tion between the involved concepts. While find-
ing the chain of reasoning in QA is challenging
in general (Zheng and Kordjamshidi, 2021), here
this problem is more critical when the KG is the
only source and there are missing edges. Looking
back at Figure 1, the KG subgraph misses the di-
rect connection between guitar and playing instru-
ment (green arrow). For the issue of considering
question semantics, as (Lin et al., 2019) points out,
previous models are not sensitive to the negation
words and consequently predict opposite answers.
QA-GNN (Yasunaga et al., 2021) model is the first
work to deal with the negative questions. QA-GNN
improves the reasoning under negation, to some
extent, by adding the QA global node to the graph.
However, the challenge still exists.

To solve the above challenges, we propose
a novel architecture, called Dynamic Relevance
Graph Network (DRGN). The motivation of our
proposed DRGN is to recover the missing edges
and establish direct connections between concepts
to facilitate multi-hop reasoning. In particular,
DRGN model uses a relational graph network mod-
ule while influencing the importance of the neigh-
bor nodes using an additional relevance matrix. It
potentially can recover the missing edges to es-
tablish a direct connection based on the relevancy
of the node representations in the KG during the
training. The module can potentially capture the
connections between distant nodes while benefiting
from the existing KG edges. Our proposed model
learns representations directly based on the rele-
vance scores between subgraph entity pairs that are
computed by Inner Product operation. At each con-
volutional layer of the graph neural network, we
compute the inner product of the nodes based on
their current layer’s node representations dynam-
ically and build the neighborhoods based on this
relevance measure and form a relevance matrix ac-
cordingly. This can be seen as a way to learn new
edges as the training goes forward in each layer
while influencing on the weights of the neighbors
dynamically based on their relevance. As shown in
Figure 1, the relevance score between guitar and
playing instrument is stronger than other nodes in

the subgraph. Moreover, since the graph includes
the question node, the relevance between the ques-
tion node and entity nodes is computed at every
layer, making use of the contextual information
more effectively. It becomes more clear that the
student will spend the free period in the music room
rather than the concert.

In summary, the contributions of this work are as
follows: 1) The Proposed DRGN architecture ex-
ploits the existing edges in the KG subgraph while
explicitly uses the relevance between the nodes to
establish direct connections and recover the pos-
sibly missing edges dynamically. This technique
helps in capturing the reasoning path in the KG for
answering the question.
2) Our model exploits the relevance between ques-
tion and the graph entities, which helps considering
the semantics of the question explicitly in the graph
reasoning and boosting the performance. In partic-
ular, it improves dealing with the negation.
3) Our proposed model obtains competitive re-
sults on both CommonsenseQA and OpenbookQA
benchmarks. Our analysis demonstrates the signifi-
cance and effectiveness of the DRGN model.

2 Related Work

2.1 QA using Knowledge Graph

Augmenting QA systems with external knowledge
has been studied in many recent research papers. In
this direction, pre-trained language models are of-
ten employed because they potentially can serve as
implicit knowledge bases. (Devlin et al., 2019; Ra-
jaby Faghihi and Kordjamshidi, 2021). To consider
more interpretable knowledge, KGs are utilized in
the QA models (Zheng and Kordjamshidi, 2022;
Feng et al., 2020). However, given that the KGs are
usually large and contain many nodes that are irrel-
evant to the question, the QA models can not effec-
tively use the KG’s information (Feng et al., 2020).
Moreover, with larger KGs, the computational com-
plexity of learning over them will increase. To deal
with this issue, pruning KG nodes based on a vari-
ety of metrics has been proposed (Defferrard et al.,
2016; Zhou et al., 2020; Velickovic et al., 2018;
Hamilton et al., 2017; Ying et al., 2018).

Furthermore, the textual context is used as an
additional node in the KG subgraph. For example,
(Koncel-Kedziorski et al., 2019) and (Yasunaga
et al., 2021) introduce the sentence node into the
graph, while (Fang et al., 2020) and (Zheng and
Kordjamshidi, 2020) add the paragraph node and
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Figure 2: Our proposed DRGN model is composed of the Language Context Encoder module, KG Subgraph
Construction module, Graph Neural Network module, and Answer Prediction module. The blue color entity nodes
represent the entity mentioned in the question. The yellow color node represents the answer node. The red color
node is the question node. We use different colors to draw the dynamic relevance matrix 1 and 2 because the
relevance matrix changes dynamically in each graph neural layer.

sentence node to construct a hierarchical graph
structure. In this work, we also use the question
node as the external node and add it to the KG
subgraph. Therefore, the graph representations can
learn more contextual information by computing
the relevance between the question node and graph
entity nodes.

2.2 Graph Neural Networks

Graph convolutional network (GCN) (Kipf and
Welling, 2017) is a classic multi-layer graph neural
network. The node representations in the graph
are strongly related to their neighborhood nodes
and edges. For each layer of GCN, the node repre-
sentations capture the information of their neigh-
borhood nodes and edges via message passing and
graph convolutional operation. R-GCN is a vari-
ation of GCN that deals with the multi-relational
graph structure (Schlichtkrull et al., 2018). (Li
et al., 2018) proposes an Adaptive Graph Convo-
lution Network (AGCN) to learn the underlying
relations and learn the residual graph Laplacian to
improve spectral graph performance. Meanwhile,
some varients of GCN try to replace the graph
Fourier transform. For example, Graph Wavelet
Neural Network (GWNN) (Xu et al., 2019) ap-
plies the graph wavelet transform to the graph, and
achieves better performance compared to the graph
Fourier transform in some tasks.

Meanwhile, several models use the attention
based Transformer operator on the graphs. For ex-
ample, the graph attention network (GAT) (Velick-

ovic et al., 2018) uses the self-attention method
and multi-head attention strategy to learn the
node representations that consider the neighbors
of the nodes. Besides, the gated attention network
(GaAN) (Zhang et al., 2018) uses self-attention to
aggregate the different heads’ information. GaAN
utilizes the gate mechanism to replace the average
operation that is commonly used in the GAT model.

Dynamic GCN (Ye et al., 2020) is another branch
of the GCN family. The dynamic graphs are con-
structed for different input samples. Moreover, Dy-
namic GCN learns the dynamic graph structure by
a context-encoding network, which takes the whole
feature map from the convolution neural network
as input and directly predicts the adjacency matrix.
Unlike these works, our DRGN model maintains
the graph structure statically, but computes the rel-
evance edges dynamically and uses the relevance
to weight the neighbors for learning node represen-
tations. Besides, our approach uses the existing
relationships in the KG, recovers the missing edges
and establishes the direct connections by comput-
ing the relevance between nodes dynamically. We
consider this as learning new edges based on the
relevancy of the nodes while the training goes for-
ward in each layer.

3 Dynamic Relevance Graph Network

3.1 Task Formulation

The task of QA over pure knowledge is to choose
a correct answer aans from a set of N candidate
answers {a1, a2, ..., an} given input question q and
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an external knowledge graph (KG). In fact, the
input to the problem is not the whole KG but a
subgraph, Gsub = (V,E), is selected based on pre-
vious research in (Feng et al., 2020) and (Yasunaga
et al., 2021). The node set V represents entities
in the knowledge subgraph, and the edge set E
represents the edges between entities.

3.2 Model Description

Figure 2 shows the proposed Dynamic Relevance
Graph Network (DRGN) architecture. Our DRGN
includes four modules: Language Context En-
coder module, KG Subgraph Construction module,
Graph Neural Network module, and Answer Pre-
diction module. In this section, we describe the
details of our approach and the way we train our
model efficiently.

3.3 Language Context Encoder

For every question q and candidate answer ai pair,
we concatenate them to form Language Context L:

L = [[CLS]; q; [SEP ]; ai],

where [CLS] and [SEP] are the special tokens used
by large-scale pre-trained Language Models (LMs).
We feed input L to a pre-trained LMs encoder to
obtain the list of token representations hL ∈ R|L|∗d,
where |L| represents the length of the sequence.
Then we use the [CLS] representation, denoted as
h[CLS] ∈ Rd, as the representation of L.

3.4 KG Subgraph Construction

We use ConceptNet (Speer et al., 2017), a general-
domain knowledge graph, as the commonsense KG.
ConceptNet graph has multiple semantic relational
edges, e.g., HasProperty, IsA, AtLocation, etc. We
follow (Feng et al., 2020) work to construct the
subgraphs from KG for each example. The ap-
proach is to construct a subgraph from KG that
contains the entities mentioned in the question and
answer choices. The entities are selected with the
exact match between n-gram tokens and Concept-
Net concepts using some normalization rules. Then
another set of entities is added to the subgraph by
following the KG paths of two hops of reasoning
based on the current entities in the subgraph.

Furthermore, we add the semantic context of the
question as a separate node to the subgraph. This
node provides an additional question context to the
KG subgraph, Gsub, as suggested by (Yasunaga
et al., 2021). We link the question node to entity

nodes mentioned in the question. The semantic
context of the question node Q is initialized by the
[CLS] representation described in Section 3.3. The
initial representation of the other entities is derived
from applying RoBERTa and pooling over their
contained tokens (Feng et al., 2020).

3.5 Graph Neural Network Module
The basis of our learning representation is
Multi-relational Graph Convolutional Network (R-
GCN) (Schlichtkrull et al., 2018). R-GCN is an
extension of GCN that operates on a graph with
multi-relational edges between nodes. In our case,
the relation types between entities are taken from
the 17 semantic relations from ConceptNet. Mean-
while, an additional type is added to represent the
relationship between the question node and ques-
tion entities, making the graph structure different
from previous works. We denote the set of relations
as R.

Our dynamic relevance graph network (DRGN)
architecture is the variation of the R-GCN model.
To establish the direct connection between the
graph nodes and re-scale the importance of the
neighbors, we compute the relevance score be-
tween the nodes dynamically at each graph layer
based on their current learned representations.
Then we build the neighborhoods based on this rel-
evance measure and form a relevance matrix, Mrel,
accordingly. This can be seen as a way to learn
new edges based on the relevance of the nodes as
the training goes forward in each graph layer. We
use inner product to compute the relevance matrix:

M
(l)
rel = h(l)>h(l) ∈ R(|V |+1)∗(|V |+1),

where |V | is the graph entity nodes sizes, and 1 is
added due to using the question node in the graph.
The relevance matrix re-scales the weights and in-
fluences the way the neighborhood nodes’ represen-
tations are aggregated in the R-GCN model. Mrel

is computed dynamically, and the relevance scores
change while the representations are computed at
each graph layer. In our proposed relational graph,
the forward-pass message passing updates of the
nodes, denoted by hi, are calculated as follows:

h
(l+1)
i = σ(

∑

r∈R

∑

j∈Nri

1

di,r
W (l)
r · (M (l)

reli,j
h
(l)
j )

+W
(l)
0 · (M

(l)
reli,i

h
(l)
i )) ∈ Rd,

where Nri represents the neighbor nodes of node i
under relation r, r ∈ R. σ is the activation function,

1360



Wr denotes the learnable parameters. Besides, we
calculate the updated question node representation
as follows,

h
(l+1)
Q = σ(

∑

j∈NQ
W

(l)
Q · Fc([h

(l)
Q ; (M

(l)
relQ,j

h
(l)
j )])

+W
(l)
0 · (M

(l)
relQ,Q

h
(l)
Q )) ∈ Rd,

where Fc is a two-layer MLP, hQ is the question
node representation. Finally, we stack the node
representations to form h′(l+1):

h′(l+1) = [h
(l+1)
0 ;h

(l+1)
1 ; · · · ;h(l+1)

|V | ;h
(l+1)
Q ]

∈ R(|V |+1)∗d.

We then compute the (l + 1) layer’s dynamic rel-
evance matrix M

(l+1)
rel that shows the relevance

scores of node representations. Finally, we use
the M (l+1)

rel to multiply the node representation ma-
trix h′(l+1) that helps the node representation to
learn the weights of the edges based on the learned
relevance and specifically to include the additional
relevance edges between the nodes during the mas-
sage passing as follows:

h(l+1) = σ
(
M

(l+1)
rel · h′(l+1) ·Wg

)
∈ R(|V |+1)∗d,

where Wg is the learnable parameters.

3.6 Answer Prediction
Given the Language Context L and KG subgraph,
we use the information from both the language rep-
resentation h[CLS], question node representation
hQ learnt from the KG subgraph, and the KG sub-
graph representation pooled from the last graph
layer, pool(hGsub), to calculate the scores of the
candidate answers as follows:

p(a|L,Gsub) = fout([h[CLS];hQ; pool(hGsub)]),

where fout is a two-layer MLP. Finally, we choose
the highest scored answer from N candidate an-
swers as the prediction output. We use the cross
entropy loss to optimize the end-to-end model.

4 Experiments and Results

4.1 Datasets
We evaluate our model on two different QA bench-
marks, CommonsenseQA and OpenbookQA. Both
benchmarks come with an external knowledge
graph. We apply ConceptNet to the external knowl-
edge graph on these two benchmarks.

CommonsenseQA (Talmor et al., 2019) is a QA
dataset that requires human commonsense reason-
ing capacity to answer the questions. Each question
in CommonsenseQA has five candidate answers
without any extra information. The dataset consists
of 12, 102 questions.
OpenbookQA (Mihaylov et al., 2018) It is a
multiple-choice QA dataset that requires reason-
ing with commonsense knowledge. The Open-
bookQA benchmark is a well-defined subset of
science QA (Clark et al., 2018) that requires find-
ing the chain of commonsense reasoning to answer
a question. Each data sample includes the question,
scientific facts, and candidate answers. In our ex-
perimental setting, the scientific facts are added to
the question part. This makes the problem formula-
tion consistent with the CommonsenseQA setting.

4.2 Implementation Details

We implemented our DRGN architecture using
PyTorch.1 We use the pre-trained RoBERTa-
large (Liu et al., 2019) to encode the question. We
use cross-entropy loss and RAdam optimizer (Liu
et al., 2020) to train our end-to-end architecture.
The batch size is set to 16, and the maximum text
input sequence length set to 128. Our model uses
an early stopping strategy during the training. We
use a 3-layer graph neural module in our experi-
ments. Section 5.3 describes the effect of the dif-
ferent number of layers. The learning rate for the
LMs is 1e− 5, while the learning rate for the graph
module is 1e− 3.

4.3 Baseline Description

KagNET (Lin et al., 2019) is a path-based model
that models the multi-hop relations by extracting
relational paths from Knowledge Graph and then
encoding paths with an LSTM sequence model.
MHGRN (Feng et al., 2020): Multi-hop Graph
Relation Network (MHGRN) is a strong baseline.
MHGRN model applies LMs to the question and
answer context encoder, uses GNN encoder to learn
graph representations, and chooses the candidate
answer by these two encoders.
QA-GNN (Yasunaga et al., 2021) is the recent
SOTA model that uses a working graph to train
language and KG subgraph. The model jointly rea-
sons over the question and KG and jointly updates
the representations. QA-GNN uses GAT as the

1Our code is available at https://github.com/
HLR/DRGN.
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Models Dev ACC% Test ACC%
RoBERTa-no KG 69.6% 67.8%

R-GCN 72.6% 68.4%
GconAttn 72.6% 68.5%
KagNet 73.3% 69.2%

RN 73.6% 69.5%
MHGRN 74.4% 71.1%
QA-GNN 76.5% 73.4%
DRGN 78.2% 74.0%

Table 1: Dev accuracy and Test accuracy (In-House
split) of various models on the CommonsenseQA
benchmark, following by (Lin et al., 2019).

backbone to do message passing on the graph. To
learn the semantic edge information, QA-GNN di-
rectly adds the edge representation to the local node
representation and cannot learn the global structure
of the edges, which is inefficient. However, our
model uses the global multi-relational adjacency
matrices to learn the edge information.

4.4 Result Comparison

Table 1 shows the performance of different mod-
els on the CommonsenseQA benchmark. KagNet
and MHGRN are two strong baselines. Our model
outperforms the KagNet by 4.8% and MHGRN
by 2.9% on CommonsenseQA benchmark. This
result shows the effectiveness of our DRGN ar-
chitecture. Table 2 shows the performance on the
OpenbookQA benchmark. There are a few recent
papers that exploit larger LMs, such as T5 (Raffel
et al., 2020) that contains 3 billion parameters (10x
larger than our model,) and UnifiedQA (Khashabi
et al., 2020) (32x larger). For a fair comparison,
we use the same RoBERTa setting for the input rep-
resentation when we evaluate OpenbookQA. Our
model performance, potentially, will be improved
after using these larger LMs. To demonstrate this
point, we did additional experiments using Aris-
toRoBERTaV7 (Clark et al., 2019) as a backbone
to train our model. Our model achieves better per-
formance when using the larger LMs compared
to other baseline models. The performance shows
that the more implicit information learned from
pre-trained language models, the more effective
relevance information established between graph
nodes. We should note that GREASELM (Zhang
et al., 2022) and GSC (Wang et al., 2022) are
two most recent models that are developed in
parallel with our DRGN. GREASELM aims to

Models Dev Test
RoBERTa-large 66.7% 64.8%

R-GCN 65.0% 62.4%
GconAttn 64.5% 61.9%

RN 66.8% 65.2%
MHGRN 68.1 % 66.8%
QA-GNN 68.9 % 67.8%
DRGN 70.1% 69.6%

AristoRoBERTaV7 79.2% 77.8%
T5(3 Billion Parameters) - 83.2%

UnifiedQA(11 Billion Parameters) - 87.2%
AristoRoBERTaV7+MHGRN 78.6% 80.6%
AristoRoBERTaV7+QA-GNN 80.4% 82.8%
AristoRoBERTaV7+DRGN 81.8% 84.1%

Table 2: Development and Test accuracy of various
model performance on the OpenbookQA benchmark.

ground language context in commonsense knowl-
edge graph by fusing token representations from
pretrained LMs and GNN over Modality Interac-
tion layers (Zhang et al., 2022). GSC designs a
Graph Soft Counter layer (Wang et al., 2022) to
enhance the graph reasoning capacity. Our results
are competitive with the reported ones in those par-
allel works while each work emphasizes different
contributions.

The student practiced his guitar often, where is he always
spent his free period?
A. music room B. rock band C. toy store D. stage E. concert
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Figure 3: The complete reasoning chain from the ques-
tion node to the candidate answer node. The blue nodes
are question entity nodes, the red and green nodes are
the candidate answer nodes. The thicker edges indicate
the higher relevance score to the neighborhood node,
while the thinner edges indicate the lower score. The
left side is the reasoning chain selected from our model
(orange edges), while the right side is selected from the
baseline models (grey edges).

5 Analysis

5.1 Effects on Finding the Line of Reasoning
In this section, we analyze the effectiveness of our
DRGN model that helps in recovering the missing
edges and establishing direct connections based on
the relevancy of the node representations in the KG.
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Models Test ACC % Test ACC%
(Overall) question w/ negative

RoBERTa-large 68.7 % 54.2%
KagNet 69.2 % 54.2 %

MHGRN 71.1 % 54.8%
QA-GNN 73.4 % 58.8%

DRGN 75.0% 60.1%

Table 3: Performance on questions with negation in In-
house split test CommonsenseQA.

As we described in Section 3.4, to keep the graph
size small, most of the models construct the KG
subgraph via selecting the entities that appear in
two-hop paths. Therefore, some intermediate con-
cept nodes and edges are missed in the extracted
KG subgraph, and the complete reasoning chain
from the question entity node to the candidate an-
swer node can not be found.

For example, as shown in Figure 3, the question
is “The student practiced his guitar often, where is
he always spent his free period?” and the answer
is “music room”. The reasoning chain includes 2
hops, that is, “guitar→ playing instrument→ mu-
sic room”. Since the constructed graph misses the
direct edge between “guitar” and “playing instru-
ment”, MHGRN and QA-GNN baselines select the
wrong intermediate node and predict the wrong an-
swer “concert” and “rock band” by the grey edges
described in the Figure 3. In contrast, our DRGN
model makes a correct prediction by computing the
relevance score of the nodes based on their learned
representations and forming new edges accordingly.
As we describe in Section 3.4, our model initial-
izes the entity node representation by large-scale
pre-trained language models (LMs). The implicit
representations of LMs are learned from the huge
corpora, and the knowledge is implicitly learned.
Therefore, these two entities, “guitar” and “play-
ing instrument”, start with an implicit connection.
By looking at the relevance changes, after several
layers of graph encoding, the relevance score be-
tween “guitar” and “playing instrument” becomes
stronger. In contrast, the relevance score between
“guitar” and “concert” becomes weaker because of
the contextual information “free period”. This is
the primary reason why our DRGN model obtains
the correct reasoning chain.

5.2 Effects on Semantic Context

While the graph has a broad coverage of knowl-
edge, the semantic context of the question and con-
nection to the answer is not used properly. For

Why do parents encourage their kids to play baseball? 
A. round B. cheap C. break window D. hard E. fun to play

Why don’t parents encourage their kids to play baseball? 
A. round B. cheap C. break window D. hard E. fun to play

MHGRN:
QA-GNN:
DRGN: play baseball baseball fun to playused for has property

MHGRN:
QA-GNN:
DRGN:

play baseball baseball fun to playused for has property

play baseball play ball break windowused for has subevent
play baseball baseball A ballused for type of used for break window

play baseball baseball fun to playused for has property
play baseball baseball fun to playused for has property

Figure 4: The case study of the negation examples. The
question in the bottom box includes the negation words.
The red colored text represents the gold answer, and the
purple colored represents the wrong answer. In the blue
box, each line represents the commonsense reasoning
chain of each model.

example, dealing with negation can not perform
well (Yasunaga et al., 2021). Since our dynamic
relevance matrix includes the semantic context of
the question, the relevance between the question
and graph entities is computed at every graph neu-
ral layer while considering the negation in the node
representations. Intuitively, this should improve
handling the negative question in our model.

To analyze this hypothesis for DRGN architec-
ture, we compare the performance of various mod-
els on questions containing negative words (e.g.,
no, not, nothing, unlikely) from CommonsenseQA
following (Yasunaga et al., 2021). The result is
shown in Table 3. We observe that the baseline
models of KagNet and MHGRN provide limited
improvements over RoBERTa on questions with
negation words (+0.4%). However, our DRGN
model exhibits a huge boost (+5.9%). Moreover,
the DRGN model gains a larger improvement in the
accuracy compared to the QA-GNN model, demon-
strating the effectiveness of considering relevance
between question semantics and graph entity that
experimentally confirms our hypothesis. An addi-
tional ablation study in Table 5 confirms this idea
further. When removing the question information
from DRGN, we observe that the performance on
negation becomes close to the MHGRN.

Figure 4 shows qualitative examples about the
positive and negative questions. For the positive
question, all the models obtain the same reason-
ing chain “play baseball-(used for)→ baseball-(has
property)→ fun to play”, including MHGRN, QA-
GNN, and our architecture. However, when adding
the negative words, MHGRN obtains the same rea-
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CommonsenseQA Dev Accuracy 
K Selection DRGN MHGRN QA-GNN
L=1 0.759 0.7324 0.75
L=2 0.776 0.7394 0.757
L=3 0.778 0.7465 0.762
L=4 0.781 0.7415 0.765

 

0.7 0.72 0.74 0.76 0.78 0.8

L=1

L=2

L=3

L=4

CommonsenseQA Dev Accuracy 

QA-GNN MHGRN DRGN

Figure 5: The Effect of number of layers in QA-GNN,
MHGRN, and DRGN models on CommonsenseQA.

Models Time Space
l-layer KagNet O(|R|l|V |l+1l) O(|R|l|V |l+1l)
l-layer MHGRN O(|R|2|V |2l) O(|R||V |l)
l-layer QA-GNN O(|V |2l) O(|R||V |l)
l-layer DRGN O(|R|2|V |2l) O(|R||V |2l)

Table 4: The time complexity and space complexity
comparison between DRGN and baseline models.

soning chain as the positive situation, while QA-
GNN and DRGN find the correct reasoning chain.
One interesting finding is that DRGN can detect
the direct connection using fewer hops to establish
the reasoning chain.

5.3 Effects of Number of Graph Layers

The number of graph layers is an influencing fac-
tor for DRGN architecture because our relevance
matrix is computed dynamically, and the relevance
scores change while the representations are com-
puted at each graph layer. We evaluate the effects
of multiple layers l for the baseline models and our
DRGN by evaluating its performance on the Com-
monsenseQA. As shown in Figure 5, the increase
of l continues to bring benefits until l = 4 for
DRGN. We compare the performance after adding
each layer for MHGRN, QA-GNN, and our DRGN.
We observe that DRGN consistently achieves the
best performance with the same number of layers
as the baselines.

Table 4 shows the time complexity and the space
complexity comparison between DRGN model and
baseline model. We compare the computational
complexity based on the number of layers l, the
number of nodes V , and the number of relations
R. Our model and MHGRN have the same time
complexity because both models use the R-GCN
model as the backbone. Besides, QA-GNN directly
adds the edge representation to the local node rep-
resentation during the graph pre-processing step
and learns the graph node representation without

Models Dev ACC
DRGN w/o KG subgraph 69.6%
+ KG subgraph 72.6%
+ relational edges in graph 73.7%
+ question node in graph 74.9%
+ dynamic relevance matrix 78.2%

Table 5: Ablation Study on CommonsenseQA dataset.

the global semantic relational adjacency matrices.
After adding the dynamic relevance matrix at each
graph layer, our DRGN model achieves better per-
formance compared to other baseline architectures.
For the space complexity, our model’s space com-
plexity is slightly larger than MHGRN because
DRGN introduces the extra dynamic relevance ma-
trix. However, this cost depends on the size of the
subgraph, which is usually small while it leads to a
huge improvement.

5.4 Ablation of DRGN Modules

To evaluate the effectiveness of various compo-
nents of DRGN, we perform an ablation study on
the CommonsenseQA development benchmark. Ta-
ble 5 shows the results of ablation study. First, we
remove the whole commonsense subgraph. Our
model without the subgraph obtains 69.6% on the
CommonsenseQA. This shows how the implicit
language model can answer the questions without
the external KG, which is not high-performing but
yet impressive. After adding the KG subgraph,
the accuracy improves to 72.6% on the Common-
senseQA benchmark. Second, we keep the KG
subgraph and add multiple relational edge informa-
tion from the subgraph (described in section 3.5).
Without the relational edges, the accuracy becomes
73.7%. This result shows that the multiple rela-
tional edges help in learning better graph node rep-
resentations and obtaining a higher performance.
Third, we keep the multi-relational subgraph and
add the question node. In other words, we incorpo-
rate the semantic relationship between the question
node and the graph entities. The accuracy of the
model improves to 74.9%. Finally, we add the
most important component, the dynamic relevance
matrix, to each graph layer. The large improve-
ment demonstrates the importance of the dynamic
relevance matrix and the effectiveness of DRGN
architecture.
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6 Conclusion

In this paper, we propose a novel Dynamic Rel-
evance Graph Network (DRGN) architecture for
commonsense question answering given an exter-
nal source of knowledge in the form of a Knowl-
edge Graph. Our model learns the graph node
representation while a) exploits the existing rela-
tions in KG, b) re-scales the importance of the
neighbor nodes in the graph based on training a
dynamic relevance matrix, c) establishes direct con-
nections between graph nodes based on measuring
the relevance scores of the nodes dynamically dur-
ing training. The dynamic relevance edges help
in finding the chain of reasoning when there are
missing edges in the original KG. Our quantitative
and qualitative analysis shows that the proposed
approach facilitates answering the complex ques-
tions that need multiple hops of reasoning. Fur-
thermore, since DRGN uses the relevance between
the question node and graph entities, it exploits the
richer semantic context of the question in graph
reasoning which leads to improvements in the per-
formance on the negative questions. Our proposed
approach shows competitive performance on two
QA benchmarks, including CommonsenseQA and
OpenbookQA.
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Abstract

This study proposes Semantic-Infused
SElective Graph Reasoning (SISER) for
fact verification, which newly presents
semantic-level graph reasoning and injects its
reasoning-enhanced representation into other
types of graph-based and sequence-based
reasoning methods. SISER combines three
reasoning types: 1) semantic-level graph
reasoning, which uses a semantic graph from
evidence sentences, whose nodes are elements
of a triple – <Subject, Verb, Object>, 2)
“semantic-infused” sentence-level “selective”
graph reasoning, which combine semantic-
level and sentence-level representations and
perform graph reasoning in a selective manner
using the node selection mechanism, and 3)
sequence reasoning, which concatenates all
evidence sentences and performs attention-
based reasoning. Experiment results on a
large-scale dataset for Fact Extraction and
VERification (FEVER) show that SISER out-
performs the previous graph-based approaches
and achieves state-of-the-art performance.

1 Introduction
An ever-increasing number of unconfirmed false
or misleading information spread on various so-
cial media platforms has motivated the verifica-
tion of textual information, referred to as fact
verification. FEVER (Thorne et al., 2018a) pre-
sented a large dataset for fact verification, initiat-
ing a shared task that aims to automatically clas-
sify a human-generated claim into ‘Supported’,
‘Refuted’, or ‘Not Enough Info’ based on retrieved
evidence sentences from Wikipedia1.

Claim verification, the final step of fact verifica-
tion, is viewed as a task of natural language infer-
ence (NLI) (Angeli and Manning, 2014). Specif-

†Corresponding author
♠Equal contribution
∗This work was done during his M.S. degree at JBNU.
1https://competitions.codalab.org/

competitions/18814

ically, the NLI task for claim verification is for-
mulated as the set-to-sentence entailment of infer-
ring whether a claim (as the hypothesis) is logi-
cally “entailed” from a set of retrieved evidence
sentences (as the premise).

Recently, graph reasoning for claim verifica-
tion has been extensively explored (Zhou et al.,
2019; Liu et al., 2020; Zhong et al., 2020), which
creates a graph whose nodes are semantic units
extracted from a set of evidence sentences or a
claim, and applies graph neural networks (GNNs)
such as (Veličković et al., 2018; Kipf and Welling,
2017) to infer the entailment relationship. How-
ever, graph reasoning may be somehow restricted
to unit-biased reasoning, when relying on a single
type of semantic unit for nodes of a graph, such
as sentences, entities, or words, meaning that the
semantic interaction between claim and evidence
is restricted to a single graph type and does not go
beyond the coverage of the “given” semantic units.
In addition, graph reasoning may suffer from over-
smoothing inherited from GNNs (Gasteiger et al.,
2019; Zhao and Akoglu, 2020; Chen et al., 2020a;
Rong et al., 2020), likely causing all node repre-
sentations to converge to a stationary point at the
extreme, as reported by (Li et al., 2018).

To address these limitations of graph reasoning,
this study proposes SISER – Semantic-Infused
SElective graph Reasoning) for fact verification
by extensively exploiting additional semantic units
for graph reasoning and integrating semantic-level
reasoning with sequence reasoning and “selective”
graph reasoning. SISER combines the following
three types of reasoning:

• Semantic-level graph reasoning applies
GNNs to a “semantic graph” whose nodes are
elements of <Subject, Verb, Object> that ap-
pear in evidence sentences. Provided fine-
grained semantic granularity, it is expected
that the use of semantic elements would be
helpful to effectively induce their own dis-
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tinct representations useful for claim verifi-
cation, compared to sentence-level represen-
tations.

• Semantic-infused sentence-level selective
graph reasoning combines semantic- and
sentence-level representations and performs
selective graph reasoning equipped with a
node selection mechanism. Motivated by
variants of GNNs (Gasteiger et al., 2019;
Zhao and Akoglu, 2020; Chen et al., 2020a;
Rong et al., 2020) to handle oversmoothing
issues, we further provide “selective” graph
reasoning where a subset of nodes is “se-
lected” using the node selection mechanism
and only these selected nodes participate in
graph reasoning2. It is expected that the
node selection mechanism can alleviate over-
smoothing by breaking full connectivity.

• Sequence reasoning, concatenates a claim
and all evidence sentences and performs
self-attention over the concatenated long se-
quence. As in (Kruengkrai et al., 2021), it is
expected that sequence reasoning shows sta-
ble performance, without suffering from the
inherent problems of GNNs.

Furthermore, we newly apply prompt-based
fine-tuning (Schick and Schütze, 2021a; Gao et al.,
2021) by reformulating the fact verification task as
a masked language modeling problem, where a la-
bel word is generated on a given prompt with a
task-specific template. To the best of our knowl-
edge, this is the first attempt to use semantic-
level ‘selective’ graph reasoning and prompt-
based fine-tuning for the fact verification task.

Our contributions are summarized as follows:
1) We propose SISER, which consists primarily
of semantic-level reasoning and semantic-infused
selective graph reasoning using the node selection
mechanism for fact verification; 2) We present the
initial work of adopting prompt-based fine-tuning
for claim verification; 3) The proposed SISER
shows state-of-the-art performance in the FEVER
dataset.

2 Related Work

2.1 Fact Verification Systems

Sequence Reasoning
The baseline system (Thorne et al., 2018a) con-

catenates all retrieved evidence sentences and then
2Here, the selection process is random but parameterized

by neural models.

feeds the concatenated evidence and a claim into
a pretrained language model as an early sequence
reasoning method. The studies of (Hanselowski
et al., 2018; Hidey and Diab, 2018) proposed
adapting the enhanced sequential inference model
(ESIM) (Chen et al., 2017) to measure the seman-
tic relatedness between a claim and evidence. Nie
et al. (2019) proposed a carefully designed neu-
ral semantic matching network (NSMN), which is
a modification of the enhanced sequential infer-
ence model. Unlike treating the fact verification
task as an NLI task, LOREN (Chen et al., 2020b)
proposed decomposing the verification of the en-
tire claim at the phrase level, where the verac-
ity of the phrases serves as explanations and can
be aggregated into the final verdict according to
logical rules. More recently, MLA (Kruengkrai
et al., 2021) argued that graph reasoning may be
unnecessary for a claim verification task, propos-
ing multi-level sequence reasoning that consists
of {token, sentence}-level self-attention (Vaswani
et al., 2017).
Graph Reasoning

In contrast to ESIM, NSMN, and LOREN,
GEAR (Zhou et al., 2019) proposed graph-based
evidence reasoning using GNNs, which conducts
reasoning and aggregation over claim-evidence
pairs under an evidence graph (Veličković et al.,
2018; Kipf and Welling, 2017). Similarly, KGAT
(Liu et al., 2020) proposed the use of a semantic-
level graph for fine-grained evidence reasoning
that uses a kernel-based graph attention mecha-
nism to properly propagate information between
nodes. Unlike KGAT, DREAM (Zhong et al.,
2020) considered a word span obtained by seman-
tic role labeling (SRL) as a node in the graph and
employed XLNet (Yang et al., 2019) as a pre-
trained language model. In contrast to existing
graph reasoning studies that rely on sentence-level
or semantic-level graphs, SISER extensively uses
“heterogeneous” graphs and fuses different types
of reasoning-enhanced representations, going be-
yond the limitation of using only a single type of
reasoning.

2.2 Prompt-based Fine-tuning

PET introduces prompt-based learning, which
treats a downstream task as a masked language
modeling problem and performs gradient-based
fine-tuning (Schick and Schütze, 2021a,b). Em-
ploying prompt-based fine-tuning can reduce the
gap between pre-training and fine-tuning, which
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Figure 1: A neural architecture of the proposed SISER: 1) The semantic-level graph reasoning is performed using
R-GCN on a semantic graph constructed using the Levi graph transformation to generate the semantic-level node
representation Hsem (Eq. (2)), which is used to induce the semantic-aware evidence representation H ′sent (Eq.
(5)). 2) The semantic-infused sentence-level selective graph reasoning performs the the selective graph reasoning
on a sub-graph resulting from the node selection mechanism based on the semantic-fused representation of h′claim
(Eq. (5)) and H ′sent to generate Ẽfsel (Eq. (10)). 3) The sequence reasoning performs MHA on m evidence
representations Eseq (Eq. (11)) to obtain Hseq . 4) The prompt-based claim verification performs the prediction
of label-verbalized words at [MASK]’s position on the fused semantic-attentive claim representations H induced
from Cfsel,Csem,Cseq as in Eq. (12).

makes it effective for various tasks. Inspired by
PET, LM-BFF (Gao et al., 2021) introduced the
adaptation of prompt-based learning to few-shot
fine-tuning. Moreover, this study proposed an au-
tomatic prompt search method to resolve the dif-
ficulty of finding the optimal task-specific tem-
plate. P3 Ranker (Hu et al., 2022) proposed a
pre-trained, prompt-learned, pre-finetuned neural
ranker that employs prompt-based learning to con-
vert the ranking task into pre-training and uses pre-
finetuning. (Ding et al., 2021) introduced adapt-
ing prompt learning into an entity typing task in
several scenarios (e.g., fully supervised, few-shot,
zero-shot), which shows the possibility of em-
ploying prompt-based learning in fully supervised
scenarios. Unlike several methods that employ
prompt-based learning in a few-shot scenario, we
adapt prompt-based learning in a fully supervised
scenario.

3 Proposed Approach

Figure 1 shows the overall neural architecture of
the proposed SISER model, which combines three
types of reasoning: i.e., semantic-level graph rea-
soning; semantic-infused sentence-level selective
graph reasoning; and sequence reasoning. This
section presents details of the three reasoning
methods.

3.1 Initial Representation of Claim and
Evidences

Suppose that a claim c and a set of retrieved evi-
dence sentences {e1, · · · , em} are presented for a
fact verification task, where m is the number of
evidence sentences and PLM refers to the encoder
of a pretrained language model such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019).
Feeding a claim-evidence pair (c, ei) for the i-th
evidence sentence and claim c into PLM, we ob-
tain Ei and C as evidence and claim representa-
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Figure 2: An illustration of constructing a semantic graph for sentence-level graph reasoning, motivated by the
procedure of (Beck et al., 2018): 1) a (large) dependency graph is first obtained by applying the Spacy’s syntactic
parser (Honnibal and Montani, 2017) and the NeuralCoref’s coreference resolution tom evidence sentences where
each occurrence of a word is treated differently with its contextual representation. When two mentions are coref-
erent, their head words are connected by the “coreference” relation. 2) The dependency graph is then transformed
to a semantic graph using the Levi graph transformation of (Beck et al., 2018) by including dependency labels as
a node set with three types of edge labels –

{
default, reverse, self

}
.

tions as follows:

Ei = PLM (c, ei) ∈ R(|c|+|ei|)×dmodel ,

C = PLM (c) ∈ R|c|×dmodel ,
(1)

where |x| is the length of sequence x, and dmodel
is the dimensionality of PLM. Let Ei,[CLS] ∈
Rdmodel and C[CLS] ∈ Rdmodel be representations
of [CLS] tokens for ei and c, respectively.

3.2 Semantic-level Graph Reasoning

Our semantic-level reasoning is similar to the
work of (Zhong et al., 2020), but differs in using
semantic units and types of GNNs, as described
below.
3.2.1 Semantic Graph

Similar to (Beck et al., 2018), we construct a
semantic graph based on graph transformation,
starting from a dependency graph. More specifi-
cally, we first obtain a dependency graph Gdep =
(Vdep, Edep), resulting from m by parsing all m
evidence sentences using Spacy’s syntactic parser
(Honnibal and Montani, 2017)3 and NeuralCoref’s
coreference resolution4, where Vdep is a set of
“words” that appear in m evidence sentences and
Edep is a set of dependency-labeled edges. When
two mentions are connected by a coreference link,
the “coreference” relation is appended between
their head words. It should be noted that when
a word occurs multiple times in m evidence sen-

3We use the following link of the Spacy parser: https:
//spacy.io/usage/linguistic-features#
dependency-parse

4The following version of the NeuralCoref’s link
is used: https://github.com/huggingface/
neuralcoref

tences, we treat each occurrence differently by us-
ing their contextual representations (i.e., the span
representations) as the elementary semantic repre-
sentations.

We then convert Gdep into a semantic graph
Gsem = (Vsem, Esem), a Levi Graph based on the
graph transformation of (Beck et al., 2018; Cheng
et al., 2020; Huang et al., 2021), where Vsem is a
combined set of words and dependency relations
that appear in m evidence sentences, and Esem is
a set of type-labeled edges whose labels are taken
from R =

{
default, reverse, self

}
, as in the work

of (Beck et al., 2018).
Figure 2 shows an illustrative example of a se-

mantic graph extracted from the evidence sen-
tences.
3.2.2 Graph Reasoning

Semantic-level graph reasoning employs a re-
lational graph convolutional network (R-GCN)
(Schlichtkrull et al., 2018) which is defined as

h
(l+1)
i = f

(∑
r∈R

∑
j∈N rsem(i)

1
|N rsem(i)| W

(l)
r h

(l)
j +W

(l)
0 h

(l)
i

)

where f is the relu activation function, N r
sem(i)

is a set of neighbors with relation r of the i-th
node in Vsem, andW (l)

r ,W
(l)
0 ∈ Rdsem×dmodel are

weight matrices for the l-th R-GCN layer, where
dsem is the dimensionality of the semantic-level
representation. For a word-type node i ∈ Vsem,
h
(0)
i ∈ Rdmodel is initialized by its span represen-

tation in the evidence sentence5. Finally, we ob-

5The span representation for a word is defined as the av-
erage pooling of the contextual representations of its all sub-
words. For a relation-type node i ∈ Vsem, h(0)

i is initialized
by its static embedding.
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tainHsem ∈ R|Vsem|×dsem as follows:

Hsem =H(L) =
[
h
(L)
1 , · · · ,h(L)

|Vsem|

]

where L is the total number of layers used in the
R-GCN for the semantic-level representation.

3.3 Semantic-infused Sentence-level Selective
Graph Reasoning

In our selective graph reasoning, because there is
no ground-truth answer for the nodes to be se-
lected, we prepare K different subgraphs by ap-
plying the node selection mechanismK times, and
combine the selective representations performed
over K subgraphs.
3.3.1 Semantic-infused Sentence-level

Representations
The first step is to obtain semantic-infused

sentence-level representations form evidence sen-
tences. To this end, we construct a fully-connected
sentence-level graph G = (V, E) where V =
{1, · · · ,m}, which refers to a set of evidence sen-
tences – {e1, · · · , em}. For the i-th node, we first
obtain its node representation e′i using a single
feed-forward layer, as follows:

e′i = g
(
WsentEi,[CLS] + bsent

)
(2)

where g is the gelu activation function, and
Wsent, bsent are the parameter weights for a linear
layer. Then, for the i-th node, we further aggre-
gate its neighbors’ representations using the sum-
mation as follows:

h′i =
∑

j∈Nsent(i)
e′i (3)

where Nsent(i) is a set of neighbors of the i-th
node in V .

Now, the sentence-level representationHsent ∈
Rm×dmodel is defined, as follows:

Hsent =
[
h′1, · · · ,h′m

]
(4)

Next, we obtain the evidence-attentive claim
representation h′claim ∈ Rdmodel and the
semantic-aware evidence representation H ′sent ∈
Rm×dmodel as follows:

h′claim = MHA(C[CLS],Hsent,Hsent) (5)

H ′sent = MHA(Hsent,Hsem,Hsem) (6)

where the multi-head attention (MHA) (Vaswani
et al., 2017) function is defined as follows:

MHA (Q,K,V ) = [head1; · · · ;headh]WO,

headi = Attn
(
QWQ

i ,KWK
i ,V W V

i

)
(7)

where ; is the concatenation operator, h is the
number of heads, WQ

i ,W
K
i ∈ Rdmodel×dk ,

W V
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel are

weight metrices.
To combine these representations, we use the

semantic fusion function sfu defined as:

sfu (x,y) = g ∗ x+ (1− g) ∗ y,
g = σ

(
W1x+W2y

) (8)

where ∗ is the element-wise operator, σ is the sig-
moid function, and W1,W2 are weight matrices
for the semantic fusion function.

Finally, the semantic-infused sentence-level
representations Hfused ∈ Rm×dmodel are then ob-
tained using sfu as follows:

Hfused = sfu
(
H ′claim,H

′
sent

)
,

whereH ′claim = [h′claim]
m
i=1.

3.3.2 Node Selection Mechanism
The next step is to apply a node selection mech-

anism (Louis et al., 2021) that chooses a subset of
nodes to be deleted6. First, we measure the selec-
tion probabilities psent ∈ Rm of evidence nodes
based on attention, using the claim as the query, as
follows:

psent = σ
(
g(HsentW3) +HfusedW4C

T
[CLS]

)

whereW3 ∈ Rdmodel×1,W4 ∈ Rdmodel×dmodel are
weight matrices.

The node selection mechanism creates a subset
of evidence nodes denoted as V ′ by filtering out
the nodes with low probabilities given the thresh-
old τ as follows:

V ′ = {j|j ∈ V and psent,j ≥ τ}

where psent,j is the j-th element of psent. We fur-
ther define p′sent ∈ Rm by zeroing the probabili-
ties of the filtered nodes, as follows:

p′sent = psent ∗ iV ′

where iV ′ = [I(k ∈ V ′)]mk=1 is the k-hot vector 7,
and I(e) is the indicator function, taking the value
of 1 if e is true and zero otherwise.

6Our node selection mechanism mostly follows the work
of (Louis et al., 2021), but differs in the computation of node
selection probabilities and the formula of selective aggrega-
tion.

7The k-hot vector has also similarly used in the work of
(Cohen et al., 2019).
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3.3.3 Selective Graph Reasoning
The final step is to perform selective graph rea-

soning using only the selected set of nodes, V ′.
First, we obtain the revised fused representation
hseli for the i-th evidence sentence as follows:

hseli =
∑

j∈Nsent(i)
p′sent,j ·Hfused

j

Then, the reasoning-enhanced representation
hfseli is obtained as follows:

vi = σ
(
⟨wsel,

[
hseli ; e′i

]
⟩
)
,

hfseli =
∑

j∈Nsent(i)
p′sent,j · vj ·Hfused

j

where e′i is the initial node representation defined
in Eq. (2) and wsel ∈ R2dmodel is the weight vec-
tor.

We further use the residual connection to keep
the initial evidence representation as follows:

ẽi = g
(
e′i + dropout(hfseli )

)
(9)

where dropout is the dropout layer introduced by
(Srivastava et al., 2014).
3.3.4 Ensembling Multiple Selective Graph

Reasonings
Because there is no ground-truth information

for nodes to be selected, we prepare multiple sub-
graphs by applying the node selection mechanism
K times, and combine the selective reasoning-
enhanced representations over K subgraphs. With
the abuse of notation, suppose that ẽ(k)i is the
reasoning-enhanced representation of Eq. (9)
yielded at the k-th selection. We take the summa-
tion of all K representations as

∑K
k=1 ẽ

(k)
i , lead-

ing to obtain Ẽfsel ∈ Rm×dmodel as follows:

Ẽfsel =

[
K∑

k=1

ẽ
(k)
i

]m

i=1

(10)

3.4 Sequence Reasoning

Our sequence reasoning is based on MHA
over only sentence-level evidence representations
Eseq ∈ Rm×dmodel , described as follows.

Eseq = PE(E1,[CLS], · · · ,Em,[CLS]),
Hseq = Eseq +MHA(Eseq,Eseq,Eseq),

(11)

where PE is the absolute positional encoding
(Vaswani et al., 2017).

Label Training Development Test

Supported 80,035 6,666 6,666
Refuted 29,775 6,666 6,666

Not Enough Info 35,659 6,666 6,666

Table 1: Statistics of the FEVER 1.0 shared task
dataset.

3.5 Prompt-based Claim Verification

Our prompt-based claim verification uses a task-
specific template for prompt-based fine-tuning as
follows: "[CLS] xin It was [MASK] . [SEP]".
Suppose that xin is "Roman Atwood is a content
creator.", xin is converted to its prompted input
"[CLS] Roman Atwood is a content creator. It was
[MASK] . [SEP]". To predict [MASK], let
Mwo : Y → V be the verbalizer that converts
a label into individual words. For example,
Mwo(Supported) = “Yes”, Mwo(Refutes) =
“No”, andMwo(NotEnoughInfo) = “Maybe”.

To determine the truthfulness of a given claim,
we aggregate multiple evidence-attentive claim
representations resulting from applying MHA on
on Ẽfsel of Eq. (10) , Hsem in Eq. (2), and Hseq

in Eq. (11), as follows:

Cfsel = MHA(C[CLS], Ẽfsel, Ẽfsel),

Csem = MHA(C[CLS],Hsem,Hsem),

Cseq = MHA(C[CLS],Hseq,Hseq),

H =Wclaim([Cfsel;Csem;Cseq]),

(12)

where Wclaim ∈ Rdmodel×3dmodel is a trainable pa-
rameter matrix.

Given a claim-evidence example (c, e), where
e = (e1, · · · , em), the probability of label y is
computed as follows:

p(y|c, e) = p
(
[MASK] =Mwo(y)|c, e

)

=
exp
(
wMwo(y)H[MASK]

)
∑

y′∈Y exp
(
wMwo(y′)H[MASK]

) , (13)

where wMwo(y) is the output embedding for the
label word of Mwo(y) for y, and H[MASK] is the
contextual representation [MASK] token inH .

4 Experiments

4.1 Experimental Setting

Dataset
We used FEVER, which is a large-scale pub-

lic dataset, for fact verification. (Thorne et al.,
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Model Dev Test

LA F.S LA F.S

UNC NLP 69.72 66.49 68.21 64.21
GEAR (BERTbase) 74.84 70.69 71.60 67.10

DREAM (XLNetlarge) 79.16 - 76.85 70.60
KGAT (BERTlarge) 77.91 75.86 73.61 70.24

⌞ (RoBERTalarge) 78.29 76.11 74.07 70.38
LOREN (BERTlarge) 78.44 76.21 74.43 70.71

⌞ (RoBERTalarge) 81.14 78.83 76.42 72.93
MLA (RoBERTalarge) 79.31 75.96 77.05 73.72

Ours (RoBERTalarge) 83.13 79.87 77.50 73.90

Table 2: Fact verification results on the dev and blind
test set of FEVER task, where F.S (FEVER score) is
the main evaluation metric. The best is bolded text,
and the second best is underlined.

Model Dev Test

LA F.S LA F.S

MLA 79.31 75.96 77.05 73.72
SISER⋆ 83.13 79.85 76.82 73.18
SISER◦ (τ = 0.49) 82.62 79.40 77.18 73.48
SISER (τ = 0.49) 83.13 79.87 77.50 73.90

Table 3: Ablation study for the semantic-infused
sentence-level selective graph reasoning and the se-
quence reasoning on FEVER development and blind
test set. ⋆ and ◦ denote the run without the semantic-
infused sentence-level selective graph reasoning and
the sequence reasoning, respectively.

2018a,b), which was split into training, devel-
opment, and blind test set in our experiments.
FEVER consists of 185,455 annotated claims with
5,416,537 Wikipedia documents, where claims are
classified as Supported, Refuted, or Not Enough
Info. Because we use prompt-based fine-tuning,
all labels are verbalized as Yes, No, or Maybe. Ta-
ble 1 shows more detailed statistics for the FEVER
dataset. The performance of the evidence sentence
retrieval methods are presented in Appendix B.
Evaluation Metrics

The official evaluation metrics are Label Accu-
racy (LA) and FEVER Score (F.S)8. Label Accu-
racy is a general evaluation metric, which is the
accuracy of the predicted label for a claim regard-
less of the retrieved evidence.

4.2 Main Results

The fact verification performance is presented in
Table 2. In the large-size PLM settings, SISER

8https://github.com/sheffieldnlp/
fever-scorer

Model Dev Test

LA F.S LA F.S

τ = 0.0• 83.07 79.84 77.07 73.65
τ = 0.35 83.00 79.74 77.11 73.70
τ = 0.40 83.05 79.84 77.00 73.63
τ = 0.45 82.98 79.69 76.86 73.66
τ = 0.49 83.13 79.87 77.50 73.90
τ = 0.60 83.04 79.80 77.30 73.68

Table 4: Ablation study of the node selection mecha-
nism for varying values of the node masking rate τ . •
denotes the fully-connected setting.

Model Dev Test

LA F.S LA F.S

SISER⋆ 83.05 79.77 76.82 73.18
SISER 83.13 79.87 77.50 73.90

Table 5: Ablation study for the prompt-based learning
vs. the conventional fine-tuning on the FEVER devel-
opment set. ⋆ denotes the conventional fine-tuning.

outperforms the best baseline model by increas-
ing Label Accuracy and FEVER Score by 0.45 and
0.18, respectively.

For a fair comparison, we also compare SISER
with KGAT and LOREN, which employ the same
setting of using PLM and evidence retrieval, while
MLA, the state-of-the-art baseline model, is dif-
ferent from ours in using evidence retrieval. As
shown in Table 2, SISER outperforms KGAT
and LOREN, which employ only sentence-level
interaction among evidences. The results may
support our motivation that the combination of
the three types of reasoning (i.e., semantic-level
graph-reasoning, semantic-infused sentence-level
selective graph-reasoning, and sequence reason-
ing) is helpful to address the aformentioned ‘unit-
biased reasoning’ and ‘oversmoothing’ problems
of the existing graph-based approaches.

Model Dev Test

LA F.S LA F.S

MLA 79.31 75.96 77.05 73.72
SISER⋆ (τ = 0.49) 79.88 75.04 77.96 73.06
SISER (τ = 0.49) 83.13 79.87 77.50 73.90

Table 6: Ablation study for examining the effect of evi-
dence retrieval. ⋆ denotes the run based on the evidence
retrieval of MLA (Kruengkrai et al., 2021).
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Claim: Liam Neeson has been nominated for a British Academy 
of Film and Television Arts award.

Label: SUPPORTS

Evidence: [LinkedIn] (15-th sentence in wiki page)
Based in the United States, the site is, as of 2013, available 
in 24 languages, including Arabic, Chinese, English, French, 
German, Italian, Portuguese, Spanish, Dutch, Swedish, 
Danish, Romanian, Russian, Turkish, Japanese, Czech, Polish, 
Korean, Indonesian, Malay, and Tagalog.

Predicted Label: NOT ENOUGH INFO

(a)

(b)

(c)

Claim: LinkedIn is limited to 24 languages as of 2015.

Evidence: [Liam Neeson] (12-th sentence in wiki page)
He has been nominated for a number of awards, including 
an Academy Award for Best Actor, a BAFTA Award for Best 
Actor in a Leading Role and three Golden Globe Awards for 
Best Actor in a Motion Picture Drama.

Label: SUPPORTS

Predicted Label: REFUTES

Claim: SZA is an American Neo Soul singer.

Evidence: [SZA (singer)] (7-th sentence in wiki page)
SZA is a Neo Soul singer whose music is described as 
Alternative RB , with elements of soul , hip hop , minimalist 
RB , cloud rap , ethereal RB , witch house and chillwave.

[SZA (singer)] (1-th sentence in wiki page)
Solána Rowe (born November 8, 1990), better known by her 
stage name SZA, is an American singer songwriter.

Label: SUPPORTS Predicted Label: SUPPORTS

Figure 3: Error analysis of SISER: (a) and (c): the
cases of requiring more elaborated and mulit-hop rea-
soning; (b): the case of a human annotation error.

4.3 Ablation Study

The Effect of Using Semantic-infused
Sentence-level Selective Graph Reasoning

To evaluate the effect of using semantic-infused
sentence-level selective graph reasoning in Sec-
tion 3.3, Table 3 shows the comparison re-
sults of SISER with and without semantic-infused
sentence-level selective graph reasoning on the
FEVER development and blind test sets. It is
shown that the use of semantic-infused selective
graph reasoning leads to improved performance
in terms of both Label Accuracy and the FEVER
Score.

It is remarkable that SISER⋆, even without us-
ing semantic-infused selective graph reasoning,
outperforms MLA in the development set. While
(Kruengkrai et al., 2021) argued that graph rea-
soning may not be necessary, given the improved
performance of the MLA, our results indicate that
this argument is still controversial, and suggest
that graph reasoning has the potential to make fur-
ther improvements and needs to be explored for
fact verification while carefully avoiding the limi-
tations of GNNs.

The Effect of Using Sequence Reasoning
Table 3 further presents the performance of

SISER when sequence reasoning is excluded (re-
ferred to as SISER◦), that is, without using Cfsel
in Eq (12)). As shown in Table 3, SISER◦ leads
to improvements over LOREA, indicating that the
performance achieved by SISER in Table 2 is not
obtained simply by incorporating sequence rea-
soning but dominantly by equipping with the pro-
posed manner of graph reasoning. In particular,
SISER◦ shows an increases in Label Accuracy by
approximately 1.5 over LOREN on the develop-
ment set, whereas SISER with sequence reason-
ing demonstrates only a slight increase of approx-
imately 0.5 in Label Accuracy. A similar tendency
is observed in the blind test set; SISER◦makes the
increase of 0.76 in Label Accuracy over LOREN,
which is larger than the increase of 0.32 obtained
by SISER with sequence reasoning.

The Effect of Choosing Evidence Retrieval
In Table 2, while SISER shows consistent im-

provements over MLA on the development and
test sets, a significant difference in performance
gains is noticeable between the two sets. SISER
achieves a large performance gain over MLA on
the development set, increasing the Label Accu-
racy and FEVER Score by 3.82 and 3.91, respec-
tively, while only a slight improvement on the
blind test set is observed, exhibiting an increase of
0.45 in Label Accuracy and 0.18 in FEVER Score.

We believe that the main reason for this dis-
crepancy between development and test sets re-
sults from the different evidence retrieval methods
between SISER and MLA, i.e., while SISER and
LOREN adopt KGAT’s evidence retrieval, MLA
uses its own evidence retrieval. In particular, the
retrieval performances of the top 5 evidence sen-
tences resulting from MLA and KGAT are sub-
stantially changed between the development and
test sets, as shown in Table 7. In terms of Re-
call@5, the retrieval performances on the “devel-
opment set” are largely different between KGAT
and MLA (i.e., 94.57 for KGAT and 88.64 for
MLA), whereas the retrieval performances on the
“test set” of both methods are fairly similar (i.e.,
87.47 for KGAT and 87.58 for MLA). Given
this observation, the substantially improved per-
formance of SISER over MLA on the develop-
ment set (Table 2) may primarily originate from
the large recall performance of the evidence re-
trieval of KGAT, and not from the proposed en-
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hanced graph reasoning components.
For a fair comparison with MLA, Table 6

presents the results of SISER based on MLA’s ev-
idence retrieval (SISER⋆). In terms of on FEVER
Score, SISER⋆ does not lead to improvements
over MLA, even exhibiting performance degrada-
tion, in contrast to the SISER that uses KGAT’s re-
trieval. Nevertheless, SISER⋆ leads to further im-
provements over MLA in Label Accuracy, partic-
ularly in achieving a state-of-the-art performance
on the blind test set.

As MLA is considered as an advanced approach
to sequence reasoning without relying on graph
reasoning, we believe that the enhanced graph rea-
soning modules in SISER are ‘complementary’ to
MLA for further improvement; for example, in-
cluding a simple combination by using MLA as
an alternative module of sequence reasoning in
SISER.
Evaluation of Node Selection Mechanism

To examine the effect of the node selection
mechanism in Section 3.3.2, Table 4 shows the
comparison results of SISER with varying values
of τ . It is shown that τ = 0.49 outperforms the
fully-connected setting (τ = 0.0). The results im-
ply that the node selection mechanism based on
the selection probabilities may be helpful in ob-
taining irrelevance-free evidence representations,
related to the oversmoothing issue of GNNs.
Prompt-based Learning versus Conventional
Fine-tuning

To examine the effect of prompt-based claim
verification, Table 5 compares the results of
SISER when using prompt-based learning or con-
ventional fine-tuning. It is clearly shown that the
use of prompt-based learning outperforms conven-
tional fine-tuning, likely reducing the gap between
the tasks used in pre-training and the fine-tuning.

4.4 Case Study

As shown in Figure 3, we present three examples
for analyzing the prediction errors of SISER.

In Figure 3 (a), the SISER prediction for this
case is ”Not Enough Info”. From our analysis, this
case requires the complex reasoning ability to un-
derstand ”a BAFTA award,” which is the abbrevi-
ation of ”a British Academy of Film and Televi-
sion Arts award”. However, in Figure 3 (c), the
case requires multi-hop complex reasoning to pre-
dict the claim; the claim ”SZA is an American Neo
Soul singer” is supported by multiple pieces of ev-

idence sentences.
In Figure 3 (b), it seems that this case originates

from a human annotation error, as also discussed
by (Kruengkrai et al., 2021). The claim ”LinkedIn
is limited to 24 languages as of 2015” is not sup-
ported by evidence.

5 Conclusion
In this paper, we propose SISER for fact verifi-
cation, which combines three types of reasoning
(i.e., semantic-level graph reasoning, semantic-
infused sentence-level selective graph reasoning,
and sequence reasoning) by addressing two poten-
tial limitations of graph reasoning — the “unit-
biased reasoning” and the “over-smoothing” prob-
lems. The experimental results obtained using the
FEVER dataset showed that the proposed SISER
outperformed other graph-based approaches and
achieved state-of-the-art performances in both the
development and test sets.

In future work, we would like to incorpo-
rate semantic-level and semantic-fused graph rea-
soning into evidence retrieval and explore the
joint learning framework of evidence retrieval and
claim verification in a multi-task learning setting.
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A Implementation Details

SISER was implemented by using PyTorch
(Paszke et al., 2019) and HuggingFace Trans-
formers (Wolf et al., 2020). Additionally, the
PyTorch-Geometric and SpaCy (Fey and Lenssen,
2019; Honnibal and Montani, 2017) were used
for graph modeling and dependency parsing. Ex-
periments were conducted using 4 Nvidia RTX
A6000 GPU. All optimizations were performed
using the Adafactor optimizer (Shazeer and Stern,
2018) with a linear warm-up of the learning rate.
The warmup proportion was 0.06. The batch size
and accumulation steps were 8 and 8, respectively.
That is, the total batch size is 256. Gradients were
clipped if their norms exceeded 1.0. The number
of K sub-graphs was 6 and τ = 0.49. In super-
vised learning, our lossL can be fine-tuned to min-
imize the weighted cross-entropy loss introduced
by MLA (Kruengkrai et al., 2021).

Our hyperparameter is summarized as below:

• Optimizer: Adafactor

• Learning rate: 2e− 5

• warmup proportion: 0.06

• Number of sub-graph: 6

• Total Batch size: 256

• Gradient norm: 1.0

• Node masking rate τ : 0.49

• Label words: Supported : Yes,Refuted :
No,Not Enough Info : Maybe

Data Method Prec@5 Recall@5 F1@5

Dev

UNC NLP∗ 36.49 86.79 51.38
GEAR∗ 40.60 86.36 55.23
KGAT⋄ 27.29 94.37 42.34

DREAM⋄ 26.67 87.64 40.90
MLA⋄ 25.63 88.64 39.76

monoT5• 25.66 90.54 37.17

Test KGAT⋄ 25.21 87.47 39.14
MLA⋄ 25.33 87.58 39.29

Table 7: Results of the sentence selection methods
in the precision@5, recall@5, and F1@5 metrics on
the FEVER development set and blind test set, re-
spectively. ∗, ⋄, • denote ESIM-based retrieval model,
BERT-based retrieval model, and T5-base model, re-
spectively.

B Evidence Sentence Retrieval
Since our work focuses on claim verification, we
directly adapt the evidence retrieval method from
KGAT (Liu et al., 2020). As shown in Table 7,
KGAT shows the best Recall@5 performance for
sentence selection on the FEVER development
set. Different from the result on the FEVER de-
velopment set, MLA shows the better Recall@5
performance than KGAT.
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Abstract
In the real-world question answering scenar-
ios, hybrid form combining both tabular and
textual contents has attracted more and more
attention, among which numerical reasoning
problem is one of the most typical and challeng-
ing problems. Existing methods usually adopt
encoder-decoder framework to represent hy-
brid contents and generate answers. However,
it can not capture the rich relationship among
numerical value, table schema, and text infor-
mation on the encoder side. The decoder uses
a simple predefined operator classifier which
is not flexible enough to handle numerical rea-
soning processes with diverse expressions. To
address these problems, this paper proposes a
Relational Graph enhanced Hybrid table-text
Numerical reasoning model with Tree decoder
(RegHNT). It models the numerical question
answering over table-text hybrid contents as
an expression tree generation task. Moreover,
we propose a novel relational graph model-
ing method, which models alignment between
questions, tables, and paragraphs. We vali-
dated our model on the publicly available table-
text hybrid QA benchmark (TAT-QA). The pro-
posed RegHNT significantly outperform the
baseline model and achieve state-of-the-art re-
sults1 (2022-05-05).

1 Introduction

Question Answering (QA) is an important task
of natural language processing (NLP), which is
often used to assess the intelligence of an agent.
QA systems use various types of knowledge to
answer natural language questions. Earlier ap-
proaches independently utilized structured data
such as tables (Pasupat and Liang, 2015; Yu et al.,
2018), knowledge bases (Yih et al., 2016; Talmor
and Berant, 2018) or unstructured data such as
plain texts (Rajpurkar et al., 2016). In fact, real-
world QA systems often need to fuse different data

1We openly released the source code and data at https:
//github.com/lfy79001/RegHNT

resources with diverse types in answering com-
plex questions. Therefore, in recent years, the hy-
brid form of question answering over tables and
texts (TextTableQA) has attracted more and more
attention (Chen et al., 2020a,b, 2021).

There are two major question types for Text-
TableQA. The first is the fact reasoning ques-
tion, whose answer is usually a span from the ta-
ble or linked paragraphs, such as the contents in
Wikipedia (Chen et al., 2020a,b). The second is
the numerical reasoning question, which usually
aims to use the contents of tables and texts for nu-
merical calculation (Zhu et al., 2021; Chen et al.,
2021). Most previous work focuses on the first
type, while the numerical reasoning questions have
been seldom addressed. The existing datasets such
as WikiTableQuestions (Pasupat and Liang, 2015)
and DROP (Dua et al., 2019) also contain numeri-
cal reasoning questions, but solving them requires
only one type of data source. Therefore, this paper
mainly focuses on answering numerical reasoning
questions, especially for those complex questions
across texts and tables.

To explore the application of numerical reason-
ing questions in hybrid contents. Zhu et al. (2021)
proposed a hybrid text-table dataset TAT-QA, dedi-
cated to fusing the tabular and textual contents to
answer numerical reasoning questions. As shown
in Figure 1, for the question “What is the ratio of
compensation expense related...?”, one needs to get
the numerical value, i.e. “0.41”, “278.29” from the
table, and “109.7” from the text. Then we need to
generate the corresponding numerical expression
“109.7 / ( 0.41 × 278.29 )”. To solve such a numer-
ical question, we need to identify the describing
texts near the table and understand the contents of
the table and the paragraphs.

Previous method (Zhu et al., 2021) regarded this
problem as a sequence tagging task. They prede-
fine aggregation operators and use a slot filling
method to predict simple derivation. An auxiliary
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Restricted Stock Grants—During 2019 and 2018, the Company granted

0.321 and 0.410 shares, respectively, of restricted stock to certain employee and director

participants under its share-based compensation plans. Restricted stock grants generally

vest over a period of 1 to 4 years. The Company recorded $72.5,

$109.7 and $63.0 of compensation

expense related to outstanding shares of restricted stock held by employees and directors

during 2019, 2018 and

2017, respectively.

……

At December 31, 2019, there was

$77.9 of total unrecognized compensation expense related to nonvested awards

granted to both employees and directors under the Company’s share-based 

compensation plans.

Number

of shares

Weighted-average

grant date fair

value

Nonvested at December 31, 2017 0.859 $ 187.01

Granted 0.410 278.29

Vested -0.492 204.24

Forfeited -0.038 191.51

Nonvested at December 31, 2018 0.739 $ 225.93

Granted 0.321 318.75

Vested -0.290 209.05

Forfeited -0.061 225.23

Nonvested at December 31, 2019 0.709 $ 275.00

Question

Type
Question Answer

Answer 

From
Derivation

Arithmetic
What is the ratio of compensation expense related to 

outstanding shares of restricted stock during 2018 to the total 

price of restricted stock shares granted between 2017 and 2018?
0.96

Table 

Text

109.7 /

( 0.41 * 278.29 )

Arithmetic
What is the percentage change in the total price of 

nonvested shares from December 31, 2018, to 2019?
16.78 Table

(  ( 0.709 * 275.00 ) -

( 0.739 * 225.93 ) )  

/ ( 0.739 * 225.93 )

Figure 1: An example of TAT-QA. The solid boxes are tables, and the dotted boxes are the corresponding paragraphs.
The bottom table shows two complex questions that cannot be solved by the previous method. The same color
marks the source of the answer, while the blue dashed arrow points to the source of the answer. For the table, blue
cells are Tcolumn, yellow cells are Trow and gold cells are Ttime.

number order classifier is used for operators sen-
sitive to the operation orders. Moreover, for the
complex numerical computation problems in Fig-
ure 1, the model cannot predict the answer because
of the absence of predefined operators. Thus, pre-
vious models based on predefined operators have
a deficiency of low generalizability and flexibility.
In addition, another problem of the method is to
model tables and the texts solely and could not ag-
gregate information from different data types. As
a result, incorrect answers are usually generated
because of the incomprehensive information from
a single type of data.

To solve these problems, we propose a novel
method to model such table-text hybrid data for
the TextTableQA task, especially for the numerical
reasoning question type. Specifically, we build
a heterogeneous graph to capture the relationship
between different data types. And different node
types and relation types (intra-relation and inter-
relation) are defined, as detailed in Appendix A.
We expect the QA model to capture the correlation
between the tables and the texts and aggregate them
effectively. The model could focus on the whole
contents rather than a single data type. Then a
tree-based decoder is built. And we expect it could
make good use of the different data structures from
different data types and select appropriate nodes in
the heterogeneous graph. After that, an expression
tree and a prefix expression are generated. So the
model can generate arbitrary forms of derivation

without the need for predefined slots. It eliminates
error propagation in the operator prediction module
and improves the flexibility and generalizability of
numerical reasoning.

Experimental results on the public benchmark
TAT-QA demonstrate that our proposed model
RegHNT improves EM values by 20.2% and F1

values by 20.0% over the baseline. Our main con-
tributions are summarized as follows:

• We design a novel graph construction method
to model the information from table-text hy-
brid data, which effectively captures the cor-
relation between tables and texts.

• We propose a tree structure decoder to solve
the numerical reasoning problems. Based on
our method, an expression tree and a prefix
expression are generated. Our approach can
cover arbitrary numerical derivation forms
and improve the model’s flexibility and gener-
alizability. To our knowledge, this is the first
tree-based model for TextTableQA.

• We think our graph-tree framework can be
used as a strong baseline for the TextTable
numerical reasoning task. Empirical results
on the TAT-QA dataset demonstrate that the
proposed model is effective, which achieves
the state-of-the-art performances2.

2Leaderboard of TAT-QA: https://nextplusplus.
github.io/TAT-QA
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2 Problem Definition

We represent a natural language question as Q =
(q1, q2, ..., q|Q|) with length |Q|. Each question
is associated with a table T and a paragraph
P = (s1, s2, ..., s|P |) with the number of sen-
tences |P |. The table T consists of several cells
T = {c1, c2, ...} and each table cell ci can be fur-
ther divided into K words (ci1, ci2, ..., ciK). Simi-
larly, each paragraph sentence si contains several
words (si1, si2, ..., siL) with the sentence length L.
Our goal is to generate the ground truth answer
through numerical calculation (see Figure 1).

Arithmetic Type

Answer 16.78

Expression [(0.709*275.00)-(0.739*225.93)]/(0.739*225.93)

Polish 

Notation
/ - * 0.709 275.00 * 0.739 225.93 * 0.739 225.93

Tree

/

-

×

0.709 275.00

×

0.739 225.93

×

0.739 225.93

Figure 2: The expressions of arithmetic questions. We
predict an mathematical expression consisting of nu-
meric nodes and operators to get the answer.

The examples of expressions can be seen in Fig-
ure 2. For arithmetic questions which need nu-
merical calculation, inspired by math word prob-
lem solving (Liu et al., 2019a; Wang et al., 2019a;
Zhang et al., 2020), we generate the final mathe-
matical expression Ep, which is the polish notation
transformed from the original math expression. Ep

can always be represented as a solution expression
tree Te because the preorder traversal result of the
tree is the polish notation.

3 Method

In this section, we present in detail the mod-
ules of Relational Graph enhanced Hybird table-
text Numerical reasoning model with Tree de-
coder (RegHNT) (see Figure 3). First, a text-table
hybrid data modeling approach is proposed. After
constructing the graph, we utilize a classic encoder-
decoder architecture for predicting answers. It con-
sists of a graph input module, a graph enhanced
hidden module, and a tree-based decoder module.
Both the graph input module and the graph en-
hanced hidden module are parts of the encoder,

aiming to map the input heterogeneous graph G
into node embeddings Z ∈ R|V |×d, where d is the
graph hidden size. The tree-based decoder module
is responsible for transforming Z into the target
Te.

3.1 Graph Construction
The entire input heterogeneous graph G = (V,R)
consists of all types of nodes, that is V = Q ∪ T ∪
P with the number of nodes |V | = |Q| + |T | +∑

si∈P |si|, where |T | and |si| are the number of
table cells and paragraph sentences respectively.
For relations, R = RI ∪ RC . RI denotes intra-
relation and RC denotes inter-relation. Details of
the node types and relation types are described in
the Appendix A. Finally, we model the question,
table and text as a graph.

3.2 Graph Input Module
The graph input module aims to initialize em-
beddings for both nodes and edges. For edges,
the edge features are directly initialized from
a parameter matrix. For nodes, we can ob-
tain their representations from a pre-trained lan-
guage model (PLM) such as RoBERTa (Liu
et al., 2019b). We flatten all question words, ta-
ble cells and paragraph words into a sequence
[CLS]q1q2...q|Q|[SEP]t1t2...t|T |[SEP]s10s11...
s|P |0s|P |1...[SEP]. si0 is the special sentence to-
ken of the sentence si. Since each word e of the se-
quence is tokenized into sub-words, we use Multi-
granularity type aware pooling to get the node
representation x. Details in the Appendix B.

3.3 Relational Graph Enhanced Module
This module aggregates information about the
nodes and edges of the heterogeneous graph. It
is a stack of L relational graph attention net-
work (RGAT) layers. In each layer l, the RGAT (re-
lational graph attention transformers) (Wang et al.,
2020) models the graph G and computes the output
representation Z by:

e
(h)
ij =

xiW
(h)
q (xjW

(h)
k + rKij )

(T)

√
dz/H

α
(h)
ij = softmax

{
e
(h)
ij

}

z
(h)
i =

∑

vj∈Ni
α
(h)
ij (xjW

(h)
v + rVij)

(1)

where matrices Wq,Wk,Wv are trainable parame-
ters in self-attention, and Ni is the receptive field
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Figure 3: The overall model architecture. The dashed box is the tree-based decoder. Depending on the type of
question, two separate trees are constructed to generate the answer.

of node vi. The output matrices of the final layer L
are the desired outputs of the encoder: Z = ZL.

3.4 Tree-based Decoder Module

Inspired by the goal-driven tree struc-
ture (GTS) (Xie and Sun, 2019) for solving
math word problem, we propose a novel tree-based
decoder to construct the calculation expressions
for solving text-table numerical reasoning problem.
As such, the specialized tree decoder generates an
equation following the pre-order traversal ordering.
The model takes in question Q, table T , paragraph
P and generates a expression tree Te. Let Vnum
denote numeric values in T and P . Generally,
Vcon denotes constant values Vcon = {1,AVG},
AVG means to average the sum of the previous
numbers. Vop denotes mathematical operators
V op = {+,−,×,÷}.

The tree generation process is designed as a pre-
order tree traversal (root-left-right). For node y in
target Te, y ∈ V num ∪ V con ∪ V op. We set Vnum
and Vcon to be the leaf nodes and Vop serve as the
internal nodes and must have two child nodes.

The tree structured decoder uses the final graph
layer representations zi as input and generates the
target expression in t time steps. At each time step
t, let st denote the decoding hidden state, ct denotes
the hybrid context state, gt denotes the generated
expressions tree state.

The decoder is a bi-directional GRU (Cho et al.,
2014), which updates its states at time step t+ 1 as

follows:

st+1 = BiGRU([ct : gt : E(yt)], st)

where E(yt) is the embedding of token yt:

E(yt) =





Mop(yt) if yt ∈ V op

Mcon(yt) if yt ∈ V con

hiloc(yt,T,P ) if yt ∈ V num

(2)

Mop and Mcon are two trainable embeddings for
operators and constants, respectively. For a nu-
meric value in V num, its token embedding takes
the corresponding hidden state hiloc(yt,T,P ), where
loc(yt, T, P ) is the index position of y in table T
or paragraph P (Hong et al., 2021).

Inspired by math word problem solving (Wu
et al., 2021), the generated expression tree state gt
is calculated as follows:

gt+1 = σ(Wg[gt : gg,p : gt,l : gt,r]) (3)

where σ is a sigmoid function and Wg is a weight
matrix. For each generated node, gg,p, gg,l, gg,r
represent the expression tree state of the parent
node, left child node, and right child node of the
current node, respectively.

The hybrid context state ct is computed via at-
tention mechanism as follows:

αti = softmax(tanhWhzi +Ws[st : rt]))

ct =
m∑

i=1

αtizi
(4)
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where Wh, Ws are weight matrices. αti is the
attention distribution on the node representations
zi.

Lastly, the decoder can generate a word from a
given vocabulary Vop ∪ Vcon. It can also generate
a number symbol from Vnum, which is copied a
number from the table T or paragraph P . The final
distribution is the combination of the generated
probability and copy probability:

pc = σ(Wz[st : ct : rt])

Pc(yt) =
∑

yt=xi

αti

Pg(yt) = softmax(f([st : ct : rt]))

P(yt|y<t,X) = pcPc(yt) + (1− pc)Pg(yt)

(5)

Here, f(·) is a perception layer. pc is the probability
that the current word is a number copied from the
table or paragraphs.

3.5 Operator and Scale Prediction

In addition, there are two separate tasks in the de-
coding section: operator prediction and scale
prediction. For arithmetic questions, a right pre-
diction of a numerical answer should include the
right number and the correct scale. The scale in
the dataset may be None, Thousand, Million, Bil-
lion, and Percent generally. We focus on arithmetic
questions for operator prediction, but there are still
non-arithmetic questions (span extraction question)
in the dataset. So we classify whether the question
is arithmetic or not before decoding. For the ex-
traction questions, as shown in Figure 3, we also
model them as trees, as described in Appendix C.

To predict the right aggregation operator and
scale, two multi-class classifiers are developed. In
particular, we take the vector ⟨CLS⟩ to compute
the probability:

pop = softmax(FFN([⟨CLS⟩;hQ;hT ;hP ]))
pscale = softmax(FFN([⟨CLS⟩]))

(6)

where hQ,hT and hP are the representations of the
question, the table and the paragraphs , respectively,
which are obtained by applying an average pooling
over the representations of their corresponding to-
kens. “;” denotes concatenation, and FFN denotes
a two-layer feed-forward network with the GELU
activation.

3.6 Training
To optimize RegHNT, the overall loss is the sum
of the loss of the above tasks:

L = Ltree + Lop + Lscale

Ltree = −
T∑

t=1

logP(yt|y<t,Q,T,P)

Lop = NLL(log(Pop),Gop)

Lscale = NLL(log(Pscale),Gscale)

(7)

Ltree is the loss function of training the tree-
decoder, and we use the cross-entropy loss. Lop
and Lscale are the loss functions for operator pre-
diction and scale prediction, respectively, where
NLL(·) is the negative log-likelihood loss. Gop

comes from the supporting evidence, which is ex-
tracted from the annotated answer and derivation.
Gscale uses the annotated scale of the answer. We
add up the three loss functions as the total loss
function.

4 Experiments

4.1 Dataset and Evaluation Metrics
TAT-QA (Zhu et al., 2021) is a large-scale, hybrid
QA dataset which contains numerical reasoning
and span extraction questions. And the contents
of TAT-QA include both tabular and textual data
from real financial reports. It contains a total of
2,757 hybrid contexts and 16,552 corresponding
question-answer pairs. The detailed statistics are
shown in Appendix D. The original dataset con-
tains four types of questions: Span, Multi-Span,
Count, Arithmetic. But in our setup, there are two
types of questions: Span Extraction and Arithmetic.
And our work mainly focuses on answering the
Arithmetic questions.

For evaluation, we adopt the Exact Match (EM)
and numeracy-focused F1 score (Dua et al., 2019)
to measure the performance of different QA models.
All of which are computed using the official evalu-
ation script3. We submit our model to the organizer
of the challenge for evaluation. The evaluation de-
tail can be found on the original paper (Zhu et al.,
2021).

4.2 Implementation Details
Implementations. Our model is implemented with
PyTorch (Paszke et al., 2019), and the graphs are

3https://github.com/NExTplusplus/
tat-qa

1383



constructed with the library DGL (Wang et al.,
2019b). In the graph input module, we use pre-
trained language models (PLMs) RoBERTa (Liu
et al., 2019b) to obtain the initial representations.
During evaluation, we adopt beam search decoding
with beam size 3.
Hyper-parameters. In the encoder, the number
of GNN layers L is 8, and the number of heads in
multi-head attention is 8. For PLMs, we use learn-
ing rate 1e-5 and weight decay rate 0.01. For other
model modules, we use a larger learning rate 1e-4,
and a weight decay rate 5e-5. In the decoder, The
recurrent dropout rate (Gal and Ghahramani, 2016)
is 0.2 for GRU. The number of heads in multi-head
attention is 8 and the dropout rate of features is set
to 0.1 in both the encoder and decoder. Through-
out the experiments, we use AdamW (Loshchilov
and Hutter, 2018) optimizer with a linear warmup
scheduler. The warmup ratio of the total training
steps is 0.06. The batch size is 48, and the training
epoch is 100. The training process may take around
2 days using a single NVIDIA GeForce RTX 3090.
Baselines. We compare with the standard
TAGOP (Zhu et al., 2021), which first applies se-
quence tagging to extract relevant cells from the
table and text spans from the paragraphs. We also
compare with other advanced models, which can
be found on the TAT-QA challenge leaderboard4.
There are no linked papers to the submissions as
yet. We compare our model’s performance on the
test split with all of them.

4.3 Main Results

Method Dev Test

EM F1 EM F1

Human - - 84.1 90.8

TAGOP 55.2 62.7 50.1 58.0

LETTER - - 56.1 64.3

KIQA - - 58.2 67.4

GSReasoner - - 67.4 75.5

RegHNT 73.6 81.3 70.3 78.0

Table 1: The performance of different models on dev
and test set of TAT-QA. The best results are marked in
bold.

The main results on the test set are provided in
Table 1. Our model achieves the state-of-the-art re-
sults in the publicly available TAT-QA benchmark

4https://nextplusplus.github.io/TAT-QA

Table Text Table-text

EM/F1 EM/F1 EM/F1

TAGOP

Span 56.5/57.8 56.5/57.8 68.2/71.7
Spans 66.3/77.0 19.0/59.1 63.2/76.9

Counting 63.6/63.6 -/- 62.1/62.1
Arithmetic 41.1/41.1 27.3/27.3 46.5/46.5

RegHNT

Span 68.5/70.0 58.7/83.0 77.0/84.7
Spans 79.5/86.2 23.8/65.3 81.1/90.1

Counting 36.3/36.3 -/- 82.7/82.7
Arithmetic 72.7/72.7 27.3/27.3 77.7/77.7

Table 2: Detailed experimental results of TAGOP and
RegHNT w.r.t. answer types and sources on the test set.

and achieves 20% higher on both EM and F1 com-
pared with the original baseline (TAGOP), which
shows that our model can answer more questions
with higher accuracy.

The detailed results on the test set are provided
in Table 2. For almost all types of questions, the ac-
curacy of RegHNT prediction has been improved.
Thanks to the tree decoder for arithmetic ques-
tions, the model’s accuracy on this type of ques-
tions has been greatly improved, with an overall
improvement of almost 30%. For span extraction
questions (Span, Spans, Counting), we observe a
improvement in the performance of the model as
well. From the perspective of answer sources, com-
pared with the original baseline (TAGOP), we focus
on "table-text" type questions, both "arithmetic"
and "span extraction" type show a performance
improvement of about 20%. It demonstrates that
our approach works very well in solving table-text
hybrid questions.

This paper focuses on the numerical reasoning
questions. To verify our model more precisely, we
divided the questions into three categories based
on the complexity of the derivation, as shown in
Table 3. Simple arithmetic has only one operator.
Complex arithmetic has multiple operators, usually
used to calculate the average and the rate of change.
Undefined arithmetic is arithmetic for which no
template is defined in TAGOP. The results show
that our model significantly improves both simple
and complex arithmetic. In particular, our model
can solve undefined arithmetic of TAGOP, which
offers flexibility and generalizability.
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Arithmetic type % TAGOP RegHNT

Simple arithmetic 41.8 45.0 79.3

Complex arithmetic 42.8 60.5 85.3

Undefined arithmetic 15.4 0.0 61.8

Table 3: Exact match value for different types of arith-
metic questions.

Technique EM F1

RegHNT 73.6 81.3
w/o Intra-relations 72.8 80.4
w/o Inter-relations 72.3 79.8
w/o All relations 71.6 78.7
w/o Multi-granularity type aware pooling 73.0 80.7
w/o Tree-decoder (Span extraction) 72.8 80.6
w/o Tree-decoder (All questions) 60.3 69.5

Table 4: Ablation study of different modules.

4.4 Ablation Studies

Effect of Tree Decoder. Although our work fo-
cuses on arithmetic questions, to unify the whole
model into a graph-tree framework, we transform
the span extraction type question into a tree gener-
ation problem as well, as mentioned in Section 3.5.
We conducted two experiments using the sequence
tagging method in TAGOP (Zhu et al., 2021) in-
stead of generating expression trees. As shown in
the last two rows of Table 4, one is to use sequence
tagging for all questions, and the other is to use se-
quence tagging only for span extraction questions.
When we change the decoder only for extraction
questions, the F1 drops only 0.7%, but when we
change the decoder for all questions, the F1 drops
about 11.8%. It shows that the tree decoder is not
only tremendously helpful in solving arithmetic
questions but also provides a slight improvement
in solving span extraction questions.
Effect of Graph Encoder. As shown in the first
four rows of Table 4, we show the effectiveness
of the proposed graph encoder. Removing the
intra-relations reduces the F1 value by 0.9% and
reduces the EM value by 0.8%. Removing the
inter-relations reduces F1 value by 1.5% and re-
duces the EM value by 1.3%. When we remove all
relations (remove graph enhanced module), the F1

decreases by 2.6%, and the EM value decreases by
2.0%. From the results, it can be clearly confirmed
that the graph we built plays an essential role in
modeling table-text hybrid data, and it captures the
semantic association through the message passing
between different data types.
Effect of Subword Pooling Layer. In the graph in-

put module, we used a multi-granularity type aware
pooling method. The type classification criteria
for word granularity are text and number, and for
node granularity are question, table, and paragraph.
As shown in the fifth row “w/o Multi-granularity
type aware pooling” of Table 4, we eliminate this
mechanism and unify the pooling approach for all
types and granularities. Experimental results of F1

dropped by 0.6%, which shows the effectiveness
of this type-aware module.

4.5 Scale and Operater Study

Scale Study. Scale prediction is a unique challenge
over TAT-QA and very pervasive in the context of
finance. After obtaining the scale, the numerical or
string prediction is multiplied or concatenated with
the corresponding scale as the final prediction to
compare with the ground-truth answer, respectively.
We compare RegHNT with the baseline model for
scale prediction results. The experimental results
are shown in Table 5. Our model has significantly
improved performance on both the dev and test
datasets. To explore the impact of the scale on re-
sults, we use the gold scale to predict the answer.
As shown in the third row of Table 6, model accu-
racy will slightly increase to 84.2% when we use
the gold scale, which shows that it is necessary to
improve the prediction of scale.
Operator Study. For TAT-QA dataset, there are
four original answer types: Span, Multi-Span,
Count, Arithmetic. As Figure 3 shows, we have
adapted it into two categories, where the details
of the expression tree for the span extraction ques-
tions are in the Appendix C. To investigate whether
this category setting causes error propagation, we
use the gold operator to predict the answer, and the
results are shown in Table 6. When we use the gold
operator, the EM and F1 of the model is improved
by only 0.1. It suggests, to some extent, that we
divide the data into two categories and use tree
decoders to generate the answers separately. This
approach has no significant impact on performance.

Model Dev Test

TAGOP 93.5 92.2

RegHNT 95.3 93.4

Table 5: Scale prediction results of our model and base-
line.
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Model EM F1

RegHNT 73.6 81.4
RegHNT + Gold operator 73.7 81.5
RegHNT + Gold scale 76.5 84.2
RegHNT + Gold operator + Gold scale 76.7 84.3

Table 6: The performance of using gold operators and
gold scales.

4.6 Case Studies

RegHNT TAGOP

What is the percentage change in total net sales of 

International and Foodservice from fiscal year 2018 

to 2019?

/   - +  793.4 934.2 +   843.5

1054.8 +    843.5   1054.8
/ 793.4    843.5

[(793.4 + 934.2) - ( 843.5 + 

1054.8 )] / ( 843.5+1054.8 )
793.4  / 843.5

What was the average employee termination cost per 

employee in 2018?

/   53.0 1027 /   53.0   55.5

53.0 / 1027 53.0 / 55.5

2019 2018

International

Foodservice

Figure 4: Two examples of generated expressions by
RegHNT and TAGOP(Zhu et al., 2021).

As Figure 4 shows, there are two questions and
the prediction results of the models. For the ques-
tion “What is the percentage change in total net
sales...?”, the previous method could not gener-
ate complex arithmetic. In contrast, our model
can generate the correct prefix expressions, which
demonstrates the characteristics and advantages of
our tree decoder. For the question “What was the
average employee termination...?", the correct ex-
pression is derived from table and text (“53.0” from
table and “1027” from paragraph). The results in
Figure 4 show that the model often fails to answer
correctly when a question requires the use of both
tables and text. It focuses only on tables, choose
“53.0” and “55.5”. This error type is very common
in the previous methods. It shows that our graph
encoder can better model the association between
tables and texts.

5 Related Work

Table-text hybrid QA is a new task that consists of
two main types of work.

Fact Reasoning TextTableQA. Chen et al.
(2020b) propose the first table-text hybrid QA
dataset. It is the fact reasoning type dataset whose
answer is usually a span from the table or linked
paragraphs of Wikipedia. The authors supposed
HYBRIDER (Chen et al., 2020b), a pipeline
approach that divides the prediction process
into two phases called linking and reasoning.
MITQA (Kumar et al., 2021) achieves SOTA EM
result on HybridQA, which is a novel training
strategy that works with multiple instances and
multiple answers based on weak supervision.
DEHG (Feng et al., 2022) propose a document-
entity heterogeneous graph network and achieve
SOTA F1 score on HybridQA. OTT-QA (Chen
et al., 2020a) is a difficult open-domain setting
TextTableQA task, which needs retrieval and
reading to get the answers. CARP (Zhong et al.,
2022) utilizes hybrid chain to model the explicit
intermediate reasoning process across table and
text for question answering, which achieves
SOTA results, but still far from expectations.
GeoTSQA (Li et al., 2021) is a multiple choice QA
dataset based on geography domain.

Numerical Reasoning TextTableQA. TAT-
QA (Zhu et al., 2021) and FinQA (Chen et al.,
2021) are the numerical reasoning hybrid dataset
which comes from the financial field. Both
TAT-HQA (Li et al., 2022) and TAT-DQA (Zhu
et al., 2022) are enhanced datasets of TAT-QA,
which study TextTableQA in counterfactual con-
dition and multimodal condition, respectively.
MULTIHIERTT (Zhao et al., 2022) is a challenging
dataset, which contains multiple hierarchical tables
and longer unstructured text. Unlike HybridQA,
which was fact reasoning type questions, TAT-QA
focuses explicitly on finance and needs numerical
reasoning for question answering over tabular num-
bers and associated text. They proposed TAGOP

model and regarded this problem as a sequence
tagging task. It predefined aggregation operators
and used a slot filling method to predict simple
derivation, lacking generalizability and flexibility.
Our model is the first method to generate arithmetic
expressions directly for table-text hybrid numerical
reasoning QA.

1386



6 Conclusion

This paper proposes a novel method to solve table-
text hybrid numerical reasoning problems and
achieve good performance. We present a unified
framework for addressing the table schema and
relative paragraphs. By adopting relation-aware
self-attention, the proposed method jointly learns
question, table and paragraph representations based
on their alignment. At the same time, we offer a
tree-based numerical reasoning decoding frame-
work for hybrid data, the first to use this type of
method for this task. Our model can serve as a
strong baseline for this task. However, our model
has not yet been experimented on encyclopedic
type questions (Chen et al., 2020b), and we will
explore a table-text hybrid QA framework that in-
tegrates dealing with factual and numerical reason-
ing types of questions. For numerical reasoning
type questions, we will do further research on TAT-
HQA (Li et al., 2022) and TAT-DQA (Zhu et al.,
2022).
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A Relation Detail

Before defining relation types, we’d better intro-
duce the node types more finely. There are three
types of nodes, but they can be divided in more
detail. Table T has complex structural information.
We set three types according to the location of the
cell, namely Trow, Tcolumn and Tcell. Some row
headers and column headers are time (e.g. 2019).
We set these special cell as Ttime. Row headers
and column headers are composed of text, while
numerical cells are numbers. For the question Q,
there is only one node type Qword. For the para-
graph P , there are two node types, Pword repre-
sents the common sentence words, Psentence rep-
resents the special sentence token.
Now there are seven types of nodes, and we estab-
lish edges between them, which is mainly divided
into intra-relation RI and inter-relation RC. The
relations are based on the table schema and word
matching between resources, and details are de-
scribed in Table 7.

B Multi-granularity type aware pooling

Since each word e of the sequence is tokenized into
sub-words, we need to aggregate them in order to
obtain the node representation. We set two gran-
ularities (word, node) and three types (question,
table, paragraph) aware pooling method.

• Word level: For number word (e.g. 109.7)
and text word (e.g. compensation), we use
two independent subword attentive pooling
module depending on word type to get the
type-aware word level representation w.

w =
∑

i

softmaxi
[
tanh(eiWs)v

T
s

]
ei

• Node Level: For a node, especially a table
cell node, which usually consists of multiple
words. According to the node source types,
we aggregate the word level granularity repre-
sentation with three different pooling layers
and three different BiLSTM to get the node
representation x.

x =
∑

i

softmaxi
[
tanh(wiWn)v

T
n

]
wi

Where vs, Ws, vn, Wn are trainable parame-
ters. The attentive pooling layer is inspired by
LGESQL (Cao et al., 2021).

C Details of the span extraction question

We also predict an expression tree for span extrac-
tion questions to get the answer. The example is
shown in Figure 5. Unlike mathematical problems,
the leaf node in the span extraction tree represents
node ID, while the leaf node in the arithmetic tree
represents the numeric number or constant. As for
the operator, the operators in the arithmetic tree are
“+, -, ×, ÷”. But for the span extraction tree, we
define three operators, “+, ×, C”. “+” represents the
splicing of two discontinuous spans, corresponding
to the multi-span in the original dataset. “×” means
taking the operator’s left and right sides as the start-
ing and ending nodes and selecting all nodes in the
middle of the two nodes as a span. “C” is the same
as “+”, but it counts the number of spans instead of
slicing them.

Span Extraction Type

Answer

integration and transformation-related expenses

severance and retention compensation expenses

transaction-related expense

Expression 7 + 10 + 44 * 47

Polish 

Notation
+ + 7 10 * 44 47

Tree

/

-

×

0.709 275.00

×

0.739 225.93

×

0.739 225.93

Figure 5: Expressions for span extraction questions.
We also predict an expression tree to get the answer.
"44×47” means to select all words between nodes ID 44
and nodes ID 47, “+” means that the span on both sides
is the answer.

D Details of the TAT-QA

The specific data analysis of the dataset is shown
in Table 8 and Table 9.
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Intra-Relation

Source x Source y Relation Description

Trow Tcell CONTAIN x is row head of y.

Tcolumn Tcell CONTAIN x is column head of y.

Ttime Tcell CONTAIN x is row/column head of y, x is time.

Psentence Pword CONTAIN x is the sentence token which contain y.

Qword Qword DISTANCE+1 y is the next word of x.

Pword Pword DISTANCE+1 y is the next word of x.

Tcell Tcell SAME ROW x and y are in the same row.

Tcell Tcell SAME COLUMN x and y are in the same column.

Inter-Relation

QWord Trow
PARTIALMATCH x is part of y, but the entire question does not contain y.
EXACTMATCH x is part of y, and y is a span of the entire question.

Psentence Qword CONTAIN x is the sentence token which contain y.

Psentence Trow CONTAIN x is the sentence token which contain y.

Pword Trow
PARTIALMATCH x is part of y, but the entire sentence does not contain y.
EXACTMATCH x is part of y, and y is a span of the entire question.

Pword Qword SAME x and y are the same words.

Table 7: The checklist of all relations in our RegHNT. All the above relations are asymmetric. We show only one
direction, and the opposite direction can be easily inferred.

Table Text Table-text Total

Span 1,801 3,496 1,842 7,139
Spans 777 258 1,037 2,072
Counting 106 5 266 377
Arithmetic 4,747 143 2,074 6,964
Total 7,431 3,902 5,219 16,552

Table 8: Question distribution regarding different an-
swer types and sources in TAT-QA.

Statistic Train Dev Test

# of hybrid contexts 2,201 278 278
# of questions 13,215 1,668 1,669
Avg. rows / table 9.4 9.7 9.3
Avg. cols / table 4.0 3.9 4.0
Avg. paragraphs / table 4.8 4.9 4.6
Avg. paragraph len [words] 43.6 44.8 42.6
Avg. question len [words] 12.5 12.4 12.4
Avg. answer len [words] 4.1 4.1 4.3

Table 9: Basic statistics of each split in TAT-QA.
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Abstract

Knowledge graph (KG) inference aims to ad-
dress the natural incompleteness of KGs, in-
cluding rule learning-based and KG embedding
(KGE) models. However, the rule learning-
based models suffer from low efficiency and
generalization while KGE models lack inter-
pretability. To address these challenges, we pro-
pose a novel and effective closed-loop neural-
symbolic learning framework EngineKG via
incorporating our developed KGE and rule
learning modules. KGE module exploits sym-
bolic rules and paths to enhance the semantic
association between entities and relations for
improving KG embeddings and interpretabil-
ity. A novel rule pruning mechanism is pro-
posed in the rule learning module by leverag-
ing paths as initial candidate rules and employ-
ing KG embeddings together with concepts
for extracting more high-quality rules. Experi-
mental results on four real-world datasets show
that our model outperforms the relevant base-
lines on link prediction tasks, demonstrating
the superiority of our KG inference model in a
neural-symbolic learning fashion. The source
code and datasets of this paper are available at
https://github.com/ngl567/EngineKG.

1 Introduction

Typical knowledge graphs (KGs) store triple facts
and some of them also contain concepts of enti-
ties (Bollacker et al., 2008). The KGs have proven
to be incredibly effective for a variety of applica-
tions such as dialogue system (Zhou et al., 2018)
and question answering (Huang et al., 2019). How-
ever, the existing KGs are always incomplete which
restricts the performance of knowledge-based ap-
plications. Thus, KG inference plays a vital role in
completing KGs for better applications of KGs.

The existing KG inference approaches are usu-
ally classified into two main categories: (1) Rule
learning-based models such as AMIE+ (Galárraga

∗Corresponding author.

(2) Compression Stroke: 

KG Embedding Module 

triples

paths

concepts

(1) Intake Stroke: Inject 

the matched rules into 

Compression Stroke

rules

(3) Expansion Stroke: 

Rule Learning Module 

(4) Exhaust Stroke: 

Update rule set newly 
learned rules

updated rule set Link Prediction KG embeddings

Figure 1: The brief architecture of our closed-loop
framework for KG inference EngineKG that performs
like a four-stroke engine.

et al., 2015) and AnyBurl (Meilicke et al., 2019)
mine rules from KGs and employ these rules to
predict new triples by deduction. However, rule
learning-based models suffer from low efficiency
of the rule mining process and the poor general-
ization caused by the limited coverage of inference
patterns. (2) KGE technique learns the embed-
dings of entities and relations to predict the missing
triples via scoring each triple candidate, including
TransE (Bordes et al., 2013), HAKE (Zhang et al.,
2020) and DualE (Cao et al., 2021). The previous
KGE models perform in a data-driven fashion, con-
tributing to good efficiency and generalization but
lacking interpretability.

Some recent researches attempt to combine the
advantages of rule learning-based and KGE-based
models to complement each other in a neural-
symbolic learning fashion. An idea is to introduce
logic rules into KGE models, such as RUGE (Guo
et al., 2018) and its advanced model IterE (Zhang
et al., 2019b). These approaches all convert the
rules into formulas by t-norm based fuzzy logic to
obtain newly labeled triples. However, these mod-
els cannot maintain the interpretability which
is a vital feature of symbolic rules. On the other
hand, some rule learning-based models succeed
in leveraging KG embeddings to extract rules via
numerical calculation rather than discrete graph
search, including RNNlogic (Qu et al., 2021),
RLvLR (Omran et al., 2019), DRUM (Sadeghian
et al., 2019) and RuLES (Ho et al., 2018). Although
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the efficiency of mining rules is improved, the per-
formance especially generalization of purely em-
ploying rules to implement KG inference is still
limited.

To address the above challenges, we propose a
closed-loop neural-symbolic learning framework
EngineKG via combining an embedding-based
rule learning and a rule-enhanced KGE, in which
paths and concepts are utilized. Our model is
named EngineKG because it performs like an en-
gine as shown in Figure 1: (1) Intake Stroke.
The closed-path rules (or named chain rules) are
injected into the KGE module (analogous to in-
take) to guide the procedure of learning KG em-
beddings, where the initial seed rules are mined by
any rule learning tool, and the rule set would grow
via our designed rule learning module from the
first iteration. (2) Compression Stroke. The KGE
module leverages the rules and paths to learn the
low-dimensional embeddings (analogous to com-
pression) of entities and relations, improving inter-
pretability and accuracy. (3) Expansion Stroke.
The novel rule learning module outputs newly
learned rules (analogous to exhaust) by the effec-
tive rule pruning strategy based on paths, relation
embeddings and concepts. (4) Exhaust Stroke.
Update the rule set (analogous to exhaust) by merg-
ing the previous rule set and the newly learned
rules for boosting KGE and KG inference in the
next iteration.

Our research makes three contributions:

• We propose a novel and effective closed-loop
neural-symbolic learning framework that per-
forms embedding-based rule learning and rule-
enhanced KGE iteratively, balancing good ac-
curacy, interpretability and efficiency.

• Paths and ontological concepts are well ex-
ploited for supplementing the valuable seman-
tics to both KGE and rule learning, facilitating
the better performance of KG inference.

• The link prediction results and the effective-
ness of rule learning on four datasets illustrate
that our model outperforms various state-of-
the-art KG inference approaches.

2 Related Work

2.1 Rule Learning-Based Models
According to the symbolic characteristics of KG,
some rule learning techniques specific to KGs are

applied to KG inference with relatively good accu-
racy and interpretability, including AMIE+ (Galár-
raga et al., 2015), Anyburl (Meilicke et al., 2019),
DRUM (Sadeghian et al., 2019), RLvLR (Om-
ran et al., 2019) and RNNLogic (Qu et al., 2021).
AMIE+ (Galárraga et al., 2015) introduces opti-
mized query writing techniques into traditional in-
ductive logic programming algorithms to generate
horn rules efficiently. Anyburl learns closed-path
rules from KGs in a reinforcement learning frame-
work. DRUM, RLvLR and RNNLogic employ KG
embeddings for enhancing the efficiency and scal-
ability of rule learning. Whereas, all the previous
rule learning algorithms lack generalization since
the number of rules mined at one time is limited.

2.2 KG Embedding Models
The typical KG embedding (KGE) models learn
the embeddings of entities and relations to measure
the plausibility of each triple. TransE (Bordes et al.,
2013) regards the relations as translation operations
from head to tail entities. ComplEx (Trouillon et al.,
2016) embeds the KG into a complex space while
DualE (Cao et al., 2021) embeds relations into the
quaternion space to model the symmetric and anti-
symmetric relations. HAKE (Zhang et al., 2020)
embeds entities into the polar coordinate system
and is able to model the semantic hierarchies of
KGs. RUGE (Guo et al., 2018) and IterE (Zhang
et al., 2019b) both convert rules into formulas by
t-norm fuzzy logic to infer newly labeled triples.
Particularly, IterE iteratively conducts rule learning
and KG embedding, but the significant distinc-
tions between our model EngineKG and IterE
include: (1) Usage of rules: our model leverages
rules to compose paths for learning KG embed-
dings while IterE uses rules to produce labeled
triples. Meanwhile, we maintain the interpretabil-
ity of symbolic rules, while IterE does not. (2)
Additional information: our model introduces
paths and concepts into both rule learning and KG
embedding while IterE simply depends on triples.

2.3 Path-Enhanced Models
In terms of the graph structure of KGs, paths denote
the associations between entities apart from rela-
tions and are applied to multi-hop reasoning (Lin
et al., 2018; Xiong et al., 2017; Neelakantan et al.,
2015). PTransE (Lin et al., 2015) extends TransE
by measuring the similarity between relation and
path embeddings. MultiHopKG (Lin et al., 2018)
explores the answer entities via searching corre-
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sponding paths with reinforcement learning. How-
ever, these models represent paths in a data-driven
fashion, lacking interpretability and accuracy.

3 Methodology

In this section, we first describe the problem formu-
lation and notation of our work in section 3.1. Then,
following the workflow of EngineKG as shown in
Figure 2, we introduce the rule-enhanced KGE
module in section 3.2 and the embedding-based
rule learning module in section 3.3.

3.1 Problem Formulation and Notation

Definition of Closed-Path Rule. The closed-path
(CP) rule or named chain rule is a fragment of the
horn rule, which we are interested in for the KGE
module and the inference. A CP rule is of the form

Head(x, y)⇐ B1(x, z1) ∧B2(z1, z2)∧
· · · ∧Bn(zn−1, y) (1)

where B1(x, z1), B2(z1, z2), · · · , Bn(zn−1, y) de-
note the atoms in the rule body Body(x, y), and
Head(x, y) is the rule head. Bi and Head indi-
cate relations. Standard confidence (SC) and head
coverage (HC) are two predefined statistical mea-
surements to assess rules (Galárraga et al., 2015;
Omran et al., 2019), which are defined as follows:

Support = #(e, e′) : Body(e, e′) ∧Head(e, e′) (2)

SC =
Support

#(e, e′) : Body(e, e′)
(3)

HC =
Support

#(e, e′) : Head(e, e′)
(4)

where #(e, e′) indicates the number of entity pairs
(e, e′) that satisfy the condition on the right side of
the colon. In general, the rules with SC and HC
both higher than 0.7 are regarded as high-quality
rules (Zhang et al., 2019b).

Definition of Path. A path between an entity pair
(h, t) is in the form of [h → r1 → e1 → · · · →
rn → t] where ri and ei are the intermediate re-
lation and entity, and the length of a path is the
number of the intermediate relations.

3.2 Rule-Enhanced KGE Module

We aim to learn the entity and relation embed-
dings from triple facts, rules and paths via neural-
symbolic learning. Firstly, we extract the paths via
PCRA algorithm (Lin et al., 2015). Apart from
other path-finding approaches such as PRA (Lao

et al., 2011), PCRA algorithm could measure the re-
liability of each path for KGE module. Particularly,
we develop a joint logic and data-driven path repre-
sentation mechanism to learn path embeddings.

Logic-Driven Path Representation (Intake
Stroke). The CP rules could compose paths into
shorter and more accurate ones for enhancing the
representation of paths. For instance, a length-2
path [The Pursuit of Happiness

CastActor−−−−−−→
Will Smith

PersonLanguage−−−−−−−−−−−→ English] as
shown in Figure 2 could be composed
into a shorter path (actually a triple)

[The Pursuit of Happiness
TV Language−−−−−−−−→

English] via the CP rule TV Language(x, y)
⇐ CastActor(x, z) ∧ PersonLanguage(z, y).
Furthermore, the relation TV Language could
signify the original multi-hop path.

Data-Driven Path Representation. For
the scenario that the path cannot be fur-
ther composed by rules such as the path

[The Pursuit of Happiness
CountryOfOrigin−−−−−−−−−−−→

U.S.A.
LanguageSpoken−−−−−−−−−−−→ English] in Figure 2,

we represent this path by summing all the relation
embeddings along the path. With the entity pair
(h, t) together with the linking path set P , the
energy function for measuring the plausibility of
the path-specific triple (h, t,P) is designed as

Ep(h, t,P) =
∑

pi∈P

R(pi|h, t)∑
pi∈P R(pi|h, t)

∥h + pi − t∥ (5)

where h and t are the head and tail entity embed-
dings. pi denotes the i-th path in the path set P and
pi is the embedding of pi achieved by the joint logic
and data-driven path representation. R(pi|h, t) in-
dicates the reliability of path pi between the given
entity pair (h, t) obtained by the PCRA algorithm.

Optimization Objective (Compression Stroke).
Along with the translation-based KGE models, the
energy function for formalizing the plausibility of
a triple fact (h, r, t) is given as

Et(h, r, t) = ∥h + r− t∥ (6)

in which r is the embedding of the relation r.
The existing KGE techniques neglect the seman-

tic association between relations. Remarkably, the
length-1 rules model the causal correlations be-
tween two relations. As shown in Figure 2, the
relation pair in the rule FilmLanguage(x, y) ⇐
TV Language(x, y) should have higher similarity
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Figure 2: The overall architecture of our developed KG inference model EngineKG in a closed-loop neural-symbolic
learning framework. Specific to the rule-enhanced KG embedding module, the green highlighted parts contain the
triples and the composed paths via rules, indicating the inputs of the KGE module.

than other relations. Thus, we measure the associa-
tion between relation pairs as

Er(r1, r2) = ∥r1 − r2∥ (7)

where r1 and r2 are the embeddings of relations
r1 and r2. Er(r1, r2) should be closer to a small
value if r1 and r2 appear in a length-1 rule at the
same time.

With the energy functions specific to the fac-
tual triple, the path representation and the relation
correlation, the joint loss function for training is
designed as follows:

L =
∑

(h,r,t)∈T
(Lt + α1Lp + α2Lr) (8)

Lt =
∑

(h′,r,t′)∈T ′
[γ1 + Et(h, r, t)− Et(h′, r, t′)]+ (9)

Lp =
∑

(h′,t′)∈T ′
[γ2 + Ep(h, t, P )− Ep(h′, t′, P )]+ (10)

Lr =
∑

rp∈S

∑

rn∈S′
[γ3 + Er(r, rp)− Er(r, rn)]+ (11)

where L is the whole training loss consisting of
three components: the triple-specific loss Lt, the
path-specific loss Lp, and the relation correlation-
specific loss Lr. α1 and α2 are the weights of paths
and relation correlation, respectively. γ1, γ2 and γ3
are three margins in each loss function. [x]+ is the
function returning the maximum value between 0
and x. T is the set of triples observed in the KG
and T ′ is the set of negative samples obtained by
random negative sampling. S is the set of posi-
tive relations that are correlated with relation r by
length-1 rules and S ′ is the set of negative relations
beyond S and relation r.

We employ mini-batch Stochastic Gradient De-
scent (SGD) algorithm to optimize the joint loss
function for learning entity and relation embed-
dings. The entity and relation embeddings are ini-
tialized randomly and constrained to be unit vectors
by the additional regularization term with L2 norm.

3.3 Embedding-Based Rule Learning Module
We develop an embedding-based rule learning (Ex-
pansion Stroke) to mine high-quality CP rules
via conducting the rule searching and the rule
pruning efficiently. Remarkably, a path can nat-
urally represent the body of a CP rule. Moti-
vated by this observation, we firstly reuse the paths
extracted in section 3.2 and regard these paths
as candidate CP rules, which improves the effi-
ciency of rule searching. For instance, given an
entity pair (h, t) connected by a relation r and
a path [h → r1 → e1 → r2 → e2 →, · · · →
en−1 → rn → t], it can be deduced as a CP rule
r(x, y)⇐ r1(x, z1)∧r2(z1, z2)∧· · ·∧rn(zn−1, y),
where x, y and zi(i = 1, · · · , n − 1) are the vari-
ables in the rule, and ri(i = 1, · · · , n) is a relation.

To evaluate the plausibility of candidate CP rules
efficiently, we develop a novel rule pruning strat-
egy consisting of two components: Embedding-
based Semantic Relevance and Concept-based
Co-occurrence. It should be noted that the
Concept-based Co-occurrence is available when
the KG contains concepts. For the KGs without
concepts, employing Embedding-based Semantic
Relevance solely is still valid to learn rules.

Embedding-based Semantic Relevance. Intu-
itively, a candidate rule is plausible if the rule body
corresponding to a path p is semantically relevant
to the rule head corresponding to the relation r. We
focus on the paths and the CP rules with lengths no
longer than 2 for the trade-off of efficiency and per-
formance. Based on the KG embeddings learned
in our KGE module, we could measure the seman-
tic relevance between the body and the head of a
candidate rule by the path embedding and relation
embedding as well as the score function as

Esr(r, p) = exp(−∥r− p∥) (12)

where p denotes the embedding of the path p.
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Dataset #Relation #Entity #Concept #Train #Valid #Test

FB15K 1,345 14,951 89 483,142 50,000 59,071
FB15K237 237 14,505 89 272,115 17,535 20,466
NELL-995 200 75,492 270 123,370 15,000 15,838

DBpedia-242 298 99,744 242 592,654 35,851 30,000

Table 1: Statistics of the experimental datasets.

The embedding-based semantic relevance indi-
cates a global plausibility of a rule from the per-
spective of relations. Furthermore, a concept-based
co-occurrence is proposed to evaluate the local rel-
evance of the arguments in a rule.
Concept-based Co-occurrences. The neigh-
bor arguments in a high-quality CP rule are ex-
pected to share as many same concepts as pos-
sible. Given a CP rule Nationality(x, y) ⇐
BornIn(x, z) ∧ LocatedIn(z, y), the tail argu-
ment of relation BornIn and the head argument
of relation LocatedIn should share the concept
Location. Considering there are far fewer con-
cepts than entities, we encode each concept as a
one-hot representation to maintain the precise con-
cept features. The concept embedding of the head
or tail argument of an atom can be formalized as

ACh(r) =
1

|Ch(r)|
∑

c∈Ch(r)
OH(c) (13)

ACt(r) =
1

|Ct(r)|
∑

c∈Ct(r)
OH(c) (14)

where ACh(r) and Ch(r) are the concept embed-
ding and concept set in the head argument of an
atom containing relation r while ACt(r) and Ct(r)
are that of in the tail argument. OH(c) denotes the
one-hot representation of the concept c.

Specific to a CP rule in the form of r(x, y) ⇐
r1(x, z1)∧r2(z1, z2)∧· · ·∧rn(zn−1, y), three types
of co-occurrence score functions are designed ac-
cording to the different positions of the overlapped
arguments:

Ehco(r, r1) = sim(ACh(r), ACh(r1)) (15)

Etco(r, rn) = sim(ACt(r), ACt(rn)) (16)

Eico(ri, ri+1) = sim(ACt(ri), ACh(ri+1)) (17)

where Ehco(r, r1) and Etco(r, rn) respectively de-
note the co-occurrence similarities specific to the
head arguments and the tail arguments between

the rule head and the rule body. Einco (ri, ri+1) rep-
resents the co-occurrence similarity between the
adjacent arguments in the rule body. sim(x, y) rep-
resents the cosine distance function for measuring
the similarity between x and y.

Then, the whole co-occurrence score function
can be achieved by composing all the scores in Eqs.
15-17 as

Eco(r, p) = Ehco(r, r1) + Etco(r, rn)

+
n−1∑

i=1

Eico(ri, ri+1)
(18)

Consequently, the overall score function for evalu-
ating candidate rules is defined as:

Ecg = Esr(r, p) + βEco(r, p) (19)

where β is the weight of the co-occurrence score.
We set a threshold and select the candidate rules
with the scores calculated by Eq. 19 above the
threshold as filtered candidate rules. Afterward,
we output the high-quality rules from the filtered
candidate rules that satisfy the thresholds of the
precise quality criteria namely standard confidence
and head coverage defined in Eqs. 2-4. Then, the
updated rule set is obtained via fusing the newly
learned rules and the previous rule set (Exhaust
Stroke) for the KGE module in the next iteration.

3.4 Algorithm Flow and Complexity
It is noteworthy that from the first iteration of En-
gineKG, our rule learning module could potentially
achieve sustainable growth of rules. The entire iter-
ation process will keep running until no fresh rules
can be generated. Then, the learned KG embed-
dings learned in the last iteration are exploited for
the KG inference. The Algorithm 1 summarizes
the whole closed-loop KG inference procedure of
our EngineKG model.

To evaluate the complexity of our EngineKG
model, we denote ne, nr, np, nc and nt as the
amount of entities, relations, paths, concepts and
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Algorithm 1: Training framework of our
model EngineKG
Input: G: Training set

Ch, Ct: The head and tail concept set
associated with relations
P : The set of paths extracted from G
via PCRA
γ1, γ2, γ3: The margins in loss
functions
α1, α2: The weights for trade-off
st: The score threshold for
coarse-grained evaluation of rules
Maxe: The maximum epochs

1 Initialize entity embeddings e and relation
embeddings r randomly and encode the
concept embeddings from Ch and Ct by
one-hot representation;

2 Mine rules by a rule mining tool such as
AMIE+;

3 while new rules can be learned do
4 for epoch=1,2,. . . , Maxe do
5 Sample a minibatch of triples T

from G;
6 Compose the paths between the

entity pairs in T by the logic and
data-driven path representation
described in section 3.2;

7 Generate the set of negative samples
T ′ by the random negative
sampling as in TransE (Bordes
et al., 2013);

8 Update e and r by optimizing the
loss functions in Eqs. 5-11;

9 Generate the initial candidate rules from
the paths in P;

10 Load the learned entity and relation
embeddings e and r;

11 Calculate the coarse-grained evaluation
score Ecg of each candidate rule
according to Eqs. 12-19;

12 if Ecg of a rule is smaller than st then
13 Eliminate this rule;

14 Pick out the candidate rules that satisfy
the thresholds of the standard
confidence and the head coverage;

15 Output the newly learned rules;
16 Update the rule set by merging the

newly learned rules and the rule set in
the last iteration;

triples in a KG. The average length of paths is
lp. The embedding dimension of both entities and
relations is represented as d. The embedding di-
mension of concepts is nc due to the one-hot encod-
ing applied for concept representations. Our model
complexity of parameter sizes isO(ned+nrd+n2c).
For each iteration in training, the time complexity
of our model is O(ntnplpd).

4 Experiments

4.1 Experimental Setup

Datasets. Four datasets containing ontolog-
ical concepts are employed for our experi-
ments, including FB15K (Bordes et al., 2013),
FB15K237 (Toutanova and Chen, 2015), NELL-
995 and DBpedia-242. Particularly, NELL-995
here is a re-split of the original dataset (Xiong et al.,
2017) into training/validation/test sets. DBpedia-
242 is generated from the commonly-used KG DB-
pedia (Lehmann et al., 2015) to ensure each entity
in the dataset has a concept. The statistics of the
experimental datasets are listed in Table 1.

Baselines. We compare our model EngineKG with
two categories of baselines:

(1) The traditional KGE models depending on
triple facts: TransE (Bordes et al., 2013), Com-
plEx (Trouillon et al., 2016), RotatE (Sun et al.,
2019), QuatE (Zhang et al., 2019a), HAKE (Zhang
et al., 2020) and DualE (Cao et al., 2021).

(2) The models using paths or rules: the path-
based model MultiHopKG (Lin et al., 2018), the
rule learning-based models RNNLogic (Qu et al.,
2021) and RPJE (Niu et al., 2020), and the model
combining rules with KG embeddings IterE (Zhang
et al., 2019b).

The evaluation results of these baselines are ob-
tained by employing their open-source codes with
the suggested hyper-parameters.

Training Details. We implement our model in C++
and on an Intel i9-9900 CPU with a memory of
64G. For a fair comparison, the embedding dimen-
sion of all the models is fixed as 100, the batch size
is set to 1024 and the number of negative samples
is set to 10. Specific to our model, during each iter-
ation, the maximum training epoch is set to 1000,
and the standard confidence and the head coverage
are selected as 0.7 and 0.1 for better performance.
The entity and relation embeddings are initialized
randomly. We employ grid search for selecting the
best hyper-parameters on the validation dataset.
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Models FB15K FB15K237
MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) 117 0.534 0.775 0.646 0.386 228 0.289 0.478 0.326 0.193
ComplEx (Trouillon et al., 2016) 197 0.346 0.593 0.405 0.221 507 0.236 0.406 0.263 0.150

RotatE (Sun et al., 2019) 39 0.612 0.816 0.698 0.488 168 0.317 0.553 0.375 0.231
QuatE (Zhang et al., 2019a) 40 0.765 0.878 0.819 0.693 173 0.312 0.495 0.344 0.222
HAKE (Zhang et al., 2020) 42 0.678 0.839 0.761 0.570 183 0.344 0.542 0.382 0.246

DualE (Cao et al., 2021) 43 0.759 0.882 0.820 0.681 202 0.332 0.522 0.367 0.238

MultiHopKG (Lin et al., 2018) - 0.670 0.769 0.708 0.612 - 0.385 0.562 0.429 0.298
RNNLogic (Qu et al., 2021) 244 0.496 0.669 0.544 0.405 620 0.280 0.428 0.306 0.205

RPJE (Niu et al., 2020) 40 0.811 0.898 0.832 0.762 207 0.443 0.579 0.479 0.374
IterE (Zhang et al., 2019b) 85 0.577 0.807 0.663 0.451 463 0.210 0.355 0.227 0.139

EngineKG (Ours) 20 0.854 0.933 0.885 0.810 121 0.555 0.707 0.590 0.479

Models DBpedia-242 NELL-995
MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) 1996 0.256 0.539 0.395 0.075 8650 0.167 0.354 0.219 0.068
ComplEx (Trouillon et al., 2016) 3839 0.196 0.387 0.230 0.104 11772 0.169 0.298 0.185 0.106

RotatE (Sun et al., 2019) 1323 0.308 0.594 0.422 0.143 9620 0.292 0.444 0.325 0.216
QuatE (Zhang et al., 2019a) 1618 0.411 0.612 0.491 0.293 12296 0.281 0.422 0.315 0.207
HAKE (Zhang et al., 2020) 1522 0.379 0.551 0.432 0.283 13211 0.245 0.370 0.283 0.175

DualE (Cao et al., 2021) 1363 0.360 0.592 0.439 0.232 11529 0.292 0.447 0.329 0.214

MultiHopKG (Lin et al., 2018) - 0.520 0.625 0.530 0.426 - 0.416 0.474 0.345 0.275
RNNLogic (Qu et al., 2021) 7857 0.344 0.514 0.390 0.253 15772 0.335 0.422 0.356 0.290

RPJE (Niu et al., 2020) 1770 0.521 0.576 0.542 0.487 6291 0.360 0.496 0.401 0.288
IterE (Zhang et al., 2019b) 5016 0.190 0.326 0.215 0.120 12998 0.233 0.327 0.246 0.185

EngineKG (Ours) 1275 0.523 0.647 0.551 0.501 5243 0.454 0.506 0.407 0.293

Table 2: Link prediction results on four datasets. Bold numbers are the best results, and the second best is underlined.

Evaluation Metrics. Take the head entity predic-
tion for an instance, we fill the missing head entity
with each entity e in the KG, and score a candidate
triple (e, r, t) according to the following energy
function together with the path information:

Ee(e, r, t,P) = Et(e, r, t) + α1Ep(e, t,P) (20)

in which we reuse the energy functions in Eq. 5
and Eq. 6, and P is the path set consisting of all
the paths between entities e and t. We rank the
scores of the candidate triples in ascending order.
Tail entity prediction is similar way.

We employ three frequently-used metrics: (1)
Mean rank (MR) and (2) Mean reciprocal rank
(MRR) of the triples containing the correct enti-
ties. (3) Hits@n is the proportion of the correct
triples ranked in the top n. The lower MR, the
higher MRR and the higher Hits@n declare the
better performance. All the results are “filtered” by
wiping out the candidate triples that are already in
the KG (Wang et al., 2014).

4.2 Results of Link Prediction

The evaluation results of link prediction are re-
ported in Table 2. Firstly, our model En-

gineKG significantly and consistently outper-
forms all the state-of-the-art baselines on all
the datasets and all the metrics. Compared to
best-performing models RotatE and RPJE on
MR, EngineKG achieves performance gains of
95.0%/42.4%/3.7%/83.5% compared to RotatE
and 100.0%/71.1%/38.8%/20.0% against RPJE on
datasets FB15K/FB15K237/DBpedia-242/NELL-
995, respectively. Particularly, on FB15K and
FB15K237, the difference between the best per-
forming baseline RPJE and our developed model is
statistically significant under the paired at the 99%
significance level. Secondly, our model achieves
better performance than the traditional models that
utilize triples alone, indicating that EngineKG is
capable of taking advantage of extra knowledge in-
cluding rules and paths as well as concepts, which
all benefit to improving the performance of the
whole model. Thirdly, EngineKG further beats
IterE, illustrating the superiority of exploiting both
rules and paths for KG inference in a joint logic
and data-driven fashion.

4.3 Evaluation on Various Relation Properties
The relations can be classified into four categories:
One-to-One (1-1), One-to-Many (1-N), Many-to-
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FB15K
Head Entities Prediction Tail Entities Prediction

1-1 1-N N-1 N-N 1-1 1-N N-1 N-N
TransE (Bordes et al., 2013) 0.356 0.626 0.172 0.375 0.349 0.146 0.683 0.413

RotatE (Sun et al., 2019) 0.895 0.966 0.602 0.893 0.881 0.613 0.956 0.922
HAKE (Sun et al., 2019) 0.926 0.962 0.174 0.289 0.920 0.682 0.965 0.805
DualE (Cao et al., 2021) 0.912 0.967 0.557 0.901 0.915 0.662 0.954 0.926

MultiHopKG (Lin et al., 2018) - - - - 0.893 0.576 0.921 0.763
RPJE (Niu et al., 2020) 0.942 0.965 0.704 0.916 0.941 0.839 0.953 0.933

EngineKG 0.943 0.968 0.835 0.929 0.941 0.904 0.957 0.949

FB15K237
Head Entities Prediction Tail Entities Prediction

1-1 1-N N-1 N-N 1-1 1-N N-1 N-N
TransE (Bordes et al., 2013) 0.356 0.626 0.172 0.375 0.349 0.146 0.683 0.413

RotatE (Sun et al., 2019) 0.547 0.672 0.186 0.474 0.578 0.140 0.876 0.609
HAKE(Zhang et al., 2020) 0.791 0.833 0.098 0.237 0.794 0.372 0.938 0.803

DualE(Cao et al., 2021) 0.516 0.637 0.153 0.471 0.526 0.135 0.860 0.607
MultiHopKG(Lin et al., 2018) - - - - 0.417 0.026 0.794 0.457

RPJE(Niu et al., 2020) 0.692 0.476 0.180 0.575 0.669 0.197 0.691 0.685
EngineKG 0.792 0.743 0.629 0.651 0.807 0.399 0.881 0.757

Table 3: Link prediction results on FB15K and FB15K237 on various relation properties (Hits@10). MultiHopKG
could only predict tail entities rather than head entities.
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Figure 3: The number of rules over iterations.

One (N-1), and Many-to-Many (N-N). We se-
lect some well-performing models observed in
Table 2 as the baselines in this section. Table
3 exhibits that EngineKG achieves more perfor-
mance gains on complex relations compared to
other baselines. More interestingly, specific to
the most challenging tasks (highlighted) namely
predicting head entities on N-1 relations and
tail entities on 1-N relations, our model con-
sistently and significantly outperforms the out-
standing baselines RotatE and RPJE by achiev-
ing performance improvements: 38.7%/47.5% on
FB15K and 238.2%/185.0% on FB15K237 com-
pared to HAKE while 18.6%/7.75% on FB15K and
249.4%/102.5% on FB15K237 compared to RPJE.
These results all demonstrate that the paths and
the generated rules enrich the associations between
entities and relations, contributing to better perfor-
mance of KG inference on complex relations.
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Figure 4: The performance curves of MRR, Hits@10
and Hits@1 over iterations on four datasets.

4.4 Performance Evaluation Over Iterations

We evaluate the performance of our rule learn-
ing module on the learning time and the num-
ber of rules compared to the excellent rule learn-
ing tool AMIE+. For generating high-quality
rules, our model takes 6.29s/2.26s/1.55s/10.50s
in an iteration on average while AMIE+
takes 79.19s/26.83s/5.35s/105.53s on datasets
FB15K/FB15K237/NELL-995/DBpedia, illustrat-
ing the higher efficiency of EngineKG. In Figure 3,
the amount of rules mined by AMIE+ is shown as
that at the initial iteration. Thus, we can discover
that the quantity of rules generated in the first itera-
tion and the third iteration is twice and three times
the number of rules obtained by AMIE+.

More specifically, Figure 3 exhibits the number
of rules and Figure 4 indicates the performance
curves on the four datasets over iterations. Notably,
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Figure 5: Ablation study on FB15K237. The dash lines
indicate the performance of our whole model on MRR
(red), Hits@10 (blue) and Hits@1 (green).

the number of rules and the performance continue
to grow as the iteration goes on and they both con-
verge after three iterations on all the datasets. These
results illustrate that: (1) Rule learning and KGE
modules in our model indeed complement each
other and benefit in not only producing more high-
quality rules but also obtaining better inference
results. (2) More rules are beneficial to improving
the performance of KG inference. (3) The iteration
process will gradually converge along with the rule
learning.

4.5 Ablation Study

To evaluate each contribution in our whole
model EngineKG, we observe the performance on
FB15K237 as to the five different ablated settings:
(1) Omitting paths (-Path). (2) Omitting rules (-
Rule). (3) Omitting concepts (-Concept) by remov-
ing concept-based co-occurrences in rule learning.
(4) Replacing rule mining tool AMIE+ with Any-
Burl (Meilicke et al., 2019) for obtaining the seed
rules (+AnyBurl). (5) Employing only half of the
seed rules without iteration (-HalfRule). Figure 5
shows that the performance of our whole model is
better than that of all the ablated models except for
“+AnyBurl”, demonstrating that all the components
in our designed model are valid and our model is
free of any rule mining tool for obtaining the seed
rules. Besides, removing paths and rules both have
significant impacts on the performance, which sug-
gests the paths and rules in our model play a more
vital role in KG inference.

4.6 Case Study

As shown in Figure 6, although the head entity
Jonathan and the candidate tail entity Y ork are
not linked by any direct relation in the KG, there
is an explicit path between them. This path can be
represented as the relation PersonBornInCity

The triple with tail entity missing: (Jonathan, PersonBornInCity, ?)

The correct tail entity: York

The candidate triple with the path from the KG: 
PersonBornInCityPersonBornInCity

YorkJonathan

Simon

The CP rule matching the path: 

PersonBornInCity(x,y) <= HasSibling(x,z)^PersonBornInCity(z,y)

Figure 6: An example of the interpretable tail entity
prediction via path and rule on NELL-995.

deduced by a matched CP rule. The standard confi-
dence of the rule shown in Figure 6 is 0.9, which
explains that although one’s sibling being born in
a certain city does not necessarily mean that that
person was born in the same city, we can employ
this trustworthy rule to explain the reliability of the
predicted result obtained by our model. The path
and the rule together boost the score of the correct
candidate entity Y ork calculated by Eq. 20, and
especially provide the interpretability of the result.

5 Conclusion and Future Work

In this paper, we develop a novel closed-loop
neural-symbolic learning framework EngineKG for
KG inference by jointly rule learning and KGE
while exploiting paths and concepts. In the KGE
module, both rules and paths are introduced to en-
hance the semantic associations and interpretability
for learning the entity and relation embeddings. In
the rule learning module, paths and KG embed-
dings together with entity concepts are leveraged
in the designed rule pruning strategy to generate
high-quality rules efficiently and effectively. Exten-
sive experimental results on four datasets illustrate
the superiority and effectiveness of our approach
compared to some state-of-the-art baselines. In the
future, we will investigate combining other seman-
tics such as contextual descriptions of entities, and
attempt to apply our model to dynamic KGs.
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Abstract
Table-based fact verification aims to verify
whether a statement sentence is trusted or
fake. Most existing methods rely on graph
feature or data augmentation but fail to inves-
tigate evidence correlation between the state-
ment and table effectively. In this paper, we
propose a self-Labeled Keypoint Alignment
model, named LKA, to explore the correla-
tion between the two. Specifically, a dual-
view alignment module based on the state-
ment and table views is designed to discrimi-
nate the salient words through multiple inter-
actions, where one regular and one adversari-
al alignment network cooperatively character
the alignment discrepancy. Considering the
interaction characteristic inherent in the align-
ment module, we introduce a novel mixture-of-
experts block to elaborately integrate the inter-
acted information for supporting the alignmen-
t and final classification. Furthermore, a con-
trastive learning loss is utilized to learn the pre-
cise representation of the structure-involved
words, encouraging the words closer to words
with the same table attribute and farther from
the words with the unrelated attribute. Experi-
mental results on three widely-studied datasets
show that our model can outperform the state-
of-the-art baselines and capture interpretable
evidence words.

1 Introduction

Table-based fact verification aims to uncover the
factuality attribute of the sentence relying on the
available structured (Chen et al., 2020b; Wang
et al., 2021b; Gupta et al., 2020) textual evidence.
Current methods can be divided into two group-
s. The first one exploits the logical form of the
statement with graph neural networks (Zhong et al.,
2020; Shi et al., 2020, 2021). The other focuses on
extending table-aware pre-trained language mod-
els (PLMs) (Eisenschlos et al., 2020; Herzig et al.,
2020).

∗Corresponding author.

Label:        Entailed

czech republic

nation

2belgium

switzerland

italy

denmark

1

0

0

0

silver

2

0

1

0

0

bronze

1

0

0

0

1

total

5

1

1

1

1

Statement:3 nation win no gold medal at the 

1998 uci cyclo - cross world championship.

Title:1998 uci cyclo - cross world championships

2018 Winter

Olympics
title

30

Goals 

scored

Attendance

154 (5.13

 per match)

138,327 (4,611

 per match)

Label:     Contradition

Statement: 38 matches were 

      played.

(a) one example in TABFACT (b) one example in INFOTABS

gold

Matches 

played

Figure 1: Two examples of table-based fact verification
task. Keypoints are highlighted in yellow. (a) is a rela-
tional web table. (b) is an entity web table.

In PLM-oriented fact verification, the majority
of methods treat the statement-table pair as plain
text and then further capture latent essential infor-
mation relying on multiple Transformer (Vaswani
et al., 2017) blocks. It is intuitive that only partial
table cells are associated with the statement while
other cells are redundant (Wang et al., 2021a; Yin
et al., 2020). Due to the lack of explicit guidance
signals in the statement-table pair, the capability
of checking various statements is hindered for the
PLMs, deteriorating model performance and inter-
pretability. Taking Figure 1 as an example, the
clues are derived from the statement and some scat-
tered table cells. If the model pays attention to the
unrelated words (e.g., “sliver”, “bronze”, “total”),
the prediction would not be able to convincingly
correct. In other words, failing to align the laten-
t salient words, which are denoted as keypoints,
may lead to some misleading information being fo-
cused on as evidence. Despite impressive process,
we empirically find that few methods are commit-
ted to the keypoint alignment across the statement
words and table cells. The main reasons are: 1)
There are alignment discrepancies in the alignment
space, where one statement is associated with one
table. However, one table may be involved with
several statements; 2) The essence of alignment is
to perceive salient evidence for the final classifi-
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cation, which requires a well-designed interaction
network to aggregate the statement words and table
cells; 3) Flexible table structures hinder the rep-
resentation of words since the significant cost of
designing a general structure-aware PLM for table-
based fact verification task. In summary, exploring
keypoint alignment feature in the statement-table
pair is a major challenge.

To tackle the above deficiencies, we propose
a model called self-Labeled Keypoint Alignment
(LKA) for table-based fact verification, focusing
on aligning salient evidence and aggregating es-
sential information between the statement and ta-
ble. Specifically, we design a Dual-view Alignment
module (DA) for dealing with the discrepancy of
the alignment characteristics. An interaction net-
work is first applied for aggregating the interacted
statement and the table representation in multiple
steps. The DA then employs a regular alignment
network to learn keypoint correlation from the en-
hanced statement view and force another adversari-
al alignment network to perceive the corresponding-
ly reverse correlation (i.e., unrelated words) from
the table view. For providing aggregated infor-
mation in the interaction network, we design an
Adaptive Aggregation Experts (AAE) block. The
AAE employs a mixture-of-experts (MoE) network
(Jacobs et al., 1991) that incorporates multiple op-
erating units to sufficiently aggregate the statement
and table information. Besides, inspired by the
contrastive learning theory (Chen et al., 2020a; Pan
et al., 2021), we adopt a structure-aware contrastive
learning loss to obtain precise representation for
the structure-involved words. The amended repre-
sentation can force the statement and table closer
to its local sub-structure zone (e.g., statement, row,
column, etc.) and farther away from others. Our
contributions are summarized in three folds:

• We explore a table-based fact verification
model integrating keypoint alignment from
the statement and table views, which can con-
vert the alignment task into the optimization
of two opposite goals and effectively integrate
essential information with the MoE network.

• The contrastive learning theory is introduced
to enhance structure-aware word representa-
tion, which provides a simple and general way
to address various structured tabular data.

• We conduct experiments on three benchmark
datasets TABFACT, INFOTABS and SEM-

TAB-FACTS. Experimental results demon-
strate that our model bring performance gains
by 0.67%/3.63%/3.07% compared with sev-
eral state-of-the-art models, and the captured
salient words can be interpreted.

2 Related Work

Unlike FEVER (Thorne et al., 2018) utilizing textu-
al evidence or FEVEROUS (Rami Aly and Mittal,
2021) using textual-table mixed evidence, table-
based fact verification (Chen et al., 2020b) concen-
trates on structured or semi-structured evidence
text. The currently popular methods employ a
tree-style neural network (Zhong et al., 2020) or
graph network (Yang et al., 2020; Shi et al., 2020)
to encode the logical form of statements. How-
ever, labeling massive accurate logical forms is
labor-intensive. Meanwhile, structure-aware mod-
els (Eisenschlos et al., 2020; Zhang et al., 2020;
Dong and Smith, 2021) have been investigated
to deal with the table-based fact verification task.
Among these approaches, TaPaS++ (Eisenschlos
et al., 2020) projects structural information of ta-
bles to a pre-trained language model by importing
row, column, numeric features into the embedding
layer. Some researchers also design novel data aug-
mentation strategies to enhance TaPaS++, such as
decomposing complex statements (Yang and Zhu,
2021), replacing non-salient tokens (Wang et al.,
2021a), or generating massive question-answer
pairs (Liu et al., 2021). However, upgrading vanilla
PLMs for precise representation requires a consid-
erable expense of pre-training or data augmenting.

In addition to the rational structured table data,
there are entity tables (Gupta et al., 2020) and ma-
trix PDF tables (Wang et al., 2021b) in table-based
fact verification scenarios. Mainstream approaches
(Gautam et al., 2021; Müller et al., 2021) employ
TaPaS++ and TABFACT data to check matrix PDF
tables while various scanning (Gupta et al., 2020)
and filtering (Neeraja et al., 2021) methods are pro-
posed to deal with entity tables. Different from
the aforementioned works, our model exploits a
novel alignment of salient words for the statement-
table pair and a structure-oriented loss for precise
representation.

3 Methodology

3.1 Formulation
In the table-based fact verification task, there are a
statement S, its corresponding structured or semi-
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structured evidence table T and label Y . All sam-
ples are denoted as D = {(Si,T i,Y i)|0 ≤ i <
I}, I = |D|. The task can be formalized as search-
ing for the best mapping y∗ = fθ(S, T ) to mini-
mize the error:

ErrD = E(si,ti,yi)∼DL(fθ(si, ti), yi), (1)

where y∗ is the predicted label, y is the ground-
truth label, fθ is a specified model in the hypothesis
space F with parameter θ.

Furthermore, as shown in Figure 1, it can be
observed that only partial cells in table T are rele-
vant to the statement S, which means these salient
words are keypoints. The alignment problem is
defined as how to identify these keypoints in the
statement-table pair. Formally, given an example
e ∈ D with m labeled tokens e = {(xj , yj)}mj=1

from X × Y , where X denotes an input space and
Y denotes an output space, yj ∈ {0, 1} indicates
token xj should be aligned or not. We consider
the binary classification as the alignment classifier
fa : X → R|y|. The accuracy of the alignment
classifier is given by:

Acc(fa) = E(xj ,yj)∈e1(fa(xj) = yj), (2)

where 1(.) is the indicator function. Then we can
define the alignment distance from statement xs

and table xt as:

dfa,f ′a∈F (S, T ) = AccS(fa) +AccT (f
′
a)

=
1

m

m∑

j

1(fa(xsj) = ysj ) + 1(f
′
a(x

t
j)! = ytj)

,

(3)
where f

′
a is an adversarial alignment function that

discriminates the unrelated tokens. Thus the total
objective can be defined as:

min
fθ∈F

ErrD + max
fa,f

′
a∈F

d(S, T ). (4)

In this manner, the proposed model learns to mini-
mize the error performance and maximize the align-
ment distance jointly.

3.2 Model Overview
The architecture of LKA is shown in Figure 2. It
consists of an encoder, a dual-view alignment mod-
ule and an MoE-level interaction network. The en-
coder maps a statement-table pair x into a hidden
representation with a vanilla PLM. Inspired by the
way humans solve the table-based fact verification

task, we design an alignment module to align the
underlying keypoint from the statement and table,
respectively. Meanwhile, an interaction network
driven by MoE is designed to aggregate interac-
tive information for further supporting keypoint
alignment and final classification. Additionally, we
utilize a contrastive loss on the PLM to yield a
more precise structure feature.

3.3 Encoder

The statement and flattened table are formatted as
e = {[CLS], state, [SEP], head, ..., rw, [SEP]},
where state indicates the statement, head indi-
cates the headline of the table, and rw indicates
the w-th row tokens. After encoding, we can ob-
tain the overall statement-table pair representation
H = PLM(e), including the statement represen-
tation Hs and the table Ht, where H ∈ Rm×d,
Hs ∈ Rs×d,Ht ∈ Rt×d, d is the dimension of the
hidden representation, m, s, and t are the length
of the statement-table pair, the statement and the
table, respectively.

3.4 Dual-view Alignment Module

As keypoints are derived from the interaction of
the statement and the table, an interaction network
is designed to explore the correlation between the
two representations. We alternate attentive memory
accesses to the statement and the table for multiple
steps. From the statement view, we formulate a
query glimpse qτs at step τ :

qτs = softmax
j=1,...,s

(Hτ
sW

s
q ·(HsjW

s
k+bj)

T )HsW
s
v,

(5)
where Ws

q,W
s
k,W

s
v ∈ Rd×d are projection ma-

trices, Hsj ∈ Rd is the j-th token vector in the
statement, bj is a bias term. Hτ

s is initialized with
Hs when τ = 0.

After interacting with the statement, the alter-
native attention probes the target table. The table
attention weights are calculated based on the table
Ht and the currently selected query glimpse qτs :

qτt = softmax
j=1,...,t

(qτsW
t
q · (HtjW

t
k + bj)

T )HtW
t
v,

(6)
where Wt

q,W
t
k,W

t
v ∈ Rd×d are projection matri-

ces,Htj ∈ Rd is the j-th token vector in the table.
The interaction network then updates the statement
on the basis of the attentive information gathered
from the current step τ , i.e.,Hτ+1

s = ψ([qτs , q
τ
t ]),

where ψ(.) is a non-linear aggregation function.
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Figure 2: The framework of the proposed model LKA for table-based fact verification.

The updated statement representation aggregates
the interacted information from the statement and
table for multiple steps. By this means, the updated
statement can benefit better alignment and the final
verification.

The alignment module tries to make sense of the
critical evidence cells so as to provide interpretable
evidence for the verification. One noticeable dif-
ficulty is how to determine keypoints in the table
since accurate labeling of these keypoints is labor-
intensive. To this end, we use the same content (i.e.,
salient tokens) appearing in both the statement and
the table as weak supervised keypoints. Given a
statement-table pair example e = {t0, t1, ..., tm},
the alignment label of each token isA(ti) ∈ {0, 1},
where 0 means that token is not essential and vice
versa. For token t in example e, the alignment mod-
ule produces a likelihood probability distribution
A(t) and thus predicts the corresponding alignment
label. Since the keypoints are primarily determined
by the statement, A(t) can be predicted with the
guidance of the statement representationHτ

s . The
A(t) is implemented by:

A(t) = Sigmoid(MLP((Hτ
s)) ∈ Rm×1. (7)

Then the predicted label a(t) is gained by an align-
ment softmax function σ:

a(t) = σ(Ao(t)) =
exp(Ao(t))∑o=1
o=0 exp(Ao(t))

, (8)

where A1(t) = 1 − A0(t). To alleviate the
noise from the yielded label probability distribu-
tionA(ti), we add a tolerance item β onA(ti) with

random sampling and revise the alignment proba-
bility distribution as Ã(t). The formula is defined
as below:

Ã(t) =
Ao(t) +G(0, β)∑o=1
o=0Ao(t) +G(0, β)

, (9)

where Ao(t) ∈ {0, 1} is the original probability, G
is the Gaussian sampling function that can revise
A(t)’s 0-1 hard label to be more tolerant. Sequen-
tially, we use the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951) to measure the differ-
ence between the predicted alignment probability
A(t) and the ground truth alignment label A(t):

L(A(t),A(t)) = 1

m

m∑

i=0

KL(Ã(ti)||a(ti)). (10)

Moreover, the keypoints can be recognized from
the table view by first scanning the table and then
searching the relevant statement. Thus, the align-
ment module also could align the keypoints with
the table representation. However, as shown in Fig-
ure 3, the statement is only related to one table, but
one table has involved in different statements. If
the alignment module directly aligns the different s-
tatements from the table perspective, the process of
optimization becomes more difficult due to the mul-
tiple alignment decision bounds brought by these
statements. Under this consideration, the alignmen-
t module concentrates on the non-salient tokens
when using table representation. In other words, an
adversarial network A′(t) is designed to make the
misalignment with the table representationHt and
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predict correct alignment with the statement repre-
sentationHτ

s . The above parallel network working
mode can be viewed as dual-view alignment. The
details of the dual-view alignment can be clarified
in Figure 3. Focusing on the alignment zones for
the A′(t) with statement representation is helpful
to learn the potential bound of alignment and non-
alignment. Specific ally, we first generate the false
alignment label A

′
(t) = 1 − A(t) and then use

the statement representationHτ
s to predict the self-

labeled alignment probability a
′
s(t) = σ(A′s(t)) by

the adversarial network. Meanwhile, we use the ta-
ble representationHt to predict the false alignment
probability a

′
t(t) = σ(A′t(t)).

A′s(t) = Sigmoid(MLP-adv(Hτ
s)), (11)

A′t(t) = Sigmoid(MLP-adv(Ht)). (12)

In short, the adversarial alignment can be summa-
rized as:

Ladv(A
′
(t),A′(t)) = 1

m

m∑

i=0

KL(as(ti)||a
′
s(ti))

+ KL(A
′
(ti)||a

′
t(ti)).

(13)

3.5 Adaptive Aggregation Experts Module
In this subsection, we implement the aggrega-
tion function ψ inspired by the mixture-of-experts
(MoE) (Shazeer et al., 2017) mechanism. The ag-
gregation function consists of multiple parallel neu-
ral layers, which indicate different kinds of interac-
tions for each attentive statement qτs and attentive
table qτt . The idea of mixture-of-experts is derived
from a group of networks (“experts”) that jointly
make decisions with dynamical weights. Unlike
previous approaches that treat each expert as a u-
niform structure unit (Shazeer et al., 2017; Fedus
et al., 2021), we regard the experts as a series of

operation units, which take the (qτs , qτt ) as input
{x1,x2} and effectively aggregate it in various
manners.

E(x1,x2) = {x1◦x2,x1⊗x2,x1⊕x2,x1	x2},
(14)

where ◦,⊗,⊕,	 denote the concatenation, the
element-wise multiplication, the element-wise ad-
dition and the element-wise subtraction operations,
respectively. The MoE block routes the token pair
(x1,x2) to the determined expert from an expert
set {Ei(x1,x2)}Ni=1 by an MLP neural network.
The output of the MLP h(x1,x2)j is normalized
via a softmax function over the availableN experts.
The gate-value for expert i is given:

pi(x1,x2) =
eh(x1,x2)j

∑N
j e

h(x1,x2)j
. (15)

Accordingly, the output of the MoE block is the
linearly weighted combination of each selected ex-
pert’s computation on each token by the gate value:

Hτ+1
s =

∑

i∈N
pi(q

τ
s , q

τ
t )Ei(q

τ
s , q

τ
t ). (16)

By this means, the updated statement repre-
sentation Hτ+1

s can aggregate the attentive in-
formation and flow into the next interaction step.
Moreover, we average the final step Hτ

s and con-
catenate it with the overall statement-table pair
representation H [CLS] to predict the label y∗ =
MLP(mean-pooling(Hτ

s);H [CLS]).

3.6 Training Objectives
Objective 1. To capture the alignment features,

we minimize the KL-divergence from the statement
and table views, respectively.

Lalign = L(A(t),A(t)) + Ladv(A
′
(t),A′(t))

(17)
Objective 2. Inspired by the contrastive learning

theory (Chen et al., 2020a), we design a structure-
aware loss, enabling the PLM to grasp the structural
attributes of the statement-table pair.

The definitions of the positive correlation for
these different tables are different. The reason is
that the rational and matrix PDF table cells in the
same column have a similar natural attribute. Rec-
ognizing the column relationship is helpful for ta-
ble encoding (Yin et al., 2020; Chen et al., 2020b).
For the entity table, a row is comprised of a prop-
erty cell and its corresponding content. There is
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no structural correlation among the rows. (Gupta
et al., 2020) also confirms that modeling the link
between the property and the content could provide
a more accurate representation. Subsequently, the
structure features can be learned by the objective
of contrastive learning:

Lcl =
1

m

m∑

i=1

[d (tai , t
p
i )− d (tai , tni ) + ξ]+ ,

(18)
where m is the length of the example, a, p, n are
the anchor, positive and negative token features,
respectively. d(·, ·) is the distance function, ξ is a
margin parameter, and [x]+ is the max(x, 0) func-
tion. In a nutshell, the contrastive loss Lcl helps to
enhance the distance space’s intra-structure com-
pactness and inter-structure discreteness.

Objective 3. Finally, we use cross-entropy loss:

Lce =
∑

x,y∈D
−logPθ(y|x). (19)

Total objective. The overall loss consists of the
above three objectives with hyperparameters λ1
and λ2, as well as a balance loss Lmoe (Shazeer
et al., 2017) of adjusting the ratio of selected ex-
perts:

Ltotal = Lce + λ1Lalign + λ2Lcl + Lmoe. (20)

4 Experiments

4.1 Dataset and Metrics

To evaluate the validity of LKA, we adopt three
standard datasets with various table structures1.
For labels, each statement in TABFACT and SEM-
TAB-FACTS is labeled as entailed or refuted2,
while INFOTABS divides statements into three
kinds: entailment, contradiction and neutral. We
leverage accuracy (Acc.) as the evaluation metric
on TABFACT and INFOTABS, as well as microF1
score for SEM-TAB-FACTS.

4.2 Experimental Details

The computation environment is implemented with
Python 3.6, PyTorch 1.8.0, CUDA 10.2 and cuD-
NN 8.0. Recall that all the experiments are running
on a CentOS 7 server with the Intel(R) Xeon(R)
Gold 6240 @ 2.60GHz CPU and one NVIDIA
TESLA V100 GPU.

1Dataset statistics are attached to Appendix.
2Since neutral examples are not given, we conduct the

2-way experiment for a fair comparison.

The optimizer is AdamW and the warmup rate
is 0.06. Following traditional natural language un-
derstanding task GLUE3, we fine-tune the DeBER-
TaV14 backbone for the DeBERTaV1 baseline and
our LKA with the MultiNLI5 corpus in one epoch
before formal training. The hyperparameters are
adjusted depending on the performance of the vali-
dation dataset. We set the word embedding and the
hidden embedding size of the PLM to 1024. For
TABFACT, we run five epochs with a batch size
of 4, an initial learning rate of 1e-5, an attention
head of 16 and each head of 64 in the attentive
interaction network. Three epochs with a batch
size of 8 and a learning rate of 1e-5 are adopted in
INFOTABS and SEM-TAB-FACTS. In the three
datasets, the Dropout is set to 0.1, the number of
steps in the interaction network is 3. The tolerant
item β, and the balanced factor λ1, λ2 are set to
be 0.1, 0.08, 0.1, respectively. We set the d(·, ·)
with Euclidean Distance and the margin parameter
ξ with 0.1 in the contrastive learning loss. In the
interaction network, we search the number of steps
T in [1, 2, 3, 4, 5, 6]. According to the best results
of these different parameters settings, we chose the
T =3.

4.3 Baseline Models

We compare our model LKA with the advanced
baselines for TABFACT, i.e., TaPaS++ (Eisensch-
los et al., 2020), Decomp. (Yang and Zhu, 2021),
SalienL. (Wang et al., 2021a), TaPEx (Liu et al.,
2021). For INFOTABS, we employ the baselines
TabFact, TabAttn proposed in (Gupta et al., 2020)
and KG_Info(Neeraja et al., 2021) to estimate our
model. We utilize the advanced baselines Volta
(Gautam et al., 2021) and TAPAS (Müller et al.,
2021) for SEM-TAB-FACTS.

4.4 Results and Analysis

Table 1 presents the results of various verification
models on the TABFACT dataset. From Table 1,
we can observe that our model LKA surpasses ma-
trices from 0.16% to 1.50% compared to TaPEx,
illustrating the boosted ability brought from the pro-
posed alignment learning strategy. Moreover, our

3GLUE: A Multi-Task Benchmark and Analysis Platform
for Natural Language Understanding

4https://github.com/huggingface/
transformers/blob/master/src/
transformers/models/deberta

5https://cims.nyu.edu/~sbowman/
multinli/
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Models Val Test Test Test Test
simple complex small

TaPaS++ 81.1 81.1 92.6 75.7 84.2
Decomp. 82.7 82.7 93.6 77.4 84.7
SalienL. 82.7 82.1 93.3 76.7 84.3
TaPEx(BART) 81.6 81.2 91.9 75.6 83.9
TaPEx 84.6 84.2 93.9 79.6 85.9
DeBERTaV1 83.28 83.26 92.53 79.15 85.14

Ours 84.77 84.87 94.06 80.31 87.40

Human N/A N/A N/A N/A 92.1

Table 1: Comparisons on the TABFACT (%)

Models Val Testα1 Testα2 Testα3

TabAttn 63.63 62.94 49.37 49.04
TabFact 77.61 75.06 69.02 64.61
KG_Info 79.44 78.42 71.97 70.03
TaPaS++ 74.94 73.22 61.83 60.88
TaPEx 77.38 76.50 67.55 66.38
DeBERTaV1 81.16 80.88 73.61 72.77
Ours 82.66 82.05 74.94 73.55
Human 79.78 84.04 83.88 79.33

Table 2: Comparisons on the INFOTABS (%)

model reduces the gap between the machine and hu-
man performance to 4.7% on the small test dataset.
Meanwhile, LKA achieves the best performance
without complicated data augmentation compared
with TaPEx. Since most approaches in TABFACT
do not have results on INFOTABS and SEM-TAB-
FACTS, we run the best approach TaPEx for com-
parison. As shown in Table 2, LKA outperforms
the up-to-date baseline KG_Info from 2.97% to
3.63% on various evaluation subsets. Simultane-
ously, LKA improves the verification scores on the
DeBERTaV1 backbone. Furthermore, we find that
TaPEx and TaPaS++ do not perform as well on en-
tity table data INFOTABS as they do on TABFACT.
The reason is that the two models are designed to
handle rational tables and they have difficulty in
adapting to tabular data with varying structures.
Considering that approaches on SEM-TAB-FACTS
mainly use ensemble models for prediction, we
only report the single-model performance in their
paper to ensure evaluation fairness. LKA outper-
forms TaPEx by 3.07% on the test dataset.

In summary, LKA achieves the best results in
the three scenarios, which indicates the prominent
generalization ability of LKA. Besides, although
data augmentation is important to boost perfor-
mance, the results of DeBERTaV1 demonstrate that
a stronger pre-trained language model has potential
to tackle various table data and the structure-aware

Models Val Test

Volta 74.35 73.87
TAPAS 78.33 75.33
TaPEx 77.53 75.47
DeBERTaV1 79.12 75.94
Ours 80.34 78.54

Table 3: Comparisons on the SEM-TAB-FACTS(%)

Val_TABFACT Test_TABFACT Val_INFOTABS Test 1_INFOTABS
Performance on various datasets

76
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Figure 4: Different aggregation methods in the Interac-
tion network. (%)

loss further enhances the advantage. Owing to the
table structure similarity between TABFACT and
SEM-TAB-FACTS, we then only conduct experi-
ments and analyses on TABFACT and INFOTABS.

4.5 Effort of DA

We take a closer look at the dual-view alignment
(DA) module by exploiting how the minimization
(↓) and maximization (↑) of the KL-divergence be-
tween the prediction and the self-labeled alignment
affect the final verification performance. As shown
in Table 4, we adopt various alignment settings
to investigate the alignment discrepancy. We can
conclude that: 1) Comparison of the first three
rows indicates the dual-view alignment networks
are generally superior to the single ones, since the
two views can provide complementary alignment
information to be aware of salient words. 2) Per-
formance of the third row is mostly lower than the
last four rows, which demonstrates the alignment
network f cannot resist the negative effect of align-
ment discrepancy as well as implies the rationality
of the adversarial alignment network f

′
. 3) The last

row represents the performance of the dual-view
alignment module. The highest metrics indicate
that using the adversarial network and table repre-
sentation to align unimportant points, and using the
adversarial network and statement representation
to align important points are effective to alleviate
alignment discrepancy.
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Statement Table TABFACT INFOTABS
Val Test Val Testα1

↓ Lf – 84.23 84.31 81.83 81.22
– ↓ Lf 83.95 84.03 81.66 81.05
↓ Lf ↓ Lf 84.31 84.25 82.05 81.38

↓ Lf + ↓ Lf ′ ↓ Lf ′ 84.45 84.21 82.77 81.22
↓ Lf + ↑ Lf ′ ↑ Lf ′ 84.68 84.59 82.17 81.56
↓ Lf + ↑ Lf ′ ↓ Lf ′ 84.62 84.65 82.21 81.23
↓ Lf + ↓ Lf ′ ↑ Lf ′ 84.77 84.87 82.66 82.05

↓ L∗ means to align salient tokens, while ↑ L∗ is to align
non-important tokens, f and f

′
are the alignment network

and the adversarial networks, respectively.

Table 4: Efforts of various settings under the alignment
module(%)

4.6 Effort of AAE
To further exhibit the superiority of the MoE-level
aggregation module, we compare it with the follow-
ing three aggregation methods: 1) MLP (Multilay-
er Perceptron) acts as a fuse block to concatenate
the attentive representation from the statement and
table; 2) Self-Attn (Self-Attention network) adopts
the attentive statement representation as query, the
attentive table as key and value for aggregation; 3)
regular MoE employs multiple MLP layers to fuse
the representations.

The comparison is illustrated in Figure 4. MoE
performs better than MLP and Self-Attn, which
demonstrates the advantage of aggregation deci-
sions. In addition, the proposed AAE achieves the
optimum performance on the overall metric among
all methods. AAE exceeds MLP, Self-Attn and
regular MoE about 0.57%/0.78%, 0.48%/0.27%
and 0.38%/0.50% on the TABFACT/INFOTABS
in terms of test dataset, respectively. One possi-
ble reason is that, unlike vanilla MoE where each
“expert” employs the same MLP, AAE projects d-
ifferent meta-operation units into MoE. In other
words, under the supervision of loss signals, the in-
teracted statement and table learn to adaptively fuse
information with fundamental operations, such as
“addition”,“subtraction”,“multiplication”, imitating
the process of making decisions by humans.

4.7 Ablation
In order to evaluate the impact of each component
of LKA, we ablate it into the following four vari-
ants: 1) w/o Align-Inter removes the regular and
adversarial alignment networks, and the interac-
tion network; 2) w/o Align deletes the regular and
adversarial alignment networks; 3) w/o Inter re-
moves the interaction network; 4) w/o CL prunes

Models TABFACT INFOTABS
Val Test Val Testα1

w/o Align-Inter 83.98 83.66 81.50 81.22
w/o Align 84.35 84.39 82.05 81.44
w/o Inter 84.56 84.32 82.11 81.22
w/o CL 84.65 84.46 82.38 81.72
LKA (Ours) 84.77 84.87 82.66 82.05

Table 5: Ablation analysis of LKA (%)

away the structure-aware contrastive learning loss.
As shown in Table 5, we can conclude that

removing each component would decrease from
0.33% to 1.21% in Accuracy on the test dataset,
which verifies the effectiveness of each component
and the reasonable integrity of the LKA. 1) w/o
Align-Inter: w/o Align-Inter reflects the lowest
performance in all simplified variants, decreasing
1.21% and 0.83% on Test, respectively. The experi-
ment results elaborate the validity of our LKA cap-
turing the interactive information and the dual-view
alignment. 2) w/o Align: w/o Align underperforms
LKA, showing 0.48% and 0.61% degradation on
Test, respectively. It elaborates the necessity of
the LKA capturing the alignment information from
the statement and the table views. 3) w/o Inter:
removing the interaction network decreases 0.55%
and 0.83% on Test compared to LKA. The reduc-
tion conveys the effectiveness of integrating the
attentive representations from the statement and
table. 4) w/o CL: When eliminating the structure-
aware contrastive loss, there are 0.41% and 0.33%
accuracy decrease on Test. It reveals that the intro-
duced contrastive loss can improve performance by
capturing structure information.

4.8 Case Study

To promote the understanding of LKA, we illus-
trate two random examples in Figure 5. The dual-
view alignment module captures the highlighted
words to interpret the evidence fragment. From
Figure 5, it can be seen that the proposed align-
ment module is able to capture essential word-
s with more informative semantics (i.e.,“Bruno
Abakanowicz”, “born”, “Born”, “France”, “Eng-
land” for S1, “Bruno Abakanowicz”, “inventor” for
S2). Although some underlying keypoints are ig-
nored, LKA can gain available evidence fragments
such as “France”, “Lithuania” for S1 with the MoE-
level interaction module. Furthermore, we project
the output of PLM into a 2-D dimension vector
with TSNE (Van der Maaten and Hinton, 2008)
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Title
Bruno 

Abakanowicz

Born

6 October 1852

Ukmerge, 

Lithuania (then 

part of Russian 

Empire)

Died

29 August 1900  

(aged 47) 

 Saint-Maur-des-

Fosses, France

Occupation

 mathematician, 

inventor, 

electrical 

engineer

r0：

r1：

r2：

r3：

Table Two opposite statements and their heatmaps

S2：Bruno Abakanowicz was known as an inventor.

Bruno Abakanowicz was born in England.S1：

Scatter distribution

Figure 5: Case analysis via one contradiction and one entailment example on INFOTABS. Due to limited space,
we only report the alignment weight heatmap from the statement view. Deeper red color means larger weight in
alignment. The padding grids and tokens weighting close to zero are highlighted in green.

for the S1. We conclude that distributions of local
sub-structure (e.g., statement, 0-th row, 1-th row)
are more condensed than that of the setting with
no contrastive loss. The condensed distribution
verifies that the proposed LKA can perceive the
structure feature of the statement-table pair.

5 Conclusion

This paper takes full advantage of alignment signal-
s to facilitate a self-labeled learning procedure from
the statement and table views. More importantly,
an MoE-level aggregation module is designed to
explore the valuable information. Besides, a con-
trastive learning loss is introduced to promote the
awareness of table structure. Future research could
be extended as follows: 1) Exploring alignmen-
t mechanism in the table-based question-answer
tasks; 2) Developing fact verification approaches
in the multi-evidence table setting.
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A Dataset Details

In this section, we describe more detailed settings
about the experiments to aid in reproducibility. We
also anonymously submit the source code and pre-
dicted results on the three datasets to the submis-
sion system.

Relational table dataset TABFACT6 contains
about 118K natural language statements accom-
panied by human-annotated 16K regular Wikipedi-
a tables (similar to database tables) of evidence.
In addition to the regular validation and test set-
s, TABFACT extracts subsets of Test_simple and

6https://github.com/wenhuchen/
Table-Fact-Checking
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Datasets Splits

TABFACT Train Val Test Simple Complex
Statement 92,283 12,792 12,779 50,244 68,031
Table 13,182 1,696 1,695 9,189 7,392

INFOTABS Train Val Testα1 Testα2 Testα3

Statement 16,538 1,800 1,800 1,800 1,800
Table 1,740 200 200 200 200

SEM-TAB-FACTS Traina Trainm Val Test –
Statement 179,345 4,506 463 522 –
Table 1980 981 52 52 –

Table 6: Numbers of examples for all datasets.

Test_complex from the Simple and Complex chan-
nels, as shown in Table 6. INFOTABS7 consists
of almost 23K statements and 2.5K unique entity
web table drawn from Wikipedia articles in various
domains. The entity table could be viewed as a
special table since it contains multiple rows and
only two columns, of which one denotes the title of
a record and the other is the corresponding content.
SEM-TAB-FACTS8 is proposed at SemEval-2021
task 9 and focus on matrix tables from scientific
articles. The dataset contains an auto-generated
train set Traina and a human-annotated train set
Trainm. Note that we only use the Trainm to train
our LKA model since the Traina is more noisy.

The experimental data we used is taken from
their links, and no additional processing is per-
formed on the TABFACT and INFOTABS datasets
beyond the steps described in Section 3.3. Consid-
ering that the matrix tables in SEM-TAB-FACTS
contain multi-row or multi-column header, we fol-
low the paper9 to standardize the table header by
dividing multi-row or multi-column header into
multiple headers with the same content. In addi-
tion, conducting experiments with LKA, TaPEx10

and DeBERTaV1 on the SEM-TAB-FACTS, the
trained model on the TABFACT is utilized to ini-
tialize the training of SEM-TAB-FACTS.

B Algorithm Description

The algorithm description is given for further
understanding and facilitating reproducibility of
the proposed LKA model.

7https://github.com/infotabs/infotabs
8https://sites.google.com/view/

sem-tab-facts
9https://github.com/devanshg27/

sem-tab-fact
10https://github.com/microsoft/

Table-Pretraining

Algorithm 1 Table-based fact verification with self-
labeled keypoint alignment
Require:

Source table, statement and ground-truth label (S, T , Y );
model parameters θ; the alignment and the adversarial
label A, A

′

1: Initialize model parameters θ
2: while not converged do
3: Sample a training example (S, T, Y )
4: Flatten (S, T ) to

e = {[CLS], state, [SEP], head, ..., rw, [SEP]}
5: H = PLM(e),Hs =H ∗masks,

Ht =H ∗maskt, letHτ
s =Hs

6: for step τ = 0→ T − 1 do
7: qτs ← softmax

j=1,...,s
(Hτ

sW
s
q · (HsjW

s
k +

bj)
T )HsW

s
v

8: qτt ← softmax
j=1,...,t

(qτsW
t
q · (HtjW

t
k+bj)

T )HtW
t
v

9: E(x1,x2) = {x1◦x2,x1⊗x2,x1⊕x2,x1	x2}

10: Hτ+1
s =

∑
i∈N pi(q

τ
s , q

τ
t )Ei(q

τ
s , q

τ
t ),

11: end for
12: Obtain the alignment A(t) and the adversarial align-

ment A′
(t) withHτ

s andHt

13: Lalign = L(A(t),A(t)) + Ladv(A
′
(t), (A′

(t))
14: Lcl =

1
m

∑m
i=1 [d (t

a
i , t

p
i )− d (tai , tni ) + ξ]+

15: Lce =
∑
x,y∈D −logPθ(y|x)

16: L(θ) = Lce + λ1Lalign + λ2Lcl + Lmoe
17: θ ← AdamW(∇θL(θ),θ)
18: end while
19: return θ
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Abstract

With the rapid development of automatic fake
news detection technology, fact extraction and
verification (FEVER) has been attracting more
attention. The task aims to extract the most
related fact evidences from millions of open-
domain Wikipedia documents and then verify
the credibility of corresponding claims. Al-
though several strong models have been pro-
posed for the task and they have made great
progress, we argue that they fail to utilize
multi-view contextual information and thus
cannot obtain better performance. In this pa-
per, we propose to integrate multi-view con-
textual information (IMCI) for fact extraction
and verification. For each evidence sentence,
we define two kinds of context, i.e. intra-
document context and inter-document con-
text. Intra-document context consists of the
document title and all the other sentences
from the same document. Inter-document
context consists of all other evidences which
may come from different documents. Then
we integrate the multi-view contextual infor-
mation to encode the evidence sentences to
handle the task. Our experimental results
on FEVER 1.0 shared task show that our
IMCI framework makes great progress on both
fact extraction and verification, and achieves
state-of-the-art performance with a winning
FEVER score of 73.96% and label accuracy
of 77.25% on the online blind test set. We also
conduct ablation study to detect the impact
of multi-view contextual information. Our
codes will be released at https://github.com/
phoenixsecularbird/IMCI.

1 Introduction

Fake news propagation is a severe social problem,
which may cause great loss and lead to serious con-
sequence, e.g. panic, quarrel, opposition and even
war. The situation has become a general concern
since Brexit and the U.S. President Campaign in

∗*Corresponding author

2016 and gets far more intense due to COVID-19
pandemic (Martino et al., 2020). In this condition,
automatic fake news detection has been developing
rapidly. According to Ruffo et al. (2021), auto-
matic fake news detection mainly include textual-
content based methods (Giachanou et al., 2019;
Ghanem et al., 2020; Kaliyar et al., 2021), user-
role based methods (Vo and Lee, 2019; Giachanou
et al., 2020), multi-modal approaches (Zlatkova
et al., 2019; Fung et al., 2021) and detection of
bots and trolls (Stella et al., 2018; Sayyadiharikan-
deh et al., 2020). Among textual-content based
methods, fact extraction and verification (FEVER)
(Thorne et al., 2018) has been attracting developing
attention. As shown in Figure 1, for a given claim,
the task aims to select at most 5 most related sen-
tences as evidences from millions of open-domain
Wikipedia documents for fact extraction, and com-
bine the selected evidences to judge the claim as
SUPPORTS, REFUTES or NOT ENOUGH INFO
(NEI) for fact verification.

Figure 1: An example from FEVER 1.0 shared
task. (Underlined sentence is the unlabeled intra-
document context. Words in red involve alias name,
coreference and multi-hop reasoning, which may lead
to model confusion. Words in blue help to handle these
issues.)

Recently, several strong models (Nie et al.,
2019b,a; Zhou et al., 2019; Liu et al., 2020; Hidey
et al., 2020; Subramanian and Lee, 2020) have
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been proposed for the task. Although they have
made great progress and obtained excellent perfor-
mance on the task, we argue that they fail to utilize
multi-view contextual information and thus cannot
obtain better performance. Specifically, we define
two kinds of context for each evidence sentence,
i.e. intra-document context and inter-document
context. Intra-document context consists of the
document title and all the other sentences from
the same document. Inter-document context con-
sists of all other evidences which may come from
different documents. Multi-view contextual infor-
mation is of great importance for fact extraction
and verification. For instance, as shown in Fig-
ure 1, intra-document context information can help
to clarify the relationship between different enti-
ties, e.g. “Edar Wright” and its alias name “Edar
Howard Wright” in the first evidence, and “Gemini”
and it coreference “this sign” in the second sen-
tence. Besides, the two evidence sentences can be
regarded as inter-document context of each other,
and the information interaction and fusion between
them is essential to verify the claim in this multi-
hop sample.

To this end, we propose to integrate multi-view
contextual information (IMCI) for fact extraction
and fact verification, where we introduce the multi-
view contextual information to encode the evidence
sentences to handle the task. In summary, our con-
tributions are as follows:
•We propose an iterative multi-view fact extrac-

tion model. It retrieves related documents and ex-
tracts related evidence sentences in two iterations,
with multi-view context information joined.
• We propose a multi-view fact verification

model. Each evidence sentence is encoded from
two views, and a dual evidence fusion graph is
adopted to fuse the information from diverse views
and different evidences.
• Our IMCI framework makes great progress

on both fact extraction and verification, and
achieves state-of-the-art performance with a win-
ning FEVER score of 73.96% on the online blind
test set.

2 Iterative Multi-view Fact Extraction

Our fact extraction model iteratively conducts doc-
ument retrieval and sentence retrieval in two itera-
tions to obtain corresponding candidate evidence
sentences, and then reranks the candidates of dif-
ferent iterations for better performance.

2.1 Document Retrieval

Document retrieval includes coarse document re-
trieval in iteration 1 and refined document retrieval
in iteration 2.

Coarse document retrieval aims to quickly ob-
tain most related documents from millions of open-
domain Wikipedia documents with as high as pos-
sible recall and acceptable precision. Inspired by
UKP-Athene (Hanselowski et al., 2018) and SR-
MRS (Nie et al., 2019b), coarse document retrieval
is a combination of constituency-based Wikipedia
search and TF-IDF retrieval. These two respec-
tively utilize search engine power and statistical
word frequency information. For constituency-
based Wikipedia search, we also conduct men-
tion filtering like UKP-Athene (Hanselowski et al.,
2018). That is, if the title of a document is not
explicitly mentioned in the claim, then we consider
it as weakly related and remove it.

Refined document retrieval aims to retrieve doc-
uments with improved performance than coarse
retrieval, namely higher recall and also higher pre-
cision and F1 score. It adopts dense semantic re-
trieval and utilizes Wikipedia hyperlinks. Specif-
ically, in iteration 2, we decide refined candidate
documents according to corresponding candidate
evidences from iteration 1. That is, for each claim,
all documents which contain at least one candidate
evidence will be taken into account. Furthermore,
as top one candidate evidences show pretty high
precision (86.11%, in Table 5), we regard them
as golden evidence, and take all documents which
have hyperlinks with them as refined candidate doc-
uments to process multi-hop problem.

2.2 Sentence Retrieval

Sentence retrieval aims at selecting most related
sentences as evidences from candidate documents.
In previous models, during sentence retrieval, it
is required to design sampling strategy to obtain
negative samples for neural retrieval model train-
ing. Besides, these models respectively encode and
score each claim-sentence pair.

Differently, in our framework, to avoid sampling
strategy design and also utilize multi-view contex-
tual information, we encode each sentence within
its corresponding intra-document context. More-
over, as mentioned, top one candidate evidences
of iteration 1 show pretty high precision (86.11%,
in Table 5). Therefore, in iteration 2 we take them
as inter-document context, and insert them into the
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Figure 2: Sentence retrieval model. Sentences are en-
coded within intra-document context. In iteration 2, we
insert top one candidate evidence (red dashed box) into
the input sequence as inter-document context.

input sequence to process multi-hop problem.
Formally, as shown in Figure 2, the claim, the

document title and all the sentences in the docu-
ment are concatenated:

[CLS] claim [SEP ] sen∗ [SEP ] title

[SEP ] sen1 sen2 . . . [SEP ]
(1)

where sen∗ denotes top one candidate evidence of
iteration 1, which are taken as inter-document con-
text in iteration 2. The sequence is encoded by
BERT encoder. For the claim, we take the hidden
state of the first claim token as claim representa-
tion Ec. For the title, we take the hidden state of
the first title token as title representation Et. For
each sentence, we take the hidden state of the first
sentence token as the sentence representation Es.
The sentence representation is enhanced through
alignment with the title representation:

Ets =Wa[Et, Es, Et − Es, Et � Es] (2)

and the claim representation:

Ects =W
′
a[Ec, Ets, Ec − Ets, Ec � Ets] (3)

where � means element-wise Hadamard product.
Then, the score of sentence ŷ is obtained through a
Multi Layer Perceptron (MLP) with sigmoid acti-
vation function:

ŷ = Sigmoid(MLP(Ects)) (4)

The training objective of sentence retrieval is
defined as binary cross entropy loss, to maximize
the probability of groundtruth evidence sentences:

LE = − 1
m∑
i=1

ni

m∑

i=1

ni∑

j=1

[yij · log(ŷij)

+(1− yij) · log(1− ŷij)]

(5)

where m is the batch size, ni is the sentence number
of document i, and y is the sentence label, 1 for
groundtruth evidence sentences while 0 for non-
evidence sentences.

2.3 Full Pipeline
In each iteration, we have scored different sen-
tences as candidate evidences. To obtain better
performance, for each claim, we merge the results
of different iterations, and rerank the sentences
through their scores. Finally, according to the orig-
inal setup of the task, we keep at most top 5 sen-
tences as evidences, for further fact verification.

3 Multi-view Fact Verification

3.1 Multi-view Contextual Encoding
For each evidence sentence, we respectively obtain
its representations through intra-document encod-
ing and inter-document encoding.
• Intra-document Encoding aims to capture

intra-document contextual information of each ev-
idence sentence. It is similar to the sentence re-
trieval model in Section 2.2. Each evidence sen-
tence is encoded within its intra-document context.
Then its intra-document representation is also ob-
tained through alignment.
• Inter-document Encoding is utilized to cap-

ture token-level information interaction among dif-
ferent evidence sentences to handle multi-hop prob-
lem. The claim, all evidence sentences and their
document titles are concatenated as another input
sequence:

[CLS] claim [SEP ] title1 [SEP ] evi1 [SEP ]

title2 [SEP ] evi2 [SEP ] · · · [SEP ]
(6)

The concatenation is also encoded by BERT en-
coder. Then, similarly, we obtain claim, title or evi-
dence representation from the hidden state of the
first token. Finally, for each evidence, we obtain its
inter-document representation through alignment
with the claim representation and its corresponding
title representation.

3.2 Dual Evidence Fusion Graph
Through multi-view contextual encoding, for each
evidence, we can obtain two alignment representa-
tions from different contextual views. To further
integrate multi-view evidence information to han-
dle multi-hop problem, inspired by multi-relational
graph convolutional network (Cao et al., 2019; Tu
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et al., 2019, 2020), we propose dual evidence fu-
sion graph network. As shown in Figure 3, one evi-
dence sentence corresponds to two different nodes
in this graph, whose initial representations respec-
tively come from intra-document encoding and
inter-document encoding. For each evidence sen-
tence, the noun phrases and named entities are ex-
tracted as keywords through spaCy1 tool. Then for
a pair of nodes, the links between them are decided
according to following rules:
• Common Document Two nodes are linked if

they come from the same document.
• Common Keyword Two nodes are linked if

they share overlapped keywords.
• Claim Jump Two nodes are linked if they

respectively share overlapped keywords with the
claim.

Figure 3: Dual Evidence Fusion Graph Network. Node
1 and node I denote different representations of the
same evidence sentence from different encoding meth-
ods, similarly for node 2 and node II, etc. We define
three kinds of edges in total.

For each claim, N selected evidence sentences
introduce 2N evidence nodes. Let Hi ∈ R2N×d

denotes the node representations at i-th graph layer,
where d refers to the hidden dimension. The initial
representation H0 is the claim-title-evidence align-
ment representation through multi-view contextual
encoding. Updated information Ui ∈ R2N×d after
a single graph layer is defined as :

Ui = HiW0 +

3∑

j=1

ÃjHiWj (7)

1https://spacy.io/

where Ãj ∈ R2N×2N denotes corresponding row
normalized adjacent matrix for different kinds of
edges. Then the forget ratio Gi ∈ R2N×dbetween
the updated and old information is:

Gi = Sigmoid(Wg[Ui, Hi]) (8)

And the updated evidence representation through
the graph layer is:

Hi+1 = Activation(Ui)�Gi+Hi�(1−Gi) (9)

In this way, with several stacked layers, evidence
representations are updated and multi-view evi-
dence information is fused.

3.3 Confidence Aggregation
Aggregation aims to combines the evidence rep-
resentations for final inference representation to
verify the claim. Among the selected evidence sen-
tences of a claim, some are groundtruth ones while
others are not. To utilize evidence label information
to enhance fact verification, like Tu et al. (2020),
we adopt confidence aggregation.

Formally, letHk ∈R2N×d denotes evidence rep-
resentations at the last graph layer. The confidence
score of j-th evidence node ŷj is obtained from its
representation Hj

k:

ŷj = Sigmoid(MLP(Hj
k)) (10)

The final inference representation for fact verifica-
tion Rv is the weighted sum of the evidence rep-
resentations, where the weights are corresponding
confidence scores:

Rv =

2N∑

j=1

ŷjH
j
k (11)

and the fact verification result is obtained through
a 3-way classification network:

v̂ = Softmax(WRv + b) (12)

The total loss consists of the binary cross entropy
loss of evidence confidence, and the cross entropy
loss of 3-way fact verification:

LII = BCE(y, ŷ) + CE(v, v̂) (13)

Here y is the evidence sentence label, 1 for
groundtruth evidence sentences and 0 for non-
evidence sentences. Besides, v is the fact verifi-
cation label.
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4 Experiment

4.1 Dataset

We conduct our experiments on FEVER 1.0
shared task (Thorne et al., 2018), which con-
sists of 185,455 annotated claims with 5,416,537
Wikipedia documents from the June 2017 dumps.
We adopt the original dataset split of the task,
which includes a training set, a development set
and an online blind test set. The detailed informa-
tion is shown in Table 1.

Split SUPPORTS REFUTES NEI Total
train 80035 29775 35639 145449
dev 6666 6666 6666 19998
test 6666 6666 6666 19998

Table 1: Statistics information of FEVER 1.0 Shared
Task.

Moreover, for a claim, there exist several groups
of evidences, and each group itself is enough to
independently verify the claim. To further study
the impact of multi-view contextual information,
we conduct a refined split on the development set.
Specifically, samples of the development set can be
divided into 5 parts and the ratio of different parts
are displayed in Table 2:
• Single. All evidence groups contain exactly

one sentence.
• Single+. At least one evidence group contains

only one sentence, and at least one group contains
multi sentences.
• Multi. All evidence groups contain exactly

two sentences.
• Multi+. All evidence groups contain multi

sentences, and at least one group contains more
than two sentences.
• NEI. The sample is labeled as NEI with no

evidence groups annotated.

Single Single+ Multi Multi+ NEI
56.87 3.78 5.03 0.99 33.33

Table 2: Ratio of different parts on the development set.

4.2 Experiment Setup

Our IMCI is implemented through Pytorch 1.2.0
and our experiments are conducted on a compu-
tation node with 4 NVIDIA Titan V GPU. Pre-
trained BERT (Devlin et al., 2019) encoder is em-
ployed for all experiments. We also try RoBERTa

encoder (Liu et al., 2019) for fact verification. For
the claims, we set max length as 64, and claims
longer than this will be truncated. For the encoders,
we set max input sequence length as 512, and se-
quence longer than this will be split with stride
window size of 128. We utilize BERTAdam opti-
mizer with initial learning rate of 1e-5 and warmup
ratio of 0.1. For sentence retrieval, we adopt mini
batch size of 4 and gradient accumulation step of
8. In each iteration, we train 2 epochs and select
top 5 sentences as candidate evidences. For fact
verification, we adopt mini batch size of 1 and gra-
dient accumulation step of 32. For dual evidence
graph, we stack 3 graph layers, where the hidden
dimension is the same as that of the encoder. In
each condition, we randomly start 4 times, train 4
epochs, and choose model parameters with the best
performance on the development set.

4.3 Evaluation Metric

We adopt FEVER score as the dominant evaluation
metric, which is the officially chief metric. FEVER
score requires that fact verification label is cor-
rectly predicted, and at least one complete group
of evidence sentences is found for SUPPORTS and
REFUTES samples. The second important metric
is label accuracy. For document retrieval and sen-
tence retrieval, we take precision, recall as well as
F1 into account. Here, we attach more importance
to recall according to the task setting.

5 Results

5.1 Main Results

Main results on the blind test set are shown in
Table 3. With multi-view contextual information
joined, our ICMI framework obtains FEVER score
of 70.10% and label accuracy of 73.04% with
BERTbase encoder. The performance is compa-
rable and even slightly promoted compared with
the state-of-the-art one among all baselines with
BERTbase encoder. Moreover, our model with
RoBERTabase encoder obtains FEVER score of
72.97% and label accuracy of 75.84%, and shows
even higher performance than several baselines
with large encoder. Furthermore, our model with
RoBERTalarge encoder obtains FEVER score of
73.96% and label accuracy of 77.25%, and signif-
icantly outperforms all baselines. These indicate
that our framework has made great progress to con-
duct more accurate fact extraction and verification.
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Model LA FEVER
UKP-Athene(2018) 65.46 61.58

QFE(2019) 69.30 61.80
NSMN(2019a) 68.16 64.23

GEAR-BERTbase(2019) 71.60 67.10
SR-MRS-BERTbase(2019b) 72.56 67.26
DeSePtion-BERTbase(2020) 72.47 68.80

Transformer-XH-BERTbase(2020) 72.39 69.07
KGAT-BERTbase(2020) 72.81 69.40

CorefBERT-BERTbase(2020) 72.88 69.82
HESM-ALBERTbase(2020) 73.25 70.06

HESM-BERTbase(2020) 73.18 70.07
ours IMCI-BERTbase 73.04 70.10

KGAT-BERTlarge(2020) 73.61 70.24
CorefBERT-BERTlarge(2020) 74.37 70.86
HESM-ALBERTlarge(2020) 74.64 71.48
KGAT-RoBERTalarge(2020) 74.07 70.38

CorefBERT-RoBERTalarge(2020) 75.96 72.30
ours IMCI-RoBERTabase 75.84 72.97
ours IMCI-RoBERTalarge 77.25 73.96

Table 3: Overall performance on the online blind test
det. FEVER is the officially chief score. LA denotes
label accuracy.

5.2 Document Retrieval

Document retrieval results of different iterations on
the development set are displayed in Table 4. With
search engine power adopted through Wikipedia
search, and statistical word frequency information
joined through TF-IDF retrieval, coarse document
retrieval obtains the highest recall of 92.77%. Be-
sides, with dense semantic retrieval model guided
and top one evidence hyperlinks joined, refined doc-
ument retrieval shows even higher recall of 95.69%.
Furthermore, refined document retrieval has much
higher precision of 29.90% and F1 of 45.56%, re-
spectively obtains 21.22% and 29.69% absolute in-
crease than coarse retrieval. Therefore, our iterative
fact extraction model has made great improvement
on document retrieval.

Moreover, document retrieval results on different
parts of the development set are displayed in Fig-
ure 4. Coarse document retrieval can handle Single
and Single+ samples, where the recall are respec-
tively as high as 97.56% and 98.02%. However,
coarse document retrieval fails to handle multi-
hop samples, where the recall of Multi and Multi+
samples are both pretty low, respectively 46.82%
and 31.31%. Compared to coarse document re-
trieval, refined document retrieval shows compara-

Model P R F1
UKP-Athene(2018) - 90.32 -

NSMN(2019a) 51.04 89.23 64.94
GEAR-BERTbase(2019) - 89.99 -

SR-MRS-BERTbase(2019b) 18.11 92.03 30.27
Coarse Retrieval 8.68 92.77 15.87
Refined Retrieval 29.90 95.69 45.56

Table 4: Document retrieval results on the development
set. - denotes that the item is not available.

Figure 4: Document retrieval results on different parts
of the development set. NEI samples are not taken
into consideration since no evidence sentences are an-
notated for them.

ble recalls but much higher precision and F1 score
on Single and Single+ samples. Furthermore, re-
fined document retrieval makes great progress on
multi-hop samples. For Multi and Multi+ samples,
refined document retrieval respectively achieves
32.60% and 33.34% absolute increase on recall.
Besides, the precision and F1 score also get signif-
icantly improved. These results indicate the high
efficiency of our iterative multi-view fact extrac-
tion model. However, although refined document
retrieval has achieved significant improvement, the
recall of multi-hop samples is still far lower than
single-hop ones.

5.3 Sentence Retrieval

Sentence retrieval results on the development set
are summarized in Table 5. Our IMCI framework
obtains the highest recall of 92.86%, and signifi-
cantly outperforms all baselines.

For sentence retrieval of iteration 1, upstream
coarse document retrieval obtains an extremely low
precision of 8.68% (in Table 4). Thus, for each
claim, on average our sentence retrieval model is re-
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Model P R F1
UKP-Athene(2018) - 86.24 -

NSMN(2019a) 36.49 86.79 51.38
GEAR-BERTbase(2019) 24.08 86.72 37.69

SR-MRS-BERTbase(2019b) 44.47 86.60 58.77
HESM-BERTbase(2020)# - 90.50 -

Iteration 1 25.31 90.30 39.54
w.o. Alignment 24.86 90.16 38.97

Iteration 1 (Top 1) 86.11 78.08 81.90
Iteration 2 25.90 91.98 40.42

IMCI# 25.74 92.86 40.30

Table 5: Sentence retrieval results on the development
set. According to the original task setup, we keep top
5 sentences as evidence for each claim. # means the
models adopt iterative sentence retrieval. w.o. means
without the item.

quested to distinguish top 5 sentences as candidate
evidences from more than 250 sentences. In this
condition, with intra-document contextual informa-
tion joined, the model obtains pretty high recall of
90.30%, and shows comparable performance with
state-of-the-art iterative sentence retrieval model
HESM (Subramanian and Lee, 2020). Besides, top
one candidate evidences show a pretty high pre-
cision of 86.11%. This shows the importance of
intra-document context, and is the base of refined
document retrieval. Besides, the high precision also
guarantees that top one candidate evidences can be
considered as inter-document context in sentence
retrieval of iteration 2. With multi-view contextual
information joined, our sentence retrieval model
of iteration 2 obtains even higher recall of 91.98%.
Moreover, full pipeline reranking makes the recall
get far more increase to 92.86%. These show the
great power of multi-view contextual information
on fact extraction.

Moreover, sentence retrieval results on differ-
ent parts of the development set are displayed in
detail in Table 6. For Single and Single+ sam-
ples, the recall are respectively high at 96.33% and
95.90%, while the precision and F1 score are pretty
low. However, the recall of Multi samples is pretty
low at 64.41%, while that of Multi+ samples is far
lower at 26.26%. Therefore, taking these and the
document retrieval results in Figure 4 into consid-
eration, it seems that fact extraction for multi-hop
samples is still a difficult problem, although our
model has made several progress. A main con-
cern is that bidirectional information interaction
between multi-hop evidences may be not guaran-

teed during fact verification.

Part P R F1
Single 23.00 96.33 37.14

Single+ 52.06 95.90 67.48
Multi 32.98 64.41 43.63

Multi+ 45.25 26.26 33.23

Table 6: Sentence retrieval results on different parts
of the development set. NEI samples are not taken
into consideration since no evidence sentences are an-
notated for them.

5.4 Fact Verification
Fact verification results on the development set
are shown in Figure 5. With multi-view contex-
tual information joined, our IMCI framework ob-
tains the highest label accuracy of 75.83% and the
highest FEVER score of 73.21%. When ignoring
intra-document encoding, the label accuracy and
FEVER score suffer severe decrease to 74.23% and
71.58%. This indicates the great importance of
intra-document contextual information on fact ver-
ification. However, compared to intra-document
encoding, inter-document encoding and dual evi-
dence fusion graph have relatively weak influence
on the performance. These two components mainly
aim to handle multi-hop samples. However, multi-
hop samples take pretty low ratio (about 6.02% in
total in Table 2). Even worse, multi-hop samples
have suffered serious performance damage on up-
stream fact verification task (in Table 6). Evidence
confidence aggregation also makes some contri-
bution, indicating the influence of evidence label
information. Besides, we also study the influence
of fact verification. It seems that progress on fact
verification mainly contributes to FEVER score
while shows weak influence on label accuracy.

Moreover, for our IMCI framework, the statistic
information of prediction errors on fact verification
is shown in Figure 6. The framework can correctly
distinguish SUPPORTS and REFUTES examples,
since SUPPORTS (REFUTES) and REFUTES
(SUPPORTS) errors respectively take about 3.66%
and 11.51%. This may indicate that the logical
boundary between SUPPORTS and REFUTES is
relatively clear. Besides, the framework hardly
mistakes SUPPORTS examples for NEI examples.
However, it may be difficult for the framework to
distinguish REFUTES examples from NEI exam-
ples, as well as NEI examples from non-NEI exam-
ples, for REFUTES (NEI), NEI (SUPPORTS), and
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Figure 5: Fact verification results on the development
set. These are averaged results on 4 random starts. w.o.
means without the item.

Figure 6: Statistic information of prediction errors
on fact verification. (Label out of brackets denotes
groundtruth, while label in brackets denotes wrong pre-
diction.)

NEI (REFUTES) errors respectively take 26.59%,
26.75%, and 20.76%. The situation may be due
to the pretty unbalanced label distribution of the
training set (in Table 1). Besides, NEI may contain
more complex logic semantic than the other two
categories.

6 Related Work

• Fake News Detection Fake news detection has
been attracting more attention. Ruffo et al. (2021)
give a detailed survey about the development of this
field. Textual-content based methods (Giachanou
et al., 2019; Ghanem et al., 2020; Kaliyar et al.,
2021) aim at understanding the linguistic and se-
mantic information in the text to detect fake news.

User-role based methods (Vo and Lee, 2019; Gi-
achanou et al., 2020) pay more attention to the role
of users in the propagation of fake news. Multi-
modal approaches (Zlatkova et al., 2019; Fung
et al., 2021) involve multi-modal information, i.e.
text, table, knowledge base, image, speech and
video, to evaluate the credibility of news. Besides,
bots and trolls aim at influencing users with com-
mercial, political or ideological purposes by spread-
ing disinformation deliberately. The detection of
them (Stella et al., 2018; Sayyadiharikandeh et al.,
2020) is also an important direction. Moreover,
Sheng et al. (2022) recently propose news envi-
ronment perception for fake news detection, which
focus on the background environment of fake news.

• Fact Extraction Fact extraction includes doc-
ument retrieval and sentence retrieval. For docu-
ment retrieval, Hanselowski et al. (2018) propose
a constituency-based Wikipedia search model. Nie
et al. (2019a) utilize a keyword matching model
based on a quick string matching algorithm Flash-
Text (Singh, 2017). Nie et al. (2019b) further adopt
a combination model of keyword match and TF-
IDF retrieval.

For sentence retrieval, Hanselowski et al. (2018),
Nie et al. (2019a), and Zhou et al. (2019) re-
spectively modify Enhanced Sequential Inference
Model (ESIM) (Chen et al., 2017). These mod-
els separately encode the claim and an evidence
sentence, and adopt cross-attention mechanism to
accomplish information interaction between the
claim and the evidence sentence. Nie et al. (2019b)
and Liu et al. (2020) adopt BERT-based model.
Subramanian and Lee (2020) propose iterative fact
verification models to retrieve evidence sentences
and combine evidence sets.

• Fact Verification For fact verification, Nie et al.
(2019b) concatenate the claim and the evidence sen-
tences into a sequence as input to BERT encoder,
and take the hidden state of the first special token
[CLS], as final inference representation. Zhou et al.
(2019) adopt graph neural network for evidence
aggregating and reasoning. Zhong et al. (2020)
introduce semantic role information to construct re-
fined graph, and adopt graph convolutional network
to handle the task. Liu et al. (2020) propose fine-
grained kernel-based graph attention network for
information interaction between the claim and the
evidences. Subramanian and Lee (2020) propose to
combine evidence sets during fact extraction, and
conduct fact verification on evidence sets. Si et al.
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(2021) introduce topic model and stance detection
model, and study the influence of topic and stance
information on fact verification.

7 Conclusion

In this paper, we propose to integrate multi-view
contextual information for fact extraction and ver-
ification. Our experimental results show that our
IMCI model can obtain state-of-the-art perfor-
mance on the task. Moreover, the ablation study
results indicate that multi-view contextual informa-
tion is essential for both fact extraction and fact
verification. In the future, we will explore much
stronger model to utilize contextual information in
a more efficient way.
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Abstract

Prompt-based fine-tuning for pre-trained mod-
els has proven effective for many natural lan-
guage processing tasks under few-shot settings
in general domain. However, tuning with
prompt in biomedical domain has not been
investigated thoroughly. Biomedical words
are often rare in general domain, but quite
ubiquitous in biomedical contexts, which dra-
matically deteriorates the performance of pre-
trained models on downstream biomedical ap-
plications even after fine-tuning, especially in
low-resource scenarios. We propose a sim-
ple yet effective approach to helping models
learn rare biomedical words during tuning with
prompt. Experimental results show that our
method can achieve up to 6% improvement
in biomedical natural language inference task
without any extra parameters or training steps
using few-shot vanilla prompt settings.

1 Introduction

Pre-trained models have achieved a great success in
natural language processing (NLP) and become a
new paradigm for various tasks (Peters et al., 2018;
Devlin et al., 2019; Liu et al., 2019; Qiu et al.,
2020). Many studies have paid attention to pre-
trained models in biomedical NLP tasks (Lee et al.,
2020; Lewis et al., 2020; Zhao et al., 2021). How-
ever, plain pre-trained models sometimes cannot
do very well in biomedical NLP tasks. In general,
there are two challenges to fully exploit the poten-
tial of the pre-trained models for biomedical NLP
tasks, i.e., (1) limited data and (2) rare biomed-
ical words. Firstly, it is common that the amount
of biomedical labeled data is limited due to strict
privacy policy constraints (Šuster et al., 2017), high
cost and professional requirement for data annota-
tion. Pre-trained models perform poorly with few
samples since abundant training samples are essen-
tial to optimize task-related parameters (Liu et al.,

∗Corresponding author

2021a). Secondly, biomedical words are usually
low-frequency words but critical to understanding
biomedical texts. As an example of natural lan-
guage inference (NLI) task in Figure 1, the model
goes wrong during tuning when faced with a rare
word “afebrile”1 in the premise, whose meaning
is “having no fever”. It can be no easy for the pre-
trained models to predict the correct label if the
models haven’t seen the rare biomedical words for
enough times during pre-training or tuning stage.
Thus, pre-trained models cannot capture the pre-
cise semantics of biomedical texts in the scenario
of low-resource tasks.

With very few annotated samples available for
a new task, it is hard to effectively fine-tune pre-
trained models with the additional task-specific
parameters, which is even more of a challenge to
biomedical domain as mentioned above. Prompt
technique has been introduced to smooth the fine-
tuning process in the few-shot settings by narrow-
ing down the gap between pre-training stage and
the downstream task in general domain (Liu et al.,
2021a), as demonstrated in Figure 2. Therefore,
it is beneficial to adapt prompt-based tuning to
biomedical NLP tasks.

Although the challenge of rare words is a criti-
cal problem for the biomedical pre-trained models,
only a handful of works have studied the issue and
most of them focus on enriching the representation
of rare words through pre-training stage (Schick
and Schütze, 2020; Yu et al., 2021; Wu et al., 2020).
Thus, it naturally requires them to involve a second-
round pre-training or further training steps with
biomedical knowledge to achieve the above goal,
which is highly time-consuming and inefficient. Al-
ternatively, we emphasize on tuning stage instead
of pre-training to resolve these issues. When com-
ing across an unknown word, human may seek the

1There are around 4 billion words in the selected biomed-
ical pre-training texts while “afebrile” appears only about
100,000 times, accounting for 0.0025%.
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Task: Medical Natural Language Inference 

Premise: Lactate only 1.3 and pt                     .  Hypothesis: Temperature was within normal range. 

Gold label: Entailment         ✅ Model Prediction: Neutral          ❎

Rare word: Paraphrase:

Premise: diagnosed when he was in his 20’s with a history of recurrent                2. 

Hypothesis: He has no history of liver disease.

Gold label: Contradiction ✅ Model Prediction: Entailment    ❎

Rare word: Paraphrase:

afebrile

afebrile - having no fever

HCV

HCV - hepatitis c virus

HCV

afebrile

HCV

Figure 1: Failures of a biomedical pre-trained model (Lewis et al., 2020) on the biomedical NLI task.

dictionary for its paraphrase. Enlightened by this
phenomenon, we propose to explain rare biomed-
ical words with the paraphrases on the basis of
prompt-based tuning. The new approach could en-
hance tuning capability in understanding biomedi-
cal words. Furthermore, as a generic plug-in mod-
ule for non-specific datasets, our approach is model-
agnostic and can be easily transferred to other do-
mains.2

In summary, our contributions are as follows:

• We investigate a valuable problem of the adap-
tation of pre-trained models to few-shot sce-
narios to enhance biomedical text understand-
ing with a focus on rare biomedical words.

• We propose a novel method to combine the
prompt paradigm and paraphrases of rare
biomedical words in the tuning stage of
pre-trained models to address the limitation
caused by “rare but key words” in biomedical
texts.

• We evaluate on six pre-trained models over
two biomedical natural language understand-
ing datasets−MedNLI and MedSTS. Our ap-
proach can improve the performance by up
to 6% in the few-shot settings. Moreover,
we discuss how the paraphrases improve the
pre-trained models and provide a perspective
about task-related rare words.

2 Related Work

Representation learning of rare words in pre-
trained models. Words in the vocabulary list fol-

2We release our code at https://github.com/
s65b40/prompt_n_paraphrase

low a Zipf distribution (Zipf, 2016) by and large.
Previous works have shown that the word represen-
tation space of the pre-trained models is anisotropic
and high-frequency words dominate the represen-
tation of a sentence which can induce semantic
bias (Gao et al., 2019; Li et al., 2020; Yan et al.,
2021). Meanwhile, it has also been proven that rare
words limit the performance of pre-trained mod-
els as the rare words can play a decisive role in
the sentence understanding (Schick and Schütze,
2020; Wu et al., 2020; Yu et al., 2021). Schick and
Schütze (2020) introduced one-token approxima-
tion to infer the embedding of arbitrary rare word
by a single token. Wu et al. (2020) proposed to
take notes on the fly to maintain a note dictionary
for rare words to save the contextual information
that helps enhance the representation during pre-
training.

Biomedical pre-trained models. With the boom-
ing trend of pre-trained models in NLP tasks (Pe-
ters et al., 2018; Devlin et al., 2019; Liu et al.,
2019), various trials have been made to investigate
the pre-trained models in biomedical domain (Peng
et al., 2019; Lee et al., 2020; Huang et al., 2019).
Lewis et al. (2020) and Gu et al. (2021a) further
built the domain-specific vocabulary to amend the
representation of biomedical words. More recent
works guided biomedical pre-trained models with
domain knowledge. For example, Zhang et al.
(2021) amplified the biomedical entities with type
information from neighbor entities. Michalopoulos
et al. (2021) learned clinical word embeddings with
the association of synonyms in the Unified Medical
Language System (UMLS) Metathesaurus.
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[CLS] It’s rainy outside. We’d better stay . [SEP]

……
[MASK]: inside

……

[MASK]

Pre-trained Model MLM

(a) Pre-training Task: Masked Language Model

He took some oxycodone without relief. [SEP] He had pain. [SEP][CLS]

Class: Entailment √
Class: Contradiction
Class: Neutral

Pre-trained Model Fine-tuning

(b) Fine-tuning: Natural Language Inference

(c) Prompt-based Fine-tuning: Natural Language Inference

…….

……..

Pre-trained Model MLM

[CLS] He took some oxycodone without relief. He had pain. [SEP][MASK]It’s

Prompt Template

Verbalizer mapping

because → Entailment
otherwise → Contradiction
possibly → Neutral[MASK]: because √

[MASK]: otherwise
[MASK]: possibly

Prompt Verbalizer

(d) Paraphrase-enhanced Prompt-based Fine-tuning: Natural Language Inference

…….

……..

Pre-trained Model MLM

[CLS] He took some without relief. He had pain. [SEP][MASK]It’s(used for acute or chronic pain)oxycodone

Rare Word Paraphrase
[MASK]: because √
[MASK]: otherwise
[MASK]: possibly

Figure 2: Examples for paradigms of (a) Masked Language Model (MLM) pre-training; (b) Task-specific fine-
tuning; (c) Prompt-based fine-tuning, with same task as pre-training process; (d) Paraphrase-enhanced prompt-based
fine-tuning. Best viewed in color.

Tuning pre-trained models with prompt. Many
works were dedicated to applying prompt in fine-
tuning by adapting the downstream tasks to the
paradigm of pre-training tasks. Prompts that have
been employed by now can be categorized into
two groups: (1) discrete prompt in natural lan-
guage (Schick and Schütze, 2021; Gao et al., 2021)
and (2) continuous prompt in representation based
on trainable vectors (Li and Liang, 2021; Shin et al.,
2020b). Discrete prompt follows the settings of pre-
training tasks and converts the downstream tasks
into a cloze question format without requiring ad-
ditional parameters. Continuous prompt inserts
prompt embeddings into the models, which could
perform better than discrete prompt but at the ex-
pense of explainability and extra training cost on
additional data for the prompt embeddings (Wei
et al., 2021; Gu et al., 2021b). Recently, Liu et al.
(2021b) considered training continuous prompts as
a parameter-efficient method instead of tuning the
parameters of the entire pre-trained model. In this
study, we follow the paradigm of discrete prompt to
avoid introducing more ambiguity from the prompt
embeddings or training costs on additional training
data.

3 Method

In this section, we introduce how we find the rare
biomedical words and append paraphrases to the
rare biomedical words with the prompt-based tun-
ing of pre-trained models in a model-agnostic plug-
in manner.

3.1 Rare Words

The rarity of a word mostly depends on its fre-
quency in a certain corpus, which can vary from
context to context. A rare word in the pre-training
corpora is possibly not that rare in the down-stream
tasks. In this work, we define the “rare words”
as the words whose frequency is under a specific
threshold in the pre-training corpora as aforemen-
tioned.

Meanwhile, although the pre-trained models tok-
enize the input words into tokens, tokenizers based
on byte-pair encoding (Sennrich et al., 2016) or
WordPiece (Schuster and Nakajima, 2012) split
words into sub-words by frequency or likelihood,
which is both dominated by the common words.
Thus, although the rare words can be split into pos-
sible non-rare tokens, there is not much semantics
from the original rare words retained after being
tokenized into common tokens for the pre-trained
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models. Also, tokenizers of different pre-trained
models can tokenize the same rare word into dif-
ferent tokens and consequentially make rare tokens
model-related. For example, BERT-Large (De-
vlin et al., 2019) model tokenizes “afebrile” into
“af-eb-ril-e” while Biomedical-Clinical-RoBERTa-
Large (Lewis et al., 2020) model tokenizes it into
“a-fe-brile”.

3.2 Selection of Rare Biomedical Words

To obtain the frequency of words, we adopt
the biomedical corpora including PubMed ab-
stract,3 PubMed Central4 (PMC) full-text and
MIMIC-III dataset,5 which are widely used for
pre-training biomedical language models, such as
BC-RoBETRa (Lewis et al., 2020), BioBERT (Lee
et al., 2020), and PuBMedBERT (Gu et al., 2020).
We loop the above corpora to obtain the frequency
of each word in the pre-training phase. The rare
words found in biomedical corpora are likely to
contain words not only in the biomedical domain
but also in the general domain. Instead of includ-
ing all rare words, we consider rare words from
biomedical domain with the following two rea-
sons: (1) Domain-specific distribution: unlike
the general domain, distribution of words in the
biomedical domain is shaped with domain-specific
terms, such as disease, medicine, diagnosis and
treatment (Lee et al., 2020). (2) Task-specific
words: rare words from the biomedical domain
can contribute more to biomedical tasks than that
from the general domain. Therefore, we intro-
duce a threshold, an empirical hyper-parameter,
to assist the selection of rare words following Yu
et al. (2021), and we also experiment with differ-
ent thresholds for the rare words in Section 4.3.
We retrieve the paraphrases of the rare biomedical
words from an online dictionary “Wiktionary”.6

To optimize the selection, we only keep the rare
words that are tagged with medical-related cate-
gories from the Wiktionary, i.e. medical, medicine,
disease, symptom and pharmacology.

3.3 Selection of Paraphrases

There can be more than just one paraphrase for
a rare biomedical word and it is tricky to choose
the most appropriate paraphrases. Therefore, to

3https://pubmed.ncbi.nlm.nih.gov
4https://www.ncbi.nlm.nih.gov/pmc
5https://physionet.org/content/

mimiciii/1.4/
6Wiktionary - https://en.wiktionary.org/

avoid introducing noise from the inappropriate
paraphrases, we exclude rare biomedical words
with more than one corresponding paraphrase. In
addition, we ignore paraphrases that contain addi-
tional rare words whose frequencies are below the
set threshold since it only replaces one rare word
with another. Meanwhile, considering that biomed-
ical abbreviations are likely to be tokenized into
separate letters with no meaningful semantic infor-
mation, we retrieve and append the paraphrases to
all the biomedical abbreviations.

3.4 Prompt-based Fine-Tuning with
Paraphrases

When coming across new words during reading,
humans habitually seek dictionaries for the corre-
sponding paraphrases to help us understand. Fol-
lowing the same idea, we guide the pre-trained
models with paraphrases, where rare words are fol-
lowed by the parenthesis punctuation, as shown in
Figure 2(d). In this way, given a pre-trained model,
paraphrases of biomedical rare words can be con-
sidered as a portable plug-in module and generated
for any dataset instantly before prompt-based fine-
tuning.

4 Experiments

4.1 Setup

Models. To demonstrate that our approach is
model-agnostic, we adopt six pre-trained models in
both general and biomedical domains, namely (1)
BERT-Large (Devlin et al., 2019), (2) RoBERTa-
Large (Liu et al., 2019), (3) BioBERT-Base (Lee
et al., 2020), (4) PubMedBERT-Base (Gu et al.,
2020), (5) SciBERT-Base (Beltagy et al., 2019)
and (6) BC-RoBERTa-Large (Biomedical-Clinical
RoBERTa-Large) (Lewis et al., 2020). During
prompt-based tuning, we use the same set of hyper-
parameters for all the six pre-trained models, in-
cluding learning rate of 1× 10−5, batch size of 2
and max epoch of 10.

Datasets. Previous work demonstrates that rare
words have more impact on Natural Language Un-
derstanding (NLU) tasks than Information Extrac-
tion (IE) (Schick and Schütze, 2020), while most
biomedical NLP tasks fall into the category of
IE (Shin et al., 2020a; Gu et al., 2021a). To better
demonstrate the method effectiveness, we perform
evaluation over the two biomedical NLU datasets,
namely MedNLI (Romanov and Shivade, 2018)
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and MedSTS7 (Wang et al., 2020).
MedNLI is a natural language inference dataset

where premises are selected from real clinical notes
in MIMIC-III (Johnson et al., 2016). And Med-
STS is a semantic textual similarity dataset gath-
ered from a clinical corpus at Mayo Clinic and
the ground-truth label of the similarity is the mean
of the subjectively annotated scores from multiple
annotators. As MedSTS is actually a regression
task, we adapt the task following Gao et al. (2021)
and convert it into a classification task. We use the
same data splitting of training, development and
test sets as the original two datasets. Statistics of
datasets can be found in Table 1.

Dataset Train Dev Test
MedNLI 11,232 1,395 1,422

MedSTS 750 / 318

Table 1: Statistics of the MedNLI and MedSTS datasets.
We use the ClinicalSTS-2018 subset of MedSTS.

Few-shot datasets. Initialized with 10 differ-
ent random seeds, we randomly sample instances
within the range of 16 to 256 from corresponding
training and development sets as the few-shot train-
ing and development sets. The original test set is
directly used as the few-shot test set. Note that
there is no development set in MedSTS, so we sam-
ple the few-shot development set from the original
training set with the same quantity of samples as the
few-shot training set with no overlapping instances.
Accuracy and Pearson correlation coefficients are
used as the evaluation metrics for MedNLI and
MedSTS, respectively.

Prompt settings. We prepare discrete prompts
using the same prompt settings from Schick and
Schütze (2021) and Gao et al. (2021), which cor-
respond to the NLI and STS tasks respectively in
Table 2.

Task Template Verbalizer
MedNLI <Sent1>. [MASK]. <Sent2> Yes/No/maybe
MedSTS <Sent1>. [MASK]. <Sent2> Yes/No

Table 2: Prompt settings for MedNLI and MedSTS.

Rare biomedical words and paraphrases. We
find that a threshold of rare biomedical words at
200,000, corresponding to a frequency less than

7We use ClinicalSTS-2018 which is a sub-dataset of Med-
STS provided by the maintainers of the MedSTS project.

0.005% in the pre-training corpora, can yield better
results in most scenarios (details in Section 4.3), so
we consider the biomedical words that appear less
than 200,000 times as “rare biomedical words” and
prepare the same rare word and paraphrase sets for
all the models to validate the generalization ability
of our approach.

4.2 Few-shot learning results

We report the mean accuracy for the MedNLI task
and Pearson correlation coefficient for the Med-
STS task over 10 sampled few-shot datasets based
on different random seeds, along with standard de-
viation and p-value of paired t-test. Table 3 and
Table 4 show the results for the two tasks on six
pre-trained models.

Results on MedNLI. The pre-trained models
with the paraphrases for rare biomedical words
can outperform the baselines in all cases and can
bring about 6% improvement on average for few-
shot learning with 16 training samples and 2% with
256 training samples. All performance improve-
ments are statistically significant with p-value less
than 0.05 except only two out of ten cases from the
RoBERTa-based model in general domain. Besides,
small pre-trained biomedical models are compara-
ble with large pre-trained models in the general
domain under the few-shot settings. Furthermore,
with more training samples up to 256, our approach
is consistently effective.

Results on MedSTS. Similar to MedNLI, the
incorporation of paraphrases improves the perfor-
mances compared with baselines in general. For
some cases, statistical significance is not as sta-
ble as that on MedNLI for two reasons: (1) Some
ground-truth labels in the MedSTS task can be bi-
ased due to the subjectivity of annotation (Yang
et al., 2020); (2) Rare biomedical words shared in
the sentence pair of the same sample can be a short-
cut for the pre-trained models, as the paraphrases
increase the overlap between the two sentences
and mislead the models to overlook the rest of the
sentences (McCoy et al., 2019).

4.3 Thresholds for rare biomedical words

The number of paraphrases of rare biomedical
words involved in the samples can directly affect
the model performance, which is controlled by the
pre-set threshold. To measure the influence of dif-
ferent thresholds, we conduct experiments over
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MedNLI

Model
#Samples

16 32 64 128 256

BERT-Large 38.9 (3.7) 44.5 (5.2) 50.1 (5.2) 54.8 (2.5) 59.9 (1.2)
+ paraphrase 40.8 (4.1) 46.0 (5.5) 53.3 (4.9) 58.1 (1.4) 61.9 (1.4)

p-value < 0.01 0.02 < 0.01 < 0.01 < 0.01
RoBERTa-Large 43.2 (6.7) 52.1 (8.2) 63.6 (4.6) 69.2 (1.8) 72.7 (1.4)

+ paraphrase 49.5 (8.1) 56.1 (7.6) 65.6 (2.9) 70.8 (0.7) 74.0 (1.3)
p-value < 0.01 0.03 0.08 0.06 0.02

BioBERT-Base 34.1 (1.5) 38.5 (3.3) 42.5 (4.6) 52.1 (2.5) 59.4 (1.6)
+ paraphrase 36.3 (1.8) 40.9 (3.5) 45.2 (4.3) 54.0 (2.3) 60.4 (4.7)

p-value < 0.01 < 0.01 < 0.01 0.02 0.03
PubMedBERT-Base 40.5 (3.4) 46.8 (4.9) 53.9 (4.0) 62.9 (1.6) 69.2 (1.1)

+ paraphrase 45.0 (4.0) 49.7 (5.0) 56.4 (3.4) 65.8 (1.6) 71.0 (1.6)
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

SciBERT-Base 36.8 (1.2) 41.4 (3.3) 49.0 (3.7) 54.7 (2.0) 60.9 (1.0)
+ paraphrase 38.2 (2.1) 45.4 (5.2) 50.1 (3.5) 56.4 (2.2) 61.9 (1.6)

p-value < 0.01 0.03 0.01 0.02 < 0.01
BC-RoBERTa-Large 51.3 (5.9) 60.6 (6.7) 71.0 (3.7) 80.6 (1.3) 83.1 (1.3)

+ paraphrase 56.6 (5.0) 62.3 (6.0) 74.5 (3.0) 81.1 (1.5) 83.6 (1.0)
p-value < 0.01 0.05 < 0.01 0.02 0.01

Table 3: Few-shot results on the MedNLI task using various pre-trained models with training and development sets
of different sizes. We report mean (standard deviation) performance of accuracy over 10 different random seeds,
along with the p-value of the paired t-test. + paraphrase: with paraphrases of selected rare biomedical words.

MedSTS

Model
#Samples

16 32 64 128 256

BERT-Large 14.1 (7.4) 24.8 (10.1) 43.6 (5.7) 60.2 (4.7) 72.2 (4.5)
+ paraphrase 18.5 (9.0) 28.2 (12.1) 48.7 (7.1) 64.1 (5.1) 72.7 (4.6)

p-value < 0.01 0.04 < 0.01 0.01 0.08
RoBERTa-Large 29.5 (9.3) 41.7 (18.5) 55.1 (12.1) 67.6 (6.8) 76.0 (3.5)

+ paraphrase 34.6 (13.5) 46.1 (13.0) 57.7 (12.7) 69.9 (6.7) 77.2 (3.7)
p-value 0.04 0.01 0.02 0.03 0.02

BioBERT-Base 17.3 (14.4) 26.3 (13.7) 41.4 (9.0) 52.2 (10.6) 63.0 (7.3)
+ paraphrase 20.0 (12.9) 28.2 (12.8) 43.1 (8.6) 53.7 (9.2) 64.2 (7.1)

p-value 0.03 0.02 0.01 0.02 0.02
PubMedBERT-Base 10.3 (9.8) 22.8 (10.7) 36.9 (10.6) 48.1 (11.9) 65.5 (9.5)

+ paraphrase 18.8 (13.7) 27.3 (11.6) 39.9 (10.4) 49.4 (12.4) 65.1 (9.4)
p-value 0.04 0.01 < 0.01 0.07 0.1

SciBERT-Base 15.2 (16.9) 29.1 (18.2) 45.5 (14.0) 60.8 (9.0) 72.2 (7.3)
+ paraphrase 19.2 (15.5) 32.6 (18.4) 48.9 (14.4) 62.5 (8.3) 73.4 (6.8)

p-value 0.01 < 0.01 0.02 < 0.01 < 0.01
BC-RoBERTa-Large 54.2 (8.1) 63.9 (9.2) 73.3 (3.8) 77.4 (2.7) 81.5 (1.5)

+ paraphrase 53.0 (7.4) 67.2 (6.6) 74.5 (2.7) 79.1 (1.6) 81.8 (1.2)
p-value 0.08 0.01 0.03 < 0.01 0.02

Table 4: Few-shot results on the MedSTS task using various pre-trained models with training and development
sets of different sizes. We report mean (standard deviation) performance of Pearson correlation coefficient over 10
different random seeds, along with the p-value of the paired t-test. + paraphrase: with paraphrases of selected rare
biomedical words.
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threshold
Dataset 16 32 64 128 256

Test
Train Dev Train Dev Train Dev Train Dev Train Dev

t = 20k
* 1.1 1.1 1.9 1.7 3.4 3.9 6.8 7.6 13.2 14.3 29
** 1.1 1.1 1.9 1.8 3.7 4.4 7.3 9.0 16.3 21.1 129

t = 50k
* 1.8 1.5 3.5 2.2 6.8 4.8 12.4 9.2 21.8 17.0 40
** 1.8 1.5 3.5 2.3 7.1 5.4 13.1 11.2 26.6 24.9 196

t = 100k
* 1.8 1.6 3.8 2.6 7.2 5.9 14.0 11.1 25.3 20.2 41
** 1.8 1.6 3.8 2.8 7.6 6.5 14.8 13.0 30.8 25.4 179

t = 200k
* 1.9 2.1 4.3 3.5 7.6 6.8 13.9 12.3 23.3 21.7 41
** 1.9 2.1 4.3 3.7 8.2 7.8 15.3 15.5 33.4 32.6 185

Table 5: The number of selected rare biomedical words in the training, development and test sets for different
few-shot datasets on MedNLI. “t = 20k” means the threshold for rare biomedical words is 20k. “*” is the number of
different rare biomedical words within the threshold. “**” denotes the total occurrences of rare biomedical words in
the dataset (a rare biomedical word can appear more than once).

MedNLI task since its labelled data is more objec-
tive compared to MedSTS.

Statistics of rare biomedical words. Table 5
shows the mean of rare biomedical words in the
training, development and test sets under different
thresholds for the MedNLI task. Among the above
thresholds, the number of rare biomedical words
varies from 29 to 41 in the test set, while the total
number of all rare biomedical words varies from
129 to 196. Each rare biomedical word appears
around 5 times on average in the test set. Note
that as the threshold increases, the number of para-
phrases does not necessarily increase as fast as the
number of rare biomedical words which is because
that although higher threshold does include more
rare biomedical words, not all are appended with
paraphrases as some of them are excluded as men-
tioned in Section 3.3.

In addition to the fixed threshold of 200,000,
we experiment with the thresholds ranging from
20,000 to 200,000. Table 6 further demonstrates
the effectiveness of paraphrases of rare biomedical
words in most cases, where 200,000 of the thresh-
old performs the best.8

5 Discussion

Train with more samples. Apart from applying
paraphrases in few-shot scenarios, we also attempt
with more training samples for the MedNLI task,
even with full-size training dataset. We attempt
to sample the same number of development sam-
ples from the official MedNLI development set

8We also attempt with thresholds higher than 200,000 but
it will not bring improvement as much as 200,000.

#Samples 16 32 64 128 256
w/o paraphrase 51.3 60.6 71.0 80.6 83.1

t = 20k 55.0 61.9 72.4 80.6 83.4
t = 50k 54.2 62.1 73.8 81.0 83.7
t = 100k 54.5 62.4 73.4 80.4 83.2
t = 200k 56.6 62.3 74.5 81.1 83.6

Table 6: Results for few-shot learning with different
thresholds of rare biomedical words on MedNLI with
the BC-RoBERTa-Large model. w/o paraphrase: with-
out paraphrases for rare biomedical words. t: the thresh-
old for rare biomedical words.

(with 1,395 samples) to match the number of train-
ing samples. If the training set is larger than the
full-size development set, we just use the whole
development set.

Table 7 demonstrates that our method outper-
forms the baseline on four out of six cases and
performs comparably on the remaining two cases.
When the whole training set is used, our model
with paraphrases achieves 0.8% improvement. The
minor improvement might be attributed to the “not
so rare” biomedical words as the rarity of words de-
creases during the expansion of training set, which
helps the pre-trained models learn the semantics
of the rare biomedical words better even without
paraphrases.

Which to look up? Paraphrases can be helpful
in general. However, for individual samples, that
is not always the case. In Table 8, we further scru-
tinize the cases where the model yields different
predictions after adding the paraphrases. It is ob-
served that the paraphrases can be less effective if
the paraphrases of rare words are not task-related
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MedNLI

Model
#Training

512 1024 2048 4096 8192 full-size

BC-RoBERTa-Large 84.8 (0.7) 85.5 (0.8) 86.4 (0.5) 86.3 (0.7) 86.2 (0.6) 85.9 (0.6)
+ paraphrases 85.2 (0.8) 86.3 (1.0) 86.4 (0.7) 86.3 (0.6) 86.7 (0.5) 86.7 (0.7)

p-value 0.05 < 0.01 0.43 0.36 < 0.01 0.02

Table 7: Test results on the MedNLI dataset with larger size of training sets. We report mean (and standard deviation)
accuracy. + paraphrase: with paraphrases of rare biomedical words.

Sentence Pairs w/o paraphrases w/ paraphrases

P: She was found to have BRBPR (bright red blood per rectum) on rectal exam.
H: the patient had bright red blood per rectum

Neutral
Entailment

(right answer)
P: Antenatal history - pregnancy complicated by chronic hypertension with increased
gestational hypertension leading to admission 3 days prior to delivery followed by cesarean
section.
H: The patient had proteinuria (The presence of protein in the urine) during pregnancy

Entailment
Neutral

(right answer)

P: Following this rehab admission she was sent to a different OSH on [**2725-10-26**],
for acute CHF (congestive heart failure) and at least one PEA arrest.
H: The patient has a poorly functioning heart.

Contradiction
Entailment

(right answer)

P: The patient was sent to the HD unit prior to coming to the floor for workup (A general
medical examination to assess a persons health and fitness) of fever.
H: The patient has an infection

Neutral
(right answer)

Contradiction

P: - COPD (chronic obstructive pulmonary disease) - obesity - unspecified hypoxemia -
CNS lymphoma c/b CVAs x3 (posterior circulation) and seizure d/o - history of SAH
while on coumadin - diastolic heart failure - coronary artery disease - atrial fibrillation -
hypertension - hyperlipidemia - severe OSA (did not tolerate CPAP in the past) - primary
hyperparathyroidism/25-vit D deficiency c/b nephrolithiasis - toxic multinodular
goiter with subclinical (Less than is needed for clinical reasons) hyperthyroidism -
neovascular glaucoma c/b right eye blindness
H: Patient has a history of malignancy

Neutral
(right answer)

Entailment

Table 8: Cases that model predicts differently after the supplement of paraphrases for rare biomedical words in
MedNLI. “P" for Premise and “H" for Hypothesis. Words in bold are rare biomedical words and expressions in
italic inside the parentheses are the paraphrases of rare biomedical words.

and critical for sentence understanding. For in-
stance, in the third case in Table 8, “CHF” is a rare
biomedical word which means “congestive heart
failure”. Pre-trained models can easily match the
hypothesis of “poorly functioning” with the given
premise. Otherwise, paraphrases can possibly in-
troduce confusion. For example, in the wrong case
in Table 8, although “workup” is a rare biomed-
ical word in the pre-training corpora, it does not
severely affect the semantics of the sentence and
the pre-trained model turns to make wrong pre-
diction with the misdirection from supplementary
paraphrase.

Actually, humans tend to continue reading unless
the unknown words hinder the understanding. With
this motivation, we believe that it is worthwhile to
explore how to attach informative paraphrases for
the rare words, which will be investigated in future.

6 Conclusion

Rare biomedical words are pervasive in biomedi-
cal texts, and understanding domain-specific rare
words remains a tough challenge for pre-trained
models. In this work, we presented a simple yet ef-
fective method to help the pre-trained models grasp
the semantics of rare biomedical words.

Enlightened by human reading behavior, we
taught the pre-trained models to understand rare
biomedical words by incorporating paraphrases of
rare biomedical words. Our method can be re-
garded as a generic plug-in approach for prompt-
based tuning without additional parameters. Exper-
iments showed that our method could substantially
improve the pre-trained models under few-shot set-
tings.
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Abstract

Interpreting patient case descriptions has
emerged as a challenging problem for biomedi-
cal NLP, where the aim is typically to predict
diagnoses, to recommended treatments, or to
answer questions about cases more generally.
Previous work has found that biomedical lan-
guage models often lack the knowledge that
is needed for such tasks. In this paper, we
aim to improve their performance through a
self-supervised intermediate fine-tuning strat-
egy based on PubMed abstracts. Our solution
builds on the observation that many of these
abstracts are case reports, and thus essentially
patient case descriptions. As a general strategy,
we propose to fine-tune biomedical language
models on the task of predicting masked medi-
cal concepts from such abstracts. We find that
the success of this strategy crucially depends
on the selection of the medical concepts to be
masked. By ensuring that these concepts are
sufficiently salient, we can substantially boost
the performance of biomedical language mod-
els, achieving state-of-the-art results on two
benchmarks.

1 Introduction

Natural Language Processing (NLP) in the biomed-
ical domain poses a number of particular chal-
lenges. For this reason, several Language Models
(LMs) that are specialised towards the biomedical
domain have been proposed, including BioBERT
(Lee et al., 2020), ClinicalBERT (Alsentzer et al.,
2019), SciBERT (Beltagy et al., 2019a), and Pub-
MedBERT (Gu et al., 2021). Recent work has
focused on analysing the capabilities of such mod-
els (Jin et al., 2019; Alghanmi et al., 2021; Sung
et al., 2021) and enhancing them further (He et al.,
2020b; Yuan et al., 2021; Zhang et al., 2021; Fei
et al., 2021). Broadly speaking, biomedical LMs
have proven successful in capturing the meaning
of specialised terminology, but they have been far
less successful in enabling medical reasoning, e.g.

Question: A 38-year-old woman comes to the emer-
gency department because of progressive headache,
blurry vision, and nausea for 1 day. Four days ago, she
was diagnosed with a right middle ear infection. She
appears lethargic. Her temperature is 39.1°C (102.3°F),
and blood pressure is 148/95 mm Hg. Ophthalmologic
examination shows bilateral swelling of the optic disc.
The corneal reflex in the right eye is absent. Sensation
to touch is reduced on the upper right side of the face.
Serum studies show increased concentrations of fibrin
degradation products. Which of the following is the
most likely diagnosis?

(A) Cerebral venous thrombosis
(B) Hypertensive emergency
(C) Subarachnoid hemorrhage
(D) Viral meningitis

Table 1: Example of a question from MedQA, along
with the answer candidates.

for predicting a likely diagnosis from a given pa-
tient case description. Currently, the main strate-
gies for alleviating this latter issue have centered
on incorporating structured knowledge, especially
in the form of knowledge graphs. For example,
Meng et al. (2021) proposed a method to integrate a
large biomedical knowledge graph into a language
model through the use of adapters (Pfeiffer et al.,
2020), while Zhang et al. (2022) used graph neural
networks to jointly reason about language model
outputs and knowledge graphs.

We focus on the task of interpreting patient case
descriptions. To illustrate this task, Table 1 shows
a question from the MedQA benchmark (Jin et al.,
2021). In this context, the aim is typically to infer
a diagnosis or to recommend a treatment. This is
highly challenging, even for biomedical language
models, because many pieces of information may
need to be combined to find the right answer, and
often some degree of clinical judgment is needed.
Accordingly, the performance of state-of-the-art
biomedical language models remains rather low for
benchmarks such as MedQA. We argue that this
can, to some extent, be explained by the fact that
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interpreting patient case descriptions is a paragraph-
level task, whereas the standard masked language
modelling objective encourages the model to pri-
marily focus on sentence-level context.

Ideally, biomedical language models for inter-
preting patient case descriptions would be pre-
trained on a task that involves predicting diagnoses,
or other salient aspects of these patient cases. Un-
fortunately, beyond the training fragment of bench-
marks such as MedQA, such labelled data is not
readily available. As an alternative, we propose to
generate a pseudo-labelled dataset, based on the
heuristic that whenever a case descriptions men-
tions a disease, it is likely (although by no means
guaranteed) that this disease is a valid diagnosis,
and similar for other medical concepts such as treat-
ments. To get access to a large set of case descrip-
tions, we rely on abstracts of published case reports.
In particular, starting from a collection of PubMed
abstracts, we first use a simple heuristic to identify
those that are likely to correspond to case reports.
Given a case report that mentions some disease,
we then fine-tune the language model on the task
of predicting that disease. Note that the target dis-
ease is masked, as the task would otherwise be
trivial. The pre-training task is formulated as a
binary classification problem, i.e. given a patient
description and a disease, is that disease the cor-
rect diagnosis (or more precisely, is it the disease
that was masked). This formulation has the ad-
vantage that the input format is similar to that of
multiple-choice question answering (QA) and natu-
ral language inference (NLI). Beyond diseases, we
also experiment with predicting masked treatments.
Similar to the usual masked language modelling
objective, our pre-training task involves making
predictions about masked text spans. However, due
to the fact that we specifically mask diseases and
treatments, we hypothesize that this will improve
the model’s ability to take the whole case descrip-
tion into account when making predictions. Finally,
note that we consider this to be an intermediate
fine-tuning step. In other words, we start from a
state-of-the-art biomedical language model, which
is then fine-tuned on the proposed task, before fi-
nally being fine-tuned on a downstream task.

We find that this intermediate fine-tuning leads
to substantial improvements in downstream tasks,
even when using a biomedical LM that was al-
ready pre-trained on PubMed. To some extent, this
comes from the fact that we specifically fine-tune

the model on case reports. However, this in itself is
not sufficient. To achieve good results, we find that
a careful selection of the target concepts is needed.
For instance, strong results are obtained when only
masking medical treatments. When masking dis-
eases, the improvements over the baseline are some-
times smaller. This is surprising, given that most
questions in the considered benchmarks are about
diagnosing diseases. Upon closer inspection, the
under-performance of strategies that rely on mask-
ing diseases appears to be related to the fact that
diseases can be mentioned for two common rea-
sons: (i) because the patient has been diagnosed
with that disease, which is the case that underpins
the intuition behind our proposed approach, or (ii)
because the disease is relevant to the medical his-
tory of the patient. In the latter case, only a small
part of the abstract may be relevant to the disease,
which hampers the extent to which the model learns
to focus on the case description as a whole. To ad-
dress this issue, we propose to split abstracts in
which multiple diseases are mentioned. Despite the
simplicity of the overall approach, our fine-tuning
strategies enable significant improvements over the
current state-of-the-art in two benchmarks that are
focused on patient case descriptions: MedQA (Jin
et al., 2021) and DisKnE (Alghanmi et al., 2021). 1

2 Related Work

The standard paradigm in NLP at the moment is
to fine-tune a pre-trained LM, such as BERT (De-
vlin et al., 2018), on task-specific training data.
However, it has been observed that adding an inter-
mediate step, where the LM is first fine-tuned on a
different task, for which training data is more abun-
dant, can be highly beneficial (Phang et al., 2018,
2020; Oğuz et al., 2021; Park and Caragea, 2020;
Poth et al., 2021). Several works have investigated
the role of intermediate tasks, in particular with the
aim of analyzing when and why results improve
(Pruksachatkun et al., 2020; Chang and Lu, 2021).

For the biomedical domain, one strategy has
been to rely on transfer learning from general-
domain tasks. For instance, Soni and Roberts
(2020) use general-domain question answering for
intermediate training, to improve a clinical ques-
tion answering system. Another strategy has been
to rely on different, but related tasks, such as pre-

1Code and data are available at: https:
//github.com/israa-alghanmi/
Intermediate-FT-Biomedical-LMs
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training on natural language inference to develop
a question answering system (Jeong et al., 2020).
Furthermore, several authors have proposed tech-
niques for infusing the knowledge from biomedi-
cal knowledge graphs into LMs (He et al., 2020a;
Meng et al., 2021; Jha and Zhang, 2022). More
closely related to our approach, He et al. (2020c)
propose a strategy which relies on the structure
of Wikipedia to infuse knowledge about diseases.
For instance, to teach the model about how dis-
eases are treated, they rely on the fact that disease-
centric Wikipedia articles tend to have a section
called Treatment. They then combine the content
of that section with a generated question-style sen-
tence mentioning the aspect considered (i.e. treat-
ment in this case) and a masked disease. However,
rather than infusing encylopedic knowledge, our
aim is to teach LMs to interpret patient case descrip-
tions. Another related approach was introduced by
Pergola et al. (2021), who propose to fine-tune a
biomedical language model by using a masked lan-
guage modelling objective which is modified such
that only biomedical concepts are masked. This
approach has some similarities with our work, e.g.
the idea of masking biomedical concepts as an in-
termediate fine-tuning task, but there are also some
clear differences. First, we formulate our task as a
binary classification problem, rather than masked
language modelling. Moreover, we specifically tar-
get diseases and treatments, and we only mask one
concept at a time (although all occurrences of that
concept are masked). Finally, since we focus on
paragraph-level understanding, we pay particular
attention to how these input paragraphs can be se-
lected. As we will see, each of these differences
has a clear impact on the empirical results.

3 Proposed Method

We consider the problem of making predictions
from patient case descriptions. For instance, given
a description that lists symptoms and other informa-
tion about the patient (e.g. gender, age, and medical
history), we would like to infer the corresponding
diagnosis or to recommend suitable treatments. We
are specifically interested in the potential of using
freely available case reports from the medical liter-
ature to improve the ability of standard biomedical
LMs to make such predictions. In Section 3.1, we
first explain our overall strategy. Subsequently, in
Section 3.2 we describe the specific variants that
we included in our analysis.

3.1 Overall Strategy

Our aim is to design an intermediate fine-tuning
task for specialising biomedical LMs towards
the task of interpreting patient case descriptions.
This fine-tuning task relies on passages from Pub-
MedDS (Vashishth et al., 2021), a corpus which
primarily consists of abstracts from PubMed. First,
we split the abstracts into passages of up to 250
words, to address the limitations on input length
of BERT-based LMs. Next, we aim to identify
those passages that contain a case report, describ-
ing a specific patient rather than more general find-
ings. To this end, we rely on the simple but effec-
tive heuristic that case reports often mention the
age of the patient. In particular, we select those
passages that contain at least one keyword from
the following list: year-old male, year-old female,
year-old boy, year-old girl, year-old woman, year-
old man. Let us write D for the resulting corpus,
i.e. the set of passages that contain at least one
of the aforementioned keywords. Subsequently,
we determine which medical concepts are men-
tioned in the passages from D. To this end, we
use QuickUMLS (Soldaini and Goharian, 2016)
with UMLS-2020AA to identify both the spans
and the semantic types (e.g. diseases, treatments)
of the mentioned concepts. Finally, we create pos-
itive training examples of the form (P,C), where
C is a medical concept, and P is a passage from
D in which all mentions of C have been replaced
by a single <mask> token. To generate negative
training examples, we simply replace the medical
concept C by another concept, as explained below.
A given example (passage,concept) is encoded as
follows: “<cls> passage <sep> concept”, mim-
icking the input format that is typically used for
question answering and natural language inference
models. The LM is fine-tuned on these examples
using a standard cross-entropy loss.

3.2 Training Strategies

We now describe the different variants that we con-
sidered. These variants primarily differ in the kinds
of medical concepts that are selected as target con-
cepts. Across all variants, we never mask the con-
cept disorder, as constructing training examples
from such mentions was found to be highly detri-
mental, given its prevalence and generic meaning.
For all variants, we attempt to balance the number
of positive and negative examples. Table 2 provides
an overview of the total number of training exam-
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#

AnyType 1,011,482

SpecificType
– diseases 160,534
– treatments 2,460

SplitDis 100,225

OneDis 3,310

Table 2: The total number of training examples for each
of the intermediate fine-tuning tasks (#).

ples arising from each of the following strategies.

AnyType We create a positive example for every
medical concept that is found (with the exception
of disorder). Note that passages typically mention
several concepts, hence this strategy allows us to
derive multiple positive examples from the same
passage, each time masking a different concept. To
construct negative examples, we corrupt positive
examples by randomly selecting a concept from
those that have been identified in the corpus, re-
gardless of the semantic type.

SpecificType In this variant, we only construct
training examples from medical concepts of par-
ticular types. Specifically, we have experimented
with diseases and treatments. Negative examples
are constructed by replacing the target concept with
another concept of the same semantic type, i.e. dis-
eases are replaced by diseases, and treatments are
replaced by treatments.

SplitDis Many passages contain more than one
disease, which may confuse the model. For in-
stance, diseases which are mentioned as part of the
patient history may only be loosely related to the
rest of the case report. Since our aim is to train the
model to make predictions based on the whole case
description, in this variant, passages containing
more than one disease are split into sub-passages.
In particular, when constructing a positive example
for a target disease d, we select the sub-passage
which begins with the first sentence in which d
is mentioned, and includes all the subsequent sen-
tences, until we reach a sentence that mentions
another disease (where this final sentence is ex-
cluded from the selected sub-passage). If the target
disease is mentioned in a sentence that also con-
tains another disease, it is excluded altogether. For
illustration, training examples that were obtained

with the SplitDis strategy are presented in Table 3.

OneDis Instead of splitting passages mentioning
more than one disease into sub-passages, as with
SplitDis, here we simply discard such passages.
This results in a much smaller number of positive
examples, but with stronger guarantees that the
disease being masked is salient. In both this and the
SplitDis method, negative examples are obtained
by using randomly selected diseases.

4 Experiments

In this section, we empirically analyse the different
variants of the intermediate fine-tuning strategy.

Evaluation Datasets We mainly focus on two
benchmarks that are specifically focused on inter-
preting and reasoning about patient cases. First, we
use MedQA (Jin et al., 2021), which is a multiple-
choice question answering benchmark. The ques-
tions are taken from medical exams and are specif-
ically asking about what can be inferred from a
given patient case description. We use the English
version of this dataset (USMLE). Results for this
benchmark are reported in terms of accuracy (Acc).
Second, we use DisKnE (Alghanmi et al., 2021),
which has been derived from MedNLI (Romanov
and Shivade, 2018). Therefore, to use DisKnE,
a license and access to MedNLI is required. In-
stances of this benchmark consist of a patient case
description and a disease, and the aim is to predict
whether that disease can be inferred as diagnosis.
This repurposing from the original MedNLI is of
particular relevance to our experiments, given that
many instances in MedNLI can be solved simply
with linguistic knowledge. DisKnE contains a sep-
arate training-test split for each disease, and for
each split, we consider the task of ranking all test
cases, according to our confidence that the given
target disease is a valid diagnosis. The results are
averaged across all diseases and are reported in
terms of Mean Average Precision (MAP). We use
the medical-similar variant of the benchmark.

In addition, we also consider the English ver-
sion of HeadQA (Vilares and Gómez-Rodríguez,
2019), as a more general healthcare-oriented QA
dataset. This dataset contains a broad variety of
healthcare questions, most of which do not involve
patient descriptions. However, the questions are
designed to require complex medical reasoning. As
such, we use this benchmark to analyse whether our
proposed approach may also benefit such settings.
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SpecificType-
treatments

The role of [MASK] in the treatment of a patient with a pure silent pituitary somatotroph carcinoma. To describe a case of a pure
silent somatotroph pituitary carcinoma. We describe a 54-year-old female with a clinically nonfunctioning pituitary macroadenoma
diagnosed 15 years earlier. The patient underwent transsphenoidal surgery and no visible tumor remnant was observed for 6 years. A
magnetic resonance imaging (MRI) detected the recurrence of a 1.2 × 1.5 cm macroadenoma. The patient was submitted to conventional
radiotherapy (4500 cGy), and the tumor volume remained stable for 7 years. Then, an MRI revealed a slight increase in tumor size, and 2
years later, a subsequent MRI detected a very large, invasive pituitary mass. The patient was resubmitted to transsphenoidal surgery,
and the histopathological examination showed diffuse positivity for growth hormone (GH). The nadir GH level during an oral glucose
tolerance test was 0. 06 ng/mL, and the pre- and postoperative insulin like growth factor type I (IGF-I) levels were within the normal
range. Abdominal, chest, brain, and spine MRI showed multiple small and hypervascular liver and bone lesions suggestive of metastases.
Liver biopsy confirmed metastasis of GH-producing pituitary carcinoma. The patient has been treated with [MASK] and zoledronic acid
for 7 months and with octreotide long-acting release (LAR) for 4 months.→ Temozolomide

SpecificType-diseases Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Sitosterolemia is a rare,
recessively inherited disorder characterized by increased absorption and delayed removal of noncholesterol sterols, which is associated
with accelerated atherosclerosis, premature [MASK], hemolysis, and xanthomatosis. Treatments include low-sterol diet and bile salt-
binding resins; however, these often do not reduce the xanthomatosis. We examined the effects of the intestinal cholesterol/phytosterol
transporter inhibitor ezetimibe added to cholestyramine in a young female patient with sitosterolemia and associated xanthomatosis. The
patient was an 11-year-old female with sitosterolemia presenting with prominent xanthomas in the subcutaneous tissue of both elbows
who was receiving treatment with cholestyramine 2 g once daily. Bilateral carotid bruits were audible, and a grade II/VI systolic murmur
was detected at the left upper sternal border. She also had a low platelet count of 111,000/microL. Ezetimibe 10 mg once daily was added
to the patient’s ongoing cholestyramine regimen, and she was evaluated for 1 year. The patient followed an unrestricted diet during the
1-year treatment period. After 1 year of treatment with ezetimibe added to ongoing cholestyramine therapy, the patient’s plasma sitosterol
and campesterol levels decreased by approximately 50.→ coronary artery disease

SplitDis After initial improvement artificial ventilation had to be be gun on day 3 because of an acute [MASK], diagnosed both clinically and
radiologically. Despite additional antiviral and intensive medical treatment he died on day 11.→ respiratory distress syndrome

Traumatic [MASK] present diagnostic and therapeutic challenges. Owing to their fragile nature, endovascular intervention has become
the first-line treatment; however, direct surgery has an advantage in certain cases.→ intracranial aneurysms

A fluoroscopic sniff test demonstrated diaphragmatic dysfunction and pulmonary function tests revealed [MASK] with evidence of
neuromuscular etiology.→ restrictive pulmonary disease

Table 3: Examples obtained with the different variants of the proposed strategies.

Some questions in this dataset require interpreting
images. As this is beyond the scope of the paper,
we discard all questions involving images for our
experiments. This resulted in a total number of
2589 questions for training, 1336 for validation,
and 2675 for testing.

Setup We use four pre-trained LMs for the base-
lines and main experiments:

• the cased version of the standard BERTbase
(Devlin et al., 2019);

• the cased version of SciBERT (Beltagy et al.,
2019b);

• the cased version of ClinicalBERT (Alsentzer
et al., 2019) that was trained on MIMIC-III
while being initialized from BioBERT (Lee
et al., 2020);

• the PubMedBERT model (Gu et al., 2021)
that was trained from scratch on full-length
PubMed articles as well as abstracts.

As a baseline, we directly fine-tune the models on
the training data from the downstream task. For the
other configurations, we first fine-tune the models
on the proposed intermediate task.

We use the official training, validation, and test
splits for each dataset, with the exception that we
excluded questions with images for HeadQA.

Training Details We use the same settings and
hyper-parameters for all datasets. For fine-tuning
the models on the target task, we set the batch size
to 8, the number of epochs to 4 and the learning
rate to 2e-5. For the intermediate fine-tuning step,
we again set the batch size to 8 and the learning
rate to 2e-5. Regarding the number of epochs for
intermediate fine-tuning, we note that the number
of training examples varies greatly across the dif-
ferent variants. For this reason, and to mitigate the
potential for catastrophic forgetting, we tuned the
number of epochs, choosing from {2, 3, 4}, based
on the development split of the downstream task.

Limitations Our method relies on an automated
extraction tool for identifying the target medical
concepts, which will inevitably lead to some noisy
training examples. For example, SplitDis and
OneDis rely on the assumption that we can detect
all mentions of diseases in the text. More gener-
ally, regardless of performance, the predictions of
a biomedical LM can clearly not be relied upon for
diagnosing patients or recommending treatments
in a clinical setting. Our purpose in studying these
models is rather because a deeper understanding of
patient records would make it possible to improve
retrieval systems (e.g. suggesting relevant case re-
ports to a clinician handling an unusual patient) or
to identify hypotheses for medical research (e.g. by
inducing patterns from large sets of case reports).
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4.1 Results

Tables 4, 5 and 6 summarize our results. As can be
seen, PubMedBERT clearly outperforms the other
language models. In general, most variants of the
intermediate fine-tuning tasks lead to clear improve-
ments over the baselines. A clear and remarkable
conclusion that can be observed for all benchmarks
is that the type of intermediate fine-tuning data ap-
pears to be much more important than the number
of training examples. For instance, the version of
SpecificType which only uses treatments achieves
the best overall results, outperforming the previous
state-of-the-art for MedQA and achieving among
the strongest results for both DisKnE and HeadQA.
This is surprising, both because of the small num-
ber of training examples we can generate for this
variant and because of the focus on diseases in
DisKnE and many of the MedQA and HeadQA
questions.

For MedQA, SpecificType with treatments out-
performs the previous state-of-the-art (Zhang et al.,
2022) by 1.9 percentage points, despite not rely-
ing on any structured knowledge graphs. Note that
DisKnE is a recent benchmark, for which the only
reported results thus far were obtained from simply
fine-tuning biomedical LMs. These existing results
were reported prior to the introduction of PubMed-
BERT, which outperforms these published results.
The OneDis variant performs well for DisKnE, de-
spite the low number of corresponding training ex-
amples. For MedQA, SplitDis outperforms Speci-
ficType with diseases (with the exception of BERT),
which supports the idea that simply masking dis-
eases can lead to training examples that are too
noisy. While HeadQA is not particularly focused
on patients case descriptions, we still see consistent
improvements over the baselines with SpecificType,
SplitDis and OneDis, although the improvements
are somewhat smaller than those for MedQA and
DisKnE.

We can see that our proposed strategy outper-
forms the baselines for each of the different lan-
guage models, with the exception of SciBERT with
DisKnE. However, there are some differences be-
tween the language models in terms of which vari-
ant of our method performs best. For MedQA, for
instance, we can see that SpecificType with diseases
is highly competitive for BERT and ClinicalBERT
(compared to the other variants for these language
models). As these are the language models that are
least adapted to the considered task, we can indeed
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AnyType 28.2 31.2 32.7 36.5

SpecificType
– diseases 28.2 31.5 30.4 38.0
– treatments 27.8 31.0 34.5 40.4

SplitDis 27.7 31.8 33.4 38.7
OneDis 27.0 29.6 33.3 35.6

Table 4: Results for MedQA in terms of Accuracy.
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Baseline 57.0 67.5 69.2 69.7

AnyType 64.2 71.6 68.8 71.9

SpecificType
– diseases 60.2 70.0 67.0 72.9
– treatments 57.5 67.5 68.3 73.6

SplitDis 58.3 74.1 68.1 72.2
OneDis 64.0 68.2 66.2 74.4

Table 5: Results for DisKnE in terms of Mean Average
Precision (MAP).

expect that more pre-training data might be needed
for these models. This can explain the relative
success of SpecificType with diseases and SplitDis,
given that these are associated with a larger number
of training examples.

4.2 Analysis

Table 7 shows the results of some variants of the
SpecificType with diseases and SplitDis strategies,
as explained next. We use PubMedBERT for these
experiments, as this model achieved the best results
in the main experiments. We focus on the MedQA
benchmark as this is the most representative bench-
mark for our problem setting.

Frequent vs Rare We analyze whether there is
any advantage in focusing specifically on common
diseases, or conversely, in focusing on rare diseases.
Table 7 shows the results of two variants of Speci-
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Baseline 28.8 29.3 32.8 39.5

AnyType 29.3 30.0 31.7 39.1

SpecificType
– diseases 29.8 30.1 34.5 41.8
– treatments 30.3 31.1 35.7 41.0

SplitDis 29.8 29.6 32.6 40.7
OneDis 29.7 29.8 34.0 40.8

Table 6: Results for HeadQA in terms of Accuracy.

MedQA
# (Acc)

Sp
ec

ifi
cT

yp
e Most-Frequent 49,816 36.8

Least-Frequent 8,466 38.0
Most-General 7,229 36.6
Most-Specific 8,778 36.9
Treatment-Case-Dis 6,934 38.2

Sp
lit

D
is

Most-Similar 1,858 37.7
Least-Similar 1,870 36.7
SplitDis+Def 105,952 37.7
Treatment-Case-Dis 2,430 38.4

Table 7: Analysis results for MedQA (Accuracy). We
also report the total number of training examples for
each of the intermediate fine-tuning tasks (#). Results
were obtained using PubMedBERT.

ficType, called Most-Frequent and Least-Frequent.
The former only considers training examples, for
the intermediate fine-tuning task, involving the 50
diseases which are most common in our corpus of
case reports. Similarly, the Least-Frequent variant
only considers the 5000 least frequent diseases.
Least-Frequent achieves the best result, despite
involving far fewer training examples than Most-
Frequent. The results of both variants are either
below or similar to those with the full set of dis-
eases in Table 4.

General vs Specific Rather than selecting dis-
eases based on their number of occurrences, here
we investigate the effect of choosing diseases based
on whether they are general or specific, in terms
of the level at which they appear in the SNOMED
CT hierarchies (Stearns et al., 2001). Specifically,

for the Most-General variant, we only consider dis-
eases with fewer than 5 ancestors in SNOMED CT.
For the Most-Specific variant, we only consider dis-
eases with at least 30 ancestors. We find that both
variants of SpecificType perform similarly.

Similar vs Different We explore a setting in
which only case reports about diseases similar to
“heart disease” are provided during training. Specif-
ically, we use cui2vec (Beam et al., 2020) to iden-
tify the 50 most similar diseases that occur at least
once in our corpus of case reports. We then con-
sider a variant of SplitDis in which only passages
with heart disease, or any of the 50 similar dis-
eases, occurs as the target disease. Our aim in this
experiment is to see whether training on one type
of diseases is sufficient to obtain good results. Fur-
thermore, we may also assume that because the
resulting corpus only involves similar diseases, the
model is forced to focus on more subtle details in
the paragraphs, and might thus improve as a result.
To test this hypothesis, we also consider the variant
Least-Similar, where we instead use the diseases
that are least similar to heart disease. Rather than
fixing the number of diseases at 50, in this case we
chose the number to ensure a similar number of
training examples as for Most-Similar. The results
for both variants are below those of the standard
SplitDis variant. However, we can see that Most-
Similar clearly outperforms Least-Similar.

Adding Definitions We analyse the usefulness
of UMLS definitions. Specifically, we augment the
SplitDis training examples with examples of the
form (def, dis), where def is the UMLS definition
of a disease, and dis is the corresponding disease.
Negative examples are again created by replacing
the target disease with a randomly chosen other
disease. The results in Table 7 show that adding
definitions does not improve the results.

Diseases in Treatment Cases The good perfor-
mance of the SpecificType variant with treatments,
despite the small number of training examples we
have for that setting, is one of the most surprising
findings from the main experiments. Here we anal-
yse whether this might be related to the quality of
the case reports that were selected in that setting, i.e.
the case reports that mention a treatment. To this
end, we consider all such case reports, but instead
of using the treatments as the target concepts, we
instead focus on diseases. In other words, we use
the SpecificType setting for diseases, but applied to
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MedQA
(Acc)

MLM-RandomMask
– SplitDis 36.4
– SpecificType: treatments 35.2

MLM-SpecificMask
– SplitDis 37.6
– SpecificType: treatments 38.5

Random-Abstracts
– SplitDis 38.2
– SpecificType: treatments 37.6

No Mask
– SplitDis 36.7
– SpecificType: treatments 37.8

Remove-Sent (treatments) 38.9

Table 8: Ablation results for MedQA in terms of Accu-
racy. Results were obtained using PubMedBERT.

the case reports that mention treatments. We also
consider a variant in which the SplitDis setting is
applied to these case reports. The results in Table
8, shown as Treatment-Case-Dis, reveal that this
variant still underperforms the SpecificCase variant
with treatments.

4.3 Ablation Experiments

In this section, we analyse the importance of a
number of our design choices. We again focus on
PubMedBERT and MedQA. We specifically con-
sider the SplitDis and SpecificType with treatments,
as these yielded the best results in the main experi-
ments. The results are summarized in Table 8.

Masked Language Modelling We experimented
with two variants of the masked language mod-
elling (MLM) objective for the intermediate fine-
tuning task. For the MLM-RandomMask variant,
we randomly mask tokens, following the standard
approach that is used for LM pre-training. For
the MLM-SpecificMask variant, we specifically
mask the tokens corresponding to diseases (for the
SplitDis setting) or treatments (for the Specific-
Type setting). The results show that our approach
outperforms both MLM strategies, while MLM-
SpecificMask outperforms MLM-RandomMask.

Random Abstracts vs Case Reports We anal-
yse the importance of specifically focusing on case
reports. In the Random-Abstracts variant, rather

than targeting abstracts which are likely to corre-
spond to case reports, we consider a set of 60,000
randomly sampled abstracts from PubMedDS. We
then use our SplitDis and SpecificType settings to
construct the examples. The results in Table 8 show
that using randomly chosen abstracts leads to worse
results, compared to our standard setting.

Masking vs not Masking We consider a variant
of the method in which the original passage is used,
i.e. where we do not replace occurrences of the
target disease with a <mask> token. The results in
Table 8 clearly shows that masking is essential to
achieve the best results. Nonetheless, even without
masking we obtain results that are clearly better
than those of the baseline (i.e. PubMedBERT with-
out intermediate fine-tuning).

Masking vs Removing Sentences Instead of re-
placing the target concept with a <mask> token,
here we remove the entire sentence in which this
concept is mentioned. For this variant, called
Remove-Sent, we only consider the SpecificType
setting (with treatments), as using SplitDis would
result in too few examples, given that several Split-
Dis examples consist of a single sentence. The
results show that removing the sentence under-
performs masking the concept.

5 Conclusions

We have proposed a strategy for intermediate fine-
tuning of biomedical language models, to improve
their ability to interpret patient case descriptions.
The core of our strategy is to exploit abstracts of
case reports found in the literature, as a surrogate of
patient case descriptions, and to rely on the heuris-
tic that diseases and treatments that are mentioned
in such abstracts are likely to correspond to diag-
noses and recommendations, respectively. Despite
its conceptual simplicity and without the cost of
manual annotation, this approach was found to lead
to clear performance gains, setting a new state-of-
the-art in MedQA and DisKnE, while also benefit-
ting more diverse datasets such as HeadQA.
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Abstract

Recent studies show that NLP models trained
on standard English texts tend to produce bi-
ased outcomes against underrepresented En-
glish varieties. In this work, we conduct a pi-
oneering study of the English variety use of
African American English (AAE) in NLI task.
First, we propose CODESWITCH, a greedy uni-
directional morphosyntactically-informed rule-
based translation method for data augmenta-
tion. Next, we use CODESWITCH to present a
preliminary study to determine if demographic
language features do in fact influence models
to produce false predictions. Then, we con-
duct experiments on two popular datasets and
propose two simple, yet effective and general-
izable debiasing methods. Our findings show
that NLI models (e.g. BERT) trained under our
proposed frameworks outperform traditional
large language models while maintaining or
even improving the prediction performance. In
addition, we intend to release CODESWITCH,
in hopes of promoting dialectal language diver-
sity in training data to both reduce the discrim-
inatory societal impacts and improve model
robustness of downstream NLP tasks.

1 Introduction

In recent years, social media has become a piv-
otal tool its users to express their thoughts, feel-
ings, and opinions on similar interests (Dacon and
Tang, 2021). Typically, Standard American English
(SAE), a high-resource language (HRL) is often
used in formal communication, whereas African
American English (AAE)1 is primarily spoken in

∗Corresponding author: Jamell Dacon
1This English language variety has had several names

within the last decades such as African American Vernacular
English (AAVE), African American Language (AAL), Black
English, Ebonics, Non-standard English, Northern Negro En-
glish and Black English Vernacular (BEV) (Bailey et al., 1998;
Green, 2002; Bland-Stewart, 2005; King, 2020). However, it
is now commonly referred to as African American English
(AAE), an English language variety.

the United States and is often heavily and explic-
itly used on social media platforms such as Twitter
(Field et al., 2021; Blodgett et al., 2020).

In particular, AAE is an English language vari-
ety and can be considered to be a low-resource lan-
guage (LRL) that is neither spoken by all African
Americans or individuals who identify as BIPOC
(Black, Indigenous, or People of Color), nor is
it spoken only by African Americans or BIPOC
individuals (Field et al., 2021; Dacon, 2022; Bland-
Stewart, 2005). However, most dominant AAE
speakers reside in diglossic communities and are
able to code-switch, speaking both SAE and AAE.
In linguistics, code-switching also referred to as
language alternation is the ability of a speaker to al-
ternate between two or more languages or language
varieties within a particular conversation (Young
and Barrett, 2018; Gardner-Chloros et al., 2009;
DeBose, 1992; Young, 2009; Dacon, 2022). Thus,
we refer to code-switching as switching among di-
alects, and/or language styles. For example, bi-
dialectal AAE speakers are often able to code-
switch between the SAE and both phonological
and morphological language features of AAE while
maintaining contextual intent.

Natural Language Understanding (NLU) is a sub-
set of NLP, which enables human-computer inter-
action (HCI) by attempting to understand human
language data such as text or speech, and com-
municate back to humans in their respective lan-
guages such as English, Spanish, etc., (Schank,
1972). Hence, we will focus on inference, which
is an eminent area of study of NLU. In particu-
lar, Natural language inference (NLI), a subset of
NLU, also known as Recognizing Textual Entail-
ment (RTE) is a segment-level categorization task
of understanding the inferential relationships be-
tween sentence pairs and anticipating whether they
are entailing, contradictory, or neutral sentences
(Bowman et al., 2015; Williams et al., 2018).

Generally, the term implicit bias is used to refer
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to the unconscious preferential behaviors towards
a certain demographic group such as age, race, eth-
nicity, gender, etc. (Liu et al., 2021; Tan et al.,
2020a; Ribeiro et al., 2018). However, in this study,
to examine the differences in language styles from
different demographic groups, we refer to this type
of predisposed language style bias as inherent lin-
guistic bias. Although, both biases are very similar,
there exists a subtle difference as linguistic bias
specifically refers to an analysis of every aspect of
a particular language (Zhou and Bansal, 2020). The
existence of these biases in large language models
(LLMs) such as mask language models (MLMs)
generate language bias leading to potential harmful
societal impacts inconveniencing members of LRL
and diglossic communities who speak both stan-
dard languages and unrepresented dialects. This
may increase feelings of marginalization and dis-
enfranchisement (Liu et al., 2020a; Blodgett et al.,
2020; Field et al., 2021).

Hence, in this work, we conduct a pioneering
study of robustifying MLMs to minimize false pre-
dictions by introducing dialectal language diver-
sity in training data to determine if MLMs learn
to make predictions based on demographic lan-
guage features, and proposing two debias methods
to enhance NLI models to mitigate the presence
of linguistic bias during the training process. We
posit that it is vital for production-ready MLMs
improve their robustness to produce minimal sys-
temic biases against protected attributes such as
race and gender and thus, reducing discriminatory
societal impacts (Hovy and Spruit, 2016; Sharma
et al., 2021; Liu et al., 2020a; Tan et al., 2020a).

Specifically, we aim to answer two research ques-
tions: (1) How can we as NLP practitioners encour-
age dialectal language diversity in training data?;
(2) Do pretrained MLMs make predictions based
on demographic language features?; and (3) How
can we measure fairness and mitigate such biases
in order to ensure fairness in NLU.
Our contributions include:

• CODESWITCH, a greedy unidirectional
morphosyntactically-informed rule-based
translation method for data augmentation to
generate intent-and-semantically equivalent
AAE examples by perturbing SAE examples.

• Two intent-and-semantically equivalent NLI
dataset of AAE sentence pairs with a wide
range of morphological syntactic features and
dialect-specific vocabulary.

• A detailed human evaluation of our human
annotators to ensure contextual accuracy of
adversarial sentence pairs (see Appendix D
for details).

• Two simple, yet effective debiasing methods
to mitigate the inherent linguistic bias in NLI
models, while maintaining or even improving
their prediction performance.

2 Preliminaries

In this section, we introduce some preliminary
knowledge about the problem under study. We first
present the problem statement, and then describe
two popular NLI datasets used in our research.

2.1 Problem Statement

We aim to investigate sentence representations of
two linguistic systems of different demographic
groups to demonstrate the existence of constitu-
tional linguistic bias. To address the above research
questions, we define two goals:

1. The first goal is to predict inferential relation-
ships between paired sentences i.e., the sec-
ond sentence is an entailment, contradiction,
or neutral with respect to the first sentence.

2. The second goal is to debias the sentence rep-
resentations obtained from the words in the
given sentence. Specifically, we want the sen-
tence representation to only include the se-
mantic information, but not the language style,
whether SAE or AAE. Therefore, we want the
MLM to ignore the language style of each
demographic group in order to make fair pre-
dictions.

Mitigating such linguistic biases can help de-
velop robust MLMs for LRLs and dialectal lan-
guages more easily. Our main objective is to focus
on dialectal language inclusivity, while using the
benefit of large pretrained MLMs in order to im-
prove model robustness of downstream tasks of
NLP technologies for LRLs and language varieties.

2.2 Dataset

In this subsection, we introduce two of the largest,
most popular NLP datasets for textual inference,
namely, the Stanford Natural Language Inference
(SNLI) and Multi-Genre Natural Language Infer-
ence (MNLI) corpora.
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Dataset Premise Hypothesis Label

SNLI
A land rover is being driven across a river. A vehicle is crossing a river. entailment
Children smiling and waving at camera They are smiling at their parents neutral
An older man is drinking orange juice at a restaurant. Two women are at a restaurant drinking wine. contradiction

MNLI
So i have to find a way to supplement that I need a way to add something extra. entailment
The new rights are nice enough Everyone really likes the newest benefits neutral
I don’t know um do you do a lot of camping I know exactly. contradiction

Table 1: Randomly chosen original SNLI and MNLI examples and their inferential relationships.

2.2.1 SNLI corpus
The SNLI (Bowman et al., 2015) corpus is con-
structed from the Flickr30k corpus (Young et al.,
2014). The original image caption is classified as
the premise, whereas, the hypothesis is a human-
written premise-related sentence that must satisfy
one of one of three relational conditions: (1) Entail-
ment – true image description, (2) Neutral – neutral
image description, and (3) Contradiction – false
or random image description. The SNLI corpus is
a collection of 570K premise-hypothesis sentence
pairs, where each pair is aligned with one of these
three relational labels.

2.2.2 MNLI corpus
Similarly to SNLI, the MNLI corpus (Williams
et al., 2018) is a closely related crowd-sourced col-
lection of 433k sentence pairs and their relational
labels. However, MNLI contains 10 distinct genre
categories (i.e., Letters, Verbatim, Fiction, Face-to-
face, Travel, Telephone, Travel, Oxford University
Press, Slate, 9/11, and Government) written and
spoken data instead of image caption data.

3 CODESWITCH Creation

In this section, we first describe the process of
the creation of CODESWITCH, carried out in three
steps: 1) data collection of morphological syntactic
features and dialect-specific vocabulary, 2) candi-
date retrieval of simple, deterministic morphosyn-
tactic substitutions for unidirectional translations,
and 3) human evaluation to test contextual accuracy
of perturbations generated by CODESWITCH.

3.1 Data Collection

First, to gain an better understanding of AAE
language, we engage with literature, sample
text examples and mass collect morpho-syntax
rules (which we adapt from the literature) (see
Appendix B) (Bailey et al., 1998; Green, 2002;
Bland-Stewart, 2005; Dacon, 2022; Blodgett
et al., 2020; Stewart, 2014; Blodgett et al., 2016;

Elazar and Goldberg, 2018). Therefore, we
attempt a proactive approach in data-collection of
grammatical, structural and syntactic rules of word
case usage of AAE language features to understand
the application of AAE in NLP downstream tasks.
Next, we employ and assist 6 trained sociolinguist
Amazon Mechanical Turk (AMT) workers2 with
our collected set rules and text examples.

Pairwise Sample Collection We first randomly
sample n = 5000 SAE premise-hypothesis sentence
pairs that contain at least 8 words from both SNLI
and MNLI corpora for a total of 10,000 sentence
pairs. For contextual accuracy, we task the first
3 workers to obtain the AAE equivalents of our
SAE samples (see Table 1), where each annotator
is tasked to translate each SAE sentence pair into
AAE. The full annotation guidelines can be seen in
Appendix C.

3.2 Candidate Retrieval

Starting from data collection, we next retrieve can-
didate phrases and words use cases for data aug-
mentation from our obtained AAE equivalent sen-
tence pairs. As Liu et al. (2021) uses a deep text
classification model to illustrate that demographic
language features do in fact influence models to
produce false predictions on semantically equiva-
lent SAE and AAE texts, our protocol follows sim-
ple, deterministic substitutions of English texts by
dialect-specific vocabulary. To do so, we make use
of both SAE and AAE sentence pairs in a pairwise
fashion and construct a unidirectional informed-
based translative morpho-syntax protocol (TMsP)
that enables CODESWITCH to convert any given
SAE text to a text possessing adequate language
features to be considered as AAE from a dominant
AAE speaker. More details on TMsP can be found
in Appendix B).

2Each AMT worker is independent and a trained soci-
olinguist filtered by HIT approval rate ≥ 96%, completed >
10,000 HITs and location (within the United States)
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Dataset Premise Hypothesis Label

SNLI AAE
A land rover bein driven across a river. A vehicle crossin a river. entailment
Children smilin n wavin at camera Dey smilin at they parents neutral
A older man drinkin orange juice at a restaurant. Two women at a restaurant drinkin wine. contradiction

MNLI AAE
So i gotta find a way ta supplement dat I need a way ta add sumn extra. entailment
Da new rights nice enough Everybody really likes da newest benefits neutral
Ion kno um do u do a lot of campin I kno exactly. contradiction

Table 2: Augmented SNLI and MNLI examples (from Table 1) following the application of CODESWITCH. Each
blue highlight corresponds to the AAE equivalent from their respective SAE counterpart.

Algorithm 1: The translative syntactic mor-
phological method for CODESWITCH.

1 Input: Original SAE sequence x
2 Output: Translated AAE sequence x′

3 begin function
4 Load SAE input sequence→ x
5 x← LOWER(x)
6 T ← TOKENIZE(x)
7 for all i = 1, 2, ..., |T | do
8 if i ∈ {TMsP} then
9 Tî← CODESWITCH(i)

10 end if
11 end for
12 x′ ← DETOKENIZE(T )
13 return x′
14 end function

Obtaining new texts for downstream tasks from
authors of certain demographic groups is time-
consuming and requires heavy human labor (Liu
et al., 2021; Dacon, 2022). Therefore, we cre-
ate CODESWITCH (see Algorithm 1), a greedy
unidirectional morphosyntactically-informed rule-
based translation method which is not only fast, but
also functions as a human-in-the-loop paradigm;
therefore, drastically reduces heavy human labor.
Our approach for intent-and-semantically equiva-
lent AAE data augmentation is intuitively simple
and effective. Consequently, we can now explore
code-switching in several NLP tasks to determine
if LLMs such as MLMs learn to make predictions
based on demographic/ dialectal language features.

We represent each original NLI corpus as D <
P,H,L > with p ∈ P as the premise, h ∈ H as
the hypothesis and, lastly, l ∈ L as the label, and
create two augmented datasets i.e., SNLI AAE and
MNLI AAE, where we represent each augmented
NLI dataset as D′ < P ′, H ′, L >. Specifically,
translate each premise-hypothesis pair to AAE and
keep the original label unchanged to form a new
instance. It is important to note that the task of
CODESWITCH is to ensure both sets of datasets
i.e., D and D′ maintain their contextual accuracy,

although they consist of two different language
styles (see Table 2).

3.3 Human Evaluation

After an initial training of the AMT annotators with
our annotation guidelines, we implement a minor
calibration study by tasking the remaining 3 inde-
pendent workers to test our AAE data augmentation
method. We randomly sample 200 SAE/AAE sen-
tence pair examples from each of the 4 datasets, for
a total of 800 sentence pairs (or 1600 SAE/AAE
sentences). The workers were asked to indicate (1)
whether the AAE sentences are written by an L1 (or
dominant) AAE speaker, or most likely to be ma-
chine generated (MG); and (2) whether or not their
contextual accuracy is maintained. For content
analysis to ensure the quality of our AAE samples
and to quantify the extent of agreement between
raters, we first let 3 annotators independently rate
each AAE-generated sentence pair as “Native” or
“MG”, then we measure the inter-annotator agree-
ment (IAA) using Krippendorff’s α.

We calculate an inter-rater reliability of 0.82,
and did not observe significant differences in agree-
ment across the individual sentences. Qualitative
analysis revealed that generated samples resembled
sequences written by L1 AAE speakers, whereas
few samples were classified as most likely MG. An-
notators informed us of particular morpho-syntax
cases, for example, constant copula deletion of the
verb “be” and its variants, namely “is” and “are” is
irregular and often inserted last in word order. This
indicates that CODESWITCH does not account for
contextual instances when generating AAE sam-
ples, hence being classified as most likely MG.

4 Empirical Study and Analysis

In this section, we conduct a preliminary study to
substantiate the existence of inherent linguistic bias
in NLI models. We introduce the base NLI models
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and training details, and then we demonstrate our
empirical results.

To illustrate inherent linguistic bias of two dis-
tinct linguistic systems, we introduce a represen-
tative MLM, namely, BERT (Devlin et al., 2018)
(see Appendix A for more details).

Model Performance (%)
SNLI MNLI

Models SAE AAE Diff. SAE AAE Diff.
BERTBASE 90.12 86 4.12 84.77 79.79 4.68

BERTLARGE 90.46 74.55 15.91 84.47 67.35 17.12

Table 3: Model performance when tested on AAE
data. The intensity of each red highlight directly corre-
sponds to the absolute difference in accuracy disparities.

We use each original dataset i.e., SNLI and
MNLI to fine-tune both BERT models on a batch
size of 32 using an AdamW optimizer with a learn-
ing rate of 2e-5 and default betas (β1 = 0.9, β2 =
0.999) for 3 epochs. Our experiments display that
pretrained MLMs “are only as good as the data
they are trained on” and are unable to make fair pre-
dictions (Tan et al., 2020a). In Table 3, we see that
the lack of diverse training data results in dispari-
ties in model performance in MLMs, which may
be significantly be intensified as models become
more complex. In Table 4, we illustrate several ex-
amples on the inherent linguistic bias on account of
demographic language features, and can conclude
that demographic/ dialectal language features do in
fact influence models to produce false predictions.

5 Debiasing Methods

In Section 4, we empirically demonstrate that popu-
lar NLI models show significant bias towards AAE
by underperforming on them than SAE. A natu-
ral question arises: how can we remove the biases
in NLI models towards different language styles?
To solve this problem, we introduce two simple
but effective debiasing strategies: (1) counterpart
data augmentation (CDA); and (2) language Style
disentanglement (LSD).

5.1 Counterpart Data Augmentation

The bias of NLI models originates from the training
data. Since the training data contains only SAE,
the NLI models trained on such data does not un-
derstand the unique vocabulary and grammar of
AAE, which leads to poor performance. Thus, we
propose to implement CODESWITCH to augment
the original SAE training data by translating them

to their AAE counterparts and in turn implement
CDA strategy similar to (Zhao et al., 2018; Zmi-
grod et al., 2019). Then, we will get a large aug-
mented training dataset, D+, which is twice the
size of the original datasets (i.e., SNLI) as it con-
tains both D and D′.

5.2 Language Style Disentanglement

For two texts with the similar intent and seman-
tic content of different language styles (e.g. SAE
v.s. AAE), an NLI model may tend to make bi-
ased predictions towards one style. The immediate
reason is that the NLI prediction are based on the
language style features, instead of relying solely
on the semantic features of the texts. Based on this
consideration, we propose LSD, an in-processing
debiasing method, which tries to disentangle the
language style features from the semantic features
in text representations and forces the NLI model
to make inference on the pure semantic representa-
tions.

5.2.1 The LSD Framework
To achieve disentanglement, we adopt the idea of
adversarial learning. Figure 1 illustrates the over-
all framework of LSD. We view the framework
as three parts: (1) the BERT model that encodes
a premise-hypothesis pair as a fixed-dimensional
representation E[CLS]; (2) a feed-forward neural
(FFN) classifier C that takes E[CLS] as input to
predict the inferential relationship between the
premise and the hypothesis; and (3) a FFN discrim-
inator D that predicts whether the sentence pair
is SAE or AAE based on E[CLS]. Via adversarial
learning, our goal is to build a BERT model that
can produce an accurate semantic representation of
the text pair so that the classifier C can make correct
predictions based on it, while the representation is
free from the language style features of the texts, so
that the discriminatorD cannot distinguish whether
the texts are from D or D′.

5.2.2 An Optimization Method
We present our optimization algorithm for the LSD
framework in Algorithm 2. We train the frame-
work on the augmented training dataset obtained
via our CODESWITCH method as we do in CDA.
In the training data T = {< Pi, Hi, Li, Si >}|T |i=1,
each instance consists of a premise p, a hypothe-
sis h, a label l, and a binary language style label
S ∈ {SAE,AAE}. At the beginning, we first load
pretrained BERT parameters, and initialize the pa-
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Premise Hypothesis Label Prediction
Dis church choir sings ta da masses as dey

sing joyous songs from da book at a church.
Da church filled wit song. Entailment Neutral

Dis church choir sings ta da masses as dey
sing joyous songs from da book at a church.

Da church has cracks in da ceiling. Neutral Contradiction

Dis church choir sings ta da masses as dey
sing joyous songs from da book at a church.

A choir singin at a baseball game. Contradiction Entailment

A woman wit a green headscarf, blue
shirt n a very big grin.

Da woman young. Neutral Contradiction

A woman wit a green headscarf, blue
shirt n a very big grin.

Da woman very happy. Entailment Neutral

Table 4: An illustrative example on the inherent linguistic bias of a NLI models. Each blue highlight corresponds
to the AAE equivalent from their respective SAE counterpart (see Appendix B)

[CLS] Tok 1 Tok N⋯ [SEP] Tok 1 Tok N⋯

Premise Hypothesis

BERT

E[CLS] E1 EN⋯ E[SEP] E1 EN⋯

E[CLS]

Classifier

Discriminator
SAE

AAE
?

entailment
contradiction
neutral

Figure 1: An illustration of the language-style disentan-
glement model.

rameters of the classifier C and the discriminator D
(line 3-4). In each iteration, we first obtain a mini-
batch of training data B = {< Pi, Hi, Li, Si >

}|B|i=1 (line 3). Then, we update the discriminator
D by minimizing the following cross-entropy loss
(line 4):

LD = −(I{S = 0} log pD0 + I{S = 1} log pD1 )
(1)

where S is the language style label of the utterance.
S = 0 represents for SAE and S = 1 represents
for AAE. pD0 and pD1 are the two elements in the
predicted probability pD from the discriminator
D. Minimizing LD will force D to make correct
predictions.

Next, we calculate the cross-entropy loss on the
main prediction task:

LC = −(I{L = 0} log pC0 + I{L = 1} log pC1+
I{L = 2} log pC2)

Algorithm 2: The optimization method for
the LSD framework.

1 Input: Training data T = {< Pi, Hi, Li, Si >}|T |
i=1

and Validation data V = {< Pi, Hi, Li, Si >}|V|
i=1

2 Output: BERT parameters WBERT, classifier
parameters WC

3 Load pre-trained parameters WBERT

4 Initialize WC and WD

1: for N epochs do
2: for M batches do
3: Obtain a mini-batch of training data B from T
4: Update WD by optimizing LD in Equation 1
5: Update WBERT and WC by optimizing L in

Equation 2
6: end for
7: Run the BERT model and the classifier C on

validation data V
8: Save parameters WBERT and WC if achieving the

best validation performance so far.
9: end for

where L is the set of labels of the NLI task. S =
0, 1, 2 represent for entailment, contradiction, and
neutral, respectively. pCj indicates the predicted
probability for the j-th label from the classifier C.
Minimizing LC will force C to make correct predic-
tions. To ensure that the BERT model produces a
text representation that can fool the discriminator,
when training, we consider another entropy loss:

LD′ = −(pD0 log pD0 + pD1 log pD1 )

LD′ is the entropy of the predicted distribution pD

from the discriminator. Minimizing it makes pD

close to an even distribution, preventing D from
making correct predictions. We update the BERT
model and the classifier by minimizing the follow-
ing combined loss (line 5):

L = LC + LD′ (2)
1447



At the end of each epoch, we run the BERT
model and the classifier on the validation data, and
save their parameters if they achieve the best vali-
dation performance.

5.3 Experimental results

In Table 5, we show the performances of the two
debiasing methods on two datasets in terms of two
BERT models. In Table 3, the results of the de-
biased models CDA, LSD and that of the orig-
inal models were compared. Note that our two
debiasing methods reduce the gap between the per-
formances on SAE and AAE significantly. The
original BERT models perform well on SAE test
data but exhibit a decrease in performance when
they are tested on AAE data. However, the BERT
models trained under CDA or LSD debiasing strate-
gies achieve similar model performance on SAE
and AAE, which demonstrates the effectiveness of
the two debiasing methods to mitigate bias in NLI
models.

Model Performance (%)
SNLI MultiNLI

Models SAE AAE Diff. SAE AAE Diff.
CDABASE 89.77 89.76 0.01 84.29 83.98 0.31
LSDBASE 90.35 90.49 0.14 84.50 83.81 0.69

CDALARGE 90.48 90.36 0.12 84.66 84.20 0.46
LSDLARGE 90.60 90.53 0.07 84.72 84.30 0.42

Table 5: Model performances of two debiased NLI mod-
els. The intensity of each green highlight directly
corresponds to the absolute difference in accuracy.

Furthermore, our debiased models not only im-
prove the performance on AAE data, but also main-
tain similar performance on SAE data as the orig-
inal model. This is due to either the introduction
of additional AAE training data which is not al-
ways available, and the disentanglement between
the semantic and language style features of texts
enhancing the model’s capability of understanding
natural language. Lastly, we find that LSD gen-
erally outperforms CDA on both SAE and AAE
data. In addition, LSD is an adversarial learning de-
baising method that filters out irrelevant language
style information towards the NLI task. In fact,
LSD is also generalizable for more effective and
architecturally similar models such as DeBERTa
(He et al., 2020), XLNet (Yang et al., 2019), and
T5 (Raffel et al., 2019) to ensure fairness as well
as robustifying larger language models.

6 Related Work

Previous works focus on AAE in the context of
racial bias as a result of systemic biases in model
performance. For example, Blodgett et al. (2018)
focus on dependency parsing social media AAE
to analyze the impacts of performance disparities
between AAE and SAE tweets. Other works under-
take AAE within the scope of detecting and mitigat-
ing the presence of racial bias in areas of offensive
and abusive language detection (Liu et al., 2020a;
Sap et al., 2019), sentiment analysis (Groenwold
et al., 2020) and hate speech detection (Davidson
et al., 2019; Sap et al., 2019). However, these in-
fluential works do not engage with AAE literature,
utilize a human-in-the-loop paradigm nor employ
the humans who create such data. Thus, these
pivotal works fail to understand AAE’s phonologi-
cal and morphological language features—thereby
simply treating AAE as another non-Penn Treebank
English variety (Blodgett et al., 2020).

Fairness in NLP. As social and racial dispar-
ities have become a compelling issue within the
NLP community, focal topics of fairness, account-
ability, ethics, sustainable development, etc., have
gained momentous attention in recent years (Hovy
and Spruit, 2016). Recent work on fairness has
primarily been focused on racial and gender bi-
ases in distributed word representations (Bolukbasi
et al., 2016; Zhao et al., 2018; Zmigrod et al., 2019),
coreference resolution (Rudinger et al., 2018), sen-
tence encoders (May et al., 2019), machine trans-
lation (Tan et al., 2020b; Prates et al., 2018), and
dialogue generation (Liu et al., 2020a,b).

Adversarial learning in NLP. Adversarial ex-
amples were initially explored in computer vision
by Szegedy et al., where these examples were in-
tended to influence models to produce false pre-
dictions. However, in NLP, adversarial examples
can occur at a phonetic, phonological, morpholog-
ical, syntactic, semantic, or pragmatic level (Tan
et al., 2020a; DeBose, 1992; Gardner-Chloros et al.,
2009; Young and Barrett, 2018). Liu et al. (2020a)
displays that dialogue systems are prone to pro-
duce offensive responses when fed AAE language
features in comparison to SAE, whereas Liu et al.
(2020b) propose a novel adversarial learning frame-
work which directly addresses the issue of gender
bias in dialogue models while maintaining their
performance. Both Alzantot et al. (2018) and Joshi
et al. (2019) exploit the notion of adversariality
by utilizing word embeddings to find the k nearest
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synonymic examples.
Summary. These influential works demonstrate

novel adversarial learning methodologies on a char-
acter and/or word-level in order to address bias
issues surrounding protected attributes such as
race and gender by improving model robustness.
Similarly, our work utilizes a human-in-the-loop
paradigm by employing humans who create such
data, to create a novel morphosyntactic method to
perturb language styles on a syntactic-level to high-
light the need for dialectal language diversity in
training data.

7 Conclusion and Future Works

To address compelling fairness, accountability,
transparency, and ethical concerns surrounding the
sustainability of language use in NLP applications,
we claim that the addition of diverse dialectal lan-
guage in training data will improve model robust-
ness and generalizability. Our findings show that
our proposed debiasing methods not only improves
the performance on AAE data but effectively re-
duces the performance gap between SAE and AAE
significantly, while maintaining or even improving
the prediction performance on SAE data. There-
fore, training under these two debiasing strategies
aids in the mitigation of linguistic bias in NLI mod-
els.

We conclude that though similar, the two lan-
guage styles, SAE and AAE are not identical, and
thus, should not solely be evaluated against each
other, but compared to as a basis of model perfor-
mance minimize the existence of inherent linguistic
bias in language models. In the future, we intend
to release CODESWITCH a morphosyntactically-
informed rule-based translation method for unidi-
rectional data augmentation for generating intent-
and-semantically-equivalent AAE examples as a
public python package, to encourage further com-
putational linguistic research into debiasing vari-
ous NLP systems. We actively intend on updating
CODESWITCH s.t. it can include new or regional-
specific lingo. In this way, CODESWITCH can con-
stitute potential groundwork on ways that AAE can
effectively be integrated in NLP systems to improve
future language models during their development
and employment.

8 Limitations And Ethical Considerations

All authors must warrant mentioning that the in-
creased performance for underrepresented dialects

in NLP systems has the potential to enable au-
tomated discrimination based on the use of non-
standard dialects. Although, we attempt to high-
light the need for dialectal inclusivity for impactful
speech and language technologies, we do not in-
tend for increased feelings of marginalization of an
already stigmatized community.

We have established our method’s effectiveness
for data augmentation for generating intent-and-
semantically-equivalent AAE examples and believe
that CODESWITCH could be further improved by
addressing the following limitations:

1. Currently, CODESWITCH is a unidirectional
data augmentation method and cannot be used
in reverse as a deterministic text normaliza-
tion/preprocessing system which can convert
all text to SAE.

2. CODESWITCH operates on simple, determin-
istic substitutions for morphosyntactically-
informed translations rules found in Appendix
B rather than that of real L1 and L2 AAE
speakers, which may result in the lack of sev-
eral formal/informal phrases, expressions, id-
ioms, cultural and regional-specific lingo, and
slang-related words (Blodgett et al., 2020).
For example, “I sholl was finna ask who
money dat is ”, where “sholl” refer to the re-
placement of the word “sure”.

3. Although CODESWITCH possesses several
simple, deterministic morphosyntactically-
informed translation rules it does account for
contextual instances of accurate copula dele-
tion. This may lead to a discrepancy between
actual text written by L1 and/or L2 AAE
speakers and our proposed data augmentation
method.

In the future, we intend to address these lim-
itations and ethical considerations by partnering
with AAE diglossic communities in hopes of ro-
bustifying CODESWITCH to be probabilistic rather
than deterministic to capture different AAE vari-
ants of the same SAE term (for example, the AAE
equivalents to “what’s”→ “waz”/“wus”/“wats”. In
addition, we will investigate inherent linguistic bias
in other NLP applications.
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A Implementation Details

A.1 Details of the Base Model
BERT – Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018) is
a Transformer-based ML technique for NLP that
achieves state-of-the-art results in a wide variety of
NLP tasks. BERT is trained on a huge Books Cor-
pus + Wikipedia dataset i.e., raw unlabeled English
text consisting of 3.3 billion words. This model
exploits an attention mechanism to learn contextual
relationships between words and optimizes two ob-
jectives: (1) Masked Language Modeling (MLM)
and (2) Next Sentence Prediction (NSP), and has a
vocabulary size of 30,522.

A.2 Details of Experimental Settings
In summary, BERT optimizes its two objectives uni-
formly, and thus, it serves as a appropriate model
for our task of understanding the inferential rela-
tionships between sentence pairs by examining the
differences in language styles from different de-
mographic groups e.g. African Americans. Now,
we will now give details of each pretrained BERT
model below:

1. BERT-base-uncased - Trained on raw English
text, and consists of 12-layers, 768-hidden,
12-heads, 110M parameters.

2. BERT-large-cased - Trained on raw lower-
cased English text, and consists of 24-layer,
1024-hidden, 16-heads, 335M parameters.
Trained on cased English text.

B Translative Morpho-syntax Protocol

Here we present a set of 20 linguistic phonetic
and morphological text rules that are used to code-
switch from SAE to AAE while maintaining con-
textual accuracy i.e., original structure, intent, se-
mantic equivalence, and quality of a text. Please

note that these are only a few examples of the most
commonly used morphological linguistic AAE fea-
tures (which we adapt from AAE literature). Our
deterministic translative morpho-syntax protocol
(TMsP) and its cases are as follows:

1. Consonant (‘t’) deletion (Special case) : e.g.
“just”→ “jus”; “must”→ “mus”

2. Contractive (’all) gain: “You all”→ “Y’all”

3. Contractive negative auxiliary verbs replace-
ment: “doesn’t”→ “don’t”

4. Contractive (’re) loss: e.g. “you’re”→ “you”;
“we’re”→ “we”; “they’re”→ “they”

5. Contractive word replacement: e.g. “isn’t”→
“ain’t”; “wasn’t”→ “ain’t”

6. Copula deletion: Deletion of the verb “be”
and its variants, namely “is” and “are” e.g.
“He is on his way”→ “He on his way”; “You
are right”→ “You right”

7. Gerund consonant (‘g’) deletion and retain-
ment:

• Consonant (‘g’) deletion: e.g. “coming”
→ “comin”; “going”→ “goin”

• Consonant (‘g’) retainment (Exception
case): e.g. “–inging”

8. Homophonic word replacement: e.g. “whine”
→ “wine”; “you’re”→ “your”

9. Indefinite article replacement: e.g. “an” →
“a”

10. Indefinite pronoun replacement: e.g. “anyone”
→ “anybody”; “everyone”→ “everybody”

11. Interdental fricative loss: e.g. “this”→ “dis”;
‘that’ → ‘dat”; “than” → “dan”; “their” →
“they (dey)”; “the”→ “da”

12. Negative concord replacement: e.g. “Don’t
say anything”→ “Don’t say nothing”

13. Phrase reduction (present/ future tense) ⇒
word e.g. “going to”→ “gonna”; “want to”
→ “wanna”; “trying to”→ “tryna”; “what’s
up”→ “wassup”; “fixing to”→ “finna”

14. Possessive (’s) removal: e.g. “He’s mad at me”
→ “He mad at me”
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15. Present tense possession replacement: e.g.
“John has two apples”→ “John got two ap-
ples”; “The neighbors have a bigger pool”→
“The neighbors got a bigger pool”

16. Remote past “been” + completive (‘done’):
“I’ve already done that”→ “I been done that”

17. Remote past “been” + completive (‘did’):
“She already did that”→ “She been did that”

18. Remote past “been” + Present tense posses-
sion replacement: “I already have food”→
“I been had food”; “You already have those
shoes”→ “You been got those shoes”

19. Term-fragment deletion: e.g. “brother” →
“bro”; “sister”→ “sis”; “your”→ “ur”; “sup-
pose”→ “pose”; “more”→ “mo”

20. Term-fragment replacement: “something”→
“sumn”; “through”→ “thru”; “for”→ “fa”;
“nothing”→ “nun”

C Annotation Guidelines

You will be given a phrase that is written in
Standard American English (SAE), your task is
to correctly identify if the translative vocabulary
rules in Appendix B are accurate in order to
translate SAE text to AAE text. Furthermore,
while reviewing the rules, be sure to mention that
these rules and/or morpho-syntax word cases in
the sampled premise-hypothesis sentence pairs
maintain their contextual accuracy i.e., original
structure, intent, semantic equivalence, and quality.

SAE to AAE Protocol

1. Are you a dominant AAE speaker?

2. If you responded “yes” above, are you bi-
dialectal?

3. If you responded “yes” above, are you capa-
ble of code-switching by alternating between
SAE and AAE frequently on a daily basis in a
single conversation or situation?

4. Given TMsP above in Appendix B, are these
main grammatical, structural and syntactic
rules of word case usage of AAE linguistic
features?

5. If you responded “no” above, can clarify
which rule is insufficient? In addition, if possi-
ble, can you provide a grammatical, structural
or syntactic rule that is not detailed in Ap-
pendix B?

D Contextual accuracy Protocol

Given a table of SAE-AAE sentence pairs exam-
ples, determine whether or not their contextual ac-
curacy is maintained.

SAE AAE
i will go back to the house imma go back ta da house
i don’t want to go to bed ion wanna go ta bed

he isn’t my friend, but he’s a king he ain’t my friend, but he a king
she is being weird to me she been weird ta me

you all are annoying yall annoyin
he isn’t coming anymore he ain’t comin no mo
a woman is trying to walk a woman tryna walk

this bag and that shoe are mine dis bag n dat shoe mine
their kids are laughing they kids laughin

john and kates have two dogs john n kates hav two dogs
are you going through something u goin thru sumn

what are you doing wat r u doin
what’s the temperature wus da temperature

they have a better car than us dey hav a betta car dan us
so you’re going to the party so your gonna go ta da party

they are singing but they can’t sing dey singing but dey can’t sing
you could of have it all u coulda hav it all

he would’ve had it if he was here he woulda had it if he was here
we should have been first in line we shoulda been first in line

he should of had the last bite he shoulda had da last bite

Table 6: SAE examples and their AAE equivalents (after
using CODESWITCH).

1. As you responded “yes” a previous question,
... are you capable of code-switching by al-
ternating between SAE and AAE frequently
on a daily basis in a single conversation or
situation?

We will now provide 20 lower-cased test sen-
tences is Table 6.

2. Have you ever seen any of these words in a
particular sentence in Table 6, for example, on
social media such as Twitter?

3. If you responded “yes” above, For each SAE
sentence, does each plausible AAE sentence
resemble adequate AAE morphological lan-
guage features from a dominant AAE speaker
after applying CODESWITCH?

4. If you responded “yes” above, do these pairs
maintain their contextual accuracy i.e., origi-
nal structure, intent, semantic equivalence and
quality?
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5. For dialectal (morphological and phonologi-
cal) purposes, are these particular words spelt
how would you say or use them? For example,
texting or posting on social media?

6. If you responded “no” above, can you pro-
vide a different spelling along with its SAE
equivalent?
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Abstract

Despite the success of state-of-the-art pre-
trained language models (PLMs) on a series of
multi-hop reasoning tasks, they still suffer from
their limited abilities to transfer learning from
simple to complex tasks and vice-versa. We
argue that one step forward to overcome this
limitation is to better understand the behavioral
trend of PLMs at each hop over the inference
chain. Our critical underlying idea is to mimic
human-style reasoning: we envision the multi-
hop reasoning process as a sequence of explicit
single-hop reasoning steps. To endow PLMs
with incremental reasoning skills, we propose
a set of inference strategies on relevant facts
and distractors allowing us to build automat-
ically generated training datasets. Using the
SHINRA and ConceptNet resources jointly, we
empirically show the effectiveness of our pro-
posal on multiple-choice question answering
and reading comprehension, with a relative im-
provement in terms of accuracy of 68.4% and
16.0% w.r.t. classic PLMs, respectively.

1 Introduction

Recent developments have shown that models
based on transformers (Vaswani et al., 2017; Liu
et al., 2019b) have emerged as effective soft rea-
soners over language (Talmor et al., 2020a; Kass-
ner et al., 2020). To teach transformers the ability
to emulate reasoning, they are trained on knowl-
edge encoded in the form of natural language state-
ments generally built upon explicit rules (Clark
et al., 2020) or symbolic facts that refer to triples
in knowledge graphs (KG) (Kassner et al., 2020).
In addition, the reasoning skills of these models
can successfully combine explicit natural language
statements with implicit knowledge acquired dur-
ing pre-training (Talmor et al., 2020b). In particu-
lar, many state-of-the-art pre-trained language mod-
els (PLMs), such as BERT (Devlin et al., 2019) or
RoBERTa (Liu et al., 2019b), have been success-
fully used in multi-hop reasoning problems includ-

ing multi-hop question-answering (QA) tasks (We-
ber et al., 2019; Richardson and Sabharwal, 2020;
Saxena et al., 2020; Saha et al., 2021) and multi-
hop reading comprehension (RC) (Min et al., 2019;
Ding et al., 2019). Training multi-hop reasoning
specifically implies a two-step process: 1) distin-
guish -within a context- the relevant facts from
the distractors to be used for reasoning; both rele-
vant facts and distractors are generally expressed
as statements in natural language using linguistic
patterns (Clark et al., 2020); 2) reasoning over a
sequence of relevant facts leading to chains of rea-
soning (Das et al., 2019). A common approach to
teaching PLMs to solve a multi-hop reasoning task
is to convert the structural reasoning task into sub-
tasks that model the sequence of reasoning tasks.
For instance, Richardson and Sabharwal (2020)
and Clark et al. (2020) rely on a multitasking train-
ing strategy (Caruana, 1997) that uses training in-
stances mixing different depths of reasoning steps
(hops). More precisely, to teach a model solving a
k-hop reasoning problem, it is trained to simulta-
neously solve single i-hop (1 ≤ i ≤ k) inference
tasks. In the same line, Min et al. (2019) and Ding
et al. (2019) carry out several steps of single-hop
reading comprehension to simulate multi-hop rea-
soning. However, while yielding impressive results,
it is still unclear if PLMs endowed with multi-hop
reasoning skills really leverage the learned skills
at each single-hop depth level along the reasoning
chain. More specifically, our work is motivated
by observing that PLMs yield unpredictable re-
sults while performing multi-hop reasoning. For in-
stance, previous studies show that the performance
of PLMs degrades substantially even with a slight
increase in the number of hops in the underlying
reasoning tasks (Richardson and Sabharwal, 2020).
This result indicates that multi-hop models at lower
depths struggle to transfer information to deeper-
hop models, giving rise to the compositionality
generalization (Chaabouni et al., 2020) issue from
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simpler to complex tasks.
In this work, we advocate that a better under-

standing of the inherent relationships between the
different single-hop reasoning models allows the
design of more predictable models. We seek to
answer three main questions. First, grounded in
previous findings in the literature (Richardson and
Sabharwal, 2020) showing the compositionality
generalization issue, do single-hop reasoning mod-
els incrementally learn? (RQ1). We construct
large probe datasets using SHINRA (Sekine et al.,
2018), ConceptNet (Speer et al., 2017), and Rule-
Takers (Clark et al., 2020) using single-depths of
inference to train and probe single-hop models and
compare their performance. Overall, our findings
confirm the prevalence of the compositionality gen-
eralization issue from complex to less complex
multi-hop reasoning tasks. Second, inspired by the
human reasoning style to solve complex problems
based on simpler ones (Anderson, 1980), can PLMs
be guided toward incremental reasoning? (RQ2).
Specifically, we propose a generic and automatic
methodology for generating training probe datasets
that endow PLMs with reasoning capabilities over
a sequence of single-hop steps. We particularly in-
vestigate the impact of using distractor generation
strategies. Our empirical results show that we can
guide PLMs to incrementally reason by leveraging
classic approaches with a gain of up to 7.98 accu-
racy. These training datasets are publicly available1.
Finally, grounded on previous findings revealing
that PLMs trained on one specific reasoning task
improve their performance on different and unre-
lated reasoning tasks (Talmor et al., 2020b), do
QA tasks leverage incrementally trained reasoning
models? (RQ3). For the multi-hop QA task, in par-
ticular, the results show that our approach quickly
adapts to obtain an accuracy of 54.74 compared to
52.03 from state-of-the-art

2 Methodology

In this section, we first introduce the basic defini-
tions and notations used in our proposal and then
present the data probe generation methodology.

2.1 Task Definition

We focus on the multi-hop symbolic reasoning task
over explicit knowledge. Following previous work,
our setting includes the following:

1https://github.com/jeslev/
incremental_reasoning

1) a knowledge graph (KG) G = (E ,R) with
entities as nodes (e ∈ E), inference relation-
ships as edges (r ∈ R), and a set of real
relation facts fij as positive triples (ei, r, ej)
denoted F+ among all the possible ones in
E ×R× E ;

2) a hypothesisHkij about the relationship r∗ be-
tween two target entities (ei, r∗, ej) separated
by k hops in graph G;

3) a hypernym inference path of depth k on
G, referred to as Ikij , allowing to build a
new relation fact f∗ij /∈ F+ by combining
k + 1 relation facts along the reasoning chain
< (ei, r0, e1) (e1, r1, e2) . . . (ek, rk, ej) >,
such as ∀0 ≤ n ≤ k, (en, rn, en+1) ∈ F+,
(ei, r1, e1), (ek, rk, ej) ∈ F+;

4) a context, composed of relevant facts F∗ij ⊂
F+, defined by the facts that form the hyper-
nym inference chain Ikij and distractors Dij ,
defined by triplets that do not form the hyper-
nym inference in Ikij .

Given a hypothesis in context < Hkij , (F∗ij ,Dij) >,
the task consists in inferring its truth value. A
hypothesis Hkij is either true if it deductively fol-
lows a hypernym inference Ikij from the context
(F∗ij ,Dij), or false if it does not (under the close-
world assumption).

2.2 Data Probe Generation
Given a knowledge graph G, we propose a generic
dataset generation methodology to probe multi-hop
reasoning PLMs in a single-hop setup. We define
two generation functions to construct the input <
Hkij , (F∗ij ,Dij) >: i) HYP(G, k), to generate both
the hypothesis Hkij and the related inference path
Ikij ; and ii) DISTR(G, Ikij ,Hkij), to generate a set
of distractors Dij with respect to the inference path
Ikij .

Hypothesis Generation HYP(G, k). First, we
apply the Depth First Search (DFS) algorithm to
visit all entities of knowledge graph G, generating
a set of paths of length k + 1, excluding the root,
used as inference paths. For the true hypothesis,
we create Hkij with the form (ei, rk, ej) using the
first and last facts from Ikij (see Figure 1, which
illustrates examples of 1-hop and 2-hop hypothe-
sis). Unlikely, for the false hypothesis, we simply
generate a hypothesis Hiz replacing the last real
fact of the inference path by (ek, rk, ez) /∈ F+.
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Figure 1: Hypothesis and inference path generation
from a knowledge graph for 1-hop and 2-hop reasoning
depths.

Distractor Generation DISTR(G, Ikij ,Hkij) .
We generate object, relationship, and inference dis-
tractors for each hypothesisHkij (as shown in Fig-
ure 3b).

An object distractor is generated by sampling a
fact with the form (., ., ej), ej referencing the last
entity in the hypothesis. Similarly, a relationship
distractor is a sampled fact with the form (., rk, .).

Inference distractors. Finally, we generate infer-
ence distractors in such a way that they exploit
evidence from the structure of the inference path
Ikij by linking two of its facts with a pivot element.
Having in mind the goal of guiding a k-hop model
to perform incremental inference over single-hops,
we propose distractor strategies that either improve
the entity representations or bridge between entities
by transferring information along with intermediate
hops necessary to complete the reasoning. More
precisely, based on a recent finding (Kassner and
Schütze, 2020) showing that fine-tuned PLMs are
good for recognizing false facts, we assume that dis-
tractors have a hidden impact on the reasoning task.
While most common approaches attempt to im-
prove PLMs entity representations by enriching the
context-based relevant facts, we believe distractors
can significantly leverage PLMs entity representa-
tions and thus the reasoning performance. Thus,
we investigate the rationale behind this assumption
by designing the following strategies for generat-
ing inference distractors: shared (s-inf), which
uses the same distractor entity (x = y) of the two
consecutive facts from the inference path, and the
individual (i-inf), that uses different distractor en-
tities (x ̸= y). Figure 2 shows the implementation
P-INF for both inference distractors, with the vari-
able shared= True for (s-inf) and shared= False
for (i-inf).

Additionally, we explicitly guide a k-hop model
to perform incremental inference using a guided

P-INF (Ikij ,k, shared)
AD = {E × R× E}∖ F+

D = ∅
for i ∈ 1 . . . k + 1 do

(ex, _, _)= Ikij [i]
(_, _, ex+2)= Ikij [i+1]
L1 = ∅, L2 = ∅
for (ex, ra, p) ∼ AD(ex) do

L1=L1∪{(ex, ri, bj)}
end for
for (q, rb, ex+2) ∼ AD(ex+2) do

L2=L2∪{(ei, rj , ex+2)}
end for
for (d1, d2) ∼ L1× L2 do

(ex, ra, x)=d1

(y, rb, ex+2)=d2

if x = y and shared then
D=D∪{d1, d2}
break

else if x ̸= y and not shared then
D=D∪{d1, d2}
break

end if
end for

end for
return D

G-INF (Ikij ,k)
D = P-INF(Ikij ,k, True)
for i ∈ 1 . . . k + 1 do

(ex, _, _)= Ikij [i]
(_, r, ex+2)= Ikij [i+1]
D=D∪{(ex, r, ex+2)}

end for
return D

S-INF (Ikij ,k)
D = P-INF(Ikij ,k, True)
return D

I-INF (Ikij ,k)
D = P-INF(Ikij ,k, False)
return D

Figure 2: Pseudocode for distractors generation in a
k-hop dataset. D, L1, and L2 are lists used to stock the
generated distractors. AD stands for “available distrac-
tors”, considering all the possible triples in the KG not
used in the inference. AD(e) represents a filtered AD
where e is present.

distractor (g-inf) that connects the two consecu-
tive facts in the inference path (see Figure 2 algo-
rithm G-INF). The key underlying idea is to drive
the PLM to incrementally reason over the inference
path by transferring information between entities
along intermediate hops of a multi-hop reasoning
path. Figure 3b illustrates the different distractors
generated for a specific example.

3 Experimental Setup

3.1 Generated Dataset Probes

We present here the dataset probes, namely Single-
RuleTakers (S-RT) and SHINet, we automatically
constructed using the previously presented gener-
ation functions (see Section 2.2). These datasets
are based on three different publicly available re-
sources: the RuleTakers dataset (Clark et al., 2020),
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(a)

(b)

Figure 3: RuleTakers (a) and SHINet 2-hop (b) examples.

SHINRA (Sekine et al., 2018), a knowledge graph
manually built upon a structured taxonomy, and
ConceptNet (CN) (Speer et al., 2017), another KG
widely used in NLP tasks (Talmor et al., 2020b;
Ma et al., 2021).

3.1.1 The Single RuleTakers Dataset (S-RT)
In the original RuleTakers dataset, each entry has
a small theory representing the context (F∗ij), and
a True/False question representing the hypothesis
Hkij , mainly grouped on five variations k = 0, and
D ≤ k with k = {1, 2, 3, 5} with questions requir-
ing reasoning up to depths 0, 1, 2, 3, 5 respectively.
An example of a true hypothesis in the RuleTak-
ers dataset is presented in Figure 3(a). We filtered
these datasets to construct our probes, single k-hop
datasets with k ∈ {0, 1, 2, 3, 5} for train and test
splits, called S-RT dataset.

3.1.2 SHINet Dataset
The RuleTakers dataset presents the context as a
paragraph, with no annotations on the relevant facts
or the distractors, making it difficult to measure
their impact on the inference process. To overcome
this limitation, we created the SHINet dataset built
upon the public SHINRA dataset. The SHINRA
contains facts with the form (ei, is-a, ej), limited
to the “is-a” relation. Having in mind that the in-
ference task heavily relies on the range of rela-
tionships and objects that the model has seen in
the training phase (Wang et al., 2021), we created

Dataset train dev test

1-hop (s-inf) 35,000 1,200 2,074
2-hop (s-inf) 35,000 1,200 5,994
2-hop (i-inf) 35,000 1,200 -
2-hop (g-inf) 35,000 1,200 -

Table 1: Number of samples for train/dev/test splits for
each generated dataset.

SHINet dataset by sampling from SHINRA and
ConceptNet based on a manual alignment of the in-
termediate nodes of SHINRA. We enrich the single
“is-a” relationship with the facts from ConceptNet
in the form (ej , r

′, pj). The alignment relies on
manual verification of finding ej in both datasets.
An example of a true hypothesis in the SHINet
dataset with related distractors s-inf, i-inf, and g-inf
is presented in Figure 3(b). Table 1 summarizes
our generated datasets.

3.2 Model Training

We used PLMs trained on the single-hop training
partitions of our generated datasets. It is worth
mentioning that this training protocol differs from
the protocol used in previous approaches, where
mixed datasets {0 ≤ i}-hop datasets are simultane-
ously used for training multi-hop reasoning models
based on a multitasking approach (Richardson and
Sabharwal, 2020). More specifically, we exploited
the following: 1) we used several pre-trained LMs
based on BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019), and RoBERTA (Liu et al., 2019b);
even using similar architectures, they showed sig-
nificant differences in performance results, espe-
cially on reasoning tasks (Talmor et al., 2020a); 2)
as a building block, we used the training protocol
proposed in previous work (Talmor et al., 2020b),
removing the first fact from Ikij in 40% of the sam-
ples. Using this training protocol, we can provide
insights into both the intrinsic strengths and lim-
its of our proposed PLM since we exploit a recent
state-of-the-art PLM that captures rich semantic
information.

3.3 Implementation Details

Each fact (ei, r, ej) can be expressed as a state-
ment in natural language using linguistic patterns
referred to as fact templates (e.g., ei is a ej). We
make use of the Hearst Patterns templates (Hearst,
1992; Roller et al., 2018) and the ones proposed in
Talmor et al. (2020b) as fact templates. Then, we
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train a transformer-based model with a set of input
sequences of tokens with the following schema:
“[CLS] Context [SEP] Hypothesis [SEP]”. Then,
we used the output representation of the [CLS] to-
ken and projected it into a binary classifier layer to
obtain the probabilities that the hypothesis is true
or false. For all of the models, we used the trans-
formers’ public implementation from HuggingFace
(Wolf et al., 2020). Main hyperparameters were
set following standard setup or original authors’
recommendations. In all the experiments where
SHINet is used for training, we set a maximum
word length to 256, batch size to 4, number of
steps per batch to 729, number of epochs to 4, and
Adam as optimizer with learning rate to 1e-5 and
weight decay to 0.1. In the case of fine-tuning, each
dataset uses its default hyperparameters. However,
the parameters remain the same for each dataset re-
gardless of the fine-tuning order. For the QA tasks
evaluation, we opted for the same parameters as
when fine-tuning the SHINet datasets, except for
the loss (categorical cross entropy), and the num-
ber of steps per batch is set to 2,163. We trained
and evaluated the models with 10 different random
seeds and presented mean scores in our compar-
isons (see Appendix A for computational costs).
To provide statistical significance to our results, we
applied a test for Almost Stochastic Dominance
(Dror et al., 2019) between test score distributions,
using α = 0.05.

4 Results and Discussion

To address RQ1 and RQ2, we used the k-hop S-
RT with k ∈ {0, 1, 2, 3, 5} and the {D ≤ 2}-hop,
1-hop, and 2-hop SHINet dataset. All the SHINet
datasets are composed of the object, relationship,
and inference distractors. Regarding the inference
distractors, we evaluated with the three strategies:
i-inf, s-inf, g-inf. The default setting uses the (s-inf)
strategy unless it is explicitly mentioned otherwise.
Note that for each SHINet strategy-based dataset,
we have train and test partitions. As recommended
in the literature (Elazar et al., 2021; Sakaguchi
et al., 2020), to avoid biases in these datasets that
lead to an overestimation of the reasoning capabili-
ties of PLMs, we applied on the test partitions the
AFLITE algorithm (Sakaguchi et al., 2020) that
finds machine-detectable embeddings associations
to reduce biases. We used optimal parameters af-
ter grid-search: n (classifiers) = 64, m(samples) =
1000, top-k = 200, threshold = 0.75. Comparing

Test (k-hop) k=0 k=1 k=2 k=3 k=5

Train ↓Models→ RoBERTa

0-hop 99.99 43.51 26.52 22.94 12.78
1-hop 90.11 98.16 50.64 37.30 23.07
2-hop 66.92 64.62 88.54 91.65 96.16
3-hop 68.36 64.44 88.47 91.35 96.11
5-hop 63.32 63.11 87.09 89.92 95.06

Table 2: Accuracy performance (in %) for a RoBERTa model
trained on k-hop S-RT training set (rows) and tested on k-hop
S-RT test set (columns). For a better reading, scores worse
than random (< 50%) are in italic and good results (> 80%)
are in bold.

Test (k-hop) k=1 k=2 k=1 k=2 k=1 k=2

Train ↓Models→ XLNet BERT RoBERTa

Mixed 98.89 89.06 99.23 94.63 99.71 93.44
1-hop 99.71 86.00 98.96 89.75 99.80 96.23
2-hop 96.31 99.82 77.75 87.25 98.77 99.99

Table 3: Accuracy performances (in %) for mixed, 1-hop and
2-hop models using the SHINet dataset. The highest values
are in bold.

the original and filtered datasets, we approximately
filtered 45% of the total samples. To address RQ3,
we used the MCQA (Richardson and Sabharwal,
2020), and RACE (Lai et al., 2017). MCQA is com-
posed of 193,000 entries. Each entry is composed
of a question and five possible answers, includ-
ing reasoning tasks such as hypernymy, hyponymy,
synonymy detection, and word sense disambigua-
tion. RACE (Lai et al., 2017) consists of nearly
28,000 passages and 100,000 questions divided
into Middle and High School sets and up to four
possible answers.

4.1 Do Single-Hop Reasoning Models
Incrementally Learn? (RQ1)

To answer RQ1, we train separately single i-hop
reasoning models using the S-RT dataset (i ∈
{0, 1, 2, 3, 5})2, and we train PLMS using the
SHINet dataset on single 1-hop and 2-hop, and the
Mixed models trained on the {k ≤ 2}-hop SHINet
dataset.

Table 2 and Table 3 report, respectively, the ac-
curacy scores for the different single i-hop models
using the S-RT dataset, and the accuracy scores of
PLMs trained on 1-hop and 2-hop SHINet dataset,
as well as the Mixed model. We take an empirical
approach by assuming that incremental learning is
observed when the models generalize from com-
plex to less complex tasks. Overall, we can observe

2We keep the model, hyperparameters, and setting as pro-
posed in (Clark et al., 2020).
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that when trained with larger hop depths, models
struggle to solve even slightly less large reason-
ing tasks. Regarding specifically the S-RT dataset,
it can be seen from Table 2 (green area), that the
performance of the model trained and tested on
the 2-hop (88.54) decreases to 66.92 and 64.62
respectively when tested on the 0-hop and 1-hop
data. Similar behavior is observed for the model
trained on 3-hop. Looking at Table 3, obtained us-
ing the SHINet dataset, we can see that the results
on the 2-hop test show a similar trend with the S-RT
dataset: overall, the 2-hop PLMs exhibit better re-
sults when tested on 2-hop, but their performances
decrease for a simpler task, 1-hop test, for all the
three models while we expect at least stable perfor-
mance. More precisely, we observe a performance
decrease of 99.82 ↓ 96.31, 87.25 ↓ 77.75, and
99.99 ↓ 98.77 for XLNet, BERT, and RoBERTa,
respectively. The same performance decrease trend
is observed compared to the upper bound achieved
when testing the 1-hop trained PLMs on the 1-hop
test. This might reveal a counter-intuitive and un-
controllable behavior: having in mind the incre-
mental human-style reasoning (Anderson, 1980),
one could argue that the ability to solve a k-hop
problem implies the ability to solve the {k-1}-hop
one, but results indicate the contrary. These re-
sults are consistent in both datasets suggesting that
PLMs do not incrementally learn by accumulating
knowledge.

In addition, looking at the compositionality gen-
eralization from simple to complex tasks, we can
see from Table 2 (S-RT) that the performance of
models trained on low-depth single-hops (rows
k = 0, 1) significantly decreases when the hop
is deeper (columns k = 2, 3, 5) in the test set (e.g.,
the 1-hop model performance decreases from 90.11
to 50.64 and 37.30 for columns k = 2, 3, respec-
tively). However, for depth rows k = 2, 3, 5, this
trend is less clear. Similarly, Table 3, using the
SHINet dataset, shows that 1-hop models manage
to obtain strong accuracy scores, over 86.00 in all
datasets, indicating that they can deal with their
tasks and complex ones. This behavior can be ex-
plained by the mix of implicit knowledge (from pre-
training) and explicit knowledge (from training),
filling the logic gap between tasks as shown by (Tal-
mor et al., 2020b). Moreover, we can observe that
RoBERTa-based and XLNet-based PLMs are more
effective in both 1-hop and 2-hop configurations, in
contrast to BERT-based models, consistently with

Figure 4: Two examples from the 2-hop test set. Both exam-
ples are negative (false hypothesis), the first with a positive
phrase and the second one with a negative phrase. The guided
model correctly predicted both.

previous work (Talmor et al., 2020a).

4.2 Can Reasoning Models be Guided Toward
Incremental Reasoning? (RQ2)

To answer RQ2, we compared our models to two
different baselines: the Mixed model used in RQ1,
and the LoT model from Talmor et al. (2020b). LoT
is trained on a {k ≤ 1} using ConceptNet, Word-
Net, and Wikidata datasets to combine implicit
knowledge acquired in pre-training with explicit
rules and facts showing good performance on vari-
ous types of reasoning tasks. We also trained the
hybrid model by fine-tuning on the SHINet 2-hop
(g-inf) dataset followed by the LoT train dataset
(1-hop) to show the effect of jointly leveraging im-
plicit knowledge, explicit knowledge (LoT), and
incremental reasoning. We report in Table 4 the
mean accuracy scores of the different distractors.

At a first glance, we can see that our proposed
guided model 2-hop (g-inf) surpasses all its coun-
terparts for 2 out of 3 settings, namely XLNet and
RoBERTa. More precisely, by comparing the per-
formance scores of 2-hop (g-inf) to 2-hop (s-inf),
we can fairly assess the positive impact of our pro-
posed inference distractors presented in Figure 2
to guide the training toward incremental learning
across all the models. For instance, we observed an
improvement of 3.53 (0.17), 6.41 (7.98), and 1.17
(0.01) when comparing the 2-hop (g-inf) model
with 2-hop (s-inf) models on the 1-hop (2-hop)
tests with XLNet, BERT, and RoBERTa respec-
tively. We further compare the accuracy scores of
2-hop (g-inf) in comparison to 2-hop (i-inf) to show
the impactful role of the (s-inf) inference distrac-
tor to improve the reasoning inference. As it can
be seen from Table 4, 2-hop (g-inf) increases the
performance on both tests by a difference greater
than 21.0 in all models. The comparison between
the 2-hop (g-inf) model to a traditional multi-hop
mixing strategy Mixed shows the advantage of the
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Test (k-hop) k=1 k=2 k=1 k=2 k=1 k=2

Models→ XLNet BERT RoBERTa

Train ↓
LoT 98.37∗ 99.17 86.28∗ 95.33∗ 99.15∗ 98.96

Mixed 98.89 89.06 99.23 94.63 99.71 93.44

2-hop
(i-inf) 60.81 56.77 62.37 57.16 60.48 56.23
(s-inf) 96.31 99.82† 77.75 87.25 98.77 99.99†
(g-inf) 99.84∗† 99.99∗† 84.16∗ 95.23∗ 99.94∗† 100∗†
hybrid 99.18∗† 99.67∗† 86.32∗† 93.85∗ 99.31∗† 99.76†

Table 4: Accuracy performances (%) for 2-hop models by
varying the inference distractor in the SHINet dataset. † and
∗ indicates statistical significance according to the Almost
Stochastic Dominance test over LoT and 2-hop (s-inf), respec-
tively.

Train ↓ / Test(k-hop)→ k = 0 k = 1 k = 2

S-RT 2-hop 66.92 64.62 88.54
3-hop 68.36 64.44 88.47

LoT 2-hop 72.61 65.37 88.40
3-hop 72.46 64.81 88.56

2-hop 2-hop 67.15 64.88 88.42
(s-inf) 3-hop 67.06 64.58 88.25

2-hop 2-hop 68.06 65.18 88.05
(g-inf) 3-hop 67.89 64.8 88.11

hybrid 2-hop 71.75 65.49 88.44
3-hop 72.47 65.14 88.60

Table 5: Accuracy comparing different reasoning models on
the S-RT dataset. The best result for each test in underlined
and bold for 2-hop and 3-hop models, respectively.

incremental inference for most of the settings. Fi-
nally comparing our proposed guided model 2-hop
(g-inf) to the fine-tuned multi-hop strategy hybrid,
we can observe that our guided model surpasses
the hybrid model and LoT in 2 out of 3 models,
namely (XLNet and RoBERTa). It is worth noting
that this performance is achieved using fewer com-
putational resources; the model can address both
tests 2-hop and the simpler 1-hop in an incremental
reasoning fashion.

In Figure 4, we show some hand-picked difficult
examples from the 2-hop test set for the LoT model
that are especially helped by the guided model 2-
hop (g-inf), using XLNet and RoBERTa. Specif-
ically, we observed a positive impact of the dis-
tractors to solve false hypothesis examples using a
negative phrase.

Additionally, we compare our proposed models
with those trained on the S-RT dataset used in RQ1.
We particularly examine if the proposed models
still exhibit the observed phenomenon highlighted
in the green area from Table 2. Table 5 shows re-
sults with mean values after 3 runs and under the

Model Def Hype Hypo Syn DQA Avg (%Imp)

Rand 19.90 19.90 20.20 19.80 20.00 19.96 (-38.6%)
RoB 40.10 32.65 23.15 34.41 32.26 32.51 (-)
LoT 72.41 43.83 40.54 51.85 51.53 52.03 (+60.0%)

1-hop
(s-inf) 62.65 52.69 38.58 45.80 43.68 48.68 (+49.7%)
2-hop
(s-inf) 63.65 46.50 36.82 50.52 47.69 49.04 (+50.8%)
(g-inf) 70.86 51.86 43.03 55.29 52.65 54.74 (+68.4%)

hybrid 73.09 44.70 46.43 51.87 54.72 54.16 (+66.6%)

Table 6: Accuracy (%) scores for baselines and multi-hop rea-
soning models using the validation set of the MCQA dataset.
Improvement percentages (%Imp) are given w.r.t. RoBERTa
(inoculated).

inoculation technique. The inoculation technique
from Liu et al. (2019a) was used to avoid overrid-
ing the knowledge acquired in our models. The
inoculation consists of using a small amount of
training data to solve new tasks, overcoming the
mismatch between the datasets used in training and
fine-tuning (Jiang et al., 2020).

We did a preliminary analysis of the learning
curves for each task to determine the right amount
of data to use (see Appendix C).

We can see from Table 5 that even when
the inoculation is used, the models relying on
incremental reasoning (2-hop (g-inf) and hybrid)
overpass the baseline results (S-RT and 2-hop
(s-inf)). Particularly, we see that guiding the model
training over hops leads to improvements in lower
hop levels (k = 0, 1) compared to traditional
model training with mixed hops. For instance, for
the test k = 1, the guided model 2-hop (g-inf)
improves by 0.56 and 0.36 the model trained with
S-RT on hops k = 2 and k = 3, respectively.

4.3 Do QA Tasks Leverage Incrementally
Trained Reasoning Models (RQ3)?

To answer RQ3, we used: 1) two QA tasks, namely
Multiple Choice Question Answering (MCQA),
and Reading Comprehension (RC). We applied
the inoculation technique presented before to all
the models; 2) the Random model, denoted Rand,
the RoBERTa model, denoted RoB, and the LoT
model as baselines. The RoBERTa model has been
chosen, given its performance superiority as shown
in the previous experiments (see Sections 4.1 and
4.2). For datasets examples and illustrations of the
tasks, we refer the reader to Appendix B.
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Figure 5: Accuracy values using the hypernymy and hy-
ponymy subsets broken into number of hops k (rows) for the
models (columns).

Multiple Choice Question Answering
(MCQA).

For MCQA, we re-used a publicly available
code3 as Richardson and Sabharwal (2020) and
then applied the inoculation technique (Liu et al.,
2019a). We plot the learning curves of each probe
for the average of five different runs with random
subsets (see Appendix C).

In Table 6, we report the results of our inoculated
models. We can see that our models 2-hop (g-inf)
and hybrid achieve the best average performance
scores over all the baselines.

To deepen our analysis of the reasoning over in-
creasing numbers of hops, we experimented with
our models with the hypernymy and hyponymy
subsets, up to 4 and 3 hops levels, respectively. By
filtering the numbers of hops, we report the per-
formance variation of our models in Figure 5. We
can see that for the hypernymy (resp. hyponymy),
the hybrid (followed by 2-hop (g-inf)) model out-
performs all models in all depths but for k = 4, 5.
Furthermore, we interestingly observe a positive
trend toward reducing the performance decrease
rate between hop levels when using our proposed
guided training approach. For instance, when com-
paring levels k = 2 and k = 4, we observe that per-
formance decrease is reduced from 0.14 to 0.01 for
2-hop (s-inf) and 2-hop (g-inf) respectively. Sim-
ilarly between the hyponymy levels k = 2 and
k = 3 we can see a performance decrease reduced
from 0.18 to 0.16 for LoT and 2-hop (g-inf) mod-
els respectively. This observation clearly indicates
the positive impact of incremental reasoning on
performance.

Reading Comprehension (RC). For RC, re-
sults under inoculation conditions are reported in
Table 7. As can be seen, most of the models behave
similarly for the Middle set, with 2-hop (s-inf) as
the most performing model. On the contrary, we

3https://github.com/yakazimir/
semantic_fragments

Models Middle (%Imp) High (%Imp)

RoBERTa 77.18 (-) 59.22 (-)
LoT 77.04 (-0.2%) 68.68 (+16.0%)

1-hop (s-inf) 76.56 (-0.8%) 68.94 (+16.0%)
2-hop (s-inf) 77.32 (+0.2%) 69.76 (+17.8%)
2-hop (g-inf) 75.65 (-2.0%) 68.72 (+16.0%)

hybrid 76.37 (-1.0%) 68.56 (+15.8%)

Table 7: Accuracy (%) comparing different reasoning mod-
els on the RACE dataset for middle school and high school.
Improvement percentages (%Imp) are given w.r.t. RoBERTa.

can observe a clear improvement for all models on
the High set when compared to RoBERTa. In this
case, the most performing model is 2-hop (s-inf)
(69.76) closely followed by 2-hop (g-inf) (68.72)
and hybrid (68.56). Therefore, chains of reasoning
seem to be a key component of the solution, even
if most of the studied multi-hop models correctly
capture the needed knowledge.

Finally, we compare the results from Table 6 and
Table 7. We observe that model scores are very
close on the RC task, even when using different
distractors and the number of hops. The unifor-
mity between all models’ performances suggests
that multi-hop reasoning is not a key component in
solving these questions.

5 Related Work
Our main study focused on multi-hop reason-
ing. Recent studies have proposed solutions us-
ing decomposition-aggregation approaches (Min
et al., 2019) by combining or extending different
model architectures to leverage reasoning perfor-
mance (Feng et al., 2020; Yasunaga et al., 2021;
Bauer et al., 2018), creating explained reasoning
paths (Ding et al., 2019) or using chain of thought
prompting (Wei et al., 2022). In contrast, we fo-
cus on leveraging the inner reasoning skills of
PLMs, benefiting from their internal architecture
and knowledge captured in pre-training. We ar-
gue that our results may be a solid alternative to a
standard PLM in this kind of work.

There are recent demonstrations that trained
PLMs can perform simple reasoning tasks (Talmor
et al., 2020a). Even if these models are not
naturally good solvers of complex tasks such as
multi-hop reasoning (Kassner et al., 2020), they
are capable of learning when trained on such tasks
(Clark et al., 2020; Richardson and Sabharwal,
2020). However, these training setups propose
mixing different depth levels of reasoning, leading
to unpredictable results, and, thus, a lack of
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model interpretability. They do not let recognize
the knowledge captured at each hop level and
whether acquired knowledge, if any, is actually
reused to solve higher-hop level reasoning. We
proposed a single-hop design that lets us ana-
lyze the actual contribution of each reasoning level.

Although our work is inspired by the previ-
ous literature, it is different from Talmor et al.
(2020a) and Talmor et al. (2020b), as they evaluate
the inner reasoning capabilities of PLMs in simple
reasoning tasks, but we evaluate incrementally
trained PLMs for multi-hop reasoning performed
on NLP downstream tasks. Similarly, Kassner
et al. (2020) evaluate the model reasoning skills
controlling the data given in pre-training. In
contrast, we analyze how the training data and
elements in the context affect the task in a
multi-hop scenario.

6 Conclusions

Transformers have been recently gaining increas-
ing attention for reasoning tasks over language. In
this paper, we have specifically studied whether we
can endow PLMs used in multi-hop reasoning tasks
with the ability to incrementally acquire knowledge
by following the inference path over the sequence
of hops. Our underlying objective is to control
the training of PLMs better, leading to more un-
derstandable and predictable multi-hop reasoning
models. In particular, we have complemented previ-
ous findings in the literature by showing that PLMs
trained on 1-hop reasoning tasks can extrapolate
the reasoning to 2-hops but that 2-hop reasoning
models struggle to generalize over slightly simpler
1-hop tasks. Keeping in mind the human-style rea-
soning from simpler to complex tasks, we advocate
incremental reasoning over the structure of the in-
ference path as a step forward. We provide a train-
ing data generation strategy that relies critically
on inference distractors connecting intermediate
relevant facts in the reasoning path. By applying
our approach, our models achieve higher or simi-
lar performance trends than fine-tuning multi-hop
models but consume fewer resources. Furthermore,
we show that the incrementally trained multi-hop
PLMs are transferable to other QA-based tasks.

Although our experimental settings are limited
to low depths of inference (k = 1, 2), our find-
ings show both the feasibility and the benefit of
incremental reasoning and open new research op-

portunities. We may potentially extend this work
toward the benchmarking of multi-hop reasoning
interpretability with the design of baseline models,
dataset generation strategies with upper bounds,
and evaluation metrics including, but not limited
to, inference path recall.
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A Computing Infrastructure and Budget

All experiments were performed in a server
Dell R740 bi pro Intel Xeon 2630 using Nvidia
RTX6000 graphic card. A single training and test
took around 100 and 120 minutes under this infras-
tructure. In summary, to compute the results of
RQ1 and RQ2 we used approximately 120 GPU
hours.

To compute the results of RQ3, including the in-
oculation technique, we used approximately 1,730
GPU hours.

B Dataset samples for Downstream Tasks

In Figure 6, we show entry samples for the MCQA
(6a) and RACE (6b) tasks.

(a)

(b)

Figure 6: MCQA (a) and RACE (b) examples.
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C Learning Curves from Inoculation
Technique

Figure 7 shows the learning curves when applying
the inoculation technique for the MCQA and RC
tasks. We selected 5,000 as the number of samples
with the best performance and smaller training size.
Similar analysis was done for the RACE and S-RT
datasets with equal conclusion w.r.t. the number of
samples.

Figure 7: Learning curves for MCQA (upper) and RC (lower)
tasks. For MCQA we show the Hypernymy (left) and Syn-
onymy (right) dataset. For RC we show the Middle School
(left) and High School (right) datasets. For all curves, the X
axis represents the number of training samples (in thousands),
and the Y axis, the accuracy score. Average values are re-
ported with 5 runs for MCQA and 3 for RC.
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Abstract

Machine reading comprehension (MRC) poses
new challenges over logical reasoning, which
aims to understand the implicit logical relations
entailed in the given contexts and perform in-
ference over them. Due to the complexity of
logic, logical relations exist at different granu-
larity levels. However, most existing methods
of logical reasoning individually focus on ei-
ther entity-aware or discourse-based informa-
tion but ignore the hierarchical relations that
may even have mutual effects. In this paper, we
propose a holistic graph network (HGN) which
deals with context at both discourse level and
word level, as the basis for logical reasoning,
to provide a more fine-grained relation extrac-
tion. Specifically, node-level and type-level
relations, which can be interpreted as bridges
in the reasoning process, are modeled by a hi-
erarchical interaction mechanism to improve
the interpretation of MRC systems. Experimen-
tal results on logical reasoning QA datasets
(ReClor and LogiQA) and natural language in-
ference datasets (SNLI and ANLI) show the
effectiveness and generalization of our method,
and in-depth analysis verifies its capability to
understand complex logical relations.

1 Introduction

Machine reading comprehension (MRC) is a chal-
lenging task that requires machines to answer a
question according to given passages (Hermann
et al., 2015; Rajpurkar et al., 2016, 2018; Lai
et al., 2017). A variety of datasets have been in-
troduced to push the development of MRC to a
more complex and more comprehensive pattern,
such as conversational MRC (Reddy et al., 2019;
Choi et al., 2018), multi-hop MRC (Yang et al.,
2018), and commonsense reasoning (Davis and
Marcus, 2015; Bhagavatula et al., 2020; Talmor
et al., 2019; Huang et al., 2019). In particular,

∗Corresponding author. This work was supported in part
by the Key Projects of National Natural Science Foundation
of China under Grants U1836222 and 61733011.

Example (taken from ReClor dataset)

Context: Most lecturers who are effective teachers are eccentric, 

but some non-eccentric lecturers are very effective teachers. In 

addition, every effective teacher is a good communicator.
Question: 

Which one of the following statements follows logically from the 

statements above?

Options:

A: Most lecturers who are good communicators are eccentric. 
B: Some non-eccentric lecturers are effective teachers but are 

not good communicators. 

C: All good communicators are effective teachers. 

D: Some good communicators are eccentric.✓

Figure 1: An example from Reclor dataset. The example
mainly talks about "effective teachers, non-eccentric,
eccentric, good communicator".

some recent multi-choice MRC datasets pose even
greater challenges to the logical reasoning abil-
ity of models (Yu et al., 2020; Liu et al., 2020a)
which are not easy for humans to do well, either.
Firstly, all the supporting details needed for reason-
ing are provided by the context, which means there
is no additional commonsense or available domain
knowledge. Secondly, it is a task of answer selec-
tion rather than answer retrieval, which means the
best answer is chosen according to their logical fit
with the given context and the question, rather than
retrieved directly from the context according to the
similarity between answers and context. Most im-
portantly, the relations entailed in the contexts are
much more complex than that of previous MRC
datasets owing to the complexity of logic, which
is hard to define and formulate. Without a targeted
design for those challenges, existing pre-trained
models, e.g., BERT, RoBERTa, fail to perform well
in such kind of logical reading comprehension sys-
tems (Yu et al., 2020; Liu et al., 2020a).

Logical reasoning MRC tasks are usually to find
an appropriate answer, given a set of context and
question. Figure 1 shows an example from ReClor
dataset (Yu et al., 2020) which requires logical rea-
soning ability to make the correct predictions. As
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Figure 2: An overview of our proposed holistic graph-based reasoning model.

humans, to solve such problems, we usually go
through the following steps. Firstly, we divide the
context into several fragments and figure out the
logical relations between each clause, such as tran-
sition, continuity, contrast, etc. Secondly, we ex-
tract the important elements in the context, namely,
the objects and topics described by the context, and
construct the logical graph with these significant
elements. Finally, we need to compare the answer
statement to the mentioned part in the context and
assess its logical fit with the given context.

Most existing methods of logical reasoning
MRC focus on either entity-aware or discourse-
based information but ignore the hierarchical rela-
tions that may have mutual effects (Yu et al., 2020;
Liu et al., 2020a; Wang et al., 2021; Huang et al.,
2021; Ouyang et al., 2021b). Motivated by the ob-
servation above, we model logical reasoning chains
based on a newly proposed holistic graph network
(HGN) that incorporates the information of element
discourse units (EDU) (Gao et al., 2020; Ouyang
et al., 2021a) and key phrases (KPH) extracted
from context and answer, with effective edge con-
nection rules to learn both hierarchical features and
interactions between different granularity levels.

Our contributions are summarized as follows. (1)
We design an extraction algorithm to extract EDU
and KPH elements as the critical basic for logical
reasoning. (2) We propose a novel holistic graph
network (HGN) to deal with context at both dis-
course and word level with hierarchical interaction
mechanism that yields logic-aware representation
for reasoning. (3) Experimental results show our
model’s strong performance improvements over
baselines, across multiple datasets on logical rea-
soning QA and NLI tasks. The analysis demon-

strates that our model has a good generalization
and transferability, and achieves higher accuracy
with less training data.

2 Methodology

Logical reasoning MRC tasks aim to find the
best answer among several given options based
on a piece of context that entails logical rela-
tions. Formally, given a natural language con-
text C, a question Q, and four potential answers
A={A1, A2, A3, A4}. We concatenate them as
{C,Q, Ai} pairs. To incorporate the principle of
human inference into our method, we propose a
holistic graph network (HGN) as shown in Fig-
ure 2. Our model works as follows. First, we use
EDU and KPH extraction algorithm to get neces-
sary KPH nodes ({Pj}) and EDU nodes ({Ej})
from the given pairs. They contain information
with different granularity levels and complement
each other. Based on the extracted KPH-EDU inter-
action information and pre-defined rules, we con-
struct the holistic graph. The process of construct-
ing the holistic graph is shown in Figure 3. Then
we measure the interaction between {Ej} and {Pj}
to obtain logic-aware representations for reasoning.

2.1 Logical Chain Construction

Element Discourse Units (EDU) We use clause-
like text spans delimited by logical relations
to construct the rhetorical structure of texts.
These clause-like discourses can be regarded
as element units that reveal the overall logic
and emotional tone of the text. For exam-
ple, conjunctions like "because” indicate a
causal relation which means the following dis-
course is likely to be the conclusion we need to
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Question: Which one of the following statements follows logically from the statements above?

E6 E7 E8
Answer: Most lecturers who are good communicators are eccentric. 

E1 E2 E3 E4
Context: Most lecturers who are effective teachers are eccentric, but some non-eccentric lecturers are very effective 
teachers. In addition, every effective teacher is a good communicator.

E5

Figure 3: Process of constructing the holistic graph, using KPH-EDU Interaction information and pre-defined rules.

pay attention to. Parenthesis and clauses like
"who are effective teachers" in Fig-
ure 3 play a complementary role in context. Also,
punctuation indicates a pause or an end of a sen-
tence, containing semantic transition and turning
point implicitly. We use an open segmentation
tool, SEGBOT (Li et al., 2018), to identify the
element discourse units (EDUs) from the con-
catenation of context and answer, ignoring
the question whose structure is simple. Conjunc-
tions (e.g., "because", "however"), punctua-
tion and the beginning of parenthesis and clauses
(e.g., "which", "that") are usually the segment
points. They are considered as explicit discourse-
level logical relations.

To get the initial embedding of EDUs, we in-
sert an external [CLS] symbol at the start of each
discourse, and add a [SEP] symbol at the end of
every type of inputs. Then we use RoBERTa to en-
code the concatenated tokens. The encoded [CLS]
token represents the following EDU. Therefore, we
get the initial embedding of EDUs.

Key Phrase (KPH) Key Phrases, including key-
words here, play an important role in context. They
are usually the object and principle of a context. We
use the sliding window to generate n-gram word
list, filtering according to the Stopword list, POS
tagging, the length of the word, and whether it con-
tains any number.1 The filtering process is based

1The stop list is derived by the open-source toolkit Gen-
sim: https://radimrehurek.com/gensim/. The
POS tagging is derived by the open-source toolkit NLTK:

on the following two main criteria:
(1) If the n-gram contains a stop word or a num-

ber, then delete it.
(2) If the length of word is less than the threshold

value m, delete it, and if the n-gram length is 1,
then only the noun, verb, and adjective are retained.

Then, we calculate the TF-IDF features of each
n-gram, and select the top-k n-gram as key phrases.
k is a hyper-parameter to control the number of
KPHs. We restore the selected tokens and retrieve
the original expressions containing the key phrase
from the original text. For example, as in Figure
3, "eccentric" is one of the KPHs, while we
retrieve the original expression "eccentric" and
"non-eccentric" from the original text. 2

Given the token embedding sequence Ki =
{t1, . . . , tn} of a KPH with length n, its initial
embedding is obtained by

Pi =
1

|Ki|
∑

tl∈Ki
tl. (1)

Holistic Graph Construction Formally, every
input sample is a triplet that consists of a context, a
question and a candidate answer. EDU and KPH
nodes are extracted in the above way. As shown
in Figure 3, we construct a holistic graph with two
types of nodes: EDU Nodes (in blue) and KPH
Nodes (in green). For edge connections, there are
four distinct types of edges between pairs of nodes.

https://www.nltk.org/.
2The complete algorithm is given in Appendix A.
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• EDU-EDU continue: the two nodes are contex-
tually associated in the context and answer. This
type of edge is directional.
• EDU-EDU overlap: the two nodes contain the

same KPH. This type of edge is bidirectional.
• EDU-KPH mention: the EDU mentions the

KPH. This type of edge is bidirectional.
• KPH-KPH relate: the two nodes are seman-

tically related. We define two types of semantic
relations. One is that the two KPHs are retrieved by
the same n-gram as described above. The other one
is that the Cosine similarity between the two KPH
nodes is greater than a threshold. This type of edge
is bidirectional and can capture the information of
word pairs like synonyms and antonyms.

The construction of the graph is based on in-
tuitive rules, which will not introduce extra pa-
rameters or increase model complexity. A further
parameter comparison is given in Table 4.

2.2 Hierarchical Interaction Mechanism

Considering a specific node in the holistic graph,
neighboring nodes in the same type may carry more
salient information, thus affecting each other in a
direct way. In the process, the neighboring nodes
in the different types may also interact with each
other. To capture both the node-level and type-
level attention, we apply a Hierarchical Interaction
Mechanism to the update of the graph network’s
representations.

Graph Preliminary Formally, consider a graph
G = {V,E}, where V and E represent the sets
of nodes and edges respectively. A is the adja-
cency matrix of the graph. Aij > 0 means there
is an edge from the i-th node to the j-th node.
We introduce A′ = A + I to take self-attention
into account. In order to avoid changing the orig-
inal distribution of the feature when multiplying
with the adjacency matrix, we normalize A′, set
Ã = D−

1
2A′D−

1
2 where D is the degree matrix

of the graph. D = diag{d1, d2 . . . , dn}, di is the
number of edges attached to the i-th node.

Now, we calculate the attention score from node
v′ to node v in the following steps.

Type Attention Vector We use T (τ) to represent
all nodes that belong to type τ , and N(v) to repre-
sent all neighboring nodes that are adjacent to v. T
is the set of types. Assume that node v belongs to
T (τ), hµ is the feature of node µ, hτ is the feature

of type τ which is computed by

hτ =
∑

µ∈T (τ)
ÃvµWhµ. (2)

Using the feature of type and node v, we compute
the attention score of type τ as:

eτ = σ(µTτ · [Whv ∥Wτhτ ]). (3)

Then, type-level attention weights ατ is obtained
by normalizing the attention scores across all the
types T with the softmax function. σ is an activate
function such as leaky-ReLU.

ατ =
exp(σ(µTτ · [Whv ∥Wτhτ ]))∑

τ ′∈T exp(σ(µTτ ′ · [Whv ∥Wτhτ ′ ]))
.

(4)

Node Attention Vector ατ shows the importance
of nodes in type τ to node v. While computing the
attention score of node v′ that is adjacent to node
v, we multiply that by the type attention weights
ατ (assume v′ belongs to type τ ). Similarly, node
attention weights are obtained by the softmax func-
tion across all neighboring nodes.

evv′ = σ(νT · ατ [Whv ∥Whv′ ]), (5)

αvv′ =
exp(evv′)∑

i∈N(v) exp(evi)
, (6)

where ∥ is the concatenation operator and αvv′ is
the attention weight from node v′ to v.

Update of Node Representation Let h(l)v be the
representation of the node v at the l-th layer. Then
the layer-wise propagation rule is as follows:

h(l+1)
v = σ(

∑

v′∈N(v)

αvv′Wh
(l)
v′ ). (7)

2.3 Answer Selector
To predict the best answer that fits the logic entailed
in the context, we extract the node representations
of the last layer of the graph network and feed them
into the downstream predictor. For EDU nodes,
since the node order implies the occurrence order
in the context, we align them with the output of
sequence embedding and add to it as a residual part.
Therefore, we feed them into a bidirectional gating
recurrent unit (BiGRU).

H̃E = BiGRU(HE +Hsent) ∈ Rl×d, (8)
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where HE = [hv′1 , hv′2 , . . . , hv′l ] ∈ Rl×d, v′i be-
longs to type EDU. l and d are the sequence length
and the feature dimension respectively. Hsent is
the output of sequence embedding.

For KPH nodes, we first expand the embed-
ding of the first [CLS] token to size 1 × d, de-
noted as Hc. Then, we feed the embedding of
[CLS] token and features of KPH nodes HK =
[hv1 , hv2 , . . . , hvn ] ∈ Rn×d (vi is of KPH type)
into an attention layer.

αi = wTα [Hc ∥ hvi ] + bα ∈ R1,

α̃i = softmax(αi) ∈ [0, 1],

H̃c =Wc

∑

i

α̃ihvi + bc ∈ R1×d,
(9)

where α̃i is the attention weight of node feature hvi .
wα, bα, Wc, and bc are parameters.

The output of BiGRU and the output of attention
layer are concatenated and go through a pooling
layer, followed by an MLP layer as the predic-
tor. We take a weighted sum of the concatenation
as the pooling operation. The predictor is a two-
layer MLP with a tanh activation. Specially, coarse-
grained and fine-grained features are further fused
here to extract more information.

H̃ =Wp[H̃E ∥ H̃c], p = MLP(H̃) ∈ R, (10)

where Wp is a learnable parameter, ∥ is the con-
catenation operator. For each sample, we get
P = [p1, p2, p3, p4], pi is the probability of i-th
answer predicted by model.

The training objective is the cross entropy loss:

L = − 1

N

N∑

i

log softmax(pyi), (11)

where yi is the ground-truth choice of sample i. N
is the number of samples.

3 Experiment

3.1 Dataset
Our evaluation is based on logical reasoning MRC
benchmarks (ReClor (Yu et al., 2020) and LogiQA
(Liu et al., 2020a)) and natural language infer-
ence benchmarks (SNLI (Bowman et al., 2015) and
ANLI (Nie et al., 2020)). ReClor contains 6,138
multiple-choice questions modified from standard-
ized tests. LogiQA has more instances (8678 in
total) and is derived from expert-written questions
for testing human logical reasoning ability (Liu

et al., 2020a). To assess the generalization of mod-
els on NLI tasks, we test our model on the Stanford
Natural Language Inference (SNLI) dataset, which
contains 570k human annotated sentence pairs. The
Adversarial Natural Language Inference (ANLI) is
a new large-scale NLI benchmark dataset, where
the instances are chosen to be difficult for the state-
of-the-art models such as BERT and RoBERTa.
It can be used to evaluate the generalization and
robustness of the model.3

Implementation details and parameter selection
are reported in Appendix C for reproduction.4

3.2 Main Result

3.2.1 Results on Logical QA
Table 1 presents the detailed results on the devel-
opment set and the test set of both ReClor and
LogiQA datasets. We observe consistent improve-
ments over the baselines. HGNROBERTA(B) reaches
51.4% of test accuracy on ReClor, and 35.0% of
test accuracy on LogiQA, outperforming other ex-
isting models. HGNROBERTA(L) reaches 58.7% of
test accuracy on ReClor, therein 77.7% on Easy
subset and 43.8% on Hard subset, and 39.9% on
LogiQA. HGNDEBERTA achieves 72.3% on the test
set of ReClor and 44.2% on LogiQA. If using
the same pre-trained language models as the back-
bones, our proposed model achieves the state-of-
the-art results on both ReClor and LogiQA, without
extra human annotations. Our model shows great
improvement over this task by better utilizing the
interaction information , which is ignored by most
existing methods.

3.2.2 Results on general NLI tasks
To verify the generality of our model, we con-
duct experiments on two widely used entailment
datasets for NLI: SNLI and ANLI, in which exist-
ing models rarely emphasized the modeling of log-
ical relations. Table 2 compares the performances
of HGN and baseline models on the SNLI dataset
with the same proportion of training data for fine-
tuning. We observe that when given a limited num-
ber of training data, our HGN has faster adaptation
than baseline models as evidenced by higher perfor-
mances in low-resource regimes (e.g., 0.1%, 1%,
and 10% of the training data used). HGN also out-
performs BERTBASE by 0.3% and RoBERTaLARGE

3The statistics information of these datasets are given in
Appendix B.

4Our source codes is available at https://github.
com/Cather-Chen/Logical-Reasoning-Graph.

1471



Model
ReClor LogiQA

Dev Test Test-E Test-H Dev Test

Human ♢ - 63.0 57.1 67.2 - 86.0

RoBERTaBASE
♢ 55.0 48.5 71.1 30.7 33.3⋆ 32.7⋆

HGNROBERTA(B) 56.3(↑1.3) 51.4(↑2.9) 75.2(↑4.1) 32.7(↑2.0) 39.5(↑6.2) 35.0(↑2.3)

RoBERTaLARGE
♢ 62.6 55.6 75.5 40.0 35.0 35.3

DAGN ♢ 65.2 58.2 76.1 44.1 35.5 38.7
DAGN (Aug) ♢ 65.8 58.3 75.9 44.5 36.9 39.3
LReasoner♠ROBERTA 66.2 62.4 81.4 47.5 38.1 40.6

- data augmentation ♠ 65.2 58.3 78.6 42.3 - -
HGNROBERTA(L) 66.4(↑3.8) 58.7(↑3.1) 77.7(↑2.2) 43.8(↑3.8) 40.1(↑5.1) 39.9(↑4.6)

DeBERTa♠ 74.4 68.9 83.4 57.5 44.4 41.5
LReasoner♠DEBERTA 74.6 71.8 83.4 62.7 45.8 43.3
HGNDEBERTA 76.0(↑1.6) 72.3(↑3.4) 84.5(↑1.1) 62.7(↑5.2) 44.9(↑0.5) 44.2(↑2.7)

Table 1: Experimental results (Accuracy: %) of our model compared with baseline models on ReClor and LogiQA
datasets. Test-E and Test-H denote Test-Easy and Test-Hard subclass of the ReClor dataset respectively. The results
in bold are the best performance of all models. ♢ indicates that the results are given by Huang et al. (2021), ♠
indicates the results are given by Wang et al. (2021), ⋆ means that the results come from our own implementation.
ROBERTA(L) and ROBERTA(B) denotes RoBERTa-large and RoBERTa-base, respectively.

% data used
0.1% 1% 10% 100%

Dev Test Dev Test Dev Test Dev Test

BERTBASE 73.2 70.4 77.9 76.8 84.2 83.9 90.8 90.7
RoBERTaLARGE 84.8 82.0 87.6 87.0 89.5 88.8 92.2 91.0
HGNBERT(B) 75.8(↑2.6) 75.4(↑5.0) 81.1(↑3.2) 80.3(↑3.5) 85.4(↑1.2) 83.9(↑0.0) 91.3(↑0.5) 91.0(↑0.3)

HGNROBERTA(L) 85.4(↑0.6) 83.5(↑1.5) 87.6(↑0.0) 87.3(↑0.3) 90.2(↑0.7) 89.4(↑0.6) 92.3(↑0.1) 91.5(↑0.5)

Table 2: Experimental results (Accuracy: %) on the SNLI dataset. We randomly generate the training dataset with
limited size, without changing the size of Dev. and Test set. BERT(B) and ROBERTA(L) denote BERT-base and
RoBERTa-large respectively.

by 0.5% on the full SNLI. We assess the model’s
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Figure 4: Dev. accuracy on the ReClor dataset as the
number of KPH nodes changes.

robustness against adversarial attacks, using a stan-
dard adversarial NLP benchmark: ANLI, as shown
in Table 3. A1, A2 and A3 are three rounds with in-

creasing difficulty and data size. ANLI refers to the
combination of A1, A2 and A3. HGNROBERTA(L)
gains a 15.2% points in test accuracy of ANLI over
RoBERTaLARGE, creating state-of-the-art results on
all rounds. Results show that our model has a com-
prehensive improvement over baseline models, in
aspects of faster adaption, higher accuracy and bet-
ter robustness.

3.3 More Results

Interpretation of k In this part, we investigate
the sensitivity of parameter k, which is the number
of KPH node. Figure 4 shows the accuracies on
the development set of our proposed model with
different numbers of KPH nodes, which are ex-
tracted according to TF-IDF weights. We observe
that k = 2 or k = 3 is an appropriate value for our
model. This is consistent with our intuition that a
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Model
Dev Test

A1 A2 A3 ANLI A1 A2 A3 ANLI

RoBERTaLARGE 74.1 50.8 43.9 55.5 73.8 48.9 44.4 53.7
ALUM♠ 73.3 53.4 48.2 57.7 72.3 52.1 48.4 57.0
InfoBERT♢ 76.4 51.7 48.6 58.3 75.5 51.4 49.8 58.3
HGNROBERTA(L) 76.7(↑2.6) 69.3(↑18.5) 74.5(↑30.6) 71.3(↑15.8) 79.5(↑5.7) 63.4(↑14.5) 76.3(↑31.9) 68.9(↑15.2)

Table 3: Experimental results (Accuracy: %) on the ANLI dataset. Both ALUM and InfoBERT take RoBERTa-large
as the backbone model. ♠ means the results from Liu et al. (2020b). ♢ means the results from Wang et al. (2020).

Model RoBERTa DAGN HGN
Params 356.4M 396.2M 373.4M

Table 4: Statistics of models’ parameters

paragraph will have 2 to 3 key phrases as its topic.
When k is too small or large, the accuracy of the
model does not perform well.

Model Complexity With well-defined construc-
tion rules and an appropriate architecture, our
model enjoys the advantage of high performance
with fewer parameters. We display the statistics
of model’s parameters in Table 4. Compared with
the baseline model (RoBERTaLARGE), the increase
of our model’s parameters is no more than 4.7%.
Particularly, our model contains fewer parameters
and achieves better performance than DAGN.

3.4 Ablation

We conduct a series of ablation studies on Graph
Construction, Hierarchical Interaction Mechanism
and Answer Selector. Results are shown in Table 5.
All models use RoBERTa-base as the backbone.

Holistic Graph Construction The Holistic
Graph in our model contains two types of nodes
and four types of edges. We remove the nodes of
EDU and KPH respectively and the results show
that the removal hurts the performance badly. The
accuracies drop to 55.8% and 53.9%. Furthermore,
we delete one type of edge respectively. The re-
moval of edge type destroys the integrity of the
network and may ignore some essential interac-
tion information between EDUs and KPHs, thus
causing the drop of the performance.

Hierarchical Interaction Mechanism Hierar-
chical Interaction Mechanism helps to capture
the information contained in different node types.
When we remove the type-level attention, the
model is equivalent to a normal Graph Attention

Model Accuracy (%)

HGNBASE 56.3

Graph Construction
- EDU 55.8 (↓0.5)
- KPH 53.9 (↓2.4)
- edge type: E-E continue 53.0 (↓3.3)
- edge type: E-E overlap 54.0 (↓2.3)
- edge type: E-K mention 54.2 (↓2.1)

Hierarchical Interaction
- type-level attention (i.e. GAT) 54.8 (↓1.5)
- both (i.e. GCN) 55.7 (↓0.6)

Answer Selector
- BiGRU 53.2 (↓3.1)
- Attention layer 55.0 (↓1.3)

Table 5: Ablation results on the dev set of ReClor.

Network (GAT), ignoring the heterogeneous in-
formation. As a result, the performance drops to
54.8%. When we remove both types of attention,
the performance drops to 55.7%.

Answer Selector We make two changes to the
answer selector module: (1) deleting the BiGRU,
(2) deleting the attention layer. For (1), the output
of EDU features concatenates with the output of
the attention layer directly and then are fed into the
downstream pooling layer. For (2), we ignore the
attention between the KPH features and the whole
sentence-level features. The resulting accuracies of
(1) and (2) drop to 53.2% and 55%, which verify
that the further fusion of features with different
granularity is necessary in our proposed model.

We further analysed the examples that are pre-
dicted correctly by our model but not by baselines,
and found that the powerful pre-trained language
models, such as RoBERTa, would bias for answers
with higher similarity to the context or those con-
taining more overlapping words. The model itself
does not understand the logical relations, but only
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compares their common elements for prediction.
Instead, our model can not only match synonymic
expressions, but also make logical inferences by
separating sentences into EDUs and extracting key
phrases and establishing logical relations between
them. An example is shown in Appendix D.

4 Related Work

4.1 Machine Reading Comprehension

MRC is an AI challenge that requires machines
to answer questions based on a given passage,
which has aroused great research interests in the
last decade (Hermann et al., 2015; Rajpurkar et al.,
2016, 2018; Lai et al., 2017). Although recent
systems have reported human-parity performance
on various benchmarks (Zhang et al., 2020a; Back
et al., 2020; Zhang et al., 2021) such as SQuAD
(Rajpurkar et al., 2016, 2018) and RACE (Lai
et al., 2017), whether the machine has necessar-
ily achieved human-level understanding remains
controversial (Zhang et al., 2020b; Sugawara et al.,
2021). Recently, there is increasing interest in im-
proving machines’ logical reasoning ability, which
can be categorized into symbolic approaches and
neural approaches. Notably, analytical reasoning
machine (AMR) (Zhong et al., 2021) is a typical
symbolic method that injects human prior knowl-
edge to deduce legitimate solutions.

4.2 Logical Reasoning

Neural and symbolic methods have been studied
for logical reasoning (Garcez et al., 2015; Besold
et al., 2017; Chen et al., 2019b; Ren and Leskovec,
2020; Huang et al., 2021). Compared with the
neural methods for logical reasoning, symbolic ap-
proaches like (Wang et al., 2021) rely heavily on
dataset-related predefined patterns which entails
massive manual labor, greatly reducing the gener-
alizability of models. Also, it could introduce prop-
agated errors since the final prediction depends on
the intermediately generated functions. Even if one
finds the gold programs, executing the program is
quite a consuming work as the search space is quite
large and not easy to prune. Therefore, we focus on
the neural research line in this work, to capture the
logic clues from the natural language texts, without
the rely on human expertise and extra annotation.

Since the logical reasoning MRC task is a new
task that there are only a few latest studies, we
broaden the discussion to scope of the related tasks
that require reasoning, such as commonsense rea-

soning (Davis and Marcus, 2015; Bhagavatula et al.,
2020; Talmor et al., 2019; Huang et al., 2019),
multi-hop QA (Yang et al., 2018) and dialogue rea-
soning (Cui et al., 2020). Similar to our approach of
discovering reasoning chains between element dis-
course and key phrases, Fang et al. (2020) proposes
a hierarchical graph network (HGN) that helps to
multi-hop QA. Our method instead avoids the in-
corporation of external knowledge and designs the
specific pattern for logical reasoning. Discourse-
aware graph network (DAGN) proposed by Huang
et al. (2021) also uses discourse relations to help
logical reasoning. However, only modeling the
relation between sentences will ignore more fine-
grained information. Focal Reasoner proposed by
Ouyang et al. (2021b), covering global and local
knowledge as the basis for logic reasoning, is also
an effective approach. In contrast, our work is more
heuristic and has a lighter architecture.

Previous approaches commonly consider the
entity-level, sentence-level relations, or heavily rely
on external knowledge and fail to capture important
interaction information, which are obviously not
sufficient to solve the problem (Qiu et al., 2019;
Ding et al., 2019; Chen et al., 2019a). Instead,
we take advantages of inter-sentence EDUs and
intra-sentence KPHs, to construct hierarchical in-
teractions for reasoning. The fine-grained holistic
features are used for measuring the logical fitness
of the candidate answers and the given context. As
our method enjoys the benefits of modeling rea-
soning chains from riddled texts, our model can
be easily extended to other types of reasoning and
inference tasks, especially where the given con-
text has complex discourse structure and logical
relations, like DialogQA, multi-hop QA and other
more general NLI tasks. We left all the easy empir-
ical verification of our method as future work.

5 Conclusion

This paper presents a novel method to guide the
MRC model to better perform logical reasoning
tasks. We propose a holistic graph-based system to
model hierarchical logical reasoning chains. To our
best knowledge, we are the first to deal with context
at both discourse level and phrase level as the basis
for logical reasoning. To decouple the interaction
between the node features and type features, we
apply hierarchical interaction mechanism to yield
the appropriate representation for reading compre-
hension. On the logical QA benchmarks (ReClor,
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LogiQA) and natural language inference bench-
marks (SNLI and ANLI), our proposed model has
been shown effective by significantly outperform-
ing the strong baselines.
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A KPHs Extraction Algorithm

Algorithm 1 Key Phrases (KPH) Extraction Algo-
rithm
Require: Input C = {S1, S2, . . . , SI}, n-gram length n,

min word length m, number of Key Phrases k
Ensure: Set of Key phrases with top-k TF-IDF weights K =
{g1, g2, . . . , gk}

1: Obtain the TF-IDF dictionary F = TF-IDF(C)
2: Generate n-gram dictionary G = n-GRAM(C, n)
3: Filter n-gram dictionary G, G̃=FILTER(G,m)
4: Retrieve the original expressions K = RE-

TRIEVE(C,F , G̃, k)
5: procedure TF-IDF(C)
6: for each sentence in C do
7: Filter stop-words in the sentence
8: Calculate the TF-IDF weight for each word
9: end for

10: return TF-IDF dictionary F
11: end procedure
12: procedure n-GRAM(C, n)
13: for each sentence in C do
14: Select all gram g with length n in the sentence
15: Add g to the dictionary G
16: end for
17: return n-gram dictionary G
18: end procedure
19: procedure FILTER(G,m)
20: for each n-gram g in G do
21: if stopwords in g or length(g) is less than m or

there is any number in g then
22: Delete g
23: end if
24: if length(g) is 1 and POStag(g) is not noun, verb,

or adjective then
25: Delete g
26: end if
27: end for
28: return n-gram dictionary G̃
29: end procedure
30: procedure RETRIEVE(C,F , G̃, k)
31: for each g in G̃ do
32: Calculate the sum of the TF-IDF weights of each

word in g, add to a dictionary z = {g : w(g)}
33: end for
34: Rank the top-k n-gram g by TF-IDF weight sum.

Construct key phrases set K = {g1, g2, . . . , gk}
35: if n=1 then
36: for each g in K do
37: gs= STEM(g)
38: Retrieve all the original words from C con-

taining gs, add to K
39: end for
40: end if
41: return Set of Key phrases K = {K1,K2, . . . ,Kk}
42: end procedure

B Dataset Information

ReClor The Reading Comprehension dataset re-
quiring logical reasoning (ReClor) is extracted
from standardized graduate admission examina-
tions (Yu et al., 2020). It contains 6,138 multiple-
choice questions modified from standardized tests
such as GMAT and LSAT and is randomly split into

train/dev/test sets with 4,638/500/1,000 samples
respectively. Multiple types of logical reasoning
question are included.

LogiQA LogiQA is sourced from expert-written
questions for testing human Logical reasoning. It
contains 8,678 QA pairs, covering multiple types
of deductive reasoning. It is randomly split into
train/dev/test sets with 7,376/651/651 samples re-
spectively.

SNLI The Stanford Natural Language Inference
(SNLI) dataset contains 570k human annotated sen-
tence pairs, in which the premises are drawn from
the captions of the Flickr30 corpus and hypotheses
are manually annotated. The full dataset is ran-
domly split into 549k/9.8k/9.8k. This is the most
widely used entailment dataset for natural language
inference. It requires models to take a pair of sen-
tence as input and classify their relation types, i.e.,
ENTAILMENT,NEUTRAL, or CONTRADICTION.

ANLI The Adversarial Natural Language Infer-
ence (ANLI) is a new large-scale NLI bench-
mark dataset, collected via an iterative, adversarial
human-and-model-in-the-loop procedure. Specif-
ically, the instances are chosen to be difficult
for the state-of-the-art models such as BERT and
RoBERTa. A1, A2 and A3 are the datasets col-
lected in three rounds. A1 and A2 are sampled
from Wiki and A3 is from News. It requires models
to take a set of context, hyperthesis and reason clas-
sify the label (ENTAILMENT,NEUTRAL, or CON-
TRADICTION). A1 has 18,946 in total and is split
into 16,946/1,000/1,000. A2 has 47,460 in total and
is split into 45,460/1,000/1,000. A3 has 102,859 in
total and is split into 100,459/1,200/1,200. ANLI
refers to the combination of A1, A2 and A3.

C Parameter Selection

Our model is implemented based on the Transform-
ers Library (Wolf et al., 2020). Adam (Kingma and
Ba, 2015) is used as our optimizer. The best thresh-
old for defining semantic relevance is 0.5. We run
10 epochs for ReClor and LogiQA, 5 epochs for
SNLI and ANLI, and select the model that achieves
the best result in validation. Our models are trained
on one 32G NVIDIA Tesla V100 GPU. The train-
ing time is around half an hour for each epoch. The
maximum sequence length is 256 for ReClor and
SNLI, 384 for LogiQA and 128 for ANLI. The
weight decay is 0.01. We set the warm-up propor-
tion during training to 0.1. We provide training
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Example (taken from ReClor dataset, id: val_214)

Context: Almost all dogs that are properly trained are housebroken in 

three weeks. In fact, it only takes more than three weeks to housebreak 
properly trained dogs if the dogs have been previously spoiled by their 
owners. In general, however, most dogs take more than three weeks to 
housebreak.
Question: If all the statements above are true, which of the following 
must also be true?
A: Most dogs take longer than four weeks to be housebroken if they have 
been previously spoiled by their owners.
B: A large proportion of dogs are not properly trained. Our Prediction ✓
C: Most dogs that are housebroken in three weeks have been properly 
trained. RoBERTa Prediction ✗
D: A large proportion of properly trained dogs have been previously 
spoiled by their owners.

P1:properly trained    P2:housebroken     P3:three weeks     P4:dogs

Figure 5: An example showing the logical reasoning capability of our model (Left) and the corresponding attention
map (Right). EDUs are shown in different colors alternately, corresponding to E1-E9 in the attention map.

Dataset PrLM batchsize learning rate

ReClor
RoBERTa-base 24 1e-5
RoBERTa-large 32 8e-6
DeBERTa-xlarge 8 8e-6

LogiQA
RoBERTa-base 2 4e-6
RoBERTa-large 2 8e-6
DeBERTa-xlarge 2 8e-6

SNLI
BERT-base 32 2e-5
RoBERTa-large 32 2e-5

ANLI RoBERTa-large 32 2e-05

Table 6: Parameter Selection

configurations used across our experiments in Ta-
ble 6.

D Case Study

To intuitively show how our model works, we se-
lect an example from ReClor as shown in Figure 5,
whose answer is predicted correctly by our model
but not by baseline models (RoBERTa). The ex-
ample shows that powerful pre-trained language
models such as RoBERTa may be better at deal-
ing with sentence pairs that contain overlap parts
or similar words. For example, the wrong answer
chosen by RoBERTa is another expression of the
first sentence in the given context. The words are
basically the same, only the order changes. The
model itself does not understand the logical relation
between sentences and phrases, but only compares
their common elements for prediction, failing in
logical reasoning task. In contrast, our model can

not only match synonymic expressions, but also
make logical inferences by separating sentences
into EDUs and extracting key phrases and establish-
ing logical relations between them. The importance
of those elements are interpreted by the attention
distribution as shown in the right part, which is
derived from the last layer of our model.
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Abstract

Recently, Biomedical Question Answering
(BioQA) has attracted growing attention due to its
application value and technical challenges. Most
existing works treat it as a semantic matching task
that predicts answers by computing confidence
among questions, options and evidence paragraphs,
which is insufficient for scenarios that require
complex reasoning based on a deep understanding
of biomedical evidences. We propose a novel
model termed Hierarchical Representation-based
Dynamic Reasoning Network (HDRN) to tackle
this problem. It first constructs the hierarchical
representations for biomedical evidences to
learn semantics within and among evidences.
It then performs dynamic reasoning based on
the hierarchical representations of evidences to
solve complex biomedical problems. Against
the existing state-of-the-art model, the proposed
model significantly improves more than 4.5%,
3% and 1.3% on three mainstream BioQA
datasets, PubMedQA, MedQA-USMLE and
NLPEC. The ablation study demonstrates the
superiority of each improvement of our model.
https://github.com/mikeblueskydl/HDRN

1 Introduction

Machine reading comprehension (MRC) (Ra-
jpurkar et al., 2016, 2018; Yang et al., 2018) tasks
are often used to evaluate the intelligence degree of
a system, and many recent large-scale pre-trained
language models (Lan et al., 2019; Zaheer et al.,
2020) have surpassed the human performance on
open-domain MRC. In recent years, Biomedical
Question Answering (BioQA) (Tsatsaronis et al.,
2012; Wang et al., 2018; Tang et al., 2019; Li et al.,

*Corresponding author.
†Equal contribution.
‡This work was done during internship at Baidu Inc.

Question：A 35-year-old Caucasian female presents to the hospital 
alarmed by her recent truncal weight gain, facial hair growth, and 
thinning skin. During the physical exam, the physician finds that the 
patient is hypertensive. Serum analysis reveals hyperglycemia. The 
physician suspects a pituitary adenoma. Which dexamethasone test 
result would help confirm the physician's suspicions?
Options：
A:  Low-dose, increased ACTH; high-dose, decreased ACTH
B:  Low-dose, decrease in ACTH; high-dose, no change in ACTH
C:  Low-dose, no change in ACTH; high-dose, no change in ACTH
D:  Low-dose, no change in ACTH; high-dose, decreased ACTH 

E1: If cortisol production is driven by an ACTH producing pituitary 
adenoma  dexamethasone suppression is ineffective at low doses but 
usually induces suppression at high doses. Inappropriately low ACTH 
levels in the setting of low cortisol levels are characteristic of 
diminished ACTH reserve. 
E2: High dose dexamethasone suppresses ACTH production by a 
pituitary adenoma  serum cortisol is lowered  but does not suppress 
ectopic ACTH production  serum cortisol remains high. Cortisol 
stimulates gluconeogenesis and insulin resistance  resulting in 
hyperglycemia as well as muscle cell protein breakdown and lipolysis 
to provide sub strates for hepatic gluconeogenesis.
E3: The mechanism of hypertension may be related to stimulation of 
mineralocorticoid receptors by cortisol and increased secretion of 
other adrenal steroids. High ACTH decreased negative feedback leads 
to bilateral adrenal hyperplasia.

Evidences of Option D:

✔

Figure 1: An example from MedQA-USMLE dataset.
(✓: correct answer option).

2020; Dai et al., 2022) has attracted growing atten-
tion due to its great application value and technical
challenges. As Figure 1 shows, compared with
open-domain MRC tasks, BioQA raises higher de-
mands for understanding professional biomedical
evidences and relies more on complex reasoning
based on semantics within and among evidences
to predict answers, which is also difficult for hu-
mans. The pass rate of the human examinee is less
than 14.2% in the National Licensed Pharmacist
Examination in China (Li et al., 2020). While in
open-domain MRC, the human performance can
reach 86.8% Exact Match (Rajpurkar et al., 2018).

Due to the extremely high cost of collection
and annotation of the biomedical data, BioASQ
(Tsatsaronis et al., 2012) was for a long time the
only authoritative benchmark for the development
of BioQA systems. Recently, more high-quality
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datasets have further contributed to the develop-
ment of the field, such as NLPEC (Li et al., 2020),
MedQA-USMLE (Zhang et al., 2018), and Pub-
MedQA (Jin et al., 2019). Some researchers have
explored pre-trained language models to solve this
task (Huang et al., 2019; Beltagy et al., 2019a; Lee
et al., 2020; Dai et al., 2022). Meanwhile, some
researchers have introduced external biomedical
knowledge to aid the model in answering questions.
(Zhang et al., 2018; Yue et al., 2020). Despite
the success, previous works mainly explore a bet-
ter language model or external domain knowledge,
which is insufficient to deal with BioQA in complex
scenarios which require complex reasoning based
on the semantics within and among evidences to
answer the question. Intuitively, it is essential to
explore a better representation learning method for
biomedical evidences and a better reasoning mech-
anism for complex biomedical questions.

To tackle this problem, we propose a novel
model, termed Hierarchical Representation-based
Dynamic Reasoning Network (HDRN), to achieve
this goal in two main parts. First, constructing hier-
archical representations to learn semantics within
and among the biomedical evidences needed to rea-
son the answer. To this end, we first use a shared
pre-trained language model to obtain the intra-level
representations of the question and evidences sep-
arately. Then, we construct coarse to fine-grained
inter-level representations of evidences to learn se-
mantics among them. Second, conducting multi-
step dynamic reasoning based on the hierarchical
representations to predict the answer. At each step,
it adaptively aggregates critical information from
hierarchical representations according to current
state and conducts single-step reasoning to update
the state. All intermediate reasoning results are
dynamically integrated to predict the answer.

To sum up, the contributions of our work are as
follows:

• We propose HDRN, a novel neural network
used for semantic representation learning and
reasoning for BioQA.

• We design a hierarchical representation learn-
ing method to learn semantics within and
among the biomedical evidences.

• We design a novel reasoning mechanism that
iteratively performs multi-step dynamic rea-
soning to solve complex biomedical ques-
tions.

• We achieve state-of-the-art performances on
three BioQA datasets, and the experiment re-
sults demonstrate the superiority of each com-
ponent of the proposed model.

2 Related Work

Biomedical Question Answering BioQA is an
emerging and challenging task. Given a question,
it requires intelligent systems to understand the
complex biomedical domain expertise and reason
the answers. Meanwhile, collecting and anno-
tating data requires experts with a medical back-
ground to complete, which is difficult and costly.
BioASQ (Tsatsaronis et al., 2012) is a benchmark
for biomedical semantic indexing and question an-
swering for a long time. Recently, many works
have made efforts to construct more high-quality
and challenging BioQA datasets. The datasets can
be mainly divided into two categories, the first
category is constructed based on biomedical do-
main publications or electronic medical records,
including emrQA (Pampari et al., 2018), MedQA-
USMLE (Zhang et al., 2018), and PubMedQA (Jin
et al., 2019). The second category is constructed
based on biomedical examinations from different
countries, including Head-QA (Vilares and Gómez-
Rodríguez, 2019) and NLPEC (Li et al., 2020).
To tackle this task, most of previous works have
optimized the language model by pre-training on
biomedical domain-related corpus, and obtained
great success (Peng et al., 2019; Alsentzer et al.,
2019; Jin et al., 2019; Beltagy et al., 2019b; Lee
et al., 2019; raj Kanakarajan et al., 2021; Yasunaga
et al., 2022). In addition, Yue et al. (2020) ex-
plored the external clinical domain knowledge to
enhance the generalization of the model. Yasunaga
et al. (2021) explored joint reasoning over text
and knowledge graph for BioQA. Dai et al. (2022)
solved the parameter competition problem via a
Mixture-of-Expert.

Unlike previous works, our proposed HDRN
model has two distinctive characteristics: (1) It
explores a hierarchical representation learning
method that can better learn semantics within and
among evidences. The effectiveness of the similar
idea of hierarchical representation learning method
has also been validated in the vision (Lan et al.,
2014), recommendation (Jiang et al., 2018) do-
mains, our proposed method is better adapted to
the characteristics of professional biomedical ev-
idences. (2) It explores a novel dynamic reason-
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ing mechanism that adaptively aggregates critical
information from hierarchical representations for
multi-step reasoning and dynamically integrates
intermediate reasoning results to predict answers.
Although the concept of multi-step reasoning mech-
anism has been mentioned in other natural language
processing tasks (Haug et al., 2018; Liu et al., 2020;
Zhao et al., 2021) or domains (Song et al., 2018;
Gan et al., 2019; Le et al., 2021), our proposed
mechanism has more flexible and powerful infor-
mation convergence and reasoning capabilities for
biomedical question answering.

3 Background

BioQA is a classification task that uses accuracy as
the evaluation metric. Specifically, given a natural
language question Q and evidences C, it requires
the intelligent system to predict the correct option
ô from the candidate set Ωo based on the under-
standing of the evidences C. θ is set of the model
parameters.

ô = argmax
o∈Ωo

P (o|Q,C; θ) (1)

As Figure 2 (a) shows, most previous works
treat BioQA as a semantic matching task. They
first concatenate all information together, including
questions and evidences, then encode them using
a language model, and finally predict the best op-
tion by computing the semantic matching score
with a multi-layer perceptron. The previous works
accomplish both representation learning and rea-
soning using a single model. There are two main
drawbacks: (i). Lack of deep understanding of
biomedical evidences. The hierarchical informa-
tion among evidences is easily lost when all the
information is mixed together for encoding. (ii).
Lack of strong reasoning capability. Single-step
implicit reasoning does not cope well with complex
questions and evidences. In terms of human expe-
rience, the reasoning is usually an iterative process
that requires multi-step to solve complex questions.

As Figure 2 (b) shows, to address the problem,
we propose HDRN, a network for representing
learning and reasoning for BioQA. It first con-
structs hierarchical representations to obtain a deep
understanding of the biomedical evidences, and
then performs multi-step dynamic reasoning to
solve complex questions.

4 Method

In this section, we describe the detail of the pro-
posed method. The overall architecture is shown
in Figure 3, which consists of two components: (a)
Dynamic Reasoning Mechanism, which can better
solve complex biomedical questions by conduct-
ing multi-step dynamic reasoning. (b) Hierarchical
Representation Learning, which can better under-
stand the biomedical evidences by learning the se-
mantics within and among the them.

4.1 Hierarchical Representation Learning
Each BioQA instance usually contains multiple ev-
idences related to the question, and the semantic
information within and among evidences are essen-
tial for reasoning. We propose a hierarchical repre-
sentation learning method to obtain a deep under-
standing of the evidences. Specifically, it consists
of three levels of representations, (1) Intra-level
Representations: learning the semantic informa-
tion of each evidence. (2) Coarse-grained Inter-
level Representations: learning the correlations
among evidences based on token representations of
all evidences. (3) Fine-grained Inter-level Rep-
resentations: learning more abstract correlations
among evidences based on sentence representations
of all evidences.

Intra-level Representations Given a question
Q, and the set of M evidence sentences
C = {cm}Mm=1, we use a pre-trained language
model(PLM) as the language encoder to extract
intra-level representations. E.g., given a sentence
S with T tokens, where S ∈ RT×1, we first add
a special token [cls] at the beginning as input. Af-
ter encoding by the language encoder, we obtain
the representations RS ∈ R(T+1)×dl , where dl is
the output feature dimension of language encoder.
Specifically, for the set of evidence sentences C,
we first concatenate each evidence cm with ques-
tion Q, and take the representations of all tokens as
their intra-level representations RC = {RCm}Mm=1,
where RCm ∈ R(T+1)×dl .

RCm = PLM([Q; cm]) (2)

where ; is the concatenate operation.
Question Q has only one sentence that does not

contain hierarchical information, so we choose the
representations of [cls] token as the representations
of the question RQ ∈ R1×dl , which is sufficient
to represent the semantics of the whole sentence
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Pre-trained Language Model (PLM)

Classifier

Question  +  Evidence 1  +  …  +  Evidence N

(a). Paradigm of previous works

Evidence 1Question

PLM PLMPLMPLM

… Evidence N

Dynamic Reasoning

Hierarchical 
Representation Learning

Answer

Classifier

(b). Ours

Answer

Figure 2: Comparison of the model architecture between our method and previous works. Unlike previous
works that adopt a unified model to conduct representation learning and single-step implicit reasoning, our method
constructs hierarchical representations to understand biomedical evidences and conduct multi-step dynamic reason-
ing to solve complex questions.

and makes the subsequent reasoning process more
elegant.

RQ = PLMCLS([Q]) (3)

Coarse-grained Inter-level Representations
We construct the coarse-grained inter-level rep-
resentations to learn the correlations among evi-
dences paragraphs that are important for reason-
ing. Specifically, we concatenate the intra-level
representations of M evidence paragraphs RC =
{RCm}Mm=1 into a sequence

RCconcat = [RC1 ;RC2 ; ...;RCM ] (4)

where RCconcat ∈ RM(T+1)×dl .
Then, we use Scaled Dot-Product Attention

(Vaswani et al., 2017) to update the representations
of each token according to the representations of
other tokens in all evidence paragraphs to learn the
semantic relationships among all evidences.

R
′C
concat = Attention(RCconcat, R

C
concat, R

C
concat)

(5)

Attention(Q,K, V ) = softmax(
QK⊤

dl
)V (6)

Then, we apply a linear projection layer and a
residual connection on the updated representations
R

′C
concat

R
′C
concat = RCconcat + Linear(R

′C
concat) (7)

Finally, we obtain the coarse-grained inter-level
representations RCcInter = {RCmcInter}Mm=1 by slic-
ing the R

′C
concat according to the length of the evi-

dence paragraphs.

Fine-grained Inter-level Representations In or-
der to learn more abstract correlations among ev-
idences, we construct the fine-grained inter-level
representations. Specifically, we concatenate the
coarse-grained inter-level representations of the
[cls] token for each evidence paragraphs into a vec-
tor sequence

RC
cls

cInter = [R
Ccls1
cInter; ...;R

CclsM
cInter] (8)

where RC
cls
m

cInter ∈ R1×dl .
Then we use the same attention, linear pro-

jection layer and residual connection as learning
the coarse-grained inter-level representations to
obtain the fine-grained inter-level representations
RCfInter ∈ RM×dl

R
′Ccls
cInter = Attention(RC

cls

cInter, R
Ccls

cInter, R
Ccls

cInter)
(9)

RCfInter = RC
cls

cInter + Linear(R
′Ccls
cInter) (10)
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Figure 3: Overall architecture of the proposed HDRN. It contains two components: (a) Dynamic Reasoning
Mechanism (described in section 4.2) and (b) Hierarchical Representation Learning (described in section 4.1).

4.2 Dynamic Reasoning Mechanism

In general, reasoning is an iterative process that
requires constantly updating the current state ac-
cording to the state-related information and grad-
ually reasoning out the answer. Inspired by the
nature of human reasoning mechanism, we design
the Dynamic Reasoning Mechanism to imitate the
process. It iteratively performs multi-step dynamic
reasoning to predict the answer. At each step of rea-
soning, it adaptively aggregates hierarchical repre-
sentations (Information Convergence) according
to the current state and performs single-step reason-
ing to obtain the intermediate result and update the
state. Each intermediate reasoning result focuses
on different parts of the hierarchical information.
Thus, we integrate them dynamically to predict the
answer better. (Dynamic Integration). We set the
initial state E1 to the question representations RQ

at the first reasoning step. When performing the
jth step of reasoning, the state is Ej :

Information Convergence We get state-related
information {HC , HC

cInter, H
C
fInter} from hier-

archical representations {RC , RCcInter, RCfInter}
through Scaled Dot-Product Attention according to
the current state Ej .

HC = softmax(
EjR

C⊤

dl
)RC (11)

HC
cInter = softmax(

EjR
C⊤
cInter

dl
)RCcInter (12)

HC
fInter = softmax(

EjR
C⊤
fInter

dl
)RCfInter (13)

Then, we apply a linear layer with softmax as the
activation function on the state-related information
to calculate the distribution of weightD and get the
weighted sum as the reasoning-related information
V .

D = softmax({HC , HC
cInter, H

C
fInter}) (14)

V = D · [HC ;HC
cInter;H

C
fInter] (15)

Reasoning We perform single-step reasoning ac-
cording to the current state Ej and the reasoning-
related information V to obtain the intermediate
reasoning results Kj .

Kj = Ej +ReLU(W1V + b1)W2 + b2 (16)

where W1 and W2 are weight matrices and b1 and
b2 are biases.
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Methods Accuracy (%)
Test

BlueBERT (Peng et al., 2019) 48.4
ClinicalBERT (Alsentzer et al., 2019) 49.0
PubMedBERT (Jin et al., 2019) 55.8
SciBERT (Beltagy et al., 2019b) 57.3
BioBERT (Lee et al., 2019) 60.2
BioELECTRA (raj Kanakarajan et al., 2021) 64.0
UNIFIEDQA-v2 (Khashabi et al., 2022) 64.2
BioLink-BERT (Yasunaga et al., 2022) 72.1

HDRN (Ours) 76.6

Table 1: Performance comparison on the Pub-
MedQA.

At the next step, we set the state Ej+1 to the
Kj . The above Information Convergence and Rea-
soning process is performed again based on the
state Ej+1. We obtain J intermediate reasoning re-
sults K = {K1, ...,KJ} after repeating the above
process J times.

Dynamic Integration After J steps of reason-
ing, we obtain all intermediate reasoning results
K = {K1, ...,KJ}. We integrate them by apply-
ing a nonlinear transformation with the softmax
function.

KI = softmax(WIK + bI)K (17)

4.3 Classifier

Given the integrated reasoning resultsKI , we use a
linear layer as a classifier to obtain the logits lk for
the answer options. Then we calculate the probabil-
ity distribution of each answer option by applying
a softmax function. We use cross-entropy loss as
our model loss L to update the model parameters.

lk = classifier(KI) (18)

ŷ = softmax(lk),L = CrossEntropy(ŷ) (19)

5 Experiments

5.1 Datasets

As mentioned in Section 2, there are mainly two
categories of datasets. In our work, we select three
widely used and challenging datasets in two cate-
gories to evaluate the model performance. Among
them, the MedQA-USMLE and PubMedQA are
in english, and the NLPEC is in chinese. We use
accuracy to measure the model performance.

Methods Accuracy (%)
Test

BERT (Devlin et al., 2018) 34.3
BioRoBERTa (Gururangan et al., 2020) 36.1
BioBERT (Lee et al., 2019) 36.7
PubMedBERT (Jin et al., 2019) 38.1
QAGNN (Yasunaga et al., 2021) 38.0
GreaseLM (Zhang et al., 2022) 38.5
MoE-BQA (Dai et al., 2022) 41.6
BioLink-BERT (Yasunaga et al., 2022) 44.6

HDRN (Ours) 47.6

Table 2: Performance comparison on the MedQA-
USMLE.

Methods Accuracy (%)
Test

BiDAF (Seo et al., 2016) 43.6
Co-Matching (Wang et al., 2018) 45.8
SeaReader (Zhang et al., 2018) 48.4
Multi-Matching (Tang et al., 2019) 48.7
BERT-base (Devlin et al., 2018) 52.2
ERNIE (Sun et al., 2019) 53.4
RoBERTa-wwm-ext-large (Cui et al., 2021) 57.9
KMQA (Li et al., 2020) 61.8
MoE-BQA (Dai et al., 2022) 62.2

HDRN (Ours) 63.5

Table 3: Performance comparison on the NLPEC.

PubMedQA PubMedQA is a large scale English
BioQA dataset collected from PubMed abstracts. It
contains a total of 273.5k QA examples, of which
1k expert-annotated, 211.3k artificially generated,
and 61.2k unlabeled. The number of examples
for the train/dev/test set is 272,950/50/500. Each
instance consists of a question, a context which is
the abstract from PubMed without its conclusion,
and a long answer which is the conclusion of the
context. It requires answering the question with
yes/no/maybe based on the reasoning over context.

MedQA-USMLE MedQA-USMLE is a large
scale multilingual BioQA dataset collected from
the National Medical Board Examinations in the
USA, Mainland China, and Taiwan. Most previ-
ous work only used English subset for training and
evaluation, so we also use English subset for fair
comparison. The English subset contains 12k QA
examples in total. The number of examples for
the train/dev/test set is 10,178/1,272/1,273. Each
example consists of a question, four candidate op-
tions with the correct one annotated. It requires
predicting the correct option corresponding to the
given question.
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NLPEC NLPEC is a large scale Chinese BioQA
dataset containing 21.7k multiple-choice ques-
tions with human-annotated answers collected
from the National Licensed Pharmacist Examina-
tion in China. The number of examples for the
train/dev/test set is 18,703/2,500/547. Each ques-
tion has five candidate options and evidences re-
trieved from the official exam guidebook that con-
tains the information needed to answer the question.
It requires predicting the correct option correspond-
ing to the given question.

5.2 Implementation Details

For all three datasets, we use the official dataset
splits to train and test our model. We set the num-
ber of evidences to 3. The feature dimension of
language encoder is set to 1024. We conduct our
experiments on NVIDIA A100 GPUs with 40GB
memroy.

PubMedQA We use BioLink-BERT’s (Yasunaga
et al., 2022) parameters as initialization parameters
for the language model. We use 450 annotated
examples and 10k randomly selected artificially
generated QA examples for model training. Our
model does not use long answers, which is more
challenging. The number of reasoning steps is set
to 3. We set the batch size to 32, and use AdamW
with β1=0.9 and β2=0.999 as the optimizer. We set
the learning rate to 3e-5. The maximum number of
epochs is set to 23.

MedQA-USMLE We use BioLink-BERT’s (Ya-
sunaga et al., 2022) parameters as initialization
parameters for the language model. We use BM25
to retrieve six sentences with highest scores for
each option from official guided books provided by
the datasets as evidences. The number of reasoning
steps is set to 2. We set the batch size to 32, and use
AdamW with β1=0.9 and β2=0.98 as the optimizer.
We set the learning rate to 3e-5. The maximum
number of epochs is set to 6.

NLPEC We use RoBERTa-wwm-ext-large’s
(Cui et al., 2021) parameters as initialization pa-
rameters for the language model. The number of
reasoning steps is set to 3. We set the batch size to
16, and use AdamW with β1=0.9 and β2=0.999 as
the optimizer. We set the learning rate to 3e-5. The
maximum number of epochs is set to 35.

5.3 Comparison with State-of-the-Arts
As shown in Table 1, 2 and 3, the proposed
method achieves the new state-of-the-art and
reaches 76.6% / 47.6%/ 63.5% accuracy on Pub-
MedQA / MedQA-USMLE/ NLPEC datasets with
4.5% / 3.0%/ 1.3% improvement over the previous
state-of-the-art method.

PubMedQA Table 1 shows the results on Pub-
MedQA dataset. The first to eighth lines show the
accuracy of the previous state-of-the-art methods
on the test set. These methods follow a semantic
matching paradigm to solve this task and achieve
competitive results. They first use language mod-
els to encode questions, options, and evidences,
and then perform single-step implicit reasoning to
predict the answer. Most of the previous works op-
timize the performance of the pre-trained language
models on BioQA by pre-training with biomedical
domain-related corpus. These pre-trained language
models can all benefit from the better semantic
representation and reasoning capabilities of our
method. Specifically, our method gains 4.5% im-
provement compared with the baseline BioLink-
BERT (Yasunaga et al., 2022) on test set.

MedQA-USMLE Table 2 shows the results on
MedQA-USMLE dataset. The first to eighth lines
shows the accuracy of the previous state-of-the-art
methods on the test set. These models also follow
the semantic matching paradigm to solve this task.
Furthermore, by introducing external knowledge
and conducting joint reasoning over text and graph
(Yasunaga et al., 2021), the performance is further
improved. Our method gains 3.0% improvement on
test set compared with the baseline BioLink-BERT.

NLPEC Table 3 shows the results on NLPEC
dataset. The first to ninth lines show the accu-
racy of the previous state-of-the-art methods on the
test set. These models also follow the semantic
matching paradigm to solve this task. Furthermore,
by retrieving external biomedical knowledge (Li
et al., 2020), the semantic matching capability of
the model can be enhanced. By introducing a mix-
ture of experts (Dai et al., 2022) to alleviate the
parameter competition problem, where each expert
handles a specific type of question, providing better
single-step reasoning capabilities. Our method ben-
efits from the proposed better semantic representa-
tion learning method and more powerful dynamic
reasoning mechanisms. Specifically, our method
gains 5.6% improvement compared with the base-
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Models Test Accuracy (%)
PubMedQA MedQA NLPEC

HDRN (Ours) 76.6 47.6 63.5
w/o Hierarchical Representation Learning 75.2 (1.4 ↓) 46.9 (0.7 ↓) 62.4 (1.1 ↓)
w/o Dynamic Reasoning Mechanism 75.0 (1.6 ↓) 46.8 (0.8 ↓) 62.3 (1.2 ↓)
Hierarchical Representation Learning

w/o Fine-grained Inter-level 75.6 (1.0 ↓) 46.7 (0.9 ↓) 63.3 (0.2 ↓)
w/o Coarse-grained Inter-level 75.6 (1.0 ↓) 46.9 (0.7 ↓) 62.6 (0.9 ↓)
w/o Intra-level 75.8 (0.8 ↓) 46.4 (1.2 ↓) 62.8 (0.7 ↓)

Dynamic Reasoning Mechanism
w/o Information Convergence 75.7 (0.9 ↓) 46.9 (0.7 ↓) 62.9 (0.6 ↓)
w/o Dynamic Integration 75.6 (1.0 ↓) 46.8 (0.8 ↓) 62.5 (1.0 ↓)

Table 4: Ablation study on three BioQA datasets.
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Figure 4: Effect of the Number of Reasoning Steps. The optimal number of reasoning steps for the PubMedQA,
MedQA-USMLE, and NLPEC are 3, 2, and 3 respectively.

line RoBERTa-wwm-ext-large (Cui et al., 2021)
on test set and gains 1.3% improvement compared
with the latest work Moe-BQA (Dai et al., 2022).

5.4 Ablation Study

Table 4 shows the results of the ablation study on
three BioQA datasets, which demonstrate the supe-
riority of each component. From the experimental
results, if there is no Dynamic Reasoning Mech-
anism, the model performs single-step reasoning
based on the output of the language model as in
most existing works, and the model performance
decreases. If there is no Hierarchical Represen-
tation Learning, all information is concatenated
together for representation learning, which is the
same as the previous works shown in Figure 2 (a),
and the model performance further decreases. In
addition, we conduct further ablation experiments
to analyze the effectiveness and superiority of two
key improvements. For Dynamic Reasoning, if
there is no Information Convergence, the model
cannot dynamically select hierarchical representa-
tions for reasoning according to the current state,
and the model performance decreases, if there is
no Dynamic Integration, the model only uses the

result of the last step of reasoning to predict the
answer, losing the key information in the reason-
ing process, and the performance decreases. For
Hierarchical Representations, we remove different
levels of representations separately to explore the
effectiveness of each level representation, and the
experimental results show that removing different
levels of representation degrades the performance
to different degrees.

Effect of the Number of Reasoning Steps Fig-
ure 4 shows the effect of the number of reasoning
steps. When the number of steps is 1, the pro-
cess is the same as the classical single-step implicit
reasoning paradigm. Empirically, the number of
reasoning steps is related to the problem complex-
ity, and the performance gradually increases as we
gradually increase the number of reasoning steps.
However, when the number of reasoning steps is
too large, the performance degrades due to the mis-
match between the reasoning process and the prob-
lem complexity. The optimal number of reasoning
steps varies slightly for different data distributions.
The optimal number of reasoning steps for the Pub-
MedQA, MedQA-USMLE, and NLPEC are 3, 2,
and 3 respectively.
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6 Conclusion

This paper proposes HDRN, a novel model for rep-
resentation learning and reasoning for biomedical
question answering. First, we construct hierarchi-
cal representations to obtain a deep understanding
of the biomedical evidences. Then, we perform
multi-step dynamic reasoning to solve complex
biomedical questions. We evaluate our model on
three BioQA datasets and achieve new state-of-the-
art performances.
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Abstract

Without labeled question-answer pairs for nec-
essary training, unsupervised commonsense
question-answering (QA) appears to be ex-
tremely challenging due to its indispensable
unique prerequisite on commonsense source
like knowledge bases (KBs), which are usu-
ally highly resource consuming in construc-
tion. Recently pre-trained language models
(PLMs) show effectiveness as an alternative for
commonsense clues when they play a role of
knowledge generator. However, existing work
either relies on large-scale in-domain or out-of-
domain labeled data, or fails to generate knowl-
edge of high quality in a general way. Moti-
vated by human thinking experience, we pro-
pose an approach of All-round Thinker (ArT)
by fully taking association during knowledge
generating. In detail, our model first focuses on
key parts in the given context, and then gener-
ates highly related knowledge on such a basis
in an association way like human thinking. Be-
sides, for causal reasoning, a reverse thinking
mechanism is especially added to further en-
hance bidirectional inferring between cause and
effect. ArT is totally unsupervised and KBs-
free. We evaluate it on three commonsense QA
benchmarks: COPA, SocialIQA and SCT. On
all scales of PLM backbones, ArT shows its
brilliant performance and outperforms previ-
ous advanced unsupervised models. Our code
is available at https://github.com/WangJW424/
commonsenseQA-ArT.

1 Introduction

Commonsense question-answering (QA) has been
a more challenging natural language understand-
ing (NLU) task than conventional QA tasks, for
it requires extra commonsense knowledge, which
cannot be directly acquired from the given context,
to make an appropriate answer (Niu et al., 2021).

∗ Corresponding author. This paper was partially sup-
ported by Key Projects of National Natural Science Founda-
tion of China (U1836222 and 61733011).

Notes:  
       1) Shadow is an area without light.      2) Grass is geen. 
       3) Sun is heat and light.     4) Cutting means to remove.

  Context:     My body cast a shadow over the grass. 
Question:     What is the cause of this?
  Options:     A. The sun was rising.           B. The grass was cut.

Knowledge:  
       1) Light is obscured to produce shadows.
       2) The sun emits light.

Figure 1: An commonsense QA exmaple in COPA. Text
with blue background is the raw example and the gold
answer is ticked. Text with green background is the
needed commonsense knowledge. Text with orange
background is notes generated by our ArT. Keyphrases
are marked in red.

Figure 1 gives a typical example. To select the
correct cause of the fact “My body cast a shadow
over the grass”, models should know that “Light
is obscured to produce shadows” and “The sun
emits light”. As human beings, we can immedi-
ately make this association and judgment because
above knowledge is deeply branded in our mind
due to daily seeing and hearing, and maybe long-
term education, which is so-called commonsense.
However, it could be much difficult for models to
be equipped with such ability. Besides, common-
sense QA usually takes an unsupervised setting
which makes this task even more difficult. This
setting means there is no labeled training data avail-
able as commonsense is too broad to build a suffi-
cient labeled training dataset (Shwartz et al., 2020).

To deal with it, prior work focused on building
large-scale knowledge bases (KBs), also known
as knowledge graphs (KGs), which usually con-
tain millions of nodes and edges to record the rela-
tion between entities as relation triple: <e1, r, e2>
(Speer et al., 2017; Sap et al., 2019a). QA models
then can be injected with commonsense through
retrieving over KBs (Miller et al., 2016). Though
impressive improvements are gained, such method
is resource consuming in building or finding a

1490



good and suitable KB (e.g. Building Concept-
Net needs 30 GB of RAM1). Recently, pre-trained
language models (PLMs) have been widely used
and proved to be effective in commonsense QA
(Niu et al., 2021; Xia et al., 2022). Thanks to
the self-supervised pre-training strategy on large-
scale unlabeled text (e.g. WebText (Radford et al.,
2019) and Wikipedia2), PLMs are competent for
many tasks even under a zero-shot setting. And
fine-tuning PLMs on task-specific data in a su-
pervised way can further produce even stronger
results (Schick and Schütze, 2021a; Gao et al.,
2021; Schick and Schütze, 2021b). Since high-
quality labeled datasets are rare, researching on
unsupervised commonsense QA is still of great
significance. With the help of PLMs, existing stud-
ies have explored some good solutions (Niu et al.,
2021; Bosselut et al., 2021; Shwartz et al., 2020),
however they either rely on large-scale in-domain
or out-of-domain labeled data, or need to be specif-
ically designed for different tasks. In this work, we
focus on designing a simple and general method to
solve commonsense QA tasks in a strictly unsuper-
vised way.

Based on two empirical observations from hu-
man thinking,

(1) Given a question with context, people firstly
tend to focus on several key parts (as marked in
red in Figure 1) and then make corresponding
associations to choose the right answer;

(2) For causal reasoning, people tends to carry out
a bidirectional inferring to assist answer selec-
tion or verify the answer correctness.

we propose All-round Thinker (ArT) for unsuper-
vised commonsense QA, which includes two prin-
cipal methods: notes taking (NT) and reverse think-
ing (RT). Specifically,

(1) NT extracts some keyphrases out of the context
and then generates corresponding notes, which
will be added as extra knowledge in later eval-
uation. Based on an unsupervised keyphrase
extractor, we designed our knowledge genera-
tion rule to be simple and general.

(2) RT converts the causal inferring question to
two different forms: (cause→ effect) and (ef-
fect→ cause), and then integrates the decisions
made from the two reverse directions.

1Declared by Speer et al. (2017) at https://github.com/
commonsense/conceptnet5

2https://www.english-corpora.org/wiki

Our proposed model is strictly unsupervised and
KBs-free for all it needs is PLMs. We test ArT
and validate its effectiveness on three common-
sense QA benchmark datasets: COPA (Roemmele
et al., 2011), SocialIQA (Sap et al., 2019b) and
SCT (Mostafazadeh et al., 2016). Our contribution
is summarized as follows:

• ArT can generate highly related knowledge
through the imitation of human behaviour and
thought, which is qualified with inherent inter-
pretablility.

• Compared with existing work, ArT is simple
and general, which totally gets rid of the needs
of any labeled data and the specific design on
any specific task.

• We conduct experiments on 3 commonsense
QA benchmarks with 4 different scales of
PLMs, so as to reach solid and reproducible re-
sults. The results show that ArT outperforms
other advanced unsupervised models.

2 Related Work

2.1 Building and Usage of Knowledge Bases
In order to equip QA models with commonsense
reasoning ability, previous researches were devoted
to building and retrieving large-scale knowledge
bases (KBs). ConceptNet (Speer et al., 2017) is
one of the most famous traditional KBs, which
contains over 21 million edges (for relations) and
over 8 million notes (for entities). While ATOMIC
(Sap et al., 2019a) focuses more on if-then relations
between events.

Previous work applies a relatively standard rou-
tine to solve commonsense QA. Given an exist-
ing KB, QA models can retrieve relation triples
<e1, r, e2> over it, which can be injected into mod-
els as word embedding directly (Wang et al., 2014;
Paul and Frank, 2019) or first converted to a com-
plete sentence according to preset templates (e.g.
<bird, CapableOf, fly>→ Bird can fly.) and then
integrated with the raw input text (Ma et al., 2019;
Mihaylov and Frank, 2018; Bauer et al., 2018).
This type of methods may give remarkable perfor-
mance for commonsense QA (Weissenborn et al.,
2017). However, building and retrieving of KBs are
both resource consuming (Bosselut et al., 2021).

Bosselut et al. (2019) claimed that commonsense
knowledge does not cleanly fit into a schema of
comparing two entities with a known relation so
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1. After casting a shadow, I knew it was black for me.

2. Before casting a shadow, the light was blocked.

3. The definition of grass is ground covered with grass.

4. The main function of sun is to give sunlight.

5. ... ...

Scorei

C: My body cast a shadow over the grass. 

Q: What is the cause of this?

Oi: The sun was rising.

Keyphrase
Extractor

Notes
Generator

ordered
rewriting

noteK + STi
O

STi
R: The sun was rising. Therefore, 

my body cast a shadow over the grass. 

STi
O: My body cast a shadow over the grass. Because the sun was rising.

{cast a shadow; grass; sun}
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Figure 2: Overview of the proposed method All-round Thinker (ArT), which contains two principal method: Notes
Taking (within blue dashline box) and Reverse Thinking (within green dashline box). The arrow denotes the flow of
data stream, with number/letter within circle marking its order in time.

that they proposed COMET, which can generate
rich and diverse commonsense descriptions in nat-
ural language. However, COMET has to extract
knowledge triples from existing KBs as seed for
PLM fine-tuning, while our method is totally KBs-
free.

2.2 PLMs in Unsupervised Commonsense QA

Due to excellent performance and versatility, PLMs
now dominate the backbone design of many NLP
tasks, especially in QA (Wang et al., 2021; Zhang
et al., 2021). Benefiting from the long-term pre-
training on large-scale unlabeled text, PLMs are
equipped with implicit or explicit commonsense
(Davison et al., 2019). As a result, there comes
a tendency to rely on PLMs as the sole source of
world knowledge to solve commonsense QA in a
zero-shot setting (Shwartz et al., 2020; Bosselut
et al., 2021).

SEQA proposed by Niu et al. (2021) ex-
ploits generative PLMs to generate hundreds of
pseudo-answers, and then applies Sentence-BERT
(Reimers and Gurevych, 2019) to calculate seman-
tic similarity between candidates and these gen-
erated pseudo-answers. A voting mechanism is
designed to make final selection. Though SEQA
shows impressive performance, it relies much on
PLMs fine-tuned on large-scale labeled NLI (Nat-
ural Language Inference) datasets. Without such
fine-tuning on such labeled datasets, SEQA’s effec-
tiveness will sharply decline. Instead, our method
relies nothing but vanilla PLMs.

Shwartz et al. (2020) proposed Self-talk, which
creatively applies PLMs as commonsense genera-
tor. It uses preset question prefixes to firstly prompt
the PLM to generate information seeking questions
(ISQs). ISQs will be put back to secondly prompt
the PLM to generate their answers as clarifications,
which will work as knowledge in later evaluation.
Though this method is strictly unsupervised, the
question prefixes are not general and have to be
carefully designed according to different tasks. Be-
sides, Self-talk fails to generate knowledge of high
quality since the generation of ISQs and clarifica-
tions are both erratic. Inspired by Self-talk and
towards its shortage, we designed a general method
to generate knowledge of high relevance.

2.3 Unsupervised Keyphrase Extraction

Keyphrase extraction (KE) is the task of selecting
several words or phrases that can summarize the
main topic of the document (Hasan and Ng, 2014).
Unsupervised KE methods use different features
of the document, such as word frequency, position
feature, relationship between words, etc (Mihalcea
and Tarau, 2004; Bougouin et al., 2013).

SIFRank (Sun et al., 2020) is one of the most
advanced unsupervised keyphrase extractors. It
leverages different features of words in document
and evaluates the weight of candidate phrases ac-
cording to word embedding provided by PLMs.
SIFRank is originally designed to extract key noun
phrases from given documents, and we made slight
modifications to adapt it to our model.
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Key Value Replacing rule
“NP” { “The definition of [NP] is”, “The main function of [NP] is”, “[NP] is a/an” } directly replace
“VP” { “[VP] means”, “After [VP], ”, “Before [VP], ” } convert to gerund first

“PNP” { “[PNP] is a/an”, “[PNP] felt”, “After this, [PNP]”, “[PNP] did this because” } directly replace

Table 1: Note templates lookup table.

3 All-round Thinker

Inspired by the behaviour and thought of human
beings during solving questions requiring common-
sense, we propose All-round Thinker (ArT). Figure
2 gives its overview. We will firstly introduce the
task definition and the basic solution, and then de-
scribe the two principal methods of ArT in detail:
Notes Taking (NT) and Reverse Thinking (RT).

3.1 Task Definition and Basic Solution
This work focuses on unsupervised commonsense
QA task in multi-choice style, which consists of a
context (C) with related question (Q), and asks
models to select a single answer from a given
option set: O = {Oi}|O|i=1. Though there are some
variants of the task form, such as Piqa (Bisk et al.,
2020) and WinoGrande (Sakaguchi et al., 2020),
they can be conveniently transformed into this nor-
malized formulation: (C, Q, O) (Shwartz et al.,
2020).

Following previous work, we adopt a basic so-
lution which uses PLMs as scorer. Based on the
pre-training strategy: predicting the probability dis-
tribution of token n according to previous (n− 1)-
gram, e.g. OpenAI GPT (Radford et al., 2019),
or bidirectional context, e.g. BERT (Devlin et al.,
2019), PLMs are qualified for the role of option
scorer even under a zero-shot setting (Bosselut
et al., 2021). Sentence likelihood is the commonly-
used scoring function for Oi:

S(Oi|C,Q) = PLM (Oi|C,Q)

=
1

|Oi|

|Oi|∑

t=1

logPLM (Oit|C,Q,Oi<t)

(1)

where PLM refers to the probability function ab-
stracted from PLMs. The final predicted answer
(Â) is selected as:

Â = argmax
Oi

S(Oi|C,Q) (2)

3.2 Notes Taking
To make full use of PLMs’ potential of common-
sense reasoning and overcome the shortage of Self-

talk (Shwartz et al., 2020), we propose notes taking
(NT) to generate commonsense descriptions in nat-
ural language (defined as “notes” in our work) in
a simple and general way. NT is composed of two
phases: keyphrase extraction and notes generation.

3.2.1 Keyphrase Extraction
Taking Oi and its corresponding C and Q as input
(as shown in left bottom of Figure 2), ArT firstly
rewrites the original interrogative Q into a declar-
ative form (We followed the question rewriting
method proposed by Shwartz et al. (2020)) and then
concatenate <C, Q, Oi> as a statement (ST iO).
Then, we use an unsupervised keyphrase extractor
to extract keyphrases from ST iO. To be specific, we
extract three types of phrases: noun phrase (NP),
verb phrase (VP) and person name phrase (PNP).

To implement this, for each type of phrase we
designed a simple CFG (context-free grammar
(Chomsky and Schützenberger, 1959)) rule to ex-
tract it out of the whole sentence, as following:

• NP → (nn|adj) ∗+nn

• V P → vb+ (pr){0, 1}+NP

• PNP → (pn){1, 2}
where VP, NP and PNP are non-terminators; vb
(verb), nn (noun), adj (adjective), pn (person
name) and pr (preposition) are terminators; ‘+’
means concatenation; {a, b}means repetition times
range from a to b. ‘∗’ is equivalent to {0,∞}.

Then, we add these CFG rules to the Regexp-
Paser tool of NLTK (Bird, 2006). We will extract
top 5 most important keyphrases without any label
or fine-tuned model but word embeddings obtained
from a PLM, i.e. ELMo (Peters et al., 2018).

3.2.2 Notes Generation
Once keyphrases are obtained, we can retrieve a
preset note templates set for getting notes prefixes.
Considering that: (1) For an object (NP), people
will think “what is it” and “what is it for”; (2) For
a behavior (VP), people will think “what does it
mean” and “what is the cause/effect”; (3) For a
person (PNP), people will think “who is he/she”
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and “what is his/her feeling/motivation/reaction”,
our proposed general-purpose note templates set is
presented in Table 1.

We use the types of keyphrases as keys and tem-
plates lists as values to build the note templates
set as a lookup table. Given such a lookup table,
we can immediately retrieve the note templates for
our extracted keyphrases and simply replace the
tag ([NP], [VP] and [PNP]) with these keyphrases
to form the note prefixes3. Though this lookup ta-
ble seems to be simple, it shows effectiveness and
generality on different benchmarks.

Next, for each note prefix, we will concatenate
it to C and input them into a generative PLM to
generate the complete note. Specifically, nucleus
sampling (Holtzman et al., 2020) with p = 0.8
is applied as the decoding strategy rather than
greedy/beam search to increase the diversity of
generated text. Meanwhile, to ensure the quality
and scale the number of generated notes, we sort
all the notes according to their perplexity estimated
by the PLM. We denote this process as Rethinking.
Finally, we will retain top K notes to construct the
notes set: {notek}Kk=1, as shown in middle top of
Figure 2. Each notek will be inserted into ST iO as
extra knowledge to assist later option scoring. The
score of Oi w.r.t notek is calculated as:

scorei,kO = PLM (Oi|notek + ST iO −Oi)

=
1

|Oi|

|Oi|∑

t=1

logPLM (Oit|notek + ST iO −Oi +Oi<t)

(3)

in which ‘+’ means concatenation and ‘-’ means re-
moving. Eventually, a voting mechanism is applied
to integrate the scores w.r.t all notes as:

ScoreiO =
1

K

K∑

k=1

scorei,kO (4)

It is worth noting that there is no need in training
from any labeled data throughout NT. And there is
no need to modify the note templates according to
different tasks since our note templates is designed
for general purpose.

3.3 Reverse Thinking

For causal reasoning questions, we additionally in-
troduce reverse thinking (RT) which conducts a

3In order to keep a correct grammar, for VP we will firstly
convert its verb into gerund form before replacing.

bidirectional inferring between cause and effect.
To implement this, besides the ordered rewriting
(ST iO) as mentioned in Section 3.2.1, we also apply
reverse rewriting that concatenates them in the or-
der of <Oi, QR, C> (denoted as ST iR), as shown
in the right bottom of Figure 2. Note that QR is
the opposite question of Q. To be specific, after
question rewriting, “Because” and “Therefore” are
two opposite questions in causal reasoning tasks.

To conduct bidirectional inferring, except for
ScoreiO as introduced in Section 3.2 for the ordered
inferring: C + Q → Oi, we set another scoring
function ScoreiR for reverse inferring: Oi+QR →
C, as:

ScoreiR = PLM (C|ST iR − C)

=
1

|C|

|C|∑

t=1

logPLM (Ct|ST iR − C + C<t)

(5)

To take advantage of bidirectional inferring, we
design a mixed scoring function by simply compute
the average value of the above two:

ScoreiX =
1

2
(ScoreiO + ScoreiR) (6)

Finally, formula (2) is applied to select the answer
by replacing S with ScoreiO (default) or ScoreiX
(for causal reasoning). From the perspective of
model enhancing, averaging ScoreiO and ScoreiR
can be regarded as the assembly of two models
(“cause” model and “effect” model), which is a
common method to enhance model performance
and robustness.

4 Experiment

4.1 Datasets

ArT is evaluated on three different com-
monsense QA benchmarks: COPA(Roemmele
et al., 2011), SocialIQA(Sap et al., 2019b) and
SCT(Mostafazadeh et al., 2016). Here are the de-
tailed information:

• COPA4 (Choice of Plausible Alternatives):
evaluates the ability of causal reasoning about
a certain event, which is described as a single
sentence. Each question is accompanied with
two candidate options.

4https://people.ict.usc.edu/~gordon/copa.html
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• SocialIQA5 (Social Interaction Question
Answering): evaluates the reasoning ability
on social interactions. It has various questions,
including the subject’s motivation, reaction,
personality, etc. Each question is accompa-
nied with three candidate options.

• SCT 6 (Story Cloze Test): requires models to
select the right ending of the given short story
from two alternatives. Each story is composed
of four sentences.

Since two test sets of the three datasets are hid-
den, we report all results on dev sets. Note that
the labels are kept invisible and only used for final
accuracy evaluating.

4.2 Baseline and Contrastive models

Our baseline is constructed as only using PLMs
as scorer without any explicit knowledge injection.
Formula (1) is applied as the scoring function as
described in Section 3.1. We also compare ArT
with other advanced unsupervised models:

• Self-talk(Shwartz et al., 2020): It acquires
knowledge through a two-stage prompting of
PLMs. Different question prefixes had to be
specially designed for different tasks.

• SEQA(Niu et al., 2021): It applies PLMs
to generate hundreds of pseudo-answers and
compares them with each option. How-
ever, its scorer relies on PLMs fine-tuned on
large-scale labeled NLI datasets, which is not
strictly unsupervised. For fair comparison,
we design another setting that replaces the
fine-tuned PLM with the original one (only
pre-trained on unlabeled text) .

• CGA(Bosselut et al., 2021): It employs a gen-
erative KB COMET(Bosselut et al., 2019),
which is trained on an existing seed KB (e.g.
ConceptNet), to construct context-relevant
knowledge graphs to reason over.

4.3 Setup

Following previous work, we employ OpenAI
GPT(Radford et al., 2019) as the PLM backbone.
To reach solid and reproducible results, we conduct
experiments on GPT-2 of 4 different scales: distil,
medium, large and xlarge. For ArT and Self-talk,

5https://leaderboard.allenai.org/socialiqa
6https://www.cs.rochester.edu/nlp/rocstories/

the same scale GPT is applied during both knowl-
edge generating and option scoring. For SEQA,
GPTs of different scales are used for pseudo-
answers generation and SRoBERTalarge(Reimers
and Gurevych, 2019) is used for semantic similar-
ity calculation. To distinguish, SRoBERTaNLIlarge and

SRoBERTaOriginlarge refer to SRoBERTalarge with and
without further fine-tuning on NLI datasets, respec-
tively. For Self-talk7 and SEQA8, we re-run their
codes with their original settings and report both
our re-running results9 and results coming from
their publications. For CGA, we report results pro-
vided by Niu et al. (2021). For ArT, we modified
the open source code of SIFRank10 to enable it
to extract more kinds of phrases rather than only
noun phrase. The size of notes set (K) is set as 32
as default. Except for ScoreiO, ArT takes another
setting ScoreiX on COPA.

4.4 Results

Table 2 shows the results on three benchmarks.
The results of our re-running is highly consistent
with those reported in their publications (last col-
umn). Note that published results on COPA seem
to have a deviation with our reproduction. It be-
cause that they are on test set, while ours on dev
set. Shwartz et al. (2020) reported 66.0% on COPA
in their paper, which is tested on the dev set of a
small version which contains 1/5 instances of that
other researches used. And ArT reaches 68.0% on
that set under the same setting.

On all datasets, ArT obtains state-of-the-art per-
formance among almost all fully unsupervised
models. Besides, it is noticed that on GPT of dif-
ferent scales, ArT with NT stably brings positive
improvement over baseline. On causal reasoning
task COPA, adding RT will bring further accuracy
improvement.

In contrast with ArT, Self-talk fails to main-
tain effectiveness, whose accuracy is even slightly
lower than baseline from time to time, especially on
SCT. It indicates that the knowledge generated by
Self-talk could be noisy and as a result it misguides
model evaluation.

With the help of SRoBERTaNLIlarge , SEQA can
reach very impressive results on all the datasets,
especially SCT (exceed all models than over 10%).

7https://github.com/vered1986/self_talk
8https://github.com/heyLinsir/Semantic-based-QA
9For each setting except GPT-2xlarge (limited by the compu-

tational power), we run 3 times and report the average number.
10https://github.com/sunyilgdx/SIFRank
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Our (re-)running Published
Dataset Models DistilGPT-2 GPT-2medium GPT-2large GPT-2xlarge GPT-2xlarge

COPA

Baseline 57.8 62.4 65.8 66.0 –
SEQA 51.4 (63.0) 53.0 (68.4) 53.8 (72.0) 54.4 (75.4) 79.4
Self-talk 59.8 (↑2.0) 65.0 (↑2.6) 66.6 (↑0.8) 66.2 (↑0.2) 68.6
CGA – – – – 72.2
ArT 60.2 (↑2.4) 64.8 (↑2.4) 67.0 (↑1.2) 67.6 (↑1.6) –
ArT (ScoreiX ) 61.0 (↑3.2) 65.6 (↑3.2) 69.4 (↑3.6) 69.8 (↑3.8) –

SocialIQA

Baseline 41.3 44.3 45.5 45.9 –
SEQA 34.9 (43.9) 35.9 (44.6) 36.5 (46.6) 36.6 (47.5) 47.5
Self-talk 40.5 (↓0.8) 44.8 (↑0.5) 46.1 (↑0.6) 47.2 (↑1.3) 47.5
CGA – – – – 45.4
ArT 42.0 (↑0.7) 45.6 (↑1.3) 47.6 (↑2.1) 47.3 (↑1.4) –

SCT

Baseline 59.6 67.4 69.1 70.5 –
SEQA 50.7 (74.7) 53.3 (80.5) 54.2 (82.4) 54.9 (83.2) 83.2
Self-talk 59.8 (↑0.2) 68.5 (↑1.1) 69.2 (↑0.1) 70.4 (↓0.1) 70.4
CGA – – – – 71.5
ArT 60.2 (↑0.6) 68.3 (↑0.9) 69.5 (↑0.4) 71.6 (↑1.1) –

Table 2: Accuracy (%) on COPA, SocialIQA and SCT. All results except last column are run by ourselves. Best
results are depicted in boldface (only consider fully unsupervised models for fairness). ↑/↓ refer to relative
increase/decrease compared with baseline. For SEQA, we list results of two settings: SRoBERTaOrigin

large (before
brackets) and SRoBERTaNLI

large (in brackets).

However, when working in a strictly unsupervised
mode, this method quickly becomes invalid (close
to random selection).

We also observe a common phenomenon on all
our ArT, baseline and contrastive models: when
enlarging GPT-2 from large (750M parameters)
to xlarge (1500M parameters), we encounter no
obvious model performance increasing and even
decreasing in some scenarios. It indicates that there
could be a limit to only using the method of increas-
ing model parameters to improve the performance
of language models as sentence scorer or knowl-
edge generator.

5 Analysis and Discussion

5.1 Effect of Different Modules

In order to determine the source of performance
growth, we conduct ablation study on ArT, as
shown in Table 3. As expected, injecting knowl-
edge with our NT has positive effect on all three
tasks. When removing the Rethinking mechanism,
all results slightly decrease, which indicates that
Rethinking can help increase the quality of gener-
ated knowledge. Besides, ScoreiX can bring fur-
ther improvement whether or not NT is employed
on COPA.

Models COPA SocialIQA SCT
Baseline 65.8 45.5 69.1

+ScoreiX 68.9 – –

+NT 67.0 47.6 69.5
+NT−Rethinking 66.2 46.7 69.4
+NT+ScoreiX 69.4 – –

Table 3: Ablation study for ArT modules on GPT-2large.

5.2 Number of Notes and Keyphrases

Figure 3 shows the effect of notes set size K. On
all the benchmarks, along with the increasing of
K, the accuracy curves basically show an upward
trend, which indicates that as the number of gener-
ated knowledge increases, ArT will not accumulate
too much noise as Niu et al. (2021) observed in
Self-talk. Therefore, compared with Self-talk, ArT
tends to generate highly related knowledge, which
is contributed by our NT mechanism.

In our experiments (Section 4), the number (N )
of keyphrases to extract is set as 5 as default. To
show the effect of N , we conduct an ablation study
on SCT by setting N ∈ {1, 3, 5, 7, 9}. The PLM is
selected as GPT-2distil. Table 4 shows the results.
It is noticed that extracting more keyphrases does
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Figure 3: Accuracy curves of ArT on GPT-2medium w.r.t
the size K of notes set.

N 1 3 5 7 9

baseline 59.6
ArT 59.6 60.2 60.2 60.0 60.0

Table 4: Accuracy (%) of ArT (GPT-2distil) on SCT
under different settings of N .

not always results in a better performance. But in
general, the choice of N does not have an obvious
impact on the final performance.

Dataset Model Rationality Usefulness

COPA
Self-talk 0.24 0.20
ArT 0.32 0.28

SocialIQA
Self-talk 0.17 0.16
ArT 0.26 0.27

Table 5: Human evaluation on the rationality and use-
fulness of generated knowledge.

5.3 Quality of Generated Knowledge

To compare the quality of generated knowledge
(whether the knowledge is reasonable enough to be
a “fact” and correlative enough to be useful), we
conduct human evaluation on the rationality (-1:
irrational, 0: meaningless, 1: rational) and use-
fulness (-1: negative, 0: neutral, 1: positive) of
knowledge generated by ArT and Self-talk. Two
annotators are asked to independently annotate 100
randomly selected knowledge for both COPA and
SocialIQA. The overall average scores of two an-
notators for each dataset are shown in Table 5. It is
noticed that ArT outperforms Self-talk in generat-
ing knowledge with both rationality and usefulness.

We further make statistics on the kinds of all
the knowledge generated by Self-talk and ArT on

61.4%

4.8%

29.2%

4.6%
Positive
Essential
Invalid
Negative

62.2%

9.6%

25.4%

2.8%

Self-talk ArT

Figure 4: Statistics on the quality of knowledge gener-
ated by Self-talk and ArT on COPA.

COPA. We divide them into four classifications:

• Positive: Baseline makes the right prediction.
Adding the knowledge still makes a right pre-
diction.

• Essential: Baseline makes the wrong predic-
tion. Adding the knowledge helps make a
right prediction.

• Invalid: Baseline makes the wrong prediction.
Adding the knowledge still makes a wrong
prediction.

• Negative: Baseline makes the right prediction.
Adding the knowledge leads to a wrong pre-
diction.

As shown in Figure 4, by doubling Essential and
reducing Negative knowledge, ArT outperforms
Self-talk in generating high-quality commonsense.

Figure 5 and 6 in Appendix show some exam-
ples of knowledge generated by ArT, Self-talk and
SEQA for COPA, SocialIQA and SCT. As can be
seen, ArT generates highly related knowledge on
the basis of focusing on keyphrases of given con-
text. While Self-talk may generate meaningless or
even noisy knowledge. It is also noticed that SEQA
could generate very reasonable pseudo-answers.
And to distinguish the relationship between these
pseudo-answers and given options relies much on
a sentence embedding extractor fine-tuned on la-
beled NLI data.

5.4 Effect of Note Types
As we designed three types of notes: NP, VP and
PNP, we only consider one type at one time to
show the effect of each in different benchmarks, as
shown in Table 6 (The PLM is GPT-2medium).

It is noticed that each type of notes has a positive
effect when applied separately, and their combina-
tion works better. Note that COPA has no person
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Dataset NP VP PNP All / None
COPA 63.6 63.2 62.4 64.8 / 62.4
SocialIQA 45.0 44.8 45.3 45.6 / 44.3
SCT 68.0 67.9 68.1 68.3 / 67.4

Table 6: Effect of each type of notes on different tasks.

name phase (PNP), so PNP notes does not work
on it. On SocialIQA, PNP works best among three
types of notes. This is reasonable since SocialIQA
focus much on human behavior in social interac-
tions.

6 RT for Other Questions

Although RT is designed to enhance causal reason-
ing, we also explored if RT has the potential to help
other questions. To investigate this, we apply it on
other two datasets: SocialIQA and SCT. Note that
in these tasks the opposite question is hard to de-
fine, therefore we simply exchange the position of
option and context, that is ST iO =< C,Q,Oi >
and ST iR =< Oi, Q,C >. We employ three scor-
ing functions on basis of GPT-2medium baseline, as
shown in Table 7.

Functions COPA SocialIQA SCT
ScoreiO 62.4 44.3 67.4
ScoreiR 63.2 42.5 62.8
ScoreiX 65.3 44.1 65.4

Table 7: Accuracy (%) of GPT-2medium baseline with
different scoring functions.

On all the tasks, ScoreiO and ScoreiR can obtain
positive results (much better than random selec-
tion). By simply averaging (ScoreiX ), on COPA it
can reach a higher score. On other tasks, it falls
into the middle of ScoreiO and ScoreiR. Consider-
ing that ScoreiR shows a comparable performance
with ScoreiO by simply exchanging the position of
option and context, developing a general method
for opposite question definition or designing a more
exquisite method to integrate ScoreiO and ScoreiR
perhaps could make RT suitable for questions be-
yond causal reasoning, which will be the key point
of our future work.

7 Conclusion

Commonsense QA has been a challenging task for
it requires extra knowledge beyond the given con-

text. In consideration of the high resource con-
sumption of building knowledge bases (KBs) and
the rarity of high-quality labeled data, this work
aims at addressing commonsense QA in a fully
KBs-free and unsupervised way. Inspired by the
association process of human thinking, we propose
All-round Thinker (ArT), which first focuses on
key parts in the given context, and then generates
highly related knowledge on such a basis in an asso-
ciation way. Besides, a reverse thinking mechanism
is introduced to further enhance bidirectional infer-
ring for causal reasoning as human will do. We test
ArT on three benchmarks: COPA, SocialIQA and
SCT. ArT outperforms previous advanced unsuper-
vised models and shows stable performance on all
scales of PLM backbones.
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Self-talk

COPA
C:   The woman hired a lawyer.    
Q:   What is the cause of this?
O:   a) She wanted to sue her employer.    b) She decided to run for office.

top-1： After hiring a lawyer, she sued the man for sexual harassment. 
top-2： Before hiring a lawyer, she has little chances to win in the court.

top-1： Before [b)], the prosecutor said her client was a criminal.
top-2： “Lawyer” anyway is the word that I'm using to describe it.

top-1： She thought the employer was trying to rip her off.
top-2： She was worried her employer would be fired.

SocialIQA
Carson was excited to wake up to attend school.   
Why did Carson do this?
a) Take the big test.     b) Just say hello to friends.     c) Go to bed early.    

Carson felt great and enjoyed being around people again.
Attending school means working hard and learning something new everyday.

Carson did this because they wanted him in the classroom.
Carson did this because they wanted him there for his education.

To focus on his studies.
To play football with his friends and play street basketball.

Instance

ArT

SEQA

Figure 5: Top two most contributing generated knowledge for instances of COPA and ScocialIQA. The correct
options are underlined. Keyphrases extracted by ArT are marked in red.

Self-talk

SCT
C:   Rick grew up in a troubled household. He never found good support in family, and turned to 
        gangs. It wasn't long before Rick got shot in a robbery. The incident caused him to turn a new leaf.    
Q:   What is the ending of the story?
O:   a) Rick is happy now.                 b) Rick joined a gang.

top-1： After turning a new leaf, he decided that fighting crime was more important than robbing banks. 
top-2： Turning a new leaf means not committing any crimes again.

top-1： Rick is happy now means that he has learned from his mistakes.
top-2： Rick is happy now means that he can get his life back on track.

top-1：He was now a good person.
top-2：His life has dramatically improved with a period of rehabilitation and good mental health.

Instance

ArT

SEQA

Figure 6: Top two most contributing generated knowledge for instances of SCT. The correct options are underlined.
Keyphrases extracted by ArT are marked in red.
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Abstract

Answering complex questions that require
multi-step multi-type reasoning over raw text
is challenging, especially when conducting
numerical reasoning. Neural Module Networks
(NMNs), follow the programmer-interpreter
framework and design trainable modules to
learn different reasoning skills. However,
NMNs only have limited reasoning abilities,
and lack numerical reasoning capability. We up-
grade NMNs by: (a) bridging the gap between
its interpreter and the complex questions; (b)
introducing addition and subtraction modules
that perform numerical reasoning over numbers.
On a subset of DROP, experimental results
show that our proposed methods enhance
NMNs’ numerical reasoning skills by 17.7%
improvement of F1 score and significantly
outperform previous state-of-the-art models.

1 Introduction

Complex Question Answering (CQA) over text is
a challenging task in Natural Language Understand-
ing (NLU). Based on the programmer-interpreter
paradigm, Neural Module Networks (NMNs)
(Gupta et al., 2020) learn to first parse complex
questions as executable programs composed of
various predefined trainable modules, and then
execute such programs (implemented by modules)
over the given paragraph to predict answers of
all kinds. NMNs achieve competitive reasoning
performance on a subset of DROP (Dua et al.,
2019), and possess remarkable interpretability that
is also important for CQA.

However, NMNs’ numerical reasoning capability
is insufficient: it is incapable of handling arithmetic
operations such as addition and subtraction between
numbers, which make up nearly 40% questions of
the DROP dataset. Moreover, a gap exists between
the interpreter and the complex question since
there is no interaction between them. Motivated by

these, we propose two methods to improve NMNs’
numerical reasoning skills.

First, we incorporate the original question in the
interpreter, aiming to directly provide question in-
formation in the “execution” process, especially
number-related questions. The intuition behind is
that, in the original NMNs, questions participate
in the process only through the programmer. This
can cause a distance between queries and returns.
For example, in Figure 1, the first row shows that
the original NMNs found the wrong event (i.e.,
‘besieged Sinj’) solely based on the paragraph
information. In contrast, our model NMNs± can
easily target the correct event (i.e., ‘Sinj finally
fell’) with the help of question information.

Second, we introduce new modules to support
addition and subtraction of up to three numbers.
Endowing NMNs with the ability to support
arithmetic can greatly boost its overall performance
on DROP and beyond. For instance, in Figure
1, the second row shows that the original NMNs
improperly adopt the find-num module for the
addition question because the module set does not
cover such an arithmetic ability. To facilitate the
learning of the add/submodules, we extract QA
pairs related to addition and subtraction from the
original DROP dataset to construct a new dataset
for training and evaluation.

Experimental results show that our methods
significantly enhance NMNs’ numerical reasoning
capability. On a subset of DROP, our methods
improve F1 score by 17.7% absolute points, and
on ADD-SUB questions by 65.7% absolute points.
Compared to NumNet (Ran et al., 2019), which is
specifically designed for numerical reasoning, our
method outperforms it by 2.9% absolute F1 points.

2 Background and Related Work

Semantic Parsing is a widely-adopted approach in
the compositional question answering (CQA) task,
which involves a number of reasoning steps. In this
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Question type Paragraph Question Answers
date compare In the Morean War, the Republic of Venice besieged Sinj in October 1684 and then 

again March and April 1685, but both times without success. … With the help of the 
local population of Poljica as well as the Morlachs, the fortress of Sinj finally fell to the 
Venetian army on 30 September 1686. On 1 September 1687 the siege of Herceg Novi 
started, and ended with a Venetian victory on 30 September. …

Which happened first, the fell 
of Sinj or the siege of Herceg
Novi?

Original NMNs: besieged 
Sinj

𝑵𝑵𝑵𝑵𝑵𝑵±: Sinj finally fell

Ground-truth: the fell of Sinj
/ Sinj finally fell

Original NMNs’ program: (span(compare-date-lt(find find)))             𝑵𝑵𝑵𝑵𝑵𝑵±: (span(compare-date-lt(find find)))

addition / 
subtraction
(2 numbers)

… In the first quarter, the Niners struck first as kicker Joe Nedney got a 47-yard field 
goal. In the second quarter, the Saints took the lead with QB Drew Brees completing a 
5-yard and a 33-yard TD pass to WR Lance Moore. San Francisco would answer with 
Nedney's 49-yard field goal, yet New Orleans replied with Brees' 47-yard TD pass to 
WR Robert Meachem. …

How many yards was Nedney's
combined field goal yards in the 
first and second quarters?

Original NMNs: 47

𝑵𝑵𝑵𝑵𝑵𝑵±: 96

Ground-truth: 96

Original NMNs’ program: (find-num (filter (find)) 𝑵𝑵𝑵𝑵𝑵𝑵±: (addition(find-num(find))(find-num(find)))

addition / 
subtraction 
(3 numbers)

The Greek census 2011 recorded 9,903,268 Greek citizens (91.56%), 480,824 Albanian 
citizens (4.44%), 75,915 Bulgarian citizens (0.7%), 46,523 Romanian citizenship 
(0.43%), 34,177 Pakistani citizens (0.32%), 27,400 Georgia (country) citizens (0.25%) 
and 247,090 people had other or unidentified citizenship (2.3%). …

How many more people were 
Greek citizens compared to 
Albanian and Bulgarian citizens 
combined?

Original NMNs: 9903268

𝑵𝑵𝑵𝑵𝑵𝑵±: 9346529

Ground-truth: 9346529

Original NMNs’ program: (find-num (find-max-num (find)))                 𝑵𝑵𝑵𝑵𝑵𝑵±: (subtraction (find-num(find)) (addition(find-num(find))(find-num(find))))

Figure 1: Three examples in the DROP dataset and the predictions by original NMNs and our improved model
NMNs±. The relevant tokens and their corresponding modules are highlighted.

approach, a programmer maps natural-language
questions into machine-readable representations
(logical forms), which are executed by an interpreter
to yield the final answer. For instance, WNSMN
(Saha et al., 2021) uses a generalized framework of
dependency parsing inspired by the Stanford depen-
dency parse tree (Chen and Manning, 2014) to parse
queries into noisy heuristic programs. Neural Mod-
ule Networks (Gupta et al., 2020) extend semantic
parsing by making interpreter a learnable function
with specified modules and executing the logical
forms from the programmer in a step-wise manner.

Neural Module Networks initially is proposed to
overcome the Visual Question Answering (VQA)
problem (Andreas et al., 2016), where questions are
often compositional. Gupta et al. (2020) employs
the programmer-interpreter framework with atten-
tion (Vaswani et al., 2017) to tackle the CQA task.
Specifically, the programmer parses each question
into an executable program. The interpreter takes
the program as input and perform various symbolic
reasoning functions. The modules are defined in
a differentiable way, aiming to maintain the uncer-
tainty about each intermediate decision output and
propagate them through layers. For instance, the
predicted program of the first example in Figure 1 is
span(compare-date-lt(find,find)).
The interpreter would first calls the find module
twice to find events queried by the question (e.g.,
‘the fell of Sinj’) and outputs appropriate paragraph
attention. The compare-date-lt module can
further locate the dates (e.g., ‘30 September 1686’)
to compute their relation. By demonstrating the

intermediate reasoning steps in this manner, NMNs
perform interpretable problem-solving.
Numerical Reasoning is a necessary ability
for models to handle the CQA task (Geva et al.,
2020). Dua et al. (2019) modify the output
layer of QANet (Yu et al., 2018) and propose
a number-aware model NAQANet to deal with
numerical questions. NumNet (Ran et al., 2019)
leverage Graph Neural Network to capture relations
between numbers. Similarly, QDGAT (Chen et al.,
2020a) distinguish number types more precisely by
adding the connection with entities and obtained
better performance. Nerd (Chen et al., 2020b)
search possible programs exhaustively based on
answers and employed these programs as weak
supervision. Another similar work (Guo et al.,
2021) proposes a question-aware interpreter but
uses a totally different approach to measure the
alignment between the question and the context
paragraph. Though these approaches can achieve
the high performance on DROP dataset, it is
incomprehensible for the reasoning procedure.

3 Model

In this section, we tend to illustrate our proposed
methods. Basically, we will show the incorporation
of questions in Section 3.1. In Section 3.2, the
newly extended module: addition and subtraction
will be described.

3.1 The Incorporation of Questions

Taking one module compare-date as a case
study: it performs comparisons between two
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references queried by the question. A key reasoning
step inside, is the find-datemodule that obtains
appropriate a date token distribution D related
to each reference: find-date(P ) → D. It is
worth noting that there is no interaction with the
question, which could contain essential information
(e.g., entities) that is useful to correctly answer the
question. Therefore, we revise the find-date
module as follows: find-date(P,Q)→D:

Sdatei,dj
=[αP;(1−α)Q]iWdatePdj , (1)

Adate
i: =softmax(Sdatei: ), (2)

D=
∑

i[αP ;(1−α)Q]i ·Adate
i: (3)

where P and Q represent the contextualized embed-
dings of the paragraph and question, and Pdj of the
jth date tokens in the paragraph, Wdate is a trainable
parameter, P,Q are the expected attention distribu-
tion of the paragraph and the question respectively.

In Equation 1, we concatenate the paragraph
embeddings P and question embeddings Q that
output from a pre-trained BERT (Devlin et al.,
2019) model to construct the context representation.
A hyper-parameter α is used to adjust their con-
tributions, whose value is empirically determined
(Appendix A.1). The context representation is
provided to compute the improved similarity matrix
Sdate. We concatenate the paragraph and question
attention inputs in the same way to calculate the
final expected distribution over the date tokens
D (Eq. 3). Now the interpreter is equipped with
question information to make the prediction.

3.2 Addition and Subtraction Modules
In the NMNs’ modelling paradigm, for addi-
tion/subtraction operations, the programmer takes
as input two number distributions and produces
an output number distribution over all possible
result values: add/sub(N1, N2) → RL. N1

and N2 represent the probability distributions of
the 1st and 2nd operands over all numbers that
are extracted from the paragraph and collected
into a sorted operand list OL. The positive and
negative values of these numbers are exhaustively
combined in pairs, from which the possible results
of addition/subtraction operations are compiled
into a sorted result listRL. For each input number
distribution Ni, i = 1,2, a matrix Ci ∈ Rm×n is
constructed, wherem is the total number of possible
results, and n is the maximum number of unique
combinations. Each value Ci[j,k] is found by look-
ing up the probability value inNi[k] whereOL[k]

is the ith operand in any pair that produces result
RL[j]. The probability that the jth number in Ni

is the correct operand of the kth pair. We compute
the marginalized joint probability by summing over
the product ofCi as the expected distribution over
result listRL. For the addition module, it is:

p(prediction=RL[j])=
n∑

k1,k2=1

1(OL[k1]+OL[k2]=RL[j])C1[j,k1]∗C2[j,k2]

For instance, assume the sorted operand
list OL from a paragraph is [1, 5, 7, 11] and
N1 = [0.1,0.4,0.2,0.3]. Different combinations
are formed, e.g., (+n1, +n2) for addition and (+n1,
-n2) for subtraction, and all possible results of the
combinations are compiled into two result lists, one
for addition and one for subtraction. For subtraction
in this case, RL = [0, 2, 4, 6, 10]. The value of
C1[2,1] is 0.4, which is found fromN1[1] because
the result 4 can be calculated from (+5, -1); and
C1[2,3]=0.3which equals toN1[3] as 4 is the result
of (+11, -7) as well. C2 is computed in the same
way to further obtain final distribution overRL.

We compose add/sub modules in programs
to perform 3-number arithmetic. The key to our
approach is to construct and distinguish appropriate
Ci andRL in different reasoning steps. In the sec-
ond arithmetic step, we should combine the operand
list from the paragraph and the result list from
the previous step to obtain a new result list RL′,
add/sub(RL,N) → RL′. Due to the changes
in operands and results, the modules should refer
to a different C′i∈Rm

′×n′
in the computation. We

extend 2-number add/submodules to recognize
the participation of the third number by conditional
statement, in order to differentiate the operand
and result lists the interpreter should refer to in
different steps. Taking the last example in Figure
1, the addition module would first compute
the distribution over result list for ‘Albanian and
Bulgarian citizens’. The subtraction module
can identify itself in the second step calculation and
take the correct input to construct the new matrix C′i.
The expected distribution over new result listRL′

now represent the difference of ‘Greek citizens’ and
the previous result.

Instead of introducing specific modules for
multi-number arithmetic such as ‘3-num-add’, the
structure of NMNs allows us to recursively execute
basic operations several times in a compositional
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program. This design is in accord with the reasoning
process of the CQA task, and natural for NMNs to
perform complex computations.

4 Experiments

Dataset. We construct our own train/dev/test
sets based on the DROP dataset (Dua et al., 2019),
which requires numerical reasoning skills.

Gupta et al. (2020) extracted a subset of ques-
tions from DROP that is supported by the model’s
reasoning capability. This subset contains approxi-
mately 20,000/500/2,000 QA pairs for train/dev/test.
To train the add/sub modules, we augment the
NMNs’ subset with more than 5,000 new ques-
tions from DROP. These questions were heuristi-
cally identified based on first n-grams and regular
expressions (Appendix A.2). Statistics of this newly
constructed dataset can be found in Table 1. Note
that the ADD-SUB questions include both 2-/and
3-number arithmetic and all experiments in this
paper are conducted on this new dataset. Model
performance is evaluated with the same F1 and EM
(Exact Match) scores as Gupta et al. (2020).

Question types train dev test

Full 25,165 623 2,547

DATE-COMPARE (13.9%) 3,505 91 333
DATE-DIFFERENCE (12.2%) 3,055 75 313
NUMBER-COMPARE (12.1%) 2,642 157 632
EXTRACT-NUMBER (12.8%) 3,349 57 222
COUNT (17.3%) 4,527 73 288
EXTRACT-ARGUMENT (13.1%) 3,467 51 208
ADD-SUB (18.6%) 4,689 124 553

2-numbers 4,440 106 505
3-numbers 259 24 66

Table 1: Question types distribution on the expanded
DROP subset used in the follow experiments.

Result. In Table 2, we list the overall performance
of the original NMNs, NumNet and our proposed
method NMNs±.

Method F1 EM

original NMNs (Gupta et al., 2020) 57.5 54.9
NumNet (Ran et al., 2019) 72.3 69.4

NMNs± (ours) 75.2 72.6
w/o add/sub 61.4 58.1
w/o qi 74.3 71.7

Table 2: Performance comparison between different
models on our test set. Constrained by the page limit,
case study and analysis are in Appendix A.5.

In Table 2, row “w/o add-sub” is the model vari-
ant with question attention only, and row “w/o qi”
only has the add/sub modules only. Compared
to the original NMNs, two proposed methods both
improve model performance and the add/sub
modules contributes more. Our full NMNs± model,
with both components added, achieves 75.2% F1
and 72.6% EM scores, obtaining significant deltas
of 17.7% absolute points compared to the original
NMNs for both F1 and EM. Additionally, NMNs±
outperforms NumNet by 2.9% and 3.2% absoule
points in F1 and EM.

It can be unfair since the original NMNs will per-
form poorly on the newly added ADD-SUB questions.
Therefore, we list the model performance on differ-
ent question types in Table 3. Our model achieves
higher scores across almost all question types com-
paring to the original NMNs, attesting to the effec-
tiveness of our proposed techniques. And it turns
out that adding ADD-SUB question types and more
training data does not improve the results of the orig-
inal DROP split. This might due to the performance
degradation of the programmer after adding these
new ADD-SUB programs. When comparing to
NumNet, though our model fail on 2-number ADD-
SUB questions, we achieve 5.4% F1 improvement on
3-number ADD-SUB questions, thus results in a com-
parable performance. Note that the 2-number data is
nearly 18 times the 3-number data, which shows our
model or NMNs relies less on large scale datasets.

Question type NMNs NMNs± NumNet

DATE-COMPARE 79.2 84.9 72.0
DATE-DIFFERENCE 69.0 73.3 74.1
NUMBER-COMPARE 89.6 90.3 89.9
EXTRACT-NUMBER 86.4 89.1 85.6
COUNT 54.2 60.2 52.4
EXTRACT-ARGUMENT 73.4 75.3 66.1
ADD-SUB 0.7 66.4 67.6

2-numbers 0.8 67.9 71.5
3-numbers 0.3 41.2 35.8

Table 3: F1 comparison on different question types.

Additional ablation studies for the add/sub
modules (A.3) and a qualitative analysis (A.4) can
be found in the appendix.

5 Conclusion

In this work, we extend NMNs’ numerical rea-
soning capability to 2-/and 3-number addition
and subtraction, and incorporate the influence of
question information to the interpreter on number
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related questions. Experimental results show that
our methods significantly enhance NMNs’ numer-
ical reasoning ability, with an increase of 17.7%
absolute F1 points on a newly constructed DROP
subset that includes arithmetic questions. Moreover,
our approach also outperforms NumNet, a SOTA
numerical reasoning model, by 2.9% F1 points.
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A Appendix

A.1 Hyper-parameter
setting for compare-date modules

As mentioned above, we use a hyper-parameter α
to represent question’s and paragraph’s weights for
the combined context representation. We determine
the final coefficient through a series of control
parameter comparison experiments: use the same
data to train and validate the model with different
α. The model achieves the best performance (84.9
F1) for DATE-COMPARE questions when αwas set
to 0.4 (40% for paragraph attention and 60% for
question attention), which increase 5.7 absolute
points compared to the original NMNs model. The
experiment verifies the importance of question
information in the numerical reasoning process.

A.2 Data extraction

In this research, we expand the DROP subset for
original NMNs to cover addition and subtraction
questions. Subtraction questions can be easily tar-
geted by their first n-gram, such as ‘how many more’,
‘how many yards difference’. For three number
subtraction, we need to further specified the format
by regular expression, such as ‘how many more
EVENT-A and EVENT-B than EVENT-C?’ or ‘how
many more EVENT-A compared to EVENT-B and
EVENT-C?’. For addition, it is hard to identify how
many numbers should participate in the calculation
from some of the questions (e.g. ‘how many total
yards did Roethlisberger get in the game?’). There-
fore, we use regular expression to distinguish two or
three numbers addition and follow the patterns such
as ‘how many total...’, ‘how many ... combined’.

A.3 Addition and subtraction modules training

To discuss the contribution of individual
addition and subtraction module for
NMNs, we conduct an ablation experiment by
training and testing the model on different datasets
as shown in Table 4. The five rows represent
the model trained on various datasets: addition
questions only, subtraction questions only, addition
and the original NMNs subset, subtraction and
original NMNs subset and our full subset. The
columns indicate the model performance results
when they test on addition/subtraction questions
only and the full DROP subset. As can be seen from
the result, the model with subtraction ability only
perform greater than with addition ability only.

Datasets
addsub dataset full dataset
F1 EM F1 EM

add 41.2 41.2 46.0 43.8
sub 45.7 45.7 51.3 49.2
add+origin 51.5 51.5 69.2 64.2
sub+origin 55.1 55.1 72.6 69.8
add+sub+origin 66.4 66.4 74.3 71.7

Table 4: Ablation experiment result for addition and
subtraction modules

A.4 Qualitative analysis
Figure 2 shows some incorrect prediction cases
from the original NMNs and the answer from our
improved model NMNs±. From the examples, we
can clearly identify how the proposed techniques
improve the numerical reasoning process:

• In the first example, the original NMNs match
wrong tokens ‘dissolved the Constituent
Assembly’ given the question ‘Which event
happened first, the Constituent Assembly
being elected, or the elimination of hierarchy
in the army?’, thus located a wrong date
‘January 1918’. After enhancing the inter-
preter’s awareness of the question, NMNs±
can precisely target the spans ‘a Constituent
Assembly was elected’ in the paragraph and
further provide the correct prediction.

• The following two examples are wrongly an-
swered by the original NMNs because of incor-
rect program predictions. The second question
was initially categorized into a COUNT ques-
tion which called the countmodule to calcu-
late the number of attended paragraph spans.
The same situation occurs in the third question,
because the original NMNs lack the modules
that can correctly expresses the reasoning be-
hind the question. The prediction results prove
that our NMNs± model handle simple arith-
metic operations such as addition and subtrac-
tion which meets the task requirement.

A.5 Prediction analysis
The wrong prediction cases study for the original
NMNs over DROP is the main motivation of
our proposed methods. We conclude the error
factors of five numerical question types in detail:
DATE-COMPARE, COUNT, DATE-DIFFERENCE,
NUMBER-COMPARE and EXTRACT-NUMBER.

1507



Question type Paragraph Question Answers
Date compare On 12 November 1917, a Constituent Assembly was elected. In these elections, 26 mandatory 

delegates were proposed by the Bolshevik Central Committee and 58 were proposed by the 
Socialist Revolutionaries. … The Bolsheviks dissolved the Constituent Assembly in January 
1918, when it came into conflict with the Soviets. On 16 December 1917, the government 
ventured to eliminate hierarchy in the army, removing all titles, ranks, and uniform 
decorations. 

Which event happened first, the 
Constituent Assembly being 
elected, or the elimination of 
hierarchy in the army?

Original NMNs: eliminate 
hierarchy in the army

𝑁𝑁𝑁𝑁𝑁𝑁±: the Constituent 
Assembly being elected

Ground-truth: Constituent 
Assembly being elected

Original NMNs’ program: (span(compare-date-gt(find find)))        𝑁𝑁𝑁𝑁𝑁𝑁±: (span(compare-date-gt(find find)))

Count … The Ravens would later add 16 more points on three Billy Cundiff field goals and a fumble 
forced by Ray Lewis and recovered by Haloti Ngata and then run into the end zone (Cundiff 
also missed two 51-yard field goals). …

How many field goals did Billy 
Cundiff kick (both successful and 
unsuccessful)?

Original NMNs: 2

𝑁𝑁𝑁𝑁𝑁𝑁±: 5

Ground-truth: 5

Original NMNs’ program: (count (filter (find)) 𝑁𝑁𝑁𝑁𝑁𝑁±: (addition(find-num(find))(find-num(find)))

Find number … In the first quarter, the Niners struck first as kicker Joe Nedney got a 47-yard field goal. In 
the second quarter, the Saints took the lead with QB Drew Brees completing a 5-yard and a 
33-yard TD pass to WR Lance Moore. San Francisco would answer with Nedney's 49-yard 
field goal, yet New Orleans replied with Brees' 47-yard TD pass to WR Robert Meachem. …

How many yards was Nedney's
combined field goal yards in the 
first and second quarters?

Original NMNs: 47

𝑁𝑁𝑁𝑁𝑁𝑁±: 96

Ground-truth: 96

Original NMNs’ program: (find-num (filter (find))                        𝑁𝑁𝑁𝑁𝑁𝑁±: (addition(find-num(find))(find-num(find)))

Figure 2: Qualitative analysis. The highlighted spans are corresponding to the modules in the program for each
question.

Deficiency Paragraph Question Interpretation

Match incorrect start and end of 
the span as answer (53.4%)

… In 1438 Svitrigaila withdrew to Moldavia. The reign of 
Sigismund Kestutaitis was brief — he was assassinated in 
1440. Svitrigaila returned from exile in 1442 and ruled Lutsk 
until his death a decade later. …

What event happened later, Svitrigaila
withdrew to Moldavia or Svitrigaila
returned from exile?

the final output is not exactly the same with 
the ground-truth, but F1 score is not 0

Match wrong dates for the entities 
(20.8%)

The Siege of Vienna in 1529 was the first attempt by the 
Ottoman Empire, ... Thereafter, 150 years of bitter military 
tension and reciprocal attacks ensued, culminating in the 
Battle of Vienna of 1683, which marked the start of the 15-
year-long Great Turkish War. The inability of the Ottomans to 
capture Vienna in 1529 turned the tide against almost a 
century of conquest throughout eastern and central Europe. …

Which happened first, the Siege of 
Vienna or the Great Turkish War?

reasons include dates are too close, or match 
to the date for a similar entity

Date comparison based on natural 
language inference or phrases 
instead of symbolic comparison 
(13.4%)

The Russians advance into the Polish-Lithuanian 
Commonwealth led to the kingdom of Sweden invading 
Poland in 1655 under King Charles X. …

What happened first, the Russian 
advance into Poland-Lithuania or the 
Swedish invasion of Poland?

the module cannot understand the relation 
expressed by words or phrases, such as ‘lead 
to’, ‘before’.

Wrong comparison result due to 
incomplete date format (12.4%)

… An agricultural worker had been shot during a local strike
on 9 August 1917 at Ypaja and a Civil Guard member was 
killed in a local political crisis at Malmi on 24 September. …

Which happened first, the shooting of a 
worker during a strike, or the killing of a 
Civil Guard member in Malmi?

the dates with omitted year are represented 
in format (DD, MM, -1), which lead to 
wrong comparison result. We proposed a 
forward matching mechanism in the data 
pre-processing step to tackle this problem.

Figure 3: Root causes for the wrong prediction in DATE-COMPARE questions. The related events mentioned in the
question are highlighted in blue and red, and their relevant dates are in the same color with underline.
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Deficiency Paragraph Question Interpretation

Error caused by other modules (25%)
• Find module cannot match the correct 

spans in the paragraph
• Filter module cannot identify the target 

in the passage 

… In the third quarter, Cincinnati continued to struggle as Patriots 
RB Sammy Morris getting a 7-yard TD run. The Bengals' only 
response would be kicker Shayne Graham nailing a 40-yard field 
goal. In the fourth quarter, New England increased its lead with 
Gostkowski kicking a 36-yard field goal. Cincinnati's final response 
was Graham kicking a 48-yard field goal. …

How many field goals were 
there in the second half?

the filter module is uncapable to 
identify ‘the second half’ means 
the third and fourth quarters, then 
it wrongly target on ‘the second 
quarter’

Require numerical operation such as 
addition, subtraction or conditional 
decision (17.5%)

… In the first quarter, the Redskins drew first blood when the kicker 
Shaun Suisham nailed a 49-yard field goal for the only score of the 
quarter. … The Giants would get on the board with kicker Lawrence 
Tynes getting a 35-yard field goal. …

How many more field goals 
did Shaun Suisham make 
compared to Lawrence Tynes?

the subtraction operation is 
required in reasoning process, 
instead of direct counting

Wrong program prediction (16.5%) … The Cowboys would only kick field goals in this game, as Dan 
Bailey was 4 for 4 on field goals. Dallas lead 12-10 with under 2 
minutes to go. …

How many field goals did the 
Cowboys make?

predicted program: 
(count(filter(find()))); 
correct program: 
(find-num(find())) 

Mistakes in counting the key tokens in the 
question (15%)
• unable to count 0 when the tokens not 

exist in the paragraph
• should not predict the answer based on 

counting tokens

… In the first quarter, Denver trailed early as QB Josh McCown 
completed a 15-yard TD pass to WR Tim Dwight. The Broncos 
replied with RB Travis Henry getting a 4-yard TD run. …

How many field goals did 
Janikowski kick in the first 
quarter? 

'field goal’ or ‘Janikowski’ is not 
mentioned in the filtered paragraph, 
but the module didn’t predict 0 as 
answer

Unable to count multiple times in one span 
or identify phrases (15%)

… In the first quarter, the Bengals opened the scoring with two 
Shayne Graham field goals. ... In windy conditions, Phil Dawson hit a 
pair of 29-yard field goals, and Chris Jennings had a 10-yard 
touchdown run to put the Browns up 13. …

How many field goals were 
kicked in the game?

The count module only count once 
for ‘two field goals’ or ‘a pair of 
field goals’

Cannot identify true or false in counting 
(7.5%)

… Houston had a chance to tie the game with one second left in 
regulation, but Brown's 42-yard field goal attempt sailed wide 
left. …

How many field goals were 
scored during the game?

The count module should not count 
once for ‘the field goal sailed wide 
left’

Other various error due to wrong mean 
value calculation (3.5%)

Figure 4: Root causes for the wrong prediction in COUNT questions. The inputs to the find module and their targets
in the paragraph are highlighted in red. The blue spans are related to the filter module.

Deficiency Paragraph Question Interpretation

Unable to identify the tokens as date ... It was waged from 1593 to 1606 but in Europe it is sometimes 
called the Fifteen Years War, reckoning from the 1591-92 Turkish 
campaign that captured Bihac. …

How many years did the Turkish 
campaign that captured Bihac last?

the date parser cannot interpret 
1591-92 into two dates

Computation error, should be the date 
difference plus one

After twelve years of peace following the Indian Wars of 1622-1632, 
another Anglo-Powhatan War began on March 18, 1644, as a last 
effort by the remnants of the Powhatan Confederacy, still under 
Opechancanough, to dislodge the English settlers of the Virginia 
Colony. …

How many years did the Indian 
Wars last?

the prediction is calculated by the 
year difference between 1622 and 
1632, but the answer is 11 years

Cannot understand the relation 
between dates through semantic 
expression

… His wife died in 1583, and on 7 November 1590 he was married 
in the same church to Jaél de Peigne, a French Hugenot. She was 
naturalised in June 1601. After Henry's death she remarried on 19 
April 1617 George Downham, Bishop of Derry, and died c.1632. …

How many years was it after her 
first marriage did Jael de Peigne
marry for the second time?

the time-diff module cannot 
identify the second one or the last 
one of the related dates

Wrong program prediction … The Yongle Emperor began the preparation for relocating the 
imperial capital to Beiping in 1403, a process that lasted throughout 
his entire reign. … In 1420, the reconstruction of Beiping City was 
completed, and the Ming Dynasty officially relocated the imperial 
capital to Beiping and renamed the city to Beijing. …

How many years did the relocation 
of the capital to Beiping take?

predicted program:
(count (find))

correct program:
(time-diff (find, find))

Match wrong dates for the entities … The remains of about 70 men, women, and adolescents were 
found in the path of a planned expressway near Lima in 2007. 
Forensic evidence suggests that the natives were killed by European 
weapons, probably during the uprising in 1536. …

How many years after the uprising 
in 1536 where many natives were 
killed did Archaeologists find their 
remains near Lima?

the find date module did not target 
on the correct date 1536 for the 
first event

Figure 5: Root causes for the wrong prediction in date-difference questions. The related events are highlighted in
blue, which is the input of the find module. The dates grounding correctly predicted in the compare-date modules
are highlighted in red color. The answer predicted by NMNs should be the difference of these two dates.
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Deficiency Paragraph Question Interpretation

Did not match the correct number for 
entities when there were multiple 
existence 

… On 21 June 1916, two troops of the 10th, totaling 92 troopers, 
attacked Mexican Federal Army troops in an engagement in the Battle 
of Carrizal, Chihuahua. 12 US troops were killed and 23 taken prisoner; 
45 Federales were casualties, including the Mexican general Gomez. …

Which group experienced more 
casualties, US troops or Federales?

‘US troops’ was mentioned 
multiple times in the paragraph, 
the find-num module wrongly 
targets on another number

Need multiple answers to the question … In the city, the age distribution of the population shows 21.8% under 
the age of 18, 13.1% from 18 to 24, 31.7% from 25 to 44, 20.1% from 
45 to 64, and 13.2% who were 65 years of age or older. The median age 
was 34 years. For every 100 females, there were 87.1 males. For every 
100 females age 18 and over, there were 83.5 males. …

Which age groups had a bigger 
population than those 65 years of 
age or older but lower than those 
25 to 44?

there are two age groups 
conform to the condition: '45 
to 64', 'under the age of 18’

Interpret the comparison adjective in 
the question wrongly

… In terms of ancestry, 28.1% were German, 19.8% were Irish, 12.2% 
were English, 9.9% were Italian, 6.8% were Polish, and 6.2% were 
American.

Which group had the least 
ancestry, Irish or Polish?

The compare-num module 
cannot identify the meaning of 
‘the least’ 

Wrong program prediction … The racial makeup of the county was 81.2% white, 12.7% black or 
African American, 2.4% Asian, 0.3% American Indian, 0.1% Pacific 
islander, 0.9% from other races, and 2.5% from two or more races. 
Those of Hispanic or Latino origin made up 3.5% of the population. …

Which group made up more of 
the population than the Asians but 
less than black or African 
American?

the predicted program is (span 
(compare-num-gt (find, find))), 
it did not consider the less than 
condition in the question

Not matching the correct start and end 
of a span to answer the question 

Figure 6: Root causes for the wrong prediction in number-compare questions. Similar to figure 1, the input of the
find module is highlighted in blue and red, and their related numbers are underlined. The paragraph span predicted
as the answer is the one associated to a smaller/larger-valued number according to the questions asking.

Deficiency Paragraph Question Interpretation

Find module return an inaccurate result for 
find-num module

… In the second half the Ravens scored 4 consecutive touchdowns. 
First a Le'Ron McClain 3-yard run. Then 2 by Willis McGahee: 
first an 8-yard run, then a 19-yard run. In the fourth quarter, the 
Ravens capped off their huge victory when Troy Smith ran in a TD 
from 15 yards …

How many yards was the shortest
touchdown run in the game?

there is no key words around 
the ground-truth answer 2, so 
the module predict ‘3-yard run’ 
as answer

Filter module fix to the wrong spans (e.g.
based on natural language inference)

… In the first quarter, Tennessee drew first blood as QB Vince 
Young completed a 16-yard TD pass to WR Roydell Williams for 
the only score of the period. In the second quarter, the Chiefs tied 
the game with QB Brodie Croyle completing a 10-yard TD pass to 
WR Samie Parker. Afterwards, the Titans responded with kicker 
Rob Bironas managing to get a 37-yard field goal. Kansas City 
would take the lead prior to halftime with Croyle completing a 9-
yard TD pass to FB Kris Wilson …

How many yards was the shortest 
touchdown of the first half?

the filter module is uncapable 
to identify ‘the first half’ 
means the first and second 
quarters, then it wrongly target 
on ‘the first quarter’

Require arithmetic operation … In the first quarter, the Niners struck first as kicker Joe Nedney
got a 47-yard field goal. In the second quarter, the Saints took the 
lead with QB Drew Brees completing a 5-yard and a 33-yard TD 
pass to WR Lance Moore. San Francisco would answer with 
Nedney's 49-yard field goal, yet New Orleans replied with Brees' 
47-yard TD pass to WR Robert Meachem …

How many yards was Nedney's
combined field goal yards in the 
first half?

predicted program: (find-num 
(filter (find)))

correct program: 
(addition(find-num(filter 
(find))) (find-num(filter 
(find))))

Figure 7: Root causes for the wrong prediction in extract-number questions. The inputs to the find module and their
targets in the paragraph are highlighted in red. The blue spans are related to the filter module. The find-num module
finally extracts the number associated with this paragraph attention as the answer.
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Abstract
Automatic math problem solving has attracted
much attention of NLP researchers recently.
However, most of the works focus on the solv-
ing of Math Word Problems (MWPs). In this
paper, we study on the Geometric Problem
Solving based on neural networks. Solving ge-
ometric problems requires the integration of
text and diagram information as well as the
knowledge of the relevant theorems. The lack
of high-quality datasets and efficient neural
geometric solvers impedes the development of
automatic geometric problems solving. Based
on GeoQA, we newly annotate 2,518 geo-
metric problems with richer types and greater
difficulty to form an augmented benchmark
dataset GeoQA+1, containing 6,027 problems
in training set and 7,528 totally. We further
perform data augmentation method to expand
the training set to 12,054. Besides, we design
a Dual Parallel text Encoder (DPE) to effi-
ciently encode long and medium-length prob-
lem text. The experimental results validate
the effectiveness of GeoQA+ and DPE mod-
ule, and the accuracy of automatic geometric
problem solving is improved to 66.09%.

1 Introduction

In recent years, with the continuous development
of deep learning technology in NLP, more and
more math problem solvers have been developed.
However, most of these works focus on solving
arithmetic and algebra problems (Xie and Sun,
2019; Lin et al., 2021; Wu et al., 2020). There
are few systems for geometric problem solving,
especially those based on the method of the neural
networks. The solving of geometric problems re-
quires a combination of text and diagram informa-
tion, and therefore the study of it also helps to pro-
mote the development of cross-modal problem-
solving.

∗∗Corresponding Author
1The source code and benchmark of this paper are avail-

able at: https://github.com/SCNU203/GeoQA-Plus

Figure 1: A typical geometry problem in GeoQA+
dataset and its annotating and solving process.

As shown in Figure 1, a typical geometry prob-
lem mainly consists of textual descriptions and ge-
ometric diagrams. There are three steps to solve
this problem. First, the text and diagram infor-
mation are encoded separately. Second, the solver
needs to understand the semantics of the text and
diagram information simultaneously. Third, in or-
der to solve the problem, we may need to com-
bine the information of Text-Diagram with rele-
vant theorem knowledge. For example, the prob-
lem in Figure 1 use the theorem of complemen-
tary adjacent angles of a parallelogram. Though
some previous methods attempt to solve geometric
problems automatically, the performance of their
solving system is far away from satisfactory (Seo
et al., 2014, 2015; Sachan and Xing, 2017). They
highly relied on limited handcraft rules and were
only validated on small-scale datasets, making it
hard to generalize to more complex and real-world
cases(Chen et al., 2021). In this case, we mainly
focus on building an efficient solving system based
on neural networks.

To resolve the mentioned issues, Chen et al.
(2021) proposed a geometric problems dataset
GeoQA which contains 5,010 geometric problems
and the first neural network-based geometric prob-
lems solving system NGS. However, we believe
that there are some limits to this work. First,
we think that the problem type in GeoQA is not
rich enough, and it only contains angle and length
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problems as well as a very small number of other
types. Second, we think that the problems in
GeoQA are not difficult enough, and the average
solving step of the problems in GeoQA is only
1.96. Third, the geometric problems solver NGS
can not effectively solve the problems with long
text for the lack of text feature extraction capabil-
ity.

Inspired by the exiting works (Chen et al., 2021;
Seo et al., 2014, 2015), to refresh the research on
geometric problem solving and further promote
the development of cross-modal numerical rea-
soning, we newly annotate 2,518 geometric prob-
lems containing 636 area-type problems that are
not included in GeoQA. The problems we col-
lect are more difficult. The average solving step
of our problems is 2.61, which compares to 1.96
of GeoQA. We add our new dataset to the train-
ing set of GeoQA to build a new dataset named
GeoQA+ and it contains 7,528 problems in total
and 6,027 for training. To the best of our knowl-
edge, GeoQA+ is the largest benchmark dataset
for geometry problem solving at present and it im-
proves the overall difficulty and diversity of the
original dataset. We further perform data augmen-
tation method on GeoQA+, which expand the data
size to 12,054 to obtain more diverse data. As
for the model, we design a Dual Parallel Encoder
DPE that consists of RoBERTa (Liu et al., 2019)
and a Bi-LSTM (Hochreiter and Schmidhuber,
1997) to address the limit of NGS. Our DPE mod-
ule encodes long and medium-length problem text
effectively, and we name this new geometric prob-
lems solver as DPE-NGS. We conduct a series of
experiments and the experimental results indicate
that the GeoQA+ dataset and our DPE-NGS model
show the superiority over the state-of-the-art re-
sults.

In summary, our contributions are three-fold:

• To expand GeoQA, we newly annotate 2,518
geometric problems which are more difficult
to solve than GeoQA and has more problem
types to build a new dataset name GeoQA+,
the largest dataset for geometric problem
solving at present. In addition, we also per-
form data augmentation work on GeoQA+ to
obtain more diverse data.

• To alleviate the limit of NGS, we design
a Dual Parallel Encoder(DPE) and propose
DPE-NGS to effectively solve the geometric

problems with long and medium-length text.
Experimental results show that our model
achieves better accuracy.

• We study the text encoding work of geomet-
ric problems. We fine-tune the Pre-training
model using a sufficient amount of data for
the first time and achieve excellent model
performance.

2 Related Work

Geometric Problems Solving Having machine
to solve geometric problems has a long history in
AI (Wen-Tsun, 1986; Chou et al., 1996). Some
researchers proposed methods for geometry the-
orem proving based on rule-based methods last
century(Wenjun, 1984). Wong et al. (2007) de-
signed the first automatic solver LIM-G for geo-
metric problems, but this method was only based
on text information to solve the problems. Sub-
sequently, Seo et al. (2014, 2015) constructed the
first automatic problems solver that combines text
and diagram information with NLP methods and
computer vision technology (OCR). However, this
method relies too much on handcrafted rules, and
it was only verified on the data set with 185 prob-
lems. To improve GeoS, Sachan and Xing (2017)
replaced these handcraft constraints with geom-
etry axiomatic knowledge in the form of horn-
clause rules, but their dataset and code are not
released. Lu et al. (2021) proposed Inter-GPS
which achieved higher accuracy than all previous
geometric problem solvers based on rule-based
methods. And their dataset Geometry3k con-
tains 3,002 geometric problems. But Inter-GPS
was still designed based on the rule-based method
and Geometry3k is not suitable for training neu-
ral network-based solvers because of the complex
annotating work. Aiming to improve the per-
formance and interpretability of existing models,
Chen et al. (2021) proposed a geometric problems
dataset GeoQA, and they proposed the first geo-
metric problems solver based on neural networks
named NGS. While the GeoQA dataset is not dif-
ficult and diverse enough, and the feature extrac-
tion ability of NGS is also not good enough. To
improve the limits of existing works and promote
the development of automatic geometric problem
solving, we effectively expand GeoQA dataset and
propose DPE-NGS model.

Multimodal Reasoning Visual question an-
swering is a typical multimodal problem. The
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solving of this kind of problem often requires the
model to have a certain reasoning ability (Goyal
et al., 2017; Yu et al., 2019). On this basis, some
methods propose an implicit reasoning framework
to jointly encode multimodal information (Perez
et al., 2018; Cohen and Areni, 1991). However,
geometric problem solving is more logical and
deductive, and the solving process requires ad-
ditional knowledge of theorems, so these visual
problem answering models are not directly appli-
cable to geometric problem solving.

Pre-training Model In NLP Pre-training mod-
els have greatly advanced the development of NLP
(Song et al., 2021; Zhang et al., 2020). And it
has also been applied in the automatic solving of
MWPs (Liang et al., 2021). However, it has not
been applied to the automatic solving of geomet-
ric problems since the lack of dataset. Our exper-
imental results show that the introduction of Pre-
training models facilitates the possibility of solv-
ing geometric problems based on our newly anno-
tate dataset.

Text Data Augmentation Text data augmen-
tation methods has been widely used in NLP, like
EDA(Wei and Zou, 2019) and back translation(Yu
et al., 2018) method. We also perform the back-
translated method on GeoQA+. We first trans-
late the original data into minor languages and
then re-translate the results into the original lan-
guage. Data back translation enhances the diver-
sity of data.

3 GeoQA+ Dataset

The original GeoQA dataset contains 5,010 geo-
metric problems, 3,509 for training, 746 for vali-
dation and 755 for test. We newly annotate 2,518
geometric problems and add them to GeoQA’s
training set to form a new dataset GeoQA+ which
contains 6,027 geometric problems in training set
and 7,528 in total.

3.1 Problem and Data Description

Problem Description. Automatic geometry prob-
lem solving is defined as solving a geometry prob-
lem with diagram and text information. Text-
Diagram information are encoded by text and dia-
gram encoder separately, then the encoded results
are fused with features from both parts through the
Joint Reasoning Module. The decoder module ob-
tains the solving sequence by decoding the out-
put from Joint Reasoning Module, then executes

the sequence and gets the answer with additional
knowledge of theorems. Figure 1 shows the com-
plete problem definition, and the solving process-
ing uses the knowledge of the properties of paral-
lelograms.

Data Description. Based on the problem def-
inition, we define the data description of the ge-
ometry problem, which contains problem text t,
diagram d, problem choices c, knowledge points
k, problem answer a, solving processing explana-
tion e, and the annotate programs p. Therefore, a
geometry problem can be represented as T (t, d, c,
k, a, e, p) like Figure 1.

Program Representation. We adapt a domain-
specific language(Amini et al., 2019) to represent
the geometric problems solving process similar to
GeoQA. The program includes the operator OP ,
operand N , constant operand C, and process vari-
able V . We enrich the representation of the lan-
guage by synthesizing the data statistics of our
newly annotate data. As shown in Table 1, the op-
erators OP are divided into basic and arithmetic
operators as well as trigonometric and theorem op-
erators. The constant operands contain various
constants such as π, 180°, and 90° that are com-
monly used. Note that only operators and con-
stant operands are given in Table 1 because both
of them are fixed and will not change with differ-
ent problems. For example, when we solve for
the length of the hypotenuse of a right triangle
with two right-angled sides known, we will use
the Pythagorean theorem to solve the problems,
and we need to know the fixed expression of the
Pythagoras operation. The operand N is derived
from the operands given in the problems and the
process variable V is an intermediate variable gen-
erated during the operation, both of which vary
from problem to problem. The generated sequence
expressions of the model show the interpretability
of the solving process. We can get a general un-
derstanding of the whole problem-solving process
from Figure 1.

3.2 Dataset Comparison

The existing geometry problem datasets are gen-
erally limited by the size of the data(Seo et al.,
2015) and the complex annotating work (Lu et al.,
2021), which are not suitable for neural network
training. GeoQA is a dataset collected specifi-
cally for building a neural network-based geom-
etry problem solver. However, the limits of the
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OPR & Const Programs

Basic Equal, Double, Half

Arithmetic Add, Minus,
Multiply, Divide, Prescription

Trigonometric Sin, Cos, Tan, Arc-Sin, Arc-Cos
Theorem
& Formula

Pythagorean Add/Minus, Proportion,
Circle Area,Circle Perimeter, Cone Area

Constant 30, 60, 90, 180, 360, 540, Π, 0.618

Table 1: An overview of 19 operations of four different
types and 8 constants in the defined program set.

GeoQA dataset are the low average difficulty of
problem solving and the lack of richness of prob-
lem types. Therefore, we newly annotate a dataset
with 2,518 problems and add them to the training
set of GeoQA to form a new dataset with 7,528
problems, 6,027 problems for training. Compared
with GeoQA, our geometry problems are more
difficult, and we introduce area-type problems for
the dataset. For geometry problems, difficult prob-
lems often contain more geometric relationships
and geometric attributes than simple problems,
and we believe that learning more features of diffi-
cult samples help the model to solve difficult prob-
lems in the real world. A detailed comparison of
the data statistics of the GeoQA’s training set with
our newly annotate data is shown in Table 2.

As shown in Table 2, our newly annotate dataset
introduces 636 problems of area-type that are not
available in GeoQA which enhance the data diver-
sity of the dataset. In addition, our dataset are
more difficult with 2.61 steps of average solving
compare with 1.96 of GeoQA. More solving steps
means the problems are more difficult to solve.
Besides, our newly annotate problems also add 27
new knowledge points, and there are 77 knowl-
edge points in GeoQA+. The knowledge points
of a problem are crucial for solving the question.
During the solving process, our model will first ap-
ply a Pre-trained module to predict the knowledge
points of the problem which helps generating the
solving sequence.

As shown in Table 3, the total number of train-
ing set in GeoQA+ is 6,027, and the average num-
ber of solving step is 2.23, which is nearly 14%
higher than the original 1.96, meaning GeoQA+
is much more difficult than GeoQA. More diffi-
cult training samples facilitate the model to learn
more statistics to improve the ability to solve dif-
ficult problems. We name this new training set as
Mix-train.

3.3 Data Augmentation

We use the back-translation method in this paper
to perform data augmentation on our Mix-train
training set. We first translate the Mix-train train-
ing set data into French and then re-translate the
results back to the original Chinese, and finally,
we get a back-translated dataset with twice the
amount of data, and we name the Back-translated
dataset Backtrans-train which contains 12,054
problems.

3.4 Data Collection and Annotation

We collect our problems from online education
websites. These problems are oriented in grades 6-
12, containing various types of problems with cor-
responding knowledge points and solving expla-
nations. We organized several graduate students
to participate in annotating these problems. Each
graduate student involved in the data annotation
was trained to ensure that the data was annotate
consistently with GeoQA. Unlike GeoQA, we al-
low the existence of problems with up to 8 solving
steps while the authors of GeoQA limit the solu-
tion steps to 4. We believe that the introduction of
difficult problems with long solving steps is ben-
eficial to enhance the inference and generalization
ability of the model.

4 Models

To improve the limit of NGS, we redesign the text
encoder module. We refer to this improved ge-
ometric problems solver as DPE-NGS, and the
overall structure of DPE-NGS is shown in Figure
2.

4.1 Dual Parallel Text Encoder

Text modeling is commonly used in NLP tasks
such as sentiment analysis, topic classification,
and problem systems (Li et al., 2020). In previous
work, for solving geometric problems, researchers
have often encoded the text by rule-based meth-
ods (Wong et al., 2007; Seo et al., 2015; Lu et al.,
2021). In NGS, an LSTM(Hochreiter and Schmid-
huber, 1997) was used to encode the problem
text and represented the text as hidden state H in
LSTM.

However, by analyzing the statistics of the prob-
lems that NGS did not get the result (No Result
problems), we found that the average problem text
length for this category is 68.55, which is much
longer than the average problem text length of 52.5
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Properties Angle Length Area\Others AVG

GeoQA-train Number 1939 1303 267 /
OP-AVG 1.83 2.10 2.03 1.96

Ours Number 1256 626 636 /
OP-AVG 2.78 2.27 2.60 2.61

Table 2: Comparison of the data statistics of GeoQA-train and our newly annotate data. OP-AVG represents the
average solving step of problems.

Figure 2: Our DPE-NGS for geometric problems solving based on Dual Parallel Text Encoder (DPE). The model
encodes text and image information separately, and then feeds them to the Joint Reasoning Module. The decoder
generates the solving sequence based on the output of Joint Reasoning Module, and the executor module finally
executes the sequence and gets the answer.

Figure 3: The architecture of our Dual Parallel Encoder. We use a two-layer Bi-LSTM and RoBERTa to encode
the problem text separately. The encoding results are fed into a fusion layer, and we use the fused encoding
information as the final text encoding result.

in GeoQA. This indicates that NGS is still lacking
in feature learning for long text problems. In this
case, we believe that the problem solving is related
to the length of the problem text. In order to dis-

tinguish different text lengths, we regard the prob-
lems with text lengths between 30∼50 as medium-
length problem, and long text problems are those
with text lengths more than 50. And there are 2961
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Angle Length Others AVG\Total

Number 3195 1929 903 6027
OP-AVG 2.21 2.15 2.45 2.23

Table 3: Statistics of the new training set in GeoQA+
(Mix-train).

long text problems and 2853 medium-length prob-
lems in Mix-train.

The problem text of a geometry problem usually
contains many geometric elements expressed, and
there are relational dependencies between these
geometric elements. As the problem shown in Fig-
ure 1, in this example, parallelogram ABCD is
the first geometric element that mentions in the
text, and ∠D appears later. But in the process of
solving the problem, we need to combine the two
conditions that ABCD is a parallelogram (paral-
lelogram neighbors are complementary) and ∠D =
58° to derive the next condition ∠BAD = 122° to
solve the problem. This is a back-and-forth pro-
cess in which the key information of a geometry
problem interacts with each other. Therefore, we
cnsider that we should encode the problem text in
a bidirectional way.

Based on the analysis above, we redesign the
text encoder and we first introduce the Pre-training
model RoBERTa (Liu et al., 2019) as text encoder.
RoBERTa is a Bert-based(Devlin et al., 2019) Pre-
training model that has been widely used and
has greatly advanced various works in NLP. As
shown in Table 4, when using RoBERTa as text
encoder alone, the model solves 53.10% of long
text problems and 69.74% of medium-length prob-
lems. Moreover, we also consider encoding prob-
lem text with a Bi-LSTM(Hochreiter and Schmid-
huber, 1997) with two layers alone. In this case,
the model solves 52.49% of long text problems
and 70.25% of medium-length text problems. As
the results show that the model has a different abil-
ity to solve problems with different lengths of text
when using RoBERTa or Bi-LSTM as text encoder
alone. Specifically, the model solves more long
text problems when RoBERTa is used as the en-
coder, and it performs better in solving medium-
length text problems when using Bi-LSTM as en-
coder.

As the experimental results show, we believe
that different encode module have different fea-
ture extraction capabilities for various lengths of
text during automatic geometry problem solving.

Text Encoder long(%) medium-length(%)

LSTM(NGS) 50.37 69.48
RoBERTa 53.10 69.74
Bi-LSTM 52.49 70.26

DPE 57.48 72.56

Table 4: The ability of the model for different length
text problems when using different modules as en-
coders

To fully extract the features of problems text, we
consider combining RoBERTa and Bi-LSTM to
form a parallel text encoder. We input the prob-
lems text into RoBERTa and Bi-LSTM to encode
the text separately. We denote the encoding re-
sult of RoBERTa as Hp = [h0;...;hn], and we rep-
resent the encoding result of Bi-LSTM as Yp =
[y0;..;yn]. After obtaining the encode outputs Hp

and Yp from RoBERTa and Bi-LSTM, we com-
bine the two sets of features by feeding Hp and Yp
into an Information Convergence layer, and obtain
the fusion feature Cp = [c0;...;cn]. We use Cp to
represent the final text encoding result:

Cp = [Hp, Yp].

And we name this Dual Parallel Encoder module
DPE, the structure of our encode module is shown
in Figure 3.

Our model solves 57.84% long text problems
and 72.56% medium-length problems with DPE
as text encoder. Experimental results validate the
effectiveness of our DPE encoder. The perfor-
mance of models for solving problems with long
or medium-length text when using different mod-
ules as text encoder is shown in Table 4.

4.2 Diagram Encoder
To get the diagram information of problems,
we adapt the diagram encoder module based on
ResNet (He et al., 2016) from NGS. Two auxil-
iary tasks (as shown in Figure 2) are applied to
pre-train the diagram encoder, which significantly
enhance the feature extraction capability of the di-
agram encoder. We formalize the feature matrix
extracted by the diagram encoder as Hd.

4.3 Joint Reasoning Module
After obtaining the text feature Cp and diagram
feature Hd, we feed them into the Joint Reasoning
Module. In this paper, we use a common atten-
tion module named co-attention(Yu et al., 2019)
with an attention mechanism for cross-modal data
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fusing and reasoning. This module consists of 12
self-attention units and 6 guide-attention units. We
use the Dual Parallel Encoder output Cp from the
text encoder and Hd from the diagram encoder as
the input of Joint Reasoning Module. This mod-
ule fuses and reasons the text-diagram information
and outputs FD, which contains abundant text and
diagram information. We further concatenate Cp
and FD to get FR for decoding program.

4.4 Program Decoder

We use an LSTM(Hochreiter and Schmidhuber,
1997) with attention as the Decoder module,
which generates the programs sequentially under
the guidance of Reasoning module output FR. Let
yt(1 ≤ t ≤ T ) be the target program to be gener-
ated and Pt as the next program token. In the train-
ing process, we use the negative log-likelihood
function as the loss function:

Lg(θ) =
1

T

n∑

t=1

logPt(yt|x, y1, ...yt−1; θ),

where θ is the parameter of the entire solver model
except for Diagram Encoder, and x is the input of
the problem text and the diagram feature extracted
from the Diagram Encoder.

4.5 Program Executor

The decoder module generates N program se-
quences [g1,...,gn], and the size of N equals to
beamsize (beamsize = 10). The executor module
selects the first sequence that successfully solves
the problem as the prediction sequence. If all the
results obtained by computing sequences are not
included in the problem options, then the problem
will be classified as a No Result problem instead
of randomly selecting an answer.

5 Experiments

5.1 Experiment Setup

We conduct experiments on GeoQA and GeoQA+,
and we adapt answer accuracy as the evaluation
metric. We use the GeoQA-test containing 755
geometric problems as test set. In addition, since
most previous work on automatic solving of ge-
ometric problems requires additional acceptance
of input from OCR, but none of these works has
published their associated codes, they are not com-
pared with our methods in this experiment.

Implementation Details. We mention three
datasets above: the original training set GeoQA-
train with 3,509 problems, Mix-train with 6,027
problems after mixing GeoQA-train with our
newly annotate dataset, and the Backtrans-train
dataset with 12,054 problems after performing
data augmentation on Mix-train. To verify the ef-
fectiveness of our datasets, we train our DPE-NGS
and NGS with these three datasets separately and
test the accuracy of the models on GeoQA-test.
In addition, we train two models with GeoQA-
train and test the generalization performance on
the new test set(the same size as GeoQA-test) ran-
domly extracted from our newly annotate data.
Besides, we also compare the performance of a
MWPs solver Seq2Prog(Amini et al., 2019), and
BERT2Prog: Seq2Prog with BERT as encoder
based on GeoQA-train2. The learning rate of
ResNet is 1e−5, 1e−3 for Bi-LSTM encoder, and
2e−5 for RoBERTa encoder, 1e−5 for the rest.
The batch size is 32 and the training epoch is 100.

5.2 Experimental Result

The effectiveness of our dataset. As shown in
Table 5, when two models are trained with Mix-
train or Backtrans-train, both models show better
performance compared to the models train with
GeoQA-train. The experiment results prove the
effectiveness of our newly annotate dataset. In
addition, the dataset after data augmentation is
also helpful for accuracy improvement. We be-
lieve that because our dataset is more difficult and
richer in problem types that expand the training set
and makes up for the lack of difficult problems in
GeoQA, which helps the models learn more prob-
lem features and thus improve the model’s perfor-
mance.

The effectiveness of our model. As shown
in Table 5, our DPE-NGS outperforms all mod-
els for every training set. DPE-NGS with multi-
modal reasoning ability becomes the existing best-
performing model (66.09%) on GeoQA-test set
while train with Back-trains. We further analyze
the percentage of No Result type problems gen-
erated by the models and found that DPE-NGS
produces fewer No Result type problems than the
NGS model as shown in Table 6. We believe it is
because our DPE-NGS has better feature extrac-
tion ability for long text type problems. We also
compare the accuracy of the two models for prob-

2Results obtained from the paper of Chen et al. (2021).
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Traingsets Model Total(%) Angle(%) Length(%) Others(%) No Result(%)

GeoQA-train

BERT2Prog 50.3 63.4 33.2 38.9 /
Seq2Prog 52.6 63.6 39.2 37.0 /

NGS3 60.52 71.53 48.40 40.74 14.94
DPE-NGS 62.65 74.88 47.70 50.0 12.68

Mix-train NGS 61.19 72.25 47.70 46.30 12.72
DPE-NGS 65.96 75.60 54.42 51.85 11.90

Backtrans-train NGS 63.31 72.97 53.0 42.60 14.03
DPE-NGS 66.09 76.08 55.12 46.30 10.73

3 Results obtained from Chen’s open source website: https://github.com/chen-judge/GeoQA

Table 5: Accuracy of the models on GeoQA-test using different training set.

Model GeoQA-train(%) Mix-train(%) Backtrans-train(%)

NGS 14.94 12.72 14.03
DPE-NGS 12.68 11.90 10.73

Table 6: The percentage of No Result generated by the two models using different training set.

OP=1(%) OP=2(%) OP=3(%) OP=4(%)

NGS 76.70 58.42 47.10 38.33
DPE-NGS 78.95 63.57 50.0 56.67

Table 7: The accuracy of NGS and DPE-NGS for dif-
ferent difficulty problems using Mix-train. OP=N rep-
resents the solving steps of problems. More solving
steps means the problem is more difficult.

Model Total(%) Angle(%) Length(%) Others(%)

NGS 49.14 53.85 45.90 43.07
DPE-NGS 51.52 54.64 49.18 47.69

Table 8: Accuracy of two models on our test set when
train with GeoQA-train.

lems with different difficulty levels, as shown in
Table 7, where our DPE-NGS outperforms NGS
on all problems with different solving steps.

Generalization Performance of Models. We
use the GeoQA-train dataset as training set for
both models and test the generalization perfor-
mance on our new test set. As shown in Ta-
ble 8, since our annotate data are more difficult,
neither model achieves a high accuracy, but our
DPE-NGS still performs better than NGS, and our
model achieves 51.52% compared to 49.14% of
NGS indicating that our model shows better gen-
eralization performance.

5.3 Ablation Study

To verify the rationality of our model struc-
ture design and the validity of the text encod-
ing method. We consider four combinations: 1)
NGS, with unidirectional LSTM as text encoder;

2) NGS (RoBERTa), NGS with RoBERTa as en-
coder; 3) NGS (RoBERTa + LSTM) with an en-
coder consisting of RoBERTa and a unidirectional
LSTM; 4) DPE-NGS, our improved NGS model,
with a Dual Parallel Text Encoder consisting of
RoBERTa and a Bi-LSTM.

As shown in Table 9, we can see that using
only RoBERTa as a text encoder can not im-
prove the performance of the model when train
with GeoQA-train, but the accuracy improves
considerably when train with our dataset(Mix-
train:64.77%, Backtrans-train:65.03%). We be-
lieve that the geometry problem text description
is far different from the common linguistic de-
scription because it contains more geometric ex-
pressions, so the RoBERTa module should be fine-
tuned with a larger geometric dataset, which also
reflects that our new dataset is helpful to apply the
Pre-training model to geometric problems solving.
In addition, we also see that the model based on
RoBERTa and unidirectional LSTM is much less
effective than our DPE-NGS which demonstrates
the effectiveness of our DPE module structure.

Figure 4: A typical case. A No Result type problem
with a complex diagram.
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Trainsets GeoQA-train(%) Mix-train(%) Backtrans-train(%)

Models

NGS 60.52 61.19 63.31
NGS(RoBERTa+LSTM) 59.87 62.12 63.84

NGS(RoBERTa) 58.28 64.77 65.03
DPE-NGS 62.65 65.96 66.09

Table 9: Ablation study of different text encoder architecture designs. The content in parentheses indicates the
encoder components that the model used.

5.4 Case Analysis
In our best experiment, there are still 10.73%
problems for our model that can not get the an-
swer. As shown in Figure 4, it’s a typical prob-
lem in the No Result category. The diagram of
this problem contains nine vertices that can form
more than ten line segments and numerous geo-
metric elements. We believe that the diagram is
too complex for our Diagram Encoder to extract
useful features from it. And this further leads to
our inability to select useful diagram information
for Joint and Reasoning work with text informa-
tion, which ultimately affects the model’s under-
standing of the whole problem scenario.

6 Conclusion

In this work, we newly annotate 2,518 geometric
problems which are more difficult and with richer
problem types to expand GeoQA and form a new
benchmark dataset GeoQA+, the largest geometric
problem dataset at present. Moreover, we propose
a new text-encode method(DPE) to improve the
limits of NGS. The experimental results show that
both GeoQA+ and DPE-NGS have contributed to
the accuracy improvement, and we have improved
the baseline accuracy in automatic geometry prob-
lem solving from 60.7% to 66.09%. In the future,
we will focus on the understanding of problem di-
agram by enhancing the ability of diagram features
extraction as well as the representation of diagram
information.
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Abstract

Models of natural language understanding of-
ten rely on question answering and logical in-
ference benchmark challenges to evaluate the
performance of a system. While informative,
such task-oriented evaluations do not assess the
broader semantic abilities that humans have
as part of their linguistic competence when
speaking and interpreting language. We de-
fine competence-based (CB) question gener-
ation, and focus on queries over lexical se-
mantic knowledge involving implicit argument
and subevent structure of verbs. We present a
method to generate such questions and a dataset
of English cooking recipes we use for imple-
menting the generation method. Our primary
experiment shows that even large pretrained
language models perform poorly on CB ques-
tions until they are provided with additional
contextualized semantic information. The data
and the source code is available at: https:
//github.com/brandeis-llc/CompQG.

1 Introduction

Developing an Artificial Intelligence (AI) system
with inferencing and reasoning capabilities that
enables itself to communicate with intellectual hu-
man users has been a holy grail of the research
community. For example, there has been consid-
erable effort put on large challenges in question
answering formats to measure such inference and
communication capabilities of neural end-to-end
systems (Ribeiro et al., 2020; Prabhumoye et al.,
2020; Rogers et al., 2021; Minaee et al., 2021).
However, we argue that a broader effort needs to
be put on measurements more focused on linguistic
competencies, and not just on extractive compre-
hension skills or “challenge checklisting”. Out ar-
gument is in line with some moves in this direction
(Johnson et al., 2017), but there is still no generally
accepted distinction in current natural language pro-
cessing (NLP) between challenge-based tasks and
competence-based (CB) performance (Bentivogli
et al., 2017). Analogous to human cognitive compe-

tencies, there is both a methodological and model-
ing advantage to focusing a system’s performance
on competence-based learning rather than a nar-
rowly defined task or challenge.

The term competence-based (CB) has been ap-
plied to a number of different concepts, from lin-
guistics (Chomsky, 1965) to both the science of
learning and educational communities (Bechtel
et al., 1999; Voorhees, 2001; Chyung et al., 2006;
Hsiao et al., 2020; Platanios et al., 2019). The com-
mon core to both is a concept capturing a coherent
set of abilities that an individual has in a specific do-
main (Doignon and Falmagne, 1985; Heller et al.,
2013). More recently, we proposed a new multi-
modal question answering task R2VQ that focuses
on querying competence-based knowledge from
cooking recipe texts and videos (Tu et al., 2022).
For the text part, we created a dataset with rich an-
notations of hidden arguments and coreference that
focuses on lexical competence as deployed in both
single and multiple sentence composition (Puste-
jovsky, 1995; Marconi, 1997; Geeraerts, 2009).

As a natural complement and extend to the
R2VQ task (Tu et al., 2022), here we define the
task competence-based question generation that
aims to generate CB questions that require lexical
competence. The lexical competence involves un-
derstanding the hidden arguments (due to syntactic
ellipsis or semantic defaulting or shadowing) given
the event context; and understanding the dynam-
ics of events and objects change in the text. This
competence requires non-extractive Question An-
swering (QA) capabilities of some sort. Thus we
define a competence-based question as one that
queries any aspects of lexical competence men-
tioned above.

In the rest of the paper, we first review recent
related work (Sec. 2), and give more detailed def-
initions of the CB question generation task (Sec.
3). We then present a dataset of CB knowledge and
how we collected and annotated it (Sec. 4). Section
5 provides details of generation of CB questions on
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the dataset we created. The generated questions are
evaluated and the results are discussed in Section
6 and 7. Then we conclude our work in the final
Section (8).

2 Related Work

Question Generation (QG) is an essential NLP
task that can be used for supplementing educa-
tional materials (Heilman and Smith, 2010; Zhao
et al., 2022), data augmentation for QA systems
(Lyu et al., 2021; Le Berre et al., 2022) and under-
standing semantic relations within the text (Pyatkin
et al., 2020; Klein et al., 2020). With the advent
of large pretrained language models and large QA
datasets, recent QG approaches are primarily based
on transformer-based neural architectures. Dong
et al. (2019) finetuned a unified language model for
both QG and language understanding tasks. Yuan
et al. (2021) enhanced the language model for QG
with additional embeddings of linguistic features.
To make generated questions more diverse, Mu-
rakhovs’ka et al. (2021) took advantage of the fully
text-to-text generation model to to generate ques-
tions with mixed types of answers. Fei et al. (2022)
applied graph networks to generate complex ques-
tions requiring broader contexts to answer.

Comparing with the neural methods, traditional
rule-based QG systems (Levy and Andrew, 2006;
Heilman and Smith, 2009) did not receive much
attention due to the lack of diversity of the gener-
ated questions. To solve this, He et al. (2015) pro-
posed QA-SRL that use predicate-argument struc-
ture to generate more semantic-informed QA pairs.
More recent work also has shown the success in in-
corporating existing explicit semantic annotations
and linguistic resources into the rule- or template-
based QG systems (Dhole and Manning, 2021;
Pyatkin et al., 2021). In this work, we adopt a
template-based approach to generate competence-
based questions that solicit implicit information
and the event dynamics across a broad context.

More broadly related to our general purpose to
probe the above-defined competence-based knowl-
edge with QG, Tu et al. (2022) proposed a new
QA task that queries competence-based knowledge
structures; Rashkin et al. (2018) proposed a new
commonsense inference task that involves the rea-
soning of intents and reactions to the events; Xu
et al. (2021) used context information for com-
monsense QA. There also exist semantic tasks that
explore the implicit or underspecified components
of a linguistic expression (Roth et al., 2021; Karidi
et al., 2021; Ye et al., 2022).

3 Task Definition

We define our task as generating a competence-
based question set. Unlike traditional QG tasks
whose answers are mostly extractive and contexts
are largely dependent on surface lexical locality
conditions, the goal of our task is to generate ques-
tions that represent commonsense semantic infer-
ences from a large context in an abstractive way.

Table 1 shows example CB questions generated
from the full text of a cooking recipe. Consider the
IMPLICIT question. Our task is to generate such a
question-answer pair that reflects the implied state
of the object (peeled apples) and the missing argu-
ment from the context (knife to cut). Also consider
the LOC. CHANGE and OBJ. LIFESPAN questions:
the goal of our task is to solicit information that
reflects the dynamics of events and actions through
these questions.

4 Data Description

Due to the lack of existing datasets suitable to our
task, we curate a collection of English cooking
recipes as the data for our task. Recipes along with
other procedural text like instructions tend to be
task-oriented and stepwise. The content is com-
posed of step sentences that describe small goals
to accomplish the final task. Comparing to text
of news or narratives, we think recipe texts are a
good fit for our task as it involves the understand-
ing of how to reach the goal locally for each step,
as well as how each step contributes to the final
task globally. Further, the stepwise progression
inherent in the goal-oriented narrative contributes
both an interpretative dynamics as well as contextu-
alized elision of arguments. Our proposed dataset
has also been used as part of the data resource for
the SemEval-2022 Task 9: R2VQ (Tu et al., 2022).
Here we describe the annotation process and the
annotation alignment step for our QG task.
Data Preprocessing We build our QG dataset
with a collection of public domain recipes.1 We
first run the Stanza pipeline (Qi et al., 2020) on
the raw text of each recipe to get tokenization and
other linguistic features including lemmatization,
part-of-speech tagging and dependencies. We also
run the state-of-the-art Semantic Role Labeling
(SRL) parser from (Conia and Navigli, 2020) to
label each recipe sentence with its semantic roles.
Subsequently, we ask 2 students annotators to vali-
date and correct both frames and argument labels.

1https://recipes.fandom.com/ , http://fo
odista.com/
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Recipe Title: Appelkoek Passage: Peel and cut apples into eighths (wedges). Sift together flour,
baking powder and salt with 4 tablespoons of the sugar. Cut in butter. Combine egg and milk and
add to flour mixture. Turn batter into greased 8 inch square cake pan. Press apple wedges partly into
batter. Combine remaining 2 tbsp sugar and cinnamon. Sprinkle over apple. Bake at 425 degF for
25 to 30 minutes.
IMPLICIT How do you cut peeled apples into wedges? - by using a knife
ELISION What should be sprinkled over apple wedges? - cinnamon sugar
TEMPORAL For how long should you bake appelkoek? - 20 to 35 minutes
LOC. CHANGE Where was the batter when you press apple wedges? - still in the pan
OBJ. LIFESPAN What’s in the appelkoek? - apples, batter and cinnamon sugar
HAB. STATE What’s already in the bowl when you add egg and milk to it? - butter and dry ingredients

Table 1: Example competence-based questions. Color-coded text spans represent how information has been collected
and generated in the questions.

Table 2 shows the basic statistics of the the prepro-
cessed recipes. We have filtered out non-English
and non-food recipes, as well as short recipes with
only 4 or less sentences. This results in 900 pre-
processed recipes in total with an average of 8 sen-
tences per recipe and 13 tokens per recipe sentence.
We randomly select 800 recipes for experimenting
our QG method, and the other 100 is held out for
the evaluation of the generated QA pairs.

Train Val
# of recipes 800 100
Avg. # of sentences per recipe 8 7.9
Max./Min. # of sentences 26/4 16/4
Avg. sentence length per recipe 12.5 13.4
Max./Min. sentence length 32/6 25/6

Table 2: Statistics of the train and validation subsets of
the QG dataset.

Cooking Role Annotation We prepare the pre-
processed recipes for QG by adding Cooking Role
Labeling/Linking (CRL), a span-level annotation
layer for identifying cooking events from recipe
text. We define the event ontology as a set of
cooking-related entities and relations. The en-
tity types include the EVENT-HEAD, INGREDI-
ENT, TOOL and HABITAT. The relations include
PARTICIPANT-OF and RESULT-OF. Each event has
only one predicative verb (EVENT-HEAD), and all
the relations within the event are linked from corre-
sponding entities to the predicate. A sample event
is provided in the Appendix, Figure 2. More impor-
tantly, CRL annotates events that involve implicitly
expressed arguments by identifying their hidden
entities. For example, consider the sentence Sprin-
kle over apple. from Table 1. In this event, the
hidden TOOL hand, the hidden HABITAT cake pan
and hidden INGREDIENTs cinnamon and sugar are
the most plausible participants of the event head
sprinkle, but are not explicitly stated. The identified
hidden entities should be either inferred elsewhere
explicitly on the document level, or inferred based
on the commonsense.

We start the CRL annotation by labeling ex-
plicit entities semi-automatically using a separately
trained NER model. Relations and hidden en-
tities are annotated manually. Then we anno-
tate the coreference of tools, habitats and ingre-
dients through the full recipe at the document level.
Specifically, we hired 12 trained student annotators
for the CRL annotation and validation work.2 Table
3 shows the average number of annotated entities
per recipe. The average number of event verbs (14)
are much great than the average recipe length (8)
from Table 2, indicating that many recipe sentences
tend to involve more than one event. Ingredient par-
ticipants are the most prevalent entity type under
both explicit and hidden settings. Recipes also have
more hidden ingredient results, tools and habitats
instead of explicit ones, showing the importance
of hidden arguments for understanding cooking
recipes or instructional text in general.

Train Val
Exp. Hidden Exp. Hidden

EVENT-HEAD 14.0 N/A 13.6 N/A
INGREDIENT (participant) 13.0 6.9 14.0 10.8
INGREDIENT (result) 0.2 1.5 0.2 1.4
TOOL 0.6 2.1 0.7 2.2
HABITAT 2.8 4.8 2.5 6.2

Table 3: Average number of annotated explicit/hidden
entities per recipe from the QG dataset. EVENT-HEAD
can only be explicit.

Aligning CRL and SRL We further process
the CRL annotation by aligning it with SRL.
Specifically, for any given sentence, we align its
CRL and SRL annotation that share the same
event predicate (marked as PREDICATE in SRL
and event-head in CRL). Semantic roles are
merged with corresponding cooking entities if their
text spans are overlapped. For example, in the sen-
tence Transfer peas to the saucepan, the role to
the saucepan[DESTINATION] will be merged with
the entity saucepan[HABITAT], and the text span
peas is both the entity INGREDIENT and the role

2Full annotation process can be found in Appendix A.2.
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THEME. The un-overlapped roles such as TIME
and ATTRIBUTE will be categorized as modifiers
to this cooking event. The CRL-SRL aligned events
will later be used to generate questions that are able
to hold richer context.

5 Experiment Method

Now we describe a template-based method to gen-
erate competence-based questions. We explore the
data with CRL annotation in two phases: first we
adopt the concept of question family in §5.1 by
proposing question templates and heuristics to gen-
erate QA pairs that involve hidden arguments for
each family. For example, given a sentence Sauté
the onions until browned., we generate the question
Where should you sauté the onions?. The correct
answer in the pan is not in the current sentence,
thus needing to be inferred from its context. In
§5.2 we propose the concept dense paraphrasing
that can record previous states of the entities as
being processed though events, e.g. sauté onions
will be rewritten as sauté chopped onions in gener-
ated questions based on the given context. Then we
apply it to enhance question families by generat-
ing new questions and answers that cover a bigger
context and dynamics of events.

5.1 Generating Competence-based Questions

Motivated by the concept of Question Family (QF)
that is first outlined and adopted by Johnson et al.
(2017) to create the visual question answering
dataset, we first introduce our question families,
which contain a set of text templates and semantic
reasoning heuristics that can generate the full spec-
trum of competence-based questions. We define
the question families in Table 4. Each question
family is designed to test a specific competence
with generated questions using the hand-crafted
text templates.

We generate QA pairs by populating templates
with slots in a cloze test style. Candidate slots
(colored spans in Table 4) are acquired from CRL-
SRL aligned events we created earlier. We also set
the constraints to only keep the events with at least
one hidden cooking entity for template population,
so that the generated questions are competence-
based, rather than purely “memorizing” original
text spans. Each aligned event is composed of
cooking entities with semantic roles, relation links
between entities and event verb, as well as SRL
modifiers to the event. All the required slots and the
candidate answer for a template are self-contained

within an aligned event.3

After a text template is populated, it is fur-
ther processed to improve the readability of the
generated question. We change word inflections
and insert articles and agreements. For the tem-
plates with [habitat_phrase] and [tool_phrase] slots,
we fill those with corresponding LOCATION or
INSTRUMENT spans from SRL. If a slot is filled
with a hidden entity, we run a BERT-based model
(Devlin et al., 2019) to get the most likely prepo-
sition given the sentence as context through the
masked language modeling task. Modifiers are
populated in the same order as they were in the
original sentence.

To increase the variety of questions, we allow
adjunct slots in the text templates. As shown in
Table 4, adjunct slots include tool/habitat phrases
and modifiers. For example, one ELISION question
can be as short as What should be sautéed? or
. . . sautéed in the saucepan with the spatula until
browned? with all the adjunct slots. We argue it is
helpful to generate questions more challenging to
the systems. Adding more adjunct slots completes
the context for the question, but also introduces
unseen context if the slots contain hidden entities.

5.2 Generating Enhanced CB Questions
We further improve our QFs by 1) explicating ambi-
guity of entity coreference, 2) generating questions
from larger context. Consider the sentence Peel and
cut apples into wedges. from Table 1. The entity
apple will be transformed to peeled apples
after the peel event, and that is what is partici-
pating in the following cut event, rather than the
same referred entity. We enhance the competence-
based QG to capture this layer of underlying seman-
tics. In addition, we also include document-level
QFs into our system. For the question What’s in
the appelkoek?, an answer apple wedges can be
extracted only from the last sentence where the
event that contains applkoek is annotated. While
the answer is not wrong, it’s not complete enough
to include all the necessary ingredients that can be
summarized from the whole recipe (Table 1).
Dense Paraphrasing To reflect the aforemen-
tioned difference between apples vs. peeled apples
in QG, we enrich the source narrative with a dy-
namic Dense Paraphrase of the surface text, which
both decontextualizes the expression (Choi et al.,
2021; Elazar et al., 2021), and enriches the textual
description of both events and participants to reflect

3One exception is for Cardinality, which requires the count
of the co-referred entities on the document level. The entites
from Cardinality also do not need to be hidden.
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QFS TEXT TEMPLATE QUESTION SENTENCE

Cardinality
How many toolObj|habitatObj are used? How many bowls are used?
How many times is the toolObj|habitatObj used? How many times is the microwave used?
How many action does it take to process IngreObj? How many action does it take to process the pasta?

Elision What should be verb [habitat_phrase] [tool_phrase]
[modifiers]? What should be baked in the oven at 425 degree?

Implicit
What do you use to verb obj [habitat_phrase] [mod-
ifiers]? What do you use to sauté the onions [in the pan]?

Where do you verb obj [tool_phrase] [modifiers]? Where do you arrange the slices into rounds?

Obj. Lifespan
What is in obj? What is in the appelkoek?
How did you get ingreObj? How did you get the appelkoek?

Semantic Role
For how long do you verb obj [tool_phrase] [habi-
tat_phrase] [modifiers]? For how long do you marinate the shrimp?

To what extent do you verb obj [tool_phrase] [habi-
tat_phrase] [modifiers]? How do you add the water to the bowl?

Table 4: Text templates and generated questions from each question family. Cardinality: integer comparison and
counting; Elision: hidden arguments that can be understood from context; Implicit: implicit tools/habitats that
require world knowledge; Obj. Lifespan: different object states; Semantic Role: semantic roles from a cooking
event. In the templates, bar symbol (...|...) indicates either slot is acceptable; squared brackets ([...]) indicates
adjunct slots.

SENSE VERBS CATEGORY
CONVERT melt, cream, evaporate Transformation
SPILL_POUR pour, ladle, drip Loc. Change
AMELIORATE enhance, improve, round out N/A

Table 5: Example event verbs and their senses along
with the assigned end state type.

the changes in the object due to the events. This
includes descriptions involving subevent decom-
position (Pustejovsky, 1995; Im and Pustejovsky,
2010), which tags the event as having three parts:
begin (Be), inside (Ie), and end (Ee).

In practice, we only track the begin and end state
of an event. We define two types of event end state:
TRANSFORMATION and LOCATION-CHANGE. For
example, the end state of a chop onions event is
chopped onions, and the end state type is TRANS-
FORMATION, denoting a change of the object in
shape, size or color, etc. To get the end state type
of each event, we collected 208 unique verb senses
(Di Fabio et al., 2019) that are assigned by the SRL
parser to our data, and hand-split those into three
categories: transformation, location change or nei-
ther. Then we assign the end state type based on
the category of the event verb sense. Table 5 shows
an example from each category.

We incorporate dense paraphrasing into the QG
by replacing the INGREDIENT entities from each
aligned event with its dense-paraphrased version
before the template population. Specifically, for the
event verb from transformation, the paraphrased en-
tities will have the format of pastParticipleVerb
+ object, e.g. minced garlic, heated water. To
retain the naturalness and readability of the ques-
tions, we keep the last one or two event end states
of an ingredient. For example, sautéed chopped

peeled onions will be truncated to sautéed onions
or sautéed chopped onions.
Document-level QG Unlike previous QFs where
each template is populated by only one event, we
first construct all the CRL-SRL aligned events
from each recipe into data views that can pro-
vide a global understanding of the whole recipe.
Each data view is used to generate questions or
answers in document level. Subfigure 1(a) shows a
directed graph that connects events by ingredients.
result-of connects the ingredient participant
and result within an event; coreference-of
connects ingredients from two events where the
result of the first one is directly used as the partic-
ipant of the second one. This data view is used
to enhance the OBJ. LIFESPAN QF by expand-
ing the answers to include all major ingredients
from the whole text, rather than just the ingredi-
ents mentioned in current sentence. We describe
the steps taken in Algorithm 1 to generate such an-
swer. Given an intermediate ingredient that is asked
about, we generate a subgraph of events thorough
depth-first-search traversal over the graph from the
vertex of the given ingredient. Then we collect the
ingredient results from the subgraph as the answer.

We also propose new document-level QF tem-
plates that are populated through traversing the
other two data views. Table 1 shows example ques-
tions from the newly proposed question families,
namely LOC. CHANGE and HABITAT STATE. We
succinctly describe the steps to generate QA pairs
from the new QFs, and provide the corresponding
algorithms in the appendix.

Subfigure (b) shows a grid that tracks the change
of location of ingredients through events. Each row
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Figure 1: Data views of cooking events from a recipe. (a) A directed graph that connects events by ingredients. (
= ingredient participants, = ingredient results, −→ = result-of, // = coreference-of); (b) A grid shows the
habitat of each ingredient in every event; (c) An index links events by the location where the they took place.

Algorithm 1 Object Lifespan QF Heuristics
Require: Graph G(V,E) and ingredient ingrei

access the ingredient result vertex vi that stores ingrei
generate subgraph g ← predecessors in depth-first-search
from vi
ingredient candidates C ← {}
for vk in g do

if vk stores ingredient result ingrek and the at least one
of parent vertices of vk stores ingredient participant that
is NOT the outcome from other events then
add(ingrek, C);

end if
end for
answer ← {C}
question← template(ingrei)

shows the habitat of an ingredient (represented by
ingredient id) in every event. null means the in-
gredient is not involved in the given event, thus no
habitat needs to be populated. To generate a LOC.
CHANGE question with this data view, the habitat
from the event grid is used. Then we compare the
habitat from the preceding event with current habi-
tat to decide which location change cue to use in the
answers. The answer format can be either STILL
habitat_phrase, in ANOTHER habitat_phrase or
simply the habitat itself based on the comparison.

Subfigure (c) links events by the location where
they took place. Each list contains all the events
that have the same habitat given by temporal order-
ing. To generate HAB. STATE questions, given a
habitat and event at a certain time point from the
event index view, we look up the grid view to track
what ingredients are added or removed from the
given habitat dynamically through all the events
that happen before the current one.

6 Evaluation and Discussion

In this section we describe the steps to evaluate our
system. First we adopt crowd-sourced evaluation
to measure the quality of generated questions in-

EXPLICIT HIDDEN ENHANCED
Train Val Train Val Train Val

SEMANTIC ROLE 5,513 700 8,169 1,064 901 135
ELISION 4,829 622 3,852 598 2,251 340
IMPLICIT 3,618 527 4,287 650 1,385 261
OBJ. LIFESPAN 781 69 1,098 124 2,392 312
CARDINALITY - - 4131 529 - -
LOC. CHANGE - - - - 6,101 1,020
HAB. STATE - - - - 4,094 534
ALL 14,741 1,918 21,537 2,965 17,124 2,604

Table 6: Number of generated questions from each sub-
set per QF.

trinsically. Then we train a text generation model
to perform QA tasks over the subsets of questions
to measure the competence of questions and the
challenges they post to existing systems. We then
compare other existing QG systems with our own.

To prepare the data for the evaluation, we apply
our method on both the train and validation set
of the QG dataset. The generated questions are
categorized into three subset as shown in Table 6.
EXPLICIT set contains generated questions of the
QFs from Table 4, but the templates are populated
with the events where the entities are all explicitly
stated in the text. This set can be viewed as a non-
competence extractive QA dataset. The HIDDEN
set also contains the QFs we defined in Table 4 but
with the constraint that a valid event should contain
at least one hiddden entity. The ENHANCED set
includes the dense paraphrased QFs as well as new
document-level QFs from §5.2.

Intrinsic Evaluation Similar to other text gener-
ation task (Luong et al., 2015; Rush et al., 2015),
human evaluation plays a critical role in question
generation, as it can provide a more reliable evalua-
tion and capture the nuance between generated text.
We measure the generated QA pairs on a 5-point lik-
ert scale from grammatical correctness, relevance
and answer completeness. The first two metrics are
proposed in QG-STEC Task B (Rus et al., 2010)
and widely used in previous work (Dhole and Man-
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ning, 2021; Pyatkin et al., 2021). They measure the
grammaticality and the relevence of the questions
to the context, respectively. In addition, we propose
answer completeness for our QG task. It measures
whether the answer is complete, e.g., some ingre-
dients are missing from the answer or redundant.
This metric is helpful to our task as we generate
the answers that involve hidden objects which also
traverse the whole passage.

We conduct the intrinsic evaluation on the HID-
DEN and the ENHANCED question subsets of the
QG validation set. We assign the generated ques-
tions to 4 trained annotators who had the experi-
ence with CRL annotation, and ask them to score
each QA pair. Table 7 shows the result from in-
trinsic evaluation. For grammatical correctness,
SEMANTIC ROLE and HAB. STATE have lower
scores than the others. We suspect this is because
CRL has more templates for different roles and
HAB. STATE has a rather complicated question
structure, while others have relative fixed templates.
The overall change in relevance score tends to be
consistent with grammatical correctness. However,
OBJ. LIFESPAN from ENHANCED has a low rele-
vance score compared to its grammaticality score.
Through analysis, we found the system tends to
generate less useful and less relevant QA pairs such
as What is in the chopped tomatoes? - tomatoes.
OBJ. LIFESPAN from ENHANCED also has the
lowest score on AC. This is expected since the de-
sired answers for this QF may include a whole list
of entities that are scattered over the text. As a
comparison, IMPLICIT has the highest score on
AC because of the simplicity of answer format (ei-
ther the hidden habitat or tool). Compared to HID-
DEN, the score also drops on QFs in ENHANCED.
By checking the examples, we found some dense-
paraphrased objects can be “unnatural” to read such
as mixed apple and drained water, which may lead
to this drop. Overall, by comparing the scores to
other QG systems (Dhole and Manning, 2021; Py-
atkin et al., 2021) that also adopt the human evalu-
ation, the result proves the validity of our method.4

Question Answering Performance We also
evaluate the competence of generated questions
by performing the QA task on the question subsets.
We fine-tune the T5-BASE text generation model

4Dhole and Manning (2021) and Pyatkin et al. (2021) also
evaluated the result on grammatical correctness and relevance,
resulting in 3.93/4.34 and 4.57/4.29 on the data presented in
their work. Despite the difference in data and templates makes
it difficult to compare the exact scores, we argue the relative
score (e.g. all above 3.5) is still useful to look at due the
evaluation is based on human judgement.

HIDDEN ENHANCED
Gram. Rel. AC Gram. Rel. AC

SEMANTIC ROLE 4.71 4.59 4.65 4.52 4.50 4.56
ELISION 4.93 4.77 4.57 4.92 4.79 4.53
IMPLICIT 4.92 4.87 4.83 4.84 4.76 4.78
OBJ. LIFESPAN 4.83 4.70 4.52 4.75 4.45 4.36
LOC. CHANGE - - - 4.80 4.51 4.48
HAB. STATE - - - 4.51 4.44 4.57
ALL 4.81 4.69 4.66 4.74 4.56 4.53

Table 7: Results from intrinsic evaluation on questions
families with / without enhancement. CARDINALITY is
not included as there is little variance between questions
from this set, and the answer only contains numbers.

(Raffel et al., 2020) on each question set from the
training set and evaluate on the validation set using
exact match (EM) and token-level F1 score (F1) fol-
lowing Rajpurkar et al. (2018). The model training
detail is provided in the Appendix A.3.

Table 8 shows the QA results from fine-tuned
T5 on question subsets per question family. Over-
all, the model performs best on EXPLICIT set
and performs worse on HIDDEN and ENHANCED.
This observation confirms our assumption that CB
questions indeed pose new challenges to existing
systems. The model performs best on SEMAN-
TIC ROLE and the score difference between ques-
tion sets is much smaller comparing to the over-
all. This is because the answers for this QF are
explicit semantic roles that can be retrieved in
an extractive manner. For OBJ. LIFESPAN, the
score difference between questions sets is much
greater. Compared with EXPLICIT which only
account for explicit ingredients, HIDDEN set re-
quires a correct answer to include all hidden in-
gredients from the given event. ENHANCED set
further accounts for dense-paraphrased answers
from the document-level, thus resulting in the most
challenging set for OBJ. LIFESPAN. Comparing
the two multi-sentence question families in EN-
HANCED, the model performs much better on LOC.
CHANGE. By examining the examples, we found
that some LOC. CHANGE questions involve events
that are next to each other, which requires local
context for the model to pick up the necessary in-
formation to answer it. In contrast, HAB. STATE
is the most difficult question family as it asks the
model to track the relative position between habitat
and ingredients globally to answer it correctly.

To understand whether CRL annotation can help
answer CB questions, we fine-tune the T5 model
on the ENHANCED set again, but we modify the
input string to include the CRL by inserting hid-
den entities as a human-readable format to the in-
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EXPLICIT HIDDEN ENHANCED - w/ CRL
EM F1 Count EM F1 Count EM F1 Count EM F1

SEMANTIC ROLE 92.59 96.92 700 90.51 96.05 1064 84.44 89.68 135 60.00 72.46
ELISION 66.72 75.63 622 27.59 50.93 598 25.16 46.20 340 40.88 59.07
IMPLICIT 62.43 71.95 527 59.69 69.15 650 48.28 58.13 261 70.88 75.78
OBJ. LIFESPAN 40.58 58.38 69 23.39 54.43 124 10.58 48.82 312 14.10 60.58
CARDINALITY - - - 71.08 71.08 529 - - - - -
LOC. CHANGE - - - - - - 56.47 74.05 1020 60.00 74.45
HAB. STATE - - - - - - 8.96 42.69 536 18.66 52.36
ALL 73.72 81.69 1918 64.79 74.86 2965 37.73 60.15 2604 44.59 66.26

Table 8: Results from fine-tuning T5 model for the question-answering task on three different subsets of generated
questions. For ENHANCED subset, we collect two sets of results from the models trained with or without CRL
annotation. CARDINALITY does not have counterparts from EXPLICIT and ENHANCED sets. LOC. CHANGE and
HAB. STATE are only introduced in ENHANCED for multi-sentence QG.

put.5 Table 8 also shows the results from the model
trained with CRL, which outperforms the result
from baseline T5. It shows the utility of CRL to
carry competence-based knowledge. Interestingly,
the scores for SEMANTIC ROLE questions drop
significantly (24.44 on EM) with the new model.
This is because we reconstruct the context text to
include CRL, but that breaks the extractive nature
of SEMANTIC ROLE questions. However, it can be
avoided by training the system with different input.

Context: ... Add[2] to it potatoes and red pepper. Stir[1] well
for 2 minutes.
SynQG [1] For how long does someone stir well? [2] What

vegetable is added to it?
RoleQ [1] What stirs well? / Why does someone stir some-

thing something?
[2] What does something add something to?

CompQG [1] What do you use to stir the fried potatoes and red
pepper? / For how long do you stir the fried potatoes
and red pepper in the pot?
[2] Where are the fried potatoes before you add them
to the pot? / What is already in the pot when you stir
the fried potatoes?

Table 9: Examples of questions generated by SynQG,
RoleQ and CompQG (this work).

Comparison to Other QG Systems As a qualita-
tive study of our system, we compare it to two QG
systems: Syn-QG (Dhole and Manning, 2021) and
RoleQG (Pyatkin et al., 2021). Due to the fact that
all three systems are essentially different regarding
their domain and model I/O, we focus on compar-
ing how the systems differ in the final outcome and
how our system fits into the larger scope of QG.
Syn-QG leverages syntactic and semantic rules to
generate template-based questions. RoleQG pro-
poses a hybrid method of templates and seq2seq
models to generate questions for any semantic role
that may exist in the context. We adopt Syn-QG
and RoleQG on a sample data and summarize our

5E.g., input sauté until browned is changed to
{using a spatula} {on the cutting board}
sauté {chopped onions} until browned
{resulting in sautéed onions}

observations from comparing results.6

Procedural vs. descriptive text Both SynQG
and RoleQ are developed on datasets with narra-
tives, such as OntoNotes 5.0 (Weischedel et al.,
2013) and SQuAD (Rajpurkar et al., 2016). How-
ever we choose to apply our method on procedural
text like cooking recipes. This difference in data
format and scope can impact the operations for
QG tasks. Procedural text tends to be imperative
and instructional. This may lead to certain seman-
tic roles being naturally omitted from sentences.
For example in Table 9, the questions for Agent
and Cause (RoleQ [1]) may not fit for the given
sentence. Procedural text also involves a specific
task under a given setting, which could lead to text
elision and ambiguity as the same arguments may
appear multiple times across the text. This hinders
existing systems from generating accurate ques-
tions. In Table 9, if the stir action is performed
more than once in the context, question SynQG
[1] would be ambiguous to ask. The correspond-
ing answers (potatoes and red pepper) also need
to be inferred from other sentences. Thus we pro-
pose CRL aligned with SRL that is able to account
for the above mentioned properties from procedu-
ral text. The questions from our work (CompQG
[1]) tend to either include hidden text slots in the
questions, or solicit them in the answer.

Competence vs. ubiquitous QG Traditional
QG methods are designed to generate as many ques-
tions as possible to have a wide coverage of the
context. To achieve that, SynQG includes named
entities and hypernyms into SRL arguments to in-
crease the variety of SRL templates (SynQG [2]);
RoleQ generates questions for all possible semantic
roles of the predicate even though the answers can
not be identified in the text (RoleQ [1]). As a com-

6For SynQG, We directly follow their proposed SRL tem-
plates and heuristics in §3.2 of their paper. For RoleQ,
we follow their instruction to run the model provided in
github.com/ValentinaPy/RoleQGeneration.
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parison, we focus on competence-based QG with
special attention to answer completeness. Answers
to SRL questions are just semantic roles that can
be retrieved locally with ease (SRL row in Table
8). They lack the capability to uncover underly-
ing semantics and solicit new information globally,
which are what we are trying to address with extra
steps to connect sentences and generate complete
answers from data views. For example, questions
from CompQG [2] leverage the multi-sentence in-
formation. This move could be especially suitable
to procedural text as it is task-oriented and further
steps need to build on past actions.

7 Error Analysis and Postprocessing

Based on the intrinsic evaluation results from Table
7 and manual inspection of the generated questions,
we summarize the common errors that we identified
from the system output.
Error propagation from the annotation Some
wrong or incomplete answers are from the data an-
notation. This may happen more frequently in OBJ.
LIFESPAN when certain hidden ingredients are not
annotated. Missing of the annotation also reduces
the number of QA pairs that can be generated auto-
matically.
Unnatural and Uninformative Questions Pro-
nouns and simple events can result in questions that
are less helpful. For example, question To what ex-
tent do you turn it? and What should be cooked
cannot be answered due to the lack to specific ref-
erence and proper context. Another case is when
the ingredient participant and result is the same
and is the only ingredient in the QA pair. Exam-
ple like that is What is in the chopped tomatoes? -
tomatoes, which reads unnatural.
Question or Answer Ambiguity Question am-
biguity may happen when the question structure is
simple and the same event action is performed mul-
tiple times in the same context. For example, the
question What should be sliced? is ambiguous if
the action slice is mentioned in different sentences
from the same recipe. Answer ambiguity happens
more frequently in questions that involve the world
knowledge or commonsense from the annotation.
Given the questions How do you roll the dough into
rounds?, if the candidate tool is not explicitly men-
tioned elsewhere in the same recipe, the annotator
should resort to their world knowledge to fill it in.
However, different annotators may have different
answers such as rolling pin or bare hands.

To solve or alleviate aforementioned errors, we
postprocess the data based on some heuristics to fil-

ter out the low-quality QA pairs. Before the events
are populated into the templates, we fill in possible
missing annotation for hidden tools or habitats. We
assign the most likely tool or habitat to the given
event based on the frequency distribution of the
entity from the existing annotation. For example,
if the event head cut has no hidden tool annotated,
knife as the most frequent tool to this event head
will be assigned. To make the questions less am-
biguous, the templates that are used to generate
questions involve common verbs such as add, cook,
put, place need to contain as least one adjunct slot.
This can generate more specific questions. We
also remove QA pairs that contain pronouns and
the pairs whose answer is only one ingredient and
overlapped with the entities that are asked about.

Although the errors from the annotation and au-
tomation process are hard to avoid, the annotation
overall can be improved through more careful post
validation and adjudication of the data. Answer am-
biguity can also be partially solved by setting rules
in the specification to favor more specific entities
over the general ones (e.g. rolling pin vs. hands,
large spoon vs. spoon), or allowing multiple valid
answers. We leave these to the future discussion.

8 Conclusion

We have proposed a method for generating
competence-based questions that leverages lexical
semantic knowledge involving, implicit arguments,
subevent structure of verbs, and document-level
event dynamics. To that end, we have constructed
a new dataset that encodes manually annotated lex-
ical semantic knowledge in a corpus of cooking
recipes. Our proposed method includes a set of
rich targeted question families and a suite of dense
paraphrasing operations that facilitate systems to
generate answers both locally and globally. We
have conducted intrinsic evaluation of the system
to show the quality and usefulness of CB ques-
tions. We have also performed QA tasks by let-
ting systems answer generated questions; this in
turn has provided potential insights into further
improvement of existing large language models
for understanding such questions. By comparing
to existing QG systems, our work has focused on
generating questions from the subdomain of proce-
dural text, and the questions are designed to query
competence-based knowledge. In future research,
we intend to further improve our method by min-
imizing the annotation errors and ambiguous an-
swers as indicated in the error analysis, and then
apply the method to a broader range of text genres.
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A Appendix

A.1 Algorithms
This section shows the algorithms describe in §5.2.
Algorithm 2 and 3 describe the steps to populate
LOC. CHANGE and HAB. STATE QFs.

Algorithm 2 Location Change QF Heuristics
Require: Grid G, ingredient ingrei and event ej

habitat hij ← G(ingrei, ej)
for k = j − 1 to 0 do

if hik ̸= null then
break loop

end if
end for
if id(hij) = id(hik) then
answer ← {′still′, hij}

else
if text(hij) = text(hik) then
answer ← {′another′, hij}

else
answer ← {hij}

end if
end if
question← template(ej)

A.2 Annotation Process
we posted annotation positions within several
University-wide distribution lists, available to all
students within the various departments targeted.
We hired 8 student annotators for the recipe an-
notation work. They were paid at the University-
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Algorithm 3 Habitat State QF Heuristics
Require: Grid G, Index Q, habitat h and event ej

events E ← {ek ∈ Q(h) | k < j}
ingredient candidates C ← {}
for ek in E do

get ingredient result set R
for every result r in R do

for i = k − 1 to 0 do
if G(r, ei) = h ∧ r ̸∈ C then
add(r, C); break;

else
if G(r, ei) = null then

continue;
else

break;
end if

end if
end for

end for
end for
answer ← {C}
question← template(h, ej)

mandated rate of $15/hour for student research as-
sistants. All annotators were students at a US-based
university, ranging from undergraduate to master’s
program.

We start by running the SRL parser (Conia and
Navigli, 2020) on the full dataset to label each
recipe sentence with its semantic roles. Subse-
quently, we ask 2 students annotators to validate
and correct both frames and argument labels. We
then train Flair named entity recognition (NER)
model7 (Akbik et al., 2019) on 100 recipes anno-
tated with cooking entities only. The model takes
a tokenized sentence and outputs the entity tag for
each token in BIO format. We apply the trained
NER model to the rest of recipes to generate all
the entities for the further validation. CRL anno-
tation task includes the annotation for relations,
hidden entities and coreference of entities. Each
recipe is annotated once at full by one annotator.
All the annotators are trained to be familiarized
with the annotation guideline and annotation exam-
ples before they start the task. The full annotation
guidelines for the CRL task will be available along
with the publication of this paper. For the intrin-
sic evaluation, we assign the generated questions
to 4 annotators who had the experience with CRL
annotation. Annotators are familiarized with the
scoring for sample questions before doing the eval-
uation. Annotators are also required to provide a
short comment to account for low scored QA pairs.

Figure 2 shows a final CRL annotation. The
ingredient apples as a direct object to the verb,
is linked as a participant of cut. The ingredient

7https://github.com/flairNLP/flair

wedges as the outcome, is linked as a result of
cut. Both habitat and tool can only be participants
of an event, not results.

On a cutting board cut apples into wedges with a knife
HABITAT HABITAT VERB INGRE. INGRE. TOOL

par.-of

res.-of

par.-of

par.-of

Figure 2: CRL annotation.

A.3 Model Detail
We fine-tune the T5 text generation model (Raffel
et al., 2020) to perform question answering
task on different question subsets. To make
the model output comparable, we format each
input instance to "question: {question_str}

context: {recipe_str}" that includes the raw
text of the whole recipe as context regardless
of the question scope or implicity. For fine-
tuning T5 with CRL annotation, we modify the
context string to include the CRL by inserting
hidden entities as a human-readable format to
the input. For example, given a piece of the
context: sauté until browned, we change it to
{using a spatula} {on the cutting board},

sauté {chopped onions} until browned

{resulting in sautéed onions} to recover
the hidden objects to a human-readable format
that can be consumed by T5. All the hidden
entities from each event are wrapped with squared
brackets. For each experiment run, we fine-tune
T5-BASE model for 15 epoches on 4 NVIDIA
Titan Xp GPUs. It took roughly an hour to finish
the training. We adapt the training script from
https://huggingface.co/valhalla/
t5-base-qa-qg-hl.

A.4 Open Source License
• Flair NER - MIT License

• RoleQGeneration - Github Default

• Deep Event & Entity Palette - GPL3

• Docanno - MIT License
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Abstract

Procedural text understanding is a challenging
language reasoning task that requires models
to track entity states across the development
of a narrative. A complete procedural under-
standing solution should combine three core
aspects: local and global views of the inputs,
and global view of outputs. Prior methods con-
sidered a subset of these aspects, resulting in
either low precision or low recall. In this pa-
per, we propose Coalescing Global and Local
Information (CGLI), a new model that builds
entity- and timestep-aware input representa-
tions (local input) considering the whole con-
text (global input), and we jointly model the en-
tity states with a structured prediction objective
(global output). Thus, CGLI simultaneously
optimizes for both precision and recall. We
extend CGLI with additional output layers and
integrate it into a story reasoning framework.
Extensive experiments on a popular procedu-
ral text understanding dataset show that our
model achieves state-of-the-art results; experi-
ments on a story reasoning benchmark show the
positive impact of our model on downstream
reasoning. We release our code here: https:
//github.com/Mayer123/CGLI

1 Introduction

Understanding the causal links of events in proce-
dures is a key aspect of intelligence, facilitating
human narration and dialogue. For instance, under-
standing why story B is plausible and why story A
is not (Figure 1) requires procedural understanding
of the causes of John leaving his notebook at home,
as opposed to him taking out his notebook from
his bag: writing in a notebook is counterfactual
in the former case, and intuitive in the latter. Un-
derstanding stories requires procedural models that
can reason consistently about event implications,
and do so at different granularities. For a model to
decide whether a story is plausible, it has to track
the entity states over time, understand the effects of

Figure 1: An example story of understanding task.
Given two stories, the task is to judge which story is
more plausible, find the conflicting sentence pair in the
implausible story, and predict entity states at every step.

the described actions (green arrows), and consider
the preconditions for a given action (pink arrows).
Meanwhile, the model must reconcile the causes
and effects of all events described in the story, to
provide a globally consistent interpretation.

While procedural reasoning research reports
steady progress in recent years (Rajaby Faghihi
and Kordjamshidi, 2021; Gupta and Durrett, 2019a;
Zhang et al., 2021), story understanding and pro-
cedural reasoning have rarely been considered to-
gether (Storks et al., 2021). Works have attended
only to complementary aspects of the procedural
reasoning problem, e.g., Gupta and Durrett (2019a)
build entity-centric context representations and ig-
noring timestep-wise representation modeling; and
Rajaby Faghihi and Kordjamshidi (2021) later pro-
posed a timestep-specific model providing unique
context encoding at every step to enable model-
ing flexibility. However, these methods predict
independent step-wise entity states, thus compro-
mising the dependency of outputs across differ-
ent steps—yielding high recall but low precision.
Global-output methods (Gupta and Durrett, 2019b;
Zhang et al., 2021) explicitly leverage the strong
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Figure 2: An illustration of CGLI. At every step, the LM encodes the full paragraph with different timestep ids
(colored circles with numbers). The span extraction layer yields a location span for every entity at every step and
this span sequence is combined with action sequence produced by a CRF layer to form the final predictions.

dependency across steps by jointly modeling the
entity actions from all steps, but these methods only
have one context encoding for all entities and steps,
thus providing sub-optimal input representations—
yielding high precision but low recall.

In this paper, we propose Coalescing Global
and Local Information (CGLI): a new model for
procedural text understanding that makes global de-
cisions in consideration of entity-, timestep-centric,
and global views of the input. To do so, our model
builds a separate input view for every entity, at ev-
ery step, while providing the whole context. Mean-
while, CGLI represents the entity actions across
steps jointly with a structured prediction objective,
thus achieving high consistency between different
steps. The contributions of this paper are:
1. A novel procedural understanding method,
CGLI, which produces global outputs of narra-
tive procedures based on a unified view of the in-
put, combining both local (entity-centric, timestep-
specific) and global (document-wide) views—thus
optimizing precision and recall, simultaneously.
2. A story understanding framework, which
builds upon our procedural understanding model,
to enable story understanding with explicit and ex-
plainable understanding of event procedures, cap-
tured through entity precondition and effect states.
3. An extensive evaluation of CGLI against strong
baselines on a procedural task, ProPara (Dalvi
et al., 2018), and recent story understanding task,
TRIP (Storks et al., 2021). Our experiments show
the positive impact of our method, through achiev-
ing state-of-the-art results, while ablation studies
measure the impact of its individual components.

2 Task Definition

Procedural text understanding. The task in-
put consists of an n-sentence paragraph P =
{s1, s2, ...sn} , and k entities {E1, E2, ...Ek}. The
goal is to predict precondition state Spi,t and effect
state Sei,t, for every entity at every step, as well as
the actionAi,t performed by the entity at every step;
i ∈ {1, 2, ..k}, t ∈ {1, 2, ...n}. The effect state at
t − 1 is the same as precondition state at step t,
i.e., Sei,t−1 = Spi,t, hence Si is a sequence of length
n+ 1. Following prior work (Mishra et al., 2018),
Ai,t ∈ {Create, Exist, Move, Destroy}, Sei,t ∈{non-
existence, unknown-location, location}, and for
location, a span of text in P needs be identified
for the prediction. Action Ai,t describes the entity
state changes from precondition to effect, thus it
can be inferred from the state sequence Si, and vice
versa—e.g., if Spi,1 = non-existence and Sei,1 = lo-
cation, then Ai,1 = Create.
Procedural story understanding. The input to
the procedural story understanding task consists of
two parallel stories, P1, P2 = {s1, s2, ...sn}, each
consisting of n sentences and differing only in one
of the sentences. Following Storks et al. (2021),
the task is to identify which story is more plausible,
identify the conflicting pair of sentences (sc1 and
sc2) in the implausible story, and list the precondi-
tions Sei and effects Spi of all entities at every step
of a story. Here, multiple attributes are considered
for precondition and effect states. Unlike in the
procedural text understanding task, the story com-
pletion task does not require that the effect state at
step t − 1 should match the precondition state at
step t, i.e., Seit−1 and Spit are not necessarily equal.
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3 CGLI: Coalescing Global and Local
Information

In this section, we describe the input representa-
tion, the architecture, and the training details of our
model, as illustrated in Figure 2.
Input representation. To allow greater model-
ing flexibility and enable span extraction for en-
tity location-prediction, we build a unique input
representation for every entity at each step (local
view), and we provide it access to the entire context
(global view). Given an entity, we create a pseudo
question Q ’where is {entity}’ (entity-aware), and
concatenate it with the full paragraph P , resulting
in C = [CLS] Q [SEP] P [SEP]. We map C using
the embedding layer of a language model (LM),
resulting in Cemb. We then combine Cemb with
timestep embeddings to mark the current step of in-
terest (timestep-aware), following (Rajaby Faghihi
and Kordjamshidi, 2021). In particular, each input
token is assigned a timestep ID where {0=padding,
1=past, 2=current, 3=future}, forming T ∈ Rm,
where m is the number of tokens. The timestep
sequence is projected through another embedding
layer Timestep ∈ R4×d. The sum of Cemb and
Timestep(T ), denoted with C ′emb ∈ Rd×m, is
then processed by the LM encoder layers, where d
is the hidden layer dimension of the LM encoder.
Formally:1

Cemb = Embed(C) (1)

C ′emb = Cemb + Timestep(T ) (2)

Cenc = LM Encoder(C ′emb) (3)

Location prediction. Given the LM encoded rep-
resentation Cenc ∈ Rd×m, we extract the start and
end indices of the location span:

PStart = Softmax(WsCenc) (4)

PEnd = Softmax(WeCenc), (5)

where Ws,We ∈ Rd. For unknown locations and
non-existing states, we extract the [CLS] token as
the span, analogous to how unanswerable questions
are usually handled (Rajpurkar et al., 2018).
In-batch Conditional Random Field. For entity
state/action modeling, we jointly predict the en-
tity actions across all steps (global output). We
first group the encoded representation Ctenc of the
same entity at different time steps t in one batch

1To model the precondition state of step 1, we also build
an input sequence for step 0.

chronologically, yield CNenc ∈ Rd×m×(n+1). Then
we extract the [CLS] token embedding to repre-
sent the entity state of every step CN

′
enc ∈ Rd×(n+1).

We concatenate the entity state representation of
every two consecutive steps to represent the ac-
tions between these two-state pairs. The result
DN
enc ∈ R2d×n is mapped to the emission scores

ϕ ∈ Ra×n, where a is the number of possible ac-
tions.

Dt
enc = Concat(Ct

′
enc, C

(t+1)′
enc ) (6)

ϕ =W T
a (tanh(W

T
d D

N
enc)) (7)

where Wd ∈ R2d×d, Wa ∈ Rd×a. The entity ac-
tion sequence A ∈ Rn is modeled by a conditional
random field (CRF):

P (A|ϕ, ψ) ∝ exp(

n∑

t=1

ϕt(At) + ψ(At−1, At)), (8)

with the CRF layer’s transition scores ψ ∈ Ra×a.
Prior initialization. Previous methods (Gupta and
Durrett, 2019b; Zhang et al., 2021) initialize the
CRF transition scores randomly and update them
during training. This allows transition between any
pair of actions. However, certain transitions be-
tween entity actions are nonsensical, e.g., an entity
cannot be destroyed if it has not been created, and
a destroyed entity cannot move. Learning such con-
straints may be possible if we have sufficient data,
which is not the case for the tasks we are consider-
ing. Thus, we propose to directly impose common-
sense constraints on the model’s transition scores,
because these conditions are universally true and
can be used to reduce the model’s search space.
Specifically, we set an entity action transition score
to -inf if it has not been seen in the training data,
otherwise we estimate the initial score of a transi-
tion based on its frequency in the training data: ψuv

= log(Num(u,v)
Num(u) ), where ψuv is the log probability

of transition from action u to action v, Num(u, v)
is the transition count from u to v in data, Num(u)
is the count of u in data.
Training and inference. We jointly optimize the
location and the entity action prediction losses dur-
ing training:

Lloc = −
1

n

t=0∑

n

(log(P
yts
Start) + log(P

yte
End)) (9)

Laction = −log(P (A|ϕ, ψ)) (10)

L =Lloc + Laction, (11)
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Figure 3: An illustration of integrating CGLI into a
story understanding framework. The story is encoded
in the same way as shown in Figure 2, producing a
sequence of step representations, i.e., a batch of [CLS]
vectors. These vectors serve as input to different output
layers to model the three task objectives: plausibility
(orange), conflict sentence detection (blue), and entity
state prediction (yellow).

where yts and yte are the ground-truth start and end
indices at step t. During inference, we use Viterbi
decoding to produce the most likely entity action
sequence and use the span extractor for the most
likely location at every step. We combine the action
sequence and location predictions to deterministi-
cally infer all precondition and effect states.
Data augmentation. Procedural text understand-
ing requires dense annotation of entity states per
step, making it challenging and expensive to collect
large data. To address data sparsity, we propose
a data augmentation method that could effectively
leverage the unannotated paragraphs to enhance
model’s performance. In particular, we first train a
model on the gold training set and then apply it to
label the unannotated paragraphs, resulting a set of
noisy examples. We then mix these examples with
gold training data to train a second model.

4 Story Understanding with CGLI

We integrate CGLI into a story understanding
framework with minimum modifications follow-
ing the task definition, and the overall model is
shown in Figure 3. As the story understanding
tasks do not require location extraction, we remove
the span extraction layer, which makes the input
representation of step 0 obsolete. Given that the
continuity of effects to preconditions between con-
secutive steps does not hold in this task, we directly
use CN

′
enc ∈ Rd×n instead of DN

enc ∈ R2d×n in the
in-batch CRF. Given B number of attributes for
precondition and effect states, we apply an in-batch
CRF module for each attribute. Specifically, we
apply equations 7 and 8 for every attribute, yield-
ing 2B such modules in total. To detect conflicting
sentences, we concatenate every pair of sentence

representations, and pass it through a linear layer
to find the conflicting pair. For story classification,
we take the mean of sentence representations for
story representation, and pass it through a linear
layer for binary classification. Formally,

Cconfl = vstack(Concat(Ct
′
enc, C

j′
enc)) (12)

Pconfl = Softmax(WconflCconfl) (13)

Cplau = Mean(CN
′

enc) (14)

Pplau = Softmax(W T
plauCplau), (15)

where Cconfl ∈ R2d×n(n−1)
2 , j ∈ {t+ 1, ...n},

Wconfl ∈ R2d, Cplau ∈ Rd, Wplau ∈ Rd×2. Dur-
ing training, we jointly optimize all three task ob-
jectives:

Lplau = −log(P ypplau) (16)

Lconfl =
{
−log(P ycconfl) if yp = 0
0 otherwise

(17)

Latt = −log(P (Sp|ϕp, ψp))− log(P (Se|ϕe, ψe)) (18)

L = Lplau + Lconfl + 1

B

b=0∑

B

Lbatt (19)

where yp=0 if the story is not plausible and yp=1
if the story is plausible, and yc denotes the conflict
sentence pair index. Note that in our setup, each
entity can produce a prediction for conflict sentence
pair and story plausibility. At inference time, we
take the average of all entities’ logits to get the final
predictions for these two objectives.

5 Experimental Setup

Benchmarks. We evaluate procedural understand-
ing on ProPara (Mishra et al., 2018)2, which con-
tains 488 human-written paragraphs from the nat-
ural science domain. The paragraphs are densely
annotated by crowd workers, i.e., for every entity,
its existence and location are annotated for every
step. Additional 871 unannotated paragraphs are
also provided by ProPara. We use these for data
augmentation.

We test story understanding on TRIP (Storks
et al., 2021), which contains crowdsourced plausi-
ble and implausible story pairs. In each pair, the
plausible story label and the conflicting sentence
pair label in implausible story are annotated. TRIP
annotates 20 attributes with predefined set of possi-
ble values. The annotations are given for all entities
at every timestep of the two stories.

2ProPara is covered under Apache 2.0 License.
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Table 1: ProPara test set results. Modeling: E=entity, T=timestep-specific, GC=global context, GO=global outputs.

Modeling Sentence-level Document-level
Model E T GC GO Cat1 Cat2 Cat3 Macroavg Microavg P R F1
ProLocal (Dalvi et al., 2018) Y Y N N 62.7 30.5 10.4 34.5 34.0 81.7 36.8 50.7
ProGlobal (Dalvi et al., 2018) Y Y Y N 63.0 36.4 35.9 45.1 45.4 61.7 48.8 51.9
ProStruct (Tandon et al., 2018) Y Y N Y - - - - - 74.3 43.0 54.5
KG-MRC (Das et al., 2018) N Y N N 62.9 40.0 38.2 47.0 46.6 64.5 50.7 56.8
NCET (Gupta and Durrett) N N Y Y 73.7 47.1 41.0 53.9 54.0 67.1 58.5 62.5
IEN (Tang et al., 2020) N N Y Y 71.8 47.6 40.5 53.3 53.0 69.8 56.3 62.3
DynaPro (Amini et al., 2020) Y Y N N 72.4 49.3 44.5 55.4 55.5 75.2 58.0 65.5
TSLM (2021) Y Y Y N 78.8 56.8 40.9 58.8 58.4 68.4 68.9 68.6
KOALA (Zhang et al., 2021) N N Y Y 78.5 53.3 41.3 57.7 57.5 77.7 64.4 70.4
CGLI (Ours) Y Y Y Y 80.3 60.5 48.3 63.0 62.7 74.9 70.0 72.4
CGLI (Ours) + Data Augmentation Y Y Y Y 80.8 60.7 46.8 62.8 62.4 75.7 70.0 72.7

Table 2: Statistics of the datasets.

Dataset Stats Train Dev Test
#Paragraphs 391 43 54

ProPara #Ents/Para 3.8 4.1 4.4
#Sents/Para 6.7 6.7 6.9

#Paragraphs 1169 474 504
TRIP #Ents/Para 7.0 8.1 8.3

#Sents/Para 5.1 5.0 5.1

We provide datasets splits details in Table 2. For
TRIP, we only report the unique story statistics in
Table 2. Note that Storks et al. (2021) have up-
sampled some of the plausible stories to match the
number of implausible stories.
Evaluation metrics. Following previous work, we
report both sentence-level metrics3 and document-
level metrics4 on ProPara. Sentence-level eval-
uation computes accuracy over three questions:
whether the entity created (moved/destroyed) in
the process (Cat1), and if so, when (Cat2) and
where (Cat3).5 Document-level metrics compute
F1 scores of the identified inputs (entities that exist
before the process begins and are destroyed in the
process), outputs (entities that do not exist before
but exist after the process), conversions (instances
where some entities are converted to other entities),
and moves (location changes of entities).

For TRIP, we follow the original work and report
the following metrics: accuracy of classifying the
plausible story, consistency of finding the conflict-
ing sentence pairs when the story classification is

3https://github.com/allenai/propara/
tree/master/propara/evaluation

4https://github.com/allenai/
aristo-leaderboard/tree/master/propara

5Cat2 and Cat3 only apply to entities that satisfy Cat1.

correct, and verifiability, which evaluates the pre-
diction of the entities’ effects at sc1 and the entities’
preconditions at sc2. We also report the average
F1-score for preconditions and effects across the
20 attributes to better understand the model’s pro-
cedural understanding ability.
Baselines. For ProPara, we directly report baseline
results from the official leaderboard. For TRIP, we
report the results from the best model released by
Storks et al. (2021).
Training details. For ProPara, we define two ad-
ditional action types to represent the entity transi-
tions, namely Out-of-Create, Out-of-Destroy simi-
lar to (Zhang et al., 2021). Hence, the total size of
the action space is six. For evaluation, these two
types would be mapped to NONE transition, and
they are defined to help the model differentiate the
NONE types during training, i.e., if the entity has
not being created or if it has been destroyed. To
facilitate model’s learning on location predictions,
we initialized our model with a RoBERTa-Large
(Liu et al., 2019) model pretrained on SQuAD
2.0 (Rajpurkar et al., 2018). We run our model
five times with different random seeds and report
the maximum scores in Table 1 and average scores
with a 95% confidence interval in Table 3 and Ta-
ble 4. For TRIP, we directly initialize the model
with RoBERTa-Large. On ProPara we train models
for 20 epochs and 6 epochs with data augmenta-
tion to let the model receive the similar number of
updates. We train models for 10 epochs on TRIP.
Except for training epochs, we use the same set of
hyperparameters in all of our experiments: learn-
ing rate 1e-5, batch size 1, gradient accumulation 2.
We used Transformers (Wolf et al., 2020) library
6 for all of our experiments and all of our models

6Covered under Apache 2.0 License.
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have about 360M parameters.
Computing infrastructure. We run our experi-
ments on a single Nvidia A6000 GPU or a single
Nvidia Titan RTX GPU. For ProPara, each exper-
iment takes about 1.5 hours to finish. For TRIP,
each experiment takes about 9 hours to finish.

6 Results and Analysis

6.1 Procedural text understanding

CGLI significantly outperforms all previous base-
lines on ProPara, achieving state-of-the-art results
(Table 1). With data augmentation, our model
achieves further improvement on document level.
For each baseline, we indicate whether it considers
entity-centric information (E), timestep-centric (T),
global context (GC), and global output (GO). We
note that models that adopt global output usually
have much higher precision than recall on docu-
ment level. On the other hand, TSLM is very good
on recall, which is expected given its focus on en-
tity and timestep input modeling.7 CGLI is able to
achieve both strong precision and recall, showing
the benefit of global reasoning over both entity- and
timestep-specific global inputs in a single model.

We break down the results on ProPara by the
document-level question types defined in §5 and
compare our best model with the best results re-
ported by TSLM and KOALA. The precision and
recall per question type are shown in Figure 4. Con-
sistent with the overall results, KOALA is particu-
larly strong on precision for all types and TSLM is
much better on recall. CGLI is able to maintain a
balance between those two extremes and achieve
overall better results. All three models perform sim-
ilarly when predicting the inputs and the outputs
of a procedure. Yet, CGLI achieves much higher
performance on transitional questions regarding
entity conversions and moves, which are notably
harder to predict. These results suggest that the
gains of CGLI over previous works are mostly due
to hard-to-answer categories.

6.2 Story understanding

Our method outperforms the baseline method on
the TRIP dataset by a very large margin on all met-
rics, especially on consistency where we observe
nearly 400% relative improvement over the base-
line (Table 4). This may seem surprising as both

7This pattern may not always hold for other models due to
other modeling differences, e.g., LSTM vs. BERT.

our model and the baseline use the same LM back-
bone. After further analysis of the baseline model,
we notice three sub-optimal design decisions. First,
the baseline detects conflicting sentence pairs via
binary classification for every sentence, indepen-
dently, without considering pairs of sentences. As
a result, for 47.6% of examples in TRIP test set,
the baseline model predicted either less or more
than two sentences as conflicting, thus getting a
score of 0 on consistency. Second, the baseline
uses the same encoded representations to directly
model both story classification and conflicting pair
detection objectives. Without using task-specific
output projection layers, the model may be hard
to optimize. Third, the baseline did not provide
global input view to the model, i.e., each sentence
is encoded independently.

6.3 Ablation studies

Impact of modeling aspects To understand the
contribution of each of the four modeling aspects
we identified for the procedural text understanding,
we ablate each of them in CGLI.
No GO is done by removing the CRF layer and
directly training the model with cross-entropy loss
over the emission probability ϕ ∈ Rn×a defined
in §3. During inference, we predict the action at
each timestep independently by taking the argmax
over the emission probability instead of viterbi
decoding. No GC is achieved by allowing the
model model to access up to t sentences at ev-
ery timestep t ∈ {1, 2, 3, ...n}, i.e. the model has
no access to future sentences. For No T, we re-
move the timestep embeddings such that each entity
would have identical encoded context representa-
tions across timesteps. For No E, we no longer
provide the pseudo question with the entity name
in the input §3, such that all entities in the same
paragraph would have the same encoded context
representations.
The results are shown in the bottom half of Table 3.
Removing either T or E leads to drastic drop in
the F1 score. This is not surprising because the
model would have no clue how to distinguish dif-
ferent timesteps or different entities, respectively.
We found that the model predict most of entity
actions to be NONE, leading to extremely high pre-
cision and low recall. Removing GO also leads to
a large drop in F1 score, which is actually similar
to TSLM’s performance, a model that lacks GO.
This shows that modeling the global dependency
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Figure 4: Document-level evaluation on ProPara test set, split by precision (P) and recall (R) per category (Inputs,
Outputs, Conversions, Moves).

Table 3: Document-level ablation results of proposed model components and modeling aspects on the ProPara.

Dev set Test set
Model P R F1 P R F1
CGLI + Data Augmentation 78.5(±1.7) 76.1(±0.8) 77.3(±0.8) 75.2(±1.1) 68.8(±0.8) 71.9(±0.5)
CGLI 77.3(±1.5) 75.5(±0.7) 76.4(±1.0) 73.0(±1.9) 69.8(±1.2) 71.3(±0.9)
No SQuAD2.0 76.5(±1.3) 75.4(±0.9) 75.9(±0.4) 72.5(±2.7) 68.0(±1.3) 70.1(±0.8)
No Prior 75.6(±0.8) 76.6(±0.6) 76.1(±0.3) 72.0(±2.1) 68.1(±1.4) 70.0(±1.3)
No GO 75.7(±1.1) 76.1(±1.4) 75.9(±0.5) 70.2(±1.2) 67.3(±1.2) 68.7(±0.8)
No GC 75.5(±1.3) 73.2(±1.0) 74.3(±0.5) 73.2(±2.2) 66.7(±0.6) 69.8(±1.1)
No T 82.3(±0.7) 59.7(±0.4) 69.2(±0.3) 77.2(±1.3) 54.3(±1.0) 63.8(±0.8)
No E 84.5(±1.1) 48.6(±0.3) 61.7(±0.2) 84.9(±0.7) 40.8(±0.5) 55.1(±0.3)

Table 4: Results on the TRIP dataset. The F1 scores of last two columns are Macro averages of 20 attributes.

Model Accuracy Consistency Verifiability Precondition F1 Effect F1
TRIP-RoBERTa (Storks et al., 2021) 73.2 19.1 9.1 51.3 49.3
CGLI (Ours) 93.4(±1.5) 76.3(±1.7) 24.8(±1.6) 70.8(±1.8) 74.9(±1.7)
CGLI (Ours) No CRF 94.1(±0.7) 77.3(±1.0) 28.0(±2.5) 72.1(±1.6) 75.6(±1.6)

is important for procedural understanding. Finally,
removing GC also hurts the performance, which is
also expected because location spans often only ap-
pear in future sentences, thus span extraction layer
is at disadvantage in this setting.

Impact of training data To understand the impact
of the CGLI components, we ablate SQuAD2.0
pretraining by initializing the model with vanilla
RoBERTa-Large model and we ablate prior ini-
tialization by randomly initializing the transition
probabilities in the CRF layer. The results (upper
half of Table 3) show that with data augmentation,
CGLI achieves higher overall F1 scores on average
and the gains are mostly from precision. Both pre-
training on SQuAD2.0 and prior initialization have
a positive impact on the CGLI performance.

As the continuity from effect to precondition

states no longer holds on the TRIP story under-
standing task (cf. §2), we investigate the impact
of the CRF layers on modeling entity states. We
remove the CRF layers for both effects and precon-
ditions, and we directly train CGLI with regular
classification objectives, hence entity states at each
step are predicted independently (No GO). Table 4
shows that removing CRF improves performance.
We hypothesize that this is caused by the implausi-
ble stories in the dataset. Since the entity states in
the implausible story’s conflicting sentences are in-
consistent by nature, training the CRF to maximize
their probabilities can be confusing for the model.
To verify this, we train models with and without
CRF on plausible stories only. In this case, the
model is only trained to predict entities effects and
preconditions. We found that the models have very
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Figure 5: Example predictions on ProPara from three models for two entities. Red font indicate errors.

Table 5: Error Examples on TRIP. The conflicting pairs
are marked with *, and the entity of interest with italic.

Ann washed her hair in the bathtub.
Ann used the hair dryer to get ready to go out.
Ann applied deodorant to her armpits.
*Ann put her pants on.
- (Effects, is wet), Pred: False, Gold: Irrelevant
*Ann ironed her pants before going out.
- (Preconditions, is wet), Pred: True, Gold: Irrelevant
*John forgot his notebook at home.
- (Effects, location), Pred: Moved, Gold: Irrelevant
John sat at his desk.
John opened up his book bag.
* John took out his notebook.
- (Preconditions, location),
- Pred: Picked up, Gold: Taken out of container
John began writing down notes.

similar F1 scores with or without CRF (precondi-
tions 74.1 vs 73.7, effects 76.5 vs 76.6). Thus, we
conclude that implausible stories are detrimental to
CRF training. Moreover, as the effects of the previ-
ous step are not a precondition of the current step
on TRIP, the outputs from previous steps can hardly
contribute to the current prediction, thus CRF has
a limited contribution even on the plausible stories.

6.4 Case Studies

We show an example of tracking states for two en-
tities from ProPara with partial outputs from CGLI,
TSLM, and KOALA in Figure 5. For gasoline, our
model and TSLM both got perfect predictions, but
KOALA missed the action at step 1, thus predict-
ing no moves across the process. For exhaust, the
sentence in step 6 gives a strong signal for a move-
ment, however, there is no mention of exhaust in
the previous steps. Our model is able to infer that
create needs to come before move, thus correctly

predicting the actions in steps 5 and 6. However,
since TSLM does not have the global output view,
it cannot capture such transitions. For KOALA, al-
though it is also able to predict the move and infer
that the exhaust should exist before the move, it is
unable to predict the create action. We note that for
both entities, KOALA is more reluctant to predict
actions compared to the other two models. These
observations explain why KOALA achieves overall
higher precision but lower recall.

We show story reasoning examples from TRIP
in Table 5. Since the largest gap in the model per-
formance is between consistency and verifiability,
we select examples where our model successfully
predicted conflicting sentences but failed to pre-
dict entity states. We see that the model still lacks
common sense on certain concepts, e.g., forget-
ting something at home does not result in changing
its location, and people usually iron their clothes
after they are dry. We also note that some entity
states might be hard to distinguish, e.g., the distinc-
tion between picking up something versus taking
something out of a container only depends on pre-
vious location of the object, which might be hard
for models to learn from data. These observations
suggest that enhancing the model’s commonsense
reasoning ability is a promising future direction.

7 Related Work

Recent procedural text understanding bench-
marks including ScoNe (Long et al., 2016), bAbI
(Weston et al., 2015), ProcessBank (Berant et al.,
2014), ProPara (Mishra et al., 2018), Recipe
(Bosselut et al., 2018), and OpenPI (Tandon et al.,
2020) have inspired a series of methods. Mishra
et al. (2018) propose ProLocal that encodes each
step of a procedure separately and ProGlobal that
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encodes the full paragraph at every step. KG-MRC
(Das et al., 2018) builds a dynamic knowledge
graph of entity and location mentions to commu-
nicate across time steps. DynaPro (Amini et al.,
2020) employs pre-trained LM to jointly predict
entity attributes and their transitions. TSLM (Ra-
jaby Faghihi and Kordjamshidi, 2021) formulates
procedural understanding as a question answering
task, and leverages models pretrained on SQuAD
(Rajpurkar et al., 2016) enhanced with a times-
tamp encoding. Although equipped with various
ways to pass information across time steps, these
methods still make local predictions thus they may
compromise the global dependency of outputs. An-
other line of work focuses on jointly modeling the
entity action sequence, aiming to ensure global
structure and consistency. ProStruct (Tandon et al.,
2018) aims to find the globally optimal entity ac-
tion sequence using beam search. Gupta and Dur-
rett (2019b) devise a structured neural architecture
NCET, modeled with a CRF, which recurrently up-
dates the hidden representation of each entity at
each step. IEN (Tang et al., 2020) builds upon
NCET and augments the entity-to-entity attention.
KOALA (Zhang et al., 2021) further enhances the
NCET by pretraining on Wikipedia and Concept-
Net (Speer et al., 2017). The key shortcoming
of these global methods is that they rely on en-
tity mentions extracted from a single copy of en-
coded context shared by all entities and all steps,
which limits their modeling capacity. Our proposed
method stands out from all previous works by coa-
lescing complementary granularities of procedural
text modeling, by building specific and informative
input representations while modeling output depen-
dency. Concurrent to our work, Shi et al. (2022)
proposed LEMON for language-based environment
manipulation. Their focus on model pretraining is
orthogonal to CGLI.

There are also numerous recent story under-
standing benchmarks (Mostafazadeh et al., 2016;
Qin et al., 2019; Mostafazadeh et al., 2020), and
modeling methods (Qin et al., 2020; Guan et al.,
2020; Gabriel et al., 2021; Ghosal et al., 2021).
The TRIP task (Storks et al., 2021) integrates a
procedural understanding component in story un-
derstanding to enable consistent and interpretable
reasoning over narratives. To our knowledge, we
are the first work to bridge the gap of modeling
methods between procedural understanding and
story comprehension. Other tasks that require rea-

soning over procedures exist, including defeasible
reasoning (Rudinger et al., 2020; Madaan et al.,
2021), abductive commonsense inference (Bhaga-
vatula et al., 2019), reasoning over preconditions
(Qasemi et al., 2021), script reasoning (Zhang et al.,
2020; Sakaguchi et al., 2021) and multimodal script
reasoning (Yang et al., 2021; Wu et al., 2021), are
typically solved by specialized methods, without
separately modeling procedural and causal links.
We intend to apply CGLI on these tasks in the fu-
ture to bridge this gap.

8 Conclusions & Future Work

We proposed CGLI: a novel procedural understand-
ing method that combined global and local informa-
tion. Recognizing the key role of procedural under-
standing in downstream tasks, we also integrated
CGLI in a story understanding framework. Our
experiments showed the benefit of our coalesced
method, with the global views providing optimal
precision, while the local view boosting its recall,
ultimately achieving new state-of-the-art results.
We demonstrated that CGLI can help with classify-
ing stories, and identifying the conflicting sentence
for inconsistent stories. Future work should inves-
tigate how to enhance the commonsense ability of
our procedural understanding model, e.g., by in-
jecting commonsense knowledge during finetuning
(Chen et al., 2018; Ma et al., 2019) or by pretrain-
ing on commonsense knowledge bases (Guan et al.,
2020; Ilievski et al., 2021; Ma et al., 2020), and how
to apply procedural understanding to other down-
stream tasks, such as dialogue modelling (Zhou
et al., 2021) and planning (Shridhar et al., 2020).
Also, it’s worth exploring the lightweight-tuning
methods (Ma et al., 2021; Vu et al., 2022) to en-
hance the model’s generalization and reduce com-
putation cost.
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Abstract

Answer selection task requires finding appro-
priate answers to questions from informative
but crowdsourced candidates. A key factor im-
peding its solution by current answer selection
approaches is the redundancy and lengthiness
issues of crowdsourced answers. Recently,
Deng et al. (2020) constructed a new dataset,
WikiHowQA, which contains a corresponding
reference summary for each original lengthy
answer. And their experiments show that lever-
aging the answer summaries helps to attend the
essential information in original lengthy an-
swers and improve the answer selection perfor-
mance under certain circumstances. However,
when given a question and a set of long candi-
date answers, human beings could effortlessly
identify the correct answer without the aid of
additional answer summaries since the origi-
nal answers contain all the information volume
that answer summaries contain. In addition,
pretrained language models have been shown
superior or comparable to human beings on
many natural language processing tasks. Mo-
tivated by those, we design a series of neu-
ral models, either pretraining-based or non-
pretraining-based, to check wether the addi-
tional answer summaries are helpful for rank-
ing the relevancy degrees of question-answer
pairs on WikiHowQA dataset. Extensive au-
tomated experiments and hand analysis show
that the additional answer summaries are not
useful for achieving the best performance.

1 Introduction

Answer selection task in community question an-
swering (cQA) has been a popular research topic
in both academy and industry due to its practical
importance. In recent years, neural attention-based
approaches for this task can be roughly catego-
rized into two primary types. One type of them
(Han et al., 2019; Rücklé et al., 2019) attempts
to enhance the interactions of different granular-
ity between question and candidate answer using

the widely-adopted compare-aggregate framework
(Wang and Jiang, 2017). The another focuses on
incorporating additional input information, such
as user metadata information (Xie et al., 2020),
the subject-body relationship of community ques-
tions (Wu et al., 2018), etc. However, real-life
cQA datasets that contain open-domain and non-
factoid questions usually come along with long
multi-sentence answer texts and noise. As a result,
many previous neural answer selection approaches
that were primarily designed to retrieve short an-
swers fall short of expectations in such cases (Co-
hen et al., 2018; Rücklé et al., 2019).

Recently, Deng et al. (2020) propose to leverage
answer summaries to tackle the redundancy and
lengthiness issues of original answers in long an-
swer selection task. To this end, they created Wik-
iHowQA, the first large-scale open-domain cQA
dataset that contains lengthy answers coupled with
its summaries written by community users for non-
factoid questions starting with “How to”. Instead
of relying on crowdsourcing, WikiHowQA was
generated based on the WikiHow summarization
dataset (Koupaee and Wang, 2018) and the online
WikiHow knowledge base1. An example from the
dataset is shown in Table 1. From it, we can see that
the candidate answer details a method for decorat-
ing a school locker. And the answer summary well
summarizes the key points of the answer. Based
on this perspective, Deng et al. (2020) suggest that
we could make use of answer summaries to allevi-
ate the answer redundancy and noise issue in long
answer selection task.

However, though answer summaries are always
much shorter and more concise than the answer
texts being summarized, they present text infor-
mation in an abridged form and do not include
details. Hence, the way that leverages the answer
summaries to alleviate the answer redundancy and
noise issues may also lead to the neglect of details

1http://www.wikihow.com
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Question How to decorate a school locker ?

Answer Do you want your locker to be calm and relaxing , to relieve you from those stressful
classes ? Or do you want your locker to be fun and exciting , colorful , or maybe you
want it to show some of your rocker spirit. If you do n’t want to express anything, pick a
theme. A cool theme could be 70 ’s, giraffe ’s, dogs ... (1112 words in total)

Summary Think about the feeling you want to express. Acquire all of the materials you will need
to make your locker look amazing. Hang up some pictures. Put a sign on the door ...

Label 1

Table 1: An example from the WikiHowQA dataset. Here we only list one candidate answer and its summary.

not covered by answer summaries. Besides, un-
like user metadata information introduced by Xie
et al. (2020) or subject-body relationship of com-
munity questions used by Wu et al. (2018), answer
summaries are not supplementary to original an-
swers and the utilization of them won’t bring any
additional information gain from an information
entropy perspective. Last but not least, when given
a question and a set of long candidate answers,
Humans can easily figure out the correct answer
without the need of additional answer summaries.
Thus, it’s unclear what role do answer summaries
actually play in the WikiHowQA answer selection
task and, indeed, whether it’s beneficial to import
additional answer summaries.

In this paper, we aim to conduct an in-depth and
comprehensive analysis of this dataset and explore
whether answer summaries could be helpful for
"how-to" answer selection task. We demonstrate
that, without the aid of answer summaries, sim-
ple, carefully designed LSTM-based models and
pretraining-based models could obtain high, state-
of-the-art MAP score of 72.91% and 82.74% on
the dataset respectively. We carry out a meticulous
qualitative analysis on randomly-sampled instances
to provide data on their difficulty and quality, and
whether the utilization of answer summaries could
improve human performance. We conclude that: (i)
This answer selection task is relatively easy though
it contains long multi-sentence answer texts. (ii)
Answer summaries do not convey additional infor-
mation content and are not helpful for boosting
both model and human performance. (iii) This
dataset is noisy due to its method of data creation.

2 The Answer Selection Task

The WikiHowQA dataset introduced in (Deng et al.,
2020) is made from an online wiki-style commu-

nity website – WikiHow2. The questions contained
in the dataset are all non-factoid and start with
“How to". For a specific question, its accepted an-
swers are considered as correct, and negative can-
didates were collected by retrieving the accepted
answers to relevant questions. Each answer written
by community users details multiple steps of doing
a procedural task for a specific how-to question.
In addition, every candidate answer is associated
with a short reference summary. To be specific, the
answer selection task could be formally defined as
follows:

Given a question qi and a set of lengthy can-
didate answers Ai =

{
a
(1)
i , . . . , a

(K)
i

}
, the goal

is to select all correct answers from the candidate
answer set. In the training stage, for each candi-
date answer a(k)i , a corresponding reference sum-
mary s

(k)
i and a label y(k)i that denotes whether

the answer a(k)i can answer the question qi are pro-
vided. However, during the testing procedures, the
relevancy degree of question-answer pairs must
be measured without access to their answer sum-
maries. That is to say, answer summary is only
accessible in the training stage. The reason we fol-
low the constraint is that we want to make a fair
comparison with previous methods3.

Table 2 provides the detailed statistics of the
dataset. From it, we can see that the answer texts is
extremely long (with an average answer length of
more than 520 words). Whereas, the well-known
answer selection dataset InsuranceQA introduced
by Feng et al. (2015) only has an average answer
length of 112 words. Even in the recent Long An-
swer Selection (LSA) benchmark introduced by
Rücklé et al. (2019), which are featured in con-

2http://www.wikihow.com
3The WikiHowQA dataset could also be used as an answer

summary generation benchmark.
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Statistics
WikiHowQA

Train Dev Test
Questions 76,687 8,000 22,354
QA pairs 904,460 72,474 211,255
Avg Qlen 7.20 6.84 6.69
Avg Alen 520.87 548.26 554.66
Avg Slen 67.38 61.84 74.42

Table 2: Statistics of the WikiHowQA Dataset. The av-
erage question length (Avg Qlen) is the average number
of tokens in a question. The same applies to answer and
summary.

taining long multi-sentence answer texts, we could
only observe an average answer length of less than
290 words.

3 Methods

In this section, we describe two types of methods
we implemented. The first class of methods directly
models the relevancy degrees of question-answer
pairs without using any answer summaries infor-
mation. The second class of methods is partially
inspired by Deng et al. (2020). They jointly learn
answer selection and answer summary generation
so as to leverage short answer summary to aid in
picking out long multi-sentence answer. Differ-
ent from them, we explicitly exploit the relevancy
degrees of question-summary pair to aid in mod-
eling the interaction between question and answer.
For each class of methods, we from one side build
our model based on bidirectional LSTMs so as to
make a fair comparison with previous approaches
and from the other we build our model based on a
pretrained language model - ALBERT (Lan et al.,
2020) to advance the state of the art.

3.1 LSTM-ASM
In this subsection, we aim at building a neural
model that scores each answer in a pool of candi-
date answers according to its relevancy in regard to
the given question. Our model adopts bidirectional
LSTMs as text encoders, and we name it as LSTM-
based Answer Selection Model(LSTM-ASM). The
framework can be described in the following steps.

Given a question q =
{
w1
q , . . . , w

n
q

}
, an answer

candidate a =
{
w1
a, . . . , w

m
a

}
and the correspond-

ing label y, we first map each word to its embed-
ding. Then, the question embeddings Eq and the
answer embeddings Ea are fed into a pair of Bi-
LSTM encoders to generate contextual embeddings
Êq, Êa respectively.

Next, to capture the interactions between all as-
pects of question q and answer a, we feed the
contextual embeddings Êq and Êa into a match-
ing layer. Here, the matching Layer mainly de-
fine four different multi-perspective matching op-
erations: Full-Matching, Maxpooling-Matching,
Attentive-Matching, and Max-Attentive-Matching.
Each matching operation describes a way to match
each time-step of Êq against all time-steps of Êa
and match each time-step of Êa against all time-
steps of Êq. We define the four matching opera-
tions as introduced by (Wang et al., 2017) and refer
readers to it for details.

After applying a matching layer, we obtain
the question-aware answer representations Ra ∈
Rm×d and the answer-aware question representa-
tions Rq ∈ Rn×d , where d is the size of repre-
sentations. Finally, we apply another bidirectional
LSTM encoders on the Ra and Rq individually to
generate the question-aware contextual answer rep-
resentations Ha ∈ Rm×d and the answer-aware
contextual question representations Hq ∈ Rn×d.
The last time-step ofRq andHq are concatenated to
form a sketch vector Gq, which outlines the match-
ing result in the perspective of question. We also
obtain another sketch vectorGa, which outlines the
matching result in the perspective of answer. The
final aggregation vector Gqa used for prediction is
the concatenation of Gq and Ga.

To optimize our answer selection model LSTM-
ASM, we use the cross-entropy loss function:

Lqa = − [y log pqa + (1− y) log (1− pqa)] (1)

where pqa is the predicted probability:

pqa = softmax (WqaGqa + bqa) (2)

Here, Wqa and bqa are trainable parameters.

3.2 LSTM-ASMSY
Different from LSTM-ASM, here we design an-
other answer selection model that is capable of
making use of reference answer summaries as ad-
ditional information during training. Since the ad-
ditional answer summary information is only avail-
able during the training period, our model is care-
fully designed to be able to make predictions with-
out answer summaries as inputs. For simplicity, we
name this model as LSTM-based Answer Selec-
tion Model with Summary (LSTM-ASMSY). As
depicted in Figure 1, LSTM-ASMSY is composed
of two modules: a long answer selection module

1548



Summary Question Answer

Match Match

Summary Question Question Answer

Similarity

Aggregation Aggregation

Label Label

Short  Answer Summary 
Selection module 

Long Answer Selection 
module 

Attention
Guidence

Figure 1: Architecture for LSTM-ASMSY.

and a short answer summary selection module. The
short answer summary selection module adopts the
same architecture as the LSTM-ASM model de-
fined in Section 3.1. And it just plays a role in
the training stage. Meanwhile, the long answer
selection module also have a same architecture as
the LSTM-ASM model but does not share any pa-
rameters with the short answer summary selection
module. In the following, we detail how to train
our LSTM-ASMSY model and in what way we can
only use its long answer selection module to make
predictions at inference time.

Given a question q, an answer a and its summary
s, we first feed the long answer selection module
with question q and answer a to obtain the sketch
vectorG

′
q and the final aggregation vectorG

′
qa as in

Section 3.1. Meanwhile, we feed the short answer
summary selection module with the same question
q and the corresponding answer summary s to get
the sketch vector Ĝq and the aggregation vector
Gqs in similar ways. Then, we induce the two mod-
ules to make the same prediction during training:

L′
qa = −

[
y log p

′
qa + (1− y) log

(
1− p′qa

)]

(3)

Lqs = − [y log pqs + (1− y) log (1− pqs)] (4)

where p
′
qa is the predicted probability output by the

long answer selection module, and pqs is the pre-
dicted probability output by the answer summary
selection module. They are calculated as:

p
′
qa = softmax

(
W

′
qaG

′
qa + b

′
qa

)
(5)

pqs = softmax (WqsGqs + bqs) (6)

Where W
′
qa, Wqs, b

′
qa and bqs are trainable param-

eters, y is the gold label.
Next, in consideration of the sketch vector G

′
q

represents how well all the aspects of question are
related to answer a while the sketch vector Ĝq
represents how well all the aspects of question are
matched in the perspective of the corresponding
answer summary s, we encourage the sketch vector
G

′
q and Ĝq to be as similar as possible:

Lsmi = ‖G
′
q − Ĝq‖

2
(7)

In such ways, we can not only leverage the answer
summaries to provide implicit attention guidance
during training, but also use the trained long an-
swer selection module for making predictions with-
out relying on the short answer summary selection
module.

Finally, the overall loss function to optimize is:

L = λ1 ∗ L
′
qa + λ2 ∗ Lqs + λ3 ∗ Lsmi (8)

where λ1, λ2, λ3 are tuneable hyper-parameters.

3.3 Extensions to ALBERT

ALBERT has achieved the state-of-the-art perfor-
mance on sequence pair classification task but it
can only process at most 512 tokens. However, on
the WikiHowQA answer selection task, the aver-
age length of answer texts is more than 520 words,
where each word could be broken down into more
than one sub-word token. Hence, it prevents us
from directly using ALBERT on this task. Here,
we describe a simple way to extend the original
ALBERT for handling long-form text matching.

Different from previous methods, like Long-
former (Beltagy et al., 2020), ETC (Ainslie et al.,
2020) and Big Bird (Zaheer et al., 2020), that
require pre-training a new language model, our
method does not need to train a language model
from scratch. To be specific, we simply extend the
original ALBERT to have a larger position vocab-
ulary. And we reuse all the pretrained parameters
within the original ALBERT model except the po-
sition embeddings. Besides, we initialize the first
512 position embeddings with original position em-
beddings and leave the rest random. The extended
ALBERT is named as ALBERT-based Answer Se-
lection Model (ALBERT-ASM). And we use the
final hidden vector corresponding to the first input
token ([CLS]) as the aggregate representation for
measuring the relevancy of question-answer pair.

1549



The way we build an ALBERT-based model
that is capable of making use of reference an-
swer summary during training is similar to Section
3.2. Specifically, we apply one extended ALBERT
model to model the relevancy of question-answer
pair and use another ALBERT model to model the
relevancy of question-summary pair. And we en-
courage the hidden vectors corresponding to the
question tokens of the two models to be as simi-
lar as possible. Similarly, we name this model as
ALBERT-ASMSY.

4 Experiments

4.1 Training Details
For training our LSTM-based models, we use 300-
dimensional GloVe word embeddings (Pennington
et al., 2014) and apply a bidirectional GRU (Chung
et al., 2014) to obtain a 100-dimensional character-
level embedding for each word. The hidden size
for all Bi-LSTM is set to 200 and the dropout ratio
is set to be 0.1. We truncate candidate answer
and its summary to 900 tokens and 100 tokens
respectively. During training, we use the popular
Adam optimizer (Kingma and Ba, 2015) and set
its learning rate to be 0.0005. The batch size is
set to 48 per gpu and the hyper-parameter λ1, λ2
and λ3 are set to 1. We apply early stopping based
on the evaluation result on the validation set. The
maximum number of epochs is set to 20 and the
patience is set to 5.

For training our ALBERT-based models, we ini-
tialize our models using the pretrained Albert-base-
v1 model 4. The maximum input sequence length
of ALBERT-ASM is set to be 512, and the maxi-
mum input sequence length of ALBERT-ASMSY
is set to be 1536, which is three times as long as
the original maximum input length. We update our
model using a batch size of 64 per gpu. And we
adopt the AdamW (Loshchilov and Hutter, 2019)
as our optimizer. Besides, we set the learning rate
to be 3e-5 and the gradient clipping parameter to
be 1.0. The maximum number of epochs is set to
3 for all the experiments. The hyper-parameter λ1,
λ2 and λ3 are set to 1.

4.2 Metrics
The performance of our models is measured in
Mean Reciprocal Rank (MRR) and Mean Aver-
age Precision (MAP), which are standard metrics
in Information Retrieval and Question Answering.

4https://huggingface.co/albert-base-v1

The MRR measures the rank of any correct answer,
while MAP examines the ranks of all the correct
answers. Generally, the higher the scores, the better
performance the model has.

4.3 Experiment Setups
We mainly compare our approaches against the
following baselines:

(1) Long answer selection methods: CA is a
widely-adopted compare-aggregate baseline for
matching sequence pairs (Wang and Jiang, 2017).
COALA is a recent baseline proposed by Rücklé
et al. (2019), which has been proven to be effective
in long answer selection task.

(2) Two-Stage methods: QPGN+AP-BiLSTM,
QPGN+CA, and QPGN+COALA are three Two-
Stage baselines, which first summarize the original
lengthy answers and then conduct answer selection
over the short generated answer summaries. Here,
the QPGN is a question-driven pointer-generator
network proposed by Deng et al. (2020), which
is used to generate answer summaries for answer
selection. AP-BiLSTM (Santos et al., 2016), CA
(Wang and Jiang, 2017), COALA (Rücklé et al.,
2019) are adopted answer selection models.

(3) Joint Learning methods: ASAS (Deng et al.,
2020) is the recent state-of-the-art model that tack-
les the tasks of answer selection and answer sum-
mary generation in a joint manner.

For our own approaches, we evaluate the fol-
lowing models: LSTM-ASM, LSTM-ASMSY,
ALBERT-ASM, and ALBERT-ASMSY. Besides,
we also assess the performance of our models when
they are fed with gold answer summary at test on
purpose.

4.4 Main Results
Table 3 presents experiment results. In this ta-
ble, we detail all model-specific inputs and their
performance for each model. For example, our
model LSTM-ASMSY jointly train an answer sum-
mary selection module and a long answer selec-
tion module during training and only adopt the
trained long answer selection module for mak-
ing predictions in consideration of the unavailabil-
ity of answer summary at test. Hence, the input
to LSTM-ASMSY during training is a question-
answer-summary triplet while its input at test is a
question-answer pair.

From Table 3, we mainly note the following ob-
servations: (1) LSTM-ASM achieve a new state-of-
the-art result with an improvement of 18.67 MRR
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Models Inputs (training stage) Inputs (test stage) MAP MRR

CA Q, A Q, A 50.22 52.14
COALA Q, A Q, A 50.03 51.96
QPGN+AP-BiLSTM Q, A, S Q, Generated S 52.37 53.43
QPGN+CA Q, A, S Q, Generated S 52.46 53.73
QPGN+COALA Q, A, S Q, Generated S 51.97 53.02
ASAS Q, A, S Q, A 55.22 56.86

Ours: LSTM-ASM Q, A Q, A 72.91 75.53
Ours: LSTM-ASMSY Q, A, S Q, A 72.40 74.97
Ours: ALBERT-ASM Q, A Q, A 82.74 85.01
Ours: ALBERT-ASMSY Q, A, S Q, A 82.65 84.97

Ours: LSTM-ASM† Q, A Q, S 64.99 67.75
Ours: LSTM-ASMSY† Q, A, S Q, S 64.42 67.20
Ours: ALBERT-ASM† Q, A Q, S 73.78 76.66
Ours: ALBERT-ASMSY† Q, A, S Q, S 73.69 76.62

Ours: LSTM-ASM† Q, S Q, S 65.77 68.50
Ours: ALBERT-ASM† Q, S Q, S 75.51 78.37

Table 3: Performance of different models on the WikiHowQA answer selection task. Here, Q, A and S denotes
question, answer and summary respectively. Results marked † are the performances of our models when we
purposely feed them with gold answer summary during test.

and 17.69 MAP over the best reported results in
(Deng et al., 2020), which they obtained with a
joint learning method, named ASAS. This demon-
strates that LSTM-ASM can serve as a new strong
baseline that uses LSTM as text encoders on this
task. (2) LSTM-ASM has a better performance
than LSTM-ASMSY and ALBERT-ASM also out-
performs ALBERT-ASMSY, which show that mak-
ing use of the additional answer summaries does
not help to solve the answer selection problem.
(3) From the last two rows of Table 3, we could
see that, if we train our model LSTM-ASM and
ALBERT-ASM with question-summary pairs and
also test them using question-summary pairs 5, we
could see a significant performance drop. This sig-
nifies that answer summaries are less informative
than original lengthy answers when modeling the
relevancy degrees of question-answer pairs. Also,
it explains that leveraging additional answer sum-
maries information may not result in a performance
gain. (4) ALBERT-ASM and ALBERT-ASMSY
have a much better performance than all LSTM-
based models. This shows that better contextual-
ized word representations brought by pretrained
language models could be very effective in this

5Here, we do it on purpose for checking the informative-
ness of answer summary.

Models MAP MRR

LSTM-ASM

Full model 72.91 75.53
Max_tokens: 200 69.70 72.70
Max_tokens: 400 71.06 73.74
Max_tokens: 600 72.67 75.27

ALBERT-ASM

Full model 82.74 85.01
Max_tokens: 512 81.79 84.05

Table 4: Model performances as a function of the
length of input answers (averaged over three runs with
different random seeds). “Max_tokens" denotes the
maximum number of tokens of original lengthy an-
swers to keep.

long answer selection task. Meanwhile, these re-
sults also indicate that our method of extending
ALBERT to do long answer selection is effective.
(5) From row 11 to row 14, we can see that, when
we train our models as usual but feed them with
gold answer summary at test, we can observe se-
vere performance degradation. This which further
verifies that, question aspects covered by original
answers are not always covered by their correspond-
ing answer summaries to some extent.

1551



Annotation Source Accuracy

question-answer pairs 93%

question-summary pairs 78%

Table 5: Human performances on the 100 sampled ex-
amples. The accuracy is the ratio of correct annotation.

In Table 4, we present the performances of our
models as a function of the length of answers. From
it, we can observe that the maximum length limit
of answers has a big impact on the performance of
our models. Both LSTM-ASM and ALBERT-ASM
tend to exhibit better performance when we in-
crease the maximum length limit of answers. This
indicates that the WikiHowQA answer selection task
does require the ability to deal with long answer.

5 Data Analysis

5.1 Human Performance
We randomly sampled 100 examples, namely 100
question-answer-summary triplets, from the test
portion of the dataset for analysis. We first trans-
form the 100 question-answer-summary triplets
into 100 question-answer pairs and 100 question-
summary pairs. Then, we divide our annotators
into two groups, namely group 1, group 2. Each
group consists of two annotators. Finally, we ask
annotators of group 1 to label the question-answer
pairs and ask annotators of group 2 to label the cor-
responding question-summary pairs 6. Since the
WikiHowQA dataset was created in an automatic
and heuristic way, to make a fair evaluation, we
also ask a graduate student who majors in linguis-
tics to annotate the 100 examples and use these
annotations as gold labels.

Table 5 show the annotation results. From it, we
can see that annotators that use question-answer
pairs as annotation source, are able to achieve an
accuracy of 93% on this sampled subset. Whereas,
when annotators use question-summary pairs as
annotation source, they only obtain an accuracy of
78%, which is substantially lower than the previous
one. This verifies that, on the WikiHowQA dataset,
picking out the correct answers by measuring the
relevancy degrees between question and its answer
summary is much harder for human annotators.

In order to investigate whether additional an-
swer summaries could help to boost the annotation

6We eliminate the annotation divergence by following the
inter-annotator agreement.

Gold Reference G1 G2 Percentage

0 0 0 0 66%

0 0 0 1 16%

0 0 1 1 1%

1 0 1 1 5%

1 1 0 1 1%

1 1 1 1 11%

Table 6: The percentage of each annotation category.
Here, we omit the categories with zero proportion.

Questions:  How to change your name in ohio?
Answer:  In florida, the name change process starts with 
checking your criminal history. In order to do this, you 
must have your fingerprints submitted for a state and 
national criminal records check. The fingerprints will be 
taken by the florida department of law enforcement …
Summary:  Have a background check. Gather 
information for the petition. Fill out and sign the petition. 
File your petition. Attend your hearing. ..
Gold Label: 0  Reference Label: 0  Group 1: 0  Group 2: 1
———————————————————————
Questions:  How to buy affordable furniture?
Answer:  Sales happen all the time at retailers, especially 
around the holidays. While major holidays have their own 
sales, furniture retailers have especially large sales 
around president’ s day, labor day, and memorial day. 
Take advantage of these sales to score larger furniture 
items and matching sets. January and July are also good 
times to shop… 
Summary:  Shop seasonally. Check retail store websites. 
Use coupons. Search for clearance sales.
Gold Label: 1  Reference Label: 0  Group 1: 1  Group 2: 1  

Figure 2: Some examples of annotation divergence.

performance, we also ask another two annotators
to directly use the 100 question-answer-summary
triplets as annotation source. After comparing these
annotation results with the annotation results given
by group 1, we find that the two results are al-
most exactly the same everywhere. This shows
that additional answer summaries can not assist in
improving the annotation performance either.

5.2 Comprehensive Analysis

To get a comprehensive understanding of the above
phenomenon, we further conduct an in-depth anal-
ysis. Specifically, for each example, we make a
comparison among its gold label (Gold), its refer-
ence label (Reference, given by the dataset itself),
its label annotated by group 1 (G1) and its label
annotated by group 2 (G2). Table 6 provides our
estimate of the percentage for each category.
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From Table 6, we have the following observa-
tions: (i) For most of the examples, the gold labels,
the reference labels, the labels annotated by group
1, and the labels annotated by group 2 are the same
(All are zeros or ones), which indicates that the
WikiHowQA answer selection task is relatively easy
though it contains long multi-sentence answer texts.
(ii) From the second row of table 6, we could see
that 16 out of 100 samples are labeled correctly by
annotators in group 1 but mislabeled by annotators
in group 2. After carefully checking these exam-
ples, we observe an interesting finding from them.
Specifically, most of these errors may have been
caused by a lack of some specific details. A repre-
sentative example of this category is presented at
the top of Figure 2. From it, we can see that the an-
swer summary explains how to change one’s name
in a general way while the answer explains “How
to Change Your Name in Florida". This kind of
annotation divergence is mainly due to the fact that
the answer summary is relatively abstract and gen-
eral while the answer contains all the clues. There-
fore, we deem that the relevancy degree between
question-summary pair is not enough for human
annotators to make correct decisions in some cases.
(iii) 5 examples of this sample set are labeled as ‘1’
by annotators both in group 1 and group 2. And
the reference labels of these examples are ‘0’ but
their gold label are ‘1’. By carefully checking these
examples, we are confident that human annotators
are correct. This clearly shows that the dataset is
noisy to a certain extent. We present one of the
representative examples at the bottom of Figure 2.
From the example, we could see that both the an-
swer candidate and the answer summary describe
a way to shop for furniture on a reasonable budget,
which exactly answer the question “How to buy
affordable furniture ?". However, the reference la-
bel given by the dataset is ‘0’, which largely may
be due to that the dataset itself was created in an
automatic and heuristic way.

6 Related Work

Long Answer Selection WikiPassageQA (Han
et al., 2019) and LSA (Rücklé et al., 2019) are
the two most well-known long answer selection
benchmarks. On WikiPassageQA dataset, the state-
of-the-art, non-pretraining-based method is pro-
posed by Han et al. (2019). In their method,
they derive contextualized uni-gram representation
from n-grams and demonstrate that enabling multi-

granular matches between question and answer n-
grams are the key factors. On LSA benchmark,
Rücklé et al. (2019) shows that a relevance match-
ing approach based on the compare-aggregate
framework with a coverage-based constraint works
best among various LSTM-based methods.

In the midst of the pretraining-based methods,
the best one is a self-supervised text matching
model (Rücklé et al., 2020) which incorporates
self-supervised with supervised multi-task learning
on 140 source domains. It achieves state-of-the-art
performances on both WikiPassageQA dataset and
LSA benchmark.
Analysis of QA Tasks Several studies have in-
vestigated aspects of the design of QA datasets.
Chen et al. (2016) conduct an examination of the
CNN/Daily Mail reading comprehension dataset
and conclude that this dataset is quite noisy and
the required reasoning and inference level of this
dataset is very simple. Sugawara et al. (2017) pro-
pose two classes of metrics (prerequisite skills and
readability) to the quality of reading comprehen-
sion dataset. And they find that the readability of
reading comprehension datasets does not directly
affect the question difficulty. Yue et al. (2020) carry
out a thorough analysis of the emrQA dataset (Pam-
pari et al., 2018). And they discover that, though
Pampari et al. (2018) claims that 39% of the ques-
tions may need knowledge to answer, their analysis
shows that only a very small portion of the errors
(2%) made by a state-of-the-art model might result
from missing external domain knowledge.

In cQA, Liu et al. (2008) do a comprehensive
analysis of questions and answers on cQA services
and find that some questions usually have several
best answers. And they show that customized
question-type focused summarization techniques
helps to improve cQA answer quality. Yang et al.
(2011) analyze the not-answered questions in cQA
and give a try on making predictions whether ques-
tions will receive answers.

7 Conclusion

In this paper, we carefully study the recent Wiki-
HowQA answer selection task. Our models, either
LSTM-based or ALBERT-based, outperform the
previous state-of-the-art method by a large margin.
More importantly, we do a careful hand-analysis of
a small subset of the dataset. Overall, we think the
WikiHowQA dataset is a valuable dataset, which
provides a promising avenue for research on non-
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factoid, long answer selection task. Nevertheless,
we argue that: (i) this dataset is still noisy due to its
method of data creation. (ii) For "how-to" answer
selection task, the additional answer summaries
can neither help to improve model performance
nor can effect human annotation. (iii) the answer
selection task is relatively easy though it contains
long multi-sentence answer texts.
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Abstract

Most of the contemporary approaches for
multi-hop Natural Language Inference (NLI)
construct explanations considering each test
case in isolation. However, this paradigm is
known to suffer from semantic drift, a phe-
nomenon that causes the construction of spuri-
ous explanations leading to wrong conclusions.
In contrast, this paper proposes an abductive
framework for multi-hop NLI exploring the
retrieve-reuse-refine paradigm in Case-Based
Reasoning (CBR). Specifically, we present
Case-Based Abductive Natural Language In-
ference (CB-ANLI), a model that addresses un-
seen inference problems by analogical transfer
of prior explanations from similar examples.
We empirically evaluate the abductive frame-
work on commonsense and scientific question
answering tasks, demonstrating that CB-ANLI
can be effectively integrated with sparse and
dense pre-trained encoders to improve multi-
hop inference, or adopted as an evidence re-
triever for Transformers. Moreover, an empir-
ical analysis of semantic drift reveals that the
CBR paradigm boosts the quality of the most
challenging explanations, a feature that has a
direct impact on robustness and accuracy in
downstream inference tasks.

1 Introduction

Multi-hop inference is the task of composing two or
more pieces of evidence from external knowledge
resources to address a particular reasoning prob-
lem (Thayaparan et al., 2020). In the context of
Natural Language Inference (NLI), this task is of-
ten used to develop and evaluate explanation-based
systems, capable of performing transparent multi-
step reasoning with natural language (Wiegreffe
and Marasovic, 2021; Jansen et al., 2018; Cam-
buru et al., 2018). While multi-hop inference has
been largely explored for extractive problems such
as open-domain question answering (Yang et al.,
2018), increasing attention is being dedicated to

Similar Case

a stick is a kind
of object

friction is a kind
of force

h: Two sticks getting warm when rubbed together is
an example of a force producing heat 

magnetic attraction
pulls two objects together

pull is a force

friction causes the temperature
of an object to increase

Retrieve

friction is a kind
of force

friction causes the
temperature of an object to

increase

Which force produces energy
as heat? Friction

Reuse and Refine

Correct Explanation

Spurious Explanation

Figure 1: Performing multi-hop inference considering
each case in isolation can lead to the construction of
spurious explanations. In contrast, we propose the
adoption of a Case-Based Reasoning (CBR) paradigm
where the construction of new explanations is con-
strained by previously solved examples.

the abstractive setting, where the models are re-
quired to compose long chains of facts expressing
abstract commonsense and scientific knowledge
(Clark et al., 2018; Valentino et al., 2022).

In this setting, multi-hop inference is often
framed as an Abductive Natural Language Infer-
ence (ANLI) problem (Bhagavatula et al., 2019),
where, for a given set of alternative hypotheses
H = {h1, h2, . . . , hn}, the goal is to construct an
explanation for each hi ∈ H and select the hypoth-
esis supported by the best explanation (Thayaparan
et al., 2021a). Existing approaches address abduc-
tive inference considering each test hypothesis in
isolation, employing iterative and path-based meth-
ods (Kundu et al., 2019; Yadav et al., 2019b) or
explicit constraints to guide the generation of a
plausible explanation graph supporting the correct
answer (Khashabi et al., 2016; Khot et al., 2017).

However, this paradigm poses several challenges
in the abstractive setting as:

• The structure of the explanation is not evident
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from the decomposition of the hypothesis, that
is, the type of facts required for the inference
cannot be derived from the surface form of
the reasoning problem;

• Core explanatory facts tend to be abstract,
sharing a low number of terms with the hy-
pothesis, making it hard to correctly estimate
their relevance for the inference;

• Background knowledge sources contain a
large amount of irrelevant facts overlapping
with the hypothesis, a feature that can lead to
the generation of spurious explanations.

Consequently, existing approaches often suf-
fer from a phenomenon known as semantic drift
(Khashabi et al., 2019) – i.e., the tendency of com-
posing incorrect reasoning chains leading to wrong
conclusions as the number of required inference
steps increases. The example in Figure 1 illustrates
some of these challenges.

In contrast with the dominant paradigm, we pro-
pose to integrate Abductive Natural Language In-
ference in a Case-Based Reasoning (CBR) frame-
work (Schank et al., 2014; Das et al., 2021). CBR
systems operate under the hypothesis that similar
problems require similar solutions, addressing new
cases via analogical transfer from previous cases
solved in the past. Specifically, the Case-Based
Reasoning framework employs a retrieve-reuse-
refine paradigm to model inference over unseen
problems (Schank, 2013; De Mantaras et al., 2005).
In the context of multi-hop inference, we hypothe-
sise that the adoption of a Case-Based Reasoning
framework can help tackle some of the challenges
involved in the abstractive setting since:

• Similar natural language hypotheses tend to
require similar explanations;

• Abstract facts tend to express general explana-
tory knowledge about underlying regularities,
being frequently reused to explain a large va-
riety of phenomena;

• Prior solutions can explicitly help constraint
the search space, reducing the risk of compos-
ing spurious inference chains.

To investigate these hypotheses, we present a
Case-Based Abductive NLI (CB-ANLI) model that
retrieves and adapts natural language explanations

from training examples to construct new explana-
tions for unseen cases and address downstream in-
ference problems. Specifically, this paper provides
the following main contributions:

• To the best of our knowledge, we are the first
to propose an end-to-end case-based abdu-
tive framework for multi-hop and explanation-
based NLI;

• We empirically demonstrate the efficacy of
the CB-ANLI on commonsense and scientific
reasoning tasks, showing that the proposed
model can be effectively integrated with differ-
ent sentence encoders and downstream Trans-
formers, achieving strong performance when
compared to existing multi-hop and explain-
able approaches;

• We investigate the impact of the retrieve-reuse-
refine paradigm on semantic drift, and how
this affects accuracy and robustness of the
model. Our results show that the case-based
framework boosts the quality of the expla-
nations for the most challenging problems,
resulting in improved downstream inference
performance.

2 Case-based Abductive NLI

For a given set of alternative natural language hy-
potheses H = {h1, h2, . . . , hn}, the goal of Ab-
ductive NLI is to construct an explanation for each
hi ∈ H and select the hypothesis supported by
the best explanation. Given an hypothesis hi (e.g.,

“Two sticks getting warm when rubbed together is
an example of a force producing heat”), we con-
struct an explanation justifying hi by extracting
and composing inference chains between multiple
explanatory facts retrieved from an external corpus.

To generate and score an explanation for hi, we
adopt a Case-Based Reasoning (CBR) paradigm
composed of three major phases, retrieve-reuse-
refine, which can be summarised as follows (see
Fig. 2):

1. Retrieve: In the retrieve phase, we employ a
sentence encoding mechanism to search over
two distinct embedding spaces. A first em-
bedding space (Facts Embeddings) is adopted
to retrieve a set of candidate explanatory sen-
tences for the hypothesis. A second embed-
ding space (Cases Embeddings) is used to re-
trieve similar cases solved in the past whose
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Figure 2: Overview of the proposed CBR framework. We adopt a retrieve-reuse-refine paradigm to construct and
score explanations for a set of mutually exclusive hypotheses (a) and address NLI tasks via abductive inference by
selecting the hypothesis supported by the best explanation.

explanations can be useful to guide the search
for a new solution.

2. Reuse: In the reuse phase, we condition the
relevance of a given fact on the set of expla-
nations retrieved from the most similar cases.
Specifically, we reuse previously solved cases
to estimate the explanatory power of a fact,
representing the extent to which a given sen-
tence appears in explanations for past hypothe-
ses.

3. Refine: In this phase, the list of candidate
explanatory facts is refined to build the final
explanation. We model the construction of an
explanation via multi-hop inference between
hypothesis and candidate facts, composing
abstractive inference chains to estimante the
plausibility of the candidate explanatory sen-
tences.

Given a set of alternative hypotheses, we adopt
the CBR framework for explanation generation,
and subsequently leverage the score assigned
to each explanation to address downstream NLI
tasks. Additional details on the retrieve-reuse-
refine phases are described in the following sec-
tions.

3 Explanation Generation

3.1 Retrieve

We perform k-NN search over two distinct em-
bedding spaces: (a) an embedding space encod-
ing individual commonsense and scientific facts
that can be used to construct new explanations
(Facts Embeddings); (b) an embedding space of
true hypotheses associated with their respective ex-
planations (Cases Embeddings). An explanation
for a given hypothesis hi is a composition of facts
Ei = {f1, . . . , fn} form the Facts Embeddings.

To perform k-NN search, we employ a sentence
encoder e(·). Specifically, we use e(·) to derive a
vector for the test hypothesis h and adopt cosine
similarity to efficiently score and rank facts and
hypotheses in the embedding spaces, retrieving the
top-k instances. We perform our experiments using
a sparse (BM25 (Robertson et al., 2009)) and a pre-
trained dense encoder (Sentence-BERT (Reimers
and Gurevych, 2019)) adopting a search index for
efficient retrieval (IndexIVFFlat in FAISS (John-
son et al., 2019)). We adopt the WorldTree corpus
(Jansen et al., 2018) as background knowledge (ad-
ditional details in Section 5).
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3.2 Reuse
Previous work has shown that explanatory facts
expressing underlying regularities tend to create
explanatory patterns across similar hypotheses
(Valentino and Freitas, 2022; Valentino et al., 2021,
2022). Following this line of research, we conjec-
ture that explanations from similar cases can be
reused to constraining the search space for unseen
hypotheses and improve downstream NLI.

Specifically, given an unseen hypothesis h and
a fact fi, we adopt the explanations retrieved from
the top-K similar hypotheses in the Case Embed-
dings to estimate the explanatory power of fi:

pw(h, fi) =

K∑

hk∈kNN(h)

sim(e(h), e(hk)) · 1(fi, hk) (1)

1(fi, hk) =

{
1 if fi ∈ Ek
0 if fi /∈ Ek

(2)

where kNN(h) = {h1, . . . , hK} represents the
list of k-nearest hypotheses of h retrieved accord-
ing to the cosine similarity sim(·) between the em-
beddings e(h) and e(hk), and 1(·) is the indicator
function verifying if fi is included in the explana-
tion Ek for the hypothesis hk. Therefore, for each
hypothesis hk in the set of k-nearest neighbours,
the model sums up the quantity sim(·) only if fi is
used to explain hk. Since sim(e(h), e(hk)) repre-
sents the similarity between h and hk, the more fi
explains past hypotheses that are similar to h the
higher the explanatory power of fi. To condition
the list of candidate explanatory facts on previously
solved cases while controlling for relevance with
respect to the test hypothesis h, we compute the
final explanatory relevance of each fi by interpo-
lating the explanatory power with the similarity
between the embeddings e(h) and e(fi):

er(h, fi) = λ · sim(e(h), e(fi)) + (1− λ) · pw(h, fi) (3)

The explanatory relevance score is used to re-rank
and filter the list of candidate facts for the subse-
quent phase.

3.3 Refine
In the refine phase, the model considers the set of
candidate facts retrieved in the previous stage to
construct the final explanation for h. We model the
construction of an explanation through multi-hop
inference between hypothesis and candidate facts

via the composition of explicit inference chains. To
this end, we represent facts and hypothesis as bags
of distinct concepts CP (si) = {cp1, . . . , cpn}
(e.g., “friction is a kind of force” is represented as
the set {friction, force}, details in the appendix),
and connect two generic sentences si and sj by
means of shared concept in CP (si) ∩ CP (sj).

To link the hypotheses to potentially abstract ex-
planatory sentences, we construct an explanation
graph in different stages, starting with the hypothe-
sis h as the only node. In the first stage, the model
extends the graph with the facts that share direct
concepts with h and that express taxonomic rela-
tions or synonymy. This step can be seen as an
abstraction/grounding mechanism aimed at linking
the hypothesis to core explanatory facts (Jansen
et al., 2018; Thayaparan et al., 2021a) (e.g., linking
stick to object and friction to force in Figure 2).

In the second stage, the model extends the graph
with all the remaining candidate explanatory facts
that share at least one concept with previously
added nodes. We consider these facts as central
explanatory nodes. After constructing the graph,
we estimate the semantic plausibility of the central
facts fi:

sp(h, fi) =

∑
cpj∈CP (h) path(cpj , fi)

|CP (h)| (4)

where path(cpj , fi) is equal to 1 if there exists at
least one path in the graph connecting the concept
cpj in the hypothesis to a concept in fi, 0 other-
wise. Therefore, the semantic plausibility of a fact
is modelled as the percentage of concepts in the
hypothesis h that have at least one path in the graph
leading to fi.

4 Abductive Inference

To derive the final explanation for a given hypothe-
sis while conditioning on previously solved cases,
we sum the explanatory relevance computed during
the reuse phase with the semantic plausibility com-
puted during the refine phase, pruning the graph
considering only the top n central explanatory sen-
tences and their linked grounding nodes (Fig. 2.3).

Given a set of alternative hypotheses H =
{h1, . . . , hn}, we adopt the model for abductive
inference by generating an explanation for each
hypothesis and selecting as an answer the one sup-
ported by the best explanation. To this end, we
assign a score to each hypothesis hi in H equal to
the sum of the scores of the central facts included
in the explanation for hi.
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Model Overall Easy Challenge Explanation

Sparse Retrieval

BM25 (k = 1) (Clark et al., 2018) 41.21 44.96 32.99 yes
BM25 (k = 2) 43.62 48.54 32.73
BM25 (k = 3) 45.87 50.76 35.05

Dense Retrieval

S-BERT (k = 1) (Reimers and Gurevych, 2019) 44.91 50.99 31.44 yes
S-BERT (k = 2) 45.79 51.45 33.25
S-BERT (k = 3) 44.51 49.82 32.73

Path-based

PathNet (Kundu et al., 2019) 41.50 43.32 36.42 yes

Transformers

BERT-large (Devlin et al., 2019) 46.19 52.62 31.96 no
RoBERTa-large (Liu et al., 2019) 50.20 57.04 35.05 no

Case-based Abductive NLI

CB-ANLI BM25 (n = 1) 52.13 56.34 42.78 yes
CB-ANLI BM25 (n = 2) 55.17 60.42 43.56
CB-ANLI BM25 (n = 3) 52.69 58.56 39.69

CB-ANLI S-BERT (n = 1) 54.45 61.23 39.43 yes
CB-ANLI S-BERT (n = 2) 52.77 59.60 37.62
CB-ANLI S-BERT (n = 3) 51.64 58.67 36.08

Table 1: Accuracy on WorldTree (test-set) for easy and challenge questions. The parameter n corresponds to the
number of central explanatory sentences considered by the models to compute the scores for each hypothesis.

5 Empirical Evaluation

Experimental Setup. We evaluate the Case-
based Abductive NLI (CB-ANLI) framework on
WorldTree (Jansen et al., 2018) and AI2 Reasoning
Challenge (ARC) (Clark et al., 2018), two multiple-
choice science question answering datasets de-
signed to test abstractive commonsense and sci-
entific inference. To perform the experiments, we
transform each question-candidate answer pair into
a hypothesis following the methodology described
in (Demszky et al., 2018).

The knowledge bases required for the inference
are populated using the WorldTree corpus (Jansen
et al., 2018). The corpus contains a large set of
commonsense and scientific facts (≈ 10K) that are
used to construct explanations for multiple-choice
science questions. The explanations include an av-
erage of 6 facts (and as many as ≈ 20), requiring
challenging multi-hop inference to be generated.
We store the individual facts for deriving the Facts
Embeddings and consider the training questions (≈
1K) and their explanations as the set of previously
solved cases (Cases Embeddings). For the refine
phase, we dynamically extract the concepts in facts
and hypotheses using WordNet (Miller, 1995) with

NLTK1. Additional details are described in the ap-
pendix2.

Sentene Encoders. We evaluate CB-ANLI using
sparse and dense sentence encoders without addi-
tional training. The sparse version adopts BM25
vectors (Robertson et al., 2009), while the dense
version employs Sentence-BERT (large) (Reimers
and Gurevych, 2019; Thakur et al., 2020).

5.1 WorldTree

In this section, we present the results achieved
on the WorldTree test-set (1247 questions). We
report the accuracy of the case-based framework
with different numbers n of central facts in the
explanations. We compare the proposed frame-
work against different categories of approaches:
Retrieval Solvers, Path-based Solvers, and Trans-
formers. The results in terms of question answering
accuracy are reported in Table 1.

Retrieval Solvers. We employ stand-alone
BM25 and Sentence-BERT (large) as sparse and
dense retrieval solvers (Clark et al., 2018). Given

1https://www.nltk.org/_modules/nltk/
corpus/reader/wordnet.html

2Code available at the following url: https://github.
com/ai-systems/case_based_anli
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RoBERTa + Retriever Over. Easy Chal.

None 50.20 57.04 35.05

BM25 (k = 1) 57.06 60.88 48.57
BM25 (k = 2 ) 61.07 66.82 48.32
BM25 (k = 3) 61.23 65.54 51.12

S-BERT (k = 1) 55.85 61.46 43.41
S-BERT (k = 2) 60.91 66.82 47.80
S-BERT (k = 3) 56.96 62.04 45.73

CB-ANLI BM25 (n = 1) 61.71 66.82 50.38
CB-ANLI BM25 (n = 2) 63.48 69.38 50.38
CB-ANLI BM25 (n = 3) 62.43 67.77 50.63

CB-ANLI S-BERT (n = 1) 59.99 65.54 47.45
CB-ANLI S-BERT (n = 2) 63.32 67.98 52.97
CB-ANLI S-BERT (n = 3) 62.27 67.63 50.38

Table 2: Results for RoBERTa large fine-tuned on
WorldTree and augmented with different explanation
retrieval models.

an hypothesis h, the solvers retrieve the top k rele-
vant facts for h using cosine similarity. The cosine
similarity scores are then summed up to determine
the best hypothesis. These baselines use the same
encoders adopted by our model. However, we ob-
serve that CB-ANLI is able to outperform both
sparse and dense retrieval models by up to ≈ 10%
accuracy, demonstrating the decisive role of the
proposed case-based paradigm.

Path-based Solvers. We consider PathNet
(Kundu et al., 2019) as a multi-hop inference
baseline. This model constructs inference paths
connecting question and candidate answer, and
subsequently scores them through a neural encoder
to derive the correct answer. We reproduce
PathNet using the source code available online3.
Contrary to CB-ANLI, PathNet does not adopt a
Case-Based Reasoning framework to construct
the explanations, considering each test hypothesis
in isolation. We observe that CB-ANLI can sig-
nificantly outperform PathNet with up to ≈ 13%
improvement overall and ≈ 7% on challenge
questions.

Transformers. We compare CB-ANLI against a
BERT large (Devlin et al., 2019) and a RoBERTa
large (Liu et al., 2019) baseline fine-tuned on the
multiple-choice question answering task. We ob-
serve that on WorldTree the proposed approach is
competitive with both RoBERTa and BERT (up to
≈ 5% and ≈ 9% improvement respectively).

3https://github.com/allenai/PathNet

Explainable Models Accuracy

TupleInf (Khot et al., 2017) 23.83
TableILP (Khashabi et al., 2016) 26.97
DGEM (Clark et al., 2018) 27.11
KG2 (Zhang et al., 2018) 31.70
Unsupervised AHE (Yadav et al., 2019a) 33.87
Supervised AHE (Yadav et al., 2019a) 34.47
ET-RR (Ni et al., 2019) 36.61
ExplanationLP (Thayaparan et al., 2021a) 40.21
AutoROCC (Yadav et al., 2019b) 41.24
Attentive Ranker (Pirtoaca et al., 2019) 44.72

Case-based Abductive NLI

CB-ANLI BM25 (n = 1) 33.45
CB-ANLI BM25 (n = 2) 34.39
CB-ANLI BM25 (n = 3) 33.79

CB-ANLI S-BERT (n = 1) 36.77
CB-ANLI S-BERT (n = 2) 35.75
CB-ANLI S-BERT (n = 3) 34.30

CB-ANLI S-BERT (n = 1) + RoBERTa 44.02
CB-ANLI S-BERT (n = 2) + RoBERTa 47.86
CB-ANLI S-BERT (n = 3) + RoBERTa 42.40

Table 3: Performance on the AI2 Reasoning Challenge
(ARC). We compare CB-ANLI with published explain-
able approaches that are fine-tuned only on ARC.

Transformers with Explanations We evaluate
CB-ANLI as an evidence retrieval model by com-
bining it with downstream Transformers. To per-
form this experiment, we augment the input of
RoBERTa large with the explanations constructed
for each hypothesis, and fine-tune the model to
maximise the score for the correct answer. Table 2
reports the accuracy achieved with RoBERTa large
when adopting CB-ANLI and stand-alone baselines
as evidence retrievers. In general, we observe that
evidence retrieval plays an important role for im-
proving the performance of RoBERTa, and that the
use of CB-ANLI can generate useful explanations
for inference in combination with downstream lan-
guage models.

5.2 ARC Challenge

To evaluate the generalisation of CB-ANLI on a
broader set of challenge questions, we run addi-
tional experiments on the AI2 Reasoning Challenge
(ARC) (Clark et al., 2018). Here, we keep the same
configuration of hyperparameters. Table 3 reports
the results achieved on the test-set (1172 challenge
questions).

We observe that CB-ANLI with Sentence-BERT
can generalise better on ARC. We attribute these re-
sults to the ability of Sentence-BERT to go beyond
lexical overlaps, supporting generalisation on new
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Figure 3: Impact of the case-based framework on semantic drift. K represents the number of similar cases consid-
ered for computing the explanatory power (Worldree dev-set).

hypotheses with different surface forms. To show
the impact of evidence retrieval on ARC, we fine-
tune RoBERTa with the explanations constructed
by the Sentence-BERT version.

For a fair comparison, we compare CB-ANLI
against published explainable approaches that are
fine-tuned only on ARC, without additional pre-
training on related datasets (e.g. OpenBookQA
(Mihaylov et al., 2018), RACE (Lai et al., 2017)).
The results show that CB-ANLI S-BERT is third in
the ranking, outperforming explanation-based sys-
tems based on Integer Linear Programming (ILP)
(Khot et al., 2017; Khashabi et al., 2016) and pre-
trained embeddings (Yadav et al., 2019a). At the
same time, CB-ANLI obtains competitive results
when compared with most of the fine-tuned neu-
ral approaches, including ET-RR (Ni et al., 2019).
Moreover, when combined with RoBERTa, CB-
ANLI achieves the best results among the consid-
ered approaches, improving on AutoROCC (Yadav
et al., 2019b) and Attentive Ranker (Pirtoaca et al.,
2019).

5.3 Ablation Study

We carried out an ablation study to investigate the
impact of the CBR framework on downstream in-
ference performance. To this end, we consider
different versions of CB-ANLI by removing the
impact of the reuse and refine phase. For the first,
we remove the explanatory power term in equation
3. For the latter, we simply skip the refine phase
ignoring the explanation graph construction and
the semantic plausibility score to filter the central
explanatory facts. The results of the study, reported
in Table 4, demonstrate the key role of each phase
to achieve the final inference performance.

Paradigm Overall Easy Challenge

CB-ANLI BM25

Retrieve-Reuse-Refine 55.17 60.42 43.56
Retrieve-Reuse 49.00 55.18 35.30
Retrieve-Refine 43.46 46.57 36.60

CB-ANLI S-BERT

Retrieve-Reuse-Refine 54.45 61.23 39.43
Retrieve-Reuse 47.79 53.55 35.05
Retrieve-Refine 42.66 47.48 32.21

Table 4: Ablation Study on WorldTree (test-set) by re-
moving the impact of the reuse and refine phases.

5.4 Impact on Semantic Drift

In this section, we investigate the impact of the
CBR paradigm on semantic drift and how this af-
fects the results on downstream reasoning tasks. To
this end, we measure the performance of CB-ANLI
when retrieving a different numberK of previously
solved hypotheses (notice that when K = 0 the
model is equivalent to a non-case-based method).
To evaluate the quality of the generated explana-
tions, we leverage the WorldTree corpus as a gold
standard, computing the explanation accuracy as
the percentage of the best central explanations re-
trieved by the model that are part of the gold expla-
nations in WorldTree. Since the explanations in the
test-set are not publicly available, we perform this
analysis on the dev-set.

Figure 3 (a) illustrates the change in answer and
explanation accuracy on WorldTree with an increas-
ing number K of similar cases. The graph demon-
strates that the improvement in answer prediction
is associated with improved explanation genera-
tion capabilities. Specifically, by conditioning the
inference on an increasing number of similar hy-
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Test Question Prediction Constructed Explanation (K = 20, n = 1) Accurate

What force is needed to help stop a child from slipping on ice? (A)
gravity, (B) friction, (C) electric, (D) magnetic

(B) friction (1) counter means reduce; stop; resist; (2) ice is a kind of object; (3)
slipping is a kind of motion; (4) stop means not move; (5) friction
acts to counter the motion of two objects when their surfaces are
touching

Y

What causes a change in the speed of a moving object? (A) force, (B)
temperature, (C) change in mass (D) change in location

(A) force (1) a force continually acting on an object in the same direction that
the object is moving can cause that object’s speed to increase in a
forward motion

N

Weather patterns sometimes result in drought. Which activity would
be most negatively affected during a drought year? (A) boating, (B)
farming, (C) hiking, (D) hunting

(B) farming (1) affected means changed; (2) a drought is a kind of slow environmen-
tal change; (3) farming changes the environment

N

Beryl finds a rock and wants to know what kind it is. Which piece of
information about the rock will best help her to identify it? (A) The size
of the rock, (B) The weight of the rock, (C) The temperature where the
rock was found, (D) The minerals the rock contains

(A) The size of
the rock

(1) a property is a kind of information; (2) size is a kind of property;
(3) knowing the properties of something means knowing information
about that something. (4) the properties of something can be used to
identify; used to describe that something

Y

Jeannie put her soccer ball on the ground on the side of a hill. What
force acted on the soccer ball to make it roll down the hill? (A) gravity,
(B) electricity, (C) friction, (D) magnetism

(C) friction (1) the ground means Earth’s surface; (2) rolling is a kind of motion; (3)
a roll is a kind of movement; (4) friction acts to counter the motion
of two objects when their surfaces are touching

N

Table 5: Examples of explanations constructed by CB-ANLI. The underlined choices represent the correct answers.
Accurate indicates whether the central fact (bold) is part of the gold explanation in the WorldTree corpus.

potheses, CB-ANLI is able to construct more accu-
rate explanations, a feature that has a direct impact
on downstream inference performance in question
answering.

Figure 3 (b) shows the accuracy of the model
on hypotheses requiring longer explanations when
compared to a non-case-based version (K = 0).
In general, a higher number of facts in the gold
explanation is associated with a higher probability
of semantic drift (Jansen and Ustalov, 2019). The
graph confirms a strong relation between expla-
nation accuracy and question answering accuracy,
and demonstrates that the improvement obtained
through the case-based framework is particularly
evident on the most challenging inference problems
(10+ facts in the explanations). This results al-
low us to conclude that the Case-Based Reasoning
framework has a key role in alleviating semantic
drift during multi-hop inference.

5.5 Faithfulness and Error Analysis

Finally, we present an analysis of the faithful-
ness of the model, investigating the relation be-
tween correct/wrong answer prediction and accu-
rate/inaccurate explanations. Overall, we found
that a total of 81.25% of the correct answers are
derived from accurate explanations. This situation
is illustrated in the first example in Table 5. On the
other hand, a total of 18.75% of correct answers
are derived from inaccurate explanations (second
and third rows in the table). However, as shown
in the second example, we observe that CB-ANLI
can sometimes find alternative ways of construct-
ing plausible explanations, considered inaccurate
only because of a mismatch with the corpus an-
notation. The example number 4 shows the case

in which an accurate explanation is not sufficient
to discriminate the correct answer. We found this
cases to occur for a total of 31.71% of incorrect an-
swers. Finally, the last row describes the situation
in which wrong answers are caused by inaccurate
or spurious explanations (for a total of 68.29% of
the wrong answers). This analysis demonstrates the
interpretability and faithfulness of the framework,
showing that its behaviour can be typically traced
back to the quality of the generated explanations.

6 Related Work

Multi-hop inference for abstractive tasks is chal-
lenging as the general structure of the explanations
cannot be derived from the surface form of the
NLI problem. Previous work has demonstrated
that models in this setting are affected by semantic
drift – i.e., the construction of spurious explana-
tions leading to wrong conclusions (Fried et al.,
2015; Khashabi et al., 2019).

Existing approaches frame multi-hop inference
as the problem of building an optimal graph, condi-
tioned on a set of semantic constraints (Khashabi
et al., 2018; Khot et al., 2017; Jansen et al., 2017;
Khashabi et al., 2016; Thayaparan et al., 2021a), or
adopting iterative methods, using sparse or dense
encoding mechanisms (Yadav et al., 2019a,b; Pir-
toaca et al., 2019; Kundu et al., 2019). Our model
is related to previous work that leverages anno-
tated explanations to reduce semantic drift (Xie
et al., 2020; Jansen et al., 2018). However, this
line of work is still limited to explanation regenera-
tion (Jansen and Ustalov, 2019; Cartuyvels et al.,
2020; Valentino et al., 2021, 2022; Thayaparan
et al., 2021b), while the applicability of these re-
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sources for downstream multi-hop NLI problems
is yet to be explored. In this paper, we move a step
forward, exploring how the impact of annotated ex-
planations on semantic drift translates in improved
downstream performance.

Our approach is related to previous work on
Case-Based Reasoning (CBR) (Schank et al., 2014;
Schank, 2013; De Mantaras et al., 2005). Similar to
the retrieve-reuse-refine paradigm adopted in CBR
systems, we employ encoding mechanisms to re-
trieve explanations for cases solved in the past, and
adapt them in the solution of new problems. Re-
cent work in NLP investigates the use of a similar
paradigm via k-NN retrieval on training examples.
Khandelwal et al. (2020b,a) adopt k-NN search to
retrieve similar training examples and improve pre-
trained language models and machine translation
without additional training. Similarly, Das et al.
(2021, 2020) propose a CBR framework for knowl-
edge base reasoning, while Kassner and Schütze
(2020) reuse similar cases to improve BERT (De-
vlin et al., 2019) on cloze-style QA. To the best of
our knowledge, this is the first application of Case-
Based Reasoning for explanation-based multi-hop
Natural Language Inference (NLI).

The work presented in this paper is related to
hybrid neuro-symbolic approaches for inference
with natural language (Liu et al., 2020; Minervini
et al., 2020; Jiang and Bansal, 2019; Chen et al.,
2019; Dua et al., 2019; Xu et al., 2021; Weber
et al., 2019). In this context, most of the exist-
ing approaches combine neural models with sym-
bolic programs or reasoning modules. For instance,
Jiang and Bansal (2019) propose the adoption of a
Neural Module Network (Andreas et al., 2016) for
multi-hop question answering by designing four
atomic neural modules (Find, Relocate, Compare,
NoOp). Weber et al. (2019) propose a methodol-
ogy to perform multi-hop inference using a Prolog
prover via the integration of sentence encoders and
a weak unification mechanism. Differently from
the methodology discussed in this paper, previous
neuro-symbolic approaches have been generally ap-
plied to extractive tasks, where the inference steps
(and, therefore, the explanation’s structure) can be
derived from a direct decomposition of the ques-
tions (Thayaparan et al., 2020).

7 Limitations

The adopted model of explanatory power relies on
the availability of human-annotated explanations

with specific features (e.g., explanatory facts reused
across different training instances). However, these
resources might not be available in real-world sce-
narios and are generally costly to develop. More-
over, since the explanatory power model relies on
similarity measures and indicator functions, the
model’s ability to generalise might be sensitive to
the incompleteness of the knowledge bases and the
availability of representative explanations. We be-
lieve these limitations can be potentially alleviated
by exploring the role of more abstract sentence rep-
resentations within the CBR paradigm (Bergmann
and Wilke, 1996).

In the current implementation of CB-ANLI, the
refine phase adopts specific assumptions to model
the abstraction process required for explanation
generation. This process, in fact, is performed by
assuming that abstraction at the concept level trans-
lates in a correct mapping between hypotheses and
central explanatory sentences. However, contex-
tual linguistic elements can still affect the overall
meaning of the specific concept being abstracted,
inducing the inclusion of spurious links between
sentences. While contextual elements are consid-
ered during the precedent phases through the use
of contextualised embeddings and similar cases,
additional work is still required to guarantee the
correctness of the abstraction process.

8 Conclusion

This paper presented CB-ANLI, a model that inte-
grates multi-hop and Case-Based Reasoning (CBR)
in a unified framework. We demonstrated the ef-
ficacy of the framework in complex abstractive
and multi-hop NLI tasks. We believe this work
can open new lines of research on hybrid neuro-
symbolic models for explanation-based NLI, and
plan to investigate the efficacy of the framework on
architectures that adopt richer symbolic represen-
tations in combination with neural models, further
exploring the role of abstraction in Case-Based
Reasoning for improving robustness, generalisa-
tion, and explainability in NLI.
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A Hyperparameters

We adopted the following hyperparameters for CB-
ANLI:

CB-ANLI BM25:

1. λ = 0.83

2. K = 200

CB-ANLI S-BERT:

1. λ = 0.97

2. K = 40

For the implementation of Sentence-BERT we
adopt the following package https://pypi.org/

project/sentence-transformers/ considering
the bert-large-nli-stsb-mean-tokens model.

B Concepts Extraction

The concepts in facts and hypotheses are
extracted using WordNet with NLTK:
https://www.nltk.org/_modules/nltk/

corpus/reader/wordnet.html. Specifically,
given a sentence, we define a concept as a maximal
sequence of words that corresponds to a valid
synset in WordNet. This allows us to consider
multi-words expressions such as “living thing”
that frequently occur in the scientific domain.
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C Transformers Setup

For the implementation of the Transformer model,
we fine-tuned RoBERTa (roberta-large) for binary
classification (bc) to predict a set of scores S =
{s1, s2, ..., sn} for each candidate hypothesis in
H = {h1, h2, ..., hn}. The model receives as
input an hypothesis hi along with the explanation
Ei for hi. The model is optimised via cross-entropy
loss to predict 1 for the correct hypothesis and 0
for the alternative hypotheses:

bc([CLS] || hi || [SEP] || Ei) = si (5)

The binary classifier is a linear layer operating on
the final hidden state encoded in the [CLS] to-
ken. To answer the question q, the module selects
the candidate answer ca associated to the hypoth-
esis with the highest score – i.e. a = argmaxi si.
The model is implemented using Hugging Face
(https://huggingface.com/) and fine-tuned us-
ing 4 Tesla V100 GPUs for 8 epochs in total. We
adopted the following hyperparameters:

• batch size = 16

• learning rate = 1e-5

• gradient accumulation steps = 1

• weight decay = 0.0

• adam epsilon = 1e-8

• warmup steps = 0

• max grad norm = 1.0

D Source Code

The code adopted in the experiments is avail-
able at the following URL: https://github.com/
ai-systems/case_based_anli.

E Data

The WorldTree corpus adopted in the experi-
ments can be downloaded at the following url:
http://cognitiveai.org/dist/worldtree_

corpus_textgraphs2019sharedtask_

withgraphvis.zip. The AI2 Reasoning Chal-
lenge (ARC) dataset can be downloaded at the fol-
lowing URL: https://allenai.org/data/arc.
For the experiments on ARC, we adopted
WorldTree V2 as our background knowledge:
http://cognitiveai.org/explanationbank/
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Abstract
Building query graphs from natural language
questions is an important step in complex ques-
tion answering over knowledge graph (Com-
plex KGQA). In general, a question can be cor-
rectly answered if its query graph is built cor-
rectly and the right answer is then retrieved by
issuing the query graph against the KG. There-
fore, this paper focuses on query graph gen-
eration from natural language questions. Ex-
isting approaches for query graph generation
ignore the semantic structure of a question, re-
sulting in a large number of noisy query graph
candidates that undermine prediction accura-
cies. In this paper, we define six semantic
structures from common questions in KGQA
and develop a novel Structure-BERT to pre-
dict the semantic structure of a question. By
doing so, we can first filter out noisy candi-
date query graphs, and then rank the remaining
candidates with a BERT-based ranking model.
Extensive experiments on two popular bench-
marks MetaQA and WebQuestionsSP (WSP)
demonstrate the effectiveness of our method as
compared to state-of-the-arts. The source code
can be found at https://github.com/
ToneLi/SSKGQA.

1 Introduction

Knowledge graph (KG) is a graph structured
database (Miller, 1995), in which nodes represent
entities (e.g., Hedgehog in the Fog, Sergei Kozlov),
and edges reflect the relations between entities
(e.g., Hedgehog in the Fog - written_by - Sergei
Kozlov). Users can get crisp answers by querying
KGs with natural language questions, and this pro-
cess is called Question Answering over Knowledge
Graph (KGQA). Recently, consumer market wit-
nesses a widespread application of this technique
in a variety of virtual assistants, such as Apple
Siri, Google Home, Amazon Alexa, and Microsoft
Cortana, etc.

Early works (Bordes et al., 2015; Golub and
He, 2016) on KGQA mainly focus on simple ques-

directed_by_reverse written_by

Question 1: Which person wrote the films directed by Yuriy Norshteyn?

Question 2: What is Cher's son's name?

Topic entity
Yuriy Norshteyn Hedgehog in the Fog

Answer
Sergei Kozlov

person.children

Topic entity
Cher

Answer
Chaz Bono

Constraint
Male

person.gender

Figure 1: (Q1) Example question involving multi-hop
reasoning, and (Q2) Example question with constraints

tions, such as where is the hometown of Obama?
This question only involves in one relation path
(e.g., hometown or birth-place) in KG, and is rela-
tively easy to solve. However, many questions in
daily QA sessions are often more complex, man-
ifested by multi-hop reasoning or questions with
multiple constraints. Therefore, recently there is
a flurry of interests on complex KGQA (Shi et al.,
2021; Yadati et al., 2021).

There are two types of complexity when deal-
ing with complex KGQA, i.e., multi-hop ques-
tions and questions with multiple constraints (See
Figure 1 for example). Question 1 in Figure 1
is a typical multi-hop question, to which the an-
swer is related to Yuriy Norshteyn with two-
hop relations: directed.by.reverse and
written.by. In response to this challenge, Xu
et al. (2019) enhances the traditional Key-Value
Memory Neural Networks (KV-MemNNs) (Miller
et al., 2016) for multi-hop question answering.
They design a query updating strategy to decom-
pose the question and predict the relevant relation
paths at each hop. TransferNet (Shi et al., 2021) is
an effective and transparent model for multi-hop
questions; it attends to different parts of the ques-
tion at each hop and computes activated scores for
relation path prediction. Despite the promising
results, it’s still challenging for these models to
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predict relation paths accurately at each hop, and
thus suffer from error propagation over multi-hop
reasoning. Similarly, Question 2 in Figure 1 is an
example of question with constraints. Apparently,
there is a single relation path between the topic
entity Cher and the answer Chaz Bono, but the
constraint of person.gender=Male must be
satisfied. To handle this type of complex questions,
many works built on the idea of query ranking are
proposed (Yih et al., 2015; Lan and Jiang, 2020;
Chen et al., 2020), which rank candidate queries
by the similarity scores between question and can-
didate queries. Specifically, these ranking meth-
ods use query graphs to represent queries, and ex-
plore various strategies to generate candidate query
graphs for ranking. Typical strategies assume the
answers are within n hops of topic entity, and enu-
merate all the relation paths within n hops to gen-
erate candidate query graphs. Although this candi-
date generation strategy can yield all valid query
graphs from a topic entity, they have two main lim-
itations: (1) The generated candidate query graphs
are very noisy. As shown in Figure 2(a), a can-
didate query graph with an incorrect structure is
presented; this candidate query graph is generated
by the traditional enumeration strategy but lacks
of the constraint on person.gender, which can
incur considerable error in query graph ranking
(See Table 4). For the example in Figure 2(a), both
parent and birth.place are relevant to the
question; even though this candidate query graph
has an incorrect semantic structure (to be defined in
Sec. 3.2), it is still challenging for ranking models
to demote it below the correct query graph – the one
in Figure 2(b). (2) When building a ranking model
to rank query graphs, recent works (Lan and Jiang,
2020) treat the candidate query graph and question
as a sequence of words and leverage BERT (Devlin
et al., 2018) to extract feature representation from
its pooled output. However, this pooled output is
usually not a good representation of the semantics
of the input sequence (Khodeir, 2021). Therefore,
improved ranking models are to be developed.

To mitigate the aforementioned issues, this pa-
per proposes SSKGQA, a Semantic Structure based
framework for complex KGQA. We represent both
the multi-hop questions and questions with con-
straints in a way similar to query graphs1 and rank
the generated candidate query graphs by the simi-

1For example, one candidate query graph for Ques-
tion 1 in Figure 1 can be written as Y uriy.Norshteyn →
directed.by.reverse→ y → written.by → x.

Queen Isabella

Isabel de Portugal female

parent
Queen Isabella

Juan II de Castilla

Toro

Question: What is the birth place of Queen Isabella 's mother?

gender

birth place

parent

Lisboa
(a) (b)

Answer:  Lisboa

birth place

Figure 2: Example two-hop candidate query graphs
for a question with constraints. (a) A candidate query
graph with an incorrect semantic structure, (b) A candi-
date query graph with a correct semantic structure.

larity scores between question and candidate query
graphs. Inspired by Chen et al. (2020), if the struc-
ture of a question is known in advance, the noise
in candidate query graphs can be reduced signifi-
cantly by filtering. Thus, SSKGQA first predicts
the semantic structure of a natural language ques-
tion, which is then used to filter out noisy candidate
query graphs (which have incorrect structures).

Specifically, we define six semantic structures
based on the question topology that is introduced
by Srivastava et al. (2021). With the defined seman-
tic structures, our SSKGQA processes a natural
language question in two stages. In the first stage,
we develop a novel Structure-BERT to predict the
semantic structure of a natural language question,
which is then used to filter out noisy candidate
query graphs and produce a set of query graph
candidates that match the predicted structure. In
the second stage, we rank the remaining candidate
query graphs of a question by a BERT-based rank-
ing model and identify the top-1 candidate query
graph, which is then issued to retrieve the final an-
swer from a KG. Our experiments demonstrate that
this semantic structure based query graph predic-
tion strategy is very effective and enables SSKGQA
to outperform state-of-the-art methods.

Our main contributions are summarized as fol-
lows. (1) We propose SSKGQA, a semantic struc-
ture based method to predict query graphs from
natural language questions. SSKGQA can handle
both multi-hop questions and questions with con-
straints and is a unified framework for complex
KGQA. (2) We develop a novel Structure-BERT to
predict the semantic structure of each question, and
a BERT-based ranking model with a triplet loss to
identify the top-1 query graph candidate. (3) Com-
pared to state-of-the-arts methods, our SSKGQA
demonstrates superior performance on two popular
complex KGQA benchmarks.
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2 Related Work

2.1 Multi-hop Question Answering
Current works on multi-hop question answering
mainly focus on how to retrieve answers by calcu-
lating the relation paths step by step. In general, a
right answer can be retrieved if the relation paths
are identified correctly at each hop. Xu et al. (2019)
enhances the traditional Key-Value Memory Neural
Networks (KV-MemNNs) (Miller et al., 2016) and
designs a query updating strategy to decompose
the question and predict the relevant relation paths
at each hop. TransferNet (Shi et al., 2021) calcu-
lates the relation path scores based on an updated
question at each hop, but they leverage the atten-
tion mechanism to update question representations
over multiple hops. More recently, Cai et al. (2021)
introduces the dual process theory to predict the
relation paths at each hop. Although these methods
achieve promising results, they suffer from error
propagation when predicting the relation paths step
by step. To mitigate this issue, SSKGQA identifies
the top-1 query graph by directly calculating the
similarity scores between question and candidate
query graphs (or similarly relation paths).

On the other hand, Sun et al. (2019a, 2018) incor-
porate external corpus to enhance the performance
of KGQA. They focus on how to get the answers
by constructing a subgraph for each question. A
challenge of this method is that it is difficult to con-
struct a subgraph around topic entity because we
need to identify relevant entities from external cor-
pus, and this process is error-prone. Saxena et al.
(2020) predicts the answers by utilizing the KG
embedding model. However, complex questions
with long relation paths can reduce the learnabil-
ity of KG embedding significantly. Our SSKGQA
does not need external corpus to improve predic-
tion accuracies and can solve complex multi-hop
questions by a semantic structure based ranking.

2.2 Complex Questions with Constraints
For questions with constraints, a sequence of works
focus on how to reach the answers by generating
query graphs. Yih et al. (2015) enumerates all pos-
sible entities and relation paths that are connected
to a topic entity to generate candidate query graphs,
and uses a CNN-based ranking model to identify
the query graph. Following a similar candidate
query graph generation of (Yih et al., 2015), Ma-
heshwari et al. (2019) propose a novel query graph
ranking method based on self-attention. Qin et al.

(2021) introduces a query graph generation method
by using their proposed relation subgraphs. How-
ever, these methods largely ignore the noise when
generating the candidate query graphs, which un-
dermines the predictive performance during query
graph ranking. To mitigate this issue, SSKGQA
first predicts the semantic structure of a question,
which is then used to reduce the noise in candidate
query graphs.

2.3 Query Graph Ranking

Current research on KGQA mainly focuses on how
to generate the candidate query graphs, and there
are only a few works exploring how to rank the
candidate query graphs. Lan and Jiang (2020) con-
catenates question and candidate query graph into a
single sequence, and leverages BERT (Devlin et al.,
2018) to process the whole sequence for ranking.
However, Reimers and Gurevych (2019) show that
this strategy is inefficient as it can incur a mas-
sive computation due to the combinatorial nature
of concatenation of question and candidate query
graphs, leading to duplicated calculation. Chen
et al. (2020) explore GRUs to encode the question
and query graph information, and utilize a hinge
loss to learn a ranking model. However, GRUs
can only learn a limited interaction among words
in a sentence, while the global interactions among
words has proven to be critical for text representa-
tion in various NLP applications (Khan et al., 2020).
To solve the aforementioned issues, SSKGQA ex-
ploits separated BERT models to process questions
and query graphs, respectively, and reuses the ex-
tracted features to avoid duplicated calculation and
leverages a triplet loss to train a BERT-based rank-
ing model.

3 Preliminaries

3.1 Query Graph

Query graph is a graph representation of a natu-
ral language question (Yih et al., 2015). See Fig-
ure 2 for example. A query graph usually contains
four types of components: (1) a grounded entity,
which is an entity in KG and is often the topic
entity of a question, e.g., Queen Isabella in
Figure 2. (2) an existential variable, which is an un-
grounded entity, e.g., Isabel de Portugal
in Figure 2. (3) a lambda variable, which is the an-
swer to question but usually an ungrounded entity,
e.g., Lisboa in Figure 2. (4) some constraints on
a set of entities, e.g., gender in Figure 2. A ques-
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Figure 3: Six semantic structures defined in the pa-
per. There are three semantic structures for questions
in MetaQA: (SS1, SS2, SS3), and five semantic struc-
tures for questions in WSP: (SS1, SS2, SS4, SS5, SS6).

tion can be correctly answered if its query graph
is built correctly and the right answer can be re-
trieved by issuing the query graph (represented by
a SPARQL (Pérez et al., 2009) command) to a KG.

3.2 Semantic Structures

As observed by (Chen et al., 2020), if the structure
of a question is known in advance, the noise in can-
didate query graphs can be reduced significantly
by filtering. Thus, in this paper we define six se-
mantic structures based on the question topology
that is introduced by Srivastava et al. (2021). These
six semantic structures are listed in Figure 3 and
example questions for each semantic structure can
be found in Figure 6 in Appendix. As we can see,
a semantic structure is a graph that is an abstract
of the query graphs of the same pattern. Typically,
a semantic structure consists of four components
{E, r, v, C}, where E denotes an entity, r refers to
all types of relations, v is an existential variable,
and C denotes a constraint.

To identify the semantic structure of a question,
we can train a classifier for prediction. But first
we need to annotate each training question with
its semantic structure. Fortunately, this annotation
can be achieved readily for questions in MetaQA
and WebQuestionsSP (WSP) since these questions
are either partitioned by number of hops or accom-
panied by the SPARQL commands. Details on
question annotation are provided in Sec. 7.2 in Ap-
pendix. By annotating the questions in MetaQA
and WSP, we found that these six semantic struc-
tures can cover 100% of questions in MetaQA, and
77.02% of questions in the test set of WSP as shown
in Table 1. It is challenging to design additional
semantic structures to cover 100% of questions in
WSP because there are some unusual operators in
WSP, such as Or and <=, which are difficult to map
to a common semantic structure. Even though there
is only a 77.02% coverage on the WSP test ques-
tions, our experiments show that SSKGQA already

Dataset
MetaQA

WSP
Hop-1 Hop-2 Hop-3

Train 100 100 100 91.37

Test 100 100 100 77.02

Dev 100 100 100 n/a

Table 1: Semantic structure coverage (%) for questions
in the training, test and development sets of MetaQA
and WSP.

Question: Which person wrote the films directed by Yuriy Norshteyn?

e1

e2

e4

e3

e5

e6

Yuriy 
Norshteyn

Hedgehog 
in the Fog

Sergei Kozlov

directed_by

written_by

r1

r2

r3 r4

r5

Input 
question

Structure-BERT SS2

e1-r1
e1-r3

e1-r1-e2-r2
e1-r3-e4-r5
e1-r3-e4-r4

e1-r1-e2-r2
e1-r3-e4-r5
e1-r3-e4-r4

BERT-based 
Ranker

e1-r3-e4-r5

Knowledge 
Graph

Answer

Enumerate all 
candidate query 

graphs
Filtering

Sergei Kozlov

CQG

CQG-CS

Figure 4: Overview of SSKGQA. A subgraph related
to Yuriy Norshteyn from a KG is provided for il-
lustration.

outperforms state-of-the-art methods on WSP. As a
future work, we plan to explore new techniques to
cover the remaining 22.98% of questions in WSP.

4 The Proposed Method

We first provide an overview of SSKGQA, and then
discuss its main components: (1) Structure-BERT
and (2) query graph ranking in details.

4.1 Overview

The overview of our proposed SSKGQA is de-
picted in Figure 4. Given a question q, following
previous works (Saxena et al., 2020; Chen et al.,
2020; Cai et al., 2021) we assume the topic entity
of q has been obtained by preprocessing. Then the
answer to q is generated by the following steps.
First, the semantic structure of q is predicted by a
novel Structure-BERT classifier. For the example
in Figure 4, q is a 2-hop question and the classi-
fier predicts its semantic structure as SS2. Second,
we retrieve all the candidate query graphs (CQG)
of q by enumeration2, and use the predicted se-
mantic structure SS2 as the constraint to filter out

2For clarify, only 1-hop and 2-hop candidate query graphs
are considered in this example.
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noisy candidate query graphs and keep the candi-
date query graphs with correct structure (CQG-CS).
Afterwards, a BERT-based ranking model is used
to score each candidate query graph in CQG-CS,
and the top-1 highest scored candidate is selected
as the query graph g for question q. Finally, the
selected query graph is issued to KG to retrieve the
answer Sergei Kozlov.

4.2 Structure-BERT

Given a question q, we first need to predict its
semantic structure, which is a multi-class classifi-
cation problem that classifies question q to one of
the six semantic structures defined in Figure 3.

BERT

[CLS] What Justin Bieber Brother [SEP]····

E[CLS] E1 Em-2 Em-1 Em E[SEP]····

T[CLS] T1 Tm-2 Tm-1 Tm T[SEP]····

question 
representation

Justin 
Bieber

Topic entity te

entity vector

eq
Full connected layer

Question q

Label

Softmax

Entity Encoder
e.g., TransE

RotatE (Eq.1)

s

eh

Figure 5: Structure-BERT: given a question and its
topic entity, the model predicts the semantic structure
of the question.

Figure 5 depicts the architecture of Structure-
BERT. The input to Structure-BERT is question
q and its topic entity te. The output of Structure-
BERT is a probability distribution over six seman-
tic structures, i.e., p(y|q, θ), where θ denotes the
model parameters of Structure-BERT. Structure-
BERT contains three sub-modules. Question En-
coder encodes question q by a BERT language
model (Devlin et al., 2018), and the final hidden
state corresponding to token [CLS] is used as the
question embedding eq. Entity Encoder leverages
a pre-trained knowledge embedding model, such as
TransE (Bordes et al., 2013) or ComplEx (Trouil-
lon et al., 2016), to extract the entity embedding eh.
Next, the extracted question embedding eq and en-
tity embedding eh are fed to a RotatE module for
information fusion. First, we utilize a pre-trained
RotatE (Sun et al., 2019b) model to calculate a
“tail" embedding et using eh and eq, and then fuse
the topic entity, question and “tail" embeddings by
combining eh, eq and et to a latent representation
s by

ēh = ehlh + iehhh

ēq = eqlh + ieqhh

ēt = ēh×ēq=ehlhe
q
lh−ehhhe

q
hh+i(ehhhe

q
lh+ehlhe

q
hh)

s = eh + eq + et, (1)

where e∗lh (e∗hh) denotes the lower (higher) half of
vector e∗. As such, ē∗ is a complex vector whose
real (imaginary) part is from e∗lh (e∗hh). Therefore,
we can convert between e∗ and ē∗ readily.

Finally, the latent representation s is fed to a
fully connected layer, followed by a softmax for
classification. The whole network is fully differ-
entiable and can be optimized by minimizing the
traditional cross-entropy loss.

To train Structure-BERT, we need to annotate
questions with their semantic structures to develop
a training, validate and test set. As discussed in
Sec. 3.2, this annotation can be conducted readily
for questions in MetaQA and WSP. The details are
provided in Sec. 7.2 in Appendix.

4.3 Query Graph Ranking

Another important component of SSKGQA is
a BERT-based ranking model for query graph
ranking that can be trained by a triplet loss (Schroff
et al., 2015). Specifically, the ranking model has
three inputs: (1) question q={[CLS], w1, w2,
· · · , wm, [SEP]}, where wi is the i-th word of
q; (2) positive query graph3 gp={[CLS], u1, u2,
· · · , un, [SEP]}, where ui is the i-th unit of a
query graph that is split by space or special symbol
such as “.". For example, given query graph
(Natalie Portman, film.actor.film,
v), u1=Natalie, u2=Portman, ... and u6=v;
and (3) negative query graph gn that is a candidate
query graph in CQG-CS except the positive
candidate of the question.

We utilize a BERT model f(.) to extract the
semantic representations f(q), f(gp), f(gn) for
q, gp, gn, respectively. This BERT model is built
on a pre-trained BERT from Hugging Face4; we
add one extra multi-head attention layer on top of
the hidden state of the pre-trained BERT (See the
ablation study in Sec. 5). This BERT-based ranking
model f(.) is then optimized by minimizing the

3The positive query graph of a question can be found from
the relation paths provided in MetaQA or the SPARQL com-
mand provided in WSP.

4https://huggingface.co/bert-base-uncased
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triplet loss (Schroff et al., 2015)

max(‖f(q)−f(gp)‖−‖f(q)−f(gn)‖+α,0), (2)

where ‖.‖ denotes the Euclidean distance and α is
a margin parameter, which we set to 1 as default.

During training, the triplet loss reduces the dis-
tance between f(q) and f(gp), while enlarging the
distance between f(q) and f(gn). At inference
time, we calculate the similarity scores between
question and its candidate query graphs from CQG-
CS, and choose the top-1 highest scored candidate
as query graph g to retrieve final answer from KG.

5 Experiments

We evaluate the performance of SSKGQA on two
popular KGQA benchmarks: MetaQA and We-
bQuestionsSP (WSP), and compare it with seven
state-of-the-arts methods. Ablation study is also
conducted to understand the effectiveness of differ-
ent components of SSKGQA.

Our PyTorch source code is provided at https:
//github.com/ToneLi/SSKGQA. All our
experiments are performed on Nvidia RTX GPUs.

5.1 Datasets
• MetaQA (Zhang et al., 2018) is a large scale

KGQA dataset with more than 400k questions.
It contains questions with 1, 2 or 3 hops. In
our experiments, we use the vanilla version of
the QA dataset. MetaQA also provides a KG
from the movie domain with 43,233 entities,
9 relations and 134,741 triples.

• WebQuestionsSP (WSP) (Yih et al., 2016)
is a small scale KGQA dataset with 5,119
questions which are answerable through Free-
base KG. Since Freebase has more than
338,580,000 triples, for ease of experimen-
tation we use a light version provided by Sax-
ena et al. (2020). This smaller KG has 1.8
million entities and 5.7 million triples.

The statistics of training, development and test
datasets of MetaQA and WSP is provided in Ta-
ble 2. Compared to MetaQA, WSP is relatively
small QA dataset even though its KG is much larger
than that of MetaQA.

5.2 Hyperparameter Settings
Structure-BERT We set the dropout rate to
0.1, batch size to 32, and use AdamW opti-
mizer (Loshchilov and Hutter, 2017) with the learn-
ing rate of 5e-8. We also apply gradient clipping

Dataset Train Dev Test

MetaQA- hop1 96,106 9,992 9,947

MetaQA- hop2 118,980 14,872 14,872

MetaQA- hop3 114,196 14,274 14,274

WSP 3,304 – 1,815

Table 2: Statistics of the MetaQA and WSP datasets

to constrain the maximum value of L2-norm of the
gradients to be 1. To extract the latent representa-
tions of topic entities, pre-trained ComplEx (Trouil-
lon et al., 2016) and TransE (Bordes et al., 2013)
are adopted for MetaQA and WSP, respectively.

BERT-based Ranking Model We add one extra
multi-head attention layer on top of the hidden
state of the pre-trained BERT. This extra multi-head
attention layer contains three attention heads and a
3072-dim fully connected layer. The dropout rate is
set to 0.5. We use AdamW Optimizer (Loshchilov
and Hutter, 2017) with the learning rate of 2e-5.
We also use gradient clipping to constrain the max
L2-norm of the gradients to be 1.

5.3 Baselines

We compare our SSKGQA against seven state-of-
the-art complex KGQA models: 1) GraftNet (Sun
et al., 2018), which answers the questions based
on the subgraphs it creates. 2) PullNet (Sun et al.,
2019a), which proposes a “pull" operation to re-
trieve the relevant information from KG and ex-
ternal corpus. 3) Key-Value Memory Network
(KV-MemNN) (Miller et al., 2016), which uses
key-value pairs as the memory units to answer
questions. 4) EmbedKGQA (Saxena et al., 2020),
which proposes a knowledge embedding method
for Complex KGQA. 5) TransferNet (Shi et al.,
2021), which utilizes an interpretable model for
complex KGQA. 6) DCRN (Cai et al., 2021),
which proposes a Bayesian network to retrieve the
final answers. For MetaQA, we also include 7)
VRN (Zhang et al., 2018) as the baseline, which
proposes an embedding reasoning graph and uti-
lizes variational inference to improve the perfor-
mance of Complex KGQA.

5.4 Comparison with State-of-the-Arts

Table 3 reports the performances of SSKGQA and
seven state-of-the-art methods on MetaQA and
WSP. As can be seen, the performances of KV-
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Model Hop-1 Hop-2 Hop-3 WSP
KV-MemNN 96.2 82.7 48.9 46.7
VRN 97.5 89.2 62.5 -
GraftNet 97.0 94.8 77.7 66.4
PullNet 97.0 99.9 91.4 68.1
EmbedKGQA 97.5 98.8 94.8 66.1
DCRN 97.5 99.9 99.3 67.8
TransferNet 97.5 100 100 71.4
SSKGQA 99.1 99.7 99.6 71.4

Table 3: Hits@1 values of different KGQA methods on
MetaQA and WSP. Hop-n denotes the hop-n questions
of MetaQA.

MemNN are limited by the error propagation over
multi-hop reasoning, i.e., as the number of hops
increases, its performance is degraded significantly.
GraftNet and PullNet perform similarly well on all
datasets (expect MetaQA-hop3) as both of them
rely on subgraphs to retrieve the answers. Com-
pared to GraftNet, PullNet has much improved
results on MetaQA-hop3, indicating that the pro-
posed pull operation is more suitable to complex
questions. EmbedKGQA achieves a good perfor-
mance on MetaQA, but a relatively lower perfor-
mance on WSP. This is because treating question
as a relation path in a triple may introduce more
noise especially when the question is more com-
plex. Even though DCRN achieves the best perfor-
mance on MetaQA-hop2, it still suffers from error
propagation when inferring the reasoning paths.
For more complex WSP questions, DCRN has a
3.6-point lower accuracy than that of our method.
In general, TransferNet is the most competitive
one to our SSKGQA. While both methods have
the best results on WSP, SKGQA has an improved
performance on MetaQA-hop1 over TransferNet,
and is almost neck to neck on hop-2 and hop-3.
Overall, SSKGQA outperforms or achieves com-
parable exact-match hits@1 performances to the
other methods, demonstrating the effectiveness of
our proposed method.

5.5 Ablation Study

We further investigate the effectiveness of different
components of SSKGQA, including semantic struc-
ture based filtering, Structure-BERT, the BERT-
based ranking model, etc.

Hop-1 Hop-2 Hop-3 WSP
w/o SS 99.11 93.71 62.10 45.89
w/ SS 99.26 99.03 95.69 58.51

Table 4: Hits@1 values of SSKGQA w/ SS and w/o SS
on MetaQA and WSP.

5.5.1 Impact of Semantic Structure based
Filtering

One of the core ideas of SSKGQA is the semantic
structure based filtering. In this section, we eval-
uate the effectiveness of this operator by enabling
/ disabling it and report the final performances of
SSKGQA, which correspond to the w/ SS and w/o
SS results in Table 4. For the purpose of illustration,
when we enable the filtering (w/ SS), we assume
that our Structure-BERT classifier can correctly
predict the semantic structures of all the questions
with a 100% accuracy, and therefore the impact of
the filtering isn’t affected by the accuracy of the
classifier. For ease of experimentation, we use a
BiGRU as the ranking model in this experiment.

Table 4 reports the impacts of the semantic struc-
ture based filtering. It can be observed that for
simple questions, e.g., MetaQA-hop1, SSKGQA
w/ SS and w/o SS have very similar performances.
However, when the questions are more complex,
SSKGQA w/ SS achieves significantly higher accu-
racies (sometimes over 10%) than SSKGQA w/o
SS, demonstrating the effectiveness of the semantic
structure based filtering for complex questions.

5.5.2 Accuracy of Structure-BERT
Structure-BERT plays a critical role in SSKGQA
as it predicts the semantic structure of a question,
which is then used to filter out noisy candidate
query graphs. In this section, we evaluate the accu-
racy of Structure-BERT and compare it with other
design choices.

Specifically, we compare the performance of
Structure-BERT with four other classifiers, in-
cluding BiGRU and three pre-trained language
models: BERT (Devlin et al., 2018), Dis-
tilBERT (Budzianowski and Vulić, 2019) and
CamemBERT (Martin et al., 2020)). For these
four classifiers, they classify a question directly
to one of the six semantic structures without con-
sidering topic entity and information fusion as in
Structure-BERT.

Table 5 reports the classification accuracies of
different classifiers on the questions from MetaQA
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Model Hop1 Hop2 Hop3 WSP
BiGRU 96.44 94.49 98.83 80.95
BERT 94.52 98.70 96.22 82.62
DistilBERT 95.66 98.30 97.02 83.37
CamemBERT 96.66 97.30 98.26 81.90
Structure-BERT 99.24 99.87 99.73 86.97

Table 5: Classification accuracies of different clas-
sifiers on predicting semantic structures of questions
from MetaQA and WSP.

and WSP. As can be seen, our Structure-BERT
achieves nearly 100% accuracies on MetaQA and
86.97% accuracy on WSP, demonstrating the effec-
tiveness of Structure-BERT on semantic structure
prediction. Further, Structure-BERT consistently
outperforms all the other classifiers by notable mar-
gins, indicating the importance of leveraging both
question and topic entity for information fusion for
semantic structure prediction. We also notice that
the classification accuracy on WSP is much lower
than that of MetaQA. This is likely due to: (1) the
class imbalance issue of the WSP questions, and (2)
much smaller number of training questions in WSP
(3,304) than that of MetaQA (329,282). We will
leave the further improvements of Structure-BERT
on WSP to future works.

5.5.3 Performance of BERT-based Ranking
Model

The BERT-based ranking model decides which
candidate query graph is to be used to retrieve
the final answer. Therefore, its performance is
of the paramount importance to SSKGQA. In this
section, we evaluate the effectiveness of our pro-
posed BERT-based ranking model and compare
it with other three ranking methods, including 1)
CNN (Yih et al., 2015), which uses a CNN to learn
the representation of question and candidate query
graph for ranking. 2) BiGRU, which uses a BiGRU
to learn the representation of question and candi-
date query graph for ranking. 3) BERT (Devlin
et al., 2018), which uses a pre-trained BERT5 to
extract the representation of question and candidate
query graph for ranking.

Table 6 reports the performances of different
ranking models on MetaQA and WSP, where
BERT∗ denotes our proposed BERT-based rank-
ing model that has one extra multi-head attention
layer on top of the hidden state of the pre-trained

5https://huggingface.co/bert-base-uncased

Model Hop-1 Hop-2 Hop-3 WSP
CNN 97.70 99.21 92.91 50.24
BiGRU 98.87 98.95 95.43 56.51
BERT 99.49 99.26 99.54 71.02
BERT∗ (ours) 99.10 99.69 99.64 71.40

Table 6: Hits@1 values of different ranking models on
MetaQA and WSP. BERT∗ denotes our BERT-based
ranker.

BERT. As we can see, the BERT-based ranking
models (BERT and BERT∗) outperform the tradi-
tional CNN or BiGRU based ranking models since
the former can leverage large scale pre-trained
BERT for transfer learning. Our BERT∗ further
improves the performance of the pre-trained BERT
due to the additional attention layer which enables
model to reweight the attention values to different
semantic units in the input and enhance the seman-
tic representation of question and candidate query
graphs for ranking.

To validate the design choices of our BERT-
based model, we run additional ablation studies
on different factors of our ranking model, such as
number of negative query graphs for the triplet loss
based training and number of heads in the added
multi-head attention layer. The details are relegated
to Sec. 7.3 in Appendix.

6 Conclusions

This paper introduces SSKGQA, a semantic struc-
ture based method to predict query graphs from
natural language questions. Compared to prior
query graph prediction based methods, SSKGQA
filters out noisy candidate query graphs based on
the semantic structures of input questions. To this
end, we define six semantic structures from com-
mon questions of the KGQA benchmarks. A novel
Structure-BERT classifier is then introduced to pre-
dict the semantic structure of each question, and
a BERT-based ranking model with a triplet loss
is proposed for query graph ranking. Extensive
experiments on MetaQA and WSP demonstrate
the superior performance of SSKGQA over seven
state-of-the-art methods.

As for future work, we plan to investigate tech-
niques to design additional semantic structures to
cover the remaining 22.98% of questions in WSP.
We would like also to improve Structure-BERT’s
accuracy on WSP by addressing the class imbal-
ance and data scarcity issues of WSP.
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7 Appendix

7.1 Example Questions and their Semantic
Structures

We provide six example questions and their corre-
sponding semantic structures. These examples are
selected from the MetaQA and WSP benchmarks.
E denotes a topic entity, r refers to all types of re-
lations, v is an existential variable, and C denotes
a constraint.
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1) What is the  released  time of The Corn is 

Green？

The Corn is Green

release_year

2) What are the  genres of the films which directed by 
Deon Taylor?

Deon Taylor

directed_by_reverse

has_genre

3) What are the genres of  movies which  share 
directors with Squirm?

Squirm

directed_by

directed_by_reverse

has_genre

4) What county is Greeley Colorado in?

Greeley Colorado

location.location.containedby

common.topic.notable_types

US County

5) Who played Jacob Black in Twilight?

Twilight

film.film.starring

film.performance.actor

film.performance.character

Jacob Black

6) Where did Scott Fitzgerald go to college?

Scott Fitzgerald

people.person.education

common.topic.notable_types

education.education.institution

College/University

3

5

4

6

Figure 6: Examples questions and their semantic struc-
tures

7.2 Semantic Structure Annotation for
Training Questions

We need to annotate each training question to a
semantic structure in order to train Structure-BERT
for semantic structure prediction. Here we describe
how we can automatically annotate each training
question in MetaQA and WSP.

7.2.1 MetaQA
Annotating semantic structure for each training
question in MetaQA is straightforward. Since train-
ing questions are organized by number of hops, all
training questions with 1-hop are labeled to SS1,
the 2-hop ones to SS2, and the 3-hop ones to SS3,
respectively.

7.2.2 WSP
The SPARQL command for each question is pro-
vided in WSP. Thus, we can readily extract the
query graph of a question from its SPARQL com-
mand. See an example in Figure 7, where a query
graph is shown on the left and the corresponding
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SPARQL command is shown on the right; the cor-
respondences between two parts are marked by red
lines. Once the query graph is extracted, each train-
ing question can be readily annotated to a semantic
structure based on its query graph.

Figure 7: Mapping from a SPARQL command to its
query graph

7.3 Additional Ablation Study

Number of Neg. 1 5 10 50
hits@1 64.57 68.87 70.08 70.79
Number of Neg. 100 200 300 500
hits@1 71.29 71.23 71.29 70.58

Table 7: Hits@1 values on WSP of our BERT-based
ranking model when trained with different number of
negative query graphs.

Number of negative query graphs Given a
question, a plenty of negative query graphs can
be generated by enumeration from a KG. By an-
alyzing the questions in WSP, we found that the
maximal number of negative query graphs that can
be extracted for WSP is around 500. We need to
determine a proper number of negative samples to
train the ranking model with the triplet loss. To this
end, we evaluate the performances of our BERT-
based ranker when trained with different numbers
of negative samples. The results are reported in
Table 7, where 8 different number of negative sam-
ples are considered. As we can see, when number
of negative samples is over 100, the ranking model
achieves improved hits@1 performances; when
n = 100 our BERT-based ranking model yields
the best hits@1 with a good run-time performance.

Number of Heads 1 3 6

hits@1 71.29 71.40 70.63

Table 8: Hits@1 values on WSP of our BERT-based
ranking model with different number of attention heads
in the added attention layer.

Number of heads Another design choice for the
extra multi-head attention layer in our BERT-based

ranker is the number of attention heads. We there-
fore evaluate the performance of our BERT-based
ranker with 3 different number of attention heads.
The results in Table 8 shows that when the num-
ber of attention heads is 3, our BERT-based ranker
achieves the best hits@1.
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Abstract

Open-source platforms such as GitHub and
Stack Overflow both play significant roles in
current software ecosystems. It is crucial but
time-consuming for developers to raise pro-
gramming questions in coding forums such
as Stack Overflow and be navigated to actual
solutions on GitHub repositories. In this pa-
per, we dedicate to accelerating this activity.
We find that traditional information retrieval-
based methods fail to handle the long and
complex questions in coding forums, and thus
cannot find suitable coding repositories. To
effectively and efficiently bridge the seman-
tic gap between repositories and real-world
coding questions, we introduce a specialized
dataset named Repo4QA, which includes over
12,000 question-repository pairs constructed
from Stack Overflow and GitHub. Further-
more, we propose QuRep, a CodeBERT-based
model that jointly learns the representation of
both questions and repositories. Experimental
results demonstrate that our model simultane-
ously captures the semantic features in both
questions and repositories through supervised
contrastive loss and hard negative sampling.
We report that our approach outperforms exist-
ing state-of-art methods by 3%-8% on MRR
and 5%-8% on P@1. 1

1 Introduction

With the increasing popularity of software develop-
ment, Stack Overflow and GitHub (two large-scale
communities widely recognized in open source
ecosystems) have attracted growing research in-
terests. As the idiom goes, “Don’t reinvent the
wheel”. Tackling programming problems with ex-
isting codes and documents is more effective and
economical, since various resources in repositories
can provide more helpful information than text-
formed answers. Specifically, developers can get

∗Corresponding author.
1Our dataset and code are available at https://

github.com/Minkow/Repo4QA

help and advice to solve the technical challenges
they face, and be provided a variety of solutions
and tools in repositories on GitHub. As a vast num-
ber of challenges have already been considered and
settled by the community, sophisticated schemes
posted on GitHub can help satisfy requirements or
solve problems discussed in Stack Overflow. Nat-
urally, many answers in Stack Overflow provide
links to GitHub repositories, and a large amount of
these answers are acknowledged to be high-quality
and helpful by the community. This phenomenon
is worth investigating to determine its contribution
to the efficiency improvement and the code reuse
of the open source ecosystem.

Motivated by the interplay between Stack Over-
flow and GitHub, we introduce a novel question-
repository matching task. Given a natural-
language-formed question in the programming do-
main, we aim to search for the most relevant
GitHub repository from all candidate repositories
as the answer. Figure 1 illustrates the interaction
between a question and a repository, where the key
information for problem-solving is framed.

To this end, we introduce Repo4QA, a dataset
consisting of 12,995 question-repository pairs2 for
complex coding question solving. The questions
are collected from Stack Overflow, and the reposi-
tories are crawled from GitHub through the hyper-
links provided in corresponding Stack Overflow an-
swers. Each repository is instrumental for trouble-
shooting confirmed by forum users with upvotes.
Such that proper repositories can be used as an-
swers to coding questions.

Different from previous information retrieval
(IR) tasks, the challenge of the proposed task lies
in the long-form questions. Typical IR methods
and tricks, such as query expansion, are designed
for short and keyword-based user inputs, while our
task focuses on questions written in natural lan-

2We also call them query-document pairs from the perspec-
tive of IR.
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Figure 1: An example of interaction between question
at Stack Overflow and repository at GitHub.

guages containing semantic information, which is
harder to resolve.

Different from code searching task (Husain et al.,
2019; Cambronero et al., 2019), our task is sup-
posed to find a reasonable semantic alignment be-
tween two long-form sentences. Questions and
repositories have more complex structures and
richer information than short-form web queries
and code snippets. Compared with community-
based QA task (Qiu and Huang, 2015a; Zhao et al.,
2017), our task is a cross-platform task resulting
in semantic gaps between questions and answers,
which is more challenging for traditional IR-based
methods such as BM-25 (Robertson et al., 1995).
Besides, unlike common questions, questions about
programming are more challenging and specialized.
The terminology of programming is widely used
to form questions; there are even some questions
described with codes. Moreover, complex models
considering more interactions between QA pairs
are more computationally expensive in our task. Fi-
nally, the interactions inside queries or documents
corpus should not be neglected. The relationship
of the elements in the same semantic category is
informative while discriminating positive samples

from negatives.
To address the aforementioned issues, we pro-

pose a novel jointly learning scheme, QuRep, for
Question and Repository pairs. QuRep employs
CodeBERT (Feng et al., 2020) as the initial weight
of its transformer-based encoder. Our work lever-
ages the supervised contrastive loss for better sep-
arating elements from each other in the represen-
tation space. An unsupervised hard negative sam-
pling strategy enables better discrimination per-
formance. The shared weights between encoders
reduce the computation cost, while the relevance
between questions and answers can be ranked by
the similarity score of embedding vectors. With
experimental evaluation and comprehensive analy-
ses, we show that our method strongly outperforms
baselines.

To summarize, the main contributions of this
paper are concluded into three points respectively.

• Dataset : A novel cross-platform Question-
Answering task is presented, aiming at answer-
ing real-world programming questions with
existing GitHub repositories. We especially
collect a dataset, Repo4QA, for this task.

• Methodology: A practical joint embedding
model, QuRep, is proposed to optimize the
classification and contrastive loss, which can
represent both questions in language and
repositories.

• Experiment : Experimental results demon-
strate the effectiveness and efficiency of the
proposed QuRep model compared with base-
lines.

2 Related Work

Datasets. Existing datasets in the programming
domain focus on text-code interaction. Code-
SearchNet (Husain et al., 2019), Deep Code
Search (Gu et al., 2018) and CoDesc (Hasan et al.,
2021) collect large-scale corpus of code snippet
with corresponding descriptions. CoSQA (Huang
et al., 2021) collects pairs of web query and func-
tion code for code question answering. Stack Over-
flow resources are mined (Yin et al., 2018) as long-
form natural language queries to retrieval code snip-
pets (Nie et al., 2016; Yao et al., 2018; Heyman
and Van Cutsem, 2020). CodeXGLUE (Lu et al.,
2021) includes text-to-code generation task and
code memorization task. The only text-to-text task
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is documentation translation in CodeXGLUE. Be-
sides, LinkSO (Liu et al., 2018) discovered the
similarity between repositories.

Neural Matching Networks. Ranking methods
are widely used in text matching and semantic
search tasks, such as community-based question
answering (Qiu and Huang, 2015b; Zhang et al.,
2021b), retrieval-based question answering (Qu
et al., 2020; Cohen et al., 2018), and visual question
answering (Lee et al., 2020). Specifically, in the
programming domain, traditional IR-based ranking
models regard code as text and match keywords in
queries (Bajracharya et al., 2006). Recently, deep
learning based methods represent coding questions
and answers with vectors and leverage similarities
to rank answers (Gu et al., 2018; Cambronero et al.,
2019; Wan et al., 2019).

Considering the computational cost for
matching, representation-based learning ap-
proaches (Huang et al., 2013) encode a query
paired with a document separately into a vector
and judge the relevancy by the similarity of vectors.
Towards a better representation of repositories,
paper2repo (Shao et al., 2020) maps the embed-
dings of academic papers and repositories into
the same space for ranking and recommendation.
Very recently, pre-trained models, including
CodeBERT (Feng et al., 2020) that trained from
data in the programming domain, have been
applied to improve representation learning.

LM Based Retrieval and Ranking. Pretrained
language models (Kenton and Toutanova, 2019;
Liu et al., 2019b) dramatically advance the state
of the art on various NLP tasks. However, lim-
itations on text length and the trade-off of effec-
tiveness and efficiency are important issues, as
the cross-attention operations are too expensive in
pair-wise cross-encoders. Recent work (Karpukhin
et al., 2020; Xiong et al., 2020; Khattab and Za-
haria, 2020; Nie et al., 2020; Gao et al., 2021a) try
to reduce the computational interaction between
query and document and move it to the online re-
rank procedure. By storing the representation of
documents offline, these methods facilitate cheap
runtime costs while achieving promising results on
retrieval tasks.

Moreover, contrastive learning on pre-training
models has recently been broadly applied to sev-
eral sentence-level tasks. SBERT (Reimers and
Gurevych, 2019) uses siamese and triplet network

Dataset Type Samples Avg. length

Large
Question 12,995 7.97 + 104.50

Repository 9,954 9.79 + 572.58

Small
Question 3,766 8.02 + 105.73

Repository 2,862 9.77 + 688.03

Table 1: The statistics of Repo4QA dataset. Avg.
length means title length + body length for question,
and description length + Readme length for repository.
Readme file has the maximum character length of 8192.

to derive embedding of two sentences, then fine-
tune the model to yield useful sentence embed-
dings. Some work aims to improve BERT sentence
embeddings in an unsupervised way (Gao et al.,
2021b; Kim et al., 2021) by data augmentation.

3 Dataset Description

3.1 Repo4QA Dataset

Questions. We collect complex programming
questions from the well-known coding forum Stack
Overflow. Stack Overflow provides data dump 3

from 2014 to 2021. To avoid ambiguous answers
such as “We can deploy A after B to tackle this”,
answers less than 200 characters that contain only
a hyperlink to a GitHub repository are selected.

Responders are required not only to get through
the requirements raised by questioners, but also to
be familiar with repositories stored on GitHub. The
goal of our research is to fill in the gap between the
questioner and various open source tools.

To filter out answers without specific repository-
for-solution and repository-structured intent such
as bug-reporting discussion, we discard answers
linking to particular resources in repositories
such as issues, commits, and releases (e.g., the
question is “Assets serving paths in Rails 3.1
- how to customize it?” and the answer is
“GitHub.com/chriseppstein/compass/issues/337 -
there is a big discussion about it”). We control
the quality and correctness of answers by only min-
ing posts with at least one upvote. After removing
answers with inaccessible GitHub repository links,
these answers and corresponding questions com-
pose 12,995 QA pairs with 12,713 unique ques-
tions. Codes are marked with [code] token to help
our model learn the combination of natural lan-
guage and code in questions.

3https://archive.org/details/stackexchange
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Repositories. We crawl repositories through the
GitHub API with given hyperlinks in answers. For
our task, we collect basic information such as the
name, description, topics (also called tags), and
stars of a repository. The description is short tex-
tual documentation to describe a repository briefly.
Topics are keywords to classify a repository. For
instance, the tag “python” indicates the program-
ming language that the repository uses, and the tag
“deep-learning” shows that the repository is used in
the deep learning domain. In addition, the Readme
file is also obtained for detailed documentation.
Most repositories introduce the main contribution
and usage in the head of the Readme file. We in-
vestigate 50 repositories randomly and find that
the most informative part of a Readme file is the
starting 2 or 3 paragraphs, which is far less than
512 tokens. Hence, we cut the first 8192 characters
of a Readme file after text cleaning to represent
the repository in natural language. Likewise, 9,663
unique repositories are investigated in this step, in
which 2,862 repositories have at least one topic.

Construction. Questions and repositories are
aligned according to QA pairs mined in questions
to constitute a QA pair sample. For each pair, the
original answer is replaced by the repository men-
tioned. All samples in the small dataset have at
least one topic, while most repositories in the large
dataset lack topics. The statistics of both datasets
are listed in Table 1.

Comparison. To the best of our knowledge, this
is the first dataset applied to solving complex re-
alistic programming problems with existing web
resources. In this part, we conduct a comparison
between Repo4QA and datasets from two aspects:
1) Code intelligence and 2) Community-based QA.
Datasets in the programming domain (Yao et al.,
2018; Nie et al., 2016; Yin et al., 2018; Heyman
and Van Cutsem, 2020) tend to adopt only the title
of the question in Stack Overflow or a short de-
scription as the query. However, for some complex
questions raised in Stack Overflow, the title is too
short to fully reveal the logic or semantics of those
complex questions. On the other hand, the details
of those questions are often clearly illustrated in the
question body, and the neglect of the question body
will lead to an incomplete understanding of the
question. We also find that in Community-based
QA datasets (Lyu et al., 2019; Zhang et al., 2021b),
their QA pairs are on the same webpage, while our

Repo4QA aims to bridge the semantic gap between
natural languages and GitHub repositories, which
is challenging to represent due to its length (av-
eragely over 500 words) and heterogeneous text
structures. In comparison, the average length of
question/answer on the CoSQA dataset (Huang
et al., 2021) is 6.60/71.51, and 7.86/81.6 on the
CQA-SO (Lyu et al., 2019) dataset. A detailed
comparison can be found in appendix A.

4 Methodology

4.1 Task Description

Before diving into the details of our model, we
first describe some notations used in the answer
selection problem. Each question consists of a ti-
tle, content, and tags, while each repository served
as an answer candidate has descriptions and doc-
umentation. Note that tags may not be contained
in some repositories. Given a question in a natural
language question set q ∈ Q, and a set of reposito-
ries R = {r1, r2, · · · , rn} from GitHub, our main
task is to find the most helpful repository r ∈ R to
solve the question q.

Due to the limitation of computation resources
in real-world applications, joint embedding is an
effective and efficient way to find repositories re-
lated to the raised question. Ideally, we train a
model that jointly learns the embedding ofQ andR
with a transformer-based encoder network. Specifi-
cally, given any question and its dense representa-
tion qi and repositories’ embedding r+i , r−i , where
r+i is one of the answer to qi, and r−i is not re-
lated to qi. We expect the model to distinguish r+i
from others via similarity metrics, that is, to make
s(qi, r

+
i ) and s(qi, r

−
i ) satisfying the inequality:

s(qi, r
+
i ) > s(q, r−i ), where s denotes a similar-

ity function, e.g., cosine similarity or Euclidean
distance-based similarity. Then we rank all the
answers for a given question according to the simi-
larity between them.

4.2 Model Architecture

We present our QuRep in Figure 2. Different from
the natural language in common domains, the lan-
guage used in the programming domain contains
various out-of-vocabulary words, e.g., “flask” is
a tool used for web in Python programming. To
solve this problem, we leverage CodeBERT as our
text encoder. CodeBERT is a bi-modal pre-trained
RoBERTa-based (Liu et al., 2019b) model for nat-
ural language (NL) and programming language
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Figure 2: The QuRep applies a weight-sharing Code-
BERT for encoding questions and repositories. Similar-
ity is computed between model outputs and embeddings
stored in Cross-Batch Memory for model training.

(PL) tasks. It is a bidirectional Transformer with
12 layers, 768 dimensional hidden states and 12
attention heads pre-trained on the large-scale Code-
SearchNet (Husain et al., 2019) corpus. CodeBERT
achieves the state-of-the-art in most NL-PL, tasks
such as the natural language code search and code
documentation generation. By expanding the vo-
cabulary of RoBERTa, CodeBERT can properly
represent programming terms that occur in the train-
ing corpus, especially for word-combining termi-
nologies commonly used in programming. For ex-
ample, “pyflask” is an OOV word in most models’
vocabulary, but the WordPiece encoding will split
“pyflask” into “py” and “flask”.

For each question with title, body, and tags, we
put a [CLS] token at the beginning of these three
parts and separate them by [SEP] after tokeniza-
tion. Then we feed the tokenized sequences into
CodeBERT to acquire pooled contextualized rep-
resentations of them, respectively. A [Q] is placed
in the start to identify the question. In practice, we
adopt the mean pooling value of contextual repre-
sentations as the output of CodeBERT. Similarly,
for each repository, we conduct the same manner as
its description, Readme documentation, and topics.
The weights are shared between the model for both
question encoding and answer encoding.

As few Readme files exceed the token length
limit of 512 in CodeBERT, we only take the first

509 tokens (3 tokens are left for [Q]/[A], [CLS]
and [SEP]) of the Readme file as the documen-
tation. In practice, the head content of Readme
file is descriptive and summative enough, which is
more informative than the usage description and
changelogs in the later part of Readme file.

4.3 Loss Functions
Our approach considers three kinds of losses,
namely discrimination loss, supervised contrastive
loss, and classification loss. These loss functions
are designed for specific tasks to better represent
questions and repositories.

Discrimination Loss. Given a randomly sampled
minibatch of positive pairs D = (qi, ri)

N , the goal
of Discrimination loss is to separate the answer ri
apart from all other 2N−2 repositories in the same
batchD. It matches the target to satisfy the inequal-
ity : s(q+, r+) > s(q+, r−). where s(·) represents
the similarity. We choose cosine similarity as the
metric. Following previous work (Karpukhin et al.,
2020), the discrimination loss is defined as the neg-
ative log likelihood of positive pairs of instances:

LD = −log es(qi,ri)/τ

es(qi,ri)/τ +D
, (1)

where τ refers to the temperature parameter, D =∑
j ̸=i e

s(qj ,rj)/τ denotes the normalization part.

Supervised Contrastive Loss. The discrimina-
tion loss discussed above focuses on modeling the
distance between questions and answers. How-
ever, compared with other QA or NLI tasks (Ren
et al., 2021; Zhang et al., 2021a), our questions
are more complex and long-formed, which means
different questions implicate diverse semantic in-
formation. We insist that a good dense representa-
tion model should not only control the distance of
questions and answers, but can also represent the
semantic difference between questions and reposi-
tories. Hence, we further leverage the supervised
contrastive loss, to enforce the model learn to dis-
tinguish similar questions and answers, that is,
sim(q+, r+) > sim(q+, q−), and sim(q+, r+) >
sim(r+, r−). We also employ the negative log like-
lihood to achieve the supervised contrastive loss at
the instance level:

LCq = −log
es(qi,ri)/τ

es(qi,ri)/τ + Cq
,

LCr = −log
es(qi,ri)/τ

es(qi,ri)/τ + Cr
,

(2)
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where Cq =
∑

j ̸=i e
s(qi,qj)/τ , and Cr =∑

j ̸=i e
s(ri,rj)/τ . They refer to the similarity of

questions and repositories themselves, respectively.
We can observe that the difference between

LCq, LCr, and LD is the normalization part. In-
stead of simply summing them up, we can uni-
formly conclude these different types of loss func-
tions into one negative log likelihood as the follow-
ing Discrimination-Contrastive loss:

LDC = −log es(qi,ri)/τ

es(qi,ri)/τ +D + α · Cq + β · Cr ,
(3)

where the weight hyper-parameter α and β control
the importance of distinguishing similar questions
and repositories. The combined Discrimination-
Contrastive loss consists of four interactions:

(1) q+ →← r+ : The main element that gathers
paired question and repository together.

(2) q+ ←→ q− : The factor that separates the
embedding of questions.

(3) r+ ←→ r− : The component that makes
repositories to be distant from each other.

(4) q+ ←→ r− : An important role that cause un-
matched question-repository pairs segregated.

Hard Negative for Classification Loss. Previ-
ous studies (Luan et al., 2021; Karpukhin et al.,
2020; Xiong et al., 2020) provide effective meth-
ods of hard negative sampling, and further demon-
strate the importance of hard negatives. Ideally, we
aim to pay more attention to these hard negatives,
which are not semantically similar but are mapped
close to the anchor in the vector space.

We employ BM25 as the base sentence match-
ing algorithm. For each question in the training
set, we query it in the repository corpus, and then
select the top 10 results as the hard negatives ex-
cept the correct answer. Then we construct triplets
(q+, r+, r−) as training instances, where the nega-
tive r− is randomly sampled from these hard neg-
atives at a ratio of p to avoid the model collapse.
We minimize the cross entropy loss of enhanced
representations of q and r as follows:

LCE = CrossEntropy (f(q, r, |q − r|), y) ,
(4)

where f denotes a feed-forward classification net-
work, and y represents the classification label.

Overall Loss. The overall loss is the weighted
sum of the DC loss and the CE loss, which is:

L = LDC + γLCE , (5)

where γ is a hyper-parameter to balance the loss.

4.4 Cross-Batch Memory Augmentation
Cross-batch memory (XBM) (Wang et al., 2020)
can considerably boost the performance of con-
trastive learning tasks. The XBM module stores
embeddings and labels for data points. It is main-
tained as a first-input-first-output (FIFO) queue.
Enqueue and dequeue procedures are conducted
when a mini-batch arrives. As mentioned above,
for an anchor question qi, we pair it with restM−1
repositories {rj |j ̸= i} in the M -size mini-batch
as negative pairs. In practice, those heavyweight
BERT-based model has acute GPU memory cost
issues. The size of mini-batch is often limited in
NLP tasks using BERT-based models. By pairing
anchors with samples stored in XBM, the infor-
mation provided by negative pairs is significantly
enriched.

5 Experiments

5.1 Experimental Setup
Dataset. We conduct experiments on the
Repo4QA-small dataset, by randomly splitting
Repo4QA-small dataset into 2,966/400/400
for training/testing/validation. For repositories
retrieval, we evaluate the performance from
3 different corpora: the test split, the whole
Repo4QA-small repositories, and the whole
Repo4QA-large repositories, which is a more
realistic setting since the repositories do not occur
during the training period. We always only raise
all 400 questions in the testing set. However, we
retrieve answers from our dataset with different
scales. As for the test split, we search for the
best answer in the 400 repositories. For the
Repo4QA-small split, the range of ranking is the
400 repositories in the testset and the rest 3,366
repositories in the Repo4QA-small set. Note
that though some repositories have occurred in
the training step, we never learn the relationship
between questions and these repositories. For the
Repo4QA-large split, we seek suitable repositories
among the union of the 400 repositories in the
testset and all the repositories in the Repo4QA-
large set. If given more repositories, such as whole
GitHub repositories, a practical solution is to filter
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Models
Test Small Large

MRR P@1 P@5 MRR P@1 P@5 MRR P@1 P@5

BERT-base 7.98 4.25 9.50 3.08 1.50 3.75 1.23 0.50 1.75
CodeBERT-base 2.22 0.25 2.25 0.34 0 0.25 0.05 0 0
Glove 19.82 13.00 26.00 10.33 7.00 14.50 5.74 3.75 6.50
BM25 43.22 35.25 51.75 28.23 22.00 35.50 22.13 17.50 27.00
Universal Sentence Encoder 62.72 49.75 78.25 41.24 31.25 51.75 27.09 20.00 33.00
S-BERT 80.23 72.00 91.00 59.22 47.00 73.50 43.89 34.50 55.75
Siamese-CodeBERT 79.37 70.75 88.50 56.62 44.50 68.25 41.67 32.25 53.00
Triplet-CodeBERT 82.96 76.00 89.75 61.86 50.25 76.50 46.24 36.75 57.25
QuRep-BERT-base 77.23 70.25 87.00 59.61 48.50 73.00 44.93 32.75 60.75
QuRep (ours) 86.26 81.00 93.00 69.04 58.50 82.25 54.26 41.75 70.00

Table 2: Experimental results on the Repo4QA-small test set. The best figure of MRR and P@1 metric is in bold.
Our QuRep model outperforms both unsupervised and supervised baselines.

several repositories with traditional IR approaches
such as BM-25, then re-rank these repositories via
our model.

Metrics. We adopt two common metrics widely
used in answer ranking to measure the effective-
ness of our proposed model, namely, Mean Recip-
rocal Rank (MRR) and Precision@K, which means
the rate that correct answer appears in the top-K
ranked candidates. In practice, we evaluate the
performance of K = 1 and K = 5.

Baselines. As Repo4QA is a new challenge, no
model is specifically designed for it. Existing
methods such as ColBert (Khattab and Zaharia,
2020) focus on passage ranking tasks such as MS
MARCO (Nguyen et al., 2016), with short queries
and related passages. While query expansion meth-
ods (Nogueira et al., 2019b,a) are not so helpful
because of the complexity of our questions. Pair-
wise cross-encoders are more suitable for the re-
rank task after we retrieve the dense representa-
tion for the consideration of the effective-efficient
trade-off. For a fair comparison, diversified meth-
ods for similar tasks, such as sentence embedding
and metric learning, are introduced as baselines.
We use the exact same processed data for our
model as the input of these baselines. To be spe-
cific, BM25(okapi) (Robertson et al., 1995) and
GloVe (Pennington et al., 2014) is widely used in
IR tasks, while Universal Sentence Encoder (Cer
et al., 2018), BERT (Kenton and Toutanova, 2019),
CodeBERT (Feng et al., 2020), S-BERT (Reimers
and Gurevych, 2019) are transformer-based models
with different pre-training and fine-tuning strate-

gies. To compare with our designed loss functions,
we train the CodeBERT model with vanilla siamese
loss and triplet loss. Appendix B provides imple-
mentation details of baselines.

Implementation Details. We implement our
model based on the Hugging Face transform-
ers library. The initial weight is adopt from
microsoft/codebert-base4. We use
RAdam (Liu et al., 2019a) as the optimizer, with
a cosine annealing learning rate from 1e-5 to 1e-7.
The temperature τ in the loss function is 0.01. Fac-
tors of weights are set as α = β = 1.5 and γ = 0.4.
The negative sampling ratio is 0.2. For cross-batch
memory, we set the size of the memory bank to 64,
and this mechanism starts working from epoch 6.

5.2 Model Comparisons

The performance of different approaches on the
Repo4QA task is in Table 2. From these experi-
mental results, we have the following observations:

First, our proposed model outperforms all com-
petitive baselines on MRR, P@1, and P@5 metrics.
Especially, for the retrieval task on Repo4QA-large
dataset, traditional IR-based and word embedding
approaches cannot differentiate target from similar
repositories, while contrastive-learning methods
strongly outperform others. This result demon-
strates the difficulty of understanding long-form
questions compared with short queries, and the
necessity of precise retrieval on large corpora via
semantic search instead of lexical matching.

Second, poor performance is shown by BERT

4https://github.com/microsoft/CodeBERT
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Loss MRR P@1 P@5

Ours 86.26 81.00 93.00
Vanilla triplet loss 82.96 76.00 89.75
Hinge loss 83.72 77.25 91.75
Circle loss 82.44 75.00 91.25
InfoNCE 84.44 78.25 92.25

Table 3: Results with different comparable loss function.

and CodeBERT if directly employing mean pooling
output to similarity computation. The results are
even worse than using average GloVe embeddings.
Universal Sentence Encoder shows effectiveness
among unsupervised learning methods, and SBERT
achieves great performance since they are trained
on large QA corpora.

Third, nearly all supervised methods achieve
higher performance than unsupervised models,
though no early interaction, such as cross-attention
between questions and repositories, is considered.
This phenomenon demonstrates the sound effect of
contrastive learning.

Fourth, although some repositories in the
Repo4QA-small dataset have been modeled in the
training period, the performance still drops a lot
compared with the result in the Repo4QA-test. The
root cause is the diversity of questions. As the ques-
tions are always from the testset, they keep unseen
for the model in the inference step. There is also no
issue of data leakage in our Repo4QA-small dataset
because the training data consists of QA pairs, but
the questions in testset never pair with answers in
the Repo4QA-small dataset. When questions have
a longer form instead of simple keywords query,
the semantic information contained is richer and
more diversified, which increases the difficulty of
encoding.

5.3 Loss Comparisons

We agree that an empirical study for comparable
loss functions contributes to the soundness of our
method. As reported in Table 3, experimental re-
sults demonstrate the hybrid loss we design signif-
icantly improves the performance compared with
the classical loss functions of contrastive study(Sun
et al., 2020; Gao et al., 2021b).

The strongest baseline, InfoNCE, has a similar
form to our Discrimination-Contrastive loss. The
difference is that we distinguish the effect from
questions and repositories as stated in Sect. 4.3.

Models MRR P@1 P@5

QuRep 86.26 81.00 93.00
w/o XBM -3.28 -4.00 -2.50
w/o CodeBERT -9.03 -10.75 -6.00
w/o Constrative Loss -21.24 -26.75 -13.25
w/o CE Loss -0.83 -1.50 -1.00
w/o Hard Negatives -1.43 -2.75 -1.25

Table 4: Results of ablation study conducted on Test
split about model structure.

5.4 Ablations Study

As the experimental results show the same trend
in all three splits, in this part, we only conduct
experiments in the test split. We consider the model
components and loss function components as two
main aspects of our ablation studies.

Effects of model components. Removing or re-
placing components of QuRep decreases the per-
formance, as Table 4 shows. To be more specific,
we replace CodeBERT with BERT-base, just as the
result of QuRep-BERT-base shows. The perfor-
mance drop proves the effectiveness of pre-training
in the programming domain. Cross-batch memory
is proved to be a necessary mechanism for con-
structing more QA pairs to be trained.

Effects of loss components. We also investigate
the ablation of constituents in our proposed hybrid
loss function. Each part of our loss contributes to
the improvement of performance. As illustrated in
Table 4, contrastive loss is the backbone of our
learning target, and the hard negative sampling
strategy also plays an important role.

5.5 Case Study

To better understand the difficulty of the task and
the effectiveness of our solution, we present a case
study in this part. As a typical method in the IR
field, BM25 is selected as the baseline method
to compare. All these cases can be viewed on
StackOverflow. We only display key parts of ques-
tions/repositories considering the full length.

The first and second cases in Table 5 are ex-
amples that QuRep outperforms BM25. Question
1 means to find a dictionary implementation in
JavaScript. BM25 returns results containing the
keyword “dictionary,” as the repository “stig/json-
framework” (now redirected to SBJson/SBJson)
mentions NSMutableDictionary type in Objective-
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Question Title
BM25
Rank

QuRep
Rank

BM25 Top1 QuRep Top1

Is there a dictionary
implementation in JavaScript

13 1
stig/json-framework

This framework implements a strict
parser and generator in Objective-C

jieter/django-tables2
A complete, fully tested and documented

data structure library written in pure JavaScript.

What is the simplest way
to graph rrd files in Grafana

30 1
bookkojot/mp4fixer

Recover damaged/unfinished
mp4 files with h264 video

doublemarket/grafana-rrd-server
A simple HTTP server that reads RRD files

and responds to requests from Grafana.

Validate URL with
standard package in GO

32 1
GitHub/fetch

Promise-based mechanism for programmatically
making web requests in the browser

asaskevich/govalidator
Go Package of validators and sanitizers
for strings, numerics, slices and structs.

Angular: How to force run
unit tests when running Git push

245 6
mozilla-mobile/fenix

all-new Firefox for Android browser, based
on GeckoView and Mozilla Android Components.

lerna/lerna
A tool for managing JavaScript
projects with multiple packages

Table 5: Case study on BM25 and QuRep.

C, which is not so close to the question. In com-
parison, our proposed model recommends the col-
lection of data structures written in JavaScript.
Though the word “dictionary” is not discussed in
the repository so frequently, “dictionary” is con-
tained by the concept “data structures.” This is
what language models bring us. Case 2 and 3 also
show that BM25 tend to return similar repositories
at the word level, which results in repositories from
different disciplines or programming languages.
While QuRep can identify the purpose of questions
and recommend better answers.

Case 4 is a bad case in which both models fail.
The best answer posted on StackOverflow is “typi-
code/husk.” QuRep ranks “lerna/lerna” as the best
because it discusses both Angular and Git. How-
ever, the phrase “unit test” is ignored.

From the case study section, we can learn that
understanding the intent of a question is a key fac-
tor for our task, especially when the question con-
tains rich semantic information. The relations of
concepts are also an important issue to study.

6 Conclusion

In this paper, we introduce an automatically col-
lected novel dataset, Repo4QA, for the proposed
task. Furthermore, we propose QuRep, a con-
trastive learning method to fine-tune CodeBERT
for our task. Experimental results demonstrate that
our method outperforms baseline models in effec-
tiveness and efficiency. Detailed analyses are con-
ducted to investigate the impact on performance
brought by components of our model. We look
forward to other applications and more research
interest in our task. Moving forward, we plan to
deploy our dataset and method to solve program-

ming questions in software engineering practice
and consider code stored in repositories for better
modeling of multi-modal GitHub repositories.
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A Dataset comparison

As shown in Table 6, we compare our dataset
with several datasets on Code Intelligence and
Community-based QA. The scale of our dataset
is similar to SO-DS (Heyman and Van Cutsem,
2020), CQA-Quora (Lyu et al., 2019) and CQA-
SO (Zhang et al., 2021b). Our QA pairs are more
complex then short-form query/code pairs, which
resulting in less available resources on the web.
Moreover, our dataset is the only cross-platform
one.

B Baseline Implementation Details

We select GloVe average embedding, BERT [CLS]
token output and CodeBERT [CLS] token output as
baselines without supervision. For the supervised
learning method, Siamese-formed CodeBERT and
Triplet-formed CodeBERT are compared.

• BM25(okapi) (Robertson et al., 1995) BM25
is a well-known lexical retrieval model.
We employ the implementation from the
rank_bm25 library.5

• GloVe (Pennington et al., 2014) The mean em-
bedding of the whole sentence is regarded as
the representation of the sentence. Sentence
representation similarity is computed for rank-
ing.

• Universal Sentence Encoder (Cer et al., 2018)
It is a transformer-based network which aug-
ments unsupervised learning with training on
SNLI dataset. 6

• BERT (Kenton and Toutanova, 2019) We use
the [CLS] token output for sentence embed-
ding.

• CodeBERT Similar to the strategy applied on
BERT, the [CLS] token output is adopted. Be-
sides, we train a Siamese-formed CodeBERT

5https://GitHub.com/dorianbrown/rank_bm25
6https://tfhub.dev/google/universal-sentence-encoder/4

and a Triplet-formed CodeBERT for compari-
son in supervised learning. The implementa-
tion of CosQA (Huang et al., 2021) is based
on the Siamese-formed CodeBERT.

• S-BERT (Reimers and Gurevych, 2019) is a
Siamese BERT-Networks. We employ the all-
roberta-large-v1 model hosted on hugging-
face, which is pretrained over 1B+ QA pairs
for better sentence embedding. 7

C Hyper-parameter Configuration

To figure out the different role that our proposed
loss functions played in the optimization phrase, we
conduct a discussion on weight hyper-parameters,
α, β, and γ. α and β controls the importance of su-
pervised contrastive loss over discrimination loss.
Since Cq, Cr and D occurs together at the nor-
malization part of equation 4.3, the larger their
weight are, the more importance the have. We set
α = β during our experiment, and report result as
Table 7. We can find that the model performs better
while α > 1, which means the model focus more
on separating elements from the same semantic
catogory apart. The output demonstrates the impor-
tance and effectiveness of surpervised contrastive
learning. Besides, the weight γ and the hard neg-
ative sampling rate p are set to 0.2 to achieve best
performance.

α MRR P@1 P@5

2 86.01 80.50 93.50
1.5 86.26 81.00 93.00
1 85.30 79.00 92.75
0.5 85.12 78.00 92.75
0 84.48 77.75 92.50

Table 7: Results of different hyperparameter α = β
settings.

7https://huggingface.co/sentence-transformers/all-
roberta-large-v1
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Dataset Domain Size Query Type Answer Type Annotation
CSN (Husain et al., 2019) Coding 2.3M Short description Function code No

Deep Code Search (Gu et al., 2018) Coding 18.2M Short description Function code No
CoSQA (Huang et al., 2021) Coding 20.6K Web Query Function code Yes

QECK (Nie et al., 2016) Coding 312.9K SO question title Code block No
StaQC (Yao et al., 2018) Coding 268K SO question title Code block Partly

CoNaLa (Yin et al., 2018) Coding 598.2K SO question title Code block Partly
SO-DS (Heyman and Van Cutsem, 2020) Coding 12.1k SO question title Code block No

CQA-Quora (Lyu et al., 2019) Open 76.2k Quora question Quora Answer No
CQA-SO (Zhang et al., 2021b) Coding 13.9k SO question SO Answer No

Repo4QA (ours) Coding 13.0k SO question GitHub repository No

Table 6: Overview of existing datasets on Code Intelligence and Community-based QA
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Abstract
Most attempts on Text-to-SQL task using
encoder-decoder approach show a big problem
of dramatic decline in performance for new
databases. Models trained on Spider dataset,
despite achieving 75% accuracy on Spider de-
velopment or test sets, show a huge decline be-
low 20% accuracy for databases not in Spider.
We present a system that combines automated
training-data augmentation and ensemble tech-
nique. We achieve double-digit percentage im-
provement for databases that are not part of the
Spider corpus.

1 Introduction

Text-to-SQL is a task to automatically translate
a given a natural language question into an SQL
formula for a specific database (DB).

In 2018, Spider dataset (Tao et al., 2018) was
released as a large-scale complex and cross-domain
semantic parsing and Text-to-SQL dataset. Since
then numerous models have been developed and
evaluated using Spider dataset. Although there is
a large increase in accuracy, growing from 20%
to 70 + % between 2019 and 2021 of top ranked
systems, later studies (Suhr et al., 2020a; Shi et al.,
2020; Zhong et al., 2020), show that the accuracy of
these models drops significantly, in some cases well
below 20%, for databases outside Spider dataset.

In this paper, we present various experiments
for Text-to-SQL task using DB schemas that are
inside and outside of Spider dataset. We identify
systematic types of errors and analyze their possi-
ble causes. From our error analysis, we propose
solutions to address the limitations of the underly-
ing encoder-decoder architecture and of the Spider

dataset. We use training data augmentation tech-
nique in order to create a series of models for the
same DB schema. By coupling each model SQL re-
sult with the information extracted from the query
at the NLP step, we interpolate a final SQL formula
via Ensemble technique. The system achieves very
good results compared to its individual components
and can be run on any new DB schema, in or out-
side of the Spider dataset, even when there exists
a set of very limited number of training examples,
on the order of several tens.

This paper is organized as follows. In Section 2,
we review studies that defined a "standard" encoder-
decoder architecture for Text-to-SQL. In Section
3, we define the problem of encoder-decoder ap-
proach based on declined performances on new DB
schemas and new types of questions, that leads to
the challenge of achieving good accuracy. Next, we
describe our system in Section 5. The experiment
results in Section 6 and conclusions in Section 7.

2 Related Work

The Text-to-SQL task is not a new task in NLP and
there are many references on its complexity and
achievements obtained recently (Navid et al., 2017;
Popescu et al.; Yao et al., 2010). In (Tao et al.,
2018), the Spider corpus with thousands of training
examples was introduced in 2018. The Spider chal-
lenge has been introduced as well, where any team
can have their system evaluated on an unknown
corpus, which is a part of the Spider corpus, but
not publicly available.

In (Cai et al., 2018; Gehring et al., 2017; Yin
et al., 2016; Rabinovich et al., 2017), among others,
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a sequence-to-sequence approach was introduced,
opening the way for this type of architecture. In-
stead of translating into SQL, (Guo et al., 2019;
Zhang et al., 2019; Bogin et al., 2019), the system
translates into a representation that captures the
semantics of the query, called Intermediate Repre-
sentation (IR). From IR to SQL is a deterministic
process: a context free grammar is used to convert
one into another. The authors build on the work
of (Sun et al., 2019; Cheng et al., 2019) that used
Abstract Syntax Tree (AST).

A system that uses the the IR approach, but ex-
tends the context free grammar to include values, is
Valuenet(VL) (Brunner and Stockinger, 2021). The
code is available from (Brunner, 2021) . Valuenet
obtained an accuracy of 60% on Spider develop-
ment corpus, which put it among the best systems
in the Spider challenge in 2020.

The RAT system (Wang et al., 2019) is based
on the relation-aware self-attention mechanism, to
address schema encoding, schema linking, and
feature representation within a Text-to-SQL en-
coder. They augmented their system with BERT
(Devlin et al., 2018), showing that using transform-
ers brings a significant increase in the accuracy.
But, most importantly, they also showed that "...
all the known information about the schema, it is
insufficient for appropriately encoding a previously
unseen schema in the context of the question...". In
(Suhr et al., 2020b), a detailed analysis of systems
that performed well on Spider corpus confirmed a
large drop in accuracy for DB schemas outside of
the Spider corpus.

Given that creating a new training is an expen-
sive process, an important part of research for Text-
to-SQL task has been dedicated to improving the
training methods, in order to reduce this cost. Para-
phrasing (Ronak Kaoshik, 2021), dialog (Artzi and
Zettlemoyer, 2011; Gur et al., 2018), or a combina-
tion of these (Herzig and Berant, 2019) were used
to cope with this problem.

(Kalajdjieski et al., 2020) surveyed a series of
methods to automatically create training corpora.
Some of these models are pretrained using the
Masked Language Modeling (MLM) task by ei-
ther masking tokens from the utterance input or
tokens from the schema input (Deng et al., 2021).
This work demonstrated that jointly pre-training on
utterances and table contents (e.g., column names
and cell values) can benefit downstream tasks such
as table parsing and semantic parsing. In (Xu

et al., 2017) a general method, which avoids the
dependency of order in deep learning system, is
presented.

Figure 1: Accuracy for Spider vs. non Spider DB
schemas

Our own observation aligns very well with the
observations in the previous papers, and confirms
the difficulty to cope with new unseen DB schema
only by means of unique training corpus and/or
model. However, our solution differs from what
has been been proposed so far. The systems that
used general pretraining methods, like RAT+GAP,
did not show that the same performance is observed
for out of Spider schemas, but only for the ones in
Spider corpus. The systems that confronted the sys-
tematic errors that are produced in the case of new
DB schemas, took a different path from ours, like
(Suhr et al., 2020b), and did not exploit systemati-
cally the relationship between values and filters as
a means to control the correctness of SQL formula.
Their line of research assumed that this state of fact
is due only to the lack in training. However, our
experiments support the idea, that, while indeed
some errors are traceable to the particularities of
a certain training corpus, one important cause of
many errors is ignoring the way the DB schema re-
lationships could be expressed in natural language,
see Section 3. By explicitly providing the link-
age between values and schema definition, coupled
with specific training generation, and interpolating
over an ensemble of different models, our system
shows improvement for DB schemas that are inside
or outside of the same corpus.

3 Problem Definition

While the overall results for top performers on the
Spider corpus are high, the variation for individ-
ual DB in the testing corpus can be large. How-
ever, when the same system is applied to the DB
schemas outside of the Spider corpus we obtain
a different distribution, Figure 1. The Spider his-
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togram shows that accuracy for majority of test
DB schemas fell into the range of 40-90%. The
data was obtained running the default VL, system
trained on the Spider training corpus and tested on
the Spider development corpus. The non Spider
general come from (Suhr et al., 2020a). None of
these DB schemas have an accuracy above 50%.
The non Spider custom refers to the training and
test corpora for our own databases, described in
section 4. For these databases, the accuracy is in
the same category as for the lowest for non Spider
general, namely below 20%. This category con-
tains just one DB schema for the Spider corpus.
Looking at what percentage of schemas are in three
main categories, which roughly correspond to bad,
ok, good, the difference between Spider vs. non
Spider DB schemas is very large. This shows that
indeed there is a very strong skew in the distribu-
tion towards the left intervals of accuracy for new
DB schemas.

The reason for this skew for new DB schemas
that is exemplified above was pointed out in (Suhr
et al., 2020b) and (Zhong et al., 2020). Without
proper reference to the linkage between query to-
kens to specific table/columns, based only on the
examples seen in training, the deep learning model
is not able to discern between similar queries in
the context of a new DB schema. In Section 4 we
provide details on these types of errors and their
causes.

4 Baseline and Error Analysis

Spider dataset (Tao et al., 2018) is a large-scale
cross-domain semantic parsing and Text-to-SQL
annotated dataset. ValueNet (VL) (Brunner and
Stockinger, 2021) is an open source deep learning
system built using an encoder-decoder architecture.
The Valuenet trained on Spider dataset represents
our baseline.

Our outside Spider DB schemas are HR, WH and
BI (reference to articles kept anonymous for now).
For each of these schemas we have from 70 to 200
training examples.These training examples are split
into two different corpora ANS - for training, and
(2) nANS - for test.

VL obtained an accuracy of about 60% on the
Spider development, but much lower results for the
new DBs. In table Table 1 we present the results ob-
tained by the baseline for the new DBs, separately
for what we are going to us as training (ANS) and
for test respectively(nANS).

Table 1: Accuracy for Default Valuenet+Spider corpus

DB #ANS acc #nANS acc

HR 121 24% 81 19%
WH 87 20% 42 15%
BI 109 4% 112 2%

4.1 Error Analysis

4.1.1 EA1. Absence of certain types of
query/SQL in training

For questions having more than one value such
as Who bought most Apple products
in Bestbuy?, or In which year did
Mary shop in both Bestbuy and
Radioshack?, many times the VL model
misses one of the values, or creates an incorrect
filter relationships in the final SQL.

4.1.2 EA2. Limitations on Complexity
Queries having compound logical operators, such
as (filter1 OR filter2) AND
filter3, are not present in the corpus. When in-
put questions need to generate queries like this, the
Spider code cannot represent such type of queries
correctly, it outputs a truncated representation, so
the SQL is never correctly inferred.

4.1.3 EA3. Temporal questions
Currently, time is a string in Spider corpus,
so the training examples contains like oper-
ator. However, time operations, like differ-
ence, conversion etc., are needed for queries
like ... after 7 days... or ... two
days after April 1st ...

4.1.4 EA4. Pre-processing information
By default, VL uses a Google API for NLP pre-
processing of the query. As such, only general in-
formation about values, which is outside the scope
and definition of the schema, is fed to the network.
For example, for the token Apple, which in the
context of that DB refers to the name of the manu-
facturer, the information provided is the web page
describing this company, which does not help a lot
in inferring the correct SQL.

4.1.5 EA5. Linking Values and Schema
Crucial relationship between values to the underly-
ing schema is missing as input to the VL encoder-
decoder. For instance, using the fact that the token
Apple is related to the table Manufacturers
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and the column name significantly increases the
chances that the inferred SQL is correct.

4.1.6 EA6. Checking the consistency of SQL
vs. syntax restrictions

English syntax provides hard restrictions on the
constituency of phrases that are translated into
SQL. A determiner, such as an adjective, has
to be applied in the SQL formula to the value
representing the head of the English phrase.
For a query like what is the age of pet
of the youngest owner, the correct SQL
links age to a column of the table pets while
youngest is an aggregation function on the table
students, not vice versa. Many times the incor-
rect SQL is generated by the network because of
inconsistency of SQL operators association.

5 Hybrid System (HS)

We created a new system that processes and ex-
tracts the relevant information from the input ques-
tion and links tokens to specific tables and columns
from the corresponding DB schema. We replaced
Valuenet’s pre-processing and Name Entity Recog-
nition (NER) modules with our Disambiguation
Dictionary Module (DDM) to provide crucial in-
formation of the relationship between values and
schema. We also introduced an ensemble of neural
network models to improve the performance of the
inferred SQL queries. From the original Valuenet
architecture we kept only the encoder-decoder for
IR with the semQL grammar.

The hybrid system has a different data flow from
Valuenet. First, an English query is processed by
our Natural Language Processing module (NLP).
In our approach, we correlate technologies that
increase the performance by double figure percent-
age: (i) we devise a seed training data augmentation
technique (STDA), that on the bases of the initial
training corpus, we call seeds, is able to generate
a larger training set. In a typical scenario, a few
tens of seed examples lead to several hundreds of
training examples; (ii) with different sets of auto-
matically created training data, we train different
models and use an ensemble technique to analyze
the output of each of these models.

5.1 DDM query rewriting
The DDM component from NLP module, de-
scribes the columns, values, relationships between
columns, and synonyms for columns and values,
(Vadim et al., 2018; Popescu et al., 2019; Vo

et al., 2019; Yeo et al., 2021). It creates a set
of schema-dependent lexical rules using the in-
formation from schema annotations and a set of
schema-independent template rules. From the set
of matched rules a set of structured data items
(DTI) is created. A DTI defines an item [table
name].[column name] with operators such
as select, filter, aggregation, etc., that
need to be applied to the corresponding item. Dur-

Figure 2: Rewriting of Queries in Hybrid System

ing the query processing process, a natural lan-
guage question is disambiguated, annotated, and
matched against the lexical rules. Using the infor-
mation from DDM’s output, and the input question
in English, a query representation following the
Spider format is created so it could be incorporated
as an input to the neural network. The user’s input
query undergoes a double rewriting before the text
goes to the network, as described below.

• DDM style question rewriting. The input
question is rewritten and augmented with
the information provided by the NLP mod-
ule, especially by the DDM module. The
rewritten question contains explicit, English,
references to tables and columns in the DB
schema. For instance, for the question how
much was invoiced for client
XYZ, we rewrite the question as follow:
the DDM’s output for this query explicitly
indicates that the token invoiced is a filter
containing two values, INVOICED_type1
and INVOICED_type2, from the table
billTable and the column status.
Also, a separate filter containing the value
XYZ from the same table, but from a
different column name is extracted. Two
sentences are created accordingly: bill
has status of INVOICED_type1
OR INVOICED_type2 and customer
has name of XYZ. In the original query
the values are replaced with their corre-

1596



sponding columns, how much amount
was bill to customer and the
three sentences are adjoined in order to
create the query that will be fed to the
network: how much amount was
invoiced to customer; bill has
status of INVOICED_type1 OR
INVOICED_type2 ; customer has
name of XYZ.

The DDM rewriting of the user query adds
the schema information into simple English
sentences. In this way, the encoder-decoder
have explicitly access the connection between
the English tokens and their correspondent in
the DB table and columns. See first two boxes
in Figure 2.

• pseudo-values for logically compound fil-
ters. The SQL corresponding to the initial
query in Figure 2 exemplifies a case where
the priority of logical operators is taken into
account. The Spider code does not properly
handle these types of SQL constructs. We
found two ways to automatically rewrite the
SQL query such that this problem is handled
properly. (1) to rewrite the SQL and the En-
glish question as a series of sub-questions
such that each question in the query does
not contains filters that need to be distributed
into several logical conditions. Thus, we
combine the individual results of the indi-
vidual SQL conditions into a single result
corresponding to the original SQL query;
or (2) to use the pseudo-values to represent
composite SQL conditions in the WHERE
clause. Since some queries have values that
are part of a composite filter, we can use a
new pseudo-value representing the compos-
ite filter instead. For instance, for the query
shown in Figure 2, we used the pseudo-value
invoiced_INVOICED to represent the fil-
ters on both values present in the query for the
same column. In the rewritten SQL instead of
a compound filter we use this pseudo-value fil-
ter, which is linked through the AND operator
to the other independent filter from the query,
customer_name=’XYZ’. See last box in
Figure 2.

The DDM style question rewriting and the
pseudo-values are applied both during training and
inference time. During training, the neural network

Figure 3: Replacing Values for Training Data Augmen-
tation

has access to the gold SQL query, and the SQL is
rewritten using pseudo-values, if necessary. During
inference, only the English question is rewritten,
and the SQL is inferred. If the SQL is correct,
this SQL will have the same form as the gold SQL
query, and a rewritten procedure that replaces the
pseudo-values back to the original value is applied
to obtain the final SQL.

The HS, by rewriting the queries before the IR
is generated, is an effective solutions for the issues
discussed in Error Analysis section 4.1.

5.2 Seed Training Data Augmentation
(STDA)

The number of training examples for a given
schema has a large impact on the accuracy of the
trained deep learning model. However, for each
DB schema only a small number of training exam-
ples is available, usually on the order of tens to a
couple of hundreds at most. We call this small set
of training examples the seeds set. To increase the
number of training examples, we apply a data aug-
mentation mechanism in which we take the seeds
set, and automatically replace the corresponding
values, in queries having multiple values, with al-
ternative values from the same table and column
as in the original example. We replace values in
both the English question and the SQL query for
training. In Figure 3 we show an example of how
using a seed example, we can create a new training
example.

Table 2: Seed Training Data Augmentation

Schema Size of seeds Size of STDA

HR 90 1500
WH 80 2000
BI 100 3300
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Figure 4: Hybrid System Architecture

5.3 Ensemble

We used the technique described in subsection 5.2
to create different training subsets from the origi-
nal seeds training data for each DB schema. We
created overlapping subsets, each one containing
between 80 and 90 percent of the data available in
the seeds set. We created a series of distinct models
by training the deep learning model on the concate-
nation of the original Spider training set and each
of the new generated training datasets for each DB
schema.

A new query, that was not originally in the seeds
set, is tested with all trained models. Each model
infers an SQL that usually is not the same for all
trained models. We chose the SQL query that obeys
a set of hard coded restrictions created for each
query. The restriction is that the filters in the SQL
query observe the relationship between values and
the DB schema as seen by the output of the rule-
based system. These relationships consider val-
ues and numerical operators only, not the the body
of the SQL formula. Therefore, we control only
the compatibility between values in filters and the
schema definition, and not the actual form of the
SQL query e.g., join paths which inferred by the
neural network. Figure 5 shows the inferred output
from different models in the ensemble for the same
query, the query at the bottom of the figure is the
final selected SQL query.

Assembling the Output SQL. The ensemble
component selects one SQL query that complies

Figure 5: Interpolation over Multiple Models

Algorithm 1 Restrictions on Ensemble outputs

Require: Q . English user query
Require: M1,M2, ...,Mn . DL models
Require: RSet . Restriction Set, DDM output

while Mi do
Filter_Mi_sql . extract filters from SQL
Operator_Mi_sql . extract operators from

SQL
EnsembleFailure← True . ensemble

has no output
if Filter_Mi_sql not in RSet then

rewrite_filter
end if
if Operator_Mi_sql not in RSet then

rewrite_operator
end if
if Operator_Mi_sql = RSet and

Filter_Mi_sql = RSet then
EnsembleFailure← False
return M_i_sql

end if
end while
if EnsembleFailure then

return emptySQL

with the set of restrictions determined previously,
this is done by assembling the output from a set
of models created with the training datasets gen-
erated with STDA technique. The pseudo code
shown in Algorithm 1 describes the steps that lead
to the final SQL formula after interpolating the out-
put from the models in the ensemble, as described
above. In a nutshell, the algorithm considers the
SQL query from each model, Mi, which is checked
against the restrictions determined by DDM’s out-
put which are kept inRSet. The procedure consists
of checking filters, Filter_Mi_sql, and operators,
Operators_Mi_sql one by one, independently of
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one another.
The architecture of the hybrid system is pre-

sented in Figure 4.

6 Experiments and Results

In this section we present the experiments and
the results we obtained using the hybrid system
against the baseline obtained by the original Val-
uenet trained on the Spider corpus. Besides the
three schemas presented in Section 3, we also con-
sider here the following schemas from the the Spi-
der corpus: pets_1 and dog_kennels. We consid-
ered specifically these two DB schemas because
the default system scored less than median on them.
In Table 1, for the HR, WH, and BI DB schemas
the training was the ANS corpora, and nANS part
was kept for testing, see Section 4. That is, we
use the ANS corpus for direct training, or it was
subject to STDA as described in Section 6.2 which
led to creation of different models to which the
ensemble module described in 6.3 was applied. In
the latest case, we created a series of 5 models for
each schema by splitting the training into five parts,
in 4 : 1 ratio (each model was using 80% of the
original seeds for training augmentation) The eval-
uation of the accuracy considers the result of the
SQL from our system vs. the result of the gold
SQL formula. A system inferred SQL is consid-
ered correct only if all values and only those ones
are returned by the gold SQL as well (execution
accuracy) In all the tables , # represents the size of
corpus, acc represents the accuracy, HS is our sys-
tem with DDM module, STDA is the seed training
module and ens, the ensemble module. The train-
ing for our schema was always combined with the
Spider training corpus to obtain a model. So, a a
model for a new DB having 100 training examples
is actually build from 7000(Spider)+100 examples.

In Table 3 we present the results of the HS sys-
tem without STDA, that is, we used 100% of the
seeds training.

Table 3: Accuracy of hybrid system no STDA

DB #train acc

HR 121 36%
WH 87 26%
BI 87 38%

Pets_1 30 32%
Dog_kennels 62 48%

The results for pets_1 and dog_kennels are dif-
ferent than the ones reported in Section 4, because
in this experiment these schemas were removed
from Spider development corpus.

We also carried out a cross validation experi-
ment on the 5 models obtained for each schema via
STDA. The results are in Table 4. The results are
very high for each 5th part used for testing, but still
low for the actual test, nANS, as seen in the second
column of Table 5 .

Table 4: Accuracy for cross validation

DB #seed #STDA #acc 5th part

HR 90 1500 78%
WH 70 2000 72%
BI 80 3300 80%

Pets_1 30 1500 68%
Dog_kennels 66 1500 72%

Finally, we used the 5 models from the cross val-
idation for each schema with STDA with Ensemble
and we obtained the results shown in Table 5. The
ensemble gets significant improvement over the
individual models, see third column.

Table 5: Accuracy hybrid system+ensemble

DB HS+STDA acc HS+STDA+Ens acc

HR 50% 62%
WH 40% 48%
BI 62% 66%

Pets_1 35% 41%
Dog_kennels 55% 57%

Putting together the results obtained, We indi-
cate what is the average accuracy gain/loss for each
type of system and each schema, ANS and nANS in
Table 6.The benefit in using the STDA was in dou-
ble digit percent improvement for all schemas. The
ensemble brings an extra 5 to 10% improvement.
The ensemble was very precise, having more than
98% precision, with a recall of 47%.

In 4.1 we analyzed certain patterns of er-
rors. To see how much the hybrid system
can improve on EA1, we compiled a spe-
cific corpus for multivalue question/queries ex-
amples for HR DB schema. This corpus
has 64 questions that have more than one
value, such as What Apple product has
the largest stock in Bestbuy? The
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Table 6: Accuracy Gain over Baseline

DB BS HS STDA Ens

HR 22% +17% +43%
WH 17% +12% +29%
BI 3% +15% +63%

Pets_1 30% +6% +11%
Dog_kennels 45% +5% +12%

Table 7: EA1-multivalue queries improvement

system accuracy

defaul VL 13%
default VL+tr 16%
HS no STDA 38%
HS+STDA 54%
HS+STDA+ens 78%

training corpus for HR, consisting of 57 questions,
contained only 19 questions with multiple values.
The results we obtained applying the hybrid system
only on the multiple values corpus are in Table 7.
The default VL is the the out-of-the-box VL sys-
tem, default VL+tr is the same system trained on
the extra training, HS , STDA and ens stand for hy-
brid system, seed training data augmentation and
ensemble techniques respectively.

The ensemble algorithm works particularly well
for this type of corpus. It is because the majority of
wrong SQL had the wrong reference to table and
column, which makes them recoverable due to the
DDM information used in ensemble.

EA2 issue was related to the logically compound
filters. Because Spider code cannot correctly pro-
cess those types of SQL elements, it is not fair to
compare systems that employ any of our techniques
vs. a system does not have any mechanism for deal-
ing with compound logical operators. Currently,
we do not known of any other system that manages
this problem.

The efficiency of our solution is further proved
by the experiments using temporal questions.
The Spider corpus have a poor representation
of temporal questions, less than 8% in training
and less than 7% in dev, and, as pointed out in
EA3 the SQL associated contains string , not
date evaluation. We manually created a corpus
containing temporal questions for HR and WH.
This corpus contains questions with one data value,
like, how many products were sold on
2/2/2014, we refer to them as tmp_1v, and

Table 8: Temporal Questions corpus

temporal corpus #HR #WH

tmp_1v train 28 35
tmp_1v test 14 22

tmp_mv train 44 70
tmp_mv test 32 42

Table 9: EA3 - Temporal Questions Results

system HR tmp_1v WH tmp_mv

default VL 18% 0%
default VL+tr 24% 0%
HS+STDA+ens 58% 44%

questions that more than one data value, like
how many products are sold with
prices greater than 200 dollars
between 2017/01/01 and 2017/12/31,
we refer to as tmp_mv.

For temp_1v the baseline system had a perfor-
mance similar to the one for non temporal ques-
tions. However, for tmp_mv the situation change:
the baseline system achieved 0% accuracy, and
the situation did not improved when the available
temporal training was provided to the system to
build a new model. On the other hand, our system
HS+STDA+Ens obtained a good accuracy, see Ta-
ble 9. The fact that VL system obtains 0% is due to
the inability of the system to correlate a value with
DB table and column, which the technique intro-
duced here for STDA+ens remedies. In Appendix
we provided a sample of user’s questions and the
output from the baseline system vs. our system.

7 Conclusion and Further Research

In this paper we present a hybrid system for the
Text-to-SQL task. The architecture of this system
was driven by seeking solutions to a problem that
we found when we tried to run an encoder-decoder
system with out-of-the-box configuration, namely
a large drop in accuracy for our DB schemas. The
problem was reported in the results published by
other teams as well. Our solution was to construct
a system that does schema linkage and employs a
training data augmentation technique. The system
showed a good accuracy for DB schemas in and out
of the Spider corpus. We obtained a double figure
improvement of the accuracy, in some cases close
to 30%, and not less than 9%. The lowest increase
was for a schema that was considered difficult in
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the Spider corpus.
Our experiments strongly suggests that a perfect

training corpus cannot be built such that the accu-
racy on any new schema will be high. However, by
implementing schema linkage and specific training,
automatically created, one can realize a high jump
in accuracy for deep learning networks.

Our future research will focus on further improv-
ing the training with queries that are not properly
represented in the Spider corpus and on the method-
ology for training data augmentation.

8 Appendix

Here we show examples of the questions and in-
ferred SQL for the HR and WH schemas, respec-
tively. For each question we present the result of
the default VL system, first SQL, vs. the result
of our system, HS+STDA+Ensemble, the second
SQL. For each question, we show the error made
by the default system and the name of the system
that inferred the correct SQL. The questions are
shown exactly as they were written by users.

8.1 WH DB schema examples of inferred
SQL.

• who manufactured iphone : wrong table; cor-
rection via Ensemble

– SELECT T1.name FROM manu-
facturers AS T1 JOIN products
AS T2 ON T1.manufacturer_id =
T2.manufacturer_id WHERE T1.name =
’IPHONE’

– SELECT T1.name FROM manu-
facturers AS T1 JOIN products
AS T2 ON T1.manufacturer_id =
T2.manufacturer_id WHERE T2.type =
’IPHONE’

• what did Richard buy : wrong path; correc-
tion via STDA

– SELECT T1.name FROM customers AS
T1
WHERE T1.customer_id = Richard and
T1.name = ’Richard’

– SELECT T1.type FROM products
AS T1 JOIN sales_details AS T13
ON T1.product_id = T13.product_id
JOIN sales AS T14 ON T13.sales_id
T̄14.sales_id JOIN customers AS T2

ON T14.customer_id = T2.customer_id
WHERE T2.name = ’Richard’

• who bought at bestbuy : wrong path, wrong
column; correction via STDA+Ensemble

– SELECT T1.name FROM customers
AS T1 JOIN sales AS T13 ON
T1.customer_id = T13.customer_id
JOIN sales_details AS T14 ON
T13.sales_id = T14.sales_id JOIN
products AS T2 ON T14.product_id
= T2.product_id WHERE T2.price =
BESTBUY

– SELECT DISTINCT T1.name FROM
customers AS T1 JOIN sales AS T13
ON T1.customer_id = T13.customer_id
JOIN shops AS T2 ON T13.shop_id =
T2.shop_id WHERE T2.name = ’BEST-
BUY’

• what is sold at bestbuy : wrong column, cor-
rection via Ensemble

– SELECT T1.name FROM vendors
AS T1 JOIN sales AS T13 ON
T1.vendor_id = T13.vendor_id JOIN
sales_details AS T14 ON T13.sales_id
= T14.sales_id JOIN products AS T2
ON T14.product_id = T2.product_id
WHERE T2.price = BESTBUY

– SELECT distinct T2.type FROM
shops AS T11 JOIN sales AS T22
ON T11.shop_id = T22.shop_id JOIN
sales_details AS T1 ON T22.sales_id =
T1.sales_id JOIN products AS T2 ON
T1.product_id = T2.product_id WHERE
T11.name = ’BESTBUY’

• show me apple product names : wrong table,
correction via STDA+Ensemble

– SELECT T1.name FROM manufacturers
AS T1 WHERE T1.name = ’APPLE’

– SELECT T1.type FROM prod-
ucts AS T1 JOIN manufacturers
AS T2 ON T1.manufacturer_id =
T2.manufacturer_id WHERE T2.name =
’APPLE’
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Abstract

We introduce MINTAKA, a complex, natural,
and multilingual dataset designed for experi-
menting with end-to-end question-answering
models. Mintaka is composed of 20,000
question-answer pairs collected in English, an-
notated with Wikidata entities, and translated
into Arabic, French, German, Hindi, Italian,
Japanese, Portuguese, and Spanish for a total
of 180,000 samples. Mintaka includes 8 types
of complex questions, including superlative,
intersection, and multi-hop questions, which
were naturally elicited from crowd workers.
We run baselines over Mintaka, the best of
which achieves 38% hits@1 in English and
31% hits@1 multilingually, showing that ex-
isting models have room for improvement.
We release Mintaka at https://github.
com/amazon-research/mintaka.

1 Introduction

Question answering (QA) is the task of learning
to predict answers to questions. Approaches to
question answering include knowledge graph (KG)
based methods, which use structured data to find
the correct answer (Miller et al., 2016; Saxena et al.,
2020); machine reading comprehension methods,
which extract answers from input documents (Ra-
jpurkar et al., 2016; Kwiatkowski et al., 2019);
open domain methods, which learn to retrieve rel-
evant documents and extract or generate answers
(Zhu et al., 2021), and closed-book methods, which
use knowledge implicitly stored in model parame-
ters to answer questions (Roberts et al., 2020).

With state-of-the-art techniques, QA models can
achieve high performance on simple questions (Shi
et al., 2020, 2021) that require a single fact lookup
in either a knowledge graph or a text document
(e.g., "Where was Natalie Portman born?"). How-
ever not all questions are simple in real-world ap-
plications. We define complex questions (Lan et al.,
2021) as questions that require an operation beyond

a single fact lookup, such as multi-hop, compar-
ative, or set intersection questions. For example,
"What movie had a higher budget, Titanic or Men
in Black?" requires looking up the budget of two
movies, comparing the values, and selecting the
movie with the higher budget. Handling more com-
plex questions remains an open problem.

One of the challenges in measuring and improv-
ing QA performance on complex questions is a lack
of datasets. While several QA datasets exist, they
have shortcomings of being either large but sim-
ple, such as SimpleQuestions (Bordes et al., 2015),
or complex but small, such as ComplexQuestions
(Bao et al., 2016) or QALD (Usbeck et al., 2018).
Recently, several large and complex datasets have
been released, including KQA Pro (Shi et al., 2020)
and GrailQA (Gu et al., 2021). These datasets use
automatically generated questions followed by hu-
man paraphrasing, which can result in less natural
questions, such as "Is the WOEID of Tuscaloosa
14605?" (KQA Pro) or "1520.0 is the minimum
width for which size rail gauge?" (GrailQA). This
can lead to a mismatch between training data and
real-world use cases of QA models.

In order to address these gaps, we release
MINTAKA, a large, complex, naturally-elicited, and
multilingual question answering dataset. Mintaka
contains 20,000 question-answer pairs elicited in
English from crowd workers. We link Mintaka to a
knowledge graph by asking crowd workers to an-
notate the question and answer text with Wikidata
IDs. Professional translators translated the 20,000
English questions into Arabic, French, German,
Hindi, Italian, Japanese, Portuguese, and Spanish,
creating a total dataset size of 180,000 questions.

In this paper, we present an overview of Mintaka
in §3, explain how we built Mintaka in §4, provide
a statistical analysis of the dataset in §5, including a
demographic analysis of our crowd workers in §5.3.
Finally in §6, we present results of existing baseline
models on Mintaka, the best of which scores 38%
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Dataset Samples Text or KG Complex Natural Languages

SQuAD 150K Wikipedia × × 1
XQuAD 2K Wikipedia × × 11
Natural Questions 300K Wikipedia × X 1
HotpotQA 100K Wikipedia X × 1
DROP 100K Wikipedia X × 1
WebQuestionsSP 5K FreeBase × X 1
ComplexQuestions 2K FreeBase X X 1
ComplexWebQuestions 35K FreeBase X × 1
LC-QuAD 2.0 30K Wikidata, DBPedia X × 1
GrailQA 64K Wikidata X × 1
KQA Pro 120K Wikidata X × 1
QALD 400 DBPedia X X 11
Mintaka (ours) 20K Wikidata X X 9

Table 1: Comparison of Mintaka to existing QA datasets

hits@1. These results show that existing models
have room for improvement.

We publicly release the Mintaka dataset
with our randomly split train (14,000 sam-
ples), dev (2,000 samples), and test (4,000
samples) sets at https://github.com/
amazon-research/mintaka.

2 Related Works

Question answering has no shortage of datasets.
Datasets for question-answering with reading com-
prehension, such as SQuAD (Rajpurkar et al.,
2016) or Natural Questions (Kwiatkowski et al.,
2019) are often large, and some are even multilin-
gual, such as XQuAD (Artetxe et al., 2019), MLQA
(Lewis et al., 2019), or TyDi QA (Clark et al., 2020).
These datasets, however, are not explicitly built to
be complex, and the answer is usually found in a
single passage of text.

HotpotQA (Yang et al., 2018) and MuSiQue
(Trivedi et al., 2022) add complexity to reading
comprehension by introducing multi-hop questions
where the answer requires reasoning over two
documents, but neither of these datasets naturally
elicit their questions. HotpotQA pre-selects two
Wikipedia passages and asks workers to write ques-
tions using both passages, and MuSiQue composes
multi-hop questions from existing single hop ques-
tions. DROP (Dua et al., 2019) is another complex
reading comprehension dataset, including complex
operations such as addition, counting, and sorting.
Again, DROP asks crowd workers to write ques-
tions about a selected Wikipedia passage. DROP

additionally introduces a constraint where workers
need to write questions that can’t be solved by an
existing model.

Within knowledge graph-based question answer-
ing (KGQA), WebQuestionsSP (Berant et al., 2013;
Yih et al., 2016) and ComplexQuestions (Bao et al.,
2016) are more natural QA datasets. Both collected
real user questions using search query logs or the
Google Suggest API. The answers were annotated
manually using FreeBase as a knowledge graph.
WebQuestionsSP contains mostly simple questions,
but ComplexQuestions is more complex, including
multi-hop questions, temporal constraints, and ag-
gregations. The main drawback of these datasets
is size. WebQuestionsSP contains 5K QA pairs,
while ComplexQuestions contains only 2K.

ComplexWebQuestions (Talmor and Berant,
2018) is a dataset based on WebQuestionsSP, which
increases the size to 35K QA pairs and introduces
more complex operations, including multi-hop,
comparatives, and superlatives. However Com-
plexWebQuestions loses some naturalness, as the
dataset is built by automatically generating queries
and questions, and then asking crowd workers to
paraphrase the generated questions.

Recently, several larger-scale complex KGQA
datasets have been released. LC-QuAD 2.0 (Dubey
et al., 2019) includes 30K questions, including
multi-hop questions, and uses the more up-to-date
Wikidata and DBpedia knowledge graphs. GrailQA
(Gu et al., 2021) is even larger at 64K questions
based on FreeBase with complex questions, includ-
ing multi-hop, count, and comparatives. KQA Pro

1605



(Shi et al., 2020) is even larger still with 120K
questions based on Wikidata and with complex
questions, including intersection and superlatives.
All these datasets make the trade-off of scale over
naturalness. To collect question-answer pairs, the
authors generate queries from a knowledge graph,
generate questions based on the queries, and then
ask crowd workers to paraphrase the questions.

Finally, most datasets are only in English. Mul-
tilingual and complex datasets are rare. QALD
2018 (Usbeck et al., 2018) is one multilingual and
complex dataset including 11 languages and com-
plex operations such as counts and comparatives,
however includes only 400 questions.

By building Mintaka, we hope to address an im-
portant gap in existing datasets. Mintaka question-
answer pairs are both complex and naturally-
elicited from crowd workers with no restrictions
on what facts or articles the questions can be about.
We also translate Mintaka into 8 languages, making
it one of the first large-scale complex and multilin-
gual question answering datasets. A comparison of
Mintaka to existing datasets can be seen in Table 1.

3 Mintaka

Mintaka is a complex question answering dataset
of 20,000 questions collected in English and trans-
lated into 8 languages, for a total of 180,000 ques-
tions. Mintaka contains question-answer pairs writ-
ten by crowd workers and annotated with Wikidata
entities in both the question and answer.

We collected questions in eight topics, which
were chosen for being broadly appealing and suit-
able for writing complex questions: MOVIES,
MUSIC, SPORTS, BOOKS, GEOGRAPHY, POLI-
TICS, VIDEO GAMES, and HISTORY. Since we
want Mintaka to be a complex question answer-
ing dataset, we explicitly collected questions in the
following complexity types: (Note: All examples
below are from the Mintaka dataset.)

• COUNT: questions where the answer requires
counting. For example, Q: How many astro-
nauts have been elected to Congress? A: 4

• COMPARATIVE: questions that compare two
objects on a given attribute (e.g., age, height).
For example, Q: Is Mont Blanc taller than
Mount Rainier? A: Yes

• SUPERLATIVE: questions about the maxi-
mums or minimums of a given attribute. For

example, Q: Who was the youngest tribute in
the Hunger Games? A: Rue

• ORDINAL: questions based on an object’s
position in an ordered list. For example, Q:
Who was the last Ptolemaic ruler of Egypt?
A: Cleopatra

• MULTI-HOP: questions that require 2 or more
steps (multiple hops) to answer. For example,
Q: Who was the quarterback of the team that
won Super Bowl 50? A: Peyton Manning

• INTERSECTION: questions that have two or
more conditions that the answer must fulfill.
For example, Q: Which movie was directed
by Denis Villeneuve and stars Timothee Cha-
lamet? A: Dune

• DIFFERENCE: questions with a condition that
contains a negation. For example, Q: Which
Mario Kart game did Yoshi not appear in? A:
Mario Kart Live: Home Circuit

• YES/NO: questions where the answer is Yes
or No. For example, Q: Has Lady Gaga ever
made a song with Ariana Grande? A: Yes.

• GENERIC: questions where the worker was
only given the topic and no constraints of com-
plexity. These tend to be simpler fact lookups,
such as Q: Where was Michael Phelps born?
A: Baltimore, Maryland

For each of the 8 topics, we collected 250 ques-
tions per complexity type and 500 generic ques-
tions, for a total of 2,500 questions per topic.

We also collected translations of the 20,000 En-
glish questions in 8 languages using professional
translators. Since all questions were collected in
English from U.S. workers, the questions may have
a U.S. bias in terms of the entities (for example,
U.S. politicians or books written in English). This
is a choice we make since it allows us to create a
fully parallel dataset where models can be easily
compared across languages. This choice was also
made in previous QA datasets (Usbeck et al., 2018;
Artetxe et al., 2019; Lewis et al., 2019).

4 Dataset Collection

To build our dataset, we used Amazon Mechanical
Turk (MTurk) in three different tasks. All of our
MTurk workers were located in the United States,
and to ensure high quality, we required workers
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have an approval rating of 98% and at least 5,000
approved tasks. Each of our tasks are explained in
the sections below, and examples of the interfaces
can be seen in Appendix A.

4.1 Question Elicitation
The first task was to elicit complex questions. To do
this, we created tasks for each topic/complexity pair
(e.g., Superlative Movie questions, Ordinal Sports
questions, etc.). In each task, a worker was asked
to write 5 questions and answers about the topic
using the given complexity type. The questions and
answers were written in free text fields. We had no
restrictions on what sources workers could use to
write their questions, so workers were not limited to
writing questions based on a given article or facts.
Workers were given explanations of the complexity
type and examples in the instructions. The topics
were left general, so within History, workers could
write about Ancient Egypt as well as World War II.

For Count and Superlative answers, we addition-
ally asked workers to provide a numerical value as
part of the answer. For example, in Count ques-
tions, workers would both provide the answer as a
number (e.g., 3) as well as the entities that make
up that answer (e.g., Best Picture, Best Adapted
Screenplay, and Best Film Editing). In Superla-
tive questions, workers provided the answer (e.g.,
Missouri River) as well as the numerical value that
makes the entity the maximum or minimum (e.g.,
2,341 miles). Additionally in Count questions, if a
question had multiple answers, we asked workers
to list a minimum of five. For example, for the
question "How many cities have hosted a Summer
Olympics?", a worker could give the numerical an-
swer 23 but provide only five of the cities. For
this reason, answers to questions with more than
five entities are not guaranteed to be complete but
instead provide a sample of the correct answer.

We paid $1.25 per task to write five questions.
Workers were limited to completing one task per
topic-complexity pair. After collection, we also
surveyed the MTurk workers who completed our
Question Elicitation task about their demographics.
The results of this survey are discussed in §5.3.

4.2 Answer Entity Linking
Answers were collected in the previous task in nat-
ural language. In order to link the answers to a
knowledge graph, we built an Answer Entity Link-
ing task. We chose to link the answers to Wikidata,
since it is a large and up-to-date public knowledge

graph. Although we link to Wikidata, we don’t
guarantee that every question can be answered by
Wikidata at the time of writing. It is possible that
there are missing or incomplete facts that would
prevent a KGQA system from reaching the answer
entity in Wikidata given the question.

In this task, workers were shown a question-
answer pair and asked to 1) highlight the entities
in the answer, and 2) search for the entities on
Wikidata and provide the correct URLs. We built
a UI for MTurk workers where they could easily
highlight entities and the highlighted entities would
automatically generate links to search Wikidata.

Each answer was annotated by two MTurk work-
ers. For agreement, we required two workers to
identify the same entities and the same Wikidata
URLs for all entities. If there was disagreement,
we sent the question-answer pair to a third annota-
tor. Question-answer pairs where the answer was a
number or yes or no were excluded from answer en-
tity linking. Overall, we annotated 20,996 answer
entities and achieved 82% agreement after two an-
notators and 97% agreement after three annotators.
The remaining 3% were verified by the authors.

We paid a base rate of $0.10 per task, which
consisted of a single question-answer pair. If
the answer had multiple entities, we paid a $0.05
bonus for every additional entity identified that was
agreed upon by another annotator.

4.3 Question Entity Linking

An end-to-end question answering model can be
trained using the question and answer alone (Oliya
et al., 2021). However to better evaluate end-to-
end methods and train models requiring entities,
we also created an MTurk task to link entities in
the question text.

Linking entities in questions is more challenging
than answers. While answer texts are often short
and contain a clear entity (e.g., "Joe Biden"), ques-
tion texts can contain multiple possible entities. In
the question "Who is the president of the United
States?", a worker could select "United States", or
"president" and "United States", or even "president
of the United States". Since early test runs showed
it would be difficult to get agreement on question
entities, we modified the task so workers only veri-
fied a span and linked the entity in Wikidata.

To identify spans in questions, we used spaCy’s
(Honnibal et al., 2020) en_core_web_trf model to
identify named entities and noun chunks with cap-
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Question Length
English 10.2
Arabic 9.9
German 9.6
Spanish 10.8
French 12.4
Hindi 11.0
Italian 10.6
Japanese (in characters) 29.6
Portuguese 10.3

Entities
Entities per Question 1.8
Entities per Answer 1.3
Unique Question Entities 7,303
Unique Answer Entities 8,607
Unique Entities 13,232
Question to Answer Entity

within one hop 62%
within two hops 97%

Answer Types
Entity 0.72
Boolean 0.14
Numerical 0.07
Date 0.06
String 0.001

Table 2: Statistics about the Mintaka dataset

Q: Which Studio Ghibli (Q182950) movie scored
the lowest on Rotten Tomatoes (Q105584)?
A: Earwig and the Witch (Q96031360)

Q: Which revolution lasted longer, the French
(Q6534) or the American (Q192769)?
A: American Revolution (Q192769)

Q: When Franklin D. Roosevelt (Q8007) was
first elected, how long had it been since someone
in his party (Q7278) won the presidential
election (Q47566)?
A: 16 years

Q: Which member of the Red Hot Chili Peppers
(Q10708) appeared in Point Break (Q1146552)?
A: Anthony Kiedis (Q204751)

Q: Which Mass Effect (Q953242) game does not
include Commander Shepard (Q3683919) as the
main character?
A: Mass Effect: Andromeda (Q20113552)

Table 3: Example question-answer pairs from Mintaka.
Question and answer annotations are shown here in-line
with Wikidata Q-codes.

italized words in the English sentences. We then
gave workers the question with a predicted entity
highlighted. Workers were shown one entity at a
time and asked to first verify or modify the high-
lighted entity and then link to Wikidata.

For question entities that were not seen before,
we had the entity annotated by two annotators, fol-
lowed by a third in case of no agreement. For
some question entities, we were able to exact string
match them against entities that were already anno-
tated in the Answer Entity Linking task, for exam-
ple United States → Q30. In cases where we had
a match, the question entity was annotated by one
annotator and only went to a second annotator if
there was no agreement.

We annotated 12,819 new entities, for which
we had 68% agreement after two annotators and
78% agreement after three annotators, and 15,075
seen entities, for which we had 80% agreement
after one annotator, and 98% agreement after two
annotators. The remaining entities were verified by
the authors. We paid $0.10 per entity. The spans of

the question entities are only annotated in English,
and so English questions in Mintaka come with
both the entity ID and the span, while all translated
questions have only the entity ID.

4.4 Translations
We translated the 20,000 questions in Mintaka
to the following languages and locales: Arabic
(Saudi Arabia), French (France), German (Ger-
many), Hindi (India), Italian (Italy), Japanese
(Japan), Portuguese (Brazil), and Spanish (Mex-
ico). Translation is our only dataset collection step
where we do not use MTurk. Early experiments
with MTurk on translation tasks and editing auto-
matic translations tasks had poor results and a lack
of workers in some languages, such as Japanese.
For this reason, we use professional translators.

5 Dataset Analysis

5.1 Dataset Statistics
Statistics about the Mintaka dataset are shown in
Table 2. Question length is based on white space
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splitting in all languages except Japanese, where
the question length is in characters. In total, 13,232
unique Wikidata entities appear across all ques-
tions. The most common question entities are the
United States (Q30; 1,498 questions), President of
the United States (Q11696; 564 questions), and Su-
per Bowl (Q32096, 344 questions). The most com-
mon answer entities are California (Q99, 102 an-
swers), Alaska (Q797, 88 answers), and the United
States (Q30, 80 answers).

Mintaka was built with only questions and an-
swers, so we do not know the correct query path.
However we can calculate an upper bound of an-
swerable questions using Wikidata by identifying
the percentage of questions that have a path con-
necting the question entity to the answer entity. We
find that there is a path connecting the question and
answer entity 62% of the time within 1 hop and
97% of the time within 2 hops for questions linked
to Wikidata entities.

A majority (72%) of the questions in Mintaka
can be answered using an entity. 14% can be an-
swered using a boolean, in yes/no or comparative
questions. 7% can be answered using a number,
such as someone’s age. 6% can be answered using
a date, such as a date of birth. And finally, 0.1%
have answers in the form of a string, for example,
someone’s nickname. Examples of QA pairs are in
Table 3 with more examples in Appendix C.

5.2 Naturalness Evaluation

Figure 1: A box plot showing the quartile, median, and
mean (black diamond) naturalness rank for each dataset
from 1 (least natural) to 5 (most natural).

By naturally eliciting complex questions from
MTurk workers, we aimed to collect questions that
were closer to what users may ask in real-world
settings. In order to evaluate how Mintaka com-
pares to previous complex QA datasets, we ran a

naturalness evaluation task on Mturk with four com-
parison datasets. We compared datasets that col-
lected questions in different ways: KQA Pro auto-
matically generated questions, ComplexWebQues-
tions (CWQ) automatically generated questions
built off WebQuestions, DROP naturally elicited
questions about a given Wikipedia passage, and
ComplexQuestions (CQ) collected natural ques-
tions from user logs. We compared these datasets
to Mintaka in a task where workers were shown
5 questions, one from each dataset, and asked to
rank them from 1 (least natural) to 5 (most natu-
ral). We uniformly sampled 500 questions from
each dataset and grouped them into quartiles by
length for each dataset (i.e., the longest questions
in Mintaka are grouped with the longest questions
in other datasets).

The results are in Figure 1 and show that Mintaka
is on average ranked higher in naturalness than all
other datasets. We also find that Mintaka ranks
significantly higher than the other datasets using
a two-sample Kolmogorov-Smirnov test (with p-
values < 0.001). This shows that Mintaka questions
are perceived as more natural than automatically
generated or passage-constrained questions. Al-
though ComplexQuestions contains real user ques-
tions, the questions are collected from search logs
and can be phrased ungrammatically (e.g., "when
did miami dolphins win super bowl?"), leading to
a wider range of ranks. These results confirm that
Mintaka is both a complex and natural dataset.

5.3 Demographics of MTurk Workers

In total, 516 MTurk workers completed 3,503 Ques-
tion Elicitation tasks to collect complex questions
(some questions from tasks were removed as dupli-
cates or under-sampled for a balanced dataset size).
In order to better understand and measure who our
dataset best represents, we invited all workers who
completed a Question Elicitation task to participate
in a demographic survey. We paid workers $1.25
to complete the survey. We received 400 responses
(78% response rate). Worker IDs were only used
to invite MTurk workers to take part in the survey.
All demographic data is anonymous with no way to
link the data back to the Worker IDs, and the data
is only analyzed in aggregate.

Table 4 can be used as an indicator of who this
dataset is best for modeling and for what popula-
tions it may be less representative. For example,
we had more workers identify as male than female
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GENDER
Male 0.58
Female 0.42

AGE
18-24 0.02
25-34 0.39
35-44 0.32
45-54 0.13
55-64 0.10
65+ 0.04

ETHNICITY
White 0.73
Asian 0.10
Black 0.07
Hispanic 0.06
Multiracial 0.04

EDUCATION
High school 0.16
Associate’s 0.23
Bachelor’s 0.50
Master’s 0.09
Doctoral 0.02

EMPLOYMENT
Employed, full-time 0.65
Self-employed 0.17
Employed, part-time 0.09
Not employed 0.05
Retired 0.02
Homemaker 0.01

RESIDENTIAL AREA
Urban 0.33
Suburban 0.52
Rural 0.15

U.S. REGION
Northeast 0.21
South 0.35
Midwest 0.21
West 0.23

Table 4: Results of the demographic survey of workers
who completed the Question Elicitation task. Options
that received less than 1% of responses are not shown.

(58% vs. 42%). Only 2% of workers were between
the ages of 18-24 (and workers below 18 cannot
register on MTurk), while 72% of workers were
between the ages of 25 and 44. We also had fewer
workers who identified as Black (7%) or Hispanic

(6%) than the U.S. Census (U.S. Census Bureau,
2021) estimates of the general population (13% and
19%, respectively), while seeing a slightly higher
percentage of workers identifying as Asian (10%
of workers vs. 6% in the U.S. Census).

Our workers also tend to be more educated with
61% reporting that they hold a Bachelor’s degree
or higher, while the U.S. Census estimates 32% of
the general population holds a Bachelor’s degree or
higher (U.S. Census Bureau, 2021). Our workers
are almost all employed either full or part-time
(91%), and largely live in urban or suburban areas
(85%). Geographic distribution across the U.S.
shows more (35%) workers in the South.

6 Baselines

Model Hits@1

LANGUAGE MODELS

T5 0.28
T5 for CBQA (zero-shot) 0.20
T5 for CBQA (fine-tuned) 0.38

KGQA MODELS

KVMemNet 0.12
EmbedKGQA 0.18
Rigel 0.20

RETRIEVER-READER MODELS

DPR (zero-shot) 0.15
DPR (trained) 0.31

Table 5: Results of English baseline models on Mintaka

6.1 Models

We evaluate eight baselines on Mintaka. Since
Mintaka contains only question and answer pairs,
we only use models that can be trained end-to-
end. We evaluate 3 language models, 3 knowl-
edge graph-based models, and 2 retriever-reader
models. For language and retriever-reader models,
we use the answers written by the crowd workers
in the Question Elicitation task as the label. For
our knowledge graph, we use a Wikidata snapshot
from October 18, 2021. We evaluate all of our base-
lines in English (Table 5) and three of our baselines
that could easily be set up multilingually in all lan-
guages (Table 6). Details on training data size can
be found in Appendix B.
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Model multi ar de es fr hi it ja pt

MT5 0.16 0.15 0.16 0.16 0.16 0.16 0.16 0.15 0.16
T5 for CBQA (translated) 0.31 0.27 0.34 0.32 0.33 0.30 0.32 0.28 0.31
Rigel 0.19 0.18 0.19 0.19 0.19 0.17 0.19 0.20 0.18

Table 6: Results of baselines evaluated multilingually and in individual languages. Scores are reported as hits@1.

T5 AND MT5 (Raffel et al., 2020; Xue et al.,
2021) are baselines that only use a language model
to predict answers to questions. We use the XL
versions of T5 for English and MT5 for all other
languages. We fine-tune both for 10,000 steps.

T5 FOR CLOSED BOOK QA (CBQA)
(Roberts et al., 2020) is an extension of T5 that is
fine-tuned as a QA model that can implicitly store
and retrieve knowledge without an external source.
We use Roberts et al. (2020)’s T5-XL model and
evaluate on Mintaka both as zero-shot with a model
fine-tuned on Natural Questions and with a model
fine-tuned on Mintaka for 10,000 steps. We run an
additional translation baseline where we automat-
ically translate non-English questions to English
using the M2M_100 model (Fan et al., 2020) and
use our English model to return answers.

KVMEMNET: Key-Value Memory Networks
(Miller et al., 2016) work by first storing knowl-
edge graph triples in a key-value structured mem-
ory. Then given a question, the model learns which
keys are relevant to the question, and uses the val-
ues of those keys to return an answer. We follow
the implementation by Shi et al. (2020).

EMBEDKGQA (Saxena et al., 2020) is a
method that incorporates pre-trained knowledge
graph embeddings into a KGQA model. Embed-
KGQA consists of 1) a KG embedding module, 2)
a question embedding module, and 3) an answer
scoring module, which combines the question and
KG embeddings to score and select answer enti-
ties. Since EmbedKGQA makes predictions over
answer entities, we exclude questions where the
answer is not an entity during training time, and
count these as failures during test time. Scores for
the subset of the test set that is answerable by the
model can be found in Appendix B.

RIGEL (Oliya et al., 2021; Sen et al., 2021) is
an end-to-end question answering model based on
ReifiedKB (Cohen et al., 2020). Rigel uses an
encoder to encode the question and a decoder to
return a probability distribution over all relations in
the knowledge graph. The relations are followed in

the knowledge graph to return predicted answers.
For the encoder, we use RoBERTa (Liu et al., 2019)
for English and XLM-RoBERTa (Conneau et al.,
2020) for all other languages. Again, since Rigel
predicts over answer entities, we exclude questions
where the answer is not an entity during training
time and count them as failures during test time.

DENSE PASSAGE RETRIEVAL (DPR)
(Karpukhin et al., 2020) is a retriever-reader
method that uses a dense retriever model to
identify relevant Wikipedia passages given a
question, followed by a reader model to score
answer spans from the retrieved passages. For the
retriever, we use Karpukhin et al. (2020)’s model
trained on Natural Questions, and for the reader,
we evaluate both zero-shot with a model trained
on Natural Questions and with a model trained
on Mintaka. The reader sees the top 50 retrieved
passages, and we take the highest-scoring span as
the answer.

6.2 Analysis

The results of the baselines in English in terms of
hits@1 can be seen in Table 5. Hits@1 is calcu-
lated based on the number of samples where the
top prediction from the model matches the labeled
answer, either as exact string match for text an-
swers or as entity IDs for entity answers. A further
breakdown per complexity type is in Appendix C.
The best-performing model is the fine-tuned T5 for
Closed Book QA with 38% hits@1. An analysis of
the outputs shows that even though the model does
not have access to an external knowledge source, it
does recall factual information, such as the capital
of Iraq is Baghdad. For more complex questions,
the model can usually predict in the correct neigh-
borhood of the answer. For example, for "What
is the second Marvel Cinematic Universe movie
chronologically?", the model predicts "Thor: The
Dark World", which is a Marvel movie, however it
lacks the complex reasoning functionality to calcu-
late the second movie chronologically.

The trained DPR model has the second highest
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score with 31% hits@1. We find that DPR can
handle complex questions, as long as the complex
reasoning is already done in the passage. For ex-
ample, the model can answer "When did Roger
Federer win his first Grand Slam?" with "2003"
from a passage that includes, "Roger Federer won
his first Grand Slam title in the 2003 Wimbledon
Championships." However in cases where the rea-
soning is not included in the passage, the model
struggles. For example given the same question
about the second Marvel movie, the model pre-
dicts Iron Man and fails to find a passage explicitly
mentioning the second movie chronologically.

Finally, the best-performing KGQA model is
Rigel with 20% hits@1. Our KGQA baselines han-
dle only entity answers and can only traverse the
knowledge graph by following relations, so they
are limited. Although the KGQA models score
lower than the other models, they do have advan-
tages. Language models at the scale of T5-XL
are computationally expensive and the knowledge
stored in the parameters is static. Knowledge graph
based methods like Rigel can be updated easily
by updating the external knowledge graph and can
also return more interpretable answers. Given the
Marvel question again, Rigel predicts a path from
the Marvel Cinematic Universe to all the Marvel
films. Rigel can’t perform sorting or filtering, but
it’s possible to see what the next steps should be:
identifying the chronological order, ordering by
chronological order, and finding the second in the
ordered list. Understanding how a model has ar-
rived at an answer and what steps should be added
to arrive at the correct answer are useful features
for debugging and improving KGQA models.

Table 6 shows results on Mintaka evaluated both
multilingually on all languages and in each lan-
guage individually. For almost all models, the re-
sults are slightly lower than in English. The MT5
language model has worse performance than the
English T5 model, which may be because unlike
T5, MT5 is not pre-trained on any supervised tasks.
Our T5 for CBQA model using English transla-
tions outperforms MT5, however the scores are
still lower than on the original English questions,
so the automatic translations do degrade perfor-
mance. For Rigel, the main gap to English is on
the encoding side, where we use XLM-RoBERTa
instead of RoBERTa, showing a gap in the per-
formance between the multilingual encoder and
English encoder. All models show that there is still

work needed for parity across all languages.
Overall, the baselines show that Mintaka is a

challenging dataset. None of our baselines explic-
itly handle all of the complexity types available
in Mintaka. The language model-only models es-
pecially struggle to handle questions that require
numerical operations such as counts. The knowl-
edge graph-based models rely on relation following
to traverse the knowledge graph to an answer. This
prevents models from correctly predicting answers
that require more complex operations, even if the
facts required are available in the knowledge graph.
Adding additional operations and learning to se-
lect the correct operation for each question could
lead to significant improvement. A combination
of powerful language models, potentially to en-
code questions or identify question entities, with
the interpretable facts and operations available in a
knowledge graph is a promising direction to create
better models on Mintaka.

7 Conclusions

In this paper, we introduce Mintaka, an end-to-
end question answering dataset linked to Wikidata.
Mintaka addresses an important gap in QA datasets
by being large-scale, complex, naturally-elicited,
and multilingual. Our baselines show that there is
room for improvement in existing methods to han-
dle complex questions, especially in all languages.
With the release of Mintaka, we hope to encourage
researchers to continue pushing the boundaries of
question answering to handle more complex ques-
tions in more languages.
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A MTurk Tasks

Figures 2, 3, and 4 show the interfaces used by
MTurk workers to complete each of the tasks to
build the Mintaka dataset. All of these tasks were
hosted on MTurk. Figure 2 is the Question Elici-
tation task. This example is for writing questions
about the topic MOVIES and the complexity type
COMPARATIVE. In each task, a worker would be
shown examples and asked to write five questions.

Figure 3 is the Answer Entity Annotation task.
In this example, a worker is shown the question-
answer pair "Q: What Oscars did Argo win? A:
Best Picture, Best Adapted Screenplay, Best Film
Editing" and asked to identify the entities in the
answer. The question is given as context, allowing
the worker to know that these awards refer to Oscar
awards. After highlighting each entity, the "Search
Wikidata" button is automatically populated to cre-
ate a search link on Wikidata for the given string
that will open in a new window or tab. The workers
could then look at all the choices and enter the URL
of the correct entity.

Figure 4 is the Question Entity Annotation task.
This example again shows the question "What Os-
cars did Argo win?" with "Oscars" highlighted.
Workers were asked to focus on one entity at a
time, so even though "Argo" is also a valid entity in
this question, for this task, we are only interested
in linking "Oscars". Workers would first verify that
Oscars is a valid and complete entity, or modify
the string if there was an error. Then, similar to the
Answer Entity task, the "Search Wikidata" button
lets worker search the string on Wikidata and find
the URL of the correct entity.
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B Model Training Details

Table 8 shows the train, dev, and test set sizes of
each of the models. The Hits@1 Subset score is
the score based on the test subset answerable by
the model, and the Hits@1 Adjusted score is the
adjusted hits@1 to account for the full test set. The
full Mintaka dataset has 14,000 train examples,
2,000 dev examples, and 4,000 test examples.

For T5, fine-tuned T5 for CBQA, KVMemNet,
and trained DPR we use the full train and dev sets
for training and the full test set for evaluation. For
MT5, we fine-tune on all languages simultaneously
and report results overall and for each language
individually. We found that fine-tuning MT5 on
individual languages returned similar scores but
at a higher computational cost. The zero-shot T5
CBQA and DPR models have no train or dev set
since we evaluate them directly on the test set. The
EmbedKGQA and Rigel models only predict over
entities in a knowledge graph. This means that
any sample that doesn’t have at least one entity in
the question and one entity in the answer is not
used in the training or dev sets. This excludes
samples where the answer is a number, a boolean
(all yes/no questions), a date, or a string, or where
an entity was found but no Wikidata link existed
(for example, if the name of a video game char-
acter was identified, but no Wikidata ID existed).
EmbedKGQA loses some additional examples if
an entity was found in Wikidata but didn’t have
entity-to-entity facts, which are used to build the
KG embeddings. For example, some entities in
Wikidata only exist with labels (entity-to-string)
facts but lack entity-to-entity facts.

C Mintaka Examples

Table 7 shows additional examples of question-
answer pairs from the Mintaka dataset.

D Model Training Details

Table 9 shows the breakdown of performance by
complexity type for all trained models. For count
questions, we allow models to return the entities
that are being counted rather than the number. For
example, if the question is "How many Academy
Awards has Jake Gyllenhaal been nominated for?",
we allow the model to return "Academy Award for
Best Supporting Actor" rather than "1". For entity
answers, the order of answers does not matter, but
for text answers, we use exact string matching.

The results show that both complex and generic
questions remain challenging for models. For
generic questions, this shows that even though we
didn’t specify a complexity type, these questions
are not trivial. On complex questions, some of our
models do perform better on comparative and yes
or no questions. However for these questions, there
is usually either a choice between two entities or a
choice between "Yes" or "No", so randomly guess-
ing would score 50%. This means that models
scoring around 50% are not necessarily performing
the reasoning required.
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Figure 2: An example of the question elicitation MTurk task, where a worker is asked to write comparative ques-
tions about movies

Figure 3: An example of the answer entity annotation MTurk task, where a worker is asked to identify and link the
entities in the answer "Best Picture, Best Adapted Screenplay, Best Film Editing".
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Figure 4: Example of the question entity annotation MTurk task, where the entity is already highlighted (in this
case, "Oscars"), and the worker is asked to verify or modify the highlighted string and then link to Wikidata.

Q: Which series is older, Metroid (Q12397) or Super Mario Bros (Q23902998)?
A: Super Mario Bros (Q23902998)

Q: What year was the first (number: 1) book of the A Song of Ice and Fire (Q45875) series published?
A: 1996

Q: Which Amon Amarth (Q192863) albums did Fredrik Andersson (Q3752814) not perform as the drummer?
A: Once Sent from the Golden Hall (Q1366410), Jomsviking (Q22674162), Berserker (Q62272261)

Q: Is the Eiffel Tower (Q243) located in Italy (Q38)?
A: No

Q: Who was the president of Argentina (Q414) from 1989 (date: 1989) to 1999 (date: 1999)?
A: Carlos Menem (Q185107)

Q: How many teams has Matthew Stafford (Q889130) played for?
A: 2: Detroit Lions (Q271880) and Los Angeles Rams (Q337377)

Q: What is the name of the star of Iron Man’s (Q192724) wife?
A: Susan Downey (Q936542)

Q: What is the third (number: 3) longest river in the USA (Q30)?
A: Yukon River (Q104437)

Q: Who ruled for a longer period of time, King Tut (Q12154) or Alexander the Great (Q8409)?
A: Alexander the Great (Q8409)

Table 7: Example question-answer pairs from Mintaka. Question and answer annotations are shown here in-line
with Wikidata Q-codes.
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Hits@1 Hits@1
Model Lang Train Dev Test Subset Adjusted

T5 en 14,000 2,000 4,000 0.28 0.28
MT5 ar 126,000 18,000 36,000 0.15 0.15

de 126,000 18,000 36,000 0.16 0.16
es 126,000 18,000 36,000 0.16 0.16
fr 126,000 18,000 36,000 0.16 0.16
hi 126,000 18,000 36,000 0.16 0.16
it 126,000 18,000 36,000 0.16 0.16
ja 126,000 18,000 36,000 0.15 0.15
pt 126,000 18,000 36,000 0.16 0.16
multi 126,000 18,000 36,000 0.16 0.16

T5 CBQA (zero-shot) en – – 4,000 0.20 0.20
T5 CBQA (fine-tuned) en 14,000 2,000 4,000 0.38 0.38
T5 CBQA (translated) ar 14,000 2,000 4,000 0.27 0.27

de 14,000 2,000 4,000 0.34 0.34
es 14,000 2,000 4,000 0.32 0.32
fr 14,000 2,000 4,000 0.33 0.33
hi 14,000 2,000 4,000 0.30 0.30
it 14,000 2,000 4,000 0.32 0.32
ja 14,000 2,000 4,000 0.28 0.28
pt 14,000 2,000 4,000 0.31 0.31
multi 14,000 2,000 4,000 0.31 0.31

KVMemNet en 14,000 2,000 4,000 0.12 0.12
EmbedKGQA en 9,837 1,409 2,809 0.26 0.18

Rigel en 9,839 1,409 2,809 0.29 0.20
ar 9,839 1,409 2,809 0.26 0.18
de 9,839 1,409 2,809 0.27 0.19
es 9,839 1,409 2,809 0.27 0.19
fr 9,839 1,409 2,809 0.27 0.19
hi 9,839 1,409 2,809 0.25 0.17
it 9,839 1,409 2,809 0.27 0.19
ja 9,839 1,409 2,809 0.28 0.20
pt 9,839 1,409 2,809 0.25 0.18
multi 88,551 12,681 25,281 0.27 0.19

DPR (zero-shot) en – – 4,000 0.15 0.15
DPR (trained) en 14,000 2,000 4,000 0.31 0.31

Table 8: Details of the train, dev, and test set sizes for all models. Hits@1 Subset shows the hits@1 score on the
available test set. Hits@1 Adjusted adjusts the hits@1 score for the full test set of 4,000 questions.
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Model Lang Gen Mhop Intsct Diff Comp Superl Ord Count YesNo

T5 en 0.24 0.14 0.32 0.13 0.55 0.31 0.14 0.05 0.67
MT5 multi 0.06 0.05 0.12 0.06 0.45 0.13 0.04 0.01 0.58

ar 0.05 0.04 0.11 0.06 0.45 0.14 0.03 0.01 0.57
de 0.07 0.05 0.13 0.07 0.42 0.14 0.05 0.01 0.57
es 0.07 0.06 0.13 0.07 0.48 0.12 0.05 0.02 0.57
fr 0.07 0.06 0.13 0.06 0.46 0.14 0.05 0.01 0.57
hi 0.04 0.05 0.11 0.06 0.48 0.14 0.05 0.01 0.59
it 0.07 0.06 0.12 0.07 0.45 0.14 0.05 0.01 0.58
ja 0.05 0.04 0.10 0.04 0.45 0.13 0.03 0.01 0.59
pt 0.07 0.05 0.14 0.07 0.45 0.13 0.05 0.01 0.59

T5 CBQA
zero-shot en 0.31 0.15 0.31 0.13 0.25 0.28 0.22 0.00 0.03
fine-tuned en 0.41 0.21 0.44 0.21 0.58 0.42 0.30 0.09 0.71
translated multi 0.32 0.15 0.38 0.16 0.51 0.36 0.26 0.07 0.56

ar 0.23 0.12 0.31 0.14 0.49 0.31 0.20 0.05 0.58
de 0.36 0.17 0.44 0.17 0.59 0.37 0.27 0.07 0.62
es 0.35 0.15 0.40 0.19 0.54 0.38 0.27 0.08 0.55
fr 0.35 0.17 0.42 0.17 0.52 0.38 0.28 0.07 0.60
hi 0.30 0.14 0.34 0.16 0.49 0.34 0.25 0.05 0.65
it 0.35 0.19 0.42 0.17 0.50 0.38 0.29 0.08 0.49
ja 0.29 0.13 0.33 0.13 0.45 0.36 0.25 0.06 0.55
pt 0.36 0.17 0.41 0.16 0.51 0.39 0.28 0.07 0.44

KVMemNet en 0.04 0.03 0.06 0.04 0.29 0.12 0.06 0.01 0.52

EmbedKGQA en 0.15 0.07 0.18 0.18 0.05 0.40 0.18 0.44 0.00

Rigel en 0.19 0.09 0.30 0.13 0.43 0.13 0.09 0.50 0.00
multi 0.17 0.09 0.25 0.12 0.45 0.11 0.08 0.44 0.00
ar 0.17 0.09 0.25 0.12 0.39 0.09 0.08 0.45 0.00
de 0.18 0.09 0.25 0.12 0.45 0.10 0.09 0.46 0.00
es 0.18 0.09 0.26 0.12 0.47 0.11 0.08 0.47 0.00
fr 0.18 0.10 0.27 0.13 0.43 0.11 0.08 0.45 0.00
hi 0.15 0.08 0.24 0.11 0.42 0.08 0.08 0.42 0.00
it 0.17 0.08 0.26 0.12 0.46 0.11 0.07 0.47 0.00
ja 0.19 0.09 0.28 0.12 0.45 0.10 0.08 0.46 0.00
pt 0.15 0.07 0.24 0.10 0.44 0.09 0.08 0.44 0.00

DPR
zero-shot en 0.27 0.10 0.20 0.10 0.12 0.23 0.21 0.03 0.00
trained en 0.31 0.14 0.37 0.19 0.47 0.29 0.27 0.40 0.39

Table 9: A breakdown by complexity type for all trained baselines. Some complexity types are abbreviated:
"Gen" is Generic questions, "Mhop" is multihop questions, "Intsct" is Intersection questions, "Diff" is Difference
questions, "Comp" is Comparative questions, "Superl" is Superlative questions, and "Ord" is ordinal questions.
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Abstract

There have been many efforts to try to under-
stand what grammatical knowledge (e.g., abil-
ity to understand the part of speech of a token)
is encoded in large pre-trained language mod-
els (LM). This is done through ‘Edge Probing’
(EP) tests: supervised classification tasks to
predict the grammatical properties of a span
(whether it has a particular part of speech) us-
ing only the token representations coming from
the LM encoder. However, most NLP applica-
tions fine-tune these LM encoders for specific
tasks. Here, we ask: if an LM is fine-tuned,
does the encoding of linguistic information in
it change, as measured by EP tests? Specifi-
cally, we focus on the task of Question Answer-
ing (QA) and conduct experiments on multiple
datasets. We find that EP test results do not
change significantly when the fine-tuned model
performs well or in adversarial situations where
the model is forced to learn wrong correlations.
From a similar finding, some recent papers con-
clude that fine-tuning does not change linguis-
tic knowledge in encoders but they do not pro-
vide an explanation. We find that EP models
themselves are susceptible to exploiting spuri-
ous correlations in the EP datasets. When this
dataset bias is corrected, we do see an improve-
ment in the EP test results as expected.

1 Introduction

The encoding of linguistic information in large pre-
trained language models (LMs) such as BERT (De-
vlin et al., 2019) has become an active research
topic in recent times. This encoding is usually
measured by edge probing (EP) tasks (Liu et al.,
2019; Tenney et al., 2019a). Consider the sentence
“the Met is closing soon”. The token ‘met’ is a
noun (a museum and not a form of the verb ‘meet’).
The context words (‘the’, ‘is’) are the only signals
for determining its part of speech. If a ‘simple’
(one or two layer MLP (Hewitt and Liang, 2019))

* Work done at the University of Copenhagen.

classifier predicts ‘met’ as a noun only using the
representation of the token ‘met’ (coming from a
contextual encoder such as BERT (Devlin et al.,
2019) or ELMo (Peters et al., 2018)) and not the
whole sentence, then these signals must have been
encoded in the token representation itself. This is
the grammatical knowledge the test is ‘probing’ for.
If encoder E1 performs better than encoder E2 on
an EP test, say, part-of-speech tagging, we say that
E1 has a better knowledge of part-of-speech than
E2.

For many NLP tasks, pre-trained LMs (most
commonly, BERT) have emerged as standard en-
coders (Raffel et al., 2020). These encoders are
fine-tuned after adding task-specific layers on top.
While probing tests on pre-trained encoders are
quite popular, fine-tuned encoders are relatively
under-explored (with notable exceptions of Mer-
chant et al. (2020) and van Aken et al. (2019). We
aim to bridge this gap by probing fine-tuned mod-
els using question answering (QA) as a target task.
QA is a complex NLU problem requiring the model
to implicitly perform many reasoning steps, and
fine-tuned models provide strong baselines for var-
ious QA datasets (Devlin et al., 2019). Our first
research question is thus:

RQ1: Does fine-tuning for QA tasks improve the
encoding of linguistic skills in the encoders, when
measured by existing EP tests? Intuitively, DNN
based QA models would require implicit knowl-
edge of semantic roles (who did what to whom,
when, and where), an understanding of the part of
speech and entity boundaries (most answers are
entities in the context), and anaphora resolution
(entities in the context would refer to each other).
Indeed, prior works show how injecting knowledge
about semantic roles (Shen and Lapata, 2007) and
coreference resolution (González and Rodríguez,
2000) in classical QA pipelines improves their
performance. Therefore, a fine-tuned QA model
should implicitly acquire these linguistic skills. The
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QA layers in the fine-tuned models have much
fewer parameters than the encoders (§3), therefore,
the encoders themselves are more likely to encode
that grammatical knowledge. Consequently, when
these fine-tuned encoders are used for the SRL (se-
mantic role labeling), CoREF (coreference), PoS
(part-of-speech tagging), and NER (named entity
recognition) EP tests, we would expect to see im-
provements over pre-trained LMs. But we do not
observe any such change (§4).

Fine-tuning is generally performed on much less
data than pre-training and the encoder weights
might not change significantly. Could that cause
the EP test results to remain the same? If the en-
coder weights are kept fixed during fine-tuning, the
performance in the target (QA) task drops 50−70%
on all datasets. However, this frozen encoder has
the same performance on the EP test as the origi-
nal one. In other words, two encoders with a high
difference in the target task performances have no
discernible difference in the EP task performances.
A possible explanation is that the QA models have
no need to use the grammatical knowledge we are
testing for. This motivates the second research
question:

RQ2: Does fine-tuning for QA tasks impart the
linguistic skills necessary to perform QA in the en-
coders? To answer this, we create a QA dataset
that requires a particular ‘skill’ (Rogers et al., 2022;
Ray Choudhury et al., 2022): the knowledge of
coreference resolution (§5). Quoref (Dasigi et al.,
2019) is such a dataset, but one might not require
the knowledge of coreference to answer all ques-
tions in Quoref. Many instances in standard NLU
tasks can be solved by heuristics, i.e., without
proper reasoning (see Gururangan et al. (2018) for
NLI or Min et al. (2019) for multi-hop QA). We
design algorithms to filter out questions that can
be answered heuristically (§5), and consequently,
any model probably needs to use the knowledge
of coreference to answer the rest. However, two
encoders with a significant performance difference
on this de-biased dataset have no difference in the
CoREF EP test. This motivates the third research
question:

RQ3: Why do the EP test results not reflect that
encoders have learned the linguistic skills needed
to perform QA?: Our analysis (§6) of the EP test
datasets suggests that the EP models themselves
might rely on dataset biases (as opposed to learn-
ing the task with input representations). When this

bias is corrected, fine-tuned encoders behave as
expected, i.e., show significant performance im-
provements over the base encoders. Previously,
van Aken et al. (2019) and Merchant et al. (2020)
observed that the EP test results do not differ in the
base vs fine-tuned encoders1 (RQ1) and concluded
that the encoding of grammatical knowledge in the
encoders does not change during fine-tuning. How-
ever, unlike ours, their studies were not done on
the problems that explicitly call for such grammati-
cal knowledge. Moreover, current criticisms of EP
tests on non fine-tuned encoders focus on the task
design itself (Hewitt and Liang, 2019; Voita and
Titov, 2020) (see §6), whereas this work calls for
bias correction in the standardized EP test datasets.

2 Related Work

Prior work has focused on understanding various
aspects of pre-trained LMs including attention pat-
terns (Clark et al., 2019) and linguistic knowledge
(Liu et al., 2019). When these LMs are used as
encoders in models, they turn out to be strong base-
lines for many tasks (Raffel et al., 2020). However,
less is known about how the fine-tuning process
changes the encoder’s attention patterns (Kovaleva
et al., 2019) or their encoding of linguistic knowl-
edge. While many papers (Jia and Liang, 2017;
Kaushik and Lipton, 2018; Sen and Saffari, 2020;
Sugawara et al., 2020, inter alia) argue that DNN
models often use heuristics to answer questions,
Ray Choudhury et al. (2022) shows that at least
some of the models use human-interpretable rea-
soning steps. Therefore, it is important to study
how edge probing tests capture the task-specific
reasoning abilities introduced in the fine-tuning
process.

The paradigm of the classifier based probing
tasks (of which our EP tasks are a subset) is quite
mature (Ettinger et al., 2016), and has seen in-
creasing popularity with the release of benchmark
EP datasets (the ones we use here) (Tenney et al.,
2019a). Typically, internal layers of large language
or machine translation models are used as features
for auxiliary prediction tasks for syntactic proper-
ties: part-of-speech (Shi et al., 2016; Blevins et al.,
2018; Tenney et al., 2019a), tense (Shi et al., 2016;
Tenney et al., 2019a), or subject-verb agreement

1Merchant et al. (2020) uses one QA dataset (SQuAD (Ra-
jpurkar et al., 2016)) and all our EP tests; van Aken et al.
(2019) uses two datasets (SQuAD and HotpotQA (Yang et al.,
2018)) and two of our EP tests; which makes this study more
rigorous in the QA domain.
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(Tran et al., 2018; Linzen et al., 2016). See Be-
linkov and Glass (2019) for an extensive survey.

However, not many papers study the benchmark
EP tests for fine-tuned representations. Most simi-
lar to our work is the layer-wise analysis of BERT
weights for QA (van Aken et al., 2019) and the
results of fine-tuning BERT on EP tasks (Merchant
et al., 2020) – van Aken et al. (2019) use three QA
datasets (SQuAD, HotpotQA, and bAbi (Weston
et al., 2016)) to show that: 1) for the EP task of
CoREF, test results remain unchanged, even when
representations are taken from different layers; 2)
different layers of a fine-tuned BERT can be at-
tributed to different tasks in the QA process such
as supporting fact extraction or entity selection.
Merchant et al. (2020) studies MNLI, dependency
parsing, and QA (SQuAD) to arrive at a similar
finding, although their main results use a scalar
mix of the weights from all layers of a fine-tuned
BERT (whereas our work uses the top layer). RQ1
in our work can be considered complementary to
their work, but RQ2 and RQ3 have not been studied
before.

EP tests are indirect, i.e., a classifier (probe) is
used to measure the linguistic information in the
representation. Do the test results reflect the quality
of the representations or the classifier’s ability to
learn the task (Hewitt and Liang, 2019; Voita and
Titov, 2020)? We discuss this in §6. See Belinkov
(2022) for more background on probing classifiers.

3 Edge Probing & QA: The Setup

Edge Probing: Following prior work (Merchant
et al., 2020; van Aken et al., 2019), we use the
model architecture and four of the edge probing
tasks proposed by Tenney et al. (2019a). Given
a sentence S = [T1, ...Tn] of n tokens where
Ti ∈ Rd, for PoS and NER tasks, the goal is to
predict the part of speech or entity tag for a set of
spans Ti..Tj , 1 ≤ i, j ≤ n in that sentence (with
only the span and not the sentence as the input).
Using the same setting for SRL and CoREF tasks,
the input is a pair of spans and the output is a class
label: for SRL, it is a semantic role, for CoREF
it is a binary label indicating whether one span is
an antecedent of the other or not. A self-attention
pooling operator is used to generate a fixed repre-
sentation for spans of different lengths (Lee et al.,
2017). For SRL and CoREF, these representations
for the two spans are concatenated. A single-layer
linear probe is used for the actual classification task

I eat strawberry ice cream

Pre-trained LM: (BERT) 

T1 T2 T3 T4 T5

E1

S1 (T1) S2 (T2) S3 (T3) S4 (T3, 4, 5)

E2 E3 E4

POS MLP (Is S2 a VVP?) SRL  MLP (is S4 ARG1 of S2?)

Original sentence

Encoder layer

Token representations from 
the encoder

Pooling layer on tokens 

Pooled span representations: 1 
or multiple tokens

MLPs for EP tasks

Figure 1: The architecture for edge probing tasks. For
all tasks (PoS, SRL, CoREF, NER) the same MLP is
used.

(Figure 1).
For EP tests, the span representations need to

be generated from the token representations. To-
ken representations can be generated from each
layer (Tenney et al., 2019a) or the top layer (Ten-
ney et al., 2019b) of the encoder. In each case,
the layer i representation can be calculated as: 1.
Just the output of layer i, 2. A concatenation of
the first layer output and layer i output (‘cat’), and
3. A scalar mixing of the output of 0 − i layers
where the mixing weights are trainable parameters
(‘mix’). In all experiments, we use the ‘cat’ set-
ting for the topmost layer in the encoder because
both Merchant et al. (2020) and we find no signifi-
cant difference for the other settings (the top layers
generally perform better).
Question Answering: In typical QA setups, mod-
els are given a context and a question as input. We
use two span-based datasets (SQuAD, Rajpurkar
et al. (2016) and HotpotQA, Yang et al. (2018))
where the task is to extract a span of the text
from the context as the answer. We also use two
MCQ datasets (ReCoRD, Zhang et al. (2018) and
MultiRC, Khashabi et al. (2018)) where the model
is trained to select an answer from a set of choices.
The architectures follow Devlin et al. (2019) and
are similar for all datasets: one or two QA-specific
layers on top of an encoder (see the appendix for
more details).

4 RQ1: EP Tests & Fine-Tuned Encoders

We first run the EP tests with a standard en-
coder. Next, the QA models (the same encoder
+ QA layers) are trained (fine-tuned). Then, in the
fine-tuned models the QA layers are replaced with
the same MLP layers used in the EP tests, and
the tests are repeated. This gives us a measure of
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how much the encoding of linguistic knowledge
in the encoder might have improved due to the
fine-tuning process. We also randomize the QA
training data (for SQuAD and HotpotQA) by using
random noun phrases as answers. Thus the model
is forced to learn wrong correlations, which can
cause it to ‘forget’ the skills to some extent, and in
turn, the encoder should perform worse on the EP
tests.

4.1 Experimental Setup
We use a BERTbase-uncased model as the base en-
coder for all tasks. For each QA task, we run five
experiments. The span-based QA models are eval-
uated using the F1 score and the exact match (EM)
metric. The exact match measures the percentage
of answers that exactly match the actual answers.
The F1 score measures the token overlap between
the predicted and the actual answer. The MCQ
questions are classification tasks and evaluated us-
ing the usual accuracy and Micro-F1 metrics for
classification.

For EP tests we use the highest performing
model in each QA dataset. The tests use the bench-
mark OntoNotes 5.0 corpus (Weischedel et al.,
2013), as in Tenney et al. (2019a) and Merchant
et al. (2020). We use the same hyper-parameters as
the original paper on EP tests (Tenney et al., 2019b)
except for the batch size (32 theirs vs 16 ours).2

The QA models were trained for 10 epochs with a
batch size of 16 using the Adam optimizer (Kingma
and Ba, 2015). The EP models were trained for
three epochs, using the same batch size and opti-
mizer. The learning rates were kept at 1e-04 for
the EP tasks and 1e-05 for the fine-tuning tasks.
Further details about hyper-parameter searching
and the exact configurations are provided in the
appendix. Following the training regime of (Pruk-
sachatkun et al., 2020), the models were evaluated
on a subset of the validation data every 500 mini-
batches with early stopping on 100 evaluations.

4.2 Results
We report the Micro-F1 scores for the EP tests on
fine-tuned models in Table 1 (the average over 5
runs for each experiment, and the standard devia-
tion varies between 0.1− 1.5%). See the appendix
for detailed results.

For SQuAD the test data is not publicly avail-
able, therefore, we report the results on dev data.

2Merchant et al. (2020) and van Aken et al. (2019) report-
edly used the same HPs.

SRL CoREF PoS NER

BERT-base 81.1 81.2 96.1 93.0

Fine-tuning on original data

SQuAD (81.9) 79.9 81.2 95.3 92.4
ReCoRD (57.0) 79.7 80.9 95.8 93.4
MultiRC (63.7) 80.7 82.3 95.8 93.5
HotpotQA (77.0) 77.7 80.2 94.3 90.9

Fine-tuning on randomized data

SQuAD (7.4) 74.8 78.9 91.7 86.8
HotpotQA (12.5) 74.0 79.5 92.0 86.2

Table 1: Micro-F1 scores for different EP tasks: without
fine-tuning, with fine-tuning on the original datasets,
and with fine-tuning on randomized datasets. The F1
scores for the QA datasets are given in parentheses.

We changed HotpotQA instances to SQuAD style
ones by providing the relevant sentences as the con-
text, which is given for the train and dev data, but
not for the test data. Therefore, we only report the
results on the dev data.

For SQuAD and MultiRC, the results are some-
what lower than the best results reported in the
literature with similar architectures (88.5 for De-
vlin et al. (2019) and 70.4 for Wang et al. (2019)).3

For ReCoRD, the results are slightly better (Zhang,
2020). For HotpotQA, no fair evaluation is possi-
ble due to the data modifications.

Our EP test results for SRL and CoREF do dif-
fer from the previous work (Tenney et al., 2019a),
but they are comparable with Liu et al. (2019),
which uses the same dataset. However, we are more
concerned with the fact that the EP test results do
not change significantly when a fine-tuned vs the
original encoder is used. In the randomization ex-
periments, we see that the QA F1 score drops as
expected, and the EP test results do change, but not
as significantly as the QA F1 scores. This also in-
dicates that improving the performance of the QA
model itself might not change the EP test results
significantly.

In summary, our experiments suggest that
fine-tuning indeed does not significantly change
the encoding of linguistic knowledge in the un-
derlying encoder, when measured by the EP tests,
which is consistent with the findings of previous
work (Merchant et al., 2020; van Aken et al., 2019),
but provides complementary evidence.

3We use a max length of 128 in the encoder, whereas a
max length of 512 produces comparable results. However,
the target test results and EP test results are not correlated,
therefore, we do not investigate this further.
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5 RQ2: EP Test for Coreference

While we can expect the model to acquire some
linguistic skills (the ability to do coreference res-
olution, identify the part of speech of a token) by
learning to perform a QA task, there is no guaran-
tee for this: a model can reason differently than we
expect it to. For example, many HotpotQA ques-
tions can be answered by identifying the necessary
entity type and not the multi-hop reasoning process
that we expect (Min et al., 2019).

Therefore, in RQ2, we want to see whether the
EP test results change when we know the encoder
has to acquire particular grammatical knowledge
K for the QA task. Consider two models M1 (E1 +
QA_Layer1) and M2 (E2 + QA_Layer2) in our
encoder + QA layer architecture. Assume we can
identify a set of questions Q that can only be an-
swered using K. If M1 performs significantly bet-
ter than M2 in these questions, we can say that E1

has encoded more information about K than the
E2 because the QA layers are unlikely to encode
that knowledge as they have much less parameters
than the encoders. Therefore, in the EP test for K,
we can expect E1 to perform better than E2.

We define M1 as a fine-tuned-encoder, where
the full architecture (encoder (E1) + QA layer) is
trained; and M2 as a frozen encoder: the encoder
(E2) is frozen and only the QA layer is trained.
We choose K to be the grammatical knowledge of
coreference. It is difficult to understand whether
the knowledge of semantic roles or part of speech
would be needed to answer a question, but it possi-
bly can be done for coreference. For example, in
Figure 2a, it is relatively easy to see that to answer
the question a human needs to resolve the reference
‘he’ in the second sentence to ‘Leo Strauss’.

5.1 Finding Coreference Questions

We employed four NLP practitioners to anno-
tate 200 questions (100 each from SQuAD and
HotpotQA). Each annotator was given a sample of
100 questions and was asked to stop as soon as they
found 50 positive (questions they thought required
coreference) instances. The question in Figure 2a
is sampled from that dataset. But the question
can also be answered by a shortcut (Geirhos et al.,
2020). We know a ‘where’ question will only be
answered by an entity of type location and there
are two such entities in the context: Germany and
United States. Germany is an argument to the trig-
ger verb ‘born’, hence, is the answer.

The Quoref dataset (Dasigi et al., 2019) report-
edly consists of questions that can only be an-
swered by understanding the concept of corefer-
ence. The annotators design the questions them-
selves, which is different from our post-hoc anno-
tation process. Figure 2b shows a sample question
from the dataset. This question can not be answered
without resolving the pronominal antecedent ‘he’
to ‘Frankie’. But even Quoref can have questions
that can be answered with a shortcut, therefore
we develop algorithms to filter them out (§5.1.1,
§5.1.2).

5.1.1 Model-Agnostic Filter

In Quoref, the answer is a span in the context.
The Model-Agnostic Filter algorithm works in two
steps: a) Sentence Selection: Select the context
sentence that is most similar to the question; and b)
Entity Type Matching: The question expects an
entity of a particular type, eg: ‘where’→ location,
‘who’→ person. From the sentence selected in the
last step, select an entity of the same type.

For ‘Sentence Selection’, we use two methods:
1) Token-Overlap: Select the sentence that has
the highest token overlap with the question tokens,
and 2) Sentence Encoder: An off-the-shelf sen-
tence encoder from Reimers and Gurevych (2019)
trained on MS Marco (Nguyen et al., 2016), a large
scale dataset for answer passage retrieval (see the
appendix for details).

For the ‘Entity Type Matching’ step, we design
both supervised and unsupervised algorithms to
determine the type of the answer entity from the
question. For the unsupervised algorithm, we de-
fine a map (see the appendix) with the ‘wh’ words
(who, when, whom) as the keys and the entity type
as values (who ← PER). The first ‘wh’ word in
the question determines the output. For example,
for the question “where was Plato born, who wrote
Republic?” it produces LOC. If no such word is
found, it outputs an UNK_ETYPE.

This unsupervised approach will predict the
wrong entity type for questions such as “Who won
the World Cup in 2002?” (PER instead of LOC).
Therefore, we train and evaluate supervised classi-
fication models on the training split of the Quoref
dataset.4 The label for a question is the entity type
of the answer,5 as detected by an off-the-shelf en-
tity extractor from Spacy. If the answer is not a

4Further divided into 70(train)-20(dev)-10(test) splits
5One of the 18 types in Pradhan et al. (2013)
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Context: Leo Strauss ...was a German-American politi-
cal philosopher ... He was born in Germany... Thoughts
on Machiavelli is a book by Leo Strauss ...
Question: Where was the author of Thoughts of Machi-
avelli born?
Answer: Germany

(a) A sample question from SQuAD.

Context: Frankie Bono, a mentally disturbed hitman
from Cleveland,..Next, he goes to purchase a revolver
from Big Ralph....
Question: What is the first name of the person who pur-
chases a revolver?
Answer: Frankie

(b) A sample question from Quoref.

Figure 2: Sample questions from SQuAD and Quoref datasets. A reader relying on coreference resolution would
take into account the green tokens.

Sentence Etype EM

Overlap Supervised fine-tuned (63) 6.31
WordConv (58) 6.27

Unsupervised 1.22

Encoder Supervised fine-tuned 5.99
WordConv 5.48

Unsupervised 0.97

Table 2: Different strategies for the
Model-Agnostic Filter algorithm. EM stands for
exact match, i.e., the percentage of cases where the
filter produces the exact answer.

named entity, or our entity extractor fails to de-
termine its type, the label is UNK_ETYPE.6 We
experiment with two architectures: 1) a fine-tuned
BERTbase-cased model; and 2) a popular word con-
volutional model for sentence classification (Kim,
2014) using three parallel filters and 300 dimen-
sional Google News Word2Vec representations
(Mikolov et al., 2013). More details about the data,
model architectures, and training is provided in the
appendix.

5.1.2 Model-Dependent Filter
Following Sugawara et al. (2020) we replace all
pronouns from the context in a question with ran-
dom strings of the same length. If any one of M1

orM2 can still answer the question, it can arguably
be answered without the knowledge of coreference.

5.1.3 Experiments & Results
The BERT and the WordConv supervised entity
detectors have an average accuracy of 63.55±0.1%,
and 58.81± 0.3% over 5 runs respectively.

The ‘EM’ column in Table 2 shows the pro-
portion of Quoref questions (the validation split)
that can be answered by the Model-Agnostic Filter

6Indeed, a significant number of questions are labeled as
such: 33%, 34%, and 35% in the train, dev, and test split of
the data respectively.

frozen fine-tuned

F1 EM F1 EM
Quoref dev 10.23 5.41 69.53 65.61
- MAF 10.09 5.36 69.21 65.31
- MDF 7.00 3.19 38.57 30.85
- (MAF + MDF) 6.76 2.97 38.38 30.69

CoREF (Micro-F1) 81.68 ± 1.68 83.11 ± 0.7

Table 3: Performance of frozen encoder and
fine-tuned-encoder models when filters are applied:
separately and in combination. MAF and MDF stands
for model agnostic and dependent filters. The last row
reports the Micro-F1 for both encoders in CoREF EP
test.

algorithm. ‘Overlap’ and ‘Encoder’ are the two
strategies for the ‘Sentence Selection’ step, and
‘Supervised’ and ‘Unsupervised’ are the same for
the ‘Entity Type Matching’.

The final Model-Agnostic Filter algorithm uses
the token overlap approach to select a sentence
from the context and uses the best fine-tuned BERT
model to find the entity type for the answer. With
this, we can filter out 6.3%(155/2418) questions
from the dev set. While this number is not very
high, a similar exercise on SQuAD determines that
at least 21% questions can be answered by this
shortcut, which is consistent with prior findings
(Jia and Liang, 2017).

In the Model-Dependent Filter algorithm, indi-
vidually, the fine-tuned model filters out 55% dev
instances, and the frozen encoder model filters out
6% of them, and in total, they filter out 56% (there
is a large overlap).

5.2 Target Task vs Encoder EP Test

Table 3 shows the results of the fine-tuned and the
frozen encoder on Quoref dev set before and af-
ter the filters are applied. As can be seen, the
fine-tuned encoder performs much better than the
frozen one across all scenarios. The performance of
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these encoders on the CoREF EP test is given in the
last column, which, however, does not differ much.
This proves that while one encoder might encode
a linguistic knowledge (coreference) better than
the other, the EP tests might fail to capture that.

6 RQ3: An Analysis of EP Tests

6.1 Analysis

We see that the EP test results are surprisingly sta-
ble, even when we expect the fine-tuned encoder to
learn or forget certain linguistic skills. EP tests are
indirect measures of a representation’s quality and
have been criticized as such. Voita and Titov (2020)
shows that for some EP tests, a large pre-trained
LM (ElMo (Peters et al., 2018)) has the same per-
formance as a random encoder. They conclude that
the test measures the classifiers’ ability to learn
the EP task, and not the knowledge encoded in
the representations itself. They propose using an
information-theoretic (minimum description length
or MDL) probe.

In a similar vein, Hewitt and Liang (2019) sug-
gests designing a control task. A control task for
an EP test is the same classification task, only the
labels of the original task are changed so that it
can not be recovered from the linguistic informa-
tion. For example, two tokens with different part-
of-speech tags will be mapped to the same arbi-
trary label. A classifier (probe) that performs well
on both the control task and the original EP test
must be learning the correlations in the data, and
not using any information from the representations.
Therefore, it can not measure the encoding of gram-
matical knowledge in the encoders.

If an EP test has only two labels, they will just
be flipped in the control task. This makes the con-
trol task and the original EP test the same prob-
lem for the probe, and they must have the same
performance. Therefore, for binary EP tests such
as CoREF (the one we are interested in), no con-
trol task can be designed, but we use simple linear
probes following Hewitt and Liang (2019)’s recom-
mendations.

Had we used MDL probes instead, would our
conclusions in RQ1 and RQ2 change? Prior work
reports that the fine-tuned encoders do not show
much difference in the MDL probes themselves
(Merchant et al., 2020). Moreover, even in the orig-
inal MDL probe paper, the CoREF test results are
similar in a pre-trained vs random encoder (Voita
and Titov, 2020). Therefore, replacing the current

SRL CoREF PoS NER

mem_uniform 32.46 65.02 88.62 71.59
mem_freq 44.45 78.06 88.69 73.27
same_prec_ante - 70.23% - -
BERT-base 81.08 81.2 96.11 93.06

Table 4: A performance comparison on EP test results:
Micro-F1 scores for heuristics and BERTbase-uncased
models (average over 5 runs, STD. varies from 0.09−
1%).

EP tests with MDL probes should not change the
findings for the previous research questions.

Does this conclusively mean that the linguistic
skill is not improved in the encoder, even when the
task calls for it? Both Merchant et al. (2020) and
van Aken et al. (2019) arrive at that conclusion,
albeit without fine-tuning on a skill-specific target
dataset such as Quoref. We present a dataset bias
explanation (§6.2). Note the EP test dataset is used
in both Merchant et al. (2020), van Aken et al.
(2019), therefore the same explanation is valid for
both these studies.

6.2 EP Test Heuristics

Following Gururangan et al. (2018), we design
unsupervised algorithms that exploits spurious cor-
relations in the dataset.

• Memorization: If a test data point is in the training
data, the classifier returns the training data label.
Else, it returns a random label either a) uniformly
sampled (‘mem_uniform’) or b) sampled from the
label probability distribution of the training data
(‘mem_freq’).

• Same Precedent-Antecedent: In the CoREF
dataset, whenever the precedent and antecedent
are the same (“Obama is the president of the US.
He lives in Washington D.C. He went to Harvard.”),
return positive.

6.2.1 Results
Table 4 shows the results for various heuristics
and a BERTbase-uncased encoder. To achieve mod-
erately high performance on most EP tests, no
specific representation is needed, let alone from
a pre-trained or a fine-tuned one. The Same
Precedent-Antecedent heuristic has a Micro-F1
score of 70.23% when used alone. This can be
combined with mem_freq/ mem_uniform, but the
combination provides no significant improvement.
Overall, mem_freq is a strong baseline for the EP
tests.
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Best Worst

SRL
overall - -7.05
easy - -4.40
hard - -8.47

CoREF
overall +1.93 -2.32
easy +4.51 -7.11
hard +0.47 -0.17

PoS
overall - -4.12

easy - -4.01
hard - -12.30

NER
overall +0.35 -6.85

easy +0.25 -4.82
hard +0.62 -12.48

CoREF-LS
overall +1.93 -2.32

easy -1.22 +1.1
hard +13.27 -14.68

Table 5: The accuracy changes across easy and hard
instances for the best and worst fine-tuned models. For
SRL and PoS, BERT-base is the best, therefore, there
is no positive change. CoREF-LS refers to the case
when the easy and hard points are created by splitting
the data across labels. In some splits, the changes are
significantly different than the overall change.

6.3 EP Tests: Hard & Easy Instances

The results in §6.2 can be viewed in another way.
Many instances in the EP test data can be solved
by memorization, i.e., are easy instances. But there
are definitely difficult ones that account for the
performance difference in the heuristics and the
BERTbase-uncased model. When the fine-tuned en-
coders show marginal improvements or deteriora-
tion (over the base encoders) do the performance in
these EP tests increase/decrease uniformly across
the hard/easy instances, or in the harder instances
the results change more drastically? In the second
case, it can be argued that the EP tests do ac-
tually capture the change in the encoders, but
the change is artificially clamped, which is an
unfortunate side-effect of the dataset.

We first divide the test data for an EP test into
easy and hard instances: the ones that can be solved
by mem_freq or not. Then we note the average ac-
curacy of base BERTbase-uncased encoders on these
splits. Finally, we take two QA models (from two
separate datasets) for which the encoders had the
average best/worst results in the said EP test. Do
the results change from the base encoder similarly
across these splits?

6.3.1 Results
Table 5 shows no discerning pattern in the ‘Best
fine-tuned’ column, probably because the overall
improvements are indeed not significant. How-
ever, when an encoder model performs poorly (the
‘Worst fine-tuned’ column), it performs dispropor-
tionately badly on the hard instances. This proves
that while on the surface it might appear the results
are similar (Merchant et al., 2020; van Aken et al.,
2019), they are indeed not.

We are however more interested in CoREF, be-
cause as discussed in RQ2, we have reasons to be-
lieve that some encoders have indeed learnt more
about the skill of coreference than the others. How-
ever, contrary to the other results, it seems that the
better/worse results come from the easy instances.

CoREF dataset has a significant label imbalance
(compare row 1 and 2 in Table 4). A classifier pre-
dicting a negative label for all test instances can
achieve an accuracy of 78.33%. If we split the data
across the labels (CoREF-LS), we see that the re-
sults change drastically, with a clear indication that
a better encoder gets better by classifying the hard
(positive) instances better, and a worse encoder
fails harder on the same instances. Unsurprisingly,
the better encoders come from the encoders trained
on the Quoref dataset.

In summary, we show why an EP model can fit
well to the EP data without using a good represen-
tation. This indicates that while fine-tuning may
improve the encoding of grammatical knowledge
in encoders, the current EP tests (even the MDL
probes) might not be able to capture it. There
are issues with the datasets rather than the task
design itself. This is a new explanation for the ap-
parent consistency of EP test results in fine-tuned
models, whereas previous work has mostly focused
on classifier knowledge (see §6.1).

7 Conclusion and Future Work

Edge probing tests are the predominant method to
probe for linguistic information in large language
models. We use them to evaluate how the pro-
cess of fine-tuning an LM for QA might change
the grammatical knowledge in an encoder, and ob-
serve no significant differences between pre-trained
and fine-tuned LMs. More importantly, we find
this phenomenon in carefully designed target tasks
where the models must use the said grammatical
knowledge. From similar EP test results, previous
works have concluded that fine-tuning does not
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change the encoding of grammatical knowledge.
However, our analysis provides a ‘dataset bias’ ex-
planation for the consistency of the results and pro-
vides some clues as to why any representation tends
to achieve very similar results for EP tests. This is
different from the previous task-design criticisms
of the EP tests.

Do fine-tuned NLU models score highly on
benchmarks for the right reasons, i.e., follow the
human reasoning process? This work shows some
evidence in favor of that. The encoding of gram-
matical knowledge in QA encoders is improved as
expected when the models are trained on the right
datasets, and the dataset biases in the EP tests are
corrected. In light of this evidence, in the future,
we plan to identify the exact reasoning steps in the
QA models through post-hoc explainability meth-
ods and study whether they align with the human
reasoning steps.
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A Appendix A: RQ1

A.1 QA Datasets and Model Architectures
SQuAD: We use the first (V1.1) version of the
SQuAD dataset, which contains around 100K ques-
tion, answer, context triples collected from the En-
glish Wikipedia. The answers are spans within the
context. The questions and contexts are concate-
nated, and a linear layer on top of a contextual
encoder is used to predict the probability of a con-
text token i being the start (Pi,s) or end (Pi,e) of
an answer. The score (Si,j) for a span with start
token i and end token j is Pi,s + Pj,e. For all valid
combinations of i and j, the span with the highest
score is chosen as the answer. A cross-entropy loss
between the actual and predicted start/end positions
is minimized.
HotpotQA: The HotpotQA dataset is a collection
of 113K question-answer pairs, with two improve-
ments over SQuAD: 1) Each context consists of
multiple paragraphs (as opposed to a single one)
and the model needs to reason over some of them to
provide an answer and 2) The sentences required to
answer a question are provided (as paragraph index,
sentence index). The dataset features an implicit
IR task (finding the relevant sentences), therefore
we reduce it to a SQuAD style one by changing
the context to the full paragraphs from where the
supporting facts are chosen and removing the ques-
tions where the answer spans cannot be found in
the context (3.8 % in train and 3.9 % in dev data).
ReCoRD: The ReCoRD dataset contains a set of
120,000 Close style questions from the CNN/Daily
Mail dataset (Hermann et al., 2015). A Cloze style
query is a statement with an occluded entity that
is factually supported by a passage. The dataset
provides the named entities in the context, one of
which is the answer. For each (question, context,
N named entity) triple in the data, N (question,
context, label) triples are created, with the missing
entity in the question replaced by one of the pro-
vided entities, and the label is put as true or false
depending on whether the entity is the answer or
not. This NLI style formulation reduces the QA
task to a classification problem, for which a two-
layer MLP is used on top of the encoder layer: a
linear layer with a tanh activation, followed by an-
other linear layer.
MultiRC: MultiRC is a multiple-choice QA
dataset where the model has to choose one or mul-
tiple of provided answers utilizing the text from the
question, context, and the answer itself. We reduce

it to a binary classification task, where the input is
a concatenation of the question, the context, and
the answer (for each of the possible answers). The
same architecture as ReCoRD is used.

A.2 HP Searching and Final Configurations
for QA Datasets and EP Tests

Training Details: We searched for the following
hyper-parameters (HPs): number of epochs and
learning rates. Finally, the QA models were trained
for 10 epochs with a batch size of 16 using the
Adam optimizer (Kingma and Ba, 2015). The EP
models were trained for the three epochs, using the
same batch size and optimizer. The learning rates
were kept at 1e-04 for the EP tasks and 1e-05
for the fine-tuning tasks. Following the training
regime of (Pruksachatkun et al., 2020), the model
was evaluated on a subset of the validation data
every 500 mini-batches with early stopping on 100
evaluations. The config files in the provided code
show the detailed HPs. For the EP tests, the hyper-
parameters are all same as the baseline (Tenney
et al., 2019b) except for the batch size (32 theirs vs
16 ours). Merchant et al. (2020) and van Aken et al.
(2019) reportedly used the same HPs.

A.3 Reproducibility Checklist
Description of computing infrastructure used:
Titan RTX GPU, CUDA version 11.2.
The average runtime for each model or algo-
rithm (e.g., training, inference, etc.), or esti-
mated energy cost: 5-6 Hours for EP tests, 3-4
hours for QA models.
Number of parameters in each model: For
QA models: BERT base uncased parameters +
128*num_classes (FC layer). For EP tests, they
are the same.
Corresponding validation performance for each
reported test result: For three QA datasets, we
use the validation data itself. For the EP models,
validation results are very similar to the test results
reported.
Explanation of evaluation metrics used, with
links to code: The evaluation metric for QA mod-
els is F1, as common in most QA datasets, in-
cluding SQuAD. For EP tests, the evaluation met-
ric is Micro-F1, which is used in Tenney et al.
(2019b), the paper which is our baseline. The im-
plementations are from Pruksachatkun et al. (2020),
which hosts the original code used in Tenney et al.
(2019b). We also use

For all experiments with hyperparameter search:
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model acc micro_f1 macro_f1 weighted
_f1

BERT-
base

81.08 ±
1.33

81.08 ±
1.33

31.93 ±
1.34

80.09 ±
1.54

fine-tuned on original data
SQuAD 79.97 ±

1.1
79.97 ±
1.1

30.57 ±
1.0

78.86 ±
1.3

ReCoRD 79.71 ±
1.46

79.71 ±
1.46

30.47 ±
1.61

78.61 ±
1.7

MultiRC 80.69 ±
1.25

80.69 ±
1.25

31.76 ±
1.37

79.68 ±
1.47

Hotpot 77.73 ±
1.2

77.73 ±
1.2

28.4 ±
1.23

76.45 ±
1.43

finetuned on randomized data
SQuAD 74.79 ±

0.15
74.79 ±
0.15

26.07 ±
0.56

73.36 ±
0.17

Hotpot 74.03 ±
0.33

74.03 ±
0.33

25.79 ±
0.38

72.5 ±
0.35

Table 6: Results for SRL EP test.

The exact number of training and evaluation
runs: For each QA model, 5 training/evaluation
runs. For each EP test, 5 training/eval run.
Bounds for each hyperparameter: training
batch size: 8-32, learning rate: for QA models,
1e-05 to 1e-03, 3 steps. For EP tests, 1e-06
to 1e-04, 5 steps.
Hyperparameter configurations for best-
performing models: Provided as config files.
The method of choosing hyperparameter values
(e.g., uniform sampling, manual tuning, etc.)
and the criterion used to select among them
(e.g., accuracy): Uniform sampling, F1 for QA
models in dev data, Micro-F1 for EP tests in test
data.

A.4 Results

Detailed results for the experiments in §4 are
provided below in Tables 6, 7, 8, and 9.

B Appendix B: RQ2

B.1 Sentence Embedding Model for Answer
Sentence Selection

MS MARCO (Nguyen et al., 2016) is a large
dataset of question/ answer pairs. The dataset was
built by first sampling queries from Bing search log
and then using Bing to retrieve relevant documents
and automatically extract relevant passages from
those documents. Annotators were asked to mark
relevant spans from the documents as answers.

We us a sentence embedding model (Reimers
and Gurevych, 2019) built on the MS MARCO

model acc micro_f1 macro_f1 weighted
_f1

BERT-
base

81.18 ±
1.68

81.18 ±
1.68

59.33 ±
7.99

76.2 ±
3.89

fine-tuned on original data
Quoref 83.11 ±

0.7
83.11 ±
0.7

67.97 ±
2.05

80.45 ±
1.09

SQuAD 81.19 ±
1.49

81.19 ±
1.49

60.27 ±
8.48

76.58 ±
4.01

ReCoRD 80.88 ±
1.76

80.88 ±
1.76

58.08 ±
9.79

75.57 ±
4.66

MultiRC 82.37 ±
1.71

82.37 ±
1.71

65.12 ±
8.7

78.99 ±
4.19

Hotpot 80.19 ±
1.84

80.19 ±
1.84

55.38 ±
8.86

74.21 ±
4.31

finetuned on randomized data
SQuAD 78.86 ±

0.38
78.86 ±
0.38

48.77 ±
3.29

71.01 ±
1.5

Hotpot 79.45 ±
0.23

79.45 ±
0.23

52.1 ±
2.31

72.61 ±
1.03

Table 7: Results for CoREF EP test

model acc micro_f1 macro_f1 weighted
_f1

BERT-
base

96.11 ±
0.15

96.11 ±
0.15

87.88 ±
0.8

96.06 ±
0.15

fine-tuned on original data
SQuAD 95.27 ±

0.04
95.27 ±
0.04

87.08 ±
0.45

95.2 ±
0.05

ReCoRD 95.77 ±
0.08

95.77 ±
0.08

86.91 ±
0.39

95.71 ±
0.09

MultiRC 95.77 ±
0.19

95.77 ±
0.19

86.51 ±
1.29

95.71 ±
0.19

Hotpot 94.31 ±
0.09

94.31 ±
0.09

83.45 ±
0.7

94.21 ±
0.1

fine-tuned on randomized data
SQuAD 91.74 ±

0.35
91.74 ±
0.35

78.52 ±
1.15

91.54 ±
0.37

Hotpot 91.99 ±
0.13

91.99 ±
0.13

79.59 ±
0.65

91.8 ±
0.14

Table 8: Results for PoS EP test

model acc micro_f1 macro_f1 weighted
_f1

BERT-
base

93.0 ±
0.28

93.0 ±
0.28

78.12 ±
1.1

92.29 ±
0.37

fine-tuning on original data
SQuAD 92.44 ±

0.09
92.44 ±
0.09

78.19 ±
0.47

91.86 ±
0.12

ReCoRD 93.35 ±
0.24

93.35 ±
0.24

79.88 ±
0.8

92.79 ±
0.31

MultiRC 93.5 ±
0.4

93.5 ±
0.4

80.51 ±
1.54

93.0 ±
0.52

Hotpot 90.9 ±
0.16

90.9 ±
0.16

73.81 ±
0.62

89.94 ±
0.21

fine-tuning on randomized data
SQuAD 86.77 ±

1.02
86.77 ±
1.02

64.05 ±
3.64

85.25 ±
1.26

Hotpot 86.15 ±
0.32

86.15 ±
0.32

61.56 ±
1.42

84.48 ±
0.37

Table 9: Results for NER EP test
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dataset. The pre-trained model is available off-the-
shelf,7 therefore can be used directly to find the
most ‘similar’ sentence to the question. Among
many sentence embedding models available for se-
mantic search, we use this one because it is specifi-
cally trained on a question-passage retrieval dataset
using a bi-encoder model. During training, the
questions and the relevant/non-relevant passages
are passed through a contextual encoder and their
pooled representations are compared. The model
is trained with the following objective: the (query,
positive_passage) pair is supposed to be close in
the vector space, while (query, negative_passage)
should be distant.

B.2 Unsupervised Entity Type Selection

In unsupervised entity type selection method, we
use a map to determine the entity type of the answer
for a question. The map is given below:

{
‘how far’: [QUANTITY],
‘how long’: [DATE],
‘how many’: [CARDINAL],
‘how old’: [QUANTITY],
‘what’: [PRODUCT, WORK_OF_ART],
‘when’: [DATE, TIME],
‘where’: [FAC, LOC, ORG, GPE],
‘who’: [PERSON],
‘whom’: [PERSON],
‘whose’: [PERSON, ORG, NORP]
}

The entity types are defined in Pradhan et al.
(2013). If the question has the phrase ‘how far’, the
returned entity type is QUANTITY. The map is an
OrderedDict, i.e., if the question is ‘how old is
the person who wrote Harry Potter’, the returned
entity type is QUANTITY. When there are multiple
possibilities (‘where’), one is returned randomly.

B.3 Supervised Entity Type Selection

B.3.1 Dataset

The dataset is created using the training set of
Quoref which is divided into train/dev/test split
for entity type detector model training and evalua-
tion. A sample data point is shown in Figure 3.

The data distribution is shown in Figure 4. As
can be seen, it is very skewed.

7https://www.sbert.net/docs/pretrained-models/msmarco-
v5.html

Text: What is the full name of the person who is the
television reporter that brings in a priest versed in
Catholic exorcism rites?
Label: PER

Figure 3: A sample instance for answer entity type
classifier.

acc macro_f1
BERTbase-cased 63.55 ± 0.00 19.65 ± 0.04
WordConv 58.81 ± 0.01 13.31 ± 0.02

Table 10: Results for supervised entity type selection

B.3.2 Models
We use two types of models: 1) a fine-tuned 12
layer 768 dimensional BERTbase-cased model; and
2) a popular word convolutional model for sentence
classification (Kim, 2014) using three parallel fil-
ters (size 3, 4, and 5) and 300 dimensional Google
News Word2Vec representations (Mikolov et al.,
2013).

BERT model: This model is trained for 5
epochs, with Adam optimizer (Kingma and Ba,
2015) with a weight decay of 1.0e-08 and a
learning rate of 1.0e-05. The sequence max
length is kept at 128. We search for two hyper-
parameters: 1) number of epochs: 3-7, increasing
by 1; and 2) learning rate: 1.0e-05, 5.0e-05,
1.0e-04. Accuracy is used as the early stopping
metric.

WordConv model: This model is trained for
40 epochs, with Adadelta optimizer (Zeiler, 2012)
with a learning rate of 1.0e-05. The sequence
max length is again kept at 128. Accuracy is used
as the early stopping metric.

B.4 Results
The results are provided in Table 10.
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Abstract

Conversational question–answer generation is
a task that automatically generates a large-
scale conversational question answering dataset
based on input passages. In this paper, we intro-
duce a novel framework that extracts question-
worthy phrases from a passage and then gener-
ates corresponding questions considering previ-
ous conversations. In particular, our framework
revises the extracted answers after generating
questions so that answers exactly match paired
questions. Experimental results show that our
simple answer revision approach leads to sig-
nificant improvement in the quality of synthetic
data. Moreover, we prove that our framework
can be effectively utilized for domain adapta-
tion of conversational question answering.

1 Introduction

Conversational question answering (CQA) involves
answering questions by considering a given text
as well as previous conversations. To facilitate
research on CQA, a range of datasets have been
proposed in recent years (Choi et al., 2018; Reddy
et al., 2019; Campos et al., 2020; Anantha et al.,
2020; Adlakha et al., 2022). However, building a
robust CQA system for a specific domain requires
a large-scale domain-specific dataset; moreover,
obtaining such a dataset is considerably expensive
and time-consuming.

To resolve this issue, in our previous study, we
had proposed a conversational question–answer
generation (CQAG) framework that automatically
creates multiturn question–answer (Q–A) pairs
from given passages (Hwang and Lee, 2021). The
framework is a two-stage architecture that adopts
contextual answer extraction (CAE) and conversa-
tional question generation (CQG). Considering pre-
vious conversations, the CAE module extracts the
next question-worthy phrase from the passage, and
then the CQG module generates the conversational

∗Corresponding author

question corresponding to the phrase. However,
the framework has the limitation that the error may
propagate to the question generation stage and even
to data generation for subsequent turns if improper
answers are extracted by the CAE module.

In this paper, we introduce a CQAG framework
with answer revision (CQAG-AR), in which the
conversational question generation with answer re-
vision (CQG-AR) module revises the extracted an-
swer to a more suitable one immediately after gen-
erating a question. In experiments, we synthesize
CQA data using CQAG-AR and then evaluate CQA
models trained on these synthetic data. Results re-
veal that answer revision by the CQG-AR module
leads to absolute improvements of up to 13.4% and
15.3% in F1 score and exact match (EM), respec-
tively, for the CQA models. Furthermore, fine-
tuning the Wikipedia-domain CQA model on dif-
ferent synthetic data increases EM by up to 13.1%,
showing that our framework is beneficial for CQA
domain adaptation.

2 Related Work

CQG aims to create conversational questions based
on input text. It can be subdivided into answer-
aware and answer-unaware approaches. Answer-
aware CQG generates conversational questions cor-
responding to prepared answers (Gao et al., 2019).
Gu et al. (2021) exploited accumulated represen-
tations of previous conversations to generate the
current question by successively encoding answers
and questions that constitute conversation history.
By contrast, answer-unaware CQG synthesizes con-
versational questions without given answers (Wang
et al., 2018; Pan et al., 2019; Qi et al., 2020). Fur-
ther, Nakanishi et al. (2019) introduced a frame-
work that first finds the location of points of interest
in the passage, identifies question types, and subse-
quently generates conversational questions.

CQAG attempts to automatically construct CQA
data for various domains. In our previous study
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Figure 1: Overview of CQAG-AR. Synthetic Q–A pairs are used as conversation history to generate the subsequent
Q–A pairs (dotted line).

(Hwang and Lee, 2021), we designed a vanilla
CQAG that generated multiturn Q–A pairs based
on a given passage in an autoregressive manner.
However, the framework has a drawback in that the
validity of the extracted answer directly affects the
quality of the conversation.

3 Methods

Figure 1 illustrates a CQAG-AR generation
pipeline. To generate a question qt and answer
at for the t-th turn of conversations, our frame-
work obtains a passage p and conversation history
ht = ((q1, a1), ..., (qt−1, at−1)) as inputs. The
CAE module extracts a probable answer span ast
considering these inputs. Next, the CQG-AR mod-
ule generates a conversational question qt and re-
vised answer art given the inputs and the extracted
answer span ast . Finally, we use the revised answer
art as the answer at. The modules do not employ
the conversation history to synthesize the Q–A pair
for the first turn of conversations. t is omitted in all
notations in the following description.

3.1 Contextual Answer Extraction
From a given passage p, the CAE module extracts
an answer span as that is most likely to be of in-
terest to a questioner, considering the conversation
history h, i.e., P (as | p, h). We implemented the
module using a pretrained BERT (Devlin et al.,
2018) with two fully connected (FC) layers at the
top (Hwang and Lee, 2021). Each FC layer predicts
the index of start and end tokens of the potential
answer span in the passage:

probsi = Softmax(FCs(BERT(p, h)))[i],

probej = Softmax(FCe(BERT(p, h)))[j],

where probsi (probej) represents the probability for
the i-th (j-th) token in the passage being the start
(end) token of the answer span.

During generation, the top k answer candidates
whose start and end indices are i and j are extracted

according to the sum of probabilities probsi+prob
e
j .

The CAE module outputs the answer span with the
highest sum of probabilities after deduplicating
the candidates compared with the answers used
in the conversation history. If the candidate set
is empty after deduplication, generation is termi-
nated. To train the module, we computed the sum
of cross-entropy losses between predicted start and
end indices and the ground truth indices.

3.2 Conversational Question Generation with
Answer Revision

Considering the input passage and conversation
history, the CQG-AR module generates a conver-
sational question and then revises the answer span
that is extracted by the CAE module. The mod-
ule first considers that the extracted answer span
is proper for use as an answer and modifies it if
it is inappropriate. To enable this process, we col-
lected training examples of passage p, conversation
history h, answer span as, and revised answer ar,
which contained positive (proper as, ar) and nega-
tive (improper as, ar) pairs. The module can pre-
serve proper answers extracted by the CAE module
by learning positive examples. Additionally, neg-
ative examples teach the module how to correct
improper answer spans with better answers to the
generated questions. We devised two negative sam-
pling techniques to collect improper answer spans
from proper ones.

3.2.1 Generating Negative Samples
For the positive examples, we set ground truth an-
swers of the CQA dataset (e.g., QuAC (Choi et al.,
2018)) to both proper as and ar. The main exper-
iments were conducted with CoQA (Reddy et al.,
2019), which contains free-form answers paired
with rationales extracted from passages. To obtain
proper answer spans from CoQA, answer spans
with the highest F1 score compared to the free-
form answer from the rationale were extracted. The
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improper as was obtained from the proper as by
using the following techniques.
Answer Span Expansion If the extracted answer
contains several key phrases, it may be unsuitable
as an answer for a single question. In addition, un-
necessary words around the answer span should be
discarded if they are extracted together. To cover
these cases, we generated the improper as by addi-
tionally connecting surrounding words of random
length to the front or the rear of the proper as.
However, if the sample was extended to phrases
that were answers of other Q–A pairs, the model
could confuse the target ar. Therefore, we ensured
that the sample did not overlap with answers for
other turns.
Answer Span Reduction Some important words
that constitute a complete answer may be omit-
ted when extracting the answer span. This phe-
nomenon may risk creating invalid Q–A pairs. To
create these types of improper as, we removed a
random number of words from both ends of the
proper as. Examples of negative sampling are in-
cluded in Appendix A.

3.2.2 Modeling
When the passage p, conversation history h, and
answer span as are given, the CQG-AR module
sequentially generates the conversational question
q for the input answer span as and then revises the
answer span as based on the generated question q:

P (q, ar|p, h, as) =
<q>∏

i=1

P (qi|p, h, as, q1:i−1)

×
<ar>∏

j=1

P (arj |p, h, as, q, ar1:j−1),

where ar denotes the revised answer and < · >
indicates the length of the element.

We implemented the CQG-AR module using T5
(Raffel et al., 2019). We focused on the masked
self-attention mechanism of Transformer (Vaswani
et al., 2017), where the decoder utilizes knowledge
of previously generated tokens to predict the cur-
rent token. To revise the answer in a form that is
more natural to the question, the module outputs
the modified answer immediately after the question
is generated. The answer span was highlighted us-
ing a special token so that the content of interest
could be effectively recognized in question gener-
ation and answer revision. To train our module,
we computed the cross-entropy loss between the

question and answer of the ground truth and the
module’s prediction.

4 Experiments

4.1 Experimental Setup

We employed CoQA (Reddy et al., 2019), which
comprised 8k passages collected from seven differ-
ent domains and human-annotated conversations.
To investigate whether CQAG-AR could be ef-
fectively utilized to construct a CQA system in
a new domain, we split the data into in-domain
(Wikipedia) and out-of-domain (children’s stories,
literature, news, and middle and high school En-
glish exams). The in-domain data were used to
train CQAG frameworks, and the quality of syn-
thetic data generated by the trained CQAG frame-
works was evaluated using the out-of-domain data.

In addition, we used QuAC (Choi et al., 2018)
and DoQA (Campos et al., 2020) to evaluate our
framework. QuAC is based on 13k Wikipedia pas-
sages, and DoQA comprises passages collected
from FQAs of three practical domains. Because
the other two domains constituted only the test set,
we used only the cooking domain of DoQA in our
experiment. The CQAG frameworks used in ex-
periments could generate only open-ended types
of data. Therefore, closed-ended (yes and no) and
unanswerable types of examples were excluded
from the datasets; these were denoted by CoQAD,
QuACD, and DoQAD.

4.2 Baseline Frameworks

To evaluate the quality of the synthetic data gen-
erated by our framework, we used two baseline
CQAG frameworks:
CQAG-Chain ChainCQG1 (Gu et al., 2021)
is a state-of-the-art answer-aware CQG model,
and CQAG-Chain combines the CAE module of
CQAG-AR and ChainCQG as a CQG module.
Vanilla CQAG (Hwang and Lee, 2021) This frame-
work shares the same CAE module with CQAG-
AR but adopts a simple T5-based CQG module.
The CQG module accepts the same input elements
as CQG-AR but generates only conversational ques-
tions.

1The original ChainCQG accepted a rationale-highlighted
passage as an input element but we highlighted an answer span
in the passage in our experiment. In addition, we implemented
the model based on the original source code: https://
github.com/searchableai/ChainCQG.
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Training data
In-domain Out-of-domain
Wikipedia News Mid/High Sch. Literature Children’s Sto.

Synthetic
CQAG-Chain 71.3 / 59.6 69.2 / 56.9 64.1 / 51.4 59.4 / 47.6 63.1 / 47.6
Vanilla CQAG 71.3 / 59.9 67.6 / 55.7 65.8 / 52.7 60.3 / 48.3 66.6 / 50.5
CQAG-AR (ours) 83.1 / 73.8 81.0 / 71.0 74.4 / 63.2 71.7 / 61.0 75.2 / 61.9

Human-annotated 85.8 / 76.4 86.3 / 75.9 79.0 / 67.6 79.0 / 67.8 82.5 / 70.1

Table 1: F1 (%) and EM (%) scores of CQA models on the CoQAD test set for each domain (The highest
performances among results for synthetic data are shown in bold.)

4.3 CQA with Synthetic Datasets

In this section, we evaluate synthetic data gener-
ated by CQAG-AR and baseline frameworks by
conducting the CQA task. In the first experiment,
CQAG frameworks learned the in-domain data of
CoQAD and then generated synthetic CQA data
based on the passages extracted from in-domain
and out-of-domain data. Note that we constructed
synthetic training and validation sets from original
splits of CoQA. We implemented a simple CQA
model using T5 (Raffel et al., 2019) and trained
several CQA models using human-annotated data
(CoQAD) and synthetic datasets. The training de-
tails, an example of synthetic conversations, and
statistics of the synthetic data can be found in Ap-
pendix B and C.

Table 1 presents F1 and EM scores of CQA mod-
els, which learned the synthetic data, on the test
set2 of CoQAD. The CQA models derived from
CQAG-AR outperformed other models, showing
significant margins of 11.8% and 13.9% for in-
domain data, and average margins of 10.5% and
12.5% for out-of-domain data in F1 and EM, re-
spectively, compared with those derived from the
vanilla CQAG. These results demonstrate that the
answer revision approach is considerably beneficial
in terms of generating valid CQA datasets. How-
ever, we additionally found that the out-of-domain
CQA models showed lower performances than the
in-domain models across all CQAG frameworks.
This result implies that CQAG frameworks are less
robust when extracting valid CQA data from out-
of-domain passages.

Training data #Training examples F1
Human-annotated 3.7k 45.1

Synthetic
(CQAG-AR)

3.7k 51.5
4.7k 53.1

Table 2: CQA performances on the test set of DoQAD.

2https://github.com/google/BIG-bench

In Table 2, we compare the evaluation results on
the test set of DoQAD (cooking) for CQA models
trained on human-annotated data (DoQAD) and
synthetic data. We obtained the synthetic data
by training CQAG-AR using QuACD and then
generating the data from the passages of DoQA
training and validation sets. According to the re-
sults, the CQA model trained on synthetic data,
which has the same number of examples with the
human-annotated data, significantly outperformed
the model trained on human-annotated data. More-
over, our framework generated a larger number of
examples than the ones in the original DoQAD,
which improved the F1 score of the CQA model by
1.6%. In particular, examples in QuACD, which
were used to train CQAG-AR, were irrelevant to
the cooking domain. This result indicates that our
framework effectively creates synthetic CQA data
for an unseen cooking domain.

4.4 Human Study
In Table 3, we classify the synthetic examples ac-
cording to revision types. The distribution shows
that 65.2% of answer spans extracted by the CAE
module were preserved without any modification,
while the other 34.8% of answers were revised.
This demonstrates that the CQG-AR module could
recognize invalid answer spans and selectively
modify the answers. Furthermore, we found that
the module could perform more complex revisions
such as “multiple revision” and “complete change”
though the CQG-AR module learned only exam-
ples for "reduction" and "expansion" obtained by
negative sampling.

Further, we conducted human evaluation to com-
pare the quality of synthetic data generated by
the vanilla CQAG and our CQAG-AR. From the
two synthetic datasets presented in Table 1, 120
examples (30 examples from each out-of-domain
dataset) were sampled and three volunteers were
asked to rate 80 examples according to the criteria
listed in Appendix D.
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Revision type Passage Q-A Percentage

Preservation
... It covers and has a population of 2.06 million. It is a parliamentary

republic and a member of the United Nations, European Union, and NATO. ...
Q: How many people live in Slovenia?
A: 2.06 million

65.2%

Reduction
Buckinghamshire (or), abbreviated Bucks, is a county in South East

England which borders Greater London to the south east, Berkshire to the ...
Q: Where is it located?
A: South East England

15.3%

Expansion
... The group hired Frederick G. Kilgour, a former Yale University
medical school librarian, to design the shared cataloging system. ...

Q: Who was he?
A: a former Yale University medical school librarian

14.2%

Multiple revision
... Discogs currently contains over 8 million releases, by nearly 4.9 million

artists, across over 1 million labels, contributed from nearly 346,000 contributor ...
Q: And how many labels?
A: over 1 million

2.0%

Complete change
... Selective breeding for fast growth, egg-laying ability, conformation, plumage

and docility took place over the centuries, and modern breeds ...
Q: How did breeds change over time?
A: selective breeding

3.4%

Table 3: Distribution of the answer-revision types in the CQG-AR module. (The answer spans extracted by the
CAE module are highlighted.)

Vanilla CQAG CQAG-AR

Question
Connectivity

Dependent 67.9% 66.7%
Independent 27.7% 30.6%
Unnatural 4.5% 2.8%

Answer
Correctness

Correct 64.2% 85.8%
Partially correct 23.3% 4.2%
Incorrect 12.5% 10.0%

Table 4: Results of human evaluation for synthetic data
generated by vanilla CQAG and CQAG-AR.

Although 2.9% more synthetic questions of
CQAG-AR are independent of the previous conver-
sations than the questions of the vanilla CQAG
in Table 4, the synthetic questions of the two
frameworks show almost similar evaluation results.
These results prove that the vanilla CQAG, which
performs only question generation, and CQAG-AR,
which performs question generation and answer re-
vision in an end-to-end manner, can generate ques-
tions of similar quality. However, 21.6% more
synthetic answers of CQAG-AR were judged as
correct answers compared with those of the vanilla
CQAG. Furthermore, the number of partially cor-
rect answers was considerably reduced through an-
swer revision. This reveals that answer revision is
effective in correcting inappropriate answer spans
extracted by the CAE module into correct answers
that match well with the question.

4.5 Domain Adaptation
In this experiment, we tested the effectiveness of
the synthetic data generated by CQAG-AR in adapt-
ing the CQA model from the Wikipedia domain
to new domains (out-of-domain). We trained CQA
models, which were initialized with parameters
of T5-Large, in three training settings. In the In-
Man setting, we trained the CQA model on the
Wikipedia data of CoQAD. In the Out-Syn setting,
CQA models learned out-of-domain synthetic data.
Finally, the model of In-Man setting was fine-tuned
with synthetic data of each out-of-domain case in

Figure 2: EM scores of several CQA models on the
CoQAD test set for each domain.

the In-Man→ Out-Syn setting.
As shown in Figure 2, the models in the Out-Syn

setting yielded results similar to those of the model
in the In-Man setting while exhibiting better EM
scores in the two domains. Notably, fine-tuning the
Wikipedia CQA model using our synthetic data (In-
Man→ Out-Syn) improved the EM scores of the
model by an average of 9.7% across all domains.
This result indicates that our framework can be
effectively utilized for domain adaptation in CQA.

5 Conclusion

In this paper, we propose CQAG-AR, which auto-
matically synthesizes high-quality CQA data. Our
framework comprises CAE and CQG-AR mod-
ules. Considering the conversation history, the
CAE module extracts a question-worthy phrase
from a given passage, and then the CQG-AR mod-
ule generates a conversational question while revis-
ing the extracted answer to make it more suitable.
Experimental results show that CQAG-AR outper-
forms baseline frameworks in terms of generating
high-quality CQA data. In addition, fine-tuning a
Wikipedia-domain CQA system on our synthetic
data for out-of-domain cases improves the model
performances by significant margins.
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A Examples of Negative Sampling

Figure 3: Example of negative sampling applied to one passage in CoQA. The rationale for A2 is underlined, and
proper as corresponding to A2 is highlighted in the passage. A2 is ar for both the proper and improper as samples.

B Training Details

To implement the CAE module, we used parameters of BERT-large-uncased. Only the previous two pairs
of Q–A were used as the conversation history to extract the i-th answer span and passages p longer than
512 tokens were truncated with a stride of 128 tokens:

Input: [CLS] qi−2 ai−2 qi−1 ai−1 [SEP] truncated p [SEP]

For the CQG-AR module, we initialized the module with parameters of T5-large. The input and target
sequences for generation of the i-th Q–A pair are as follows:

Input: asi highlighted p [SEP] [A] ai−4 [Q] qi−4 ... [A] ai−1 [Q] qi−1[A] asi
Target: [Q] qi [A] a

r
i [EOS]

Because the input sequence length of the T5 encoder was limited, we truncated the passage p at the 32nd
token after the location of asi . Regarding the conversation history, only the previous four Q–A pairs were
used. Special tokens ([Q] and [A]) were added before each question and answer, and [A] and asi were
appended to the end of the input sequence. [Q] was used as a bos token, and answer generation started
when [A] was returned after predicting the question.

We utilized the Transformers library and pre-trained parameters from HuggingFace3 and conducted
experiments using A100 GPUs. Further, AdamW was used as the optimization algorithm with a batch
size of 4 and a learning rate of 3e-5. In addition, a learning rate scheduling algorithm was applied and the
warm-up period was set to the initial 10% of the total steps. For CAE, we optimize the module based on
F1 score between predicted answer span and the ground truth. For CQG-AR, beam search with a beam
size of 4 was used during data generation. The best module was selected based on METEOR (Banerjee
and Lavie, 2005) and BERTScore (Zhang et al., 2019) on the synthetic development set.

For CQA, we designed a simple T5-based model that accepted the concatenation of the passage,
conversation history, and question as input and then generated the answer to the input question. We
initialized our model with T5-Large and trained the model with AdamW, setting the batch size between 4
and 8 and the learning rate to 3e-5. When fine-tuning the Wikipedia-domain CQA model with synthetic
data in Section 4.5, we fine-tuned the model for one epoch, with a batch size of 1 and the learning rate
between 1e-7 and 1e-6. We employed the same training and decoding strategies used for the CQG-AR
module.

3https://huggingface.co/
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C Synthetic Data

C.1 Example of Synthetic Conversation

Passage: CHAPTER IV. Signor Andrea D’Arbino, searching vainly through the various rooms in the palace for Count
Fabio d’Ascoli, and trying as a last resource, the corridor leading to the ballroom and grand staircase, discovered his friend
lying on the floor in a swoon, without any living creature near him. Determining to avoid alarming the guests, if possible,
D’Arbino first sought help in the antechamber. He found there the marquis’s valet, assisting the Cavaliere Finello (who
was just taking his departure) to put on his cloak. While Finello and his friend carried Fabio to an open window in the
antechamber, the valet procured some iced water. This simple remedy, and the change of atmosphere, proved enough to
restore the fainting man to his senses, but hardly–as it seemed to his friends–to his former self. They noticed a change to
blankness and stillness in his face, and when he spoke, an indescribable alteration in the tone of his voice. "I found you in a
room in the corridor," said D’Arbino. "What made you faint? Don’t you remember? Was it the heat?" Fabio waited for a
moment, painfully collecting his ideas. He looked at the valet, and Finello signed to the man to withdraw. "Was it the heat?"
repeated D’Arbino. "No," answered Fabio, in strangely hushed, steady tones. "I have seen the face that was behind the
yellow mask." "Well?" "It was the face of my dead wife." "Your dead wife!" "When the mask was removed I saw her face.
Not as I remember it in the pride of her youth and beauty–not even as I remember her on her sick-bed–but as I remember her
in her coffin."

Conversation
Q1: Who was searching for Fabio d’Ascoli?
A1: Signor Andrea D’Arbino
Q2: Where was he searching?
A2: the palace
Q3: What was his last resort?
A3: the corridor leading to the ballroom and grand staircase
Q4: What did he find?
A4: lying on the floor in a swoon
Q5: Where did he seek help first?
A5: the antechamber
Q6: Who helped him?
A6: the marquis’s valet
Q7: Who helped him put on his cloak?
A7: the Cavaliere Finello
Q8: What did the valet give him?
A8: some iced water
Q9: What change did his friends notice?
A9: a change to blankness and stillness in his face
Q10: What did D’Arbino say was the cause?
A10: heat
Q11: What was behind the mask?
A11: the face of my dead wife
Q12: What did I see?
A12: her face
Q13: How did I remember her?
A13: in her coffin

Table 5: Samples of generated Q-A pairs using CQAG-AR from a Wikipedia passage in CoQA. Answer spans
before revision are highlighted in the passage in order.
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C.2 Statistics of Synthetic Data

Synthetic dataset CoQA

#Words in question 5.6 5.4
#Words in answer 3.0 2.6
#Turns per passage 12.1 15.1

Table 6: Average number of words in the questions and answers, and the average number of conversation turns in
CoQA and our synthetic data extracted from CoQA passages.

Domain
#Passages #Q–A pairs

Train Dev Train Dev

Wikipedia 1.6k 0.1k 23.6k 1.5k
News 1.7k 0.1k 21.6k 1.2k
Mid/High Sch. 1.7k 0.1k 22.2k 1.3k
Literature 1.6k 0.1k 17.7k 1.1k
Children’s Sto. 0.6k 0.1k 6.3k 1.2k

Table 7: Statistics summarizing the synthetic datasets generated from CoQA passages.

D Criteria for Human Evaluation

Question Connectivity
Dependent The current question refers to previous conversations (e.g., via pronoun usage or ellipses).
Independent The current question is not dependent on previous conversations.
Unnatural The current question has grammatical errors or overlaps with previous conversations.

Answer Correctness
Correct Questions are paired with correct answers.
Partially correct Answers are incomplete or contain unnecessary information.
Incorrect Not the correct answer to the question.

Table 8: Criteria for human evaluation of synthetic CQA data.
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Abstract

Transformer-based pre-trained language mod-
els such as BERT have achieved remarkable re-
sults in Semantic Sentence Matching. However,
existing models still suffer from insufficient
ability to capture subtle differences. Minor
noise like word addition, deletion, and mod-
ification of sentences may cause flipped pre-
dictions. To alleviate this problem, we pro-
pose a novel Dual Attention Enhanced BERT
(DABERT) to enhance the ability of BERT
to capture fine-grained differences in sentence
pairs. DABERT comprises (1) Dual Attention
module, which measures soft word matches
by introducing a new dual channel alignment
mechanism to model affinity and difference at-
tention. (2) Adaptive Fusion module, this mod-
ule uses attention to learn the aggregation of
difference and affinity features, and generates
a vector describing the matching details of sen-
tence pairs. We conduct extensive experiments
on well-studied semantic matching and robust-
ness test datasets, and the experimental results
show the effectiveness of our proposed method.

1 Introduction

Semantic Sentence Matching (SSM) is a funda-
mental NLP task. The goal of SSM is to compare
two sentences and identify their semantic relation-
ship. In paraphrase identification, SSM is used to
determine whether two sentences are paraphrase
or not (Madnani et al., 2012). In natural language
inference task, SSM is utilized to judge whether a
hypothesis sentence can be inferred from a premise
sentence (Bowman et al., 2015). In the answer sen-
tence selection task, SSM is employed to assess the
relevance between query-answer pairs and rank all
candidate answers (Wang et al., 2020).

Across the rich history of semantic sentence
matching research, there have been two main
streams of studies for solving this problem. One

1These authors contributed equally to this work.
2Corresponding author.

The secretaries knew the students.
The secretaries knew the students slept .

Is a girl looks at you,
someone stared at you ?

what does it meant ?

What does it mean when

S1:
S2:

S1:

S2:

Is the weather sunny this

last

weekend ?

Is the weather sunny weekend ?
S1:

S2:

S2:

S1:

S2:S2:

S1:

S2:S2:

S1:
S2:S2:

S1:
S2:S2:

Figure 1: Example sentences with similar text but dif-
ferent semantics. S1 and S2 are sentence pair.

is to utilize a sentence encoder to convert sen-
tences into low-dimensional vectors in the latent
space, and apply a parameterized function to learn
the matching scores between them (Reimers and
Gurevych, 2019; Wang et al., 2020). Another
paradigm adopts attention mechanism to calculate
scores between tokens from two sentences, and
then the matching scores are aggregated to make
a sentence-level decision (Chen et al., 2016; Tay
et al., 2017). In recent years, pre-trained models,
such as BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), have became much more popular and
achieved outstanding performance in SSM. Recent
work also attempts to enhance the performance of
BERT by injecting knowledge into it, such as Sem-
BERT (Zhang et al., 2020), UER-BERT (Xia et al.,
2021), Syntax-BERT (Bai et al., 2021) and so on.

Although previous studies have provided some
insights, those models do not perform well in distin-
guishing sentence pairs with high literal similarities
but different semantics. Figure 1 demonstrates sev-
eral cases suffering from this problem. Although
the sentence pairs in this figure are semantically
different, they are too similar in literal for those
pre-trained language models to distinguish accu-
rately. This could be caused by the self-attention
architecture itself. Self-attention mechanism fo-
cuses on using the context of a word to understand
the semantics of the word, while ignoring model-
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ing the semantic difference between sentence pairs.
De-attention (Tay et al., 2019) and Sparsegen (Mar-
tins and Astudillo, 2016) have proved that equip-
ping with attention mechanism with more flexi-
ble structure, models can generate more powerful
representations. In this paper, we also focus on
enhancing the attention mechanism in transformer-
based pre-trained models to better integrate dif-
ference information between sentence pairs. We
hypothesize that paying more attention to the fine-
grained semantic differences, explicitly modeling
the difference and affinity vectors together will fur-
ther improve the performance of pre-trained model.
Therefore, two systemic questions arise naturally:

Q1: How to equip vanilla attention mech-
anism with the ability on modeling semantics
of fine-grained differences between a sentence
pair? Vanilla attention, or named affinity atten-
tion, less focuses on the fine-grained difference
between sentence pairs, which may lead to error
predictions for SSM tasks. An intuitive solution to
this problem is to make subtraction between repre-
sentation vectors to harvest their semantic differen-
tiation. In this paper, we propose a dual attention
module including a difference attention accompa-
nied with the affinity attention. The difference
attention uses subtraction-based cross-attention to
aggregate word- and phrase- level interaction dif-
ferences. Meanwhile, to fully utilize the difference
information, we use dual-channel inject the differ-
ence information into the multi-head attention in
the transformer to obtain semantic representations
describing affinity and difference respectively.

Q2: How to fuse two types of semantic rep-
resentations into a unified representation? A
hard fusion of two signals by extra structure may
break the representing ability of the pre-trained
model. How to inject those information softly to
pre-trained model remains a hard issue. In this pa-
per, we propose an Adaptive Fusion module, which
uses an additional attention to learn the difference
and affinity features to generate vectors describing
sentence matching details. It first inter-aligns the
two signals through distinct attentions to capture
semantic interactions, and then uses gated fusion
to adaptively fuse the difference features. Those
generated vectors are further scaled with another
fuse-gate module to reduce the damage of the pre-
trained model caused by the injection of difference
information. The output final vectors can better
describe the matching details of sentence pairs.

Our main contributions are three fold:

• We point out that explicitly modeling fine-
grained difference semantics between sen-
tence pairs can effectively benefit sentence
semantic matching tasks, and we propose
a novel dual attention enhanced mechanism
based on BERT.

• Our proposed DABERT model uses a dual-
channel attention to separately focus on the
affinity and difference features in sentence
pairs, and adopts a soft-integrated regulation
mechanism to adaptively aggregate those two
features. Thereby, the generated vectors can
better describe the matching details of sen-
tence pairs.

• To verify the effectiveness of DABERT, we
conduct experiments on 10 semantic matching
datasets and several data-noised dataset to test
model’s robustness. The results show that
DABERT achieves an absolute improvement
for over 2% compared with pure BERT and
outperforms other BERT-based models with
more advanced techniques and external data
usage.

2 Approach

Our proposed DABERT is a modification of the
original transformer structure, whose structure is
shown in Figure 2. Two submodules are included
in this new structure. (1) Dual Attention Module,
which uses a dual channel mechanism in multi-
head attention to match words between two sen-
tences. Each channel uses a different attention
head to calculate affinity and difference scores sep-
arately, and obtains two representations to measure
affinity and difference information respectively. (2)
Adaptive Fusion Module, which is used to fuse the
representation obtained by dual attention. It first
uses guide-attention to align the two signals. And
then, multiple gate modules are used to fuse the
two signals. Finally, a vector is output including
more fine-grained matching details. In the follow-
ing sections, we explain each component in detail.

2.1 Dual Attention Module
In this module, we use two distinct attention func-
tions, namely affinity attention and difference at-
tention, to compare the affinities and differences
of vectors between two sentences. The input of
the dual attention module is a triple of K,Q, V ∈
Rdseq×dv , where dv is the latent dimension and
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Figure 2: The overall architecture of Dual Attention Enhanced BERT (DABERT). The left side is the Dual attention
module, and the right side is the Adaptive Fusion module.

dseq is the utterance length. Dual attention module
calculate the latent relationship between K,Q and
V via two separate attention mechanism to mea-
sure their affinity and difference. As a result, two
set of attention representations are generated by the
dual attention module, which will be fused by the
following adaptive fusion module.

2.1.1 Affinity Attention
The affinity attention module is the part of the dual
attention module, which is the standard dot-product
attention that operates following Transformer’s de-
fault operation. The input of affinity attention mod-
ule consists of queries and keys of dimension dk,
and values of dimension dv. We compute the dot
products of the query with all keys, divide each by√
dk, and apply a softmax function to obtain the

weights on the values. For the sake of simplicity,
the formulations of BERT not be repeated here,
please refer to (Devlin et al., 2018) for more details.
We denote the output affinity vector as:

A = softmax(
QKT

√
dk

) ∗V, (1)

where A = {a1, ...,al} ∈ Rdl×dv denotes the
vector describing affinity expressions generated by
the Transformer original attention module.

2.1.2 Difference Attention
The second part of dual attention module is a dif-
ference attention module that capture and aggre-
gate the difference information between sentence
pairs. The difference attention module adopts
a subtraction-based cross-attention mechanism,
which allows model to pay attention to dissimi-
lar parts between sentence pairs by element-wise

subtraction as:

D = softmax(
β√
dk

) ∗V, (2)

β = ∥Q−K∥+M, (3)

∥Q−K∥ij =
dk∑

k=0

Qik −Kjk, (4)

where ∥Q−K∥ ∈ Rdl×dl and dl is the input se-
quence length. We use D = {d1, ...,dl} ∈ Rdl×dv
to denote the representation generated by the differ-
ence attention. The M ∈ Rdl×dl is a masking oper-
ation. Both the affinity attention and the difference
attention are utilized to fit the semantic relationship
of sentence pairs, and obtain the representations
with the same dimension from the perspective of
affinity and difference respectively. This dual chan-
nel mechanism can obtain more detailed represen-
tations describing sentence matching.

2.2 Adaptive Fusion Module

After obtaining the affinity signals A and the dif-
ference signals D, we introduce a novel adaptive
fusion module to fuse these two signals instead of
direct fusion (i.e., average embedding vector), since
direct fusion may compromise the original repre-
senting ability of the pre-trained model. The fusion
process includes three steps. First, it flexibly inter-
acts and aligns these two signals via affinity-guided
attention and difference-guided attention. Second,
multiple gate modules are adopted to selectively
extract interaction semantic information. Finally,
to alleviate the damage of the pre-trained model
by the difference signal, we utilize filter gates to
adaptively filter out noisy information and finally
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generate vectors that better describe the details of
sentence matching.

Firstly, we update the difference vectors through
affinity-guided attention. We use ai and di to de-
note the i-th dimension of A and D respectively.
We provide each affinity vector ai to interact with
the difference signals matrix D and obtain the new
difference feature d∗i . Then, based on d∗i , we can
in turn acquire the new Affinity feature a∗i through
difference-guided attention. The calculation pro-
cess is as follows:

δi = tanh(WDD⊕ (Waiai + bai)),

di = D ∗ softmax(Wdiδi + bdi),

γi = tanh(WAA⊕ (Wdi
di + bdi)),

ai = A ∗ softmax(Waiγi + ba∗i),

d∗i = tanh(Wd∗i ([di; di]) + bd∗i )),

a∗i = tanh(Wa∗i ([ai; ai]) + ba∗i )),

(5)

where WD,WA,Wai ,Wdi
∈ Rdl∗dv ; Wdi ,

Wai ∈ R1∗2dl ; bd∗i , bai , bdi , ba∗i are weights and
bias of our model, and ⊕ denotes the concatena-
tion of signal matrix and feature vector. Secondly,
to adaptively capture and fuse useful information
from Affinity and difference features, we introduce
our gate fusion modules:

d̂i = tanh(Wd̂i
d∗i + bd̂i),

âi = tanh(Wâia
∗
i + bâi),

gi = σ(Wgi(d̂i ⊕ âi)),
vi = giâi + (1− gi)d̂i,

(6)

where Wd̂i
, Wâi ∈ Rdh∗dv ; Wgi ∈ R1∗2dh ; bd̂i ,

bâi are parameters and dh is the size of hidden layer.
σ is the sigmoid activation function and gi is the
gate that determines the transmission of these two
distinct representations. By the way, we get the
fusion feature vi .

Eventually, considering the potential noise prob-
lem, we propose a filtering gate to selectively lever-
age the fusion feature. When vi tends to be benefi-
cial, the filtration gate will incorporate the fusion
features and the original features. Otherwise, the
fusion information will be filtered out:

fi = σ(Wfi,ai(ai ⊕ (Wvivi + bvi))),

li = fi ∗ tanh(Wlivi + bli),
(7)

where Wfi,ai ∈ R1∗2dv ; Wvi , Wli ∈ Rdv∗dh ;
bvi , bli are trainable parameters and li is the final
fused semantic feature and it will be propagated to
the next computation flow.

3 Experimental Settings

3.1 Datasets
Semantic Matching. We conduct experiments
on 10 sentence matching datasets to evaluate the
effectiveness of our method. The GLUE (Wang
et al., 2018) benchmark is a widely-used dataset
in thie field, which includes tasks such as sentence
pair classification, similarity and paraphrase detec-
tion, and natural language inference1. We conduct
experiments on 6 sentence pair datasets (MRPC,
QQP, STS-B, MNLI, RTE, and QNLI) from GLUE.
We also conduct experiments on 4 other popu-
lar datasets (SNLI (Bowman et al., 2015), SICK
(Marelli et al., 2014), TwitterURL (Lan et al., 2017)
and Scitail (Khot et al., 2018)). The statistics of all
10 datasets are shown in Table 6.
Robustness Test. TextFlint (Gui et al., 2021) is
a robustness evaluation platform for natural lan-
guage processing models2. It includes more than
80 patterns to deform data, including inserting
punctuation marks, changing numbers in text, re-
placing synonyms, modifying adverbs, deleting
words, etc. It can effectively evaluate the robust-
ness and generalization of models. In this paper,
we leverage TextFlint to perform transformations
on multiple datasets (Quora, SNLI, MNLI-m/mm),
including task-specific transformations (SwapAnt,
NumWord, AddSent) and general transformations
(InsertAdv, Appendlrr, AddPunc, BackTrans, Twit-
terType, SwapNamedEnt, SwapSyn-WordNet). We
conduct experiments on datasets with those types
of transformations to verify the robustness of our
model.

3.2 Baselines
To evaluate the effectiveness of our proposed
DABERT in SSM, we mainly introduce BERT (De-
vlin et al., 2018), SemBERT (Zhang et al., 2020),
SyntaxBERT (Liu et al., 2020), UERBERT (Xia
et al., 2021) and multiple other PLMs (Radford
et al., 2018; Devlin et al., 2018) for comparison. In
addition, we also select several competitive models
without pre-training as baselines, such as ESIM
(Chen et al., 2016), Transformer (Vaswani et al.,
2017) , etc (Hochreiter and Schmidhuber, 1997;
Wang et al., 2017; Tay et al., 2017). In robustness
experiments, we compare the performance of mul-
tiple pre-trained models (Sanh et al., 2019; Chen
et al., 2016; Devlin et al., 2018; Lan et al., 2019)

1https://huggingface.co/datasets/glue
2https://www.textflint.io
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Model Pre-train Sentence Similarity Sentence Inference Avg
MRPC QQP SST-B MNLI-m/mm QNLI RTE

BiMPM†(Wang et al., 2017) % 79.6 85.0 - 72.3/72.1 81.4 56.4 -
CAFE†(Tay et al., 2017) % 82.4 88.0 - 78.7/77.9 81.5 56.8 -
ESIM†(Chen et al., 2016) % 80.3 88.2 - - 80.5 - -
Transformer†(Vaswani et al., 2017) % 81.7 84.4 73.6 72.3/71.4 80.3 58.0 74.53

BiLSTM+ELMo+Attn†(Devlin et al., 2018) ! 84.6 86.7 73.3 76.4/76.1 79.8 56.8 76.24
OpenAI GPT†(Radford et al., 2018) ! 82.3 70.2 80.0 82.1/81.4 87.4 56.0 77.06
UERBERT‡(Xia et al., 2021) ! 88.3 90.5 85.1 84.2/83.5 90.6 67.1 84.19
SemBERT†(Zhang et al., 2020) ! 88.2 90.2 87.3 84.4/84.0 90.9 69.3 84.90

BERT-base‡(Devlin et al., 2018) ! 87.2 89.0 85.8 84.3/83.7 90.4 66.4 83.83
SyntaxBERT-base†(Bai et al., 2021) ! 89.2 89.6 88.1 84.9/84.6 91.1 68.9 85.20
DABERT-base‡ ! 89.1 91.3 88.2 84.9/84.7 91.4 69.5 85.58

BERT-large‡(Devlin et al., 2018) ! 89.3 89.3 86.5 86.8/85.9 92.7 70.1 85.80
SyntaxBERT-large†(Bai et al., 2021) ! 92.0 89.5 88.5 86.7/86.6 92.8 74.7 87.26
DABERT-large‡ ! 91.4 91.9 89.5 87.1/86.9 94.8 75.3 88.12

Table 1: The performance comparison of DABERT with other methods. We report Accuracy × 100 on 6 GLUE
datasets. Methods with † indicate the results from their papers, while methods with ‡ indicate our implementation.

Model SNLI Sci SICK Twi

ESIM†(Chen et al., 2016) 88.0 70.6 - -
CAFE†(Tay et al., 2017) 88.5 83.3 72.3 -
CSRAN†(Tay et al., 2018) 88.7 86.7 - 84.0

BERT-base‡(Devlin et al., 2018) 90.7 91.8 87.2 84.8
UERBERT‡(Xia et al., 2021) 90.8 92.2 87.8 86.2
SemBERT†(Zhang et al., 2020) 90.9 92.5 87.9 86.8
SyntaxBERT-base†(Bai et al., 2021) 91.0 92.7 88.7 87.3
DABERT-base‡ 91.3 93.6 88.6 87.5
BERT-large‡(Devlin et al., 2018) 91.0 94.4 91.1 91.5
SyntaxBERT-large†(Bai et al., 2021) 91.3 94.7 91.4 92.1
DABERT-large‡ 91.5 95.3 92.5 92.3

Table 2: The performance comparison of DABERT
with other methods on 4 popular datasets, including
SNLI, Scitail(Sci), SICK and TwitterURL(Twi).

and SemBERT,UERBERT and Syntax-BERT on
the robustness test datasets. For simplicity, the
compared models are not described in detail here.

3.3 Implementation Details

DABERT is based on BERT-base and BERT-large.
For distinct targets, our hyper-parameters are dif-
ferent. We use AdamW in the BERT and set the
learning rate in {1e−5, 2e−5, 3e−5, 8e−6}. As for
the learning rate decay, we use a warmup of 0.1
and L2 weight decay of 0.01. Furthermore, we set
the epoch to 5 and the batch size is selected in {16,
32, 64}. We also set dropout at 0.1-0.3. To prevent
gradient explosion, we set gradient clipping in {7.5,
10.0, 15.0}. All the experiments are conducted by
Tesla V100 and PyTorch platform. In addition, to
ensure that the experimental results are statistically
significant, we conduct each experiment five times
and report the average results.

4 Results and Analysis

4.1 Model Performance

In our experiments, we implement DABERT in the
initial transformer layer of BERT.

First, we fine-tune our model on 6 GLUE
datasets. Table 1 shows the performance of
DABERT and other competitive models. It can
be seen that using only non-pretrained models per-
forms obviously worse than PLMs due to their
strong context awareness and data fitting capabil-
ities. When the backbone model is BERT-base or
BERT-large, the average accuracy of DABERT re-
spectively improves by 1.7% and 2.3% than vanilla
BERT. Such great improvement demonstrates the
benefit of fusion difference attention for mining
semantics and proves that our framework can help
BERT perform much better in SSM.

Moreover, compared with some previous works
such as SemBERT, UERBERT and SyntaxBERT,
DABERT achieves the best performance without
injecting external knowledge. Specifically, our
model outperforms SyntaxBERT, the best perform-
ing model in previous work leveraging external
knowledge, with an average relative improvement
of 0.86% based on BERT-large. On the QQP
dataset, the accuracy of DABERT is significantly
improved by 2.4% over SyntaxBERT. There are
two main reasons for such results. On the one hand,
we use dual-channel attention to enhance the ability
of DABERT to capture difference features. This
enables DABERT to obtain more fine-grained in-
teraction matching features. On the other hand, for
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Model Quora SNLI

SA NW IA Al BT AS SA TT SN SW

ESIM†(Chen et al., 2016) - - - - - 64.00 84.22 78.32 53.76 65.38
BERT‡(Devlin et al., 2018) 48.58 56.96 86.32 85.48 83.42 79.66 94.84 83.56 50.45 76.42
ALBERT‡(Lan et al., 2019) 51.08 55.24 81.87 78.94 82.37 45.17 96.37 81.62 57.66 74.93
UERBERT‡(Xia et al., 2021) 48.57 54.86 84.72 80.88 82.71 73.24 94.78 85.36 57.54 80.81
SemBERT‡(Zhang et al., 2020) 50.92 53.15 85.19 82.04 82.40 76.81 95.31 84.60 56.28 77.86
SyntaxBERT‡(Bai et al., 2021) 49.30 56.37 86.43 84.62 84.19 78.63 95.02 86.91 58.26 76.90

DABERT‡ 60.43 62.76 87.50 85.48 87.49 81.06 96.85 85.14 60.58 80.92

Method MNLI-m/mm

AS SA AP TT SN SW

BERT‡(Devlin et al., 2018) 55.32/55.25 52.76/55.69 82.30/82.31 77.08/77.22 51.97/51.84 76.41/77.05
ALBERT‡(Lan et al., 2019) 53.09/53.58 50.25/50.20 83.98/83.68 77.98/78.03 56.43/50.03 76.63/77.43
UERBERT‡(Xia et al., 2021) 54.99/54.84 52.29/53.80 79.80/79.18 75.46/74.93 55.21/55.96 82.23/82.74
SemBERT‡(Zhang et al., 2020) 55.38/55.12 54.07/54.62 78.70/78.16 73.90/73.47 53.43/53.76 78.09/78.93
SyntaxBERT‡(Bai et al., 2021) 54.92/54.63 53.54/54.73 77.01/76.71 70.38/70.13 57.11/51.95 78.57/79.31

DABERT‡ 60.14/59.25 60.89/61.37 83.23/83.19 77.94/78.10 60.12/59.83 82.15/82.97

Table 3: The robustness experiment results of DABERT and other models. The data transformation methods we
utilized mainly include SwapAnt (SA), NumWord (NW), AddSent (AS), InsertAdv (IA), Appendlrr (Al), AddPunc
(AP), BackTrans (BT), TwitterType (TT), SwapNamedEnt (SN), SwapSyn-WordNet (SW).

the potential noise problem introduced by external
structures, our adaptive fusion module can selec-
tively filter out inappropriate information to sup-
press the propagation of noise, and previous work
does not seem to pay enough attention to this prob-
lem. However, we still notice that SyntaxBERT
achieves slightly better accuracy on a few datasets.
We argue that this is a result of the intrinsic corre-
lation of syntactic and dependent knowledge.

Second, to verify the general performance of
our method, we also conduct experiments on other
popular datasets. The results are shown in Ta-
ble 2. DABERT still outperforms vanilla BERT
and other models on almost all datasets. It is
worth noting that DABERT performs worse than
SyntaxBERT on SICK. This may be because the
data volume of SICK is relatively small, and Syn-
taxBERT uses syntactic prior knowledge, which
makes SyntaxBERT more advantageous on small
datasets. but DABERT still shows a very competi-
tive performance on SICK, which also shows from
the side that our method can enhance the difference
capture ability of BERT and make up for the lack
of generalization ability with fewer parameters.

Overall, our method has competitive perfor-
mance in judging semantic similarity compared
to previous work. Extensive performance improve-
ments also validate our point, soft ensemble dif-
ference information based on BERT’s powerful
contextual representation capability is useful for
sentence matching tasks.

4.2 Robustness Test Performance

In order to examine the performance of DABERT
and competitive models in their ability to capture
subtle differences in sentence pairs. We perform ro-
bustness tests on three extensively studied datasets.

Table 3 lists the accuracy of DABERT and six
baseline models on the three datasets. We can ob-
serve that SwapAnt leads to a drop in maximum
performance, and our model outperforms the best
model SemBert nearly 10% on SwapAnt(QQP),
which indicates that DABERT can better handle
semantic contradictions caused by antonyms than
baseline models. And the model performance drops
to 56.96% on NumWord transformation, while
DABERT outperforms BERT by nearly 6% be-
cause it requires the model to capture subtle numer-
ical differences for correct linguistic inference. In
SwapSyn transformation, UERBERT significantly
outperforms other baseline models because it ex-
plicitly uses the synonym similarity matrix to cal-
ibrate the attention distribution, while our model
can still achieve comparable performance to UER-
BERT without adding external knowledge. On
TwitterType and AddPunc, the performance of Syn-
taxBERT by injecting syntax trees degrades signifi-
cantly, probably because converting text to twitter
type or adding punctuation breaks the normal syn-
tactic structure of sentences. And DABERT still
achieves the competitive performance in these two
transformations. In other scenarios, DABERT also
achieve better performance due to capturing subtle
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Case ESIM BERT SyntaxBERT DABERT

S1:How done you solve this aptitude question? label:1 label:0 label:0 similarity:10.87%
S2:How does I solve aptitude questions on cube? label:0

S1:How can I tell if this girl loves me? label:1 label:1 label:1 similarity:12.06%
S2:How can I tell if this boy loves me? label:0

S1:How many 12 digits number have the sum of 4? label:1 label:1 label:1 similarity:18.63%
S2:How many 42 digits number have the sum of 4? label:0

Table 4: The example sentence pairs of our cases. Red and Blue are difference phrases in sentence pair.

Model Quora QNLI

Dev Test Dev Test

DABERT 92.1 91.3 92.9 91.4
w/o Affi-attention 90.1 89.5 91.8 90.7
w/o Diff-attention 90.6 89.8 92.0 90.8
w/o Guide-attention 91.3 90.4 92.1 91.0
w/o Gate fusion 91.7 90.6 92.5 91.1
w/o Gate filter 91.8 90.9 92.6 91.2
w/o Regulation 89.9 89.4 91.5 90.7

Table 5: Results of component ablation experiment.

differences in sentence pairs. Meanwhile, ESIM
has the worst performance, the results reflect that
the pre-training mechanism benefits from rich ex-
ternal resources and provides better generalization
ability than de novo trained models. And the im-
proved pre-trained model SyntaxBERT performs
better than the original BERT model, which reflects
that sufficient pre-trained corpus and suitable exter-
nal knowledge fusion strategies can help improve
the generalization performance of the model.

4.3 Ablation Study

To evaluate the contribution of each component in
our method, we conduct ablation experiments on
the QQP and QNLI datasets based on BERT. The
experimental results are shown in the table 5.

Above all, the dual attention module consists
of two core components that use a two-channel
mechanism to model affinity and difference atten-
tion. First, after removing affinity attention, the
performance of the model on the two datasets drops
by 1.8% and 0.7%. Affinity attention can capture
the dynamic alignment relationship between word
pairs, which is crucial for SSM tasks. Next,after
removing difference attention from the model, the
performance on the two datasets dropped by 1.5%
and 0.6%, respectively. The difference informa-
tion can further describe the interaction between
words, and can provide more fine-grained com-
parison information for the pre-trained model, so
that the model can obtain a better representation.

The above experiments show that the performance
drops sharply after the submodule is removed,
which demonstrates the effectiveness of the internal
components of the dual attention module.

Next, in the adaptive fusion module, we also
conducted several experiments to verify the effect
of the fusion of affinity and difference vectors. On
the QQP dataset, we first remove the guide atten-
tion module, and the performance drops to 90.4%.
Since guide attention can capture the interaction
between two signals, this interaction information
is crucial for fusing two different information. Sec-
ond, after removing the fusion gate, we only in-
tegrate two signals by simple averaging. The ac-
curacy dropped to 91.4%, indicating that dynam-
ically merging the affinity and difference vectors
according to different weights can improve the per-
formance of the model. Then, when the filter gate
is removed, the accuracy drops by 0.4%, indicating
that the ability of the model to suppress noise is
weakened without the filter gate. Finally, we also
replaced the overall aggregation and Regulation
module with simple average, and the performance
dropped sharply to 89.4%. While difference in-
formation is crucial for judging sentence-pair rela-
tions, hard-integrating the difference information
into the PLMs will destroy its Pre-existing knowl-
edge, and soft aggregation and governance can
make better use of difference signals.

Overall, due to the effective combination of each
component, DABERT can adaptively fuse differ-
ence features into pretrained models and leverage
its powerful contextual representation to better in-
ference about semantics.

4.4 Case Study

To visualize how DABERT works, we use three
cases from the table 4 for qualitative analysis. In
the first case, the non-pretrained language model
ESIM is difficulty capturing the semantic conflicts
caused by the difference words. Therefore, ESIM
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Datasets #Train #Dev #Test #Class

MRPC 3669 409 1380 2
QQP 363871 1501 390965 2
MNLI-m/mm 392703 9816/9833 9797/9848 3
QNLI 104744 40432 5464 2
RTE 2491 5462 3001 2
SST-B 5749 1500 1379 2
SNLI 549367 9842 9824 3
SICK 4439 495 4906 3
Scitail 23596 1304 2126 2
TwitterURL 42200 3000 9324 2

Table 6: The statistics of all 10 datasets.

gives wrong prediction results in case 1. BERT
can identify the semantic difference in case 1 with
the help of context representation . But in case
3, BERT cannot capture the difference between
the numbers ”12” and ”24” and give wrong pre-
diction. SyntaxBERT enhances text understand-
ing by introducing syntactic trees. Since case 2
and case 3 have the same syntactic structure, Syn-
taxBERT also gives wrong predictions. Our model
made correct predictions in all of the above cases.
Because DABERT explicitly focuses on different
parts of sentence pairs through difference attention
and adaptively aggregates affinity and difference
information in the adaptive fusion module, it can
identify semantic differences caused by subtle dif-
ferences within sentence pairs.
Attention Distribution. To verify the fusion ef-
fect of subtraction-based attention on the difference
information, we display the weights distribution
of BERT and DABERT in Figure 3 for compari-
son. It can be seen that the attention distribution
after dual attention becomes more reasonable, espe-
cially the attention weight between ”hardware” and
”software” increases significantly. This reveals that
DABERT pays more attention to different parts of
sentence pairs rather than the same words.

5 Related Work

Semantic Sentence Matching is a fundamental
task in NLP. Thanks to the appearance of large-
scale annotated datasets (Bowman et al., 2015;
Williams et al., 2017), neural network models have
made great progress in SSM (Qiu and Huang, 2015;
Wan et al., 2016), mainly fell into two categories.
The first (Conneau et al., 2017; Choi et al., 2018)
focuses on encoding sentences into corresponding
vectors without cross-interaction and applies a clas-
sifier to obtain similarity. The second (Wang et al.,
2017; Chen et al., 2016; Liang et al., 2019a) utilizes
cross-features as an attention module to express the
word- or phrase-level alignments of two texts, and
aggregates it into prediction layer to acquire sim-

How
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a
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0.5
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Figure 3: Distribution of BERT (a) and our method (b).

ilarity. Recently, the pre-training paradigm has
achieved great results in SSM. Some work attempt
to introduce other methods to enhance pre-trained
models. For example, SemBERT (Zhang et al.,
2020) explicitly absorbs contextual semantics over
a BERT backbone. AMAN (Liang et al., 2019b)
uses answers knowledge to enhance language rep-
resentation. UER-BERT (Xia et al., 2021) injects
synonym knowledge to enhance BERT. Syntax-
BERT (Bai et al., 2021) also integrates the syntax
tree into transformer models.

Robustness Although neural network models
have achieved human-like or even superior results
in multiple tasks, they still face the insufficient
robustness problem in real application scenarios
(Gui et al., 2021). Tiny literal changes may cause
misjudgments. Therefore, recent work starts to
focus on robustness research from multiple per-
spectives. TextFlint (Gui et al., 2021) incorporates
multiple transformations to provide comprehensive
robustness analysis. Li et al. (2021) provide an
overall benchmark for current work on adversar-
ial attacks. And Liu et al. (2021) propose a more
comprehensive evaluation system and add more
detailed output analysis indicators.

6 Conclusions

In this paper, we propose a novel Dual Atten-
tion Enhanced BERT (DABERT), which can ef-
ficiently aggregate the difference information in
sentence pairs and soft-integrate it into a pretrained
model. Based on BERT’s powerful contextual rep-
resentation capability, DABERT enables the model
to learn more fine-grained comparative informa-
tion and enhances the sensitivity of PLMs to sub-
tle differences. Experimental results on 10 pub-
lic datasets and robustness dataset show that our
method can achieve better performance than several
strong baselines. Since DABERT is an end-to-end
training component, it is expected to be applied to
other large-scale pre-trained models in the future.
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Abstract
Multi-hop reasoning requires aggregating mul-
tiple documents to answer a complex question.
Existing methods usually decompose the multi-
hop question into simpler single-hop questions
to solve the problem for illustrating the explain-
able reasoning process. However, they ignore
grounding on the supporting facts of each rea-
soning step, which tends to generate inaccu-
rate decompositions. In this paper, we pro-
pose an interpretable stepwise reasoning frame-
work to incorporate both single-hop supporting
sentence identification and single-hop question
generation at each intermediate step, and uti-
lize the inference of the current hop for the
next until reasoning out the final result. We em-
ploy a unified reader model for both intermedi-
ate hop reasoning and final hop inference and
adopt joint optimization for more accurate and
robust multi-hop reasoning. We conduct exper-
iments on two benchmark datasets HotpotQA
and 2WikiMultiHopQA. The results show that
our method can effectively boost performance
and also yields a better interpretable reasoning
process without decomposition supervision. 1

1 Introduction

Recent years have witnessed an emerging trend
in the task of multi-hop question answering. It
requires the model to aggregate multiple pieces
of documents (i.e., context) and perform multi-
hop reasoning to infer the answer (Talmor and Be-
rant, 2018; Khashabi et al., 2018). Several datasets
have been introduced as benchmarks, such as Hot-
potQA (Yang et al., 2018), 2WikiMultiHopQA
(Ho et al., 2020) and WikiHop (Welbl et al., 2018),
and the first two provide supporting facts supervi-
sion to encourage models to further explain what
supporting sentences lead to the prediction.

The first generation of models for multi-hop
question answering utilizes a one-step reader (Qiu

∗Corresponding author
1Codes are publicly available at https://github.com/

WangsyGit/StepwiseQA.

[Question]
Q: What city is the Marine Air Control Group 28 located in?
[Context]
P1:  Marine Tactical Air Command Squadron 28 is a United 
States Marine Corps aviation command and control unit based at 
Marine Corps Air Station Cherry Point. They provide the 2nd 
Marine Aircraft Wings tactical headquarters and … 
P2:  Marine Corps Air Station Cherry Point or MCAS Cherry 
Point is a United States Marine Corps airfield located in Havelock, 
North Carolina, United States, in the eastern part of the state. It ...
P3-P10: …
[Question Decomposition (Min et al., 2019)]
Sub-Q1:  Which Marine Air Control Group 28?
Sub-Q2:  What city is Marine Tactical Air Command Squadron 28 
located in?
[Stepwise Decomposition]
Step1-S:  Marine Tactical Air Command Squadron 28 is a … 
control unit based at Marine Corps Air Station Cherry Point.
Step1-Q: Which is the base of Marine Air Control Group 28?

Step2-S:  Marine Corps Air Station Cherry Point ... United States 
Marine Corps airfield located in Havelock, North Carolina … state.
Step2-Q: What city is the Marine Corps Air Station Cherry Point 
located in?

Figure 1: A multi-hop reasoning example from Hot-
potQA. To solve the problem, DecompRC (Min et al.,
2019) generates improper decomposition of questions
and predicts a wrong answer while our expected step-
wise decomposition includes both single-hop supporting
sentences and sub-questions of each step to reason out
the correct answer. The underlined phrase is the fact un-
covered by machine-generated decomposition while the
shaded contexts support the corresponding single-hop
question generation.

et al., 2019; Fang et al., 2019; Shao et al., 2020;
Tu et al., 2020; Beltagy et al., 2020) to capture the
interaction between the question and relevant con-
texts for the prediction of the answer as well as the
supporting sentences. In order to model the explain-
able multi-step reasoning process, researchers ex-
plore to decompose the multi-hop question into eas-
ier single-hop questions and solve sub-questions to
reach the answer (Talmor and Berant, 2018; Wolf-
son et al., 2020).

Question decomposition based approaches
achieve promising prediction performance and are
able to demonstrate the reasoning process to some

1655



[CLS] HOP=𝑘 Question Q [SENT] s!! … …

Unified Reader 𝓜𝜽

Supporting Sentence Prediction Layer

Single-hop 
Question Generator 𝓖

Single-hop 
QA Model 𝓐

Question 𝑸:
What city is the Marine Air Control Group 28 
located in?
Question-relevant Context 𝑪:
P1: Marine Tactical Air Command Squadron 
28 is a United States Marine…
P2: Marine Corps Air Station Cherry 
Point…located in Havelock, North Carolina... 
P3 & P4: …

Single-hop 
Supporting Sentence 
Identification

Single-hop 
Question
Generation

𝑘!"	hop supporting sentences	S#

Unified Reader 𝓜𝜽

Supporting Sentence Prediction LayerAnswer Prediction Layer

[SENT] s!" …

[CLS] HOP=𝐊 Question Q [SUB] q#𝐊 …[SENT] s!! …[BDG]a#𝐊

𝑘!" hop 
sub-question q#

yes no

Final Hop Inference

𝑘!"	Hop Input

𝐊!"	Hop Input

Intermediate Hop Reasoning
𝟏𝐬𝐭 Hop Supporting Sentence 𝑺𝟏:
Marine Tactical Air Command Squadron 28 is 
a United States Marine Corps aviation 
command and control unit based at Marine 
Corps Air Station Cherry Point.

𝟏𝐬𝐭 Hop Sub-question 𝒒𝟏:
What is the base of Marine Air Control 
Group 28 ?

𝟏𝐬𝐭 Hop Sub-answer 𝒂𝟏:
Marine Corps Air Station Cherry Point

Final answer A Final supporting sentences S Predicted Final Answer 𝑨:
What city is the Marine Corps Air Station 
Cherry Point located in? 
𝑨: Havelock

Reasoning Process

Inter. End Layer

[SUB] q#% [BDG] a#%

Intermediate
reasoning end

Not end

a%q%

Figure 2: The overall architecture of stepwise reasoning framework with an interpretable reasoning process.

extent. However, the single-hop questions are gen-
erated solely based on the original question with-
out considering the supporting facts each step in-
volves (Min et al., 2019; Perez et al., 2020; Khot
et al., 2020). This usually leads to wrong-guided de-
composition and inaccurate explanations. An exam-
ple is shown in Figure 1 including a question, two
relevant contextual paragraphs, two sub-questions
generated by Min et al. (2019) and two expected
steps of reasoning with supporting sentences and
sub-questions. The first single-hop question gener-
ated by an existing model (Sub-Q1) fails to query
“the base of Marine Air Control Group 28” which is
beyond the scope of the original multi-hop question
and such an improperly reasoned hop also leads
to the failure of final answer prediction. We argue
that a complete step of reasoning should consist
of intermediate supporting sentence identification
and sub-question generation to reduce the inference
error in the procedure.

In this paper, we propose a stepwise reasoning
framework for multi-hop question answering. It
performs both single-hop supporting sentence iden-
tification and single-hop question generation in
each step, and reasons from one intermediate hop
to the next until the final hop inference. Specifi-
cally, we perform an intermediate hop reasoning
that locates the single-hop supporting sentences
and constructs the sub-question based on the origi-
nal question and the corresponding supporting facts
in each step. We utilize an off-the-shelf single-hop
question generator to eliminate the need for hu-

man annotations and avoid the risk of noisy labels
posed by constructed pseudo-supervision. In the fi-
nal hop, we simultaneously predict the answer and
the supporting sentences of the multi-hop question
according to the preceding hops. We employ a uni-
fied reader model for both intermediate single-hop
supporting sentence identification and final hop in-
ference and jointly learn them so that a midway
error may be corrected by subsequent hops to mit-
igate cumulative failures. We further adopt two
measures to reduce the train-test discrepancy of
single-hop supporting sentences and sub-questions
to mitigate exposure bias for better generalization.

Experiments are conducted on two benchmark
datasets involving different hops of reasoning,
HotpotQA (Yang et al., 2018) and 2WikiMulti-
HopQA (Ho et al., 2020). The results indicate
that our stepwise reasoning framework achieves
significant improvements and shows general effec-
tiveness across different reasoning types. Further
analysis and qualitative cases also demonstrate that
our method generates high-quality single-hop ques-
tions for interpretable multi-hop reasoning.

2 Methodology

Given a multi-hop question Q and a context in-
cluding multiple paragraphs, we aim to read the
question-relevant context C to predict the final an-
swerA and explain it with the supporting sentences
S. As illustrated in Figure 2, we present a step-
wise reasoning framework to iteratively identify
the single-hop supporting sentences and generate
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the single-hop question for the following reasoning,
which consists of three components as below. It
first filters out the unrelated paragraphs to extract
the question-relevant context C (§ 2.1). Then it
identifies the supporting sentences of each inter-
mediate hop from the relevant context to ask and
answer the corresponding single-hop question, and
passes the auto-generated messages to the next hop
(§ 2.2). After intermediate hop reasoning ends, the
last module predicts the final answer and the sup-
porting sentences of the multi-hop question accord-
ing to the preceding inference (§ 2.3). We jointly
train a unified reader model for all reasoning hops
(§ 2.4) and adopt two measures to mitigate the
train-test discrepancy for better inference (§ 2.5).

2.1 Context Filter
In order to reduce the distraction in the context
for downstream multi-hop reasoning process, we
select the most relevant paragraphs as the question-
relevant context C. We first train a paragraph se-
lection model which takes the question and the
concatenation of all candidate paragraphs as the
input and predicts the probability scores that each
paragraph is relevant to answer the question.

As HotpotQA mainly consists of 2-hop ques-
tions which involve two relevant paragraphs, we
follow the 2-hop selection strategy in (Fang et al.,
2019). For the first hop, it selects the paragraph
with the highest scores among the paragraphs con-
taining the same phrases as the question. Then the
second-hop paragraph is extracted by hyperlinks
from the first selected one. Two other paragraphs
with the next highest scores are also selected to
constitute the question-relevant context. For 2Wiki-
MultiHopQA dataset with 2∼4 hop questions, we
select five paragraphs with the highest scores and
filter the other paragraphs from the context.

2.2 Intermediate Hop Reasoning
Based upon the filtered relevant context, we per-
form the multi-hop reasoning step-by-step. We
adopt a unified reader modelMθ to iteratively iden-
tify the single-hop supporting sentences focused
at each intermediate hop, and decide whether to
end the intermediate hop reasoning indicating that
the cumulative intermediate information is ready
for final hop inference. Then depending on the
predicted supporting sentences at each hop, the cor-
responding single-hop question can be generated
and answered, which will be passed to the reader
for next hop reasoning. This iterative process is

repeated until the intermediate reasoning is ended,
or up to K − 1 intermediate hops.

Single-hop Supporting Sentence Identification
The reader attempts to find the supporting sen-
tences at each hop k ∈ {1, ...,K − 1} given the
concatenation of the original question Q, the sub
question-answer pairs {(q1, a1) ... (qk−1, ak−1)}
of previous hops, and the relevant context C as
the input. Specifically, the concatenated sequence
is formulated as [CLS] HOP=k [SEP] Q
[SUB] q1 [BDG] a1 ... [SUB] qk−1
[BDG] ak−1 [SEP] [SENT] s11 [SENT]
s12 ...[SEP] [SENT] s21 ...[SEP] where
HOP=k indicates the current hop number. Special
tokens [SUB], [BDG], [SENT] respectively
represent the single-hop sub-question, sub-answer
and each sentence, and sij is the j-th sentence of
the i-th paragraph in the relevant context C.

On top of the representations of each sentence
token [SENT], we build a binary classifier to pre-
dict the probability p(k)i,j that each sentence sij is a
supporting fact of the current hop. The correspond-
ing binary cross entropy loss L(k)sf is calculated as

Eq. 1. y(k)i,j is the label whether the sentence sij is
a supporting fact of the hop k, and Ns is the total
number of sentences in C.

L(k)sf =
1

Ns

∑

i

∑

j

−y(k)i,j log(p
(k)
i,j )

− (1− y(k)i,j ) log(1− p
(k)
i,j ) (1)

Then the [CLS] representation is also fed into a
binary classifier to compute the probability p(k)end

that the intermediate reasoning should be ended
at hop k and go on to final hop inference, and the
cross entropy loss is as Eq. 2. y

(k)
end is the label

whether to end the intermediate hop reasoning at
current hop k.

L(k)end = −y
(k)
end log(p

(k)
end)

− (1− y(k)end) log(1− p
(k)
end) (2)

Single-hop Question Generation After identi-
fying the supporting sentences Sk of hop k, we
generate the corresponding single-hop question qk
to investigate what the current hop asks about. In
this work, we do not use annotated or pseudo su-
pervision to train a question decomposition model.
Instead, we take inspiration from (Pan et al., 2020)
and adopt a pre-trained simple question generator
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Gs to directly output the desired single-hop ques-
tion, which is trained beforehand on top of an off-
the-shelf simple question corpus.

To encourage the single-hop question more
grounded on the contextual facts, we generate them
based on both the identified single-hop supporting
sentences Sk and the multi-hop question Q. The
latter serves as a guidance for the generation to-
wards the original reasoning goal. Specifically, we
extract the intersectional tokens between Sk and Q
as the prompt and append it to the supporting sen-
tences Sk as the input for single-hop question gen-
eration, which is organized as [CLS] (Q ∩ Sk)
[SEP] Sk [SEP]. Correspondingly, during the
single-hop question generator pre-training, we also
take a single sentence as the context and utilize the
tokens existing within both the target question and
the context to prompt simple question generation.

Queried with the generated single-hop question
qk, we immediately resolve it to ease the whole
multi-hop question. We also leverage the afore-
mentioned simple question dataset to pre-train a
single-hop QA modelA to make it more consistent
with the single-hop question generator. Then ac-
cording to the single-hop supporting sentences Sk
and question qk at hop k, we utilize the pre-trained
QA model A to output the single-hop answer ak,
which together with the single-hop question qk will
be passed to the next hop for subsequent reasoning.

2.3 Final Hop Inference

After the end of intermediate hop reasoning, we
can utilize the single-hop questions and answers
{(q1, a1) ... (qK−1, aK−1)} of all previous hops
to build a bridge for inferring the final hop K.
We employ the same unified reader model Mθ

during intermediate hop reasoning to predict the
final answer A of the multi-hop question Q and
simultaneously provide the overall explanatory
supporting sentences S. The input sequence
fed into the reader for the final hop is similar
to intermediate hops, except that we insert two
additional tokens yes and no before the relevant
context C for answer prediction. As there are
three answer types (yes/no/span), we integrate
the answer type classification into the answer
span prediction by appending yes and no as
two candidate spans. We reformulate the current
input as [CLS] HOP=K [SEP] Q [SUB]
q1 [BDG] a1 ... [SUB] qK−1 [BDG]
aK−1 [SEP] yes no [SEP] [SENT] s11

...[SEP] [SENT] s21 ...[SEP].
To accomplish the final hop inference, we first

utilize the same binary classifier to identify whether
each sentence is a supporting fact of the whole
multi-hop question, and compute a final support-
ing sentence identification loss L(K)

sf . Then for the
final answer span prediction, we attach a linear
layer with a softmax function to all context repre-
sentations to obtain the probability of each token tn
being the start psn or end position pen of the answer
span. The cross entropy loss is calculated as follow-
ing formula, where token tx and ty are respectively
the labels of start or end positions.

Lspan = − log(psx)− log(pey) (3)

2.4 Optimization & Inference

In order to optimize our framework, we can first
set up a maximum number of required reasoning
hops K. Then our stepwise reasoning framework
essentially comprises K − 1 iterative intermediate
hop reasoning layers and a final hop inference layer.
As there is no previous single-hop question-answer
pair before the first hop reasoning, we omit them
within the initial input which will be fed into the
first intermediate hop reasoning layer. We jointly
train our stepwise reasoning framework for all in-
termediate hops and the final hop in order that an in-
termediate mistake can be corrected by subsequent
hops to mitigate cascading failures. All losses are
combined in a weighted manner:

L =λ1Lintsf + λ2Lintend + λ3L(K)
sf + Lspan (4)

Lintsf =
L(1)sf +

∑K−1
k=2 (1− y(k−1)end )L(k)sf

1 +
∑K−1

k=2 (1− y(k−1)end )
(5)

Lintend =
1

ke

ke∑

k=1

L(k)end,where y(ke)end = 1 (6)

where λ1, λ2 and λ3 are weighted hyper-
parameters. Lintsf is the average supporting sen-
tence identification loss of all actual intermediate
hops that are not ended. Lintend is the average loss of
intermediate reasoning end prediction.

During the inference period, we start from the
first hop and dynamically reason from one hop to
the next until the final hop. We predict whether to
end the intermediate reasoning at each intermediate
hop. Once it is over, we utilize all generated sub-
questions and sub-answers and move to conduct the
final hop inference. If not end, we will pass them
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to the next intermediate hop and repeat the process
until the intermediate hop reasoning is ended, or
until reaching K − 1 intermediate hops.

2.5 Exposure Bias Mitigation

In light of the design of our stepwise reasoning
framework, there may arise the exposure bias prob-
lem between optimization and inference. Given the
ground-truth supporting sentence supervision for
each intermediate hop Stk, we can generate the tar-
get single-hop question and answer for the follow-
up reasoning at training time. However, at test time
we can only conduct single-hop question genera-
tion based on the predicted single-hop supporting
sentences Sk which may deviate from the oracle
ones Stk. To address this, we propose two mea-
sures to respectively reduce the discrepancy be-
tween train-test single-hop supporting sentences
and train-test single-hop questions.

Firstly, we train a separate reader model only for
the intermediate single-hop supporting sentence
identification, and adopt it to re-predict the single-
hop supporting sentences of training data with occa-
sionally injected mistakes for optimizing the whole
framework. Thereby we can regulate bias between
training and test supporting sentences of interme-
diate hops. Besides, we also augment the train-
ing data for the single-hop question generation Gs
by taking the re-predicted training single-hop sup-
porting sentences Sk as input, and the generated
sub-questions based on the ground-truth support-
ing sentences Stk as the target. Then the genera-
tor is trained to recover from the non-gold single-
hop supporting sentences to approximate the oracle
ones and reduce the deviation between train-test
intermediate single-hop questions. With these two
strategies, we can jointly optimize our stepwise
reasoning framework for better generalization to
non-golden test cases.

3 Experiments

3.1 Experimental Dataset

We take two datasets HotpotQA (Yang et al., 2018)
and 2WikiMultiHopQA (Ho et al., 2020) that in-
volve different reasoning hops as a testbed to study
textual multi-hop reasoning. They both require an-
swering the question as well as predicting the sup-
porting facts to explain the reasoning. HotpotQA
includes both distractor setting and fullwiki setting,
and we focus on the former with limited candidate
paragraphs to fully test the multi-hop reasoning

ability while putting aside the information retrieval
part. Although 2WikiMultiHopQA provides anno-
tated evidence for interpreting the reasoning path,
we leave them out of account to illustrate the ef-
fectiveness and interpretability of our framework
without explanation supervision.

HotpotQA and 2WikiMultiHopQA respec-
tively consist of 90, 447/7, 405/7, 405 and
167, 454/12, 576/12, 576 samples in training,
development and test sets, and each instance is
provided with 10 paragraphs. HotpotQA comprises
2-hop questions that only two paragraphs contain
necessary supporting sentences, while 2WikiMul-
tiHopQA contains 2∼4 hop questions and the
supporting facts reside in two to four paragraphs.
Besides, to train the single-hop question generator
and QA model, we use SQuAD (Rajpurkar et al.,
2016) as the simple question corpus.

3.2 Implementation Details

We take ELECTRA-large (Clark et al., 2020) as
the backbone of our proposed framework and the
single-hop QA model, and train a single-hop ques-
tion generator using BART-large (Lewis et al.,
2019). The weights to balance losses are chosen
as λ1 = 10/5 (for HotpotQA/2WikiMultiHopQA),
λ2 = 2 and λ3 = 5. The maximum value of
required reasoning hops is set as K = 2 for Hot-
potQA and K = 4 for 2WikiMultiHopQA. More
training details are given in Appendix A.

3.3 Overall Performance

We compare our stepwise reasoner (StepReasoner)
with previous published methods on HotpotQA and
2WikiMultiHopQA. Since there are few systems on
the leaderboard of 2WikiMultiHopQA, we follow
(Fu et al., 2021) and make a comparison with more
models on both dev and test sets. The compared
methods cover both question decomposition based
models and one-step reading based models.
Question decomposition based models include
DecompRC (Min et al., 2019), ONUS (Perez et al.,
2020), QFE (Nishida et al., 2019), CRERC (Fu
et al., 2021)) and NA-Reviewer (Fu et al., 2022).
One-step reading based models consist of
DFGN (Qiu et al., 2019), ELECTRA (Clark et al.,
2020), TAP2 (Glass et al., 2019), SAE-large (Tu
et al., 2020), C2F Reader (Shao et al., 2020),
Longformer (Beltagy et al., 2020), ETC-large (Za-
heer et al., 2020), FFReader-large (Alkhaldi et al.,
2021), HGN-large (Fang et al., 2019).
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Model
Answer Sup Fact Joint

EM F1 EM F1 EM F1

DecompRC (Min et al., 2019) 55.20 69.63 - - - -
ONUS (Perez et al., 2020) 66.33 79.34 - - - -

TAP2 (Glass et al., 2019) 64.99 78.59 55.47 85.57 39.77 69.12
SAE-large (Tu et al., 2020) 66.92 79.62 61.53 86.86 45.36 71.45
C2F Reader (Shao et al., 2020) 67.98 81.24 60.81 87.63 44.67 72.73
Longformer (Beltagy et al., 2020) 68.00 81.25 63.09 88.34 45.91 73.16
ETC-large (Zaheer et al., 2020) 68.12 81.18 63.25 89.09 46.40 73.62
FFReader-large (Alkhaldi et al., 2021) 68.89 82.16 62.10 88.42 45.61 73.78
HGN-large (Fang et al., 2019) 69.22 82.19 62.76 88.47 47.11 74.21

StepReasoner 69.66 82.42 62.99 87.85 47.84 74.27

Table 1: Experimental results of different models on the test set of HotpotQA distractor setting.

Model
Answer Sup Fact

EM F1 EM F1

Dev

DecompRC (Min et al., 2019) 7.46 41.57 56.49 82.73
QFE (Nishida et al., 2019) 37.56 43.21 21.13 59.20
CRERC (Fu et al., 2021) 71.56 74.51 86.00 92.75
NA-Reviewer (Fu et al., 2022) 76.88 82.30 - -

DFGN (Qiu et al., 2019) 30.87 38.49 17.06 57.79
ELECTRA-base 66.81 72.28 81.19 90.96
ELECTRA-large 79.22 83.51 83.08 92.01

StepReasoner(ELECTRA-base) 68.11 73.03 81.72 91.21
StepReasoner(ELECTRA-large) 80.23 84.26 83.41 92.01

Test

HGN-revise (Fang et al., 2019) 71.20 75.69 69.35 89.07
CRERC (Fu et al., 2021) 69.58 72.33 82.86 90.68
NA-Reviewer (Fu et al., 2022) 76.73 81.91 89.61 94.31
StepReasoner 80.88 84.86 83.30 91.89

Table 2: Results on the dev and test sets of 2WikiMulti-
HopQA.

The results are shown in Table 1 and 2. We find
that StepReasoner outperforms all models in terms
of both answer prediction and joint evaluation and
achieves comparable performance in supporting
fact prediction, which demonstrates the effective-
ness of our method. Specifically, it performs better
than both question decomposition based and one-
step reading based methods. The former improve-
ment indicates that a unified reader to stepwise
identify the single-hop supporting sentences for
single-hop sub-question generation can enhance
the accuracy of previous question decomposition
methods. The latter verifies that the interpretability
injected by stepwise reasoning can also improve the
QA performance. Besides, Longformer, ETC-large,
FFReader-large and HGN-large show a better sup-
porting fact prediction performance on HotpotQA,

especially in F1 score. This is because the first
three models are designed for handling longer se-
quences and the last utilizes a complex hierarchical
graph network which both can cover more candi-
date paragraphs for supporting sentence prediction.
For 2WikiMultiHopQA, CRERC and NA-Reviewer
achieve better supporting fact prediction because
they both utilize external annotated evidence for
training which confirms the effectiveness of our
StepReasoner without explanation supervision. We
also evaluate the intermediate reasoning end pre-
diction, and find that our StepReasoner can exactly
decide when to end the intermediate hop reasoning.

3.4 Further Analysis

Ablation Study To dive into the sources of per-
formance gain in our StepReasoner, we conduct
an ablation study on the HotpotQA development
set, which is shown in Table 3. Compared to the
overall stepwise reasoning system StepReasoner, a
pipeline model without joint training shows a sharp
performance degradation. It indicates that joint op-
timization of a unified reader model for all hops
can improve the tolerance for intermediate faults
and boost reasoning performance. After removing
any measures to mitigate exposure bias, the per-
formance has also significantly dropped. It shows
that both two measures to alleviate the train-test
discrepancy of single-hop supporting sentences and
single-hop questions confirm a better generaliza-
tion to cases deviated from oracle.

Effectiveness on Various Backbone Models To
analyze the effectiveness of the StepReasoner
based on different backbones, we vary several pre-
trained models of different scales including BERT-
base-uncased (Liu et al., 2019), ELECTRA-large

1660



Model
Answer Sup Fact Joint

EM F1 EM F1 EM F1

StepReasoner 70.11 83.03 64.27 88.10 48.55 74.85
w/o joint training 69.30 82.44 63.35 87.89 47.25 74.16
w/o bias.supp 69.66 82.64 63.10 87.74 47.39 74.20
w/o bias.ques 69.76 82.93 63.46 88.01 47.49 74.57

Table 3: Ablation study on HotpotQA dev set. w/o joint
training means a pipeline stepwise reasoning schema.
bias.supp and bias.ques are two exposure bias miti-
gating measures to reduce the train-test discrepancy of
single-hop supporting sentences and questions.

and ALBERT-xxlarge-v2 (Lan et al., 2019). From
Table 4, we can see that our StepReasoner variants
consistently perform better than the corresponding
baseline models and the previous state-of-the-art
method (HGN) using ALBERT-large as base model,
especially in EM scores. It demonstrates that our
method is robust to be effective based on various
pre-trained models and it is the paradigm of our
joint stepwise reasoning that contributes to more
accurate multi-hop reasoning.

Model
Answer Sup Fact Joint

EM F1 EM F1 EM F1

BERT 60.80 74.76 57.16 85.05 38.67 65.89
StepReasoner(BERT) 60.52 74.81 59.00 85.38 40.31 66.50

ELECTRA 69.49 82.76 62.80 87.91 46.75 74.33
StepReasoner(ELECTRA) 70.11 83.03 64.27 88.10 48.55 74.85

ALBERT 70.14 83.58 62.78 88.43 46.60 75.30
HGN(ALBERT) 70.18 83.44 63.17 89.19 47.01 75.74
StepReasoner(ALBERT) 70.73 83.92 64.17 88.69 48.54 75.85

Table 4: Analysis of StepReasoner on different back-
bone models on HotpotQA dev set.

Analysis of Different Reasoning Types We de-
tailedly investigate the performance of StepRea-
soner on various reasoning types of HotpotQA
compared to the baseline model. Following Min
et al. (2019), HotpotQA integrates four types of
multi-hop reasoning skills, including “Bridge”,
“Implicit-Bridge”, “Comparison” and “Intersec-
tion”. The first two both require identifying the
bridge entity to complete the chain reasoning, but
“Implicit-Bridge” resembles single-hop questions
which implicitly query a multi-hop property of an
entity, such as the question in Fig. 1. “Intersection”
questions ask to locate the answer entity that satis-
fies multiple properties. “Comparison” questions
involve comparing two entities to find the answer.

As shown in Table 5, our system is generally ef-
fective on all reasoning types compared to the base-

Reasoning Type
ELECTRA StepReasoner

EM F1 EM F1

Bridge (34%) 47.30 76.43 48.37 76.54
Implicit-Bridge (29%) 37.04 68.66 39.81 69.65
Comparison (20%) 61.77 79.13 63.04 79.13
Intersection (17%) 42.97 73.89 46.23 75.07

Table 5: Results of Joint EM and Joint F1 across dif-
ferent reasoning types. The numbers in parentheses are
percentages of different types.

line model ELECTRA, especially “Implicit-Bridge”
and “Intersection”. Because these questions are
susceptible to shortcut solutions by directly iden-
tifying an entity satisfying one queried property
from a single piece of evidence to reach the incor-
rect answer while ignoring the multi-hop reasoning
involving other evidence. This observation also
verifies the effectiveness of our system to stepwise
generate the single-hop question grounded on the
intermediate single-hop supporting sentences for
interpretable multi-hop reasoning.

Comparison of Different Single-hop Question
Generation Methods To manifest the effective-
ness of our generated single-hop questions based
on identified single-hop supporting sentences, we
incorporate several various single-hop question
generation approaches into our stepwise reason-
ing framework and compare the QA results. Ta-
ble 6 shows that our Supp-based method performs
best. It reveals that our single-hop question gen-
eration is grounded on single-hop supporting sen-
tences to generate more accurate and informative
sub-questions, which are more effective than single-
hop questions constructed by other strategies.

Method
Answer Sup Fact Joint

EM F1 EM F1 EM F1

Span-based 68.60 81.66 62.31 87.41 46.26 73.20
USeq2Seq 69.29 82.22 63.11 88.00 46.96 74.08
Supp-based 70.11 83.03 64.27 88.10 48.55 74.85

Table 6: Comparison of various single-hop question
generation methods. Span-based represents the sub-
question generation based on span prediction in De-
compRC (Min et al., 2019) while USeq2Seq is the
Unsupervised seq2seq decomposition in ONUS (Perez
et al., 2020). Supp-based is our supporting sentences
based single-hop question generation.

Case Study An example of the “Bridge” type
question is presented in Figure 3 to show the inter-
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pretable reasoning process of StepReasoner com-
pared to other decomposition based methods. Our
system successfully identifies the first-hop sup-
porting sentences and generates the first-hop sub-
question to query the escaping location. Then the
first-hop sub-answer helps to identify the following
supporting sentences to finally predict the correct
answer. The second-hop question is also generated
for better illustration. By contrast, DecompRC fails
to decompose this complex question while ONUS
generates an improper first-hop question, and they
both predict a wrong answer. More cases of the
other reasoning types are in Appendix B.

Question:  Sparking the Marian civil war, who helped the recently abdicated 
queen to escape her imprisonment?
Answer:  the Queen's gaoler
# StepReasoner #
Sub-S1:  The Marian civil war in Scotland (1568-1573) was a period of 
conflict which followed the abdication of Mary, Queen of Scots, and her 
escape from Loch Leven Castle in May 1568.
Sub-Q1:  Where did the queen escape from during her abdication? 
Sub-A1:  Loch Leven Castle

Sub-S2:  Loch Leven Castle is a ruined castle on an island in ...  Queen of 
Scots was imprisoned here in 1567-1568, and forced to abdicate as queen, 
before escaping with the help of her gaoler's family.
Sub-Q2:  Who helped the the queen to escape her imprisonment?
# DecompRC #
Sub-Q:  Sparking the Marian civil war, who helped the recently abdicated 
queen to escape her imprisonment?

# ONUS #
Sub-Q1:  Why did sparking the Marian Civil War?
Sub-Q2:  Who helped the recently abdicated queen escape her imprisonment?

Wrong Predicted Answer:  Loch Leven Castle 

Figure 3: A case of the reasoning process by our
StepReasoner compared to DecompRC and ONUS. The
green phrase denotes our predicted answer and the texts
in shadow support the single-hop question generation.

4 Related Work

Multi-hop question answering aims to aggre-
gate multiple pieces of documents to model the
multi-hop reasoning chain and predict the an-
swer (Khashabi et al., 2018; Yang et al., 2018;
Welbl et al., 2018; Ho et al., 2020; Fei et al., 2022).
Prior methods mainly focus on utilizing a single
reader to model the interaction between the ques-
tion and relevant context, and simultaneously or
separately predict the supporting sentences and an-
swer within one step. Dhingra et al. (2018) and
Qiu et al. (2019) propose to construct graphs based
on entity information from scattered paragraphs
and utilize graph neural networks as the reader
to reason out the answer. Then HDE-Graph (Tu
et al., 2019), HGN (Fang et al., 2019) and SAE (Tu
et al., 2020) enrich information in the entity graph
by extending nodes of other granularity to build a

hierarchical graph and improve the interaction be-
tween the question and context. Some other meth-
ods (Glass et al., 2019; Beltagy et al., 2020; Zaheer
et al., 2020; Alkhaldi et al., 2021) adopt pre-trained
models as the powerful reader for multi-hop rea-
soning and achieve promising results. However,
these one-step reader methods directly encode the
relevant context and question for answer prediction
while neglecting to illustrate the explicit reasoning
process.

To circumvent the interpretability limitation, an-
other stream of research proposes to solve the multi-
hop reasoning by multi-step question decomposi-
tion. Nishida et al. (2019) and Jiang and Bansal
(2019) recurrently update the sub-query at each
step to break down the problem but these sub-
queries are learned in latent representations and not
sufficiently explainable. Instead, some works ex-
plore to explicitly decompose the complex question
into single-hop questions which assumes access
to decomposition supervision (Min et al., 2019;
Wolfson et al., 2020). To skip this reliance, (Perez
et al., 2020) and (Khot et al., 2020) attempt to
construct pseudo-decomposition from other simple
question corpora which pose a new challenge of la-
bel noises. Besides, they only take as input the orig-
inal question to generate single-hop questions with-
out grounding on the supporting facts at each hop.
In contrast, we design a stepwise reasoning frame-
work to locate the single-hop supporting sentences
at each step for generating more fact-grounded and
informative single-hop sub-questions without any
genuine or pseudo supervision, and integrate the se-
quential reasoning process into a unified multi-hop
reader for more robust performance.

5 Conclusion

In this paper, we study the task of multi-hop ques-
tion answering and propose to stepwise locate the
single-hop supporting sentences and generate more
fact-grounded single-hop questions for better in-
terpretable multi-hop reasoning. We present a
stepwise reasoning framework to incorporate both
single-hop supporting sentence identification and
the corresponding single-hop question generation
for each intermediate step until inferring a final re-
sult. It employs a pre-trained simple question gener-
ator and takes the identified single-hop supporting
sentences as base to generate the single-hop ques-
tion, which obviates the necessity of constructed
supervision and helps generate more fact-based
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single-hop questions. It utilizes a unified reader to
jointly learn both intermediate hop reasoning and
final hop inference for better fault tolerance. Exper-
imental results validate the general effectiveness
and interpretability of our StepReasoner.
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A Training Details

All these models are implemented using Hugging-
face (Wolf et al., 2019). For HotpotQA, we use a
batch size of 48 and fine-tune for 10 epochs with
the learning rate 3e-5. For 2WikiMultiHopQA,
the batch size is set to 24, the number of training
epochs is 5 and the learning rate is 5e-5. The Adam

is taken as the optimizer and we use a linear learn-
ing rate scheduler with 10% warmup proportion.
The proposed systems and other comparison mod-
els are trained on 4 NVIDIA Tesla V100 GPUs.

B Case Study of Different Reasoning
Types

We further present three cases of other reason-
ing types in Figure 4, including “Implicit-Bridge”,
“Comparison” and “Intersection”. We can see that
the StepReasoner generates high-quality decompo-
sitions for better interpretable multi-hop reasoning
and predict accurate answers for all types compared
to previous question decomposition based methods.

For the “Implicit-Bridge” question in Figure 4a,
by first predicting the supporting sentences related
to “Sivarama Swami” at the first hop, we can gen-
erate a sub-question to identify the implicit bridge
“Bhaktivedanta Manor” for location query in the
second hop. Although our predicted answer is dif-
ferent from the ground truth, it is also a reason-
able response and more close to the golden one
compared to the predictions of DecompRC and
ONUS. These two methods both fail to decompose
the multi-hop question and can only predict an in-
termediate answer.

For the “Comparison” and “Intersection” ques-
tions in Figure 4b and 4c, all methods predict the
correct answers. However, we can generate more
diverse single-hop sub-questions without request-
ing for any supervision, such as “die” and “death”
for representing “pass away”, and “belong to” for
“from”. By contrast, the decompositions by De-
compRC are usually inflexibly from the original
questions and the unsupervised ONUS creates im-
proper sub-questions with noises. We hope that
combining our generated single-hop questions can
also help to construct more natural and diverse
multi-hop questions and further promote multi-hop
reasoning performance.
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Question: Where does Sivarama Swami conduct courses on Vaishnava Theology?
Answer: in the village of Aldenham

# StepReasoner #
Sub-S1:  Sivarama Swami (born 30 March 1949, Budapest, Hungary) is a 
Vaishnava guru and a religious leader … . He has been conducting courses at 
Bhaktivedanta Manor on his own commentaries to … Vaishnava Theology.
Sub-Q1:  Which manor does Sivarama Swami conduct courses on Vaishnava?
Sub-A1: Bhaktivedanta Manor
Sub-S2:  Bhaktivedanta Manor is a Gaudiya Vaishnava temple set in the 
Hertfordshire countryside of England, in the village of Aldenham near Watford.
Sub-Q2: What section does Bhaktivedanta Manor belong to?

# DecompRC #
Sub-Q: Where does Sivarama Swami conduct courses on Vaishnava Theology?

# ONUS #
Sub-Q1: Where does Sivarama Swami conduct courses on Vaishnava Theology?
Sub-Q2: What is the nationality of the child?

Predicted Answer: Bhaktivedanta Manor

Implicit-Bridge

(a) An example of “Implicit-Bridge” reasoning type.

Question:  Who passed away first Robert Graves or Dino Buzzati?
Answer:  Dino Buzzati-Traverso

# StepReasoner #
Sub-S1:  Robert von Ranke Graves (24 July 1895 - 7 December 1985), also 
known as Robert Ranke Graves and most commonly Robert Graves, was an 
English poet, novelist, critic and classicist.
Sub-Q1:  When did Robert Graves die? 
Sub-A1: 7 December 1985
Sub-S2: Dino Buzzati-Traverso (14 October 1906 - 28 January 1972) was an 
Italian novelist, short story writer, painter and poet, as well as a journalist … .
Sub-Q2: What was Dino Buzzati-Traverso’s death date?

# DecompRC #
Sub-Q1:  Robert Graves passed away when? 
Sub-Q2: Dino Buzzati passed away when?    Sub-Q3: SMALLER
Predicted Answer:  Dino Buzzati

# ONUS #
Sub-Q1: When was dino buzzati born? Sub-Q2: Who passed away first?
Predicted Answer: Dino Buzzati

Comparison

(b) An example of “Comparison” reasoning type.

Question:  What family are the genus' Sinofranchetia and Stauntonia from?
Answer:  a genus of flowering plant in the Lardizabalaceae family 

# StepReasoner #
Sub-S1: Stauntonia is a genus of flowering plant in the Lardizabalaceae family. 
Sub-Q1: What family does the Stauntonia belong to? 
Sub-A1: Lardizabalaceae
Sub-S2: Sinofranchetia is a genus of flowering plant in the Lardizabalaceae 
family.
Sub-Q2: What family does the Sinofranchetia belong to?

# DecompRC #
Sub-Q1: What family is the genus ‘ Sinofranchetia from?
Sub-Q2: What family is the genus ‘ Stauntonia from?
Sub-Q3: INTERSEC
Predicted Answer:  Lardizabalaceae

# ONUS #
Sub-Q1: What family are the genus ‘ Sinofranchetia?
Sub-Q2: Where is Stauntonia from?
Predicted Answer: Lardizabalaceae

Intersection

(c) An example of “Intersection” reasoning type.

Figure 4: Three cases of other reasoning types. The
green phrases denote our predicted answers and the
texts in shadow support the corresponding single-hop
question generation.
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Abstract

Datasets with significant proportions of bias
present threats for training a trustworthy model
on NLU tasks. Despite yielding great progress,
current debiasing methods impose excessive
reliance on the knowledge of bias attributes.
Definition of the attributes, however, is elusive
and varies across different datasets. Fur-
thermore, leveraging these attributes at input
level to bias mitigation may leave a gap
between intrinsic properties and the underlying
decision rule. To narrow down this gap
and liberate the supervision on bias, we
suggest extending bias mitigation into feature
space. Therefore, a novel model, Recovering
Intended-Feature Subspace with Knowledge-
Free (RISK) is developed. Assuming that
shortcut features caused by various biases
are unintended for prediction, RISK views
them as redundant features. When delving
into a lower manifold to remove redundan-
cies, RISK reveals that an extremely low-
dimensional subspace with intended features
can robustly represent the highly biased dataset.
Empirical results demonstrate our model can
consistently improve model generalization to
out-of-distribution set, and achieves a new state-
of-the-art performance 1.

1 Introduction

Pretrained language models have achieved remark-
able performance on a wide range of natural lan-
guage understanding (NLU) benchmarks (Devlin
et al., 2019). However, when encountering more
challenging test sets, they dramatically fail (McCoy
et al., 2019). Studies indicate such a dilemma is
mainly rooted in the model’s reliance on specific
dataset biases (Gururangan et al., 2018; Zhang
et al., 2019a; Schuster et al., 2019), which correlate
well with labels but not for the intended underlying
task. For instance, on the natural language

*Corresponding author.
1Our code and data are available at https://github.com/C

uteyThyme/RISK.git.

Figure 1: A toy example that illustrate bias in MNLI-
matched dev set. BERT’s prediction Neutral does not
comply with the assumed decision rule (Entailment,
Contradiction) caused by pre-defined bias.

inference (NLI) task, models tend to use negation
cues ("not", "no", etc.), for a Contradiction
prediction, whereas a learner intended to learn
the underlying correlation based on the context
semantics.

To train a NLU model that captures the un-
derlying correlation from biased datasets, current
approaches focus on how to leverage kinds of
supervision effectively. One of the most popular
forms of such supervision is to explicitly construct
a bias-only model under human annotations, e.g., a
hypothesis-only model for NLI task, and factor
it out from the main model through ensemble-
based training (Clark et al., 2019; Utama et al.,
2020a). Another empirical line of research shifts
supervision from bias type annotations to weak
model learners. They find models with limited
capacity (Clark et al., 2020; Sanh et al., 2021)
or training on limited dataset (Utama et al.,
2020b) prone to extract shortcut patterns first, the
observation of which can be utilized to mitigate
dataset bias.

Despite the supervision on bias has shown
effectiveness in bias mitigation, the fundamental
questions remain unsolved. On one hand, ac-
quirement of supervision on the bias either from
human knowledge or model learning behaviours, is
often a laborious and expensive cost. Moreover,
considering the definition of bias attributes is
elusive and varies across datasets, the external
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knowledge can not cover all types of biases in the
dataset, leaving potential bias underexplored, e.g.,
bias beyond the definition or bias harder to learn.
On the other hand, capturing bias only at the input
examples is just like a black box, being oblivious
to the intrinsic properties that drives model to make
prediction. The toy example shown in Figure 1
reveals that predefined bias does not necessarily
lead the model to learn the unintended decision
rule (i.e., constituent bias triggers an Entailment
prediction, negation bias triggers an Contradiction
prediction). Hence, current debiasing methods
inevitably fall short in above two limitations.

On account of the consensus that shortcut
features induced by biased examples are detri-
mental for prediction, various kinds of biases
can thus be equivalently viewed as redundan-
cies. When delving into feature space, closer
to the decision rule to remove these redundant
features, supervision of the attributes from biased
examples can be liberated as well. Therefore,
we develop a novel model, Recovering Intended-
Feature Subspace with Knowledge-Free (RISK).
Aimed with purifying redundancies from feature
space, RISK reveals that for a highly biased dataset,
a small subset of informative and shared features,
i.e. intended ones, can give rise to a robust
prediction. Concretely, RISK maps features into a
lower manifold and learns an orthogonal projector
spanned by geometric median subspace to recover
the intended-feature subspace in an end-to-end
manner.

Experimental results on three NLU tasks show
RISK outperforms other methods by a large margin,
indicating its potential to mitigate bias and the
prerequisites of supervision on biased attributes
can be liberated. Moreover, when transferring
to more challenging out-of-distribution set, RISK
can consistently improve the robustness of NLU
models. To sum up, our contributions are three-fold
as follows:
• We propose a novel feature-based debiasing

model, termed as RISK. RISK is the initial attempt
that free of the supervision on bias attributes.
• We reveal shortcut features as part of redun-

dancy, and thus only leveraging the informative
features shared across biased and bias-free exam-
ples can achieve the goal of bias mitigation.
•We conduct extensive experiments to validate

the effectiveness of RISK in mitigating bias. More-
over, RISK exhibits great power to generalize to

more challenging scenarios, showing its potential
to robustify NLU models.

2 Bias Mitigation As Feature Redundancy

2.1 Problem Setup
Given training dataset D = {xi, yi}Ni=1 including
C classes, a NLU task requires the model to
understand the semantic of input text xi and then
predict the target label yi. Generally, the model is
composed of a feature extractor F(·) : F(x)→ z
and a linear classifier g(·) : g(z)→ ŷ.

When the model is trained on a highly biased
dataset, it will easily capture shortcut features in
high-dimensional z. Since the shortcut features are
the unintended ones that induce predictions, we
treat them as a kind of redundancy. Therefore,
mitigating dataset bias can be subsumed under
minimizing redundancy in feature space.

2.2 Feature Redundancy by Subspace
Modeling

In statistical machine learning, feature subspace
paves a path towards eliminating redundant
features, as it sheds light on projecting high-
dimensional feature onto one subspace, which
can significantly capture its most significant
information. A common formulation for subspace
modeling is to find an orthogonal projection P
of dimension d whose subspace can robustly
represents the input features (Vaswani et al., 2018).
Let I denote the identity matrix in the ambient
space of the high-dimensional feature z, and the
least q-th power deviations formulation for q > 0
seeks P that minimizes:

L(P) =
N∑

i=1

∥∥(I−P)zi
∥∥q
2

(1)

Classically, taking q = 2 results in principal
component analysis(PCA), which finds the orthog-
onal directions of maximum variance:

L(P) =
N∑

i=1

∥∥(I−P)zi
∥∥2
2

2.3 Geometric Median Subspace as solution.
However, even approximate minimization of Eq. 1
is nontrivial, since it has been shown to be NP
hard for 1 ≤ q < 2, furthermore, q < 1 can
result in a wealth of local minima. Literature have
theoretically proven the preferable minimization
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Figure 2: Model Architecture of RISK.

is q = 1 (Osborne and Watson, 1985; Nyquist,
1988), and thus equals to replace the least squares
formulation in PCA with least absolute deviations
as follows:

L(P) =
N∑

i=1

∥∥(I − P )zi
∥∥1
2

(2)

A nice interpretation of the minimizer of above
equation is a Geometric Median Subspace (Fletcher
et al., 2009), analogous geometric median in
modeling centers of input features. Ideally, once
we solve a orthogonal projection spanned by this
geometric median space, we can achieve an robust
estimation of all input features. Since the shortcut
features are not shared by bias-free examples, they
will be removed automatically as redundancy.

3 RISK: Feature-based Debiasing
Without Supervision on Bias

Guided by the theoretical subspace modeling
discussed above, in this section, we illustrate
the detailed implementation of RISK. In practice,
we adopt autoencoder as the main architecture.
Leveraging autoencoder to map features into a
lower manifold is the first stage of removing
redundant features. We further add a simple but
effective Recovery Layer within autoencoder to
learn a orthogonal projection P, leaving the shared
informative features to perform final predictions.

3.1 Delving into Feature Space

We use BERT Fθ to map each textual data point
xi into a high-dimensional feature space, that is,

z = F(x, θ). To be specific, z corresponds
to [CLS] token embedding the last layer BERT
outputs. It has been convinced that embeddings
from pre-trained language models contain much
redundency for down-stream NLU tasks (Dalvi
et al., 2020). As for highly biased dataset, z will
easily capture substantial shortcut ones. We thus
categorize z into following two feature types:

Intended Features are the informative features
shared across biased and bias-free examples.

Redundant Features include shortcut features
that only correlate well with labels, and other
redundant features (e.g., task-irrelevant, task-
relevant but non-robust ones).

3.2 Autoencoder: To Be Informative Features
For the first stage of mitigating feature redundancy
as a way of bias mitigation, we opt to employ an
encoder E composed of a three-layer MLP to map
z into a lower manifold.

Reconstruction loss. As shown in Figure 2, to
be symmetric of the encoder E that project z into a
lower manifold, we also train a decoder D that map
ẑ into z̃, i.e., the reconstruction representation of
z, formulating a bottleneck autoencoder as result.
The reconstruction loss is thus defined as:

Lrecon =
N∑

i=1

∥∥zi −D(ẑi)
∥∥2
2

(3)

The reconstruction term is used to ensure that a
good reconstruction of the original feature can be
obtained by using the learned low-dimensional
subspace features. Notably, as we defined,
informative is one of the key characteristics of
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the intended features. We can further prove
that minimize the reconstruction error can serve
as maximizing the lower bound of the mutual
information between z and ẑ. In general ẑ is
not an exact reconstruction of z, but rather in
probabilistic terms as the mean of a distribution
p = (Z|Ẑ = ẑ), this yields an associated
reconstruction error (Vincent et al., 2010) to be
optimized:

Lrecon ∝ −logp(z|ẑ)

In conjuction with it, minimizing the reconstruction
loss actually carry the following optimization:

minE[Lrecon(z, ẑ)] = maxE[logP(z|ẑ)] (4)

Maximizing the expectation of the conditional
probabilty E[logP(z|ẑ)] is equivalent to maxi-
mizing the mutual information between z and
ẑ (Chen et al., 2022). This promises the subspace
where ẑ lies in is informative and task-relevant for
downstream task.

3.3 Recovery Layer: To Be Shared Features
In fact, only utilizing autoencoder can not promise
the latent subspace as the intended one we defined
before, since shortcut features dominated by
biased examples also contain useful but not robust
information for prediction. Therefore, going a step
further to remove redundant features is needed.

Projection Loss. Leveraging the core idea of
subspace modeling, geometric median subspace is
a preferable minimum to solve the shared features
in ideal. In this way, we can recast the problem into
learning an orthogonal projector spanned by such
median subspace. With the expansion of Eq. 2, the
following projection loss function can be achieved:

Lproj(A) = λ1

N∑

i=1

∥∥zi −A⊤Azi
∥∥1
2

+ λ2
∥∥AA⊤ − Id

∥∥2
F

(5)

we use A to denote the transformation that reduces
feature dimension to d, and A⊤ denotes the
transpose of A, Id denotes the d×d identity matrix
and

∥∥ ·
∥∥
F

denotes the Frobenius norm. Here λ
is an hyperparameter represent the weight of the
projection loss to the whole learning objective,
for the simplicity, we let λ1 = λ2. We later
show it associates with the dataset characteristics
in Sec. 5.1.

It can be noted that the first term in the weighted
sum of above loss function is close to Equation 2
as long as AA⊤ is close to an orthogonal projector.
To enforce this requirement, we introduce the
second term that imposes the nearness of AA⊤

to an orthogonal projection.
Practically, the transformation A is implemented

as a linear MLP layer within the autoencoder
E , coined as the Recovery Layer. By applying
the projection loss, the parameters of the trained
Recovery Layer can approximate the minimal
result of Eq. 2. In a sense, the Recovery Layer can
be considered as bridging the connections between
statistical machine learning and DNN.

3.4 Predictors Fitting in the Intended-Feature
Subspace

Intuitively, as a robust model to defend against
various distribution shift, it is expected to learn
an optimal predictor g, which relies on only the
intended features most relevant to current task to
make predictions. So for the final step, we just fit a
linear classifier in the recovered subspace:

g(ẑ) =W⊤ẑ+ b

Along with minimizing the cross entropy be-
tween g(ẑ) and y, the final learning objective of
RISK is summed into:

LRISK = LCE + Lrecon + Lproj

With the dual regularization of reconstruction
loss and projection loss, we therefore promise the
intended-feature subspace is de facto informative
and shared.

4 Experiments

In this section, we provide comprehensive analysis
on RISK through extensive experiments on three
NLU tasks, and compare out-of-distribution as
well as in-distribution accuracy of RISK with other
debiasing methods to demonstrate its strength.

4.1 Tasks and Biased Datasets

We evaluate our approach on three NLU tasks:
natural language inference (NLI), fact verification,
and paraphrase identification.

Natural Language Inference aims to determine
whether a premise sentence entails a hypothesis
sentence. We use the MNLI dataset (Williams et al.,
2018) for training, nevertheless, recent studies
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indicate that models trained on these NLI datasets
tend to adopt shallow heuristics(e.g., lexical
overlap, hypothesis-only) to predict (Gururangan
et al., 2018; Poliak et al., 2018). Based on
the findings, HANS(Heuristic Analysis for NLI
Systems, McCoy et al. (2019)) is designed to
contain many examples where the heuristics fail,
and we condider it as the challenging set for
evaluation.

Fact Verification requires models to validate a
claim in the context of evidence. For this task, we
use the training dataset provided by the FEVER
challenge (Thorne et al., 2018). Studies show
that models ignoring evidence can still achieve
high accuracy on FEVER, accordingly, Fever-
Symmetric dataset (Schuster et al., 2019) is used
as the test sets for evaluation.

Paraphrase Identification is designed to iden-
tify whether a pair of sentences have the same thing.
We train the models on QQP (Iyer and Csernai,
2017), a widely used dataset for the task. Similarly
to MNLI, models trained on QQP are inclined to
mark any sentence pairs with high word overlap as
paraphrases despite clear clashes in meaning. As
for the balance with respect to the lexical overlap
heuristic in PAWS(Paraphrase Adversaries from
Word Scrambling, Zhang et al. (2019b)) , we use it
as our out-of-distribution set.

4.2 Baseline Methods

We compare RISK against seven debiasing models
either with bias known or unknown. As for the
bias-known models, supervision on bias is mainly
the bias type, and for the bias-unknown models,
supervision comes from a shallow model. For all
these baseline methods, we adopt the BERT-base
model (Devlin et al., 2019) as the main model.

Bias-known-prior Models. i). Reweight-
ing (Clark et al., 2019) trains on a weighted
version of the data to encourage the main model
to focus on examples the bias-only model gets
wrong. ii). Product-of-Experts (Clark et al., 2019)
forces the main model to focus on learning from
examples that are not predicted well by the bias-
only model via logit ensembling. iii). Learned-
Mixin (Clark et al., 2019) further improves this
ensemble-based method by parameterizing the
ensembling operation, allowing the main model
to learn when to incorporate the output from the
bias-only model for the ensembled prediction. iv).
Conf-reg (Utama et al., 2020a) presents a novel

confidence regularization method that encourage
the main model to make predictions with lower
confidence on examples that contained biased
features.

Bias-known-free Models. For this line of
research, models can bypass the need of hand-
engineered bias-specific structures since a shallow
model is utilized to identify biased examples
automatically. v). Self-debiasing (Utama et al.,
2020b) observe that BERT-base trained on a
small subset of the training dataset can grasp
the distribution of biased examples. vi). Weak
Learner (Sanh et al., 2021) view models with
limited capacity, i.e. Tiny-BERT (Turc et al.,
2020), as the shallow one to obtain biased features.
vii). BERT+FBILSTM (Yaghoobzadeh et al.,
2021) employ example forgettting to find minority
examples, and robustify the model by fine-tuning
twice, first on the full training data and second on
the minorities only.

4.3 Implementation Details
For each task, we utilize the training configurations
that have been proven to work well in previous
studies, that is, a learning rate of 5e−5 for MNLI
and 2e−5 for FEVER and QQP, and choose
AdamW as optimizer with a weight decay of 0.01.
For fair comparison, we keep the same bias-only
model for all the ensemble-based baselines. To
tackle the high performance variance on test sets
as observed by Clark et al. (2019), we run each
experiment five times and report the mean accuracy
scores.

As for the autoencoder, our multiple experiments
reveal that when make sure the bottleneck architec-
ture, the detailed dimension of each layer makes
few differences. More implementation details such
as λ, d selection can be found in Section 5.1.

4.4 Experimental Results
The extensive results of all the above mentioned
methods are summarized in Table 1. The results
on the original development and test sets of each
task represent the in-distribution performance.
Obviously, for all three tasks, RISK improves
BERT-base by a large margin on the challenging
test set. Moreover, it surpasses other baselines not
only for the out-of-distribution test set, but also the
in-distribution ones.

Out-of-distribution generalization and biases
mitigation. The absence of explicit knowledge
on bias attributes seemingly create a gap between
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Model MNLI FEVER QQP
ID HANS ∆ ID Symm. ∆ ID PAWS ∆

BERT-base 84.5 61.2 - 85.6 55.1 - 90.8 36.1 -
Reweighting 83.5 69.2 +8.0 84.6 61.7 +6.6 89.5 48.6 +12.5
Product-of-Experts 84.1 66.3 +5.1 82.3 62.0 +6.9 86.9 56.5 +20.4
Learned-Mixin 84.2 64.0 +2.8 83.3 60.4 +5.3 87.6 55.7 +19.6
Conf-reg 83.4 69.1 +7.9 86.4 60.5 +5.4 89.1 40.0 +3.9
Conf-regself−debias ♠ 84.3 67.1 +5.9 87.6 60.2 +5.1 89.0 43.0 +6.9
Weak Learner 83.3 67.9 +6.7 85.3 58.5 +3.4 - - -
BERT+FBILSTM 82.9 70.4 +9.2 86.5 61.7 +6.6 88.0 47.6 +11.5
RISK 84.5 71.3 +10.1 88.3 63.9 +8.8 90.1 56.5 +20.4

w/o Reconstruction Loss 84.2 69.2 +8.0 87.6 60.1 +5.0 90.5 50.6 +14.5
w/o Projection Loss 83.9 64.6 +3.4 86.5 57.7 +2.6 90.4 42.1 +6.0

Table 1: Model performance(accu.(%)) on in-distribution and corresponding challenge test set. ♠: Self-debiasing
framework is implemented in conjunction with the bias-known-prior models, we select the version that achieves
the best performance in the original paper, i.e., Confidence Regularization with annealing mechanism. "w/o
Reconstruction Loss" represents RISK is trained without the regularization of reconstruction loss, and "w/o
Projection Loss" represents RISK is trained without the regularization of projection loss.

the generalization ability of bias-known models
and bias-unknown models. Though RISK furthur
eliminate any supervision of specific bias signal, it
still generalize well to the out-of-the distribution.
To validate the effectiveness of RISK in mitigating
bias, in Figure 3, we break down the results on
HANS into three different heuristics that the dataset
was built upon. The increase of the accuracy in
comparison with BERT-base on the non-entailment
category can reflect the degree to which this bais
is removed. Although the overall accuracy of
Conf-regself−debias on HANS is higher than that
of Product-of-experts, as shown in Figure 3, it’s
debiasing capacity is actually the worst. However,
RISK can do well in mitigating the three known
biases, and is on par with Product-of-Experts,
outperforming other baselines.

In-distribution performance retention. The
mitigation of dataset bias often suffers from the
trade-off between removing shortcut features and
sacrificing in-distribution performance. Especially,
on PAWS dataset, this trade-off becomes more
pronounced. We can observe that previous methods
all have a drop in in-distribution test set for
MNLI and QQP, which can be attributable to their
explicit omission of biased examples. In contrast,
our method finds a balance point via intended-
feature subspace, where the out-of-distribution
performance is improved and the in-distribution
is almost retained. For Fever, the in-distribution
accuracy of RISK even increases compared to that
of BERT-base.

Figure 3: Performance of RISK and other baselines
on the entailment and non-entailment categories for
each heuristic(i.e., lexical overlap, subsequence and
constituent) that HANS was designed to capture.

Ablation Studies. We assumed the reconstruc-
tion loss and projection loss are integral parts
of RISK as they ensured the intended-feature
subspace is informative and shared. To have an
understanding of their impacts on the final per-
formance respectively, we do the ablation studies,
and results are shown in Table 1. Comparing the
performance degradation, we can conclude that
the projection loss plays a key role in helping
mitigating dataset bias, and reconstruction loss can
be viewed as a regularization that further bound
the subspace to be more task-relevant to enhance
the accuracy. As can be seen that faced with the
removal of reconstruction loss or projection loss, in-
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distribution performances of the three tasks remain
little affected.

5 Analysis and Discussion

In this section, we construct supplementary experi-
ments to further analyze RISK’s effectiveness. Free
of supervision on bias, we reveal that RISK can
deal with more challenging scenarios.

5.1 Hyper-parameter Exploration

To recover the intended feature, we introduce
two hyperparameters, the weight λ of projection
loss and the subspace dimension d. During the
grid search for a fine-grained tuning, we find the
values of this two hyperparameters have a close
connection with intrinsic properties of dataset.

(1). λ reflects the hardness of challenging set.
In the process of optimizing λ, we observe that
for the three tasks, RISK achieves best out-of-
distribution performance with different value of λ.
For the sake of having a qualitative understanding
on the three out-of-distribution test set, we compare
the average of sentence length and constituency
parse tree height of example in HANS, Fever-
Symmetric and PAWS respectively.

Figure 4: Bar chart represents average sentence length
and constituent parse tree height of three out-of-
distribution set. Line graph plots model performance
with different λ.

As shown in Figure 4, we can observe that
PAWS contains longer and syntactically more
complex sentences. In contrast, HANS appears
to be more easier for model to learn. Accordingly,
easier HANS dataset requires a smaller weight of
projection loss to obtain the best performance while
PAWS requires a larger λ of 0.025. What’s more,
as for the harder patterns in PAWS for model to
generalize, model performance on this task is more
sensitive to the change of λ in a small range.

Figure 5: Model performance on HANS, Fever-Symm
and PAWS with different subspace dimension d.

(2). d reflects the degree of distribution shift.
To quantitatively describe the distribution shift,

we propose bias skewness as an indicator of how
biased a dataset is:

bias skewness =
# biased examples

# bias− free examples

Thus, the ratio r of bias skewness between ID
and OOD can mirror the distribution shift, the
larger r, the greater distribution discrepancies.
As shown in Figure 5, denote dp as the optimal
subspace dimension original training data set
recovered to peak performance on the out-of-
distribution set, and it turns out that PAWSdp <
HANSdp < Fever-Symmdp . However, the ratio
r reflects that rQQP−PAWS > rMNLI−HANS >
rFever−Symm .

We can conclude that when faced with a larger
distribution shift, the subspace dimension d on
in-distribution training set should be smaller. In
essence, d can be established a close connection
with intrinsic dimension (Ansuini et al., 2019),
i.e., the minimal number of parameters needed to
represent a dataset. As our experiments reveal that
a 16-dimensional subspace with intended-features
can represent the highly biased QQP training
dataset well.

5.2 Transferability Analysis

We further examine the robustness of our approach
along with other baselines by transferring to a more
challenging scenario, training on MNLI but testing
on Adversarial NLI. In our setting, Adversarial
NLI contains not only human-crafted adversarial
examples (Nie et al., 2020) but also those generated
by textual adversarial attacks (TextFooler, Jin et al.
(2020)). In general, models utilizing bias patterns
that lack the ability to understand the underlying
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semantics are vulnerable to be attacked. Results
are summarized in Table 2 as follows.

Model R1 R2 R3 ANLI-m
BERT-base 0 28.9 28.8 33.0

Product-of-Experts 25.2 27.5 31.3 53.8
Learned-Mixin 23.6 28.0 30.9 54.9

Conf-regself−debias 21.8 27.4 31.0 48.5
RISK 25.1 31.2 31.9 57.1

Table 2: Model performance(accu.(%)) on adversarial
MNLI. ANLI R1-R3 are challenging instances designed
by human edition on input text. ANLI-m is adversarial
MNLI-matched dataset generated by TextFooler based
on blackbox BERT.

We can observe that vanilla BERT-base model
trained on MNLI are vulnerable to those adversarial
examples, especially ones generated by human edi-
tion, suggesting BERT relies overly on bias features
to make predictions. On the other hand, either
bias-known or bias-unknown models can more or
less defend against these attacks. Compared to
these baselines, RISK can consistently improve
performance on all the adversarial test sets. This
indicates the intended subspace has the power to
robustify NLU models to various distribution shifts.

6 Related Work

We categorize the multiple lines of research
devoted to mitigating dataset bias into three
paradigms, in accordance with how the supervision
is applied for bias mitigation.

6.1 Supervision from Bias Annotations
Concerns on robustness give rise to the discovery
of a wide variety of biases in existing popular
datasets, e.g., models make predictions only rely
on the hypothesis in NLI datasets (Gururangan
et al., 2018). Belinkov et al. (2019) utilize ad-
versarial training to remove the known hypothesis-
only features from model internal representations.
Moreover, the understanding of specific dataset
bias motivates the emergence of ensemble-based
debiasing methods (Clark et al., 2019; He et al.,
2019; Utama et al., 2020a) , which have shown
promising improvements on the out-of-distribution
performance. Generally, they view the known
dataset biases as prior knowledge and design a
simple bias-tailored model, namely the bias-only
model and factor bias out of the main model
through ensemble-based training. However, Xiong
et al. (2021) theoretically prove that the inaccurate
uncertainty estimations of the bias-only model can

hurt the debiasing performance, and they propose
to conduct calibration on the bias-only model.

6.2 Supervision from Model and Training

The excessive reliance on the assumption that
specific types of biased features are known a-prior
limits model’s transferability. Correspondingly,
this line of work seeks for the automatic identi-
fication of potentially biased examples, as their
empirical results manifest that models with limited
capacity (Clark et al., 2020; Sanh et al., 2021) or
training on a fewer thousand examples (Utama
et al., 2020b) exhibit different learning dynamics,
and thus can be used to capture relatively shallow
correlations.

Meanwhile, other observations have been made
that a better use of minority examples(e.g., ex-
amples that are under-represented in the training
distribution, or examples that are harder to learn)
can play role in models’ generalization as well.
As Sagawa et al. (2020) point out, the fundamental
reason leading to poor generalization lies in models’
behaviour of memorizing the minority samples.
Particularly, Tu et al. (2020) leverage the auxiliary
tasks to help improve the generalization capability
of pre-trained models on the minority groups.
Yaghoobzadeh et al. (2021) propose to use example
forgetting to find minority examples and make a
second fine-tuning on those minorities.

6.3 Supervision from Augmentated Data

Data augmentation techniques have shown to be
effective in regularizing models from overfitting
to the training data(Novak et al., 2018). In this
sense, when distribution shifts, the model will rely
little on spurious correlations as a wider variety of
predictive features are captured. This has attracted
interest as a way to remove biases by explicitly
modifying the dataset distribution(Min et al., 2020).
Kaushik et al. (2020) and Srivastava et al. (2020)
draw upon human-in-the-loop to augment existing
training set with diverse and rich examples of
potential unmeasured variables. Wang and Culotta
(2021) further propose to automatically generate
such counterfactual samples via a closet opposite
matching strategy. Different from the augmentation
of causal associations between features and classes,
Wang et al. (2021) apply a cross-data analysis and
knowledge-aware perturbations to identify spurious
tokens on the stability of model predictions.
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7 Conclusion

In this work, we shed light into feature subspace
with the aim to create an underlying pathway —
from the biased input examples to robust output
prediction. Viewing shortcut features as redun-
dancy, we construct a simple but effective Recovery
Layer within the autoencoder structure for bias
mitigation. Extensive experiments demonstrate
the strengths of our model: better generalization,
dataset-agnostic transferability and the robustness
to more challenging scenarios. We believe this
feature-based debiasing framework opens up new
directions for establishing a trustworthy NLU
model. Meanwhile, our concise motivation and
implementation throw out a thought-provoking
question, that is for model, for feature, sometimes
less can be better.
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Abstract

Commonsense question answering (QA) re-
quires machines to utilize the QA content and
external commonsense knowledge graph (KG)
for reasoning when answering questions. Ex-
isting work uses two independent modules
to model the QA contextual text representa-
tion and relationships between QA entities in
KG, which prevents information sharing be-
tween modules for co-reasoning. In this pa-
per, we propose a novel model, Co-Reasoning
Network (CORN), which adopts a bidirectional
multi-level connection structure based on Co-
Attention Transformer. The structure builds
bridges to connect each layer of the text en-
coder and graph encoder, which can introduce
the QA entity relationship from KG to the
text encoder and bring contextual text infor-
mation to the graph encoder, so that these fea-
tures can be deeply interactively fused to form
comprehensive text and graph node represen-
tations. Meanwhile, we propose a QA-aware
node based KG subgraph construction method.
The QA-aware nodes aggregate the question
entity nodes and the answer entity nodes, and
further guide the expansion and construction
process of the subgraph to enhance the con-
nectivity and reduce the introduction of noise.
We evaluate our model on QA benchmarks
in the CommonsenseQA and OpenBookQA
datasets, and CORN achieves state-of-the-art
performance.

1 Introduction

Commonsense Question answering (QA) research
requires the machine to have a human thought pat-
tern, which is capable of comprehending text con-
tent and combining commonsense knowledge to
reason and arrive at the correct answer. Despite
the success of large pre-trained language models
(PLMs) (Devlin et al., 2019; Liu et al., 2019) on
various NLP tasks, there is still a large gap be-
tween PLMs and humans on commonsense QA

∗Corresponding author.
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Figure 1: The network architecture of current com-
monsense QA research. Text encoder for encoding the
QA content, graph encoder for reasoning on the graph.
There is no connection between stacked text layers and
stacked GNN layers.

tasks. Therefore, researchers try to introduce exter-
nal knowledge, such as Freebase (Bollacker et al.,
2008) and ConceptNet (Speer et al., 2017), which
are large knowledge graphs (KGs) that entities link
by various relationships.

There has already been a significant amount of
work that combines PLMs and KGs for reasoning
(Lin et al., 2019; Wang et al., 2020; Feng et al.,
2020; Yasunaga et al., 2021). As illustrated in Fig-
ure 1, these works are mainly composed of two
modules: (1) capturing text features on QA with
a text encoder (such as PLM). (2) extracting sub-
graph from KG and reasoning on it with a graph
encoder, such as the GNN-based model (Kipf and
Welling, 2017; Schlichtkrull et al., 2018). Most
work (Lin et al., 2019; Wang et al., 2020; Feng
et al., 2020) focuses on building more efficient
graph encoders to capture relationships between en-
tities in graphs for reasoning. However, it ignores
the interconnections between the QA content and
graph due to GNN and PLM being treated as inde-
pendent modules. To address the above problems,
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Yasunaga et al. (2021) perform joint reasoning by
explicitly adding the QA content to the graph in the
form of a node. Nevertheless, this method is a one-
way connection structure, only enabling the graph
encoder to obtain textual context information for
reasoning while the text encoder cannot perceive
graph information.

We propose a novel model, Co-Reasoning
Network (CORN), to solve the above problems.
CORN adopts a bidirectional multi-level connec-
tion structure, which connects the language model
(LM) and GNN. Specifically, we build bridges be-
tween each layer of these two types of models by
the Co-Attention Transformer. Through this bridge,
the text representation and graph node representa-
tion can be fused bidirectionally and respectively
fed into the next LM and GNN layer. Therefore, the
GNN layer can reason on the subgraph with con-
textual text representation to enrich the graph node
representation, and the LM layer can further en-
code the text with the graph node representation to
improve the text representation. We adopt a multi-
level connection structure to connect each layer,
enabling text and graph representation with differ-
ent semantic levels to interact, generating a more
comprehensive feature representation. Meanwhile,
we propose a QA-aware node based KG subgraph
construction method. We use a question-aware
node and an answer-aware node to aggregate the
question entity nodes and the answer entity nodes
respectively and then guide the expansion and con-
struction process of the subgraph to enhance the
connectivity of the subgraph and reduce the intro-
duction of noise. Moreover, the QA-aware node
can help the model perceive the difference between
different types of nodes and help the model to learn
the representation of graph nodes better.

The main contributions of this work are summa-
rized as follows:

• We propose CORN, which adopts a bidi-
rectional multi-level connection structure.
CORN uses Co-Attention Transformer to con-
nect each layer of the LM and GNN, which
allows LM to perceive graph information and
enables GNN to integrate contextual text in-
formation, so that GNN and LM can generate
richer text and graph node representations.

• We propose a QA-aware node based KG sub-
graph construction method. Question entity
nodes and answer entity nodes are aggregated
through the QA-aware nodes and then the QA-
aware nodes guide the subgraph expansion
and construction to improve the connectivity
and reduce the noise.

• We conduct extensive experiments on Open-
BookQA and CommonsenseQA, and CORN
achieves state-of-the-art performance com-
pared to other KGs+PLMs models.

2 Problem Statement

In this paper, we focus on the task of multiple-
choice question answering which required extra
knowledge of reasoning. Formally, giving a ques-
tion q, a set of answer choices C and external knowl-
edge graph, our purpose is to identify the correct
answer from C.

To be specific, we calculate the probability score
between q and each answer choice a ∈ C and
then select the answer with the highest probability
score. We construct a multi-relational subgraph
G = (V, E) by KG (detailed in §3.1). Here V
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Figure 3: The QA-aware node based subgraph construction method. We first use the QA-aware nodes to aggregate
QA entities and then derive different subgraph expansion strategies to construct the final subgraph.

is the subset of entity nodes from KG and is re-
lated to the mentioned entities in the QA content,
E ⊆ V × R × V is the set of edges that connect
nodes in V , where R represents a set of relation
types.

3 Co-Reasoning Network

The overview of our model is shown in Figure 2.
We concatenate a question q and an answer choice
a to get the QA content s, where s = [q; a]. We
apply PLMs (e.g., RoBERTa) on s to get the initial
text representation s

′
. For each QA content s, we

use the QA-aware node based subgraph construc-
tion method (§3.1) to construct a subgraph G and
initialize the graph node representation G′

. Then,
We use N-layer Co-Reasoning Network (CORN) to
reason on the QA content s

′
and subgraph G′. Each

CORN layer consists of LM layer (§3.3), GNN
layer (§3.4) and Co-Attention Transformer (§3.2),
where Co-Attention Transformer bidirectionally
connects LM and GNN, LM encodes QA text with
graph representation, and GNN reasons on the sub-
graph with the contextual text representation. Fi-
nally, we use the pooled graph representation and
text representation from the last CORN layer to
make predictions to get the probability that the cur-
rent choice a is the correct choice.

3.1 The QA-aware node based KG Subgraph
Construction Method

We propose a QA-aware node based KG subgraph
construction method. As shown in Figure 3, there

are two stages during the process of constructing a
subgraph.
Relationship Construction. We introduce a
question-aware node Aq and an answer-aware
node Aa which are respectively responsible for
aggregating entity nodes that appear in the ques-
tion context and answer context. Specifically, the
question-aware node Aq first connects all ques-
tion entity nodes Vq existing in the KG with the
"co-occurrence" relationship, then queries the rela-
tionship in KG between each pair of the question
entity nodes and connects them with the queried
relationship. We construct the relationship between
answer-aware nodeAa and answer entity nodes Va
in the same steps.
Subgraph Expansion and Construction. After
constructing relationship in QA entity nodes, we
expand the subgraph to supplement additional QA-
related knowledge nodes Vo to obtain richer graph
information. To reduce the introduction of noisy
nodes, we propose different subgraph expansion
strategies. (a) Direct-Connection: This strategy
does not introduce additional knowledge nodes.
It only connects question-answer entity pairs that
have a relationship in KG. It sacrifices some graph
information in exchange for introducing the least
number of noisy nodes. (b) Neighbor-Aware: This
strategy introduces the neighbor entity nodes of
question and answer entity nodes as additional
knowledge nodes. It introduces rich neighbor in-
formation for each question answering entity node.
(c) Multi-Hop-Aware: This strategy searches for
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a reachable path within K-hop in KG between two
nodes of question and answer entity nodes set, and
introduces the nodes on the path as the additional
knowledge nodes. It introduces less graph informa-
tion and noisy nodes. We take different strategies to
introduce additional nodes to form the subgraph G,
and evaluate each subgraph construction strategy in
the experiment. We initialize the node embedding
of Vq, Va and Vo by its entity embedding (§4.2),
and simply initialize Aq and Aa with zero vectors.

3.2 Co-Attention Transformer
The most central problem of the current model
is that the GNN and LM are treated as indepen-
dent modules for reasoning. GNN model can not
effectively use QA contextual text representation
and only rely on the subgraph extracted from KGs
for reasoning. Also, LM only encodes QA text
and ignores the QA entity relationship. To address
this problem, we bidirectionally connect each layer
of GNN and LM through the Co-Attention Trans-
former, which allows these two modules to interact
with each other’s information to improve the text
and graph node representation. The structure of the
Co-Attention Transformer is shown in Figure 2 (b).

Specially, given the text representation H(l)
t ∈

Rm×d from the l-th layer of LM and node repre-
sentation H(l)

g ∈ Rn×d from the l-th layer of GNN
model, where m, n are the text length and number
of nodes and d is the hidden size, we map them to
query Qt, Qg, key Kt,Kg and value V t, V g matri-
ces as in a standard transformer layer:

Qi = H(l)WQ
i

Ki = H(l)WK
i

Vi = H(l)W V
i

(1)

where i is i-th of h matrices, {WQ
i ,W

K
i ,W

V
i } ∈

Rd×dk are parameter matrices and dk ∈ Rd/h.
Then, we apply two transformer layers and ex-

change key-value pairs in multi-head attention to
perform interactive computation. Qt,Kg and V g

form one group and Qg,Kt and V t form other
group. Each group performs multi-head attention
computation conditioned on the other modules.
The single attention head is as following:

Ti(Q
t
i,K

g
i , V

g
i ) = softmax

(
QtiK

g
i
T

√
dk

)
V g
i (2)

Gi(Q
g
i ,K

t
i , V

t
i ) = softmax

(
QgiK

t
i
T

√
dk

)
V t
i (3)

The attention outputs of each head are then con-
catenated and followed by a linear transformation
as following:

O
(l)
t =MultiHead(Qt,Kg, V g)

=Concat (T1, · · · ,Th)W
O
t (4)

O(l)
g =MultiHead(Qg,Kt, V t)

=Concat (G1, · · · ,Gh)W
O
g (5)

where {WO
t ,W

O
g } ∈ Rhdk×d are parameter ma-

trices, O(l)
t ∈ Rm×d and O

(l)
g ∈ Rn×d. After

that, two residual add operations are worked on
the initial representation and output of multi-head
attention to get a fused representation of text and
graph:

H
(l)
t = LayerNorm(H

(l)
t +O

(l)
t ) (6)

H(l)
g = LayerNorm(H(l)

g +O(l)
g ) (7)

where LayerNorm is the layer normalization opera-
tion (Ba et al., 2016). H(l)

t is the text representation
with graph information and H(l)

g is the node rep-
resentation with text information. Then, two feed
forward networks (MLP) and two another residual
add operations are applied on the above representa-
tion to get the Co-Attention Transformer output:

H
(l+1)
t = LayerNorm(H

(l)
t +MLP(H

(l)
t )) (8)

H(l+1)
g = LayerNorm(H(l)

g +MLP(H(l)
g )) (9)

whereH(l+1)
t ∈ Rm×d andH(l+1)

g ∈ Rn×d are the
input of (i+ 1)-th layer of LM and GNN. We use
Co-Attention Transformer to connect each layer of
the LM and GNN layer, which can fuse semantic
features of different levels to obtain a more com-
prehensive representation.

3.3 Language Model
To effectively utilize the capability of the PLM, we
do not modify its architecture and use it to encode
the text at first. Specifically, we apply PLM (e.g.,
RoBERTa) on the QA content s to get initial text
representation H(0)

t :

H
(0)
t = PLM(s), (10)

where H(0)
t ∈ Rm×dp , m is the text length and dp

is the hidden size of PLM.
Before Co-Reasoning Network, we use an MLP

to unify the hidden size:

H
(0)
t = MLP(H

(0)
t ), (11)
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where the new H
(0)
t ∈ Rm×d, d is the unified hid-

den size.
After that, we use an N-layer Co-Reasoning

Network which consists of LM, GNN, and Co-
Attention Transformer for co-reasoning. For the
l-th layer, the input text representationH(l−1)

t inter-
acts with node representation H(l−1)

g in graph (de-
tailed in §3.4) through Co-Attention Transformer
and gets the text representation H(l)

t that is con-
tained graph node information.

Further, we apply transformer encoder layer
(Vaswani et al., 2017) as the LM in Co-Reasoning
Network for reasoning:

H
(l)
t = Transformer(H

(l)
t ) (12)

The transformer encoder layer can encode the text
representation with graph information to get the
output H(l)

t .

3.4 GNN Model
After getting knowledge concept graph G and
initializing the entity node embedding H

(0)
g ∈

Rn×din , where n is the number of nodes and din is
the initial hidden size, we also use an MLP to unify
the hidden size of node:

H(0)
g = MLP(H(0)

g ), (13)

where the new H
(0)
g ∈ Rn×d, d is the unified hid-

den size.
We put the graph into N-layer Co-Reasoning

Network. For the l-th layer, the input node repre-
sentation H(l−1)

g interacts with text representation
H

(l−1)
t through Co-Attention Transformer and gets

the node representation H(l)
g that is contained con-

textual text information.
Further, We apply RGCN (Schlichtkrull et al.,

2018), a graph encoder that can encode multi-
relational graphs by aggregating messages from
its neighbors, as the GNN model in Co-Reasoning
Network for reasoning. Specially, for each node
h
(l)
i ∈ Rd in graph, where [h

(l)
1 ; · · · ;h(l)n ] = H

(l)
g ,

the node representation is updated via message
passing from neighbors:

h
(l+1)
i = σ(

∑

r∈R

∑

j∈N ri

1

ci,r
W (l)
r h

(l)
j

+W
(l)
0 h

(l)
i ), (14)

where N r
i denotes the set of neighbor indices of

node i under relation r ∈ R, ci,r = |N r
i | is a

normalization constant. W (l)
r is the parameter ma-

trix related to relation r and W (l)
0 is the parameter

matrix of node i information transformation. How-
ever, the number of parameters grows rapidly with
the increase in the number of relations. We apply
basis decomposition to regularize the weights of
R-GCN-layers:

W (l)
r =

B∑

b=1

a
(l)
rb V

(l)
b , (15)

where V (l)
b ∈ Rd(l+1)×dl is the parameter matri-

ces for all relation and a(l)rb is the coefficients de-
pend on r. After apply RGCN-layer, the new
node representations are updated and get the output
H

(l)
g = [h

(l+1)
1 ; · · · ;h(l+1)

n ].

3.5 Inference & Learning
The probability score for answer a as the correct
answer for question q is calculated by text repre-
sentation and graph node representations from the
last layer:

p(q, a)=MLP(Pool(H
(L)
t )⊕Pool(H(L)

g )) (16)

where Pool is the mean pooling operation over the
text representations and the node representations.

In the training process, each question provides a
list of answer choices, one of which is correct. we
use the cross-entropy loss function to optimize the
model.

4 Experiments

4.1 Datasets
We evaluate our model on two multiple-choice
question answering datasets that require external
knowledge to arrive at the correct answer: Open-
BookQA (Mihaylov et al., 2018) and Common-
senseQA (Talmor et al., 2019).

OpenBookQA is a multiple choice question QA
task with 4 choices that require elementary sci-
ence knowledge for reasoning. This dataset also
provides external knowledge called Open Books
describing scientific facts to help models answer
questions. As our study focuses on reasoning by
using structured knowledge, we do not utilize Open
Books and instead utilize ConceptNet as the exter-
nal knowledge.

CommonsenseQA is a multiple choice question
QA task with 5 choices that require commonsense
knowledge for reasoning. Questions and answers
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are generated according to entities in ConceptNet
and their relations. We perform experiments on the
in-house (IH) data splits used in Lin et al. (2019).

4.2 Knowledge Graph

We use ConceptNet, a general-domain structured
knowledge graph, as our external commonsense
knowledge. We use the entity embeddings prepared
by Feng et al. (2020), which they utilize TransE
model (Bordes et al., 2013) for node embedding
(100-dimensional) in ConceptNet. Following the
work by Lin et al. (2019), we merge the original
42 relation types in ConceptNet into 17 relation
types. The subgraph construction method for each
question and answer is described in section §3.1.

4.3 Implementation & training details

We set the dimension (D = 100) and number of
layers (L = 3) of our Co-Reasoning Network, with
dropout rate 0.2 applied to each layer. We train the
model with the RAdam optimizer using one GPU
(Tesla T4). We use batch size of 64 (mini batch of
2), with 14 epochs (~4 hours) for OpenBookQA
and 10 epochs (~6 hours) for CommonsenseQA.

4.4 Baseline Models

The purpose of our work is to leverage structured
external knowledge for reasoning on knowledge
question answering tasks. Therefore, we only com-
pare with the models that combine PLMs and KGs,
not the models using other formats of external
knowledge (e.g., Wikipedia, human-annotated evi-
dence.)

RoBERTa (Liu et al., 2019) is used as the base-
line model to study the performance of PLMs with-
out introducing extra KG information.

GconAttn (Wang et al., 2019) generalizes the
Match-LSTM model in the field of text matching
to knowledge concept matching.

KagNet (Lin et al., 2019) extracts the QA-
related subgraph from KG, and applies GCN and
LSTM to model the relational paths.

Relation Network (RN) (Santoro et al., 2017)
utilizes multilayer perceptron to encode triplets on
paths in KG and all the triplets representation as to
the graph representation for classification.

MHGRN (Feng et al., 2020) designs a multi-
hop relational reasoning module to obtain a path-
level graph representation, and combines GNN and
PLMs for classification.

QA-GNN (Yasunaga et al., 2021) introduces a

Methods Dev Acc.(%) Test Acc.(%)

RoBERTa-large 66.76 (±1.14) 64.80 (±2.37)

+ GconAttn 66.85 (±1.82) 64.75 (±1.48)
+ RN 67.00 (±0.71) 65.20 (±1.18)
+ MHGRN 68.10 (±1.12) 66.85 (±1.19)
+ QA-GNN 68.27 (±1.09) 67.80 (±2.75)

+ CORN (Ours) 72.35 (±0.86) 71.30 (±0.64)

Table 1: Dev and Test accuracy on OpenBookQA.

Methods IHdev-Acc.(%) IHtest-Acc.(%)

RoBERTa-large 73.07 (±0.45) 68.69 (±0.56)

+ GconAttn 72.61 (±0.39) 68.59 (±0.96)
+ KagNet 73.47 (±0.22) 69.01 (±0.76)
+ RN 74.57 (±0.91) 69.08 (±0.21)
+ MHGRN 74.45 (±0.10) 71.11 (±0.81)
+ QA-GNN 76.54 (±0.21) 73.41 (±0.92)

+ CORN (Ours) 79.58 (±0.38) 74.43 (±0.59)

Table 2: Dev and Test accuracy on CommonsenseQA
in-house split.

QA content node in the subgraph for joint reason-
ing over the QA content and KG.

4.5 Main Results

Table 1 shows the result on OpenBookQA. For fair
comparison, we use the RoBERTa-large as the text
encoder for all models. Our model achieves the best
performance across all baseline models by greatly
improving the dev accuracy by ~4.08% and test ac-
curacy by ~3.5%. The improvement over QA-GNN
suggests that CORN is a better method to combine
the QA content and KG for co-reasoning. Notably,
QA-GNN (1.1B total parameters) uses 2.5x more
total parameters than our model (our has 440M to-
tal parameters). This benefits from CORN’s use of
fewer layers, smaller hidden dimension, and sim-
pler designed GNN but more efficient connection
structure. In addition, we did not compare with
other models that use the extra corpus of scientific
facts provided by official, because our purpose is
to reason from a structured knowledge graph.

Table 2 shows the result on CommonsenseQA.
All models also use Roberta-large as the text en-
coder. CORN achieves state-of-art performance
across all existing models with improving the dev
accuracy by ~3.04% and test accuracy by ~1.02%.
The result suggests that CORN improves the per-
formance of through the bidirectional interaction
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Methods OpenBookQA CommonseQA

Direct-Connection 69.27 (±0.41) 74.43 (±0.59)
Neighbor-Aware 71.30 (±0.64) 72.66 (±0.40)
Multi-Hop-Aware (K=1) 69.60 (±1.28) 71.64 (±0.16)
Multi-Hop-Aware (K=2) 68.30 (±1.30) 71.77 (±0.56)

Table 3: Results of different subgraph construction
methods. We report the test accuracy on OpenBookQA
and CommonsenseQA.

Method Test Acc.

CORN 71.30
w/o CAT (Text) 70.17
w/o CAT (Graph) 70.20
w/o CAT (Multi-level) 70.26
w/o CAT 69.67
w/o QA-aware nodes 70.20

CORN Layers Test Acc.

L = 2 70.90
L = 3 71.30
L = 4 70.73
L = 5 70.40

Table 4: Ablation study of our model components,
using the OpenBookQA test set. CAT is the abbreviation
of Co-Attention Transformer.

of GNN and LM without designing complex graph
inference networks.

4.6 Subgraph Construction Result

Table 3 shows the results of constructing subgraphs
by different subgraph expansion methods. We eval-
uate our proposed strategies for introducing addi-
tional QA-related knowledge nodes in KG.

For OpenBookQA, we find that the Neighbor-
Aware performs best. The OpenBookQA empha-
sizes reasoning using multiple scientific knowledge.
The question entity nodes require multiple scien-
tific knowledge to connect with the answer entity
nodes. Therefore, the model cannot perform rea-
soning efficiently without introducing extra nodes,
which is the reason that Direct-Connect performs
worst. Compared to Multi-Hop-Aware (K=1) and
Multi-Hop-Aware (K=2), Neighbor-Aware can pro-
vide extra influential related entity nodes to cover
possible scientific knowledge, further helping the
model for reasoning.

For CommonsenseQA, the best strategy is to not
introduce additional QA-related knowledge nodes
(Direct-Connection). We analyze that this is caused
by the construction method of CommonsenseQA.
The four answer entities and one question entity in
CommonsenseQA are directly connected in Con-
ceptNet. Therefore, the introduction of additional
QA-related knowledge nodes will lead to noise and
redundancy, which will reduce the performance of
the model.

4.7 Ablation Study

The ablation study on each of our model compo-
nents is shown in Table 4, using the OpenBookQA
test set. We found that removing the attention
computation of any module (text or graph) in the
Co-Attention Transformer would result in a per-
formance drop of ~1.1%. We also test remov-
ing the multi-level connection structure and only
keeping one layer of the Co-Attention Transformer,
the degraded performance result shows that multi-
level connections can indeed interact with differ-
ent levels of semantic features to get richer rep-
resentation. Removing Co-Attention Transformer
will significantly degrade performance by 1.63%,
which proves the importance of connecting and co-
reasoning between LM and GNN. We also analyze
the impact of QA-aware nodes. When we remove
QA-aware nodes, the performance of the model
drops by 1.1%, which proves that QA-aware nodes
can help the model to perform better reasoning. For
the number of CORN layers, we find L = 3 works
best on the dev set, which is also similar to the
number of layers generally used in GNN.

4.8 Model Visualization

The purpose of our model is to make GNN and LM
mutually aware of the information of each other’s
modules for reasoning. Therefore, we analyze the
attention weights of text module and graph module
in Co-Attention Transformer. Figure 4 gives a vi-
sualization of an example. Given question "Where
would you find magazines along side many other
printed works?" and choices "A. doctor B. book-
store", we show the attention weights of the last
Co-Attention Transformer layer under these two
choices separately. The key entity in this ques-
tion is "magazines". For the wrong choice "doc-
tor", though the attention of text module can give a
higher weight of "magazines" entity in the graph,
the attention weight distribution of graph module is
rather average, and cannot provide meaningful in-
formation. For the correct choice "bookstore", not
only the attention of text module can capture the im-
portance of the "magazine" entity in the graph, but
also the attention in graph module gives a higher
weight to the "bookstore" in the text, which is also
the correct answer. Therefore, the Co-Attention
Transformer in CORN can effectively capture the
relationship between the QA text and knowledge
graph formed by the correct choice.
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Q: Where would you find magazines along side many other printed works?

A. doctor B. bookstore

Text module

(Key: text; Query: node)

Graph module

(Key: node; Query: text)

Text module

(Key: text; Query: node)

Graph module

(Key: node; Query: text)

Figure 4: Visualization of the attention weights of the last CORN layer. Given a question and corresponding
choices. We show the attention weights between text and graph formed by each choice. The row indices of the
heatmap are the words in the text, and the column indices are the entity nodes in the graph. The red box represents
the part with the highest attention weight.

5 Related Work

Question answering with PLMs. The recent suc-
cess of PLMs in various NLP tasks has prompted
much work to try directly utilize PLMs to encode
external knowledge. These work can be divided
into two paradigms: 1) Format external knowl-
edge (eg. Wikipedia, knowledge graph) into text
or triples as corpus for PLM pre-training task (Ye
et al., 2019; Li et al., 2019; Sun et al., 2019; Gu-
rurangan et al., 2020). 2) Fine-tuning PLMs with
evidence for external knowledge (Pan et al., 2019;
Lv et al., 2020). However, such models can not
provide interpretable reasoning process, which is
the key to commonsense reasoning.
Question answering with KG+LM. Many works
attempt to additionally perform reasoning with
GNN on knowledge graphs to address the problem
that PLMs unable to reason on structured knowl-
edge. GCN (Kipf and Welling, 2017) aggregates
the neighborhood information of each node for mes-
sage passing. RGCN (Schlichtkrull et al., 2018)
can encode multi-relational graphs by aggregat-
ing messages from its neighbors of different rela-
tions. GAT (Velickovic et al., 2018) assigns dif-
ferent attention weights to aggregate each node
feature, and is used (Chen et al., 2019) to distin-
guish the importance of different concept entity
nodes in KG. The related work of question answer-
ing (Lin et al., 2019; Feng et al., 2020; Lv et al.,
2020) try to design complex graph neural networks

for single-hop or multi-hop reasoning in KG. How-
ever, these works treat the QA content and KG as
separate modules. Though Yasunaga et al. (2021)
add the QA content to graph for joint reasoning,
it still cannot solve the problem that information
unable exchange between GNN and LM. CORN
addresses the above problem by connecting each
layer of these two models through Co-Attention
Transformer for co-reasoning.

6 Conclusion

We propose a novel commonsense QA model,
CORN, which adopts a bidirectional multi-level
connection structure. It bidirectionally connects
each layer of the LM and GNN through the Co-
Attention Transformer, which enables the LM to
perceive the relationship of QA entity nodes to im-
prove the text representation, and allows GNN to
utilize contextual text information to enhance the
graph node representation. Meanwhile, we pro-
pose a QA-aware node based KG subgraph con-
struction method. The QA-aware nodes aggregate
question entity nodes and answer entity nodes and
then guide the subgraph expansion and construc-
tion to increase the connectivity of the subgraph,
and reduce the introduction of noise. Through ex-
tensive experiments and visual analysis, CORN
can perform multi-level bidirectional interaction to
improve the LM+KG models, and achieves state-
of-the-art performance among them.
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Abstract
Question answering over knowledge bases
(KBQA) for complex questions is a challenging
task in natural language processing. Recently,
generation-based methods that translate natural
language questions to executable logical forms
have achieved promising performance. These
methods use auxiliary information to augment
the logical form generation of questions with
unseen KB items or novel combinations, but
the noise introduced can also leads to more in-
correct results. In this work, we propose GMT-
KBQA, a Generation-based KBQA method
via Multi-Task learning, to better retrieve and
utilize auxiliary information. GMT-KBQA first
obtains candidate entities and relations through
dense retrieval, and then introduces a multi-
task model which jointly learns entity disam-
biguation, relation classification, and logical
form generation. Experimental results show
that GMT-KBQA achieves state-of-the-art re-
sults on both COMPLEXWEBQUESTIONS and
WEBQUESTIONSSP datasets. Furthermore,
the detailed evaluation demonstrates that GMT-
KBQA benefits from the auxiliary tasks and
has a strong generalization capability.1

1 Introduction

Question answering over knowledge bases (KBQA)
is the task of answering natural language questions
based on the facts stored in knowledge bases (KBs).
In recent years, an increasing number of KBQA
methods arise with the emergence of large-scale
KBs, such as Freebase (Bollacker et al., 2008),
DBpedia (Lehmann et al., 2015) and Wikidata
(Vrandečić and Krötzsch, 2014). A mainstream
paradigm of KBQA methods is semantic parsing
(SP) (Berant et al., 2013), where natural language
questions are parsed into logical forms such as λ-
DCS (Liang, 2013), SPARQL (Pérez et al., 2009),
S-expression (Gu et al., 2021), etc. However, com-
plex questions that involve reasoning over multiple

1Our code is available at https://github.com/
HXX97/GMT-KBQA.

entities, relations, or constraints remain a challenge
for SP-based methods. Most of the SP-based meth-
ods use a pipeline including entity/relation link-
ing, constraint detection, and logical form building
(Singh et al., 2018; Hu et al., 2021). As complex
questions require multiple entities and relations,
errors introduced by previous linkers reduce the
performance of the pipeline.

With the success of applying natural language
generation to various tasks (Raffel et al., 2019;
Rothe et al., 2020), recent KBQA methods (Cao
et al., 2022; Yin et al., 2021; Gu et al., 2021) cast
semantic parsing to a logical form generation task
in a sequence-to-sequence (Seq2Seq) manner, fine-
tuning pre-trained encoder-decoder models to gen-
erate logical forms from natural language questions.
However, it is impractical for a simple Seq2Seq
model to generate unseen entities and relations
that never appear in the training set. To allevi-
ate such cases, more generation-based methods
(Huang et al., 2021; Das et al., 2021; Ye et al.,
2021) augment logical form generation with auxil-
iary information such as linked entities (Huang
et al., 2021), similar question-query pairs (Das
et al., 2021), candidate logical forms (Ye et al.,
2021), etc. Auxiliary information enhances the
generalization capability of the generation mod-
els, but can also lead to incorrect results due to
the noisy information introduced. We find that a
Seq2Seq model can generate exact logical forms
for around 92% questions in COMPLEXWEBQUES-
TIONS dataset if provided with golden entities and
relations. However, the proportion drops drastically
to 51% if the linking results are from practical link-
ers. This shows that Seq2Seq models can construct
correct logical forms augmented with auxiliary in-
formation, and the quality of the auxiliary informa-
tion has a great impact on the generated results.

Inspired by this discovery, we propose a
generation-based KBQA method GMT-KBQA
(Generation via Multi-Task learning) that learns to
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Figure 1: Overview of GMT-KBQA. The T5 encoder is
learned with multiple tasks including the entity/relation
classification and the logical form generation.

refine the auxiliary information and generate log-
ical forms at the same time. Figure 1 shows the
overview of our proposed method. The core of
GMT-KBQA is an encoder-decoder model jointly
trained with a translation task for logical form gen-
eration and two auxiliary tasks: entity disambigua-
tion and relation classification. Our method at-
tempts to improve logical form generation by shar-
ing the parameters within related tasks. Instead of
linking the entities and relations by off-the-shelf
linkers before logical form generation, we retrieve
candidate entities and relations in a dense space,
leaving entity disambiguation and relation classifi-
cation as auxiliary tasks.

The main contributions of this work are as fol-
lows:

1. We propose a generation-based KBQA
method via multi-task learning (GMT-KBQA),
where the logical form generation task is jointly
trained with two auxiliary tasks. GMT-KBQA re-
trieves auxiliary information including candidate
relations and entities through dense retrieval, which
balances coverage and efficiency. The refined aux-
iliary information enables GMT-KBQA to generate
unseen KB items.

2. Experimental results demonstrate that our
method outperforms previous methods on both

WEBQUESTIONSSP and COMPLEXWEBQUES-
TIONS. Further analysis shows that our method
benefits from the multi-task learning framework
and achieves better performances on both logical
form generation and the two auxiliary tasks.

2 Methodology

This section details the GMT-KBQA method.
Given a natural language question, we first retrieve
auxiliary information including candidate entities
and relations by dense retrieval. Then we refine
the retrieved auxiliary information and generate
the target logical form via multi-task learning. As
shown in Figure 1, the three tasks share a common
encoder, and each task has an individual layer on
top of the encoder. Details of our method will be
given in the following subsections.

2.1 Preliminaries
A knowledge graph is a collection of subject-
relation-object triples in the form of (s,r,o), where
s is an entity, r is a relation, and o can be entities
or literals (e.g., text descriptions, numeric values,
date-time, etc).

Given a natural language question, our method
aims at generating a logical form that can be exe-
cuted over the KB. Following Gu et al. (2021) and
Ye et al. (2021), we use S-expressions as the tar-
get logical forms. Since most KB storage engines
only support SPARQL queries, we finally convert
S-expressions into equivalent SPARQL queries to
get answers following Gu et al. (2021).

2.2 Retrieval of Auxiliary Information
Existing generation-based methods retrieve similar
question-query pairs (Das et al., 2021) or enumer-
ate candidate logical forms (Ye et al., 2021) as
auxiliary information, but the coverage of cases
cannot be guaranteed and the enumeration of log-
ical forms can be time-consuming. Instead, we
retrieve candidate entities and relations in a dense
space as auxiliary information, which balances cov-
erage and efficiency.

Candidate entity retrieval Most KBQA meth-
ods (Yih et al., 2015; Sun et al., 2019; Lan and
Jiang, 2020; Huang et al., 2021; Ye et al., 2021)
take entity linking as the first step, whereas the re-
sult of entity linking determines the upper bound
of the final performance. We conduct entity re-
trieval to get candidate entities with high coverage,
deferring entity disambiguation until logical form
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generation by multi-task learning. Specifically, we
use ELQ (Li et al., 2020), an end-to-end entity
linking model through dense retrieval. To further
improve the coverage of candidate entities, we use
a large entity mention map provided by FACC1
project (Gabrilovich et al., 2013) to retrieve en-
tities not linked by ELQ. For each question, we
merge top-k/2 candidate entities from each link-
ing model, to retain top-k ranked entities. If the
number of candidate entities is less than k, enti-
ties randomly sampled from the training set will be
supplemented.

Candidate relation retrieval Inspired by the
zero-shot entity linking work with dense retrieval
(Wu et al., 2020), we design a two-stage relation
retrieval module utilizing the bi-encoder and cross-
encoder architecture, which is shown in Figure 2.

In the first stage, we train a bi-encoder that em-
beds questions and relations into the same dense
space with two independent BERT (Devlin et al.,
2019) encoders.

Specifically, inspired by Das et al. (2021), for
each question q, we mask entity mentions detected
in candidate entity retrieval stage with [BLANK]
token. And we denote the question with entity
mentions masked as τq.

In addition, a relation r is represented as:

r | labelr | domainr | ranger

where labelr, domainr and ranger are the meta
descriptions of r in KB. For example, relation
location.location.time_zones is represented as lo-
cation.location.time_zones | Time zone(s) | loca-
tion.location | time.time_zone. This enriched form
of relation is denoted as τr. A question q and a
relation r are encoded into vectors:

yq = BERTCLS1(τq)

yr = BERTCLS2(τr)
(1)

where BERTCLS denotes the [CLS] representation
of the input. The relevance score of question q and
relation r is computed by dot-product:

sb(q, r) = yq · yr (2)

For each pair of a question and its relevant relation
(q, ri), we randomly sampleB−1 relations that are
not in the logical form of the question to construct a
batch consisting of B training pairs. The optimiza-
tion goal is to maximize the score of the relevant

bi-encoder

Where are the time zones in 

the [BLANK]?

book.newspaper.owner

location.location.time_zones

Dense space

Where are the time zones in 

the USA?

location.location.time_zones

cross-

encoder
0.9

Where are the time zones in 

the USA?

book.newspaper.owner Where are the time 

zones in the [BLANK]?

FAISS index

bi-encoder

bi-encoder

cross-

encoder
0.1

…

…
…

Figure 2: Overview of our two-stage relation retrieval
method utilizing the bi-encoder and cross-encoder.

relation against randomly sampled relations, and
the loss is computed as:

L(q, ri) = −sb(q, ri) + log
B∑

j=1

exp(sb(q, rj))

(3)
After training the bi-encoder, relation representa-
tions are cached for inference efficiency. For an
incoming question, we embed it to a vector by
the bi-encoder and then use FAISS (Johnson et al.,
2019) to retrieve the nearest relations.

In the second stage, the retrieved relations for a
question are re-ranked with a cross-encoder to get
the most relevant relations. The cross-encoder is
a single BERT model that takes the concatenation
of the question and its candidate relation as input.
Compared with the bi-encoder, the cross-encoder
has deep cross attention between the question and
the relation.

The input of cross-encoder is the concatenation
of question q and candidate relation r. The rele-
vance score of q and r is:

sc(q, r) = LINEAR(BERTCLS([q; r])) (4)

where LINEAR is a layer that projects the represen-
tation to a binary probability distribution. We train
cross-encoder using cross-entropy loss. Finally,
top-k candidate relations ranked by cross-encoder
are retained.

2.3 Logical Form Generation via Multi-task
Learning

After the retrieval of auxiliary information includ-
ing candidate entities and relations, we introduce a
multi-task model that learns to refine the auxiliary
information and generate the target logical form as
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Figure 3: Multi-task model for logical form generation
where “Q” is short for the original question. All tasks
share a T5 encoder to encode inputs, and the results of
prior stages will be leveraged in the latter stages as the
dotted lines indicate.

Figure 3 shows. The backbone of our model is T5
(Raffel et al., 2019), an encoder-decoder structured
Seq2Seq model that achieves strong performances
on several generation tasks. We use a shared T5
encoder to obtain the representations of the inputs,
and the representations are fed to individual net-
works for different tasks. We define two auxiliary
tasks: relation classification and entity disambigua-
tion to enhance the logical form generation task.

Relation classification Given a question q and
its retrieved candidate relations R, the relation clas-
sification task aims to select the correct relations
from R that compose the target logical form. We
cast this task to a sentence-pair classification task.
The concatenation of question q and relation r is
fed to a T5 encoder, and it is represented by the
average pooling of the encoder output:

yq,r = AVGPOOL(T5ENCODER([q; r])) (5)

Then the representation is projected to a scalar
score through a linear projection, and then acti-
vated by a sigmoid function:

s(q, r) = SIGMOID(LINEAR(yq,r)) (6)

We use binary cross-entropy loss for the relation
classification task:

LREL = −1

k

k∑

i=1

[ui · log(s(q, ri))

+ (1− ui) · log(1− s(q, ri))]
(7)

where ui denotes the classification label of relation
ri, and k is the number of candidate relations. The
relations classified as positive are denoted as Rq.

Entity disambiguation The retrieved candidate
entities usually contain ambiguity, where multiple
KB entities are retrieved for one mention. To select
the exact entities in the question, we cast entity dis-
ambiguation as a sentence-pair classification task
similar to the relation classification task. Following
Ye et al. (2021), we leverage adjacent relations to
help determine if an entity should be linked by a
mention. Specifically, we concatenate the label of
entity e, with its adjacent KB relations in the form
of:

labele | r1 | r2 | r3 | . . .

This rich form of entity e is denoted as τe. Note that
we only concatenate relations classified as relevant
to the question by the relation classification task.
The concatenation of question q with τe is fed to
the shared T5 encoder, and the output is averagely
pooled:

yq,e = AVGPOOL(T5ENCODER([q; τe])) (8)

The relevance score of q and e is computed as:

s(q, e) = SIGMOID(LINEAR(yq,e)) (9)

Similarly, we use binary cross-entropy loss for the
entity disambiguation task:

LENT = −1

k

k∑

i=1

[vi · log(s(q, ei))

+ (1− vi) · log(1− s(q, ei))]
(10)

where vi is the classification label of entity ei, and
k is the number of candidate entities. The entities
classified as positive are denoted as Eq.

Logical form generation The task of logical
form generation is to generate the target logical
form of question q given disambiguated entities
Eq and classified relations Rq. Following previ-
ous generation-based methods (Das et al., 2021; Ye
et al., 2021), we construct the inputs by concatenat-
ing the question q with relations in Rq and entities
in Eq in the form as:

q [REL] r1 [REL] r2, . . . [ENT]
labele1 [ENT] labele2 , . . .
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This concatenation is denoted as τall and fed to the
T5 encoder shared with the above-mentioned two
auxiliary tasks to obtain the representations:

[h1,h2, . . . ,hn] = T5ENCODER(τall) (11)

where hi denotes the representation of the i-th to-
ken of the input and n is the number of tokens
in τall. Then we use a T5 decoder to decode the
representations into a logical form token by token.
Assuming that the target logical form consists of
m tokens a1, . . . , am, we calculate cross-entropy
loss with teacher forcing:

pj = T5DECODER(a1, . . . , aj−1,h1, . . . ,hn)

LGEN = − 1

m

m∑

j=1

logpj,aj

(12)
where pj denotes the probability distribution over
the decoding vocabulary at the j-th step, and pj,aj
represents the probability of token aj .

Training Objective We jointly train the relation
classifier, entity disambiguator, and logical form
generator with a combined loss:

L = LREL + LENT + LGEN (13)

This training objective enables the generator to
learn from auxiliary tasks, where the target logical
form not only supervises the generation task but
also supervises entity disambiguation and relation
classification.

3 Evaluation

3.1 Setups

Datasets All the experiments are conducted on
WEBQUESTIONSSP (WebQSP) (Yih et al., 2016)
and COMPLEXWEBQUESTIONS (CWQ) (Talmor
and Berant, 2018) datasets. Both datasets are based
on Freebase (Bollacker et al., 2008).

WebQSP consists of 4,737 questions labeled
with SPARQL queries. Most questions of WebQSP
require up to 2 hops of reasoning.

CWQ contains 34,689 questions with SPARQL
queries. These questions are obtained by extending
the questions in WebQSP to increase the complex-
ity. Questions in CWQ may require up to 4-hops
reasoning, making it quite challenging.

Hyperparameters We use T5-base and BERT-
base-uncased implementation from HuggingFace2.
The sample size B for training the bi-encoder in
relation retrieval (Section 2.2) is set to 100, and
the top 100 nearest relations are searched by the
FAISS index. The number of candidate k is set
to 10 for both entity and relation retrieval. Beam
search is utilized in the decoding process, and we
set beam size to 50 by default. For CWQ, our multi-
task models are trained for 15 epochs, with training
batch size set to 8 and inference batch size set to 4
due to GPU memory limits. For WebQSP, models
are trained for 20 epochs with batch size set to 2
due to less data volume.

Implementation details Since neither WebQSP
nor CWQ provides golden S-expressions, we fol-
low the implementation of Ye et al. (2021) to con-
vert a golden SPARQL query to its equivalent
S-expression. WebQSP provides more than one
SPARQL annotation for some questions, and we
choose the shortest SPARQL query that can be
successfully converted to S-expression.

The generation target of our model is normalized
S-expression, where KB relations are split into to-
kens and entities are represented with their labels.
Thus, a post-process step is needed to convert gen-
erated normalized S-expression to its original form.
Specifically, entity labels are mapped into entity ids
in the KB based on the output of the entity disam-
biguation task; normalized relations are converted
back based on rules. Finally, S-expression is con-
verted to SPARQL to be executed against KB in
the same way of Gu et al. (2021).

In the training phase, the results of auxiliary
tasks are not steady at the beginning, since the
model parameters are not well-trained. Therefore,
we do not concatenate the output of prior tasks
as described in Section 2.3 for the first 5 training
epochs.

In the inference phase, we utilize KB to validate
generated logical forms. Given a question, we gen-
erate a bunch of logical forms by beam search and
they are executed in turn until a non-empty query
result is returned. It helps to filter invalid logical
forms.

Metrics Following Das et al. (2021), we use the
standard evaluation metrics, namely precision (P),
recall (R), macro F1 (F1), and accuracy (Acc.).

2https://huggingface.co/
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CWQ WebQSP

Method Acc. F1 Acc. F1

QGG (Lan and Jiang, 2020) - 40.4 - 74.0
BART-large (Huang et al., 2021) - 68.2 - 74.6
CBR-KBQA (Das et al., 2021) 67.1 70.0 69.9 72.8
ReTraCk* (Chen et al., 2021) - - - 74.7
RnG-KBQA (Ye et al., 2021) - - 71.1 75.6

GMT-KBQA (Ours) 72.2 77.0 73.1 76.6

Table 1: QA evaluation results (%) on CWQ test set and WebQSP test set. * denotes using oracle entity linking
results. Acc.: Accuracy.

CWQ WebQSP

Entity linking Relation linking Entity linking Relation linking

Methods P R F1 P R F1 P R F1 P R F1

Retriever 71.6 70.5 68.8 84.9 74.2 77.3 53.9 86.0 62.6 66.3 68.7 65.4
GMT-KBQA 78.8 69.4 72.3 85.2 81.0 81.4 79.9 75.3 76.1 74.1 73.9 72.1

Table 2: Entity and relation linking evaluation (%) of our retriever and multi-task model.

3.2 Experimental Results

QA performance Table 1 summarizes evalua-
tion results on both CWQ and WebQSP dataset.
The results of other methods are taken from cor-
responding papers directly. The result shows that
our method sets the new state-of-the-art on CWQ
dataset by a large margin, surpassing CBR-KBQA
(Das et al., 2021) by 5.1% accuracy and 7.0% F1.
CBR-KBQA retrieves similar question-query pairs
in the training set to augment logical form genera-
tion and introduces a revision step for relations not
covered by the cases, whereas our method retrieves
relevant entities and relations from the entire KB
through dense retrieval, which balances coverage
and efficiency. Huang et al. (2021) utilize auxil-
iary information including candidate entities and
generate entity text labels instead of entity IDs.
Our method achieves a notable advantage against
Huang et al. (2021), indicating that our method
makes better use of auxiliary information and is
more capable of dealing with unseen KB items.

GMT-KBQA also achieves new state-of-the-art
results on WebQSP dataset, where the questions are
relatively simpler than CWQ. According to Table
1, our method outperforms existing methods even
if they use oracle entity annotations (Chen et al.,
2021). RnG-KBQA (Ye et al., 2021), the previous
state-of-the-art on WebQSP, combines ranking and

generation for both coverage and generalization.
Our method obtains an increase of 2.0% accuracy
and 1.0% F1 against RnG-KBQA although we only
rely on the generation results. In summary, the
results on CWQ and WebQSP datasets suggest that
our method is effective in solving questions with
different complexity.

Improvement on auxiliary tasks GMT-KBQA
consists of three tasks, namely entity disambigua-
tion, relation classification, and logical form gen-
eration. Apart from the experiments on QA tasks,
also we evaluate the entity and relation linking re-
sults to show the impact of multi-task learning.

As shown in Table 2, for Retriever, candidate
entities/relations retrieved in Section 2.2 are disam-
biguated with prediction scores in retrieval stage.
For GMT-KBQA, candidate entities/relations are
disambiguated with the output of entity disam-
biguation task and relation classification task de-
scribed in Section 2.3 respectively. Experiment
result indicates the improvement of our model
on both entity linking and relation linking perfor-
mance. The entity linking F1 is improved by 3.5%
and 13.5% on CWQ and WebQSP, respectively. Al-
though our disambiguation model sacrifices recall
to some extent, we can observe a significant in-
crease in precision. The experiment results further
prove the effectiveness of our disambiguation ap-
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CWQ WebQSP

Methods F1 ∆ F1 ∆

GMT-KBQA 77.0 - 76.6 -
w/o Entity 72.7 -4.3 74.9 -1.7
w/o Relation 75.9 -1.1 75.1 -1.5
w/o Entity, Relation 74.0 -3.0 74.7 -1.9

Table 3: QA performance (%) of variants of our model.
Entity and Relation are short for entity disambiguation
task and relation classification task respectively.

CWQ WebQSP

Methods F1 ∆ F1 ∆

T5-base 74.0 - 74.7 -
w/ Retrieval 71.4 - 2.6 72.9 - 1.8
w/ Oracle 94.1 +20.1 94.8 +20.1

GMT-KBQA 77.0 + 3.0 76.6 + 1.9

Table 4: Impact of auxiliary information on the genera-
tion model. Retrieval/Oracle are short for concatenating
retrieved/oracle auxiliary information to input.

proach: the entity representation can be enriched
with retrieved relations, which provides sufficient
evidence for the disambiguation model. The rela-
tion linking F1 is also improved by 4.1% and 6.7%
on two datasets, which proves the effectiveness of
our multi-task model for relational linking.

3.3 Analysis

Ablation study To further illustrate the impact of
each task and their combination, we evaluate QA re-
sults with different model variants, i.e., with task(s)
removed. Table 3 shows 1) our final model substan-
tially outperforms other model variants, indicating
that our multi-task setting properly organizes and
makes full use of all the tasks; 2) performance
drops in general with more tasks removed, which
shows the necessity of the auxiliary tasks.

Impact of auxiliary information Table 4 shows
that a giant improvement can be achieved with
oracle entities and relations, which confirms the
importance and potential of utilizing auxiliary in-
formation.

However, for practical scenarios without the ora-
cle, directly concatenating linking results leads to
a decrease in performance compared to the vanilla
generation model (T5-base in Table 4). The results
are consistent with our motivation that auxiliary in-

CWQ WebQSP

Methods P R F1 P R F1

T5-base 64.8 67.0 64.9 64.3 68.5 64.5
GMT-KBQA 68.3 70.9 68.5 66.7 69.8 66.6

Table 5: QA results (%) on test set questions with un-
seen KB items.

formation could be better utilized via a multi-task
setting instead of simple concatenation.

There are two advantages of GMT-KBQA to
achieve the improvement. First, GMT-KBQA
jointly trains the three tasks with a combined loss,
improving the accuracy of each task and resulting
in better overall performance. Second, when noisy
candidate relations/entities are provided, for the
model with simple concatenation, although given
a generation loss, there’s no explicit clue for the
model to locate the noisy candidates, which leads to
confusion in the optimization stage. As for GMT-
KBQA with a multi-task setting, the loss of rela-
tion classification and entity disambiguation helps
the model locate mis-classified candidates, making
the optimization objective clearer. In this way, can-
didate relations/entities with higher precision and
recall are given to the model, making it easier to
generate correct logical forms.

Performance on unseen KB items To measure
our model’s capability of handling unseen relations
and entities, experiments are conducted on ques-
tions from CWQ/WebQSP test set whose golden
SPARQL contains unseen entities or relations (com-
pared to the training set). Evaluation result in Table
5 indicates that GMT-KBQA contributes to 3.6%
and 2.1% F1 increase in CWQ and WebQSP re-
spectively. This experiment demonstrates that our
method leads to improvement in generalization ca-
pability compared to the vanilla generation model.

Effect of beam size To study the impact of dif-
ferent beam sizes on the decoding stage, the QA
performance of GMT-KBQA with different beam
sizes is evaluated as shown in Table 6, where we
also list the performance of other methods utiliz-
ing beam search. As the result implies, perfor-
mance improves with a larger beam size, which
indicates that beam search combined with the ex-
ecution checking (Section 3.1) helps to discover
valid and correct logical forms. The experiment
further proves that our model still achieves great
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CWQ WebQSP

Methods 1 5 10 50 100 1 5 10 50 100

CBR-KBQA (Das et al., 2021) - 70.0 - - - - 72.8 - - -
BART-large (Huang et al., 2021) 55.5 - 60.9 - 68.2 67.5 - 73.6 - 74.6

GMT-KBQA(Ours) 62.2 72.7 74.4 77.0 - 70.5 75.2 76.5 76.6 -

Table 6: F1 metrics (%) with different beam sizes.

performance with smaller beam sizes, outperform-
ing other methods with the same beam size.

Error analysis We analyze the questions not an-
swered correctly by GMT-KBQA in the CWQ test
set. The errors can be summarized as follows.

• Structure generation error (54.5%). An ex-
ample of this error is the wrong choice of function.
For instance, in question "What is the youngest col-
lege that Harry S Truman attend?", GMT-KBQA
fails to understand that "youngest" indicates the
shortest existence time of a college, i.e., the lat-
est foundation time. Therefore, our model applies
"AGRMIN" operation instead of the correct "AGR-
MAX" function on the foundation time.

• Relation linking error (16.4%) and entity
linking error (12.3%). Despite the efforts we
put into relation classification and entity disam-
biguation, linking errors cannot be completely
avoided. For example. in question "What
form of currency was used in the place where
Nicolas Sarkozy was governor before the Euro
was established?", linking correct relation "loca-
tion.country.currency_formerly_used" requires un-
derstanding of past tense, i.e., "was used" in the
question.

• S-expression conversion (11.1%) and De-
normalization (4.6%). Some overly complex
SPARQL queries do not have equivalent S-
expression or the execution result of converted S-
expression differs from the original SPARQL query.
Apart from that, our de-normalization phase also
causes some errors.

4 Related Work

Existing KBQA methods can be mainly divided
into two categories: information retrieval-based
methods (IR-based methods) and semantic parsing-
based methods (SP-based methods).

IR-based methods (Bordes et al., 2015; Dong
et al., 2015; Hao et al., 2017; Zhao et al., 2019)
follow a retrieval-and-rank paradigm. They first
retrieve a question-specific graph from the KB and
then rank entities in the graph by their relevance
to the question. For complex questions, recent IR-
based methods turn their attention to graph retrieval
(Sun et al., 2019; Saxena et al., 2020) and multi-
hop reasoning over graphs (Zhou et al., 2018; He
et al., 2021; Shi et al., 2021). Generally, IR-based
methods fit into end-to-end training, but they lack
interpretability because of the black-box reasoning
process.

SP-based methods, closely relevant to our
method, are more transparent compared with IR-
based methods. They answer questions by parsing
them into logical forms executable against KBs,
including λ-DCS (Berant et al., 2013), SPARQL
(Huang et al., 2021; Das et al., 2021), query graph
(Yih et al., 2015; Bao et al., 2016; Lan and Jiang,
2020), and S-expression (Gu et al., 2021; Ye et al.,
2021). Past SP-based methods parse questions with
a bottom-up semantic parser (Berant et al., 2013)
or iteratively generate and rank candidate query
graphs (Yih et al., 2015; Lan and Jiang, 2020).
However, previous semantic parsers have limited
coverage for diverse complex queries (Lan and
Jiang, 2020), and query graph generation methods
suffer from the high computational cost of expand-
ing the graphs (Qin et al., 2021). Recent methods
(Zhang et al., 2019; Yin et al., 2021; Huang et al.,
2021) take advantage of language generation mod-
els to directly generate executable logical forms
from questions. As vanilla generation models do
not generalize well to questions on KB items with
novel combinations and unseen ones, Das et al.
(2021) generate complex logical forms conditioned
on retrieved similar questions along with their log-
ical forms, but they need to add human-labeled
cases to cover absent relations in the case memory.
Ye et al. (2021) first rank a pool of candidate logi-
cal forms obtained by enumerating relation paths
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over the KBs, and then generate the final logical
form based on the question combined with top-
ranked candidates. The enumeration of candidate
logical forms involves a large search space on the
KB, which is time-consuming and computationally
expensive.

5 Conclusion

We present GMT-KBQA to improve the gener-
alization capability of generation-based methods
utilizing auxiliary information. GMT-KBQA first
retrieves candidate entities and relations in dense
space. Then, its multi-task learning framework
learns to refine the auxiliary information along
with generating target logical forms at the same
time. Experimental results on two datasets, CWQ
and WebQSP, show that our method sets new state-
of-the-art by a large margin. The further analy-
sis illustrates that our logical form generation task
and auxiliary tasks benefit from each other and
GMT-KBQA achieves strong performance for un-
seen KB items. In general, GMT-KBQA gives
an insight into generating more accurate logical
forms through auxiliary information retrieval and
multi-task learning. Currently, answering questions
that require in-depth understanding such as logical
or commonsense reasoning remains a challenging
task, and we will strengthen GMT-KBQA for such
scenarios in the future.
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Abstract

Forcing the answer of the Question Answer-
ing (QA) task to be a single text span might
be restrictive since the answer can be multiple
spans in the context. Moreover, we found that
multi-span answers often appear with two char-
acteristics when building the QA system for
a real-world application. First, multi-span an-
swers might be caused by users lacking domain
knowledge and asking ambiguous questions,
which makes the question need to be answered
with conditions. Second, there might be hierar-
chical relations among multiple answer spans.
Some recent span-extraction QA datasets in-
clude multi-span samples, but they only con-
tain unconditional and parallel answers, which
cannot be used to tackle this problem. To
bridge the gap, we propose a new task: con-
ditional question answering with hierarchical
multi-span answers, where both the hierarchi-
cal relations and the conditions need to be ex-
tracted. Correspondingly, we introduce CMQA,
a Conditional Multiple-span Chinese Question
Answering dataset to study the new proposed
task. The final release of CMQA consists of
7,861 QA pairs and 113,089 labels, where all
samples contain multi-span answers, 50.4% of
samples are conditional, and 56.6% of samples
are hierarchical. CMQA can serve as a bench-
mark to study the new proposed task and help
study building QA systems for real-world appli-
cations. The low performance of models drawn
from related literature shows that the new pro-
posed task is challenging for the community
to solve. CMQA can be accessed at https:
//github.com/juyiming/CMQA.

1 Introduction

Question answering (QA) is a challenging bench-
mark task, which can drive the development of nat-
ural language understanding (NLU) methods and
has significant utility to users (Kwiatkowski et al.,

* means both authors contributed equally to this research.

2019). This research area has made significant
progress with many sizable datasets and standard
benchmarks. Notably, the span-extraction task is
one of the most studied subtasks because of its wide
applicability and easy evaluation characteristics.

Most existing span-extraction QA datasets (Ra-
jpurkar et al., 2016; Yang et al., 2018; Choi et al.,
2018; Kwiatkowski et al., 2019; Chen et al., 2020)
only contain single-span samples, where the an-
swer is a single text span in the context. However,
limiting the answer to be a single span in the con-
text might be restrictive since the answer of some
questions can be multiple text spans in real-world
QA scenarios. Take the case in Figure 1 for ex-
ample, given the question asking about ‘drugs for
face acne redness’, the corresponding drugs (green
and blue highlighted text spans) appear in differ-
ent parts of the context. A single span including
all these drugs is extremely long, thus it is more
suitable to use multi-span answers to answer this
question. Moreover, when building the QA sys-
tem for a real-world application, we found that the
multi-span answers often appear with two charac-
teristics:

First, multi-span answers can be caused by users
lacking related domain knowledge and asking am-
biguous questions. In such cases, questions might
need multiple conditions to specify the circum-
stance. For example, in Figure 1, the user asked
a brief question about ‘drugs for acne redness’.
Since different drugs are needed according to the
severity of symptoms:(‘A single appearance’ and

‘the acne is much and continuous into pieces’), the
question is answered separately. It is misleading
to give all answer spans without distinguishing the
conditions. Moreover, answers of different condi-
tions might be contradictory in some samples. For
example, a user asked about the battery capacity of
the iPhone. Since the battery capacity of the iPhone
is different according to models, the multi-span an-
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Question: What are the anti-inflammatory drugs for face
acne redness?
Context: Acne redness is generally the acute stage of acne.
A single appearancex1 indicates that the symptoms are not
serious and can be treated with anti-acne drugs containing
antibiotics3. External antibiotics treat acne by inhibiting
or killing Propionibacterium acnes, reducing the content
of free fatty acids, inhibiting the production of inflamma-
tory chemokines and cytokines.Clindamycin phosphate gel4

and mupirocin ointment5 can be used for treatment. Both
are used once or twice a day. Gently apply a layer of film
on the area to be treated, and continue to use it for 3-4
weeks to evaluate the effect. During the illness, you need
to pay attention to avoid squeezing the acne by hand. Es-
pecially when acne grows in the dangerous triangle area,
it is strictly forbidden to squeeze to avoid ascending bacte-
rial infection and cause cavernous sinus thrombophlebitis.
You can use topical iodophor solution6 for treatment if
the acne is much and continuous into pieces2. A large area
of redness indicates that the fungal infection is more seri-
ous and iodophor can kill fungus quickly. It is necessary to
keep the local skin clean and hygienic. Wash your hands fre-
quently, and fungicidal liquid soap is recommended.
Text spans:
condition: 1, 2; coarse: 3; fine: 4, 5, 6;
Relations:
condition-answer : 1-3, 2-6; coarse-fine: 3-4, 3-5

Structured Answer:

search for the most likely token as the start/end of the answer
are unsuitable for extracting multi-span answers, thus, the span
extraction is cast as a sequence tagging problem [17]. And we
use competitive relation extraction methods drawn from related
literature [21, 24] for predicting relations. Experimental results
show that it is very difficult to extract all spans correctly in a
sample. The error analysis shows that the main challenge is to judge
whether a span of the correct entity type is an answer. Moreover,
though the relation model can achieve high performance on some
traditional relation extraction datasets, the performance on our task
is extremely poor, which makes giving structured answers like the
case in Figure 1 difficult. The poor model performance demonstrates
that the new proposed task is challenging for the community to
solve.

Our contributions can be summarized as follows:
• We propose a challenge when solving questions from real-
world users: conditional question answering with hierarchi-
cal multi-span answers.
• We introduce a new annotated Chinese question answering
dataset: CMQA, which consists of questions that need to be
answered with conditions and hierarchically answer spans.

Table 2: The fields of questions in the QA community.

Field Ratio
healthcare 77.6%
education 13.5%

government affair 4.0%
food 1.4%

digital product 0.3%
planting 0.2%
others 2.1%

• We establish models drawn from related literature as the
baselines of CMQA. Experimental results show that the new
proposed task is challenging.

2 RELATED WORK
Most existing span-extraction QA datasets only contain single-span
samples, which might be restrictive in some real-world QA sce-
narios. An important reason for this gap is the question collection
methods when building the datasets. Question collection meth-
ods of QA datasets can generally be classified into two categories:
creating questions by annotators and collecting questions from
real-world users.

2.1 QA datasets with questions created by
annotators.

Most span-extraction QA datasets consist of questions created by
annotators. Some span-extraction QA datasets’ questions are writ-
ten by annotators who have first read the context containing the
answer. For example, SQuAD [16] tasks crowdworkers with ask-
ing up to 5 questions about each paragraph and highlighting the
corresponding answers in the paragraph. HotpotQA [23] tasks
crowdworkers with asking a question about two given paragraphs
from different Wikipedia pages and providing the answers. Tasking
annotators with questioning and answering at the same time is
suboptimal, which might cause questioners to ask questions based
on a text span in the context. The asked questions are often simple
reformulations of sentences in the context.

To avoid this problem and create more natural and challenging
questions,NewsQA [19] only provides news article’s headlines and
its summary points to questioners. The full context is unseeable.
Similarly, QuAC [4] also prevents the questioner from seeing the
full context. Though effort has been made, there are inevitably
differences between the human-created questions and the questions
asked by users in real-world scenarios. The concerns are as follows:
First, the user’s question is often not based on a certain context
in real-world QA scenarios. Second, crowdworkers might already
know the form of the answer (single text span), which hints that
they should ask questions with a single text span answer. Last, the
problems created are often high quality, while a real-world question
might sometimes be ambiguous.

Figure 1: An example of labels in CMQA. Text spans: condi-
tion (red), coarse (blue) and fine (green). Relations: condition-
answer and coarse-fine. The example is translated from Chi-
nese.

some real-world QA scenarios. Though some recent span-extraction
QA datasets include multi-span samples [6, 7, 25], they only contain
unconditional and parallel answers, which cannot be used to tackle
this problem. To bridge the gap, we propose a new task: condi-
tional question answering with hierarchical multi-span answers,
where both the hierarchical relations and the conditions need to be
extracted.

In this paper, we introduce ConditionalMultiple-span Chinese
Question Answering dataset (CMQA) to track the new proposed
task. Specifically, we pick out samples need to be answered with
multiple text spans and use a new label strategy to annotate them.
We labeled both answers and conditions if the sample is conditional.
Moreover, the answer spans are labeled with different granularity:
coarse and fine. fine means the answer is a specific thing, such as a
specific time, person, to name a few. coarsemeans the answer span is

Question: What are the anti-inflammatory drugs for face
acne redness?
Context: Acne redness is generally the acute stage of acne.
A single appearancex1 indicates that the symptoms are not
serious and can be treated with anti-acne drugs containing
antibiotics3. External antibiotics treat acne by inhibiting
or killing Propionibacterium acnes, reducing the content
of free fatty acids, inhibiting the production of inflamma-
tory chemokines and cytokines.Clindamycin phosphate gel4

and mupirocin ointment5 can be used for treatment. Both
are used once or twice a day. Gently apply a layer of film
on the area to be treated, and continue to use it for 3-4
weeks to evaluate the effect. During the illness, you need
to pay attention to avoid squeezing the acne by hand. Es-
pecially when acne grows in the dangerous triangle area,
it is strictly forbidden to squeeze to avoid ascending bacte-
rial infection and cause cavernous sinus thrombophlebitis.
You can use topical iodophor solution6 for treatment if
the acne is much and continuous into pieces2. A large area
of redness indicates that the fungal infection is more seri-
ous and iodophor can kill fungus quickly. It is necessary to
keep the local skin clean and hygienic. Wash your hands fre-
quently, and fungicidal liquid soap is recommended.
Text spans:
condition: 1, 2; coarse: 3; fine: 4, 5, 6;
Relations:
condition-answer : 1-3, 2-6; coarse-fine: 3-4, 3-5

Structured Answer:

a general term for a class of things, such as foods containing certain
nutrients and people with certain characteristics. The hierarchical
relations among answers of different granularities are also provided.
As shown in Figure 1, labeled text spans in CMQA consist of three
types: condition, coarse and fine (highlighted in the context). Labeled
relations consist of two types: condition-answer and coarse-fine. A
structured answer can be easily derived from these labels, which
is clear and accurate. Furthermore, such labels are very helpful to
reduce the burden of users if they want to read the full context.

The final release of CMQA consists of 7,861 multi-span QA pairs
and 113,089 labels, where 50.4% of samples are conditional, and
56.6% are multi-granularity. In addition, we establish models as
the baseline of CMQA. Traditional single-span QA models which
search for the most likely token as the start/end of the answer
are unsuitable for extracting multi-span answers, thus, the span
extraction is cast as a sequence tagging problem [17]. And we
use competitive relation extraction methods drawn from related
literature [21, 24] for predicting relations. Experimental results
show that it is very difficult to extract all spans correctly in a
sample. The error analysis shows that the main challenge is to judge
whether a span of the correct entity type is an answer. Moreover,

Figure 1: An example of labels in CMQA. Text spans:
condition (red), coarse (blue) and fine (green). Rela-
tions: condition-answer and coarse-fine. The example
is translated from Chinese.

swers will contradict each other without specifying
the condition.

Second, multiple answers in a sample might be-
long to different granularities, and there are often
hierarchical relations among them. For example,
in Figure 1, the answer span ‘topical anti-acne
drugs containing antibiotics’ is a type of drug,
while ‘Clindamycin phosphate gel’ and ‘mupirocin
ointment’ are two specific drug names of this type.
If we only give all these answer spans in parallel,
the user cannot get the granularity and hierarchi-
cal information of these drug names. In this case,
we need to provide the answer granularity and the
hierarchical relations for accuracy.

The analysis results in Table 4 show that about
half of the multi-span samples in our data are con-
ditional, and half of them are multi-granularity.
The high proportion of these samples demon-
strates that the summarized two characteristics
might be widespread in some real-world QA sce-

narios. Though some recent span-extraction QA
datasets include multi-span samples (Dua et al.,
2019; Dasigi et al., 2019; Zhu et al., 2020), they
only contain unconditional and parallel answers,
which cannot be used to tackle this problem. To
bridge the gap, we propose a new task: conditional
question answering with hierarchical multi-span
answers, where both the hierarchical relations and
the conditions need to be extracted.

In this paper, we introduce Conditional
Multiple-span Chinese Question Answering
dataset (CMQA) to track the new proposed task.
Specifically, we pick out samples need to be
answered with multiple text spans and use a new
label strategy to annotate them. We labeled both
answers and conditions if the sample is conditional.
Moreover, the answer spans are labeled with
different granularity: coarse and fine. fine means
the answer is a specific thing, such as a specific
time, person, to name a few. coarse means the
answer span is a general term for a class of
things, such as foods containing certain nutrients
and people with certain characteristics. The
hierarchical relations among answers of different
granularities are also provided. As shown in Figure
1, labeled text spans in CMQA consist of three
types: condition, coarse and fine (highlighted in
the context). Labeled relations consist of two types:
condition-answer and coarse-fine. A structured
answer can be easily derived from these labels,
which is clear and accurate. Furthermore, such
labels are very helpful to reduce the burden of
users if they want to read the full context.

The final release of CMQA consists of 7,861
multi-span QA pairs and 113,089 labels, where
50.4% of samples are conditional, and 56.6% are
multi-granularity. In addition, we establish models
as the baseline of CMQA. Traditional single-span
QA models which search for the most likely token
as the start/end of the answer are unsuitable for
extracting multi-span answers, thus, the span ex-
traction is cast as a sequence tagging problem (Se-
gal et al., 2020). And we use competitive relation
extraction methods drawn from related literature
(Wu and He, 2019; Zhong and Chen, 2021) for pre-
dicting relations. Experimental results show that
it is very difficult to extract all spans correctly in
a sample. The error analysis shows that the main
challenge is to judge whether a span of the correct
entity type is an answer. Moreover, though the rela-
tion model can achieve high performance on some
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traditional relation extraction datasets, the perfor-
mance on our task is extremely poor, which makes
giving structured answers like the case in Figure
1 difficult. The poor model performance demon-
strates that the new proposed task is challenging
for the community to solve.

Our contributions can be summarized as follows:

• We propose a challenge when solving ques-
tions from real-world users: conditional ques-
tion answering with hierarchical multi-span
answers.

• We introduce a new annotated Chinese ques-
tion answering dataset: CMQA, which con-
sists of questions that need to be answered
with conditions and hierarchically answer
spans.

• We establish models drawn from related litera-
ture as the baselines of CMQA. Experimental
results show that the new proposed task is
challenging.

2 Related Work

Most existing span-extraction QA datasets only
contain single-span samples, which might be re-
strictive in some real-world QA scenarios. An im-
portant reason for this gap is the question collection
methods when building the datasets. Question col-
lection methods of QA datasets can generally be
classified into two categories: creating questions
by annotators and collecting questions from real-
world users.

2.1 QA datasets with questions created by
annotators.

Most span-extraction QA datasets consist of ques-
tions created by annotators. Some span-extraction
QA datasets’ questions are written by annotators
who have first read the context containing the an-
swer. For example, SQuAD (Rajpurkar et al.,
2016) tasks crowdworkers with asking up to 5 ques-
tions about each paragraph and highlighting the cor-
responding answers in the paragraph. HotpotQA
(Yang et al., 2018) tasks crowdworkers with asking
a question about two given paragraphs from dif-
ferent Wikipedia pages and providing the answers.
Tasking annotators with questioning and answering
at the same time is suboptimal, which might cause
questioners to ask questions based on a text span in
the context. The asked questions are often simple
reformulations of sentences in the context.

Field Ratio
healthcare 77.6%
education 13.5%

government affair 4.0%
food 1.4%

digital product 0.3%
planting 0.2%
others 2.1%

Table 1: The fields of questions in the QA community.

To avoid this problem and create more natu-
ral and challenging questions, NewsQA (Trischler
et al., 2017) only provides news article’s headlines
and its summary points to questioners. The full
context is unseeable. Similarly, QuAC (Choi et al.,
2018) also prevents the questioner from seeing the
full context. Though effort has been made, there are
inevitably differences between the human-created
questions and the questions asked by users in real-
world scenarios. The concerns are as follows: First,
the user’s question is often not based on a certain
context in real-world QA scenarios. Second, crowd-
workers might already know the form of the answer
(single text span), which hints that they should ask
questions with a single text span answer. Last, the
problems created are often high quality, while a
real-world question might sometimes be ambigu-
ous.

2.2 QA datasets with questions collected from
real-world users.

Besides manually created questions, some QA
datasets use questions collected from queries from
search engines. The answer form of these datasets
is usually free text instead of text spans. For
example, MS Marco (Nguyen et al., 2016) con-
tains queries sampled from the Bing search en-
gine. DuReader (He et al., 2018), which contains
queries from Baidu search logs, chooses the free-
text answer form, both use the free-text answer
form and BLEU (Papineni et al., 2002) score as the
evaluation metric.

Though there are datasets with questions from
search engines that use text span as the answer
form, the span length is usually longer than phrase
level. Moreover, a screening mechanism is often
used to filter questions. For example, WIKIQA
(Yang et al., 2015) uses a single sentence as the an-
swer form, and questions that cannot be answered
with a single sentence are abandoned during the
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construction. Natural Questions (Kwiatkowski
et al., 2019) filter out questions cannot be answered
with an entity or explanation. Moreover, Natu-
ral Questions provide long answers (paragraphs,
tables, list items, or whole lists) besides short an-
swers. A question might have a long answer but
no short answer. These datasets show that a sin-
gle span, especially a phrase-level text span, is not
enough to answer real-world questions.

3 Dataset Construction

In this section, we describe the data construction
process of CMQA.

3.1 Data Source

Samples in CMQA are collected from an author-
itative Chinese QA community, where experts in
related fields provide answers to questions from
users. The community covers a lot of fields, as
shown in Table 1, in which the healthcare field has
received the most questions from users.

Since the provided answers often contain much
secondary information such as descriptions and
supplements, such as the example in Figure 1, the
length of some answers is rather long (64.7% are
longer than 100 words). The long answer texts are
inconvenient to users who want to browse quickly
and get information. Thus, we want to provide a
concise answer (short text span) besides the full
text. However, due to the existence of multi-span
samples and the two characteristics summarized
in Section 1, many questions are not suitable to
be answered with a single text span. Thus, we
let the annotators pick out samples that cannot be
answered with a single text span to tackle the prob-
lem. We get 8,864 filtered samples from 25,000
samples and build our dataset based on these sam-
ples. Note that we have discard samples that may
reveal the personal information of the questioner
or containing offensive content during this phase.

3.2 Annotation Scheme

The annotation process is realized by three experts
and three full-time annotators. As shown in Figure
2, the annotation scheme consists of 4 steps. Ex-
perts first formulate the annotation guidelines after
pilot annotation. Then we train the annotators until
all annotators think they can work independently.
Then, we conduct an inter-annotator agreement

We has obtained the liecense of using the data from the
community, which will be published with the final release.

Figure 2: Pipeline of the annotation scheme.

(IAA) study to examine the annotation quality. We
decide whether to continue the training phase ac-
cording to the IAA score. In the last phase, we
assign different parts of the samples to annotators
for annotation.

Annotation Principles The main principles of
annotation are summarized as follows:

• The text span should be as concise as possible.

• There is a multi-level hierarchical relationship,
only the last level is marked

• The sample can be abandoned in the following
situations:

– If the context cannot answer the ques-
tion.

– All answers are adjacent and can be re-
garded as one.

– Most of the words in the context are part
of the answer. It is better to give the
entire context as a long answer in this
case. (Because the number of the answer
spans of each sample is variable, we did
not give a specific context length as the
threshold to filter out samples. Experts
give examples that should be abandoned,
and the annotators make their judgments
based on these examples.)

– The question is a combination of multi-
ple sub-questions.

Moreover, when the experts conduct pilot anno-
tation, we find the mismatch in condition occurs
mostly due to inclusion/exclusion some boundary
words. Since these boundaries are difficult to deter-
mine sometimes, we decide to expand the boundary
of the condition to its nearest stop words based on
the annotation. In the final release, the average
length of condition increased from 10.4 to 13.4
after expansion.

Annotation Principles with examples are shown in Ap-
pendix, and the full text of the annotation principles will be
publish with the dataset.
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Dataset
Language #QA Conditional Hierarchical Question Answer Answer Answer

source amount length granularity

QUOREF (Dasigi et al., 2019) English 2K - - crowdsourcing 2.5 1.6 word/phrase
DROP (Dua et al., 2019) English 5K - - crowdsourcing 2.5 2.0 word/phrase
MASH-QA (Zhu et al., 2020) English 29K - - real-world users 4.2 19.3 sentence
CMQA Chinese 8K ! ! real-world users 7.5 4.5 word/phrase

Table 2: Comparison of CMQA with other QA datasets containing multi-span samples. Questions in QUOREF and
DROP are collected by Mechanical Turk while questions in MASH-QA and CMQA are collected from real-world
users. Answer amount refers to the average number of answer span per sample, and answer length refers to the
average length per answer span. Note that only multi-span samples are compared.

Label type IAA score

condition 95.1
coarse 86.1
fine 90.0
condition-answer 98.3
coarse-fine 97.6
all 92.7

Table 3: Inter-annotator agreement scores. all refers to
calculating the micro F1-score of all label types.

IAA Study We task annotators with annotating
the same samples to take an inter-annotator agree-
ment (IAA) study. We use the F1-score to compute
an agreement score between two annotators. Fol-
lowing Gurulingappa et al. (2012); Legrand et al.
(2020), we treat one annotator’s annotation as the
reference and the other’s as the prediction. The
final agreement score of three annotators is the av-
erage of the pair-wise agreement scores, formally
as: Sabc = 1

3 (Sab + Sac + Sbc). We first evaluate
the IAA score of different label types separately
and then use micro F1-score as the metric to evalu-
ate the IAA score of all labels. The inter-annotator
agreement study result of 150 samples is shown in
Table 3.

After training and inter-annotator agreement
study, we assign different parts of the samples to
the annotators for annotation. At last, we get 7,861
samples, in which each sample contains an average
of 14.4 labels (8.8 text spans and 5.6 relations). To

We choose F1-score instead of other conventional metrics
such as the kappa coefficient (Cohen, 1960) because there
is no one-to-one correspondence between annotations from
different annotators in multiple-span scenarios. Some Named
Entity Recognition (NER) datasets (Balasuriya et al., 2009;
Srirangam et al., 2019) use kappa coefficient by examining
tags of all tokens. However, since most tokens in the context
are not parts of the answers in the Question Answering task,
such a strategy will lead to a very high agreement score that
fails to reflect the annotation quality.

Span type
Proportion

condition coarse fine

! ! ! 22.66%
! ! 0.47%
! ! 27.30%

! ! 33.93%
! 1.40%

! 14.24%
50.43% 58.46% 98.13%

Table 4: The division of CMQA according to text span
types.

maximize the reusability of the dataset, we provide
a pre-defined split of the dataset into training, de-
velopment, and test sets in the final release, which
consist of 5,861, 1000, and 1000 samples, respec-
tively.

4 Data Analysis

In this section, we analyze the label and question
properties of the new dataset. Table 2 shows the
comparison of CMQA with other QA datasets con-
taining multi-span samples.

4.1 Label Properties

There are five label types in CMQA: condition,
coarse, fine, condition-answer and coarse-fine.
Since the only principle of picking out data to con-
struct the dataset is that the question cannot be
answered with a single text span, a sample in our
dataset does not necessarily contain all five label
types. We investigate the properties of different
label types.

Text Span Properties Table 4 shows the divi-
sion of CMQA according to the included text span
types. As shown in Table 4, 50.4% of the sam-
ples in CMQA are conditional, and 56.6% are
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Label type Amount Length

condition 1.3 13.4
coarse 1.6 6.1
fine 5.9 4.1
condition-answer 2.8 /
coarse-fine 2.8 /

Table 5: The average amount of labels and the average
text span length per sample.

multi-granularity, which shows the necessity and
effectiveness of our labeling strategy. Contexts
of CMQA have an average of 182.3 words, with
18.8% annotated as conditions and 11.3% anno-
tated as answers. The average amount and length
of text spans are shown in Table 5.

Relation Properties Samples containing condi-
tion also contain related conditional answer spans,
which means condition-answer is also included.
However, containing condition doesn’t mean all an-
swers in the sample are conditional. There are sam-
ples where part of answers are conditional while
the others are not, which accounts for 24.8% of
condition-containing samples. There might be hier-
archical relations between answer spans of different
granularity. There are 12,458 coarse answers in
CMQA, and 63.1% of them are connected to fine
answers. A coarse answer can connect to several
fine answers. The average amount of relations per
sample is shown in Table 5.

4.2 Question Properties

Questions in CMQA are collected from users in
the QA community. We heuristically identified
question types for these questions. Specifically,
we first manually observe the questions and sum-
marize some frequently occurring question words.
Then we assign question types based on whether
these words are included in the question. We visu-
alize the distribution of question types in Figure 3.
As shown in Figure 3, the majority of questions in
CMQA are about detailed information about spe-
cific facts, such as expense, duration, and food.

5 Experiments

This section establishes models using methods
drawn from related literature as the baseline of
CMQA and analyzes the experiment results.

Figure 3: Question types in CMQA. The ring chart
on the outer side shows the breakdown of the question
types on the inner side, and the blank part indicates
the question that does not belong to the summarized
question types.

5.1 Models

We decompose the problem into two sub-tasks:

• Extracting text spans from context C as con-
ditions and answers according to question Q.

• Predicting if a relation (condition-answer or
coarse-fine) exists between two text spans.

Thus, our approach consists of a span model and a
relation model. The span model first takes the con-
text and questions as input and predicts conditions
and answers. Then the relation model processes ev-
ery pair of predicted text spans and judges if there
is a relation between them. We find that sharing
the contextual representations between the span
and relation models will cause a performance de-
cline. We hypothesize that using the same contex-
tual representation to capture both span boundary
information and span dependency information is
suboptimal.

Span Model Traditional single-span extraction
models, which search for the most likely token as
the start/end of the answer, are unsuitable for the
multiple-span extraction task. Thus, similar to Se-
gal et al. (2020), we cast the task as a sequence
tagging problem, which is demonstrated effective
on multi-span samples in DROP and QUOREF.
We experiment with the well-known BIO tagging
(Huang et al., 2015). Concretely, we first concat
the context and the question into one sequence and
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use a pretrained language model to obtain contex-
tualized representations hi for each input token ti.
The representation hi is then fed into a feedfor-
ward network to predict the probability distribution
of the tag type. Two different modes are used to
get the prediction: 1) Separate Mode uses differ-
ent models to predict text spans of different types.
These models share the same model structures but
are trained independently. 2) Merged Mode uses
one model to predict all text spans and using mul-
tiple begin tags (Bcondition, Bcoarse and Bfine) to
distinguish span types.

Relation Model Because the type of relationship
depends on the span type, we only need to predict if
there is a dependency between a pair of text spans:
sa and sb. We build the relation model following
previous work (Wu and He, 2019; Zhong and Chen,
2021), which gets competitive results in several
relation extraction benchmarks, such as ACE04
and SciERC (Luan et al., 2018). Concretely, we
first obtain contextualized representations hi for
each input token xi. Then we concatenate the to-
ken representations of the start positions of two
text spans and obtain the span-pair representation:
h(sa,sb) = [hstart(a);hstart(b)], where start(a) and
start(b) are the indices of start tokens of sa and sb.
Finally, the span-pair representation h(sa,sb) will
be fed into a feed forward network to make the
binary classification. Moreover, we further investi-
gate using span boundaries to enhance the relation
model (span assist), where additional markers are
used to highlight all conditions and answer spans
in a sample. Concretely, we insert special mark-
ers (such as ‘<fine>’ and ‘</fine>’) at the span
boundaries in the input layer, and the embeddings
of these markers are trainable vectors.

5.2 Evaluation Metrics and Experimental
Details

We adopt two evaluation metrics: Exactly Match
(EM) and F1-score. EM: Prediction of a sample
is considered as correct the prediction is equal to
the annotation, formally as annopre = annoref .
F1 score: The exact steps of calculating F1 scores
are the same as that in the IAA study, shown in
Algorithm 1 in the Appendix.

In all experiments, we use bert-base-chinese as
the encoder to get contextual representations. The

https://catalog.ldc.upenn.edu/LDC2005T09
https://github.com/google-research/bert

Label type/ Separate Merged
Model EM F1 EM F1

condition 42.3 71.8 47.3 72.6
coarse 32.8 65.0 33.1 65.1
fine 44.5 84.3 42.7 83.6
all 19.3 79.4 20.5 79.0

Table 6: Model performance on span extraction. all
refers to evaluate all span types together. We use the
micro F1-score to calculate F1-score of all. Note that
we only evaluate samples that contain the related span
type in EM metric (all samples are evaluated in all).

Model/ condition coarse fine
Label type acc acc acc

Separate 89.2 93.6 98.9
Merged 88.3 92.8 99.1

Table 7: Model performance on judging if a certain span
type is included in the sample.

implementation is based on Hugging-Face’s Trans-
formers library (Wolf et al., 2019). We report the
averaged test set results of 3 runs for all the ex-
periments. The relation models are trained with
ground-truth span labels.

5.3 Experimental Results and Analysis

Span Extraction As shown in the experimen-
tal results summarized in Table 6, the separate and
merged models get similar performance on the span
extracting task. We can see from the table that
model performance in EM is really poor, while the
performance in F1 is much higher. An important
reason is that there exist many simple spans be-
sides those difficult to extract in one sample. For
example, there might be answers connected in a
one-word interval (e.g., ‘ginger, pepper, garlic ...’).

We analyze samples on the development set and
find that 47.1% of fine-grained answers and 8.6%
of coarse-grained answers are connected to others.
In this case, the model will easily extract the others
if one is recognized as the answer. However, to
maintain the authenticity of the dataset, we did not
eliminate or adapt these simple labels. The poor
EM score in Table 6 shows that extracting all text
span in one sample correctly is rather difficult. We
further analyze model performance on judging if
a certain span type is included in a sample. The
results in Table 7 show the model can achieve very
high performance (around 90% accuracy) on this
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Question: How long does it take to recover
after a needle stick?

Context: ... After topical application of chlorte-
tracycline eye drops, erythromycin eye ointment
and hot compress, you will usually recover after
3-4 days from mild local red nodules. If the pus
is formed locally, it usually breaks in 2-3 days,
and it will recover in 5-6 days ...

Answer: 3-4 days, 5 to 6 days

Prediction: 3-4 days, 2-3 days, 5 to 6 days

Table 8: An example the merged model’s wrong predic-
tions on the development set.

Model/Label type corase fine

Separate 81.8% 77.2%
Merged 76.0% 80.6%

Table 9: Percentage of samples with distinction error in
wrong-predicted samples from the development set.

test.
The multi-span extraction QA task is similar to

NER in the output form. However, in NER, the
model extracts all spans of the target entity type.
But in the QA task, spans of the correct entity type
might be either an answer or not, which should be
judged based on the question and context. Thus
the model cannot simply predict the answer type
and extract all spans of this type as answers, which
is one of the main characteristics of QA tasks and
challenging for models to solve. Take the case in
Table 8 for example, the model’s prediction is ‘3-4
days, 2-3 days, 5 to 6 days’. However, ‘2-3 days’
is not an answer to this question. We hypothesize
that the model has learned that the answer type is
‘period’ but fails to understand the context and pick
out the correct spans.

We denote such error as distinction error, which
means all the predicted spans are in the correct
type, but not all of them can be seen as an answer,
or some correct spans in the context are ignored.
We manually counted the distinction error amount
from 200 randomly sampled wrong-predicted sam-
ples. Results in Tabel 9 show that distinction error
occurs in a large proportion of wrong-predicted
samples, which demonstrates the characteristic and
main challenge of the span extraction task.

Label type/ condition-answer coarse-fine
Model EM F1 EM F1

Normal♠ 3.9 47.9 16.2 54.6
Span-assist♠ 6.5 51.1 22.1 57.2
Normal♢ 0.4 21.6 7.3 34.9
Span-assist♢ 1.8 24.0 13.0 36.5

Table 10: Results of relation models. ♠: results of using
the ground-truth span labels. ♢: results of using the
prediction of the merged span model.

Relation Extraction We report experimental re-
sults of two settings for the relation extraction task:
using the ground-truth label as the input and using
the prediction of the span model as the input. The
results are shown in Table 10.

Due to the limited relation type in CMQA, the re-
lation extraction task seems to be simpler than tradi-
tional relation extraction tasks containing multiple
relation types (Augenstein et al., 2017; Luan et al.,
2018; Gábor et al., 2018). Surprisingly, results in
Table 10 show that the competitive method on these
tasks performs poorly on CMQA. We hypothesis
that one reason is that the text span and relation
amount per sample in CMQA are higher than many
traditional relation extraction datasets, which of-
ten focus on intra-sentence relations. And another
reason is that the span type plays a very marginal
role in relation extraction in CMQA. In contrast,
the entity type is an important feature for judging
relationships in most traditional relation extraction
tasks (Zhong and Chen, 2021). These differences
indicate new approaches needed to be developed
to solve relation extraction in CMQA. Results in
Table 10 show that introducing the boundary infor-
mation of other spans can improve model perfor-
mance. However, the improved model performance
is still far from satisfying, which makes providing
structured answers as Figure 1 very difficult.

6 Conclusion

In this paper, we propose a new challenge: condi-
tional question answering with hierarchical multi-
span answers, which might be widespread in multi-
span QA in real-world scenarios. Moreover, we
introduce CMQA, which contains conditional and
hierarchical samples to study the new proposed
task. Data analysis and experimental results show
the main characteristics and challenges of CMQA,
and the poor model performance demonstrates that
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the proposed task is challenging for the community
to solve. We believe CMQA can serve as a bench-
mark to study the new proposed task and help build
more reliable and sophisticated QA systems.
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A Appendix

A.1 Training Annotators

The annotation process is realized by three full-
time annotators. All annotators have at least a high
school degree and more than one year of full-time
annotation working experience. We let the anno-
tators annotate different parts of data according to
the guidelines. All annotators and experts are in an
online communication group. We encourage anno-
tators to ask experts questions about samples they
are not very sure of. We guarantee that experts will
answer annotators’ questions immediately in this
phase. It takes about three days until all annotators
think they can work independently. Each annotator
has annotated over 100 samples in this phase. Note
that this part of data is only used for training and
will not be included in the final release.

A.2 Label Amount

We visualize the amount of each label type in Fig-
ure 4, where the first subgraph shows the total label
amount of the dataset, and the rest of the subgraphs
show that of each sample.

A.3 The exact steps of calculating F1 scores
for IAA study and Experiment
Evaluation

Algorithm 1 describes the exact steps in the eval-
uation procedure of IAA study and experiments.
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Figure 4: The amount of labels in CMQA. c-a refers to
condition-answer and c-f refers to coarse-fine.

Algorithm 1 Evaluation Algorithm
Input: Annoref : the reference annotation; Annopre: the

perdiction annotation;
Output: F1− score;

1: function CAL_F1(Annoref , Annopre)
2: recallmol ← 0
3: recallden ← 0
4: precisionmol ← 0
5: precisionden ← 0
6: for annoref , annopre ∈ zip(Annoref , Annopre)

do
7: for a ∈ annoref do
8: if a ∈ annopre then
9: recallmol ← recallmol + 1

10: end if
11: end for
12: for a ∈ annopre do
13: if a ∈ annoref then
14: precisionmol ← precisionmol + 1
15: end if
16: end for
17: recallden ← recallden + len(anno1).
18: precisionden ← precisionden + len(anno2)
19: end for
20: recall← recallmol/recallden
21: precision← precisionmol/precisionden
22: F1← 2∗recall∗precision/(recall+precision)
23: return F1

Anno= {anno1, anno2, ..., annon} refers to the
annotation for n samples.

A.4 Annotation Principles with Examples
The main principles of annotation with examples
are as follows:

• The text span should be as concise as possible.
The annotator should exclude non-essential
phrases. (e.g., question: ’What to eat for mus-
cle growth?’ context: ’... You can eat some
beef ...’; The answer to this question should be

’beef’ instead of ’some beef’.)

• If there is a multi-level hierarchical relation-
ship, only the last level is annotated. (e.g.,
context: ’You can eat some vitamin-rich foods,
such as fruits ... Apples are rich in vitamin C
...’; The coarse answer to this question should
be ’fruits’ instead of ’vitamin-rich foods.’, and
the fine answer should be ’Apples’.)

• The sample can be abandoned in the following
situations:

– If the context cannot answer the ques-
tion.

– Although there are multiple answer
spans in the context, these answers are
adjacent and can be regarded as one.
(e.g., ’ginger, pepper, garlic ...’)

– Most of the words in the context are part
of the answer. It is better to give the
entire context as a long answer in this
case. (Because the number of the answer
spans of each sample is variable, we did
not give a specific context length as the
threshold to filter out samples. Experts
give examples of abandoned samples and
let the annotators make their judgments
based on these examples.)

– The question is a combination of mul-
tiple sub-questions. (e.g., What are the
most suitable height and weight for long-
distance running?’) We split such ques-
tions into multiple sub-questions in our
system.
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Abstract

Reasoning and knowledge-related skills are
considered as two fundamental skills for natu-
ral language understanding (NLU) tasks such
as machine reading comprehension (MRC) and
natural language inference (NLI). However, it
is not clear to what extent an NLU task defined
on a dataset correlates to a specific NLU skill.
On the one hand, evaluating the correlation re-
quires an understanding of the significance of
the NLU skill in a dataset. Significance judges
whether a dataset includes sufficient material
to help the model master this skill. On the
other hand, it is also necessary to evaluate the
dependence of the task on the NLU skill. De-
pendence is a measure of how much the task
defined on a dataset depends on the skill. In
this paper, we propose a systematic method
to diagnose the correlations between an NLU
dataset and a specific skill, and then take a fun-
damental reasoning skill, logical reasoning, as
an example for analysis. The method adopts a
qualitative indicator to indicate the significance
while adopting a quantitative indicator to mea-
sure the dependence. We perform diagnosis
on 8 MRC datasets (including two types) and
3 NLI datasets and acquire intuitively reason-
able results. We then perform the analysis to
further understand the results and the proposed
indicators. Based on the analysis, although the
diagnostic method has some limitations, it is
still an effective method to perform a basic di-
agnosis of the correlation between the dataset
and logical reasoning skill, which also can be
generalized to other NLU skills.

1 Introduction

Machine reading comprehension (MRC) and nat-
ural language inference (NLI) are used to bench-
mark natural language understanding (NLU) capa-
bilities. Although a large number of NLU-related

† These authors contributed equally.
‡ Corresponding author.

datasets have been proposed (Yang et al., 2018;
Yatskar, 2019), it is hard to evaluate correlations
between the dataset and NLU-related skills due to
the lack of benchmark method (Richardson et al.,
2020), which may create an obstacle to choose ap-
propriate dataset for specific skill training. Accord-
ing to a widely accepted discourse comprehension
theory, construction-integration model (Kintsch,
1991), there are two processes for humans to un-
derstand language: 1) understanding the concepts
and discourses in the text and building their rela-
tionships with the real world; 2) synthesizing these
concepts and discourses to form a consistent under-
standing. These two processes mainly correspond
to two types of skills in NLU: Knowledge-related
skills and reasoning skills (Baral et al., 2020; Bo-
ratko et al., 2018; Tian et al., 2021). Previous re-
searches concentrate on evaluating the correlation
between datasets and knowledge, such as assess-
ing what types of knowledge are required to com-
plete an NLU task (Sap et al., 2019a; Rogers et al.,
2020) and offering various knowledge supplements
based on those needs (Feng et al., 2020). However,
compared to knowledge-based characteristics, rea-
soning abilities are more difficult to identify and
quantify directly. Besides, some existing work us-
ing probes (supervised models trained to predict
properties) mainly focuses on linguistic tasks (He-
witt and Liang, 2019; Conneau et al., 2018) and few
studies diagnose the logical discrepancies between
datasets.

Based on different deduction methods, reason-
ing skills can be divided into logical reasoning, co-
referential reasoning, numerical reasoning, causal
reasoning, etc (Sugawara et al., 2017). Among
all these reasoning skills, logical reasoning is a
fundamental skill widely used to understand nat-
ural language (Bhagavatula et al., 2020). In this
paper, we take logical reasoning as an example
and construct a systematic method to analyze the
correlations between NLU datasets and a specific
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reasoning skill. The correlations include two as-
pects: significance and dependence. 1) significance
aims to judge whether a dataset includes sufficient
(explicit or implicit) logical expressions; 2) depen-
dence is used to measure how much the task on a
dataset depends on the logical reasoning skill. To
aid the diagnosis, a logical probe, consisting of a
probe model and a probe dataset, is introduced. We
select 8 MRC datasets (including two types) and
3 NLI datasets to perform diagnosis. We create
a qualitative and quantitative indicator to reflect
the association between the dataset and logical rea-
soning after training the probe model on various
datasets in various ways. The results show: 1) Most
NLI datasets are relatively strongly correlated to
logical reasoning. 2) As for the comprehensive
MRC datasets (Type1), the correlations are moder-
ate which means that logical reasoning is not the
only dominant reasoning skill in this type; 3) The
correlations of different MRC datasets for specific
anticipations (Type2) vary remarkably according
to their purposes of design. Further cause analysis,
which is consistent with the results, confirms the
rationality of our method to a certain degree. In
conclusion, this method offers a reasonable view
of exploring the correlations between datasets and
logical reasoning.

Our contributions are as follows:

• We propose a systematic method to diagnose
the correlations between NLU datasets and
reasoning skills and take logical reasoning as
an example to validate the effectiveness of this
method.

• In particular, two indicators are introduced
to evaluate the correlation between the NLU
dataset and reasoning skill.

• We conduct extensive experiments on 11 NLU
datasets from both qualitative and quantitative
analyses. Results show that Winogrande is the
only dataset unable to judge the significance
based on qualitative analysis, while QASC,
SNLI and MNLI show relatively high depen-
dence on logical reasoning based on quantita-
tive analysis.

2 Related Work

NLU Datasets. Recently, the number of NLU
datasets has exponentially increased (Zeng et al.,
2020). Such datasets mainly include MRC

datasets and NLI datasets. MRC datasets, such as
SQuAD (Wang et al., 2016), CoQA (Reddy et al.,
2019) and DROP (Dua et al., 2019) are designed
to test whether machines can answer the text-
related questions or not, while NLI datasets, such
as SNLI (Bowman et al., 2015) and MNLI (Nangia
et al., 2017), are constructed to explore whether
models can detect inferential relationships between
natural language descriptions (Richardson et al.,
2020) or not. Overall, all these datasets aim to
define tasks to evaluate whether machines can un-
derstand the natural language as humans do.

Analysis for NLU. Recently, more and more re-
searches focus on what models have really learned
in NLU tasks. In this field, some researches attempt
to understand the knowledge (Ghosal et al., 2021;
Fang et al., 2021) and reasoning skills (Richard-
son et al., 2020) in language models, while others
mainly focus on systematic evaluations of NLU
models (Tenney et al., 2019; Ribeiro et al., 2020).
These studies have provided foundations to further
understand NLU. In addition, some researchers
begin to pay attention to the analysis of NLU
datasets (Baradaran et al., 2020). For example, Sug-
awara et al. (2020) have provided an ablation-based
method to understand the tasks defined on the NLU
datasets. However, such researches are still rare
and further investigations are required.

3 Methodology

In this paper, we limit our investigation to a
fundamental form of logical reasoning: conjunc-
tive implications with negation (Musen and Lei,
1988) which uses multiple conditions to derive
the final conclusion and can be expressed as:
[(¬)p1, (¬)p2, · · · , (¬)pn] → q, where pi, (i =
0, 1, · · · , n) represents each condition and q is the
conclusion. Although logical reasoning has many
complex forms, conjunctive implication with nega-
tion is the most commonly used one in daily con-
versation and can cover most situations in natural
language (Allwood et al., 1977).

Our method adopts control variates to control
what models learn. Supported by a logical probe,
we train models in the different manners on the di-
verse datasets to adjust the skills mastered by mod-
els. Based on the method, we design a qualitative
indicator and a quantitative indicator to indicate
significance and dependence, respectively. Next,
we will firstly introduce the logical probe and then
introduce two indicators and two corresponding
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processes.

3.1 Logical Probe

Logical probe includes a probe dataset and a probe
model. The probe dataset has two main functions:
1) to train the probe model and enable it to master
logical reasoning without increasing extra knowl-
edge; 2) to test whether a model has mastered logi-
cal reasoning or not. Therefore, the probe dataset
is required to meet the following three conditions:

• The dataset will involve as little explicit and
implicit knowledge as possible, while expres-
sions in the dataset should conform to natural
language form.

• It should contain a large number of logical
expressions and the task defined on the dataset
should relate strongly to logical reasoning.

As for the probe model, it is the original model
that will be trained on the different datasets in di-
verse manners. Therefore, the probe model is re-
quired to meet the following three conditions:

• The probe model itself can be used as a knowl-
edge base.

• The knowledge stored in the model’s weights
can be updated after being trained in a specific
manner.

• The model can master logical reasoning after
being trained on the probe dataset.

3.2 Qualitative Diagnosis

A qualitative process is designed to diagnose the
significance of a dataset to logical reasoning which
indicates whether a dataset includes sufficient logi-
cal materials to enable the model to master logical
reasoning. To perform qualitative diagnosis, we
firstly involve a presupposition that as long as there
exists one model that can master logical reasoning
to a certain degree through the dataset to be diag-
nosed, we can assert that the dataset is significant
to logical reasoning. According to the presuppo-
sition, the qualitative process includes two steps
shown in Fig 1 and Alg 1. The first step is to train
the probe model M0 on the dataset D to be diag-
nosed in the supervised manner. Then we acquire
a trained model M1 which has acquired the domi-
nant patterns in D. The second step is to test M1

on the probe dataset P to acquire the metric R1.

Probe Model
M0

Trained Model
M1 = Update(M0)

Learning from Dataset
Supervised Training

NLU Data(Training Set)

Qualitative Diagnosis
Testing

Probe Data(Testing Set)

Result
R1

Qualitative Indicator
I1 = sign(R1, δ)

Purpose
Method
Dataset

Figure 1: Qualitative process. The probe model is first
trained on the NLU dataset to acquire significant skills
and tested on the probe dataset. Before testing, we re-
train the full connected classifier with fixed M1.

Note that in the testing step, we re-train the fully-
connected classifier with fixed M1 before testing.
The qualitative indicator can be calculated by the
Eq 1.

I1 = sign(R1, δ) =

{
+, R1 ≥ δ
−, R1 < δ

(1)

Where “+" means “significant to the logical reason-
ing" while “−" means “unable to judge" (the qual-
itative diagnosis has a natural limitation in which
we cannot traverse all models to fully verify the ex-
istential presupposition). δ is the threshold to judge
the significance (Since the probability of random
selection for the binary classification problem is
0.5, we can approximate that R1 is equivalent to
the result of random selection if R1 < δ = 0.55).

Algorithm 1 Qualitative Process.
Require: NLU datasets D = [D1, D2, · · · , Dn];

Probe dataset P ; Probe Model M0

Ensure: Qualitative Indicator, I1 = [I11 , I
2
1 , · · · , In1 ]

1: Initialize M0 with pre-trained parameters;
2: Initialize I1 = []

3: for i = 1 to n do
4: M i

1 = SupervisedTrain(M0, Di)

5: Ri
1 = Test(M i

1, P )

6: Ii1 = Sign(0, Ri
1 − δ)

7: I1.Append(Ii1)

8: end for
9: return I1;

3.3 Quantitative Diagnosis

A quantitative process is designed to diagnose
the dependence of a dataset on logical reasoning,
which aims to answer how much a task defined
on the dataset depends on the logical reasoning
skill. Here we make a hypothesis that if the only
difference between the two models is whether log-
ical reasoning has been mastered, the gap of the
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Probe Model
M0

Trained Model
M2 = Update(M0)

Capturing Knowledge
Unsupervised Training

NLU Data(Corpus)

Trained Model
M3 = Update(M2)

Mastering Reasoning Skill
Supervised Training

Probe Data(Training Set)

Quantitative Diagnosis
Testing

NLU Data(Testing Set)

Result
R3

Result
R2

Quantative Indicator
I2 = R3−R2

R3

Purpose
Method
Dataset

Figure 2: Quantitative process. The probe model is
firstly trained on the NLU corpus in an unsupervised
mannert to update its knowledge related to the NLU
dataset (get M2). The model is trained on the probe
dataset to master logical reasoning skills (get M3). We
re-train the full connected classifier with fixed M2/M3
before testing. Then, M2 and M3 are tested on the
NLU dataset, to get two results R2 and R3, respectively.
Finally, quantitative indicator I2 is calculated using the
difference of R3 and R2.

performances can indicate the dependence on logi-
cal reasoning. Based on the hypothesis, we define
a three-step process to calculate the quantitative
indicator: 1) training the probe model M0 on the
NLU datasetD in the unsupervised manner to abun-
dant knowledge and getting model M2; 2) training
M2 on the probe dataset P and getting the second
model M3; 3) Testing M2 and M3 on D and get-
ting results R2 and R3 (Testing step is similar to
it in the qualitative diagnosis). The quantitative
indicator is calculated by Eq 2.

I2 =
R3 −R2

R3
× 100 (2)

The quantitative process is shown in the Fig 2 and
Alg 2. The test algorithm in both Alg 1 and Alg 2
is shown in Alg 3.

4 Diagnosis

4.1 NLU Datasets to Be Diagnosed

We select 11 NLU datasets to perform diagnosis.
These datasets can be classified into three types:
NLI datasets and two types of MRC dataset. The
NLI datasets include three commonly used ones:
SNLI (Bowman et al., 2015), MNLI (Nangia et al.,
2017) and αNLI (Bhagavatula et al., 2020). Type
1 MRC datasets (comprehensive MRC datasets)
include BoolQ (Clark et al., 2019), DROP (Dua
et al., 2019) and CODAH (Chen et al., 2019), all
with tasks requiring diverse NLU skills to solve.
Type 2 MRC datasets (specific MRC datasets)
are constructed to benchmark one dominant NLU

Algorithm 2 Quantitative Process.
Require: Diagnosed datasets D = [D1, D2, · · · , Dn];

Probing dataset P ; Probing Model M0

Ensure: Quantitative Indicator, I2 = [I12 , I
2
2 , · · · , In2 ]

1: Initialize M0 with pre-trained parameters;
2: Initialize I2 = []

3: for i = 1 to n do
4: M i

2 = UnsupervisedTraining(M0, Di)

5: Ri
2 = Testing(M i

2, Di)

6: M i
3 = SupervisedTraining(M i

2, P )

7: Ri
3 = Testing(M i

3, Di)

8: Ii2 = R3−R2

R3
× 100

9: I2.Append(Ii2)

10: end for
11: return I2;

Algorithm 3 Test (including Re-train FC Classi-
fier).
Require: Model M ; Dataset D
Ensure: Metric R

1: Initialize fully-connected classifier C randomly;
2: Fix M
3: C ′ = SupervisedTrain([M,C], D)

4: R = CalMetric([M,C ′], D)

5: return R;

skill, including QASC (Khot et al., 2020), Re-
CLor (Yu et al., 2020), SocialIQA (Sap et al.,
2019b), QuaRTz (Tafjord et al., 2019) and Wino-
grande (Sakaguchi et al., 2020).

In order to make the diagnosis results on dif-
ferent datasets comparable, we process the NLI
and MRC datasets separately. Given an item D =
[context, question, answer] in an MRC dataset,
we combine question and answer to a statement
and transfer the D to a binary classification rep-
resented by D′ = [context, statement, label],
where label is True or False.As for the
item D = [fact1, fact2, label] in an NLI
dataset, we just set fact1 as context and
fact2 as statement, and change label ∈
{entailment, neural, contradiction} to label ∈
{True, False} (entailment is True; neural
and contradiction are False based on the closed
world assumption, CWA). To ensure the balance of
samples, we adjust the number of negative samples
by removing or constructing. The statistics of the
processed datasets are shown in Table 2.
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Paras. Unsupervised. Supervised. Training.

batch size 16 16 16
lr − 1e−5 1e−3

lr for BERT 5e−6 5e−6 −
decay rate 0.9 0.9 0.8
l2 coeff. 1e−5 1e−5 1e−5

early stop 5 5 5
epochs 20 20 20

optimizer ADAMW ADAMW ADAMW

Table 1: Hyper-parameter settings.

Datasets Average No. Data (k)

Length Train Dev. Test

SNLI 21 300.0 6.0 6.0
MNLI 30 245.0 13.5 13.4
αNLI 33 339.0 3.0 6.0
BoolQ 102 4.6 2.4 2.4
DROP 197 132.0 18.5 14.7
CODAH 17 3.5 1.0 1.0
QASC 108 13.9 1.9 2.4
ReCLor 97 8.2 1.0 1.0
SocialIQA 23 33.4 2.0 2.2
QuaRTz 37 5.3 0.7 1.3
Winogrande 20 78.3 2.5 2.5

Probe Dataset 103 70.1 9.9 20.0

Table 2: Statistics of NLU datasets to be diagnosed and
the probe dataset.

We trained our model on NVIDIA 16GB Tesla
P100 and V100 GPUs. For fine-tuning BERT, the
model costs around 22GB memory with the batch
size of 16. The hyper-parameters are shown in
Table 1.

4.2 Probe Dataset

In the diagnosis, we use the dataset proposed
by Clark et al. (2020) as the probe dataset (An
example of which is shown in Fig 3) for it clearly
satisfying the last two conditions. Based on the con-
struction rules (constructing propositions through
meaningless sentences) of the probe dataset, it will
not involve explicit knowledge into models. To
validate that the implicit knowledge involved by
the dataset can be negligible, we also make a sim-
ple statistical analysis in Preliminary 1. Therefore,
this dataset is suitable to be the probe dataset. In
practice, we use the 3-hop dataset to train the probe
model because Clark et al. (2020) have illustrated
that Transformers trained on this dataset has good
generalization capability. Statistical information of
the probe dataset is shown in Table 2.

Facts:
F1: Anne is quiet.
F2: Bob is blue.
F3: Bob is quiet.
F4: Charlie is blue.
Rules:
R1: All smart, blue things are green.
R2: Quiet things are red.
R3: If Bob is blue then Bob is red.
R4: All quiet, red things are smart.
Statements:
S1: Bob is green.
L2: True (F3→R2→R4→F2→R1→S1)
S2: Anne is not red.
L2: False (F1→R2→ ¬S2)

Figure 3: An example of the probe data.

4.3 Probe Model

BERT (Devlin et al., 2019) naturally meets all
three conditions of the probe model. Firstly, BERT
itself can be used as the knowledge base since it
contains a large amount of knowledge and its ar-
chitecture has the ability to update knowledge af-
ter being trained in the unsupervised manner (the
same way to train the language model) (Rogers
et al., 2020; Petroni et al., 2019). Secondly, it has
been proved that Transformers, the basic architec-
ture of BERT, can master the generalizable logical
reasoning (Clark et al., 2020; Hahn et al., 2020).
Therefore, we select BERT as the probe model.
Although BERT can satisfy all three conditions,
we still need to prove that no matter what initial
weights are, the architecture of Transformers al-
ways has the ability to master generalizable logical
reasoning. These two preliminaries are shown in
Preliminary 2 and Preliminary 3, respectively.

4.4 Preliminaries

Preliminary 1: Validating that implicit knowl-
edge involved by the probe dataset can be neg-
ligible. Implicit knowledge is always hidden in
the representative vectors of words. We have made
a simple statistics that the vocabulary size of the
probe dataset is 67. This means that the propor-
tion of overlapping words to the NLU dataset’s
vocabulary is very low, almost negligible, which is
intuitive evidence that implicit knowledge involved
by the probe dataset can be negligible.

Preliminary 2: Proving that BERT will not
master logical reasoning after being trained in
the unsupervised manner. We conduct a con-
trolled experiment to compare three kinds of mod-
els trained and tested on the probe dataset. We use
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Figure 4: The process for Preliminary 3.
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Figure 5: Results for Preliminary 3.

BERT + fully-connected classifier as the original
architectures. For the first model, we fix BERT and
only train the fully-connected classifier. For the
second model, we firstly train BERT in the unsu-
pervised manner, and then fix it and only train the
fully-connected classifier. For the third model, we
fine-tune BERT and train the classifier at the same
time. The final results of the first two models are
almost equivalent to random selection (Accuracy:
50.41% and 50.00%, respectively) but the result of
the third model can reach 98.69%. This has vali-
dated that BERT cannot master logical reasoning
after being trained in the unsupervised manner.

Preliminary 3: Validating that Transformers al-
ways has the ability to master logical reasoning
no matter what initial weights are. We perform
this validation based on the process shown in Fig 4.
Firstly, we acquire M3 following the quantitative
process. Secondly, we test M3 on the probe dataset.
We compare the results RV 3 with the original re-
sult in (Clark et al., 2020), which is shown in Fig 5
(dotted line represents the original result). The
comparison illustrates that no matter what initial
weights are, the performance will finally reach a
similar level to the original result’s level.

5 Results and Analysis

5.1 Overall Results of Diagnosis
Based on the diagnosis, we acquire a qualitative
indicator I1 and a quantitative indicator I2 for each
NLU to be diagnosed and the results are shown in
Table 3. Based on the results, we firstly answer
two questions related to the correlation on logical
reasoning.

1. Whether does a dataset have sufficient explicit
or implicit logical expressions that enables mod-
els to master logical reasoning or not? Based
on results (I1) of the qualitative diagnosis, almost
all datasets (except for Winogrande) shows signifi-
cance to logical reasoning, which means they have
a certain amount of logical reasoning to enable
the probe model to master logical reasoning. Wino-
grande, the only exception that cannot be judged by
the probe model, will be further analyzed in the sec-
tion of Exception Analysis. To compare NLI and
MRC datasets, we adopt another threshold δ′ = 0.6
to distinguish “very significant" (“++") and “sig-
nificant" (“+"). Generally, NLI datasets are more
significant than MRC datasets. We speculate that
reasons for the conclusion are: 1) Logical patterns
in the NLI datasets are more likely to be captured
as the contexts in these datasets are much simpler;
2) MRC datasets usually contain complicated con-
texts requiring a variety of reasoning skills, which
makes it hard to expose the logical patterns.

2. How much does the task defined on a
dataset depend on the logical reasoning skill?
Although most NLU datasets can provide materials
of logical reasoning, not all tasks defined on these
datasets have strong dependences on logical rea-
soning. We have shown the dependence indicator
I2 in Fig.6. From the figure, we can find that NLI
datasets, except for αNLI, have relatively high de-
pendences on logical reasoning. This means that
NLI tasks often highly rely on logical reasoning,
which plays a dominant role in these tasks. These
results are roughly consistent with the definition
and the purpose of the NLI tasks (The outlier in
NLI datasets, αNLI, will be further analyzed in
the section of Exception Analysis). Among com-
prehensive MRC tasks (Type 1), we can find the
dependence indicators for all three tasks are mod-
erate, which may be due to their requirements of
multiple NLU skills. In terms of MRC datasets
for specific purposes (Type 2), the results show a
remarkable difference among these tasks. On the
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Diagnosis Acc.(%)/Ind.

Datasets

NLI MRC(Type1) MRC(Type2)

SNLI MNLI αNLI BoolQ DROP CODAH QASC ReCLor SocialIQA QuaRTz Winogrande

Qualitative R1 60.35 61.32 57.12 58.14 58.38 59.13 58.39 58.21 60.35 57.30 50.77

Quantitative

R2 70.40 64.16 50.29 58.14 51.11 56.80 55.40 51.60 55.80 50.91 50.00

R3 78.87 70.61 52.58 60.75 53.80 60.00 65.44 52.80 57.90 51.56 51.34

∆R 8.13 6.45 2.29 2.61 2.69 3.20 10.04 1.20 2.10 0.65 1.34

Indicators
I1 ++ ++ + + + + + + ++ + -

I2 10.31 9.13 4.36 4.30 5.00 5.33 14.35 2.27 3.63 1.26 2.61

Table 3: Diagnosed Results: I1 and I2 are two indicators for the qualitative process and the quantitative process,
respectively. The threshold δ of qualitative indicator is 55%. To compare NLI and MRC datasets, we adopt another
threshold δ′ = 60% to distinguish “very significant (++)" and “significant (+)". Therefore, “-" means “unable to
judge", “+" means “significant" and “++" means “very significant".

10.3

9.1

4.4 4.3
5.0 5.3

14.4

5.3

3.6

1.2

2.6

NLI

MRC (Type 1)

MRC (Type 2)

Figure 6: Quantitative indicators. Among all three kinds
of datasets, most NLI datasets (except for αNLI) have
high indicators. The indicators of comprehensive MRC
datasets are relatively moderate. Specific MRC datasets
contain QASC with the highest I2 and QuaTRz with the
lowest I2, which are complicated.

one hand, tasks such as QASC (I1 = 14.35) show
a strong dependence on logical reasoning. On the
other hand, tasks such as SocialIQA (I2 = 3.63),
QuaRTz (I2 = 1.26) and Winogrande (I2 = 2.61),
show almost no dependence on logical reasoning.
Based on the reports from original papers, the cor-
responding dominant skills for four MRC datasets
(Type 2) are logical resaoning (Khot et al., 2020),
knowledge-based skill (Sap et al., 2019b), numer-
ical reasoning (Tafjord et al., 2019) and corefer-
ential reasoning (Sakaguchi et al., 2020), respec-
tively. This is consistent with I2 indicating that
only QASC has a strong dependence on logical rea-
soning among these four datasets. Surprisingly, al-
though ReCLor, a Type 2 MRC dataset, is designed
for the purpose of evaluating logical reasoning (Yu
et al., 2020), I2 cannot indicate that the dataset has
a strong dependence on logical reasoning. Aiming
at this exception, we will also perform individual
analysis in the section of Exception Analysis.

5.2 Exception Analysis

In this section, we conduct a detailed analysis of
the exceptions, αNLI, ReCLor and Winogrande,
mentioned above to further understand the causes
of the results. Meanwhile, on the basis of the anal-
ysis, we also acquire a better understanding of the
limitation of the proposed quantitative indicator I2.

1. Winogrande. From the qualitative indicator
I1, Winogrande is the only dataset unable to
judge whether it contains sufficient logical
expressions or not. We take a representative pair of
examples in the dataset as the case to analyze. The
case includes (Context: The trophy does
not fit into the suitcase, Statement:
because trophy is too large, Label:
True) and (Context: The trophy does
not fit into the suitcase, Statement:
because suitcase is too large, La-
bel: False). It is obvious that no logical
expressions or underlying logical forms.

2. αNLI. αNLI seems an outlier which has
a lower I2 than other NLI tasks. Based on our
analysis, we find that although αNLI is classified
into the NLI category, it is designed to benchmark
sequential reasoning in a narrative text rather
than logical reasoning. An example of αNLI
is (Context: Jill had a pet cat .
She was able to remove the fleas
by sprinkling salt on her floors,
Statement: The cat had fleas, Label:
True). It is obvious that the example requires
the model to be able to understand the sequential
relation between context and statement rather than
apply logical reasoning. Therefore, the dependence
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Figure 7: Line charts of quantitative indicator I2 and
paired difference ∆. The results show that I2 is signifi-
cantly correlated to ∆.

of αNLI on logical reasoning is weak.

3. ReCLor. As Yu et al. (2020) reported, ReCLor
is constructed from GMAT and LAST to evaluate
logical reasoning. However, in our diagnosis, the
indicator of ReCLor is very low. Based on our
analysis, the causes may include: 1) To solve the
task defined on ReCLor requires a large amount
of legal-related domain knowledge and common-
sense, which is not sufficiently acquired by the
probe model. Therefore, the model cannot capture
the underlying logical forms; 2) Although logical
reasoning is the dominant skill in ReCLor, it cannot
be decoupled from multiple complex skills. There-
fore, we can further understand the limitations of
our proposed method from the analysis of ReCLor.
Actually, I2 reflects the lower bound of the depen-
dence on logical reasoning, as it can just indicate
the part satisfying the following conditions:

• logical reasoning is the dominant skill under
the condition that knowledge acquired by the
probe model is sufficient.

• logical features can be decoupled from the
complex reasoning features.

Despite the limitations, I2 is still a reasonable indi-
cator to evaluate the dependence of NLU tasks on
logical reasoning. Further illustration will be given
in the next section.

5.3 Paired Analysis

Intuitively, models with logical reasoning are
sensitive to subtle differences between logically
true propositions and logically false propositions.
Based on this intuition, we perform a paired anal-
ysis to provide intuitive evidence that M3 does
master logical reasoning compared with M2. This
is indirect evidence that our proposed indicator,

I2, is reasonable to indicate the dependence be-
tween the NLU dataset and logical reasoning. To
perform the analysis, we first reconstruct paired
sets comprising pairs of positive and negative sam-
ples on four datasets, SNLI (NLI), CODAH (Type 1
MRC), QASC (Type 2 MRC) and SocialIQA (Type
2 MRC). These four datasets have a common fea-
ture that for each positive example, we can extract
a corresponding negative example directly from
the datasets and vice versa. The only difference
between the pair is that two samples have differ-
ent keywords in their statements. This setting can
ensure that if a sample includes a logically true or
false proposition, the counterpart must include a
logically false or true proposition. Next, we test
M2 and M3 directly on paired sets and calculate
their paired accuracies. Finally, we use the gap
between M3’s accuracy and M2’s accuracy ∆ to
conduct the analysis. These results are shown in Ta-
ble 4. From the table, ∆ for each dataset is larger
than 10%, which is evidence that the difference
between M3 and M2 is decidedly due to logical
reasoning.

Acc.(%) SNLI CODAH QASC SocialIQA

M3 41.3 18.5 11.6 18.4
M2 59.5 30.8 33.6 29.0

∆ 18.2 12.3 22.0 10.6

Table 4: Paired differences of SNLI, CODAH, QASC
and SocialIQA.

Moreover, we further make a horizontal compar-
ison between datasets and Fig 7 is the line charts
of I2 and ∆. According to the analysis above, ∆ is
a reasonable indicator to measure the dependence
on logical reasoning. From the figure, a significant
positive correlation between I2 and ∆ exists. This
is intuitive evidence that I2 is also a reasonable
indicator to reflect the dependence of a dataset on
logical reasoning skill.

5.4 Case Study

In this part, we perform a case study to show the
logical structure detected by the quantitative indi-
cator I2. We select a case from QASC (shown in
Fig.8) which shows the strongest dependence on
logical reasoning. From the case, we list the logical
structure of the case for reasoning p1 ∧ p2 → q1.
This is a typical logical form of the conjunctive
implication which can be diagnosed by I2.
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context: Beads of water are formed by
water vapor condensing (p1). Clouds are
made of water vapor (p2). Condensation is
the change of water vapor to a liquid (p3).
An example of water vapor is steam (p4).
Condensation of water vapor occurs during
the chilling season (p5).
statement: Beads of water is formed by
clouds (q1).
Liquid of water is formed by clouds (q2).
label: True for q1 and False for q2.
logical structure for reasoning: p1 ∧ p2 →
q1

Figure 8: A logical case from QASC

6 Conclusions and Future Work

In this work, we present a novel framework, which
can diagnose the correlation between the NLU
dataset and a specific skill and we probe a fun-
damental reasoning skill, logical reasoning, on 11
NLU datasets. Our framework involves a logical
probe to conduct diagnosis and defines a qualitative
process and a quantitative process to calculate two
indicators. From the results, We observe that 1)
Most NLI datasets have a relatively strong corre-
lation with logical reasoning. 2) The correlations
between Type 1 MRC datasets and logical reason-
ing are moderate because logical reasoning is not
the only dominant skill in these datasets. 3) The
dependences of Type 2 MRC datasets are not al-
ways exactly consistent with their intended purpose.
Based on the analysis, although there are several
limitations in our proposed method, this work is
still a reasonable attempt to deeply understand the
relationship between the dataset and a specific NLU
skill. In future works, we will focus on: 1) explor-
ing the solution to the limitations of the proposed
method; 2) build associations for different datasets
that require the same NLU capabilities.
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Abstract

Question answering on knowledge bases
(KBQA) poses a unique challenge for seman-
tic parsing research due to two intertwined
challenges: large search space and ambigui-
ties in schema linking. Conventional ranking-
based KBQA models, which rely on a can-
didate enumeration step to reduce the search
space, struggle with flexibility in predicting
complicated queries and have impractical run-
ning time. In this paper, we present ArcaneQA,
a novel generation-based model that addresses
both the large search space and the schema link-
ing challenges in a unified framework with two
mutually boosting ingredients: dynamic pro-
gram induction for tackling the large search
space and dynamic contextualized encoding for
schema linking. Experimental results on mul-
tiple popular KBQA datasets demonstrate the
highly competitive performance of ArcaneQA
in both effectiveness and efficiency.1

1 Introduction

Modern knowledge bases (KBs) contain a wealth of
structured knowledge. For example, FREEBASE (Bol-
lacker et al., 2008) contains over 45 million entities
and 3 billion facts across more than 100 domains,
while GOOGLE KNOWLEDGE GRAPH has amassed over
500 billion facts about 5 billion entities (Sullivan,
2020). Question answering on knowledge bases
(KBQA) has emerged as a user-friendly solution to
access the massive structured knowledge in KBs.

KBQA is commonly modeled as a semantic pars-
ing problem (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005) with the goal of mapping a nat-
ural language question into a logical form that can
be executed against the KB (Berant et al., 2013;
Cai and Yates, 2013; Yih et al., 2015). Compared
with other semantic parsing settings such as text-to-
SQL parsing (Zhong et al., 2017; Yu et al., 2018),

1Data and code: dki-lab/ArcaneQA

Question: Which wine in Tulum valley has the most alcohol?

Program: (ARGMAX (AND (JOIN Tulum_Valley wine_sub_region)
wine) percentage_alcohol)

(JOIN #1 wine_sub_region) (JOIN #1 contains)

(AND #2 wine)(JOIN #2 color)

(ARGMAX #3 percentage_alcohol)

Tulum_Valley

Step 3

(a) Program Induction #1

#2

#3

(b) Contextualized Encoding

Step 2

Step 1

Step 1 Step 3

(ARGMAX #3 vintage)

Figure 1: KBQA is commonly modeled as semantic
parsing with the goal of mapping a question into an
executable program. (a) A high-level illustration of our
program induction procedure. The target program is in-
duced by incrementally synthesizing a sequence of sub-
programs (#1-3). The execution of each subprogram
can significantly reduce the search space of subsequent
subprograms. (b) Alignments between question words
and schema items at different steps achieved by a BERT
encoder. A pre-trained language model like BERT can
jointly encode the question and schema items to get the
contextualized representation at each step, which further
guides the search process.

where the underlying data is moderate-sized, the
massive scale and the broad-coverage schema of
KBs makes KBQA a uniquely challenging setting
for semantic parsing research.

The unique difficulty stems from two intertwined
challenges: large search space and ambiguities in
schema linking. On the one hand, transductive se-
mantic parsing models that are highly effective in
other semantic parsing settings (Dong and Lapata,
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2016; Wang et al., 2020) struggle with the large
vocabulary size and often generate logical forms
(i.e., formal queries)2 that are not faithful to the
underlying KB (Gu et al., 2021; Xie et al., 2022).
Therefore, a candidate enumeration and ranking
approach is commonly adopted for KBQA (Berant
and Liang, 2014; Yih et al., 2015; Abujabal et al.,
2017; Lan et al., 2019a; Sun et al., 2020; Gu et al.,
2021; Ye et al., 2021). However, these methods
have to make various compromises on the complex-
ity of admissible logical forms to deal with the large
search space. Not only does this limit the type of an-
swerable questions, but it also leads to impractical
runtime performance due to the time-consuming
candidate enumeration (Gu et al., 2021). On the
other hand, schema linking,3 i.e., mapping natural
language to the corresponding schema items in the
KB (e.g., in Figure 1, wine sub region is a linked
schema items), is also a core challenge of KBQA.
Compared with text-to-SQL parsing (Hwang et al.,
2019; Zhang et al., 2019; Wang et al., 2020), the
broad schema of KBs and the resulting ambiguity
between schema items makes accurate schema link-
ing more important and challenging for KBQA. Re-
cent studies show that contextualized joint encod-
ing of natural language questions and schema items
with BERT (Devlin et al., 2019) can significantly
boost the schema linking accuracy (Gu et al., 2021;
Chen et al., 2021). However, existing methods still
struggle with the large search space and need to
encode a large number of schema items, which is
detrimental to both accuracy and efficiency.

We present ArcaneQA (Dynamic Program
Induction and Contextualized Encoding for
Question Answering), a generation-based KBQA
model that addresses both the large search space
and the schema linking challenges in a unified
framework. Compared with the predominant
ranking-based KBQA models, our generation-
based model can prune the search space on the
fly and thus is more flexible to generate diverse
queries without compromising the expressivity or
complexity of answerable questions. Inspired by
prior work (Dong and Lapata, 2016; Liang et al.,
2017; Semantic Machines et al., 2020; Chen et al.,
2021), we model KBQA using the encoder-decoder

2We use the terms logical form, query, and program inter-
changeably across the paper.

3Semantic parsing implicitly entails two sub-tasks: schema
linking and composition. There is not necessarily a dedicated
step or component for schema linking. More commonly, the
two sub-tasks are handled simultaneously.

framework. However, instead of top-down decod-
ing with grammar-level constraints as in prior work,
which does not guarantee the faithfulness of the
generated queries to the underlying KB, ArcaneQA
performs dynamic program induction (Liang et al.,
2017; Semantic Machines et al., 2020), where we
incrementally synthesize a program by dynami-
cally predicting a sequence of subprograms to an-
swer a question; i.e., bottom-up parsing (Cheng
et al., 2019; Rubin and Berant, 2021). Each sub-
program is grounded to the KB and its grounding
(i.e., denotation or execution results) can further
guide an efficient search for faithful programs (see
Figure 1(a)). In addition, we unify the meaning
representation (MR) for programs in KBQA using
S-expressions and support more diverse operations
over the KB (e.g., numerical operations such as
COUNT/ARGMIN/ARGMAX and diverse graph traver-
sal operations).

At the same time, we employ pre-trained lan-
guage models (PLMs) like BERT to jointly encode
the question and schema items and get the contex-
tualized representation of both, which implicitly
links words to the corresponding schema items via
self-attention. One unique feature to note is that the
encoding is also dynamic: at each prediction step,
only the set of admissible schema items determined
by the dynamic program induction process needs
to be encoded, which allows extracting the most
relevant information from the question for each
prediction step while avoiding the need to encode
a large number of schema items. Figure 1(b) il-
lustrates the contextualization of different steps via
the attention heatmaps of BERT. In this example,
the attention of each question word over candidate
schema items serves as a strong indicator of the
gold items for both steps (i.e., wine sub region

for step 1 and percentage alcohol for step 3).
The two key ingredients of our model are mutually
boosting: dynamic program induction significantly
reduces the number of schema items that need to be
encoded, while dynamic contextualized encoding
intelligently guides the search process.

Our main contribution is as follows: a) We pro-
pose a novel generation-based KBQA model that is
flexible to generate diverse complex queries while
also being more efficient than ranking-based mod-
els. b) We propose a novel strategy to effectively
employ PLMs to provide contextualized encoding
for KBQA. c) We unify the meaning representa-
tion (MR) of different KBQA datasets and support
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more diverse operations. d) With our unified MR,
we evaluate our model on three popular KBQA
datasets and show highly competitive results.

2 Related Work

Ranking-Based KBQA. To handle the large
search space in KBQA, existing studies typically
rely on hand-crafted templates with a pre-specified
maximum number of relations to enumerate can-
didate logical forms (Yih et al., 2015; Abujabal
et al., 2017; Lan et al., 2019a; Bhutani et al., 2019,
2020), which suffers from limited expressivity and
scalability. For example, Yih et al. (2015) limit the
candidate programs to be a core relational chain,
whose length is at most two, plus constraints. Ye
et al. (2021) additionally adopts a post-generation
module to revise the enumerated logical forms into
more complicated ones, however, their method still
heavily depends on the candidate enumeration step.
In addition, the time-consuming candidate enumer-
ation results in impractical online inference time
for ranking-based models. In contrast, ArcaneQA
obviates the need for candidate enumeration by
pruning the search space on the fly and thus can
generate more diverse and complicated programs
within practical running time.

Generation-Based KBQA. To relax the restric-
tion on candidate enumeration, some recent efforts
are made to reduce the search space using beam
search (Lan et al., 2019b; Chen et al., 2019; Lan
and Jiang, 2020), however, Lan et al. (2019b) and
Chen et al. (2019) can only generate programs of
path structure, while Lan and Jiang (2020) follow
the query graph structure proposed by Yih et al.
(2015). A few recent studies (Liang et al., 2017;
Chen et al., 2021) formulate semantic parsing over
the KB as sequence transduction using encoder-
decoder models to enable more flexible generation.
Chen et al. (2021) apply schema-level constraints
to eliminate ill-formed programs from the search
space, however, they do not guarantee the faithful-
ness of predicted programs. Similar to Liang et al.
(2017), our dynamic program induction uses KB
contents-level constraints to ensure the faithfulness
of generated programs, but we extend it to handle
more complex and diverse questions and also use
it jointly with dynamic contextualized encoding.

Using PLMs in Semantic Parsing. PLMs have
been widely applied in many semantic parsing
tasks, typically being used to jointly encode the in-
put question and schema items(Hwang et al., 2019;

Zhang et al., 2019; Wang et al., 2020; Scholak et al.,
2021). However, PLMs have been under-exploited
in KBQA. One major difficulty of using PLMs in
KBQA lies in the high volume of schema items in
a KB; simply concatenating all schema items with
the input question for joint encoding, as commonly
done in text-to-SQL parsing, will vastly exceed
PLMs’ maximum input length. Existing KBQA
models either use PLMs to provide features for
downstream classifiers(Lan and Jiang, 2020; Sun
et al., 2020) or adopts a pipeline design to identify
a smaller set of schema items beforehand and only
use PLMs to encode these identified items (Gu
et al., 2021; Chen et al., 2021), which can lead
to error propagation. By comparison, ArcaneQA
can fully exploit PLMs to provide contextualized
representation for the question and schema items
dynamically, where only the most relevant schema
items are encoded at each step. More recently, Ye
et al. (2021) use T5 (Raffel et al., 2019) to output a
new program given a program as input, while T5’s
decoder generates free-formed text and does not
always produce faithful programs. By contrast, Ar-
caneQA only uses PLMs for encoding and uses its
customized decoder with a faithfulness guarantee.

3 Background

Knowledge Base. A knowledge base K consists
of a set of relational triplets Kr ⊂ E ×R× (E ∪L)
and a set of class assertionsKc ⊂ E×C, where C is
a set of classes, E is a set of entities, L is a set of
literals andR is a set of binary relations. Elements
in C andR are also called the schema items of K.

Meaning Representation for KBQA. Prior
work adopt different meaning representations to
represent logical forms for KBQA. For example,
Yih et al. (2015) use graph query, which represents
a program as a core relation chain with (optionally)
some entity constraints. Cai and Yates (2013)
use λ-Calculus as their meaning representation.
In this paper, we follow Gu et al. (2021) to use
S-expressions as our meaning representation due
to their expressivity and simplicity. To support
more diverse operations over the KB, we extend
their definitions with two additional functions
CONS and TC, which are used to support constraints
with implicit entities and temporal constraints
respectively (see details in Appendix A). For
implicit entities, consider the question “What
was Elie Wiesel’s father’s name?”, whose target
query involves two entities: Elie Wiesel and
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Male. The entity Male is an implicit constraint
rather than a named entity,4 and it is used as an
argument of CONS in the target logical form: (CONS

(JOIN people.person.children Elie Wiesel)

people.person.gender Male). TC works in a
similar way, with the difference being that the
constraint should be a temporal expression (e.g.,
2015-08-10) rather than an implicit entity.

4 Approach

4.1 Overview

The core idea of our generation-based model is
to gradually expand a subprogram (i.e., a partial
query) into the finalized target program, instead of
enumerating all possible finalized programs from
the KB directly, which suffers from combinatorial
explosion. There are two common strategies to in-
stantiate the idea of gradual subprogram expansion,
depending on the type of meaning representation
being used. For a graph-like meaning representa-
tion, we can directly perform graph search over
the KB to expand a subprogram (Chen et al., 2019;
Lan and Jiang, 2020). Also, we can linearize a
program into a sequence of tokens and perform
decoding in the token space (Liang et al., 2017;
Scholak et al., 2021). Because S-expressions can
be easily converted into sequences of tokens, we
choose to follow the second strategy and take ad-
vantage of the encoder-decoder framework, which
has been a de facto choice for many semantic pars-
ing tasks. Concretely, ArcaneQA learns to synthe-
size the target program by dynamically generating
a sequence of subprograms token by token until
predicting ⟨EOS⟩, where each subsequent subpro-
gram is an expansion from one or more preceding
subprograms (denoted as parameters in the subse-
quent subprogram). Formally, the goal is to map
an input question q = x1, ..., x|q| to a sequence
of subprograms o = o11, ..., o

1
|o1|, ..., o

k
1, ..., o

k
|ok| =

y1, ..., y|o|, where k is the number of total subpro-

grams and |o| =
k∑
i=1
|oi|. We base ArcaneQA on

Seq2Seq with attention (Sutskever et al., 2014; Bah-
danau et al., 2015), in which the conditional proba-

4WEBQSP is the only dataset we consider that has this
feature. Though there might be a more systematic way to
differentiate implicit entities from named entities, we choose
an expedient way to collect implicit entities from the training
data according to whether an entity is explicitly mentioned in
the question.

bility p(o|q) is decomposed as:

p(o|q) =
|o|∏

t=1

p(yt|y<t, q), (1)

where each token yt is either a token from the vo-
cabulary V or an intermediate subprogram from the
set S storing all previously generated subprograms.
V comprises all schema items in K, syntactic sym-
bols in S-expressions (i.e., parentheses and function
names), and the special token ⟨EOS⟩. S initially
contains the identified entities in the question (e.g.,
#1 in Figure 1). Every time a subprogram is pre-
dicted, it is executed and added to S (e.g., #2 in
Figure 1).

ArcaneQA builds on two key ideas: dynamic
program induction and dynamic contextualized en-
coding (see Figure 2). At each decoding step, Ar-
caneQA only makes a prediction from a small set of
admissible tokens instead of the entire vocabulary.
This is achieved by the dynamic program induc-
tion framework (subsection 4.2), which effectively
prunes the search space by orders of magnitude and
guarantees that the predicted programs are faith-
ful to the KB. In addition, we dynamically apply
BERT to provide contextualized joint encoding for
both the question and admissible tokens at each
decoding step (subsection 4.3). In this way, we
allow the contextualized encoding to only focus on
the most relevant information without introducing
noise from irrelevant tokens.

4.2 Dynamic Program Induction

Dynamic program induction capitalizes on the idea
that a complicated program can be gradually ex-
panded from a list of subprograms. To ensure the
expanded program is faithful to the KB, we query
the KB with a subprogram to expand and a function
defined in Table 4 to get a set of admissible actions
(tokens). For example, in Figure 2, given #1 and the
function JOIN, the admissible actions are defined
by predicting a relation connecting to the execu-
tion result of #1 (i.e., Tulum Valley), and there
are only four relations to choose from (e.g., appel-

lation and wine sub region). Table 1 shows a
comprehensive description of expansion rules for
different functions. With these rules, ArcaneQA
can greatly reduce the search space for semantic
parsing over the KB dynamically. The reduced can-
didate space further allows us to perform dynamic
contextualized encoding (subsection 4.3).

1721



(

 Which wine in Tulum valley has the most alcohol?

(a) Overview

<SOS> ( JOIN #1 )

JOIN #1 wine_sub_region ) (

Decoding units
Encoding units
Admissible tokens

(b) Dynamic Program Induction (c) Dynamic Contextualized Encoding

BERT Encoding

[CLS]

wine_sub_region

appellation
wine_sub_region

contained_by
contains

Admissible tokens

Previous predictions:

Knowledge base:

Question

:

Tulum_Valley
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wine_sub_region

contains

contained_by

#2

[SEP] [SEP]... ...

( JOIN #1

Figure 2: (a) Overview of ArcaneQA. ArcaneQA synthesizes the target program by iteratively predicting a sequence
of subprograms. (b) At each step, it makes a prediction from a small set of admissible tokens A dynamically
determined based on the execution of previous subprograms (for faithfulness to the KB) as well as the grammar (for
well-formedness). (c) ArcaneQA also leverages BERT to provide dynamic contextualized encoding of the question
and the admissible tokens at each step, which enables implicit schema linking and guides the dynamic program
induction process.

Within our encoder-decoder framework, this
idea is implemented using constrained decod-
ing (Liang et al., 2017; Scholak et al., 2021), i.e.,
at each decoding step, a small set of admissible
tokens from the vocabulary is determined based
on the decoding history following predefined rules.
The expansion rules in Table 1 have already com-
prised part of our rules for constrained decoding.
In addition, several straightforward grammar rules
are applied to ensure that the generated programs
are well-formed. For instance, after predicting “(”,
the admissible tokens for the next step can only
be a function name. After predicting a function
name, the decoder can only choose a preceding
subprogram to expand. After predicting “)”, the
admissible tokens for next step can only be either
“(”, indicating the start of a new subprogram, or
“⟨EOS⟩”, denoting termination. The decoding pro-
cess can be viewed as a sequential decision-making
process, which decomposes the task of finding a
program from the enormous search space into mak-
ing decisions from a sequence of smaller search
spaces.

4.3 Dynamic Contextualized Encoding

In semantic parsing, PLMs have typically been
used to jointly encode the input question and all
schema items via concatenation (Hwang et al.,
2019; Zhang et al., 2019; Wang et al., 2020).
However, direct concatenation is not feasible for
KBQA due to a large number of schema items.
Instead of obtaining a static representation for the
question and items from V before decoding (Gu
et al., 2021; Chen et al., 2021), we propose to do
dynamic contextualized encoding at each decoding
step; for each step, we use BERT to jointly encode
the question and only the admissible tokens from
V . ArcaneQA’s dynamic program induction vastly
reduces the number of candidate tokens at each
step and allows us to concatenate the question and
the admissible tokens into a compact sequence:5

[CLS], x1, ..., x|q|, [SEP], st1, ..., stm, [SEP]

where {sti} ⊂ V are admissible tokens at

5We omit the wordpieces tokenization here for brevity.
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Current function Admissible actions

JOIN {r|h ∈ #, (h, r, t) ∈ Kr}
AND {v|v ∈ S, v ∩ # ̸= ∅} ∪ {c|e ∈ #, (e, c) ∈ Kc}

ARGMAX/ARGMIN {r|h ∈ #, t ∈ L, (h, r, t) ∈ Kr}
LT(LE/GT/GE) {r|t < (≤ / > / ≥)#, (h, r, t) ∈ Kr}

COUNT {)}
CONS {(r, t)|h ∈ #, (h, r, t) ∈ Kr}

TC {(r, t)|h ∈ #, (h, r, t) ∈ Kr, t ∈ L is a temporal expression}

Table 1: A set of rules to expand a preceding subprogram given a function. The execution of the subprogram is
denoted as #. These expansion rules reduce the search space significantly with a faithfulness guarantee. COUNT
takes no other argument, so the only admissible token is “)”.

step t and |{sti}| = m. After feeding the concate-
nated sequence to BERT, we obtain the question
representation Qt = (x1, ...,xq) by further
feeding the outputs from BERT to an LSTM
encoder. For each admissible token, we represent
it by averaging BERT outputs corresponding to
its wordpieces. In this way, we also obtain the
embedding matrix Wt ∈ Rm×d, where each row
corresponds to the embedding of an admissible
token. The contextualized representation Qt and
Wt are both dynamically computed at each time
step. Words and corresponding schema items
are implicitly linked to each other via BERT’s
self-attention.

4.4 Decoding
We use an LSTM decoder. At decoding step t,
given the hidden state ht−1 and input ct−1, we
obtain the updated hidden state ht by:

ht = LSTMθ(ht−1, ct−1) (2)

where our LSTM decoder is parameterized by θ.
With ht and Wt—the embedding matrix of ad-

missible tokens (determined by dynamic program
induction)—we obtain the probability of generat-
ing a token from the admissible tokens:

p(yt = sti|q, y<t) = [Softmax(Wtht)]i (3)

The input ct for the next step is obtained via the
concatenation of the contextualized embedding of
the current output token and the weighted represen-
tation of the question based on attention:

at = softmax(Qtht) (4)

qt = (at)
TQt (5)

ct = [[Wt]j ;qt] (6)

where ; denotes concatenation, and j denotes the
index of the predicted yt in Wt.

4.5 Training and Inference

We train ArcaneQA with question-program pairs
using cross entropy loss. The model learns to max-
imize the probability of predicting the gold token
out of a small set of admissible tokens at each
step, which is different from training a conventional
Seq2Seq model using a static vocabulary.

During inference, ArcaneQA assumes an entity
linker to identify a set of entities from the ques-
tion at the beginning of program induction. How-
ever, the entity linker may identify false entities.
To deal with it, ArcaneQA initiate its decoding
process with different hypotheses from the set of
entities. Basically, it tries out all possible combina-
tions of the identified entities (i.e., the power set of
the identified entities), considering that our entity
linker normally can only identify no more than two
entities from a question.

5 Experimental Setup

Datasets. We evaluate ArcaneQA on three KBQA
datasets covering diverse KB queries.
GRAILQA (Gu et al., 2021) is a large-scale KBQA
dataset that contains complex questions with vari-
ous functions, including comparatives, superlatives,
and counting. It evaluates the generalizability of
KBQA at three levels: i.i.d., compositional and
zero-shot.
GRAPHQ (Su et al., 2016) also contains questions
of diverse nature. It is particularly challenging
because it exclusively focuses on non-i.i.d. gener-
alization.6

WEBQSP(Yih et al., 2016) is a clean subset of WEBQ

(Berant et al., 2013) with annotated logical forms.

6GRAPHQ originally uses FREEBASE (version 2013-07)
as their KB, while GRAILQA and WEBQ use FREEBASE (ver-
sion 2015-08-09). In Gu et al. (2021), programs in GRAPHQ
are converted into the corresponding FREEBASE 2015-08-09
version, and we will use this version in our experiments.
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All questions in it are collected from Google query
logs, featuring more realistic and complicated in-
formation needs such as questions with temporal
constraints.

The total number of questions in GRAILQA,
GRAPHQ, and WEBQ is 64,331, 5,166, and 4,737
respectively.

Evaluation Metrics. For GRAILQA, we use their
official evaluation script with two metrics, EM,
i.e., program exact match accuracy, and F1, which
is computed based on the predicted and the gold
answer set. For GRAPHQ and WEBQSP, we follow
the standard practice and report F1.

Models for Comparison. We compare ArcaneQA
with the previous best-performing models on three
different datasets. For GRAILQA and WEBQSP, the
state-of-the-art model is RnG-KBQA (Ye et al.,
2021). Though RnG-KBQA uses T5 to decode
the target program as unconstrained sequence
transduction, it still heavily depends on candidate
enumeration as a prerequisite. Therefore, it is not a
generation-based model like ours. ReTraCk (Chen
et al., 2021) is the state-of-the-art generation-based
model on GRAILQA which poses grammar-level
constraints to the decoder to generate well-formed
but unnecessarily faithful programs. For GRAPHQ,
the ranking-based model SPARQA (Sun et al.,
2020) has achieved the best results so far. It
uses BERT as a feature extractor for downstream
classifiers. In addition to the state-of-the-art
models, we also compare ArcaneQA with
BERT+Transduction and BERT+Ranking (Gu
et al., 2021), which are two baseline models on
GRAILQA that enhance a vanilla Seq2Seq model
with BERT to perform generation and ranking
respectively.

Implementation. Our models are implemented
using PyTorch and AllenNLP (Gardner et al., 2018).
For BERT, we use the bert-base-uncased version
provided by HuggingFace. For more details about
implementation and hyper-parameters, we refer the
reader to Appendix B.

6 Results

6.1 Overall Evaluation
We show the overall results in Table 2 (for dev
set results see Appendix C). ArcaneQA achieves
the state-of-the-art performance on both GRAPHQ

and WEBQSP. For GRAPHQ, there are 188 questions
in GRAPHQ’s test set that cannot be converted into
FREEBASE 2015-08-09 version, so we treat the F1 of
all those questions as 0 following Gu et al. (2021),
while the numbers in the parentheses are the actual
F1 on the test set if we exclude those questions.
ArcaneQA significantly outperforms the prior art
by over 10%. The improvement over SPARQA
shows the advantage of using PLMs for contextu-
alized joint encoding instead of just providing fea-
tures for ranking. On both WEBQSP and GRAILQA,
ArcaneQA also achieves the best performance or
performs on par with the prior art in terms of F1.
It outperforms ReTraCk by 4.3% and 1.9% (using
the same entity linking results) on WEBQSP and
GRAILQA respectively, suggesting that ArcaneQA
can more effectively reduce the search space with
dynamic program induction compared with Re-
TraCk’s grammar-based decoding. Also, our model
performs on par with the previous state-of-the-art
RnG-KBQA (i.e., 0.2% higher on WEBQSP, while
0.7% lower on GRAILQA). However, ArcaneQA
under-performs RnG-KBQA in EM on GRAILQA.
The overall EM of ArcaneQA is lower than RnG-
KBQA by 5%, and the gap on zero-shot generaliza-
tion is even larger (i.e., around 10%), despite the
comparable numbers in F1. This can be explained
by that ArcaneQA learns to predict a program in a
more flexible way and may potentially find some
novel structures. This may further be supported
by the observation that ArcaneQA performs better
than RnG-KBQA on compositional generalization,
which requires KBQA models to generalize to un-
seen query structures during training. Overall, the
results demonstrate ArcaneQA’s flexibility in han-
dling KBQA scenarios of different natures.

6.2 In-Depth Analyses

To gain more insights into ArcaneQA’s strong per-
formance, we conduct in-depth analyses on the two
key designs of ArcaneQA.

Dynamic Program Induction. One vanilla im-
plementation of ArcaneQA without dynamic pro-
gram induction is BERT+Transduction, i.e., its
search space and vocabulary during decoding is
independent of previous predictions. As shown in
Table 2a, when using the same entity linking re-
sults, ArcaneQA outperforms BERT+Transduction
by 30.4% in overall F1 and is twice as good on
zero-shot generalization. One major weakness of
BERT+Transduction is that it predicts many pro-
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Overall I.I.D. Compositional Zero-shot

Model EM F1 EM F1 EM F1 EM F1

QGG∗ (Lan and Jiang, 2020) − 36.7 − 40.5 − 33.0 − 36.6
BERT+Transduction∗ (Gu et al., 2021) 33.3 36.8 51.8 53.9 31.0 36.0 25.7 29.3
BERT+Ranking∗ (Gu et al., 2021) 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7
ReTraCk (Chen et al., 2021) 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5
RnG-KBQA∗ (Ye et al., 2021) 61.4 67.4 78.0 81.8 55.0 63.2 56.7 63.0
ArcaneQA∗ 58.8 67.2 77.8 81.6 58.0 66.1 50.4 61.8

RnG-KBQA (Ye et al., 2021) 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2
ArcaneQA 63.8 73.7 85.6 88.9 65.8 75.3 52.9 66.0

w/o contextualized encoding 49.7 59.1 77.6 82.1 50.5 59.4 36.5 48.5

(a) GRAILQA

Model F1

UDEPLAMBDA (Reddy et al., 2017) 17.7
PARA4QA (Dong et al., 2017) 20.4
SPARQA (Sun et al., 2020) 21.5
BERT+Ranking (Gu et al., 2021) 25.0 (27.0)

ArcaneQA 31.8 (34.3)
w/o contextualized encoding 20.7 (22.4)

(b) GRAPHQ

Model F1

NSM (Liang et al., 2017) 69.0
KBQA-GST (Lan et al., 2019a) 67.9
TextRay (Bhutani et al., 2019) 60.3
QGG (Lan and Jiang, 2020) 74.0
ReTraCk (Chen et al., 2021) 71.0
CBR (Das et al., 2021) 72.8
RnG-KBQA (Ye et al., 2021) 75.1

ArcaneQA 75.3
w/o contextualized encoding 68.8

(c) WEBQSP

Table 2: Overall results on three datasets. ArcaneQA follows entity linking results from previous methods (i.e.,
RnG-KBQA’s results on GRAILQA, QGG’s results on WEBQSP, and Gu et al. (2021)’s results on GRAPHQ) for fair
comparison. Model names with ∗ indicate using the baseline entity linking results on GRAILQA.

grams that are not faithful to the KB, executing
which will lead to empty answers. Note that post-
hoc filtering by execution (Wang et al., 2018) can
only help to a limited degree due to the KB’s broad
schema, while this type of mistake is rooted out in
ArcaneQA by design.

Different from our search space pruning
achieved with dynamic program induction, ranking-
based models such as BERT+Ranking prunes un-
faithful programs from their search space by rank-
ing a set of faithful programs enumerated from the
KB. These models typically make compromises on
the complexity and diversity of programs during
candidate enumeration. We break down the perfor-
mance of ArcaneQA on GRAILQA’s validation set
in terms of question complexity and function types
and show the fine-grained results in Table 3. The
comparison with BERT-Ranking demonstrates the
scalability and flexibility of our dynamic program
induction. We also compare with RnG-KBQA,
which adopts exactly the same candidate enumera-
tion module as BERT+Ranking, but it is enhanced
with a T5-based revision module to edit the enumer-
ated programs into more diverse ones. We observe
that RnG-KBQA performs uniformly well across
different programs except for programs with su-

perlative functions (i.e., ARGMAX/ARGMIN), i.e., the
F1 of it is lower than ArcaneQA by over 50%. This
is because in their candidate generation step, there
is no superlative function enumerated. Despite the
effectiveness of their T5-based revision, their per-
formance still heavily depends on the diversity of
candidate enumeration, which restricts the flexibil-
ity of their method.

Dynamic Contextualized Encoding. To show
the key role of dynamic contextualized encoding,
we use GloVe (Pennington et al., 2014) to provide
non-contextualized embeddings for both questions
and tokens in V . We fix GloVe embeddings during
training to make the model less biased to the
training distribution (Gu et al., 2021) for GRAILQA

and GRAPHQ, which address non-i.i.d. generaliza-
tion, while for WEBQSP, we also update the word
embeddings during training. Results in Table 2a
show the importance of dynamic contextualized
encoding, i.e., without contextualized encoding,
the overall F1 decreases by 14.6%, 11.1%, and
6.5% on three datasets respectively. We also notice
that dynamic contextualized encoding is more criti-
cal for non-i.i.d. generalization, i.e., on GRAILQA

the F1 on i.i.d. generalization only decreases by
6.8%, while it decreases by 15.9% and 17.5%
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Function None Count Comparative Superlative

BERT+Ranking 59.1/66.0 43.0/53.2 0.0/14.5 0/6.0
RnG-KBQA 77.5/81.8 73.0/77.5 55.1/76.0 13.8/22.3
ArcaneQA 70.8/77.8 62.5/68.2 54.5/75.7 70.5/75.6

# of relations 1 2 3 4

BERT+Ranking 57.4/61.5 39.8/54.7 0.0/22.9 0.0/25.0
RnG-KBQA 75.7/79.2 65.4/74.8 28.6/44.4 100.0/100.0
ArcaneQA 74.9/80.9 59.9/71.1 27.6/37.7 100.0/100.0

Table 3: Fine-grained results (EM/F1) on GRAILQA’s dev set. None denotes programs with only AND and JOIN.

on compositional and zero-shot generalization.
Without contextualized encoding, identifying the
correct schema items from the KB in non-i.i.d.
setting is particularly challenging. Schema linking
powered by dynamic contextualized encoding is
the key to non-i.i.d. generalization, which is a
long-term goal of KBQA.

6.3 Efficiency Analysis

We compare the running time of ArcaneQA and
ranking-based models in the online mode (i.e., no
offline caching) to mimic the real application sce-
nario. To make the comparison fair, we configure
all models to interact with the KB via the same
Virtuoso SPARQL endpoint. We run each model
on 1,000 randomly sampled questions and report
the average running time per question on a GTX
2080 Ti card. As shown below, our model is faster
than BERT+Ranking and RnG-KBQA by an or-
der of magnitude, because ArcaneQA dynamically
prunes the search space and does not run the time-
consuming queries for enumerating two-hop candi-
dates.

BERT+Ranking RnG-KBQA ArcaneQA

Time (s) 115.5 82.1 5.6

7 Conclusions

We present a novel generation-based KBQA model,
ArcaneQA, which simultaneously addresses the
large search space and schema linking challenges
in KBQA with dynamic program induction and
dynamic contextualized encoding. Experimental
results on several popular datasets demonstrate the
advantages of ArcaneQA in both effectiveness and
efficiency. In the future, we will focus on develop-
ing generation-based KBQA models with stronger
zero-shot generalizability. In addition, exploring
other pre-trained language models such as T5 (Raf-
fel et al., 2019) for generation-based KBQA is also

an interesting direction.
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A Meaning Representation

We provide a detailed description of our defined
functions for S-expressions in Table 4. We provide
annotations in S-expressions for several KBQA
datasets, including WEBQSP, GRAPHQ, and COM-

PLEXWEBQ (which we did not use for experiments).
All data files annotated by us can be found in our
Github repo.

B Implementation Details

B.1 Entity Linking Results
For GRAILQA, we use the entity linking results pro-
vided by Ye et al. (2021); for GRAPHQ, we use the
entity linking results provided by Gu et al. (2021);
for WEBQSP, we follow the entity linking results
provided by (Lan and Jiang, 2020). In addition,
we find that answer types can be a strong clue
for GRAILQA, so we also predict a set of FREEBASE

classes for GRAILQA as a special type of entity. All
entity linking results can be found in our Github
repo.

B.2 Entity Anonymization
After identifying a set of entities, we do entity
anonymization for WEBQ, i.e., we replace the en-
tity mention with the type of the corresponding
entity. For example, mention “Barack Obama” will
be replaced by “US president”. However, the en-
tity linker might identify some false positive men-
tions, and anonymizing these mentions would lead
to some critical information loss. To address this
problem, we identify a set of common false posi-
tive mentions that contain important information
about the question in training data. Such words
include “government”, “zip”, etc. For mentions
include these words, we do not do anonymization.
Doing entity anonymization is a common practice
on WEBQ, which can normally bring some gain of
around 1 to 2 percent in F1, while for GRAILQA and
GRAPHQ, we did not observe any improvement, so
we keep the original entity mentions for these two
datasets.

B.3 Hyper Parameters
For ArcaneQA, we are only able to train our model
with batch size 1 due to the memory consumption,
so we choose a workaround to set the number of
gradient accumulations to 16. We use Adam op-
timizer with an initial learning rate of 0.001 to
update our own parameters in BERT-based models.
For BERT’s parameters, we fine-tune them with a

learning rate of 2e-5. For ArcaneQA w/o BERT,
we train it with batch size 32 and an initial learning
rate of 0.001 using Adam optimizer. For both mod-
els, the hidden sizes of both encoder and decoder
are set to 768, and the dropout rate is set to 0.5.
All hyper-parameters are manually tuned accord-
ing to the validation accuracy on the development
set. specifically, we do manual hyper-parameter
search from [1e-5, 2e-5, 3e-5], [8, 16, 32], [0.0,
0.2, 0.5] to tune the learning rate of fine-tuning
BERT, steps of gradient accumulation and dropout
rate respectively.

B.4 Number of Model Parameters
Total numbers of trainable parameters of
ArcaneQA and ArcaneQA w/o BERT are
123,652,608 and 261,900 respectively. The reason
that the trainable parameters of ArcaneQA w/o
BERT are so few is that we freeze the GloVe
embeddings for non-i.i.d. generalization. The
number of parameters becomes 121,205,100 if we
take the GloVe embeddings into account.

B.5 Other Details
We summarize some other details in our implemen-
tation that are critical to reproduction.

We identify the literals in GRAILQA and GRAPHQ

using hand-crafted regular expressions. There are
two types of literals, i.e., date time and numerical
value. Our regular expressions can identify around
98% of all literals.

During dynamic program induction of Ar-
caneQA, we follow the rules in Table 1 to run
SPARQL queries to retrieve the admissible schema
items. However, in some rare cases, the execu-
tion of a subprogram may contain a tremendous
number of entities For example, the execution of
(JOIN USA people.person.nationality) con-
tains over 500,000 entities, and running SPARQL
queries for all entities in them is infeasible. As a
result, we only run SPARQL queries for 100 enti-
ties sampled from the execution results. One better
choice could be to use some more efficient indexing
to query the KB instead of using SPARQL.

We construct the vocabulary V for different
datasets in different ways. For GRAILQA, follow-
ing Gu et al. (2021), we construct the vocabulary
using schema items from FREEBASECOMMONS. For
GRAPHQ, we construct the vocabulary using schema
items from the entire FREEBASE. For WEBQ, because
it evaluates i.i.d. generalization, so we construct
the vocabulary from its training data.
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Function Arguments Returns

JOIN a set of entities u ⊂ (E ∪ L) and a relation r ∈ R all entities connecting to any e ∈ u via r
AND two set of entities u1 ⊂ E and u2 ⊂ E the intersection of two entities sets.

ARGMAX/ARGMIN a set of entities u ⊂ E and a numerical relation r ∈ R a set of entities from u with the maximum/minimum value for r
LT(LE/GT/GE) a numerical value u ⊂ L and a numerical relation r ∈ R all entities with a value < (≤ / > / ≥)u for relation r

COUNT a set of entities u ⊂ E the number of entities in u
CONS a set of entities a set of entities u ⊂ E , a relation r ∈ R, and a constraint c ∈ (E ∪ L) all e ∈ u satisfying (e, r, c) ∈ Kr

TC a set of entities a set of entities u ⊂ E , a relation r ∈ R, and a temporal constraint c ∈ L all e ∈ u satisfying (e, r, c) ∈ Kr

Table 4: Detailed descriptions of functions defined in our S-expressions. We extend the definitions in Gu et al.
(2021) by introducing two new functions CONS and TC. Also, we remove the function R and instead represent the
inverse of a relation by adding a suffix “ inv” to it. Note that, for arguments in AND function, a class c ∈ C can also
indicate a set of entities which fall into c.

Overall I.I.D. Compositional Zero-shot

Model EM F1 EM F1 EM F1 EM F1

BERT+Ranking (Gu et al., 2021) 51.0 58.4 58.6 66.1 40.9 48.1 51.8 59.2
RnG-KBQA (Ye et al., 2021) 71.4 76.8 86.7 89.0 61.7 68.9 68.8 74.7
ArcaneQA 69.5 76.9 86.1 89.2 65.5 73.9 64.0 72.8

Table 5: The results on the validation set of GRAILQA. The overall trend is basically consistent with the test set.

C Results on the Validation Set of
GRAILQA

We show the results of ArcaneQA, BERT+Ranking,
and RnG-KBQA on the validation set of GRAILQA

in Table 5. We observe that ArcaneQA achieves a
better F1 than RnG-KBQA. Overall, the trend is
consistent with the test set. We also observe that
the EM of ArcaneQA on zero-shot generalization
is significantly higher than the test set, which is
interesting and remains for further investigation.
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Abstract

Unsupervised question answering is an attrac-
tive task due to its independence on labeled
data. Previous works usually make use of
heuristic rules as well as pre-trained models
to construct data and train QA models. How-
ever, most of these works regard named entity
(NE) as the only answer type, which ignores
the high diversity of answers in the real world.
To tackle this problem, we propose a novel
unsupervised method by diversifying answers,
named DiverseQA. Specifically, the proposed
method is composed of three modules: data
construction, data augmentation and denoising
filter. Firstly, the data construction module ex-
tends the extracted named entity into a longer
sentence constituent as the new answer span to
construct a QA dataset with diverse answers.
Secondly, the data augmentation module adopts
an answer-type dependent data augmentation
process via adversarial training in the embed-
ding level. Thirdly, the denoising filter module
is designed to alleviate the noise in the con-
structed data. Extensive experiments show that
the proposed method outperforms previous un-
supervised models on five benchmark datasets,
including SQuADv1.1, NewsQA, TriviaQA,
BioASQ, and DuoRC. Besides, the proposed
method shows strong performance in the few-
shot learning setting.1

1 Introduction

Extractive question answering (extractive QA)
aims to provide answer spans extracted from the
context to answer questions. It can improve the
interaction between humans and machines in appli-
cations such as search engines and dialog systems.

Existing extractive QA methods can be divided
into two categories: supervised QA and unsuper-
vised QA. Traditionally, for supervised QA (Seo
et al., 2016), human-labeled context, questions and

∗Corresponding author
1We have released our codes and data in https://

github.com/JerrryNie/DiverseQA.
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Figure 1: The answer type distributions of SQuADv1.1
and NewsQA, where we notice that named entities are
just a fraction of each dataset.

answers are given to train a QA model. Since the
construction cost of labeled data is too high for su-
pervised QA, recently, researchers pay more atten-
tion to the unsupervised setting, where QA pairs are
unavailable. For example, Lewis et al. (2019) pro-
pose an unsupervised machine translation model
to generate QA pairs. Li et al. (2020), Hong et al.
(2020) and Lyu et al. (2021) try to alleviate the over-
lap between the context and the generated question.
However, most existing works regard named enti-
ties as the only answer type, which ignores the high
diversity of answers in the real world. For instance,
as shown in Figure 1, in SQuADv1.1 (Rajpurkar
et al., 2016) and NewsQA (Trischler et al., 2017),
the answer type of named entities only account for
52.4% and 41.1% respectively.

To solve the problem, an intuitive way is to ex-
tract each type of answer spans independently in
the raw text. Yet, it leads to two critical problems.
Firstly, it’s hard to determine the proportion of
each answer type in the synthetic dataset. Sec-
ondly, extracting answers without any guidance
could probably generate trivial and noisy question-
answer pairs. To tackle the problem above, we pro-
pose DiverseQA, a novel unsupervised QA method.
Specifically, the proposed method consists of three
modules: data construction, data augmentation and
denoising filter. Firstly, the data construction mod-
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ule employs a simple answer-extending rule to con-
struct a dataset with diverse answers. As shown
in Figure 2, a named entity (NE) is extracted and
extended into a longer answer span, which should
be a constituent of the sentence (e.g. noun phrase,
verb phrase). In this way, the proportion of each
type of answers can be obtained entirely from the
original text. Besides, NE-based extension largely
guarantees that extracted answers are meaningful.
Secondly, an answer-type dependent data augmen-
tation module is proposed. Concretely, an adjusting
vector generator is designed to produce answer-
type enhanced QA pairs in the embedding level.
Then, a discriminator classifies the embeddings
into the corresponding answer type while minimiz-
ing the KL divergence between the distribution and
its prior to fool the discriminator in an adversar-
ial way. Thirdly, the denoising filter is applied to
alleviate the noise in the synthetic QA pairs.

Extensive experiments on six benchmarks, in-
cluding SQuADv1.1 (Rajpurkar et al., 2016),
TriviaQA (Joshi et al., 2017), NaturalQuestions
(Kwiatkowski et al., 2019), NewsQA (Trischler
et al., 2017), BioASQ (Tsatsaronis et al., 2015) and
DuoRC (Saha et al., 2018) show that DiverseQA
outperforms previous unsupervised methods on
five datasets and obtains comparable results on one
dataset among unsupervised QA models. Further
analysis shows that DiverseQA can largely improve
the question-answering ability of the model on di-
verse answer types. In addition, our method shows
strong performance in the few-shot learning setting.

The contributions of our method are as follows:

• We propose DiverseQA, a novel method to
improve an unsupervised QA model to handle
answers beyond named entities.

• Our method outperforms previous unsuper-
vised works on five benchmarks and reaches
the comparable result on a benchmark.

• Further analysis shows that the drift of answer
length distribution and the quality of extracted
answers are important to the performance of
the model.

2 Related Work

Data Augmentation. Data augmentation meth-
ods can be regarded as regularizers to make the
model robust and reduce dependence on the train-
ing data. In computer vision domains (Krizhevsky
et al., 2012), geometric transformation and color
space transformation are effective. In natural lan-

Figure 2: An example of our data constructing module.
We extract the named entity (NE) in the Raw Sentence
and extend it into a longer sentence constituent until
meeting the stop extending condition. The final ex-
tended answer span is a VP in this example, which is
used in cloze translation for question generation.

guage processing, word removing, synonym replac-
ing and back-translation can enlarge the diversity
of examples (Xie et al., 2020). Lee et al. (2021)
proposes an embedding-level data augmentation
method to improve the performance of QA on out-
of-distribution data. This work relies on supervised
(low noise) training instances, while in the unsuper-
vised (high noise) scenario, embedding-level data
augmentation methods have not been explored yet.

Extractive Question Answering. Extractive
question answering (extractive QA) aims to out-
put an answer span given the context (containing
the answer) and the question. It has gained much
progress with the help of large labeled datasets such
as SQuAD, NewsQA, and TriviaQA. To better han-
dle these datasets, strong extractive QA models
are proposed, including BiDAF (Seo et al., 2016),
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019). However, because they largely de-
pend on human-annotated data, the lack of labeled
data for some specific domains constrains the ca-
pacity of the supervised extractive QA model.

Unsupervised Question Answering. Unsuper-
vised question answering (unsupervised QA) be-
comes attractive among researchers recently (Lewis
et al., 2019). Like supervised extractive QA, given
context and question, the model needs to extract a
text span from the context to answer the question.
The difference is that in the unsupervised setting,
models need to learn to answer the question without
any human-labeled ⟨context, question, answer⟩
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triples, which is a more challenging task than the
supervised counterpart. Lewis et al. (2019) extracts
named entity from the context, and then trains an
unsupervised neural machine translation model to
convert the cloze question into a natural question.
Li et al. (2020) makes use of cited documents and
a refine phase to alleviate serious question-context
overlapping and improve answer diversity. Hong
et al. (2020) uses paraphrasing and trimming to
remove unanswerable questions as well as allevi-
ate the context-question similarity problem. Lyu
et al. (2021) takes advantage of a supervised sum-
marization dataset to tackle the context-question
overlapping problem. However, most of the exist-
ing works regard the named entity (NE) as the only
answer type, while other types (e.g. noun phrases,
adjective phrases, verb phrases, sub-clauses) are
nearly ignored. Although in Lewis et al. (2019),
the inclusion of noun phrases (NPs) was discussed,
the reported poor performance eventually led the
author to use the NE-based synthetic QA pairs. In
Li et al. (2020), even though generating more an-
swers is considered, most of the model-generated
answers have strong relationships with the named
entity and we will discuss it later in Section 4.3.4.

3 Method

To explore answer types beyond named entities,
we propose an unsupervised method DiverseQA,
which can be divided into three modules, data aug-
mentation, data construction and denoising filter.
Firstly, a simple but effective span extending rule
is applied in the data construction module to do
answer extraction and natural question generation
to construct a synthetic QA dataset with diverse
answers. Secondly, an answer-type dependent data
augmentation module via adversarial training is
designed to produce high-quality augmented QA
pairs. Thirdly, a denoising filter is proposed to al-
leviate high noise in the dataset. In the next few
subsections, we will introduce the three modules
in detail.

3.1 Synthetic QA Data Construction via Span
Extension

In this section, we illustrate our QA data construct-
ing module, which can be divided into two steps.
Firstly, we extract answers in the text through span
extension. Secondly, we take advantage of pseudo-
NER label to generate questions.

3.1.1 Answer Generation via Span Extension
As shown in Figure 2, given a Raw Sentence, first
of all, we extract the named entity span Hamp-
ton County. Then, we extract all the constituents
containing Hampton County. We extend the span
into a longer constituent iteratively. When the next
extending span makes up more than ω% of the
Raw sentence, we stop extending and regard the
extended span as the final answer span. In this
example, the NE is firstly extended into a longer
NP. Again, the NP is extended into the VP. As the
VP ‘is located in the southern half of Hampton
County’ is the longest constituent while making up
less than ω% (called Span Extending Threshold)
of the Raw Sentence, it becomes the answer span
of the QA pair. The intuition is that even if many
constituents are trivial, the constituent containing
the named entity and making up a proper portion
of the Raw Sentence might be meaningful to create
a high-quality QA pair.

3.1.2 Question Generation with Pseudo-NER
Label

To construct a NE-based QA pair, the NER label
of the answer span is mapped to a question word
(Lewis et al., 2019) for generating the natural ques-
tion. However, it cannot be directly applied to
other answer types. To tackle the problem, we re-
gard the original NER label of the named entity
as the pseudo-NER label of the extended answer
span. After that, we replace the answer span with
the high-level NER mask token (Lewis et al., 2019).
The intuition is that the semantic information of the
extracted named entity can be probably consistent
with the extended constituent.

Followed Lewis et al. (2019) and Li et al. (2020),
we do the mask token mapping and cloze to natural
question conversion.

3.2 Answer-type Dependent Data
Augmentation

We firstly introduce the background of extractive
QA, and then illustrate how we design our answer-
type dependent data augmentation modules.

3.2.1 Backgrounds of Extractive Question
Answering

Given question q = (q1, q2, ..., qm) and context
c = (c1, c2, ..., cn), extractive QA models aim to
predict the start and end token of the answer span
a = (a1, a2) from the context. Assuming that
there are N observations: {c(i),q(i),a(i)}Ni=1, we
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Figure 3: Our data augmentation module. The Embed-
dings of the input sequence are firstly encoded into the
Hiddens. Then, the Adjustor module receives the Hid-
dens and produces an Adjusting Vector to adjust the
Embeddings by the element-wise product. Meanwhile,
the Discriminator classifies the produced vector into an
answer type to make the vector answer-type dependent.

estimate the model parameter θ by maximizing the
following function:

LMLE(θ) =
N∑

i=1

pθ(a
(i)|c(i),q(i)) (1)

3.2.2 Answer-type Dependent Embedding
Adjustment

As QA instances might have specific feature related
to answer types, motivated by Lee et al. (2021), we
design an answer-type dependent embedding-level
Adjusting Vector to create high quality instances
for model training.

The proposed adjusting vector z ∈ Rd×(m+n+r)

is sampled from the distributions qϕ(z|x, l) to aug-
ment the input sequence x ∈ Rd×(m+n+r), where
r is the special token length, d is the size of a word
embedding vector, x is the embeddings, l is an an-
swer type. We use the element-wise production
between the embedding and the Adjusting Vector
as extra data to train a QA model by maximizing
the log-likelihood function of pθ(a|x, z):

LAdjust(θ, ϕ) =
N∑

i=1

Eqϕ(z|x,l)
[
log pθ(a(i)|x(i), z)

]

+βKL
(
qϕ(z|x(i), l)||pψ(z)

)

(2)
where pψ(z) is the prior of the distribution
qϕ(z|x, l), ψ is the predetermined parameter of
the distribution. We assume it obeys multivariate
Gaussian distributions N (1, γId).

To make the embeddings answer-type depen-
dent, we train a neural network as the discrimi-
nator to classify the adjusting vector into the corre-
sponding answer type. The discriminator receives

the adjusting vector zj ∈ Rd and classifies the
vector into a corresponding answer type by using
the predicting distribution pπ(l|zj) = efl(zj)∑L

i=1 e
fi(zj)

,

where fi(zj) denotes the logit of answer type la-
bel i given zj . Due to imbalanced label distri-
bution among different answer types, followed
Menon et al. (2020), we modify the distribution
as: p′π(l|zj) = efl(zj)+log pl

∑L
i=1 e

fi(zj)+log pi
, where pi is the

frequency of the answer type i and π is the pa-
rameters of the discriminator. The discriminator is
trained via optimizing the following loss:

LD(π|z) =
N∑

i=1

P∑

j=1

L∑

l=1

yilp
′
π(l|z(i)j ) (3)

where P is the length of the input sequence, L is the
number of answer types. yil = 1 when the i-th ob-
servation is related to the answer type l, otherwise
yil = 0. To fool the discriminator, the Adjustor
needs to minimize the KL divergence between its
distribution qϕ and the prior pψ in Eqn. 2.

The Final Objective Function. The final objec-
tive function is as follows:

L(θ, ϕ, π) = LMLE(θ) + LAdjust(θ, ϕ) + αLD(π)
(4)

where α is the hyperparameter weighting between
the question-answering predicting loss and the
answer-type discriminating loss.

3.3 Denoising Filter

We design a denoising filter to further alleviate the
negative effect of the noise in the data. The filter
is composed of the Top-K Filter and the Substring
Filter. To apply them, we firstly use the QA model
to do inference on the unseen synthetic data. Then,
if the synthetic answer falls in the K answers with
the highest probability the model predicts (Top-
K Filter) or the predicted instance is a substring
of a NE-based answer span with predicting prob-
ability higher than γ (Substring Filter), we keep
it. Otherwise, we remove the instance. Then, we
use the filtered data to train our fine-tuned model.
In this process, Top-K Filter aims to choose QA
pairs with high confidence as low noise instances.
Substring Filter keeps extra NE-based QA pairs
with high predicting probabilities for training. The
idea comes from an observation that a substring of
a NE can probably represent the NE. For example,
in the sentence Apple CEO Tim Cook introduces
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SQuADv1.1 TriviaQA NQ NewsQA BioASQ DuoRC
Models EM/F1 EM/F1 EM/F1 EM/F1 EM/F1 EM/F1

Supervised Models
Match-LSTM 64.1/73.9 -/- -/- -/- -/- -/-
BiDAF 66.7/77.3 -/- -/- -/- -/- -/-
BERT-base 81.2/88.5 69.4/74.3◁ 66.1/77.9◁ 49.4/64.4◁ -/- -/-
BERT-large 84.2/91.1 75.7/80.2◁ 69.0/80.8◁ 56.0/71.0◁ -/- -/-

Trained with Supervised Summarization Dataset
Lyu et al. (2021) 65.6/74.5 36.7/43.0 46.0/53.5 37.5/50.1 32.0/43.2 38.8/46.5

Unsupervised Models
Lewis et al. (2019) 44.2/54.7 19.1/23.8† 27.5/35.1† 19.6/28.5‡ 18.9/27.0† 26.0/32.6†
RefQA 62.5/72.6 48.6/58.2‡ 43.4/55.7‡ 33.6/46.3 42.5/58.9‡ 38.0/49.4‡
DiverseQA 67.6/76.9 52.5/60.8 41.3/56.3 37.5/51.3 47.2/61.4 46.9/56.3

Table 1: Results (EM/F1) of our method and various baselines on six different datasets. ‘†’ denotes results taken
from Lyu et al. (2021). ‘‡’ denotes results from our reimplementation of RefQA(Li et al., 2020). ‘◁’ denotes our
fine-tuned BERT on supervised data. Because the pre-processed training sets of BioASQ and DuoRC in MRQA are
not released, we don’t fine-tune BERT on them.

two new products, “Tim Cook” is a NE referred to a
specific person. Besides, “Tim” or “Cook” can also
refer to him. Therefore, when the model predicts a
substring of a NE with a high probability, it might
refer to the original NE as the answer.

4 Experiments

4.1 Experiment Setup
Unsupervised QA Dataset Construction. We
use Wikiref (Li et al., 2020) as the original text to
construct QA pairs.

To extract answer spans, firstly, we use Spacy2

to extract all of the named entities and their NER
labels in the passage. Then, we apply Berkeley
Neural Parser (Kitaev and Klein, 2018) to parse
each sentence and extract a longer constituent con-
taining a named entity with the constraint of ω%
sentence length as the final answer span. Here, we
set ω = 80. In our experiment, we consider named
entity (NE), noun phrase (NP), adjective phrase
(ADJP), verb phrase (VP), and sub-clause (S) as
the candidate answer types. The dataset consists of
908,511 QA pairs. We randomly sample 300,000
to initially train a QA model, 600,000 to split them
into N =6 parts (followed the empirical results in
Li et al. (2020)) for the filtering phase.

Question Answering Model Settings. We use
BERT as the backbone of our QA model. We use
Adam (Kingma and Ba, 2014) as the optimizer. The
learning rate is 3e-5 and the batch size is 24. The
max sequence length is 384 and the doc stride is
128. The discriminator is set as a one-layer network.

2https://spacy.io

We set L = 5, α = 1, β = 1. We use BERT-large-
uncased-whole-word-masking, train the model for
2 epochs, save the checkpoint every 1,000 training
steps and use the dev set to evaluate them for early
stopping. Then, we continuously train the model
with filtered data via the denoising filter, where
K = 1 and the substring threshold γ = 0.1.

4.2 Results

We evaluate our model on SQuAD v1.1, NewsQA,
TriviaQA, NaturalQuestions (NQ), BioASQ and
DuoRC. We compare DiverseQA with supervised
approaches (Wang and Jiang, 2016; Seo et al., 2016;
Devlin et al., 2018), unsupervised approaches
(Lewis et al., 2019; Li et al., 2020) and the ap-
proach using a supervised summarization dataset
(Lyu et al., 2021). We use Exact Match (EM) and
F1 score as our metrics. We use the pre-processed
data provided in MRQA (Fisch et al., 2019).

The experimental results on six different bench-
marks are shown in Table 1. The model trained on
the synthetic QA data created by our DiverseQA
reaches the state-of-the-art on five benchmarks,
which shows the competitive performance of the
proposed method in a wide range of domains. How-
ever, we find that our model underperforms on Nat-
uralQuestions (NQ) dataset on exact match (EM).
It is because the answers in this dataset are all
entities, which means the model that only learns
information from named entity3 can have good per-
formance. After all, the model only needs to choose
a proper entity from an entity set rather than extract

3Although ‘named entity’ and ‘entity’ are different, they
share the common features in most aspects.
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a possible span from the whole context, which fi-
nally leads to a good EM value. But as we know,
named entities (or entities) are not the only answer
type in the real world. Therefore, it’s unfair for our
method. Because Lyu et al. (2021) (the line under
‘Trained with Supervised Summarization Dataset’
in Table 1) makes use of supervised summarization
dataset XSUM (Narayan et al., 2018) to train the
model, which is not a purely unsupervised method,
we don’t compare our method with it.

4.3 Analysis

We conduct experiments in this section to further
understand our method. BERT-base-uncased is
used to complete each experiment.

4.3.1 Effects of Different Components of
DiverseQA

We conduct experiments on different components
of DiverseQA. A brief illustration is as follows:

NeAnsQA Only extract NE as the answer type.

DiverseAnsQA Take the data-extending strategy
proposed to build a dataset with diverse answers.

RandomAnsQA Each answer span in Rando-
mAnsQA dataset has the same length with that of
DiverseAnsQA while the answer span is randomly
extended from the original NE-based answer.

Adjusting Vector It imposes the adjusting vector
produced by the ‘Adjustor’ module on the embed-
dings of input tokens as an augmentation instance.

Answer-type Discriminator The module is to
classify the adjusting vector into an answer type.

Top-K Filter Apply the Top-K Filter described
in Section 3.3.

Substring Filter Apply the Substring Filter de-
scribed in Section 3.3.

As shown in Table 2, the result illustrates that
each component can improve the performance of
our model. The difference between NeAnsQA and
DiverseAnsQA shows that the use of our data con-
struction strategy can greatly improve the perfor-
mance of the model. It also demonstrates the im-
portance of diverse answer types in unsupervised
QA. Because answer length distribution is changed
from NeAnsQA to DiverseAnsQA, we design Ran-
domAnsQA to get rid of this extra factor. It shows

EM F1

NeAnsQA 49.2 59.3
RandomAnsQA 48.7 62.0

DiverseAnsQA 52.1 64.0
+ Answer-type Classifier* 51.3 63.6
+ Adjusting Vector 52.3 64.0
+ Answer-type Discriminator 52.9 64.6
+ Top-K Filter 54.7 65.6
+ Substring Filter 55.0 66.2

Table 2: Ablations on each component of DiverseQA
method on the SQuADv1.1 development set. Compo-
nents below the component with ‘*’ are not added upon
the ‘*’ component.

ω% 20% 40% 60% 80% 100%

F1 63.0 63.6 65.4 66.2 62.2

Table 3: F1 scores of different Span Extending Thresold
evaluated on SQuADv1.1 dev set.

that DiverseAnsQA still outperform RandomAn-
sQA by a large gap, which demonstrates the ef-
fectiveness of the proposed QA data construction
strategy. The result of Adjusting Vector and Answer-
type Discriminator shows that although adding the
adjusting vector can slightly improve the perfor-
mance, answer-type discriminator can continuously
improve the performance, showing that adding the
answer-type constraint to the distribution of the ad-
justing vector can benefit the performance of the
model. To verify the necessity of the Discriminator,
we also use a simple ‘Answer-type Classifier’ to
classify input sequences into different answer types.
The result shows that a simple classifier is not ade-
quate to improve the method. In addition, the gains
by adding the Top-K Filter reveal the importance of
the filtering phase in the training process. What’s
more, Substring Filter can further gain the perfor-
mance of the model. What’s more, the results in the
last row of Table 2 show that the Substring Filter is
useful.

4.3.2 Effects of Span Extending Threshold

We experiment with several Span Extending
Threshold to construct the synthetic dataset. Table
3 shows that the optimal value is 80%. It illustrates
that neither a too strict nor a too loose span extend-
ing condition can produce a high quality dataset.
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Figure 4: Results of using K answers with the highest
predicting probabilities in the denoising filtering phase.

γ 0.0 0.1 0.2 0.4 0.6 0.8

F1 65.2 66.2 65.2 65.2 64.9 65.0

Table 4: F1 scores of different Substring Filter threshold
evaluated on SQuADv1.1 dev set.

4.3.3 Effects of Denoising Filter

We conduct experiments on the K answers with the
highest predicting probabilities as well as Substring
Filter threshold γ, which will be used in the con-
tinuing training. Figure 4 shows that when K=1,
the performance reaches the best. It means that
when the model-predicted answer with high proba-
bility matches the span extracted via our extending
strategy, the corresponding QA pair is probably of
high quality and can be further reused to improve
the performance of the model. Table 4 shows that
when γ=0.1, the produced NE-based QA pairs with
predictions of substring can be beneficial.

Furthermore, we make comparison between the
proposed Denoising Filter and the Refining Phase
(Li et al., 2020). Table 5 shows that firstly, Di-
verseQA largely outperforms RefQA without any
filter. Secondly, the proposed Denoising Filter can
be effectively used in the second phase of both Re-
fQA and DiverseQA, showing its strong adaptation
to different methods, while Refining Phase can only
make improvement in RefQA. Thirdly, although
the F1 score of RefQA with Denoising Filter is
slightly lower than that of Refining Phase, it makes
large improvement on the EM metric, demonstating
the advantage of the proposed Denoising Filter.

4.3.4 Effects of Diverse Answer Types

We experiment on the SQuADv1.1 dev set parti-
tioned by answer types. For a fair comparison, the
re-implement of RefQA shares the raw text (from
which we generate QA pairs and train the model)

No Filter Refine Denoise

RefQA 49.2/59.3 52.0/62.6 53.3/62.2
DiverseQA 52.1/64.0 52.1/64.0* 55.0/66.2

Table 5: EM/F1 scores of RefQA and DiverseQA with
different continuously training strategy. “Refine” de-
notes the Refining phase in RefQA. “Denoise” denotes
the proposed Denoising Filter. ‘*’ means that the model
cannot make any improvement on the specific continu-
ous training strategy.

and the random seed with ours.
Although Li et al. (2020) claims that their refine

phase can generate diverse answers, the result in
Table 6 shows that DiverseQA outperforms the per-
formance of RefQA on nearly every kind of answer
type, especially on VP and S by large margins. It is
because the refine phase proposed in RefQA heav-
ily relies on the QA model training with purely NE-
based QA pairs. Therefore, the trained model could
probably generate certain variants of NEs, which
are short and used to continuously train the model,
leaving relatively long answer spans like VPs and
Ss out. Besides, we observe that the performance
of DiverseQA is lower than RefQA on ADJP in the
exact match (EM). It is because the ADJP merely
accounts for 0.3% (in Appendix A) in the whole
synthetic dataset generated by DiverseQA, while
the refining phase in RefQA may probably gener-
ate many variants of NEs, which could be ADJPs4.
Consequently, the model in RefQA might train with
too many ADJP-like QA instances and prefer to
choose the ADJPs as answer types, leading to the
result in Table 6. Since in our method, we only con-
sider NE, NP, ADJP, VP, S as our answer spans, it’s
important to know how well our method performs
on other types of answers out of consideration. The
result in the ‘Others’ column of Table 6 demon-
strates that the proposed model can generalize to
other unseen answer types and outperform RefQA
by a large gap.

In addition, we ablate the proposed span extend-
ing strategy and Answer-type Discriminator sepa-
rately to explore the performance of the two com-
ponents. The result in the last two rows of Table 6
shows that the two components can both contribute
to the performance of model on most of answer

4For instance, in ‘he was still being paid more than $
10,000 as a legal advisor to the Chicago’, span ‘10,000’ is a
named entity with NER label ‘MONEY’ while ‘$ 10,000’ is a
variant of the named entity as well as an ADJP.
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NE NP ADJP VP S Others Overall
Models EM/F1 EM/F1 EM/F1 EM/F1 EM/F1 EM/F1 EM/F1

RefQA 67.0/75.4 47.9/60.4 31.9/41.4 4.1/18.3 22.7/35.0 36.7/52.2 52.0/62.6

RandomAnsQA 58.8/70.7 43.2/58.8 25.0/39.7 9.4/25.6 21.4/39.0 36.8/53.4 48.7/62.0
DiverseAnsQA 62.3/72.4 47.2/61.3 26.5/39.3 13.2/29.3 22.9/41.0 38.5/54.6 52.1/64.0

DiverseQA 67.5/75.7 49.1/62.8 27.9/42.5 13.3/30.4 29.1/42.6 41.4/57.2 55.0/66.2
w/o Extension 71.5/77.3 48.5/60.2 24.5/35.1 1.6/12.1 21.9/30.6 34.4/47.0 52.0/60.6
w/o Discriminator 66.9/74.7 47.6/60.1 28.4/40.5 9.7/28.0 26.3/40.9 40.4/54.7 53.6/63.9

Table 6: EM/F1 scores of different models on the SQuADv1.1 dev set. Columns are each dev set associated with the
type of answer. ‘Others’ means other types of answers out of our consideration. ‘Extension’ represents our answer
span extending module. ‘Discriminator’ denotes the proposed Answer-type Discriminator.

Context: The Town of Estill is located in the
southern half of Hampton County .

Question: Where of
the southern half in The
town of Estill is located

Question: Where of the
town Estill

The answer in RefQA:
Hampton County

Our answer: is located
in the southern half of
Hampton County

Table 7: An example of RefQA (left half) and our QA
pairs (right half).

types. Besides, we notice that the performance
of “w/o Extension” on the NE obtains the best. It
is because that under this setting, the model will
only learn from NE-based QA pairs. Therefore, it
prefers to choose a NE from the context, which can
gain its performance on NE-based QA pairs.

What’s more, we also show an example to make
the comparison between the QA pair in DiverseQA
and that of RefQA in Table 7. In the example, the
question ‘Where of the town Estill’ needs more
reasoning process to be answered correctly than
the question generated in RefQA. As in the pro-
posed method, when the generated answer becomes
longer, the generated question becomes shorter.
Therefore, it’s also necessary to keep the ques-
tion and answer length unchanged while exploring
the effectiveness of answer diversity. In Table 6,
the results of RandomAnsQA and DiverseAnsQA
demonstrate the usefulness of the proposed answer
extension method when both the question and an-
swer length distributions are unchanged. More
examples are shown in Appendix D.

4.3.5 Effects of Answer Length Distribution
In the proposed method, the first module is to ex-
tend the span into a longer constituent. Although it
indeed introduces new answer types and gains per-
formance, answer length distribution also changes

1-5 6-10 11-15 16-20 21-25 >25
0

20

40
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RandomAnsQA
DiverseAnsQA
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Figure 5: Comparison among NeAnsQA, RandomAn-
sQA and DiverseAnsQA (Section 4.3.1). SQuADv1.1
dev set is partitioned by answer length for evaluation.

simultaneously. Therefore, we further explore how
the drift of answer length distribution affects the
model’s performance.

As shown in Figure 5, the performance of NeAn-
sQA is lower than RandomAnsQA and DiverseAn-
sQA. When the answer length becomes larger (>10
tokens), the gap is even larger. This demonstrates
that model trained only with NE-based QA pairs
lacks the ability to handle QA pairs with long an-
swers. Besides, it can be found that the perfor-
mance of RandomAnsQA is lower than DiverseAn-
sQA on each answer length. It means that without
the influence of answer distribution, the proposed
span extending strategy can generate higher quality
instances than that of randomly extending strategy.

4.4 Few-Shot Learning

We conduct experiments in the few-shot learning
setting. For a fair comparison, we use our best-
trained model without the data augmentation com-
ponent, our re-implementation of RefQA, and a
BERT model, all of which use the BERT-large-
whole-word-masking as the backbone.

Figure 6 shows that our model reaches the best
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Figure 6: Few-shot results (EM and F1) using different
sizes of SQuADv1.1 training data, comparing among
DiverseQA, RefQA (Li et al., 2020) and BERT-large-
uncased-whole-word-masking.

result trained on various sizes of supervised data
ranging from 1 to 50,000, demonstrating the strong
ability of our method in the low-resource scenario.

5 Conclusion

We propose DiverseQA, an unsupervised QA
method comprising a synthetic QA dataset with
diverse answers, an answer-type-dependent data
augmentation process via adversarial training, and
a denoising filter to improve the performance of a
QA model. Our method reaches the state-of-the-art
on five benchmarks and shows strong performance
in the few-shot learning setting.
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Appendix

A The Distribution of Extracted Answers

The distribution of our extracted answer types (NE,
NP, ADJP, VP, S) is shown in Table 8. The frequen-
cies of each answer type are used in the modified
predicting distribution described in Section 3.2.2.
Since previous works consider named entities as
the only answer type (i.e. NE acounts for 100% of
all the answers), we don’t show the answer type
distribution of them. Besides, as the answer span
generated by the trained QA model in the refining
phase of Li et al. (2020) fails to follow the rule of

#Instances %Frequency

NE 716,716 78.9%
NP 161,178 17.7%
ADJP 2,563 0.3%
VP 23,420 2.6%
S 4,634 0.5%

Table 8: The statistics of extracted answer types in the
synthetic dataset constructed using DiverseQA.

constituent parsing, we cannot obtain its answer
type distribution in terms of sentence constituents.

B Algorithms

We describe the whole training procedure as fol-
lows:

Algorithm 1: Training Procedure
Data: Synthetic QA dataset D, a BERT

modelM with answer-type
dependent data augmentation module,
a denoising filter composed of a
Top-K filter and a Substring Filter
with threshold γ.

Result: A fine-tuned modelM′.
1 Split D into DI and DF ;
2 Fine-tuneM with DI ;
3 Split DF equally into {DFi}Ni=1;
4 for i← 1 to N do
5 S ← ∅;
6 foreach element e in DFi do
7 Obtain the probability pe usingM;
8 if pe is in the Top-K highest

probabilities then
9 S ← S ∪ {e}

10 end
11 if the answer of e is a subtring of the

extracted one and pe ≥ γ then
12 S ← S ∪ {e}
13 end
14 end
15 Fine-tune model M with dataset S;
16 end

C Answer Length Distribution

We randomly sample 10,000 instances from
SQuADv1.1, the dataset of RefQA, and the dataset
of DiverseQA respectively, and count the answer
length distributions, which are shown in Figure 7. It
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Context: Joss Whedon has endorsed Mitt Romney ( in a way ) and now “ The Simpsons ” Mr.
Burns , owner of Springfield ’s nuclear power plant , titan of corporate capitalism and honcho
in the Springfield Republican Party , has come out with his own backhanded endorsement of
the Republican nominee .
Question:Who As the chief of “Springfield Re-
publican Party” endorsed Mitt Romney in 2012
US Presidential Election .

Question: Who As the chief of endorsed Mitt
Romney in 2012 US Presidential Election .

Answer: Burns Answer: Mr. Burns

Context: In 1931 , the Singers gave the Museum of Fine Arts to the community along with a
substantial collection of American and European art .
Question: Who American and art of a substan-
tial collection with along the Singers gave the
Museum of Fine Arts to the community .

Question: Who art of a substantial collection
with along the Singers gave the Museum of Fine
Arts to the community .

Answer: European Answer: American and European

Context: Why do the new prequels sometimes contradict the history set forth in THE DUNE
ENCYCLOPEDIA compiled by, Dr. Willis E. McNelly ?, THE DUNE ENCYCLOPEDIA
reflects an alternate “ DUNE universe ” which did not necessarily represent the “ canon ”
created by Frank Herbert ."
Question:Who by written to accompany the
“Dune” books

Question: Who by written to accompany the
“Dune” books

Answer: Willis E. McNelly Answer: Dr. Willis E. McNelly

Context:GDP per capita in the city increased by 2.4 per cent and employment by 4.7 per cent
compared to the previous year .
Question: How much by GDP per capita in the
city increased

Question: How much in GDP per capita

Answer: 2.4 per cent Answer: increased by 2.4 per cent

Table 9: Examples of the QA pairs of RefQA (left half) and that of DiverseQA (right half).

1-5 6-10 11-15 16-20 21-25 >25
0.0

0.2

0.4

0.6

0.8

1.0 SQuADv1.1
RefQA
DiverseQA

Figure 7: Answer length distributions.

shows that firstly, the proposed DiverseQA method
can construct dataset with a similar answer length
distribution to the annotated dataset SQuADv1.1.
Secondly, the dataset only with NE-based QA pairs
(like RefQA) is not able to cover long form an-
swers (it accounts for 0% QA pairs in the answer

length ranges ‘11-15’, ‘21-25’ and ‘>25’)5, which
is harmful to the performance of model on long
answers.

D Generated QA Instances

Examples of generated QA instances are shown in
Table 9.

5The dataset of DiverseQA accounts for 0.16%, 0.13% and
0.03% in the ranges ‘16-20’, ‘21-25’ and ‘>25’. And it is not
displayed properly in Figure 7.
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Abstract

Mathematical reasoning task is a subset of the
natural language question answering task. Ex-
isting work suggested solving this task with
a two-phase approach, where the model first
predicts formulas from questions and then cal-
culates answers from such formulas. This ap-
proach achieved desirable performance in ex-
isting work. However, its reliance on anno-
tated formulas as intermediate labels through-
out its training limited its application. In
this work, we put forward the idea to en-
able models to learn optimal formulas au-
tonomously. We proposed Weakly Supervised
Formula Learner, a learning framework that
drives the formula exploration with weak su-
pervision from the final answers to mathemat-
ical problems. Our experiments are conducted
on two representative mathematical reasoning
datasets MathQA and Math23K. On MathQA,
our method outperformed baselines trained on
complete yet imperfect formula annotations.
On Math23K, our method outperformed other
weakly supervised learning methods. 1

1 Introduction

Mathematical reasoning is a task where mathemat-
ical problems are described in natural language
or mathematical symbols. Such problems require
values, expressions, or other mathematical repre-
sentations as answers. A naive approach to solving
this task is to treat it as an end-to-end token-by-
token predicting problem from questions to an-
swers. However, this approach showed a rela-
tively poor generalization capacity on unseen num-
bers (Saxton et al., 2019). Another approach to
solving mathematical reasoning task is to adopt a
two-phase methodology. In the first phase, specific
formulas are predicted for each question. In the
second phase, such formulas are calculated under
predefined rules to produce the final answers. This

1The software is available at https://github.com/
evan-ak/wsfl.

approach has been widely applied in recent work
and has achieved desirable results in many repre-
sentative mathematical reasoning datasets (Wang
et al., 2017; Amini et al., 2019). However, this
two-phase solution leads to a reliance on annotated
formulas as indispensable labels for training the
formula predictor in the first phase. This reliance
further results in two major weaknesses. Firstly,
ground-truth formula annotations are not necessar-
ily prepared for every mathematical problem and
dataset. This makes it impossible to extend this
solution to datasets without these annotations. Sec-
ondly, the learning process can be misled when
there is noise in the formula annotations. In con-
sideration of this, we are motivated to propose a
new learning framework for solving mathematical
problems that is not dependent on formula anno-
tations. On the whole, we followed the principle
of the two-phase methodology and implemented
the two phases with what we call PolicyNet
and ActTaker. Figure 1 is an overview of our
learning framework. Our main contributions in this
work can be summarized as follows:

• We established a new mechanism to learn for-
mulas with weak supervision from final answers,
which outperforms existing weakly supervised
learning methods.

• We enabled models to explore reasonable for-
mulas autonomously through a heuristic search
in the space of possible formulas.

• We verified that the formulas learned with weak
supervision can be more beneficial to the ques-
tion answering than complete yet imperfect for-
mula annotations.

2 Related Work

2.1 Mathematical Reasoning
In recent years, various datasets have been pub-
lished to study the capacity of machine learning
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Figure 1: To get rid of the dependence on annotated formulas, our learning framework conducts a search process
to explore optimal formulas. Such formulas are then fed back to the formula predictor for its training.

models in solving mathematical problems and per-
forming quantitative reasoning. Math23K (Wang
et al., 2017) is a dataset crawled from a cou-
ple of online education websites consisting
of 23,162 problems with formula annotations.
MathQA (Amini et al., 2019) is a dataset collected
from another former dataset named AQuA (Ling
et al., 2017) consisting of 37,200 problems with
formula annotations. Mathematics (Saxton et al.,
2019) is a complex large-scale dataset in which
questions are generated in a broad range of areas
including algebra, arithmetic, and calculus.

2.2 Mathematical Problem Solvers

End-to-end and formula-based methods are the two
common methodologies for solving mathematical
problems. The essential difference between them
is that they either produce final answers directly or
adopt formulas as intermediate labels.

Concretely, end-to-end methods simply regard
both questions and answers as sequences of alpha-
bets, digits, and symbols, and conduct a sequence-
to-sequence prediction (Saxton et al., 2019). The
application of these methods is not restricted by the
absence of formulas. However, the lack of the con-
cept of complete numbers forces them to receive
and predict rational numbers digit by digit, which
leads to a relatively weak generalization capacity.

On the other hand, formula-based methods em-
ploy what are called formulas or equations as inter-
mediate labels for solving mathematical problems.
Most elementary applied numerical mathematical
problems can be solved by building equations with
unknowns and solving the equations to acquire the
answers. This generated the idea of first letting
the model predict such equations and then solving
the equations in a rule-based manner. This idea
was first implemented by Wang et al. (2017) and

then improved in later work (Wang et al., 2018;
Xie and Sun, 2019; Zhang et al., 2020; Chen et al.,
2020a). Faced with the problem of the reliance on
formula annotations, Hong et al. (2021) proposed
a fixing mechanism to learn formulas through error
propagation and formula correction.

2.3 Semantic Parsing

Semantic parsing is the task of translating natural
language utterances into machine-understandable
logical form (Kamath and Das, 2019). Recent stud-
ies on solving mathematical problems have also
benefited from semantic parsing by automatically
synthesizing formulas from questions (Koncel-
Kedziorski et al., 2015; Shi et al., 2015; Hopkins
et al., 2017). However, considering that there is
no guarantee that semantic parsing necessarily pro-
vide valid formulas for every question, the invalid
formulas become noise if they are fed to following
learning processes without correction. As a result,
weakly supervised formula learning remains mean-
ingful and valuable as long as perfect formula anno-
tations are not prepared. In view of this, semantic
parsing is considered an approach that works in
parallel with weakly supervised formula learning
methods for solving mathematical problems.

2.4 Neural Module Networks

Neural Module Networks (NMNs) are another rel-
evant existing approach with a similar two-phase
methodology (Andreas et al., 2016b). For solv-
ing visual question answering tasks, NMNs first
predict programs from the questions and then com-
pute with modules to acquire the final answers.
Later work also succeeded in applying NMNs to
solve discrete reasoning problems (Yi et al., 2018).
Faced with the similar difficulty in training a two-
phase model, existing work either utilized rein-
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Figure 2: The preprocessing and the symbols applied
in our work.

forcement learning (Andreas et al., 2016a; Johnson
et al., 2017) or developed specific heuristic learning
algorithms (Wu and Nakayama, 2020).

3 Weakly Supervised Formula Learner

3.1 Problem Definition

To achieve a formal representation of the mathemat-
ical problems in given datasets, we first performed
some preprocessing on the question–answer pair
of each problem. As shown in Figure 2, given the
raw text of a question, the numbers that appear in
the text are extracted as num. On the other hand,
the numbers in the original text are replaced with
special tokens 〈Nx〉, where x is the index of each
number. We refer to the questions with these re-
placed tokens as “templates”, which can also be
simply denoted by q. Note that multiple questions
can share the same template if they only differ in
numbers. In this case, they are combined into a
single template q. We let {num} denote the set of
numbers num extracted from the questions corre-
sponding to the same template, and {a} denote the
set of answers a to these questions. Note that num
in {num} and a in {a} should be kept paired. Af-
ter preprocessing, the data visible to the following
procedures should be triplets of (q, {num}, {a}).

Although the ground-truth equations for solv-
ing corresponding problems are annotated in some
datasets and considered part of the training data in
supervised learning methods, they are not visible
to our learning framework, which performs weakly

supervised learning. Instead, we let f denote the
formula we used. Each formula is made up of a
sequence of tokens where each of the tokens is the
name of a module or an 〈End〉 sign. This sequence
provides a preorder traversal of the tree of desired
modules where 〈End〉 marks the leaf nodes. De-
tails of the modules are presented in Section 3.5.

3.2 General Learning Process
Generally, our proposed learning framework is

made up of PolicyNet and ActTaker. As
shown by Equations 1 and 2, PolicyNet takes
the question template q as the input and predicts
the formula f . ActTaker takes the formula f and
the set of numbers {num} as inputs and calculates
a set of answers {â} corresponding to each num.

f = PolicyNet(q) (1)

{â} = ActTaker(f, {num}) (2)

With these two models, Algorithm 1 shows the
general learning process of our Weakly Supervised
Formula Learner. Here, D denotes the original
dataset holding triplets of training data (q, {num},
{a}). L denotes a dictionary initialized to be empty
for storing the optimal formulas found through the
learning process. After PolicyNet, ActTaker,
and L get initialized, the learning process is com-
posed of numerous basic loops. Within each loop,
at first, a triplet of training data is sampled from the
dataset D. Then, a search process is conducted to
try to find the optimal formula for solving the given
question template q. The behavior of this Search
function is presented in detail in Section 3.3. After
the optimal formula f and its accuracy accuf on
q are obtained, they are used to update the dictio-
nary L. Concretely, if f is not None, and then if
no f has been recorded for q or accuf exceeded
the previously recorded accuracy, f and accuf will
be recorded for q in L. Finally, PolicyNet is

Algorithm 1 General Learning Process
1: PolicyNet, ActTaker← Init()
2: L← {}
3: for loop in range(max_loop) do
4: (q, {num}, {a})← Sample(D)
5: f , accuf ← Search(PolicyNet, Act
Taker, q, {num}, {a})

6: L.update(q: (f , accuf ))
7: PolicyNet.train(L)
8: end for
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trained with the q and f sampled from L. These
procedures are repeated until max_loop is reached.
By the time of inference, this process is no longer
required, and the answer can be acquired directly
through Equations 1 and 2.

3.3 Formula Search
As shown by line 5 of Algorithm 1, we conduct
a Search procedure in each loop to explore op-
timal formulas. For this procedure, we basically
followed the Graph-based Heuristic Search algo-
rithm proposed by Wu and Nakayama (2020) and
adapted it to meet the needs of solving mathemat-
ical problems. The process of this procedure is
presented by Algorithm 2.

Graph In this algorithm, G denotes a graph used
to store the formulas under exploration with each
of its nodes representing a unique formula. This
graph is maintained under the following two rules:

- Each of its nodes nf represents a unique formula
f .

- There is an edge between two nodes if and only
if the edit distance between the formulas they
represent is one.

Moreover, each node nf maintains a score
nf .score. Intuitively, this score indicates how de-
sirable a formula is for solving the current given
question. Wu and Nakayama (2020) suggested
binding this score to the question answering ac-
curacy. However, in mathematical problems, un-
reasonable formulas are highly likely to lead to
scattered answers and thus result in zero accuracies.
These scores can no longer provide enough guid-
ance in a heuristic search if most of them degener-
ate to zero. In view of this, we modified this score
to the average of two factors. Among them, the

Algorithm 2 Formula Search
1: func Search(PolicyNet, ActTaker, q,

{num}, {a})
2: G ← Init()
3: for iter in range(max_iter) do
4: fexp← Sample(G)
5: fexp.accu←Accuracy(ActTaker (fexp,

{num}), {a})
6: G.update(Mutate(fexp))
7: end for
8: fbest← argmaxf∈G f.accu
9: return fbest, fbest.accu

one is the standardized likelihood of the formula
given by PolicyNet, and the other is an index
related to the actual question answering effective-
ness of the formula. In this section, we employ a
concise implementation for the latter factor, which
is simply the question answering accuracy. We will
present another delicately designed way to scale
this factor in Section 3.4. In general, nf .score is
defined by Equations 3 to 6.

nf .score =
1

2
[ p(f |q, θP ) + f.accu ] (3)

p(f |q, θP ) =
1

L

L∑

i=1

p(fi|f1:i−1, q, θP ) (4)

f.accu =
1

N

N∑

i=1

1|{â}i−{a}i|<10−3 (5)

{â} = ActTaker(f, {num}) (6)

Here, θP denotes the parameters of
PolicyNet. L denotes the length of the
current formula. p(fi|f1:i−1, q, θP ) denotes the
likelihood of producing the ith token in the formula
given PolicyNet, the question template q, and
the previous tokens f1:i−1. N denotes the length
of sets {num} and {a} corresponding to template
q. 1|{â}i−{a}i|<10−3 returns one if the difference
between the ith result in {â} and the ith answer in
{a} is less than an acceptable floating-point error
bound 10−3.

Graph Initialization As for the initialization of
the graph as shown in Line 2 of Algorithm 2, G is
initialized with at most three nodes. The formulas
of these nodes are as follows:

- (N_0,〈End〉), which is the shortest legal for-
mula;

- the formula predicted by PolicyNet given q
with maximum likelihood;

- the formula recorded for qc, where qc is the pre-
viously solved template recorded in L that the
current q is semantically closest to.

For the last clause, we determine the semantic
distance between two templates by calculating the
Euclidean distance between their sentence vectors
embedded by the encoder of PolicyNet. With
EP (·) denoting the encoder of PolicyNet, the
decision of qc can be expressed by Equation 7.

qc =argmin
q∗∈L

‖EP (q∗)− EP (q)‖2 (7)
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Formula Sampling As shown in Line 4 of Algo-
rithm 2, in every iteration of the search, we first
select a formula fexp from G as the formula to ex-
plore. For the Sample function, we also followed
the mechanism proposed by Wu and Nakayama
(2020). Concretely, there is an Expectation value
defined on every node n of G as presented by Equa-
tion 8. In every iteration of the search, the node
with the greatest Expectation value among unex-
plored nodes is selected as the node to be explored.

n.Exp =

3∑

d=0

wd ∗max{n∗.score | n∗ ∈ G,

distance(n∗, n) 6 d} (8)

w = [0.5, 0.25, 0.15, 0.1] (9)

Formula Examination As shown in Line 5 of
Algorithm 2, the selected formula fexp is examined
by ActTaker to obtain its accuracy given {num}
and {a}. The calculation of the accuracy basically
follows Equations 5 and 6. In addition, the exami-
nation by ActTaker may not necessarily succeed
because fexp is not guaranteed to be semantically
legal and illegal calculations like division by zero
may be encountered. In such cases, correspond-
ing {â}i is considered invalid and |{â}i − {a}i| is
considered infinite.

Formula Mutation As shown in Line 6 of Al-
gorithm 2, mutations are generated from fexp to
expand the graph G. Here, insertion, deletion, and
substitution are the three operations for generating
mutations. Respectively, they insert new modules
into a formula, delete existing modules from a for-
mula, and substitute existing modules with other
modules in a formula. The newly generated formu-
las are then added to G if they do not yet exist in
G. The relevant edges should also be added to G to
keep G conforming to its definition and features.

When all the search iterations are finished, the
formula that achieved the highest accuracy is re-
turned together with its accuracy as the result of this
formula search. If none of the formulas achieved
non-zero accuracy, this function returns None.

3.4 Difference-Based Formula Scoring

In Section 3.3, we have presented an elementary
practice for determining nf .score, the score of
each formula, with Equations 3 to 6. In this sec-
tion, we further discuss Difference-Based Scoring
(DBS), another advanced approach to determining

this score based on the difference between answers
acquired from formulas and ground-truth answers.
This difference-based scoring technique has also
been suggested and verified in recent work repre-
sented by Petersen et al. (2021).

nf .score = p(f |q, θP ) + β ∗f.diffscore (10)

f.diffscore =
1

N

N∑

i=1

1

1+10 ln (|{â}i−{a}i|+1)

(11)

With DBS, nf .score is calculated through Equa-
tions 10 and 11. In Equation 10, β is a hyperpa-
rameter that scales the contribution of f.diffscore
in nf .score with default value 1.0. In Equation
11, for each specific i, if {â}i is equal to {a}i, the
corresponding term returns one, the same value as
Equation 5. Otherwise, it returns a score negatively
correlated with the difference between {â}i and
{a}i. The 10 in the denominator is an empirical
coefficient that ensures the following logarithmic
difference would not contribute too much to the
whole score. With this score, formula search tends
to explore formula nodes surrounding the nodes
that lead to answers close to ground-truth answers.

3.5 Modules
Modules are the basic calculating units for solving
each mathematical problem. During computation,
the modules in the tree specified by a formula are
calculated recursively from the leaves to the root
to acquire the final answer. The three types of
modules we adopted are Number, Operation,
and Constant.

Number The Number modules, which are de-
noted by N_x, are employed to establish references
to the numbers extracted from questions. These
modules need no input and return a number. Here,
x is the index of the number that is referred to. This
index starts from 0. For example, N_1 returns the
second number in num. An error is raised if x
exceeds the number of numbers in num.

Operation The Operation modules, which are
denoted simply by their symbols, are employed to
conduct specific mathematical calculations. These
modules need a specific number of numeric inputs
(commonly two) and return the calculation result
as a number. For example, the + module takes two
rational numbers a and b as inputs and returns the
rational number (a+b). An error is raised if the
calculation is illegal such as division by zero.
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Accuracy
Seq2prog (Amini et al., 2019) 51.9%
Seq2prog+cat (Amini et al., 2019) 54.2%
LSTM2TP (Chen et al., 2020a) 54.6%
TP-N2F (Chen et al., 2020a) 55.9%
Ours w/o DBS 59.5%
Ours w/ DBS 60.1%

Table 1: The option selecting accuracy achieved by our
learning framework and baselines on MathQA.

Constant The Constant modules, which are
denoted by C_x, are employed to generate constant
numbers. These modules need no input and return
a number. Here, x is the specific rational number
that is referred to. For example, C_100 returns the
integer 100.

4 Experiments

Our experiments in this work are conducted on
two representative mathematical reasoning datasets,
MathQA (Amini et al., 2019) and Math23K (Wang
et al., 2017). We report and discuss our findings on
them in Section 4.1 and 4.2, respectively.

4.1 MathQA

Experimental setup To prepare the training data,
we followed the preprocessing procedure presented
in Section 3.1 to transform the original questions
and answers into triplets of (q, {num}, {a}). For
PolicyNet, the encoder is a two-layer Bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) with hidden state size
256. The decoder is a two-layer LSTM with hid-
den state size 512. The input embedding size of
both of them is 300. For their training, we adopted
the Adam optimizer (Kingma and Ba, 2015) with
learning rate 0.001. As indicated by line 7 of Al-
gorithm 1, PolicyNet is trained continuously
in every learning loop. Here, the batch size for
sampling training data from L is 64. Within each
loop, PolicyNet is trained on 500 batches. For
the comparison with baselines trained in a fully-
supervised manner, we utilized part of the formula
annotations to pretrain PolicyNet. The pretrain-
ing data, which is organized as tuples of (q, f ), is
filtered from the training set to meet the following
two requirements. First, the formula should be able
to solve the question and achieve non-zero accu-
racy. Second, the formula should be made up of
only the four fundamental arithmetic calculations.

Accuracy
Ours / raw annotation 52.4%
Ours / REINFORCE 56.5%
Ours 60.1%

Table 2: The performance of our models trained with
raw formula annotations and formula exploration.

For ActTaker, we adopted twenty Numbermod-
ules, N_0 to N_19, four Operation modules, +,
-, ×, and ÷, and four Constant modules, C_1,
C_2, C_3, and C_100.

Evaluation metric For evaluation, MathQA pro-
vides five options for each question where the cor-
rect option is annotated. To select an option, we cal-
culate the differences between the answer acquired
by our models and each option, and select the op-
tion for which the difference is minimal. If an error
is raised through the computation of ActTaker,
we randomly select one of the options. The final ac-
curacy we report is the accuracy of option selection.
Note that this metric is different from the metric of
measuring the formula matching accuracy, which is
adopted by some existing work (Chen et al., 2020b)
and tolerates the inherent noise in formula annota-
tions. The results analyzed under these two metrics
are not directly comparable, while we choose the
former to study the influence on learning brought
by noisy annotations.

Results Table 1 shows the accuracy achieved by
our learning framework and baselines on MathQA.
It is shown that our proposed method outperforms
all the baselines on this dataset. We also con-
ducted an ablation study on whether to employ
the DBS discussed in Section 3.4 or not. The re-
sult confirmed the performance improvement made
by DBS. Compared with the baselines, we only
adopt a simple LSTM for the formula inference,
which appears to be naive in contrast to the deli-
cately crafted models adopted in existing work. We
attribute our success to the autonomous formula
exploring capacity of our learning framework.

In our investigation of the annotated formulas
provided by MathQA, some noise was found. This
means that part of the annotated formulas cannot
solve the corresponding questions correctly. In-
cluding this noise in the training labels results in
the degradation of performance in existing work.
However, our learning framework is capable of re-
moving this noise and finding valid formulas for the
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question index 14328 (train)
question text 12.5 % of 192 = 50 % of ? (Answer: 48)

annotated formula (((50 × 192) ÷ 100) × 12.5) ÷ 100 (wrong)
our formula (raw) (÷, ×, N_0, 〈End〉, N_1, 〈End〉, N_2, 〈End〉)

(flatten) (12.5 × 192) ÷ 50
question index 1752 (train)

question text how many multiples of 4 are there between 8 and 160 ? (Answer: 37)
annotated formula ((160 - 8) ÷ 4) + 1 (wrong)
our formula (raw) (-, ÷, -, N_2, 〈End〉, N_1, 〈End〉, N_0, 〈End〉, C_1, 〈End〉)

(flatten) ((160 - 8) ÷ 4) - 1
question index 3999 (train)

question text the average of first 25 natural numbers is ? (Answer: 13)
annotated formula 25 + 1 (wrong)
our formula (raw) (+, ÷, N_0, 〈End〉, C_2, 〈End〉, ÷, C_1, 〈End〉, C_2, 〈End〉)

(flatten) (25 ÷ 2) + (1 ÷ 2)
question index 23604 (train)

question text the telephone company wants to add an area code composed of 2
letters to every phone number . in order to do so , the company
chose a special sign language containing 324 different signs . if
the company used 322 of the signs fully and two remained unused ,
how many additional area codes can be created if the company uses
all 324 signs ? (Answer: 1292)

annotated formula 322 × (324 - 322) × (324 - 322) (wrong)
our formula (raw) (+, ×, N_0, 〈End〉, N_1, 〈End〉, ×, N_0, 〈End〉, N_2, 〈End〉)

(flatten) (2 × 322) + (2 × 324)
question index 285 (test)

question text today jim is twice as old as fred , and sam is 4 years younger than
fred . 4 years ago jim was 8 times as old as sam . how old is jim
now ? (Answer: 20)

annotated formula (((8 × 8) - 4) ÷ (8 - 2)) × 2
our formula (raw) (×, +, N_0, 〈End〉, ÷, +, ×, N_0, 〈End〉, C_2, 〈End〉, -, ×, N_1, 〈End〉,

N_2, 〈End〉, N_1, 〈End〉, -, N_0, 〈End〉, N_1, 〈End〉, C_2, 〈End〉) (wrong)
(flatten) (4 + ((4 × 2) + ((4 × 8) - 4)) ÷ (4 - 4)) × 2 (wrong)

Table 3: Examples of five questions together with annotated formulas and the formulas discovered by our learning
framework. The first four examples show the cases that the annotated formulas are invalid and lead to incorrect
answers. However, our learning framework discovered valid formulas for these questions instead. The last example
shows a case of failure in the test. In this case, an incorrect formula is predicted by our models and an error is
raised through the computations of the modules because of the occurrence of division by zero. In cases like this,
formulas cannot produce valid answers even though they are semantically acceptable.

corresponding questions afresh through the search
with weak supervision from the answers. This en-
ables our learning framework to achieve higher
accuracy in this task. Table 3 provides a case study
for this issue.

To strengthen this idea, we also compared the
performance of our models trained in different con-
ditions and report the results in Table 2. Here, “raw
annotation” refers to the models trained merely
on the raw formula annotations. “REINFORCE”
refers to the models trained with raw annotations
and have REINFORCE (Williams, 1992) imple-
mented to enable a preliminary formula exploration.
We restricted the maximum number of attempts on
formulas for both REINFORCE and our learning
framework to the same bound 108. Compared with
the learning on raw annotations, although REIN-
FORCE improved the performance to some extent,
our method showed a more powerful formula ex-

ploring capacity. This comparison verified the ad-
vantage of autonomous formula exploration and
the superiority of our learning framework over the
naive reinforcement learning method.

4.2 Math23K
Experimental setup For Math23K, the data pre-
processing and the configuration of PolicyNet
are the same as MathQA. Nevertheless, we pro-
vided no pretraining data to PolicyNet in this
experiment to make a fair comparison with weakly
supervised learning baselines. This means that the
formula search completely starts from scratch. In
addition, we also used the formulas discovered in
our formula search to train the GTS model (Xie and
Sun, 2019) with its default settings to compare with
existing work. For ActTaker, we adopted six
Numbermodules, N_0 to N_5, four Operation
modules +, -,×, and÷, and two Constant mod-
ules, C_1 and C_100.
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Accuracy
Supervised learning approaches

DNS (Wang et al., 2017) 58.1%
GTS (Xie and Sun, 2019) 74.3%
G2TL (Zhang et al., 2020) 75.5%

Weakly supervised learning approaches
Seq2seq + REINFORCE 12.1%
Seq2seq + MAPO (Hong et al., 2021) 10.7%
Seq2seq + LBF (Hong et al., 2021) 44.7%
Seq2seq + Ours w/o DBS 51.2%
Seq2seq + Ours w DBS 52.4%
GTS + REINFORCE 14.0%
GTS + MAPO (Hong et al., 2021) 20.8%
GTS + LBF (Hong et al., 2021) 59.4%
GTS + Ours w/o DBS 59.8%
GTS + Ours w DBS 59.9%

Table 4: The accuracy achieved on Math23K by fully
supervised and weakly supervised learning methods un-
der five-fold cross-validation.

Results Table 4 shows the accuracy achieved by
both supervised learning methods and weakly su-
pervised learning methods on Math23K. Although
supervised learning methods remain the state-of-
the-art approach on this task owing to the natural
strength of utilizing ground-truth formula supervi-
sion, our learning framework outperformed all the
existing weakly supervised approaches on both two
inference models LSTM and GTS. In weakly super-
vised learning environment, learning engines are
expected to acquire knowledge on formulas from
scratch. Naive reinforcement learning methods rep-
resented by REINFORCE and MAPO (Liang et al.,
2018) are inadequate in performing this job because
their exploring capacity is mainly powered by the
estimation made by the inference model, which
can hardly deal with some complicated formula
modification such as inserting an operator into a
formula while keeping the rest of the formula intact.
Compared with the learning-by-fixing (LBF) mech-
anism proposed by Hong et al. (2021), we attribute
the superiority of our method to the capacity of
managing formula exploration in a broader search
space. The fixing mechanism of LBF mainly fo-
cuses on the 1-step fix, which assumes that only one
symbol in the reasoning tree should be substituted.
However, our heuristic formula exploration based
on the formula graph and formula score can sample
candidate formulas according to the observation on
various formulas that are likely to be valid and thus

Figure 3: The learning processes of different weakly
supervised learning methods measured by two metrics:
a. the number of valid formulas found in the training
set, b. the accuracy achieved on the test set.

organize a broader heuristic formula exploration.
Moreover, we analyzed the learning processes

of different weakly supervised learning methods
together with our method with different hyperpa-
rameter β in DBS. The result is shown in Figure 3.
First of all, it can be noticed that REINFORCE only
managed to discover a small number of formulas
within the learning in the training set. This led to its
poor performance on the test set. Compared with
REINFORCE, our method showed a much more
powerful formula exploring capacity and higher
exploring efficiency. Furthermore, though the ab-
lation study on our method, it is shown that DBS
makes the learning process converge faster, dis-
cover more valid formulas in the training set, and
achieve slightly higher accuracy on the test set.
However, the difference brought by β is not quite
obvious. From this result, we concluded that the
existence of the difference-based score contributed
to the heuristic search, but the search process is not
very sensitive to its scale.

Further Discussion Although our proposed
method has shown remarkable formula exploring
capacity as a weakly supervised leaning approach,
we are still alert to the gap of performance between
our method and supervised learning methods. Gen-
erally, this gap can be ascribed to two causes. On
the one hand, the size of the space of possible for-
mulas, which is also the size of the search space,
can be approximately up to 1020. Such a search
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space is so huge that some complex ground-truth
formulas cannot be guaranteed to be found through
a heuristic search by nature. On the other hand,
through the search process, incorrect formulas may
result in correct answers by accident. For exam-
ple, for the question “Find the sum of 2 and 2.”,
a valid formula could be N_0+N_1, but formulas
such as N_0+N_0 and N_0×N_1 also result in
correct answers by accident. These errors can be
reduced by providing multiple pairs of num and
a to each q, which is also one of our motivations
for proposing the template combining process in
preprocessing. However, such errors still cannot be
entirely avoided for templates exclusively owned
by unique questions. Anyway, considering that
these are some common challenges faced by all
weakly supervised learning approaches, we leave
the solution to these problems to future work.

5 Conclusion

This work discussed the issue of formula annota-
tion dependence in existing work on solving math-
ematical problems. To deal with this issue, we
proposed a new learning framework, Weakly Super-
vised Formula Learner. This framework established
a mechanism to learn formulas with weak super-
vision from final answers and enabled a heuristic
formula search in the space of possible formulas.

In the experiments, our learning framework
showed remarkable formula exploring capacity on
both MathQA and Math23K datasets. Particularly,
on MathQA, we illustrated that our models trained
with formulas discovered in formula exploration
outperformed baselines trained with complete yet
imperfect formula annotations. On Math23K, our
learning framework showed more powerful for-
mula exploring capacity than existing weakly super-
vised learning methods. In view of this evidence,
we consider our proposed learning framework a
valid and advanced approach for solving mathe-
matical problems with weak supervision from their
answers.
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Abstract
Deep neural models have become the main-
stream in answer selection, yielding state-of-
the-art performance. However, these models
tend to rely on spurious correlations between
prediction labels and input features, which in
general suffer from robustness and general-
ization. In this paper, we propose a novel
Spurious Correlation reduction method to im-
prove the robustness of the neural ANswer se-
lection models (SCAN) from the sample and
feature perspectives by removing the feature
dependencies and language biases in answer
selection. First, from the sample perspec-
tive, we propose a feature decorrelation mod-
ule by learning a weight for each instance at
the training phase to remove the feature de-
pendencies and reduce the spurious correla-
tions without prior knowledge of such corre-
lations. Second, from the feature perspective,
we propose a feature debiasing module with
contrastive learning to alleviate the negative
language biases (spurious correlations) and fur-
ther improve the robustness of the AS mod-
els. Experimental results on three benchmark
datasets show that SCAN achieves substantial
improvements over strong baselines. For repro-
ducibility, we will release our code and data at
https://github.com/xish9/SCAN.

1 Introduction

Answer selection, which aims to select the most
applicable answers from an answer candidate pool,
has broad applications in information retrieval
(IR) and natural language processing (NLP). Con-
ventional answer selection methods primarily fo-
cus on designing various features, such as syntac-
tic features (Li, 2003), dependency trees (Wang
et al., 2007), and translation features (Surdeanu
et al., 2008). However, the remarkable success of
these methods relies heavily on feature engineer-
ing, which is a labor-intensive and time-consuming
process.

*Min Yang is corresponding author.

Subsequently, deep neural models (Qiu and
Huang, 2015; Guo et al., 2017; Tay et al., 2017;
Zhou et al., 2018) have been widely employed for
answer selection and become the mainstream tech-
niques for answer selection by automatically learn-
ing the contextual representations of questions and
answers. To capture the relationships between the
question-answer pairs, different attention mecha-
nisms (Zhang et al., 2017; Tay et al., 2018a; Shen
et al., 2018; Yang et al., 2019a; Xie et al., 2020)
have been proposed to learn the interactive fea-
tures of the questions and the answers. Recently,
pre-trained language models, such as BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019),
have been proposed and applied to answer selection
(Garg et al., 2020; MacAvaney et al., 2020; Zhang
et al., 2021a), obtaining the state-of-the-art results.

Despite the remarkable progress of previous
works, these deep neural models are prone to rely
on spurious correlations between input features and
prediction labels, which capture the prediction cor-
relations that hold for most training samples but
do not hold in general. The spurious correlations
limit the robustness and generalization ability of
the neural AS models to the out-of-distribution and
challenging datasets. In particular, for answer selec-
tion, the word-overlap between the question and the
answers is highly correlated with the relevance pre-
diction label. Thus, the deep AS models perform
poorly on the out-of-distribution or challenging cor-
pora that cannot be tackled with these superficial
correlations (e.g., word overlap). This issue is also
referred to as dataset bias (Clark et al., 2019) and
data distribution shift (Sagawa et al., 2020).

In this paper, we propose a novel Spurious
Correlation reduction method to improve the ro-
bustness of the neural ANswer selection models
(SCAN) from the sample and feature perspectives
by removing the feature dependencies and lan-
guage biases in answer selection. First, from the
sample perspective, we employ the feature decorre-
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lation module based on Random Fourier Features
(Rahimi and Recht, 2007) to decorrelate the rele-
vant and irrelevant features by learning a weight
for each sample during the training phase, which
facilitate the deep AS models to reduce spurious
correlations and concentrate on the true discrimina-
tive features (relevant features) for label prediction.
Second, from the feature perspective, we propose a
feature debiasing module with contrastive learning
to weaken the negative biases in language and im-
prove the robustness of the AS models. Concretely,
the feature debiasing module aims to make the base
contextual representation of input sample close to
the debiased features and away from the negative
bias features.

Our main contributions are three-fold:

• We propose a feature decorrelation module by
learning a weight for each training instance
to remove the feature dependencies and re-
duce the spurious correlations without prior
knowledge of such correlations.

• We propose a feature debiasing module with
contrastive learning to alleviate the negative
language biases (spurious correlations) and
improve the robustness of the AS models.

• Experimental results show that our SCAN
method achieves substantial improvements
over the state-of-the-art baseline methods for
answer selection.

2 Related Work

2.1 Deep Learning for Answer Selection

Answer selection has received remarkable atten-
tion in various tasks, such as dialogue systems
(Yuan et al., 2019; He et al., 2022b,a), knowledge
base question answering (Niu et al., 2021; Saxena
et al., 2020), and information retrieval (Li et al.,
2021). So far, deep learning approaches have be-
come the mainstream in answer selection (AS) due
to their impressive improvement. Severyn and Mos-
chitti (2015) was an early representative neural AS
model, which utilized convolutional neural network
(CNN) to learn question and answer representa-
tions separately followed by a similarity function
to compute the relevance score. Tay et al. (2017)
extended the long short-term memory (LSTM) net-
work with holographic composition for sentence
modeling and semantic matching. Several works

(Yin et al., 2016; Tan et al., 2016) explored differ-
ent attention mechanisms to capture the relations
between sentences. For example, Tay et al. (2018c)
proposed a casted attention for feature augmenta-
tion to improve the representation learning process.
Shen et al. (2017b) proposed an inter-weighted
alignment network, which utilized the word-level
similarity matrix to explore the fine-grained align-
ment of two sentences. Tay et al. (2018b) presented
HyperQA which leveraged a parameter efficient
network to model the relations between the ques-
tion and answer representations with PLMs in the
Hyperbolic space instead of the Euclidean space.

Recently, the pre-trained language models
(PLMs), such as BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019), have been applied to
the answer selection task and yielded state-of-the-
art results by capturing rich linguistic knowledge
from large textual corpora. Yoon et al. (2019) em-
ployed ELMo (Peters et al., 2018) to a compare
aggregate architecture, which leveraged the latent-
cluster information to enhance the AS model. Lai
et al. (2019) combined a gated self-attention mem-
ory network and the pre-trained language models
for answer selection. Garg et al. (2020) proposed a
two-step transfer-adapt (TANDA) method, which
fine-tuned the pre-trained language models by us-
ing a large QA dataset ASNQ. Recently, Zhang
et al. (2021b, 2022) focused on exploiting the in-
terrelated information between candidate answers
and obtained the best results for answer selection.

2.2 Spurious Correlation Reduction in NLP

Despite the remarkable progress made by deep
neural networks, some studies (Gururangan et al.,
2018; McCoy et al., 2019; Zhang et al., 2021a)
have revealed that the deep models often relied
on spurious correlations between the learned fea-
tures and the prediction labels, making the deep
models unstable and not generalize well to the data
with different distributions. For example, previ-
ous studies (Gururangan et al., 2018; McCoy et al.,
2019) observed that specific linguistic phenomena
or syntactic heuristics are highly correlated with
certain inference classes in natural language in-
ference (NLI). Jia and Liang (2017) revealed that
the question-answering (QA) models trained on
SQuAD were not robust to perturbations with mod-
ified semantics since the QA models cannot possess
the true text understanding. Recently, there are sev-
eral efforts made to reduce the spurious correlations
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by removing the data bias explicitly. For example,
CoQA (Reddy et al., 2019) limited the question
annotation process by avoiding using exact words
in the passage. SWAG (Zellers et al., 2018) uti-
lized an adversarial filter methodology to construct
the debiased dataset. In addition, several studies
focused on recognizing these spurious correlations
and then removing them implicitly. Clark et al.
(2019) proposed a two-stage training procedure,
which built a bias-only strategy to train a robust
model through the ensembling approach. Sagawa
et al. (2020) coupled the distributionally robust op-
timization with regularization to improve the worst
group generalization. To the best of our knowledge,
we are the first to reduce the spurious correlations
for answer selection, leveraging feature decorrela-
tion and language debiasing.

3 Methodology

We assume there are N instances (question-answer
pairs) in the training set. Given a question qi and a
set of K candidate answers Ai = {a1, a2, ..., aK},
the answer selection task aims to find the best
answer by ranking the candidate answers based
on their relevance to the given question. Benefit-
ing from the pairwise ranking, we can reformal-
ize the answer selection as a classification prob-
lem by predicting the relevance label yi of each
question-answer pair (qi, ai). We represent each
question qi and answer ai as q = [wqi1 , . . . , w

qi
n ]

and ai = [wai1 , . . . , w
ai
m ], where n and m are the

lengths of question qi and answer ai, respectively.
In this paper, we propose a novel SCAN method

for answer selection. As illustrated in Figure 1, the
proposed SCAN consists of two primary modules:
the feature decorrelation module based on sample
weighting and the feature debiasing module based
on contrastive learning (Chuang et al., 2020; Liu
et al., 2021). Next, we will introduce the base
context encoder and two key spurious correlation
reduction components in detail.

3.1 Base Context Encoder

Inspired by the remarkable success of pre-trained
language models (PLMs) on most NLP tasks, we
employ RoBERTa (Liu et al., 2019) as our base
context encoder to obtain the contextual represen-
tations of each question-answer pair.

We take the concatenation of the question qi
and each candidate answer ai as input, and use
RoBERTa to generate the contextual representation

of the i-th question-answer pair as:

Ei = RoBERTa([cls, qi, sep, sep, ai, sep]) (1)

where Ei ∈ R(n+m+4)×dh denotes the hidden
states of the question-answer pair (qi, ai) and dh
is the dimension of each hidden state. The special
tokens [cls] and [sep] represent the classification
token and the separation token respectively. We
denote the hidden vector of the special [cls] token
as Hi ∈ Rdh , which can be treated as the base
contextual representation of the question-answer
pair (qi, ai) for prediction.

3.2 Feature Decorrelation with Sample
Weighting from Sample Perspective

Spurious correlations are very common in deep
models, especially when the answer selection
model is overparameterized. Spurious correlations
could hurt the stability and generality of the model
when deployed in practice. In this paper, we em-
ploy the feature decorrelation method with sample
weighting to decorrelate the relevant and irrelevant
features, and make the model focus on discrimina-
tive features (relevant features) that are truly related
to the label prediction.

Given the training data with N question-answer
pairs, the representations learned by the base con-
text encoder can be denoted as H ∈ RN×dh . We
input the representation H into the feature decorre-
lation module based on Random Fourier Features
(Rahimi and Recht, 2007), which learns a weight
for each instance such that features are decorrelated
on the weighted training data.

Formally, we use w ∈ RN to denote the local
weights of individual samples, which are initialized
with all-ones vector at the beginning of each train-
ing iteration. During the optimization process with
stochastic gradient descent (SGD), there are merely
part of samples being observed in each batch, while
the global weights of all samples would be ignored.
Thus, we leverage global weights wG ∈ RN and
global features HG ∈ RN×dh to exploit the global
information of the training data. By concatenating
the global and local information, we can obtain the
combined features Hcom and weights wcom as:

Hcom = Concat(HG,H)

wcom = Concat(wG,w)
(2)

We denote the combined features of the i-th sam-
ple as Hcom

i . The j-th feature in the combined
representation space is denoted as Hcom

:,j .
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Figure 1: The overall architecture of our SCAN method, which reduces the spurious correlations with a feature
decorrelation module module and a feature debiasing module.

To eliminate the correlation between features, we
measure their independence via Hilbert-Schmidt
Independence Criterion (HSIC) which is a ker-
nel statistical test of independence (Gretton et al.,
2007), inspired by (Zhang et al., 2021a). To reduce
the computational complexity, we approximate the
test statistical independence by Frobenius norm.
In particular, we sample r Random Fourier Fea-
tures(RFF) mapping functions from the function
sapce G respectively, and then convert the com-
bined representations Hcom into H̃ ∈ RN×dh×r:

H̃i,j =
(
g1(H

com
i,j ), . . . , gr(H

com
i,j )

)
(3)

where gk(Hi,j) ∈ G, ∀k, (4)

G ={g : x→
√
2cos(ωx+ ϕ)| (5)

ω ∼ N (0, 1), ϕ ∼ Uniform(0, 2π)}

where ω is sampled from the standard Normal dis-
tribution and ϕ is sampled from the Uniform dis-
tribution to approximate continuous shift-invariant
kernels*. With the sample weights wcom, we can
calculate the weighted partial cross-covariance ma-

*Similar to (Zhang et al., 2021a), we adopt both sin and
cosine functions to learn better features.

trix
∑̂

j1,j2
of two features Hcom

:,j1
and Hcom

:,j2
by:

∑̂
j1,j2

=
1

N − 1
·
N∑

i=1

[(
wcom
i H̃i,j1 − E(H̃:,j1)

)T

·
(
wcom
i H̃i,j2 − E(H̃:,j2)

)]
(6)

where E(H̃:,j) =
1

N

N∑

i=1

wcom
i H̃i,j (7)

where wcom
i is the weight of the i-th question-

answer pair (qi, ai).
We use the squared Frobenius norm of the par-

tial cross-covariance matrix to estimate the inde-
pendence between any pair of features. Thus, we
optimize the sample weights wcom by minimizing
the squared Frobenius norm between any pair of
features, which can be defined as follows:

wcom∗ = argmin
wcom

∑

1≤j1<j2≤dh

∥∥∥∥
∑̂

j1,j2

∥∥∥∥
2

F

(8)

During the procedure of learning the weights wcom,
we keep the model parameters fixed.

With the learned weights wcom of question-
answer pairs during the training phase, we can
optimize the model parameters by minimizing the
weighted cross-entropy loss function as:

LSW = −
N∑

i=1

wcom
i yi log ŷi (9)
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where yi denotes the one-hot vector of the ground-
truth relevance label yi of the i-th question-answer
pair (qi, ai). ŷi is the predicted relevance label of
(qi, ai), which is defined as:

ŷi = softmax(Hi) (10)

During the procedure of updating the model param-
eters via back propagation, we keep the weights of
training samples fixed.

Note that for efficient optimization the weights
of training samples and the model parameters are
learned iteratively, and the training procedure is
repeated until convergence. At the end of each
training iteration, we update the global features
HG and the corresponding weights wG as:

wG = αwG + (1− α)w
HG = αHG + (1− α)H

(11)

where α denotes the hyperparameter for controlling
the impact of global information.

3.3 Language Debiasing with Contrastive
Learning from Feature Perspective

Most previous AS models frequently follow the su-
perficial correlations (i.e., language bias) induced
by the training data, which is another kind of the
spurious correlation. The language biases makes
the neural AS models brittle to linguistic variations
in questions/answers. However, not all the lan-
guage biases are harmful in answer selection, and
some language biases may contain commonsense
knowledge that is beneficial for answer selection.
For example, when a question begins with “When”,
the corresponding answer should contain words
that indicate time or period. In this section, we pro-
pose a feature debiasing module with contrastive
learning, which weakens the negative biases in lan-
guage and improves the robustness of AS models.

First, we utilize a bias detection method to rec-
ognize the negative biases that existed in the base
contextual representation Hi of the i-th question-
answer pair learned by the base context encoder.
The detection function σ(·) consists of dense layer
followed by a sigmoid activation function. For-
mally, we learn the bias weight vector bi as fol-
lows:

bi = σ(Htrans
i ), whereHtrans

i = ρb(Hi) (12)

where ρb denotes a multi-layer perceptron (MLP).
Htrans
i represents the transformed feature contain-

ing language biases.

Second, we can learn the negative bias represen-
tation Hbias

i based on the base contextual represen-
tation Hi by the product of the bias weight vector
bi and transformed feature Htrans

i as:

Hbias
i = bi ·Htrans

i (13)

Then, we learn the debiased representation Hd
i ∈

Rdh by removing the negative bias representation
Hbias
i from the original base contextual representa-

tion Hi. We compute the debiased representation
Hdebias
i as follows:

Hd
i = ρd(Hi −Hbias

i ) (14)

where ρd denotes another MLP layer.

Cross-Entropy Loss The learned debiased rep-
resentation Hd

i of the i-th question-answer pair is
fed into a classifier with a softmax layer as:

ŷi = softmax(Hd
i ) (15)

where ŷi represents the predicted relevance label
of (qi, ai). We can optimize the answer selection
model by minimizing the cross-entropy loss as:

LCE = −
N∑

i=1

yi log ŷi (16)

where yi denotes the one-hot vector of the ground-
truth relevance label yi of the question-answer pair
(qi, ai). N is the number of training instances.

Contrastive Loss To avoid using additional pa-
rameters in inference phase, we attempt to discard
the language debiasing module in for inference and
make the base context features H and debiased fea-
tures Hd learned by the language debaising module
as similar as possible. In this paper, we leverage the
contrastive learning to learn robust representations
by incorporating instance-level semantic discrim-
inativeness into the representation learning. Con-
cretely, we leverage a contrastive loss function LCL

to make each base context representation Hi close
to the corresponding debiased feature Hd

i and away
from the negative bias feature Hbias

i . Formally, we
define the contrastive loss as:

LCL = − 1

N

N∑

i=1

log
µ(Hi,H

d
i )

µ(Hi,Hd
i ) + µ(Hi,Hbias

i )
(17)

µ(Hi,H
bias
i ) = exp(sim(Hi,H

bias
i )/τ) (18)

where sim() denotes a cosine similarity function.
τ is a temperature value.
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3.4 Joint Training Objective
Overall, our method consists of three training ob-
jectives, including the sample weighting loss LSW,
cross-entropy loss LCE, and the contrastive loss
LCL. We minimize the joint loss function Ljoint by
summing up the three training objectives as:

Ljoint = LSW + LCE + LCL (19)

Although the sample weights are optimized accord-
ing to Eq. (8) during the training process, we do
not include the weight optimization function dur-
ing the overall training objective for optimizing the
model parameters.

3.5 Inference Stage
In the inference phase, given the back propaga-
tion is disabled, we escape the sample weighting
phase without any calculation of sample weights
and discard the language debiasing phase without
introducing additional parameters. Instead, we con-
duct the prediction directly via Eq. (10) by merely
leveraging the optimized base RoBERTa encoder.

4 Experimental Setup

4.1 Datasets
To evaluate the effectiveness of our method, we
conduct comprehensive experiments on three pub-
licly available corpora. The statistics of the three
datasets are shown in Table 1.

WikiQA The WikiQA dataset (Yang et al., 2015)
is an open-domain question answering dataset. The
original WikiQA contains 3047 questions origi-
nally sampled from Bing query logs and 29258
answer sentences from Wikipedia. We denote the
questions that have no correct answer sentences
as “All-” and the questions that have only correct
answer sentences as “All+”. The remaining data
set without both “All-” and “All+” questions is de-
noted as “Clean”. Following the previous works
(Garg et al., 2020), we train the AS models on the
no “All-” questions, and then test the models on
the “Clean” questions. The statistics of WikiQA
are shown in Table 1.

SelQA The SelQA (Jurczyk et al., 2016) dataset
is similar to WikiQA but covers more diverse top-
ics drawn from Wikipedia. It consists of a larger
number of questions, which is about 6 times larger
than WikiQA. We adopt the original data split as in
(Jurczyk et al., 2016) to verify the AS models. The
statistics of SelQA are shown in Table 1.

Dataset Train Dev Test

WikiQA
#Q 873 122 237
#A 8672 1126 2341

SelQA
#Q 5529 785 1590
#A 66438 9377 19435

ANTIQUE
#Q 2226 200 200
#A 25229 2193 6589

Table 1: Statistics of the three experimental datasets.

ANTIQUE The ANTIQUE dataset (Hashemi
et al., 2020) is an open-domain non-factoid QA
dataset collected from a community question an-
swering service, Yahoo!Answers. Different from
WikiQA and SelQA, ANTIQUE has four-level rel-
evance labels between 1 to 4. Following previous
work (MacAvaney et al., 2020), we regard scores 3
and 4 as relevant, while scores 1 and 2 are treated as
irrelevant. Since the original dataset has no valida-
tion set, we choose 200 questions from the training
set as a held-out set for validation, similar to MacA-
vaney et al. (2020). The statistics of ANTIQUE are
shown in Table 1.

4.2 Baselines

For WikiQA and SelQA which are widely used
in previous works, we compare the proposed
SCAN with several advanced baselines, includ-
ing CNN-DAN (Santos et al., 2017), CNN-hinge
(Santos et al., 2017), ACNN (Shen et al., 2017a),
AdaQA (Shen et al., 2017a), HyperQA (Tay et al.,
2018b), DRCN (Kim et al., 2019), RE2 (Yang
et al., 2019b), a compare aggregate model (Comp-
Agg) (Yoon et al., 2019), BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), TANDA (Garg
et al., 2020), answer support-based reranker (ASR)
(Zhang et al., 2021b), DAR and DAR-DPR Zhang
et al. (2022). For ANTIQUE, we compare SCAN
with four benchmark baselines including aNMM
(Yang et al., 2016), BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), a curriculum learn-
ing method with BERT (BERT-CL) (MacAvaney
et al., 2020), a bilateral generation method (BERT-
BiG) (Deng et al., 2021), and TANDA (Garg et al.,
2020).

4.3 Implementation Details

We adopt the RoBERTa-base (Liu et al., 2019) that
is pre-trained on large-scale English corpus and
fine-tuned on ASNQ corpus (Garg et al., 2020) as
the sentence encoder. In the experiments, we ap-
ply the grid search algorithm (Huang et al., 2012)
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on the validation set to tune the hyper-parameters.
Concretely, we set the maximum sequence length
to 128. The training batch size is set to 140. The di-
mension of hidden state (i.e., dh) is set to 768. We
adopt the Adam optimizer to optimize the whole
SCAN method. The temperature value τ , learning
rate and α for decorrelation module are 1/0.3/0.5,
1e-4/1e-4/1e-3 and 0.7/0.9/0.9 for WikiQA, SelQA
and ANTIQUE, respectively. For reproducibility,
we will release our code and data upon the publica-
tion of this paper.

4.4 Evaluation Metrics

For WikiQA and SelQA, we measure our method
on test set with three official metrics: Mean Av-
erage Precision (MAP), Mean Reciprocal Rank
(MRR), Precision at 1 of ranked candidates (P@1).
For ANTIQUE, we also measure the MAP, MRR
and P@1. In addition, we compute Normal-
ized Discounted Cumulative Gain (i.e., nDCG@1,
nDCG@3 and nDCG@10) with the original four-
level relevance labels.

5 Experimental results

5.1 Overall Performance

Tables 2-4 summarize the experimental results
on WikiQA, SelQA and ANTIQUE, respectively.
SCAN performs significantly and consistently bet-
ter than the compared baselines on all the three
datasets, verifying the effectiveness of our SCAN
method. From Table 2 and Table 3, we can observe
that the CNN- or RNN-based methods perform
poorly because they do not take advantage of the
pre-trained language models (PLMs). TANDA out-
performs BERT and CNN-based methods by adopt-
ing the RoBERTa-base that is pre-trained on large-
scale general corpus and fine-tuned on ASNQ cor-
pus. ASR, DAR and DAR-DRP, which are based
on TANDA, improve the performance of TANDA
by exploiting the interrelated information between
the target answer and the other candidate answers.
SCAN takes a further step towards reducing the
spurious correlations for answer selection by fea-
ture decorrelation and language debiasing.

Table 4 reports the experimental results on the
ANTIQUE dataset, demonstrating that the pro-
posed SCAN method is also effective on the
non-factoid QA. Specifically, SCAN exceeds the
TANDA model (the base model of SCAN) by
3.97% on MRR and 6% on P@1. This verifies
that it is necessary to remove the spurious corre-

Method MAP MRR P@1
HyperQA ♮ 0.7120 0.7270 -
RE2 ♯ 0.7452 0.7618 -
Comp-Agg † 0.7640 0.7840 -
Comp-Agg (QNLI) † 0.8340 0.8480 -
BERT † 0.8130 0.8280 -
RoBERTa 0.8441 0.8551 0.7553
TANDA † 0.8890 0.9010 -
TANDA-re ‡ 0.8860 0.8983 0.8189
ASR ‡ 0.9014 0.9123 0.8436
DAR ‡ 0.9011 0.9136 0.8519
DAR-DRP ‡ 0.9051 0.9164 0.8560
SCAN 0.9164 0.9281 0.8776

Table 2: Experimental Results on WikiQA. The results
with ♮ are retrieved from (Tay et al., 2018b), with ♯

are retrieved from (Yang et al., 2019b), with † are re-
trieved from (Garg et al., 2020), with ‡ are retrieved
from (Zhang et al., 2022). TANDA-re denotes a reim-
plementation of TANDA. The best scores are in bold.

Method MAP MRR P@1
CNN-DAN ♮ 0.8660 0.8730 -
CNN-hinge ♮ 0.8760 0.8810 -
ACNN ♮ 0.8740 0.8800 -
AdaQA ♮ 0.8910 0.8980 -
DRCN ♮ 0.9250 0.9300 -
TANDA-re ‡ 0.9512 0.9587 0.9302
ASR ‡ 0.9519 0.9592 0.9314
DAR ‡ 0.9592 0.9653 0.9415
SCAN 0.9641 0.9701 0.9484

Table 3: Experimental Results on SelQA. The results
with ♮ are retrieved from (Kim et al., 2019), with ‡ are
retrieved from (Zhang et al., 2022).

lations between the text representations and the
prediction relevance labels.

5.2 Ablation study

To verify the effectiveness of feature decorrelation
and language debiasing in SCAN, we perform ab-
lation test of SCAN on two types of QA corpora
(WikiQA and ANTIQUE) in terms of removing
the feature decorrelation module (denoted as w/o
FD) and language debiasing (denoted as w/o LD),
respectively. In particular, for the w/o FD model,
the weighted cross-entropy loss is replaced with a
normal cross-entropy loss without considering sam-
ple weights. We also report the results of removing
both feature decorrelation and language debiasing
(w/o FD+LD).

The ablation test results are reported in Table 5.
Generally, both feature decorrelation and language
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Method MAP MRR P@1 nDCG@1 nDCG@3 nDCG@10
aNMM ♮ 0.2563 0.6250 0.4847 0.5289 0.5127 0.4904
BERT ♮ 0.3771 0.7968 0.7092 0.7126 0.6570 0.6423
RoBERTa 0.6137 0.7763 0.6550 0.6683 0.6525 0.6765
BERT-CL ♯ - 0.7335 0.6450 - - -
BERT-BiG † - 0.8470 0.7650 0.7500 0.7100 0.7200
TANDA 0.6511 0.8258 0.7250 0.7167 0.6969 0.7091
SCAN 0.6722 0.8637 0.7850 0.7550 0.7186 0.7297

Table 4: Experimental Results on ANTIQUE. The results with ♮ are retrieved from (Hashemi et al., 2020), with ♯

are retrieved from (MacAvaney et al., 2020), with † are retrieved from (Deng et al., 2021).

Method
WikiQA ANTIQUE

MAP MRR P@1 MAP MRR P@1
SCAN 0.9164 0.9281 0.8776 0.6722 0.8637 0.7850
w/o FD 0.9004 0.9148 0.8523 0.6667 0.8399 0.7400
w/o LD 0.9011 0.9144 0.8523 0.6603 0.8424 0.7500
w/o FD+LD 0.8943 0.9063 0.8354 0.6511 0.8258 0.7250

Table 5: Experimental Results of the ablation study on WikiQA and ANTIQUE.

debiasing contribute noticeable improvement to
the proposed SCAN method. Concretely, the per-
formances decrease sharply, especially in terms
of MRR and P@1, when removing either the FD
model or the LD module. This is within our expec-
tation since both feature decorrelation and language
debiasing can reduce the spurious correlations for
answer selection.

5.3 Robustness to Noise and Perturbation
To further analyze the robustness of our method,
we conduct experiments on the WikiQA dataset
with injected noise and adversarial perturbations.
Following previous work (Gokhale et al., 2022),
we create adversarial samples by adding character-
level perturbations such as swapping, inserting or
deleting characters to 30% of samples. In addition,
similar to (Garg et al., 2020), we inject noise into
the training samples in WikiQA by randomly sam-
pling 20% of question-answer pairs from the train-
ing set and switching their labels. The experimental
results are shown in Table 6. SCAN achieves con-
sistently better performance than TANDA on these
settings, verifying the robustness of our method to
noise and adversarial perturbations.

5.4 Case Study
We use a representative exemplary case that is
selected from the WikiQA test set to further in-
vestigate the effectiveness of SCAN. This chosen
question is incorrectly predicted by TANDA while

Method MAP MRR P@1
TANDA 0.8943 0.9063 0.8354
TANDA-Perturb 0.8898 0.9019 0.8270
TANDA-Noise 0.8740 0.8871 0.8059
SCAN 0.9164 0.9281 0.8776
SCAN-Perturb 0.9111 0.9228 0.8692
SCAN-Noise 0.8907 0.9055 0.8439

Table 6: Performance comparison when noise and per-
turbations are injected into WikiQA.

being correctly predicted by SCAN. From Table
7, We observe that TANDA simply picks up the
answer that contains the matching words cricket
wireless without understanding the deep semantics.
On the contrary, SCAN obtains the correct answer
since it can recognize the real intention of the ques-
tion. Another example shown in Tabel 8 is from
ANTIQUE, where the topic of answers is more
diverse than factoid QA dataset. While TANDA
predicts an answer with superficial relation with the
question, our model make a more precise prediction
without the disturbance of spurious relation. These
examples demonstrates that our model can focus
on the true correlation between the question and
the answer, which is critical when the candidate
answers contain misleading information.

5.5 Error Analysis

Although our SCAN model achieves better perfor-
mance than previous models, it still fails to handle
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Question: “what company is cricket wireless
by?”
Predicted by TANDA: “Cricket Communica-
tions, Inc., ( d.b.a. Cricket Wireless) founded in
1999, provides wireless services to over 7 million
customers in the United States.” (incorrect an-
swer)
Predicted by SCAN: “The company is a sub-
sidiary of Leap Wireless, utilizing its CDMA
1X, 1xEV-DO and LTE networks.” (correct an-
swer)

Table 7: A question from WikiQA with the answers
predicted by TANDA and SCAN, respectively.

some cases. To investigate the limitations of SCAN,
we analyze the bad cases produced by SCAN. We
summarize the several reasons for obtaining the
incorrect predictions. First, SCAN fails to tackle
some questions that require commonsense knowl-
edge to reason correct answers. In particular, some
questions and the corresponding answers have dif-
ferent expressions for the same entities, thus our
method struggles to capture the relations of the
question-answer pairs based on the contextual rep-
resentations only. One possible solution is to lever-
age knowledge bases to facilitate the reasoning
process. Second, there are some noises (confused
candidates) existing in the datasets. For example,
the question “Where was the first ski flying hill
built?” has two candidate answers “Nevertheless
the first-ever ski flying hill was built in Planica,
Slovenia” and “The first ski flying hill was built in
Planica in Slovenia” with the former one labeled
as incorrect and the latter one labeled as correct.
However, both answers convey the same meaning.
We may update the datasets by carefully examining
the relevance labels of candidate answers.

6 Conclusion

In this paper, we proposed a novel spurious correla-
tion reduction method to improve the robustness of
the answer selection models from the sample and
feature perspectives. First, we devised a feature
decorrelation module by learning a weight for each
training instance to remove the feature dependen-
cies and reduced the spurious correlations without
prior knowledge of such correlations. Second, we
introduced a feature debiasing module with con-
trastive learning to alleviate the negative language
biases and improved the robustness of the AS mod-

Question: “what are some easy ways to get a
toddler to go to sleep without being mean?”
Predicted by TANDA: “There are plenty of
ways.... - The most obvious is try to sleep. -
Take some Pepto-bismol. - Have a piece of pep-
permint (that’s good too even if you still get
sick).” (incorrect answer)
Predicted by SCAN: “Let them play for a while.
Also, play with them. That way they’ll feel like
you care about them. Also, try laying down with
them. That used to help my son, who now is 3
years old.” (correct answer)

Table 8: A question from ANTIQUE with the answers
predicted by TANDA and SCAN, respectively.

els. We conducted extensive experiments on three
benchmark datasets and the experimental results
showed the effectiveness of SCAN.
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Abstract

Generative question answering (QA) models
generate answers to questions either solely
based on the parameters of the model (the
closed-book setting) or additionally retriev-
ing relevant evidence (the open-book setting).
Generative QA models can answer some rela-
tively complex questions, but the mechanism
through which they do so is still poorly under-
stood. We perform several studies aimed at
better understanding the multi-hop reasoning
capabilities of generative QA models. First,
we decompose multi-hop questions into mul-
tiple corresponding single-hop questions, and
find marked inconsistency in QA models’ an-
swers on these pairs of ostensibly identical
question chains. Second, we find that mod-
els lack zero-shot multi-hop reasoning abil-
ity: when trained only on single-hop questions,
models generalize poorly to multi-hop ques-
tions. Finally, we demonstrate that it is pos-
sible to improve models’ zero-shot multi-hop
reasoning capacity through two methods that
approximate real multi-hop natural language
(NL) questions by training on either concate-
nation of single-hop questions or logical forms
(SPARQL). In sum, these results demonstrate
that multi-hop reasoning does not emerge nat-
urally in generative QA models, but can be en-
couraged by advances in training or modeling
techniques.1

1 Introduction
Empowered by large-scale pre-trained language
models (LMs) (Devlin et al., 2019; Liu et al., 2019;
Lewis et al., 2020a; Raffel et al., 2020), recent
years have seen much progress on generative ques-
tion answering (QA), where LMs generate answers
given questions in an end-to-end fashion. While
most works only demonstrate the performance of
such generative QA models on simple questions
(Joshi et al., 2017; Kwiatkowski et al., 2019), there

∗Haibo Ding is now at Amazon.
1Code is available at https://github.com/jzbjyb/multihop.

Closed-book

QA model

!! Return the artist who recorded

Party Ain't Over.

!" Where in Georgia does Usher live?

! Which part of Georgia does the artist 

that recorded Party Ain't Over live?

Open-book

QA model

"!

"!
""

""

Questions Contexts

#$! Rihanna

#$" Atlanta

#$ Atlanta

Chris Brown   ✗ (Usher)

Atlanta ✔
Atlanta ✔

Predictions:

Figure 1: Probing generative closed- and open-book
QA models with both multi-hop (q) and their compo-
nent single-hop questions (q1, q2).

has been some indication that these models can
also answer complex questions that theoretically
require multi-hop reasoning (Xiong et al., 2020),
sometimes to an impressive degree. For exam-
ple, Brown et al. (2020) demonstrate strong perfor-
mance of LMs on multi-hop reasoning tasks such
as DROP (Dua et al., 2019) which requires discrete
reasoning and numeracy. On the other hand, many
argue that LM-based QA models are not actually
performing any reasoning, and rather performing
(sophisticated) pattern matching and data memo-
rization (Marcus and Davis, 2020). Simultaneously,
in the context of extractive QA models that select
answers from the provided context, several works
have demonstrated that they can leverage superfi-
cial signals to return correct answers even when
the context does not contain all the supporting facts
(Chen and Durrett, 2019; Min et al., 2019a)

In this paper, we perform a closer examination of
the multi-hop reasoning capabilities of generative
QA models. To do so, we take multi-hop questions
and their component single-hop questions to di-
rectly query generative QA models, studying their
multi-hop reasoning ability. Specifically, we use
multi-hop questions from the ComplexWebQues-
tions (Talmor and Berant, 2018) and HotpotQA
(Yang et al., 2018; Tang et al., 2021) datasets as
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the testbed, and generate decomposed single-hop
questions using heuristics (§ 2.2). We examine
two types of generative QA models, namely closed-
book (Roberts et al., 2020; Khashabi et al., 2020)
and open-book (Guu et al., 2020; Lewis et al.,
2020b; Izacard and Grave, 2021; Xiong et al., 2020)
QA models that either do not or do refer to exter-
nal knowledge when generating the answer respec-
tively. Specifically, we use UnifiedQA (Khashabi
et al., 2020) as a representative closed-book model,
and RAG (Lewis et al., 2020b) as a representative
open-book model (§ 2.1). We first ask:

RQ1 Is the correctness of decomposed single-hop
questions a necessary and sufficient condition
for correctness of multi-hop questions? (§ 3.2)
Are answers to multi-hop and chains of de-
composed questions consistent? (§ 3.3)

RQ2 Do models trained on single-hop questions
demonstrate zero-shot generalization to multi-
hop questions? (§ 4)

We find that generative QA models, even those
close to the state-of-the-art, generally do not
demonstrate robust multi-hop reasoning abilities,
with success on multi-hop questions largely a result
of taking shortcuts rather than true multi-hop rea-
soning. Zero-shot multi-hop reasoning ability does
not emerge naturally from training on single-hop
questions, which motivates our final question:

RQ3 Can we improve models’ zero-shot multi-
hop reasoning capacity by training on approx-
imations of real multi-hop questions? (§ 4)

Motivated by the fact that pre-training on massive
text endows LMs with the ability to identify seman-
tically similar expressions, our first method uses
concatenated decomposed single-hop questions to
approximate real multi-hop questions. Our second
method is inspired by recent work teaching LMs
complex reasoning capabilities through neural ex-
ecution of logical forms, e.g. by training neural
models to execute SQL queries (Liu et al., 2021).
We hypothesize that the ability to perform multi-
hop reasoning can also be potentially learned from
logical forms without reliance on NL questions. To
this end, we propose to use SPARQL, a standard
query language over knowledge bases, as our logi-
cal forms to endow generative QA models with the
ability to perform multi-hop reasoning, and exam-
ine whether learning to execute SPARQL transfers
to the ability to answer NL multi-hop questions.

Both methods lead to significant improvement on
zero-shot multi-hop reasoning performance, and
further improvements are obtained when both are
combined, opening possibilities for future work
(§ 6).

2 Generative Question Answering

In this section, we briefly introduce generative QA
models and multi-hop QA datasets. Then we elab-
orate on how we use multi-hop and decomposed
questions to perform experiments.

2.1 Generative QA Models

There are two main classes of generative QA mod-
els: closed-book and open-book. Closed-book QA
models usually consist of a sequence-to-sequence
model that takes in a question q and calculates the
probability of an answer a based on model parame-
ters θ (Roberts et al., 2020; Khashabi et al., 2020):

P (a|q; θ) =
|a|∏

i=1

P (ai|q,a<i; θ),

Because these models can only refer to model pa-
rameters, any relevant information must be stored
in the parameters (Roberts et al., 2020). Open-
book QA models first retrieve relevant context c
from external resources, then generate answers us-
ing both questions and context (Guu et al., 2020;
Lewis et al., 2020b; Izacard and Grave, 2021):

P (a|c, q; θ) =
|a|∏

i=1

P (ai|c, q,a<i; θ),

We examine both types of models since we hypoth-
esize that the difference in inputs might lead to
different mechanisms of multi-hop reasoning.

Specifically, as our example of a closed-book
model we use the UnifiedQA model of Khashabi
et al. (2020). The UnifiedQA model is based on
the T5 model (Raffel et al., 2020), which is an
encoder-decoder model trained on the Colossal
Clean Crawled Corpus (C4) by a denoising ob-
jective. It further fine-tunes on a variety of QA
datasets by converting different QA formats into a
unified sequence-to-sequence format.

We use the RAG model of Lewis et al. (2020b)
as our example of an open-book QA model, which
consists of a retriever for searching relevant pas-
sages p, and a generator which generates answers
a given both p and q. The retriever is based on the
dense passage retrieval model (DPR) (Karpukhin
et al., 2020), and the generator is based on BART
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Type Questions (hop1, hop2, and multi-hop) Answers

Composition
Return the country where Limonese Creole is spoken. Costa Rica
Which continent is Costa Rica located? North America
On which continent is Limonese Creole spoken? North America

Conjunction
What team is Reggie Bush on 2011? Miami Dolphins, New Orleans Saints
Which one of the following is the team won the super bowl XLIV championship: Miami Dolphins, New Orleans Saints? New Orleans Saints
What team that won the super bowl XLIV championship was Reggie Bush in 2011? New Orleans Saints

Superlative
What countries does the Niger River flow through? Benin, Guinea, Mali, Niger Nigeria
Which one of the following country calling code is smallest: Benin, Guinea, Mali, Niger, Nigeria? Mali
What country with the smallest calling code does the Niger River flow through? Mali

Comparative
What were Hitler’s parents names? Alois Hitler, Klara Hitler
Which one of the following person’s date of death is after 1903-01-03: Alois Hitler, Klara Hitler? Klara Hitler
Which of Hitler’s parents died after 3 January 1903? Klara Hitler

Table 1: Each multi-hop question q from ComplexWebQuestions is decomposed into two single-hop questions q1
and q2. Underlined entities in the second single-hop questions are actually the answer to the first hop.

(Lewis et al., 2020a), which is also an encoder-
decoder model that encodes both context and ques-
tion, and generates answers autoregressively.

2.2 Multi-hop Questions and Decompositions
To understand multi-hop reasoning in generative
QA models, we propose to query models using
both multi-hop questions and their decompositions
into multiple single-hop questions, and perform
analysis based on the predictions.

To this end, we choose the ComplexWebQues-
tions dataset (Talmor and Berant, 2018) as our
major testbed, as it contains multi-hop questions
based on simple questions from the WebQuestion-
sSP dataset (Yih et al., 2016), and we can leverage
simple heuristics to obtain decomposed single-hop
questions and corresponding answers. Another ad-
vantage of ComplexWebQuestions is that it con-
tains four types of questions: composition, con-
junction, superlative, and comparative. This allows
us to perform fine-grained analysis over these cate-
gories. Specifically, we follow heuristics in Talmor
and Berant (2018) to generate decompositions. For
the composition type, they use questions from We-
bQuestionsSP as the second hop, and replace an
entity in it with a relational phrase to generate multi-
hop questions. We revert this process to get the
first-hop question. For the other three types, they
use questions from WebQuestionsSP with multiple
answers as the first hop, and add additional condi-
tions to form the multi-hop questions. We extract
those conditions and use the following template
to generate the second hop question: “Which one
of the following [condition]: [candidate answers]”.
Tab. 1 includes examples of multi-hop questions
and their decompositions of four types.

We also use another small dataset from Tang
et al. (2021) to test the generality of models, where
a subset of multi-hop questions from HotpotQA
(Yang et al., 2018) are manually annotated with

decompositions. This dataset only contains a sin-
gle type of question, which is composition. Com-
plexWebQuestions has 27,639/3,519 questions in
the training/development set, and HotpotQA has
1,000 questions in the development set.2

2.3 Answer Generation and Evaluation

We use qt, t ∈ {1, ..., T} to denote the t-th decom-
posed single-hop question for a multi-hop question
q with T hops. Correspondingly, we use at to de-
note answers and ct to denote retrieved context for
the single-hop question qt. Since the last single-
hop question always has the same answer as the cor-
responding multi-hop question, aT = a. We use
ât/â to denote the predictions from single-/multi-
hop questions generated with greedy decoding:

â
ât

= argmax
y

P
(
y
∣∣∣[c, ]q
[ct, ]qt

; θ
)
.

We query models using all decomposed questions
qt and multi-hop questions q which are concate-
nated with the corresponding context (ct or c) for
open-book settings to get predicted answers. All
questions from ComplexWebQuestions and Hot-
potQA have two hops (i.e., T = 2), thus in the
following sections we always use T = 2.

Pseudo-gold context for oracle-book models
Previous work clearly demonstrates that a better
retrieval component usually implies higher open-
book QA performance, as it results in more re-
trieved contexts with answers (Chen et al., 2017;
Lee et al., 2019; Karpukhin et al., 2020). There-
fore, we ablate out the influence of the retrieval

2Since the test sets of both datasets are hidden, we use
development sets for evaluation purposes. Break (Wolfson
et al., 2020) is another testbed with multi-hop questions and
manually decomposed questions. However, the decomposed
questions are not annotated with answers, making it less ap-
propriate for our study.
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component and focus on understanding the mecha-
nism through which generative QA models parse
multi-hop questions and generate answers.

We try to provide context that contains answers
to the QA model so failure of answering the ques-
tion can be mainly attributed to the generator in-
stead of the retriever. Since gold context is not
annotated in the datasets, we follow Karpukhin
et al. (2020) to obtain pseudo-gold context. Specifi-
cally, we use the DPR model to retrieve the top-100
passages to each single-hop question qt, and find
the first one containing the answer at, which is de-
noted as the pseudo-gold passage p3

t . Only using
pseudo-gold passages as the context might make
the task too easy because no incorrect contexts are
presented. Therefore, we concatenate the pseudo-
gold passage with a negative passage p7

t which is
the first retrieved passage not containing the an-
swers: ct = [p3

t ,p
7
t ].

3 For multi-hop questions q,
we concatenate all context of the decomposed ques-
tions: c = [c1, ..., cT ]. We fix the context for all of
our experiments, and only use the generator of the
RAG model. For clarity, instead of open-book we
use oracle-book to refer to these QA models in the
following sections.

Multi-answer generation Since some questions
involve multiple answers, as shown in Tab. 1, we
fine-tune generative QA models to generate multi-
ple answers separated by a special symbol “#”.

Evaluation metrics We follow previous works
(Roberts et al., 2020; Khashabi et al., 2020; Lewis
et al., 2020b) to use exact match (EM) as our major
evaluation metric, which measures the percentage
of predictions that match the ground truth answers
exactly (Rajpurkar et al., 2016; Yang et al., 2018).
Since we allow multi-answer generation, we split
the prediction by the special symbol “#” and match
each entry against all the answers. The prediction
is judged as correct if all answers are included and
no extra entry is predicted.

3 Probing Multi-hop Questions and
Decompositions

To answer the first research question, we probe
generative QA models on both multi-hop questions
and their decompositions, examining the similar-
ities and differences in models’ behavior thereon.
We hypothesize that if models answer multi-hop
questions in a robust way, they should be able

3The concatenation order is randomized to avoid leaking
superficial signals to QA models.

Model Type Hop1 Hop2 Multi-hop

U
ni

fie
dQ

A overall 32.91 49.13 33.25

composition 47.49 38.67 33.40
conjunction 22.49 63.30 38.01
superlative 16.23 48.69 21.99
comparative 15.53 25.57 8.68

R
A

G

overall 58.72 65.11 60.32

composition 76.23 61.24 60.51
conjunction 25.12 78.82 66.50
superlative 13.33 76.67 53.33
comparative 17.65 35.29 26.47

Table 2: EM of two models on ComplexWebQuestions
overall or each type separately.

Model Type Hop1 Hop2 Multi-hop

UnifiedQA composition 1.70 1.30 1.20
RAG composition 31.55 21.66 6.15

Table 3: EM of two models on HotpotQA.

to perform multi-hop reasoning by following the
chain of decompositions internally, which makes
being able to answer decomposed questions a nec-
essary and/or sufficient condition of being able to
answer multi-hop questions. Motivated by this, we
choose two probing angles to examine this question.
The first angle evaluates the prediction correctness
on decomposed and multi-hop questions, and in-
vestigates whether there is a correlation between
them. The second angle generates predictions by
answering multi-hop questions and the correspond-
ing chain of decomposed single-hop questions in a
sequence, and examining whether predictions are
consistent.

3.1 Experimental Settings
We fine-tune the UnifiedQA and RAG model us-
ing both single- and multi-hop QA pairs from the
training set of the ComplexWebQuestions dataset.4

Then we generate predictions for both single- and
multi-hop questions from the test set of the Com-
plexWebQuestions/HotpotQA datasets, and show
their overall results in Tab. 2 and Tab. 3 respectively.
We measure the EM metric on first-hop q1 (Hop1),
second-hop q2 (Hop2), and multi-hop questions q
(Multi-hop) separately. We also group examples
by four types to investigate whether different types
of reasoning exhibit different regularities.

To examine the correlation between success on
decomposed and multi-hop questions, we bucket

4We follow the default hyperparameters of UnifiedQA for
100K steps and a batch size of 16 on a single TPU, and the
default hyperparameters of RAG for 10 epochs with a batch
size of 4 on a single V100 GPU.
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Figure 2: Correctness confusion matrices of two models on ComplexWebQuestions. Two binary codes on the
X-axis indicates the correctness of the first/second single-hop question s1s2 = {00, 01, 10, 11}. In the table, the
first/second row indicates the percentage (%) of examples of which the multi-hop question is correctly/incorrectly
answered P (s = {1, 0}, s1s2); the last row indicates the conditional success rate P (s = 1|s1s2).

examples by their correctness. We use s1, s2 and s
to denote correctness of predictions generated from
the first/second single-hop and multi-hop questions,
which is either 0 (incorrect) or 1 (correct). There
are 8 = 23 configurations of the correctness of
a triple. We present the results using the correct-
ness confusion matrices in Fig. 2, where exam-
ples are bucketed into 4 bins by correctness on
single-hop questions (i.e., s1s2 = {00, 01, 10, 11})
and the inner blue/orange bars indicate the per-
centage of the corresponding configurations (i.e.,
P (s = {1, 0}, s1s2 = {00, 01, 10, 11})). To bet-
ter reveal the correlation between decomposed
and multi-hop questions, we compute the condi-
tional success rate on multi-hop questions P (s =
1|s1s2) = P (s=1,s1s2)

P (s=1,s1s2)+P (s=0,s1s2)
in the last row

of the table, which indicates how likely multi-hop
questions are correctly answered given the correct-
ness on single-hop decompositions.5

To examine the prediction consistency between
multi-hop questions and chains of decompositions,
we replace entities in the second single-hop ques-
tions q2 which correspond to answers to the first
hop with a special placeholder “#1”, and denoted
it as q∗2 . When answering a chain of decomposed
questions, predictions from the first hop â1 are
used to replace the placeholder in the second hop:
q∗2(â1), from which we generate the final answer
denoted as â∗2. Models fine-tuned in the normal
setting only generate final answers from multi-hop
questions, but not intermediate answers (i.e., an-
swers to the hop1 question). To examine whether
models can predict intermediate answers from the
multi-hop question, and measure consistency on
both, we append two prompts to multi-hop ques-
tions to instruct models to generate two predictions:

5For robust models, P (s = 1|s1s2 = 11) should be close
to 1, P (s = 1|s1s2 = {00, 01, 10}) should be close to 0.

â∗
1

â
= argmax

y
P
(
y
∣∣∣[c, ]q, “Intermediate answer:”

“Final answer:”

)

â1

â∗
2
= argmax

y
P
(
y
∣∣∣[c1, ]q1

[c2, ]q
∗
2(â1)

)
,

where â∗1 denotes intermediate predictions. Pre-
dictions from multi-hop questions (â∗1/â) are com-
pared with predictions from decomposed questions
in sequence (â1/â∗2) respectively to measure their
consistency.

3.2 Correlation of Correctness

Multi-hop performance is unexpectedly high
Given the hypothesis that being able to answer de-
composed questions is a prerequisite of being able
to answer multi-hop questions, we expect a priori
that the performance on multi-hop questions will
be much lower than the performance on all single-
hop questions due to error propagation. However,
what we observe on ComplexWebQuestions is the
opposite: overall, the multi-hop performance is
slightly higher than the hop1 performance, and the
gap between hop2 and multi-hop performance is
much smaller than may be expected, especially for
the oracle-book RAG model. This indicates that
generative QA models somehow manage to take
shortcuts when answering multi-hop questions, i.e.,
being able to answer the multi-hop question with-
out correctly answering its component questions.

Success on decompositions does not always im-
ply success on multi-hop questions Looking at
the overall percentage, we can see that indeed the
success rate on multi-hop questions is highest if
both decomposed questions are correctly answered,
i.e., P (s = 1|s1s2 = 11) = 85%/88% for the Uni-
fiedQA/RAG model respectively, indicating that
generative QA models are more likely to answer
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Type Questions (hop1, hop2, multi-hop) Answers Predictions
C

om
po

. Return the country where Cerveceria Modelo Corona light beer is made. Mexico Mexico
Who is Mexico’s president right now 2011? Felipe Calderón Felipe Calderón
Who was the president in 2011 in the country where Cerveceria Modelo Corona light beer is made? Felipe Calderón Juan Manuel Santos

C
on

j. What year did Detroit Pistons win the championship? 2004, 1990, 1989 NBA Finals 2004, 1990, 1989 NBA Finals
Which one of the following sports championship results were 4-1: 2004, 1990, 1989 NBA Finals? 2004, 1990 NBA Finals 2004, 1990 NBA Finals
In what year did the Detroit Pistons win the sports championship where the results were 4-1? 2004, 1990 NBA Finals 2002 NBA Finals

C
om

po
. Return the team won the 2006 NFC championship Seattle Seahawks Indianapolis Colts

Where do the Seattle Seahawks play? CenturyLink Field CenturyLink Field
Which Stadium does the team that claimed the 2006 NFC championship play in? CenturyLink Field CenturyLink Field

C
om

pa
. Who is the leader of France 2012? Nicolas Sarkozy, François Hollande Nicolas sarkozy

Which one of the following started tenure after 1979: Nicolas Sarkozy, François Hollande? Nicolas Sarkozy Nicolas Sarkozy
Who was the leader of France from 1979 until 2012? Nicolas Sarkozy Nicolas Sarkozy

Table 4: Cases of predictions generated from single/multi-hop questions of different types. Correct/Incorrect
predictions are indicated in blue/orange.

multi-hop questions if they can answer all decom-
posed single-hop questions. However, there are
still 15%/12% examples where correctness on both
decomposed questions does not imply correctness
on multi-hop questions, as shown by the first two
examples in Tab. 4. The predictions generated from
the multi-hop questions are usually of the correct
type, but they diverge from the predictions gener-
ated from decomposed questions, indicating that
models do not necessarily follow the decomposed
components when answering multi-hop questions.

Multi-hop success is most correlated with suc-
cess on the last hop Even when models fail on
decomposed questions, they can still answer some
percentage of multi-hop questions correctly (4-
46%/15-75%) depending on which of the decom-
posed hops fails. Success on hop2 questions is
more correlated with success on multi-hop ques-
tions than hop1 questions (i.e., P (s = 1|s1s2 =
01) > P (s = 1|s1s2 = 10)), especially for the
oracle-book RAG model. When the model is only
able to answer the second single-hop questions,
there is still 46%/75% chance that the model can
answer the multi-hop questions in closed/oracle-
book settings respectively, indicating that genera-
tive QA models manage to take shortcuts instead of
performing real reasoning. The shortcuts could be
some superficial signals in the context or parame-
ters that generative QA models can take advantage
of to bypass the requirement of the first hop, as
shown by the third example in Tab. 4. Or for multi-
hop questions with multiple intermediate answers,
generative QA models might not need to know all
of them in order to answer the multi-hop questions,
as shown by the fourth example in Tab. 4.

Other observations Overall, the oracle-book
RAG model performs significantly better than the
closed-book UnifiedQA model on both datasets,
indicating that knowledge stored in parametric gen-

Type EM Consistency
Decompose Multi-hop
Hop1 Hop2 Hop1 Hop2 Hop1 Hop2

U
ni

fie
dQ

A overall 32.48 32.23 30.78 31.40 50.81 36.12

compo. 51.87 33.97 48.51 32.13 58.92 43.24
conj. 17.73 34.68 17.54 34.68 44.46 33.51
super. 13.09 24.08 11.52 23.04 38.74 26.70
compa. 13.24 9.59 12.79 10.50 47.49 11.42

R
A

G

overall 56.51 62.65 61.92 58.11 79.61 65.48

compo. 73.86 60.88 76.78 54.48 86.47 67.46
conj. 23.65 74.38 30.05 72.41 67.98 68.47
super. 13.33 60.00 33.33 56.67 60.00 43.33
compa. 11.76 23.53 38.24 32.35 55.88 35.29

Table 5: EM of predictions from answering chains
of decomposed questions and multi-hop questions on
ComplexWebQuestions and their consistency (%).

erative QA models is still limited and it is beneficial
to provide external evidence. Hop2 performance
is significantly higher than the hop1 performance
on conjunction, superlative, and comparative ques-
tions, which is because hop1 questions usually have
more answers than hop2 questions as shown in
Tab. 1, thus being harder.6 Both models generalize
poorly to the unseen HotpotQA dataset (Tab. 3),
indicating that the learned multi-hop reasoning ca-
pability cannot generalize across datasets.

3.3 Prediction Consistency

Predictions are not consistent between multi-
hop questions and chains of decompositions
As shown in Tab. 5, consistency is relatively low
for both models and on both hop1 and hop2, in-
dicating that generative QA models answer multi-
hop questions not necessarily in the same way as
they answer decomposed questions in sequence.
The consistency of the UnifiedQA model is lower
than the consistency of the RAG model, which is
because knowledge is limited in closed-book QA

6Note that the difference in the difficulty of hop1 and hop2
questions does not invalidate our previous conclusion about
correctness correlation since we use conditional success rate.
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SELECT ?x WHERE {

?c music.featured_artist.recordings Party Ain't Over . 

?c people.person.places_lived ?y .

?y people.place_lived.location ?x .

?x location.location.containedby Georgia .}

SELECT ?x WHERE {

?x music.featured_artist.recordings Party Ain't Over .}

SELECT ?x WHERE {

Usher people.person.places_lived ?y . 

?y people.place_lived.location ?x . 

?x location.location.containedby Georgia .}

Return the artist

who recorded

Party Ain't Over.

Where in Georgia

does Usher live?

Which part of 

Georgia does the

artist that recorded 

Party Ain’t Over

live?

NL Questions SPARQL Queries

Figure 3: NL questions and corresponding SPARQL
queries. Mentions of the same entity are in the same
color.

models, and navigating in parameters implicitly is
probably harder than searching chains of evidence
in context explicitly. Consistency on the first hop
is usually higher than consistency on the second
hop, which is because inconsistent intermediate
predictions (â1) will propagate to the second hop,
leading to accumulated inconsistency.

4 Improving Zero-shot Multi-hop
Reasoning Capability

In this section, we first examine LMs’ zero-shot
capacity for multi-hop reasoning when they are not
trained on multi-hop NL questions. Compositional
generalization ability (Lake and Baroni, 2018) is
required in this case to generalize from single-hop
to multi-hop questions. Unsurprisingly, generative
QA models perform poorly in this setting, with
almost half performance degradation. Since multi-
hop NL questions are expensive to obtain, one nat-
ural question is “is it possible to improve the multi-
hop reasoning ability using only single-hop NL
questions, or even without any NL questions?”

We design two methods to achieve this goal. Mo-
tivated by the fact that UnifiedQA and RAG models
are initialized with language models pre-trained on
massive text corpora, which endows them with the
ability to identify semantically similar expressions,
our first method uses concatenated decomposed
NL questions (i.e., [q1, q∗2]) to approximate the real
NL multi-hop question q, and fine-tunes models on
them.

The second is inspired by recent progress in
teaching LMs complex reasoning capabilities by
executing logical forms neurally. For example, Liu
et al. (2021) formulate the execution of SQL over
tables as a seq2seq task where the input is a log-
ical form string associated with a table and the
output is answers (Liu et al., 2021). We hypothe-
size that in our multi-hop QA setting, the ability

to perform multi-hop reasoning can also be poten-
tially learned from logical forms without reliance
on any NL question. To this end, we propose to use
SPARQL, which is a standard query language over
knowledge bases, as our logical forms. We then
examine whether the ability to answer questions
expressed in these SPARQL queries is transferable
to NL multi-hop questions. The advantage of using
SPARQL for training is that SPARQL queries can
be easier and cheaper to obtain or generate than
NL. For example we can use existing query logs,7

or use manual SPARQL queries as templates and
replace entities/relation to generate more queries.8

Our observation sheds light on potential improve-
ment on multi-hop reasoning using many SPARQL
query-answer pairs.

4.1 Experimental Settings
Each NL multi-hop question in the ComplexWe-
bQuestions dataset is associated with a SPARQL
query based on the Freebase schema. We follow
similar heuristics described in § 2.2 to generate
SPARQL queries for the first- and second-hop NL
questions. Each single- and multi-hop SPARQL
query is used as a pseudo input question after
replacing entity identifiers with their names, as
shown in Fig. 3. In order to answer the above re-
search questions, we design the following settings:

• No fine-tuning (Default): This setting uses
the original model without fine-tuning.

• Single- and Multi-hop NL (SM-NL): The nor-
mal setting discussed in § 3.2 where we train
the model using both single- and multi-hop
NL questions. This serves as the upper bound
of the zero-shot performance.

• Single-hop NL (S-NL): Only use decom-
posed single-hop NL questions for training.

• Single- and Multi-hop SPARQL (SM-
SPARQL): Only use SPARQL queries.

• S-NL with Concatenation (S-NL+Concat):
Use concatenated decomposed NL questions
in addition to S-NL.

• SM-NL+Concat+SM-SPARQL (Combo.):
Combine the previous two settings to lever-
age both NL and SPARQL for training.

4.2 Experimental Results
Tab. 6 includes results for all the above experi-
mental settings. Compared to the oracle multi-hop
performance, performance of only using single-
hop NL questions (S-NL) drops by almost half on

7https://bit.ly/3wRRIPZ
8https://bit.ly/3ciOFqy
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Setting Supervision Hop1 Hop2 Multi-
Single Multi hop

U
ni

fie
dQ

A

Default 0.71 15.37 6.56
S-NL 33.28 49.33 17.02

+Concat 31.91 48.25 25.69
SM-SPARQL � � 19.04 34.67 24.84
Combo. � � 32.76 48.51 27.14
SM-NL 32.91 49.13 33.25

R
A

G

Default 7.99 12.65 7.62
S-NL 59.83 68.55 34.03

+Concat 61.06 64.13 53.93
SM-SPARQL � � 49.51 58.48 51.60
Combo. � � 57.37 62.53 53.07
SM-NL 58.72 65.11 60.32

Table 6: EM on NL questions in zero-shot multi-hop
evaluation, where , , � denotes NL, concatenation,
and SPARQL respectively. Oracle performance using
multi-hop NL questions has a gray background. Best
zero-shot multi-hop performance is in bold.

both UnifiedQA (33.25 ) 17.02) and RAG models
(60.32 ) 34.03), indicating that without learning
on multi-hop questions, compositional generaliza-
tion does not naturally emerge in generative QA.
Single-hop concatenation is a good approxima-
tion of multi-hop questions Surprisingly, by
simply concatenating single-hop NL questions and
fine-tuning on them, multi-hop performance in-
creases by a large margin (17.02 ) 25.69/34.03 )

53.93), indicating that simple concatenation is an
effective approximation for multi-hop questions.
We hypothesize that LMs pre-trained on noisy text
have the paraphrasing ability to generalize from
concatenated simple sentences to complex sen-
tences at least to some degree.
Models generalize from SPARQL to NL ques-
tions SPARQL queries explicitly specify compo-
sitional structure using pre-defined grammar and
canonicalized entities/relations, while NL ques-
tions express this process in a more flexible way.
Despite this gap, models trained solely on SPARQL
queries are able to generalize to NL questions at test
time on both single- and multi-hop questions, with
a performance drop of 7-15 on both single- and
multi-hop questions compared to (SM-SPARQL
vs. SM-NL), which is far better than no fine-tuning
(Default). This indicates that when answering
NL questions, the ability learned from mapping
SPARQL queries to answers can be reused by the
model, similar to the observation on table-based
QA (Liu et al., 2021). As demonstrated in other
tasks such as table-based QA (Jiang et al., 2022)
and text-to-SQL (Wu et al., 2021), converting the
SPARQL queries into NL questions and training

models on them can potentially mitigate the gap
and further improve the performance, which we
plan to explore in future works.

Combining concatenation and SPARQL im-
proves further In this setting, we attempt to
combine the merits of using concatenated single-
hop NL questions, which are more natural, and
SPARQL queries, which are more explicit with
respect to the reasoning process. Compared to
training on two types of supervision separately (S-
NL+Concat and SM-SPARQL), training on both
jointly (Combo.) improves the multi-hop perfor-
mance of UnifiedQA (25.69 )27.14) while slightly
hurting the performance of RAG (53.93 )53.07).
We hypothesize that closed-book models are less
constrained compared to oracle-book models due
to the existence of the additional context, therefore
closed-book models can benefit from the stronger
supervision from a combination of two methods.
Note that there is still a large gap between fine-
tuning on multi-hop NL questions (SM-NL) and
zero-shot settings, which indicates the potential for
better approximations or modeling techniques.

5 Related Work

Multi-hop QA models Most multi-hop QA mod-
els proposed so far are pipeline methods that gen-
erate sub-questions to retrieve evidence iteratively
(Qi et al., 2019; Ding et al., 2019; Qiu et al., 2019;
Das et al., 2019; Asai et al., 2020; Min et al., 2019b;
Perez et al., 2020; Xiong et al., 2020). The final an-
swers are generated either by reading each retrieved
evidence independently and recomposing the gen-
erated intermediate answers (Min et al., 2019b;
Perez et al., 2020), or by taking all evidence as
input at once (Qi et al., 2019; Das et al., 2019; Asai
et al., 2020). Instead, we focus on understanding
the multi-hop reasoning capabilities of end-to-end
generative QA models in this paper.

Analysis of multi-hop reasoning Several works
studying multi-hop reasoning in extractive QA
models found that they can leverage superficial sig-
nals to extract answers even when the context does
not contain all supporting facts (Chen and Durrett,
2019; Min et al., 2019a; Trivedi et al., 2020; Jiang
and Bansal, 2019; Niu et al., 2020; Lee et al., 2021).
While they examine from the perspective of dataset
bias, we directly query models with both multi-hop
and component single-hop questions, using both
closed- and open-book generative QA models. An-
other work that studied multi-hop QA models using
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both multi-hop and single-hop questions is Tang
et al. (2021). While they use pipeline extractive
QA models, we focus on end-to-end generative QA
models and investigate correctness, consistency,
and compositional generalization ability.

6 Conclusion
In this paper, we examined the multi-hop reason-
ing capabilities of generative QA models, finding
that overall models take shortcuts when answering
multi-hop questions, not demonstrating convinc-
ing multi-hop reasoning capability. When trained
only on single-hop questions, models generalize
poorly to multi-hop questions, while approxima-
tion using the concatenation of single-hop ques-
tions and SPARQL queries improves the multi-hop
performance significantly. Further directions in-
clude better approximations of multi-hop questions
and advanced modeling techniques that encourage
compositional ability.
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Abstract

Question answering (QA) has demonstrated im-
pressive progress in answering questions from
customized domains. Nevertheless, domain
adaptation remains one of the most elusive
challenges for QA systems, especially when
QA systems are trained in a source domain
but deployed in a different target domain. In
this work, we investigate the potential bene-
fits of question classification for QA domain
adaptation. We propose a novel framework:
Question Classification for Question Answer-
ing (QC4QA). Specifically, a question classifier
is adopted to assign question classes to both the
source and target data. Then, we perform joint
training in a self-supervised fashion via pseudo-
labeling. For optimization, inter-domain dis-
crepancy between the source and target domain
is reduced via maximum mean discrepancy
(MMD) distance. We additionally minimize
intra-class discrepancy among QA samples of
the same question class for fine-grained adap-
tation performance. To the best of our knowl-
edge, this is the first work in QA domain adap-
tation to leverage question classification with
self-supervised adaptation. We demonstrate
the effectiveness of the proposed QC4QA with
consistent improvements against the state-of-
the-art baselines on multiple datasets.

1 Introduction

Question Answering (QA) or Reading Compre-
hension (RC) refers to the task of extracting an-
swers from given context paragraphs based on in-
put questions. QA systems predict the start and
end positions of possible answer spans in given
context documents upon input questions. In re-
cent studies, QA systems have achieved significant
improvements with transformer models and large-
scale datasets (Rajpurkar et al., 2016; Devlin et al.,
2019; Yue et al., 2022a).

Once deployed, QA systems often experience
performance deterioration upon user-generated
questions. Such performance drops can be traced

Figure 1: Overview for QA domain adaptation. A QA
model is trained with labeled source data and unlabeled
target data. The resulting QA system is deployed to
answer target questions.

back to domain shifts in two input elements:
(1) User-generated questions are syntactically more
diverse and thus, different from the training QA
pairs; (2) The context domain of test-time input
(target domain) can oftentimes diverge from the
training corpora (source domain), e.g., from news
snippets to biomedical articles (Hazen et al., 2019;
Fisch et al., 2019; Miller et al., 2020).

To alleviate the performance issue in QA do-
main adaptation, several approaches have been pro-
posed to reduce the discrepancy between the source
and target domains. Integrating labeled target QA
pairs in training can effectively improve the QA
system in answering out-of-domain questions (Ka-
math et al., 2020; Shakeri et al., 2020; Yue et al.,
2021, 2022b), where the target data can be human-
annotated QA pairs or synthetic data using ques-
tion generation methods. When only unlabeled
questions are available (see Figure 1), another pos-
sible approach is to reduce inter-domain discrep-
ancy via domain-adversarial training (Lee et al.,
2019). Combined with pseudo labeling, QA sys-
tems demonstrate improved generalization in an-
swering target domain questions (Cao et al., 2020).

Nevertheless, previous methods either require
large amounts of annotated target data or exten-
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sive computing power (Lee et al., 2019; Cao et al.,
2020; Yue et al., 2021, 2022b). Additionally, dif-
ferent types of QA pairs and their distributional
changes are not taken into account. As a result,
existing approaches are less effective for adapting
QA systems to an unseen target domain. In this
paper, we propose a domain adaptation framework
for QA: question classification for question an-
swering (QC4QA). Unlike existing methods, we
innovatively adopt a question classification (QC)
model to classify input questions from both the
source and target domains into different question
classes. Moreover, we pseudo label the target
data using a pretrained QA system and perform
distribution-aware sampling to build mini-batches
that resemble the target question distribution. In
the adaptation stage, we propose a self-supervised
adaptation framework to minimize the domain gap,
in which inter-domain and intra-class discrepan-
cies are simultaneously regularized. This is in
contrast to existing baselines (e.g., domain adver-
sarial adaptation methods) where the source data
is solely used for training but without explicitly
accounting for domain shifts and question distri-
bution changes (Lee et al., 2019; Cao et al., 2020;
Yue et al., 2021). To the best of our knowledge,
QC4QA is the first work that combines question
classification and self-supervised adaptation for
learning domain-invariant representation in QA do-
main adaptation.

Our main contributions are as follows1:

1. We propose QC4QA for QA domain adap-
tation. QC4QA innovatively adopts ques-
tion classification to identify question types
(classes) of the source and target QA pairs for
intra-class discrepancy reduction.

2. Our QC4QA can be combined with super-
vised QC or unsupervised clustering. In the
latter case, we show that QC4QA can transfer
knowledge to the target domain even without
additional model or annotation.

3. We design a distribution-aware sampling strat-
egy and an objective function that incorpo-
rates MMD distances for minimizing inter-
domain and intra-class discrepancies to trans-
fer knowledge to the target domain.

4. We demonstrate the effectiveness of QC4QA,
1Our implementation is publicly available at

https://github.com/Yueeeeeeee/Self-Supervised-QA.

where QC4QA consistently outperforms state-
of-the-art baselines by a significant margin.

2 Related Work

QA systems have achieved significant improve-
ments in extracting answers upon input context
and questions. However, trained QA systems are
known to experience performance drops when con-
text paragraphs and questions diverge from the
training corpora. That is, when domain shifts exist
between the training and test distributions (Hazen
et al., 2019; Fisch et al., 2019; Miller et al., 2020;
Zeng et al., 2022).

To adapt QA systems for domain changes, meth-
ods for QA domain adaptation have been proposed
in two different settings: (1) Access to contexts
and QA pairs from the target domain. Here, par-
tial access to target data is provided, or a question
generation model is introduced for producing syn-
thetic QA pairs. The target data is then used to
train and improve adaptation performance (Shak-
eri et al., 2020; Yue et al., 2021); (2) Access to
context paragraphs and unlabeled input questions
from the target domain. Here, unsupervised or self-
supervised adaptation can be used to improve the
performance in the target domain (Cao et al., 2020).
In this paper, we focus on the latter setting and
study QA domain adaptation with access to target
contexts and unlabeled questions.

Domain adaptation in computer vision: Do-
main adaptation methods have been primarily stud-
ied for image classification problems. Such ap-
proaches focus on minimizing the representation
discrepancy between the source and target distri-
butions. Some methods design objective func-
tions that encourage domain-invariant features in
training (Long et al., 2015; Kang et al., 2019).
Other methods leverage domain-adversarial train-
ing with a discriminator to implicitly impose reg-
ularization when source and target features are
distinguishable (Tzeng et al., 2017; Zhang et al.,
2019a), with successful applications in various vi-
sion tasks (Zhang et al., 2019b, 2020, 2021).

Domain adaptation in QA: Various approaches
are designed to improve QA performance by gen-
erating and refining synthetic QA pairs. Based on
target contexts, question generation models are in-
troduced to produce a surrogate dataset, which is
used to train QA systems (Kamath et al., 2020;
Shakeri et al., 2020; Yue et al., 2022b). Con-
trastive adaptaion minimizes inter-domain discrep-
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ancy with question generation and maximum mean
discrepancy (MMD) distances (Yue et al., 2021,
2022c). When unlabeled questions are accessible,
domain-adversarial training can be applied to re-
duce feature discrepancy between domains (Lee
et al., 2019). Pseudo labeling and iterative refine-
ments of such labels can be used for improved joint
training (Cao et al., 2020).

Question classification (QC): Classifying ques-
tions of different types is a common task in natu-
ral language processing. One of the widely-used
question taxonomy TREC divides questions into
6 coarse classes and 50 fine classes (Li and Roth,
2002). Early machine learning methods perform
QC with hand-crafted features (Li and Roth, 2002;
Huang et al., 2008). Neural networks improve the
classification performance with sentence embed-
dings (Howard and Ruder, 2018; Cer et al., 2018).

However, the aforementioned approaches in QA
domain adaptation encourage domain-invariant fea-
tures without considering samples from different
classes and their distributional changes. Moreover,
it is hitherto unclear how to estimate class discrep-
ancies in QA, since class labels are not available
in QA datasets. To solve this problem, we propose
to use QC to divide QA pairs into different classes,
where questions can be classified via an additional
QC model or unsupervised clustering with mini-
mum computational costs. We exploit the question
classes by reducing the discrepancy among samples
from the same class (‘intra-class’). Additionally,
we design a distribution-aware sampling strategy
in QC4QA to account for distributional changes
between the source and target domains. By in-
corporating the discrepancy terms in the objective
function, our self-supervised adaptation framework
QC4QA achieves significant improvements against
the state-of-the-art baseline methods.

3 Methodology

3.1 Setup

Data: Our setting focuses on improving QA per-
formance when domain shifts exist in the test data
distribution. For this purpose, labeled source data
and unlabeled target data are available, we denote
the domain of source data with Ds and target data
with Dt. Formally, the input data is defined by:

• Source data: Labeled source data Xs from
Ds. Individual sample x(i)

s ∈ Xs is defined
by a triplet consisting of a question x(i)

s,q, a

context x(i)
s,c, and an answer x(i)

s,a. The exact
answer tokens can be found in context, an-
swer x(i)

s,a is represented by the start and end
position in x(i)

s,c.

• Target data: Unlabeled target data Xt from
Dt. For target sample x(i)

t ∈ Xt, we only
have access to the question x(i)

t,q and context

x
(i)
t,c . Ground truth answer x(i)

t,a is not given
for training.

Model: The QA system can be represented with
function f . f takes an input question xq and con-
text document xc as input and yields answer pre-
diction xa, namely xa = f(xq,xc). The output
xa is represented as a subspan of xc and comprises
of the answer start and end positions.

Objective: The objective is to learn a f∗, which
maximizes the performance in answering questions
from the target domain Dt. In other words, f∗

minimizes the negative log likelihood (i.e., cross
entropy) for Xt from the target domain distribu-
tion:

f∗ = argmin
f

|Xt|∑

i=1

LNLL(f(x
(i)
t,q,x

(i)
t,c),x

(i)
t,a). (1)

3.2 The QC4QA Framework

3.2.1 Overall Framework
In the proposed QC4QA, we design a self-
supervised framework that facilitates question clas-
sification for QA domain adaptation. QC4QA can
be divided into three stages: (1) Question classifica-
tion; (2) Pseudo labeling & sampling and (3) Self-
supervised adaptation. In the first stage, we per-
form classification for all input questions, which
provides additional question class information for
the adaptation stage. In the next stage, we label and
filter all target samples and perform distribution-
aware sampling to build mini-batches that resemble
the target data distribution. Finally, we perform
self-supervised adaptation on the QA system to
minimize inter-domain and intra-class discrepan-
cies. Once input questions are classified, we itera-
tively perform stage 2 and stage 3 in each epoch.
The QA system is trained with both source and
target data, where we encourage domain-invariant
features and minimize intra-class discrepancies of
data samples from the same question class.

Our approach leverages question classification
for fine-grained domain adaptation. Here, QC is
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designed for evaluating intra-class discrepancies
and distributional changes by introducing the addi-
tional question classes instead of using QA labels.
The idea behind it is that QA labels are defined by
subspans in input contexts, if we treat every com-
bination of start and end position as a class, the
corresponding label space would be too large and
sparse for any meaningful discrepancy estimation.
Therefore, we proposes the question classification
stage to introduce additional semantic knowledge
for intra-class discrepancy estimation. Moreover,
by performing pseudo labeling and distribution-
aware sampling, we resemble the target question
distribution in the adaptation stage to correct the
potential bias in the pretrained QA system. In other
words, QC4QA simulates the target data distribu-
tion and ‘pulls together’ source and target samples
of the same question class to encourage domain
invariance.

3.2.2 Question Classification
For question classification, we adopt the commonly
used question taxonomy in TREC and categorize
all questions into 6 coarse classes Q: ABBR: Ab-
breviation, DESC: Description, ENTY: Entity,
HUM: Human, LOC: Location and NUM: Nu-
meric Value. Each class indicates the potential
answer type to the question (Li and Roth, 2002). In
practice, we rarely find ABBR questions.

The proposed QC model leverages pretrained
sentence embedding methods to generate vector-
ized feature for input questions. We then build
a multilayer perceptron (MLP) to perform classi-
fication on the encoded questions, see Figure 2.
Specifically, we adopt InferSent and Universal Sen-
tence Encoder to encode the input questions sepa-
rately (Conneau et al., 2017; Cer et al., 2018). The
encodings are concatenated and used as an input
feature for the MLP classifier. With the trained QC
model, inference can be performed on all training
questions for the later adaptation stage.

To further examine the effectiveness of question
classification without additional model and anno-
tation, we introduce an unsupervised clustering
method, where we refrain from using an additional
dataset or classifier to perform question classifica-
tion. In particular, we feed the input data within the
transformer encoder (part of the QA system) and
utilize the output from the [CLS] token position
as features (Devlin et al., 2019). We sample a fixed
number of source features (10k in our experiments)
and perform KMeans clustering with a predefined

Figure 2: Model architecture for question classifier.

number of clusters k (Similar to TREC, we use 5
as default). Then, cluster centroids are preserved
to classify source and target QA datasets.

3.2.3 Pseudo Labeling & Sampling
Provided with the access to labeled source data, we
pretrain the QA system f to learn to answer ques-
tions. After pretraining, we can use f to predict
target answers for self-supervised adaptation. The
pseudo labels are filtered according to the answer
confidence, we preserve the target samples above
confidence threshold λcon. The pseudo labeling
and confidence thresholding steps are repeated in
each epoch to dynamically adjust the target distri-
bution used for training.

For mini-batch training, we sample the same
amounts of QA pairs from both domains to mini-
mize the inter-domain and intra-class discrepancies.
However, with randomly sampled data, training is
less efficient as source and target questions in each
batch can be entirely different (e.g., source samples
are all Human questions and target samples are all
Description questions). To solve this problem, we
design a distribution-aware sampling strategy: we
first sample target QA pairs fromXt and within the
same question classes, we sample from Xs such
that the source and target question classes in each
batch are identical. Consequently, the QA system
can be trained on a data distribution similar to the
target dataset. Moreover, the estimation of intra-
class discrepancy between both domains can be
performed more efficiently.

3.2.4 Self-supervised Adaptation
The sampled batches are used to adapt the pre-
trained QA system, where we optimize the model
to reduce the negative log likelihood loss, as in
Equation (1). Meanwhile, we encourage the do-
main invariance by computing the discrepancies
and incorporate them in the training objective.

To measure the discrepancy between samples
from different domains, we adopt the maximum
mean discrepancy (MMD) distance (Gretton et al.,
2012). MMD estimates the distance between two
distributions with samples drawn from them, with
f andH representing the feature mapping and the
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Figure 3: Overview for the proposed method. QC4QA can be divided into three stages: (1) Question classification
where all questions are assigned different classes; (2) Pseudo labeling & sampling, where we label and sample
target examples with the proposed distribution-aware sampling strategy; (3) Self-supervised adaptation, in which we
train the QA system jointly with source and target data. In the experiments, stage 2 and 3 are iteratively performed
and we apply the proposed objective Equation (5) to minimize both inter-domain and intra-class discrepancies.

reproducing kernel Hilbert space:

D = sup
f∈H

( 1

|Xs|

|Xs|∑

i=1

f(x(i)
s )− 1

|Xt|

|Xt|∑

i=1

f(x
(i)
t )
)
.

(2)
To simplify the computation, we adopt the Gaus-

sian kernel as feature mapping, i.e., k(x(i)
s ,x

(j)
t ) =

exp(−∥x
(i)
s −x(j)

t ∥2
γ ). We further leverage empirical

kernel mean embeddings (Long et al., 2015) to es-
timate the MMD distance between samples from
Xs andXt:

DMMD =
1

|Xs||Xs|

|Xs|∑

i=1

|Xs|∑

j=1

k(ϕ(x(i)
s ), ϕ(x(j)

s ))

+
1

|Xt||Xt|

|Xt|∑

i=1

|Xt|∑

j=1

k(ϕ(x
(i)
t ), ϕ(x

(j)
t ))

− 2

|Xs||Xt|

|Xs|∑

i=1

|Xt|∑

j=1

k(ϕ(x(i)
s ), ϕ(x

(j)
t )),

(3)
where ϕ represents the transformer encoder in the
QA system. With DMMD, it is possible to mea-
sure the discrepancies between different domains
and question classes. The discrepancy values are
used to guide the self-supervised adaptation and
encourage domain-invariant features.

Among all tokens in each QA sample x, we
distinguish two types of features xa and xo. xa

stands for the mean vector of answer token repre-
sentations, while xo is the mean vector of all other

tokens in the representation space (Yue et al., 2021).
The QA system extracts the answer when the an-
swer tokens in the representation space are sepa-
rated from xo (van Aken et al., 2019). Therefore,
we adopt xa as feature representation to compute
MMD distances. By introducing question classifi-
cation, we introduce an additional term w.r.t. the
intra-class discrepancy in the objective function:

LQC4QA =
1

|Q|

Q∑

q∈Q
DMMD(X(q)

s ,X
(q)
t ), (4)

Xs refers to all answer features in source samples
and Xt represents answer features in target sam-
ples, while X(q) denotes the set of samples that
belong to question class q ∈ Q. LQC4QA ‘pulls to-
gether’ features from the same question class across
domains by minimizing their MMD distances.

3.2.5 Overall Objective
To encourage domain-invariant features, we incor-
porate Equation (4) into the training objective. Us-
ing the NLL loss and the contrastive adaptaion
loss (Yue et al., 2021, 2022c), the overall objective
function can be formulated as follows:

L = LNLL + λ(LCAQA + LQC4QA), (5)

in which LCAQA is the same as in (Yue et al.,
2021), while λ is a scaling factor we choose em-
pirically. Although we introduce LCAQA in our
training objective function, QC4QA is largely dif-
ferent from CAQA as: (1) LCAQA only reduces the
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inter-domain discrepancy, we incorporate question
classification to additionally reduce intra-class dis-
crepancy via LQC4QA for fine-grained adaptation;
(2) We perform pseudo labeling and distribution-
aware sampling to account for the distribution
shifts between the source and target dataset; and
(3) QC4QA leverages an efficient self-supervised
adaptation framework instead of the computation-
ally expensive question generation in (Yue et al.,
2021). As such, the proposed QC4QA efficiently
reduces the domain discrepancy and effectively
transfers learnt knowledge from the source domain
to the target domain.

The overall framework is illustrated in Figure 3.
We first generate question classes for all data sam-
ples. Next, the source-pretrained QA model gen-
erates pseudo labels for target data and we select
target samples above the confidence threshold λcon
for training. Pseudo labeling and self-supervised
adaptation are performed iteratively to refine the
pseudo labels and improve the performance in the
target domain using Equation (5). Unlike previous
works (Lee et al., 2019; Cao et al., 2020; Shakeri
et al., 2020; Yue et al., 2021), we discard domain-
adversarial training or question generation and in-
troduce a self-supervised adaptation framework
based on question classification for improved effi-
ciency and adaptation performance. We also design
a distribution-aware sampling strategy to resemble
the target data distribution and correct the potential
bias in the pretrained QA system. Additionally,
a fine-grained adaptation loss based on question
classification is introduced in training to minimize
both the inter-domain and intra-class discrepancies
across the source and target domain.

4 Experiments

4.1 Datasets and Baselines

For supervised question classification, we adopt
the TREC dataset (Li and Roth, 2002), a widely
used dataset containing ~5k training questions and
500 questions for testing. Following (Cao et al.,
2020; Shakeri et al., 2020; Yue et al., 2021), we
use SQuAD as our source domain QA dataset (Ra-
jpurkar et al., 2016). For target domain, we adopt
multiple QA datasets (details in Appendix A) and
refrain from using labels in training (Cao et al.,
2020; Shakeri et al., 2020; Yue et al., 2021).

For comparison, we adopt 4 baseline methods.
We first pretrain a QA system on the source dataset
and then evaluate on each target dataset with zero

knowledge of the target domain. We addition-
ally adopt 3 state-of-the-art baselines: Domain-
adversarial training (DAT) (Lee et al., 2019),
conditional adversarial self-training (CASe) (Cao
et al., 2020) and contrastive adaptation for QA
(CAQA*) (Yue et al., 2021). For fair comparison,
we adapt the original CAQA to our self-supervised
adaptation framework as a baseline, we denote the
adapted CAQA with CAQA*.2 BERT-QA is se-
lected as the QA model (Devlin et al., 2019). De-
tails of the baselines are elaborated in Appendix A.

4.2 Training and Evaluation
We train our QC model on the TREC training set
and evaluate on the test set, the best model is saved
to perform classification on all QA datasets. For un-
supervised question classification, sampled [CLS]
features from the source dataset are used to perform
KMeans clustering, followed by question class in-
ference on all QA datasets.

After question classification, we adopt a QA
model (pretrained on the source dataset) and
iteratively perform: (1) Pseudo labeling and
distribution-aware sampling to select data batches
that resemble the target data distribution; (2) Self-
supervised adaptation with the proposed objective
Equation (5) for learning domain-invariant repre-
sentation. For evaluation, we adopt two metrics:
exact match (EM) and F1 score (F1). We compute
the metrics on target dev sets to evaluate the adap-
tation performance. Details of our implementation
can be found in Appendix B.

4.3 Main Results
We first report the question classification perfor-
mance on TREC dataset. The MLP classifier has
2.36M parameters and can be trained efficiently in
less than one minute (57.6s on average) with GPU
acceleration. We perform the evaluation with the
proposed MLP QC model and reach an accuracy of
96.6% on the TREC test set. Similar magnitude of
efficiency can be observed in KMeans clustering
for unsupervised question classification. We pro-
vide detailed quantitative analysis and qualitative
examples in Appendix C.1.

The QA system is first pretrained in the source
domain with 79.60 EM and 87.64 F1 score on

2We exclude question generation and adopt the same pro-
cess of pseudo labeling, distribution-aware sampling and self-
supervised adaptation as QC4QA in CAQA*. Different from
QC4QA, we use the same objective function as in (Yue et al.,
2021). A direct comparison between the proposed QC4QA
and the original CAQA can be found in Appendix C.2.
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Model CNN Daily Mail NewsQA HotpotQA SearchQA
EM / F1 EM / F1 EM / F1 EM / F1 EM / F1

(I) Zero-shot target performance

BERT-QA 14.30/23.57 15.38/25.90 39.17/56.14 43.34/60.42 16.19/25.03

(II) Target performance with domain adaptation

DAT (Lee et al., 2019) 21.89/27.37 26.98/32.72 38.73/54.24 44.25/61.10 22.31/31.64
CASe (Cao et al., 2020) 20.77/29.37 25.40/35.85 43.43/59.67 47.16/63.88 26.07/35.16
CAQA* (Yue et al., 2021) 21.97/30.97 32.08/41.47 44.26/60.83 48.52/64.76 32.05/41.07
QC4QA KMeans (Ours) 25.04/33.20 35.53/44.32 44.40/60.91 49.58/65.78 34.44/43.78
QC4QA TREC (Ours) 28.05/36.18 36.43/45.85 45.62/61.71 50.02/66.10 35.75/44.37

Table 1: Main results of QA adaptation performance on target dataset.

Model CoQA DROP Natural Questions TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1

(I) Zero-shot target performance

BERT-QA 12.42/17.30 19.36/30.28 39.06/53.75 49.70/59.09

(II) Target performance with domain adaptation

DAT (Lee et al., 2019) 11.98/14.72 18.53/29.34 44.94/58.91 49.94/59.82
CASe (Cao et al., 2020) 13.71/18.57 21.78/31.44 46.53/60.19 54.74/63.61
CAQA* (Yue et al., 2021) 14.41/19.28 22.48/31.56 47.37/60.52 54.30/62.98
QC4QA KMeans (Ours) 14.83/19.60 23.13/31.73 49.37/62.25 54.99/63.58
QC4QA TREC (Ours) 15.03/19.71 23.46/32.22 50.59/62.98 55.98/64.57

Table 2: Results of QA adaptation performance on additional target dataset.

the SQuAD dev set. Then, we perform adapta-
tion experiments and report the main results in
Table 1, results on the additional target datasets
can be found in Table 2. Both tables are divided
into 2 parts: (1) QA systems pretrained on SQuAD
as naïve baseline (‘Zero-shot target performance’);
(2) Baseline methods and QC4QA for QA domain
adaptation (‘Target performance with domain adap-
tation’). The proposed approach with TREC su-
pervised classification is denoted with ‘QC4QA
TREC’, unsupervised KMeans question clustering
is denoted with ‘QC4QA KMeans’.

The following observations can be made from
our experiments: (1) Unsupervised adaptation
methods achieve superior performance than the
naïve baseline in most cases. Compared to the
naïve baseline, QC4QA can lead to improve-
ments of over 100% in EM and and over 75% in
F1. (2) Compared to contrastive adaptation (e.g.,
CAQA*), the proposed QC4QA is particularly ef-
fective on cloze questions (i.e., CNN and Daily

Mail), with average performance gains of 16.5%
and 10.4% in EM and F1. This suggests that we can
benefit more from QC when the target questions
are less similar to source questions. (3) By com-
paring CAQA* and both QC4QA methods, we find
consistent performance improvements due to ques-
tion classification for all datasets. (4) Both QC4QA
methods outperform baseline methods with consid-
erable improvements, from which QC4QA TREC
demontrates the best performance on all datasets.
For example, QC4QA KMeans significantly out-
performs the best baseline CAQA* with 5.2% and
3.2% performance increases in EM and F1 on aver-
age. For QC4QA TREC, the relative improvements
are 8.6% and 5.5% respectively. Altogether, the
results suggest that both the TREC and KMeans
question classification are effective for improving
the performance on out-of-domain data. Additional
results and analysis can be found in Appendix C.
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4.4 Ablation Studies
4.4.1 Question Classification
We first study the benefits of question classification.
The performance gains can be achieved by com-
paring the results between CAQA* and QC4QA
in Table 1 and Table 2. This is because CAQA*

is adapted to the same self-supervised adaptation
framework as in QC4QA. CAQA* models are
trained without minimizing the intra-class discrep-
ancies in Equation (5). The improvements from
QC4QA suggest that both supervised and unsu-
pervised question classification can consistently
improve QA systems in answering questions from
unseen domains. Moreover, QC4QA is particularly
effective on target datasets with different question
formats (e.g., CNN and Daily Mail).

4.4.2 Distribution-aware Sampling
To study the influence of distribution-aware sam-
pling in QC4QA, we replace the distribution-aware
sampling strategy with random sampling. Then
we perform unsupervised adaptation with QC4QA
TREC on CNN, Daily Mail and NewsQA to verify
the merits of the sampling strategy. Results are
presented in Table 3.

Dataset
Rand. Sampling QC4QA

EM / F1 EM / F1

CNN 26.69/35.24 28.05/36.18
Daily Mail 35.83/45.51 36.43/45.85
NewsQA 44.72/61.02 44.86/61.40

Table 3: QC4QA performance with the random sam-
pling strategy.

In all target datasets, we see performance drops
when we replace the proposed strategy with ran-
dom sampling. In particular, we find relatively
large performance deterioration on CNN without
distribution-aware sampling. We believe the reason
is that the question distribution in CNN is less sim-
ilar to SQuAD (see Table 5), the resulting inconsis-
tency in sampled batches reduces the effectiveness
in discrepancy estimation.

4.4.3 Sensitivity of Hyperparameter λ
Now we evaluate the influence of λ to study the
robustness of the proposed objective function. We
select different values ranging from 0 to 5e-2 and
perform adaptation with QC4QA TREC. Experi-
ments on CNN, Daily Mail and NewsQA are pre-
sented to estimate the influence of λ.

Figure 4: QC4QA adaptation performance for different
lambda values. X-axis represents lambda and y-axis
represents EM / F1 scores.

Figure 4 visualizes EM / F1 with increasing λ.
Despite certain variations, we observe the results
first go up and then decrease. Although CNN and
Daily are more sensitive to λ, we observe greater
improvements by reducing inter-domain and intra-
class discrepancies. Overall, QC4QA consistently
improves adaptation performance.

4.4.4 Confidence Threshold in Pseudo
labeling

We study the influence of λcon to understand how
the performance varies with different confidence
thresholds in pseudo labeling. We select different
threshold values ranging from 0.2 to 0.8 to filter
pseudo labels and train with QC4QA TREC. Exper-
iments are performed on HotpotQA and SearchQA
to estimate the influence of λcon.

λcon Selection
HotpotQA SearchQA

EM / F1 EM / F1

0.2 48.12/64.56 25.60/34.50
0.4 50.02/66.10 33.56/42.62
0.6 49.95/69.84 35.75/44.37
0.8 49.44/65.11 37.29/46.31

Table 4: QC4QA adaptation performance for different
confidence thresholds in pseudo labeling.

Table 4 shows adaptation performance with dif-
ferent λcon. The best performance can be reached
with λcon ranging from 0.4 to 0.8. For large
datasets like SearchQA (with over 100k QA pairs),
a higher confidence threshold yields a better adap-
tation performance since we avoid noisy pseudo
labels. In sum, carefully selected λcon yields com-
paratively large improvements for QC4QA.
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5 Conclusion

In this paper, we propose a novel framework for QA
domain adaptation. The proposed QC4QA com-
bines question classification with self-supervised
adaptation techniques. QC4QA leverages question
classes to reduce domain discrepancies and resem-
ble target data distribution in training. Different
from existing works, QC4QA achieves superior
performance by introducing a simple question clas-
sifier and incorporating the question class informa-
tion in the training objective. We demonstrate the
efficiency and effectiveness of QC4QA compared
to state-of-the-art approaches by achieving a sub-
stantially better performance on multiple datasets.

Despite having adopted question classification
to adapt QA systems to unseen target domains, the
proposed QC4QA has certain limitations. For ex-
ample, we assume access to unlabeled questions in
QA datasets and have not exploited the potential
benefits of different question samples and question
classes. For future work, we plan to relax our set-
tings and explore question generation and question
value estimation for QA domain adaptation.
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A Dataset and baseline details

A.1 Dataset details

For QA datasets, we follow (Lee et al., 2019; Cao
et al., 2020; Yue et al., 2021) and select SQuAD
v1.1 as our source dataset (Rajpurkar et al., 2016).
SQuAD is a crowdsourced QA dataset based on
Wikipedia articles. For target domain, we adopt
multiple datasets to evaluate QC4QA:

1. CNN (Hermann et al., 2015) leverages CNN
articles as contexts. Cloze QA pairs are gen-
erated by replacing answers with ‘@place-
holder’.

2. CoQA (Reddy et al., 2019) is a conversational
dataset with rationales and QA pairs. Contexts
are given as multi-turn conversations.

3. Daily Mail (Hermann et al., 2015) is similar
to CNN and consists of news from Daily Mail.
Cloze questions and answers are used.

4. DROP (Dua et al., 2019) requires QA systems
to resolve references, reasoning, matching and
understanding context implications.

5. NewsQA (Trischler et al., 2016) provides
news as contexts and challenging questions
beyond simple matching and entailment.

6. HotpotQA (Yang et al., 2018) provides multi-
hop questions with challenging contexts (dis-
tractor contexts excluded).

7. Natural Questions (Kwiatkowski et al., 2019)
has user questions. We adopt short answers
and use long answers as contexts.

8. TriviaQA (Joshi et al., 2017) is a large-scale
QA dataset that includes QA pairs and sup-
porting facts for supervised training.

9. SearchQA (Dunn et al., 2017) is constructed
through existing QA pairs by searching for
context from online search results.

A.2 Baseline details

For naïve baseline, we adopt BERT-QA (uncased
base version with additional batch normalization
layer) and train on the source dataset (Devlin et al.,
2019; Cao et al., 2020). Additionally, we select 3
baselines in unsupervised QA domain adaptation:

1. Domain adversarial training (DAT) (Lee
et al., 2019) comprises of a QA system and a
discriminator using [CLS] output in BERT.
The QA system is first trained on labeled
source data. Then, input data from both do-
mains is used for domain-adversarial training
to learn generalized features.

2. Conditional adversarial self-training
(CASe) (Cao et al., 2020) leverages self-
training with domain-adversarial learning.
CASe iteratively perform self-training and
domain adversarial training to reduce domain
discrepancy. We adopt the entropy weighted
version CASe+E in our work as baseline.

3. Contrastive adaptation for QA
(CAQA*) (Yue et al., 2021) proposes
contrastive adaptation based on token-level
features. CAQA utilizes answer tokens
as features and reduce the domain gap by
minimizing MMD distances. We exclude
question generation and adopt the same
process of pseudo labeling, distribution-aware
sampling and self-supervised adaptation. In
particular, we perform training using the
original contrastive adaptation loss as in (Yue
et al., 2021).

B Implementation

We first train a question classifier on the TREC
dataset. The QC model is trained for 4 epochs
using RMSprop optimizer with learning rate of
0.01 and batch size of 64. We evaluate the QC
model on the TREC test set and report the accuracy
of the best QC model.

For pretraining BERT-QA on the source dataset
(i.e., SQuAD), we follow (Devlin et al., 2019; Yue
et al., 2021) to preprocess data and perform training.
We select the AdamW optimizer and train BERT-
QA for 2 epochs without linear warmup. Learning
rate is 3e-5 and batch size is 12. After pretraining,
we validate the model with the provided dev set
and report the EM and F1 scores.

For baseline methods, we use our pretrained
BERT-QA and follow their default settings for do-
main adaptation. For QC4QA, adaptation is per-
formed 4 epochs with the AdamW optimizer, learn-
ing rate of 3e-5 and 10% proportion as warmup
in training. In the pseudo labeling stage, we first
perform inference on unlabeled target data and pre-
serve the target samples above confidence threshold
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λcon. For batching in self-supervised adaptation
stage, we sample 12 target examples and perform
distribution-aware sampling to sample another 12
source QA pairs. The sampled source data has
same question classes as the target examples. Vali-
dation is performed every 2000 iterations and after
every epoch to save the best QA model. In our
experiments, we empirically select λ from [1e-4,
1e-3, 1e-2], we select λcon from [0.4, 0.6]. Our sys-
tem setup is Intel Xeon Gold 6326 CPU, NVIDIA
A40 GPU and 128GB RAM.

C Additional results

C.1 Question Classification Results

Due to our light-weight design, the TREC ques-
tion classifier can perform training and inference
efficiently within a few minutes. For example, we
achieve an average training time of 57.6s on TREC
in repeated experiments with GPU acceleration. In-
ference on QA datasets are of similar efficiency
and depends on the individual size of each dataset.

Since TREC classes are not provided in QA
datasets, it’s not possible to directly evaluate the su-
pervised QC model on them. We report the distribu-
tion of different question classes in Table 5, where
we observe significant distribution shifts between
the source dataset and certain target datasets (e.g.,
CNN and Daily Mail). Additionally, we present
selected examples of classified questions in Table 9,
from which we observe the following: (1) Cloze
questions are more difficult to classify. Unlike
natural questions, cloze questions usually do not
contain auxiliary verb and wh-words (e.g., what,
where etc.) as indicator of the question classes.
(2) Multiple question classes may qualify for cloze
questions. In some examples, different types of to-
kens can be filled in the placeholder position (e.g.,
both DESC and ENTY qualify for Q3). (3) The
TREC question classifier can be less accurate on
cloze questions. This is the case for Q5 in Table 9,
where the questions are more likely to be DESC
and LOC than HUM. (4) For natural questions,
the question classifier performs generally well and
makes fewer mistakes due to the similarity of natu-
ral questions across QA datasets. More examples
can be found in the released code and data.

For KMeans unsupervised question classifica-
tion, we focus on the discrepancy among ques-
tion samples and perform KMeans clustering us-
ing the [CLS] output from BERT encoder, see
Figure 5. The plot shows a principle component

analysis (PCA) visualizing the BERT-encoder out-
put of NewsQA examples, where different colors
represent question class predictions via KMeans
algorithm. We observe that [CLS] features are
comparatively homogeneous, making it hard to
determine cluster boundaries that clearly separate
different classes of questions. This might cause
performance deterioration in case of increasing out-
liers. Overall, KMeans can successfully cluster QA
examples within each neighborhood on the target
dataset. Ideally, the cluster labels can be used to
reduce intra-class discrepancies for fine-grained
domain adaptation similar to TREC classification.
Both adaptation results and cluster visualization
suggest that KMeans is effective in improving the
performance on out-of-domain data.

Figure 5: Visualization of KMeans cluster analysis on
NewsQA using [CLS] features from BERT.

C.2 Comparison with CAQA

We study the effectiveness of the proposed QC4QA
by comparing the performance between QC4QA,
the original CAQA and the adapted CAQA* (Yue
et al., 2021). The results are presented in Table 6,
we observe that the best-performing method is
QC4QA with TREC question classification for 7
out of 8 metric values. For SearchQA, the origi-
nal CAQA performs the best in EM, with QC4QA
TREC is of similar magnitude and clearly ranks sec-
ond. On average, QC4QA TREC performs the best
with EM of 48.09 and F1 of 59.51. Despite discard-
ing question generation using the T5 transformer,
QC4QA KMeans and the original CAQA performs
similarly. Interestingly, we observe that CAQA*

outperforms the original CAQA in HotpotQA, sug-
gesting that the distribution-aware sampling and it-
erative pseudo-processing can effectively improve
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Dataset ABBR DESC ENTY HUM LOC NUM
SQuAD 0.5% 12.5% 31.4% 19.9% 11.6% 24.1%
CNN 0.0% 5.3% 39.2% 43.6% 5.3% 6.5%
Daily Mail 0.0% 3.9% 38.6% 46.1% 4.4% 6.9%
NewsQA 0.1% 19.5% 21.4% 29.4% 10.3% 19.3%
HotpotQA 0.0% 1.6% 21.1% 51.6% 14.8% 10.9%
CoQA 0.1% 14.1% 14.2% 53.7% 9.3% 8.5%
DROP 0.0% 2.3% 24.0% 51.8% 7.3% 14.5%
Natural Questions 0.2% 5.0% 13.2% 39.2% 13.4% 29.0%
SearchQA 0.2% 3.7% 43.1% 4.8% 13.5% 34.7%
TriviaQA 0.2% 1.6% 37.8% 36.5% 19.3% 4.7%

Table 5: Question class distribution in all datasets.

Model Natural Questions HotpotQA SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1

(I) Zero-shot target performance
BERT-QA 39.06/53.75 43.34/60.42 16.19/25.03 49.70/59.09

(II) Target performance with domain adaptation
CAQA* (Yue et al., 2021) 47.37/60.52 48.52/64.76 32.05/41.07 54.30/62.98
CAQA (Yue et al., 2021) 48.55/62.60 46.37/61.57 36.05/42.94 55.17/63.23
QC4QA KMeans (Ours) 49.37/62.25 49.58/65.78 34.44/43.78 54.99/63.58
QC4QA TREC (Ours) 50.59/62.98 50.02/66.10 35.75/44.37 55.98/64.57

Table 6: Comparison between QC4QA and CAQA.

the adaptation performance.

C.3 Cluster Number in QC4QA KMeans
Classification

To study the influence of cluster number in unsuper-
vised question clustering for QC4QA, we initialize
KMeans algorithm with different number of clus-
ters. Then we perform QC4QA KMeans adaptation
on HotpotQA and SearchQA to examine the influ-
ence of cluster number.

Cluster Number
HotpotQA SearchQA

EM / F1 EM / F1
3 49.82/65.73 30.34/39.49
5 49.58/65.78 32.19/41.27
7 49.87/65.66 30.51/39.25
9 50.45/66.14 29.59/38.14

Table 7: QC4QA adaptation performance for different
numbers of KMeans clusters.

Results are presented in Table 7, we observe per-
formance drops when we reduce number of clusters
from the default of 5. Surprisingly, the performance
on HotpotQA grows consistently with increasing
number of clusters. A potential explanation for
such improvements is that fine-grained question

classification is more helpful for complex multi-
hop QA datasets.

C.4 Human Annotation

Training Method Daily Mail NewsQA
EM / F1 EM / F1

0 Annotation 36.43/45.85 44.86/61.40
5k Annotations 48.04/56.27 45.71/62.21
10k Annotations 55.37/61.95 47.17/63.46
20k Annotations 66.83/72.18 48.72/64.92

Table 8: Semi-supervised adaptation performance with
QC4QA.

We also study the influence of human annota-
tions by introducing labeled target examples. We
present the results on Daily Mail and NewsQA in
Table 8. We observe that human annotations im-
prove the adaptation performance in general. With
the increasing amount of annotations, the perfor-
mance gains of QC4QA rise rapidly and then stay
steady. In both cases, introducing limited annota-
tions can significantly improve model performance.
The results indicate that the introduction of even
limited amount of annotations helps QA systems
reach comparable magnitude of supervised results.
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TREC classification examples
Q1: Judges in @placeholder and Oregon this week overturn marriage bans. → DESC
Q2: Spain international Mata close to joining English club @placeholder. → ENTY
Q3: The Surprise will be sold in 120 @placeholder stores, costing 1.75 for four? → ENTY
Q4: School bus drivers union will strike wednesday if it doesn’t reach deal with @placeholder. →
HUM
Q5: Serial killer Israel Keyes may have killed missing @placeholder woman. → HUM
Q6: Which is the latest version of corel draw? → ENTY
Q7: Who did say South Africa did not issue a visa on time? → HUM
Q8: Census bureaus are hiring people from where? → LOC
Q9: How long was the lion’s longest field goal? → NUM
Q10: Musician and satirist Allie Goertz wrote a song about the "The Simpsons" character Milhouse,
who Matt Groening named after who? → HUM
Q11: To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France? → HUM
Q12: When did the Scholastic Magazine of Notre dame begin publishing? → NUM
Q13: The Basilica of the Sacred heart at Notre Dame is beside to which structure? ENTY
Q14: How often is Notre Dame’s the Juggler published? NUM
Q15: Where is the headquarters of the Congregation of the Holy Cross? LOC
Q16: What is the oldest structure at Notre Dame? ENTY
Q17: Which organization declared the First Year of Studies program at Notre Dame "outstanding"?
HUM
Q18: The College of Science began to offer civil engineering courses beginning at what time at
Notre Dame? HUM
Q19: In what year was the College of Engineering at Notre Dame formed? NUM
Q20: Which prize did Frederick Buechner create? ENTY
Q21: What was the amount of children murdered? NUM
Q22: Where was one employee killed? HUM
Q23: What happened in Chad? DESC
Q24: What did one of John II’s replacements do in captivity? ENTY
Q25: Who threw the first touchdown pass of the game? HUM
Q26: Which player scored touchdowns running and receiving? HUM
Q27: What all field goals did Olindo Mare make? ENTY
Q28: Which team had a safety scored on them in the first half? HUM
Q29: What was the difference between the role of blacks and whites in the draft? DESC
Q30: What was burned last: city of Ryazan or suburbs of Moscow? LOC

Table 9: Qualitative examples of classified questions in target datasets.
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Abstract

Multi-hop question answering (QA) requires
reasoning over multiple documents to answer
a complex question and provide interpretable
supporting evidence. However, providing sup-
porting evidence is not enough to demonstrate
that a model has performed the desired reason-
ing to reach the correct answer. Most existing
multi-hop QA methods fail to answer a large
fraction of sub-questions, even if their parent
questions are answered correctly. In this pa-
per, we propose the Prompt-based Conserva-
tion Learning (PCL) framework for multi-hop
QA, which acquires new knowledge from multi-
hop QA tasks while conserving old knowledge
learned on single-hop QA tasks, mitigating for-
getting. Specifically, we first train a model on
existing single-hop QA tasks, and then freeze
this model and expand it by allocating addi-
tional sub-networks for the multi-hop QA task.
Moreover, to condition pre-trained language
models to stimulate the kind of reasoning re-
quired for specific multi-hop questions, we
learn soft prompts for the novel sub-networks
to perform type-specific reasoning. Experimen-
tal results on the HotpotQA benchmark show
that PCL is competitive for multi-hop QA and
retains good performance on the corresponding
single-hop sub-questions, demonstrating the ef-
ficacy of PCL in mitigating knowledge loss by
forgetting.

1 Introduction

Multi-hop QA is a challenging task with the goals
of reasoning over multiple scattered documents to
predict an answer, and providing explanatory sup-
porting evidence (Yang et al., 2018). By fine-tuning
pre-trained language models (PLMs) with task-
specific data, most existing multi-hop QA models
have achieved good performance in both goals (Tu
et al., 2020; Fang et al., 2020).

Despite the success of fine-tuned PLMs on the
multi-hop QA task, providing supporting evidence
is not enough to demonstrate that a multi-hop QA

Task1 Task2

Figure 1: An example of conservation learning based on a
continual learning mechanism. The neurons on the left are
devoted to Task1 (single-hop QA), and on the right (green) are
a novel sub-network created for Task2 (multi-hop QA) that
laterally connects to the trained Task1. By adding the sub-
network, the model acquires new knowledge of Task2 while
retaining knowledge learned in Task1, mitigating forgetting.

model has performed the desired multi-hop reason-
ing to reach the correct answer; it may instead have
utilized reasoning shortcuts, having neglected to
acquire and retain the single-hop reasoning knowl-
edge essential to reliable interpretability (Jiang and
Bansal, 2019). Previous work (Tang et al., 2021)
has demonstrated that most existing multi-hop QA
models with good performance fail to answer a
large fraction of the sub-questions whose parent
multi-hop questions can be answered correctly.
Thus, it is necessary to understand the behaviour
on each hop of the reasoning process and mitigate
forgetting of the knowledge required for each hop
in interpretable multi-hop QA. Doing so should
enable humans to better trust the QA mechanism.

In addition, existing QA models integrate all the
knowledge by thoroughly pre-training the PLMs on
all available data (Schwartz et al., 2020), which in-
tegrates the various forms of knowledge from mul-
tiple types of questions. However, a downstream
QA task may only require knowledge of a specific
type. For example, in the multi-hop QA task (Yang
et al., 2018), questions can be roughly divided into
two different types: bridging and comparison, each
of which requires a specific reasoning strategy to
answer. To achieve multi-hop reasoning efficiently,
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it may be useful for PLMs to disentangle knowl-
edge from other question types and stimulate the
appropriate reasoning types required for particular
multi-hop questions.

To address these issues, we propose Prompt-
based Conservation Learning (PCL) for multi-hop
QA. Specifically: i) to train a multi-hop QA model
without forgetting, we apply conservation learn-
ing based on a continual learning mechanism to
acquire new knowledge from multi-hop QA tasks
while retaining that previously learned on single-
hop QA tasks. As shown in Figure 1, we first train
a model on the single-hop QA task; when incor-
porating the new multi-hop QA task, we freeze
the model trained on the single-hop task and ex-
pand it by allocating novel sub-networks for new
multi-hop knowledge; ii) to take full advantage
of diverse knowledge in the PLM, we first iden-
tify the reasoning type of the multi-hop question
as a soft prompt via a transformer-based question
classifier, and then transform it into a sub-network
that connects laterally with the previously trained
QA model, to condition the PLM to perform type-
specific reasoning. Since PCL trains the QA model
incrementally based on the conserved previously
learned parameters, it should be able to perform
well on multi-hop QA because it thus retains the
previously learned knowledge (Parisi et al., 2019;
Sun et al., 2020).

Our contributions are summarized as follows:

• We propose conservation learning for multi-
hop QA, which acquires knowledge from the
multi-hop QA task while retaining knowledge
learned on single-hop QA tasks, which may
enable humans to understand the behaviour of
each hop in the reasoning process better.

• We propose using a soft prompt based on the
reasoning type to condition the PLM, stimu-
lating use of the required knowledge for par-
ticular types of multi-hop reasoning.

• Our proposed PCL achieves better perfor-
mance on the HotpotQA leaderboard, while
also retaining good performance on the corre-
sponding single-hop sub-questions.

2 Related Work

Prompt Tuning for PLMs. Prompt tuning is an
effective mechanism for learning prompts to con-
dition PLMs to stimulate and apply the appropri-
ate knowledge for a specific downstream task (Liu

et al., 2021). Gu et al. (2021) propose to initialize
soft prompts by adding them into the pre-training
stage of few-shot learning. Li and Liang (2021)
prepend a series of learnable continuous embed-
dings as soft prompts into the input, achieving bet-
ter performance in text generation tasks. Motivated
by these methods, we use the reasoning types of
multi-hop questions as soft prompts to condition
PLMs to stimulate the knowledge required to an-
swer multi-hop questions.

Continual Learning for PLMs. Continual learn-
ing aims to allow systems to repeatedly acquire new
knowledge while retaining previously learned ex-
perience, mitigating catastrophic forgetting (Parisi
et al., 2019). Conceptually, continual learning can
be divided into three categories of technique: i)
retrain the whole model while imposing additional
constraints to retain the important learned model
parameters from previous tasks (Li et al., 2021a);
ii) perform memory replay to distill the knowledge
from previous model backups (Sun et al., 2019; Rol-
nick et al., 2019); iii) freeze the model trained on
previous tasks and retrain the model by allocating
new neurons or network layers for new tasks (Qin
et al., 2022). In this paper, we propose a learning
mechanism based on continual learning, by freez-
ing the model trained on the single-hop QA, and
retraining the model for the multi-hop QA using
our soft-prompt technique, enables the QA model
to achieve single-hop reasoning and multi-hop rea-
soning simultaneously. Since we only have two
tasks, we call this conservation learning. It aims to
conserve previously learned knowledge while per-
forming well on a second task; it does not continue
for a large number of tasks as in continual learning.

End-to-end Multi-hop QA. Existing end-to-end
multi-hop QA systems predict the answer and cor-
responding supporting facts based on the given
question and retrieved relevant paragraphs. Qiu
et al. (2019), Fang et al. (2020), and Tu et al. (2020)
extract information at different levels of granularity
as nodes in a graph, and then apply GNN-based
methods to answer the question and provide sup-
porting sentences. Shao et al. (2020a), Beltagy
et al. (2020) and Wu et al. (2021) argue that graph
structures may not be necessary for multi-hop QA,
and propose graph-free reasoning models. Unlike
these methods, where there is no training require-
ment for the models to follow the desired reasoning
steps to predict the answer, we propose a multi-hop
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Figure 2: An overview of our proposed PCL framework for multi-hop QA. Specifically, it involves three key steps, (a) train a QA
model to acquire knowledge from single-hop QA tasks; (b) identify reasoning types of multi-hop questions as soft prompts, and
transform soft prompts into a sequence of continuous type-specific vectors; (c) retrain the QA model to acquire new knowledge
from multi-hop QA tasks by freezing the trained network in single-hop QA task and prepending soft prompt vectors to the input.

QA framework with separated learning of the in-
tended behaviour of QA models on each hop of the
reasoning process and in the final answer.

3 Methodology

3.1 Overview
This section, we describe prompt-based conserva-
tion learning for multi-hop QA. As illustrated in
Figure 2, our PCL consists of three components: i)
we first acquire single-hop QA knowledge by ex-
plicitly training on these tasks; ii) we then acquire
knowledge for the new multi-hop QA task while
retaining the learned knowledge using conservation
learning; iii) we perform type-specific reasoning,
identifying the reasoning type of the question via
the soft prompt to stimulate application of the ap-
propriate knowledge.

3.2 Single-hop QA
To understand the behaviour of existing QA models
on each hop of the reasoning process, we train a QA
model based on the PLM, ELECTRA (Clark et al.,
2020) on a single-hop QA task, SQuAD (Rajpurkar
et al., 2016). This QA model contains two modules:
context encoding and a transformer-based reader.

Context Encoding. Given a question Q and n rel-
evant sentences, we concatenate the question and
sentences into an input sequence for the pre-trained
ELECTRA encoder to obtain a context representa-
tion. Specifically, we formulate the input sequence
as “[CLS] Q [SEP] yes no [SEP] [SE] s1 [SEP]
[SE] s2 [SEP] ... [SE] si [SEP]... [SE] sn [SEP]”,
where [SE] is a special token delineating support-
ing evidence, and yes no indicates a yes/no answer,
which are prepended to the context, subsequently
encoded by ELECTRA into the context representa-
tion. Consequently, each context sentence si in the

input sequence can interact with other sentences
across the concatenated sequence by using a self-
attention mechanism; such interactions are crucial
for multi-hop QA (Zhu et al., 2021).

Transformer-based Reader. After context en-
coding, the context representations are passed
through a bi-attention layer to enhance interactions
between the question and the context (Qiu et al.,
2019). On top of the updated context representa-
tion, we have followed (Fang et al., 2020) to design
a multi-task prediction module to jointly perform
answer and supporting evidence prediction. For
answer span prediction, we use two linear layers
applied to the context representation to predict the
start and end position of the answer. For supporting
evidence prediction, we use a binary linear layer
to predict a binary relevance label at each sentence
start [SE]. The final objective is defined as:

LJoint = Lstart + Lend + λ1LSE
where λ1 is a hyper-parameter and each loss func-
tion L is the cross-entropy loss between the predic-
tion and ground truth.

3.3 Multi-hop QA with Conservation
Learning

Origins in Continual Learning. In one form of
Continual Learning, given N existing tasks Tseq =
{T0, T1, ..., TN}, when a new task TN+1 comes, an
additional network is created and the lateral connec-
tions with the trained model are learned. To avoid
knowledge forgetting, the parameters θN learned
by the existing tasks Tseq remain unchanged while
the new parameter set θN+1 is learned for the addi-
tional network in Task TN+1 (Parisi et al., 2019).

Conservation Learning for Multi-hop QA. To
enable a trained single-hop QA model to learn the
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new knowledge required for a subsequent multi-
hop QA task without forgetting previously learned
knowledge, we propose a truncated-continual-
learning-like method that freezes the learned model
and allocates additional sub-networks for the new
multi-hop QA tasks. In principle this process could
be iterated in continual learning, but here we ap-
ply one such step, and coin the term “conservation
learning” to describe it. PCL’s multi-hop QA after
conservation learning consists of three components:
i) question classification: identifying the reasoning
type of the multi-hop question; ii) paragraph selec-
tion: retrieving paragraphs related to the multi-hop
question; iii) pre-trained soft prompt: condition-
ing a PLM to perform the type-specific reasoning
required for a multi-hop question.

Question Classification. Instead of training a
separate QA model for each reasoning type, our de-
sign uses a single PLM to integrate the knowledge
from all reasoning types. To inform this use, we
first need to identify the reasoning type of the multi-
hop question. Thus, we train a question classifier,
also based on ELECTRA, followed by a binary
classification layer, to predict the reasoning type
for each multi-hop question. The question classifier
only takes the question as its input and outputs a
relevance score for different reasoning types. The
reasoning type with the highest score is selected as
the type of multi-hop question.

Iterative Paragraph Selection. Since not ev-
ery given paragraph contains relevant information,
multi-hop QA models must filter out irrelevant para-
graphs. In addition, multi-hop questions also often
permit reasoning shortcuts through which QA mod-
els can directly locate the final answer by word-
matching the question to a single sentence in the
paragraph (Qi et al., 2019, 2020). To discourage
this kind of direct but unjustified leap to the answer,
we propose to retrieve paragraphs related to the
question in an iterative fashion, which encodes the
question and previously retrieved paragraphs as a
new question vector to retrieve the next relevant
paragraph. For simplicity, we use the same model
encoder as the question classifier to select relevant
paragraphs, except that we take the question q and
the paragraph p as the input and output a relevance
score for each paragraph. We calculate the score
for each paragraph at each retrieval step as follows:

P(Pseq|q) =
n∏

t=1

P(pt|q, p1, p2, ..., pt−1)

where for t = 1 (i.e., the first hop), we only use the
original question q for paragraph retrieval. At each
subsequent retrieval step, we encode the question q
and the most relevant paragraph pt−1 in the previ-
ous step t as a new question vector to predict the
next relevant paragraph. In this way, each subse-
quent retrieved paragraph is not only related to the
question, but also related to the previous retrieved
paragraphs, which discourages producing an an-
swer using “reasoning” shortcuts and provides a
solid basis for multi-hop reasoning in the next step.

Pre-training Soft Prompt. To enable the PLM
to integrate knowledge from multiple reasoning
types, we introduce a soft prompt based on the
reasoning type to condition the PLM to perform
type-specific reasoning, which is connected lat-
erally to the trained QA model during training.
Specifically, we first formulate the input sequence
as “[CLS] Q [SEP] yes no [SEP] [SE] s11 [SEP]

[SE] s21 [SEP] ... [SE] s
j
i [SEP]... [SE] s

m
n [SEP]”,

where sji indicates the j-th sentence in the relevant
paragraph i; we then utilize the previously trained
model to initialize the input sequence to obtain the
context representation C = {c0, c1, ..., cn−1} ∈
Rn×d, where n, d are the length and the dimension
of the context, respectively; we finally transform
the reasoning type obtained in the question classifi-
cation into a continuous trainable vector p ∈ Rm×d
and prepend it onto C, resulting in the new input
C′ = {pi; c0, c1, ..., cn−1}, where m is the length
of the soft prompt and pi is the soft prompt vector
of reasoning type i.

Once the new context representation is obtained,
it is then processed by the transformer-based reader
module. Notably, we optimize pi along with other
parameters of the PLM during pre-training. Dur-
ing fine-tuning, we prepend the trained soft prompt
vector into the input sequence, guiding the model
to perform type-specific reasoning. In this way, we
condition the PLM to stimulate the proper knowl-
edge required for multi-hop reasoning.

4 Experiments

4.1 Dataset and Metrics

We evaluate our model primarily on three datasets:
HotpotQA (Yang et al., 2018), adversarial Hot-
potQA (Jiang and Bansal, 2019) and a manually
verified sub-question QA dataset generated from
HotpotQA (Tang et al., 2021). To verify whether
our PCL can be generalized to other multi-hop QA
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Model Ans Sup Joint

EM F1 EM F1 EM F1
Baseline Model (Yang et al., 2018) 45.60 59.02 20.32 64.49 10.83 40.16
DecompRC (Min et al., 2019) 55.20 69.63 - - - -
OUNS (Perez et al., 2020) 66.33 79.34 - - - -
QFE (Nishida et al., 2019) 53.86 68.06 57.75 84.49 34.63 59.61
DFGN (Qiu et al., 2019) 56.31 69.69 51.50 81.62 33.62 59.82
SAE-large (Tu et al., 2020) 66.92 79.62 61.53 86.86 45.36 71.45
C2F Reader (Shao et al., 2020b) 67.98 81.24 60.81 87.63 44.67 72.73
Longformer (Beltagy et al., 2020) 68.00 81.25 63.09 88.34 45.91 73.16
HGN-large (Fang et al., 2020) 69.22 82.19 62.76 88.47 47.11 74.21
AMGN (Li et al., 2021b) 70.53 83.37 63.57 88.83 47.77 75.24
S2G (Wu et al., 2021) 70.72 83.53 64.30 88.72 48.60 75.45
PCL (Ours) 71.76 84.39 64.61 89.20 49.27 76.56

Table 1: Results on the blind test set of HotpotQA in the distractor setting. Our PCL achieves the best performance on the
HotpotQA leaderboard. “-” denotes the case where no results are available. Leaderboard: https://hotpotqa.github.io/.

datasets, we also conduct experiments on two sim-
ilar datasets: 2WikiMultihopQA (Ho et al., 2020)
and MuSiQue (Trivedi et al., 2021). Unlike other
knowledge-based multi-hop QA datasets (Welbl
et al., 2018; Talmor and Berant, 2018; Saxena et al.,
2020) that restrict the final answer to the content
of explicit knowledge bases, all QA pairs in the
HotpotQA are collected from Wikipedia.

HotpotQA. Each multi-hop question is provided
with ground truth answers and supporting sen-
tences, which enables us to evaluate the perfor-
mance and interpretability of multi-hop reasoning.
There are two reasoning types of questions: bridg-
ing and comparison, each of which requires a spe-
cific reasoning strategy to answer.

Sub-question QA dataset. To analyze whether
the multi-hop QA models really perform each hop
of the reasoning process, Tang et al. (2021) gen-
erate a single-hop sub-question dataset with 1000
manually verified samples for the dev set of Hot-
potQA for evaluation.

Adversarial HotpotQA. Multi-hop questions in
the HotpotQA often contain reasoning shortcuts
through which models can directly find the answer
by word-matching the question to a sentence. To
avoid this, Jiang and Bansal (2019) construct adver-
sarial samples by creating contradicting answers to
reasoning shortcuts without affecting the validity
of the original answers.

Multi-hop QA Dataset. Unlike HotpotQA,
2WikiMultihopQA evaluates the interpretability of
the multi-hop QA model not only with support-
ing evidence, but also with entity-relation tuples.
However, for a fair comparison, we do not use the
entity-relation tuples in our training. MuSiQue has

richer multi-hop questions with 2-4 hops.

Metrics. We use Exact Match (EM) and Partial
Match (F1) to evaluate the model performance on
answer and supporting facts prediction, and a joint
EM and F1 score to evaluate the final performance.

4.2 Implementation Details

We adopt ELECTRA-large (Clark et al., 2020) as
the skeleton for each module. Our released imple-
mentation is based on Huggingface (Wolf et al.,
2020). For question classification and paragraph
selection, we train the models for 5 epochs using
Adam optimizer, with a batch size of 12, a learn-
ing rate of 2 × 10−5, a warm-up rate of 0.1 and
ℓ2 weight decay of 0.01. For question answering,
we use the same setting as stated above, except
for a learning rate of 3 × 10−5 and an additional
prompt length of 2 tokens. The hyper-parameter
of λ1 is set to 2. Only the context encoding mod-
ule is frozen during Conservation Learning and
additional weights are added to connect the soft
prompts.

4.3 Main Results

We compare our PCL model with other published
baselines on the test set of HotpotQA in the distrac-
tor setting. As shown in Table 1, we observe that
our PCL QA-system outperforms all comparison
baselines on every metric and achieves the best per-
formance on the HotpoQA dataset, demonstrating
the progress made by PCL in multi-hop QA. Specif-
ically, under the same setting, using a transformer-
based ELECTRA model, PCL achieves a 1.12/0.91
improvement on the Joint EM/F1 score, compared
with the best graph-free model S2G. This indicates
that the effectiveness of the proposed conservation
learning and soft prompts. For the best graph-based
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q qsub1 qsub2 DFGN DecompRC HGN PCL
c c c 23 31.3 39.5 43.6
c c w 9.7 7.2 5.1 6.8
c w c 17.9 19.1 19.6 21.3
c w w 7.5 5.5 3.8 2.1
w c c 4.9 3 2.8 1.7
w c w 17 18.6 16.7 16.3
w w c 3.5 3.4 2.6 1.1
w w w 16.5 11.9 9.9 7.1

Table 2: (Left) Categorical EM statistics (%) of sub-question evaluation for four multi-hop QA models. c/w denotes that the
question is answered correctly/wrongly. For example, the first four rows show the percentage of multi-hop questions that can be
correctly answered. (Right) The success rate of four multi-hop QA models.

Model Ans F1 Sup F1 Joint F1
ELECTRA 81.05 89.97 73.89
- Prompt 82.06 90.36 75.02
- CL 82.99 90.97 76.39
PCL 84.42 91.15 77.76

Table 3: Ablation Study of PCL on the dev set of HotpotQA.
Prompt denotes that a soft prompt is used to condition PLM
ELECTRA to stimulate the reasoning required for the multi-
hop question. CL denotes that conservation learning is used
to perform multi-hop reasoning. PCL used both soft prompts
and conservation learning.

model AMGN, PCL improves the Joint EM/F1
score by 1.5/1.32, which shows that good per-
formance can be achieved without constructing a
graph. In the next section, we provide a detailed
analysis to evaluate the performance of conserva-
tion learning and soft prompts in our PCL model.

4.4 Ablation Studies

To verify the effect of the components in our PCL
model, we perform the following ablation studies
on the dev set of HotpotQA.

Effect of Conservation Learning (CL). To ver-
ify the effect of conservation learning on multi-
hop QA, we compare performance with the PLM
ELECTRA with and without conservation learn-
ing. For conservation learning, we first trained an
ELECTRA-based QA model on the single-hop QA
dataset SQuAD (Rajpurkar et al., 2016), and then
retrained it on the HotpotQA dataset with conser-
vation learning. As shown in Table 3, we observe
that the overall performance (F1 score) increased
from 73.89 to 76.39 after using conservation learn-
ing, which shows that our model performs well on
multi-hop reasoning when the previously learned
knowledge is retained. In the following Section 4.6,
we provide an in-depth analysis on the performance
of our model on the sub-questions, to compare the
ability of models to mitigate forgetting.

Model Accuracy
DecompRC 70.40
QC(ELECTRA-large) 98.97

Table 4: The performance of question classification by dif-
ferent models. QC(ELECTRA-large) is a question classifier
based on ELECTRA-large.

Effect of Soft Prompts. To verify the effect
of the soft prompt and perform type-specific rea-
soning, we first identified the reasoning type of
the multi-hop question using a classifier based on
ELECTRA. In Table 4, our classifier QCELECTRA

achieves good accuracy compared to DecompRC,
providing a solid basis for type-specific multi-hop
reasoning. Then, we transform the identified rea-
soning type into a soft prompt to stimulate the PLM
to perform the corresponding type of multi-hop rea-
soning. In Table 3, we implant the soft prompt both
into the baseline ELECTRA and the ELECTRA
based on conservation learning (PCL), the Joint F1
score improved by 1.23 and 1.37, respectively. This
suggests that the soft prompt based on the reason-
ing type can stimulate the question-type-specific
reasoning knowledge required for multi-hop QA.

Effect of Pre-trained Language Model. To ver-
ify the effects of PLMs, we compare PCL with
HGN based on the same data and backbone. As
shown in Table 5, PCL outperforms HGN on all
metrics. This indicates the effectiveness and robust-
ness of PCL across PLMs.

4.5 Evaluation across Reasoning Types
We evaluate the performance of PCL for multi-hop
questions with multiple reasoning types. Specif-
ically, we follow HGN in splitting the multi-hop
questions into three categories: bridge, comparison-
yes/no and comparison-span. “Bridge” questions
require identifying a bridge entity to infer the an-
swer, “comparison-yes/no” and “comparison-span”
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Model Ans F1 Sup F1 Joint F1
HGN(RoBERTa) 82.22 88.58 74.37
HGN(ELECTRA) 82.24 88.63 74.51
HGN(ALBERT) 83.46 89.2 75.79
PCL(RoBERTa) 84.33 90.75 77.12
PCL(ELECTRA) 84.42 91.15 77.76
PCL(ALBERT) 85.47 91.28 78.76

Table 5: Results with different PLMs on the dev set of Hot-
potQA. RoBERTa, ELECTRA and ALBERT denote that we
use RoBERTa-large, ELECTRA-large and ALBERT-xxlarge-
v2 as the PLM respectively.

Model Question Ans F1 Sup F1 Joint F1
bridge 81.90 87.60 73.31

HGN comp-yn 93.45 94.22 88.5
comp-span 79.06 91.72 74.17

bridge 85.36 90.77 78.17
PCL comp-yn 93.67 94.73 88.93

comp-span 82.42 92.65 77.57

Table 6: Results with different reasoning types on the dev set
of HotpotQA. PCL outperforms HGN in all reasoning types.

require comparing two entities to infer the answer
that could be yes/no or a span of text. As shown
in Table 6, our PCL performs better than HGN for
all reasoning types, indicating that the performance
of the model can be effectively improved by using
soft prompts for type-specific reasoning.

4.6 Evaluation of Robustness
In this section, we evaluate the robustness and gen-
eralization of PCL on three different datasets.

Evaluation on Sub-question Dataset. To ana-
lyze whether existing multi-hop QA models could
at least in principle perform the multi-hop reason-
ing process by composing an answer out of solved
sub-questions, we perform an evaluation on 1000
human-verified examples (Tang et al., 2021). These
data consist of 1000 multi-hop questions q, and
the corresponding 1000 sub-questions qsub1, qsub2.
EM and F1 are used in each case to evaluate per-
formance on answer prediction. As shown in Table
7, PCL achieves the best performance on the 1000
human-verified examples. Compared to DFGN
and DecompRC, whose performance significantly
drops on sub-questions, especially on the second
sub-questions. PCL dropped by only 2.4 on aver-
age, which demonstrates that PCL can in principle
support the expected behaviour on each hop of the
reasoning process better than other multi-hop QA
models by mitigating knowledge forgetting.

To further analyze whether models effectively
mitigate knowledge forgetting, we collect the cor-
rectness statistics on each example in the sub-
question dataset. As shown in Table 2 (Left), PCL

Model q qsub1 qsub2

EM F1 EM F1 EM F1
DFGN 58.1 71.96 54.6 68.54 49.3 60.83
DecRC 63.1 77.61 61.0 75.21 56.8 70.77
HGN 71.0 84.25 66.1 81.72 66.7 78.24
PCL 73.8 87.15 68.4 83.62 68.5 81.07

Table 7: Results on the sub-question dataset with different
multi-hop QA models. q denotes the multi-hop question, qsub1
and qsub2 denote the corresponding sub-questions of q.

Train Reg Reg
Eval Reg Adv
Model EM F1 EM F1
HGN 47.31 74.37 41.56 69.81
PCL 49.59 77.76 47.87 74.24

Table 8: EM and F1 scores after evaluating on the adversarial
dataset designed to probe for the use of unsound reasoning
shortcuts. Reg or Adv denotes training or evaluating the model
on the standard or adversarial HotpotQA dataset.

has a 96.25% chance of getting the parent multi-
hop question q right when both sub-questions qsub1
and qsub2 are answered correctly, which indicates
that PCL can better retain the learned knowledge,
through its use of conservation learning, compared
with other multi-hop QA models. However, we
observe that PCL still has a high probability of
answering the parent multi-hop question correctly
when only one of the sub-question is answered cor-
rectly. We summarize the sub-question dependent
success rate of multi-hop QA models in Table 2
(Right). We observe that these models can answer
parent multi-hop questions with a high probabil-
ity (exceeding 20%) when only one sub-question
is answered correctly, which indicates that using
potentially unsound reasoning shortcuts to predict
answers is a common and difficult to avoid phe-
nomenon in multi-hop QA.

Evaluation on Adversarial Dataset. To com-
pare the extent to which models are currently able
to avoid the unsound-reasoning-shortcut problem,
we conducted an adversarial evaluation on the dev
set of HotpotQA, reported in Table 8. In the adver-
sarial examples, the fake answers are sampled from
the original HotpotQA dataset, but do not affect the
validity of the original answers. As shown in Table
8, we trained PCL and HGN on the standard train-
ing data and evaluated them on both the standard
and adversarial dev data. The result shows that PCL
achieves better performance than HGN, indicating
that PCL is more robust than HGN against the use
of shortcuts probed by the adversarial dataset.

Evaluation on Other Multi-hop Datasets. To
verify whether PCL can generalize to other multi-
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Question

(Bridge) Q1: Who directed the film about the living funeral for Morrie Schwartz?

Q1sub1: Which film is about the living funeral for Morrie Schwartz?

Q1sub2: Who directed Tuesdays with Morrie? 

(Comp) Q2: Are local H and For Against both from the United States? 

Q2sub1: Where does Local H from?

Q2sub2: Where does For Against from?

Answer

Mick Jackson

Tuesdays with Morrie

Mick Jackson

Yes

Illinois

Nebraska

Answer pred by PCL

Mick Jackson

Tuesdays with Morrie

Mick Jackson

Yes

Illinois

Nebraska

Answer pred by HGN

Mick Albom

Tuesdays with Morrie

Mick Jackson

Illinois

Illinois

Nebraska

Question: What was the job of the character Jack Nicholson played in a 1992 French-American biographical crime film directed by Danny DeVito?

Answer:    Teamsters leader

Supporting fact1: Jack Nicholson plays Hoffa, and DeVito plays Robert Ciaro, an amalgamation of several Hoffa associates over the years. 

Supporting fact2: Hoffa is a 1992 French-American biographical crime film directed by Danny DeVito and written by David Mamet, based on the life of 

Teamsters leader Jimmy Hoffa.

Adversarial fact:   Sweet Revenge is a 1992 French-American biographical crime film directed by Danny DeVito and written by David Mamet, based on 

the life of Dandy Jimmy Hoffa.

Answer predicted by PCL:  Teamsters leader

Answer predicted by HGN: Dandy

Figure 3: Case studies of the sub-question evaluation and adversarial multi-hop question evaluation. The upper case study
indicates that our PCL has stronger composite reasoning ability compared to HGN. The lower case study indicates that the
iterative paragraph selection is help to avoid predict the answer by using reasoning shortcuts.

2WikiMultihopQA MusiQue

EM F1 EM F1
HGN 38.74 68.69 39.42 65.12
PCL 46.03 73.42 41.28 67.34

Table 9: Results of PCL and HGN on 2WikiMultihopQA and
MusiQue multi-hop QA dataset.

hop QA datasets, we compared PCL against HGN
on the 2WikiMultihopQA and MuSiQue dataset.
In Table 9 we observe that PCL outperforms HGN
on these two datasets, which demonstrates PCL’s
good potential on generalisation to QA problems
with more than 2 hops.

4.7 Case Study

We present two case studies in Figure 3. The up-
per case illustrates the results of PCL and HGN
at each hop of the reasoning process. We observe
that PCL correctly answered the bridge question
Q1, while HGN did not, when all sub-questions
were answered correctly, supporting the claim that
PCL learns new QA knowledge while retaining
knowledge learned for sub-questions. Similarly,
for comparison question Q2, PCL learned the spe-
cific reasoning ability based on the reasoning type
to which Q2 belongs, indicating soft prompts based
on reasoning types can elicit the reasoning knowl-
edge required for multi-hop questions.

The lower case illustrates the results of PCL and
HGN on an adversarial multi-hop question. In the
example, the question can be directly answered by
matching a reasoning shortcut in supporting facts2

“a 1992 French-American biographical crime film
directed by Danny DeVito”. To avoid it, we follow

(Jiang and Bansal, 2019) to construct an adversar-
ial fact from the candidate paragraphs by replacing
the subject and the answer, e.g., “Sweet Revenge”
for “Hoffa” and “Dandy” for “Teamsters leader”.
We observed that PCL correctly answered the ques-
tion despite the interference from the adversarial
fact, while HGN did not. This supports the claim
that the iterative paragraph selection helps estab-
lish connections between supporting facts, because
PCL selects the next supporting fact2 based on the
previous supporting fact1. In this example, the ad-
versarial fact is irrelevant to supporting fact1, so
PCL excludes it during paragraph selection.

5 Conclusions and Future Work

In this paper, we introduce a novel prompt-based
conservation learning framework for multi-hop QA
– a framework that retains knowledge from previ-
ous component tasks – able to answer questions
in a principled way that matches human expecta-
tions by answering sub-questions and integrating
the answers. By developing soft prompts related to
reasoning types during training, we also show that
we can condition PLMs to stimulate and apply the
reasoning knowledge required for specific multi-
hop questions. Experimental results on multiple
multi-hop QA datasets demonstrate the improved
performance of PCL over previous multi-hop QA
models in multi-hop QA.

Next, we plan to extend PCL on QA problems
with arbitrary hop-counts, and to increase general-
ity by extending soft prompts to handle QA with
unrestricted numbers of, and implicit, reasoning
types, and non-linear reasoning structures.
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Abstract

Accurate fact verification depends on perform-
ing fine-grained reasoning over crucial entities
by capturing their latent logical relations hid-
den in multiple evidence clues, which is gen-
erally lacking in existing fact verification mod-
els. In this work, we propose a novel Global-
to-Local Aggregation and Fission network
(GLAF) to fill this gap. Instead of treating en-
tire sentences or all semantic elements within
them as nodes to construct a coarse-grained
or unstructured evidence graph as in previ-
ous methods, GLAF constructs a fine-grained
and structured evidence graph by parsing the
rambling sentences into structural triple-level
reasoning clues and regarding them as graph
nodes to achieve fine-grained and interpretable
evidence graph reasoning. Specifically, to cap-
ture latent logical relations between the clues,
GLAF first employs a local fission reasoning
layer to conduct fine-grained multi-hop rea-
soning, and then uses a global evidence ag-
gregation layer to achieve information sharing
and the interchange of evidence clues for fi-
nal claim label prediction. Experimental re-
sults on the FEVER dataset demonstrate the ef-
fectiveness of GLAF, showing that it achieves
the state-of-the-art performance by obtaining a
77.62% FEVER score.

1 Introduction

The classic fact verification (FV) task is defined
as retrieving relevant sentences as evidence and
conducting joint reasoning over these evidence sen-
tences to verify the correctness of a claim, and
finally returning a result such as “SUPPORTS”,
“REFUTES”, or “NOT ENOUGH INFO”. With the
increasingly frequent internet fraud, political ru-
mors, fake news and other false information on-
line, fact verification is becoming more and more
important. How to automatically verify the fake
claims and prevent their spread is a vital problem.

∗Corresponding author.

Claim C1: The Great Wall of China stretches from Lop Lake to Shenyang.

Evidence #1:
The Hushan Great Wall, the far eastern end of the Great Wall of China, is 
located Dandong. 
Evidence #2:
Lop Lake, located in Xinjiang Province, is the starting side of the Great Wall 
of China at the western end.
Evidence Clues Joint Reasoning:
(the Great Wall of China, eastern end of, Dandong)
(the Great Wall of China, western end of, Lop Lake) REFUTES

 Claim C2: The Rodney King riots took place in the most populous county 
                   in the USA.

Evidence #1:

Evidence #2:

The 1992 Los Angeles riots, also known as the Rodney King riots were a series 
of riots, lootings, arsons, and civil disturbances that occurred in Los Angeles 
County, California in April and May 1992. 

Los Angeles County, officially the County of Los Angeles, is the most populous 
county in the USA.
Evidence Clues 2-hop Reasoning:
(the Rodney King riots,occurred in,Los Angeles County)
(Los Angeles County,is, most populous county in the USA)

SUPPORTS

aggregate

hop

Figure 1: Two motivating examples from FEVER,
which requires multi-evidence joint reasoning or multi-
hop reasoning to achieve accurate claim label predic-
tion.

In recent years, natural language inference models
actually have dominated the study of fact verifica-
tion (Si et al., 2021; Zhu et al., 2021; Thorne et al.,
2018a; Luken et al., 2018; Yin and Roth, 2018; Ye
et al., 2020), and many graph augmented neural
inference models have been proposed (Zhou et al.,
2019; Zhong et al., 2020; Liu et al., 2020; Chen
et al., 2021a,b), which first integrate multi-evidence
reasoning into fact verification with evidence graph,
and then output the claim label prediction result.

Though achieving remarkable progress, existing
neural inference FV models still suffer from the
following three limitations. Firstly, they gener-
ally lack the capability of fine-grained evidence
clue representing and semantic-level entity reason-
ing. Most of them either concatenate evidence
sentences into a single string (Thorne et al., 2018b),
or just treat each evidence-claim pair as a sentence-
level node (Zhou et al., 2019; Liu et al., 2020).
Since these methods represent and aggregate the
evidence at sentence-level, they have difficulty in
achieving fine-grained reasoning. Take claim C1
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in Figure 1 as an example, the claim states “The
Great Wall of China stretches from Lop Lake to
Shenyang”, while the evidence states that the great
wall stretches to “Dandong” instead of “Shenyang”.
Hence, it requires the FV model to carefully distin-
guish the subtle differences between truth and false
statements. However, existing sentence-level FV
models are hard to make such a meticulous discrim-
ination over these crucial entities (e.g., “Dandong”
and “Shenyang”). Secondly, prior models gener-
ally lack the capability of latent logical relation
mining and interpretable claim verifying. As the
false claims are often deliberately fabricated, they
may be semantically reasonable but logically are
not supported. Hence, it requires sufficient log-
ical relation capturing and hop-based reasoning
over these clues to guide an interpretable claim
judgment. For example, claim C2 in Figure 1
states “The Rodney King riots took place in the
most populous county in the USA”, while the ev-
idence clues present that (The Rodney King riots,
occurred in, Los Angeles County) and (Los Angeles
County, is, the most populous county in the USA), it
requires the FV model to mine the pivot “Los Ange-
les County” and capture the latent relation between
“The Rodney King riots” and “the most populous
county in the USA” to make an accurate and con-
vincing judgment by performing multi-hop reason-
ing. However, existing unstructured FV methods
in general cannot support such a triple-level multi-
hop reasoning. Thirdly, previous models generally
lack the noise evidence filtering mechanism. Since
the evidence sentences are retrieved from complex
background corpora, they will inevitably introduce
noises. Even worse, these noises may be magnified
in subsequent neural computations, which seriously
deteriorates the FV performance.

To tackle these problems, we propose a novel
Global-to-Local Aggregation and Fission network
(GLAF), which is a graph attention augmented neu-
ral inference model for FV. Specifically, to address
the first limitation, we first parse the sentences into
fine-grained and structural relation triples, each
denoted as (s, r, o), and then feed them into the
BERT (Devlin et al., 2019) to obtain a set of global
evidence clue representations. Next, we introduce
a fresh perspective to exploit these structural evi-
dence clue triples. That is, we model each triple
(s, r, o) as a map function fclue r(s)→ o, and use it
to conduct entity-level multi-hop reasoning for final
claim verification. To address the second limita-

tion, we employ two neural inference layers: local
fission reasoning layer and global evidence aggre-
gation layer, to iteratively conduct 2-hop object
reasoning and evidence joint reasoning through a
triple-level attention mechanism. The two neural
layers are utilized to guide the interpretable rea-
soning process and improve the accuracy of fact
verification. Finally, to address the third limitation,
we use a graph pooling layer to iteratively select
hidden evidence nodes as crucial evidence clues
and filter out disruptive noise data, so as to improve
the robustness of our FV model.

We conduct experiments on FEVER (Thorne
et al., 2018a), which is one of the most influen-
tial benchmark datasets for fact verification. We
follow the official evaluation protocol of FEVER
and demonstrate that GLAF outperforms the recent
state-of-the-art baseline systems. Ablation study
also shows the effectiveness of each component in
improving the performance of fact verification, and
a further case study reveals that our model can ef-
fectively perform fine-grained multi-hop reasoning
over these evidence clues and reach an interpretable
conclusion for fact verification.

2 Related Work

2.1 Traditional Fact Verification Models

Many traditional fact verification (FV) systems
utilize Natural Language Inference (NLI) tech-
niques (Parikh et al., 2016; Peters et al., 2018;
Soleimani et al., 2020) to mine the relationship
between evidence and claim to make a final judg-
ment. One of the representative work is the
FEVER shared task (Thorne et al., 2018b), which
aims to develop an automatic FV system to check
the veracity of human-generated claims. Tradi-
tional FV models usually employ FEVER’s official
baseline (Thorne et al., 2018a) with a three-step
pipeline: document retrieval, sentence retrieval and
claim verification. Among these models, many
mainly focus on the last step. For example, Nie
et al. (2019) concatenate all evidences together to
verify the claim. Yoneda et al. (2018) infer the ve-
racity of each claim-evidence pair and make final
prediction by aggregating multiple predicted la-
bels. Hanselowski et al. (2018) encode each claim-
evidence pair separately, and use a pooling func-
tion to aggregate features for prediction. One of the
most widely used models in FEVER is Enhanced
Sequential Inference Model (ESIM) proposed by
Chen et al. (2017), which has been adopted to select
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[SEP]
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Value Component of the fission state nodes 
(i.e., Object)

Figure 2: Architecture of GLAF.

relevant sentences in the sentence retrieval phase.
Note most of the above mentioned FV methods em-
ploy simple models to extract information from ev-
idence, but without letting evidence communicate
with each other, which limits their performance. To
address this problem, recently there are some good
attempts. For example, Si et al. (2021) leverage the
LDA model to conduct topic-aware evidence rea-
soning and stance-aware information aggregation
for FV. Wan et al. (2021) employ DQN to find a
minimal set of evidence and conduct sentence-level
information aggregation for FV. Jiang et al. (2021)
improve on previous pointwise aggregation manner
by taking advantage of T5 model and explore a
listwise-based evidence aggregation method.

2.2 Graph Augmented Fact Verification
Models

Though achieving remarkable progress, the above
methods in general are difficult to perform global
evidence aggregation, since they are not based
on graph and hence cannot take the advantage
of graph propagation. Recently, by integrating
multi-evidence reasoning and global information
propagation into fact verification based on a con-
structed evidence graph, many graph augmented
FV models (Zhou et al., 2019; Zhong et al., 2020;
Liu et al., 2020; Chen et al., 2020) have been pro-
posed and achieve state-of-the-art results. Among
them, GEAR (Zhou et al., 2019) is the first to use
BERT (Devlin et al., 2019) to encode evidence,
and designs a graph network to aggregate informa-
tion on an evidence graph constructed by treating
each evidence as a node. DREAM (Zhong et al.,
2020) further employs XLNet (Yang et al., 2019)
to establish a semantic-level graph for evidence ag-
gregation by using GCN (Kipf and Welling, 2017)
and GAT (Velickovic et al., 2018). KGAT (Liu

et al., 2020) innovatively adopts a kernel graph
attention network to aggregate information by uni-
fying the edge kernel mechanism and node ker-
nel mechanism over the evidence graph. How-
ever, existing graph augmented FV models either
treat entire sentences as sentence-level nodes, e.g.,
GEAR and KGAT, or extract all semantic elements
within them as semantic-level nodes, e.g., DREAM,
which makes them only focus on global evidence
aggregation, while ignoring reasoning over local
semantic clues in triple-level. Different from them,
our proposed GLAF is based on a well-structured
triple-level evidence graph, which facilitate fine-
grained multi-hop reasoning over the crucial en-
tities (i.e., subject or object) to capture explicit
reasoning chains for interpretable claim verifica-
tion.

3 Model Description

Given a claim c and l evidence sentences, the
fact verification task aims to check the verac-
ity of the claim and return a prediction label y,
where y ∈ {“SUPPORTS”, “REFUTES”, “NOT
ENOUGH INFO”}. Instead of treating entire ev-
idence sentences or all semantic elements within
them as nodes to construct a coarse-grained or
unstructured evidence graph as in previous meth-
ods, GLAF constructs a fine-grained and struc-
tured evidence graph G by using an off-the-shelf
semantic role labeling (SRL) toolkit1 to parse
the l sentences into n structural relation triples2

and regarding them as graph nodes, denoted by
E =

{
e1, . . . , ei, . . . , en

}
. For each evidence

node ei, we use ei = (si, ri, oi) to represent a
relation triple (subject, relation, object). Then, all

1A re-implementation of a BERT-based model by Al-
lenNLP.

2Note each sentence could be parsed as multiple triples.
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these nodes are connected with edges to obtain a
fully-connected evidence graph G with n nodes.
Based on G, GLAF produces a prediction prob-
ability P (y|G) by reasoning over these evidence
triples (nodes) to predict the claim label y. Simi-
lar to KGAT, we follow the standard graph label
prediction setting in graph neural network (Velick-
ovic et al., 2018) and split the prediction into two
components: 1) the evidence selection probabil-
ity P

(
ei|G

)
; 2) the fine-grained label prediction

probability P
(
y|ei, G

)
:

P (y|G) =
∑n

i=1
P
(
ei|G

)
P
(
y|ei, G

)
(1)

As shown in Figure 2, GLAF mainly includes
four modules: Global Semantic Encoder (GSE),
Local Fission Reasoning (LFR) Layer, Global Evi-
dence Aggregation (GEA) Layer, and Graph Pool-
ing and MLP Classification Layer. Specifically,
GSE is used to obtain initial representations for the
claim c and all the nodes inG; LFR, with the initial
node representations as inputs, is responsible for
conducting 2-hop object reasoning for fine-grained
claim verification. LFR outputs updated node repre-
sentations, which later will be aggregated to serve
as the inputs of the GEA layer; GEA is utilized
to achieve information sharing by performing 1-
order neighborhood information integration; Then,
Graph pooling is utilized to filter noise data to se-
lect valuable nodes by calculating the evidence se-
lection probability P

(
ei|G

)
; Finally, an MLP layer

is used to calculate the fine-grained label prediction
probability P

(
y|ei, G

)
.

Note that LFR and GEA each can perform 2-
hop reasoning and 1-order neighborhood aggrega-
tion, respectively. By iteratively execute LFR and
GEA, we can implement more hop reasoning and
higher order aggregation to capture sufficient log-
ical relation for more accurate verification. Such
an iterative execution process is illustrated in Al-
gorithm 1 (Lines 21-32). We use t to denote the
iteration index and assume that 0 ≤ t ≤ N , where
N represents the total number of iterations and is a
model parameter. For convenience, in the follow-
ing discussion, we use the superscript t to denote
the representations or values at the t-th iteration.
Next, we detail the separate modules.

3.1 Global Semantic Encoder
Following KGAT, GLAF employs the pretrained
language model BERT as the contextual se-
mantic encoder to initialize the global node

representations. It is worth noting that since we
construct the evidence graph based on triple-
level nodes, we first concatenate each triple as
[CLS]subject[SEP]relation[SEP]object[SEP]
and then feed them to BERT to obtain the initial
hidden state representation of the node. Specif-
ically, for node ei, the evidence clue triple is
initialized as Hi,0

fis, where,

Hi,0
fis = [hi,0s ;hi,0r ;hi,0o ] = BERT

(
[si; ri; oi]

)

(2)
Similarly, the claim node representation is initial-
ized as,

[hcs;hcr;hco] = BERT ([sc; rc; oc]) (3)

3.2 Local Fission Reasoning Layer
In order to encourage the triple nodes to update the
object information for fine-grained claim verifica-
tion, GLAF employs a local fission reasoning layer
to conduct 2-hop entity-level reasoning between
the target node and its connected nodes, and finally
obtains an updated object vector. Different from
the previous models that use the whole evidence
sentence as a node (Zhou et al., 2019; Liu et al.,
2020), we propose to perform entity-level object
reasoning. Specifically, given a target node ei, we
update its object vector representation as follows:

• Calculates the cosine similarity between the
object (tail-entity) of the target node ei and the
subject (head-entity) of the connected node ej ,

M j→i,t
fis = cos

(
hi,to ,h

j,t
s

)
(4)

• Obtains the attentive weights by softmax func-
tion,

αj→i,tfis =
exp

(
M j→i,t
fis

)

∑n
k=1 exp

(
Mk→i,t
fis

) (5)

• Calculates the attentive vector corresponding
to the specific object after 2-hop reasoning,

ai,to =
∑n

j=1
αj→i,tfis hj,to (6)

• Adaptively updates the object vector represen-
tation,

hi,to = LeakyReLU
(
ω1hi,to + ω2ai,to

)
(7)

where ω1 and ω2 are two trainable linear
weights, and hi,to denotes the updated object
vector representation of ei.
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(a) Local fission reasoning (b) Global evidence aggregation

Figure 3: Two kinds of attention-based neural layer.

Consequently, the updated representation of ei after
a 2-hop reasoning can be obtained by,

Hi,t
fis = [hi,ts ;hi,tr ;hi,to ] (8)

Function LFR(·) in Algorithm 1 presents the de-
tailed implementation of the LFR layer. Finally, to
facilitate the subsequent global information shar-
ing, for each node ei, we conduct an aggregation
operation to convert the fission representation Hi,t

fis

to the aggregation representation Hi,t
agg by,

Hi,t
agg = Wi,t

agg ·Hi,t
fis (9)

where Wi,t
agg is a trainable matrix.

3.3 Global Evidence Aggregation Layer
To achieve information sharing and multi-evidence
joint reasoning, GLAF utilizes a global evidence
aggregation layer to perform 1-order neighborhood
aggregation, which mainly includes three steps:

• Calculates the cosine similarity between the
aggregated nodes,

M j→i,t
agg = cos

(
Hi,t
agg,H

j,t
agg

)
(10)

• Obtains the attentive weights by softmax func-
tion,

αj→i,tagg =
exp

(
M j→i,t
agg

)

∑n
k=1 exp

(
Mk→i,t
agg

) (11)

• Calculates the attention vector as updated ag-
gregated node representation after integrating
the information of the surrounding n nodes
(including itself),

Hi,t
agg =

∑n

j=1
αj→i,tagg Hj,t

agg (12)

Function GEA(·) in Algorithm 1 presents the de-
tailed implementation of this layer. Similarly, to

Algorithm 1 GLAF graph learning algorithm
Input: Evidence node set E = {e1, . . . , ei, . . . , en} and
claim c
Parameter: Number of iterations N and pooling parameter k
Output: Label y
1: Initialize: global node representations and all the param-

eters
2: function LFR(fiss_node_set, t)
3: for each fiss_node ei do
4: for each fiss_node ej do
5: Similarity(hi,to , hj,ts )→ αj→i,tfis (Eqs.4-5).
6: end for
7: Sum(αj→i,tfis · hj,to )→ ai,to (Eq.6)

8: Weigh (ai,to , hi,to ) to update hi,to → hi,to (Eq.7)
9: Concatenate (hi,ts , hi,tr , hi,to )→ Hi,t

fis (Eq.8)
10: end for
11: end function
12: function GEA(agg_node_set, t)
13: for each agg_node ei do
14: for each agg_node ej do
15: Similarity(Hi,t

agg,Hj,t
agg) → αj→i,tagg (Eqs.10-

11).
16: end for
17: Sum(αj→i,tagg ·Hj,t

agg)→ Hi,t
agg (Eq.12)

18: end for
19: end function
20: Let t = 0, E0 = E
21: while t ≤ N do
22: LFR(Et,t)
23: for each fiss_node ei in E do
24: Hi,t

fis

Agg−→ Hi,t
agg (Eq.9)

25: end for
26: GEA(Et,t)
27: for each agg_node ei in E do
28: Hi,t

agg
Fiss−→ Hi,t

fis (Eq.13)
29: end for
30: Et+1 = Pooling

(
Et, c, k

)
31: t = t+ 1
32: end while
33: Calculate P (y|G) by Eqs.16-18 for each label
34: y = argmaxP (y|G)
35: return y

facilitate the execution of the LFR layer in the next
iteration (if exists), we conduct a fission operation
to convert the aggregation representation Hi,t

agg to
the fission representation Hi,t

fis by,

Hi,t
fis = Wi,t

fis ·Hi,t
agg (13)

where Wi,t
fis is a trainable matrix.

3.4 Graph Pooling and MLP Classification
Layer

GLAF employs a graph pooling layer to conduct
node selection and noise filtering. Specifically, at
the t-th iteration, after GEA is executed, the pool-
ing layer discards nodes with few evidence clues
and only selects the k (k is a model parameter)
most valuable nodes from all of the aggregated
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nodes to serve as the readout. Formally,

Et+1 = Pooling
(
Et, c, k

)
(14)

where Et+1 denotes the evidence node set after
pooling on Et, with E0 = E. Moreover, the value
of a node ei is defined as the semantic similarity
between the key vector [hcs;hcr] ∈ R1×2F (F is the
feature dimension) of the claim c and ei’s updated
representation Hi,t

agg,

M i→c,t
pool = cos

(
[hcs;hcr] ·W,Hi,t

agg

)
(15)

where W ∈ R2F×F is a trainable matrix, which
is used to align the dimensions of the two vectors.
Then, GLAF obtains the evidence selection proba-
bility P

(
ei|G

)
by,

P
(
ei|G

)
=

exp
(
M i→c,t

pool

)

∑n
j=1 exp

(
M j→c,t

pool

) (16)

The k nodes with the highest probability P
(
ei|G

)

will be selected as the readout.
After N iterations, the representations of the

remaining activated nodes are fed into an MLP to
conduct claim object verification and generate the
fine-grained label prediction probability,

P
(
y|ei, G

)
= softmaxi(MLP(Hi,t

agg,h
c
o)) (17)

Finally, we can obtain the final prediction probabil-
ity by,

P (y|G) =
∑k

i=1
P
(
ei|G

)
P
(
y|ei, G

)
(18)

The whole GLAF model is trained end-to-end by
minimizing the cross-entropy loss,

L = CrossEntropy (y∗, P (y|G)) (19)

using the ground truth verification label y∗.

4 Experimental Setup

4.1 Datasets and Metrics
We conduct all our experiments on the large-scale
dataset FEVER (Thorne et al., 2018a), which con-
sists of 185,455 annotated claims with a set of
5,416,537 Wikipedia documents from the June
2017 Wikipedia dump. We keep the dataset parti-
tion the same as the FEVER Shared Task (Thorne
et al., 2018a) and TWOWINGOS (Yin and Roth,

Split Supported Refuted Not Enough Info

Train 80,035 29,775 35,639
Dev 3,333 3,333 3,333
Test 3,333 3,333 3,333

Table 1: Statistics of the FEVER dataset.

2018). Table 1 shows the statistics of the dataset
after partition.

Following several previous work (Zhou et al.,
2019; Zhong et al., 2020; Liu et al., 2020), we use
the official evaluation metrics3 to evaluate the per-
formance of our model on fact verification, which
includes Label Accuracy (LA) and FEVER score
(FEVER). LA is a general evaluation metric, which
calculates claim prediction accuracy rate without
considering retrieved evidence. The FEVER score
considers whether all evidence included in a golden
evidence set are mined, and hence better reflects
the reasoning ability.

4.2 Baselines
We compare our model GLAF with the following
state-of-the-art baselines.

• UNC-NLP (Nie et al., 2019)4 proposes a neu-
ral semantic matching network for claim veri-
fication to jointly solve three subtasks by in-
corporating additional information, such as
pageview frequency and WordNet features,
for information aggregation.

• BERT Fine-tuning Systems (Zhou et al.,
2019) includes BERT-Concat and BERT-Pair.
The BERT-Concat system concatenates all evi-
dence into a single string while the BERT-Pair
system encodes each claim-evidence pair in-
dependently and then aggregates the results.
For these two BERT fine-tuning systems, we
use the source code from (Zhou et al., 2019)
and keep the settings unchanged.

• GEAR (Zhou et al., 2019)5 is a graph-based
evidence aggregating and reasoning frame-
work by employing an evidence aggregator to
aggregate information and conduct evidence
reasoning over the evidence graph.

• DREAM (Zhong et al., 2020)6 is built on top
of XLNet (Yang et al., 2019) and models evi-
dence graph at a semantic-level by retrieving

3https://github.com/sheffieldnlp/fever-scorer
4https://github.com/easonnie/combine-FEVER-NSMN
5https://github.com/thunlp/GEAR
6We reproduce DREAM and try to keep the same settings

as the original paper as no open-source code is available.
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Model Precision Recall F1 FEVER

Dev ESIM 24.08 86.72 37.69 71.70
BERT 27.29 94.37 42.34 75.88

Test ESIM 23.51 84.66 36.80 68.16
BERT 25.21 87.47 39.14 69.40

Table 2: Results of evidence selection models.

all semantic elements as graph nodes. This
model employs a GCN and a GAT network to
conduct information aggregation.

• KGAT (Liu et al., 2020)7 models claim-
evidence pairs into nodes and adopts a kernel-
based graph attention network to conduct evi-
dence aggregating and reasoning.

4.3 Implementation Details
Evidence sentence retrieval We adopt a two-
stage scheme to retrieve evidence sentences, which
includes document retrieval stage and sentence se-
lection stage. The document retrieval stage re-
trieves related Wikipedia pages and is kept the
same with previous work (Zhou et al., 2019; Liu
et al., 2020). At first, it extract all potentially en-
tities included claim as key phrases by using the
constituency parser developed by AllenNLP. Then,
it regards theses key phrases as queries to search
relevant Wikipedia pages through the online Medi-
aWiki API8, until it searching out convinced article.
The sentence selection stage selects relevant sen-
tences from retrieved Wikipedia pages. In our ex-
periments, we try both ESIM-based retrieval model
and BERT-based retrieval model. From Table 2,
we can see that BERT performs better than ESIM.
So, we adopt BERT-based model to retrieve evi-
dence sentences. Specifically, following previous
work (Zhou et al., 2019; Liu et al., 2020), we first
feed these evidence sentences to a BERT-based
ranking model. Then, we use the “[CLS]” hidden
state to represent claim-evidence pair. Finally, we
adopt a pairwise loss to optimize the ranking model
for obtaining an optimal evidence retrieval result.

Triple-level clue representation. Similar to pre-
vious work (Zhou et al., 2019; Liu et al., 2020),
we adopt an identical two-stage scheme to retrieve
evidence sentences from background corpus. But
different from them, we subsequently adopt a se-
mantic role labeling toolkit to parse each evidence
sentence into triple format. Specifically, we built
the triples by using the results of the SRL toolkit9,

7https://github.com/thunlp/KernelGAT
8https://www.mediawiki.org/wiki/API:Main_page
9https://demo.allennlp.org/semantic-role-labeling

Model Dev Test
LA FEVER LA FEVER

UNC-NLP 0.7034 0.6716 0.6858 0.6472
BERT-Concat 0.7399 0.6987 0.7185 0.6718
BERT-Pair 0.7463 0.7008 0.7179 0.6752
KGAT (ESIM) 0.7551 0.7269 0.7348 0.7050
GLAF (ESIM) 0.7586 0.7370 0.7441 0.7236
GEAR 0.7601 0.7133 0.7304 0.6815
DREAM (XLNetLarge) 0.7792 0.7235 0.7698 0.7140
KGAT (BERTBase) 0.7787 0.7575 0.7593 0.7419
GLAF (BERTBase) 0.7804 0.7635 0.7703 0.7494
KGAT (CorefBERTBase) 0.7798 0.7608 0.7635 0.7441
GLAF (CorefBERTBase) 0.7835 0.7658 0.7760 0.7522
GLAF (BERTLarge) 0.7829 0.7662 0.7784 0.7565
GLAF (RoBERTaLarge) 0.7852 0.7641 0.7905 0.7620
GLAF (CorefRoBERTaLarge) 0.7941 0.7840 0.8012 0.7762

Table 3: Overall performance. Note the FEVER score
on the blind test set is the main evaluation metric made
by FEVER organizers, and all results are statistically
significant with p < 0.05 under t-test.

which includes (subject, predicate, object) and
(subject, attributes, value). Note that these ex-
tracted attributes include time, place, purpose, rea-
son, and other crucial elements that can be mined
by SRL. We process all these triples as evidence
clues and feed them into BERT to obtain a set of
triple-level evidence clue representations. Then,
we built an evidence graph by using these triple
representations as initial nodes, as described in
Section 3.

Model training details. In our experiments, the
batch size is set to 8, learning rate is set to 2e−5 and
warmup proportion is set to 0.1. The max length is
set to 140, and the max number of training epochs
is set to 6. The maximum number of iterationsN is
set to 2. BERT and CorefBERT respectively inherit
huggingface’s implementation10 and THUNLP’s
repository11. The same as previous work (Zhou
et al., 2019; Liu et al., 2020), Adam optimizer is
used to optimize all models. All experiments are
conducted with PyTorch, and all the source code
will be made publicly available upon acceptance.
More details about hyper-parameter settings can be
found in the Appendix.

5 Evaluation Results

5.1 Overall Performance

The overall performance is shown in Table 3, where
the best performance in each scenario is in bold-
face. It can be observed that, compared with other
baselines, GLAF exhibits the best performance

10https://github.com/huggingface/pytorch-transformers
11https://github.com/thunlp/CorefBERT
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Model FEVER(%)
Test ∆

Complete model 77.62 -
w/o SRL retrieval & LFR Layer 72.55 5.07
w/o GEA Layer 74.20 3.42
w/o Graph Pooling Layer 76.35 1.27

Table 4: Ablation study on FEVER test set.

on all testing scenarios. With ESIM sentence re-
trieval, GLAF outperforms the classic top system
UNC-NLP and current best model KGAT on both
development and testing sets. With BERT-based
sentence retrieval, GLAF outperforms GEAR by
almost 10%, DREAM by almost 5% and KGAT
by almost 1% test FEVER score. This illus-
trates the consistent effectiveness of GLAF among
graph augmented reasoning models with different
sentence retrieval methods. Furthermore, when
using CorefBERTBase, BERTLarge, RoBERTaLarge
and CorefRoBERTaLarge as the encoder, GLAF
achieves even better performance, especially for
CorefRoBERTaLarge, it outperforms the current
best model KGAT by almost 4.9% in LA metric
and 4.3% in FEVER metric on blind test set and
achieves the state-of-the-art performance.

5.2 Ablation Study
In this part, we perform ablation experiments to
evaluate the effectiveness of each module and set
them accordingly. 1) w/o SRL retrieval & LFR
Layer12 denotes that we remove semantic triple re-
trieval and local fission reasoning, and just adopt
the global aggregation layer to aggregate informa-
tion; 2) w/o GEA Layer denotes that we remove the
global evidence aggregation layer and connect the
local fission reasoning layer to the pooling layer
directly; 3) w/o Graph Pooling Layer denotes that
we remove the graph pooling layer and connect the
GEA layer to the MLP layer directly. From the re-
sults in Table 4, we can observe that removing each
module will result in a performance degradation. In
particular, w/o SRL retrieval & LFR Layer and w/o
GEA Layer causes 5.07 and 3.42 absolute drops
in test FEVER score, respectively, which further
verifies the effectiveness of our model.

5.3 Effectiveness Evaluation and analysis
Assessment of evidence mining capability.
This experiment evaluates the capability of our
model to effectively mine evidence when incre-
mental corpus size is given. Specifically, more

12LFR cannot be decoupled with SRL retrieval, since it
relies on the triples parsed by SRL. Therefore, we consider
them together.
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Figure 4: The assessment of evidence mining capabil-
ity.

Corpus Size Number of iterations N
0 1 2 3

5 0.7494 0.7488 0.7443 -
6 0.7508 0.7522 0.7510 -
7 0.7522 0.7545 0.7518 -
8 0.7531 0.7550 0.7522 -
9 0.7540 0.7579 0.7534 -

10 0.7528 0.7611 0.7581 -
15 0.7568 0.7608 0.7620 0.7588

Table 5: Study of hyperparameter N under different
corpus sizes. Best performance under each corpus size
is in boldface.

evidence sentences will bring more noise elements,
which requires the model to have stronger evidence
selection and reasoning ability to carefully distin-
guish these evidence clues. As shown in Figure 4,
we set 5 pieces of evidence as the basic scenario,
and vary the corpus size in [6, 7, 8, 9, 10] to test the
improvement effect on FEVER and LA. As can
be observed, compared with KGAT and GEAR,
our GLAF model consistently achieves the best
performance on FEVER and LA metrics. We con-
jecture the reason might be that the pooling layer
in GLAF effectively improves the reasoning model
by filtering out noise clues.

Study on the number of iterations N . We con-
duct this experiment to explore the optimal number
of iterations N under different corpus sizes. From
Table 5, we can observe that with the increase of the
corpus size, more iterations are needed to dig out
the potential logical relationships hidden among ev-
idence nodes. Specifically, when corpus size = 5,
the optimal number of iterations is N = 0; When
corpus size varies in the range of [6, 7, 8, 9, 10],
the optimal number of iterations is N = 1; When
corpus size reaches 15, the optimal number of it-
erations is N = 2. This experiment reveals the
relationship between model depth and its perfor-
mance. Specifically, deeper model may cause the
overfitting problem, while shallower models may
have difficulty in mining potential advanced fea-
tures. Therefore, it is important to select the proper
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number of iterations.

Corpus Size With Pooling Without Pooling
LA FEVER LA FEVER

5 0.7703 0.7494 0.7680 0.7492
7 0.7761 0.7540 0.7743 0.7526
10 0.7814 0.7609 0.7752 0.7536
15 0.8012 0.7762 0.7905 0.7635

Table 6: Effectiveness evaluation of pooling layer.

More evaluation on the pooling layer. We con-
duct this experiment to further evaluate the effec-
tiveness of the pooling layer. The result is shown
in Table 6. In this experiment, we set up a group
of comparison models with and without a pooling
layer, and set the corpus size within [5, 7, 10, 15].
From Table 6, we can observe that the model with
the pooling layer achieves better performance than
the one without, which demonstrates the effective-
ness of the pooling layer in improving the model’s
reasoning ability over evidence clues through the
noise filtering mechanism.

5.4 Case Study

We take the fact verification task in Table 7 as an
example, which requires performing triple-level
2-hop reasoning over retrieved evidence clues to
reach a reliable conclusion. To verify whether “The
Rodney King riots” took place in “the most pop-
ulous county in the USA”, our model mines two
crucial evidence clues, (The Rodney King riots, oc-
curred in, Los Angeles County) and (Los Angeles
County, is, the most populous county in the USA),
to perform attention-based 2-hop reasoning. To
better understand what our LFR layer has learned,
we visualize the attention map from the LFR layer
and the final graph pooling layer, as shown in Fig-
ure 5. It is clear to see that node 1 achieves the
highest value score 0.982 in the last column by
integrating information from surrounding nodes,
mainly from nodes 2 and 3. Since node 2 is seman-
tically worthless and has the lowest value score
0.125, it will be filtered out by the pooling layer,
which implies that 1 → 3 is the optimal 2-hop
reasoning chain. Finally, the two corresponding
evidence clues (The Rodney King riots, occurred in,
Los Angeles County) and (Los Angeles County, is,
the most populous county in the USA) can be suc-
cessfully selected and reasoned to make the final
claim verification.

Claim:
The Rodney King riots took place in the most populous county
in the USA.
Evidence:
(1) The 1992 Los Angeles riots, also known as the Rodney King
riots were a series of riots, lootings, and civil disturbances that
occurred in Los Angeles County, California in April and May 1992.
(2) Los Angeles County, officially the County of Los
Angeles, is the most populous county in the USA.
Retrieved claim clue:
(The Rodney King riots, took place in, the most populous county
in the USA)
Retrieved evidence clues:
¬ (The Rodney King riots, were, riots_lootings_civil_disturbances)
 (The Rodney King riots, occurred in, Los Angeles County)
® (Los Angeles County, officially named, the County of Los Angeles)
¯ (Los Angeles County, is, the most populous county in the USA)
Label: SUPPORTED

Table 7: A case study illustrating semantic-level 2-hop
reasoning over fine-grained evidence clues.
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Figure 5: Attention map for the example in Table 7.
The first four columns indicate the attention weights
αfis from nodes 0 to 3 (corresponding in turn to the
four retrieved evidence clues in Table 7) in the LFR
layer, and the last column visualizes the value score
M i→c

pool of the four nodes from the final graph pooling
layer.

6 Conclusion

In this paper, we introduce a fresh perspective to
revisit the fact verification task and propose a novel
Global-to-Local Aggregation and Fission Network
(GLAF) to capture latent logical relations hidden in
evidence clues for more accurate fact verification.
Instead of treating evidence as sentence-level or
unstructured representations as in previous work,
the proposed GLAF model first parses the evidence
sentences as triple-level evidence clues, and then
feeds them into contextual language model to ob-
tain global semantic representations. Moreover, to
capture latent logical relations between the clues,
GLAF respectively employs a local fission layer to
conduct fine-grained multi-hop reasoning, as well
as a global aggregation layer to conduct interchang-
ing of evidence clues in the graph. Experimen-
tal results on the benchmark dataset FEVER have
demonstrated the effectiveness and superior perfor-
mance of our model in both overall evaluation and
ablation study.
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A Appendices

A.1 Hyperparameters Setting

Hyperparameter Name GLAF
Batch Size 8
Bert Embedding Size 768
Learning Rate 2e−5

Warmup Proportion 0.1
Dropout 0.6
Max Epochs 6
Corpus Size 15
Max Length 140
Pooling k [10,5,3]
Number of iterations N 2

Table 8: Hyperparameters we used for FEVER.

A.2 Error Analysis

To better understand the limitations of our model,
we conduct an error analysis on GLAF. We ran-
domly select 200 incorrectly predicted instances
that achieve low test FEVER scores. We report sev-
eral reasons for the low scores, which can roughly
be classified into three categories. 1) Upstream doc-
ument retrieval and sentence selection components
extract insufficient evidence for inferring (56%); 2)
Incomplete or even incorrect extraction of evidence
clues, which may be due to limitations of the SRL
toolkit (28%); 3) Lack of common sense knowl-
edge for the claim verification (16%). For example,
the claim states “The Great Wall is a famous an-
cient building in China", while the evidence states
“The Great Wall stretches from Lop Lake to Dan-
dong, which is a famous ancient building". The
model fails to realize that “Lop Lake" and “Dan-
dong" are located in “China" due to the lack of
common sense knowledge. Solving this type of
errors needs to involve external knowledge (e.g.,
ConceptNet proposed by (Speer et al., 2017)).

A.3 More complicated cases

For more complicated cases, such as a claim sen-
tence contains multiple predicates, GLAF first
parses the sentence to multiple triples by the SRL
toolkit, and then verifies them separately before
making a combined judgment. For example, “Mi-
crosoft was founded by Bill Gates and promoted
by Tim Cook" can be parsed to two claim triples:
(Microsoft, was founded by, Bill Gates) and (Mi-
crosoft, was promoted by, Tim Cook), GLAF first

Priority Label 1 Label 2 Final Label
Refutes 0 1 1
Not Enough Info 0 0 0
Supports 1 0 0

Table 9: Example of multi-label decisions. Note the pri-
ority is in descending order, i.e., Refutes>Not Enough
Info > Supports.

predicts their respective labels and then combines
these labels to make the final judgment by Table 9.
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Abstract

Answering natural language questions on
knowledge graphs (KGQA) remains a great
challenge in terms of understanding complex
questions via multi-hop reasoning. Previous
efforts usually exploit large-scale entity-related
text corpora or knowledge graph (KG) embed-
dings as auxiliary information to facilitate an-
swer selection. However, the rich semantics im-
plied in off-the-shelf relation paths between en-
tities is far from well explored. This paper pro-
poses improving multi-hop KGQA by exploit-
ing relation paths’ hybrid semantics. Specifi-
cally, we integrate explicit textual information
and implicit KG structural features of relation
paths based on a novel rotate-and-scale entity
link prediction framework. Extensive experi-
ments on three existing KGQA datasets demon-
strate the superiority of our method, especially
in multi-hop scenarios. Further investigation
confirms our method’s systematical coordina-
tion between questions and relation paths to
identify answer entities.

1 Introduction

Answering natural language questions on knowl-
edge graphs (KGQA) is a challenging task (Bol-
lacker et al., 2008; Tanon et al., 2016). Recent
works mainly pay attention to a complex scenario,
namely multi-hop KGQA (Sun et al., 2018; Hu
et al., 2018; Saxena et al., 2020; Atzeni et al., 2021),
where sophisticated reasoning over multiple edges
(or relations) is required to infer the correct answer
in the KG (Chen et al., 2019).

The main challenge of multi-hop KGQA is to
understand complicated questions and reason un-
der incomplete KG, usually without supervision
signals at the intermediate reasoning steps (Lan
et al., 2021). One common strategy to alleviate
this dilemma is to exploit auxiliary information
to enrich knowledge representation. For example,

†Corresponding authors.

researchers have exploited entity-related textual
corpus (e.g., from Wikipedia) as additional nodes
in graph-based neural models (Sun et al., 2018,
2019a), or directly encoded them into enhanced
entity representations (Han et al., 2020). A more
recent effort, namely EmbedKGQA (Saxena et al.,
2020), leverages implicit yet rich information in
KG embeddings to answer complex questions over
sparse KG. Unfortunately, the relation paths, which
may contain beneficial supplementary information
to characterize a candidate target entity for a topic
entity in a question, are commonly underutilized.

To the best of our knowledge, Yan et al. (2021)
is the only effort involving exploiting the off-the-
shelf relation path information. They use relation
paths as simple coarse-grained input features by
concatenating their text descriptions. From a more
fine-grained and systematic perspective, given a
question as a semantic view for the implied rela-
tional fact of a <topic entity, target entity> pair, a
relation path can serve as another highly-related
yet complementary one.

Therefore, we propose coordinating the question
view and the relation path view to identify target en-
tities more accurately. To make this idea work, we
face two main challenges: 1) how to accurately rep-
resent relation paths and 2) how to fuse a relation
path representation with the question representa-
tion.

For the first problem, we propose exploiting hy-
brid features of relation paths by integrating both
explicit textual semantics and implicit KG embed-
ding features. Firstly, previous works have shown
the merits of introducing entity-related texts (Sun
et al., 2018; Xiong et al., 2019; Sun et al., 2019a;
Han et al., 2020), while we conjecture that relation-
related texts (e.g., relation names or descriptions)
can potentially offer helpful clues to answer a ques-
tion. Meanwhile, relation-related texts are naturally
available and on a much smaller scale compared
with entity-related texts. Therefore, we utilize the
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explicit text description of a relation path (a relation
set) as an extra feature of KGQA models to facili-
tate target entity selection. Secondly, in addition to
a text description, a relation also has a KG-based
representation (relation embedding) that implicitly
contains rich KG structural semantics. Therefore,
we introduce RotatE, a KG embedding model that
can well support relation composition by entity
rotation in the complex vector space (Sun et al.,
2019b). With RotatE, we can synthesize relation
path representation by performing simple element-
wise multiplication of individual relation embed-
dings. Finally, we characterize beneficial knowl-
edge in candidate relation paths by fusing their
structural and textual representations in a question-
aware manner, which also facilitates filtering appro-
priate relation paths semantically consistent with
the question among numerous noisy candidates.

For the second problem, inspired by (Saxena
et al., 2020), we project the well-designed question-
aware mixed representations of relation paths, as
well as the question representation, into a rotating
entity link prediction framework. However, our
pilot experiments showed that the rotating-based
link prediction did not yield the robust performance
we expected. Further investigation revealed that the
modulus of entity embeddings by RotatE mattered.
For example, compared with 1-hop answer entities,
2-hop answer entities more significantly differ from
their topic entities on modulus. This observation
inspires us to match the integrated semantics of
questions and relation paths by both entity rotation
and entity modulus scaling. After introducing an
entity modulus scaling mechanism, we achieve a
promising rotate-and-scale prediction framework,
which better coordinate knowledge of questions
and relation paths for KGQA.

Extensive experiments on three existing KGQA
datasets (WebQuestionSP (tau Yih et al., 2016),
ComplexWebQuestions (Talmor and Berant, 2018),
and MetaQA (Zhang et al., 2018)) verify the su-
periority of our method, especially in multi-hop
scenarios. Our contributions are as follows:

• We propose a KGQA method from a novel
perspective of exploiting hybrid features of
the off-the-shelf relation paths.

• By systematically fusing explicit Textual in-
formation and implicit KG Embedding fea-
tures of candidate Relation Paths based on
a novel rotate-and-scale KG link prediction

framework, our method (TERP) achieves
competitive performance on three KGQA
datasets, especially in the multi-hop scenario.

• We reveal that questions and relation paths,
as two facets of their corresponding relations
between a topic entity and a target entity, are
highly-relevant yet complementary informa-
tion for question answering.

2 Problem Statement

KGQA is the task of factoid question answering
over a knowledge graph. A knowledge graph is
denoted as G ⊆ E × R × E , where E is the set
of all entities in the KG and R is the set of all
relations. A triple can be formally described as
(h, r, t) , where h, t ∈ E and r ∈ R is the rela-
tion between them. Given a natural language ques-
tion Q =

(
w1, . . . , w|q|

)
and a topic entity h ∈ E ,

which should be present in the question, the task
of KGQA is to extract answer entities ca ∈ E that
answer the question Q correctly from G. In prac-
tice, we perform entity linking on the question Q,
producing a set of topic entitiesH.

3 Methodology

3.1 Overview
In this section, we mathematically present our
TERP method in detail. Our main idea is to coordi-
nate the question view and the relation path view
to identify target entities more accurately. Figure 1
shows an overview of our approach. Firstly, we
obtain the representations of the entities and rela-
tions in KG via a KG embedding module and the
representations of questions via a Question En-
coder. Then, we use a Path Encoder to encode
the relation path by integrating explicit textual se-
mantics and implicit KG embedding features of re-
lation paths. An attention mechanism is employed
to choose the appropriate relation paths semanti-
cally consistent with the question among numerous
noisy candidate paths. A Rotate-and-Scale mod-
ule projects the representations of the question and
the chosen relation paths into the complex space
of KG embeddings. Finally, an Entity Predictor
scores all candidate entities in a link prediction
manner.

3.2 KG Embedding
We first obtain the representations of entities and
relations via a KG Embedding module. To mine the
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Figure 1: An overview of our TERP model. A question encoder is employed to extract the features from textual
question. A path encoder is adopted to capture the consistent yet complementary information in implicit relation
embeddings (i.e., structural features) and explicit text description (i.e., textual features) of potential relation paths
for the question. Then, the Rotate and Scale mechanism projects the features from question and relation paths to a
rotation angle θ and a scaling factor m , respectively. Finally, a entity predictor scores all candidate entities.

implicit KG structural semantics of relation paths,
we adopt RotatE (Sun et al., 2019b) to model the
composition of relations.

RotatE represents entities as complex vectors
and relations as rotations in complex vector space.
Given h, t ∈ E and r ∈ R, RotatE generates
eh, er, et ∈ Cd and defines a scoring function:

sr(h, t) = ϕ(h, r, t) = −∥eh ◦ er − et∥, (1)

where |eri| = 1, and ◦ denotes the Hadmard (or
element-wise) product. RotatE can model the com-
position patterns. A relation er3 = exp(iθ3) is a
combination of other two relations er1 = exp(iθ1)
and er2 = exp(iθ2) if and only if:

er3 = er1 ◦ er2. (2)

3.3 Question Encoder
Following previous work (Saxena et al., 2020; Shi
et al., 2021; Atzeni et al., 2021), the question en-
coding model aims to embed a natural language
question Q to a fixed dimension vector q ∈ Rd
with a pre-trained language model.

q = Encoderavg(Q), (3)

where avg denotes the average pooling strategy.

3.4 Path Encoder

In addition to the question, we further model the
explicit and implicit semantics in relation path be-
tween a topic entity and a candidate entity with a
path encoding module. Our intuition behind this
is that the textual semantics in the relation path, as
well as the corresponding composed pre-trained re-
lation embeddings produced by RotatE, are supple-
mentary information to the question. Considering
that the same relation path may have different se-
mantics in different query contexts, we additionally
add the question text before the textual description
of the relation path. Formally, given a natural lan-
guage question Q, a topic entity h and a candidate
entity c, we can obtain the shortest paths between
h and c. For a single path rp1, rp2, · · · rpk , we gen-
erate a textual relation path Pt, in which every text
description of relation in the path is surrounded by
special tokens < r >,< /r >. We concatenate the
textual question Q with the textual relation path
Pt and feed them into the encoder to extract the
textual features of the explicit relation paths. Mean-
while, we can obtain the implicit semantics from
the embeddings of the relations erp1, erp2, · · · erpk,
which carry structural features learn by RotatE. The
hybrid representation p̄ of the relation path is pro-
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duced via fusing both explicit textual representa-
tion pt and implicit KG embedding representation
pl with an FFN:

p̄t = Encoderavg(Pt : Q),

p̄l = erp
1 ◦ erp2 ◦ · · · ◦ erpk,

p̄ = FFN(p̄t, p̄l).

(4)

One underlying challenge is that there could be
multiple shortest paths between a topic entity and
an answer entity. In TERP, we use a scaled dot-
product attention mechanism to select the appropri-
ate relation paths that are semantically consistent
with the question.

p = Attention(qW1, p̄tW2, p̄), (5)

where p̄t and p̄ denote two version of representa-
tions of all the candidate paths for a given (h, c)
pair. W1,W2 are learnable matrices.

3.5 Rotate-and-Scale
However, in our preliminary exploration, directly
using RotatE as our KG embedding module do not
yield a robust performance. Further investigation
revealed that the underlying reason is that the mod-
ulus of entities varies in RotatE. If there is an edge
between two entities, they will have similar modu-
lus because the modulus of relation representations
are fixed to be 1 in RotatE. However, in a multi-hop
KBQA scenario, the multi-hop relation path could
amplify the difference between the topic and an-
swer entities, hence it can be challenging to match
the answer only by rotation transformation.

To this end, we propose a rotate-and-scale frame-
work to model the two views of implied relational
fact of a <topic entity, target entity> pair as a rota-
tion transformation and a scaling transformation in
the complex space. For a natural language question
Q, two independent feedforward networks (FFN)
are used to generate the rotation transformation
θq ∈ Rd and the scaling transformation mq ∈ Rd:

θq = FFN(q),

mq = FFN(q).
(6)

Then, we combine the two transformations into
the final representation rq for the question, which
contains a real part Re and an imaginary part Im
in the complex space.

Re(rq) = mq ◦ cos (θq) ,
Im(rq) = mq ◦ sin (θq) .

(7)

In this way, our rotate-and-scale framework can
serve as the bridge between entity representations
of RotatE and representations of textual questions.
We handle relation paths in a same way.

θp = FFN(p),

mp = FFN(p),

Re(rp) = mp ◦ cos (θp) ,
Im(rp) = mp ◦ sin (θp) ,

(8)

where θp ∈ Rd and mp ∈ Rd are rotation and
scaling in the complex space respectively. As illus-
trated in Section 5.2, the rotate-and-scale mecha-
nism improves the performance of KGQA with a
large margin.

3.6 Entity Predictor

With the representations produced above, an en-
tity predictor is used to score all candidate entities.
Given a question Q, the candidate paths P , a topic
entity h ∈ E and the candidate entity c ∈ E , the
score function is calculated as:

sq(h, c) = −∥eh ◦ rq − ec∥,
sp(h, c) = −∥eh ◦ rp − ec∥,

(9)

where sq and sp denote the scores from the question
view and the relation path view, respectively. The
final score is s = (1−λ)sq(h, c)+λsp(h, c), where
λ is a hyper-parameter. In training, the score s is
calculated among N candidate entities sampled
from the KG, where N is a hyper-parameter.

The overall training objective combines the
Cross-entropy (CE) loss Lques and Lpath for the
sq and sp, respectively.

L = Lques + Lpath
= CE(sq, targets) + CE(sp, targets),

(10)

where targets denotes the ground truth label.

3.7 Inference

To address the challenge that huge numbers of
paths may exist, we propose a two-stage inference
strategy to reduce the computational cost. At stage
1, given a questionQ, a topic entity h and all the en-
tities in the question-specified subgraph C ⊆ E , we
first compute sq(h, c) for each c ∈ C. Then we se-
lect top-k candidate entities among them according
to sq(h, c). At stage 2, we compute sp(h, c) only
for the entities recalled in stage 1 and calculate the
final score s from them. For questions with more
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than one topic entity, we simply average the cor-
responding sq and sp calculated by different topic
entities for each candidate c.

This two-stage answer acquisition strategy can
empirically deliver a 15-40× inference speed-up on
different datasets without sacrificing performance.

4 Experimental Settings

4.1 Datasets
We evaluate our model on three widely-used
KGQA datasets, MetaQA (Zhang et al., 2018),
WebQuestionsSP (tau Yih et al., 2016) datasets,
and Complex WebQuestions (Talmor and Berant,
2018).

MetaQA is a multi-hop KGQA dataset with
more than 400k questions, providing a KG with
135k triples, 43k entities and 9 kinds of relations.

WebQuestionSP(WebQSP) is a large scale
multi-hop KGQA dataset with 4,737 questions. Fol-
lowing Sun et al. (2018, 2019a), we restrict the KG
to be a subset of Freebase which contains all facts
that are within 2-hops of any entity mentioned in
the questions of WebQSP. Then we use the same
PPR algorithm as in Sun et al. (2018) to retrieve
a subgraph for each question. We further split the
testset on WebQSP into 1- and 2-hop sets based
on the inferential chain annotation (tau Yih et al.,
2016) in the dataset. Note that this split is just for
statistics convenience on testsets. During inference,
we do not know whether a question is 1-hop or 2-
hop, which is different from the MetaQA settings.
Following Sun et al. (2018), we remove half of the
triples in the KG to simulate an incomplete KG.
We call this setting WebQSP-50. We use the same
train/dev/test split as Sun et al. (2018).

ComplexWebQuestions(CompWebQ) is cre-
ated by expanding the question entities or adding
constraints to the answers in WebQuestionsSP. The
questions require up to 4-hops of reasoning on the
KG (He et al., 2021).We handle CompWebQ in the
same way as WebQSP except that we limit each
subgraph to a maximum of 2000 entities in Comp-
WebQ. On average, there are 1349 entities in each
subgraph and the recall of answers is 78.6% .

4.2 Implementation Details
We use the open source implementation of
LibKGE (Broscheit et al., 2020) to train the KG em-
beddings. Following Saxena et al. (2020), the pre-
trained KG embeddings are frozen for WebQSP

and CompWebQ in training, while tuneable for
MetaQA. We use a pre-trained RoBERTa (Liu et al.,
2019) as the text encoder. The size of a mini-batch
is set to 10. The learning rate is 3e-5 and we adopt
the Adam optimizer with β2 = 0.998. The number
of candidate entities for WebQSP and CompWebQ
is 20000. For MetaQA, we use all entities in KG
as candidate entities. Other hyper-parameters are
the same as the default RoBERTa-base configura-
tion. The weight λ for the entity predictor is 0.6.
The number of candidate entities retrieved in stage
1 during inference is empirically set to be 15 for
WebQSP and MetaQA, and 30 for CompWebQ.

4.3 Baselines

PullNet (Sun et al., 2019a) iteratively retrieves a
subgraph from KG to create a question-specific
sub-graph and rank the entities by a variant of
graph CNN (Kipf and Welling, 2017); Embed-
KGQA (Saxena et al., 2020) leverages KG em-
beddings to perform multi-hop KGQA. It adopts
ComplEx (Trouillon et al., 2016) KG embeddings
to score the entities; EMQL (Sun et al., 2020) lever-
ages query embedding method and uses these em-
beddings to obtain the answers; TransferNet (Shi
et al., 2021) leverages free texts retrieved from the
textual corpus and pre-defined constrained pred-
icates to perform multi-hop reasoning; BERT-
KGQA (Yan et al., 2021) leverages textual infor-
mation carried by the nodes and edges to perform
KGQA. We choose the original version without
additional annotated data for a fair comparison;
SQALER (Atzeni et al., 2021) addresses KGQA
by first performing multi-hop reasoning on the KG
and then refining the result with logical reasoning.

5 Experiment Results

5.1 Main Results

Table 1 shows the performance of the baseline mod-
els and our methods on three datasets under differ-
ent settings. We achieve the best performance on
four of six tasks. Here we mainly compare our
TERP with two lines of works: embedding-based
methods (e.g., EmbedKGQA) and path searching
methods (e.g., SQALER and TransferNet).

Comparison with embedding-based methods.
Except for the similar performance on the MetaQA
1-hop task, TERP significantly outperforms Em-
bedKGQA on the other tasks. The results verify
the effectiveness of incorporating relation path in-
formation into the link prediction framework.
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Models MetaQA WebQSP WebQSP-50 CompWebQ
1-hop 2-hop 3-hop

PullNet* 97.0 99.9 91.4 68.1 51.9 47.2
EmbedKGQA 97.5 98.8 94.8 66.6 54.3† 44.7†
EMQL 97.2 98.6 99.1 75.5 - -
TransferNet* 97.5 100 100 71.4 - 48.6
BERT-KGQA - - - 71.2 56.7 -
SQALER* - 99.9 99.9 76.1 55.2 -
TERP(ours) 97.5 99.4 98.9 76.8 57.0 49.2

Table 1: Main results on MetaQA, WebQSP, WebQSP-50 and CompWebQ. The numbers reported in the table are
hits@1. “†” denotes the result of our re-implementation. Methods that use external corpora are annotated with “*”.

Comparison with path searching methods. Gen-
erally, TERP performs better on WebQSP and
ComWebQ, while SQALER and TransferNet are
more competitive on MetaQA. The possible reason
is that the link prediction framework relies on high-
quality KG embeddings, consequently being more
effective for knowledge graphs of a larger scale.
Note that the scale of WebQSP’s knowledge graph
is far more extensive than that of MetaQA’s (1.8 M
v.s. 43 K of entity number, and 6101 v.s. 9 of rela-
tion type number). In addition to better trained KG
embeddings, the 6101 relation types of WebQSP
mean 6101 relation representations, introducing
much richer semantics of relations, compared with
the 9 relation representations of MetaQA. The dif-
ference between these knowledge graphs roughly
explains the comparison results. Furthermore, the
results on more challenging tasks (WebQSP and
CompWebQ) verify the effectiveness of integrat-
ing explicit textual information and implicit KG
structural information in KGQA.

Note that several baselines (EMQL, BERT-
KGQA and PullNet) can not accurately fall into
the above two categories. Compared with them,
TERP also achieves competitive results, e.g., the
superior hits@1 scores in 4 of the 6 test sets.

5.2 Effectiveness of Roate-and-Scale
Mechanism

To reveal how the rotate-and-scale mechanism
helps answer reasoning, we replace it with gen-
eral ComplEx-based matching and RotatE-based
(without scaling) matching, achieving two model
variants named w/ ComplEx and w/ RotatE re-
spectively. Table 2 contains two groups of results
corresponding to whether or not hybrid features of
relation paths is introduced. The observations on
the two groups are generally similar, and here we

mainly analyze the results in the first group.
First, w/ RotatE demonstrates a notable perfor-

mance degradation compared with w/ ComplEx,
suggesting that simply replacing ComplEx with
RotatE in the link prediction-based KGQA frame-
work, can not satisfy our initial desire to exert re-
lation composition capabilities of RotatE. Second,
by incorporating the scaling module into RotatE,
w/ RotatE&Scale surpasses w/ ComplEx with a
significant margin. This observation verifies that
modulus scaling is necessary to capture relation
semantics under the hypothesis of using complex
vector rotating to match complex multi-hop ques-
tions. Third, the superiority of w/ RotatE&Scale
over w/ ComplEx is more visible on 2-hop ques-
tions than that on 1-hop ones, proving that w/ Ro-
tatE&Scale more accurately distinguish relation
path semantics.

5.3 Overall Impacts of Relation Paths’
Hybrid Features

Another characteristic of TERP is using hybrid fea-
tures of relation paths. In Table 2, the models of the
second group are ones with relation path features.
By comparing the results of the first group and
second group in Table 2, we find 1) incorporating
relation path information can consistently improve
answering questions of different hops under both
complete and incomplete KGs, and 2) the improve-
ments on 2-hop questions surpass that on 1-hop
ones by a large margin, verifying the potential of
relation path information for multi-hop reasoning.

5.4 Ablation Study of Relation Paths’ Hybrid
Features

We then perform an ablation study on the hybrid
features. Table 3 shows two groups of results corre-
sponding to using only textual representations and
only structural representations of relation paths,
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Models WebQSP WebQSP-50
All 1-hop 2-hop All 1-hop 2-hop

w/o path
w/ ComplEx 72.1 83.6 52.3 53.6 63.8 36.0
w/ RotatE 67.5 79.7 46.5 49.8 60.5 31.4
w/ RotatE&Scale 74.6 84.5 57.5 55.5 64.6 39.8
w/ path
w/ ComplEx 73.6(+1.5) 84.6(+0.9) 54.6(+2.3) 54.6(+1.0) 64.2(+0.4) 38.0(+2.0)
w/ RotatE 69.3(+1.8) 80.5(+0.8) 50.4(+3.9) 51.0(+0.4) 60.6(+0.1) 34.2(+2.8)
w/ RotatE&Scale 76.8(+2.2) 84.9(+0.4) 62.6(+5.1) 57.0(+1.5) 65.1(+0.5) 43.1(+3.3)

Table 2: Hits@1 on WebQSP datasets in full KG settings (WebQSP) and incomplete KG settings (WebQSP-50).
“All”, “1-hop”, and “2-hop” denote the statistics of 1&2-, 1-, and 2-hop questions of the same task. w/ path and
w/o path denote whether the model is equipped with the path encoder. “w/ ComplEx” and “w/ RotatE” denote the
models use ComplEx and RotatE, respectively. “w/ RotatE&Scale” denotes the TERP model with RotatE and the
scaling strategy. Numbers in the parentheses denote the hit@1 improvements of w/ path over w/o path.

respectively. ComplEx does not support relation
composition, so we only experiment on RotatE and
RotatE&Scale. We have three observations here.

First, both textual and structural features im-
prove model performance, indicating that the two
kinds of relation path information benefit answer
selection. Second, textual information brings more
significant enhancements than structural informa-
tion. The reasons are two-fold. On the one hand,
structural information mainly involves multiplica-
tion of relation embedding, which overlaps more
with implicit semantics in the link prediction pro-
cess. On the other hand, textual information pro-
vides more complementary knowledge for link pre-
diction, from another modality in a sense. Finally,
combining them delivers further improvement, ver-
ifying the efficacy of the question-aware fusing
process to capture the hybrid semantics.

5.5 Collaboration between Questions and
Relation Paths

Figure 2: Hits@1 scores for different λ on WebQSP.
The blue, green, and red lines denotes the testsets with
1-, 2-, and 1&2-hop questions, respectively.

Considering that exploiting relation paths also
introduces many spurious ones, the collaboration
of their hybrid features and questions is critical to
balance the positive and negative effects. Therefore,
we first analyze the impact of the hyper-parameter
λ, which denotes the weighting strategy between
predicting scores of questions and relation paths.

In Figure 2, the blue, green, and red poly-
lines show the Hits@1 scores of all 1-hop, 2-hop,
and 1&2-hops questions on WebQSP, respectively.
Looking into these three polylines’ trends, we find
that our model is best-performed when λ is 0.6,
indicating the textual information can not either be
ignored or overly dependent. In other words, we
need to distinguish necessary features under tolera-
ble noises introduced by a set of off-the-shelf rela-
tion paths. Another interesting observation is that
the upward trend before the peak of the green line
(2-hop questions) is more evident than that of the
blue line (1-hop questions), though their downward
trends after the peak are similar. The reason is that
relation path information is more critical for multi-
hop reasoning, and our method well characterizes
them, hence delivering robust improvements.

To further investigate how relation paths and
questions collaborate, we calculate the cosine simi-
larity between relation path text and question text
representations for WebQSP. Since there may be
multiple candidate relation paths, the relation path
with maximum similarity is selected. We then
equally divide data samples in the test set into five
groups, based on the cosine similarity scores. The
performance of two compared models (w/ path
and w/o path) for each group is shown in Figure 3,
from which we observe two interesting trends.
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Models WebQSP WebQSP-50
All 1-hop 2-hop All 1-hop 2-hop

w/ only textual part
w/ RotatE 68.4 80.2 48.2 50.4 60.4 33.2
w/ RotatE&Scale 76.1 84.6 61.6 56.1 64.7 41.4
w/ only structural part
w/ RotatE 67.8 79.7 47.3 50.2 60.4 32.7
w/ RotatE&Scale 75.3 84.7 58.9 53.4 61.8 37.9
w/ both
w/ RotatE 69.3 80.5 50.4 51.0 60.6 34.2
w/ RotatE&Scale 76.8 84.9 62.6 57.0 65.1 43.1

Table 3: Ablation results. “w/ only textual part” denotes the models that only use the textual features. “w/ only
structural part” denotes the models that only use the structural features. “w/ both” denotes the models that use
both the structural features and the textual features.

Figure 3: Average Hits@1 scores of TERP w/o path
and TERP w/ path on sub-testsets of WebQSP with dif-
ferent similarities between question and relation paths.
The red line denotes the performance gap between the
two compared models.

First, model performance degrades as cosine
similarity decreases. For example, the hits@1 for
“Very High” and “Very Low” differ enormously
(e.g., 98.4 v.s. 39.0 with our full TERP). Intuitively,
a question is relatively easy to answer if it is similar
to a potential relation path. Otherwise, it is more
challenging to find the answer. In other words,
the question may not provide enough clues, mak-
ing question understanding more difficult. Second,
the relation path information provides more sig-
nificant improvement for more difficult questions.
Incorporating relation path information may even
hinder model performance for the groups of “Very
High” and “High” (e.g., -0.2 and -0.1 hits@1). This
is because many relation paths will bring noises
but no extra valuable clues. On the contrary, the
hits@1 improvements on “Medium”, “Low”, and
“Very Low” are +1.0, +2.2 and +7.3, respectively.
These results clearly demonstrate that relation paths

provide complementary information for hard ques-
tions, and our method effectively extracts and syn-
thesizes essential features of relation paths. That is
where the superiority of our method mainly comes.

6 Related Work

There are two categories of KGQA methods com-
monly known as semantic parsing-based methods
and information retrieval-based methods (Lan et al.,
2021). We mainly focus on the second one. Miller
et al. (2016) proposes to use Memory Networks to
learn dense embeddings of the facts present in the
KG to perform QA. Sun et al. (2018, 2019a) cre-
ate a question-specific subgraph with entities and
sentences from the external text corpora and then
use a variant of graph CNN to rank the candidate
entities. Recently, He et al. (2021) and Shi et al.
(2021) utilize path searching methods to perform
KGQA. However, they ignore the information in
complete relation path. Yan et al. (2021) leverages
relation paths to identify answers, but they only
explore the textual form of relation. In another line
of work, Li et al. (2018) uses TransE (Bordes et al.,
2013) to answer the question, but it cannot work
in the scenario of KGQA. EmbedKGQA (Saxena
et al., 2020) leverages KG embeddings and projects
the question into a link prediction framework.

7 Conclusion

We have presented our method for KGQA, which
offers a novel perspective of exploiting hybrid fea-
tures of the off-the-shelf relation paths. We dis-
till essential relation path features by fusing ex-
plicit textual information and implicit structural
features via a question-aware manner. By project-
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ing a natural language question as well as the ob-
tained hybrid features of candidate relation paths
into a novel rotate-and-scale entity link prediction
framework, we effectively coordinate question and
relation paths to select the answer entity. We re-
veal that questions and relation paths can be seen
as two relevant yet complementary facets of their
corresponding relations between a topic entity and
a target entity.
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Abstract

Recently, Transformer has achieved great suc-
cess in Chinese named entity recognition
(NER) owing to its good parallelism and abil-
ity to model long-range dependencies, which
utilizes self-attention to encode context. How-
ever, the fully connected way of self-attention
may scatter the attention distribution and al-
low some irrelevant character information to
be integrated, leading to entity boundaries be-
ing misidentified. In this paper, we propose a
data-driven Adaptive Threshold Selective Self-
Attention (ATSSA) mechanism that aims to dy-
namically select the most relevant characters
to enhance the Transformer architecture for
Chinese NER. In ATSSA, the attention score
threshold of each query is automatically gener-
ated, and characters with attention score higher
than the threshold are selected by the query
while others are discarded, so as to address ir-
relevant attention integration. Experiments on
four benchmark Chinese NER datasets show
that the proposed ATSSA brings 1.68 average
F1 score improvements to the baseline model
and achieves state-of-the-art performance.

1 Introduction

Named Entity Recognition (NER) aims to identify
named entities in the given text, including persons,
locations, organizations, etc. It plays an impor-
tant role in downstream natural language process-
ing (NLP) tasks such as information retrieval (Chen
et al., 2015), relation extraction (Miwa and Bansal,
2016) and question answering (Diefenbach et al.,
2018). Compared with English NER, Chinese NER
is more difficult since there is no natural delimiter
between words in Chinese sentences.

To integrate word information related to each
character and avoid error propagation of word seg-
mentation, word-character lattice is first applied
to Chinese NER in Lattice-LSTM (Zhang and
Yang, 2018). However, the RNN-based model is
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海 大 众 文 化 艺 术 节上
Selective

 Self-Attention

海 大 众 文 化 艺 术 节上
Fully Connected 
Self-Attention

Shanghai popular culture and art festival

Figure 1: A comparison of selective self-attention
and fully connected self-attention, where the attention
weights are indicated by blue color. We only show the
attention distribution of the character "上 (Shang)" in
the head that focuses on entities.

hard to model long-range dependencies, and has
poor computational efficiency. Recently, Trans-
former (Vaswani et al., 2017) is widely used in
Chinese NER, which utilizes self-attention to en-
code context. Since vanilla Transformer lacks di-
rectionality, TENER (Yan et al., 2019) combines
Transformer encoder with direction-aware position
encoding to catch directions between characters.
FLAT (Li et al., 2020) further exploits span relative
position encoding to convert the lattice structure
into a flat structure.

Although Transformer-based models perform
well on Chinese NER, they have a limitation that
the fully connected self-attention drives queries to
attend to all characters of the inputs, making irrel-
evant character-level attention integration, which
leads to entity boundaries being misidentified. We
argue that, in NER task, entities only depend on the
most relevant characters, while others should be ig-
nored. As shown in Figure 1, since the attention of
the character "上 (Shang)" attends to all characters,
irrelevant character-level information of "大 (Big)"
and "众 (Zhong)" is integrated, which may lead the
model to misidentify "上海大众 (Shanghai Volk-
swagen)" as an organization entity rather than "上
海 (Shanghai)" as a geopolitical entity.

To avoid irrelevant attention integration, re-
searchers have investigated sparse self-attention.
Child et al. (2019) introduce local and strided pat-
terns to select keys for queries. Since the spar-
sity pattern is fixed, it may lack transferability.
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As alternatives, sparsemax (Martins and Astudillo,
2016) and entmax (Peters et al., 2019) collect
most relevant keys via dedicated forward and back-
ward algorithms, which incurs large computational
costs. To improve efficiency, explicit sparse Trans-
former (Zhao et al., 2019) gathers a fixed number
of keys with highest attention score through top-k
selection at the cost of flexibility. However, none
of above works have been applied to Chinese NER.

In this paper, we propose an Adaptive Threshold
Selective Self-Attention (ATSSA) mechanism to
avoid irrelevant character-level attention integra-
tion for Chinese NER. This mechanism is data-
driven which assigns a various attention mass to
each query in different heads parallelly. Specifi-
cally, we generate an attention score threshold for
each query of input sequence via a matching ma-
trix (Wang et al., 2018) automatically. Then, keys
whose attention score exceeds the threshold are
selected, while others are discarded. In the end,
the softmax function only performs on those se-
lected query-key pairs, thereby improving attention
to relevant keys while avoiding irrelevant character-
level attention integration. As shown in Figure 1,
the character "上(Shang)" only attends to relevant
characters in "上海(Shanghai)", while attention to
irrelevant characters in "大众(Public)" is discarded.

We take the advantage of FLAT (Li et al., 2020)
in lexicon fusion and apply ATSSA to it. Our code
will be released at https://github.com/
hubiao20/atssa-ner. The contributions of
this paper can be summarized as:

• We propose Adaptive Threshold Selective
Self-Attention to avoid irrelevant character-
level attention integration for Chinese NER.

• We conduct experiments on four benchmark
Chinese NER datasets, experimental results
show that ATSSA brings 1.68 average F1
score improvements to the baseline model and
achieves state-of-the-art performance.

2 Related Work

Chinese NER with Lattice Structure Since lat-
tice structure can provide rich lexical semantics and
boundary information, lattice-based approaches
have become the mainstream of Chinese NER.
Lattice LSTM (Zhang and Yang, 2018) first pro-
posed a lattice structure to encode all characters and
matched words simultaneously. Gui et al. (2019a)
combined CNN and rethinking mechanism to en-

code characters and potential words at different
window sizes. Ma et al. (2020) generated the soft-
lexicon feature by a static method, simplifying the
structure of lattice. The backbone of these methods
are RNNs, which are hard to model long-range
dependencies. As a solution, models based on
GNN (Gui et al., 2019b; Sui et al., 2019; Ding
et al., 2019) are proposed. Recently, Transformer
has achieved state-of-the-art performance on Chi-
nese NER. FLAT (Li et al., 2020) integrated lattice
structure via an ingenious span position encoding.
Moreover, to capture fine-grained correlations in
word-character spaces, DCSAN (Zhao et al., 2021)
leveraged a cross-lattice attention to model dense
interactions over lattice structure. However, the
fully connected self-attention allows Transformer-
based models to integrate some redundant infor-
mation, which affects the performance on Chinese
NER. Compared with traditional self-attention, our
proposed ATSSA selectively activates keys and
avoids incorrect character-level information fusion.

Selective Self-Attention In many NLP tasks,
predictions of models only depend on a small part
of the inputs. Many works based on Transformer
employed sparse self-attention to discard attention
to irrelevant keys. Some data-driven approaches,
such as sparsemax (Martins and Astudillo, 2016)
and entmax (Peters et al., 2019; Correia et al., 2019)
selected keys iteratively, which have large compu-
tational costs. To keep computational efficiency,
others (Raganato et al., 2020; Child et al., 2019) de-
fined sparse patterns manually. However, the trans-
ferability of these methods has not been validated.
Besides, Zhao et al. (2019) proposed explicit sparse
Transformer which collects a fixed number of keys
with highest attention score empirically. Unlike
sparse self-attention based models, selective self-
attention used an additional controller to select keys
dynamically. ReSAN (Shen et al., 2018) used two
RSS (Reinforced Sequence Sampling) modules to
select keys that need to attend to. GA-Net (Xue
et al., 2020) utilized an auxiliary network to gener-
ate binary gates to select elements for the backbone
attention network. Inspired by the selective idea,
we propose the adaptive threshold selective self-
attention, which dynamically selects keys by an
automatically generated attention threshold.

3 Background

Our proposed ATSSA is applied to FLAT (Li et al.,
2020), thus, we briefly introduce the structure of
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FLAT in this section. FLAT treats the characters
and matched words of the input sequence as spans,
and designs an ingenious relative position encoding
of spans for lattice structure. Let head[i] and tail[i]
denote the head and tail position of span xi, four
relative distances are used to indicate the relation
between xi and xj :

dhhij = head[i]− head[j]
dhtij = head[i]− tail[j]
dthij = tail[i]− head[j]
dttij = tail[i]− tail[j]

(1)

Then, the span relative position encoding can
be calculated by a non-linear transformation of the
four distances:

Rij = ReLU(Wr[pdhhij
; pdhtij

; pdthij
; pdttij ]) (2)

where Wr is a learnable parameter, pd is the sine
and cosine functions explained as:

p(d,2i) = sin(d/100002i/dmodel)

p(d,2i+1) = cos(d/100002i/dmodel)
(3)

where d is the distance acquired by Eq.(1) and i is
the index of dimension, dmodel = N × dhead, N
is the head number and dhead is the dimension of
each head.

With the span relative position encoding, the
dot-product attention can be calculated as:

Attn = softmax (A)V (4)

Aij = QiK
T
j +QiR

T
ij + uKT

j + vRTij (5)

Q,K, V = EWq, EWk, EWv (6)

where E is the embedding of each span.
Wq,Wk,Wv ∈ Rd×dhead , u, v ∈ Rdhead are learn-
able parameters.

4 Adaptive Threshold Selective
Self-Attention

Intuitively, keys with high attention score are more
relevant than others to the correspondin query and
attention should be centralized on these keys. How-
ever, in the vanilla Transformer, fully connected
self-attention distributes attention to the entire con-
text, even those irrelevant keys, which weakens the
attention to critical ones. To this end, we propose
the Adaptive Threshold Selective Self-Attention, in
which keys with attention score lower than thresh-
old of the corresponding query are discarded before
the softmax operation.
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Figure 2: Structure of the proposed adaptive thresh-
old selective self-attention. The dotted box area illus-
trates the main difference between ATSSA and fully
connected self-attention. Threshold is generated by a
matching matrix and used for differentiable binariza-
tion. Then, the binary matrix is sampled by Bernoulli
distribution and exploited to select keys for each query.

4.1 Structure of ATSSA

In this section, we introduce the proposed ATSSA
in details, as shown in Figure 2. The goal of
the mechanism is to dynamically collect a sub-
set of keys to attend to through an adaptive ob-
tained threshold. Given an input sequence x =
[x1, x2, · · · , xn], the attention score matrix A can
be calculated by dot production of Q and K.
Different with the self-attention in vanilla Trans-
former, the proposed mechanism additionally uti-
lizes an automatically generated threshold T =
[T1, T2, · · · , Tn] to selectively activate elements in
A. For each element, Aij ≥ Ti means Aij is acti-
vated, that is, key Kj is selected by query Qi.

The threshold acts as an controller to determine
whether the information of keys should flow to the
target, which is the crux of our proposed mech-
anism. We argue that each query has a various
attention score threshold since its relevance to the
input sequence varies. To generate the threshold,
we introduce a matching matrix (Wang et al., 2018).
The matrix models the correlation between xi and
the entire sequence, and threshold of query Qi is
generated by applying a linear projection to it:

Ti =Wt[xi; mp(x);xi�mp(x);xi−mp(x)] (7)
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Figure 3: (a) The overall structure of the proposed model. Word information is fused to generate the representa-
tion of each character by a word fusion layer. Context is then encoded with the ATSSA based Transformer. (b)
Illustration of the word fusion layer, in which word representations only depend on matched words.

where Wt is a learnable parameter, � denotes the
element-wise product, and mp(·) denotes the mean
pooling operation.

With threshold selection, keys with attention
score above or equal to the threshold are kept, while
others are dropped. In the process of model train-
ing, we discover that the threshold of some queries
is higher than the attention score of all keys in the
initial stage, leading to the training error of the
model. To prevent the loss of critical information,
top-k (Zhao et al., 2019) is introduced to force the
model to keep at least k keys with largest attention
score. Therefore, the threshold of query Qi can be
calculated as:

T̃i = min(topki, Ti) (8)

where topki is the k-th largest value at row i in A.
The essence of threshold selection is to perform a

binarization operation on attention score matrix A.
We employ a binary matrix z to indicate whether
the element in matrix A is selected, where zij = 1
means that Kj is selected by query Qi whereas
zij = 0 indicates that Kj is discarded by query Qi.
Since the binary function is not differentiable, we
use an approximate step function (Liao et al., 2020)
for binarization:

bij =
1

1 + e−α(Aij−T̃i)
(9)

where α is amplification factor larger than 1. The
approximate step function is similar to the binary

function and has differentiability, which enables
the model to be optimized during training. bij is
a value in interval [0, 1], not the 0 or 1 we need.
To address this issue, we use it to parameterize a
Bernoulli distribution, and then, zij is a sample
generated from the Bernoulli distribution:

zij ∼ Bernoulli(bij) (10)

As z is sampled from Bernoulli distribution, our
attention strategy can be defined as:

Attn = softmax(A
′
)V (11)

A
′
ij =

{
Aij , zij = 1
−∞, zij = 0

(12)

4.2 Chinese NER with ATSSA
To adapt ATSSA for Chinese NER, we fine-turn the
structure of FLAT. As shown in Figure 3, the con-
text encoder is divided into two layers, consisting
of a word-level word fusion layer and a character-
level context encoding layer.

Word Fusion Layer For the input sequence x
and a given dictionary D, all potential words in x
can be identified by matching the sequence with
D. Each matched word wjk(j 6= k) starts with
the j-th character and ends with the k-th character.
Position tags are employed to construct the word
set S corresponding to the character xi:

S(xi) = {wjk|∀wjk ∈ D, j ≤ i ≤ k} (13)
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Take the sequence given in Figure 3(b) as an ex-
ample, the word set corresponding to the charac-
ter “长 (Long)” is represented as [市长 (Mayor),
长江 (Yangtze River), 长江大桥 (Yangtze River
Bridge)]. For characters with no matched word,
word sets corresponding to them are empty, and the
word representations of these characters are None.

As the word sets constructed, a character-word
cross attention is exploited to generate word repre-
sentations. Let head[·] and tail[·] denote the head
and tail position of the matched word wjk, the rela-
tive distances in FLAT can be modified as:

dhhi,jk = i− head[wjk]
dtti,jk = i− tail[wjk]

(14)

where wjk ∈ S(xi). The relative position encod-
ing of the characters and matched words can be
calculated by a simple linear transformation of the
two distances:

Ri,jk =Wr[pdhhi,jk
; pdtti,jk

] (15)

where Wr is a learnable parameter.
Given characters as queries, words as keys and

values, word representation xwi of each character
can be obtained by self-attention. Finally, xwi is
concatenated with character xi as the input of con-
text encoding layer: xi = [xi;x

w
i ].

Context Encoding Layer In this layer, self-
attention based on relative position encoding is
introduced. For the input sequence x fused with
word information, relative position encoding of
each query-key pair can be indicated as Rij = pdij ,
where dij = i − j, i and j denote the position of
query and key respectively. Then, the attention
matrix A is generated by Eq.(5). Applying our
proposed ATSSA to A, attention of each query is
centralized on those critical keys. The following
calculation is the same with FLAT.

4.3 Training and Decoding
Since the binary matrix z is sampled by Bernoulli
distribution, model cannot be backpropagated dur-
ing training. Gumbel-Softmax (Jang et al., 2017)
provides a reparameterization solution. In Eq.(10),
bij denotes the probability that zij = 1, let b(1)ij =

bij and b(0)ij = 1− bij , zij can be expressed as:

zij = argmax
k

b
(k)
ij , k = 0, 1 (16)

The argmax operation is not differentiable, there-
fore, we substitute Gumbel-Softmax distribution

for Bernoulli distribution to acquire zij in the train-
ing stage. The Gumbel-Softmax distribution makes
a softmax approximation to bij with the following
continuous and differentiable calculation:

b̃
(k)
ij =

exp((log(b
(k)
ij ) + gk)/τ)

∑1
l=0 exp((log(b

(k)
ij ) + gl)/τ)

(17)

where gl is a random sample from Gumbel(0, 1),
and τ is a hyperparameter called temperature.

To make use of the dependencies between la-
bels, CRF (Lafferty et al., 2001) is used to pre-
dict entity labels. Given the label sequence y =
[y1, y2, · · · , yn] and output H = [h1, h2, · · · , hn]
of the fine-turned model, the probability of the
ground-truth label sequence can be calculated as:

p(y|x) =
exp(

n∑
i=1

ϕ(yi−1, yi, x))

∑
y′∈Y (x)

exp(
n∑
i=1

ϕ(y′i−1, y′i, x))
(18)

where Y (x) is the set of all arbitrary label se-
quences, ϕ(yi−1, yi, x) =W(yi−1,yi)hi+ b(yi−1,yi),
W(yi−1,yi) and b(yi−1,yi) are parameters specific to
yi−1 and yi. Therefore, loss function is defined as:

L = −
∑n

i=1
log (p (yi|x)) +

λ‖z‖1
L

(19)

The first term in loss function is negative log-
likelihood loss, and the second term is a l1 norm
regularizer over z. λ is a trade-off between the two
terms, and L is the length of input sequence.

5 Experiments

Experiments are carried out on Chinese NER
datasets across different domains. F1-score (F1) is
exploited to evaluate the performance of the model.
All experiments are conducted on a single Nvidia
Titan RTX GPU.

5.1 Experimental Setup
Datasets We conduct experiments on four dat-
sets, including Weibo NER (Peng and Dredze,
2015; He and Sun, 2017), Resume NER (Zhang
and Yang, 2018), OntoNotes (Weischedel et al.,
2011), and MSRA (Levow, 2006). Weibo NER is
drawn from Sina Weibo1, and Resume NER is col-
lected from Sina Finance2, while OntoNotes and
MSRA are in news domain. Statistics of the above
datasets are shown in Table 1.

1https://www.weibo.com/
2https://finance.sina.com.cn/stock/
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Datasets Type Train Dev Test

Weibo
Sentence 1.4k 0.27k 0.27k

Char 73.8k 14.5k 14.8k

Resume
Sentence 3.8k 0.46k 0.48k

Char 124.1k 13.9k 15.1k

OntoNotes
Sentence 15.7k 4.3k 4.3k

Char 491.9k 200.5k 208.1k

MSRA
Sentence 46.4k - 4.4k

Char 2169.9k - 172.6k

Table 1: Statistics of datasets

Hyperparameter Range
learning rate [1e-3,8e-4,6e-4]
-decay 0.05
head [4,8,12]
head dimension [8,10,12]
FFN size [4,6,8]×head×head dimension
warmup [1,5,10](epoch)

Table 2: Searching range of hyperparameters.

Baseline We take TENER (Yan et al., 2019) and
FLAT (Li et al., 2020) as baseline models, which
encode context with Transformer encoder.

Implementation Details We use the pre-trained
character embedding and bigram embedding
trained with word2vec (Mikolov et al., 2013)
over automatically segmented Chinese Giga-Word3.
The BERT in the experiments is BERT-wwm (Cui
et al., 2021), and the pre-trained word embedding
is released by (Li et al., 2018) that contains about
1.29 million words. The above four embeddings
have sizes of 50, 50, 768 and 300 respectively, all
of which are fine-tuned during training. For hy-
perparameter configurations, batch size is set to 8
and SGD with 0.9 momentum is used to optimize
the model. To avoid overfitting, dropout is applied
to embeddings with a rate of 0.5. When calculat-
ing selective self-attention, each query is forced to
keep at least 3 keys, i.e. the value of k in top-k is
set to 3. The amplification factor α in approximate
step function, temperature τ in Gumbel-Softmax
and λ in loss fuction are set to 50, 1 and 4× 10−6

respectively. We use random search to find the op-
timal values of other hyperparameters, and their
ranges are shown in Table 2.

5.2 Overall Performance

We compare our proposed model with the baseline
models and other state-of-the-art word-character

3https://catalog.ldc.upenn.edu/ LDC2011T13

Model Weibo Resume Ontonotes MSRA
Lattice-LSTM1 58.79 94.46 73.88 93.18
SoftLexicon*2 70.50 96.11 82.81 95.42
MECT*3 70.43 95.98 82.57 96.24
DCSAN*4 71.27 96.67 - 96.41
TENER5 58.39 95.25 72.82 93.01
FLAT*6 68.55 95.86 81.82 96.09
FLAT*+ATSSA 72.53 96.73 83.31 96.45

Table 3: Results(F1) on four datasets. * denotes the
models equipped with BERT. Zhang and Yang (2018)1,
Ma et al. (2020)2, Wu et al. (2021)3, Zhao et
al. (2021)4, Yan et al. (2019)5, Li et al. (2020)6.

Models Weibo Resume Ontonotes MSRA
FLAT*+ATSSA 72.53 96.73 83.31 96.45

-Selective SA 70.02 95.52 82.13 96.02
-top-k 68.47 96.19 82.60 95.37
-AF 68.67 95.89 82.65 95.51
-DT 68.53 95.70 82.63 95.68

Table 4: An ablation study of the proposed model. SA
stands for Self-Attention, and AF and DT indicates am-
plification factor and dynamical threshold respectively.

lattice based methods, results are reported in Ta-
ble 3. Our model outperforms TENER by 7.39 aver-
age F1 score on four datasets, and for FLAT+BERT,
the value is 1.68. In particular, the proposed
ATSSA brings improvements of 3.98 and 1.49 on
Weibo and OntoNotes respectively. Compared with
SoftLexicon (Ma et al., 2020) and DCSAN (Zhao
et al., 2021), which statically integrates word-level
information, and MECT (Wu et al., 2021) with
glyph information, our model is still competitive.
The results above indicate the effectiveness of
ATSSA, and suggest that ATSSA can better encode
context at character-level.

5.3 Ablation Study

To investigate the effectiveness of the main com-
ponents of our proposed ATSSA , we conduct an
ablation study on all four datasets. The results are
reported in Table 4.

(1) We propose an adaptive threshold selective
self-attention to avoid irrelevant character-level at-
tention integration. To investigate the contribu-
tion of this mechanism, we replace selective self-
attention with global self-attention. The average
F1 score on all four datasets is reduced by 1.29,
especially by 2.51 on Weibo test set. The decline
in performance verifies the significance of our pro-
posed adaptive threshold selective self-attention.

(2) When calculating selective self-attention, top-
k is introduced to force the query to reserve atten-
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Figure 4: Relative inference speed of each model com-
pared with Lattice-LSTM. The default batch size is 1, *
denotes the model is run in 16 batch size.

Model Complexity
Vanilla Transformer1 O(n2)
Explicit Sparse Transformer2 O(n2 + nlogn)
ATSSA O(n2 + 2n+ nlogn)

Table 5: Computational complexity of different meth-
ods. Vaswani et al. (2017)1, Zhao et al. (2019)2.

tion to a fixed number of keys with largest attention
scores. After removing top-k, we discover that the
stability of the model training is affected, and F1
scores obtained on the test set are decreased.

(3) The approximate step function is a variant
of the sigmoid function, in which an amplification
factor makes it more similar to a binary function.
Since the use of Bernoulli sampling, the selection
of keys with attention score close to the threshold
becomes random without the amplification factor.
After removing amplification factor, the degrada-
tion in performance on all four datasets indicates
the importance of amplification factor in approxi-
mate step function.

(4) In the computer vision domain, most exist-
ing threshold based methods set a fixed threshold,
which makes the approach inflexible. Our proposed
adaptive threshold selective self-attention assigns a
various threshold to each query of all heads in the
self-attention that enables the query to select keys
dynamically. We empirically replace the dynamic
threshold with a fixed threshold 0, and observe that
the performance of the model degenerates to be
close to FLAT.

5.4 Analysis in Efficiency

Compared with self-attention in vanilla Trans-
former, the proposed ATSSA has an additional
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Figure 5: Convergence speed on OntoNotes dataset

threshold computation, its computational complex-
ity is O(n2 + 2n + nlogn). The dot products of
queries and keys in self-attention correspond to the
first term. The threshold calculation corresponds
to the second term, that is, the dot product and sub-
traction of each input character and mean pooling
of the entire sequence. The sorting operation in
top-k corresponds to the third term. Since the ad-
ditional term O(2n+ nlogn) is overshadowed by
the dominant term O(n2), as shown in Table 4, our
proposed ATSSA is slightly slower than FLAT in
computational efficiency.

To verify the computational efficiency of
ATSSA, we compare the inference speed of Lattice-
LSTM, FLAT and our model on Weibo test set, as
shown in Figure 4. Lattice-LSTM cannot run in
parallel due to the use of directed acyclic graph.
As we can see, even with an additional threshold
generation operation, our model is only about 5
percent slower in inference speed than FLAT.

To further explore the convergence speed of
ATSSA, we conduct experiments on OntoNotes
dataset. Figure 5 illustrates the F1 scores of Lattice-
LSTM, FLAT and our model relative to the number
of training iterations. We observe that the perfor-
mance of our model is lower than Lattice-LSTM
and FLAT in the initial stages of model training.
As the number of iterations increases, our model
converges faster than FLAT. This is likely because
our model is less disturbed by irrelevant character
information than FLAT.

5.5 Influence of Hyperparameters

In our proposed ATSSA, k in top-k operation and
amplification factor α are two important hyperpa-
rameters that affect the performance of Chinese
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NER. We conduct experiments on Resume and
MSRA datasets to explore the influences by assign-
ing k and α with various values. The results are
summarized in Figure 6 and Figure 7.

The top-k operation is used to prevent the loss of
critical information at the initial stage of training,
it is a modification of the threshold. According to
Figure 6, our model achieves the best performance
when k is set to 3, which is due to the large propor-
tion of two- and three-character words in Chinese.
When k is smaller than 3, some critical information
may be lost at context encoding layer, and when k
is larger than 3, too much irrelevant character-level
information is integrated.

The amplification factor α is utilized to control
the similarity between approximate step function
and binary function. The larger it is, the higher
the similarity. As shown in Figure 7, our model
performs best when α is 50. This is because when
α is small, the selection or discarding of keys with
attention score around the threshold has high un-
certainty due to the Bernoulli sampling. When
α becomes large, the gradient of the approximate
step function (except the neighborhood of point
Aij = Ti) tends to 0, which brings difficulties to
the optimization of the model.

In addition, since the Resume dataset has a rela-
tively smaller scale, the model is more sensitive to
the above two hyperparameters on Resume dataset
than on MSRA dataset.

5.6 Test of Significance

For a fair comparison with the baseline, we imple-
ment a significance test on all four datasets. We
randomly select ten various seeds and conduct ex-
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Figure 7: Influence of α value

periments on our model and FLAT4. Then, a paired
T-test is performed on each dataset. The p-values
obtained on Weibo, Resume, Ontonotes and MSRA
datasets are 0.0058, 0.0013, 0.0008 and 0.0161 re-
spectively. Each of them is less than 0.02, which
verifies the effectiveness of our proposed ATSSA.

5.7 Case Study

To verify that our proposed ATSSA can better
recognize entity boundaries than the fully con-
nected self-attention, we analyze two examples
from Weibo test set, as shown in Figure 8. In
the first case, due to the use of fully connected
self-attention, the two characters "梦(Meng)" and
"科(Ke)" as queries attend to the characters in
"购物节(Shopping Festival)", which leads to the
integration of the character information of "购
物节(Shopping Festival)". As a result, FLAT
misidentifies the "购物节(Shopping Festival)" as
a part of the organization entity "梦科商城购物
节(Mengke Mall Shopping Festival)". Our pro-
posed ATSSA uses a threshold to discard charac-
ters in "购物节(Shopping Festival)" and correctly
identify "梦科商城(Mengke Mall)" as an organiza-
tion entity. In the second case, the fully connected
self-attention assigns attention to each character in
"腾讯(Tencent)" and "联想(Lenovo)" and FLAT
misidentifies "腾讯联想(Tencent and Lenovo)" as
a complete entity. However, ATSSA blocks the in-
teractions between them via the threshold and iden-
tifies "腾讯(Tencent)" and "联想(Lenovo)" as two
separate organization entity entities. These results
show that the adaptive threshold can effectively fil-
ter irrelevant character information and help the

4https://github.com/LeeSureman/Flat-Lattice-
Transformer
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梦科商城购物节免费送红米

Mengke Mall shopping festival gives Redmi away for free
Case 1

Gold Labels

FLAT+BERT

Ours

Case 2
腾讯联想联合发起电脑清理日

Tencent and Lenovo co-sponsored Computer Cleanup Day

Gold Labels

FLAT+BERT

Figure 8: Examples of Weibo test set, where blue colors represent the correct labels and red colors represent the
wrong labels.

(a) Attention distribution of case 1. (b) Attention distribution of case 2.

Figure 9: Selective self-attention distributions of the two examples in the head that focus on entities.

model to correctly identify entity boundaries.
Furthermore, we visualize the selective self-

attention distributions of these two examples, as
shown in Figure 9. In multi-head self-attention, dif-
ferent heads play some specific roles (Voita et al.,
2019). For entity recognition, our analysis is based
on the head that focuses on entities. In the figure,
the vertical axis indicates queries and the horizontal
axis represents keys. We observe that in Figure 9(a),
the attention of queries in "梦科(Mengke)" is only
assigned to keys in "梦科商城(Mengke Mall)",
and attention of queries in "购物节(Shoping Fes-
tival)" is assigned to other keys, which provide
support for the correct identification of the entity
"梦科商城(Mengke Mall)". In Figure9(b), even
though queries in "腾讯(Tencent)" attend to the key
"联(Link)", queries in "联想(Lenovo)" only attend
to the keys followed by "腾讯(Tencent)", which
separates "腾讯(Tencent)" and "联想(Lenovo)" as
two entities. We also observe that each query at-
tends to a different number of keys, which demon-
strates the flexibility of the proposed ATSSA.

6 Conclusion

In this paper, we propose an adaptive threshold-
selective self-attention mechanism to dynamically
select keys for queries in parallel to enhance the

architecture of Transformer, which avoids the in-
tegration of irrelevant character-level information
when encoding context. This data-driven mecha-
nism maintains computational efficiency without
losing flexibility. Based on FLAT, we apply it to
Chinese NER and achieve state-of-the-art perfor-
mance on four benchmark Chinese NER datasets.
In future work, we will adapt ATSSA to different
kinds of NLP tasks, such as text classification and
natural language inference.
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Abstract

Supervised open relation extraction aims to
discover novel relations by leveraging super-
vised data of pre-defined relations. However,
most existing methods do not achieve effective
knowledge transfer from pre-defined relations
to novel relations, they have difficulties gener-
ating high-quality pseudo-labels for unsuper-
vised data of novel relations and usually suffer
from the error propagation issue. In this paper,
we propose a Cluster-aware Pseudo-Labeling
(CaPL) method to improve the pseudo-labels
quality and transfer more knowledge for discov-
ering novel relations. Specifically, the model is
first pre-trained with the pre-defined relations
to learn the relation representations. To im-
prove the pseudo-labels quality, the distances
between each instance and all cluster centers
are used to generate cluster-aware soft pseudo-
labels for novel relations. To mitigate the catas-
trophic forgetting issue, we design the consis-
tency regularization loss to make better use of
the pseudo-labels and jointly train the model
with both unsupervised and supervised data.
Experimental results on two public datasets
demonstrate that our proposed method achieves
new state-of-the-arts performance1.

1 Introduction

Open relation extraction (OpenRE) has been pro-
posed to extract the novel relations that are not
defined or observed beforehand. Previous meth-
ods can be classified into two types: unsupervised
and supervised. Unsupervised OpenRE (Yao et al.,
2011, 2012; Marcheggiani and Titov, 2016; Elsa-
har et al., 2017; Tran et al., 2020; Hu et al., 2020)
regards the OpenRE as a totally unsupervised task
which first extracts the feature and then clusters
them. However, these methods don’t take full ad-
vantage of the large amounts of existing relational

∗The first three authors contribute equally. Yajing Xu is
the corresponding author.

1Code is available at https://github.com/BobTuan/CaPL
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Figure 1: Relation instance S1 and S3 belong to the
same relation type while S2 with similar context is from
another relation type. However, the hard pseudo-labels
produced by common clustering methods contain much
noise which causes the error propagation issue. We
generate soft pseudo-labels that contain the information
about true cluster to improve the pseudo-labels quality.

facts in knowledge bases. Hence, the supervised
OpenRE is proposed which leverages the super-
vised data of pre-defined relations to guide the
learning of the unsupervised data of novel rela-
tions. In this paper, we focus on the latter setting,
supervised OpenRE.

Since the classes between pre-defined relations
and novel relations are disjoint, the main challenge
of supervised OpenRE is how to make the best
use of the prior knowledge in pre-defined relations
to extract novel relations. Wu et al. (2019) pro-
poses relational siamese networks to transfer the
knowledge from pre-defined relations to novel re-
lations. However, many studies have shown that
high-dimensional embeddings learn much about
the complex linguistic information (Peters et al.,
2018; Jawahar et al., 2019; Clark et al., 2019; Gold-
berg, 2019), which makes it hard to produce ideal
clusters. Zhao et al. (2021) proposes a relation-
oriented clustering method that explicitly aligns the
derived clusters with relational semantic classes.

However, we find that the pseudo-labels pro-
duced by previous method are not robust to transfer
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Figure 2: Overview of our CaPL method. Firstly, we pre-train the model with supervised data of pre-defined
relations. Then, we generate cluster-aware soft pseudo-labels for unsupervised data of novel relations. Finally,
we jointly train the model with both supervised data and unsupervised data. After step 1, step 2 and step 3 are
performed iteratively to gradually improve model performance on novel relations.

the knowledge from pre-defined relations to novel
relations which means that using unreliable pseudo-
labels could cause the error propagation issue. As
is shown in Figure 1, relation instance S1 and S3
belong to the same relation type BORN_IN_PLACE
while S2 with similar context is from another rela-
tion type BORN_IN_DATE. Owing to the spurious
correlations (Liu et al., 2021), existing method that
selects the nearest cluster center as the pseudo-
labels may produce noise pseudo-labels. Hence
if we further exploit the hard pseudo-labels, the
model would be wrongly optimized. We argue that
utilizing the information about all cluster centers to
generate the soft pseudo-labels would be helpful to
reduce the error propagation issue. The intuition is
that if we exploit the soft pseudo-labels, we can uti-
lize the information about the true cluster to guide
the learning for discovering novel relations.

In this paper, we propose a Cluster-aware
Pseudo-Labeling (CaPL) method to improve the
pseudo-labels quality and transfer more knowledge
for discovering novel relations. Firstly, we pre-train
the model under the supervision of cross-entropy
loss to leverage the prior knowledge in pre-defined
relations. Then, to effectively transfer the knowl-
edge, rather than directly using the hard pseudo-
labels produced by common clustering algorithms,
we use the distances between each instance and
all cluster centers to generate cluster-aware soft
pseudo-labels for novel relations. Finally, we de-
sign consistency regularization loss to make the
best use of the knowledge stored in the cluster-
aware pseudo-labels and jointly train the model
with both supervised and unsupervised data to mit-
igate the catastrophic forgetting issue.

To summarize, the major contributions of our
work are as follows: (1) We propose a simple but
effective framework based on the CaPL for super-
vised OpenRE whicn can transfer more knowledge
for discovering novel relations. (2) We design the
consistency regularization loss to keep the cluster
predictions and pseudo-labels of unsupervised data
to be consistent for making better use of the pseudo-
labels. (3) Experimental results and analyses on
two public datasets demonstrate the effectiveness
of our proposed method.

2 Method

In the supervised OpenRE settings, training data
is split into two sets: a supervised dataset of pre-
defined relations Dl =

{(
xli, y

l
i

)
, i = 1, . . . , N

}

and an unsupervised dataset of novel relations
Du = {xui , i = 1, . . . ,M}, where xli in Dl and xui
in Du is an relation instance and yli is a categorical
label. Our goal is to cluster the Du to discover Cu

novel relations where we assume Cu to be known
a priori. The set of C l labeled classes is assumed
to be disjoint from the set of Cu unlabeled classes.

In this work, we propose a simple but effec-
tive framework based on the CaPL to improve the
pseudo-labels quality for discovering novel rela-
tions. Figure 2 shows the overall architecture of
our proposed method. We will introduce these step
details in the following subsections.

2.1 Leverage Knowledge with Pre-Training

To leverage the prior knowledge in pre-defined re-
lations, we use the supervised data of pre-defined
relations to pre-train the model. The goal of pre-
training with pre-defined relations is to make the
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model adapt to the relational feature space while
be less biased towards pre-defined relations.

Specifically, we learn the relational feature rep-
resentations under the supervision of cross-entropy
loss due to its simplicity and efficacy.

Lce = −
1

N

N∑

i=1

log
exp (ϕ (si)

yi)
∑K

j=1 exp
(
ϕ (si)

j
) , (1)

where si is the ith relation feature representation
of pre-defined relations, ϕ (·) is a linear classifier
and ϕ (·)j are the output logits of the jth class.

2.2 Cluster-aware Pseudo-Labeling

Since there is a mass of unsupervised data of novel
relations, it’s important to effectively leverage
these samples to discover novel relations. Pseudo-
Labeling is a well-established technique for trans-
fer learning in general (Cui et al., 2021). After
leveraging the prior knowledge in pre-defined re-
lations with pre-training, we propose a simple but
effective method CaPL for transferring the knowl-
edge to discover novel classes.

To transfer more knowledge, rather than directly
generating the hard pseudo-labels with common
clustering algorithm like Zhao et al. (2021), we gen-
erate more robust cluster-aware soft pseudo-labels.
More specifically, we first obtain the relation in-
stance representations H = {h1, . . . , hN}, and
then perform k-means algorithm in the relational
feature space to obtain K cluster centers, denoted as
µk, k ∈ {1, . . . ,K}. Different from that the stan-
dard k-means algorithm regards the indicator of
the nearest cluster center as the hard pseudo-labels,
we adopt a soft assignment to K cluster centers for
each instance. Inspired by Hu et al. (2020), we use
the Student’s t-distribution to compute the assign-
ing probability between relation instance hj and
each cluster center µk:

pjk =

(
1 + ∥hj − µk∥22 /α

)−α+1
2

∑K
k′=1

(
1 + ∥hj − µk′∥22 /α

)−α+1
2

, (2)

where α denotes the degree of freedom of the Stu-
dent’s t-distribution and pjk can be regarded as the
probability of assigning the sample j to the cluster
center k. Without explicit mention, we set α = 1
for all experiments in this paper. In addition, we
can also use other common clustering algorithms
to generate the cluster centers.

2.3 Joint Training
Conventional cross-entropy loss cannot work with
the cluster-aware pseudo-labels. To make better use
of the knowledge in the pseudo-labels, we design
the consistency regularization loss. The idea of con-
sistency is that the cluster prediction and pseudo-
labels on a relation instance hj and its transformed
counterpart h

′
j should be the same. In our case, we

use dropout twice to get hj’s transformed counter-
part h

′
j like Gao et al. (2021) and then map these

relation representations into the cluster predictions
qj and q

′
j with the same equation 2. Finally, we use

the KL-divergence to keep the consistency between
cluster predictions and pseudo-labels:

ℓj = KL [pj∥qj ] + KL
[
pj∥q

′
j

]
+KL

[
qj∥q

′
j

]

(3)

KL [pj∥qj ] =
K∑

k=1

pjk log
pjk
qjk

(4)

Lcr =
N∑

j=1

ℓj
N
, (5)

To let the supervised data of pre-defined relations
better guide the learning of discovering novel rela-
tions and mitigate the catastrophic forgetting issue,
we jointly train the model with both supervised and
unsupervised data. The overall loss is as follows:

L = Lce + ω(r)Lcr, (6)

where ω(r) is a ramp-up function slowly increasing
from 0 to 1 along with the training. Following Zhao
et al. (2021), we use the sigmoid-shaped function

ω(r) = λe−5(1−
r
T )

2

, where r is current epoch and
T is ramp-up length and a positive scalar factor λ.

3 Experiments

3.1 Datasets
To assess the performance of our method, we
conduct experiments on two relation extraction
datasets: FewRel (Han et al., 2018) and TACRED
(Zhang et al., 2017). FewRel is a human-annotated
dataset which contains 80 types of relations, each
with 700 relation instances. TACRED is also a
human-annotated dataset with 41 relation types.
Following the setup of Zhao et al. (2021), we split
the FewRel dataset into 64 pre-defined relations
and 16 novel relations and randomly select 1,600
instances in novel relations as the test set. For TA-
CRED, we also remove the instances labeled as

1836



Dataset Method
B3 V-measure

ARI Avg.
Prec. Rec. F1. Homo. Comp. F1.

FewRel

VAE(Marcheggiani and Titov, 2016) 0.309 0.446 0.365 0.448 0.500 0.473 0.291 0.376
RW-HAC(Elsahar et al., 2017) 0.256 0.492 0.337 0.391 0.485 0.433 0.250 0.340
Etype+(Tran et al., 2020) 0.238 0.485 0.319 0.364 0.463 0.408 0.249 0.325
SelfORE(Hu et al., 2020) 0.672 0.685 0.678 0.779 0.788 0.783 0.647 0.703
RSN(Wu et al., 2019) 0.486 0.742 0.589 0.644 0.787 0.708 0.453 0.583
RSN-BERT 0.585 0.899 0.709 0.696 0.889 0.781 0.532 0.674
RoCORE(Zhao et al., 2021) 0.752 0.846 0.796 0.838 0.883 0.860 0.709 0.788
CaPL 0.815 0.822 0.819 0.875 0.873 0.889 0.794 0.834
CaPL w/o Pre-training 0.735 0.802 0.767 0.834 0.865 0.850 0.693 0.770
CaPL w/o Consistency Regularization 0.752 0.785 0.768 0.840 0.855 0.847 0.738 0.784
CaPL w/o Joint Training 0.768 0.820 0.793 0.845 0.875 0.860 0.718 0.790

TACRED

VAE(Marcheggiani and Titov, 2016) 0.247 0.564 0.343 0.208 0.362 0.264 0.159 0.255
RW-HAC(Elsahar et al., 2017) 0.426 0.633 0.509 0.469 0.597 0.526 0.281 0.439
Etype+(Tran et al., 2020) 0.302 0.803 0.439 0.260 0.607 0.364 0.143 0.315
SelfORE(Hu et al., 2020) 0.576 0.510 0.541 0.630 0.608 0.619 0.447 0.536
RSN(Wu et al., 2019) 0.628 0.634 0.631 0.624 0.663 0.643 0.459 0.578
RSN-BERT 0.795 0.878 0.834 0.849 0.870 0.859 0.756 0.816
RoCORE(Zhao et al., 2021) 0.871 0.849 0.860 0.895 0.881 0.888 0.812 0.853
CaPL 0.858 0.888 0.873 0.891 0.906 0.898 0.829 0.867
CaPL w/o Pre-training 0.834 0.847 0.840 0.868 0.870 0.869 0.789 0.833
CaPL w/o Consistency Regularization 0.856 0.795 0.824 0.883 0.843 0.862 0.743 0.810
CaPL w/o Joint Training 0.835 0.827 0.831 0.870 0.855 0.862 0.788 0.827

Table 1: Experimental results produced by baselines and proposed model on FewRel and TACRED in terms of B3,
V-measure, ARI and average performance. The horizontal line divides unsupervised and supervised methods.

no_relation. We seperately select 30 pre-defined
relations and 10 novel relations. In addition, we ran-
domly select 15% of the instances from the novel
relations as the test set.

3.2 Baselines
For comparison, we consider both unsupervised
and supervised OpenRE baselines for comparison:

• Unsupervised. We first compare with unsu-
pervised OpenRE methods. VAE (Marcheg-
giani and Titov, 2016) proposes a VAE-based
model learned by the self-supervised signals.
RW-HAC (Elsahar et al., 2017) first extracts
entity types and re-weights the word embed-
dings and then clusters them. Etype+ (Tran
et al., 2020) solely uses entity types as the
input. SelfORE (Hu et al., 2020) proposes a
self-supervised framework which learns the
embeddings with pseudo-labels.

• Supervised. We also compare our method
with supervised OpenRE methods. RSN (Wu
et al., 2019) proposes the relation similarity
metrics to transfer the knowledge to discover
novel relations. RSN-BERT replaces the
static word embeddings with the pre-trained
BERT embeddings for a fair comparison. Ro-
CORE (Zhao et al., 2021) proposes a relation-
oriented method to explicitly align the derived
clusters with relational semantic classes.

3.3 Implement Details

We use the pre-trained model (bert-base-uncased2,
with 12-layer transformer) as our network back-
bone. To avoid overfitting and improve the training
efficiency, as suggested in Zhao et al. (2021), we
freeze all the parameters of BERT and only fine-
tune the parameters of the layer 8. The training
batch size is 128, the learning rate is 1e-4, and we
use Adam (Kingma and Ba, 2014) as optimizer.
All experiments are conducted by using a GeForce
RTX 3090Ti with 24 GB memory.

3.4 Main Results

The main results are shown in Table 1. The pro-
posed method CaPL achieves SOTA performance
in all datasets and evaluation metrics. It demon-
strates the effectiveness that our method leverages
the pre-defined relations to extract novel relations.
In addition, we find that most supervised methods
perform better than unsupervised methods. It indi-
cates that transferring knowledge from pre-defined
relations is helpful to discover novel relations.

3.5 Ablation Analysis

To study the effect of different components in
CaPL, we conduct ablation experiments. From
Table 1, we find that the performance of CaPL will
severely degrade without these modules, which

2https://huggingface.co/bert-base-uncased
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Task Method Prec. Rec. F1. Avg.

FewRel

RoCORE 0.752 0.846 0.796 0.788
CaPL-hard 0.753 0.811 0.781 0.781
CaPL-soft 0.815 0.822 0.819 0.834

TACRED

RoCORE 0.871 0.849 0.860 0.853
CaPL-hard 0.832 0.850 0.841 0.827
CaPL-soft 0.858 0.888 0.873 0.867

Table 2: Experimental results with different pseudo-
labels under the same pre-training setting on FewRel
and TACRED. CaPL-hard adopts the same hard pseudo-
labels with RoCORE while our method CaPL-soft
adopts the cluster-aware soft pseudo-labels. This ta-
ble only lists the results of metric B3. For results of
other metrics, please refer to the Appendix D.

Task Method Prec. Rec. F1. Avg.

F→ T

RSN 0.349 0.590 0.439 0.387
RSN-BERT 0.337 0.866 0.486 0.400
RoCORE 0.621 0.602 0.611 0.642
CaPL 0.813 0.601 0.691 0.847

T→ F

RSN 0.225 0.529 0.316 0.359
RSN-BERT 0.261 0.861 0.400 0.438
RoCORE 0.687 0.766 0.724 0.796
CaPL 0.722 0.757 0.739 0.802

Table 3: Results on two cross-domain tasks. F means
FewRel, which is from encyclopedia domain. T means
TACRED, which is from news and web domain. This
table only lists the results of metric B3. For results of
other metrics, please refer to the Appendix D.

demonstrates that all modules are important to the
final model performance. It is worth noting that
without consistency regularization the performance
is seriously hurt which indicates that the loss we
designed makes better use of the pseudo-labels.
Further study about consistency regularization can
be found in Appendix B.

3.6 Effect of Pseudo-labels Quality

In this section, we analyse the effect of pseudo-
labels quality for transferring knowledge to dis-
cover novel relations. Specifically, we adopt the
same method as RoCORE to generate and utilize
the hard pseudo-labels and combine it into our
framework which is named as CaPL-hard. From
Table 2, we can see that under the same pre-training
setting, our method that generates and utilizes
cluster-aware soft pseudo-labels significantly out-
performs the CaPL-hard method which indicates
that our method generates the high-quality pseudo-
labels and makes the best use of them for discover-
ing novel relations.

3.7 Cross Domain Analysis

To further study the knowledge transfer ability, we
adopt more strict cross-domain settings to evaluate
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Figure 3: Visualization of the learned relation represen-
tations by CaPL on both pre-defined and novel relations.

the model in which the pre-defined and novel re-
lations come from different domains. Specifically,
we conduct two cross-domain tasks: FewRel to
TACRED and TACRED to FewRel. In Table 3,
we observe that in the more realistic cross-domain
settings, our model shows better generalization per-
formance on novel relations which indicates that
our method effectively transfers the knowledge to
discover novel relations.

3.8 Visualization Analysis

To explore the effectiveness on the refinement of
relation representations in semantic space, we vi-
sualize the representations of both pre-defined and
novel relations. We randomly choose 5 relations
and sample 250 instances for each relation sepa-
rately in pre-defined and novel relations. As is
shown in Figure 3, the relation representations from
both pre-defined and novel relations are mostly
separated in our proposed method which means
that our method not only fully leverages the prior
knowledge for discovering novel relations but also
mitigates the catastrophic forgetting issue for pre-
defined relations.

4 Conclusion

In this paper, we propose an effective framework
based on Cluster-aware Pseudo-Labeling (CaPL)
to transfer more knowledge for discovering novel
relations. Our main contribution is to improve the
knowledge transfer ability of the model. The pro-
posed method makes better use of the prior knowl-
edge in pre-defined relations and generalizes to
novel relations with the high-quality pseudo-labels.
Experiments and analyses confirm the effectiveness
of CaPL for supervised OpenRE.
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A Evaluation Metrics

For evaluation metrics, we adopt B3 (Bagga
and Baldwin, 1998), V-measure (Rosenberg and
Hirschberg, 2007), and Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985), the same as Wu et al.
(2019); Zhao et al. (2021). We take the average
for comprehensive evaluation, since that any of the
three metrics can measure the clustering perfor-
mance from different angles.

B Effect of Consistency Regularization
Loss

Table 4 shows the effect of consistency regular-
ization loss for exploiting the pseudo-labels. We
individually add different components of the con-
sistency regularization loss in equation 3, including
the consistency between cluster predictions and

Dataset Method Prec. Rec. F1. Avg.

FewRel

Baseline 0.752 0.785 0.768 0.784
+ CC 0.747 0.822 0.783 0.786
+ single CP 0.753 0.832 0.790 0.790
+ double CP 0.794 0.802 0.798 0.812
+ double CP + CC 0.815 0.822 0.819 0.834

TACRED

Baseline 0.856 0.795 0.824 0.810
+ CC 0.845 0.823 0.835 0.830
+ single CP 0.842 0.856 0.849 0.841
+ double CP 0.844 0.871 0.857 0.849
+ double CP + CC 0.858 0.888 0.873 0.867

Table 4: Evaluation of the effectiveness of the proposed
consistency regularization loss. Baseline: CaPL with-
out consistency regularization loss, CC: consistency
between cluster predictions and cluster predictions, CP:
consistency between cluster predictions and pseudo-
labels. This table only lists the results of metric B3.
Refer to Table 5 for detailed results.

cluster predictions (CC) and the consistency be-
tween cluster predictions and pseudo-labels (CP).
We can observe that both CC and CP consistency
are helpful to extract novel relations while CP con-
sistency performs better than CC consistency. We
argue it’s the knowledge in the pseudo-labels that
makes it.

C More details about Encoder

In this section, we introduce how we encode
the relation instance using the pre-trained mod-
els. Given a relation instance with n tokens as
w = [w1, w2, . . . , wn], where head entity eh and
tail entity et are marked with the start and end
position of the entity. In addition, we adopt the
pre-trained language model BERT (Devlin et al.,
2019) to encode each token wt to the correspond-
ing representation ht ∈ Rd where d denotes the
dimension of representation vectors. Then, we ob-
tain the hidden state vectors of two entities hent
by averaging their respective token’s hidden state
vectors:

hent = mean-pooling([hs, . . . , he]) (7)

where hent ∈ Rd. s and e represent start and end
position of the corresponding entity respectively.
Finally, we use the concatenation of representations
of two entity as the representation of the relation
instance h ∈ R2·d:

h = [hhead, htail] (8)

D Detailed Results of Other Experiments

In this section, detailed results of consistency regu-
larization loss, different pseudo-labels analysis and
cross domain analysis are listed in Table 5, Table 6
and Table 7 respectively.
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Dataset Method
B3 V-measure

ARI Avg.
Prec. Rec. F1. Homo. Comp. F1.

FewRel
Baseline 0.752 0.785 0.768 0.840 0.855 0.847 0.738 0.784
+ CC 0.747 0.822 0.783 0.837 0.867 0.852 0.722 0.786
+ single CP 0.753 0.832 0.790 0.839 0.872 0.855 0.726 0.790
+ double CP 0.794 0.802 0.798 0.861 0.869 0.865 0.773 0.812
+ double CP + CC 0.815 0.822 0.819 0.875 0.873 0.889 0.794 0.834

TACRED
Baseline 0.856 0.795 0.824 0.883 0.843 0.862 0.743 0.810
+ CC 0.845 0.823 0.835 0.879 0.855 0.867 0.789 0.830
+ single CP 0.842 0.856 0.849 0.870 0.874 0.872 0.801 0.841
+ double CP 0.844 0.871 0.857 0.870 0.884 0.877 0.812 0.849
+ double CP + CC 0.858 0.888 0.873 0.891 0.906 0.898 0.829 0.867

Table 5: The detailed results of the proposed consistency regularization loss.

Dataset Method
B3 V-measure

ARI Avg.
Prec. Rec. F1. Homo. Comp. F1.

FewRel
RoCORE 0.752 0.846 0.796 0.838 0.883 0.860 0.709 0.788
CaPL-hard 0.753 0.811 0.781 0.843 0.873 0.858 0.705 0.781
CaPL-soft 0.815 0.822 0.819 0.875 0.873 0.889 0.794 0.834

TACRED
RoCORE 0.871 0.849 0.860 0.895 0.881 0.888 0.812 0.853
CaPL-hard 0.832 0.850 0.841 0.867 0.878 0.872 0.769 0.827
CaPL-soft 0.858 0.888 0.873 0.891 0.906 0.898 0.829 0.867

Table 6: The detailed results of different pseudo-labels analysis.

Task Method
B3 V-measure

ARI Avg.
Prec. Rec. F1. Homo. Comp. F1.

F→ T

RSN 0.349 0.590 0.439 0.387 0.533 0.448 0.279 0.389
RSN-BERT 0.337 0.866 0.486 0.400 0.777 0.528 0.352 0.455
RoCORE 0.621 0.602 0.611 0.642 0.666 0.654 0.451 0.572
CaPL 0.813 0.601 0.691 0.847 0.703 0.769 0.650 0.703

T→ F

RSN 0.225 0.529 0.316 0.359 0.507 0.420 0.243 0.326
RSN-BERT 0.261 0.861 0.400 0.438 0.822 0.571 0.263 0.411
RoCORE 0.687 0.766 0.724 0.796 0.836 0.815 0.658 0.732
CaPL 0.722 0.757 0.739 0.802 0.830 0.816 0.664 0.740

Table 7: The detailed results of cross domain analysis.
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Abstract

Few-shot named entity recognition (NER) en-
ables us to build a NER system for a new do-
main using very few labeled examples. How-
ever, existing prototypical networks for this
task suffer from roughly estimated label de-
pendency and closely distributed prototypes,
thus often causing misclassifications. To ad-
dress the above issues, we propose EP-Net, an
Entity-level Prototypical Network enhanced
by dispersedly distributed prototypes. EP-Net
builds entity-level prototypes and considers
text spans to be candidate entities, so it no
longer requires the label dependency. In addi-
tion, EP-Net trains the prototypes from scratch
to distribute them dispersedly and aligns spans
to prototypes in the embedding space using a
space projection. Experimental results on two
evaluation tasks and the Few-NERD settings
demonstrate that EP-Net consistently outper-
forms the previous strong models in terms of
overall performance. Extensive analyses fur-
ther validate the effectiveness of EP-Net.

1 Introduction

As a core language understanding task, named en-
tity recognition (NER) faces rapid domain shift-
ing. When transferring NER systems to new do-
mains, one of the primary challenges is dealing
with the mismatch of entity types (Yang and Kati-
yar, 2020). For example, only 2 types are over-
lapped between I2B2 (Stubbs and Özlem Uzuner,
2015) and OntoNotes (Ralph et al., 2013), which
have 23 and 18 entity types, respectively. Unfortu-
nately, annotating a new domain takes considerable
time and efforts, let alone the domain knowledge
required (Hou et al., 2020). Few-shot NER is tar-
geted in this scenario since it can transfer prior
experience from resource-rich (source) domains to
resource-scarce (target) domains.

∗ equal contributions
† corresponding authors

Figure 1: A comparison of token- and entity-level pro-
totypical networks for few-shot NER, where the former
builds prototypes for token labels and requires label
dependency, while the latter builds prototypes for en-
tity types and does not require label dependency. The
dotted line denotes that the pair of token-prototype (or
span-prototype) is the most similar. For clarity, we only
list spans with lengths less than 2 and assume there are
only 2 pre-defined entity types.

Previous few-shot NER models (Fritzler et al.,
2019; Hou et al., 2020; Yang and Katiyar, 2020;
Tong et al., 2021) generally formulate the task as a
sequence labeling task and employ token-level pro-
totypical networks (Snell et al., 2017). These mod-
els first obtain token labels according to the most
similar token-prototype pair and then obtain enti-
ties based on these labels, as Figure 1 shows. The
sequence labeling benefits from label dependency
(Hou et al., 2020). However, when it comes to few-
shot NER models, the label dependency is off the
table, because a few labeled data is way insufficient
to learn the reliable dependency, and the label sets
could vary from domain to domain. To tackle this,
some methods try to transfer roughly estimated de-
pendency. Hou et al. (2020) first learn the abstract
label transition probabilities in source domains and
then copy them to target domains. As Figure 2a
shows, the abstract O→I probability is copied to
three targets directly (the red lines). However, this
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makes the target probability sum of O→(all labels)
end up with 160%. To avoid the possible proba-
bility overflows, Yang and Katiyar (2020) propose
an even distribution method. As Figure 2b shows,
the abstract O→I probability is distributed evenly
among the three targets (the green lines). However,
this could lead to severe contradictions between the
target probabilities and reality. For example, there
are 4,983 DATE entities and only one EMAIL entity
in the I2B2 test set, so the target probabilities of
O→I-DATE and O→I-EMAIL should be clearly
different. Consequently, the current dependency
transferring may lead to misclassifications due to
the roughly estimated target transition probabilities,
even though it sheds some light on few-shot NER.

In addition, the majority of prototypical models
for few-shot NER (Huang et al., 2021; Li et al.,
2020) obtain prototypes by averaging the embed-
dings of each class’s support examples, while Yoon
et al. (2019) and Hou et al. (2020) demonstrate that
such prototypes distribute closely in the embedding
space, thus often causing misclassifications.

In this paper, we aim to tackle the above is-
sues inherent in token-level prototypical models.
To this end, we propose EP-Net, an Entity-level
Prototypical Network enhanced by dispersedly dis-
tributed prototypes, as Figure 1 shows. EP-Net
builds entity-level prototypes and considers text
spans as candidate entities. Thus it can deter-
mine whether a span is an entity directly according
to the most similar prototype to the span. This
also eliminates the need for the label dependency.
For example, EP-Net determines the “rain” and

“tonight” are two entities, and their types are the
Weather and Time, respectively (Figure 1).1 In
addition, to distribute these prototypes dispersedly,
EP-Net trains them using a distance-based loss
from scratch. And EP-Net aligns spans and proto-
types in the same embedding space by utilizing a
deep neural network to map span representations
to the embedding spaces of prototypes.

In essence, EP-Net is a span-based model. Sev-
eral span-based models (Li et al., 2021; Fu et al.,
2021; Yu et al., 2022) have been proposed for the
supervised NER task. Our EP-Net differs from
these models in two ways: (1) The EP-Net ob-
tains entities based on the span-prototype similarity,
while these models do so by classifying span repre-
sentations. (2) The EP-Net works effectively with

1We also add a None type and assign it to spans that are
not entities.

(a) Copying method (b) Even distribution method

Figure 2: Methods of transferring estimated label de-
pendency. In each method, the abstracts and cor-
responding targets are displayed in the same color.
Method (a) copies the abstracts to the targets, whereas
method (b) distributes them equally to the targets.

few labeled examples, whereas these models need
a large number of labeled examples to guarantee
good performance.

We evaluate our EP-Net on the tag set exten-
sion and domain transfer tasks, as well as the Few-
NERD settings. Experimental results demonstrate
that EP-Net consistently achieves new state-of-the-
art overall performance. Qualitative analyses (§5.5-
5.6) and ablation studies (§5.7) further validate the
effectiveness of EP-Net.

In summary, we conclude the contributions as
follows: (1) As far as we know, we are among
the first to propose an entity-level prototypical net-
work for few-shot NER. (2) We propose a prototype
training strategy to augment the prototypical net-
work with dispersedly distributed prototypes. (3)
Our model achieves the current best overall perfor-
mance on two evaluation tasks and the Few-NERD.

2 Related Work

Meta Learning. Meta learning aims to learn a gen-
eral model that enables us to adapt to new tasks
rapidly based on a few labeled examples (Li et al.,
2020). One of the most typical metric learning
methods is the prototypical network (Snell et al.,
2017), which learns a prototype for each class and
classifies an item based on item-prototype similari-
ties. Metric learning has been widely investigated
for NLP tasks, such as text classification (Sun et al.,
2019; Geng et al., 2019; Bao et al., 2020), relation
classification (Lv et al., 2019; Gao et al., 2020) and
NER (Huang et al., 2021). However, these methods
use the prototypes obtained by averaging the em-
beddings of support examples for each class, which
are closely distributed. In contrast, our model uses
dispersedly distributed prototypes obtained by su-
pervised prototype training.
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Few-shot NER. Previous few-shot NER models
(Li et al., 2020; Tong et al., 2021) generally for-
mulate the task as a sequence labeling task and
propose to use the token-level prototypical net-
work. Thus these models call for label dependency
to guarantee good performance. However, it is
hard to obtain exact dependency since the label
sets vary greatly across domains. As an alternative,
Hou et al. (2020) propose to transfer estimated
dependency. They copy the learned abstract depen-
dency from source to target domains, but the tar-
get dependency contradicts the probability defini-
tion. Yang and Katiyar (2020) propose StructShot,
which improves the above dependency transferring
by equally distributing the abstract dependency to
target domains, whereas the target dependency con-
tradicts the reality. Das et al. (2022) introduce
Contrastive Learning to the StructShot, which in-
herits the estimated dependency transferring. We
demonstrate that the roughly estimated dependency
may harm model performance. In addition, prompt-
based models (Cui et al., 2021; Sun et al., 2021;
Gu et al., 2022; Cui et al., 2022; Ding et al., 2022)
have been widely researched for this task recently,
but the model performance heavily relies on the
chosen prompts. Current with our work, Wang et
al. (2022) also propose a span-level prototypical
network to bypass label dependency, but their work
is still hampered by closely distributed prototypes.
In contrast, our model constructs dispersedly dis-
tributed entity-level prototypes, thus avoiding the
roughly estimated label dependency and closely
distributed prototypes.

3 Task Formulation and Setup

In this section, we formally define the task and then
introduce the standard evaluation setup.

3.1 Few-shot NER

We define an unstructured sentence as a token se-
quence X = (x1, x2, . . . , xn), and define entities
annotated in X as E = [(e(1), t(1)), ..., (e(k), t(k))],
where e(i) and t(i) denote entity text and entity type,
respectively. A domain D = {(X (i), E(i))}NDi=1 is
a set of (X , E) pairs, and each D has a domain-
specific entity type set TD = {ti}Ni=1, and N is
various across domains.

We achieve the few-shot task through three steps:
Train, Adapt and Recognize. We first train EP-
Net with the data of source domains {D1,D2, ...}.
Then we then adapt the trained EP-Net to target

domains {D′1,D′2, . . . } by fine-tuning it on sup-
port sets sampled from target domains. Finally, we
recognize entities of query sets using the domain-
adapted EP-Net. We formulate a support set as
S={(X (i), E(i))}NSi=1, where S usually includes a
few labeled examples (K-shot) of each entity type.
For a target domain, we formally define the K-shot
NER as follows: given a sentence X and a K-shot
support set, find the best entity set E for X .

3.2 The Standard Evaluation Setup

To facilitate meaningful comparisons of results for
future research, Yang and Katiyar (2020) propose
a standard evaluation setup. The setup consists of
the query set and support set constructions.

3.2.1 Query Set Construction
They argue that traditional construction methods
sample different entity classes equally without con-
sidering entity distributions. For example, the I2B2
test set contains 4,983 DATE entities, while it only
contains one EMAIL entity. Thus they propose to
use the original test sets of standard NER datasets
as the query sets, thus improving the reproducibil-
ity of future studies.

3.2.2 Support Set Construction
To construct support sets, they propose a Greedy
Sampling algorithm to sample sentences from the
dev sets of standard NER datasets. In particular,
the algorithm samples sentences for entity classes
in increasing order of their frequencies. We present
the algorithm in Appendix A.

4 Model

In this section, we first provide an overview of
EP-Net in §4.1, and then illustrate the model ini-
tializations in §4.2 and discuss the model in §4.3.

4.1 EP-Net

Figure 3 shows the overall architecture of EP-Net.
Given a domainD={(X (i), E(i))}NDi=1 and its entity
type set TD = {ti}Ni=1, we first initialize an entity-
level prototype for each ti (Figure 3-¬).

ΦΦΦ = {φφφ0,φφφ1,φφφ2, ...,φφφN}, (1)

where ΦΦΦ ∈ R(N+1)∗d1 , and d1 is the dimension of
prototype representation. φφφ0 is the prototype of the
None type, and φφφi (i > 0) is the prototype of ti.

We design a distance-based loss Ld to super-
vise the prototype training (Figure 3-), aiming
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Figure 3: The architecture of EP-Net. As an example, we use the sentence in Figure 1 and 3-dimensional embed-
ding spaces. EP-Net first initializes entity-level prototypes for entity types (¬). Then it trains the prototypes with a
distance-based loss Ld (), distributing them dispersedly in embedding space (®). Next, given a sentence X (¯),
EP-Net first obtains text spans (°) and then uses BERT (±) to generate span representations (²). Fourth, EP-Net
uses the space projdection (³) to align spans and prototypes in the same embedding space (´). Finally, EP-Net
calculates span-prototype similarities measured by the squared Euclidean distance. The shorter the distance, the
better the similarity. EP-Net classifies entities based on the best similarity, e.g., classifying the “rain” into the
Weather type (µ).

to distribute these prototypes dispersedly in the
embedding space (Figure 3-®). We argue that
the prototypes should be dispersedly distributed
in an appropriate-sized embedding space, neither
too large nor too small (§5.5). Thus we first set
a threshold τ to limit the averaged prototype dis-
tance. Then we calculate the squared Euclidean
distance between any two prototypes and obtain the
averaged prototype distance (denoted as Euc(ΦΦΦ)).
Next, we construct the Ld as follows.

Euc(ΦΦΦ) =

∑N
i=0

∑N
j=0

∑d
k=1 (φφφi,k−φφφj,k)2

(N+1)2
, (2a)

ψ =

{
Euc(ΦΦΦ)− τ if Euc(ΦΦΦ) ≥ τ ,

τ − Euc(ΦΦΦ) if Euc(ΦΦΦ) < τ ,
(2b)

Ld = log(ψ + 1). (2c)

The training goal is to achieve ψ → 0+, which
equals to (ψ + 1)→ 1+. Thus we design the log(·)
loss (Eq.2c), where the smaller the Ld, the more
the (ψ + 1)→ 1+.

Next, given a sentence X = {xi}ni=1 of the do-
main D, we first obtain text spans (denoted as s,
Figure 3-¯°):

s = {xi, xi+1, ..., xi+j} s.t. 1 ≤ i ≤ i+ j ≤ n, (3)

where the span length j+1 is limited by a threshold
ε: j+1 ≤ ε. To obtain the span representation
(Figure 3-±²), we first use BERT (Devlin et al.,
2019) to generate the embedding sequence of X .

HX = {hhh1,hhh2, . . . ,hhhn}, (4)

where HX ∈ Rn∗d2 , and d2 is the BERT embed-
ding dimension. hhhi is the BERT embedding of
xi. We use Hs to denote the BERT embedding
sequence of span s.

Hs = {hhhi,hhhi+1, . . . ,hhhi+j}. (5)

We obtain the span representation (denoted as
Es) by concatenating the max-pooling of Hs (de-
noted as H̃s) and the span length embedding.

H̃s = [max(hhhi,1, ...,hhhi+j,1), ...,max(hhhi,d1 , ...,hhhi+j,d1)],
(6a)

Es = [H̃s;wwwj+1], (6b)

where H̃s ∈ Rd2 , Es ∈ Rd2+d3 . wwwj+1 is the length
embedding trained for spans with a length j+1 and
d3 is the embedding dimension. Due to the fact
that Es and prototype representations (ΦΦΦ) are not
in the same embedding space, we project Es to the
embedding space of ΦΦΦ using a multi-layer Feed
Forward Network (FFN)2 and denote the aligned
span representation as Ẽs (Figure 3-³´).

Ẽs = EsW + b, (7)

where Ẽs ∈ Rd1 , W and b are FFN parameters.
Next, for the span s, we calculate the similarity
between it and each prototype φφφi ∈ ΦΦΦ using the
squared Euclidean distance.

sim(s,φφφi)
N
i=0 =

d∑

j=1

(Ẽs,j −φφφi,j)2. (8)

2The FFN enables us to fine-tune our model on support
sets without overfitting due to its simple neural architecture.
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As a shorter distance denotes a better similar-
ity, we classify entities based the shortest distance
(Figure 3-µ):

ts = arg min
φφφi∈ΦΦΦ

sim(s,φiφiφi)
N
i=0, (9)

where ts ∈ TD is the type classified for the span s.
To construct an entity classification loss, we

first take the−sim(s,φφφi)
N
i=0 as classification logits,

thus the best similarity has the largest logit. We
then normalize these logits using the softmax func-
tion. Finally, we construct a cross-entropy loss Ls.

ŷ̂ŷys,i =
exp−sim(s,φφφi)

∑N
j=0 exp

−sim(s,φφφj)
, (10a)

Ls = −
1

Ms

Ms∑

j=1

N∑

i=0

yyyjs,i log ŷyy
j
s,i, (10b)

where {yyys, ŷ̂ŷys} ∈ RN+1, and yyys is the one-hot
vector of the gold type for the span s. Ms is the
number of span instances.

During model training, we optimize model pa-
rameters by minimizing the following joint loss.

L(W ; θ) = Ld + Ls . (11)

4.2 Initializations
4.2.1 Train Initialization
In the Train step, given a source domain D with
an entity type set TD={ti}Ni=1, we randomly ini-
tialize the entity-level prototypes ΦΦΦ = {φφφi}Ni=0.We
assign φφφ0 to the None type and φφφi to ti. To guar-
antee that we can adapt EP-Net to target domains
that have more types than the domain D, we ac-
tually initialize ΦΦΦ = {φφφi}100i=0, where EP-Net can
be adapted to any target domains with entity types
less than 100. Moreover, the N can be set to an
even larger value if necessary. By doing so, the
prototypes {φφφi}100i=N+1 are unassigned, but we can
still distribute them dispersedly through training
them using the loss Ld (§5.6). We use the bert-
base-cased model in the embedding Layer.3

4.2.2 Adapt and Recognize Initializations
In the Adapt step, given a target domainD′ with an
entity type set TD′={t′i}N

′
i=1 and the EP-Net trained

in the Train step, we first assign a prototype of
the trained ΦΦΦ = {φφφi}100i=0 to each t′i. In particular,

3https://huggingface.co/
bert-base-cased.

we assign φφφ0 to the None type. And if there are
types that are overlapped between TD and TD′ (i.e.,
TD∩TD′ 6= ∅), for each overlapped type, we reuse
the prototype assigned in the Train step. For other
types in TD′ , we randomly assign an unassigned
prototype in ΦΦΦ to it, and we first choose the proto-
type that is ever assigned in the Train step. Then,
we adapt EP-Net to the domain D′ by fine-tuning
it on support sets sampled from D′.

However, Fine-tuning the model with small sup-
port sets runs the risk of overfitting. To avoid this,
we propose to use the following strategies: (1) We
freeze the BERT and solely fine-tune the assigned
prototypes and the multi-layer FFN. (2) We use an
early stopping criterion, where we continue fine-
tuning our model until the loss starts to increase.
(3) We set upper limits for fine-tuning steps, where
the model will stop when reaching the limits even
though the loss continues decreasing. With the
above strategies, we demonstrate that only a few
fine-tuning steps on these examples can make rapid
progress without overfitting.

In the Recognize step, we use the domain-
adapted EP-Net to recognize entities in the query
set of D′ directly.

4.3 Model Discussion

In the Train step, the randomly initialized proto-
types cannot represent entity types at first. Through
the joint model training with the L(W ; θ), EP-Net
establishes correlations between entity types and
their assigned prototypes. Moreover, the multi-
layer FFN can also be trained to cluster similar
spans around related prototypes in the embedding
space. As Figure 3-´ shows, the “rain” is mapped
to be closer to the Weather than other prototypes.

To precisely simulate the few-shot scenario, we
are not permitted to count the entity length of target
domains. Thus we set the span length threshold
ε to an empirical value of 10 based on source do-
mains. For example, 99.89% of the entities in the
OntoNotes have lengths under 10.

We propose a heuristic method for removing
overlapped entities classified by EP-Net. Specifi-
cally, we keep the one with the best span-prototype
similarity of those overlapped entities and drop the
others.

Concurrently, Wang et al. (2022) propose a
span-level model – ESD. We summarize how our
EP-Net differs from the ESD as follows: (1) Our
EP-Net fine-tunes on support sets while the ESD
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solely uses them for similarity calculation without
fine-tuning. Ma et al. (2022) claim that the fine-
tuning method is far more effective in using the
limited information in support sets. (2) The ESD
obtains class prototypes with embeddings of the
same classes in support sets, thus suffering from
closely distributed prototypes (Hou et al., 2020).
By contrast, our EP-Net avoids this by training
dispersedly distributed prototypes from scratch.

5 Experiments

5.1 Evaluation Tasks

We evaluate EP-Net on two evaluation tasks and the
Few-NERD settings using 1- and 5-shot settings.
Limited by space, we solely report the key points
here and discuss more details in Appendix B.
Tag Set Extension. This task aims to evaluate
models for recognizing new types of entities in
existing domains. Yang and Katiyar (2020) divide
the 18 entity types of the OntoNotes (Ralph et al.,
2013) into three target sets, i.e., Group A, B and C,
to simulate this scenario. Models are evaluated on
one target set while being trained on the others.
Domain Transfer. This task aims to evaluate mod-
els for adapting to a different domain. Yang and
Katiyar (2020) propose to use the general domain
as the source domain and test model on medical,
news, and social domains.
Few-NERD Settings. Few-NERD (Ning et al.,
2021) is a large-scale dataset for few-shot NER.
It consists of two different settings: Intra and In-
ter. The Intra divides the train/dev/test accord-
ing to coarse-grained types. The Inter divides the
train/dev/test according to fine-grained types. Thus
the coarse-grained entity types are shared. The In-
tra is more challenging as the restrictions of sharing
coarse-grained types.

5.2 Datasets and Baselines

For a fair comparison, we use the same datasets
and baselines reported in (Yang and Katiyar, 2020;
Ning et al., 2021; Das et al., 2022). Specifically,
we use OntoNotes (general domain), CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) (news
domain), I2B2 2014 (Stubbs and Özlem Uzuner,
2015) (medical domain) and WNUT 2017 (Der-
czynski et al., 2017) (social domain) for the tag set
extension and domain transfer tasks.

We compare the performance of EP-Net with pre-
vious best models, including: Prototypical Network
(ProtoNet) (Snell et al., 2017), ProtoNet+P&D

(Hou et al., 2020) , NNShot and StructShot (Yang
and Katiyar, 2020) and CONTaiNER (Das et al.,
2022). We represent more baseline details in Ap-
pendix C.

5.3 Implementation Details

In all experiments, we optimize EP-Net using
AdamW with a learning rate of 5e-5 and set d1
and d3 to 512 and 25, respectively. d2 is 768 when
using the BERT base model. We set 3 layers for the
multi-layer FFN, and the train batch size to 2 and
8 in 1- and 5-shot experiments, respectively. We
set the distance threshold τ to 2 and 3 for 1- and
5-shot experiments, respectively. Moreover, we
investigate the model performance against differ-
ent τ values in Appendix D. Following supervised
span-based work (Ji et al., 2020), we sample spans
of the None type during model training and set the
sampled count to 20 and 40 in 1- and 5-shot exper-
iments, respectively. Following (Yang and Katiyar,
2020; Das et al., 2022), we sample 5 support sets
and report the mean and standard deviation of the
F1 scores in each experiment.

5.4 Main Results

We report experimental results for 1- and 5-shot
settings in Table 1 and Table 2, respectively. We
have the following observations.

(1) In terms of the overall metric (i.e., Avg.), EP-
Net consistently outperforms the listed baselines
on the two tasks and Few-NERD, delivering +1.5%
to +7.0% averaged F1 gains. Moreover, EP-Net
improves up to +11.4% F1 scores on 1-shot Group
B. We attribute these gains to the advantages of the
proposed entity-level prototypical network.

(2) On the 5-shot Group C, EP-Net is inferior
to CONTaiNER by 8.5% F1 scores. Detailed er-
ror analysis indicates that the group’s DATE type
should bear the primary responsibility. Of the
4,178 entities in the test set, 1,536 are DATE enti-
ties, in which there are up to 429 different expres-
sions, such as “week”, “this week”, ”last week”,
“2 weeks”, “2 - week” etc. However, the 5-shot
setting solely enables us to sample very few vari-
ous expressions, leading to the poor performance
in DATE entities. For example, if a support set
solely samples the “week”, it is hard for EP-Net to
recognize entities like “this week” and “last week”.

In addition, we conduct episode evaluations on
Few-NERD and report the results in Appendix E.
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Model Tag Set Extension Domain Transfer Few-NERD

Group A Group B Group C Avg. I2B2 CoNLL WNUT Avg. Intra Inter Avg.

ProtoNet 18.7±4.7 24.4±8.9 18.3±6.9 20.5 7.6±3.5 53.0±7.2 14.8±4.9 25.1 18.6±7.2 25.3±8.8 22.0
ProtoNet+P&D 18.5±4.4 24.8±9.3 20.7±8.4 21.3 7.9±3.2 56.0±7.3 18.8±5.3 27.6 19.4±5.6 26.2±4.2 22.8
NNShot 27.2±3.5 32.5±14.4 23.8±10.2 25.7 16.6±2.1 61.3±11.5 21.7±6.3 33.2 20.1±8.5 25.7±7.7 22.9
StructShot 27.5±4.1 32.4±14.7 23.8±10.2 27.9 22.1±3.0 62.3±11.4 25.3±5.3 36.6 20.3±4.3 26.7±5.6 23.5
CONTaiNER 32.4±5.1 30.9±11.6 33.0±12.8 32.1 21.5±1.7 61.2±10.7 27.5±1.9 36.7 22.4±5.4 28.4±4.3 25.4

EP-Net (ours) 38.4±4.5 42.3±10.8 36.7±9.5 39.1 27.5±4.6 64.8±10.4 32.3±4.8 41.5 25.8±5.1 30.9±4.9 28.4

Table 1: F1 scores of 1-shot experiments. We report the mean and standard deviations of F1 scores.

Model Tag Set Extension Domain Transfer Few-NERD

Group A Group B Group C Avg. I2B2 CoNLL WNUT Avg. Intra Inter Avg.

ProtoNet 27.1±2.4 38.0±5.9 38.4±3.3 34.5 10.3±0.4 65.9±1.6 19.8±5.0 32.0 33.2±6.4 31.7±5.9 32.5
ProtoNet+P&D 29.8±2.8 41.0±6.5 38.5±3.3 36.4 10.1±0.9 67.1±1.6 23.8±3.9 33.6 26.4±3.8 28.7±7.2 27.6
NNShot 44.7±2.3 53.9±7.8 53.0±2.3 50.5 23.7±1.3 74.3±2.4 23.9±5.0 40.7 29.6±5.3 33.9±5.1 31.8
StructShot 47.4±3.2 57.1±8.6 54.2±2.5 52.9 31.8±1.8 75.2±2.3 27.2±6.7 44.7 31.2±4.4 35.7±3.8 33.5
CONTaiNER 51.2±6.0 56.0±6.2 61.2±2.7 56.2 36.7±2.1 75.8±2.7 32.5±3.8 48.3 33.1±4.6 38.4±4.4 35.8

EP-Net (ours) 55.5±3.2 64.8±4.8 52.7±2.2 57.7 44.9±2.7 78.8±2.7 38.4±5.2 54.0 36.4±4.6 41.4±3.6 38.9

Table 2: F1 scores of 5-shot experiments. We report the mean and standard deviations of F1 scores.

5.5 Visualization

We use the 1-shot Group A experiment to investi-
gate prototype distributions. Specifically, in the
Train step we initialize the prototype set ΦΦΦ =
{φφφ}100i=0 and assign {φφφ}12i=0 to the None type and
the 12 pre-defined entity types of the source do-
main. In the Adapt step, we assign {φφφ}6i=0 to the
None type and the 6 pre-defined entity types of the
Group A.

We report the visualization results in Figure 4.
From Figure 4b, we observe that all prototypes are
dispersedly distributed because the Euclidean dis-
tance between any two prototypes is approximate 2.
Therefore, we conclude that EP-Net can distribute
the prototypes dispersedly through the prototype
training. From Figure 4a, we see that the distances
between the None type and other assigned pro-
totypes are generally larger than other distances.
We attribute it to the fact that the None type does
not represent any unified semantic meaning, thus
the None spans actually correspond to a variety of
semantic spaces, requiring the None prototype to
keep away from other prototypes to alleviate the
misclassification problem.

Moreover, we realize another entity-level proto-
typical network with conventional prototypes4, and
refer to it as CP-Net. We do not train the conven-

4We obtain the conventional prototypes by averaging the
embeddings of each type’s examples. For the None type,
we obtain its prototype by averaging representations of the
sampled None spans.
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Figure 4: Heat maps of prototype distributions in the
embedding space, which are measured by the squared
Euclidean distance. In the (b), we show the distribu-
tions of all the prototypes ΦΦΦ = {φφφ}100i=0. In the (a), we
amplify the distributions of the 13 assigned prototypes
{φφφ}12i=0. The darker the color, the larger the distance.

tional prototypes with the loss Ld but fine-tune it
during the model training. We report more details
of CP-Net in Appendix F.

We visualize the distributions of our prototypes
and conventional prototypes in Figure 5. To be
specific, we use prototypes obtained in the Rec-
ognized step of both models. We observe that:
(1) Our prototypes are distributed much more dis-
persedly than the conventional prototypes. (2) Our
None prototype is more distant from other proto-
types, whereas the conventional None prototype
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stays close to other conventional prototypes. These
results indicate that our prototypes enable us to
alleviate the misclassifications caused by closely
distributed prototypes.
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Figure 5: Heat maps of prototype distributions of our
prototypes and conventional prototypes.

5.6 How does the Dispersedly Distributed
Prototyes Enhance the EP-Net?

We run the 1-shot Group A experiment with EP-
Net and CP-Net to conduct the investigation. We
first compare the F1 scores of the two models. The
results show our EP-Net outperforms CP-Net by
+9.6% F1 scores, verifying the effectiveness of the
dispersedly distributed prototypes.

In addition, we use t-SNE (Van der Maaten and
Hinton, 2008) to reduce the dimension of span rep-
resentations obtained in the Recognize step of EP-
Net and CP-Net and visualize these representations
in Figure 6. We can see that our EP-Net clusters
span representations of the same entity class while
dispersing span representations of different entity
classes obviously, which we attribute to the usage
of dispersedly distributed prototypes. Based on
the above fact, we conclude that our EP-Net can
greatly alleviate the misclassifications caused by
closely distributed prototypes.

5.7 Ablation Study

We conduct ablation studies to investigate the sig-
nificance of model components and report the
results in Table 3. Specifically, (1) In the “-
Entity-level prototype”, we ablate the entity-level
prototypes and use token-level prototypes instead.
Moreover, we use the copying method (Figure 2) to
transfer the label dependency. The ablation results
show that the F1 scores drop from 5.1% to 7.2%,
validating the advantages of entity-level prototypes.
(2) In the “- Prototype training”, we remove the
loss Ld from the L(W ; θ), thus the prototypes are

Org
Norp
Quantity

Ordinal
Law
Work

(a) EP-Net
x

Org
Norp
Quantity

Ordinal
Law
Work

(b) CP-Net

Figure 6: t-SNE visualization of span representations
of EP-Net and CP-Net. We obtain these representations
in the Recognize step of both models. Since there are
too many None spans (890,000+), we do not show their
visualizations in the figure.

Model Group A
(F1)

I2B2
(F1)

Intra
(F1)

Inter
(F1)

EP-Net 38.4 27.5 25.8 30.9
- Entity-level prototype 31.6 22.4 18.6 25.1
- Prototype training 30.3 19.8 20.0 19.1
- Euclidean distance 33.4 25.2 21.6 27.3

Table 3: Ablation results under the 1-shot setting. We
select one dataset for each of the two evaluation tasks,
as well as the Intra and Inter of the Few-NERD.

not trained being dispersedly distributed. The de-
creasing F1 scores (5.8% to 11.8%) demonstrate
that EP-Net significantly benefits from the dispers-
edly distributed prototypes. (3) In the “-Euclidean
distance”, we use the cosine similarity to measure
span-prototype similarities instead. We see that
the Euclidean similarity consistently surpasses the
cosine similarity, revealing that a proper measure is
vital to guarantee good performance, which is con-
sistent with the conclusion in (Snell et al., 2017).

6 Conclusion

In this paper, we propose an entity-level prototypi-
cal network for few-shot NER (EP-Net). And we
augment EP-Net with dispersedly distributed pro-
totypes. The entity-level prototypes enable EP-Net
to avoid suffering from the roughly estimated label
dependency brought by abstract dependency trans-
ferring. Moreover, EP-Net distributes the proto-
types dispersedly via supervised prototype training
and maps spans to the embedding space of the pro-
totypes to eliminate the alignment biases. Experi-
mental results on two evaluation tasks and the Few-
NERD settings demonstrate that EP-Net beats the
previously published models, creating new state-
of-the-art overall performance. Extensive analyses
further validate the model’s effectiveness.
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Appendix

A The Greedy Sampling Algorithm

Algorithm 1: Greedy Sampling Algorithm

Require: shot K, dev set X of a domain D and its entity
type set T

1: Sort types in T based on their frequencies in X
2: S ← ∅ // Initialize the support set
3: {Counti← 0}

// Initialize the count of each type in S
4: while i < |T | do
5: while Counti < K do
6: Sample (X , E) ∈X s.t. Ti ∈ E .type1

// Sample a sentence containing entities of Ti
// type, w/o replacement

7: S ← S ∪ {(X , E)}
8: update {Countj} ∀ Tj ∈ E .type
9: end while

10: end while
11: return S
1 E .type denotes the types of entities annotated in E

B Details of the Evaluation Task

B.1 Tag Set Extension

The Group A, B, and C split from the OntoNotes
dataset are as follows.
• Group A: {Org, Quantity, Ordinal,
Norp, Work, Law}
• Group B: {Gpe, Cardinal, Percent,
Time, Event, Language}
• Group C: {Person, Product, Money,
Date, Loc, Fac}

In this task, we evaluate our EP-Net on each
group while training our model on the other two
groups. In each experiment, we modify the train-
ing set by replacing all entity types in the target
type set with the None type. Hence, these target
types are no longer observed during training. We
use the modified training set for model training in
the Train step. Similarly, we modify the dev and
test sets to only include entity types contained in
the target type set. We use the Greedy Sampling
Algorithm to sample multiple support sets from the
dev set for model adaption.

B.2 Domain Transfer

In this task, we train our EP-Net on the standard
training set of the OntoNotes dataset and evaluate
our model on the standard test sets of I2B2, CoNLL,
and WNUT. In addition, we sample support sets
for model adaption from the standard dev sets of
the above three datasets.

B.3 Few-NERD Settings

FEW-NERD (Ning et al., 2021) is the first dataset
specially constructed for few-shot NER and is one
of the largest human-annotated NER datasets. It
consists of 8 coarse-grained entity types and 66
fine-grained entity types. The dataset contains two
sub-sets, name Intra and Inter.
• In Intra, all the fine-grained entity types

belonging to the coarse-grained People,
MISC, Art, Product are assigned to the
training set, and all the fine-grained entity
types belonging to the coarse-grained Event,
Building are assigned to the dev set, and
all the fine-grained entity types belonging to
the coarse-grained ORG, LOC are assigned to
the test set. In this dataset, the training/de-
v/test sets share little knowledge, making it a
difficult benchmark.
• In Inter, 60% of the 66 fine-grained types are

assigned to the training set, 20% to the dev set,
and 20% to the test set. The intuition of this
dataset is to explore if the coarse information
will affect the prediction of new entities.

We use the standard evaluation (§3.2) and the
episode evaluation to evaluate the performance of
our EP-Net. For the standard evaluation, we con-
duct experiments on Intra and Inter, respectively.
We first use the training set to train our EP-Net and
then sample support sets from the test set for the
model adaptation and evaluate our model on the
remaining test set. For the episode evaluation, we
use the exact evaluation setting proposed by (Ning
et al., 2021).

C Baseline Details

Following the established line of work (Yang and
Katiyar, 2020; Das et al., 2022; Ning et al., 2021),
we compare EP-Net with the following competitive
models.
• Prototypical Network (ProtoNet) (Snell et al.,

2017) is a popular few-shot classification algo-
rithm that has been adopted in most previously
published token-level few-shot NER models.
• ProtoNet+P&D (Hou et al., 2020) uses pair-

wise embedding and collapsed dependency
transfer mechanism in the token-level Proto-
typical Network, tackling challenges of simi-
larity computation and transferring estimated
label dependency across domains.
• NNShot (Yang and Katiyar, 2020) is a sim-

ple token-level nearest neighbor classification
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model. It simply computes a similarity score
between a token in the query example and all
tokens in the support set.
• StructShot (Yang and Katiyar, 2020) com-

bines NNShot and Viterbi decoder and uses
estimated label dependency across domains
by first learning abstract label dependency and
then distributing it evenly to target domains.
• CONTaiNER (Das et al., 2022) introduces

Contrast Learning to the StructShot. It mod-
els Gaussian embedding and optimizes inter
token distribution distance, which aims to de-
crease the distance of token embeddings of
similar entities while increasing the distance
for dissimilar ones.

For a fair comparison, we use the results of the
ProtoNet, ProtoNet+P&D, NNShot, and StructShot
reported in (Yang and Katiyar, 2020), and the re-
sults of CONTaiNER reported in (Das et al., 2022).

In addition, we run the ProtoNet, Pro-
toNet+P&D, NNShot, and StructShot on Few-
NERD using the standard evaluation setup (§3.2,
B.3).

D Performance against Prototype
Distance Threshold (τ )

We conduct 1- and 5-shot experiments to explore
the performance against different τ values. Since
validation sets are unavailable in the few-shot sce-
nario, we randomly sample 20% of the query sets
for the explorations. We report the results in Figure
7, where we set the τ value from 1 to 10, respec-
tively. We can observe that: (1) The F1 scores
generally first increase and then decrease when the
τ value consistently increases. (2) Except for the
Group C and Intra, our EP-Net performs the best
in the 1-shot experiments when setting the τ to 2.
(3) Except for the Group A and Intra, our EP-Net
performs the best in the 5-shot experiments when
setting the τ to 3.

The above results validate our argument that the
prototypes should be distributed in an appropriate-
sized embedding space, neither too large nor too
small (§4.1). For simplicity, we set the τ to 2 and 3
in all the other 1- and 5-shot experiments, respec-
tively.

E Episode Evaluation on Few-NERD

We evaluate our EP-Net on Few-NERD with the
episode evaluation setting and compare our model
with previous state-of-the-art models, including
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Figure 7: Performance comparisons of different proto-
type distance threshold (τ ) values in 1- and 5-shot ex-
periments.

ProtoBERT (Ning et al., 2021), NNShot, Struct-
Shot, CONTaiNER, and ESD (Wang et al., 2022).
We would like to mention that the ESD is a concur-
rent span-based few-shot NER model to ours.

We report the results in Table 4 and Table 5,
where we take the results of ProtoBERT, NNShot,
and StructShot reported in (Ning et al., 2021), and
the results of CONTaiNER and ESD reported in
their original papers. We can see that:
• On the Intra, our EP-Net consistently outper-

forms the best baseline (i.e., CONTaiNER) in
terms of the Avg. metric, bringing +2.39% F1
gains. In addition, our EP-Net surpasses the
concurrent ESD by +4.43% F1 scores.
• On the Inter, our EP-Net is inferior to ESD

by a large margin (5.0%) in terms of the Avg.
metric. However, our model consistently out-
performs the other baselines, delivering up
to +5.31% F1 scores compared to the CON-
TaiNER.
• Both our EP-Net and CONTaiNER outper-

form ESD in 1-shot experiments, but they are
inferior to ESD in 5-shot experiments.

The above results demonstrate the effectiveness
of the proposed EP-Net. And compared to ESD,
our model is more efficient in the few-shot scenario
when entities share less coarse-grained information
(the Intra).5

Compared to our simple concatenation method
(Eq.6b) to obtain span representations, ESD pro-
poses to use Inter Span Attention (ISA) and Cross

5As shown in Appendix B.3, entities in the Intra share little
coarse-grained information, but the Inter is designed to allow
entities sharing the coarse-grained information.
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Model 1∼2-shot 5∼10-shot Avg.
5 way 10 way 5 way 10 way

ProtoBERT 23.45±0.92 19.76±0.59 41.93±0.55 34.61±0.59 29.94
NNShot 31.01±1.21 21.88±0.23 35.74±2.36 27.67±1.06 29.08
StructShot 35.92±0.69 25.38±0.84 38.83±1.72 26.39±2.59 31.63
ESD 41.44±1.16 32.29±1.10 50.68±0.94 42.92±0.75 41.83
CONTaiNER 40.43 33.84 53.70 47.49 43.87

EP-Net (Ours) 43.36±0.99 36.41±1.03 58.85±1.12 46.40±0.87 46.26

Table 4: Episode evaluation results (F1 scores) on the Intra dataset of Few-NERD. We report the mean and standard
deviations of F1 scores.

Model 1∼2-shot 5∼10-shot Avg.
5 way 10 way 5 way 10 way

ProtoBERT 44.44±0.11 39.09±0.87 58.80±1.42 53.97±0.38 49.08
NNShot 54.29±0.40 46.98±1.96 50.56±3.33 50.00±0.36 50.46
StructShot 57.33±0.53 49.46±0.53 57.16±2.09 49.39±1.77 53.34
CONTaiNER 55.95 48.35 61.83 57.12 55.81
ESD 66.46±0.49 59.95±0.69 74.14±0.80 67.91±1.41 66.12

EP-Net (Ours) 62.49±0.36 54.39±0.78 65.24± 0.64 62.37±1.27 61.12

Table 5: Episode evaluation results (F1 scores) on the Inter dataset of Few-NERD. We report the mean and standard
deviations of F1 scores.

Span Attention (CSA) to enhance the span rep-
resentations. We believe that the ISA and CSA
enable ESD to encode the shared coarse-grained
information into span representations sufficiently,
which helps ESD obtain the current state-of-the-art
performance on the Inter dataset.

F CP-Net

We propose the CP-Net as a comparable model to
our EP-Net. CP-Net is also an entity-level prototyp-
ical network, but it uses conventional prototypes
obtained by averaging the embeddings of type’s
examples. Similar to EP-Net, CP-Net also uses the
BERT model as an embedding generator. In addi-
tion, it uses the sampling strategy discussed in §5.3
to randomly sample None spans. CP-Net consists
of two steps, namely Train and Recognize.

In the Train step, we train CP-Net with the
source domain data. To be specific, we obtain
the entity-level prototypes by averaging the em-
beddings of type’s examples in the training set.
Moreover, we obtain span representations with
the same method of EP-Net (Eq.3-7), as well as
the method to calculate span-prototype similarity
(Eq.8-9). During the model training, we use the
training loss Ls (Eq.10b) to fine-tune the BERT
model.

In the Recognize step, we use the fine-tuned
BERT model as the embedding generator and ob-

tain the entity-level prototypes by averaging the
embeddings of each type’s examples in the support
sets. Then we obtain the type of each span accord-
ing to the best similarity between the span and the
prototypes.

The CP-Net differs from our EP-Net in the fol-
lowing two ways.
• CP-Net uses conventional prototypes, and it

does not train these prototypes during the
model training. By contrast, our EP-Net
trains prototypes from scratch with the dis-
tance based loss Ld (Eq.2c)
• CP-Net does not contain a domain adaption

procedure, and it solely uses the support sets
for similarity calculation. By contrast, our EP-
Net contains a Adapt step for domain adap-
tion and it uses the support sets for not only
the similarity calculation but also the domain
adaption.

1854



Proceedings of the 29th International Conference on Computational Linguistics, pages 1855–1864
October 12–17, 2022.

Different Data, Different Modalities! Reinforced Data Splitting for
Effective Multimodal Information Extraction from Social Media Posts

Bo Xu1, Shizhou Huang1, Ming Du1,∗ , Hongya Wang1, Hui Song1,
Chaofeng Sha2 and Yanghua Xiao2

1School of Computer Science and Technology, Donghua University
2Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
xubo@dhu.edu.cn, 2202408@mail.dhu.edu.cn, {duming, hywang, songhui}@dhu.edu.cn

{cfsha, shawyh}@fudan.edu.cn

Abstract

Recently, multimodal information extraction
from social media posts has gained increas-
ing attention in the natural language processing
community. Despite their success, current ap-
proaches overestimate the significance of im-
ages. In this paper, we argue that different
social media posts should consider different
modalities for multimodal information extrac-
tion. Multimodal models cannot always outper-
form unimodal models. Some posts are more
suitable for the multimodal model, while oth-
ers are more suitable for the unimodal model.
Therefore, we propose a general data splitting
strategy to divide the social media posts into
two sets so that these two sets can achieve bet-
ter performance under the information extrac-
tion models of the corresponding modalities.
Specifically, for an information extraction task,
we first propose a data discriminator that di-
vides social media posts into a multimodal and
a unimodal set. Then we feed these sets into the
corresponding models. Finally, we combine the
results of these two models to obtain the final
extraction results. Due to the lack of explicit
knowledge, we use reinforcement learning to
train the data discriminator. Experiments on
two different multimodal information extrac-
tion tasks demonstrate the effectiveness of our
method. The source code of this paper can be
found in https://github.com/xubodhu/RDS.

1 Introduction

Social media, with its wealth of user-generated
posts, provides a rich platform for understanding
events, opinions and preferences of groups and indi-
viduals (Moon et al., 2018). Information extraction,
such as named entity recognition (Yu et al., 2020),

∗ Corresponding author. This paper was supported
by the National Natural Science Foundation of China (No.
61906035), Information Development Project of Shanghai
Economic and Information Commission (No. 202002009),
Natural Science Foundation of Shanghai (No. 22ZR1402000)
and Shanghai Science and Technology Innovation Action Plan
(No. 19511120400)

relation extraction (Zheng et al., 2021a) and senti-
ment detection (Yang et al., 2021), is a critical step
in uncovering these hidden insights in social media
posts.

In social media scenarios, information is ex-
pressed not only through textual modality, but
through multiple modalities (e.g., text, image, etc.).
Considering only text modality may lead to in-
accurate information extraction. For example in
Fig. 1(a) and Fig. 1(c), the text-based named entity
recognition model cannot recognize Kolo as a dog,
and the text-based relation extraction model cannot
determine that Meghan Markle and Prince
Harry are couples.

Therefore, many multimodal models for infor-
mation extraction have been proposed which are
using visual modality to complement text modality.
They mainly focus on using a multimodal inter-
action mechanism to combine text representation
with image representation. For example, Zhang
et al. (2018) propose an adaptive co-attention net-
work to control the combination of text represen-
tation and image representation dynamically for
multimodal named entity recognition. Zheng et al.
(2021a) propose a multimodal relation extraction
neural network with an effective alignment strategy
for textual and visual graphs to find the correlations
between visual objects and textual entities. Yang
et al. (2021) propose multi-channel graph neural
networks for multimodal sentiment detection.

Despite their success, current approaches over-
estimate the significance of images. In fact, images
are not always needed to understand information on
social media posts. It is possible to get comparable
performance using only text modality, while us-
ing mismatched visual modality can hinder perfor-
mance. The mismatched phenomenon is very com-
mon in social media posts. As reported in Vempala
and Preoţiuc-Pietro (2019), about 33.8% of tweets
had textual content that was not reflected in the
images, and the images did not add additional con-
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(a) [Kolo MISC] loves
the sun and is so pretty

(b) [Nasa ORG]
produces vintage travel
posters for newly
discovered planets

(c) Meghan Markle and Prince
Harry announce their first offi-
cial royal tour <Meghan Markle,
Prince Harry, couple>

(d) Congrats to Angel and Je-
senia Rodriguez on their mar-
riage last night <Angel, Jesenia
Rodriguez, couple>

Figure 1: Four Examples of Multimodal Information Extraction Tasks. (a) and (b) are examples of multimodal
named entity recognition, (c) and (d) are examples of multimodal relation extraction. The named entity and its type
are highlighted in brackets. The entities and relations between entities are in angle brackets.

tent. For example, in Fig. 1(b) and Fig. 1(d), with
the mismatched images, the multimodal named en-
tity recognition model may mistakenly associate
the person in the image with Nasa and make a
wrong prediction, and the multimodal relation ex-
traction model may incorrectly classify the relation
between Angel and Jesenia Rodriguez as
colleague.

Based on the above observations, we argue that
different social media posts should consider differ-
ent modalities for multimodal information extrac-
tion. Multimodal models cannot always outperform
unimodal models 1. Some posts are more suitable
for the multimodal model, while others are more
suitable for the unimodal model. This is consistent
with human behavior in accomplishing multimodal
information extraction tasks. When someone reads
a post on social media, he first determines whether
the image will help him complete the task; if not,
he goes directly to the text, and if so, he views both
the image and the text. According to a research
on the multimodal named entity recognition (NER)
benchmark dataset TWITTER-2017 by Yu et al.
(2020), about 22% of entities were incorrectly pre-
dicted by the state-of-the-art text-based NER model,
but correctly predicted by the state-of-the-art multi-
modal NER model; and about 12% of entities were
correctly predicted by the text-based NER model,
but incorrectly predicted by the multimodal NER
model.

In this paper, we propose a general data splitting
strategy to divide the social media posts into two
sets so that these two sets can achieve better perfor-
mance under the information extraction models of

1In this paper, unimodal model refers to text-based model.

the corresponding modalities. Specifically, for an
information extraction task, we first propose a data
discriminator that divides social media posts into
a multimodal and a unimodal set, which is used
to determine whether the posts are more suitable
for the multimodal or unimodal model. Then we
feed these sets into the corresponding models. Fi-
nally, we combine the results of these two models
to obtain the final extraction results. The core com-
ponent is the data discriminator. Due to the lack
of explicit knowledge about which data are more
suitable for multimodal models and which data are
more suitable for unimodal models, we use rein-
forcement learning to train the data discriminator.
The reward based on the performances of the mul-
timodal model and the unimodal model on both the
multimodal set and the unimodal set will be used
as a reinforcement signal to update the parameters
of the data discriminator.

Our main contributions are summarized as fol-
lows:

• First, to the best of our knowledge, we are the
first to argue that different social media posts
should consider different modalities to accom-
plish the multimodal information extraction
tasks.

• Secondly, we propose a general data splitting
strategy for multimodal information extrac-
tion and implement this strategy by reinforce-
ment learning.

• Finally, experiments conducted on two widely
used multimodal named entity recognition
datasets and a multimodal relation extraction
dataset show that our method can effectively
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divide the social media posts and achieves the
new state-of-the-art performance.

2 OVERVIEW

In this section, we first formulate our problem, and
then introduce our framework.

2.1 Problem Formulation

Let X = {(Ti, Vi)}Ni=1 be the set of text-image
posts from social media, where Ti is the text modal-
ity and Vi is the corresponding visual information,
N represents the number of posts. Our aim is
to divide X into two disjoint sets: multimodal
set XM and unimodal set XU , where XM con-
tains NM posts and XU contains NU posts with
NM +NU = N , so that these two sets can achieve
better performance under the information extrac-
tion models of the corresponding modalities (i.e.,
multimodal and unimodal model).

2.2 Framework

The reinforcement learning framework for training
the data discriminator is shown in the left side of
Fig. 2, which consists of three main components: a
data discriminator, a multimodal model and a uni-
modal model, where the multimodal and unimodal
models can be any existing models. The training
process is as follows:

• STEP 1: Training Set Splitting. Given the
training set D = {(Tj , Vj , Yj)}Gj=1, where Yj
is the label for the j-th post. We first randomly
divide it into two disjoint sets, namely Dmodel
and Dsplit.

• STEP 2: Multimodal/Unimodal Model
Training. Then we use Dmodel to train the
multimodal and unimodal models and freeze
their parameters.

• STEP 3: Data Discriminator Training. Fi-
nally, we use reinforcement learning to train
the data discriminator with Dsplit. In the data
discriminator, each data in Dsplit has a corre-
sponding action ai to determine whether to
use a multimodal or unimodal model for in-
formation extraction. The Dsplit can be di-
vided into the multimodal set DMsplit and the
unimodal set DUsplit based on the data discrim-
inator. After that, we calculate the reward
based on the performances of the multimodal
and the unimodal models on both DMsplit and

DUsplit. The reward will be used as a reinforce-
ment signal to update the parameters of the
data discriminator.

3 METHOD

In this section, we first introduce our data discrimi-
nator, then we show how to train it using reinforce-
ment learning, which consists of a reward function
and a training algorithm.

3.1 Data Discriminator

The data discriminator is used to determine whether
a data should use a multimodal or unimodal model,
and the main idea is based on the similarity be-
tween text and images. As shown in the right
side of Fig. 2, the data discriminator consists of
a CLIP (Radford et al., 2021) and a multilayer
perceptron (MLP) with one hidden layer. CLIP
is the state-of-the-art multimodal vision and lan-
guage model, which consists of a CLIPTextModel,
a CLIPVisionModel and a projection layer.

Specifically, the CLIPTextModel layer is used
to encode the text. For the input text T , we
first tokenize it by using the byte pair encod-
ing (BPE) (Sennrich et al., 2016) and obtain a
token sequence (t1, t2, ..., tn), where n is the
length of the token sequence. Then the token se-
quence is bracketed by [SOS] and [EOS] tokens
as ([SOS], t1, t2, ..., tn, [EOS]). The activation at
the [EOS] token in the last layer of CLIPTextModel
is treated as the representation of the entire text
Ts ∈ Rdt .

The CLIPVisionModel layer is used to encode
the images. For the input image V , we first resize
the image to 224 × 224 pixels, then the image is
split into a sequence of 7×7 = 49 non-overlapping
patches with a pixel size of 32×32, which are then
linearly embedded to get each patch representation
(v1, v2, ..., v49), and finally add a [CLS] token with
the same dimensions as patch at the beginning of V
to get ([CLS], v1, v2, ..., v49), where the activation
at the [CLS] token in the last layer of CLIPVision-
Model as the representation of the image Vg ∈ Rdv .

The projection layer is used to project the rep-
resentations of text and images into a latent space
with identical dimension. The final representations
of text Tc ∈ Rdc and image Vc ∈ Rdc is obtained
by projecting Ts and Vg into the same latent space.

Finally, we perform an element-wise product of
Tc and Vc and feed it into an MLP layer with one
hidden layer to obtain the probability p that the data
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Figure 2: The Reinforcement Learning Framework to Train the Data Discriminator.

is more suitable for the multimodal IE model (less
suitable for the unimodal IE model) as follows:

p = sigmoid(W2 relu(W1 (Tc ⊙ Vc))) (1)

, where sigmoid and relu are the activation func-
tions,W1 andW2 are the weight matrices.

The sampling policy is used to decide the action
of the data discriminator based on the probabil-
ities provided by the data discriminator. In this
paper, we propose two sampling policies. In the
training phase of the data discriminator, in order to
encourage exploration based on the uncertainty of
the exponentially-large selection space (Yoon et al.,
2020), we use Bernoulli sampling (Deshmukh1,
1991) to sample the data. Each data will be sam-
pled according to the probability provided by the
data discriminator. While in the prediction phase,
the data discriminator puts data with probability
greater than 0.5 into the multimodal set and data
with probability less than or equal to 0.5 into the
unimodal set.

3.2 Reward Function
Due to the lack of supervised data, we use rein-
forcement learning to train the data discriminator.
The core component is to design the reward func-
tion, which is used to evaluate the quality of the
action of data discriminator and used as a reinforce-
ment signal to adjust the parameters of the data
discriminator.

Intuitively, the multimodal IE model performs
better than the unimodal IE model on the DMsplit,
while the unimodal IE model performs better than
the multimodal IE model on the DUsplit. In our task
here, we use the performance gaps between the
multimodal IE model and the unimodal IE model
on both sets as the reward. For example, the micro
F1 score is used to evaluate the performance of
the multimodal named entity recognition (MNER)
models and multimodal relation extraction (MRE)
models on both sets (Yu et al., 2020; Zheng et al.,
2021a).

Specifically, we denote the DMsplit =

{(Tk, Vk, Yk)}S1
k=1 and DUsplit = {(Tl, Vl, Yl)}S2

l=1,
respectively. The multimodal IE model is denoted
as fm and the unimodal IE model is denoted as
fu. The performances of models on both sets are
defined as follows:

vkm = Score({Yk, fm(Tk, Vk)}S1
k=1) (2)

vlm = Score({Yl, fm(Tl, Vl)}S2
l=1) (3)

vku = Score({Yk, fu(Tk)}S1
k=1) (4)

vlu = Score({Yl, fu(Tl)}S2
l=1) (5)

, where vkm and vlm are the performances of mul-
timodal IE model performed on DMsplit and DUsplit,
respectively. vku and vlu are the performances of
unimodal IE model performed onDMsplit andDUsplit,
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respectively. Finally, the reward R is calculated as
follows:

R = α ∗ (vkm − vku) + (1− α) ∗ (vlu − vlm) (6)

where α ∈ (0, 1) is the hyperparameter.

3.3 Training Algorithm
Finally, we introduce how to train the data discrim-
inator. Inspired by (Yoon et al., 2020), the training
process of the data discriminator is shown in Algo-
rithm 1.

Algorithm 1 The Training Algorithm for the Data
Discriminator.
Inputs: Training set D, batch size Bs, hyperpa-
rameter of reward function α, learning rate of data
discriminator η
Output: The data discriminator gϕ.
1: Shuffle D and divide it into Dmodel and Dsplit
2: Train multimodal model and unimodal model

using Dmodel and freeze their parameters
3: Initialize parameters ϕ for the data discrimina-

tor gϕ
4: while until convergence do
5: Randomly sample a batch of data DBsplit =

{(Ti, Vi, Yi)}Bsi=1 from Dsplit
6: for i = 1 to Bs do
7: Calculate probability pi = gϕ(Ti, Vi) ac-

cording to Equation 1
8: end for
9: Obtain DMsplit, DUsplit by Bernoulli sampling

10: Calculate reward according to Equation 6
11: Update ϕ according to Equation 7
12: end while

We first shuffle the training set D and divide it
into two parts. One is theDmodel, which is used for
training the multimodal IE model and the unimodal
IE model, and the other is Dsplit, which is used for
training the data discriminator. Then we train the
multimodal IE model and the unimodal IE model
by using the Dmodel and freeze their parameters.

After that, we initialize the parameters ϕ of the
data discriminator gϕ. For each iteration, we ran-
domly select a batch of data DBsplit from the Dsplit,
and use the data discriminator to predict the prob-
ability that each data is more suitable for the mul-
timodal IE models pi. Based on the probabilities,
we divide the Dsplit into the DMsplit and DUsplit by
using the Bernoulli sampling.

Then, we calculate the reward R according to
Equation 6, and update the parameters of our data

discriminator as follows:

ϕ← ϕ+η ·R ·▽ϕ log πϕ(DB2 , (d1, ..., dBs)) (7)

πϕ(DB2 , (d1, ..., dBs)) =
Bs∏

j=1

(pj)
dj · (1− pj)1−dj

(8)
, where η is learning rate, πϕ(DB2 , (d1, ..., dBs))
is the probability that the selection vector
(d1, ..., dBs) is selected based on gϕ and dj =
{0, 1} is an indicator variable, where 1 represents
to put the data into the multimodal setDMsplit, while
0 represents to put the data into the unimodal set
DUsplit.

4 Experiment

To validate the effectiveness of our data splitting
strategy, we conducted experiments on two dif-
ferent multimodal information extraction tasks,
namely multimodal named entity recognition
(MNER) and multimodal relation extraction (MRE).

4.1 Dataset
4.1.1 MNER Datasets
For the MNER task, we use two widely used
datasets, Twitter2015 (Zhang et al., 2018) and
Twitter2017 (Lu et al., 2018), which are col-
lected from Twitter. Each tweet contains a text-
image pair and the text may contain zero or more
named entities. There are four types of entities: Per-
son (PER), Organization (ORG), Location (LOC)
and others (MISC). We use the pre-processed
datasets provided by Yu et al. (2020) 2. In to-
tal, there are 4,000/1,000/3,357 and 3,373/723/723
sentences in train/development/test set contained
in Twitter2015 and Twitter2017, respec-
tively.

4.1.2 MRE Datasets
For the MRE task, we use the MNRE 3

dataset (Zheng et al., 2021a), which is also col-
lected from Twitter. It contains 9,201 sentences
and 15,485 entity pairs with 23 types of relations.
In total, there are 12,247/1,624/1,614 entity pairs
in train/development/test set, respectively.

4.2 Metrics
We use the micro precision (P), recall (R) and F1
score (F1) to evaluate the performance of both the

2https://github.com/jefferyYu/UMT
3https://github.com/thecharm/Mega
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MNER models and the MRE models, which are
widely used in recent MNER (Moon et al., 2018;
Zhang et al., 2018; Lu et al., 2018; Yu et al., 2020;
Chen et al., 2021) and MRE (Zheng et al., 2021a,b)
works.

4.3 Parameter Settings

We conduct all the experiments on NVIDIA GTX
2080 Ti GPUs with PyTorch 1.7.1. The parame-
ter settings of our framework are as follows:

• We randomly split the training data into
Dmodel (80%) and Dsplit (20%).

• For the MNER task, we use UMT-BERT-
CRF (Yu et al., 2020) and MAF (Xu et al.,
2022) as the multimodal model, respectively.
And use BERT-CRF as the unimodal model,
which consists of BERT (Devlin et al., 2018)
and CRF (John D. Lafferty, 2001). We use
the same hyperparameters provided by Yu
et al. (2020) to train both the UMT-BERT-CRF
model and the BERT-CRF model.

• For the MRE task, we use MEGA (Zheng
et al., 2021a) as the multimodal model and
MTB (Soares et al., 2019) as the unimodal
model. We use the same hyperparameters
provided by Zheng et al. (2021a) to train the
MEGA model and follow OpenNRE 4 to train
the MTB model.

• For the data discriminator, we use CLIP32
5

to obtain the representations of text and im-
ages in the same latent space.

• For training data discriminator, we use grid
search in the development set to find the learn-
ing rate of data discriminator η within [1e−5,
1e−4], the batch size Bs within [128, 512],
and the hyperparameter of reward function α
within [0.1, 0.9] in Algorithm 1.

• All models use mini-batch backpropagation
for training and use adam optimizer (Kingma
and Ba, 2015) for optimization.

4.4 Evaluation

We first train the multimodal and unimodal mod-
els on the full training set and then evaluate the
performance of different models on three test sets,

4https://github.com/thunlp/OpenNRE
5https://huggingface.co/openai/clip-vit-base-patch32

which consists of a Unimodal test set and a Mul-
timodal test set and the Full test set. Specifically,
the unimodal and multimodal test sets are obtained
by using our data discriminator on the Full test
set. To evaluate our method on the Full test set,
as mentioned above, we combine the predictions
of the unimodal model on the Unimodal test set
and the predictions of the multimodal model on
the Multimodal test set as the predictions of our
method.

4.5 Performance Comparison
We compare the performance on both the MRE and
MNER tasks, the comparison results are shown in
Table 1, Table 2 and Table 3, respectively.

Table 1: Performance Comparison on MRE Task.

Model Test Set P R F1

MTB
Unimodal 60.60 71.43 65.57
Multimodal 60.68 64.64 62.60

Full 60.65 66.72 63.54

MEGA
Unimodal 64.88 55.61 59.89

Multimodal 70.45 62.84 66.43
Full 68.79 60.63 64.45

Ours Full 66.83 65.47 66.14

Specifically, we first compare the performance
of each model on different test sets in the MRE
task. As shown in Table 1, the unimodal relation
extraction model MTB, performs the best on the
Unimodal test set and the worst on the Multimodal
test set. For the multimodal relation extraction
model MEGA, it performs the best on the Multi-
modal test set and the worst on the Unimodal test
set. We perform MTB on Unimodal test set and
MEGA on Multimodal test set as our MRE method
on Full test set. Compared to the performance
(F1) of the other two models on the Full test set,
our method achieves the best performance, beating
the state-of-the-art MRE model (MEGA) by 1.69
points. This shows that our data discriminator can
effectively split the data, where the Unimodal test
set is indeed more suitable for unimodal models
and the Multimodal test set is indeed more suitable
for multimodal models and the prediction results
of combining the two models on their suitable data
can have better performance.

Then, we compare the performance of each
model on different test sets in the MNER task.
As shown in Table 2 and Table 3, we obtain the
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Table 2: Performance Comparison on MNER Task (UMT-BERT-CRF as the multimodal model).

Model Test Set Twitter2015 Twitter2017
P R F1 P R F1

BERT-CRF
Unimodal 71.35 75.32 73.28 85.58 85.13 85.36
Multimodal 71.23 73.99 72.58 83.68 81.56 82.60

Full 71.29 74.63 72.92 84.76 83.57 84.16

UMT-BERT-CRF
Unimodal 70.50 75.12 72.73 84.21 83.55 83.88

Multimodal 72.50 74.95 73.71 84.92 85.79 85.35
Full 71.50 74.96 73.19 84.74 84.68 84.71

Ours Full 71.94 75.13 73.50 85.29 85.42 85.36

Table 3: Performance Comparison on MNER Task (MAF as the multimodal model).

Model Test Set Twitter2015 Twitter2017
P R F1 P R F1

BERT-CRF
Unimodal 71.35 75.31 73.28 85.71 84.03 84.87
Multimodal 71.24 74.00 72.60 84.42 83.40 83.91

Full 71.29 74.63 72.92 84.76 83.57 84.16

MAF
Unimodal 71.13 75.39 73.20 84.99 84.03 84.51

Multimodal 72.53 74.70 73.60 86.44 87.22 86.83
Full 71.85 75.04 73.41 86.06 86.38 86.22

Ours Full 71.96 75.00 73.44 86.25 86.38 86.32

same conclusions as for the MRE task, i.e., the
unimodal named entity recognition model BERT-
CRF performs the best on the Unimodal test set
and the worst on the Multimodal test set, and the
multimodal named entity recognition model UMT-
BERT-CRF and MAF perform the best on the Mul-
timodal test set and the worst on the Unimodal
test set. We also perform BERT-CRF on Unimodal
test set and UMT-BERT-CRF or MAF on Multi-
modal test set as our MNER method on Full test set.
When the multimodal model is UMT-BERT-CRF,
our method outperforms it by 0.31 and 0.65 points
on Twitter2015 and Twitter2017, respec-
tively. Our method also outperforms it when the
multimodal model is MAF, which illustrates that
the multimodal model in our method can be re-
placed by any existing multimodal model, includ-
ing the one that already considers the mismatched
image problem. But the improvement is smaller
compared to using UMT-BERT-CRF as a multi-
modal model because (1) we only try a few differ-
ent sets of hyperparameters on MAF and (2) MAF
considers the problem of mismatched image and
has a strong robustness to the mismatched image.

4.6 Case Study

To show the effectiveness of our data discrimina-
tor more intuitively, we perform the data discrim-
inator on the test set of TWITTER-2017 and se-
lect six samples for analysis based on the probabil-
ity predicted by the data discriminator. Note that
the data discriminator puts data with probability
greater than 0.5 into the multimodal set and data
with probability less than or equal to 0.5 into the
unimodal set. Specifically, Fig. 3(a) and Fig. 3(b)
show the two samples with the lowest probability,
Fig. 3(c) and Fig. 3(d) show the two samples with
the highest probability, and Fig. 3(e) and Fig. 3(f)
show the two samples with the medium probability.

Firstly, for the two samples with the lowest prob-
ability, we can observe that there is enough infor-
mation in their text to recognize the named entities
while the images do not provide any useful informa-
tion to help identify the entities in the text. Specif-
ically, in Fig. 3(a), the unimodal NER model can
easily recognize from the text that Southside
Festival is a named entity and the type is MISC
through the capitalization of the two words and the
meaning of the words themselves, and there is no
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information in the image related to Southside
Festival to help identify named entities. In
Fig. 3(b), the unimodal NER model can easily rec-
ognize from the text that LA and NY are named
entities and their type is LOC through all capitals
of the words and the preposition in. The main part
of the image is a dragonfly, which cannot help iden-
tify named entities. In summary, the two samples
with the lowest probability are suitable for the uni-
modal NER model, and the use of the multimodal
NER model will result in poor results due to the
introduction of image noise.

(a) Glad they’re putting
on more seats for the
[Southside Festival
MISC] this year

(b) This beautiful creature
visited me in [LA LOC]
yesterday - a few hours af-
ter a dragonfly visited my
son in [NY LOC]

(c) Memorable quotes
from [Harry Potter and
the Philosopher’s Stone
MISC].

(d) [jjong PER] is wearing
[R.Shemiste ORG] F/W
2016 inspired by sociopo-
litical activist

(e) Take a look at our
new look on -line #Football
store here:

(f) Work through your con-
flicts with the student om-
buds!

Figure 3: Case Study on TWITTER-2017.

Secondly, for the two samples with the highest
probability, we can observe that there is not enough
information in their text to recognize the named en-
tities. Specifically, in Fig. 3(c), Harry Potter
and the Philosopher’s Stone in the
text is the name of a movie and should be classified
as MISC, but it may also be divided into two parts,

Harry Potter and the Philosopher’s
Stone, where Harry Potter is classified as
PER. Obviously, there is ambiguity in using only
text information, so additional image information
is required. In Fig. 3(d), R.Shemiste is usually
recognized as the name of a person, with the help
of the image, we can infer that it is a brand name.
In summary, the two samples with the highest prob-
ability are suitable for the multimodal NER model,
and the use of the unimodal NER model will re-
sult in poor results due to the lack of sufficient
information.

Finally, for the two medium probability samples,
we find an interesting phenomenon: their images
are composed of text and backgrounds. This phe-
nomenon is very common in medium probability
samples. The image encoder neither obtains use-
ful information from these images nor introduces
noise. Therefore, the multimodal NER model de-
generates into a unimodal NER model. Therefore,
it does not matter whether using a multimodal NER
model or a unimodal model.

5 Related Work

In this section, we review and summarize three
multimodal IE tasks, namely multimodal named
entity recognition, multimodal sentiment detection
and multimodal relation extraction.

For the multimodal named entity recognition
task, at the earliest, Moon et al. (2018) inputs the
whole image into a convolutional neural network
(e.g. ResNet) to obtain a representation of the
whole image to establish the relationship between
the text and the image. Since only some regions in
the image are useful for recognizing entities, (Lu
et al., 2018; Zhang et al., 2018; Yu et al., 2020;
Chen et al., 2021; Sun et al., 2021; Xu et al., 2022)
divide the image into multiple regions, obtained
a representation of the image regions and estab-
lish a relationship between the image regions and
each word in the text. Next, since the image and
text representations come from different encoders,
there is a semantic gap that affects the establish-
ment of image and text relationships. To solve the
above problem, Xu et al. (2022) proposes an align-
ment and matching framework to make the text
and image representations more consistent by con-
trastive learning. More directly, (Wu et al., 2020;
Wang et al., 2021) extract the semantic information
of the image directly to represent the image: Wu
et al. (2020) extracts the objects in the image by

1862



the object detection model and uses the labels of
the objects (e.g., apple, trophy) to represent the
image, while (Wang et al., 2021) uses the image
captioning model and the OCR model in addition
to the object detection model to obtain the overall
semantic information of the image and the textual
information in the image, respectively. In addi-
tion, (Sun et al., 2021; Xu et al., 2022) noticed that
the mismatched image can impair the prediction
of multimodal models and both propose a method
to calculate the image and text similarity scores to
filter the image information.

For the multimodal relation extraction task,
(Zheng et al., 2021b) first propose this task and
demonstrate that previous text-based relation ex-
traction models perform poorly in social media
texts, and that incorporating visual information
can help improve relation extraction model per-
formance. Subsequently, in order to be able to fully
exploit the relationships between objects in the im-
age and to establish the alignment of the image with
the text, Zheng et al. (2021a) use graph structure
information to align the relations between entities
in text and images and then uses image information
to supplement the missing semantic information.

For the multimodal sentiment detection task, Xu
et al. (2018) obtain the information more important
for sentiment by capturing the correlation between
text and images. Huang et al. (2018) use an adver-
sarial learning model to learn a joint multimodal
representation to combine text and image represen-
tations. Yang et al. (2021) use a novel graph neural
network based on the global characteristics that
encode different modalities to capture hidden rep-
resentations and learn multimodal representations.

However, current approaches overestimate the
significance of images. Although several works
(Sun et al., 2021; Xu et al., 2022) have proposed
methods to filter image information, they all use
the similarity scores of images and text to filter
the image information as a whole, more or less re-
taining some image information and not accurately
filtering out the noise in the images. Therefore,
we propose a general data splitting technique to
process different data using different models (i.e.,
multimodal model and unimodal model).

6 Conclusion

In this paper, we propose a general data splitting
strategy to divide the social media posts into two
sets so that these two sets can achieve better perfor-

mance under the information extraction models of
the corresponding modalities. The core component
is the data discriminator. Due to the lack of explicit
knowledge, we use reinforcement learning to train
the data discriminator. Experiments conducted on
two widely used multimodal named entity recogni-
tion datasets and a multimodal relation extraction
dataset show that our data discriminator can effec-
tively split the data and our proposed data split-
ting strategy for multimodal information extraction
achieves the best performance.
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Abstract

Being able to infer possible events related to
a specific target is critical to natural language
processing. One challenging task in this line
is event sequence prediction, which aims at
predicting a sequence of events given a goal.
Currently existing approach models this task
as a statistical induction problem, to predict
a sequence of events by exploring the simi-
larity between the given goal and the known
sequences of events. However, this statisti-
cal based approach is complex and predicts a
limited variety of events. At the same time
this approach ignores the rich knowledge of
external events that is important for predict-
ing event sequences. In this paper, in order
to predict more diverse events, we first refor-
mulate the event sequence prediction problem
as a sequence generation problem. Then to
leverage external event knowledge, we pro-
pose a three-stage model including augmen-
tation, retrieval and generation. Experimen-
tal results on the event sequence prediction
dataset show that our model outperforms exist-
ing methods, demonstrating the effectiveness
of the proposed model.

1 Introduction

Inferring events related to a specific target is one of
the capabilities pursued by natural language under-
standing, and it is also very helpful for other natural
language processing (NLP) tasks, such as event ex-
traction (Li et al., 2021), text summarization (Li
and Zhang, 2021) and discourse understanding (Nie
et al., 2019). A challenging task in this direction
is event sequence prediction. Specifically, given a
goal, the task aims to predict a sequence of events
that fits the goal. Figure 1 shows an example of
the event sequence prediction task. Given the goal
Buy a mobile phone, it is expected to predict an
event sequence, including four events Determine
the brand, Determine the price range, Select the
brand series and Pay the bill.

Buy a mobile
phone

Determine the
brand

Determine the
price range

Select the brand
series

Pay the bill

Event Sequence

Goal

Figure 1: An example of an event sequence prediction
task. Given the goal Buy a mobile phone, the predicted
event sequence contains four events.

Although event sequence prediction is useful for
many NLP tasks, it is currently understudied. Cur-
rently existing approach (Zhang et al., 2020) to this
task is based on statistical model that infers new
sequence of events by exploiting the similarity of
the given goal to known sequences of events. Al-
though experiments have shown that this approach
is effective, it still has two shortcomings.

First, a limited variety of events are predicted.
For example, when predicting the event sequence
with the goal Buying a mobile phone, the method
first collects the known event sequences with the
goal Buying a house, Buying a book, Repairing a
mobile phone, Selling a mobile phone, etc., and
then predicts a new event sequence based on these
event sequences. The events in the predicted se-
quence of events are similar to the events in the
known sequence of events, or roughly, different
combinations between these known events. There-
fore, the types of events predicted by this method
are limited.

Second, rich knowledge of external events is
ignored. This method predicts a new event se-
quence based on known event sequences. If the

1865



to-be-predicted event sequence differs greatly from
the existing ones, it is difficult to predict a satis-
factory event sequence. For example, if known
sequences of events have neither Create-related nor
Novel-related sequences of events, it is difficult to
generate a satisfactory sequence of events given
the goal Create a novel. At the same time, existing
work (Guan et al., 2020; Li et al., 2022) shows the
external event knowledge is helpful for natural lan-
guage understanding and text generation, because
these event knowledge bases contain rich common-
sense knowledge that indicates the relationship be-
tween events. Therefore, leveraging these external
event knowledge is important for event sequence
prediction tasks.

In this paper, we first reformulate event sequence
prediction as event sequence generation for the
problem of limited types of generated events. Sec-
ond, we propose a three-stage generation model
for the problem of ignoring external event knowl-
edge. As shown in Figure 2, our model consists of
three steps, 1) Augmentation: First we design two
pre-training tasks using the external event knowl-
edge base, and then train the generation model with
these two tasks. 2) Retrieval: Secondly, we match
several similar event sequences from the existing
event sequences through a given goal, and then
train a scoring model to select the most similar
event sequence. 3) Generation: Finally, we input
the given goal and the retrieved most similar event
sequences into the generation model to generate
event sequence that meet the given goal. The exper-
imental results show that our method outperforms
previous methods, and the ablation study also ver-
ify the effectiveness of each module. In summary,
our contributions in this paper are as follows:

• We reformulate the event sequence prediction
task as a sequence generation task, which can
generate more diverse events than method that
infers new sequence of events from known
events.

• We propose a three-stage augmentation, re-
trieval, generation model to tackle the event
sequence prediction task, which can leverage
external event knowledge to better generate
sequence of events.

• Experiments and detailed analysis show that
our model outperforms previous methods,
proving its effectiveness.

2 Our Framework

Given a goal G, the event sequence predic-
tion task needs to predict an event sequence
(e1, e2, ..., ei, ..., en) that fits the goal, where ei is
the predicted i-th event. Here both the goal G and
the event ei are mainly composed of a verb and
an object. Figure 2 shows the framework of our
model which consists of three modules, namely
augmentation, retrieval and generation. Below we
introduce these modules separately.

2.1 Augmentation

In the augmentation module, we utilize the external
event knowledge base ATOMIC 1 and design two
tasks to pretrain our generation model.

To benefit the event sequence prediction task
as much as possible, we expect the data of the
external event knowledge base to be as similar as
possible to the data of event sequence prediction,
and we choose ATOMIC as a result. ATOMIC
is a commonsense knowledge base with everyday
knowledge tuples about entities and events in the
form of (head, relation, tail) (Hwang et al., 2021).
For example, the knowledge tuple (move towards
the door, isBefore, run out of the room) indicates
that the head event move towards the door occurs
before the tail event run out of the room.

Using ATOMIC, we propose two pre-training
tasks that match the event sequence prediction ob-
jective as closely as possible, one is Tail Event
Generation (TG) and the other is Order Recovery
(OR). Specifically, given a head event eh, the TG
task aims to generate a tail event et corresponding
to eh. The TG task empowers the generation model
to generate events related to a given event, just as
the model generates events related to a given goal
in event sequence prediction task. Because the TG
task generates only one event, it fails to capture the
relationship between different generated events. So
we propose the OR task, hoping to give the model
the ability to distinguish the order between events.
Specifically, given a head event eh and its corre-
sponding tail event et (Here we assume that eh
happens before et.), regardless of whether the input
is ordered pair (eh, et) or reversed pair (et, eh), we
want the model to output ordered pair (eh, et).

Then we mix the data pairs of TG task with the
data pairs of OR task for training. Specifically, for
the OR task, given (eh, et), we take (et, eh) as in-

1https://mosaickg-graph-viz.apps.
allenai.org/kg_atomic2020
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Known event
sequences

Lexical
Retriever

Goal

s1 
s2 
... 
sm

Generation 
Model

Generation 
Model

External event 
knowledge

eh

eh

et

et eteh

Scoring
Retriever

s1 
s2 
... 
sk

e1 
e2 
... 
eneteh

1.Augmentation 2.Retrieval 3.Generation

Figure 2: The framework of our model which consists of three modules, namely augmentation, retrieval and
generation. Here eh and et represent the head and tail events in the external event knowledge base, si and ei
denote the i-th event sequence and the generated i-th event, respectively.

put with probability p and (eh, et) with probability
1 − p. We adopt the pre-trained encoder-decoder
model T5-base (Raffel et al., 2021) as our base
model and these mixed data pairs are used to train
it with the following generation loss:

La = −
|y|∑

t=1

log p (yt | x, y<t) (1)

where (x, y) is the input-output pair, which may be
(eh, et), [(et, eh), (eh, et)] or [(eh, et), (eh, et)].

Because not all relations in ATOMIC are suit-
able for training our two tasks, we only use some
relations in ATOMIC. Specifically, for the TG task,
we use the HasSubEvent relation (The tail event is
a step within the larger head event.) and the xNeed
relation (The tail event is the condition of the head
event.). For the OR task, we use the isBefore rela-
tion (The head event happens before the tail event.)
and the isAfter relation (The head event happens af-
ter the tail event.). Table 1 shows the relations used
by the two tasks and the corresponding examples.

At the same time, we point out that it is also
possible to choose other event knowledge bases and
design other pre-training tasks for event sequence
prediction, which we leave as future work.

2.2 Retrieval

When predicting an event sequence that fits a given
goal, it is helpful to refer to known event sequences
related to the given goal. Therefore, in the retrieval
module, we first use the lexical retriever to roughly
retrievem event sequences related to the given goal
from the known event sequences, and then use the

scoring retriever to further retrieve k most relevant
event sequences from the m event sequences.

2.2.1 Lexical Retriever
Given a goal G = (v, o), where v is the verb of
the goal and o is the object of the goal. The lexical
retriever returns event sequences whose goals con-
tain either v or o. We denote these returned event
sequences as {s1, s2, · · · , sm} , and the scoring
retriever will then further select from these event
sequences the ones most similar to the given goal.

2.2.2 Scoring Retriever
The scoring retriever scores each event sequence
returned by the lexical retriever, and the top-k with
the highest scores are used as the final retrieved
event sequences. We train a BERT (Devlin et al.,
2019) model as our scorer. Specifically, for each
goal G, we take it and its corresponding event se-
quence as a positive pair. At the same time, we
randomly sample an event sequence under another
goal from the training set to form a negative sample
pair with G.

Given a goal G and an event process si, we first
concatenate the two as input to BERT:

X = [CLS] G [SEP ] si [SEP ] (2)

here [CLS] and [SEP ] are BERT’s classification
token and separation token, respectively.

We feed X into BERT and then feed the hid-
den layer vector h corresponding to CLS into a
feedforward network:

s = σ(Wh+ b) (3)
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Pretraining Task Relation Head Tail

Tail Event Generation
HasSubEvent play joker shuffle cards
xNeed maintain good health avoid cigarettes

Order Recovery
isBefore go bike riding take some photos of the scenery
isAfter move towards the door get up from the table

Table 1: The relations used by the two pretraining tasks and the corresponding examples.

here the σ is the sigmoid function. We train the
scorer by the cross entropy loss for binary clas-
sification. The s is taken as the score for each
event sequence returned by the lexical retrieval.
We obtain the top-k event sequences with the high-
est scores as the final retrieval result, denoted as
{s1, s2, · · · , sk}.

2.3 Generation
In the generation module, we utilize the given goal
and the event sequences retrieved by the retrieval
module to generate the event sequence that matches
the given goal.

Our generation model is also based on the T5-
base model, sharing parameters with the T5 model
in the augmentation module. Given the target G,
we concatenate it with the retrieved sequence of
events {s1, s2, · · · , sk} as the input to the genera-
tion model and the sequence of events correspond-
ing to G as the output y, and then optimize the
following generation loss:

Lg = −
|y|∑

t=1

log p (yt | G, {s1, s2, · · · , sk}, y<t)

(4)

3 Experiments

3.1 Settings
3.1.1 Dataset and Metrics
For the event sequence prediction task, we use the
dataset released in Zhang et al. (2020). This dataset
is based on WikiHow 2, an online wiki-style pub-
lication containing many sequences of events that
accomplish specific goals. Following Zhang et al.
(2020), the numbers of training, validation and test
sets are 12,185, 1,316 and 1,316, respectively.

For the two pre-training tasks of tail event gener-
ation and order recovery, as mentioned earlier, we
use the data corresponding to the four relations Has-
SubEvent, xNeed, isBefore and isAfter in ATOMIC.
Because pre-training does not require test data, we

2https://www.wikihow.com/Main-Page

end up with 152,673 and 16,964 data for training
and validation sets, respectively.

We use the same metrics as the work (Zhang
et al., 2020): E-ROUGE1 and E-ROUGE2. Similar
to the commonly used ROUGE1 and ROUGE2, E-
ROUGE1 and E-ROUGE2 calculate the percentage
of the events or ordered event pairs in the predicted
event sequence which are covered by the reference
event sequences. Two covering standards String
Match and Hypernym Allowed are used to evaluate
the results. The former indicates that the words
in the predicted event or event pair should be the
same as in the references. The latter means that the
hypernyms of the words in the predicted event or
event pair should be the same as the hypernyms of
the words in the references. Finally, two kinds of
settings are included in the evaluation. One is basic
setting: evaluate events based on verbs. The other
is advanced setting: evaluate events based on all
words.

3.1.2 Baselines
We compare with the following baseline models,
which are used in Zhang et al. (2020):

• Random. Given a goal, the event sequence
is randomly generated. This can be regarded
as a lower bound on the performance of event
sequence prediction.

• GRU (Sutskever et al., 2014). This is based
on the GRU model, but the generation unit
is changed from words to events. Events are
represented by the pre-trained word embed-
ding GloVe (Pennington et al., 2014) or the
language model RoBERTa-base (Liu et al.,
2019), denoted as GRU (GloVe) and GRU
(RoBERTa) respectively.

• Top one process. Given a goal, such methods
take the most similar sequence of events as the
predicted sequence of events. Three methods
for measuring similarity are used here, namely
token-level Jaccard coefficient, cosine similar-
ity based on GloVe representations and cosine
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(a) Basic Setting (evaluate events based on verbs)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
Random 2.9165 0.4664 23.5873 8.1089
GRU (GloVe) 5.0323 1.4965 27.8710 13.0946
GRU (RoBERTa) 4.5455 0.4831 28.0032 12.8502
Top one process (Jaccard) 8.8589 5.1000 28.6548 14.6231
Top one process (GloVe) 9.8797 5.1452 29.4203 13.6001
Top one process (RoBERTa) 9.2599 4.7390 30.6599 15.8417
APSI 14.8013 6.6045 36.1648 19.2418
Ours 24.9551 11.2535 46.1999 23.5655
Human 29.0189 15.2542 50.4647 29.4423

(b) Advanced Setting (evaluate events based on all words)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
Random 0.0000 0.0000 0.5104 0.0903
GRU (GloVe) 0.1935 0.0534 0.9677 0.1069
GRU (RoBERTa) 0.4870 0.0000 1.7857 0.2899
Top one process (Jaccard) 0.6562 0.2257 2.4797 0.5867
Top one process (GloVe) 0.8750 0.2106 2.8801 0.7372
Top one process (RoBERTa) 0.9479 0.3009 3.2811 0.9929
APSI 3.4988 0.4513 6.1611 1.1885
Ours 6.0443 1.1142 10.7720 2.4513
Human 11.6351 5.5905 18.0034 8.2695

Table 2: Comparison of our method with the best previous methods. The best performance is shown in bold.

similarity based on RoBERTa representations,
which are denoted as Top one process (Jac-
card), Top one process (GloVe) and Top one
process (RoBERTa) respectively.

• APSI (Zhang et al., 2020). This is a statistical
model that exploits the similarity of the given
goal to known sequences of events to infer
new sequence of events.

• Human. Given a goal, the event sequence is
generated by human, which can be regarded as
an upper bound on the performance of event
sequence prediction.

3.1.3 Implementation Details
We use T5-base as the base model for the augmenta-
tion module and the generation module. The batch
size used in both modules is 32. The optimizer
used by both modules is AdamW (Loshchilov and
Hutter, 2018), and the learning rate is set to 1e-5.
In the augmentation module, the model is trained
for 15 epochs, and the number is 30 in the genera-
tion module. We use BERT-base as the base model

for the scoring retriever, AdamW is chosen as the
optimizer and the learning rate is set to 5e-5. We
set the batch size to 64 and train the BERT-base
model for 3 epochs. We experimentally choose the
number k of event sequences retrieved by the scor-
ing retriever to be 2. Both T5-base and BERT-base
models are implemented through the Huggingface
Transformer library (Wolf et al., 2020).

3.2 Overall Results

The overall results are shown in Table 2, from
which we can see:

(1) Our model outperforms previous methods in
both basic and advanced settings, both for String
Match or Hypernym Allowed. This demonstrates
that our method can generate event sequences that
are more in line with the given goal.

(2) The performance of all methods is inferior
to human performance, but the performance of our
proposed method is close to human performance.
The likely reason is that our method somewhat
mimics the human process of generating event se-
quences. Humans first learn knowledge related to
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(a) Basic Setting (evaluate events based on verbs)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
T5 21.4396 8.6654 44.1595 22.3597
T5+augmentation 21.6580 9.3587 44.9007 23.0440
T5+retrieval 23.0099 9.8411 45.0442 22.4762
Ours (T5+augmentation+retrieval) 24.9551 11.2535 46.1999 23.5655

(b) Advanced Setting (evaluate events based on all words)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
T5 5.4869 0.8742 9.8168 2.0505
T5+augmentation 5.6759 0.9442 10.3454 2.1537
T5+retrieval 5.8754 1.0814 10.6658 2.2291
Ours (T5+augmentation+retrieval) 6.0443 1.1142 10.7720 2.4513

Table 3: Ablation results on the test set of event sequence prediction. We use T5 as our base model.

event sequences. When given a goal, humans first
search for similar event sequences, and then use
these event sequences to generate event sequence
that matches the goal.

(3) When using Hypernym Allowed instead of
String Match, performance is greatly improved in
both settings. The reason is that it is easier to pre-
dict similar words than to predict the same words
to the answer. The better performance of our model
over the previous methods on both String Match
and Hypernym Allowed shows that our method is
more able to generate accurate events, or at least,
our model is more able to generate events simi-
lar to the answer than the previous methods. We
also observe that the performance of the model in
the advanced setting is inferior to that in the basic
setting, suggesting that it is easier for the model
to correctly predict the verb in an event than to
correctly predict the entire event.

3.3 Ablation Study

Here we conduct ablation experiments to investi-
gate the effect of various modules of our method.
The results are shown in Table 3, from which we
can observe:

(1) Our model (T5+augmentation+retrieval) out-
performs the base T5 model on all metrics in both
basic and advanced settings, indicating that the
introduction of augmentation and retrieval mod-
ules can help improve the performance of event
sequence prediction.

(2) When the basic model T5 is added with
the augmentation module, the performance of the

model in various metrics is also improved. This
shows that the introduction of external event knowl-
edge is helpful for event sequence prediction. By
endowing the model the ability to generate relevant
events and capture the relationship between events
by the two pre-training tasks, we successfully inject
external knowledge into the model.

(3) After adding the retrieval module, the per-
formance of the base model T5 is improved on all
metrics. This illustrates the importance of referring
to known similar event sequences when generating
event sequence that meets a given goal. Although
large-scale pre-trained language models have been
shown to possess some general world knowledge,
it is necessary to introduce specific event knowl-
edge by referring to known event sequences when
generating new event sequence.

3.4 Effect of Pretraining Tasks

Here we study the effect of the two pre-training
tasks Tail Event Generation (TG) and Order Recov-
ery (OR). The results are shown in Table 4, from
which we can see:

(1) Whether adding only Tail Event Generation
or only Oder Recovery pre-training tasks, the per-
formance of the model improves over models that
do not utilize pre-training tasks. This suggests that
both tasks can endow the model with the ability to
facilitate event sequence prediction by implicitly
injecting external event knowledge into the model.

(2) When two pre-training tasks are added at the
same time, the performance of the model is further
improved. This shows that the two pre-training
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(a) Basic Setting (evaluate events based on verbs)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
No pretraining 23.0099 9.8411 45.0442 22.4762
Only Tail Event Generation 24.2118 10.8155 46.0440 23.5396
Only Order Recovery 24.9415 9.9171 45.0969 22.7561
Both 24.9551 11.2535 46.1999 23.5655

(b) Advanced Setting (evaluate events based on all words)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2
No pretraining 5.8754 1.0814 10.6658 2.2291
Only Tail Event Generation 5.9299 1.1011 10.6725 2.3762
Only Order Recovery 6.0424 1.0905 10.6745 2.4341
Both 6.0443 1.1142 10.7720 2.4513

Table 4: The effect of the two pre-training tasks Tail Event Generation (TG) and Order Recovery (OR). No pre-
training means only the base model with the retrieval module is used.
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Figure 3: The effect of the lexical retriever and scor-
ing retriever. The E1_Str_Bas represents E-ROUGE1
of String Match in the basic setting, and E2_Hyp_Adv
represents E-ROUGE2 of Hypernym Allowed in the ad-
vanced setting. Other abbreviations have similar mean-
ings.

tasks can coexist harmoniously, and at the same
time endow the model with the ability to generate
related events and capture the relationship between
events, thereby jointly helping the event sequence
generation.

3.5 Impact of Retrievers

Here we study the effect of the lexical retriever and
scoring retriever in the retrieval module. When only
the lexical retriever is used, we randomly select k
event sequences from the results returned by the
lexical retriever as the final retrieval result. The
experimental results are shown in Figure 3, from

which we can observe:

(1) When only the lexical retriever is used, the
performance is improved compared to without the
retrieval module. This shows that when generating
event sequences, it is helpful to introduce specific
event knowledge, i.e., existing event sequences,
even if these event sequences are only related to a
certain extent.

(2) When a scoring retriever is added, the per-
formance of the model is further improved com-
pared to using only the lexical retriever. This illus-
trates the necessity of using a scorer to select the
sequences of events most similar to a given goal
from the related sequences of events. So how to
design a better scorer is an important issue, which
we leave as future work.

3.6 Case Study

Figure 4 lists three examples of event sequences
generated by our model and their corresponding
answer event sequences. For the first example,
two events Open App and Delete Contact in the
sequence generated by our model are the same as
the corresponding events in the answer sequence.
Another event Tap Icon, although not the same as
event Select Contact in the answer, expresses a
similar meaning. This shows that our model can
generate new event types. A similar situation exists
for the other two examples.
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Delete Contact
Open App, Select Contact, Delete Contact. 

Open App, Tap Icon, Delete Contact.

Make Oven Chicken
Combine Ingredient, Leave to Simmer, Set Sauce.

Prepare Chicken, Cook Chicken, Grill Chicken.

Find IP Address
Open Terminal, Use Command, Copy Address.

Open Terminal, Enter Command.

Goal Answer generatedand event sequence.

Figure 4: A comparison of the answer event sequence with the event sequence generated by our model.

4 Related Work

4.1 Script Event Prediction

Script event prediction aims to predict a correct
subsequent event from a candidate list, given an
ordered event sequence. The task is first proposed
by Chambers and Jurafsky (2008), with a statistical
model to predict the subsequent event by learn-
ing the cooccurrence between events. Neural net-
works are used in recent studies for script event
prediction. In Pichotta and Mooney (2016), they
shows that LSTM-based model outperforms previ-
ous cooccurrence-based models for script event pre-
diction. A neural network is proposed in Granroth-
Wilding and Clark (2016) which can learn word
embedding and composition function simultane-
ously. To better model relatedness between events,
Li et al. (2018) treats event chain as a sub-graph
and leverage recurrent networks to capture the re-
latedness for predicting the event. The model in Lv
et al. (2020) integrates external event knowledge
and designs three methods to predict the subse-
quent event. A Transformer-based model is pro-
posed in Bai et al. (2021) which integrates deep
event-level and script-level information for script
event prediction. To deal with the data insufficiency
problem, Zhou et al. (2021) proposes a multi-task
self-supervised model for script event prediction.
Compared to script event prediction, the event se-
quence prediction considered in this paper is more
challenging because multiple events need to be pre-
dicted instead of one, and there is no candidate list
of events like script event prediction.

4.2 Commonsense Knowledge

Commonsense knowledge is an important resource
for artificial intelligence, and it is also helpful for

many natural language processing tasks, such as
reading comprehension, question answering, and
text generation. For reading comprehension, Mi-
haylov and Frank (2018) introduces a neural read-
ing comprehension model, which leverages a key-
value memory to integrate external commonsense
knowledge. In Yang et al. (2019), attention mech-
anism is employed to select knowledge from ex-
ternal knowledge bases, which is then fused with
BERT to do knowledge-aware predictions. For
question answering, Ma et al. (2021) proposes a
neuro-symbolic framework for zero-shot question
answering, to transform knowledge resources into
an effective form for pretraining models. A model
containing relevance scoring and joint reasoning is
proposed in Yasunaga et al. (2021) to form a joint
graph connecting the QA context and KG, whose
representations are updated through a graph neural
network. For text generation, Guan et al. (2020)
proposes a knowledge-enhanced model based on
multi-task learning for commonsense story genera-
tion. Li et al. (2022) proposes a two-stage method
to explicitly arrange the ensuing events in open-
ended text generation. In this paper, we design
two pre-training tasks to implicitly inject external
knowledge into the model to help the model gener-
ate event sequence that meets a given goal.

5 Conclusion

In this paper, we first reformulate the event se-
quence prediction task as an event sequence gen-
eration task, which can generate a wider variety
of events. We then propose a three-stage model
including augmentation, retrieval, and generation
in order to leverage an external event knowledge
base to generate event sequences. Finally, exper-
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imental results show that our model outperforms
existing methods, demonstrating the effectiveness
of the proposed method.

Acknowledgements

This work is supported by the National Natu-
ral Science Foundation of China (No.U1936207,
No.61976211, No.62176257). This work is sup-
ported by the Key Research Program of the Chi-
nese Academy of Sciences (Grant NO.ZDBS-SSW-
JSC006), the independent research project of Na-
tional Laboratory of Pattern Recognition (No.Z-
2018013) and the Youth Innovation Promotion As-
sociation CAS.

References
Long Bai, Saiping Guan, Jiafeng Guo, Zixuan Li, Xiao-

long Jin, and Xueqi Cheng. 2021. Integrating deep
event-level and script-level information for script
event prediction. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9869–9878.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of ACL-08: HLT, pages 789–797.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 30.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93–108.

Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. On symbolic and neural common-
sense knowledge graphs.

Qintong Li, Piji Li, Wei Bi, Zhaochun Ren, Yuxuan Lai,
and Lingpeng Kong. 2022. Event transition plan-
ning for open-ended text generation. arXiv preprint
arXiv:2204.09453.

Quanzhi Li and Qiong Zhang. 2021. Twitter event sum-
marization by exploiting semantic terms and graph

network. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pages 15347–
15354.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-
level event argument extraction by conditional gen-
eration. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 894–908.

Zhongyang Li, Xiao Ding, and Ting Liu. 2018. Con-
structing narrative event evolutionary graph for
script event prediction. In Proceedings of the 27th
International Joint Conference on Artificial Intelli-
gence, pages 4201–4207.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Shangwen Lv, Fuqing Zhu, and Songlin Hu. 2020. Inte-
grating external event knowledge for script learning.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 306–315.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan
Bisk, Eric Nyberg, and Alessandro Oltramari. 2021.
Knowledge-driven data construction for zero-shot
evaluation in commonsense question answering. In
35th AAAI Conference on Artificial Intelligence.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 821–832.

Allen Nie, Erin Bennett, and Noah Goodman. 2019.
Dissent: Learning sentence representations from ex-
plicit discourse relations. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4497–4510.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Karl Pichotta and Raymond Mooney. 2016. Learn-
ing statistical scripts with lstm recurrent neural net-
works. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2021. Exploring the limits
of transfer learning with a unified text-to-text trans-
former (2019). arXiv preprint arXiv:1910.10683.

1873



Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2020. Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the
2020 conference on empirical methods in natural
language processing: system demonstrations, pages
38–45.

An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu,
Hua Wu, Qiaoqiao She, and Sujian Li. 2019. En-
hancing pre-trained language representations with
rich knowledge for machine reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2346–2357, Florence, Italy. Association for Compu-
tational Linguistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-
lut, Percy Liang, and Jure Leskovec. 2021. Qa-
gnn: Reasoning with language models and knowl-
edge graphs for question answering. arXiv preprint
arXiv:2104.06378.

Hongming Zhang, Muhao Chen, Haoyu Wang,
Yangqiu Song, and Dan Roth. 2020. Analogous pro-
cess structure induction for sub-event sequence pre-
diction. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1541–1550.

Bo Zhou, Yubo Chen, Kang Liu, Jun Zhao, Jiexin Xu,
Xiaojian Jiang, and Jinlong Li. 2021. Multi-task
self-supervised learning for script event prediction.
In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 3662–3666.

1874



Proceedings of the 29th International Conference on Computational Linguistics, pages 1875–1884
October 12–17, 2022.

Generating Temporally-ordered Event Sequences via Event Optimal
Transport

Bo Zhou1,2, Yubo Chen1,2, Kang Liu1,2,4, Jun Zhao1,2,
Jiexin Xu3, Xiaojian Jiang3, Qiuxia Li3

1School of Artificial Intelligence, University of Chinese Academy of Sciences
2National Laboratory of Pattern Recognition, CASIA

3China Merchants Bank, 4Beijing Academy of Artificial Intelligence
{bo.zhou,yubo.chen,kliu,jzhao}@nlpr.ia.ac.cn
{jiexinx,jiangxiaojian,annielqx}@cmbchina.com

Abstract

Generating temporally-ordered event se-
quences in texts is important to natural
language processing. Two emerging tasks
in this direction are temporal event ordering
(rearranging the set of events to correct order)
and event infilling (generating an event at a
specified position). To tackle the two related
tasks, the existing method adopts a vanilla
sequence-to-sequence model via maximum
likelihood estimation (MLE). However,
applying this approach to these tasks will
cause two issues. One issue is that the MLE
loss emphasizes strict local alignment and
ignores the global semantics of the event.
The other issue is that the model adopts
a word-level objective to model events in
texts, failing to evaluate the predicted results
of the model from the perspective of event
sequence. To alleviate these issues, we present
a novel model to tackle the generation of
temporally-ordered event sequences via Event
Optimal Transport (EOT). First, we treat the
events in the sequence as modeling units and
explicitly extract the semantics of the events.
Second, to provide event sequence-level
evaluation of the predicted results of the
model, we directly match events in sequences.
Extensive experimental results show that our
approach outperforms previous models on all
evaluation datasets. In particular, the accuracy
is improved by 7.7%, and the Macro F1 is
improved by 7.2% on one of the datasets.

1 Introduction

Generating temporally-ordered event sequences in
texts is crucial to many artificial intelligence ap-
plications, such as discourse understanding (Nie
et al., 2019), dialog generation (Wu et al., 2018)
and stock prediction (Ding et al., 2016). Temporal
event ordering and event infilling are two challeng-
ing tasks in this line of work. The former refers
to the rearrangement of an unordered sequence of
events to an ordered sequence of events, and the

e3 (a) Ordering Task:

 (b) Infilling Task:

 (c) Unified Model:

e2 e4 e1 e2 e3

e1 e2 e1 e2 e3

e1 e2 e3e2 e1

e1:The British Prime Minister proposed a referendum.
e2:Britain held a referendum on Brexit.
e3:The referendum triggered panic in the stock market.
e4:Investors sold stocks.

e4

e4

e4

e1

e4

e4 Generation
Model

Figure 1: The temporal event ordering task, event infill-
ing task and a single generation model handling these
two tasks.

latter refers to inferring missing events in an in-
complete sequence of events. Figure 1 shows an
example of the temporal event ordering task and
event infilling task in (a) and (b), respectively. For
the temporal event ordering, given an unordered
sequence (e3, e2, e4, e1) as input, the output is or-
dered sequence (e1, e2, e3, e4). For the event infill-
ing, given an incomplete sequence (e1, e2, e4) as in-
put, the output is complete sequence (e1, e2, e3, e4)
with the infilled event e3.

To handle these two related tasks, the currently
existing method (Lin et al., 2021) employs a uni-
fied generation model which is shown in Figure 1
(c). Their model takes incomplete unordered events
as input sequence and outputs a complete ordered
event sequence, based on the sequence-to-sequence
(Seq2Seq) model via maximum likelihood estima-
tion (MLE), which maximizes the likelihood of the
next word conditioned on its previous ground-truth
words. Such an approach adopts cross-entropy loss
as the objective, essentially measuring the word
difference at each position of the target sequence
and providing a word-level training loss. Although
their model has shown good performance in han-
dling the two tasks, there are still two issues.

First, the MLE loss emphasizes strict local align-
ment and ignores the global semantics of the event.
For example in Figure 2, the MLE loss will give the
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Answer Event:

Predicted Event:

Investors sold stocks

Investors bought stocks

investors sold stocksBritish

.

.

Word-level Event-level

A:

B:

Figure 2: Comparison between word-level score and
event-level score on two predicted events.

predicted event A a high score and B a low score
because all words except one in event A are aligned
with the words in the answer event yet no word
event B is aligned with the words in the answer
event. However, the loss is expected to give event
A a low score and event B a high score because
from the perspective of event semantics, event A
is completely different from the answer event and
event B is the same as the answer event. There-
fore, we should consider the overall semantics of
the event, rather than the strict alignment of words
within the event.

Second, the goal of the model is to infer events
in texts, but the sequence-to-sequence model uses
a word-level objective so it fails to evaluate the
result from the perspective of event sequence. For
example in Figure 1, the correct predicted event
sequence is (e1, e2, e3, e4). If the model predicts an
event sequence (e4, e1, e2, e3), the MLE loss will
give it a low score because no event is predicted
correctly compared to the answer event sequence.
However, the sequence (e4, e1, e2, e3) should not
get a low score, because at least the orders of 3
events are predicted correctly. Therefore, how to
evaluate the predicted results of the model from
the perspective of event sequence is a challenging
problem.

To tackle the above issues, we introduce a
novel method for the generation of temporally-
ordered event sequences via Event Optimal Trans-
port (EOT). Specifically, for the first issue, we treat
the events in the sequence as modeling units and ex-
plicitly extract the semantics of the events. For the
second issue, we propose to use optimal transport
to directly match events in sequences. The EOT al-
lows end-to-end supervised training and acts as an
effective sequence-level regularization to the MLE
loss.

In summary, our contributions can be summa-
rized as follows:

• We introduce a novel method for the gener-
ation of temporally-ordered event sequences

via Event Optimal Transport (EOT), which
treats the events in the sequence as modeling
units and explicitly extracts the semantics of
the events.

• We directly match events in sequences to pro-
vide event sequence-level evaluation of the
predicted results of the model.

• Extensive experimental results demonstrate
the superiority of the proposed method on all
evaluation datasets. Specifically, the accuracy
is improved by 7.7%, and the Macro F1 is
improved by 7.2% on one of the datasets.

2 Related Work

Script Event Prediction Given context event se-
quence, script event prediction aims at predicting
the subsequent event from a candidate list. The
task is first proposed by Chambers and Jurafsky
(2008), and a statistical model is proposed to learn
the cooccurrence between events. Jans et al. (2012)
leverages a bigram model to model the tempo-
ral order between events explicitly. The above
two methods are count-based, and then researchers
have proposed methods based on neural networks.
Granroth-Wilding and Clark (2016) proposes a neu-
ral network based model for simultaneously learn-
ing word embedding and composition function. In
Wang et al. (2017), they propose an LSTM based
model to integrate order information and event re-
lation. Li et al. (2018) treats event chain as a sub-
graph and leverages recurrent networks to better
model relatedness between events in the candidate
list with events in the graph. Lv et al. (2019) pro-
poses a model that integrates event-level and chain-
level attentions to better leverage information con-
tained in event chain. Zhou et al. (2021) proposes
a multi-task self-supervised model to cope with the
problem of lack of training data in script event pre-
diction. To incorporate event circumstances into
the narrative event prediction, Wang et al. (2021)
adopts the two multi-head attention to retrieve cir-
cumstances at the local and global levels. In this
paper, we consider two related tasks of temporal
event ordering and event infilling and leverage a
single generation model to tackle these two tasks.

Optimal Transport in NLP Optimal transport
has been applied in NLP for a variety of tasks
recently. In Kusner et al. (2015), the author
proposes the Word Mover’s Distance (WMD), a
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[E3] proposed [A] The British Prime Minister proposed a referendum [E2] held
[A] Britain held a referendum on Brexit [E] triggered [A] The referendum
triggered panic in the stock market [E1] sold [A] Investors sold stocks 

[E1] Investors sold stocks [E2] Britain held a referendum on
Brexit [E3] The British Prime Minister proposed a referendum 

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

Figure 3: Overall architecture of the proposed generation model based on event optimal transport.

novel distance function between text documents
that measures the dissimilarity between two text
documents as the minimum amount of distance
that the embedded words of one document need
to “travel” to reach the embedded words of an-
other document. Later in Xu et al. (2018), a
novel Wasserstein method with a distillation mech-
anism is proposed, yielding joint learning of word
embeddings and topics. The cross-lingual corre-
spondence problem is cast as an optimal transport
problem in Alvarez-Melis and Jaakkola (2018),
and the Gromov-Wasserstein distance is exploited
for the alignment of word embedding spaces. A
content-aware sparse attention module based on
optimal transport is proposed in Chen et al. (2020)
to deal with textual network embedding problem.
Li et al. (2020) proposes student-forcing optimal
transport to tackle the exposure bias problem in
text-generation models trained by maximum like-
lihood estimation. Xu et al. (2021) formulates the
quest of vocabularization – finding the best token
dictionary with a proper size – as an optimal trans-
port problem and proposes a simple and efficient
solution without trial training. A time-aware op-
timal transport distance is introduced (Li et al.,
2021) for learning the model to compress the event-
graphs of news articles in an unsupervised manner.
In this paper, we leverage optimal transport and
propose event OT to directly match events in event
sequences to provide sequence-level supervision of

the predicted results.

3 Methodology

The overall structure of our model is illustrated
in Figure 3. The input of the model is a se-
quence of events x = (e1, ..., en), which is in-
complete and unordered, and the output of the
model is a complete and ordered sequence of events
y = (e1, ..., em). We represent e in the event se-
quence as the concatenation of its predicate with
all its arguments.

3.1 Generation Model
To leverage the power of pretrained transformers,
we base the underlying architecture for our model
on BART (Lewis et al., 2020). BART is a denoising
autoencoder for pretraining sequence-to-sequence
models which can be seen as generalizing BERT
(Kenton and Toutanova, 2019) (due to the bidirec-
tional encoder), GPT (Radford and Narasimhan,
2018) (with the left-to-right decoder), and other
recent pretraining schemes.

Similar to previous work (Lin et al., 2021), we
then prepend a special word [Ei] in front of each
event in input event sequence x. For the output, if
ej in y is one of the input events ei in x, then we
prepend special words [Ei]vej [A] before ej , where
vej is the predicate of event ej . Otherwise, the
special words [E]vej [A] are used in front of ej . An
example of the above is shown in Figure 3. The
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use of [Ei] helps the model differentiate between
events in the input and output sequences, which
facilitates optimal transport between events.

3.2 Event Optimal Transport
We first briefly introduce the optimal transport.
Given two spacesX and Y , the Kantorovich formu-
lation of optimal transport aims to find a probability
measure γ on X × Y that attains the following in-
fimum:

inf

{∫

X×Y
c(x, y)dγ(x, y) | γ ∈ Γ(µ, ν)

}
(1)

where Γ(µ, ν) is the set of probability measures
on X × Y with marginal µ on X and ν on Y .

Now given two discrete probability measures µ
and ν, which can be represented by Dirac measure
as below:

µ =
n∑

i=1

uiδxi , ν =
m∑

j=1

viδyj (2)

where δx is the Dirac measure sitting at x. The
coefficients u = {ui}ni=1 and v = {vj}mj=1 satisfy
the constraints

∑n
i=1 ui =

∑m
j=1 vi = 1 as both

µ and ν are probability measures. Under such a
setting, the objective function and the constraint in
the primal Kantorovich problem are then:

min
T

∑

i,j

T ij · c
(
xi,yj

)
= min

T
〈T ,C〉

s.t.
∑

j

T ij = ui, i = 1, ..., n,

∑

i

T ij = vj , j = 1, ...,m,

T ∈ Rn×m+ .

(3)

where C is the cost matrix with Cij = c
(
xi,yj

)

and c is the cost function. 〈T ,C〉 = Tr(T>C)
denotes the Frobenius dot-product, here Tr denotes
the trace of a matrix.

Because the exact solution of (3) is is highly
intractable (Arjovsky et al., 2017), researchers have
proposed some approximate algorithms, such as the
Sinkhorn (Cuturi, 2013) and IPOT (Xie et al., 2020)
algorithms. Here we choose the IPOT algorithm to
approximate the minimizer of (3). The details of
the IPOT algorithm are shown in Algorithm 1.

Assume the output (the last hidden state) of the
BART encoder and decoder areHe ∈ RLe×d and
Hd ∈ RLd×d respectively, where Le and Ld are

Algorithm 1 IPOT algorithm
Input: Feature vectors S = {xi}n1 ,S′ = {x′i}m1
Parameter: Generalized stepsize 1

β
Output: 〈T ,C〉

1: σ = 1
m1m,T (1) = 1n1m

>.

2: Cij = c(xi,x
′
j),Aij = e

−Cij
β .

3: for t = 1, 2, ..., T do
4: Q = A� T (t). // � is Hadamart product
5: for k = 1, 2, ...,K do
6: δ = 1

nQσ ,σ = 1
mQ>δ .

7: end for
8: T (t+1) = diag(δ)Qdiag(σ).
9: end for

10: return 〈T ,C〉

lengths of input and output sequences. We first
partitionHe into n groups where each group cor-
responds to features of words in an event (note that
the input to our model is x = {e1, ..., en}), then
features of words in a group are averaged to obtain
a vector sequence S = {hi}ni=1. Note that besides
average, we also tried other aggregation functions,
such as max pooling, attention, etc., but they all
performed worse than average. The possible reason
is that there are already more complex aggregation
functions such as attention in BART, so it is enough
to use average as the aggregation function of the
BART output.

ForHd, it’s first input to a linear layer:

H l = HdW + b (4)

where W ∈ Rd×V and V is the vocabulary size.
We then use the argmax function over H l to ob-
tain the predicted indices i ∈ ZLd+ . We identify
indices of special word [Ei] in i and these identi-
fied indices are used to partitionHd into k groups
where each group corresponds to features of words
in an event. Note that there may be cases where
there are no identified indices, which are most
likely to occur at the beginning of training. To solve
possible errors, we partition Hd into Ld groups
when this happens. Finally after averaging, we
obtain another vector sequence S′ = {hj}kj=1.

3.3 Training and Optimization

In order to use a unified generation model to handle
temporal event ordering and event infilling tasks,
we first construct input-output data pairs related
to these two tasks. Specifically, given an ordered
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Algorithm 2 EOT algorithm
Input: Ground truth {(x1,y1), ..., (xN ,yN )}
Parameter: Batch size M

1: Initialize MLE model parameters.
2: for epoch = 1, ...,MaxEpoch do
3: for k = 1, ...,M do
4: Draw a pair of sequences (xi,yi).
5: Compute the outputs He and Hd of the

encoder and decoder.
6: Extract feature vector sequences of events

S and S′ fromHe andHd.
7: Compute the cost matrix C based on S

and S′ via cosine distance.
8: Compute the EOT loss defined in (4).
9: end for

10: Update model parameters by optimizing loss
in (6).

11: end for

event sequence y as defined above, we follow pre-
vious work (Lewis et al., 2020; Lin et al., 2021)
to corrupt it to obtain the required input x by two
steps. The first step is to shuffle events: perform-
ing a random shuffling of the complete ordered
event sequence y to produce an unordered event
sequence x′. The second step is to delete events:
randomly deleting each event in x′ with probability
p to produce the incomplete unordered input event
sequence x.

Take Figure 1 (c) for example, the complete
ordered event sequence on the right is y. After
performing event shuffling and event deletion, we
obtain incomplete unordered input event sequence
x on the left.

Now we introduce the optimization process of
the model. After obtaining two vector sequences
S = {hi}ni=1 and S′ = {hj}kj=1 as described in
the previous section, we can compute the event-
level OT loss using the IPOT algorithm described
above:

LEOT = IPOT(S, S′) (5)

Meanwhile, suppose the input sequence is x =
(w1, ..., wL) and the gold output sequence is y =
(w1, ..., wL′), where L and L′ are numbers of
words. We also have the following maximum like-
lihood estimation (MLE) loss:

LMLE =
L′∑

t=1

log pθ(wt|w<t,x) (6)

We then combine the two loss functions to obtain

the following loss:

L =
1

M

M∑

n=1

(−LMLE(xn,yn)+αLEOT (Sn, S
′
n))

(7)
where M is the number of training pairs. The pa-
rameters are updated by minimizing this loss and
the full algorithm is summarized in Algorithm 2.

4 Experiment

4.1 Experimental Setup
Dataset Following Lin et al. (2021), the temporal
event sequences are extracted from the EventsNar-
ratives corpus (Yao and Huang, 2018). The SRL
model from AllenNLP (Gardner et al., 2018) is
used to extract verbs (events) and their arguments.
Then, only events in different sentences are con-
nected to construct temporal event sequences, and
only event chains associated with a common en-
tity are included. We train our model on 100,000
sequences extracted by the above procedure. Two
different orders are used to scramble each sequence,
resulting in a total of 200,000 training data.

For testing, two out-of-domain English datasets
CaTeRS (Mostafazadeh et al., 2016) and MCTaco
(Zhou et al., 2019) are used to extract the test tem-
poral event sequences. CaTeRS includes annota-
tions of events and their causal and temporal rela-
tions on short stories. MCTaco is a question answer-
ing dataset for evaluating the model’s capability of
understanding temporal commonsense. Following
Lin et al. (2021), 842 event sequences are extracted
for CaTeRS and after applying two different per-
mutations to each sequence, 1684 CaTeRS exam-
ples are finally obtained. For MCTaco, 585 test
sequences are extracted.

Training Details We choose the cosine distance
as the cost function in the event optimal transport
and the hyper-parameter α is set to 0.1. The learn-
ing rate of our model is 1e-5, and a polynomial de-
cay scheduling with 500 steps of warm-up is used.
We set the batch size to 64, the models are trained
for 10 epochs, with 2000 updates each epoch. We
set the event deletion probability to 0.15 for the
deletion training strategy. The BART-large pre-
trained model from Hugging-Face’s Transformers
library (Wolf et al., 2020) is used as the underly-
ing structure which is the same as previous work.
Beam search with the beam size 4 is used when
decoding the output event sequences during the
evaluation for temporal event ordering.
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CaTeRS MCTaco
Model All Pair Acc. Longer Pair Acc. Acc. Macro F1
BERT-based SSVM 65.7 62.3 67.2 47.0
Pointer Network 54.1 52.3 54.7 42.7
TemporalBART† 77.1 74.7 63.9 50.1
TemporalBART-indexed† 79.7 78.0 74.9 55.1
EOT 81.3 80.2 82.6 62.3

Table 1: Temporal ordering results on dataset CaTeRS and MCTaco. For CaTeRS, All Pair Acc. means pairwise
accuracy of predicted ordering for all event sequences, while Longer Pair Acc. denotes pairwise accuracy for
sequences containing more than three events. For MCTaco, Accuracy and Macro F1 score are computed on the
ordering between the question event and answer event. The symbol † represents the results we reproduced using
public code released by Lin et al. (2021), and other two results are taken from Lin et al. (2021).

Baselines We compare our model with the fol-
lowing baseline methods for temporal event order-
ing:

• BERT-based Pairwise Model + SSVM (Han
et al., 2019) leverages a BERT-based model
(Kenton and Toutanova, 2019) to compute
pairwise scores for two events in the output,
and the final output is then obtained by solving
an ILP over all the pairwise scores.

• BERT-based Pointer Network first uses
BERT to extract representations for events
that are fed into an LSTM-based pointer net-
work to compute the probability for ordering.

• TemporalBART (Lin et al., 2021) is based on
BART (Lewis et al., 2020), and special words
are prepended in front of events in input and
output sequences to provide extra clues.

• TemporalBART-indexed (Lin et al., 2021) is
the same as TemporalBART except that the
indices of the special words prepended before
events are considered.

For event infilling, we compare our model with
these extra baselines:

• HAQAE (Weber et al., 2018) is a vector quan-
tized variational autoencoder with a latent
space defined by a hierarchy of categorical
variables which encodes schema knowledge.

• GPT-2 (Radford et al., 2018) is a transformer-
based pretrained language model which is
used as the underlying structure in many gen-
eration tasks.

• Infilling GPT-2 (Qin et al., 2020) generates
the infilling events conditioned on both the

prefix events and the events after the insertion
position.

4.2 Results on Temporal Event Ordering
CaTeRS Dataset Experimental results on
CaTeRS are shown in Table 1, pairwise accuracy is
used to calculate the proportion of ordered event
pairs in the predicted sequence.

Among all the approaches, our method performs
best. It achieves the best performance on both all
sequences and long sequences. The reasons may
be that compared with the BERT-based pointer net-
work, our model can condition the word-level em-
beddings of the events when generating the out-
put events instead of condensed event embeddings.
Compared with BART-based models, our model
treats the events in the sequence as modeling units
and explicitly extracts the semantics of the events
instead of emphasizing strict local alignment of
words.

MCTaco Dataset The accuracy on predicting the
temporal relation of event in question and event
in answer is computed, since only gold temporal
relation of event in question and event in answer
is known for each test sequence. The macro F1
score is also computed because the proportion of
before/after questions is unbalanced in MCTaco.

Our EOT model outperforms all the baselines, in
particular, our model outperforms TemporalBART-
indexed by 7.7% in accuracy and 7.2% in Macro
F1. We attribute the significant improvement to the
direct events matching in sequences by our model.
We will further demonstrate the effectiveness of di-
rect events matching in the following experiments.

Ordering Unseen Events for CaTeRS Follow-
ing Lin et al. (2021), we also evaluate our EOT
model on an additional variant task of temporal
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Model
All seq Longer seq

EM Top2 EM EM Top2 EM
Random 34.1 69.5 23.7 48.7
HAQAE 37.1 71.9 28.7 53.2
GPT-2 35.2 68.4 22.6 48.2
Infilling GPT-2 38.8 73.5 26.3 55.4
TemporalBART† 57.7 83.3 48.2 70.6
TemporalBART-indexed† 58.4 87.4 50.9 77.4
EOT 58.8 88.2 52.6 78.1

Table 2: The results of ordering unseen events on se-
quences from dataset CaTeRS. Longer seq means re-
sults for sequences containing more than three events.
The symbol † has same meaning as Table 1.

event ordering which better tests its capability as
a generative model. Specifically, for each event
sequence in CaTeRS, we first randomly delete an
event e∗ in the sequence, and let the remaining
events be denoted as (e1, ..., eN ). We want to test
whether the model can insert the deleted event e∗

to its original position, thus we use the genera-
tion probability of the model to rank the N + 1
sequences which are obtained by inserting e∗ to
N + 1 different positions. The higher the model
ranks the original sequence, the better the model is
able to capture the relationship between seen events
and possibly generated unseen events.

Table 2 shows the results, and the top-1 and
top-2 exact match (EM) are used to evaluate the
results, which calculate the proportion of gold se-
quences that the model ranks first and second above.
Our model outperforms all the baselines on both
all the event sequences and long sequences, which
again demonstrates the effectiveness of considering
event-level semantics and direct events matching in
sequences. Another observation is that compared
with the TenporalBART-indexed model, the perfor-
mance of our EOT model on longer sequences is
more significant than on all the sequences. One
possible reason is that longer sequences have more
events which are more helpful for the model to do
the event-level matching.

4.3 Results on Event Infilling

Now we consider temporal event infilling and the
dataset CaTeRS is used. Given an event sequence
from CaTeRS, we first randomly delete an event to
obtain (e1, ..., ei−1, ei+1, ..., en). Then the model
should generate an infilled event e∗ at position i
and the new sequence (e1, ..., ei−1, ei, ei+1, ..., en)
is expected to be temporally ordered.

We measure the quality of generated events
through human evaluation. Given a sequence with

a generated event at some position, 3 raters are
asked to score this sequence in terms of the coher-
ence (How coherent the generated event is with
the context?) and temporality (Does the generated
event occur in the right order concerning the con-
text?) for the generated event and both scores are
from {0, 1, 2}. The final scores are the majority
scores of the 3 raters for both coherence and tem-
porality. We then randomly sample 15 sequences
from CaTeRS and the averaged scores are took as
the metric.

The result is shown in Table 3, and our EOT
model achieves better performance than all the
baseline models in terms of coherence and tempo-
rality. The reason may be that by explicitly match-
ing events in input and output sequence, the model
can generate an event that is more relevant to the
scenario of events in the input sequence.

Model Coherence Temporality
GPT-2 1.27 0.60
Infilling GPT-2 1.53 0.80
TemporalBART 1.13 0.87
TemporalBART-indexed 1.53 1.07
EOT 1.67 1.13

Table 3: The human evaluation result for event infilling
on dataset CaTeRS.

We show two examples of events generated by
different models in Figure 4. As we can see in
Figure 4 (a), the event generated by infilling GPT-2
is less relevant to the context events. The order
of the event generated by TemporalBART-indexed
is inappropriate, although it’s coherent with the
scenario of the input events. The event generated
by our model EOT is both coherent and temporally
ordered. Another example is shown in 4 (b).

4.4 Further Demonstration of EOT’s
Effectiveness

To further demonstrate the effectiveness of our
event optimal transport, we compare EOT with
two extra models. Recall that in our model, the
output (the last hidden state) of the BART encoder
and decoder areHe ∈ RLe×d andHd ∈ RLd×d re-
spectively, then two vector sequences S = {hi}ni=1

and S′ = {hj}kj=1 corresponding to events in in-
put and output are extracted to construct event OT
loss. Now, we directly treat vectors inHe andHd

as S and S′ respectively to construct word-level
loss, and this model is called Word Optimal Trans-
port (WOT). We also test the model which com-
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[INSERTED EVENT] e2: Her mom told her if she gets all good grades, she
could get one.

e3: Maddie's mom took her to get her
puppy as her reward. 

Infilling GPT-2: The first time I saw
the movie, I was in my early 20s.

TemporalBART-indexed: Maddie's
mom was a teacher. EOT: Maddie wanted to get a puppy.

e1: Ashley went to the cabinet. e2: Ashley pulled out a bottle of
wine. e4: She opened the wine. 

Infilling GPT-2: She poured it into
her glass. TemporalBART-indexed: She drank the wine. EOT: The wine was good.

[INSERTED EVENT]

(a)

(b)

Figure 4: Two examples of events generated by infilling GPT-2, TemporalBART-indexed and our model EOT. The
input events are in green and orange, while events generated by the models are in blue and purple.
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Figure 5: The performances of the 4 models on the
8 evaluation metrics which correspond to Table 1 and
2. The TBART-idx represents the TemporalBART-
indexed model. Pacc means Pairwise Accuracy and 3+
means sequences with 3 or more events.

bines event and word-level OT loss and is called
EOT+WOT.

Experimental results are shown in Figure 5, from
which we can make the following observations:

(1) The WOT model achieves comparable re-
sults with the TemporalBART-indexed model and
performs better on some metrics. This shows that
imposing global sequence-level guidance via new
supervision is effective, although the effect is not
obvious, because it did not take into account the
event-level matching.

(2) When event-level matching is considered,
the EOT model achieves performance improve-
ments on almost all metrics compared to the
WOT model, and the EOT model outperforms the
TemporalBART-indexed model on all metrics. This
demonstrates that incorporating event-level match-
ing can further improve the performance of optimal
transport and outperform the baseline models.

(3) When we combine word-level with event-

level OT, the performance is expected to get better.
Unfortunately, the performance of EOT+WOT de-
creases compared with EOT. One possible reason is
that word-level matching and event-level matching
conflict with each other to some extent: two events
may match well, but the words in the two events
may not match each other.

5 Conclusion

In this paper, we consider a single generation model
which can support inferences in the two related
tasks. We introduce a novel method for the gen-
eration of temporally-ordered event sequences via
Event Optimal Transport (EOT). Compared with
the MLE-based Seq2Seq model, our approach has
two advantages: (i) we treat the events in the se-
quence as modeling units and explicitly extract
the semantics of the events; (ii) we directly match
events in sequences to provide event sequence-level
evaluation of the predicted results of the model.
Experimental results show the superiority of our
model on all evaluation datasets. Specifically, the
accuracy is improved by 7.7%, and the Macro F1
is improved by 7.2% on one of the datasets.
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Abstract

Continual relation extraction (CRE) aims to ex-
tract relations towards the continuous and itera-
tive arrival of new data, of which the major chal-
lenge is the catastrophic forgetting of old tasks.
In order to alleviate this critical problem for en-
hanced CRE performance, we propose a novel
Continual Relation Extraction framework with
Contrastive Learning, namely CRECL, which
is built with a classification network and a pro-
totypical contrastive network to achieve the
incremental-class learning of CRE. Specifically,
in the contrastive network a given instance is
contrasted with the prototype of each candi-
date relations stored in the memory module.
Such contrastive learning scheme ensures the
data distributions of all tasks more distinguish-
able, so as to alleviate the catastrophic forget-
ting further. Our experiment results not only
demonstrate our CRECL’s advantage over the
state-of-the-art baselines on two public datasets,
but also verify the effectiveness of CRECL’s
contrastive learning on improving CRE perfor-
mance.

1 Introduction

In some scenarios of relation extraction (RE), mas-
sive new data including new relations emerges con-
tinuously, which can not be solved by traditional
RE methods. To handle such situation, continual
relation extraction (CRE) (Wang et al., 2019) was
proposed. Due to the limited storage and comput-
ing resources, it is impractical to store all training
data of previous tasks. As new tasks are learned
where new relations emerge constantly, the model
tends to forget the existing knowledge about old re-
lations. Therefore, the problem of catastrophic for-
getting damages CRE performance severely (Hass-
abis et al., 2017; Thrun and Mitchell, 1995).

In recent years, some efforts have focused on the
alleviating catastrophic forgetting in CRE, which

∗ This work is supported by Shanghai Science and Tech-
nology Innovation Action Plan (China) No.21511100401.

Figure 1: The data distribution map (better viewed in
color) after training a classification model for an old
task and then a new task. Many different relation data
(different colors) of the old (dots) and new (crosses) task
are mixed due to the catastrophic forgetting, making it
hard to distinguish the new task’s relations from the old
task’s relations.

can be divided into consolidation-based methods
(Kirkpatrick et al., 2017), dynamic architecture
methods (Chen et al., 2015; Fernando et al., 2017)
and Memory-based methods (Chaudhry et al.,
2018; Han et al., 2020; Cui et al., 2021). Despite
these methods’ effectiveness on CRE, most of them
have not taken full advantage of the negative rela-
tion information in all tasks to alleviate catastrophic
forgetting more thoroughly, result in suboptimal
CRE performance.

Through our empirical studies, we found that
the catastrophic forgetting of a model results in the
indistinguishability between the data (instances)
distributions of all tasks, making it hard to distin-
guish the relations of all tasks. We illustrate it with
the data distribution map after training a relation
classification model for a new task, as shown in
Figure 1 where the dots and crosses represent the
data of the old and new task respectively, and dif-
ferent colors represent different relations. It shows
that the data points of different colors in either
dot group (old task) or cross group (new task) are
distinguishable. However, many dots and crosses
are mixed, making it hard to discriminate the new
task’s relations from the old task’s relations. There-
fore, making the data distributions of all tasks more
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distinguishable is crucial to achieve better CRE.
To address above issue, in this paper we pro-

pose a novel Continual Relation Extraction frame-
work with Contrastive Learning, namely CRECL,
which is built with a classification network and a
contrastive network. In order to fully leverage the
information of negative relations to make the data
distributions of all tasks more distinguishable, we
design a prototypical contrastive learning scheme.
Specifically, in the contrastive network of CRECL,
a given instance is contrasted with the prototype of
each candidate relation stored in the memory mod-
ule. Such sufficient comparisons ensure the align-
ment and uniformity between the data distributions
of old and new tasks. Therefore, the catastrophic
forgetting in CRECL is alleviated more thoroughly,
resulting in enhanced CRE performance. In addi-
tion, different to the classification for a fixed (rela-
tion) class set as (Han et al., 2020; Cui et al., 2021),
CRECL achieves an incremental-class learning of
CRE which is more feasible to real-world CRE
scenarios.

Our contributions in this paper are summarized
as follows:

1. We propose a novel CRE framework CRECL
that combines a classification network and a pro-
totypical contrastive network to fully alleviate the
problem of catastrophic forgetting.

2. With the contrasting-based mechanism,
our CRECL can effectively achieve the class-
incremental learning which is more practical in
real-world CRE scenarios.

3. Our extensive experiments justify our
CRECL’s advantage over the state-of-the-art
(SOTA) models on two benchmark datasets, TA-
CRED and FewRel. Furthermore, we provide our
deep insights into the reasons of the compared mod-
els’ distinct performance.

2 Related Work

In this section, we briefly introduce continual learn-
ing and contrastive learning which are both related
to our work.

Continual learning (Delange et al., 2021; Parisi
et al., 2019) focuses on the learning from a con-
tinuous stream of data. The models of continual
learning are able to accumulate knowledge across
different tasks without retraining from scratch. The
major challenge in continual learning is to allevi-
ate catastrophic forgetting which refers to that the
performance on previous tasks should not signif-

icantly decline over time as new tasks come in.
For overcoming catastrophic forgetting, most re-
cent works can be divided into three categories.
1) Regularized-based methods impose constraints
on the update of parameters. For example, LwF
approach (Li and Hoiem, 2016) enforces the net-
work of previously learned tasks to be similar to the
network of current task by knowledge distillation.
However, LwF depends heavily on the data in new
task and its relatedness to prior tasks. EWC (Kirk-
patrick et al., 2016) adopts a quadratic penalty on
the difference between the parameters for old and
new tasks. It models the parameter relevance with
respect to training data as a posterior distribution,
which is estimated by Laplace approximation with
the precision determined by the Fisher Information
Matrix. WA (Zhao et al., 2020) maintains discrimi-
nation and fairness among the new and old task by
adjust the parameters of the last layer. 2) Dynamic
architecture methods change models’ architectural
properties upon new data by dynamically accom-
modating new neural resources, such as increased
number of neurons. For example, PackNet (Mallya
and Lazebnik, 2017) iteratively assigns parameter
subsets to consecutive tasks by constituting prun-
ing masks, which fixes the task parameter subset
for future tasks. DER (Yan et al., 2021) proposes
a novel two-stage learning approach to get more
effective dynamically expandable representation.
3) Memory-based methods explicitly retrain the
models on a limited subset of stored samples dur-
ing the training on new tasks. For example, iCaRL
(Rebuffi et al., 2017) focuses on learning in a class-
incremental way, which selects and stores the sam-
ples most close to the feature mean of each class.
During training, distillation loss between targets ob-
tained from previous and current model predictions
is added into overall loss, to preserve previously
learned knowledge. RP-CRE (Cui et al., 2021)
introduces a novel pluggable attention-based mem-
ory module to automatically calculate old tasks’
weights when learning new tasks.

Since classification-based approaches require
relation schema in the classification layer,
classification-based models have an unignorable
drawback on class-incremental learning. Many
researchers leverage metric learning to solve this
problem. (Wang et al., 2019; Wu et al., 2021) uti-
lize sentence alignment model based on Margin
Ranking Loss (Nayyeri et al., 2019), while lack the
intrinsic ability to perform hard positive/negative
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Figure 2: The overall structure of our proposed CRECL. The framework is built with a shared encoding layer, a
classification network and a contrastive network.

mining, resulting in poor performance. Recently,
contrastive learning has been widely imported into
self-supervised learning frameworks in many fields
including computer vision, natural language pro-
cessing and so on. Contrastive learning is a dis-
criminative scheme that aims to group similar sam-
ples more closer and diverse samples far from each
other. (Wang and Liu, 2021) proves that contrastive
learning can promote the alignment and stability of
data distribution, and (Khosla et al., 2020) verifies
that using modern batch contrastive approaches,
such as InfoNCE loss (Oord et al., 2018), outper-
forms traditional contrastive losses, such as margin
ranking loss, and also achieves good results in su-
pervised contrastive learning tasks.

3 Methodology

3.1 Task Formalization

The CRE task aims to identify the relation be-
tween two entities expressed by one sentence in
the task sequence. Formally, given a sequence
of K tasks {T1, T2, . . . , TK}, suppose Dk and Rk
denote the instance set and relation class set of
the k-th task Tk, respectively. Dk contains Nk in-
stances {(x1, t1, y1), . . . , (xNk , tNk , yNk)} where
instance (xi, ti, yi), 1 ≤ i ≤ Nk represents that
the relation of entity pair ti in sentence xi is
yi ∈ Rk. One CRE model should perform
well on all historical tasks up to Tk, denoted as
T̃k = ∪ki=1Ti, of which the relation class set is
R̃k = ∪ki=1Ri. We also adopt an episodic mem-
ory module Mr = {(x1, t1, r), . . . , (xL, tL, r)} to
store typical instances of relation r, similar to (Han
et al., 2020; Cui et al., 2021), where L is the mem-

ory size (typical instance number). The overall
episodic memory for the observed relations in all
tasks is M̃k = ∪r∈R̃kMr.

3.2 Framework Overview

The overall structure of our CRECL is depicted
in Figure 2, which has two major components,
i.e., a classification network and a contrastive net-
work. The procedure of learning the current task in
CRECL is described by the algorithm in Alg. 1.

At first, suppose the current task is Tk, the repre-
sentation of each instance in Tk is obtained through
the encoder and dropout layer shared by the two
networks. In the classification network, each in-
stance’s relation is predicted based on its represen-
tation (line 1-3). Then, we apply K-means algo-
rithm over the instance representations to select L
typical instances for each relation in Tk, which are
used to generate the relation prototypes and stored
into memory M̃k for the subsequent contrast (line
4-13). There are two training processes in the con-
trastive network. The first is to compare current
task instances with the stored relation prototypes
of T̃k (line 14-17). The second is to compare each
typical instance with all relation prototypes which
are both stored in M̃k (line 18-24). These two
training procedures ensure each compared instance
keep distance from sufficient negative relations in
R̃k. Therefore, the data distributions of R̃k are
distinguishable enough to alleviate CRECL’s catas-
trophic forgetting of old tasks. Next, we detail the
operations in CRECL.
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Algorithm 1: Training procedure for Tk
Input: Dk, Rk, R̃k−1, M̃k−1

Output: M̃k

1 for i = 1 to epochs1 do
2 update Encoder EN , Dropout layer DR and

Classifier CL by loss L1 on Dk;
3 end
4 R̃k = R̃k−1 ∪Rk;
5 p = ∅;
6 for r ∈ Rk do
7 dr = {d|d ∈ Dk, yd = r};
8 hr=DR(EN(dr))//Eq. 1;
9 apply K-means to all hr and store L typical

instances into memory Mk;
10 get prototype pr from Mk by Eq. 4;
11 p = p ∪ pr;
12 end
13 M̃k = M̃k−1 ∪Mk;
14 generate contrastive training data Ck by random

sampling from Dk;
15 for i = 1 to epochs2 do
16 update EN , DR, PJ by loss L2 on Ck and p;
17 end
18 generate contrastive training data C̃k by random

sampling from M̃k;
19 for i = 1 to epochs3 do
20 if yi ∈ C̃k is old class then
21 use Eq. 1 to generate M embeddings;
22 end
23 update EN , DR, PJ by loss L2 on C̃k and p;
24 end

3.3 Shared Encoding Layer

The classification network and the contrastive net-
work in CRECL are designed to promote each
other, where the former classifies the current task
based on its instance embeddings, and the latter
effectively adjusts instance embeddings to keep
uniformity and alignment. According to this prin-
ciple, the two networks share the same layers in
CRECL.

Specifically, for an instance i of current task Tk,
we use special tokens to represent the entities in i as
(Cui et al., 2021). As shown in Figure 2, the head
entity and tail entity in i are represented by two spe-
cial position tokens [E11, E12] and [E21, E22],
respectively. The embedding of instance i before
the dropout layer, denoted as ei ∈ R2h, is the
concatenation of token embeddings of [E11, E12]
and [E21, E22] generated by BERT (Devlin et al.,
2019) where h is the dimension of two token em-
beddings. Then, ei is fed into the dropout layer to
obtain i’s hidden embedding as

hi =
(
W Dropout(ei) + b

)
∈ Rd, (1)

where W ∈ Rd×2h (d is dimension of hidden

layer) and b ∈ Rd are both trainable parameters. In
CRECL, hi is regarded as i’s representation.

3.4 Classifying Current Task
With instance i’s representation hi, i’s probability
distribution denoted as Pi ∈ R|Rk|, is calculated in
the classification network as

Pi = softmax
(
W 1 LN

(
GELU(hi)

)
+ b1

)
,
(2)

where W 1 ∈ R|Rk|×d, b1 ∈ R|Rk| are trainable
parameters, and |Rk| is the relation number of cur-
rent task Tk which is much less than the relation
number of all tasks. LN(·) is layer normalization
operation. Then, classification loss for current task
Tk is calculated as

L1 = −
1

Nk

Nk∑

i=1

|Rk|∑

r=1

yi,r logPri , (3)

where yi,r=1 if i’s real relation label is r, otherwise
yi,r=0. Pri is the r-th entry in Pi.

3.5 Generating Relation Prototypes
After learning current task, for each relation r in
current task, we first apply K-means algorithm
upon the representations (hi) of all instances be-
longing to r to cluster them into L clusters. Then,
for each cluster, we select the instance most closest
to the centroid of this cluster as one typical instance.
Thus, L typical instances of relation r are selected
and then stored into the memory module. With
the stored typical instances of r, we average their
representations as r’s prototype pr, that is

pr =
1

L

L∑

i=1

hri , (4)

where hri is a typical instance i’s representation of
relation r. Such prototype best represents r since
the L typical instances have the minimal distance
sum to the L cluster centroids. Another merit of
such prototypes for representing relations is their
insensitivity to the value of L.

3.6 Contrastive Network
In this contrastive network, the instances are com-
pared with the relation prototypes stored in the
memory module to refine the data distributions
of all tasks, so as to alleviate CRECL’s catas-
trophic forgetting. Its basic principle is that, an
instance’s representation should be close to the pro-
totype of its (positive) relation, and be far away
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from the prototypes of the rest (negative) rela-
tions. Please note that, the positive and negative
relations are identified by the real labels of the
training instances. Thus it is different from the
self-supervised contrastive learning in other mod-
els (Chen et al., 2020).

Contrastive Learning Objective As shown in
the right part of Figure 2, the contrastive network
is built with a twin-tower architecture. In the left
tower, for a relation r, its prototypes pr ∈ Rd are
obtained by Eq. 4. Then, r’s compared embedding
is denoted as sr ∈ R

d
2 and computed as

sr =W 3GELU(W 2pr + b2) + b3, (5)

where W 2 ∈ Rd×d, b2 ∈ Rd, W 3 ∈ R
d
2
×d, b3 ∈

R
d
2 are both trainable parameters.
In the right tower, for a compared instance i, its

compared embedding is denoted as si ∈ R
d
2 and

obtained by the same operation in Eq. 5 where only
pr is replaced by hi from Eq. 1.

For each instance i in current task Tk, suppose
the compared embedding of i’s relation yi is syi
which can also be obtained by Eq. 5, since the
typical instances of yi have been stored in M̃k be-
fore. We apply Euclidean norm to si and syi . Then,
we use contrastive learning’s InfoNCE loss (Oord
et al., 2018) to calculate the cosine similarity loss
of Tk as

Lcos = −
1

Nk

Nk∑

i=1

log
exp (sisyi/τ)∑

r∈R̃k
exp (sisr/τ)

, (6)

where τ is a temperature hyper-parameter.
To increase the similarity score gap of the correct

label and the closest wrong label, inspired by (Koch
et al., 2015), we propose a contrastive margin loss

Lmag =
1

Nk

Nk∑

i=1

max
(
m−sisyi+siski , 0

)
, (7)

where relation ki = argmax
k∈R̃k

sisk s.t. k ̸= yi, that

is i’s closest negative relation label. The margin
loss penalizes that the similarity gap less than m.
At last, the total loss is defined as

L2 = λ1Lcos + (1− λ1)Lmag, (8)

where λ1 ∈ [0, 1] is the controlling parameter.

Training Processes of Contrastive Learning
There are two training processes in the contrastive
network, which both use the loss in Eq. 8 to make
the network parameters more fit to current task and
all historical tasks, respectively.

The first training process is conducted with cur-
rent task Tk and complements the classification
network, it is an optional step with relatively small
training epoch. However, it can not ensure the
model fit to all tasks, because the model pays more
attention to current task rather than the old tasks
during this training process. In other words, as
we have explained in the example of Figure 1, the
model tends to ensure the instances of different
relations in Tk distinguishable, but forgets to mean-
while keep the instances of different relations in all
historical tasks also distinguishable. As a result,
the model’s catastrophic forgetting still happens.

To alleviate CRECL’s catastrophic forgetting
more thoroughly, we introduce the second training
process in the contrastive network. In this process,
all typical instances stored in the memory module
are compared with all prototypes of stored rela-
tions, which cover in all tasks. We also conduct
M times forward propagation in the dropout layer,
to generate M embeddings for each old relation in
R̃k−1. Due to the randomness of dropout layer, we
can get M probability distributions for an old re-
lation to reduce the imbalance of data distribution
of old and new relation. Accordingly, this train-
ing process can effectively prevent the model from
severe catastrophic forgetting.

3.7 Relation Prediction

For a predicted instance i, we only measure its sim-
ilarity to each stored relation, which is computed
as the cosine distance between i’s representation
and the relation’s prototype. Then, we choose the
most similar (closest) relation as i’s predicted class
label, that is

y∗i = argmax
r∈R̃k

sisr. (9)

4 Experiments

4.1 Datasets

Our experiments were conducted upon the follow-
ing two benchmark CRE datasets.
FewRel (Han et al., 2018) is a popular relation
extraction dataset originally constructed for few-
shot relation extraction. The dataset is annotated

1889



Table 1: Accuracy (%) comparisons on different test sets of historical cumulative tasks, showing that CRECL
outperforms the compared models.

FewRel
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2
EMAR 88.5 73.2 66.6 63.8 55.8 54.3 52.9 50.9 48.8 46.3
CML 91.2 74.8 68.2 58.2 53.7 50.4 47.8 44.4 43.1 39.7
EMAR+BERT 98.8 89.1 89.5 85.7 83.6 84.8 79.3 80.0 77.1 73.8
RP-CRE+MA 98.0 91.4 91.8 86.8 87.6 86.9 83.7 81.9 80.1 79.5
RP-CRE 97.9 92.7 91.6 89.2 88.4 86.8 85.1 84.1 82.2 81.5
CRECL+ATM(Ours) 96.3 91.4 89.3 90.0 88.1 86.7 84.5 83.2 82.6 81.0
CRECL(Ours) 97.8 94.9 92.7 90.9 89.4 87.5 85.7 84.6 83.6 82.7
Improvement(%) -1.01 2.37 0.98 1.91 1.13 0.69 0.71 0.59 1.70 1.47

TACRED
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 47.5 40.1 38.3 29.9 28.4 27.3 26.9 25.8 22.9 19.8
EMAR 73.6 57.0 48.3 42.3 37.7 34.0 32.6 30.0 27.6 25.1
CML 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4
EMAR+BERT 96.6 85.7 81.0 78.6 73.9 72.3 71.7 72.2 72.6 71.0
RP-CRE+MA 97.1 91.4 87.4 82.1 78.3 77.8 74.9 73.5 73.6 72.3
RP-CRE 97.6 90.6 86.1 82.4 79.8 77.2 75.1 73.7 72.4 72.4
CRECL+ATM(Ours) 93.2 80.2 77.3 76.0 71.8 71.5 69.2 72.3 70.0 71.2
CRECL(Ours) 96.6 93.1 89.7 87.8 85.6 84.3 83.6 81.4 79.3 78.5
Improvement(%) -1.02 1.86 2.63 6.55 7.27 8.35 11.32 10.45 7.74 8.43

by crowd workers and contains 100 relations and
70,000 samples in total. In our experiments, to keep
consistent with the previous baselines, we used its
version of 80 relations.
TACRED (Zhang et al., 2017) is a large-scale re-
lation extraction dataset containing 42 relations
(including no_relation) and 106,264 samples from
news and web documents. Based on the open rela-
tion assumption of CRE, we removed no_relation
in our experiments. To limit the sample imbalance
of TACRED, we limited the number of training
samples of each relation to 320, and the number
of test samples of each relation to 40, which is
also consistent with previous baselines. Compared
with FewRel, the tasks in TACRED are more dif-
ficult due to its relation imbalance and semantic
difficulty.

4.2 Compared Models
We compare our framework with the following
baselines in our experiments.
EA-EMR (Wang et al., 2019) proposes a sentence
alignment model with replay memory module to
alleviate catastrophic forgetting.
EMAR (Han et al., 2020) proposes a novel memory
replay, activation and reconsolidation method to
alleviate catastrophic forgetting effectively.
EMAR+BERT is an advanced version of EMAR
where the original encoder (Bi-LSTM) is replaced
with BERT.
CML (Wu et al., 2021) proposes a curriculum-meta

learning method to tackle the order-sensitivity and
catastrophic forgetting in CRE.
RP-CRE (Cui et al., 2021) is a SOTA CRE
model introducing a novel pluggable attention-
based memory module to automatically calculate
the weight of old tasks when learning new tasks.
RP-CRE+MA is an advanced version of RP-CRE
where a memory activation step is added before
attention operation.

In our CRECL, we adopted the Bert-base-
uncased pre-trained by HuggingFace (Wolf et al.,
2020) as the encoder, which is also used in
EMAR+BERT, RP-CRE and RP-CRE+MA. Other
baselines cannot be easily replaced by the BERT
due to their architectures. In addition, we
propose another version of CRECL, namely
CRECL+ATM, which incorporates an attention
memory module proposed by (Cui et al., 2021)
in the contrastive network and used to verify its
effectiveness of refining relation prototypes.

4.3 Experimental Settings
Our evaluation metric is Accuracy which is popu-
larly used in previous baselines.

For fair comparisons, we followed the experi-
ment settings in RP-CRE. At first, to verify whether
a CRE model suffers from catastrophic forgetting,
we use Tk to represent the test set of all historical
cumulative tasks from the first task to the k-th task
Tk (Please note the difference between Tk and Tk).
In our ablation studies, we also report the perfor-
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(a) Accuracy of historical cumulative tasks on FewRel. (b) Accuracy of current task on FewRel.

(c) Accuracy of historical cumulative tasks on TACRED. (d) Accuracy of current task on TACRED.

Figure 3: Ablation study results on historical cumulative tasks and current task.

mance on the test set of current task. To simulate
different tasks, we randomly divided all instances
into 10 groups (corresponding to 10 tasks). The
task order of all compared models is exactly the
same to reduce contingency. We also set the mem-
ory size in the baselines the same as ours. Relations
are first divided into 10 clusters to simulate 10 tasks.
All the reported results of the related baselines are
the same as (Cui et al., 2021). For those special
hyper-parameters in our experiments are as follows.
The batch size is 32, the learning rate is set to 5e-
5, τ is 0.08. We adopted 10 and 15 classification
epochs for TACRED and FewRel, respectively. We
also adopted 10 epochs for the first training pro-
cess (for current task) and 5 epochs for the second
training process (for all tasks) in the contrastive
network.

Because the total matrix operations and the
data amount of second training in contrastive
learning are very small, CRECLl’s training time
(1h31min) is very close to the SOTA model RP-
CRE (1h28min). To reproduce our experiment
results conveniently, CRECL’s source code to-
gether with the datasets are provided at https:
//github.com/PaperDiscovery/CRECL.

4.4 Experimental Results and Analyses

The following reported results of CRECL and its
ablated variants are the average scores of running
models for 5 times.

4.4.1 Overall Performance Comparisons
The overall performance of all compared baselines
are reported in Table 1, where the results of the
baselines directly come from (Cui et al., 2021) and

the baselines’ hyper-parameter settings were the
same as their original papers. The last row in the
table is the improvement ratio of CRECL’s perfor-
mance relative to the best baseline’s performance
(underline). Based on these results, we have the
following conclusions:

(1) Our CRECL outperforms the SOTA model
RP-CRE on both datasets. Compared with FewRel,
CRECL has more apparent improvement over the
baselines on TACRED. This may be due to that
FewRel’s tasks are not difficult enough as TA-
CRED, proving that CRECL is good at handling
more difficult tasks.

(2) In T1, our CRECL is inferior to RP-CRE
because the classification and contrastive network
in CRECL have not been fully trained at the begin-
ning. When more tasks are cumulated, CRECL is
trained sufficiently, resulting in its superiority over
the baselines and less performance drop. Since the
catastrophic forgetting becomes more severe on
such scenarios, the results imply that CRECL can
tackle the catastrophic forgetting better.

(3) All compared models’ performance is well
on T1, but declines when more new tasks arrive
due to more severe catastrophic forgetting. Com-
pared with EA-EMR, EMAR and CML, the rest
models’ performance decline is more slight. For
example, from the comparison between EMAR (us-
ing Bi-LSTM) and EMAR+BERT, we can see that
EMAR+BERT’s performance decline significantly
slows down, proving that BERT helps the model
alleviate the catastrophic forgetting better. It is be-
cause BERT has good feature discrimination ability
and better captures the relevant features, making
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(a) CRECL (b) RP-CRE (c) CRECL vs. RP-CRE in T9/T10

Figure 4: Performance comparisons with different memory sizes on TACRED.

catastrophic forgetting less severe.
(4) CREL+ATM’s results show that incorpo-

rating attention memory module fails to improve
CRECL’s performance well, because the con-
trastive network is able to maintain the uniformity
and the alignment of data distribution. Thus there
is no need for additional attention memory module
to help the model refine relation prototypes.

(5) Compared with the models using
metric learning (EA-EMR, EMAR, CML,
EMAR+BERT), we adopt InfoNCE loss instead of
the margin ranking loss as our loss function. With
this loss, CRECL is taught by more negative rela-
tion information to understand how to regularize
data representation space, resulting in the more
alleviation of catastrophic forgetting.

4.4.2 Ablation Studies
In order to verify the effectiveness and rationality of
our framework’s important components (steps), we
further conducted a series of ablation experiments.
CRECL’s ablated variants include:
CRECL-MAG: It is the variant without the margin
loss Lmag in the contrastive network.
CRECL-CL1: It is the variant without the first
training process in the contrastive network.
CRECL-CL2: It is the variant without the second
training process in the contrastive network.
CRECL-CL: It is the variant only having the clas-
sification network.
CRECL-K: In this variant, the typical instances of
each relation are selected at random instead of by
K-means algorithm.
CRECL(C): This variant uses the classification
network to identify the relation of a test instance
instead of the similarity comparison in Eq. 9.

Figure 3 (a) and (b) display all compared models’
accuracy of historical cumulative tasks and current
task. Due to space limitation, only the results on
TACRED are shown, based on which we have the

following analyses.
(1) CRECL-CL performs very well on current

task (subfigure (b)) but performs very poorly on his-
torical tasks (subfigure (a)), showing that it overfits
current task and its catastrophic forgetting is very
severe. It is because that the classification parame-
ters are always tuned to fit with current task rather
than old tasks. It shows that the contrastive network
is significant to alleviate catastrophic forgetting.

(2) As more new tasks arrive, CRECL-CL1’s
performance decline on current task (subfigure (b))
is more obvious than its performance decline on
historical tasks (subfigure (a)), because CRECL-
CL1 pays more attention to distinguish the different
relations in old tasks rather than that in current task.
It is due to that the data distributions of all histori-
cal tasks are adjusted in the second training process
that CRECL-CL1 only has in its contrastive net-
work. Comparatively, CRECL-CL2’s performance
on historical tasks and current task both declines. It
shows that only distinguishing the data distribution
of current task from that of old tasks in the first
training process of contrastive network, is not ade-
quate to alleviate its catastrophic forgetting. Even
worse, such adjusting also harms the accuracy of
classifying current task.

(4) CRECL-K is inferior to CRECL, showing
that the randomly selected instances cannot well
represent relations as those selected by K-means
algorithm. As a result, the data distributions of
all tasks cannot be adjusted precisely, which can
not alleviate catastrophic forgetting effectively. In
addition, CRECL-K’s accuracy on current task is
not stable also due to the randomness led by its
selection strategy of typical instances.

(5) Although the contrastive learning loss L2 is
different from the classification network’s loss L1,
and the parameters of the encoding layer are shared,
the contrastive network’s training processes hardly
weaken the classification network’s fitness to cur-
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Table 2: Our framework’s accuracy (%) with different memory sizes on FewRel.

CRECL T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
L=5 97.1 92.1 89.7 90.0 88.2 86.6 84.4 82.8 82.5 80.2
L=10 97.8 94.9 92.7 90.9 89.4 87.5 85.7 84.6 83.6 82.7
L=15 98.9 96.3 93.8 92.6 91.4 90.0 88.0 86.6 85.8 83.5
L=20 98.1 96.0 94.1 92.8 91.9 89.7 88.5 86.3 86.1 85.2

rent task. Thus CRECL(C) still performs well on
current task as shown in Figure 3 (b). CRECL-
MAG’s has a relatively small decline on both cur-
rent and historical tasks, proving that the margin
loss Lmag improves the performance by increas-
ing the gap between the optimal and suboptimal
results.

4.4.3 Performance Influence of Memory Size
For memory-based CRE methods, the model per-
formance is usually related to the storage capacity
of their memory modules. Specifically, we found
that previous models’ performance is very sensitive
to the number of stored typical instances L. Recall
that in CRECL, a relation prototype is the aver-
age of L typical instances’ representations. The
representational ability of such prototype is less
sensitive to L when L exceeds a certain value, re-
sulting in CRECL’s performance also less sensitive
to L, as we emphasized in Section 3.5.

Figure 4 displays the performance of CRECL
and RP-CRE on TACRED w.r.t. different memory
sizes (L), where the two compared models’ per-
formance in T9 and T10 is specially shown in the
subfigure (c). It shows that although CRECL’s per-
formance also declines when L becomes small, it
is more stable and higher than RP-CRE’s perfor-
mance, especially when L ≥ 8. Such results justi-
fies our claim about CRECL’s less sensitivity to L.
In addition, RP-CRE’s performance fluctuation is
more obvious, possibly because it re-constructs the
attention memory network upon each task, so the
different task features are not shared in the network.

4.4.4 Contrastive Learning’s Effectiveness on
Refining Data Distributions

In addition, to investigate the contrastive learning’s
effects on alleviating catastrophic forgetting, we
use t-SNE (Van der Maaten and Hinton, 2008)
to visualize the data distributions of the same
case in Figure 1 after the training processes of
CRECL’s classification network and contrastive
network. The data distribution map is shown in
Figure 5, which has the same settings of color and
point style as Figure 1. Through comparing these

two maps, we find that the data distributions of dif-
ferent relations in the new and old task in Figure 5
are more distinguishable than that in Figure 1. Such
results are mainly attributed to the prototypical con-
trastive learning in CRECL on adjusting all data
distributions of all tasks, which obviously alleviate
CRECL’s catastrophic forgetting. It has been also
proved by CRECL’s superior performance over the
baselines displayed in aforementioned experiments.
We also note that some yellow dots still intersect
the pink crosses, possibly due to the insufficient
sampling in the contrastive learning, resulting in
less coverage on all relations. We can handle this
situation by increasing the batch size.

Figure 5: Data distribution map (better viewed in color)
after the contrastive learning in CRECL. Compared with
Fig. 1, the data distributions of different relations (dif-
ferent colors) are obviously distinguishable, making
CRECL classify different relations more easily.

5 Conclusion
In this paper, we propose a novel CRE framework,
namely CRECL, that consists of a classification net-
work and a contrastive network designed for allevi-
ating the catastrophic forgetting in CRE. Through
the prototypical contrastive learning in CRECL, the
data distributions of different relations in all tasks
are adjusted to be more distinguishable, resulting
in CRE performance gains. Moreover, CRECL
has the ability of class-incremental learning due
to its contrasting-based mechanism of achieving
relation classification, which is more practical in
real-world CRE scenarios than the previous models
of classification-based mechanism. Our extensive
experimental results demonstrate that CRECL out-
performs the SOTA CRE baselines and obtains the
best performance on two benchmark datasets.
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Abstract

Pre-trained Language Models (PLMs) have
been applied in NLP tasks and achieve promis-
ing results. Nevertheless, the fine-tuning pro-
cedure needs labeled data of the target domain,
making it difficult to learn in low-resource and
non-trivial labeled scenarios. To address these
challenges, we propose Prompt-based Text En-
tailment (PTE) for low-resource named entity
recognition, which better leverages knowledge
in the PLMs. We first reformulate named
entity recognition as the text entailment task.
The original sentence with entity type-specific
prompts is fed into PLMs to get entailment
scores for each candidate. The entity type with
the top score is then selected as final label.
Then, we inject tagging labels into prompts
and treat words as basic units instead of n-
gram spans to reduce time complexity in gener-
ating candidates by n-grams enumeration. Ex-
perimental results demonstrate that the pro-
posed method PTE achieves competitive per-
formance on the CoNLL03 dataset, and bet-
ter than fine-tuned counterparts on the MIT
Movie and Few-NERD dataset in low-resource
settings.

1 Introduction

Recently, Pre-trained Language Models (PLMs)
have achieved promising improvement on several
NLP tasks (Devlin et al., 2019; Liu et al., 2019; Lan
et al., 2020). Nevertheless, fine-tuning language
models still needs a moderate number of labeled
data for downstream tasks. When difficulties re-
sult in limited labeled data available, the trained
model shows large variance in downstream per-
formance under full fine-tuning (Mosbach et al.,
2021; Le Scao and Rush, 2021). For example,
labeling technical and professional terms can be
time-consuming and labor-intensive in medical sce-
narios. Moreover, crowd-sourced annotation is
also limited by the reality of existing samples (e.g.,

∗ Corresponding authors

when online health assistants are applied to rare
diseases).

To address learning challenges in these low-
resource scenarios, researchers find that PLMs can
learn well by prompt-based learning (Schick and
Schütze, 2021a,b; Tam et al., 2021). Prompt-based
learning models the probability of text directly; it
does not need an extra fully-connected layer usually
used by fine-tuning. The main idea is to reformu-
late NLP tasks as cloze-style question answering
for better using the knowledge in PLMs. The model
predicts the word probability of masked positions
and then derives the final output via mapping re-
lations between words and labels. Previous works
have shown the ability of prompt-based learning
under low-resource settings (Schick and Schütze,
2021a,b; Schick et al., 2020; Lester et al., 2021).
For example, some prompt-based works have ex-
plored in classification and generation tasks where
it is relatively easy to reformulate into cloze-style
tasks (cf. Section 4). Nevertheless, the application
to Named Entity Recognition (NER) still poses
challenges for current methods. Unlike text clas-
sification and text generation, NER is the task of
identifying named entities (e.g., person name, loca-
tion) in a given sentence, and each unit of the input
needs to be predicted. If we directly use Masked
Language Modeling (MLM) head to predict each
unit label, the lexical and semantic coherence are
ignored as there exists latent relationships between
the tokens (Lample et al., 2016; Peters et al., 2018;
Yan et al., 2019).

In this work, we propose Prompt-based Text
Entailment (PTE) for low-resource NER. Firstly,
we reformulate NER as a text entailment task. Tex-
tual Entailment (TE) is the task of studying the
relation of two sentences, Premise (P) and Hypoth-
esis (H): whether H is true given P (Bowman et al.,
2015). Specifically, we treat the original sentence
as premise and entity type-specific prompt as a hy-
pothesis. Given an entity type, the P and H are
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fed into PLMs to get entailment scores for each
candidate. Then, the entailment score is the prob-
ability of a specific token at the mask position of
the prompt. After that, the entity type with the
top entailment score is selected as the final label.
During inference, we enumerate all possible text
spans or words in the input sentence as named
entity candidates (Cui et al., 2021). The reformu-
lation provides a unified entailment framework for
NER tasks where annotations are insufficient, as
the model shares the same inference pattern across
different domains. As such, we can also leverage
generic text entailment datasets such SNLI (Bow-
man et al., 2015) and MNLI (Williams et al., 2018)
to pre-train models, which transfer knowledge from
the general domain and get better performance in
new domains. Our method can be a step forward
towards the development of a solution for the low-
resource NER because any new domain does not
typically have extensive annotated data in the real
world, whereas it is feasible to obtain a couple of
examples (e.g., online assistant). Moreover, consid-
ering the existence of noisy annotations, TE only
needs to specify the labels of certain entities for
training rather than the complete annotations of
the entire sequence. Experimental results demon-
strate that the proposed method PTE achieves com-
petitive F1 score on the CoNLL03 dataset (Tjong
Kim Sang, 2002), and better than fine-tuned coun-
terparts by a large margin on the MIT Movie (Liu
et al., 2013) and Few-NERD datasets (Ding et al.,
2021b) in low-resource settings.

2 Method

2.1 Low-Resource Named Entity Recognition

Given a sentence X = (x1, x2, . . . xN) which
contains N words, the task is to produce Y =(y1, y2, . . . yN) which is the sequence of entity
tags. The tag yi ∈ Y (e.g., B-LOC, I-PER, O)
denotes the type of entity for each word xi, where
Y is a pre-defined set of tags. We are given a
low-resource NER dataset Dtrain, where the labeled
examples to each NER type (e.g., < 50) are sub-
stantially less than that in the rich-resource NER
dataset. Our goal is to train an accurate NER model
under this low-resource setting.

Previous methods usually treat NER as a se-
quence labeling task in which a neural encoder
such as LSTM and BERT is used for represent-
ing the input sequence, and a softmax or a CRF
layer is equipped as the output layer to get the tag

sequence. Formally, as the standard fine-tuning,
NER model M parameterized by θ is trained to
minimize the cross-entropy loss over token repre-
sentations H = [h1, h2, . . . hN] that are generated
from the neural encoder as follows:

L = −
N

∑
i=1

log fxi,yi(h; θ), (1)

where f is the model’s predicted conditional prob-
ability for golden label.

2.2 Prompt-based Text Entailment

Towards the low-resource NER task, a common
way is to pre-train the neural encoder and out-
put layer parameters with the rich-resource NER
dataset. Another feasible way is to focus on the
matching function learned by prototype-based net-
work (Snell et al., 2017) or nearest neighbor clas-
sification (Yang and Katiyar, 2020). After that, a
well-trained matching function can work well in
the target tasks. However, since the entity category
is different, the parameter for the low-resource do-
main cannot be transferred directly from the source
domain. Moreover, the metric-based meta-learning
methods assume that training and test tasks are in
the same distribution but this assumption may not
always be satisfied in practice (Yin, 2020).

In this work, we reformulate named entity recog-
nition as the text entailment task. As the NER task
is not a standard entailment problem, we convert
NER examples into labeled entailment instances.
The input includes the original sentence as premise
and entity type-specific prompt as a hypothesis (i.e.,
template). The output is produced by an entailment
classifier, predicting a label for each instance. The
entailment score is the probability of a specific to-
ken at the mask position of the prompt. Then, the
entity type with the top entailment score is selected
as the final label. For example, given a sentence
“Seoul is the capital of South Korea.” and a candi-
date “Seoul”, we define “Seoul is an <entity_type>
entity. [MASK]” as prompt for each entity type.
Suppose the entailment score of token “yes” at
[MASK] for <location> type is the highest of all
entity types, we finally choose “location” as the pre-
dicted label. For training, we sample three types
of negative examples (see Appendix A): false posi-
tive (i.e., replace the correct label with others), null
label (i.e., replace the correct label with null), and
non-entity replacement (i.e., replace golden entity
with non-entity span). For example, “Seoul is not a
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named entity. [MASK]” is one prompt of “false pos-
itive” example (i.e., the [MASK] label is no, and
it exists entities). During training and inference,
we can enumerate all possible text spans in the in-
put sentence as named entity candidates (Cui et al.,
2021). To further reduce time complexity in gener-
ating candidates by n-grams enumeration, we inject
tagging labels (e.g., I-location means the tag is in-
side a entity) into prompts and treat words as basic
units instead of text spans during training and infer-
ence. In other words, we consider prompts “<can-
didate_entity_word> is the part of a <entity_type>
entity. [MASK]” (e.g., “Seoul is the part of a lo-
cation entity. [MASK]”). As PTE treats words as
basic units for decoding, it optimizes time complex-
ity at inference to O(L), which is in line with pre-
vious NER methods. It optimizes quadratic costs
at inference to linear. We also apply the Viterbi
algorithm at inference, where transitions are com-
puted on the training set (Hou et al., 2020). The
computational complexity of n-grams enumeration
is O(L2), increasing quadratically with sequence
length L. Overall, our method provides a unified
entailment framework as the model shares the same
inference pattern across different domains.

2.3 Pattern Exploiting Training Framework

The basic framework of PTE is from ADAPET
(Tam et al., 2021) which is a variant of PET
(Schick and Schütze, 2021a,b). Compared with
PET, ADAPET uses more supervision by decou-
pling the losses for the label tokens and a label-
conditioned MLM objective over the total original
input (Tam et al., 2021). We introduce it by describ-
ing how to convert one example into a cloze-style
question. The query-form in ADAPET is defined
by a Pattern-Verbalizer Pair (PVP). Each PVP con-
sists of one pattern which describes how to convert
the inputs into a cloze-style question with masked
out tokens, and one verbalizer which describes the
way to convert the classes into the output space
of tokens. The PVP can be manually generated
(Sun et al., 2019; Petroni et al., 2019) or obtained
by using an automatic search algorithm (Schick
et al., 2020; Gao et al., 2021). After that, ADAPET
obtains logits from the model Gm(x). Given the
space of output tokens Y , ADAPET computes a
softmax over y ∈ Y , using the logits from Gm(x).
The final loss is shown as follows:

q(y∣x) = exp([[Gm(x)]]y)
∑
y′∈Y

exp([[Gm(x)]]y′) , (2)

L = Cross_entropy(q(y∗∣x), y∗). (3)

2.4 Cross Task and Domain Transfer

To address the challenge when few labeled exam-
ples are available, we further train the sentence
encoder on the TE datasets (e.g., MNLI) and ap-
ply it to the NER task. Then, our method can
perform more knowledge transfer between the rich-
resource NER dataset and the low-resource NER
dataset. Since there is no domain-related fully con-
nected layer for fine-tuning, all parameters can be
transferred in different domains even if the entity
category does not match. Specially, we apply the
text entailment method to the low-resource domain
after firstly pre-training the NER model in the rich-
resource domain. This process is simple but can
effectively transfer label knowledge. As the out-
put of our method is model-agnostic words (not
tag index), the tag vocabulary with rich-resource
and low-resource is a shared pre-trained language
model vocabulary set. It allows our method to
use the correlation of tags to enhance the effect of
cross-domain transfer learning.

3 Experiments

We compare our methods with several baselines
on both rich-resource settings and low-resource
settings. We use the CoNLL2003 (Tjong Kim Sang,
2002) as the rich-resource dataset, and MIT Movie
(Liu et al., 2013), Few-NERD (Ding et al., 2021b)
as the cross-domain low-resource datasets. And
we conduct experiments on the CoNLL03 dataset
in both full and low-resource settings. The dataset
statistics and experimental settings are included in
Appendix B and C. The standard precision, recall,
and F1 score are used for model evaluation.

3.1 Rich-Resource NER Results

We first use the whole training set of the CoNLL03
to train the model and evaluate its performance on
the test set. Table 1 shows the performance of the
comparison method and our model on the test set.
We can find that although the potential applications
of PTE is low-resource named entity recognition,
it can also achieve competitive performance in rich-
resource domain data sets. Compared with BERT
fine-tuning reported in the previous work, the PTE
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Method Precision Recall F1
Wiseman and Stratos (2019) - - 89.94
Yang et al. (2018) - - 90.77
Ma and Hovy (2016) - - 91.21
BERT (Cui et al., 2021) 91.93 91.54 91.73
Yamada et al. (2020) - - 94.30
Template BART (Cui et al., 2021) 90.51 93.34 91.90
PTE (discrete) 91.27 91.56 91.41
PTE (soft) 92.01 92.45 92.23

Table 1: Model performance on the CoNLL03 test set.

Method PER ORG LOC MISC Overall
BERT 75.71 77.59 60.72 60.39 69.62
Template BART 84.49 72.61 71.98 73.37 75.59
PTE (BERT) 85.34 72.89 73.01 74.32 76.40

Table 2: Cross entity type results on the CoNLL03.
LOC and MISC are low-resource entity types, where
PER and ORG are rich-resource entity types.

model using discrete manual design reduces the F1
by 0.32, while the PTEmodel using the soft prompt
method design mode (Liu et al., 2021a,b) increases
the F1 by 0.5. It shows that our method effectively
recognizes named entities, and soft prompts can
improve performance compared with manually de-
signed prompts. More experimental results about
TE patterns (§2.3) are in the Appendix D.

3.2 Cross Entity Type NER Results

Following Cui et al. (2021), we sample the number
of examples corresponding to different types of
entities on the CoNLL03 data training set as new
training set while keep test set unchanged. Among
them, “PER” and “ORG” are rich-resource entity
types, and “LOC” and “MISC” are low-resource
entity types. The experimental results are shown in
Table 2. The results show that our method achieves
better results than baselines on the low-resource
entity types, thus improving overall performance.
On the other hand, our method is better than fine-
tuning in both cases.

3.3 Domain Transfer for Low-Resource NER

We do not use N -way K-shot setting (Yang and
Katiyar, 2020; Ding et al., 2021b) which sam-
ples N categories and K examples for training
in each episode because a sentence in the NER task
may contain multiple entities from different types.
Thus, we randomly sample training data from the
MIT Movie and Few-NERD datasets to simulate
low-resource scenarios and use CoNLL03 as the
rich-resource dataset. As such, we have only K
examples for each type of training. We choose
K ∈ {10, 20, 50, 100, 200, 500} for experiments
to evaluate the ability of the model on training

MIT Movie (12)
Method K=10 K=20 K=50 K=100 K=200 K=500
Wiseman and Stratos (2019) 3.1 4.5 4.1 5.3 5.4 8.6
Ziyadi et al. (2020) 40.1 39.5 40.2 40.0 40.0 39.5
Sequence Labeling BERT 28.3 45.2 50.0 52.4 60.7 76.8
Yamada et al. (2020) 35.6 49.2 61.8 72.4 78.7 82.8
Template BART (Cui et al., 2021) 42.4 54.2 59.6 65.3 69.6 80.3
PTE (discrete) 46.9† 59.2† 66.9† 74.9† 79.9† 83.6
PTE (soft) 47.8† 60.8† 68.1† 76.5† 83.6† 86.4†

Few-NERD (8)
Method K=10 K=20 K=50 K=100 K=200 K=500
Wiseman and Stratos (2019) 5.2 4.1 4.7 7.8 12.3 10.1
Ziyadi et al. (2020) 35.4 48.3 51.2 51.8 53.6 55.7
Sequence Labeling BERT 50.6 59.3 61.3 61.4 62.5 66.4
Yamada et al. (2020) 51.7 60.1 62.3 61.0 62.5 66.8
PTE (discrete) 51.8 59.7 60.5 61.3 61.8 63.4
PTE (soft) 54.2 61.4 62.3 62.5 63.6 67.4

Table 3: F1 comparison of two low-resource NER
datasets. We set 6 sample size K for different low-
resource settings. † means a significant difference com-
pared to Template BART (p < .05).

CoNLL03 MIT Movie (K=10) Few-NERD (K=10)
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PTE (discrete)
PTE (soft)

Figure 1: F1 scores with different experimental settings
and model variants.

data of different sizes. The experimental results
are in Table 3. The results show that when the K
value is relatively small, our PTE method can be
better than the fine-tuning method, and this trend
decreases with the increase of K. In addition, the
soft mode is also better than the discrete mode in
the case of a small number of samples. Overall, our
method achieves the best results on both data sets
in the low-resource scenario.

3.4 Ablation Study

We conduct ablation experiments and the results
are shown in Figure 1. The results show that (1)
the selection of negative examples has a great im-
pact on the performance of the model, especially
the negative examples of the null label type. How-
ever, in rich-resource scenario, the gap between
full setting and decreased setting is not as much
as the low-resource scenario; (2) the low-resource
scenario is a challenge to the model, and the re-
sults of some variants are not inconsistent where
prompt-based learning may not be as good as fine-
tuning; (3) label conditioning and soft mode have
a consistent effect on the model. These findings
highlight that it still has room left to use prompt
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for effectively transferring knowledge in the case
of low-resource scenario.

4 Related Work

Previous works have shown the ability of prompt-
based learning under low-resource settings(Schick
and Schütze, 2021a,b; Schick et al., 2020; Lester
et al., 2021). Schick and Schütze (2021a) address
low-resource text classification by manually design-
ing templates as prompt-based learning in a iter-
ative training manner. Gao et al. (2021) improve
low-resource performance with well-designed tem-
plates with demonstrations. Liu et al. (2021b) ap-
ply continuous prompts for low-resource learning.
Recently, some works (Ding et al., 2021b; Tong
et al., 2021; Ma et al., 2021a; Chen et al., 2021)
also focus on low-resource NER. In contrast, we
propose to use prompt-tuning to treat NER as the
TE task. Unlike traditional NER methods, we use
prompt-based learning without an additional linear
layer for fine-tuning. By defining different prompts,
the model is able to perform well in low-resource
settings, which adapts to new domains with few
labeled data. In contrast to recent work which also
adopts prompt-based fine-tuning for NER (Ma
et al., 2021b), we show that the effectiveness of
the text entailment reformulation for named entity
recognition using PLMs.

5 Conclusion

In this paper, we apply prompt-based learning to
low-resource named entity recognition. For token
classification of NER, we reformulate it into a text
entailment task. Our method transfers knowledge
in different NLP tasks and domains, and performs
better in low-resource scenarios. Future work in-
cludes how to apply PTE to other NLP tasks.
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Datasets Domain # Type # Tokens # Train # Dev # Test

CoNLL03 Reuters news stories 4 21.0k 14041 3250 3453
MIT Movie Movie reviews 12 6.0k 7820 1955 2443
Few-NERD Wikipedia 8 4601.2k 131767 18824 37648

Table 4: Statistics of our datasets. We count the number
of sentences in the training/development/test set, the
number of tokens and the number of tags in datasets.

Type Templates
Positive (Y) <candidate> is the part of a <entity_type> entity.
False positive (N) <candidate> is the part of a <another_entity_type> entity.
Non-entity (N) <others> is the part of a <entity_type> entity.

Null label (Y/N) <others> is not a name entity.
<candidate> is not a name entity.

Table 5: The discrete manually-crafted templates.

Number Patterns
Pattern#1 [HYPOTHESIS] ? </s></s> [MASK], [PREMISE] </s>
Pattern#2 “ [HYPOTHESIS] ” ? </s></s> [MASK], “ [PREMISE] ” </s>
Pattern#3 [HYPOTHESIS] ? </s></s> [MASK]. [PREMISE] </s>
Pattern#4 “ [HYPOTHESIS] ” ? </s></s> [MASK]. “ [PREMISE] ” </s>

Table 6: We list the patterns used by our method where
<s> and </s> are start token and separated token.

CoNLL03 MIT Movie (K=50) MIT Movie (K=200)
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Figure 2: The performance of different modes after up
to 7000 training batches. The patterns we use are from
RTE task of Tam et al. (2021).

A Templates

We use the naive random sampling method and the
positive-negative ratio is 1:1.5 in the low-resource
scenario after sampling. As shown in Table 5, we
list our templates for each example type used by
PTE (discrete). Our soft prompt is to add differ-
ent special tokens before the [MASK] to form a
template and tune the embeddings of these tokens
directly following Ding et al. (2021a) used by PTE
(soft). We leave it for future work to examine
whether the NER performance further improves
with a more well-designed soft prompt.

B Dataset Statistics

We use the following datasets where data statis-
tics are displayed in Table 4: (1) The CoNLL03
dataset (Tjong Kim Sang, 2002) is from the En-
glish Reuters News and consists of 4 entity types.
We use the previous split in Cui et al. (2021) for

our experiments. The entity types are person, lo-
cation, organization, and miscellaneous entities.
The sampled training dataset in §3.2 includes 1500
organization entities, 1500 person entities, 150 lo-
cation entities and 150 miscellaneous entities (2)
The MIT Movie dataset (Liu et al., 2013) is from
queries related to movie information. The entity
types are actor, character, director, genre, plot,
year, soundtrack, opinion, award, origin, quote,
and relationship. (3) The Few-NERD dataset (Ding
et al., 2021b) is a low-resource NER dataset with a
hierarchy of 8 coarse-grained and 66 fine-grained
entity types. We use the coarse-grained entity in
our experiments. The entity types are location,
event, building, art, product, person, organization,
and miscellaneous entities.

C Experimental Settings

We use the pre-trained models and codes provided
by ADAPET and follow their default hyperparame-
ter settings unless noted otherwise. The pre-trained
language model of our method is BERT that is
pre-trained in the MNLI datasets. We use AdamW
optimizer and grid search batch size of {8,16,32}
for model training. We use grid search for learning
rate from [1e-5, 2e-5, 3e-5, 4e-5, 5e-5]. And we
grid search the optimal weight decay weight from[0.1, 0.01, 0.005, 0.001]. The maximum sequence
length, the dropout rate, the gradient accumulation
steps, the maximum training steps and the warm-up
ratio are set to 256, 0.1, 16, 7000, 0.06 respectively.
Early stopping is also applied based on model per-
formance on the development set. Our models are
trained with NVIDIA Tesla V100s. The verbalizer
words are [“yes”, “no”] and [“true”, “false”]. The τ
of transition probability in decoding is selected by
searching with 0.05 step from 0 to 1. For sequence
labeling BERT fine-tuning, we train BERT with a
softmax classifier following Devlin et al. (2019),
updating parameters using Adam with an initial
learning rate of 1e-5, and a batch size of 32.

D Pattern Engineering

After designing templates of entity-specific hypoth-
esis, we follow Tam et al. (2021) to define the TE
patterns in Table 6 and report results across all pat-
terns for all datasets in Figure 2. We find that the
subtle difference of the prompts impacts perfor-
mance, while Pattern#4 outperforms others across
datasets and settings.
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Abstract

Document-level Relation Extraction (DocRE)
aims at extracting relations between entities
in a given document. Since different mention
pairs may express different relations or even
no relation, it is crucial to identify key mention
pairs responsible for the entity-level relation la-
bels. However, most recent studies treat differ-
ent mentions equally while predicting the rela-
tions between entities, leading to sub-optimal
performance. To this end, we propose a
novel DocRE model called Key Mention pairs
Guided Relation Extractor (KMGRE) to di-
rectly model mention-level relations, contain-
ing two modules: a mention-level relation ex-
tractor and a key instance classifier. These two
modules could be iteratively optimized with
an EM-based algorithm to enhance each other.
We also propose a new method to solve the
multi-label problem in optimizing the mention-
level relation extractor. Experimental results
on two public DocRE datasets demonstrate
that the proposed model is effective and out-
performs previous state-of-the-art models.

1 Introduction

Relation Extraction (RE), which aims to identify
the relations between entities in a given text, has
been explored at the sentence level for decades
(Culotta and Sorensen, 2004; Zeng et al., 2014,
2015). However, according to Yao et al. (2019),
a large amount of relations can only be identified
across multiple sentences in the real-world scenar-
ios. Therefore, researchers have recently turned
to extracting relations directly in documents (Zeng
et al., 2020; Zhou et al., 2021; Huang et al., 2021;
Ru et al., 2021).

Document-level Relation Extraction (DocRE)
encounters many new challenges compared to its
sentence-level counterpart. A document may in-
clude numerous entities, and the same entity may
appear multiple times in different sentences. It

∗Corresponding author.

requires the DocRE models to recognize and fo-
cus on the part of the document that has relevant
context for a particular entity pair. Many previ-
ous works solve the above problems by obtaining
stronger context-aware entity pair representations.
There are two main ways to achieve this: the graph-
based methods (Guo et al., 2019; Nan et al., 2020;
Zeng et al., 2020) and the sequence-based methods
(Yao et al., 2019; Zhou et al., 2021). The graph-
based methods construct a document graph and
then use Graph Neural Networks (GNNs) to aggre-
gate information across nodes. Besides, as Trans-
former (Vaswani et al., 2017) could be regarded as
a fully connected GNN, the sequence-based meth-
ods attempt to directly use Transformer-based Pre-
trained Language Models (PLMs) for DocRE with-
out graph structure. The sequence-based methods
generally use strong PLMs (e.g., BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019)) to
model the input text and use different strategies to
get entity pair representations, e.g., average pool-
ing (Yao et al., 2019) and attentive pooling (Zhou
et al., 2021).

However, despite these successful efforts, most
existing methods still ignore the critical issue of
treating different mentions equally in an entity pair.
And it is at odds with the actual situation, as differ-
ent mention pairs may express different relations
or even no relation. For the example in Figure 1,
multiple relations exist between Genc Ruli and Uni-
versity of Tirana, e.g., employer and educated at.
These two relations can be inferred by different
mention pairs of them, and at the same time, there
are also several mention pairs don’t express any
relation. The multi-mention property of DocRE
makes it difficult to establish context to relation
mapping at the entity level directly. Therefore,
equal treating all mentions ignores the difference
between different mentions’ contexts and may in-
troduce irrelevant information to mislead model
training.
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[s1] Genc Ruli ( born April 11, 1958) is an Albanian

politician. … [s3] Ruli holds a bachelor's degree in

Economics and a bachelor's degree in Law from the

University of Tirana. [s4] He holds a PhD in Economics

from the Faculty of Economics, University of Tirana. [s5]

Ruli is given the title Professor from the Faculty of

Economics, University of Tirana. [s6] He has served as a

Professor of Finance and Accounting in the Faculty of

Economics, at the University of Tirana. [s7] Ruli has an

extensive experience as the Minister of Finance and

Economy in early 90’s and as the Minister of Economy,

Trade and Energy during 2005 - 2009. [s8] Ruli resigned

from his position as Finance Minister on 9 November

1993, following allegations of corruption. … [s14] Ruli

has written several publications in the areas of economics

and public policies.

Subject: Genc Ruli Object: University of Tirana

Relation: employer, educated at

Figure 1: An example of multi-mention and multi-label
problems from DocRED (Yao et al., 2019). Head entity
Genc Ruli and tail entity University of Tirana express
relations employer and educated at. This entity pair
contains multiple mention pairs, and only several of
them express relations. Other entities in the document
is highlighted in grey.

To handle the multi-mention problem, we refor-
mulate DocRE task as a Multiple Instance Learn-
ing (MIL) problem (Carbonneau et al., 2018) and
propose a novel model called Key Mention pairs
Guided Relation Extractor (KMGRE). Our ap-
proach consists of a mention-level relation extrac-
tor and a key instance classifier, which are itera-
tively trained to enhance each other. The relation
extractor provides mention-level relation pseudo la-
bels to help train the key instance classifier, and the
key instance classifier distinguishes key mention
pairs to improve relation extractor training. Those
two modules can be efficiently optimized with the
Expectation-Maximization (EM) algorithm (Neal
and Hinton, 1998). By introducing key instances,
KMGRE can effectively filter out mention pairs
that do not express any relation to reduce the im-
pact of redundant information.

Such a mention-level relation extractor suffers
from the multi-label problem. It could be difficult
to distinguish what kind of relation each mention
pair expresses in multi-label situations, making
generating the mention-level relation pseudo labels
challenging. To alleviate the multi-label problem in
optimizing the mention-level relation extractor, we
propose to generate entity-level relation predictions
by fusing mention-level predictions. Then we opti-
mize our model’s parameters with the entity-level

relation labels. The contributions of this paper are
summarized as follows:

• We regard the multi-mention problem in
DocRE as a particular case of MIL and ex-
ptend a novel framework to directly model
mention-level relations.

• We propose a new method to fuse the mention-
level predictions. It could avoid the wrong
guide to the model caused by false labeling
mention pairs in the multi-label case.

• Experiments on two public DocRE datasets
demonstrate that the proposed model is effec-
tive and outperforms previous state-of-the-art
models.

2 Related Work

Sentence-level relation extraction has been ex-
plored for decades (Culotta and Sorensen, 2004;
Zeng et al., 2014, 2015), but the relational facts that
can only be extracted through multiple sentences
cannot be handled well with traditional sentence-
level relation extraction methods (Yao et al., 2019).
For this reason, DocRE has attracted significant
attention from researchers.

Most previous DocRE approaches focus on ob-
taining a strong contextual representation for each
entity or entity pair. There are two main ways
to achieve this: graph-based and sequence-based
methods. The graph-based methods first construct
a document graph and then use GNNs to model the
interaction between different words and sentences.
Guo et al. (2019) propose attention-guided GNNs
to model full dependency trees of input documents
and selectively attend to the useful dependencies.
Nan et al. (2020) use a novel procedure to induce
the latent document-level graph and perform multi-
hop inference on the document graph. Zeng et al.
(2020) construct two different levels of document
graphs to aggregate information and combine the
comprehensive inferential path information to infer
relations.

As Transformer (Vaswani et al., 2017) could
be regarded as a fully connected graph neural net-
work, the sequence-based methods directly use
Transformer-based PLMs (Devlin et al., 2019; Liu
et al., 2019) to model the given text and get en-
tity pair representations by different strategies, e.g.,
average pooling (Yao et al., 2019), max pooling
(Li et al., 2021), and attentive pooling (Zhou et al.,
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2021). However, most existing methods treat dif-
ferent mentions of each entity equally, which is
counterintuitive, as different mention pairs may
express different relations in a given document.

Some methods also consider the effect of dif-
ferent mentions. For instance, Christopoulou et al.
(2019) put mention nodes into the document graph
and use GNNs to gather different mentions’ infor-
mation. Li et al. (2021) propose to use convolution
neural networks to capture the local mention-to-
mention interactions. Eberts and Ulges (2021) pro-
pose to regard DocRE as a MIL problem and obtain
entity pair representations by aggregating informa-
tion from different mention pairs. However, the
above methods don’t consider that different men-
tion pairs may express different relations or even
no relation. And they treat different mention pairs
equally in constructing the entity-level representa-
tion. Unlike previous methods, we directly model
mention-level relations and further design a key
instance classifier to distinguish those key mention
pairs.

3 Methodology

This section introduces the proposed model KM-
GRE which directly extracts relations at the men-
tion level. We first introduce the task formulation
of DocRE. With a documentD that contains a set of
entities E = {ei}ni=1, the task is to extract relations
between each entity pair (eh, et), where eh, et ∈ E
are the head entity and the tail entity, respectively.
An entity ei may occur multiple times in the doc-
ument, which could be defined as {mi

j}
Nei
j=1, and

therefore the mention pairs of (eh, et) could be de-
fined as X = {(mi,mj)|mi ∈ {mh

i }
Neh
i=1 ,mj ∈

{mt
j}
Net
j=1}. We denote mh

i and mt
j as mi and mj

below for convenience. C is the set of pre-defined
relation types. There exists a relation c ∈ C be-
tween eh and et only if any pair of their mentions
could express it.

It is intuitive to train a mention-level relation
extractor and fuse its results to generate the entity-
level relation label. However, instead of one men-
tion pair being matched to one relation label, we
only have the relation labels of entity pairs. There-
fore, it could be challenging to train a mention-level
relation extractor, directly. We propose to regard
DocRE as a MIL problem and extend a novel prob-
abilistic model to handle this issue as shown in
Figure 2.

To identify the key mention pairs, we assign a

binary variable z ∈ {0, 1} to each mention pair,
denoting whether it is responsible for the relation
label of the entity pair. Inspired by EM-MIL (Luo
et al., 2020), the relation label of (eh, et) is gener-
ated with probability:

p(yc = 1|X, z) =

max {p(yc = 1|mi,mj) · I
(
z(i,j) = 1

)
} (1)

where mi and mj are mentions of eh and et, re-
spectively. I (·) is the indicator function. yc = 1
if this entity pair (or mention pair) contains rela-
tion c, otherwise yc = 0. We then design two
modules, i.e., the mention-level relation extractor
and the key instance classifier. These two mod-
ules are parameterized by θ and ω, and used to
estimate the distribution pθ(yc = 1|mi,mj) and
pω
(
z(i,j) = 1|mi,mj

)
, respectively.

The goal is to jointly train the relation extractor
and the key instance classifier to maximize the like-
lihood of the training data. Formally, the objective
function is presented as below:

O(θ, ω) = E[log pθ,ω(yc|X)]

= E[log pθ,ω(z, yc|X)− log p(z|X, yc)]
(2)

Since we do not know the true distribution of z, it is
difficult to directly optimize Equation 2. Following
previous work (Luo et al., 2020), we optimize the
above objective function by maximizing its varia-
tional lower bound:

log pθ,ω(yc|X)

=KL(pω(z|X)||pθ(z|X, yc))

+

∫
pω(z|X) log

pθ(z, yc|X)

pω(z|X)
dz

≥
∫
pω(z|X) log pθ(z, yc|X)dz +H(pω(z|X))

(3)

where H(pω(z|X)) is the entropy of pω. There-
fore, we use an EM-based algorithm to optimize the
objective function iteratively. In the E-step, we up-
date ω by minimizing the KL divergence between
pω(z|X) and pθ(z|X, yc) to obtain a tighter lower
bound. In the M-step, we update θ by maximiz-
ing the lower bound. Notably, unlike the previous
work (Luo et al., 2020) that directly assigns the
bag’s label to each instance, we further propose a
new optimization method to alleviate its limitations
in the case of multi-label.
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Figure 2: The overall architecture of KMGRE. We use two PLMs that do not share parameters to provide contextual
embedding for the relation extractor and the key instance classifier. In the E-step, we update the parameters ω of
the key instance classifier with Lω; In the M-step, we update the parameters θ of the relation extractor with Lθ.

3.1 Parameterization

We use neural networks to parameterize the relation
extractor and the key instance classifier. Specific
details are described as follows.

Relation Extractor. Given an entity pair (eh, et),
the relation extractor generates relation probability
distribution pθ(yc|mi,mj) for its mention pairs.

For a document of length `, we first insert a spe-
cial token “*" into every mention’s start and end
position. It is then fed into a PLM to obtain the
contextual representationH ∈ R`×d of each word,
where d is the hidden dimension of the PLM. For
a mention mi, we take the representation of “*" at
the start position as its embedding hmi and get its
self-attention weightAmi ∈ RH×l in H attention
heads. mj is similar to mi. The contextual repre-
sentation of mention pair (mi,mj) is calculated as:

c(i,j) =H>
H∑

k=0

Ak
mi ·Ak

mj

1>
(
Ak
mi ·Ak

mj

) . (4)

Then c(i,j) is concatenated with the embedding of
mi and mj to get the representation x(i,j):

x(i,j) = [hmi ;hmj ; c
(i,j)]. (5)

We calculate the probability of relation c by a linear

function and sigmoid activation:

pθ(yc|mi,mj) = σ(wcx
(i,j) + bc) (6)

wherewc ∈ R3d and bc ∈ R are model parameters.

Key Instance Classifier. Since we only have
the entity-level relation annotation, it is against
intuition to directly train the above relation ex-
tractor. Therefore, we design this key instance
classifier to generate the probability distribution
pω(z(i,j)|mi,mj), and assume the independence
between different mention pairs. Moreover, we use
this module to help train the relation extractor.

Like the above relation extractor, we use the
same method to get the contextual embedding of
(mi,mj) and concatenate it with h′mi and h′mj :

x(i,j)
′
= [h′mi ;h

′
mj ; c

(i,j)′ ] (7)

where the superscript ′ means we use another PLM
to get this embedding. We use two PLMs that do
not share parameters to provide contextual embed-
ding for the relation extractor and the key instance
classifier, respectively, to avoid mutual interference
during training.

We calculate the probability of (mi,mj) being
a key instance by a linear function and sigmoid
activation:

pω(z(i,j)|mi,mj) = σ(wkx
(i,j)′ + bk) (8)
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Algorithm 1 EM Optimization for O(θ, ω)
Input: θ and ω, learning rate β, threshold con-
trol hyperparameter τ ;

1: while not converged do
2: for (X,y) in train set do
3: Calculate the mention-level relation

probability pθ(yc|mi,mj).
4: Generate key instance pseudo label
ẑ(i,j) for all the mention pairs as Equation 9.

5: Calculate the distribution of key in-
stances pω(z(i,j)|mi,mj).

6: Calculate the E-step loss function Lω
as Equation 11 and Equation 10.

7: ω ← ω − β · ∇ωLω.
8: Update the threshold control hyperpa-

rameter τ in Equation 13.
9: end for . E-step

10: for (X,y) in train set do
11: Calculate the distribution of key in-

stances pω(z(i,j)|mi,mj).
12: Calculate the threshold p̃ω(z) as Equa-

tion 12 and Equation 13.
13: Divide the mention pairs set X into

Xpos andXneg as Equation 14 and 15.
14: Get the entity-level relation logit lc as

Equation 16.
15: Calculate the M-step loss function Lθ

as Equation 19.
16: θ ← θ − β · ∇θLθ.
17: end for . M-step
18: end while

where wk ∈ R3d and bk ∈ R are model parame-
ters.

3.2 Optimization
Next, we introduce how we optimize the relation
extractor and the key instance classifier to maxi-
mize the objective in Equation 2. We first train
the relation extractor and the key instance classifier
for several epochs before using the EM algorithm.
Then at each iteration, the mention-level relation
predictions and gold relation labels are first used
to generate the key instance pseudo labels. After
that, we update ω to minimize the KL divergence
between pω(z|X) and pθ(z|X, yc). Furthermore,
we use the key instance predictions and gold re-
lation labels to update θ and maximize the lower
bound in Equation 3. The complete algorithm of
KMGRE is shown in Algorithm 1, and the specifics
are detailed below.

E-step. In the E-step, we first use the mention-
level relation predictions and gold relation labels to
generate the key instance pseudo labels ẑ as below:

ẑ(i,j) =





1, if ∃ c ∈ C, s.t. yc = 1 ∧
pθ(yc|mi,mj) ≥ pθ(yc|eh, et)

0, otherwise
(9)

where pθ(yc|eh, et) =
∑

i,j pθ(yc|mi,mj)/(Neh ·
Net) and yc is the gold relation label of (eh, et).

We update ω using binary focal loss (FC, (Lin
et al., 2017)) as below:

Lω = −αω(1−pω(z(i,j)))γω log(pω(z(i,j))) (10)

where αω and γω are pre-defined hyperparameters.
pω(z(i,j)) is defined below:

pω(z(i,j)) =

{
pω(z(i,j)|mi,mj), if ẑ(i,j) = 1

1− pω(z(i,j)|mi,mj), otherwise
(11)

M-step. Unlike previous methods that directly la-
bel key mention pairs with the same label as entity
pairs, we propose a new optimization method to
alleviate the multi-label problem (e.g., the example
in Figure 1 that the same entity pair may contain
multiple relations). We fuse the mention-level re-
lation results of key mention pairs to obtain the
entity-level relation predictions and update θ by
the entity-level relation extraction loss.

We first divide X into two different subsets
Xpos andXneg as below:

pω(z) =
∑

i,j

pω(z(i,j))

Neh ·Net

(12)

p̃ω(z) =min(pω(z) + ξ · (max {pω(z(i,j))}
−min {pω(z(i,j))}), τ) (13)

Xpos =
{
(mi,mj)|pω(z(i,j)) ≥ p̃ω(z)

}
(14)

Xneg =
{
(mi,mj)|pω(z(i,j)) < p̃ω(z)

}
(15)

where ξ > 0 is set to control the degree of relax-
ation, pω(z(i,j)) means pω(z(i,j)|mi,mj), and τ is
a hyperparameter that increases gradually with the
training process. The entity-level output logit of
relation c is calculated as below:

lc = log
∑

Xpos

exp(wcx
(i,j) + bc). (16)
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Following previous work (Zhou et al., 2021), we
introduce a special relation class TH as the adap-
tive threshold and use the following loss function
to update θ:

L′θ = −
∑

r∈PT
log


 exp(lr)∑
r′∈PT ∪TH

exp(lr′)


 (17)

L′′θ = −log


 exp(lTH)∑
r′∈NT ∪TH

exp(lr′)


 (18)

Lθ = L′θ + L′′θ (19)

wherePT is the set of relations contained in (eh, et)
and NT = C \ NT .

4 Experiments

4.1 Datasets and Evaluation Metrics
We evaluate our approach on two public DocRE
datasets.

DWIE1 (Zaporojets et al., 2021) is an entity-
centric multi-task dataset containing 602/98/99 doc-
uments for training, validation, and testing, respec-
tively. In the DWIE dataset, on average each entity
pair contains 3.97 mention pairs. And about 26%
of its entity pairs that express relations have more
than one relation label.

DocRED (Yao et al., 2019) is a large scare
human-annotated DocRE dataset containing 5053
documents from Wikipedia and Wikidata. As the
original DocRED has a considerable amount of
false-negative samples, we conduct experiments
on two re-annotated versions of it, i.e., Revisit-
DocRED2 (Huang et al., 2022) and Re-DocRED3

(Tan et al., 2022).
Following previous works, we use micro F1 and

micro Ign F1 as the evaluation metrics for DocRE
tasks. Ign F1 is proposed in Yao et al. (2019) with
the relational facts shared by training and test sets
excluded.

4.2 Baseline Models
We compare KMGRE with several RE models,
e.g. CNN, LSTM, BiLSTM and Context-Aware
(Sorokin and Gurevych, 2017). We also select sev-
eral state-of-the-art DocRE models for comparison.

GAIN (Zeng et al., 2020) is a state-of-the-art
graph-based DocRE model, which constructs two

1https://github.com/klimzaporojets/DWIE
2https://github.com/AndrewZhe/Revisit-DocRED
3https://github.com/tonytan48/Re-DocRED

diagrams of mention level and entity level to aggre-
gate the dependencies at different levels.

SSAN (Xu et al., 2021) takes the structural de-
pendencies into account in the self-attention mech-
anism.

ATLOP (Zhou et al., 2021) proposes an adap-
tive threshold mechanism and optimizes it with a
specific objective function and our method has a
similar structure with it in implementation.

4.3 Implementation Details

Our model is implemented in PyTorch and Hug-
gingFace’s Transformers (Wolf et al., 2019)4. We
use the uncased BERT-base (Devlin et al., 2019) as
the base encoder to get contextual representation
and attention weights.

For optimization, we use AdamW (Loshchilov
and Hutter, 2019) with a learning rate of 5e-5 and
a weight decay of 1e-5 to optimize our model. We
apply a linear warmup on the first 6% steps. The
focusing hyperparameters γω and αω are set to 2
and 0.3, respectively. The threshold control hyper-
parameter ξ is set to 0.15 for Revisit-DocRED and
0.1 for DWIE.

We noticed in our experiments that if τ is set
to a fixed high value, the model may misclassify
some key mention pairs in the initial stage, which
would mislead the relation extractor. Therefore,
we introduce a warm-up process by calculating τ
based on the steps as τ = 0.5 · (1− 0.999step).

4.4 Main Results

Results on DWIE. Our main results on the
DWIE dataset are shown in Table 1. We can
observe that our model has significant improve-
ments in both development and test sets. In particu-
lar, KMGRE already achieves a state-of-the-art F1
score of 76.71% on the test set.

Results on DocRED. We also report the Ign F1
and F1 metrics on the Revisit-DocRED and Re-
DocRED in Table 2. As seen, in the test set of
Revisit-DocRED and Re-DocRED, KMGRE con-
sistently outperforms previous methods. Notably,
the performance of these models in the test set of
Revisit-DocRED is much lower than reported in
their original papers. This phenomenon is caused
by the occurrence of many false-negative samples
in the origin DocRED dataset (Huang et al., 2022).

4The code and training scripts will be released at
https://github.com/toyfana/KMGRE.
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Model Dev Test

Ign F1 F1 Ign F1 F1

CNN∗ 37.65 47.73 34.65 46.14
LSTM∗ 40.86 51.77 40.81 52.60
BiLSTM∗ 40.46 51.92 42.03 54.47
Context-Aware∗ 42.06 53.05 45.37 56.58
GAIN∗ 58.63 62.55 62.37 67.57
SSAN† 58.62 64.49 62.58 69.39
ATLOP 63.57 69.96 67.56 74.36
KMGRE 65.56 ± 0.77 71.40 ± 0.37 69.94 76.71

Table 1: Performance (%) on the development and test set of DWIE. We report the mean and standard deviation of
F1 on the development set and test set by conducting 5 runs of training using different random seeds. The results
with ∗ are reported in Ru et al. (2021). The result with † is reported in Yu et al. (2022).

Model
Revisit-DocRED Re-DocRED

Test Dev Test

Ign F1 F1 Ign F1 F1 Ign F1 F1

CNN 29.70 30.04 53.95 55.60 52.80 54.88
LSTM 31.32 31.77 56.40 58.30 56.31 57.83
BiLSTM 32.50 32.91 58.20 60.04 57.84 59.93
GAIN 41.27 41.64 71.99 73.49 71.88 73.44
SSAN 41.64 41.92 - - - -
ATLOP 41.62 41.90 73.35 74.22 73.22 74.02
KMGRE 42.78 43.16 73.33 74.44 73.39 74.46

Table 2: Performance (%) on the dev/test set of Revisit-DocRED and Re-DocRED. The SSAN here uses the
officially provided checkpoint based on RoBERTa-base.

Nevertheless, our model can still achieve large im-
provement on the test set compared to previous
methods, demonstrating the effectiveness of mod-
eling the mention-level relations.

Efficiency Comparison. We also benchmark the
time and memory usage of KMGRE on a Tesla
V100 GPU. Table 3 shows that our model incurs
∼22% training time and∼63% GPU memory over-
head.

4.5 Ablation Studies

To better understand the impact of different com-
ponents of our methods, we evaluate our model by
removing each component. The results are shown
in Table 4.

Effectiveness of the Key Instance Classifier.
To evaluate the effectiveness of the key instance
classifier, we directly train a model that only con-
tains the mention-level relation extractor in KM-

Model Memory Training time

ATLOP-BERT-base 4849 MB 4.21 it/s
KMGRE-BERT-base 7891 MB 3.45 it/s

Table 3: Training time and memory usage on Re-
DocRED.

GRE. By turning off the key instance classifier,
KMGRE could be regarded as an instance-level
approach of MIL (Ilse et al., 2018). As shown in
Table 4, KMGRE performs better than without the
key instance classifier. It means that our key in-
stance classifier could effectively filter out mention
pairs that do not express any relation to reduce the
impact of redundant information. At the same time,
our KMGRE can still achieve a better classifica-
tion performance than ATLOP even without the
key instance classifier, which means that directly
modeling the mention-level relations is more rea-
sonable.
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Figure 3: The results of different mention numbers in DWIE. The M1 subset denotes those entity pairs in which
head or tail entity has multiple mentions. The M2 subset denotes those entity pairs in which both head and tail
entities contain multiple mentions.

Components Ign F1 F1

ATLOP 63.57 69.96

KMGRE 65.56 71.40
-Key Instance Classifier 64.87 70.38
-Fusion of Mention-Level Results 59.67 63.93

Table 4: An ablation study of KMGRE on DWIE.

Effectiveness of the Mention-Level Results’ Fu-
sion. We further explore the effectiveness of the
mention-level results’ fusion by using the same
pseudo-label generation procedure as the E-step.
As shown in Table 4, we could observe a significant
performance decay without the fusion of mention-
level results. Since direct assigning the labels of
entity pairs to key mention pairs will produce a
large number of wrong labeled mention pairs, it
seriously misleads the mention-level relation ex-
tractor. As about 26% of the positive entity pairs
have more than one relation label, this phenomenon
is particularly prominent in DWIE.

4.6 Effect Analysis for Mention Number
To explore the effect of mention number in DocRE,
we compare our model’s relation extraction perfor-
mance in different cases. Following previous work
(Yu et al., 2022), we divide the DWIE dataset into
several subsets according to the mention number of
head/tail entity, e.g., the M1 subset denotes those
entity pairs in which head or tail entity has multiple
mentions, and the M2 subset denotes those entity
pairs in which both head and tail entities contain
multiple mentions.

The results in the DWIE dataset are shown in

Figure 3. It can be observed that as the number of
mentions increases, the relation prediction results
are more accurate. It indicates that with more men-
tions included, the information about a particular
entity is more comprehensive, which is beneficial
for relation classification. Notably, our method has
consistently shown improvement over the strong
baseline model for all cases, even for those entities
that only have a single mention. Experimental re-
sults show that KMGRE can more accurately infer
the relations between entities from the context than
the previous models by directly modeling mention-
level relations.

4.7 Case Studies

Figure 4 shows a case study of KMGRE and the
previous state-of-the-art baseline ATLOP. We could
observe that the head entity Genc Ruli and the tail
entity University of Tirana are mentioned multi-
ple times in the document. And this entity pair
expresses multiple relations, i.e., educated at and
employer. These two relations can be inferred from
mention pairs in sentences [s3] and [s5], respec-
tively. Also, there are a considerable amount of
mention pairs of (Genc Ruli, University of Tirana)
that do not express any relation.

We notice that both KMGRE and ATLOP can
successfully identify the educated at relation be-
tween Genc Ruli and University of Tirana. How-
ever, ATLOP fails to extract the employer relation
between the same entity pair, while KMGRE de-
duces it successfully. It indicates that treating all
mention pairs equally would introduce unrelated
information to mislead the relation extrator.
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Genc Ruli

University of Tirana

Albania

date of birth

educated at

April 11, 1958

ATLOP

Genc Ruli

University of Tirana

April 11, 1958
Albania

date of birth

KMGRE Ground Truth

Genc Ruli

University of Tirana

Albania

date of birth

employer;

educated at

April 11, 1958

employer;

educated at

[s1] Genc Ruli ( born April 11, 1958) is an Albanian politician. … [s3] Ruli holds a bachelor's degree in

Economics and a bachelor's degree in Law from the University of Tirana. [s4] He holds a PhD in Economics

from the Faculty of Economics, University of Tirana. [s5] Ruli is given the title Professor from the Faculty of

Economics, University of Tirana. [s6] He has served as a Professor of Finance and Accounting in the Faculty

of Economics, at the University of Tirana. [s7] Ruli has an extensive experience as the Minister of Finance and

Economy in early 90’s and as the Minister of Economy, Trade and Energy during 2005 - 2009. [s8] Ruli

resigned from his position as Finance Minister on 9 November 1993, following allegations of corruption. …
[s14] Ruli has written several publications in the areas of economics and public policies.

Figure 4: The case study of our proposed KMGRE and the state-of-the-art model, ATLOP (Zhou et al., 2021). The
models take the document as input and predict relations among different entities in different colors. We only show
a part of entities within the document and the according sentences due to the space limitation.

5 Conclusion

In this paper, we propose a new DocRE model
called KMGRE for the multi-mention problem,
containing a mention-level relation extractor and a
key instance classifier. Our method uses the key in-
stance classifier to identify those key mention pairs
responsible for the entity pair relation label. Also,
we propose a new optimization method to solve
the multi-label problem in optimizing the mention-
level relation extractor, as directly assigning the
entity-level labels to the key instances can lead to
misguidance. Experimental results on two public
DocRE datasets show KMGRE outperforms pre-
vious state-of-the-art methods. The ablation study
also confirms the effectiveness of our new method
for optimizing the mention-level relation extractor
in multi-label cases.
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Abstract

Extracting spatial relations from texts is a fun-
damental task for natural language understand-
ing and previous studies only regard it as a
classification task, ignoring those spatial rela-
tions with null roles due to their poor informa-
tion. To address the above issue, we first view
spatial relation extraction as a generation task
and propose a novel hybrid model HMCGR for
this task. HMCGR contains a generation and
a classification model, while the former can
generate those null-role relations and the lat-
ter can extract those non-null-role relations to
complement each other. Moreover, a reflexivity
evaluation mechanism is applied to further im-
prove the accuracy based on the reflexivity prin-
ciple of spatial relation. Experimental results
on SpaceEval show that HMCGR outperforms
the SOTA baselines significantly.

1 Introduction

Spatial relation extraction focuses on identifying
the relationship between two geographical entities
in natural language texts. Currently, only a few
studies focused on this task in the NLP community,
while most studies aimed at the other tasks of rela-
tion extraction, such as temporal and causal relation
extraction. However, spatial information is one
kind of critical information for natural language
understanding, which can benefit the downstream
NLP applications, such as spatial domain query
(Zhang et al., 2020), spatial reference (Yang et al.,
2020) and data forecasting (Song et al., 2020).

Various kinds of schemes have been proposed to
represent spatial relation. As one of the SemEval
evaluation tasks, SpaceEval (Pustejovsky et al.,
2015) proposes an annotation scheme adopted
from ISO-space (Pustejovsky et al., 2011) and
its goals include identifying and classifying items
from an inventory of spatial concepts, such as
topological relations, orientational relations, and

∗Corresponding author

[I] set this visit up by [biking] by the [school] and having all the 

[children], [who] were [at] [recess], [run] out and stop me, asking 

what I was doing.

Sentence:

{ MOVELINK

mover=I

trigger=biking

goal=null }

{ MOVELINK

mover=children

trigger=run

goal=null }

{ QSLINK

trajector=who

trigger=at

landmark=recess }

{ OLINK

trajector=children

trigger=null

landmark=school }

Relation:

Figure 1: An example in SpaceEval with null-role and
non-null-role.

motion, etc. Commonly, this task needs to ex-
tract the spatial elements and classify static and
dynamic spatial relations into three types: the
move link (MOVELINK), the qualitative spatial
link (QSLINK), and the orientation link (OLINK).
MOVELINK connects motion-events with corre-
sponding mover-participants as a triplet of three
roles (mover, goal, trigger), while QSLINK and
OLINK refer to the topological relation and non-
topological relation between two spatial elements,
respectively, and are formalized as a triplet of three
roles (trajector, landmark, trigger).

Following previous work, we also simplified the
whole task as Figure 1 and only focus on extracting
QSLINK/OLINK/MOVELINK from texts. Thus,
a spatial relation is defined as a triplet with three
spatial types. The spatial relation can be divided
into two classes: null-role and non-null-role rela-
tions. The former refers to a relation containing
null-value roles, such as two MOVELINKs and one
OLINK in Figure 1, while the latter (e.g., QSLINK
in Figure 1) refers to a relation whose three roles
are fulfilled the values extracted from sentences.

Almost all previous studies regarded spatial rela-
tion extraction as a classification task using tradi-
tional machine learning (Nichols and Botros, 2015;
D’Souza and Ng, 2015) or neural network meth-
ods (Ramrakhiyani et al., 2019; Shin et al., 2020).
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Those classification models work well on extract-
ing those non-null-role relations due to their rich
information. However, they often suffer from those
null-role relations. The reason is that some infor-
mation is missing in these relations. Moreover,
they also cannot benefit from the knowledge of the
spatial schema, such as the roles and their relations.

In the annotation stage, annotators usually not
only annotate relations and relation types, but also
provide a description or basis for their annotation
implicitly. Therefore, we hope the model can simu-
late a human and provide a target sentence instead
of a simple label index for understanding the spatial
relation deeper. The target sentence in generation
models can describe the relation between all spatial
elements and it allows null slots (i.e., roles) to exist.
Thus, the generation model not only can more ex-
plicitly learn the semantics of the spatial relations
through such a form of the learning goal, but also
can generate those null-role relations.

Moreover, the classification model and the gener-
ation model have their complementary advantages.
The former usually has better performance on no-
null-role relations, while the latter can introduce
prior knowledge to capture the semantics of null-
role relations better and its results are in a natural
language expression with stronger interpretability
(Jiang et al., 2021). Therefore, we combine the ad-
vantages of the classification and generation mod-
els to further capture different knowledge.

In this paper, we propose a novel hybrid
model HMCGR (Hybrid Model of Classification,
Generation and Reflexivity) for spatial relation ex-
traction, which contains a generation model and
a classification model. Specially, the former can
generate those null-role relations and the latter
can extract those non-null-role relations to comple-
ment each other. Moreover, a reflexivity evaluation
mechanism is applied to further improve the accu-
racy based on the reflexivity principle of spatial
relation. Experimental results on the SpaceEval
dataset shows that our HMCGR outperforms the
SOTA baselines significantly.

2 Related Work

Various kinds of schemes have been proposed to
represent spatial relations. SpatialML (Mani et al.,
2010) characterized directional and topological re-
lations among locations in terms of a region cal-
culus. The SpRL task (Kordjamshidi et al., 2011)
developed a semantic role labeling scheme focus-

ing on the main roles in spatial relations. Spatial
relation extraction was introduced as subtask at Se-
mEval 2012 (Kordjamshidi et al., 2012), SemEval
2013 (Kolomiyets et al., 2013) and SemEval 2015
(Pustejovsky et al., 2015). As the Task 8 of Se-
mEval 2015, SpaceEval proposed an annotation
scheme adopted from ISO-space, and it enriched
SpRL’s semantics by refining the granularity. Most
of previous studies were evaluated on this dataset.

The task of spatial relation extraction can be di-
vided into traditional machine learning and neural
network methods. The former highly relies on man-
ual features or explicit syntactic structures. Nichols
and Botros (2015) used a CRF layer to extract spa-
tial elements, and then introduced SVM to classify
spatial relations. D’Souza and Ng (2015) proposed
a Sieve-based model where various kinds of man-
ual features are generated by a greedy feature selec-
tion technique. Salaberri et al. (2015) introduced
external knowledge as a supplement to spatial infor-
mation, in which WordNet and PropBank provided
information on many spatial elements. Kim and
Lee (2016) proposed a Korean spatial relation ex-
traction model using dependency relations to find
the proper elements to fulfill roles.

With the wide application of neural network,
Ramrakhiyani et al. (2019) generated candidate re-
lations by dependency parsing and classified the
candidates with a BiLSTM model. Shin et al.
(2020) first used BERT-CRF to extract the spatial
roles and then introduced R-BERT (Wu and He,
2019) to extract the spatial relations. Besides, a
few studies focused on multi-modal spatial rela-
tion extraction. For example, Dan et al. (2020)
proposed a spatial BERT which gives two spatial
entities and a picture to determine spatial relations.

3 HMCGR

Figure 2 shows the overall architecture of our
model HMCGR. As a whole, HMCGR can be di-
vided into four modules, i.e., candidate triplet ex-
traction (CTE), spatial relation classification (CLS),
spatial relation generation (GEN), and Reflexivity
evaluation (RFX).

The module CTE is first used to extract spatial
elements and spatial roles from a raw sentence to
obtain candidate triplets by a BERT-CRF model.
And then the candidate triplets and the raw sen-
tence are fed to the module CLS, which uses a
BERT encoder and a T5 encoder to encode the
sentence, respectively, and apply a GCN (Graph
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BERT T5-encoder T5-decoderrecess(ld)

Predicted Sentence

 avg-pooling

rfx-loss gen-losscls-loss

Spatial Relation 
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Cross attention
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T5-encoder

HEB
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HCT

HIVT

recess

MLP

atwho

 Adjacency Matrix: A

N
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at(tr)who(ta)

HET

IVS TGS

HCTA HIVA

I set this visit up by ... all the children , who were at recess , ...

CTE

Target Sentence GenerationInverted Sentence Generation

Figure 2: Overall structure of our HMCGR.

Convolutional Networks) layer to capture the sen-
tence structure. Simultaneously, the module GEN
uses a T5 decoder to generate a target sentence fol-
lowing a specific template, and the module RFX
uses the cosine function to calculate the similar-
ity between the original sentence and its inverted
sentence to further improve the accuracy.

3.1 CTE: Candidate Triplet Extraction

Since a spatial relation is represented as a triplet
with its relation type MOVELINK, OLINK or QS-
LINK, the first step of HMCGR is to extract can-
didate triplets from raw texts as much as possi-
ble. Similar to Shin et al. (2020), we also use the
BERT+CRF model for spatial role extraction, as
showed in Figure 3. Spatial role extraction is a
task to form candidate triplets, which extracts the
spatial elements from texts and then assigns a role
to each extracted element.

Formally, the input is a token sequence X =
(x1, ..., xi, ..., xn) where xi is the i-th token in a
sentence S. We feed X with the label CLS to
BERT to obtain a new embeddingHB from BERT
which HB = [b1, ..., bi, ..., bn] where bi ∈ Rdb

and Rdb is the pre-defined spatial role set.

In Figure 3, there are two CRF layers with the
input embedding HB , i.e., the Spatial Element
CRF SE-CRF and the Spatial Role CRF SR-CRF.
We use SE-CRF to obtain the spatial element set
SE = [se1, ..., sei, ..., sem] in S where sei is a
spatial element, and use SR-CRF to obtain the
role set RL = [rl1, ..., rli, ..., rlm] for all elements
where rli is the spatial role of the element sei.

We simply apply a multi-task framework to train
these two CRFs and they share the same BERT en-
coder layer. Take the sentence in Figure 1 as exam-
ple, we can extract six spatial elements “children”,
“school”, “in”, “who”, “at” and “recess”, whose
roles are Spatial Entity, Place, Spatial Signal, Spa-
tial Entity, Spatial Signal and Place, respectively.

Due to CTE is the first stage of HMCGR, we
tend to generate all possible spatial role triplets
for the subsequent CLS module to achieve high
recall. Hence, we first split the set SE into
three subsets : 1) TM={Trajector, Mover}, 2)
LG={Landmark, Goal}, and 3) TR={Trigger}
according to their roles. Take the above elements
for example, “children” and “who” belong to TM ,
while “school” and “recess” belong to LG and the
others belong to TR.
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BERT

Spatial Role Set Spatial Element Set

SE-CRFSR-CRF

who at 

I set ... the children who were at recess ...[cls]

at recessrecess

,

ET ... children

SERL

Figure 3: Overview of candidate triplet extraction.

Finally, we enumerate possible triplets as candi-
dates following the spatial relation definition. Com-
monly, some triplets may have the roles with null
values, as the role trigger showed in Figure 1, be-
cause its element does not mention in the according
sentence. If we enumerate all possible triplets in-
cluding null roles as candidates, this will introduce
enormous negative triplets into the candidate set
and then harm the precision badly. For example,
there are 27 (33) candidate triplets in the sentence
in Figure 1, while only 4 are annotated triplets.
Hence, we do not generate the triplets with null-
value roles in the module CTE and the extracted
candidate triplet set ET = |TM | ∗ |TR| ∗ |LG| of
the example in Figure 1 is as follows: (who, at, re-
cess), (who, in, school), (who, at, school), (who, in,
recess), (children, in, school), (children, at, school),
(children, in, recess) and (children, at, recess).

3.2 CLS: Spatial Relation Classification

Following previous work, CLS is to classify the
candidate triplets into four types, i.e., MOVELINK,
OLINK, QSLINK, and null. If a triplet belongs to
the type null, this triplet is a pseudo spatial relation.
The reason that we introduce the type null to CLS
is that there are lots of pseudo triplets extracted by
CTE and they will harm the precision.

3.2.1 Encoding
First, we simply use BERT and T5 to encode the
sequenceX1 of the sentence S to obtain the embed-
dingsHEB = {eb1, ..., ebi, ..., ebn} andHET =
{et1, ..., eti, ..., etk}, respectively. To make better
use of the advantages of both two pre-training mod-
els, we use cross attention to represent the hidden
layer state as follows. In this way, we can get the
new embeddings HCB = {cb1, ..., cbi, ..., cbn}
andHCT = {ct1, ..., cti, ..., ctk} while the latter
is used in the RFX module.

1We add [cls] to the start of X to obtain the sentence
representation of BERT.

cbi = cross_attention(ebi, etj) (1)

cti = cross_attention(etj , ebi) (2)

Second, we incorporate the candidate triplets ex-
tracted by CTE into the above embeddingHcb to
enhance the representation of spatial elements. Spe-
cially, we introduce the SelfAttentiveSpanExtractor
in AllenNLP to obtain the latent representation of
three spatial rolesHtm,Hlg andHtr as follows.

Hy =
yend∑

i=ystart

(Wyi · cbi) (3)

where y ∈ {tm, lg, tr}. ystart and yend represent
the start and end position of a spatial element, re-
spectively, andWyi are learnable parameters. Be-
sides, since BERT maybe splits a word into multi-
ple word-pieces, we also use SelfAttentiveSpanEx-
tractor to obtain word-level representation.

3.2.2 Spatial GCN
Most previous work ignored the function of demon-
strative pronouns in spatial relation extraction.
However, those pronouns can participate in var-
ious spatial relations. Inspired by Phu and Nguyen
(2021) in casual relation extraction, to capture
the relationship between sentences and spatial
roles, and make better use of sentence structure
and anaphora, we introduce a spatial graph G =
{N,E} to CLS, where the node set N = X ∪ SE,
which are defined in subsection 3.1. We initial-
ize four adjacency matrices (AB , AE , AC , AD)
to represent four edge types in our graph G as
follows, where Ay = {ay1,1, ..., ayi,j , ..., ay|N |,|N |}
(y ∈ {B,E,C,D}).

Sentence Boundary Edge: Intuitively, relevant
contextual information between the spatial ele-
ments within a sentence is helpful for this task.
Hence, we create an undirected edge between two
nodes if they are in the same sentence. Formally,
we set aBi,j = aBj,i = 1 if the nodes ni and nj
(ni, nj ∈ N ) in the same sentence; otherwise, 0.

Spatial Element Edge: The intersections be-
tween the spatial elements and their containing to-
kens maybe share some useful information. There-
fore, we create a spatial element edge between the
spatial element and its token. Formally, we set
aEi,j = 1 if ni contains nj ; otherwise, 0.

Coreference Edge: According to our statistics,
about 20% of the spatial relations in SpaceEval are
participated by demonstrative pronouns. Hence,
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we construct an edge from two nodes if one can
reference the other. Formally, we set aCi,j = 1 if ni
and nj are coreferential; otherwise, 0.

Dependency Edge: Following previous work in
NLP, we also create an edge if two nodes have the
same parent node in the dependency tree. Formally,
we set aDi,j = aDj,i = 1 if ni and nj has the same
parent node in a dependency tree. Besides, we
utilize SpaCy 2 to extract the dependency trees and
coreference chains.

Due to the importance of different type edges,
we conduct four learnable weight matricesW y =
{wy1,1, ..., wyi,j , ..., wy|N |,|N |} (y ∈ {B,E,C,D})
to merge four type edges by their weights to an
adjacency matrix A = {a1,1, ..., ai,j , ..., a|N |,|N |}
as follows.

ai,j =
∑

y∈{B,E,C,D}
(wyi,j · ayi,j) (4)

Finally, we can easily construct the graph G and
formulate GCN for spatial information fusion to
obtain its representationHNS as follows.

HNS = GCN(G,N) (5)

3.2.3 Classification
By recording the node identifier of the spatial
role in the currently processed triplet, we can
get the latent representation of the spatial role in
NS. Inspired by the idea of ResNet (He et al.,
2016), we concat the BERT hidden state Hy (
y ∈ {tm, lg, tr}) and the representation of the
GCN nodesHNS

y as the final feature of the spatial
roles as follows.

H
′
y = [Hy;H

NS
y ] (6)

whereHNS
y represents the latent representation of

the spatial roles in HNS . Finally, a multi-layer
perceptron (MLP) is to classify the spatial relations
and we calculate the cross-entropy loss as follows.

yrel = MLP([H
′
tm;H

′
tr;H

′
lg]) (7)

Lcls = −
∑

(tm,tr,lg)∈ET
logP(rel|tm, tr, lg) (8)

where ET is the triplet set mentioned in subsection
3.1 and rel is the relation of the triplet.

2https://spacy.io/

3.3 GEN: Spatial Relation Generation

To reduce negative triplets in the CTE module, we
only enumerate candidate triplets without null roles.
This strategy can help CLS improve its precision.
However, it also cannot extract those null-role rela-
tions. Our statistics on the SpaceEval dataset show
20% of the annotated spatial relations have a null
role. Hence, how to extract those null-role relations
still is a challenge. To address this issue, we intro-
duce a spatial relation generation module GEN to
extract those null-role relations. Hence, HMCGR
contains a classification and a generation model,
and they can complement each other to address
their shortcomings.

We introduce the pre-trained generation model
T5 to our GEN, due to its excellent performance on
many NLP applications (Colin et al., 2020). Nor-
mally, there are two T5-decoding methods that can
be used in our task, i.e., triplet or a normal sentence.
In our experiments, we found that a structure nor-
mal sentence is suitable for the target sentence of
T5, which contains the following three parts.

Referential Phrase Prefix: To better use the coref-
erence relation, we add a phrase with referential
meaning to the target sentence and put this phrase
in the beginning of the target sentence to let our
GEN use this useful information.

Relation Name: To get the type of spatial rela-
tion, we designed a slot of spatial relation name for
the target sentence.

Relation Explanation: To decode spatial rela-
tions more quickly and conveniently, we design a
generate structured sentence with <pad> spatial
role slots as our target sentence.

Specifically, the form of target sentence is as
follows: “The token “pronoun” stands for “noun”,
and < pad > qslink < pad > can be describe
as following : the first element is < pad > tm
< pad >, the trigger is < pad > tr < pad >, and
the second element is < pad > lg < pad >.” Take
the candidate triplet (who, at, recess) as an example,
we generate the following target statement TGS
for T5:“The token “who” stands for “children”,
and < pad > qslink < pad > can be describe
as following : the first element is < pad > who
< pad >, the trigger is < pad > at < pad >, and
the second element is < pad > recess < pad >.”.

We feed a sentence representationHET into T5-
decoder and obtain a target sentence following the
format of TGS, which can be translated into the
form Relation(tm, tr, lg). It is worth noting that
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one of tm, tr and lg may be null, and we can obtain
those null-role relations. Finally, T5 generates a
token or phrase for each output position using soft-
max and then we can get the target sentence and
the cross-entropy loss Lgen is defined as follows.

Lgen = T5decoder(TGS,HET ) (9)

3.4 RFX: Reflexivity Evaluation
Our CLS and GEN can extract spatial relations
from different perspectives and complement each
other effectively. However, the performance of
GEN is still lower than CLS, because it suffers
from the limited training data and the high rate of
negative and positive instances in this task.

Most spatial relations have the attribute of reflex-
ivity due to their nature. For example, "A in B"
equals to "B out of A" in spatial relation. Accord-
ing to the reflexivity of spatial relation, we design a
similarity-based reflexivity evaluation mechanism
to help GEN improve its performance. RFX first
creates an inverted sentence IV S according to the
original sentence S and a candidate triplet et, and
then uses the cosine function to calculate the sim-
ilarity of their embeddings. If two sentences are
similar, the candidate triplet et will be regarded as
a spatial relation with high probability.

For a sentence S and a candidate triplet et =
(tm, tr, lg), we first exchange the positions of two
participants tm and lg in S, and then replace tr
with its antonym from an antonym dictionary. If
tr has more than one antonym, we randomly se-
lect one. The original sentence S and the inverted
sentence IV S are fed to a T5-encoder to obtain
the embeddings HCT using cross attention and
HIV T , respectively. The avg-polling is applied to
the above two embeddings to capture their global
features as follows.

HCTA = avgpooling(HCT ) (10)

HIV A = avgpooling(HIV T ) (11)

Finally, we design the spatial semantic loss
rfx− loss using a cosine similarity as follows.

Lrfx = 1− cos(HCTA,HIV A) (12)

3.5 Joint Training and Decoding
In the training step, we train the classification
model CLS and the generation model GEN to-
gether. To sum up, the overall loss L of our model
HMCGR consists of three parts as follows.

Tool/Parameter Version/Value
Pytorch 1.7.0+cu110
Spacy 2.1.0
Allennlp 2.6.0
dgl-cu110 0.6.1
Learning rate 2e-5
Batch size 4
Random seed 1024
Hidden size of pre-training model 768
Optimizer AdamW

Table 1: Key parameters and tools used in our model.

Model P R F1
BERT+CRF 88.1 91.2 89.1

Table 2: The results of spatial role extraction.

L = Lcls + Lrfx + Lgen (13)

Finally, the spatial relations are extracted by two
models, i.e., CLS and GEN. The final spatial rela-
tion set is the union of their results. Besides, the
module RFX is an effective auxiliary task to help
GEN improve its performance.

4 Experimentation

In this section, we first introduce the experimental
settings and then report the experimental results.

4.1 Experimental Settings

We evaluate our model on the latest dataset
SpaceEval. According to the official statistics,
there are 1110 QSLINKs, 974 MOVELINKs
and 287 OLINKs. We use the standard train-
ing/development/test set following previous work
(Shin et al., 2020) where the rate of the training set
and the test set is 8:2. As for evaluation, we report
Precision (P), Recall (R), and Micro-F1 score. We
use Pytorch and Huggingface as our base tools and
use the base versions of BERT and T5. The specific
tool versions and key hyper-parameters are shown
in Table 1.

Currently, only a few work focused on spatial
relation extraction. To evaluate the effectiveness
of our HMCGR, we conduct the following strong
baselines for comparison:

1) Sieve-Based (D’Souza and Ng, 2015), which
used the sieve mechanism and syntactic parse trees
to enhance the features in spatial relations;
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Model QSLINK OLINK MOVELINK Overall

P R F1 P R F1 P R F1 P R F1
Sieve-Based 12.9 28.3 17.8 100 31.2 47.5 24.5 56.2 34.2 45.8 38.5 41.8

WordNet - - - - - - - - - 54.0 51.0 53.0
SpRL-CWW 66.1 53.8 59.4 69.1 51.7 59.1 57.1 45.1 50.4 63.6 50.1 56.1
BERT-base 45.1 58.3 50.5 71.0 69.6 70.2 62.7 61.5 62.1 62.7 59.8 61.2
HMCGR 53.5 73.1 61.1 73.1 85.2 78.6 66.8 83.0 73.9 64.3 79.2 70.9

Table 3: Performance comparison between the baselines and HMCGR on spatial relation extraction. Since BERT-
base did not report the results on each category, we run their model to obtain the results (underlined).

2) WordNet (Salaberri et al., 2015), which used
WordNet as an external knowledge to assist their
task;

3) SpRL-CWW (Nichols and Botros, 2015),
which is the SOTA traditional model using SVM
and CRF classifiers on the GloVe features to extract
the spatial relations;

4) BERT-base (Shin et al., 2020), which is the
SOTA neural network model using a BERT-based
neural network model on the spatial elements ex-
traction and spatial relation extraction.

4.2 Experimental Results

The results of spatial role extraction on SpaceEval
is showed in Table 2 and its performance is similar
with Shin et al. (2020). In the stage of CTE, we get
3096 candidate triplets, in which 1355 triplets are
positive and 1741 triplets are negative. These fig-
ures show that the number of the negative instances
is more than that of the positive ones. If we use the
null value to construct the candidate triplets, the
large number of negative instances will harm the
performance critically.

Table 3 shows the overall performance of the
baselines and our HMCGR on SpaceEval. Com-
pared with the SOTA baseline BERT-base, our HM-
CGR significantly improves the overall F1-score
by 9.7, especially the Recall with a gain of 19.4.
This result verifies the effectiveness of HMCGR,
and indicates that our generation model GEN and
our classification model CLS can promote each
other. Moreover, the improvement comes from all
three links QSLINK, OLINK, MOVELINK with
the gains of 10.6, 8.4, and 11.8, respectively. This
result shows that our HMCGR works well on all
links. It is worth noting that our improvement
mainly comes from the recall and this indicates
that the generation model is helpful to recover those
null-role relations.

Model P R F1
BERT-base 44.5 31.7 37.0
HMCGR 46.7 40.0 43.0

Table 4: The results of spatial relation extraction on
null-role relations.

Model P R F1
HMCGR 64.3 79.2 70.9
GEN 60.4 53.1 56.5
CLS 62.0 65.5 63.7
GEN+CLS 64.1 75.2 69.2
GEN+RFX 62.2 55.1 58.8
CLS+RFX 62.0 62.5 62.2

Table 5: Ablation study on different modules.

5 Analysis

In this section, we analysis our model HMCGR on
different aspects, such as null-role relations, three
modules, components in CLS and errors.

5.1 Analysis on Null-role Relations

To further verify the effectiveness of our GEN, we
count the null-role relations and Table 4 shows the
performance of BERT-base and HMCGR. Com-
pared with BERT-base, HMCGR improves the F1-
score by 6.0, especially the significant gain on re-
call (+8.3). This result verifies our motivation that
the generation model GEN is effective to extract
those null-role relations. However, only 40.0% of
null-role relations in the test set are extracted by
GEN and this indicates that the null-role relation
extraction has much room for improvement.

5.2 Ablation Study on Different Modules

We conduct the ablation experiments to verify the
effectiveness of the modules used in HMCGR, and
Table 5 shows the results of the simplified models.

The performance descents of both single GEN
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Model P R F1
HMCGR 64.3 79.2 70.9
w/o GCN 63.3 74.7 68.1
w/o CrossAtt 62.1 74.2 67.6

Table 6: Results of HMCGR and its simplified version
on SpaceEval.

and CLS are very large, in comparison with the hy-
brid HMCGR. This result indicates a single classi-
fication or generation model maybe cannot extract
those null-role and non-null-role relations simul-
taneously. Moreover, the performance of GEN is
lower than that of CLS and the reason is that the
number of non-null-role relations is twice as much
as that of null-role relations. Besides, CLS works
better than BERT-base and this verifies the success
of our classification model. However, the perfor-
mance of GEN is lower than that of BERT-base and
this indicates how to apply generation model to the
traditional classification tasks still is a challenge.

The combination model GEN+CLS outperforms
GEN and CLS, with huge gains of 12.7 and 5.5,
respectively. This indicates GEN and CLS can
boost each other to improve THE F1-score, espe-
cially the recall. In the SpaceEval dataset, 32.3%
of the spatial relations belong to null-role one, in
which 65.3% of the null-role relations do not have
the role trigger and the others do not have the
role landmark/goal. Our GEN can recover al-
most 40% null-role relations and this indicates that
the generation model prefers to extract those null-
role relations. Moreover, the decision from two
different models also can further improve the per-
formance on different perspectives.

Compared with GEN, GEN+RFX improves the
F1-score by 2.3 with the gains in both the preci-
sion and recall. This indicates that our reflexivity
evaluation mechanism RFX can not only help the
generation model to extract more spatial relations,
but also filter out the pseudo relations. However,
the F1-score of CLS+RFX is lower than that of
CLS, especially the recall. Among three relation
types, only the F1-score of MOVELINK decreases
from 62.5 to 61.0. The reason is that some trig-
gers in MOVELINKs do not have an antonym (e.g.,
"run" and "biking") and some sentences cannot be
inverted. Besides, compared with GEN+CLS, HM-
CGR improves the F1-score by 1.7, with a gain of
4.0 on the recall. This verifies that RFX is helpful
to discover more relations in a hybrid model.

Sentence: There were already old men taking
cattle out to the fields to graze.
Gold MOVELINKs:
{mover: cattle, trigger: to, goal: fields}
{mover: men, trigger: null, goal: fields}
Predicted MOVELINKs:
{mover: cattle, trigger: to, goal: fields}
{mover: men, trigger: to, goal: fields}

Table 7: Examples of the errors in GEN.

5.3 Analysis on CLS

To verify the contributions of the components in
CLS, We conduct the following two simplified ver-
sions of HMCGR: 1) w/o GCN: the GCN layer is
removed from HMCGR; 2) w/o CrossAtt: the cross
attention is removed. That is, we only use BERT
to encode sentences.

Table 6 shows the results of HMCGR and its
simplified versions. If we remove the GCN layer
and the cross attention, the F1-score will decrease
by 2.9 and 3.3, respectively. This result indicates
that T5 is helpful for BERT to represent the sen-
tence from different perspectives. As for the GCN
layer, we find out that the coreference edge is the
main contributor, and more than 90% of the im-
provement comes from this edge type.

5.4 Error Analysis

The errors of our HMCGR mainly come from those
in CTE, GEN, and entity coreference. In table 2,
we can find out that 8.8% of spatial relations are
missing and 11.9% of pseudo relations are intro-
duced to the following modules by CTE.

Our statistics on the results shows that GEN of-
ten badly predicts those null-role relations when
there are a non-null-role relation and a null-role
relation in the same sentence. Since T5 is a se-
quential generation model, the generation of the
next spatial relation will be affected by the re-
lation predicted above. That is, if the previous
relation is non-null-role one, the current relation
tends to be non-null-role too. Take Table 7 as an
example, there are two MOVELINKs in the sen-
tence. After HMCGR has extracted the first relation
MOVELINK(cattle, to, fields), it tends to predict
the next one as MOVELINK(men, to, fields), in-
stead of MOVELINK(cattle, null, fields).

Although the coreference edge is the most effec-
tive one in the graph, lots of errors derive from it
due to its low performance.
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6 Conclusion

In this paper, we propose a novel hybrid model HM-
CGR for spatial relation extraction. The generation
model GEN can generate those null-role relations,
while the classification model CLS can extract
those non-null-role relations to complement each
other. Moreover, a reflexivity evaluation mecha-
nism is applied to further improve the accuracy
based on the reflexivity of spatial relation. Experi-
mental results on the SpaceEval dataset show that
our HMCGR outperforms the SOTA baseline sig-
nificantly. Our future work will focus on how to
extract those null-role relations effectively.
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Abstract
An efficient assessment of the health related-
ness of text passages is important to mine the
web at scale to conduct health sociological anal-
yses or to develop a health search engine. We
propose a new efficient and effective termhood
score for predicting the health relatedness of
phrases and sentences, which achieves 69% re-
call at over 90% precision on a web dataset with
cause–effect statements. It is more effective
than state-of-the-art medical entity linkers and
as effective but much faster than BERT-based
approaches. Using our method, we compile the
Webis Medical CauseNet 2022, a new resource
of 7.8 million health-related cause–effect state-
ments such as “Studies show that stress induces
insomnia” in which the cause (‘stress’) and ef-
fect (‘insomnia’) are labeled.

1 Introduction

Health sociology studies the interaction of soci-
ety with health. An important subject is how
consumers obtain and perceive health information.
Since the web and search engines are among the
most important sources, the quality of online health
information has been studied so frequently in re-
cent decades that three systematic reviews have
been conducted (see Table 1). However, many of
the individual studies address only a single medical
condition and almost all were conducted manually.
On average, only about 50–100 web pages were
analyzed per study, sometimes only a single hand-
picked one, and never more than 1,524 pages.

Studying larger portions of the online health do-
main requires the automation of various acquisition
tasks: (1) the discovery of health-related websites
and web pages, (2) the identification and extraction
of health-related statements from these pages, and
(3) the attribution of health-related statements to au-
thoritative sources (e.g., for fact-checking). While
the first and third steps have been and continue to
be the subject of ongoing research, the second step
has received much less attention.

Systematic Review Studies Websites / Web Pages

Min Max Mean Stddev Total

Eysenbach et al. (2002) 79 3 1,147 100.5 157.7 7,836
Zhang et al. (2015) 165 3 388 78.5 73.4 12,870
Daraz et al. (2018) 157 1 1,524 50.3 133.9 7,891

Table 1: Sizes of systematic reviews of online health in-
formation studies. Some studies are part of multiple re-
views; most do not distinguish websites and web pages.

To minimize manual data cleansing, we view
the extraction of health-related statements as a
precision-oriented task. And since a significant por-
tion of consumers’ health information needs ask
about causes and effects (Bondarenko et al., 2022),
we focus on health-related cause–effect statements
(e.g., ‘smoking causes cancer’). Extracting cause–
effect statements in general has been thoroughly
investigated in the past and several approaches ex-
tract them from web text efficiently and effectively
(Yang et al., 2022). However, the extracted state-
ments are usually not assigned to a specific domain.

Our contributions are: (1) A new approach for
a high-precision assessment of a phrase’s health
relatedness (Section 3), which is more effective
than state-of-the-art medical entity linkers and on
par with BERT-based models but far more efficient
(Section 4). (2) The Webis Medical CauseNet 2022,
a web-scale resource of health-related cause–effect
statements (Section 5).1

2 Related Work

The impact of online health information on con-
sumers has attracted the interest of the health so-
ciology research community. For example, user
surveys examine how consumers perceive online
health information (Diaz et al., 2002), e-health ser-
vices (Andreassen et al., 2007), or the quality of
online health information (Sun et al., 2019).
1All our code and data to reproduce the experiments as well as
the resource are publicly available under a permissive license:
https://github.com/webis-de/COLING-22
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Information quality appears to be the most stud-
ied characteristic from a health sociology perspec-
tive. Numerous studies systematically analyzed
the quality of websites related to specific topics
such as orthodontics (Jiang, 2000) or performance-
enhancing drugs (Brennan et al., 2013), but more
general studies with limitations to specific parts
of the web are also common. Examples include
studies of dietary advice (Cooper et al., 2012) or
the misinterpretation (Yavchitz et al., 2012) and
exaggeration (Sumner et al., 2014) of clinical trial
results in online news. Recent studies also targeted
web search snippets (Bondarenko et al., 2021) and
social media (Suarez-Lledo and Alvarez-Galvez,
2021), particularly health misinformation on Twit-
ter (Broniatowski et al., 2018; Bal et al., 2020).

To identify health-related web content, most pre-
vious work has focused on whole-page classifica-
tion, e.g., using medical vocabularies to classify
news articles (Watters et al., 2002; Zheng et al.,
2002) or using convolutional neural networks for
Reddit posts (Gkotsis et al., 2017). But there has
been little work on classifying shorter passages of
text as health-related (e.g., phrases), although this
would allow for more fine-grained analyses at the
statement level rather than at the whole-page level.
Keyword extraction and automatic ontology cre-
ation with the goal of extracting prototypical words
for a given domain are perhaps the most closely
related tasks. For example, the C-value/NC-value
method uses term frequencies to extract multi-word
domain terms from a corpus (Frantzi et al., 2000).
Its reliance on syntactic sentence structure, how-
ever, renders it inapplicable at the phrase level.

Contrastive termhood scores, which relate term
frequencies from a domain corpus to frequencies
from one or more out-of-domain corpora, can be ap-
plied more straightforwardly. These include tf ·idf -
inspired measures (Basili et al., 2001; Kim et al.,
2009), measures estimating how exclusive a term is
for a domain (Ahmad et al., 1999; Park et al., 2008),
and combinations or extensions thereof (Wong
et al., 2007; Bonin et al., 2010). We transfer con-
trastive termhood scoring to measuring health relat-
edness of phrases (but also sentences) and compare
it with the medical entity linkers cTakes (Savova
et al., 2010), MetaMap (Aronson, 2001), Quick-
UMLS (Soldaini and Goharian, 2016), and Scis-
paCy (Neumann et al., 2019), as well as BERT-
based classifiers (Devlin et al., 2019).

3 Measuring Health Relatedness

Assessing whether a phrase is health-related can be
difficult without context; in particular for homony-
mous (same surface form, different meaning) or
polysemous (same surface form, different sense)
words. For instance, ‘cancer’ may refer to a health-
related malignant tumor, but also to the zodiac sign,
which is unlikely to appear in a health-related con-
text. As such, the task of assessing a phrase’s health
relatedness can be viewed as an extension of word-
sense disambiguation. Instead of the sense of a
particular word, the domain of the sense of a phrase
needs to be determined.

Since there are no large-scale labeled datasets
for health relatedness assessment, we rely on con-
trastive termhood scores that use distant supervi-
sion to measure the degree of a word or concept
being specific to a certain domain (Kageura and
Umino, 1996). Instead of training on explicitly
labeled words or phrases, contrastive termhood
scores are trained on texts that are heuristically
labeled. Specifically, a word’s or phrase’s domain
specificity depends on its “prominence” in domain-
specific or out-of-domain corpora. In this sec-
tion, we discuss three existing contrastive termhood
scores and then explain how we adapt and apply
them to health relatedness assessment.

3.1 Existing Contrastive Termhood Scores
The termhood scores contrastive weight (CW)
(Basili et al., 2001), term domain specificity (TDS)
(Park et al., 2008), and discriminative weight (DW)
(Wong et al., 2007) rely on a corpus H of domain-
specific texts (in our case: health-related texts) and
at least one contrastive corpus G of general or out-
of-domain texts (in our case: Wikipedia). To score
a term t (a word or phrase), CW, TDS, and DW use
occurrence frequencies: the absolute corpus occur-
rence frequency freqC(t) (i.e., the absolute number
of occurrences of t in corpus C), the relative cor-
pus occurrence frequency relC(t) = freqC(t)/|C|
(where |C| denotes some appropriate variant of
corpus size like number of words or n-gram occur-
rences), and the inverse corpora frequency icf (t)
defined for H and G together as

icf (t) = log

( |H|+ |G|
freqH(t) + freqG(t)

)
.

The contrastive weight CW of a term t is similar
to tf ·idf but uses the corpus-oriented frequencies:

CW(t) = log (freqH(t) + 1) · icf (t) .
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For the term domain specificity TDS, we unify
the slightly different definitions of Ahmad et al.,
Park et al., and Wong et al. as

TDS(t) = log

(
relH(t) + 1

relG(t) + 1
+ 1

)
.

Finally, the discriminative weight DW was origi-
nally defined as the product of CW and a version
of TDS that uses freqC(t) instead of relC(t). Since
the values of such an “unnormalized” TDS depend
on corpus size, we use our above corpus-agnostic
normalized version but still compute DW as

DW(t) = CW(t) · TDS(t).

3.2 Our Generalized Termhood Scores
The above termhood scores were originally meant
to help augment taxonomy vocabularies or to find
terms missing in a dictionary for some specific do-
main. As such, the input terms are assumed to be
rather short and quite domain-related noun phrases
from which the “best” scoring ones are to-be-added
to the vocabulary. In pilot experiments for our case
of assessing the health relatedness of phrases from
the web, we observed that phrases like ‘fracture at
the base of the skull’ receive very low termhood
scores even though they are clearly health-related.
The reason is that such longer phrases as “a whole”
have quite low occurrence frequencies even in med-
ical corpora. A first straightforward idea could
be to average a phrase’s individual word’s term-
hood scores. However, for the above example with
many out-of-domain or stop words, this also does
not work well. We thus propose two schemes that
improve on the simple average and on the origi-
nal termhood scores’ treatment of longer phrases
as “a whole”. In our schemes, we also enable the
assessment to prioritize precision or recall.

Our first scheme uses a weighted average of a
phrase’s individual word’s termhood scores (i.e.,
their individual health relatedness) to assess the
health relatedness of a phrase. The idea is that by
giving words that have a high individual health
relatedness score a higher weight, more health-
related phrases can be found (i.e., improved re-
call). Similarly, by giving words that have a low
individual health relatedness score a higher weight,
the precision of the assessment on the phrase level
should improve. Formally, in our first scheme, we
compute the termhood score of an m-word phrase
as the generalized mean of the word’s individual

Corpus Language Documents Words

Wikipedia mixed, layperson 12,265,374 3.0·109

PubMed scientific, abstracts 31,847,923 3.8·109
PubMed Centr. scientific, full texts 3,611,361 5.4·109
Textbook clinical, educational 434 1.4·107
Encyclopedia clinical, layperson 67,967 9.3·106

Table 2: Characteristics of the contrastive and health-
related corpora used for the termhood scores.

termhood scores x1, . . . , xm:

Mr(x1, . . . , xm) =

(
1

m

m∑

i=1

xri

) 1
r

,

where r is a real-valued parameter. For r = 1,
the generalized mean corresponds to the arithmetic
mean. By increasing r, the mean is biased towards
the higher-valued termhood scores and vice versa.
In the extreme cases ofM-∞ orM∞, the minimum
or maximum xi is returned. At the limit for r
approaching 0, the generalized mean corresponds
to the geometric mean (Jensen, 1998).

As our second scheme, we propose to also com-
pute the weighted average termhood over the n-
grams of a phrase. For instance, while the uni-
grams ‘risk’ and ‘factor’ are relatively unrelated to
health, the bigram ‘risk factor’ certainly is health-
related. The above generalized mean scheme al-
ready increases the termhood of ‘risk factor’ com-
pared to a simple average but the high occurrence
frequency of the bigram itself is an even better
indicator of its health relatedness. Since longer n-
grams usually have quite low occurrence frequen-
cies, especially in smaller corpora, we only aver-
age the termhood scores of a phrase’s uni-, bi-,
or trigrams with a parameter n determining the
length of the longest used n-grams. For example,
the generalized score of the phrase ‘cancer risk
factor’ based on the termhood score s(.) (could
be CW, TDS, or DW) with n = 2 then is the av-
erage of Mr(s(‘cancer risk’), s(‘risk factor’)) and
Mr(s(‘cancer’), s(‘risk’), s(‘factor’)).

3.3 Contrastive and Health Domain Corpora
Table 2 shows basic characteristics of our employed
corpora. We select Wikipedia2 as our contrastive
general corpus G since it covers a wide variety of
domains and is easily accessible. As candidates for
health corpora H , we consider and evaluate four
alternatives, each with its own (dis)advantages.
2Dump of all English Wikipedia articles from July 1, 2021.
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Figure 1: Termhood score frequencies of (a) CW, (b) TDS, and (c) DW on the PubMed corpus, and of (d) DW on the
Encyclopedia corpus. Number of words in thousands (from the respective corpus). Example words are highlighted.

The first three health corpora use documents
provided by the National Library of Medicine:
(1) a dump of over 30 million MEDLINE abstracts
from PubMed,3 (2) a subset of over 3 million
full-text publications from PubMed Central,4 and
(3) 434 textbooks from the textbook and mono-
graph category of the NCBI Bookshelf.5 While
both PubMed-based corpora are large scale, their
language is mainly scientific. The textbook cor-
pus contains more clinical language, which we hy-
pothesize to more closely match the language of
health-related phrases on arbitrary web pages.

Finally, as our fourth health corpus, we crawled
the entries of five consumer-oriented medical on-
line encyclopedias.6–10 Since they are written in
layperson’s terms, we assume their language to
be most similar to the target language distribution
used for health-related phrases on web pages.

3.4 Pilot Inspection and Comparison
To get a first impression of the scores and the
corpus impact, we inspect the unigram termhood
score distributions in general and for some exam-
ple words. Figures 1 (a–c) show the score distribu-
tions of CW, TSD, and DW with PubMed as the
domain-specific corpus H . Apparently, all scores
rank the shown example out-of-domain words and
the stop word lower than the shown example health-
related words. However, the assessment of CW
and TDS can differ substantially for specific terms.
For example, ‘ward’ occurs frequently within texts
from the PubMed corpus so that CW attributes a
rather high health relatedness. At the same time,
‘ward’ also occurs frequently in the general do-
3https://pubmed.ncbi.nlm.nih.gov/
4https://www.ncbi.nlm.nih.gov/pmc/
5https://www.ncbi.nlm.nih.gov/books
6http://health.am/encyclopedia
7https://medlineplus.gov/encyclopedia.html
8https://merriam-webster.com/medical
9https://ucsfhealth.org (various subpages)
10https://www.rxlist.com/drug-medical-dictionary/article.htm

Dataset Text Type Health Length Size

CauseNet-F-Phrase Phrase pairs 21.4% 7.2 1,000
CauseNet-P-Phrase Phrase pairs 50.3% 3.4 1,000
CauseNet-F-Sentence Sentences 22.4% 30.3 1,000

Table 3: Characteristics of our three annotated datasets,
including the ratio of health-related entries, the aver-
age number of words per cause–effect phrase pair or
sentence, and the number of entries. CauseNet-F: sam-
pled from CauseNet-Full, CauseNet-P: sampled from
CauseNet-Precision.

main and the lacking “exclusiveness” leads TDS to
score it relatively low. Unsurprisingly, the product
score DW amplifies the extremes of both scores.

As for the effect of different health corpora, Fig-
ures 1 (c) and (d) contrast the DW scores using
the PubMed corpus (rather scientific language) to
using the Encyclopedia corpus (rather layperson
language). As an example result, the word ‘study’
has a comparably high termhood score using the
PubMed corpus, but is ranked like a non-health-
related word using the Encyclopedia corpus.

4 Evaluation

In this section, we evaluate our generalized term-
hood method on datasets of cause–effect statements
and compare it to state-of-the-art medical entity
linkers and BERT-based approaches.

4.1 Annotated Datasets
Table 3 depicts the general characteristics of three
cause–effect datasets we sampled from the web-
scale CauseNet resource (Heindorf et al., 2020),
a graph of over 11 million cause–effect pairs
(e.g., ‘stress → insomnia’) extracted from the
ClueWeb12.11 The CauseNet extraction used a
two-stage approach: (1) candidate sentences were
gathered using a set of lexico-syntactic patterns
representing causal language, and (2) a BiLSTM-
CRF model extracted cause–effect pairs from the
11https://www.lemurproject.org/clueweb12/
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candidates. Obviously, a pair may be extracted
from multiple different sentences (e.g., ‘stress→
insomnia’ from ‘stress causes insomnia’ or from
‘insomnia can be a result of stress’). All the sen-
tences from which a specific pair is extracted are
the support of that pair.

CauseNet comes in different versions: CauseNet-
Full and CauseNet-Precision. In CauseNet-Full,
all the extracted cause–effect pairs are contained,
while CauseNet-Precision only contains pairs that
were extracted by at least two different lexico-
syntactic extraction patterns. The idea is that pairs
supported by sentences from more patterns are less
likely to be false positive causal statements.

From each CauseNet version, we randomly sam-
pled 1,000 cause–effect pairs for our CauseNet-
F-Phrase and CauseNet-P-Phrase datasets (F: full,
P: precision). Note that the pairs sampled from
CauseNet-Precision typically are shorter (3.4 vs.
7.2 words; cf. Table 3)—shorter phrases are more
likely to be extracted by more than one pattern.

To label the health relatedness of the cause–
effect pairs, we had three annotators who first
labeled a kappa-test subset of 100 samples from
CauseNet-F-Phrase. The achieved agreement was
substantial (Cohen’s kappa of 0.76), so that after
a discussion of the disagreement cases, the an-
notators then each independently labeled disjoint
thirds of the remaining CauseNet-F/P-Phrase data.
Interestingly, according to the labeling, the pairs
sampled from CauseNet-Precision are much more
health related (50.3% vs. 21.4%; cf. Table 3).

Finally, for each of the 1,000 pairs in CauseNet-
F-Phrase, we randomly selected one of the sup-
porting sentences to complement the phrase-based
dataset with a sentence-based dataset. The respec-
tive CauseNet-F-Sentence set then was also labeled
with respect to health-relatedness by our three an-
notators. Indeed, for eleven causal phrase pairs that
were labeled as non-health-related and for one pair
that was labeled as health-related, the sampled sup-
porting sentence then was labeled in the opposite
way since it added important context. For example,
the pair ‘sound→ particular feeling’ was labeled as
non-health related but the corresponding sentence
‘Any sound that is related to trauma can trigger a
particular feeling.’ was labeled as health-related
due to the explicit connection to trauma.

We randomly split each of the three datasets to
use 80% as the training data for parameter tuning
and the remaining 20% as the actual test set.

4.2 Medical Entity Linkers
We compare our generalized termhood method to
the state-of-the-art medical entity linkers cTakes,
MetaMap, QuickUMLS, and ScispaCy. To deter-
mine the health relatedness of a (multi-word) term
by applying one of these entity linkers, we use
the proportion of words that the linker matches to
medical concepts in some background knowledge
base like the UMLS Metathesaurus (Humphreys
and Lindberg, 1993).

More formally, as the entity linking-based health
relatedness of a term t, we use the the ratio |e|/|t̂|,
where |e| denotes the length (in words) of the sub-
string of t that the linker detects as mentions of
some entity, and |t̂| denotes the length of t without
the stopwords12 that are not contained in any entity
mention detected by the respective linker.

As the background knowledge base for the en-
tity linkers we try four different options: (1) the
full UMLS (a mix of medical vocabularies of vary-
ing specificity), (2) the combined UMLS subsets
RxNorm and SNOMED CT (more specific clinical
vocabulary), (3) UMLS restricted to the 21 most fre-
quent semantic types (ST21pv subset) as proposed
in the MedMentions entity linking dataset (Mohan
and Li, 2019), and (4) the combined RxNorm and
SNOMED CT restricted to ST21pv.

4.3 BERT-Based Approaches
Besides medical entity linkers, we also compare
our generalized termhood method to BERT-based
classifiers fine-tuned to predict whether a sequence
of tokens is health-related. To test the effect of do-
main specific embeddings, we compare classifiers
based on pre-trained BERT (Devlin et al., 2019),
SciBERT (Beltagy et al., 2019), and PubMedBERT
(Gu et al., 2022) models. To further fine-tune these
models to the task, we first construct additional
training datasets where noun phrases (or sentences)
from Wikipedia are paired with noun phrases (or
sentences) from the PubMed or the Encyclopedia
corpus. To align with the evaluation datasets, we
extract noun phrases and sentences using spaCy.13

All models were fine-tuned with a batch size of 32
and a learning rate of 5 · 10−5 for 100,000 steps on
one NVIDIA A100 GPU. Due to the large corpora
sizes, we used early stopping and halted training
when no decrease in training loss was recorded for
15 consecutive samples (taken every 1,000 steps).
12English nltk stop words list.
13https://spacy.io/
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4.4 Assessing the Health Relatedness of
Cause–Effect Pairs

To assess the health relatedness of a cause–effect
pair, we combine an approach’s individual scores
for the cause and effect phrase into one score based
on which a decision about the health relatedness
can be made (i.e., whether it is above some thresh-
old). Just like in our generalized termhood scores,
we use the generalized mean as the combination
scheme. The extreme case of M-∞ then corre-
sponds to an AND combination (cause and effect
score need to exceed a decision threshold), while
M∞ corresponds to an OR combination (cause or
effect above some threshold suffice). These se-
tups can thus be interpreted as precision or recall-
oriented, respectively.

4.5 Assessing the Health Relatedness of
Cause–Effect Sentences

To assess the health relatedness of a complete sen-
tence, we basically use the different approaches as
if the input was a phrase. The entity linking-based
methods link the entities in the sentence and then
compute the same ratio |e|/|t̂| but with t̂ now being
the sentence without non-linked stopwords. The
BERT-based approaches also get the sentence as
input and classify it as a whole as health-related
or not. And also our generalized termhood scores
simply treat an input sentence like a phrase.

4.6 Parameters and Optimization Criteria
We explore different hyperparameter values of the
approaches in grid searches on the 80% train-
ing sets of our annotated cause–effect datasets
(the other 20% are the test sets). For the term-
hood method, we experiment with four health cor-
pora (PubMed, PubMed Central, Textbook, En-
cyclopedia) and a maximum n-gram length n ∈
{1, 2, 3}. For the generalized mean Mr, we try
r ∈ {0,±1,±2,±5,±10,±∞} for combining the
n-gram scores, as well as for combining the cause
and effect scores of all approaches.

For the entity linkers, we explore linking against
the full UMLS with either all semantic types or
just the ST21pv subset, or linking just against the
combined RxNorm and SNOMED CT subset with
either all types or just the ST21pv subset. For the
QuickUMLS and ScispaCy linkers, we try similar-
ity thresholds in steps of 0.1 between [0.7, 1.0] and
[0.6, 0.9], respectively, and explore small (sm) and
large (lg) models for ScispaCy. Finally, the BERT-

based models are fine-tuned in four variations: on
sentences or on phrases from the PubMed or from
the Encyclopedia corpus.

We conduct three grid searches for three differ-
ent optimization scenarios. In the first two scenar-
ios, we optimize for precision or recall and identify
a parameterization and decision threshold with the
best recall (or precision) that can be achieved at an
operating point of a precision (or recall) of 0.9. For
example, in the scenario of precision optimization,
we only consider parameter combinations from the
grid search and decision thresholds that achieve a
precision of at least 0.9 on the training set. From
these, we then only consider the parameterizations
with the highest recall and from these, we select one
with the highest precision. In the third optimization
scenario, we target the Matthews correlation coef-
ficient (MCC). The MCC combines the numbers
of true positives (TP ), true negatives (TN ), false
positives (FP ), and false negatives (FN ) as

TP · TN − FP · FN√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

.

Since MCC generates a high score only when the
majority of the positive instances and the majority
of the negative instances are classified correctly,
it is regarded as one of the best ways to derive
one score from a binary classifier’s confusion ma-
trix (Chicco and Jurman, 2020).

4.7 Results
Table 4 shows the effectiveness of the differ-
ent approaches’ best parameterizations from the
training sets run on the test sets of CauseNet-
F-Phrase, CauseNet-P-Phrase, and CauseNet-F-
Sentence. The BERT-based approaches are usu-
ally the most effective. Our generalized termhood
methods often are slightly less effective but the
difference to the best BERT-based approach is
hardly ever statistically significant (bootstrapping
with 100,000 permutations, p < 0.05, Bonferroni-
corrected). The entity linking-based approaches,
though, almost always are significantly less effec-
tive than the best BERT-based approach.

While being almost as effective as the best BERT-
based approach, our generalized termhood method
is substantially more efficient (see Table 5). On
an AMD EPYC 7F72 processor, even without
parallelization, the generalized termhood is up to
107 times faster on phrases and up to 47 times faster
on the longer sentences than the BERT models. By
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Approach Precision Optimized Recall Optimized MCC Optimized

Parameters Mr P R Parameters Mr P R Parameters Mr P R F1 M
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cTakes RS ST21pv M-2 0.00 0.00† RS M2 0.28† 0.95 RS M5 0.43 0.67 0.52 0.39†

MetaMap RS ST21pv M-∞ 0.67 0.05† RS M2 0.35† 0.95 RS M2 0.52 0.82 0.63 0.54†

QuickUMLS RS ST21pv, 0.8 M-1 0.00 0.00† RS, 0.8 M2 0.30† 0.87 RS, 0.8 M2 0.57 0.41 0.48 0.38†

ScispaCy RS, sm, 0.9 M-∞ 0.00 0.00† UMLS, lg, 0.6 M2 0.26† 0.79 RS, sm, 0.6 M10 0.35 0.64 0.45 0.29†

BERT ENC, NP M1 0.91 0.77 ENC, NP M5 0.76 0.97 ENC, NP M2 0.81 0.90 0.85 0.82
SciBERT ENC, NP M5 0.94 0.77 ENC, NP M2 0.76 0.95 ENC, NP M2 0.82 0.85 0.84 0.80
PMBERT ENC, NP M2 0.94 0.82 ENC, NP M1 0.73 0.95 ENC, NP M2 0.80 0.92 0.86 0.82

CW ENC, n=2, M2 M-1 0.85 0.72 ENC, n=3, M5 M2 0.58† 0.92 ENC, n=1, M5M2 0.84 0.79 0.82 0.77
TDS ENC, n=2, M1 M1 1.00 0.69 ENC, n=2, M0 M-1 0.67 0.92 ENC, n=3, M0M1 0.76 0.82 0.79 0.74
DW ENC, n=1, M1 M1 1.00 0.74 ENC, n=3, M1 M∞ 0.62 0.90 ENC, n=2, M2M1 0.78 0.90 0.83 0.79

C
au
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N
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-P

-P
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e

cTakes RS M1 0.79 0.34† RS M2 0.63† 0.96 RS M-2 0.75 0.56 0.64 0.33†

MetaMap RS M-5 0.76 0.85 RS M-2 0.69† 0.94 RS M-5 0.76 0.85 0.80 0.52†

QuickUMLS RS, 1.0 M10 0.83 0.46† RS, 0.9 M2 0.66† 0.88 RS, 0.8 M1 0.75 0.79 0.77 0.46†

ScispaCy RS, sm, 0.7 M-∞ 0.71 0.33† UMLS, lg, 0.7 M2 0.60† 0.88 RS, sm, 0.8 M10 0.66 0.80 0.73 0.30†

BERT ENC, NP M5 0.91 0.88 ENC, NP M10 0.92 0.91 ENC, NP M5 0.91 0.88 0.90 0.77
SciBERT ENC, NP M10 0.97 0.89 ENC, NP M5 0.90 0.90 ENC, NP M5 0.90 0.90 0.90 0.78
PMBERT ENC, NP M5 0.96 0.88 ENC, NP M2 0.91 0.95 ENC, NP M5 0.96 0.88 0.92 0.83

CW ENC, n=1, M10M5 0.95 0.72 ENC, n=1, M10M2 0.80† 0.91 ENC, n=1, M5M2 0.83 0.89 0.86 0.66
TDS ENC, n=3, M1 M1 0.93 0.89 ENC, n=2, M1 M1 0.93 0.89 ENC, n=2, M1M1 0.89 0.93 0.91 0.79
DW ENC, n=2, M1 M1 0.92 0.88 ENC, n=3, M10M1 0.93 0.91 ENC, n=3, M5M1 0.90 0.91 0.91 0.79
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cTakes RS – 0.70 0.20† RS – 0.25† 0.91 RS – 0.57 0.46 0.51 0.42†

MetaMap RS – 1.00 0.03† RS – 0.29† 0.91 RS – 0.42 0.49 0.45 0.33†

QuickUMLS RS ST21pv, 1.0 – 1.00 0.03† RS, 1.0 – 0.32† 0.91 RS, 1.0 – 0.49 0.49 0.49 0.38†

ScispaCy RS, lg, 0.8 – 0.88 0.20† RS, sm, 0.9 – 0.25† 0.89 RS, lg, 0.6 – 0.42 0.60 0.49 0.37†

BERT ENC, NP – 0.86 0.51 ENC, NP – 0.59 0.83 ENC, NP – 0.76 0.74 0.75 0.70
SciBERT ENC, NP – 0.89 0.49 ENC, NP – 0.53 0.89 ENC, NP – 0.64 0.66 0.65 0.57
PMBERT ENC, NP – 0.83 0.57 ENC, NP – 0.59 0.86 ENC, NP – 0.87 0.57 0.69 0.66

CW ENC, n=3, M5 – 0.75 0.43 ENC, n=1, M10 – 0.56 0.89 ENC, n=1, M5 – 0.67 0.63 0.65 0.58
TDS ENC, n=1, M1 – 0.84 0.46 ENC, n=1, M2 – 0.62 0.91 ENC, n=2, M0 – 0.69 0.63 0.66 0.59
DW ENC, n=3, M1 – 0.83 0.43 ENC, n=2, M2 – 0.59 0.83 ENC, n=2, M1 – 0.71 0.77 0.74 0.68

Table 4: Effectiveness on the test sets as precision (P), recall (R), F1, or Matthews correlation coefficient (MCC) of
the best parameterization of each approach optimized for precision, recall, or MCC on the respective training set.
The operating point for precision / recall optimization is set to 0.9 on the training data (gray scores indicate that 0.9
could not be reached during training). Statistically significant differences to the best approach for a dataset and
optimization criterion (best scores highlighted in bold) are denoted by † (p < 0.05, Bonferroni-corrected for the
nine comparisons in each group). For entity linkers, the usage of UMLS or combined RxNorm and SNOMED CT
vocabulary (RS) restricted / or not to the ST21pv subsets, and, where applicable, similarity thresholds or spaCy model
size (sm or lg) are reported. BERT models were fine-tuned on the PubMed (PM) or Encyclopedia (ENC) corpus
using sentences (S) or noun phrases (NP). Termhood scores use either the PubMed (PM), PubMed Central (PMC),
Textbook (TB), or Encyclopedia (ENC) corpus, a maximum n-gram size of n, and the generalized mean Mr. In the
phrase scenarios, the generalized mean Mr for combining the cause and effect scores is also reported.

precomputing the n-gram frequencies and then par-
allelizing hash table lookups in the inference phase,
the termhood scores could be even further sped up.
As for memory efficiency, the n-gram frequencies
and the BERT model checkpoints have a similar
memory footprint of about 400MB.

As for the assessment of phrases vs. sen-
tences, our results in Table 4 show that most ap-
proaches are substantially more effective on just

the phrase pairs than on sentences (e.g., BERT-
based: 0.12 to 0.23 better MCC on CauseNet-F-
Phrase than on CauseNet-F-Sentence; termhood:
0.11 to 0.19 better MCC). Only the ScispaCy en-
tity linking approach is really more effective on
sentences than phrases (MCC improves by 0.08).

Entity Linking-based Approaches The entity
linking-based approaches mostly use the combined
RxNorm and SNOMED CT vocabulary (some-
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Approach Phrase Sentence

ms Speedup ms Speedup

cTakes 119.68 0.5 212.12 0.2
MetaMap 49.64 1.2 120.28 0.4
QuickUMLS 7.23 8.3 8.98 5.3
ScispaCy 16.38 3.7 15.96 3.0

PubMedBERT 60.19 1.0 47.77 1.0

Termhood n=1 0.56 107.5 1.02 46.8
Termhood n=2 0.93 64.7 1.97 24.2
Termhood n=3 1.27 47.4 2.82 16.9

Table 5: Run time efficiency of the different approaches’
most effective parameterization on the CauseNet-F-
Phrase and -Sentence test sets. Time per instance aver-
aged over 10 runs, speedup computed against PubMed-
BERT as the most effective approach from Table 4.

times only the ST21pv subset) and only once the
full UMLS. Still, even with such a “restricted”
vocabulary, the entity linking-based approaches
hardly achieve really high precision values—or
only at the expense of very low recall. One rea-
son is that even specifically tailored health-related
entity vocabularies still contain many terms that
are only loosely health-related and then yield false
positive results on the cause–effect statements. In-
terestingly, only the MetaMap and the ScispaCy pa-
rameterizations “attempt” to compensate for this
by using generalized averages Mr with r < 0 for
the cause–effect combination when optimizing for
precision. Still, the many 0-values for precision op-
timization on CauseNet-F-Phrase indicate that no
health-related statements are found. This is again
caused by a “precision problem”. In the grid search
on CauseNet-F-Phrase, all entity linking-based ap-
proaches achieve precision values of at least 0.9
but at a very tiny recall (6–8 true positives). On the
test sets, these low-recall parameterizations do not
detect any of the health-related statements.

Another drawback of some entity linkers in the
phrase scenarios is their reliance on syntactic pars-
ing to detect candidate mentions—the parses might
not be too meaningful for (short) phrases. ScispaCy
in particular relies on parsing and thus is less effec-
tive than the other linkers on phrases—even though
ScispaCy is one of the best medical entity linkers
in full text scenarios (Vashishth et al., 2021).

Overall, the entity linking-based approaches
achieve rather low effectiveness compared to the
other approaches and are also slower than our new
generalized termhood method. In our scenario of
assessing the health relatedness of phrases and sen-
tences, they are not really a good option.
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Figure 2: ROC curves and AUC values (in parenthe-
ses) (a) for fine-tuning PubMedBERT on the CauseNet-
F-Sentence training data using sentences (S) or noun
phrases (NP) from the PubMed (PM) or Encyclope-
dia (ENC) corpus, and (b) for discriminative weight DW
(n = 1, r = 1) on the CauseNet-F-Phrase training data
with the health corpora PubMed (PM), PubMed Cen-
tral (PMC), Textbooks (TB), or Encyclopedia (ENC).

BERT-based Approaches Interestingly, domain
specific pre-training only has a minor positive ef-
fect for the BERT-based models. While PubMed-
BERT often is the most effective, SciBERT and
even the domain-agnostic BERT usually are al-
most as effective. Interestingly, all prefer the recall-
oriented higher values of r in the generalized aver-
age Mr for the cause–effect score combination.

Another observation is that the best BERT-based
approaches all are fine-tuned on noun phrases from
the Encyclopedia corpus—even in the sentence sce-
nario. As an example, Figure 2 (a) shows the
ROC curves and AUC values for PubMedBERT
in different fine-tuning setups on the CauseNet-F-
Sentence training data. Fine-tuning on the Ency-
clopedia corpus clearly achieves better AUC values
(at least 0.06 over PubMed) as does fine-tuning on
phrases instead of sentences (at least 0.04).

Termhood-based Approaches Among the term-
hood-based approaches, TDS and DW are more
effective than CW in almost all scenarios.

Further analysis of the termhood methods’ pa-
rameters shows that the health corpus is very impor-
tant: the best parameterizations all use the Encyclo-
pedia corpus. Figure 2 (b) details this observation
for DW. The AUC-ROC value with the Encyclope-
dia corpus is by far the best; the health corpus’ fit
to the target language is crucial. The n-gram length
and the generalized mean setup are less important.
Table 6 shows several ablation results. In most
cases, the ablated setups achieve equal or lower
effectiveness, but in some cases higher effective-
ness. By fixing n = 1, the MCC decreases by 0.00
to 0.03 on most datasets (except TDS / CW on
sentences where it increases). Fixing the phrase-
internal averaging to the arithmetic mean (M1) only
decreases the MCC by a maximum of 0.05.
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Appr. P Opt. R Opt. M Opt.

n = 1 M1 n = 1 M1 n = 1 M1

F-
Ph

ra
se CW -0.10 -0.08 -0.03 -0.03 0.00 -0.05

TDS 0.00 0.00 -0.05 0.03 -0.02 0.02
DW 0.00 0.00 -0.04 0.00 -0.01 -0.01

P-
Ph

ra
se CW 0.00 0.00 0.00 0.00 0.00 -0.02

TDS -0.05 0.00 0.01 0.00 -0.03 0.00
DW -0.07 0.00 -0.03 0.00 -0.01 0.03

F-
Se

nt
. CW 0.03 -0.03 0.00 0.00 0.00 0.05

TDS 0.00 0.00 0.00 -0.11 0.07 0.10
DW -0.03 0.00 0.00 -0.03 0.02 0.00

Table 6: Ablation study indicating the difference in
effectiveness on the test sets from the best parame-
terizations optimized for precision (P), recall (R), or
the Matthews correlation coefficient (M) to the best pa-
rameterizations when ablating the n-gram length (fixed
n = 1) or the generalized mean (fixed M1 for combin-
ing the n-gram scores). Operating point for precision /
recall is set to 0.9. The difference is given with respect
to the “interesting” measure (i.e., drop in recall for the
P columns, drop in precision for the R columns, and
drop in MCC for the M columns).

Overall, our generalized termhood-based meth-
ods are much faster but not significantly less effec-
tive than the BERT-based approaches—with TDS
and DW usually being better than CW. When apply-
ing the generalized termhood methods, it is crucial
to choose a good health corpus while optimizing
the other parameters (n-gram length, averaging)
only leads to smaller improvements.

5 Webis Medical CauseNet 2022

By applying our generalized termhood method
for health relatedness assessment to the com-
plete CauseNet, we create the new Webis Medi-
cal CauseNet 2022 resource consisting of health-
related cause–effect statements found on the web.
It is important to note, that the statements in
CauseNet—and thus also in our Webis Medical
CauseNet 2022—are only claimed cause–effect
statements. For many of the contained statements,
scientific evidence can surely be found (e.g., ‘stress
→ insomnia’) while for many other this might not
be possible (e.g., ‘incorrect placement of jupiter
→ diabetes’). Still, it could be interesting to ana-
lyze websites that contain many claimed health-
related cause–effect statements with respect to
whether medical evidence exists or not. Such
health-sociological analyses are now enabled by
our Webis Medical CauseNet 2022 resource at web
scale since the URLs of the pages from which a
statement was extracted are part of CauseNet.

Subset Statements Sentences P R

Prec (P) 103,273 1,259,339 0.93 0.89
Prec (MCC) 112,707 1,340,873 0.89 0.93
Full (P) 2,201,071 5,680,635 1.00 0.74
Full (MCC) 3,206,964 7,842,464 0.78 0.90

Table 7: Characteristics of the four Webis Medical
CauseNet 2022 versions. Number of statements / sup-
porting sentences, and estimated precision and recall of
the precision- or MCC-optimized termhood extraction.

The Webis Medical CauseNet 2022 comes in
four different versions14 based on the best term-
hood parameterizations from the evaluation. Ta-
ble 7 contains some general characteristics. The
two smaller versions are extracted from CauseNet-
Prec (statements with high support) by using TDS
optimized for precision or MCC, while the two
larger versions are extracted from CauseNet-Full
by using DW optimized for precision or MCC.

6 Conclusions

We have proposed generalized termhood-based
methods that effectively and efficiently assess the
health relatedness of phrases. On cause–effect
statements from the web, our new approaches are
almost as effective as the best BERT-based ap-
proaches while being much faster. Approaches
using state-of-the-art medical entity linkers are
slower and less effective. When configuring our
new termhood-based methods, it is crucial to select
a background health corpus that matches the target
language distribution while the other parameters
(n-gram length, averaging) are less important.

Using our methods, we have extracted the We-
bis Medical CauseNet 2022 resource of health-
related cause–effect statements from the web-
scale CauseNet. Based on Webis Medical
CauseNet 2022, health-sociological analyses of on-
line cause–effect relations are now possible at an
unprecedented scale compared to previous small-
scale analyses of health-related online information.

Finally, our termhood-based assessment could
also be useful in retrieval scenarios. For instance,
given the termhood scores’ efficiency, they could
directly be used at search engine side to quickly
assess the health relatedness of some query not seen
before (for other queries, the clicked documents
usually suffice to assess the health relatedness) and
to possibly adopt the retrieval accordingly (e.g.,
preferring medical resources).
14Available under a permissive license: https://github.com/

webis-de/COLING-22
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Abstract

Automatic extraction of funding information
from academic articles adds significant value to
industry and research communities, including
tracking research outcomes by funding organi-
zations, profiling researchers and universities
based on the received funding, and supporting
open access policies. Two major challenges
of identifying and linking funding entities are:
(i) sparse graph structure of the Knowledge
Base (KB), which makes the commonly used
graph-based entity linking approaches subop-
timal for the funding domain, (ii) missing en-
tities in KB, which (unlike recent zero-shot
approaches) requires marking entity mentions
without KB entries as NIL. We propose an en-
tity linking model that can perform NIL predic-
tion and overcome data scarcity issues in a time
and data-efficient manner. Our model builds
on a transformer-based mention detection and
a bi-encoder model to perform entity linking.
We show that our model outperforms strong
existing baselines.

1 Introduction

Entity Linking (EL) aims to annotate text with cor-
responding entity identifiers from a Knowledge
Base (KB) and is a building block for different
tasks, such as document ranking (Xiong et al.,
2017), entity retrieval (Hasibi et al., 2016), and
question understanding in conversations (Shang
et al., 2021). Recent years have witnessed the
flourishing of entity linking approaches for zero-
shot (Wu et al., 2020; Li et al., 2020) and open-
domain setups (van Hulst et al., 2020; Cao et al.,
2021). While zero-shot entity linking can gener-
alize to new specialized domains and entity dic-
tionaries, existing approaches cannot perform NIL
prediction; i.e., identifying entity mentions without
a target entity in a knowledge base and assigning
them to NIL. Open-domain entity linkers, on the
other hand, build on the availability of rich entity
relations and descriptions in KBs. This makes ex-

isting EL approaches suboptimal for real-world
applications of entity linking in domains with in-
complete knowledge bases, where both in-KB and
out-of-KB entities should be identified.

In this paper, we aim to address entity linking
in the funding domain (Dai et al., 2021; Alexander
and de Vries, 2021), which is essential for funding
organizations to track the outcome of the research
they funded (Kayal et al., 2019) and also helps to
comply with open access rules (Dai et al., 2021).
Knowledge bases of funding organizations, either
proprietary or open access (e.g., the funding KB
Crossref1), contain brief information about entities
(e.g., official name and acronym). They also have
extremely sparse graph structure with large amount
of missing entities that need to be found from re-
search articles. This implies that EL in the funding
domain requires detecting mentions with out-of-
KB entities while handling sparse entity relations
and descriptions. The approach, should also be able
to operate with limited training data, as large pub-
lic datasets are rarely available for domain-specific
applications.

We propose a two-step EL approach, where
we first identify entity mentions using task adap-
tive pre-training (Gururangan et al., 2020) of
BERT (Devlin et al., 2019) and then perform En-
tity Disambiguation (ED) by utilizing a bi-encoder
model to learn dense entity and mention representa-
tions. Our bi-encoder model and training approach
using negative sampling are specifically designed
to operate with out-of-KB entities. The bi-encoder
is followed by a modest feature-based model to
map the entities to an entity in KB or NIL. We
create two new datasets for EL in the funding do-
main and compare our mention detection and ED
approaches with strong neural and feature-based
models. We show that our model improves over
existing baselines for both entity disambiguation
and end-to-end entity linking.

1https://www.crossref.org
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Figure 1: Overview of our entity disambiguation ap-
proach for incomplete proprietary knowledge bases.

In summary, our contributions include: (i)
proposing a data-efficient model for entity linking
(with NIL prediction) in funding domain that is ef-
ficient and can be used with modest computational
power, (ii) improving upon existing EL approaches
for funding organization, and (iii) releasing new
training and evaluation datasets for entity linking
in funding domain. To our knowledge, this is the
first and largest publicly available dataset for entity
linking in funding domain. The code and datasets
created in this paper are made publicly available.2

2 Method

In this section, we provide a formal definition of
the task, followed by the description of our Men-
tion Detection (MD) approach and Funding entity
Disambiguation model, referred to as FunD.

2.1 Task Definition

We denote E as the set of entities in a knowledge
base, where each entity e ∈ E is accompanied by a
textual description. Let m = (s, t) ∈M denote an
entity mention with start and end positions s and t.
Given a document d = {w1, w2, ..., wn}, our aim
is to generate the list:

L = {(⟨s, t⟩, a)|1 ≤ s ≤ t ≤ n, a ∈ E ∪NIL},

which represents all possible mentions linked to an
entity in the KB (in-KB setup) or NIL (out-of-KB
setup). This task is similar to zero-shot (Wu et al.,
2020) and open domain entity linking (van Hulst
et al., 2020), but different from them, entities do
not need to have an entry in the KB.

2.2 Mention Detection

For mention detection, we adapt BERT (Devlin
et al., 2019) to the funding domain. Domain Adap-
tive Pre-Training (DAPT), while being effective,

2https://github.com/informagi/Fund-EL

requires a large amount of domain-specific text, re-
quires large amount of training data which is not
feasible for the funding domain (Gerritse et al.,
2022; Nogueira et al., 2019). We therefore utilize
the Task-Adaptive Pre-Training (TAPT) (Gururan-
gan et al., 2020), which requires a far smaller but
more task-relevant training corpus and is proven
to be more effective than DAPT. We train BERT
with the Masked Language Model objective on
acknowledgments of research papers. We refer
to this model as BERTTAPT. We then fine-tune
BERTTAPTfor the mention detection task using IOB
tags.

2.3 Entity Disambiguation
Candidate Entity Selection To obtain the likeli-
hood of an entity being a target link of a mention,
we employ a bi-encoder model (Wu et al., 2020)
for encoding a mention (with its context) and an
entity. Our bi-encoder model utilizes two BERT
encoders for generating entity and mention repre-
sentations. The entity encoder takes the structured
entity description as the input:

xe = BERT[CLS]([CLS] valA1 [EA] ... [EA]

valAn [EB] valB [SEP]),

where [EA] and [EB] are two word-piece tokens,
selected among the unused tokens of BERT, and
valAi and valB denote values for entity attributes
A and B. Here A corresponds to names of entities,
which is a multi-valued attribute, and B is the coun-
try of the funding organization. For the mention
encoder, we follow Wu et al. (2020) and obtain
mention representations by:

xm = BERT[CLS]([CLS] ctxtleft [Ms]mention

[Me] ctxtright [SEP]),

where ctxtleft and ctxtright represent context words
before and after the mention. In this work, both
BERT models are initialized with BERTTAPT. The
mention-entity score is then obtained by:

f(m, e) = WT (xm ⊙ xe), (1)

where ⊙ refers to element-wise multiplication of
mention representation xm and entity representa-
tion xe, and W ∈ RBERT×2 represents learnable
weights. The binary cross-entropy loss L is used to
train the model:

L = − 1

N

N∑

i=1

li log(f(mi, ei))− (1− li)

log(1− f(mi, ei)),
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where N is the number of training examples and li
is a binary value that is set to 1 if ei is the correct
entity for mention mi.

Negative Sampling Following Gillick et al.
(2019), we perform training in rounds, where
the model obtained in each round is used to pro-
duce hard negatives for the next round. Contrary
to (Gillick et al., 2019), we do not use in-batch
random negative sampling, as it provides less di-
verse random negatives for sparse domain-specific
applications compared to open-domain EL.

The following strategy is employed for random
and hard negative sampling. In the first round,
negative entities of each mention are sampled ran-
domly from the entire KB. For the next rounds,
both random and hard negatives are used. Hard
negatives are entities ranked above the correct en-
tity by the model learned in the previous step. For
mentions with out-of-KB entities, the top-K enti-
ties are selected as hard negatives (K is set to 10
following (Gillick et al., 2019)). The number of
random negatives for each mention is computed
based on the number of hard negatives:

Negr(m) = ⌊
∑|M |

i=1Negh(m)

|M | ⌋, (2)

where Negr() and Negh() give number of random
and hard negatives, respectively. Using this strat-
egy, we strive a balance between random and hard
negatives, while giving hard mentions (i.e., men-
tions that their correct entities are in low ranks) a
larger number of hard negatives.

Entity or NIL Selection Once we have obtained
candidate entities from our bi-encoder model, we
turn to mapping each mention to an entity in the
knowledge base or NIL. We employ a feature-
based model using Gradient Boosting Machine
(GBM) (Friedman, 2001). Our model utilizes five
light-weight features: (i) score obtained by the bi-
encoder model, (ii) maximum Levenshtein similar-
ity between the mention and the labels of the candi-
date entity, (iii) link probability of the mention (Ba-
log, 2018) obtained by dividing numbers of times a
mention appears as a link by total number of occur-
rences of a term: P (link|m) = nlink(m)/n(m),
and (iv) commonness score (Balog, 2018) ob-
tained by P (e|m) = n(m, e)/

∑
e′∈E n(m, e

′),
with n(m, e) denoting number of times that men-
tion m is linked to entity e. A mention is linked
to the entity with the highest GBM score if higher
than threshold τ .

System Set P R F1
Stanford NER Test 73.70 75.10 74.39
FlairNER Test 85.83 78.02 81.74
BERTNER Test 79.18 86.03 82.46
BERTMD

TAPT Test 80.28 86.54 83.29
Stanford NER Eval 76.17 72.87 74.48
BERTMD

TAPT Eval 79.08 85.31 82.08

Table 1: Mention detection results on ELFund dataset.

3 Experiments

Data We use the Crossref funding registry as
our KB, containing information about 25,859 fund-
ing organizations. We create two new datasets for
the funding domain, ELFund and EDFund (Afzal
et al., 2022), which are used for experiments. The
datasets are split into training, validation, test, and
eval sets, with no overlaps in the training, test, and
eval across the two datasets. The validation set
is used for searching hyper-parameters.The eval
set contains completely unseen production data,
used for the final evaluation of the models; see Ap-
pendix A and B for more details about the datasets
and experimental setup.

Evaluation Metrics To evaluate the mention de-
tection step, we use strong matching precision, re-
call, and F1 score (Tjong Kim Sang and De Meul-
der, 2003; Usbeck et al., 2019). The ED and EL
tasks are evaluated in three settings: (i) In-KB, for
mentions linked to entities in KB, (ii) Emerging
Entities (EE) for Out-of-KB entities; i.e., mentions
linked to no entities, and (iii) All, for in-KB and
emerging entities. We evaluate the ED task using
micro and macro averaged accuracy for the All
setting (Hoffart et al., 2014). For In-KB and EE
settings, we report on micro- and macro- averaged
precision, recall, and F1 (Usbeck et al., 2019).

4 Results

Mention Detection Table 1 shows the results
for the mention detection step. We compare
BERTMD

TAPTwith Stanford NER (Finkel et al., 2005),
FlairNER (Akbik et al., 2018), and BERTNER (Devlin
et al., 2019). The results show that FlairNERachieves
the highest precision, but the lowest recall com-
pared to the BERT-based models. We also ob-
serve that BERTMD

TAPToutperforms all baselines with
respect to the F1 score, showing the importance
of task adaptive pre-training when limited data is
available.
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Method Set All EE In-KB
Accmic Accmac Pmic Rmic F1mic Pmic Rmic F1mic

Commonness Test 83.8 85.81 53.55 88.2 66.64 94.22 82.99 88.25
GBMF26 Test 91.02 92.84 79.11 78.67 78.89 93.2 93.29 93.25
FunD Test 91.15 92.76 77.44 81.14 79.25 93.82 92.99 93.40
GBMF26 Eval 90.26 90.84 80.03 81.49 80.75 92.69 92.3 92.5
FunD Eval 90.66 91.11 79.26 85.45 82.24 93.56 91.86 92.7

Table 2: Entity disambiguation results on the EDFund dataset. Best results for each set are marked in bold face.

MD ED Setting F1mic F1mac
Stanford NER GBMF26 All 68.43 69.34
BERTMD

TAPT FunD All 75.81 76.59
Stanford NER GBMF26 EE 43.34 71.01
BERTMD

TAPT FunD EE 52.82 73.68
Stanford NER GBMF26 In-KB 77.33 74.73
BERTMD

TAPT FunD In-KB 85.14 81.86

Table 3: Entity linking results on the ELFund dataset.

Entity Disambiguation Table 2 presents entity
disambiguation results. We compare our ED
method, FunD with two baselines: (i) Common-
ness (Hasibi et al., 2015), where each mention
is linked to the entity with the highest common-
ness score if it is greater than zero, (ii) GBMF26,
which is a strong feature-based GBM model with
26 features, ranging from string similarities (e.g.
BM25) to statistical features (e.g., commonness
and link probability). We note that state-of-the-
art EL methods, such as REL (van Hulst et al.,
2020), GENRE (Cao et al., 2021), and BLINK (Wu
et al., 2020) cannot be used as baselines, as they
rely on data resources that are not available in our
KB and also do not address NIL prediction. We,
however, implemented BLINK’s bi-encoder with
a score threshold, and obtained micro average ac-
curacy of 60.16, which is a far worse performance
compared to other baselines. Table 2 results show
that FunD strives a balance between precision and
recall and can achieve the best results with respect
to F1 in both In-KB and EE setups. This observa-
tion is also mirrored with respect to accuracy on
the Eval set.

Entity Linking Putting the pieces together, we
show the results of end-to-end entity linking on
test set of ELFund dataset in Table 3. We compare
our model with the best ED baseline (GBMF26)
combined with Stanford NER (a fast and strong
existing MD model). The results indicate that our
MD and ED models improve the existing feature
based model by a large margin, reinforcing our pre-

System With GPU Without GPU
FunD 9.26± 0.47 23.07± 0.78
GBMF26 99.2±0.45 99.2±0.45

Table 4: Efficiency of ED models (in seconds).

vious finding that our models can be successfully
applied to the funding domain.

Efficiency Finally, we measure the run time of
ED model by running it on a random sample of
100 sentences with 306 mentions. We pass 12
candidate entities to both GBMF26 and FunD and
measure the run time in seconds. The experiment
is repeated 10 times on a machine with an Intel
Xeon E-2276M (2.80GHz, 32GB RAM) CPU and
an NVIDIA Quadro T1000 GPU with 4GB mem-
ory. Table 4 shows that FunD is four times faster
than the feature-based GBMF26 model without
GPU. The difference is even larger using GPU,
as FunD’s efficiency is increased, while GBMF26

performance does not change with GPU. The inef-
ficiency of the GBMF26 model is mostly attributed
to the calculation of the hand-crafted features.

5 Conclusions

In this paper, we have introduced an entity link-
ing method for funding domain, where the knowl-
edge base has sparse graph structure and limited
information is available about entities. The model
builds on BERT to perform mention detection, and
a bi-encoder model to conduct the entity disam-
biguation. We compared our method to strong
feature-based and zero-shot models and showed
that our model can perform NIL assignments and
overcome data scarcity issues more efficient and ef-
fective than comparable baselines. As future work,
we would like to explore the benefit of employing
contrastive learning for the highly ambiguous entity
mentions, which could provide further robustness
to extracting and linking such entities in scientific
texts that span across all sciences.

1940



Acknowledgements

We thank Ramadurai Petchiappan, Georgios
Cheirmpos, and Efthymios Tsakonas, for their as-
sistance in preparing the final released datasets.

References
Zubair Afzal, Johan Boots, Heber Mc Mahon, Nishant

Mintri, Seyedamin Tabatabaei, and George Tsatsaro-
nis. 2022. Edfund- Elsevier funding entity linking
dataset.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.
Contextual string embeddings for sequence labeling.
In Proceedings of 27th International Conference on
Computational Linguistics (COLING), pages 1638–
1649.

Daria Alexander and Arjen P. de Vries. 2021. “this
research is funded by..”: Named entity recogni-
tion of financial information in research papers. In
Proceedings of the 11th International Workshop
on Bibliometric-enhanced Information Retrieval co-
located with 43rd European Conference on Informa-
tion Retrieval (ECIR), pages 102 - 110.

Krisztian Balog. 2018. Entity-oriented search. Springer
Nature.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In Proceedings of the 9th International Conference
on Learning Representations (ICLR), pages 3–7.

Suyang Dai, Yuxia Ding, Zihan Zhang, Wenxuan Zuo,
Xiaodi Huang, and Shanfeng Zhu. 2021. Grantextrac-
tor: Accurate grant support information extraction
from biomedical fulltext based on Bi-LSTM-CRF.
IEEE/Association for Computing Machinery Transac-
tions on Computational Biology and Bioinformatics,
18(1):205–215.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL), pages 4171-4186.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by Gibbs sam-
pling. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 363-370.

Jerome H Friedman. 2001. Greedy function approx-
imation: a gradient boosting machine. Annals of
statistics, pages 1189-1232.

Emma J. Gerritse, Faegheh Hasibi, and Arjen P. de Vries.
2022. Entity-aware transformers for entity search.

In Proceedings of the 45th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval (SIGIR, SIGIR ’22, page
1455–1465.

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego
Garcia-Olano. 2019. Learning dense representations
for entity retrieval. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 528-537.

Suchin Gururangan, Ana Marasović, Swabha
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A Dataset Statistics

The ELFund and EDFund datasets are created
based on scientific articles published before 2017.
Expert annotators were asked to identify sentences
that contain funding organizations of the research
(e.g., X was funded by source Y) and link the or-
ganizations to entities in the Crossref KB. ELFund,
further contains sentences that could be also auto-
matically identified by a classifier. Both datasets
were annotated by two experts to find the bound-
ary of mentions and their corresponding entities if
available. Disagreements were resolved by a third
annotator, and mentions with out-of-KB entities
are annotated with NIL. We note that ELFund is
not a subset of EDFund.

B Training Configuration

We train the case-preserving version of
BERTBASEwith 2M sentences containing funding
information to obtain the BERTTAPT model. Unless
indicated otherwise, the hyper-parameters recom-
mended by Gururangan et al. (2020) are used for
training. The training is done on an NVIDIA Tesla
K80 GPU with 12 GB of memory with a batch
size of 2048 through gradient accumulation and
for one epoch (1000 steps). We further fine-tune
BERTTAPTfor the mention detection task on the
ELFund dataset. The fine-tuning process is done
for 3 epochs with batch size of 8. We refer to
this model as BERTMD

TAPT. For disambiguation, the
bi-encoder model is trained on the EDFund dataset
with a learning rate of 2× 10−5 and batch size of
16. The training is performed in 4 rounds, each
round consisting of 2 epochs. In the first round, 3
random negatives are used for each mention. The
score threshold τ is set to 0.042 using grid search.
Following (Wu et al., 2020), the mention and entity
representations are limited to 64 and 256 tokens,
respectively.
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Abstract

Event detection aims to detect events from the
text by identifying and classifying event trig-
gers (the most representative words). Most of
the existing works rely heavily on complex
downstream networks and require sufficient
training data. Thus, those models may be struc-
turally redundant and perform poorly when
data is scarce. Prompt-based models are easy
to build and are promising for few-shot tasks.
However, current prompt-based methods may
suffer from low precision because they have
not introduced event-related semantic knowl-
edge (e.g., part of speech, semantic correlation,
etc.). To address these problems, this paper
proposes a Knowledge-injected Prompt Tuning
(KiPT) model. Specifically, the event detection
task is formulated into a condition generation
task. Then, knowledge-injected prompts are
constructed using external knowledge bases,
and a prompt tuning strategy is leveraged to op-
timize the prompts. Extensive experiments in-
dicate that KiPT outperforms strong baselines,
especially in few-shot scenarios.

1 Introduction

Events describe state changes of participating enti-
ties. The Event Detection (ED) task is one of the
essential tasks in the Information Extraction field.
Event triggers are the most representative words or
phrases in events, and they are usually composed
of verbs or nouns. There is a one-to-one correspon-
dence between events and event triggers, so the
ED task is equivalent to identifying and classifying
event triggers.

The ED task has a wide range of applications,
providing helpful information for downstream
tasks such as text summarization, auto summa-
rization, machine question and answer (QA), etc.
Meanwhile, with the vigorous development of In-
ternet news and social media, ED has become a

*Weiping Li is the corresponding author.

practical approach for extracting information from
massive texts. Therefore, the ED task has attracted
increasing attention with great academic and ap-
plied value in recent years.

Most current ED models use a pre-trained lan-
guage model to build complex downstream net-
works (including CNN, RNN, GCN, etc.) These
methods perform well on public datasets, but they
rely heavily on the fine-tuning strategy to train their
downstream networks and introduce massive ex-
tra parameters. However, due to the scarcity and
uneven distribution of the annotated data for ED,
these methods may cause severe overfitting prob-
lems. Further, these methods may perform poorly
in data-scarce scenarios because their extra param-
eters cannot be fully optimized.

Recently, prompt-based learning methods is a
new trend in natural language processing. Re-
searchers verified that pre-trained language models
already have enough knowledge, so the complex
downstream networks are unnecessary in many
cases. Prompt-based learning methods make full
use of the information in pre-trained language mod-
els by constructing prompts to guide the language
model to solve NLP tasks. Specifically, prompt-
based methods first transform the original input
into prompt templates containing the initial input,
the prompt tokens, and unfilled slots for output.
Then, a pre-trained language model is employed to
fill the unfilled slots to obtain a final string from
which the final output can be derived.

Prompt learning-based methods eliminate com-
plex downstream networks and massive extra pa-
rameters, so they have advantages in data scarcity
scenarios. Meanwhile, the prompts’ quality di-
rectly affects the models’ performance. However,
manually selecting the optimal prompts is time-
consuming and labor-intensive. Considering this,
prompt tuning strategies have been proposed by
introducing continuous virtual tokens as trainable
prompts that will be optimized through training.
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The threat posed by the Iraqi dictator justifies a war, which is sure to kill thousands of innocent children.

Sequence Tagging
Models

No. Trigger Event Type

1 war Conflict:Attack

2 kill Life:Die

Condition Generation
Models

war triggers Conflict:Attack and
kill triggers Life:Die

Equivalent 
mapping

Event Record:
Event list:

Figure 1: An example of Event Detection (on the left is the event list output by the sequence tagging model; on the
right is the event record output by the condition generation model, where the gray words act as structural tokens)

However, the above prompts may suffer from low
precision because they have not introduced event-
related semantic knowledge.

Event triggers are mostly verbs and nouns, and
are usually semantically related to the core concept
words of events. Therefore, semantic knowledge
(such as part of speech, word semantic correlation,
etc.) plays a crucial role in the ED task. To this end,
this paper proposes a Knowledge-injected Prompt
Tuning (KiPT) model to introduce event-related
knowledge using external knowledge bases.

Specifically, we formulate the ED task into a con-
dition generation task. Then, external knowledge
bases and semantic tools are used to obtain the se-
mantic knowledge associated with input sentences
and events. Next, the semantic knowledge is in-
jected into the prompts for ED. Finally, we use the
knowledge-injected prompts to extract event trig-
gers, and the prompts will be optimized through a
prompt tuning strategy. Our method is direct and
effective, and it can be easily transferred to other
tasks.

The main contributions of this paper are summa-
rized as follows:

• We introduce a knowledge injection method to
inject event-related semantic knowledge into
the prompt templates, which is the first in the
ED task to the best of our knowledge;

• We propose a prompt-based learning model
for ED called Knowledge-injected Prompt
Tuning (KiPT), which leverages a prompt tun-
ing strategy to optimize the prompts;

• Extensive experiments show that our model
outperforms current prompt-based ED mod-
els and strong baselines, especially in data
scarcity scenarios.

2 Related Work

Studies related to our work are mainly discussed
from the following three aspects:

2.1 Event Detection Methods

The ED models can be divided into sequence tag-
ging models and condition generation models.

Chen et al. and Nguyen et al. formulated ED as
a sequence tagging task for the first time, and they
used CNN and RNN to model sentence-level fea-
tures; Liu et al. and Yan et al. used GCN to empha-
size the semantic dependency. Nguyen and Nguyen
jointly extracted entities, triggers, and arguments
based on the shared hidden representations; Wad-
den et al. provided a graph propagation method
to capture context relevant for entity, relation, and
event; Lin et al. built an end-to-end information
extraction system which employs global feature
and beam search to extract globally optimal event
structures;

Condition generation methods encode sentences
using generative pre-trained language models such
as BART(Lewis et al., 2019) and T5(Raffel et al.,
2019). Li et al. utilized a conditional generation
model with BART. Paolini et al. regarded event
extraction as a translation task between augmented
natural languages; Lu et al. constructed events as
event trees and used a Seq2Structure model.

2.2 Prompt-based Learning Methods

Prompt-based learning methods use prompts to
guide pre-trained language models to generate re-
sults, so the quality of the prompt templates is crit-
ical. The current prompt-base learning templates
include:

Manually setting discrete prompt templates (ac-
tual words in the template): Schick and Schütze
transferred the text classification task into a cloze-
filling task by using manual prompt templates.
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Petroni et al. converted triple completion tasks into
cloze-filing questions through prompt templates.

Building trainable continuous prompt templates
(virtual tokens in the template): Li and Liang used
trainable prefix tokens as prompts and added soft
tokens in each layer of the language model. Liu
et al. replaced actual words with trainable soft
tokens in the prompt template and introduced an
extra prompt encoder.

However, neither of these methods introduces
task-related knowledge, and they cannot optimize
the prompt along with external knowledge.

2.3 Prompt-based Knowledge Injection

Some works have already attempted to introduce
external knowledge in prompt-based learning. Hu
et al. enhanced the mapping of model outputs and
predefined categories by introducing extra knowl-
edge in verbalizers. Chen et al. introduced virtual
tokens to enhance category features for relation ex-
traction tasks. Li et al. strengthened the model by
introducing ground truths. Although these methods
are instructive, they have strong task dependencies
and are difficult to apply to Event Detection.

Our work aims to perform the ED task using a
prompt-based model with event-related knowledge.
To achieve this, a knowledge-injected prompt tun-
ing method is proposed in this paper.

3 Methodology

This section first describes the definition of the ED
task. Then, the proposed KiPT model is introduced
in detail.

3.1 Task Description

Following the task description of Automatic Con-
tent Extraction 1, the standard task of ED includes
event Trigger Identification (Trig-I) and Trigger
Classification (Trig-C). Consider the example in
Figure 1. After obtaining the input sentence, ED
methods should first identify the triggers "war"
and "kill" and then classify them into event types
"Conflict:Attack" and "Life:Die".

This paper formulates the standard ED task into
a condition generation task to simplify the output.
First, the structural word "triggers" is used to com-
bine a trigger and its corresponding type like "war
triggers Conflict:Attack". Then, if a sentence con-
tains more than one event, the events are concate-

1https://www.ldc.upenn.edu/collaborations/past-
projects/ace/annotation-tasks-and-specifications

nated with another structural word "and". Consider-
ing the example in Figure 1, our constructed event
record is “war triggers Conflict:Attack and kill
triggers Life:Die”. Therefore, given the input sen-
tence, our model generates the above event record
as output. It is worth mentioning that the output
of our method is equivalent to the original ED task
since event records can be easily split into event
triggers and event types.

3.2 The Overall Structure of KiPT
The overall structure of KiPT is shown in Figure
2. First, given the input sentence x, the knowledge-
injected prompt Prompt(x) is constructed. Then,
prompt template input T is built and fed into the
pre-trained language model LM to obtain the out-
put event record y.

We propose a trainable knowledge-injected
prompt Prompt(x) in KiPT. Prompt(x) includes
two parts: input-related knowledge injectionK(x)
and input-irrelated soft tokens S. K(x) and S are
both trainable and will be optimized during the
training process.

In the following subsections, the construction
and tuning of the knowledge-injected prompt will
be explained in detail.

3.3 Knowledge-injected Prompt Construction
In this section, the definitions of the knowledge
injectionK(x) and the soft tokens S are introduced
first. Then, the combination of K(x) and S into
the prompt Prompt(x) is described.

Knowledge Injection K(x): Given each
input sentence x, the token sequence x1:n =
{x1, x2, ..., xn} can be obtained by using a tok-
enizer. Then, a knowledge extractor is used to
extract event-related knowledge K(x) for x, and
the knowledge extractor is constructed by using
NLP analysis tools and external knowledge bases.

First, since event triggers are mostly verbs and
nouns, each token’s part of speech (POS) is es-
sential. Thus, POS analysis is performed on each
token xi using a semantic analysis tool (Stanford’s
Stanza(Qi et al., 2020)). Then, Stanza’s lemmati-
zation module is employed to recover the lemma
form x̂i of each input token (for example, "died"
-> "die"). After the POS and the lemma form of
each token are obtained, the verbs and nouns are
selected as a list of potential triggers PT1:|PT | =
{pt1, pt2, ..., pt|PT |}.

Semantic correlations in knowledge bases also
provide vital information for ED. Each type of
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Pretrained Language Model LM

Knowledge
Injection 𝐾(𝑥)

Soft 
Tokens 𝑆

The threat posed by the Iraqi dictator justifies a war, 
which is sure to kill thousands of innocent children.

war triggers Conflict:Attack and kill triggers Life:Die

Input Sentence x

Knowledge
Extractor

Prompt Tuning

Output Events Recode y

WordNet，POS，
lemma, … Prompt(x)

MLP

Figure 2: The overall architecture of KiPT. Given the input sentence x, external knowledge are used to construct
input-related prompt Prompt(x). Then, the language model LM is used to generate output event record y.

event has some core concepts, e.g., the event type
"Conflict: Attack" has concepts like "attack, fight,
bomb, etc.", and the event type "Life: Die" has con-
cepts like "kill, suicide, murder, etc." To exploit the
semantic relevance of the core concepts of words
and events, we make the following assumption:

Assumption 3.1 If a word has strong semantic
correlations with the core concepts of a specific
event type, then the word is likely to trigger an
event of that type.

Based on the above assumption, a dictionary
Concept1:e containing the core concepts of each
event type (e represents the total number of event
types) is manually constructed, and conceptk rep-
resents the concept of the kth type of event. Then,
WordNet(Fellbaum and Miller, 1998) is intro-
duced to obtain the semantic correlation between
the input tokens and the core concepts, and whether
they have a strong semantic correlation is judged
by calculating the semantic similarity of two words
in WordNet. For each word ptj in the list of poten-
tial triggers PT and the core concept conceptk
for each event type, their semantic correlation
Sc(ptj , conceptk) is calculated by using the Wu-
Palmer Similarity Algorithm(Wei et al., 2015).
If the semantic correlation Sc(ptj , conceptk) is
above the similarity threshold θsim, the potential
trigger word ptj and the corresponding event type
eventk are both added to K(x).

To sum up, the process of the knowledge extrac-
tor is as follows:

The final extracted knowledge injection K(x)
is a text sequence composed of potential triggers
and their potential event types. It is denoted as
K(x)1:|K| = {k1, k2, ..., k|K|}, where |K| stands
for the length of K. Further, the similarity thresh-
old θsim may affect the performance of our model,

Algorithm 1 Knowledge Extractor

Input: Sentence: x1:n, Concept dict: Concept1:e
Output: Knowledge Injection: K(x)

for xi ∈ x do
if POS(xi) ∈ [verb, noun] then

Add lemma(xi) to potential triggers PT
end if

end for
for ptj ∈ PT do

for conceptk ∈ Concept do
if Sc(ptj , conceptk) > θsim then

Add [ptj , eventk] to K(x)
end if

end for
end for

which will be discussed in the Appendix.

Soft Tokens S: Besides using knowledge in-
jection K(x), this paper also adds some trainable
soft tokens to the prompts. Soft tokens are vir-
tual tokens sharing the same dimension as actual
words (e.g, 768 for T5-base) but without real mean-
ings. Previous works have proved that trainable
soft prompts are more flexible and effective than
actual words (Liu et al., 2021; Li and Liang, 2021).

In our method, randomly initialized tensors are
used as the soft prompt tokens, which will be op-
timized during the training of the language model.
The soft tokens used in this paper are denoted as
S1:p = {s1, s2, ..., sp}. The selection of p may
slightly affect the performance of our model, and
this will be discussed in Appendix.

Prompt Templates Construction: After
knowledge injection K(x) and soft tokens S are
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obtained, they are concatenated as Prompt(x):

Prompt(x) = [K(x);S]

= {k1, ..., k|K|, s1, ..., sp}
(1)

For each input x, Prompt(x) is constructed as
the knowledge-injected prompt. Then, a prompt
template is built, which contains the input x,
Prompt(x), and the target event record y.

Template : Prompt(x) [x], Events : [y] (2)

Where [x] represents the slot for the input sentence,
[y] represents the slot for the target event records,
and ”Events : ” is a fixed anchor token. Anchor
tokens have been proved useful by previous works
(Li and Liang, 2021; Han et al., 2021).

3.4 Knowledge-injected Prompt Tuning
The knowledge-injected prompt Prompt(x) needs
to be optimized through training mainly for the
following two reasons:

(1) Some rule-based algorithms are used during
the construction of the knowledge injection K(x).
However, these rules may be ineffective or even
wrong in some cases, so these rules need to be
softened through training;

(2) Soft tokens S are virtual tensors that are ran-
domly initialized and have no original semantics.
They need to be trained to approximate the distribu-
tion of actual words to achieve the role of prompts
for language models.

To this end, we propose knowledge-injected
prompt tuning to optimize Prompt(x). Given a
pre-trained language modelLM and its vocabulary
V , the prompt template’s input T is:

T = [Hk;Hs; e(x)]

= {hk1, ..., hk|K|, hs1, ..., hsp, e(x1), ..., e(xn)}
(3)

where e(xi) indicates the embeddings for the input
tokens; hsi and hki stand for embedded prompts
for the knowledge injection and the soft tokens,
respectively. Note that e(xi) and hki are initialized
using the embeddings of the actual tokens from the
LM’s vocabulary V , and hsi indicates randomly
initialized tensors. The conditional probability of
the event record output can be obtained by using
the generative language model LM.

Finally, given the golden event record y, gradient
updates are performed by using the following log-
likelihood loss function:

L = −
∑

(x,y)∈D
log(y|Hk, Hs, e(x), θLM) (4)

where D stands for the whole training dataset, and
θLM stands for the LM’s parameters.

Previous research (Liu et al., 2021) has shown
that there are semantic gaps between the embed-
dings of actual tokens and virtual tokens. Because
the embeddings of actual words are highly discrete
through pre-training, trainable soft prompt tokens
are randomly distributed. They will only change
in a small neighborhood during stochastic gradient
descent.

Thus, following Liu et al.’s work, we use a lite
muti-layer linear network (MLP) as a prompt en-
coder to narrow the semantic distance between the
embedding of actual words and prompt tokens:

ĥsi =MLP(hsi ), i ∈ [1, p] (5)

The loss function is improved as follows:

L = −
∑

(x,y)∈D
log(y|Hk, Hs, e(x), θLM, θMLP)

(6)
where θMLP stands for the parameters of the muti-
layer linear networkMLP .

4 Experiments

This section describes our experimental settings
and detailed experimental analysis.

First, we conduct overall experiments to verify
the performance of KiPE with sufficient training
data. Next, we conduct few-shot and zero-shot
experiments to verify the performance of KiPT
in data-scarce scenarios. Finally we perform an
ablation analysis to explore the influence of each
part in our prompts.

4.1 Experiment Setup
Datasets. Our work is evaluated on the most widely
used datasets ACE 2005 (Automatic Content Ex-
traction program of 2005)2 and TAC 2015 (Event
Nugget data of TAC 2015)3. The detailed descrip-
tions of the datasets are presented in Table 1:

As for ACE 2005, following the previous works
(Yan et al., 2019; Nguyen and Nguyen, 2019), the
599 documents are divided into 529 training doc-
uments, 30 development documents, and 40 test
documents. And for TAC 2015,following Lu et al.,
the 458 documents are divided into 396 training
documents, 31 development documents, and 31 test
documents.

2https://catalog.ldc.upenn.edu/LDC2006T06
3https://catalog.ldc.upenn.edu/LDC2020T13
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Datasets ACE 2005 TAC 2015
Event Type 33 38
Total Documents 599 458
Total Events 5,055 7,530
Train/Dev/Test Split 529/30/40 396/31/31

Table 1: Statistics of ACE 2005 and TAC 2015

Metrics. The ED task has two subtasks: Trigger
Identification (Trig-I) and Trigger Classification
(Trig-C). Their standard evaluation criteria are as
follows:

• Trig-I: An event trigger is identified correctly
if its span matches the gold trigger;

• Trig-C: An event trigger is classified correctly
if both its span and event type match the gold
trigger.

We use micro-averaged Precision (P), Recall (R),
and F1 score (F1) in all the following evaluations.

Settings. In this paper, T5 (Yang et al., 2019) is
utilized as the pre-trained language model LM in
KiPT. Both T5-Base and T5-Large are used in the
overall results, while only T5-Base is used in the
rest of the experiments. Our model is optimized
with AdamW for 30 epochs with a learning rate
of 1e-4 and a weight decay of 1e-5 for T5, and a
learning rate of 1e-3 and a weight decay of 1e-4
for other parameters. The batch size is set to 16 for
T5-base and 8 for T5-large.

In our main KiPT model, the number of soft
tokens p is set to 40, and the similarity threshold
θsim is set to 0.8. The performance of the other
options will be discussed in Appendix.

Baselines. This paper chooses 10 strong base-
lines for comparison: (1) Three sequence tagging
models: Joint3EE jointly extracts entities, triggers,
and arguments based on the shared hidden repre-
sentations; DYGIE++ provides a graph propaga-
tion method to capture relevant context for entity,
relation, and event; OneIE builds an end-to-end
information extraction system that employs global
feature and beam search to extract globally opti-
mal event structures; (2) Two QA-based models:
BERT_QA first formulates ED as a QA task and
generates questions from annotation guidelines;
MQAEE uses multi-turn question strategy to build
questions; (3) Three condition generation models:
BART-Gen utilizes a conditional generation model
with BART. Given the description of events, the cor-
responding triggers in the sentence are generated;

TANL frames ED as a translation task between aug-
mented natural languages; Text2Event constructs
event structure and uses a Seq2Structure model.
(4) Two prompt-based learning models: PoKE
presents various joint prompt methods, which can
elicit more complementary knowledge by modeling
the interactions between different triggers or argu-
ments; GDAP empowers the automatic exploita-
tion of label semantics on prompt templates.

4.2 Overall Results

The overall results of our model on ACE 2005 and
TAC 2015 are presented in Table 2 and Table 3, re-
spectively. For both Trig-I and Trig-C tasks, KiPT
(T5-large) outperforms all strong baselines on ACE
2005, reaching F1 values of 78.6% and 75.3%, re-
spectively. Due to the reduced parameters of the
pre-trained language model, the performance of
KiPT (T5-base) drops slightly (-1.1% in Trig-I and
-0.4% in Trig-C), but it still exceeds most of the
baselines. On TAC 2015, OneIE and Text2Event
are compared because they are the only two base-
lines experimented on TAC 2015. Although our
model is slightly lower than OneIE in Trig-I, it
outperforms all baselines in Trig-C.

From the overall results, it can be seen that:
(1) Our model significantly outperforms other

prompt-based models (PoKE and GDAP) because
of the utilization of event-related knowledge. The
results indicate that prompt-based learning models
tend to achieve higher Recall but lower Precision
in both Trig-I and Trig-C tasks. We believe that
prompt-based learning models only use the knowl-
edge of pre-trained language models, which is more
general but lacks task specificity.

KiPT improves this problem significantly by in-
troducing event-related knowledge through knowl-
edge injection, narrowing the gap between Preci-
sion and Recall. In the Trig-C task, the gap between
Recall and Precision of KiPT (T5-base) is 4.0%,
while that of PoKE and GDAP is 12.1% and 9.2%,
respectively. That is why KiPT outperforms other
prompt-based learning models.

Further, KiPT(T5-base) has better precision than
KiPT(T5-large) but has lower recall and F1. The
possible reason is that T5-large contains more gen-
eral knowledge and reduces the proportion of event-
related knowledge we introduced.

(2) Without introducing complex downstream
networks, KiPT (T5-base) outperforms the best
T5-base model PoKE by 5.3% in F1, and KiPT
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Models Trig-I Trig-C PLMP R F1 P R F1
Sequence Tagging Models

Joint3EE (Nguyen and Nguyen, 2019) 70.5 74.5 72.5 68.0 71.8 69.8 -
DYGIE++ (Wadden et al., 2019) - - 76.5 - - 73.6 BERT-large
OneIE (Lin et al., 2020) - - 78.6 - - 75.2 BERT-large

QA Models
BERT_QA (Du and Cardie, 2020) 74.3 77.4 75.8 71.1 73.7 72.4 2×BERT-base
MQAEE (Li et al., 2020) - - 77.4 - - 73.8 3×BERT-large

Condition Generation Models
BART-Gen (Li et al., 2021b) - - 74.4 - - 71.1 BART-large
TANL (Paolini et al., 2021) - - - - - 68.5 T5-base
Text2Event (Lu et al., 2021) - - - 69.6 74.4 71.9 T5-large

Prompt-based Learning Models
PoKE (Lin et al., 2021) - - - 64.1 76.2 69.6 T5-base
GDAP (Si et al., 2022) - - - 65.6 74.7 69.9 T5-large

Our Model
KiPT (T5-base) 76.0 79.1 77.5 72.9 76.9 74.9 T5-base
KiPT (T5-large) 75.4 82.1 78.6 71.6 79.2 75.3 T5-large

Table 2: Experimental results on ACE 2005. Trig-I indicates trigger identification tasks and Trig-C indicates trigger
classification tasks. The column PLM indicates the pre-trained language models used in each model.

Model Trig-I Trig-C
OneIE 68.4 57.0

Text2Event - 57.8
KiPT (T5-base) 66.3 58.1
KiPT (T5-large) 67.0 58.3

Table 3: Experimental results on TAC 2015. The F1
score is recorded for each model.

(T5-large) outperforms the best T5-large model
Text2Event by 3.4%. This proves the effectiveness
of our prompt tuning strategy.

(3) Our model has a relatively small F1 drop
from Trig-I to Trig-C: -2.6% for KiPT (T5-base)
and -2.3% for KiPT (T5-large). As a comparison,
the average drop of the QA model is -3.5% and that
of the condition generation model is -3.3%. This
indicates that KiPT binds potential triggers and
their corresponding event types together through
knowledge injection, so it is easier for it to classify
trigger words correctly after identifying them.

Among all the baselines, OneIE has a close per-
formance to KiPT, indicating that sequence tagging
models still have competitive performance with
enough training data. However, the introduction of
complex downstream networks and massive param-
eters may face struggles when data is insufficient.

k − shot OneIE Text2Event PoKE KiPT
k = 4 22.8 39.6 44.2 45.5
k = 8 25.2 51.2 53.1 50.1
k = 16 28.6 52.1 53.8 54.2
k = 32 39.7 53.7 55.3 56.4
k = 64 48.6 57.8 59.1 63.6

All Data 75.2 71.9 69.6 74.9

Table 4: Experiment with few-shot settings. The average
F1 scores of 10 experiments are used for each model.

Next, we will perform data-scarce experiments.

4.3 Few-shot and Zero-shot Scenarios
To verify the advantages of KiPT in low-resource
settings, we conduct few-shot and zero-shot exper-
iments on ACE 2005. Three strong baselines are
compared: sequence tagging model OneIE, con-
dition generation model Text2Event, and prompt-
based learning model PoKE.

Few-shot experiments: Referring to the few-
shot settings of previous works (Gao et al., 2020;
Lin et al., 2021), 4, 8, 16, 32, and 64 shot experi-
ments are conducted to compare the performance
of KiPT and baselines under scenarios with small
data resources. Specifically, for each type of event,
k samples are randomly selected from the initial
training set. Then, after training, the models’ per-
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Models Trig-I Trig-C
OneIE 37.6 34.7
Text2Event 45.1 38.4
Poke 44.7 39.3
KiPT 44.9 42.3

Table 5: Experiment with zero-shot settings. The F1
scores for Trig-I and Tri-C are on 23 unseen event types.

formance is tested on the standard test set. Each
k − shot experiment is repeated 10 times, and the
average results are recorded finally.

The results are shown in Table 4. It can be seen
that KiPT outperforms all the strong baselines in
most few-shot settings. Further analysis indicates
that:

(1) Our model is still effective when the data is
particularly sparse. For example, in the setting of
k = 4, KiPT reaches 45.5% in F1 score, signifi-
cantly surpassing all baselines;

(2) The lead of current prompted-based models
will gradually shrink as the training data increase.
For example, PoKE outperforms Text2Event by
4.6% and 1.3% when k = 4 and k = 64, re-
spectively. However, benefiting from the train-
able knowledge-injected prompts, KiPT’s perfor-
mance grows uniformly as the data increase. In
detail, KiPT surpasses Text2Event by 5.9% and
5.8% when k = 4 and k = 64, respectively.

(3) OneIE perform poorly in all few-shot scenar-
ios. This indicates that the models using complex
downstream networks and extra parameters require
sufficient training data to achieve their protential.

Zero-shot experiments: Following the settings
of Lu et al., we selected the top 10 most popular
event types as seen types and tested the zero-shot
classification performance for the remaining 23
unseen types. The results are shown in Table 5,
where KiPT overpasses all baselines, especially in
the Trig-C task. This indicates that even for a new
unseen event type, we can also obtain its event-
related knowledge through our prompts, proving
the transfer potential of our model.

4.4 Ablation Study

An ablation study is conducted to verify the ef-
fectiveness of each component of KiPT. Specifi-
cally, four groups of controlled experiments are
designed: "−MLP" means removing the prompt
encoder proposed in equation 5; "−S" means only
using knowledge injection in prompt construction;

Models F1 score for Trig-C
KiPT (T5-base) 74.9

-MLP 73.0 (-1.9)
- S 73.6 (-1.3)
- K(x) 72.2 (-2.7)
- K(x) and S 71.0 (-3.9)

Table 6: Ablation study results on ACE 2005. ’-’ means
the removal of the corresponding component.

"−K(s)" means only using soft tokens as prompts;
”−K(x) and S” means removing all the prompts.
The results of the ablation study are presented in
Table 6. It can be seen that:

(1) WhenMLP is removed, the model’s perfor-
mance drops slightly (-1.9%). This indicates that
although soft tokens can be optimized by training,
the gap between virtual tensors and actual words
may still cause an adverse effect, showing the ne-
cessity of our prompt encoder.

(2) Knowledge injection plays a more signifi-
cant role than soft tokens within prompts. The
removal of K(x) caused a performance drop of
2.7%, over twice the removal of S (1.3%). This in-
dicates that introducing additional semantic knowl-
edge for prompt-based models is better than adding
randomly initialized tokens.

(3) After all the prompts are removed, our model
downgrades into a simple condition generation
model, which causes a significant performance
drop (-3.9%). Because we does not design down-
stream networks, the performance of the down-
graded model is lower than that of condition gen-
eration baselines (Text2Event and BART-Gen).
This validates the effectiveness of our knowledge-
injected prompt tuning strategy.

5 Conclusion

This paper proposes a prompt-based learning
method for ED by introducing knowledge-injected
prompt tuning. External knowledge and soft tokens
are used to construct knowledge-injected prompts,
which can be optimized through training. Compre-
hensive experiments demonstrate that KiPT out-
performs current prompt-based ED models and
strong baselines, especially in data-scarce scenar-
ios. Through our method, prompt-based models
can introduce task-related knowledge more con-
veniently and effectively. In the future, we will
explore more knowledge injection approaches and
their applications in other tasks.

1950



6 Acknowledgments

This work is supported by the National Key Re-
search and Development Program of China (No.
2020YFC0833300).

References
Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,

Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022. KnowPrompt: Knowledge-
aware Prompt-tuning with Synergistic Optimization
for Relation Extraction. arXiv:2104.07650 [cs].

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event Extraction via Dynamic Multi-
Pooling Convolutional Neural Networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176,
Beijing, China. Association for Computational Lin-
guistics.

Xinya Du and Claire Cardie. 2020. Event Extraction by
Answering (Almost) Natural Questions. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
671–683, Online. Association for Computational Lin-
guistics.

C. Fellbaum and G. Miller. 1998. WordNet : an elec-
tronic lexical database. WordNet:An Electronic Lex-
ical Database.

T. Gao, A. Fisch, and D. Chen. 2020. Making pre-
trained language models better few-shot learners.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. PTR: Prompt Tuning with
Rules for Text Classification. arXiv:2105.11259 [cs].

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Juanzi Li, and Maosong Sun. 2021. Knowl-
edgeable Prompt-tuning: Incorporating Knowl-
edge into Prompt Verbalizer for Text Classification.
arXiv:2108.02035 [cs].

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Chengxi Li, Feiyu Gao, Jiajun Bu, Lu Xu, Xiang
Chen, Yu Gu, Zirui Shao, Qi Zheng, Ningyu
Zhang, Yongpan Wang, and Zhi Yu. 2021a.
SentiPrompt: Sentiment Knowledge Enhanced
Prompt-Tuning for Aspect-Based Sentiment Anal-
ysis. arXiv:2109.08306 [cs].

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020. Event

Extraction as Multi-turn Question Answering. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 829–838, Online. As-
sociation for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021b. Document-
Level Event Argument Extraction by Conditional
Generation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 894–908, Online. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:
Optimizing Continuous Prompts for Generation.
arXiv:2101.00190 [cs].

J. Lin, J. Jian, and Q. Chen. 2021. Eliciting knowledge
from language models for event extraction.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A Joint Neural Model for Information Extraction
with Global Features. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7999–8009, Online. Association
for Computational Linguistics.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021. P-Tuning v2: Prompt Tun-
ing Can Be Comparable to Fine-tuning Universally
Across Scales and Tasks. arXiv:2110.07602 [cs].

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly Multiple Events Extraction via Attention-
based Graph Information Aggregation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1247–1256,
Brussels, Belgium. Association for Computational
Linguistics.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable Sequence-
to-Structure Generation for End-to-end Event Ex-
traction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2795–2806, Online. Association for Computa-
tional Linguistics.

T. H. Nguyen, K. Cho, and R. Grishman. 2016. Joint
event extraction via recurrent neural networks. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Trung Minh Nguyen and Thien Huu Nguyen. 2019. One
for All: Neural Joint Modeling of Entities and Events.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33:6851–6858.

G. Paolini, B. Athiwaratkun, J. Krone, J. Ma, A. Achille,
R. Anubhai, Cnd Santos, B. Xiang, and S. Soatto.
2021. Structured prediction as translation between
augmented natural languages.

1951



F. Petroni, T. Rocktschel, P. Lewis, A. Bakhtin, Y. Wu,
A. H. Miller, and S. Riedel. 2019. Language models
as knowledge bases?

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

T. Schick and H Schütze. 2020. Exploiting cloze ques-
tions for few shot text classification and natural lan-
guage inference.

Jinghui Si, Xutan Peng, Chen Li, Haotian Xu, and
Jianxin Li. 2022. Generating Disentangled Argu-
ments with Prompts: A Simple Event Extraction
Framework that Works. arXiv:2110.04525 [cs].

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, Relation, and Event
Extraction with Contextualized Span Representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5783–
5788, Hong Kong, China. Association for Computa-
tional Linguistics.

Tingting Wei, Yonghe Lu, Huiyou Chang, Qiang Zhou,
and Xianyu Bao. 2015. A semantic approach for text
clustering using wordnet and lexical chains. Expert
Systems with Applications, 42(4):2264–2275.

H. Yan, X. Jin, X. Meng, J. Guo, and X. Cheng. 2019.
Event detection with multi-order graph convolution
and aggregated attention. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and
Dongsheng Li. 2019. Exploring Pre-trained Lan-
guage Models for Event Extraction and Generation.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 5284–
5294, Florence, Italy. Association for Computational
Linguistics.

A Appendix

In the appendix, we discuss the influence of the
soft prompt tokens’ number p and the similarity
threshold θsim on KiPT.

A.1 The selection of soft tokens’ number p
We set up experiments for different numbers of soft
tokens for detailed analysis. We set up experiments
with soft tokens’ number as 0, 10, 20, 40, 80, and
160 on both ACE 2005 and TAC 2015 datasets. The
results are shown in Figure 3.
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Figure 3: KiPT’s performance with different p selection

We can observe that p and the KiPT’s perfor-
mance are not entirely positively correlated, and
the model performance peaks when p is around 40.
We believe that the small number of soft tokens
will make the semantic information captured by the
model insufficient, and it is challenging to classify
events accurately. On the contrary, introducing too
many soft tokens will dilute the original semantic
information of the sentence, which will also lead
to a decline in the model’s performance.

A.2 The selection of similarity threshold θsim

KiPT‘s	performance	with	different	similarity	threshold
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Figure 4: KiPT’s performance with different θsim

The selection of similarity threshold θsim will
directly influence the knowledge injection K(s).
Lower θsim will introduce more knowledge along
with more noise, while higher θsim will inject
knowledge more precisely but less broadly. KiPT
performs best when θsim equals 0.8.
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Abstract

Event extraction (EE) is an essential task of
information extraction, which aims to extract
structured event information from unstructured
text. Most prior work focuses on extracting flat
events while neglecting overlapped or nested
ones. A few models for overlapped and nested
EE includes several successive stages to ex-
tract event triggers and arguments, which suffer
from error propagation. Therefore, we design a
simple yet effective tagging scheme and model
to formulate EE as word-word relation recog-
nition, called OneEE. The relations between
trigger or argument words are simultaneously
recognized in one stage with parallel grid tag-
ging, thus yielding a very fast event extraction
speed. The model is equipped with an adaptive
event fusion module to generate event-aware
representations and a distance-aware predictor
to integrate relative distance information for
word-word relation recognition, which are em-
pirically demonstrated to be effective mecha-
nisms. Experiments on 3 overlapped and nested
EE benchmarks, namely FewFC, Genia11, and
Genia13, show that OneEE achieves the state-
of-the-art (SoTA) results. Moreover, the infer-
ence speed of OneEE is faster than those of
baselines in the same condition, and can be fur-
ther substantially improved since it supports
parallel inference.1

1 Introduction

Event Extraction (EE) is a fundamental yet chal-
lenging task in information extraction research
(Miwa and Bansal, 2016; Katiyar and Cardie, 2016;
Fei et al., 2020b; Li et al., 2021b; Fei et al., 2022a).
EE facilitates the development of practical applica-
tions such as knowledge graph construction (Wei
et al., 2019b; Bosselut et al., 2021), biological pro-
cess analysis (Miwa et al., 2013), and financial mar-
ket surveillance (Nuij et al., 2013). The goal of EE

*Equal contribution
†Corresponding author
1The codes at https://github.com/Cao-Hu/OneEE

Wang Yawei reduced shares in Sanju environmental protection.

Event: Share Reduction
trigger

subject object

Citic Securities acquired 100% equity of Guangzhou Securities.

Event: Investment
trigger

subject object

Event: Share Transfer
trigger

subject targetproportion

Degraded CGN stimulated ICAM-1 expression in monocytes.

Event: Positive Regulation
trigger

Theme

Event: Gene Expression
trigger

Theme

(a) Flat Event

(b) Overlapped Event

(c) Nested Event

Figure 1: Examples of three kinds of events, including
a flat event (a), overlapped events (b), and nested events
(c). Different event mentions are denoted in distinct
colors. Triggers are marked with red boxes while argu-
ments are underlined.

is to recognize event triggers as well as the associ-
ated arguments from texts. As an example, Figure
1(a) illustrates a Share Reduction event in-
cluding a trigger “reduced” and a subject argument
“Wang Yawei”.

Traditional methods for EE (Li et al., 2013; Chen
et al., 2015; Nguyen et al., 2016; Liu et al., 2018;
Nguyen and Nguyen, 2019) regard event extraction
as a sequence labeling task, assuming that event
mentions do not overlap with each other. How-
ever, they neglect complicated irregular EE sce-
narios (i.e., overlapped and nested EE) (Fei et al.,
2020a, 2021a). As exemplified in Figure 1(b),
there are two overlapped events, Investment,
and Share Transfer, which share the same
trigger word “acquired” and the argument words
“Guangzhou Securities”. Figure 1(c) illustrates an
example of nested events where the event Gene
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Citic Securities acquired 100% equity of Guangzhou Securities

S-T S-A S-A

R-S 
R-S R-O

R-O

(a) Event: Investment

Citic Securities acquired 100% equity of Guangzhou Securities

S-TS-A S-A S-A

R-S 
R-S 

R-P
R-T

R-T

(b) Event: Transfer Share

Figure 2: Two examples to illustrate our tagging scheme.
We formalize the overlapping and nested EE as word-
word relation recognition, where S-T and S-A denote
the relations between the head and tail boundary words
of a trigger or argument, and R-S, R-O, R-T, and R-
P denote the relations between the trigger word and
the argument words with the roles “subject”, “object”,
“target” and “proportion”.

Expression is the Theme argument of another
event Positive Regulation.

Prior studies for overlapped and nested EE (Yang
et al., 2019; Li et al., 2020) employ pipeline-based
methods that extract event triggers and arguments
in several successive stages. Recently, the state-of-
the-art model Sheng et al. (2021) also uses such
a method that consecutively performs event type
detection, trigger extraction, and argument extrac-
tion. The main problem with such a method is that
the latter stage relies on the former stage, which
inherently brings the error propagation problem.

To address the above issue, we present a novel
tagging scheme that transforms overlapping and
nested EE into word-word relation recognition. As
shown in Figure 2, we design two types of rela-
tions, including the span relation (S-*) and role
relation (R-*). S-* handles trigger and argument
identification, denoting whether two words are the
head-tail boundary of a trigger (T) or argument (A).
R-* addresses argument role classification, indicat-
ing whether the argument plays the “*” role in the
event.

Based on this scheme, we further propose a one-
stage event extraction model, OneEE, which mainly
includes three parts. First, it adopts BERT (Devlin
et al., 2019) as the encoder to get contextualized
word representations. Afterward, an adaptive event
fusion layer composed of an attention module and
two gate fusion modules are used to obtain event-
aware contextual representations for each event
type. In the prediction layer, we parallelly predict
the span and role relations between each pair of

words by calculating distance-aware scores. Fi-
nally, event triggers, arguments, and their roles can
be decoded out using these relation labels in one
stage without error propagation.

We evaluate OneEE on 3 overlapped and nested
EE datasets (FewFC (Zhou et al., 2021), Genia11
(Kim et al., 2011), and Genia13 (Kim et al., 2013)),
and conduct extensive experiments and analyses.
Our contributions can be summarized as follows:
• We design a new tagging scheme that casts

event extraction as a word-word relation recogni-
tion task, providing a novel and simple solution for
overlapped and nested EE.
• We propose OneEE, a one-stage model that

effectively extracts word-word relations in parallel
for overlapped and nested EE.
• We further present an adaptive event fusion

layer to obtain event-aware contextual representa-
tions and effectively integrate event information.
• OneEE outperforms the SoTA model with re-

gard to both the performance and inference speed.

2 Related Work

2.1 Event Extraction

Information extraction is one of the key research
track in natural language processing (Miwa and
Bansal, 2016; Fei et al., 2021c), among which the
event extraction is the most complicated task (Chen
et al., 2015; Fei et al., 2022c). Traditional EE (i.e.,
flat or regular EE) (Li et al., 2013; Nguyen et al.,
2016; Liu et al., 2018; Sha et al., 2018; Nguyen
and Nguyen, 2019) formulates EE into a sequence
labeling task, assigning each token with a label
(e.g., BIO tagging scheme). For example, Nguyen
et al. (2016) uses two bidirectional RNNs to get
richer representation which is then utilized to pre-
dict event triggers and argument roles jointly. Liu
et al. (2018) jointly extracts multiple event trig-
gers and arguments by introducing attention-based
GCN to model the dependency graph information
(Fei et al., 2021b; Li et al., 2021a; Fei et al., 2022b).
However, their underlying assumption that event
mentions do not overlap with each other is not
always valid. Irregular EE (i.e., overlapped and
nested EE) has not received much attention, which
is more challenging and realistic.

Existing methods for overlapped and nested EE
(Yang et al., 2019; Li et al., 2020) perform event
extraction in a pipeline manner with several steps.
To solve the argument overlap, Yang et al. (2019)
adopts multiple sets of binary classifiers where
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Figure 3: The architecture of our framework. Given a target event type embedding et of type t (e.g., transfer share),
the goal of our framework is to identify its triggers, arguments, and corresponding roles in the input sentence.

each severs for a role to detect the role-specific
argument spans but fails in solving trigger over-
lap. Except for pipeline methods, the latest attempt
dealing with overlapped EE is Sheng et al. (2021)
in a joint framework with cascade decoding. They
are the first to simultaneously tackle all the over-
lapping patterns. Sheng et al. (2021) sequentially
performs type detection, trigger extraction, and ar-
gument extraction, where the overlapped targets
are extracted separately conditioned on the specific
former prediction. Nevertheless, most of the multi-
stage methods suffer from error propagation.

2.2 Tagging-based Information Extraction

Tagging scheme in the field of information extrac-
tion has been extensively investigated. Traditional
sequence labeling approaches tagging each token
once (e.g., BIO) is hard to tackle irregular infor-
mation extraction (e.g., overlapped NER). Several
researchers (Zheng et al., 2017) extend the BIO
label scheme to adapt to more complex scenarios.
However, they suffer from the label ambiguity prob-
lem due to limited flexibility. Recently, the grid
tagging scheme is used in a lot of information ex-
traction tasks, such as opinion mining (Wu et al.,
2020), relation extraction (Wang et al., 2020), and
named entity recognition (Wang et al., 2021), due
to its characteristic of presenting relations between
word pairs. For example, TPLinker (Wang et al.,
2020) realizes one-stage joint relation extraction
without a gap between training and inference by
tagging token pairs with link labels. Inspired by
these works, we design our tagging scheme to ad-
dress overlapping and nested EE, which predicts
relations between trigger or argument words paral-
lelly in one stage.

Also it is noteworthy explicitly that this work

inherits the recent success of the idea of word-
word relation detection, as in Li et al. (2022). Li
et al. (2022) propose to unify all the NER (includ-
ing the flat, nested and discontinuous mentions)
with a word-word modeling based on the grid tag-
ging scheme. This work however differs from Li
et al. (2022) in two folds. First, we extend the idea
of the word-word tagging from NER to EE success-
fully, where we re-design two relation types for the
nested and overlapped events. Second, from the
modeling perspective, we devise an adaptive event
fusion layer to fully support the one-stage (end-to-
end) complex event detection, which greatly helps
avoid error propagation.

3 Problem Formulation

The goal of event extraction includes extracting
event triggers and their arguments. We can formal-
ize overlapping and nested EE as follows: given
an input sentence consisting of N tokens or words
X = {x1, x2, . . . , xN} and event type e ∈ E , the
task aims to extract the span relations S and the
role relationsR between each token pair (xi, xj),
where E denotes the event type collection, S and
R are pre-defined tags. These relations can be
explained below, and we also give an example as
demonstrated in Figure 2 for better understanding.

• S: the span relation indicates that xi and xj
are the starting and ending token of the ex-
tracted trigger span S-T or argument span
S-A, where 1 ≤ i ≤ j ≤ N .

• R: the role relation indicates that the argu-
ment with xj acts the certain role R-* of the
event with the trigger containing xi, where
1 ≤ i, j ≤ N . * indicates the role type.

• NONE, indicating that the word pair does not
have any relation defined in this paper.
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4 Framework

The architecture of our model is illustrated in Fig-
ure 3, which mainly consists of three components.
First, the widely-used pre-trained language model,
BERT (Devlin et al., 2019), is used as the encoder
to yield contextualized word representations from
the input sentences. Then, an adaptive event fu-
sion layer consisting of an attention module and
two gate modules is used to integrate the target
event type embedding into contextual representa-
tions. Afterward, a prediction layer is employed
to jointly extract the span relations and the role
relations between word pairs.

4.1 Encoder Layer

We leverage BERT as the encoder for our model
since it has been demonstrated to be one of the
SoTA models for representation learning in EE.
Given an input sentence X = {x1, x2, . . . , xN},
we convert each token xi into word pieces and then
feed them into a pre-trained BERT module. After
the BERT calculation, each sentential word may
involve vectorial representations of several pieces.
Here we employ max pooling to produce word
representations H = {h1,h2, ...,hN} ∈ RN×dh
based on the word piece representations.

4.2 Adaptive Event Fusion Layer

Since the goal of our framework is to predict the
relations between word pairs for the target event
type et, it is important to generate event-aware
representations. Therefore, to fuse the event infor-
mation and contextual information provided by the
encoder, we design an adaptive fusion layer. As
shown in Figure 3, it consists of an attention mod-
ule, modeling the interaction among events and
obtaining the global event information, and two
gate fusion modules for integrating the global and
target event information with contextualized word
representations.

Attention Mechanism Motivated by the self-
attention in Transformer (Vaswani et al., 2017; Wei
et al., 2019a), we first introduce an attention mech-
anism, of which input consists of queries, keys, and
values. The output is computed as a weighted sum
of the values, where the weight assigned to each
value is the dot product of the query with the cor-
responding key. The attention mechanism can be

formulated as:

Attention(Q,K,V ) = softmax(
QK⊤√
dh

)V ,

(1)
where

√
dh is a scaling factor, Q, K and V are

query, key and value tensors, represented by Eq. 4.

Gate Fusion Mechanism We design a gate fu-
sion mechanism to integrate two kinds of features
and filter the unnecessary information. The gate
vector g is produced by a fully-connection layer
with the sigmoid function, which can adaptively
control the flow of the input:

Gate(p, q) = g ⊙ p+ (1− g)⊙ q , (2)

g = σ(Wg[p; q] + bg) , (3)

where p and q are input vectors, represented by
Eq. 5 and Eq. 6. σ(·) is a sigmoid activation
function, ⊙ and [; ] denote element-wise product
and concatenation operations, respectively. Wg

and bg are trainable parameters.
We leverage the attention mechanism to obtain

the global event embeddings for each contextu-
alized word representation. Given a set of ran-
domly initialized event type embeddings E =
{e1, e2, . . . , eM} ∈ RM×dh , where M is the num-
ber of event types, the calculation can be formu-
lated as:

Eg = Attention(WqH,WkE,WvE) , (4)

where Eg is the output of the attention mechanism,
Wq,Wk andWv are learnable parameters.

To encode global event information into word
representations, we adopt a gate module to fuse the
contextual word representations and global event
representations. After that, we employ another
gate mechanism to integrate the target event type
embedding and the output of the last gate module.
the overall process can be formulated as:

Hg = Gate(H,Eg) , (5)

V t = Gate(Hg, et) , (6)

where et ∈ E denotes the target event type embed-
ding, V t = {v1,v2, ...,vN} ∈ RN×dh is the final
event-aware word representations.

4.3 Joint Prediction Layer

After the adaptive event fusion layer, we obtain the
event-aware word representations V t, which are
used to jointly predict the span and role relations
between each pair of words. For each word pair
(wi, wj), we calculate a score to measure the possi-
bility of them for the relation s ∈ S and r ∈ R.
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Distance-aware Score To integrate relative dis-
tance information and word pair representations,
we introduce a distance-aware score function. For
two vectors pi and pj from a sequence of repre-
sentations, we combine them with corresponding
position embeddings from Su et al. (2021), and
then calculate the score by the dot product of them:

Score(pi,pj) = (Ripi)
⊤(Rjpj)

= p⊤i Rj−ipj ,
(7)

where Ri and Rj are position embeddings of pi
and pj , Rj−i = R⊤i Rj . Thus, we can obtain the
span score csij and the role score crij of the word
pair (wi, wj) for target event type t:

csij = Score(Ws1v
t
i ,Ws2v

t
j) , (8)

crij = Score(Wr1v
t
i ,Wr2v

t
j) , (9)

where Ws1, Ws2, Wr1 and Wr2 denote parame-
ters. vti and vtj are from Eq. 6.

4.4 Training Details
For the score c⋆ij , where ⋆ denotes the relation s
or r, our training target is to minimize a variant of
circle loss (Sun et al., 2020) which extends soft-
max cross-entropy loss to figure out multi-label
classification problem. In addition, we introduce a
threshold score δ, noting that the scores of the pairs
with relation are larger than δ, and the other pairs
are less than it. The loss function can be formulated
as:

L⋆ = log(eδ+
∑

(i,j)∈Ω⋆
e−c

⋆
ij )+log(eδ+

∑

(i,j)/∈Ω⋆
ec
⋆
ij ) ,

(10)
where Ω⋆ denotes the pair set of relation ⋆, δ is set
to zero.

Finally, we enumerate all event types in the se-
lected event type set E ′ and get the total loss:

L =
∑

t∈E ′
(
∑

s∈S
Ls +

∑

r∈R
Lr) , (11)

where S ′ is a subset sampled from S , we detail the
sampling strategy in the appendix.

4.5 Inference
During the inference period, our model is able to
extract all events by parallelly injecting their event
type embeddings to the adaptive event fusion layer.
As shown in Figure 4, once all the tags of a certain
event type are predicted by our model in one stage,
the overall decoding process can be summarized
as four steps: First, we get starting and ending
indices of the trigger or argument. Second, we

Citic Securities acquired 100% equity of Guangzhou Securities

S-TS-A S-A S-A

1 2 3 4 5 6 7 8

Event Type:
  Transfer Share
Trigger: acquired
Argument:
  Subject: Citic Securities
  Proportion: 100%
  Target: Guangzhou
               Securities

3 acquired

1 Citic 
2 Securities

4 100%

7 Guangzhou 
8 Securities
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1 Citic 
2 Securities

4 100%

7 Guangzhou 
8 Securities
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1 Citic 
2 Securities
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7 Guangzhou 
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R-S

R-P

R-T
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2 Securities

4 100%

7 Guangzhou 
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R-S

R-P

R-T
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7 Guangzhou 
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R-S

R-P

R-T

Transfer Share

Figure 4: A decoding case of our system with four steps.

#Ovlp. #Nest. #Sent. #Events

FewFC
train 1,560 - 7,185 10,227
dev 205 - 899 1,281
test 210 - 898 1,332

Genia11
train 954 1,628 8,730 6,401
dev 121 199 1,091 824
test 125 197 1,092 775

Genia13
train 347 784 4,000 2,743
dev 44 100 500 352
test 42 88 500 320

Table 1: Statistics of the datasets. “Ovlp.” and “Nest.”
denote the sentences with overlapped and nested events,
respectively.

obtain the trigger and argument spans.2 Third, we
match the trigger and arguments according to the
R-* relations. Finally, the event type is assigned to
this event structure. Specially, we repeat the above
four steps for each event type.

5 Experiments Settings

5.1 Datasets

As shown in Table 1, we follow previous work
(Sheng et al., 2021), adopting FewFC (Zhou et al.,
2021), a Chinese financial event extraction bench-
mark for overlapped EE. FewFC annotates 10 event
types and 18 argument role classes with about 22%
sentences containing overlapped events. We also
experiment on two biomedical datasets for nested
EE, namely Genia11 (Kim et al., 2011) and Ge-
nia13 (Kim et al., 2013), with around 18% sen-
tences containing nested events. Genia11 annotates
9 event types and 10 argument role classes while
the figures for Genia13 are 13 and 7. We split the
train/dev/test as 8.0:1.0:1.0 for both of them.

5.2 Implementation Details

We employ the Chinese Bert-base model for
FewFC and BioBERT (Lee et al., 2020) for Ge-

2Note that if two pairs with the same span relation clash in
the boundaries, the pair with higher score will be selected.
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TI(%) TC(%) AI(%) AC(%)

P R F1 P R F1 P R F1 P R F1

Flat EE
BERT-softmax 89.8 79.0 84.0 80.2 61.8 69.8 74.6 62.8 68.2 72.5 60.2 65.8
BERT-CRF 90.8 80.8 85.5 81.7 63.6 71.5 75.1 64.3 69.3 72.9 61.8 66.9
BERT-CRF-joint 89.5 79.8 84.4 80.7 63.0 70.8 76.1 63.5 69.2 74.2 61.2 67.1

Ovlp. &
Nest. EE

PLMEE 83.7 85.8 84.7 75.6 74.5 75.1 74.3 67.3 70.6 72.5 65.5 68.8
MQAEE 89.1 85.5 87.4 79.7 76.1 77.8 70.3 68.3 69.3 68.2 66.5 67.3
CasEE 89.4 87.7 88.6 77.9 78.5 78.2 72.8 73.1 72.9 71.3 71.5 71.4

Ours OneEE 88.7 88.7 88.7 79.1 80.3 79.7 75.4 77.0 76.2 74.0 72.9 73.4

Table 2: Results for extracting all kinds of events on FewFC, where TI, TC, AI, AC denote trigger identification,
trigger classification, argument identification, and argument classification, respectively. We run our model for 5
times with different random seeds and report the median values.

nia11 and Genia13. We adopt AdamW (Loshchilov
and Hutter, 2019) optimizer with the learning rate
of 2e− 5 for BERT and 1e− 3 for the other mod-
ules. The batch size is 8 and the hidden size dh is
768. We train our model with 20 epochs on FewFC
and Genia11 and 30 epochs on Genia13. All the
hyper-parameters are tuned on the development set.
All the event type embeddings are trained from
scratch.

5.3 Evaluation Metrics

For evaluation, we follow the traditional criteria of
previous work (Chen et al., 2015; Du and Cardie,
2020; Sheng et al., 2021). 1) Trigger Identification
(TI): A trigger is correctly identified if the pre-
dicted trigger span matches with a golden label; 2)
Trigger Classification (TC): A trigger is correctly
classified if it is correctly identified and assigned
to the right type; 3) Argument Identification (AI):
An argument is correctly identified if its event type
is correctly recognized and the predicted argument
span matches with a golden label; 4) Argument
Classification (AC): An argument is correctly clas-
sified if it is correctly identified and the predicted
role matches any of the golden labels. We report
Precision (P), Recall (R), and F measure (F1) for
each of the four metrics.

5.4 Baselines

Sequence Labeling Methods for Flat EE These
methods cast the EE task into a sequence label-
ing task by assigning each token a label. BERT-
softmax uses BERT to get feature representations
for classifying triggers and arguments. BERT-CRF
adds the CRF layer on BERT to capture label de-
pendencies. BERT-CRF-joint extends the BIO
tagging scheme to joint labels of type and role as
B/I/O-type-role, inspired by joint extraction

of entity and relation (Zheng et al., 2017). All
these methods are incapable to solve the overlap-
ping problem due to label conflicts.

Multi-stage Methods for Overlapped and Nested
EE These methods perform EE in several
stages. PLMEE (Yang et al., 2019) solves the
argument overlap problem by extracting role-
specific argument according to the trigger pre-
dicted by the trigger extractor in a pipeline man-
ner. CasEE (Sheng et al., 2021) sequentially per-
forms type&trigger&argument extractions, where
the overlapped targets are separately extracted con-
ditioned on former predictions and all subtasks are
jointly learned.

6 Experimental Results

6.1 Results of All EE

Table 2 reports the result of all methods on the over-
lapped EE dataset, FewFC, while Table 3 reports
the results of the nested EE datasets, Genia11 and
Genia13. We can observe that:

1) Our method significantly outperforms all
other methods and achieves the state-of-the-art F1
score on all three datasets.

2) In comparison with sequence labeling meth-
ods, our model achieves better recall and F1 scores.
Specifically, our model outperforms BERT-CRF-
joint by 11.7% and 6.3% in recall and the F1 score
of AC on the FewFC dataset and achieves a sub-
stantial improvement of 4.4% in F1 score of AC
on two Genia datasets averagely. It shows the ef-
fectiveness of our model on overlapped and nested
EE since the sequence labeling methods can only
solve flat EE.

3) In comparison with multi-stage methods, our
model also improves the performance on the F1
score considerably. Our model outperforms the
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TI(%) TC(%) AI(%) AC(%)

• Genia11

BERT-softmax 67.8 64.4 57.4 56.0
BERT-CRF 68.3 64.8 58.3 56.9
BERT-CRF-joint 67.0 64.1 60.2 58.1

PLMEE 67.3 65.5 60.7 59.4
CasEE 70.0 67.0 62.0 60.4

OneEE 71.5 69.5 65.9 62.5

• Genia13

BERT-softmax 77.4 75.9 69.9 67.7
BERT-CRF 78.8 77.4 70.1 68.2
BERT-CRF-joint 77.6 75.7 71.9 68.2

PLMEE 79.3 78.3 72.1 70.7
CasEE 80.5 78.5 73.7 71.9

OneEE 81.9 80.8 76.8 72.7

Table 3: F1 scores for extracting all events on Genia11
and Genia13.
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Figure 5: Results for overlapped trigger (a) and argu-
ment (b) extraction on FewFC, and nested trigger (c),
and argument (d) extraction on Genia11. Note that only
the sentences that contain at least one such event are
used.

state-of-the-art model, CasEE, by 2.1% in the F1
score of TC on three datasets averagely. We con-
sider this is because that the event feature is well
learned by our adaptive event fusion module. Espe-
cially, our model improves 3.4% on AI and 1.6%
on AC over CasEE on an average of three datasets.
The results reveal the superiority of our one-stage
framework which elegantly realizes overlapped and
nested event extraction without error propagation.

6.2 Results of Overlapped and Nested EE

To evaluate the effectiveness of our proposed model
in recognizing overlapping and nested event men-
tions, we further report the results on sentences
containing at least one overlapping event in FewFC

TI(%) TC(%) AI(%) AC(%)

OneEE 88.7 79.7 76.2 73.4

w/o Attention 88.3 79.5 75.9 72.8
w/o Gate 88.4 79.3 75.3 72.6
w/o Fusion Layer 88.0 78.7 75.2 72.2

w/o Position Emb. 88.1 78.7 74.1 71.8

Table 4: Ablation studies using FewFC.

and sentences containing at least one nested event
in Genia11, respectively.

Figure 5 illustrates the results of TC and AC
on overlapping and nested sentences in testing. It
shows that our method outperforms other meth-
ods on overlapping and nested sentences. The
reasons are mainly two-fold: 1) We solve all the
overlapping patterns while BERT-CRF-joint could
not handle overlapped and nested EE and PLMEE
only solve the argument overlap. 2) Our one-stage
model outperforms CasEE because we effectively
learn event-aware representations and extract word-
word relations in parallel, while CasEE performs
in three sequential steps with error propagation.

6.3 Effects of the Modules in the Fusion Layer

To verify the effectiveness of each component, we
conduct ablation studies on the FewFC dataset, as
shown in Table 4. First, without the attention mech-
anism, we observe slight performance drops. By
replacing the gate mechanism with an addition op-
eration, the performance also decreases to a small
degree. Furthermore, a significant drop can be
found when the adaptive event fusion layer is sub-
stituted by addition, which indicates the usefulness
of event representation and context. Finally, remov-
ing the position embeddings results in a remarkable
drop on all F1 scores, especially 1.6% in the F1
score of AC, which suggests that the information
of positions is essential to recognize word-word
relations.

6.4 Effect of the Distance-aware Tag
Prediction

In this section, we investigate the effect of position
embeddings for the prediction layer of OneEE. We
divide the arguments in the test set of FewFC into
6 groups according to their distance from corre-
sponding triggers and report the recall scores of
the model with and without position embeddings.
As shown in Figure 6, the AC recall declines as
the distance between trigger and argument in an
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Figure 6: FewFC results of extracting triggers and argu-
ments with different distances. The red line denotes that
position embeddings are used while the blue line not.

Model Stage #Param. Speed (sent/s) Ratio

PLMEE Two 204.6M 19.8 ×1.0
CasEE Three 120.7M 62.3 ×3.1
OneEE One 114.2M 79.4 ×4.0
OneEE† One 114.2M 186.5 ×9.4

Table 5: Parameter number and inference speed com-
parisons on FewFC. All models are tested with batch
size 1, † denotes that the model is tested with batch size
8. The ratio denotes the multiple of the speed increase
with regard to PLMEE.

event go up. This indicates that it is more difficult
for the model to detect roles correctly if the dis-
tance is longer in an event. Furthermore, the model
with position embeddings outperforms another one
without position embeddings, revealing that the rel-
ative distance information is beneficial for event
extraction.

6.5 Parameter Number & Efficiency
Comparisons

Table 5 lists the stage numbers, parameter num-
bers, and inference speeds of two baselines and our
model. For a fair comparison, all of these models
are implemented using PyTorch and tested using
the NVIDIA RTX 3090 GPU, where the batch size
is set as 1. As seen, PLMEE has 2 times as many
parameters as the other two models, due to the
utilization of two BERT-based modules for each
stage. Moreover, the inference speed of our model
is about 3 times faster than that of PLMEE (Yang
et al., 2019) and 0.3 times faster than that of CasEE
(Sheng et al., 2021), which verifies the efficiency
of our model. Last but not least, when the batch
size is set as 8, the inference speed of our model
is 9.4 times as fast as that of PLMEE, which also
demonstrates the advantage of our model, that is, it
supports parallel inference. In one word, our model
leverages fewer parameters but achieves better per-
formance and faster inference speed.
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Figure 7: Four kinds of role label strategies. The goal
is to predict the relation between trigger head and ar-
gument head (a), trigger word and argument head (b),
trigger head and argument word (c), and trigger word
and argument word (d).
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Figure 8: Results of AC with different role label strate-
gies on FewFC (a) and Genia11 (b) datasets.

6.6 Analysis of 4 Role Label Strategies

In this section, we investigate the effect of the role
strategies for AC performance. As shown in Figure
7, we introduce 4 different strategies to predict the
role relation between trigger and argument: the role
labels only exist in 1) trigger and argument head
pairs (TH-AH), 2) trigger word and argument head
pairs (TW-AH), 3) trigger head and argument word
pairs (TH-AW), and 4) trigger and argument word
pairs (TW-AW). The results of our model with 4
strategies are demonstrated in Figure 8. We can
learn that TW-AW achieves the best results against
all other strategies on both FewFC and Genia11
datasets. It is largely due to that its labels are denser
than other strategies.
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Figure 9: Results of different event numbers on FewFC.

6.7 Analysis of the Event Number

We further investigate the effect of the event num-
ber for EE, and the results are shown in Figure
9. We can observe that BERT-CRF-joint, PLMEE,
and CasEE achieve similar performances on single-
event sentences, while CasEE outperforms PLMEE
and BERT-CRF-joint on the sentences with multi-
ple events. Most importantly, our system achieves
the best results against all other baselines for differ-
ent event numbers, indicating the advances of our
proposed method.

7 Conclusion

In this paper, we propose a novel one-stage frame-
work based on word-word relation recognition to
address overlapped and nested EE concurrently.
The relations between word pairs are pre-defined
as the word-word relations within a trigger or argu-
ment and cross a trigger-argument pair. Moreover,
we propose an efficient model that consists of an
adaptive event fusion layer for integrating the tar-
get event representation, and a distance-aware pre-
diction layer for identifying all kinds of relations
jointly. Experimental results show that our pro-
posed model achieves new SoTA results on three
datasets and faster speed than the SoTA model.
Through ablation studies, we find that the adaptive
event fusion layer and distance-aware prediction
layer are effective in improving the model perfor-
mance. In future work, we will extend our method
to other structured prediction tasks, such as struc-
tured sentiment analysis and overlapped entity re-
lation extraction.
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A Parallel Training with Sampling

We parallelly inject multiple target event type em-
beddings at the adaptive event fusion layer during
training period, which results in huge computation
resources. To this end, we use a subset E ′ to replace
E for each sample, where the number of E ′ is K. It
consists of one positive event type (the event type
annotated in the sample) and K − 1 negative event
types selected randomly from the event types that
does not appear in the sample. In other words, we
inject K different event type embeddings into the
gate module of Eq. 6 simultaneously. If there is no
positive event type in the sample, we will select K
negative event types.

B Decoding for Nested EE

HU induced a dose-dependent stimulation of c-jun synthesis.

Event: Positive Regulation

Theme

Event: Positive Regulation

Theme

trigger

trigger

(a) Nested Event Example

HU induced a dose-dependent stimulation of c-jun synthe

S-A

Event Type:
  Positive Regulation
Trigger: induced
Argument:
  Theme: stimulation
------------------------------
Event Type:
  Positive Regulation
Trigger: stimulation
Argument:
  Theme: synthe

2 induced

5 stimulation

5 stimulation

8 synthe

5 stimulation8 synthe R-T

Positive Regulation

S-T

S-A

S-T

2 induced5 stimulation R-T

1 2 3 4 5 6 7 8

(b) Nested EE Decoding

Figure 10: Example of nested event (a) and its decoding
process (b).

In the manuscript, we have already shown the
decoding process of our model for overlapped EE
in Section 4.5. Due to page limitation, we show
an example of nested in Figure 10(a). We also
demonstrate its decoding process in Figure 10(b),
which is the same as the overlapped EE decoding.

C Analysis of the Event Sampling
Number

To further analyze the effect of sampling number
K and the sampling strategy, we also evaluate our
model with positive and negative sampling and
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Figure 11: Results on different sampling numbers of
random sampling, and positive and negative sampling.

random sampling and compare them with differ-
ent sampling numbers. Figure 11 shows the TC
F1 change trend as the number of sampling in-
creases. As seen, both two models with 6 event
type samplings achieve the best performance, com-
pared with the other sampling numbers. Specifi-
cally, our model with one positive sampling and
K − 1 negative samplings outperforms the model
with K randomly selected samplings when K is
less than 7, which demonstrates that our sampling
strategy is helpful for the model training.
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Abstract

The task of completing knowledge triplets has
broad downstream applications. Both struc-
tural and semantic information plays an im-
portant role in knowledge graph completion.
Unlike previous approaches that rely on either
the structures or semantics of the knowledge
graphs, we propose to jointly embed the se-
mantics in the natural language description of
the knowledge triplets with their structure in-
formation. Our method embeds knowledge
graphs for the completion task via fine-tuning
pre-trained language models with respect to a
probabilistic structured loss, where the forward
pass of the language models captures seman-
tics and the loss reconstructs structures. Our
extensive experiments on a variety of knowl-
edge graph benchmarks have demonstrated the
state-of-the-art performance of our method. We
also show that our method can significantly
improve the performance in a low-resource
regime, thanks to the better use of seman-
tics. The code and datasets are available at
https://github.com/pkusjh/LASS.

1 Introduction

Knowledge graphs (KG), such as Wikidata and
Freebase (Bollacker et al., 2008), consist of factual
triplets. KGs have been useful resources for both
humans and machines. A triplet in the form of
(head entity, relation, tail entity), where the relation
involves both head and tail entities, has been used
in a great variety of applications, such as question
answering (Guu et al.; Hao et al., 2017) and web
search (Xiong et al., 2017). Incompleteness has
been a longstanding issue in KGs (Carlson et al.,
2010), impeding their wider adoption in real-world
applications.

KG completion aims to predict a missing entity
or relation of a factual triplet. Structural patterns in
the existing triplets are useful to predict the missing
elements (Bordes et al., 2013; Sun et al., 2019). For

∗Corresponding author

example, a composition pattern can be learned to
predict the relation grandmother_Of based on two
consecutive mother_Of relations. Besides the struc-
ture information, semantic relatedness between en-
tities and relations is also critical to infer entities
or relations with similar meanings (An et al., 2018;
Yao et al., 2019; Wang et al., 2021). For example,
if a relationship CEO_Of holds between two enti-
ties, the relation employee_Of also holds. There
are two kinds of KG completion approaches that
fall into different learning paradigms. First, the
structure-based approaches treat entities and rela-
tions as nodes and edges, and use graph embedding
methods to learn their representations. Second, the
semantic-based approaches encode the text descrip-
tion of entities and relations via language models.
While both structures and semantics are vital to KG
completion, it is non-trivial for existing methods to
process both structural and semantic information.

In this paper, we propose LASS, a joint language
semantic and structure embedding for knowledge
graph completion, which incorporates both seman-
tics and structures in a KG triplet. LASS embeds a
triplet into a vector space by fine-tuning pre-trained
language models (LM) with respect to a structured
loss. LASS involves both semantic embedding
and structure embedding. The semantic embedding
captures the semantics of the triplet, which corre-
sponds to the forward pass of a pre-trained LM
over the natural language description of the triplet.
The structure embedding aims to reconstruct the
structures in the semantic embedding, which cor-
responds to optimizing a probabilistic structured
loss via the backpropagation of the LM. Intuitively,
the structured loss treats the relationship between
two entities as a translation between embeddings
of the entities. LASS outperforms the existing ap-
proaches on a collection of KG completion bench-
marks. We further evaluate LASS in low-resource
settings and find that it is more data-efficient than
other methods. The reason is that our method ex-
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Figure 1: Overview of LASS. LASS maps a knowledge triplet (Head Entity, Relation, Tail Entity), in short (h, r, t), to the
corresponding embedding vectors, h, r, t ∈ Rk. LASS embeds KGs for KG completion via fine-tuning pre-trained language
models (LM) w.r.t. a probabilistic structured loss, where the forward pass of the LMs captures semantics and the loss reconstructs
structures. In particular, LASS consists of semantic embedding and structure embedding. The semantic embedding (leftmost
arrow) is generated by a forward pass of the LMs followed by a pooling layer over the natural language description of a triplet.
[B] (the beginning token) and [S] (the separator token) are special tokens of LMs attached to the description. For example,
the textual description of head entity is (xh1 , · · · , xhnh

). h is calculated as the mean pooling of the corresponding LM outputs
(oh1 , · · · ,ohnh

). r and t are calculated similarly. The structure embedding (rightmost arrow) reconstructs KG structures in the
semantic embeddings via optimizing a structured loss on top of the LMs through backpropagation. The structured loss is based
on a score function f(∥h+ r− t∥22), which regards the relationship between two entities corresponds to a translation between
the embeddings of the entities. The goal is to minimize the loss function so that h+ r ≈ t when (h, r, t) holds.

ploits both semantics and structures in the training
data.

The contributions are the following:

• We design a natural language embedding ap-
proach, LASS, that integrates both structural
and semantic information of KGs, for KG
completion. We train LASS by fine-tuning
pre-trained LMs w.r.t. a structured loss, where
the forward pass of the LMs captures seman-
tics and the loss reconstructs structures. The
method consists of both the KG module and
the LM module, which sheds light on the con-
nections between the KGs and deep language
representation, and advances the research at
the intersection of the two areas.

• We evaluate LASS on two KG completion
tasks, link prediction and triplet classifica-
tion, and obtain state-of-the-art performance.
The results suggest that capturing both seman-
tics and structures is critical to understand
the KGs. The findings are beneficial to many
downstream knowledge-driven applications.

• We show that we can significantly improve the
performance in the low-resource settings over
existing approaches, thanks to the improved
transfer of knowledge about semantics.

2 LASS

We introduce LASS to embed both semantics and
structures of knowledge graphs (KG) with natural
language. As shown in Figure 1, LASS incorpo-
rates two embeddings: semantic embedding and
structure embedding. The semantic embedding cap-
tures the semantics in the natural language descrip-
tion of the KG triplets. The structure embedding
further reconstructs the structure information of the
KGs from the semantic embedding. LASS embeds
KG in a vector space by fine-tuning a pre-trained
language model (LM) w.r.t. a structured loss, where
the forward pass performs semantic embedding and
the optimization of structured loss conducts struc-
ture embedding.

2.1 Semantic Embedding

A KG of triplets is denoted as G. Each triplet of G
is in the form of (h, r, t), where h,t ∈ E and r ∈ R.
E is the set of entities, and R is the set of relations.
The semantic similarities between the head entity
h, relation r, and tail entity t are crucial to complete
a factual triplet. For example, given h = “Bob Dy-
lan” and r = “was born in”, the task is to predict a
missing t, where the candidates are “Duluth” and
“Apple”. The semantic similarity between “Bob Dy-
lan” and “Duluth”, as well as the similarity between
“was born in” and “Duluth” should be larger than
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their similarities with “Apple” as “Duluth” is the
ground-truth answer. Pre-trained LMs capture the
rich semantics in natural language via pre-training
on large-scale textual corpora. This inspires us to
use the semantics stored in the parameters of LMs
to encode the semantics of triplets.

Formally, for a triplet (h, r, t), both entities (h
and t) and relation (r) are represented by their corre-
sponding natural language descriptions. The head
entity h is represented as a sequence of tokens,
T h = (xh1 , · · · , xhnh), describing the entity. Sim-
ilarly, T t = (xt1, · · · , xtnt) represents the tail en-
tity t. T r = (xr1, · · · , xrnr) denotes the relation r.
We generate the semantic embedding via the for-
ward pass of the LMs as shown in Figure 1. The
knowledge graph completion tasks require explicit
modeling of dependency of the head, relation and
tail. For example, both the connections between
head and tail, and relation and tail contribute to
the prediction of the tail in the link prediction task.
Therefore, we use the concatenation of T h, T r, and
T t as the input sequence to the LMs, and use the
mean pooling over the output representation of ev-
ery token in T h, T r, and T t from the forward pass
of LMs as h, r, t ∈ Rk, where k is the dimension
of the embedding vectors.

More specifically, we construct the input se-
quence in the following format: [B] T h [S] T r

[S] T t [S], where [B] is a special symbol added
in front of every input sequence, and [S] is a spe-
cial separator token. The special tokens are dif-
ferent for various LMs. For example, [B] and
[S] are implemented as [CLS] and [SEP] for
BERT (Devlin et al., 2019) respectively. The input
sequence is then converted to the corresponding
input embeddings of the LMs. For example, the
input embeddings of BERT are the sum of the to-
ken embeddings, the segment embeddings, and the
position embeddings. The input embeddings are
fed into the LM. We add a mean pooling layer on
top of the output layer of the LM and perform mean
pooling over the output representation of every to-
ken in T h, i.e., (oh1 , · · · ,ohnh), resulting in h as
illustrated in Figure 1. We obtain r and t in the
same way. The dimension k equals to the hidden
size of the LM.

2.2 Structure Embedding

Structural information of KGs has been success-
fully used in the KG completion. Traditional ap-
proaches regard the relationship between two en-

tities corresponds to a translation between the em-
beddings of the entities. This is different from
the above semantic embedding and the forward
pass cannot capture the structure information. We
propose to incorporate the structure embedding by
fine-tuning the pre-trained LM with a structure loss.

The goal is to reconstruct structure information
in the semantic embedding. The updated embed-
dings of h, r, and t are still denoted as h, r, and
t, which incorporate structure information of KGs
while preserve semantic information. We recon-
struct structure information in the semantic embed-
dings via optimizing a probabilistic structured loss,
in which the score function of a triplet (h, r, t) is
defined by Eq. 1:

f(h, r, t) = b− 1

2
∥h+ r− t∥22 (1)

If (h, r, t) holds, we have h + r ≈ t. We also
use f(∥h + r − t∥22) to denote this in Figure 1
for simplicity. The score function is motivated by
TransE (Bordes et al., 2013).

We define the following probabilistic model
based on the score function (1):

Pr(h|r, t) = exp(f(h, r, t))∑
h̃∈E exp(f(h̃, r, t))

(2)

Here h̃ is the corrupted head sampled from the en-
tity set E. Pr(r|h, t) and Pr(t|h, r) have a similar
form except that the summation in the denominator
is over corrupted relations and tails, respectively.

The probabilistic structured loss is defined in
Eq. 3. The goal is to minimize the negative log
likelihood over the KG:

L = −
∑

(h,r,t)∈G
( log Pr(h|r, t) + log Pr(r|h, t)

+ log Pr(t|h, r))
(3)

Optimization Computing the probability in Eq. 2
is computationally inefficient since it requires a
forward pass of all possible triplets (h̃, r, t) to
compute the denominator. We use negative sam-
pling (Mikolov et al., 2013) to make training more
efficient. Instead of minimizing − log Pr(h|r, t) as
in Eq. 3, we optimize the loss as is described in
Eq. 4 for modeling h.

Lh = − log Pr(1|h, r, t)

−
nns∑

i

Eh̃i∼E\{h} log Pr(0|h̃i, r, t)
(4)
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where Pr(1|h, r, t) = σ(f(h, r, t)).
The loss for modeling r and t is similarly defined.

Here, hyperparameter nns is the number of negative
samples. Each negatively sampled head h̃i is drawn
uniformly without replacement from the entity set
E\{h}. A sample is not treated as a negative sam-
ple if it is already a positive example. We have the
final structured loss L =

∑
(h,r,t)∈G(Lh +Lr +Lt)

by adopting the similar negative sampling proce-
dures for relations and tail entities.

The training of LASS is unified as fine-tuning an
LM with respect to a structured loss. The semantic
embedding is obtained by the forward pass of the
LM. The structure embedding is conducted by opti-
mizing the structured loss through backpropagation
of the LM.

3 Experiments

3.1 Experimental Setup
Datasets We test the performance of our method
on five KG benchmarks built with three KGs: Free-
base (Bollacker et al., 2008), WordNet (Miller,
1994) and UMLS (Dettmers et al., 2018). Free-
base is a large-scale KG containing general knowl-
edge facts. We employ two subsets from Freebase,
namely FB15K-237 (Toutanova and Chen, 2015),
and FB13 (Socher et al., 2013). WordNet provides
semantic knowledge of words. We use two subsets
from WordNet, namely WN18RR (Dettmers et al.,
2018), and WN11 (Socher et al., 2013). UMLS is a
medical semantic network containing semantic en-
tities and relations. The statistics are summarized
in Table 1. We also provide a detailed description
of the datasets in Appendix A.1.

Dataset # Entity # Relation # Train # Dev # Test
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
UMLS 135 46 5,216 652 661
FB13 75,043 13 316,232 5,908 23,733
WN11 38,696 11 112,581 2,609 10,544

Table 1: Statistics of knowledge graphs.

Implementation Details We use two families of
LMs with LASS. First, we adopt both BERTBASE

and BERTLARGE from (Devlin et al., 2019)
with LASS, namely LASS-BERTBASE and LASS-
BERTLARGE. Second, RoBERTa family (Liu et al.,
2019) is used, namely LASS-RoBERTaBASE and
LASS-RoBERTaLARGE.

We train LASS with AdamW (Loshchilov and
Hutter, 2019) on each KG dataset via fine-tuning

the corresponding LMs. The training hyperparam-
eters are set as follows. For LASS-BERTBASE

and LASS-RoBERTaBASE, the batch size is set
to 128, the learning rate is set to 3e-5 with lin-
ear warm-up and 0.01 weight decay. We set the
batch size to 64 for LASS-BERTLARGE and LASS-
RoBERTaLARGE. The number of training epochs
is set to 5. The margin b in Eq. 1 is empirically
set to 7. We sample 5 negative entities or relations
resulting in 15 negative triplets for each positive
triplet for the negative sampling.

We represent entities and relations as their names
or descriptions (Yao et al., 2019). For FB15k-237,
we used entity descriptions from (Xie et al., 2016).
For FB13, we use entity descriptions in Wikipedia.
For WN18RR, we use definitions of synsets as en-
tity descriptions. For WN11 and UMLS, the entity
names are used as the entity descriptions. The re-
lation descriptions are based on the relation names
across all the datasets. The input sequence is con-
structed based on Sec. 2.1. For LASS-BERTBASE

and LASS-BERTLARGE, we use a character-level
BPE vocabulary. [B] is replaced with [CLS],
and [S] is replaced with [SEP]. For LASS-
RoBERTaBASE and LASS-RoBERTaLARGE, we
use a byte-level BPE vocabulary, and [B] and
[S] are replaced with BOS and EOS respectively.
We implement LASS using the Transformers pack-
age (Wolf et al., 2020).

Comparison Methods We compare our method
to state-of-the-art methods, including (i) shallow
structure embedding: TransE (Bordes et al., 2013),
TransH (Wang et al., 2014b), TransR (Lin et al.,
2015), TransD (Ji et al., 2015), TransG (Xiao et al.,
2016), TranSparse (Ji et al., 2016), DistMult (Yang
et al., 2015), DistMult-HRS (Zhang et al., 2018),
ConvE (Dettmers et al., 2018), ConvKB (Nguyen
et al., 2018), ComplEx (Trouillon et al., 2016),
RotatE (Sun et al., 2019), REFE (Chami et al.,
2020), HAKE (Zhang et al., 2019a), and ComplEx-
DURA (Zhang et al., 2020); (ii) deep structure
embedding: NTN (Socher et al., 2013), DO-
LORES (Wang et al., 2018), KBGAT (Nathani
et al., 2019), GAATs (Wang et al., 2020), NeP-
TuNe (Sonkar et al., 2021), and ComplEx-N3-
RP (Chen et al., 2021); (iii) language semantic
embedding: TEKE (Wang and Li, 2016), KG-
BERT (Yao et al., 2019), and stAR (Wang et al.,
2021). We present a detailed technical description
of the above methods in Appendix A.2.
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Method WN11 FB13 Avg
NTN (Socher et al., 2013) 86.2 90.0 88.1
TransE (Bordes et al., 2013) 75.9 81.5 78.7
TransH (Wang et al., 2014b) 78.8 83.3 81.1
TransR (Lin et al., 2015) 85.9 82.5 84.2
TransD (Ji et al., 2015) 86.4 89.1 87.8
TEKE (Wang and Li, 2016) 86.1 84.2 85.2
TransG (Xiao et al., 2016) 87.4 87.3 87.4
TranSparse-S (Ji et al., 2016) 86.4 88.2 87.3
DistMult (Yang et al., 2015) 87.1 86.2 86.7
DistMult-HRS (Zhang et al., 2018) 88.9 89.0 89.0
AATE (An et al., 2018) 88.0 87.2 87.6
ConvKB (Nguyen et al., 2018) 87.6 88.8 88.2
DOLORES (Wang et al., 2018) 87.5 89.3 88.4
KG-BERT (Yao et al., 2019) 93.5 90.4 91.9
LASS-BERTBASE (ours) 93.3 91.2 92.3
LASS-BERTLARGE (ours) 94.5 91.8 93.2
LASS-RoBERTaBASE (ours) 92.3 91.1 91.7
LASS-RoBERTaLARGE (ours) 93.8 91.6 92.7

Table 2: Triplet classification accuracy on WN11 and FB13.

3.2 Triplet Classification

The task of triplet classification judges whether a
given triplet (h, r, t) is correct or not. The task
is a binary classification task. We use WN11 and
FB13 for the task, since only the test sets of the
two datasets contain both positive and negative
triplets among all the datasets. For the task, we
use the score function as defined in Eq. 1 , and
set a score threshold. For a triplet, if the score
is above the threshold, the triplet is classified as
positive, otherwise negative. We set the threshold
empirically based on the accuracy on the validation
set. As shown in Table 2, we conclude with the
following findings.

Head Relation Tail Label

ron ziegler gender male ✓

john fortescue profession writer ✓

george j adams cause of death typhoid fever ✓

fleiss joseph institution columbia university ✓

edmund husserl nationality austria ✓

aleksandr bakulev gender female ✗

emile littre profession physicist ✗

joseph smith jr cause of death emphysema ✗

frank g slaughter institution university of toronto ✗

julius klinger nationality romania ✗

Table 3: Samples of LASS’s correct predictions on FB13,
where KG-BERT (Yao et al., 2019) outputs wrong predictions.
Label ✓ means a gold positive triplet. ✗ indicates a gold
negative triplet.

We find that our methods consistently produce
state-of-the-art results on triplet classification tasks.
This indicates that our score function has captured
semantics and structures that are crucial for the
triplet classification. We also notice that LASS-
BERT generates slightly better results compared
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Figure 2: Triplet classification accuracy in a low-resource
regime: training with different proportions of the correspond-
ing training datasets on WN11 and FB13.

to LASS-RoBERTa. This is due to RoBERTa re-
moving the NSP objective, however the objective
naturally fits in the triplet classification task. LASS-
RoBERTa still generates reasonable results. The
reason is that the masked LM objective captures the
necessary semantics needed for the triplet classifi-
cation, and LASS is able to preserve the important
semantic information.

In Table 3, we also show some cases where
LASS-BERTBASE makes correct predictions while
KG-BERT produces incorrect ones on FB13. Com-
pared to KG-BERT, we find that LASS is more
capable in relations that require comprehensive
structure information, such as “institution”.

3.3 Low-Resource Settings

We additionally test the accuracy of triplet classi-
fication in a low-data regime, in particular, when
using 5%, 10%, 15%, 20%, and 30% of the train-
ing data on WN11 and FB13. The results are
shown in Figure 2. LASS-BERTLARGE consis-
tently outperforms the state-of-the-art KG-BERT.
This indicates that LASS is more data-efficient, as
it leverages both semantics and structures in the
training data. We also find that LASS is able to
produce competitive results with less training data
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Method FB15k-237 WN18RR UMLS
Hits@10 MR Hits@10 MR Hits@10 MR

TransE (Bordes et al., 2013) 0.465 357 0.501 3384 0.989 1.84
DistMult (Yang et al., 2015) 0.419 254 0.49 5110 0.846 5.52
ComplEx (Trouillon et al., 2016) 0.428 339 0.51 5261 0.967 2.59
ConvE (Dettmers et al., 2018) 0.501 244 0.52 4187 0.990 1.51
RotatE (Sun et al., 2019) 0.533 177 0.571 3340 - -
HAKE (Zhang et al., 2019a) 0.542 - 0.582 - - -
KBGAT (Nathani et al., 2019) 0.626 210 0.581 1940 - -
KG-BERT (Yao et al., 2019) 0.420 153 0.524 97 0.990 1.47
REFE (Chami et al., 2020) 0.541 - 0.561 - - -
GAATs (Wang et al., 2020) 0.650 187 0.604 1270 - -
ComplEx-DURA (Zhang et al., 2020) 0.560 - 0.571 - - -
StAR (Wang et al., 2021) 0.562 117 0.732 46 0.991 1.49
NePTuNe (Sonkar et al., 2021) 0.547 - 0.557 - - -
ComplEx-N3-RP (Chen et al., 2021) 0.568 - 0.580 - 0.998 -
LASS-BERTBASE (ours) 0.479 131 0.725 55 0.991 1.39
LASS-BERTLARGE (ours) 0.527 120 0.769 41 0.990 1.58
LASS-RoBERTaBASE (ours) 0.500 116 0.737 53 0.994 1.41
LASS-RoBERTaLARGE (ours) 0.533 108 0.786 35 0.989 1.56

Table 4: Link prediction results on FB15k-237, WN18RR and UMLS.

compared to existing methods even with full train-
ing data. LASS-BERTLARGE with 5% training
data of WN11 outperforms most of the existing
methods using full training data. When using 10%
training data of FB13, LASS-BERTLARGE is able
to perform comparably with KG-BERT with full
training data, and outperforms the remaining meth-
ods. This is because LASS transfers the knowledge
about semantics better to the tasks compared to ex-
isting approaches without fully leveraging the KG
semantics. The results suggest that LASS is effec-
tive in low-resource scenarios.

3.4 Link Prediction

Link prediction aims to predict a missing entity
given a relation and the other entity, which is evalu-
ated as a ranking problem. We perform link predic-
tion on FB15k-237, WN18RR and UMLS datasets.
For each correct triplet (h, r, t), either h or t is
corrupted by replacing it with every other entity in
the entity set E. These triplets are ranked based on
scores produced by Eq. 1 of LASS. The evaluation
is under the filtered setting (Bordes et al., 2013),
i.e., removing all the triplets that appear either in
the train, dev, or test set. Two common metrics,
Mean Rank (MR) and Hits@10 (the proportion of
correct entities ranked in the top 10) are used to
evaluate the results. A lower MR is better while
a higher Hits@10 is better. From the results in
Table 4, we summarize key observations as below.

We find all our methods significantly outperform

the compared methods in MR, and reach compet-
itive or better Hits@10. LASS-RoBERTaLARGE

performs the best on WN18RR, which outperforms
the best compared method StAR by 11 units in
MR and 5.4% in Hits@10. It also delivers the
best MR on FB15k-237. On UMLS, the existing
state-of-the-art performance sets a high standard.
However, LASS-BERTBASE still outperforms oth-
ers by at least 0.08 unit in MR. The reasons for
the improvements are mainly two-fold. (i) LASS
is able to capture the structural patterns in the ex-
isting triplets to predict the missing ones via the
structured loss. Compared to KG-BERT, LASS
is able to use the neighboring entities in the KGs
for the prediction. (ii) LASS is able to maintain
the semantics of the KGs through semantic embed-
ding to avoid unreasonable triplets with high ranks.
For example, if CEO_Of holds between two enti-
ties, the employee_Of also holds, but birth_Place
does not hold. This is the main reason that LASS
outperforms all structure embedding based meth-
ods by a large margin especially in MR. For in-
stance, LASS significantly outperforms TransE,
which shares the similar structured loss with LASS.
Compare to the improvements made on FB15k-237,
LASS-RoBERTaLARGE has significantly improved
the state-of-the-art results on WN18RR. The main
reason leading to such significant improvements is
that the pre-trained LMs provide more semantics
in the semantic embedding for WordNet as those
LMs are trained on textual corpora to capture rela-
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tionships between words. While WordNet provides
the relationships between words, FB15k-237 con-
tains real-world entities and relations, which are
less captured by the LMs.

We also notice that LASS only produces mod-
erate Hits@10 on FB15k-237. The main reason is
that FB15k-237 presents more complex relations
between entities compared to other link predic-
tion datasets shown in Table 1. Therefore, a more
complex structured loss is expected for LASS to
gain further improvements. We leave it as one of
the future explorations. Besides, on FB15k-237
and WN18RR, LASS-BERTLARGE outperforms
LASS-BERTBASE, and LASS-RoBERTaLARGE

also outperforms LASS-RoBERTaBASE. This con-
firms the recent findings (Petroni et al., 2019) that
larger LMs store more semantic knowledge in the
parameters. We expect further improvements when
larger LMs are used with LASS. On UMLS, we
observe slightly different trends. This is mainly
because UMLS is a relatively small dataset, thus
large models can suffer from overfitting. Overall,
RoBERTa improves the BERT pre-training pro-
cedure from several perspectives. The improved
pre-training procedure enables RoBERTa to gener-
ate better performance in many downstream tasks.
This suggests that an improved pre-training proce-
dure can enrich the semantics learned in the corre-
sponding LMs.

Both link prediction and triplet classification are
core KG completion tasks. The results show that
the proposed LASS generalizes well in KG comple-
tion tasks. Different from KG-BERT that designs
different models for the tasks, our method does
not introduce task-specific parameters or losses for
different tasks.

3.5 Case Study

We show uncurated examples to illustrate why
LASS can yield the above results, especially how
the parameters of the LMs capture the semantics
and structures. As attention layers are basic build-
ing blocks of the LMs, we focus on visualizing the
attention weights with different input sequences.

We use BertViz (Vig, 2019) to illustrate the at-
tention weights of the LMs. Given an example of
a positive triplet, h = “symbololatry, the worship
of symbols”, r = “hypernym”, and t = “venera-
tion, religious zeal”, Figure 3a shows the attention
weights of the last layer of LASS-BERTBASE on
WN11. We find that semantically related tokens

(a) Semantics. (b) Structures.

Figure 3: Illustration of attention weights of the last layer of
LASS-BERTBASE.

attend to each other with relatively high scores. For
example, “religious” attends intensively to “wor-
ship” and “veneration”. As in multi-head self at-
tention (Vaswani et al., 2017), different attention
heads in different colors attend to different aspects
of the input, the heads are then concatenated to
compute the final attention weights. The darker the
color, the larger the attention score. This demon-
strates that the semantic embedding of LASS is
effective in capturing the semantics in the natural
language description of the triplets.

We show another positive example with h =
“successfulness, the condition of prospering”, r =
“hypernym”, and t = “luckiness, an auspicious state
resulting from favorable outcomes”. Figure 3b il-
lustrates the attention weights of the last layer of
LASS-BERTBASE on WN11. We observe that to-
kens are highly attended to each other with similar
structure roles in the triplet, even though they share
fewer semantic similarities. For instance, the at-
tention score between “hypernym” and “condition”
is large. There is also a large attention score be-
tween “hypernym” and “state”. This is because
both “condition” and “state” capture the critical
structure information of the triplet. The results
indicate that the structure embedding of LASS is
able to reconstruct the structure information in the
semantic embeddings.

3.6 Error Analysis
To better understand the limitations of LASS, we
perform a detailed analysis of the errors. We use
triplet classification as an example. We investigate
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the errors made by LASS-BERTBASE on WN11
and summarize the errors based on the relations
in Table 5. We find most errors are caused by
relations that are hard to be distinguished from
each other due to their semantic similarities. For
example, “domain topic” and “domain region” are
such relations with an unclear semantic boundary.

Relation Percentage (%)
domain topic 19.8

domain region 10.8
member meronym 9.1

has instance 8.4
has part 8.1

similar to 7.1
part of 6.3

synset domain topic 5.5
type of 4.6

member holonym 3.9
subordinate instance of 3.2

Table 5: Analysis of most common errors of LASS-
BERTBASE categorized by relations on WN11.

4 Discussion

Structure Losses There are several directions to
further improve LASS. LASS uses the probabilis-
tic structured loss based on the score function of
TransE, which learns a single representation for
every entity and relation in the same embedding
space. However, different relationships expect dif-
ferent entity embeddings. We propose to enable an
entity to have distinct distributed representations
when involved in different relations. For exam-
ple, a new score function ∥hr + r− tr∥22 models
entities and relations in distinct spaces, and per-
forms the translation between entity embeddings
in relation space. The idea is in the same spirit
as TransH (Wang et al., 2014b) and TransR (Lin
et al., 2015). However, a downside of leveraging
those losses is that they will bring additional com-
putation overhead. Our method aims to trade off
the computation costs and effectiveness. Exploring
computation-light methods that involve alternative
losses is one of the future investigations.

Pre-trained LMs We have explored two pre-
trained LM families: BERT and RoBERTa. There
are three possible directions along this line. First,
as indicated in the experimental findings, larger
LMs often store more semantics, which can im-
prove the semantic embedding module of LASS.

We propose to examine larger pre-trained LMs,
such as GPT-2 (Radford et al., 2019), GPT-
3 (Brown et al., 2020), and Megatron-LM (Shoeybi
et al., 2019). Incorporating longer language de-
scriptions (e.g., Wikipedia page) of the entities in
the knowledge graphs will provide richer knowl-
edge for improved natural language understand-
ing. Second, the fine-tuning procedure of the deep
LMs for KG completion tasks, especially link pre-
diction, is still computationally inefficient. In-
vestigating light LM architectures, such as AL-
BERT (Lan et al., 2020), to speed up the training
process, is one of the promising directions. Finally,
our proposed method is generally useful for many
knowledge-driven downstream NLP tasks (e.g.,
question answering, factual probing) as well as low-
resource NLP tasks. Ensembling our method with
autoregressive models (e.g., GPT-2) will enable the
method to perform text generation tasks.

5 Related Work

Pre-trained LMs Pre-trained LMs, such as
BERT, have recently been used to obtain state-
of-the-art results in many NLP benchmarks (De-
vlin et al., 2019; Liu et al., 2019). These mod-
els are usually based on Transformers (Vaswani
et al., 2017) and trained on unlabeled text corpora.
They are used to improve downstream tasks via em-
bedding (Peters et al., 2018), fine-tuning (Radford
et al., 2018), or few-shot learning (Radford et al.,
2019). Fine-tuning bidirectional Transformers is
the most widely used scheme in recent NLP appli-
cations, and the approach described in this paper is
also based on this scheme. The main difference is
that we design a structured loss on top of the LMs
aiming to capture structures in natural language.

Knowledge Graph Embedding KG embedding
aims to map entities and their relations to a con-
tinuous vector space. Traditional KG embedding
methods represent each entity or each relation with
a fixed vector. For any triplet (h,r,t), they use a scor-
ing function f(h, r, t) to model its likelihood. The
scoring function of TransE (Bordes et al., 2013)
is a negative translational distance. It can be aug-
mented with different geometric transformations
such as linear projections (Wang et al., 2014b; Lin
et al., 2015) or rotations (Sun et al., 2019). Other
models based on bilinear transformations (Yang
et al., 2015), and convolutions (Dettmers et al.,
2018), also show promising results on KG comple-
tion benchmarks. Our structured loss is motivated
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by TransE. The main differences are the following.
TransE (Bordes et al., 2013) treats the relation as
a translation of the embeddings from the head to
the tail. Therefore h+ r ≈ t when (h, r, t) holds.
TransE designs a margin-based ranking loss based
on the l2 norm ∥h+ r− t∥22. The key differences
between LASS and TransE are: (i) LASS lever-
ages the natural language semantics in LMs, while
TransE does not; (ii) LASS is a probabilistic struc-
tured loss, and is more computationally efficient
and data-efficient compared to TransE. The main
advantage of the probabilistic loss is that we elimi-
nate the norm calculation that TransE requires to
prevent the training process from trivially minimiz-
ing its loss by increasing the embeddings of entities
or relations. The ranking loss of TransE calculates
the loss of some training examples as zeros, which
will not contribute to the optimization procedure.
Our probabilistic loss makes use of all the training
examples. Besides, we introduce corrupted rela-
tions in the loss, which provides more flexibility in
incorporating the KG structure.

Traditional KG embedding approaches afore-
mentioned regard entities and relations as basic
units, without using any extra information. How-
ever, studies (Socher et al., 2013; Wang et al.,
2014a; Xie et al., 2016) show that a KG model that
models the natural language descriptions of entities
and relations usually outperforms those methods
that only model the structure of knowledge triplets.
Petroni et al. (2019) use LMs as virtual KGs to
answer factual questions. ERNIE (Zhang et al.,
2019b) integrates structural KGs into pre-trained
models to improve knowledge-driven NLP tasks.
By contrast, we aim to combine both the structures
and semantics of the KGs via a unified optimiza-
tion procedure for the task of KG completion. KG-
BERT (Yao et al., 2019) models KG completion
tasks as sentence classification tasks and solves
them by fine-tuning pre-trained LMs. There are
several key differences between our LASS and KG-
BERT (Yao et al., 2019): (i) LASS reconstructs the
structures of KGs via structure embedding, while
KG-BERT does not; (ii) LASS unifies the link pre-
diction and triplet classification under the same
architecture, while KG-BERT designs different ar-
chitectures for different tasks; (iii) LASS works
with two families of LMs, while KG-BERT only
works with BERTBASE. LASS is not particularly
designed for BERT, shedding light on understand-
ing the role of semantics in LMs for KG comple-

tion.

6 Conclusion

We propose a new embedding method that lever-
ages both semantics and structures of the knowl-
edge graphs for the task of knowledge graph
completion, and offers additional benefits in low-
resource settings. The method maps a knowledge
graph triplet to an embedding space via fine-tuning
language models, where the forward pass captures
semantics and the loss reconstructs structures. Our
method has shown significant improvements on
knowledge graph completion benchmarks. The
implementation has made no modifications to the
language model architectures. The results suggest
that the learned embeddings are generally useful
in downstream knowledge-driven applications, and
potentially useful for more natural language un-
derstanding tasks. We hope our results will foster
further research in this direction.

7 Ethical Considerations

We hereby acknowledge that all of the co-authors of
this work are aware of the provided ACM Code of
Ethics and honor the code of conduct. The follow-
ings give the aspects of both our ethical considera-
tions and our potential impacts to the community.
This work uses pre-trained LMs for knowledge
graph completion. The risks and potential misuse
of LMs are discussed in Brown et al. (2020). There
are potential undesirable biases in the datasets, such
as unfaithful descriptions from Wikipedia. We do
not anticipate the production of harmful outputs af-
ter using our model, especially towards vulnerable
populations.

8 Environmental Considerations

We use BERT and RoBERTa as our pre-trained
LMs. According to the estimation in Strubell
et al. (2019), pre-training a base model costs 1,507
kWh·PUE and emits 1,438 lb CO2, while pre-
training a large model requires 4 times the re-
sources of a base model. In addition, our fine-
tuning takes less than 1% gradient-steps of the
number of steps of pre-training. Therefore, our en-
ergy cost and CO2 emissions are relatively small.
Besides, the results in the low-resource settings
show that our method has better sampling effi-
ciency. This indicates that we can further reduce
energy consumption when training with fewer data.

1973



Acknowledgement

We would like to thank the anonymous reviewers
for their suggestions and comments. This material
is in part based upon work supported by Berke-
ley DeepDrive and Berkeley Artificial Intelligence
Research.

References

Bo An, Bo Chen, Xianpei Han, and Le Sun. 2018.
Accurate text-enhanced knowledge graph repre-
sentation learning. In NAACL-HLT, pages 745–
755.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for struc-
turing human knowledge. In SIGMOD, pages
1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling
multi-relational data. In NeurIPS, pages 2787–
2795.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language models
are few-shot learners. In NeurIPS, pages 1877–
1901.

Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R. Hruschka, and Tom M.
Mitchell. 2010. Toward an architecture for never-
ending language learning. In AAAI, pages 1306–
1313.

Ines Chami, Adva Wolf, Da-Cheng Juan, Fred-
eric Sala, Sujith Ravi, and Christopher Ré. 2020.
Low-dimensional hyperbolic knowledge graph
embeddings. In ACL, pages 6901–6914.

Yihong Chen, Pasquale Minervini, Sebastian
Riedel, and Pontus Stenetorp. 2021. Relation
prediction as an auxiliary training objective for

improving multi-relational graph representations.
In AKBC.

Tim Dettmers, Pasquale Minervini, Pontus Stene-
torp, and Sebastian Riedel. 2018. Convolutional
2d knowledge graph embeddings. In AAAI,
pages 1811–1818.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training
of deep bidirectional transformers for language
understanding. In NAACL-HLT, pages 4171–
4186.

Kelvin Guu, John Miller, and Percy Liang. Travers-
ing knowledge graphs in vector space. In
EMNLP, pages 318–327.

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu
He, Zhanyi Liu, Hua Wu, and Jun Zhao. 2017.
An end-to-end model for question answering
over knowledge base with cross-attention com-
bining global knowledge. In ACL, pages 221–
231.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding
via dynamic mapping matrix. In ACL-IJCNLP,
pages 687–696.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao.
2016. Knowledge graph completion with adap-
tive sparse transfer matrix. In AAAI, pages 985–
991.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka
Marttinen, and S Yu Philip. 2021. A survey on
knowledge graphs: Representation, acquisition,
and applications. TNNLS, 33:494–514.

Zhenzhong Lan, Mingda Chen, Sebastian Good-
man, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. 2020. Albert: A lite bert for self-
supervised learning of language representations.
In ICLR.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and rela-
tion embeddings for knowledge graph comple-
tion. In AAAI, pages 2181–2187.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pre-
training approach. CoRR.

1974



Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Alexa T. McCray. 2003. An upper-level ontology
for the biomedical domain. Comparative and
Functional Genomics, pages 80–84.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In NeurIPS, pages 3111–3119.

George A. Miller. 1994. Wordnet: A lexical
database for english. In HLT.

Deepak Nathani, Jatin Chauhan, Charu Sharma,
and Manohar Kaul. 2019. Learning attention-
based embeddings for relation prediction in
knowledge graphs. In ACL, pages 4710–4723.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Phung. 2018. A novel em-
bedding model for knowledge base completion
based on convolutional neural network. In
NAACL-HLT, pages 327–333.

Thomas Pellissier Tanon, Denny Vrandečić, Se-
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A Experimental Setup Details

We describe additional details of our experimental
setup including datasets and comparison methods
in this section.

A.1 Datasets

We introduce the link prediction and triplet classifi-
cation datasets as below.

A.1.1 Link Prediction
• FB15k-237. Freebase is a large collaborative

knowledge graph consisting of data composed
mainly by its community members. It is an online
collection of structured data harvested from many
sources, including individual and user-submitted
wiki contributions (Pellissier Tanon et al., 2016).
FB15k is a selected subset of Freebase that con-
sists of 14,951 entities and 1,345 relationships
(Bordes et al., 2013). FB15K-237 is a variant
of FB15K where inverse relations and redundant
relations are removed, resulting in 237 relations
(Toutanova et al., 2015).

• WN18RR. WordNet is a lexical database of
semantic relations between words in English.
WN18 (Bordes et al., 2013) is a subset of Word-
Net which consists of 18 relations and 40,943
entities. WN18RR is created to ensure that the
evaluation dataset does not have inverse relations
to prevent test leakage (Dettmers et al., 2018).

• UMLS. UMLS semantic network (McCray,
2003) is an upper-level ontology of Unified Med-
ical Language System. The semantic network,
through its 135 semantic types, provides a con-
sistent categorization of all concepts represented
in the UMLS. The 46 links between the semantic
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DistMult ⟨r,h, t⟩ h, r, t ∈ Rk
ConvKB concat(g([h, r, t] ∗ ω))w h, r, t ∈ Rk
ComplEx ℜ(⟨r,h, t⟩) h, r, t ∈ Ck
ConvE ⟨σ(vec(σ([r,h] ∗Ω))W), t⟩ h, r, t ∈ Rk
RotatE −∥h ◦ r− t∥2 h, r, t ∈ Ck, |ri| = 1
REFE −arctanh(∥−⟨h,Ref(r)⟩ ⊕c t∥) h, r, t ∈ Rk
HAKE RotatE− ∥sin((h+ r− t)/2)∥1 h, r, t ∈ Rk
ComplEx-DURA ComplEx− ⟨h, r⟩2 − ∥t∥2 h, r, t ∈ Ck

Table 6: The score functions fr(h, t) of shallow structure embedding models for knowledge graph embedding,
where ⟨·⟩ denotes the generalized dot product, ◦ denotes the Hadamard product, σ denotes activation function and ∗
denotes 2D convolution. · denotes conjugate for complex vectors, and 2D reshaping for real vectors in the ConvE
model. Ref(θ) denotes the reflection matrix induced by rotation parameters θ. ⊕c is Möbius addition that provides
an analogue to Euclidean addition for hyperbolic space.

types provide the structure for the network and
represent important relationships in the biomedi-
cal domain.

A.1.2 Triplet Classification
• WN11 and FB13 are subsets of WordNet and

FreeBase respectively for triplet classification,
where Socher et al. (2013) randomly switch en-
tities from correct testing triplets resulting in a
total of doubling the number of test triplets with
an equal number of positive and negative exam-
ples.

A.2 Comparison Methods
We compare LASS to three types of knowledge
graph completion methods: shallow structure em-
bedding, deep structure embedding, and language
semantic embedding.1

A.2.1 Shallow Structure Embedding
TransE (Bordes et al., 2013), TransH (Wang et al.,
2014b), TransR (Lin et al., 2015), TransD (Ji et al.,
2015), TransG (Xiao et al., 2016), TranSparse-
S (Ji et al., 2016), DistMult (Yang et al., 2015),
ConvKB (Nguyen et al., 2018), ComplEx (Trouil-
lon et al., 2016), ConvE (Dettmers et al., 2018),
RotatE (Sun et al., 2019), REFE (Chami et al.,
2020), HAKE (Zhang et al., 2019a), and ComplEx-
DURA (Zhang et al., 2020) are methods based only
on the structure of the knowledge graphs. DistMult-
HRS (Zhang et al., 2018) is an extension of Dist-
Mult which is combined with a three-layer hierar-
chical relation structure (HRS) loss. Each of these

1We refer the readers to (Ji et al., 2021) for a more compre-
hensive review of the knowledge graph completion methods.

methods proposes a scoring function regarding a
knowledge triplet, without using the natural lan-
guage descriptions or names of entities or relations.
The scoring functions are shown in Table 6.

A.2.2 Deep Structure Embedding
• NTN (Neural Tensor Network) (Socher et al.,

2013) models entities across multiple dimensions
by a bilinear tensor neural layer.

• DOLORES (Wang et al., 2018) is based on bi-
directional LSTMs and learns deep representa-
tions of entities and relations from constructed
entity-relation chains.

• KBGAT proposes an attention-based feature em-
bedding that captures both entity and relation
features in any given entity’s neighborhood, and
additionally encapsulates relation clusters and
multi-hop relations (Nathani et al., 2019).

• GAATs integrates an attenuated attention mecha-
nism in a graph neural network to assign different
weights in different relation paths and acquire the
information from the neighborhoods (Wang et al.,
2020).

• NePTuNe takes advantage of both TuckER and
NTN by carefully crafted nonlinearities and a
shared core tensor intrinsic to the Tucker decom-
position (Sonkar et al., 2021).

• ComplEx-N3-RP introduces an auxiliary train-
ing task to predict relation types as a self-
supervised objective. (Chen et al., 2021).
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A.2.3 Language Semantic Embedding
• TEKE (Wang and Li, 2016) takes advantage of

the context information in a text corpus. The
textual context information is incorporated to ex-
pand the semantic structure of the knowledge
graph and each relation is enabled to own dif-
ferent representations for different head and tail
entities.

• AATE (An et al., 2018) is a text-enhanced
knowledge graph representation learning method,
which can represent a relation/entity with differ-
ent representations in different triples by exploit-
ing additional textual information.

• KG-BERT (Yao et al., 2019) considers triples in
knowledge graphs as textual sequences, where
each textual sequence is a concatenation of text
descriptions of the head entity, the relation, and
the tail entity. Then KG-BERT treats the knowl-
edge graph completion task as a text binary clas-
sification task, and then solves it by fine-tuning a
pre-trained BERT.

• StAR (Wang et al., 2021) partitions each triplet
into two asymmetric parts as in translation-
based graph embedding approach, and encodes
both parts into contextualized representations
by a Siamese-style textual encoder (BERT or
RoBERTa).
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Abstract

Event detection, which aims to identify in-
stances of specific event types from pieces of
text, is a fundamental task in information ex-
traction. Most existing approaches leverage
syntactic knowledge with a set of syntactic re-
lations to enhance event detection. However, a
side effect of these syntactic-based approaches
is that they may confuse different syntactic rela-
tions and tend to introduce redundant or noisy
information, which may lead to performance
degradation. To this end, we propose a sim-
ple yet effective model named DualGAT (Dual
Relational Graph Attention Networks), which
exploits the complementary nature of syntactic
and semantic relations to alleviate the problem.
Specifically, we first construct a dual relational
graph that both aggregates syntactic and se-
mantic relations to the key nodes in the graph,
so that event-relevant information can be com-
prehensively captured from multiple perspec-
tives (i.e., syntactic and semantic views). We
then adopt augmented relational graph atten-
tion networks to encode the graph and optimize
its attention weights by introducing contextual
information, which further improves the per-
formance of event detection. Extensive exper-
iments conducted on the standard ACE2005
benchmark dataset indicate that our method
significantly outperforms the state-of-the-art
methods and verifies the superiority of Dual-
GAT over existing syntactic-based methods.

1 Introduction

Event Detection (ED) aims to identify event trig-
gers from a given text and classify them into pre-
defined event types (Chen et al., 2015), playing
an important role in information extraction. As
shown in Figure 1, an event detection method is
expected to identify the event trigger “thrust” from
the example sentence and classify it into the event
type Transport. Event detection can be used
to facilitate various natural language processing

* Corresponding author

(NLP) applications, such as adverse drug event dis-
covery (Wei et al., 2020; Liu et al., 2018a), court
decision event identification (Filtz et al., 2020), fi-
nancial event extraction (Zheng et al., 2019; Liang
et al., 2020) and so on.

Various event detection methods have been ex-
plored, including traditional feature-based (Hong
et al., 2011; Li et al., 2013) and deep learning meth-
ods (Chen et al., 2015; Nguyen et al., 2016). Due to
the powerful feature representation extraction capa-
bility of deep neural networks, deep learning meth-
ods have outperformed traditional feature-based
methods in most cases and have become popular.
Most deep learning methods have recently paid
more attention to exploiting syntactic relations in
event detection. These methods adopt Graph Neu-
ral Networks (GNNs) such as Graph Convolutional
Networks (GCNs) and Graph Attention Networks
(GATs) to encode dependency trees to learn effec-
tive representations for the words. Since depen-
dency trees convey rich linguistic information for
ED, syntactic-based methods usually achieve better
performance (Xie et al., 2021).

However, existing syntactic-based methods still
have two shortcomings to be solved. First, depen-
dency trees cannot always capture trigger-related
salient information concisely, which may contain
noisy dependency relations close to the root node
and mislead event detection (Lai et al., 2020; Liu
et al., 2021). As shown in Figure 1, the depen-
dencies marked in red are incorrectly identified
by the syntactic-based event detection methods as
trigger-related hints for the Attack event. Since
“troops” and the trigger candidate “striking” have
a direct connection with the root node “distance”,
GNN-based methods are prone to pay more atten-
tion to them and predict incorrect triggers (Liu
et al., 2021). It is worth noting that in this case, the
marked blue dependencies that are closely related
to the real trigger “thrust” should be exploited with
more emphasis. Second, relying solely on syntactic
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Figure 1: An event detection example with syntactic dependency relations. The “thrust” is the true trigger of
Transport event. The “striking” is incorrectly identified as the trigger for an Attack event by some existing
methods. The red arrow indicates a noisy dependency relation and blue arrow indicates a trigger-relevant relation.

dependency trees may not be sufficient for event
detection. The parsing results of the existing de-
pendency parser may contain incorrect or weakly
correlated information, which will inevitably affect
the performance of syntactic-based event detection
methods due to possible error propagation. More-
over, syntactic dependency trees cannot provide all
the linguistic knowledge needed for event detec-
tion.

To address the above problems, we propose a
novel model named DualGAT, which makes full
use of syntactic and semantic information to im-
prove event detection performance. Inspired by
aspect-based dependency parsing (Wang et al.,
2020a), we construct a dual relational graph that
contains both syntactic and semantic relations to
capture trigger-relevant information. Empirically,
only a small part of dependency relations in a sen-
tence is task-aware (Zhang et al., 2018; He et al.,
2018). Therefore, to reduce the influence of noisy
relations, we prune the original syntactic dependen-
cies that are not directly connected to the trigger
candidates and reconstruct other connections be-
tween the remaining words of the sentence and the
trigger candidates. In addition to syntactic infor-
mation, we also introduce semantic relation infor-
mation and make them rooted in the predicate of
the sentence. Next, we adopt augmented relational
graph attention networks to encode the graph to
learn the root node’s representations from syntactic
and semantic views. Specially, we introduced con-
textual information to adjust the attention weights
to mitigate the possible loss of information due to
the introduction of the dependency parser. The ex-
perimental results on the standard ACE2005 bench-
mark dataset indicate that DualGAT outperforms
the state-of-the-art methods by a large margin.

The main contributions of this work can be sum-
marized as follows:

• We construct a dual relational graph that con-
verges syntactic and semantic relations to the
critical nodes in the graph, which can capture

important event information from different
perspectives and reduce information loss or
noise caused by the syntactic parser.

• We adopt an augmented relational graph atten-
tion network to encode the graph and optimize
its attention weights by introducing contextual
information.

• Experimental results further verify the supe-
riority of DualGAT over existing approaches.
DualGAT achieves the 5% improvements in
F1 score with state-of-the-art syntactic-based
methods.

2 Related Work

Event detection has attracted extensive attention in
recent years. Traditional event detection methods
use hand-crafted linguistic features for event de-
tection, such as lexical features, syntactic features,
or entity features (Hong et al., 2011; Ahn, 2006).
However, it is time-consuming to design these fea-
tures and is not easy to adapt to other tasks or new
domains.

With the rapid development of neural networks,
a series of neural event detection methods have
been proposed. Many researchers applied new
learning strategies to event detection, such as lever-
aging the weakly-supervised learning strategy to
generate more labeled data to improve the per-
formance of event detection (Zeng et al., 2018;
Yang et al., 2018). Wang et al. (2019) applied an
adversarial training mechanism to obtain diverse
and accurate training data. Lu et al. (2019) pro-
posed a method based on knowledge distillation to
achieve better performance on sparsely labeled trig-
gers. Some recently proposed methods introduced
extra knowledge to improve event detection via
open-domain trigger knowledge (Tong et al., 2020),
entity knowledge (Liu et al., 2019) and syntactic
dependency relations (Yan et al., 2019).
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Figure 2: The architecture of our proposed dual relational graph attention networks for event detection. The 5-th
node is the assumed trigger candidate and the 3-th is the predicate verb. rij denotes the relation embedding of eij .

The effectiveness of dependency relations has
been verified in many natural language process-
ing (NLP) tasks, such as sentiment analysis (Wang
et al., 2020a) and relation extraction (He et al.,
2018). Due to the rich syntactic and structure in-
formation, syntactic dependency relations also play
an important role in event detection (Liu et al.,
2018b). For example, Yan et al. (2019) exploited
multi-order syntactic relations in sentences to ob-
tain better representations of trigger words. Lv et al.
(2021) integrated syntax and document information
for better event detection. Cui et al. (2020) pro-
posed a model to explore further the type informa-
tion of dependency relations to capture task-aware
knowledge. Since existing graph-based models
introduced many trigger-agnostic representations,
Lai et al. (2020) proposed to filter noisy informa-
tion via a gating mechanism. Due to the effective
combination of GNNs and syntactic dependency
trees, these syntactic-based event detection meth-
ods achieved overall better performance than ordi-
nary deep learning methods.

Although these works use similar syntactic in-
formation, few of them take a new perspective to
reshape the original graph to facilitate the capture
of event-relevant salient information. The original
dependency tree contains rich structural and lin-
guistic knowledge, but it may be inaccurate and
contains event-irrelevant information. Besides, as
far as we know, there are no syntactic-based ap-
proaches that explicitly use semantic information
to complement syntactic information for event de-
tection. To this end, we propose DualGAT, which
takes into account both syntactic and semantic re-
lations as well as contextual information for event
detection.

3 Methodology

3.1 Model Overview
The overall architecture of DualGAT is shown in
Figure 2, which consists of three major compo-

nents: (1) Relational Graph Constructor (§3.2),
which constructs the dual relational graph by de-
pendency parsing and semantic role labeling; (2)
Augmented Relational Graph Attention Networks
(§3.3), which introduces additional contextual in-
formation into the adaptation of attention weight
and encodes the dual relational graph to get the root
node’s representations from syntactic and semantic
views; (3) Event detector (§3.4), which leverages
the Biaffine module to exchange relevant features
between syntactic and semantic representations and
performs event detection.

3.2 Relational Graph Constructor

3.2.1 Dual Relational Graph
Existing methods are interfered with by noisy
dependency relations and tend to learn trigger-
agnostic representations (Lai et al., 2020). Since
the trigger candidates are the focus of the event de-
tection task, this noisy information irrelevant to the
trigger words inevitably hurts the performance. Be-
sides, the parsing results of the existing dependency
parser may contain incorrect or weakly correlated
information, which limits the performance of event
detection.

Many works have proven that only a small part
of the syntactic relations is task-aware (Zhang et al.,
2018; He et al., 2018) and identifying trigger words
is the core of event detection tasks. Thus, we be-
lieve that paying more attention to syntactic re-
lations directly linked to trigger candidates can
reduce the effect of erroneous syntactic relations.
Besides, the complementary nature of semantic and
syntactic knowledge has been exploited and vali-
dated in related NLP tasks, such as relations extrac-
tion (Bovi et al., 2015) and entity extraction (Chan
and Roth, 2011). We believe that semantic relations
can make up for the inadequacy of syntactic rela-
tions and reduce reliance on dependency parsers.

Motivated by the above idea, we first construct
a dual relational graph structure that aggregates
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Figure 3: Three event detection examples to illustrate the advantages of the proposed dual relational graph. The
correct trigger is marked blue and the incorrect one is marked red. Example (a) and example (b) are two dual
relational graphs of one sentence that omit semantic relations. In example (c), the purple arrow is the original
syntactic relation, and the orange arrow is the additional semantic relation of the dual relational graph.

Algorithm 1 The Construction Process of Dual
Relational Graph.

Input:
The sentenceX = {xi | i ∈ [1, L]}with a trig-
ger candidate xt and a predicate verb xv.

Output:
Dual relational graph G;

1: Getting syntactic, semantic edge set D, A.
2: Construct initial dual relational graph G with
L nodes.

3: for i = 1 to L do
4: if eit or eti in D then
5: add eti in G.
6: else
7: d = t− i+ 1, eti = vir : d.
8: add eti in G
9: end if

10: if eiv or evi in A then
11: add evi in G.
12: else
13: d = v − i+ 1, evi = vir : d.
14: add evi in G
15: end if
16: end for
17: return G;

syntactic relations to trigger candidates and addi-
tionally aggregates semantic relations to predicate
verbs to improve the robustness of the graph. Al-
gorithm 1 describes the construction process of
the dual relational graph. We first leverage a de-
pendency parser to obtain the original syntactic
relations of a given sentence. Then we retain the
syntactic relations directly connected to the trigger
candidates and prune the remaining relations. To
improve the robustness of the graph, we further

replace the pruned relations with a virtual one clas-
sified by distance with trigger candidates. Specif-
ically, the type of virtual relations is defined as
vir : d, where d represents the distance between a
word and the trigger candidate. Finally, we perform
semantic role labeling to append semantic relations
between other words and predicate verbs and do
the same process as above.

The graph obtained after the above processing
is the dual relational graph. It has two same lev-
els of subgraphs: the syntactic relational subgraph,
which converges syntactic information to the trig-
ger candidates, and the semantic relational sub-
graph, which converges semantic information to
the predicate verbs. Formally, we define the dual
relational graph as G = (V,E) associated with a
edge type mapping function τ : E → TE . V rep-
resents the set of word nodes in a sentence, and E
represents the set of relational edges. TE represents
all types of relations including syntactic relations,
semantic relations and virtual relations. The rela-
tional edge between word node i and word node j
is defined as eij .

3.2.2 The Advantages of Dual Relational
Graph

The dual relational graph has proprietary advan-
tages in event detection. First, the dual relational
graph is customized for every trigger candidate,
which can reduce the introduction of noisy trigger-
agnostic information. Second, the semantic rela-
tions rooted in predicate verbs can improve the
robustness of the dual relational graph. Third, the
dual relational graph structure facilitates the event
detection model to capture task-aware informa-
tion. We use three simple examples to illustrate
the above advantages, as shown in Figure 3.
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First, example (a) and example (b) are two cus-
tomized dual relational graphs for different trigger
candidates in the same sentence. The existing meth-
ods tend to identify “striking” as a trigger evoking
an Attack event, since the strong bonding be-
tween “striking”, “enemy”, and “troops” in the orig-
inal dependency tree. However, the dual relational
graph of “striking” prunes the trigger-agnostic rela-
tions and clearly illustrates that “striking” is only
an adjectival modifier (amod) of “distance”. More-
over, the dual relational graph of “thrust” can fa-
cilitate ED models to capture its connections with
“through” and “make” without the interference of
noisy dependency relations in the original depen-
dency tree. Thus, ED methods tend to identify
“thrust” as a trigger evoking a Transport event
rather than “striking”.

Besides, example (c) can illustrate the impor-
tance of semantic relations. In example (c), the
purple arrow is the original syntactic relation, and
the orange arrow is the additional semantic relation
of the dual relational graph. Based on original syn-
tactic relations, ED methods tend to identify “War”
as a trigger of an Attack event, since the strong
bonding between “War” and “Win”. Even pruning
the trigger-agnostic syntactic relations, the correct
trigger “Former” still cannot obtain much atten-
tion. However, the semantic relations can make
the deep semantic information flow from “now” to
“Former”. The “ARGM-TMP” relation introduces
timing information to help identify “Former” as a
trigger for an End-position event.

Finally, as shown in examples (a) and (b), the
dual relational graph does not have complex mutual
interactions. The structure of the dual relational
graph is clear and aggregated. It can reduce the in-
terference of noisy interactions and the ED model’s
difficulty in capturing trigger-relevant information.

3.3 Augmented Relational Graph Attention
Networks

To more effectively encode the dual relational
graph for event detection, we propose an aug-
mented relational graph attention network (AR-
GAT) by introducing additional contextual infor-
mation to encode graphs constructed from words
in a sentence.

3.3.1 Graph Attention Network
Graph neural networks (Scarselli et al., 2009) have
been widely used to encode dependency trees for
event detection, as they can effectively capture

relevant information based on an information ag-
gregation scheme (Cao et al., 2021). In addition,
much work has shown that graph convolutional
networks (Schlichtkrull et al., 2018) cannot ef-
fectively leverage multi-hop relational informa-
tion (Yan et al., 2019). Intuitively, the heart of
the event detection task is to capture the relevant
words with the trigger candidates. Thus, we apply
graph attention networks (Velickovic et al., 2018)
which can more efficiently leverage the relations
between words to encode the dual relational graph.

Formally, given a dual relational graph G with
L word nodes, and the set of neighborhood nodes
of node i is defined as Ni. The feature vector of
node i at layer l is denoted as hli

(
hli ∈ RF

)
, F is

the dim of node features. For the node i at the layer
l+1, the computation of multi-head graph attention
networks can be defined as follows:

hl+1
atti

= ∥Kk=1σ


∑

j∈Ni
αlkijW

l
kh

l
j


 (1)

αlkij =
exp(f1(a

T [Wl
kh

l
i∥Wl

kh
l
j ]))∑

t∈Ni exp(f1(a
T [Wl

kh
l
i∥Wl

kh
l
t]))

(2)

where hl+1
atti

is the attention head of node i at the
layer l+1, Wl

k is a transformation matrix, f1(·) is
the function of LeakyReLU, a is a weight vector,
K is the number of heads and ∥Kk=1hk represents
concatenation of vectors from h1 to hK .

3.3.2 AR-GAT
The relational graph attention networks (Wang
et al., 2020a) extended original graph attention net-
works with additional heads to leverage the type
information of edges. However, relational graph
attention networks are not sufficiently compatible
with encoding the dual relational graph. On the
one hand, original syntactic and semantic relations
that are initially generated may be wrong. On the
other hand, in the construction process of the dual
relational graph, reshaping and pruning may fur-
ther lead to the propagation of errors originating
from the parser. Thus, the relation heads are not
sufficient to accurately control information flow
from neighborhood nodes.

To overcome the above problems, we propose
introducing additional contextual information from
word nodes to control information flow more accu-
rately. The performance of factorization machines
has been proven in many tasks (Guo et al., 2017).
Inspired by factorization machines, we employ an
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inner product unit to combine contextual and type
information.

Formally, the initial relation embedding matrix
is defined as Wt ∈ RNt×F , Nt is the number of
relation type. For the node i at the layer l+1, the
computation of multi-head augmented relational
graph attention networks can be defined as follows:

hl+1
reli

= ∥Mm=1σ


∑

j∈Ni
βlmij Wl

mh
l
j


 (3)

Rmij = (Wm1f2(τ(eij),Wt) + bm1)⊙
(Wm2(hi∥hj) + bm2)

(4)

glmij = σ(relu(RmijWm3+bm3)Wm4+bm4) (5)

βlmij =
exp

(
glmij

)

∑
j∈Ni exp

(
glmij

) (6)

where hl+1
reli

represents the augmented relational
attention head of node i at layer l+1, M is the num-
ber of heads, f2(τ(eij),Wt) is a mapping function
mapping edge eij into the corresponding relation
embedding according to relation embedding matrix
Wt. The final representation of node i is computed
by:

ol+1
i = hl+1

atti
∥hl+1

reli
(7)

hl+1
i = relu

(
Wl+1o

l+1
i + bl+1

)
(8)

3.4 Event Detector

We use BERT (Devlin et al., 2019) to obtain the
word embedding of graph nodes, and the embed-
ding of word xi is defined as h0

i . We use h0
t and h0

v

to denote the initial embedding of the trigger candi-
date node and the predicate verb node, respectively.
Then we apply AR-GAT to encode two subgraphs
of dual relational graph respectively and obtain
their root representation hlt and hlv. The hlt and hlv
aggregate the syntactic and semantic information
respectively.

To effectively exchange relevant features be-
tween these two types of information, we employ
a mutual Biaffine transformation (Li et al., 2021b).
The interaction process is:

hl′t = softmax(hltW1(h
l
v)

T)hlv (9)

hl′v = softmax(hlvW2(h
l
t)
T)hlt (10)

where W1 and W2 are parameters.

Finally, we concatenate syntactic root hl′t and
semantic root hl′v to obtain final feature representa-
tion:

x = hl′t ∥hl′v (11)

Then the final feature representation x is fed into
a fully connected layer and adopt softmax layer to
get a final event type probability distribution:

p(t) = softmax (Wpx+ bp) (12)

4 Experiments

4.1 Datasets and Evaluation Metrics
We evaluate our proposed model on the widely used
standard benchmark dataset ACE2005. ACE2005
consists of 33 event types and contains 599 doc-
uments with 4090 event instances. Following the
previous works (Chen et al., 2015; Wang et al.,
2020b), we use the same data split for train, dev
and test set. We adopt Precision (P), Recall (R)
and micro F1 score (F1), which are the standard
metrics for event detection, as the evaluation crite-
ria for method performance. The three metrics are
defined as follows:

P =
NC

NP
(13)

R =
NC

ND
(14)

F1 =
2PR

P +R
(15)

where NC , NP , and ND are the number of cor-
rectly predicted events, all predicted events, and all
events in the dataset, respectively.

4.2 Parameter Settings
Our implementation 1 is based on the bert-base-
uncased model, whose layer number is 12, hidden
size is 768, and attention head number is 12. For
the “Our w/o BERT” setting, we use Glove (Pen-
nington et al., 2014) and BiLSTM to obtain word
embedding. The dimension of both word embed-
ding and relational embedding is 300. the hidden
state size of AR-GAT and BiLSTM is set to 200.
The number of attention heads is 6. The max sen-
tence length is set to 128 by cutting longer sen-
tences and padding shorter ones. We employ the
Biaffine Parser (Dozat and Manning, 2017) and
SRL BERT (Shi and Lin, 2019) for dependency

1Code is available at https://github.com/
Macvh/DualGAT, which leverage the HuggingFace’s
Transformers library for loading pre-trained models.
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parsing and semantic role labeling. The Adam al-
gorithm (Kingma and Ba, 2015) is used to optimize
model parameters and the dropout rate is set to 0.3
to avoid over-fitting. The max epoch is 30. In addi-
tion, we report the average performance of 5 trials
with different random seeds for each experiment.

4.3 Baselines
We select various representative methods as base-
lines, including:

Syntactic based Methods: (1) GCN-ED uses
GCN with entity mention based pooling method for
event detection (Nguyen and Grishman, 2018). (2)
SA-GRCN introduces a self-attention mechanism
for better modeling word dependencies (Liu et al.,
2021). (3) EE-GCN introduces additional typed de-
pendency label information into GCNs (Cui et al.,
2020). (4) GatedGCN proposes to filter noisy in-
formation via a gating mechanism (Lai et al., 2020).

External Knowledge based Methods: (1)
PLMEE proposes a method to enlarge the scale of
labeled data by editing prototypes and an evaluation
method to screen out generated data (Yang et al.,
2019). (2) DNR uses additional external knowl-
edge to link predefined event types to each sentence
to improve performance (Liao et al., 2021). (3) SS-
JDN introduces statistical features to cooperate
with the contextual features for event detection (Li
et al., 2021a).

4.4 Overall Results
Experimental results are shown in Table 1, where
“Our w/o BERT” denotes replacing BERT with
BiLSTM in our model. The highest values are
shown in bold. We can observe that our pro-
posed DualGAT outperforms all the baselines on
the ACE2005 dataset in terms of three metrics from
Table 1. Particularly, DualGAT outperforms the
syntactic-based methods by a large margin. It is
worth mentioning that the performance of Our w/o
BERT is even better than that of GatedGCN which
used BERT. Compared with the next best method
among all compared methods, DualGAT improves
the F1, Precision, and Recall by 0.9%, 0.5%, and
1.3%, respectively. It proves the effectiveness of
our proposed model for ED tasks. DualGAT fully
considers the complementary of syntactic and se-
mantic information and effectively captures the
trigger-relevant information. Compared with ex-
isting syntactic-based methods, the advantages of
DualGAT are more apparent. DualGAT is able
to more effectively leverage the internal critical

Type Method P R F1 BERT

Syn.

GCN-ED 77.9 68.8 73.1 -
EE-GCN 76.7 78.6 77.6 -
SA-GRCN 78.6 77.4 78.0 -
GatedGCN 78.8 76.3 77.6

√

Exter.
SS-JDN 80.3 78.8 79.5

√

PLMEE 81.0 80.4 80.7
√

DNR 81.2 82.4 81.8
√

Ours
Our w/o BERT 79.1 80.8 80.0 -
DualGAT 81.7 83.7 82.7

√

Table 1: Overall performance on ACE2005 dataset (%).
“Syn.” indicates syntactic dependency relations are used,
“Exter.” indicates external knowledge and resources are
used.

Method P R F1
DualGAT w/o reshape 78.1 75.3 76.7
DualGAT w/o syntactic 76.2 79.3 77.7
DualGAT w/o semantic 78.9 81.3 80.1
DualGAT w/o AR-GAT 80.3 82.1 81.2
DualGAT 81.7 83.7 82.7

Table 2: Experimental results of ablation study on
ACE2005 dataset (%).

information of sentences for ED tasks. Besides,
DualGAT is even better than three methods that
use external knowledge. It indicates that existing
ED methods do not fully exploit the internal infor-
mation of sentences of original data that are worth
further exploiting.

4.5 Ablation Study

To assess the effect of the dual relational graph and
augmented relational graph attention networks, we
further conduct several ablation studies. We design
four variants of the proposed model:
DualGAT w/o reshape: to study whether the dual
relational graph contributes to the performance im-
provement, we use the ordinary syntactic depen-
dency tree to replace the dual relational graph.
DualGAT w/o syntactic: to prove the effectiveness
of the syntactic relational subgraph, we remove
the syntactic relational subgraph and only use the
semantic relational subgraph.
DualGAT w/o semantic: to prove the effectiveness
of the semantic relational subgraph, we remove
the semantic relational subgraph and only use the
syntactic relational subgraph.
DualGAT w/o AR-GAT: to prove the effective-
ness of the augmented relational graph attention
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networks, we use relational graph attention net-
works to encode the dual relational graph.

The results of the ablation study are shown in
Table 2. From the results, we can observe that:

(1) DualGAT w/o semantic outperforms Dual-
GAT w/o reshape by a large margin. It indicates
that pruning and reshaping original syntactic rela-
tions are useful for event detection. The syntactic
relational subgraph converges all trigger-relevant
relations to the trigger candidates, which reduces
the interference of noisy relations. It also indicates
that a small part of dependency is task-aware, and
encoding the entire dependency tree is unnecessary
for event detection.

(2) In terms of performance degradation com-
pared to DualGAT, the F1 score of DualGAT with-
out syntactic relational subgraph drops more seri-
ously than that without semantic relational sub-
graph. It indicates that syntactic relations con-
verged on trigger candidates are more necessary
in DualGAT. The reason may be that the syntactic
relational subgraph establishes more effective cor-
relations among trigger candidates and other words
in a sentence.

(3) The DualGAT is improved by using the aug-
mented relational graph attention networks and
achieves 1.5% improvements in the F1 score. It in-
dicates that the introduction of contextual informa-
tion effectively captures key information between
words. The dependency parsers do not always parse
sentences correctly, which causes much loss of in-
formation. Thus, we use additional contextual in-
formation to get more accurate attention weights.

4.6 The Effect of Multiple Event Recognition

To verify the effectiveness of the dual relational
graph customized for every trigger candidate, we
study the performance of the proposed DualGAT
for multiple event recognition. Following (Xie
et al., 2021), we divide the test set into the “1/1”
and “1/N” subsets and perform evaluation on the
two subsets separately, where one sentence has
only one event in the 1/1 subset but has multiple
events in the 1/N subset. Moreover, one sentence
may contain multiple event types in the 1/N subset.
Figure 4 illustrates the performance (F1 score) of
DualGAT w/o reshape and DualGAT.

As shown in Figure 4, our proposed DualGAT
significantly outperforms DualGAT w/o reshape in
three situations. DualGAT improves upon the Du-
alGAT w/o reshape by 6.1% and 9.9% in 1/1 data

split and 1/N data split, respectively. The multi-
event scenario in a sentence confuses the event
detection methods, resulting in poor performance.
However, DualGAT improves the performance by
using the dual relational graph. Since each trigger
candidate has its particular dual relational graph,
the dual relational graph can reduce the interference
of irrelevant nodes and relations. The additional
semantic relations further capture sentence-level
information. Thus, our proposed DualGAT can al-
leviate the multi-event problem to a certain extent.
The experimental results demonstrate that the dual
relational graph is effective for the task of multiple
event recognition.

Figure 4: Performance of our method with ordinary
syntactic dependency tree (“DualGAT w/o reshape”)
and the proposed dual relational graph (“DualGAT”).

4.7 Semantic Relations Improve Robustness

We further study whether semantic relations can
make the dual relational graphs less vulnerable to
dependency parsing errors. Therefore, we conduct
experiments based on two widely used dependency
parsers: Stanford Parser (Chen and Manning, 2014)
and Biaffine Parser (Dozat and Manning, 2017).
The performance of the two parsers is shown in
Table 3, measured by two widely used metrics UAS
and LAS, of which higher is better. We use each of
these two dependency parsers to construct the dual
relational graph and evaluate the final performance
of the proposed method.

The experimental results of DualGAT with differ-
ent dependency parsers are shown in Table 4. From
Table 4, we can find that the DualGAT with Biaffine
parser achieves better performance in event detec-
tion since the dependency parsing performance of
the Biaffine parser is better than Stanford Parser.

1986



Parser UAS LAS
Stanford 94.10 91.49
Biaffine 95.74 94.08

Table 3: The performance of two dependency parsers.
The results are from (Chen and Manning, 2014)
and (Dozat and Manning, 2017) respectively.

Method P R F1
DualGAT (Sta) w/o sem 76.1 78.6 77.3
DualGAT (Bia) w/o sem 78.9 81.3 80.1
DualGAT (Sta) 81.5 82.3 81.9
DualGAT (Bia) 81.7 83.7 82.7

Table 4: The performance of DualGAT using different
parsers on ACE2005 dataset (%).

In the case of only syntactic relations, DualGAT
with Biaffine parser improves upon the DualGAT
with Stanford parser by 2.8%, 2.8% and 2.7% in
terms of F1 score, Precision and Recall. However,
compared with DualGAT (Bia), DualGAT (Sta) de-
clines by only 0.8%, 0.2% and 1.4% in F1 score,
Precision and Recall. It illustrates that semantic re-
lations can resist interference with syntactic parser
performance and improve the robustness of the dual
relational graph. Semantic relations have comple-
mentarity with syntactic relations and sustain the
performance of DualGAT in the case of syntactic
relationship failure. Besides, it also implies that
our proposed DualGAT can benefit from the ad-
vances in syntactic parsing and semantic parsing
techniques.

5 Conclusion and Future Work

In this paper, we propose a simple yet effective
model named DualGAT (Dual Relational Graph At-
tention Networks) to address the disadvantages of
syntactic-based methods for event detection tasks.
To facilitate the accurate capture of key informa-
tion from different perspectives in a sentence, we
devise a dual relational graph that aggregates syn-
tactic and semantic relations to key nodes in the
graph. To efficiently encode the dual relational
graph, we propose augmented relational graph at-
tention networks that introduce contextual informa-
tion to compute more robust attention weights. Ex-
perimental results show that our proposed method
achieves state-of-the-art performance.

We intend to explore several aspects of our work
further in the future. First, we would improve the
way semantic information is introduced. Second,

we would develop a more effective method for fus-
ing syntactic and semantic information. Third, we
would explore the effect of augmented relational
graph attention networks in other tasks.
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Abstract

Event argument extraction (EAE) aims to ex-
tract arguments with given roles from texts,
which have been widely studied in natural lan-
guage processing. Most previous works have
achieved good performance in specific EAE
datasets with dedicated neural architectures.
Whereas, these architectures are usually dif-
ficult to adapt to new datasets/scenarios with
various annotation schemas or formats. Fur-
thermore, they rely on large-scale labeled data
for training, which is unavailable due to the
high labelling cost in most cases. In this paper,
we propose a multi-format transfer learning
model with variational information bottleneck,
which makes use of the information especially
the common knowledge in existing datasets for
EAE in new datasets. Specifically, we intro-
duce a shared-specific prompt framework to
learn both format-shared and format-specific
knowledge from datasets with different formats.
In order to further absorb the common knowl-
edge for EAE and eliminate the irrelevant noise,
we integrate variational information bottleneck
into our architecture to refine the shared repre-
sentation. We conduct extensive experiments
on three benchmark datasets, and obtain new
state-of-the-art performance on EAE.

1 Introduction

Event Extraction (EE) has received widespread at-
tention in recent years, which aims to obtain struc-
tured information (e.g., trigger, event types, argu-
ments, and argument roles) from large unstructured
text corpora (Lu et al., 2021; Zhang et al., 2022).
Event argument extraction (EAE) plays a crucial
role in EE. Recently, deep learning-based mod-
els have obtained tremendous success in this task.
However, these methods rely on a large-scale la-
beled dataset for training, which is time-consuming
and labor-intensive due to the complexity of event
extraction.

*Corresponding authors; †Equal contribution.

ACE2005 Example Conflict.Attack

And to the south , British[Place] 

forces[Target] continue their 
attack[trigger] on targets around 
Basra .

trigger attack

Target forces

Place Basra

Attacker -

Victim -

Instrument -

WIKIEVENTS  Example Conflict.Attack.DetonateExplode

For example , Ms . Davis has 
identified a man whose photo 
matches that of a \" John Doe # 2 
\" sought immediately after the 
Murrah Building[Target] 

attack[trigger]. He appears to be a 
Palestinian by the name of 
Hussain Hashem Al Hussaini ...

trigger attack

Target Murrah Building

Place -

Attacker -

ExplosiveDevice -

Instrument -

Figure 1: An example with a different format.

In this paper, we aim to answer the question
“Can we transfer the knowledge from the exist-
ing complex event extraction datasets with differ-
ent formats?". There are several event extraction
datasets, such as ACE 2005 (Doddington et al.,
2004), RAMS (Ebner et al., 2020), and WikiEvents
(Li et al., 2021). These datasets contain abun-
dant event types and semantic roles that may pos-
sess overlap knowledge and help to improve the
performance of new datasets or low-resource ex-
traction. As shown in Figure 1, both ACE2005
and WikiEvents datasets contain the same “attack"
event type with inconsistent names. Additionally,
some shared argument roles (e.g., “Target", “At-
tacker", “Place", and “Instrument") are labeled in
both two datasets. All this information shows that
the event knowledge can be transferred between
two datasets.

However, the transfer between different event ar-
gument extraction is a challenging task. (C1) One
challenge is that the formats of various datasets
are inconsistent due to the complex structure of
event records. Thus, it is hard to find a unified
model to extract arguments with different formats.
More specifically, 1) Two datasets may have dif-
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ferent event types, which have various argument
structures; 2) The same event type or argument
type in two datasets may have different names.
For example, the event names are “Conflict At-
tack" and “Conflict Attack Detonate Explode" in
ACE2005 and WikiEvents respectively (Figure 1);
3) The argument roles set of the same event type
may be different in various datasets. For instance,
the argument role “Victim" and “ExplosiveDevice"
for event “Attack" only appear in ACE2005 and
WikiEvents, respectively (Figure 1). (C2) The an-
other challenge is that the annotation among differ-
ent datasets may exist a gap, which brings noise
for transfer learning. Two datasets may have sig-
nificant semantic differences, as they may belong
to different domains. In addition, the annotation
guidelines may be contradictory among various
datasets. Our experiments also show that merging
two datasets simply may reduce the performance.

Previous works mainly regard the argument ex-
traction as a sequence labeling, which can not trans-
fer to new event argument types (Yang et al., 2018).
Then, a machine reading comprehension problem
(MRC) based model is proposed to extract the ar-
guments using natural questions (Liu et al., 2020;
Du and Cardie, 2020). Recently, prompt-learning
(Schick and Schütze, 2020; Liu et al., 2021b) based
models (Ma et al., 2022; Chen et al., 2020) and
generation-based models (Chen et al., 2020; Du
et al., 2021; Li et al., 2021) are utilized for event
argument extraction. These studies inspire us to
design a unified model that can extract arguments
with different formats for EAE. Moreover, some re-
searches investigate cross-lingual event extraction
(Subburathinam et al., 2019) and zero-shot event
extraction (Chen et al., 2020; Feng et al., 2020),
which are under zero-shot setting. In other words,
these studies train on the source language or do-
main and transfer it to the target domain, where
the target domain has no training data. Different
from them, we train our model on both the source
and target datasets with different formats where the
format-shared knowledge is essential.

To deal with the above challenges, we propose a
multi-format transfer learning model for EAE via
information bottleneck, denoted as UnifiedEAE,
which can leverage all event extraction datasets
with heterogeneous formats. First, we adopt a
Shared-Specific Prompt (SSP) framework to cap-
ture format-shared and format-specific knowledge
to extract arguments with different formats. Then,

to better capture the format-shared representa-
tion, we incorporate the variational information
bottleneck (VIB) into the format-shared model
(SharedVIB). VIB has been widely used to for-
get the irrelevant information and retain the vital
information for prediction (Li and Eisner, 2019;
Tishby et al., 2000). We leverage it to enhance the
model to learn the format-shared knowledge. We
conduct a series of experiments on three publicly
available datasets and obtain new state-of-the-art
performance. Our UnifiedEAE can also improve
the performance of low-resource EAE effectively.
Furthermore, the results show that our model can
capture the format-shared knowledge and forget
the noise among various datasets.

In summary, the main contributions of this paper
are summarized as follows.

• We design a unified architecture that can
learn both the format-shared and format-specific
knowledge from various EE datasets with hetero-
geneous formats.

• The information bottleneck technology is utilized
to enhance the model to learn the format-shared
knowledge among different datasets by eliminat-
ing the irrelevant information and reserving the
format-shared knowledge.

• Extensive experiments on three datasets show the
great advantages of our model. Also, our model
performs well on low-resource event argument
extraction.

2 Related Work

2.1 Event Argument Extraction
Event extraction can be split into two subtasks,
event identification and event argument extraction
(EAE) (Zhang et al., 2020; Chen et al., 2015; Lin
et al., 2022). We focus on the EAE task, which aims
to extract the arguments based on the given event
type and trigger (Wei et al., 2021; Ma et al., 2022).
Wei et al. (2021) added constraints with each ar-
gument role to take the interaction into account.
Data augmentation is adopted for event argument
extraction (Liu et al., 2021a). To avoid the error
propagation and learn the relationships among the
subtasks, end to end model performs two subtasks
jointly (Zhang et al., 2019; Wadden et al., 2019;
Li et al., 2021). Several studies regard event argu-
ment extraction as a machine reading comprehen-
sion problem (MRC), which extracts the arguments
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Figure 2: The framework of our UnifiedEAE model. To learn both the format-shared and format-specific
representations (i.e., Ĥ1 and Ĥ2), we introduce a shared-specific prompt (SSP) model (white background). Then,
we design a SharedVIB module (pink background) to better capture the format-shared representation (e.g.,
H(shared)) by forgetting format-specific information (

∑2
k=1 βI(X

k;Z)) and retaining format-shared knowledge
(
∑2

k=1−I(Y k;Z)) via information bottleneck.

based on natural questions (Liu et al., 2020; Du and
Cardie, 2020). Recently, prompt-learning (Schick
and Schütze, 2020; Liu et al., 2021b) based models
(Ma et al., 2022; Chen et al., 2020) and generation-
based models (Chen et al., 2020; Du et al., 2021; Li
et al., 2021) are utilized for event argument extrac-
tion. In this paper, we aim to transfer the knowl-
edge of the existing event extraction datasets to the
target dataset, which is not well studied since the
complexity of this task.

2.2 Transfer Learning for NLP

To reduce the requirements of labeled data, transfer
learning has attached great attention in the field of
natural language processing (Liu et al., 2017; Ruder
et al., 2019; Raffel et al., 2020; Zhou et al., 2020).
Liu et al. (2017) proposed an adversarial multi-task
learning framework to learn the shared and pri-
vate representation. Cross-lingual event extraction
aims to transfer the knowledge from the source
language to the target language (Subburathinam
et al., 2019). Zero-shot transfer learning is also
explored on semantic role labeling (SRL) (Peng
et al., 2016), event extraction (Chen et al., 2020;
Feng et al., 2020), and abstract meaning represen-
tation (AMR) (Huang et al., 2018). Different from
them, we focus on transfer learning among event
argument extraction datasets with various complex
formats where both the format-shared knowledge
and format-specific knowledge are important.

2.3 Information Bottleneck

Recently, information bottleneck (IB) has been ap-
plied in NLP tasks, such as word cluster (Pereira

et al., 1994), dependent parsing (Mahabadi et al.,
2021), summarization (West et al., 2019), inter-
pretability (Zhou et al., 2021). Li and Eisner (2019)
use IB for compressing the hidden representations
of words by removing the task-irrelevant informa-
tion. Sun et al. (2021) adopted the IB principle for
graph structure learning. Variational IB (VIB) is
used as a regularization technique to improve the
fine-tuning of pre-training language models in low-
resource scenarios (Mahabadi et al., 2021). In this
paper, we attempt to use VIB to constraint model to
learn format-shared information for event argument
extraction.

3 Methodology

To transfer the knowledge among the datasets with
different formats, we propose a UnifiedEAE
model for event argument extraction task (Figure
2). UnifiedEAE is based on a shared-specific
prompt (SSP) architecture, which learns both the
format-shared and format-specific knowledge from
diverse datasets with multiple formats. Then, to en-
hance the model to learn the format-shared knowl-
edge, we integrate variational information bottle-
neck into the format-shared model (SharedVIB)
by removing the format irrelevant information and
retaining format invariable knowledge.

Formally, given two event argument extraction
datasets, denoted by D1 = {(X1

i , Y
1
i )}
|D1|
i=1 and

D2 = {(X2
i , Y

2
i )}
|D2|
i=1 where |D1| and |D2| are

the number of samples in dataset D1 and D2.
For each sample (X,Y ) ∈ D1orD2, the input
X = {s, e, t, R} contains the sentence s, event

1992



type e, and trigger word t, R denotes the set of
event-specific role types, we aims to extract a set
of span Y . For the i-th span in Y , spanstarti and
spanendi are the start and end indices of the span.

3.1 Shared-Specific Prompt

The shared-specific prompt (SSP) architecture
aims to learn both format-shared and format-
specific knowledge for EAE. This framework con-
sists of three event argument extractors: two format-
specific and one format-shared extractor, which are
used to learn the format-specific and format-shared
knowledge. We adopt a prompt-based model as the
basic extractor to predict multi-format arguments.

Basic Prompt-based Extractor. Following the
Ma et al. (2022), we use a BART (Lewis et al.,
2020) based prompt model as an event argument
extractor. This model consists of an encoder and
decoder. The encoder is used to learn the event-
aware sentence representation. Then we adopt a
decoder model to extract all the argument spans
jointly via a prompt template.

Encoder. To consider the position information
of event, we insert special token “<t>" and “</t>"
before and after the trigger t in the sentence s. Then
we input it into BART to obtain the event-aware
sentence representation H ,

Hencoder = BARTEncoder(s),

H = BARTDecoder(s,Hencoder),
(1)

Decoder. In the decoder, we use a prompt with
slots to extract the argument roles at the same time.
We use manual template from Li et al. (2021). For
example, the prompt is “Person married Person at
Place ( and Place )" for event type “Life.Marry"
in ACE2005. We aim to predict the argument
spans for the four argument role slots. We input
the prompt p to the BART decoder to obtain the
prompt representation.

Hp = BARTdecoder(p,Hencoder)

For the i-th role slot in the prompt, we use the
mean pooling of the corresponding tokens’ rep-
resentation from Hp as the role representation ri.
Then, we extract the argument span for role ri by
predicting the start and end index in the text.

p
(start)
i = Softmax(riw

(start)H)

p
(end)
i = Softmax(riw

(end)H)
(2)

where w(start) and w(end) are the learnable param-
eters.

Finally, the cross-entropy between the predicted
start/end probability p(start)i /p(end)i and the ground
truth,

L =
∑

X∈D

|R|∑

i=1

CrossEntropy(p
(start)
i , span

(start)
i )

+CrossEntropy(p
(end)
i , span

(end)
i )

(3)

where spanstarti /spanendi are the start and end index
of the i-th argument role’s span, |R| is the length
of roles set R in X .

For dataset D1 and D2, we use two independent
prompt-based extractors to learn format-specific
sentence representations H(specific)

1 and H(specific)
2

calculated by Equation 1. Then, the third extrac-
tor is adopted to learn the format-shared sentence
representation H(shared) among two datasets. To
predict the event argument based on both format-
specific and format-shared knowledge, we combine
specific representation H(specific)

k , k ∈ {1, 2} and
shared representation H(shared) via a gate mecha-
nism (Hochreiter and Schmidhuber, 1997).

gk = σ
(
Wgk ·

[
H

(specific)
k , H(shared)

]
+ bgk

)

Ĥk = gk ∗H(specific)
k + (1− gk) ∗H(shared)

where Wgk , bgk are the trainable parameters, σ is a
sigmoid active function.

Then, we extract argument span by replacing
H in Equation 2 with Ĥk. In this way, we can
predict the arguments based on both the format-
specific and format-shared knowledge. Then, we
obtain the format-specific loss LSSP = L(specific)1 +

L(specific)2 , where L(specific)1 and L(specific)2 are the
loss for dataset D1 and D2.

3.2 Shared Knowledge Learning via VIB
We hope the shared model in shared-specific
prompt architecture to learn the format-shared
knowledge while forgetting the format-specific
knowledge. However, we do not add objectives
to enhance the model to do this. Inspired by (Li
and Eisner, 2019), we integrate variational infor-
mation bottleneck (VIB) into our shared model
(SharedVIB) to capture the format-shared knowl-
edge while eliminating the format-specific informa-
tion.
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Particularly, the information bottleneck aims to
learn a compressed representation Z, which maxi-
mizes mutual information with output Y and min-
imizes mutual information with input X . In this
paper, we tend to let Z retain the information about
Y k, k ∈ {1, 2} and remove the irrelevant informa-
tion in Xk, k ∈ {1, 2}.

2∑

k=1

βI(Xk;Z)− I(Y k;Z)

The shared model performs both dataset D1 and
D2 at the same time to learn the format-shared
knowledge. Then, we let the model to forget
the format-specific information in Xk, k ∈ {1, 2}
by minimizes mutual information between Z and
Xk, k ∈ {1, 2}.

It is challenging to compute the mutual informa-
tion I(Y k;Z) and I(Xk;Z) directly. The same as
(Li and Eisner, 2019), we use variational inference
to compute a variational upper bound for I(Xk;Z)
as follow,

upper bound︷ ︸︸ ︷
E
x

[
E

z∼p(z|x)

[
log

p(z | x)
q(z)

]]
−

I(Xk;Z)︷ ︸︸ ︷
E
x

[
E

t∼p(z|x)

[
log

p(z | x)
p(z)

]]

= E
x
[KL (p(z)∥q(z))] ≥ 0

We optimize the upper bounder of I(Xk;Z) to
minimize it. We use reparameterzation method
(Kingma and Welling, 2014) to sample Z from the
latent distribution according to p(z|x),

p(z | x) = N
(
z | fµ(x), fΣ(x)

)

where fµ(x) = H(shared) · Wµ and fΣ(x) =
H(shared) · WΣ are the mean and variance of
the latent Gaussian distribution, Wµ and WΣ

are the learnable parameters. Thus, we estimate
I(Xk;Z) = KL (p(z | x)∥q(z)). For q(z), we let
it be a standard diagonal normal distribution.

For I(Y k;Z), we calculate the variational lower
bound,

I(Y k;Z)︷ ︸︸ ︷
E

y,z∼p

[
log

p(y | z)
p(y)

]
−

lower bound︷ ︸︸ ︷
E

y,z∼p

[
log

ψ(y | z)
p(y)

]

= E
z∼p

[KL (p(y | z)∥ψ(y | z))] ≥ 0

Here, we use the decoder model in our shared-
specific prompt (Section 3.1) as ψ(y | z) by replac-
ing H in Equation 2 with the sampled Z. Thus, the

Table 1: Data statistics of RAMS and WikiEvents

Dataset Split #Doc #Event #Argument

RAMS
Train 3194 7329 17026
Dev 399 924 2188
Test 400 871 2023

WikiEvents
Train 206 3241 4542
Dev 20 345 428
Test 20 365 556

Table 2: Dataset statistics of ACE2005

Dataset Split #Sent #Event #Argument

ACE2005
Train 17,172 4202 4859
Dev 923 450 605
Test 832 403 576

loss for optimizing ψ(y | z) on Dk, k ∈ {1, 2} is
the same as Equation 3 by replacing the sampled
Z with H Equation 2, denoted as L(shared).

Thus, the loss function for SharedVIB is,

LSharedVIB =

2∑

k=1


L(shared)

k + β
∑

X∈Dk

KL (p(z | x)∥q(z))




Finally, the total loss for our UnifiedEAE is,

L = LSSP + LSharedVIB

4 Experimental Setups

4.1 Datasets
Our experiments are conducted on the three widely-
used datasets for event argument extraction task:
ACE2005 (Doddington et al., 2004), RAMS (Ebner
et al., 2020) and WiKiEvents (Li et al., 2021).
The ACE2005 dataset is a sentence-level extrac-
tion dataset that defines 33 different event types
and 35 semantic roles. The split of training, val-
idating, and testing sets is the same as (Wadden
et al., 2019). The RAMS dataset focuses on a
document-level argument extraction task, includ-
ing 139 event types and 65 semantic roles. The
WikiEvents dataset is another document-level ar-
gument extraction dataset, 246 documents are pro-
vided, with 50 event types and 59 argument roles.
Our experiments are conducted under the annota-
tions of their conventional arguments. The statistics
of the datasets are listed in Table 1 and Table 2.

4.2 Evaluation Metric
Following Ma et al. (2022), we adopt two popular
evaluation metrics. (1) Argument Identification F1
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Table 3: The main results of event argument extraction. The best results are marked with bold.

ACE2005 RAMS WikiEvents
Args-I Args-C Args-I Args-C Args-I Args-C Head-C

FEAE - - 53.50 47.40 - - -
DocMRC - - - 45.70 - 43.30 -
OneIE 65.90 59.20 - - - - -
EEQA 68.20 65.40 46.40 44.00 54.30 53.20 56.90
BART-Gen 59.60 55.00 50.90 44.90 47.50 41.70 44.20
EEQA-BART 69.60 67.70 49.40 46.30 60.30 57.10 61.40
PAIE 73.60 69.80 54.70 49.50 68.90 63.40 66.50
UnifiedEAE 76.06 71.85 55.46 49.94 69.84 64.00 66.30
UnifiedEAE (Zero-shot) 42.25 34.60 10.88 8.49 30.27 25.90 40.72
UnifiedEAE (Single) 72.77 68.82 53.32 48.29 68.31 63.40 66.16
UnifiedEAE (Multiple) 74.34 70.80 54.62 49.09 67.63 62.66 66.28

score (Arg-I): we consider an argument span is cor-
rectly identified when the predicted offset fits the
golden-standard span. (2) Argument Classification
F1 score (Arg-C): if both the span and the argument
role type are matched with the golden standard, we
consider the argument is correctly classified. For
the WikiEvents dataset, we also additionally eval-
uate Argument Head F1 score (Head-C) that only
considers the matching of the headword of an argu-
ment, the same as (Li et al., 2021).

4.3 Baselines

To investigate the effectiveness of our model, we
compare our approach with the following state-of-
the-art baseline models.

• ONEIE (Lin et al., 2020) is a joint neural model
to extract the globally optimal IE result.

• BART-Gen (Li et al., 2021) proposes a document-
level neural event argument extraction model
by regarding this task as conditional generation
based on event templates.

• EEQA (Du and Cardie, 2020) proposes an end-
to-end model and translates event extraction task
into a question answering (QA) task.

• FFAE (Wei et al., 2021) constructs the EAE
task as a QA-based algorithm and uses the intra-
event argument interaction to improve the perfor-
mance.

• DocMRC (Liu et al., 2021a) utilizes implicit
knowledge transfer and explicit data augmenta-
tion based on a QA-based method.

• EEQA-BART (Ma et al., 2022) replaces the
BERT with BART for event extraction.

• PAIE (Ma et al., 2022) utilizes prompt tuning
for extracting argument extraction so that it can
take the best advantages of pre-trained language
models.

• UnifiedEAE is our full model, which trains on
two datasets and transfers to one of them. For
UnifiedEAE (Zero-shot), we train our model
on two datasets and test on the third dataset via
format-shared extractor.

• UnifiedEAE (Multiple) trains on the merged
dataset, which removes the SSP from our
UnifiedEAE model. In other words, it
is a basic prompt-based extractor in Section
3.1. Different from UnifiedEAE (Multiple),
UnifiedEAE (Single) trains and tests on the
same dataset without transferring.

4.4 Implementation Details
We initialize the weight in encoder-decoder archi-
tecture with pre-trained BART base models (Lewis
et al., 2020). We use Adam optimizer with the
learning rates of 2e-5. The max encoder sequence
length is 500, and the max decoder length is 80.
The dropout is 0.1. The reported results on the test
set are based on the parameters that obtain the best
performance on the development set.

5 Results and Analyses

To investigate the efficacy of UnifiedEAEmodel,
we compare our model with the mainstream base-
lines (Section 5.1). Then, we do the ablation studies
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Table 4: The performance of transfer learning between
RAMS and WikiEvents.

RAMS WikiEvents
Args-I Args-C Args-I Args-C Head-C

UnifiedEAE 55.05 49.71 67.68 62.79 68.26
w/o SharedVIB 54.65 48.79 65.90 61.05 67.42
w/o SSP 54.87 49.92 63.60 59.27 67.41
UnifiedEAE (Single) 53.32 48.29 68.31 63.40 66.16

to verify the performance of the parts consisting
of our model from two views, the model structure
and dataset transferring (Section 5.2). We also
explore the effectiveness of transfer learning on
low-resource EAE (Section 5.3) and case studies
are given (Section 5.4).

5.1 Main Results

In this section, we compare our framework with
several prior competitive baselines (Table 3). Note,
for UnifiedEAE and UnifiedEAE (w/o SSP),
we report the best results of transferring over each
two datasets (e.g., ACE2005 and RAMS, ACE2005
and WikiEvents, RAMS and WikiEvents).

From the table, we find the following observa-
tions. First, we observe that our model consis-
tently outperforms the state-of-the-art baseline in
terms of Args-I and Args-C. Compared with the
best baseline PAIE, our approach outperforms it
with an improvement of 2.46% in terms of Args-I
over ACE2005, which indicates the effectiveness of
multi-format transfer learning. Second, our model
can leverage the knowledge from other datasets ef-
fectively. Our UnifiedEAE model outperforms
UnifiedEAE (w/o SSP), which trains a basic
prompt-based extractor using merged data directly.
Moreover, UnifiedEAE (Single) sometimes per-
forms better than UnifiedEAE (w/o SSP). These
indicate that merging two datasets directly for train-
ing may bring noise and lead to small gains or even
drops. Third, we apply our transfer learning frame-
work to implement zero-shot. It is capable of ex-
tracting new event argument roles that are unseen
in the training phase using the format-shared model.
From the results, we can observe that transferring
between ACE2005 and WikiEvents achieves a good
performance because they have many similar event
types and argument roles.

5.2 Ablation Studies

We do the ablation studies to further investigate
the effectiveness of the main components in our
model from two perspectives, model structure and
resource information. The results are shown in

Table 5: The performance of transfer learning between
ACE2005 and WikiEvents.

ACE2005 WikiEvents
Args-I Args-C Args-I Args-C Head-C

UnifiedEAE 76.06 71.85 69.84 64.00 66.30
w/o SharedVIB 75.12 71.48 68.76 63.27 67.76
w/o SSP 74.34 70.80 67.63 62.66 66.28
UnifiedEAE (Single) 72.77 68.82 68.31 63.40 66.16

Table 6: The performance of transfer learning between
ACE2005 and RAMS.

ACE2005 RAMS
Args-I Args-C Args-I Args-C

UnifiedEAE 71.65 68.00 55.46 49.94
w/o SharedVIB 67.59 62.96 55.12 50.02
w/o SSP 62.61 59.62 54.62 49.09
UnifiedEAE (Single) 72.77 68.82 53.32 48.29

Table 4, 5 and 6.
From a model structure view, we remove the

SharedVIB (w/o SharedVIB) and SSP (w/o
SSP) from our model respectively. We observe
that each component can help boost the perfor-
mance of EAE. Particularly, 1) Removing SSP will
cause about four points decline in terms of argu-
ment identification and classification when trans-
ferring the knowledge of RAMS to WikiEvents
(Row 1,3 in Table 4). This justifies that directly
merging datasets may bring noises, which results
in the degradation of test data. Our model can
learn both the format-shared and format-specific
knowledge, which improves the performance effec-
tively. 2) Our SharedVIB strategy can enhance
the model to learn the format-shared knowledge.
Removing SharedVIB from our model will re-
duce the performance in most cases. For example,
UnifiedEAE obtains more than 4 points improve-
ment compared with the one without SharedVIB
when transferring RAMS to ACE2005.

To investigate the effectiveness of transfer learn-
ing among different resources, we evaluate our
model on each two datasets. As we mentioned
above, UnifiedEAE (Single) trains and tests on
the same dataset and UnifiedEAE without SSP
trains on the merged datasets. We can find that not
all the transferring can improve the performance
since it may contain noise for the target dataset. For
example, transferring from RAMS to ACE2005
caused more than six points drop for both Args-I
and Args-C compared with UnifiedEAE (Sin-
gle) that only trains on ACE2005 (Row 3 and 4 in
Table 6). Our model can reduce the influence of
noise effectively by learning both format-shared
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Train Test Business.Start-Org Role Shared Specific w/o SSP

ACE2005+
WikiEvents ACE2005

Founded[tr igger ] by former mayor 
Gholamhossein Karbaschi[Agent] , 
Hamshahri[Org] was quick to become 
Iran[Place] 's biggest - selling daily with 
a circulation of 450,000 . It also built 
up healthy finances , carrying scores of 
pages of private advertisements daily.

Org Hamshahri √ Hamshahri √ Gholamhossein 
Karbaschi ×

Place Iran  √ Iran  √ Iran √

Agent Gholamhossein 
Karbaschi √

Gholamhossein 
Karbaschi √   - ×

Train Test Personnel.Nominate Role Shared Specific

RAMS+
WikiEvents ACE2005

Suzanne I mean , I 'd like to s- -- I 'd like 
to see the Greens[Agent] run[tr igger ] David 
Cobb[Person] again.

Agent Greens√ - 

Person David Cobb√ -

Figure 3: Examples Visualization. We show the results of format-shared and format-specific extractors.

(a) Transfer from WikiEvents
to RAMS

(b) Transfer from WikiEvents
to RAMS

(c) Transfer from ACE2005
to WikiEvents

(d) Transfer from ACE2005
to WikiEvents

Figure 4: The results of low-resource event argument
extraction via transfer learning.

and format-specific knowledge.

5.3 Low-Resource EAE

Furthermore, we explore the performance of low-
resource event argument extraction via transfer
learning (Figure 4). We transfer the knowledge
from the source dataset (e.g., WikiEvents) to the
target dataset (e.g., RAMS) with few samples in
the target dataset. In our experiments, we train
our model with 0, 10, 50, 100, and 200 sam-
ples. From the results, we obtain the following
observations. First, UnifiedEAE significantly
outperforms the state-of-the-art PAIE model in
terms of both Args-C and Args-I over two datasets.
Particularly, our model achieves over 30 points
with only ten examples on WikiEvents in terms
of F1, while the PAIE model is almost not work-

ing. Second, UnifiedEAE obtains better perfor-
mance with fewer samples compared with PAIE.
UnifiedEAE uses ten examples and performs
even better than PAIE with 100 examples. Third,
UnifiedEAEwith 200 samples achieves the com-
parable results with the existing baselines (e.g.,
BART-Gen, EEQA-BART) trained on full train-
ing datasets (3241 samples) on WikiEvents. All
these findings indicate that our model captures the
format-shared and format-specific knowledge and
transfers the format-shared information effectively.

5.4 Case Studies

To make it easier to understand how our
UnifiedEAE model works, we visualize two ex-
amples on ACE2005 in Figure 3. We find that our
UnifiedEAE model transfers the knowledge ef-
fectively. 1) The format-shared module extracts
the arguments correctly by learning the overlap-
ping knowledge among multiple formats’ datasets.
However, UnifiedEAE (w/o SSP), which trains
on the merging dataset directly, can not predict
“Org" and “Agent". 2) We also train our model on
RAMS and WikiEvents and test it on ACE2005
using a format-shared extractor, which is under a
zero-shot setting. We find our format-shared model
can extract the event roles for the event “Person-
nel.Nominate" though it does not appear in the
training dataset.

6 Conclusions and Future Work

In this paper, we propose a unified event argu-
ment extraction (UnifiedEAE) model to trans-
fer the knowledge among multi-format datasets.
First, a shared-specific prompt architecture is intro-
duced to extract the event arguments with multiple
formats based on both format-shared and format-
specific representations. Then, to enhance the
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model to capture the format-shared knowledge ef-
fectively, we integrate the information bottleneck
into our architecture. Variational information bot-
tleneck is leveraged to eliminate the format-specific
information and retain the format-shared knowl-
edge. We conduct extensive experiments on three
EAE datasets and compare our model with sev-
eral strong baselines. The results show that our
UnifiedEAE model outperforms the state-of-the-
art baselines. Furthermore, the ablation studies
show SharedVIB can capture the format-shared
effectively. Our model also obtains good results
on low-resource event argument extraction. In fur-
ther work, we would like to adopt our model to
other complex tasks, such as relation extraction,
and named entity recognition.
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Abstract

Temporal relation extraction aims to extract
temporal relations between event pairs, which
is crucial for natural language understanding.
Few efforts have been devoted to capturing
the global features. In this paper, we propose
RSGT: Relational Structure Guided Temporal
Relation Extraction to extract the relational
structure features that can fit for both inter-
sentence and intra-sentence relations. Specifi-
cally, we construct a syntactic-and-semantic-
based graph to extract relational structures.
Then we present a graph neural network based
model to learn the representation of this graph.
After that, an auxiliary temporal neighbor pre-
diction task is used to fine-tune the encoder
to get more comprehensive node representa-
tions. Finally, we apply a conflict detection and
correction algorithm to adjust the wrongly pre-
dicted labels. Experiments on two well-known
datasets, MATRES and TB-Dense, demonstrate
the superiority of our method (2.3% F1 im-
provement on MATRES, 3.5% F1 improve-
ment on TB-Dense).

1 Introduction

Temporal relation extraction (TRE) is crucial for
natural language understanding and can facilitate
various downstream applications such as summa-
rization (Zhou et al., 2010), question answering
(Yu et al., 2017), and clinical diagnosis (Zhou et al.,
2021). As shown in Figure 1, the goal of TRE is
to determine the temporal order between an event
pair (BEFORE, AFTER, etc.).

Most early methods were based on statistical ma-
chine learning (Mani et al., 2006; Chambers, 2013).
In recent years, neural network based methods and
large-scale pre-trained language models such as
BERT (Devlin et al., 2018) have contributed to a
substantial increase in the performance of TRE task
(Ning et al., 2019; Wang et al., 2020).

*These authors contributed equally to this work

After

Before

Equal

Before

S1: Former President Nicolas Sarkozy was (e1,informed) 
Thursday that he would face a formal investigation into 
whether he (e2,abused) the frailty of Liliane Bettencourt, 
to get funds for his 2007 presidential campaign. 
S2: Mr. Sarkozy has (e3,denied) accepting illegal campaign
funds from Ms. Bettencourt, either personally or through 
his party treasurer at the time, Eric Woerth, as (e4,alleged) 
by her former butler.

informed abused denied alleged

Figure 1: An example of temporal relation extraction.
There are four events in these sentences. The graph
below shows the pair-wise event temporal relationships.

However, these methods may ignore the global
structure features which carry non-consecutive
and long-distance semantics (Peng et al., 2018).
This shortcoming is obvious in dealing with an
event pair that the two events belong to differ-
ent sentences (inter-sentences event pair), such
as < e1, e4 > in Figure 1. Few previous works
differentiate inter-sentence event pairs from intra-
sentence ones (where the two events appear in the
same sentence). Thus, the performance may be
impacted. For example, we test that there is a 5
accuracy points gap between intra-sentences and
inter-sentence event pairs with the recent state-of-
the-art method (Wen and Ji, 2021a).

To fill this gap, we aim to develop a struc-
tural features method that captures temporal se-
mantic relations for both the inter-sentence and
intra-sentence event pairs. Specifically, we adopt
graph neural networks (GNNs), which have been
proved to be effective in preserving global structure
information of a graph in graph embeddings (Yao
et al., 2019), to bridge the temporal relations.

Based on the above analysis, we present RSGT:
Relational Structure Guided Temporal Relation
Extraction. To enable our model to learn more ef-
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fective representation for relational structures, we
take the following strategies: First, to obtain more
relational information, we create different types of
connections for the graph nodes based on their syn-
tactic and semantic information. Such connections
are combined together to generate a rich relational
graph. In particular, the node embeddings are ob-
tained with the GGNN algorithm (Li et al., 2016).
To avoid graph over-smoothing, RoBERTa (Liu
et al., 2019) embeddings are concatenated with
GGNN embeddings to make the final prediction.

Second, unlike most previous graph-based mod-
els which directly use the pre-trained language
model as the node encoder, we present a task called
temporal event neighbor prediction to fine-tune the
encoder. This task aims to predict the neighbor
node of event mentions from the relational graph.
The fine-tuned encoder can help RSGT better un-
derstand the correlation between the relational
structure and raw text. Ablation studies demon-
strate that it can significantly boost efficiency.

Finally, we present a conflict detection and cor-
rection algorithm based on the transitivity rule of
temporal relations to promote performance.

Experiments on two popular benchmarks, MA-
TRES (Ning et al., 2018) and TB-Dense (Cassidy
et al., 2014), show that RSGT outperforms the state-
of-the-art methods (2.3% F1 points improvement
on MATRES, 3.5% F1 points improvement on TB-
Dense). Meanwhile, we improve the accuracy of
inter-sentence relations to the same level as intra-
sentence relations.

2 Method

We formulate the TRE problem as a multi-class
classification task. For a document D with n sen-
tences (S1, S2, ..., Sn), it can have multiple event
mentions E = (e1, e2, ..., em). The goal of TRE is
to predict the temporal relation type between event
pairs. For an event pair < ei, ej >, the input of
our model is the sentence they belong to. In par-
ticular, if two events belong to different sentences
(we call it inter-sentence event pair), two sentences
< Si, Sj > are concatenated together as the input.

Our work RSGT involves five major parts:
(i) Structure Generation to generate a relational-
guided graph based on syntactic-and-semantic in-
formation, (ii) Temporal Event Neighbor Predic-
tion to transform words into embedding vectors,
(iii) Relational-guided Graph Model to predict tem-
poral relations, (iv) Conflict Detect and Correct

Neighbor Prediction Encoder 

Concatenation

Temporal Relation Classifier

FFN

Extractor outputs

Relational-guided Graph

*

Amherst police officials declined    to    comment    on    Saturday

Figure 2: The illustrative architecture of the proposed
Relational-guided Graph Model. Our goal is to extract
the temporal relation of < w4, w6 >. In the relational-
guided graph, black arcs mean syntactic-guided edges
Ed and red arcs mean semantic-guided edges Et. * in-
dicates a RoBERTa model fine-tuned on the Temporal
Event Neighbor Prediction task.

algorithm to revise temporal errors.

2.1 Structure Generation
Building graphs is a feature selection process that
can facilitate representation learning for the TRE
problem. Given an input sentence S, our goal is
to generate a relational graph G = {N , E} as the
input of our graph neural network. Our relational
graph is based on syntactic and semantic informa-
tion extracted from S. The node set N and edge
set E in G are constructed as follows strategies.

2.1.1 Nodes
The node set N should capture all objects related
to temporal events. We take two types of nodes
to make up the node set. The first type is from
the original words wi ∈ S. The second type is the
event arguments extracted by the Semantic Role La-
beling (SRL) model, which we will introduce in the
semantic-guided edges section. Formally, let W =
{w1, w2, ..., w|W |}, Arg = {a1, a2, ..., a|Arg|} be
the set of words and event arguments, respectively.
Then the node set of the input sentence should con-
sist of two parts: N = {W ∪ Arg}. After the
generation of G, nodes with no edges pointing to
other nodes are removed from N .

2.1.2 Syntactic-guided Edges
Dependency Parsing (DP) can examine the depen-
dencies between the phrases of a sentence to de-
termine its syntactic structure. As such, we apply
the dependency parsing tree of the input sentence
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to build syntactic-guided edges Ed. For the depen-
dency tree consisting of multiple head-dependent
arcs, the arcs whose head is event mention are con-
verted to edges Ed_along as the solid black arcs in
Figure 2. In addition, we assume that information
flows not only along the syntactic dependency arcs,
so we create edges Ed_rev in the opposite direction
as well (i.e., from dependents to heads). Following
Kipf and Welling (2016), we also add self-edges for
each nodes as Ed_loop. Therefore, syntactic-guided
edges Ed contains three kinds of edges Ed_along,
Ed_rev and Ed_loop.

2.1.3 Semantic-guided Edges
We design semantic-guided edges Et to fetch se-
mantic information related to a temporal event.
Specifically, we want to import an event extrac-
tion model that can extract event arguments based
on event mentions. SRL-BERT (Shi and Lin, 2019)
becomes our final choice because it not only meets
our above requirements but also marks out the argu-
ment’s types. As shown in the Figure 2’s red arcs,
arguments are connected to the event mentions as
Et. SRL task assumes event mentions trigger the ar-
guments, so we only consider unidirectional edges
from event nodes. Some particular argument types,
such as Temporal and Discourse, which can prob-
ably provide extra information to understand the
temporal relation, are assigned to different edge
types with higher weight.

2.2 Temporal Event Neighbor Prediction

In the graph model, we need to apply an encoder
to transform each word wi ∈ S into a contextual
represented vector for nodes. Most previous stud-
ies directly use pre-trained language models as the
encoder. However, Chien et al. (2021) argues that
these pre-trained language models ignore the cor-
relations between graph topology and raw text fea-
tures. Inspired by this work, we propose a task
called Temporal Event Neighbor Prediction. Given
a syntactic-guided graph Gd we construct, this task
aims to distinguish whether a node is the neigh-
bor of the event mention’s node or not. We pick k
words before and after per event mention respec-
tively in the sentence, and they can form node pairs
with its event mention.

Take the sentence in 2 as an example. Suppose
we are using k = 2, so for the first event mentions
w4, we pick 4 words before and after w4, which
are {w2, w3, w5, w6}. Node pairs < w4, w3 >,<
w4, w6 > are neighbors, so their labels are 1. <

w4, w2 >,< w4, w5 > are not neighbors and their
labels are 0. The second event mentions w6 can be
treated in the same way. The input of this task is
each event-neighbor pair < we, wnbr > and its raw
sentence.

To handle this task, we first apply RoBERTa to
encode the sentences and extract the nodes’ em-
beddings of < we, wnbr >. The represented vector
of two nodes then passes through a Feed-Forward
Network (FFN) layer with a tanh activation func-
tion, respectively. For the output of FFN layer he
and hnbr, we concatenate them together and apply
Batch Normalization as the representation of node
pair. Then a FFN layer with softmax is added for
prediction. The model can be formalized as:

he = tanh(FFN1(ϕ(we)))

hnbr = tanh(FFN2(ϕ(wnbr))) (1)

ˆynbr = softmax(FFN3(BN[hnbr;he]))

where BN denotes Batch Normalization, and ϕ is
the encoder that maps w to feature vectors. We
adjust k to ensure that the distribution of labels
is balanced. To make sure RoBERTa can main-
tain more topology information from the relational
graph, the learning rate of RoBERTa is larger than
other layers.

This task allows the encoder to understand not
only the contextual information from the raw text
but also the topology information from our rela-
tional graph G. We select the model with the best
accuracy in the validation set as the encoder. Then
we apply this fine-tuned encoder to represent the
node set N . This task can be further extended to
other graph-related models as an efficient way for
the encoder’s fine-tuning.

2.3 Relational-guided Graph Model

We have already generated a relational graph G and
the represented vector x for each node. We apply
Gated Graph Sequence Neural Networks (GGNN)
to handle our relational graph. GGNN employs a
gated recurrent unit (GRU) as a recurrent function,
reducing the recurrence to a fixed number of steps.
The advantage is that it no longer needs to constrain
parameters to ensure convergence. We parse each
sentence into the relational graph and use GGNN
to digest this structural information. The forward
process of GGNN is:
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xu = ϕ(wu)

h0u = [xu∥0]
atu =

∑

v∈N (u)

Weuvh
t
v

ht+1
u = GRU(atu, h

t
u)

(2)

where u denotes the current node and v denotes the
neighbor node of u. ϕ is the fine-tuned encoder,
and htu denotes the t step hidden states of u.

As discussed in Chen et al. (2020), over-
smoothing is a common issue faced by GNNs,
which means that the representations of the graph
nodes of different classes would become indis-
tinguishable when stacking multiple layers. To
avoid over-smoothing problems, the embeddings
< xi, xj > from fine-tuned RoBERTa are passed
through a fully connected layer parallel with
GGNN. For event pair < xi, xj >, the represen-
tation HF from the fully connected layer is then
concatenated with GGNN’s final hidden states HG.
Concatenation may help us maintain some con-
textual information from RoBERTa encoder and
increase the differentiation of event representations.
In the end, we apply a two-layer FFN as classifier
f and a BatchNorm layer for the final temporal pre-
diction. The final output of event pair < ei, ej >
is:

ŷij = f(BN[HGi ;HGj ;HFi ;HFj ]) (3)

The overall loss function to train our model is:

L = −
∑

i,j

y∗ijlog(ŷij) + γLreg (4)

where y∗ij is the gold labels of temporal relations
and γ is a trade-off parameter for regularization
techniques.

2.4 Conflict Detect and Correct
There exists a transitivity rule in temporal rela-
tionships. Take the events depicted in Figure 1 as
an example. We consider the intra-sentence and
inter-sentence event pairs relationships together
and build the temporal diagram on the left side
of the Figure 3. A transitivity rule could be ex-
plained as “e2 happens before e1, e1 and e4 occur
simultaneously, then e4 should happen after e2”.
On the right side of Figure 3 is a counterexample.
The red arrows can form a cycle, which indicates
that at least one temporal relation edge violates the
transitivity rule.

Figure 3: The example of transitivity rule in temporal
relationship. Unidirectional arrows represent BEFORE,
like e2 → e1 refers to e2 happens before e1. Bidirec-
tional arrows represent two events occurring simultane-
ously.

To take full advantage of this rule, we design
an algorithm to find potential conflicts. From the
output of the classifier f , we obtain a temporal rela-
tionship prediction ŷij for the event pair< ei, ej >.
We can build a document-level temporal relational
graph by collecting temporal relation predictions
as edges and events as nodes from document D.
For BEFORE relation of < ei, ej >, we add an
edge from ei to ej . On the contrary, we add an
edge from ej to ei for AFTER. We treat EQUAL
as a bidirectional edge. Other temporal relations
are ignored (e.g. VAGUE). Obviously, this graph
should be a Directed Acyclic Graph (DAG). So our
goal is to find the conflict cycles and correct them.

We re-implement the Johnson cycle algorithm
(Johnson, 1975) as our temporal event conflict de-
tection algorithm. It was presented to find all the
elementary cycles of a directed graph, which time
bounded byO((n+e)(c+1)) for n nodes, e edges
and c elementary cycles.

Then we use algorithm 1 to detect and correct
conflict. Basically, we:

1. Apply conflict_detect algorithm to find ele-
mentary cycles in the edges.

2. Pick the longest cycle from step 1 and ini-
tialize variables cycle_n as cycle’s length,
m_logit,m_edge as the smallest logit and its
edge (lines 5-7).

3. Traverse all nodes in the cycle and find the
smallest logit (lowest probability of confi-
dence edge_logit). Store the start and end
node of m_edge(lines 8-20).

4. Reverse the edge found in step 3 to solve the
conflicts. Remove m_edge from the graph if
it has been corrected twice. Go back to step 1
and repeat until the graph is a directed acyclic
graph (lines 21-26).
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Algorithm 1: Correct Algorithm
Input :edges
Output :Corrected edges

1 revised = [] ;
2 while True do
3 cycles = conflict_detect(edges);
4 if no cycles then break;
5 cycle← longest(cycles);
6 cycle_n← length(cycle);
7 m_logit,m_edge← −1, (−1,−1);
8 for i in range(1, cycle_n) do
9 if i! = cycle_n then

10 j = i+1 ;
11 else
12 j = 1;
13 end
14 fr ← cycle[i];
15 to← cycle[j];
16 edge_logit = edges[now][to];
17 if m_logit ≤ edge_logit then
18 m_logit = edge_logit;
19 m_edge = (fr, to)

20 end
21 fr, to← m_edge;
22 if fr, to in revised then
23 remove edgefr,to
24 revised. add(m_edge) ;
25 reverse edgefr,to to edgeto,fr ;
26 cycles← collision detection (adjdi)
27 end

This algorithm is concise and efficient, and it can
be well adapted to the correction work of various
datasets without training.

3 Experiments

3.1 Datasets
We conduct our experiments on two well-known
benchmarks for the TRE task, MATRES(Ning
et al., 2018) and TB-Dense(Cassidy et al., 2014).
MATRES contains refined annotations on Time-
Bank(Pustejovsky et al., 2003) , AQUAINT and
Platinum documents. It contains four types of tem-
poral labels: BEFORE, AFTER, EQUAL, VAGUE.
TB-Dense is a densely annotated dataset from
TimeBank and TempEval(UzZaman et al., 2013).
This dataset contains six label types. In addition to
the four label types from MATRES, it has two more
label types: INCLUDES and IS_INCLUDED. For
compatible comparison, we apply the same data

splits as in prior work for the considered datasets.
The detailed statistics can be found in Table 1.

3.2 Evaluation Metrics

We adopt micro averaged precision, recall, and F1
scores as evaluation metrics following the previous
works(Ning et al., 2018; Wen and Ji, 2021a; Cao
et al., 2021). For the MATRES, VAGUE is con-
sidered to be non-temporal information and is ex-
cluded from the F1 calculation. For the TB-Dense,
VAGUE is taken into consideration (i.e., all label
types are seen as positive classes) so the metric
should share the same precision, recall, and F1
value. We follow these different settings for our
experiments to ensure fair comparisons.

Dataset Train Validation Test Labels

MATRES 10888 1852 837 a,b,e,v
TB-Dense 4032 629 1427 a,b,s,v,i,ii

Table 1: Data splits and relation pairs statistics. a: AF-
TER, b: BEFORE, e: EQUAL, s: SIMULTANEOUS, v:
VAGUE, i: INCLUDES, ii: IS_INCLUDED.

3.3 Implement Details

The hyperparameters used in the experiment are
listed. Neighbor Prediction: RoBERTa-large is
adopted to encode the sentence. The learning rate
for RoBERTa and FFN are 1e-5, 1e-4, respectively.
Syntactic Information: We apply SpaCy * toolkit
to build dependency trees based on input sentences.
Semantic Information: The event arguments cor-
responding to each event mention are extracted
from SRL-BERT. Graphs Training: AdamW with
learning rate of 5e-6, β1 = 0.9, β2 = 0.999 and
weight decay of 0.01 is used for optimization. We
set the training epochs and batch size to 40 and 32,
respectively. Besides, we exploit a dropout with a
rate of 0.5 on the concatenated feature representa-
tions.

3.4 Baselines

We conduct experiments to compare our approach
RSGT with the state-of-the-art models for TRE
in each benchmark dataset as follows. Note that
MATRES is a relatively new dataset, so we can
hardly find more baselines that perform well on
both MATRES and TB-Dense.

*https://spacy.io/
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Dataset Models P R F1

MATRES

Siamese 66.6 60.8 63.0
Constrained 72.1 80.8 76.2
UAST 76.6 84.9 80.5
SMTL - - 81.6
Stack-Propagation 78.4 85.2 81.7
RSGT 82.2 85.8 84.0

TB-Dense

Timelines 56.6 56.6 56.6
UAST 64.3 64.3 64.3
CTRL-PG 65.2 65.2 65.2
RSGT 68.7 68.7 68.7

Table 2: Model performance on MATRES and TB-
Dense. The performance improvement of RSGT over
the baselines is significant with p < 0.01

MATRES For this dataset, the following base-
lines are chosen for comparison. (i) Siamese (Ning
et al., 2019): A Siamese encoder of a temporal com-
monsense knowledge base, and global inference via
integer linear programming (ILP). (ii) Constrained
(Wang et al., 2020): A framework bridges tem-
poral and subevent relation extraction tasks with
a comprehensive set of logical constraints. (iii)
SMTL (Ballesteros et al., 2020): A model relies
on multi-task learning and self-training techniques.
(iv) Stack-Propagation (Wen and Ji, 2021a): A
Stack-Propagation framework to further incorpo-
rate predicted timestamp explicit for relation clas-
sification.

TB-Dense We use the following baselines for
comparison. (i) Timelines (Vashishtha et al., 2019)
A semantic framework for modeling fine-grained
temporal relations and event duration that maps
pairs of events to real-valued scales and constructs
document-level event timelines. (ii) UAST (Cao
et al., 2021) An uncertainty-aware self-training
framework to quantify the model uncertainty. (iii)
CTRL-PG (Zhou et al., 2021) A method with prob-
abilistic soft logic Regularization and global infer-
ence at the document-level.

3.5 Overall Performance

The most important observation from Table 2 is
that model RSGT has significantly outperformed
all the baseline systems on both MATRES and TB-
Dense. Thus evidently indicating the effectiveness
of the proposed RSGT model for the TRE task.
Compared with the previous SOTA method Stack-
Propagation, which also uses RoBERTa, our RSGT
has 2.3 % F1 improvement on the MATRES dataset.

Intra-sentences Inter-sentences
P R F1 P R F1

RoBERTa-F 81.6 81.9 81.7 77.0 78.7 78.0
Stack-Propagation 77.9 84.5 81.1 73.6 85.7 79.2
RSGT 83.1 84.5 83.8 81.8 86.4 84.1

Table 3: Performance of different models on MATRES.

For the more complex dataset TB-sense with six
temporal relation types, RSGT also has a 2.6%
F1 improvement over the previous SOTA method
CTRL-PG. Overall, our method RSGT establishes
a new state-of-the-art on two popular datasets of
the TRE task.

3.6 Intra- and Inter-sentence

Inter-sentence event pairs make up a considerable
proportion of the MATRES dataset (69.53% in the
train set and 69.77% in the test set). Consequently,
the performance on inter-sentence event pairs can
significantly influence the overall performance. To
explicitly demonstrate the effect of RSGT on the
extraction of intra- and inter-sentence event pairs,
we conduct a contrast experiment on the MATRES
dataset. We attach a learnable fully-connected layer
after RoBERTa as the baseline RoBERTa-F. The
performance on the intra- and inter-sentences is
shown in Figure 3. The previous SOTA method,
Stack-Propagation, has a clear 4.3% gap in preci-
sion value between intra- and inter-sentences. As
a comparison, we can observe an absolute F1 gain
from RSGT, 2.7% and 4.9% on the intra-sentences
and inter-sentences, respectively. Importantly, we
successfully fill the performance gap between intra-
and inter-sentence event pairs and improve their
F1 result to the same level. These experiments
show that the introduction of relational structure is
of great help for inter-sentence temporal relations
extraction.

3.7 Ablation Study

To illustrate the impact of each component in
RSGT, we further conduct ablation studies with
different configurations. Note that MATRES is a
relatively new dataset, so we can hardly find more
baselines that perform well both on MATRES and
TB-Dense.

3.7.1 Effect of Neighbor Prediction
We propose the Neighbor Prediction task so that
the encoder can learn the correlation between the
relational graph’s topology and raw text. In the
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Model P R F1

RSGT -w/o neighbor prediction 79.7 82.7 81.2
RSGT -w event prediction 69.7 79.2 74.1

RoBERTa 78.4 80.0 79.1
RSGT -w/o Ed 80.5 84.7 82.5
RSGT -w/o Et 81.7 85.5 83.6
RSGT independent 81.0 84.8 82.8
RSGT 82.2 85.8 84.0

Table 4: Performance of different models on MATRES

MATRES dataset, the Neighbor Prediction task
can reach 88.6% accuracy. In Table 4, RSGT -
w/o neighbor prediction is RSGT excluding the
Neighbor Prediction task, that is, using the original
pre-trained RoBERTa model as encoder. As for
RSGT -w event prediction, we replace the Neigh-
bor Prediction task with a simple event extraction
task to fine-tune the node encoder. Event extrac-
tion aims to extract event mentions from an input
sentence. The result shows that: (1) The topologi-
cal knowledge about relational graphs learned by
neighbor prediction task can greatly improve the
subsequent models. (2) Other types of knowledge,
such as knowledge implied by the event extraction
model, may not positively affect the TRE task.

3.7.2 Effect of Relational Structure Features

We examine the following ablated models to evalu-
ate the effectiveness of different relational structure
features in RSGT on the TRE task. (i) RoBERTa
is a baseline with RoBERTa model and a fully-
connected layer. (ii) RSGT -w/o Ed excludes the
syntactic-guided edges. (iii) RSGT -w/o Et ex-
cludes the semantic-guided edges. (iv) RSGT inde-
pendent apply syntactic and semantics information
to construct two independent graphs, respectively.
At last, we average the embeddings of the two
graphs.

The bottom half of Table 4 shows the perfor-
mance of the above ablated models. We can ob-
serve that all the components can contribute to the
proposed model RSGT as eliminating any of them
degrades the performance in the F1 score. Appar-
ently, the worse performance of RSGT - Ed model
illustrates that syntactic information contributes a
major improvement on TRE. And the RSGT - Et
model that removes semantic information slightly
loses the performance of 0.4% F1. This is because
the syntactic information contains more knowledge
about the current event pair, and syntactic informa-

S3: They were trying to attend a prayer vigil for Slepian but had been 
sent to his house by mistake, and a police officer on duty took their 
names, Moskal said.  
S4: “They were being sought for interviews just because they were 
literally in the area after the homicide,” he said.

S1: He had spoken to both leaders over the past two years about how it  
was in the interests of both countries to restore normal relations. He 
said he discussed the issue with Mr. Netanyahu during his visit to Israel 
this week 

 spoken - discussed (Before, After    , Before, Before)

S2: Senator Susan Collins, Republican of Maine, led the repeal in the 
Senate of  “don't ask, don't tell ” in 2010, allowing gay men and women 
to serve openly in the military. 

 repeal - allowing (Equal, After    , Equal, Equal)

 trying - sought (Before, After    , Before, Before)

 trying - said (Before, After    , After    , After     Before)

 sought - said (Before, Before, Before, Before)

Figure 4: Case study. Event mentions and important
relational structure are highlighted by green and blue
respectively. Each line after sentence S has a structure
like < e1, e2 > (G,P1,P2,P3), where e1, e2 is an event
pair and G is the gold temporal label. P1, P2 and P3

denotes prediction from Stack-Propagation (Wen and
Ji, 2021b), RSGT-w/o conflict algorithm and RSGT
respectively. Incorrect predictions are denoted by a red
mark. Strikethrough means the prediction is corrected
by our conflict detect and correct algorithm.

tion may contain semantic information (event argu-
ments) in some cases. Compared with RSGT inde-
pendent, the independent graphs lack the interac-
tion of all relational structure information. Instead,
syntactic and semantic guided information should
work together to form an interactive graph to enrich
the relational structure obtained from RSGT.

3.7.3 Effect of Conflict Detect and Correct
This algorithm is training-free and the time com-
plexity is O(n). Limited by the test set size, the im-
provement is slight (about 0.1%) on both MATRES
and TB-dense datasets. Notes that the performance
improvement from conflict detection gradually de-
creases with the training process. For example, it
can bring a 4.3% average improvement in the first
epoch, which means conflict detection can bring
huge performance improvements in the early stage.
We believe that it will play a more critical role in
larger-scale datasets or real-world cases.

3.8 Case Study and Error Analysis

To promote a better understanding of our RSGT
and guide potential research direction, we analyze
three concrete examples in Figure 4. Each case
has a pair of events, and the study results can be
categorized into different types that are described
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below:

Case 1. Sentence S1 contains a conversation
event mentions “spoken” and a discussion event
mentions “discussed”. RSGT correctly predicts the
temporal relations while Stack-Propagation fails.
RSGT successfully extracts two temporal argu-
ments from S1, enhancing the model’s inference
ability by providing the time of occurrence. Obvi-
ously, “over the past two years” has happened “this
week”. The previous model does not utilize seman-
tic information, which leads to misclassification.

Case 2. The small proportion of EQUAL (about
3.6% in MATRES ) makes temporal relationship
prediction more challenging, as it can easily be
confused with more common labels like BEFORE
and AFTER. Sentence S3 contains two events, “al-
lowing” and “serve”. It seems like a simple task for
a human. However, Stack-Propagation relies only
on two event words and fails to recognize their in-
teraction. We highlight some syntactic information
extracted by RSGT. “allow someone to do some-
thing” is a typical relational structure that happens
simultaneously. As a result, this relational structure
makes the prediction much easier for RSGT.

Case 3. S3 and S4 show one intra-sentence
and two inter-sentence event temporal relations.
Our RSGT correctly classifies <trying, sought>,
<sought, said> event pairs. For an inter-sentence
event pair like <trying, said>, which is so hard that
RSGT fails to predict its temporal relation initially,
the conflict detect and correct algorithm can utilize
the relationships between the other two event pairs
to correct the result. In the directed graph built
from the predictions, we obtain three edges (trying
→ sought), (trying← said), (sought→ said). Obvi-
ously, this graph does not meet the DAG definition,
and our algorithm reverses the edge with a mini-
mum confidence score (trying← said) to correct
it.

4 Related Work

Earlier efforts on TRE (temporal relation extrac-
tion) use statistical machine learning techniques
(Support Vector Machine, Max entropy) and hand-
craft features (e.g Verhagen and Pustejovsky (2008)
and Chambers (2013)). Recently, neural methods
and large-scale pre-training language models have
also achieved promising improvement (Nguyen and
Grishman, 2015; Nguyen et al., 2016; Wang et al.,
2020; Mathur et al., 2021). The early feature-based

methods for TRE have explored different features
and resources to improve the performance, includ-
ing syntactic patterns and lexical features (Cheng
and Miyao, 2017; Mirza and Tonelli, 2016). Unlike
previous works, our approach RSGT takes account
of relational structure features to induce more ac-
curate representations.

A wave of research at the intersection of deep
learning on graphs has influenced a variety of NLP
tasks, including event extraction (Xu et al., 2021;
Yan et al., 2019), relation extraction (Tran Phu and
Nguyen, 2021; Su et al., 2022) and event argument
extraction (Pouran Ben Veyseh et al., 2020). These
graph-structured data can encode complicated re-
lations between event pairs to infer temporal order.
Our model is different from such related works
in that we designed a relational structure guided
graphs that are tailored to our TRE task. In addi-
tion, we introduce a novel Temporal Event Neigh-
bor Prediction task for the fine-tuning of the node
encoder.

5 Conclusion

This paper proposes RSGT to capture relational
structure information for the temporal relation ex-
traction task. The experimental results well demon-
strate our model’s effectiveness and superiority in
both the overall datasets and the inter-sentence
event pairs. Ablation experiments show that the
relational graph model and Temporal Event Neigh-
bor Prediction contribute greatly to RSGT’s perfor-
mance.

Our future work will focus on how to apply
Temporal Event Neighbor Prediction, and Conflict
Detect and Correct Algorithm to other tasks with
rich relations such as Casual Relations (Caselli
and Vossen, 2017). We believe these methods are
promising in processing relational structure infor-
mation from other relational extraction tasks.
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Abstract

Knowledge graph embedding aims to repre-
sent entities and relations as low-dimensional
vectors, which is an effective way for pre-
dicting missing links. It is crucial for knowl-
edge graph embedding models to model and
infer various relation patterns, such as sym-
metry/antisymmetry. However, many existing
approaches fail to model semantic hierarchies,
which are common in the real world. We pro-
pose a new model called HRQE, which rep-
resents entities as pure quaternions. The re-
lational embedding consists of two parts: (a)
Using unit quaternions to represent the rotation
part in 3D space, where the head entities are
rotated by the corresponding relations through
Hamilton product. (b) Using scale parameters
to constrain the modulus of entities to make
them have hierarchical distributions. To the
best of our knowledge, HRQE is the first model
that can encode symmetry/antisymmetry, inver-
sion, composition, multiple relation patterns
and learn semantic hierarchies simultaneously.
Experimental results demonstrate the effective-
ness of HRQE against some of the SOTA meth-
ods on four well-established knowledge graph
completion benchmarks.

1 Introduction

Knowledge graphs represent human knowledge of
the real world as structured triples— (head entity,
relation, tail entity) also known as (subject, predi-
cate, object). There are some outstanding knowl-
edge graphs, such as WordNet (Miller, 1995), Free-
base (Bollacker et al., 2008), DBpedia (Lehmann
et al., 2015). They have gained widespread at-
tention for their successful usage in various ap-
plications (e.g., question answering, natural lan-
guage processing, and recommendation systems).
Although millions of entities and billions of facts
exist in large-scale knowledge graphs, they still

*Corresponding Author

suffer from the incompleteness problem. There-
fore, knowledge graph completion (also known
as link prediction) which aims to predict missing
links among entities based on the known triples has
gained growing interest. Learning low-dimensional
representations of entities and relations for Knowl-
edge graphs is an effective solution for this task.

Learning knowledge graph embeddings in the
complex space C or quaternion space H has been
proven to be a highly effective inductive bias,
largely owing to their ability to model connectiv-
ity patterns of the relations. For example, Com-
plEx (Trouillon et al., 2016), which infers new re-
lational triplets with the asymmetrical Hermitian
product can model the symmetry/antisymmetry pat-
terns. RotatE (Sun et al., 2019), which represents
entities as points in a complex space and relations
as rotations, can model relation patterns including
symmetry/antisymmetry, inversion, and composi-
tion. DualE (Cao et al., 2021), which combines
rotation and translation in dual quaternion space
can additionally model the multiple relations pat-
tern. However, many existing models fail to model
semantic hierarchies in knowledge graphs.

Semantic hierarchy is a ubiquitous property
in knowledge graphs. For instance, Word-
Net contains the triple [arbor/cassia/palm, hy-
pernym, tree], where “tree” is at a higher
level than “arbor/cassia/palm” in the hierarchy.
Freebase contains the triple [America, /loca-
tion/location/contains, California/Los Angeles],
where “California/Los Angeles” is at a lower level
than “America” in the hierarchy. Although there
exists some work that takes the hierarchy structures
into account (Xie et al., 2016; Zhang et al., 2020),
they usually require additional data to obtain the
hierarchy information or cannot model various re-
lation patterns. Therefore, it is still challenging to
find an approach that is capable of modeling the
various relation patterns and semantic hierarchy
simultaneously.
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Model Relation Patterns Hierarchy
Multiple Symmetry Antisymmetry Inversion Composition -Aware

TransE (Bordes et al., 2013) ✗ ✗ ✓ ✓ ✓ ✗

DistMult (Yang et al., 2015) ✗ ✓ ✗ ✗ ✗ ✗

ComplEx (Trouillon et al., 2016) ✗ ✓ ✓ ✓ ✗ ✗

RotatE (Sun et al., 2019) ✗ ✓ ✓ ✓ ✓ ✗

QuatE (Zhang et al., 2019) ✗ ✓ ✓ ✓ ✗ ✗

HAKE (Zhang et al., 2020) ✗ ✓ ✓ ✓ ✓ ✓

DualE (Cao et al., 2021) ✓ ✓ ✓ ✓ ✓ ✗

QuatRE (Nguyen et al., 2022) ✓ ✓ ✓ ✓ ✗ ✗

RQE ✓ ✓ ✓ ✓ ✓ ✗

HRQE ✓ ✓ ✓ ✓ ✓ ✓

Table 1: The pattern modeling and hierarchy-aware abilities of several models

In this paper, we propose Rotation Based
Quaternion Knowledge Graph Embeddings (RQE)
and its Hierarchy-aware extension HRQE. More
concretely, we represent entities as pure quater-
nions with three imaginary components i, j and k.
The relational embedding consists of two parts: (a)
Using unit quaternions to represent the rotation part
in 3D space, where the head entities 𝑄ℎ are rotated
by the corresponding relations through Hamilton
product. (b) Using scale parameters to constrain
the modulus of entities 𝑄ℎ and 𝑄𝑡 to make them
have hierarchical distributions.

To summarize, our contributions are as follows:
1) We propose a new framework called HRQE
based on quaternion rotation. 2) To the best of
our knowledge, HRQE is the first model that can
encode symmetry/antisymmetry, inversion, compo-
sition, multiple relation patterns and learn semantic
hierarchies simultaneously. 3) We conduct a se-
ries of theoretical and empirical analyses to show
the strength of HRQE against some of the SOTA
methods.

2 Related Work

2.1 Knowledge Graph Embedding Models

Roughly speaking, we can divide knowledge graph
embedding models into translational distance mod-
els and semantic matching models. The former use
distance-based score functions, while the latter use
similarity-based ones.

Translational Distance Models. TransE (Bor-
des et al., 2013) is the most widely used translation
distance constraint model. It assumes that enti-
ties and relations satisfy ℎ𝑒𝑎𝑑 + 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ≈ 𝑡𝑎𝑖𝑙.
However, TransE cannot handle 1-1-N, N-1-1, and
N-1-N relations well (Wang et al., 2014). TransH
(Wang et al., 2014) is proposed to compensate for

the shortcomings of TransE. It projects entities onto
relation-specific hyperplanes. TransR (Lin et al.,
2015) has a very similar idea to TransH, which in-
troduces relation-specific spatial transformations
instead of hyperplanes. TranSparse (Ji et al., 2016)
simplifies TransR by forcing the projection matrix
to be sparse. Moreover, RotatE (Sun et al., 2019)
defines each relation as a rotation from the source
entity to the target entity in a complex vector space,
which can represent various relation patterns in-
cluding symmetry/asymmetry, inversion and com-
position.

Semantic Matching Models. RESCAL (Nickel
et al., 2011) is a tensor factorization model which
represents each relation as a full-rank matrix and
obtains score function by matrix multiplication.
DistMult (Yang et al., 2015) simplifies RESCAL
by restricting relation matrices to be diagonal.
However, Distmult assumes that all relations are
symmetric. ComplEx (Trouillon et al., 2016)
extends DistMult to complex space, and uses
conjugate-transpose to model asymmetric rela-
tions. QuatE (Zhang et al., 2019) extends the
complex space into the quaternion space with two
rotating surfaces. DualE (Cao et al., 2021) com-
bines rotation and translation in dual quaternion
space. ConvE (Dettmers et al., 2018) and Inter-
actE (Vashishth et al., 2020) employ convolutional
neural networks to build score functions.

2.2 The Ways to Model Hierarchy Structures

Another related problem is how to model hierar-
chy structures in knowledge graphs. Xie et al.
(2016) propose TKRL, which requires additional
hierarchical type information for entities. Zhang
et al. (2018) use clustering algorithms to model
the hierarchical relation structures. Zhang et al.
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Figure 1: Illustrations of HRQE. (a) HRQE models 𝑟 as rotation in 3D space. (b) Example of HRQE modeling
multiple relations. (c) An example HRQE of modeling symmetric relations with \ = 180◦. (d) Example of HRQE
modeling different levels of the hierarchy.

(2020) proposed HAKE, which maps entities into
the polar coordinate system for hierarchy-aware.
Inspired by HAKE, we project entities into 3D
space and constrain their rotations and modulus
with corresponding relations. In addition to learn-
ing the semantic hierarchy, we can better encode
various relation patterns such as multiple relations.

3 Quaternion Background

A quaternion 𝑄 ∈ H is a hyper-complex num-
ber consisting of a real and three separate imag-
inary components (Hamilton, 1844), defined as
𝑄 = 𝑎 + 𝑏i + 𝑐j + 𝑑k, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R and
i, j, k are imaginary units. i, j and k are satisfied
with Hamilton’s rules (i2 = j2 = k2 = ijk = −1).
And based on these rules, more non-commutative
multiplication rules can be derived, such as ij =
k, ji = −k, jk = i, kj = −i, ki = j, and ik = −j.
Some widely used operations of quaternion algebra
are introduced as follows:
Quaternion Conjugate: The conjugate of a quater-
nion 𝑄 is defined as �̄� = 𝑎 − 𝑏i − 𝑐j − 𝑑k.
Quaternion Norm: The norm of a quaternion 𝑄
is defined as |𝑄 | =

√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2.

Pure Quaternion: A pure quaternion 𝑄 ∈ H𝑝 is
defined as a quaternion whose scalar part is zero.
Usually, we convert the 3D space point (𝑥, 𝑦, 𝑧)
into a pure quaternion 𝑄 = 0+ 𝑥i+ 𝑦j+ 𝑧k, 𝑥, 𝑦 and
𝑧 ∈ R for further quaternion operations.
Quaternion-Inner Product: The quaternion inner
product between 𝑄1 = 𝑎1 + 𝑏1i + 𝑐1j + 𝑑1k and
𝑄2 = 𝑎2 + 𝑏2i + 𝑐2j + 𝑑2k is obtained by taking
the inner products between corresponding scalar
and imaginary components and returns a scalar
𝑄1 · 𝑄2 = ⟨𝑎1, 𝑎2⟩ + ⟨𝑏1, 𝑏2⟩ + ⟨𝑐1, 𝑐2⟩ + ⟨𝑑1, 𝑑2⟩.
Quaternion Multiplication (Hamilton Product):
The quaternion multiplication is composed of all
the standard multiplications of factors in quater-

nions and returns another quaternion, defined as:

𝑄1 ⊗ 𝑄2 = (𝑎1𝑎2 − 𝑏1𝑏2 − 𝑐1𝑐2 − 𝑑1𝑑2)
+ (𝑎1𝑏2 + 𝑏1𝑎2 + 𝑐1𝑑2 − 𝑑1𝑐2)i
+ (𝑎1𝑐2 − 𝑏1𝑑2 + 𝑐1𝑎2 + 𝑑1𝑏2)j
+ (𝑎1𝑑2 + 𝑏1𝑐2 − 𝑐1𝑏2 + 𝑑1𝑎2)k.

(1)

Quaternion Rotation: If 𝑄𝑟 = cos \2 + sin \2 u,
where u ∈ Ri + Rj + Rk is a unit vector, the re-
sult of pure quaternion 𝑄 = 0+ 𝑥i+ 𝑦j+ 𝑧k rotating
\ around the axis u is 𝑄 ′ = 0 + 𝑥 ′i + 𝑦′j + 𝑧′k, then

𝑄 ′ = 𝑄𝑟 ⊗ 𝑄 ⊗ �̄�𝑟 . (2)

4 Method

In this section, we introduce our proposed model
HRQE. First of all, we elaborate the details of our
framework, which mainly consists of two parts:
(1) rotate the head entity using the unit relation
quaternion and score each triplet with inner prod-
uct between the rotated head quaternion and the tail
quaternion; (2) limit the norm of the head quater-
nion and the tail quaternion with the relation modu-
lus part. After that, we provide a series of analyses
to show the strength of our framework.

Symbol Description. Suppose that we have a
knowledge graph G consisting of 𝑁 entities and
𝑀 relations. We formulate the all entity embed-
dings as a pure quaternion matrix 𝑄 ∈ H𝑁×𝑘𝑝 ,
where each row is an embedding vector for a spe-
cific entity of dimensionality k, and denote the
relation embeddings as rotation part 𝑊 ∈ H𝑀×𝑘
and modulus part 𝑤 ∈ R𝑀×𝑘 . Given a triplet
(ℎ, 𝑟, 𝑡), the embedding of head entity ℎ is denoted
as 𝑄ℎ = {0 + 𝑥ℎi + 𝑦ℎj + 𝑧ℎz : 𝑥ℎ, 𝑦ℎ, 𝑧ℎ ∈ R𝑘}
and the embedding of the tail entity 𝑄𝑡 = {0+ 𝑥𝑡 i+
𝑦𝑡 j + 𝑧𝑡z : 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ∈ R𝑘}, where 𝑄ℎ, 𝑄𝑡 ∈ 𝑄.
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Then we denote the relation 𝑟 as rotation part
𝑊𝑟 = {𝑎𝑟 + 𝑏𝑟 i + 𝑐𝑟 j + 𝑑𝑟z : 𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟 , 𝑑𝑟 ∈ R𝑘}
and modulus part 𝑤𝑟 = {𝑒𝑟 : 𝑒𝑟 ∈ R𝑘}, where
𝑊𝑟 ∈ 𝑊, 𝑤𝑟 ∈ 𝑤.

4.1 Hierarchy-Aware Rotation Quaternion
Embeddings

The Rotation Part. We first normalize the relation
quaternion𝑊𝑟 to a unit quaternion𝑊◁𝑟 to eliminate
the scaling effect by dividing𝑊𝑟 by its norm:

𝑊◁𝑟 =
𝑊𝑟
|𝑊𝑟 | =

𝑎𝑟 + 𝑏𝑟 i + 𝑐𝑟 j + 𝑑𝑟k
𝑎2
𝑟 + 𝑏2

𝑟 + 𝑐2
𝑟 + 𝑑2

𝑟

. (3)

Secondly, we rotate the head entity 𝑄ℎ by doing
Hamilton product with𝑊◁𝑟 and �̄�◁𝑟 :

𝑄 ′ℎ (𝑟 ′ℎ, 𝑥 ′ℎ, 𝑦′ℎ, 𝑧′ℎ) = 𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 , (4)

where ⊗ denotes the element-wise multiplication
between two vectors. Then the rotation part scoring
function 𝜙𝑟 (ℎ, 𝑟, 𝑡) is defined by the quaternion
inner product:

𝜙𝑟 (ℎ, 𝑟, 𝑡) = 𝑄 ′ℎ ·𝑄𝑡 = ⟨𝑥 ′ℎ, 𝑥𝑡⟩+ ⟨𝑦′ℎ, 𝑦𝑡⟩+ ⟨𝑧′ℎ, 𝑧𝑡⟩.
(5)

We separate the rotation part as an independent
model RQE, which achieves impressive results (re-
fer to Section 5).

The Modulus Part. As shown in Figure 1a,
the rotation part allows the head entity to rotate
in 3D space to approximate the tail entity. The
modulo length of entities is used to represent the
hierarchical distribution of entities. The modulus
part of relations is used to measure the hierarchical
difference between head and tail entities, which is
beneficial for learning hierarchy-aware, see Section
4.2 for details. The modulus part scoring function
𝜙𝑚(ℎ, 𝑟, 𝑡) is defined as:

𝜙𝑚(ℎ,𝑟, 𝑡) = −∥𝑤𝑟 |𝑄ℎ | − |𝑄𝑡 |∥1
= −

𝑤𝑟√︃𝑥2
ℎ + 𝑦2

ℎ + 𝑧2
ℎ −

√︃
𝑥2
𝑡 + 𝑦2

𝑡 + 𝑧2
𝑡


1
.

(6)

Finally, The scoring function of HRQE is:

𝜙(ℎ, 𝑟, 𝑡) = 𝜙𝑟 (ℎ, 𝑟, 𝑡) + _𝜙𝑚(ℎ, 𝑟, 𝑡), (7)

where _ ∈ R is a parameter that learned by the
model.

Loss Function. Following Trouillon et al.
(2016), We formulate the task as a classification
problem and adopt the cross-entropy loss as our
loss function. Ω and Ω′ = E × R × E −Ω are used
to denote the set of observed triplets and the set
of unobserved triplets, respectively. Moreover, we
use the ℓ2 norm with regularization rates _1 and _2
to regularize 𝑄 and𝑊 :

𝐿 =
∑︁

𝑟 (ℎ,𝑡) ∈Ω∪Ω−
log(1 + exp(−𝑌ℎ𝑟𝑡𝜙(ℎ, 𝑟, 𝑡)))

+ _1∥𝑄∥22 + _2∥𝑊 ∥22,
(8)

where Ω− ⊂ Ω′ with negative sampling strate-
gies such as uniform sampling, bernoulli sam-
pling (Wang et al., 2014), and adversarial sam-
pling (Sun et al., 2019). 𝑌ℎ𝑟𝑡 ∈ {−1, 1} repre-
sents the corresponding label of the triplet (ℎ, 𝑟, 𝑡).
We optimize the loss function by utilizing Ada-
grad (Duchi et al., 2011).

4.2 Discussion

In this part, we discuss the theoretical properties
of HRQE. We summarize several popular knowl-
edge graph embedding models in Appendix A.5
and definitions of various relation patterns in Ap-
pendix A.1.

Capability in Modeling Multiple Relations.
For multiple relations such as (A, classmate, B)
and (A, neighbor, B) ∈ G, HRQE allows multiple
expressions for the relations when the head and tail
entities are fixed. As shown in Figure 1b (here the
modulus part is simplified as 𝑤𝑟 = 1), the red arc
passes through r vertex 𝑃𝑟 and the angle bisector
vertex 𝑃\/2. r′ with vertex on the red arc can also
make h rotate to t. That is, ∃𝑟 ′ ≠ 𝑟, (ℎ, 𝑟, 𝑡) and
(ℎ, 𝑟 ′, 𝑡) ∈ G.

Capability in Modeling Symmetry /Antisym-
metry, Inversion and Composition. The flexibil-
ity and representational power of quaternion rota-
tion enable us to model various relation patterns
at ease. Since HRQE degenerates to RQE when
_ = 0, we mainly use RQE to discuss. When the
rotation angle \ = [0◦, 180◦, 270◦, 360◦], RQE can
model the symmetry pattern, and when𝑊◁𝑟1 = �̄�◁𝑟2,
RQE can model the inversion pattern. The specific
lemmas and proofs are as follows:

Lemma 1 HRQE can infer the symmetry /antisym-
metry pattern. (See proof in Appendix A.2)
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Models
WN18 FB15K

Hits(%) Hits(%)
MR MRR(%) @10 @3 @1 MR MRR @10 @3 @1

TransE - 49.5 94.3 88.8 11.3 - 46.3 74.9 57.8 28.7
DistMult 655 79.7 94.6 - - 42.2 79.8 89.3 - -
HolE - 93.8 94.9 94.5 93.0 - 52.4 73.9 75.9 59.9
ComplEx - 94.1 94.7 94.5 93.6 - 69.2 84.0 75.9 59.9
ConvE 374 94.3 95.6 94.6 93.5 51 65.7 83.1 72.3 55.8
R-GCN+ - 81.9 96.4 92.9 69.7 - 69.6 84.2 76.0 60.1
SimplE - 94.2 94.7 94.4 93.9 - 72.7 83.8 77.3 66.0
NKGE 366 94.7 95.7 94.9 94.2 56 73 87.1 79.0 65.0
TorusE - 94.7 95.4 95.0 94.3 - 73.3 83.2 77.1 67.4
RotatE 184 94.7 96.1 95.3 93.8 32 69.9 87.2 78.8 58.5
a-RotatE 309 94.9 95.9 95.2 94.4 40 79.7 88.4 83.0 74.6
QuatE 162 95.0 95.9 95.4 94.5 17 78.2 90.0 83.5 71.1
Rotat3D 214 95.1 96.1 95.3 94.5 39 78.9 88.7 83.5 72.8

RQE 117 95.2 96.3 95.6 94.5 23 81.3 89.2 84.3 76.6
HRQE 72 95.2 96.5 95.6 94.4 32 79.1 88.7 83.7 73.0

Table 2: Evaluation results on WN18, FB15k datasets. The best scores are in bold, while the second best scores are
in underline.

Lemma 2 HRQE can infer the inversion pattern.
(See proof in Appendix A.3)

Lemma 3 HRQE can infer the composition pat-
tern. (See proof in Appendix A.4)

Capability in Modeling Hierarchy Structures.
To model the semantic hierarchies of knowledge
graphs, a knowledge graph embedding model must
be capable of distinguishing entities in the follow-
ing two categories. (a) Entities at the same level of
the hierarchy. (e.g. “truck” and “lorry”) (b) Entities
at different levels of the hierarchy. (e.g. “mam-
mal” and “cat”) (Zhang et al., 2020). For HRQE,
the rotate part can model the entities at the same
level of the semantic hierarchy, and the modulus
part can model the entities at different levels of the
hierarchy. As shown in Figure 1d, entities have
hierarchical distribution under different relations,
and we simplify it into a 2D space for display. That
is, HRQE maps entities into the 3D polar coordi-
nate system, where the angular coordinates and the
radial coordinates correspond to the rotate part and
the modulus part, respectively.

These results are also summarized in Table 1.
We can see that HRQE is the only model that can
model and infer all types of relation patterns and
hierarchy awareness.

5 Experiments and Results

5.1 Experimental Setup
We evaluate our proposed models on four widely
used benchmarks, which are statistically summa-

rized in Table 4.

Datasets: WN18 (Bordes et al., 2013) is ex-
tracted from WordNet (Miller, 1995), a database
featuring lexical relations and conceptual-semantic
between words. The dataset has many in-
verse relations and the mainly relation patterns
are symmetric/antisymmetric and inversion.
WN18RR (Dettmers et al., 2018) is a subset of
WN18, with inverse relations removed. The main
relation patterns are symmetric/antisymmetric
and composition. In WN18 and WN18RR, most of
the triples consist of hyponym and hypernym rela-
tions which make them tend to follow a strictly
hierarchical structure. FB15K (Bordes et al.,
2013) is extracted from Freebase (Bollacker et al.,
2008), which is a large-scale knowledge graph con-
taining general human knowledge. The key of
link prediction on FB15k is to model and infer
the symmetry/antisymmetry and inversion pat-
terns. FB15K-237 (Toutanova and Chen, 2015)
is a subset of FB15K, with inverse relations re-
moved. Therefore, the key to link prediction on
FB15K-237 boils down to model and infer symmet-
rical/antisymmetric and composition patterns.

Evaluation Protocol: For each triple (ℎ, 𝑟, 𝑡) in
the test dataset, we replace either the head entity
ℎ or the tail entity 𝑡 with the total list of the em-
bedding entities. Then, we base the score function
to rank the candidate entities in descending order.
The filtered setting is used to remove some cor-
rect results that appear in the training set or valida-
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Models
WN18RR FB15K-237

Hits(%) Hits(%)
MR MRR(%) @10 @3 @1 MR MRR @10 @3 @1

TransE 3384 22.6 50.1 - - 357 29.4 46.5 - -
DistMult 5100 43 49 44 39 254 24.1 41.9 26.3 15.5
ComplEx 5261 44 51 46 41 339 24.7 42.8 27.5 15.8
ConvE 4187 43 52 44 40 244 32.5 50.1 35.6 23.7
InteractE 5202 46.3 52.8 - 43.0 172 35.4 53.5 - 26.3
RotatE 3277 47.0 56.5 48.8 42.2 185 29.7 48.0 32.8 20.5
a-RotatE 3340 47.6 57.1 49.2 42.8 177 33.8 53.3 37.5 24.1
QuatE 2314 48.8 58.2 50.8 43.8 87 34.8 55.0 38.2 24.8
ComplEx-N3 - 48.0 57.2 49.5 43.5 - 35.7 54.7 39.2 26.4
TuckER - 47.0 52.6 48.2 44.3 - 35.8 54.4 39.4 26.6
MURP - 47.5 55.4 48.7 43.6 - 33.6 52.1 37.0 24.5
RoTH 2293 49.1 58.6 51.1 44.1 - 34.4 53.5 38.0 24.6
Rotat3D 3328 48.9 57.9 50.5 44.2 165 34.7 54.3 38.5 25.0
HAKE - 49.7 58.2 51.6 45.2 - 34.6 54.2 38.1 25.0
DualE 2270 49.2 58.4 51.3 44.4 91 36.5 55.9 40.0 26.8
QuatRE 1986 49.3 59.2 51.9 43.9 88 36.7 56.3 40.4 26.9

RQE 2043 49.7 59.1 51.7 44.8 86 36.9 56.8 40.4 27.3
HRQE 1198 50.5 60.1 52.4 45.4 89 37.2 56.9 40.7 27.5

Table 3: Evaluation results on WN18RR, FB15k-237 datasets. The best scores are in bold, while the second best
scores are in underline.

Dataset #En #Re #train #valid #test

WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134

FB15K 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466

Table 4: Number of entities, relations, and observed
triplets in each split for benchmarks.

tion set but not in test set. We choose Mean Rank
(MR), Mean Reciprocal Rank (MRR) and Hits at
N (H@N) as the evaluation metrics. MR measures
the average rank of all correct entities with a lower
value representing better performance. MRR is the
average inverse rank for correct entities. Hit@n
measures the proportion of correct entities in the
top n entities.

Baselines: We compare HRQE with a number
of strong baselines. For Translational Distance
Models, we reporte TransE (Bordes et al., 2013) ,
TorusE (Ebisu and Ichise, 2018), RotatE (Sun et al.,
2019), Rotat3D (Gao et al., 2020), ROTH (Chami
et al., 2020) and HAKE (Zhang et al., 2020);
For Semantic Matching Models, we reporte Dist-
Mult (Yang et al., 2015), HolE (Nickel et al.,
2016), ComplEx (Trouillon et al., 2016), ComplEx-
N3 (Lacroix et al., 2018), SimplE (Kazemi
and Poole, 2018), TuckER (Balažević et al.,
2019), ConvE (Dettmers et al., 2018), R-GCN

(Schlichtkrull et al., 2018), NKGE (ConvE based)
(Wang et al., 2018), InteractE (Vashishth et al.,
2020), QuatE (Zhang et al., 2019), DualE (Cao
et al., 2021), and QuatRE (Nguyen et al., 2022).

Implementation Details: The best models are
selected by early stopping on the validation set
with Hits@10. The ranges of the hyperparameters
for the grid search are set as follows: The embed-
ding size k is selected in {100, 200, 300, 400, 500}.
The regularization rates _1 and _2 are adjusted in
{0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5}. The
learning rate is chosen from {0.01, 0.02, 0.05, 0.1},
the number of negative triples sampled per training
triple is selected from {1, 2, 5, 10}. In addition, we
create {10, 100} batches of training samples for the
different datasets. We report RQE and HRQE with
type constraints (Krompaß et al., 2015). The train-
ing strategies of self-adversarial negative sampling
(Sun et al., 2019) and N3 regularization with recip-
rocal learning (Lacroix et al., 2018) are not used
for RQE and HRQE. All hyper-parameters of our
models are provided in the appendix A.6, and our
code is available at https://github.com/Jinfa/HRQE.

5.2 Results
The empirical results on four datasets are reported
in Table 2 and Table 3. HRQE performs extremely
competitively compared to the existing state-of-
the-art models across all metrics. As a rotation-
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Figure 2: Histograms of relation embeddings for different relation patterns. The corresponding relation is
as follows: 𝑟1 is similar_to; 𝑟2 is has_part; 𝑟3 is part_of ; 𝑟4 is /location/administrative_division/capital
/location/administrative_division_capital_relationship/capital; 𝑟5 is /location/hud_county_place/place; 𝑟6 is
base/areas/schema/administrative_area/capital.

based model, HRQE outperforms the two repre-
sentative rotation models RoatE, and Roata3D. As
a hierarchy-sensitive model, HRQE outperforms
the representative hierarchy-aware model HAKE.
Also, we outperform other quaternion-valued mod-
els such as QuatE, DualE, and QuatRE.

On the WN18 dataset, HRQE outperforms all
the baselines on all metrics except Hit@1. HRQE
achieves slightly lower results on H@1 than QuatE
and RotatE, but surpasses them on the other four
metrics, especially on MR with a 56% improve-
ment over QuatE. RQE outperforms HRQE on the
FB15K dataset, while the results of them on the val-
idation set are close with 87%. We speculate that
excessive inverse relations in FB15K affect the ex-
pression of HRQE hierarchy-aware modules. The
other recent models a-RotatE, QuatE, and Rotat3D
achieve comparable results.

As shown in Table 3, HRQE achieves the best
performance over existing state-of-the-art models
on the two datasets where trivial inverse relations
are removed. On WN18RR in which there are a
number of symmetry relations, TransE cannot learn
the symmetric relation pattern, so it performs not
well. In contrast, the rotation family can achieve
good results, and HRQE has further refreshed the
performance to achieve the optimal. In addition,
HRQE’s performance on MR is also impressive,

with a 48% improvement over QuatE. WN18 and
WN18RR contain hyponym and hypernym rela-
tions which make them tend to follow a strictly
hierarchical structure, and HRQE’s performance
demonstrates its ability to learn hierarchically. On
FB15K-237, HRQE also achieved better results
compared with the previous state-of-the-art models,
which shows that HRQE can learn the composition
relation pattern better.

Models Prediction Head (MRR) Prediction Tail (MRR)
1-1-1 1-N-1 1-1-1 1-N-1

TransE 44.3 48.4 45.6 46.9
RotatE 66.8 79.4 71.6 78.6

RQE 67.8 87.7 72.5 89.5

Table 5: Evaluation results of multiple relations on
FB15k dataset.

5.3 Model Analysis
Analysis on Multiple Relations. In the test set of
FB15K, 38121 are single-relation triples (1-1-1),
and 20950 are multi-relation triples (1-N-1). To
avoid the influence of the modulus part, we choose
RQE as the comparison model. Table 5 shows that
RQE can better deal with multi-relational triples
than TransE and RotatE.

Visualize Some Typical Relation Patterns. To
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Models Prediction Head (Hits@10) Prediction Tail (Hits@10)
1-1-1 1-1-N N-1-1 N-1-N 1-1-1 1-1-N N-1-1 N-1-N

QuatE 54.2 66.4 38.6 46.9 53.1 25.5 88.3 60.9
QuatRE 58.9 66.4 39.3 48.1 59.9 26.8 88.9 61.7

HRQE 63.5 66.4 42.5 48.7 63.0 28.1 88.9 62.2

Table 6: Evaluation results of complex relations on FB15k-237 dataset. The first two rows are taken from (Nguyen
et al., 2022)

further verify the learned relation patterns, we
visualize some examples. For symmetry pat-
tern, HRQE encode with rotation angle \ =
[0◦, 180◦, 360◦] (correspondingly 𝑎𝑟1 = cos \2 =
[−1, 0, 1]) and modulo weight 𝑤𝑟 = 1 which are
shown in Figure 2 a and e. For inversion pattern,
we have𝑊◁𝑟2 = �̄�◁𝑟3 (correspondingly 𝑎𝑟2−𝑎𝑟3 = 0
and �𝑏𝑟2𝑐𝑟2𝑑𝑟2 + �𝑏𝑟3𝑐𝑟3𝑑𝑟3 = 0) , which are shown
in Figure 2 b,c,d and f,g,h. For composition pat-
tern, we have𝑊◁𝑟4 = 𝑊◁𝑟6 ⊗𝑊◁𝑟5. We show the real
part and the first imaginary part(correspondingly
𝑎𝑟4 − (𝑎𝑟6𝑎𝑟5 − 𝑏𝑟6𝑏𝑟5 − 𝑐𝑟6𝑐𝑟5 − 𝑑𝑟6𝑑𝑟5) = 0 and
𝑏𝑟4 − (𝑎𝑟6𝑏𝑟5 + 𝑎𝑟5𝑏𝑟6 + 𝑐𝑟6𝑑𝑟5 − 𝑐𝑟5𝑑𝑟6) = 0)
in Figure 2 i, j, k and l. Table 7 summarizes the
MRR for each relation on WN18RR, confirming
the superior representation capability of HRQE in
modelling different types of relation.

Analysis on Hierarchy-Aware. We plot the en-
tity embeddings of two models: RQE and HRQE.
Their entities are all pure quaternions. For an intu-
itive display, we project it to a 2D plane and display
them in polar coordinates. The radius 𝑟 of the polar
coordinates is quaternion norm |𝑄 |, and the angle
is twice the angle between the entities and i + j + k.
Note that we use the logarithmic scale to better
display the differences between entity embeddings.
As all the moduli have values less than one, after
applying the logarithm operation, the larger radii in
the figures will actually represent smaller modulus.
Compared with the tail entities, the head entities
in Figure 3 a, b, and c are at lower levels, similar
levels, and higher levels in the semantic hierarchy,
respectively. We can see that there exist clear hi-
erarchies in HRQE, which demonstrates that the
modulus part in HRQE can help effectively model
the semantic hierarchies.

Analysis on Complex Relations. We also con-
duct further investigation on the performance of
HRQE on complex relations: 1-1-N, N-1-1, and
N-1-N relations. We compare with QuatE and Qua-
tRE (Nguyen et al., 2022). QuatRE adds two ad-
ditional relational quaternions and quaternion mul-

RQE

RQE HRQE
(a) (nlp, _hypernym, informatics)

(b) (ask, _verb_group, inquire)

HRQE

(c) (genus_felis, _member_meronym, wildcat)

RQE HRQE

Figure 3: Visualization of the embeddings of several
entity pairs from WN18RR dataset.

Relation Name RotatE QuatE HRQE

hypernym 14.8 17.3 19.3
derivationally_related_form 94.7 95.3 95.7
instance_hypernym 31.8 36.4 38.1
also_see 58.5 62.9 68.3
member_meronym 23.2 23.2 27.2
synset_domain_topic_of 34.1 46.8 48.4
has_part 18.4 23.3 24.3
member_of_domain_usage 31.8 44.1 42.6
member_of_domain_region 20.0 19.3 27.1
verb_group 94.3 92.4 91.1
similar_to 100.0 100.0 100.0

Table 7: MRR for the models tested on each relation of
WN18RR.
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tiplies with the head and tail entities to improve
QuatE’s ability for handling complex relations. Ta-
ble 6 shows the MRR and H@10 scores for pre-
dicting the head entities and then the tail entities
with respect to each relation category on FB15k-
237, wherein our HRQE outperforms QuatE and
QuatRE on these relation categories.

6 Conclusion

To model various relation patterns and semantic
hierarchies in knowledge graphs, we propose a
novel knowledge graph embedding model HRQE,
which maps entities into 3D space with rotation
and modulo constraints. Empirical experimental
evaluations on benchmark datasets show that our
proposed HRQE significantly outperforms several
existing state-of-the-art methods. Further investi-
gation shows that HRQE is capable of modeling
relations with various relation patterns and mod-
eling entities at both different levels and the same
levels in the semantic hierarchies.
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A Appendix

A.1 Definitions of Different Relation Patterns

Definition 1 Relations 𝑟𝑖 are multiple if ∀𝑖 ∈
0, ..., 𝑚, (ℎ, 𝑟, 𝑡) can hold in knowledge graphs si-
multaneously. A clause with such form is a multiple
relations pattern.

Definition 2 A relation 𝑟 is symmetric (antisymme-
try) if ∀𝑥, 𝑦

𝑟 (𝑥, 𝑦) ⇒ 𝑟 (𝑦, 𝑥) (𝑟 (𝑥, 𝑦) ⇒ ¬𝑟 (𝑦, 𝑥)).
A clause with such form is a symmetry (antisymme-
try) pattern.

Definition 3 Relation 𝑟1 is inverse to relation 𝑟2 if
∀𝑥, 𝑦

𝑟2(𝑥, 𝑦) ⇒ 𝑟1(𝑦, 𝑥).
A clause with such form is an inversion pattern.

Definition 4 Relation 𝑟1 is composed of relation
𝑟2 and relation 𝑟3 if ∀𝑥, 𝑦, 𝑧

𝑟2(𝑥, 𝑦) ∧ 𝑟3(𝑦, 𝑧) ⇒ 𝑟1(𝑥, 𝑧).
A clause with such form is a composition pattern.

Definition 5 For each relation 𝑟, we compute av-
erage number of tails per head (tphr) and average
number of heads per tail (hptr). If tphr < 1.5 and
hptr < 1.5, r is treated as 1-to-1; if tphr > 1.5 and
hptr > 1.5, r is treated as a N-to-N; if tphr > 1.5
and hptr < 1.5, r is treated as 1-to-N. Clauses with
such form are complex relations.
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A.2 Proof of Lemma 1

Proof of symmetry pattern. When \ =
[0◦, 180◦, 360◦], HRQE can represent a symmetric
relationship, then𝑊◁𝑟 = cos \2 + sin \2 (𝑞i + 𝑢j + 𝑣k),
we need to prove:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡 = 𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 · 𝑄ℎ (9)

For \ = [0◦, 360◦], we have 𝑊◁𝑟 = ±1. Firstly,
we expand the left term:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡
= 𝑄ℎ · 𝑄𝑡
= ⟨𝑥ℎ, 𝑥𝑡⟩ + ⟨𝑦ℎ, 𝑦𝑡⟩ + ⟨𝑧ℎ, 𝑧𝑡⟩.

(10)

We then expand the right term:

𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 · 𝑄ℎ
= 𝑄𝑡 · 𝑄ℎ
= ⟨𝑥ℎ, 𝑥𝑡⟩ + ⟨𝑦ℎ, 𝑦𝑡⟩ + ⟨𝑧ℎ, 𝑧𝑡⟩.

(11)

We can easily see that those two terms are equal.

For \ = [180◦], we have 𝑊◁𝑟 = 𝑞i + 𝑢j + 𝑣k.
Firstly, we expand the left term:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡
= [((𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥ℎ + 2(𝑞𝑢)𝑦ℎ + 2(𝑞𝑣)𝑧ℎ)i
+ (2(𝑞𝑢)𝑥ℎ + (𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦ℎ + 2(𝑢𝑣)𝑧ℎ)j
+ (2(𝑞𝑣)𝑥ℎ + 2(𝑢𝑣)𝑦ℎ + (𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧ℎ)k]
· (𝑥𝑡 i + 𝑦𝑡 j + 𝑧𝑡k)
= ⟨𝑥ℎ, (𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥𝑡⟩ + ⟨𝑥ℎ, 2(𝑞𝑢), 𝑦𝑡⟩
+ ⟨𝑥ℎ, 2(𝑞𝑣), 𝑧𝑡⟩ + ⟨𝑦ℎ, 2(𝑞𝑢), 𝑥𝑡⟩
+ ⟨𝑦ℎ, (𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦𝑡⟩ + ⟨𝑦ℎ, 2(𝑢𝑣), 𝑧𝑡⟩
+ ⟨𝑧ℎ, 2(𝑞𝑣), 𝑥𝑡⟩ + ⟨𝑧ℎ, 2(𝑢𝑣), 𝑦𝑡⟩
+ ⟨𝑧ℎ, (𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧𝑡⟩.

(12)

We then expand the right term:

𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 · 𝑄ℎ
= [((𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥𝑡 + 2(𝑞𝑢)𝑦𝑡 + 2(𝑞𝑣)𝑧𝑡 )i
+ (2(𝑞𝑢)𝑥𝑡 + (𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦𝑡 + 2(𝑢𝑣)𝑧𝑡 )j
+ (2(𝑞𝑣)𝑥𝑡 + 2(𝑢𝑣)𝑦𝑡 + (𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧𝑡 )k]
· (𝑥ℎi + 𝑦ℎj + 𝑧ℎk)
= ⟨𝑥𝑡 , (𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥ℎ⟩ + ⟨𝑥𝑡 , 2(𝑞𝑢), 𝑦ℎ⟩
+ ⟨𝑥𝑡 , 2(𝑞𝑣), 𝑧ℎ⟩ + ⟨𝑦𝑡 , 2(𝑞𝑢), 𝑥ℎ⟩
+ ⟨𝑦𝑡 , (𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦ℎ⟩ + ⟨𝑦𝑡 , 2(𝑢𝑣), 𝑧ℎ⟩
+ ⟨𝑧𝑡 , 2(𝑞𝑣), 𝑥ℎ⟩ + ⟨𝑧𝑡 , 2(𝑢𝑣), 𝑦ℎ⟩
+ ⟨𝑧𝑡 , (𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧ℎ⟩.

(13)

We can easily see that those two terms are equal.

Proof of antisymmetry pattern. In order
to prove the antisymmetry pattern, we need
to prove the following inequality when \ ≠
[0◦, 180◦, 270◦, 360◦]:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 ·𝑄𝑡 ≠ 𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 ·𝑄ℎ (14)

Firstly, we expand the left term:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡
= [((𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥ℎ + 2(−𝑝𝑣 + 𝑞𝑢)𝑦ℎ
+ 2(𝑝𝑢 + 𝑞𝑣)𝑧ℎ)i + (2(𝑝𝑣 + 𝑞𝑢)𝑥ℎ
+ (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦ℎ + 2(−𝑝𝑞 + 𝑢𝑣)𝑧ℎ)j
+ (2(−𝑝𝑢 + 𝑞𝑣)𝑥ℎ + 2(𝑝𝑞 + 𝑢𝑣)𝑦ℎ
+ (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧ℎ)k]
· (𝑥𝑡 i + 𝑦𝑡 j + 𝑧𝑡k)
= ⟨𝑥ℎ, (𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥𝑡⟩
+ ⟨𝑥ℎ, 2(𝑝𝑣 + 𝑞𝑢), 𝑦𝑡⟩ + ⟨𝑥ℎ, 2(−𝑝𝑢 + 𝑞𝑣), 𝑧𝑡⟩
+ ⟨𝑦ℎ, 2(−𝑝𝑣 + 𝑞𝑢), 𝑥𝑡⟩
+ ⟨𝑦ℎ, (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦𝑡⟩
+ ⟨𝑦ℎ, 2(𝑝𝑞 + 𝑢𝑣), 𝑧𝑡⟩ + ⟨𝑧ℎ, 2(𝑝𝑢 + 𝑞𝑣), 𝑥𝑡⟩
+ ⟨𝑧ℎ, 2(−𝑝𝑞 + 𝑢𝑣), 𝑦𝑡⟩
+ ⟨𝑧ℎ, (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧𝑡⟩.

(15)

We then expand the right term:
2021



Model Score Function 𝑓𝑟 (𝑄ℎ, 𝑄𝑡 ) Parameters O𝑡𝑖𝑚𝑒
TransE (Bordes et al., 2013) −∥(𝑄ℎ +𝑊𝑟 ) −𝑄𝑡 ∥1/2 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ R𝑘 O(𝑘)

Hole (Nickel et al., 2016) ⟨𝑊𝑟 , 𝑄ℎ ★𝑄𝑡 ⟩ 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ R𝑘 O(𝑘log(𝑘))
DistMult (Yang et al., 2015) ⟨𝑊𝑟 , 𝑄ℎ, 𝑄𝑡 ⟩ 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ R𝑘 O(𝑘)

ComplEx (Trouillon et al., 2016) Re
(〈
𝑊𝑟 , 𝑄ℎ, �̄�𝑡

〉)
𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ C𝑘 O(𝑘)

RotatE (Sun et al., 2019) −∥𝑄ℎ ◦𝑊𝑟 −𝑄𝑡 ∥2 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ C𝑘 , |𝑊𝑟𝑖 | = 1 O(𝑘)
Rotate3D (Gao et al., 2020) −∥𝑄ℎ ⊙𝑊𝑟 × 𝐵𝑟 −𝑄𝑡 ∥2 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ H𝑘 , 𝐵𝑟 ∈ R𝑘 , |𝑊𝑟𝑖 | = 1 O(𝑘)
QuatE (Zhang et al., 2019) 𝑄ℎ ⊗𝑊◁𝑟 · 𝑄𝑡 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ H𝑘 O(𝑘)
DualE (Cao et al., 2021)

〈
𝑄ℎ⊗𝑊⋄𝑟 , 𝑄𝑡

〉
𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ H𝑘𝑑 O(𝑘)

HAKE (Zhang et al., 2020) −∥𝑄ℎ𝑚 ◦𝑊𝑚 −𝑄𝑡𝑚∥2 𝑄ℎ𝑚, 𝑄𝑡𝑚 ∈ R𝑘 ,𝑊𝑚 ∈ R𝑘+ O(𝑘)−_∥sin((𝑄ℎ𝑝 +𝑊𝑝 −𝑄𝑡 𝑝)/2)∥1 𝑄ℎ𝑝 ,𝑊𝑝 , 𝑄𝑡 𝑝 ∈ [0, 𝜋)𝑘 , _ ∈ R
RQE 𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡 𝑊𝑟 ∈ H𝑘 , 𝑄ℎ, 𝑄𝑡 ∈ H𝑘𝑝 O(𝑘)

HRQE 𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡 𝑊𝑟 ∈ H𝑘 , 𝑄ℎ, 𝑄𝑡 ∈ H𝑘𝑝 O(𝑘)−_∥𝑤𝑟 |𝑄ℎ | − |𝑄𝑡 |∥1 𝑤𝑟 ∈ R𝑘 , _ ∈ R

Table 8: Scoring functions of state-of-the-art knowledge graph embedding models, along with their parameters,
time complexity.“★” denotes the circular correlation operation; “◦” denotes Hadmard (or element-wise) product;
“⊗” denotes Hamilton product.

𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 · 𝑄ℎ
= [((𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥𝑡 + 2(−𝑝𝑣 + 𝑞𝑢)𝑦𝑡
+ 2(𝑝𝑢 + 𝑞𝑣)𝑧𝑡 )i + (2(𝑝𝑣 + 𝑞𝑢)𝑥𝑡
+ (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦𝑡 + 2(−𝑝𝑞 + 𝑢𝑣)𝑧𝑡 )j
+ (2(−𝑝𝑢 + 𝑞𝑣)𝑥𝑡 + 2(𝑝𝑞 + 𝑢𝑣)𝑦𝑡
+ (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧𝑡 )k]
· (𝑥ℎi + 𝑦ℎj + 𝑧ℎk)
= ⟨𝑥𝑡 , (𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥ℎ⟩
+ ⟨𝑥𝑡 , 2(𝑝𝑣 + 𝑞𝑢), 𝑦ℎ⟩ + ⟨𝑥𝑡 , 2(−𝑝𝑢 + 𝑞𝑣), 𝑧ℎ⟩
+ ⟨𝑦𝑡 , 2(−𝑝𝑣 + 𝑞𝑢), 𝑥ℎ⟩
+ ⟨𝑦𝑡 , (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦ℎ⟩
+ ⟨𝑦𝑡 , 2(𝑝𝑞 + 𝑢𝑣), 𝑧ℎ⟩ + ⟨𝑧𝑡 , 2(𝑝𝑢 + 𝑞𝑣), 𝑥ℎ⟩
+ ⟨𝑧𝑡 , 2(−𝑝𝑞 + 𝑢𝑣), 𝑦ℎ⟩
+ ⟨𝑧𝑡 , (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧ℎ⟩.

(16)

We can easily see that those two terms are not equal
as the signs for some terms are not the same.

A.3 Proof of Lemma 2

Proof of inversion pattern. To prove the inversion
pattern, we need to prove that:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 ·𝑄𝑡 = �̄�◁𝑟 ⊗ 𝑄𝑡 ⊗𝑊◁𝑟 ·𝑄ℎ (17)

We expand the right term:

�̄�◁𝑟 ⊗ 𝑄𝑡 ⊗𝑊◁𝑟 · 𝑄ℎ
= [((𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥𝑡 + 2(𝑝𝑣 + 𝑞𝑢)𝑦𝑡
+ 2(−𝑝𝑢 + 𝑞𝑣)𝑧𝑡 )i + (2(−𝑝𝑣 + 𝑞𝑢)𝑥𝑡
+ (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦𝑡 + 2(𝑝𝑞 + 𝑢𝑣)𝑧𝑡 )j
+ (2(𝑝𝑢 + 𝑞𝑣)𝑥𝑡 + 2(−𝑝𝑞 + 𝑢𝑣)𝑦𝑡
+ (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧𝑡 )k]
· (𝑥ℎi + 𝑦ℎj + 𝑧ℎk)
= ⟨𝑥𝑡 , (𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥ℎ⟩
+ ⟨𝑥𝑡 , 2(−𝑝𝑣 + 𝑞𝑢), 𝑦ℎ⟩ + ⟨𝑥𝑡 , 2(𝑝𝑢 + 𝑞𝑣), 𝑧ℎ⟩
+ ⟨𝑦𝑡 , 2(𝑝𝑣 + 𝑞𝑢), 𝑥ℎ⟩
+ ⟨𝑦𝑡 , (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦ℎ⟩
+ ⟨𝑦𝑡 , 2(−𝑝𝑞 + 𝑢𝑣), 𝑧ℎ⟩ + ⟨𝑧𝑡 , 2(−𝑝𝑢 + 𝑞𝑣), 𝑥ℎ⟩
+ ⟨𝑧𝑡 , 2(𝑝𝑞 + 𝑢𝑣), 𝑦ℎ⟩
+ ⟨𝑧𝑡 , (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧ℎ⟩.

(18)

We can easily check the equality of these two terms.

A.4 Proof of Lemma 3
Proof of composition relation. For composition
relations we can get that:

𝑊◁𝑟3 ⊗ (𝑊◁𝑟2 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟2) ⊗ �̄�◁𝑟3 · 𝑄𝑡
= (𝑊◁𝑟3 ⊗𝑊◁𝑟2) ⊗ 𝑄ℎ ⊗ (�̄�◁𝑟2 ⊗ �̄�◁𝑟3) · 𝑄𝑡
= 𝑊◁𝑟1 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟1 · 𝑄𝑡 .

(19)

A.5 Summary of Several Popular Knowledge
Graph Embedding Models

Table 8 summarizes several popular knowledge
graph embedding models, including scoring func-
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tions, parameters, and time complexities. TransE,
HolE, and DistMult use Euclidean embeddings,
while ComplEx and RotatE operate in the complex
space. QuatE, DualE (dual quaternion) and our
models operate in the quaternion space. HAKE
and our model HRQE can learn hierarchy-aware in
knowledge graphs.

A.6 Parameter Settings
We list the best hyperparameter settings of RQE
and HRQE w.r.t. the validation dataset on several
benchmarks in Table 9 and Table 10.

Dataset 𝑛𝐵 𝑘 _1 _2 𝑛𝑒𝑔

WN18 10 300 0.03 0.0 10
FB15K 100 400 0.05 0.0 10

WN18RR 10 300 0.3 0.3 2
FB15K237 100 500 0.5 0.01 10

Table 9: Hyperparameters for RQE

Dataset 𝑛𝐵 𝑘 _1 _2 𝑛𝑒𝑔

WN18 10 300 0.05 0.01 10
FB15K 100 500 0.03 0.0 10

WN18RR 10 300 0.3 0.01 1
FB15K237 100 500 0.5 0.01 10

Table 10: Hyperparameters for HRQE
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Abstract

Chinese Named Entity Recognition (NER) has
continued to attract research attention. How-
ever, most existing studies only explore the
internal features of the Chinese language but
neglect other lingual modal features. Actually,
as another modal knowledge of the Chinese lan-
guage, English contains rich prompts about en-
tities that can potentially be applied to improve
the performance of Chinese NER. Therefore,
in this study, we explore the bilingual enhance-
ment for Chinese NER and propose a unified
bilingual interaction module called the Adapted
Cross-Transformers with Global Sparse At-
tention (ACT-S) to capture the interaction of
bilingual information. We utilize a model built
upon several different ACT-Ss to integrate the
rich English information into the Chinese rep-
resentation. Moreover, our model can learn the
interaction of information between bilinguals
(inter-features) and the dependency information
within Chinese (intra-features). Compared with
existing Chinese NER methods, our proposed
model can better handle entities with complex
structures. The English text that enhances the
model is automatically generated by machine
translation, avoiding high labour costs. Experi-
mental results on four well-known benchmark
datasets demonstrate the effectiveness and ro-
bustness of our proposed model.

1 Introduction

“One language sets you in a corridor for life. Two
languages open every door along the way.”

—Frank Smith, Psycholinguist
Named entity recognition (NER) is the task of de-
termining spans and semantic categories of named
entities such as organization (ORG), person (PER)
and location (LOC) in given free text. As the cor-
nerstone of a wide range of natural language pro-
cessing tasks, NER plays an essential role in many
downstream tasks, such as relation extraction (Ze-
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Chinese:
美国“亚特兰蒂斯”号航
天飞机上的宇航员…

[美国 LOC]
[“亚特兰蒂斯”号航天飞机 ORG]

[美国“亚特兰蒂斯”
号航天飞机 ORG]

English:
Astronauts on the US 
space shuttle Atlantis…

Chinese

English

Single 
language 

model

Our model

美国 “亚特兰蒂斯”号 航天飞机 上的 宇航员

the US Atlantis space shuttle on astronauts

Figure 1: An example of Chinese NER via bilingual
enhancement. The entity types of named entities are
highlighted.

lenko et al., 2003) and question answer (Diefen-
bach et al., 2018).

Compared with English NER, Chinese NER
meets a series of challenges caused by the char-
acteristics of Chinese. Aside from the lack of natu-
ral word boundary information, Chinese named
entities usually vary significantly in length and
have complex compositional structures (Dong et al.,
2016). At the same time, the annotated data of Chi-
nese NER is relatively scarce, and it is difficult
and costly to annotate the data manually (Liu et al.,
2022). Hence, without more annotated data, it is a
promising approach to improve Chinese NER by
leveraging external information resources, which
has attracted more and more research attention.

One way to utilize external resources is to per-
form Chinese NER with bilingual constraints. Pre-
vious works (Che et al., 2013; Wang et al., 2013)
have demonstrated that the joint use of bilingual in-
formation in Chinese and English can significantly
improve performance in the Chinese NER task. In
addition, incorporating vocabulary knowledge has
also become a promising solution(Zhang and Yang,
2018; Li et al., 2020; Mengge et al., 2020). What’s
more, several studies were proposed to exploit in-
formation from other modalities to supplement the
representation of Chinese text(Meng et al., 2019;
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Sun et al., 2021b; Wu et al., 2021; Sui et al., 2021).

However, despite the success of the above-
mentioned methods in Chinese NER by introduc-
ing external information, these methods still have
the following limitations. First, the external re-
sources utilized by these methods are mainly ob-
tained manually, which increases the cost signifi-
cantly. Second, existing methods for boosting NER
with bilingual constraints (Che et al., 2013; Wang
et al., 2013) rely on bilingual word alignment in-
formation and both Chinese and English sentences
need to be manually annotated, which limits its us-
age. Third, as the state-of-the-art approaches based
on deep neural networks for Chinese NER, lexi-
cal enhancement methods and multimodal methods
still fail to effectively handle entities with com-
plex composition structures, which, however, are
frequently observed in Chinese NER tasks. The
example in Figure 1 illustrates one of such dilem-
mas in Chinese NER. In this example, due to the
complex component structure, the ORG entity “美
国‘亚特兰蒂斯’号航天飞机(The US space shut-
tle Atlantis)" tends to be incorrectly labeled by the
NER model as a LOC entity “美国(USA)" and
an ORG entity “‘亚特兰蒂斯’号航天飞机(Space
shuttle Atlantis)". However, it is encouraging that
the clues of the English expression, such as the
preposition “on", will potentially alleviate this type
of incorrect labeling that often occurs in Chinese
NER tasks.

To address the above issues, in this work, we
propose to boost the performance of Chinese NER
with the unlabelled English text translated from the
corresponding Chinese text. English texts are auto-
matically generated through the publicly available
neural machine translation API without any extra
human labor all the way through. Besides, consid-
ering the Chinese texts and corresponding English
translations as two different modalities, we per-
form bilingual enhancement of Chinese NER with
multimodal NER approach. Furthermore, based
on the fact that a word in the text will only be
strongly correlated with a small fraction of words
in the translated text, we propose a bilingual in-
teraction enhancement model based on Adapted
Cross-Transformers with Global Sparse Attention
(short for ACT-S). The interaction of bilingual in-
formation as well as intra-linguistic interaction are
taken into account in the our model.

The primary contributions of this work can be
summarized as follows: (1) We improve the perfor-

mance of Chinese NER by bilingual enhancement,
based on the unlabeled translated English text au-
tomatically generated using the Neural Machine
Translation API. To the best of our knowledge,
this is the first end-to-end NER method that ef-
fectively exploits bilingual information. (2) We
further propose the neural module called Adapted
Cross-Transformers with Global Sparse Attention
to simultaneously model bilingual interactions and
inter-lingual interactions. So far as we know, it is
the first attempt to use global sparse attention mech-
anisms for multimodal information interaction. (3)
Experimental results on four Chinese NER datasets
show that our proposed model achieves superior
performance to other strong baseline models.

2 Related Work

2.1 Chinese NER with lexicon enhancement

In Chinese NER, a series of recent works focus
on introducing lexical boundaries and semantic in-
formation by word matching. Zhang et al. (2018)
proposed to introduce semantic and boundary infor-
mation of the lexicon through the lattice structure
in LSTM. Afterwards, some CNN-based NER lexi-
cal enhancement methods, such as LR-CNN (Gui
et al., 2019a), were proposed. Graph neural net-
works have also been applied to Chinese NER word
enhancement tasks, a typical one of which is LGN
(Gui et al., 2019b). And Transformer-like encoders
fusing lexical information are also used for Chinese
NER tasks, including PLTE (Mengge et al., 2020)
and FLAT (Li et al., 2020). In addition, some work
(Ma et al., 2020; Liu et al., 2021) has proposed to
fuse lexical information into the word embedding
representation instead of integrating word informa-
tion into the model encoder. However, the lexicon
enhanced Chinese NER approach still cannot effec-
tively deal with entities with complex composition
structures. And our approach utilizes bilingual
clues that can alleviate this problem in Chinese
NER.

2.2 Multimodal NER

In recent years, with the development of multi-
modal information processing technology, the mul-
timodal NER has emerged. In the field of English
information extraction, existing multimodal NER
works(Yu et al., 2020; Sun et al., 2021a; Zhang
et al., 2021) have focused on using image clues
to improve NER on Twitter. As for Chinese NER,
introducing information from other modalities has
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CN:美国“亚特兰蒂斯”号航
天飞机上的宇航员...

BERT-Chinese

EN:Astronauts on the US space 
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Figure 2: (a) The overall architecture of our model. (b) The implementation details of ACT-S.

also become a promising solution. On the one hand,
the multimodal information of Chinese characters
is used to mining the semantics in the structure
of Chinese characters(Sun et al., 2021b; Wu et al.,
2021). On the other hand, multimodal information
of the whole Chinese sentence, such as the audio
content of the text (Sui et al., 2021), is also used to
improve the word representation for Chinese NER.
Compared with existing methods, the method we
propose makes use of relative distance information
while focusing on strongly correlated units during
modal interactions.

2.3 Sequence labelling with bilingual clues or
translation

Some previous works (Che et al., 2013; Wang et al.,
2013) have demonstrated that constraints in bilin-
gual parallel annotated corpora can be used to im-
prove NER performance in two languages. But dif-
ferent from them, our proposed approach can take
advantage of the hints in the unannotated English
texts which are automatically translated by Neural
machine translation tools. In addition, in cross-
lingual sequence labelling tasks, translation meth-
ods(Mayhew et al., 2017; Fei et al., 2020; Zhen
et al., 2021) are used to migrate annotation informa-
tion from rich languages to low-resource languages.
Unlike these previous works, the only resources
used by our model in the additional language are
texts with no annotation information. Furthermore,
the model automatically learns all bilingual lexical

alignment information with no assistance from any
bilingual alignment tool.

3 Methodology

3.1 Overall Architecture

Task Formulation: Given a Chinese text Sc =
(cw1, ..., cwi, ..., cwn) and its corresponding En-
glish translated text Ec = (ew1, ..., ewl, ..., ewm)
, where cwi represents the i-th Chinese character
and ewl represents the l-th character of English
translated text, the goal of the task is to utilize the
information in the bilingual text to determine the
spans and types of all named entities in the Chi-
nese text. In this work, we formulate the task as
a sequence labeling task. And the BMES (Begin-
ning, Middle, End, Singleton)(Xue, 2003) tagging
scheme is adopted.

The architecture of our proposed model is shown
in Figure 2. In our model, we absorb the inspira-
tion from the unified multimodal Transformer en-
coder widely used in vision-language tasks (Tsai
et al., 2019; Yu et al., 2020). And similar to MECT
(Wu et al., 2021), we introduce distance-aware and
direction-aware components in Transformer atten-
tion. However, unlike previous works, we pro-
pose to use global sparse attention in the Cross-
Transformer to reduce the noise in the information
fusion process of the two modalities. Each part of
the model is introduced in detail in the following
sections.
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3.2 Word Representations
Since many previous works have proven the ef-
fectiveness of the pre-trained language model in
Named Entity Recognition task (Li et al., 2020; Wu
et al., 2021), we use BERT (Devlin et al., 2019)
as our contextualized representation encoder for
both Chinese text and English translated text. To fit
the BERT encoding procedure, we add two special
symbols [CLS] and [SEP] at the beginning and end
of the input sentence respectively, and we discard
the representation vectors of [CLS] and [SEP] at
the end of the BERT encoding computation. If
a word is tokenized into several subwords by the
Byte Pair Encoding (BPE) algorithm used in BERT,
we found empirically that the model performs bet-
ter when the average pooling method is used to
merge the representations of the subwords that be-
long to the same word into a single representation
vector. Thus, we can obtain the word representation
generated using BERT:

(c1, c2, ..., cn) = BERT−Ch (cw1, cw2, ..., cwn) (1)
(e1, e2, ..., em) = BERT−En (ew1, ew2, ..., ewm) (2)

3.3 Adapted Cross-Transformer with Global
Sparse Attention

This section presents our first proposed Adapted
Cross-Transformer with Global Sparse Attention
(ACT-S) for bilingual information interaction in
detail. As illustrated in Figure 2(a), several param-
eter independent ACT-Ss are used in our model for
both inter- and intra-language interactions between
bilinguals. The implementation details of ACT-S
are shown in Figure 2(b).

Motivation: In multimodal tasks, the widely
used cross-modal Transformers (Yu et al., 2020;
Sui et al., 2021; Wu et al., 2021) typically use Soft-
max to normalize the cross-modal attention distri-
bution of each head. As a result, in multi-head
cross-modal attention, each unit is represented by
all the units in the other modality by multiple differ-
ent weighted averages. However, it is essential that
a word is only associated with a small number of
words in the other language in bilingual enhanced
Chinese NER. Based on the above observations, we
propose for the first time to incorporate the global
sparse attention mechanism in a cross-modal Trans-
former to learn bilingual interactive word represen-
tations, which exclude the interference of irrelevant
words in the other language. To our knowledge, it
is the first time that global sparse attention is used
for a multimodal task.

For inputs X = (x1, ..., xu, ..., xn̂) and Y =
(y1, ..., yv, ..., ym̂) , we treat X ∈ Rn̂×d as queries,
and Y ∈ Rm̂×d as keys and values. The input Q,
K, and V are obtained by linear transformation of
X and Y :

Q(h),K(h), V (h) = XW (h)
q , Y W

(h)
k , Y W (h)

v (3)

where h ∈ {1, 2, ..., Nh} is the index of the h-th
attention head and Nh is the number of attention
heads.

{
W

(h)
q ,W

(h)
k ,W

(h)
v

}
∈ Rd×dk are learn-

able parameters and dk = d
Nh

.
To provide the attention mechanism in ACT-S

with the ability of both distance perception and di-
rection perception, we adopt the component of sens-
ing relative distances similar to that in MECT(Wu
et al., 2021) in the attention matrix computation
process:

Ã(h)
u,v = Q(h)

u

(
K(h)
v

)T
+Q(h)

u RTu−v

+K(h)
v RTu−v + α

(
K(h)
v

)T
+ βRTu−v

(4)

Ru−v =
[
..., sin

( u− v
106p/dk)

)
, cos

( u− v
106p/dk

)
, ...
]

(5)

where u is the index of the word in the target
language and v is the token in the other language,
Qu, Kv is the query vector and key vector of word
xu, yv respectively , Ru−v ∈ Rdk is the relative
position encoding, p in Eq. 5 is in the range

[
0, dk2

]
,

α ∈ Rdk and β ∈ Rdk are learnable parameters.
Different from MECT, we add a key bias term

K
(h)
v RTu−v to attention matrix to represent the bias

of v-th token in the key sequence on certain relative
distance and we empirically found that models per-
form better with it. And in this work, we consider
that words in the target language are only relevant
to a small number of words in another language. To
learn a better representation of the target language
words guided by the relevant words in another lan-
guage. For the first time, we introduce sparse prior
information to the global attention distribution via
the top-k mask operation Tkm(·), which is formu-
lated as follows:

Tkm(Ã(h)
u,v , k) =

{
Ã

(h)
u,v if Ã

(h)
u,v ∈ top(Ã(h)

u,: , k)

C if Ã
(h)
u,v /∈ top(Ã(h)

u,: , k)
(6)

Where k is a hyperparameter, masking constant
C ≪ 0, Au,: = Q

(h)
u

(
K(h)

)T ∈ Rm̂ contains the

attention values between Q(h)
u and all keys in K(h),
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top(Ã
(h)
u,: , k) is a set containing the largest k values

in Ã
(h)
u,: . The Adapted Global Sparse Attention

matrix for the h-th attention head is then calculated
as:

A(h)
u,v = Tkm(Ã(h)

u,v , k) (7)

And the attention score is calculated as follows:

Atten(h) = softmax
(
A(h)

)
V (h) (8)

Atten =
[
Atten(1); ...;Atten(Nh)

]
W o (9)

where W o ∈ Rd×d is a learnable parameter. Then,
we stack the following sub-layers on top to obtain
the text representation based on bilingual interac-
tion:

Ô = LN (X +Atten) (10)

O = LN
(
Ô + FFN

(
Ô
))

(11)

where FFN is the feed-forward network, LN
is the layer normalization. Both of these operations
are consistent with those in vanilla Transformer
(Vaswani et al., 2017).

3.4 Chinese representation with bilingual
interaction

Given a Chinese text sequence C = (c1, c2, ..., cn)
and an English text sequence E = (e1, e2, ..., em),
obtaining the Chinese representation of fused bilin-
gual information requires two steps: inter-modal
fusion and intra-modal fusion.

Inter-modal interaction: In order to learn a
better representation of Chinese with the aid of in-
formation in the English text, we first employ ACT-
Ss to get the English-Aware Chinese Representa-
tion. Similarly, to align each English word with its
closely related Chinese characters, i.e., assigning
high/low attention weights to its related/unrelated
Chinese characters, we also use parameter inde-
pendent ACT-S to gain the Chinese-Aware English
Representation:

K(t) = ACT -S_cn(K(t−1), J(t−1)) (12)

J(t) = ACT -S_en(J(t−1),K(t−1)) (13)

where t ∈ {1, · · · , N} , N denotes the
number of interactions between bilingual modal-
ities, K(t) =

(
k
(t)
1 , k

(t)
2 , ..., k

(t)
n

)
, J (t) =

(
j
(t)
1 , j

(t)
2 , ..., j

(t)
m

)
, K(0) = C and J (0) = E.

Intra-modal interaction: In order to learn the
dependencies between Chinese words, we use an-
other ACT-S to obtain the Intra-Chinese Interaction
Representation:

A = ACT -S_in(C, J(N)) (14)

Then, we concatenate A = (a1, a2, ..., an) and
J (N) and input them into a fully connected layer
to obtain the final hidden representations H =
(h1, h2, ..., hn):

H =
(
a1 ⊕ j(N)

1 , ..., an ⊕ j(N)
n

)
WF + b (15)

where ⊕ denotes the concatenation operation,
WF and b are learnable parameters.

At last, we pass the final hidden representations
H to a Conditional Random Field (CRF) (LAF-
FERTY, 2001) module.

4 Experiments

4.1 Experiment Settings

4.1.1 Datasets
We used four publicly available Chinese NER
datasets, including Weibo NER (Peng and
Dredze, 2015), Resume NER (Zhang and Yang,
2018), MSRA (Levow, 2006) and Ontonotes 4.0
(Weischedel et al., 2010). The corpus of MSRA
and Ontonotes 4.0 comes from news, the corpus
of Weibo comes from social media, and the cor-
pus of Resume comes from the resume data in
Sina Finance. The splitting methods and other
pre-processing methods of datasets follow those
in (Zhang and Yang, 2018; Li et al., 2020; Wu
et al., 2021).

4.1.2 Text Translation
Neural machine translation (NMT) methods have
achieved state-of-the-art performance for the trans-
lation of a wide range of language pairs(Vaswani
et al., 2017). Therefore, automatic text translation
with NMT is applicable. In this work, we employ
Baidu Translation API1 and Tencent Translation
API2 to automatically translate Chinese text into
English, respectively, and both machine translation
systems have achieved the highest BLUE score on
the WMT Chinese-English task(Sun et al., 2019;
Wang et al., 2021b) in recent years.

1https://fanyi-api.baidu.com/
2https://cloud.tencent.com/product/tmt

2028



Models Resources Weibo Resume MSRA Ontonotes 4.0
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

BERT-Tagger♦† - - - 68.20 - - 95.53 - - 94.95 - - 80.14
LSTM-CRF[BERT]♦∗ - 68.21 68.38 68.29 95.11 96.01 95.56 95.33 95.04 95.18 79.92 80.56 80.24
TENER[BERT]♦∗ - 67.19 69.49 68.32 94.98 96.20 95.59 95.39 95.44 95.41 78.69 82.21 80.41
FLAT[BERT]♦† L - - 68.55 - - 95.86 - - 96.09 - - 81.82
DyLex♦† L - - 71.12 - - 95.99 - - 96.49 - - 81.48
MECT[BERT]♦† L+RC - - 70.43 - - 95.98 - - 96.24 - - 82.57
Ours(N=2)♦∗ T-T 72.60 74.16 73.37 96.29 96.99 96.87 96.62 96.82 96.72 83.95 83.77 83.86
Ours(N=2)♦∗ T-B 72.57 73.95 73.25 96.30 96.91 96.60 96.59 96.89 96.74 83.98 83.85 83.91
BERT-Tagger▲† - 67.12 66.88 67.33 96.12 95.45 95.78 94.43 93.86 94.14 78.01 80.35 79.16
LSTM-CRF[BERT]▲∗ - 67.63 67.18 67.40 95.84 95.61 95.72 94.46 93.89 94.17 78.92 79.56 79.24
TENER[BERT]▲∗ - 66.69 68.21 67.44 95.05 96.63 95.83 94.45 94.19 94.32 78.99 79.70 79.34
LEBERT▲† L - - 70.75 - - 96.08 - - 95.70 - - 82.08
PLTE[BERT]▲† L 72.00 66.67 69.23 96.16 96.75 96.45 94.91 94.15 94.53 79.62 81.82 80.60
SLex-LSTM[BERT]▲† L 70.94 67.02 70.50 96.08 96.13 96.11 95.75 95.10 95.42 83.41 82.21 82.81
Ours(N=2)▲∗ T-T 73.21 71.90 72.55 96.21 96.89 96.55 96.35 95.91 96.13 83.24 83.82 83.53
Ours(N=2)▲∗ T-B 73.15 71.84 72.48 96.32 96.87 96.59 96.37 95.92 96.14 83.41 83.71 83.56

Table 1: Main results. Bold marks the highest score. † marks results quoted directly from the original papers.
♦ marks results produced with BERT-wwm. ▲ marks results produced with BERT-base-Chinese. ∗ marks the
results implemented in the fastNLP3 framework. ‘L’ denotes using the lexicon resources. ‘RC’ denotes the radical
information of Chinese. ‘T-T’ denotes using the bilingual information from the Tencent Translation API and ‘T-B’
denotes using the bilingual information from the Baidu Translation API.

4.1.3 Baseline Methods

To demonstrate the effectiveness of our proposed
model, we compare it with several strong baseline
models for Chinese NER: (1) BERT-Tagger (De-
vlin et al., 2019)(2) LSTM-CRF[BERT] (Huang
et al., 2015) (3) TENER[BERT] (Yan et al., 2019).
Besides, we also compare our method with the
lexicon enhancement methods, which are the state-
of-the-art methods for Chinese NER: (1) LEBERT
(Liu et al., 2021) (2) FLAT[BERT] (Li et al.,
2020) (3) PLTE[BERT] (Mengge et al., 2020)(4)
SoftLexicon-LSTM[BERT] (Ma et al., 2020)( In
this paper, we call Soft-Lexicon SLex for short.)
(5)DyLex (Wang et al., 2021a) (6) MECT[BERT]
(Wu et al., 2021).

4.1.4 Implement Details

The English word representations E are initial-
ized with the cased BERT-base-English model pre-
trained by Devlin et al. (2019). In addition, to make
the comparison with the results of the baseline mod-
els convincing, we use BERT-base-Chinese(Devlin
et al., 2019) and BERT-wwm(Cui et al., 2021) to
initialize the Chinese word representations C sepa-
rately to get different experimental results for com-
parison and fine-tuned during training. All the
neural models are implemented with PyTorch and
fastNLP3. More implementation details are de-
scribed in Appendix A.

3https://github.com/fastnlp/fastNLP

4.2 Main Results

We compared our proposed method with the state
of the art methods. The experimental results are re-
ported in Table 1, which is divided into two blocks.
The methods in the first block use the Chinese word
representation from BERT-wwm. And the methods
in the second block use the Chinese word repre-
sentation from BERT-base-Chinese. Our model
achieves a significant and consistent performance
boost over current SOTA models on four Chinese
NER datasets. From the results, we can observe
that:

(1) In comparison with the methods with-
out external resources (BERT-Tagger, LSTM-
CRF[BERT] and TENER[BERT]), our model
achieves a significant performance boost. Because
our model makes use of the rich prompt informa-
tion in the English text that help to determine the
boundaries and types of entities. It demonstrates
the significant effect of introducing bilingual infor-
mation compared to just using the internal features
of Chinese.

(2) Compared with the lexicon enhancement
method using pre-trained BERT-wwm Chinese rep-
resentation, our model has superior performance,
i.e., +2.25 , +0.88, +0.25 ,+1.34 on Weibo, Re-
sume, MSRA, Ontonotes4.0, respectively. When
compared with baselines with BERT-base-Chinese,
the performance of our model is still be competi-
tive, i.e., +1.8, +0.14, +0.44, +0.75 on Weibo, Re-
sume, MSRA, Ontonotes4.0, respectively. This
verifies our claim that, compared with the exter-
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Models Weibo Resume MSRA OntoNotes
Ours 73.37 96.87 96.72 83.86
-GS 71.68 96.09 96.02 82.72
-RA 72.23 96.18 96.14 82.81

-APW 73.28 96.80 96.65 83.79
-KB 73.25 96.75 96.64 83.81

Table 2: An ablation study of the proposed model. F1
scores were evaluated on the test sets. ‘GS’ denotes
the Global Sparse operation. ‘RA’ denotes the relative
distance-aware attention. ‘APW’ denotes the average
pooling operation used to obtain the word-level rep-
resentations. ‘KB’ denotes the key bias term in the
attention matrix.

nal resources used by most Chinese NER models,
incorporating the rich information in English is
a promising way to improve the performance of
Chinese NER tasks.

(3) All translated English texts used in this work
are automatically generated from the publicly avail-
able machine translation API. Compared with the
baseline models with external resources, our pro-
posed bilingual enhanced approach improves per-
formance and requires no artificially generated ex-
ternal knowledge. From another perspective, we be-
lieve that our proposed model transfers the knowl-
edge in the neural machine translation model to
enhance the Chinese NER model.

(4) Our proposed model could achieve state-of-
the-art performance in both cases with English texts
automatically translated by two different machine
translation systems. This suggests that the perfor-
mance improvement of our model is not dependent
on a specific machine translation system.

(5) Even when the size of training set is small,
such as Weibo NER, the performance improvement
of our model over other baselines is still significant.
This demonstrates that our proposed model is not
data-hungry and has promising potential in low-
resource NER scenarios.

5 Analysis and Discussion

5.1 Ablation Study

To study the contribution of the main components
in our model, we conducted an ablation study on
all four datasets. The results are reported in Table
2. And we can observe the following facts:

(1) To demonstrate the advantage of global
sparse operation, we remove it from the model.
The results show that, without global sparse op-
eration, the performance of the model degrades
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Figure 3: Impact of the machine translation quality. F1
scores were evaluated on the test sets.
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Figure 4: Impact of missing translated texts. F1 scores
were evaluated on the test sets.

severely, which indicates that there exist severe in-
terference of irrelevant words during the process of
bilingual interactions. The global sparse operation
in ACT-S substantially improves the performance
of our model, demonstrating its effectiveness while
achieving higher interpretability for our method.

(2) The component of sensing relative distance
in ACT-S has a significant positive impact on the
performance of the proposed model, and the model
without it shows a certain degree of performance
degradation. This illustrates the validity of the
relative distance-aware component in our model.

(3) We empirically found that the model per-
forms better at word-level bilingual interactions
than at subword-level.

(4) There are positive effects of introducing a
key bias term into the cross-attention matrix.
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Figure 5: Influence of attention sparsity k. Γ is the
length of the text sequence.

5.2 Impact of machine translation quality &
missing translated texts

To illustrate the robustness of our model, we set up
separate experiments to investigate the effect of ma-
chine translation quality and missing translated text
on our model. We randomly replace words in the
automatically translated English text with the mask
token [MASK] in a fixed proportion to simulate a
reduction in the machine translation quality. Simi-
larly, we randomly replace the entire automatically
translated English text with a fixed-length(average
length of samples in the training set) sequence of
the mask token [MASK] at a certain rate for all
samples. As shown in Figure 3 and Figure 4, our
model can achieve excellent performance even in
cases where the translated text has little noise or is
missing. And when the translated text is almost full
of noise or even 100% missing, our model still out-
performs TENER [BERT], a strong baseline that
does not use any external resources, which demon-
strates the robustness of our model. In addition, it
demonstrates that the performance improvement
of our model originates not only from bilingual
resources but is also related to the model itself.

5.3 Impact of attention sparsity k.

We also conducted experiments to verify the impact
of the attention sparsity control factor k in ACT-Ss.
The results reported on the four datasets are shown
in Figure 5. From the results, we can see that the
inappropriate sparsity of global attention signifi-
cantly degrades the performance of the model. If
the global cross-attention matrix is too sparse, such
as in the case of k = 1, the ACT-S module cannot
learn sufficiently about the dependencies between

Method NER results

Gold labels

[美国“亚特兰蒂斯号”航
天飞机 ORG]上的宇航员...
Astronauts on [the US space
shuttle Atlantics ORG]...

BERT-Tagger
[美国 LOC]“亚特兰蒂斯号”
航天飞机上的宇航员...

MECT
[美国 LOC][“亚特兰蒂斯号”
航天飞机 ORG]上的宇航员...

Translation-1
Astronauts on the US

space shuttle Atlantics...

Ours-1
[美国“亚特兰蒂斯号”

航天飞机 ORG]上的宇航员...

Translation-2
Astronauts on space shuttle

Atlantics of US...

Ours-2
[美国“亚特兰蒂斯号”

航天飞机 ORG]上的宇航员...

Table 3: Example-1 of the NER results.

bilingual texts. At the other extreme, if the atten-
tion matrix takes too many interactions between
bilingual words into account, the model will not
achieve the best performance either. This indicates
the sparse nature of lexical dependencies between
bilingual texts. Furthermore, the experimental re-
sults suggest that it is applicable and interpretable
to introduce sparse attention rather than full atten-
tion in bilingual interactions.

5.4 Case Study
Table 3 illustrates one typical example where our
proposed bilingual enhancement model success-
fully tackles the dilemma of the complex structure
of entity composition in the Chinese NER task.
Most of the existing Chinese NER methods utilize
only the internal features of the Chinese language,
which makes it difficult to tag entities with complex
composition structures correctly. When rich cues
in English are leveraged, this problem can be alle-
viated. In addition, it can be seen from these two
cases that the clues in the different English trans-
lations are all beneficial for the correct labeling of
complex entities.

6 Conclusion

In this paper, we propose an Adapted Cross-
Transformers with Global Sparse Attention (ACT-
S) module to explore bilingual interaction infor-
mation to improve the performance of the Chinese
NER task. Several parameter independent ACT-
Ss are employed in our work to capture the rich
information in both English and Chinese. We eval-
uate the proposed model on four Chinese NER
datasets and the experimental results illustrate that
our method achieves significant and consistent im-
provement compared to other baselines. In the fu-
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ture, we will explore how to improve Chinese NER
with features from languages other than English
and extend our model to other sequence labelling
tasks.
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Abstract

The introduction of multimodal information
and pretraining technique significantly im-
proves entity recognition from visually-rich
documents. However, most of the existing
methods pay unnecessary attention to irrele-
vant regions of the current document while ig-
noring the potentially valuable information in
related documents. To deal with this problem,
this work proposes a cross-document semantic
enhancement method, which consists of two
modules: 1) To prevent distractions from
irrelevant regions in the current document, we
design a learnable attention mask mechanism,
which is used to adaptively filter redundant
information in the current document. 2) To
further enrich the entity-related context, we
propose a cross-document information aware-
ness technique, which enables the model to
collect more evidence across documents to
assist in prediction. The experimental results
on two documents understanding benchmarks
covering eight languages demonstrate that our
method outperforms the SOTA methods.

1 Introduction

Visually-rich documents (VRDs) are the most
common information carriers in the real world,
such as newspapers, resumes, tickets, etc. Differ-
ent from plain text data, the information in VRDs
is encoded by multiple modalities including text,
vision, and layout. Entity recognition from VRDs,
as a key step for document understanding, is of
utmost practical interest for many downstream
applications such as business analysis (Xu et al.,
2020), intelligent education (Kahraman et al.,
2010), digital library (Kroll et al., 2021).

The pioneering explorations approach this task
by either computer vision (Katti et al., 2018) or
natural language processing (Lample et al., 2016)

*Equal Contributions.
†Corresponding authors.

The New York Times.

COVID-19 spreads in the US.

Facebook renames itself meta.

Target-Related 
Context 

Non-Related 
Context 

What is
COVID-19?

COVID-19 spreads in the US.

Fever is a sympton of COVID-19.

Omicron is a variant of COVID-19.

COVID-19 causes pneumonia.

This is the name
of a virus!

Figure 1: Redundant irrelevant information and insuf-
ficient entity-related information in current document
make it difficult to extract entities accurately. We
filter redundant information from irrelevant regions and
expand the information source from a single to multiple
related documents. Thereby, entity-related information
is efficiently integrated and the extraction is improved.

paradigm. However, these methods ignore the in-
herent multi-modality of VRDs and consequently
the suboptimal results are achieved. To address
this problem, graph neural network (Liu et al.,
2019) and self-attention mechanism (Zhang et al.,
2020) are introduced to capture the cross-modality
interaction and achieve superior performance. Re-
cently, inspired by the widespread success of
large pretrained language models (Qiu et al.,
2020), self-supervised pretraining techniques are
leveraged to learn cross-modal knowledge from
unlabeled documents (Xu et al., 2020, 2021a,b)
and the amount of labeled data required for
document understanding is greatly reduced.

However, the existing methods suffer from
the following two main shortcomings. From
intra-document perspective, most previous works
model a document by encoding each token uni-
formly, ignoring the fact that the document is
composed of several regions (e.g. paragraphs,
tables, captions) that are not so closely related se-
mantically (Binmakhashen and Mahmoud, 2019).
As shown in Figure 1, the type of COVID-19 in
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the orange region does not depend on the context
in other gray regions. Unrestricted consideration
of the whole document will not only distract the
attention to local regions with stronger semantic
associations (Guo et al., 2019b) but also increase
the risk of fitting spurious features (also known
as the Shortcut phenomenon (Geirhos et al.,
2020)). From the inter-document perspective,
the observed information is limited to the single
document context, which may not be enough to
accurately recognize entities. As shown in Figure
1, we can’t judge whether COVID-19 is a piece
of news or a virus only by virtue of “COVID-19
spreads in the US”. Worse still, the insufficient
context information can be further destroyed by
the errors in character recognition when faced
with low-quality documents (e.g. imaging blur,
deformity) (Mou et al., 2020).

In this work, we propose a cross-document se-
mantic enhancement method to enable the model
to focus and integrate entity-related information
across documents. Specifically, to prevent dis-
tractions from irrelevant regions in the current
document, we design a learnable attention mask
mechanism. Cross-region attentions are masked
with a higher probability, so the model tends
to make predictions using more reliable features
from the local region. We introduce gumbel
softmax (Jang et al., 2017) to solve the non-
differentiable problem of discrete mask variables.
To embrace sufficient context to assist predic-
tion, we propose a cross-document information
awareness technique. Inverted index (Knuth,
1997) is used to efficiently store and retrieve the
contextualized representations of each token from
each document. Cross-document attention acts on
entity token representations to collect sufficient
evidence to improve prediction.

Our contribution is threefold: 1) we propose
a cross-document semantic enhancement method
to enable the model to focus on the entity-related
information across documents. The method filters
the redundant information while expanding the
information source; 2) our method can be regarded
as a plug-in. It can be added to any document
understanding model to improve prediction. 3)
The experimental results on two datasets covering
eight languages demonstrate that the proposed
method outperforms the state-of-the-art methods;

2 Related Work

2.1 Multi-modal Named Entity Recognition
The approaches used to handle the task roughly
fall into one of three directions. (1) From
single to multiple modality. Due to the inherent
multi-modality of visually-rich documents, early
attempts from the perspective of computer vision
(CV) (Katti et al., 2018) or natural language
processing (NLP) (Lample et al., 2016; Ma et al.,
2022; Zhao et al., 2021; Wang et al., 2022) can
not achieve optimal performance. Therefore,
artfully designed network architectures (Yu et al.,
2021) and sophisticated mechanisms (Guo et al.,
2019a) are used to fuse multimodal features for
document understanding. (2) From isolated to
end-to-end optimization. In classical document
understanding methods, modules such as text
recognition, image encoding, and information
extraction are still optimized in isolation with
different objective functions. To deal with this
limitation and extract task-tailored features, end-
to-end training frameworks are proposed (Zhang
et al., 2020; Wang et al., 2021a), in which all
modules are differentiable and optimized by a
unified loss function. (3) From supervised to
pretraining paradigm. Recently, Xu et al.
(2020) extend the textual pretraining task to visual
documents. Multiple well-designed pretraining
objectives facilitate the interaction of multimodal
information. With the help of learned generic
document features, only a few samples would be
sufficient to achieve SOTA accuracy. Different
from all the above-mentioned methods, we rethink
this task from the perspective of information
integration and achieve the transition from single-
document uniform to cross-document selective
information integration to improve prediction.

2.2 Shortcut Phenomenon in Neural Network
Why should we selectively focus on local regions
rather than dealing with each token of the whole
document without distinction? The answer is
the Shortcut phenomenon (Geirhos et al., 2020),
which illustrates that neural networks always tend
to fit training objectives in the simplest way.
For example, suppose that in the training set,
the word “Washington” in samples entitled “New
York Times” all stand for place names. Global
self-attention can easily learn this spurious feature.
When “Washington” appears as a person’s name,
the model may completely ignore its context and
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Multi-Modal Transformer Encoder  
The      New      York     Times COVID spreads     in         the        US Facebook renames itself    meta
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Attention 
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COVID-19: ...

Facebook: ...
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Cross

Attention
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* ORG: organization; VIR: virus; CNT: country;

I-ORG I-ORG I-ORG O O O B-ORG O O B-ORGB-CNT

Figure 2: We take the extraction of COVID-19 as an example to illustrate the proposed method. First, a multimodal
encoder is used to encode the context information of the current document. To filter the redundant irrelevant
information (gray nodes) in the document, the mask generation layer is added to each layer of the encoder. Tokens
farther away from COVID-19 will be masked with a higher probability during training (dotted node). Finally,
we efficiently query COVID-19’s representation in other documents by inverted index and a cross-document self-
attention is used to integrate the information of COVID-19 in related documents.

directly make wrong predictions based on the title.

3 Approach

We propose a cross-document semantic enhance-
ment method, which enables the model to make
use of the cross-document context of the target en-
tity and reduce the impact of noise from irrelevant
regions of the current document.

The problem settings in this paper are formally
stated as follows. Let E = {ei}i=1,...,NE denotes
the predefined NE entity types of interest and
C = {ci}i=1,...,Nc denotes the entity label set
derived by E according to the BIO scheme. Let
D = {(wi, bi, vi)}i=1,...,ND be a visually-rich
document (VRDs), where wi denotes token in
the document. bi = (x0i , y

0
i , x

1
i , y

1
i ) denotes the

bounding box (i.e. the position in the document)
and vi denotes image patch of wi. Given a
labeled set of VRDs S = {Di}i=1,...,NS , we
target at learning a mapping function F : D →
{cwi}i=1,...,ND . In other words, F assigns an
entity label cwi ∈ C to each word wi in the
document to extract entities of interest.

3.1 Method Overview

We improve entity recognition from VRDs by the
proposed cross-document semantic enhancement
method, which enables the model to focus on
the entity-related information across documents,
rather than being distracted by irrelevant regions
in the current document. As illustrated in Figure
2, the proposed method works as follows.

(1) We encode a visually-rich document D ∈ S
using a multi-modal transformer encoder imple-
mented as the pretrained LayoutXLM (Xu et al.,
2021b), which takes multi-modal information in-
cluding text wi, layout bi and picture patch cut by
bi as input, and hi,j denotes the output of layer
j of the encoder. However, a document is usually
composed of several regions that are not so closely
related semantically. Consequently, unrestricted
consideration of the whole document will not only
distract the attention to local regions with stronger
semantic associations but also can increase the risk
of fitting spurious features.

(2) To prevent distractions from irrelevant re-
gions in the current document, we design a
learnable attention mask mechanism. Tokens
that are farther away from the current token will
be masked with a higher probability. Since
mask operation is a discrete variable sampled
from the binomial distribution, Gumbel softmax
is introduced to realize end-to-end optimization of
mask distribution. However, the current document
context may not contain enough information to
accurately classify the output of the encoder hi,N
to the true entity label cwi .

(3) To embrace sufficient context to improve
prediction, we propose a cross-document infor-
mation awareness technique. Each word wi
corresponds to a queue Qi = {hmi,N}

|Q|
m=1 that

stores the contextualized representation of wi in
|Q| different documents. When encoding the
current document D, for each word wi ∈ D,
we retrieve Qi and obtain the final representation
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hi through the cross-document attention between
hi,N and each hmi,N ∈ Qi. After that, hi,N is
updated to queue Qi. The lazy update ensures
efficiency. Based on hi, we classify wi into its
corresponding entity label cwi .

3.2 Learnable Attention Mask Mechanism
In this section, we elaborate on the proposed
learnable attention mask mechanism. Firstly, the
pretrained encoder aims to integrate multi-modal
inputs such as text, layout, and vision, and obtain
the fixed-length representation of each token. To
reduce the excessive attention to the irrelevant
regions in the document during encoding, a mask
sampled from the binomial distribution is applied
to the original attention distribution, and the
tokens farther away from the current position will
be masked with a higher probability. Finally, the
introduction of Gumbel relaxation solves the prob-
lem of non-differentiability of the discrete mask,
which enables the model to learn the optimal mask
distribution in an end-to-end manner.

3.2.1 Multi-Modal Transformer Encoder
The proposed cross-document semantic enhance-
ment method is architecture-agnostic and can be
added to any encoder architecture based on self
attention mechanism. We adopt LayoutXLM (Xu
et al., 2021b) as the implementation of our encoder
enc(·) because LayoutXLM is a multilingual
encoder, which enables us to comprehensively
demonstrate the effectiveness of the proposed
method in different languages. We follow the
way in LayoutXLM to generate input of the
encoder. Specifically, given a visually-rich doc-
ument D = {(wi, bi, vi)}i=1,...,ND , the multi-
modal transformer encoder enc(·) takes inputs
from three different modalities, including text wi,
layout bi, and image patch vi, which are mapped
to text embedding wi, layout embedding PEi,
and visual embedding vi, respectively. The text
and visual embeddings are concatenated, then plus
the layout embedding to get the input embedding
H0 = {h1,0, ..., hN,0} ∈ RN×d. Then, the
intra-document self-attention transform H0 into
the queries Q0 ∈ RN×d, the keys K0 ∈ RN×d,
and the values V 0 ∈ RN×d. Finally, the output of
the current layer is calculated as follows:

H l+1 = ATT (Ql,K l)V l (1)

ATT (Ql,K l) = Softmax(
QlK l,⊤
√
d

). (2)

The output of the last layer HN is used as the
input of the entity classifier. Although the global
attention mechanism can model the interaction
between multi-modal information, the redundant
irrelevant information contained in the document
reduces the attention of the model to the local
regions with stronger semantic relevance, which
leads to sub-optimal results.

3.2.2 Self-Attention with Mask Mechanism
In order to enhance the attention to local regions
and reduce the risk of fitting spurious features, we
carefully design a mask generation layer, which
aims to select a more reliable subset from the
input document as the basis for model prediction.
Specifically, for the representation of each token
hi,l ∈ H l in layer l of encoder, the mask genera-
tion layer outputs a specific mask sequence m =
(m0,m1, ...,mN ), mi ∈ {0, 1}, where 0 and
1 here represent discard and select respectively.
When calculating whether a contextual token will
be discarded, we first calculate its distance ∆X
on the horizontal axis and ∆Y on the longitudinal
axis with the current word. Then the mask is
sampled from the following binomial distribution:

P∆X,Y (m) = m ∗ π∆X,Y
+ (1−m) ∗ (1− π∆X,Y )

(3)

π∆X,Y = e
−[α( ∆X

XMAX
)+β( ∆Y

YMAX
)]
, (4)

where XMAX and YMAX denote the maximum
height and width of the document, respectively. α
and β are the learnable parameters. In addition to
relative positions, we also try to take region type
into account. However, mainstream document
understanding datasets lack region labels. Due to
the domain gap, the pseudo region labels obtained
by the existing layout analyzer are too noisy to
use. It should be noted that equation 4 is easy
to extend. We only need to add more terms to
the exponential term to consider more influencing
factors (e.g. when region labels are available)

We concatenate the mask sequences m ∈ RN
corresponding to each token to get a mask matrix
M ∈ RN×N , which is used to refine the original
attention distribution of token i in layer l.

E =
QK⊤√

d
(5)

ATTi(M ,Q,K) =
Miexp(Ei)∑N

i′=1Mi′exp(Ei′)
. (6)
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Based on the ATT obtained from equation 6,
we calculate hi,l+1 according to equation 1. It
should be emphasized that although tokens farther
away from the current token will be masked with
a higher probability, this does not mean that the
model can never observe them. The purpose
of the above mechanism is to make the model
tend to make predictions using more reliable local
features.

3.2.3 Gumbel Relaxation
To solve the non-differentiable problem of discrete
mask operation, we introduce Gumbel softmax
(Jang et al., 2017) to approximate the mask op-
eration from the categorical distribution so that it
can be optimized through backpropagation. Since
we are dealing with a 2-class sampling problem,
the original Gumbel softmax approximation is
reduced to sigmoid-form as follows:

Gumbel(L) =
exp((L+G1)/τ)

exp((L+G1)/τ) + exp(G2/τ)
,

(7)

where Gumbel(·) is a continuous approximation
of discrete maskmi, L denotes logits = log( p

1−p)
and p is calculated according to equation 3. G1

and G2 are two noises sampled from Gumbel
distribution (Gumbel, 1954) independently. In
addition, τ ∈ (0,+∞) denotes the tempera-
ture parameter. With the decrease of τ , the
approximate result Gumbel(·) will gradually tend
to one hot. In the inference, we directly use
P∆X,Y (m = 1) = 0.5 as the threshold of whether
to mask a context word to ensure the consistency
of inference results.

3.3 Cross-Document Information Awareness
For some hard cases, the context of the current
document may not contain enough entity-related
information. To embrace sufficient context to
assist prediction, we propose the cross-document
information awareness technique. Inverted index
is introduced to deal with the fast retrieval of
massive document context and cross-document
attention is used to integrate entity-related infor-
mation from different documents.

3.3.1 Efficient Retrieval Supported by
Inverted Index

Efficient storage and retrieval of a large number
of documents is a prerequisite for cross-document
information awareness. To enable the model to

efficiently retrieve different contexts containing
the current token, we introduce the inverted index
(Knuth, 1997) to manage the data efficiently.
Specifically, each word wi corresponds to a queue
Qi = {hmi,N}

|Q|
m=1 that stores the contextualized

representation of wi in |Q| different documents.
When the model queries the context of a token
in other documents (e.g. COVID-19), we only
need to return the queue corresponding to COVID-
19 instead of traversing the entire dataset. How-
ever, as the model is updated, the contextualized
representations stored in the queue will gradually
become obsolete. It is obviously inefficient or
even impossible to update the whole inverted
index after the training of each batch. In order
to solve this problem, we use the lazy update to
maintain the queue. That is, after the current
document D is encoded, we only update the
representation hi,N of each wi ∈ D to the queue
Qi. Finally, does storing these vectors incur
excessive memory overhead? In fact, most words
do not need to store more than 3 cross-document
copies due to the long-tail effect. Words that
appear many times are usually stop words, and it is
useless to store too many of their representations.
Therefore, we limit the maximum queue length
to avoid useless storage. Overall, the queue size
accounts for only about 5% to 10% of the encoder
parameters.

3.3.2 Cross-Document Attention

Given the multi-modal embedding hi,N of each
word wi outputted by layer N of encoder enc(·),
we integrate the information of different docu-
ments through the cross-document attention mech-
anism to assist prediction. First, we query the
context representation queue Qi = {hmi,N}

|Q|
m=1 ∈

R|Q|×d corresponding to token wi from the in-
verted index. Then hi,N and Q are concatenated
to get Hc ∈ R(|Q|+1)×d, the input of cross-
document attention. Then we transform Hc into
the keys Kc ∈ R(|Q|+1)×d, and the values V c ∈
R(|Q|+1)×d. We only calculate the query qc of
hi,N for the efficiency of calculation. We obtain
the representation hi of the wordwi by integrating
cross document information as follows:

hi = ATT (qc,Kc)V c (8)

ATT (qc,Kc) = Softmax(
qcKc,⊤
√
d

). (9)
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Finally, a linear classifier η(·) : Rd → RNc
optimized by cross entropy transforms hi to its
corresponding entity label cwi ∈ C.

4 Experimental Setup

In this section, we describe the datasets for
training and evaluating the proposed method. We
also detail the baseline models for comparison.
Finally, we clarify the implementation details and
hyperparameter configuration of our method.

4.1 Datasets

The effectiveness of the proposed method is not
limited to a particular language. We conducted
experiments on two well-known document under-
standing datasets consisting of eight languages to
show the universality of our method.
FUNSD (Jaume et al., 2019) is an English dataset
for form understanding in noisy scanned docu-
ments. It consists of 199 manually labeled real
documents from different fields such as marketing,
advertising, and scientific reports. Each entity
is annotated by a label (i.e., question, answer,
header, or other) following the BIO schema, and
a bounding box indicating the 2D position in the
document. The dataset is split into 149 training
forms and 50 testing forms.
XFUND (Xu et al., 2021b) is a multilingual form
understanding dataset, which extends the FUNSD
dataset to 7 other languages including Chinese,
Japanese, Spanish, French, Italian, German, and
Portuguese. Each language includes 199 forms,
where the training set includes 149 forms and the
test set includes 50 forms.

4.2 Comparison Methods

To evaluate the effectiveness of our method, we
select the following SOTA multilingual NER mod-
els for comparison. The first two baseline only
use textual modal as self-supervised signal, while
multimodal pretraining is used in the last baseline
and achieves SOTA in document understanding
task.
XLM-RoBERTa (Conneau et al., 2020) is a
Transformer-based masked language model pre-
trained on one hundred languages, with more than
two terabytes of data.
InfoXLM (Chi et al., 2021) is a cross-lingual pre-
trained model based on an information-theoretic
framework. It formulates pretraining as maxi-
mizing mutual information between multilingual

multi-granularity texts.
LayoutXLM (Xu et al., 2021b) is a multimodal
pretrained model, which takes the information of
three modalities (text, layout, and image) as input.
The carefully designed cross-modal alignment
pretraining objectives improve the effectiveness of
visually-rich document modeling.

4.3 Implementation Details

We use the AdamW (2019) as the optimizer, with
a learning rate of 5e − 5 and batch size of 4 for
all datasets. The length of the queue is selected
among {5, 10, 15, 20} and experiments show that
10 is the best choice. We initialize α and β to
be 0.2 and 1.0 respectively. τ is selected among
{0.15, 0.25, 0.35} and we choose the best one.
We use the base version for all the pretrained
models. All experiments are conducted using an
NVIDIA GeForce RTX 3090 with 24GB memory.
All experimental results are the average of three
runs based on the Pytorch framework.

5 Results and Analysis

In this section, we present the experimental re-
sults on two well-known document understanding
datasets to show the effectiveness of our method.

5.1 Main Results

Table 1 reports model performance on FUNSD,
and XFUND datasets, which shows that the pro-
posed method achieves state-of-the-art results in
eight different languages. For visually-rich doc-
ument understanding, the key information is pre-
sented in multiple modalities, such as text, lay-
out, vision. However, XLM-RoBERTa and In-
foXLM only model a single textual modal, con-
sequently underperforming the multi-modal Lay-
outXLM baseline and our method by a large mar-
gin. Benefitting from (1) the irrelevant redundant
information filtering supported by attention mask
mechanism and (2) valuable entity-related con-
text provided by the cross-document information
awareness technique, the model can efficiently
integrate entity-related information to make pre-
dictions. As a result, the proposed method outper-
forms LayoutXLM in eight different languages.
This also shows that the effectiveness of the
proposed semantic enhancement method is not
limited to a specific language.
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Dataset Language
XLM-RoBERTa

(Conneau et al., 2020)
InfoXLM

(Chi et al., 2021)
LayoutXLM

(Xu et al., 2021b)
Ours

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

FUNSD English - - 0.667 - - 0.685 0.784 0.817 0.800 0.800 0.828 0.814

XFUND

Chinese - - 0.877 - - 0.887 0.848 0.920 0.882 0.871 0.932 0.901
Japanese - - 0.776 - - 0.787 0.733 0.854 0.789 0.760 0.851 0.803
Spanish - - 0.611 - - 0.623 0.713 0.752 0.732 0.736 0.760 0.748
French - - 0.674 - - 0.702 0.762 0.794 0.778 0.778 0.807 0.792
Italian - - 0.669 - - 0.675 0.774 0.833 0.803 0.791 0.852 0.820

German - - 0.681 - - 0.706 0.771 0.824 0.797 0.783 0.836 0.809
Portuguese - - 0.682 - - 0.701 0.759 0.803 0.780 0.767 0.816 0.790

Avg. ALL - - 0.705 - - 0.721 0.768 0.825 0.795 0.786 0.835 0.810

Table 1: Main results on two well-known document understanding datasets.

Language w/o. CD w/o. AM Ours
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

English 0.788 0.825 0.806 0.785 0.827 0.805 0.800 0.828 0.814
Chinese 0.868 0.934 0.900 0.869 0.928 0.897 0.871 0.932 0.901
Japanese 0.743 0.847 0.792 0.749 0.850 0.797 0.760 0.851 0.803
Spanish 0.718 0.753 0.735 0.717 0.755 0.736 0.736 0.760 0.748
French 0.763 0.802 0.782 0.767 0.811 0.789 0.778 0.807 0.792
Italian 0.785 0.844 0.814 0.776 0.846 0.809 0.791 0.852 0.820

German 0.779 0.820 0.799 0.766 0.826 0.795 0.783 0.836 0.809
Portuguese 0.757 0.809 0.782 0.766 0.808 0.787 0.767 0.816 0.790

Average 0.775 0.829 0.801 0.774 0.831 0.802 0.786 0.835 0.810

Table 2: Abalation study of our method.

5.2 Ablation Study

To study the contribution of each component
in the proposed method, we conduct ablation
experiments on the two datasets and display the
results in Table 2. The results show that the
model performance is degraded if the learnable
attention mask (AM) is removed, indicating that
the redundant information in the document will
distract the model from focusing on the local
regions with stronger semantic relevance. In addi-
tion, cross-document information awareness (CD)
provides diverse contexts for key information
extraction. Without CD, some hard cases where
the entity-related information is insufficient can
not be recognized accurately. Consequently, the
overall performance will be negatively affected.
It is worth noting that the proposed AM and CD
are effective in all languages, which also shows
the generality and practical value of the proposed
method.

5.3 Robustness Analysis

In real-world applications, we inevitably
encounter low-quality input documents. Due
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Figure 3: Model performance on the perturbated
FUNSD dataset.

to various factors such as occlusion, focus
and angular deformations, optical character
recognition (OCR) of those documents often
yield unsatisfactory results, which will negatively
impact the information extraction. To exhaustively
evaluate the robustness of the model in real
scenarios, we apply TextFlint (Wang et al.,
2021b), a robustness evaluation platform, to
perturb the original dataset to simulate OCR
errors in real-world applications. Specifically,
we use OCR error transformation in TextFlint
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Figure 4: Model performance with different lengths of
the queue in 4 randomly selected languages.

to disturb the document. For each entity in the
document, we perturb a certain proportion of
words in its context and evaluate the prediction
results. From Figure 3 we can see that the
proposed method consistently outperforms
baselines under the different ratios of OCR errors
in context. Benefitting from the proposed cross-
document information awareness technique, even
if the context of entities in the current document
is severely damaged, the model can still use the
context information in related documents to assist
in prediction. Therefore, the proposed model has
better robustness in real scenarios.

5.4 Efficiency Analysis

Although the introduction of inverted index en-
ables us to retrieve large-scale related documents
efficiently, a question worthy of discussion is
whether storing the representations of each token
will occupy too much memory space? We answer
the question by analyzing the maximum queue
length L, a key parameter affecting memory
consumption. From Figure 4 we can observe that
optimal performance can be achieved by mem-
orizing no more than 10 token representations
of each target entity in related documents. In
addition, nearly 70% of tokens in the two datasets
appear no more than 3 times due to the long-tail
token distribution. Therefore, the storage of cross-
document information does not bring too high a
memory overhead. In fact, too much information
from other documents is not necessarily leading to
better results. When the maximum queue length L
exceeds 10, further increasing L will make a large
number of meaningless stop words and some other
outdated representations memorized, which leads
to the decline of model performance.
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Figure 5: Model performance with different mask
thresholds in 4 randomly selected languages.

5.5 Impact of Context Sparsity

In the inference, we directly use P∆X,Y (m =
1) = θ as the threshold of whether to mask
a context word to ensure the consistency of
inference results. The threshold θ corresponds
to the sparsity of the context that the model can
observe. The larger the θ, the fewer tokens
can be observed. To analyze the impact of
context sparsity, we conduct experiments on four
randomly selected languages. As can be seen
from Fig. 5, initially, as the threshold increases,
redundant noise from different regional contexts is
continuously masked. The performance continues
to improve, reaching the maximum when θ = 0.5.
After that, further increasing θ will cause more
useful contexts in the same region to be masked,
and the performance declines rapidly. This also
confirms the view that useful context information
is mainly distributed in local regions.

6 Conclusions

In this work, we introduce a cross-document
semantic enhancement method to improve entity
recognition from visually-rich documents. The
proposed learnable attention mask mechanism
effectively filters redundant irrelevant information
in the current document, which reduces the risk
of overfitting spurious features. Cross-document
information awareness enriches sufficient entity-
related context to improve predictions. The
proposed method can be regarded as a plug-in,
which can be added to any existing document
understanding model and improve prediction. Ex-
perimental results show that the proposed method
outperforms the existing state-of-the-art methods
in documents of different languages and is more
robust in real scenarios.
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Abstract

We present a simple yet effective self-training
approach, named as STAD, for low-resource
relation extraction. The approach first clas-
sifies the auto-annotated instances into two
groups: confident instances and uncertain in-
stances, according to the probabilities predicted
by a teacher model. In contrast to most previ-
ous studies, which mainly only use the confi-
dent instances for self-training, we make use
of the uncertain instances. To this end, we pro-
pose a method to identify ambiguous but use-
ful instances from the uncertain instances and
then divide the relations into candidate-label
set and negative-label set for each ambiguous
instance. Next, we propose a set-negative train-
ing method on the negative-label sets for the
ambiguous instances and a positive training
method for the confident instances. Finally, a
joint-training method is proposed to build the
final relation extraction system on all data. Ex-
perimental results on two widely used datasets
SemEval2010 Task-8 and Re-TACRED with
low-resource settings demonstrate that this new
self-training approach indeed achieves signifi-
cant and consistent improvements when com-
paring to several competitive self-training sys-
tems.1

1 Introduction

Relation Extraction (RE) is a fundamental task in
Information Extraction, which aims to obtain a pre-
defined semantic relation between two entities in a
given sentence (Zhou et al., 2005). In recent years,
fine-tuning on the downstream RE tasks with pre-
trained models (Soares et al., 2019) has achieved
significant progress with the rapid development
of the “Pre-train and Fine-tune” Paradigm (De-
vlin et al., 2019) which leverages large-scale un-
labeled data. However, RE still suffers from the
data scarcity problem. For most RE tasks, due to

1 Code is publicly available at https://github.com/jjyunlp/
STAD
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(b) Uncertain instance

Figure 1: Two examples of auto-annotated instances.
For simplicity, we list two detailed relations and use
“others” to represent the other relations.

the task-specific definition of relations, the lack of
customized annotation data poses great challenge
for the supervised RE (Hendrickx et al., 2010;
Zhang et al., 2017). Meanwhile, manually labeling
large-scale RE data is extremely time-consuming,
expensive, and laborious. As an alternative, auto-
matically building annotated data for RE attracts a
lot of attention in the research community (Mintz
et al., 2010; Luo et al., 2019; Yu et al., 2020).

Self-training is a simple and effective approach
to build auto-annotated data (Xie et al., 2020; Du
et al., 2021). The idea is to use a teacher model
trained on human-annotated data to annotate the ad-
ditional unlabeled data. Then the human-annotated
data is combined with some instances selected from
the auto-annotated data to train a student model. In
this paper, we follow the self-training framework
to improve Low-Resource RE, which is closer
to practical situations where the task starts with a
small seed set of human-annotated data.

In previous studies, researchers often select
the auto-annotated instances with high confidence,
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named as confident instance, and have achieved
a certain success (Qian et al., 2009; Du et al.,
2021). Figure 1(a) shows an example of confident
instance, where the teacher model can easily clas-
sify it as relation “entity-origin(e1,e2)” with the
clue offered by “hailed from”. Therefore, we first
follow this kind of self-training solutions to train
the RE system. However, in the preliminary ex-
periments, we find that some relations might have
similar expressions among instances, which makes
the teacher model confused. As a result, for the
uncertain instances, the teacher model gives similar
high probabilities to some relations or assigns low
probabilities to all the relations. An example of
uncertain instance is shown in Figure 1(b), where
the teacher model predicts the instance as relation
“entity-origin(e1,e2)” with a probability of 56%, as
“cause-effect(e2,e1)” (the ground truth label) with
42%, and as other relations with only 2%. It is hard
to distinguish between the first two relations as the
expression “... is from ...” is often used for both. In
previous studies, the uncertain instances are often
discarded due to the confusion. However, we argue
that ignoring all the uncertain instances may not be
appropriate since they may contain useful informa-
tion. For example, it is a good clue that the answer
is one of the first two relations with a probability
98% for the instance in Figure 1(b).

Ideally, we would wish to make full use of all the
auto-annotated instances to improve the RE system.
But it is very hard due to the confusion problem.
Therefore, we split the uncertain instances into two
groups: ambiguous set and hard set. The ambigu-
ous set contains the instances for which the teacher
model predicts similar high probabilities on some
relations, while the hard set contains those that the
teacher model assigns low probabilities to all the
relations. In this paper, we focus on the ambiguous
set and propose an approach to use the ambiguous
instances and the confident instances to improve
the system of low-resource RE.

In our approach, we tackle two main issues when
exploiting the ambiguous instances: 1) how to iden-
tify the candidate labels of ambiguous instances; 2)
how to train a new model with the ambiguous in-
stances. For the first issue, we adopt a probabilistic
accumulation approach to obtain a set of relations,
that is, a set of candidate labels containing the vast
majority of probabilities, and then label ambiguous
instances with the candidate labels in the set. To
deal with the second issue, we make an assumption:

For the ambiguous instances, the teacher model
does not know which relation is the exact answer,
but it does know that #1) the answer is (with high
probability) in the candidate-label set (likes the
first two relations in Figure 1(b)) and #2) the an-
swer is not one of the relations which are with very
low probabilities (likes “others” in Figure 1(b)).
Under this assumption, we treat the ambiguous
instances as partially-labeled instances (Yan and
Guo, 2020), where the relations are divided into a
candidate-label set and a negative-label set for each
ambiguous instance. Then, we propose a novel
set-negative training method to learn from the am-
biguous instances by the negative-label set. In order
to build the final relation extraction system, we fur-
ther propose a joint training method which supports
both positive and set-negative training.

Our main contributions are as follows:

• We propose STAD, a self-training framework,
which supports learning from ambiguous data.

• We propose a method to classify the auto-
annotated instances generated from teacher
model into confident set, ambiguous set and
hard set. The ambiguous instances are then
treated as partially-labeled, which can reduce
the effect of confused expressions. To our best
knowledge, it is the first time that partial label-
ing is used to tag the auto-annotated instances
in RE.

• In order to exploit the auto-annotated in-
stances properly, we propose set-negative
training for the ambiguous instances and posi-
tive training for the confident instances. The
set-negative training method can utilize the
information that the answer is not in the set
of the relations which have very low proba-
bilities predicted by the teacher model. And
we further propose a joint training method
to combine positive and set-negative training
methods to build the final RE system.

To verify the effectiveness of our approach, we
conduct experiments on two widely used datasets
SemEval2010 Task-8 and Re-TACRED with low-
resource settings. Experimental results show that
our proposed approach significantly outperforms
the conventional self-training system which only
samples confident instances and other baseline sys-
tems.
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Figure 2: Framework of our approach. The red dotted
rectangle is the conventional self-training approach that
neglects the ambiguous data in auto-annotated data.

2 Our Approach

We first briefly introduce the relation extraction task
as well as the self-training framework frequently
used in the previous studies (Zhou et al., 2008).
Then, we propose an algorithm to classify the auto-
annotated instances into three groups: confident
data, ambiguous data and hard data. Next, we
introduce three tagging modes for ambiguous data.
Finally, we propose the training method to use both
the confident and ambiguous data. The framework
of the proposed approach is shown in Figure 2.

2.1 Self-Training for Relation Extraction
2.1.1 Relation Extraction
Fine-tuning on a pre-trained model, e.g., BERT,
with a task-specific classifier is a common practice
for downstream NLP tasks (Devlin et al., 2019).
Following Soares et al. (2019), the RE model is
composed of a BERT encoder and a relation clas-
sification layer. Entity markers (‘[E1] head entity
[/E1]’ and ‘[E2] tail entity [/E2]’) are inserted into
input tokens to wrap the entities. Concretely, the
output representation of two start entity markers
(‘[E1]’ and ‘[E2]’) are concatenated as the repre-
sentation of entities. Finally, the representations are
used as input for the relation classification layer.

Formally, the output representation of an input
instance x after BERT is h = h[E1] ⊕ h[E2]. Then,
the output probability distribution for M relations
p = [p1, p2, ..., pM ] is computed by the relation
classification layer:

p = f(x) = Softmax(Wh+ b), (1)

where W and b are model parameters.
During training, each instance x from the human-

annotated data is labeled with a one-hot label vector
y: a single 1 value for the ground-truth label and 0
values for other labels. Then, the positive training
is performed to calculate the cross entropy loss:

LPT (f(x), y) = −
M∑

i=1

yi log pi, (2)

where M is the number of relations, and yi and
pi are the label and prediction probability of ith
relation, respectively.

2.1.2 Self-Training

Generally, in the self-training framework, unla-
beled instances are labeled by the teacher model
to build the auto-annotated data. As shown in Fig-
ure 2, the common-used flow of self-training is per-
formed in the following steps: (1) use the human-
annotated data to train a teacher model; (2) use
the teacher model to conduct label prediction for
unlabeled data; (3) select confident auto-annotated
instances via a pre-defined probability threshold
(described in Sec. 2.2) and the rest are uncertain
instances; (4) combine confident auto-annotated
data and human-annotated data to train a student
model (the red dotted rectangle in Figure 2).

And in step (3), the remaining uncertain in-
stances are considered to be useless. However, as
described in Sec. 1, the uncertain instances (e.g.,
the example in Figure 1(b)) might contain useful
information.

2.2 Instance Classification

As shown in Algorithm 1, we propose a method to
classify the auto-annotated data into confident data
(Line 14), ambiguous data (Line 16) and hard data
(Line 18). In detail, considering a classification task
with M classes, we first set a probability thresh-
old T . After sorting the classes by the predicted
probability from large to small, we dynamically
accumulate the probability of top classes until the
score is larger than T (Line 6-10 in Algorithm 1).
Then, we move on to the classification of instances:

Confident instance. Using a probability thresh-
old to select confident instances is a common prac-
tice in self-training. We also add an instance into
the confident data when the highest prediction prob-
ability exceeds the threshold T , as the teacher
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Algorithm 1 Instance Classification
Input: auto-annotated data Dauto = {x, P, Y }
containing sentence x, prediction distribution P
and its corresponding relations Y .
Hyper Parameter: probability threshold T .
Output: confident data Dcon, ambiguous data
Damb and hard data Dhard

1: for (x, P ) ∈ Dauto do
2: Let score = 0.0.
3: Let candidate-label set C+ = {}
4: Sort P from large to small
5: Sort Y by the order in P
6: for (p, y) ∈ P, Y do
7: score← score+ p.
8: Append y to C+.
9: if score > T then

10: break
11: end if
12: end for
13: if len(C+) == 1 then
14: Append (x,C+) to Dcon

15: else if len(C+) ≤M − 1 then
16: Append (x,C+) to Damb

17: else
18: Append x to Dhard

19: end if
20: end for
21: return Dcon, Damb, Dhard

makes a certain prediction. In Line 13-14 of Al-
gorithm 1, instances with only one candidate label
are added into the confident data Dcon.

Ambiguous instance. Besides the confident data,
according to our observations, the teacher model
may give relatively high probabilities to multiple
relations. In order to make full use of ambiguous
instances to improve the RE system, we adopt a
greedy probability accumulation method to identify
ambiguous data from uncertain data. Specifically,
the size of candidate-label set is at least two and can
be at most M −1 (Line 15-16 in Algorithm 1). Ob-
viously, as the size of candidate-label set increases,
instances carry less information.

Hard instance. We also consider an extreme sit-
uation that the sum probability of top M − 1 re-
lations is still lower than T . In other words, the
lowest predicted probability is larger than 1 − T .
We treat such examples as hard instances because
the teacher model is confused about all relations.

Mode Ent-Ori Cau-Eff Others

Probability 0.56 0.42 0.02
Hard Label 1 0 0
Soft Label 0.56 0.42 0.02
Partial Label 1 1 0

Table 1: An example of three tagging modes with given
predicted probability distribution.

2.3 Instance Label Tagging Mode
After identifying confident and ambiguous data
from the auto-annotated data, we now have three
training sets: a small seed set of human-annotated
data Dhum, a confident auto-annotated data Dcon,
and an ambiguous auto-annotated data Damb.
For the human-annotated data and confident data,
we take the one-hot label vector as described in
Sec. 2.1.1 to tag the data. For the ambiguous data,
a variety of methods can be used to tag the in-
stance. As shown in Table 1, given the probability
distributions predicted by the teacher model, hard
label mode assigns an exact label (the label with
highest prediction probability) with a one-hot vec-
tor (Lee, 2013) while soft label mode (Xie et al.,
2020) adopts probability distributions as labels.

In this work, we propose to use the partial label
mode (Yan and Guo, 2020) to tag ambiguous in-
stances. As the teacher model gives relatively high
probabilities to relations in the candidate-label set
C+ (Line 3 in Algorithm 1), partial label mode
assigns each ambiguous instance with a set of can-
didate relations and treats each candidate relation
equally to form a multi-hot label vector. As the
example shown in Table 1, the instance is labeled
as [1, 1, 0] because the first two relations are in
candidate-label set.

2.4 Model Training
As described in Sec. 2.1.1, we can directly utilize
Eqn. 2 to train data tagged in the hard or soft label
mode. In this section, we focus on training ambigu-
ous data under partial label mode and describe how
to train model on a mixed data.

2.4.1 Set-Negative Training
Inspired by negative training (Kim et al., 2019)
which trains noisy data in a negative way by select-
ing a random label excepting the tagged label, we
propose the set-negative training method to train
ambiguous data. For the ambiguous data, as de-
scribed in Sec. 2.2, we first split relations into two
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sets: candidate-label set C+ and negative-label
set C−, where C− includes the relations that are
not in C+. With the Assumption #2 described in
Sec. 1, we are confident that the answer is not in
C−. Hence, we randomly select one label fromC−

as a negative label for each ambiguous instance in
every iteration to update the model in a negative
way.

Formally, the loss function for the ambiguous
instances under set-negative training is:

LNT (f(x), y) = −
M∑

i=1

yi log (1− pi), (3)

where the one-hot label y is dynamically changed
by randomly selecting a negative label from C−

for every iteration.

2.4.2 Joint Training
After adopting the set-negative training for ambigu-
ous data, another problem is how to train on Dhum,
Dcon, and Damb simultaneously. Formally, we
need to design a unified training framework to sup-
port both positive training (Eqn. 2) and set-negative
training (Eqn. 3). To this end, we first introduce a
flag variable z to represent whether current input
instance is partially labeled or not:

z =

{
1 if partially labeled,
0 others.

(4)

Then, the following unified loss function can be
directly used for joint training:

L(f(x), y) = −
M∑

i=1

yi log |z − pi|, (5)

where | ∗ | is the absolute value. When the input
instance is partially labeled, this function is equiva-
lent to Eqn. 3, otherwise it is equivalent to Eqn. 2.

3 Experiments

In this section, we carry out experiments to show
the effectiveness of the proposed approach. We
first introduce settings of datasets and parameters.
Then, we describe comparison systems used in this
work. After that, we present the overall evaluation
results, followed by further analysis.

3.1 Datasets
We conduct our experiments on two widely used
relation extraction datasets: SemEval 2010 Task-8

(SemEval) and Re-TACRED. The brief information
of two datasets are as follows:

• SemEval: A classical dataset in relation ex-
traction which contains 10,717 annotated sen-
tences covering 9 relations with two directions
and one special relation “no_relation” (Hen-
drickx et al., 2010).

• Re-TACRED: A repaired version of TA-
CRED (Zhang et al., 2017) proposed by Stoica
et al. (2021) who re-annotated the data and re-
fined relation definitions. In total, it contains
91,467 sentences covering 40 relations (also
including a “no_relation” class).

To test on the low-resource scenario, we ran-
domly sample 20 instances for each relation from
the original training set as the human-annotated
data and use the remaining instances as unlabeled
data. 2 Meanwhile, we also rebuild the develop-
ment set by sampling 10 instances for each relation
from the original development set which is more
realistic. Besides, the special “no_relation” type in
the Re-TACRED is excluded as it occupies more
than 66% of instances. The statistics of two low-
resource datasets are shown in Table 2.

Data Rel Train Dev Test Unlabel

SemEval 19 380 190 2,717 6,076
Re-TACRED 39 780 390 5,648 18,938

Table 2: Statistics of SemEval and Re-TACRED with
the low-resource setting.

3.2 Parameter Settings
Relation Extraction Model Training To train
the relation extraction model, we use the “Entity
marker+Entity start state” architecture proposed
in Soares et al. (2019) with BERTbase (Devlin et al.,
2019). During training, we follow Devlin et al.
(2019) to select the learning rate among {2e-5, 3e-
5, 5e-5}, batch size among {16, 32} and adopt
the hyper parameters with the best performance on
development set. For other parameters, we sim-
ply follow the settings used in Soares et al. (2019)
to conduct experiments. We train the model in
20 epochs with early stop strategy to relieve the
overfitting problem. Besides, we run each system

2For any relation contains less than 20 instances in the
original training set, we directly repeat some instances to keep
the data balanced.
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# System Auto-annotated Micro F1
Dcon Damb SemEval Re-TACRED Avg. Score

1 SUPERVISED × × 77.3±0.8 77.5±1.3 77.4

2 SELF-TRAINING ✓ × 79.2±1.5 80.5±0.4 79.9
3 HARD-LABEL ✓ ✓ 78.0±1.2 78.2±1.4 78.1
4 SOFT-LABEL ✓ ✓ 79.1±0.8 79.8±2.0 79.5
5 STAD (Ours.) ✓ ✓ 80.0±1.0 81.6±0.3 80.8

Table 3: Results on the test set of SemEval and Re-TACRED with low-resource settings in terms of micro F1
score. Dcon and Damb denote confident data and ambiguous data, respectively. We run experiment five times with
different random seeds and report the mean of the micro F1 scores (Micro-F1) and its standard deviation score.
Some additional experiments with random data samples are included in Appendix A.

five times with random seeds and report the mean
of the micro F1 score (Micro-F1) with a standard
deviation score.

Auto-Annotated Data Building The probability
threshold is an important hyper parameter which
is used to select confident data and determine the
candidate-label sets of ambiguous data. In detail,
we search probability threshold T among {0.95,
0.90, 0.85, 0.80} on development set to select the
best confident data.

3.3 Comparison Systems

In order to make a fair comparison, all systems in
this work use the BERT-based fine-tuning model
proposed by Soares et al. (2019) as relation ex-
traction model. Based on the difference of data
parts and tagging strategies, we conduct following
models for comparison.

SUPERVISED: A supervised baseline system for
our relation extraction task (Soares et al., 2019).
This system is trained only on human-annotated
data. We also use this system as the teacher model
to tag unlabeled data for the following approaches.

SELF-TRAINING: A common-used self-training
method (Du et al., 2021), which combines human-
annotated and confident data. We re-produce this
self-training framework with the same relation ex-
traction model of SUPERVISED system.

HARD-LABEL: A direct comparison of the sys-
tem proposed by Lee (2013), which extends
the SELF-TRAINING system to involve all auto-
annotated data. We obtain the class with the high-
est prediction probability as the label for all auto-
annotated data.

SOFT-LABEL: Another extension of SELF-
TRAINING system which utilizes the remaining
auto-annotated data by assigning probability distri-
butions comes from teacher model as labels (Xie
et al., 2020).

3.4 Overall Evaluation Results

Table 3 shows the overall evaluation results on Se-
mEval and Re-TACRED with low-resource settings.
Our observations are:

• System SELF-TRAINING significantly and
consistently outperforms SUPERVISED with
+2.5 on Micro-F1 (79.9 vs. 77.4) in aver-
age. The results indicate that self-training
with sampling confident data is effective for
relation extraction in low-resource scenarios.

• Systems HARD-LABEL and SOFT-LABEL

employ the ambiguous data outperform the
SUPERVISED system, but can not achieve im-
provement over the SELF-TRAINING system,
demonstrating that it is challenging to achieve
improvement with the ambiguous data.

• Our final system STAD significantly out-
performs the SUPERVISED system on both
datasets with +3.4 (80.8 vs. 77.4) in average.
And it also performs better than the SELF-
TRAINING system, demonstrating the the ef-
fectiveness and the versatility of the proposed
approach.

3.5 Extremely Low-resource Scenario

In addition, we conduct additional experiments on
extremely low-resource scenario with 15, 10 and
5 instances per relation to investigate the effect of
the proposed approach. Experimental results are
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System Data Size
20 15 10 5

SUPERVISED 77.3 72.0 60.6 45.1
SELF-TRAINING 79.2 77.1 71.3 47.4

STAD 80.0 78.1 72.6 53.5
△1 2.7 6.1 12.0 8.4
△2 0.8 1.0 1.3 6.1

Table 4: Results on the test set of SemEval with low-
resource settings in terms of Micro F1 score. △1 and△2

represent the absolute improvement when comparing
ours with supervised baseline and self-training baseline,
respectively.

System Data Size
20 15 10 5

SUPERVISED 77.5 74.1 62.0 47.0
SELF-TRAINING 80.5 79.3 68.4 50.1

STAD 81.6 81.1 72.3 60.0
△1 4.1 7.0 10.3 13.0
△2 1.1 1.8 3.9 9.9

Table 5: Results on the test set of Re-TACRED with low-
resource settings in terms of Micro F1 score. △1 and△2

represent the absolute improvement when comparing
ours with supervised baseline and self-training baseline,
respectively.

shown in Table 4 and Table 5. From the two tables,
we can find that:

• The performance of SUPERVISED drops
rapidly when the amount of training data de-
creases.

• SELF-TRAINING system works well on 20,
15 and 10, but it only achieves a slight im-
provement on 5. This indicates that it becomes
hard to learn from confident data when teacher
model is weak.

• The results of △1 and △2 show that our
STAD system outperforms both SUPERVISED

and SELF-TRAINING on all settings, espe-
cially for the improvement obtained on data
size is 5 which indicating the robustness of
our system. We think the reason is that when
the teacher model becomes weak, there is
more and more ambiguous data in the auto-
annotated data.

3.6 Ablation Study

Method Mirco F1
STAD 81.6
− Partial Labeling -1.4
− Set-Negative Training -2.3
− Both -3.4

Table 6: An ablation study for using partial labeling and
set-negative training on the test set of Re-TACRED.

To further analyze the effect of partial labeling
and set-negative training on the ambiguous data
in our proposed approach, we perform ablation
studies on the low-resource Re-TACRED dataset
and list the results in Table 6.

Without the partial labeling, we label the am-
biguous data in the hard label mode and use the
negative training to train the model, the perfor-
mance of our proposed approach degrades by 1.4
F1 score. Without the set-negative training, we la-
bel the ambiguous data in partial label mode but
with positive training. The strategy results in a
drastic drop in F1 score. Removing both the par-
tial labeling and set-negative training, the proposed
system deals the ambiguous data in the same way
as in HARD-LABEL system in Table 3 and suffers
from performance degradation (78.2-81.6=-3.4).

These results demonstrate that the partial label-
ing and the set-negative training on the ambiguous
data indeed contribute to the final performance.

3.7 Distribution of Auto-Annotated Data

Figure 3 shows the distribution of auto-annotated
data under our probability accumulation method
on Re-TACRED. From the figure we can find that
although the number of confident data (the first
bar, 44.5%) is much larger than the others, the sum
of ambiguous data (others, 55.5%) is also consid-
erable. This indicates that ignoring such a large
number of ambiguous data is not appropriate and
how to make full use of them is the key to improv-
ing self-training. In addition, we find that there
is no hard instances in our experiments due to the
large number of relation types and the setting of
probability threshold.

3.8 Top-N Evaluation

Our method of modeling ambiguous data under
negative training helps the model compress the
scope of answers. Intuitively, there should be
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Figure 4: The top-N evaluation on Re-TACRED.

more significant improvements in top-N evalua-
tion. Therefore, we evaluate top-n predictions on
Re-TACRED. The results are presented in Figure 4.
The figure shows that the SELF-TRAINING method
shows a disadvantage in top-N evaluation as its per-
formance gradually degrades when compared to the
SUPERVISED baseline. After modeling ambiguous
data in a partially annotated and negative training
mode, however, our method achieves significant
and consistent improvement. In conclusion, our
method of modeling ambiguous data can learn the
information contained in the ambiguous data.

System
Data Sampling

Data 1 Data 2 Data 3

SUPERVISED 80.3±1.6 79.7±1.3 79.0±1.5
SELF-TRAINING 82.5±0.6 84.0±1.5 81.4±1.7
STAD 84.6±1.5 85.3±1.0 83.9±1.6

Table 7: Results on Re-TACRED with different data
samples for training and validation sets on the low-
resource setting.

3.9 Experiments with Random Data Samples
on Re-TACRED

In order to further study the stability of our ap-
proach, we conduct extra experiments on Re-
TACRED which contains much more data than
SemEval. For each experiment, we randomly sam-
ple a new split of training and validation sets for
the low-resource setting. We report the mean of the
micro F1 scores and its standard deviation score of
five runs with different random seeds.

3.10 Qualitative Results: Case Study

Table 8 shows examples of ambiguous data in
Re-TACRED which are predicated by the teacher
model. We present the sentence as well as its re-
lations with two highest predicted probabilities.
The teacher model gives relatively high probabil-
ities to the two relations and fails to predicate the
ground-truth relation. For example, the teacher
model can not distinguish “per:city_of_birth” from
“per:country_of_birth” for the first sentence, and
the conventional self-training system does not
adopt this instance to the training set. But in our
approach, this instance is tagged in a partially la-
beled mode and is used as an ambiguous instance
to train the student model.

4 Related Work

Self-Training. Self-training is one of the most
commonly used approaches for exploiting unla-
beled data (Scudder, 1965; Yarowsky, 1995; Mc-
Closky et al., 2006; Lee, 2013). With the devel-
opment of neural network models and the growth
of demand for labeled data, self-training has be-
come a very active field in research. It is widely
used to improve the performance of neural ma-
chine translation (Zhang and Zong, 2016; Jiao et al.,
2020, 2021), question answering (Sachan and Xing,
2018) and low resource dependency parsing (Rot-
man and Reichart, 2019). In this work, we ap-
ply self-training to exploit unlabeled data for low-
resource relation extraction. The main difference is
our work focuses on the uncertain instances which
are often neglected in the previous studies.

Low-Resource Relation Extraction Recently,
low-resource relation extraction (LRE) has at-
tracted much attention due to data scarcity prob-
lems. There are two main scenarios of LRE: low-
shot RE and low-resource supervised RE. Low-shot
RE, including few-shot RE (Han et al., 2018) and
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Sentence Relation Probability

It ’s website , lists [Abu Zubaydah]e1 ’s birthplace as [Riyadh]e2 , Saudi Arabia
per:country_of_birth 0.55

per:city_of_birth 0.40

[Parliament]e2 speaker [Ali Larijani]e1 , Iran ’s former chief nuclear negotiator.
per:title 0.79

per:employee_of 0.16

[Paul Kim]e1 ( 25 ) Currently lives in [Saratoga]e2 , CA ....
per:city_of_birth 0.74

per:city_of_residence 0.20

Table 8: Examples of ambiguous data in Re-TACRED.“e1” and “e2” are head entity and tail entity respectively.
“Probability” is predicted probability given by the teacher model.

zero-shot RE (Levy et al., 2017), trains a model to
identify unseen relation labels in a test set with a
few support examples or even none of the exam-
ples. The low-resource supervised RE is designed
to train a supervised model with small training
data (Deng et al., 2022). In this work, we also
focus on the low-resource supervised RE.

To solve the low-resource problem, one direction
is to build a robust model which can make full use
of small data and existing knowledge. For example,
integrating semantic relation labels (Dong et al.,
2021) and introducing knowledge graph (Zhang
et al., 2019). Another direction is to enlarge an-
notated data automatically. Data augmentation is
a widely used technology to enrich the data (Xu
et al., 2016; Yu et al., 2020). Self-training is also a
conventional way to obtain automatically annotated
data (Rosenberg et al., 2005; Hu et al., 2021a,b).

Partial Label Learning. In this work, the defi-
nition of partial label is a candidate set of labels
for an ambiguous instance in a multi-class classi-
fication task (Cour et al., 2011). This is different
from that in sequence labeling tasks (Li et al., 2014)
and multi-label multi-class classification tasks (Xie
and Huang, 2018). In order to learn from partially
labeled instances, various methods have been pro-
posed to deal with the problem (Nguyen and Caru-
ana, 2008; Cour et al., 2011). Recently, with the
help of self-training, Feng and An (2019) proposes
a self-guided retraining method to learn from par-
tially labeled data. Besides, Yan and Guo (2020)
also proposes to recalculate the confidence of la-
bels in a candidate set by taking the current model
as a teacher.

5 Conclusion

This paper proposes a novel self-training approach
with ambiguous data (STAD) for the low-resource

relation extraction, which fully uses the auto-
annotated data. According to the probabilities
predicted by the teacher model, we classify the
auto-annotated data into three sets: confident set,
ambiguous set and hard set. During training, we
consider the ambiguous set, which is neglected by
the previous studies, and adopt the set-negative
training method to alleviate the noise problem. Ex-
perimental results show that our proposed system
consistently outperforms the self-training systems.
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Abstract

Multi-modal named entity recognition (MNER)
aims at identifying entity spans and recognizing
their categories in social media posts with the
aid of images. However, in dominant MNER
approaches, the interaction of different modal-
ities is usually carried out through the alter-
nation of self-attention and cross-attention or
over-reliance on the gating machine, which re-
sults in imprecise and biased correspondence
between fine-grained semantic units of text
and image. To address this issue, we propose
a Flat Multi-modal Interaction Transformer
(FMIT) for MNER. Specifically, we first uti-
lize noun phrases in sentences and general do-
main words to obtain visual cues. Then, we
transform the fine-grained semantic representa-
tion of the vision and text into a unified lattice
structure and design a novel relative position
encoding to match different modalities in Trans-
former. Meanwhile, we propose to leverage
entity boundary detection as an auxiliary task
to alleviate visual bias. Experiments show that
our methods achieve the new state-of-the-art
performance on two benchmark datasets.

1 Introduction

Named entity recognition (NER) is a fundamental
task in the field of information extraction, which in-
volves determining entity boundaries from free text
and classifying them into pre-defined categories,
such as person (PER), location (LOC), and organi-
zation (ORG) (Zhao et al., 2021b). Along with the
rapid development of social media, multi-modal
deep learning is widely applied in the structured
extraction from massive multimedia news and web
product information (Zhang et al., 2020; Ju et al.,
2020). As an important research branch of NER,
multi-modal named entity recognition (MNER) sig-
nificantly extends the text-based NER by taking the
{Sentence, Image} pair as inputs (Lu et al., 2018;
Kruengkrai et al., 2020; Dosovitskiy et al., 2020;

∗Corresponding author
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Julia Child at the Taj Mahal at sunset

B-PER I-PER O O B-LOC I-LOC O O

(a) (b) (c)

Figure 1: An example for multi-modal named entity
recognition with different visual cues: (a) the whole
image, (b) averagely segmented visual feature and (c)
targeted visual objects.

Lu and Zhang, 2022). Since the visual context as-
sociated with text content has been confirmed to
help resolve the recognition of ambiguous multi-
sense words and out-of-vocabulary words, MNER
plays an important role in extracting entities from
user-generated content on social media platforms
such as Twitter (Li et al., 2015).

It has been the core issue in MNER to fully ex-
ploit the effective visual information and suppress
the interference information, which directly affects
the model performance. To this end, there are three
lines of methods to integrate visual information
into NER. (1) The first line is to encode the whole
image into a global feature vector (Figure 1(a)) for
augmenting each word representation (Moon et al.,
2018). (2) The second line is to divide the feature
map extracted from the whole image into multiple
regions averagely (Figure 1(b)), which is the most
dominant method currently. The method guides the
word to learn a vision-aware representation through
co-attention and gating mechanism (Lu et al., 2018;
Zhang et al., 2018), or uses a Transformer frame-
work based on the combination of self-modal and
cross-modal attention to interact textual and visual
information (Yu et al., 2020; Sun et al., 2021). (3)
The last line is to use noun phrases to detect the
image bounding boxes (Figure 1(c)) and fuse fine-
grained words and visual objects by graph neural
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networks (GNN) (Zhang et al., 2021).

Despite the success, the above works may not
precisely exploit the fine-grained semantic cor-
respondence between semantic units in an input
sentence-image pair. Specifically, as shown in Fig-
ure 1, we believe that the crux of the issue lies
in two aspects. (1) The global clue provided by
image (a) and regional feature maps provided by
images (b) are both implicit and vague, which are
difficult to fit into fine-grained words. Previous
practice tends to map the visual and textual repre-
sentations into different spaces and then fuse them
adaptively. However, the indirectness of informa-
tion interaction through cross-modal attention and
gating mechanism will lead to asymmetry in in-
formation acquisition (Sun et al., 2021; Yu et al.,
2020). (2) Specific visual objects derived from
noun phrases are overly targeted, which makes
some non-entities embodied in the images iden-
tified as entities incorrectly. Generally speaking,
this kind of explicit information is helpful to iden-
tify some words as the correct entity type, such
as “the Taj Mahal”. However, the visual objects
prominent in the image may easily misidentified as
entities, such as “sunset”.

To handle the aforementioned issues, we pro-
pose a novel Flat Multi-model Interaction Trans-
former for MNER. The key insight comes from
the lattice structure in Chinese NER (Zhang and
Yang, 2018; Li et al., 2020), where word sequence
is used as additional information to enhance the
character representation. To fully exploit the avail-
able visual information, we use a combination of
two visual objects, extracted from the whole im-
age and derived from the noun phrases. We first
represent the input sentence and image with a uni-
fied flat lattice structure consisting of fine-grained
semantic units. Each unit corresponds to a word
or visual object and its position. Meanwhile, in-
spired by the strategies of position representation,
we design an ingenious position encoding for our
flat lattice structure (Shaw et al., 2018; Dai et al.,
2019). In detail, we assign two positional indices
for a unit: head position and tail position, by which
we can correspond the visual object to the associ-
ated words span. Based on the flat lattice structure,
we then resort to the fully-connected self-attention
structure and long-distance dependencies modeling
capability in Transformer (Vaswani et al., 2017) to
build bridges in the interaction between self-modal
and cross-modal units. Finally, we utilize the CRF

decoder to obtain the predicted labels. To largely
eliminate the bias of visual context, we further in-
troduce the entity boundary detection (EBD) as an
auxiliary task.

We conduct extensive experiments on Twitter
2015 and Twitter 2017 benchmark datasets. The
state-of-the-art performance and efficiency demon-
strate the effectiveness of our methods.

2 Related Work

Multi-modal NER. As an important role in many
downstream NLP tasks, including information re-
trieval (Chen et al., 2015), relation extraction
(Miwa and Bansal, 2016) and question answering
system (Diefenbach et al., 2018), the text-based
NER task has attracted much attention in the jour-
nalistic and social fields. Deep learning approaches
such as CNN, LSTM, attention mechanism and pre-
trained models have achieved significant success
in NER, by which we can effectively uncover and
combine the character, word and sentence informa-
tion in text sequence (Ma and Hovy, 2016; Akbik
et al., 2019; Luo et al., 2020). Influenced by the
extensive applications of multi-modal learning in
neural machine translation, visual question answer-
ing and emotion detection (Zhang et al., 2020; Yin
et al., 2020; Gao et al., 2019), many researches have
focused on constructing multi-modal NER datasets
and exploring the methods to guide entity recog-
nition using images. The main idea of these early
methods is encoding the text through LSTM and
the image through pre-trained CNN, then implicitly
interacting the information of two modalities (Lu
et al., 2018; Moon et al., 2018; Zhang et al., 2018).
Recently, (Yu et al., 2020) leverage BERT to model
text sequence and creatively design a multi-modal
interaction module based on Transformer and gat-
ing mechanism to perform self-modal and cross-
modal information interaction alternately. (Zhang
et al., 2021) further represent the input sentence-
image pair as a unified graph to capture the various
semantic relationships and introduce an extended
GNN to conduct graph encoding via multi-modal
semantic interactions. Different from above studies,
our approach aims at representing the fine-grained
semantic units of the text and image as a unified
flat lattice structure. We further design a novel
relative position encoding strategy to directly cap-
ture the interaction between different modalities in
Transformer.
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Lattice Structure. Since word information is po-
tentially useful for character-based Chinese NER
task, the lattice structure is proposed for injecting
the word information into the associated characters.
Specifically, (Zhang and Yang, 2018) first proposes
Lattice-LSTM to explicitly exploit word boundary
information, in which the matched lexical words
are integrated into characters via a directed acyclic
graph. Later, to overcome the limitations of the
lattice structure so that it can be flexibly exploited,
(Sui et al., 2019) converts the lattice into graph and
designs a collaborative graph network for encod-
ing. (Zhao et al., 2021a) proposes a dynamic cross-
and self-lattice attention network to model dense
interactions over word-character pairs.

3 Method

Figure 2 illustrates the overall architecture of our
FMIT, which contains three main components: (1)
Unified flat lattice structure for representing the
input sentence-image pairs. (2) Transformer En-
coder with relative position encoding method for
interacting multi-modal information. (3) Training
with entity boundary detection as an auxiliary task.

Task Formulation. Given a sentence S and its
associated image O as input, the goal of MNER
is to extract a set of entities from S and classify
each extracted entity into one of the pre-defined
categories. As with most existing work in MNER,
we formulate the task as a sequence labelling prob-
lem. Let S = (w1, w2, ..., wn) denote a sequence
of input words, where wi with i = 1, 2, ...n de-
notes the ith word in the sentence and n represents
the length of the sentence, and Y = (y1, y2, ..., yn)
be the corresponding entity labels for all words,
where y1 ∈ Y and Y is the pre-defined label set
with standard BIO schema (Sang and Veenstra,
1999). We also use O = (o1, o2, ..., om) to denote
a set of input visual objects of number m.

3.1 Unified Flat Lattice Structure

In this section, we take the sentence and image
shown in Figure 1 as an example to describe how
to extract features from them and represent them
with a flat lattice structure.

Word Representations. Due to the capability of
providing different representations for the same
word in different contexts, we utilize pre-trained
language model BERT (Devlin et al., 2019) as
our sentence encoder. Following BERT, the in-

put sentence is preprocessed by inserting the spe-
cial token [CLS] and [SEP] at the beginning and
the end positions, respectively. S is then fed to
BERT encoder to obtain the vectorized representa-
tion Hx = (x1, x2, ...xn), where xi ∈ Rdw is the
generated contextualized vector for wi.

Visual Representations. To capture the visual
objects in O, except for employing the whole im-
age, we also need to derive additional visual objects
from the text. Similar to (Yin et al., 2020), we use
the constituency parsing tool in the Stanford parser
to identity all noun phrases in the input sentence,
and then apply a visual grounding toolkit (Yang
et al., 2019) to detect bounding boxes (visual ob-
jects) for each noun phrase. Since it is difficult
to use noun phrases merely to completely detect
all potential visual objects in the image, according
to the property of NER, we further introduce four
general words of the pre-defined categories (i.e.,
miscellaneous, person, location and organization)
to discover more relevant objects.

To extract meaningful feature representations
from images, we leverage a pre-trained 152-layer
ResNet (He et al., 2016) as a feature detector. We
feed each visual object in O to the ResNet and take
the last hidden layer output as vectorized represen-
tationHv = (v1, v2, ..., vm), where vi ∈ Rdv is the
generated visual representation for oi.

Flat Lattice Construction. The flat lattice struc-
ture aims to integrate the intra-modal and inter-
modal information in a unified space, and enhances
information coupling through a unique positioning
scheme. Before representing the words and visual
objects in a uniform lattice cell, we introduce two
non-linear transformations with ReLU activation
function to project different representations onto
the same dimension:

xci =W0(ReLU(W1xi + b1)) + b0 (1)
vci =W0(ReLU(W2vi + b2)) + b0, (2)

where W1 ∈ Rd×dw , W2 ∈ Rd×dv , W0 ∈ Rd×d
are weight matrices, and b1, b2, b0 are scaler bias.
d is the dimension of unified representations of two
modalities in the flat lattice.

To convert two independent sets of modalities to
a flat lattice structure, we concatenate the aligned
word representation and visual representation, and
then flatten them into a unified sequence E =
([CLS], xc1, ..., x

c
n, [SEP ], v

c
1, ..., v

c
m). As shown

in Figure 2, the flat lattice can be defined as a set
of cells, and a cell corresponds to a fine-grained
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Figure 2: The overall architecture of our Flat Multi-modal Interaction Transformer (FMIT). On the right part, the
blue-frame demonstrates the auxiliary task of entity boundary detection, and the red-frame demonstrates the main
task of MNER.

semantic unit, a head and a tail. Specifically, for
the word, its head and tail are equal, both indexes
of the absolute position in E. For the visual object,
when it is derived from a noun phrase, its head and
tail are indexes of the first and last words of the
corresponding noun phrase; in particular, when it
is the whole image or derived from general words,
we denote its head and tail as indexes of the first
and last words of the sequence.

3.2 Flat Multi-modal Interaction Transformer

Relative Position Encoding for Flat Lattice
Structure. The flat lattice structure consists of
cells with different modalities and different posi-
tion intervals in the visual modality. As illustrated
on the red-frame of Figure 2, to leverage the Trans-
former framework to encode interactions among
cells, we design a relative position encoding for
the cells. Specifically, for two cells ci and cj in
the lattice, we consider two kinds of relations be-
tween them: intra-modal and inter-modal. Instead
of directly encoding input with absolute position
as vanilla Transformer, we calculate a dense vector
to represent relative position by continuous trans-
formation of the head and tail information. In this
way, we can not only capture the distance between
arbitrary cells, but also model the relationship be-
tween different modalities. Let head[i] and tail[i]
denote the head and tail position of cell ci. We
use four kinds of relative distance to indicate the
position information between ci and cj . They can
be calculated as:

d
(hh)
ij = head[i]− head[j] (3)

d
(ht)
ij = head[i]− tail[j] (4)

d
(th)
ij = tail[i]− head[j] (5)

d
(tt)
ij = tail[i]− tail[j], (6)

where d(ht)ij denotes the distance between the head

of ci and tail of cj , and d(hh)ij , d(th)ij , d(tt)ij have simi-
lar meanings. To obtain the position encoding Ppos
from distance value, we adopt sine and cosine func-
tions of different frequencies as in (Vaswani et al.,
2017):

P 2k
pos = sin(pos/100002k/d) (7)

P 2k+1
pos = cos(pos/100002k/d), (8)

where pos is d(hh)ij , d(th)ij , d(ht)ij or d(tt)ij , and k is
the index of dimension of position encoding. The
Transformer has the same dimension d as flat lat-
tice embeddings. Then, we concatenate the four
distance position encodings and feed them into a
non-linear transformation layer to get the final rela-
tive position encoding of cells:

Rij = ReLU(Wr(Pd(hh)
ij

⊕P
d
(ht)
ij

⊕P
d
(th)
ij

⊕P
d
(tt)
ij

)), (9)

where Wr ∈ Rd×4d is a learnable parameter, and
⊕ denotes the concatenation operation.

As mentioned in (Shaw et al., 2018), we think
that commutativity of the vector inner dot will
cause the loss of directionality in Transformer.
Therefore, we further use a variant of self-attention
(Dai et al., 2019) to leverage the relative position
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encoding of different cells, and the attention score
between the query qi and key vector kj of two se-
mantic units can be calculated as following:

Ai,j =E
T
ciW

T
q Wk,EEcj + ETciW

T
q Wk,RRij

+ uTWk,EEcj + vTWk,RRij , (10)

where Eci represents the flat lattice embedding of
i-th cell from xci and vci , or the output of last Trans-
former layer. We collect the attention values and
embeddings of all indexes, and denote them as A∗

and E∗c . Then, we perform self-attention over the
sequence by h = 8 parallel heads individually and
dhead = d/h is the dimension of each head. We
concatenate the results and transform them into the
original dimension by a linear projection. The out-
put of the Transformer is calculated as following:

Atti = softmax(
A∗
√
dhead

)[E∗
cWv]

T (11)

MH-ATT =Wt[Att1; ...;Attz], (12)

where Wq, Wk,R, Wk,E , Wv ∈ Rd×dhead and
u, v ∈ Rdhead are learnable parameters of each
head, and they keep individual from different heads.
Wt ∈ Rd×d denotes the weight matrices for the
multi-head attention. For simplicity, we omit the
subsequent layers, which are the same as vanilla
Transformer.

CRF Decoding. To increase model capacity and
interaction frequency, we stack l Transformer lay-
ers to form a cascaded architecture. Finally, we
only take the word presentation of the encoding
output as HW ∈ Rn×d, which is sent to the decod-
ing layer for sequence labelling. Considering the
dependency between successive labels, we model
HW jointly using a standard CRF layer. Let Y

′

denotes the set of all possible label sequences for
input sentence X , the probability of the label se-
quence Y can be calculated as:

p(Y |S,O) =

∏N
n=1 ψn(yn−1, yn, HW )

∑
y
′∈Y ′

∏N
n=1 ψn(y

′
n−1, y

′
n, HW )

, (13)

where ψn(yn−1, yn, HW ) = exp(WcrfHW+bcrf )
is the scoring function, and Wcrf and bcrf are the
weight vector and bias.

3.3 Training with Entity Boundary Detection
Since the pre-trained ResNet is intended for the
image classification task, its high-level represen-
tation may overemphasize the visual objects that
are prominent in the image and misidentify them
as named entities. To alleviate the bias, we propose
to leverage a flat text-based Transformer for entity

Table 1: The statistics summary of two Twitter datasets.

Entity Type Twitter-2015 Twitter-2017
Train Dev Test Train Dev Test

Person 2217 552 1816 2943 626 621
Location 2091 522 1697 731 173 178

Organization 928 247 839 1674 375 395
Miscellaneous 940 225 726 701 150 157

Total 6176 1546 5078 6049 1324 1351
Num of Tweets 4000 1000 3257 3373 723 723

boundary detection based on the properties of po-
sitioning scheme in the flat lattice structure. The
EBD task aims to detect the position of the head
and tail of entities in the input sentence, which can
eliminate the types guidance from visual objects
and enhance the perception of boundary words. As
illustrated on the blue-frame of Figure 2, the flat
text-based Transformer is the same structure as
FMIT, but only takes the words representation as
input.

We remove the type information and decompose
the subsequence Z = (z1, z2, ..., zn) from the la-
belling sequence Y , where zi ∈ {B,E,O} indi-
cates whether the i-th position is the head, tail or
neither of an entity. We employ the flat text-based
Transformer to obtain its specific hidden represen-
tations as TW ∈ Rn×d, followed by feeding it to
another CRF layer to predict the probability of the
label sequence Z given S as Eqn. (13):

p(Z|S) =
∏N
n=1 ψn(zn−1, zn, TW )

∑
z
′∈Z′

∏N
n=1 ψn(z

′
n−1, z

′
n, TW )

, (14)

In training phase, we linearly combine the loss
function of the main MNER task and auxiliary
EBD task, making the final training objective func-
tion by minimizing negative log-likelihood estima-
tion as follows:

L = −
∑

(log p(Y |S,O) + λ log p(Z|S)), (15)

4 Experiments

We conduct experiments on two MNER datasets,
comparing our Flat Multi-modal Interaction Trans-
former (FMIT) approach with a number of uni-
modal and multi-modal approaches.

4.1 Datasets
We take two publicly benchmark Twitter datasets
(Twitter-2015 and Twitter-2017) for MNER, which
are provided by (Zhang et al., 2018) and (Lu
et al., 2018), respectively. Each sample consists of
a {Sentence, Image} pair. Since some samples lack
image modality, we replace the missing images
with a uniform empty image. Table1 shows the
number of entities for each type and the size of
train/dev/test data split.
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Table 2: Performance of different competitive text-based and multi-modal approaches on two Twitter datasets.

Modality Approaches
Twitter-2015 Twitter-2017

Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

Text

CNN-BiLSTM-CRF 80.86 75.39 47.77 32.61 66.24 68.09 67.15 87.99 77.44 74.02 60.82 80.00 78.76 79.37
HBiLSTM-CRF 82.34 76.83 51.59 32.52 70.32 68.05 69.17 87.91 78.57 76.67 59.32 82.69 78.16 80.37

BERT 84.72 79.91 58.26 38.81 68.30 74.61 71.32 90.88 84.00 79.25 61.63 82.19 83.72 82.95
BERT-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81 90.25 83.05 81.13 62.21 83.32 83.57 83.44

Text +
Image

VG-ATT 82.66 77.21 55.06 35.25 73.96 67.90 70.80 89.34 78.53 79.12 62.21 83.41 80.38 81.87
Ada-Co-ATT 81.98 78.95 53.07 34.02 72.75 68.74 70.69 89.63 77.46 79.24 62.77 84.16 80.24 82.15

UMT 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31
UMGF 84.26 83.17 62.45 42.42 74.49 75.21 74.85 91.92 85.22 83.13 69.83 86.54 84.50 85.51

FMIT (l = 1) 84.83 83.19 62.64 41.13 74.18 75.03 74.60 91.75 85.06 82.38 69.84 85.55 85.29 85.42
FMIT (l = 3) 86.77 83.93 64.88 42.97 75.11 77.43 76.25 93.14 86.52 83.93 70.90 87.51 86.08 86.79
FMIT (l = 6) 86.45 84.19 64.35 43.68 76.28 75.67 75.97 93.04 85.94 84.56 71.20 86.80 86.26 86.53

FMIT (l = 12) 85.79 83.91 62.87 41.55 74.92 75.63 75.27 92.61 86.03 83.34 70.78 86.32 85.50 85.91

Table 3: The relative inference-time speed and param-
eters of different models in the information interaction
phrase.

Approaches Speedup Parameters
UMT 1.93× 403M

UMGF 1× 231M
FMIT (l = 1) 27.73× 12M
FMIT (l = 3) 10.17× 35M
FMIT (l = 6) 6.12× 69M

4.2 Baselines

For a comprehensive comparison, we mainly com-
pare two groups of baselines with our approach.

The first group is the representative text-based
approaches for NER: (1) CNN-BiLSTM-CRF (Ma
and Hovy, 2016) and HBiLSTM-CRF (Lample
et al., 2016), leverage both character-level informa-
tion and BiLSTM-based word-level information.
(2) BERT (Devlin et al., 2019) and BERT-CRF, a
pre-trained multi-layer bidirectional Transformer
encoder.

The second group is several competitive multi-
modal approaches for MNER: (3) VG-ATT (Lu
et al., 2018), based on HBiLSTM-CRF with the
visual context, utilizes a visual attention model and
a gate mechanism to mine implicit the word-aware
visual information. (4) Ada-Co-ATT (Zhang et al.,
2018), a multi-modal approach based on CNN-
BiLSTM-CRF, designs an adaptive co-attention
network to fuse word-guided visual representations
and image-guided textual representations by a fil-
tration gate. (5) UMT (Yu et al., 2020) empowers
Transformer with a multi-modal interaction module
to capture the inter-modality dynamics and incor-
porates the auxiliary entity span detection mod-
ule. (6) UMGF (Zhang et al., 2021), the existing
state-of-the-art approach for MNER, uses a unified

multi-modal graph to capture the semantic relation-
ships between the words and visual objects and
stack multiple fusion layers to perform semantic
interactions to learn node representations.

4.3 Experiment Results

We mainly adopt standard Precision (P), Recall (R)
and F1-score (F1) to evaluate the overall perfor-
mance on two Twitter MNER datasets and report
the metric F1 for each single type. To demonstrate
the effectiveness and robustness of FMIT, we con-
duct extensive experiments from self-domain and
cross-domain scenarios.

Self-domain Scenario. Table 2 shows the per-
formance comparison of our FMIT approach with
different competitive text-based and multi-modal
approaches in a self-domain scenario for MNER.

(1) Compared with the text-based approaches,
the multi-modal approaches can generally achieve
better performance than their corresponding uni-
modal baselines, which demonstrates that incorpo-
rating the visual information is motivating for NER
in social media. For example, in the overall F1 on
both datasets, VG-ATT outperforms HBiLSTM-
CRF by 1.63% and 1.50%, respectively. Moreover,
recent multi-modal approaches UMT and UMGF
show significant performance improvements when
replacing the sentence encoder with BERT and us-
ing the Transformer framework to interact textual
and visual information. It further demonstrates that
the self-attention in Transformer is more beneficial
for feature fusion and filtering.

(2) Compared with UMT and UMGF, which
utilize Transformer to model intra-modal and inter-
modal information interactions and dynamically
control the contribution of visual features through
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Table 4: Performance comparison of FMIT and two existing state-of-the-art multi-modal approaches in cross-
domain scenarios for generalization analysis.

Approaches
Twitter-2017→Twitter-2015 Twitter-2015→Twitter-2017

Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

UMT 80.34 71.30 47.97 20.13 64.67 63.59 64.13 81.24 67.89 39.52 31.87 67.80 55.23 60.87
UMGF 79.62 71.94 49.48 20.24 67.00 62.81 66.21 81.83 72.25 41.20 32.00 69.88 56.92 62.74

FMIT(l = 3) 82.05 72.33 50.82 21.28 66.72 69.73 68.19 83.51 71.96 42.93 33.46 70.65 59.22 64.43

Table 5: Ablation study of our FMIT.

Approaches
Twitter-2015 Twitter-2017

Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

FMIT (l = 3) 86.77 83.93 64.88 42.97 75.11 77.43 76.25 93.14 86.52 83.93 70.90 87.51 86.08 86.79
w/o Obj 85.55 80.73 63.37 38.61 73.44 74.25 73.84 92.16 85.23 81.57 68.97 85.36 84.69 85.02
w/o Rel 84.13 79.95 62.64 38.86 72.87 73.38 73.12 91.06 85.36 81.24 67.83 84.29 84.76 84.52

w/o EBD 86.21 83.26 64.05 42.21 73.38 77.95 75.60 92.73 86.14 82.55 69.47 85.55 86.67 86.11

a gating mechanism, Our FMIT makes radical
promotion in model structure and representations
of different modalities. In the overall F1 on both
datasets, our best model achieves state-of-the-art
performance by obtaining 76.25% and 86.79% re-
sults, outperforming UMT by 2.84% and 1.48%,
and outperforming UMGF by 1.40% and 1.28%,
respectively.

(3) We compare the impact of the number of
Transformer layers. It can be observed that when
l = 1, FMIT achieves performance comparable to
UMT and UMGF, both of which use the 12-layers
Transformer framework. When l = 3 or l = 6, we
reach state-of-the-art F1-score in all single types
and overall F1-score, precision and recall metrics
on both datasets. As shown in Table 3, our ap-
proach can achieve better performance with fewer
parameters and higher efficiency. With only 12M
parameters, the 1-layer FMIT is 14.37 times and
27.73 times faster than UMT and UMGF in infor-
mation interaction phases, respectively. It demon-
strates that flat lattice structure can more fully and
directly establish interactions in both intra-modal
and inter-modal simultaneously, making it possible
to incorporate important visual information into
entity recognition with only a few Transformer lay-
ers. Meanwhile, we speculate that the reason for
the performance declines at 12-layer FMIT is the
redundancy of unnecessary information.

Cross-domain Scenario. Due to the obvious dif-
ferences in type distribution and data characteristics
between the two Twitter datasets, we compare our
FMIT approach and two existing state-of-the-art
multi-modal approaches in cross-domain scenarios
for generalization analysis. Twitter-2017→Twitter-

2015 indicates that the model trained on Twitter-
2017 is used to test Twitter-2015, and Twitter-
2015→Twitter-2017 has similar meaning. As
shown in Table 4, our approach outperforms UMT
and UMGF by a large margin in most metrics. The
potential reason for the excellent generalization
may be that with the tight information coupling
structure enables FMIT to learn the underlying
features better.

4.4 Ablation Study
To investigate the influence of different factors of
our proposed approach, we perform comparison
between the 3-layer FMIT and its ablation ap-
proaches, concerning the entity boundary detection
task and several critical components of the model.
The results are reported in Table 5.

w/o Obj. Firstly, we replace the targeted visual
object guidance with 7× 7 average-segmented vi-
sual blocks, which can be obtained by feeding the
whole image to ResNet (He et al., 2016) and tak-
ing the output of the last convolution layer. This
approach completely ignores the correspondence
of fine-grained units between different modalities,
bringing in significant performance degradation.

w/o Rel. Secondly, we remove the relative po-
sition encoding for flat lattice structure and the
positioning scheme of each cell. In this case, we
only use self-attention in vanilla Transformer to
conduct intra-modal and inter-modal fusions. We
find that the overall F1 on both datasets decreases
substantially by 3.13% and 2.27%, respectively,
which indicates a critical role for coupling interac-
tions between different modalities through position
strategy.
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I've committed to play soccer at [Daemen 

College ORG]
1 in [New York LOC]

2

[The Soviet War Memorial MISC]
1 at 

[Treptower Park LOC]
2, [Berlin LOC]

3

[David Gilmour PER]
1 and [Roger 

Waters PER]
2 playing [table football]

3

BERT-CRF

UMT

UMGF

FMIT

1-None O, 2-LOC P

1-ORG P(0.362), 2-LOC P 

1-ORG P(0.575), 2-LOC P 

1-ORG P(0.867), 2-LOC P 

1-None O, 2-LOC P, 3-LOC P

1-PER O, 2-LOC P, 3-LOC P

1-MISC P(0.623), 2-LOC P, 3-LOC P

1-MISC P(0.883), 2-LOC P, 3-LOC P 

1-PER P, 2-PER P, 3-None P(0.495)

1-PER P, 2-None O, 3-None P(0.386)

1-PER P, 2-PER P, 3-MISC O

1-PER P, 2-PER P, 3-None P(0.713) 

(a) (b) (c)

Figure 3: The first row shows several representative samples together with their manually labeled entities in the test
set of two Twitter datasets, and the bottom four rows show predicted entities of different approaches on these test
samples. The values in parentheses represent the confidence of the predicted label.
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Figure 4: Predicted results statistics: (a) The number of
entities (shown in y-axis) that are incorrectly predicted
by BERT-CRF, but get corrected by each multi-modal
approach; (b) The number of entities (shown in y-axis)
that are correctly predicted by BERT-CRF, but wrongly
predicted by each multi-modal approach.

w/o EBD. Discarding the entity boundary detec-
tion task and only retaining the main MNER task
will lead to significant performance degradation in
overall precision, while a slight increase in overall
recall. The result is consistent with our hypothe-
sis that the guidance of visual objects drives the
corresponding words to be misjudged as entities,
while the EBD auxiliary task can balance the play
of visual objects and text itself.

4.5 Further Analysis

Case Study. To better understand the effective of
our approach in incorporating visual information
into the MNER task, we select a representative set
of test samples to compare the prediction results of
the 3-layer FMIT and other approaches.

First, from Figure 3(a), we can observe that the
BERT-CRF fails to identify Daemen College due
to the lack of guidance from visual context such as
the plaque, while all the multi-modal approaches
can accurately determine the entities by referring
to specific visual regions.

Second, we can see from Figure 3(b) that UMT
gives a wrong identification of the entity The Soviet
War Memorial, probably because the segmented

visual feature is fragmented, bringing in interfer-
ence to type classification. On the contrary, UMGF
and FMIT can accurately classify the entities into
corresponding types with the guidance of targeted
visual objects.

Third, as shown in Figure 3(c), UMGF erro-
neously identifies table football as an entity of
MISC, which indicates that over-reliance on visual
information will lead to emphasis bias. Therefore,
FMIT corrects this bias by balancing the impor-
tance of text and vision with EBD task.

Finally, we find that compared with other ap-
proaches, FMIT can obtain higher confidence in
predicted results. For example, for entity Dae-
men College in Figure 3(a), FMIT achieves a la-
bel confident of 0.867, substantially outperforming
UMGF(0.575) and UMT(0.362). It indicates that
our relative position encoding strategy and flat lat-
tice structure can extract important information and
couple different modalities more directly.

Statistic Study. To better appreciate the impor-
tance of the EBD auxiliary task, we count the num-
ber of entities that are correctly/wrongly predicted
by BERT-CRF, but wrongly/correctly predicted
by each multi-modal approach.

As shown in Figure 4, compared with other
multi-modal methods, our FMIT can correctly
identify more entities due to the powerful image-
ware word representations. Moreover, it is clear
that FMIT introduces fewer wrong entities with the
help of EBD auxiliary task. It demonstrates that the
well-designed EBD auxiliary task can greatly elim-
inate the visual bias brought by visual context and
perform more efficiently than the span detection
module proposed in UMT.
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5 Conclusion

In this paper, we propose a novel Flat Multi-modal
Interaction Transformer for MNER, which exploits
flat lattice structure and relative position encod-
ing to directly interact fine-grained semantic units
between different modalities. Moreover, we put for-
ward entity boundary detection as an auxiliary task
to alleviate visual bias. We conduct extensive exper-
iments on two MNER datasets, and experimental
results demonstrate that our approach outperforms
other text-based and multi-modal approaches.

References
Alan Akbik, Tanja Bergmann, and Roland Vollgraf.

2019. Pooled contextualized embeddings for named
entity recognition. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 724–728.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Dennis Diefenbach, Vanessa Lopez, Kamal Singh, and
Pierre Maret. 2018. Core techniques of question
answering systems over knowledge bases: a survey.
Knowledge and Information Systems, 55(3):529–569.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. In International
Conference on Learning Representations.

Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu,
Steven CH Hoi, Xiaogang Wang, and Hongsheng Li.
2019. Dynamic fusion with intra-and inter-modality

attention flow for visual question answering. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6639–6648.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Xincheng Ju, Dong Zhang, Junhui Li, and Guodong
Zhou. 2020. Transformer-based label set generation
for multi-modal multi-label emotion detection. In
Proceedings of the 28th ACM International Confer-
ence on Multimedia, pages 512–520.

Canasai Kruengkrai, Thien Hai Nguyen, Sharifah Ma-
hani Aljunied, and Lidong Bing. 2020. Improving
low-resource named entity recognition using joint
sentence and token labeling. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5898–5905.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 260–270.

Chenliang Li, Aixin Sun, Jianshu Weng, and Qi He.
2015. Tweet segmentation and its application to
named entity recognition. IEEE Transactions on
Knowledge and Data Engineering, 2(27):558–570.

Xiaonan Li, Hang Yan, Xipeng Qiu, and Xuan-Jing
Huang. 2020. Flat: Chinese ner using flat-lattice
transformer. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6836–6842.

Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang,
and Heng Ji. 2018. Visual attention model for name
tagging in multimodal social media. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1990–1999.

Junyu Lu and Pingjian Zhang. 2022. Local context
interaction-aware glyph-vectors for chinese sequence
tagging. In ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 8152–8156.

Ying Luo, Fengshun Xiao, and Hai Zhao. 2020. Hi-
erarchical contextualized representation for named
entity recognition. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
8441–8448.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074.

2063



Makoto Miwa and Mohit Bansal. 2016. End-to-end
relation extraction using lstms on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1105–1116.

Seungwhan Moon, Leonardo Neves, and Vitor Carvalho.
2018. Multimodal named entity recognition for short
social media posts. In NAACL, pages 852–860.

Erik Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting text chunks. In Ninth Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 173–179.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468.

Dianbo Sui, Yubo Chen, Kang Liu, Jun Zhao, and
Shengping Liu. 2019. Leverage lexical knowledge
for chinese named entity recognition via collaborative
graph network. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3830–3840.

Lin Sun, Jiquan Wang, Kai Zhang, Yindu Su, and Fang-
sheng Weng. 2021. Rpbert: a text-image relation
propagation-based bert model for multimodal ner. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13860–13868.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing
Huang, Dong Yu, and Jiebo Luo. 2019. A fast and
accurate one-stage approach to visual grounding. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4683–4693.

Yongjing Yin, Fandong Meng, Jinsong Su, Chulun
Zhou, Zhengyuan Yang, Jie Zhou, and Jiebo Luo.
2020. A novel graph-based multi-modal fusion en-
coder for neural machine translation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 3025–3035.

Jianfei Yu, Jing Jiang, Li Yang, and Rui Xia. 2020.
Improving multimodal named entity recognition via
entity span detection with unified multimodal trans-
former. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3342–3352.

Dong Zhang, Xincheng Ju, Junhui Li, Shoushan Li,
Qiaoming Zhu, and Guodong Zhou. 2020. Multi-
modal multi-label emotion detection with modality

and label dependence. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3584–3593.

Dong Zhang, Suzhong Wei, Shoushan Li, Hanqian Wu,
Qiaoming Zhu, and Guodong Zhou. 2021. Multi-
modal graph fusion for named entity recognition
with targeted visual guidance. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 14347–14355.

Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang.
2018. Adaptive co-attention network for named en-
tity recognition in tweets. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Yue Zhang and Jie Yang. 2018. Chinese ner using lattice
lstm. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1554–1564.

Shan Zhao, Minghao Hu, Zhiping Cai, Haiwen Chen,
and Fang Liu. 2021a. Dynamic modeling cross-and
self-lattice attention network for chinese ner. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 14515–14523.

Shan Zhao, Minghao Hu, Zhiping Cai, and Fang Liu.
2021b. Modeling dense cross-modal interactions for
joint entity-relation extraction. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 4032–4038.

A Implementation Details

For each uni-modal and multi-modal approach, the
maximum length of the sequence input and batch
size are respectively set to 128 and 16. For our
FMIT approach, we utilize the pre-trained cased
BERTbase model with dimension of 768 to initial
word representations Hx, and employ a pre-trained
152-layer ResNet with dimension of 2048 to ini-
tial the visual representations Hv. The parameters
of both pre-trained models keep fine-tuned during
training. After dimension aligned, the dimension d
of both modalities are transformed into 512. The
dropout rate and tradeoff rate λ are respectively
set to 0.2 and 0.25. To train our model, we use
Adam optimizer with a learning rate of 5e-5 for
pre-trained models and 2e-4 for other parameters.
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Abstract

Due to the lack of labeled data in many real-
istic scenarios, a number of few-shot learning
methods for text classification have been pro-
posed, among which the meta learning based
ones have recently attracted much attention.
Such methods usually consist of a learner as
the classifier and a meta learner for special-
izing the learner to different tasks. For the
learner, learning rate is crucial to its perfor-
mance. However, existing methods treat it as a
hyper parameter and adjust it manually, which
is time-consuming and laborious. Intuitively,
for different tasks and neural network layers,
the learning rates should be different and self-
adaptive. For the meta learner, it requires a
good generalization ability so as to quickly
adapt to new tasks. Motivated by these issues,
we propose a novel meta learning framework,
called MetaSLRCL, for few-shot text classifi-
cation. Specifically, we present a novel meta
learning mechanism to obtain different learning
rates for different tasks and neural network lay-
ers so as to enable the learner to quickly adapt
to new training data. Moreover, we propose a
task-oriented curriculum learning mechanism
to help the meta learner achieve a better gener-
alization ability by learning from different tasks
with increasing difficulties. Extensive experi-
ments on three benchmark datasets demonstrate
the effectiveness of MetaSLRCL.

1 Introduction

Text classification is one of the most concerned
tasks in Natural Language Processing (NLP). At
present, most text classification methods are based
on supervised learning with a large amount of la-
beled data. But there is not so much labeled data,
even source data, in many scenarios (e.g., news
classification in specific domains). Some distant
supervision methods (Mintz et al., 2009) have thus
been proposed to handle this problem. However,

∗*Corresponding author.

this kind of methods may add a large proportion of
noisy training data (Zeng et al., 2014). Because of
this, it is a big challenge for traditional supervised
learning methods to work well in the scenarios with
very limited training data. As a result, few-shot text
classification has attracted much attention in recent
years, where there are only a few labeled instances
available for each class.

The concept of few-shot learning was formally
put forward by (Li et al., 2003). They presented
a method for learning from classes with few data,
by incorporating generic knowledge which may
be obtained from previously learned models of
unrelated classes. The existing few-shot learning
methods can be divided into three categories (Gao
et al., 2019), namely, model fine-tuning based
(e.g., (Howard and Ruder, 2018; Nakamura and
Harada, 2019)), metric learning based (e.g., (Snell
et al., 2017; Vinyals et al., 2016)), and meta
learning based methods (e.g., (Finn et al., 2017;
Munkhdalai and Yu, 2017)). In recent years, meta
learning based methods have attracted lots of in-
terests. However, they still suffer from some chal-
lenges.

A meta learning method is composed of a learner
and a meta learner. For the learner, learning rate
is crucial to its performance. Nevertheless, in ex-
isting methods, it is treated as a hyper parameter
and needs to be adjusted manually, which is time-
consuming and laborious. Intuitively, for differ-
ent tasks and different neural network layers, their
learning rates should be different. On the other
hand, the present meta learning methods cannot
be quickly generalized to new tasks (Zheng et al.,
2021) and a good generalization ability to new tasks
is necessary for the meta learner. And curriculum
learning can help models obtain better generaliza-
tion performance by guiding the training process
towards better regions in the parameter space, i.e.,
into local minima of the descent procedure associ-
ated with good generalization (Bengio et al., 2009).
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For the above reasons, we propose a novel meta
learning framework, called MetaSLRCL, for few-
shot text classification, which contains two main
mechanisms, i.e., Self-adaptive Learning Rates for
the learner and a task-oriented Curriculum Learn-
ing mechanism for the meta learner. Our gen-
eral contributions are three-fold. 1) We present a
novel meta learning mechanism with self-adaptive
learning rates, which enables different tasks and
neural network layers to obtain different learning
rates; 2) We introduce curriculum learning for the
first time, to the best of our knowledge, into few-
shot learning. Unlike traditional instance-oriented
curriculum learning, the proposed task-oriented
curriculum learning mechanism gradually learns
from different tasks with increasing difficulties; 3)
MetaSLRCL is evaluated with three typical types
of text classification, i.e., relation classification,
news classification and topic classification, on three
benchmark datasets, namely, FewRel80, 20News-
group and DBPedia Ontology, respectively. Ex-
perimental results demonstrate its superior perfor-
mance on all datasets.

2 Related Works

2.1 Few-shot Learning

Few-shot learning is to learn how to solve problems
from few data. As aforesaid, the existing main-
stream methods can be divided into three categories.
The model fine-tuning based mbethods learn how
to fine-tune general-purpose models to specialized
tasks (Howard and Ruder, 2018; Nakamura and
Harada, 2019). The metric learning based methods
learn a semantic embedding space upon a distance
function (Snell et al., 2017; Vinyals et al., 2016).
The meta learning based methods learn a learning
strategy to make them well adapt to new tasks (Finn
et al., 2017; Munkhdalai and Yu, 2017). Further-
more, according to the different kinds of meta
knowledge the meta learner learns, the meta learn-
ing based methods can be further divided into three
sub-categories, i.e., initial parameter (Finn et al.,
2017; Raghu et al., 2019; Jamal and Qi, 2019), hy-
per parameter (Wu et al., 2019) and optimizer based
methods (Santoro et al., 2016; Munkhdalai and Yu,
2017). The initial parameter based methods learn
parameter initialization for fast adaptation; The hy-
per parameter based methods learn a good hyper
parameter setting for the learner; And, the opti-
mizer based methods learn a meta-policy to update
the parameters of the learner. Some methods of the

hyper parameter based category in Computer Vi-
sion (CV) (e.g., MAML++ (Antoniou et al., 2019)
and ALFA (Baik et al., 2020)) have explored to
learn the learning rate. However, these methods
usually consider from a single perspective, e.g.,
the network layer or loop perspective. Specifically,
MAML++ learns the learning rate from the network
layer perspective, while ALFA learns it from the
loop perspective. Unlike them, this paper proposes
a novel meta learning mechanism to self-adaptively
obtain the learning rates of the learner, which allo-
cates different learning rates for different tasks and
neural network layers.

2.2 Curriculum Learning

Compared with the general paradigm of machine
learning without distinction, curriculum learning
is proposed to imitate the process of human learn-
ing (Bengio et al., 2009). It advocates that the
model should start learning from easy instances and
gradually advance to hard instances. Curriculum
learning has been widely applied in many fields,
e.g., CV (Guo et al., 2018; Jiang et al., 2014) and
NLP (Platanios et al., 2019; Tay et al., 2019). Fur-
thermore, curriculum learning can also be applied
in other technical frameworks, e.g., reinforcement
learning (Florensa et al., 2017; Narvekar et al.,
2017; Ren et al., 2018), graph learning (Gong et al.,
2019; Qu et al., 2018) and continual learning (Wu
et al., 2021). In this paper, we extend the tradi-
tional instance-oriented curriculum learning to a
task-oriented one, which gradually learns from dif-
ferent tasks with increasing difficulties.

3 Notations

In meta learning based few-shot text classification,
two datasets are given: Dtrain and Dtest, which
have disjoint label sets. T tasks are sampled from
Dtrain and the t-th task (t ∈ [1, T ]), Taskt, con-
sists of a support set St and a query set Qt. Fol-
lowing the setting (Gao et al., 2019), we adopt
C-way K-shot (hereinafter denoted as CwKs) for
few-shot text classification, meaning St contains
C classes and each class has K labeled instances.
Thus, St can be formulated as St = {(xit, yit)}C×Ki=1 ,
where xit denotes the i-th piece of text in Taskt and
yit is its class label. Furthermore, xit contains M i

t

words (hereinafter simplified as M if not causing
any confusion) and the m-th word (m ∈ [1,M ])
in xit denotes as wit,m. Thus, xit = {wit,m}Mm=1.
xit additionally includes a head entity hit and a tail
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Figure 1: The diagram of the MetaSLRCL framework.

entity oit in relation classification. Moreover, the
query set Qt contains Ut unlabeled instances for
each class in St, where the i-th instance denotes qit.
Qt can thus be formulated as Qt = {qit}C×Ui=1 .

4 The MetaSLRCL Framework

MetaSLRCL is a generic framework, where few-
shot learning models of different categories (i.e.,
model fine-tuning based, metric learning based,
and meta learning based) can be adopted as the
learner. As shown in Figure 1, MetaSLRCL con-
sists of three modules coupled with a task-oriented
curriculum learning mechanism.

The Encoder Module. This module maps the
instances into the semantic space as embeddings
via the encoder network.

The Task-level Learning Rate Module. This
module calculates the task-level learning rate via
the number of training classes and the distance
between different instances in the support set.

The Layer-level Learning Rate Module. In
this module, the layer-level learning rate is self-
adaptively obtained based on the meta learning
mechanism. This module contains two main parts:
the learner as the classifier and the meta learner
above the learner, which allocates learning rates for
different network layers of the learner.

The Task-oriented Curriculum Learning
Mechanism. It enables MetaSLRCL to gradu-
ally learn from tasks with more and more classes,
thus with increasing difficulties, to make the meta

learner achieve a better generalization ability.

4.1 The Encoder Module

The encoder module encodes each instance xit into
an embedding xit. This module consists of two
parts, i.e., the embedding part and the encoding
part.

In the embedding part, the semantic embeddings
wi
t,m for each word wit,m in xit is obtained by look-

ing up table. In this paper, we employ GloVe (Pen-
nington et al., 2014) to obtain word embeddings
for its fast training and remarkable performance
even with small corpus. In the encoding part, the
CNN encoder is employed because of its good per-
formance and time efficiency to derive the instance
embedding xit of B dimension of xit based on the
word embeddings {wi

t,m}Mm=1. CNN slides a con-
ventional kernel with a window of size k, over the
input embeddings to get the output hidden embed-
dings,

hit,m = Con
(
wi

t,m− k−1
2
, ...,wi

t,m+ k−1
2

)
, (1)

where Con (·) is a conventional operation.
A max pooling operation is then applied over

these hidden embeddings to output the final in-
stance embedding xit as follows:

[xit]b = max
{
[hit,1]b, ..., [ht,M ]b

}
, (2)

where [·]b is the b-th value of a vector (b ∈ [1, B]).
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4.2 The Task-level Learning Rate Module
This module is designed to self-adaptively get dif-
ferent learning rates for different tasks. In the con-
text of few-shot learning, it is necessary for a model
to converge within only a few steps (Finn et al.,
2017). Intuitively, for easy tasks, large learning
rates enable the model to converge fast. However,
for hard tasks, relatively small learning rates are
preferred so as to help the model carefully search
for the optimal parameters in the complex search
space. In this module, the difficulty of a task is de-
fined as the learning difficulty, measured in terms
of the number of training classes and the distance
between different instances in the support set.

In more detail, the learning difficulty of a task
is related to the number of classes in meta training.
If the number, C, of training classes, of Taskt is
equal to that of its meta test classes, C

′
, its dif-

ficulty coefficient dift is set to 1. If C is larger
than C

′
, indicating that it is a harder task, dift is

increased. Otherwise, it is reduced. dift can be
formally calculated as follows:

dift = 1 + γ
(
C − C′)

, (3)

where γ is a coefficient within [0, 1].
The distance between different instances can be

measured from two aspects, namely, the average
intra-class distance dis1t and the average inter-class
distance dis2t . The closer the intra-class distance
and the farther the inter-class distance, the easier
the task. Both of them are measured by the Eu-
clidean distance function d(·, ·). Specifically, dis1t
is calculated by

dis1t =
1

D1
t

D1
t∑

v=1

d
(
xit,x

j
t

)
, (4)

where xit and xjt (i ̸= j) belong to the same class;
D1
t = CK(K − 1)/2, denoting the number of

pairs (xit,x
j
t ). dis

2
t is calculated as follows:

dis2t =
1

D2
t

D2
t∑

v=1

d
(
xit,x

j
t

)
, (5)

where xit and xjt belong to different classes and
D2
t = CK(C − 1)K/2. Therefore, the learning

rate α
′
t of Taskt can be calculated as

α
′
t =

dis2t
dift · dis1t

. (6)

As aforesaid, larger learning rates are preferred
for easier tasks. Therefore, Equation (6) means a
larger α

′
t is obtained with dis2t increasing, as well

as dift and dis1t decreasing, which indicates an
easier task. Otherwise, a smaller α

′
t represents a

harder task.
As the task-level learning rate is required to mul-

tiply the layer-level one in Equation (12), it should
be larger than 1 for easier tasks and smaller than
1 for harder tasks. Therefore, we formulate the
task-level learning rate αt∈[β, 1 + β] by function
g (·) as

αt = g
(
α

′
t

)
= nor

(
α

′
t

)
+ β, (7)

where nor (·) is the min-max normalization func-
tion to normalize α

′
t between 0 and 1. In this paper,

the bias β is set to 0.5.

4.3 The Layer-level Learning Rate Module
As aforementioned, this module contains a learner
and a meta learner.

4.3.1 The Learner
In text classification, the learner is actually a classi-
fier. Existing models of different categories can be
employed as the learner, e.g., BERT (Kenton and
Toutanova, 2019), PN (Snell et al., 2017) and ML-
MAN (Ye and Ling, 2019), which are pre-trained.
By inputting the embedding xit , the learner with
the learning rate lrt , which is obtained by Equa-
tion (12), outputs the predicted probability distri-
bution, pit, to different classes. Formally, pit is
calculated as follows:

pit = Learner
(
xit, lrt

)
. (8)

The loss of the learner is defined as lt, which is
calculated by the cross entropy function H(·, ·) as

lt =

C×K∑

i=1

H
(
pit,y

i
t

)
, (9)

where yit is the ground truth distribution of xit to
different classes.

4.3.2 The Meta Learner
The meta learner allocates different learning rates
for different network layers. Let θ be its parameters.
Given the layer-level learning rate lr

′
t−1 of N di-

mension corresponding to Taskt−1 of the learner,
the hidden state hst of the meta learner to Taskt
is calculated upon lr

′
t−1 and its last hidden state

hst−1 as

hst =MetaLearnerθ
(
hst−1, lr

′
t−1

)
. (10)

Then, the layer-level learning rate lr
′
t of Taskt

is obtained upon the state hst as
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Algorithm 1 The Training Pro. of Meta Learning.
1 Given a set of labeled training data Dtrain
2 Init parameters of the meta leaner as θ
3 Given the initial learning rate lr

′
0

4 For e→1 to E do:
5 Given a pre-trained learner with lr

′
0

6 For t→1 to T do:
7 Given a task Taskt sampled from Dtrain

8 hst←MetaLearnerθ
(
hst−1, lr

′
t−1

)

9 lr
′
t←σ (Whst + b)

10 lrt←αtlr
′
t

11 Train the learner with lrt on Taskt in one step
12 Compute the loss lt
13 If t = T , calculate the loss Losse by summing up lt
14 Update θ using Losse−1- Losse

lr
′
t = σ (Whst + b) , (11)

whereW and b are parameters of a fully-connected
layer and σ(·) is the Sigmoid activation function.

By multiplying the task-level learning rate αt,
the final learning rate is obtained as

lrt = αtlr
′
t. (12)

The loss of the meta learner in the e-th iteration
(e ∈ [1, E]), Losse is calculated by summing up
the losses lt of all tasks from the learner as

Losse =

T∑

t=1

lt. (13)

Finally, θ is updated by minimizing the differ-
ence between the loss in the last iteration and the
current loss, which makes the meta learner con-
verge faster, through applying gradient-based opti-
mization. The training process of meta learning is
shown in Algorithm 1.

4.4 The Task-oriented Curriculum Learning
Mechanism

To get better generalization performance to new
tasks, MetaSLRCL introduces a task-oriented cur-
riculum learning mechanism to the meta training
period. The original curriculum learning mecha-
nism learns from instances with gradually increas-
ing difficulties in a step-by-step manner. How-
ever, in the context of meta learning, we need to
pay more attention to tasks with different difficul-
ties. It is acknowledged that when the number of
classes in a task increases, its difficulty increases
accordingly. For example, a 10w1s task is harder
than a 5w1s one. Therefore, a three-stage process
with increasing difficulties is carried out with the
number of classes increasing from C to C+X and

further to C+2X (hereinafter denoting the process
as C-(C+X)-(C+2X)), making the meta learner
train tasks from easy to hard. Besides, a previous
study (Munkhdalai and Yu, 2017) found that the
models trained on harder tasks, but tested with rela-
tively easier tasks may achieve better performance,
as compared with those models which are trained
and tested on tasks with the same difficulty config-
uration. Thus, in this paper we set that the average
difficulty of tasks in the meta training period is al-
ways higher than that in the meta test period to get
better performance in test tasks.

5 Experiments

5.1 Datasets and Evaluation Metrics

Parameters Value
γ 0.1
β 0.5
k 3
word emb. dim. 50
max sentence length 40
hidden layer dim. 230
LSTM hidden size 100
initial learning rate [7e−3, 6e−3, 5e−3, 4e−3]
batch size 1
T 600
E 50
dropout 0.2

Table 1: The parameter setting in MetaSLRCL.

To verify the effectiveness of the MetaSLRCL
framework, we conduct experiments on three differ-
ent types of text classification, i.e., relation classifi-
cation, news classification, and topic classification
with three representative benchmark datasets. For
relation classification, we choose a typical few-
shot learning dataset, FewRel (Han et al., 2018).
Note that the FewRel dataset used in this paper
has only 80 classes, thus marked as FewRel80, be-
cause 20 classes of the original FewRel dataset for
test are not publicly available. We randomly di-
vide FewRel80 into three subsets containing 50,
10 and 20 classes for training, validation and test,
respectively. For news classification, we choose
the representative dataset, 20Newsgroup (Dadgar
et al., 2016) with 20 news classes. As 20News-
group lacks standard splits in few-shot learning,
we randomly divide it into subsets with 14 and 6
classes for training and test, respectively. For topic
classification, the DBPedia Ontology (Zhang et al.,
2015) dataset is a classic one with 14 topic classes.
Similarly, we randomly partition it into 8 classes
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Dataset: FewRel80
Model 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
BERT 0.5762 0.7109 0.5233 0.5480

MetaSLRCL+BERT 0.6347 0.7601 0.5672 0.5988

metric learning based
PN_HATT 0.7319 0.8703 0.6114 0.7632

MetaSLRCL+PN_HATT 0.7675 0.8929 0.6507 0.8067

meta learning based
MLMAN 0.7957 0.9119 0.6903 0.8516

MetaSLRCL+MLMAN 0.8182 0.9150 0.7084 0.8519
Dataset: 20Newsgroup

Model 3w1s 3w5s 6w1s 6w5s

model fine-tuning based
BERT 0.7417 0.8198 0.5876 0.7107

MetaSLRCL+BERT 0.7689 0.8476 0.6187 0.7426

metric learning based
PN 0.8463 0.9614 0.7052 0.8887

MetaSLRCL+PN 0.8680 0.9843 0.7217 0.9264

meta learning based
MAML 0.7612 0.8405 0.6143 0.7451

MetaSLRCL+MAML 0.7824 0.8599 0.6465 0.7738
Dataset: DBPedia Ontology

Model 3w1s 3w5s 6w1s 6w5s

model fine-tuning based
BERT 0.7609 0.8256 0.6118 0.7589

MetaSLRCL+BERT 0.7928 0.8598 0.6540 0.7990

metric learning based
PN 0.8428 0.9520 0.7070 0.8896

MetaSLRCL+PN 0.8683 0.9799 0.7301 0.9104

meta learning based
MAML 0.7778 0.8571 0.6434 0.8093

MetaSLRCL+MAML 0.8110 0.8911 0.6786 0.8359

Table 2: The overall results on three benchmark datasets: FewRel80, 20Newsgroup and BDPedia Ontology.

and 6 classes for training and test, respectively.
We set up four configurations, namely, 5w1s,

5w5s, 10w1s and 1w5s, on FewRel80. Four set-
tings are considered for the 20Newsgroup and DB-
Pedia Ontology datasets, i.e., 3w1s, 3w5s, 6w1s
and 6w5s. Following the previous study in (Oba-
muyide and Vlachos, 2019), average accuracy upon
5 runs is adopted as the evaluation metric.

5.2 Implementation Details and Parameters
Setting

Table 1 presents the parameter setting of
MetaSLRCL. For the encoder module, CNN is em-
ployed as the encoder and the word embeddings
pre-trained in GloVe (Pennington et al., 2014) are
adopted as the initial embeddings. More specif-
ically, we choose the embedding set of GloVe
trained on Wikipedia 2014 + Gigaword 5, which
contains 6B tokens and 400K words. The word em-
beddings are of 50 dimensions. For the parameters
of CNN, we follow the settings used in (Zeng et al.,
2014). For the layer-level learning rate module,
LSTM is selected as the meta learner, because of
its simple implementation, fast training speed and
remarkable performance. Furthermore, for the cur-
riculum learning, we choose one setting with best
performance on each dataset, specifically, 10-15-20
on FewRel80, 7-9-11 on 20Newsgroup and 5-6-7

on DBPedia Ontology.

5.3 Baseline Models

As MetaSLRCL is a generic framework, it can
employ different few-shot learning models as its
learner. Therefore, in the experiments, we adopt the
representative and state-of-the-art (SOTA) models
of the aforesaid different categories as the learner
of MetaSLRCL in order to verify its effective-
ness on different tasks. These models are also
adopted as the baselines for performance com-
parison. It should be particularly mentioned that
for the sake of space limitation, for each type of
text classification and each category of the few-
shot learning models, the experimental results of
only the baseline models (e.g., MAML) with the
best performance and their MetaSLRCL coun-
terparts (e.g., MetaSLRCL+MAML) will be pre-
sented. More specifically, for relation classifica-
tion, the baseline models include: 1) BERT-base-
uncased (Kenton and Toutanova, 2019), a widely
adopted model of model fine-tuning based cate-
gory; 2) PN_HATT (Gao et al., 2019), the SOTA
metric learning based model especially for relation
classification; 3) MLMAN (Ye and Ling, 2019),
the SOTA model in few-shot relation classifica-
tion. For news classification and topic classifica-
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Model 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
MetaSLRCL+BERT 0.6347 0.7601 0.5672 0.5988

SLR+BERT 0.6174 0.7456 0.5532 0.5851
CL+BERT 0.5904 0.7263 0.5370 0.5615

metric learning based
MetaSLRCL+PN_HATT 0.7675 0.8929 0.6507 0.8067

SLR+PN_HATT 0.7592 0.8831 0.6435 0.7982
CL+PN_HATT 0.7380 0.8719 0.6152 0.7792

meta learning based
MetaSLRCL+MLMAN 0.8182 0.9150 0.7084 0.8519

SLR+MLMAN 0.8103 0.9145 0.7059 0.8541
CL+MLMAN 0.8167 0.9136 0.7042 0.8507

Table 3: The results of the ablation study on SLR and CL on FewRel80.

Model 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
SLR+BERT 0.6174 0.7456 0.5532 0.5851

SLRL+BERT 0.6145 0.7412 0.5509 0.5823
SLRT+BERT 0.5771 0.7148 0.5261 0.5502

metric learning based
SLR+PN_HATT 0.7592 0.8831 0.6435 0.7982

SLRL+PN_HATT 0.7578 0.8811 0.6414 0.7956
SLRT+PN_HATT 0.7354 0.8723 0.6137 0.7648

meta learning based
SLR+MLMAN 0.8103 0.9145 0.7059 0.8541

SLRL+MLMAN 0.8095 0.9139 0.7051 0.8537
SLRT+MLMAN 0.7982 0.9125 0.6931 0.8522

Table 4: The results of the ablation study on SLRs on FewRel80.

tion, the baseline models are the same, including:
1) BERT-base-uncased, for the same reason; 2)
PN (Snell et al., 2017), a widely adopted metric
learning based model; 3) MAML (Finn et al., 2017),
a widely adopted meta learning based model.

5.4 Main Results

Table 2 presents the main results, where we can see
that all of the MetaSLRCL models with BERT,
PN_HATT, MLMAN, PN and MAML as their
learners consistently outperform those correspond-
ing baselines on all datasets. The accuracy of
the model fine-tuning based and metric learning
based MetaSLRCL models increases by 4-6% and
2-4% on FewRel80, respectively. However, for
MetaSLRCL+MLMAN, its performance is im-
proved less than those of the former two categories;
But it still achieves the best results. Moreover, all
kinds of MetaSLRCL models are observed accu-
racy promotion by 2-4% compared to the baselines
on the majority of few-shot tasks on 20Newsgroup
and DBPedia Ontology. In short, these experimen-
tal results convincingly suggest that MetaSLRCL
is effective for different tasks on different datasets
and with different models.

5.5 Ablation Studies

5.5.1 SLR and CL in MetaSLRCL
In this subsection, we conduct ablation studies to
investigate the effectiveness of both Self-adaptive

Learning Rate (SLR) and Curriculum Learning
(CL), as well as their impacts on the performance
of MetaSLRCL. For the sake of space limitation,
only the results on FewRel80 are presented. As
shown in Table 3, the performance of all ablated
models without SLR and CL consistently falls, ex-
cept MLMAN on the 10w5s task. For each type of
the models in this table, we adopt the same CL set-
ting on different tasks, with which the MetaSLRCL
enhanced model exhibits best performance on most
of them. Therefore, for the MLMAN models,
the 10-15-20 CL setting is selected, because un-
der this CL setting the MetaSLRCL+MLMAN
model achieves the best results on the 5w1s, 5w5s
and 10w1s tasks. Nevertheless, on the 10w5s
task, MetaSLRCL+MLMAN obtains its best per-
formance with the CL setting of 15-20-25. For
this reason, SLR+MLMAN exceptionally outper-
forms MetaSLRCL+MLMAN on the 10w5s task.
The general results in Table 3 indicate that both
SLR and CL contribute to the effectiveness of
MetaSLRCL. Besides, it can be observed that SLR
is more important to MetaSLRCL than CL, because
of the larger performance improvement. Similar
phenomena can be observed on the other datasets,
20Newsgroup and DBPedia Ontology.

5.5.2 SLRs for Tasks and Network Layers

In MetaSLRCL, SLR consists of two subsets,
the Self-adaptive Learning Rates for different
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Model 5w1s 5w5s
Adadelta+BERT 0.5825 0.7232
RMSProp+BERT 0.5887 0.7203

Adam+BERT 0.5943 0.7261
SLR+BERT 0.6174 0.7456

Adadelta+PN_HATT 0.7386 0.8612
RMSProp+PN_HATT 0.7327 0.8446

Adam+PN_HATT 0.7101 0.8300
SLR+PN_HATT 0.7592 0.8831

Adadelta+MLMAN 0.7995 0.9063
RMSProp+MLMAN 0.8007 0.9087

Adam+MLMAN 0.8027 0.9108
SLR+MLMAN 0.8103 0.9145

Table 5: The results of different models with SLR
and other self-adaptive learning rate mechanisms on
FewRel80.

Tasks (SLRT) and different neural network Lay-
ers (SLRL). As shown in Table 4, the performance
of all models without SLRT and SLRL consistently
decreases, indicating that both SLRT and SLRL are
important to the effectiveness of SLR. However, the
models with SLRL outperform those with SLRT.
That means, although both task-level and layer-
level learning rates work, the layer-level ones are
more important and effective to the performance of
models than their counterparts.

5.6 SLR Comparing with Other Self-Adaptive
Learning Rate Methods

We also conduct some experiments to compare
our SLR with other self-adaptive learning rate
mechanisms, i.e., Adadelta (Zeiler, 2012), RM-
SProp (Hinton et al., 2012) and Adam (Kingma
and Ba, 2014), on FewRel80. The parameters of
these methods are tuned on our dataset. The experi-
mental results are shown in Table 5. It can be noted
that, the models with our SLR outperform all the
others, which indicates that our SLR is more effec-
tive than the others. Moreover, as compared with
Adadelta, the performance of RMSProp and Adam
are unstable when coupled with different models,
i.e., BERT, PN_HATT, and MLMAN. Differently,
our SLR exhibits consistently the best performance
in all cases, indicating that our SLR is more robust
than the others when applied to different models.

As mentioned in Section 2, there have al-
ready been some models in CV, which explore
self-adaptive learning rates, e.g., MAML++ and
ALFA. We experimentally compare our SLR in the
MetaSLRCL framework with them at the method
level. The experimental results are shown in Ta-
ble 6. Note that for fair comparison, the same initial

Model 5w1s 5w5s

CV
MAML++ 0.5823 0.6954

ALFA 0.6009 0.7137

Ours
SLR+BERT 0.6174 0.7456

SLR+PN_HATT 0.7592 0.8831
SLR+MLMAN 0.8103 0.9145

Table 6: The results of self-adaptive learning rate mod-
els in CV and our SLR on FewRel80.

Model 5w1s 5w5s
SLR+5-10-15+BERT 0.6285 0.7498

SLR+10-15-20+BERT 0.6347 0.7601
SLR+15-20-25+BERT 0.6315 0.7581
SLR+20-25-30+BERT 0.6239 0.7475

SLR+5-10-15+PN_HATT 0.7562 0.8836
SLR+10-15-20+PN_HATT 0.7565 0.8929
SLR+15-20-25+PN_HATT 0.7675 0.8877
SLR+20-25-30+PN_HATT 0.7645 0.8926
SLR+5-10-15+MLMAN 0.8102 0.9135

SLR+10-15-20+MLMAN 0.8182 0.9150
SLR+15-20-25+MLMAN 0.8133 0.9161
SLR+20-25-30+MLMAN 0.8046 0.9146

Table 7: The results of different CL settings on
FewRel80.

learning rate as ours is adopted. As we can see, the
accuracy of MAML++ and ALFA is lower than all
of the MetaSLRCL models with our SLR. It sug-
gests that although MAML++ and ALFA achieve
superior performance in CV, our SLR outperforms
them on text classification.

5.7 Different CL Settings

We also conduct experiments to evaluate the im-
pact of the CL mechanism. Specifically, we set up
four training settings for each task on FewRel80,
namely, 5-10-15, 10-15-20, 15-20-25 and 20-25-
30. For the sake of space limitation, only results
on 5w1s and 5w5s are shown in Table 7, which
demonstrate that all the best results are obtained at
two settings, 10-15-20 and 15-20-25. This may be
due to the following reason: the 5-10-15 configura-
tion is the simplest one, which does not reach the
difficulty to get the best performance of a model,
whilst the 20-25-30 configuration is too hard and
the learner cannot be well trained at the training
period and thus cannot work well at the test period.

Furthermore, four training settings, namely, 3-
5-7, 5-7-9, 7-9-11 and 9-11-13 are examined on
20Newsgroup. Four training settings, i.e., 3-4-5,
4-5-6, 5-6-7 and 6-7-8 are also studied on DBPedia
Ontology. Similar phenomena can be observed on
these datasets. The results are not presented due to
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space limitation.

6 Conclusion and Future Work

In this paper, we proposed a novel meta learning
framework, called MetaSLRCL, for few-shot text
classification. MetaSLRCL can self-adaptively ob-
tain different learning rates for different tasks and
different network layers. Moreover, a task-oriented
curriculum learning mechanism is introduced into
few-shot learning to achieve a better generalization
ability for the meta learner. MetaSLRCL is evalu-
ated with three typical types of text classification,
relation classification, news classification and topic
classification, on three benchmark datasets, namely,
FewRel80, 20Newsgroup and DBPedia Ontology,
respectively. Experimental results demonstrate su-
perior performance of MetaSLRCL on all datasets.
In the future, we will explore few-shot learning un-
der the unbalance learning scenarios because they
are ubiquitous in the real world.
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Abstract
Entity alignment (EA) aims to find entities in
different knowledge graphs (KGs) that refer to
the same object in the real world. Recent stud-
ies incorporate temporal information to aug-
ment the representations of KGs. The exist-
ing methods for EA between temporal KGs
(TKGs) utilize a time-aware attention mech-
anism to incorporate relational and temporal
information into entity embeddings. The ap-
proaches outperform the previous methods by
using temporal information. However, we be-
lieve that it is not necessary to learn the em-
beddings of temporal information in KGs since
most TKGs have uniform temporal representa-
tions. Therefore, we propose a simple graph
neural network (GNN) model combined with
a temporal information matching mechanism,
which achieves better performance with less
time and fewer parameters. Furthermore, since
alignment seeds are difficult to label in real-
world applications, we also propose a method
to generate unsupervised alignment seeds via
the temporal information of TKG. Extensive
experiments on public datasets indicate that our
supervised method significantly outperforms
the previous methods and the unsupervised one
has competitive performance.

1 Introduction

Knowledge graphs (KGs) describe facts of the real
world in a structured form of triples (h, r, t), where
h represents the head entity, r represents the rela-
tion, t represents the tail entity. KGs have drawn
great research attention from the academia (Lin
et al., 2021; Ji et al., 2022) and have been widely
used to enhance downstream applications such as
question answering (Saxena et al., 2020; Qiu et al.,
2020) and recommendation systems (Anelli et al.,
2021; Zhou et al., 2020).

Recently, Wikidata (Vrandecic and Krötzsch,
2014) and YOGO2 (Hoffart et al., 2013) add tem-
poral information to the relations to represent the

∗*Corresponding author

Figure 1: One sample of EA between TKGs. TKG1 is
a sub-graph in YAGO. TKG2 is a sub-graph in WIKI,
where the entity names corresponding to the items are as
follows: Q39444 (Ronaldinho), Q7156 (FC Barcelona),
Q166177 (Ballon d’Or), Q1543 (A.C.Milan), Q59207
(Ronaldo), P54 (member of sports team), P166(award
received).

KGs more accurately. In temporal knowledge
graphs (TKGs), triples are extended to quadruples
as (h, r, t, τ), where τ represents the timestamps.
Figure 1 is an example of entity alignment (EA) be-
tween TKGs, where nodes represent entities, edges
include relational and temporal information, and
the quadruple (Ronaldinho, playsfor, A.C.Milan,
2008-2010) represents one of the facts.

EA seeks to find the same entities in the real
world from different KGs to promote knowledge
fusion. Many embedding-based methods perform
effective EA (Sun et al., 2020; Mao et al., 2022),
which encode entities in a continuous embedding
space and align entities based on the learned embed-
dings. Previous EA methods ignore the temporal
information despite their successes, a key factor
indicating when a fact occurred.

In order to utilize the time information in TKGs,
TEA-GNN (Xu et al., 2021) first proposes a time-
aware GNN for EA between TKGs, which incor-
porates the temporal information via a time-aware
attention mechanism to learn the embeddings of en-
tities. TREA (Xu et al., 2022) develops a temporal
relational attention mechanism that introduces tem-
poral embedding and relational embedding to entity
embedding and achieves state-of-the-art (SOTA)
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performance.

In different TKGs, equivalent entity and relation
pairs are usually disrupted and have different rep-
resentation forms. As shown in Figure 1, the entity
of "Ronaldinho" is stored in the form of <Ronald-
inho> in TKG1. But in TKG2, the same entity
is stored as a pure id <Q39444>. The relation of
"plays for" is stored in the form of <playsfor> and
<P54> in the two TKGs respectively. Therefore,
we need to map different representations into a
unified vector space to infer whether they are simi-
lar. However, the temporal information is uniform
across most TKGs. For example, the temporal in-
formation "2005" is the same in the two TKGs, and
refers to the same year. So we believe it’s unneces-
sary to learn additional temporal embeddings. In
addition, different entities can be distinguished by
their temporal information even though they have
similar structures and relations. Such as <Ronald-
inho> and Q59207 (Ronaldo) in Figure 1. In sum-
mary, we can directly use the temporal information
for enhancing the prediction, rather than learning
the temporal embeddings, which is redundant and
time-consuming.

Based on this finding, we propose a Simple
GNN model combined with a Temporal informa-
tion matching mechanism for Entity Alignment
(STEA) between TKGs. Unlike the previous work,
the model adopts a temporal information matching
mechanism instead of learning temporal embed-
dings, which is effective and efficient. Our pro-
posed model first takes a simple GNN to learn the
embeddings of entities by using their structural
and relational information, then compares the en-
tities’ temporal information, and finally aligns the
entities by combining their embedding similarity
and time similarity. Experimental results on four
datasets show that our model significantly outper-
forms TREA (Xu et al., 2022). The improvement
scores of Hits@1 are 3.4%, 3.6%, 2.2%, 12.3%,
respectively.

Most existing methods of EA need alignment
seeds to train the model and learn the embeddings
of the entities. Finding the alignment seeds of
different KGs in the real world is labor-intensive.
Some unsupervised EA methods (Liu et al., 2021;
Qi et al., 2021; Mao et al., 2021) automatically
generate alignment seeds via the image or name
of entities. Inspired by these methods, we believe
that uniform temporal information can also be used
to generate alignment seeds. In this paper, we as-

sume that entities with the same temporal infor-
mation have high similarity and calculate the time
similarity of entities according to their temporal
information. If two entities are both the unique
nearest neighbor to each other, then the two entities
are regarded as alignment seeds. Experimental re-
sults show that the proposed unsupervised method
outperforms the previous SOTA models on two
datasets and competes with our supervised method
STEA.

The main contributions of this paper are summa-
rized as follows:

(1) We propose a simple GNN model combined
with a temporal information matching mechanism,
achieving significant performance with fewer pa-
rameters and less time.

(2) By assuming that entities with the same tem-
poral information have high similarity, we propose
a simple strategy to generate alignment seeds by
selecting the nearest neighbor.

(3) Extensive experiments on public datasets in-
dicate that our supervised method outperforms all
SOTA methods. The performance of using auto-
matically generated alignment seeds is close to that
of the supervised method.

2 Related Work

2.1 Translation-based Model

Translation-based models learn the embeddings of
entities by the triples of KGs, which interpret re-
lation as translation operations from its head to its
tail, such as h + r ≈ t. MTransE (Chen et al.,
2017) is the first model to use TransE (Bordes et al.,
2013) for entity alignment which maps two KGs
into different vector spaces. Entities with similar
positions in two vector spaces are alignment pairs.
In addition to using relational triples, JAPE (Sun
et al., 2017) also utilizes the attribute features of
entities to learn the representation of entities to im-
prove the performance of EA. BootEA (Sun et al.,
2018) proposes a bootstrapping process by adding
label likely alignment entities into training data
iteratively to promote the EA results. MultiKE
(Hu et al., 2019) represents entities based on muti-
aspects of KGs to enhance the alignment. These
methods use the triples to align entities indepen-
dently and lack utilization of the global structural
information of KGs.
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2.2 GNN-based Model

Due to the powerful ability of GNN to model
the structure of KGs, many GNN-based models
have been proposed and have achieved good perfor-
mance on the task of EA. GCN-Align (Wang et al.,
2018) is the first method to use GCN (Kipf and
Welling, 2017) for entity alignment. GCN-Align
combines the attribute features of entities with the
structural features of the KG and uses GCN to map
the entities to a low-dimensional vector space so
that the equivalent entities are close to each other
in the space. However, GCN-Align does not effec-
tively utilize the relational features in the knowl-
edge graph. MRAEA (Mao et al., 2020a) proposes
a meta relation aware EA method which leverages
meta relation-aware embedding and relation-aware
self-attention to align the KGs. RREA (Mao et al.,
2020b) designs a relational reflection transforma-
tion operation to preserve the similarity distribu-
tions of entities and integrate them into GNNs to
facilitate EA. TEA-GNN (Xu et al., 2021) adopts
a similar idea from RREA and utilizes additional
temporal information for EA between TKGs. It
learns the embeddings of entities by a time-aware
attention mechanism to promote EA. TREA (Xu
et al., 2022) uses a temporal relational attention
mechanism to integrate relational and temporal fea-
tures of links between nodes to enhance EA. In
TKGs, the temporal information representing the
same timestamps is uniform. We propose a simple
GNN model combined with a temporal informa-
tion matching mechanism, which is effective and
efficient.

2.3 Unsupervised Methods for Alignment
Seeds Generation

In recent years, some unsupervised methods have
emerged to generate alignment seeds to solve the
resource-consuming problem. IMUSE (He et al.,
2019) uses both attribute triples and relation triples
of KGs to collect seed with high text similarity.
EVA (Liu et al., 2021) leverages the additional
visual information of entities to create alignment
seeds. PRASE (Qi et al., 2021) uses PARIS to ob-
tain the alignment seeds by literal attributes of the
entities. These approaches incorporate additional
information such as visual and text information
of entities to obtain the alignment seeds. Inspired
by these methods, we propose a simple alignment
seeds generation method by utilizing the temporal
information of entities.

3 Problem Formulation

TKGs store the real-world knowledge in the form
of quadruples (h, r, t, τ). A TKG is represented
as G = (E, R, T, Q), where E, R and T repre-
sent the sets of entities, relations and timestamps
respectively, Q ⊂ E × R × E × T denotes the
set of quadruples. Defining G1 = (E1, R1, T1, Q1)
and G2 = (E2, R2, T2, Q2) to be two TKGs, S =
{(e1i , e2j )|e1i ∈ E1, e2j ∈ E2} is the set of align-
ment seeds between G1 and G2. Specifically, the
timestamps in the two time set has been merged in a
uniform time set T ∗ = T1 ∪T2. Therefore, the two
TKGs can be renewed as G1 = (E1, R1, T

∗, Q1)
and G2 = (E2, R2, T

∗, Q2) sharing the same set
of timestamps. EA task aims to find new align-
ment entities set P based on the alignment seeds S
between the two TKGs.

4 The Proposed Approach

This research proposes a simple GNN model com-
bined with a temporal information matching mech-
anism for EA between TKGs using the entity’s
structural information, relational information, and
temporal information. During the training phase,
the simple GNN is used to learn entities’ structural
and relational embeddings. In the prediction stage,
the model predicts the new alignment entities by
combining the embedding similarity and temporal
matching degree of entities. Experimental results
show that our model achieves good performance by
balancing the embedding similarity with the time
similarity of entities. Figure 2 shows the frame-
work of STEA.

4.1 Simple Graph Neural Network

The simple GNN model learns the embeddings of
entities by using their structural and relational in-
formation. The model first fuses entities’ structural
features and relational features, then aggregates
them through a simple graph convolution operation.
Finally, it combines entity embeddings of different
layers to obtain a global entity embedding. The
sub-modules of the model include feature fusion,
feature aggregation, and global embedding genera-
tion.

Feature Fusion
Some studies (Yang et al., 2019; Mao et al., 2020b)
believe that both the structural information and the
relational information are beneficial to the represen-
tation of entities. Therefore, we fuse the relational
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Figure 2: Framework of STEA. The solid line between entities represents the existent relations in TKGs, the dashed
line represents the alignment seeds.

features and structural features to get semantic em-
beddings of entities. The structural feature and
relational feature of entity ei are calculate by the
following equations:

he
ei

=
1

|N e
ei
|

∑

ej∈N e
ei

hej (1)

hr
ei

=
1

|N r
ei
|

∑

rj∈N r
ei

hrj (2)

where N e
ei

represents the neighboring entity set of
ei, hei is the randomly generated initialization em-
bedding of ei,N r

ei
represents the set of the relations

around entity ei, hri is the randomly generated ini-
tialization embedding of ri.

The fused feature of entity ei is obtained as fol-
lows:

h(1)
ei

= [he
ei
||hr

ei
] (3)

where || represents the concatenate operation, h(1)
ei

represents the fused embedding of ei in layer 1.

Feature Aggregation
Each entity aggregates the fused features from its
neighbors by a graph convolution operation. The
aggregation can be performed efficiently by ma-
trix operations. Let H(l) represents the features
of entities in layer l, A is the adjacency matrix
with self-loops of TKGs, D is the diagonal node

degree matrix, H(l+1) is the embeddings of enti-
ties in layer l + 1, The matrix operation of feature
aggregation to get H(l+1) is shown as follows:

H(l+1) = σ(D−1AH(l)) (4)

where σ(·) is a non-linear activation function like
the ReLU.

Global-aware Embedding
The GNN can capture multi-hop neighborhood in-
formation. We concatenate the entity embedding
from different layers to get the global-aware embed-
ding. The final embedding of entity ei is obtained
as follows:

hmul
ei

= [h(1)
ei
||h(2)

ei
||...||h(L)

ei
] (5)

where h
(1)
ei is the embedding of entity ei in layer

1, h(L)
ei is the embedding of entity ei in layer L, ||

represents the concatenate operation.

4.2 Entity Alignment

The model first learns the embeddings of entities
by training with the alignment seeds, then calcu-
lates the embedding similarity matrix of the entities
and combines the time similarity matrix to predict
the new alignment entities. Iterative learning is
performed by adding new alignment entities to the
training set to find more alignment entities.
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Training
We use the following triplet loss function to train
the model:

L =
∑

(ei,ej)∈P

max(dist(ei, ej)−dist(e′
i, e

′
j)+λ, 0) (6)

where (ei, ej) represent the positive pair, (e′
i, e

′
j)

represent the negative pair by randomly replacing
one of (ei, ej). λ represents the margin hyper-
parameter, dist(·) represent the Manhattan dis-
tance:

dist(ei, ej) = ‖hmul
ei

− hmul
ej
‖1 (7)

Time Dictionary Construction
There are two types of temporal information in
the datasets, one is the time point τ and another
is time interval [τs, τe], where τs denote the start
time and τe denote the end time. We construct
the time dictionary Dic of the entities by using
the quadruples. If the quadruple is (h, r, t, τ), then
append τ to the dictionary Dich of h and dictionary
Dict of t. If the quadruple is (h, r, t, [τs, τe]), then
append τs and τe to the dictionary Dich and Dict .

Temporal Information Matching Mechanism
We use the time dictionary mentioned above to ob-
tain the time similarity matrix by calculating the
matching degree of temporal information in the
time dictionary of each entity. Specifically, for two
entities ei ∈ G1 and ej ∈ G2, the time dictio-
naries of them are Dicei = [τ1

ei
, τ2

ei
, ..., τm

ei
] and

Dicej = [τ1
ej

, τ2
ej

, ..., τn
ej

], where m and n repre-
sent the numbers of temporal information in Dicei

and Dicej respectively. Let c denote the number of
same items in Dicei and Dicej , the time similarity
st
eiej

of ei and ej is calculated as follows:

st
eiej

=
c× 2

m + n
(8)

For each entity in the two TKGs, by calculating
the matching degree of temporal information from
each other, we get the time similarity matrix of
entities in different TKGs.

Prediction
We adopt a similar method with RREA (Mao et al.,
2020b) which uses the Cross-domain Similarity Lo-
cal Scaling (CSLS) (Lample et al., 2018) to predict
the alignment entities. Since TKGs have additional
temporal information, which is used to calculate
the time similarity of entities, we predict alignment
entities by combining the embedding similarity and

time similarity of entities. The final similarity of
entities can be expressed as follows:

seiej = (1− α)× se
eiej

+ α× st
eiej

(9)

where se
eiej

is the embedding similarity of ei and
ej , it can be simply calculated by the inner prod-
uct of the embeddings of ei and ej . st

eiej
is the

time similarity of ei and ej , α is a balance hyper-
parameter.

Iterating Learning
We adopt the bi-directional iterative strategy pro-
posed by MRAEA (Mao et al., 2020a). The dif-
ference from this method is that we also combine
the temporal information to calculate the similarity
between entities in addition to using entity embed-
ding. If the entities ei and ej are mutually nearest
neighbors, then the pair (ei, ej) is considered new
alignment entities and will be added into the train-
ing set of the next iteration. Since an iteration con-
tains many epochs of training (1200 in this paper),
the pseudo-supervised seeds generated after one
iteration help improve the model’s performance.

4.3 Unsupervised Alignment Seeds
Generation

In the real world, alignment seeds are often difficult
to obtain due to the high cost of manual annotations.
Assuming that the entities with the same temporal
information in the two TKGs are the most similar,
we propose a strategy to generate the alignment
seeds using the temporal information of entities.
The generated alignment seeds (ei, ej) should sat-
isfy the following two criteria: (1) For ei, there
is and only one ej that exactly matches the tem-
poral information of ei. (2) They are mutually
and uniquely nearest neighbors of each other. The
detailed alignment seeds generation process is de-
scribed in Algorithm 1.

5 Experiments

5.1 Data sets
We experiment on four datasets for entity alignment
between temporal knowledge graphs in English.

(1) DICEWS (Xu et al., 2021): This dataset
is built from ICEWS05-15 (García-Durán et al.,
2018) which contains events during 2005 to 2015.
There are DICEWS-1K with 1K alignment seeds
and DICEWS-200 with 200 in it.

(2) YAGO-WIKI50K (Xu et al., 2021): This
dataset extracts the top 50,000 entities according to
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Dataset |E1| |E2| |R1| |R2| |T | |Q1| |Q2| |P | |S|
DICEWS-1K 9,517 9,537 247 246 4,017 307,552 307,553 7,566 1,000
DICEWS-200 9,517 9,537 247 246 4,017 307,552 307,553 8,366 200

YAGO-WIKI50K-5K 49,629 49,222 11 30 245 221,050 317,814 44,172 5,000
YAGO-WIKI50K-1K 49,629 49,222 11 30 245 221,050 317,814 48,172 1,000

Table 1: Statistics of YOGO-WIKI50K and DICEWS. | · | represents the numbers.

Algorithm 1 Algorithm for alignment seeds gener-
ation
Input: time similarity matrix of entities St.
Output: Alignment seeds set AS.

1: Let AS = { }, index = { }.
2: for i ∈ St[i] do
3: if (len(argmax(St[i]) == 1)

& (max(St[i]) == 1) then
4: index ← (i, argmax(St[i])) ∪ index
5: end if
6: end for
7: for (a, b) ∈ index do
8: if (St[a][b] == St[b][a]) then
9: AS ← (a, b) ∪AS

10: end if
11: end for
12: return AS

their frequencies in Wikidata from tkbc (Lacroix
et al., 2020) which has temporal information, and
then link the Wikidata entities to their equiva-
lent YAGO entities by the mappings of Wikidata
QIDs to YAGO instances 1. There are two subsets
YAGO-WIKI50K-5K and YAGO-WIKI50K-1K
in the datasets. The only difference between the
subsets is that one has 5K alignment seeds, and the
other has 1K.

The statistics of these datasets are listed in Ta-
ble 1.

5.2 Baselines

We compare our method with the following three
groups of methods:

(1) Translation-based Model: MTransE (Chen
et al., 2017), JAPE (Sun et al., 2017), BootEA (Sun
et al., 2018). These methods are strong baseline
based on TransE.

(2) GNN-based Model: GCN-Align (Wang
et al., 2018), MRAEA (Mao et al., 2020a), RREA
(Mao et al., 2020b). These are SOTA GNN-based
models for EA between KGs without temporal in-

1http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/

formation.
(3) Time-aware Model: TEA-GNN (Xu et al.,

2021), TREA (Xu et al., 2022). These are SOTA
GNN-based models for EA between TKGs.

The main results of these models reported in
the paper are from TREA (Xu et al., 2022) except
BootEA (Sun et al., 2018) and RREA (Mao et al.,
2020b), because the source code of the two models
uses an iterative strategy, while TREA uses a non-
iterative version. The experiments of these two
models are implemented based on their publicly
available resource codes. All experiments are con-
ducted on a workstation with a GeForce RTX 3090
GPU and an AMD EPYC 7502 32-Core Processor
CPU and 128GB memory. The code and datasets
are available online 2.

5.3 Experimental Setup

For a fair comparison, we use the fixed training
set and validation set provided by TEA-GNN (Xu
et al., 2021). TREA (Xu et al., 2022) uses the same
datasets, but the source code is not yet provided.
We also provide a non-iterative model STEA* to
compare with the SOTA models.

Following convention, Hits@k (k = 1, 10) and
mean reciprocal rank (MRR) are used as evaluation
metrics. Hits@k reports the proportion of correct
alignment pairs to the top k potential entities. In
particular, Hits@1 represents accuracy. MRR is
calculated as the average of the reciprocal ranks of
the results. The higher the Hits@k and MRR, the
better the performance.

For all datasets, we use a same default setting:
the dimensionality for embedding d = 100; depth
of GNN layers L = 2; margin γ = 3; dropout_rate
dr = 0.3; balance factor α = 0.3; iterations k = 5;
The number of epochs is 1200 and RMSprop is
adopted to optimize the model with learning rate set
to 0.005. The reported performance is the average
of five independent training runs.

2https://github.com/lcai2/STEA
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Models
DICEWS-1K DICEWS-200 YAGO-WIKI50K-5K YAGO-WIKI50K-1K

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10
MTransE .150 .101 .241 .104 .067 .175 .332 .242 .477 .033 .012 .067
JAPE .198 .144 .298 .138 .098 .210 .345 .271 .488 .157 .101 .262
AlignE .593 .508 .751 .303 .222 .457 .800 .756 .883 .618 .565 .714
BootEA .670 .598 .796 .614 .546 .737 - - - - - -
GCN-Align .291 .204 .466 .231 .165 .363 .581 .512 .711 .279 .217 .398
MRAEA .745 .675 .870 .564 .476 .733 .848 .806 .913 .685 .623 .801
RREA .840 .795 .917 .823 .773 .911 .913 .887 .955 .870 .836 .929
TEA-GNN .911 .887 .947 .902 .876 .941 .909 .879 .961 .775 .723 .871
TREA .933 .914 .966 .927 .910 .960 .958 .940 .989 .885 .840 .937
STEA* .941 .928 .960 .941 .927 .961 .954 .935 .986 .916 .887 .966
STEA .954 .945 .967 .954 .943 .968 .974 .961 .992 .962 .943 .989

Table 2: Experimental results of EA on DICEWS and YOGO-WIKI50K. AlignE is the non-iterative version of
BootEA. - means the results are not obtained. STEA* represents the mothed without iteration. The best results are
written in bold. Underline indicate the sub-optimal results.

5.4 Results and Analysis

Main Results
Table 2 show the main results of the experiment. It
can be seen that STEA with iteration achieves the
best results on all datasets compared to all meth-
ods on all the evaluation metrics. Especially com-
pared with the SOTA method TREA for EA be-
tween TKGs, STEA exceeds by at least 2.2% on
Hits@1. The improvement scores of Hits@1 are
3.4%, 3.6%, 2.2%, 12.3%, respectively. Without
iteration, STEA* still outperforms TREA on most
datasets and metrics, and the gaps in other experi-
mental results are very tiny, at most no more than
0.06%. It indicates the effectiveness of combin-
ing the embedding similarity and time similarity to
predict alignment entities. STEA achieves the best
results and proves that iterative strategies could im-
prove performance. Our method achieves remark-
able performance using the simple GNN model
combined with a temporal information matching
mechanism.

Ablation Study
The STEA consists of three key components: (1)
Relational Feature Fusion (RFF); (2) Global-Aware
Representation (GAR); (3) Time Similarity Matrix
(TSM). We remove these components from STEA
individually to demonstrate their effectiveness.

Table 3 show the ablation study of the experi-
ment. It can be seen from the table that the per-
formance of STEA is degraded after removing a
module. Each module contributes differently to
the two datasets due to their different characteris-
tics. Without relational feature fusion, EA perfor-
mance drops slightly on YAGO-WIKI50K (STEA
vs. STEA-RFF) because there are few relations

Figure 3: Time costs of methods (seconds).

in the datasets and decreases more on DICEWS
with more relations. This shows the importance
of relational features in heterogeneous TKGs with
multiple relationships. STEA-GAR Remove con-
catenating the representations of different layers,
Hits@1 declines by about 3% on DICEWS and 5%
on YAGO-WIKI50K, validating the effectiveness
of gathering the embedding of multi-hop neigh-
borhood. Compared with STEA, without using
the temporal information, STEA-TSM does hurt
STEA in all metrics, indicating the importance
of using the temporal matching mechanism. The
performance drops more on DICEW than YAGO-
WIKI50K, suggesting that the former is more rele-
vant to temporal information.

Complexity analysis
Figure3 reports the overall time costs of our meth-
ods with TEA-GNN (Xu et al., 2021) on each
dataset, including data loading, pre-processing,
training, and evaluating. The results are obtained
by directly running the source code provided by
the author. As shown in Figure 3, the time cost of
STEA* is the lowest. The time cost of STEA is
higher than STEA* since using the iteration, but
still less than TEA-GNN, which indicates the effi-
ciency of our model.
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Models
DICEWS-1K DICEWS-200 YAGO-WIKI50K-5K YAGO-WIKI50K-1K

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10
STEA .954 .945 .967 .954 .943 .968 .974 .961 .992 .962 .943 .989
STEA-RFF .923 .910 .944 .924 .910 .946 .967 .953 .987 .948 .925 .981
STEA-GAR .932 .916 .952 .934 .918 .956 .945 .918 .984 .927 .890 .977
STEA-TSM .792 .741 .888 .742 .674 .863 .932 .910 .967 .881 .843 .939

Table 3: Ablation study of STEA on all datasets

Model Number of Parameters
MTransE O((|E|+ |R|)× d)
JAPE O((|E|+ |R|)× d)
BootEA O((|E|+ |R|)× d)
GCN-Align O(|E| × d + d× d× L)
MRAEA O((|E|+ |R| × 2)× d)
RREA O((|E|+ |R| × 2)× d + 3× d× L)
TEA-GNN O((|E|+ |R| × 2 + |T |)× d + 3× d× L× 2)
TREA O((|E|+ |R| × 2 + |T |)× d + 4× d× L× 2)
STEA O((|E|+ |R|)× d)

Table 4: The total number of parameters in the training
phase of the models compared in the paper.

Figure 4: Experimental results with different balance
factor α on DICEWS-1K.

The total number of parameters in the training
phase of our model is equal to (|E| + |R|) × d,
which is less than the existing SOTA model. The
number of parameters of each model compared in
our experiments is shown in Table 4, where |E|
represents the total entities of the two TKGs, |R|
represents the total relations of the two TKGs, d
represents the embedding dimension of the parame-
ters, L represents the layers of GNN, |T | represents
the total temporal information of the two TKGs.

Hyper-parameter Analysis
In order to investigate the effects of hyper-
parameters on the performance of STEA, we con-
duct the following experiments on DICEWS-1K:
(1) The performance with different balance factors
α. (2) The entity alignment results in different
layers l. (3) The Hits@1 values with different em-
bedding dimensions d.

The balance factor α is used to balance the
weight of the entity’s embedding similarity matrix
and the time similarity matrix in our approach. We

Figure 5: Experimental Results with unsupervised align-
ment seeds.

set it in range 0 ∼ 1 with interval 0.1. As shown in
Figure 4, the performance of EA only using the em-
bedded similarity matrix (α = 0) is lower than that
of only using the time similarity matrix (α = 1). It
shows that the temporal information in the dataset
is highly matched. The model’s performance is
optimal when α = 0.3 and similar in the range of
0.1 ∼ 0.5.

For more analysis about hyper-parameters layers
l and dimension d, please refer to Appendix A.

Unsupervised Experimental Results

We adopt the approach mentioned in section 4.3
to obtain the alignment seeds and conduct experi-
ments on DICEWS-200 and YAGO-WIKI50K-1K
to compare against the supervised method TREA
(Xu et al., 2022) and STEA. The experimental re-
sults in Figue 5 show that our unsupervised method
STEAunsup still outperforms TREA. The perfor-
mance of STEAunsup on the two datasets is slightly
lower than our supervised method STEA, indicat-
ing that only using the temporal matching degree
of entities to obtain alignment seeds on the KGs
may introduce noise.

Case Study

In order to study the strengths and weaknesses of
our approach compared to previous works, we il-
lustrate some cases that STEA predicts from the
test sets of YOGO-WIKI50K-1K and DICEWS-1K
compared to TEA-GNN. Details are described in
Appendix B.
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6 Conclusion

This paper proposes a simple GNN model com-
bined with a temporal information matching mech-
anism for EA between TKGs, which achieves sig-
nificant performance with less time and fewer pa-
rameters.

By assuming that entities with the same tempo-
ral information have high similarity, we propose a
method to generate the alignment seeds by tempo-
ral information. The unsupervised method outper-
forms the previous models on two datasets and is
competitive with our supervised method.

The paper does not discuss the cases where the
KGs might employ different schemas for represent-
ing time. We will further explore this in future
work.
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Entities Similar Quadruples Involving the Entities

Entity to be
Aligned (in
YAGO)

<Neymar>

<Neymar>,<playsFor>,<Brazil_national_under_17_football_team>,[2009,inf]
<Neymar>,<playsFor>,<Brazil_national_under_20_football_team>,[2011,inf]
<Neymar>,<playsFor>,<Brazil_national_under_23_football_team>,[2012,inf]
...

Prediction in
TEA-GNN (in
WIKI)

Ademilson
(Q2756361)

Ademilson(Q2756361),member of sports team,Brazil_national_under_17_football_team(Q2402747),[2011,2011]
Ademilson(Q2756361),member of sports team, Brazil_national_under_20_football_team(Q2308235),[2012,2013]
Ademilson(Q2756361),member of sports team, Brazil_national_under_23_football_team(Q899189),[2014,inf]
...

Prediction in
STEA (in WIKI)

Neymar
(Q142794)

Neymar (Q142794),member of sports team,Brazil_national_under_17_football_team(Q2402747),[2009,2009]
Neymar (Q142794),member of sports team, Brazil_national_under_20_football_team(Q2308235),[2011,2011]
Neymar (Q142794),member of sports team, Brazil_national_under_23_football_team(Q899189),[2012,2012]
...

Table 5: The case of different predictions in STEA and TEA-GNN.

Entities Similar Quadruples Involving the Entities
Entity to be Aligned
(in ICEWS1)

Bishop (India) Head of Government (India), Make statement, Bishop (India), 462

Prediction in STEA
(in ICEWS2)

Electoral Alliance
(India)

Head of Government (India),Make statement,Electoral Alliance (India),462

Entity to be Aligned
(in YAGO)

<William_Travilla> <William_Travilla>,<isMarriedTo>,<Dona_Drake>,[1944,1989]

Prediction in STEA
(in WIKI)

Dona_Drake
(Q3035962)

Dona_Drake(Q3035962), spouse, William_Travilla(Q945402),[1944,1989]

Table 6: The bad case of predictions in STEA.

A Analysis of Hyper-parameters

Figure 6 presents the entity alignment results with
different layers of STEA on DICEWS-1K. It can
be seen that the performance gap of the models
with different layers is tiny, and STEA with 2 lay-
ers achieves the best performance. When stacking
more layers, the performance does not improve.
Increasing the layers only introduces more compu-
tation, not better performance.

Figure 6: Entity alignment results with different layers
of STEA on DICEWS-1K.

Figure 7 reports the Hits@1 performances with
embedding dimension d from 50 to 400. The per-
formance of STEA is not greatly affected by the
dimension. As the dimension increases, the perfor-
mance gain is small. Good performance is achieved
even when dimension is 50. We chose 100 as the
final dimension, which has high performance and
small space.

Figure 7: @1 performances of different dimensions on
DICEWS-1K.

B Case Study

We illustrate some predictions of the STEA to ana-
lyze its advantages and problems. Table 5 shows
an example that STEA gives a prediction different
from TEA-GNN in YOGO-WIKI50K-1K. It can be
seen from the case that TEA-GNN wrongly aligns
Neymar and Ademilson from G1 and G2, because
these two entities have similar connected links and
temporal information in TKG1 and TKG2. Some
links respective to these two entities have the same
linked entities and relation types but different tem-
poral information. The TEA-GNN wrongly identi-
fies them as alignment entities by the time-aware
attention mechanism. The temporal information
matching mechanism of STEA can correctly distin-
guish these two entities since their timestamps are
not equal.
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Due to the temporal information matching mech-
anism, STEA will wrongly align entities with the
same timestamps. There are some cases in Table 6.
In the first case, entity Bishop (India) from G1

and entity Electoral Alliance (India) from G2 of
DICEWS-1K are predicted as the alignment pairs
because these two entities have the same links and
temporal information in TKG1 and TKG2. STEA
regards them as alignment entities due to their
high similarity of structure and timestamps. In
the second case, STEA mistakenly regards the en-
tity <William_Travilla> in YAGO and the entity
Dona_Drake (Q3035962) in WIKI as the same per-
son since these two-person are a couple and get
married on the same day. The model will misiden-
tify these entities with symmetric relationships as
alignment entities. TEA-GNN also has the same
problem. It will be addressed in future work.
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Abstract

Most previous studies on temporal relation ex-
traction focus on extracting temporal relations
among events and suffer from the issue of dif-
ferent forms of events, timexes and Document
Creation Time (DCT) in a document. More-
over, DCT can act as a hub to semantically
connect the other events and timexes. Unfor-
tunately, previous work cannot fully use such
critical and helpful information. To address
the above issues, we propose a unified DCT-
centered Temporal Relation Extraction model
DTRE to identify temporal relations among
events, timexes and DCT. Specifically, we first
introduce sentence-style DCT to unify the ex-
pressions of event, timex and DCT. Then, we
apply a DCT-aware graph to obtain their con-
textual structural representations. Furthermore,
we propose a DCT-anchoring multi-task frame-
work to jointly predict three tasks of temporal
relation extraction in a batch. Finally, we pro-
vide a DCT-guided global inference to further
enhance the global consistency among different
relations. Experimental results on three pop-
ular datasets TBD, TDD-man and TDD-Auto
show that our DTRE outperforms several SOTA
baselines on E-E, E-T and E-D significantly.

1 Introduction

Temporal relation extraction focuses on the occur-
rence order (TLINK) of event mentions, time ex-
pressions (timexes) and Document Creation Time
(DCT). Most previous studies only focus on the
event-centered tasks and consider three TLINKs:
event-event (E-E), event-timex (E-T), and event-
DCT (E-D). As a crucial component of relation
extraction, temporal relation extraction can help
many downstream NLP tasks, such as question an-
swering (Ning et al., 2020), summarization (Noh
et al., 2020) and timeline construction (Li et al.,
2021).

∗Corresponding author
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Figure 1: Examples of temporal relations among events,
timex and DCT.

Most previous studies (Mathur et al., 2021; Liu
et al., 2021) only focus on the single E-E task, ig-
noring the other E-T and E-D tasks. The main
barricade is the hardness of combining the E-T or
E-D task with the E-E task due to their different
expression forms. Since most event mentions 1

are sentences or clauses, their rich information is
helpful for a neural network model to identify the
specific relation between two event mentions. How-
ever, timex and DCT (especially DCT) are only
word-level or phrase-level tokens, and the informa-
tion imbalance between events and timexes/DCT
will lead to the issue that it is difficult for a neu-
ral network model to extract their correct temporal
relation by a unified model.

As shown in Figure 1, identifying the temporal
relation between the two long-distance event men-
tions e2 and e9 is challenging, even for humans.
However, if we first recognize the Is Included and
Before links of (e2, DCT) and (e9, DCT), then the
After link of (e2, e9) will be much easier to obtain.
Fortunately, identifying the temporal relation be-
tween event (or timex) and DCT is relatively simple
for humans and pre-trained language models.

Since event, timex and DCT have different forms
of expressions, most previous studies (Cheng and
Miyao, 2017; Meng and Rumshisky, 2018) only
focus on E-E or regarded E-E, E-T and E-D as
three independent tasks, as we mentioned above.
They often suffer from the issues of data scarcity

1An event mention refers to a phrase, clause or sentence
within which an event is described.

2087



and overfitting due to the small size of available
datasets. Cheng et al. (2020) propose a model to
fuse E-E, E-T and E-D into a unified model by
introducing a learnable parameter-based DCT rep-
resentation. However, they still suffer from two
issues: 1) the different expressions of event, timex
and DCT harm the information interaction among
different tasks; 2) they ignore the importance of
DCT to connect the events and timexes in a docu-
ment.

To address the above issues, we propose a uni-
fied DCT-centered Temporal Relation Extraction
(DTRE) model to discover the temporal relations
among events, timexes and DCT in a document.
Specifically, we first introduce a sentence-style
DCT representation to unify the expressive forms
of event, timex, and DCT. Then, we generate a
DCT-aware graph to obtain their contextual struc-
tural representations. Furthermore, we propose a
DCT-anchoring multi-task learning framework to
jointly predict three temporal relations (i.e., E-E,
E-T and E-D). Finally, we provide a DCT-guided
global inference mechanism to benefit from the
high accuracies of the E-D and T-D tasks. Ex-
perimental results on three popular datasets TBD,
TDD-man and TDD-Auto show that our DTRE out-
performs several SOTA baselines on all three tasks
E-E, E-T and E-D significantly. In summary, our
contributions are as follows:

• We introduce a sentence-style DCT represen-
tation to unify the expressive forms of events,
timexes and DCT;

• We propose a DCT-aware graph to obtain the
contextual structural representations;

• We construct a DCT-anchoring multi-task
learning framework to jointly predict three
different temporal relations in one batch;

• We provide a DCT-guided global inference
mechanism to further enhance the global con-
sistency among different relations. In our fu-
ture work, we will focus on constructing more
effective DCT representation.

2 Related Work

TimeBank (Pustejovsky et al., 2003) is an early
temporal relation corpus and its extended version
TimeBank-Dense (TBD) (Cassidy et al., 2014)
adopts a dense annotation scheme in a slide win-
dow within adjacent sentences, in which there are

mainly five types of TLINKs: E-E, E-T, T-T, E-D
and T-D. MATRES (Ning et al., 2018) only con-
tains E-E relations and simplifies the relation labels
with a higher inter-annotator agreement. TDDis-
course (Naik et al., 2019) is a discourse-level tem-
poral relation dataset based on TBD, which also
focuses on E-E temporal ordering.

Early work on temporal relation extraction
(Chambers et al., 2007; Chambers and Jurafsky,
2008; Do et al., 2012; D’Souza and Ng, 2013;
Chambers et al., 2014) focused on various linguis-
tic features, including part-of-speech (POS), lexi-
cal and morphological features, dependency pars-
ing information, etc. Recent work mainly focuses
on the E-E task using neural networks. Liu et al.
(2021) and Mathur et al. (2021) show that graph-
based neural networks can help relieve informative
sparsity between long-distance event mentions in
discourse-level temporal relation extraction. Be-
sides, a bunch of efforts focus on incorporating
external resources to deal with the limited train-
ing resource, such as combining the pre-trained
temporal-aware language model (Han et al., 2021),
collecting the distantly-supervised examples (Zhao
et al., 2021), applying the transfer learning methods
to leverage complementary datasets (Ballesteros
et al., 2020). Other methods seek to enhance global
inference with structural constraints, i.e., reliev-
ing the transitive conflicts within temporal graphs
(Ning et al., 2017; Han et al., 2019).

Only a few studies consider all three tasks. Early
methods were mostly rule-based on event attributes
(Chambers et al., 2014; Mirza and Tonelli, 2016),
whose performance are deeply harmed by the vague
relation, or simply transferred the neural archi-
tecture on E-E to E-D and E-T directly via in-
put adjustment (Cheng and Miyao, 2017; Meng
and Rumshisky, 2018). Motivated by the success
of Multi-Task Deep Neural Network (Liu et al.,
2019a) that leverages different supervised learn-
ing tasks with the shared contextual embeddings,
Cheng et al. (2020) proposed a multi-category
learning framework to joint E-E, E-T and E-D. Spe-
cially, they introduce a learnable vector to represent
DCT as it does not explicitly occur in documents.

3 DTRE: DCT-Centered Temporal
Relation Extraction

The temporal relations between event mentions are
determined by their occurrence intervals (i.e., start
and end points). However, in most real-world texts,
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events’ intervals are rarely explicitly mentioned,
and then external knowledge or common sense is
required for temporal reasoning. One important
clue is “Had this event happened yet?” or “Is this
a future event?”, i.e., the E-D task, which is easier
and helpful for the E-E and E-T tasks.

To fully exploit the DCT representation and its
bridge function to connect events and timexes, we
propose a DCT-centered Temporal Relation Extrac-
tion model DTRE to discover the temporal rela-
tions among events, timexes and DCT. Figure 2
illustrates the overview of our DTRE framework.
We first combine the sentence-style DCT repre-
sentation with the original document as the input
of the pre-trained model (BERT or RoBERTa) to
obtain the mention embeddings of the different
types. Then, we build a DCT-Aware Graph DAG
for each document to obtain the contextual struc-
tural representations of events, timexes, DCT, etc.
Furthermore, we conduct a DCT-anchoring Multi-
Task Learning framework DAML to jointly predict
the three tasks of temporal relation extraction. Fi-
nally, we introduce a DCT-guided Global Inference
mechanism DGI to our model according to the high
accuracies of the E-D and T-D tasks.

3.1 Input Representation and Encoding

Different from most previous studies that only
use event mentions as the input, we input a
document with the annotated event mentions,
timexes and DCT to our DTRE. Formally, the
input is a document D consisting of a sen-
tence set S = {s1, . . . , si, . . . , sk}, a to-
ken set W = {w1, . . . , wi, . . . , wl}, an event
set E = {e1, . . . , ei, . . . , em}, a timex set
T = {t1, . . . , ti, . . . , tn}, an entity set V =
{v1, . . . , vi, . . . , vp} and a representation of the
document creation time DCT = {tdct}, where k, l,
m, n, p represent the total number of sentences, to-
kens, event mentions, timexes and entity mentions
in the document D, respectively. In this paper, we
do not normalize the timexes and use their original
values as the example in Figure 2.

Due to the different expression forms and the dif-
ferent amounts of tokens, it is a challenge to iden-
tify those E-T and E-D relations directly. Moreover,
DCT does not explicitly occur in the document,
making it hard to represent its semantics for tempo-
ral relation extraction. However, DCT is an anchor
to connect those event mentions or timexes in a
document-level temporal ordering graph. Hence,

Type DCT-indicator Sentence

CreatN The document is creating now.
CreatD The document is creating by {date}.
CreatNDThe document is creating now by {date}.

Table 1: Various forms of DCT representation in
sentence-style, where {date} is the specific DCT of
a document.

how to represent DCT is critical for our DTRE.
To address this issue, we propose a novel DCT
representation, which uses a generated sentence to
express the token-level DCT. In detail, a sentence
that contains DCT is used to represent DCT, and
three forms (i.e., CreatN, CreatD, and CreatND)
are shown in Table 1.

The purpose of our sentence-style DCT repre-
sentation is to make DCT have a similar sentence-
based expression as events and timexes. Hence,
DTRE can use a unified framework to extract the
E-E, E-T and E-D relations simultaneously. Specif-
ically, since most event triggers are verbs, we se-
lect “creating” to denote the occurrence of doc-
ument creation. Moreover, timex has two types,
i.e., absolute (e.g., “2022.10.10”) and relative time
(e.g., “yesterday”) that are explicitly annotated in
documents. Therefore, we also utilize date like
“20221010” extracted from the raw corpus as well
as “now” to denote DCT’s value.

Finally, we insert the DCT-indicator sentence
shown in Table 1 at the beginning of each document
to form the input (an example is shown in Figure 2).
Hence, all temporal mentions, i.e., events, timexes
and DCT, explicitly occur in the input document. In
this way we can establish the bridge of information
interaction on DCT. In the input, we also use DCT,
Ei and Ti to represent DCT, the i-th event mention,
and timex, respectively.

Following previous work (Mathur et al., 2021;
Liu et al., 2021) and for fair comparison in our
evaluation, we also use BERT and RoBERTa as
the pre-trained models to encode the input doc-
ument and obtain the embeddings of the token
set HW = {hw1, . . . ,hwi, . . . ,hwl}, the event
set HE = {he1, . . . ,hei, . . . ,hem}, the timex
set HT = {ht1, . . . ,hti, . . . ,htn}, the entity set
HV = {hv1, . . . ,hvi, . . . ,hvp}, the sentence set
HS = {hs1, . . . ,hsi, . . . ,hsk}, the document
HD = {h[CLS]|h<s>}, and the DCT set HDCT =
{hdct}.
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Figure 2: An overview of our proposed DTRE framework.

3.2 DCT-Aware Graph

To capture the structural and interactive informa-
tion between the different types of temporal men-
tions, we introduce a DCT-aware graph DAG =
{N,E} to our model. In this way, we relieve
the difference within three tasks to provide rich
discourse-level temporal clues.

Our DAG is different from previous GCN mod-
els TIMERS (Mathur et al., 2021) and UCGraph
(Liu et al., 2021). Specifically, TIMERS con-
structed three graphs (syntactic, time and rhetorical-
aware graph) on events and timexes, while UC-
Graph built an uncertainty-guided graph on events.
Different from their graph, our DAG is a DCT-
aware fully-connected graph on events, timexes,
and DCT. Moreover, our DAG is simpler than their
graphs, because it does not need the edge prediction
and optimization.

The node set N can be divided into three lev-
els: token, mention, and discourse, i.e., the token
wi ∈ W , the entity mention vj ∈ V , the event
mention ek ∈ E, the timex tl ∈ T , the DCT tdct,
the sentence sr ∈ S, and the document D. We
use the embeddings hwi,hei,hti and hdct to rep-

resent the nodes wi, ei, ti, and DCT, respectively.
For nodes consisting of multiple tokens (e.g., entity
mentions and sentences), a self-attention mecha-
nism is applied over RoBERTa/BERT embeddings
to obtain node representations following (Lee et al.,
2017). For the document D, we take h[cls] (BERT)
or h<s> (RoBERTa) as its representation. In ad-
dition, DAG is composed of six types of edges,
i.e., the relations of the affiliation, sentence bound-
ary, word dependency, sentence adjacency, entity
coreference, and semantic similarity. We initial-
ize six adjacency matrices (Aaf , Abd, Adp, Aad,
Acf , Asm) to represent them in our graph DAG
as follows, where Ay = {ay1,1, ..., ayi,j , ..., a

y
|N |,|N |}

(y ∈ {af, bd, dp, ad, cf, sm}).
Affiliation. A token node wi connects to its

subordinate event/entity/timex node oj ∈ V ∪E ∪
T,and oj connects to its respective sentence node
sq ∈ S. Each sentence node sq connects to the
document node D. Besides, if the i-th node in DAG
connects to the j-th node, then we set aafi,j = 1;

otherwise, aafi,j = 0, where aafi,j ∈ Aaf . In this way,
we can capture structural information on the word,
sentence and document levels.
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Sentence Boundary. Entity and event mention
pairs that occur in the same sentence usually own a
strong relevance. If an event/entity/timex mention
pair (oi, oj) occur in the same sentence, we set
abdi,j = 1; otherwise, abdi,j = 0, where abdi,j ∈ Abd.

Word Dependency. To encode the syntactic
structure, two token nodeswi andwj are connected
if they share a parent-child relation in a dependency
tree, namely we set adpi,j = 1; otherwise, adpi,j = 0,

where adpi,j ∈ Adp.
Sentence Adjacency. If two sentence nodes si

and sj are adjacent, then we set aadi,j = 1; other-
wise, aadi,j = 0, where aadi,j ∈ Aad. In this way, the
sentence ordering is retained in our DAG.

Entity Coreference. If two entity mention
nodes vi and vj refer to the same real-world entity,
then we set acfi,j = 1; otherwise, acfi,j = 0, where

acfi,j ∈ Acf . This type of edge can help identify
the temporal relations between those long-distance
event mention pairs.

Semantic Similarity. We compute the cosine
similarity ci,j(0 < ci,j ≤ 1) between any two
nodes ni and nj . We set asmi,j = ci,j , where asmi,j ∈
Asm. In this way, we can capture the rich semantic
information among events, timexes and DCT.

The above six matrices are sparse matrices and
have the same dimensions. We apply an edge nor-
malization step for the imputation of Graph Convo-
lutional Network (GCN) after generating the above
adjacency matrices as follows.

A = sigmoid(Aaf + Abd + Adp+

Aad + Acf + Asm)
(1)

Then the GCN model encodes the original node
representations H0 = HW ∪HV ∪HE∪HT ∪HS∪
HD ∪HDCT and the adjacency matrix A through
G layers as follows.

HI = ReLU(A ·HI−1 ·WI) (2)

where WI is the weight matrix for the I-th (0 <
I ≤ G) layer. We denote the GCN out HG =
{m1, . . . ,m|N |}.

3.3 DCT-Anchoring Multi-Task Learning
Most previous studies often suffer from data
scarcity and overfitting due to the small size of the
available datasets and the single E-E task. Cheng
et al. (2020) proposed a multi-task learning model
SEC that puts three tasks E-E, E-T and E-D into a
batch to train, which addresses the issues. However,

SEC still suffered from two other issues. The first
is the different expressive forms of event, timex
and DCT, making it difficult for a unified model to
reveal the different types of temporal relations. The
second is that they ignore the importance of DCT
to connect the events and timexes in a document.

To address the above issues, we propose
an efficient DCT-Anchoring Multi-task Learning
(DAML) framework to unify the E-E, E-T and E-D
tasks, which can enforce the events and timexes to
pay more attention to their temporal order related
to DCT, considering the highly credible E-D and
T-D relations and their transitivity.

Firstly, our sentence-style DCT representation
can not only make DCT occur in the document,
but also erase the differences in expression among
events, timexes and DCT. In this way, DAML can
minimize the task distinction of E-E, E-T and E-
D, and make them relatively close to each other.
Hence, we train a single general classifier for all
three tasks. Specifically, not like SEC that takes
a fixed batch size, we organize all mention pairs
in the same document into a single batch, which
helps maintain global consistency in those densely
annotated corpora for each prediction via the global
relation anchored to DCT.

Thus, we represent each mention ni ∈ N by
concatenating its original BERT or RoBERTa em-
bedding hi ∈ H0 and GCN out mi ∈ HG, then
the pair representation di,j for ni, nj ∈ N is as
follows.

di,j = concat([hi;mi;hj ;mj ]) (3)

Secondly, since DCT is the anchor to connect the
relative events and timexes in a document, we incor-
porate the DCT representation hdct ∈ H0 into the
classifier to enforce the E-E and E-T pairs noticing
their temporal orders with DCT as follows.

P (r | ni, nj) = softmax(MLP([di,j ;hdct])) (4)

where MLP is the single Multi-layer Perceptron
classifier for all tasks. Then we calculate the cross-
entropy loss for each task as follows.

LT = −
∑

ni,nj∈T
logP (r = r(ni,nj) | ni, nj) (5)

where T ∈ {EE,ET,ED} refers to one of the
E-E, E-T and E-D tasks, and r(ni,nj) is the golden
label for the mention pair (ni, nj). Finally, we
combine the three task losses as follows, where α
and β are trade-off parameters.

L = LEE + α · LET + β · LED (6)
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Dataset E-E E-T E-D

TBD 6088 2001 1737
TDD-Man 6150 - 1221
TDD-Auto 38302 - 1221

Table 2: Statistics of the three datasets.

3.4 DCT-Guided Global Inference

Previous work applied different strategies for
global consistent predictions, such as ILP con-
straints (Ning et al., 2017). Recent studies found
that ILP constraints can improve consistency, while
they maybe generally harm the F1 score (Liu et al.,
2021).

In our multi-task framework DTRE, since the
performance of E-D are high reliable (e.g., F1 >
80 on TBD and F1 > 90 on TDD), we propose
a DCT-Guided Global Inference mechanism DGI
to treat all of the E-D predictions as golden labels
and use them to check whether those E-E and E-T
instances obey transitivity in document-level. For
example, if an event mention e1 is before DCT, and
DCT is before e2, then the label of (e1, e2) should
be before. Specially, if the predicted label of (e1,
e2) is vague, then we do not change it through DGI.

4 Experimentation

In this section, we first introduce the datasets and
the experimental settings, and then report results
on our proposed DTRE and baselines.

4.1 Datasets and Experimental Settings

We evaluate our DTRE on two popular datasets
TimeBank-Dense (TBD) (Cassidy et al., 2014) and
TDDiscourse (TDD) (Naik et al., 2019). TBD
densely annotated 4 TLINKs (E-E, E-D, E-T and
T-D) within an adjacent sentence slide window (as
DCT does not explicitly occur in texts, each event
or Timex has a temporal relation annotation with
DCT). TBD has six types of labels, i.e. before, af-
ter, include, is included, simultaneous, and vague.
There are 243 T-D instances (2%) in TBD, we do
not distinguish T-D with E-D for simplicity in this
paper. TDD is a discourse-level temporal ordering
corpus and has five types of event temporal rela-
tions except for the vague relation in TBD, which
makes the class distribution more balanced. TDD
consists of two subsets: TDD-Man and TDD-Auto,
which are manual and auto annotated, respectively.
Since TDD does not annotate E-D relation, we ad-

ditionally take the E-D examples in TBD (except
those vague samples) into the training step, as TDD
shares the same documents and event annotations
with TBD. Table 2 shows the statistics of the three
datasets.

We split the standard train/dev/test sets on TBD
and TDD datasets following (Mathur et al., 2021)
and report Precision (P), Recall (R), and micro-F1
scores. Since previous studies on TBD treat vague
as none type (Liu et al., 2021) or positive type
(Cheng et al., 2020) when calculating F1 scores,
we report both (five types/six types) for fair com-
parison.

In DAG, we utilize SpaCy2 to extract the entities
and word dependency trees. Entity coreference res-
olution is obtained by neuralcoref3 toolkit. We use
cosine_similarity()4 to obtain the cosine similarity
between mentions. We tune all the hyperparame-
ters on the development set. For the pre-trained en-
coder, we choose BERT-base and RoBERTa-large
architecture following previous work for fair com-
parison. The number of MLP layer is set to 2, and
the number of GCN layer is set to 2. The hidden
dimension of GCN is set to 768 and 1024 for BERT
and RoBERTa, respectively. The trade-off parame-
ters α and β in Eq.6 are both set to 1.0.

4.2 Experimental Results

To evaluate the performance of our model DTRE,
we conduct seven strong baselines for comparison
as follows:

• DP-RNN (Cheng and Miyao, 2017): a model
applied event pair’s shortest dependency path
(SDP) into Bi-LSTM, while it utilizes single
event’s DP branch for the E-D task;

• GCL (Meng and Rumshisky, 2018): a
context-aware neural network with a uniform
architecture for E-E, E-T and E-D;

• SEC (Cheng et al., 2020): a multi-task source
event centric model that dynamically managed
event representations across three TLINK
types;

• Rand (Cheng et al., 2020): a multi-task model
that RNN module is removed in SEC, which

2https://spacy.io/
3https://github.com/huggingface/

neuralcoref/
4https://pytorch.org/docs/stable/nn.

functional.html
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Method E-E E-T E-D

DP-RNN -/52.9 -/47.1 -/54.6
GCL -/57.0 -/48.7 -/48.9
SEC∗ -/65.0 -/55.8 -/65.9
Rand∗ 63.0/61.4 60.2/54.8 75.9/65.2
ECONET† 66.8/- -/- -/-
TIMERS∗ 67.8/- -/- -/-

BERT∗ 62.2/59.7 49.4/49.0 73.8/69.4
RoBERTa† 62.4/59.8 51.5/49.8 76.3/72.1

DTRE∗ 69.2/68.4 64.9/62.1 77.7/73.6
DTRE† 72.3/70.2 70.6/67.5 81.9/75.8

Table 3: F1-score comparison of E-E, E-T and E-D on
TBD. The figures before and after “/” refer to the results
on five and six types, where “*” and “†” refer to the
encoder BERT and RoBERTa, respectively.

uses randomly initialized learnable embed-
dings to represent DCT.

• BERT-based (Devlin et al., 2019) and
RoBERTa-based (Liu et al., 2019b) Trans-
former: the models follow (Zhao et al., 2021)
to conduct a pair-wise classification in which
the E-D task utilizes our DCT representation;

• UCGraph (Liu et al., 2021): the first work
introducing graph representation learning and
uncertainty modeling to temporal relation ex-
traction;

• TIMERS (Mathur et al., 2021): a graph-based
method on the E-E task that merges syntactic,
temporal, and rhetorical information;

• ECONET (Han et al., 2021): a pre-trained
method on the E-E task using millions of raw
temporal relative data.

Table 3 and Table 4 show the performance com-
parison of our model DTRE and the baselines on
the datasets TBD, TDD-Man and TDD-Auto, re-
spectively. It can be observed that our model DTRE
outperforms all baselines on the three datasets sig-
nificantly (significance test with p < 0.05).

Compared with the SOTA models TIMERS (E-
E) and SEC (E-T and E-D) on TBD, DTRE im-
proves the F1-score by 4.5, 11.7, and 9.9 on the
three tasks E-E, E-T and E-D, respectively. Com-
pared with the SOTA model TIMERS on TDD-
Auto and TDD-Man, DTRE gains improvements
(E-E) of 10.7 and 10.8 on F1 score, respectively.

TDD-Man TDD-Auto

Method P R F1 P R F1

UCGraph∗ 44.5 42.3 43.4 66.1 56.9 61.2
TIMERS∗ 43.7 46.7 45.5 64.3 72.7 71.1

BERT∗ 39.9 39.9 39.9 62.3 62.3 62.3
RoBERTa† 44.8 44.8 44.8 76.7 76.7 76.7

DTRE∗ 50.0 50.0 50.0 70.2 70.2 70.2
DTRE† 56.3 56.3 56.3 81.8 81.8 81.8

Table 4: Performance comparison of E-E on TDD-Man
and TDD-Auto, where “*” and “†” refer to the encoder
BERT and RoBERTa, respectively.

These results verify the effectiveness of our DTRE
on extracting all kinds of temporal relations. Be-
sides, compared with E-E of our DTRE in Table 3,
E-T and E-D gain much higher improvements. This
result further indicates that timexes and DCT are
the critical clues for temporal relation extraction
and our DCT representation is effective in DTRE.

In Table 3, the pre-trained models BERT and
RoBERTa achieve similar performance on TBD,
while RoBERTa outperforms BERT rapidly on both
TDD-Man and TDD-Auto in Table 4. These re-
sults indicate that RoBERTa is better than BERT
as encoder to extract the temporal relations among
inter-sentence event mentions and RoBERTa works
well on a large-scale training set (e.g., TDD-Auto).

5 Ablation Study

In this section, we conduct the ablation study of
DTRE (RoBERTa-based) on TBD as examples. It
is worth mentioning that BERT-based DTRE on
TBD and TDD also show the similar results and
we do not describe here for simplification.

5.1 Impacts of Different Modules

To verify the effectiveness of each module in
DTRE, we conduct the experiments on the follow-
ing variants and baseline:

• w/o DAG: we remove DAG and only use the
original RoBERTa embeddings in pair repre-
sentation;

• w/o DAML: we remove DAML and separately
train each task;

• w/o DGI: we remove DGI from DTRE. The
results are shown in Table 5.
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Method E-E E-T E-D

DTRE (RoBERTa) 72.3 70.6 81.8

w/o DAG -3.5 -3.6 -1.6
w/o DAML -5.4 -15.8 -2.5
w/o DGI -0.6 -2.0 -

Table 5: F1 scores of DTRE and its variants on TBD.

The results of DTRE and its variants on TBD are
showed in Table 5. When we remove DAG (w/o
DAG), the F1 scores of the E-E, E-T and E-D tasks
decrease by 3.5, 3.6, and 1.6, respectively. This
indicates the importance of the document structure
for temporal reasoning, especially for the E-E and
E-T tasks.

Removing DAML (w/o DAML) leads to the
biggest performance deterioration for E-E, E-T and
E-D by 5.4, 15.8, and 2.5, respectively. This in-
dicates that the three tasks can complement each
other in a unified framework. The significant im-
provements of E-E and E-T also show that utilizing
DCT to anchor events and timexes is an effective
way for temporal relation extraction, which can be
regarded as a bridge to link event pair or event-
timex pair.

Moreover, E-E and E-T tasks benefit from DCT-
guided global inference (w/o DGI) with the gains
of 0.6 and 2.0, although the transitivity is harmed
by vague relation to some extent, which verifies
that the E-D task can provide direct temporal clues
for E-E and E-T.

5.2 Impacts of DCT Representations

Obviously, DCT can often provide explicit tem-
poral information and be a bridge to link those
events without temporal clues. To further analyze
the impacts of the different DCT representations
and our DCT-aware feature hdct in pair representa-
tion (Eq.4), we adopt several DCT representation
strategies in Table 1 and the results are shown in
Table 6. Specifically, to compare with the exist-
ing multi-task learning model Rand (Cheng et al.,
2020), we remove DAG and DGI from our DTRE,
and only conduct the resource-shared multi-task
learning with BERT-base settings for direct com-
parison.

As showed in Table 6, compared with Rand, our
three strategies ( w/o DCTfeat) improve the F1
scores of E-E and E-T significantly. Their ran-
domly initialized learnable embeddings do not ex-

Variant E-E E-T E-D

Rand 63.0∗ 60.2∗ 75.9∗

CreatN ( w/o DCTfeat) 64.2 62.3 74.3
CreatD ( w/o DCTfeat) 66.0 62.4 75.4
CreatND ( w/o DCTfeat) 66.3 63.7 76.8

CreatN + DCTfeat 65.8 64.5 76.3
CreatD + DCTfeat 66.5 65.2 78.1
CreatND+ DCTfeat 67.1 66.0 79.3

Table 6: Effects of different representation of DCT and
the DCT-aware feature, where “+DCTfeat” denotes
that adding hdct in pair representation mentioned in
Eq.4 and “*” denotes our re-implementations on five
temporal types without the vague relation.

Resource E-E E-T E-D

Single task 66.9 54.8 79.3

E-E&E-T 68.4 66.8 -
E-E&E-D 70.8 - 80.4
E-E&E-T&E-D 71.7 68.6 81.9

Table 7: Effect of training resources on TBD, where
DGI is removed for fair comparison.

plicitly contain any DCT information, while our
representation uses a sentence to let DCT explic-
itly occur in the document. This result indicates
that DCT is an important hub to connect the events
and timexes scattered in a document. Although our
DCT-indicator sentences are simple, it also shows
that all three strategies are effective, especially Cre-
atND with the highest improvement.

We also introduce our DCT-aware feature hdct
to our model and the results in Table 6 indicate
that it can boost all three tasks, especially E-D and
E-T. In this way, we enforce the classifier to pay
more attention to the related E-D relations when
predicting E-E and E-T pairs and then can gain the
improvement for all tasks.

5.3 Impacts of DAML

We also evaluate the impacts of DAML on differ-
ent tasks. Intuitively, we remove one task from
our DTRE (RoBERTa) and the results on TBD are
shown in Table 7. It shows that the E-T and E-D
tasks play an important role in our DTRE frame-
work, which contributes the performance gains of
1.5 and 3.9 for E-E. Moreover, although the sam-
ple size of E-T is larger than that of E-D (2001
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Figure 3: Error analysis on manually annotated phe-
nomena in the test set of TDD-Man. SS: SingleSent,
CR: Chain Reasoning, TI: Tense Indicator, FE: Future
Events, HN: Hypothetical/ Negated, EC: Event Coref-
erence, CP: Causal/ Prereq, WK: World Knowledge
(detail definitions please refer to Naik et al. (2019))

vs 1494), E-D is better than E-T as the auxiliary
task of E-E. This result indicates that E-D is more
effective than E-T for this multi-task framework
and verifies the core role of DCT in temporal rela-
tion extraction. Besides, with the help of E-E, E-T
can significantly improve the F1-score by 12.0 and
the reason is that the number of E-E instances are
larger than that of E-T.

5.4 Error Analysis

To analyze the errors in our DTRE, we use the
annotated cues (Naik et al., 2019) between events in
TDD-Man and compare them with the SOTA model
TIMERS (Mathur et al., 2021). Figure 3 shows the
error percentages of eight cue types on TDD-Man.
We can find out that our DTRE deals well with HN
(Hypothetical/Negated), WK (World Knowledge)
and CR (Chain Reasoning), while it suffers from SS
(SingleSent) and FE (Future Events). The reason
behind this is that SS and FE need more event-
level semantics to predict temporal relation while
our DTRE only focuses on using the novel DCT
representation and the intrinsic relations among
event, timex and DCT to boost all three temporal
relation extraction tasks.

TIMERS suffers from TLINK pairs which de-
pend on CR, HN, EC (Event Coreference) and WK,
while our DTRE achieves significant progress on
them. This result indicates that the document-level
knowledge (e.g., DCT) is a core clue for temporal
relation extraction and our DCT-anchoring multi-
task framework regards the whole document as
the input and can incorporate the document-level
knowledge. However, TIMERS is better to deal
with TI (Tense Indicator) and CP (Causal / Pre-
req), because it focuses on mining more semantic
information inside E-E relations.

As for the errors in E-T and E-D, most of them
come from two aspects: 1) there are no explicit
temporal words or clues in events, and 2) some
timexes do not express a specific duration or time
point (e.g., “recently” and “a few years ago”).

6 Conclusion

In this paper, we proposed a unified DCT-centered
temporal relation extraction model DTRE to dis-
cover the relations among events, timexes and DCT.
Specifically, we first introduce sentence-style DCT
to unify the expressions of event, timex and DCT.
Then, we apply a DCT-aware graph to obtain their
contextual structural representations. Furthermore,
we propose a DCT-anchoring multi-task frame-
work to jointly predict three tasks of temporal re-
lation extraction in a batch. Finally, we provide a
DCT-guided global inference to further enhance the
global consistency among different relations. Ex-
perimental results on three popular datasets show
that our DTRE outperforms several SOTA base-
lines on E-E, E-T and E-D significantly. Our fu-
ture work will focus on discovering effective graph
structure and inference mechanism for temporal
relation extraction.
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Abstract
Document-level biomedical relation extrac-
tion (Bio-DocuRE) is an important branch of
biomedical text mining that aims to automati-
cally extract all relation facts from the biomedi-
cal text. Since there are a considerable number
of relations in biomedical documents that need
to be judged by other existing relations, logi-
cal reasoning has become a research hotspot
in the past two years. However, current mod-
els with reasoning are single-granularity only
based on one element information, ignoring
the complementary fact of different granular-
ity reasoning information. In addition, obtain-
ing rich document information is a prerequisite
for logical reasoning, but most of the previ-
ous models cannot sufficiently utilize document
information, which limits the reasoning abil-
ity of the model. In this paper, we propose a
novel Bio-DocuRE model called FILR, based
on Multi-Dimensional Fusion Information and
Multi-Granularity Logical Reasoning. Specif-
ically, FILR presents a multi-dimensional in-
formation fusion module MDIF to extract suffi-
cient global document information. Then FILR
proposes a multi-granularity reasoning mod-
ule MGLR to obtain rich inference information
through the reasoning of both entity-pairs and
mention-pairs. We evaluate our FILR model on
two widely used biomedical corpora CDR and
GDA 1. Experimental results show that FILR
achieves state-of-the-art performance.

1 Introduction

Biomedical relation extraction(Bio-RE) is an im-
portant branch of biomedical text mining, which
always draws researchers’ attention. According
to the different length of processing text, Bio-RE
is generally divided into sentence-level RE and
document-level RE. In sentence-level RE, all in-
volved entities and relations are within a sentence.

∗Corresponding author
†The author contributes equally to the first author in this

work.
1https://github.com/Luguo-ry/FILR

[1] Acute vocal fold palsy after acute disulfiram intoxication .

[2] Acute peripheral neuropathy caused by a disulfiram

overdose … of it leading to vocal fold palsy .

[3] A woman was … because of quadriparesis , lancinating pain , 

sensory loss, and paresthesia of the limbs .

[4] … high dose of disulfiram in a suicide attempt . ….

[6] … had mild to moderate ataxia and giddiness . ….

[12] … caused by high - dose disulfiram intoxication .

intra-sentence relations:
<disulfiram, vocal fold palsy>; <disulfiram, peripheral neuropathy>

inter-sentence relations:
<disulfiram, quadriparesis>; <disulfiram, pain>; <disulfiram, paresthesia>; 

<disulfiram, ataxia>

Figure 1: An example of Bio-DocuRE from the CDR
dataset. We use the same color to denote the mentions
of the same entity.

Document-level RE is more complex than its sen-
tence counterpart. As shown in Fig. 1, in document-
level biomedical relation extraction(Bio-DocuRE),
the processed text is a whole document containing
multiple sentences. “disulfiram” is a chemical and
other entities are diseases. Each entity always has
more than one mention, for example, “disulfiram”
has four mentions in the document. In this exam-
ple, there are two intra-sentence and four inter-
sentence Chemidical Induce Disease(CID) rela-
tions, and the inter-sentence relation means that the
two entities involved in a relation may span multi-
ple sentences or even the entire document.

Early research (Guo et al., 2015; Jiang et al.,
2016; Zheng et al., 2017; Xiong et al., 2019) ef-
forts focus on sentence-level RE. However, in real-
world scenarios, many relations are expressed in
multiple sentences, and the sentence-level models
fail to recognize them. Therefore, more and more
attention has been paid to DocuRE (Zhou et al.,
2016; Gu et al., 2017; Verga et al., 2018). Most
existed Bio-DocuRE studies are sequence-based
(Nguyen and Verspoor, 2018; Li et al., 2020; Jiang
et al., 2020), graph-based (Tran et al., 2020; Zhang
et al., 2020a; Wang et al., 2020; Li et al., 2021b)
or transformer-based (Liu et al., 2020; Zhou et al.,
2021; Xu et al., 2021) methods, which never con-
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sider the problem of relation reasoning and have
limited effect. In the past two years, researchers no-
ticed that there are a lot of relations in biomedical
text that need to be judged relying on other relevant
relations. So, Bio-DocuRE methods integrating
logical reasoning have become a research hotspot
(Li et al., 2021a; Christopoulou et al., 2019; Nan
et al., 2020; Zhang et al., 2020b; Zeng et al., 2021;
Zhao et al., 2022).

Mention, entity, mention-pair, and entity-pair
are four document elements in different granu-
larity, and we notice that the purpose of logical
reasoning is essential to capture the dependen-
cies between certain document elements. Conse-
quently, we divide the logical reasoning mecha-
nisms in Bio-DocuRE into the following four gran-
ularity: mention-based, entity-based, mention-pair-
based, and entity-pair-based. All current methods
with reasoning only consider single-granularity,
and they perform mention-based (Li et al., 2021a),
or entity-based (Christopoulou et al., 2019; Nan
et al., 2020; Zhang et al., 2020b; Zeng et al., 2021),
or entity-pair-based (Zhao et al., 2022) reasoning.
Mention-based and entity-based reasoning mainly
focuses on local token-level interactions and results
in limited effect. While entity-pair-based reasoning
focuses on global entity-relation interaction and
could provide direct guidance for document-level
relation classification. Compared with entity-pair-
based reasoning, mention-pair-based reasoning can
capture the global dependencies among all mention-
pairs and provide fine-grained mention-relation
reasoning information, which complements each
other with the coarse-grained entity-relation rea-
soning information. Regrettably, no study notices
the importance of mention-pair-based reasoning
in Bio-DocuRE so far. Meanwhile, the current
single-granularity methods leads to insufficient rea-
soning. Therefore, in order to obtain the effective
and sufficient reasoning information, we propose
a multi-granularity logical reasoning module with
both mention-pair-based and entity-pair-based rea-
soning.

In addition, adequately mining global docu-
ment information is an important step for Bio-
DocuRE and is also the premise of performing
logical reasoning. However, most of the current
models suffer from the insufficient utilization of the
document information because they either obtain
the document information from a single perspective
(Li et al., 2021a; Christopoulou et al., 2019; Nan

et al., 2020; Zhang et al., 2020b; Zeng et al., 2021;
Zhao et al., 2022), or ignore the interaction and
fusion of different document information (Zhang
et al., 2020a; Wang et al., 2020; Xu et al., 2021).
Both the global context and structural information
of a document are important, which express the
document from different views. Therefore, we ex-
tract both the global context and structural infor-
mation of documents in this paper and propose a
multi-dimensional information fusion module to
fuse them.

Furthermore, in the process of obtaining the doc-
ument global structural information, most current
methods use GCN (Kipf and Welling, 2016) to it-
eratively update the document graph. However,
GCN has been proved (Li et al., 2018; Luan et al.,
2019; Zhao and Akoglu, 2019) to suffer from the
over-smoothing problem when stacking the con-
volution layers, that is, the features of the nodes
in graph would converge to similar values after
deep iterations. Therefore, to relieve the GCN
over-smoothing problem, we improve the com-
monly used document graph structure (Wang et al.,
2020; Christopoulou et al., 2019; Li et al., 2021b)
by designing a bridge node to capture the docu-
ment global structural information more effectively
within a finite number of iteration layers.

In this paper, to address the above issues, we
present a novel Bio-DocuRE model called FILR
based on multi-dimensional Fusion Information
and multi-granularity Logical Reasoning. We con-
duct experiments on two Bio-DocuRE datasets
CDR (Li et al., 2016) and GDA (Wu et al., 2019).
Our contributions can be summarized as follows:

• We propose a novel Bio-DocuRE model
FILR. Experimental results on two bench-
mark datasets show that our model FILR can
achieve state-of-the-art performance.

• We propose a multi-dimensional information
fusion module called MDIF to adequately
extract the global information of documents.
Meanwhile, a bridge node is designed on the
document graph to relieve the over-smoothing
problem.

• We propose a multi-granularity logical reason-
ing module called MGLR to simultaneously
conduct mention-pair-based and entity-pair-
based reasoning.
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[0] Indomethacin - induced renal insufficiency : recurrence on rechallenge .

[1] We have reported a case of acute oliguric renal failure with hyperkalemia in a patient with cirrhosis , 

ascites , and cor pulmonale after indomethacin therapy .

[2] Our case supports the hypothesis that endogenous renal prostaglandins play a role ... .

[3] Since nonsteroidal  ... cause acute renal failure , they should be used with caution in such patients .
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Figure 2: The overall framework of FILR, where MC means “mention-context map”, EC means “entity-context
map”, ES means “entity-structure map” and MS means “mention-structure map”.

2 Model

In this section, we describe the overall framework
of the proposed model FILR in Fig. 2. FILR makes
an effective use of biomedical documents informa-
tion and conducts multi-granularity reasoning to
improve the performance of Bio-DocuRE.

2.1 Task Definition
Document-level biomedical relation extraction task
can be defined as a classification problem. Given
an annotated document T and a set of entities
ei(1 ≤ i ≤ Ne), our goal is to extract the rela-
tions between all target entity pairs (eh, et). Note
that in one document, an entity pair, also called
a relation instance, usually owns more than one
corresponding mention pairs because each entity
ei can occur multiple times by entity mentions
mij(1 ≤ j ≤ Nei).

2.2 Encoding Layer
To better model the semantics of input document,
FILR adopts BioBERT (Lee et al., 2020) as the
document encoder, which is a domain-specific
language representation model pre-trained on the
large biomedical dataset for understanding com-
plex biomedical texts. And its effectiveness has
been proven surprisingly in various biomedical text
mining tasks.

Let DT = [w1, w2, ..., wN ] be the input docu-
ment T with N tokens. To better represent the
mentions which usually span a few consecutive to-
kens in T , we first insert a special marker “&” at
the start and end of mentions to mark the mention’s
span (Zhou et al., 2021). Then, the embedding rep-
resentations of each token and marker “&” with
rich semantic information can be got by the en-
coder. The embedding representation of T can be
described by:

XT = [x1, x2, ..., xi, ..., xN ′ ], xi ∈ Rdemb , (1)

where N ′ is the total number of tokens in T after
inserting the marker, and demb denotes the embed-
ding dim of words. In this paper, for each mention,
we take the embedding of the start marker “&” as
the mention embedding mij , and apply logsumexp
(Jia et al., 2019) on the mentions referring to the
same entity to obtain the entity embedding ei:

ei = log

Nei∑

j=1

exp(mij). (2)

2.3 Information Extraction Layer
In this section, to obtain mention and entity rep-
resentations that contain the global context and
structural information of documents, we design
two information extractors, respectively.
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Context information extractor(CIE) Zhou
et al. (2021) and Zhao et al. (2022) have proven the
effectiveness of the pre-trained multi-head attention
matrix A ∈ RH×N ′×N ′

in aggregating the entity
context information. So in this paper, we obtain
the entity and mention representations with rich
context information using similar methods. Akab
represents the attention from token a to token b
in the kth attention head. For mention mij , we
first take the attention from start marker “&” to all
tokens as the mention attention and get the mention-
context attention matrix Amij ∈ R1×N ′

by aver-
aging all attention heads. For entity ei, we get the
entity-context attention matrix Aei ∈ R1×N ′

by av-
eraging all related mention-context attention. Then
we obtain the entity representations Ec and men-
tion representations Mc with context information
by:

Am1 =
Am

1TAm
, Am ∈ RNm×N ′

, (3)

Mc = Am1 ∗XT ,Mc ∈ RNm×demb , (4)

Ae1 =
Ae

1TAe
, Ae ∈ RNe×N ′

, (5)

Ec = Ae1 ∗XT , Ec ∈ RNe×demb , (6)

where Nm is the total number of mentions in the
document, Am and Ae are the attention matrix of
all mentions and entities, respectively.

Structure information extractor(SIE) In this
part, we improve the commonly used document
graph structure to avoid the over-smoothing prob-
lem of GCN. The main idea is to make the nodes
in the document graph cover a wider information
field in the initial state so that the model can cap-
ture the global structure information of the docu-
ment before the over-smoothing problem occurs.
So we construct a document-level graph with three
types of nodes: entity nodes, mention nodes, and
bridge nodes. The bridge node contains informa-
tion across two sentences, so it broadens the infor-
mation field and retains the structure of sentences
in the meantime. And it is more conducive to the
interaction and aggregation of long-distance nodes’
information. With this document graph, the shallow
layers of GCN can also well model the structure
of documents, which alleviates the over-smoothing
problem of GCN to some extent.

Specifically, we let nbi = [bi; tb], nbi ∈
Rdemb+dt as the representation of bridge node bi,
where bi is defined by averaging the representa-
tion of all tokens in the linked two sentences:

bi = avgxk∈{si,si+1}(xk). Meanwhile, we let
nmij = [mij ; tm] and nei = [ei; te] as the represen-
tations of mention and entity nodes, respectively.
tb, tm, te ∈ Rdt are type representations of nodes.

Then, we construct five types of edges: (1)
Mention-Mention edges(MM): two mentions are
connected with MM edge if they co-occur in a sin-
gle sentence. (2) Mention-Bridge edges(MB): a
mention node is connected to a bridge node with
MB edge if this mention appears in the sentences
linked with the bridge node. (3) Mention-Entity
edge(ME): ME edge is added between a mention
node and an entity node if the mention refers to
the entity. (4) Entity-Bridge edge(EB): EB edge is
added between an entity node and a bridge node if
at least one mention of the entity is connected to
the bridge node. (5) Bridge-Bridge edge(BB): BB
edge is added between any two bridge nodes. In
this paper, all edges are undirected.

After the document graph is constructed, R-GCN
(Schlichtkrull et al., 2018) is applied on the graph to
model the structure information of documents, and
the iterative update process is defined as follows:

nl+1
i = σ


∑

r∈R

∑

j∈Nr
i

1

|N r
i |
W l
rn

l
j +W l

0n
l
i


, (7)

where σ(·) is an activation function, W l
r,W

l
0 are

the parameters for edge type r and self-connection
in lth layer. N r

i is the set of neighbouring nodes
connected to ni by edge type r. R is the set of
edge types, and nl+1

i is the ith node representation
resulted from the lth R-GCN layer.

After L-layer R-GCN is stacked, mention repre-
sentations Ms ∈ RNm×dhid and entity representa-
tions Es ∈ RNe×dhid with structural information
can be obtained, where dhid is the hidden size of
R-GCN, and dhid is equal to the demb in this paper.

2.4 Information Fusion Layer

In this section, we propose a multi-dimensional
information fusion module called MDIF to fuse the
global context and structure information of docu-
ments.

First, four relation maps MC(mention-context
map), EC(entity-context map), MS(mention-
structure map), ES(entity-structure map) are built
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Figure 3: The structure of MDIF. ⊕ denotes addition
and ⊙ denotes the element-wise multiplication.

based on Mc, Ec, Ms and Es as follows:

MC =Mc ⊗MT
c ,MC ∈ Rdemb×Nm×Nm , (8)

EC = Ec ⊗ ETc , EC ∈ Rdemb×Ne×Ne , (9)

MS =Ms ⊗MT
s ,MS ∈ Rdhid×Nm×Nm , (10)

ES = Es ⊗ ETs , ES ∈ Rdhid×Ne×Ne , (11)

where ⊗ is the multiplication by Einstein summa-
tion convention, ∗T is the matrix transpose.

Then MDIF is proposed for Bio-DocuRE in-
spired by Dai et al. (Dai et al., 2021) in com-
puter vision. Our goal is to obtain entity-pair and
mention-pair representations with global context
and structural information.

The structure of MDIF is shown in Fig. 3. It
receives the context and structure features as input.
First, these two features are fused to obtain the shal-
low fusion feature. Then, the refined context and
structure features are re-extracted with two simi-
lar information reconstructors. Both of them are
mainly composed of two layers of point-wise con-
volution (PWConv), which only exploits point-wise
channel interactions for the shallow fusion feature.
Next, the refined structure and context features are
fused again to obtain the deep fusion feature, and
the channel-aware weight is calculated by a sig-
moid function. Finally, the original structure and
context features are fused by the channel-aware
weight. The entity-pair representations Esc and
mention-pair representations Msc with rich fusion
information can be expressed as:

Esc = ES ⊙W e
sc + EC ⊙ (1−W e

sc), (12)
Msc =MS ⊙Wm

sc +MC ⊙ (1−Wm
sc ), (13)

W e
sc = δ(F es (ES ⊙ EC) + F ec (ES ⊙ EC)), (14)

Wm
sc = δ(Fms (MS ⊙MC) + Fmc (MS ⊙MC)), (15)

where Esc ∈ Rdemb×Ne×Ne , and Msc ∈
Rdemb×Nm×Nm . ⊙ denotes the element-wise mul-
tiplication. F ∗s and F ∗c are the structure and con-
text feature reconstructors, respectively. δ(·) is

the sigmoid function. W e
sc and Wm

sc denote the
channel-aware weights for entity-pair and mention-
pair fusion, respectively. Entity-pairs and mention-
pairs belong to different granularity of relation rep-
resentations, so the parameters for entity-pairs and
mention-pairs are independent and trained paral-
lelly.

2.5 Reasoning Layer

In this section, we propose a multi-granularity logi-
cal reasoning module named MGLR based on CNN
(Krizhevsky et al., 2012). There are two reasoning
blocks in MGLR, one is the mention-pair reason-
ing block and the other is the entity-pair reasoning
block. The structure of the two reasoning blocks is
similar and the specific structure is shown in Fig. 4.

Conv 

5x5

ReLU

Output relation 

map
Conv 

5x5

ReLU

Conv 

5x5

ReLU

Input relation 

map

Figure 4: The structure of reasoning block.

The input of the mention-pair reasoning block is
the mention-pair representations with rich global
context and structure information Msc. We ap-
ply the 2D convolution with kernel size 5× 5 for
reasoning, and use the ReLU activation function
after each convolutional layer. In the mention-pair
map, each mention-pair can interact with other
pairs without the limitation of their position in the
document, so the global interaction information of
mention-pairs can be achieved only using one layer
of convolution. While in the implementation pro-
cess, we stack three convolution layers for deeper
and more adequate fine-grained reasoning. We let
Mrs as the representation of mention-relation rea-
soning information, it can be expressed as:

Mrs = ConvMn (Msc), (16)

where ConvMn (·) denotes the n-layers convolu-
tional network for mention-pair-based reasoning
and Mrs ∈ Rdemb×Nm×Nm .

The structure of the entity-pair reasoning block
is the same as counterpart mention-pair, and its
input is the entity-pair representations with rich
global context and structure information Esc. The
representation of entity-relation reasoning informa-
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tion Ers can be expressed as:

Ers = ConvEn (Esc), (17)

where ConvEn (·) denotes the n-layers convolu-
tional network for entity-pair-based reasoning and
Ers ∈ Rdemb×Ne×Ne .

2.6 Classifier Layer

In this section, to classify the relations for a re-
lation instance r = (eh, et), we need to get the
representation of r.

First, let rers and rmrs as the entity-relation and
mention-relation reasoning representation of r, re-
spectively. rers is the representation of r inErs, and
rmrs can be calculated by aggregating all mention-
pairs referring to r:

rmrs = avgi∈eh
(
avgj∈et

(
Mrs[r;i;j]

))
. (18)

Then, rers and rmrs are concatenated as the rea-
soning representation of r: rrs = [rers; r

m
rs], rrs ∈

R2demb .
Next, to enrich the relation representation, the

entity-pair representation before reasoning and the
entity representation obtained by R-GCN are also
concatenated to represent the relation. The final
relation representation can be expressed as:

r = [rrs; rht; rf ], (19)

where rht = Ws[e
s
h; e

s
t ] + bs, and rf ∈ Rdemb

denotes the entity-pair representation of r from
Esc. esh and est are the entity representations of eh
and et from Es. Ws ∈ R2demb×2demb , and bs are
learnable parameters.

Finally, we use a feed-forward neural network to
calculate the probability for each relation instance:

P (r|eh, et) = δ(Wbσ(War + ba) + bb), (20)

where W∗, b∗ are learnable parameters, σ(·) is acti-
vation function, and δ(·) is the sigmoid function.
Global thresholding does not consider the varia-
tions of model confidence in different instances
that results in suboptimal performance, so we adopt
an adaptive-thresholding loss as the classification
loss to train our model following Zhou et al. (2021).
Specifically, they introduce a threshold class TH,
and push the logits of all positive classes to be
higher than the TH class, and the logits of negative

classes to be lower than it:

L =−
∑

r∈PT
log(

exp(logitr)∑
r′∈PT∪{TH} exp(logitr′)

)

− log( exp(logitTH)∑
r′∈NT∪{TH} exp(logitr′)

), (21)

where logit is the output in the last layer before
sigmoid function.

3 Experiments

3.1 Datasets
We evaluate our FILT model on two widely used
Bio-DocuRE datasets: CDR (Li et al., 2016) and
GDA (Wu et al., 2019). The dataset statistics are
shown in Table 1.

Table 1: The statistic results of CDR and GDA datasets.

Dataset Docs relations N/A Intra- Inter-
CDR Train 500 1038 4280 755 283

Dev 500 1012 4136 766 246
Test 500 1066 4270 763 303

GDA Train 23353 36079 96399 30199 5880
Dev 5839 8762 24362 7408 1354
Test 1000 1502 3720 1273 229

3.2 Experimental Settings
FILR is developed using PyTorch and based on
Huggingface’s Transformers (Wolf et al., 2020).
The experimental settings are the same on CDR
and GDA. We use BioBERT-Base v1.1 (Lee et al.,
2020) as the encoder with learning rate 3e-5, and
train FILR with learning rate 1e-4 using 3-layers
of R-GCN. In FILR, in order to satisfy the re-
quirement for matrix dimensions when performing
reasoning, we set batch-max-entity-number and
batch-max-mention-number for each batch. And
all entity-pairs and mention-pairs representations
of documents in the same batch are aligned with
padding value 0.

3.3 Results
The baseline models can be divided into non-
reasoning models and reasoning models. And each
of them can also be divided into sequence-, graph-,
or transformer-based methods according to the way
of encoding documents.

Results on CDR Dataset. The performances
of FILR and baseline models on CDR dataset are
shown in Table 2. We can find that FILR achieves
85.7%, 89.1%, and 77.2% in terms of overall,
intra-, and inter-F1, which outperforms all exist-
ing models and achieves a new state-of-the-art on
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Table 2: Experimental results of the FILR on CDR and GDA datasets. All results given in this table are from their
related papers. “-” means the data not given in original papers.

Model CDR F1(%) GDA F1(%)
Overall Intra- Inter- Overall Intra- Inter-

non-reasoning model
CNN+ME+PP(Gu et al., 2017) (Gu et al., 2017) Sequence-based 61.3 57.2 11.7 - - -
BRAN(Verga et al., 2018) (Verga et al., 2018) Sequence-based 62.1 - - - - -

EncAttAgg(Jiang et al., 2020) (Jiang et al., 2020) Sequence-based 64.9 - - - - -
EoGANE(Tran et al., 2020) (Tran et al., 2020) Graph-based 66.1 70.7 53.5 82.8 86.3 58.6
GLRE(Wang et al., 2020) (Wang et al., 2020) Graph-based 68.5 - - - - -
DAM-GAN(Li et al., 2021) (Li et al., 2021b) Graph-based 68.6 78.8 56.2 83.6 86.9 63.5
ATLOP(Zhou et al., 2021) (Zhou et al., 2021) Transformer-based 69.4 - - 83.9 - -

SSAN(Xu et al., 2021) (Xu et al., 2021) Transformer-based 68.7 74.5 56.2 83.7 86.6 65.3
reasoning model

MRN(Li et al., 2021) (Li et al., 2021a) Sequence-based 65.9 70.4 54.2 82.9 86.1 53.5
EoG(Christopoulou et al., 2019) (Christopoulou et al., 2019) Graph-based 63.6 68.2 50.9 81.5 85.2 51.1

LSR(Nan et al., 2020) (Nan et al., 2020) Graph-based 64.8 68.9 53.1 82.2 85.4 53.1
DHG(Zhang et al., 2020) (Zhang et al., 2020b) Graph-based 65.9 70.1 54.6 83.1 85.6 58.8

SIRE(Zeng et al., 2021) (Zeng et al., 2021) Graph-based 70.8 - - 84.7 - -
CGM2IR(Zhao et al., 2022) (Zhao et al., 2022) Transformer-based 73.8 79.2 55.1 84.7 88.3 59.0

FILR(ours) 85.7 89.1 77.2 84.7 87.2 68.9

CDR dataset. Compared with the previous state-of-
the-art model CGM2IR, FILR achieves improve-
ments of 11.9%, 9.9%, and 22.1% in overall, intra-
and inter-F1, respectively, which can be attribut
to the reasoning of global mention-pairs and the
utilization of global structure information of doc-
uments. In general, FILR provides rich premise
information for logical reasoning through the ex-
traction and fusion of global document information.
Meanwhile, the multi-granularity logical reasoning
based on entity-pair and mention-pair can effec-
tively model the global interaction among differ-
ent granularity relation pairs, improving the effect
distinctly in all evaluation metrics, especially the
inter-sentence.

Results on GDA Dataset. As shown in Table 2,
we can see that FILR achieves 84.7% in overall
F1, which outperforms most of the existing models
and achieves the same result as the state-of-the-art
models on GDA dataset. It is important to note
that the scale of GDA is nearly 50 times larger than
CDR, so GDA is less sensitive to models and the
improvements on it in all evaluation metrics are
not significant. Compared with CGM2IR, on intra-
F1 and inter-F1, we can observe that FILR is 1.1%
lower than CGM2IR in intra-F1, but 9.9% higher in
inter-F1, which shows that FILR mainly improves
the performance of inter-sentence relations. How-
ever, since the number of inter-sentence relations
only accounts for 16% of the total relations shown
in Table 1, the increase in inter-sentence F1 scores
fails to bring the same gain in overall F1 scores.

3.4 Ablation Study

Table 3: Ablation study of FILR on CDR and GDA. “o-
∗” refers to the model removing “∗” module. “o-context”
and “o-structure” are the models without using context
and structure information of documents, respectively.
In “o-MDIF-cat” model, MDIF module is replaced with
concat operation. “o-e-r” refers to the model removing
entity-pair-based reasoning block.

Model CDR F1(%) GDA F1(%)
Overall Intra- Inter- Overall Intra- Inter-

FILR 85.7 89.1 77.2 84.7 87.2 68.9
o-context 83.4 87.1 75.0 84.0 87.3 63.8

o-structure 84.6 88.8 74.8 83.7 86.8 63.6
o-MDIF-cat 83.6 88.4 73.5 84.2 87.2 66.7

o-e-r 79.1 83.2 70.3 83.4 86.7 63.1
o-MGLR 70.1 74.8 60.1 83.1 86.1 64.2

We conduct a thorough ablation study as shown
in Table 3 and Fig. 5 to study the effectiveness
of our contributions: MDIF, MGLR modules and
the improved document graph. From Table 3 and
Fig. 5, we can observe that:

(1) Both global context and structure document
information are important for Bio-DocuRE. And
the MDIF module is able to integrate the two global
documents information effectively by the channel-
based weighted fusion, which brings at least 2.1%
and 0.5% improvements in terms of the CDR and
GDA dataset, respectively.

(2) Coarse-grained entity-pair-based reasoning
can get the macro entity-relation reasoning infor-
mation, which is necessary for the relationship in-
ference of long-distance entity-pairs. At the same
time, fine-grained mention-pair-based reasoning as
the beneficial supplement to entity-pair-based rea-
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Figure 5: Ablation study of the effect of R-GCN layers.

soning, contributes evidently to both the intra- and
inter-sentence relation extraction.

(3) As shown in Fig. 5, the best extraction results
are achieved on CDR and GDA dataset with the R-
GCN layers of 2 and 3, respectively. And with the
increase of the number of RGCN layers, the decline
of all evaluation metrics is relatively gentle. This
result shows that the model finally achieves optimal
performance after the convolution of two layers or
three GCN layers, alleviating the over-smoothing
problem as well as leveraging the advantages of
GCN.

3.5 Case Study

o-

MGLR
FILR

0

8

-3

4

0.53 0.48

-1.55 -1.60

GE NE TH ME

GE

NE
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... [5] …treated with gemcitabine 1 , …D15 ; methylprednisolone 1 , … 

days ( GEM - P ) were included . ...

[11] … haematological : neutropenia 54 % and thrombocytopenia 51 % .

[12] Median follow - up from the start of GEM - P was 4 . 5 years . ...
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GE NE TH ME

5.04 5.12

6.42 4.70

Figure 6: Case study of the multi-granularity reasoning
module MGLR effectiveness on CDR dataset.

As shown in Fig. 6, we conduct a case study to
further illustrate the effectiveness of the MGLR
module. All values in Fig. 6 are the prediction
scores of the given relation instances. In this ex-
ample, GEM and methylprednisolone are chemi-
cals, neutropenia and thrombocytopenia are dis-
eases. The “o-MGLR” model incorrectly predicts
the classification of relation instance <methylpred-
nisolone, neutropenia> and <methylprednisolone,
thrombocytopenia> with the prediction scores -1.55
and -1.6, respectively. And the prediction scores
of <GEM, neutropenia> and <GEM, thrombocy-

topenia> are 0.53 and 0.48, which indicates the
model has insufficient confidence. Whereas, FILR
predicts all relation instances correctly. We can
see from Fig. 6, the confidence of FILR has been
improved evidently with the help of MGLR mod-
ule. In summary, the MGLR module can capture
the global interactions among all entity-pairs and
mention-pairs through convolution operation, even
if there is no explicit connection between them,
which effectively improves the performance of Bio-
DocuRE.

4 Related Work

Non-reasoning methods. Previous non-reasoning
Bio-DocuRE approaches can be divided into:
sequence-based, graph-based, and transformer-
based methods. Sequence-based methods (Gu et al.,
2017; Verga et al., 2018; Jiang et al., 2020) used
CNN or LSTM to extract document-level relations.
However, these sequence-based methods do not
capture the long-distance dependencies of docu-
ments and have limited effect. In order to break
through the limitations, researchers tried to con-
struct document graphs (Tran et al., 2020; Wang
et al., 2020; Li et al., 2021b). Then, with the de-
velopment of pre-trained language models, Trans-
former showed powerful capabilities in capturing
context information, and is increasingly used in
Bio-DocuRE task (Zhou et al., 2021; Xu et al.,
2021).

Reasoning methods. Many researchers have
tried to introduce various reasoning mechanisms
to reinforce the ability of model in intra- and inter-
sentence relation extraction. Li et al. (2021a) pro-
posed a mention-based module for multi-hop rea-
soning, and introduced a co-attention mechanism
for global mention reasoning. Christopoulou et al.
(2019) implemented inference with an iterative al-
gorithm. Nan et al. (2020) and Zhang et al. (2020b)
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constructed a document graph and used GCN on
the graph to employ multi-hop reasoning. Zeng
et al. (2021) designed a logical reasoning module
that can cover more logical reasoning chains. Zhao
et al. (2022) executed entity-pair level logical rea-
soning using GNN-based methods.

5 Conclusion

In this paper, we propose a novel Bio-DocuRE
model called FILR. FILR first acquires the global
context and structure information of documents.
Then, the MDIF module is proposed to fuse the
two document information effectively. Next, we
propose the MGLR module to conduct entity-pair-
based and mention-pair-based reasoning parallelly.
Last, we evaluate our FILR model on two widely
used biomedical datasets CDR and GDA and the
experimental results show that FILR achieves state-
of-the-art on two datasets.
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Abstract

Named Entity Recognition (NER) is an impor-
tant task in Natural Language Processing that
aims to identify text spans belonging to pre-
defined categories. Traditional NER systems
ignore nested entities, which are entities con-
tained in other entity mentions. Although sev-
eral methods have been proposed to address
this case, most of them rely on complex task-
specific structures and ignore potentially useful
baselines for the task. We argue that this creates
an overly optimistic impression of their perfor-
mance. This paper revisits the Multiple LSTM-
CRF (MLC) model, a simple, overlooked, yet
powerful approach based on training indepen-
dent sequence labeling models for each entity
type. Extensive experiments with three nested
NER corpora show that, regardless of the sim-
plicity of this model, its performance is better
or at least as well as more sophisticated meth-
ods. Furthermore, we show that the MLC archi-
tecture achieves state-of-the-art results in the
Chilean Waiting List corpus by including pre-
trained language models. In addition, we imple-
mented an open-source library that computes
task-specific metrics for nested NER. The re-
sults suggest that metrics used in previous work
do not measure well the ability of a model to
detect nested entities, while our metrics pro-
vide new evidence on how existing approaches
handle the task.

1 Introduction

Named Entity Recognition (NER) is a widely stud-
ied task in Natural Language Processing (NLP) that
seeks to identify text spans expressing references to
predefined categories such as person names, loca-
tions, and organizations (Chinchor and Robinson,
1997). NER, or in general, the task of recogniz-
ing entity mentions1, has drawn the attention of
the community due to its relevance in several NLP
applications. Nested Named Entity Recognition is

1Mentions are defined as references to entities that could
be named, nominal or pronominal (Florian et al., 2004).

Figure 1: An example of a multi-label entity in the
Chilean Waiting List corpus, followed by a nesting of
different types. The annotation was translated from its
original language.

a particular case of NER where entities are nested
within each other (Finkel and Manning, 2009). Tra-
ditional NER models simplify the nested entities by
keeping the outermost entity and removing the in-
ner ones. This simplified problem is better known
as flat NER and is commonly regarded as a se-
quence labeling problem since each token can be
associated with at most one label. However, re-
moving part of these entities could be a problem in
model performance due to losing relevant informa-
tion and inner dependencies.

Several methods have been proposed to address
the nesting problem. Traditional approaches have
focused on creating representations of nested enti-
ties through structures such as hypergraphs (Lu and
Roth, 2015; Muis and Lu, 2017; Katiyar and Cardie,
2018; Wang and Lu, 2018). However, they usually
suffer from heavy feature engineering, structural
ambiguity, or complex models. Another category
is region-based, which divides the problem into
two sequential stages. First, the detection of entity
boundaries, and then the assignment of entity types
to these regions (Sohrab and Miwa, 2018; Zheng
et al., 2019; Yu et al., 2020). One of the main draw-
backs of this method is its high time complexity.
There are also approaches that attempt to transform
the nested NER task into a sequence labeling prob-
lem (Alex et al., 2007; Ju et al., 2018; Shibuya and
Hovy, 2020). Although these studies have shown
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competitive performance, most of them have three
critical issues discussed below.

First, with the incorporation of large pre-trained
language models, the standard LSTM-CRF (Lam-
ple et al., 2016) sequence labeling architecture re-
ceived substantial improvements for flat NER tasks
(Liu et al., 2018). However, little research has been
conducted on adapting this architecture to nested
NER using a single entity approach, i.e., training
independent flat NER models for each entity type.
This paper revisits this architecture, naming it Mul-
tiple LSTM-CRF (MLC). We show that this model
yields very positive results despite the apparent sim-
plicity, outperforming several recent approaches
explicitly designed for nested entities.

Second, we note that most of the literature ig-
nores the case in which the same text span is tagged
with more than one entity type, as shown in Fig-
ure 1. This case is very common in the Chilean
Waiting List corpus (Báez et al., 2020), and it was
first noticed by Alex et al. (2007) but was not ana-
lyzed further. One of the main advantages of our
architecture is that it addresses this problem.

Third, we argue that the way the community is
evaluating this task does not adequately measure
the effectiveness of a model at identifying nested
entities. Specifically, the current metric calculates
the micro F1-score over all entities, the same met-
ric used in flat NER. Consequently, a model that
performs well over flat entities but not nested ones
may also obtain good results. To alleviate this prob-
lem, we first identify the different types of nesting
by formalizing the task, and then we propose new
task-specific metrics for these cases.

In summary, the main contributions of our work
are the following:

• Due to the lack of an agreed-upon definition
of nested NER, we introduce a formalization
of the task by identifying the different types
of nesting. In addition, we released an open-
source library for computing new task-specific
metrics for nested NER.

• We conduct an empirical study comparing sev-
eral nested NER architectures in three datasets
from different languages, with particular at-
tention to the impact of using pre-trained lan-
guage models and nesting metrics. Experi-
mental results confirm the effectiveness of the
MLC model, achieving state-of-the-art in the
Chilean Waiting List corpus and competitive
performance in the rest of the corpora.

2 Related Work

In recent years there has been a growing interest
from the research community in nested NER. Sev-
eral studies have been conducted to address nested
entities, which can be mainly divided into three
categories:

Region-based: These approaches divide the
problem into two stages: identifying entity bound-
aries and then categorizing these regions. Sohrab
and Miwa (2018) designed a model that enumer-
ates all possible spans within a limited length and
then used boundary and average internal token rep-
resentation to predict entity types. Another region-
based model was proposed by Zheng et al. (2019),
which uses a sequence labeling layer to detect en-
tity boundaries, and then classifies selected regions
into their categorical types. Yu et al. (2020) used
ideas from a biaffine model, scoring all possible
start-end tokens in a sentence to predict nested en-
tities. Although these methods have proven to be
effective, they often suffer from high time complex-
ity and fail to identify entities tagged with more
than one type.

Structure-based: There have also been attempts
to capture the structure of nested entities. Finkel
and Manning (2009) represented each input sen-
tence as a constituency tree of nested entities and
used a CRF-based approach to predict entity types.
Lu and Roth (2015) proposed a mention hyper-
graph representation to extract entity mentions.
Next, Muis and Lu (2017) improved on previous
work by modeling nested NER with mention sepa-
rators and handcrafted features. Similarly, Katiyar
and Cardie (2018) designed a directed hypergraph
using LSTM features to learn the nesting structure.
Wang et al. (2020) recursively introduce the em-
bedding of tokens and regions into flat NER layers
simulating the shape of a pyramid. However, these
approaches usually suffer from spurious structures
and structural ambiguities, as explained in Wang
and Lu (2018).

Sequence labeling-based: Some studies report
that sequence labeling methods can also perform
well on this task. Early work mainly exploited the
potential of conditional random fields (CRF). Alex
et al. (2007) proposed three CRF-based methods
to reduce the nested NER as several BIO tagging
problems. Their best approach, called cascaded
CRF, uses one model per entity type by using the
output of the previous flat NER model as a feature
for the current one. Ju et al. (2018) took advantage
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of inner entity information to encourage outer en-
tity recognition. They dynamically stacked LSTM-
CRF layers predicting entities inside-to-outside un-
til no entities were extracted. Straková et al. (2019)
formulated the nested NER task as a sequence-
to-sequence problem using an LSTM to decode
entity types. Finally, using a recursive CRF-based
method, Shibuya and Hovy (2020) recognized enti-
ties iteratively from outermost ones to inner ones.
The MLC approach falls into this category by using
a sequence labeling approach capable of handling
both nested entities and entities tagged with more
than one label.

3 Methods

3.1 Problem Definition
One of the main issues in our knowledge of nested
NER is that the task definition has not been ad-
dressed in-depth, and clarification of the different
nesting cases is needed. By analyzing several cor-
pora with nested entities, we have identified the
following nesting cases:

Multi-label entities (ME): This case has been
little explored in the literature. As explained in
Alex et al. (2007), it consists of entities tagged
with more than one entity type. With the release
of the Chilean Waiting List corpus, it is interesting
to study this case since 10.75% of the entities are
involved in this type of nesting. For example, the
entity “HTN", which stands for hypertension, is
tagged as a disease and an abbreviation.

Nested entities of different types (NDT): This
is the most frequent type of nesting in nested NER
datasets. It consists of an entity containing a shorter
entity tagged with a different type. An example
is “colon cancer", where a body part (colon) is
contained in a disease.

Nested entities of the same type (NST): This
case usually occurs when entities are originally
represented by a hierarchy, which is later pruned to
reduce the entity space, resulting in the merging of
entities of different levels of granularity. Although
it appears in most corpora, it is much more frequent
in GENIA (Kim et al., 2003). For example, the
DNA “Drosophila homeodomain" contains another
DNA, “homeodomain".

To better understand these cases, we formally
define what we mean by nested entities and the
nested NER task.

Definition 1 (Nested entities) Given an input se-
quence X = {x1, x2, ..., xn} of words, an entity

Q is defined by a tuple (Sq, Eq, Tq), where Sq and
Eq ∈ [1, n] represents entity boundaries in X , and
Tq in E (the entity space) corresponds to the entity
type. Given two entities Q and R, we say that Q is
nested in R if Sr ≤ Sq and Eq ≤ Er. The particu-
lar case of Sq = Sr and Eq = Er corresponds to
an entity with multiple labels.

Definition 2 (Nested NER) Given an input se-
quence X = {x1, x2, ..., xn}, nested NER aims
to correctly identify the boundaries for every entity
Q in X and assign it the correct entity type from
a predefined list of categories. This identification
must be made for cases where nested entities are
involved and when not.

3.2 Model

With advances in deep learning, sequence labeling
architectures have received substantial improve-
ments in the NER task in recent years. Therefore,
we decided to revisit a method that belongs to this
category but, despite its effectiveness, has been
little studied.

Multiple LSTM-CRF (MLC): This approach
consists of training multiple flat NER models, one
for each entity type. The predicted labels of the
input sentences correspond to the union of the out-
puts of each of these models, thus retrieving both
nested entities and entities tagged with multiple
labels. The main advantage of this approach is that
it can easily incorporate all the progress made for
the flat NER task into the nested NER task.

The apparent simplicity of MLC would lead us to
believe that it should be considered a natural base-
line for any proposed architecture in nested NER.
However, few papers have used this approach as
a baseline (Muis and Lu, 2017; Lin et al., 2019;
Fei et al., 2020) and their results were not compet-
itive. We believe the problem lies in their failure
to use the potential of recent advances in flat NER
architectures, such as the addition of pre-trained
language models to create contextualized embed-
dings.

Figure 2 shows an overview of the MLC model.
Specifically, to create each flat NER module, we
follow the LSTM-CRF approach proposed by Lam-
ple et al. (2016), one of the most widely used
architectures for sequence labeling. To encode
sentences, we use different combinations of em-
beddings in the stacked embedding layer. First,
we concatenate domain-specific word embeddings
with character embeddings retrieved from a bidi-
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Figure 2: Overview of the MLC architecture, where each entity type has an associated flat NER model. The right
side of the figure shows, as an example, the flat NER module for the Disease tag in the Chilean Waiting List dataset.

rectional character-level LSTM. Next, we enrich
word representations by adding contextualized em-
beddings from Flair (Akbik et al., 2018) and BERT
(Devlin et al., 2019), which have proven to be par-
ticularly effective on NER. The output is fed into a
BiLSTM encoding layer to obtain long-contextual
information. Finally, we use a CRF-loss and the
Viterbi algorithm to decode the most likely tag se-
quence using the IOB2 tagging format.

4 Experiments

In this section, we present the datasets, baselines,
and settings used in our experiments.

4.1 Datasets

Since most previous work on nested NER has been
done in English datasets, we conducted our experi-
ments with three corpora containing nested entities
for three different languages and domains. The
statistics for each corpus are shown in Table 1.

GENIA V3.022 (Kim et al., 2003) English
biomedical corpus created from 2,000 MEDLINE
abstracts. It comprises 36 fine-grained entity types
and 55,740 entity mentions, of which 17.3% are
involved in nesting. We followed the same setup
as the previous work (Finkel and Manning, 2009;
Lu and Roth, 2015; Zheng et al., 2019), collapsing
sub-types into their five super-types, using the first
90% of the sentences for the training set and the
remaining 10% in the test set.

GermEval 20143 (Benikova et al., 2014) Ger-
man dataset sampled from German Wikipedia and

2http://www.geniaproject.org/
genia-corpus/pos-annotation

3https://sites.google.com/site/
germeval2014ner/data

German online news. It consists of 41,124 entity
mentions, where 14.9% of them are involved in
nesting. The corpus contains two levels of nesting
and 12 entity types.

Chilean Waiting List4 (Báez et al., 2020) Span-
ish clinical corpus created from real diagnoses of
the Chilean healthcare system. It is composed
of 43,730 entity mentions and seven entity types.
From a nested NER point of view, it is a good re-
source since 46.7% of the entities are involved in
nesting.

Studying previous work, we have noticed that
comparisons between models are not entirely fair
since the data partitions used vary between different
papers. Therefore, for a fair comparison, in both
the GENIA and GermEval datasets, we trained the
models using the preprocessed version released in
Zheng et al. (2019). In the case of the Chilean
corpus, we used the public files released by the
authors, which are already tokenized.

4.2 Baselines

We compare our results with several state-of-the-art
models in GENIA and GermEval. Table 2 shows
the different types of nesting that each of these
baselines is capable of addressing. Based on the
released source code, we have reproduced the fol-
lowing models to use as a reference for analyzing
both traditional and task-specific metrics:

Pyramid is a structure-based architecture that
recognizes entities in a bottom-up manner, from
the shortest to the longest, assimilating the shape
of a pyramid. It is currently the state-of-the-art
method without using external supervision (Wang
et al., 2020).

4https://zenodo.org/record/5591011
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GENIA GermEval Chilean Waiting List
Train Test Dev Train Test Dev Train Test Dev

tokens 454,882 57,021 48,932 452,853 96,499 41,653 149,574 18,436 16,754
sentences 15,023 1,854 1,669 24,000 5,100 2,200 8,014 990 890
avg sent len 30.3 30.8 29.3 18.9 18.9 18.9 18.7 18.6 18.8
entities 45,929 5,474 4,337 31,545 6,693 2,886 35,480 4,289 3,971
avg entity len 2.9 2.9 3.1 1.4 1.4 1.5 2.6 2.7 2.6
nested entities (%) 17.0 20.6 16.8 15.0 14.7 14.1 46.4 45.9 46.7
nested entities 7,795 1,130 727 4,721 986 407 16,456 1,969 1,856
- different type 3,712 589 369 4,230 892 366 12,635 1,555 1,398
- same type 4,132 547 358 536 93 44 0 0 0
- multi-label entities 0 0 0 2 2 0 4,241 470 502

Table 1: Statistics of the datasets.

Model ME NDT NST
Layered ✓ ✓ ✓
Exhaustive ✗ ✓ ✓
Boundary ✗ ✓ ✓
Biaffine ✗ ✓ ✓
Pyramid ✓ ✓ ✓
Recursive-CRF ✓ ✓ ✓
MLC ✓ ✓ ✗

Table 2: Nesting types identified by the architectures
used in our experiments. Multi-label entities (ME), nest-
ing of different types (NDT), and nesting of the same
type (NST).

Recursive-CRF is a sequence labeling-based
approach that extracts nested entities iteratively in
an outside-to-inside way using a recursive CRF-
based algorithm (Shibuya and Hovy, 2020).

Layered is a sequence labeling-based model de-
signed to identify nested entities by dynamically
stacking LSTM-CRF layers. It predicts entities in
an inside-to-outside way until no more entities are
extracted. (Ju et al., 2018).

Exhaustive is a region-based model that enu-
merates all possible regions as potential entity men-
tions and then classifies them into their entity types
(Sohrab and Miwa, 2018).

Boundary is a region-based method that com-
bines ideas from the Layered and Exhaustive mod-
els. It uses a BiLSTM layer to detect boundary-
relevant regions and then uses these representations
to predict categorical entity labels (Zheng et al.,
2019).

Biaffine is a region-based architecture that lever-
ages contextualized paragraph-level embeddings to
create a Biaffine model. This approach scores can-
didate pairs of start and end tokens in a sequence
and then classifies them into predefined categories
using nested entities constraints (Yu et al., 2020).

4.3 Implementation Details

Pre-trained Word Embeddings. To encode sen-
tences, we selected pre-trained word embeddings
in the same domain of each corpus. For the exper-
iments with GENIA, we used biomedical embed-
dings trained on MEDLINE abstracts (Chiu et al.,
2016). In GermEval, we incorporated German Fast-
Text embeddings (Grave et al., 2018), and for the
Chilean dataset, we used pre-trained embeddings
from a large clinical corpus, which can be down-
loaded from here5. During the training process, the
embeddings were not left static.

Contextual Word Embeddings. To study the
impact of adding pre-trained language models, we
used BERT (Devlin et al., 2019), and Flair (Akbik
et al., 2018), which is a character-level language
model. In the case of BERT, we did not perform
fine-tuning. The embeddings were calculated by
averaging the representations retrieved from hidden
states. Since it uses WordPiece tokenization, we
computed word embeddings using the average of
subtoken embeddings.

A version of these models was available for all
the languages and domains involved in our study,
except for Spanish. Therefore, we added new lan-
guage models in the Spanish clinical domain to the
Flair framework (Rojas et al., 2022). We trained
these models on the same corpus as the word em-
beddings used for the Chilean dataset, following
the same settings and assumptions reported in the
Flair paper. The model reached a final perplexity
value of 1.61.

The Biaffine model computed the BERT embed-
dings using the paragraph-level context. Fu et al.
(2021) explains that this method provides better
performance in resolving correlations, so it is not
an entirely fair comparison with models that use
sentence-level context. For this reason, we do not

5http://doi.org/10.5281/zenodo.3924799
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Parameter Range MLC
max epochs [20, 100] 100
optimizer [SGD, Adam, AdamW] SGD
batch size [8, 32] 16
learning rate [0.0001, 0.1] 0.1
char emb dim [20, 50] 25
dropout [0.2, 0.8] 0.3
BiLSTM depth [1, 3] 3
BiLSTM hidden size [128, 512] 128

Table 3: Hyperparameter search space and the best val-
ues found for the MLC model.

make a comprehensive comparison with this model
in terms of contextualized embeddings.

Parameters. We used a unified setting for all the
experiments with MLC. The best hyperparameters
were chosen by performing a random search over
the range of values shown in Table 3, selecting the
best configuration based on performance on the de-
velopment set. To perform a fair comparison with
our baselines, we used the best hyperparameters
reported in their papers.

We trained the MLC architecture using the SGD
optimizer to 100 epochs, with mini-batches of size
16 and a learning rate of 0.1. To control the overfit-
ting problem, we employed a learning rate sched-
uler and an early stopping strategy. We also applied
dropout regularization (Srivastava et al., 2014) af-
ter the embedding layer and BiLSTM. The MLC
model was implemented using the Flair framework
(Akbik et al., 2019), and the rest of the baselines
were executed with the official code provided by
the authors. All the experiments were performed
using a Tesla V100 GPU. Training the MLC model
on the Chilean Waiting List took 7 hours to get
an idea of the computational cost of our approach.
The source code of our system is freely available
to reproduce the experiments6.

4.4 Evaluation Metrics
Overall Performance. Performance was evaluated
using precision, recall, and micro F1-score, which
is the standard metric used in nested NER. An en-
tity is considered correct when both entity types
and boundaries are predicted correctly.

Nested Performance. Since flat entities are
much more common than nested entities, the stan-
dard metric ends up confusing flat and nested re-
sults and, consequently, is not able to reflect well
the ability of a model to detect nesting. To alle-
viate this issue, we analyze task-specific metrics

6https://github.com/matirojasg/
nested-ner-mlc

proposed in previous work that adequately measure
the model’s ability to detect nested and non-nested
entities. Precisely, we compute scores for the fol-
lowing cases: non-nested entities (mflat), nested
entities (mnested), inner entities (minner) and outer
entities (mouter). We consider an entity nested if it
contains any entity or is contained within another
entity mention. Thus, the mnested metric considers
both minner and mouter scores.

However, none of these metrics capture the abil-
ity of the models to recognize both inner and outer
entities simultaneously. For this reason, and to
demonstrate whether the choice of a model in a
dataset depends on the types of nesting present, we
compute a score for nesting (mnesting) and on the
different types of nesting described in the task for-
malization (mME , mNDT , mNST ). A nesting is
considered correct if both inner and outer entities
are recognized correctly.

The above metrics are calculated using precision,
recall, and micro F1-score, but we only report the
last one for brevity. We emphasize that most of
these metrics have not been used before in nested
NER research. Therefore, we believe it is crucial
to incorporate them in future work as it allows us
to measure and differentiate the performance of
models on nested and non-nested entities. Due to
this, we implemented an open-source library7 that
computes these metrics.

4.5 Main Results

Table 4 shows the overall performance of the pro-
posed model against baselines on three different
datasets. Despite its simplicity, the MLC architec-
ture outperforms existing state-of-the-art models
on the Chilean Waiting List by +1.6 in terms of
the F1 measure. By contrast, although state-of-the-
art is not obtained in GENIA and GermEval, we
can see that MLC outperforms many specialized
nested NER architectures, thus being a competitive
approach. One possible reason for the excellent
performance is that we use one model per entity
type, which means that the number of possible la-
bels is only one per model, avoiding the problem
of nested entities and making the classification step
more straightforward compared to other architec-
tures. Compared with the statistics in Table 1, we
can conclude that it is more challenging to obtain
good results when the corpora have entities of a

7https://github.com/matirojasg/
nestednereval
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GENIA GermEval Chilean Waiting List
Model P R F1 P R F1 P R F1
Layered 73.9 68.7 71.2 71.8 64.1 67.7 75.0 72.8 73.9
Exhaustive 74.1 69.7 71.8 78.6 64.6 70.9 76.3 71.7 68.2
Boundary 76.7 71.8 74.2 74.4 65.5 69.7 74.0 67.6 70.7
Pyramid 78.1 72.8 75.3 77.8 66.9 71.9 79.6 75.4 77.5
Biaffine 79.1 73.7 76.3 89.0 77.4 82.8 81.5 67.1 73.6
Recursive-CRF 75.8 75.2 75.5 85.1 78.2 81.5 75.1 77.2 76.1
MLC 77.6 74.2 75.8 86.8 77.2 81.7 77.7 78.3 78.0
LM-based
Biaffine [BERT] 79.9 76.5 78.1 88.3 85.0 86.6 78.7 70.8 74.5
Recursive-CRF
- Flair 77.1 78.0 77.6 83.4 82.9 83.2 78.0 79.9 78.9
- BERT 76.4 77.4 76.9 84.3 83.0 83.6 76.6 77.8 77.2
- Flair + BERT 77.4 76.8 77.1 84.8 82.1 83.4 77.1 77.9 77.5
Pyramid
- Flair 77.8 75.6 76.7 83.4 80.0 81.7 80.1 77.2 78.6
- BERT 79.1 76.9 78.0 87.7 85.8 86.7 78.0 73.6 75.7
- Flair + BERT 80.4 75.0 77.6 87.7 84.4 86.0 78.5 77.2 77.9
MLC
- Flair 80.1 75.2 77.6 85.3 82.4 83.8 80.6 80.5 80.5
- BERT 79.4 74.3 76.8 85.1 80.3 82.6 79.7 78.8 79.3
- Flair + BERT 78.8 75.2 75.5 84.7 80.1 82.3 79.9 78.1 79.0

Table 4: Overall results on three nested NER datasets.

more considerable length. This can be explained by
the strict metric we are using, where the boundaries
and the entity types are requested to match.

We further analyze the effect of adding pre-
trained language models in our experiments. As
we believed, all models benefit from incorporat-
ing contextual word embeddings, improving their
performance compared to their base version. In
GermEval, a general-purpose corpus, the language
model that best improves the model’s performance
is BERT, while in the other corpora, it is Flair. Also,
we can see that stacking Flair and BERT embed-
dings does not produce better results. We attribute
this to the high dimensionality of these represen-
tations and the fact that the two language models
were trained on different corpora.

Regarding the Chilean corpus, which contains
the highest percentage of nested entities, we ob-
serve that the MLC model with Flair embeddings
improves by +2.5 compared to its base version
without pre-trained language models. This demon-
strates the effectiveness of using Flair over BERT
in this corpus. We suspect that it is due to the large
number of misspelled and out-of-vocabulary words
found in the unstructured clinical text. As pointed
out in Akbik et al. (2018), handling these types of
words is one of the main advantages when using its
character-level language model.

Despite the promising results, we hypothesize
that benchmarking against the standard nested NER
metric may not be a good indicator of model per-

formance on nesting since most of the entities are
not nested. Therefore, we analyze the results using
nested metrics.

4.6 Nested Results

In most cases, the revisited nested metrics pre-
sented in Table 5 are relatively consistent with re-
sults in Table 4. This means that models which ob-
tain state-of-the-art using the standard metrics also
perform well according to these metrics. For ex-
ample, in the Chilean Waiting List, the best model
(MLC) achieves the best results according to the
mflat, minner, mouter, mnested metrics, which is
a remarkable result considering a large number of
nestings present in this corpus. Another observa-
tion is that, unlike the other datasets, GENIA is
more complex to recognize inner entities over the
outermost ones. This finding could be helpful when
designing future architectures for this corpus.

As expected, the models with better performance
according to the standard metric are also associated
with good results using the mflat metric. However,
this may not be a good indicator in the nested NER
task since most of the entities in these corpora are
not nested, and the proper performance on nestings
is not reflected. This issue becomes much more
evident when analyzing our proposed nesting met-
rics, presented in Table 6. Interestingly, we observe
that the results are significantly lower than those
for the previous metrics of Tables 4 and 5. This
reveals the difficulty of correctly recognizing the
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GENIA
Model mflat mnested minner mouter

Layered 73.2 62.3 42.9 79.8
Exhaustive 76.6 55.0 42.6 67.9
Boundary 77.4 59.5 42.0 75.6
Biaffine [BERT] 81.2 65.8 49.3 80.5
Pyramid [BERT] 81.1 65.2 46.1 82.4
Recursive-CRF [Flair] 81.5 62.3 46.9 77.4
MLC [Flair] 80.7 63.8 41.7 82.2

GermEval
Model mflat mnested minner mouter

Layered 68.8 60.9 62.0 59.7
Exhaustive 73.4 56.1 65.7 45.7
Boundary 70.9 54.5 54.1 55.0
Biaffine [BERT] 88.4 76.6 78.1 75.0
Pyramid [BERT] 88.5 76.7 77.3 76.1
Recursive-CRF [BERT] 85.5 73.0 74.9 71.0
MLC [Flair] 86.0 71.6 74.5 68.4

Chilean Waiting List
Model mflat mnested minner mouter

Layered 73.4 74.5 82.4 64.5
Exhaustive 71.7 63.8 71.5 53.4
Boundary 73.4 61.1 65.5 55.4
Biaffine [BERT] 76.2 72.5 75.2 69.2
Pyramid [Flair] 79.0 78.1 84.7 69.3
Recursive-CRF [Flair] 80.3 77.4 82.8 70.4
MLC [Flair] 80.9 80.1 86.2 72.5

Table 5: Results on nested and non-nested entities.

nesting cases. One possible reason for this low per-
formance is that these metrics are strict, as inner
and outer entities must be correctly predicted.

Although the selected baselines are designed to
deal with nestings of the same type, their mNST

results in GENIA and GermEval are poor, while
the results using themNDT metric are much higher.
This suggests that NST is the most challenging case
to identify for all models. Therefore, we believe
that a model should not be prematurely discarded
based on its limitation in handling a particular type
of nesting. For example, although the MLC archi-
tecture cannot strictly identify the NST case in GE-
NIA and GermEval, it obtains excellent results on
the NDT case and the outermost entities involved in
the NST. In contrast, concerning the mME metric,
we note that the performance of the four models ad-
dressing this case is quite good, suggesting that it is
not a complex case to recognize but still not taken
into account when building nested NER models.

We highlight that in the Chilean corpus where
the state-of-the-art is reached, almost half of the
complete nestings (mnesting) are correctly recog-
nized, which is a reliable indicator of the perfor-
mance of our model on the nested NER task. These
results suggest that the MLC architecture should be
considered in future state-of-the-art comparisons
due to its effectiveness. Besides, we argue that
there is still much work to be done in nested NER,

GENIA
Model mnesting mME mNDT mNST

Layered 26.2 - 41.7 9.7
Exhaustive 25.8 - 41.2 17.7
Boundary 26.6 - 40.5 17.8
Biaffine [BERT] 34.5 - 51.9 22.9
Pyramid [BERT] 33.4 - 49.5 20.9
Recursive-CRF [Flair] 31.5 - 49.1 19.4
MLC [Flair] 27.9 - 47.8 0

GermEval
Model mnesting mME mNDT mNST

Layered 37.3 - 40.4 16.2
Exhaustive 27.8 - 38.2 9.7
Boundary 21.2 - 25.5 7.8
Biaffine [BERT] 55.7 - 64.3 20.8
Pyramid [BERT] 56.5 - 63.8 21.4
Recursive-CRF [BERT] 51.1 - 58.9 23.9
MLC [Flair] 49.1 - 59.3 0

Chilean Waiting List
Model mnesting mME mNDT mNST

Layered 51.6 71.1 49.5 -
Exhaustive 28.4 0 41.7 -
Boundary 28.2 0 35.4 -
Biaffine [BERT] 41.8 0 55.1 -
Pyramid [Flair] 54.9 73.7 57.9 -
Recursive-CRF [Flair] 56.0 71.7 58.8 -
MLC [Flair] 60.6 72.5 60.0 -

Table 6: Our task-specific metrics. If columns have no
results, it means that there was not a significant number
of examples.

as most models fail to simultaneously recognize
the inner and outer entities of nestings, which is
one of the main objectives of the task.

5 Conclusions and Future Work

This paper presented an effective but overlooked
neural model for nested NER based on sequence
labeling architectures. Specifically, we revisited the
Multiple LSTM-CRF (MLC) approach, which uses
a single flat NER model per entity type. We argue
that this approach has not been analyzed in-depth
since large pre-trained language models have not
been incorporated. Our experimental results show
that by adding a character-level language model to
the MLC architecture, it achieves state-of-the-art in
the Chilean Waiting List corpus. One of the main
advantages of using this approach is that it can
handle entities tagged with more than one entity
type, barely addressed in previous works.

In addition, to alleviate some gaps found in cur-
rent evaluation metrics, we implemented an open-
source library that computes task-specific metrics
for nested NER. The results according to these
metrics are low, especially when it comes to rec-
ognizing complete nestings, i.e., inner and outer
entities simultaneously. This finding shows that
most models are better at identifying flat entities or
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part of nested entities, which is not the primary goal
of the task. We hope that our study will help raise
awareness in the research community that over-
looking intuitive models and using only standard
metrics when evaluating a new complex solution
can be misleading and create an overly optimistic
impression of the new solution’s performance.

Future directions include incorporating the hier-
archical information of nested entities to improve
the performance of our model. In addition, we plan
to analyze two underexplored issues in the NER
task: crossing and discontinuous entities. The first
corresponds to cases where entities are not fully
nested in other entities, but there is an overlap, and
the second is when entities do not necessarily have
consecutive tokens in the sentence.
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Abstract

Document-level Event Causality Identification
(DECI) aims to identify event-event causal re-
lations in a document. Existing works usu-
ally build an event graph for global reasoning
across multiple sentences. However, the edges
between events have to be carefully designed
through heuristic rules or external tools. In this
paper, we propose a novel Event Relational
Graph TransfOrmer (ERGO) framework1 for
DECI, to ease the graph construction and im-
prove it over the noisy edge issue. Different
from conventional event graphs, we define a
pair of events as a node and build a complete
event relational graph without any prior knowl-
edge or tools. This naturally formulates DECI
as a node classification problem, and thus we
capture the causation transitivity among event
pairs via a graph transformer. Furthermore,
we design a criss-cross constraint and an adap-
tive focal loss for the imbalanced classification,
to alleviate the issues of false positives and
false negatives. Extensive experiments on two
benchmark datasets show that ERGO greatly
outperforms previous state-of-the-art (SOTA)
methods (12.8% F1 gains on average).

1 Introduction

Event Causality Identification (ECI) is the task of
identifying if the occurrence of one event causes
another in text. As shown in Figure 1, given the text
“... the outage2 was caused by a terrestrial break in
the fiber in Egypt ...”, where “outage2” and “break”
are event triggers, an ECI model should predict
if they have a causal relation or not. Discovering
causal relationships not only helps to deeply un-
derstand how the world progresses, but also is an
important goal of empirical research in various ar-
eas, such as machine reading comprehension (Be-
rant et al., 2014), question answering (Oh et al.,
2016), future event forecasting (Hashimoto, 2019),

∗Corresponding author.
1https://github.com/chenmeiqii/ERGO.git

Figure 1: Example of DECI. Solid purple lines denote
target causal relations.

and event knowledge graph construction (Ma et al.,
2022b).

Causality is usually implicit in natural lan-
guage (Copley and Martin, 2014), especially when
events scatter in a document, a.k.a. Document-level
ECI (DECI). Recent methods typically construct
an event graph to assist the global inference across
multiple sentences, where nodes are events and
edges are their relations, such as linguistic depen-
dency or adjacent contexts (Gao et al., 2019; Zhao
et al., 2021). However, there are two major issues.
First, the edges heavily rely on external tools and
heuristic rules, which are not always reliable and
may introduce noise (Tran Phu and Nguyen, 2021).
Second, it is like a chicken-egg problem — to iden-
tify (causal) relations between events, you need to
extract their relations to build the graph first.

In this paper, we propose a novel Event
Relational Graph TransfOrmer (ERGO) frame-
work for DECI, which doesn’t require any external
tools and can effectively alleviate the noise issue.
Different from conventional event graphs, the ba-
sic idea is to build an event relational graph that
naturally converts ECI into a node classification
problem, where each node denotes a pair of events,
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and all edges among nodes are initialized to capture
potential causal chains, following the assumption
"preserving transitivity of causation" (Paul et al.,
2013). If event A causes event B and event B causes
event C, then we have event A causes event C. That
is, if the node of (A, C) receives positive predic-
tions (i.e., causal relation) from nodes (A, B) and
(B, C), it is positive, too. By contrast, if either/both
of nodes (A, B) and (B, C) are negative (i.e., no
relation), it is not necessary that (A, C) is negative,
either. To this end, we leverage a graph transformer
to model the graph and assign a lower weight to
such uninformative edges, paying more attention
to other paths or its own textual contexts.

Although the proposed graph directly models all
event pairs for causality identification, it poses a
great challenge of false positive and false negative
issues. First, most of the event pairs have no causal
relations. That is, negative nodes are dominant, and
the imbalanced classification will easily confuse
the model into false-negative predictions. Second,
to ease the graph construction, we assume that all
nodes can pass information with each other via the
complete graph structure. While there are many
spurious correlations between events, which can be
incorrectly propagated to neighbor nodes, leading
to severe false positives. For example, “treatment”
and “death” frequently co-occur in the same docu-
ment, but there is no causality between them since
it is not “treatment” that causes “death”.

To address the above issues, we further design
a criss-cross constraint and an adaptive focal loss.
The criss-cross constraint simplifies the paths of
each pair of events for global inference. Instead
of a complete graph, we assume that there is an
edge between two nodes, only if the two pairs of
events share at least one event. Clearly, if they
have no common event, there must be no direct
causal effect between them. The adaptive focal
loss re-weights positive and negative samples to
tackle the imbalance issue. On the one hand, we
leverage a weighting factor to balance two classes’
training. On the other hand, we also introduce a
scaling factor to focus more on difficult samples.

Our contributions can be summarized as follows:

• We propose to build an event relational graph
without using any external tools to capture
causal transitivity.

• We propose a novel framework ERGO that
further alleviates false positive and false nega-
tive issues for DECI.

• Extensive experiments on two benchmark
datasets indicate that ERGO greatly outper-
forms previous SOTA methods (12.8% F1
gains on average). We have also conducted
both quantitative and qualitative analysis to
better understand key components of ERGO.
Furthermore, detailed error analysis provides
insights into our approach and the task.

2 Related Work

ECI has attracted much attention in recent years.
In terms of text corpus, there are mainly two types
of methods: Sentence-level ECI (SECI) and DECI.

In the first research line, early methods usu-
ally design various features tailored for causal ex-
pressions, such as lexical and syntactic patterns
(Riaz and Girju, 2013, 2014a,b), causality cues
or markers (Riaz and Girju, 2010; Do et al., 2011;
Hidey and McKeown, 2016), statistical information
(Beamer and Girju, 2009; Hashimoto et al., 2014),
and temporal patterns (Riaz and Girju, 2014a; Ning
et al., 2018). Then, researchers resort to a large
amount of labeled data to mitigate the efforts of
feature engineering and to learn diverse causal
expressions (Hu et al., 2017; Hashimoto, 2019).
To alleviate the annotation cost, recent methods
leverage Pre-trained Language Models (PLMs, e.g.,
BERT (Devlin et al., 2019)) for the ECI task and
have achieved SOTA performance (Kadowaki et al.,
2019; Liu et al., 2020; Zuo et al., 2020). To deal
with implicit causal relations, Cao et al. (2021) in-
corporate the external knowledge from ConceptNet
(Speer et al., 2017) for reasoning, which achieves
promising results. Zuo et al. (2021a) learn context-
specific causal patterns from external causal state-
ments and incorporate them into a target ECI model.
Zuo et al. (2021b) propose a data augmentation
method to further solve the data lacking problem.

Along with the success of sentence-level natural
language understanding, many tasks are extended
to the entire document, such as relation extraction
(Yao et al., 2019), natural language inference (Yin
et al., 2021), and event argument extraction (Ma
et al., 2022a). A concurrent and relevant work is
(Tan et al., 2022), which also leverages focal loss
for entity relation extraction. The difference is that
the focal loss in (Tan et al., 2022) is used to make
long-tail (positive) classes contribute more to the
overall loss, while the focal loss in our ERGO tack-
les the imbalance issue of DECI task by focusing
more on difficult samples. We further leverage a
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weighting factor in the focal loss to balance two
classes’ training, which is not considered in (Tan
et al., 2022). Moreover, in Section 4.6, we have
given a more detailed analysis of the impact of
adaptive focal loss on the DECI task.

Compared with SECI, DECI not only aggra-
vates the lack of clear causal indicators but also
poses a new challenge of cross-sentence inference.
Gao et al. (2019) use Integer Linear Programming
(ILP) to model the global causal structures; Zhao
et al. (2021) proposes a document-level context-
based graph inference mechanism to capture in-
teraction among events; RichGCN (Tran Phu and
Nguyen, 2021) constructs document-level interac-
tion graphs and uses Graph Convolutional Network
(GCN, Kipf and Welling (2017)) to capture rele-
vant connections. However, the construction of the
aforementioned global structure or graph requires
sophisticated feature extraction or tools, which may
introduce noise and mislead the model (Tran Phu
and Nguyen, 2021). Compared with them, we for-
mulate DECI as an efficient node classification
framework, which could capture the global interac-
tions among event pairs automatically, as well as
alleviate the imbalanced and noisy issues.

3 Methodology

The goal of our proposed framework ERGO is
to capture potential causal chains for document-
level reasoning. There are three main components:
(1) Document Encoder to encode the document
and obtain contextualized representations of events
as the inputs for the following components; (2)
Event Relational Graph Transformer that mod-
els causal chain for global inference by building
a handy event relational graph, where node fea-
tures are from the Document Encoder and enhanced
through propagation over the graph; and (3) Clas-
sification with Adaptive Focal Loss to predict if a
node of event pair has causal relation or not based
on their enhanced node features, with considering
the imbalance issue.

3.1 Document Encoder

Given a document D = [xt]
L
t=1 (can be of any

length L), the document encoder aims to output the
contextualized document and event representations.
We leverage a Pre-trained Language Model (PLM)
as a base encoder to obtain the contextualized em-
beddings. Following conventions, we add special
tokens at the start and end of D (e.g., “[CLS]” and

“[SEP]” of BERT (Devlin et al., 2019)), and insert
additional special tokens “<t>” and “</t>” at the
start and end of all the events to mark event posi-
tions. Then, we have:

H = [h1, h2, ..., hL] = Encoder([x1, x2, ..., xL]),
(1)

where hi ∈ Rd is the embedding of token xi. We
use the embedding of token “[CLS]” to represent
the document and the embeddings of token “<t>”
to represent the events.

In this paper, we choose pre-trained BERT (De-
vlin et al., 2019) and Longformer (Beltagy et al.,
2020) as encoders for comparison. We handle doc-
uments longer than the limits of PLMs as follows.

BERT for Document Encoder To handle doc-
uments that are longer than 512 (BERT’s original
limit), we leverage a dynamic window to encode
the entire document. Specifically, we divide D into
several overlapping spans according to a specific
step size and input them into BERT separately (de-
tails can be found in Section 4.2). Then, we find
and average all the embeddings of token “[CLS]”
or “<t>” of different spans to represent the whole
document or each event, respectively.

Longformer for Document Encoder Long-
former introduces a localized sliding window based
attention mechanism (the default window size is
512) with little global attention to reduce compu-
tation and extend BERT for long documents. In
our implementation, we apply its efficient local and
global attention pattern. Specifically, we use global
attention on the “<s>” token (Longformer uses
“<s>” and “</s>” as the special start and end tokens,
corresponding to BERT’s “[CLS]” and “[SEP]”),
and local attention on other tokens, which could
build full sequence representations. The maximum
document length allowed by Longformer is 4096,
which is suitable for most documents. Therefore,
we directly take the embedding of token “<s>” as
document representation and embedding of token
“<t>” as event representation.

3.2 Event Relational Graph Transformer
In this section, we first introduce how to construct
the event relational graph, including the criss-cross
constraint. Then, based on it, we leverage a Re-
lational Graph Transformer (RGT) to capture the
high-order interaction among event pairs and ob-
tain enhanced event pair representations for the
final classification.
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3.2.1 Event Relational Graph Construction

Given all the events of document D, we construct
an event relational graph G = {V, E}, where V is
the set of nodes, E is the set of edges. We highlight
the following differences of G from previous event
graphs. First, for each node in V , it refers to a
different pair of events in D, instead of a single
event. Our motivation is to learn the relation of
relations between events, i.e., the logic of causal
transitivity, for higher-order reasoning. Second,
for edges E , we do not require any prior relations
between events. Instead, we add all edges between
any two nodes into E . Thus, G is initialized as a
complete graph.

Criss-cross Constraint. To simplify the graph
structure and alleviate the negative impacts of false
positives propagation, we introduce a criss-cross
constraint. It assumes that there is an edge be-
tween two nodes, only if the two corresponding
event pairs share at least one event. The basic idea
behind this is that if two pairs of events have no
common event, there must be no direct causal effect
between them. Still, they can have causal interac-
tions if there are some mediator events, and such
causality takes effects conditioned on the mediator.
For example in Figure 1, (1) the causality infor-
mation of (restore, service) has no effect on pre-
dicting the causal relation of (outage1, break). (2)
the causality of (outage2, restored) has a transitive
effect on predicting the causal relation of (outage1,
break) if we know that (restored, causes, break) and
(outage1, outage2) is coreference2. Note that the
criss-cross constraint is not posed over the graph
directly, which is different for each event pair. In
Section 4.5, we show that such a simple and intu-
itive constraint brings considerable performance
gains compared with using a complete graph.

3.2.2 Relational Graph Transformer

Node Embedding Initialization For global in-
ference, we first initialize node feature vectors with
event pair node embedding, which is based on the
contextualized event embeddings by Equation (1).
Formally, for event pair (e1, e2) and the correspond-
ing contextual embeddings (he1 , he2), their event
pair node embedding is initialized by:

v(0)e1,2 = [he1∥he2 ], (2)

2In the datasets, coreference events have similar surface
forms and thus can be implicitly captured by PLMs. We leave
further coreference modeling in the future work.

where ∥ denotes concatenation, 0 indicates the ini-
tial state for the following neural layers.

The event pair node embeddings represent the
implicit relational information between two events,
which enables us to integrate event pair representa-
tion learning and causal chain inference seamlessly,
without any prior knowledge or tools. Clearly, bet-
ter initial features of nodes will provide more dis-
criminative signals from local textual contexts for
classification. On the other hand, structural reason-
ing further improves the discriminative ability of
node features by considering all event pairs glob-
ally, such that confident prediction shall help others
via causality transitivity.

Each RGT layer l is closed to the transformer
architecture proposed in (Vaswani et al., 2017). It
takes a set of node embeddings v(l−1) ∈ RN×din
as input, and outputs a new set of node embeddings:
v(l) ∈ RN×dout , where N is the number of event
pairs, din and dout are the dimensions of input and
output embeddings.

To better exploit the relational information from
each neighbor to predict the causal relation of
an event pair node i, we perform a shared self-
attention mechanism to measure the importance of
neighbor j to i:

attij =
(viWq)(vjWk)

T

√
dk

, (3)

where dk is the hidden size, Wq,Wk ∈ Rdin×dk
are parameter weight matrices,

√
dk is a scaling

factor (Vaswani et al., 2017). Thus, negative and
uninformative nodes are expected to assign lower
attention weights.

Then we normalize attij across all choices of j
using a softmax function to make the importance
more comparable:

αij = softmaxj(attij) =
exp(attij)∑

z∈Ni exp(attiz)
,

(4)
where Ni are all the first order neighbors of node i.

To aggregate relational knowledge from the
neighborhood information, we compute a weighted
linear combination of the embeddings :

v
(l)
i =

∑

j∈Ni
αij(vjWv), (5)

where Wv ∈ Rdin×dk is the parameter weight
matrix. We also perform multi-head attention to
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jointly attend to information from different repre-
sentation subspaces. Finally, the output embedding
of node i can be represented as:

v
(l)
i =

( C∥∥∥
c=1

∑

j∈Ni
αij(vjWv)

)
Wo, (6)

where ∥ denotes concatenation, C is the number of
heads. Wo ∈ RCḋk×dout is the parameter weight
matrix. By simultaneously computing embeddings
for all the event pair nodes, a node embedding
matrix v(l) ∈ RN×dout is obtained. By stacking
multiple layers, RGT could reach high-order con-
nectivity and capture complex interactions.

Note that our framework is flexible to almost
arbitrary Graph Neural Networks (GNNs). Here
we leverage RGT for its powerful expressiveness.
We also report results with GCN in Section 4.5.

3.3 Classification with Adaptive Focal Loss
Remember that we formulate DECI as a node clas-
sification task, which predicts the label of each
node as either a positive or negative class. However,
the number of negative samples during training far
exceeds that of positives, leading to an imbalanced
classification problem. What is worse, the domi-
nant negatives contain many spurious correlations
between events (“treatment" and “death" example
in Section 1). How can we know the difficulties of
sample prediction, so that ERGO can penalize them
to alleviate false negatives for better performance?

To address this problem, we leverage an adap-
tive loss function for training, following focal loss
(Lin et al., 2017). Specifically, we reshape the loss
function to down-weight easy samples and thus fo-
cus on hard ones. Formally, a modulating factor
is added to Cross-Entropy (CE) loss, with a pre-
defined focusing hyper-parameter γ ≥ 0, which is
defined as:

LFL = −
∑

ei,ej∈D
(1− pei,j )γ log(pei,j ). (7)

where pei,j is the predicted probability of whether
there is a causal relation between events ei and ej .
pei,j is defined as follows:

pei,j = softmax
([
vei,j ||h[CLS]

]
Wp

)
, (8)

where Wp is the parameter weight matrix, ∥ de-
notes concatenation. Here we concatenate em-
beddings of h[CLS] (of BERT) or h<s> (of Long-
former) to each node in order to incorporate the
global document representation for classification.

This scaling factor, (1 − pei,j )
γ , allows us to

efficiently train on all event pairs by encouraging
the model to focus on difficult samples, reducing
false-negative predictions. For example, when a
sample is misclassified and pei,j is small, the mod-
ulating factor is near 1, and the loss is unaffected.
As pei,j → 1, the factor goes to 0 and the loss for
well-classified examples is down-weighted. There-
fore, the focusing parameter γ smoothly adjusts the
rate at which easy examples are down-weighted.
When γ = 0, LFL is equivalent to CE loss, and
with the increase of γ, the influence of the modu-
lating factor also increases. We will give further
discussion in Section 4.6.

Besides, we use an α-balanced variant of the
focal loss, which introduces a weighting factor α
in [0, 1] for class “positive” and 1 − α for class
“negative”. The value of α is related to the ratio of
positive and negative samples. The final adaptive
focal loss LFLb can be written as:

LFLb = −
∑

ei,ej∈D
αei,j (1−pei,j )γ log(pei,j ). (9)

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our proposed method on two
widely used datasets, EventStoryLine (version 0.9)
(Caselli and Vossen, 2017) and Causal-TimeBank
(Mirza, 2014).

EventStoryLine contains 22 topics, 258 doc-
uments, 5,334 events, 7,805 intra-sentence and
62,774 inter-sentence event pairs (1,770 and 3,885
of them are annotated with causal relations respec-
tively). Following Gao et al. (2019) and (Tran Phu
and Nguyen, 2021), we group documents accord-
ing to their topics. Documents in the last two topics
are used as the development data, and documents in
the remaining 20 topics are employed for a 5-fold
cross-validation.

Causal-TimeBank contains 184 documents,
6,813 events, and 318 of 7,608 event pairs are
annotated with causal relations. Following (Liu
et al., 2020), we employ a 10-fold cross-validation
evaluation. Note that the number of inter-sentence
event pairs in Causal-TimeBank is quite small (i.e.,
only 18 pairs), following (Tran Phu and Nguyen,
2021), we only evaluate ECI performance for intra-
sentence event pairs on Causal-TimeBank.
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Evaluation Metrics For evaluation, we adopt
Precision (P), Recall (R), and F1-score (F1) as eval-
uation metrics, same as previous methods to ensure
comparability.

4.2 Implementation Details
We implement our method based on Pytorch. We
use uncased BERT-base (Devlin et al., 2019) or
Longformser-base (Beltagy et al., 2020) as the doc-
ument encoder. For the BERT-base document en-
coder, we set the dynamic window size to 256,
and divide documents into several overlapping win-
dows with a step size 32. We optimize our model
with AdamW (Loshchilov and Hutter, 2019) using
a learning rate of 0.00002 with a linear warm-up
for the first 8% steps. We apply dropout (Srivastava
et al., 2014) between layers and clip the gradients
of model parameters to a max norm of 1.0. We
perform early stopping based on the F1 score on
the development set. We tune the hyper-parameters
by grid search based on the development set per-
formance: heads C ∈{1, 2, 4, 8} for the relational
graph transformer model, dropout rate ∈ {0.1, 0.2,
0.3}, focusing parameter γ ∈ {0, 1, 2, 3}, and
weighting factor α ∈{0.65, 0.75, 0.85}.

4.3 Baselines
We compare our proposed ERGO with various
state-of-the-art SECI and DECI methods.

SECI Baselines (1) KMMG (Liu et al., 2020),
which proposes a mention masking generalization
method and use extenal knowledge databases. (2)
KnowDis (Zuo et al., 2020), a knowledge enhanced
distant data augmentation method to alleviate the
data lacking problem. (3) LSIN (Cao et al., 2021),
which constructs a descriptive graph to leverage
external knowledge and has the current SOTA per-
formance for intra-sentence ECI. (4) LearnDA
(Zuo et al., 2021b), which uses knowledge bases to
augment training data. (5) CauSeRL (Zuo et al.,
2021a), which learns context-specific causal pat-
terns from external causal statements for ECI.

DECI Baselines (1) OP (Caselli and Vossen,
2017), a dummy model that assigns causal relations
to event pairs. (2) LR+ and LIP (Gao et al., 2019),
feature-based methods that construct document-
level structures and use various types of resources.
(3) BERT (our implement) a baseline method
that leverages dynamic window and event marker
techniques. (4) RichGCN (Tran Phu and Nguyen,
2021), which constructs document-level interaction

Model EventStoryLine Causal-TimeBank

P R F1 P R F1

OP 22.5 98.6 36.6 - - -
LR+ 37.0 45.2 40.7 - - -
LIP 38.8 52.4 44.6 - - -

KMMG[◦] 41.9 62.5 50.1 36.6 55.6 44.1
KnowDis[◦] 39.7 66.5 49.7 42.3 60.5 49.8
LSIN[◦] 47.9 58.1 52.5 51.5 56.2 53.7
LearnDA[◦] 42.2 69.8 52.6 41.9 68.0 51.9
CauSeRL[◦] 41.9 69.0 52.1 43.6 68.1 53.2

BERT[◦] 47.8 57.2 52.1 47.6 55.1 51.1
RichGCN[◦] 49.2 63.0 55.2 39.7 56.5 46.7

ERGO[◦] 49.7 72.6 59.0 58.4 60.5 59.4
ERGO[♢] 57.5 72.0 63.9 62.1 61.3 61.7

Table 1: Model’s intra-sentence performance on
EventStoryLine and Causal-TimeBank, the best results
are in bold and the second-best results are underlined.
[◦] and [♢] denote models that use pre-trained BERT-
base and Longformer-base encoders, respectively. Over-
all, our ERGO outperforms previous SOTA models
(with a significant test at the level of 0.05).

graph and uses GCN to capture relevant connec-
tions. RichGCN has the current SOTA performance
for inter-sentence ECI.

4.4 Overall Results

Since some baselines are evaluated only on
EventStoryLine, the baselines used for EventSto-
ryLine and Causal-TimeBank are different. Some
baselines can not handle the inter-sentence scenar-
ios in EventStoryLine. Thus we report the results
of intra- and inter- sentence settings separately.

4.4.1 Intra-sentence Evaluation
From Table 1, we can observe that:

(1) ERGO outperforms all the baselines by a
large margin on both datasets. Compared with
SOTA methods, ERGO-BERTBASE achieves 6.9%
improvements of F1-score on EventStoryLine, and
10.6% on Causal-TimeBank. This demonstrates
the effectiveness of ERGO.

(2) The feature-based method OP achieves the
highest Recall on EventStoryLine, which may be
due to simply assigning causal relations by mim-
icking the textual order of presentation. This leads
to many false positives and thus a low Precision.

(3) The usage of PLMs boosts performance.
Using LongformerBASE as the encoder, ERGO
achieves better results than ERGO-BERTBASE,
which also achieves new SOTA results. The rea-
son may be: 1) Longformer continues pre-training
from RoBERTa (Liu et al., 2019), which has been
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Model Inter-sentence Intra + Inter

P R F1 P R F1

OP 8.4 99.5 15.6 10.5 99.2 19.0
LR+ 25.2 48.1 33.1 27.9 47.2 35.1
LIP 35.1 48.2 40.6 36.2 49.5 41.9

BERT[◦] 36.8 29.2 32.6 41.3 38.3 39.7
RichGCN[◦] 39.2 45.7 42.2 42.6 51.3 46.6

ERGO[◦] 43.2 48.8 45.8 46.3 50.1 48.1
ERGO[♢] 51.6 43.3 47.1 48.6 53.4 50.9

Table 2: Model’s inter and (intra+inter)-sentence per-
formance on EventStoryLine.

Model Intra Inter Intra + Inter

ERGO[◦] 59.0 45.8 48.1

ERGO1[◦] 56.6 43.5 45.6
ERGO2[◦] 56.2 41.8 44.6
ERGO3[◦] 58.3 43.6 47.3

ERGO[♢] 63.9 47.1 50.9

ERGO1[♢] 61.3 44.7 47.1
ERGO2[♢] 60.7 43.1 46.3
ERGO3[♢] 62.6 45.9 49.1

Table 3: F1 Results of Ablation study on EventSto-
ryLine, where ERGO1 denotes ERGO w/ a complete
graph, ERGO2 denotes ERGO w/ GCN, ERGO3 de-
notes ERGO w/o the focal factor.

found to outperform BERT on many tasks; 2) Long-
former leverages an efficient local and global atten-
tion pattern, which is beneficial to capture longer
contextual information for inference.

4.4.2 Inter-sentence Evaluation
From Table 2, we can observe that:

(1) ERGO greatly outperforms all the baselines
under both inter- and (intra+inter)-sentence set-
tings, especially in terms of Precision. This demon-
strates that our ERGO can make better document-
level inference via the event relational graph, while
alleviating the negative impacts of false positives.

(2) The overall F1-score of inter-sentence setting
is much lower than that of intra-sentence, which
indicates the challenge of document-level ECI.

(3) The BERT baseline performs well on intra-
sentence event pairs. However, it performs much
worse than LIP, RichGCN, and ERGO under inter-
sentence settings, which indicates that a document-
level structure or graph is helpful to capture the
global interactions for prediction.

4.5 Ablation Study

To analyze the main components of ERGO, we
have the following variants, as shown in Table 3:

Figure 2: Distribution histogram of predicted probabili-
ties of positive and negative event pairs and the visual-
ized loss with focal parameter γ = {0, 1, 2, 3}.

(1) w/ a complete graph, which connects all
the nodes in the event relational graph (with-
out the criss-cross constraint mentioned in Sec-
tion 3.2.1). Compared with the full ERGO model
(both BERTBASE and LonformerBASE), ERGO (w/
a complete graph) clearly decreases the perfor-
mance, which demonstrates the effectiveness of
the handy design of criss-cross constraints.

(2) w/ GCN, which replaces the RGT in Sec-
tion 3.2.2 with a well-known GNN model, GCN.
It can be seen that (i) ERGO (w/ GCN) also per-
forms better or competitive than other baselines.
This indicates that our framework is flexible to
other GNNs, and the main improvement comes
from our new formulation of the ECI task. (ii)
the full ERGO model clearly outperforms ERGO
(w/ GCN), which validates the effectiveness of our
RGT model.

(3) w/o focal factor, which sets the focusing pa-
rameter γ = 0 (in Section 3.3) and thus makes the
focal loss degenerate into standard CE loss. Com-
pared with the full ERGO model, ERGO (w/o focal
factor) also decreases performance. This highlights
the effectiveness of penalizing hard samples via an
adaptive focal loss in the ECI task.

4.6 Dealing with the Imbalance Issue

In Figure 2, we show the distribution histogram
of the predicted probability after the first training
epoch for positive and negative samples, respec-
tively (denoted by the bars). The predicted prob-
ability of x-axis reflects the difficulty of samples
(i.e., the lower, the harder), and the curves denote
loss — how much penalization on the correspond-
ing samples during learning. From the histogram,
we can find: (1) the model is less confident about
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Teen 𝐀𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟏 in Shooting of Hero Brooklyn Mom
Posted Oct 26, 2011 8:57 AM CDT
An 18-year-old gang member has confessed to killing a pregnant mom , who died on Friday as she shielded a group of children from bullets, but
insisted he "did not mean to shoot the ladies," sources tell the New York Daily News.
In addition to Zurana Horton-who was a mother of 12-another mom and an 11-year-old girl were wounded by rooftop sniper Andrew Lopez, who told
police his dozen rounds were intended for members of a rival gang.
Lopez has been charged withmurder; his two half-brothers, 17 and 22, were also 𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐.

No. Event Pair GT BERT ERGO

1 (Shooting, killing) Yes No Yes

2 (killing, 𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐) Yes No Yes

3 (Shooting, 𝐀𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟏) Yes Yes Yes

4 (𝐀𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟏 , 𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐) No Yes No

5 (Shooting, wounded) Yes No Yes

0.142 0.153 0.104

0.003

0.11

0.07

…

(Shooting, 𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐)

(𝐀𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟏 , 𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐)

(Shooting,	𝐀𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟏 )

(killing , 𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐 )
…

(Shooting, wounded) (wounded,	𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐)

(Shooting, killing)

0.01

6 (wounded, 𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐) No No No
7 (Shooting, 𝐚𝐫𝐫𝐞𝐬𝐭𝐞𝐝𝟐) Yes No Yes

… … … … …

Figure 3: The case study of BERT baseline and our proposed ERGO, where “GT” denotes the ground truth class,
and the right two columns are the output of BERT and ERGO (italic red color means wrong prediction). The
thickness of arrows represents the size of attention values, and the bold green arrows show a possible reasoning path.

positives than negatives, i.e., the left-of-center dis-
tributed bars of positives. This matches our intu-
ition that the imbalance issue brings a great chal-
lenge of false-negative predictions to ECI. (2) we
visualize focal loss with γ values ∈ {0, 1, 2, 3}.
The top solid blue curve (γ = 0) can be seen as
the standard CE loss. As γ increases, the shape of
focal loss moves to the bottom left corner. That is,
the learning of ERGO pays more attention to hard
samples. In practice, we find γ = 2 works best
on both datasets, indicating that there is a balance
between the focus on simple and difficult samples.

4.7 Case Study

In this section, we conduct a case study to fur-
ther illustrate an intuitive impression of our pro-
posed ERGO. As shown in Figure 3, We notice
that: (1) BERT is good at sentence-level ECI
(e.g., No.3 event pair), but fails at more com-
plex cross-sentence cases (e.g., No.1, 2, 4, 5, 7).
(2) By contrast, ERGO can make correct predic-
tions by modeling the global interactions among
event pairs. (3) Figure 3 shows 3 causal pat-
terns that ERGO could cover: (i) Transitivity
(No.1, 2, 7 event pairs): knowing both (Shoot-
ing, killing) and (killing, arrested2) have causal
relations, we could infer that (Shooting, arrested2)
has a causal relation; (ii) Implicit Coreference
Assistance (No.3, 4, 7 event pairs) : Given that
(Shooting, Arrested1) has a causal relation and
(Arrested1, arrested2) is coreference, we could in-
fer that (Shooting, arrested2) has a causal relation,
even if the causal relation of (Arrested1, arrested2)
is implicitly modeled. We attribute this to PLMs

Similar Events

5.3%

Insufficient 

Fine-Grained 

Distinction

33.0%

Implicit Causal 

Relations

30.0%

Ambiguous  

Annotation

14.0%

Annotation Error

5.9%

Others

11.8%

Figure 4: Statistics of Error Types.

that tend to capture coreference relations, such as
similar tokens. A piece of supporting evidence is
that BERT incorrectly predicts the coreferenced
No.4 event pair with a causal relation. (iii) De-
confounding Negatives (No.5, 6, 7 event pairs):
Knowing (Shooting, wounded) has a causal rela-
tion, although (wounded, arrested2) does not has
a causal relation, it is still possible that (Shoot-
ing, arrested2) has a causal relation through other
paths. Correspondingly, as shown in the bottom
right, both (Shooting, wounded) and (wounded,
arrested2) are assigned with very low attention
weights, blocking the propagation over these unin-
formative paths, to avoid the negative confounders
contaminating causal transitivity.

4.8 Remaining Challenges

We randomly sample 20 documents of different
topics from EventStoryLine, which contains 170
event pairs whose causal relations cannot be cor-
rectly predicted by our model. As shown in Figure
4, we manually categorize these pairs into different
types and discuss the remaining challenges:
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Insufficient Fine-Grained Distinction and Need
to Extract Temporal Information (33%) For
example, in the following document:

“...Dubai experienced a slight ‘tremor’ today,
after a more serious earthquake in Southern Iran,
resulting in the evacuation of Emirates Towers and
a few other scrapers...”

The “tremor” happens in “Dubai” and the “earth-
quake” happens in “Southern Iran”, they are two
different events identified by the temporal indicator
“after”. ERGO incorrectly predicts that there is a
causal relation in (earthquake, evacuation). Future
work could consider joint extraction of causal and
temporal relations within the document.

Events with Similar Semantics (5.3%) Take the
following document as an example:

"...Kenneth Dorsey says the woman accused of
killing two co-workers and critically injuring a
third at the Kraft plant in Northeast Philly is a
good person. And so were the two women she’s
accused of gunning down with a .357 Magnum, just
minutes after she’d been suspended and escorted
from the building..."

ERGO incorrectly predicts that there is a causal
relation between “killing” and “gunning down”.
The reason is that “killing” and “gunning down”
are actually coreference, which suggests a future
direction in exploring related tasks.

Implicit Causal Relations (30%) ERGO still
fails at many implicit causal relations. For exam-
ple, the causal relation between “killing” and “sus-
pended” in the aforementioned document. This
is mainly because there are insufficient events for
global reasoning and hard negatives bring noise.
Clearly, commonsense reasoning will be helpful
in this case, since “suspended” is an unexpected
change that may bring some negative emotions.

Ambiguous Annotation (14%) This type de-
notes that ambiguous causality within some event
pairs. For example, in the following document:

"... A Texas inmate escaped from a prison van
near Houston after pulling a gun on two guards
who were transporting him between prisons..."

We can think there is a causal relation between
“escaped” and “transporting” because if there is no
“transporting”, the “inmate” will have no chance to
“escape”. However, we can also think that there is
no causal relation between them because it is not
“transporting” that directly causes “escape”.

Finally, as shown in Figure 4, our statistics show

that the other errors have to do with annotation
errors (5.9%) and more complicated issues that
cannot be categorized clearly (“Others”, 11.8%).

5 Conclusion

In this paper, we regard DECI as a node classi-
fication task by constructing an event relational
graph. We propose a novel Event Relational Graph
Transformer (ERGO) framework that could cap-
ture potential causal chains and mitigate the false
positive and false negative issues for DECI. Ex-
tensive experiments show great improvements of
ERGO under both intra- and inter-sentence settings
on two widely used benchmarks. Further analysis
provides insights into our approach and the DECI
task. In the future, we will consider introducing
commonsense reasoning and auxiliary tasks to dis-
cover more reliable causality.
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Abstract

Few-shot relation extraction aims to identify
the relation type between entities in a given
text in the low-resource scenario. Albeit
much progress, existing meta-learning meth-
ods still fall into prediction confusions owing
to the limited inference ability over shallow
text features. To relieve these confusions, this
paper proposes a discriminative rule-based
knowledge (DRK) method. Specifically, DRK
adopts a logic-aware inference module to ease
the word-overlap confusion, which introduces
a logic rule to constrain the inference pro-
cess, thereby avoiding the adverse effect of
shallow text features. Also, DRK employs a
discrimination finding module to alleviate the
entity-type confusion, which explores distin-
guishable text features via a hierarchical con-
trastive learning. We conduct extensive exper-
iments on four types of meta tasks and the
results show promising improvements from
DRK (6.0% accuracy gains on average). Be-
sides, error analyses reveal the word-overlap
and entity-type errors are the main courses of
mispredictions in few-shot relation extraction.

1 Introduction

With the emergence of new relation types and ever-
increasing annotation costs, traditional data-driven
relation extraction (RE) methods cannot survive
in this low-data regime (Wang et al., 2021; Chia
et al.). Therefore, the task of few-shot relation
extraction is proposed to cope with such a low-
resource dilemma. In few-shot RE, meta-learning
(ML) has been extensively employed and attained
promising performance, the core of which is to
learn the generalization ability from the data-rich
classes to help predict the data-scarce classes (Han
et al., 2018). These ML approaches can be roughly
divided into two categories: basic ML only acces-
sible to raw sentence text, e.g., prototype (Snell
et al., 2017) and MAML (Finn et al., 2017), and

∗* Corresponding author.

knowledge-based ML with the additional external
knowledge (Zheng et al., 2020a), e.g., TD-proto
(Yang et al., 2020) and REGRAB (Qu et al., 2020).

Albeit much progress, the insufficient labeled
data forces existing ML methods to make shal-
low inferences based on superficial text features,
e.g., the word overlap (Utama et al., 2021) and the
matched entity type (Brody et al., 2021). In this
light, as shown in Fig.1, when the support instances
of some relations exhibit massive word overlaps or
have a matched entity-type pair, these ML methods
inevitably get caught in the prediction confusions
(Wang et al., 2020). Based on the taxonomy of sim-
ilar pattern, prediction confusions can be further
classified into the word-overlap confusion and the
entity-type confusion as shown in Fig.1.

For the word-overlap confusion, intuitively, in-
corporating external knowledge, e.g., relation de-
scriptions (Yang et al., 2020), an entity-level knowl-
edge graph (KG) (Roy and Pan, 2021) or entity
types (Sainz et al., 2021; Hao et al., 2019; Yang
et al., 2021), into RE models can ease this semantic
uncertainty to some extent. However, this simple
incorporation (concatenation in the majority) just
provides additional information, and cannot alter
the fact that existing ML methods still process the
shallow inferences. Even worse, the lengthened
text may exceed the input limit and introduce noise,
thereby degrading the model performance. Besides,
the entity-type confusion can not be relieved with
the introduction of external knowledge. Since ex-
ternal information generally contains entity type
information, the simple introduction cannot work
in relations whose entity-type pairs are matched in
head and tail positions. Although the entity mask-
ing (Li et al., 2021) and some data augmentations
(Brody et al., 2021) can increase the relation separa-
bility by changing the data format, these solutions
still rely on the superficial features and fail to grasp
the subtle semantic differences.

In this paper, we attempt to solve these two pre-
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Word-overlap confusion

Alice had a daughter named Archelaus.

Helge was a daughter of Rode.

Rode had a daughter named Mary. 

P25 Mother

P40 Child

Alice(person) has a daughter named Archelaus(person).

Rode(person) has a daughter named Mary(person). 

 Mother

Spouse Rode(person) has a husband named Jack(person).

NGC 451(con) is a spiral galaxy located in Pisces(con).

Star's con

Part_of

Tau2 Grus(con) is a double star located in Grus(con).

P\u010h(place) is a beautiful island located in Hawaii(place).

Entity-type confusion

? ?

Figure 1: Prediction confusions in few-shot RE, including the word-overlap confusion (left) and the entity-type
confusion (right). The word-overlap confusion has relations with the same grammatical structure and massive
word overlaps but mismatched entity-type pair (“con-con” vs. “place-place”), while the entity-type confusion has
relations with the same entity-type pair (“person-person” vs. “person-person”), where the head and tail entities are
indicated in red and blue respectively and the word constellation is abbreviated to “con”.

diction confusions by proposing a discriminative
rule-based knowledge (DRK) method that consists
of a logic-aware inference module and a discrimina-
tion finding module. Specifically, the logic-aware
inference module relieves the word-overlap confu-
sion by a rule-based incorporation of an ontology
KG (Hao et al., 2019). Different from the simple
concatenation in previous work , this module em-
ploys a logic rule (e.g., the “Star’s con” relation
happens when entity-type pair belongs to “con-con”
rather than “place-place”, shown in Fig.1) to con-
strain the model inference. In this way, the rule-
based knowledge can not only mitigate the adverse
effect of shallow text features but also provide a
new inference direction. Unfortunately, this intro-
duced rule is heavily dependent on the discrepancy
of entity types, thereby losing its advantages in the
entity-type confusion. To clear this confusion, the
discrimination finding module is proposed, which
employs a hierarchical contrastive learning strategy
(the instance level and the category level) to further
explore distinguishable text features.

We compare DRK with ML methods with and
without external knowledge on four types of meta-
tasks in FewRel 1.0 (Han et al., 2018). The results
demonstrate: 1) DRK achieves significant improve-
ments over the state-of-the-art baseline in terms of
accuracy; 2) the logic-aware inference module is
more effective than the discrimination finding one;
3) error analyses reveal that the word-overlap and
entity-type confusions are the main error courses
of mispredictions in few-shot RE, and DRK can
effectively relieve these two prediction confusions.

Our key contributions are: 1) a discriminative
rule-based knowledge (DRK) method for few-shot
RE, which targets to relieve prediction confusions;
2) a logic-aware inference module for the word-
overlap confusion by the rule-based knowledge
incorporation, which opens a new inference direc-
tion for few-shot RE; 3) a discrimination finding
module for the entity-type confusion by the hier-

archical contrastive learning, which explores sub-
tle semantic differences; 4) extensive experiments
demonstrating the effectiveness of our proposals.

2 Related Work

2.1 Basic ML for Few-shot RE

In few-shot RE, basic ML generally infers rela-
tion type based on original text as the sole in-
put, which can be roughly divided into two types,
i.e., optimization-based ML and metric-based ML
(Huang et al., 2021). Optimization-based ML fo-
cuses on finding good initialization points for pa-
rameters that can readily generalize to novel rela-
tion types within few gradient steps. For example,
MAML adopts a model-agnostic gradient update
strategy to produce good gradient stand points of
parameters for novel relations (Finn et al., 2017).
To reduce the computational complexity of MAML,
Reptile only employs first-order derivatives to up-
date parameters (Nichol et al., 2018). Metric-based
ML aims to design a metric function that clearly
measures the distance of instances in the embed-
ding space. For instance, prototypical networks
identify the relation labels by computing the simi-
larity between query instances and the relation pro-
totypes (Snell et al., 2017). Following this work,
quantities of methods devote to improving the per-
formance of prototype, e.g., Gao et al. (2019a) mod-
ify the representation of the prototype by highlight-
ing the crucial instances and features, and Sun et al.
(2019) redefine the prototype via a hierarchical at-
tention scheme.

However, these ML methods can’t make reliable
inferences in the low-resource scenario, and eas-
ily fall into the prediction confusions. To clear
these confusions, our proposal DRK introduces an
ontology-level KG by the rule-based incorporation
to avoid the adverse effect of shallow text infer-
ences.
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Figure 2: Framework of discriminative rule-based knowledge. For naming these process or submodules, “repre-
sentation” and “prototype” are abbreviated as “repre” and “proto”, respectively.

2.2 Knowledge-based ML for Few-shot RE

External knowledge has been widely employed in
few-shot RE due to the abundant auxiliary semantic
information. Based on the data structure, external
knowledge can be divided into unstructured text
and structured knowledge graph. For the unstruc-
tured text, most work focuses on leveraging rela-
tion and entity descriptions to enhance contextual
semantic representation (Yang et al., 2020). Com-
pared with the unstructured text, massive endeav-
ors have been devoted to the structured knowledge
graph. For example, Liu et al. (2020) inject entity-
level triplets into text by a sentence tree, Roy and
Pan (2021) integrate entity-level KG and text by
several fusion techniques, and Yang et al. (2021)
leverage an ontology-level knowledge graph to pro-
vide clues for the entity type and designed a fusion
module based on self-attention to bridge the gap
between the embeddings of text and the relation
types. Besides, Sainz et al. (2021) annotate the
entity type manually for each instance.

In essence, the above knowledge-based ML
methods are still built on shallow inferences, suf-
fering from prediction confusions. Our proposal
adopts the logic-aware inference module and the
discrimination finding module to clear the word-
overlap and entity-type confusions, respectively.

3 Approaches

In this section, we first introduce the task definition
as well as the framework of DRK in §3.1. Then,

we detail the logic-aware inference module in §3.2
and the discrimination finding module in §3.3.

3.1 Task definition and model framework

RE. Formally, given a Ls-word instance s with
the head and tail entities eh and et, i.e., s =
{w1, · · · , eh, · · · , et, · · · , wLs}, the goal of RE is
to correctly extract the relation triplet (eh, et, r),
where r is a relation label belonging to the prede-
fined relation label setR.
Few-shot RE. Following the typical N-way K-shot
setting, a meta task consists of a support set S
and a query set Q. S = {Si}Ni=1 has N novel
relations R = {ri}Ni=1, each relation r has Sr ={
sir
}K
i=1

containingK instances. Few-shot relation
extraction targets to predict the relation label rQ ∈
R of the query set Q based on the limited labeled
data S .

It is noteworthy that the few-shot RE models are
trained on meta tasks sampled from instances of
base relation labels then tested on meta tasks sam-
pled from instances of novel relation labels(Zheng
et al., 2021). And the base and novel relation labels
are disjoint.
External Knowledge. Based on the data structure,
external knowledge can be classified into the struc-
tured entity-level KG Ge, the structured ontology-
level KG Go and the unstructured knowledge Gt.

In specific,Ge consists of a set of relation triplets
{(eh, et, r) ∈ E × E ×Re}, where E and Re are
the entity node set and the entity-level relation set,
respectively. Similar to Ge, Go can also be formu-
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lated as {(eh, et, r) ∈ C × C ×Ro}, where C, Ro
are the ontology node set and the ontology-level
relation label set, respectively. Note that there ex-
hibits an “instance of” relation r̂ between E and
C, i.e., {(eh, et, r̂) ∈ E × C × r̂}. For unstructured
knowledge Gt, it describes each relation r from
the given relation setR with a Lr-word sequence
relation description ar = {wi}Lri=1.
Framework of DRK. As shown in Fig 2, In each
iteration step, the support set S and the query set
Q are first fed into external knowledge to obtain
their corresponding structured and unstructured in-
formation that are encoded by the graph encoder f1
and the text encoder f2, respectively. And then, the
logic-aware inference module employs the proto-
types on structured and unstructured information to
get the head, tail and contextual semantic represen-
tations, which are further constrained by the logic
rule to compute LCE . Furthermore, the discrimi-
nation finding module leverages the category-level
contrastive learning Lcate and the instance-level
contrastive learning Lins to mine the distinguish-
able text features.

3.2 Logic-aware inference module

This module employs structured and unstructured
knowledge encoders to get the entity-type and con-
textual semantic representations, which are further
constrained by the logic rule.

3.2.1 Structured knowledge encoder
Each entity belongs a set of entity types, e.g., the
entity “Biden” stemmed from the “politician” and
“person” types. Take the head entity eh for example,
the ontology KG Go

1 is adopted to construct it’s
type set Ch:

Ch = B (eh) , (1)

whereB is a link function base on the “instance_of”
relation between eh and ch. Then a graph neural
network encoder f1 is employed to obtain the head
entity type representation Heh of eh:

Heh =
1

|Ch|
∑

c∈Ch
f1 (c), (2)

where |Ch| is the number of elements in the type
set. For any relation r, its support instances Sr
contain K instances, hence the head entity type

1The construct process of Go can refer to
https://github.com/imJiawen/KEFDA

prototype of the relation r can be formulated as:

mr
h =

1

K

∑

eh∈Sr
Heh . (3)

Analogously, the tail entity type prototype mr
t

of the relation r can also be obtained. And, for
any query instance q in the query set Q, similar
encoding process can be employed to get its head
and tail entity type representations: Hq

h and Hq
t .

3.2.2 Unstructured knowledge encoder
Given a relation r with support instances {sir}Ki=1,
the unstructured knowledge Gt 2 is retrieved to ob-
tain the relation description ar. Then, the support
instances and the relation description are respec-
tively fed into a text encoder f2(·) to get the in-
stance representations {H0

sir
∈ RLs×d}Ki=1 and the

relation-describing representations Har ∈ RLr×d,
where d is the embedding dimension of f2. To high-
light the entities (Soares et al., 2019), the start to-
kens of the head and tail entities are concatenated to
get the entity representations {He

sir
∈ R1×2d}Ki=1

that is different from Eq.(2).
Interaction. On the one hand, the relation descrip-
tion ar elaborates the relation r, ar can be utilized
to further refine the instance representations. Tak-
ing the instance sir as an example, its refined in-
stance representation can be formulated as:

Har
sir

=

Ls∑

j=1

αjH
0
sir
[j :],

α = softmax
(
sum

(
H0
sir
HT
ar

))
,

(4)

where sum(·) is a row-wise summation function,
and hence the attention weight α = {αj}Lsj=1 at-
tends over the instance tokens. On the other hand,
the relation description, as a highly-concise sum-
mary, also requires support instances to express its
semantics. Specifically, for a specific relation r,
its each support instance H0

sir
attends its relation

description ar to obtain the instance-aware relation-
describing representation H

sir
ar :

Hsir
ar =

Lr∑

j=1

βjHar [j :],

β = softmax

(
sum

(
Har

(
H0
sir

)T))
,

(5)

2All the relation descriptions in Gt is shown in Table 1 of
Appendix A.1
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where β = {βj}Lrj=1 is the attention weight over

the relation description tokens and H
sir
ar elaborates

the instantiation traits of the relation r.
Contextual semantic representation. After the
interaction between the instance text and the re-
lation description, the final contextual semantic
representation can be further formulated as:

Hsir
= [He

sir
;Har

sir
] +Mul(Hsir

ar), (6)

where He
sir
∈ R1×2d, Hsir

ar ∈ R1×d, Har
sir
∈ R1×d

and Hsir
∈ R1×3d. Mul(·) is a multi-layer percep-

tron that converts the dimension from d to 3d.
Similar to Eq.(3), the contextual semantic proto-

type of r can be obtained:

mr
s =

1

K

K∑

i=1

Hsir
. (7)

Note that any instance q in the query set Q does
not have the relation description. Therefore, the re-
fined instance representations in Eq.(4) is replaced
with the average pooling and the Mul(·) operation
in Eq.(6) is removed when defining the contextual
semantic representation of q, i.e., Hq

s.

3.2.3 Logic rule
For RE, this logic rule is assumed as a set of condi-
tions that should be occurred simultaneously (Han
et al., 2021a). Taking the “Mother” relation in Fig.1
as an example, whether an instance expresses this
relation must satisfy three conditions: 1) the head
entity is the person type; 2) the tail entity is the
person type; 3) the contextual semantics of this
instance describes the “Mother” relation. Based
on this logic rule, such three conditions can corre-
spondingly be transformed into three probabilities.

Specifically, for a query instance q, the probabil-
ity of the head entity type belonging to relation r
is:

prh =
exp

(
d
(
Hq
h,m

r
h

))

N∑
n=1

exp
(
d
(
Hq
h,m

n
h

)) , (8)

where d (·, ·) indicates the dot product. Analogous
to Eq.(8), the probabilities of the tail entity and the
contextual semantics belonging to the relation r can
also be obtained, i.e., prt and prs. With these three
probabilities, the final probability of q expressing
the relation r is calculated as:

qr = prh · prt · prs. (9)

Consequently, the cross entropy loss is used to
optimize the RE parameters:

LCE = −
∑

q∈Q
log (qr), (10)

where the ground-truth relation label of the query
instance q is r.

3.3 Discrimination finding module
Despite effective in the word-overlap confusion,
the logic-aware inference module cannot handle the
entity-type confusion with the matched entity-type
pair. Then we propose a hierarchical contrastive
learning (including the the instance level and the
category level) to mine subtle differences of rela-
tion instances.

3.3.1 Instance-level contrastive learning
In a support set, we formulate the instance-level
contrastive (He et al., 2020) as follows:

Lins =
−1
NK2

N∑

r=1

K∑

i=1

log

∑K
j=1 exp(Hsir

·H
sjr
/τ1)

∑
r′ 6=r

∑K
k=1(Hsir

·Hsk
r′
/τ1)

,

(11)
where τ1 is a temperature hyperparameter, Hsir

and
H
sjr

belonging to the same relation form positives
and Lins aims to pull the positives closer.

3.3.2 Category-level contrastive learning.
Similar to Eq.(3), the instance-aware relation-
describing prototype of r can be obtained, i.e.,

mr
a =

1

K

K∑

i=1

Hsir
ar . (12)

This prototype mr
a summarizes the instance-aware

traits of relation r. When encountering the predic-
tion confusion, these traits can help RE models to
distinguish the subtle differences of instances.

In a support set, the contextual semantic proto-
type mr

s must be close to the belonged relation-
describing prototype mr

a, and keep away from the
others. Hence, the category-level contrastive learn-
ing is formulated as:

Lcate =
−1
N

N∑

r=1

log
exp (mr

s ·mr
a/τ2)

N∑
j 6=r

exp
(
mr
s ·mj

a/τ2

) ,

(13)
where τ2 is a temperature hyperparameter.

In all, the overall training objective is:

L = LCE + Lins + Lcate, (14)

2133



Task #Rel #Ins Len Link(%)

Training 50 35000 25 98.35
validation 14 9800 24 98.46
testing 16 11200 24 98.70

Table 1: Statistics of FewRel 1.0. “#Rel” and “#Ins”
denote the number of relations and instances, respec-
tively. “Len” means the average token length of in-
stances. “Link” demonstrates the probability of an en-
tity linking to a corresponding type in Go.

4 Experiments

4.1 Dataset

Experiments are conducted on FewRel 1.0 3 (Han
et al., 2018) that consists of 100 relations extracted
from Wikipedia. Since the test set with 20 relations
is unpublished, following previous work (Yang
et al., 2020, 2021), we re-split the published 80 rela-
tions into 50, 14 and 16 for training, validation and
testing, respectively. The statistics of the re-splitted
dataset can refer to Tabel 1. The ontology-level KG
we adopt in this paper comes from KEFDA 4. Be-
sides, the unstructured text knowledge for test data
is represented in Table 5 in Appendix A.1.

4.2 Model Configuration

The model configurations are kept the same among
all discussed models, including our proposal and
the selected baselines. In detail, following (Han
et al., 2018, 2021b), we use the classification accu-
racy to evaluate the performance of DRK on four
typical meta tasks (Han et al., 2018): 5-way 1-shot,
5-way 5-shot, 10-way 1-shot and 10-way 5-shot.
We use BERTbase (Soares et al., 2019) as the text
feature encoder f2 and apply DistMult (Yang et al.,
2015) as the graph neural network (Zheng et al.,
2020b) encoder f1. The embedding dimension of
f2 and f1 is 768 and 256, respectively. We train
and test each model with 20,000 and 10,000 itera-
tion steps, respectively. Besides, we set the batch
size to 4, the weight decay to 2 × 10−5, the max
sentence length Ls to 128, τ1 to 1, and τ2 to 1.

4.3 Baselines

As mentioned above, we introduce several basic
ML and knowledge-based ML methods as base-
lines. In specific, the basic ML approaches contain
GNN (Satorras and Estrach) that considers all the

3https://github.com/thunlp/FewRel
4https://github.com/imJiawen/KEFDA

instances in a meta task as nodes in a graph, then
leverages the label propagation to infer relations,
Snail (Mishra et al., 2018) that combines temporal
convolutions and soft attention to learn information
from past experiences to predict relations, Siamese
(Mishra et al.) that employs siamese neural net-
works to distinguish relations, Proto (Snell et al.,
2017) that calculates the similarity between the
query instance and the relation prototypes to pre-
dict relation types, and BERT-PAIR (Gao et al.,
2019b) that concatenates the query instances with
all labeled support instances as pair sequences, then
identifies the relation type through the similarity
in each pair. ; while the knowledge-based ML
approaches include ConceptFERE 5 (Yang et al.,
2021) that concatenates the entity type with sen-
tence text by a self-attention fusion, and KEFDA
(Zhang et al., 2021) that also concatenates the en-
tity type and sentence text, and leverages a relation-
meta learning network (Chen et al., 2019) to learn
implicit relation matching. Note that all the base-
lines and our proposal use the same text feature and
graph encoders for fair comparisons.

4.4 Overall Evaluation
To examine the few-shot relation extraction perfor-
mance of our proposal as well as the baselines, we
report the overall evaluation results on four types
of meta tasks in Table 2.

Among all baselines, the knowledge-based ML
ConceptFERE achieves the best performance with
the average 1.11% improvement against BERT-
PAIR (the best basic ML) on the four meta tasks.
This performance advancement reflects the benefits
brought by the external knowledge that provides
auxiliary clues for relation extraction. Compared
with ConceptFERE, our proposal DRK can further
enhance the extraction performance with the re-
spective improvements of 6.72%, 2.30%, 10.73%
and 4.17% on the four meta task. Such model
improvements prove the effectiveness of DRK by
relieving the prediction confusions.

Clearly, as the shot number decreases, all dis-
cussed models get impaired. For example, compar-
ing meta tasks on 5-way 1-shot and 5-way 5-shot,
the best baseline ConceptFERE loses the relative
6.71% model performance (9.56% in 10-way 1-
shot vs. 10-way 5-shot). These phenomena show
that these models are sensitive to the shot number,

5We use the ConceptFERE(simple) version here to allow
for the computation overheads in the training of “5-way 5-shot”
and “10-way 5-shot” meta tasks.

2134



Model 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot

Snail 57.82 80.53 50.40 68.11
GNN 66.48 82.65 48.14 73.22

Siamese 81.29 88.18 71.00 81.12
Proto 78.59 88.99 64.07 81.80

BERT-PAIR 82.57 89.00 73.37 81.81
KEFDA 80.46 89.88 68.23 81.49

ConceptFERE† 84.28 90.34 74.00 81.82
DRK(Our) 89.94M 92.42M 81.94M 85.23M

Table 2: Few-shot relation extraction performance in terms of accuracy(%) on four types of meta tasks. †means the
results are quoted from the original paper (Yang et al., 2021). Results of the best baseline and the best performer
in each column are underlined and boldfaced, respectively. Statistical significance of pairwise differences of DRK
vs. the best baseline is determined by a t-test (M for α = 0.05).
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Figure 3: Effect on the performance of our proposal and baselines affected by the sentence length.

and prone to fail when the labeled data become
fewer. In the same comparisons about the shot
number, however, DRK only has 2.68% and 3.86%
performance wastage, indicating that DRK is more
robust than other methods in the low-data regime.

4.5 Impact of sentence length

To explore the performance of few-shot RE af-
fected by the sentence length, we group the test-
ing performance of our proposal and baselines

based on the sentence length Ls. Consider-
ing the distribution of testing data, the sentence
length is divided into four groups, i.e., Ls ∈
(0, 15), [15, 30), [30, 45), [45,+∞). With these
sentence groups, the results on the 5-way 1-shot, 5-
way 5-shot, 10-way 1-shot and 10-way 5-shot meta
task are plotted in Fig.3. Then, we take the perfor-
mance on the 5-way 1-shot meta task for instance
to analyze the results.

In general, with the increase of sentence length,
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Model 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
DRK 89.94 92.42 81.94 85.23
- logic&text 84.08 90.48 79.02 81.90
- logic&type 83.64↓ 90.37↓ 74.60↓ 81.45↓
- instance 88.07 91.80 80.53 83.43
- category 85.22 90.63 79.83 81.63

Table 3: Ablation studies on DRK, where “-logic&text” (“-logic&type”) means that the logic-aware inference
module is replaced with prototypical networks that do not use entity type from ontology-level KG (the simple
concatenation of incorporating entity type from ontology KG), while “-instance” (“-category”) denotes the removal
of the instance-level (category-level) contrastive learning, and the biggest drop in each column is appended ↓.

almost all models (except for Snail on 5-way 1-shot
meta task in Fig.3a) exhibit a ever-decreasing trend
in terms of the model performance. This down-
ward trend can be attributed to the fact that short
sentences are more concise than long sentences in
the grammatic structure, and hence easier for RE
models to understand their semantics. In particular,
the steep performance degenerations in KEFDA
and ConceptFERE shown in Fig.3a further confirm
our hypothesis about the existing knowledge-based
ML methods. Furthermore, the upward trend of
Snail in Fig.3a may be due to the probable error
in the low-shot setting. In other three meta tasks,
Snail still keeps the decreasing trend.

Next, let’s focus on our proposal DRK. Clearly,
DRK still presents notable performance advan-
tages over all baselines for each sentence group.
For example, compared to the best baseline Con-
ceptFERE on 5-way 1-shot meta task in Fig.3a,
DRK achieves 0.47%, 4.51%, 4.90% and 6.96%
model improvements in terms of accuracy when
Ls ∈ (0, 15), [15, 30), [30, 45), [45,+∞), respec-
tively. Interestingly, the improvement magnitude
of DRK always keeps pace with the increase of
sentence length. This increasing pattern can be
explain by the fact that DRK can effectively ex-
tract distinguishable features from overlong sen-
tences, thereby reducing the adverse effect of mas-
sive noises in sentences.

Similar findings can also be found on the 5-way
5-shot, 10-way 1-shot and 10-way 5-shot meta
tasks. The ever-decreasing trend in the 5-way 1-
shot also appears in these meta tasks. Comparing 1-
shot and 5-shot meta tasks, all the methods achieve
improvements for four sentence groups due to the
increase of training data. Besides, compared to
baselines, our proposal achieves the biggest im-
provements for four sentence groups in Fig.3c than
on the other three meta tasks. This phenomenon

shows that our proposal is robust and competitive
on the most challenging 10-way 1-shot meta task.

4.6 Ablation Studies

In order to better understand the contributions of
different components, the ablation studies are con-
ducted on four types of meta tasks. In the abla-
tion studies, we remove or replace some specific
parts to measure their influence on DKR, which is
marked with the notation“-”. The ablation results
are demonstrated in Table 3.

Clearly, the removal or replacement of compo-
nents all leads to the model degeneration, proving
the efficacy of each component. In particular, the
biggest drop happens in “-logic&type”, which re-
flects that the logic-aware inference module plays
a key role in few-shot RE and simple concatena-
tion in previous works probably cannot improve
the model performance. These findings can be
further verified in the comparison of “-logic&text”
and “-logic&type”, where the model incorporating
the ontology-level KG (“-logic&type”) loses the
competitions against the model only using text (“-
logic&text”). Besides, in the discrimination finding
module, losing the category-level contrastive learn-
ing is more sever than DRK without the instance
level one. The comparisons demonstrate that com-
pared to the instance-level contrastive learning, the
category-level one can better identify inter-class
differences to help predict relations.

4.7 Error analyses

To further figure out the error causes, we conduct
error analyses of our proposal and the best base-
line ConceptFERE on the test set. In particular,
we divide the causes of classification errors into
there main categories: word-overlap (word), entity-
type (entity) and others. For each test relation,
we randomly select 5 instances (i.e., K=5) and 50
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Relation Correct Word Entity Other Top 2 confounders

constellation
0.98 0.02 0.00 0.00 follows(0.02)
0.96 0.03 0.00 0.01 part of(0.02),located in body of water(0.02)

part of
0.50 0.35 0.08 0.07 follows(0.10)
0.40 0.39 0.11 0.10 member(0.18), subject(0.14)

mother
0.92 0.00 0.08 0.00 child(0.06), spouse(0.02)
0.52 0.00 0.48 0.00 child(0.42), spouse(0.06)

spouse
0.48 0.00 0.52 0.00 child(0.44), mother(0.08)
0.36 0.02 0.72 0.00 child(0.34), mother(0.28)

Table 4: Rates of the correct predictions (Correct), the word-overlap error (Word), the entity-type error (Entity)
and the other errors (Other) in DRK (shown in orange) and ConceptFERE (shown in blue). Top 2 confounders list
the top two wrongly-predicted relations and their rates.

instances of this relation into the support set and
the query set, respectively. And in the evaluating
process, the support set is used to calculate the re-
lation prototype, then predict the relation label in
the query set based on the similarity to the relation
prototype. Also, we repeat the process three times
and reported the mean result. Note that the predic-
tion rate in the query set is presented relation-by-
relation. Based on this setting, the error analyses
of some relations are listed in table 4, and the other
test relations can refer to Appendix A.2.

As shown in table 4, the rate of correct predic-
tion varies widely among different relations, es-
pecially for some confusion relations (“part of”
and “spouse”), their performance are much lower
than expected. This unexpected performance is
stemmed from the “word” and “entity” error types.
Besides, the top 2 confounders have similar expres-
sions or the same entity-type pairs as the instances
of the ground-truth label. These findings all verify
our arguments that owing to the limited inference
based on the shallow features, RE models easily
fall into the prediction confusions.

Fortunately, DRK relieves the prediction con-
fusion by reducing the rates of these two errors.
Taking “spouse” as an example, DRK achieves
obvious declines in the “word” and “entity” er-
rors against ConceptFERE (reducing 0.02 and 0.20
rates, respectively). Furthermore, DRK lowers the
number of confounders relations. For example, tak-
ing “constellation” for example, ConceptFERE has
two confounders (“part of” and “located in body
of water”) while DRK only has one confounder
(“follows”). The above phenomena demonstrate
that our proposal can further boost RE performance
for each relation by reducing these errors, rather

than improving easy relations for good average
performance as the baselines do.

5 Conclusion

This paper focuses on the prediction confusions
in few-shot RE. To relieve these confusions, this
paper develops a discriminative rule-based knowl-
edge (DRK) method consisting of a logic-aware
inference module and a discrimination finding mod-
ule. Specifically, the first module relieves the word-
overlap confusion through the rule-based knowl-
edge incorporation and the other module alleviates
the entity-type confusion by a hierarchical con-
trastive learning. Extensive experiments show the
effectiveness of our proposal. As for future work,
we plan to explore the confusion by the parameter-
efficient prompt tuning (Lester et al., 2021; Liao
et al., 2022).
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A Appendix

A.1 Dataset
We demonstrate some unstructured text knowledge,
including the relation id„ name and description in
Table 5.

A.2 Errors in test relations
Following the setting in section §4.7, the detail
prediction performance of DRK and ConceptFERE
on each test relation is shown in Table 6.

In general, our proposal outperforms the baseline
for almost all test relations, and the observations
from section §4.7 can also be found in Table 6.
Besides, compared to the ConceptFERE that only
precisely identifies one relation (P2094), our pro-
posal can accurately identify four relations (P177,
2094, P412 and P413), which demonstrates our
proposal has a competitive inference ability. How-
ever, our proposal underperforms the baseline for
the relation P206. This unusual relation may be
stemmed from an improper representation of en-
tity in the linking process, thereby invalidating our
proposed modules.
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Id Ralation name Relation description

P155 follows immediately prior item in a series of which the subject is a part.
P177 crosses obstacle (body of water, road, ...) which this bridge crosses over or this

tunnel goes under.
P206 located in or next to

body of water
located in or next to body of water", "sea, lake or river".

P2094 competition class official classification by a regulating body under which the subject
(events, teams, participants, or equipment) qualifies for inclusion.

P25 mother female parent of the subject. For stepmother, use stepparent.
P26 spouse the subject has the object as their spouse (husband, wife, partner, etc.)
P361 part of object of which the subject is a part (it’s not useful to link objects

which are themselves parts of other objects already listed as parts of the
subject).

P364 original language of
film or TV show

language in which a film or a performance work was originally created.

P40 child subject has object as biological, foster, and/or adoptive child.
P410 military rank military rank achieved by a person.
P412 voice type person’s voice type. expected values: soprano, mezzo-soprano, con-

tralto, countertenor, tenor, baritone, bass (and derivatives).
P413 position played on

team
position or specialism of a player on a team, e.g. Small Forward.

P463 member of organization or club to which the subject belongs. Do not use for
membership in ethnic or social groups, nor for holding a position such
as a member of parliament.

P59 constellation the area of the celestial sphere of which the subject is a part (from a
scientific standpoint, not an astrological one).

P641 sport sport in which the subject participates or belongs to.
P921 main subject primary topic of a work.

Table 5: Relation descriptions for the test set with the relation id, name and description content.

Id Correct Top 2 confounders

P155 0.88 0.86 P361(0.04), P463(0.04) P361(0.04), P463(0.04)
P177 1.00 0.96 None P361(0.02), P206(0.02)
P206 0.42 0.62 P177(0.38),P361(0.20) P177(0.38)
P2094 1.00 1.00 None None
P25 0.92 0.52 P40(0.06), P26(0.02) P40(0.42), P26(0.06)
P26 0.48 0.36 P40(0.44), P25(0.08) P25(0.34), P26(0.28)
P361 0.50 0.40 P463(0.20), P155(0.10) P463(0.18), P921(0.14)
P364 1.00 0.98 None P921(0.02)
P40 0.82 0.66 P26(0.06), P25(0.06) P25(0.28), P26(0.06)
P410 0.98 0.98 P413(0.02) P413(0.02)
P412 1.00 0.96 None P413(0.04)
P413 1.00 0.82 None P412(0.14), P2094(0.04)
P463 0.82 0.76 P361(0.10), P412(0.06) P361(0.08), P26(0.04)
P59 0.98 0.96 P155(0.02) P206(0.02), P361(0.02)
P641 0.48 0.82 P413(0.30), P2094(0.10) P412(0.16), P364(0.02)
P921 0.52 0.40 P361(0.24), P641(0.06) P463(0.18), P59(0.14)

Table 6: Rates of the correct prediction and top 2 confounders in our proposal DRK (shown in orange) and Con-
ceptFERE (shown in blue)
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Abstract

We propose, DocQueryNet, a value retrieval
method with arbitrary queries for form-like doc-
uments to reduce human effort of processing
forms. Unlike previous methods that only ad-
dress a fixed set of field items, our method pre-
dicts target value for an arbitrary query based
on the understanding of the layout and seman-
tics of a form. To further boost model per-
formance, we propose a simple document lan-
guage modeling (SimpleDLM) strategy to im-
prove document understanding on large-scale
model pre-training. Experimental results show
that DocQueryNet outperforms previous de-
signs significantly and the SimpleDLM further
improves our performance on value retrieval
by around 17% F1 score compared with the
state-of-the-art pre-training method. Code is
available here.

1 Introduction

Form-like documents are very commonly used in
business workflows. However, tremendous forms
are still processed manually everyday. When hu-
mans need to extract some relevant information
from a form-like document, they proceed as con-
ducting a value retrieval task with some text queries.
For example in Figure 1, when humans process a
form, they usually have a description of the infor-
mation (query) that they want to extract (e.g., total
page number). Then, they examine the form (usu-
ally an image or a PDF) carefully to locate the key
(e.g., NUMBER OF PAGES INCLUDING COVER
SHEET in Figure 1) that is most semantically sim-
ilar to the query and finally infer the target value
based on the localized key. This manual process
costs a large amount of human efforts as the num-
ber of forms and queries increases. Automating
information extraction from forms is important to
alleviate this problem.

∗Mingfei and Le contributed equally.

key value

Query: total page number Target value: 3

Figure 1: Illustration of the value retrieval with an ar-
bitrary query. A user obtains the target value from a
document based on a query of interest. Some values are
decorated with a mosaic for privacy purposes.

Existing methods formulate the problem as se-
quence labeling (Xu et al., 2020b) or field extrac-
tion (Gao et al., 2022), where they define a fixed
set of items of interest (referred as fields) and train
models that only extract values of the pre-defined
fields. There are at least two limitations of this
formulation. First, forms are very diverse and it is
impossible to cover all the items of interest using
a fixed set of fields. Second, their models are very
domain-specific and hard to be utilized for different
form types. For example, an invoice field extractor
may not be able to process resumes, since different
fields are expected for these two form types.

To handle diverse queries with a unified model,
we formulate the problem as value retrieval with
arbitrary queries for form-like documents. Under
such task formulation, users can extract values from
a form by presenting variants of the corresponding
keys as queries. We also set up a benchmark for the
task by introducing a simple yet effective method,
i.e., DocQueryNet. DocQueryNet takes an arbi-
trary query phrase and all the detected optical char-
acter recognition (OCR) words with their locations
in the form as inputs. Then, we model the inter-
actions between the query and the detected words
from the document using a transformer-based ar-
chitecture. The training objective encourages the
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matching of the positive query-value pairs and dis-
courages that of the negative ones. To further boost
the performance, we present SimpleDLM, a sim-
ple document pre-training strategy that makes it
more flexible to learn local geometric relations
between words/tokens compared to existing pre-
trained models. Experimental results show that
DocQueryNet outperforms the baselines by a large
margin under different settings. When initializing
using SimpleDLM, our method is further improved
largely by about 17% F1 score compared to initial-
izing using a state-of-the-art (SOTA) pre-trained
model, i.e., LayoutLM (Xu et al., 2020b).

2 Related Work

2.1 Information Extraction from Documents

Information extraction from documents is crucial
for improving the efficiency of form processing and
reducing human labor. Information extraction is of-
ten formulated as a field extraction task. Palm et al.
2019 propose an invoice field extractor by using
an Attend, Copy, Parse architecture. Majumder
et al. 2020 present a field-value pairing framework
that learns the representations of fields and value
candidates in the same feature space using metric
learning. Nguyen et al. 2021 propose a span ex-
traction approach to extract the start and end of
a value for each field. Gao et al. 2022 introduce
a field extraction system that can be trained with
large-scale unlabeled documents. Xue et al. 2021
propose form transformations to mimic the varia-
tions of forms for robustness evaluation. Unlike
previous methods that aim to extracting values for
a pre-defined set of fields, our method targets at
retrieving values for arbitrary queries.

2.2 Document Pre-training

Document pre-training is an effective strategy to
improve document-related downstream tasks. Xu
et al. 2020b propose LayoutLM that models inter-
action between texts and layouts in scanned docu-
ments using masked language modeling and image-
text matching. Later, LayoutLMv2 (Xu et al.,
2020a) introduces a spatial-aware self-attention
mechanism to improve learning relative positional
relationship among different text blocks. Most re-
cently, Appalaraju et al. 2021 propose DocFormer
that encourages the interaction between image and
text modalities by adding an image reconstruction
task. The existing pre-training methods perform
well when applied to downstream tasks such as

document classification and token sequence label-
ing. However, all of the above methods include the
absolute 1-D positional embedding (the so called
reading order) of the tokens in the inputs. Although
this 1-D embedding is a helpful prior knowledge
for a holistic understanding of a document, it hin-
ders a model from learning rich geometric rela-
tionship among tokens, thus is not beneficial to
our value retrieval task, where local geometric rela-
tionship between words is essential for prediction.
Our method uses permutation-invariant positional
encoding to improve model performance.

3 Our Approach

Problem Formulation. The inputs to the sys-
tem are an expected key phrase as the query, Qi,
and a document Di. Di is represented using a
set of OCR words {wi1, wi2, ..., wiN} and their
bounding-box locations {bi1, bi2, ..., biN} in the
document. The input query phrase is tokenized
to Qi = {qi1, qi2, ..., qiM}. A value retrieval sys-
tem reads the document and understands the layout
and semantics. The goal is to pick a phrase from
the OCR words as the value Vi for the input query,
Qi. Since the modeling is within one document,
we will omit the subscript i for simplicity.

3.1 Value Retrieval with Arbitrary Queries

To the best of our knowledge, there are no existing
methods explicitly address value retrieval with ar-
bitrary queries from scanned forms. However, it is
possible to apply the recent pairing-based field ex-
traction methods (Majumder et al., 2020; Nguyen
et al., 2021) to this task with some modification.
In previous design, they first embed fields using a
text encoder, extract OCR word representation by
modeling the interaction of OCR words using self-
attention and then conduct the field-value pairing.
To accommodate arbitrary queries, we can simply
replace their field (in a fixed set) embedding with
the embedding of an arbitrary query as shown in
Figure 2 (previous method). There are two obvi-
ous drawbacks of these methods: (1) they model
the interaction between query and OCR words in
a shallow way using only simple fully connected
layers and (2) they require an additional model of
text encoder for query embedding which introduces
extra computational cost. We set this previous de-
sign as our baseline. The implementation details
are shown in the appendix.

In contrast, our DocQueryNet utilizes a unified
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Figure 2: Comparison of previous methods and our method (see details in Section 3).

model to deeply model interactions among the
query words and the OCR words. The direct in-
puts are a query {q1, q2, ..., qM} and OCR words
{w1, w2, ..., wN} associated with their locations
{b1, b2, ..., bN}. We use a fixed dummy location
b0 for each query. Each query/OCR word is em-
bedded as f txtwj ∈ Rd and its location is encoded
as f locbj ∈ Rd, where d indicates the length of each
vector (see Section 3.2 for details). The final em-
bedding of each word (e.g., fqj for a query word or
fwj for an OCR word) is the summation of its word
embedding and location embedding.

A transformer is used to model the interactions
among {fq1 , fq2 .., fqM } and {fw1 , fw2 , ..., fwN } via
L self-attention layers. In the lth layer, the hidden
representation of the jth token is updated following

hlj = Softmax(
hl−1j Hl−1T
√
dh

) ·Hl−1, (1)

where Hl−1 indicates the representation of all
tokens from the (l − 1)th layer and dh denotes
the length of the hidden feature hlj . H0 =
{fq1 , fq2 , ..., fqM , fw1 , fw2 ..., fwN }. In the final
layer, HL = {f̂q1 , f̂q2 , ..., f̂qM , f̂w1 , f̂w2 ..., f̂wN }.
The self-attention mechanism deeply models the
interactions among query words and OCR words.

We obtain the query phrase representation, Φ,
using average pooling over {f̂q1 , f̂q2 , ..., f̂qM }. The
final representation of wj is obtained by ϕwj =

FC(f̂wj ), where FC indicates a fully connected
layer. The likelihood score ofwj being a part of the
target value of the query is obtained in Equation 2

sj = Sigmoid(ϕwj · ΦT ). (2)

Our model is expected to learn (1) the layout and

semantics of the document (2) the mapping be-
tween the input query phrase and the actual key
texts in the document and (3) the geometric and
semantic relationship between the key and value.
Model optimization. During training, each wj is
associated with a ground-truth label yj ∈ {0, 1},
where 1 means this word is a part of the target value
and 0 means it is not. The model is optimized using
binary cross entropy loss as 1

N

∑N
j=1 yj logsj+(1−

yj)(1− logsj).
Inference. Since the target value may contain mul-
tiple words, we group nearby OCR words horizon-
tally as value candidates, {g1, g2, ..., gD}, based on
their locations using DBSCAN algorithm (Ester
et al., 1996), where D is the number of grouped
candidates. The value score of each candidate,
gr, is the maximum of all its covered words as
Sr = maxwj∈gr sj , where, wj ∈ gr indicates the
OCR word wj is a part of the grouped gr. The
value candidate with the highest score is used as
the value prediction.

3.2 SimpleDLM for Document Pre-training

We introduce a Simple Document Language Mod-
eling (SimpleDLM) method to encourage the un-
derstanding of the geometric relationship among
words during pre-training.

The inputs to our pre-trained model are the OCR
words {w1, w2, ..., wN} associated with their loca-
tions {b1, b2, ..., bN}. The word/location embed-
ding protocol and the transformer structure of our
pre-trained model are the same as those of our value
retrieval model such that the pre-trained model can
be directly used for initializing the parameters of
the value retrieval model. Specifically, the word
embedding, f txtwj , is constructed by using a simple
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look up table. Previous works (Xu et al., 2020b,a;
Appalaraju et al., 2021) require the input text sorted
in the reading order, so that they can process texts
of the document in a similar way of processing
languages. They leverage this prior knowledge
by adding the ranking of each word as the 1-D
positional embedding in the final location embed-
ding, f locbj . This 1-D embedding provides a holistic
view of the geometric relationship of words. How-
ever, it introduces extra dependence on the OCR
engines (most SOTA OCR engines do not have the
capability of sorting detected OCR words in the
reading order), and it also restricts the model from
learning local geometric relations between words
in a flexible way. To encourage a model to bet-
ter learn the local geometric relations, we exclude
the 1-D positional embedding and only encode the
2-D bounding-box location (top-left, bottom-right,
width and height) of each word using a lookup table.
For simplicity, we only use the masked language
modeling as the pre-training objective. We show
in Section 4 that our method improves the SOTA
largely by using this simple pre-training strategy.

4 Experiments

The following datasets are used in our experiments.
IIT-CDIP (Lewis et al., 2006) is a large-scale
unlabeled document dataset that contains more
than 11 million scanned images. Following prior
works (Xu et al., 2020b,a; Appalaraju et al., 2021),
our model is pre-trained using this dataset.
FUNSD (Jaume et al., 2019) is a commonly used
dataset for spatial layout analysis. It contains 199
scanned forms with 9,707 semantic entities anno-
tated, where 149 samples are for training and 50
for testing. The semantic linking annotations for
all the key-value pairs are provided in the dataset.
INV-CDIP (Gao et al., 2022) is document
dataset which contains 350 real invoices for test-
ing. This dataset has key-value pair annota-
tions for 7 commonly used invoice fields includ-
ing invoice_number, purchase_order, invoice_date,
due_date, amount_due, total_amount and total_tax.
We evaluate our model using this test set.
Settings. By default the annotated key texts of
each dataset is used as the queries. The location of
the keys are not used. Models are pre-trained on
IIT-CDIP and fine-tuned on the train set of FUNSD.
More implementation details are in the appendix.
Evaluation Metric. We use F1 score to evaluate
models. Exact string matching between our pre-

Model Pretrain Precision Recall F1

Baseline
Bert 31.7 32.0 31.9

LayoutLM 41.8 42.1 41.9
SimpleDLM 56.0 56.5 56.3

Ours
Bert 35.1 35.4 35.3

LayoutLM 43.6 43.9 43.8
SimpleDLM 60.4 60.9 60.7

Table 1: Comparisons on FUNSD when our model and
baseline use different pre-trained models. Ours indi-
cates DocQueryNet.

Model Query Precision Recall F1
Baseline

Exact Key
33.5 31.5 32.5

Ours 50.5 47.6 49.0
Baseline

Field Name
6.0 5.6 5.7

Ours 21.2 19.9 20.5

Table 2: Comparison in the transfer setting. Models
are trained on FUNSD and evaluated on INV-CDIP.
SimpleDLM is used for both methods. Ours indicates
DocQueryNet.

dicted values and the ground-truth ones is used to
count true positive, false positive and false negative.
If a query has multiple value answers, a prediction
is counted as correct if it equals one of them.
Experimental Results. The comparisons between
our DocQueryNet and the baseline when pre-
trained using different approaches are shown in
Table 1. The performance of both methods are im-
proved largely with SimpleDLM. For the baseline,
the F1 score is improved by 14.4% when replac-
ing the LayoutLM with our SimpleDLM as the
pre-trained model. Similarly, using SimpleDLM
increases the F1 score of our method by 16.9%
compared to using LayoutLM. Our method out-
performs the baseline by 3-4% using different pre-
trained models.

Transferring ability to another dataset is impor-
tant in real-world applications. We measure this
ability by directly evaluating the trained models us-
ing FUNSD to the test set of INV-CDIP in Table 2.
As shown, when transferring to a new dataset, the
performance of both our method and the baseline
drops, compared to the numbers in Table 1. When
using the exact key as the query, our method largely
surpasses the baseline by 16.5% in F1 score.

In practice, we may not assume the input queries
match exactly with the actual keys shown in a form.
Here, we experiment using the field names directly
as the queries. Using field names is a more conve-
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nient way, since users don’t need to design different
queries that match keys for different forms. How-
ever, field names are more abstract, which makes
the problem more challenging. When using the
abstract field name as a query, our method achieves
20.5% F1 which is 14.8% better than our baseline.
Discussion. We use a dummy box to serve as the
location of a query word, since there are no ac-
tual boxes for the query words in practice. This
choice may make our model lose the sequential
ordering information of a query phrase. To inves-
tigate this effect, we conduct an experiment and
leverage the ordering information of query words
by adding different positional ids to different words
of a query in our model. The results show that this
change decreases our performance from 60.7% to
60.3% in F1 score on FUNSD and from 49.0% to
47.6% in F1 score on INV-CDIP. It may be because
that queries with the same meaning might be repre-
sented with words in different orders. For example,
total amount could be referred to as amount to-
tal. Ignoring the ordering could help improve our
model’s generalization ability.

5 Conclusion

We introduce DocQueryNet, a framework for value
retrieval with arbitrary queries for form-like docu-
ments. It takes a query and the detected OCR words
from a document as inputs, models their interac-
tions and predicts the best value corresponding to
the input query. We also present SimpleDLM as a
pre-training strategy to boost performance. Experi-
mental results show that our method significantly
outperforms previous designs in different settings.

6 Broader Impacts

This work is introduced to automate the infor-
mation extraction from forms to improve docu-
ment processing efficiency. It has positive impacts
such as reducing human labor. However, reduc-
ing human labor may also cause negative conse-
quences such as job loss or displacement, particu-
larly amongst low-skilled labor who may be most in
need of gainful employment. The negative impact
is not specific to this work, but should be addressed
broadly in the field of AI research.
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A Appendix

A.1 Implementation Details
Our code is implemented using Pytorch. We used
Tesseract1 to extract OCR words from documents
for IIT-CDIP and INV-CDIP. Since FUNSD pro-
vides an official OCR annotation, we use it directly.
The total number of query words M and the OCR
words are different for different queries and doc-
uments. We keep M + N = 512 and pad with
0s when needed. We follow LayoutLM-base 2 to
setup the structure of our transformers. The fully
connected layer used for feature projection has 768
units. Each document is rescaled to [1000, 1000]
and the dummy location, b0, is set to [0, 0, 1000,
1000]. Adam is used as the optimizer. During
pre-training, the learning rate is 5e−5. During fine-
tuning, the learning rate is set to 3e−5 with weight
decay equals to 0.9. SimpleDLM is initialized by
LayoutLM and pre-trained on IIT-CDIP using 8
Nvidia A100 GPUs with a batch size of 36 for one
epoch. We use a single A100 GPU for fine-tuning,
where the training batch size is 8 and the total num-
ber of epochs is 45. In our experiments, all the
pre-trained models including Bert, LayoutLM and
SimpleDLM are base models. The pre-training and
fine-tuning of our method take about 10 hours and
2 hours, respectively.

To perform a fair comparison, our method and
baseline adopt the same experimental settings ex-
cept for the interaction strategy. The baseline has
the same transformer architecture and the feature
projection layer as our method. The transformer
takes OCR words with locations as inputs and ob-
tain ϕwj for each word wj . And then, the query-
value pairing score sj is obtained by measuring
the distance between the query representation, Φ,
and ϕwj . The query representation is obtained by
average pooling over word embeddings extracted
from a pre-trained Bert model.

1https://github.com/tesseract-ocr/tesseract (Apache Li-
cense 2.0)

2https://github.com/microsoft/unilm/tree/master/layoutlm/deprecated
(MIT License)
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Abstract

Cross-domain named entity recognition aims to
improve performance in a target domain with
shared knowledge from a well-studied source
domain. The previous sequence-labeling based
method focuses on promoting model parame-
ter sharing among domains. However, such
a paradigm essentially ignores the domain-
specific information and suffers from entity
type conflicts. To address these issues, we
propose a novel machine reading comprehen-
sion based framework, named DoSEA, which
can identify domain-specific semantic differ-
ences and mitigate the subtype conflicts be-
tween domains. Concretely, we introduce an
entity existence discrimination task and an
entity-aware training setting, to recognize in-
consistent entity annotations in the source do-
main and bring additional reference to bet-
ter share information across domains. Experi-
ments on six datasets prove the effectiveness of
our DoSEA. Our source code can be obtained
from https://github.com/mhtang1995/DoSEA.

1 Introduction

Named entity recognition(NER) is a fundamental
task in natural language processing and has been
extensively studied in various domains. However,
acquiring a high performance NER model heav-
ily relies on labor-intensive annotated data (Huang
et al., 2015; Devlin et al., 2019). Thus, there is a
growing interest in cross-domain NER, which aims
to exploit the information on a well-studied source
domain to improve the performance in a target do-
main (Pan and Yang, 2010). Following Daumé III
(2007), we focus on the supervised cross-domain
NER setting, which utilizes abundant annotated
samples from the source domain and small anno-
tated samples from the target domain.

Previous studies (Kim et al., 2015; Lin and Lu,
2018; Wang et al., 2018b; Jia and Zhang, 2020) typ-
ically treat cross-domain NER task as a sequence

∗Peng Zhang is the corresponding author

U.S. President Bill Cliton had to drop the resort of Ballybunion

Examples from CoNLL-2003

Examples from CrossNER Politics 

Hagelin stood as a candidate for President of the U.S. for the 

by Tutsi forces in Rwanda’s civil war ... 

LOC PER

LOC

POL COU

POLP

Spanish Republicans to Mexico after the Civil War...    
MISC COU EVE

MISC

MISC

PER: Person
LOC: Location

ORG: Organisation  
MISC: Miscellaneous

ORG

POL: Politician  
COU: Country

EVE: Event
POLP: Politicalparty

from a whirlwind  ... former Hutu fled to Zaire after being defeated 

Natural Law Party , a party found ... his role in admitting defeated    

Figure 1: Examples from CoNLL-2003 and CrossNER
Politics dataset.

labeling problem, classifying each word as a type
of entity. However, cross-domain NER is chal-
lenging due to the entity type difference between
domains, since the target domain contains specific
entity types. As Figure 1 shows, CrossNER Politics
dataset (Liu et al., 2021) contains specific entity
types(e.g., Event, Politician, Country and Politi-
cal Party), which are not labeled in the CoNLL-
2003 dataset (Sang and Meulder, 2003). Thus, the
sequence-labeling based method commonly adopts
separate model structures(CRF or softmax layer)
for each domain, which primarily limits the param-
eter sharing across domains.

A series of fine-tune methods (Lee et al., 2017;
Lin and Lu, 2018) and multi-task learning meth-
ods (Wang et al., 2018b; Jia and Zhang, 2020) have
been proposed for promoting parameter sharing.
The fine-tune method first trains a model using
source domain samples, then fine-tunes the model
using target domain samples with an initialized la-
bel decoder. However, it depends on the sizes of
target domain samples to learn a strong label de-
coder. Conversely, the multi-task learning method
simultaneously trains a model for both domains
under the jointly training strategy, and it essen-
tially adds auxiliary tasks to facilitate parameter
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sharing. Specifically, Wang et al. (2018b) adds
KL-divergence in the features of identical entity
types between each domain’s CRF layer. Jia and
Zhang (2020) models entity type features as sepa-
rate cell states in a multi-cell compositional LSTM
structure, then shares the same entity type’s fea-
tures across domains. However, they ignore the
domain-specific information and suffer from en-
tity type conflicts. For example, CoNLL-2003 and
CrossNER Politics both contain "Location" enti-
ties, but the latter requires a distinction between
"Location" and "Country", which is not considered
in the former. In this case, previous work (Liu
et al., 2021) indicates the subtype conflicts, since
the cross-domain NER model may tend to classify
"Country" as “Location” entities.

To this end, we propose a novel framework
named Domain-specific Entity-aware(DoSEA) net-
work for cross-domain NER, which aims to mit-
igate the negative impacts raised by the domain-
specific entity types. Specifically, instead of assign-
ing a separate model structure for each domain, our
DoSEA formalizes NER as a machine reading com-
prehension (MRC) task (Li et al., 2020), which can
naturally combine domain-related questions with
annotated samples, to share all model parameters
across domains. Moreover, we propose an entity
existence discrimination (EED) task and an entity-
aware training setting to recognize inconsistent en-
tity annotations and handle the subtype conflicts.
The EED task is designed to determine whether
each type of entity exists in a sentence. As for the
entity-aware training setting, we utilize the EED
task to aware the presence of inconsistent annotated
entities in source domain samples, then transform
these entities to the target domain-specific entities
by leveraging the explicit hierarchical relationship.
The above procedures not only alleviate the sub-
type conflicts but also bring additional reference
to better share information across domains. The
main contributions of this paper are summarized as
follows:

• We propose a novel framework named DoSEA
for cross-domain NER, to handle the issues
raised by the specific entity types from the
target domain.

• In our method, we design an entity existence
discrimination task and an entity-aware train-
ing setting to alleviate the subtype conflicts,
which can identify the presence of each type

of entity and transform the inconsistent anno-
tated entities into hierarchical target domain-
specific entities in source domain samples.

• Experimental results on six datasets show the
superiority of our DoSEA over the state-of-
the-art methods.

2 Related Work

MRC for NER Task. The goal of the machine
reading comprehension(MRC) task is extracting
answer spans from a sentence through a given ques-
tion. There have been successful attempts to for-
malize other task as MRC task, such as NER (Li
et al., 2020), relation extraction (Li et al., 2019) and
event extraction (Liu et al., 2020a). As for the NER
task, Li et al. (2020) first formulate NER as MRC
to handle both flat and nested NER tasks. Xue
et al. (2020) proposed a coarse-to-fine pre-training
framework for NER task based on the MRC frame-
work. Zhang et al. (2021) add MRC task in the
training process of zero-resource NER task.

Cross-domain NER. Multi-task learning meth-
ods (Yang et al., 2017; Wang et al., 2018b; Jia
et al., 2019; Jia and Zhang, 2020) have been popu-
lar in cross-domain NER, which is used to add the
auxiliary task to improve performance. Jia et al.
(2019) jointly trains the NER and LM tasks in a pa-
rameter generator network. Jia and Zhang (2020)
proposed a multi-cell compositional LSTM struc-
ture for cross-domain NER, which models each
entity type as a separate cell state. Fine-tune meth-
ods (Lee et al., 2017; Rodríguez et al., 2018; Cui
et al., 2021) also show strong performance, which
pre-trained a model in a source domain and then
fine-tune the model in a target domain.

Some works try to achieve accurate transfer
learning for cross-domain NER (Ruder and Plank,
2017; Wang et al., 2018a; Chen et al., 2021). Wang
et al. (2018a) classifies source domain samples by
similarity metrics and assigns different weights for
training. Chen et al. (2021) proposes a data aug-
mentation approach to transform the data repre-
sentation across domains. A few works consider
the relationship between entity types (Kim et al.,
2015; Qu et al., 2016). Qu et al. (2016) considers
the mentioned relationship between the source and
target entity types, such as "Professor" and "Stu-
dent". Compared with them, our proposed DoSEA
is built on the MRC model, which aims to handle
the issues raised by the specific entity types from
the target domain.
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3 Methodology

Figure 2 shows that DoSEA has three components,
including a context encoder, a multi-task layer and
an entity-aware training setting. The multi-task
layer contains entity existence discrimination(EED)
task and entity span prediction(ESP) task. In the
entity-aware training setting, we adopt different
training processes for source and target domains.

3.1 Problem formulation

Given a sentence x = (x1, x2, · · · , xn), where n
denotes the word length of sentence x. An entity
ett = (xtstart, · · · , xtend) is a substring of x satisfy-
ing start≤end, where t represents the entity type.
Besides, we define yt ∈ {0, 1} as the ground-truth
of whether the t type of entity exists in sentence x.

Combining with Questions. Given sentence xr
from domain r ∈ {S, T }, we need to combine ev-
ery entity query questions Qr = {qr1,qr2, ...,qrm}
with sentence xr, where m denotes the number
of entity types of domain r. The entity annota-
tion guidelines are used as references to construct
questions. In particular, we use questions from the
target domain for common entity types between
domains. Therefore, we obtain a set of quadru-
ples (qrt , yrt , [ett,r1 , · · · , ett,rl ], xr) in each domain
r ∈ {S, T }, where l denotes the number of t type
of entities in sentence xr.

Meanwhile, if source domain S contains the en-
tity type which has a hierarchical relationship with
the entity type specific to target domain T , the
questions of these entity subtypes are also com-
bined with source domain sentence xS for entity-
aware training. Thus, we obtain a set of quadru-
ples (qTsubt , unknow, unknow, x

S) in domain S,
where qTsubt ∈ QT denotes the question of entity
subtype subt.

3.2 Context Encoder

Normally, we combine question qrt and sentence
xr as a string {[CLS],qrt ,[SEP], xr}, where
[CLS] and [SEP] are special tokens. Then, the
combined string is sent into the input embedding
layer. We use BERT (Devlin et al., 2019) as the
input embedding layer to generate the contextu-
alized word embeddings. Since question qrt is a
natural language sequence that may contain en-
tity examples and disturb accurate entity span pre-
diction, we only retain the sentence embeddings
V = [vd1, vd2, ..., vdn] for the next steps, where d is

the output dimension of BERT. To encode sentence-
level features, the retained embeddings are fed into
a standard bi-directional LSTM layer (Graves and
Schmidhuber, 2005). The hidden output of BiL-
STM can be expressed as follows:

−→
h i = LSTM(

−→
h i−1, vdi )

←−
h i = LSTM(

←−
h i+1, v

d
i )

(1)

where
−→
h i and

←−
h i denote the forward and backward

output of BiLSTM. The final representation of a
word is hi = [

−→
h i;
←−
h i]

3.3 Multi-task Layer
Given the sentence-level features, the purpose of
the multi-task layer is to distinguish the existence
of each type of entity and predict entity spans.

Entity Existence Discrimination. To model the
relationship between sentence and various entity
types, we introduce an entity existence discrimina-
tion task to identify whether a sentence contains
each type of entity. Logically, this task is sensitive
to the semantic feature and certain keywords of the
sentence, then aggregates this information to make
a particular prediction.

In general, the special characters [CLS] with-
out semantic property is often used to represent
the semantic features of the whole sentence. How-
ever, using the semantic feature alone to predict
the existence of entities is not enough, because it
lacks connections to the entity types. Therefore, we
first use an entity type embedding layer to generate
entity type features E = [e1, ..., em]. Then, to cap-
ture the relationship between sentence and entity
types, the sentence features and entity type features
are incorporated by leveraging the attention mech-
anism (Vaswani et al., 2017). Given sentence-level
features H = [h1,h2, ...,hn], hENTj represents the
incorporated feature associating with entity type t
as follow:

hENTt =
n∑

i

αi,tWvhi (2)

αi,t =
1

zt
(Wqet)TWkhi (3)

where Wq∈Rd×d, Wk∈Rd×d, Wv∈Rd×d are pa-
rameter matrices and zt is the normalized factor:

zt =

n∑

i

(Wqet)TWkhi (4)
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Figure 2: The Domain-specific entity-aware framework(DoSEA) for cross-domain NER. DoSEA has three com-
ponents: a context encoder, a multi-task layer and an entity-aware training setting. There are different training
processes for source and target domains.

The weight αi,t reflects the degree of relevance
between word xi and entity type t. Finally, a con-
tacted feature ĥ = [hCLS ;hENT ] is fed into a soft-
max layer to predict the probability of the existence
of entities queried by question qj :

ŷt = softmax(Wcĥ + bc) (5)

where Wc∈Rd×2, bc∈R2 are parameter matrices.
Therefore, the cross-entropy loss for entity ex-

istence discrimination task is denoted as follows:

LEED = − 1

m

m∑

t

ytlog(p(ŷt)) (6)

Entity Span Prediction. The classical MRC-
NER model directly uses word embeddings to pre-
dict the start and end positions of entities. How-
ever, to enhance the task relationship between the
EED and ESP tasks, the entity type embeddings
E = [e1, ..., em] are shared in both tasks.

Specifically, we improve the entity prediction
task in that the start and end positions of entities are
predicted by the absolute distance between word
embeddings and entity type embeddings. The en-
tity type embedding et is shared as follows:

h
′
i = |norm(hi)− et| (7)

where norm(·) is instance normalization func-
tion (Ulyanov et al., 2016), and | · | means the
absolute value. Therefore, h

′
i represents the abso-

lute distance between word and entity type repre-

sentations. To extract entity spans, h
′
i is fed into

two softmax layers to predict the probability of
each token being a start or end position of entities
queried by question qt:

Ps(y
s
i,t|xi) = softmax(Wsĥ

′
i + bs) (8)

Pe(y
e
i,t|xi) = softmax(Weĥ

′
i + be) (9)

where Ws,We∈Rd×2, bs,be∈R2 are parameter
matrices.

As mentioned above, the training samples are
a set of quadruples (qt, yt, [ett1, · · · , ettl ], x)) for
DoSEA. Meanwhile, entities [ett1, · · · , ettl ] can
be paired with two label sequences [ys1,t, ..., y

s
n,t],

[ye1,t, ..., y
e
n,t], which represent the ground-truth la-

bel of each token xi being the start position or end
position of the entities queried by question qt. The
cross-entropy losses of start and end positions pre-
diction are denoted as follows:

Ls = −
1

mn

m∑

t

n∑

i

ysi,tlog(Ps(ŷsi,t|xi)) (10)

Le = −
1

mn

m∑

t

n∑

i

yei,tlog(Pe(ŷei,t|xi)) (11)

The total loss of entity span prediction task is de-
noted as follows:

LESP = Ls + Le (12)
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3.4 Entity-aware Training Setting
As Figure 2 shows, considering the domain-specific
entity types, we design different training processes
for {S, T } domains.

Target Domain Training. We adopt normally
jointly training process for target domain T , in
which the EED task and the ESP task are training
together. Therefore, the training loss for target
domain T is defined as follows:

LT = LTESP + γLTEED (13)

where γ is auxiliary task weight.

Source Domain Training. In order to avoid
learning inaccurate information, we don’t train the
EED task with samples from source domain S.
In contrast, given the source domain samples, the
EED task is utilized to recognize the entities with
inconsistent annotations between domains. Then
we transform these inconsistent entities into hierar-
chical entities specific to target domain.

Specifically, we can obtian a set of supertype-
subtype pair samples as discussed in the previous
Section 3.1, in which a pair of the sample con-
sists of (qSsupt , y

S
supt , [etsupt,S1 , · · · , etsupt,Sl ], xS)

and (qTsubt , unknow, unknow, x
S). In the begin-

ning, we send the subtype sample into the EED task
for acquiring the existence prediction result ŷSsubt .
Then, we presume that if the sentence xS contains
supertype entities and the hierarchical subtype enti-
ties are predicted to exist, these supertype entities
can be transformed into subtype entities. Finally,
we obtain the transformed samples to train the ESP
task together, which consists of (qSsupt , None, x

S)

and (qTsubt , [etsubt,S1 , · · · , etsubt,Sl ], xS). The train-
ing loss for source domain S is defined as follows:

LS = LSuntransESP + δLStransESP (14)

where δ is the data weight, and the source domain
samples are divided into untransformed and trans-
formed parts.

4 Experimental Settings

4.1 Datasets.
We take CoNLL-2003 dataset (Sang and Meulder,
2003) as the source domain for all experiments.
We use CrossNER datasets (Liu et al., 2021) and
MIT Movie Review dataset (Liu et al., 2013) as the
target domain datasets. Statistics of these datasets
are shown in Table 1.

Domain Entity Type Train. Dev. Test.

CoNLL-2003 Dataset

Newswire 4 15.0K 3.5K 3.7K

CrossNER Datasets

Politics 9 0.2K 0.5K 0.6K
Science 17 0.2K 0.5K 0.5K
Music 13 0.1K 0.4K 0.5K
Literature 11 0.1K 0.4K 0.4K
Artificial
Intelligence

12 0.1K 0.4K 0.4K

MIT Movie Review Dataset

Movie 12 9.7K - 2.3K

Table 1: Statistics of datasets.

Hierarchical Entity Pairs. CoNLL-2003 is an-
notated with "Person", "Location", "Organization"
and "Miscellaneous" entities. CrossNER datasets
consist of five different domains: Politics, Science,
Music, Literature and Artificial Intelligence(AI).
Moreover, they all contain four overlapped en-
tity types and hierarchical entity subtypes with
CoNLL-2003. Especially, Politics domain contains
"Politician", "Political Party" and "Country" enti-
ties. Science domain contains "Scientist", "Uni-
versity" and "Country" entities. Music domain
contains "Artist", "Band" and "Country" entities.
Literature domain contains "Writer" and "Coun-
try" entities. AI domain contains "Researcher",
"University" and "Country" entities. Entity types
in MIT Movie Review and CoNLL-2003 are non-
overlapping, but MIT Movie Review contains "Ac-
tor", "Character" and "Director" entities which are
subtypes of "Person" entities.

4.2 Baseline Methods

In the beginning, we consider a classical method,
BiLSTM-CRF (Huang et al., 2015), which com-
bined the bi-directional LSTM network and con-
ditional random fields(CRF) for sequence label-
ing task. Based on this, there are two improved
methods Coach (Liu et al., 2020b) and Multi-
Cell LSTM (Jia and Zhang, 2020). Coach pro-
posed a two-step approach for cross-domain NER,
it first detects whether the tokens are entities or
not, then predicts the specific entity types. Multi-
Cell LSTM investigated a multi-cell compositional
LSTM model structure, which models each entity
type using a separate cell state.
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Models Pol. Sci. Mus. Lite. AI. Mov. Avg.

BiLSTM-CRF 53.89 49.12 43.65 41.87 43.18 77.52 51.54
BiLSTM-CRF-joint† 56.60 49.97 44.79 43.03 43.56 78.11 52.68
Coach† 61.50 52.09 51.66 48.35 45.15 78.59 56.22
BERT-Tagger† 66.56 63.73 66.59 59.95 50.37 79.37 64.43
BERT-Tagger-joint† 68.85 65.03 67.59 62.57 58.57 80.04 67.11
Multi-Cell LSTM(BERT)† 70.56 66.42 70.52 66.96 58.28 82.22 69.16

TemplateNER 65.41 62.93 64.67 64.55 57.64 78.56 65.62
MRC-NER 70.23 67.25 70.64 62.53 62.77 83.28 69.45
MRC-NER-joint 72.37 67.70 71.87 66.67 64.65 85.87 71.52

DoSEA w/o LEED+LStrans
ESP 72.41 68.20 71.93 66.74 64.77 86.19 71.71

DoSEA w/o LEED 73.31 70.61 72.55 67.35 65.23 86.74 72.63
DoSEA w/o LStrans

ESP 73.46 70.13 72.39 67.89 65.24 86.91 72.67
DoSEA(Ours) 75.52∗ 71.69∗ 73.10∗ 68.59∗ 66.03∗ 87.31∗ 73.71∗

Table 2: Cross-domain experiment results on six domain datasets compared to the baseline methods. † indicates the
results on CrossNER datasets are from Liu et al. (2021). "joint" postfix means the model jointly trains on both
domains. "w/o" is a abbreviation of "without".

We also compare BERT-based methods, includ-
ing BERT-Tagger (Devlin et al., 2019) and Multi-
Cell LSTM(BERT) method that leverages the out-
puts of BERT as contextualized word embeddings.
As the basic model for our proposed framework,
MRC-NER (Li et al., 2020) is considered as a
baseline method too. In addition, we compare a
fine-tune method named TemplateNER (Cui et al.,
2021), which is a template-based method by us-
ing BART (Lewis et al., 2020) and also shows ef-
fectiveness in cross-domain NER. However, we
don’t compare our method with Liu et al. (2021),
because they continue pre-training the language
model BERT with abundant domain-related corpus,
which is unfair to compare with each other.

4.3 Implementation details

For all methods, word embeddings are fine-tuned
in the training process. When training BiLSTM-
CRF and Coach, we use the word-level embedding
from Pennington et al. (2014) and char-level em-
bedding from Hashimoto et al. (2017) as the input
layer. For BERT-based methods, we use the base-
sized BERT pre-trained on the Wikipedia corpus to
output contextualized word embeddings.

Since the size of training samples in CrossNER
is far smaller than CoNLL-2003, we upsample the
training samples in the target domain to keep the
balance between domains. In the training step, we
set the learning rate as 5e-5, entity type embedding
dimension dh as 768, task weight γ as 0.1 and data
weight δ as 0.2.

Domain
Separately Jointly

P R F1 P R F1

Pol. 83.16 77.82 80.40 85.44 80.31 82.79
Sci. 83.84 74.92 79.13 86.39 76.10 80.92
Mus. 75.86 71.56 73.65 78.71 75.79 77.22
Lite. 80.69 69.35 74.59 84.18 72.15 77.71
AI. 78.29 67.99 72.74 80.93 70.03 75.09
Mov. 90.87 88.21 89.52 92.56 89.66 91.09

Table 3: The entity existence discrimination task results
on six domain datasets. "Separately" means the EED
task is trained alone. "Jointly" means the EED task is
jointly training with the ESP task.

5 Results and Discussion

5.1 Main Results

Cross-domain NER. Table 2 shows the overall
performances of the proposed DoSEA against base-
line methods on six domain datasets. Our proposed
DoSEA significantly outperforms prior state-of-the-
art methods on all target domains. To be specific,
the F1 scores of DoSEA advance the previous best
method by +3.15, +3.99, +1.23, +1.92 and +1.38
pp.(e.g., percentage points.) on Politics, Science,
Music, Literature, Artificial Intelligence and Movie
domains, respectively.

Compared to the sequence-labeling based meth-
ods(e.g., BiLSTM-CRF, Coach, Multi-Cell LSTM
and BERT-Tagger), results on the MRC-NER
method show the best performance while jointly
training across domains. We speculate the main
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Model ELE. COU. POLP. POL. EVE. ORG. LOC. PER. MISC.

BERT-Tagger-joint 92.07 69.46 78.09 67.75 45.64 63.12 68.55 13.37 47.11
MRC-NER-joint 92.43 70.46 81.48 69.49 55.59 69.49 72.55 49.67 50.03

DoSEA(Ours) 92.61 72.00 81.51 74.66 45.97 72.92 81.26 58.90 50.13

Table 4: Fine-grained comparisons on the Politics domain dataset. "ELE.", "COU.", "POLP.", "POL.", "EVE.",
"ORG.", "LOC.”, “PER.” and “MISC.” denote "Election", "Country", "Political Party", "Politician", "Event",
"Organization", “Location”, “Person” and “Miscellaneous”, respectively.

reason is that the MRC-NER model parameters
are all shared across domains, while the sequence-
labeling based methods use an independent CRF
layer for each domain. However, our method shows
further performance improvement compared with
the MRC-NER method. It demonstrates the ef-
fectiveness of our proposed DoSEA, which depth
alleviates the subtype conflicts between each entity
supertype-subtype pair among domains.

Auxiliary Task. We additionally analyze the per-
formance on the entity existence discrimination
task, which plays a crucial role in the entity-aware
training setting. As shown in Table 3, the F1 scores
of the EED task are 82.79, 80.92, 77.22, 77.71,
75.09 and 91.09 in Politics, Science, Music, Liter-
ature, Artificial Intelligence and Movie domains,
respectively.

Although we only use annotated samples from
the target domain to directly train the EED task,
this task still achieves quite good performance com-
pared to the results on cross-domain NER. Mean-
while, we also study the task relationship between
the EED and ESP tasks, in which we don’t share
the entity type features and separately train the
EED task. However, the performance suffers a sig-
nificant decline in all target domains in that case.
Therefore, the experimental results indicate the pos-
itive effect of the jointly training strategy and pro-
vide support for the entity-aware training setting.

5.2 Ablation Study

We conduct ablation studies to explore the effec-
tiveness of each component in the DoSEA frame-
work. To be specific, we consider three settings in
the ablation study. (1) We first consider eliminat-
ing LStransESP from Eq.14 when using source domain
samples to train the DoSEA model. In this case,
F1-scores overall target domains suffer a signifi-
cant decline. (2) To explore the interaction between
tasks, LEED is removed from Eq.13 when using
target domain samples to train the DoSEA model.

In particular, we use the separate EED model to
generate the prediction results about whether the
domain-specific subtype entities exist in the source
domain samples. Furthermore, the cross-domain
NER results suffer a severe drop of about an aver-
age of 0.98 pp on the target domains. (3) When
we both remove the LStransESP and LEED, DoSEA
obtains a similar performance as the MRC-NER
method. Eventually, these empirical results suggest
that each component in DoSEA is beneficial for
cross-domain NER.

5.3 Fined-grained comparisons

To understand the performance of DoSEA at the
entity type level, we make fine-grained compar-
isons on the Politics domain dataset. As mentioned
above, we consider three hierarchical entity type
pairs in the Politics domain. "Event" to "Elec-
tion" entity type pair is not considered, because
the source domain does not contain the "Event"
entity type.

As shown in Table 4, the most interesting result
is that the BERT-Tagger method has difficulty in
identifying "Person" entities, although there are
huge annotated samples for "Person" entities in the
source domain. We speculate that the model struc-
ture with independent CRF layers seriously hinders
the transfer of knowledge from the source domain
to the target domain. However, the MRC-NER
method achieves relatively high performance on
"Person" entity type, which proves the advantages
of MRC-NER which shares all model parameters
across domains.

MRC-NER method achieves relatively higher
performance on "Event" entity type than other
methods. We found that the performance on
"Event" entity fluctuated greatly during the whole
training process. After training data statistic, we
think the reason for the instability performance
may be that the annotated samples for "Event" en-
tity are very small, only 22 samples. However,
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Sentence In India, Prime Ministers Indira Gandhi and her son Rajiv Gandhi (neither of whom were related to
Mahatma Gandhi, who was assassinated in 1948), were assassinated in 1984 and 1991 respectively.

Golden labels India: Country; Indira Gandhi: Politician; Rajiv Gandhi: Politician; Mahatma Gandhi: Politician

BERT-Tagger-joint India:[ B-location]; Indira Gandhi:[ B-person I-politician]; Rajiv Gandhi:[ B-person I-politician];
Mahatma Gandhi: [ B-person I-person]

MRC-NER-joint India:[Location; Country]; Indira Gandhi:[Person; Politician]; Rajiv Gandhi:[Person; Politician]
Mahatma Gandhi: Person

DoSEA(Ours) India: Country; Indira Gandhi: Politician; Rajiv Gandhi: Politician; Mahatma Gandhi: Politician

Table 5: The results of an example from Politics domain test dataset.
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Figure 3: The impact of weight parameters γ and δ on
the performance of Politics domain dataset.

our DoSEA accomplishes significant F1-score im-
provements over all the three hierarchical entity
type pairs, demonstrating the effectiveness in re-
ducing the subtype conflicts between domains and
providing additional reference about the entity sub-
types which are specific to the target domain.

5.4 Case study

Table 5 shows a case study comparing DoSEA with
two baseline methods, which is more representa-
tive than the others. As we can observe, BERT-
Tagger misidentifies India as a "Location" entity
and also fails to recognize all "Politician" entities.
These prediction results hurt the performance of
both entity supertype and subtype, which shows
a phenomenon of subtype conflict. Meanwhile,
the results of the BERT-Tagger method also show
label-level mistakes, which presents a challenge
to completely identify the correct entities. Since
the MRC-NER method can handle the nested enti-
ties, it identifies India as both a "Location" and
"Country" entity, which causes performance degra-
dation on "Location" entity. However, DoSEA cor-
rectly identifies all entities in the sentence, which
well demonstrates how it can mitigate the subtype
conflicts between entity types among different do-
mains.

5.5 Hyperparameter Sensibility

We explore the impact of weight parameter γ in
Eq.13 and δ in Eq.14 on Politics domain dataset.

Auxiliary Task Weight. Task weight γ affects
the training process for the multi-task inference
layer. From Figure 3, we can see that DoSEA
keeps a stable F1-scores performance on both en-
tity existence discrimination task and entity span
prediction task when γ > 0.01 and γ < 0.2, sug-
gesting the stability of the DoSEA. As γ continues
to increase, the performance of entity prediction
task began to decline, and the best γ parameter is
0.1.

Data Weight. Data weight δ controls how much
transfer knowledge the DoSEA model should learn
from the transformed subtype entities in the source
domain. As we observed, δ have a relatively higher
influence on F1 scores of the entity prediction task
when δ ≤ 0.2 and δ ≥ 0.6. Therefore, the reason-
able value range for the δ parameter is δ ≥ 0.2 and
δ ≤ 0.6.

6 Conclusion

In this paper, we propose a novel framework named
Domain-specific Entity-aware(DoSEA) for cross-
domain NER and focus on the issues raised by
the domain-specific entity types. Our framework
is built on the MRC-NER task, which shares all
model parameters across domains. Then, we intro-
duce an entity existence discrimination task and
an entity-aware training setting to alleviate the
subtypes conflicts, which learns to transform the
entities with inconsistent annotations into target
domain-specific entities in source domain sam-
ples. Experiments show that DoSEA achieves new
state-of-the-art performance over six cross-domain
benchmarks under the jointly training strategy.
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Abstract

Lifelong event detection aims to incrementally
update a model with new event types and data
while retaining the capability on previously
learned old types. One critical challenge is
that the model would catastrophically forget
old types when continually trained on new data.
In this paper, we introduce Episodic Memory
Prompts (EMP) to explicitly retain the learned
task-specific knowledge. Our method adopts
continuous prompt for each task and they are
optimized to instruct the model prediction and
learn event-specific representation. The EMPs
learned in previous tasks are carried along with
the model in subsequent tasks, and can serve
as a memory module that keeps the old knowl-
edge and transferring to new tasks. Experi-
ment results demonstrate the effectiveness of
our method. Furthermore, we also conduct
a comprehensive analysis of the new and old
event types in lifelong learning.1

1 Introduction

Class-incremental event detection (Cao et al., 2020;
Yu et al., 2021) is a challenging setting in lifelong
learning, where the model is incrementally updated
on a continual stream of data for new event types
while retaining the event detection capability for all
the previously learned types. The main challenge of
class-incremental event detection lies in the catas-
trophic forgetting problem, where the model’s per-
formance on previously learned types significantly
drops after it is trained on new data. Recent stud-
ies (Lopez-Paz and Ranzato, 2017; Wang et al.,
2019) have revealed that replaying stored samples
of old classes can effectively alleviate the catas-
trophic forgetting issue. However, simply fine-
tuning the entire model on the limited stored sam-
ples may result in overfitting, especially when the
model has a huge set of parameters. How to ef-

1The source code is publicly available at https://
github.com/VT-NLP/Incremental_Prompting.

fectively leverage the limited stored examples still
remains an important question.

Prompt learning, which is to simply tune a
template-based or continuous prompt appended to
the input text while keeping all the other param-
eters freezed, has recently shown comparable or
even better performance than fine-tuning the entire
model in many NLP tasks (Brown et al., 2020; Li
and Liang, 2021; Lester et al., 2021). It is espe-
cially flavored by lifelong learning since it only
tunes a small amount of parameters. However, it is
still non-trivial to equip prompts with the capability
of retaining acquired knowledge and transferring
to new tasks in the class-incremental setting.

In this work, we propose an incremental prompt-
ing framework that introduces Epsodic Memory
Prompts (EMP) to store and transfer the learned
type-specific knowledge. At each training stage,
we adopt a learnable prompt for each new event
type added from the current task. The prompts are
initialized with event type names and fine-tuned
with the annotations from each task. To encour-
age the prompts to always carry and reflect type-
specific information, we entangle the feature rep-
resentation of each event mention with the type-
specific prompts by optimizing its type distribution
over them. After each training stage, we keep the
learned prompts in the model and incorporate new
prompts for next task. In this way, the acquired
task-specific knowledge can be carried into sub-
sequent tasks. Therefore, our EMP can be con-
sidered as a soft episodic memory that preserves
the old knowledge and transfers it to new tasks.
Our method does not require task identifiers at test
time, which enables it to handle the challenging
class-incremental setting. Our contributions can be
summarized as follows:

• We propose Epsodic Memory Prompts
(EMP) which can explicitly carry previously
learned knowledge to subsequent tasks for class-
incremental event detection. Extensive experi-
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ments validate the effectiveness of our method.
• To the best of our knowledge, we are the first

to adopt prompting methods for class-incremental
event detection. Our framework has the potential
to be applied to other incremental learning tasks.

2 Problem Formulation

Given an input text x1:L and a set of target spans
{(xi, xj)} from it, an event detection model needs
to assign each target span with an event type in
the ontology or label it as Other if the span is not
an event trigger. For class-incremental event de-
tection, we aim to train a single model fθ on a
sequence of T tasks {D1, ...,DT } that consist of
non-overlapping event type sets {C1, ..., CT }2. In
each t-th task, the model needs to classify each
mention to any of the types that have seen so far
Ot = C1

⋃
...
⋃ Ct. The training instances in each

task Dt consist of tuples of an input text xt1:L, a tar-
get span x̄t, and its corresponding label yt where
yt ∈ Ct. For convenience, the notations are for
the t-th training stage by default unless denoted
explicitly in the following parts of the paper.

3 Approach

3.1 Span-based Event Detection
Given an input sentence xt1:L from task Dt, we first
encode it with BERT (Devlin et al., 2019) to obtain
the contextual representations xt1:L = BERT(xt1:L).
Note that we freeze BERT’s parameters in our
method and all baselines. For each span x̄t, we
concatenate its starting and ending token represen-
tations and feed them into a multilayer perceptron
(MLP) to get the span representation htspan. Then,
we apply a linear layer on htspan to predict the type
distribution of the span pt = linear(htspan). We
use cross-entropy loss to train the model on Dt:

LC = −
∑

(x̄t,yt)∈Dt
log pt. (1)

3.2 Episodic Memory Prompting
To overcome the catastrophic forgetting and exem-
plar memory overfitting issues, we design an incre-
mental prompting approach with Episodic Memory
Prompts (EMPs) to preserve the knowledge learned
from each task and transfer to new tasks.

Given an incoming task Dt and its correspond-
ing new event type set Ct = {ct1, ..., ctnt}, we

2Though the type sets from all tasks contain Other, they
have distinct meanings given different seen types.

first initialize a sequence of new prompts Ct =
[ct1, ..., c

t
nt ] where cti ∈ R1×e is a type-specific

prompt for type cti, nt is the number of event types
in the t-th task. e is the embedding dimension
size. In our experiments, we use the event type
name to initialize each event type prompt cti (see
Appendix A for details). Note that we always pre-
serve the prompts learned from previous tasks, thus
the accumulated prompts until the t-th task are
represented as It = [C1, ...,Ct]. Given a particu-
lar sentence xt1:L from Dt, we concatenate it with
the accumulated prompts It, encode the whole se-
quence with BERT, and obtain the sequence of con-
textual representations [x̃t1:L; Ĩ

t], where x̃t1:L and
Ĩt denote the sequence of contextual embeddings
of xt1:L and It respectively. [; ] is concatenation
operation. Then, similar as Section 3.1, we obtain
a representation h̃tspan for each span based on x̃ti,
and predict the logits over all target event types
p̃t = linear(h̃tspan).

We expect the EMPs to be specific to the cor-
responding event types and preserve the knowl-
edge of each event type from previous tasks. So
we design an entangled prompt optimization strat-
egy to entangle the feature representation of each
span with the event type-specific prompts by com-
puting an event type probability distribution over
them. Specifically, given a span representation
h̃tspan and EMP representations Ĩt, we compute
the probability distribution over all prompts as
p̃tc = MLP(Ĩt) · h̃tspan, where · is the dot prod-
uct. Finally, we combine the original logits p̃t and
p̃tc to predict the event type label for each span:

L̃C = −
∑

(x̄t,yt)∈Dt
log (p̃t + p̃tc). (2)

At the end of each training stage, we keep the
learned prompts from the current task Ct in the
model, and then initialize a new prompt Ct+1 for
the next task and concatenate it with the previous
accumulated prompts It incrementally: It+1 =
[It;Ct+1].

3.3 Lifelong Learning with Experience Replay
and Knowledge Distillation

To alleviate the catastrophic forgetting issue, two
strategies have been widely applied in many life-
long learning works (Rebuffi et al., 2017; Sun et al.,
2020; Cao et al., 2020; Yu et al., 2021): (1) Ex-
perience Replay which is to repeatedly optimize
the model on the stored previous data in subse-
quent tasks; and (2) Knowledge Distillation (KD)
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that is to ensure the output probabilities and/or
features from the current and previous models to
be matched, respectively. We also adopt these
two baselines to validate the compatibility of our
method with other lifelong learning techniques.

Specifically, after training on Dt, we apply the
herding algorithm (Welling, 2009) to select 20 train-
ing samples for each type into the memory buffer,
denoted asM. Similar as Equation 2, the objective
for experience replay is:

LER = −
∑

(x̄r,yr)∈M
log (p̃t + p̃tc). (3)

For knowledge distillation, following (Cao et al.,
2020), we apply both prediction-level and feature-
level distillation. The objectives for prediction-
level KD and feature-level KD are computed as:

LPD = −
∑

(x̄r,yr)∈M
(p̃t−1+ p̃t−1c ) log ((p̃t+ p̃tc)),

LFD =
∑

(xr,(xri ,x
r
j ),y

r)∈M
1− g(h̄t−1span, h̄

t
span),

where g is the cosine similarity function. h̄t−1span and
h̄tspan are l2-normalized features from the model at
t− 1 and t stages, respectively.

Optimization We combine the multiple objec-
tives with weighting factors α and β as follows:

L = L̃C + αLER + β(LPD + LFD).

4 Experiments and Discussions

Experiment Settings We conduct experiments
on two benchmark datasets: ACE05-EN (Dodding-
ton et al., 2004) and MAVEN (Wang et al., 2020),
and construct the class-incremental datasets follow-
ing the oracle negative setting in (Yu et al., 2021).
We divided the ontology into 5 subsets with dis-
tinct event types, and then use them to constitute
a sequence of 5 tasks denoted as D1:5. We use the
same partition and task order permutations in (Yu
et al., 2021). During the learning process from D1

to D5, we constantly test the model on the entire
test set (which contains the whole ontology) and
take the mentions of unseen event types as negative
instances. More implementation details, includ-
ing parameters, initialization of prompts as well as
baselines are shown in Appendix A.

Baselines We consider the following baselines
for comparison: (1) BERT-ED: simply trains the
BERT based event detection model on new tasks
without prompts, experience replay or knowledge
distillation. It’s the same as the span-based event
detection baseline in Section 3.1. (2) KCN (Cao
et al., 2020): use a prototype-based example sam-
pling strategy and hierarchical distillation. As the
original approach studied a different setting, we
adapt their prediction-level and feature-level distil-
lation as the baseline. (3) KT (Yu et al., 2021):
transfer knowledge between old types and new
types in two directions. (4) iCaRL* (Rebuffi et al.,
2017): use nearest-mean-of-exemplars rules to per-
form classification combined with knowledge distil-
lation. iCaRL adopts different strategies for classifi-
cation, experience replay, and distillation. We thus
directly report the result in (Yu et al., 2021) for ref-
erence. (5) EEIL (Castro et al., 2018): use an addi-
tional finetuning stage on the balanced dataset. (6)
BIC (Wu et al., 2019): use a bias correction layer
after the classification layer. (7) Upperbound:
trains the same model on all types in the datasets
jointly. For iCaRL, EEIL, and BIC, we use the
same implementation in (Yu et al., 2021). For fair
comparison, our approach and all baselines (except
for the Upperbound baseline) are built upon KCN
and use the same experience replay and knowledge
distillation strategies described in Section 3.2. We
set the exemplar buffer size as 20, and allow one
exemplar instance to be used in each training batch
instead of the whole memory set. Note that this
replay setting is different from the one in (Yu et al.,
2021), where we allow much less frequent exem-
plar replay, and thus our setting is more efficient,
challenging, and realistic.

Results We present the main results in Table 1.
We have following observations: (1) by compar-
ing the performance of various approaches on Task
1 which are not affected by any catastrophic for-
getting, our approach improves 4.1% F-score on
MAVEN and 1.3% F-score on ACE05, demon-
strating that by incorporating task-specific prompts,
event detection itself can be significantly improved.
EMPs even provide more improvement on MAVEN
which contains a lot more event types than ACE05,
suggesting the potential of incorporating EMPs
for fine-grained event detection; (2) KCN can be
viewed as an ablated version of our approach with-
out EMPs. Our approach consistently outperforms
KCN on almost all tasks on both datasets, demon-
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MAVEN ACE05-EN

Task 1 2 3 4 5 1 2 3 4 5

BERT-ED 63.51 39.99 33.36 23.83 22.69 58.30 43.96 38.02 21.53 25.71
iCaRL* (Rebuffi et al., 2017) 18.08 27.03 30.78 31.26 29.77 4.05 5.41 7.25 6.94 8.94
EEIL (Castro et al., 2018) 63.51 50.62 45.16 41.39 38.34 58.30 54.93 52.72 45.18 41.95
BIC (Wu et al., 2019) 63.51 46.69 39.15 31.69 30.47 58.30 45.73 43.28 35.70 30.80
KCN (Cao et al., 2020) 63.51 51.17 46.80 38.72 38.58 58.30 54.71 52.88 44.93 41.10
KT (Yu et al., 2021) 63.51 52.36 47.24 39.51 39.34 58.30 55.41 53.95 45.00 42.62

EMP (Ours) 67.86 60.26 58.61 54.81 50.12 59.60 53.19 55.20 45.64 43.28

Upperbound (Ours) / / / / 68.42 / / / / 67.22

Table 1: Comparison between our approach and baselines in terms of micro F-1 (%) on 5 class-incremental tasks.
We report the averaged results on 5 permutations of tasks so that the results are independent of randomness.

strating the effectiveness of EMPs on improving
class-incremental event detection; (3) Comparing
with BERT-ED, KCN adopts experience replay
and knowledge distillation. Their performance gap
verifies that these two strategies can dramatically
alleviate catastrophic forgetting; (4) There is still a
large gap between the current approaches and the
upperbound, indicating that catastrophic forgetting
still remains a very challenging problem. Note that
the only difference in EEIL, BIC, KCN, and KT is
the lifelong learning techniques they applied, thus
these models have identical F-score on Task 1. We
also analyze failed examples in Appendix B.

Analysis of New and Old Types in Lifelong
Learning Figure 1 shows the F-score on old and
new event types in each training stage for our ap-
proach and KT (Yu et al., 2021) on MAVEN. Our
approach consistently outperforms KT by a large
margin on both old types and new types, demon-
strating that our EMPs effectively preserve learned
knowledge from old event types and improve event
detection when annotations are sufficient. Interest-
ingly, comparing the F-score on new types in Task
1 and old types in Task 2, both methods improve
the performance on the types of Task 1, indicating
that both methods have the potential of leveraging
indirect supervision to improve event detection.

Ablation Study We consider four ablated mod-
els based on our EMPs: (1) change the prompt
initialization3 from using event type name repre-
sentations to using random distribution; (2) remove
the entangled prompt optimization but still append
the event type prompts to the end of each input
sentence and apply Equation 1 only to detect the
events; (3) remove the knowledge distillation loss
LPD and LFD; (4) use completely fixed prompts

3Appendix A shows the details of prompt initialization.
We use the same initialization for the discrete prompt ablation.

Figure 1: Per-type F1 on old types and new types in each
lifelong task on one randomly selected permutation of
the MAVEN dataset. The F-scores on old and new types
reflect the ability to retain acquired knowledge and to
learn new types, respectively. Best viewed in color.

to replace the trainable soft prompts. From Table 2,
we observes that: (1) using event type names to ini-
tialize the prompts is helpful in most tasks; (2) both
entangled prompt optimization and knowledge dis-
tillation can help alleviate catastrophic forgetting;
(3) switching the continuous prompts to discrete
prompts degrades the performance significantly,
suggesting that the continuous prompts are gener-
ally more promising than discrete prompts.

Task 1 2 3 4 5

EMP (Ours) 67.86 60.26 58.61 54.81 50.12
- w/o EInit 66.73 58.99 57.63 53.98 49.33
- w/o EPO 67.04 59.02 57.79 53.72 49.05
- w/o KD 67.86 57.57 55.83 53.02 48.65
- Discrete 60.13 51.98 50.60 48.97 43.68

Table 2: Ablation study on event-specific prompt initial-
ization (EInit), entangled prompt optimization (EPO),
knowledge distillation (KD), and trainable soft prompts
(Discrete) on MAVEN. We report the averaged results
on 5 permutations of tasks.

Effect of Exemplar Buffer Size We conduct an
analysis on the effect of exemplar buffer size. We
explore the buffer size for each type in {0, 10, 20}.
We use KT as the baseline when buffer size is 20
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Figure 2: Performance with different buffer size in each
task on one randomly selected permutation of MAVEN.
Best viewed in color.

and 10. Note that when buffer size is 0, we do not
adopt either experience replay or knowledge distil-
lation and thus use BERT-ED as the baseline. We
plot the results on Figure 2. We observed that: (1)
Decreasing the buffer size for each type from 20 to
10 degrades the performance of both models. This
indicates that reducing data diversity may result
in the overfitting on example data, and thus dete-
riorates the performance; (2) Our method still out-
performs the KT baseline when storing only half
of history examples, which indicates our method
is able to utilize the stored examples more effec-
tively. (3) When the buffer size decreases to 0, the
performance of both methods drops significantly.
This shows that both approaches highly rely on the
stored data to overcome the catastrophic forgetting
problem. This calls for developing more advance
techniques to reduce the dependence on stored ex-
amples, as storing past data could result in data
leakage in real-world applications.

5 Related Work

Lifelong Event Detection Deep neural networks
have shown state-of-the-art performance on super-
vised event detection (Nguyen et al., 2016; Feng
et al., 2016; Zhang et al., 2017; Huang and Ji, 2020;
Wang et al., 2021b). However, when moving to
lifelong learning setting, their performance signif-
icantly drops (Kirkpatrick et al., 2017; Aljundi
et al., 2019; Biesialska et al., 2020; Cui et al.,
2021; Ke et al., 2021b; Madotto et al., 2021; Ke
et al., 2021a; Feng et al., 2022). Though experi-
ence replay (Lopez-Paz and Ranzato, 2017; de Mas-
son d’Autume et al., 2019; Guo et al., 2020; Han
et al., 2020; Zhao et al., 2022) and knowledge dis-
tillation (Chuang et al., 2020; Cao et al., 2020) have
shown to be effective in overcoming catastrophic
forgetting, they highly rely on the stored data from

old tasks, which is not the most realistic setting for
lifelong learning.

Prompt Learning Conditioning on large-scale
pre-trained language models, prompt learn-
ing (Brown et al., 2020; Lester et al., 2021; Liu
et al., 2021; Wang et al., 2021a,c, 2022) has shown
comparable performance as language model fine-
tuning. Specific to lifelong learning, Qin and Joty
(2021) use prompt tuning to train the model as
a task solver and data generator for lifelong few-
shot problem. Zhu et al. (2022) propose continual
prompt tuning for dialogue state tracking. To the
best of our knowledge, we are the first work to
adopt prompt learning for class-incremental event
detection.

6 Conclusion

We propose a novel Episodic Memory Prompting
(EMP) framework for class-incremental event de-
tection. During each training stage, EMP learns
type-specific knowledge via a continuous prompt
for each event type. The EMPs trained in previous
tasks are kept in the model, such that the acquired
task-specific knowledge can be transferred into the
following new tasks. Experimental results vali-
date the effectiveness of our method comparing
with competitive baselines. Our extensive analysis
shows that by employing EMPs, both event detec-
tion itself and the incremental learning capability
of our approach are significantly improved.
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A Experimental Details

Implementation Details During training, we use
AdamW (Loshchilov and Hutter, 2019) optimizer
with the learning rate set to 1e−4 and weight decay
set to 1e − 2. Different from previous work (Yu
et al., 2021), we set the batch size to 1 as we en-
code each sentence once and consider all target
spans in the sentence at the same time. We adopt
gradient accumulation with the step set to 8. As
the number of batches is large, we apply a periodic
replay and distillation strategy with the interval
set to 10 to reduce computational cost. For each
lifelong task Dt, we set the maximum number of
training epochs to 20. We adopt the early stopping
strategy with patience 5, i.e., the training stops if
the performance on the development set does not
increase for 5 epochs. The temperature parameter
used in prediction-level distillation is set to 2. The
weighted factors for the loss function α and β are
computed based on the number of learned event
types and new types.

The parameters of each prompt in EMPs are ini-
tialized with the corresponding event type name.
Specifically, there are three cases in the initializa-
tion: (1) If the type name is single-token and it is
contained in BERT’s vocabulary, we directly use
the pre-trained embedding of this token to initialize
the prompt; (2) If the type name is multiple-token
and the tokens are contained in BERT’s vocabu-
lary, we take the average of the pre-trained em-
beddings of these tokens to initialize the prompt;
(3) If the type name contains Out-of-Vocabulary
(OOV) tokens, we replace the OOV tokens with the
synonyms that are contained in BERT’s vocabu-
lary. It is worth noting that we randomly initialize
the prompt for the Other type and keep updating
it throughout all lifelong tasks. We leave how to
incorporate more effective prior knowledge into
prompts for future work.

B Failure Cases

We show some of typical failure cases in Table 3.
We have following observations: (1) the first three
examples illustrate the catastrophic forgetting prob-
lem in class-incremental event detection. While
the model predicted correct event types right after
it was trained on those types, it starts to predict
wrong types in subsequent tasks. Interestingly, we
observed that the model typically predicts the Other
type or the types relevant to triggers (e.g., Creat-
ing) when forgetting occurs; (2) the 4th and 5th
examples showed that the model sometimes keeps
predicting the old types while it is supposed to
predict new types in subsequent tasks. (3) the 7th
example showed that the model can sometimes cor-
rect itself in subsequent tasks, which indicates the
experience replay and knowledge distillation have
the potentials of improving old types; (4) the last
example indicates that in some cases, the model is
interfered after trained on a task contained ambigu-
ous types even though it predicts the correct type
in all other tasks.
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Text Gold Event Type(s) Predicted Event Type(s)
The Minnesota Territory itself was formed
only in 1849 but the area had a rich history
well before this.

Coming_to_be (D2)
f2: Coming_to_be; f3:4: Other;

f5: Creating (D5)

He informed the Air France chief execu-
tive in writing "I did not believe the captain
capable of qualifying in the 707."

Telling (D3) f3: Telling; f4: Other; f5: Request (D5)

Unprepared for the attack, the Swedish
attempted to save[1] their ships by cutting
their anchor ropes and to flee[2].

[1] Rescuing (D2)
[2] Escaping (D3)

[1] f2:4: Rescuing; f5: Other
[2] f3:4: Escaping; f5: Other

After the uprising in Germany was sup-
pressed, it flared briefly in several Swiss
Cantons.

Control (D3) f3:5: Hindering (D2)

Brazilians and Chinese living in the region
have been evacuated.

Escaping (D3) f3:5: Removing (D1)

A surveillance video of the incident was
released by police four days after the
shooting, on 26 November.

Releasing (D3) f3:4: Other; f5: Publishing (D5)

Giral agreed to arm the trade unionists
in defence of the Republic, and had 60,
000 rifles delivered to the CNT and UGT
headquarters, although only 5, 000 were
in working order.

Agree_or_refuse_to_act
(D4)

f4: Other;
f5: Agree_or_refuse_to_act

Meanwhile, in the city, the Republican
government had reformed under the lead-
ership of socialist leader Francisco Largo
Caballero.

Reforming_a_system
(D1)

f1,2,4,5: Reforming_a_system;
f3: Change_of_leadership (D3)

Table 3: Failure analysis of our EMP on the first permutation of MAVEN. The targeted triggers are highlighted
in bold. Di after the event types indicate the type is introduced at i-th task. fi indicates the model trained after
i-th task. We highlight the models predicted the correct types with underline. For example, "Coming_to_be (D2)"
indicates the Coming_to_be type is introduced at the 2nd task. "f3:4: Other" indicates the models trained after the
3rd and 4th task both predict the Other type.
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Abstract

Text-to-SQL has attracted attention from both
the natural language processing and database
communities because of its ability to convert
the semantics in natural language into SQL
queries and its practical application in build-
ing natural language interfaces to database sys-
tems. The major challenges in text-to-SQL lie
in encoding the meaning of natural utterances,
decoding to SQL queries, and translating the se-
mantics between these two forms. These chal-
lenges have been addressed to different extents
by the recent advances. However, there is still
a lack of comprehensive surveys for this task.
To this end, we review recent progress on text-
to-SQL for datasets, methods, and evaluation
and provide this systematic survey, addressing
the aforementioned challenges and discussing
potential future directions. We hope that this
survey can serve as quick access to existing
work and motivate future research. 1

1 Introduction

The task of text-to-SQL is to convert natural ut-
terances into SQL queries (Zhong et al., 2017; Yu
et al., 2018c). Figure 1 shows an example. Given
a user utterance “What are the major cities in the
state of Kansas?”, the system outputs a correspond-
ing SQL that can be used for retrieving the answer
from a database. It builds a natural language in-
terface to the database (NLIDB) to help lay users
access information in the database (Popescu et al.,
2003; Li and Jagadish, 2014), inspiring research
in human-computer interaction (Elgohary et al.,
2020). Because the SQL query can be regarded as
a semantic representation (Guo et al., 2020), text-
to-SQL is also a representative task in semantic
parsing, helping downstream applications such as
question answering (Wang et al., 2020d). Thus,
text-to-SQL has attracted researchers in the natural

1The Github Link for this survey is: https://
github.com/text-to-sql-survey-coling22/
text-to-sql-survey-coling22.github.io.

SELECT T1.CITY_NAME FROM CITY AS T1 WHERE 
T1.POPULATION > 150000 AND T1.STATE_NAME = "Kansas" ;

What are the major cities in the state of Kansas?

Model

Database End User

?

Figure 1: The framework for text-to-SQL systems.
Given the database schema and user utterance, the sys-
tem outputs a corresponding SQL query to query the
database system for the result. Appendix B gives more
text-to-SQL examples.

language processing (NLP) and the database (DB)
community for decades (Codd, 1970; Hemphill
et al., 1990; Dahl et al., 1994; Zelle and Mooney,
1996; Popescu et al., 2003; Bertomeu et al., 2006;
Wang et al., 2020a; Scholak et al., 2021b).

The challenges in text-to-SQL lie within three
aspects: (1) extracting the meaning of natural ut-
terances (encoding); (2) transforming the extracted
meaning into another expression which is pragmat-
ically equivalent to the NL meaning (translating)
and; (3) producing the corresponding SQL queries
(decoding). A wide range of methods has been in-
vestigated to address the technical challenges, from
representation learning, intermediate structures, de-
coding, model structures, training objectives, and
other perspectives. In addition, much work has
been conducted on data resources and evaluation.
However, relatively little work has been done in the
literature to provide a comprehensive survey of the
landscape. The only exceptions are (Katsogiannis-
Meimarakis and Koutrika, 2021) and (Kalajdjieski
et al., 2020), but they cover a limited scope. To this
end, we aim to provide a systematic survey that
involves a broader range of text-to-SQL research
and addresses the aforementioned challenges.

In this paper, we survey the recent progress on
text-to-SQL, from datasets (§ 2), methods (§ 3)
to evaluation (§ 4) 2 and highlight potential direc-

2Note that most work discussed in this paper is in English
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Datasets #Size #DB #D #T/DB Issues addressed Sources for data

Spider (Yu et al., 2018c) 10,181 200 138 5.1 Domain
generalization

College courses,
DabaseAnswers,
WikiSQL

WikiSQL (Zhong et al., 2017) 80,654 26,521 - 1 Data size Wikipedia

Squall (Shi et al., 2020b) 11,468 1,679 - 1 Lexicon-level
supervision WikiTableQuestions

KaggleDBQA (Lee et al., 2021) 272 8 8 2.3 Domain
generalization Real web daabases

IMDB (Yaghmazadeh et al., 2017) 131 1 1 16 - Internet Movie
Database

Yelp (Yaghmazadeh et al., 2017) 128 1 1 7 - Yelp website

Advising (Finegan-Dollak et al., 2018) 3,898 1 1 10 -
University of
Michigan course
information

MIMICSQL (Wang et al., 2020d) 10,000 1 1 5 - Healthcare domain

SEDE (Hazoom et al., 2021) 12,023 1 1 29 SQL template
diversity Stack Exchange

Table 1: The statistic for recent text-to-SQL datasets. #Size, #DB, #D, and #T/DB represent the numbers of
question-SQL pairs, databases, domains, and the averaged number of tables per domain, respectively. The “-” in the
#D column indicates an unknown number of domains, and the “-” in the Issues Addressed indicates no specific
issue addressed by the dataset. Datasets above and below the line are cross-domain and single-domain, respectively.
The complete statistic is listed in Table 7 in Appendix C.

tions for future work (§ 5). Apendix A shows the
topology for the text-to-SQL task.

2 Datasets

As shown in Table 1, existing text-to-SQL datasets
can be classified into three categories: single-
domain datasets, cross-domain datasets and others.

Single-Domain Datasets Single-domain text-to-
SQL datasets typically collect question-SQL pairs
for a single database in some real-world tasks, in-
cluding early ones such as Academic (Li and Ja-
gadish, 2014), Advising (Finegan-Dollak et al.,
2018), ATIS (Price, 1990; Dahl et al., 1994),
GeoQuery (Zelle and Mooney, 1996), Yelp and
IMDB (Yaghmazadeh et al., 2017), Scholar (Iyer
et al., 2017) and Restaurants (Tang and Mooney,
2000; Popescu et al., 2003), as well as recent ones
such as SEDE (Hazoom et al., 2021), ESQL (Chen
et al., 2021a) and MIMICSQL (Wang et al., 2020d).

These single-domain datasets, particularly the
early ones, are usually limited in size, containing
only a few hundred to a few thousand examples. Be-
cause of the limited size and similar SQL patterns
in training and testing phases, text-to-SQL mod-
els that are trained on these single-domain datasets
can achieve decent performance by simply mem-
orizing the SQL patterns and fail to generalize to
unseen SQL queries or SQL queries from other

unless otherwise specified.

domains (Finegan-Dollak et al., 2018; Yu et al.,
2018c). However, since these datasets are adapted
from real-life applications, most of them contain
domain knowledge (Gan et al., 2021b) and dataset
conventions (Suhr et al., 2020). Thus, they are still
valuable to evaluate models’ ability to generalize
to new domains and explore how to incorporate do-
main knowledge and dataset convention to model
predictions.

Appendix B gives a detailed discussion on do-
main knowledge and dataset convention, and con-
crete text-to-SQL examples.

Large Scale Cross-domain Datasets Large
cross-domain datasets such as WikiSQL (Zhong
et al., 2017) and Spider (Yu et al., 2018c) are pro-
posed to better evaluate deep neural models. Wik-
iSQL uses tables extracted from Wikipedia and lets
annotators paraphrase questions generated for the
tables. Compared to other datasets, WikiSQL is an
order of magnitude larger, containing 80,654 nat-
ural utterances in total (Zhong et al., 2017). How-
ever, WikiSQL contains only simple SQL queries,
and only a single table is queried within each SQL
query (Yu et al., 2018c).

Yu et al. (2018c) propose Spider, which contains
200 databases with an average of 5 tables for each
database, to test models’ performance on compli-
cated unseen SQL queries and their ability to gen-
eralize to new domains. Furthermore, researchers
expand Spider to study various issues of their inter-
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est (Lei et al., 2020; Zeng et al., 2020; Gan et al.,
2021b; Taniguchi et al., 2021; Gan et al., 2021a).

Besides, researchers build several large-scale
text-to-SQL datasets in different languages such as
CSpider (Min et al., 2019a), TableQA (Sun et al.,
2020), DuSQL (Wang et al., 2020c) in Chinese,
ViText2SQL (Tuan Nguyen et al., 2020) in Viet-
namese, and PortugueseSpider (José and Cozman,
2021) in Portuguese. Given that human transla-
tion has shown to be more accurate than machine
translation (Min et al., 2019a), these datasets are an-
notated mainly by human experts based on the En-
glish Spider dataset. These Spider-based datasets
can serve as potential resources for multi-lingual
text-to-SQL research.

Other Datasets Several context-dependent text-
to-SQL datasets have been proposed, which involve
user interactions with the text-to-SQL system in
English (Price, 1990; Dahl et al., 1994; Yu et al.,
2019a,b) and Chinese (Guo et al., 2021). In addi-
tion, researchers collect datasets to study questions
in text-to-SQL being answerable or not (Zhang
et al., 2020), lexicon-level mapping (Shi et al.,
2020b) and cross-domain evaluation for real Web
databases (Lee et al., 2021).

Appendix C.1 discusses more details about
datasets mentioned in § 2.

3 Methods

Early text-to-SQL systems employ rule-based and
template-based methods (Li and Jagadish, 2014;
Mahmud et al., 2015), which is suitable for simple
user queries and databases. However, with the
progress in both DB and NLP communities, recent
work focuses on more complex settings (Yu et al.,
2018c). In these settings, deep models can be more
useful because of their great feature representation
ability and generalization ability.

In this survey, we focus on the deep learn-
ing methods primarily. We divide these meth-
ods employed in text-to-SQL research into Data
Augmentation (§ 3.1), Encoding (§ 3.2), Decod-
ing (§ 3.3), Learning Techniques (§ 3.4), and Mis-
cellaneous (§ 3.5).

3.1 Data Augmentation

Data augmentation can help text-to-SQL models
handle complex or unseen questions (Zhong et al.,
2020b; Wang et al., 2021b), achieve state-of-the-
art with less supervised data (Guo et al., 2018),

and attain robustness towards different types of
questions (Radhakrishnan et al., 2020) .

Typical data augmentation techniques involve
paraphrasing questions and filling pre-defined tem-
plates for increasing data diversity. Iyer et al. (2017)
use the Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013) to generate paraphrases for training
questions. Appendix B gives an example of this
augmentation method. Iyer et al. (2017) and Yu
et al. (2018b) collect question-SQL templates and
fill in them with DB schema. Researchers also em-
ploy neural models to generate natural utterances
for sampled SQL queries to acquire more data. For
instance, Li et al. (2020a) fine-tune pre-trained T5
model (Raffel et al., 2019) using SQL query as the
input to predict natural utterance on WikiSQL, and
then randomly synthesize SQL queries from tables
in WikiSQL and use the tuned model to generate
the corresponding natural utterance.

The quality of the augmented data is impor-
tant because low-quality data can hurt the perfor-
mance of the models (Wu et al., 2021). Various
approaches have been exploited to improve the
quality of the augmented data. After sampling
SQL queries, Zhong et al. (2020b) employ an utter-
ance generator to generate natural utterances and
a semantic parser to convert the generated natural
utterance to SQL queries. To filter out low-quality
augmented data, Zhong et al. (2020b) only keep
data that have the same generated SQL queries as
the sampled ones. Wu et al. (2021) use a hierarchi-
cal SQL-to-question generation process to obtain
high-quality data. Observing that there is a strong
segment-level mapping between SQL queries and
natural utterances, Wu et al. (2021) decompose
SQL queries into several clauses, translate each
clause into a sub-question, and then combine the
sub-questions into a complete question.

To increase the diversity of the augmented
data, Guo et al. (2018) incorporate a latent variable
in their SQL-to-text model to encourage question
diversity. Radhakrishnan et al. (2020) augment the
WikiSQL dataset by simplifying and compressing
questions to simulate the colloquial query behavior
of end-users. Wang et al. (2021b) exploit a proba-
bilistic context-free grammar (PCFG) to explicitly
model the composition of SQL queries, encourag-
ing sampling compositional SQL queries.

2168



Methods Adopted by Applied
datasets

Encode type TypeSQL (Yu et al.,
2018a) WikiSQL

Graph-based GNN (Bogin et al.,
2019a) Spider

Self-attention RAT-SQL (Wang
et al., 2020a) Spider

Adapt PLM SQLova (Hwang
et al., 2019) WikiSQL

Pre-training TaBERT (Yin et al.,
2020) Spider

Table 2: Typical methods used for encoding in text-
to-SQL. The full table of existing methods and more
details are listed in Table 8 in Appendix D.

3.2 Encoding
Various methods have been adopted to address the
challenges of representing the meaning of ques-
tions, representing the structure for DB schema,
and linking the DB content to question. We group
them into five categories, as shown in Table 2.

Encode Token Types To better encode keywords
such as entities and numbers in questions, Yu et al.
(2018a) assign a type to each word in the question,
with a word being an entity from the knowledge
graph, a column, or a number. Yu et al. (2018c) con-
catenate word embeddings and the corresponding
type embeddings to feed into their model.

Graph-based Methods Since DB schemas con-
tain rich structural information, graph-based meth-
ods are used to better encode such structures.

As summarized in § 2, datasets prior to Spider
typically involve simple DBs that contain only one
table or a single DB in both training and testing.
As a result, modeling DB schema receives little
attention. Because Spider contains complex and
different DB in training and testing, Bogin et al.
(2019a) propose to use graphs to represent the struc-
ture of the DB schemas. Specifically, Bogin et al.
(2019a) use nodes to represent tables and columns,
edges to represent relationships between tables and
columns, such as tables containing columns, pri-
mary key, and foreign key constraints, and then
use graph neural networks (GNNs) (Li et al., 2016)
to encode the graph structure. In their subsequent
work, Bogin et al. (2019b) use a graph convolu-
tional network (GCN) to capture DB structures and
a gated GCN to select the relevant DB information
for SQL generation. RAT-SQL (Wang et al., 2020a)
encodes more relationships for DB schemas such
as “both columns are from the same table” in their

graph.
Graphs have also been used to encode questions

together with DB schema. Researchers have been
using different types of graphs to capture the se-
mantics in NL and facilitate linking between NL
and table schema. Cao et al. (2021) adopt line
graph (Gross et al., 2018) to capture multi-hop
semantics by meta-path (e.g., an exact match for
a question token and column, together with the
column belonging to a table can form a 2-hop
meta-path) and distinguish between local and non-
local neighbors so that different tables and columns
will be attended differently. SADGA (Cai et al.,
2021) adopts the graph structure to provide a uni-
fied encoding for both natural utterances and DB
schemas to help question-schema linking. Apart
from the relations between entities in both ques-
tions and DB schema, the structure for DB schemas,
S2SQL (Hui et al., 2022) integrates syntax de-
pendency among question tokens into the graph
to improve model performance. To improve the
generalization of the graph method for unseen do-
mains, ShawdowGNN (Chen et al., 2021b) ignores
names of tables or columns in the database and
uses abstract schemas in the graph projection neu-
ral network to obtain delexicalized representations
of questions and DB schemas.

Finally, graph-based techniques are also ex-
ploited in context-dependent text-to-SQL. For in-
stance, IGSQL (Cai and Wan, 2020) uses a graph
encoder to utilize historical information of DB
schemas in the previous turns.

Self-attention Models using transformer-based
encoder (He et al., 2019; Hwang et al., 2019; Xie
et al., 2022) incorporate the original self-attention
mechanism by default because it is the building
block of the transformer structure.

RAT-SQL (Wang et al., 2020a) applies relation-
aware self-attention, a modified version of self-
attention (Vaswani et al., 2017), to leverage rela-
tions of tables and columns. DuoRAT (Scholak
et al., 2021a) also adopts such a relation-aware
self-attention in their encoder.

Adapt PLM Various methods have been pro-
posed to leverage the knowledge in pre-trained lan-
guage models (PLMs) and better align PLM with
the text-to-SQL task. PLMs such as BERT (Devlin
et al., 2019) are used to encode questions and DB
schemas. The modus operandi is to input the con-
catenation of question words and schema words
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to the BERT encoder (Hwang et al., 2019; Choi
et al., 2021). Other methods adjust the embeddings
by PLMs. On WikiSQL, for instance, X-SQL (He
et al., 2019) replaces segment embeddings from
the pre-trained encoder by column type embed-
dings. Guo and Gao (2019) encode two additional
feature vectors for matching between question to-
kens and table cells as well as column names and
concatenate them with BERT embeddings of ques-
tions and DB schemas.

HydraNet (Lyu et al., 2020) uses BERT to
encode the question and an individual column,
aligning with the tasks BERT is pre-trained on.
After obtaining the BERT representations of all
columns, Lyu et al. (2020) select top-ranked
columns for SQL prediction. Liu et al. (2021b)
train an auxiliary concept prediction module to pre-
dict which tables and columns correspond to the
question. They detect important question tokens by
detecting the largest drop in the confidence score
caused by erasing that token in the question. Lastly,
they train the PLM with a grounding module us-
ing the question tokens and the corresponding ta-
bles as well as columns. By empirical studies, Liu
et al. (2021b) claim that their approach can awaken
the latent grounding from PLM via this erase-and-
predict technique.

Pre-training There have been various works
proposing different pre-training objectives and us-
ing different pre-training data to better align the
transformer-based encoder with the text-to-SQL
task. For instance, TaBERT (Yin et al., 2020)
uses tabular data for pre-training with objectives
of masked column prediction and cell value recov-
ery to pre-train BERT. Grappa (Yu et al., 2021)
synthesizes question-SQL pairs over tables and
pre-trains BERT with the objectives of masked lan-
guage modeling (MLM) and predicting whether a
column appears in the SQL query as well as what
SQL operations are triggered. GAP (Shi et al.,
2020a) pre-trains BART (Lewis et al., 2020) on
synthesized text-to-SQL and tabular data with the
objectives of MLM, column prediction, column
recovery, and SQL generation.

3.3 Decoding

Various methods have been proposed for decoding
to achieve a fine-grained and easier process for
SQL generation and bridge the gap between natural
language and SQL queries. As shown in Table 3,
we group these methods into five main categories

Methods Adopted by Applied
datasets

Tree SyntaxSQLNet (Yu
et al., 2018b) Spider

Sketch SQLNet (Xu et al.,
2017) WikiSQL

Bottom-up SmBop (Rubin and
Berant, 2021) Spider

Attention Wang et al. (2019) WikiSQL
Copy Wang et al. (2018a) WikiSQL

IR IRNet (Guo et al.,
2019) Spider

Others
Global-GCN Bogin
et al. (2019b) Spider

Kelkar et al. (2020) Spider

Table 3: Typical methods used for decoding in text-to-
SQL. The full table and more details are listed in Table 9
in Appendix D. IR: Intermediate Representation.

and other technologies.

Tree-based Seq2Tree (Dong and Lapata, 2016)
employs a decoder that generates logical forms in a
top-down manner. The components in the sub-tree
are generated conditioned on their parents apart
from the input question. Note that the syntax of
the logical forms is implicitly learned from data
for Seq2Tree. Similarly, Seq2AST (Yin and Neu-
big, 2017) uses an abstract syntax tree (AST) for
decoding the target programming language, where
the syntax is explicitly integrated with AST. Al-
though both Seq2Tree (Dong and Lapata, 2016)
and Seq2AST (Yin and Neubig, 2017) do not study
text-to-SQL datasets, their uses of trees inspire
tree-based decoding in text-to-SQL. SyntaxSQL-
Net (Yu et al., 2018b) employs a tree-based decod-
ing method specific to SQL syntax and recursively
calls modules to predict different SQL components.

Sketch-based SQLNet (Xu et al., 2017) designs
a sketch aligned with the SQL grammar, and SQL-
Net only needs to fill in the slots in the sketch
rather than predict both the output grammar and
the content. Besides, the sketch captures the de-
pendency of the predictions. Thus, the prediction
of one slot is only conditioned on the slots it de-
pends on, which avoids issues of the same SQL
query with varied equivalent serializations. Dong
and Lapata (2018) decompose the decoding into
two stages, where the first decoder predicts a rough
sketch, and the second decoder fills in the low-
level details conditioned on the question and the
sketch. Such coarse-to-fine decoding has also been
adopted in other works such as IRNet (Guo et al.,
2019). To address the complex SQL queries with
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nested structures, RYANSQL (Choi et al., 2021)
recursively yields SELECT statements and uses a
sketch-based slot filling for each of the SELECT
statements.

Bottom-up Both the tree-based and the sketch-
based decoding mechanisms can be viewed as
top-down decoding mechanisms. Rubin and Be-
rant (2021) use a bottom-up decoding mechanism.
Given K trees of height t, the decoder scores trees
with height t + 1 constructed by SQL grammar
from the current beam, and K trees with the high-
est scores are kept. Then, a representation of the
new K trees is generated and placed in the new
beam.

Attention Mechanism To integrate the encoder-
side information at decoding, an attention score is
computed and multiplied with hidden vectors from
the encoder to get the context vector, which is then
used to generate an output token (Dong and Lapata,
2016; Zhong et al., 2017).

Variants of the attention mechanism have been
used to better propagate the information encoded
from questions and DB schemas to the decoder.
SQLNet (Xu et al., 2017) designs column atten-
tion, where it uses hidden states from columns
multiplied by embeddings for the question to cal-
culate attention scores for a column given the ques-
tion. Guo and Gao (2018) incorporate bi-attention
over question and column names for SQL com-
ponent selection. Wang et al. (2019) adopt a
structured attention (Kim et al., 2017) by comput-
ing the marginal probabilities to fill in the slots
in their generated abstract SQL queries. Duo-
RAT (Scholak et al., 2021a) adopts the relation-
aware self-attention mechanism in both its encoder
and decoder. Other works that use sequence-to-
sequence transformer-based models or decoder-
only transformer-based models incorporate the self-
attention mechanism by default (Scholak et al.,
2021b; Xie et al., 2022).

Copy Mechanism Seq2AST (Yin and Neubig,
2017) and Seq2SQL (Zhong et al., 2017) employ
the pointer network (Vinyals et al., 2015) to com-
pute the probability of copying words from the
input. Wang et al. (2018a) use types (e.g., columns,
SQL operators, constant from questions) to explic-
itly restrict locations in the query to copy from
and develop a new training objective to only copy
from the first occurrence in the input. In addition,
the copy mechanism is also adopted in context-

dependent text-to-SQL task (Wang et al., 2020b).

Intermediate Representations Researchers use
intermediate representations to bridge the gap be-
tween natural language and SQL queries. Inc-
SQL (Shi et al., 2018) defines actions for different
SQL components and let decoder decode actions
instead of SQL queries. IRNet (Guo et al., 2019)
introduces SemQL, an intermediate representation
for SQL queries that can cover most of the chal-
lenging Spider benchmark. Specifically, SemQL
removes the JOIN ON, FROM and GROUP BY
clauses, merges HAVING and WHERE clause for
SQL queries. ValueNet (Brunner and Stockinger,
2021) uses SemQL 2.0, which extends SemQL to
include value representation. Based on SemQL,
NatSQL (Gan et al., 2021c) removes the set op-
erators 3. Suhr et al. (2020) implement SemQL
as a mapping from SQL to a representation with
an under-specified FROM clause, which they call
SQLUF . Rubin and Berant (2021) employ a rela-
tional algebra augmented with SQL operators as
the intermediate representations.

However, the intermediate representations are
usually designed for a specific dataset and cannot
be easily adapted to others (Suhr et al., 2020). To
construct a more generalized intermediate represen-
tation, Herzig et al. (2021) propose to omit tokens
in the SQL query that do not align to any phrase in
the utterance.

Inspired by the success of text-to-SQL task,
intermediate representations are also studied
for SPARQL, another executable language for
database systems (Saparina and Osokin, 2021;
Herzig et al., 2021).

Others PICARD (Scholak et al., 2021b) and
UniSAr (Dou et al., 2022) set constraints to the
decoder to prevent generating invalid tokens. Sev-
eral methods adopt an execution-guided decoding
mechanism to exclude non-executable partial SQL
queries from the output candidates (Wang et al.,
2018b; Hwang et al., 2019). Global-GNN (Bogin
et al., 2019b) employs a separately trained discrim-
inative model to rerank the top-K SQL queries
in the decoder’s output beam, which is to reason
about the complete SQL queries instead of con-
sidering each word and DB schemas in isolation.
Similarly, Kelkar et al. (2020) train a separate dis-
criminator to better search among candidate SQL

3The operators that combine the results of two or more
SELECT statements, such as INTERSECT
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queries. Xu et al. (2017); Yu et al. (2018b); Guo
and Gao (2018); Lee (2019) use separate submod-
ules to predict different SQL components, eas-
ing the difficulty of generating a complete SQL
query. Chen et al. (2020b) employ a gate to select
between the output sequence encoded for the ques-
tion and the output sequence from the previous
decoding steps at each step for SQL generation. In-
spired by machine translation, Müller and Vlachos
(2019) apply byte-pair encoding (BPE) (Sennrich
et al., 2016) to compress SQL queries to shorter
sequences guided by AST, reducing the difficulties
in SQL generation.

3.4 Learning Techniques

Apart from end-to-end supervised learning, differ-
ent learning techniques have been proposed to help
text-to-SQL research. Here we summarize these
learning techniques, each addressing a specific is-
sue for the task.

Fully supervised Ni et al. (2020) adopt active
learning to save human annotation. Yao et al. (2019,
2020); Li et al. (2020b) employ interactive or imi-
tation learning to enhance text-to-SQL systems via
interactions with end-users. Huang et al. (2018);
Wang et al. (2021a); Chen et al. (2021a) adopt
meta-learning (Finn et al., 2017) for domain gen-
eralization. Various multi-task learning settings
have been proposed to improve text-to-SQL mod-
els via enhancing their abilities on some relevant
tasks. Chang et al. (2020) set an auxiliary task
of mapping between column and condition values.
SeaD (Xuan et al., 2021) integrates two denoising
objectives to help the model better encode infor-
mation from the structural data. Hui et al. (2021b)
integrate a task of learning the correspondence be-
tween questions and DB schemas. Shi et al. (2021)
integrate a column classification task to classify
which columns appear in the SQL query. McCann
et al. (2018) and Xie et al. (2022) train their models
with other semantic parsing tasks, which improves
models’ performance on text-to-SQL task.

Weakly supervised Seq2SQL (Zhong et al.,
2017) use reinforcement learning to learn WHERE
clause to allow different orders for components in
WHERE clause. Liang et al. (2018) leverage mem-
ory buffer to reduce the variance of policy gradient
estimates when applying reinforcement learning
to text-to-SQL. Agarwal et al. (2019) use meta-
learning and Bayesian optimization (Snoek et al.,

2012) to learn an auxiliary reward to discount spu-
rious SQL queries in SQL generation. Min et al.
(2019b) model the possible SQL queries as a dis-
crete latent variable and adopt a hard-EM-style
parameter updates, letting their model take advan-
tage of the possible pre-computed solutions.

3.5 Miscellaneous

In DB linking, BRIDGE (Lin et al., 2020) appends
a representation for the DB cell values mentioned
in the question to corresponding fields in the en-
coded sequence, which links the DB content to the
question. Ma et al. (2020) employ an explicit ex-
tractor of slots mentioned in the question and then
link them with DB schemas.

Model-wise, Finegan-Dollak et al. (2018) use a
template-based model which copies slots from the
question. Shaw et al. (2021) use a hybrid model
which firstly uses a high precision grammar-based
approach (NQG) to generate SQL queries, then
uses T5 (Raffel et al., 2019) as a back-up if NQG
fails. Yan et al. (2020) formulate submodule slot-
filling as machine reading comprehension (MRC)
task and apply BERT-based MRC models on it.
Besides, DT-Fixup (Xu et al., 2021) designs an
optimization approach for a deeper Transformer on
small datasets for the text-to-SQL task.

In SQL generation, IncSQL (Shi et al., 2018)
allows parsers to explore alternative correct action
sequences to generate different SQL queries. Brun-
ner and Stockinger (2021) search values in DB to
insert values into SQL query.

For context-dependent text-to-SQL, researchers
adopt techniques such as turn-level encoder and
copy mechanism (Suhr et al., 2018; Zhang et al.,
2019; Wang et al., 2020b), constrained decod-
ing (Wang et al., 2020b), dynamic memory decay
mechanism (Hui et al., 2021a), treating questions
and SQL queries as two modalities, and using bi-
modal pre-trained models (Zheng et al., 2022).

4 Evaluation

Metrics Table 4 shows widely used automatic
evaluation metrics for the text-to-SQL task. Early
works evaluate SQL queries by comparing the
database querying results executed from the pre-
dicted SQL query and the ground-truth (or gold)
SQL query (Zelle and Mooney, 1996; Yagh-
mazadeh et al., 2017) or use exact string match
to compare the predicted SQL query with the gold
one query (Finegan-Dollak et al., 2018). However,
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Metrics Datasets Errors

Naiive Execution
Accuracy

GeoQuery, IMDB,
Yelp, WikiSQL, etc

False
positive

Exact String Match Advising, WikiSQL,
etc

False
negative

Exact Set Match Spider False
negative

Test Suite Accuracy
(execution accuracy
with generated
databases)

Spider, GeoQuery,
etc

False
positive

Table 4: The summary of metrics, datasets that use these
metrics, and their potential error cases.

execution accuracy can create false positives for se-
mantically different SQL queries even if they yield
the same execution results (Yu et al., 2018c). The
exact string match can be too strict as two different
strings can still have the same semantics (Zhong
et al., 2020a). Aware of these issues, Yu et al.
(2018c) adopt exact set match (ESM) in Spider,
deciding the correctness of SQL queries by com-
paring the sub-clauses of SQL queries. Zhong et al.
(2020a) generate databases that can distinguish the
predicted SQL query and gold one. Both methods
are used as official metrics on Spider.

Evaluation Setup Early single-domain datasets
typically use the standard train/dev/test split (Iyer
et al., 2017) by splitting the question-SQL pairs ran-
domly. To evaluate generalization to unseen SQL
queries within the current domain, Finegan-Dollak
et al. (2018) propose SQL query split, where no
SQL query is allowed to appear in more than one
set among the train, dev, and test sets. Further-
more, Yu et al. (2018c) propose a database split,
where the model does not see the databases in the
test set in its training time. Other splitting methods
also exist to help different research topics (Shaw
et al., 2021; Chang et al., 2020).

5 Discussion and Future Directions

Ever since the LUNAR system (Woods et al., 1972;
Woods, 1973), systems for retrieving DB informa-
tion have witnessed an increasing amount of re-
search interest and an enormous growth, especially
in the field of text-to-SQL in the deep learning
era. With the ever-increasing model performance
on the WikiSQL and Spider leaderboards, one can
be optimistic because models are becoming more
sophisticated than ever. But there are still several
challenges to overcome.

First, these sophisticated models suffer a great

performance loss when tested against different text-
to-SQL datasets from other domains (Suhr et al.,
2020; Lee et al., 2021). It is unclear how to in-
corporate domain knowledge to the models trained
on Spider and deploy these models efficiently on
different domains, especially those with similar in-
formation stored in DB but slightly different DB
schemas. Although large-scale datasets promote
the cross-domain settings, question-SQL pairs from
Spider are free from domain knowledge, ambiguity,
or domain convention. Thus, cross-domain text-to-
SQL needs to be studied in future research to build
a practical cross-domain system that can handle
real-world requests.

There are different use cases in real-world sce-
narios, which requires models to be robust to dif-
ferent settings and be smart to handle different user
requests. For instance, the model trained with DB
schemas can need to handle a corrupted table, or no
table is provided in its practical use. Besides, the
input from users can vary from the standard ques-
tion input in Spider or WikiSQL, which poses chal-
lenges to models trained on these datasets. More
user studies need to be done to study how well
the current systems serve the end-users and the in-
put pattern from the end-users. Apart from SQL
queries, administrators can want to change DB
schemas, where a system that can translate the
natural language to such DB commands can be
helpful. Also, although there are already works
on text-to-SQL beyond English (Min et al., 2019a;
Tuan Nguyen et al., 2020; José and Cozman, 2021),
but we still lack a comprehensive study on multi-
lingual text-to-SQL, which can be challenging but
useful in real-life scenarios. Finally, it is important
to build NLIDB for people with disabilities. Song
et al. (2022) propose speech-to-SQL that translates
voice input to SQL queries, which helps visually
impaired end users. More work can be done to
address various needs from the perspective of end-
users, in particular, the needs from minorities.

Text-to-SQL research can also be integrated into
a larger scope of research. Application-wise, Xu
et al. (2020) develop a question answering system
for the database, Chen et al. (2020a) generate task-
oriented dialogue by retrieving knowledge from the
database using the text-to-SQL model. An example
of the possible directions is to employ the text-to-
SQL model to query databases for fact-checking.
Research-wise, Guo et al. (2020) compare SQL
queries to other logical forms in semantic pars-
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ing, Xie et al. (2022) include text-to-SQL as one of
the tasks to achieve a generalized semantic parsing
framework. The inter-relations between various
logical forms in semantic parsing can be further
studied. A generalized framework or a general-
ized model can come as the fruit for our semantic
parsing community.

In hindsight, the development of text-to-SQL
has been pushed by the innovation in the general
ML/NLP community, such as LSTM (Hochreiter
and Schmidhuber, 1997), self-attention (Vaswani
et al., 2017), PLMs (Devlin et al., 2019), etc. Re-
cently, prompt learning has achieved decent perfor-
mance on various tasks, in particular, in the low-
resource setting (Liu et al., 2021a). Such charac-
teristics align well with the expectation of having a
functional text-to-SQL model with a few training
samples. Some recent works already explore apply-
ing prompt learning to the text-to-SQL task (Xie
et al., 2022). The practical expectation for the
text-to-SQL task is to deploy the model in differ-
ent scenarios, requiring robustness across domains.
However, prompt learning struggles with being ro-
bust, and the performance can be easily affected
by the selected data. This misalignment encour-
ages researchers to study how to employ prompt
learning in the real-world text-to-SQL task, which
can need further understanding of the cross-domain
challenges for text-to-SQL.

Another line of research is to evaluate these so-
phisticated text-to-SQL systems. The typical mea-
sure is to evaluate the performance of the system
on some existing datasets. As there are operational
systems using NL input to perform tasks such as
getting answers from database management system
or building ontologies or playing some games, the
performance of these systems can be measured by
the diminution of the (human) time taken to get
the searched information (Deng et al., 2021; Zhou
et al., 2022). While there are context-dependent
text-to-SQL datasets available (Yu et al., 2019a,b),
researchers can draw inspirations from other fields
of research (Zellers et al., 2021) to design interac-
tive set-ups to evaluate text-to-SQL systems. Ap-
pendix E discusses tasks relevant to the task of
text-to-SQL.
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A Topology for Text-to-SQL

Figure 5 shows the topology for the text-to-SQL
task.

B Text-to-SQL Examples

B.1 Table and Database

Table 6 shows an example of the table in the
database for Restaurants dataset. The domain for
this dataset is restaurant information, where ques-
tions are typically about food type, restaurant loca-
tion, etc.

There is a big difference in terms of how many
tables a database has. For restaurants, there are 3
tables in the database, while there are 32 tables in
ATIS (Suhr et al., 2020).

B.2 Domain Knowledge

Question: Will undergrads be okay to take 581 ?
SQL query:

SELECT DISTINCT T1.ADVISORY_REQUIREMENT ,
T1.ENFORCED_REQUIREMENT , T1.NAME FROM

COURSE AS T1 WHERE T1.DEPARTMENT =
"EECS" AND T1.NUMBER = 581 ;

In Advising dataset, Department “EECS” is con-
sidered as domain knowledge where “581” in the
utterance means a course in “EECS” department
with course number “581”.

B.3 Dataset Convention

Question: Give me some restaurants in alameda ?
SQL query:

SELECT T1.HOUSE_NUMBER ,
T2.NAME FROM LOCATION AS T1 , RESTAURANT
AS T2 WHERE T1.CITY_NAME = "alameda"

AND T2.ID = T1.RESTAURANT_ID ;

In Restaurants dataset, when the user queries
“restaurants”, by dataset convention, the cor-
responding SQL query returns the column
“HOUSE_NUMBER” and “NAME”.

B.4 Text-to-SQL Templates

An example of the template for text-to-SQL pair
used by Iyer et al. (2017) is as follows:
Question template: Get all <ENT1>.<NAME>
having <ENT2>.<COL1>.<NAME> as
<ENT2>.<COL1>.<TYPE>
SQL query template:

SELECT <ENT1>.<DEF> FROM JOIN_FROM(
<ENT1>, <ENT2>) WHERE JOIN_WHERE(<ENT1>,
<ENT2>) AND
<ENT2>.<COL1> = <ENT2>.<COL1>.<TYPE> ;
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text-to-SQL

Datasets § 2

Single-
domain

ATIS; GeoQuery; Restau-
rants; Scholar; Academic;

Yelp; IMDB; Advising; MIM-
ICSQL; ESQL(zh); SEDE

Large Scale
Cross-domain

WikiSQL

Spider; Spider-DK; SpiderUTran;
Spider-L; SpiderSL; Spider-Syn

TableQA(zh); DuSQL(zh);
ViText2SQL(vi); CSpi-

der(zh); PortugueseSpider(pt)

Others Multi-turn
ATIS; Sparc; CoSQL;

Splash; Chase (zh)

Others TriageSQL; Squall; KaggleDBQA

Methodologies
§ 3

Data
Augmentation

Encoding
Encode Token Types;

Graph-based; Self-attention;
Adapt PLM; Pre-training

Decoding

Tree-based; Sketch-based;
Bottom-up; Attention Mecha-
nism; Copy Mechanism; Inter-
mediate Representation; Others

Learning
Techniques

Fully
Supervised

Active Learning; Interac-
tive/Imitation Learning; Meta-
learning; Multi-task learning

Weakly
supervised

Reinforcement Learning; Meta-
Learning; Bayesian Optimization;
Hard-EM-style Parameter Updates

Miscellaneous

Evaluations
§ 4 Metrics

Exact string match; Exact set
match; Execution accuracy

Split
Methods

Example split; SQL
query split; Database split

Table 5: Topology for text-to-SQL. Format adapted from Liu et al. (2021a).

CITY_NAME* COUNTY REGION

VARCHAR(255) VARCHAR(255) VARCHAR(255)

Alameda Alameda
County Bay Area

Alamo Contra Costa
County Bay Area

Albany Alameda
County Bay Area

... ... ...

Table 6: Geography, one of the tables in Restaurants
database. * denotes the primary key of this table. We
only include 3 rows for demonstration purpose.

Generated question: Get all author having dataset
as DATASET_TYPE
Generated SQL query:
SELECT author.authorId
FROM author , writes , paper ,

paperDataset , dataset WHERE author.
authorId = writes.authorId
AND writes.paperId = paper.paperId
AND paper.paperId = paperDataset.paperId
AND paperDataset.datasetId = dataset.

datasetId AND dataset.datasetName =
DATASET_TYPE ;

, where they populate the slots in the templates
with table and column names from the database
schema, as well as join the corresponding tables
accordingly.

An example of the PPDB (Ganitkevitch et al.,
2013) paraphrasing is “thrown into jail” and “im-
prisoned”. The English portion of PPDB contains
over 220 million paraphrasing pairs.
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B.5 Complexity of Natural Language and
SQL Query Pairs

In terms of the complexity for SQL queries,
Finegan-Dollak et al. (2018) find that models per-
form better on shorter SQL queries than longer
SQL queries, which indicates that shorter SQL
queries are easier in general. Yu et al. (2018c)
define the SQL hardness as the number of SQL
components. The SQL query is harder when it con-
tains more SQL keywords such as GROUP BY and
nested subqueries. Yu et al. (2018c) gives some
examples of SQL queries with different difficulty
levels:
Easy:
SELECT COUNT(*)
FROM cars_data
WHERE cylinders > 4 ;

Medium:
SELECT T2.name, COUNT(*)
FROM concert AS T1 JOIN stadium AS T2 ON
T1.stadium_id = T2.stadium_id GROUP

BY T1.stadium_id ;

Hard:
SELECT T1.country_name
FROM countries AS T1 JOIN continents AS
T2 ON T1.continent = T2.cont_id JOIN
car_makers AS T3 ON T1.country_id = T3.
country
WHERE T2.continent = ’Europe’
GROUP BY T1.country_name
HAVING COUNT(*) >= 3 ;

Extra Hard:
SELECT AVG(life_expectancy) FROM country
WHERE name NOT IN

(SELECT T1.name
FROM country AS T1 JOIN
country_language AS T2
ON T1.code = T2.country_code
WHERE T2.language = "English"
AND T2.is_official = "T") ;

In terms of the complexity of natural utterance,
there is no qualitative measure of how hard the
utterance is. Intuitively, models’ performance can
decrease when faced with longer questions from
users. However, the information conveyed in longer
sentences can be more complete, while there can
be ambiguity in shorter sentences. Besides, there
can be domain-specific phrases that confuse the
model in both short and long utterances (Suhr et al.,
2020). Thus, researchers need to consider various
perspectives to determine the complexity of natural
utterance.

C Text-to-SQL Datasets

Table 7 lists statistics for text-to-SQL datasets.

C.1 More Discussion on Text-to-SQL Datasets
CSpider (Min et al., 2019a), Vi-
Text2SQL (Tuan Nguyen et al., 2020) and José
and Cozman (2021) translate all the English
questions in Spider into Chinese, Vietnamese and
Portuguese, respectively. TableQA (Sun et al.,
2020) follows the data collection method from
WikiSQL, while DuSQL (Wang et al., 2020c)
follows Spider. Both TableQA and DuSQL collect
Chinese utterance and SQL query pairs across
different domains. Chen et al. (2021a) propose a
Chinese domain-specific dataset, ESQL.

For multi-turn context-dependent text-to-SQL
benchmarks, ATIS (Price, 1990; Dahl et al.,
1994) includes user interactions with a SQL flight
database in multiple turns. Sparc (Yu et al., 2019b)
takes a further step to collect multi-turn interactions
across 200 databases and 138 domains. However,
both ATIS and Sparc assume all user questions can
be mapped into SQL queries and do not include
system responses. Later, inspired by task-oriented
dialogue system (Budzianowski et al., 2018), Yu
et al. (2019a) propose CoSQL. In CoSQL, the di-
alogue state is tracked by SQL. CoSQL includes
three tasks of SQL-grounded dialogue state track-
ing to generate SQL queries from user’s utterance,
system response generation from query results, and
user dialogue act prediction to detect and resolve
ambiguous and unanswerable questions.

Besides, TriageSQL (Zhang et al., 2020) col-
lects unanswerable questions other than natural
utterance and SQL query pairs from Spider and
WikiSQL, bringing up the challenge of distinguish-
ing answerable questions from unanswerable ones
in text-to-SQL systems.

D Encoding and Decoding Method

Table 8 and Table 9 show the encoding and decod-
ing methods that have been discussed in § 3.2 and
§ 3.3, respectively.

E Other Related Tasks

Other tasks that are related to text-to-SQL in-
clude text-to-python (Bonthu et al., 2021), text-
to-shell script/bash script (Bharadwaj and She-
vade, 2022), text-to-regex (Ye et al., 2020), text-to-
SPARQL (Ochieng, 2020), etc. They all take natu-
ral language queries as input and output different
logical forms. Among these tasks, text-to-SPARQL
is closest to text-to-SQL as both SPARQL and SQL
can execute on database systems. Therefore, some
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Datasets #Size #DB #D #T/DB Issues addressed Sources for data

Spider (Yu et al., 2018c) 10,181 200 138 5.1 Domain
generalization

College courses,
DabaseAnswers,
WikiSQL

Spider-DK (Gan et al., 2021b) 535 10 - 4.8 Domain
knowledge Spider dev set

SpiderUtran (Zeng et al., 2020) 15,023 200 138 5.1 Untranslatable
questions

Spider + 5,330
untranslatable
questions

Spider-L (Lei et al., 2020) 8,034 160 - 5.1 Schema linking Spider train/dev
SpiderSL (Taniguchi et al., 2021) 1,034 10 - 4.8 Schema linking Spider dev set
Spider-Syn (Gan et al., 2021a) 8,034 160 - 5.1 Robustness Spider train/dev
WikiSQL (Zhong et al., 2017) 80,654 26,521 - 1 Data size Wikipedia

Squall (Shi et al., 2020b) 11,468 1,679 - 1 Lexicon-level
supervision

WikiTableQuestions
(Pasupat and Liang,
2015)

KaggleDBQA (Lee et al., 2021) 272 8 8 2.3 Domain
generalization Real web daabases

ATIS (Price, 1990; Dahl et al., 1994) 5,280 1 1 32 - Flight-booking
GeoQuery (Zelle and Mooney, 1996) 877 1 1 6 - US geography

Scholar (Iyer et al., 2017) 817 1 1 7 - Academic
publications

Academic (Li and Jagadish, 2014) 196 1 1 15 -
Microsoft Academic
Search (MAS)
database

IMDB (Yaghmazadeh et al., 2017) 131 1 1 16 - Internet Movie
Database

Yelp (Yaghmazadeh et al., 2017) 128 1 1 7 - Yelp website

Advising (Finegan-Dollak et al., 2018) 3,898 1 1 10 -
University of
Michigan course
information

Restaurants (Tang and Mooney, 2000)
(Popescu et al., 2003) 378 1 1 3 - Restaurants

MIMICSQL (Wang et al., 2020d) 10,000 1 1 5 - Healthcare domain

SEDE (Hazoom et al., 2021) 12,023 1 1 29 SQL template
diversity Stack Exchange

Table 7: Summarization for text-to-SQL datasets. #Size, #DB, #D, and #T/DB represent the number of question-SQL
pairs, databases, domains, and tables per domain, respectively. We put “-” in the #D column because we do not
know how many domains are in the Spider dev set and “-” in the Issues Addressed column because there is no
specific issue addressed for the dataset. Datasets above and below the line are cross-domain and single-domain,
respectively.

end-to-end models that take user queries as the in-
put and output a sequence of logical forms can be
applied to both tasks (Raffel et al., 2019). In con-
trast, methods (Xu et al., 2017) designed to take
care of SQL natures cannot be directly applied to
SPARQL, which requires carefully modification
instead.
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Methods Adopted by Applied
datasets Addressed challenges

Encode token type TypeSQL (Yu et al., 2018a) WikiSQL Representing question
meaning

GNN (Bogin et al., 2019a) Spider
Global-GCN (Bogin et al., 2019b) Spider
IGSQL (Cai and Wan, 2020) Sparc, CoSQL
RAT-SQL (Wang et al., 2020a) Spider
LEGSQL (Cao et al., 2021) Spider
SADGA (Cai et al., 2021) Spider
ShawdowGNN (Chen et al., 2021b) Spider

Graph-based

S2SQL (Hui et al., 2022) Spider,
Spider-Syn

Self-attention

X-SQL (He et al., 2019) WikiSQL
SQLova (Hwang et al., 2019) WikiSQL
RAT-SQL (Wang et al., 2020a) Spider
DuoRAT (Scholak et al., 2021a) Spider

UnifiedSKG (Xie et al., 2022) WikiSQL,
Spider

(1) Representing ques-
tion and DB schemas in
a structured way
(2) Schema linking

X-SQL (He et al., 2019) WikiSQL
SQLova (Hwang et al., 2019) WikiSQL
Guo and Gao (2019) WikiSQL
HydraNet (Lyu et al., 2020) WikiSQLAdapt PLM

Liu et al. (2021b), etc Spider-L,
SQUALL

TaBERT (Yin et al., 2020) Spider
GraPPA (Yu et al., 2021) SpiderPre-training
GAP (Shi et al., 2020a) Spider

Leveraging external
data to represent ques-
tion and DB schemas

Table 8: Methods used for encoding in text-to-SQL.
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Methods Adopted by Applied
datasets Addressed challenges

Seq2Tree (Dong and Lapata, 2016) -
Seq2AST (Yin and Neubig, 2017) -Tree-based
SyntaxSQLNet (Yu et al., 2018b) Spider
SQLNet (Xu et al., 2017) WikiSQL
Dong and Lapata (2018) WikiSQL
IRNet (Guo et al., 2019) Spider

Sketch-
based

RYANSQL (Choi et al., 2021) Spider
Bottom-up SmBop (Rubin and Berant, 2021) Spider

Hierarchical decoding

Seq2Tree (Dong and Lapata, 2016) -
Attention Seq2SQL (Zhong et al., 2017) WikiSQL
Bi-attention Guo and Gao (2018) WikiSQL
Structured attention Wang et al. (2019) WikiSQL

Attention
Mechanism

Relation-aware
Self-attention DuoRAT (Scholak et al., 2021a) Spider

Seq2AST (Yin and Neubig, 2017) -
Seq2SQL (Zhong et al., 2017) WikiSQL
Wang et al. (2018a) WikiSQL

Copy Mech-
anism

SeqGenSQL (Li et al., 2020a) WikiSQL

Synthesizing informa-
tion for decoding

IncSQL (Shi et al., 2018) WikiSQL
IRNet (Guo et al., 2019) Spider

Suhr et al. (2020) Spider and
others♠

Herzig et al. (2021) GeoQuery,
ATIS, Scholar

Gan et al. (2021c) Spider

Intermediate
Representa-
tion

Brunner and Stockinger (2021) Spider

Bridging the gap be-
tween natural language
and SQL query

Constrained decod-
ing

UniSAr (Dou et al., 2022)
WikiSQL,
Spide and
others♡

PICARD (Scholak et al., 2021b) Spider, CoSQL

Execution-guided SQLova (Hwang et al., 2019) WikiSQL
Wang et al. (2018b) WikiSQL

Fine-grained decoding

Discriminative
re-ranking

Global-GCN (Bogin et al., 2019b) Spider
Kelkar et al. (2020) Spider SQL Ranking

Separate submodule
SQLNet (Xu et al., 2017) WikiSQL
Guo and Gao (2018) WikiSQL
Lee (2019) Spider

BPE Müller and Vlachos (2019) Advising, ATIS,
GeoQuery

Easier decoding
Others

Link gating Chen et al. (2020b) Spider
Synthesizing
information for
decoding

Table 9: Methods used for decoding in text-to-SQL. ♠: Academic, Advising, ATIS, GeoQuery, Yelp, IMDB, Scholar,
Restaurants; ♡: TableQA DuSQL, CoSQL, Sparc, Chase.
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Abstract

Semantic Role Labeling (SRL) aims at recog-
nizing the predicate-argument structure of a
sentence and can be decomposed into two sub-
tasks: predicate disambiguation and argument
labeling. Prior work deals with these two tasks
independently, which ignores the semantic con-
nection between the two tasks. In this paper,
we propose to use the machine reading com-
prehension (MRC) framework to bridge this
gap. We formalize predicate disambiguation
as multiple-choice machine reading compre-
hension, where the descriptions of candidate
senses of a given predicate are used as options
to select the correct sense. The chosen pred-
icate sense is then used to determine the se-
mantic roles for that predicate, and these se-
mantic roles are used to construct the query
for another MRC model for argument label-
ing. In this way, we are able to leverage both
the predicate semantics and the semantic role
semantics for argument labeling. We also pro-
pose to select a subset of all the possible se-
mantic roles for computational efficiency. Ex-
periments show that the proposed framework
achieves state-of-the-art or comparable results
to previous work. Code is available at https:
//github.com/ShannonAI/MRC-SRL.

1 Introduction

Semantic Role Labeling (SRL) aims at recogniz-
ing the predicate-argument structure of a sentence.
The classic PropBank-style SRL includes two tasks:
predicate disambiguation and argument labeling.
Predicate disambiguation determines the specific
meaning of a predicate in a given context and ar-
gument labeling identifies the arguments of the
predicate and assign them with the corresponding
semantic roles, where each argument is a text span
in the sentence. PropBank defines two types of
semantic roles for argument labeling: core roles
and non-core roles (Bonial et al., 2010). Core roles
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The stock has been beaten down for two days.
[ A1 ] [beat.02][ A2 ] [ TMP ]

sense id beat.02
sense push, cause motion

A0 causer of motion
roles A1 thing moving

A2 direction, destination

Figure 1: An example of SRL. A0, A1 and A2 are
semantic roles for the sense id “beat.02”. The meanings
of A0, A1 and A2 are respectively “causer of motion”,
“thing moving” and “direction, destination”.

are required roles that are in a close relation to the
main verb in a sentence, such as agent and patient.
There are seven core roles in PropBank: A0-A5 and
AA. Non-core roles are modifiers, such as location
(LOC) and time (TMP). The specific meanings of
predicates and core roles are defined in the frame
files. For example, for the sentence in Figure 1, the
sense id of the predicate “beaten” is “beat.02”, and
its three arguments span are “The stock”, “down”
and “for two days”, whose roles are respectively
A1, A2, TMP. We can get the meaning of sense la-
bel “beat.02” and roles A1 and A2 from the frame
file.

In traditional methods, predicate disambiguation
and argument labeling are usually solved as two
independent tasks. These works usually rely on
feature-based methods (He et al., 2018b; Roth and
Lapata, 2016; Che and Liu, 2010b)) for predicate
disambiguation, and use span-based (Ouchi et al.,
2018; He et al., 2018a; Li et al., 2019b) or BIO-
based (He et al., 2017; Strubell et al., 2018; Shi and
Lin, 2019) methods for argument labeling. These
methods treat different predicate senses and argu-
ment roles as different class categories, and then
solve them through classification. However, since
these approaches ignore the semantic information
of both predicate senses and argument roles, they
are unable to establish the semantic connection be-
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Input Sentence
The stock has been < p> beaten </p> down for
two days.

Multiple-Choice MRC for Predicate Disam-
biguation
Question: What is the sense of predicate
“beaten”?
A. (Cause) pulsating motion that often makes
sound
B. push, cause motion
C. win over some competitor
Answer: B

Extractive MRC for Argument Labeling
Question for A0: What are the arguments with
meaning "causer of motion"?
Answer: No Answer
Question for A1: What are the arguments with
meaning "thing moving"?
Answer: the stock
Question for A2: What are the arguments with
meaning "direction, destination"?
Answer: down
Question for TMP: What are the time modifiers
of predicate “beaten”?
Answer: for two days

Figure 2: An illustration of our MRC framework for
Semantic Role Labeling. The meanings of predicate
senses and argument roles are used for multiple-choice
and extractive MRC, respectively.

tween the two tasks, i.e., argument roles are defined
under predicate sense via the frame files. Some
works (Cai et al., 2018; Conia and Navigli, 2020)
jointly deal with these two tasks, but still cannot es-
tablish the semantic connection. We bridge this gap
with an MRC framework, and we hope that the re-
sults from predicate disambiguation will contribute
to argument labeling.

For PropBank-style semantic role labeling, al-
though the specific meanings of predicate senses
and argument roles are provided in the frame files,
this information is seldom used due to its huge num-
ber and lack of effective ways to utilize it. Inspired
by recent success in formulating non-MRC NLP
tasks as MRC tasks (Levy et al., 2017; Li et al.,
2020c), we propose an MRC framework for SRL,
which can effectively utilize the semantic informa-
tion provided by frame files. First, we transform
the predicate disambiguation task into multiple-
choice machine reading comprehension, where the

descriptions of candidate predicate senses are used
as options to select the correct sense. Then, we
use the result of predicate disambiguation (i.e., the
predicate sense) to determine the meaning of each
core role with respect to the predicate. Lastly, we
transform argument labeling into extractive ma-
chine reading comprehension, where the descrip-
tion of each semantic role is used to construct the
query to extract the answer span within the input
sentence, which serves as the argument we want.
In addition, we also propose an additional mod-
ule to select a subset of all possible semantic roles
to improve computational efficiency. We provide
an example (Figure 1) of the MRC framework in
Figure 2.

We conduct experiments on CoNLL2005 (Car-
reras and Màrquez, 2005), CoNLL2009 (Hajič
et al., 2009), and CoNLL2012 (Pradhan et al.,
2013) benchmarks. Experimental results show that
our model can achieve SOTA or comparable results
to previous works on the three benchmarks.

2 Related Work

2.1 Semantic Role Labeling

Early semantic role labeling methods focused on
feature engineering (Zhao et al., 2009; Pradhan
et al., 2005). Recently, neural network based mod-
els have been studied and achieved promising per-
formance. Collobert et al. (2011) proposed a uni-
fied neural network architecture and can avoid task-
specific engineering. Zhou and Xu (2015) proposed
to use BiLSTM as an end-to-end system for SRL.
Tan et al. (2018) applied self-attention (Vaswani
et al., 2017) mechanism to directly draw the global
dependencies of the inputs. Shi and Lin (2019) pre-
sented a BERT (Devlin et al., 2019) based model
for semantic role labeling. Jindal et al. (2020)
propose a parameterized neighborhood memory
adaptive method for SRL. Kalyanpur et al. (2020);
Paolini et al. (2021); Blloshmi et al. (2021) cast
SRL to a generative translation problem. Zhou
et al. (2019); Marcheggiani and Titov (2020) incor-
porates syntactic information into SRL.

Some works also show that predicate disam-
biguation is helpful for argument labeling. Che
et al. (2010) incorporated a word sense feature
to improve the SRL performance. Che and Liu
(2010a); Cai et al. (2018); Conia and Navigli (2020)
jointly dealt with predicate disambiguation and ar-
gument labeling. These methods are different from
ours and cannot use this semantic information of
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the sense label and role label.

2.2 Machine Reading Comprehension

According to the type of the answer, machine read-
ing comprehension can be divided into the follow-
ing four categories: extractive (Rajpurkar et al.,
2016), multiple-choice (Lai et al., 2017), close
style (Onishi et al., 2016), and free-form (Nguyen
et al., 2016). Related to our work are extractive
and multiple-choice MRC. For extractive reading
comprehension such as SQuAD (Rajpurkar et al.,
2016), the answer is a span in the text, and the
MRC model (Seo et al., 2017) gets the answer by
predicting the probability that the word is start or
end. Some datasets such as DROP (Dua et al.,
2019) have answers that include multiple spans,
and the answers can be obtained by using BIO
tagging (Segal et al., 2019). For multiple-choice
reading comprehension where the answer is one of
several options, a method (Pan et al., 2019) is to
calculate the score for each option and then select
the option with the highest score.

2.3 Formalizing Non-MRC Tasks as MRC

Previous studies achieved great performance boost
by applying the MRC framework to NER, de-
pendency parsing and other non-MRC tasks. He
et al. (2015) introduced the task of question-answer
driven semantic role labeling without predefining
an inventory of frames. Levy et al. (2017) showed
that relation extraction can be reduced to answering
simple reading comprehension questions. McCann
et al. (2018) framed ten tasks as question answer-
ing. Li et al. (2020c) proposed to formulate named
entity recognition as an MRC task. Other examples
include joint entity relation extraction (Li et al.,
2019a), coreference resolution (Wu et al., 2020),
event extraction (Li et al., 2020a), entity linking
(Gu et al., 2021), dependency parsing (Gan et al.,
2021), text classification (Chai et al., 2020), etc.

Our approach to formalizing argument labeling
as extractive MRC is similar to QA-SRL (He et al.,
2015), but we focus on improving the performance
of the model on Propbank-style SRL, while He
et al. (2015) aims to provide a new SRL annotation
paradigm, and He et al. (2015) neither uses the
predicate sense definitions nor the argument role
definitions provided in the frame files.

Algorithm 1 MRC framework for SRL

Input: sentence x = {x1, ..., xn} with marked
predicate p, frame files, annotation guidelines

Output: predicate sense ŝ, argumentsA
1: Get the lemma l of p using SpaCy
2: Get all the predicate senses Sl of l and the

corresponding descriptionsDs
l from the frame

files
3: for si in Sl do
4: Get the description dsi of sense si fromDs

l

5: Concatenate dsi and x to get the input for
RoBERTa

6: Compute the score of si as the answer with
Eq.(1)

7: end for
8: Select the highest scoring ŝ ∈ Sl as the predi-

cate sense of p
9: Get the candidate argument rolesRp of p from

the role prediction module
10: for ri inRp do
11: if ri is core role then
12: Get the description dri of role ri from the

frame files with ŝ
13: else
14: Get the description dri of role ri from the

annotation guidelines
15: end if
16: Construct query qi using dri and p
17: Concatenate qi and x to get the input for

RoBERTa
18: Calculate the probability that each word in

x belongs to the BIO tags
19: end for
20: Decode with non-overlap constraint to get the

argumentsA of p
21: return ŝ,A

3 Method

3.1 Overview

An overview of our model is shown in Algorithm
1. Given a sentence x = {x1, ..., xn} and the pred-
icate p, the predicate disambiguation task is to de-
termine the predicate sense s ∈ S of p, where
S is the set of all predicate senses, and the ar-
gument labeling task is to find all the arguments
A = {a1, ..., ak} of p, where ai ∈ A is a text
span in x, and assigning them the corresponding
semantic roles.

Our framework consists of three modules: predi-
cate disambiguation, role prediction, and argument
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labeling, all of which use RoBERTa (Liu et al.,
2019) as the backbone and use two special symbols
< p> and </p> to mark the predicate p in the input
sentence x. The predicate disambiguation module
is intended to obtain the predicate sense of the pred-
icate p. Note that we do not use the predicate sense
for argument labeling directly, but only use it to get
the meanings of the argument roles in the frame
files. The role prediction module is to obtain the set
of candidate roles for the predicate, and the main
purpose of this module is to reduce the number of
questions that need to be constructed when solving
the argument labeling problem via an extractive
MRC. The argument labeling module is used to
obtain the arguments of the predicate, which is the
core module in the whole framework.

3.2 Multiple-Choice MRC for Predicate
Disambiguation

For the predicate disambiguation task, determin-
ing the sense label of the predicate involves two
steps: identifying the lemma of the predicate, and
determining the sense index of the predicate under
this lemma. We use spaCy (Honnibal et al., 2020)
to identify the lemma of the predicate. If the rec-
ognized lemma is not in the frame files, we use
the lemma with the smallest edit distance of the
predicate. After identifying the lemma, we can find
all the senses defined under this lemma from the
frame files, and then we choose the correct sense
through multiple-choice reading comprehension.

Specifically, let Sl be all possible senses for the
detected lemma. For each sense si ∈ Sl, the cor-
responding sense description is dsi . We treat dsi as
option, and the input for the RoBERTa is the con-
catenation of dsi and x. The confidence score of si
as the correct sense is calculated by:

P (si = 1|dsi , x, p) = sigmoid(FFNp(h
d)) (1)

where hd is the context representation of the first
input token from RoBERTa and FFNp is a single
layer feedforward neural network. We train the
model using the binary cross-entropy loss function.
1 During inference, we choose the sense with the
highest probability score among all the sense op-
tions as the answer.

1We also tried to use softmax to get the probability of
all senses, and then use the multi-class cross entropy loss
for training, but we found the loss is unstable and hard to
optimize.

3.3 Role Prediction

In semantic role labeling, most semantic roles do
not have corresponding arguments given a specific
input sentence. For example, in the CoNLL2005
dataset, there is a total number of 20 roles, but
on average there are only 2.5 roles per predicate.
Therefore, we use a role prediction module to avoid
asking questions about impossible roles at the next
argument labeling stage, reducing the amount of
calculation required when using the MRC-based
method.

LetR be the set of all semantic roles (in CoNLL
2005 the size ofR is 20), the purpose of role pre-
diction is to predict a set of possible rolesRp ⊆ R
for the predicate p. The input to RoBERTa is the
sentence x with the marked predicate p. Let hr

be the context representation of the first token of
the input sequence from RoBERTa, and ri ∈ R is
the i-th role ofR. We use the sigmoid function to
calculate the probability that the predicate p has a
role ri:

P (ri = 1|x, p) = sigmoid(FFNri(h
r)) (2)

where FFNri is a single layer feedforward neural
network. We use the binary cross entropy loss func-
tion to train the model. During inference, we only
keep up to λN roles with the highest probability
score, where N is the number of predicates in the
dataset. 2 Note that here we select the roles with
the top λN probability scores on the whole dataset,
not on the input sentence. And in the argument
labeling module, we use the predicted roles from
the role prediction module instead of the gold roles
for training.

3.4 Extractive MRC for Argument Labeling

We formalize argument labeling as extractive read-
ing comprehension, where the meaning of argu-
ment role is used to construct the query, and since
the answer may contain multiple spans, we use BIO
tagging to extract the arguments. 3 In ProbBank-
style SRL, a role may be a norm role, a reference
role, or a continuation role. A norm role is a stan-
dard role defined in the annotation guidelines, a

2An alternative strategy is to use a fixed threshold, which
performs similarly to ours. But our strategy can directly get
the number of argument roles, which helps to analyze the
amount of computation needed in argument labeling.

3For dependency semantic role labeling, since pre-trained
language models such as BERT split a word into multiple sub-
words, which is similar to span, BIO tagging is also applicable.
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reference role is a reference to some other argu-
ments, and a continuation role is a continuation
phrase of a previously started argument. For exam-
ple, role A1 may be N-A1 or R-A1, or C-A1. Since
the subcategories of N/R/C do not contain semantic
information, we do not encode such information
into the query of the MRC model. We use BIO
tagging to get the arguments of the predicate, and
the set of BIO tags is

T = {B, I} × {N,R,C} ∪ {O} (3)

We use templates to construct the query of the MRC
model. For core roles, our template is “What are
the X arguments of predicate Y with meaning Z?”,
where X is the role type, Y is the predicate, and Z
is the description of role X in the frame files. For
non-core roles, our template is “What are the W
modifiers of predicate Y?”, where W is the specific
meanings of non-core roles defined in the annota-
tion guidelines.

Specifically, let qi represent the query corre-
sponding to the predicate p and the role ri ∈ Rp ,
the input of the MRC model is the concatenation
of qi and x. The context representation of x in
the input < qi, x > pair is hri = {hri1 , ...,hrin },
our goal is to predict yri = {yri1 , ..., yrin }. Each
yrij ∈ yri belongs to one tag in the tag set T . For
yrij , its probability distribution on BIO tag set is
calculated by a softmax layer:

P (yrij = t|x, p, ri) ∝ exp(Wth
ri
j + bt) (4)

where t ∈ T is a BIO tag, Wt and bt are the cor-
responding parameters. We use multi-class cross
entropy loss to train the model. And we use the
method in section 3.5 to get the argument.

Note that at this stage, we use the predicate sense
extracted at the predicate disambiguation stage to
find the sense of each role selected at the role pre-
diction stage. For example, suppose the predicate
sense is “beat.02” and the semantic role is A0 as
shown in Figure 1, we will immediately obtain
the role’s sense “causer of motion”. In this way,
the predicate sense can be leveraged for role sense
detection, and thus further for semantic labeling,
bridging the gap between the two tasks via a MRC
framework.

3.5 Constrained Decoding

There are many global constraints in semantic role
labeling (Punyakanok et al., 2008; Li et al., 2020b),

such as all arguments of the predicate cannot over-
lap and each core role should appear at most once
for each predicate. Our MRC approach does not
directly model these constraints and can not guaran-
tee that the obtained results satisfy these constraints.
For simplicity, we only consider the non-overlap
arguments constraint. The previous approach of
using BIO tagging (He et al., 2017; Shi and Lin,
2019) to extract arguments can naturally model the
non-overlap constraint, since each word in x can
only belong to one of the BIO tags, there will be no
overlapping words between the argument elements.
But in our MRC-based BIO tagging method, since
we haveRp roles, each word has at mostRp BIO
tags. We implement the non-overlap constraint
by mapping the local role-related BIO tag of each
word into a global BIO tag set.

Specifically, for the sentence x = {x1, ..., xn},
the goal of constraint decoding is to obtain the cor-
responding tag sequence y = {y1, ..., yn}, where
yj ∈ y belongs to the tag set Tp:

Tp = Rp × {B, I} × {N,R,C} ∪ {O} (5)

For tag tp ∈ Tp, when it is a BI tag, it can be ex-
pressed as ri-t, where ri ∈ Rp and t ∈ T . For BI
tags, we add a role tag directly before the original
BI tag. For example, the B-R tag of role A1 will be
converted to A1-B-R, and then the score of the new
tag is equal to the probability of the original tag:

s(yj = tp) = s(yj = ri-t)

= p(yrij = t)
(6)

where s(·) is the score function. For O tags, we
merge the O tags of different roles into one O tag,
and the score of O tag after merging is the product
of the O tag probabilities of all roles.

s(yj = O) =

|Rp|∏

i=1

p(yrij = O) (7)

During inference, for each word xi, its tag yj is the
highest scoring tag in the new BIO tag set Tp.

yj = argmax
tp∈Tp

s(yj = tp) (8)

And we use the BIO tag sequence y to get all the
arguments.

4 Experiments

4.1 Datasets
We conduct experiments on CoNLL2005 (Car-
reras and Màrquez, 2005), CoNLL2009 (Hajič
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Model Dev WSJ Brown

Shi and Zhang (2017) - 93.4 82.4
Roth and Lapata (2016) 94.8 95.5 -
He et al. (2018b) 95.0 95.6 -
Shi and Lin (2019)+BERT 96.3 96.9 90.6

Ours+BERT 96.3 97.2 91.9
Ours+RoBERTa 96.6 97.3 91.3
Ours-semantics 96.2 96.7 89.9

Table 1: Predicate disambiguation results on
CoNLL2009.

CoNLL09 WSJ CoNLL09 Brown

Model P R F1 P R F1

syntax-aware
Cai and Lapata (2019) 91.7 90.8 91.2 83.2 81.9 82.5
Kasai et al. (2019) 90.3 90.0 90.2 81.0 80.5 80.8
Zhou et al. (2019)+BERT 91.2 91.2 91.2 85.7 86.1 85.9
Chen et al. (2022)+BERT 92.3 91.8 92.1 87.0 86.0 86.3
syntax-agnostic
Li et al. (2019b) 89.6 91.2 90.4 81.7 81.4 81.5
Conia and Navigli (2020)+BERT 92.5 92.7 92.6 - - 85.9
Shi and Lin (2019)+BERT 92.4 92.3 92.4 85.7 85.8 85.7
Jindal et al. (2020)+BERT 90.0 91.5 90.8 83.5 86.5 85.0

Ours+BERT 93.3 92.7 93.0 87.5 86.6 87.0
Ours+RoBERTa 93.5 93.1 93.3 87.7 86.6 87.2

Table 2: Argument labeling results on CoNLL2009.

et al., 2009) and CoNLL2012 (Pradhan et al.,
2013) datasets. The CoNLL2005 and CoNLL2012
datasets are span-based SRL, where the arguments
are constituents (spans) in the sentence, and the
CoNLL2009 dataset is dependency-based SRL,
where the arguments are syntactic heads. The
CoNLL2005 dataset consists of sections of the Wall
Street Journal part of the Penn TreeBank, where
section 2-21 is used for training, section 24 is used
for development, and section 23 is used for eval-
uation. In addition, it also includes three sections
of the Brown corpus to test the robustness of the
systems. The CoNLL2009 dataset uses the same
corpus as CoNLL2005, but uses NomBank to ex-
tend the annotations. The CoNLL2012 dataset is
extracted from the OntoNotes v5.0 corpus. The
frame files are available as official resources in the
three datasets and can be used by all systems.

4.2 Experiment Setup

For data preprocessing we follow (Li et al., 2019b).
We use RoBERTa Large as the base encoder and we
use two special symbols < p> and </p> to mark the
predicate of the input sentence. We adopt Adam
as optimizer, and the warmup rate is 0.05, the ini-
tial learning rate is 1e-5, the maximum number of
epochs is 20, the number of tokens in each batch

is 2048. λ is tuned on development set to ensure
that the recall of the predicted roles is higher than
99%. All the experiments were conducted on a
Tesla V100 GPU with 16GB memory.

During the parsing of the raw frame files, we
found that there may be multiple sense and role
definitions corresponding to one sense id, which
may be caused by predicates with different part of
speech or other reasons. For simplicity, we directly
concatenate these different definitions, so that the
final definition contains all possible cases and can
be regarded as a more coarse-grained definition.

Predicate disambiguation is evaluated using ac-
curacy, and argument labeling is evaluated using
micro F1. The evaluation of argument labeling
in CoNLL2009 also includes the results of predi-
cate disambiguation, where the predicate sense is
treated as a special kind of argument of a virtual
root node.

4.3 Main Results

Predicate Disambiguation We evaluate the per-
formances of predicate disambiguation on the
CoNLL2009 dataset as previous work on the
CoNLL2005 and CoNLL2012 datasets did not con-
sider predicate disambiguation. The error of lemma
recognition is also included in the final results. In
Table 1, we report the experimental results of our
method when using BERT and RoBERTa as en-
coders. The model using RoBERTa achieves the
best results on the development set and on the in-
domain test set (WSJ), and the model using BERT
achieves the best results on the out-of-domain test
set (Brown). The performances of BERT and
RoBERTa on the development and brown test sets
are opposite, which indicates that the evaluation
on the development set does not fully reflect the
model’s generalization ability.

To investigate the impact of the sense descrip-
tion provided by the frame file, we also give the
experimental results without using this semantic in-
formation in Table 1 (“-semantics”). In this setting,
we also use RoBERTa, but the predicate sense de-
scription is replaced by the corresponding numeric
label (e.g., “02” in “beat.02”). The experimental
results show that the model performs worse when
this semantic information is not available, espe-
cially in the out-of-domain Brown test set, where
the accuracy decreases by 1.4%.

Argument Labeling Table 2 shows the results
for dependency SRL, and Table 3 shows the ex-
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CoNLL05 WSJ CoNLL05 Brown CoNLL12 Test

Model P R F1 P R F1 P R F1

syntax-aware
Zhou et al. (2019)+BERT 89.0 88.8 88.9 81.9 81.0 81.4 - - -
Mohammadshahi and Henderson (2021)+BERT 89.1 88.7 88.9 83.9 82.5 83.2 - - -
Xia et al. (2020)+RoBERTa 88.4 88.8 88.6 83.1 83.3 83.2 - - -
Marcheggiani and Titov (2020)+RoBERTa 87.7 88.1 88.0 80.5 80.7 80.6 86.5 87.1 86.8
syntax-agnostic
Li et al. (2019b) 87.9 87.5 87.7 80.6 80.4 80.5 85.7 86.3 86.0
Conia and Navigli (2020)+BERT - - - - - - 86.9 87.7 87.3
Blloshmi et al. (2021)+BART - - - - - - 87.8 86.8 87.3
Shi and Lin (2019)+BERT 88.6 89.0 88.8 81.9 82.1 82.0 85.9 87.0 86.5
Jindal et al. (2020)+BERT 88.7 88.0 87.9 80.3 80.1 80.2 86.3 86.8 86.6
Paolini et al. (2021)+T5 - - 89.3 - - 82.0 - - 87.7
Zhang et al. (2021)+RoBERTa 89.6 89.7 89.6 83.8 83.6 83.7 88.1 88.6 88.3

Ours+BERT 89.7 89.0 89.3 85.9 83.5 84.7 88.0 87.7 87.8
Ours+RoBERTa 90.4 89.7 90.0 86.4 83.8 85.1 88.6 87.9 88.3

Table 3: Argument labeling results on CoNLL2005 and CoNLL2012.

perimental results for span SRL. Since our method
is syntax-agnostic, we first compare it with the
syntax-agnostic methods. Compared with previ-
ous methods, our improvement on the in-domain
WSJ test sets of CoNLL2005 and CoNLL2009 is
0.4 and 0.7, respectively, on the out-of-domain
Brown test sets is 1.4 and 1.3, respectively, and
we achieve comparable results on the CoNLL2012
test set. The out-of-domain Brown test set is used
to test the robustness of the presented systems, and
our method achieves greater improvement on this
test set , which indicates that our approach is more
robust than previous syntax-agnostic approaches
because of the use of role semantics. The syntax-
aware method (Mohammadshahi and Henderson,
2021) also performs better on the Brown test set
compared to the syntax-agnostic methods (Shi and
Lin, 2019), a similar phenomenon to ours. How-
ever, unlike the syntax-aware approach, our ap-
proach is syntax-agnostic and utilizes the semantic
information provided in the frame files rather than
the syntactic information of the sentence, and out-
performs syntax-aware methods. This observation
demonstrates that leveraging semantic information
in frame files provides stronger robustness than
syntax-aware methods for SRL.

5 Ablation studies

5.1 Effect of Predicate Disambiguation

Our framework uses a pipelined approach to con-
nect the predicate disambiguation and the argument

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
accuracy of predicate disambiguation

0.76

0.78

0.80

0.82
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0.88

sc
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e

Precision
Recall
F1

Figure 3: Experimental results on CoNLL 2005 de-
velopment set with different predicate disambiguation
accuracies, we use the argument labeling model trained
in the main results.

labeling task, so different predicate disambiguation
accuracies may affect the results of argument la-
beling. Here we analyze the performance of the
same argument labeling model with different pred-
icate disambiguation accuracies. We obtain the
results of different predicate disambiguation accu-
racies through randomly replacing part of the gold
predicate senses with other predicate senses. Then
we use the ordinarily trained argument labeling
model to make predictions under different predi-
cate disambiguation results. Figure 3 shows that
the model performs monotonically worse as the
predicate disambiguation accuracy decreases, so
an accurate predicate disambiguation model is re-
quired to achieve improved semantic role labeling
results
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Recall 0.90 0.93 0.96 0.99
F1 87.3 88.4 88.2 88.6

Table 4: Experimental results of different role prediction
recall scores on CoNLL2005 development set.

5.2 Effect of Argument Role Semantics

We also study the performance of our MRC frame-
work in the case where the query does not contain
any semantics, and in this case, the query is re-
placed with a category label. We use RoBERTa-
Base for our experiments. When role semantics
is not considered, the F1 scores on the develop-
ment set and the out-of-domain Brown test set of
CoNLL2005 are 88.2 and 83.2, respectively. when
role semantics is considered, the F1 scores on the
development set and the out-of-domain Brown test
set of CoNLL2005 are 88.5 and 83.8, respectively.
The experimental results show that taking seman-
tics into account performs better than not taking se-
mantics into account, especially when the domains
of the training and test sets are different. And this
proves that the semantics of the argument roles is
useful in our framework.

5.3 Effect of Role Prediction

Since role prediction is an upstream task of argu-
ment labeling, missing potential argument roles
in the role prediction stage can lead to the error
propagation problem. We mitigate this problem by
ensuring that the recall of role prediction is higher
than 99% and training the argument labeling model
under the predicted roles. We use RoBERTa-Base
to train the model under different role recalls. Table
4 shows the influence of different role prediction re-
call scores on argument labeling. It can be seen that
when the recall is low, the F1 score of argument
labeling will decrease significantly – 87.3 when
recall is 0.90 versus 88.6 when recall is 0.99.

5.4 Low-Resource Scenarios

Our argument labeling model uses role semantic in-
formation, and this prior information may be help-
ful for model learning when the dataset is small,
so we study the effect of different training data
sizes. The baseline we compare is a naive BIO
tagging model based on RoBERTa, since our MRC
model can be seen as a simple BIO tagging model
incorporating role semantic information. We use
RoBERTa-Base, train on different percentages of
CoNLL2005 training set, and then evaluate on

5 10 20 40 60 80 100
percentage of training data

0.76

0.78

0.80

0.82

0.84
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 sc
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e
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Figure 4: F1 score under different percentages of data
on CoNLL2005 development set.

CoNLL2005 development set. From Figure 4, we
can see that the MRC BIO model performs better in
low-resource scenarios than the naive BIO model
that does not use role semantics.

5.5 Computational Overhead

Our MRC framework performs better in robustness
and low-resource scenarios due to the use of label
semantic information provided in frame files, but
to utilize this information, we need to encode all
<label, sentence> pairs using a pre-trained model,
which can be computationally intensive if the num-
ber of labels is large, we mitigate this problem
by filtering impossible labels. 4 In predicate dis-
ambiguation, we use lemma to filter impossible
predicate senses, and in argument labeling, we use
an additional role prediction module to filter im-
possible roles.

Since the main computation in our framework
is spent on the argument labeling module, here we
give a rough analysis of the computational over-
head it requires. In section 3.3, we select the
λN roles with the highest probability scores in
the dataset, which are used in the argument label-
ing module to construct queries, so λN reflects the
amount of computation we need in the argument
labeling module. When λ = R, this approach is
equivalent to asking questions directly to all roles.
In CoNLL2005, CoNLL2009, and CoNLL2012,
the total number of semantic roles are 20, 20, 28,
respectively, and the actual λs in the role prediction
module are 5, 4.2, 5.5, respectively, which indicates
that our model achieves approximately 4x, 4.8x and
5.1x speedups in CoNLL2005, CoNLL2009, and
CoNLL2012 compared to asking questions directly
to all roles.

4We also tried to decouple the label and sentence encoding
to avoid encoding the same sentence multiple times, but it did
not perform as well as the simple filtering strategy.
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6 Conclusion

In this paper, we propose an MRC-based frame-
work for semantic role labeling. We formalize pred-
icate disambiguation as multiple-choice reading
comprehension and argument labeling as extractive
reading comprehension. Besides, we also propose
a role prediction module to reduce the computa-
tion caused by considering all roles in the dataset
for argument labeling. Experiments show that our
framework can effectively utilize the semantic in-
formation provided in frame files and achieve com-
petitive results.
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Abstract

Achieving good performance on few-shot or
zero-shot datasets has been a long-term chal-
lenge for NER. The conventional semantic
transfer approaches on NER will decrease
model performance when the semantic distri-
bution is quite different, especially in Chinese
few-shot NER. Recently, prompt-tuning has
been thoroughly considered for low-resource
tasks. But there is no effective prompt-tuning
approach for Chinese few-shot NER. In this
work, we propose a prompt-based Parent and
Child BERT (PCBERT) for Chinese few-shot
NER. To train an annotating model on high-
resource datasets and then discover more im-
plicit labels on low-resource datasets. We fur-
ther design a label extension strategy to achieve
label transferring from high-resource datasets.
We evaluated our model on Weibo and the
other three sampling Chinese NER datasets,
and the experimental result demonstrates our
approach’s effectiveness in few-shot learning.

1 Introduction

NER is a fine-grained sequence labeling task, a
slight change in each token will significantly im-
pact the model results. A big challenge of NER is
to enhance the performance in low-resource sce-
narios. There are some prior works (Yang et al.,
2017; Lee et al., 2017; Abhishek et al., 2017) that
demonstrate that transfer learning can improve the
model performance. However, they all rely on simi-
lar semantic distribution between source and target
datasets, and both datasets should contain rich an-
notated data. A significant difficulty of few-shot
or zero-shot NER is the lack of annotated labels
in practical application. Another challenge of Chi-
nese NER is the implicit word boundary, which
makes it difficult for the model to distinguish the
entity boundary. The lexicon-based approach is a
standard solution to solve the above issue. But the
performance of traditional lexicon-based models in
Chinese few-shot NER is still unsatisfactory.

Recently, prompt-tuning (Lester et al., 2021) on
the pre-trained language models (PLMs) has been
thoroughly considered for low-resource scenarios
because the prompt-tuning process is highly con-
sistent with the target task. Previous work (Cui
et al., 2021; Ma et al., 2022; Chen et al., 2021) has
demonstrated that prompt-tuning can more effec-
tively enhance the model performance on few-shot
NER compared with fine-tuning. However, when
the semantic distribution is quite different, using
prompt-tuning for semantic transfer learning will
decrease model performance, which implies the se-
mantic transfer is unsuitable for NER in the above
situation. Besides, the implicit boundaries of Chi-
nese words make the size of the prompt template
uncertain and require a higher ability to judge its
boundary. Moreover, using inappropriate prompt
construction engineering on Chinese few-shot NER
datasets can not improve model performance effec-
tively but increases training time.

In this work, we introduce an enhanced lexicon
feature and a prompt-based label transfer approach
to address the above issues. We leverage the lex-
icon feature to enhance Chinese word boundary
distinction ability in few-shot NER datasets. We
further design a label extension strategy to achieve
label transferring from high-resource datasets. We
propose a Parent and Child BERT(PCBERT) model
powered by a label lexicon adapter and a prompt-
tuning component to integrate the lexicon fea-
ture and the implicit label feature. And it is
worth noting that our implementation with a trans-
former encoder is more efficient than some decod-
ing template-based approaches. We evaluated our
model on Weibo(Peng and Dredze, 2015) and the
other three samplings of Chinese NER datasets,
and the experimental result demonstrates our ap-
proach’s effectiveness in few-shot learning. Our
model outperforms other related work in all exper-
iments and achieves state-of-the-art F1 scores on
Weibo.
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The contributions of this work can be summa-
rized as follows:

1. We introduce a label extension strategy to
implement the label transfer learning in few-shot
NER, which can effectively enhance the model
performance.

2. We propose a new PCBERT model consisting
of a P-BERT component and a C-BERT component
to integrate the lexicon feature and the implicit
label feature.

3. Experimental results verify that our ap-
proaches are suitable for Chinese few-shot NER
transfer learning and achieve excellent performance
on few-shot learning.

2 Preliminaries

2.1 Problems of Few-shot NER

In the few-shot NER tasks, given the high-resource
source domain dataset S = {PS , LS}, where the
PS =

{(
X1
S , Y

1
S

)
, . . . ,

(
XR
S , Y

R
S

)}
is the set of

input text and corresponding labels, and LS =
{l1, . . . , lm} is the set of entity label categories
with size m. Then given the low-resource target
domain dataset T = {PT , LT }, the task aims to en-
hance the model performance in the target domain
dataset by utilizing the resources of the source do-
main dataset. However, the traditional NER trans-
fer learning approaches face two main challenges:
the semantic distribution difference between the
source and target domains; the same category la-
bels have different definitions in different datasets.

2.2 Label Extension Strategy

Formally, we denote DP (X) to represent the se-
mantic space of input text X , andDE (L) represent
the semantic distribution that contains label l ∈ L.
The correlation between model performance p and
the semantic distribution can be explained as:

p ∝ DP (XS) ∩ DP (XT )

DP (XS)−DP (XT )
(1)

p ∝ DE (LS) ∩ DE (LT )DE (LS)−DE (LT )
(2)

when the semantic space gap between the source
domain and the target domain is large, the se-
mantic intersection of S and T is quite limited
compared with the semantic difference between S
and T (i.e., DP (XS) ∩ DP (XT ) � DP (XS) −
DP (XT )). The semantic deviation makes the pre-
trained model more difficult to fine-tune than the

uniform distribution model and even decreases per-
formance in the target domain. Therefore, it is
tough to carry out cross-domain semantic migra-
tion on few-shot NER datasets.

In this work, we use label extension to enrich
the label features in T . As shown in Equation 2,
DE (LS) ∩ DE (LT ) represents the semantic distri-
bution range that implicitly contains the intersec-
tion of LS and LT . It may include entity labels
from S and does not exist in T , making label exten-
sion reasonable as T is a low-resource dataset with
fewer labels. The label extension can be imple-
mented with an annotation model with fully super-
vised training on S and annotating on T . However,
some issues may impact the label extension accu-
racy. One is the annotation model performance; an-
other is that the same category labels may explain
the different meanings between S and T . These
issues can be treated as label noise that affects the
target task performance. To address the above is-
sues, we adopt a prompt-based approach with a
label fusion layer in our proposed model to reduce
the influence of label noise.

3 Method

In this paper, we propose a two-stage model named
PCBERT for Chinese few-shot NER, which con-
sists of the Parent and the Child component. Both
components are implemented with BERT (Devlin
et al., 2019), and we defined them as P-BERT and
C-BERT, respectively. The overall model structure
of PCBERT is illustrated in Figure 1. The P-BERT
is a prompt-based model to extract the implicit
label extension features in the target dataset; the
C-BERT is a lexicon-based model inspired by the
LEBERT (Liu et al., 2021a) and further incorpo-
rates multi-label features of each lexicon. In the
first stage, the P-BERT pre-trains on the label exten-
sion dataset. Then the P-BERT is set to be frozen
in the second stage, providing label extension fea-
tures to fine-tune the C-BERT. The structure and
functionality are described in the following.

3.1 P-BERT

The primary function of P-BERT is prompt-tuning
on the label extension dataset and providing prompt
features for C-BERT. The label extension dataset
is constructed by the method mentioned in Sec-
tion 2.2. The inspiration for prompt-tuning comes
from models like GPT-3 (Brown et al., 2020), and
T5 (Raffel et al., 2020), which transform the tar-
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Figure 1: The overall structure of PCBERT. The P-BERT is trained on the label extension dataset in the prompt-
tuning stage and provides label extension features for the C-BERT in the fine-tuning stage. While fine-tuning, the
P-BERT is set to be frozen.

get task into text-to-text form and directly model
text using PLMs. In this work, our prompt-tuning
approach is designed toward the target task, consist-
ing of a template function TP (X,Y ) that converts
the raw input to prompt input. The label in the
template input is a textual string instead of an en-
tity category index, which helps leverage implicit
knowledge from PLMs and reduces the influence
of label noise in the label extension dataset.

We use vanilla BERT as P-BERT, each input
X = {x1, . . . , xn} in the label extension dataset
is converted into prompt input Xprompt with the
TP (X,Y ). The prompt input consists of the fol-
lowing parts:

Xprompt = [CLS]X [SEP]TP (X,Y ) (3)

where the first part ofXprompt is the origin input
X , and the second part is label templates computed
by the TP (X,Y ). [CLS] and [SEP] are the spe-
cial token of BERT. Each label template follows
the form as “[Index]is[Z]”, where the index slot
[Index] indicates each token position inX , and the
label slot [Z] is the Chinese word that represents
the label Y . Each label template is concatenated
with a comma. Then, the label slot is padded to the
same size by the tokenizer to adapt parallel train-
ing better and locate the output features. During
prompt-tuning, the label slot of each input will be
masked with the [MASK] token, and its task goal

is to restore the masked label tokens. Then the loss
function can be defined with the cross-entropy loss:

Lprompt = −
∑

i

zi log (p (ẑi | X)) (4)

where zi ∈ Z and ẑi is the corresponding pre-
dicted token.

3.2 C-BERT
Chinese NER tasks are more challenging because
the word boundary of sentences is not explicit.
Many works (Sui et al., 2019; Li et al., 2020; Zhang
and Yang, 2018) have demonstrated that leverag-
ing lexicon information can effectively enhance the
model performance. In few-shot NER, the lexi-
con information is vital in promoting the model to
understand token-level semantic information. For
each input sequence X , we construct a lexicon tree
following the method of (Liu et al., 2021a). As
shown in Figure 2, the lexicon set of token xi
can be embedded as ωi = {ωi1, . . . ωim}, where
xi ∈ R1×H ,ωi ∈ Rm×H′ , H is the hidden dimen-
sion of each token and H ′ is the hidden dimen-
sion of each word. Moreover, we further intro-
duce a label set for each word. In this work, we
adopt a BERT classifier model pre-trained on the
high-resource dataset to predict top-k labels em-
beddings Lij =

{
L1
ij , . . . , L

k
ij

}
for ωij , where

Lij ∈ Rk×H∗ , H∗ is the hidden dimension of a
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Figure 2: Each token xi corresponds to a lexicon set,
and each lexicon corresponds to a label set.

label string. It is worth noting that each lexicon
comes from the external dictionary and is a subset
of the input.

A variant of LEBERT is designed to serve as
C-BERT in our implementation. As shown in Fig-
ure 1, C-BERT’s word embedding is the sum of
the P-BERT and its word embeddings. We pro-
pose a Label Lexicon Adapter (LLA) after the first
encoder layer in C-BERT to leverage the lexicon
and corresponding labels information. Figure 3.
displays the detailed structure of C-BERT, where
Ho

1 = {ho1, . . . , hon} is the set of original output
hidden states in the first encoder layer, where the
n is the length of the input sequence. In the LLA,
the input contains the hidden states Ho from the
first encoder layer; the lexicon set ωi in each token
position and corresponding top-k label embedding
Li = {Li1, . . . Lim}.

We use label attention to compute the relevance
between multi-label and lexicon context features,
and ξij = [hoi ;ωij ] is the concatenation between
word ωij and the hidden state hoi in position i. Then
we transform the multi-label features to align the
lexicon context features:

L̃ij =W
L
2

(
tanh

(
W L

1L
T
ij + b

L
1

))
+ bL2 (5)

where WL
1 ∈ R(H′+H)×H∗ and WL

2 ∈
R(H′+H)×(H′+H) are weight matrices; bL1 , bL2 are
biases. The label attention score can be calculated
as:

αij = softmax
(
ξijW

L
attnL̃ij

)
(6)

where W L
attn ∈ R(H′+H)×(H′+H) is the label

attention weight matrix. The multi-label features
can be further computed by the weighted sum:

FL
ij =

1

k

k∑

t=1

αijL̃
t
ij (7)

Figure 3: The implementation details of C-BERT.

We fuse features of lexicons with the correspond-
ing label sets to enhance the lexicon representation,
and the multi-label features can effectively alleviate
the label noise from P-BERT:

Fωij =
[
ωij ;F

L
ij

]
(8)

The computed lexicon features Fωi are directly
injected into the BERT following (Liu et al., 2021a)
with the word attention, the lexicon information is
calculated by:

ω̃ij =W
ω
2

(
tanh

(
W ω

1F
ωT

ij + bω1

))
+ bω2 (9)

βij = softmax (hoiW
ω
attnω̃ij) (10)

FX
ij =

1

m

m∑

j=1

βijω̃ij (11)

where W ω
1 ∈ RH×(H′+H∗), Wω

2 ∈ RH×H are
weight matrices; W ω

attn ∈ RH×H is the word at-
tention weight matrix; and bω1 , bω2 are biases.

Finally, the fusion features of each token are
computed by:

H ′1 = Ho
1 + FX (12)
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3.3 Interactive Training
During fine-tuning, the primary function of P-
BERT is to provide label extension features for
C-BERT. We intercept the label templates part of
the P-BERT output, and the label extension fea-
tures FPi = {f1, . . . , fd} are the label slot part
corresponding to each label template, where d is
the max size of the label string. Then the prompt
feature for each token is computed as:

Pi =
1

d

d∑

j=1

fj (13)

We use a bidirectional LSTM (BiLSTM) model
to enhance the timing information of C-BERT out-
put:

HB = BiLSTM(Ho
N ) (14)

where Ho
N =

{
h̃1, . . . h̃n

}
is the C-BERT out-

put hidden states.
To further mitigate the impact of the potential

label noise, an interactive attention mechanism is
applied to calculate the relevance between the out-
put hidden states of BiLSTM HB =

{
ĥ1, . . . ĥn

}

and the prompt features P :

γi = softmax
(
ĥiW

P
attnP

T
i

)
(15)

P̃i =

n∑

i=1

γiPi (16)

where W P
attn ∈ RH×H is the interactive atten-

tion weight matrix, and the fusion features ϕ can
be calculated as:

ϕi =
[
ĥi; P̃i

]
(17)

Finally, fusion features are taken into a Condi-
tional Random Field (CRF) layer and predict the
label for each token. And the loss function of fine-
tuning can be defined by minimizing the negative
likelihood loss as:

L = −
∑

i

log(p(Y |X)) (18)

4 Experiments

4.1 Datasets
We investigate the effectiveness of our model on
four Chinese NER datasets. Including Weibo (Peng

Table 1: The statistics of the target datasets.

Dataset Train Dev Test Entity Types
Weibo 1.4k 0.27k 0.27k 8
Ontonotes 15.7k 4.3k 4.3k 4
Resume 3.8k 0.46k 0.48k 8
MSRA 46.4k - 4.4k 3

Table 2: The statistics of the high-resource dataset.

Subset Train Dev Test Entity Types
CLUENER 10.7k 1.34k 1.34k 10
CNERTA 38.5k 4.44k 4.44k 5
RenMinRiBao 50.7k 4.63k 4.63k 4
Others 27.0k 2.83k 2.83k 10
Sum 126.9k 13.2k 13.2k 18

and Dredze, 2015), Ontonotes 5.0 (Weischedel
et al., 2011), Resume (Zhang and Yang, 2018) and
MSRA (Levow, 2006). The statistics of the target
datasets are shown in Table 1, and we randomly
sample a small train set from each original dataset
during training to simulate the few-shot scene.

Besides, we construct a high-resource dataset to
implement the label extension. The high-resource
dataset is integrated with multiple datasets, includ-
ing CLUENER (Xu et al., 2020), CNERTA (Sui
et al., 2021), RenMinRiBao (Xia et al., 2005), and
datasets from unknown sources. The high-resource
dataset covers plenty of data and labels, and it
can accurately support the label expansion on the
low-resource datasets. The statistics of the high-
resource dataset are shown in Table 2.

4.2 Experimental Settings

We implement the PCBERT based on the Trans-
formers (Wolf et al., 2020) BERT with 12 layers
of transformer in this work. The encoder hidden
dimension H of P-BERT and C-BERT is 768; the
word embedding dimension of the lexicon H ′ and
label string H∗ are both set as 200.

We use the Adam optimizer in all experiments.
Before training all the target datasets, we first train
a pre-labeled model on the high-resource dataset to
annotate the extension entity labels for each train
set and generate the label extension train set. Then
our P-BERT is trained on the label extension train
set. The learning rate of prompt-tuning is set as
1e-4. During fine-tuning on the original train set,
the P-BERT is set as frozen, and we use an initial
learning rate of 1e-5 for the C-BERT and 1e-2 for
other parameters. We sample the same size from all
datasets for few-shot learning, the max sequence
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length is set as 150, and we train a maximum epoch
number of 20 in all datasets.

To evaluate our proposed PCBERT, we compare
it with the following approaches:

BERT. (Devlin et al., 2019) The BERT model
with a token classifier is the baseline of the BERT-
based NER approach.

BERT-LC. Based on the vanilla BERT, we fur-
ther add a BiLSTM-CRF layer behind the BERT
output layer to better compare with our proposed
PCBERT.

Lattice LSTM. (Zhang and Yang, 2018) A
lexicon-based Chinese NER approach is imple-
mented with a lattice-structure LSTM model.

FLAT. (Li et al., 2020) An enhanced lattice-
structured NER approach. By constructing a flat
structure Transformer to fully leverage the lattice
information and utilize the parallelism of GPUs.

LEBERT. (Liu et al., 2021a) A lexicon en-
hanced the Chinese sequence labeling model. In-
tegrating external lexicon knowledge into BERT
with a Lexicon Adapter layer.

LEBERT-LC. Based on the vanilla LEBERT,
we further add a BiLSTM layer behind the BERT
output layer in LEBERT to better compare with our
proposed PCBERT.

4.3 Overall Results

We randomly sample different samples from the
dataset in Table 1 to simulate NER in the few-shot
scenario. The train set sampling sizes K are 250,
500, 1000, and 1350 (the max size of Weibo is
1350), respectively. We use the standard F1-score
evaluation metrics to compare the performance.

Table 3 illustrates the experimental results of the
Chinese few-shot NER. Our model outperforms
all related approaches when K is 250 and achieves
the best result on all the samples of Weibo and
Ontonotes. Besides, our model performance in
Weibo at K=250 outperforms other approaches at
K=1350, demonstrating that our approach achieves
excellent performance on the few-shot dataset.

The experimental results also indicate that all
models’ performance in different datasets is quite
different even under the same sample size. We
speculate that it is related to the semantic environ-
ment quality of the dataset rather than the number
of entity types. Furthermore, our PCBERT shows
more significant advantages on Weibo and Resume
datasets with worse semantic environment quality.

Table 3: The overall results on Chinese Few-shot NER.

Dataset Methods K=250 K=500 K=1000 K=1350

Weibo

BERT 56.42 62.21 61.27 61.21
BERT-LC 65.10 71.14 72.03 72.45
Lattice LSTM 40.37 49.54 53.80 58.27
FLAT 51.42 56.95 58.70 64.27
LEBERT 65.83 67.12 70.34 69.12
LEBERT-LC 66.92 71.11 71.80 73.42
PCBERT 73.52 73.49 76.58 77.88

Ontonotes

BERT 63.85 69.50 71.33 72.42
BERT-LC 65.69 73.54 74.97 77.19
Lattice LSTM 39.71 45.46 54.54 57.48
FLAT 49.01 46.35 49.34 57.44
LEBERT 69.48 69.01 73.78 74.84
LEBERT-LC 70.26 69.89 73.83 76.01
PCBERT 74.42 75.62 78.33 81.52

Resume

BERT 53.80 62.64 69.36 70.65
BERT-LC 92.26 94.66 95.16 96.41
Lattice LSTM 85.63 89.60 92.01 93.13
FLAT 84.62 90.77 92.97 87.79
LEBERT 89.15 92.56 94.02 95.19
LEBERT-LC 91.60 93.03 95.40 95.16
PCBERT 93.42 94.01 94.96 95.97

MSRA

BERT 68.44 72.28 81.21 82.28
BERT-LC 79.01 83.13 87.84 89.32
Lattice LSTM 54.69 63.61 74.27 76.31
FLAT 59.62 70.20 80.79 64.95
LEBERT 79.11 85.18 87.77 89.35
LEBERT-LC 80.92 86.09 88.11 88.70
PCBERT 81.08 85.25 87.88 89.72

4.4 Analysis and Discussion

Ablation Study

We analyze the impact of each module in our
PCBERT by designing several experiments. Ta-
ble 4 presents the performance comparison be-
tween PCBERT and other ablation models. First,
we observe a performance decline when remov-
ing the P-BERT component, demonstrating that P-
BERT plays a vital role in model performance. We
then observe that its results outperform LEBERT
and LEBERT-LC on Weibo and Ontonotes when
K is less than or equal to 500, which verifies that
multi-label features can improve the model perfor-
mance in the few-shot scenario. Moreover, after
removing the label extension strategy (LEA) by
using the original annotated dataset to train the
model, the performance also decreases, indicating
that the label extension strategy is effective in our
approach.

To further analyze the impact of the label exten-
sion strategy, we replace the label extension dataset
with the high-resource dataset to train the P-BERT
(LEB). The results in Table 4 show a severe model
performance decrease when directly adopting the
high-resource dataset for prompt-tuning. Further-
more, the phenomenon becomes more prominent
when the sample size K becomes smaller. And we
observed there are different decrease degrees in
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Table 4: Results of the Ablation Study on Chinese Few-
shot NER.

Dataset Methods K=250 K=500 K=1000 K=1350

Weibo

PCBERT 73.52 73.49 76.58 77.88
-P-BERT 67.28 71.85 70.02 72.66
-LEA 67.06 70.31 71.88 72.73
-LEB 61.95 67.01 68.62 69.33

Ontonotes

PCBERT 74.42 75.62 78.33 81.52
-P-BERT 72.94 72.42 72.55 74.66
-LEA 69.13 72.10 74.24 72.62
-LEB 62.23 66.07 68.86 70.09

Resume

PCBERT 93.42 94.01 94.96 95.97
-P-BERT 91.18 92.99 94.41 95.41
-LEA 91.28 94.33 94.96 95.55
-LEB 87.17 91.64 92.97 93.96

MSRA

PCBERT 81.08 85.25 87.88 89.72
-P-BERT 80.59 85.50 86.95 87.88
-LEA 82.77 84.32 86.20 84.32
-LEB 79.09 81.36 83.61 84.75

Figure 4: t-SNE visualization of each sampled train set
and the high-resource dataset.

different datasets. For example, the performance
on Weibo decreased by 11.57% (K=250), while
MSRA decreased by only 1.99% (K=250). We
present the visualization of semantic distribution
between each sampled (K=1350) train set and the
high-resource dataset (HRD) in Figure 4. The
sentence-level representation is obtained from the
BERT embedders onto a 2-dimensional space using
t-SNE (Van der Maaten and Hinton, 2008). It can
be concluded from Figure 4 and Table 4 that when
the semantic space gap between the source dataset
and the target dataset increases, transfer training
directly from the source dataset will decrease the
model performance.

Impact of Feature Injection

The results in Table 3 and Table 4 have demon-
strated that the injected lexicon and multi-label fea-
tures in C-BERT can effectively enhance the model
performance. We speculate that multi-type lexi-
con or multi-label features injection can improve

Table 5: Comparison between LEBERT with random
initial lexicon embeddings (LEBERT-RW) and original
LEBERT.

Dataset Methods K=250 K=500 K=1000 K=1350

Weibo LEBERT 65.83 67.12 70.34 69.12
LEBERT-RW 64.08 67.16 68.89 70.42

Ontonotes LEBERT 69.48 69.01 73.78 74.84
LEBERT-RW 66.65 71.41 73.93 75.96

Resume LEBERT 89.15 92.56 94.02 95.19
LEBERT-RW 90.77 93.44 94.77 95.68

MSRA LEBERT 79.11 85.18 87.77 89.35
LEBERT-RW 79.34 83.83 88.74 88.59

the model’s perception of fine-grained information
and judgment of entity boundaries. Moreover, we
further adopt LEBERT with random initial lexi-
con embeddings (LEBERT-RW) to compare the
original LEBERT on four datasets. As shown in
Table 5, the performance of LEBERT-RW is simi-
lar to LEBERT, which indicates that the boundary
information introduced by feature injection is more
critical to the model than the semantic distribution
of the word embeddings.

Impact of Label Extension

To further analyze the impact of the label extension
strategy, we evaluate the PCBERT performance
when each extension label is removed from the
label extension train set of Weibo (K=1350). Fig-
ure 6 illustrates the results, sorted in descending
order according to each metric. We can conclude
that, in most cases, removing an extension label
will cause the model performance to decrease. It
also shows that in the Weibo dataset, introducing
any extension label will bring the final performance
improvement in prompt-tuning, which indirectly
indicates that our prompt-based PCBERT can ef-
fectively suppress the label extension noise.

Sentence Length

Figure 5 shows the F1-score trend of all baselines
and PCBERT on the four datasets in Table 1 with
the sampling size of 250. As shown in the results,
we discover that PCBERT significantly improves
performance in all sentence length intervals of the
Weibo and Ontonotes datasets. Comparing the re-
sults of LEBERT and LEBERT-LC, it can be ob-
served that adding the BiLSTM layer improves
performance in the sampled Weibo and MSRA
datasets. One potential reason is that the BiLSTM
has a better awareness of directionality and short-
distance information. To achieve more stable per-
formances, we add the BiLSTM layer behind the
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Figure 5: F1-scores against the sentence length.

Figure 6: F1-score, Precision, and Recall comparison of
PCBERT on the Weibo dataset when removing each ex-
tension entity label, where NULL indicates the original
label extension train set.

C-BERT.

5 Related Works

Chinese NER

NER is a fine-grained sequence labeling task. With
the advent of PLMs, the benchmark of Chinese
NER has been dramatically improved. Pre-trained
models based on large-scale corpus (Devlin et al.,
2019; Lewis et al., 2020; Radford et al., 2019) pro-
vide excellent semantic representation for Chinese
NER and are used by many works. Some work adds
a softmax on PLMs (Yang, 2019) and achieves sig-
nificant performance; others (Peters et al., 2018;
Zheng et al., 2021; Nan et al., 2021) take PLMs as
the backbone model to further enhance the original
model performance.

Despite the remarkable achievements of PLMs,
most existing models still need to be improved
in judging Chinese word boundaries. Lexicon-
based approaches (Zhang and Yang, 2018; Ma
et al., 2020; Gui et al., 2019; Zhao et al., 2020)
can effectively alleviate this issue. In particular,
many lexicon-based works like Lex-BERT (Zhu
and Cheung, 2021) need a high-quality vocabulary
with entity-type information. (Zhang and Yang,
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2018) proposed the Lattice LSTM approach to
leverage all potential words in each segment and
only need word vectors, which provided great in-
spiration for the later work. Recently many works
(Xiao et al., 2019; Sperber et al., 2019; Zhang et al.,
2019a,b) presented lattice-based transformers to
promote parallel computing performance and fuse
the PLMs representation into the model. How-
ever, most lattice-based transformers only fuse dic-
tionary features in external input sequences with-
out integrating them into the PLM structure. (Liu
et al., 2021a) proposed LEBERT integrates lexicon
knowledge into BERT layers and achieved state-
of-the-art performance in multiple Chinese NER
datasets.

Prompt-tuning

With the emergence of GPT-3 (Brown et al., 2020),
the target-task-oriented pre-training form attracted
a lot of attention (Schick and Schütze, 2021).
Prompt-tuning (Lester et al., 2021) can be regarded
as a new template-based pre-training paradigm. Un-
like fine-tuning, the downstream task of prompt-
tuning is homologous to pre-training. Prompt-
tuning is more dependent on the prior distribution
of the model, while fine-tuning is more dependent
on the posterior distribution (Qiu et al., 2020).

Designing appropriate prompt templates for dif-
ferent tasks is crucial in prompt-tuning perfor-
mance (Liu et al., 2021b). There is no universal
template for all NLP tasks. (Jiang et al., 2020; Yuan
et al., 2021; Haviv et al., 2021) proposed discrete
prompts to disassemble and replace sentence com-
ponents for text inference tasks; and (Gao et al.,
2021; Ben-David et al., 2021) designed the gener-
ation prompt to build generated templates by au-
tomatically extracting semantic information from
sentences.

In NER tasks, the model requires more spe-
cific semantic fine-grained information. Therefore,
prompt templates construction approaches for other
natural language understanding tasks can not work
out well on NER tasks. (Ma et al., 2022) put for-
ward a template-free approach to complete the en-
tity template using the word vector mean of the
same entity in the dataset. And (Chen et al., 2021)
use an encoder-decoder model to translate the NER
task into a prompt-based generation task.

6 Conclusion

In this paper, we propose a Parent and Child BERT
for Chinese few-shot NER tasks and achieve state-
of-the-art results on the Weibo dataset. Our model
consists of P-BERT and C-BERT, where P-BERT is
a prompt-based model for providing richer seman-
tic information, and C-BERT is a lexicon-based
model. The experimental results demonstrate that
our PCBERT effectively improves the performance
on the Chinese few-shot NER task. In the future,
we will further analyze the performance improve-
ment of label extension strategy in domain-specific
datasets.
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Abstract

Current text mining models are trained with 0-1
hard label that indicates whether an instance
belongs to a class, ignoring rich information
of the relevance degree. Soft label, which in-
volved each label of more varying degrees than
the hard label, is considered more suitable for
describing instances. The process of generating
soft labels from hard labels is defined as label
smoothing (LS). Classical LS methods focus on
universal data mining tasks so that they ignore
the valuable text features in text mining tasks.
This paper presents a novel keyword-based LS
method to automatically generate soft labels
from hard labels via exploiting the relevance
between labels and text instances. Generated
soft labels are then incorporated into existing
models as auxiliary targets during the training
stage, capable of improving models without
adding any extra parameters. Results of ex-
tensive experiments on text classification and
large-scale text retrieval datasets demonstrate
that soft labels generated by our method con-
tain rich knowledge of text features, improving
the performance of corresponding models un-
der both balanced and unbalanced settings.

1 Introduction

Instances in most text mining datasets are usually
assigned by one label. Such label, called hard label,
reflects the logical relationship between the label
and the instance. In most cases, hard labels are uti-
lized for training models that learn to discriminate
between classes with training objectives to maxi-
mize the log probability of the correct class. How-
ever, there are various real-world text mining tasks
where there are not just two possibilities whether an
instance belongs to a specific class since instances
may be involved with multiple labels of varying
degrees. In such scenarios, soft label (Bahri and
Jiang, 2021; Hong et al., 2022), which involves

∗Co-first authors, contributed to this work equally
†Corresponding author

S1: It was nice. The cashier was chipper. Wish they wo-
uld crank the A/C a little more though. Restroom was a
little dirty.
Hard Label (1, 0)
Soft Label (0.6, 0.4)

Table 1: An instance of sentiment classification with
hard label and soft label. X denotes the label of being
positive, while Y denotes negative in (X, Y). Positive
and negative expressions are marked in red and blue,
respectively.

the explicit relative importance of each label, is a
more reasonable description of an instance. For
example, in the sentence S1 shown in the Table 1,1

though both positive and negative expressions exist
in the sentence and sentiment slightly inclines to
be positive, annotators must give a solid positive as
a hard label. The soft label (0.6,0.4) describes the
instance more comprehensively than hard labels.

Few works are investigating soft labels for text
data in the text mining community, although the
issue demonstrated in the above example is very
common. Existing works all focus on analyzing
the effectiveness of classical soft labels in universal
data mining tasks (Müller et al., 2019; Wu et al.,
2021; Nguyen et al., 2022). However, classical soft
labels cannot leverage useful text features in text
mining datasets. Meanwhile, in most text datasets,
soft labels are not explicitly available. Therefore,
automatically generating soft labels from hard la-
bels based on text data characteristics is a funda-
mental problem worth exploring.

The key to generate informative soft labels for
text instances is to exploit the semantic relevance
between instances and labels accurately. We are in-
spired by the fact that a set of highly representative
words can represent semantic information of labels
and instances (e.g., S1 in Table 1) (Spärck Jones,
1972, 2004), we present a Keyword-based Label
Smoothing method (KWLS), which primarily in-

1A sentence from Yelp Review dataset.
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volves four steps: (1) Keyword detection for labels,
which computes correlations between words and
labels; (2) Keyword detection for instances, which
calculates the saliency of a word to represent a
given instance; (3) Instance-label relevance detec-
tion, which determines the correlations between in-
stances and labels; (4) Soft label generation, which
generates soft labels for instances based on the
instance-label relevance. The generated soft labels
can be utilized as complementary targets during
the training stage, containing knowledge of label
correlation and introducing auxiliary supervision
information to improve models.

To verify the effectiveness of our method, we
conduct extensive experiments on the two most
typical application scenarios in text mining: text
classification and large-scale text retrieval. Experi-
mental results demonstrate that models equipped
with KWLS gain significant improvements over
the original models, especially in the highly un-
balanced large-scale text retrieval task (Liu et al.,
2021c). To further analyze the ability of KWLS to
deal with unbalanced problems, we construct var-
ious unbalanced datasets to simulate multifarious
unbalanced problems in text mining. Experimen-
tal results on different unbalanced settings show
that KWLS may bring extra supervised signals to
facilitate model learning.

Our main contributions are listed as follows:
1. Previous studies focus on leveraging label

smoothing on universal data mining tasks so that
they ignore the valuable text features in text min-
ing tasks. We propose a novel keyword-based LS
method (KWLS) that automatically generates soft
labels with rich knowledge of label correlation
from hard labels in text data.

2. Generated soft labels can be incorporated as
complementary targets, introducing auxiliary super-
vision information, capable of improving models
without adding any extra parameters.

3.Experimental results show that the knowledge
of label correlation characterized by KWLS is prac-
tical under balanced and unbalanced settings and
more suitable for text mining tasks than classical
label smoothing methods.

2 Related Work

Label smoothing, a form of output distribution reg-
ularization, prevents overfitting of a neural network
by softening the ground-truth labels to penalize
overconfident outputs (Li et al., 2020), has made

tremendous achievements in many data mining
fields. For example:

Müller et al. (2019) reveal that label smoothing
improves model calibration and summarize sev-
eral behaviors observed while training deep neural
networks with label smoothing.

Chelombiev et al. (2019) propose an improved
mutual information estimator based on binning
and show the correlation between compression of
softmax layer representations and generalization,
which may explain why networks trained with label
smoothing generalize so well.

The above works analyze the effectiveness of
classical label smoothing methods in various fields.
The two most classical label smoothing methods
are follows:

Szegedy et al. (2016) first introduced label
smoothing that improves accuracy by computing
cross-entropy not with the “hard" targets from the
dataset, but with a weighted mixture of these targets
with the uniform distribution, and many state-of-
the-art image classification models have incorpo-
rated label smoothing into training procedures ever
since.

Zhang and Sabuncu (2020) regard self-
distillation as a label smoothing method and pro-
pose a novel instance-specific label smoothing tech-
nique that promotes predictive diversity without the
need for a separately trained teacher model.

However, these two methods mentioned above
are proposed for universal data mining tasks so that
they cannot leverage the valuable text features in
text mining datasets. This paper proposes a KWLS
method explicitly designed for text mining, which
incorporates semantic relevance between labels and
instances into soft labels. Experimental results
demonstrate that our method is more suitable for
text data.

It is worth noting that the primary purpose of LS
is incorporating the possibility (or uncertainty) into
the original hard label to facilitate model perfor-
mances rather than generating the ground truth soft
labels.

3 Task Description and Formulation

Given a training set D = {(xi, li)|1 ≤ i ≤ N}
with N instances, xi is a sequence of words xi =
{w1, w2, ..., wn} where w1, w2, and wn are words
in the sentence and n is the length of the sequence.
The hard label vector of xi is denoted by li =
(l1i , l

2
i , ..., l

p
i ), where lji ∈ {0, 1} denotes whether
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label lj describes xi, where p is the total number
of labels. Our task is to generate the soft label di
of xi where di = (d1i , d

2
i , ..., d

p
i ) is a distribution

vector. The training set D is thus transformed into
E = {(xi,di)|1 ≤ i ≤ N} which is available for
further exploration.

The proposed KWLS method is introduced in
the following section.

4 Keyword-Based Label Smoothing

To represent labels and instances by a set of highly
representative words, we propose to first determine
keywords for instances and labels then calculate
correlations between them. Our method mainly
involves the following four components.

4.1 Keyword Detection for Labels
This section illustrates how to detect keywords
for each label. We propose to use Word-
Label Relevance (WLR) based on TF-IDF
(Term Frequency–Inverse Document Frequency)
(Spärck Jones, 1972, 2004) and BM25 (Robertson
et al., 2009) to estimate the importance of a word
to a label, which is decided by two factors: Word-
Label Weight and Word-Label Correlation.

Word-Label Correlation (WLC) based on TF
(Term Frequency) reflects the saliency of a word to
represent a given label. In traditional TF, if a word
frequently appears in instances of a given label, the
word will own a larger WLC to the label. However,
if a label contains 200 occurrences of “COLING”,
is it twice as relevant as a label containing 100
occurrences? We could argue that if “COLING”
occurs a large enough number of times, say 100, the
label is almost certainly relevant, and any further
mentions do not increase the likelihood of rele-
vance. According to the observation by Robertson
et al. (2009), when the word frequency becomes
larger, the WLC will grow slower. We define WLC
as follows:

WLCwj ,m =
fwj ,Xm ∗ k1
fwj ,Xm +K

,wj ∈ C,

K = k1 ∗ (1− b+ b ∗ Sm
Savg

)

Sm =
∑

xi∈Xm
|xi|

Savg =
1

p
∗

p∑

i

Si

Xm = {xi|xi ∈ X, lmi = 1}

(1)

where fwj ,Xm equals the number of times wj ap-
pears in Xm, Xm is the set where xi ∈ X and
lmi = 1, and C is the corpus. k1 is a positive hyper-
parameter, which is used to scale and control the
fwj ,Xm . If k1 is set to close to 0, then fwj ,Xm will
be ignored. If k1 is set to a large value, then the
WLCwj ,m is equal to fwj ,Xm . |xi| is the number
of words in xi, and Sm is the number of words
in Xm. Savg is the average number of words in
all labels. b is another hyperparameter to control
Sm to normalize word frequency, and 0 ≤ b ≤ 1.
When b is set to 1, the fwj ,Xm will be fully scaled
based on Sm. When b is set to 0, Sm is not taken
into account in normalization. WLCwj ,m is the
Word-Label Correlation between wj and the m-th
label.

Word-Label Weight (WLW) based on IDF (In-
verse Document Frequency) reflects the ability in
which a word can be used to discriminate different
labels. If a word occurs in every label, the word
will have a low WLW. In traditional IDF, if a word
occurs once in every label, the WLW of the word
will be set to 0. However, words can easily occur
in every label at least once, which will make most
of the words’ WLW be set to 0 unreasonably. So
that we modified the traditional IDF, and our WLW
can be calculated as follows:

WLWwj = log
p

sum(Fwj,L)
+ 1

Fwj,L = {Fwj ,l1 , ..., Fwj ,lm , ..., Fwj ,lp}

Fwj ,lm =





1, fwj ,Xm ≥ 1

0, fwj ,Xm < 1

(2)

where L = {l1, l2, ..., lp} denote the finite set
of labels and p is the number of possible labels.
WLWwj is the weight of wj to labels. Fwj,L is
a vector to represent whether wj occurs in labels,
where Fwj ,lm = 1 means the word wj occurs in the
m-th label. Finally, WLR is computed as follows:

WLRwj ,m =WLWwj ∗WLCwj ,m (3)

where WLRwj ,m is the Word-Label Relevance be-
tween wj and the m-th label.

4.2 Keyword Detection for Instances
This section illustrates how to detect keywords for
each instance. We propose to use Word-Instance
Relevance (WIR) to estimate the importance of
a word to an instance, which is decided by two
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factors: Word-Instance Weight and Word-Instance
Correlation.

Word-Instance Correlation (WIC) based on
TF reflects the saliency of a word to represent a
given instance. Similar to WLC, if a word fre-
quently appears in a given instance, the word will
own a larger WIC to the instance, and the corre-
lation between word frequency and WIC is also
nonlinear. We define WIC as follows:

WICwj ,i =
fwj ,xi ∗ k2
fwj ,xi + k2

, wj ∈ xi (4)

where fwj ,xi is the number of times wj appears
in xi. k2 is a positive hyperparameter, which is
used to scale and control the word frequency of
xi. WICwj ,i is the Word-Instance Correlation be-
tween wj and the xi.

Word-Instance Weight (WIW) based on IDF
reflects the ability in which a word can be used to
discriminate different instances. Similar to WLW,
WIW can be calculated as follows:

WIWwj = log
N

sum(Fwj,X)
+ 1

Fwj,X = {Fwj ,x1 , ..., Fwj ,xi , ..., Fwj ,xN }

Fwj ,xi =





1, fwj ,xi ≥ 1

0, fwj ,xi < 1

(5)

where X = {x1, x2, ..., xN} denote the set of in-
stances and N is the size of X . WIWwj is the
weight of wj to instances. Fwj,X is a vector to
represent whether wj occurs in instances, where
Fwj ,xi = 1 means the word wj occurs in the i-th
instance. Finally, WIR is computed as follows:

WIRwj ,i =WIWwj ∗WICwj ,i (6)

where WIRwj ,i is the Word-Instance Relevance
between wj and the i-th instance.

4.3 Instance-Label Relevance Detection
We propose Instance-Label Relevance (ILR) to
represent correlations between instances and labels,
which is calculated as follows:

ILRi,m =
1

Xavg

∑

wj∈xi
WLRwj ,m ∗WIRwj ,i

Xavg =
1

N

∑

xi∈X
|xi|

(7)

where Xavg is the average length of all instances.
ILRi,m is the relevance between the i-th instance
and the m-th label.

4.4 Soft Label Generation
After the ILR is computed, we generate the soft la-
bel by the softmax function (Elfadel and Jr., 1993):

di = Softmax(ILRi) (8)

4.5 Incorporating Soft Label
After soft labels are generated for each instance, we
incorporate soft labels as auxiliary fitting targets,
and the loss function can be defined as:

Loss = −
∑N

i=1

∑p
j=1[l

j
i log(o

j
i )− α

p (d
j
i − o

j
i )

2]

2N(1 + α)2

(9)
where oji is j-th dimension of i-th instance’s out-
put probability predicted by the model. α denotes
the loss weight of soft label during the training
stage. We use Mean Squared Error (MSE) as the
loss function for soft labels, where α denotes the
loss weight of soft label during the training stage.
When α is set to 0, the model degenerates into the
standard classifier.

5 Experiments and Results

5.1 Datasets
For text classification, the following four real-world
datasets are used in the experiment.

AG News consists of news articles from the
AG’s corpus of news articles on the web about the
four largest classes (Technology, Sports, Business,
and World). The dataset contains 30,000 training
and 1,900 testing examples for each class (Gulli,
2005; Del Corso et al., 2005).

DBpedia is a project aiming to extract struc-
tured content from the information created in the
Wikipedia project (Lehmann et al., 2015). The DB-
pedia ontology dataset contains 560,000 training
samples and 70,000 testing samples for each of 14
non-overlapping classes from DBpedia (Lehmann
et al., 2015).

IMDb is a binary sentiment analysis dataset con-
sisting of 50,000 reviews from the Internet Movie
Database (IMDb) labeled positive or negative. The
dataset contains an even number of positive and
negative reviews (Maas et al., 2011).

Yelp is a subset of businesses, reviews, and user
data for use in personal, educational, and academic
purposes (Zhang et al., 2015).

2213



DataSet Model Accuracy Model Accuracy Model Accuracy

AG News

BERT 94.08 TextCNN 88.88 LSTM 87.02
+ LS-Classic 94.17 + LS-Classic 89.37 + LS-Classic 87.93
+ LS-Distill 94.37 + LS-Distill 89.56 + LS-Distill 88.17
+ LS-TFIDF 94.42 + LS-TFIDF 90.11 + LS-TFIDF 90.13
+ KWLS 95.13 + KWLS 91.07 + KWLS 90.85

DBpedia

BERT 99.30 TextCNN 98.48 LSTM 98.71
+ LS-Classic 99.35 + LS-Classic 98.52 + LS-Classic 98.77
+ LS-Distill 99.40 + LS-Distill 98.63 + LS-Distill 98.80
+ LS-TFIDF 99.41 + LS-TFIDF 98.86 + LS-TFIDF 98.84
+ KWLS 99.65 + KWLS 99.12 + KWLS 99.13

IMDb

BERT 93.21 TextCNN 91.62 LSTM 91.03
+ LS-Classic 93.29 + LS-Classic 91.70 + LS-Classic 91.26
+ LS-Distill 93.47 + LS-Distill 91.76 + LS-Distill 91.36
+ LS-TFIDF 93.65 + LS-TFIDF 92.10 + LS-TFIDF 91.73
+ KWLS 94.26 + KWLS 92.43 + KWLS 92.55

Yelp

BERT 69.54 TextCNN 64.38 LSTM 64.03
+ LS-Classic 69.68 + LS-Classic 64.53 + LS-Classic 64.12
+ LS-Distill 69.70 + LS-Distill 64.76 + LS-Distill 64.27
+ LS-TFIDF 69.81 + LS-TFIDF 65.02 + LS-TFIDF 64.92
+ KWLS 70.08 + KWLS 65.89 + KWLS 65.68

Table 2: Experimental results of models with different targets in text classification datasets.

Metric BERT TextCNN LSTM
O C D T K O C D T K O C D T K

R@1 35.27 37.46 37.62 41.03 43.87 33.12 33.18 34.97 36.42 37.25 32.43 33.12 34.13 35.41 36.96
R@10 48.48 52.62 55.89 61.29 62.32 41.99 43.50 43.87 47.81 52.62 40.27 41.06 41.28 45.89 50.63
R@50 68.21 71.11 72.54 78.45 79.72 62.56 62.74 67.46 71.61 76.56 60.42 63.09 64.44 69.35 74.15
R@100 78.85 79.52 80.50 83.89 85.28 71.41 72.01 73.71 76.50 79.13 70.26 72.05 72.91 75.32 77.56

Table 3: Recall@k on the large-scale retrieval dataset. Numbers are in percentage (%). O, C, D, T, and K represent
the original model, LS-Classic, LS-Distill, LS-TFIDF, and KWLS separately.

For large-scale retrieval, we consider the Re-
trieval Question-Answering (ReQA) benchmark
proposed by Ahmad et al. (2019). The dataset we
selected is SQuAD, which is a reading compre-
hension dataset, consisting of questions posed by
crowd workers on a set of Wikipedia articles, where
the answer to every question is a segment of text,
or span, from the corresponding reading passage,
or the question might be unanswerable (Rajpurkar
et al., 2016). Each entry of this dataset is a tuple
(q, a, p), where q is the question, a is the answer
span, and p is the evidence passage containing a.
Following Ahmad et al. (2019), we split a passage
into sentences p = s1s2...sn. For a query q, we
need to retrieve the correct sentence from a candi-
date set consisting of sentences of all passages. A
query-sentence pair (q, s) is labeled as 1 if s is the
sentence containing the corresponding answer span
and labeled as 0 otherwise. This problem is more
challenging than retrieving the evidence passage
only since the larger number of candidates to be
retrieved.

For each dataset, we randomly split the train
sets into train/dev sets at the ratio of 3:1. The test

sets remain unchanged.2 We apply four-fold cross-
validation to do significance tests.

5.2 Baselines

Considering current text mining models can be split
into three types, RNN-, CNN-, and Transformer-
based models. We incorporate our method with the
following three models, which are existing repre-
sentative models widely used.

LSTM is the most widely used RNN-based deep
neural network in text mining tasks (Liu et al.,
2016).

TextCNN is the most famous CNN-based text
mining baseline proposed by Kim (2014).

BERT is the most representative Transformer-
based model in the text mining community (Devlin
et al., 2018).

We also compare our methods with three alter-
native label smoothing methods.

LS-TFIDF is a variant of our method in which
the soft label is generated based on TF-IDF.

LS-Classic is the most classical label smoothing
method proposed by Szegedy et al. (2016), widely

2Note that all LS methods are only used in the training set.
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DataSet Model Accuracy Model Accuracy Model Accuracy

AG News *

BERT 76.34 TextCNN 72.62 LSTM 72.06
+ LS-Classic 76.82 + LS-Classic 72.76 + LS-Classic 72.38
+ LS-Distill 76.92 + LS-Distill 72.84 + LS-Distill 72.81
+ LS-TFIDF 78.12 + LS-TFIDF 73.61 + LS-TFIDF 73.87
+ KWLS 79.94 + KWLS 74.45 + KWLS 74.04

DBpedia *

BERT 97.27 TextCNN 95.30 LSTM 95.28
+ LS-Classic 97.60 + LS-Classic 95.85 + LS-Classic 95.44
+ LS-Distill 98.14 + LS-Distill 96.04 + LS-Distill 95.53
+ LS-TFIDF 98.25 + LS-TFIDF 97.09 + LS-TFIDF 96.85
+ KWLS 98.41 + KWLS 97.21 + KWLS 97.35

IMDb *

BERT 50.02 TextCNN 48.73 LSTM 48.31
+ LS-Classic 54.10 + LS-Classic 50.59 + LS-Classic 50.89
+ LS-Distill 54.60 + LS-Distill 52.86 + LS-Distill 52.92
+ LS-TFIDF 56.31 + LS-TFIDF 55.49 + LS-TFIDF 55.14
+ KWLS 60.62 + KWLS 57.93 + KWLS 57.81

Yelp *

BERT 51.69 TextCNN 49.04 LSTM 48.19
+ LS-Classic 52.40 + LS-Classic 52.18 + LS-Classic 51.36
+ LS-Distill 54.52 + LS-Distill 53.07 + LS-Distill 52.48
+ LS-TFIDF 56.54 + LS-TFIDF 54.10 + LS-TFIDF 53.14
+ KWLS 58.81 + KWLS 56.91 + KWLS 56.43

Table 4: Experimental results of models with different targets in unbalanced text classification datasets. “*” denotes
the under-sampled thus unbalanced datasets.

used in computer vision and natural language pro-
cessing.

LS-Distill is another widely used label smooth-
ing method in which the soft label set as predicting
scores of the original model (Zhang and Sabuncu,
2020). This method is similar to self-distillation
process in born-again networks (Furlanello et al.,
2018) and widely used in knowledge distillation
(Hinton et al., 2015; Liu et al., 2021b).

5.3 Effectiveness in Text Classification

To explore the effectiveness of our LS method,
we conduct experiments to explore whether
our method can improve the CNN-based model
TextCNN, RNN-based model LSTM, and
Transformer-based model BERT. For all of the
above text classification tasks, we report the
classification accuracy over the test set. Table 2
demonstrates the results,3 from which we have
following five observations:

1. All CNN-, RNN-, and Transformer-based
models incorporating soft labels generated by all
LS methods as auxiliary targets gain improvements
over the original models in all tasks, which verifies
the intuition of label smoothing.

2. LS-Classic only gains minor improvements
over original models. The reason is that LS-Classic
generates soft labels from the hard label in a brute
way, which ignores rich knowledge from the in-
stances.

3The experiment results in this paper are statistically sig-
nificant with p < 0.05.

DataSet Business Technology Sports World
c=0 30000 30000 30000 30000
c=1 30000 30000 30000 300
c=2 30000 30000 300 300
c=3 30000 300 300 300
m=300 30000 300 300 300
m=200 30000 200 200 200
m=100 30000 100 100 100
m=50 30000 50 50 50
m=10 30000 10 10 10
m=1 30000 1 1 1
Test Set 1900 1900 1900 1900

Table 5: The experimental setting for investigation on
effects of different degrees of unbalance.

3. The improvement of LS-TFIDF over original
models shows that TF-IDF weights serve as benefi-
cial prior knowledge to characterize soft labels.

4. LS-Distill also achieves notable enhance-
ments. This observation is consistent with other
knowledge distillation works (Hinton et al., 2015).
The self-distillation process brings valuable “dark”
knowledge (Furlanello et al., 2018) via the gener-
ated soft predicting scores even without utilizing
term weights information.

5. Our KWLS has clear superiority over LS-
Distill and LS-TFIDF among all datasets. Rather
than predicting relevance score directly as LS-
Distill, KWLS incorporates improved TF-IDF in-
formation into supervised signals. Therefore, the
final generated soft label integrates explicit prior
term weight knowledge, and some “dark” knowl-
edge is produced during training. We believe that
is the main reason behind this superiority.

2215



0

2

4

6

8

10

12

0 1 2 3

Im
p

ro
v

em
en

ts

Numbers of the unbalanced classes (c)

LS-Classic LS-Distill LS-TFIDF KWLS

0

10

20

30

40

50

300 200 100 50 10 1

Im
p

ro
v

em
en

ts

Sizes of the unbalanced class (m)

LS-Classic LS-Distill LS-TFIDF KWLS

𝑐 𝑚

Figure 1: Experimental results of the investigation on the effect of different degrees of unbalance. The x-axis
denotes the different settings of unbalance degrees. The y-axis denotes improvements (Accuracy) LS methods gain
over the original model.

5.4 Effectiveness in Large-Scale Retrieval

As described in the above section, all LS methods
improve the original model on common text classi-
fication tasks. To further explore the ability of LS
to deal with text datasets, we evaluate LS methods
on the more challenging large-scale retrieval task.
Since the goal of retrieval is to capture the positives
in the top-k results (Liu et al., 2021a), we select
Recall@k as the evaluation metric.

The experimental results are shown in Table 3,
from which we can observe that all LS methods
perform exceptionally well for the large-scale re-
trieval task (especially the LS-TFIDF and KWLS).
We can quickly guess the following two reasons
for this phenomenon:

1. Note that the data collection process and hu-
man annotations of SQuAD are biased towards
question-answer pairs with overlapping tokens (Ra-
jpurkar et al., 2016). We can naturally expect that
the generated soft label could better characterize
query-document relevance degree in the SQuAD
dataset due to the capability of term weight-
ing LS methods to identify overlapped highly-
representative tokens.

2. Another straightforward guess is that the
large-scale retrieval task is highly unbalanced (Re-
trieve one result in large-scale candidates). For
a class without adequate training instances, soft
labels generated by LS methods will provide auxil-
iary supervision information from other categories,
which may help the model identify the specific
class better.

5.5 Effectiveness on unbalanced Datasets

As shown in the above section, LS methods per-
form exceptionally well in highly unbalanced large-
scale retrieval tasks. To evaluate the effectiveness

of LS methods on unbalanced datasets, for each
task of text classification mentioned above, we
manually remove some samples to simulate the
unbalanced scenario. More specially, we under-
sample each class in the training set with the ratio
of 1:100 and keep other classes unchanged. Then
we can get n unbalanced training sets where n is
the number of classes in the task. The test set re-
mains unchanged (balanced). The average scores
across the test set of models trained on n unbal-
anced training sets are used to evaluate each task.
From the evaluation results in Table 4, we can see:

1. The inadequacy and unbalance of training
data will significantly hinder the performance, es-
pecially for the IMDb dataset with binary labels.

2. Models with LS methods gain significant im-
provements over the original model on unbalanced
datasets. For example, for the unbalanced IMDb
dataset, the BERT with KWLS achieves 10.60 im-
provements in terms of accuracy.

Compared with balanced datasets, LS methods
achieve more performance enhancement on unbal-
anced datasets, which verifies our assumption. For
a data-lacking category, soft labels may provide
auxiliary supervision information from other cate-
gories.

5.6 Effects of Different Degrees of Unbalance

To further explore the ability of LS methods to
deal with various unbalance scenarios, we eval-
uate BERT equipped with LS methods on news
classification datasets with multiple unbalanced
settings. AG News, composed of 4 classes (Tech-
nology, Sports, Business, and World), is selected as
the dataset for the experiment. As shown in Table
5, we set the training set unbalanced in two ways
as follows:
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(a) Loss during the training step (b) Accuracy in validate set during the training step

Figure 2: Loss and Accuracy during the training step in unbalanced IMDb∗ dataset.

1. To explore the effect of the number of unbal-
anced classes, we keep the instances of Business
news unchanged and under-sample other c classes
into the ratio of 1:100, where c is set to 0, 1, 2, and
3 respectively.

2. To explore the effect of the sizes of unbal-
anced classes, we keep the instances of Business
news unchanged and under-sample sizes of other
classes in training set to m, which is set to 300,
200, 100, 50, 10, and 1 respectively.

From the evaluation results in Figure 1, we can
see that with the increment of c, the models with LS
methods gain more improvements over the original
models. Since bigger c means a more unbalanced
training set, it is not strange for the improvements
increment. The trends of relative improvement re-
veal that soft labels generated by LS methods play
a more critical role in a more unbalanced situation.
The reason is that the knowledge of label correla-
tion in soft labels helps to discriminate classes with
fewer instances.

Based on the most unbalanced setting (c = 3),
we decrease m to further intensify the degree of
unbalance. We can see that the relative improve-
ment in performance brought by LS gradually in-
creases as m becomes smaller until m is less than
50. The reason is that although LS methods can pro-
vide auxiliary supervision information from other
classes to help models identify the data-lacking
class, the supervised signal from the original class
is still important, which may degrade dramatically
in an extreme case with very few instances.

5.7 Effectiveness of KWLS

To further explore why KWLS can improve models’
performances in unbalanced scenarios, we record
losses of the hard label and our KWLS during
the training step in the unbalanced IMDb∗ dataset,
which is a binary sentiment classification task (pos-
itive or negative). We under-sample the positive
instances in the training set with the ratio of 1:100
and keep negative instances unchanged. As shown
in Figure 2, we first train our model only with the
hard label. The loss decreases dramatically since
there are few instances in the data-lacking cate-
gory, and models will easy to fitting supervisory
signals of instances in a mini-batch and predict all
instances as positive. In the 4000-th step, we incor-
porate KWLS into the model training. We can see
that models with KWLS will obtain extra supervi-
sory signals from other categories, which will help
models identify data-lacking categories.

6 Conclusion

We have presented our Keyword-based Label
Smoothing method (KWLS) for text mining tasks
and demonstrated it’s usage and effect on model
training. Unlike previous works that focus on uni-
versal data mining tasks, our method is explicitly
designed for text mining, which incorporates se-
mantic relevance between labels and instances into
soft labels. Like other widely-used tricks of text
mining, the technical design of KWLS is simple
yet effective, making it extremely easy to be ap-
plied in different text mining tasks, as shown in
experiments. Despite its simplicity, using soft la-
bels generated by KWLS as an auxiliary training
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target shows significant superiority in improving
model performance, whether the data is balanced or
unbalanced. Our codes are released on the Github.4
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Abstract

Often questions provided to open-domain ques-
tion answering systems are ambiguous. Tradi-
tional QA systems that provide a single answer
are incapable of answering ambiguous ques-
tions since the question may be interpreted in
several ways and may have multiple distinct an-
swers. In this paper, we address multi-answer
retrieval which entails retrieving passages that
can capture majority of the diverse answers to
the question. We propose a re-ranking based
approach using Determinantal point processes
utilizing BERT as kernels. Our method jointly
considers query-passage relevance and passage-
passage correlation to retrieve passages that
are both query-relevant and diverse. Results
demonstrate that our re-ranking technique out-
performs state-of-the-art method on the Am-
bigQA dataset.

1 Introduction

The objective of open-domain question answering
is to provide answers to queries utilising a large
collection of documents from the World Wide Web,
Wikipedia etc. More than 50% of questions present
in a widely used open-domain QA dataset (Natural
Questions Kwiatkowski et al. (2019)) comprise of
ambiguous questions (Min et al. (2020)). Questions
that are ambiguous may be interpreted in a number
of ways and as a result, they need various answers.
In this paper, we concentrate on questions with
multiple distinct answers.

Open domain question-answering systems are
designed to generate answers from several data
sources. Since similar information can be present
across multiple data sources, it introduces a sig-
nificant amount of redundancy. Traditional open-
domain QA (Chen et al. (2017)) systems comprise
of a Retriever, which retrieves passages relevant to
the question. A passage retriever is primarily con-
cerned with retrieving passages that are relevant

*Equal contribution

to the query, and it does not address redundancy
in the passages during retrieval. To be able to pro-
duce diverse answers to the question, the passages
retrieved must be both relevant to the question and
distinct from one another. After the retrieval stage,
we introduce a novel re-ranking approach to handle
redundant passages. As a result, the re-ranked pas-
sages would capture most of the diverse answers
to the question. In this paper, we investigate the
multi-answer retrieval task, which entails retrieving
passages that can cover the distinct answers.

Re-ranking methods have been employed pre-
viously to improve the question answering accu-
racy significantly(Wang et al. (2019);Nogueira and
Cho (2019); Min et al. (2021); Clark and Gardner
(2017)). Min et al. (2021) tackles diverse multi-
answer retrieval by proposing a re-ranker based on
an auto-regressive framework in which each pas-
sage selected is dependent on the passages chosen
at a previous time step.

Determinantal Point Processes (DPP) (Kulesza
and Taskar (2012)) are probabilistic models that
are effective at identifying diverse subsets of ele-
ments from a collection while preserving quality.
DPP methods have proven effective in natural lan-
guage processing tasks where there is a need for
diverseness. Cho et al. (2019), Li et al. (2019),
and Cho et al. (2020), Sharghi et al. (2017) have
used DPPs to perform summarization by choos-
ing salient but also diverse items to be included in
the summaries. In this paper, we propose an un-
supervised re-ranking technique for multi-answer
retrieval utilising Determinantal point processes
and BERT to model the kernels.

Our contributions can be summarized as follows:
1) We propose a re-ranking method based on de-
terminantal point processes that focuses on diverse
passage retrieval.
2) Since our approach is unsupervised, our method
does not require a large amount of data unlike prior
re-ranking methods(Min et al., 2021). Instead, we
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rely on DPP to identify the most relevant passages
to the question that are distinct from one another.
3) We demonstrate that our technique outper-
forms the state-of-the-art method on the AmbigQA
dataset using MRECALL @ k metrics.

2 Related Work

Many open domain question answering sys-
tems(Chen et al. (2017); Yang et al. (2019); Izac-
ard and Grave (2021); Guu et al. (2020); Lee
et al. (2019)) adopt the retriever-reader method
by retrieving the relevant documents and later ap-
plying neural techniques to predict the answer.
The retriever-reader method was first proposed
by Chen et al. (2017). DrQA(Chen et al. (2017))
uses Wikipedia as knowledge source and employs
a sparse retrieval method using TF-IDF and a
recurrent neural network to identify the answer
spans. While Yang et al. (2019) adopts Anserini
retriever(Yang et al. (2017)) using BM25 as the
ranking function and BERT model (Devlin et al.
(2018)) as the reader. Sparse retrieval based meth-
ods, such as TF-IDF and BM25, face challenges
when retrieving relevant passages that do not match
the question’s exact terms. Dense retrieval-based
approaches, on the other hand, overcome this prob-
lem by mapping each word into a vector space
in which words with similar meanings tend to be
closer together. ORQA (Lee et al. (2019)) and DPR
(Karpukhin et al. (2020)) employ a question and
passage encoder based on BERT and compute a
relevance score. Using this relevance score, the re-
triever retrieves the most relevant documents from
the corpus.

3 Determinantal Point Processes for
Re-ranking

Re-ranker acts as a filter to pick a limited number
of passages that can be used as input to generate
answers to the questions. We formulate the task of
passage re-ranking as a subset selection problem.
Our objective is to choose a subset of passages
(Y ) of size k from the ground set Y comprising N
passages that covers all of the answers to a given
question q . DPP models a distribution on all the
subsets of the ground set Y jointly considering
the quality and diversity. A subset Y is drawn
according to the probability distribution P .

P (Y ;L) ∝ det(LY ) (1)

P (Y ;L) =
det(LY )

det(L+ I)
(2)

where I is the identity matrix, L ∈ RN×N is a pos-
itive semi-definite matrix referred as L-ensemble,
det(.) denotes the determinant of a matrix, and Ly
is the submatrix of L indexed by items in Y . L
matrix jointly considers query-passage relevance
as well as passage-passage correlation through eq.
3.

Lij = Q(i, q) · S(i, j) ·Q(j, q) (3)

DPP focuses on two measures - quality and simi-
larity ( Fig 1). Quality score Q(i, q) measures how
salient the passage i is and whether it contains an
answer to the question q. Similarity score S(i, j) is
computed between two passages i and j to incorpo-
rate diversity in the passages. DPP assigns a prob-
ability to a set Y proportional to the determinant
of L-ensemble which may be interpreted geomet-
rically as the volume of the parallepiped covered
by the quality and similarity measures (Kulesza
and Taskar (2012)). A diverse passage subset occu-
pies more volume than a subset of similar passages,
therefore DPP assigns higher probability to diverse
and relevant passages rather than the most relevant
and similar passages. If passages are relevant and
diverse, then the passages can cover multiple dis-
tinct answers to the question.

Figure 1: An overview of the proposed re-ranking
method using DPP. A similarity score between the pas-
sages and a quality score between the question and pas-
sage are computed. These two scores are utilised to
construct the DPP kernel matrix.

3.1 BERT for Similarity matrix

To compute the similarity scores, we use a pre-
trained BERT model (Devlin et al. (2018); Reimers
and Gurevych (2019)) to generate embeddings for
every passage. The model takes the passage as
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input and produces a 768 dimensional dense em-
bedding. We use these embeddings to calculate
the cosine similarity of all passages and compute a
similarity matrix S ∈ RN×N for the whole passage
set. All the values in the similarity matrix lie in
the range of ⌈0, 1⌉. If passages i and j are similar,
the similarity value S(i, j) lies closer to 1, if they
are distinct, the value lies closer to 0, and if i = j,
S(i, j) becomes equal to 1.

S(i, j) = cosine_sim(BERTA(i), BERTA(j))
(4)

3.2 BERT for Quality matrix

We use a pretrained BERT model trained on MS
MARCO (Nguyen et al. (2016)) for computing the
Quality matrix. The model takes in a query and
a passage and generates the quality score. Higher
quality score indicates that the passage is most
relevant to the query and therefore most likely to
answer the query. Unlike for computing similarity
matrix, we do not perform cosine similarity over
the model’s outputs to produce a score, instead, we
use a BERT encoder that concatenates both query
and passage and generates a score. The quality
matrix Q ∈ RN×N is computed by performing the
matrix multiplication of the scores (N×1) with it’s
transpose resulting in N ×N dimensioned vector
. These quality scores are then normalized to lie
between ⌈0, 1⌉.

Q(i, j) = Norm(BERTB([i; j])) (5)

3.3 Sampling

Traditional DPP sampling algorithms have higher
run-time complexity when L matrix is large. We
apply an efficient sampling technique - BFGMInfer-
ence (Li et al. (2019);Chen et al. (2018)). BFGMIn-
ference approximates a greedy approach to select a
passage that maximizes the det(LY ) and adds it to
the passage subset.

f(Y ) = log det (LY )
k = argmax

i∈Y\Y
f(Y ∪ {i})− f(Y ) (6)

4 Experiments

In this section, we discuss about the passage re-
trieval method, the dataset we used in our experi-
ments, the evaluation metric, and the results of our
experiments.

4.1 Passage retrieval
Wikipedia is utilised as the corpus for retrieving
passages for the questions. Each Wikipedia article
is broken into multiple passages containing the
same number of words. We retrieve query-relevant
passages from Wikipedia using the Dense Passage
Retriever (DPR) (Karpukhin et al. (2020); Lin et al.
(2021)). DPR computes encodings for all passages
extracted from the Wikipedia corpus and builds an
index. The inner product of the query and passage
encodings is used to determine the similarity scores
between them. Passages with the highest scores
are the ones that are most relevant to the query,
and these passages are subsequently sent into the
re-ranker as input.

4.2 Dataset
We evaluated our method on an open-domain
question-answering dataset AmbigQA (Min et al.
(2020)), which contains multiple-answer questions.
The dataset was created from an anonymised col-
lection of Google search queries submitted by users
seeking information on different subjects. It con-
sists of 14,042 question-answer pairs derived from
the Natural questions dataset (Kwiatkowski et al.
(2019)) and is split into train, validation, and test
sets. Train set consists of 10,036 question-answer
pairs, validation set consists of 2,002 examples,
and test set consists of 4,042 examples.

4.3 Evaluation metric
MRECALL @ k (Min et al. (2021)) is used to eval-
uate the re-ranking of passages for questions with
diverse answers. As per this metric, if a query has
n answers, the k passages that are retrieved must
cover all of the answers. If n <= k, all answers
must be covered; if n > k, the passages retrieved
must contain at least k answers. A retrieval is
deemed successful if the passages retrieved include
all or at least k of the answers to the query.

4.4 Results
We compare our technique to a few additional
baselines, all of which were assessed using the
MRECALL @ k metric on the AmbigQA dataset.

• DPR+ Min et al. (2021) integrates REALM
(Guu et al. (2020)) with DPR (Karpukhin et al.
(2020)). As described in Section 4.1, DPR is
a dense retrieval based technique that utilizes
the FAISS library to retrieve the relevant doc-
uments. Encoders for the query and passage
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Models
Top5 Top 10

AmbigQA-Dev AmbigQA-Dev
DPR+(Min et al. (2021)) 55.2/36.3 59.3/39.6
DPR+ + Nogueira and Cho (2019) 63.4/43.1 65.8/46.4
JPR(Min et al. (2021)) 64.8/45.2 67.1/48.2
QRR 62.0/42.3 70.8/57.6
DPP-R 66.9/53.5 72.8/58.8

Table 1: Performance of various models on AmbigQA dataset. Each row contains the MRECALL @ k metrics for
single answer retrieval and multi-answer retrieval respectively.

are initialized using REALM and the DPR
training method is followed.

• DPR+ + Nogueira and Cho (2019) employs
DPR+ for the first stage of retrieval and the re-
ranking method in Nogueira and Cho (2019)
is applied on the retrieved passages.

• JPR Min et al. (2021) employs DPR+ as the
initial ranker and an auto-regressive frame-
work is adopted as a re-ranker to generate
diverse passages.

• Query Relevance Re-ranking(QRR) In this
method, we first calculate the quality scores
for each passage (described in section 3.2)
and then we sort the passages based on these
scores to pick the top-k passages. Here, simi-
larity among the passages is not considered.

• DPP-R We employ our method described in
section 3 to retrieve highly diverse and rele-
vant passages.

We calculate the performance of diverse multi
passage retrieval using the MRECALL @ k mea-
sure described in section 4.3. Evaluation on the
AmbigQA dataset demonstrates that our approach
outperforms existing re-ranking techniques. Our
technique requires no human annotations for multi
passage re-ranking while outperforming existing
methods, as shown in Table 1. DPP is modelled to
select a subset of high-quality and diverse passages,
which contributes to the success of our method
for this task. Experiments demonstrate that the
DPP-based technique achieves promising results
for retrieving passages containing diverse answers.

5 Discussion

Impact on QA system’s performance: An Open
domain question answering system’s pipeline con-
sists of three stages. 1) Retrieval 2) Re-ranking fol-
lowed by 3) Answer extraction. Improvements in

any of these stages significantly improve the over-
all system’s ability to answer a question. Nogueira
and Cho (2019), Min et al. (2021) have shown that
the use of a re-ranker has led to end-to-end QA
improvements. Based on the results presented in
Table 1, the DPP method enhances re-ranking for
both single and multi-answer questions. We be-
lieve that this improvement in re-ranking will also
improve the overall performance of the end-to-end
QA system.
Impact of diversity: DPP-R and JPR retrieve
diverse passages utilising DPP and auto-regressive
framework, respectively. Other approaches like
QRR, retrieve just passages that are relevant to
the query and do not tackle passage redundancy.
We observe that our approach using DPP performs
better than the QRR method. In order to re-rank,
QRR simply considers how relevant a passage is
to the query, and it retrieves the top-k passages
with the highest relevance score for a given query.
On the other hand, DPP-R takes into account how
relevant the passage is to the query and also how
similar passages are to each other, in order to elim-
inate redundant passages leading to diversity in the
retrieved passages. DPP-R and JPR outperform
other methods that do not emphasise diversity in
multi-answer retrieval. For single answer retrieval,
DPP-R and JPR have fared better than other meth-
ods, with the minor exception that QRR beats JPR
in top-10 re-ranking. This demonstrates that diver-
sity is an important aspect to consider during the
re-ranking stage.

6 Conclusion

In this paper, we propose a DPP-based approach
to improve the diverseness of the retrieved pas-
sages. We compare our method to the state-of-
the-art method and outperform it by 3% (top 5),
8% (top 10) for single-answer questions, and 18%
(top5) and 21% (top10) for multi-answer retrieval
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on AmbigQA dataset.
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Abstract

Driven by recent advances in neural networks,
various Deep Embedding Clustering (DEC)
based short text clustering models are being
developed. In these works, latent representa-
tion learning and text clustering are performed
simultaneously. Although these methods are
becoming increasingly popular, they use pure
cluster-oriented objectives, which can produce
meaningless representations. To alleviate this
problem, several improvements have been de-
veloped to introduce additional learning objec-
tives in the clustering process, such as models
based on contrastive learning. However, exist-
ing efforts rely heavily on learning meaning-
ful representations at the instance level. They
have limited focus on learning global repre-
sentations, which are necessary to capture the
overall data structure at the cluster level. In this
paper, we propose a novel DEC model, which
we named the deep embedded clustering model
with cluster-level representation learning (DEC-
CRL) to jointly learn cluster and instance level
representations. Here, we extend the embedded
topic modelling approach to introduce recon-
struction constraints to help learn cluster-level
representations. Experimental results on real-
world short text datasets demonstrate that our
model produces meaningful clusters.

1 Introduction

Short Text Clustering has gained increasing atten-
tion in many real-world applications, such as event
discovery (Atefeh and Khreich, 2015), spam detec-
tion (Wu and Liu, 2018), and sentiment analysis
(Paltoglou and Thelwall, 2012). Unlike long texts,
which can be represented as, for instance, term
frequency inverse-document-frequency (TF-IDF)
vectors in the clustering task, short texts cannot

∗This is the corresponding author.

be encoded in the same manner. This is because
the vector representation of short texts is highly
sparse, making it difficult to measure the similarity
between two sets of short texts (Xu et al., 2017).
With this observation, deep clustering methods are
being developed to encode raw short texts into la-
tent representational space using neural networks
and to detect clusters based on the learned repre-
sentations. Deep clustering methods generally fall
into two categories: the two-stage methods and the
deep embedded clustering (DEC) methods. The
two-stage methods (Zakaria et al., 2012; Tian et al.,
2014; Vincent et al., 2010) assign data samples to
different clusters after latent representations are
learned and fixed, while the DEC methods (Xie
et al., 2016) simultaneously learn latent representa-
tions and discover clusters via end-to-end training.
Different from the two-stage methods, the DEC
methods explicitly define the cluster-oriented loss
to jointly map raw data into latent representations
and acquire cluster assignments.

As discussed in (Jiang et al., 2016; Xie et al., 2016;
Aljalbout et al., 2018), significant improvement in
clustering performance can be achieved by learn-
ing better representations of texts. However, it has
been increasingly found that purely cluster-oriented
loss driven methods tend to generate meaningless
representations (Guo et al., 2017). The semantic
meaning of raw data cannot be preserved in the
latent space, which would, in turn, deteriorate the
performance of clustering. To tackle this problem,
sequence-to-sequence (seq2seq) based reconstruc-
tion models have been widely used to learn general
representations from texts in an unsupervised man-
ner. For example, (Kiros et al., 2015) generated the
text representations by predicting the context sen-
tences of a given sentence. The work in (Brahma,
2018) learned text representations by predicting
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multiple future sentences based on the seq2seq
model. Recently, instance-wise contrastive learn-
ing has achieved remarkable success in representa-
tion learning by adopting the contrastive loss along
with the cluster-oriented loss (Li et al., 2021; Tsai
et al., 2020; Van Gansbeke et al., 2020; Zhang et al.,
2021). However, the aforementioned methods fo-
cus on optimizing the representation at the instance
level. For example, the contrastive learning-based
methods heavily rely on the instance discrimination
(Li et al., 2021) such that their learning objectives
(i.e. instance-wise loss) do not perfectly align with
the ultimate goal of clustering. In the clustering
task, the final clustering performance heavily re-
lies on learning representations which are capable
of reflecting the overall semantic structure of data.
Instance-level representation learning methods can-
not guarantee that the structure of data can be easily
obtained through clustering.

In this paper, we aim to develop a novel DEC
method which learns cluster-level as well as
instance-level representations to better capture the
semantic data structure for clustering. In our ap-
proach, the cluster-level representations are defined
as the representations of cluster centres. Different
from the SCCL model (Zhang et al., 2021) which
learns centre representations without imposing any
direct constraints, we adopt the reconstruction con-
straints (Ma et al., 2019) to encode the whole set of
raw texts into latent representations of cluster cen-
tres and then use these centre representations to re-
construct the text data. As reconstructing the whole
dataset from a limited number of cluster-level rep-
resentations is quite challenging, we designed a
cluster-level representation learning (CRL) module
to help the representations of cluster centres partici-
pate in the process of reconstructing input instances.
More specifically, we extend the idea of embedded
topic modelling (ETM) (Dieng et al., 2020) to re-
construct words from the representations of topics
in latent space. The representations of cluster cen-
tres will be integrated into the topic representations,
which will then be learned by optimizing both ETM
guided reconstruction and clustering objectives.

Our proposed model, named as deep embedded
clustering model with cluster-level representation
learning (DECCRL), consists of three modules:
an instance-level encoding module that maps the
original data inputs into latent representations; a
cluster selection module that generates cluster la-

bels; and a CRL model that learns the cluster-level
representations through reconstruction. Our main
contributions are summarized as follows:

• We develop a novel deep embedded cluster-
ing method to learn cluster-level as well as
instance-level representations to better cap-
ture the data structure.

• We extend the idea of embedded topic mod-
elling to impose reconstruction constraints to
the cluster-level representations.

• The experimental results show that our
method achieves the best clustering perfor-
mance compared with current state-of-the-art
short text clustering methods.

In the remainder of this paper, we first summarize
related works in Section 2. We formulate the prob-
lem and explain our DECCRL model in Section 3.
The experiments are introduced in Sections 4 and
5 and the paper is concluded in Section 6.

2 Related Work

2.1 Deep Embedded Clustering

Deep clustering (Xie et al., 2016; Wu et al., 2019)
applies deep neural networks to transform raw in-
puts into latent representations, based on which
clustering is performed. Traditional approaches
derive latent representations first, and then clus-
ters are detected (Zakaria et al., 2012; Tian et al.,
2014; Vincent et al., 2010). However, latent rep-
resentations learned by these approaches are not
cluster-oriented in that they are learned before hand.
The deep embedded clustering (DEC) methods are
then developed to simultaneously generate latent
representations and cluster assignments through
the end-to-end training (Dosovitskiy et al., 2015;
Caron et al., 2018; Asano et al., 2019; Ghasedi
et al., 2019; Yang et al., 2020).

However, methods that purely depend on the
cluster-oriented loss cannot well preserve the local
structure of raw data and are likely to generate cor-
rupted latent space (Guo et al., 2017). To address
the above-mentioned problem, researchers recently
introduced extra reconstruction modules along with
the clustering model. For example, to cluster im-
ages, Jiang et al. (2016); Madiraju (2018); Yang
et al. (2019) adopted auto-encoders to learn latent
representations and simultaneously perform clus-
tering using the latent representations from auto-
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Figure 1: The overview of the proposed deep embedded clustering model with cluster-level representation learning
(DECCRL). It contains three components: an instance-level encoding module, a cluster selection module and
a cluster-level representation learning module based on the embedded topic modelling. Some key variables are
described as follows: c1:K contains embeddings of cluster centers; αk refers to embeddings of topics in the k-th
cluster; θi represents topic proportions of the i-th input text; ρ contains word embeddings of the vocabulary; βk is
the distribution over the vocabulary for topics within the k-th cluster.

encoders. To cluster time-series data, Ma et al.
(2019) leveraged a seq2seq model to guide the gen-
eration of latent representations. To cluster text
data, Zhao et al. (2021) utilized the idea of data re-
construction to reconstruct data in the latent space
only other than the original space. In the same time,
there are many seq2seq models have been used to
assist text data clustering like (Kiros et al., 2015)
generated the text representations by predicting the
context sentences of a given sentence and the work
in (Brahma, 2018) learned text representations by
predicting multiple future sentences based on the
seq2seq model.

2.2 Neural Topic Modelling in Various NLP
tasks

With the development of neural networks, there has
been a surge of methods that seek to combine deep
neural networks with probabilistic topic models
(Srivastava and Sutton, 2017; Cong et al., 2017;

Zhang et al., 2018). Most of these methods used
amortized inference and variational auto-encoder
to reduce the dimension of the input data (Rezende
et al., 2014; Dieng et al., 2020). For example, ETM
(Dieng et al., 2020) is a neural topic model that
uses word embeddings from Word2Vec (Mikolov
et al., 2013). Neural topic modelling is not only
used to learn hidden topics from a collection of
texts, but has also been increasingly used to assist
other NLP tasks. For example, See et al. (2017);
Ailem et al. (2019); Wang et al. (2020) combined
seq2seq models with topic models in the abstract
generation task. (Dieng et al., 2016) incorporated
topic modelling with the recurrent neural network
to capture the long-range dependencies. Zeng et al.
(2018); Wang and Yang (2020) integrated NTM
with a memory network for short text classification.
Tang et al. (2019); Wang et al. (2019) used neural
topic modelling to assist text generation. Our work
aims to improve clustering by incorporating ETM.
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3 Method

The overview of the proposed deep embedded clus-
tering model with cluster-level representation learn-
ing (DECCRL) is shown in Figure 1. It contains
three components: an instance-level encoding mod-
ule, a cluster selection module and a cluster-level
representation learning module (CRL) based on
the embedded topic modelling. The instance-level
encoding module generates the latent representa-
tions of texts; the cluster selection module takes
the outputs of the encoding module as the input to
generate the cluster assignments; CRL attempts to
optimise the overall structure of data by connecting
the latent representations of cluster centres with the
embedded topic model. More detailed descriptions
of our method will be provided in the following.

3.1 The Instance-level Encoding Module

In the instance-level encoding module, we aim to
generate optimised instance-level representation
by contrastive learning. Suppose the inputs of
the encoding module include: the original texts
B = {xi}Mi=1 and its corresponding augmentation
set Ba = {(x̃i1 , x̃i2)}Mi=1, where xi is a sample
of input texts, M is the number of samples, and
(x̃i1 , x̃i2) contains augmented versions of xi to
enable contrastive learning. We will apply the
Contextual Augmenter (Kobayashi, 2018), which
utilizes the pre-trained transformer-based models
to find suitable words for synonym substitution
(Kobayashi, 2018): Bertbase (Devlin et al., 2018)
and Roberta (Liu et al., 2019) are used for generat-
ing x̃i1 and x̃i2 , respectively.

As shown in the lower left part of Figure 1, a lan-
guage model followed by a fully connected neural
network FCe are used to map the data from the
original space X to latent spaceH. Here, Sentence-
BERT (Reimers and Gurevych, 2019) is chosen as
the language model since it has fine-tuned BERT
(Devlin et al., 2018) for better measuring sentence
similarities which would suit short text clustering.
The outputs of the encoding module can be repre-
sented as:

hi = FCe(SentenceBERT (xi)),

h̃ij = FCe(SentenceBERT (x̃ij )),

i ∈ {1, ...,M}, j ∈ {1, 2}.
(1)

In order to optimise instance-level representations
in latent space, we follow the work in (Zhang et al.,

2021) and introduce the same contrasting module to
DECCRL for leveraging the power of contrastive
learning. For any xi in B, we refer to its aug-
mented versions, x̃i1 and x̃i2 in Ba, as the positive
pair, while treating the other elements in sample
pairs of Ba as negative instances. The contrasting
module adopts fully connected neural networks to
transform latent representations h̃ij into ṽij .

The contrastive loss is defined to make the positive
samples closer and negative samples further apart
from each other as follows:

lCLi1 = −log exp(sim(ṽi1 , ṽi2)/τ)∑M
m=1 1m̸=i · exp(sim(ṽi1 , ṽm2)/τ)

,

(2)

lCLi2 = −log exp(sim(ṽi2 , ṽi1)/τ)∑M
m=1 1m̸=i · exp(sim(ṽi2 , ṽm1)/τ)

,

(3)
where 1m ̸=i is an indicator function, τ denotes
the temperature parameter, and sim(.) measures
the cosine similarity between two vectors (Chen
et al., 2020). The contrastive loss averaged across
samples is:

LCL =

M∑

i=1

(lCLi1 + lCLi2 )/M. (4)

3.2 The Cluster Selection Module
The cluster selection module is designed to assign
each data sample to a certain cluster as shown in
the upper left of Figure 1. Assume there are K
clusters, where each cluster can be characterized
by its centroid ck for k ∈ {1, ...,K} in the latent
space H. Following the approach developed in
Van der Maaten and Hinton (2008); Zhang et al.
(2021), we calculate the probability of assigning
the i-th input text xi to the k-th cluster based on
the Student’s t-distribution as follows:

oik =
(1 + ∥hi − ck∥22 /α)−

α+1
2

∑K
k′=1

(1 +
∥∥hi − ck′

∥∥2
2
/α)−

α+1
2

, (5)

where α is the degree of freedom of the Student’s
t-distribution, and hi is the latent representation of
xi generated by the instance-level encoding module
using Eq (1). A softmax layer is then used to
normalize oik as:

si = softmax([oi,1; ...; oi,K ]), (6)
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from which the cluster assignment of the i-th text
sample can be sampled.

To optimize the estimation of the centroid ck for
each cluster, we utilize an auxiliary probability tik
as discussed in Xie et al. (2016):

tik =
o2ik/fk∑
k′o

2
ik/fk′

, (7)

where fk =
∑M

i=1oik is the soft cluster frequency.
To make the cluster assignment probability close
to the auxiliary probability, we will minimize the
KL divergence between them, which is defined as:

lCi =
K∑

k=1

tiklog
tik
oik

, (8)

The cluster-oriented loss averaged across M sam-
ples is:

LCluster =
M∑

i=1

lCi /M. (9)

3.3 The Cluster-level Representation
Learning Module

In order to optimise the cluster-level representa-
tions by reconstructing, the cluster-level represen-
tation learning module (CRL) extend the idea of
the embedded topic modelling (ETM) to recon-
struct words from cluster center representations.
The representations of cluster centroids ck for
k ∈ {1, ...,K} obatined from the cluster selection
module are used to generate latent representations
of topics, from which the text data can be recon-
structed. As shown in the right part of Figure 1, the
CRL has two main parts: the generative part and
the inference part, which will be explained in detail
in the following paragraphs.

3.3.1 The Generative Part
Suppose L is the embedding length of vectors in
the latent spaceH. Let us denote the embeddings
of words obtained from Word2Vec (Mikolov et al.,
2013) as ρ = [ρ1, ...,ρV ], where ρv ∈ R2L is for
the v-th word and V is the vocabulary size. The
embedding of each topic t from the cluster k is
represented as αtk ∈ R2L. In our model, the em-
beddings of topics from each cluster k are related
to the cluster centroid ck as follows:

αtk = FCg(ck ⊕ ut) for t ∈ {1, .., T}, (10)

where T is the total number of topics, FCg is a
fully connected neural network, ut ∈ RL is a train-
able vector, and ⊕ is the concatenation operator.
Using αk = [α1

k, ...,α
T
k ] and ρ, the distribution

over the vocabulary for topics within the k-th clus-
ter can be obtained from:

βk = softmax((ρ)′αk), (11)

where (.)′ is the matrix transpose operator, and
βk ∈ RV×T is a collection of simplexes achieved
by computing the semantic similarity between top-
ics and words.

For the i-th text, its topic proportions θi, indicating
the prevalence of different topics in the text. Let
wi,n denote the n-th word in the i-th text, whose
topic assignment zi,n is assumed to be drawn from
zi,n ∼ Cat(θi), whereCat(.) denotes the categor-
ical distribution. With zi,n and βk, the probability
of observing wi,n is then:

p(wi,n|βk, zi,n) =Multi(β
zi,n
k ), (12)

whereMulti(.) is the Multinomial distribution and
β
zi,n
k is the zi,n-th column of βk. Then, the log

marginal likelihood of observing the i-th text can
be represented as:

log p(wi,n|x̂i) =
∑

zi,n

log p(wi,n|βzi,nk )p(zi,n|x̂i)

= logβkθi,
(13)

where θi = softmax(x̂i), and x̂i will be approxi-
mated from the BoW form of original text xi as to
be explained in the following paragraphs.

3.3.2 The Inference Part
Let us define the approximated distribution of x̂i as
q(x̂i|xbow∗i ), where xbow∗i is the normalized repre-
sentation of BoWs data xbowi . In the inference part,
xbow∗i is first passed through a fully connected neu-
ral network to get its latent representation, which
is then fed into two parallel fully connected neural
networks to get two vectors: µi and σi. By treating
µi and σi as the mean and standard deviation, x̂i
can be sampled from:

x̂i = µi + ϵ · σi, (14)

where ϵ ∈ N (0, I). In our CRL, we choose the
negative evidence lower bound as the cluster-level
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representation loss:

LRC = −Eq(x̂i|xbow∗
i )[

Ni∑

n=1

log p(wi,n|x̂i)]

+DKL[q(x̂i|xbow∗i )||p(x̂i)],
(15)

where Ni is the number of words in the ith text,
and p(x̂i) is the prior distribution of x̂i, assumed
to be normally distributed.

To train our model, the overall optimization objec-
tive is defined as:

L = LCL + λc ∗ LCluster + λr ∗ LRC , (16)

where λc and λr are the weights of LCluster and
LRC , respectively.

4 Experimental Setup

4.1 Dataset

We evaluate our model using three benchmark
datasets. Table 1 briefly summarizes them with
some details elaborated as follows.

• AgNews is a collection of news titles (Zhang
and LeCun, 2015). In our experiment, we
use a subset version from (Rakib et al., 2020),
which contains 8,000 documents from four
different categories. For performance evalu-
ation, 6,400 documents are used for training
while 1,600 documents are used for testing.

• StackOverflow is a subset of the challenge
data released by Kaggle1. This dataset con-
tains 20,000 documents, which can fall into
20 different categories (Xu et al., 2017). For
model training and testing, 15,084 and 4,916
documents are used respectively.

• Biomedical is the challenge data published in
BioASQ2. The version provided by Xu et al.
(2017) is used in our experiment, which con-
tains 20,000 paper titles from 20 categories.

4.2 Baseline

• BoW & TF-IDF (Zhang et al., 2021) together
with the K-means clustering is used as a base-
line method, where the length of BoW or TF-
IDF vectors is set to 1,500.

1https://www.kaggle.com/c/predict-closed-questions-on-
stackoverflow/download/train.zip

2http://participants-area.bioasq.org/

• STCC (Xu et al., 2017) is a typical two-
step deep clustering method. It first used
Word2Vec (Mikolov et al., 2013) to embed
words in the original text. The resulting word
embeddings are fed into convolutional neural
networks to get latent representations. Then,
K-means is used to detect clusters using rep-
resentations obtained from the previous step.

• HAC-SD (Rakib et al., 2020) introduces iter-
ative classification to boost the performance
of clustering. It considers outlier removal to
generate outlier-free clusters for short texts.
The outlier removed data is used to train a
classification algorithm based on the cluster
assignments.

• SCCL (Zhang et al., 2021) is a state-of-the-art
deep embedded clustering method for short
texts, which leverages the power of contrastive
learning to improve clustering.

4.3 Settings

In our approach, we use the Adam optimizer
(Kingma and Ba, 2014) with the batch size of 200.
We choose distilbert-base-nli-stsb-mean-tokens for
SentenceBERT and set the maximum input length
to 32. Same as Zhang et al. (2021), we set α =
10.0 for the Biomedical dataset and α = 1.0 for the
other datasets. The temperature parameter used in
the contrasting module is 0.5. As used in the re-
cent works for short text clustering (Xu et al., 2017;
Rakib et al., 2020; Zhang et al., 2021), we adopt the
clustering accuracy (ACC) (Xie et al., 2016) and
the normalized mutual information (NMI) (Strehl
and Ghosh, 2002) to show the performance of clus-
tering models. For fair comparison, supervised
pre-trained models are not applied. Since most ex-
isting works have pre-defined cluster numbers and
reported results, we adopt this practice and follow
their training/test protocols stated in their paper.

5 Experimental Result

5.1 Clustering performance compared with
baselines

Table 2 shows the results of baseline methods along
with our model on 3 benchmark datasets. The ob-
servations can be summarized as follows. First, the
deep clustering methods, including STCC, SCCL
and DECCRL, outperform conventional clustering
methods which are based on BoW or TF-IDF for
feature extraction and k-means for cluster detec-
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Table 1: Summary statistics of three benchmark datasets.

Dataset # Docs # Training # Test # Words # Classes # Average Length
AgNews 8,000 6,400 1,600 21,063 4 23
StackOverflow 20,000 15,084 4,916 10,941 20 8
Biomedical 20,000 15,583 4,417 18,244 20 13

Table 2: The short text clustering results for three benchmark text datasets. Our result are averaged over five random
runs. The ACC and NMI values for baseline methods are directly obtained from (Zhang et al., 2021).

Models AgNews Dataset StackOverflow Dataset Biomedical Dataset
ACC NMI ACC NMI ACC NMI

BoW 27.6 2.6 18.5 14.0 14.3 9.2
TF-IDF 34.5 11.9 58.4 58.7 28.3 23.2
STCC - - 51.1 49.0 43.6 38.1
HAC-SD 81.8 54.6 64.8 59.5 40.1 33.5
SCCL(Zhang et al., 2021) 88.2 68.2 75.5 74.5 46.2 41.5
DECCRL 88.9 69.2 82.3 76.7 47.0 41.5

tion. HAC-SD, considering outlier removal, shows
better performance than conventional k-means clus-
tering approaches. Secondly, SCCL has shown
better performance than the other baseline models,
reflecting the need of introducing contrastive learn-
ing into the clustering models. More importantly,
our model outperforms all other baseline models
for all datasets, especially for the StackOverflow
Dataset. Compared with SCCL, our model has
achieved higher ACC and NMI values.

(a) (b)

Figure 2: The TSNE visualization of the latent represen-
tations for the StackOverflow dataset, where (a) is from-
SCCL and (b) is from DECCRL. Each color indicates a
ground-truth cluster category.

To further demonstrate the importance of introduc-
ing the CRL into the clustering model, we visualize
the distribution of samples from a random sub-
set of StackOverflow (n=4,916) using the t-SNE
(Van der Maaten and Hinton, 2008) visualization
algorithm. In Figure 2, samples are assigned to
different colours based on their ground-truth cate-

Table 3: The results of different representation guidance
strategies. AGN, SO and BIO refer to the AgNews,
StackOverflow and Biomedical datasets respectively.

Metric Model AGN SO BIO

NMI
Ours w/o CRL 59.2 74.0 28.0

Ours w/o CRL w LSR 62.3 74.5 31.2
Ours 69.1 76.7 41.5

ACC
Ours w/o CRL 81.5 78.8 29.4

Ours w/o CRL w LSR 83.9 81.2 31.3
Ours 88.9 82.3 47.0

gories, where the total number of categories is 20.
By comparing the results from SCCL and DEC-
CRL under the same settings as shown in Figure
2(a) and Figure 2(b) respectively, we can find that
our model were able to learn representations that
are more separable in the latent space. With this ob-
servation, it is more confident to predicate that the
representations generated from our model would
lead a better clustering results.

5.2 The influence of cluster-level
representation learning module

In this section, we investigate the performance of
different cluster-level representation learning strate-
gies, which are designed as follows:

• Ours w/o CRL – DECCRL without CRL.
The model learns cluster-level representation
without imposing any direct contraints.
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• Ours w/o CRL w LSR – Replacing the CRL
of DECCRL with a latent space reconstruc-
tion module (LSR). The L-dimensional la-
tent representations are fed into a deep neural
network, where an encoder generates L/2-
dimensional vectors and a decoder returns L-
dimensional vectors. The difference between
the inputs and outputs of this network is con-
sidered as an extra loss for model training.

Figure 3: Silhouette scores from different cluster-level
representation learning strategies during training pro-
cess.

Table 3 shows the ACC and NMI values from
modes with different cluster-level representation
learning strategies. By comparing the performance
of DECCRL with DECCRL w/o CRL, we find
that the CRL has greatly improved for all three
datasets. DECCRL w/o CRL w lSR, which con-
strains features at the latent level, has shown better
performance than DECCRL w/o CRL but no better
than DECCRL.

Without referring to the ground-truth labels of clus-
ters, we use a pure clustering metric, Silhouette
score (Rousseeuw, 1987), to investigate the per-
formance of different cluster-level representation
learning strategies during the training process as
shown in Figure 3. The results from Figure 3 and
Table 3 show that representations from all models
seem to return clusters of similar characteristics
(e.g., compactness and separation indicated by the
Silhouette score). However, without adopting the
proposed CRL, the learned representations cannot
well preserve semantic information contained in
the original text data such that the ACC and NMI
scores generated using other methods are not as
high as ours. Given the above observations, we

Table 4: Selected clusters and their corresponding rep-
resentative hidden topics.

Cluster Representative TopicsLabel
Topic1: [’terminal’, ’mac’, ’command’, ’stdin’]

osx Topic2: [’max’, ’os’, ’osx’, ’console’]
Topic3: [’file’, ’application’, ’set’, ’create’]
Topic1: [’data’, ’xml’, ’cell’, ’table’]

excel Topic2: [’excel’, ’list’, ’files’, ’worksheet’]
Topic3: [’file’, ’create’, ’application’, ’xml’]
Topic1: [’oracle’, ’db’, ’view’, ’connection’]

oracle Topic2: [’sql’, ’table’, ’data’, ’database’]
Topic3: [’file’, ’application’, ’data’, ’multiple’]

find that using embedded topic modelling to guide
the latent representation is a promising strategy.

5.3 Understanding clusters

This subsection shows that our embedded topic
modelling based CRL does not only improve the
clustering performance but can also be used to char-
acterize each cluster using learned topics. Table 4
shows topics learned from three representative clus-
ters from the StackOverflow Dataset whose cluster
labels are: ‘osx’, ‘excel’ and ‘oracle’. These labels
are the ground-truth labels provided by the dataset,
and indicate the meaning of each cluster at a coarse-
grained level. To check whether the learned topics
generated from our CRL are consistent with these
cluster labels, Table 4 shows some selected top-
ics (characterized by the top four key words) from
each cluster. We can find that the class labels can
be found as key words of topics. The learned topics
can provide more detailed understanding of clus-
ters. For example, for cluster ‘oracle’, its first topic
indicates that ‘oracle’ might be a ‘db’ (database)
having operations like ‘view’, ‘connection’ and
‘access’. Apart from these observations, different
clusters are also found to have topics with similar
meaning. For example, the third topics from three
clusters are all about ‘file’.

5.4 Clustering performance with different
topic numbers

We investigate the impacts of T (i.e. the total num-
ber of topics) on the clustering performance. Figure
4 (a) and (b) show the values of NMI and ACC for
the three benchmark datasets with the topic num-
ber T chosen from {1, 5, 10, 15, 20, 25, 30}. For
the BioMedical Dataset, we can see that the NMI
and ACC values become stable when T exceeds
20. Therefore, in the experiment for this dataset,
we set the topic number T = 20. For the AgNews
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(a)

(b)

Figure 4: The clustering performance in terms of (a)
NMI and (b) ACC with different topic number T .

and StackOverflow datasets, the highest NMI and
ACC values are obtained at T = 5. Thus, we set
the number of topics to 5 for these two datasets.

6 Conclusion

This paper proposes a deep embedded clustering
method for short text clustering by developing a
cluster-level representation learning module (CRL)
to capture the overall structure of data and hence
improve the clustering performance. Our model
comprises three main parts: the instance-level en-
coding, the cluster selection, and CRL. To show
the performance of our model, we utilize three
benchmark datasets. The clustering performance
has not only been quantitatively evaluated by ACC
and NMI values but are also qualitatively assessed
by case studies and visualization. The comparison
of different cluster-level representation strategies
shows the effectiveness of our CRL. The proposed

model is expected to be generalizable to meet vari-
ous text clustering challenges, not only limited to
short texts. In the future, we will extend our model
to capture dynamics changes of cluster centers that
might evolve over time, where dynamic ETM learn-
ing smooth trajectories of topic embeddings can
be considered. Another future research direction
is to adopt non-parametric Bayesian approaches
(e.g., Dirichlet process mixture model) to improve
our clustering model so that the exact number of
clusters does not need to be predefined.
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Abstract

Knowledge Graph Embedding (KGE) has been
proposed and successfully utilized for knowl-
edge Graph Completion (KGC). But classic
KGE paradigm often fail in unseen relation
representations. Previous studies mainly uti-
lize the textual descriptions of relations and its
neighbor relations to represent unseen relations.
In fact, the semantics of a relation can be ex-
pressed by three kinds of graphs: factual graph,
ontology graph, textual description graph, and
they can complement each other. A more com-
mon scenario in the real world is that seen and
unseen relations appear at the same time. In
this setting, the training set (only seen relations)
and testing set (both seen and unseen relations)
own different distributions. And the train-test
inconsistency problem will make KGE meth-
ods easily overfit on seen relations and under-
performance on unseen relations. In this paper,
we propose decoupling mixture-of-graph ex-
perts (DMoG) for unseen relations learning,
which could represent the unseen relations in
the factual graph by fusing ontology and tex-
tual graphs, and decouple fusing space and rea-
soning space to alleviate overfitting for seen
relations. The experiments on two unseen-only
public datasets and a mixture dataset verify the
effectiveness of the proposed method, which
improves the state-of-the-art methods by 6.84%
in Hits@10 on average.

1 Introduction

Knowledge Graphs (KGs) such as Freebase (Bol-
lacker et al., 2008), DBpedia (Lehmann et al., 2015)
and YAGO (Mahdisoltani et al., 2014) contain large
amounts of entities, relations and facts, which can
be used to support many NLP tasks. Knowledge-
dependent tasks rely heavily on the coverage of
KGs. And the incompleteness of those KGs is an
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Figure 1: The semantics of a relation in a KG is ex-
pressed by three kinds of graphs: factual graph, ontol-
ogy graph and textual graph. And the knowledge graph
completion involving unseen relations in factual graph,
which struggle in previous KGE methods, could be alle-
viated by utilizing their ontology and textual graphs.

urgent issue for its widespread utilization (Hogan
et al., 2021). Therefore, knowledge graph embed-
ding (KGE) (Arora, 2020; Ji et al., 2021) methods
have been proposed and successfully applied to
knowledge graph completion (KGC), which seek
out potential facts inside KGs.

In fact, most knowledge involves constantly
emerging new entities and relations. And tradi-
tional KGE paradigm makes hard to deal with
unseen entities and relations. For example, as il-
lustrated in Figure 1 top, the model was trained
on seen triples dataset, but required to answer the
open query “(Nernst, academicAdvisor, ?)”. Little
research try to learning unseen relations represen-
tation mainly by utilizing textual description and
neighboring seen relations (Qin et al., 2020; Geng
et al., 2021; Zhang et al., 2020). And some datasets
have been proposed to evaluate models general-
izability for unseen relations. (Qin et al., 2020).
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ZSGAN-KG (Qin et al., 2020) leverages a genera-
tive adversarial network to generate representations
of unseen relations based on their textual descrip-
tions. And OntoZSL (Geng et al., 2021) designs
several functions to learn and fuse textual features,
and then adapt a text-aware encoder to represent
zero-shot entities and relations. GRL (Zhang et al.,
2020) designs a classifier to select a neighboring
seen relation to replace the unseen relation.

Although the above-mentioned methods can deal
with unseen relations to some extent, they still have
the following weaknesses: 1) Unstructured textual
descriptions are incomplete and can only cover part
of the semantics of relations. 2) It is often inaccu-
rate and even noisy to use neighbor relations to
represent an unseen relations. 3) Previous mod-
els are evaluated for unseen data only, but do not
consider mixture dataset of seen and unseen rela-
tions. Therefore in this paper, we propose three
questions for currently unseen relation methods: 1)
What resources are accurate and abundant for un-
seen relations? 2) How to efficiently use resources
to improve representations of unseen relations? 3)
What challenges arise with models evaluated in
mixture dataset of seen and unseen relations?

To answer above questions 1) and 2), we found
that ontology, as an accurate resource, is worth con-
sidering. In fact, as shown in Figure 1, the seman-
tics of a relation can be expressed by three different
forms: 1 factual graph includes concrete relations
between entities, 2 ontology graph describes high-
level definitions for relations, and 3 textual graph
contains textual descriptions of different relations.
The factual graph is wide and links large amounts
of entities by relations. Most KGE methods can
represent KG effectively, but can not represent un-
seen relations. The ontology contains a high-level
definition of entities and relations. In Figure 1,
for relation academicAdvisor, the ontology graph
means that scientist have academic advisors who
are students. The textual descriptions are rich and
contain different semantic information in natural
language. In Figure 1, they can be assembled into a
textual graph through words and sentences associa-
tion. The above three graphs complete each other.
We leverage ontology graph and textual graph to
support factual graph to find unseen relations infor-
mation.

To answer above the question 3), we found that
seen and unseen relations appear at the same time in
the real world. In this setting, the training set (only

seen relations) and testing set (both seen and un-
seen relations) own different distributions. And the
train-test inconsistency problem will make KGE
methods easily overfit on seen relations and under-
performan on unseen relations. Empirically, as the
model converges in the training process the perfor-
mance of seen relations gets higher, but the perfor-
mance of unseen relations decreases. To overcome
this issue, we are committed to making the learning
of relation representations and factual reasoning in
different spaces. That is, the relation representa-
tions by mixture-of-graphs is implemented on the
fusion space, and fact prediction with the learned
entities and relations is conducted on the reasoning
space.

In this paper, we propose decoupling mixture-of-
graph experts (DMoG) for unseen relations learn-
ing, which could represent the unseen relations of
the factual graph by fusing ontology and textual
graphs. And our method decouples fusion space
and reasoning space to alleviate the overfitting on
seen relations. Specifically, we collect different
ontology graphs from official graph-based data, or
we derive them from official dump data in other
formats. To achieve the interactive information
between seen and unseen relations, we leverage dif-
ferent GNNs to encode ontology and textual graphs.
And we design different expert modules and mix-
ture mechanism to fuse different graph information.
Morevoer, we propose a transpose linear mapping
to separate fusion space and reasoning space and
alleviate overfitting.

We conducted extensive experiments on multiple
benchmarks from public KGs such DBpedia and
Wikidata. The proposed unseen relations learning
method improves the state-of-the-art method by
3.68% in MRR and 6.15% in Hits@10 on average.

In short, our main contributions are as follows:

• We found that relations are expressed by fac-
tual graph, ontology graph and textual graph.
Based on these observations, we propose
mixture-of-graph (MoG) experts for unseen
relations learning, which can represent unseen
relations accurately and richly.

• We propose a decoupling strategy that allevi-
ates the overfitting on seen relations during
training. Trained KGE models effectively rep-
resent seen relations and maintain unseen re-
lations performance.

• We implement our method with some main-
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stream KGE methods. And the experimen-
tal results show that our method significantly
improves the performance on the seen and
unseen relations.

2 Related Work

2.1 Knowledge Graph Embedding

Recently, massive work focused on translation-
based methods for knowledge graph comple-
tion (Zhang et al., 2021). The key issue of knowl-
edge graph embedding is to learn low dimensional
distributed embedding of entities and relations (Ji
et al., 2021). The current KGE models can gener-
ally be categorized into translation-based models
and similarity-based models. For KGE models:
the pioneering model TransE (Bordes et al., 2013)
embeds entities and relations as d-dimension vec-
tors in same space, and makes vectors follow the
translational principle h + r = t. The subsequent
work of TransE usually modifies the translational
principle in different forms of relationship-specific
spaces. And others translation-based models in-
cluding TransR (Lin et al., 2015), TransD (Ji et al.,
2015), TransAt (Qian et al., 2018) and RotatE (Sun
et al., 2019) have been improved from the per-
spective of how entities can be better represented
and translated. As for the similarity-based models,
ComplEx (Trouillon et al., 2016) migrates Dist-
Mult in a complex space and offers comparable
performance. However, previous embedding meth-
ods struggle in knowledge completion involving
unseen relations.

2.2 Zero-shot Learning for KGC

Zero-shot learning describes tasks that given the
prior knowledge (seen classes) and then transfer
features from seen classes to unseen classes. Most
works focus on computer vision such as image clas-
sification. In the area of knowledge graph comple-
tion, more studies focus on zero-shot entity learn-
ing which is devoted to deal with unseen entities.
Some works leverage text and other auxiliary fea-
tures to learn the entity representation(Xie et al.,
2016; Shah et al., 2019). Some works design dif-
ferent models or strategies to aggregate neighbor
seen entities for unseen entities (Wang et al., 2019;
Albooyeh et al., 2020). Currently, inductive rea-
soning(Teru et al., 2020) completely disregards the
symbol of entities and it means that all entities can
be unseen entities. While few works consider zero-
shot relation learning and model unseen relations.

Few works take text-embedding spaces as semantic
spaces of relation to represent unseen relations (Qin
et al., 2020; Geng et al., 2021). And (Zhang et al.,
2020) design a classifier-based method, which se-
lect an appropriate seen relation to replace the un-
seen relation. Our work focuses on unseen rela-
tions in knowledge graph completion and proposes
a method that incorporates ontology graph and tex-
tual description to leaning the representations of
unseen relations.

2.3 Ontology and Textual Information for
KGE

The ontology is the definition and meta-information
of KG, it is a core part of KG construction (Stevens
et al., 2000). The massive KG relation facts are
subject to frequent conflicts in the absence of on-
tological boundaries (Pasternack and Roth, 2013).
A few studies focus on embedding techniques of
cross-domain ontology and encode ontology from
different perspectives (Chen et al., 2018; Gutiérrez-
Basulto and Schockaert, 2018). Currently, some
studies try to adapt ontology to enhance the repre-
sentation of knowledge base. JOIE (Hao et al.,
2019) employs both cross-view and intra-view
modeling that learn on multiple facets of the knowl-
edge base. For textual information, (Yao et al.,
2019) propose to use pre-trained language models
for knowledge graph completion. However, there
are significant differences in the ontology of the
knowledge base and knowledge graph. And some
popular knowledge graphs do not distinguish be-
tween KB and KG (Ehrlinger and Wöß, 2016). Our
work focuses on learning ontology representation
for KGE involving unseen relations.

3 Knowledge Graph Embedding Models
for KGC

KGC aims at scoring a triple (h, r, t) from KG
G = (R, E), where r ∈ R is relation and h, t ∈ E
are entities. Traditional KGE models learn embed-
ding matrix to translate head entity h to tail entity t
through relation r. And different models have been
proposed by mainly changing translating strategies.
For example, TransE focuses on adding head entity
and relation, which should be close to the corre-
sponding tail entity with the scoring function by
minimizes the score of a triple as follows:

s(h, r, t) =∥ h + r− t ∥22 (1)
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Figure 2: Our method leverages different GNN to capture ontology graph and textual graph nodes information and
aggregate them by knowledge mixture of experts. By fusion ontology and textual features in fusion space (green),
DMoG pools the representation of the relation in predicting a triplet fact in reasoning space (blue).

where h, r, t ∈ Rd, and d is dimension of embed-
ding.

KGE models use the hinge loss function to effec-
tively minimize the score. The loss function for a
minibatch of labeled triples is defined as follows:

L(θ) =
∑

(h,r,t)∈Gb
[γ + f(h′, r, t′)− f(h, r, t)]+

(2)

where γ is a fixed margin, (h′, r, t′) is the negative
fact that is commonly constructed by randomly
replacing the head or tail entities from the true fact
(h, r, t).

For evaluation, KGC is a link prediction task
that aims to predict the missing h or t for a triple
(h, r, t). Given the query (h, r, ?), search the en-
tity t that gets the minimum score with scoring
function.

However, the embeddings (e.g., vectors) of all
entities and relations must be initialized at the be-
ginning for previous KGE models. If some rela-
tions r miss in training but appear in testing, they
cannot be learned at all by the model. Therefore,
in order to represent the unseen relations and con-
duct zero-shot relational learning, we consider to
leverage multi-aspects information.

4 Decoupling Mixture-of-Graphs Experts

This section describes in detail our proposed ap-
proach. The framework is shown in Figure 2. Our
method directly improves the effectiveness of pre-
vious KGE models for unseen relations by making
rich and accurate their representations.

4.1 Framework

Our method mainly deals with three types of
graphs: factual graph, ontology graph and textual
graph. Factual graph is knowledge graph, follow-
ing as the previous definition. Ontology is the back-
bone of KGs, which provide meta-descriptions to
guide the knowledge graph construction and com-
pletion. Ontology is describe as directed graph
Go = (Ro, Eo), which uses meta-relations to as-
sociate ontology nodes (concepts and properties)
(ho, ro, to). And the relations R and entities E
of factual graph all find their own type in ontol-
ogy. And relations have a unique mapping between
the edges of factual graph and the nodes of on-
tology graph. Textual graph is undirected graph
Gt = (Rt, Et), the nodes are textual descriptions
of concept and property and the edge is word em-
bedding similarity between two nodes (ht, rt, tt),
and 0 < rt < 1.

4.2 Graph Construction

Ontology is stored in triples (head, relation, tail),
we take head and tail as node (indicates concept
(type of entity) and property (type of relation) of
factual graph) and relation (indicate meta-relations
among concepts and properties) as edge. Based on
the official released ontology file or the dump data,
we can directly construct or build ontology graph
by simple data filtering and format conversion.

For textual descriptions, we generate textual
graph from textual descriptions or full names of
concepts and properties. We want to find them
associated as below:
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At =

{
d(xi, xj), if d(xi, xj) > ε

0, otherwise

At is adjacency matrix of textual graph Gt, d(·, ·)
describes the cosine similarity function, ε is a
threshold for connection between nodes. xi is the
word embedding of each node. Following previous
work (Qin et al., 2020), Glove (Pennington et al.,
2014) has higher performance than the pre-trained
language model, and we use Glove to initialize
word embeddings. The representation of a sentence
is obtained by averaging its word embeddings.

4.3 Graph Encoder

The ontology can be represented as a directed at-
tribute graph. Identically, the text descriptions of
relations can be represented as an undirected graph.
Our goal is to obtain the representation of unseen
relations based on other seen nodes (concepts, prop-
erties and textual descriptions) in different graphs.
Therefore, we encode ontology and textual graphs
by graph neural network (GNN).

In the textual graph Gt, the weight wij of each
edge is the similarity between nodes. We con-
sider the commonly used graph attention network
(Veličković et al., 2017), but the attention value is
replaced by edge weight w. The process as follow-
ing:

h(l+1)
s,i = σ(

∑

j∈Ni
wijWl

sh
l
s,j + Wl

0hs,i) (3)

where h(l+1)
s,i ∈ Rd. The σ is sigmoid activation

function. Wl
s is GAT weight. Ni denotes neigh-

bor nodes of i. And the h0
s for each node come

from pretrained word embedding. To overcome the
over-smooth problem of node representations, we
add self-loop encoding for nodes. Wl

0 is self-loop
weight.

Similarly, ontology graph is directed graph, and
each edge has its own type. We are inspired by
RGCN (Schlichtkrull et al., 2018), a GNN model
for relational (directed and labeled) multi-graph.
To obtain the representations of concepts and prop-
erties, we use RGCN to get the representation of on-
tology nodes by aggregating neighborhoods nodes
through different meta-relations, as follow:

h0
o,i = eoEo (4)

h(l+1)
o,i = ReLU(

∑

r∈R≀

∑

j∈Nr
i

1

ci,r
W(l)
r h(l)

o,j

+W(l)
0 h(l)

o,i)

(5)

h(l+1)
o,i = Norm_Layer(h(l+1)

o,i ) (6)

where eo ∈ Eo is node in ontology graph. h(l+1)
o,i ∈

Rd is hidden state of ontology node ho,i in the l-th
layer, and d is dimension of layer’s representation.
N r
i denotes the set of neighbor indices of node i

under meta-relation ro ∈ Ro. W(l)
r is relation pa-

rameters of meta-relation r which weight for node
i neighboring node in l-th layer. W(l)

0 is self-loop
weight for encoding self-node features. ci,r is a
normalization constant that can either be learned
or chosen in advance. ReLU is the activation func-
tion. We also use layer normalization to speed the
training.

4.4 Decoupling Mixture of Graph Experts

We obtain the effective representation of the re-
lation r from ontology space and textual space
for the triple involving unseen relations and alle-
viate the overfitting on seen relations. For each
factual triple (h, r, t), we can find ontology rep-
resentation (ho, ro, to) and textual representation
(ht, rt, tt) from their space. We leverage adding op-
eration to fuse two graphs information in another
space, as show in:

xh = hLoWp + hLsWp (7)

xr = rLoWp + rLsWp (8)

xt = tLoWp + tLsWp (9)

where Wp is transformation matrix, it transforms
the multi representations into the fusion-aware
space.

Based on the previous representations, we de-
sign aggregating strategies with mixture-of-graph
experts to represent relations. Recently, the mixture
of experts (Jordan and Jacobs, 1994; Shazeer et al.,
2017; Fedus et al., 2021) has been widely used to
capture features by different experts’ views, and it
can efficiently merge different features. For differ-
ent knowledge roles (head, relation, tail), MoG can
capture each role representation through ontology
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and textual space. We define different expert net-
works Eh, Er, Et for the head, relation, tail, and a
gating network M , proceeding as follows:

pi =M(xi) (10)

r =
∑

i∈(h,r,t)
piEi(xi) (11)

The expert networks and gating network are single-
layer MLPs, and same dimension between input
and output for expert networks. analyze the three
roles individually and then vote to obtain the over-
all result.

After those processes, the representation r con-
tain multiple information, but it still need to be put
in fusion space Vf . We operate a inverse transfor-
mation to pull r back to reasoning space Vr from
fusion space Vf , as follows:

r = rWT
p (12)

where WT
p transpose of a linear map, and we define

WT
p as square matrix to simplify calculations. It

can be learned to satisfy two space bilinear forms,
as follows:

Wp = min
Wp:Vr→Vf

WT
p :Vf→Vr

N∑

i

L(hi, ri, ti) (13)

where N is seen dataset.
Following previous KGE models, we train our

model with the margin-based ranking loss, and use
a negative sampling loss function for effectively
optimizing ranking loss :

L =− logσ(γ − f(hWE , r, tWE))

−
n∑

i=1

1

k
logσ(f(h′iW

E , r, t′iW
E)− γ)

(14)

where WE indicates entity embedding, γ is a
fixed margin value, σ is the sigmoid function, and
(h′i, r, t

′
i) is the corresponding negative triple. The

loss function can sample multiple negative triples
for each positive triple at one minibatch.

5 Experiments

We conduct extensive experiments with KGC task
on several public datasets, and mainly evaluate the

performance of the proposed framework on zero-
shot relational learning. We also verify the pro-
posed decoupling strategy to prevent overfitting on
seen relations. To directly demonstrate the effec-
tiveness of our method, we show a visualization of
seen and unseen relations.

5.1 Dataset
We select datasets from four public knowledge
graphs, DBpedia, NELL, and Wikidata, to evaluate
models on unseen relation learning. The current
benchmark datasets contain only factual graph and
not ontology graph. Therefore, we extract ontology
from their origin websites12. Generally, we col-
lect series ontology: DBpedia have human-created
high-quality ontology, their have 17,663 triples,
7,966 nodes and 8 meta-relations. The ontology of
NELL has 1,494 nodes, 6,907 triples and 14 meta-
relations (e.g. antisymmetric, mutexpredicates). It
should be noted that Wikidata has no official on-
tology, we collect 20,899 triples including 8,907
nodes and 604 meta-relations (e.g. instance of
(P31), see also (P1659)) as their ontology from
the released dump data 3.

Current zero-shot relational benchmarks focus
entirely on inference on unseen relations. However,
the seen and unseen relations should be be con-
sidered together. It requires that the model must
be effective for seen relations and maintain un-
seen relation performance. Therefore, we propose
DB100K-ZS from DB100K, which contains 383
seen relations and 77 unseen relations. We move
77 relations from training set to testing set based
on DB100K. We select relations by frequency of
appearing k, k > 60 and k < 300. Finally, we
get training triples 540,570, seen validation triples
45,357, and seen testing triples 45,282 and unseen
testing triples 13,420.

5.2 Evaluation Metrics
Triples in training data are utilized to learn KGE
model, while those of validation and test dataset
are respectively used to tune (hyper-parameters se-
lection) and evaluate the model. The most typical
KGC task is link prediction which aims to predict
the missing h or t for a triple (h, r, t). We follow

1https://www.dbpedia.org/resources/
ontology/

2http://rtw.ml.cmu.edu/resources/
results/08m/NELL.08m.1115.ontology.csv.
gz

3https://www.wikidata.org/wiki/
Wikidata:Database_download
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Model NELL-ZS Wiki-ZS DB100K-ZS
UNSEEN UNSEEN UNSEEN SEEN

MRR H@10 MRR H@10 MRR H@10 MRR H@10
DistMult 23.50 32.60 18.90 23.60 4.61 9.12 9.23 20.17
TransE 9.70 20.30 5.30 11.90 2.24 7.41 14.87 40.14

GRL(TransE) (Zhang et al., 2020) - - - - 5.15 13.12 15.12 41.51
ZSGANKG(DistMult) (Qin et al., 2020) 25.30 37.10 20.80 29.40 - - - -
ZSGANKG(TransE) (Qin et al., 2020) 24.00 37.60 18.50 26.10 - - - -
OntoZSL(DistMult) (Geng et al., 2021) 25.60 38.50 21.10 28.90 - - - -
OntoZSL(TransE) (Geng et al., 2021) 25.00 39.90 18.40 26.50 - - - -

DMoG(DistMult) 25.81 38.41 19.12 28.86 10.33 23.91 14.51 35.18
DMoG(TransE) 30.49 49.11 23.18 31.13 23.31 40.79 27.37 52.07

Table 1: Zero-shot relational learning results on NELL-ZS, Wiki-ZS and DB100K-ZS. SEEN is that relation of
triples exist in training. UNSEEN is that relation of triples only in testing. Bold numbers denote the best results.

the setting (Sun et al., 2019) and create the query
(h, r, ?), and then find the ranking entities assigned
by our proposed method and other KGE methods.
We also apply bi-direction prediction that evaluate
query (h, r, ?) and (?, r, t) for a test triple. The
mean reciprocal rank (MRR) is computed as:

1

2NTest

∑

(h,r,t)∈Test
(

1

MR(h,r,?)
+

1

MR(?,r,t)
)

(15)

5.3 Implementation Details
In our experiments, we adopt the following KGE
methods because of their effectiveness on link pre-
dictions. Our codes are based on (Sun et al., 2019)
and adopt the PyTorch (Paszke et al., 2017) frame-
work. For graph encoder, we used the implemen-
tation in the deep graph library (DGL). The initial
word embedding is from GloVe (Pennington et al.,
2014) and we set a similar threshold ε to 0.85. The
entity embedding size is set to 100 for all KGE
models. The GNN hidden size is set to 100, the
number of layers is set to 2, and use self-loop for
each node. We selected the hyperparameters cor-
responding to learning rate and batch size from
{0.0001, 0.0005, 0.001} and {128, 256, 512, 1024}.
And we use Adam to optimize all the parameters.

5.4 Results
The unseen relations denote that relation of the
triples are in the test set, but they do not appear in
the training set. Previous KGE models are trans-
ductive inference methods, and cannot deal with
those relations. Table 1 shows the experimental
results on NELL-ZS, WiKi-ZS and DB100K-ZS.
The testing set of NELL-ZS and WiKi-ZS are all

unseen relations (Qin et al., 2020), DB100K-ZS
mix seen and unseen relations. Apparently, the
newly constructed DB100K-ZS is more suitable
for real-world applications.

To verify our method for unseen relation learn-
ing, we chose the latest proposed models for com-
parison. The GRL (Zhang et al., 2020) is the
classifier-based method and hard to solve massive
unseen relation. ZSGAN (Qin et al., 2020) and
OntoZSL (Geng et al., 2021) always generate a
representation for relation, therefore it cannot to
keep traditional KGE methods performance in the
seen dataset, and they do not work in DB100K-ZS.

From Table 1, our method performs better than
other comparative methods in all evaluation met-
rics and on all three datasets. Our method in-
creases MMR and Hits@10 by 3.86% and 6.15%
for the previous state-of-the-art zero-shot method
on NELL-ZS and Wiki-ZS. And our method can
deal with seen and unseen relations at same time.
For DB100K-ZS, DMoG not only improves the
performance of unseen relations but goes beyond
the base model on seen relations. We believe that
the proposed model is more suitable to real world
applications. In fact, Graph encoder effectively
represents nodes from ontology graph and textual
graph. And DMoG fully mixes different roles to
extract the representation of unseen relations. The
decoupling alleviates overfitting in training. The
above three reasons are the key factors for our ap-
proach to achieve better results. In addition, our
method could apply to any conteined in the ontol-
ogy.
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Figure 3: Hist@10 for seen (a), unseen (b) and all (c) relations performance in different training step. The red start
denote the best performance of model in seen relations, and it still marks the same step in seen and all relations
performance. In each figure, the single denote directly adding two representations. The double denote proposed
decoupling strategy methods to separate the representations in different spaces. The concat denote concatenated two
representations.

5.5 Alleviate Overfitting Experiment

In our setting, model trained by seen relations
triples and can not get any information of unseen re-
lations during training. And, we take early stopping
through seen relations triples performance. The red
star marks best checkpoint in seen performance
but not all performance. As seen relations perfor-
mance increases the unseen relations performance
become lower, as show in Figure 3 (a, b). The
reason is that model fit seen relations data and far
away unseen relations latent representation. There-
fore, we propose methods, which decouple fuse
space and reasoning space, to alleviate the overfit-
ting on seen relations. As show in Figure 3 (b), our
method could make unseen performance decline
more slowly compared to single space methods.
While, our method harms seen performance little,
due to its excellent unseen performance, it still has
the best performance on whole seen+unseen per-
formance, as show in Figure 3 (c).

unseen
seen

(a) TransE

unseen
seen

(b) DMoG(TransE)

Figure 4: Visualization for relation representations of
DB100K-ZS testing set via t-SNE.

Model DB100K-ZS
UNSEEN SEEN

MRR H@10 MRR H@10
TransE 2.24 7.41 14.87 40.14

DMoG-T(TransE) 15.92 30.10 20.17 44.16
DMoG-O(TransE) 21.12 37.13 25.96 51.10

DMoG(TransE) 23.31 40.79 27.37 52.07

Table 2: The table shows the ablation experiment for
using different information. “-T” denote only textual
graph. “-O” denote only ontology graph.

5.6 Visualization of Relation Representations
In Figure 4, we show the visualization of relation
representations via t-SNE. As show in Figure 4 (a),
TransE can not represent unseen relations effec-
tively, the unseen relation embeddings crowded in
a cluster, which separate away seen relations space.
However, our method can fully represent seen and
unseen relations, the relation representations uni-
formly distributed in the same space, as show in
Figure 4 (b).

5.7 Ablation Experiment
In order to further evaluate the effect of each mod-
ule of the model, we design an ablation experiment
for different graphs. As shown in Table 2, we can
see that both ontology and textual graphs are help-
ful to KGC. DMoG enhances relations representa-
tion quality by fusing ontology and textual graph
compared to single information. Further analysis
showed that ontology graph is better than textual
graph, formal language describe knowledge more
accurately than natural language.
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6 Conclusion

Our paper focuses on unseen relation representa-
tions of knowledge graph. We propose to utilize
three different kinds of graphs to obtain represen-
tations of relation. And decoupling strategy allevi-
ates the overfitting in training process. Experimen-
tal results demonstrate that our method significantly
outperforms the existing state-of-the-art method on
unseen relation learning.
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Abstract

Distantly supervised relation extraction aims
to extract relational facts from texts but suf-
fers from noisy instances. Existing methods
usually select reliable sentences that rely on
potential noisy labels, resulting in wrongly se-
lecting many noisy training instances or un-
derutilizing a large amount of valuable train-
ing data. This paper proposes a sentence-level
DSRE method beyond typical instance selec-
tion approaches by preventing samples from
falling into the wrong classification space on
the feature space. Specifically, a theorem for
denoising and the corresponding implementa-
tion, named Consensus Enhanced Training Ap-
proach (CETA), are proposed in this paper. By
training the model with CETA, samples of dif-
ferent classes are separated, and samples of the
same class are closely clustered in the feature
space. Thus the model can easily establish the
robust classification boundary to prevent noisy
labels from biasing wrongly labeled samples
into the wrong classification space. This pro-
cess is achieved by enhancing the classification
consensus between two discrepant classifiers
and does not depend on any potential noisy la-
bels, thus avoiding the above two limitations.
Extensive experiments on widely-used bench-
marks have demonstrated that CETA signifi-
cantly outperforms the previous methods and
achieves new state-of-the-art results.

1 Introduction

Relation Extraction (RE), which aims to identify
the relation between two specific entities in the
text, is a fundamental task in natural language pro-
cessing. Most supervised RE methods demand
large-scale labeled training data, which is diffi-
cult to acquire manually. To alleviate the problem,
Distant Supervision (DS) is proposed by (Mintz
et al., 2009) to automatically generate the labeled

*The first two authors contributed equally.
†Corresponding authors.

< 9:;<; =>?@, ?>AB, CD;AEFG >

Distant	Supervision

Knowledge	Base Text	Corpus

✓ S1: 9:;<; =>?@was	born	in	America

✗ S2:	Steven	Jobs	found	Apple	in	America

✗ S3:	Steven	Jobs	died	in	America

Bag

Figure 1: An example of annotating text corpus by dis-
tant supervision. S2 and S3 do not express the relation
born but still considered valid instances.

text corpus by aligning the plain texts and knowl-
edge bases. For example, as shown in Figure 1,
[Steve jobs, born,America] is a relational triple
in the knowledge base, DS annotates all sentences
that contain the entity pair (Steve jobs,America)
as valid instances for relation born. However, DS
inevitably introduces noisy labels when the sen-
tences do not express the labeled relation (e.g.,
cases S2 and S3 in Figure 1). Hence, investigat-
ing a denoising method against noisy labels has
become an urgent demand for Distantly Supervised
Relation Extraction (DSRE), which aims to train
the unbiased RE model under DS-built dataset.

To alleviate the noise issue in DSRE, existing
studies can be broadly classified into bag-level
methods and sentence-level methods. The bag-
level methods (Lin et al., 2016; Hu et al., 2019; Alt
et al., 2019; Yuan et al., 2019) typically relax the
relation label for each sentence to a bag, and then
train the model by employing reliable bag-level
representations. However, for bag-level methods,
Feng et al. (2018); Jia et al. (2019) empirically
verify that they cannot map each sentence to an
explicit sentence label, resulting in inefficiency for
sentence-level relation classification. From this
perspective, several studies focus on sentence-level
DSRE, which aims to select the reliable sentences
for training and regard the sentence as a basic test-
ing unit. Existing methods (Feng et al., 2018; Qin
et al., 2018b; Han et al., 2018b; Zeng et al., 2018)
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usually apply reinforcement learning or adversar-
ial learning to train sentence selector by receiving
feedback from the manually crafted reward func-
tion, or train the model to start with the reliable
sentences selected by frequent patterns (Jia et al.,
2019). Finally, these methods select trustable sen-
tences whose predicted labels are consistent with
DS-annotated labels. However, these methods may
be trapped by some common noisy instances whose
model-predicted labels and DS-annotated labels
are both wrong (Li et al., 2020b). Besides, the
patterns of many correct sentences do not match
the frequent patterns, resulting in much valuable
information being discarded, limiting the capability
of the trained model.

This work proposes a sentence-level DSRE
method beyond typical instance selection ap-
proaches by preventing samples from falling into
the wrong classification space on the feature space.
Specifically, a theorem for denoising and the cor-
responding implementation, named Consensus En-
hanced Training Approach (CETA), are proposed
in this paper. By training the model with CETA,
samples of different classes are separated, and sam-
ples of the same class are closely clustered in the
feature space. As a result, the robust classification
boundary can be easily established to prevent noisy
labels from biasing samples into the wrong classi-
fication space. Compared with existing sentence-
level DSRE methods, CETA performs denoising by
enhancing the classification consensus between two
discrepant classifiers within the model and does not
depend on any potential noisy labels. Therefore,
when dealing with noisy labels, CETA does not get
trapped by common noisy instances. In addition,
CETA enables the model to be trained on all data,
and the effect of noisy labels is eliminated in the
feature space instead of directly filtering sentences
as in previous methods.

Contributions of this paper can be summarized
as follows:

• This paper proposes and proves a theorem for de-
noising that enhancing the prediction consistency
between two different classifiers in a model can
reduce the impact of noisy instances.

• With the support of the proposed theorem, our
proposed CETA facilitates the model to separate
the samples of the different classes and cluster
the samples of the same class. As a result, a
robust classification boundary can be established
to reduce the impact of noisy labels.

• Evaluations on widely-used datasets of DSRE
demonstrate that CETA significantly outperforms
the previous state-of-the-art models.

2 Related Work

We discuss two lines of related work as follows.
DSRE. DS is an effective approach to annotate
texts, but suffers from the noisy labels. Most ex-
isting studies of DSRE are bag-level DSRE meth-
ods, which apply multi-instance learning to handle
noisy sentences in each bag and train models by
exploiting the constructed reliable bag-level repre-
sentations. These methods usually utilize attention
mechanisms to assign small weights to the poten-
tial noisy sentences in the bag (Lin et al., 2016;
Han et al., 2018c; Alt et al., 2019; Hu et al., 2019;
Yuan et al., 2019; Li et al., 2020a), apply adversar-
ial training or reinforcement learning to remove the
noisy sentences from the bag. (Zeng et al., 2015;
Qin et al., 2018b; Han et al., 2018b; Shang et al.,
2020) However, the studies (Feng et al., 2018; Jia
et al., 2019) indicate that the bag-level DSRE meth-
ods are ineffective for sentence-level prediction.

This paper focus on sentence-level relation ex-
traction. Some recent studies also regard the sen-
tence as a basic training unit and perform denoising
by applying reinforcement learning to select reli-
able instances based on the reward of noisy labels
(Feng et al., 2018), building initial reliable sen-
tences based on several manually defined frequent
relation patterns (Jia et al., 2019), assigning the
complementary labels cooperating with the neg-
ative training to filter noisy instances (Ma et al.,
2021), and utilizing meta learning to exploit the
extra clean reference data (Li et al., 2020b). Differ-
ent from the previous works, our proposed method
does not rely on the noisy labels, frequent relation
patterns, and handles the noisy instances in the fea-
ture space without any extra clean reference data.
Supervised learning with noisy labels. In both
computer vision and natural language processing,
many methods have been proposed to train models
with noisy labels and these methods can be broadly
classified into: robust regularization (Krogh and
Hertz, 1991; Müller et al., 2019; Qu et al., 2021;
Zhou and Chen, 2021), robust loss function (Zhang
and Sabuncu, 2018; Wang et al., 2019a), label re-
weighting (Chang et al., 2017; Wang et al., 2019b),
noise filtering adaption layers (Goldberger and Ben-
Reuven, 2016) and sample selection (Han et al.,
2018a; Yu et al., 2019; Wei et al., 2020). In particu-
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lar, The methods (Zhou and Chen, 2021; Wei et al.,
2020) train two or more models simultaneously
and regularize their predictions to be similar, which
can be considered as consensus enhancement, but
are computationally expensive and affected by the
number of trained models. Different from these
methods, our method achieves denoising by en-
hancing the consensus of predictions between two
discrepant classifiers within a model, which is com-
putationally friendly and guaranteed by a proven
theorem.

3 Methodology

In this section, we start with the learning setup
and present the objective function in conjunction
with our proposed theorem: the generalization er-
ror bound for DSRE in subsection 3.1. Then, in
subsection 3.2, we will introduce the details of our
proposed CETA, which aims to implement the pro-
posed theorem for denoising.

3.1 Generalization Error Bound for DSRE

Formally, the DS-built training set can be denoted
asDcs = {(xi, ycsi )}mi=1 ∈ (X×Y), where xi ∈ X
and ycsi ∈ Y . X represents the input instances. Y
indicates the class labels. ycs indicates that the
label may be a clean label yc or a noisy label ys.
The relation extraction model based on neural net-
works is usually composed of a sentence encoder
and a classifier. The sentence encoder g : X → Z
maps input instances X into feature space Z . The
classifier f : Z → Y establishes the classification
boundary in the feature space and maps the features
of the instances into labels Y . In order to evaluate
the performance of the model, we denote the clean
test set as Dc = {(xi, yci )}ni=1 ∈ (X × Y), where
xi ∈ X and yci ∈ Y . We use ϵc(f) to denote the
expected error of the model. The goal of DSRE is
to reduce ϵc(f) under the DS-built training set.

The supervised methods usually reduce the ex-
pected error based on the structural risk minimiza-
tion whose basic theorem requires the training set
and the test set to come from the same distribution.
which is unsuitable for DSRE since the DS-built
training set cannot be as clean as the test data. In
this paper, the basic theorem is extended to DSRE,
a generalization error bound to measure the ex-
pected error is theoretically proposed as follows1.
Theorem 1. Let g be a fixed representation function
from X to Z , F be the hypothesis class of Vapink

1The detailed proof can be found in Appendix A.

Chervonenkis d. If a random sample of size m Zcs
is generated by applying g to a Dcs - i.i.d. for
any σ > 0, with probability 1 − σ, we have the
following uniform generalization error bound for
any classification functions f ∈ F ,

ϵc(f) ≤ ϵ̂cs(f) + 1

2
dF△F (Zcs) + λ, (1)

where

ϵ̂cs(f) =
1

m

m∑

i=1

∣∣∣f̂(zcsi )− ycsi
∣∣∣

dF∆F (Zcs)=2 sup
f ′ ,f ′′∈F

∣∣∣Pr
[
f

′
(zcs)̸=f

′′
(zcs)

]∣∣∣

f∗ = argminf∈F ϵ
c(f) + ϵcs(f)

λ=ϵcs(f∗)+ϵc(f∗)+

√
4

m

(
d log

2em

d
+log

4

δ

)

Eq. (1) demonstrates that the expected error ϵc(f)
can be bounded by using three terms. The corre-
sponding explanations are as follows.

1. ϵ̂cs(f) is the empirical error of the DS-built
training data Dcs.

2. dF△F (Zcs) is a key novelty of this theorem
and can be viewed as the regularization term
that represents the upper bound (sup) of the
probability (Pr) that two classifiers f

′
and f

′′

category the feature zcs into different classes.

3. λ indicates the shared error of the ideal joint
hypothesis (f∗). λ is a constant and can be
ignored during training stage.

Based on our proposed Theorem 1, a new denoising
method is pointed out, that is, the expected error
can be reduced by reducing the generalization error
bound. In particular, if dF△F (Zcs) is minimized,
the feature zcs will be classified into the same class
by f

′
and f

′′
with a higher probability, which is

equivalent to enhancing the consistency of model
predictions by two discrepant classifiers.

3.2 Consensus Enhanced Training Approach

CETA aims to reduce the expected error ϵc(f) by
minimizing dF△F (Zcs) and ϵ̂cs(f) in the gener-
alization error bound proposed in Theorem 1. We
introduce the architecture of CETA and the opti-
mization strategy of CETA in sequence.
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Figure 2: The left part is the architecture and optimization strategy of CETA. The right part is the corresponding
changes in the feature space when the optimization algorithm acts on different components. Lcce is the categorical
cross-entropy loss function defined in Eq. (2). Lwd is the divergence loss based on wasserstein distance defined in
Eq. (3). The symbol Θ indicates the component’s parameters of the model. The symbol ∇ denotes the component’s
gradient calculated by the corresponding loss. The consensus area refers to the area where two classifiers classify
the sample into the same class.

.

3.2.1 Architecture of CETA
As shown in Figure 2, the architecture of CETA
consists of two classifiers sharing an encoder.
Given the input instance x, the encoder g trans-
forms the x from the instance spaceX to the feature
space Z , the corresponding hidden feature vector
is denoted as: (z1, z2, . . . ze1 . . . ze2 . . . zL), where
ze1 and ze2 are the feature vectors corresponding to
the entities e1 and e2. We can obtain the instance
representation z = [ze1 ; ze2 ] for classification by
concatenating ze1 and ze2 . In particular, CETA
adds an auxiliary classifier, which is not only used
to reduce the empirical loss ϵ̂cs(f), but also aims
to use two classifiers to approximate f

′
and f

′′
in

dF△F (Zcs), and then combine the proposed opti-
mization strategy to reduce dF△F (Zcs).

3.2.2 Optimization Strategy of CETA
The optimization strategy of CETA can be broadly
divided into three parts. The first part aims to re-
duce the empirical loss ϵ̂cs(f). The second part
and the third part are combined to reduce the
dF△F (Zcs). The details are as follows.

Part 1. To reduce ϵ̂cs(f), we adopt the categori-
cal cross-etropy function to calculate the classifica-

tion loss Lcce of the noisy training set.

Lcce=−
1

M

M∑

i=1

K∑

k=1

I(yi=k)
[
log
(
p′ik
)
+log

(
p′′ik
)]

(2)
where M is the number of training instances, K is
the number of relation classes. I(yi = k) is an in-
dicator function, which returns 1 when yi = k, and
0 otherwise. The p′ik and p′′ik are two probabilities
that the instance i belongs to class k predicted by
two classifiers f ′ and f ′′, respectively. As shown
in Figure 2, we use Lcce to calculate the gradient
on each component of the model. Then we update
the parameters of each component to reduce the
empirical error ϵ̂cs(f). In feature space, reducing
ϵ̂cs(f) is equivalent to forcing the wrongly labeled
samples to move to the wrong classification space,
and the direction of the movement is indicated by
the red arrow in the right part of Figure 2.

Part 2. To reduce dF△F (Zcs), the goal of this
part is to increase the discrepancy between the two
classifiers, so as to approximate the dF△F (Zcs)
with two discrepant classifiers. Specifically, CETA
first adopts the wasserstein distance (Kantorovich,
2006) to capture the discrepancy Lwd between P ′
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and P ′′ for measuring the classification discrep-
ancy between two classifiers f ′ and f ′′. P ′ and
P ′′ are two probability distributions representing
the probabilities of the samples being divided into
different classes by f ′ and f ′′, respectively.

Lwd = argmin
γ∗∈Π[P ′ ,P ′′ ]

E(p′,p′′)∼γ∥p′ − p′′∥ (3)

P ′ = f ′(Zcs),P ′′ = f ′′(Zcs) (4)

where Π[P ′,P ′′] indicates the set of all jointed dis-
tributions whose marginals are P ′ and P ′′. Calcu-
lating Lwd can be regarded as finding the optimal
γ∗. γ∗ can transform P ′ into P ′′ with minimal
modification.

Then, CETA uses Lwd to calculate the gradient
∇f ′Lwd, ∇f ′′Lwd, and ∇gLwd of two classifiers
f ′, f ′′ and the sentence encoder g, respectively.

θf ′ = θf ′ +∇f ′Lwd (5)

θf ′′ = θf ′′ +∇f ′′Lwd (6)

Since the dF△F (Zcs) refers to the upper bound
of the probability that two classifiers divide the
sample into different classes. In order to approxi-
mate the upper bound of classification discrepancy
of dF△F (Zcs), we update the parameters θf ′ and
θf ′′ by executing Eq. (5) and Eq. (6). It can in-
crease the classification discrepancy between the
two classifiers. As shown in the right side of Figure
2, it can reduce the consensus area in the feature
space. The consensus area refers to the area where
two classifiers classify the sample into the same
class. The smaller the consensus area, the greater
the discrepancy between the classifiers. When the
discrepancy between the two classifiers reaches a
threshold value, the discrepancy between these two
classifiers is approximately equal to dF△F (Zcs).

Part 3. On the basis that the discrepancy be-
tween the two classifiers can well approximate
dF△F (Zcs), executing Eq. (7) can reduce the
discrepancy between the two classifiers, which is
equivalent to reducing dF△F (Zcs). As shown in
the right side of Figure 2, Eq. (7) is applied to the
sentence encoder g, which can change the distri-
bution of samples in the feature space. The sam-
ples encoded by g will enter the narrow consen-
sus area and be pulled away from each other, only
in this way the classification discrepancy between
two classifiers can be reduced. After three parts of
the optimization strategy, the samples of different
classes are separated in the feature space, and the

distance between clusters of different classes is en-
larged. So that the wrongly labeled samples cannot
be easily moved to the wrong classification space
and stay in the original correct classification space.

θg = θg −∇gLwd (7)

The complete training steps of CETA are summa-
rized in Algorithm 1. Besides, only sentence en-
coder g and the classifier f ′′ are adopted to predict
the relation type during the inference procedure.

Algorithm 1 CETA Algorithm
Input: training sets Dcs, β, learning rate η, sen-
tence encoder θg , full connected layers as classifier
θf ′ and θf ′′ , epoch T , iteration N
Output:θf ′ , θf ′′ , θg

1: for t = 1, 2, 3, ..., T do
2: Shuffle training set Dcs
3: for n = 1, 2, 3, ..., N do
4: Fetch mini-batch c̄s from Dcs
5: Calculate Lcce and Lwd on c̄s
6: Update θf ′ ← θf ′ −∇f ′Lcce
7: Update θf ′′ ← θf ′′ −∇f ′′Lcce
8: Update θg ← θg −∇gLcce
9: Update θf ′ ← θf ′ +∇f ′Lwd

10: Update θf ′′ ← θf ′′ +∇f ′′Lwd
11: Update θg ← θg − β∇gLwd
12: end for
13: end for

4 Experiments

The experiments in this work are divided into two
part. (1) The first part is the effectiveness study
on sentence-level evaluation for our method and
the compared methods. Many previous bag-level
DSRE methods adopt held-out evaluation, where
both training set and test sets are DS-built. How-
ever, the studies (Gao et al., 2021; Feng et al., 2018)
have demonstrated that the bias is inevitably in-
troduced into held-out evaluations since the DS-
build test set is noisy. To provide more accurate
and credible evaluations, this part of experiment
follows most sentence-level DSRE methods that
conduct sentence-level evaluations on benchmarks
with clean test sets. (2) The second part is the
ablation experiments, which adopts feature visu-
alization to better illustrate the behaviors of our
proposed CETA.
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Benchmarks NYT KBP
#Label num 24 6

Train Instances 371,461 151,091
Positive 110,518 38,922

Test Instances 2,164 4,168
Positive 323 1,075

Table 1: Statistics of benchmarks. "Positive" means
positive instances that are not labeled as "NA". "NA"
indicates that the sample does not belong to any of the
predefined relation labels.

4.1 Benchmarks
We evaluate our method on two widely-used DSRE
benchmarks: NYT and KBP, and the dataset statis-
tics are shown in Table 1.
NYT. This dataset is developed by Riedel et al.
(2010) aligning New York Times corpus with the
relation facts in Freebase. The origin training set
and test set are both DS-built. To make the evalua-
tion more precisely, we adopt the original training
set and a widely-used manually annotated test set
provided by Jia et al. (2019).
KBP. This dataset is constructed by Ling and Weld
(2012) aligning English Wikipedia corpus with the
relation facts in Freebase as training set. and the
test set is built by utilizing the manually-annotated
sentences from 2013 KBP (Ellis et al., 2012). How-
ever, some test relation types have no or only one
training instance. Besides, this test set only con-
tains 165 positive instances. To reduce the bias of
evaluation, we utilize the other refined version of
KBP proposed by Li et al. (2020b) to avoid the
above problems. Our adopted test set has the same
relation types with the training data, contains more
positive instances, and keep the same proportion of
positive instances as the training set.

4.2 Baseline Models
Our proposed CETA is a sentence-level DSRE
method. For the fairness of the comparison, we
compare with several strong DSRE methods. These
compared methods can be categorized as: bag-level
DSRE methods, sentence-level DSRE methods,
sentence-level RE methods without denoising.

• PCNN+ATT (Lin et al., 2016) A bag-level
DSRE method which employs the selective atten-
tion to alleviate noise.

• PCNN+RA_BAG_ATT (Ye and Ling, 2019) A
bag-level DSRE method which utilizes inter-bag

and intra-bag attentions to reduce the impact of
noisy instances.

• CNN+RL1 (Qin et al., 2018b) A bag-level DSRE
method which applies reinforcement learning to
generate the false-positive indicator to recognize
false positives, and redistribute the filtered data
into the negative examples.

• CNN+RL2 (Feng et al., 2018) A sentence-
level DSRE model which employs reinforcement
learning to jointly train a RE model for relation
classification and an instance selector for filtering
the potential noisy instances.

• PCNN+DSGAN (Qin et al., 2018a) A sentence-
level DSRE model which adopts adversarial
learning to train a generator to recognize true
positive instances, and then redistributes the re-
maining false positives to the negative set to ob-
tain a new cleaned dataset.

• ARNOR (Jia et al., 2019) A sentence-level
DSRE model which selects the reliable instances
based on the reward of attention score on the
selected patterns.

• SENT (Ma et al., 2021) A sentence-level DSRE
model which filters noisy instances and re-
labeling based on negative training. It is the
state-of-the-art method in sentence level.

• CNN (Zeng et al., 2014), PCNN (Zeng et al.,
2015), BiLSTM (Zhang et al., 2015) and BERT
(Devlin et al., 2019) are commonly-used models
for RE without denoising methods.

4.3 Implementation Details

Our proposed CETA is a model-agnostic sentence-
level DSRE method. We implement CETA using
BiLSTM, PCNN, and BERT as sentence encoder,
respectively2.

When implemented with BiLSTM, our adopted
word embedding are 50-dimensional Glove word
embedding published by Lin et al. (2016). Besides,
we utilize 50-dimension randomly initialized po-
sition and entity type embedding. The BiLSTM
is single layer with hidden size 256 and optimized
by Adam optimizer with the learning rate of 5e-
4. All the adopted word embedding, position and

2The code and training scripts will be released at
https://github.com/Ethan-RR/CETA
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Model NYT
Prec. Rec. F1

CNN∗ 35.75 64.54 46.01

PCNN∗ 36.06 64.86 46.35

BiLSTM∗ 35.52 67.41 46.53

BERT∗ 36.21 70.41 47.82

PCNN+ATT∗ 45.41 30.03 36.15

PCNN+RA_BAG_ATT∗ 56.76 50.60 53.50

CNN+RL1
∗ 39.41 61.61 48.07

CNN+RL2
∗ 40.23 63.78 49.34

BiLSTM+ARNOR∗ 65.23 56.79 60.90

BiLSTM+SENT∗ 71.22 59.75 64.99

BERT+BiLSTM+SENT∗ 76.34 63.66 69.42

BiLSTM+CETA 71.34 61.12 65.83
BERT+CETA 63.98 69.13 66.45
BERT+BiLSTM+CETA 76.29 64.63 69.98

Table 2: Main results of the sentence-level evaluation
on NYT. Compared baselines include normal RE model
(the first part of the table) and models for distant RE
(the second part of the table). We run our experiment 5
times and report the average result. The results with ∗

are reported in Ma et al. (2021).

entity type embedding, the hyperparameters of BiL-
STM and the optimizer are consistent with SENT.
When implemented with PCNN, the size of posi-
tion embeddings are 30 dimensions. The number of
convolution filter for PCNN model is 230, and the
filter window size is 3, which keeps the same with
Li et al. (2020b). When implemented with BERT,
we use bert-base-uncased as sentence encoder and
apply AdamW optimizer with a learning rate of 2e-
5. The above experimental setup is also applied to
the compared RE model that utilizes BERT without
denoising method.

We determine the best hyperparameters by grid
search. Specifically, when training on the NYT and
KBP datasets, we train the model for 10 epochs
with a batch size of 256 when using BiLSTM and
a batch size of 16 when using BERT. The optimal
values of the scalar β for scaling gradients on the
sentence encoder mentioned in Algorithm 1 are
β = 2.1 for BiLSTM and β = 4.7 for BERT.

4.4 Sentence-Level Evaluation

we adopt the same evaluation metrics as the previ-
ous sentence-level DSRE method (Jia et al., 2019;
Li et al., 2020b; Ma et al., 2021): Micro-Precision

Model KBP
Prec. Rec. F1

PCNN∗ 56.12 33.38 41.75

BiLSTM † 57.10 47.06 51.48

PCNN+ATT∗ 72.65 29.24 41.69

PCNN+RL∗1 57.64 38.79 46.32

PCNN+DSGAN∗ 59.86 38.54 46.65

BiLSTM+ARNOR∗ 54.83 34.59 42.35

PCNN+SENT 59.98 32.78 42.39

BiLSTM+CETA 59.74 56.15 57.89
PCNN+CETA 58.72 39.83 47.46

Table 3: Main results of the sentence-level evaluation
on KBP. We run our experiment 5 times and report the
average result of our proposed method. The results with
∗ and † are reported in Li et al. (2020b) and Li et al.
(2022), respectively.

(Prec.), Micro-Recall (Rec.) and Micro-F1 (F1).
The sentence-level evaluation results of our pro-
posed CETA and other baselines are on NYT and
KBP are shown in Table 2 and Table 3, respectively.
We can observe that: (1) Our proposed CETA sur-
passes all baselines in F1 metrics on both KBP and
NYT datasets when applying the same sentence
encoder. (2) The results on the NYT dataset show
that CETA has higher Rec. than both ARNOR and
the current state-of-the-art SENT when LSTM is
used as the basic sentence encoder. In addition, the
results on the KBP dataset show that when PCNN
is used as the basic sentence encoder, the Rec. of
CETA is higher than that of other baselines, which
shows that CETA can facilitate the model to fully
exploit the training data. (3) The F1 metrics of
ARNOR on the NYT dataset is significantly higher
than that of RL1, but on the KBP dataset, the F1
metrics of ARNOR is lower than that of RL1. It
shows that the performance of ARNOR is suscep-
tible to different data distributions. Our proposed
method consistently outperforms on both NYT and
KBP datasets. We believe that the stability of the
method is important for practical scenarios.

In addition, we conduct a hyperparameter-tuning
study about the number of classifiers of CETA on
NYT in Appendix B.

4.5 Ablation Study

The section 3.2 has demonstrated that training the
model with CETA allows the model to separate
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Figure 3: The visualization of instances’ representations. The first column and second column show the repre-
sentations produced by the sentence encoders trained by the normal training method and the consensus enhanced
training method, respectively. The first row and second row show the results of 3750 and 410 random sampled
instances from the noisy training set of and the clean test set of our adopted NYT, respectively.

samples between different classes, thereby reduc-
ing the possibility of mislabeled samples entering
the wrong classification space, making it easier for
the model to establish robust classification bound-
aries. To further verify this proposal, we conduct
an ablation experiment that training our proposed
CETA with two different training methods on the
NYT dataset. The specific steps of this experiment
are as follows.

The first training method only reduces the em-
pirical error ϵ̂cs(f) by performing steps 6, 7, and 8
in our proposed Algorithm 1. We call the first
training method normal training method. The
second training method reduces both the empir-
ical error ϵ̂cs(f) and the classification- consensus-
related term dF△F (Zcs) proposed in Theorem 1
by performing all steps in Algorithm 1. We call
the second training method consensus enhanced
training method. The normal training method and
the consensus enhanced training method adopt the
same experimental environment, relation extrac-
tion model (We adopt BERT model as sentence
encoder), and hyperparameters. Second, we pick
four main classes3 of instances from the noisy train-
ing set and the clean test set of NYT. The randomly
picked instances are mapped into representations
by two sentence encoders that are trained by nor-

3Four selected classes are: (1) /Loca-
tion/Location/Contains (LLC), (2) /People/Person/Nationality
(PPN), (3) /People/Person/Place lived (PPP) and (4) /Loca-
tion/Administrative division/Country (LAC), respectively.

mal training method and consensus enhanced train-
ing method, respectively. Third, we adopt Principal
Component Analysis (PCA) to reduce dimension of
the representations and visualize these 2-dimension
representations in Figure 3.

From the visualization of instances’ representa-
tions plotted in Figure 3, we can observe that our
proposed consensus enhanced training method fa-
cilitates model to closely cluster the representations
of the same class’s samples and clearly separate
the representations of different classes’ samples
compared with the normal training method.

In addition, we perform sentence-level evalua-
tion on the clean test set of NYT, and the model
trained by normal training method achieves the
following results: Prec. = 36.21, Rec. = 70.41,
F1 = 47.82. The result of the model trained by
consensus enhanced training method is as follows:
Prec. = 63.98, Rec. = 69.13, F1 = 66.45. We
can observe that the results obtained by the model
trained by consensus enhanced training method
lead across the board, strongly demonstrating the
effectiveness of CETA.

5 Conclusion

This paper goes beyond the typical instance selec-
tion approaches, and focuses on handling the noisy
labels in the feature space. A theorem for denois-
ing and the corresponding implementation, named
Consensus Enhanced Training Approach (CETA),
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are proposed in this paper. By training the model
with CETA, samples of different classes are sep-
arated in the feature space. Thus the model can
easily establish the robust classification boundary
to prevent noisy labels from biasing wrongly la-
beled samples into the wrong classification space.
Besides, CETA achieves denoising does not depend
on any potential noisy labels. Therefore, CETA is
not affected by common noisy instances. Extensive
experiments on the widely-used benchmarks have
demonstrated that our proposed CETA outperforms
previous methods.
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A Appendix

In this section, we proof our proposed Theo-
rem 1. For ease of reference, we restate Theorem 1.

Theorem 1: Let g be a fixed representation func-
tion from X to Z , F be the hypothesis class of
Vapink Chervonenkis d. If a random sample of size
m Zcs is generated by applying g to a Dcs - i.i.d.
for any σ > 0, with probability 1− σ, we have the
following uniform generalization error bound for
any feature classification functions f ∈ F ,

ϵc(f) ≤ ϵ̂cs(f) + 1

2
dF△F (Zcs) + λ (8)

where

ϵ̂cs(f) =
1

m

m∑

i=1

∣∣∣f̂(zcsi )− ycsi
∣∣∣ (9)

dF∆F (Zcs)=2 sup
f ′ ,f ′′∈F

∣∣∣Pr[f ′
(zcs)̸=f

′′
(zcs)]

∣∣∣

(10)

f∗ = argminf∈F ϵ
c(f) + ϵcs(f) (11)

λ=ϵcs(f∗)+ϵc(f∗)+

√
4

m

(
d log

2em

d
+log

4

δ

)

(12)

Eq. (8) indicates the generalization error bound
of ϵc(f). It demonstrates that the expected error
ϵc(f) of the clean test set can be bounded by using
three terms (ϵ̂cs(f), dF∆F (Zcs) and λ), which are
defined in Eq. (9), Eq. (10) and Eq. (12), respec-
tively. The corresponding explanations for these
three terms are as follows.

1. ϵ̂cs(f). This term is the empirical error of
Dcs.

2. dF△F (Zcs). This term represents the upper
bound (sup) of the probability (Pr) that two
classification functions f

′
and f

′′
divide the

feature zcs of the same sample into different
classes.

3. λ. This term is the shared error of the ideal
joint hypothesis (f∗) proposed in Eq. (11).
This term is a constant.

We begin with the following lemmas to prove the
Theorem 1.
Lemma A. Definition 1: Given two feature distri-
bution Zs and Zc extracted by a fixed g, and a
hypothesis class F , a set of classifiers. Through
a given classifier f , the divergenceF∆F between
Zs and Zc is:

dF△F (Zs,Zc)

= 2 sup
η∈F∆F

∣∣∣∣ Prz∼Zc
[f

′
(z)̸=f

′′
(z)]− Pr

z∼Zs
[f

′
(z)̸=f

′′
(z)]

∣∣∣∣

= 2 sup
η∈F∆F

∣∣∣∣ Prz∼Zs
[z :η(z)=1]− Pr

z∼Zc
[z :η(z)=1]

∣∣∣∣

F∆F = {η : η (z∗) = 1} ,⊕ : XOR operator

z∗ = {z : f1(z)⊕ f2(z), f1, f2 ∈ F}

where Zs ⊆ Zcs and Zc ⊆ Zcs are feature
distribution of noisy data and clean data, respec-
tively. Lemma A has been proposed and proved in
(Ben-David et al., 2010).

Lemma B. The upper bound of the probability
dF△F (Zcs) that two classification functions f

′
and

f
′′

divide the feature zcs of the same sample into
different classes is equal to the upper bound of
dF△F (Zs,Zc).

Proof. Now we proof the Lemma B.

dF△F (Zs,Zc)

= 2 sup
η∈F∆F

∣∣∣∣ Prz∼Zs
[z :η(z)=1]− Pr

z∼Zc
[z :η(z)=1]

∣∣∣∣

≤ 2 sup
η∈F∆F

∣∣∣∣ Prz∼Zs
[z :η(z)=1]+ Pr

z∼Zc
[z :η(z)=1]

∣∣∣∣

= 2 sup
η∈F∆F

∣∣∣∣ Pr
z∼Zcs

[z :η(z)=1]

∣∣∣∣ (13)

= 2 sup
f ′ ,f ′′∈F

∣∣∣∣ Pr
z∼Zcs

[f
′
(z)̸=f

′′
(z)]

∣∣∣∣ (14)
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The Eq. (14) is equal to Eq. (10), which is
the dF∆F (Zcs), thus the dF△F (Zcs) is the up-
per bound of dF△F (Zs,Zc). Lemma B has been
proved.

Proof. Now we proof the Theorem 1.
For a classifier f , let Zf ⊆ Z be the feature

subset for whose characteristic function is f . The
parallel notation Zf∗ and Zf are used for classifier
f∗ and f . Through the feature subset, we make
Prc [Zf△Zf∗ ] = Prz∼Zc [f(z) ̸= f∗(z)], and the
parallel notation Prcs is used.

ϵc(f) ≤ ϵc (f∗) + Prc [Zf∆Zf∗ ] (15)

≤ ϵc (f∗) + Prcs [Zf△Zf∗ ]
+ |Prc [Zf∆Zf∗ ]− Prcs [Zf△Zf∗ ]|
≤ ϵc (f∗) + ϵcs (f∗) + ϵcs(f)

+ |Prc [Zf∆Zf∗ ]− Prcs [Zf∆Zf∗ ]|
(16)

= ϵc (f∗) + ϵcs (f∗) + ϵcs(f)

+ |Prs [Zf∆Zf∗ ]|
≤ ϵc (f∗) + ϵcs (f∗) + ϵcs(f)

+ sup
f̂∈F
|Prs[Zf∆Zf̂ ] + Prc[Zf∆Zf̂ ]|

≤ ϵc (f∗) + ϵcs(f) +
1

2
dF∆H (Zcs)

Eq. (15) and Eq. (16) rely on the trian-
gle inequality for classification error (Schölkopf
et al.). Besides, according to the standard Vapnik-
Chervonenkis theorem (Vapnik, 1999), the ϵcs(f)
can be bounded by its empirical estimate:

ϵcs(f) ≤
√

4

m

(
d log

2em

d
+ log

4

δ

)
+ ˆϵcs(f)

(17)
in summary:

ϵc(f) ≤ ϵ̂cs(f) + 1

2
dF△F (Zcs) + λ (18)

Theorem 1 has been proved.

B Appendix

In this section, we conduct a hyperparameter tuning
study on the number of classifiers for CETA. CETA
is designed according to the denoising theorem,
which states that the decomposition of the classifier
helps to reduce the generalization error. To explore
whether more classifiers can further improve the
performance, we conduct the experiment of CETA

Model NYT
#Classifier Prec. Rec. F1

BiLSTM 1 35.52 67.41 46.53

CETA+BiLSTM 2 71.34 61.12 65.83

CETA+BiLSTM 3 71.46 61.37 66.03

CETA+BiLSTM 4 71.49 61.39 66.05

Table 4: Main results of the sentence-level evaluation
on NYT. #Classifier indicates the number of classifiers
used to implement CETA.

implemented with two, three, and four classifiers
on NYT based on BiLSTM, and the results are
shown in Table 4.

The results demonstrate that CETA implemented
by four classifiers is 0.34% higher than that of the
two classifiers in F1 metrics. Besides, CETA imple-
mented by three classifiers is 0.3% higher than that
of the two classifiers in F1 metrics, indicating more
classifiers can further improve the performance of
CETA.
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Abstract

Relation extraction in the biomedical domain
is challenging due to the lack of labeled
data and high annotation costs, needing do-
main experts. Distant supervision is com-
monly used to tackle the scarcity of anno-
tated data by automatically pairing knowledge
graph relationships with raw texts. Such a
pipeline is prone to noise and has added chal-
lenges to scale for covering a large num-
ber of biomedical concepts. We investi-
gated existing broad-coverage distantly super-
vised biomedical relation extraction bench-
marks and found a significant overlap between
training and test relationships ranging from
26% to 86%. Furthermore, we noticed sev-
eral inconsistencies in the data construction
process of these benchmarks, and where there
is no train-test leakage, the focus is on inter-
actions between narrower entity types. This
work presents a more accurate benchmark
MEDDISTANT19 for broad-coverage distantly
supervised biomedical relation extraction that
addresses these shortcomings and is obtained
by aligning the MEDLINE abstracts with the
widely used SNOMED Clinical Terms knowl-
edge base. Lacking thorough evaluation with
domain-specific language models, we also con-
duct experiments validating general domain re-
lation extraction findings to biomedical rela-
tion extraction.

1 Introduction

Extracting structured knowledge from unstructured
text is important for knowledge discovery and man-
agement. Biomedical literature and clinical narra-
tives offer rich interactions between entities men-
tioned in the text (Craven and Kumlien, 1999; Xu
and Wang, 2014), which can be helpful for applica-
tions such as bio-molecular information extraction,
pharmacogenomics, and identifying drug-drug in-
teractions (DDIs), among others (Luo et al., 2017).

∗ Equal contribution.

Iron deficiency is the most common MND worldwide and leads to microcytic anemia , 
decreased capacity for work , as well as impaired immune and endocrine function .

Iron deficiency anaemia ( IDA ) and beta-thalassaemia are the most common causes of 
microcytic anaemia .

Studies here reported indicated that the anemia is hypochromic and microcytic anemia 
of blood loss and iron deficiency , in spite of the presence of large amounts of iron in 

the pulmonary tissue .

The high proportion of microcytic anaemia and the fact that gender differences were 
only seen after the menarche period in women suggest that iron deficiency was the 

main cause of anaemia .

MCV/RBC and (MCV)2 X MCH separated successfully the subjects with microcytic 
anaemia ( heterozygous thalassaemia and iron deficiency ) from normal controls .

Significantly higher serum homocysteine levels were reported in the iron deficiency 
anemia group compared to normal controls and in subjects with microcytic anemia and 

normal ferritin.

CUI: (C0240066, C0085576)
Semantic Type: (Disease or Syndrome, Disease or Syndrome)

Semantic Group: (Disorders, Disorders) 
cause_of

✓
✓

✓

Figure 1: An example of a bag instance represent-
ing the UMLS concept pair (C0240066, C0085576)
from the MEDDISTANT19 dataset, expressing the re-
lation cause_of. In this example, three out of six sen-
tences express the relation, while others are incorrect
labels resulting from the distant supervision.

Manually annotating these relations for train-
ing supervised learning systems is an expensive
and time-consuming process (Segura-Bedmar et al.,
2011; Kilicoglu et al., 2011; Segura-Bedmar et al.,
2013; Li et al., 2016), so the task often involves
leveraging rule-based (Abacha and Zweigenbaum,
2011; Kilicoglu et al., 2020) and weakly supervised
approaches (Peng et al., 2016; Dai et al., 2019).

To scale to a large number of biomedical enti-
ties, recent works have focused on broad-coverage
relation extraction (Amin et al., 2020a; Xing et al.,
2020; Hogan et al., 2021), where we investigated
these benchmarks for possible train-test leakage
of knowledge graph triples and found significant
portions overlapping (Table 2). Such leakage im-
pacts the model performance as it allows to score
higher by simply memorizing the training rela-
tions rather than generalizing to new, previously
unknown ones. We identify the sources of these
issues as normalizing the textual form of concept
mentions to their unique identifiers and improper
handling of inverse relations. In contrast, more ac-
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Benchmark Relations No Train-Test Overlap Broad-Coverage Ontology

UMLS.v1 (Roller and Stevenson, 2014) 7 - 7 UMLS
DTI (Hong et al., 2020) 6 3 7 DrugBank

UMLS.v2 (Amin et al., 2020a) 355 7 3 UMLS
BioRel (Xing et al., 2020) 125 7 3 NDFRT, NCI

UMLS.v3 (Hogan et al., 2021) 275 7 3 UMLS
TBGA (Marchesin and Silvello, 2022) 4 3 7 DisGeNET

MedDistant19 22 3 3 SNOMED CT

Table 1: The landscape of distantly supervised biomedical relation extraction (Bio-DSRE) benchmarks: all the
existing broad-coverage datasets have corpus-level triples overlap between the train and test splits (Table 2), where
the knowledge graph (KG) is also extracted from multiple ontologies. The DTI and TBGA benchmarks focus
on harmonized ontology but are limited to drug-target interactions and gene-disease associations. In contrast,
MEDDISTANT19 has a broader coverage of entities and their semantic types and is normalized to a single ontology,
SNOMED CT, which has significant clinical relevance. We named the datasets from (Roller and Stevenson, 2014;
Amin et al., 2020a; Hogan et al., 2021) to UMLS.v1/2/3 since the original works had no names. For UMLS.v1,
there is no publicly available code to reconstruct the dataset; thus, the overlap information is missing.

curate benchmarks exist (Hong et al., 2020; March-
esin and Silvello, 2022) but focus on narrower types
of interactions. To alleviate the broad-coverage
benchmark issues and bridge this gap, we present
a new benchmark MEDDISTANT19 which draws
its knowledge graph from the widely used health-
care ontology SNOMED CT (Chang et al., 2020).
Further, with the success of domain-specific pre-
trained language models for biomedical and clini-
cal tasks (Gu et al., 2021), and inspired by existing
thorough relation extraction studies in the general
domain (Peng et al., 2020; Alt et al., 2020; Gao
et al., 2021), we conduct an extensive evaluation
using MEDDISTANT19 for the biomedical domain.

2 Related Work

Relation Extraction (RE) is an important task in
biomedical applications. Traditionally, supervised
methods require large-scale annotated corpora,
which is impractical to scale for broad-coverage
biomedical relation extraction (Kilicoglu et al.,
2011, 2020). Distant Supervision (DS) allows for
the automated collection of noisy training exam-
ples by aligning a given knowledge base (KB) with
a collection of text sources (Mintz et al., 2009). DS
was used in recent works (Alt et al., 2019; Amin
et al., 2020a) with pre-trained language models
using Multi-Instance Learning (MIL) by creating
bags of instances (Riedel et al., 2010) for corpus-
level triple extraction.1 In biomedical domain,

1RE is used to refer to two different tasks: sentence-level
detection of relational instances and corpus-level triples extrac-
tion, a kind of knowledge graph completion or link prediction
task (Amin et al., 2020b).

Roller and Stevenson (2014) first proposed the use
of the Unified Medical Language System (UMLS)
Metathesaurus (Bodenreider, 2004) as a KB with
PubMed (Canese and Weis, 2013) MEDLINE ab-
stracts as text collection.

For broad-coverage tasks, Dai et al. (2019) im-
plemented a knowledge-based attention mecha-
nism (Han et al., 2018) for mutual learning with
knowledge graph completion and entity type clas-
sification. Xing et al. (2020) introduced a large-
scale BioRel benchmark focusing on drug-disease
and gene-cancer interactions and showed signif-
icant performance using a comprehensive selec-
tion of baselines. Recent works focused on us-
ing domain-specific pre-trained language models
for distantly supervised biomedical relation extrac-
tion (Bio-DSRE). Amin et al. (2020a) extended
relation enriched sentence-level BERT (Wu and
He, 2019) to handle bag-level MIL and demon-
strated that preserving the direction of the KB re-
lationships can denoise the training signal. They
also outlined the steps to create a broad-coverage
benchmark from UMLS. Following this, Hogan
et al. (2021) introduced the concept of abstracti-
fied MIL (AMIL), by including different argument
pairs belonging to the same semantic type pair in
one bag, boosting performance on rare triples.

For domain-specific Bio-DSRE, Hong et al.
(2020) introduced the BERE framework for la-
tent tree learning and self-attention to use the se-
mantic and syntactic information in the sentence
for MIL. They also introduced a drug-target in-
teractions (DTI) Bio-DSRE benchmark, suitable
for drug repositioning, drawn from DrugBank
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Triples Train Valid Test

UMLS.v2 211,789 41,993 (26.7%) 89,486 (26.5%)
BioRel 39,969 17,815 (86.17%) 17,927 (86.37%)

UMLS.v3 23,163 2,643 (44.38%) 5,184 (40.12%)

Table 2: Training-test leakage we identified in the ex-
isting broad-coverage benchmarks. Numbers between
parentheses show the percentage overlap of CUI triples.

(Wishart et al., 2018). Concurrent work of March-
esin and Silvello (2022) introduced a large-scale
semi-automatically curated benchmark TGBA for
gene-disease associations (GDA). TGBA uses Dis-
GeNET (Piñero et al., 2020), which collects data
on human genotype-phenotype relationships.

This work investigates recent results from the
broad-coverage Bio-DSRE literature by probing
the respective datasets for overlaps between train-
ing and test sets. Specifically, in UMLS, each
concept is mapped to a Concept Unique Identifier
(CUI), and a given CUI might have different surface
forms (Bodenreider, 2004), we thus probe for CUI-
based KG triples leakage. Our results are shown in
Table 2 for UMLS.v2 (Amin et al., 2020a), BioRel
(Xing et al., 2020), and UMLS.v3 (Hogan et al.,
2021). For UMLS.v2 and UMLS.v3, the triples use
surface forms of CUIs rather than the CUIs them-
selves, which results in an overlap between train-
ing and test sets. For example, consider a relation-
ship between a pair of UMLS entities (C0013798,
C0429028). These two entities can appear in dif-
ferent forms within a text, such as (electrocardio-
graphy, Q-T interval), (ECG, Q-T interval), and
(EKG, Q-T interval); each of these distinct pairs
still refers to the same original pair (C0013798,
C0429028). Amin et al. (2020a) claim no such
text-based leakage, but when canonicalized to their
CUIs, this results in leakage across the splits as re-
ported in Table 2. In contrast, BioRel directly splits
CUI triples without accounting for inverse relations
that can also result in leakage (Chang et al., 2020).
Since DSRE aims at corpus-level triples extrac-
tion, train-test triples leakage is problematic (see
Table 3) compared to supervised sentence-level RE,
where we aim to generalize to newer contexts.

We found no such overlap for DTI and TBGA,
where the datasets used in (Roller and Steven-
son, 2014; Dai et al., 2019) are not publicly avail-
able. Noting these shortcomings, we introduce
a new and accurate benchmark MEDDISTANT19
for broad-coverage Bio-DSRE. Our benchmark uti-
lizes clinically relevant SNOMED CT Knowledge

Model and Data Original Filtered
AUC F1 AUC F1

Amin et al. (2020a) 68.4 64.9 50.8 53.1
Hogan et al. (2021)† 82.6 77.6 11.8 19.8

Table 3: State-of-the-art Bio-DSRE language models
were evaluated on the respective datasets before (Origi-
nal) and after (Filtered) removing overlapping relation-
ships. † Our re-run of the AMIL (Type L) model; origi-
nal scores are 87.2 (AUC) and 81.2 (F1).

Graph (Chang et al., 2020), extracted from the
UMLS, that offers a careful selection of the con-
cept types and is suitable for large-scale biomedical
relation extraction. Table 1 summarizes the current
landscape of Bio-DSRE benchmarks.

In supervised RE, ChemProt (Krallinger et al.,
2017) and DDI-2013 (Herrero-Zazo et al., 2013)
focus on multi-class interactions between chemical-
protein and drug-drug respectively. EU-ADR (van
Mulligen et al., 2012) and GAD (Bravo et al., 2015)
focus on binary relations between genes and dis-
eases, while CDR (Li et al., 2016) focuses on binary
relations between chemicals and diseases.

3 Constructing the MedDistant19
Benchmark

Documents We used PubMed MEDLINE ab-
stracts published up to 20192 as our text source,
containing 32,151,899 abstracts. Following Hogan
et al. (2021), we used SCISPACY 3 (Neumann
et al., 2019) for sentence tokenization, resulting
in 150,173,169 unique sentences. We further intro-
duce the use of SCISPACY for linking entity men-
tions to their UMLS CUIs and filtering disabled
concepts from UMLS, which resulted in entity-
linked mentions at the sentence-level.

Named entity recognition (NER) and normaliza-
tion were two primary sources of errors in biomed-
ical RE, as shown in Kilicoglu et al. (2020). While
SCISPACY is reasonably performant among other
options for biomedical entity linking, it remains
quite noisy in practice; e.g., Vashishth et al. (2021)
showed that SCISPACY had only about a 50% accu-
racy on extracting concepts in benchmark datasets.
Despite this being a limitation, using SCISPACY is
better than relying on string matching alone (Dai
et al., 2019; Amin et al., 2020a; Hogan et al., 2021).

2https://lhncbc.nlm.nih.gov/ii/
information/MBR/Baselines/2019.html

3https://github.com/allenai/scispacy
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ROOT

Anatomy
(ANAT)

Chem. & Drugs
(CHEM)

Disorders
(DISO)

Anatomical 
Structure
(T017)

Body System
(T022)

Amino Acid, 
Peptide, or Protein

(T0116)

Vitamin
(T127)

Disease or 
Syndrome
(T047)

Sign or 
Symptom
(T184)

Semantic Groups (SG)

Semantic Types (STY)

Figure 2: Type hierarchy in UMLS, where each concept is classified under a taxonomy. The coarse-grained and
fine-grained entity types are referred to as Semantic Group (SG) and Semantic Type (STY) respectively.

Knowledge Base We use UMLS2019AB 4 as
our primary knowledge source and apply a set of
rules, resulting in a distilled and carefully reduced
version of UMLS2019AB. The UMLS Metathe-
saurus (Bodenreider, 2004) covers concepts from
222 source vocabularies, thus being the most ex-
tensive ontology of biomedical concepts. However,
covering all ontologies can be challenging, given
the interchangeable nature of the concepts. For
example, programmed cell death 1 ligand 1 is an
alias of concept C1540292 in the HUGO Gene
Nomenclature Committee ontology (Povey et al.,
2001), and it is an alias of concept C3272500
in the National Cancer Institute Thesaurus. This
makes entity linking more challenging since a sur-
face form can be linked to multiple entity identifiers
and easier to have overlaps between training and
test sets since the same fact may appear in both
with different entity identifiers.

Furthermore, benchmark corpora for biomedi-
cal NER (Doğan et al., 2014; Li et al., 2016) and
RE (Herrero-Zazo et al., 2013; Krallinger et al.,
2017) focuses on specific entity types (e.g. diseases,
chemicals, proteins), and are usually normalized to
a single ontology (Kilicoglu et al., 2020). Follow-
ing this trend, we also focus on a single vocabulary
for Bio-DSRE. We use SNOMED CT, the most
widely used clinical terminology worldwide for
documentation and reporting in healthcare (Chang
et al., 2020).

Since UMLS classifies each entity in a type
taxonomy of semantic types (STY) and seman-
tic groups (SG) (Fig. 2), this allows for narrow-
ing the concepts of interest. Following Chang
et al. (2020), we first consider 8 semantic groups
in SNOMED CT: Anatomy (ANAT), Chemicals

4https://download.nlm.nih.gov/umls/
kss/2019AB/umls-2019AB-full.zip

& Drugs (CHEM), Concepts & Ideas (CONC),
Devices (DEVI), Disorders (DISO), Phenom-
ena (PHEN), Physiology (PHYS), and Proce-
dures (PROC). We then remove CONC and PHEN
as they are far too general to be informative for Bio-
DSRE. For a complete list of semantic types cov-
ered in MEDDISTANT19, see Table A.4. Similarly,
each relation is categorized into a type and has a re-
ciprocal relation in UMLS (Table A.3), which can
result in train-test leakage (Dettmers et al., 2018).

These steps follow Chang et al. (2020), with
the difference that we only consider relations of
type has relationship other than synonymous, nar-
rower, or broader (RO); this is consistent with prior
works in Bio-DSRE. We also exclude uninforma-
tive relations, same_as, possibly_equivalent_to, as-
sociated_with, temporally_related_to, and ignore
inverse relations as generally is the case in RE.

In addition, Chang et al. (2020) ensures that the
validation and test set do not contain any new enti-
ties, making it a transductive learning setting where
we assume all test entities are known beforehand.
However, we are expected to extract relations be-
tween unseen entities in real-world applications
of biomedical RE. To support this setup, we de-
rive MEDDISTANT19 using an inductive KG split
method proposed by Daza et al. (2021) (see Ap-
pendix A in their paper). Table 5 summarizes the
statistics of the KGs used for alignment with the
text. We use split ratios of 70%, 10%, and 20%.
Relationships are defined between CUIs and have
no overlap between training, validation, and test.

3.1 Knowledge-to-Text Alignment

We now describe the procedure for searching fact
triples to match relational instances in text.

Let E and R respectively denote the set of
UMLS CUIs and relation types, and let G ⊆
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Properties Prior MD19

approximate entity linking 3

unique NA sentences 3

inductive 3

triples leakage 3

NA-type constraint 3

NA-argument role constraint 3

Table 4: MEDDISTANT19 (MD19) key data con-
struction properties compared with the recent broad-
coverage Bio-DSRE works.

Facts Training Validation Testing

Inductive 261,797 48,641 97,861
Transductive 318,524 28,370 56,812

Table 5: The number of raw inductive and transductive
SNOMED KG triples used for alignment with text.

E × R × E denote the set of relationships con-
tained in UMLS. For producing a training-test split,
we first create a set G+ ⊆ E × E of related entity
pairs as:

G+ = {(ei, ej) | 〈ei, p, ej〉 ∈ G ∨ 〈ej , p, ei〉 ∈ G}

Following this, we obtain a set of unrelated entity
pairs by corrupting one of the entities in each pair
in G+ and making sure it does not appear in G+,
obtaining a new set G− ⊆ E × E of unrelated
entities, defined as follows:

G− = {(ei, ej) | (ei, ej) ∈ G+ ∧ (ei, ej) 6∈ G+}
∪ {(ei, ej) | (ei, ej) ∈ G+ ∧ (ei, ej) 6∈ G+}

During the corruption process, we enforce two con-
straints: 1) type constraint – the two entities appear-
ing in each negative pair in G− should belong to
an entity type pair from G+, and 2) role constraint
– the noisy head (tail) entity in negative pair must
have appeared in head (tail) role from a pair in G+.

A naive choice for the negative group could be
G− = (E × E) − G+, for which the current ap-
proach is only a subset; however, enumerating all
possible entity pairs can be infeasible if |E| is high.
Furthermore, we do not assume the completeness
of UMLS, and only derive a fixed sub-graph from
the 2019 version subject to the constraints. This
process is similar to Local-Closed World Assump-
tion (LCWA, Dong et al., 2014; Nickel et al., 2016),
in which a KG is assumed to be only locally com-
plete: if we observed a triple for a specific entity

Summary Entities Relations STY SG
20,256 22 51 6

Split Instances Facts Bags Inst. per Bag NA (%)

Train 450,071 5,455 88,861 5.06 90.0%
Valid 39,434 842 10,475 3.76 91.2%
Test 91,568 1,663 22,606 4.05 91.1%

Table 6: Summary statistics of the MEDDISTANT19
dataset using Inductive SNOMED KG split (Table 5).
The number of relations includes the unknown relation
type (NA).

Figure 3: (Left) Entity distribution based on Semantic
Types. (Right) Relations distribution.

ei ∈ E , then we assume that any non-existing re-
lationship (ei, ej) denotes a false fact and include
them in G−. Therefore, it is likely that if a triple
emerges in a new PubMed article such that it vio-
lates the negative sampling assumptions, it will be
considered a false negative. However, this amount
is negligible due to intractable search space that
scales with the size of the KG.

For each entity-linked sentence, we only con-
sider those sentences that have SNOMED CT enti-
ties and have pairs in G+ and G−. Selected positive
and negative pairs are mutually exclusive and have
no overlap across splits. Since we only consider
unique sentences associated with a pair, this makes
for unique negative training instances, in contrast
to Amin et al. (2020a), who considered generating
positive and negative pairs from the same sentence.
We define negative examples as relational sentences
mentioning argument pairs with unknown relation
type (NA), i.e. there might be a relationship, but the
considered set of relations does not cover it. Our
design choices are summarized in Table 4.

We also remove mention-level overlap across
the splits and apply type-based mention pruning.
Specifically, we pool mentions by type and remove
the sentences which have the mention appearing
more than 10,000 times. We selected the threshold
based on manual inspection of frequent mentions
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Model Bag Strategy AUC F1-micro F1-macro P@100 P@200 P@300 P@1k P@2k

CNN

- AVG 27.3 33.0 16.1 50.0 46.0 44.0 41.0 33.6
- ONE 30.4 36.7 18.2 67.0 58.5 52.6 43.5 34.4

3 AVG 30.4 36.2 19.8 70.0 58.0 56.0 46.0 35.5
3 ONE 34.6 40.4 17.8 77.0 72.5 67.6 50.0 37.3
3 ATT 35.0 40.1 19.8 78.0 73.5 68.6 51.4 36.4

PCNN

- AVG 27.2 32.4 12.9 54.0 49.5 50.3 40.7 33.2
- ONE 29.8 36.7 16.2 66.0 55.5 52.3 44.4 34.2

3 AVG 29.6 37.3 20.5 59.0 50.5 50.0 47.0 35.9
3 ONE 28.6 36.5 18.1 66.0 65.0 62.0 44.7 33.7
3 ATT 32.5 38.2 14.4 71.0 71.0 67.3 49.0 35.2

GRU

- AVG 42.7 47.4 27.8 78.0 74.0 76.0 59.2 42.7
- ONE 46.4 49.3 29.2 86.0 80.5 78.3 61.2 44.9

3 AVG 28.6 37.2 17.9 57.0 57.0 56.0 45.3 35.4
3 ONE 32.6 40.8 17.7 73.0 70.5 66.3 51.2 37.0
3 ATT 36.6 40.9 22.2 77.0 72.0 67.6 51.3 38.7

BERT

- AVG 79.8 76.1 65.3 95.0 96.0 96.0 90.2 67.2
- ONE 79.3 76.1 64.7 93.0 94.0 94.0 89.2 67.4

3 AVG 78.3 73.1 51.1 99.0 97.5 96.6 87.8 66.0
3 ONE 67.0 55.7 44.4 89.0 90.5 91.0 78.7 57.8
3 ATT 64.6 56.4 42.7 89.0 87.5 85.6 75.4 57.9

Table 7: Baseline results for MEDDISTANT19.

in each semantic type, so the information loss is
minimal. At the same time, we still removed gen-
eralized mentions such as disease, drugs, temper-
ature etc. We provide a complete list of mentions
removed by this step in Table A.2. Table 6 shows
the final summary of MEDDISTANT19 using in-
ductive split covering 20,256 entities with 51 types
and 343 type pairs. Fig. 3 shows entity and relation
plots, following a long-tail distribution.

4 Experiments

MEDDISTANT19 is released in a format that is
compatible with the widely adopted RE frame-
work OpenNRE (Han et al., 2019).5 To report
our results, we use the corpus-level Area Under
the Precision-Recall (PR) curve (AUC), Micro-
F1, Macro-F1, and Precision-at-k (P@k) with
k ∈ {100, 200, 300, 1k, 2k}, and the sentence-
level Precision, Recall, and F1. Due to the im-
balanced nature of relational instances, following
Gao et al. (2021), we report Macro-F1 values, and
following Hogan et al. (2021), we report sentence-
level RE results on relationships, including fre-
quent and rare triples.

5https://github.com/suamin/
MedDistant19

4.1 Baselines

Our baseline experiments largely follow the setup
of Gao et al. (2021) with the addition of GRU mod-
els.6 For sentence encoding, we use CNN (Liu
et al., 2013), PCNN (Zeng et al., 2015), bidirec-
tional GRU (Hong et al., 2020), and BERT (De-
vlin et al., 2019). We use GloVe (Pennington et al.,
2014) and Word2Vec (Mikolov et al., 2013) for CN-
N/PCNN/GRU models and initialize BERT with
BioBERT (Lee et al., 2020).

We trained our models both at sentence-level
and at bag-level. In contrast, prior works only
considered bag-level training for Bio-DSRE. The
sentence-level setup is similar to standard RE (Wu
and He, 2019), with the difference that the evalua-
tion is conducted at the bag-level. We also consider
different pooling strategies, namely average (AVG),
which averages the representations of sentences in
a bag, at least one (ONE, Zeng et al., 2015), which
generates relation scores for each sentence in a bag,
and then selects the top-scoring sentence, and atten-
tion (ATT), which learns an attention mechanism
over the sentences within a bag.

Table 7 presents our main results. In all the cases,
the BERT sentence encoder performed better than

6https://github.com/pminervini/
meddistant-baselines
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Figure 4: Precision-Recall curves for BERT baselines.

Model 1-1 1-M M-1

BERT+bag+AVG 66.6 48.3 66.6
BERT+bag+ONE 52.6 33.2 47.1
BERT+bag+ATT 56.4 30.7 26.4

Table 8: Averaged F1-micro score on relation-specific
category for bag pooling methods. The categories are
defined using the cardinality of head and tail SGs.

others since pre-trained language models are ef-
fective for entity-centric transfer learning (Amin
and Neumann, 2021), domain-specific fine-tuning
(Amin et al., 2019), and can implicitly store rela-
tional knowledge during pre-training (Petroni et al.,
2019). This trend is similar to the general domain,
and the BERT-based experiments provide consis-
tent baselines lacking in the prior works. Similar
to the general domain (Gao et al., 2021), we find
sentence-level training to perform better than the
bag-level. However, BERT+bag+AVG had much
better precision for the top-scoring triples at the
expense of long-tail performance. At the sentence-
level, those instances that have been correctly la-
beled by distant supervision (e.g. Fig. 1) provide
enough learning signal, given the generalization
abilities of LMs. However, the model is supposed
to jointly learn from clean and noisy samples in bag-
level training, thus limiting its overall performance.
But, we do not find this trend for CNN/PCNN.
Instead, the bag-level models performed slightly
better except for GRU. We further plot Precision-
Recall (PR) curves for BERT-based baselines in
Fig. 4.

Pooling Strategies In all cases, AVG proved to
be a better pooling strategy; this finding is consis-
tent with prior works. Both Amin et al. (2020a)

Model P R F1

All Triples

BERT+sent+AVG 0.79 0.65 0.71
BERT+bag+AVG 0.72 0.64 0.68

Common Triples

BERT+sent+AVG 0.98 0.62 0.76
BERT+bag+AVG 0.96 0.60 0.74

Rare Triples

BERT+sent+AVG 0.97 0.70 0.82
BERT+bag+AVG 0.95 0.73 0.83

Table 9: Sentence-level RE comparing BERT baselines
trained at bag and sentence-level with AVG pooling on
Rare and Common subsets of MEDDISTANT19. The
triples include NA relational instances.

and Gao et al. (2021) found ATT to produce less ac-
curate results with LMs, which we also find to hold
true for MEDDISTANT19. To further study the im-
pact of bag-level pooling strategies, we analyze the
relation category-specific results. Following Chang
et al. (2020), we grouped the relations based on
cardinality, where the cardinality is defined as for a
given relation type if the set of head or tail entities
belongs to only one semantic group, then it has a
cardinality one otherwise, M (many). The results
are shown in Table 8 for bag-level BERT-based
models with three pooling schemes. On average,
models struggled the most with the 1-M category
due to a lack of enough training signal to differ-
entiate between heterogeneous entity types pooled
over instances in a bag. While we would expect
symmetric performance, to some extent, in 1-M
and M-1 categories, the difference highlights that
the KB-direction plays a role in Bio-DSRE, which
previously has been used to de-noise the training
signal (Amin et al., 2020a).

Long-Tail Performance Following Hogan et al.
(2021), we also perform sentence-level triples eval-
uation of BERT-based encoders trained at sentence-
level and bag-level. The authors divided the
triples (including NA instances) into two categories:
those with 8 or more sentences are defined as
common triples and others as rare triples. Ta-
ble 9 shows these results. We note that both
training strategies performed comparably on rare
triples with BERT+sent+AVG more precise than
BERT+bag+AVG at the expense of low recall.
However, we find a noticeable difference in com-
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Figure 5: Ablation showing the effect of different text
encoding methods with MEDDISTANT19.

mon triples where BERT+sent+AVG performed
better. At the bag level, the model can overfit to cer-
tain type and mention heuristics, whereas sentence-
level training allows more focus on context. The
current state-of-the-art model from Hogan et al.
(2021) creates a bag of instances by abstracting en-
tity pairs belonging to the same semantic type pair
into a single bag, thus producing heterogeneous
bags. Due to such bag creation, it is not suited for
sentence-level models.

4.2 Analysis
Context, Mention, or Type? RE models are
known to heavily rely on information from entity
mentions, most of which is type information, and
existing datasets may leak shallow heuristics via
entity mentions that can inflate the prediction re-
sults (Peng et al., 2020). To study the importance
of mentions, contexts, and entity types in MED-
DISTANT19, we take inspiration from (Peng et al.,
2020; Han et al., 2020) and conduct an ablation
of different text encoding methods. We consider
entity mentions with special entity markers (Amin
et al., 2020a) as the Context + Mention (CM) set-
ting, which is common in RE with LMs. We then
remove the context and only use mentions, the Only
Mention (OM) setting, which reduces to KG-BERT
(Yao et al., 2019) for relation prediction. We then
only consider the context by replacing subject and
object entities with special tokens, resulting in the
Only Context (OC) setting. Lastly, we consider two
type-based (STY) variations as Only Type (OT) and
Context + Type (CT). We train the models at the
sentence-level and evaluate them at the bag-level.

We observe in Fig. 5 that the CM method had
the highest performance, but surprisingly, OM per-
formed quite well. This highlights the ability of

Split AUC F1-micro F1-macro

Inductive 79.9 76.2 65.4
Transductive 79.6 73.3 65.9

Table 10: BERT+sent+AVG performance on corpora
created with an inductive and transductive set of triples.

LMs to memorize the facts and act as soft KBs
(Petroni et al., 2019). This trend is also consis-
tent with general-domain (Peng et al., 2020). The
poor performance in the OC setting shows that the
model struggles to understand the context, more
pronounced in noise-prone distant RE than in super-
vised RE. Our CT setup can be seen as a sentence-
level extrapolation of the AMIL model (Hogan
et al., 2021), which struggles to perform better than
the baseline (OM). However, comparing OC with
CT, it is clear that the model benefits from type
information as it can help constrain the space of
the relations. Using only the type information had
the least performance as the model fails to disam-
biguate between different entities belonging to the
same type.

Inductive or Transductive? To study the im-
pact of transductive and inductive splits (Table 5),
we created another Bio-DSRE corpus using trans-
ductive train, validation, and test triples. The cor-
pus generated differs from the inductive one, but it
can offer insights into the model’s ability to handle
seen (transductive) and unseen (inductive) men-
tions. As shown in Table 10, the performance us-
ing inductive is slightly better than transductive for
corpus-level extractions in terms of AUC. However,
the F1-macro score is better for transductive. We
conclude that the model can learn patterns that ex-
ploit mentions and type information to extrapolate
to unseen mentions in the inductive setup.

Does Expert Knowledge Help? We now con-
sider several pre-trained LMs with different knowl-
edge capacities, specific to biomedical and clinical
language understanding, to gain insights about the
state-of-the-art encoders’ performance and effec-
tiveness on the MEDDISTANT19 benchmark.

We use BERT (Devlin et al., 2019) as baseline.
We next consider only those pre-trained models
trained with masked language modeling (MLM)
objectives using domain-specific corpora. This in-
cludes ClinicalBERT (Alsentzer et al., 2019), Blue-
BERT (Peng et al., 2019), BioBERT (Lee et al.,
2020), SciBERT (Beltagy et al., 2019), and Pub-
MedBERT (Gu et al., 2021). We categorize these
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Encoder Knowledge Type AUC
Biomedical Clinical Type Triples Synonyms

NON-EXPERT MODELS

BERT 0.72
ClinicalBERT 3 3 0.73

BlueBERT 3 0.78
SciBERT 3 0.78
BioBERT 3 0.79

PubMedBERT 3 0.80

EXPERT KNOWLEDGE MODELS

MedType 3 3 0.77
KeBioLM 3 3 0.80

UmlsBERT 3 3 3 0.75
SapBERT 3 3 0.78

Table 11: Expert and non-expert pre-trained language
models performance on MEDDISTANT19.

models as non-experts.
Secondly, we consider expert models that modify

the MLM objective or introduce new pre-training
tasks using external knowledge, such as UMLS.
MedType (Vashishth et al., 2021), initialized with
BioBERT, is pre-trained to predict semantic types.
KeBioLM (Yuan et al., 2021), initialized with Pub-
MedBERT, uses relational knowledge by initial-
izing the entity embeddings with TransE (Bordes
et al., 2013), improving entity-centric tasks, includ-
ing RE. UmlsBERT (Michalopoulos et al., 2021),
initialized with ClinicalBERT, modifies MLM to
mask words belonging to the same CUI and further
introduces semantic type embeddings. SapBERT
(Liu et al., 2021), initialized with PubMedBERT,
introduces a metric learning task for clustering syn-
onyms together in an embedding space.

Table 11 shows the results of these sentence en-
coders fine-tuned on the MEDDISTANT19 dataset
at sentence-level with AVG pooling. With-
out domain-specific knowledge, BERT performs
slightly worse than the lowest-performing biomed-
ical model, highlighting the presence of shallow
heuristics in the data common to the general and
biomedical domains. While domain-specific pre-
training improves the results, similar to Gu et al.
(2021), we find clinical LMs underperform on the
biomedical RE task. There was no performance
gap between BlueBERT, SciBERT, and BioBERT.
However, PubMedBERT brought improvement,
consistent with Gu et al. (2021).

For expert knowledge-based models, we noted a
negative impact on performance. While we would
expect type-based models, MedType and Umls-
BERT, to bring improvement, their effect can be
attributed to overfitting certain types and patterns.
KeBioLM, initialized with PubMedBERT, has the

same performance despite seeing the triples used in
MEDDISTANT19 during pre-training, highlighting
the difficulty of the Bio-DSRE. SapBERT, which
uses the knowledge of synonyms, also hurt Pub-
MedBERT’s performance, suggesting that while
synonyms can help in entity linking, RE is a more
challenging task in noisy real-world scenarios.

5 Discussion

In the biomedical domain, health experts are of-
ten concerned with a particular type of interac-
tion, for example, drug-target and gene-disease.
However, the number of ontologies is constantly
growing (222 in UMLS2019AB), thus a growing
need for a more general purpose relation extraction
benchmark. Broad-coverage benchmarks exist for
biomedical entity linking, such as MedMentions
(Mohan and Li, 2018), but they still lack many
important concepts involved in relational learning.
The research community has come up with several
RE benchmarks (see Table 1), but the challenge re-
mains as new entities, and relations emerge with the
constant growth of biomedical literature. Hence,
constructing a broad benchmark for biomedical
RE is challenging due to domain requirements;
nonetheless, having an accurate benchmark could
offer a utility for future research. We supplement
this discussion with Appendix D for a note on limi-
tations.

Further, the train-test overlap highlights the need
to systematically assess the proposed benchmarks
for inconsistencies that can overestimate the model
performance. Similar assessments have shown up
in QA generalization where train-test overlap in-
flates the model performance (Liu et al., 2022). Re-
lated to RE generalization, Rosenman et al. (2020)
exposed shallow heuristics while Taillé et al. (2021)
showed that neural RE models could retain triples,
primarily due to type hints. MEDDISTANT19 par-
tially addresses these issues by an inductive setup
that can offer insights into the generalization trend
in biomedical RE using unseen entities.

6 Conclusion

In this work, we highlighted a need for an accu-
rate broad-coverage benchmark for Bio-DSRE. We
bridged this gap by utilizing SNOMED CT for con-
structing the benchmark and laying out the best
practices. We thoroughly evaluated the benchmark
with baselines and state-of-the-art, showing there
is room to conduct further research.
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Legal & Ethical Considerations

Does the dataset contain information that
might be considered sensitive or confidential?
(e.g. personally identifying information) We use
PubMed MEDLINE abstracts (Canese and Weis,
2013)7 that are publicly available and is distributed
by National Library of Medicine (NLM). These
texts are in the biomedical and clinical domains
and are almost entirely in English. It is standard to
use this corpus as a text source in several biomed-
ical LMs (Gu et al., 2021). We cannot claim the
guarantee that it does not contain any confidential
or sensitive information e.g, it has clinical find-
ings mentioned throughout the abstracts such as
A twenty-six-year-old male presented with high-
grade fever, which identifies the age and gender of
a patient but not the identity. We did not perform a
thorough analysis to distill such information since
it is in the public domain.
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A UMLS

This section presents additional details about
UMLS, including the final set of relations con-
sidered in MEDDISTANT19 (with their inverses
obtained from the UMLS) and a complete list of
semantic types (STY). Since, in relation extraction
(RE), we are not interested in bidirectional extrac-
tions, therefore it is sufficient to only model one
direction. Previous studies (Xing et al., 2020; Amin
et al., 2020a; Hogan et al., 2021) fail to account
the inverse relations, and with naive split, it can
lead to train-test leakages. For more discussion
on the relations in UMLS, including transitive clo-
sures, see Section 3.1 in Chang et al. (2020). We
used UMLS2019AB to be consistent with the prior
works.

A.1 UMLS Files

In UMLS (Bodenreider, 2004), a concept is pro-
vided with a unique identifier called Concept
Unique Identifier (CUI), a term status (TS), and
whether or not the term is preferred (TTY) in a
given vocabulary, e.g., SNOMED CT. The con-
cepts are stored in a file distributed by UMLS called
MRCONSO.RRF.8 Each concept further belongs to
one or more semantic types (STY), provided in
a file called MRSTY.RRF, with a type identifier
TUI. There are 127 STY9 in the UMLS2019AB
version, which are mapped to 15 semantic groups
(SG).10. The relationships between the concepts
are organized in a multi-relational graph distributed
in a file called MRREL.RRF11. The final set of rela-
tions considered in MEDDISTANT19 is presented
in Table A.3.

Note that we only consider relations belonging to
the RO (has a relationship other than synonymous,
narrower, or broader) type, which is consistent
with prior works. This consideration ignores rela-
tions such as isa, which defines hierarchy among
relations.

8https://www.ncbi.nlm.nih.gov/books/
NBK9685/table/ch03.T.concept_names_and_
sources_file_mr/

9https://lhncbc.nlm.nih.gov/ii/tools/
MetaMap/Docs/SemanticTypes_2018AB.txt

10https://lhncbc.nlm.nih.gov/ii/tools/
MetaMap/Docs/SemGroups_2018.txt

11https://www.ncbi.nlm.nih.gov/books/
NBK9685/table/ch03.T.related_concepts_
file_mrrel_rrf/?report=objectonly

Figure A.1: Relative proportions of the entities present
in MEDDISTANT19, based on the semantic groups.

A.2 Semantic Groups and Semantic Types
As we noted in Fig. 3, entities and relations follow
a long-tail distribution. This has a major impact
on the quality of the dataset created. For exam-
ple, in the general domain, the standard bench-
mark NYT10 (Riedel et al., 2010) has more than
half of the positive instances belonging to one rela-
tion type /location/location/contains.
Fig. A.1 shows the relative proportions of the se-
mantic groups in MEDDISTANT19.

Further, we used an inductive split set with 70,
10, and 20 proportions of train, validation, and test
splits for constructing MEDDISTANT19. Below is
an example instance from the dataset in OpenNRE
(Han et al., 2019) format:

{
"text": "In one patient who
showed an increase of plasma
prolactin level , associated
with low testosterone and
LH , a microadenoma
of the pituitary gland
( prolactinoma ) was
detected .",
"h": {

"id": "C0032005",
"pos": [130, 145],
"name": "pituitary gland"

},
"t": {

"id": "C0033375",
"pos": [148, 160],
"name": "prolactinoma"

},
"relation": "finding_site_of"

}

/-----------------------------/
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{
"text": "Severe heart disease
may result in cardiac cirrhosis
in the elderly , with ascites
and hepatomegaly .",
"h": {
"id": "C0018799",
"pos": [7, 20],
"name": "heart disease"

},
"t": {
"id": "C0085699",
"pos": [35, 52],
"name": "cardiac cirrhosis"

},
"relation": "cause_of"

}

/-----------------------------/

{
"text": "Complications
closely associated to the
osteosynthesis appeared
only in instable
fractures ( 7 % ) .",
"h": {
"id": "C0016658",
"pos": [81, 90],
"name": "fractures"

},
"t": {
"id": "C0016642",
"pos": [40, 54],
"name": "osteosynthesis"
},
"relation":
"direct_morphology_of"

}

/-----------------------------/

{
"text": "Gluten proteins ,
the culprits in celiac
disease ( CD ) , show
striking similarities in
primary structure with
human salivary proline-rich
proteins ( PRPs ) .",
"h": {

"id": "C2362561",
"pos": [0, 15],
"name": "Gluten proteins"

},
"t": {

"id": "C0007570",
"pos": [34, 48],
"name": "celiac disease"

},
"relation":
"causative_agent_of"

}

/-----------------------------/

{
"text": "Postherpetic
neuralgia is an unfortunate
aftermath of shingles ,
and is most likely to
develop , and most
persistent , in elderly
patients .",
"h": {

"id": "C0032768",
"pos": [0, 22],
"name": "Postherpetic
neuralgia"

},
"t": {

"id": "C0019360",
"pos": [54, 62],
"name": "shingles"

},
"relation": "occurs_after"

}

B UMLS License Agreement

To use the MEDDISTANT19 benchmark, the user
must have signed the UMLS agreement12. The
UMLS agreement requires those who use the
UMLS (Bodenreider, 2004) to file a brief report
once a year to summarize their use of the UMLS.
It also requires acknowledging that the UMLS con-
tains copyrighted material and that those restric-
tions are respected. The UMLS agreement requires
users to agree to obtain agreements for each copy-
righted source before its use within a commercial
or production application.

12https://uts.nlm.nih.gov/license.html
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C Risks

While our work does not have direct risk, we pro-
vide the dataset while asking users to respect the
UMLS license before downloading it. This user
agreement is needed to use our benchmark and to
respect the source ontologies licenses. We pro-
vide this with the hope to accelerate reproducible
research in Bio-DSRE by having ready-to-use cor-
pora, with only the condition that the user has ob-
tained the license. We provide users with this note
and hope this will be respected. However, there
is a risk that users may download the data and re-
distribute it without respecting the UMLS license.
In case of such exploitation, we will add the UMLS
authentication layer to protect data, where the user
will be required to provide a UMLS API key, which
will be validated, and only then will the data be al-
lowed to be downloaded.

D Limitations

We provide several limitations of our work as pre-
sented in its current form. MEDDISTANT19 aims
to introduce a new benchmark with good practices.
However, it is still limited in its scope of ontologies
considered. It also has a limited subset of relation
types provided by UMLS. For example, the cur-
rent benchmark does not include an important rela-
tion may_treat, because it is outside SNOMED CT.
Since MEDDISTANT19 is focused on SNOMED
CT, it lacks coverage of important protein-protein
interactions, drug side-effects, and relations involv-
ing genes as provided by RxNorm (Nelson et al.,
2011), Gene Ontology (Consortium, 2018), etc.

MEDDISTANT19 is automatically-created and
susceptible to noise and thus needs to be ap-
proached carefully as a potential source for biomed-
ical knowledge. While the dataset was not created
to represent true biomedical knowledge, it has the
potential to be treated as a reliable reference.

E Experimental Setup and
Hyperparameters

We followed the experimental setup of Gao et al.
(2021) for BERT-based experiments. Specifically,
we used batch size 64, with a learning rate of 2e-
5, maximum sequence length 128, and bag size 4.
We used a single NVIDIA Tesla V100-32GB for
BERT-based experiments. Each experiment took
about 1.5hrs, with half an hour per epoch. We
also attempted to perform a grid search for BERT

Encoder Bag Size Batch Size Embedding

CNN+sent+AVG - 128 biowordvec
CNN+sent+ONE - 128 biowordvec
CNN+bag+AVG 8 128 GloVe
CNN+bag+ONE 16 256 GloVe
CNN+bag+ATT 8 256 GloVe

PCNN+sent+AVG - 128 biowordvec
PCNN+sent+ONE - 128 biowordvec
PCNN+bag+AVG 4 128 GloVe
PCNN+bag+ONE 8 128 GloVe
PCNN+bag+ATT 8 128 GloVe

GRU+sent+AVG - 128 biowordvec
GRU+sent+ONE - 128 biowordvec
GRU+bag+AVG 8 128 biow2v
GRU+bag+ONE 16 256 GloVe
GRU+bag+ATT 16 128 GloVe

Table A.1: Best hyperparameters for CNN, PCNN, and
GRU sentence encoders.

experiments, but it was too expensive to continue;
therefore, we abandoned those jobs. Since we only
used the base models, they amount to 110 million
parameters. During fine-tuning, we do not freeze
any parts of the model.

For CNN and PCNN, we performed grid search
with Adam (Kingma and Ba, 2015) optimizer us-
ing learning rate 0.001 for 20 epochs with: batch
size ∈ {128, 256}, bag size ∈ {4, 8, 16, 32},
200-d word embeddings ∈ {Word2Vec (Mikolov
et al., 2013)13, GloVe (Pennington et al., 2014)},
and with (test-time) pooling ∈ {ONE,AVG}
when using sentence-level training and pooling in
{ONE,AVG,ATT} when using bag-level training.
We ran this job on a cluster with support for array
jobs. These amounted to over 700 experiments and
took 3 days. We fixed other hyperparameters from
literature (Han et al., 2018), with position dimen-
sion set to 5, kernel size set to 3, and dropout set to
0.5. These are also default in OpenNRE (Han et al.,
2019). The hyperparameters that had the most in-
fluence were batch size, bag size, and pre-trained
word embeddings. All the experiments reported in
this work are with a single run.

For sentence tokenization with ScispaCy, it took
9hrs with 32 CPUs (4GB each) and a batch size
of 1024 to extract 151M sentences. Further, the
ScispaCy entity linking job took about half TB of
RAM with 72 CPUs (6GB each) with a batch size
of 4096 with 40hrs of run-time to link 145M unique
sentences.

13We used domain-specific word embeddings biowordvec
and biow2v following Marchesin and Silvello (2022).
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Semantic Type 10k-20k 20k-30k ≥ 30k

Body Part, Organ, or Organ Component bladder, heart, retinal, lungs, spinal, kidneys, colon eyes, lung, kidney, intestinal liver, brain
Organism Function death period, blood pressure -
Body Location or Region head - -

Therapeutic or Preventive Procedure
injection, prevention, chemotherapy, application stimulation, delivery intervention, procedure, removal, operation
resection, infusion, treatments, therapeutic
surgical treatment, CT, surgical, transplantation

Neoplastic Process cancer - tumor, tumors
Disease or Syndrome obesity, disorder, disorders diseases, stroke disease, infection, condition, hypertension
Laboratory Procedure test, erythrocytes - cells
Diagnostic Procedure US, biopsy, ultrasound MRI -
Finding lesion, interaction, mass, difficulty, dependent abnormal presence, positive, negative, severe, lesions
Hormone insulin - -
Biologically Active Substance amino acids, glucose, ATP protein, proteins
Pharmacologic Substance medication - drugs, drug
Injury or Poisoning strains injury, exposure damage
Tissue tissue, bone marrow, tissues - -
Organism Attribute male - temperature, age
Immunologic Factor antibody, antibodies - -
Health Care Activity investigations examination assessment
Body Substance plasma, blood, skin - -
Body System - cardiovascular -
Mental Process - - concentrations, concentration
Congenital Abnormality - abnormalities -

Table A.2: Semantic types affected by type-based mention pruning with removed mentions placed in their respec-
tive frequency bins as discussed in Section 3.1.

Relation Inverse Relation

finding_site_of has_finding_site
associated_morphology_of has_associated_morphology

method_of has_method
interprets is_interpreted_by

direct_procedure_site_of has_direct_procedure_site
causative_agent_of has_causative_agent
active_ingredient_of has_active_ingredient

interpretation_of has_interpretation
component_of has_component

indirect_procedure_site_of has_indirect_procedure_site
direct_morphology_of has_direct_morphology

cause_of due_to
direct_substance_of has_direct_substance

uses_device device_used_by
focus_of has_focus

direct_device_of has_direct_device
procedure_site_of has_procedure_site

uses_substance substance_used_by
associated_finding_of has_associated_finding

occurs_after occurs_before
is_modification_of has_modification

Table A.3: (Left) 21 relations included in MEDDISTANT19, excluding NA relation. (Right) For completeness, we
also include their inverse relations.
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SG TUI Semantic Type

ANAT

T017 Anatomical Structure
T029 Body Location or Region
T023 Body Part, Organ, or Organ Component
T030 Body Space or Junction
T031 Body Substance
T022 Body System
T021 Fully Formed Anatomical Structure
T024 Tissue

CHEM

T116 Amino Acid, Peptide, or Protein
T195 Antibiotic
T123 Biologically Active Substance
T103 Chemical
T200 Clinical Drug
T196 Element, Ion, or Isotope
T126 Enzyme
T131 Hazardous or Poisonous Substance
T125 Hormone
T129 Immunologic Factor
T130 Indicator, Reagent, or Diagnostic Aid
T197 Inorganic Chemical
T114 Nucleic Acid, Nucleoside, or Nucleotide
T109 Organic Chemical
T121 Pharmacologic Substance
T192 Receptor
T127 Vitamin

DEVI
T074 Medical Device
T075 Research Device

DISO

T020 Acquired Abnormality
T190 Anatomical Abnormality
T049 Cell or Molecular Dysfunction
T019 Congenital Abnormality
T047 Disease or Syndrome
T033 Finding
T037 Injury or Poisoning
T048 Mental or Behavioral Dysfunction
T191 Neoplastic Process
T046 Pathologic Function
T184 Sign or Symptom

PHYS

T201 Clinical Attribute
T041 Mental Process
T032 Organism Attribute
T040 Organism Function
T042 Organ or Tissue Function
T039 Physiologic Function

PROC

T060 Diagnostic Procedure
T065 Educational Activity
T058 Health Care Activity
T059 Laboratory Procedure
T063 Molecular Biology Research Technique
T062 Research Activity
T061 Therapeutic or Preventive Procedure

Table A.4: 51 semantic types (STY) along with their TUIs and semantic groups (SG) covered in MEDDISTANT19.
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Abstract

Natural language understanding (NLU) mod-
els tend to rely on spurious correlations (i.e.,
dataset bias) to achieve high performance on
in-distribution datasets but poor performance
on out-of-distribution ones. Most of the ex-
isting debiasing methods often identify and
weaken these samples with biased features (i.e.,
superficial surface features that cause such spu-
rious correlations). However, down-weighting
these samples obstructs the model in learning
from the non-biased parts of these samples. To
tackle this challenge, in this paper, we pro-
pose to eliminate spurious correlations in a
fine-grained manner from a feature space per-
spective. Specifically, we introduce Random
Fourier Features and weighted re-sampling to
decorrelate the dependencies between features
to mitigate spurious correlations. After obtain-
ing decorrelated features, we further design
a mutual-information-based method to purify
them, which forces the model to learn features
that are more relevant to tasks. Extensive exper-
iments on two well-studied NLU tasks demon-
strate that our method is superior to other com-
parative approaches.

1 Introduction

Recently, researchers have found that the main rea-
son why large-scale pre-trained language models
perform well on NLU tasks is that they rely on
spurious correlations, rather than capturing the lan-
guage understanding for the intended task (Bender
and Koller, 2020). These spurious correlations are
also denoted as dataset bias in previous work (He
et al., 2019; Clark et al., 2019): prediction rules
that work for training examples but do not hold in
general. In reality, a variety of spurious correlations
appear in widely-used NLU benchmark datasets.

∗ Equal contribution.
† Corresponding author.

For example, in natural language inference (NLI)
tasks, McCoy et al. (2019) observe that models on
the MNLI dataset (Williams et al., 2018) rely heav-
ily on the features of word overlap to predict the
entailment label blindly. Consequently, these mod-
els perform poorly on out-of-distribution (OOD)
datasets where such correlations no longer hold
(Nie et al., 2019).

To mitigate these spurious correlations, some ex-
isting debiasing works (Clark et al., 2019; He et al.,
2019) prefer to train a bias model with known spuri-
ous correlations as prior knowledge to identify the
samples without biased features. This trained bias
model is used in the later stage to force the main
model to learn from these samples. For better trans-
ferability, Utama et al. (2020b); Sanh et al. (2020)
relax this basic assumption that spurious correla-
tion is apriori by using a small part of the training
dataset in the training phase of bias model. How-
ever, these methods are not end-to-end and their
training procedures are complicated. Moreover,
not all features in the samples with biased features
are insignificant (Wen et al., 2021). These sam-
ples may still contain features that generalize to the
real-world dataset, and weakening these samples
obstructs the model in learning from the non-biased
parts of these samples (Wen et al., 2021).

In this paper, unlike the above-mentioned meth-
ods, we propose an end-to-end method that can
eliminate the spurious correlations in a fine-grained
way1. Recently, some works (Marcus, 2018; Ar-
jovsky et al., 2019) have demonstrated that spuri-
ous correlations are essentially caused by the subtle
dependencies between irrelevant features (i.e., the
features that are irrelevant to a given label) and rel-
evant features. According to this observation, we
intend to eliminate spurious correlations by decor-

1Our code is available at https://github.com/Coling2022-
DePro/DePro.
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relating the dependencies between features in the
feature space. However, those irrelevant features
still exist in the feature space and may confuse
the analysis capability of deep models. To achieve
better performance, we further design another com-
ponent to purify the decorrelated features in the
feature space, which forces the model to learn use-
ful local features (i.e., features that are more rele-
vant to tasks (Wang et al., 2020)). Specifically, we
address two main challenges:

• Challenge 1: How to eliminate dependencies
among features in the feature space?

• Challenge 2: How to find the useful local
features and purify the decorrelated global
features with them?

To address the first challenge, some previous
works (Shen et al., 2020) try to decorrelate features
under linear frameworks. However, these linear
frameworks are not capable of dealing with nonlin-
ear dependencies between features in the feature
space. To further enhance the effectiveness of meth-
ods on decorrelating nonlinear dependencies, an
ideal candidate is to use kernel methods to remap
the original features to high-dimensional feature
space. In this way, both linear and nonlinear de-
pendencies can be decorrelated. Nevertheless, the
mapping operator of the kernel function cannot
be given explicitly. Therefore, we use Random
Fourier Features (RFF) (Rahimi and Recht, 2007)
to approximate the kernel method for the sake of
computability. After completing high-dimensional
feature reconstruction, we introduce weighted re-
sampling to remove the dependencies between re-
constructed features in the reconstructed feature
space. To tackle the second challenge, we introduce
a saliency-map-based method to identify the useful
local features in the samples and design a mutual-
information-based strategy to purify the decorre-
lated global features (i.e., sentence representation)
with these useful local features.

We evaluate our framework over two NLU tasks
including Natural Language Inference and Fact Ver-
ification. Through the experimental results, we ob-
serve that feature decorrelation and feature purifi-
cation are both useful for improving the generaliza-
tion ability of deep neural models. Moreover, our
method can achieve state-of-the-art performance
on predicting out-of-distribution datasets compared
with existing approaches. In summary, this paper
makes the following contributions:

• We introduce a novel end-to-end framework
that combines feature decorrelation with fea-
ture purification to strengthen the general-
ization ability of NLU models. The feature
decorrelation phase is used to eliminate spuri-
ous correlations of features while the feature
purification component is used to force the
model to learn features that are more relevant
to tasks.

• We conduct extensive experiments over sev-
eral widely used benchmark datasets. The
experimental results report that feature decor-
relation and feature purification can both en-
hance the generalization ability of deep mod-
els. Also, the results suggest the synergistic
effect between decorrelation and purification.
After combining them, our proposed method
outperforms the state-of-the-art methods.

2 Related Work

2.1 Spurious Correlations and Debiasing
Methods

The performance of machine learning models on
multiple natural language understanding bench-
marks has achieved remarkable results. However,
due to the presence of spurious surface lexical-
syntactic features in the training phase, deep mod-
els perform poorly on out-of-distribution examples.
These spurious properties are also known as spu-
rious correlations or dataset biases. For example,
McCoy et al. (2019) reports that models on the
MNLI dataset (Williams et al., 2018) rely heav-
ily on high word overlap to predict the entailment
label. In fact, spurious correlations also exist in
datasets of other NLU tasks such as multi-hop QA
datasets (Wen et al., 2021). Deep models’ exces-
sive dependence on these spurious correlations can
affect their generalization ability when testing on
more challenging datasets.

In response to the problem of spurious corre-
lations in datasets, many methods have been pro-
posed to mitigate the impact. For example, Clark
et al. (2019); He et al. (2019) propose a two-stage-
based framework to reduce the model’s dependence
on known spurious correlations. They first train a
bias-only model using known spurious correlations
and then leverage it to guide the main model to
distinguish biased examples. However, these ap-
proaches suffer from low transferability since they
require prior knowledge about the spurious correla-
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Figure 1: System architecture of DePro. RFF, WRFD, and MI refer to Random Fourier Features, Weighted
Re-sampling for Feature Decorrelation, and Mutual Information, respectively.

tions in a dataset. To mitigate the issue, Utama et al.
(2020b); Clark et al. (2020) tend to train a weak or
shadow model as the bias-only model to provide
guidance on discriminating biased data. However,
these methods are not end-to-end and the training
procedures of these methods are complicated.

2.2 Feature Decorrelation

Since the correlation between features can affect
or even damage model predictions, several stud-
ies focus on eliminating this correlation during the
training process. Zhang et al. (2017) propose a
strategy that selects uncorrelated features in groups
to decorrelate features. Shen et al. (2020) address
this issue by re-weighting samples. However, these
two methods can only remove the linear depen-
dence between features which cannot tackle the
complex nonlinear dependence between features.
Bahng et al. (2020) propose to use the biased rep-
resentations to generate a debiased representation.
Although this method can decorrelate the nonlinear
and linear dependence between features, it needs to
artificially design the biased representation based
on the known spurious correlations in the dataset.
On the contrary, our method can remove all kinds
of dependencies between the features and does not
need to rely on prior knowledge.

3 Method

In this section, we introduce our proposed end-to-
end framework namely DePro. Figure 1 presents
the system architecture of DePro which mainly
consists of two phases: feature decorrelation and
feature purification. In the first phase, we intro-
duce Random Fourier Features (RFF) (Rahimi and

Recht, 2007) to map features from the original fea-
ture space to the reconstruction space. Then we use
weighted re-sampling to remove the dependencies
between reconstructed features. In the later phase,
we purify the global sample features from an infor-
mation theoretic perspective to further improve the
generalization ability.

Notations X , Y , and Z denote the space of sam-
ples (i.e., sentences), the space of labels, and the
feature space, respectively. We use f : X → Z to
denote the encoder function which can encode a
sample into the feature space. The classifier func-
tion is denoted as c : Z → Y , which can predict
the sample to the corresponding label. Given a
dataset D that consists of n pairs of sentences and
labels (Xi, Yi)i∈[1,n], with Xi ∈ X and Yi ∈ Y ,
the representation of Xi is denoted as Zi ∈ Z , and
Zi denotes the i-th variable in the feature space.
For an input sentence Xi = [X1

i ;X
2
i ; . . . ;X

k
i ], wi

denotes the re-sampling weight of this sentence Xi

and we use Ti = [T 1
i ;T

2
i ; . . . ;T

k
i ] to denote the

local feature of Xi in the encoder (e.g., the output
of BERT embedding layer).

3.1 Decorrelate Features of Feature Space
In this subsection, we mainly introduce our method
of removing both the nonlinear and linear de-
pendencies between features by using RFF and
weighted re-sampling.

High-dimensional Feature Reconstruction via
RFF
The kernel method can obtain mutually indepen-
dent features by mapping them from the original
feature space to Reproducing Kernel Hilbert Space
(RKHS) (Alvarez et al., 2012) as follows:
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K(x, ·) =
∞∑

i=1

λiφi(x)φi(·) =
(√

λiφi(x), · · ·
)
H

(1)

Here K(·, ·) is the mapping operator of a mea-
surable, symmetric positive definite kernel func-
tion and (·)H is Hilbert-Schmidt space. However,
the mapping operator K(x, ·) is implicit. In other
words, the reconstructed features cannot be ob-
tained explicitly. To mitigate this issue, we use
Random Fourier Feature (RFF) (Rahimi and Recht,
2007), inspired by Zhang et al. (2021), to approx-
imate the kernel function. The function space of
Random Fourier Features is denoted asH with the
following form:

H = {h :x→
√
2 cos(ωx+ ϕ) |

ω ∼ N(0, 1), ϕ ∼ U(0, 2π)}
(2)

where ω and ϕ are sampled from any distribution.
For the i-th variable Zi and the j-th variable Zj

of the feature space (Zi and Zj are represented
by A and B for simplicity), we sample nA and
nB mapping functions from H and denote them
as u = {uk}k∈[1,nA] and v = {vk}k∈[1,nB]. Thus,
the reconstructed features u(A) of feature A can
be represented as Eq. (3) and v(B) of feature B
follows the same rule.

u(A) = (u1(A), . . . , unA(A)) , uk(·) ∈ HRFF , ∀k, (3)

By mapping the two features A and B to the
reconstructed space through RFF, only linear de-
pendencies between u(A) and v(B) remain.

Weighted Re-sampling for Feature
Decorrelation
We use cross-covariance operator ΣXY to measure
the independence between features as follows:

⟨g,ΣYXf⟩H2
= EXY [f(X)g(Y )]−
EX [f(X)]EY [g(Y )]

(4)

Specifically, for u(A) and u(B), the cross-
covariance ΣAB between the distributions can be
calculated by their unbiased empirical estimation
with the following form:

ΣAB = 1
n−1

∑n
i=1

[(
u (Ai)− 1

n

∑n
j=1 u (Aj)

)T
·

(
v (Bi)− 1

n

∑n
j=1 v (Bj)

)]

(5)

Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2007) uses the squared Hilbert-
Schmidt norm of ΣAB to test the independence of

random variables. In the Euclidean space which the
reconstructed space belongs to, Hilbert-Schmidt
norm degenerates to the equivalent Frobenius norm
(Zhang et al., 2021). Thus, we use Frobenius norm
to calculate the linear correlation between the re-
constructed features.

Suppose P (A,B) is denoted as the joint distri-
bution of featuresA and B. Due to the complicated
correlation between A and B, P (A,B) cannot be
obtained by their respective marginal distributions,
which means P (A,B) ̸= P (A)·P (B). Inspired by
the Acceptance-Rejection Sampling method (Naes-
seth et al., 2017) which reparameterizes the tar-
get distribution function from the standard normal
distribution by introducing the proposal distribu-
tion, we use the normalized weight function instead
of the rejection process to obtain a linearly inde-
pendent weighted marginal distribution from the
original complex joint distribution. Specifically,
consider a probability density function with the
independent marginal distributions of A and B as
Q(A,B) = Q(A) · Q(B), the Q can be fitted by
the proposal distributionP and the normalized sam-
pling weight is denoted as follows:

w(x) =
Q(§)
τP(x) (6)

where x ∈ H(A,B) and τ is a normalization con-
stant with the following form:

τ−1 =
∫

x∈H(A,B)
w(x)dx (7)

Thus, the linear dependencies between recon-
structed features can be removed by the normalized
weight function as follows:

w(x) · x(A,B) ∼ τw(x) · P (x) = Q(A) · Q(B) (8)

In practice, we use the training dataset to learn
the optimal sampling weights. Through Eq. (5)
and Eq. (8), the cross-covariance with weighted
re-sampling can be estimated as:

Σ̃AB;w = 1
n−1

∑n
i=1

[(
wiu (Ai)− 1

n

∑n
j=1 wju (Aj)

)T
·

(
wiv (Bi)− 1

n

∑n
j=1 wjv (Bj)

)]

(9)

As aforementioned, we use Frobenius norm
to measure the correlation between features (i.e.,∥∥∥Σ̃AB;w

∥∥∥
2

F
). Thus, by optimizing w in the training

process, both nonlinear and linear dependencies
between features of the feature space can be elimi-
nated. Specifically, the correlation between the two
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variables Zi and Zj of the feature space is repre-

sented as
∥∥∥Σ̃ZiZj ;w

∥∥∥
2

F
. Therefore, the re-sampling

weight w can be optimized as follows:

w∗ = argmin
w∈W

∑

1≤i<j≤mZ

∥∥∥Σ̃ZiZj ;w
∥∥∥
2

F
(10)

where W =
{
w ∈ Rn+ |

∑n
i=1wi = n

}
and mZ

denotes the dimension of space Z . We use a mini-
batch to update the global weight repeatedly during
the optimization process. Moreover, the optimiza-
tion objective function for encoder f and classifier
c can be expressed as:

f∗, c∗ = argmin
f,c

n∑

i=1

wiL(c(f(Xi)), yi) (11)

where L(·, ·) is the cross entropy loss function.

3.2 Feature Purification via Local
Information

For better generalization, we propose to purify the
decorrelated global features from an information
theoretic perspective. Specifically, we find the use-
ful local features by a saliency-map-based method
and purify the decorrelated global features with
these local features by mutual information (MI).

Inspired by Han et al. (2020), we measure the
significance of all local features of the sentence by
computing the absolute value of the partial deriva-
tive of loss w.r.t. these local features. The gradient
of each local feature can be calculated as:

G(T i) = ∇T iℓ (f(T ), y) (12)

where T i is the i-th feature of the local features T .
We consider the part of the local features with the
smallest values as the useless local features (e.g.,
stopwords and punctuation) which carry limited
information and cannot be used to make predictions
(Wang et al., 2020). Therefore, the information of
such useless features should not be encoded into
the global features of a sentence.

After feature filtering, we treat these remaining
local features as useful local features that are signif-
icant to the label (Wang et al., 2020), and use them
to purify the decorrelated sentence representation
by mutual information. Specifically, by maximiz-
ing the mutual information between the useful local
features and the decorrelated sentence representa-
tion, the useful features are retained and the useless
features are compressed. In practice, we simply

examine the ℓ2 norm of the gradient G(T i) of each
local feature T i. The optimization goal can be
expressed as:

argmax
f,c

α

M∑

j=1

I(T j ;Z) (13)

where α is a hyper-parameter to control the trade-
off, T j is the above-mentioned useful local seman-
tic feature, and M is the number of remaining fea-
tures. In addition, due to the intractability of com-
puting MI, we use InfoNCE (Oord et al., 2018) as
the lower bound of MI to approximate I(T j ;Z).

Combining Eq. (11) and Eq. (13), the overall
optimization goal can be as follows:

f∗, c∗ = argmin
f,c

n∑

i=1

(wiL(c(f(Xi)), Yi)−

α
M∑

j=1

Î(InfoNCE)(fT (X
j
i ); f(Xi)))

(14)

w∗ = argmin
w∈Wn

∑

1≤i<j≤mZ

∥∥∥Σ̃ZiZj ;w

∥∥∥
2

F
(15)

where fT (·) is the function (i.e., the BERT embed-
ding layer) that obtains the local features.

4 Experiments

In this section, we conduct extensive experiments
to demonstrate (1) DePro outperforms the state-
of-the-art comparative approaches; and (2) Both
feature decorrelation and feature purification can
improve the model’s generalization ability.

4.1 Datasets
We conduct experiments on two well-studied NLU
tasks including Natural Language Inference and
Fact Verification to evaluate DePro. Natural Lan-
guage Inference aims to infer the relationship be-
tween the premise and hypothesis. For this task, we
use MNLI (Williams et al., 2018) as our ID data,
MNLI-hard (Gururangan et al., 2018) and Heuristic
Analysis for NLI Systems (HANS) (McCoy et al.,
2019) as our OOD test set. Fact Verification aims
to verify a claim by the evidence document. For
this task, we use FEVER (Thorne et al., 2018) for
ID evaluation and FEVER Symmetric (Schuster
et al., 2019) (version 1&2) as our OOD test set.

Specifically, we report the main results and ab-
lation studies on the test set and evaluate all the
sensitivity analyses on the development set. How-
ever, for the MNLI dataset, only the train set and
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Method
MNLI FEVER

ID MNLI-hard HANS ID Symm. v1 Symm. v2

BERT-base 84.3 75.9 61.1 85.4 55.2 63.2

prior knowledge required

Learned-Mixin + H (Clark et al., 2019) 84.2 - 65.8 83.3 60.4 64.9
Reg-conf (Utama et al., 2020a) 84.5 77.3 69.1 86.4 60.5 66.2
Reweight (Clark et al., 2019) 83.5 - 69.2 84.6 61.7 66.5
PoE + CE (He et al., 2019) 83.3 77.6 67.9 85.7 57.7 61.4

prior knowledge NOT required

MCE (Clark et al., 2020) 83.3 77.6 64.4 - - -
Reg-conf (Utama et al., 2020b) 84.3 - 67.1 87.6 59.8 66.0
PoE (Sanh et al., 2020) 81.4 76.5 68.8 85.4 59.7 65.3
MoCaD (Xiong et al., 2021) 81.5 - 70.0 87.4 65.7 69.0

DePro (Our method) 83.2 77.8 70.3 84.5 65.2 69.2
w/o feature decorrelation 84.7 76.8 63.2 85.9 57.5 65.2
w/o feature purification 82.6 77.1 68.7 83.6 64.3 67.9

Table 1: Accuracy results on MNLI and FEVER, and out-of-distribution test sets MNLI-hard, HANS and FEVER
Symmetric (version 1&2). We conduct the ablation study to further validate that our feature decorrelation and
feature purification indeed improve the generalization ability. We compared 8 state-of-the-art debiasing methods
including 4 debiasing methods with known bias and 4 debiasing methods with unknown bias. The hyper-parameters
of BERT are identical for each model in the same dataset.

dev set are publicly available, but not the published
test set. So we split 10 percent of training data into
a dev set dedicated to picking hyper-parameters in
order to avoid overfitting. And the original dev set
of MNLI is used as the test set.

4.2 Implementation
Similar to the majority of current debiasing meth-
ods, we choose the uncased BERT-base model (De-
vlin et al., 2018) as our baseline. For all sentence-
pair classification tasks, we concatenate the two
sentences of one sentence pair into a single se-
quence and use the final-layer [CLS] embedding to
represent the sentence representation. For BERT
hyper-parameters, we use a batch size of 32, Adam
optimizer with the learning rate 5e−5 for the MNLI
dataset and 2e−5 for the FEVER dataset, respec-
tively.

For feature decorrelation, we set the learning rate
of weight to 1e−2 which decays with a rate of 1e−3

for the MNLI dataset, and the learning rate to 5e−2

which decays with a rate of 1e−3 for the FEVER
dataset. For the parameter of Random Fourier Fea-
tures dimension, we have verified through exten-
sive experiments that our method can get the best
performance on HANS, Symm. v1, and Symm.

Method w/o Prior Knowledge End-to-End

MCE (Clark et al., 2019) é
Reg-conf (Utama et al., 2020b) é
PoE (Sanh et al., 2020) é
MoCaD (Xiong et al., 2021) é

DePro (Our method) ✓

Table 2: The structural details of state-of-the-art meth-
ods without the need for prior knowledge.

v2 when the RFF dimensions are four times, two
times, and four times, respectively, that of the orig-
inal feature space. For feature purification, α is
set to 1e−4 to control the trade-off between feature
decorrelation and feature purification.

4.3 Experimental Results
Detection Performance
Table 1 shows the experimental results of De-
Pro and comparative methods on the MNLI and
FEVER datasets, respectively. Through the table,
we can see that DePro can significantly improve the
performance of the two NLU tasks and obtain state-
of-the-art results on OOD datasets. Meanwhile, the
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loss of DePro on ID datasets is not significant com-
pared to other methods. Moreover, we also observe
that the experimental results of the model under
different random seeds have high variance, which
has been demonstrated in previous works (Utama
et al., 2020b). To mitigate this impact, we perform
our experiments with five different seeds and report
the average of these results.
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Figure 2: The results of DePro using different RFF di-
mensions. Meanwhile, the ratios of feature purification
for HANS, Symm. v1, and Symm. v2 are 0.7, 0.7, and
0.6, respectively.

For the NLI task, compared to the baseline
method (i.e., Uncased BERT-base model), De-
Pro improves by 1.9 and 9.2 percentage points
on two OOD datasets MNLI-hard and HANS, re-
spectively. The generalization ability of DePro
on OOD datasets is also promising compared to
other methods that introduce prior knowledge or
unknown prior knowledge. For the Fact Verifica-
tion task, DePro also has the best performance on
the OOD dataset Symm. v2, with 6.0 percentage
points higher than the accuracy of the BERT-base
model. Meanwhile, the performance of our pro-
posed method DePro is second only to MoCaD
(Xiong et al., 2021), which is 0.5 percent lower
when evaluated on Symm. v1. However, MoCaD
is not an end-to-end method, but rather an improved
version of the existing two-stage methods, as shown
in Table 2. On the contrary, DePro is a complete
end-to-end method, which is more flexible while
preserving similar detection capabilities.

In conclusion, DePro outperforms the majority
of state-of-the-art approaches on OOD datasets for
two NLU tasks while the loss in ID datasets is
acceptable.

Ablation Study
We also perform two ablation experiments to check
whether feature decorrelation and purification can
contribute to DePro or not. Through the results

in Table 1, we find that feature decorrelation and
purification can both boost the generalization abil-
ity of DePro. As aforementioned, the essence of
spurious correlation is the subtle dependencies be-
tween relevant and irrelevant features. Therefore,
after removing dependencies between features, we
can mitigate the impact caused by spurious corre-
lations, thus improving the model’s generalization
ability on OOD datasets. The results in Table 1 are
consistent with this situation. On the other hand,
if we directly perform feature purification on the
original features, the model’s performance on ID
datasets can be enhanced. It is reasonable because
feature purification can align the useful local fea-
tures and the sentence representation, so that the
representation generated by the model is more in-
dependent of useless local features, allowing the
model to focus on the useful parts of the training
data. After combining feature decorrelation with
feature purification, DePro can achieve state-of-
the-art performance on distinguishing samples in
OOD datasets. Such results indicate that compared
to aligning uncorrelated sentence representation,
using feature purification on decorrelated repre-
sentation enables sentence representation to better
align the useful local features while staying away
from the useless local features.

In conclusion, both feature decorrelation and fea-
ture purification can improve the detection ability,
but if we can first remove the dependencies be-
tween features and then purify these decorrelated
features, the generalization ability of the model can
be improved to the level of state-of-the-art.
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Figure 3: The results of DePro using different purifica-
tion ratios. Meanwhile, the RFF dimensions for HANS,
Symm. v1, and Symm. v2 are 4x, 2x, and 4x, respec-
tively.

Sensitivity Analysis
In this part, we further explore the effect of the map-
ping dimension size of RFF and the degree of fea-
ture purification on the generalization ability of the
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model. Specifically, we choose six different RFF
dimensions and nine different purification ratios to
commence our study. Due to the limited pages, we
only show the corresponding experimental results
of the best parameters in Figure 2 and Figure 3. For
the NLI task, DePro performs the best when the
RFF dimension is four times that of the original
features and the top 70% of the features are used
for purification. In addition, for the FEVER dataset,
DePro can maintain the best results on Symm. v1
and Symm. v2 when the RFF dimensions are two
times and four times, respectively, that of the origi-
nal features and the top 70% and 60%, respectively,
of the features are used for purification. Through
these two figures, we see that the detection effect
of DePro is different when choosing different RFF
dimensions and different purification ratios. When
the dimension is expanded to a certain number, the
dependencies between features can be easily re-
moved. At this point, when continuing to increase
the dimension, it may bring additional overhead
and impact, making the detection effect decrease
instead.

For feature purification, if too many local fea-
tures are removed, it can make the aligned sentence
representation contain too little information. More-
over, if too many local features are purified, it may
make the sentence representation contain too much
useless information, so that the subsequent clas-
sifier cannot make predictions well based on the
sentence representation.
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Figure 4: The mean of the correlations (i.e., cross-
covariance) between features at different iterations.

Decorrelation Study
Finally, we check whether feature decorrelation can
remove the dependencies between features or not.
Specifically, during the training phase, we record

the mean of the correlations between features at
different iterations. For the baseline experiment,
we use the same RFF mapping functions to map
the features to high-dimensional space. However,
the reconstructed features are only used to calcu-
late the cross-covariance, not to calculate the loss
and optimize the parameters. Through the compar-
ative results in Figure 4, we observe that the cross-
covariance between features can be reduced as the
number of iterations increases in DePro. However,
in the baseline experiment, it barely decreases.

Overall, DePro can effectively remove depen-
dencies between features. In this way, the spurious
correlations can be mitigated at the feature level.

DePro
MNLI FEVER

ID HANS ID Symm. v2

With β-VAE 82.7 67.3 83.6 65.9
With RFF 83.2 70.3 84.5 69.2

Table 3: Evaluation results of the feature decorrelation
phase leveraging Random Fourier Features (Rahimi and
Recht, 2007) and β-VAE (Higgins et al., 2017) on two
tasks, respectively.

4.4 Discussion

In this subsection, we primarily discuss two aspects:
(1) Why we choose Random Fourier Features to
decorrelate features in the feature decorrelation
component; and (2) What distinguishes this work
from prior works that use RFF to decorrelate fea-
tures.

Many works (Rahimi and Recht, 2007; Zhang
et al., 2021; Kingma and Welling, 2014) have
been proposed to improve the generalization of the
model by performing latent representation decor-
relation learning. We compare the performance
of two decorrelation methods RFF (Rahimi and
Recht, 2007) and β-VAE (Higgins et al., 2017) in
our model structure. The performance results are
illustrated in Table 3, which shows that RFF out-
performs β-VAE in our model both in ID and OOD
datasets. In contrast to RFF, VAEs decorrelate the
representation while compressing it, thus damag-
ing the generalization ability. So we choose RFF to
decorrelate the feature representation to obtain the
uncompressed decorrelated representation, which
benefits succeeding feature purification to distin-
guish useful from useless local features.

The distinction between DePro and other RFF-
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based methods (Rahimi and Recht, 2007; Giffon
et al., 2019; Zhang et al., 2021) is that our proposed
method not only uses RFF for feature decorrelation
but also combines two complementary approaches
(i.e., feature decorrelation and feature purification).
These two methods are not mutually exclusive. In
Section 4.3, we analyze the relationship between
these two in detail, that is, the decorrelated fea-
tures can be better purified, allowing the model to
ignore more impurities when purifying useful fea-
tures. Moreover, after feature decorrelation, feature
purification can constrain the model to concentrate
more on useful features rather than useless features.

5 Conclusion

In this paper, to improve the generalization ability
of deep models on OOD datasets, we design an end-
to-end framework called DePro which can elim-
inate spurious correlations and purify the decor-
related features. Extensive experiments on two
well-studied NLU tasks demonstrate the synergis-
tic effect between decorrelation and purification.
After combining them, our method outperforms
state-of-the-art methods in terms of effectiveness.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their helpful comments. We would also
like to thank Feng Cheng, Haoxiang Jia, Wenx-
uan Li, and Yuhao Zhou for their help during
the revision phase of the paper. This work was
partially National Natural Science Foundation of
China (No. 62076069, 61976056), Shanghai Mu-
nicipal Science and Technology Major Project
(No.2021SHZDZX0103).

References
Mauricio A Alvarez, Lorenzo Rosasco, Neil D

Lawrence, et al. 2012. Kernels for vector-valued
functions: A review. Foundations and Trends® in
Machine Learning, 4(3):195–266.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2019. Invariant risk minimization.
arXiv preprint arXiv:1907.02893.

Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul
Choo, and Seong Joon Oh. 2020. Learning de-biased
representations with biased representations. In In-
ternational Conference on Machine Learning, pages
528–539. PMLR.

Emily M Bender and Alexander Koller. 2020. Climbing
towards nlu: On meaning, form, and understanding

in the age of data. In Proceedings of the 58th an-
nual meeting of the association for computational
linguistics, pages 5185–5198.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
2019. Don’t take the easy way out: Ensemble based
methods for avoiding known dataset biases. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4069–4082.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
2020. Learning to model and ignore dataset bias
with mixed capacity ensembles. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 3031–3045.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Luc Giffon, Stéphane Ayache, Thierry Artières, and
Hachem Kadri. 2019. Deep networks with adaptive
nyström approximation. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.
IEEE.

Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song,
Bernhard Schölkopf, and Alex Smola. 2007. A ker-
nel statistical test of independence. Advances in neu-
ral information processing systems, 20.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112.

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov.
2020. Explaining black box predictions and unveil-
ing data artifacts through influence functions. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5553–
5563.

He He, Sheng Zha, and Haohan Wang. 2019. Unlearn
dataset bias in natural language inference by fitting
the residual. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 132–142.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P.
Burgess, Xavier Glorot, Matthew M. Botvinick,
Shakir Mohamed, and Alexander Lerchner. 2017.
beta-vae: Learning basic visual concepts with a con-
strained variational framework. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

2286



Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings.

Gary Marcus. 2018. Deep learning: A critical appraisal.
arXiv preprint arXiv:1801.00631.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3428–3448.

Christian Naesseth, Francisco Ruiz, Scott Linderman,
and David Blei. 2017. Reparameterization gradients
through acceptance-rejection sampling algorithms.
In Artificial Intelligence and Statistics, pages 489–
498. PMLR.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019.
Analyzing compositionality-sensitivity of nli models.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6867–6874.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Ali Rahimi and Benjamin Recht. 2007. Random fea-
tures for large-scale kernel machines. Advances in
neural information processing systems, 20.

Victor Sanh, Thomas Wolf, Yonatan Belinkov, and
Alexander M Rush. 2020. Learning from others’
mistakes: Avoiding dataset biases without modeling
them. arXiv preprint arXiv:2012.01300.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel
Roberto Filizzola Ortiz, Enrico Santus, and Regina
Barzilay. 2019. Towards debiasing fact verification
models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3419–3425.

Zheyan Shen, Peng Cui, Tong Zhang, and Kun Kunag.
2020. Stable learning via sample reweighting. In
Proceedings of the AAAI Conference on Artificial
Intelligence, pages 5692–5699.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2018.
The fact extraction and verification (fever) shared
task. EMNLP 2018, 80(29,775):1.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna
Gurevych. 2020a. Mind the trade-off: Debiasing nlu
models without degrading the in-distribution perfor-
mance. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
8717–8729.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna
Gurevych. 2020b. Towards debiasing nlu models
from unknown biases. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7597–7610.

Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan,
Ruoxi Jia, Bo Li, and Jingjing Liu. 2020. Infobert:
Improving robustness of language models from an
information theoretic perspective. In International
Conference on Learning Representations.

Zhiquan Wen, Guanghui Xu, Mingkui Tan, Qingyao
Wu, and Qi Wu. 2021. Debiased visual question
answering from feature and sample perspectives. Ad-
vances in Neural Information Processing Systems,
34.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Ruibin Xiong, Yimeng Chen, Liang Pang, Xueqi Cheng,
Zhi-Ming Ma, and Yanyan Lan. 2021. Uncertainty
calibration for ensemble-based debiasing methods.
Advances in Neural Information Processing Systems,
34:13657–13669.

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou,
Yue He, and Zheyan Shen. 2021. Deep stable learn-
ing for out-of-distribution generalization. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5372–5382.

Zhihong Zhang, Yiyang Tian, Lu Bai, Jianbing Xiahou,
and Edwin Hancock. 2017. High-order covariate
interacted lasso for feature selection. Pattern Recog-
nition Letters, 87:139–146.

2287



Proceedings of the 29th International Conference on Computational Linguistics, pages 2288–2299
October 12–17, 2022.

Event Causality Identification via Derivative Prompt Joint Learning

Shirong Shen1 and Heng Zhou1 and Tongtong Wu1 and Guilin Qi1∗
1School of Computer Science and Engineering, Southeast University, China
{ssr, zhouheng2020, wutong8023, gqi}@seu.edu.cn

Abstract

This paper studies event causality identification,
which aims at predicting the causality relation
for a pair of events in a sentence. Regarding
event causality identification as a supervised
classification task, most existing methods suf-
fer from the problem of insufficient annotated
data. In this paper, we propose a new derivative
prompt joint learning model for event causality
identification, which leverages potential causal
knowledge in the pre-trained language model
to tackle the data scarcity problem. Specifi-
cally, rather than external data or knowledge
augmentation, we derive two relevant prompt
tasks from event causality identification to en-
hance the model’s ability to identify explicit
and implicit causality. We evaluate our model
on two benchmark datasets and the results show
that our model has great advantages over previ-
ous methods.

1 Introduction

Event causality identification (ECI) is an impor-
tant natural language processing (NLP) task, which
aims at identifying causality between events in sen-
tences. Event causality identification supports a
variety of NLP applications, e.g., machine read-
ing comprehension (Berant et al., 2014) and event
prediction (Radinsky et al., 2012). (Berant et al.,
2014; Radinsky et al., 2012). As shown in Fig-
ure 1, an ECI model identifies the causalities in
sentences S1 and S2: (i) practice cause−→ won in
S1; (ii) attack cause−→ killed in S2. The causality
between events in a sentence mainly contains two
types: explicit causality and implicit causality. For
instance, the causality practice cause−→ won in S1
is an explicit causality, which is triggered by the
explicit cue words in the sentence. ECI models can
take causal cue words as the shortcut for explicit
causality identification. As a contrast, the causality

* Corresponding author.

Figure 1: Examples of different causalities. S1 contains
explicit causality between practice and won. S2 con-
tains implicit causality between killed and attack. S3

has the same patterns with S2, but it does not contain
any causality.

attack cause−→ killed in S2 is an implicit causality,
because none of explicit cue words is mentioned
in S2. And as shown in Figure 1, comparing S2
and S3, we may not always derive the existence
of causality from two highly similar expressions
without explicit cue words. In other words, Implicit
causality must be inferred from the semantics and
contexts of events.

Most existing methods regard ECI as a classi-
fication task, and train customized ECI models
on annotated data by supervised learning (Cheng
and Miyao, 2017; Choubey and Huang, 2017).
However, the large-scale annotated datasets of
ECI are relatively hard to collect, referring to that
the so far largest dataset EventStoryLine (Caselli
and Vossen, 2017) only contains 258 documents
and 4316 sentences. Therefore, ECI models are
challenged by the data scarcity problem in su-
pervised learning. To address this problem, var-
ious methods have been proposed to leverage ei-
ther the augmented dataset (Hashimoto, 2019) or
external knowledge (Liu et al., 2020; Zuo et al.,
2021b,a). Hashimoto (2019) exploit weakly su-
pervised method to construct ECI datasets. Liu
et al. (2020) and Zuo et al. (2021a) attempt to in-
troduce external structure knowledge to identify
causality. However, the model may fail to capture
the differences between the explicit causality and
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Figure 2: ECI can be converted into the form of predict-
ing [MASK] by PLM.

implicit causality without modelling these different
types respectively, especially when the ECI model
is trained with only insufficient annotated dataset.

In this paper, we propose a new Drivative Prompt
Joint Learning (DPJL) method for ECI, which
identifies different causalities effectively without
incorporating either more annotated instances or ex-
ternal knowledge. Firstly, as shown in Figure 2, we
introduce a new prompt-based learning paradigm
to ECI, i.e. converting ECI into a language mod-
elling format and using pre-trained language model
(PLM) to identity causalities. Since PLMs accu-
mulated abundant knowledge (Jawahar et al., 2019;
Yenicelik et al., 2020; Brown et al., 2020) through
the self-supervised training on large-scale corpora,
such a prompt-based paradigm may elicit the po-
tential ECI ability of PLM to remedy the scarcity
of annotated data. Then, we design two derivative
prompt tasks for ECI to identify the explicit causal-
ity and implicit causality: (i) Causal cue Word De-
tection (CWD), which aims to detect the causal cue
word of event pairs in a sentence; and (ii) Causal
Event Detection (CED), which aims to detect the
cause or effect of an event in a sentence. Intu-
itively, CWD is a straightforward way to identify
explicit causality, and CED is helpful to identify im-
plicit causality by capturing the semantic relevancy
between the contextual events. Finally, given the
above intuitions, we further propose a joint learning
method for event causality identification enhanced
by the tasks of CWD and CED. Note that the train-
ing data of derivative tasks are generated from ECI,
without the cost of additional human annotation.
Our contributions are summarized as following:

• We introduce a new prompt-based paradigm
to ECI, and we propose a new derivative
prompt joint learning method which remedies
the problem caused by the scarcity of anno-
tated data. As far as we know, this is the first
time to use prompt-based method for ECI.

• We propose two new derivative tasks in the
joint learning method, i.e., the causal cue
word detection and causal event detection,
to strengthen the ability of an ECI model in
identifying the explicit causality and implicit
causalities respectively. Note that, rather than
using more human-annotation, the proposed
two derivative tasks leverage the annotated in-
stances modified from the dataset of ECI for
training.

• We conduct extensive experiments on two
benchmark datasets of ECI, in which our pro-
posed method DPJL achieves the state-of-the-
art performance with at least 11 percent F1
improvement on both benchmarks.

2 Related Work

Event Causality Identification Event Causality
Identification (ECI) is a crucial information extrac-
tion task. Early causal identification methods in-
clude rule-based methods (Mirza et al., 2014; Riaz
and Girju, 2013; Do et al., 2011) and statistics-
based methods (Beamer and Girju, 2009). Recently,
some benchmarks on the event causality have been
released, e.g. Causal-TimeBank (Mirza and Tonelli,
2014), EventStoryLine Corpus (Caselli and Vossen,
2017) and BECAUSE (Dunietz et al., 2015). Based
on these annotated datasets, a number of supervised
learning-based methods of ECI have emerged (Kru-
engkrai et al., 2017; Kadowaki et al., 2019). How-
ever, the scale of labeled data in most datasets is
relatively small. To solve this problem, Hashimoto
(2019) exploited weakly supervised method to con-
struct ECI datasets. Some methods introduce addi-
tional knowledge to strengthen the ECI model (Liu
et al., 2020; Zuo et al., 2021b,a). Zuo et al. (2020)
improved the performance of ECI with distantly
supervised labeled training data. These methods in-
troduce the pre-trained language model to generate
the high-quality text coding required by the ECI
model. But these methods ignore the potential abil-
ity of pre-training language model to identify the
causality between events, and may fail to capture
the differences between the explicit and implicit
causalities in a low-resource scenario without mod-
elling these two types of causalities respectively.
Prompt-based learning Recently, pre-trained lan-
guage models like GPT (Radford and Narasimhan,
2018) , BERT (Devlin et al., 2019) , RoBERTa (Liu
et al., 2019) and T5 (Raffel et al., 2020) can cap-
ture rich knowledge (Jawahar et al., 2019; Yenice-
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lik et al., 2020) from massive unlabeled corpora.
But there is a big gap between pre-training ob-
jectives and fine-tuning objectives, that is, down-
stream tasks still need to build task-specific models
after PLMs, and use task-specific annotated data
to fine-tune them. To solve this problem, prompt-
based method (Brown et al., 2020) converts the
downstream task into the same form as pre-training
task. To better build task prompts, automatic search
of discrete prompts (Gao et al., 2021), gradient-
guided search (Shin et al., 2020) and continuous
prompts (Li and Liang, 2021) are successively pro-
posed. To the best of our knowledge, there is no
work that uses prompt-based method for ECI task.
However, only using prompt-based methods lacks
the modeling of different causalities mentioned
above.

3 Methodology

In this section, we first introduce problem definition
of event causality identification. Then we will show
the overview of our proposed model. After that,
we introduce a prompt-based ECI method to elicit
knowledge from PLMs. Then, we describe the
details of two derivative prompt tasks and the joint
learning method of derivative prompts. Finally, we
introduce the training and prediction process of our
model.

3.1 Problem Definition

Given x = (S, (es, et)) as an instance of ECI task,
where S is a sentence and (es, et) is an event pair in
S. Y is the set of causal labels indicating whether
there is a causality between event pairs. For an
instance x, the purpose of an ECI model is to
predict the causal label y ∈ Y between es and
et. The traditional approaches formulate ECI as
a binary classification problem. In order to learn
the feature of different causalities better, we set
Y : {Cause, Causedby,NA}, which respectively
mean that es causes et, es is caused by et and there
is no causality between (es, et). The output of our
ECI model is a ternary vector corresponding to the
probabilities of the three labels. In order to unify
with the previous method, Cause or Causedby both
indicate that there is a causality between events.

3.2 Overview

The overview of our approach is shown in Fig. 3.
We convert the ECI task into a mask language
prediction task, and use an excellent pre-trained

masked language model (MLM) named RoBERTa
(Liu et al., 2019) to encoder the input sequence
and output prediction results. The reason we use
MLM is that MLM can make good use of context
information and we can flexibly design prompt tem-
plates for it. We design two derivative prompt tasks
to make our model capture the different abilities
of identifying different kinds of causalities. The
prompts for all tasks are spliced after the input
sentence as the input of RoBERTa. Finally, we
use RoBERTa’s MLM head to make predictions
through a joint learning method.

3.3 Prompt-based Event Causality
Identification

For a given instance x = {S, (es, et)}, the key to
converting ECI task into MLM task is to construct
an appropriate prompt template TECI(x) and de-
termine the label words V . TECI(x) spliced after
the input sentence S is used to prompt the PLM to
predict the causality between event pair (es, et). V
refers to a set of words in the vocabulary of PLM
that corresponds to the labels of the ECI task. A
[MASK] token is placed into TECI(x) for PLM to
fill the label words. There may be many kinds of
templates as shown in Figure 2 for ECI, it is not
sure which one is most suitable for ECI task. So
we add some new learnable tokens to one template
to make it dynamically adapt to the task during the
model’s training process. Since the words in PLM
vocabulary may fail to represent the abundant se-
mantic knowledge in causal labels, so we use three
virtual words corresponding to three labels form
V as in the previous work (Li and Liang, 2021).
Finally, the prompt template and label words for
ECI is formalized as follows:

TECI(x) :In this sentence, ‘es’ <c> [MASK]
</c> ‘et’. [SEP]

V :{Cause,Causedby,NA}

where <c>, </c> and virtual words in V are the
new learnable tokens added into the vocabulary
of PLM, [SEP] is the token indicating the end
of the sentence. Each new token has an embed-
ding with the same size as the embeddings of orig-
inal word in the dictionary. Using Cause and
Causedby allows the model to learn the direc-
tional features of the causality. We use an injective
mapping M : Y → V to connect causal labels
to label words, each causal label is mapped to a
label word with the same name. Then we expand
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Figure 3: Overview of our derivative prompt joint learning (DPJL). The dashed box above shows the prompt
template for each task. The dashed box in the middle shows the correspondence between different token and color
blocks. The dashed box below shows the overall framework of DPJL.

the MLM head layer of PLM with the V and use
the probability distribution over V at the [MASK]
position as the probabilities of causal labels. For-
mally, for an instance x, we first splice [CLS] and
[SEP] on both sides of S to fit the input form
of RoBERTa. The probability of its causal label
p(y|x) is:

pMLM_head([MASK] =M(y|S′+TECI(x)) (1)

where pMLM_head represents the probability dis-
tribution predicted by MLM head layer, ‘+’ means
sequence splicing, S′ = [CLS]S[SEP].

3.4 Derivative Prompt Tasks
We design two derivative prompt tasks for ECI to
elicit the abilities to identify explicit causality and
implicit causality from PLM. For explicit causal-
ity, ECI model need the ability to detect causal
cue words of given event pair. For implicit causal-
ity, ECI model need the ability to comprehensively
analyze event semantics and context. So we de-
sign the following two derivative tasks, that is: (i)
Causal cue word detection (CWD): Given an in-
stance x = (S, (es, et)), CWD aims to detect the
cue word in S which triggers the causality between
(es, et); (ii) Causal event detection (CED): Given
an instance x = (S, es) where es is an event within
sentence S, CED aims to detect the event in S
which has a causality with es.

To elicit the corresponding abilities from PLM,
we also set prompts for the two derivative prompt

tasks as follows:

TCWD(x) : The cue word of ‘es’ Cause ‘et’

or ‘es’Causedby ‘et’ is [MASK].

[SEP]

TCED(x) : According the [CLS], ‘es’ Cause

[MASK], ‘es’ Causedby [MASK].

[SEP]

The targets of the two tasks are the specific words in
the input sentence. If a [MASK] has no correspond-
ing answer in the S, its target word is nothing,
and if the answer word is longer than one word,
the target is the first token of answer. The train-
ing data of derivative tasks are generated from the
original dataset annotated for ECI, please refer to
Section 4.2 for more details. We can splice the
prompts of derivative task behind the input sen-
tence and use the MLM head layer to predict the
probability distribution over PLM’s vocabulary at
different masked positions as the results of these
tasks. Because of the huge vocabulary space, it is
possible for PLM to generate words that are not
included in sentences. So that, we constrain the
candidate vocabulary to the VS by setting logits
of extraneous words to -inf, where VS contains
nothing and the tokens in S.

3.5 Joint Learning
In this section, we will introduce the joint learn-
ing method for derivative tasks and ECI. Firstly,
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as shown in Figure 3, we reuse the label words
Cause and Causedby in the prompts of deriva-
tive tasks and we concatenate all prompts after S′

as the input of RoBERTa (i.e. S′ + TECI(x) +
TCED(x) + TCWD(x)), all tasks will be predicted
and trained simultaneously. On the one hand, the
three tasks can share semantics with each other by
PLM. On the other hand, learnable label word em-
bedding can be trained during the training of the
derivative tasks. Secondly, we set up two gate units
as the highway for building the association ECI
and derivative tasks. Although the language model
can share contextual information, due to the large
parameter scale of it, the annotated samples of ECI
may not be enough to build the association between
ECI and derivative tasks. Specifically, we use the
[SEP] tokens in TCED(x) and TCED(x) to rep-
resent the overall semantics of the two derivative
prompts. Then we use a gate unit to integrate the
semantic information of CWD and CED, and tune
the hidden features of the [MASK] corresponding
to ECI through another gate unit as follows.

g1 = σ(W 1
g [h

CWD
[SEP ];h

CED
[SEP ])

h̃CED[SEP ] = (1− g1)hCWD
[SEP ] + g1h

CED
[SEP ]

g2 = σ(W 2
g [h

ECI
[MASK]; h̃

CED
[SEP ]])

h̃ECI[MASK] = (1− g1)hECI[MASK] + g1h̃
CED
[SEP ]

(2)

where hCWD
[SEP ] and hCED[SEP ] means the hidden fea-

tures of [SEP] in CWD prompts and CED
prompts, hECI[MASK] is the hidden feature of the
[MASK] corresponding to ECI, each hidden fea-
ture is generated by RoBERTa. W 1

g and W 2
g are

trainable parameters for gate units, σ is the sigmoid
activation function maps variables between (0, 1).
h̃ECI[MASK] will replace hECI[MASK] as input to MLM
head and predict the probability of label words via
equation (1). This method effectively builds the
link between ECI and derivative tasks without af-
fecting the encoding process of PLM.

3.6 Training and Prediction
We perform supervised training on three tasks si-
multaneously. We use the cross entropy function to
calculate the losses of all tasks, multiply the losses
of derived tasks by 0.1, and add them to the losses
of ECI as the objective function. In CED task,
given a sample may have multiple golden answers,
we calculate the averaged cross-entropy loss for
each predicted answer. In addition, for each input
instance, we have a 10% probability of filling the

corresponding [MASK] positions with the correct
answers of the derivative tasks to speed up the train-
ing process. In prediction stage, the target positions
in the derivative tasks are all [MASK] tokens, and
we only predict the probability distribution of the
label words of the ECI task by Eq (1).

4 Experiments

Our experiments aim to verify (1) whether the
prompt-based method can improve the generaliza-
tion of the ECI model, and (2) whether the joint
learning of derivative prompts can enhance the
model’s ability to identify different causalities. Our
source code is available on Github1

4.1 Dataset and Metrics
We perform our method on two main benchmarks,
including: EventStoryLine v0.9 (ESC) (Caselli
and Vossen, 2017), which contains 258 docu-
ments, 4316 sentences, and 1770 causal event pairs;
Causal-TimeBank (CTB) (Mirza and Tonelli, 2014)
which contains 184 documents, 6813 events, and
318 causal event pairs. Same as previous meth-
ods (Gao et al., 2019; Zuo et al., 2021b,a), we use
the last two topics of ESC as the development set
for two datasets, and conduct 5-fold and 10-fold
cross-validation on ESC and CTB respectively. For
evaluation, we adopt Precision (P), Recall (R), and
F1-score (F1) as evaluation metrics. All the results
are the average of three independent experiments.

4.2 Experimental Settings
Training Details. In implementations, we use
the RoBERTa2 with an open pre-trained param-
eters3 for our method, which has 12-layers, 768-
hiddens, and 12-heads. Each of new tokens added
in RoBERTa have 768-dimensional embedding.
The size of W 1

g and W 2
g are 1536× 1. We set the

learning-rate of pre-trained parameters and new pa-
rameters as 1e-5 and 1e-4 respectively. We use the
causal signal given in the annotated datasets
of ECI as the cue word to construct the training
data of CWD, and use the causal event pairs in the
annotated datasets of ECI to construct the training
data of CED. We adopt a negative sampling rate
of 0.5 for training our model, and the batch size
for training is 16. And we apply the early stop and
AdamW gradient strategy to optimize all models.

1If the paper is accepted, a link to the code repository will
be published.

2https://pytorch.org/hub/pytorch_fairseq_roberta/
3https://huggingface.co/roberta-base/tree/main
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Compared Methods. We compare our methods
with previous state-of-the-art works. For ESC, we
prefer the following methods: LSTM (Cheng and
Miyao, 2017), a dependency path based sequential
model. Seq (Choubey and Huang, 2017), a se-
quence model with human designed feaures. LR+
and ILP (Gao et al., 2019), ECI models adopt
document structure. For CTB, we prefer the fol-
lowing methods: RB (Mirza and Tonelli, 2014), a
rule-based system for ECI. DD (Mirza and Tonelli,
2014), a data driven machine learning based system.
VR-C (Mirza, 2014), a verb rule based model with
data filtering and gold causal signals enhancement.

In addition, we also compare SOTA methods
based on pre-trained language models and intro-
ducing external knowledge: MM (Liu et al., 2020),
the BERT-based SOTA method with mention mask-
ing generalization. KnowDis (Zuo et al., 2020),
a distantly supervised method for ECI. LearnDA
(Zuo et al., 2021b), a learnable knowledge-guided
data augmentation method for ECI. CauSeRL
(Zuo et al., 2021a), a self-supervised representa-
tion learning enhanced ECI method. For a fair
comparison, we set up two baseline models based
on RoBERTa: RoBERTa-base, a RoBERTa-base
baseline, we use a linear classifier after RoBERTa
for ECI, the input of the classifier is the hidden
feature of target events. Prompt-base, a prompt-
based baseline, our basic proposed ECI method
mentioned in Section 3.3.

4.3 Main Results

Table 1 and Table 2 show the experimental results
on ESC and CTB respectively. From these results:

Methods P R F1
LSTM(Cheng and Miyao, 2017) 34.0 41.5 37.4
Seq(Choubey and Huang, 2017) 32.7 44.9 37.8
LR+(Gao et al., 2019) 37.0 45.2 40.7
ILP(Gao et al., 2019) 37.4 55.8 44.7
MM(Liu et al., 2020) 41.9 62.5 50.1
KnowDis(Zuo et al., 2020) 39.7 66.5 49.7
LearnDA(Zuo et al., 2021b) 42.2 69.8 52.6
CauSeRL(Zuo et al., 2021a) 41.9 69.0 52.1
RoBERTa-base(ours) 40.8 64.7 50.0*
Prompt-base(ours) 53.6 68.3 60.0*
DPJL(ours) 65.3 70.8 67.9*

Table 1: Main results on ESC. * denotes a significant
test at the level of 0.05.

(1) Our DPJL method outperforms all other ECI
methods, and achieves the best F1 on both datasets,
67.9% on ESC and 64.6% on CTB respectively.

Methods P R F1
RB(Mirza and Tonelli, 2014) 36.8 12.3 18.4
DD(Mirza and Tonelli, 2014) 67.3 22.6 33.9
VR-C(Mirza, 2014) 69.0 31.5 43.2
MM(Liu et al., 2020) 36.6 55.6 44.1
KnowDis(Zuo et al., 2020) 42.3 60.5 49.8
LearnDA(Zuo et al., 2021b) 41.9 68.0 51.9
CauSeRL(Zuo et al., 2021a) 43.6 68.1 53.2
RoBERTa-base(ours) 40.3 58.2 47.6*
Prompt-base(ours) 49.7 69.4 57.9*
DPJL(ours) 63.6 66.7 64.6*

Table 2: Main results on CTB. * denotes a significant
test at the level of 0.05.

Specifically, DPJL outperforms the previous SOTA
method by at least 10 percentage points. It illus-
trated that prompt-based methods with derivative
prompts joint learning can effectively elicit causal
knowledge in PLMs, thus greatly improve the per-
formance of the ECI model.

(2) The experimental results of KnowDis,
LearnDA, and CauSeRL show that the introduction
of different external knowledge and the method of
introducing external knowledge can affect the per-
formance of the ECI model. We note that the perfor-
mance of Prompt-base and DPJL is higher than that
of other knowledge-enhanced methods. It shows
that eliciting causal knowledge from PLMs is more
beneficial to ECI than the previous approach of in-
troducing external knowledge. The reason may be
that previous methods do not fill the gap between
external knowledge and true causal representation
well, and prompt-based method can directly con-
vert the underlying causal knowledge of PLMs into
the ability of causal identification.

(3) RoBERTa-base outperforms the methods
without RoBERTa, which illustrates the superior-
ity of RoBERTa. RoBERTa-base is not as good
as LearnDA and CauSeRL, which illustrates that
simply fine-tuning PLMs cannot completely cover
the knowledge required for ECI. Prompt-base and
DPJL outperform RoBERTa-base, indicating that
prompt-based methods can elicit the potential of
PLM to solve ECI better than fine-tuning.

(4) Comparing DPJL and Prompt-base, we no-
tice that DPJL is significantly better than Prompt-
base. It is illustrated that joint derivative prompts
can elicit more useful knowledge from PLMs for
ECI. In addition, the improvement of DPJL of ESC
is more obvious than that of CTB. The reason is
that ESC has more labeled data, which is beneficial
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for training the label word embeddings in derivative
prompts joint learning.

4.4 Ablation Experiment

To illustrate the effect of label words reuse and
gate units in DPJL, we set up ablation experiments.
Different experimental settings are indicated with
subscripts, where Full represents the full method
of DPJL, w/o. and w/. in subscript mean with
and without respectively, reuse and gate mean
label words reuse and gate units of this paper. The
ablation results are shown in Table 3 and Table 4.
In addition, to verify the generalizability of each
derivative prompt task in our method, we adopt two
more additional datasets for further ablation studies,
i.e., EventStoryLine v1.5 (ESC v1.5) (Caselli and
Inel, 2018) 4 and BECAUSE (Dunietz et al., 2017)
5. The specific experimental results are shown in
the Appendix A.

Methods P R F1 ∆

Prompt-base 53.6 68.3 60.0* -
DPJLw/o.reuse−w/o.gate 55.5 68.9 61.4* +1.4
DPJLw/.reuse−w/o.gate 59.9 69.3 64.5* +4.5
DPJLw/o.reuse−w/.gate 62.2 68.8 65.3* +5.3
DPJLFull 65.3 70.8 67.9* +7.9

Table 3: Ablation results on ESC. * denotes a significant
test at the level of 0.05. ∆ means the points higher than
Prompt-base.

Methods P R F1 ∆

Prompt-base 49.7 69.4 57.9* -
DPJLw.o./reuse−w/o.gate 50.2 70.4 58.6* +0.7
DPJLw./reuse−w/o.gate 52.1 71.2 60.1* +2.2
DPJLw.o./reuse−w/.gate 62.5 63.6 63.0* +5.1
DPJLFull 63.6 66.7 64.6* +6.7

Table 4: Ablation results on CTB. * denotes a significant
test at the level of 0.05. ∆ means the points higher than
Prompt-base.

Effect of Derivative Prompts. Comparing Prompt-
base with DPJLw/o.reuse−w/o.gate, despite simply
splicing the derivative prompt after the sentence,
the model performance has improved. It illustrates
that the derivative prompts contain the knowledge
for identifying causality and this knowledge can
assist Prompt-based ECI through context. In the
same way, all the methods using derivative prompts
are better than Prompt-base, indicating that adding

4http://github.com/tommasoc80/EventStoryLine
5http://github.com/duncanka/BECAUSE

derivative prompts is an effective method to im-
prove prompt-based ECI model.

Figure 4: The accuracy of explicit set.

Figure 5: The accuracy of implicit set.

Effect of Gate Units. On both datasets, the meth-
ods with gate units outperform the methods with-
out gate units whether the label words are reused
in derivative prompts or not. This proves that gate
units can provide a highway linking the ECI model
and derivative prompts, which can better utilize the
information in derivative prompts to improve the
performance of causality identification in the case
of a small number of training samples.

Effect of Label Word Reuse. On both ESC and
CTB, the methods with label words reuse out-
perform the methods without label words reuse
whether with or without gate units. It illustrates
that reuse label words in derivative prompts can use
the encoding process of the RoBERTa to strengthen
the learning of the label word embeddings, and at
the same time, the label words can obtain the se-
mantic features of implicit and explicit causalities
through derivative prompts. It is worth noting that
the effect of label word reuse on CTB is not as
obvious as that on ESC, which may be due to the
fact that there are fewer training samples in CTB
which cannot fully train the word embeddings of
label words.
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Samples Characteristics Prompt-base & CED & CWD DPJL

1 Iraq said it invaded Kuwait because of disputes over oil and money. Simple  causality P P P P

2 Fans and family mourn her passing , but Williams had a long , full life Implicit  causality O P O P

3
The general strike was staged as a protest against a new round of draconian 

austerity measures. 

New cue 

word/Semantic 

association
O P P P

4

Mr. Potach notes older , more traditional groups like the Ku Klux Klan are 

also opening new chapters , thanks in part to their ability to use new 

technologies like the Internet .

New cue word O O P P

Figure 6: Case study. Bold words are target events, and underlined words indicate causal cue words. & CED and &
CWD represent CED and CWD used in training, respectively.

4.5 Effect of Derivative Tasks on Implicit and
Explicit Causalities

To illustrate the effect of derivative tasks on implicit
and explicit causalities respectively, we divide the
test data into implicit set and explicit set accord-
ing to whether the test data contains causal cue
words. The samples in implicit set contain implicit
causalities and the samples in explicit set contain
explicit causalities. Then we limit the kinds of
derivative prompts in the model, where Prompt-
base+CWD means we only use the prompts of
CWD, Prompt-base+CED represents our method
only using the prompts of CED. All methods with
derivative prompts are consistent with DPJL except
for the different types of derived tasks. We report
the accuracy of these methods on both test sets.

As shown in Figure 4, joint CWD can signifi-
cantly improve the accuracy of the model on ex-
plicit set, which proves that CWD can effectively
elicit the ability of PLM to detect causal cue words,
thereby improving the performance of the model
in identifying explicit causalities. A similar phe-
nomenon also occurs in Figure 5, the CED can
effectively improve the performance of prompt-
based ECI model on implicit set. It can also be
found that, joint CED also helps to identify ex-
plicit causality to a certain extent, because CED
not only enhances the understanding of event se-
mantics, but also enhances the understanding of
underlying causal expressions in context.

4.6 Case Study
In order to visually demonstrate the effectiveness of
each of our derivative prompt joint learning method
and the effect of each derivative task, we conducted
a case study. As shown in Figure 6, case 1 is a sim-
ple sample of causality with a causal cue word.
All methods can correctly identify the causality be-
tween target event pair. Case 2 and case 3 show
that the CED task can effectively elicit the causal

semantic knowledge of events in PLM, thus im-
proving the effect of ECI between related events.
However, in case 4, there is no strong semantic rela-
tionship between opening and use, and the causal
cue words thanks did not appear in the training
set, so the method only using CED can’t correctly
identify the causality between the event pairs. Case
3 and case 4 shows that CWD can elicit PLM’s
ability to identify causal cues, and then make the
model show good generalization ability when new
cue words appear. However, the method only with
CWD can’t correctly identify the causality in case
2, which shows that only using CWD cannot ex-
tract implicit causality well. DPJL can correctly
extract all causality, which shows that our proposed
method can strengthen the effect of ECI model ex-
traction to identify explicit causality and implicit
causality at same time by joint two derivative cue
learning tasks.

Finally, the experiments verify that (1) the
prompt-based method can effectively improve the
generalization ability of the ECI model by elicit-
ing causal knowledge in PLMs, and (2) the joint
learning of derivative prompts can strengthen the
model’s ability to identify different causalities.

5 Conclusion and Future Work

In this paper, we first introduced a new prompt-
based paradigm to event causality identification and
proposed a new derivative prompt joint learning
method, i.e, DPJL. The proposed method adopts
two new derivative tasks, i.e., the causal cue word
detection and causal event detection, to strengthen
the ability of an ECI model in identifying the ex-
plicit causality and implicit causality respectively.
The experimental results demonstrate that the pro-
posed method achieves the state-of-the-art perfor-
mance with at least 11 percent F1 improvement on
both of two well-known benchmarks, i.e., EventSto-
ryLine and Causal-TimeBank. Additionally, the
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detailed analysis suggests the effectiveness of joint-
learned prompt-based derivative tasks on perfor-
mance improvement in downstream tasks. In the
future, we will try knowledge-enhanced methods
to construct both of derivative tasks and data for
an ECI model, which may fill the gap between
knowledge and samples.
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A Appendix

We set up external ablation experiments to test the
effect of different derivative tasks on EventStory-
Line v1.5 (ESC v1.5) (Caselli and Inel, 2018) and
BECAUSE (Dunietz et al., 2017). ESC v1.5 is
an updated version of ESC v0.9, which contains
1,204 sentences and 7,778 event pairs, covering 22
news topics. The corpus is annotated by experts
and crowd (Caselli and Inel, 2018). BECAUSE
contains a total of 5380 sentences, and 1803 causal
event pairs. The experimental setting is the same
as that in Section 4.

We compare our proposed DPJL with the fol-
lowing methods: RoBERTa-base, a RoBERTa-
base baseline which uses a linear classifier af-
ter RoBERTa for ECI. The input of the classifier
is the hidden feature of target events; Prompt-
base, a prompt-based baseline, which is our ba-
sic proposed ECI method mentioned in section
3.3; Prompt-base+CED, the method of joint learn-
ing with prompt-base method and CED; Prompt-
base+CWD, the method of joint learning with
prompt-base method and CWD. To show the real
effect of CWD and CED, we use the label words
reuse and gate units of this paper in Prompt-
base+CED and Prompt-base+CWD. The exper-
imental results on ESC v1.5 and BECAUSE are
shown in Table 5 and Table 6.

Methods P R F1 ∆

RoBERTa-base 53.6 64.3 59.3* -
Prompt-base 64.0 64.6 64.3* +5
Prompt-base+CWD 66.5 67.9 67.2* +7.9
Prompt-base+CED 64.4 70.4 67.3* +8.0
DPJLFull 76.9 67.5 71.9* +12.6

Table 5: Experimental results on ESC v1.5. * denotes a
significant test at the level of 0.05. ∆ means the points
higher than RoBERTa-base.

Methods P R F1 ∆

RoBERTa-base 50.0 52.6 51.3* -
Prompt-base 53.7 52.9 53.3* +2
Prompt-base+CWD 52.9 56.2 54.5* +3.2
Prompt-base+CED 61.5 52.6 56.7 * +5.4
DPJLFull 58.8 55.6 57.1* +5.8

Table 6: Experimental results on BECAUSE. * denotes
a significant test at the level of 0.05. ∆ means the points
higher than RoBERTa-base.

DPJL achieves the highest F1 score on both
datasets, which demonstrates the consistent effec-

tiveness of our method. Prompt-based is superior
to RoBERTa-base, which shows that prompt learn-
ing can better elicit causal knowledge in PLM
than simple fine-tunig method in ECI task. The
performance of Prompt-base+CWD and Prompt-
base+CED is better than that of Prompt-based,
which shows that joint both derivative tasks im-
prove the model’s ability to elicit the ability of
ECI from PLM. Prompt-base+CED outperforms
Prompt-base+CWD on BECAUSE, this may be be-
cause BECAUSE pays more attention to evaluating
the ability of the model to identify implicit causal-
ity, while CED can help the ECI model to enhance
the ability to identify the causal semantic associa-
tion between events in PLM by predicting causal
events. DPJL combines two kinds of derivative
tasks, and the performance exceeds that of using
only one kind of derivative task, which shows that
both derivative tasks are meaningful to ECI and
can complement each other.

The experimental results on these two datasets
are consistent with the experimental results in the
main paper. The results show that our method can
adapt to more datasets, and further verifies the ef-
fectiveness of DPJL on ECI task.
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Abstract

Event Causality Identification (ECI), which
aims to detect whether a causality relation ex-
ists between two given textual events, is an im-
portant task for event causality understanding.
However, the ECI task ignores crucial event
structure and cause-effect causality component
information, making it struggle for downstream
applications. In this paper, we explore a novel
task, namely Event Causality Extraction (ECE),
aiming to extract the cause-effect event causal-
ity pairs with their structured event informa-
tion from plain texts. The ECE task is more
challenging since each event can contain mul-
tiple event arguments, posing fine-grained cor-
relations between events to decide the cause-
effect event pair. Hence, we propose a method
with a dual grid tagging scheme to capture the
intra- and inter-event argument correlations for
ECE. Further, we devise a event type-enhanced
model architecture to realize the dual grid tag-
ging scheme. Experiments demonstrate the ef-
fectiveness of our method, and extensive analy-
ses point out several future directions for ECE.

1 Introduction

Event causality (Liu et al., 2020; Cao et al., 2021)
denotes an explicit causal relation between two
events, constituting a specific cause-effect event
pair. As shown in Figure 1, a causal relation exists
between a Price Rise event (The worldwide
rise of oil prices) and a Cost Rise event (in-
creases the cost of international shipping industry).
Understanding such event causality could facilitate
various downstream applications including event
forecasting (Hashimoto et al., 2014), intelligent
search (Rudnik et al., 2019) and question answer-
ing (Costa et al., 2020), which is important for
natural language understanding.

In recent years, it has aroused the research in-
terest for Event Causality Identification (ECI) (Liu
et al., 2020; Cao et al., 2021; Zuo et al., 2021a,b,

∗Corresponding Author

The worldwide rise of oil prices increases the cost of international shipping 
industry and stimulates the demand for new energy such as Ammonia fuel.

No. Event Type
Event Roles

Product Region Industry

(1) Cause Price Rise oil worldwide None

Effect Cost Rise None international shipping industry

(2) Cause Price Rise oil worldwide None

Effect Demand Rise new energy None Ammonia fuel

Causality
Component

Figure 1: Illustration for ECE which takes the raw text
as input, and outputs the structured event causality pair.

2020; Tran Phu and Nguyen, 2021), which aims
to detect whether the causality exists between two
given events. Despite of its success, there exist two
issues that the ECI task fails to address. 1) Event
Structure Missing, where each event in ECI is
only expressed using a word or phrase which re-
flects its occurrence, but ignores the explicit event
type and event arguments (i.e., entities which par-
ticipate in the event). The absence of such event
structure would lose valuable clues for understand-
ing event causality. As shown in Figure 1, “oil”
plays a Product role in a Price Rise-typed
cause event, implying a consequent Cost Rise-
typed effect event towards “shipping industry”. 2)
Causality Component Missing, where ECI only
predicts the existence of causality between the
given event pairs, ignoring to discriminate the spe-
cific cause/effect event causality component. Lim-
ited by these issues, ECI insufficiently explores the
causality between events, which demands further
promotion to the understanding of event causality.

Motivated by discussion about event causality
in CCKS (2021), we therefore formulate a task
termed as Event Causality Extraction (ECE). As
Figure 1 shows, ECE aims to end-to-end extract
the cause-effect event pairs with structured event
information from plain texts. Comparing with ECI,
ECE illustrates the event causality including the
event structure, namely event types and arguments,
and the specific cause-effect causality component,
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making it more informative to support the various
downstream applications (Wang et al., 2021a).

Intuitively, ECE could be achieved by succes-
sively extracting the structured event and then clas-
sifying their causality relation. Unfortunately, such
a paradigm would easily suffer from the redundant
event-pair problem, where the causality-unrelated
events would be inevitably extracted, confusing
the causality decision. Another promising direc-
tion is to borrow ideas from relational triple ex-
traction (RTE), which shares the similar task for-
mulation. However, comparing with the entity-
centric RTE task, the event-centric ECE raises new
challenges: 1) Intra-event Argument Correla-
tions. Specifically, ECE focuses on event, which
is a structure maintaining interactive correlations
among its arguments. For example in Figure 1, the
argument “new energy” and “Ammonia fuel” in the
Demand Rise event have strong semantic cor-
relation. While RTE focuses on individual entity,
thus simply adapting RTE models cannot capture
such correlations to derive the event structure. 2)
Inter-event Argument Correlations. Concretely,
the event arguments involved in a cause/effect
event pair usually show semantic correlations for
causality deduction. As shown in Figure 1, event
Pricing_Rise which occurs in “worldwide”
Region could imply event Cost_Rise in “inter-
national” Region. It demonstrates that the inter-
event argument correlations not only provide im-
portant clues to decide causality, but also benefit
reliable cause/effect event extraction with mutual
confirmation between the cause-effect pair.

In this paper, we propose an effective approach
named DualCor, which explores both the intra-
event and inter-event argument Correlations with
a dual grid tagging scheme for ECE. Specifically,
DualCor contains two grid tagging tables regarding
event types and the input sentence, to respectively
derive the event structures for cause and effect
events. In each table, DualCor extracts structured
event arguments according to different event types,
naturally considering intra-event argument correla-
tions. Further, when predicting the event arguments
in the cause/effect table, DualCor also predicts their
corresponding effect/cause event arguments, serv-
ing as auxiliary arguments to promote inter-event
argument correlations. By confirming the auxiliary
arguments in the other table, DualCor matches re-
liable cause-effect event pairs as predictions. To
realize the above dual grid tagging scheme, we

further devise a type-aware encoder, which refines
textual representations with essential event type
information to enhance argument prediction. We
conduct the dual grid tagging on the type-aware tex-
tual representations to derive the final cause-effect
event pair. Overall, our main contributions include:

(1) To promote the understanding to event causal-
ity, we formulate a new task named Event Causality
Extraction (ECE), which succeeds ECI to push for-
ward the research of event causality understanding.

(2) We propose a novel approach, DualCor, to
exploit the intra-event and inter-event argument
correlations for ECE, and present it as a baseline
to inspire the following research.

(3) Experiments1 on the ECE dataset reflect the
effectiveness of DualCor, and extensive analyses
show potential research directions for future works.

2 Related Works

This paper explores a novel ECE task, which aims
to extract the cause-effect event pairs with struc-
tured event information from plain texts. Existing
event-causality-related researches mostly focus on
event causality identification, which predicts the
causality for the previously given event pairs. They
can be roughly categorized into three groups: (1)
Early works exploit the linguistic features (Riaz
and Girju, 2013; Gao et al., 2019), causal pat-
terns (Hu et al., 2017; Do et al., 2011) and sta-
tistical causal associations (Riaz and Girju, 2014)
to explore the causality between events. (2) Recent
researchers (Liu et al., 2020; Cao et al., 2021; Zuo
et al., 2021a,b, 2020) pay the major focus on in-
corporating external knowledge for causality iden-
tification with limited training data. (3) Different
from works above which conduct ECI within a sin-
gle sentence, Tran Phu and Nguyen (2021) focus on
document-level ECI, where the given events scat-
ter in multiple sentences. Despite of their success,
they all suffer from the issues of event structure
missing and causality component missing. To our
best knowledge, ECE is the first to simultaneously
derive the structured event information and explicit
causality component, which could better support
the downstream applications.

Other than ECE, Relational Triple Extraction
(RTE) (Yu et al., 2020; Cong et al., 2022) has
the similar task formulation, the ideas of which
could actually be adapted for ECE. Concretely,

1Dataset and source code for implementation are available
here: https://github.com/cuishiyao96/ECE
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RTE detects entity pairs in a sentence and predicts
pre-defined relation types between them. Exist-
ing approaches for RTE could be roughly catego-
rized into two lines. (1) Traditional joint methods,
which solve RTE through sequential interrelated
steps via task decomposition (Wei et al., 2020; Yu
et al., 2020; Cong et al., 2020) or sequence gen-
eration (Zeng et al., 2018; Nayak and Ng, 2020).
Unfortunately, these methods all suffer from the
exposure bias (Wang et al., 2020) problem due to
the gap from training to inference between multiple
steps. (2) Unified joint methods, which simultane-
ously derive the triplet entities and relations in one-
stage without cascading between steps, and is thus
free from the exposure bias. These methods solve
RTE in either a sequence-labeling manner (Zheng
et al., 2017) or grid-filling manner (Wang et al.,
2021b, 2020). However, the entity-centric RTE
methods seem to struggle for the event-centric task,
since events present more complicated argument
correlations either intra- and inter events.

3 Task Formulation

Event causality extraction (ECE) aims to derive the
cause-effect event pairs from plain texts. Here, a
cause-effect event pair contains a Cause component
and an Effect component, where each component
denotes an event with a specific event type and its
event arguments with their event roles. Given a
piece of text, an event causality extraction system
is required to predict all the cause-effect event pairs
from it as Figure 1 shows.

4 Dual Grid Tagging Scheme

This section introduces our proposed dual grid tag-
ging scheme for the ECE, including the tagging
scheme and its decoding strategy. The specific
model implementation is introduced in Section. 5.

4.1 Tagging Scheme

In general, we construct two grid tagging tables
respectively for the cause/effect events, where each
table extracts all the possible events occurring in
the sentence. Formally, given an n-token sentence
and m predefined event types, we construct two
m×n grid tables for the cause and effect events re-
spectively. As shown in Figure 2, each row denotes
arguments within the same event type, while each
column denotes tags assigned to the token in the
sentence based on the event type. For each entry
in the tables, we fill it with a tag in the form of

3 4 1 2 3 4 11 12 7 8

Prices of agri. products ... nationwide ... corn  seeds  ... corn planting across the country

Frost
...

Price 
Rise

...
Flood

(a) Grid tagging for in the cause table.

7 8 9 10 5 6 1 2

Prices of agri. products ... nationwide ... corn   seeds ... corn planting across the country

Frost
...

Profit 
Dec

...

Flood

(b) Grid tagging in the effect table.

1 Intra-Region-S 2 Intra-Region-E 3 Intra-Product-S 4 Intra-Product-E

5 Intra-Industry-S 6 Intra-Industry-E 7 Inter-Region-S 8 Inter-Region-E

9 Inter-Product-S 10 Inter-Product-E 11 Inter-Industry-S 12 Inter-Industry-E

Tags Map

(c) Tags map.

Figure 2: Tagging scheme illustration with the sentence
“Prices of agricultural products rose, but the nationwide
soaring prices of corn seeds decreased the profit in corn
planting across the country.”, where the boundary-field
is short as “S” and “E”.

{Cor-Rol-Bdy} consisting of three fields, namely
correlation-field, role-field and boundary-field:

(1) For the boundary-field: Bdy ∈ {Sta, End},
we devise it to denote start and end position of
argument spans. For example in Figure 2(a), we
match the argument “corn seeds” by matching the
Cor-Rol-Sta and Cor-Rol-End tags.

(2) For the role-field: Rol∈{Roli}i (i for role in-
dex), we devise it to denote the event role for each
argument in an event, thus constituting an event
structure. For example in Figure 2(a), we decide the
argument “corn seeds” as a Product-role argu-
ment in Price_Rising-type event based on its
Cor-Product-Bdy tag in Price_Rising row.

(3) For correlation-field: Cor∈{Intra, Inter},
we devise it to denote event argument correlations
in the cause-effect event pair. Specifically, Intra
denotes the arguments belonging to the same event
in the one causality component, while Inter de-
notes the arguments in the other causality com-
ponent. For example, when predicting the cause
event in the cause table, we predict not only the
cause arguments (marked with Intra) with cause
event type, but also the potential effect arguments
(marked with Inter) as auxiliary arguments for
mutual confirmation in causality pair matching. As
Figure 2(a) shows, we not only predict argument
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“corn seeds” with Intra for the Price_Rise-
type cause event, but also predict “corn planting”
with Inter tag as effect event argument. By match-
ing argument “corn planting” with Intra tag in the
effect table, we can derive a Price_Rise-typed
and Profit_Declination-typed event pair.

Building upon the tagging scheme, the model
can naturally extract causality event pairs with their
arguments. Besides, the scheme learns event argu-
ments for each type within separate type row, allow-
ing the model to consider intra-event argument cor-
relations with type-specific information. Moreover,
the tagging scheme enforces the model to extract
arguments in one causality component perceiving
arguments in the other causality component, thus
capturing inter-event argument correlations.

4.2 Decoding Strategy

Based upon the tagging scheme, we introduce the
decoding strategy for the tagging results. Specifi-
cally, we decompose the process into three steps,
including argument span decoding, event structure
decoding and causality pair decoding. Appendix A
also provides figure illustration to these three steps.
Step 1. Argument span decoding. To derive ar-
gument spans for cause/effect events, we adopt
the nearest start-end match principle (Wei et al.,
2020). Specifically, for entry tags having the same
correlation-field and role-field in the same row, we
match the start position to the nearest end posi-
tion according to the position-field to obtain candi-
date argument spans. For example in Figure 2(a),
this step ought to predict “agriculture products”,
“nationwide”, “corn seeds”, “corn planting” and
“across the country” as candidate argument spans.

Step 2. Event structure decoding. To derive
event structure for cause/effect events, we collect
candidate argument spans attached to the same
event type. Specifically, we merge the event ar-
guments with correlation-field Intra belonging
to the same row, resulting in structured candi-
date events. For example in Figure 2(a), given
the candidate argument spans in Step 1, this step
ought to select “agriculture products”, “nationwide”
and “corn seeds” with Intra tags as the candidate
Price_Rising-type cause event arguments.

Step 3. Causality pair decoding. To derive
causality pairs, we match inter-event correlated ar-
guments between candidate cause and effect events.
Specifically, we search the arguments co-occurring
in both event tables simultaneously associating

[CLS] e1 [M1] ... [SEP] Prices... rose,but the ... country [SEP]

Encoding   Layer

Grid Representation Layer Grid Representation Layer

Decoding Decoding

Causality Event Type
Event Roles

Product Region Industry

Cause Price Rise corn seeds nationwide None
Effect Profit Declination None across the country corn planting

Figure 3: A toy illustration to our model architecture.

with correlation-field Intra and Inter, and then
confirm cause-effect event arguments. For exam-
ple in Figure 2(a), given the candidate event ar-
guments in Step 2, this step ought to select “na-
tionwide” and “corn seeds” as the true cause event
arguments, since there also exist “nationwide” and
“corn seeds” with Inter tags in the effect tables
(Figure 2(b)). Similarly, this step also selects “corn
planting”, “across the country” as the arguments in
the Profit_Declination-type effect events.
Accordingly, it predicts the Price_Rise-type
cause and Profit_Declination-type effect
event pair as Figure 3 shows. Note that though
“agriculture product” is also an event argument can-
didate of a Price_Rise-type event in Step 2, it is
not included in the causality pair due to the absence
of Inter correlation in the effect table.

5 Model

In this section, we introduce the model architecture
to implement DualCor as Figure 3 shows.

5.1 Encoding Layer

This layer derives the contextualized representa-
tions of tokens in the sentence and event types. To
facilitate the following event argument prediction,
we intend to conduct event type-aware encoding
which refines textual representations with event
type information. Specifically, we concatenate the
event types ahead of the sentence, and employ
BERT (Devlin et al., 2019) for encoding thanks
to its deep self-attention architectures (Vaswani
et al., 2017). Supposing that a text consisting of
n tokens {t1, t2, ..., tn} and m predefined event
types {e1, e2, ..., em} are given, the input sequence
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is organized in the form as follows:

[CLS] e1 [M1] e2 [M2]... em [Mm] [SEP]t1 ... tn [SEP]
(1)

where [Mj] is the marker for the jth event types ej .
We feed the input sequence into the encoder and
use the output representations H = h1,h2, ...,hn
corresponding to the sentence as token represen-
tations. Then, we gather representations of event
type markers as event type representations, which
is denoted as E = e1, e2, ..., em.

5.2 Grid Representation Layer

This section first details the function for producing
entry representations, and then introduces how to
apply it in both grid tables.

5.2.1 Semantic Fusion Function
Each entry in the grid respectively models the re-
lation between one token and an event type for
event argument deduction. For an entry connecting
the jth event type ej and ith token in the sentence,
its representation gj,i could be obtained via a fu-
sion function φ by integrating the semantics of ti
and ej as gj,i = φ(ej ,hi). Intuitively, φ could be
achieved in various semantic fusion ways includ-
ing concatenation or addition. Considering that
the same event argument span could play different
role in different event types (Sheng et al., 2021),
the decision of event arguments are conditioned on
the event type. Hence, φ should imply the condi-
tional dependency between event types and tokens.
Accordingly, we adopt Conditional Layer Normal-
ization (CLN) (Su, 2019) to implement φ. CLN
is mostly based on the Layer Normalization (Ba
et al., 2016), but it dynamically computes the gain
γ and bias β based on the prior condition instead
of directly deploying them as learnable parameters
in neural networks. Given the event type represen-
tation ej as condition and a token representation
hi, the fusion function φ is achieved via CLN as:

φ(ej ,hi) = CLN(ej ,hi) = γj � (
hi − µi
σi

) + βj ,

γj = Wγej + bγ , βj = Wβej + bβ,
(2)

where µi ∈ R and σi ∈ R are the mean and stan-
dard variance taken across the elements of hi, and
γj ∈ Rd and βj ∈ Rd are respectively the condi-
tional gain and bias. In this way, the event type in-
formation is expressed as conditional information,
and is thus integrated with token representations.

5.2.2 Grid Representation
We employ two semantic fusion functions, φc, φr,
to respectively derive entry representations for the
cause and effect grid table . Each semantic fusion
function is implemented by a layer of CLN, and
thus the entry representation is obtained as:

gcj,i = φc(ej ,hi) = CLNc(ej ,hi),

grj,i = φr(ej ,hi) = CLNr(ej ,hi),
(3)

where gcj,i, g
r
j,i are respectively the entry represen-

tation in the cause and effect table for grid tagging.

5.3 Training and Inference

Since multiple tags could be simultaneously as-
signed towards (ej , ti) in each table, we conduct
multi-label classification upon entry representa-
tions. Specifically, a fully-connected network pre-
dicts the probability of each tag for (ej , ti) as:

pIj,i = sigmoid(gIj,iW
I + bI) (4)

where I ∈ {c, r} is the symbol of grid field de-
noting the cause and effect grid table respectively,
and each dimension of pIj,i denotes the probability
for a tag between (ej , ti). Consequently, we adapt
Cross-Entropy loss as the loss function:

LI = −
m∑

j=1

n∑

i=1

∑

k∈C
I(yIji = k)log(pIj,i[k]),

(5)
where C is the set of predefined tags, pIj,i[k] ∈
[0, 1] is the predicted probability of tag k between
(ej , ti) and yIji is the ground truth tag between
(ej , ti). I is a switching function which equals
to 1 when yIji = k, otherwise 0. Following equa-
tion 5, we obtain losses from both grid tables, and
aggregate them for the final training objective:

J (θ) = Lc + Lr. (6)

For inference, pIj,i is converted into tags whose
probability overweights the scalar threshold τI ∈
[0, 1], which is a manually tuned hyper-parameter.

6 Experiments

6.1 Dataset and Evaluation

Dataset We conduct experiments on the cor-
pus (Tianchi, 2021) released by China Conference
on Knowledge Graph and Semantic Computing
2021 (CCKS2021). The corpus comes from the
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public news and reports, containing 7,000 sen-
tences with an average length of 104 tokens. It an-
notates 15,816 events containing 7908 event causal-
ity pairs, covering 39 types of events and 3 types
of event roles, namely Product, Region and
Industry. To adapt this corpus into ECE task,
we divide the corpus into training/validation/test
set based on Cause-Effect event types. Specifically,
CCKS2021 is divided into training/validation/test
set with the proportion of 8 : 1 : 1. We rename the
split dataset as ECE-CCKS.
Evaluation We evaluate our model using Precision
(P), Recall (R) and Micro-F1 (F1) of three met-
rics. (1) Event Argument Extraction (EAE) Met-
ric evaluates the model’s ability to extract event
arguments of interests. Like prior works (Yang
et al., 2019), an argument is correctly predicted
when its event type, span and event role simulta-
neously match the gold label. (2) Cause-Effect
Type (CET) Metric measures whether both the
predicted cause and effect event type match the
golden answer. (3) Event Causality Extraction
(ECE) Metric synthesizes the above two metrics,
where an argument in ECE is correctly extracted
when its predicted cause-effect event type, span
and event role simultaneously meet the gold label.

6.2 Implementation Details
We employ BERTbase (Devlin et al., 2019) as the
encoder for our model and baselines. For DualCor,
we manually tune all the hyper-parameters on the
validation set. AdamW with learning rate of 3e-
5 is adopted for model optimization. The model
is trained 10 epoches with batch size of 8. The
max length of sentence is 150 by padding shorter
sentences and cutting longer ones. The threshold
τ c, τ r are both set as 0.5.

6.3 Baselines
We employ a variety of baselines which could be
classified into two streams.
Event-then-Causality methods. These methods
first extract events from texts and then classify the
causal relation. For event extraction, we choose
three typical models. (1)BERT-Softmax (Devlin
et al., 2019) adopts BERT to learn textual represen-
tations, and conducts sequence labeling for event
extraction; (2) BERT-CRF utilizes conditional ran-
dom field (CRF) to capture label dependencies
upon the textual representations (Du and Cardie,
2020). (3) DMBERT (Wang et al., 2019) adopts
dynamic multi-pooling (Chen et al., 2015) upon

BERT to aggregate features for event extraction.
(4) PLMEE (Yang et al., 2019) further adopts role-
specific argument tagger upon BERT to solve the
argument overlapping issue. After obtaining the
events, we enumerate all possible cause-effect pairs
and follow Zuo et al. (2021b) to build a Multilayer
Perceptron classifier to decide the causality.
Event-with-Causality methods. Instead of sepa-
rately deriving events and causality, these meth-
ods conduct event extraction with the causality
taken into consideration and thus simultaneously
derive the events and causality pair. To do this, we
adapt three typical RTE methods as follows. (1)
Novel-tagging designs a unified label space com-
bining causality component (cause/effect), event
types, event roles and argument boundary, and con-
ducts ECE via sequence-labeling following Zheng
et al. (2017). (2) CasECE, which is inspired by
CasRel (Wei et al., 2020), first extracts the cause
event, conditioned on which to derive the effect
event. (3) Pair-linking works in a grid tagging
manner following Wang et al. (2020). It first con-
ducts event-type-level pair linking to derive the
cause-effect event-type, which is then used as con-
ditional information for token-pair linking to de-
rive event arguments. Appendix B provides details
about how we adapt these methods for ECE.

6.4 Main Results

We report the overall results in Table 1, and have
observations as follows.

(1) The event-then-causality baselines generally
produce weak performances, especially on the Pre-
cision indicator. The reason lies in that these meth-
ods extract events without considering the interest
of causality. As a result, many causality-unrelated
events are wrongly extracted, which would confuse
the causality decision.

(2) Performances of the event-with-causality
baselines are superior to the event-then-causality
models, since the events are extracted with causal-
ity modeling, thus reducing the number of redun-
dant events. However, their performances are still
barely satisfactory, since the entity-oriented rela-
tion modeling strategy could not sufficiently to ex-
plore intra- and inter- correlations between events.

(3) DualCor achieves the best results among all
baselines, we attribute this to that our designed
dual grid tagging schema effectively explore the
intra- and inter-event argument correlations. De-
spite of this, the overall ECE performance is far
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EAE(%) CET(%) ECE(%)

P R F1 P R F1 P R F1

BERT-softmax+Causality 32.55 35.11 33.78 49.61 64.20 55.97 30.47 31.52 30.99
BERT-CRF+Causality 35.52 34.10 34.79 53.22 60.95 56.82 31.02 31.28 31.15
DMBERT+Causality 34.27 38.18 36.12 52.87 63.20 57.58 30.08 34.93 32.33
PLMEE+Causality 34.22 40.70 37.18 58.11 60.20 59.13 29.98 41.14 34.69

Novel-tagging 59.40 28.47 38.49 49.79 61.70 55.11 51.52 26.75 35.22
CasECE 36.88 36.72 36.80 58.26 59.70 58.97 31.30 41.81 35.80
Pair-tagging 47.08 46.49 46.79 55.78 62.95 59.14 39.24 47.69 43.05

DualCor 58.05 47.60 52.31 61.75 58.19 59.92 48.56 44.85 46.63

Table 1: Overall results. The Wilcoxons test shows significant difference (p<0.05) between DualCor and baselines.

Overall Single subset Multi subset

20

30

40

50

EC
E 

F1
 sc

or
e 

(%
)

DualCor
Pair-linking
PLMEE+Cau

Figure 4: ECE performances on overall test set, Single
and Multi subset. Appendix D shows detailed values.

from satisfactory. This reflects that ECE requires
investigations from future works to improve it.

6.5 Single pair vs. Multi pairs

We notice that nearly 10% sentences in our dataset
express multiple event causality pairs, and thus
probe how the number of causality pairs influ-
ences the ECE performance. Specifically, we di-
vide the test set into a Single subset where each
sentence contains only one event causality pair,
otherwise, Multi subset. Apart from DualCor,
PLMEE+Causality (PLMEE+Cau in short) and
Pair-linking are chosen as representatives for com-
pared baselines, and we present their performances
in Figure 4. Reading from the figure, we could
see that (1) all models present a decreasing per-
formance from Single to Multi subset, reflecting
that ECE towards multiple causality pairs is much
tricky. (2) Reasons for the weak performance on
the Multi subset may be that the increasing number
of causality pairs come from the increase of men-
tioned events, which demands more complicated
inter-event correlations modeling (Sheng et al.,
2022). (3) Since the performance on the Multi
subset is obviously inferior to the overall and Sin-
gle subset performances, we argue that Multi-pairs
could be one great challenge which deserves inves-
tigation from future ECE works.

Method EAE CET ECE

DualCor 52.50 61.60 47.58

w/o Intra Cor 20.47 14.38 10.37
w/o Inter Cor 48.57 56.82 43.36

w/o type-aware encoding 47.69 56.00 43.16
φ→ Concatenation 51.39 59.56 45.88
φ→ Addition 51.96 61.08 46.83

Table 2: Ablation Study (F1%) on the validation set .
Appendix E illustrates ablation on the test set.

7 Analysis and Discussion

7.1 Ablation Study

To study how each module contributes to the per-
formance, we ablate to DualCor on the validation
set as Table 2 shows.

We probe the argument correlations via ablation
to the tagging scheme. (1) w/o Intra-event argu-
ment correlations (Intra-Cor): To explore the neces-
sity of Intra-Cor, we remove tags whose correlation-
field are Intra in the tagging scheme. This leads to
the sharp performance drops since Intra-Cor is the
key to derive individual event from each grid. (2)
w/o Inter-event argument correlations (Inter-Cor):
To certify the effectiveness of Inter-Cor, we remove
tags whose correlation-field are Inter. Without
Inter-cor, the causality pairs are obtained by ex-
haustive enumeration between the cause and effect
event which are individually derived from two ta-
bles. The ECE performance declines 4.42%, reflect-
ing the importance of Inter-Cor. (3) We observe
that the removing of either type of tags would hurt
performances, verifying that these two correlations
are both beneficial and functional for ECE.

We explore the influence of the model architec-
ture via ablation to the encoding and grid represen-
tation layer. (1) w/o type-aware encoding: Instead
of the collaborative encoding as Equation 1 shows,
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Category Example

Wrong Cause-
Effect Type

Instance#1: The falling of stainless steel prices was caused by the drop in the cost of pure nickel.
Gold: {Event typecause: Cost Declination, event typeeffect: Price Declination }
Predicted: {Event typecause: Price Declination, event typeeffect: Price Declination }

Redundant
Arguments

Instance#2: Feed prices rise across the country, reducing the profits in poultry industry.
Gold: {Regioncause: across the country, Regioneffect: None }
Predicted: {Regioncause: across the country, Regioneffect: across the country }

Missing
Arguments

Instance#3: 50% of coke enterprises in Shanxi, Ningxia and 30% of those in Inner Mongolia have
restricted their production, for which the coke output decreased.
Gold: {Regionreason: Shanxi, Ningxia, Inner Mongolia }
Predicted: {Regionreason: Shanxi, Ningxia }

Table 3: Error analysis, where we only present the associated event types and event arguments due to the space
limitation. Appendix F provides the complete event causality pair for these three instances.

#Para. Training Inference

DualCor 107.10M 18.6sents/s 38.9sents/s
Pair-linking 107.63M 6.4sents/s 19.4sents/s

Table 4: Efficiency comparison.

when we encode sentence using BERT while ob-
tain event type embeddings by random initializa-
tion, the final performance declines by 4.42%. This
manifests the importance of capturing semantic de-
pendency between event types and each sentence.
(2) φ→ Concatenation or Addition: To explore the
impact of the semantic fusion function φ in Sec-
tion 5.2.1, we respectively replace CLN as concate-
nation and addition. The performance degradation
upon two variants signifies that CLN could bet-
ter enhance token representations with event types,
producing more expressive entry representations.

7.2 Efficiency Discussion

Since Pair-Linking also works in a grid tagging
manner and achieves the comparable performance
with DualCor, we discuss the efficiency of these
two architectures from two aspects: parameter
amount and running speed. For the sake of fairness,
we run them on the same GPU server. Reading
from Table 4, we notice that the amount of pa-
rameters of our model and Pair-Linking is roughly
equal. We attribute this to that they both exploits
the same basic encoding and grid representations
learning strategy. However, we observe that the
training and inference speeds of our model are re-
spectively about 2.91 and 2.01 times faster than
Pair-Linking. This is mainly because that the rep-
resentation learning for two grids are carried in
parallel in our model, while those of Pair-Linking
are sequentially conducted. Considering analysis

above, we could conclude that our model also main-
tains efficiency advantage over Pair-linking.

7.3 Error Analysis

To probe the drawbacks of DualCor and promote
future works, we conduct error analysis towards
100 randomly selected failure instances. Here, we
discuss three typical error types as Table 3 shows.
(1) Wrong Cause-Effect Type refers to predicting
the wrong combination of cause-effect event types
as Instance#1. This error can severely hurt the fi-
nal performances, since event arguments under the
wrong cause-effect type would be regarded as false
positive in ECE. We notice that almost 40% error
cases of DualCor belong to this type, while that
of Pair-linking is 32%. We attribute this to that
our method mainly focus on correlations between
event arguments, which lacks exact cause-effect
modeling between event types, while the event-
type-level pair linking in Pair-linking accounts for
this. (2) Redundant Arguments denotes that the
model predicts an argument which actually does
not exist, as the redundant region for effect event
in Instance#2. This kind of errors usually appear
between the cause and effect event upon the same
event role, which demonstrates the difficulty of de-
ducing causality-specific event arguments. Though
redundant arguments accounts for nearly 30% er-
ror cases of DualCor, it is almost 10% lower than
that of Pair-linking. This reveals the importance of
exploring intra- and inter- event argument correla-
tions to discriminate the cause / effect event argu-
ments. (3) Missing Arguments refers to that the
model fails to predict the existed event argument,
as the missed “Inner Mongolia” in Instance#3. We
observe that it usually occurs for event roles which
contains multiple event arguments, where more
sophisticated modeling of intra-event arguments
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correlations are required.

8 Conclusion

In this paper, we formulate a new task, Event
Causality Extraction (ECE), which aims to extract
the cause-effect event pairs with structured event
information from plain texts. We propose a method
based on an elaborately devised dual grid tagging
scheme, which explores the intra- and inter-event
argument correlations for the task. Experiment re-
sults prove the effectiveness of our method, and
extensive analyses are conducted to point out sev-
eral promising directions to inspire future works.
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A Decoding strategy

Step 1. Argument span decoding. In this stage,
we derive argument spans for cause/effect events
using the nearest start-end match principle (Wei
et al., 2020). Specifically, for those entry tags hav-
ing the same correlation-field and role-field in the
same row, we match the start position to the near-
est end position according to the position-field to
obtain candidate argument spans Figure 5.(a).

Step 2. Event structure decoding. In this stage,
we collect candidate argument spans attached to the
same event types. Specifically, we merge the event
arguments with correlation-field Intra belonging
to the same row, resulting in structured candidate
events in Figure 5.(b).

Step 3. Causality pair decoding. To derive
causality pairs, we match inter-event correlated ar-
guments between candidate cause and effect events.
Specifically, we first obtain event argument with
correlation-field Inter in each table as Figure 5.(c).
Then, we search the arguments co-occurring in
both event tables simultaneously associating with
correlation-field Intra and Inter, and merge
them to form the cause-effect pair in Figure 5.(d).

Table Event Type
Event Roles

Product Region Industry

Cause(Intra) Price Rise agriculture products
corn seeds

nationwide None

Effect(Intra) Profit Declination None across the country corn planting

Table Event Type
Event Roles

Product Region Industry

Cause(Inter) Price Rise None across the country corn planting

Effect(Inter) Profit Declination corn seeds nationwide None

Causality Event Type
Event Roles

Product Region Industry

Cause Price Rise corn seeds nationwide None

Effect Prifit Declination None across the country corn planting

Table Argument Spans

Cause agriculture products, corn seeds, nationwide, corn planting, across the country

Effect corn seeds, nationwide, corn planting, across the country

(a) Argument spans derived from Step 1.

(b) Event candidates derived from Step 2 via Intra field.

(c) Inter-arguments derived via Inter field.

(d) The cause-effect Event pair, which is derived by merging arguments which co-
appear in both event tables with correlation-field Intra and Inter.

Figure 5: Detailed illustration to decoding strategy.

B Details about adapted baseliens

We detail the adaption of RTE methods to ECE.
(1) Novel-tagging is adapted from Zheng

et al. (2017). It performs RTE through sequence
labeling with a novel tagging scheme, which com-
bines the label spaces of relation types and relation

roles (subject and object), Similarly, we adopt a uni-
fied label space combining cause/effect, event type,
event roles and argument boundary tag, namely
{Causality-EventType-EventRole-Bdy}.
Given the 2 types of causality components, 39
predefined event types, 3 predefined event roles
and the Start/End boundary indicator, the capacity
of the unified label space is 2× 39× 3× 2 = 468.
We employ the unified labels to tag the tokens in a
sequence labeling manner with BERT+Softmax.
Note that we only deploy BERT+Softmax for
sequence labeling here, since the joint label space
is too large for BERT-CRF to implement on our
experiment devices.

(2) CasECE is adapted from CasRel (Wei et al.,
2020), which conducts RTE by modeling the rela-
tions as functions mapping subject entity to object
entity. Similarly, we regard the causality relation
as the function which maps the cause event to the
effect event. Following CasRel, we first extract the
cause event, and then conditioned on it to derive the
effect event. During this process, PLMEE (Yang
et al., 2019) is utilized as the event extractor.

(3) Pair-linking is adapted from
TPLinker (Wang et al., 2020), where RTE
is formulated as a token pair linking problem
which aligns the boundary tokens of entity pairs
under each relation type. Similarly, we intend to
respectively extract event arguments under specific
cause-effect event types. Specifically, we first
conduct event-type-level pair linking to derive
the cause-effect event types. Then, we utilize
CLN to refine textual representations enhanced
with cause-effect event type pair information, and
conduct token-pair-linking to extract the event
arguments for the specific cause and effect event.

C Other encoders

We report performances of DualCor using different
basic encoders in Table 5.

D Single pair vs. Multi pairs

We detail ECE performances on the overall test,
Single and Multi subset in Table 6.

E Ablation on the test

We provide ablation study on the test set in Table 7.

F Error analysis

This section provides the complete instances for
error analysis in Table 8.
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EAE(%) CET(%) ECE(%)

P R F1 P R F1 P R F1
DualCorBERTbase 58.05 47.60 52.31 61.75 58.19 59.92 48.56 44.85 46.63
DualCorRobertabase 61.46 46.29 52.80 66.14 58.19 61.91 52.801 44.89 48.53
DualCorRobertalarge 63.44 50.48 56.22 67.52 62.70 65.02 54.67 49.80 52.12
DualCorMacBERT 67.64 49.19 56.96 70.68 60.95 65.45 58.29 48.02 52.66

Table 5: Overall results on the test set.

Overall(%) Single Subset(%) Multi Subset(%)

P R F1 P R F1 P R F1

PLMEE+Causality 29.98 41.14 34.69 29.89 46.42 36.37 30.58 23.76 26.74
Pair-linking 39.24 47.69 43.05 40.31 54.32 46.28 32.15 24.82 28.03

DualCor 48.64 44.85 46.67 49.39 51.56 50.46 43.65 22.72 29.89

Table 6: ECE performances on the overall test set, Single subset and Multi subset.

Method EAE CET ECE

DualCor 52.36 59.96 46.67

w/o Intra Cor 19.11 12.51 9.32
w/o Inter Cor 49.29 55.04 42.88

w/o type-aware encoding 47.21 54.72 41.79
φ→ Concatenation 50.91 57.99 44.04
φ→ Addition 51.52 58.90 45.05

Table 7: Ablation Study: F1% upon the three metrics on the test set.

Category Example

Wrong Cause-
Effect Type

Instance#1: The falling of stainless steel prices was caused by the drop in the cost of pure nickel.
Gold: {Event typecause: Cost Declination, Event typeeffect: Price Declination,

Productcause: pure nickel, Producteffect: stainless steel,
Regioncause: None, Industryeffect: None
Industrycause: None, Industryeffect: None }

Predicted: {Event typecause: Price Declination, event typeeffect: Price Declination,
Productcause: pure nickel, Producteffect: stainless steel,
Regioncause: None, Industryeffect: None
Industrycause: None, Industryeffect: None }

Redundant
Arguments

Instance#2: Feed prices rise across the country, reducing the profits in poultry industry.
Gold: { Event typecause: Price Rise, Event typeeffect: Profit Declination,

Productcause: feed, Producteffect: None,
Regioncause: across the country, Regioneffect: None,
Industrycause: None, Industryeffect: poultry industry }

Predicted: { Event typecause: Price Rising, Event typeeffect: Profit Declination,
Productcause: feed, Producteffect: None,
Regioncause: across the country, Regioneffect: across the country,
Industrycause: None, Industryeffect: poultry industry }

Missing
Arguments

Instance#3: 50% of coke enterprises in Shanxi, Ningxia and 30% of those in Inner Mongolia have
restricted their production, for which the supply of coke output.
Gold: {Event typecause: Production Restriction, Event typeeffect: Supply Reduction,

Productcause: coke, Producteffect: coke,
Regioncause: Shanxi, Ningxia, Inner Mongolia, Regioneffect: None,
Industrycause: None, Industryeffect: None }

Predicted: {Event typecause: Production Restriction, Event typeeffect: Supply Reduction,
Productcause: coke, Producteffect: coke,
Regioncause: Shanxi, Ningxia, Regioneffect: None,
Industrycause: None, Industryeffect: None }

Table 8: The complete results of error analysis.
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Abstract
Named Entity Recognition is the task to locate
and classify the entities in the text. However,
Unlabeled Entity Problem in NER datasets se-
riously hinders the improvement of NER per-
formance. This paper proposes SCL-RAI to
cope with this problem. Firstly, we decrease the
distance of span representations with the same
label while increasing it for different ones via
span-based contrastive learning, which relieves
the ambiguity among entities and improves the
robustness of the model over unlabeled entities.
Then we propose retrieval augmented inference
to mitigate the decision boundary shifting prob-
lem. Our method significantly outperforms the
previous SOTA method by 4.21% and 8.64%
F1-score on two real-world datasets.

1 Introduction

As a fundamental task in NLP, Named Entity
Recognition aims to locate and classify named
entities in the text. Due to the large-scale well-
annotated datasets, deep-learning based methods
(Li et al., 2022b; Devlin et al., 2019) have achieved
great success. However, in real-world datasets,
such as Ling and Weld (2012) with 112 fine-grained
named entity tags, a large set of entity classes may
cause inevitable missing annotations. Moreover,
to obtain large NER datasets in practical scenar-
ios, the distant supervision approach (Ren et al.,
2015; Fries et al., 2017) may make this problem
even worse, since the entity dictionary cannot cover
all entities. Previous work (Li et al., 2021; Shang
et al., 2018) find that this problem seriously hinders
the performance of the NER model and name this
problem as Unlabeled Entity Problem. As shown
in Figure 1, the unlabeled second “NBA” may con-
fuse model and introduce unnecessary noise.

To cope with this problem, several attempts from
different perspectives have been proposed. Inspired

*Equal contribution.
†Corresponding author.

Lebron James and Steph Curry are both top players in the NBA, but 

it was Giannis Antetokounmpo who took home the 2021 NBA Finals.
PERSON ORG

PERSON

PERSON

ORG

Figure 1: A toy case to show Unlabeled Entity Problem.
The labeled entities are underlined with red lines while
the unlabeled entities are underlined with dashed lines.

by positive-unlabeled (PU) learning (Li and Liu,
2005), Peng et al. (2019) use a weighted loss to
assign low weights to false negative words and
build distinct binary classifiers for different entity
types. However, they require prior information
or heuristics (Li et al., 2022c) and the unlabeled
entities still misguide the classifiers, bringing ambi-
guity among neighboring entities (Li et al., 2021).
Yang et al. (2018); Jie et al. (2019) introduce the
Partial CRF (Lafferty et al., 2001) to marginalize
the instances that are consistent with the incom-
plete annotation. However, they require additional
well-annotated corpus to get ground truth negative
instances, which are usually unavailable in practice.
Recently, Li et al. (2021) perform down-sampling
among non-entity instances within annotation when
computing loss function, in order to mitigate the
misguidance from possible unlabeled entities. Li
et al. (2022c) further propose a weighted and adap-
tive sampling distribution to introduce direction to
real unlabeled entities when down-sampling. How-
ever, the inherent randomness of sampling strategy
may still keep some unlabeled entities when com-
puting loss then make the decision boundary biased
(Li et al., 2022a). As shown in Figure 2, the learned
decision boundary for training example containing
unlabeled entity instances tends to shift from the
expected boundary towards the entity side. The
previous works do not consider this problem.

To deal with these challenges, this paper pro-
poses the Span-based Contrastive Learning with
Retrieval Augmented Inference (SCL-RAI) to
tackle Unlabeled Entity Problem, which mitigates
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Labeled Entity Instance
Non-entity Instance

Unlabeled Entity Instance

Figure 2: Illustration for decision boundary shifting
phenomenon. The solid line is the learned boundary
from datasets with unlabeled entities, the dashed line
represents the expected boundary.

the limitations mentioned above, i.e., demanding
additional corpus, ambiguity among neighboring
entities and decision boundary shifting problem.
Firstly, SCL-RAI tries to decrease the distance
among span representations with the same labels
while increasing it for different ones. Benefit-
ing from our well-designed span-based contrastive
learning, the ambiguity between entities is miti-
gated by the increased representation distance, so
the model can capture the differences among differ-
ent entity labels. We show in experiment that this
contrastive learning objective also improves the
model robustness under unlabeled entities. Further-
more, we propose Retrieval Augmented Inference
to relieve decision boundary shifting phenomenon.
It caches the center point representation for each
entity type from the training set. Then, it computes
a label distribution via cached representation and
interpolates it with the distribution from the back-
bone NER model. Experiments on two real-world
datasets show that SCL-RAI significantly outper-
forms previous SOTA methods.

2 Methodology

Our SCL-RAI consists of three modules: Span-
based NER Model, Span-based Contrastive Learn-
ing, and Retrieval Augmented Inference.

2.1 Span-based NER Model

Span-based NER models have shown a strong abil-
ity to solve NER task, especially in flat NER and
nested NER problem (Yu et al., 2020). For fair
comparison, we follow Li et al. (2021, 2022c) on
the design of Span-based NER model. Firstly, we
use BERT (Devlin et al., 2019) as the text encoder
to get the representations for words in sentence x:

[h1,h2, ...,hn] = BERT (x) (1)

where hi is the representation for word xi. For each
text span si,j ranging from i-th word and j-th word
in x, we get the span representation si,j as:

si,j = hi ⊕ hj ⊕ (hi − hj)⊕ (hi ⊙ hj) (2)

where ⊕ is the concatenation operation and ⊙ is
the element-wise product operation. Finally, we
use a two-layer non-linear projection to obtain the
entity label distribution for every span si,j :

ri,j = tanh(W si,j) (3)

oi,j = softmax(V ri,j) (4)

where W and V are trainable parameter matrices.
And the probability of l-th gold entity label for

span instance si,j is oi,j,l:

oi,j,l = vTl ri,j (5)

We use cross entropy (CE) loss as our training
objective:

lossce =
∑

si,j∈D
−log(oi,j,l) (6)

where D is the collection of all training instances.

2.2 Span-based Contrastive Learning
To mitigate the ambiguity among entities, SCL-
RAI tries to pull span belonging to the same class
together in embedding space, while simultane-
ously pushing apart clusters of span from different
classes.

This way, the clusters in entity representation
space could better distinguish different types of
entities. To this end, we propose a novel span-
based contrastive learning objective to mitigate the
ambiguity problem among entities. Meanwhile, we
find in our experiment that this contrastive learning
objective could also improve the robustness of SCL-
RAI under unlabeled entity noises.

For span-based NER model, we conduct con-
trastive learning within a batch of span instances
D; We use the cosine similarity to represent the
distance between the span representations of two
instances si,j and sî,ĵ :

dsi,j ,sî,ĵ =
ri,j · rî,ĵ
|ri,j ||rî,ĵ |

(7)

Then the span-based supervised contrastive
learning loss function lossscl is defined as:

lossscl = −
∑

l∈L

∑

si,j∈Dl

1

Nl − 1

∑

sî,ĵ∈Dl
F (ri,j , r̂i,ĵ)

(8)
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Figure 3: General architecture of SCL-RAI.

where L is the size of the entity label set; (i, j) ̸=
(̂i, ĵ); Nl is the total number of span instances with
the same entity label l in the batch; Dl is the col-
lection of all training span instance with l-th entity
label. F (ri,j , rî,ĵ) is:

F (ri,j , rî,ĵ) = log
exp(dsi,j ,sî,ĵ/τ)∑

sm,n∈Dl̄ exp(dsi,j ,sm,n/τ)

(9)

where τ is the temperature. Dl̄ is the collection of
span instances not with l-th entity label.

This span-based supervised contrastive learning
loss pushes the span representations of instances
with the same entity labels closer and pushes the
span representations of instances with the different
entity labels farther. We confirm in our experi-
ment that this contrastive learning objective indeed
improves the model robustness under unlabeled
entities, compared with previous works.

Then we combine the cross entropy loss and
span-based contrastive learning loss to get our final
loss function:

lossfinal = (1− λ) ∗ lossce + λ ∗ lossscl (10)

where λ is a scalar hyperparameter.

2.3 Retrieval Augmented Inference
As we get the discriminative entity span representa-
tions via span-based contrastive Learning, we pro-
pose Retrieval Augmented Inference (RAI) to fa-
cilitate the decoding process at the inference stage.

As shown in Figure 3, RAI can be split into two
parts: (i) Firstly, it generates a central point repre-
sentation for each entity type from the training set
and stores them in a dictionary Dict. (ii) It calcu-
lates the similarity between the representation of
span to be predicted and each entity type represen-
tation in Dict to get the retrieval augmented label
distribution oRA, then interpolates the distribution
oi,j,l from span-based NER model with oRA to get
the final label distribution. For example, the second
“NBA” in Figure 1 will get high similarity value
with the the central point representation of the en-
tity type “ORG”, due to the similar context with
other “ORG” entities in training set. So it could
decrease the possible high probability of non-entity
label from Span-based NER model and increase
it of “ORG” entity label. This way, we can shift
the learned decision boundary toward the expected
boundary in Figure 2.
Dictionary Construction: The dictionary Dict
used in SCL-RAI consists of a set of key-value
pairs. Each key is an entity type and the corre-
sponding value is the calculated central point rep-
resentation from the training set. After training
the model, we could get the dictionary for storing
representations of all entity tags:

Dict = {K,V } = {(l, rl)|∀l ∈ L} (11)

rl =
∑

sm,n∈Tl

1

Nl
rm,n (12)

where Tl is the collection of all training span in-
stances with l-th entity label; Nl is the total number
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of span instances with the label l in the training set.
Label Distribution Interpolation: At the same
time, Span-based NER model outputs representa-
tion ri,j for the span to be predicted and its label
distribution oi,j . Then we calculate the cosine simi-
larity between ri,j each cached representation from
Dict to obtain a new label distribution, i.e., re-
trieval augmented label distribution oRA:

sim(i,j) = concat(
ri,j · rl1
|ri,j ||rl1 |

, ...,
ri,j · rlL
|ri,j ||rlL |

) (13)

oRA = softmax(sim(i,j)) (14)

where L is the number of entity labels.
We then set the value of non-entity label in oRA

to 0:

oRA[v] = 0 (15)

where v is the index for the non-entity. This en-
sures the similarity of non-entity label does not
participate in interpolation.

Finally, we interpolate the distribution oi,j,l from
span-based NER model with oRA to get the final
label distribution pfinal:

pfinal = (1− α) ∗ oi,j + α ∗ oRA (16)

where α is a hyperparameter to makes a balance
between two distributions.

3 Experiments

3.1 Experimental Settings

Following (Yang et al., 2018; Li et al., 2021,
2022c), we adopt EC and NEWS as our datasets.
The training set of EC and NEWS both consist
of two parts: (1) the well-annotated set A; (2)
the distantly supervised set DS, which contains a
large amount of incompletely annotated sentences.
Therefore, NER models trained on EC or NEWS
suffer from Unlabeled Entity Problem. The dev/test
set used in two datasets are well-annotated to eval-
uate the performance of model trained on datasets
containing label noise.
EC In the e-commerce domain (EC), there are
five types of entities: Brand, Product, Model, Mate-
rial, and Specification. It contains 2,400 sentences
labeled by annotators. The well-annotated set A is
split into three sets: 1,200 sentences for training,
400 for dev, and 800 for testing. Then Yang et al.
(2018) collect a list of entities to construct a dic-
tionary from the training data and perform distant

Models EC NEWS
BERT-MRC 55.72 74.55
BERT-Biaffine Model 55.99 74.57
PU Learning 61.22 77.98
Partial CRF 60.08 78.38
Weighted Partial CRF 61.75 78.64
Vanilla Negative Sampling 66.17 85.39
Variant Negative Sampling 67.03 86.15
SCL-RAI 69.70 94.11
SCL-RAI+Vanilla Neg. Sampl. 71.24 94.79

- RAI 70.65 (-0.59) 93.71 (-1.08)
- SCL & RAI 66.17 (-5.07) 85.39 (-9.40)

Table 1: The F1-score results on two real-world datasets.
“SCL” denotes Span-based Contrastive Learning and
“RAI” denotes Retrieval Augmented Inference.

Models A A+DS ∆

Vanilla Negative Sampling 94.38 85.39 -8.99
SCL-RAI+Vanilla Neg. Sampl. 95.33 94.79 -0.54

Table 2: The robustness of SCL-RAI over unlabeled
entities with different training set on NEWS dataset.

supervision on raw data to get the distantly super-
vised set DS, which contains 2,500 sentences.
NEWS For news domain, Yang et al. (2018) use
a NER data from MSRA (Levow, 2006). Yang
et al. (2018) only keep entity type PERSON to
get NEWS. Then (Yang et al., 2018) randomly se-
lect 3,000 sentences as training dataset, 3,328 as
dev data, and 3,186 as testing data to get the well-
annotated set A. The rest set of MSRA is used
as raw data, having 36,602 sentences. Yang et al.
(2018) collect a list of person names from the train-
ing data. Then Yang et al. (2018) add additional
names to the list. Finally, the list has 71,664 en-
tries. Yang et al. (2018) perform distant supervision
on raw data to obtain extra 3,722 sentences as the
distantly supervised set DS.

We adopt the same hyperparameter configura-
tions for two datasets. We use Adam (Kingma
and Ba, 2015) as optimizer with learning rate as
10−5 and bert-base as our encoder following Li
et al. (2021, 2022c). The dimension of scoring
layers W is set as 256. The scalar weighting hy-
perparameters λ and α are set as 0.1 and 0.5. The
temperature parameter τ is set to 0.1. Since the la-
bel distribution is very unbalanced (most instances
are non-entity), we also apply negative sampling
and the same sampling rate as Li et al. (2021).

For evaluation, we use conlleval script1 to com-
pute the F1-score.

1https://www.clips.uantwerpen.be/conll2000/chunking
/conlleval.txt.
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Figure 4: t-SNE plots of the representations on NEWS
test set. CE+Span-based CL (left), CE only (right). Red
dot denote entities and blue dot denote the non-entities.

3.2 Results and Analysis

We report the results from: (1) Traditional NER
methods: BERT-MRC (Yu et al., 2020) and BERT-
Biaffine (Yu et al., 2020) ; (2) Recent Attempts on
Unlabeled Entity Problem: PU Learning (Peng
et al., 2019), Partial CRF (Yang et al., 2018),
Weighted Partial CRF (Jie et al., 2019), Vanilla
Negative Sampling (Li et al., 2021), Variant Neg-
ative Sampling (Li et al., 2022c) and our SCL-
RAI. Since our method is orthogonal to that of
(Li et al., 2021), we also report the results of SCL-
RAI with their negative sampling strategy “SCL-
RAI+Vanilla Neg. Sampl.” to get better results.

We report our results in Table 1. Firstly, tradi-
tional NER models perform poorly on real-world
datasets. So the SOTA NER models on well-
annotated datasets are not robust over the Un-
labeled Entity Problem. Then, our method has
achieved new state-of-the-art results on the two
datasets. Compared with SOTA model (Li et al.,
2022c), we achieve the improvements of 2.67% F1
on EC and 7.96% on NEWS. With the negative
sampling strategy, we further get the improvements
of 4.21% F1 on EC and 8.64% F1 on NEWS. The
improvements shows that our model has a stronger
ability to mitigate the noise from unlabeled entities.

To verify the effectiveness of SCL-RAI, we show
ablation studies in Table 1. It is clear that Span-
based Contrastive Learning and Retrieval Aug-
mented Inference are both important to cope with
Unlabeled Entity Problem. In Table 2 and Table 4,
we show the robustness of our model over unla-
beled entities on NEWS dataset. Our SCL-RAI
can obtain less F1 degradation when introducing
datasetDS with unlabeled entities. In Figure 4, we
show t-SNE plots of the learned representations of
2000 instances on NEWS test set, comparing Cross
Entropy (CE) with and without the Span-based CL
term. We can clearly see that the Span-based CL
term enforces more compact clustering of entities.

For span-based NER model, we also conduct our

Batch Size F1-score
8 70.78

16 71.24
32 70.87
64 70.79

Table 3: The Span-based Contrastive Learning robust-
ness testing results on EC.

Variant A A+DS ∆

Vanilla Negative Sampling 76.82 66.17 -10.65
SCL-RAI 76.44 71.24 -5.2

Table 4: The robustness of SCL-RAI over unlabeled
entities with different training set on EC dataset.

Span-based Contrastive Learning within a batch of
span instances. Therefore, we test the robustness
of Span-based Contrastive Learning for different
batch sizes on EC. As shown in Table 3, we can
clearly find that Span-based Contrastive Learning
is robust for different batch sizes.

4 Conclusion

We propose the SCL-RAI to cope with Unlabeled
Entity Problem in NER. Benefiting from our well-
designed Span-based Contrastive Learning and Re-
trieval Augmented Inference, experiments on two
real-world datasets show that SCL-RAI achieves
more promising results than SOTA methods.
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Abstract
Relational web-tables are significant sources
of structural information that are widely used
for relation extraction and population of facts
into knowledge graphs. To transform the web-
table data into knowledge, we need to iden-
tify the relations that exist between column
pairs. Currently, there are only a handful
of publicly available datasets with relations
annotated against natural web-tables. Most
datasets are constructed using synthetic tables
that lack valuable metadata information, or are
limited in size to be considered as a challeng-
ing evaluation set. In this paper, we present
REDTab, the largest natural-table relation ex-
traction dataset. We have annotated ~9K
tables and ~22K column pairs using crowd
sourced annotators from MTurk, which has
50x larger number of column pairs than the
existing human-annotated benchmark. Our
test set is specially designed to be challeng-
ing as observed in our experiment results using
TaBERT.

1 Introduction

Web-tables contain a lot of knowledge (Cafarella
et al., 2008; Wang and Hu, 2002) that can be uti-
lized for various tasks such as question answering
(Chakrabarti et al., 2020; Zhang et al., 2020), build-
ing knowledge graphs (Sekhavat et al., 2014; Wang
et al., 2012), web-search (Sun et al., 2016; Kopliku
et al., 2011), data-mining (Gatterbauer et al., 2007)
and so on. Relation Extraction (RE) is one way to
extract table information by capturing relations be-
tween two table columns (Figure 1). However, the
current RE datasets available are either synthetic,
or very small in size. In this paper, we propose a
new human-annotated dataset for the evaluation of
RE models.

∗Work done while at Amazon

The existing benchmark datasets for column
pair RE are T2Dv2 and SemTab. However,
T2Dv2 (Ritze and Bizer, 2017) only contains 236
tables and 435 column pairs annotated with 118
relations where about 50% of relations have only 1
column pair sample. The highest number of sam-
ples for a relation is only 28. Hence, due to its
small size and less diversity in column pairs per
relation, it is difficult to be treated as a reliable eval-
uation set. In contrast, the SemTab 2020 challenge
(Jiménez-Ruiz et al., 2020a) provides a large bench-
mark dataset, but synthetically generated, which is
arguably not representative of the real web-tables.
Other table-based datasets (Limaye et al., 2010;
Efthymiou et al., 2017; Zhang, 2017; Kacprzak
et al., 2018) are designed for a binary relation ex-
traction task.

REDTab1 is a human annotated dataset consist-
ing of 9,149 tables and 22,236 column pairs with
23 relations. The table was collected from Web
Data Commons (WDC) (Lehmberg et al., 2016)
relational tables for Music and Literature domains.
These domains are two of most popular domains
for question answering (Rajpurkar et al., 2016;
Mihaylov et al., 2018; Kočiskỳ et al., 2018; Ser-
ban et al., 2016). The dataset also contains meta-
data such as table title, page title, and text before
and after the table as extra context. The key dif-
ferences between our proposed dataset and other
benchmarks are shown in Table 1. We also provide
benchmark results on REDTab using state-of-the-
art table embedding approach called TaBERT (Yin
et al., 2020). We get an F1-score of 0.58, which
shows that our dataset is challenging and the per-
formance on the test set can be further improved.

1We publicly release the REDTab dataset at https://
github.com/alexa/alexa-dataset-redtab.
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Dataset Tables Col pairs Relations Annotation

T2Dv2 236 435 118 Human
SemTab 34,294 1,31,289 - Synthetic
REDTab 9,149 22,236 23 Human

Table 1: Key Differences in REDTab over other RE
benchmark datasets. The number of relations in
SemTab is unknown as it is part of the blind test set
and not provided by the organisers. Note that REDTab
has 23 relations covering diverse set of column pairs
for two domains.

2 Data Collection and Annotation

In this section, the construction of the REDTab
dataset is described in detail. The discussion is
divided into three subsections: Data Source, Anno-
tation Protocol and Dataset Validation.

2.1 Data Source

REDTab dataset is constructed from Web Data
Commons or WDC (Lehmberg et al., 2016) web-
tables. Table selection is done by randomly sam-
pling ~20k tables from WDC and manually iden-
tifying the suitable Music and Literature domain
column headers. Based on these column headers,
the tables for each domain are extracted from the
entire WDC corpus. Approximately 5k tables are
randomly sampled for both domains.

For each table, we also preserve metadata con-
taining title, page title, as well as text before and
after the table to provide more context. From
the metadata information, we obtain the ‘key-
ColumnIndex’, that denotes the main column (re-
ferred to as Subject column). This Subject column
will then be paired with other columns from the
same table to form a column pair.

The relations in the column pairs are manually
identified by inspecting the table headers. Our rela-
tion names hold more meaning than the relations
from existing datasets. For example, instead of
using “author”, we use “is the author of”, since it
encodes more information than just “author”. The
full verb phrase construction encodes the argument
order (Subject to the left, Object to the right), “Is”
implies it is currently true, “the” implies unique-
ness (compared to “is an author of”). It makes the
relations far more human readable and interpretable
without needing additional tooling to present the
information to annotators. It also made the under-

2https://music.apple.com/ca/artist/
jenny-silver/189196098/see-all?section=
top-songs, accessed on Feb 16th 2022

standing connection to natural language questions
easier with more naturalistic phrasing. The num-
ber of relations in our dataset is data-driven, this
means, if we had encountered more relations in
the data, we would have added them to the set of
relations presented to annotators. Additionally, our
dataset has higher number of relations per domain
as compared to existing human-annotated datasets.
Note that our dataset cannot be used to build a
knowledge graph from scratch but rather to serve
as an input to an information extraction system,
that, with the right grounding (mapping), can also
be used for knowledge graph construction. See
Table 3 for examples of relation names. After filter-
ing, there are 36 and 34 relevant relations in Music
and Literature domains respectively.

2.2 Annotation Protocol

REDTab dataset is constructed by crowd source an-
notators from Amazon Mechanical Turk (MTurk)
(Chen et al., 2011). The qualification requirement
is set to locations of United States, United King-
dom, Australia, Ireland, Canada, and Singapore,
and HIT Approval Rate of 98% with number of
approved annotations as at-least 1000.

The annotation process is as follow. A table is
shown to annotator. Then, the Subject column is
paired with all other columns in that table. For each
pair, the annotator must annotate the relation of the
pair. The interface is shown in Figure 2. Let us
consider an example, where <Name, Artist, Time,
and Price> are the table columns and ‘Name’ is the
Subject column. The annotators must annotate the
relation between (Name - Artist), (Name - Time),
and (Name - Price).

The table is displayed with the relation names
specific to the table’s domain. There is an addi-
tional ‘UNKNOWN’ relation that is provided to be
selected in a scenario when the two column do not
have a relation, or, when none of the given relations
are applicable.

The annotator must also decide the directional-
ity of the relation, i.e. whether it is ‘Tinku’ <is
a song performed by> ‘Holy Near & Inti
Illimani’, or ‘Holy Near & Inti Illimani’ <is a
song performed by> ‘Tinku’ (as shown in
Figure 2). Annotators are also provided with a
space to leave their comments which has been use-
ful to improve the guidelines and user experience.
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Figure 1: Example table2with columns ‘Song’, ‘Artist’, ‘Album’ and ‘Time’. The main column, called the Subject
column, is ‘Song’. The relations between column pairs are labeled at the top. On the right, the extracted knowledge
from one row of the table is shown.

Figure 2: The annotation user interface for creating REDTab dataset. On top the ’Task Guidelines’ are given. The
’Task Guidelines’ is followed by page title, table title of the table, along with all the row values of table. A list of
relations are provided, and upon selection of a relation (example shown ’is a song performed by’), the two options
are provided showing the directionality of Subject column.

2.3 Dataset Validation

There are two main stages in the validation phase.
The first stage is analysis of annotated data and
the second stage is manual inspection to eliminate
incorrect annotations.

Dataset Analysis: Annotations are carried out in
several batches. Each table is annotated by 3 anno-
tators. The first analysis is counting the number of
annotated tables for each batch. This is followed by
calculating the inter-annotator agreement using the
Fleiss’ kappa Score (McHugh, 2012). For Music,
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the inter-annotator agreement is 0.75 whereas for
Literature, the agreement is 0.40. The low agree-
ment value in Literature is attributed to tables that
are mistakenly identified into the Literature domain.
For instance, ‘Publisher’ is a column header for ta-
bles in both Game and Literature domains. As
‘Publisher’ is also a column header used to filter
tables as Literature, some of the tables from Game
domain are mistakenly included during the filtering
process. These tables create confusion for anno-
tators as the remaining column pairs in the table
cannot be identified with the given relations list.

In the final set, only those column pairs are in-
cluded which have the same relation selected by
at least two annotators. The co-occurrences of re-
lations are then looked at to know which relation
pairs are most commonly selected. For instance,
‘is a publisher of’ and ‘is the record label of’ have
more than 50 co-occurrences in a batch of 1000
tables.

The annotated set consists of 10,284 tables and
39,514 column pairs. The number of selected re-
lations is 52 as compared to 70 relations in the
original set given to the annotators.

Dataset Cleanup: In this stage, the dataset is man-
ually inspected. From the annotated tables, the
header and subject column combination are col-
lected. E.g. <Author, Title, Description, Date,
Rank, 1>. This is called a ‘template’. The given
example is a table with five columns and a subject
column of index ‘1’. Such a template is collected
for all tables.

Considering these unique templates, a total of
1026 different sets are identified among 10,284 ta-
bles. The annotations for these tables are verified
to have the correct relation and directionality. In
the verification process, the contents of the table
column are also taken into consideration. Using
this approach, a mapping between a template and
its corresponding annotation is created. The map-
ping is further used to update the annotations and
create a clean dataset. The relations removed as
part of cleanup are the ones which have incorrect
annotations, or cannot be split into train-test set
(see Section 3.1). The final dataset is created by
collecting majority annotations, filtering the ’UN-
KNOWN’ relation selections, and removing the
incorrect annotations.

Dataset # relations # train # test

REDTab-standard 23 4682 17554
REDTab-simple 10 4431 16176

Table 2: Statistics from the train and test set in REDTab
Standard and REDTab simple dataset.

3 The Resulting Corpus

REDTab consists of 9,149 tables and 22,236
column-pairs annotated with 23 relations for Mu-
sic and Literature domain. The overall time spent
for annotation was ~300 hours and the total cost
is ~6000 USD (i.e. 20 USD per hour). The num-
ber of tables in REDTab is an order of magnitude
higher than T2Dv2 as shown in Table 1. Similarly,
the number of column pairs in REDTab is two or-
ders of magnitude higher than T2Dv2. Although,
T2Dv2 has more relations, the number of column
pair samples per relation is very small.

3.1 Train-Test Split

On both T2Dv2 and REDTab, it is observed that
most of the time, the relation can be easily deter-
mined by looking at the column headers. For exam-
ple, the column pair (‘Title’, ‘Author’) is annotated
as <is the author of> all of the time. Only
few column headers have some ambiguity to it.
Therefore, if the train and test data is split randomly,
the relation can be determined by simply memo-
rizing the header. This hypothesis is tested and a
simple header memorization is shown to achieve
high accuracy without looking at any other context.

In order to construct a challenging test set that
can be used to benchmark model’s capability on
understanding structured context, the training and
testing data is split such that they do not share
the same header pairs. For example, given a re-
lation <is a book about>, the possible col-
umn header pairs are for example (‘Title’, ‘Sub-
jects’), (‘Name’, ‘Description’), (‘Title’, ‘Synop-
sis’) etc. Data with (‘Title’, ‘Subjects’) are as-
signed as training whereas (‘Name’, ‘Description’)
are assigned as testing. Specifically, for every rela-
tion, we group all data based on their header pair.
However, some relations were annotated to only
have 1 unique header pair, therefore these relations
are excluded from the dataset.

3.2 REDTab dataset

Our final set consists of 23 relation classes, divided
into training and testing split as shown in Table 3.
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Figure 3: The first column shows the Table row data. The column headers are highlighted to show the column pairs.
The second column is Table Metadata which includes ‘keyColumnIndex’ i.e. the index of the Subject column. In
the first example, ‘Title’ is the Subject column with index 1. The third column shows the human-annotated relation
label. The label has ‘Left’ i.e. left entity column, ‘Relation’ i.e. annotated relation and ‘Right’ i.e. right entity
column. The result also contains the indexes of the two columns, direction information, and table filenames.

Note that some of the tail relation classes has min-
imal training or testing examples, which are the
difficult samples. However, we argue that such
cases reflect the real-world scenario. Therefore,
we decide to release a simpler version of REDTab,
which only focus on the top 10 most common rela-
tions. The statistics of our REDTab dataset can be
seen in Table 2.

The train-test splits for both REDTab standard
and simple category are publicly released for re-
searchers to evaluate. An example annotation from
REDTab can be seen in (Figure 3). The ‘Left’ and
the ‘Right’ column is based on the directionality
selected by annotators.

4 Experimental Setup

We use TaBERT (Yin et al., 2020) as a baseline
in our dataset. TaBERT is a pre-trained language
model that jointly learns representations for natural
language sentences and tables. TaBERT represents
each cell by the column name, column datatype
and cell value, which is followed by using the
Transformer (Vaswani et al., 2017; Devlin et al.,
2018) model to generate row-level vectors. To al-
low for information flow across cells of different
rows, TaBERT uses a vertical self-attention mecha-
nism. TaBERT introduces two pre-training tasks,
Masked Column Prediction and Cell Value Recov-
ery to generate powerful contextualised represen-
tations. TaBERT has been tested only on semantic
parsing tasks.

TaBERT model requires 4 inputs: Header, data,

Relation # training # testing

is a song performed by 1065 2702
is the author of 669 3322
is the price for 629 2197
is the duration of 549 2523
is the publication date of 427 2098
is the record label of 301 549
is a single from 271 1355
is a publisher of 202 430
is a book about 198 889
was written on 120 111
is an album by 81 624
is the composer of 47 17
is the genre of 42 175
is a narrative set in the location 39 248
is the isbn of 13 73
is the date of creation of 7 30
is the genre of music played by 5 3
is the number of pages in 4 35
is published as part of 4 39
is an edition of the published work 4 123
was released on an album at timepoint 2 3
is written in the language 2 7
wrote the lyrics to 1 1

Table 3: The relation names in REDTab standard
dataset. We show the number of column pairs corre-
sponding to each relation in the train and test set.

ID, and context. We feed the table header and
row data as header and data respectively. The
table title is assigned as the TaBERT ID, while
the page title is assigned as the TaBERT context.
We then concatenate the column embeddings for
the current input, i.e. concat(embedding
of the left column, embedding of
the right column). This is connected with
a classification layer to predict the relation (see
Figure 4).
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Model REDTab-standard REDTab-simple
P R F1 P R F1

Majority class 0.008 0.043 0.013 0.020 0.100 0.034
TaBERT base 0.628 0.621 0.580 0.876 0.900 0.883
TaBERT large 0.677 0.637 0.593 0.928 0.866 0.871

Table 4: Baseline performance showing macro preci-
sion, recall and F1-score, using REDTab dataset.

We experiment on both base and large TaBERT
model. Our model is fine-tuned on 4 GPUs with a
batch-size of 16 for 3 epochs. The model is trained
with AdamW optimizer (Loshchilov and Hutter,
2019). Each experiment takes less than an hour to
finish.

5 Result

5.1 Baseline

We start by exploring a TaBERT model as a base-
line for both of our standard and simple REDTab
set. Our baseline utilize all of the available con-
text: table header, table data, and titles. We also
introduce a "majority" baseline, where the model
simply predicts the majority relation class all the
time, which is "is the author of". The majority
baseline is used as our lower-bound performance.

As shown in Table 4, our model achieved a F1
score of 0.58 on REDTab-standard, showing room
for improvement for future studies on this dataset.
Table 5 also shows the F1-score per relation. Bet-
ter performance is achievable in REDTab-simple,
since this set is designed to be easier compared
to its standard counterpart. TaBERT large does
not significantly outperform TaBERT base, despite
using more computational resource. For further
experiments, we use TaBERT base architecture.

5.2 Ablation Study

In this part, we perform an ablation study to see the
effect of each data feature on performance. Specif-
ically, we divide REDTab data into 3 contexts: 1)
The header context, which includes the table header
itself, 2) The row data context, which includes ev-
ery row data of the table, and, 3) The title context,
which includes the table and web page titles. This
experiment uses REDTab-standard. Figure 4 illus-
trates the contexts.

Our baseline feeds all 3 contexts to TaBERT.
Here, we remove one or more contexts by replacing
it with empty strings before passing it to TaBERT.
The experiment result can be seen in Table 6.

Header context is the most prominent feature.

Relation P R F1

is a single from 0.95 1 0.97
is the duration of 0.83 0.98 0.9
is the price for 0.77 0.49 0.6
is the author of 0.74 0.88 0.8
is a book about 0.5 0 0
is the publication date of 0.98 1 0.99
is a publisher of 0.52 0.27 0.36
is a narrative set in the location 0.85 0.89 0.87
is a song performed by 1 0.98 0.99
is an album by 0.97 1 0.98
is the record label of 0.62 0.99 0.76
is an edition of-
the published work 1 0.18 0.3

is the isbn of 0.97 0.99 0.98
is the genre of 0.7 0.71 0.71
was written on 0.99 0.66 0.79
is the composer of 0.89 0.94 0.91
is published as part of 0 0 0
is the date of creation of 0.01 0.2 0.02
is the number of pages in 0.51 1 0.68
is the genre of-
music played by 0 0 0

is written in the language 0.58 1 0.74
was released on an
album at timepoint 0 0 0

wrote the lyrics to 0.25 1 0.4

Table 5: Baseline performance showing precision, re-
call and F1-score per relation using TaBERT base on
REDTab-standard dataset.

Our model can perform as good as the baseline only
by looking at the table header (Header only). Sim-
ilarly, removing the header significantly reduces
the performance (No header). We argue that many
table headers are representative of their content,
therefore in most cases, it can be utilized to deter-
mine the relation of two columns without additional
context.

Figure 4: TaBERT for column-pair relation extraction.
{c1, c2..} are the columns, {e1, e2..} are the TaBERT
column embeddings for each column. The diagram
shows title context, header context, and the row data
content. Relation is classified between c2 and c3 in the
table.
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Config Name Context Performance
header row-data title P R F1

Baseline 3 3 3 0.628 0.621 0.580

Header only 3 0.633 0.636 0.571
Row only 3 0.417 0.318 0.290
Title only 3 0.140 0.158 0.115

No header 3 3 0.392 0.367 0.336
No row 3 3 0.599 0.632 0.559
No title 3 3 0.664 0.644 0.615

Zero context 0.075 0.108 0.075

Table 6: Baseline results showing impact of metadata
information on macro precision, recall and F1-scores
for relation extraction using REDTab dataset.

We see a significant drop in performance (0.29
F1-score) when the model has to rely on row data
alone. Therefore, it is challenging to understand a
table data if we only see the data without additional
context. Title context is the least prominent feature,
as the model performed poorly (0.115 F1-score) if
only the table and page titles are shown. In contrast,
we gain performance over the baseline by remov-
ing the title context (No title), suggesting that the
title feature might be too noisy if we have a better
context such as table header or row data.

Interestingly, model with zero context (i.e. only
see an empty table) can perform better than
our lower-bound model (majority relation class).
Therefore, the model is capable of guessing the
relation even without any explicit context at all.

5.3 Column Ordering Bias

We also observe in our experiments that the table
content can be indirectly inferred by the column
location. For example, the first column is mostly
expressing the main subject of the table, such as
album name, whereas the later columns are mostly
expressing the information of columns, such as
price, or date. Therefore, the relation between two
columns can be inferred by their position alone.
For example, the relation between the 2nd and the
1st column is ‘is a song performed by’ 77% of the
time, or the relation between the 3rd and the 1st

column is ‘is the price of’ 68% of the time. We find
that a model can exploit this implicit information,
thus can gain some performance in zero context
scenario.

To remove column ordering bias, we pre-process
the data by shuffling the columns. As shown in Ta-
ble 7. The zero-context model on shuffled columns
has similar performance as majority.

Config Name Performance
P R F1

Zero context 0.075 0.108 0.075
Zero context - shuffled column 0.018 0.052 0.025
Majority class 0.008 0.043 0.013

Table 7: Zero context performance on REDTab dataset
by shuffling the column and removing the column or-
dering bias.

5.4 Discussion and Future Work

In REDTab, we see that some relations only have
few examples, it is in fact reflective of the real-
world scenario where there are column pairs which
occur more frequently with one another, while
some column pairs are uncommon and hence fewer
tables contain these samples. Our baseline system
is not handling these tail relation cases well, demon-
strated by the low F1 score in REDTab-standard
scenario. For future, we should investigate a model,
that is capable of handling such tail cases. We have
also observed that row data in tables alone can-
not give good performance, and use of metadata
improves results. In our experiments, we have ex-
plored the use of metadata such as headers, table
title and page title. In future, we can explore mod-
els that can make effective use of other metadata
information present with tables in the dataset (e.g.
text before table) which might show further im-
provement in performance. In future, we want to
add relation mappings to public knowledge graphs,
expand REDTab dataset to include several other do-
mains and cover diverse set of tables with variety
of column pairs.

6 Related Work

We briefly describe most major benchmark datasets
that contain relation annotations for web-tables.

SemTab Challenge

The SemTab challenge was launched to encour-
age comparisons between different automated ta-
ble alignment techniques over a benchmark dataset.
In 2019, SemTab (Jiménez-Ruiz et al., 2020a) re-
leased 3 tasks, namely: 1) Column-Type Anno-
tation (CTA), 2) Cell-Entity Annotation (CEA),
and 3) Columns-Property Annotation (CPA). They
build their dataset by automatically generating la-
belled tables from facts stored in the the DBpedia
(Auer et al., 2007) Knowledge Graph (KG). De-
spite its large size, the dataset consists of synthet-
ically generated tables, which suffer from draw-
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back such as: lack of associated metadata, noisi-
ness, heterogeneity, incompleteness and ambigu-
ity in the data generation process. These draw-
backs are not unique to synthetic tables, but can
cause them to significantly diverge from human
generated web-tables. In 2020, they released a new
dataset called Tough Table (2T) dataset (Jiménez-
Ruiz et al., 2020b). It consists of a mix of small and
large catalog-like tables to make the dataset more
challenging. However, unlike other datasets, it also
consists of real web-tables. Unfortunately though,
it does not contain annotations for the relation ex-
traction task (CPA). Also, a very small number of
real web-tables are contained in this dataset, while
the majority of other tables are still synthetic.

TURL
TURL (Deng et al., 2020) consists of Wikipedia
tables annotated via distant supervision based on
overlap of facts with Freebase KG (Bollacker et al.,
2008). However, our own investigations revealed
that these relations and tables were too easy, and
therefore did not represent the real task of rela-
tion extraction from web-tables. In addition to
our investigations, the model in the paper achieves
extremely high F1 scores for the task, further evi-
dence that the tables and relations are simple. Also,
the method can not be used to create a larger dataset
of more tables and relations, since the overlapping
relations have already been exploited. Addition-
ally, it would be harder to find direct overlaps of
unpopular relations or facts in the Freebase KG.

T2Dv2
T2Dv2 (Ritze and Bizer, 2017) is a dataset of real
web-tables manually labelled against DBpedia KG.
To the best of our knowledge, it is the only other
publicly available real web-tables dataset that was
manually labelled. Of all the other web-tables
datasets, this one is the closest to ours because
it was manually created and consists of real web-
tables. However, its one drawback is that it consists
of only 236 web-tables with annotated relation. In
contrast, our dataset consists of over 9K manually
annotated web-tables. Therefore, our dataset is the
largest publicly available and manually annotated
dataset.

Additionally, there are other table alignment
datasets created in the past (Limaye et al., 2010;
Efthymiou et al., 2017). But these datasets either
consists of very few tables or the tables were an-
notated using automated distant supervision tech-

niques, making them unreliable for task evaluation.
For example, Limaye et al. consists of 400 man-
ually annotated Web-tables with entity, class, and
property-level correspondences, where single cells
are mapped to entities and Efthymiou et al. only
mapped entities in tables to DBpedia KG.

7 Conclusion

We present REDTab, the largest natural web-tables
dataset for column pair relation extraction. The
dataset is annotated by crowd sourced annotators
from MTurk. REDTab includes more than 9K ta-
bles and 22K column pairs making it the largest
human-annotated relation extraction dataset to our
knowledge. We evaluate state-of-the art table em-
bedding model TaBERT and find that our dataset is
challenging over the strategically created train-test
split set. Our final set contains more diverse set
of column pairs per relation that is ideal for test-
ing models. Furthermore, our analysis shows that
predicting relations solely based on table row data
is challenging and use of some metadata informa-
tion significantly improves the performance. We
expect this dataset can contribute to facilitate fur-
ther progress in the field of information extraction
research.
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Abstract

The keyphrase generation task is a challenging
work that aims to generate a set of keyphrases
for a piece of text. Many previous studies based
on the sequence-to-sequence model were used
to generate keyphrases, and they introduce a
copy mechanism to achieve good results. How-
ever, we observed that most of the keyphrases
are composed of some important words (seed
words) in the source text, and if these words
can be identified accurately and copied to create
more keyphrases, the performance of the model
might be improved. To address this challenge,
we propose a DualCopyNet model, which in-
troduces an additional sequence labeling layer
for identifying seed words, and further copies
the words for generating new keyphrases by
dual copy mechanisms. Experimental results
demonstrate that our model outperforms the
baseline models and achieves an obvious per-
formance improvement.

1 Introduction

A keyphrase is a short piece of text that summa-
rizes and abstracts the main semantics of a long
text (named “document” or “source text” in this
study). High-quality keyphrase promotes readers
to efficiently understand, summarize and access
documents’ content (Meng et al., 2017). Not only
that, extracting high-quality keyphrase had been
widely applied to many downstream tasks in Natu-
ral Language Processing and Data Mining, such as
Information Retrieval (Jones and Staveley, 1999),
Text Summarization (Zhang et al., 2004), Text Cate-
gorization (Hulth and Megyesi, 2006) and Opinion
Expression Mining (Berend, 2011). Thus, how to
automatically extract high-quality keyphrases has
become popular research topics in recent decades
(Augenstein et al., 2017; Kim et al., 2010). Due to
accessibility of text data, many datasets from scien-
tific articles are used as benchmarks for keyphrase
extraction algorithms. Thus, our study also focuses

Figure 1: An example of keyphrases. The colored words
(seed words) in the source text appear repeatedly in
keyphrases.

on extracting keyphrases from the scientific arti-
cles.

Generally speaking, keyphrases can be divided
into two categories: present keyphrase and ab-
sent keyphrase. Present keyphrases are the ex-
plicit words that appear directly in source text, and
vice versa for absent keyphrase. Many previous
studies have focused on how to extract present
keyphrases from documents. These studies (Cam-
pos et al., 2020; Hulth, 2003; Bougouin et al., 2014;
Boudin, 2018; Bennani-Smires et al., 2018) con-
sider the keyphrases extraction as a ranking task,
which extracts a set of candidate phrases from
the source text, and then selects keyphrases from
the sorted candidates with the higher importance
score. In recent years, some studies have also at-
tempted to use deep learning methods for present
keyphrase extraction. For example, Alzaidy et al.
(2019) considered the present keyphrases extrac-
tion as a sequence labeling task by using LSTM-
CRF model to label sequence, and obtained a bet-
ter performance. Sun et al. (2021) used popular
BERT (Devlin et al., 2019) model to extract present
keyphrases. However, these methods were not ex-
pert in extracting absent keyphrases because the
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source text has no absent keyphrase. To solve this
problem, some sequence-to-sequence (Sutskever
et al., 2014) based models were used to generate
present/absent keyphrases, such as (Yuan et al.,
2020; Chen et al., 2018; Meng et al., 2017; Chen
et al., 2019; Ye et al., 2021). They first encoded
the source text and then dynamically outputted cor-
responding present/absent keyphrases through a
decoder. However, the decoder usually generates
high-frequency words and ignores many out-of-
vocabulary words, so it is unsatisfied in the task.
To address this problem, Meng et al. (2017) in-
corporated a copy mechanism (Gu et al., 2016) in
decoder to successfully predict out-of-vocabulary
(OOV) words, namely OOV words copy mecha-
nism. Besides, in many scientific articles, we ob-
serve that some words repeatedly appear in many
keyphrases. For example, as shown in Figure 1,
such as “index” appears in keyphrases “nextword
index, index representation, inverted index”, and
“query” appears in keyphrases “query evaluation,
phrase query” (these words are called seed words
in this study). Therefore, if these seed words from
source text can be identified and applied by the
decoder to generate keyphrases as much as possi-
ble, the performance of the model will be greatly
improved.

To address this challenge, we propose a novel
sequence-to-sequence model (named DualCopy-
Net) to incorporate dual copy mechanisms for gen-
erating present/absent keyphrases. Since there is
no labeled data, it is very difficult to directly ex-
tract the seed words from the source text. Thus,
we try to extract present keyphrases as seed words.
Specifically, besides a canonical encoder layer in
DualCopyNet, we also introduce a sequence label-
ing layer for extracting present keyphrases (seed
words). In addition, in the decoder layer, we intro-
duce two kinds of copy mechanism. Seed words
copy mechanism, it enables the decoder to gen-
erate phrases by selecting appropriate words from
seed words. OOV words copy mechanism, it is
a feasible solution that enables the decoder to pre-
dict OOV words by selecting appropriate words
from the source text (Meng et al., 2017). More-
over, the decoder of DualCopyNet softly fuses the
dual copy probability and generation probability
through a gate mechanism to copy words (seed
or OOV words) from the source text and gener-
ate words from the vocabulary. When training the
model, we use a multi-task learning approach to op-

timize the primary task (generating keyphrases) and
the auxiliary task (predicting seed words). Finally,
we conduct experiments on four datasets. The re-
sults show that DualCopyNet has an obvious perfor-
mance improvement in predicting present/absent
keyphrases. The contributions of our paper are as
follows:

• We introduce sequence labeling layer in the
sequence-to-sequence architecture for predict-
ing seed words and dynamically copy these
words to generate more keyphrases.

• We design a novel decoder that incorporates
dual copy mechanisms and uses a multi-task
learning approach to optimize the model when
generating present and absent keyphrases.

• On the four experimental datasets, our model
outperforms most of the baseline models and
obtains better results. Meanwhile, we demon-
strate the positive effect of the dual copy mech-
anism by ablation study.

2 Related Work

2.1 Keyphrase Extraction

Many previous works (Hulth, 2003; Boudin, 2018;
Witten et al., 1999; Bougouin et al., 2014) have
been focusing on the study of keyphrases extrac-
tion. Generally, the extraction consists of two main
steps: (1) Identifying candidate phrases by spe-
cial hand-crafted rules (Hulth, 2003; Medelyan
et al., 2009). (2) Sorting the candidate phrases
to obtain keyphrases. For example, (Boudin, 2018;
Bougouin et al., 2014; Campos et al., 2020; Mi-
halcea and Tarau, 2004) used an unsupervised ap-
proach to rank candidates. In recent years, some
studies used a supervised approach for ranking,
such as (Sun et al., 2021). And they achieved good
results by introducing the BERT (Devlin et al.,
2019) model. In addition, some studies consid-
ered keyphrase extraction as a sequence labeling
task (Alzaidy et al., 2019). Although extraction-
based methods obtained good results, they lacked
an ability to predict absent keyphrases.

2.2 Keyphrase Generation

Due to previous methods’ drawbacks for predict-
ing absent keyphrases, Meng et al. (2017) first
proposed a CopyRNN model to generate words
from vocabulary and copy words from the source
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Figure 2: The overall structure of DualCopyNet, which includes three parts: Encoder Layer, Sequence Labeling
Layer and Decoder Layer.

text. Subsequent studies have made many improve-
ments on the basis of CopyRNN. (1) For prob-
lem with few training samples in certain domains,
Ye and Wang (2018) proposed semi-supervised
keyphrase generation method to leverage labeled
data and large-scale unlabeled samples for learn-
ing. (2) Many studies ignored relationships among
keyphrases, therefore Chen et al. (2018) proposed
a new sequence-to-sequence architecture to capture
correlation among keyphrases for generating new
keyphrases. (3) Another problem is that the current
researches ignored the leading role of the title. And
Chen et al. (2019) realized the problem, then pro-
posed a novel model named TGNet for keyphrase
generation. (4) Different source texts should con-
tain different number of keyphrases. Therefore,
Yuan et al. (2020) proposed a recurrent generative
model to generate multiple keyphrases by delimiter-
separated sequences. (5) Keyphrases are inherently
a disordered set rather than an ordered sequence, so
Ye et al. (2021) proposed a new training paradigm
ONE2SET to concatenate keyphrases without a
predefined order.

In recent years, some new technologies have also
been applied for keyphrase generation task, such

as Reinforcement Learning (Chan et al., 2019) and
Generative Adversarial Networks (GANs) (Swami-
nathan et al., 2020).

3 Methodology

3.1 Problem Definition
Given a keyphrase dataset that containsN data sam-
ples, and the ith is denoted as (x(i), p(i)), where
x(i) is a source text, p(i) is a set of keyphrases.
p(i) contains Mi keyphrases and denotes as p(i) =
(p(i,1), p(i,2), . . . , p(i,Mi)), where p(i,j) is one of p(i)

. x(i) and p(i,j) are word sequences:

x(i) = (x
(i)
1 , x

(i)
2 , . . . , xl

(i)

x(i)
), (1)

p(i,j) = (y
(i,j)
1 , y

(i,j)
2 , . . . , yl

(i,j)

p(i,j)
), (2)

where l
(i)
x and l

(i,j)
p is length of x(i) and p(i,j)

respectively. The keyphrase generation task is
to generate a set of keyphrase p(i) from the
source text x(i), namely maximizes the probability∏N
i=1

∏Mi
j=1 P (p

(i,j)|x(i)).

3.2 DualCopyNet Architecture
In this section, we will introduce the proposed
DualCopyNet in detail. The model is based on
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the sequence-to-sequence framework (Sutskever
et al., 2014) and the copy mechanism (Gu et al.,
2016). The structure shown in Figure 2 includes
three parts: Encoder Layer, Sequence Labeling
Layer and Decoder Layer.

Specifically, we first feed the source text into
an encoder layer and a sequence labeling layer to
obtain corresponding contextual representations.
Then, we send the representations to a decoder
layer to produce keyphrases. For a better genera-
tion, we introduce a dual copy mechanisms namely
seed words copy mechanism and OOV words copy
mechanism in the decoder layer. After that, the
decoder dynamically generates words from the vo-
cabulary or copies useful words from the source
text.

Encoder Layer. To better generate contextual
representations from a text, DualCopyNet adopts
bi-directional GRUs (Cho et al., 2014) to encode
the source text. And the text is composed of word
embedding, which is defined as follows:

X = (w1,w2, . . . ,wn), (3)

wherewi∈Ru1 denotes the word embedding of the
ith word in the source text. Let u1 be the dimen-
sion of the word embedding and n be the length
of the source text. Then, X∈Rn×u1 is sent into
the encoder layer, we employ bi-directional GRUs
(Bi-GRU) to read the text sequence from two direc-
tions and output the hidden state of each word as
follows:

→
ui =

−→
GRU(wi,ui−1),

←
ui =

←−
GRU(wi,ui+1).

(4)

We then concatenate
→
ui ∈Ru2 and

←
ui ∈Ru2 to get

the hidden state ui of the ith word, whose length
is 2u2 and computed as follows:

ui = [
→
ui;
←
ui]. (5)

Sequence Labeling Layer. As mentioned
above, we observe that some seed words repeat-
edly appear in many keyphrases. Therefore, we
expect to identify these seed words first and then
dynamically copy them into the output of the de-
coder. Since there is no labeled data, it is very
difficult to directly extract the seed words from
the source text. Therefore, in this study, we con-
sider identified present keyphrases as seed words
and introduce a sequence labeling layer based on

LSTM-CRF (Huang et al., 2015) in DualCopyNet
to extract these seed words. Specifically, we first in-
put the word embedding xi∈Ru1 at time step i into
the bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) to obtain the hidden state vi = [

→
vi;
←
vi]

and derive the emission potential from vi. Mean-
while, an additional Conditional Random Field
(CRF) (Lafferty et al., 2001) layer is employed to
calculate the most probable tag for the each word.
Then we use the BIESO scheme (Begin, Intermedi-
ate, End, Single, Other) to identify the seed words
in the texts. For given a source text x, the con-
ditional probability of a target tag∗ is computed
by:

P (tag∗|x) = expscore(x,tag
∗)

∑
t̃ag exp

score(x,t̃ag)
, (6)

where the function score is defined as:

score(x,tag) =
∑

i

logϕemit(i, tagi)+

logϕtrans(tagi−1 → tagi),

(7)

where ϕtrans(tagi−1 → tagi) is the transition
score from tagi−1 to tagi. ϕemit(i, tagi) is the
score of the tagi for the ith input word and comes
from the hidden state of the Bi-LSTM at timestep
i.

Finally, the loss function of the sequence label-
ing layer is defined as:

Ls = −log(P (tag∗|x)). (8)

Decoder Layer. The source text has been en-
coded into two kinds of contextual representations
through an encoder layer and a sequence labeling
layer, respectively. Further, we adopt the decoder
based on the attention mechanism to fuse the dual
copy mechanisms to generate keyphrases. The de-
coder is created with one-way GRU. For each time
step t, the GRU fuses the hidden state st−1 and
the word embedding et−1 of the output word yt−1,
which is computed by:

st = GRU(et−1, st−1), (9)

where t − 1 denotes previous time step, e0 is the
embedding of the start token ‘<BOS>’.

Generation and Seed Words Copy. As
mentioned above, the sequence labeling layer is
adopted to predict seed words. Then we expect to
dynamically copy these words into the output se-
quence for generating the keyphrases. Specifically,
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we first use the decoder vector s̃cst to generate the
next word, where s̃cst = [ccst ; st] is derived from
concatenating ccst and st, and the context vector
ccst is computed as a weighted sum of hidden repre-
sentations by the concatenate attention mechanism
(Luong et al., 2015):

ccst = attn(st, [v1,v2, · · ·vn],W cs
att). (10)

Then, the probability of generating the word
P csv (yt) from vocabulary is computed by:

P csv (yt|yt−1, x) =
softmax(Wv2(Wv1s̃cst + bv1) + bv2).

(11)

Furthermore, a copy mechanism (Gu et al., 2016)
is adopted to efficiently extract the in-text informa-
tion and strengthen the generation capability of our
model. We first calculate a soft gate Gcst to dy-
namical select the way of output, that is whether
generating from the vocabulary or copying from
the seed words at time step t, which is defined as:

Gcst = sigmoid(W cs
g m

cs
t + bcsg ), (12)

where mcs
t = [et−1; s̃cst ] is the concatenation of

the embedding of previous output word y(t−1) and
s̃cst . Then, the probability of predicting a word yt
by copying from seed words or generating from
vocabulary is defined as:

P csf (yt) = Gcst P
cs
c (yt)+ (1−Gcst )P csv (yt), (13)

where P csc (yt) =
∑

i:xi=yt
acst,i is a probability of

seed word copy for yt . And
∑

i:xi=yt
acst,i is the nor-

malized attention weight between st and sequence
labeling layer hidden state vi.

Generation and OOV Words Copy. The prob-
ability of generating the word P cov (yt) for current
step is computed by:

P cov (yt|yt−1, x) =
softmax(Wv4(Wv3s̃cot + bv3) + bv4),

(14)

where s̃cot = [ccot ; st] and the context vector ccot is
computed by:

ccot = attn(st, [u1,u2, · · ·un],W co
att). (15)

Then, the second soft gate Gcot is computed by:

Gcot = sigmoid(W co
g m

co
t + bcog ), (16)

wheremco
t = [et−1; s̃cot ]. Eventually, the probabil-

ity of predicting a word yt by copying from OOV

Dataset |Samples| #KP %A-KP
Inspec 500 9.79 26.42

NUS 211 10.81 45.36

SemEval 100 14.43 55.61

KP20k 20000 5.26 37.23

Table 1: Statistics for the four testing datasets. |Sam-
ples|: the number of samples on the dataset, #KP: the
avg number of keyphrases, %A-KP: the proportion of
absent keyphrase.

words or generating from vocabulary is computed
by:

P cof (yt) = Gcot P
co
c (yt)+(1−Gcot )P cov (yt), (17)

where P coc (yt) =
∑

i:xi=yt
acot,i is a probability of

OOV word copy for yt. And
∑

i:xi=yt
acot,i is the

normalized attention score between st and encoder
hidden state ui.

In the end, the final probability distribution of
predicting a word yt is computed by summation of
P csf (yt) and P cof (yt):

Pf (yt) = P csf (yt) + P cof (yt). (18)

3.3 Training Loss

DualCopyNet is based on sequence-to-sequence
structure and involves two tasks: keyphrase genera-
tion and sequence labeling. Thus, the loss function
contains two parts: the sequence labeling layer in-
troduces an additional CRF loss (equation 8), and
the decoder layer adopts the negative log likelihood
(NLL) loss, which is defined as:

Lg = −
Ly∑

t=1

logPf (yt|yt−1, x, θ). (19)

We define the overall loss function with the CRF
loss and the NLL loss:

L = Ls + Lg. (20)

The loss is calculated as the average over mini
batch. Finally, we use Adam (Kingma and Ba,
2014) to optimize the model.

4 Experimental Settings

In this section, we will describe the training and
testing sets used for the experiments, then introduce
the baseline models and evaluation metrics.
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4.1 Dataset
We choose the largest public dataset KP20k (Meng
et al., 2017) for training models, it contains a large
number of high-quality academic papers mainly
from the computer science field. The dataset has
527,830 articles for training and 20000 articles for
validation.

Furthermore, we evaluate our model on four
testing datasets widely adopted in previous works
(Chen et al., 2018; Yuan et al., 2020; Chen et al.,
2019; Ye et al., 2021; Swaminathan et al., 2020;
Chen et al., 2020), including Inspect (Hulth, 2003),
NUS (Nguyen and Kan, 2007), KP20k (Meng et al.,
2017) and SemEval (Kim et al., 2010). Table 1
summarizes the statistics of each testing dataset.

4.2 Baselines
In our experiments, we choose the following
keyphrase generation models as the baselines:

• catSeq (Yuan et al., 2020): An RNN-based
attentional encoder-decoder model with copy
mechanism.

• catSeqD (Yuan et al., 2020): catSeq aug-
mented with orthogonal regularization and se-
mantic coverage mechanism.

• catSeqCorr (Chen et al., 2018): a new
sequence-to-sequence architecture for
keyphrases generation, which captures
correlation among multiple keyphrases in two
ways.

• catSeqTG (Chen et al., 2019): a new sequence-
to-sequence architecture for keyphrases gen-
eration, which explicitly considers the leading
role of the title to the overall document main
body.

• catSeq-RF (Chan et al., 2019): An extension
of catSeq with RL-based finetuning, which
introduces an adaptive reward function and
encourages the model to generate both suffi-
cient and accurate keyphrases.

• GAN-mr (Swaminathan et al., 2020): A
novel model for keyphrase generation ap-
proach using Generative Adversarial Net-
works (GANs).

• ExHiRD-h (Chen et al., 2020): An exclusive
hierarchical decoding model with a hard ex-
clusion mechanism.

4.3 Implementation Details
The models catSeq, catSeqD, catSeqCorr, catSe-
qTG and catSeq-RF are implemented by (Chan
et al., 2019). Followed by (Yuan et al., 2020;
Chen et al., 2020; Swaminathan et al., 2020; Chan
et al., 2019), when training our model, the ground-
truth keyphrase sequence is the concatenation of
present and absent keyphrases. Then the present
keyphrases are sorted according to the initial orders
arose in the document, and the absent keyphrases
keep their original orders. Furthermore, we replace
all digits with the symbol <digit> and define the vo-
cabulary V with the most frequent words numbered
50,000.

The embedding size and hidden size of GRU,
LSTM are set to 150; The batch size is 64 and
learning rate is 0.0001; The gradient clipping is set
to 1 and dropout is set to 0.1. The hyper-parameters
are tuned on validation set. Early stopping is ap-
plied when the validation loss stops dropping three
continuous evaluations. During testing, we set the
maximum depth of the beam search as 6 and the
beam size as 200. While on KP20k dataset, due
to the large amount of test data, we set the beam
size as 20. We implement the model using Pytorch
(Paszke et al., 2019) and train the model using
NVIDIA 3090TI and Ubuntu System.

4.4 Evaluation Metrics
Same as previous work (Chen et al., 2019; Swami-
nathan et al., 2020; Chan et al., 2019; Ye et al.,
2021; Chen et al., 2020), we adopt the macro-
averaged F1@5 and F1@M as the evaluation met-
rics. F1@M compares all keyphrases predicted by
the model with the ground-truth to compute the F1
score. And F1@5 compares top 5 keyphrases pre-
dicted by the model with the ground-truth. Specifi-
cally, when the number of predictions is less than
five, F1@5 will be the same as F1@M, so we must
randomly append incorrect keyphrases to fill five
predictions instead of directly using the original
predictions. Furthermore, we also apply Porter
Stemmer for preprocessing before comparisons.

5 Results and Analysis

5.1 Keyphrases Prediction
In this section, we will evaluate the performance
of the model in predicting present keyphrase and
absent keyphrase separately.

The performances of predicting present
keyphrase are shown in Table 2. As we can see
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Model Inspec NUS SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeq 0.262 0.225 0.397 0.323 0.283 0.242 0.367 0.291

catSeqD 0.263 0.219 0.394 0.321 0.274 0.233 0.363 0.285

catSeqCorr 0.269 0.227 0.390 0.319 0.290 0.246 0.365 0.289

catSeqTG 0.270 0.229 0.393 0.325 0.290 0.246 0.366 0.292

catSeq-RF 0.300 0.250 0.426 0.364 0.327 0.285 0.383 0.310

GAN-mr 0.299 0.258 0.417 0.348 \ \ 0.378 0.303

ExHiRD-h 0.291 0.253 \ \ 0.335 0.284 0.374 0.311

DualCopyNet 0.342 0.284 0.395 0.379 0.339 0.315 0.337 0.312

Table 2: F1 of present keyphrases prediction on four datasets. The best/second results in each column are highlighted
with bold/underline.

Model Inspec NUS SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeq 0.008 0.004 0.028 0.016 0.028 0.020 0.032 0.015

catSeqD 0.011 0.007 0.024 0.014 0.024 0.016 0.031 0.015

catSeqCorr 0.009 0.005 0.024 0.014 0.026 0.018 0.032 0.015

catSeqTG 0.011 0.005 0.018 0.011 0.027 0.019 0.032 0.015

catSeq-RF 0.017 0.009 0.031 0.019 0.027 0.018 0.047 0.024

GAN-mr 0.019 0.013 0.038 0.026 \ \ 0.045 0.032
ExHiRD-h 0.022 0.011 \ \ 0.025 0.017 0.032 0.016

DualCopyNet 0.014 0.012 0.055 0.038 0.029 0.023 0.042 0.025

Table 3: F1 of absent keyphrases prediction on four datasets. The best/second results in each column are highlighted
with bold/underline.

that DualCopyNet greatly outperforms the whole
baseline models on F1@5, especially on Inspec,
NUS and SemEval datasets, but there is only a
slight improvement on the KP20k dataset. For
F1@M, DualCopyNet also achieves the best results
on the Inspec and SemEval datasets, outperforms
all models, which demonstrates the effectiveness
of our method.

Predicting absent keyphrases is a challenging
task. As shown in Table 3, we can see that all
models are poor in predicting absent keyphrases
comparing to predicting present keyphrases. In this
task, DualCopyNet achieves better performance on
the NUS and SemEval datasets and outperforms all
baseline models. While, the performance is slightly
lower than some baseline models on Inspect and
KP20k datasets.

Overall, the advantage of our model is more obvi-
ous on datasets containing more target keyphrases,
such as NUS, SemEval and Inspec. Because
the more keyphrases, the greater the number of
seed words included, and the model can achieve
a greater performance improvement. In contrast,
as can be seen from Table 1, The average number

of keyphrases on KP20k is much lower than the
other three datasets. Therefore, our model does not
achieve the best results on KP20k dataset.

5.2 Ablation Study
We conduct an ablation study to further analyze
dual copy mechanisms and multi-task learning.
First, we introduce three variants of DualCopyNet:

• SeqLabelingNet: We remove the decoder
layer and only keep the sequence labeling
layer.

• OOVCopyNet: We remove the seed words
copy mechanism in the decoder layer, and
only keep the OOV words copy mechanism.

• DualCopyNetnll: This model is same as Dual-
CopyNet. But we only use the negative log-
likelihood loss (Equation 19) to optimize the
model when training phase.

The present keyphrases prediction results of the
ablation study are shown in Table 4. After adding
the seed words copy mechanism, the performance
of the models (DualCopyNet and DualCopyNet)
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Model Inspec NUS SemEval KP20k
P R F1 P R F1 P R F1 P R F1

SeqLabelingNet 0.275 0.075 0.118 0.446 0.169 0.245 0.389 0.142 0.208 0.349 0.222 0.271

OOVCopyNet 0.407 0.273 0.327 0.353 0.402 0.375 0.285 0.353 0.315 0.258 0.473 0.334

DualCopyNetnll 0.419 0.276 0.332 0.351 0.435 0.388 0.280 0.370 0.319 0.259 0.485 0.338
DualCopyNet 0.403 0.298 0.342 0.348 0.458 0.395 0.303 0.384 0.339 0.258 0.485 0.337

Table 4: Ablation study on the four datasets for present keyphrases predication. The P denotes Precision@M,
the R denote Recall@M and the F1 denote F1@M. The best/second results in each column are highlighted with
bold/underline.

Model Inspec NUS SemEval KP20k
P R F1 P R F1 P R F1 P R F1

OOVCopyNet 0.008 0.012 0.010 0.041 0.032 0.036 0.045 0.013 0.020 0.038 0.036 0.037

DualCopyNetnll 0.013 0.019 0.015 0.048 0.039 0.043 0.049 0.025 0.033 0.040 0.044 0.042
DualCopyNet 0.012 0.015 0.014 0.063 0.048 0.055 0.062 0.019 0.029 0.040 0.044 0.042

Table 5: Ablation study on the four datasets for absent keyphrase predication. The best/second results in each
column are highlighted with bold/underline.

on four datasets has been obviously improved, es-
pecially in Recall, which means the model can re-
call more keyphrases through the seed words copy
mechanism, and this is also consistent with our ex-
pectations. Due to the KP20k dataset only contains
few keyphrases, so there is only a slight improve-
ment on F1. In addition, the precision of SeqLabel-
ingNet achieves the best results on most of datasets,
so it is reasonable and effective to identify present
keyphrases as seed words and copy them into the
decoder.

Since SeqLabelingNet cannot predict the ab-
sent keyphrase, there only remains three mod-
els. The experimental results are shown in Ta-
ble 5. In the prediction of absent keyphrases,
the models (DualCopyNetnll and DualCopyNet)
have obviously improved in Recall, Precision
and F1 after adding the seed words copy mech-
anism. Furthermore, the models DualCopyNet and
DualCopyNetnll have the same structure, but Dual-
CopyNet employs multi-task learning when train-
ing phase. As can be seen from Table 4 and Table 5,
F1 of DualCopyNet outperforms DualCopyNetnll

on most of datasets. It proves that multi-task learn-
ing can effectively improve the performance of the
model.

5.3 Ability to Generate Diverse Keyphrases

To investigate the model’s ability of generating di-
verse keyphrases, we adopt NDCG (Wang et al.,
2013) to evaluate models. NDCG is used to evalu-
ate the diversity of generated text, which is widely

Figure 3: NDCG@10 metrics on four datasets.

used in text generation tasks (Habibi and Popescu-
Belis, 2013) and information retrieval (Santos et al.,
2013) tasks. The higher NDCG means the more di-
verse content that the model can generate. It works
by penalizing redundant keyphrases and rewarding
new keyphrases.

The results are summarized in Figure 3. Com-
pared to OOVCopyNet, DualCopyNet achieves bet-
ter NDCG@10 on three of the four datasets. Es-
pecially, there is an obvious improvement on the
KP20k and Inspec datasets. It proves that the in-
troduction of the seed words copy mechanism not
only improves the performance of the model, but
also generates more diverse phrases.

5.4 Case Study

In Figure 4, we show examples of keyphrases gen-
erated by SeqLabelingNet, OOVCopyNet and Du-
alCopyNet respectively. After inputting the title
and the abstract, we can see that DualCopyNet
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Figure 4: Case study. The keyphrases in the rectangle are truth keyphrases. Words remarked with green indicate
copied from OOV words. Words remarked with orange indicate copied from seed words.

can generate more diverse keyphrases, the quantity
even exceeds the ground-truth. Not only that, these
generated keyphrases are generally reasonable and
typical. Next, we can find that DualCopyNet copies
the seed words “phrase” predicted by the sequence
labeling layer to generate some new keyphrases,
such as “phrase indexing”. But the keyphrases
generated by OOVCopyNet contain none of the
above words, which proves the effectiveness of the
seed words copy mechanism. On the other hand,
DualCopyNet also generates keyphrases copying
from OOV word “nextword”. Finally, through the
case study, it is proved that our model can well
integrate the two copy mechanisms and effectively
improve the performance of generating keyphrases.

6 Conclusions

In this paper, we propose a novel DualCopyNet for
keyphrases generation. Based on the phenomenon
of that many keyphrases are composed of seed
words in the source text, we design dual copy mech-
anisms to precisely copy seed words and OOV
words from the source text. Furthermore, aim-
ing to obtain seed words, we introduce an addi-
tional sequence labeling layer and train the model
with a multi-task learning. Finally, the experiments
conducted on multiple datasets show our model’s
achievements are higher than most of baselines.
Meanwhile, ablation experiments show a positive
effect of the seed word copy mechanism and multi-
task learning.
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Abstract

Few-shot relation classification aims to classify
the relation type between two given entities in
a sentence by training with a few labeled in-
stances for each relation. However, most of
existing models fail to distinguish multiple re-
lations that co-exist in one sentence. This pa-
per presents a novel dependency-aware proto-
type learning (DAPL) method for few-shot re-
lation classification. Concretely, we utilize de-
pendency trees and shortest dependency paths
(SDP) as structural information to complement
the contextualized representations of input sen-
tences by using the dependency-aware embed-
ding as attention inputs to learn attentive sen-
tence representations. In addition, we introduce
a gate controlled update mechanism to update
the dependency-aware representations accord-
ing to the output of each network layer. Exten-
sive experiments on the FewRel dataset show
that DAPL achieves substantially better perfor-
mance than strong baselines. For reproducibil-
ity, we will release our code and data upon
the publication of this paper at https://
github.com/publicstaticvo/DAPL.

1 Introduction

Relation classification, which aims to classify the
relation between two entities in a sentence, is a
fundamental task for information retrieval (Kadry
and Dietz, 2017), knowledge graph construction
(Shen et al., 2020; Ji et al., 2021) and question
answering (Luo et al., 2018). Most of existing
relation classification methods (Wang et al., 2016;
Guo et al., 2019; Shen et al., 2020; Tian et al., 2021;
Zhao et al., 2022a) focus on the supervised scenario
where sufficient labeled training data is available.
However, it is time-consuming and labor-intensive
to collect large-scale labeled data in many real-
world applications, especially in the low-resource
settings (Geng et al., 2019, 2020; Fan et al., 2021;
Zhao et al., 2022b).

*Min Yang is corresponding author.

Recently, few-shot relation classification
(FSRC), which explores relation extraction
methods by training with a few labeled examples
in each relation, has become a hot research topic
(Gao et al., 2019; Qu et al., 2020; Gao et al., 2020;
Wang et al., 2020; Xu and Xiang, 2021; Ding et al.,
2021; Fan et al., 2021). For instance, Han et al.
(2018) introduce a large-scale FSRC dataset and
implement several well-known few-shot learning
techniques (Finn et al., 2017; Snell et al., 2017) for
FSRC. Qu et al. (2020) propose a Bayesian meta
learning approach for FSRC, which learns the
posterior distributions of prototype vectors among
different relations.

Despite the remarkable progress of FSRC meth-
ods, there is still a technical challenge which is not
addressed well in prior work. Specifically, there
can be multiple relations that co-exist in a sentence,
while only one relation corresponds to the given en-
tity pairs. The other existed relations may mislead
the classifier to the wrong relation class, which
is called the misleading relation. Taking Figure
1 as an example, the gold relation between two
target entities “Mitsubishi toppo” and “minica” is
“derivative-model” marked by the term “derived
from”, while most prior FSRC methods incorrectly
predict the misleading relation “products-producer”
marked by the term “produced by”.

One possible solution is to leverage the depen-
dency tree as auxiliary information to facilitate the
representation learning. Recently, several studies
have incorporated dependency tree into supervised
relation classification models and obtained signifi-
cant performance improvement (Sun et al., 2020;
Yu et al., 2020; Pouran Ben Veyseh et al., 2020;
Chen et al., 2021; Fan et al., 2021; Tian et al.,
2021). However, few studies investigate the ef-
fectiveness of dependency trees in FSRC task. In
addition, most existing works either solely focus on
the terms that have direct dependency with target
entities or involve redundant information by using
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Figure 1: An example from the test set of FewRel. Previous models only focus on the dependency tree in blue color
and ignore the SDP in red color which entails the ground-truth relation.

the entire dependency tree, failing to get other infor-
mation such as shortest dependency paths (SDP) of
two entities thus cannot tackle the misleading rela-
tion problem. For example, as illustrated in Figure
1, the SDP (marked as red lines) of the two entities
can help the relation classification model obtain
the correct relation “derived from”. Therefore, it is
necessary to fully exploit dependency information
as auxiliary structural information, which can help
identify useful terms and misleading terms via their
relative positions to the given entities.

In this paper, we propose a novel dependency-
aware prototype learning (DAPL) method for
FSRC. DAPL is based on the framework of proto-
typical networks (Snell et al., 2017) with the BERT
(Devlin et al., 2018) encoder, motivated by the ef-
fectiveness of prototypical networks in few-shot
classification tasks. In our method, we leverage
dependency trees as structural information to com-
plement the contextualized representations of input
sentences. Specifically, we assign each input to-
ken with a dependency label, according to whether
the token is adjacent to the target entities or on
the SDP between the two target entities. We high-
light the tokens on the SDP by assigning a unified
sdp dependency label for each token. Then, we
convert these dependency labels into dependency
embeddings, which are used as attention inputs of
the contextualized sentence representations to learn
dependency-aware sentence representations. Fur-
thermore, we introduce a gate-controlled update
mechanism to update the dependency-aware repre-
sentations based on the output of each BERT layer,
inspired by the effectiveness of the gate update
functions in GRU (Cho et al., 2014). This mech-
anism provides a feedback to dependency states
about whether they are reflecting the importance of
each token and related to the ground truth labels.

The main contributions of this work are three-
fold:

• We propose a novel dependency-aware proto-
type learning method for FSRC, which fully
exploit the dependency and contextualized in-

formation to alleviate the misleading relation
problem and improve the overall performance
of FSRC.

• We present a gate-controlled update mech-
anism to adaptively adjust the dependency-
aware representations according to the output
of each network layer.

• Experiments on a benchmark FSRC dataset
(i.e., FewRel) show that our method outper-
forms the strong baselines by a noticeable mar-
gin.

2 Methodology

Problem Definition In the RC task, each in-
stance consists of an input sequence x (including
a input sentence z, a head entity e1, a tail entity
e2) and a relation label y for the two entities. We
adopt a typical N -way-K-shot setting for FSRC
(Qu et al., 2020). Under N -way-K-shot configura-
tion, the training data is further split into a support
set S and a query set Q which have disjoint labels,
where S contains N relation classes and each with
K labeled examples. The goal of FSRC is to learn
a model using Dtrain, which is then used to predict
the relation y for each input x in testing set.

2.1 Dependency Labels

Given an input example x ∈ Dtrain, we denote its
dependency tree as G = (V,E), where V contains
the tokens in the sentence and E contains the set
of edges (dependencies) of tokens. Each triplet
(wi, wj , d) ∈ E denotes that there is a dependency
of type d between tokens wi and wj in x. Note that
G is an undirected graph. Given the head entity e1
and the tail entity e2, we denote the set of all tokens
on the SDP between e1 and e2 except themselves
as P . We assign two dependency labels l(1)i and
l
(2)
i to each token wi of the sentence x, where l(1)i

and l(2)i denote the dependency relations between
the token wi to the head entity and the tail entity
respectively by the following four steps:

2340



1. We initialize the l(1)i and l(2)i labels of each
token as none.

2. The l(1)i label of e1 and the l(2)i label of e2 are
set to self .

3. For each token wi ∈ P on SDP except e1 and
e2, we set its l(1)i and l(2)i labels as sdp.

4. For each token wi /∈ P that is not on SDP,
we set l(1)i to the corresponding dependency
parsing type if l(1)i is none and wi has an edge
connected to e1 on the dependency tree. We
can get the l(2)i label for e2 in a similar way.

To better illustrate the above process, we take the
sentence “[CLS] the school <e1> master </e1>
teaches the lesson with a <e2> steak </e2> [SEP]”
as an example. We show how the two labels of
each token are obtained as follows:

1. We initialize the l(1)i and l(2)i labels of each
token as none.

2. The l(1)i labels of “<e1>”, “master”, “</e1>”
and the l(2)i labels of “<e2>”, “steak”, “</e2>”
are assigned with self .

3. The dependency path between the two entities
(i.e., “master” and “steak”) is “master-teaches-
steak”, so both l(1)i and l(2)i labels of “teaches”
are set as sdp.

4. For the remaining tokens, “the” and “school”
are adjacent to “master” on the dependency
tree, so the l(1)i label of “the” is det, and the
l
(1)
i label of “school” is compound. Mean-

while, “with” and “a” are adjacent to “steak”,
so the l(2)i label of “with” is case, and the l(2)i
label of “a” is det.

Afterwards, we use an embedding layer to con-
vert the dependency labels l(1)i and l(2)i into depen-
dency embeddings d

(1)
i and d

(2)
i with an embed-

ding dimension of dh/2, where dh is the hidden
vector size of the encoder. The dependency embed-
ding di of each token wi is formed by concatenat-
ing d

(1)
i and d

(2)
i together, whose length is dh.

2.2 Dependency-aware Attention

Figure 2 shows the structure of our model DAPL.
Our model takes each token representation {wi}
and dependency embedding {di} in the sentence

w
i

A     is   son   of  <e1> B  </e1> and <e2> C  </e2> none none nmod  case  self  self  self   cc    conj conj conj     l
i1

none none  none  none conj conj conj none self  self   self     l
i2

Token Embedding Layer Dependency Embedding Layer

WV WK WQ

Scaled Dot-product Attention

Concat

Linear

WU

1-

WZ

×L

Gate-

controlled 

Update
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Figure 2: The overall structure of our DAPL.

as input. Inspired by the remarkable success of pre-
trained language models (PLMs) on most of NLP
tasks, we employ BERT (Devlin et al., 2018) as the
basic framework of our model. To learn the impor-
tance of each token to the given entities, we modify
the self-attention mechanism in original BERT by
adding together the contextual representation and
dependency representation when generating query
and key matrices at the l-th layer:

Q(l) = (h
(l−1)
i + d

(l−1)
i )W

(l)
Q (1)

K(l) = (h
(l−1)
i + d

(l−1)
i )W

(l)
K (2)

V (l) = h
(l−1)
i W

(l)
V (3)

h̃(l) = softmax

(
Q(l)K(l)T

√
dK

)
V (l) (4)

where W (l)
Q ,W

(l)
K ,W

(l)
V ∈ Rdh×dh are learnable

attention weights in scaled dot-product attention.
Here, h(0)

i = wi and d
(0)
i = di. Then, a two-

layer feed-forward neural network with a ReLU
activation takes the weighted sum h̃(l) as input to
learn the output hidden states h(l) at the l-th layer:

h(l) = max(0, h̃(l)W
(l)
1 + b

(l)
1 )W

(l)
2 + b

(l)
2 (5)

where W (l)
1 , W (l)

2 , b(l)
1 , b(l)

2 are learnable parame-
ters in BERT.

2.3 Gate-controlled Update
We propose a gate-controlled update to the depen-
dency states d(l−1)

i at the end of each layer by using
the previous dependency representation d

(l−1)
i and

the output hidden states h(l)
i . Inspired by the Gate

Recurrent Unit (GRU) (Cho et al., 2014), we devise
an update gate and a control gate. Specifically, the
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control gate is a single fully-connected layer with
a sigmoid activate function, which is defined as:

z
(l)
i = sigmoid([h

(l)
i ;d

(l−1)
i ]W

(l)
Z ) (6)

where W (l)
Z ∈ R2dh×dh is a learnable parameter.

The update gate is a single fully-connected layer
with a tanh activate function, which is defined as:

u
(l)
i = tanh(h

(l)
i W

(l)
U ) (7)

where W (l)
U ∈ Rdh×dh is a learnable parameter.

Finally, the output dependency representations
are learned by considering the last dependency state
d
(l−1)
i and the update gate output u(l)

i under the
control of z(l)i :

d
(l)
i = (1− zli)⊙ d

(l−1)
i + zli ⊙ u

(l)
i (8)

where ⊙ represents the element-wise product.

2.4 Relation Classification
We apply a max-pooling operation on the position
spans of the head and tail entities, and get the head
entity representation hLe1 and tail entity represen-
tation hLe2 , where L denotes the number of layers
in BERT. Then, we concatenate he1 and he2 as the
representation h of each input instance.

Following the prototypical network (Snell et al.,
2017), we compute a prototype for each relation
class c as pc = 1

Kc

∑
(xsi ,ysi )∈Sc hxsi , where

Sc = {(xsi , ysi)}Kci=1 denotes the support set that
has class label c, hxsi is the contextual represen-
tation of xsi , and Kc is the number of instances
in Sc. Given the query set Q = {(xqi , yqi)}

KQ
i=1

and a Euclidean distance function d(·), the pro-
totypical network computes a distribution over
classes for a query instance xqi based on a soft-
max over distances to the prototypes in the embed-
ding space. Formally, we define the prototypical
objective Lproto over the query set Q as follows:

Lproto = −
1

KQ

KQ∑

i=1

log
exp(−d(hxqi ,pyqi ))∑N
c=1 exp(−d(hxqi ,pc))

(9)
where KQ denotes the number of instances in Q.

Inference Stage In inference phase, we compute
the relation ŷi of each input xi in testing set as:

ŷi = argmin
c

d(hxi ,pc), c ∈ [1, . . . , N ] (10)

3 Experiments

3.1 Experimental Setup
Dataset We use the benchmark FSRC dataset
FewRel (Han et al., 2018) to evaluate the effective-
ness of our model. FewRel contains 100 different
relations, with 64 relations in training set, 16 rela-
tions in validation set and 20 relations in testing
set. For each type of relation, there are 700 dif-
ferent examples. Since the 20 testing relations are
unpublished, we re-split the published 64 training
relations into 50 relations and 14 relations for train-
ing and validation respectively, and employ the
original validation set with 16 relations for testing,
following previous studies (Yang et al., 2020).

Baselines We compare DAPL with several state-
of-the-art baselines for FSRC, including Proto
(Snell et al., 2017), Proto-GAT (Snell et al., 2017),
BERT-PAIR (Gao et al., 2019), CTEG (Wang
et al., 2020), TD-Proto (Yang et al., 2020), and
a simple version of ConceptFERE (Yang et al.,
2021) that involves an external concept database.

Implementation Details For the PLM, the pro-
posed DAPL is implemented based on BERTbase
for all experiments. We conduct N -way-K-shot
(denoted as N -w-K-s) to study the performance
in different situations. Here, we adopt four dif-
ferent settings, i.e., 5-w-1-s, 5-w-5-s, 10-w-1-s,
and 10-w-5-s. We tune the entire model and select
the checkpoint with best validation performance.
The maximum length of the sentence is 90. We
follow Soares et al. (2019) to insert four special
tokens <e1>, </e1>, <e2> and </e2> to mark the
boundaries of the entities. The dependency trees
are obtained using the external Standard CoreNLP
Toolkit proposed by StanfordNLP. The size of the
dependency embedding is 384. DAPL is optimized
with AdamW (Loshchilov and Hutter, 2018) and
warmup mechanism (Popel and Bojar, 2018).

3.2 Experimental Results
Overall Results We adopt classification accu-
racy as the evaluation metric. Table 1 reports the
experimental results of our model and four base-
lines in four few-shot settings. Our DAPL model
achieves significantly better performance than the
baselines in all settings. Specifically, our method
improves the best performance of baselines by
0.28%/1.76%/0.75%/3.34% under the four settings
respectively. The performance gain of our method
comes from the auxiliary dependency information.
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Model 5 way 1 shot 5 way 5 shot 10 way 1 shot 10 way 5 shot
Proto 72.65 86.15 60.13 76.20
Proto-GAT 79.14 88.46 68.87 79.45
BERT-PAIR 85.66 89.48 76.84 81.76
ConceptFERE 84.28 90.34 74.00 81.82
CTEG 84.72 92.52 76.01 84.89
TD-Proto 84.76 92.38 74.32 85.92
DAPL (Ours) 85.94 94.28 77.59 89.26
DAPL w/o Gate 85.44 93.68 76.29 88.27
DAPL w/o SDP 85.30 93.10 76.04 87.43
DAPL w/o DT 85.06 92.46 75.13 86.54

Table 1: The main evaluation results and the ablation results on the test set.

Ground-truth By DAPL By CTEG Input Example
Husband-Wife Husband-Wife Children-

Parent
He was born in Kristiania as a son of Gerda Ring and
Halfdan Christensen and brother of Bab Christensen.

Parent-Children Parent-
Children

Husband-Wife On March 8,1852 he married Kapi’olani, daughter of Kūhiō
Kalaniana’ole and Kinoiki Kekaulike.

Table 2: Prediction results on the test samples. We use the red and blue colors to indicate the head and tail entities.

Ablation Study To analyze the impact of differ-
ent components in DAPL, we also conduct ablation
test in terms of discarding the dependency tree (de-
noted as w/o DT), the SDP dependency label (de-
noted as w/o SDP) and the gate-controlled update
mechanism (denoted as w/o Gate). The ablation
test results are reported in Table 1. The accuracy
scores decrease sharply when removing the depen-
dency tree. This is within our expectation since
the dependency tree provides rich information of
entities and relations between them. Not surpris-
ingly, combining all the factors achieves the best
performance over the four experimental settings.

Case Study In Table 2, we provide a case study
to illustrate the effectiveness of our model for allevi-
ating the misleading relation problem qualitatively.
Specifically, we provide two examples from the test
set that are incorrectly predicted by CTEG while
being correctly predicted by our method. By fully
exploiting the auxiliary dependency information,
our DAPL can correctly predict the correct relation
even being disturbed by the misleading relation
“Husband-wife”. However, CTEG has a propensity
to confuse the co-exist relations in a sentence, since
the misleading terms are close to the given entities.

4 Conclusion

In this paper, we proposed a dependency-aware pro-
totype learning method for FSRC, which leveraged

dependency trees and shortest dependency paths as
structural information to complement the contextu-
alized representations of input sentences. A gate-
controlled update mechanism was further devised
to adaptively update the dependency-aware repre-
sentations according to the output of each network
layer. Experimental results showed that DAPL out-
performed strong baselines for FSRC.
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Abstract

Event Causality Identification (ECI) is the task
of detecting causal relations between events
mentioned in the text. Although this task
has been extensively studied for English ma-
terials, it is under-explored for many other
languages. A major reason for this issue is
the lack of multilingual datasets that provide
consistent annotations for event causality rela-
tions in multiple non-English languages. To
address this issue, we introduce a new mul-
tilingual dataset for ECI, called MECI. The
dataset employs consistent annotation guide-
lines for five typologically different languages,
i.e., English, Danish, Spanish, Turkish, and
Urdu. Our dataset thus enable a new research
direction on cross-lingual transfer learning for
ECI. Our extensive experiments demonstrate
high quality for MECI that can provide am-
ple research challenges and directions for fu-
ture research. We will publicly release MECI
to promote research on multilingual ECI. The
dataset is available at https://github.
com/nlp-uoregon/meci-dataset.

1 Introduction

Event Causality Identification (ECI) is an impor-
tant Information Extraction (IE) task that aims to
identify causal relations between event mentions in
text. For example, in the sentence “After inspec-
tion of his computer , officers found that he was
interested...”, a ECI system should detect a causal
relation between two events “inspection” cause−−−→

“found”. ECI can provide valuable information for
various applications such as event timeline con-
struction (Shahaf and Guestrin, 2010), question-
answering (Oh et al., 2016), future event forecast-
ing (Hashimoto, 2019), and machine reading com-
prehension (Berant et al., 2014).

Due to its applications, ECI has been extensively
studied in the natural language processing com-
munity over the past decade. The vast majority
of methods for ECI involve feature engineering

models (Do et al., 2011; Hu and Walker, 2017;
Hashimoto, 2019; Ning et al., 2018; Gao et al.,
2019) and recent deep learning architectures (Kad-
owaki et al., 2019; Zuo et al., 2021b; Liu et al.,
2021; Zuo et al., 2021a; Man et al., 2022a). As
such, the creation of large annotated datasets, e.g.,
EventStoryLine (Caselli and Vossen, 2017), has
been critical to the development of ECI study.
However, existing datasets for ECI only annotate
causal relations between event mentions in data of
a single language, i.e., mainly for English (Caselli
and Vossen, 2017; Cybulska and Vossen, 2014;
O’Gorman et al., 2016). On the one hand, this
leaves many other languages unexplored for ECI,
posing an important question about the generaliza-
tion ability of existing methods to other languages.
For instance, Spanish, Danish, and Turkish are not
covered in those separated datasets for ECI. More-
over, the current single-language datasets for ECI
tend to employ different annotation guidelines that
prevent their combination into a larger corpus and
cross-lingual transfer learning research to train and
evaluate models in different languages. In all, the
annotation discrepancy and limited language cover-
age hinder the research and development of the ECI
in various dimensions, necessitating a new dataset
with broader coverage for ECI.

To address this issue, this paper introduces a
Multilingual Event Causality Identification (MECI)
dataset to standardize and foster future research in
multilingual ECI. Particularly, we present a large-
scale ECI dataset for five languages, i.e., English,
Danish, Spanish, Turkish, and Urdu1 that are anno-
tated with the same annotation guideline to enable
cross-lingual transfer learning evaluation for the
first time. As such, four languages, i.e., Danish,
Spanish, Turkish, and Urdu, are not explored in
any of the existing datasets for ECI. To facilitate
open access to the dataset, we obtain the texts from

1We will maintain the dataset and include more languages
along the way.
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Figure 1: Our annotation interface for event causality identification.

Wikipedia for annotation in all examined languages.
To make it consistent with prior research and bene-
fit from the well-designed annotation guidelines of
previous datasets, we inherit the event schema from
the ACE 2005 dataset (Walker et al., 2006), and the
causal event relation guideline from EventStory-
Line (Caselli and Vossen, 2017) (with both explicit
and implicit causal relations) during the annota-
tion process. In total, our MECI dataset involves
46K events and 11K relations that are substantially
larger than those in existing ECI datasets. Figure 1
illustrates our annotation interface in this work.

In addition, we evaluate the proposed MECI
dataset using the state-of-the-art models for ECI.
We investigate the challenges of MECI over all ex-
amined languages through the monolingual setting
where the models are trained and evaluated in the
same language. The experiments show that the per-
formance of existing ECI models, even with large
pre-trained language models (PLMs), is far from
satisfactory; models for non-English languages
generally perform poorer than their English coun-
terparts. We also observe the importance of choos-
ing language-specific or multilingual PLMs for ECI
models as their effectiveness varies for different lan-
guages. Moreover, we evaluate the models in the
zero-shot cross-lingual setting, where the models
are trained on English data and tested on the data of
the other languages. The experiment suggests trans-
ferability of ECI knowledge between English and
Urdu while showing a significant performance drop
in other language pairs. These results can serve as
baselines for future studies on cross-lingual transfer
learning for ECI. Finally, we report the analysis and
challenges of the MECI dataset to provide insights
for future ECI research. We will publicly release
MECI to promote future studies in multilingual

ECI.

2 Data Annotation

2.1 Annotation Scheme

Our goal is to annotate causal relations between
event mentions in text. To this end, we define the
annotation scheme for event mentions following
the guidelines for the ACE 2005 dataset (Walker
et al., 2006) for events, while the annotation guide-
lines for event causality relations are obtained
from those for the EventStoryLine dataset (Caselli
and Vossen, 2017). This allows us to inherit the
well-designed documentation in such benchmark
datasets and achieve consistency with prior re-
search for ECI.

In particular, based on the ACE 2005 annota-
tion guideline, an event in our dataset is either (1)
an occurrence involving some participants, or (2)
something that happens, or (3) a change of state.
Event mentions/triggers are words/phrases in text
that clearly evoke some event. As we are mainly
interested in event causality relations, we only an-
notate event mention spans and do not include event
types. To accommodate different languages, we al-
low event mentions/triggers to span multiple words
in the sentences.

Next, for event causality relations, our annota-
tion guideline follows the EventStoryLine dataset.
In particular, a causal relation represents a direc-
tional relation between two events in which an
event (CAUSE) causes another event (EFFECT)
to happen or hold. This definition covers stan-
dard causal relations: cause, enablement, and pre-
vention (Caselli and Vossen, 2017). In addition,
similar to EventStoryLine, our dataset covers both
explicit and implicit causality. Note that this is
an extension from most prior annotation schema,
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Figure 2: The Wikipedia category page of Natural dis-
asters with its child categories (box 1), associated pages
(2), parent categories (box 3), and interlink to the same
category in other languages (box 4).

i.e., Causal-TimeBank (Mirza and Tonelli, 2014),
RED (O’Gorman et al., 2016), BECauSe (Dunietz
et al., 2017), that have only considered explicit re-
lations covering the three causal concepts: cause,
enable, and prevent through a verb-based lexical-
ization (Wolff, 2007). In our view, causality is a
tool for humans to understand the world, and its
existence is independent of the actual language
for presentation (Neeleman et al., 2012). Hence,
event causality relations might be established with-
out explicit ground in the text. In other words,
there are implicit causal relations between events
that are not covered by the above lexicalization
(Caselli and Vossen, 2017; Webber et al., 2019).
To capture this important type of event causal-
ity relations, our annotation guideline is extended
to cover implicit relations which require back-
ground knowledge, e.g., common-sense, domain-
specific knowledge, for successful identification.
Finally, similar to prior datasets, we annotate both
intra- and inter-sentential causal relations between
two events (Mirza and Tonelli, 2014; Caselli and
Vossen, 2017).

2.2 Data Collection & Preparation

The documents for our MECI dataset are collected
from Wikipedia for five topologically different lan-
guages, i.e., English, Danish, Spanish, Turkish, and

Urdu. In particular, we focus on 5 topics: aviation
accidents, railway accidents, natural disasters, con-
flicts, and economic crisis, to expect a high yield
of events and event causality relations. Wikipedia
organizes articles into a hierarchical graph of cat-
egories. A category is a group of articles sharing
a topic that might be further split into finer sub-
categories as shown in Figure 2. Furthermore, the
hierarchical category systems in Wikipedia for dif-
ferent languages are interconnected through inter-
links between identical categories. Therefore, by
exploiting the category systems and language inter-
links, we are able to obtain Wikipedia articles of
the same topics across many languages.

Given the list of five categories for the exam-
ined languages, we crawl all the articles associated
with their category descendants (i.e., subcategories,
subsubcategories) in the hierarchy up to the depth
of 6. After this step, we obtain at least 1,000 arti-
cles per category for each language. The obtained
articles are cleaned by removing format elements
(i.e., lists, images, URLs, and markups) to retain
only textual data. Afterward, the articles are split
into sentences and tokenized into words by Trankit
(Nguyen et al., 2021), a multilingual text process-
ing tool with state-of-the-art performance. The
detailed list of subcategory URLs will be included
in the final dataset package.

Given an article, a direct method for data annota-
tion for ECI is to ask the annotators to label all the
event mention spans and event mention pairs with
causal relations. However, as the number of event
mention pairs in a document grows quadratically
with respect to the number of event mentions, a
long Wikipedia article can easily overwhelm the an-
notators, thus affecting the quality of the annotated
data. To address the issue, we split the Wikipedia
articles into smaller chunks that span five consec-
utive sentences for separate annotation, following
prior practices (Mostafazadeh et al., 2016; Ebner
et al., 2020). These chunks are called documents in
our dataset. In this way, the annotators only need
to consider a shorter context at a time to enhance
the attention and quality of annotated data.

2.3 Human Annotation

To annotate the obtained documents, we hire anno-
tators from upwork.com, a crow-sourcing plat-
form with freelancers from all around the globe.
We only consider candidates that are (1) native
to the target language, (2) fluent in English, and
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Language Event Relation
Danish 0.68 0.58
English 0.92 0.80
Spanish 0.84 0.66
Turkish 0.69 0.61
Urdu 0.65 0.75

Table 1: Kappa scores for the MECI dataset.

(3) highly approved among the Upwork employers.
We can access this information from the annota-
tors’ profiles on the platform. The candidates are
then given annotation guidelines and a test for per-
forming both event annotation and event causality
relation extraction tasks. The top two candidates
are hired for each language. We use BRAT annota-
tion tool for our annotation (Stenetorp et al., 2012)
and illustrated in Figure 1.

Our annotation consists of two tasks, i.e., event
mention annotation and event causal relation anno-
tation. For each language, we annotate event causal-
ity relations over the outputs from event mention
annotation (i.e., after event mention annotation has
been completed and finalized for all documents).
Given a sample of selected documents for a lan-
guage, for each task, the two annotators for that lan-
guage independently annotate event mentions/event
causal relations for the documents. Afterward, the
annotation conflicts will be presented to the annota-
tors for further discussion and revision to produce
the final version of annotated documents for the cur-
rent task. This will help to ensure high agreement
and consistency for our dataset.

2.4 Data Analysis

Table 1 presents our Kappa scores for annotation
agreements of event mentions and event causality
relations over different languages. Note that these
scores are computed by comparing the independent
annotations of the annotators over the documents
before engaging in discussion to resolve conflicts.
As can be seen, the scores are very close to either
substantial or almost perfect agreement for all the
tasks and languages, thus demonstrating the high
quality of our created MECI dataset. We also find
that non-English languages tend to have lower an-
notation agreement scores for both event mention
and causality relation extraction tasks, thus high-
lighting the challenges of ECI for non-English lan-
guages and showing the importance of additional
research for multilingual ECI.
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Figure 3: Distributions of distances between two event
mentions with causal relations in MECI. Distances are
measured via the number of words.

In addition, Table 2 show other statistics for our
MECI dataset. Across five languages, each doc-
ument contains an average of 13.0 event triggers,
which account for 2.6 event triggers per sentence.
This reveals a challenge of MECI for ECI models
that might need to handle the ambiguity due to the
overlap of the context of event mention pairs in
both sentence and document levels. Furthermore,
each document contains approximately 3.1 rela-
tions on average; however, there is a discrepancy
in event causality relation density in documents
among languages. In particular, English and Turk-
ish represent a much denser level of event causal-
ity relations per document than other languages,
especially Spanish and Urdu. As such, the diver-
gences in the density of event causality relations
(and event mentions) pose another robustness chal-
lenge for ECI models that should be able to bridge
the gaps and transfer event causal knowledge across
languages.

Finally, Figure 3 presents the distributions of
distances between two event mentions with causal
relations for five examined languages in MECI (the
distances are counted via the number of words in
between). There are several observations from the
figure. First, for all the languages, a majority of
event mentions are 10 to 50 words away from each
other in the documents. This suggests diverse lev-
els of context information between event mentions
that an ECI model needs to capture to perform well
for the languages in MECI. Second, there are clear
divergences between the distance distributions of
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causal event mention pairs over languages. For in-
stance, the distances between event mentions for
Danish and Urdu seem to be more distributed in the
shorter ranges than those of English and Spanish.
Such distribution differences require ECI models to
introduce robust mechanisms to induce language-
transferable representations for diverse causal con-
texts in cross-lingual learning for ECI.
Dataset Comparison: Table 2 also compares our
MECI dataset with previous public datasets for
ECI. Note that we focus on the datasets that explic-
itly consider causal relations between event men-
tions/triggers to make them comparable. It is clear
from the table that our MECI dataset has a much
larger scale with more event mentions, causal rela-
tions, and languages than all previous datasets for
ECI. This will enable the training of larger models
and a more comprehensive evaluation for ECI.

2.5 Challenges

Unlike most prior ECI datasets, our MECI dataset
includes implicit causal relations, which allow
causal relations to be derived from various implicit
reasoning sources such as common-sense knowl-
edge. This section illustrates some types of implicit
reasoning for causal relations between events dis-
covered in our dataset.

Implicit inference of causal cues: In the fol-
lowing example, considering two event mentions:

“derailed” and “running into”, there is no triggering
verb-based expression to signal the causal relation-
ship between the two events. However, with the
presence of the trailing comma between the two
event mentions, our annotators can easily realize
that the “derail” event is the cause of the “run-
ning into” event. As such, the annotators might
have implicitly inferred the reduced relative clause
“which makes the train” (presented in the brackets)
between the two event mentions to make the causal
decision. To this end, a model will also need to
recognize such implicit reasoning cues based on
the context to successfully perform ECI.

The Granville rail disaster ... when
a crowded commuter train derailed,
[which makes the train] running into
the supports of a road bridge that ...

Implicit transitivity: Consider three event men-
tions “trouble”, “bail out”, and “killed” in the
following example. The ground text explicitly
expresses the causal relation “bail out” cause−−−→

“killed” via the adverb “consequently”. How-
ever, there is no clear signal of the causality be-
tween “trouble” and “bail out”, which requires
common-sense knowledge to successfully recog-
nize for the causal order of such events, i.e.,

“trouble” cause−−−→ “bail out”. This increases the diffi-
culty for identifying the causality “trouble” cause−−−→

“killed”, which might entail transitivity reasoning be-
tween implicit and/or explicit causal relations, i.e.,

“trouble” cause−−−→ “bail out” and “bail out” cause−−−→
“killed”.

... when his Spitfire developed engine
trouble between the islands of Skiathos
and Skópelos over the Aegean Sea . He
attempted to bail out of the aircraft, but
his altitude was too low for his parachute
to open, and he was consequently killed.

3 Experiments

We randomly split the documents for each language
in MECI into three separate parts with a ratio of
3/1/1 to serve as training, development, and test
data respectively for experiments. To study the
challenges of ECI presented in MECI, we evaluate
the performance of the state-of-the-art models for
ECI on this dataset. Each model will be compre-
hensively evaluated in the monolingual learning
(i.e., trained and tested on data of the same lan-
guage) and multilingual learning (i.e., trained and
tested on the data of different language) settings
with MECI.

3.1 ECI Models
We explore the following representative models for
ECI in the literature:

PLM: This model is inherited from the BERT
baseline in (Tran Phu and Nguyen, 2021). Given
an input document D, this model concatenates
the words from all sentences and sends it into
a pre-trained language model, e.g., BERT (De-
vlin et al., 2019), to obtain representation vec-
tors for each word-piece using the hidden vectors
in the last transformer layer. Afterward, given
the spans A and B for two event mentions eA
and eB of interest in D, we compute the repre-
sentations rA, rB for the two event mentions by
averaging the representation vectors of the word
pieces within the corresponding spans A and B.
Finally, we form an overall representation vec-
tor rA→B = [rA, rB, rA − rB, rA ∗ rB] (∗ is the
element-wise multiplication operation) for ECI.
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Dataset Lang #Documents #Relations #Events Relation Type
Causal-TimeBank (Mirza et al., 2014)

English

100 318 11,000 Explicit
RED (O’Gorman et al., 2016) 95 ∗4,969 8,731 Explicit
BECauSE-2.0 (Dunietz et al., 2017) 118 1,803 - Explicit
CaTeRS (Mostafazadeh et al., 2016) 320 488 2,708 Explicit, Implicit
EventStoryline (Caselli and Vossen, 2017) 258 5,519 7,275 Explicit, Implicit

Danish 519 1,377 6,909
English 438 2,050 8,732

MECI Spanish 746 1,312 11,839 Explicit, Implicit
Turkish 1,357 5,337 14,179

Urdu 531 979 4,975
MECI (total) Various 3591 11,055 46,634 Explicit, Implicit

Table 2: Comparison of public ECI datasets. #Relations indicates the number of causal relations in the datasets. *
designates the numbers that include other event-event relations, i.e., temporal and hierarchical relations.

Model MECI English EventStoryLine
P R F P R F

B
E

R
T PLM 35.6 44.9 39.7 27.3 35.3 30.8

RichGCN 48.1 69.5 56.8 42.6 51.3 46.6

Table 3: Performance of models on MECI (English) and
EventStoryLine datasets.

This vector will be fed into a feed-forward net-
work with a sigmoid function in the end to predict
the causal relationship between eA and eB in D.

RichGCN (Tran Phu and Nguyen, 2021): Sim-
ilar to PLM, RichGCN employs a PLM to en-
code the entire input document and compute an
overall representation vector rA→B for identifying
the causal relationship between two given event
mentions. To enhance representation learning,
RichGCN also introduce several interaction graphs
(with words and event mentions in the input doc-
ument as the nodes) to capture relevant context
information/interactions for the causal relationship
between two event mentions. In particular, to adapt
RichGCN to MECI with multiple languages, we
implement four interaction graphs to represent an
input document: (1) Sentence Boundary Graph
where words or event mentions within each sen-
tence in the document are connected to each other;
(2) Event Mention Span Graph where words within
each event mention span are connected to the event
mention; (3) Syntax-based Graph where words
within each sentence are connected to each other
following the dependency tree structure of the sen-
tence; and (4) Semantic-based Graph where words
across the document are connected to each other;
the weights for the connections are measured via
the similarity between the word representations
(computed from PLM). In RichGCN, each interac-

tion graph is represented by an adjacency matrix.
A final graph V to capture relevant connections
for the two event mentions is formed by learning a
linear combination of the adjacency matrices of the
four graphs. Finally, the graph V is then sent into
a Graph Convolutional Network (GCN) (Kipf and
Welling, 2017; Nguyen and Grishman, 2018) to
compute a richer representation for the two event
mentions with more relevant context to perform
ECI.

Know (Liu et al., 2021): By treating the event
mentions as concepts in ConceptNet (Speer et al.,
2017), Know retrieves related concepts and rela-
tions for the two input event mentions in our ECI
problem from ConceptNet. The retrieved informa-
tion is then used to augment the input text. As
such, Know also utilizes a PLM to encode the aug-
mented text to compute prediction representation
for ECI. In addition, this model employs a masking
mechanism to obtain event-agnostic context from
input text, serving as another source of information
to be encoded by the PLM and incorporated into
representation learning for our task.

3.2 Experiment Setups

In the monolingual learning settings, for each lan-
guage in MECI, we train the ECI models on the
training data and evaluate model performance on
the test data of the same language. We explore
both multilingual PLMs, i.e., mBERT (Devlin
et al., 2019) and XLMR (Conneau et al., 2020),
and language-specific PLMs for the languages in
MECI as the encoder for the ECI models in the
experiments. In particular, we utilize the follow-
ing language-specific PLMs that are available for
MECI languages, i.e., BERT (Devlin et al., 2019)
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Model English Danish Spanish Turkish Urdu
P R F P R F P R F P R F P R F

m
B

E
R

T PLM 38.4 46.0 41.9 25.2 26.6 25.9 43.9 41.5 42.7 36.2 48.7 41.6 31.9 34.3 33.0
Know 35.8 56.7 43.9 25.8 36.0 30.1 39.7 38.3 39.0 39.7 46.9 43.0 36.7 35.3 36.0
RichGCN 48.4 67.1 56.2 29.7 38.0 33.4 51.2 52.0 51.6 50.0 59.9 54.5 40.1 50.0 44.5

X
L

M
R PLM 48.7 59.9 53.7 35.9 36.2 36.0 50.6 49.1 49.9 44.0 59.4 50.5 40.4 43.2 41.8

Know 39.3 42.6 40.9 31.4 11.4 16.7 39.9 28.4 33.2 36.5 46.7 41.0 41.1 22.2 28.9
RichGCN 50.6 68.0 58.1 31.9 50.0 38.9 50.7 55.0 52.8 50.5 64.6 56.7 37.7 56.0 45.1

Table 4: Monolingual learning performance of ECI models on MECI with mBERT and XLMR.

Model English Danish Spanish Turkish Urdu
P R F P R F P R F P R F P R F

* PLM 35.6 44.9 39.7 23.2 23.0 23.1 42.7 44.6 43.6 40.4 56.0 46.9 20.2 33.5 25.2
RichGCN 48.1 69.5 56.8 27.1 35.0 30.6 59.8 48.2 53.4 54.7 62.0 58.1 31.1 47.9 37.7

Table 5: Monolingual learning performance of ECI models on MECI with language-specific PLMs.

for English; BotXO2 for Danish, BETO (Cañete
et al., 2020) for Spanish, BERTurk (Schweter,
2020) for Turkish, and UrduHack3 for Urdu.

The support of multiple languages with the same
annotation guideline for event causality relations in
MECI allows us to perform cross-lingual transfer
learning evaluation for ECI models. In particular,
for cross-lingual settings, ECI models are trained
on the training data of one language (the source lan-
guage); however, they are evaluated on test data of
new target languages. In the experiments, we treat
English as the source language and other languages
in MECI as the target languages for cross-lingual
evaluation. To facilitate the prediction over multi-
ple languages, we leverage the multilingual PLMs
mBERT and XLMR in cross-lingual experiments.
Hyper-parameters: We employ the same hyper-
parameters from the original works for the ECI
models: RichGCN (Tran Phu and Nguyen, 2021),
and Know (Liu et al., 2021) in the experiments.
The multilingual NLP toolkit Trankit (Nguyen
et al., 2021) is leveraged to obtain dependency
trees for sentences in multiple languages for the
RichGCN model. Also, we utilize the multilingual
version of ConceptNet (Speer et al., 2017) to re-
trieve augmented information for Know. Finally,
we employ the base versions for all the multilingual
and monolingual PLMs considered in this work.

3.3 Results
Monolingual Performance: Table 4 shows the
performance of the three ECI models on the mono-
lingual learning settings across all the languages
with the multilingual PLMs: mBERT and XLMR.

2https://huggingface.co/Maltehb/danish-bert-botxo
3https://github.com/urduhack/urduhack

Among the ECI models, we find that RichGCN
maintains its top performance across all the lan-
guages and multilingual PLMs, thus demonstrating
the effectiveness of its language-agnostic document
structure to represent documents for ECI. Nonethe-
less, the best performance by RichGCN for En-
glish, Danish, Spanish, Turkish, and Urdu is 58.1,
38.9, 52.8, 56.7, and 45.1. These performance is
far from being perfect, thus suggesting the chal-
lenges for ECI across languages and presenting
ample research opportunities to improve the per-
formance in the future. In addition, among the
models, Know exhibits mixed performance with
mBERT and worst performance with XLMR across
languages. We attribute this phenomenon to the un-
stable quality of the concept retrieval with Concept-
Net and context modification in Know that might
exclude important causal context from the input
texts to cause poor performance in different lan-
guages. Finally, comparing the multilingual PLMs,
we find that XLMR performs significantly better
than mBERT over all the languages with the PLM
and RichGCN models, thus suggesting the benefits
of XLMR for future ECI research.
Effects of language-specific PLMs: To better un-
derstand the effectiveness of PLMs for ECI, Table 5
reports the performance of PLM and RichGCN in
the monolingual learning settings where language-
specific PLMs for each language are employed as
the encoder for the models. As can be seen, using
the best model RichGCN and the best multilingual
PLM XLMR as the anchors, ECI performance for
English, Spanish and Turkish is very close with
monolingual and multilingual PLMs (i.e., less than
2% difference in F1 scores). However, multilingual
PLMs are substantially better than monolingual

2352



Model English→ Danish English→ Spanish English→ Turkish English→ Urdu
P R F P R F P R F P R F

m
B

E
R

T PLMd 12.4 35.4 18.4 11.4 63.3 19.3 21.5 47.6 29.6 17.0 44.2 24.6
Know 7.8 62.0 13.8 7.2 69.4 13.0 20.4 55.5 29.9 14.2 61.5 23.0
RichGCN 23.7 45.3 31.1 20.6 58.6 30.5 44.5 52.0 48.0 35.0 56.8 43.3

X
L

M
R PLM 20.1 59.2 30.1 16.0 66.4 25.8 36.1 60.5 45.2 25.7 62.0 36.3

Know 13.3 42.1 20.3 10.4 47.3 17.1 25.8 57.6 35.7 19.3 54.5 28.5
RichGCN 28.5 43.7 34.5 22.7 62.4 33.3 46.4 55.0 50.3 38.6 55.2 45.5

Table 6: Zero-shot cross-lingual learning performance on MECI using English as source language.

PLMs for Danish and Urdu (up to 7% difference in
performance). This can be attributed to the lower
resources in Danish and Urdu that hinder effective
training for language-specific PLMs. With multi-
lingual PLMs, such low-resource languages can
benefit more from data in other languages to train
multilingual PLMs.
Cross-lingual Performance: To investigate the
transferability of ECI knowledge across languages,
Table 6 presents the performance of the ECI models
in the cross-lingual learning settings. Note that in
these experiments English is the source languages
while other languages are the targets. Among the
three models, RichGCN is still the best performer
across all target languages. However, the model’s
performance drops significantly for the three target
languages Danish (by 4.4%), Spanish (by 19.5%),
and Turkish (by 6.4%) compared to their mono-
lingual performance with XLMR. This illustrates
the challenges and necessity of further research on
cross-lingual transfer learning for ECI that can now
be enabled with our multilingual dataset.

Interestingly, compared to the monolingual set-
tings, the performance on Urdu of RichGCN is
slightly improved (by 0.4%) in the cross-lingual
setting. One potential reason is due to the smallest
size of the training data for Urdu in MECI that al-
lows the larger English training data to train better
models for Urdu test data. In addition, among the
four target languages, we observe a wide range of
cross-lingual performance from the model trained
on English data, thus showing the diverse nature of
data and languages in MECI for future research.

4 Related Work

As an important task in IE, ECI has attracted ex-
tensive research effort to develop effective mod-
els (Do et al., 2011; Hashimoto et al., 2014;
Hidey and McKeown, 2016; Hu and Walker, 2017;
Kadowaki et al., 2019; Zuo et al., 2020; Liu
et al., 2021; Tran Phu and Nguyen, 2021; Man

et al., 2022b). To support model development
for ECI, several datasets have been introduced for
this task, including PDTB (Prasad et al., 2008),
Causal-TimeBank (Mirza, 2014), ECB (Cybul-
ska and Vossen, 2014), Richer Event Description
(O’Gorman et al., 2016), BeCause (Dunietz et al.,
2017), and EventStoryLine (Caselli and Vossen,
2017), CaTeRS (Mostafazadeh et al., 2016). How-
ever, these previous work and datasets only focus
on English data, presenting a strong demand for
new research and datasets on other languages for
ECI.

To this end, there are a few efforts on creat-
ing causality corpora for other languages, such as
German (Rehbein and Ruppenhofer, 2020), Ara-
bic (Sadek et al., 2018) and Persian (Rahimi and
Shamsfard, 2021). However, these corpus consider
not only event mentions, but also entities, clauses,
and sentences, thus, not directly solving ECI as
we do. In addition, most existing annotation ef-
forts for ECI focus on explicit event causality re-
lationships. EventStoryLine (Caselli and Vossen,
2017) and CaTerRS (Mostafazadeh et al., 2016)
are the only two prior datasets that also explore
implicit causal relationships between events. How-
ever, they do not provide annotation for multiple
languages as we do in MECI. Finally, we also note
recent efforts on creating multilingual datasets for
other NLP tasks, including event detection (Pouran
Ben Veyseh et al., 2022), natural language under-
standing (e.g., slot filling) (FitzGerald et al., 2022),
and acronym extraction (Veyseh et al., 2022).

5 Conclusion

We present a new dataset for event causality identi-
fication in five different languages across diverse
typologies. The dataset is annotated consistently
for all languages, offering a large number of event
mentions/causal relations and covering four lan-
guages that have not been explored in the prior ECI
resources. Our extensive experiments and analysis
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reveal the quality and challenges of our dataset for
ECI. In addition, our dataset enables cross-lingual
transfer learning research that is not possible with
current resources for ECI. In the future, we plan to
extend the dataset to include more languages such
as Arabic and Hindi to broaden its coverage.

Ethical Considerations

In this work we present a dataset annotated over the
publicly accessible articles of wikipedia.org.
Complying with the discussion presented by Ben-
ton et al. (2017), research with human subject in-
formation is exempted from the required full In-
stitutional Review Board (IRB) review if the data
is already available from public sources (as with
Wikipedia) or if the identity of the subjects cannot
be recovered.
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Abstract
In the field of Natural Language Processing
(NLP), extracting method entities from biomed-
ical text has been a challenging task. Sci-
entific research papers commonly consist of
complex keywords and domain-specific termi-
nologies, and new terminologies are contin-
uously appearing. In this research, we find
method terminologies in biomedical text us-
ing both rule-based and machine learning tech-
niques. We first use linguistic features to ex-
tract method sentence candidates from a large
corpus of biomedical text. Then, we construct
a silver standard biomedical corpus composed
of these sentences. With a rule-based method
that makes use of the Stanza dependency pars-
ing module, we label the method entities in
these sentences. Using this silver standard cor-
pus we train two machine learning algorithms
to automatically extract method entities from
biomedical text. Our results show that it is pos-
sible to develop machine learning models that
can automatically extract method entities to a
reasonable accuracy without the need for a gold
standard dataset.

1 Introduction

Method Entity Extraction from unstructured
biomedical text has been an important, yet chal-
lenging and somewhat under-examined, Natural
Language Processing (NLP) task. Especially in the
field of biomedicine, the automatic extraction of
methodology names and terminologies is impera-
tive. With thousands of research papers published
each week, the biomedical research community is
constantly creating new terminologies. As a result,
it becomes difficult for researchers to find relevant
information.

Wang et al. (2022) give a good discussion of
method entities and provide the following defini-
tion: “named entities that represent specific meth-
ods”. More specifically, “method entities in the
academic literature are nouns or noun phrases rep-
resenting the specific ways, means, and channels

used to solve tasks or problems proposed by the au-
thors, including sub-categories such as discipline-
specific methods, software, models, algorithms,
and metrics”.

Biomedical method entities are a type of biomed-
ical named entities. Biomedical named entity
recognition (NER) is defined as the task of recog-
nizing and categorizing entity names in the biomed-
ical domain (Lee et al., 2004). As mentioned by
Song et al. (2018), biomedical NER faces diffi-
culties for various reasons. The first one is the
increasing rate of newly created terminologies and
keywords requiring new rules and patterns to be
manually added to the rule-based methods, which
can be a tedious and time-consuming task. Regard-
ing biomedical method entity recognition, because
it has been little studied (e.g., (Houngbo and Mer-
cer, 2012)), a comprehensive definition of what
constitutes a biomedical method entity beyond that
given by Wang et al. (2022) still needs to be de-
termined. Secondly, with information extraction
tasks, the same words can have different meanings
and significance in terms of the context.

In this study, our main contribution is the explo-
ration of a rule-based approach to create a silver
standard corpus annotated for method entities1. Re-
garding the rule-based approach, rules to extract
method entities based on patterns of universal de-
pendency relations (Universal Dependencies, 2014)
between words will be designed. To evaluate the
machine-made silver standard corpus, this corpus
will be used as training data for two machine learn-
ing models, Conditional Random Fields (CRF)
(Lafferty et al., 2001) and BiLSTM (Graves and
Schmidhuber, 2005). CRF was used by Houngbo
and Mercer (2012) and our CRF results are com-
pared to their results as a baseline. The BiLSTM
results indicate that a larger corpus will be needed

1The corpus and code to create it are available
at https://github.com/waqarkalim/method-mention-extraction-
from-biomedical-text
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for neural learning models.
The structure of the remainder of this paper is

as follows. In Section 2, we will review the back-
ground and related work. In Section 3, we will
provide our research contributions. We will re-
view the methodology of our research in Section
4. In Section 5, we will review the results. And in
Section 6, we will conclude the paper and suggest
directions for the continuation of this study.

2 Background and Related Work

Named Entity Recognition (NER) is an applica-
tion of Natural Language Processing (NLP) where
entities are tagged according to various semantic
and syntactic rules. Surveys of research in the
field of NER (Nadeau and Sekine, 2007; Wang
et al., 2022) indicate that automatic NER extrac-
tion has received significant coverage in the past
three decades. For the study reported in the cur-
rent paper, we are interested in the extraction of
a subcategory of named entities, method entities
in particular, from biomedical literature. In the
biomedical literature, extraction of named entities
has tended to focus on biological entities (for exam-
ple, Settles (2004) and Habibi et al. (2017)). Extrac-
tion of method entities, in particular, has received
some attention, but the vast majority extract this
type of named entity from non-biomedical litera-
ture (Wang et al., 2022). One exception is Houngbo
and Mercer (2012) who deal with method entities
in biomedical research articles. Lam et al. (2016)
extract methodology terms as well as sleep disor-
der entities from biomedical literature that focusses
on sleep disorders. Zhao et al. (2019) propose a
new annotation scheme, manually annotate 3,088
resource citations (algorithms are the only methods
included in these resources) found in biomedical
and non-biomedical literature, and use BiLSTM as
the machine learning method.

One aspect of this current work is to create a sil-
ver standard corpus for method entities in biomed-
ical text. The automatic method to generate this
corpus will use Stanza’s dependency parser (Qi
et al., 2020) with the biomedical packages (Zhang
et al., 2021). This parser produces graph structures
whose edges are labelled with universal dependen-
cies (Universal Dependencies, 2014).

To evaluate using the silver standard corpus,
we will use Conditional Random Fields (Lafferty
et al., 2001) and BiLSTM (Graves and Schmidhu-
ber, 2005), the machine learning techniques used

in other studies (Houngbo and Mercer, 2012; Chiu
and Nichols, 2016).

3 Research Contributions

Few researchers have addressed the question of
automatic method entity extraction from biomed-
ical text. Generating a human-labelled corpus is
time-consuming. This study aims to address these
issues.

1. We have created rule-based methods to use
Stanza’s universal dependencies while extract-
ing a wider variety of method entities com-
pared to Houngbo and Mercer (2012) and
have successfully created an accurate silver
standard corpus (precision score of 97.59) pre-
pared from full text biomedical articles se-
lected from the PubMed Central dataset with
method entities annotated automatically.

2. By training on this silver corpus, we have im-
proved on the performance benchmarks pro-
vided by Houngbo and Mercer (2012).

4 Methodology

Because Houngbo and Mercer (2012) is the only
previous study that investigates the same problem,
we use that work as the baseline and compare our
results with those reported there.

In the initial stage of the study, we prepare a
collection of sentences that contain mentions of
method names, or “method sentences”, using the
method proposed by Houngbo and Mercer (2012).
By employing the properties of anaphoric relations
between sentences, we can collect the “method
sentences” in a convenient and feasible manner.
We collect these sentences by scanning through re-
search papers using the Unix command grep and
selecting some number of sentences that precede
any sentence containing the words “this method”.
This approach successfully generates a corpus con-
taining solely “method sentences”.

After the corpus creation has been completed,
the next stage involves utilizing linguistic rules and
patterns to automatically label method entities. In
this study, for tagging the entities, we will be us-
ing the IOB tagging format. In the IOB tagging
scheme, every token is labelled as B-label if the
token is the beginning of a named entity, I-label if
it is inside a named entity but not the first token
within the named entity, or O otherwise (Lample
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et al., 2016). Leveraging rule-based methods al-
lows for labelling the method mentions without the
use of any pre-existing training data; additionally,
a secondary benefit of this approach is the potential
of introducing new rules and patterns based on the
linguistic features of the terminologies. This step is
an essential aspect of our research as it allows for
implementing an accurate silver standard dataset.

After the rule-based methods have been applied,
traditional and neural learning techniques can be
explored in combination with the newly developed
silver standard dataset. The primary benefit of
utilizing a machine learning approach is the abil-
ity to generalize beyond the limits of the rules
and patterns that are manually defined in the rule-
based approach. In this stage of the research, we
will explore two machine learning algorithms re-
lated to Natural Language Processing tasks: Condi-
tional Random Field (CRF) models (Lafferty et al.,
2001) and the Bidirectional Long Short Term Mem-
ory (BiLSTM) models (Graves and Schmidhuber,
2005). We opted for choosing these algorithms as
CRF models are trained for sequence segmentation
and labelling and BiLSTM models have been used
in other named entity extraction research (Chiu and
Nichols, 2016; Zhao et al., 2019).

5 Results

5.1 Silver Corpus Creation

In this study, we curated a collection of 2,839
biomedical research papers from which to derive
our method entity silver corpus. Based on the find-
ings reported by Torii and Vijay-Shanker (2005)
that nearly all antecedents can be found within two
sentences from the demonstrative anaphors, we
used the technique suggested by Houngbo and Mer-
cer (2012) and employed the anaphoric relations
between sentences to find the “method sentence”
candidates. So, to generate our corpus, we searched
through our collection of papers for sentences that
begin with the anaphor “This method” and then
selected the three sentences that precede it for our
corpus. By selecting three sentences rather than
two, we achieve an extra layer of certainty that
the selected sentences contain at least one method
entity. As a result, we retrieved 10,974 potential
“method sentences”.

An example of a retrieval is:
Sentence 1: In tracheal samples, YCW increased
concentrations of mucosal IgA compared to Con-
trol ( P < 0.05 ).

Sentence 2: No significant differences were ob-
served between Vaccine and Coccidiostat.
Sentence 3: The effect of different treatments on
cell-mediated immune response was examined by
the cutaneous basophilic hypersensitivity test.
Sentence 4: This method reveals the status of the
T-cell response.
In this example, Sentence 4 contains the “this
method” anaphor. The sentences found in the silver
corpus would be Sentences 1, 2, and 3. Sentence
3 contains the antecedent “cutaneous basophilic
hypersensitivity test” which is a method entity.

A manual investigation of these sentences sug-
gests that most of the method entities in our corpus
are sequences of words represented by the follow-
ing examples:

• Tukey’s biweight method
• naive KNN method
• 10-fold cross-validation test
• Roche Amplicor Cystic Fibrosis test
• bimolecular fluorescence complementation

analysis
• Felsenstein’s independent comparison method
• statistical total correlation spectroscopy anal-

ysis method
• MANOVA-based scoring method
• protein sequence Jukes-Cantor model
• utaneous basophilic hypersensitivity test

From these examples, we can observe how the
rules and patterns to extract our method entities
would look like. First, all of these mentions end
with key suffixes (as observed by Houngbo and
Mercer (2012)) that would correspond to most
method entities: method, analysis, test, model, al-
gorithm, etc. In addition, we have dependency-
parsed the method mention candidate sentences
with Stanza (Qi et al., 2020) using the biomedi-
cal and clinical model packages included in the
Stanza toolkit (Zhang et al., 2021). Investigating
these dependency parses, all of these method enti-
ties have at least one universal dependency (UD)
compound relation, most of them have at least one
amod UD relation, and some of them have at least
one nmod:poss UD relation. A compound UD is a
modifier that relates to a noun and itself is a noun,
whereas an amod UD is an adjectival modifier that
serves to modify a noun or pronoun but itself is
an adjective. An nmod:poss UD is a modifier that
serves to show possessives. After generating the
corpus which contains 10,974 potential “method
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sentences”, we used linguistic rules and patterns
to programmatically extract the method entities de-
pending on the dependency relationships between
the words. Based on these observations, we created
three rules based solely on these UD relationships.
These three rules were able to find 1338 method
entities in our corpus in total; 629 for Rule 1, 680
for Rule 2, and 29 for Rule 3. The rules work as
follows:
Rule 1: In a sentence, if there is a subtree with at
least one compound relation, retrieve all the words
between the first compound word to the last word
of that subtree plus the subtree root (i.e., one of the
key suffixes mentioned above) as a method entity.
Rule 2: In a sentence, if there is a subtree with
exactly one compound relation and at least one
amod relation, retrieve all the words between the
first amod/compound word to the last word of that
subtree plus the subtree root as a method entity.
Rule 3: In a sentence, if there is a subtree with ex-
actly one nmod:poss relation, retrieve all the words
between the nmod:poss word to the last word of
that subtree plus the subtree root as a method entity.

The rules stated above are different from the rule
used by Houngbo and Mercer (2012), a regular
expression composed of POS tags and key suffixes,
to find the method entities; whereas the rules in
this study use universal dependencies provided by
Stanza pre-trained on biomedical text.

With these rules, the rule-based model was able
to achieve a precision score of 97.59, which is bet-
ter than expected. Unfortunately, due to the sheer
amount of data in our corpus, we were unable to
manually determine the recall score, and accord-
ingly, an F-1 score for our rule-based approach.

Using this rule-based model, we tag the extracted
labels using IOB tagging in order to create our
silver standard dataset which can be used in Sec-
tion 5.2.

5.2 Machine-learning Approach

When the rule-based method to label the silver stan-
dard corpus has completed, we are now ready to
investigate the machine-learning techniques. This
study will investigate two machine learning mod-
els: 1) a traditional Conditional Random Field
(CRF) model, and 2) a neural Bidirectional Long
Short Term Memory (BiLSTM) model. Both are
supervised machine learning models which require
training data that is labelled with the feature to be
learned. As our training dataset, we will use the

System P R F1
Conditional
Random Field

83.58 85.49 84.53

Houngbo and
Mercer (2012) CRF

81.80 75.00 78.26

BiLSTM 68.42 39.39 50.00

Table 1: Precision (P), Recall (R), and F1-Score (F1)
for the Machine Learning Methods

silver standard corpus from Section 5.1.

CRF models are a framework for developing
probabilistic models for segmenting and labelling
sequence data (Lafferty et al., 2001). BiLSTM
models (Graves and Schmidhuber, 2005) are a form
of recurrent neural networks that can understand
the context of a sentence quite well. BiLSTM mod-
els work well for NLP tasks as they can contextu-
ally scan through text in both forward and back-
ward directions. For the word embeddings, the
BiLSTM model uses BioWordVec, an open set of
biomedical word embeddings that combines sub-
word information learned from unlabeled biomedi-
cal text with a widely-used biomedical controlled
vocabulary (Zhang et al., 2019).

Table 1 shows the results for each of the machine
learning models. We observe from Table 1 that
the highest performing machine learning model in
this study (CRF) outperforms the machine learning
model results of Houngbo and Mercer (2012) by a
precision score of 1.78 pp, a recall score of 10.49
pp, and an F-1 score of 6.27 pp.

Our findings are based on inaccurate metrics, so
the results should thus be treated with some caution.
However, because this inaccuracy is due to the true
positives being thought of as false positives, the ac-
tual precision and recall should be higher than what
is displayed in Table 1. As an example, the CRF
model produced 20 predictions that were labelled
as not method entities in the Houngbo and Mercer
(2012) gold-standard testing data, however, a man-
ual check shows that 17 out of those 20 predictions
actually are method entities.

The results for BiLSTM are lower than what
would be predicted by other research that has used
this neural architecture (Zhao et al., 2019). We be-
lieve that this is due to insufficient training samples.
So, we did not investigate any other BiLSTM-based
architectures, leaving this to future studies when
we have built a larger silver corpus.

2360



6 Conclusions and Future Work

In this paper, we explored various methodologies to
automatically extract method entities from biomed-
ical text. In the initial step, we created a cor-
pus containing candidate method sentences using
anaphoric relations. Next, we investigated a rule-
based method using information provided by a
dependency parse to IOB tag the method entities
in the corpus. This silver standard corpus is the
main contribution of our work and has been made
publicly available. To evaluate the quality of this
corpus, we trained two machine learning methods
using this silver standard corpus to automatically
extract method entities from biomedical text.

The evidence from this study shows that using a
dependency parser that is pre-trained on biomedical
vocabulary allows for precise extraction of method
entities within the scope of the rules as shown in
Section 5.1. Additionally, the results from Section
5.2 and Table 1 show how the CRF model outper-
forms the results from Houngbo and Mercer (2012)
and show the potential of machine learning models
to accurately generalize outside the scope of the
rules defined in Section 5.1.

Our future work will include

1. improving on the anaphoric method to gather
candidate method entity sentences.

2. creating a wider variety of rules and patterns
for our rule-based approach to create a more
comprehensive silver standard corpus. In this
study we noticed phrases such as “a method
that uses regular expressions to look for sec-
tion headings” and method phrase followed
by “developed by one or more names” (e.g.,
“Robust Multi-Array Analysis developed by
Irizarry”) which is like the possessive form in
our Rule 3 above. These more complex pat-
terns would be amenable to the dependency
parse methodology. However, these patterns
may not be amenable to an IOB-type annota-
tion. And they include but do not end with one
of the key suffixes (i.e., method, analysis, test,
model, algorithm). So, this move may not be a
simple extension of what was presented here.

3. developing a larger silver standard corpus.
The BiLSTM results strongly suggest that the
corpus is too small for neural learning meth-
ods.

4. detailing aspects of the silver standard corpus.
Understanding what makes this corpus better
than previous ones will inform further devel-
opment of a definition of the text span of a
method entity.

5. investigating more sophisticated machine
learning models, such as a BiLSTM-CRF
model and a BiLSTM-CNN-CRF model, to
better evaluate the silver standard corpus and
to improve the method entity performance
beyond what has been achieved in previous
works. Adding a CRF layer on top of a BiL-
STM model, as well as adding a CNN and
CRF layer on top of a BiLSTM model have
proven to improve performance in a few se-
quence labelling problems.
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Abstract

One typical approach to long-form document
matching is first conducting alignment between
cross-document sentence pairs and then aggre-
gating all of the sentence-level matching sig-
nals. However, this approach could be prob-
lematic because the alignment between doc-
uments is partial — despite two documents
as a whole are well-matched, most of the sen-
tences could still be dissimilar. Those dissim-
ilar sentences lead to spurious sentence-level
matching signals which may overwhelm the
real ones, increasing the difficulties of learn-
ing the matching function. Therefore, accu-
rately selecting the key sentences for document
matching is becoming a urgent problem. To ad-
dress this issue, we propose a novel matching
approach that equips existing document match-
ing models with an Optimal Partial Transport
(OPT) based component, namely OPT-Match,
which selects the sentences that play a major
role in matching. Enjoying the partial transport
properties of OPT, the selected key sentences
can not only effectively enhance the matching
accuracy, but also be explained as the ratio-
nales for the matching results. Extensive ex-
periments on four publicly available datasets
demonstrated that existing methods equipped
with OPT-Match consistently outperformed the
corresponding underlying methods. Evalua-
tions also showed that the sentences selected
by OPT-Match were consistent with human-
provided rationales.

1 Introduction

Long-form document matching, which identifies
the semantic relationship between a source docu-
ment and a target document, has become a funda-
mental problem in both NLP and IR. Representa-
tive tasks include cite recommendation (Jiang et al.,
2019) and plagiarism detection (Foltýnek et al.,
2020) etc. For example, in cite recommendation,

∗ Corresponding author

Document 2: medicinal and aromatic plants are nowadays
becoming the main constituents for medicines, colorings,
preservatives, and fragrances… although it is of high
priority, the effect of slowgrowth conservation on the
chemical profile of prestored medicinal plants after
conservation was not extensively investigated .this research
aimed to analyze in vitro stored thymbra spicata l. var. …

Document 1: ... the attraction of medicinal and aromatic
plants as worthy farm crops has grown due to the demand
created by consumer interest in these plants for culinary,
medicinal, and other anthropogenic applications … an
understanding of future opportunities in the medicinal and
aromatic plant industry who 2003 is necessary to enable us
growers to envision and invest in medicinal and aromatic
crops that will meet market demands.

Figure 1: A pair of matched long-form documents from
S2ORC dataset. Documents 1 focuses on the future op-
portunities in the medicinal and aromatic plant industry.
Document 2 studies the vitro storage of spicata. Though
most sentences are not similar, Document 1 cites Docu-
ment 2 (matched) because they both take medicinal and
aromatic plants as examples (the highlighted sentences).

the document matching has been used to recom-
mend existing papers to be cited in a new paper.
In plagiarism detection, the document matching
model has been used to determine whether a paper
is plagiarized from another paper.

Existing approaches to long-form document
matching typically follow the paradigms developed
for short-text (sentence) matching, i.e., they con-
duct matching based on all of the sentences in the
documents. For example, Jiang et al. (2019); Pap-
pagari et al. (2019); Zhou et al. (2020) map the doc-
uments into a latent semantic space from a hierar-
chical perspective (e.g., word, sentence, paragraph)
and conduct matching in the semantic space. How-
ever, these methods ignore the fact that a long-form
document usually contains multiple paragraphs and
sentences, which convey complex and diverse se-
mantics. Unlike short-text matching where almost
every word-level matching signal matters, in long-
form document matching, the alignment between a
document pair is partial and a few matching signals
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Figure 2: The architecture of OPT-Match. The sentence
encoding component and the matching component are
with existing methods (the underlying models).

between the key sentences can determine the match-
ing result at the document level. Figure 1 illustrates
a typical example: two matched paper abstracts
(Document 1 cites Document 2) from the Semantic
Scholar Open Research Corpus (S2ORC) (Lo et al.,
2020). These two abstracts are matched because of
the highly matched signals between the highlighted
key sentences. Other parts of the abstracts are not
important for matching. This observation inspires
us that it is unnecessary to force a matching model
to aggregate all of the sentence pairs. More im-
portantly, the introduced noise may overwhelm the
matching signals between key sentences. Thus,
identifying key sentences is becoming an essential
step for document matching.

In this paper, we propose a novel Optimal Par-
tial Transport (OPT) (Figalli, 2010) based sentence
selection component for existing long-form doc-
ument matching model, namely OPT-Match. As
illustrated in Figure 2, OPT-Match models the doc-
ument alignment as an OPT process by regarding
two input documents (two sets of sentences) as
two piles of earth. To achieve partial alignment,
OPT-Match poses a limitation on how much the
earth from one pile (Document 1) needs to be trans-
ported to the other pile (Document 2 ). Based on
the cost matrix whose elements are defined as in-
verse (or negative) similarities between sentences
from different documents, OPT-Match generates
an optimal transport plan (matrix) (Benamou et al.,
2015) which indicates the alignment of sentences.
Therefore, key sentences can be extracted based
on the transport plan. To make OPT-Match eas-
ily incorporated into existing document matching

models, we provide two strategies to achieve the
sentence selection.

Compared to existing OT-based methods (Kus-
ner et al., 2015; Chen et al., 2018, 2019; Zhang
et al., 2020), OPT-Match offers the following ad-
vantages in modeling the long-form document
alignment: 1) OPT-Match models the partial na-
ture of document alignment explicitly and flexibly,
through limiting how much the mass to be trans-
ported; 2) OPT-Match allows the source and the tar-
get domains are not necessarily with the same total
mass, which fits well with the phenomenon that the
lengths of two documents may vary greatly. The
OT-based methods, however, cannot take this into
consideration; 3) OPT-Match is a model-agnostic
approach, it can be easily plugged into a wide range
of document matching models.

To summarize, this paper makes the following
main contributions: (1) We highlight the critical im-
portance of the key sentence selection in long-form
document matching, which has not yet been thor-
oughly studied in existing models. (2) We propose
a wide applicable component called OPT-Match,
which selects key sentences for document match-
ing by conducting partial document alignments. (3)
We conducted extensive empirical studies on four
large-scale publicly available datasets. The exper-
imental results demonstrated that OPT-Match im-
proved existing document matching models and the
sentences selected by OPT-Match were consistent
with human rationales.

2 Proposed OPT-Match Method

2.1 Problem Statement

Suppose that we are given a set of labeled data
tuples: D = {(Xi, Yi, zi)}, where the elements in
the i-th training instance Xi ∈ X , Yi ∈ Y , and
zi ∈ Z respectively denote the source document,
the target document, and the label which indicates
the semantic relationship of Xi and Yi. Both the
source and the target documents consist of a num-
ber of sentences, i.e., Xi = [sXi1 , sXi2 , . . . , sXiM ],
Yi = [sYi1 , s

Yi
2 , . . . , s

Yi
N ], where the M and N de-

note the number of sentences in Xi and Yi respec-
tively. The learning objective of existing docu-
ment matching models is f : X × Y −→ Z , which
takes all sentences in the input documents as in-
put and outputs a prediction of the relationship
between them. As the key idea of this paper, we
aim at learning f ′ which selects the key sentences
SX ⊆ X,SY ⊆ Y from input documents and con-
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ducts matching based on those selected sentences
rather than all sentences.

2.2 The Principle of Our Method

To learn f ′, we develop a novel sentence selec-
tion method from the viewpoint of optimal partial
transport (OPT), which is an extension of optimal
transport (OT). Originally, OT defines a distance
between probability distributions. Given two prob-
ability distributions µ and ν which can be viewed
as two piles of earth with equivalent mass, the
optimal transport distance is defined as the min-
imum cost of turning one pile into the other, and
the corresponding optimal transport plan provides
a soft matching between two piles in a probabilis-
tic way. Existing OT-based NLP studies (Kusner
et al., 2015; Chen et al., 2018, 2019; Zhang et al.,
2020) set the distributions µ and ν uniform, i.e.,
µ = 1

M 1M and ν = 1
N 1N , where 1D represents

the D-dimensional all-one vector, and accordingly,
the optimal transport distance between them is:

T∗ = arg minT∈Π(µ,ν) Em,n∼T[c(sXm, sYn )]

= arg minT∈Π(µ,ν)

M∑

m=1

N∑

n=1

Tmn · c(sXm, sYn ),

(1)
where T ∈ Π(µ,ν) = {T ∈ RM×N+ |T1N =
µ,T⊤1M = ν} represents an arbitrary joint dis-
tribution of the sentences with marginals µ and ν.
C = [c(sXm, s

Y
n )] ∈ RM×N is a sentence-level cost

matrix, whose element c(sXm, s
Y
n ) measures the dis-

crepancy between the two sentences. As shown
in Eq. (1), OT corresponds to the minimum expec-
tation of the sentence-level discrepancy, and thus
shares a similar spirit with existing methods, which
aggregate all sentence-level matching signals.

However, OT suffers from the following issues
in modeling long-form document matching: 1) OT
requires that µ and ν have identical total mass.
This setting is unsuitable for document matching
because the number of sentences in documents
may vary greatly and the lengthy document con-
tains more semantics in general. 2) OT requires
the source points must exactly map to the targets.
However, in document matching, only some key
sentences from the source document align to that
from the target document, and thus there should
be only a fraction of mass from the source should
be transported to the target. 3) OT aggregates all
sentence-level aligning signals which inevitably in-
volves noises to the matching. In this work, we

solve these issues by modeling the sentence-level
alignment as an OPT process (issue 1,2) and incor-
porating it into existing document matching meth-
ods as a sentence selection module (issue 3).

2.3 OPT-based Sentence-level Alignment
To fix the issue 1 and 2, we need to break the con-
straint that µ and ν must have the same total mass
and limit the transporting mass, which leads to an
OPT problem:

T∗ = argminT∈Π≤(µ,ν),1⊤
MT1N=ϵ⟨T,C⟩. (2)

where T ∈ Π≤(µ,ν) = {T1N ≤ µ,T⊤1M ≤
ν},<,> represents the Frobenius dot-product. For
the issue 1, considering that in OPT, µ and ν are
not necessarily with the same total mass (Benamou
et al., 2015) and usually the longer documents con-
tains more semantics, we set a unit mass on each
sentence, i.e., µ = 1M ,ν = 1N . For the issue
2, as shown in Eq. (2), we set ϵ, indicating a pro-
portion of total mass min(||µ||1, ||ν||1) to be trans-
ported, to control the degree of the document align-
ment. Intuitively, with the lower ϵ, OPT-Match
focuses more on strongly aligned sentence pairs,
while filtering out more spurious alignment signals.

To measure the discrepancy between two cross-
document sentences, we define the cost matrix C
in Eq. (2) based on the similarity between sentence
pairs derived from (X,Y ):

c(sXm, s
Y
n ) = −sim(sXm, s

Y
n ), (3)

sim(sXm, s
Y
n ) is the similarity between sXm and sYn .

Intuitively, we expect more similar pairs of sen-
tences to be transported at a lower cost, and thus
can be more strongly aligned. In Eq. (3), various
methods can be adopted to measure sim(sXm, s

Y
n ),

leading to different kinds of cost, for example,
the cosine similarity between sentence embed-
dings, and the overlapping words ratio after remov-
ing stop-words of (sXm, s

Y
n ) (Mihalcea and Tarau,

2004). We respectively apply these two methods to
soft selection strategy and hard selection strategy
which we will introduce in Sec. 2.4 and Sec. 2.5.

To solve the OPT problem in Eq. (2), a number
of algorithms have been proposed. As a represen-
tative method, Benamou et al. (2015) propose to
add an entropic regularizer (Cuturi, 2013; Xie et al.,
2018) and solve it with iterative Bregman projec-
tions (Bregman, 1967) and Dykstra algorithm (Dyk-
stra, 1983). See also (Chizat et al., 2018; Zhou
et al., 2020). For the fast approximation of OPT, an
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entropic regularizer E(T) (Cuturi, 2013) is added
and the the optimal transport plan is

T∗ = argmin
T∈Π≤(µ,ν),1⊤

MT1N=ϵ

⟨T ·C⟩+λE(T), (4)

where λ is the trade-off coefficient. Thus, the op-
timal partial transport plan T∗ can be iteratively
calculated by Bregman-Dykstra iterations (Breg-
man, 1967; Dykstra, 1983; Benamou et al., 2015):

T1
n = diag

(
min

(
µ

Tn−11
,1

))
Tn−1,

T2
n = T1

n · diag
(
min

(
ν

T1⊤
n 1

,1

))
,

Tn = T2
n ·

ϵ

1⊤T2
n1
,

(5)

where T0 = exp (−C/λ). T∗ indicates the
amount of probability mass moved from one pile of
earth to the other under the constraint that limited
mass should be transported. In the sentence align-
ment scenario, T∗ can be regarded as the degree
of the alignment between the source sentences and
the target sentences in which only those strongly
aligned sentences are be highlighted.

2.4 Sentence Selection
To fix the issue 3, we need to select sentences
SX , SY for matching according to T∗. We pro-
vide two strategies to achieve that.

Hard Selection. We take an aggressive approach
to filter out the noise in the document, that is, we
select k sentences from the source and the target
document respectively with the highest alignment
in the optimal transport plan and discarding the
rest of the sentences, where k is a hyper-parameter
which stands for the desirable number of key sen-
tences. Specifically, T∗ is summed by rows, and
the sentences in the source document correspond-
ing to the top-k indexes of T∗1n are selected, then
placed to SX . Similarly, for the target document,
SY is constructed based on the top-k indexes of
1⊤nT

∗. Although this strategy is non-differentiable,
it effectively filters out noise.

Soft Selection. To make the selection differen-
tiable, we provide an alternative. Given T∗ as the
sampling probabilities, the key sentences are sam-
pled using the Gumbel softmax (Jang et al., 2016),
which provides a differentiable sampling process:

ui ∼ U(0, 1), gi = − log(− log(ui)),

wi =
exp ((log(probi) + gi)/τ)∑
j exp ((log(probi) + gi)/τ)

,
(6)

where U(0, 1) represents the uniform distribution
between 0 and 1, and τ is a temperature hy-
perparameter, probi represents the probability of
choosing each sentence as the selected sentence.
For the source document, probi is normalized
T∗1N , for the target document, probi is normal-
ized 1⊤MT∗. Therefore, we obtain the selection
weight wi for each sentence, and the key sen-
tence sets are SX = (wX1 s

X
1 , · · · , wXMsXM ) and

SY = (wY1 s
Y
1 , · · · , wYNsYN ).

2.5 Combination with existing models
Till now, OPT-Match has extracted SX and SY , a
paired subset of sentences from input documents.
As a widely applicable module, OPT-match can be
easily combined with various document matching
models. In this work, we take two representative
methods as the underlying models for OPT-Match.

For models which hierarchically encode docu-
ment (Jiang et al., 2019; Pappagari et al., 2019;
Zhou et al., 2020), they suppose that documents
present a hierarchical structure including words,
sentences, and paragraphs. OPT-Match can be
plugged at the sentence level, because hierarchi-
cal models explicitly represent all sentences in a
document. For example, once the sentence repre-
sentations are obtained, one can construct the cost
matrix C based on the cosine similarity between
sentence embeddings (Eq.3), then use the soft se-
lection strategy. OPT-Match also can be used be-
fore sentence encoding by adopting the overlapping
words ratio cost and the hard selection strategy.

For BERT and its variants (Devlin et al., 2019;
Dai et al., 2019; Beltagy et al., 2020), since they fo-
cus on token-level interaction and do not explicitly
generate sentence representations, OPT-Match can
be regarded as a pre-processing to combining with
BERT and its variants. One can use the overlapping
words ratio as the OPT cost and select sentences
using the hard selection strategy.

2.6 Training
As aforementioned, OPT-Match is a sentence selec-
tion module before matching, and thus the learning
objective of OPT-Match equipped models is iden-
tical to its underlying models. In the underlying
models, the cross-entropy loss which measures the
discrepancy between the model’s predictions and
ground-truth labels is widely used for training:

L =
∑

i

ℓ(M(SXi , SYi), zi) =
∑

i

zilogpi+(1−zi)log(1−pi)

(7)
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Algorithm 1 Training process of OPT-Mach based
models.
Require: Training set D = {(Xi, Yi, zi)}Ni=1;

mini-batch sizes nb; learning rates η; Bregman-
Dykstra iterations step iter; entropic regular-
izer coefficient λ; mass to be transported ϵ,
number of selected sentences k, Gumbel tem-
perature τ .

1: repeat
2: � OPT-Match component
3: Sample mini-batch {(Xi, Yi, zi)}nbi=1 ⊆ D
4: Calculate the cost matrix C {Eq. (3)}
5: T = exp (−C/λ)
6: for t = 1 to iter do
7: T← diag

(
min

( µ
T1 ,1

))
T

8: T← T · diag
(
min

(
ν

T⊤1
,1
))

9: T← T · ϵ
1⊤T1

{Eq. (5)}
10: end for
11: if Hard Selection then
12: SX ← top k indexes (sentences) of T1N
13: SY ← top k indexes (sentences) of 1⊤MT
14: else if Soft Selection then
15: SX ← (wX1 s

X
1 , · · · , wXn sXn ){Eq. (6)}

16: SY ← (wY1 s
Y
1 , · · · , wYmsYm){Eq. (6)}

17: end if
18: � Matching component M
19: L =

∑nb
i=1 ℓ(M(SX , SY ;Θ), zi){Eq. (7)}

20: Θ← Θ− η▽Θ L
21: until convergence
22: return Θ

where zi is the ground-truth label, pi =
M(SXi , SYi) is the final matching prediction, and
M represents the matching component. We include
the training procedure of OPT-Match equipped
matching models in Alg. 1.

3 Experiments

3.1 Experimental Setup
Datasets. The experiments are conducted on four
large-scale publicly available long-form document
matching datasets 1. Table 1 provides the dataset
statistics. Data splits and preprocessing for all
datasets follow (Zhou et al., 2020).

Citation recommendations is a task to predict
whether a paper cites another. In the experiments,
AAN (Radev et al., 2013), OC (Bhagavatula et al.,
2018), and S2ORC (Lo et al., 2020) are exploited
for this task. Note that following the practice of

1https://github.com/XuhuiZhou/CDA

Table 1: Statistics of datasets. ‘#Word’ denotes the
average number of words per document, and ‘#Sent.’
denotes the average number of sentences per document.

Dataset Train Dev Test #Word #Sent.
PAN 17,968 2,908 2,906 1,569.7 47.4
S2ORC 152,000 19,000 19,000 263.7 9.3
AAN 106,592 13,324 13,324 122.7 4.9
OC 240,000 30,000 30,000 190.4 7.0

(Zhou et al., 2020), we only use the paper abstract
of AAN. S2ORC contains human annotations to
indicate which sentences in the source document
cite the target document. These annotations can be
used to assess the quality of selected sentences by
OPT-Match.

Plagiarism detection is a task to detect whether
a text span in the source document plagiarizes a text
span in the target document. PAN (Potthast et al.,
2013) is used for this task. PAN also contains hu-
man annotations to indicate which sentences in the
source document plagiarizes the target document.

Baselines. For document matching, we take two
representative kinds of methods including the hi-
erarchical models and the variants of BERT as the
underlying model and compare the performance of
these models with and without OPT-Match.

The hierarchical models include GRU-
HAN (Jiang et al., 2019) which uses stacked
GRU and attention networks to encode documents
following the order of words, sentences, para-
graphs, and documents; BERT-HAN (Pappagari
et al., 2019) which replaces sentence encoder of
GRU-HAN with BERT; GRU-HAN-CDA and
BERT-HAN-CDA (Zhou et al., 2020) which
add cross-document attention to GRU-HAN and
BERT-HAN respectively. Following (Zhou et al.,
2020), the attention scores of sentences are used to
indicate the model’s selection of key sentences.

Variants of BERT includes BERT (Devlin et al.,
2019), Transformer-XL (Dai et al., 2019), and
Longformer (Beltagy et al., 2020). For BERT, we
choose the ‘bert-base-uncased’ and truncate the
first 510 words of the document. For Transformer-
XL and Longformer, we choose “transfoxl-wt103’
and ‘allenai/longformer-base-4096’ respectively.

To further verify the impact of partial alignment
between documents, we consider two OT-based
method: (Kusner et al., 2015) which uses OT as a
similarity function between sentences and (Swan-
son et al., 2020) which conducts sparse OT between
sentences by adding dummy nodes2.

2We consider the relaxed 1-to-k assignment which is suit-
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Table 2: Experimental results on S2ORC, PAN, AAN and OC test sets. x-OPT denotes OPT-Match equipped model
x. (soft) and (hard) indicate the soft selection strategy and the hard selection strategy respectively. † indicates the
statistically significant difference between the model equipped with OPT-Match and the corresponding underlying
model (p-value < 0.05).

AAN OC S2ORC PAN
Models Acc. F1 Acc. F1 Acc. F1 Acc. F1
GRU-HAN 68.01 67.23 84.46 82.26 82.36 83.28 75.70 75.88
GRU-HAN-OPT (soft) 69.87† 69.30† 85.76† 85.89† 83.82† 84.29† 76.28† 76.63†

GRU-HAN-OPT (hard) 71.02† 70.91† 85.49† 85.74† 85.14† 85.65† 76.76† 77.03†

GRU-HAN-CDA 74.51 74.81 88.71 88.96 88.91 89.92 77.04 78.23
GRU-HAN-CDA-OPT (soft) 75.88† 76.06† 89.94† 90.11† 89.15 89.84 78.10† 78.39
GRU-HAN-CDA-OPT (hard) 76.96† 76.65† 88.62 88.78 89.72† 89.96† 78.52† 78.84†

BERT-HAN 67.32 64.97 85.96 86.33 90.67 90.76 87.57 87.36
BERT-HAN-OPT (soft) 68.72† 68.98† 87.30† 87.44† 90.75 90.87 87.74 87.25
BERT-HAN-OPT (hard) 70.57† 71.22† 88.21† 88.49† 91.40† 91.55† 88.12† 88.01†

BERT-HAN-CDA 71.57 69.08 87.81 87.89 91.92 92.07 86.23 86.19
BERT-HAN-CDA-OPT (soft) 73.85† 73.42† 89.07† 89.01† 92.52† 92.61† 87.13† 86.89†

BERT-HAN-CDA-OPT (hard) 75.56† 75.62† 90.58† 90.54† 92.74† 92.81† 87.61† 87.14†

BERT 88.05 88.09 94.52 94.45 95.64 95.64 59.58 69.71
BERT-OPT (hard) 89.31† 89.35† 95.06† 94.97† 96.85† 96.82† 89.09† 88.61†

Transformer-XL 83.18 82.92 91.19 91.26 92.50 92.39 58.25 69.07
Transformer-XL-OPT (hard) 85.03† 84.99† 92.37† 92.43† 93.80† 93.69† 80.28† 80.11†

Longformer 88.01 88.29 93.46 93.51 96.02 96.07 56.82 69.78
Longformer-OPT (hard) 88.92† 89.07† 94.88† 94.87† 96.61† 96.56† 82.68† 82.21†

Evaluation Metrics. We use Accuracy and F1
as the evaluation metrics since all the datasets
have binary labels for document matching. Fol-
lowing (Zhou et al., 2020), we use MRR as the
evaluation metric for sentence selection since the
sentence selection is regarded as a ranking task.

Implementation Details. All hyper-parameters
in OPT-Match3 are tuned using grid search on
the validation set. The tuning range of hyperpa-
rameters are as follows: the proportion of mass
to be transported ϵ in Eq. (2) is tuned among
{0.25, 0.50, 0.75}; coefficient λ in Eq. (4) is
tuned between [0.5, 1.0]; Gumbel temperature τ
in Eq. (6) is tuned between [0.5, 1.0]. For OPT-
Match equipped hierarchical models, the settings
of optimizer, learning rate, batch size and hidden di-
mension are consistent with corresponding underly-
ing models. For OPT-Match equipped BERT’s vari-
ants, the fine-tuning optimizer is Adam (Kingma
and Ba, 2014) with β1 = 0.9, β2 = 0.999, the
learning rate is tuned between [0.00001, 0.00005];
the batch size is tuned between [4, 8].

3.2 Matching performances
Table 2 reports the evaluation results of different
models. All the methods are trained ten times and
the averaged results are reported. Since BERT and
its variants do not explicitly generate sentence rep-
resentations, we only applied the word-overlap ra-
tio cost and the hard selection versions of OPT-
able for long-form document matching.

3The source code of OPT-Match is available at https:
//github.com/ruc-wjyu/OPT-Match

Match on these models. For a fair comparison, we
follow (Swanson et al., 2020) and keep the number
of selected sentences as 5 in the hard selection.

We summarize our observations from the results
as follows: 1) in general, the models equipped
with OPT-Match consistently outperform their cor-
responding underlying models across four datasets.
The results verify the effectiveness of OPT-Match
in terms of enhancing matching accuracy. 2) BERT
and its variants such as Transformer-XL and Long-
former achieve much worse performances on PAN,
comparing to their good performances on other
datasets. PAN has a large average document length
(> 1500 words) and a large average number of sen-
tences per document (> 40 sentences). The noise
in the extremely long documents makes BERT and
its variations perform poorly. OPT-Match equipped
models, however, are not affected by the document
length. It is because OPT-Match successfully fil-
ters out the noise in the document by selecting key
sentences for matching. The results indicate that
OPT-Match is more effective especially when the
document length is extremely long; 3) Comparing
the performances of OPT-Match in the soft selec-
tion version to that of in the hard selection version,
the hard selection versions achieve better perfor-
mances in most cases. We analyze the results, and
the reason is that the soft selection is a weighting
strategy, aiming at sampling sentences according
to the optimal transport plan of OPT-Match. How-
ever, the soft selection cannot completely filter out
the noise in documents, which often has negative
impacts on the matching.
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Table 3: The impact of degree of the document align-
ment ϵ in OPT-Match. BHC-OPT denotes BERT-HAN-
CDA-OPT model in the soft selection and BERT-OPT
is in the hard selection version.

S2ORC PAN
Models Acc. F1 Acc. F1
BHC-OT(Kusner et al., 2015) 91.46 91.50 85.90 85.98
BHC-SOT (Swanson et al., 2020) 91.91 91.96 86.55 86.32
BHC-OPT(ϵ = 0.75) 92.33 92.46 86.95 86.59
BHC-OPT (ϵ = 0.50) 92.65 92.74 87.08 86.75
BHC-OPT (ϵ = 0.25) 92.74 92.81 87.61 87.14
BERT-OT (Kusner et al., 2015) 95.27 95.31 66.28 65.47
BERT-SOT (Swanson et al., 2020) 96.05 96.13 87.86 87.95
BERT-OPT (ϵ = 0.75) 96.79 96.75 88.02 87.44
BERT-OPT (ϵ = 0.50) 96.77 96.76 88.67 88.24
BERT-OPT (ϵ = 0.25) 96.85 96.82 89.09 88.61

3.3 Impact of Partial Alignment

To test the effects of the partial alignment between
documents, we compare the performances of OPT-
Match with different proportion of mass ϵ (degree
of alignment) to two representative OT-based (full
alignment) methods (Kusner et al., 2015; Swan-
son et al., 2020). We suppose that with the lower
ϵ, OPT-Match focuses more on strongly aligned
sentence pairs, while filtering out more spurious
alignment signals. Please note that (Kusner et al.,
2015) conduct traditional OT between documents
which denotes the full alignment and (Swanson
et al., 2020) add dummy sentences and conducts
full alignment between real sentences and dummy
ones in order to achieve partial alignment within
real sentences. As illustrated in Table 3, we find
that models with partial alignment (ϵ < 1) always
achieve better performances than that of the full
alignment on S2ORC and PAN datasets. The re-
sults verify that the alignment between documents
is partial. Moreover, we find that OPT-Match tends
to achieve better performance with smaller ϵ. The
results indicate that only a small fraction of strongly
aligned sentences contributed to document match-
ing, filtering out the noise sentences is helpful. In
addition, although (Swanson et al., 2020) aims at
partial alignment, the way of adding dummy nodes
may not suit long-form documents matching be-
cause the document length varies greatly leading
to many dummy nodes, and the alignment between
dummy nodes and real sentences may dominate in
the full alignment and overwhelm the real align-
ments between sentences.

3.4 Impact of the number of selected sentences.

We further conduct experiments to investigate how
the number of selected sentences in OPT-Match
affects the matching. Specifically, we configure
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Figure 3: The impact of the number of selected sentence
on OPT-Match. Results from BERT-OPT of the hard
selection version on S2ORC and OC.

Table 4: Faithfulness evaluation. (all), (selected), and
(all \selected) respectively denotes using all sentences,
using sentences selected by OPT-Match, and using the
sentences not selected by OPT-Match as the inputs.

S2ORC PAN
Models Acc. F1 Acc. F1
BERT-HAN (all\selected) 73.62 74.33 56.76 53.52
BERT-HAN (all) 90.67 90.76 77.04 78.23
BERT-HAN (selected) 91.40 91.55 88.12 88.01
BERT-HAN-CDA (all\selected) 77.30 77.94 57.28 53.73
BERT-HAN-CDA (all) 91.92 92.07 86.23 86.19
BERT-HAN-CDA (selected) 92.74 92.81 87.61 87.14

BERT-OPT (hard) to select a different number of
sentences (from 1 to the average number of sen-
tences in a document) and then conduct matching
using these sentences. Figure 3 illustrates matching
accuracy curves w.r.t. the number of selected sen-
tences on the datasets of S2ORC and OC. We find
that BERT-OPT shows a competitive performance
when only 1 or 2 sentences are selected. The re-
sults show the effectiveness of OPT-Match in terms
of accurately selecting sentences key to document
matching. Additionally, the accuracy curves first
steadily increase and reach the peak when 4 or 5
sentences are selected for matching. After that,
the curves drop with more selected sentences. The
phenomenon is intuitive and can be explained as
follows: when the number of selected sentences is
too small, the model needs more information from
the selected sentences to infer the document-level
matching. However, the number of selected sen-
tences is greatly less than the number of all of the
sentences in the document. Therefore, after some
thresholds, the additional selected sentences be-
come noisy, which causes the drop of the matching
accuracy. The results verify our assumption that
not all the sentences in the document contribute to
the long-form document matching.

2369



Citation Plagiarism
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
RR 0.7134

0.8554

0.6721

0.8386

0.665

0.8072

BERT-HAN-CDA-OPT
BERT-HAN-CDA
BERT-HAN
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BERT-HAN-CDA and BERT-HAN-CDA-OPT (hard)
on S2ORC (Citation) and PAN (Plagiarism).

3.5 Selected Sentences as Rationales

To further assess the quality of the key sentence
selected by OPT-Match, we regard the selected
sentences as the rationales for the document-level
matching prediction. Following (Strout et al., 2019;
DeYoung et al., 2020), we adopt plausibility and
faithfulness as the evaluation metrics. Plausibil-
ity measures how well the rationales provided by
models align with human annotations, and faithful-
ness measures the degree to which the rationales
influence the corresponding predictions.

Following the setting of (Zhou et al., 2020), we
first compare the sentences selected by OPT-Match
(hard) with human annotations in S2ORC and
PAN. As shown in Figure 4, the sentences selected
by OPT-Match are more consistent with human an-
notations compared with that of the sentence-level
attention scores in BERT-HAN and BERT-CDA.

In terms of the faithfulness, we test the matching
performance of BERT-HAN and BERT-HAN-CDA
under three conditions: respectively using all sen-
tences (denoted as (all)), using sentences selected
by OPT-Match (hard) (denoted as (selected)), and
using sentences except those selected by OPT-
Match (hard) (denoted as all\selected) as the
model’s input. From the results reported in Table 4,
we find that the sentences selected by OPT-Match
play a critical role in document matching, i.e., if
the sentences selected by OPT-Match are removed
from a model’s input, the matching accuracy of
the model drops dramatically. In addition, if all
sentences are used as a model’s input (note that the
input still contains the sentences selected by OPT-
Match), the predictive accuracy still drops to some
extent because of the noise from other sentences.
From the results, we conclude that OPT-Match is
capable of accurately selecting the key sentences
for document matching and filtering the noise.

Table 5: Training time (s/batch) on a single Nvidia Tesla
V100 16GB. Batch size = 256 for both models.

Models S2ORC PAN
BERT-HAN-CDA 0.0992 0.2711
BERT-HAN-CDA-OPT (soft) 0.1004 0.2917
BERT-HAN-CDA-OPT (hard) 0.0934 0.1490

3.6 Time Complexity Analysis
Existing long-form document matching methods
usually apply attention mechanism at the word
level, which have a time complexity of O(N2

all),
where Nall denotes the number of tokens in the
input document. For OPT-Match, the computing
overhead mainly comes from the calculation of the
optimal transport plan (line 6-9 in Algorithm 1).
With the help of the entropic regularizer (Cuturi,
2013) and Bregman-Dykstra iterations (Bregman,
1967), the calculation of the optimal transport plan
have a time complexity of O(N2

s ) (Benamou et al.,
2015), where the Ns denotes the number of the
sentences in the input document. Since usually the
number of sentences is far less than the number of
tokens in a document, i.e., Ns ≪ Nall, we suppose
the computational cost of OPT-Match is accept-
able. In addition, if the word overlapping cost is
applied, the hard selection version of OPT-Match
can be used as a data pre-processing, therefore,
OPT-Match does not increase the training time of
the model. Also note that the input of the matching
model equipped with OPT-Match is the selected
sentences rather than all of the sentences. There-
fore, the hard selection version of OPT-Match with
word overlapping cost can effectively reduce the
training time of the matching model. For the soft
selection version of OPT-Match, although OPT-
Match brings additional computational cost, con-
sidering OPT-Match is applied at the sentence level,
the additional computation cost is not significant.

We further compare the average training time
between BERT-HAN-CDA and BERT-HAN-CDA-
OPT. From the results shown in Table 5, we can see
that the soft selection version of OPT-Match brings
an acceptable additional computation cost, while
the hard selection version of OPT-Match effectively
reduce the training time of the matching model.

4 Related Work

4.1 Long-form Document Matching
In long-form document matching, there are two
representative methods in the literature — the hier-
archical models and the variants of BERT.
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The hierarchical models suppose that a docu-
ment represents a hierarchical structure of words,
sentences, paragraphs, and documents. Inspired by
this idea, researchers exploit neural network to en-
code document in a hierarchical way. The represen-
tative method is (Jiang et al., 2019). This method
first separately models input document pair as se-
mantic vectors using RNN and Hierarchical Atten-
tion Network (Yang et al., 2016; Zhou et al., 2020).
Then, the matching score is calculated by feeding
the concatenation of the document vector to an
MLP. Pappagari et al. (2019) improves (Jiang et al.,
2019) by replacing the RNN-based encoder with
the transformer-based encoder. Zhou et al. (2020)
focuses on the interaction between documents and
proposed the hierarchical cross-document attention
to improve the document representation.

Although BERT has been dominated in the field
of short-text matching, the quadratic time com-
plexity of intrinsic attention mechanism makes
BERT difficult to be applied in the long-form doc-
ument matching. To tackle this issue. Dai et al.
(2019) proposed Transformer-XL which consists
of a segment-level recurrence mechanism and a po-
sitional encoding scheme. Transformer-XL enables
learning dependency beyond a fixed length with-
out disrupting temporal coherence. Beltagy et al.
(2020) proposed dilated sliding windows attention
which gradually increases the receptive field as the
model goes deeper.

Recently, Pang et al. (2021) proposed to first fil-
ter out sentence-level noise from documents by ap-
plying PageRank on the sentence similarity graph
and then plug PageRank into transformer layers to
filter out word-level noise. Although these studies
achieved improvement in document matching per-
formances, they ignore the alignment between sen-
tences in a document pair would be partial which
inevitably introduced noises to the final matching.

4.2 OT in NLP

In recent years, OT have been widely studied in
NLP. Kusner et al. (2015) formulated the distance
between two sentences as an optimal transport prob-
lem and proposed Word Mover’s Distance (WMD)
which measures the dissimilarity between two text
documents as the minimum amount of distance
that words of one document need to transport to
the words of another document. Yokoi et al. (2020)
pointed out that the angle of semantic vectors is a
good proxy for word similarity and proposed Word

Rotator’s Distance on top of WMD. Xu et al. (2018)
proposed a Wasserstein method with a distillation
mechanism, yielding joint learning of word embed-
dings and topics. Inspired from Order-Preserving
OT (Su and Hua, 2017, 2019; Su et al., 2019), Liu
et al. (2018) proposed to factorize sentence hierar-
chically based on Abstract Meaning Representation
and obtain the reordered sentence representations.
Then the semantic distance between a pair of text
snippets can be solved by a penalized OT. Yu et al.
(2020, 2022b) proposed to use OT to bridge the
gap between heterogeous text pairs for sentence
matching in asymmetrical domains. Chen et al.
(2019); Zhang et al. (2020) respectively applied OT
and OPT to sequence-to-sequence learning tasks
such as text generation. (Li et al., 2019; Yu et al.,
2022a) proposed to learn the similarity between
texts using inverse optimal transport.

5 Conclusion

In this paper, we highlight the critical role of con-
ducting partial alignment in long-form document
matching. A novel key sentence selection com-
ponent based on optimal partial transport is pro-
posed, called OPT-Match. OPT-Match automati-
cally selects key sentences for document match-
ing, addressing the issue that not every sentence
in one document can correspond to a sentence in
another document. Moreover, OPT-Match can be
easily incorporated into existing document match-
ing models. Comprehensive experiments on four
public datasets show that OPT-Match consistently
outperformed its underlying document matching
models. The empirical analysis also verifies that
the sentences selected by OPT-Match are not only
consistent with human-provided rationales but also
contributed to document matching.
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Abstract

Most NER methods rely on extensive labeled
data for model training, which struggles in the
low-resource scenarios with limited training
data. Existing dominant approaches usually
suffer from the challenge that the target do-
main has different label sets compared with
a resource-rich source domain, which can be
concluded as class transfer and domain transfer.
In this paper, we propose a lightweight tuning
paradigm for low-resource NER via pluggable
prompting (LightNER). Specifically, we con-
struct the unified learnable verbalizer of entity
categories to generate the entity span sequence
and entity categories without any label-specific
classifiers, thus addressing the class transfer
issue. We further propose a pluggable guid-
ance module by incorporating learnable param-
eters into the self-attention layer as guidance,
which can re-modulate the attention and adapt
pre-trained weights. Note that we only tune
those inserted module with the whole param-
eter of the pre-trained language model fixed,
thus, making our approach lightweight and flex-
ible for low-resource scenarios and can better
transfer knowledge across domains. Experi-
mental results show that LightNER can obtain
comparable performance in the standard super-
vised setting and outperform strong baselines
in low-resource settings1.

1 Introduction

Named Entity Recognition (NER) has been a fun-
damental task of research within the Natural Lan-
guage Processing (NLP) community. Mostly, the
NER task is formulated as a sequence classifica-
tion task, aiming to assign the labels to each en-
tity in the input sequence. And those entity la-
bels are all based on pre-defined categories, such
as location, organization, person. The current

∗ Equal Contribution.
† Corresponding Author.

1Code is in https://github.com/zjunlp/
DeepKE/tree/main/example/ner/few-shot.
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Figure 1: Examples of NER involved in Class Transfer
and Domain Transfer in low-resource setting.

mature methodologies for handling NER is us-
ing Pre-trained language models (PLMs) (Devlin
et al., 2019) equipped with several NER paradigms
to perform extensive training process on large
corpus, such as label-specific classifier paradigm
(LC) (Strubell et al., 2017; Cui and Zhang, 2019),
machine reading comprehension paradigm (MRC)
(Yu et al., 2020) and unified generative paradigm
(BartNER (Yan et al., 2021)). Unfortunately the
resulting models are highly associated with seen
categories, which often explicitly memorizing en-
tity values (Agarwal et al., 2021), partially because
the output layers require a consistent label set be-
tween training and testing. Note that these models
require to build a new model from scratch to adapt
to a target domain with new entity categories, thus,
achieving unsatisfactory performance when the tar-
get labeled data is limited.

Unfortunately, this problem is prevalent in real-
world application scenarios and draws attention to
a challenging but practical research problem: low-
resource NER, where the model is built to quickly
identify new entities in a completely unseen target
domain with only a few supporting samples in the
new domain. Overall, low-resource NER (Wise-
man and Stratos, 2019; Yang and Katiyar, 2020;
Ziyadi et al., 2020) mainly faces two issues as
shown in Figure 1: (1) Class Transfer. Entity cate-
gories can be different across rich-resource settings
and low-resource settings. For example, source
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news domain contains the entity categories with
“person” ,“location” , etc, while target movie do-
main adds new categories with “rating_average”
and “actor”. In this situation, the current main-
stream method such as LC, MRC and BARTNER
have to refactor a new model and train it from
scratch, which is expensive, and unrealistic for real-
world settings. (2) Domain Transfer. Compared
with rich-resource settings, the low-resource setting
may have a different textual domain. Intuitively,
the sentence in news domain and atis domain con-
tain the different grammar style and allegorical
theme, which is not trivial to transfer the model
fully trained in the source domain to target domain
with few examples.

To address the issue of class transfer, we first re-
formulate the NER task from sequence labeling
to a generative framework with a unified learn-
able verbalizer to realize class transfer. Consid-
ering different categories involve varying numbers
of words as their descriptions, vanilla mainstream
method that assign single classifier for entity may
lose important label semantic information. Thus,
we propose to construct a unified learnable ver-
balizer based on generative framework. Different
from BartNER (Yan et al., 2021)) that has extra
MLP layer in Encoder and classifier in Decoder,
our method only contain the original architecture of
pre-trained generative model by constructing con-
structing a unified learnable verbalizer for entity.
Therefore, our approach can directly leverage any
new or complicated entity types without modifying
the network structure.

Recently, prompt-tuning (Schick and Schütze,
2021; Gao et al., 2021; Li and Liang, 2021; Liu
et al., 2021c) has emerged to become surprisingly
effective for the model adaptation of PLMs, es-
pecially in the low-resource setting. However, the
prompt-tuning relies on reformulating the paradigm
of downstream tasks into new tasks similar to MLM
pre-training, which is not efficient for sequence
labeling tasks such as NER. Inspired by the suc-
cess of prompt-learning (Lester et al., 2021) in do-
main adaptation, we propose a lightweight tuning
paradigm with pluggable guidance for NER (Light-
NER) to tackle the downsides of domain transfer.
Specifically, we propose to incorporate learnable
parameters into the self-attention layer in LMs and
regard the parameters as knowledgeable guidance.
In particular, we explore lightweight tuning with
the pluggable guidance module to urge it to learn

domain transfer ability and condition it at inference
time.

In light of the limits of the existing techniques,
we are interested in building a lightweight tuning
framework fot low-resource NER with pluggable
prompting. Notably, the modules in LightNER
are extremely coupled and indispensable to each
other. It is precisely because we design a generative
model equipped with a decoupling space to solve
the issue class transfer that the pluggable guidance
module can realize domain knowledge transfer with
lightweight tuning. In a nutshell, LightNER con-
sists of the following contributions:

• We convert sequence labeling to the gener-
ative framework and construct decoupling
space without any label-specific layers to
solve the issue of class transfer. Therefore,
the proposed method does not require to build
a new model from scratch to adapt to a target
domain with new entity categories.

• We propose to incorporate learnable param-
eters into the self-attention layers as plug-
gable guidance, which can be seamlessly
plugged into the pre-trained generative mod-
els to conduct lightweight tuning with cross-
domain and cross-task knowledge transfer
ability. Therefore, LightNER doesn’t need to
maintain an LM for each target domain NER
tasks and pay for expensive training services.

• We conduct extensive experiments on several
benchmark datasets, and by tuning only little
parameters, LightNER can achieve compara-
ble results in standard supervised settings and
yield promising performance in low-resource
settings. Our results also suggest that Light-
NER has the potential towards cross domain
zero-shot generation with pluggable guidance.

2 Related Work

2.1 Named Entity Recognition

The current dominant methods (Ma and Hovy,
2016; Liu et al., 2019; Zhang et al., 2020b; Liu
et al., 2021a,b) treat NER as a sequence tagging
problem with label-specific classifiers or CRF. Nev-
ertheless, these works still need to modify the
model architecture when facing new entity classes;
the inability to solve the challenge of class transfer
limits its efficiency and transferability, which is not
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Figure 2: Overview of our LightNER framework.

suitable for low-resource scenarios. Meanwhile,
one crucial research line of low-resource NER
is prototype-based methods, which involve meta-
learning and have recently become popular few-
shot learning approaches in the NER area. Most
of the approaches (Fritzler et al., 2019; Wiseman
and Stratos, 2019; Yang and Katiyar, 2020; Ziyadi
et al., 2020; Henderson and Vulic, 2021; Hou et al.,
2020; Lin et al., 2019; Ding et al., 2021) utilize
the nearest-neighbor criterion to assign the entity
type, which depends on similar patterns of entity
between the source domain and the target domain
without fully exploiting the potential of PLMs, be-
having unsatisfactorily for cross-domain instances.

Recently, Cui et al. (2021) propose template-
based BART for few-shot NER, which enumer-
ates all n̂-gram possible spans in the sentence and
fills them in the hand-crafted templates, classifying
each candidate span based on the corresponding
template scores. Different from their approach, our
framework does not need template engineering and
is more friendly with computation complexity.

2.2 Prompt Learning for PLMs

Since the emergence of GPT-3 (Brown et al.,
2020), prompt-tuning has received considerable
attention. A series of research work (Schick and
Schütze, 2021; Schick et al., 2020; Shin et al.,
2020; Han et al., 2021; Ben-David et al., 2022;
Poth et al., 2021; Ben-David et al., 2022) have
emerged, which implies that prompt-tuning can
effectively stimulate knowledge from PLMs com-
pared with standard fine-tuning, thus, inducing bet-
ter performances on few-shot and cross-domain
tasks. However, prompt learning mainly focuses

on reformulating the downstream tasks’ paradigm
into completing a cloze task to bridge the gap be-
tween pre-training and fine-tuning, lacking an effi-
cient method for NER and other sequence labeling
tasks. Different from recent work of prompt tuning
for NER (Zhou et al., 2021; Ma et al., 2022), we
mainly focus on the issues of domain transfer and
class transfer for low-resource NER.

2.3 Lightweight Learning for PLMs

Lightweight fine-tuning is performed to leverage
the ability of PLMs with small trainable param-
eters. On the one hand, several studies consider
removing or masking redundant parameters from
PLMs (Frankle and Carbin, 2019; Sanh et al.,
2020). On the other hand, some researchers (Guo
et al., 2021; Zhang et al., 2020a) argue that extra
trainable modules should be inserted into PLMs.
As a typical approach, adapter-tuning (Houlsby
et al., 2019) inserts task-specific layers (adapters)
between each layer of PLMs; prefix-tuning (Li
and Liang, 2021) prepends a sequence of contin-
uous task-specific vectors to the inputs. However,
adapter-tuning adds additional layers into the ac-
tivation module of LMs, while this modification
of the architecture is inconvenient to redeploy the
model when switching to a new domain with un-
seen entity types. Meanwhile, the different label
sets among domains make it impossible to transfer
prefix-tuning to sequence labeling such as NER.

Apart from Adapter (Houlsby et al., 2019) and
prefix-tuning (Li and Liang, 2021) aiming to con-
duct efficient finetuning, our approach focus on
achieving efficient knowledge transfer through a
pluggable paradigm.
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3 Preliminaries

3.1 Low-resource NER

Given a rich-resource NER dataset H =
{(XH

1 ,Y
H
1 ), ..., (XH

R ,Y
H
R )}, where the input is

a text sequence of length n, XH = {xH1 , . . . , xHn },
we use YH = {yH1 , . . . , yHn } to denote correspond-
ing labeling sequence of length n, and adopt CH to
represent the label set of the rich-resource dataset
(∀yHi , yHj ∈ CH ). Traditional NER methods are
trained in the standard supervised learning settings,
which usually require many pairwise examples, i.e.,
R is large. However, only a few labeled examples
are available for each entity category in real-world
applications due to the intensive annotation cost.
This issue yields a challenging task of low-resource
NER, in which given a low-resource NER dataset,
L = {(XL

1 ,Y
L
1 ), ..., (X

L
r ,Y

L
r )}, the number of la-

beled data in low-resource NER dataset is quite lim-
ited (i.e., r ≪ R) compared with the rich-resource
NER dataset. Regarding the issues of low resource
and cross domain, the target entity categories CL
(∀lLi , lLj ∈ CL) may be different from CH , which is
challenging for model optimization.

3.2 Label-specific Classifier for NER

Traditional sequence labeling methods usually as-
sign a label-specific classifier over the input se-
quence, which identifies named entities using BIO
tags. A label-specific classifier with parameter
θ = {WC ,bC} followed by a softmax layer is
used to project the representation h into the label
space. Formally, given x1:n, the label-specific clas-
sifier method calculates:

h1:n = ENCODER(x1:n),

q(y|x) = SOFTMAX(hiWC + bC) (i ∈ [1, ..., n]),
(1)

where WC ∈ Rd×m, bC ∈ Rm are trainable pa-
rameters and m is the numbers of entity categories.
We adopt BERT (Devlin et al., 2019) and BART
(Lewis et al., 2020) as our ENCODER to encoder the
representation of text sequence, together with label-
specific classifier layer, denoted as LC-BERT and
LC-BART respectively.

4 Methodology

4.1 Task Formulation

Low-resource NER usually involves the class trans-
fer, where new entity categories exist in target do-
mains; however, the traditional sequence labeling
method needs a label-specific output layer based

on PLMs, hurting its generalization. Therefore, we
reformulate the NER as a generative framework to
maintain the consistency of architecture and enable
the model to handle different entity types. For a
given sentence X , we tokenize it into a sequence
of tokensX = {x1, x2, ...xn}. The NER task aims
to provide the start and end index of an entity span,
along with the entity type, represented by e, t in
our framework, respectively. e is the index of to-
kens and t ∈ {“person”, “organization”, ..., } is
the set of entity types. Superscript start and end de-
note the start and end index of the corresponding
entity token in the sequence. For the generative
framework, the target sequence Y consists of mul-
tiple base prediction pi = {estarti , eendi , ti} and
Y = {p1, p2, ...., pl}, where l denotes num of enti-
ties in X . We take a sequence of tokens X as input
and hope to generate the target sequence Y as de-
fined above. The input and output sequence starts
and ends with special tokens “<s>” and “</s>”.
They should also be generated in Y , but we ignore
them in equations for simplicity. Given a sequence
of tokens X , the conditional probability is calcu-
lated as:

P (Y |X) =

3l∏

t=1

p(yt|X, y0, y1, ..., yt−1). (2)

4.2 Generative Framework
To conduct class transfer, we adopt the seq2seq
architecture with the pointer network to model the
conditional probability P (Y |X), where the con-
duction of pointer network is inspired by the See
et al. (2017); Yan et al. (2021). Our generative
module is shown in Figure 2, consisting of two
components:

4.2.1 Encoder
The encoder is to encode X into the hidden repre-
sentation space as a vector Hen.

Hen = Encoder(X) (3)

where Hen ∈ Rn×d and d is the hidden state di-
mension.

4.2.2 Decoder
The decoder part takes the encoder outputsHen and
previous decoder outputs y1, y2, ..., yt−1 as inputs
to decode yt. yit−1i=1 indicates the token indexes; an
index-to-token converter is applied for conversion.

ỹi =

{
Xyi , if yi is a pointer index
Cyi−n, if yi is a class index (4)
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where C = [c1, c2, ....cm] is the set of entity cat-
egories (such as “Person”, “Organazation”, etc.),
which are answer words corresponding to the entity
category2. After this, we then get the last hidden
state for yt with the converted previous decoder
outputs [ỹit−1i=1].

ht = Decoder(Hen; [ỹi
t−1
i=1 ]) (5)

where ht ∈ Rd; moreover, the probability distribu-
tion pt of token yt can be computed as follows:

Eseq = WordEmbed(X),

H̃en = α ·Hen + (1− α) · Eseq,
pseq = H̃en ⊗ ht,
pt = Softmax([pseq; ptag]),

(6)

where Eseq, H̃en ∈ Rn×d; α ∈ R is a hyper-
parameter; pseq and ptag refer to the predicted log-
its on index of entity span and entity categories
respectively; pt ∈ R(n+m) is the predicted prob-
ability distribution of yt on all candidate indexes;
[ · ; · ] denotes concatenation in the first dimension.
In particular, the details of ptag are in the following
subsection.

4.3 Unified Learnable Verbalizer

As for the prediction of entity categories in NER,
it is challenging to manually find appropriate to-
kens in the vocabulary to distinguish different entity
types. Besides, some entity type may be compli-
cated or very long in the specific target domain,
such as return_date.month_name in ATIS
(Hakkani-Tür et al., 2016) and restaurant_name
in MIT Restaurant (Liu et al., 2013).

To address the above issues in class transfer, we
construct a unified learnable verbalizer containing
multiple label words related to each entity class
and leverage the weighted average approach for
the utilization of the decoupling space V . Con-
cretely, we define a mapping M from the label
space of entity categories C to the unified learn-
able verbalizer V , i.e., M : C 7→ V . We utilize
Vc to represent the subset of V that is mapped by
a specific entity type c, V = ∪c∈CVc. Take the
above c = “return_date.month_name” as example,
we set Vc = {“return”,“date”,“month”,“name”}
according to decomposition of c. Since the direct
average function may be biased, we adopt learnable

2The index of entity categories always starts after the
pointer indexes of the given sequence, at n+ 1.

weights β to average the logits of label words in
answer space as the prediction logit:

Etag = WordEmbed(M(C)),
ptag = Concat[

∑

v∈Vc

βv
c ∗ Ectag ⊗ ht] (7)

where βv
c denotes the weight of entity type c;∑

v∈Vc βv
c = 1; ptag ∈ Rm. Through the con-

struction of the unified learnable verbalizer, Light-
NER can perceive semantic knowledge in entity
categories without modifying the PLM.

4.4 Pluggable Guidance Module
4.4.1 Parameterized Setting
Specifically, LightNER adds two sets of train-
able embedding matrices {ϕ1, ϕ2, .., ϕN} for the
encoder and decoder, respectively, and sets the
number of transformer layers as N , where ϕθ ∈
R2×|P |×d (parameterized by θ), |P | is the length of
the prompt, d represents the dim(ht), and 2 indi-
cates that ϕ is designed for the key and value. In
our method, the LM parameters are fixed, and the
prompt parameters θ and the learnable distribution
of β are the only trainable parameters.

4.4.2 Pluggable Guidance Layer
LightNER inherits the architecture of the trans-
former (Vaswani et al., 2017), which is a stack of
identical building blocks wrapped up with a feed-
forward network, residual connection, and layer
normalization. As a specific component, we intro-
duce the pluggable guidance layer over the original
query/key/value layer to achieve flexible and effec-
tive knowledge transfer. Given an input token se-
quence X = {x1, x2, ..., xn}, following the above
formulation, we can incorporate the representation
of the guidance module into x with the calculation
of self-attention. In each layer l, the input sequence
representationX l ∈ Rnd is first projected into the
query/key/value vector:

Ql = XlWQ,Kl = XlWK ,V l = XlW V , (8)

where WQ
l , WK

l , W V
l ∈ Rd×d. Then, we can

redefine the attention operation as:

Attentionl = softmax(
Ql[ϕlk;K

l]T√
d

)[ϕlv;V
l]. (9)

Based on these representations of inputs and plug-
gable guidance module, we aggregate them and
compute the attention scores to guide the final self-
attention flow. Consequently, the guidance module
can re-modulate the distribution of attention.
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Traditional Models P R F

Yang et al. (2018) - - 90.77
Ma and Hovy (2016) - - 91.21
Yamada et al. (2020) - - 94.30
Gui et al. (2020) - - 92.02
Li et al. (2020) † 92.47 93.27 92.87
Yu et al. (2020) ‡ 92.85 92.15 92.50
LC-BERT 91.93 91.54 91.73
LC-BART 89.60 91.63 90.60

Few-shot Friendly Models P R F

Wiseman and Stratos (2019) - - 89.94
Template (Cui et al., 2021) 90.51 93.34 91.90
LightNER 92.39 93.48 92.93

Table 1: Model performance on the CoNLL-2003
dataset . “†” indicates that we rerun their code with
BERT-LARGE (Devlin et al., 2019). “‡” indicates our
reproduction with only the sentence-level context. Al-
though LUKE (Yamada et al., 2020) is pre-trained with a
large entity-annotated corpus (Wikipedia), LightNER is
highly competitive in rich resource settings even though
it is designed for low-resource NER.

5 Experiments

We conduct extensive experiments in standard and
low-resource settings. We use CoNLL-2003 (Sang
and Meulder, 2003) as the rich-resource domain.
Following the settings in Ziyadi et al. (2020) and
Huang et al. (2020), we use the Massachusetts Insti-
tute of Technology (MIT) Restaurant Review (Liu
et al., 2013), MIT Movie Review (Liu et al., 2013),
and Airline Travel Information Systems (ATIS)
(Hakkani-Tür et al., 2016) datasets as the cross-
domain low-resource datasets3. Our experiments
are evaluated in an exact match scenario, data anal-
ysis, and implementation details are presented in
the Section Appendix A and B. We also provide
the supplementary experimental result for the in-
domain low-resource setting as shown in Section
Appendix C.1.

5.1 Standard Supervised NER Setting

We adopt the CoNLL-2003 dataset to conduct ex-
periments in the standard supervised settings. A
comparison of the results of LightNER and the
SOTA methods are listed in Table 1. Mainly, LC-
BERT and LC-BART provide a strong baseline.
We identify that even though LightNER is designed
for the low-resource NER, it is highly competitive
with the best-reported score in the rich-resource
setting as well, indicating the effectiveness of our
decoding strategy and guidance module.

3We do not conduct experiemnts on Few-NERD (Ding
et al., 2021) since our setting follows (Ziyadi et al., 2020)
which is different from the N-way K-shot settting.

5.2 Cross-Domain Low-resource NER Setting
In this section, we evaluate the model performance
in the scenarios in which the target entity cate-
gories and textual style are specifically different
from the source domain, and only limited labeled
data are available for training. Precisely, we follow
the setting in Cui et al. (2021) to sample a specific
number of samples per entity category randomly
as the training data in the target domain to simu-
late the cross-domain low-resource data scenarios.
Table 2 lists the results of training models on the
CoNLL-2003 dataset as a generic domain and its
evaluations on other target domains. The results of
LightNER are based on running the experiments
five times on random samples and calculating the
average of their scores.

Competitive Baselines We consider seven com-
petitive approaches in our experiments. The
prototype-based methods4 primarily include the
following: (i) Neigh.Tag. (Wiseman and Stratos,
2019); (ii) Example-based NER (Ziyadi et al.,
2020); (iii) Multi-prototype + NSP (referred to
as MP-NSP ) is a SOTA prototype-based method
reported in (Huang et al., 2020), utilizing noisy su-
pervised pretraining. The label-specific classifier
mainly include the following: (iv) LC-BERT and
(v) LC-BART is the adoption of the label-specific
classifiers on top of corresponding PLMs. Besides,
(vi) Template-based BART (Cui et al., 2021) re-
cently propose a template-based method for few-
shot NER and (vii) BERT-MRC (Yu et al., 2020)
propose to formulate NER as a machine reading
comprehension (MRC) task, which is a strong
SOTA model for NER. A summary comparison
with baselines is shown in Section 4 of Appendix.

Train from Scratch on Target Domain We first
consider direct training on the target domain from
scratch without any available source domain data.
However, prototype-based methods cannot be used
in this setting. When compared to the LC-BART,
LC-BERT, template-based BART and BERT-MRC,
the results of our approach is consistently more per-
sistent, indicating LightNER can better exploit few-
shot data. Particularly, LightNER achieve an F1-
score of 57.8% in 20-shot setting on MIT Movie,
which is higher than the results of LC-BERT and
template-based BART in 50-shot setting.

4Note that even if the prototype-based methods is training-
free in the target domain, they are by no means equivalent
to zero-shot setting, since prototype-based methods require
labeled data in target domain as supporting examples.
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Source Methods MIT Movie MIT Restaurant ATIS

10 20 50 100 200 500 10 20 50 100 200 500 10 20 50

None

LC-BERT 25.2 42.2 49.6 50.7 59.3 74.4 21.8 39.4 52.7 53.5 57.4 61.3 44.1 76.7 90.7
LC-BART 10.2 27.5 44.2 47.5 54.2 64.1 6.3 8.5 51.3 52.2 56.3 60.2 42.0 72.7 87.5
Template 37.3 48.5 52.2 56.3 62.0 74.9 46.0 57.1 58.7 60.1 62.8 65.0 71.7 79.4 92.6
BERT-MRC† 18.7 48.3 55.5 62.5 80.2 82.1 12.3 37.1 53.5 63.9 65.5 70.4 35.3 63.2 90.2

LightNER 41.7 57.8 73.1 78.0 80.6 84.8 48.5 58.0 62.0 70.8 75.5 80.2 76.3 85.3 92.8

CoNLL03

Neigh.Tag. 0.9 1.4 1.7 2.4 3.0 4.8 4.1 3.6 4.0 4.6 5.5 8.1 2.4 3.4 5.1
Example. 29.2 29.6 30.4 30.2 30.0 29.6 25.2 26.1 26.8 26.2 25.7 25.1 22.9 16.5 22.2
MP-NSP 36.4 36.8 38.0 38.2 35.4 38.3 46.1 48.2 49.6 49.6 50.0 50.1 71.2 74.8 76.0
LC-BERT 28.3 45.2 50.0 52.4 60.7 76.8 27.2 40.9 56.3 57.4 58.6 75.3 53.9 78.5 92.2
LC-BART 13.6 30.4 47,8 49.1 55.8 66.9 8.8 11.1 42.7 45.3 47.8 58.2 51.3 74.4 89.9
Template 42.4 54.2 59.6 65.3 69.6 80.3 53.1 60.3 64.1 67.3 72.2 75.7 77.3 88.9 93.5
BERT-MRC† 20.2 50.8 56.3 62.9 81.5 82.3 15.8 39.5 54.8 65.8 68.8 73.5 40.5 66.7 91.8

LightNER 62.9 75.6 78.8 82.2 84.5 85.7 58.1 67.4 69.5 73.7 78.4 81.1 86.9 89.4 93.9

Table 2: Model performance (F1 score) in the cross-domain low-resource setting. “†” indicates that we rerun their
public code in this setting. All of our experiments and baselines adopt large version of LMs.

Transfer Knowledge from a General Domain
to Specific Domains We observe that the per-
formance of prototype-based methods remains ap-
proximately the same as the number of labeled
data increases, while LightNER continues to im-
prove when the number of target-domain data in-
creases. Table 2 shows that on all three target-
domain datasets, LightNER significantly outper-
forms the other three types of baselines in the
case of both 10 and 500 instances per entity type,
From the perspective of quantifying the knowl-
edge transferred, when the number of instances
is 10, the performance of our model increase the
F1-scores to 21.2%, 9.6%, and 10.6% on the MIT
movie, MIT restaurant, and ATIS datasets, respec-
tively, which are better than the results of knowl-
edge transferred by LC-BERT. This demonstrates
that our model is more successful in transferring
the knowledge learned from the source domain.

Source Methods MIT Restaurant

10 20 50

None

Ours [BART] 48.5 58.0 62.0
- pluggable module 50.3 59.4 63.5
- unified learnable verbalizer 45.5 55.5 59.8

Ours (Full-params Tuning) 49.5 59.0 62.8
LC-BERT 21.8 39.4 52.7
LC-BERT+[P-tuning] 24.9 41.2 53.5
LC-BERT+[Adapter] 11.5 14.3 21.2
Ours+[Adapter] 43.3 52.3 58.5

CoNLL03

Ours [BART] 58.1 67.4 69.5
- pluggable module 54.5 64.2 67.8
- unified learnable verbalizer 48.7 58.8 62.5

Ours (Full-params Tuning) 53.7 63.5 66.9
LC-BERT 27.2 40.9 56.3
LC-BERT+[P-tuning] 30.3 46.8 58.2
LC-BERT+[Adapter] 13.0 16.2 21.8
Ours+[Adapter] 46.8 58.2 62.5

Table 3: Performance of Ablation and Variants Study.

5.3 Ablation and Comparison

As shown in the above experiments that our Light-
NER possess the outstanding ability of knowledge

transfer in the low-resource setting, we demonstrate
that the pluggable guidance module contributes to
the cross-domain improvement. To this end, we
ablate the pluggable module and unified learnable
verbalizer to validate the effectiveness. - pluggable
module indicates the entire parameter (100%) tun-
ing without our proposed pluggable module. - uni-
fied learnable verbalizer donates our model only
randomly assigns one token in the vocabulary to
represent the type. From Table 3, we notice that
only - pluggable module in the vanilla few-shot
setting performs a little better than LightNER, but
decreases significantly in the cross-domain few-
shot setting. However, - unified learnable verbal-
izer drop both in the two settings. It further demon-
strates that the design of the pluggable module is
parameter-efficient and beneficial for knowledge
transfer, while unified learnable verbalizer can
handle class transfer, which is also essential for
low-resource NER.

We further compare LightNER with several vari-
ants of our method: (i)Ours (Full-params Tuning);
(ii)LC-BERT+[P-tuning]: we set the length of con-
tinuous template words to be 10 for P-tuning;
(iii)LC-BERT+[Adapter]; (iv)Ours+[Adapter];
Firstly, compared with LightNER, training all the
parameters of our model merely improve a little in
in vanilla few-shot setting, but drops significantly
in cross-domain few-shot settings, which reveals
that our pluggable module with LMs fixed is the
vital for transferring knowledge across domains.
Secondly, we observe that LC-BERT equipped
with P-tuning achieves a few improvements both in
vanilla few-shot and cross-domain few-shot set-
tings. While Adapter makes performance drop
significantly because LC-BERT cannot handle the
class transfer, thus the few tuned parameters yield
unsatisfactory performance. Finally, we replace
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Methods NER→ POS POS→ NER

10 20 Full 10 20 Full

LC-BERT 44.3/46.2 53.7/54.3 91.4/91.7 37.9/38.3 48.4/48.6 91.7/91.3
LightNER 45.5/50.6 54.4/57.7 91.3/93.2 46.5/51.8 61.8/65.2 92.9/93.5

Table 4: Model performance in the cross-task setting.
Number before and after “/” donate the F1 scores of
training from scratch on target domain and transferring
from source task to target task respectively.

Target CoNLL Movie Restaurant

Source M R Mix C R Mix C M Mix

LC-BERT 0.2 0.4 0.0 0.5 0.3 0.0 0.3 0.2 0.0
Template 0.1 0.2 0.0 0.3 0.2 0.0 0.1 0.0 0.0

LightNER 8.5 8.8 15.8 12.6 9.0 18.9 11.0 8.5 18.4

Table 5: Cross-domain zero-shot performancefoot-
noteIn zero-shot setting, the weight of the unified learn-
able verbalizer is average operation.. C, M, and R refer
to the dataset of CoNLL03, Movie, and Restaurant, re-
spectively. The Mix column refers to the methods of
averaging the parameters from the other two source do-
mains (average the prompt for LightNER).

the pluggable module with the Adapter to vali-
date the effectiveness of our module. The fact
that Ours+[Adapter] performs significantly bet-
ter than LC-BERT+[Adapter] demonstrates the su-
periority of our generative framework. Besides,
Ours+[Adapter] behaves unsatisfactorily in a cross-
domain low-resource setting, which reveals its poor
ability of knowledge transfer for NER.

5.4 Detailed Model Analysis

The Transferability Across Task Although our
LightNER is designed for NER, it is easy to gener-
alize to other sequence tagging tasks without any
modification network structure.

Thus, we try to train on full data of the source
task, and then simply load the pluggable guidance
module to further train the model on the target task.
As shown in Table 4, we find LC-BERT has an
extensive performance drop of all tasks in a cross-
task setting, and we believe this is due to the task-
specific classifier head hindering the generalization.
The excellent performance in the cross-task setting
proves that LightNER can adapt to other sequence
labeling tasks and incredibly transfer knowledge
across tasks.

Cross-Domain Zero-Shot Analysis with Mixed
Guidance Parameters We leverage one dataset
as the source domain and conduct the zero-shot
experiments on target domains. From Table 5, we
observe that our method can achieve F1-scores of
approximately 10% in the cross-domain zero-shot

1 2 3 4 5 6 7 8 9 101112
Layers

40.0
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80.0

F1
 S
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Figure 3: Performances on CoNLL03 as the layers of
guidance module varies.

setting, significantly higher than other methods.
we further attempt to investigate the performance
of mixing different pluggable guidance module.
Specifically, we directly average the parameters
of prompts from two source domains as a mixed
prompt for the target domain and insert it into the
generative framework to evaluate the target perfor-
mance. From Table 5, we notice that mixed prompt
achieves promising improvement, which is close
to the addition of the results of the original two
sources prompt-based model. We argue that this
finding may also inspire future research directions
of prompt-tuning and data augmentation.

Low-high Layer vs. High-low Layer In the
aforementioned experiments, we assign the plug-
gable guidance module to all layers in PLM. How-
ever, it is intuitive to investigate which layer is more
sensitive with our approach. Intuitively, basic syn-
tactic information may appear earlier in the PLM,
while high-level semantic information emerges in
higher-level layers (Clark et al., 2019). We con-
duct experiments by applying our pluggable mod-
ule from the lowest to the highest layer and from
the highest to the lowest layer separately. These
two progressive methods are briefly denoted as low-
high and high-low, respectively. As Figure 3 shows,
the performance on CoNLL-2003 is close to the
original result obtained after adding full-layer guid-
ance module for tuning. This phenomenon also
appears in the cross-domain few-shot setting. (De-
tailed results refer to Section 3 of Appendix C.2.).
This proves that guidance module applied to higher
layers of LMs can better stimulate knowledge from
PLMs for downstream tasks more efficiently.

6 Conclusion and Future Work

In this paper, we propose a lightweight tuning
paradigm for low-resource NER via pluggable

2381



prompting (LightNER), which can accomplish the
class transfer and domain transfer for low-resource
NER without modifying the PLM’s parameters and
architecture. Note that we only tune pluggable
guidance module with the whole parameter of the
PLMs fixed, thus, making our approach lightweight
and flexible for low-resource scenarios and can bet-
ter transfer knowledge across domains and tasks.
Experimental results reveal that LightNER can ob-
tain competitive results in the rich-resource setting
and outperform baselines in the low-resource set-
ting. In the future, we plan to leverage knowledge
graphs to enhance the pluggable guidance module
for better knowledge transfer performance.
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A Detailed Statistics of Datasets

We take the standard split of CoNLL03 by fol-
lowing Sang and Meulder (2003), and splits MIT
Movie Review, MIT Restaurant Review and ATIS
by following Liu et al. (2013). Table 6 presents
detailed statistics of our datasets. The standard
precision, recall and F1 score are used for model
evaluation.

Dataset # Train # Test # Entity
CoNLL03 12.7k 3.2k 4

MIT Restaurant 7.6k 1.5k 8
MIT Review 7.8k 2k 12

ATIS 4.6k 850 79

Table 6: Statistic of datasets.

Models PER ORG LOC* MISC* Overall

LC-BERT 76.25 75.32 61.55 59.35 68.12
LC-BART 75.70 73.59 58.70 57.30 66.82
Template 84.49 72.61 71.98 73.37 75.59
LightNER 90.96 76.88 81.57 82.08 78.97

Table 7: In-domain low-resource performance on the
CoNLL-2003 dataset. * indicates the low-resource en-
tity type.

B Experimental Details

This section details the training procedures and
hyperparameters for each of the datasets. Consid-
ering the instability of the few-shot learning, we
run each experiment 5 times on the random seed [1,
2, 49, 4321, 1234] and report the averaged perfor-
mance. We utilize Pytorch to conduct experiments
with 1 Nvidia 3090 GPUs. All optimizations are
performed with the AdamW optimizer with a lin-
ear warmup of learning rate over the first 10% of
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gradient updates to a maximum value, then linear
decay over the remainder of the training. We set
the hyper-parameter α as 0.5. And weight decay on
all non-bias parameters is set to 0.01. We describe
the details of the training hyper-parameters in the
following sections.

B.1 Standard Supervised Setting

For all models, we fix the batch size as 16 and
search for the learning rates in varied intervals [1e-
5, 5e-5]. We train the model for 30 epochs and do
evaluation after 20 epoch. We choose the model
performing the best on the validation set and evalu-
ate it on the test set.

B.2 Low-Resource Setting

We fix the batch size as 16 and search for the learn-
ing rates in varied intervals [3e-5, 5e-5]. We train
the model for 30 epochs and do evaluation after 20
epoch. We choose the model performing the best
on the validation set and evaluate it on the test set.

B.3 Cross-Task Setting

We fix the batch size as 8 and search for the learning
rates in varied intervals [2e-5, 5e-5]. We train the
model for 30 epochs and do evaluation after 25
epoch. We choose the model performing the best
on the validation set and evaluate it on the test set.

C Supplementary Experimental Results

C.1 In-Domain Low-Resource NER Setting

Following (Cui et al., 2021), we construct few-
shot learning scenarios on CoNLL-2003 by down-
sampling, which limits the number of training in-
stances for certain specific categories. Particularly,
we choose “ LOC” and “MISC” as the low-resource
entities and “PER” and “ORG” as the rich-resource
entities. The rich and low-resource entity cate-
gories have the same textual domain. Specifically,
we downsample the CoNLL-2003 training set and
generate 4,001 training instances, including 2,496
“PER,” 3,763 “ORG,” 50 “MISC,” and 50 “LOC”
entities. As shown in Table 7, our method out-
performs other methods for both rich- and low-
resource entity types. This proves that our pro-
posed method has a more substantial performance
for in-domain few-shot NER and demonstrates that
it can effectively handle the class transfer, which is
a challenging aspect in few-shot NER tasks.

C.2 The Performance in the Low-Resource
Setting When the Prompt Layer Varies

Intuitively, basic syntactic information may appear
earlier in the PLM, while high-level semantic in-
formation emerges in higher-level layers. Table 8
shows that the performance of prompts within high-
est 1 layer is better than lowest 1 layer overall, and
the performance of highest 6 layers is close to the
result of all 12 layers. This proves that prompts
applied to higher layers of LMs can better stimulate
knowledge from PLMs for downstream tasks more
efficiently.
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Figure 4: We show the formulations of different NER
models and illustrate their corresponding strengths.
Zero-shot refers to zero-shot learning ability; LC is
short for label-specific classifier (vanilla sequence label-
ing)

Algorithm 1 Decoding Algorithm to Convert the
Entity Index Sequence into Entity Spans

Require: n, the number of tokens in X; m, the
number of entity types; target sequence Y =
[y1, ..., y3l], l is the number of entities; and we
have yt ∈ [1, n+m]

Ensure: Entity spans E =
{(estart1 , eend1 , t1), ..., (e

start
i , eendi , ti)}

1: E = {}, e = [], i = 1
2: while i <= 3l do
3: yi = Y [i]
4: if yi > n then
5: E.add((e, Cyi−n))
6: e = []
7: else
8: e.append(yi)
9: end if

10: i+ = 1
11: end while
12: return E

C.3 Impact of Length of Guidance Module
We set the length of prompts as 10 in the above
experiment and analyze whether the impact of the
length of the prompt. From Figure 5, we notice that
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Source Methods MIT Movie MIT Restaurant ATIS

10 20 50 10 20 50 10 20 50

None

Template 37.3 48.5 52.2 46.0 57.1 58.7 71.7 79.4 92.6
LightNER(lowest 1 layer) 16.3 20.3 30.5 14.6 23.4 25.4 30.6 38.3 44.2
LightNER(highest 1 layer) 29.5 38.4 45.5 35.4 45.3 50.5 60.1 69.8 78.7
LightNER(highest 6 layers) 38.5 50.5 69.8 44.3 55.7 59.8 70.2 80.2 88.4

LightNER(all 12 layers) 41.7 57.8 73.1 48.5 58.0 62.0 76.3 85.3 92.8

CoNLL03

Template 42.4 54.2 59.6 53.1 60.3 64.1 77.3 88.9 93.5
LightNER(lowest 1 layer) 24.3 30.5 35.4 15.6 22.4 27.5 37.9 44.5 48.3
LightNER(highest 1 layer) 44.6 59.3 74.3 39.4 45.2 51.7 59.7 68.5 79.2
LightNER(highest 6 layers) 55.8 69.7 75.8 50.7 62.7 66.7 79.2 86.3 91.8

LightNER(all 12 layers) 62.9 75.6 78.8 58.1 67.4 69.5 86.9 89.4 93.9

Table 8: Performances in cross-domain low-resource setting as the prompt layer varies.
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Figure 5: Performances on CoNLL03 as the length of
guidance module varies.

a longer prompt implies more trainable parameters
but does not guarantee more expressive power. It
also reveals that our pluggable guidance module
is stable; as the length changes, the performance
fluctuation does not exceed 1%.

D Comprehensive Comparison

We carry out a comprehensive comparison with
related methods as shown in Figure 4. For a given
sequence, the computational complexity of our
LightNER is O

(
n2d
)

and Tamplate-based BART
is O

(
nmn̂ · n2d

)
,where d donates the dimension

of the LMs; n,m, n̂ imply the length of input,
number of entity classes and n-grams, respectively.
Note that our approach does not need to enumerate
all possible spans and construct templates, which
is efficient than the Template-based method (Cui
et al., 2021). Moreover, we only tune 2.2% param-
eters of the whole model (the tuned params divided
by params of the LM), making it memory efficient
during training.

E The decoding algorithm for converting
process

The decoding algorithm for converting the pre-
dicted index sequence to entity spans is shown in
Algorithm 1.

F Sampling strategy in low-resource
setting

F.1 Cross-Domain
We simulate the cross-domain low-resource data
scenarios by random sampling training instances
from a large training set as the training data in
the target domain. We use different numbers of
instances for training, randomly sampling a number
of instances per entity type (10, 20, 50, 100, 200,
500 instances per entity tag for MIT Movie and
MIT restaurant, and 10, 20, 50 instances per entity
tag for ATIS). For different instances per entity tag,
we sample five times on the random seed [1, 2, 49,
4321, 1234] and report the averaged performance.

In order to alleviate the problem that an instance
usually contains multiple entities, we first sort the
entity tags according to the number of instances
included. Then we sample instances in the se-
quence of the sorted order. After once sampling,
we will update the status(the remaining number
of instances to be sampled) of the entity tags. If
an entity tag exceeds the limit after the sampling,
discard this sampling.

F.2 Cross-Task
Since the CoNLL-2003 dataset contains both en-
tity tag and POS information, we use the same
sampling data in cross-task setting. For different
instances per entity tag, we sample five times on
the random seed [1, 2, 49, 4321, 1234] and report
the averaged performance.
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Abstract
Medical report automatic generation has gained
increasing interest recently as a way to help ra-
diologists write reports more efficiently. How-
ever, this image-to-text task is rather challeng-
ing due to the typical data biases: 1) Normal
physiological structures dominate the images,
with only tiny abnormalities; 2) Normal de-
scriptions accordingly dominate the reports.
Existing methods have attempted to solve these
problems, but they neglect to exploit useful
information from similar historical cases. In
this paper, we propose a novel Cross-modal
Contrastive Attention (CMCA) model to cap-
ture both visual and semantic information from
similar cases, with mainly two modules: a Vi-
sual Contrastive Attention Module for refining
the unique abnormal regions compared to the
retrieved case images; a Cross-modal Atten-
tion Module for matching the positive semantic
information from the case reports. Extensive
experiments on two widely-used benchmarks,
IU X-Ray and MIMIC-CXR, demonstrate that
the proposed model outperforms the state-of-
the-art methods on almost all metrics. Further
analyses also validate that our proposed model
is able to improve the reports with more accu-
rate abnormal findings and richer descriptions.

1 Introduction

Medical report generation task in practice demands
radiologists carefully examine details of images
and write corresponding reports, which is time-
consuming and technically rigorous. In addition,
with the explosion of medical images, generating
medical reports has increasingly become a tough
burden for radiologists in clinical diagnosis and
treatment. Thus, it is extremely desired for auto-
matically generating medical reports from medical
images, which has also attracted increasing atten-
tion especially in the Chest X-ray report generation.

Recently, the widely used Encoder-Decoder
framework in image captioning task (Karpathy and

*Corresponding Author.

  

Ground Truth: There is scarring in the right mid and upper 

lung zone with surgical clips identified as well. There is no 

pleural effusion or pneumothorax. The heart is not significantly 

enlarged. There are atherosclerotic changes of the aorta. 

changes of the skeletal structures are noted. 

Baseline: The lungs are clear. There is no pleural effusion or 

pneumothorax. The heart and mediastinum are normal. The 

skeletal structures are normal. 

CMCA: The lungs are clear. There is no pleural effusion or 

pneumothorax. The heart is not significantly enlarged. There are 

calcified mediastinal lymph. There are atherosclerotic changes 

of the aorta. changes of the skeletal structures are 

noted.

Figure 1: One example of Chest X-ray image with the
corresponding ground truth, Baseline (Vaswani et al.,
2017) and our model generated reports. The abnormal
regions and their corresponding descriptions are marked
in same colors, showing serious data biases of this task.

Fei-Fei, 2015; You et al., 2016; Vaswani et al.,
2017; Anderson et al., 2018) has been success-
fully inherited by medical report generation and
has made great improvements (Jing et al., 2018;
Zhang et al., 2017; Shin et al., 2016a; Wang et al.,
2018; Li et al., 2019; Chen et al., 2020). Neverthe-
less, as shown in Figure 1, different from image
captioning, medical report generation faces typical
data biases which cause the failing of generating
accurate descriptions: 1) the abnormal regions are
usually tiny, rare and hard to be recognized in med-
ical images with monotonous and homogeneous
features (Guan et al., 2021; Li et al., 2018b; Guan
et al., 2020); 2) the abnormal text descriptions are
correspondingly rare in reports and the normal de-
scriptions dominate the whole datasets (Shin et al.,
2016b; Xue et al., 2018; Jing et al., 2019; Liu et al.,
2021a,b).

To tackle these issues, Jing et al. (Jing et al.,
2019) employed an auxiliary detector to identify
abnormality terms. Liu et al. (Liu et al., 2021b)
compared the input image with normal samples
to distill the visual abnormal information. How-
ever, these approaches mainly probed abnormal-
ities from images themselves or comparing with
manual selected normal samples, without consider-
ing the importance of exploiting abnormal informa-
tion from historical similar cases and making use
of their visual and semantic information. Based
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on the observation that similar images are more
likely to have similar reports (Ramos et al., 2014),
we presume that taking the most similar historical
case as a contrastive reference will make models
able to relieve the data biases and capture more
critical visual and semantic information. Unfor-
tunately, exploring positive semantic information
from cases faces another challenge on cross-modal
matching (Xu et al., 2020; Liang et al., 2021): the
retrieved report which contains useful but noisy
semantic information is hard to be aligned with the
input image solely across the unmatched visual-
semantic modalities.

In this paper, we propose a novel Cross-modal
Contrastive Attention (CMCA) model to tackle
the aforementioned problems. CMCA first re-
trieves the most similar case for the input image
from a historical database, then generates a con-
trastive feature by enlarging the differences and
maintaining the commons between the input im-
age and the retrieved image. Subsequently, the
contrastive feature is used to extract visually abnor-
mal and semantically matched information through
two modules: a Visual Contrastive Attention Mod-
ule (VCAM) and a Cross-modal Attention Mod-
ule (CAM). Specifically, VCAM extracts discrimi-
native abnormal visual information from the con-
trastive feature, where the unique abnormal regions
of input image are enhanced and similar regions
are retained. CAM matches the positive semantic
information from the retrieved report by aligning
it with the contrastive feature, which builds inter-
actions across the unmatched visual and semantic
modalities. Finally, we propose a Parallel Attention
Module (PAM) to further enhance the feature repre-
sentation for generating accurate report. Extensive
experiments on the widely-used benchmark IU X-
Ray (Demner-Fushman et al., 2016) dataset and the
largest public MIMIC-CXR (Johnson et al., 2019)
dataset demonstrate that our model outperforms the
state-of-the-art methods.

Overall, our contributions are as follows:

• We propose to take the most similar historical
case as a contrastive reference to relieve the
data biases for medical report generation.

• We propose a novel Cross-modal Contrastive
Attention model to distill unique abnormal
features for input image and match positive
words from the case report.

• Extensive experimental results on the public

IU X-Ray and MIMIC-CXR datasets demon-
strate the effectiveness of the proposed model.

• We conduct analyses to validate the hypoth-
esis that historical similar cases can signifi-
cantly assist this task, and our CMCA model
is able to generate reports with more accurate
abnormal findings and richer descriptions.

2 Method

In this section, we introduce the background and
the details of the proposed CMCA model in order.

2.1 Background
2.1.1 Overall Framework
Our CMCA model follows the Encoder-Decoder
pipeline, as shown in Figure 2.

In Encoder: Firstly, the spatial visual feature
XI of input image I can be extracted through a
DenseNet (Huang et al., 2017) network:

XI = DenseNet(I), (1)

Then, we introduce a Visual Attention Module
(VAM), a Visual Contrastive Attention Module
(VCAM) and a Cross-modal Attention Module
(CAM) to respectively extract: 1) the visual at-
tention feature V a of XI , 2) the visual contrastive
attention feature V a

c between XI and the spatial vi-
sual feature of the retrieved similar case Xd, 3) the
cross-modal attention feature Cra which matches
the useful semantic information from the report
of retrieved similar case Rd using the contrastive
feature compared with XI and Xd:

V a = V AM(XI), (2)

V a
c = V CAM(XI , Xd), (3)

Cra = CAM(XI , Xd, Rd). (4)

In Decoder: we propose a Parallel Attention
Module (PAM) that allows the decoder model par-
allel grasping encoder features:

Ỹ ← PAM(V a, V a
c , Cr

a). (5)

where Ỹ = {ỹ1, ỹ2, ..., ỹT } are word tokens of the
generated report.

2.1.2 Basic Modules
Our proposed method is accomplished on stacks of
identical Multi-head Attention (MHA) layers and
Position-wised Feed-Forward Network (FFN) lay-
ers. The given input feature X are firstly converted
into queries Q, keys K and values V :

Q = XWQ,K = XWK , V = XW V , (6)
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Figure 2: Overview of our proposed Cross-modal Contrastive Attention (CMCA) model for Medical Report
Generation. In encoder, CMCA first retrieves the most similar image Id, and generates a contrastive feature Vc
through the contrastive feature extractor. Then, the Visual Contrastive Attention Module distills the unique abnormal
features of I (blue circles), and the Cross-modal Attention Module matches the positive semantic information from
the case report Rd. In decoder, the encoded features are integrated through a stack of Parallel Attention Modules to
more effectively generate the final word ỹt.

whereWQ,WK ,W V ∈ Rd×d are learned weights.
In each MHA layer, the inputs are divided into h
parallel attention heads, which allows the model to
focus on the different representation sub-spaces of
different positions jointly. And then the attention
features of all heads can be calculated and concate-
nated as follows:

MHA(Q,K, V ) = [head1, ..., headh]W
O, (7)

headi = Attn(QWQ
i ,KW

K
i , V W

V
i ), (8)

Attn(q, k, v) = softmax( qk
T

√
dk
)v. (9)

where WO ∈ Rd×d and WQ
i ,W

K
i ,W

V
i ∈ Rd×

d
h

are learned parameters, and [·] indicates the con-
catenation operation.

Then, the FFN layer is applied as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2. (10)

where W1,W2 are learned parameters and b1, b2
are biases. There is also a residual connection
around each of the MHA and FFN layers, followed
by layer normalization.

2.1.3 Retrieval Case Database
For further retrieving the most similar historical
cases of the input images, we create a Retrieval
Case Database D̂B. All of the records in D̂B are

derived from the training sets, and each of them is
a triplet consisting the global visual feature vd of
the image to be used for retrieval, the spatial visual
feature Xd of the image to be used for calculating
the contrastive feature compared to the input im-
age, and the associated report Rd to be used for
cross-modal alignment, which can be denoted by
< vd, Xd, Rd >. It can be noted that the spatial
visual feature Xd is also extracted by DenseNet
in Eq. 1, and the global visual feature vd can be
obtained by a average-pooling operation on Xd.

2.2 Cross-modal Contrastive Attention Model

To effectively extract critical abnormal visual fea-
tures and positive semantic features from the input
image and the most similar case, our CMCA model
is proposed with mainly two modules: VCAM and
CAM, both of which are applied based on the pro-
posed simple-yet-effective contrastive feature, as
shown in Figure 2.

Contrastive feature: To obtain the contrastive
feature, we firstly retrieve the most similar histori-
cal case of the input image based on the historical
Case Database D̂B established in Sec. 2.1.3 which
includes the global and spatial visual features of
case images and their corresponding reports, we
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Figure 3: Structure of the proposed contrastive feature
extractor. The circles in blue and orange correspond to
the abnormal parts of the input image feature XI and
the retrieved image feature Xd, respectively.

retrieve the most similar case from D̂B by comput-
ing the highest cosine similarity between the global
visual feature of input image vI and historical im-
age global features in case database vD̂B:

CaseNK ← max(cosine(vI , vD̂B)). (11)

whereCaseNK denotes the retrievedNK historical
cases with the highest cosine similarity. It can be
noted that we utilize each of the retrieved cases
independently for the remaining task.

As shown in Figure 3, for one retrieved case
Cased, we calculate the contrastive feature Vc be-
tween the spatial visual features XI and Xd ∈
R7×7×d of the input image I and the case image
Id, the contrastive feature can be obtained through
the following operations:

D = XI −Xd, (12)

Vc = D +XI . (13)

where D and Vc ∈ R7×7×d denote the difference
value of the spatial features and the final visual
contrastive feature. The residual operation aims to
tackle the problem of zero or negative value in D,
and keep more representation of the input visual
feature XI for further cross-modal matching.

For further illustrating the ability of contrastive
feature to distill the abnormal visual information,
our explanations are as follows: As shown in Fig-
ure 3, we suppose the gray circles in XI and Xd

represent the normal portions in input and case
images, respectively, while the colored circles rep-
resent the abnormal regions. Accordingly, there are
four statuses in the contrastive feature Vc:

• The blue circles denote the regions of the input
image I that are abnormal but normal in the
case image Id. As a result, the contrastive
features of these regions can be expressed as

Vc
blue = Xblue

I +Dblue, thus the distinctive
abnormal regions of image I are reinforced.

• The orange circles denote the regions where
I are abnormal but Id are normal. The con-
trastive features decrease the distinctive ab-
normal regions of case Id in orange, since
Vc
orange = Xorange

I +Dorange and the value
of Dorange is negative.

• Identical regions are indicated by gray circles
in two input spatial features. As a result, the
differences of these parts are zero: Dgray = 0.
The contrastive features of these regions are
equivalent to the original spatial visual feature
of I , which is indicated by Vcgray = Xgray

I .

• The abnormal regions which occur in both
I and Id are the mixed color circles. As a
result, the difference of these parts are also
zero: Dmix = 0. And the contrastive features
of these portions are also the original visual
features of I , Vcmix = Xblue

I .

In summary, the contrastive feature Vc =
{Vcblue, Vcorange, Vcgray, Vcmix} enhances the
unique abnormal regions of the input image I ,
retains the identical regions, and weakens the
unique abnormal regions of the case image Id.
Base on Vc, the following two modules respectively
explain how to distill the unique abnormal visual
representation of I and how to match the positive
semantic features from the case report Rd.

2.2.1 Visual Contrastive Attention Module
The proposed VCAM aims to extract the unique
abnormal regions of the input image I based on the
calculated contrastive feature Vc.

Given the contrastive feature Vc, VCAM uses it
to reconstruct an attention feature as follows:

V a
c = FFN(MHA(Vc, Vc, Vc)). (14)

In Vc, the unique abnormal regions (Vcblue) of I
are enhanced. Thus through the attention module,
the generated visual contrastive attention feature
V a
c is able to more effectively represent the unique

abnormal regions of the input image.
VCAM attends to represent the unique abnormal

regions in the input images. However, there are still
some important abnormal participants, such as the
mixed region V mix

c in Figure 3, ignored by VCAM.
In addition, it is equally meaningful to match both
normal and abnormal positive semantic words in
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Figure 4: The cross-modal matching for the visual con-
trastive feature Vc and semantic feature of the retrieved
report Rd. The mixed circles in Vc is the same abnor-
mal regions of image I and Id. The orange squares are
positive semantic features.

the retrieved case report. Thus, the following mod-
ule is proposed to solve these problems.

2.2.2 Cross-modal Attention Module
We propose CAM to align the contrastive feature
Vc with the retrieved report Rd for exploring the
positive semantic information from the retrieved
case report Rd.

As shown in Figure 4, for better illustrating the
ability of CAM, we hypothesize splitting case re-
port features into positive and negative parts de-
noted by orange blocks and gray blocks in Rd =
{Roranged , Rgrayd }. Given the contrastive features
Vc and the case reports Rd, CAM feeds them into
the following layers:

Cra = FFN(MHA(Vc, Rd, Rd)). (15)

The negative words Rgrayd are unmatched because
they are corresponding to the unique abnormal
regions (Vcblue and Vcorange) which has been en-
hanced or weakened in Vc. The positive words
Roranged contain two statuses as follows:

• As shown in Figure 4 (a), the first status is that
the abnormal positive words are correspond-
ing to the same abnormal parts (Vcmix) of I
and Id, which are retained in Vc and can be
matched with CAM.

• As shown in Figure 4 (b), the second status is
that the normal positive words are correspond-
ing to the normal visual features (Vcgrey)
which also retained in Vc and can be matched
with CAM.

In short, CAM extracts both normal and abnor-
mal positive semantic words from the retrieved

semantic report Rd by building their cross-modal
interactions with the visual contrastive feature Vc.

VCAM and CAM complement each other in
representing visual and semantic information as
well as settling the problems caused by data biases.

2.3 Parallel Attention Module

As shown in Figure 2, for each time step t, the
decoder layer first takes the embedded previous
words y1:t−1 as the input of the MHA layers:

ht = MHA(y1:t−1, y1:t−1, y1:t−1), (16)

Then, the obtained visual attention feature V a,
visual contrastive attention feature V a

c and cross-
modal attention feature Cra are fed into three
MHA layers separately, which calculates the at-
tention features in parallel:

h
′
t
1 = MHA(ht, V

a, V a), (17)

h
′
t
2 = MHA(ht, V

a
c , V

a
c , ), (18)

h
′
t
3 = MHA(ht, Cr

a, Cra), (19)

The parallel operation would further enhance the
decoding features for the three encoded attention
feature. Thereafter, the three attention features are
gathered as follows:

h
′
t = h

′
t
1W 1

t + h
′
t
2W 2

t + h
′
t
3W 3

t , (20)

where W 1
t , W 2

t and W 3
t are learned parameters.

Finally, the h
′
t goes through a FFN layer and

a linear layer followed by softmax activation to
predict the current word:

ỹt ← pt = softmax(FFN(h
′
t)Wy + by). (21)

where ỹt is the predicted word at current timestep,
and Wy, by are learnable weight and bias.

3 Experiments

3.1 Datasets

We conduct experiments on two datasets to evaluate
the effectiveness of our proposed model.

3.1.1 IU X-Ray
Indiana University Chest X-Ray Collection (IU X-
Ray) (Demner-Fushman et al., 2016) is a widely
used public radiography dataset which totally con-
tains 7,470 Chest X-ray images and 3,955 reports.
Following (Chen et al., 2020), we randomly split
the dataset into train/validation/test sets by 7:1:2.

3.1.2 MIMIC-CXR
The new released MIMIC-CXR (Johnson et al.,
2019) dataset is the largest dataset so far. It con-
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Table 1: Comparison of the proposed Cross-modal Contrastive model with other state-of-the-art methods on the IU
X-Ray dataset and MIMIC-CXR dataset. BLEU-n denotes the BLEU scores using n-grams.

Datasets Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

IU X-Ray

CNN-RNN (Vinyals et al., 2015) 0.216 0.124 0.087 0.066 - 0.306
AdaAtt (Lu et al., 2017) 0.220 0.127 0.089 0.068 - 0.308

Att2in (Rennie et al., 2017) 0.224 0.129 0.089 0.068 0.308
HRNN (Krause et al., 2017) 0.439 0.281 0.190 0.133 - 0.342

CoAtt (Jing et al., 2018) 0.455 0.288 0.205 0.154 - 0.369
HRGR-Agent (Li et al., 2018a) 0.438 0.298 0.208 0.151 - 0.322
CMAS-RL (Jing et al., 2019) 0.464 0.301 0.210 0.154 - 0.362

KERP (Li et al., 2019) 0.482 0.325 0.226 0.162 - 0.339
R2Gen (Chen et al., 2020) 0.470 0.304 0.219 0.165 0.187 0.371
CMN (Chen et al., 2021) 0.475 0.309 0.222 0.170 0.191 0.375

CA (Liu et al., 2021b) 0.492 0.314 0.222 0.169 0.193 0.381

Transformer (Vaswani et al., 2017) 0.396 0.254 0.179 0.135 0.164 0.342
CMCA 0.497 0.349 0.268 0.215 0.209 0.392

MIMIC-CXR

CNN-RNN (Vinyals et al., 2015) 0.299 0.184 0.121 0.084 0.124 0.263
AdaAtt (Lu et al., 2017) 0.299 0.185 0.124 0.088 0.118 0.266

Att2in (Rennie et al., 2017) 0.325 0.203 0.136 0.096 0.134 0.276
Top-Down (Anderson et al., 2018) 0.317 0.195 0.130 0.092 0.128 0.267

R2Gen (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.142 0.277
CMN (Chen et al., 2021) 0.353 0.218 0.148 0.106 0.142 0.278

CA (Liu et al., 2021b) 0.350 0.219 0.152 0.109 0.151 0.283

Transformer (Vaswani et al., 2017) 0.314 0.192 0 .127 0.090 0.125 0.265
CMCA 0.360 0.227 0.156 0.117 0.148 0.287

tains 473,057 Chest X-ray images and 206,563
reports. For fair comparison, we adopt the official
split with 368,960 images and 222,758 reports for
training, 2,991 images and 1,808 reports for valida-
tion, 5,159 images and 3,269 reports for testing.

For both datasets, we adopt and tokenize the
findings section which has long sentences as the
target reports and convert words into lower-cases.

3.2 Experimental Settings
3.2.1 Evaluation Metrics
We evaluate our proposed approach on the widely
used metrics: BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004) and METEOR (Banerjee
and Lavie, 2005). The metric scores are calculated
by the standard image caption evaluation tool 1.

For clinical efficacy estimate, we employ the
CheXpert labeling tool 2 proposed in (Irvin et al.,
2019) to label our generated reports and the ground-
truth reports in 14 different categories related to
thoracic diseases and support devices. Precision,
Recall and F1 are taken as the evaluation metrics.

3.2.2 Implementation Details
We use the DenseNet-121 (Huang et al., 2017) pre-
tained on ImageNet (Deng et al., 2009) and fine-
tuned on CheXpert (Irvin et al., 2019) dataset to

1https://github.com/tylin/coco-caption
2https://github.com/stanfordmlgroup/chexpert-labeler

Table 2: The comparison of the clinical efficacy metrics
on MIMIC-CXR dataset, which measures the Precision,
Recall and F1-score of the clinical abnormalities for the
generated reports.

Methods CE Metrics
Precision Recall F1-score

CNN-RNN (Vinyals et al., 2015) 0.249 0.203 0.204
AdaAtt (Lu et al., 2017) 0.268 0.186 0.181
Att2in (Rennie et al., 2017) 0.322 0.239 0.249
Top-Down (Anderson et al., 2018) 0.320 0.231 0.238
R2Gen (Chen et al., 2020) 0.333 0.273 0.276
CMN (Chen et al., 2021) 0.334 0.275 0.278
CA (Liu et al., 2021b) 0.352 0.298 0.303
CMCA 0.444 0.297 0.356

extract visual features of images in this paper. The
dimension of each extracted visual feature map is
set to 1024, and we then converted it to 512. In
addition, following the previous works (Chen et al.,
2020), we use the frontal and lateral view images as
input and concatenate the features of two view im-
ages together for IU X-Ray dataset, and use single
image as input for MIMIC-CXR dataset. For the
proposed method, the dimension of our multi-head
attention model is set to 512, and the number of
heads is set to 8. And we set the number of layers
to 3 for all modules. Moreover, the model is trained
for 100 epochs under ADAM optimizer (Kingma
and Ba, 2014). We set the initial learning rate to
1e-4 decaying by 0.99 per epoch. The beam size is
set to 3 and we select top 5 similar cases for each
input image.

2393



Table 3: The comparison on the IU X-Ray dataset of the Baseline model (Vaswani et al., 2017) with the different
components of our proposed method: VCAM, CAM, and PAM.

Methods VCAM CAM PAM BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Baseline 0.396 0.254 0.179 0.135 0.164 0.342

(a) ✓ 0.481 0.328 0.242 0.187 0.202 0.380
(b) ✓ 0.470 0.305 0.215 0.160 0.186 0.384
(c) ✓ ✓ 0.484 0.335 0.248 0.194 0.203 0.381

CMCA ✓ ✓ ✓ 0.497 0.349 0.268 0.215 0.209 0.392

3.3 Results

We take Transformer (Vaswani et al., 2017) with
3 layers for both encoder and decoder modules as
the Baseline model. In addition, we compare our
approach with the state-of-the-art medical report
generation models, i.e., CoAtt (Jing et al., 2018),
HRGR-Agent (Li et al., 2018a), CMAS-RL (Jing
et al., 2019), KERP (Li et al., 2019), R2Gen (Chen
et al., 2020), CMN (Chen et al., 2021) and CA
(Liu et al., 2021b). And we also adopt image cap-
tioning methods, i.e., CNN-RNN (Vinyals et al.,
2015), AdaAtt (Lu et al., 2017), Att2in (Rennie
et al., 2017), Top-Down (Anderson et al., 2018),
and the model designed for long sentence genera-
tion task: HRNN (Krause et al., 2017). We directly
quote the results from the original papers for the
comparison methods.

As shown in Table 1, our CMCA outperforms on
almost all metrics on both datasets, which validates
our hypothesis that historical similar cases can sig-
nificantly assist medical report generation task, and
CMCA is able to exploit useful visual and semantic
information from similar cases for generating more
accurate reports. In addition, the clinical efficacy
metrics in Table 2 show that CMCA outperforms
the state-of-the-art methods on almost all metrics
especially on precision and F1-score, which in-
dicates that more abnormal findings identified by
CMCA are exact and our model greatly boosts the
comprehensive performance on clinical efficacy.

4 Analysis

4.1 Quantitative Analysis

4.1.1 Effect of the Visual Contrastive
Attention Module

VCAM is used to calculate the visual contrastive
attention feature, which makes the model focus on
the unique abnormal regions of the input image in
the contrastive feature. Comparing with Baseline
and (a) in Table 3, we can find that VCAM boosts
the performance of Baseline model on all evalua-
tion metrics. More encouragingly, comparing with

the state-of-the-art methods in Table 1, VCAM
achieves comparable performance on most of the
metrics. We hypothesize that these performance
gains may due to the contrastive feature which en-
hances the unique abnormal regions of the input
image, and the following VCAM makes the model
focus on the abnormal regions.

4.1.2 Effect of the Cross-modal Attention
Module

To make full use of the semantic information of
the retrieved case, we propose to align the con-
trastive feature with the retrieved report to match
the positive words by CAM. Comparing the Base-
line and (b) in Table 3, we can find that CAM also
greatly improve the performance of baseline model
on all evaluation metrics. In addition, it can be
noted from (a) and (b) that CAM performs better
on the ROUGE-L metric, which indicates that the
longest common sub-sequence between the gener-
ated report and ground truth is longer. We assume
this performance gain might because CAM catches
more common semantic information between the
input image and retrieved case.

4.1.3 Effect of the Parallel Attention Module

Based on the standard Transformer decoder layers,
PAM decodes the attention features obtained from
the Encoder in parallel, and then the parallel fea-
tures are fused together to generate the final word.
Comparing (c) with the full CMCA model in Ta-
ble 3, we find that the decoder layers with parallel
attention perform better than the normal ones. It
verifies that the parallel attention can further ex-
tract discrimitive information from decoding the
attention features separately.

In summary, both VCAM and CAM modules
can boost the performance respectively. And the
incorporation of the two modules can generate bet-
ter results than each. Moreover, the combination
of VCAM, CAM and PAM achieves the state-of-
the-art performances on both neural language and
clinical efficacy metrics.
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Input Query 

Image 

  

Retrieved 

Case image 

  

Retrieved Case Report 

The cardiomediastinal silhouette is within 

normal limits for size and contour. The lungs 

are normally inflated without evidence of 

focal airspace disease pleural effusion or 

pneumothorax. Osseous structures are within 

normal limits for patient age. 

  

  

  

  

Cardiac and mediastinal contours are within 

normal limits. The lungs are clear. Bony 

structures are intact . 

  

  

The heart pulmonary xxxx and mediastinum 

are within normal limits. There is no pleural 

effusion or pneumothorax. There is no focal 

air space opacity to suggest a pneumonia. 

There are mild degenerative changes of the 

spine. 

  

The xxxx examination consists of frontal and 

lateral radiographs of the chest. The 

cardiomediastinal contours are within normal 

limits . pulmonary vascularity is within 

normal limits. No focal consolidation pleural 

effusion or pneumothorax identified. 

Deformity of the right clavicle related to 

remote xxxx is again seen. Visualized upper 

abdomen grossly unremarkable. 

  

  

The heart pulmonary xxxx and mediastinum 

are within normal limits. There is no pleural 

effusion or pneumothorax. There is no focal 

air space opacity to suggest a pneumonia. 

There is a calcified granuloma in the left lung 

base. 

Ground Truth 

The cardiomediastinal silhouette is normal in 

size and contour. No focal consolidation 

pneumothorax or large pleural effusion. 

Negative for acute displaced rib fracture. 

Cardiac and mediastinal contours are within 

normal limits. The lungs are clear. Bony 

structures are intact. 

The lungs are clear. No pleural effusion or 

pneumothorax is identified. The heart and 

mediastinum are normal. The skeletal 

structures and soft tissues are normal. 

The cardiomediastinal silhouette is normal in 

size and contour. No focal consolidation 

pneumothorax or large pleural effusion. 

Negative for acute displaced rib fracture. 

There is scarring in the right mid and upper 

lung zone with surgical clips identified as 

well. There is no pleural effusion or 

pneumothorax. The heart is not significantly 

enlarged. There are atherosclerotic changes 

of the aorta. Arthritic changes of the skeletal 

structures are noted. 

Baseline: Generated Report 

The xxxx examination consists of frontal and 

lateral radiographs of the chest. The 

cardiomediastinal contours are within normal 

limits. Pulmonary vascularity is within normal 

limits. No focal consolidation pleural effusion 

or pneumothorax identified. The visualized 

osseous structures and upper abdomen are 

unremarkable. 

The cardiac contours are normal. The lungs are 

clear. Thoracic spondylosis. 

The heart is normal in size. The mediastinum 

is unremarkable. The lungs are clear. 

The cardiomediastinal silhouette and 

vasculature are within normal limits for size 

and contour. The lungs are normally inflated 

and clear. There are no acute bony findings. 

The lungs are clear. There is no pleural 

effusion or pneumothorax. The heart and 

mediastinum are normal. The skeletal 

structures are normal. 

CMCA: Generated Report 

The cardiomediastinal silhouette is within 

normal limits for size and contour. The lungs 

are normally inflated without evidence of 

focal airspace disease pleural effusion or 

pneumothorax. No acute bone abnormality. 

  

  

  

  

Cardiac and mediastinal contours are within 

normal limits. The lungs are clear. Bony 

structures are intact. 

  

  

The lungs are clear. There is no pleural 

effusion or pneumothorax. The heart and 

mediastinum are normal. The skeletal 

structures are normal. 

  

The cardiomediastinal silhouette and 

pulmonary vasculature are within normal 

limits in size. The lungs are clear of focal 

airspace disease pneumothorax or pleural 

effusion. There are no acute bony findings. 

  

The lungs are clear. There is no pleural 

effusion or pneumothorax. The heart is not 

significantly enlarged. There are calcified 

mediastinal lymph xxxx. There are 

atherosclerotic changes of the aorta. 

Arthritic changes of the skeletal structures 

are noted.

Figure 5: Visualization results of our proposed CMCA model on IU X-Ray dataset. The red fonts mark that our
generated words match the ground truth, and the underlines mean that our generated words match the case reports.

  
  

Ground Truth: The lungs and 

pleural spaces show no acute 

abnormality. Heart size and 

pulmonary vascularity within normal 
limits. 

Ground Truth: The 

cardiomediastinal silhouette 1s normal 

in size and contour. No focal 

consolidation pneumothorax or large 

pleural effusion. Negative for acute 

displaced rib fracture. 

Ground Truth: The lungs are clear 

without evidence of focal airspace 

disease. There is no evidence of 

pneumothorax or large pleural 

effusion. The cardiac and mediastinal 
contours are within normal limits. 

The xxxx are unremarkable. 

Generated Report: The cardiomediastinal 

silhouette and vasculature are within normal 

limits for size and contour. The lungs are 

normally inflated and clear. Osseous 
structures are within normal limits for 

patient age. 

  

  

  

  

Generated Report: The cardiomediastinal 

silhouette and pulmonary vasculature are 

within normal limits in size. The lungs are 

clear of focal airspace disease 

pneumothorax or pleural effusion. There are 

no acute bony findings. 

  

  

Generated Report: The cardiomediastinal 
silhouette is within normal limits for 

appearance. No focal areas of pulmonary 

consolidation. No pneumothorax . no 
pleural effusion. The thoracic spine appears 

intact. No acute displaced rib fractures. 

  

  

 

Figure 6: Visualization of CMCA generated reports
and the ground truth. The underlined texts indicate the
words which correctly describe medical image informa-
tion but absent in the ground truth reports.

4.2 Qualitative Analysis

In Figure 5, we visualize five examples in row to
illustrate the effectiveness of our proposed model.
For each row, the first column denotes the input
image. The second and third columns show the re-
trieved case, which contains a visual similar image
and the corresponding report. The fourth column
is the ground truth report of the input image. The
fifth column is the report generated by Baseline
model and the last column is the generated report
of our proposed CMCA. The red word indicates
that the generated report matches the ground truth,
and the underlined word means that the generated
result matches the retrieved case report.

According to the underlined texts of the first two
normal examples in Figure 5, our model adopts pos-
itive words from case report, and generates more
accurate reports. The third and fourth examples
are normal cases, but the retrieved cases are abnor-
mal. It can be seen that CMCA employs the normal
components and eliminates the abnormal ones in
case reports, then generates other sentences accord-
ing to the input images like "the lungs are clear"
and "the skeletal structures are normal". The fifth
example and its retrieved case are both abnormal.
Our result contains useful sentences from the case
report, such as "there is no pleural effusion or pneu-
mothorax", and "calcified". The visualization of
the examples again verifies the effectiveness of our
proposed CMCA model, which can select the use-
ful semantic words from the retrieved reports.

In addition, as shown in Figure 6, the underlined
texts show that our generated reports contain richer
information than the ground truth. For example, in
the first image, our model generates "the cardio-
mediastinal silhouette and vasculature are within
normal limits for size and contour", which is absent
in the ground truth. In practice, radiologist might
only write the most significant findings according
to the images, while other pathological information
might be neglected or incompletely recorded. Our
proposed CMCA model can mitigate this problem
and generate much richer reports.
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5 Conclusion

In this paper, we propose a novel Cross-modal
Contrastive Attention (CMCA) model to exploit
the contrastive information from historical similar
cases to tackle the data biases for medical report
generation. CMCA contains two modules: the
Visual Contrastive Attention Module that distills
abnormal information of the input images, and the
Cross-modal Attention Module that builds interac-
tions of the unmatched cross-modalities. Extensive
experimental results show that CMCA outperforms
the state-of-the-art methods on almost all metrics.
Further analyses verify the ability of CMCA in
generating reports with more accurate abnormal
findings and richer descriptions.
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Abstract

Successful Machine Learning based Named En-
tity Recognition models could fail on texts from
some special domains, for instance, Chinese ad-
dresses and e-commerce titles, where requires
adequate background knowledge. Such texts
are also difficult for human annotators. In fact,
we can obtain some potentially helpful infor-
mation from correlated texts, which have some
common entities, to help the text understand-
ing. Then, one can easily reason out the correct
answer by referencing correlated samples. In
this paper, we suggest enhancing NER models
with correlated samples. We draw correlated
samples by the sparse BM25 retriever from
large-scale in-domain unlabeled data. To ex-
plicitly simulate the human reasoning process,
we perform a training-free entity type calibrat-
ing by majority voting. To capture correlation
features in the training stage, we suggest to
model correlated samples by the transformer-
based multi-instance cross-encoder. Empirical
results on datasets of the above two domains
show the efficacy of our methods.

1 Introduction

Named Entity Recognition (NER), which first lo-
cates entity positions and then labels their types se-
quentially, is a fundamental topic in both academia
and industry (Li et al., 2022). Normal NER models
consider the input samples to be independent of
each other, learning the common intra-instance pat-
terns and making predictions in a sequential way.
This paradigm has shown surprising successes in
decades, especially with the help of emerging deep
learning (Shang et al., 2018; Zhang et al., 2018b;
Liu et al., 2019; Luo et al., 2020; Lison et al., 2020;
Fang et al., 2021; Meng et al., 2021).

However, learned models will fail at some hard
cases, which would be inevitably encountered in

∗Corresponding author.

吉林⽩城镇赉县⽕车站 
(Train Station, Zhen-Lai County, Bai-Cheng, Ji-Lin)

吉林⽩城市镇赉县站前街⽕车站 (Train Station, Zhan-Qian Street, 
Zhen-Lai County, Bai-Cheng City, Ji-Lin) 

吉林省⽩城市镇赉县⼴通东路⽕车头商店 (Trainhead Shop, Guang-Tong 
East Road, Zhen-Lai County, Bai-Cheng City, Ji-Lin Province) 

吉林⽩城镇赉站前街春丽旅店 
(Chun-Li Hotel, Zhan-Qian Street, Zhen-Lai, Bai-Cheng, Ji-Lin) 

吉林省⽩城市镇赉县站前街富达⼩区0栋 (Building 0, Fu-Da Community, 
Zhan-Qian Street, Zhen-Lai County, Bai-Cheng City, Ji-Lin Province)

赉县⽕车站 (Lai County Train Station)POI

吉林 (Ji-Lin)City ⽩城镇 (Bai-Cheng Town)Town

⽕车站 (Train Station)POI

吉林  (Ji-Lin)Prov ⽩城 (Bai-Cheng)City

镇赉县 (Zhen-Lai County)Dist
Ground- 

Truth

Prediction

Input

Retrieved 
Samples

镇 (Zhen) = 镇 (Town)

Figure 1: An address example with retrieved texts. The
model incorrectly predicted “白城镇 (Baicheng Town)”
and “赉县火车站 (Lai County Train Station)” because
they match common patterns, i.e. “XX镇” (Xx Town)
and “X县火车站” (X County Train Station). “吉林” is
ambiguous, which is both a province and a city.

real scenarios (Li et al., 2019; Ding et al., 2019).
Figure 1 shows an example of the Chinese address
domain. This kind of bad cases can not be easily
solved by annotating more relevant training data1.
For human annotators, this case is ambiguous as
well if no extra information is given, for instance,
we can not distinguish the type of “吉林 (Jilin)”
without affixes “省 (Province)” or “市 (City)”. This
demonstrates that obtaining background knowledge
and information is crucial to the text understanding.

Learning from correlated or nested data is mainly
studied in Machine Learning and Computer Vision
(Dundar et al., 2007; Choi and Won, 2019; Choi
et al., 2021). Images in sub-groups naturally show
a high degree of correlation on both features and
labels, and come with nested structures (Dundar
et al., 2007; Choi and Won, 2019), such as different

1Because this pattern is indeed correct in most cases. This
problem also exists in models with internal larger datasets.
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[SEP]

Figure 2: The overview of our suggested methods.

regions of interest could be drawn from the same
objects. In the address and e-commerce domain,
texts are also highly correlated in nature. For ex-
ample, two addresses may belong to the same city
or refer to the same location, e-commerce prod-
uct titles could come from the same brand, or they
are just the same product. In Figure 1, with cor-
related texts, annotators can infer that the “吉林
(Jilin)” and “白城 (Baicheng)” are short forms of
“吉林省 (Jilin Province)” and “白城市 (Baicheng
City)”. Hence, we argue that correlated samples
could offer sufficient disambiguation information
for NER models as well. Such kind of inductive
bias is seldom considered in previous NLP studies.

In this work, we propose to enhance NER mod-
els by modeling and inferencing with the corre-
lated samples. We first draw the correlated sam-
ples from in-domain large-scale unlabeled data by
the retrieval engine (Elasticsearch, 2022).2 Then,
we suggest two methods: (1) we perform an en-
tity type calibrating by parallelly predicting the
input text and all retrieved samples by the off-the-
shelf NER model, and then aggregating the final
labels by majority voting; (2) we propose to model
the correlations by transformers via multi-instance
cross-encoders to enhance the NER feature vectors.

To evaluate our methods, we conduct experi-
ments on two open-access datasets (Inc., 2022;
Ding et al., 2019) of the aforementioned two do-
mains. We implement our methods based on a
strong BiLSTM-CRF model with NEZHA (Wei
et al., 2019) representation. Empirical results show
that our methods outperform all baselines, and
achieve promising results in the simulated low-
resource setting. Finally, we present several analy-
ses to understand our methods comprehensively.

2Recently, Wang et al. (2021) and Geng et al. (2022) stud-
ied retrieving external contexts from Google or Baidu for
standard NER datasets, which is quite different from our idea
of modeling correlated samples for specific domains.

2 Approach

2.1 Unlabeled Data Retrieval

In the address (resp. e-commerce) domain, some
texts naturally possess entity co-reference relations,
for instance, they may belong to the same city (resp.
brand) or represent the same location (resp. prod-
uct). We call such texts, which usually have entities
with the same semantic but different expressions,
correlated samples. Since these texts are highly
structured and of limited vocabulary, showing a
high degree of lexical overlap. We could draw cor-
related samples for a given text by taking it as a
query and retrieving the domain-specific database
with text similarity measurements.

We implement an efficient BM25 (Robertson
and Walker, 1994) retriever by an off-the-shelf re-
trieval engine (Elasticsearch, 2022). For a cleaned
large-scale in-domain unlabeled corpus, we create
the Elasticsearch index by the build-in standard
analyzer. Then, we can retrieve top-K samples by
BM25 scores of an input text in nearly real-time.

2.2 Entity Type Calibrating

As shown in Figure 1, correlated sample can help
the entity disambiguation. If this kind of entity ap-
pears in correlated samples, human annotators can
decide its type by referring to answers of correlated
samples. For NER models, we suggest achieving
this process by entity-level (or span-level) majority
voting. Concretely, we first use a model (e.g., base-
line) to extract entities of the input text and each
correlated sample parallelly, and then re-assign la-
bels of shared entities by majority voting.

2.3 Correlation Modeling

To further capture sample correlations in the train-
ing time, we suggest modeling correlated sam-
ples by the cross-encoder (Reimers and Gurevych,
2019), letting transformers learn complex corre-
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Micro Macro
Method P R F1 P R F1

Chinese Address

Human 93.04 92.01 92.52 87.83 84.52 86.14

BC 85.56 83.90 84.72 82.20 76.48 79.24
NEZHA-BC 91.29 90.62 90.95 86.41 84.68 85.53

Entity-Voting† 91.67 91.00 91.34 86.70 84.83 85.76
Cross-Encoder† 92.41 91.95 92.18 87.25 85.71 86.48

Self-Training 91.57 91.02 91.29 86.65 85.37 86.01
Biaffine 91.35 90.25 90.80 86.32 84.59 85.45
Seq2set 89.43 87.69 88.55 83.89 80.12 81.96
Locate&Label 90.28 87.76 89.00 85.95 82.29 84.08
PIQN 90.27 87.83 89.03 86.04 80.28 83.06

E-commerce

BC 65.31 62.54 63.90 58.88 50.38 54.30
NEZHA-BC 82.73 83.23 82.98 79.35 78.04 78.69

Entity-Voting† 82.83 83.33 83.08 79.56 78.19 78.87
Cross-Encoder† 83.49 83.74 83.61 81.45 79.34 80.38

Self-Training 81.51 85.25 83.34 78.89 79.29 79.09
Biaffine 81.91 84.06 82.97 80.14 79.05 79.59
Seq2set 82.77 81.65 82.21 81.39 76.44 78.84
Locate&Label 80.43 83.21 81.80 76.63 78.22 77.42
PIQN 83.43 82.54 82.98 81.23 75.60 78.31

BERT-CLS (2019) 77.06 80.65 78.81 - - -
MRC-NER (2020) 79.47 78.30 78.88 - - -
CoFEE-BERT (2020) 79.13 80.34 79.73 - - -
CoFEE-MRC (2020) 80.26 78.88 79.56 - - -

Table 1: Main results. † means statistically significant.

lation patterns among samples. Specifically, we
concatenate the input text with retrieved samples
by the separator (i.e., [SEP]), and then encode them
by pretrained language models. Finally, only the
contextual embeddings of the input text are fed into
the NER tagger (here BiLSTM-CRF). With this
simple strategy, NER models could benefit from
the contrastive view between multiple correlated
samples and understand the query instance better.

3 Experiments

3.1 Settings

Datasets. For the Chinese Address domain, we
use the recently published dataset from CCKS com-
petition (Inc., 2022). It is annotated by 21 classes
of address elements and contains 8856, 1970, 4000
addresses for train, dev, and test sets. For the E-
commerce domain, we use the dataset released by
Ding et al. (2019). It is collected from e-commerce
product titles and annotated by PROD (product)
and BRAN (brand) types. It has 3983, 499, 498
sentences3 for train, dev, and test sets. For our
retrieval-based methods, we process and index

3We remove a few sentences that are particularly long and
do not contain entities.

our internal in-domain unlabeled data with Elastic-
search, obtaining 400M and 600M samples for the
address and e-commerce domain, respectively.

Evaluation. We employ entity-level exact preci-
sion, recall, and F1-measure and report both micro
and macro aggregations. All experiments of the
same setting are conducted by 8 different random
seeds. We test the best model of the devset, and the
average scores are reported. We regard a result as
statistically significant when the p-value is below
0.05 by the paired t-test with baseline NEZHA-BC.

Implementation. We choose the BiLSTM-CRF
(Lample et al., 2016) to achieve NER task, and use
NEZHA-base (Wei et al., 2019) as the embedding
module. The BiLSTM hidden size is set to 384
for each direction. We apply the dropout (Srivas-
tava et al., 2014) with probabilities 0.5 and 0.2 to
NEZHA embeddings for address and e-commerce,
and 0.2 to BiLSTM features. We set the batch size
to 32 and use the AdamW (Loshchilov and Hutter,
2017) optimizer with a constant lr 1e-3 and 1e-5 to
update BiLSTM-CRF and NEZHA parameters.

For the entity type calibrating, we use the top
100 and 50 retrieved samples for address and e-
commerce, respectively. For the correlating model-
ing, we limit the max sample number to 12 and the
max sequence length to 256.

Baselines. We denote the BiLSTM-CRF with
random character embedding (resp. NEZHA) by
BC (resp. NEZHA-BC). We implement several
state-of-the-art methods, i.e., Biaffine (Yu et al.,
2020), Seq2set (Tan et al., 2021), Locate&Label
(Shen et al., 2021), PIQN (Shen et al., 2022). We
also implement Self-Training based on NEZHA-
BC and the unlabeled data of the same size as
our cross-encoder. We include e-commerce results
from Mengge et al. (2020) for comparison.

3.2 Main Results

As shown in Table 1, our training-free calibrating
method consistently outperforms our implemented
baselines on both datasets, which verifies our intu-
ition that modeling the correlation between samples
is important in processing domain-specific texts.
By leveraging the retrieved samples in the train-
ing stage (Cross-Encoder), our approaches gain
a significant performance boost. This indicates
that these retrieved samples not only provide ex-
tended entity information (such as白城−→白城
市), but also supply sufficient disambiguate sig-
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Method 100% 50% 20% 10% 5% 3%

Chinese Address

Micro
NEZHA-BC 90.95 90.04 88.79 87.57 86.56 84.69

Cross- 92.18 91.56 90.33 89.13 88.61 86.82
encoder ↑1.23 ↑1.52 ↑1.54 ↑1.56 ↑2.05 ↑2.13

Macro
NEZHA-BC 85.53 84.22 82.14 78.08 75.99 72.78

Cross- 86.48 85.36 83.43 79.66 78.31 75.41
encoder ↑0.95 ↑1.14 ↑1.29 ↑1.58 ↑2.32 ↑2.63

E-commerce

Micro
NEZHA-BC 82.98 81.54 79.52 77.89 75.80 73.86

Cross- 83.61 82.21 80.29 78.99 77.18 74.60
encoder ↑0.63 ↑0.67 ↑0.77 ↑1.10 ↑1.38 ↑0.74

Macro
NEZHA-BC 78.69 77.03 75.17 72.86 69.63 67.11

Cross- 80.21 78.21 76.47 74.28 71.47 68.03
encoder ↑1.52 ↑1.18 ↑1.30 ↑1.42 ↑1.84 ↑0.92

Table 2: Test F1 scores at various low-resource settings.

Town Comm Poi Subpoi Village Assist PROD
70
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NEZHA-BC Our

Figure 3: Test F1 of some hard entity types from main
results, where their scores are less than the overall value.

nals for entity understanding (such as 镇赉县火
车站 v.s镇赉县站前街火车站). When compared
with other recent state-of-the-art NER methods (Bi-
affine, Seq2set, Locate&Label, and PIQN), our
approaches outperform them by a large margin. It
is worth noting that our model outperforms the self-
training (whose unlabeled corpus is in the same
scale of samples we modeled), demonstrating that
the correlation modeling is more effective. Then
we plot detailed scores by categories whose F1
score is less than the overall F1 in Figure 3. All of
these difficult categories are significantly improved,
showing that the correlated samples are helpful.

Other Results. For the Chinese Address dataset,
we also report the performance of human annota-
tors without extra information provided. Notably,
our approaches achieve comparable performance
with humans, which empirically verifies that mod-
eling text correlation with the retrieval perspective
might have the possibility to simulate human expert
annotations. For the E-commerce dataset, we also
report other published results. Our NEZHA-BC is
comparable with all the baseline implementations.

#Address 400M 40M 10M 4M 400k 100k

Micro F1 92.18 92.07 91.89 91.53 91.31 91.16

Table 3: Test F1 scores of our Cross-encoder in various
sizes of unlabeled data for retrieval in address domain.
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Figure 4: Test F1 scores of incooperating different cor-
related sample num by our cross-encoder.

3.3 Analysis
We conduct fine-grained analyses of cross-encoder.

Different Sizes of Labeled Data. Our idea es-
sentially introduces extra in-domain data to the
predictive models. Hence we can suppose that our
methods will achieve larger improvements in the
low-resource scenario. To verify this, we train the
baseline and our cross-encoder in simulated smaller
trainsets, which are sampled from the original train-
set by different proportions. Table 2 demonstrates
the test f1 scores of these two models in different
settings. We can roughly say that the score dif-
ference increases as the sampling ratio decreases,
which is in line with our intuition.

Different Sizes of Correlated Samples. In the
above experiments, we limit the max sequence
length of our cross-encoder to 256 for efficiency.
Here we relax this constraint to investigate the in-
fluence of encoded sample num (from 04 to top
10 retrieved texts) in cross-encoder on both two
domains. As shown in Figure 4, the performance
increment is significant at the lower sample number.
And adding more relatively low-ranking samples
is of limited gains.

Different Sizes of Unlabeled Data. All of the
previous experiments are based on the same large-
scale in-domain unlabeled data, which almost reach
the billion-level (400M and 600M samples for ad-
dress and e-commerce, respectively). We also sam-
ple several smaller unlabeled corpus (i.e., 40M,

4The 0 samples cross-encoder degrade to the baseline
NEZHA-BC.
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Method NEZHA-BC Entity-Voting Cross-Encoder

Seconds 14.73 500+ 38.41

Table 4: Running times of different methods on the
address domain testset, which has 4,000 texts.

10M, 4M, 400k, 100k) and re-train our cross-
encoder. As shown in Table 3, with the size of
unlabeled data declines, the retrieved samples are
less relevant, the improvements of our model are
lower. Interestingly, this experiments also could
reflect the effect of unlabeled data quality to the
performance of our cross-encoder. The higher the
quality of the data, the more correlated samples can
be retrieved. The behavior of low-quality unlabeled
data is similar to the small size data.

Running Speed of Different Methods. Another
key concern of our methods is the running speed.
The entity-voting needs parallelly decode dozens
of texts, and the cross-encoder will significantly
enlarge the text length. We measured the running
time of several methods on the testset of the address
domain dataset. As demonstrated in Table 4, the
entity-voting is truely slower than other methods in
an order of magnitude. But the cross-encoder just
took about twice as long as the baseline NEZHA-
BC. This is because the most time-consuming part
is the CRF, where the concatenated samples are
droped before the CRF. So it can avoid the redun-
dant decoding in the entity-voting, and has a higher
running speed. Besides, the forward of pretrained
language models are highly optimized.

3.4 Discussion
Retrieval-augmented models are showing state-of-
the-art performance in many NLP tasks, such as
Dialogue (Weston et al., 2018), Neural Machine
Translation (Zhang et al., 2018a), Question Answer-
ing (Izacard and Grave, 2021), and Language Mod-
eling (Guu et al., 2020; Yao et al., 2022; Borgeaud
et al., 2022). Our work aims to model the internal
correlation within sub-groups of samples. We first
retrieve correlated sample groups for a given input
by the off-the-shelf Elasticsearch engine. Then,
we propose painlessly calibrating entity type and
transformer-based correlation modeling, where the
latter one is similar to Wang et al. (2021). Our
recent work (Wang et al., 2022) also investigated
retrieving knowledge from the Wikipedia, which
can augment the context of NER inputs and shows
significant improvements in SemEval-2022 Task
11 Multilingual NER.

This work could be further investigated with
some more sophisticated techniques, such as
example-based learning (Gao et al., 2021; Lee et al.,
2022; Liu et al., 2022). Meanwhile, it also may
help the NER task to extend to the low-resource
and zero-shot scenarios (Meng et al., 2021; Zhang
et al., 2021; Hu et al., 2021; Lu et al., 2022; Hu
et al., 2020).

4 Conclusion

In this work, we investigated utilizing naturally
correlated samples to improve current NER mod-
els on the Chinese address and e-commerce do-
main. We propose to retrieve correlated samples
for the given text by the BM25 and elasticsearch
engine. To explore the correlations in a light way,
we suggest calibrating the predicted entity types
by cross-instance entity voting. To further incorpo-
rate these correlated samples into model training,
we use multi-instance cross-encoders to learn more
complex correlations. Empirical results show that
the painless entity type calibrating improved the
performance to some extent, and modeling correla-
tions by cross-encoders achieved the state-of-the-
art performance. We hope this idea could benefit
the similar scenario/domains of other tasks.

We will release our code and data at
github.com/izhx/NER-unlabeled-data-retrieval to
facilitate future research.

Acknowledgements

We thank all reviewers for their hard work. This re-
search is supported by grants from the National Nat-
ural Science Foundation of China (No. 62176180).

Ethical Statement

All texts are anonymized.

References
Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,

Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Jacob Menick, Roman Ring, Tom Hennigan,
Saffron Huang, Loren Maggiore, Chris Jones, Albin
Cassirer, Andy Brock, Michela Paganini, Geoffrey
Irving, Oriol Vinyals, Simon Osindero, Karen Si-
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
2022. Improving language models by retrieving from
trillions of tokens. In Proc. of the ICML, volume 162
of Proceedings of Machine Learning Research, pages
2206–2240. PMLR.

2402



Youngwon Choi, Sungdong Lee, and Joong-Ho Won.
2021. Learning from nested data with ornstein auto-
encoders. In Proc. of the ICML, volume 139 of Pro-
ceedings of Machine Learning Research, pages 1943–
1952. PMLR.

Youngwon Choi and Joong-Ho Won. 2019. Ornstein
auto-encoders. In Proc. of the IJCAI, pages 2172–
2178. ijcai.org.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of the NAACL, pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Ruixue Ding, Pengjun Xie, Xiaoyan Zhang, Wei Lu,
Linlin Li, and Luo Si. 2019. A neural multi-digraph
model for Chinese NER with gazetteers. In Proc.of
the ACL, pages 1462–1467, Florence, Italy. Associa-
tion for Computational Linguistics.

Murat Dundar, Balaji Krishnapuram, Jinbo Bi, and
R. Bharat Rao. 2007. Learning classifiers when the
training data is not IID. In Proc. of the IJCAI, pages
756–761.

Elasticsearch. 2022. Elasticsearch: The official dis-
tributed search & analytics engine.

Zheng Fang, Yanan Cao, Tai Li, Ruipeng Jia, Fang
Fang, Yanmin Shang, and Yuhai Lu. 2021. TEBNER:
Domain specific named entity recognition with type
expanded boundary-aware network. In Proc. of the
EMNLP, pages 198–207, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proc. of the ACL-IJCNLP, pages 3816–
3830, Online. Association for Computational Lin-
guistics.

Zhichao Geng, Hang Yan, Zhangyue Yin, Chenxin An,
and Xipeng Qiu. 2022. TURNER: the uncertainty-
based retrieval framework for chinese NER. CoRR,
abs/2202.09022.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. Retrieval augmented
language model pre-training. In Proc. of the ICML,
volume 119 of Proceedings of Machine Learning
Research, pages 3929–3938. PMLR.

Xuming Hu, Lijie Wen, Yusong Xu, Chenwei Zhang,
and Philip Yu. 2020. SelfORE: Self-supervised re-
lational feature learning for open relation extraction.
In Proc. of the EMNLP, pages 3673–3682, Online.
Association for Computational Linguistics.

Xuming Hu, Chenwei Zhang, Yawen Yang, Xiaohe Li,
Li Lin, Lijie Wen, and Philip S. Yu. 2021. Gradi-
ent imitation reinforcement learning for low resource
relation extraction. In Proc. of the EMNLP, pages

2737–2746, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Alibaba Inc. 2022. Ccks 2021 chinese address element
parsing dataset.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In Proc. of the EACL,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
Proc. of the NAACL, pages 260–270, San Diego, Cal-
ifornia. Association for Computational Linguistics.

Dong-Ho Lee, Akshen Kadakia, Kangmin Tan, Mahak
Agarwal, Xinyu Feng, Takashi Shibuya, Ryosuke Mi-
tani, Toshiyuki Sekiya, Jay Pujara, and Xiang Ren.
2022. Good examples make a faster learner: Sim-
ple demonstration-based learning for low-resource
NER. In Proc. of the ACL, pages 2687–2700, Dublin,
Ireland. Association for Computational Linguistics.

Hao Li, Wei Lu, Pengjun Xie, and Linlin Li. 2019. Neu-
ral Chinese address parsing. In Proc. of the NAACL,
pages 3421–3431, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2022. A survey on deep learning for named en-
tity recognition. IEEE Trans. Knowl. Data Eng.,
34(1):50–70.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020. A unified MRC
framework for named entity recognition. In Proc. of
the ACL, pages 5849–5859, Online. Association for
Computational Linguistics.

Pierre Lison, Jeremy Barnes, Aliaksandr Hubin, and
Samia Touileb. 2020. Named entity recognition with-
out labelled data: A weak supervision approach. In
Proc. of the ACL, pages 1518–1533, Online. Associa-
tion for Computational Linguistics.

Shuliang Liu, Xuming Hu, Chenwei Zhang, Shu’ang Li,
Lijie Wen, and Philip Yu. 2022. HiURE: Hierarchi-
cal exemplar contrastive learning for unsupervised
relation extraction. In Proc. of the NAACL, pages
5970–5980, Seattle, United States. Association for
Computational Linguistics.

Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. 2019. To-
wards improving neural named entity recognition
with gazetteers. In Proc. of the ACL, pages 5301–
5307, Florence, Italy. Association for Computational
Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

2403



Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proc. of the ACL, pages 5755–5772,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ying Luo, Fengshun Xiao, and Hai Zhao. 2020. Hierar-
chical contextualized representation for named entity
recognition. In Proc. of the AAAI, pages 8441–8448.
AAAI Press.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Xuan Wang,
Yu Zhang, Heng Ji, and Jiawei Han. 2021. Distantly-
supervised named entity recognition with noise-
robust learning and language model augmented self-
training. In Proc. of the EMNLP, pages 10367–
10378, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Xue Mengge, Bowen Yu, Zhenyu Zhang, Tingwen Liu,
Yue Zhang, and Bin Wang. 2020. Coarse-to-Fine Pre-
training for Named Entity Recognition. In Proc. of
the EMNLP, pages 6345–6354, Online. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proc. of the EMNLP-IJCNLP, pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Stephen E. Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In Proc.
of the SIGIR, pages 232–241. ACM/Springer.

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018. Learning named
entity tagger using domain-specific dictionary. In
Proc. of the EMNLP, pages 2054–2064, Brussels,
Belgium. Association for Computational Linguistics.

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang,
Wen Wang, and Weiming Lu. 2021. Locate and la-
bel: A two-stage identifier for nested named entity
recognition. In Proc. of the ACL, pages 2782–2794,
Online. Association for Computational Linguistics.

Yongliang Shen, Xiaobin Wang, Zeqi Tan, Guangwei
Xu, Pengjun Xie, Fei Huang, Weiming Lu, and Yuet-
ing Zhuang. 2022. Parallel instance query network
for named entity recognition. In Proc. of the ACL.
Association for Computational Linguistics.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu,
and Yueting Zhuang. 2021. A sequence-to-set net-
work for nested named entity recognition. In Proc.
of the IJCAI, pages 3936–3942. ijcai.org.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Improving named entity recognition by external con-
text retrieving and cooperative learning. In Proc. of
the ACL-IJCNLP, pages 1800–1812, Online. Associ-
ation for Computational Linguistics.

Xinyu Wang, Yongliang Shen, Jiong Cai, Tao Wang,
Xiaobin Wang, Pengjun Xie, Fei Huang, Weiming
Lu, Yueting Zhuang, Kewei Tu, Wei Lu, and Yong
Jiang. 2022. DAMO-NLP at SemEval-2022 task 11:
A knowledge-based system for multilingual named
entity recognition. In Proc. of the SemEval, pages
1457–1468, Seattle, United States. Association for
Computational Linguistics.

Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong
Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin
Jiang, Xiao Chen, and Qun Liu. 2019. NEZHA:
neural contextualized representation for chinese lan-
guage understanding. CoRR, abs/1909.00204.

Jason Weston, Emily Dinan, and Alexander Miller.
2018. Retrieve and refine: Improved sequence gener-
ation models for dialogue. In Proceedings of the
2018 EMNLP Workshop SCAI: The 2nd Interna-
tional Workshop on Search-Oriented Conversational
AI, pages 87–92, Brussels, Belgium. Association for
Computational Linguistics.

Xingcheng Yao, Yanan Zheng, Xiaocong Yang, and
Zhilin Yang. 2022. NLP from scratch without large-
scale pretraining: A simple and efficient framework.
In Proc. of the ICML, volume 162 of Proceedings
of Machine Learning Research, pages 25438–25451.
PMLR.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proc. of the ACL, pages 6470–6476, Online. Associa-
tion for Computational Linguistics.

Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Gra-
ham Neubig, and Satoshi Nakamura. 2018a. Guiding
neural machine translation with retrieved translation
pieces. In Proc. of the NAACL, pages 1325–1335,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang.
2018b. Adaptive co-attention network for named
entity recognition in tweets. In Proc. of the AAAI,
pages 5674–5681. AAAI Press.

Xin Zhang, Guangwei Xu, Yueheng Sun, Meishan
Zhang, and Pengjun Xie. 2021. Crowdsourcing learn-
ing as domain adaptation: A case study on named en-
tity recognition. In Proc. of the ACL-IJCNLP, pages
5558–5570, Online. Association for Computational
Linguistics.

2404



Proceedings of the 29th International Conference on Computational Linguistics, pages 2405–2417
October 12–17, 2022.

Type-enriched Hierarchical Contrastive Strategy for
Fine-Grained Entity Typing

Xinyu Zuo, Haijin Liang, Ning Jing, Shuang Zeng, Zhou Fang and Yu Luo
Tencent Inc.

{xylonzuo,hodgeliang,shuangzeng,akirafang,yamiluo}@tencent.com
ning.jing.ustc@gmail.com

Abstract

Fine-grained entity typing (FET) aims to de-
duce specific semantic types of the entity men-
tions in text. Modern methods for FET mainly
focus on learning what a certain type looks
like. And few works directly model the type
differences, that is, let models know the extent
that one type is different from others. To alle-
viate this problem, we propose a type-enriched
hierarchical contrastive strategy for FET. Our
method can directly model the differences be-
tween hierarchical types and improve the abil-
ity to distinguish multi-grained similar types.
On the one hand, we embed type into entity
contexts to make type information directly per-
ceptible. On the other hand, we design a con-
strained contrastive strategy on the hierarchi-
cal structure to directly model the type dif-
ferences, which can simultaneously perceive
the distinguishability between types at differ-
ent granularity. Experimental results on three
benchmarks, BBN, OntoNotes, and FIGER
show that our method achieves significant per-
formance on FET by effectively modeling type
differences.

1 Introduction

Entity typing is a fundamental research problem in
natural language processing (NLP), which aims to
deduce the semantic types of the entity mentions in
text. With the deepening of text understanding, the
type sets of entities become more refined and rang-
ing in from dozens (Hovy et al., 2006) to hundreds
(Weischedel and Brunstein, 2005; Ling and Weld,
2012) or thousands (Choi et al., 2018). Therefore,
fine-grained entity typing (FET) has gained more
attention, which focuses on assigning more spe-
cific types to entities. For sentence in Figure 1, a
FET system needs to assign a coarse-grained type
"/person" and a fine-grained type "/person/actor"
to the entity "Vivien Leigh". The inferred fine-
grained types could provide more specific prior
knowledge for downstream NLP tasks, such as

He described his portrait of actress Vivien Leigh
as lit by a top spotlight diffused by tracing paper.

root

person location building

actorcoach countycity airport hospital... ...

... ...

FET Model

athlete country library

Figure 1: Example of fine-grained entity typing based
on FIGER ontology. Green Box: the scope of visi-
ble types about "person" of the fine-grained contrastive
strategy. Red Box: the scope of visible types of the
coarse-grained contrastive strategy.

question answering (Lee et al., 2006) and entity
linking (Leszczynski et al., 2022).

Considering the partial ontology of the FIGER
dataset (Ling and Weld, 2012) in Figure 1, fine-
grained entity types are often linked together in
a hierarchical taxonomy, which makes the type
boundaries increasingly blurred, especially for sub-
types under the same coarse type. As shown in Fig-
ure 1, the fine-grained types "coach", "athlete" and
"actor", all of which fall into the coarse-grained
type "person", are less differentiated.

In order to identify fine-grained types, prior work
has concentrated on excavating more informative
representations of types or entities, which benefit-
ing from hand-crafted features (Ren et al., 2016),
external resources (Onoe and Durrett, 2020; Li
et al., 2022) or external pre-trained task (Xu et al.,
2020). Most of them focus on learning what a
certain type looks like, but few works have gone
further to directly model the differences between
types, that is, let models know the extent that one
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type is different from others, which is more effective
to distinguish among similar fine-grained types.

How to directly model the type differences? We
argue that there are two key points, Entity Type
Awareness, which refers to directly perceiving what
type of entity is in the sentence, and Type Differ-
ences Measure, which refers to modeling how dif-
ferent the perceived type is from other types. For
the first point, the intuitive idea is to expose the
types directly, leading to a direct focus on what
type the context represents. For the second point,
heuristically, direct is effective, i.e., directly mod-
eling which contexts represent the same types and
which are different is the most efficient way to
measure differences.

To this end, we propose a tyPe-enriched
hIerarchical COntrastive straTey (PICOT) for
fine-grained entity typing. Specifically, for en-
tity type awareness with limited annotated data,
inspired by prompt learning in entity typing (Ding
et al., 2021), PICOT embeds the entity types in
contexts via prompts to build type-rich expressions
that guide the learning of correct types. Addition-
ally, for type differences measure, PICOT takes
a constrained contrastive strategy on hierarchical
taxonomy to directly model the type differences
from type-rich expressions. Concretely, as shown
in Figure 1, PICOT is only concerned with the fine-
grained types under the same coarse-grained type
to learn the differences between fine-grained types.
Similarly, PICOT is not concerned with what the
fine-grained types are when distinguishing dissimi-
larities between coarse-grained types. Methodolog-
ically, PICOT learns the type differences at differ-
ent granularity through type-rich expressions by
limiting the scope of attention to types. Moreover,
to further show models what a particular type is,
we introduce a small number of type descriptions
that directly expose richer type knowledge.

In experiments, we evaluate our model on three
benchmarks. First, we concern with the standard
evaluations and show that our model achieves the
state-of-the-art performance on FET. Then we esti-
mate the main components of PICOT. Finally, we
do a visual analysis of the effectiveness of the type
differentiation of PICOT.

In summary, the contributions are as follows:

• We propose a type-enriched hierarchical con-
trastive strategy (PICOT) for fine-grained en-
tity typing. Our method can directly model the
differences between hierarchical types and im-

prove the ability to distinguish multi-grained
similar types.

• First, we embed types into entity contexts
to make type information directly percepti-
ble. Then we design a constrained contrastive
strategy on hierarchical taxonomy to directly
model type differences at different granulari-
ties simultaneously.

• Experimental results on three benchmarks
show that PICOT can achieve the SOTA per-
formance on FET with limited annotated data.

2 Related Work

Entity Typing Named entity recognition (Tjong
Kim Sang and De Meulder, 2003) and entity typing
(Ling and Weld, 2012; Gillick et al., 2014) are fun-
damental research problems in NLP. Recently re-
searchers pay more attention to fine-grained entity
typing (FET) and ultra-fine entity typing (UFET)
(Choi et al., 2018), which predict specific fine or
ultra-fine types for given entities. To do so, obtain-
ing more labeled data is the first research perspec-
tive, represented by distant supervision (Ling and
Weld, 2012; Chen et al., 2019). With these, some
researchers had focused on how to reduce noises in
automatically labeled data (Gillick et al., 2014; Ren
et al., 2016; Ren, 2020; Wu et al., 2019; Pan et al.,
2022; Zhang et al., 2021b; Pang et al., 2022). Addi-
tionally, another key challenge is how to deal with
hierarchical ontology. Most prior works regarded
the hierarchical typing problem as a multi-label
classification task and incorporated the hierarchical
structure in different ways (Ren et al., 2016; Shi-
maoka et al., 2017; Xu and Barbosa, 2018; Murty
et al., 2018; Chen et al., 2020b, 2022).

Some works attempted to mine more label infor-
mation or better label representation. Abhishek
et al. (2017) enhanced the label representation
by sharing parameters; López and Strube (2020)
embed types into a high-dimension; Xiong et al.
(2019) introduced associated labels to enhance the
label representation; Rabinovich and Klein (2017);
Lin and Ji (2019) exploited co-occurrence struc-
tures and latent label representation; Additionally,
several novel textual representations were applied
to obtain richer entity contextual information, such
as prompt based architecture (Ding et al., 2021) and
box embeddings framework (Onoe et al., 2021).

Moreover, FET and UFET suffer from an obvi-
ous issue of the unseen types due to the lack of
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annotated data. Therefore, a variety of paradigms
were be studied to alleviate this issue (Huang et al.,
2016; Ma et al., 2016; Obeidat et al., 2019; Zhou
et al., 2018; Zhang et al., 2020; Chen et al., 2021).
Moreover, some works further drew on different
large-scale external data or knowledge to under-
stand entity types (Onoe and Durrett, 2020; Xu
et al., 2021; Dai et al., 2021; Li et al., 2022).

In summary, few prior works focus on directly
modeling type differences. Therefore, this paper
tries to let models know that one type is different
from others without large-scale external resources.
See Appendix B for more details.

Contrastive Learning Contrastive learning
aims to further improve the model’s ability to
distinguish positive and negative examples, and has
been a popular method for representation learning
on computer vision tasks (Hjelm et al., 2018; Chen
et al., 2020a; He et al., 2020). Recently, some
researches have applied contrastive learning to
natural language understanding tasks, aiming to
obtain better text representations or to distinguish
similar labels, such as the event causality identifier
(Zuo et al., 2021), the contrastive self-supervised
encoder (Fang and Xie, 2020), the supporting
clustering framework (Zhang et al., 2021a), the
abstractive summarization framework (Liu and
Liu, 2021), the contrastive fine-tuning paradigm
of pre-trained language for fine-grained text
classification (Suresh and Ong, 2021), and so on.
In this paper, we propose a constrained contrastive
framework to directly model the hierarchical type
differences.

Prompt Learning Prompt learning aims to lever-
age language prompts as contexts, and downstream
tasks can be expressed as some cloze-style objec-
tives similar to those pre-training objectives. Re-
cently, a series of hand-crafted prompts have been
widely used in natural language understanding (Liu
et al., 2021b; Schick and Schütze, 2021; Feldman
et al., 2019; Petroni et al., 2019; Trinh and Le, 2018;
Ding et al., 2021). Moreover, to avoid expensive
prompt design, automatic prompt has also been ex-
plored (Ren et al., 2016; Shin et al., 2020; Schick
and Schütze, 2021), and some continuous prompts
have also been proposed (Lester et al., 2021; Li and
Liang, 2021). In this paper, we embed prompts to
directly expose types in the entity contexts.

BertEncsca-θ BertEncric-θ

Predictorδ

[CLS]  [ENT] sca
[ENT] ric

Original Expression 
& Labels

Type-Scarce Expression Type-Rich Expression

Sample

Constrained Contrastive Strategy

Annotated Data

Gradient
Update 

Gradient  
Update 

Gradient  
Update 

Coarse-grained  
Contrastive Space

Fine-grained  
Contrastive Space

Labels 

Figure 2: The framework of PICOT for FET (Sec. 4).

3 Problem Formulation

The input of fine-grained entity typing (FET) is
a dataset D = {x1, x2, ..., xn} with n sentences,
a pre-defined hierarchical type ontology Y , and
each sentence x contains a marked entity e. A FET
system is required to assign corresponding types
to the given marked entity. Methodologically, for
each input sequence wn = {w1

n, w
2
n, ..., w

t
n} of the

sentence xn, FET aims to predict the correct multi-
grained types Yn = {y1n, y2n, ..., ymn } ∈ Y of the
marked entity en = {wln, ..., wrn}. For example
in Figure 1, the correct type set of "Vivien Leigh"
is {/person, /person/actor}, which contains a
coarse-grained type "/person" and a fine-grained
type "/person/actor".

4 Methodology

As shown in Figure 2, there are two key stages of
PICOT for fine-grained entity typing.

• Prompt-guided expression construction
(ProExp, Sec. 4.1). For entity type awareness,
we construct two kinds of prompt-guided ex-
pressions, the type-scarce expression and the
type-rich expression, which perceive the type
patterns in context and expose type informa-
tion directly, respectively.

• Contrastive type knowledge transfer
(ConTKT, Sec. 4.2). For type differ-
ences measure, we propose a constrained
contrastive strategy to directly model the
differences among hierarchical types, and
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Fine-grained label：/person/actor

He described his portrait of actress Vivien Leigh as
lit by a top spotlight diffused by tracing paper.

[CLS] ...Vivien Leigh...[ENT] Vivien Leigh is a [MASK] [SEP]

[CLS] ...Vivien Leigh...[ENT] Vivien Leigh is an actor [SEP]

Coarse-grained label：/person

Original Expression and Labels

Type-Scarce Expression

Type-Rich Expression

[CLS] evir person who can perform 
[ENT] evir is an actor [SEP]actor's description:  

person who can perform

ConceptNet

Original  
Expression 
& Labels

 Labels

Figure 3: The illustration of prompt-guided expression
construction (ProExp, Sec. 4.1).

impart the type knowledge from type-rich
expressions to predictor.

4.1 Prompt-guided Expression Construction
(ProExp)

ProExp aims to convert the input sentences into
type-scarce expressions and type-rich expressions
based on entity-oriented prompts (Ding et al.,
2021). The former could make models sensitive
to type patterns in context, and the latter can be
taken as the type knowledge resources based on
type exposure.

Type-scarce Expression For each input sen-
tence xn, we construct type-scarce expression xtsn
to guide the pre-trained language model (PLM, e.g.
BERT (Devlin et al., 2019) used in this paper) en-
coder to efficiently exploit the entity contextual
information, especially the type information. For
simplicity, we choose declarative entity-oriented
prompts to avoid grammatical errors.

Specifically, we first copy the marked entity en
in xn, then add a few conjunctions following the
entity. Next, we add two specific words. One of
them is "[MASK]" at the end of the expression, as
a dummy for non-specific type. The other one is
"[ENT]", which bridges the original entity expres-
sion and prompt, and serves as an entry point for
receiving type knowledge from type-rich expres-
sions in ConTKT. The form of xtsn is as follows:

xtsn = xn [ENT] en is a [MASK].

Type-rich Expression For each input sentence
xn, we also construct two kinds of type-rich expres-
sion xtrn as type knowledge resources for transfer in

Constrained Contrastive Strategy

Building 
Airport, Hospital,  

Library, ...

Location 
Country, City, 
County ,...

Building, Person,  
Location, ... Fine-grained Contrastive Space

Coarse-grained Contrastive Space

Act

Act

Ath
Ath

Coa

Coa

Ath

Person 
Actor, Coach, Athlete, ...

Figure 4: The illustration of constrained contrastive
strategy in ConTKT (Sec. 4.2).

ConTKT when training. Intuitively, exposing the
types directly to the context makes the expressions
of entities type-aware.

Heuristically, fine-grained types contain both
coarse- and fine- grained type properties. There-
fore, we construct the type-rich expression xtrn of
entity en by replacing the dummy type placeholder
"[MASK]" in its type-scarce expression xtsn with its
fine-grained types in Yn1. Taking the entity in Fig-
ure 3 as an example, the form of xtrn is as follows:

xtrn = xn [ENT] en is an actor.

Moreover, to better show what a particular type
is, we introduce several descriptions (2 or 3) of
each type from ConceptNet (Speer et al., 2017).
Then we use them to directly expose richer type
knowledge to construct extra type-rich expression
xtrtype. Specifically, for each fine-grained type, we
replace xn in xtrn with the combination of a virtual
entity evir and one of descriptions. Taking the
actor as an example:

xtractor = evir person who can perform [ENT]
evir is an actor.

4.2 Contrastive Type Knowledge Transfer
(ConTKT)

ConTKT aims to directly model the differences
among hierarchical types, and impart the type
knowledge from type-rich expressions to predic-
tor when training.

Expression Encoding We design two BERT en-
coders to encode two kinds of prompt-guided ex-
pressions for each entity en respectively. One is the
encoder BertEncsca−θ for encoding type-scarce

1For entities with multiple fine-grained types, we concate-
nate the fine-grained types into one phrase by "and".
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expression xtsn when training and prediction, which
digs out the type information of en in sentence xn.
Another is the encoder BertEncric−θ, which mas-
ters the type knowledge via encoding the type-rich
expression xtrn .

Specifically, we first convert the xtsn and xtrn to
the input sequences of two encoders respectively.
Taking the example in Figure 3 as following:

wtsn =[CLS], w1
n, ..., w

t
n, [ENT ],

wln, ..., w
r
n, is, a, [MASK], ., [SEP ],

(1)

wtrn =[CLS], w1
n, ..., w

t
n, [ENT ],

wln, ..., w
r
n, is, an, actor, ., [SEP ],

(2)

wactortr =[CLS], des1actor, ..., des
t
actor, [ENT ],

wevir , is, an, actor, ., [SEP ].
(3)

where the destactor is the token of type description
and the wevir is the token of virtual entity evir.

After encoding, the representation h[CLS]ts
n of

wtsn that encodes the contextual information of xtsn
is used by predictor to predict types of entity en.
Additionally, as mentioned above, the representa-
tion h[ENT ]tr

n of wtrn is used as the exit of type
knowledge contained in xtrn . Accordingly, the rep-
resentation h[ENT ]ts

n of wtsn is the entrance to re-
ceive the type knowledge from xtrn when training.

Constrained Contrastive Strategy We design a
constrained contrastive strategy to directly model
the hierarchical type differences based on prompt-
guided expressions. Based on this, type knowledge
is transferred to BertEncsca−θ from type-rich ex-
pressions by the contrast interaction between types
at different granularities and the parameters sharing
with BertEncric−θ.

Specifically, we only model the fine-grained type
differences under the same coarse-grained type by
bringing the same types closer while distancing
different types. Likewise, for coarse-grained types,
we do not care what the fine-grained types are in
the same way. In this way, PICOT models the
type differences between different granularities by
limiting the scope of attention to types.

To specific, for one input batch B ⊆ D, there are
two optimization objectivesLfθ andLcθ to model the
differences between fine-grained types and coarse-
grained types respectively. And each optimization

objective consists of two sub-optimization objec-
tives, one for bringing the same types closer (Lf+θ
and Lc+θ ), while another for distancing different
types (Lf−θ and Lc−θ ):

Lf+θ =
1

|YfB|
∑

y∈YfB

1

2|Bf+|

j 6=i∑

xyi ,x
y
j∈Bf+

s(xyi , x
y
j ),

(4)

Lf−θ = − 1

2|Bf−|

j 6=i,yi 6=yj∑

x
yi
i ,x

yj
j ∈Bf−

s(xyii , x
yj
j ), (5)

Lc+θ =
1

|YcB|
∑

y∈YcB

1

2|Bc+|

j 6=i∑

xyi ,x
y
j∈Bc+

s(xyi , x
y
j ),

(6)

Lc−θ = − 1

2|Bc−|

j 6=i,yi 6=yj∑

x
yi
i ,x

yj
j ∈Bc−

s(xyii , x
yj
j ), (7)

s(xi, xj) = lg
e(dis(h

E
i ,h

E
j )/τ)

∑j 6=i
x′i,x

′
j∈B∗

edis(h
E′
i ,hE

′
j )/τ)

, (8)

where, take the Lfθ as illustration, YfB is the set of
all fine-grained types in one batch, yfB is one of
them. And Bf+ consists of all xtsn , xtrn and xtrtype
with same fine-grained type y ∈ YfB. Oppositely,
Bf− consists of all xtsn , xtrn and xtrtype with same
coarse-grained type but different fine-grained types
yi, yj ∈ YfB. Moreover, s is the similarity between
xi and xj , hEi and hEj are the h[ENT ]

n of xi and xj
after encoding respectively, dis is the `2-distance
function to measure the distance of two represen-
tation, τ is a temperature that adjusts the concen-
tration level and B∗ is Bf+ or Bf−. Likewise, the
optimization objectives are similar for Lcθ.

Learning of FET After transferring, the
h
[CLS]ts
n of xtsn output by BertEncsca−θ, which

has learned types knowledge, is fed to the predictor
to identify the types of the input en as following:

y∗n ←MLP (h[CLS]ts
n ), (9)

where y∗n is the predicted types of en in xn.
For training of two encoders and predictor, we

add the constrained contrastive losses Lfθ and Lcθ
to the classification loss Lδ. Finally, we minimize
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Algorithm 1 Learning of PICOT for FET.
Require: type-scarce expression xts, type-rich expression

xtr , extra type-rich expression xtrtype.
Training:
1: Stage: PROMPT-GUIDED EXPRESSION CONSTRUCTION
2: for each batch B ∈ D do
3: for input entity en with its sentence xn ∈ B do
4: Construct type-scarce expression xtsn ;
5: Construct type-rich expression xtrn ;
6: end for
7:
8: for each fine-grained type ∈ YB do
9: Construct extra type-rich expression xtrtype;

10: end for
11: end for
12: end Stage:
13:
14: Stage: CONTRASTIVE TYPE KNOWLEDGE TRANSFER
15: for each batch B ∈ D do
16: for each fine-grained type yf in YB do
17: Compute Lfθ in equation (4) and (5);
18: end for
19:
20: for each coarse-grained type yc in YB do
21: Compute Lcθ in equation (6) and (7);
22: end for
23:
24: Compute batch classification loss Lδ in (10);
25: Compute L in equation (11);
26: Stochastic gradient update θ and δ in (12);
27: end for
28: end Stage:

the L and stochastic gradient update the θ and δ as
Algorithm 1:

Lδ = BCEWithLogits(y∗n, yn), (10)

L = Lδ + λf (Lf+θ + Lf−θ ) (11)

+ λc(Lc+θ + Lc−θ ),

θ, δ ← η∇L, (12)

where, λf and λc are the weights of Lfθ and Lcθ
respectively, η is the learning rate.

5 Experiments

5.1 Experimental Setup
Datasets and Evaluation Metrics We conduct
experiments on three standard FET datasets and
follow the version processed and split by Onoe
et al. (2021). (1) BBN (Weischedel and Brunstein,
2005), which contains 56 types and each type has a
maximum type hierarchy level of 2; (2) OntoNotes
(Gillick et al., 2014), which is sampled from the
OntoNotes (Weischedel et al., 2013) corpus and
re-annotated with 89 types in 3-level hierarchy. Ad-
ditionally, we ignore the other type, which has no

Datasets #Coarse #Fine #Fine/Coarse
BBN 17 39 2.3
OntoNotes 20 68 3.4
FIGER 47 66 1.4

Table 1: Statistics on the coarse-grained and fine-
grained types of three datasets.

obvious meaning, and categorize it into two-level
types; (3) FIGER (Ling and Weld, 2012), which
contains 113 types and each type also has a max-
imum type hierarchy level of 2. Table 1 is the
statistics on the coarse-grained and fine-grained
types of three datasets. Moreover, we evaluate
three datasets using the standard metrics: Macro
F1 (Ma-F1) and Micro F1 (Mi-F1).

Parameters Settings For a fair comparison, sim-
ilar to Onoe et al. (2021), the BERT encoders are
BERT-Large architecture2, which has 24-layers,
1024-hiddens, and 16-heads. For parameters, we
set the learning rate of η as 8e-6, and set the temper-
ature τ of the contrastive loss as 0.1 tuned on the
development set. Moreover, we also tune the batch
size to 96 on the development set. The λf and
λc are setted as 0.1/0.1/0.1 and 0.1/0.1/0.01/ for
three datasets respectively. And we apply the early
stop and AdamW gradient strategy to optimize all
models. Additionally, to simulate constraints like
the previous work (Chen et al., 2020b; Onoe et al.,
2021), we use the same three simple rules to mod-
ify the model’s predictions or training data on BBN
datasets: (1) dropping "person" if "organization"
exists, (2) dropping "location" if "gpe" exists, and
(3) replacing "facility" by "fac", since both the two
tags appear in the training set but only "fac" in the
test set. See Appendix C for more detailed settings.

Compared Methods Same as previous methods,
we prefer the following models which use the
same versions of three datasets and do not rely
on large-scale external knowledge or resources as
our compared methods3. (1) Ren et al. (2016), a
embedding method which separately models clean
and noisy data with type hierarchy; (2) Abhishek
et al. (2017), a neural network model that jointly
learns entities and their contexts representation; (3)
Zhang et al. (2018), a neural architecture which
leverages both document and sentence level infor-

2https://github.com/google-research/
bert

3There are different versions of three datasets exist.
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Methods BBN OntoNotes FIGER
Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Ren et al. (2016) 74.1 75.7 71.1 64.7 69.3 66.4
Abhishek et al. (2017) 74.1 75.7 68.5 63.3 78.0 74.9
Zhang et al. (2018) 75.7 75.1 72.1 66.5 78.7 75.5
Chen et al. (2020b) (exclusive) 63.2 61.0 72.4 67.2 82.6 80.8
Chen et al. (2020b) (undefined) 79.7 80.5 73.0 68.1 80.5 78.1
Lin and Ji (2019) 79.3 78.1 82.9* 77.3* 83.0 79.8
Onoe et al. (2021) (vector) 78.3 78.0 76.2 68.9 81.6 77.0
Onoe et al. (2021) (box) 78.7 78.0 77.3 70.9 79.4 75.0
Liu et al. (2021a) - - 77.6 71.8 - -
PICOT 81.8 82.2 78.7 72.1 84.7 79.6

Table 2: Results on fine-grained entity typing. *: Not directly comparable since large-scale augmentated data is
used. The results are tested for significance at the 0.05 level.

Methods BBN
Ma-F1 Mi-F1 ∇

PICOT (our) 81.8 82.8 -
w/o Exp.trdes 81.6 82.2 -0.2/-0.6
w/o Exp.tr 81.4 81.7 -0.4/-1.1
w/o Exp.ts&tr 81.1 81.5 -0.7/-1.3
Previous SOTA 79.7 80.5 -

Table 3: Ablation results of the prompt-guided expres-
sion (ProExp, Sec. 4.1) of FET on BBN. w/o Exp.trdes
denotes a varietal PICOT that without extra type-rich
expression when training; w/o Exp.tr denotes a vari-
etal PICOT that without all type-rich expressions when
training; w/o Exp.ts&tr denotes a varietal PICOT that
without all prompt-guided expressions when training.

mation; (4) Chen et al. (2020b) (exclusive), a clas-
sifier for hierarchical FET that embraces ontolog-
ical structure with exclusive interpretations; (5)
Chen et al. (2020b) (undefined), a same classifier
as (4) but with different undefined interpretations;
(6) Lin and Ji (2019), a FET model with a novel at-
tention mechanism and a hybrid type classifier; (7)
Onoe et al. (2021) (vector), a vector-based model
for FET; (8) Onoe et al. (2021) (box), a box-based
model for FET; (9) Liu et al. (2021a), a FET model
with extrinsic and intrinsic dependencies between
labels. Moreover, all results of compared methods
are directly copied from the previous papers.

5.2 Our Method vs. State-of-the-art Methods

Table 2 shows the results of FET on BBN,
OntoNotes, and FIGER. From the results, we can
observe that (see Appendix A for more results):

(1) On BBN, our PICOT outperforms all base-
lines and achieves the best performance on Macro

Methods BBN
Ma-F1 Mi-F1 ∇

PICOT (our) 81.8 82.8 -
w/o ConTKTcoar 80.0 80.4 -1.8/-2.4
w/o ConTKTfine 80.5 81.0 -1.3/-1.8
w/o ConTKT 80.2 80.7 -1.6/-2.1

Table 4: Ablation results of the contrastive type knowl-
edge transfer (ConTKT, Sec. 4.2) of FET on BBN. w/o
ConTKTcoar denotes a varietal PICOT that removes
coarse-grained contrastive loss; w/o ConTKTfine de-
notes a varietal PICOT that removes fine-grained con-
trastive loss; w/o ConTKT denotes a varietal PICOT
that removes the whole ConTKT.

F1 and Micro F1 values, which are 81.8% and
82.2%, outperforming the state-of-the-art by a mar-
gin of 2.1% and 1.7% respectively, which justi-
fies its effectiveness. Moreover, among the three
datasets, the BBN dataset has the least training data
but the largest boost. This indicates that PICOT
can effectively mine type information in limited la-
beled data by sensing type knowledge and directly
modeling the differences between types.

(2) On OntoNotes, compared with the meth-
ods without large external data, our PICOT also
achieves the best performance on Macro F1 and
Micro F1 values, which are 78.7% and 72.1%, out-
performing by a margin of 1.1% and 0.3% respec-
tively. Although OntoNotes has three times more
training data than BBN and can provide more type
information to compared models, the proposed PI-
COT can still further improve the performance,
which demonstrates the effectiveness of directly
modeling type differences.

(3) On FIGER, the largest one in three datasets,
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Figure 5: The visualization of type representation clus-
tering without- (left) and with- (right) PICOT on devel-
opment dataset. Specifically, top row is coarse-grained
type clustering and bottom row is fine-grained type
clustering. Each color represents a kind of type

our PICOT outperforms the best compared method
on Macro-F1 value by a margin of 1.7%, which fur-
ther proves the effectiveness of PICOT in mining
type differences with labeled data. It is worth not-
ing that FIGER has a slightly lower performance
on the Micro-F1 value due to the inconsistent of
some test samples, in which only have fine-grained
types (e.g., "/organization/sports_team" is present,
but "/organization" is missing).

5.3 Effect of Prompt-guided Expression

We analyze the effect of the prompt-guided expres-
sion (ProExp, Sec. 4.1) on BBN dataset. As shown
in Table 3, from the results, we can observe that:
(1) after removing the type-rich expressions (w/o
Exp.trdes and w/o Exp.tr), the performance of FET
significantly decreases. This proves that expos-
ing the type information directly to the model can
bring great help to determine entity types. (2) Com-
paring the w/o Exp.trdes with the previous SOTA,
we find that without introducing any external type
descriptions, PICOT could also effectively mine
type knowledge within the limited labeled data
and improve the performance of FET. (3) Com-
paring the w/o Exp.trdes with w/o Exp.tr, just with
a small amount of external types descriptions, our
PICOT’s type knowledge exposure and transfer
framework also enhance the performance. (4) w/o
Exp.ts&tr also achieves good results without any
prompt-guided expressions, which also shows the
effectiveness of the contrastive transfer strategy.
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Figure 6: The visualization of type representation clus-
tering of type-scarce (left) and type-rich (right) expres-
sions on development dataset. Specifically, top row
is coarse-grained type and bottom row is fine-grained
type. Each color represents a kind of type

5.4 Effect of Contrastive Type Knowledge
Transfer

We analyze the effect of the contrastive type knowl-
edge transfer (ConTKT, Sec. 4.2) on the BBN
dataset. As shown in Table 4, from the results,
we can observe that: (1) after removing the Con-
TKT (w/o ConTKT), the performance of FET sig-
nificantly decreases. This illustrates that the con-
trastive strategy can effectively improve the dis-
crimination of similar types, which is important
for FET. (2) Comparing w/o ConTKTcoar, w/o
ConTKTfine and PICOT, we find that both coarse-
grained and fine-grained contrastive training play a
key role in the measurement of type differences. (3)
It is worth noting that, comparing w/o ConTKTcoar
with w/o ConTKT, we find that training with
type-scarce expression without contrastive strat-
egy works better than only using fine-grained type
contrastive strategy. Meanwhile, coarse-grained
contrastive training alone (w/o ConTKTfine) only
give a small boost for FET. These indicate that only
the combination of coarse-grained and fine-grained
contrastive strategies can achieve the desired re-
sults. Specifically, coarse-grained contrast ensures
the base performance while fine-grained contrast
further improves the ability to discriminate types.

5.5 Visualization of the Effect of Type
Distinguishing

To further illustrate the effect of PICOT, in Fig-
ure 5, we cluster the representations of "[ENT]" in
the type-scarce expressions before and after train-
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ing by UMAP downscaling (McInnes et al., 2018).
The comparisons of the left and right subgraphs
show that the differentiation of “[ENT]” represen-
tations, which is the entrance for type knowledge, is
both greatly improved by PICOT among the coarse-
grained and fine-grained types. This illustrates that
PICOT can effectively improve the model’s ability
to discriminate against similar types.

As shown in Figure 6, to elucidate the effect of
direct type exposure for type differentiation, we
cluster the "[CLS]" representations of type-scarce
and type-rich expressions, respectively. The com-
parisons show that the representation of type-rich
expressions is more discriminative, especially for
fine-grained types, which can effectively guide the
model to identify types with high similarity.

6 Conclusion

We propose a type-enriched hierarchical contrastive
strategy for fine-grained entity typing. Our method
can directly model the differences between hierar-
chical types and improve the ability to distinguish
multi-grained similar types. First, we embed types
into entity contexts to make type information di-
rectly perceptible. Then we design a constrained
contrastive strategy on hierarchical taxonomy to
directly model type differences at different gran-
ularities simultaneously. Experimental results on
three benchmarks show that PICOT can achieve
state-of-the-art performance on FET with limited
annotated data.
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A Supplementary Experiment Results

A.1 Effect of the Weights of Different
Contrastive Loss

Coarse
———

Fine
0.01 0.1 0.5

0.01 - 81.6 -
0.1 81.4 81.8 81.3
0.5 - 78.5 -

Table 5: Macro F1 of PICOT on BBN with different
coarse- (λc) and fine-grained (λf ) contrastive weights.

Coarse
———

Fine
0.01 0.1 0.5

0.01 - 82.1 -
0.1 82.0 82.8 81.8
0.5 - 79.9 -

Table 6: Micro F1 of PICOT on BBN with different
coarse- (λc) and fine-grained (λf ) contrastive weights.

To further explore the effect of contrastive loss of
different granularities, we vary the weights of fine-
and coarse-grained contrastive loss to observe the
performance of PICOT on the BBN test set, respec-
tively. As shown in Table 5 and 6, we can notice
that the type knowledge is not fully migrated when
the coarse-grained and fine-grained contrastive loss
weights are too small, and overly affects the clas-
sification performance when the weights are too
large. It is worth noting that excessive fine-grained
contrastive loss weights significantly degrade the
performance because many fine-grained types are
not completely distinct, and some types could occur
simultaneously. Therefore, excessive differentia-
tion of fine-grained types will confuse models.

A.2 Effect of the "[ENT]" Position

Pos. Ma-F1 Mi-F1
After "[CLS]" 80.7 81.2
Before prompt 81.8 82.8

Table 7: Performance of PICOT with different "[ENT]"
positions.

As shown in Table 7, we further explore the
effect of the position of "[ENT]" as type knowledge
exit and entry in the input sequence on the PICOT
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performance. From the results, we can see that
placing "[ENT]" between the entity context and
the type prompt allows for more efficient migration
and reception of type knowledge.

B Supplementary Related Work

Named entity recognition (Tjong Kim Sang and
De Meulder, 2003) and entity typing (Ling and
Weld, 2012; Gillick et al., 2014) are fundamental re-
search problems in NLP. Recently researchers pay
more attention on fine-grained entity typing (FET)
and ultra-fine entity typing (UFET) (Choi et al.,
2018), which predicts specific fine or ultra-fine
types for given entities. To do so, obtaining more
labeled data is the first research perspective for FET,
represented by the distant supervision annotation
method (Ling and Weld, 2012). With these, some
researches had focused on how to reduce noises
in automatically labeled data, such as a heuristic
constraint pruning approach (Gillick et al., 2014),
a partial-label loss (Ren et al., 2016), a penalty op-
timization term (Ren, 2020), and a novel content-
sensitive weighting schema (Wu et al., 2019).

Additionally, one key challenge is how to deal
with hierarchical type ontology. Most prior works
regarded the hierarchical typing problem as a multi-
label classification task and incorporated the hierar-
chical structure in different ways. Ren et al. (2016)
used a predefined label hierarchy to reduce noises;
Shimaoka et al. (2017) proposed a hierarchical la-
bel encoding method; Xu and Barbosa (2018) em-
ployed a normalized hierarchical loss; Murty et al.
(2018) learned a subtyping relation to constrain the
type embedding; Chen et al. (2020b) designed a
novel loss function to exploit label hierarchies.

Some work attempted to mine more label infor-
mation or better label representation. Abhishek
et al. (2017) enhanced the label representation
by sharing parameters; López and Strube (2020)
embed types into a high-dimension; Xiong et al.
(2019) introduced associated labels to enhance the
label representation; Rabinovich and Klein (2017)
exploited co-occurrence structures during label set
prediction; (Lin and Ji, 2019) reconstructed the co-
occurrence structure via latent label representation;
Liu et al. (2021a) reasoned fine-grained types by
discovering label dependencies knowledge. Addi-
tionally, several novel textual representations were
applied to obtain richer entity contextual informa-
tion. Ding et al. (2021) investigated the application
of prompt-learning to predict fine-grained entity

types. Onoe et al. (2021) studied the box embed-
dings to capture hierarchies of types.

Moreover, FET and UFET suffer from an obvi-
ous issue of the unseen types due to the lack of
annotated data. Therefore, a variety of paradigms
were being studied to alleviate this issue, such as a
hierarchical clustering model (Huang et al., 2016),
a prototypical embedding method (Ma et al., 2016),
a context-description matching model based on
type descriptions from Wikipedia (Obeidat et al.,
2019), a classifier based on Freebase types of its
type-compatible, (Zhou et al., 2018), a novel frame-
work which transfers the knowledge from seen
types to the unseen ones (Zhang et al., 2020), and
an empirical study on multiple auxiliary informa-
tion (Chen et al., 2021). To further alleviate the
lack of annotated data, some work draws on dif-
ferent large-scale external data or knowledge to
understand the types of entities in the sentences.
Onoe and Durrett (2020) used hyperlinked men-
tions in Wikipedia to distantly label large scale
data and train an entity typing model; Xu et al.
(2021) introduced a new pre-training task of pre-
dicting the syntactic distance in dependency tree
based on large scale texts; Dai et al. (2021) au-
tomatically generated new ultra-fine entity typing
data with labels; Li et al. (2022) presented LITE, a
new approach that formulates entity typing as an
NLI problem based on external data.

In summary, few prior works focus on directly
modeling the differences between types. Therefore,
this paper tries to let models know that one type is
different from others without large-scale external
resources.

C Main Experimental Environments and
Other Parameters Settings

C.1 Experimental Environments
We deploy all models on a server with Tesla P40
GPU. Specifically, the configuration environment
of the server is ubuntu 16.04, and our framework
mainly depends on python 3.8.8 and Torch 1.11.

C.2 Other Parameters Settings
All the final hyper-parameters for evaluation are
averaged after 3 independent tunings on the de-
velopment set. Moreover, the three datasets BBN,
OntoNotes, and FIGER achieve optimal results at
the 20th/10th/5th epochs, which take half a day,
one day, and two days, respectively.

This is an appendix.

2417



Proceedings of the 29th International Conference on Computational Linguistics, pages 2418–2428
October 12–17, 2022.

Document-Level Relation Extraction via Pair-Aware and
Entity-Enhanced Representation Learning

Xiusheng Huang1,2, Hang Yang1,2, Yubo Chen1,2, Jun Zhao1,2,
Kang Liu1,2,4, Weijian Sun3 and Zuyu Zhao3

1School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
2National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China

3Huawei Technologies Co., Ltd, Shenzhen, China
4Beijing Academy of Artificial Intelligence, Beijing, China

huangxiusheng2020@ia.ac.cn,
{hang.yang,yubo.chen,jzhao,kliu}@nlpr.ia.ac.cn,

{sunweijian,zhaozuyu1}@huawei.com

Abstract

Document-level relation extraction aims to rec-
ognize relations among multiple entity pairs
from a whole piece of article. Recent meth-
ods achieve considerable performance but still
suffer from two challenges: a) the relational
entity pairs are sparse, b) the representation of
entity pairs is insufficient. In this paper, we pro-
pose Pair-Aware and Entity-Enhanced(PAEE)
model to solve the aforementioned two chal-
lenges. For the first challenge, we design a Pair-
Aware Representation module to predict poten-
tial relational entity pairs, which constrains the
relation extraction to the predicted entity pairs
subset rather than all pairs; For the second,
we introduce a Entity-Enhanced Representa-
tion module to assemble directional entity pairs
and obtain a holistic understanding of the en-
tire document. Experimental results show that
our approach can obtain state-of-the-art perfor-
mance on four benchmark datasets DocRED,
DWIE, CDR and GDA.

1 Introduction

Relation extraction (RE) is a primary task in the
field of information extraction, which aims to iden-
tify the relationships between two entities in a doc-
ument. Previous works mainly focus on sentence-
level relation extraction, i.e, recognizing the rela-
tionships between entities in a sentence. However,
large amounts of relationships are expressed over
multiple sentences in real-world applications. Ac-
cording to DocRED (Yao et al., 2019), above 40.7%
of the relational facts can only be extracted from
multiple sentences. Therefore, it requires the model
to capture complex interactions among entities in
the whole document. Previous work commonly
referred to this problem as document-level relation
extraction which has attracted much attention re-
cently (Nan et al., 2020; Zhou et al., 2021; Zhang

et al., 2021). Although the considerable perfor-
mance of these methods, there are still two critical
challenges in document-level RE to be addressed.

Fig. 1: An example with entity pairs and relations from
DocRED. Entity mentions only involved in these rela-
tion instances are colored, other entities in the document
are highlighted in grey.

The first challenge is how to identify relational
entity pairs that are sparse in a document. Specifi-
cally, given a document with n entities, there will
be n(n − 1) combinations of entities to classify.
However, only a few entity pairs have predefined
relationships. For example, as shown in Figure 1,
this document contains 21 entities with 420 poten-
tial entity pairs. However, the number of relational
entity pairs is only 11, accounting for 2.62 % of
the total entity pairs. According to statistics, for
DocRED (Yao et al., 2019) dataset, the proportion
are 3.18% and 3.11% in the train set and dev set, re-
spectively. To further explore the impact of sparsity
on performance bottlenecks, we conduct a diagnos-
tic experiment on DocRED dataset. Utilizing pre-
vious SOTA model ATLOP (Zhou et al., 2021), we
divulge the information of whether existing a prede-
fined relationship between the entities to the model.
Specifically, we just concatenate a 0-1 variable on
the original representation of entity pairs, where
“1” represents the entity pair exists a predefined
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relationship. Experimental results show that the F1
score reaches 93.50% in dev set which is 32.20%
higher than normal setting. This demonstrates that
the importance of identifying the relational entity
pairs when facing the sparsity problem (Wang et al.,
2019a).

The second challenge is how to effectively
model the representations of entity pairs. There
are commonly two characteristics for entity pairs.
Firstly, the entities-scattering, which means the
entities of an entity pair may scatter across mul-
tiple sentences. Figure 1 illustrates an example
from the DocRED dataset. For Pair_A, the sub-
ject Ali Abdullah Ahmed and object Y asir al-
Salami are distributed in different sentences ([S1]
and [S7]), which requires model to capture the
long-distance dependency among entities across
sentences. Secondly, the directivity of entity pairs,
which means that the relationships of entity pairs
are directional. For example, the Pair_B and
Pair_B′ in the Figure 1, their subject and object
are opposite, and the relations of them are differ-
ent. Therefore, this challenge requires the model
to assemble directional entity pairs and obtain a
holistic understanding of the cross-sentence con-
text. To model the representation of entity pairs,
most current approaches include graph-based meth-
ods and transformer-based methods. Specifically,
some methods (Christopoulou et al., 2019; Nan
et al., 2020; Wang et al., 2020) construct a docu-
ment graph with structured attention, dependency
structures or heuristics. Meanwhile, considering
the transformer can capture long-distance informa-
tion, some studies (Wang et al., 2019a; Tang et al.,
2020; Zhou et al., 2021) directly apply pre-trained
language models without introducing graph struc-
tures. However, they directly concatenate two enti-
ties together to obtain the representation of entity
pair, without considering the directivity of entity
pairs and modeling the representations of entity
pairs adequately.

In this paper, we propose a Pair-Aware
and Entity-Enhanced (PAEE) model for
document-level RE. To deal with the spar-
sity of entity pairs, we propose the Pair-Aware
Representation(PAR) module to identify poten-
tial relational entity pairs, which constrains the
relation extraction to the predicted pairs subset
rather than all pairs. Furthermore, to capture
the global features of triples, PAR utilizes TNet
(Papadopoulos et al., 2021) to model the relation

between entity pairs, unlike previous methods,
PAR designs a Sliding Window Filling Strategy for
filling relation matrix, which enhances the inter-
action between entity pairs. To effectively model
the representation of entity pairs, we focus on the
global interactions among sentences and entities.
Specifically, we propose a Entity-Enhanced
Representation(EER) module. The EER first
introduces a Representation-Enhanced Encoder
to facilitate the interaction between all sentences
and entities. In this way, EER obtains a holistic
understanding of the entire document. Then,
considering that the characteristics of entities as
subjects and objects are different, especially in
different relationship categories, EER utilizes a
Cross Matching method to assemble directional
entity pairs.

Experiments on four document-level relation
extraction datasets, DocRED (Yao et al., 2019),
DWIE (Zaporojets et al., 2021), CDR (Li et al.,
2016) and GDA (Wu et al., 2019), demonstrate
that our PAEE model significantly outperforms the
state-of-the-art methods. To our best knowledge,
we are first to consider the sparsity and the direc-
tivity of relational entity pairs for the task.

We summarize our contributions as follows:

• To alleviate the negative impact of sparsity,
we propose Pair-Aware Representation(PAR)
module, which promotes the interaction be-
tween entity pairs and accurately identifies
potential relational entity pairs.

• To model the representation of entity pairs
better, we propose Entity-Enhanced Repre-
sentation(EER) module, which is based on a
Representation-Enhanced Encoder to capture
the global context for the scattered entities
and a Cross Matching method to assemble
directional entity pairs.

• We conduct experiments on four public
document-level relation extraction datasets.
Experimental results demonstrate that our
PAEE model can achieves state-of-the-art per-
formance compared with baselines.

2 Methodology

Before introducing our proposed approach for
PAEE in this section, we first introduce the prob-
lem definition. Given a document d and a set
of entities {ei}ni=1, and there are n(n − 1) entity

2419
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Ahmed al-Salaml  

(Arabic) (August 1, 1979 
 June 10, 2006), was a  

citizen of Yemen who died  
whilst... Bay detainment  

camps, in Cuda.

[S7] ther younger brother ,  
Muhammaed Yasir  

Ahmed Taher, also knowns  
as Yasir al-Salami, was  
also held in... untill 2009.

[S8] He was killed by 
 a missile, launched 

 from a drone, 
 on March 2, 2017.
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Fig. 2: The overall architecture of our PAEE. Given a document, PAEE will obtain the representation of entities with
the Encoder module; Then, the Pair-Aware Representation module and Entity-Enhanced Representation module are
designed to get the representation of entity pairs. Finally, PAEE will obtain the relations between entities with the
Classification Module.

pairs in this document. The task of document-level
relation extraction is to predict a subset of rela-
tions from R ∪ {NA} between the entity pairs
(es, eo)s,o=1...n;s ̸=o, where R is a pre-defined set
of relationships, es, eo are identified as subject and
object entities, respectively. The entity pairs that do
not express any relation are labeled NA. In addition,
the model needs to predict the label of all entity
pairs (es, eo)s,o=1...n;s ̸=o at the test time. To model
relation extraction between es and eo, we define a
N × N matrix V , where entry Vs,o indicates the
relation type between es and eo. Entities in V are
arranged according to their first appearance in the
document. Unlike Zhang et al. (2021), we utilize
the sliding window filling strategy to fill matrix V ,
which can enhance the interaction between entity
pairs and is beneficial to relation extraction.

2.1 Encoder

Given a document D = [xt]
l
t=1 with l tokens,

we insert special symbols “ < e > ” and “ <
/e > ” to mark the entity positions at the start
and end of mentions. It is adapted from the entity
marker technique (Zhang et al., 2017; Shi and Lin,
2019; Soares et al., 2019). We leverage the pre-
trained language model as an encoder to obtain the
embedding as follows:

H = [h1, h2, ..., hl] = Encoder([x1, x2, ..., xl])
(1)

where hi is the embedding of the token xi. Note
that some documents are longer than 512, we thus
leverage a dynamic window to encoder whole
documents (Zhou et al., 2021). We take the em-
bedding of “ < e > ” at the start of mentions as
the mention embeddings. Then, for an entity ei
with mentions {mi

j}
Nei
j=1

, we leverage a logsumexp
pooling to obtain the entity embedding ei:

ei = log

Nei∑

j=1

exp(mj) (2)

This pooling accumulates signals from mentions
in the document. Compared with the mean pooling,
the logsumexp pooling shows better performance
in the experiment. We calculate the entity-level
relation matrix based on entity-to-entity relevance.
Specifically, we constructed a D-dimensional fea-
ture vector V(es, eo) to capture the relevance be-
tween entities. Note that we add the position and
type information of entities to enrich the vector
V(es, eo). For intra-sentential and inter-sentential
entity pairs, their position captured by a 0-1 vari-
able pos.
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a(s,o) = softmax(
K∑

i=1

Asi ·Aoi ),

V(es, eo) =W1 ·H · a(s,o)

(3)

where W1 is the learnable weight matrix, a(s,o)
is the attention weight of last layer for entity-aware
attention and Asi refers to the tokens’ importance
to the i-th entity, H is the contextual embedding
in Eq.1. The K is the number of head in the trans-
former.

2.2 Pair-Aware Representation

In this section, we propose Pair-Aware Repre-
sentation(PAR) module to enhance the interaction
between entity pairs and identify potential entity
pairs. We build the module base on existing BERT
baselines (Zhou et al., 2021; Zhang et al., 2021)
and integrate other techniques to further improve
the performance.

Sliding Window Filling Strategy. To capture
the relevance of entity pairs, we utilize TNet (Pa-
padopoulos et al., 2021) to expand receptive field
and learn more global and local information. The
TNet is a novel multi-scale hard-attention architec-
ture that constantly adjusts the number of elements
to help us focus on the related entity pairs. We take
the matrix V ∈ RN×N×D as a D-channel variable
and feed it into TNet, where N is the largest num-
ber of entities, counted from all the dataset samples.
However, the number of entities annotated in each
document is usually different and often less thanN ,
thus, we propose a sliding window filling strategy
to fill matrix before feeding matrix V into TNet.

V
′
= Sliding(V),

Y = TNet(W2V
′
)

(4)

where Y ∈ RN×N×D
′

denotes the entity-level
relation matrix. W2 is the learnable weight ma-
trix and D

′
is much smaller than D. As it shows

in the Figure 2, the diagonal dots are far apart in
the matrix V, which makes their interaction poor
(Ronneberger et al., 2015). Instead of previous
zero filling (Ronneberger et al., 2015), we utilize
the sliding window filling strategy to shorten the
distance between entity pairs. Specifically, for the
orange dashed window in matrix V, we slide the
window in three directions: transverse, longitudi-
nal and oblique, then we will obtain a filled matrix

V
′
. Furthermore, in the whole matrix V

′
, the spac-

ing between dots that were originally far away was
significantly shortened, which facilitates the inter-
action between them.

Potential Pair Prediction. This component is
shown as a 0-1 distribution box in Figure 2, where
“1” means potential relational entity pairs. Given
a document which contains multiple entity pairs,
different from previous works (Zhou et al., 2021;
Zhang et al., 2021) which redundantly perform re-
lationship classification to every entity pair, we
utilize this module to predict potential relational
entity pairs. Specifically, we utilize the average
pooling operation (Lin et al., 2013) to obtain the
representation Ppair of each entity pair, and then
feed it into the binary classifier to get the potential
entity pairs.

P
′
pair = κ(Ppair;λ; pos; subemb; objemb) (5)

where κ and λ denote the binary classifier and
threshold, subemb is the type embedding of sub-
ject in entity pairs, objemb is the type embedding
of object in entity pairs. We model it as a binary
classification task, and the corresponding entity
pairs will be assigned with tag “1” if the probabil-
ity exceeds a certain threshold λ or with tag “0”
otherwise (as shown in Figure 2). By concatenat-
ing the classification results P

′
pair with matrix Y in

Eq.4, we will obtain a entity-level relation matrix
Ypair ∈ RD

′
+1 incorporating the information of

candidate pairs.

2.3 Entity-Enhanced Representation
In this section, we propose a Entity-Enhanced

Representation module to model the representa-
tion of entity pairs. Specifically, we introduce
Representation-Enhanced Encoder to facilitate the
interaction between all sentences and entities.
Then, considering that the characteristics of en-
tity as subject and object are different, especially
in different relational categories, we propose Cross
Matching method to assemble directional entity
pairs.

Representation-Enhanced Encoder. To enable
the awareness of document-level contexts for sen-
tences and entities, we employ a Representation-
Enhanced Encoder to facilitate the interaction be-
tween all sentences and entities. Formally, we
can obtain the entity embedding ei from Eq.2 and
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the embedding [h1, h2, ..., hl] of every token in
sentence Sli from Eq.1, where l is the sentence
length. Hence the sentence embedding Si can be
obtained by a max-pooling operation over the to-
ken sequence representation. Then we employ
the Transformer (Vaswani et al., 2017) module,
Representation-Enhanced Encoder, as the encoder
to obtain the document-aware embedding for sen-
tences and entities. Note that we add the sentence
representation with sentence position embeddings
to inform the sentence order before feeding them
into the Representation-Enhanced Encoder.

[He;Hs]=RE-Encoder(e1...eNe ;S1...SNs) (6)

where Si is the local representation for i-th sen-
tence and ei is the representation for i-th entity. Uti-
lizing the Representation-Enhanced Encoder, we
can obtain the document-aware entities representa-
tion He ∈ RNe×D, Ne is the number of entities in
a document.

Cross Matching. To extract the different features
of entity as subject and object respectively, we uti-
lize the Sub-Obj layer (a Linear Layer(Ne × D,
2×Ne ×Nc)) for feature separation. Meanwhile,
we map these features to each relationship category,
which enhances the interaction between entities in
each relationship. For the Sub-Obj layer, we set a
corresponding loss (Appendix A.1) to learn that a
single entity may have several relationships . The
features of entity as subject and object in each rela-
tionship can be calculated as:

[Fsub;Fobj ] = Sub-Obj(He) (7)

where Fsub, Fobj ∈RNe×Nc denotes the features
of entities as subjects and objects respectively, Nc

is the number of relationship categories and Ne is
the number of entities. Meanwhile, we concatenate
these features with the representation He of enti-
ties, then we will obtain esub, eobj ∈ RNe×(D+Nc),
which are the representations of entities as subjects
and objects respectively.

Classification Module. Given the entity embed-
ding esub and eobj with entity-level relation matrix
Ypair in section 2.2, we map them to hidden rep-
resentations z with a feedforward neural network.
Then we calculate the probability of relation r by
bilinear function and sigmoid activation. Formally,
we obtain:

Statistics/Datasets DocRED DWIE CDR GDA
# Train 3,053 602 500 23,353
# Dev 1,000 98 500 5,839
# Test 1,000 99 500 1,000
# Relation 97 65 2 2
Avg. # entity per Doc. 19.5 14 7.6 5.4
Avg. # Ment. per Ent. 1.4 1.6 2.7 3.3

Table 1: Statistics of the experimental datasets.

zs = tanh(Ws · esub + Ys,o),

zo = tanh(Wo · eobj + Ys,o),

P (r |esub, eobj) = σ(zsWrzo + br)

(8)

where Ys,o is the entity-pair representation of
(s, o) in matrix Ypair, σ denotes the sigmoid func-
tion, Ws ∈ Rd×d, Wo ∈ Rd×d, b ∈ R, and Wr ∈
Rd×d are learnable parameters.

3 Experiments

3.1 Experimental Setup
Datasets. We evaluated our method on four
document-level RE datasets. The statistical results
of the datasets are shown in Table 2.

• DocRED (Yao et al., 2019) is a large-scale
document-level relation extraction dataset.
It is constructed from Wikipedia articles.
DocRED contains 96 relationships and
3,053/1,000/1,000 instances for training, vali-
dating and test, respectively.

• DWIE (Zaporojets et al., 2021) is a document-
level RE dataset after processing. This dataset
has 700 documents for train and 99 documents
for test. The training set is then randomly split
into two parts: 602 documents for train and
98 for development.

• CDR (Li et al., 2016) is a relation extraction
dataset in the biomedical domain, which is
human-annotated and aims to predict the bi-
nary interactions between Chemical and Dis-
ease concepts.

• GDA (Wu et al., 2019) is a large-scale dataset
in the biomedical domain, which aims to pre-
dict the binary interactions between Gene and
Disease concepts.

Pretrained Transformers. We initialize PAEE
with three different pretrained language models in-
cluding BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and SciBERT (Beltagy et al., 2019).

2422



Model Dev Test
Ign F1 (%) F1 (%) Rela (%) Ign (%) F1 (%)

BERTbase (Wang et al., 2019b) - 54.16 58.41 - 53.20
BERT-TSbase (Wang et al., 2019a) - 54.42 - - 53.92
HIN-BERTbase (Tang et al., 2020) 54.29 56.31 - 53.70 55.60
CorefBERTbase (Ye et al., 2020) 55.32 57.51 - 54.54 56.96
SSAN-BERTbase (Xu et al., 2021a) 57.03 59.19 68.37 56.06 58.41
ATLOP-BERTbase (Zhou et al., 2021) 59.22 61.09 70.42 59.31 61.30
DocuNet-BERTbase (Zhang et al., 2021) 59.86 61.28 70.55 59.45 61.42
PAEE-BERTbase (Ours) 60.38 (↑0.52) 62.62 (↑1.34) 74.61 (↑4.06) 60.42 (↑0.97) 62.98 (↑1.56)
BERTlarge (Ye et al., 2020) 56.67 58.83 67.42 56.47 58.69
CorefBERTlarge (Ye et al., 2020) 56.82 59.01 68.78 56.4 58.83
RoBERTalarge (Ye et al., 2020) 57.14 59.22 69.23 57.51 59.62
CorefRoBERTalarge (Ye et al., 2020) 57.35 59.43 69.77 57.9 60.25
SSAN-RoBERTalarge (Xu et al., 2021a) 60.25 62.08 73.21 59.47 61.42
ATLOP-RoBERTalarge (Zhou et al., 2021) 61.32 63.18 74.39 61.39 63.4
DocuNet-RoBERTalarge (Zhang et al., 2021) 61.43 63.40 74.56 61.52 63.52
PAEE-RoBERTalarge (Ours) 62.44 (↑1.01) 64.82 (↑1.42) 79.02 (↑4.46) 63.06 (↑1.54) 65.09 (↑1.57)

Table 2: Main results on the development and test set of DocRED. We report the official test score on the CodaLab
scoreboard with the best checkpoint on the development set. The performance of our method is followed by the
improvements (↑) over the previous state-of-the-art method DocuNet.

• BERT employs a Transformer encoder to
learn from large unlabeled text corpora and
sub-word units to represent textual tokens,
which contains 12 and 24 self-attention layers.

• RoBERTa is an improved version of BERT,
which removes the Next Sentence Prediction
task and adopts way larger text corpora as well
as more training steps.

• SciBERT adopts the same model architecture
as BERT, but is trained on scientific text in-
stead. In this paper, we provide SciBERT-
initialized PAEE on the two biomedical do-
main datasets CDR and GDA.

Implementation Detail. We used cased BERT-
base, or RoBERTa-large as the encoder on Do-
cRED and SciBERT-base on CDR and GDA. We
use mixed-precision training (Micikevicius et al.,
2018) based on the Apex library. Our model is
optimized with AdamW (Loshchilov and Hutter,
2018) using learning rates ∈ [2e−5, 3e−5, 5e−5,
1e−4], with a linear warmup (Goyal et al., 2018)
for the first 6% steps followed by a linear decay to
0. We set the matrix sizeN=42 in the Figure 2 and
λ = 0.3. We preprocess CDR and GDA dataset fol-
lowing Christopoulou et al. (2019). For GDA, we
split 20% of the training set for development. For
CDR, we merge the training set and dev set to train
the final model after the best hyper-parameter is
set. The calculation of loss will be provided in the
appendix A.1. We report the mean and standard de-

viation of F1 on the development set by conducting
5 runs of training using different random seeds.

Evaluation. Our primary evaluation metric are
F1, Ign F1 (Yao et al., 2019) and Rela. Ign F1 is
computed by excluding relational facts that already
appeared in the training set. It avoids information
leakage from the training set. We propose Rela
for evaluating the accuracy of identifying relational
entity pairs. The prediction results of entity pairs
are processed into two classification tasks. The
relationship between entity pairs is divided into
NA and non NA.

3.2 Experiment Results

We conduct experiments on four DocRE datasets
to verify the effectiveness of our method PAEE.

Results on the DocRED Dataset. In the Do-
cRED dataset, we compare PAEE with transformer-
based models, including BERTbase (Wang et al.,
2019b), BERT-TSbase (Wang et al., 2019a),
CorefBERTbase (Ye et al., 2020), HIN-BERTbase

(Tang et al., 2020), SSAN (Xu et al., 2021a) and
ATLOPbase on the DocRED dataset; and graph-
based models, including GEDA (Li et al., 2020),
LSR (Nan et al., 2020), GLRE (Wang et al., 2020),
GAIN (Zeng et al., 2020), HeterGSAN (Xu et al.,
2021b) and DocuNet (Zhang et al., 2021). Re-
sults in Table 2 shows that PAEE performs bet-
ter than these methods. Our best model, PAEE
built upon RoBERTalarge, is +1.42 / +1.57 F1 bet-
ter on dev/test set than DocuNet-RoBERTabase
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Model Dev Test
Ign F1 (%) F1 (%) Rela (%) Ign (%) F1 (%) Rela (%)

CNN 37.65 47.73 56.43 34.65 46.14 55.83
LSTM 40.86 51.77 59.31 40.81 52.60 61.42
BiLSTM 40.46 51.92 59.49 42.03 54.47 64.78
GAIN 58.63 62.55 74.75 62.37 67.57 78.89
ATLOP 59.03 64.82 77.43 62.09 69.94 82.12
PAEE (Ours) 62.05(↑3.02) 67.52(↑2.70) 82.01(↑4.58) 66.45(↑4.36) 73.10(↑3.16) 86.45(↑4.33)

Table 3: Main results on the development and test set of DWIE. The performance of our method is followed by the
improvements (↑) over the previous state-of-the-art method ATLOP.

Model CDR GDA
BRAN (Verga et al., 2018) 62.1 -
LSR (Nan et al., 2020) 64.8 82.2
DHG (Zhang et al., 2020) 65.9 83.1
GLRE (Wang et al., 2020) 68.5 -
SciBERT (Beltagy et al., 2019) 65.1 82.5
SSAN-SciBERT (Xu et al., 2021a) 68.7 83.7
ATLOP-SciBERT (Zhou et al., 2021) 69.4 83.9
DocuNet-SciBERT (Zhang et al., 2021) 76.3 85.3
PAEE-SciBERT 78.2 (↑1.9) 87.7 (↑2.4)

Table 4: Test F1 score (%) on CDR and GDA dataset.
Our PAEE model with the SciBERT encoder outper-
forms the current state-of-the-art results. The perfor-
mance of our method is followed by the improvements
(↑) over the previous state-of-the-art method DocuNet.

(Zhang et al., 2021), and obtains a new state-of-the-
art(SOTA) result. Meanwhile, our method achieves
4.46% improvements of Rela score on the DocRED
dataset. The significant performance gain of our
method over the baselines demonstrates that the
proposed PAEE is very effective for this task.

Results on the DWIE Dataset. As show in Table
5, Our method improves upon the basic ATLOP
model (Zhou et al., 2021) by 2.70% and 3.16%
in term of F1 score on the Dev and Test sets of
DWIE dataset, respectively. Meanwhile, our PAEE
achieves 4.33% improvements of Rela score. We at-
tribute the improvements to that our method PAEE
takes advantage of Pair-Aware Representation and
Entity-Enhanced Representation, thus achieving
superior performance than the previous model AT-
LOP.

Results on the Biomedical Datasets. In the
biomedical datasets, we compare PAEE with base-
lines including: BRAN (Verga et al., 2018), LSR
(Nan et al., 2020), DHG (Zhang et al., 2020),
GLRE (Wang et al., 2020), SciBERT (Beltagy et al.,
2019), SSAN (Xu et al., 2021a), ATLOP (Zhou
et al., 2021) and DocuNet (Zhang et al., 2021).
Following ATLOP (Zhou et al., 2021), we replace

Model Ign F1 F1
PAEE-BERTbase 60.38 62.62
w/o PAR 57.67 (↓ 2.71) 59.61 (↓ 3.01)
w/o EER 59.57 (↓ 0.81) 61.53 (↓ 1.09)
w/o SW 59.72 (↓ 0.66) 61.72 (↓ 0.90)
w/o PPP 59.63 (↓ 0.75) 61.52 (↓ 1.10)

Table 5: Ablation study of PAEE on DocRED. We turn
off different components of the model one at a time.

the encoder with SciBERT (Beltagy et al., 2019),
which is pre-trained on the scientific publication
corpora. Results in Table 4 shows that PAEE has
achieved new state-of-the-art with the F1 score
reached to 78.2% and 87.7% on CDR and GDA
datasets.

3.3 Ablation Study

To show the efficacy of our proposed techniques,
we conduct an ablation study experiment by turning
off one component at a time. 1) w/o PAR, which
removes the Pair-Aware Representation module;
2) w/o EER, which removes the Entity-Enhanced
Representation module, we directly splice two enti-
ties as the representation of entity pairs; 3) w/o SW,
which removes the Sliding Window strategy, the
previous zero filling method is used to fill the whole
relationship matrix; 4) w/o PPP, which removes the
Potential Pair Prediction module. We present the re-
sults of ablation study in Table 5. From the results,
we can observe that:

(1) Effectiveness of Pair-Aware Representa-
tion. When we remove the Pair-Aware Represen-
tation module from the PAEE, the F1 score drops
by 3.01% on DocRED dataset. It proves the Pair-
Aware Representation module is very effective for
the task.

(2) Effectiveness of Entity-Enhanced Rep-
resentation. Compared with the model re-
moved Entity-Enhanced Representation module,
our method PAEE achieves 1.09% improvements

2424



[S1] Johan Gottlieb Gahn ( 19 August 1745 – 8 December 1818 ) was a Swedish chemist who discovered manganese in 1774 .
[S2] Gahn studied in Uppsala 1762 – 1770 and became acquainted with chemists Torbern Bergman and Carl Wilhelm Scheele .
[S3] 1770 he settled in Falun , where he introduced improvements in copper smelting , and participated in building up several         
 factories , including those for vitriol , sulfur and red paint.

19 August 1745

Gahn Swedish

Uppsala

Falun8 December 1818

Date of birth

Date of death

Country of citizenship

Country

Country

19 August 1745

Gahn Swedish

Uppsala

Falun8 December 1818

Date of birth

Date of death

Country of citizenship

BERT PAEE

Title: Johan Gottlieb Gahn

Fig. 3: Case study on our proposed PAEE and baseline model. Entity mentions only involved in these relation
instances are colored, other entities in the document are high-lighted in grey. We utilize arrows to connect relational
entity pairs.

Model ACC F1
BERTbase 48.83 54.16
CorefBERT 59.37 57.51
ATLOP 65.42 61.09
PAEE-BERTbase (Our) 70.30 (↑4.88) 64.82 (↑3.73)

Table 6: The ACC means the accuracy of identifying
relational entity pairs.

of F1 score on the DocRED dataset. It demon-
strates that the EER module is able to effectively
model the directivity of entity pairs.

(3) Effectiveness of Sliding Window strategy.
Removing the SW, the performance drops signif-
icantly. Specifically, the F1 score drops from
62.62% to 61.72% on the DocRED dataset.

(4) Effectiveness of Potential Pair Prediction.
When we remove the PPP module, the F1 score
drops from 62.62% to 61.52%. It indicates that
the performance of the model can be effectively
improved by predicting potential relational entity
pairs.

3.4 Discussion and Analysis

In order to explore whether the performance bot-
tleneck of the model is effectively solved, we utilize
experiments to analyze it.

The effect of PAEE on sparsity. To assess the ef-
fectiveness of PAEE on identifying relational entity
pairs, we analyze it from contrast experiments, the
experiments are based on the pre-training model
BERTbase and DocRED dataset. As show in Table
6, the ACC score if 70.3% which is 4.88% more
than previous SOTA model ATLOP. This shows
that PAEE model can effectively identify potential
relational entity pairs.

The effect of Entity-Enhanced Representa-
tion(EER). To show that our EER can model the
representation of entity pairs better, we divide the

documents in dev set of DocRED into different
groups by the proportion of relational entity pairs,
and evaluate models trained with or without the
EER. Experiment results are shown in Figure 4.
We observe that for both models, their performance
gets better when the proportion of relational en-
tity pairs becomes larger, and the model w/ EER
consistently outperforms the model w/o EER. This
demonstrates that EER can model the representa-
tion of entity pairs better.
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Fig. 4: Dev F1 score on DocRED. The x-axis refers to
the proportion of relational entity pairs per document
(Unit: %), the y-axis refers to the dev F1.

3.5 Case Study

We select a sample from the dev set of the Do-
cRED dataset and conduct a case study to fur-
ther illustrate the effectiveness of our model PAEE
compared with the baseline. As shown in Fig-
ure 3, we notice that both BERTbase and PAEE-
BERTbase can successfully extract the “Country
of citizenship” relation between “Gahn” and
“Swedish”. However, only our PAEE-BERTbase

can deduce that the “Country” of “Uppsala” and
“Falun” are same, namely “Swedish”.

4 Conclusion

In this paper, we propose the Pair-Aware and
Entity-Enhanced (PAEE) model. Specifically,
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PAEE introduces Pair-Aware Representation(PAR)
module to alleviate the negative impact of spar-
sity, which constrains the following relation extrac-
tion to the predicted entity pairs subset rather than
all pairs. In addition, PAEE also designs Entity-
Enhanced Representation(EER) module to assem-
ble directional entity pairs and obtain holistic un-
derstanding of document. Experiments on four
benchmark datasets DocRED, DWIE, CDA and
GDA, show that PAEE outperforms the previous
methods and obtains new state-of-the-art results.
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A Appendix

A.1 Training Strategy

In the Relationship Classification stage, previ-
ous work (Wang et al., 2019b) observed that there
is an imbalance relation distribution for RE (the
relational entity pairs are sparse). To alleviate the
negative impact of sparsity, Zhang et al. (2021) in-
troduces a balanced softmax method inspired by
the circle loss (Sun et al., 2020). Based on this, we
design Adaptive Softmax loss, which introduces
a addition threshold class TH, which is automati-
cally learned in the same way as other classes. The
class TH aims to separate positive classes and neg-
ative classes, hoping that the scores of the target
category are all greater than sTH and the scores
of the non-target categories are all less than sTH .
Formally,
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Lrel = log(esTH+
∑

i∈ωneg
esi)+ log(e−sTH+

∑

i∈ωpos
e−si)

(9)

In the Potential Pair Prediction stage, in order
to match binary classification task, we design the
loss as:

Lpot =−
1

np

np∑

i=1

(yi logPpair+(1−yi) log(1−Ppair))

(10)
where np is the size of full entity pairs set. In

the Cross Matching stage, to capture the features
of entities as subject and object respectively, we
design the loss as:

Lsub = −
1

ncne

ne∑

j=1

nc∑

i=1

(yi logF
j
sub+(1−yi)

log(1−F jsub)),

Lobj = −
1

ncne

ne∑

j=1

nc∑

i=1

(yi logF
j
obj+(1−yi)

log(1−F jobj))
(11)

where nc is the size of full relation set, ne is size
of full entities set. The total loss is the sum of the
above losses:

Ltotal = αLrel+βLpot+γ
Lsub+Lobj

2
(12)

Performance might be better by carefully tuning
the weight of each sub-loss, but we just assign
equal weights for simplicity (ie., α=β=γ=1 ).
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Abstract

Entity linking, which aims at aligning ambigu-
ous entity mentions to their referent entities in
a knowledge base, plays a key role in multiple
natural language processing tasks. Recently,
zero-shot entity linking task has become a re-
search hotspot, which links mentions to unseen
entities to challenge the generalization ability.
For this task, the training set and test set are
from different domains, and thus entity linking
models tend to be overfitting due to the ten-
dency of memorizing the properties of entities
that appear frequently in the training set. We
argue that general ultra-fine-grained type infor-
mation can help the linking models to learn
contextual commonality and improve their gen-
eralization ability to tackle the overfitting prob-
lem. However, in the zero-shot entity linking
setting, any type information is not available
and entities are only identified by textual de-
scriptions. Thus, we first extract the ultra-fine
type information from the entity textual descrip-
tions. Then, we propose a hierarchical multi-
task model to improve the high-level zero-shot
entity linking candidate generation task by uti-
lizing the entity typing task as an auxiliary low-
level task, which introduces extracted ultra-fine
type information into the candidate generation
task. Experimental results demonstrate the ef-
fectiveness of utilizing the ultra-fine entity type
information and our proposed method achieves
state-of-the-art performance.

1 Introduction

Entity linking (EL) is the task of assigning entity
mentions in a text to corresponding entity records
in a reference knowledge base. EL plays a key role
in the language understanding pipeline, underlying
a variety of downstream applications, such as in-
formation extraction (Hoffmann et al., 2011; Ji and
Nothman, 2016), semantic search (Blanco et al.,
2015) and question answering (Berant et al., 2013;
Yih et al., 2015; Welbl et al., 2018). In general, EL

∗Corresponding author.

Michael would get fouled on every play and still have to play it and 

just clear himself for shots instead and would rise to that occasion.

Michael Jordan

Michael Jeffrey Jordan (born

February 17, 1963), also known

by his initials MJ, is an

American former professional

basketball player and …

Michael Jackson

Michael Joseph Jackson (August

29, 1958 – June 25, 2009) was an

American singer, songwriter and

dancer. Dubbed the "King of

Pop", he is regarded as …

Extract ultra-fine entity types

person, adult, 

celebrity, performer, 

artist, musician, 

professional, singer

person, adult, 

celebrity, performer, 

actor, athlete, player, 

basketball player

Figure 1: Examples of entity linking with general ultra-
fine-grained entity type information. Different ultra-
fine-grained types of the two entities are denoted in red.

consists of two phases: candidate generation which
generates a set of candidates for each mention from
millions of entities, and candidate ranking which
retrieves the matched entity for each mention from
the set of candidates. As the final results in EL are
only generated from candidta sets, the accuracy of
the whole EL task is limited by the candidate gen-
eration phase. Therefore, in this paper, we focus
on the candidate generation phase to set a higher
upper bound on EL accuracy.

Traditional EL approaches usually train models
under the setting that linked entities in the test set
are available in the training set. However, in many
real-world scenarios, labeled data are not easily
obtained in multiple domains. Thus, there is a need
for EL models to have the capability of generaliz-
ing to new domains and new entities. To challenge
the generalization ability, a zero-shot entity linking
task (Logeswaran et al., 2019) has been proposed,
where mentions need to be linked to unseen enti-
ties and only the textual information is available.
For this task, the training and test sets share differ-
ent distributions of entities, and thus entity linking
models tend to be overfitting due to the tendency
of memorizing the properties of entities that appear
frequently in the training set.
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We argue that general ultra-fine-grained type in-
formation can help the linking models learn contex-
tual commonality and improve their generalization
ability to tackle the overfitting problem. If a linking
model learns the contextual commonality of athlete
related entities, it can use similar contextual infor-
mation to correctly select entities of the same type.
Examples of entity linking with general ultra-fine-
grained entity type information are shown in Figure
1. A key observation is that the given ultra-fine en-
tity types could have positive effect on the entity
linking task. In this example, the type information
can help the linking model link the Michael in the
text to Michael Jordan [actor, athlete, player, bas-
ketball player] instead of Michael Jackson [artist,
musician, professional, singer].

Therefore, in this paper, we try to introduce ultra-
fine entity type information into the zero-shot entity
linking candidate generation. However, in the zero-
shot entity linking setting, any type information is
not available and entities are only identified by tex-
tual descriptions. Thus, we first extract ultra-fine
types from textual descriptions of each entity. In
general, more fine-grained entity type information
can better help the linking models learn contex-
tual commonality and improve their generalization
ability. Thus, we train an entity typing model by
utilizing the Ultra-fine Entity Typing dataset (Choi
et al., 2018) whose types are more fine-grained
rather than other fine-grained entity typing datasets
(e.g. FIGER (Ling and Weld, 2012) and OntoNotes
(Gillick et al., 2014)), and use the model to extract
ultra-fine types from each entity textual descrip-
tion. Then, we propose a hierarchical multi-task
model, which jointly models the candidate genera-
tion task and ultra-fine entity typing task to intro-
duce the type information extracted by the trained
typing model into the candidate generation phase.
The ultra-fine entity typing task is utilized as an
auxiliary low-level task, providing corresponding
type features for the high-level candidate genera-
tion task. Our primary motivation is to discover
helpful training signals from ultra-fine-grained type
information to ensure a more robust zero-shot en-
tity linking candidate generation model.

To summarize, our major contributions are
shown as follows:

• To the best of our knowledge, this work is the
first to introduce fine-grained type informa-
tion into zero-shot entity linking task. The
fine-grained type information can help the

linking models learn contextual commonal-
ity and improve their ability to generalize to
new domains and unseen entities.

• We first extract ultra-fine entity types for each
entity, without depending on additional manu-
ally annotated data. Then to take full advan-
tage of extracted type information, we present
a hierarchical multi-task model to improve the
high-level zero-shot entity linking candidate
generation task by utilizing the entity typing
task as an auxiliary low-level task.

• Experimental results demonstrate the effec-
tiveness of utilizing the ultra-fine entity
type information and our proposed method
achieves state-of-the-art performance.

2 Related Work

2.1 Zero-shot Entity Linking
Zero-shot entity linking (Logeswaran et al., 2019)
has attracted significant interest from researchers in
recent years. In this task, no mentions or entities in
the test set have been observed during training and
only descriptions of each entity are provided. It
consists of two phases: candidate generation (Wu
et al., 2020; Ristoski et al., 2021) and candidate
ranking (Yao et al., 2020; Tang et al., 2021). In
this paper, we focus on the candidate generation
phase. (Logeswaran et al., 2019) is the first to
formally propose the zero-shot entity linking task
and use a traditional IR approach BM25 to gen-
erate candidates. BLINK (Wu et al., 2020) uses
a bi-encoder architecture to encode mentions and
descriptions of entities into dense space to gener-
ate candidates, which achieves state-of-the-art re-
sults. KG-ZESHEL (Ristoski et al., 2021) utilizes a
knowledge graph to extend BLINK. Our work also
extends BLINK by introducing auxiliary ultra-fine
type information without depending on additional
manually annotated data to improve the candidate
generation task in zero-shot entity linking.

2.2 Entity Linking with Type Information
Entity typing refers to the act of assigning seman-
tic types to mentions in the text. Fine-grained en-
tity type information has been proven effective in
the entity linking process. (Gupta et al., 2017) ex-
plores fine-grained entity typing for cross-domain
entity linking. (Raiman and Raiman, 2018) pro-
poses a type system to constrain the space in which
mentions can be linked. (Onoe and Durrett, 2020)
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[CLS] person [SEP] a human … [SEP]

[CLS] group [SEP] any number … [SEP]
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Figure 2: The overall architecture of our proposed model. It consists of two parts: an entity typing model to extract
ultra-fine entity types for each entity and a hierarchical multi-task candidate generation model to generate candidate
entities with the extracted type information.

converts the cross-domain entity linking task to
a very fine-grained entity typing task to general-
ize across domains effectively. (Hou et al., 2020;
Chen et al., 2020) create the semantic embedding
for each entity by aggregating entity type embed-
dings. Inspired by these previous works, to the best
of our knowledge, our work is the first to intro-
duce fine-grained type information into zero-shot
entity linking task. Also, considering the gener-
alization ability challenge of the zero-shot entity
linking task, inspired by (Sanh et al., 2019; Wiatrak
and Iso-Sipilä, 2020), our proposed method intro-
duces fine-grained type information in a hierarchi-
cal multi-task way to learn contextual commonality
and improve the generalization ability.

3 Model

Figure 2 shows our proposed two-stage model,
which consists of two parts: the entity typing model
and the candidate generation model. In this section,
we describe these two models in detail.

3.1 Entity Typing Model

The Entity Typing Model in Figure 2 presents the
first part of our proposed model. The goal of this
model is to extract ultra-fine entity types from tex-
tual description for each entity. Considering off-
the-shelf entity typing models (e.g. (Onoe and
Durrett, 2019; Onoe et al., 2021)) do not signifi-
cantly outperform the BERT-based model (Onoe
and Durrett, 2019), we simply modify the BERT-
based model as our entity typing model.1 In gen-

1We leave the construction of a more effective entity typing
model to future work.

eral, more fine-grained entity type information can
better help the linking models learn contextual com-
monality and improve their generalization ability.
Thus, we train the model by utilizing the Ultra-fine
Entity Typing dataset (Choi et al., 2018). Then we
use the model to extract ultra-fine type information
for zero-shot entity linking dataset (Logeswaran
et al., 2019). This process does not require any
additional manually annotated data.

3.1.1 Label-wise Feature Extraction
Given a mention and its context, we input them
to BERT (Devlin et al., 2019) as a sequence pair
together with special start and separator tokens
([CLS] mention [SEP] context [SEP]) to extract
features. It produces a matrix representation X =
[x1, x2, ..., xn] to represent the mention-context
pair, where xi ∈ Rd is the word embedding vector
for the i-th word, n is the length of the input pair
and d is the dimension of hidden states of BERT.

Each entity type has a textual description. Con-
sidering that the model training and inference pro-
cess are on different datasets, we make full use
of the type descriptions to improve the general-
ization ability of the model. To utilize the type
description, we input the type and its description
to BERT in the form of [CLS] type [SEP] de-
scription [SEP]. The embeddings of all the pos-
sible labels C = {c1, c2, ..., cL} are represented
to V = [v1, v2, ..., vL], where vi ∈ Rd is the last
hidden layer corresponding to the position of the
[CLS] token for the i-th type. Note that the weights
of the label embeddings V are fixed after being
extracted.

A label-wise attention is utilized to learn individ-
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ual representation for each label. The compatibility
of label-word pairs is measured as follows:

G = V XT

where G ∈ RL×n. The attention scores for all the
words of mention-context pair with regard to the
l-th label are computed via the SoftMax function:

al = SoftMax(Gl)

where Gl ∈ Rn is the compatibility vector of each
word and the l-th label. Intuitively, al extracts the
most relevant information in X about the label l by
using attention. Eventually, the label-wise repre-
sentation is obtained by the weighted aggregation
with the attention scores:

zl =

n∑

i=1

alixi

3.1.2 Multi-label Classification

For the l-th type, the binary prediction ŷl is com-
puted by: ŷl = FFNN(zl; θF1). Each mention is
usually associated with a set of types, and a multi-
label training objective is required. Thus, the loss
is a sum of binary cross-entropy losses over all
types over all examples. Finally, we optimize a
multi-label binary cross entropy objective:

Ltype = −
L∑

l=1

yllogŷl + (1− yl)log(1− ŷl)

where yl takes the value 1 if the l-th type applies to
the current mention.

3.2 Candidate Generation Model

After training the Entity Typing Model, we use
the model to extract ultra-fine entity types for each
entity in the zero-shot entity linking dataset. Our
candidate generation model extends BLINK (Wu
et al., 2020) bi-encoder by introducing the ultra-
fine type information and is shown in Figure 2
Candidate Generation Model, which utilizes a hier-
archical multi-task way to jointly learn candidate
generation task and ultra-fine entity typing task.
The ultra-fine entity typing task is utilized as an
auxiliary low-level task at the bottom layer, provid-
ing corresponding type features for the high-level
candidate generation task at the top layer.

3.2.1 Feature Extraction
Followed (Wu et al., 2020), we use BERT (Devlin
et al., 2019) to encode textual input of mentions
and entities. The input of each mention Tm is con-
structed as follows:

[CLS] ctxtl [Ms] mention [Me] ctxtr [SEP]

where mention, ctxtl, ctxtr are the word-pieces to-
kens of the mention, context before and after the
mention respectively, and [Ms], [Me] are special
tokens to tag the mention. The input of each entity
Te is construct as follows:

[CLS] title [ENT] description [SEP]

where title, description are word-pieces tokens of
entity title and description, and [ENT] is a special
token to separate the entity title and its description.

Both the context and candidate entity are input
to two independent BERT models and are encoded
into vectors:

um = BERT(Tm; θBERT1), ue = BERT(Te; θBERT2)

3.2.2 Low-level Entity Typing
The low-level task in our candidate generation
model is the ultra-fine entity typing task. We follow
(Zhu et al., 2020) to use a binary pairwise relation
constraint between mention and each candidate
entity. Briefly, a mention and its corresponding en-
tity should share the same type distribution. Thus,
the corresponding entity’s ground truth types can
also be the ground truth types of the mention. We
utilize the extracted ultra-fine types from entity de-
scriptions as the target labels of both mention type
prediction and entity type prediction tasks. We use
two independent transformer layers T as task spe-
cific encoders, which takes the extracted features
um and ue as input and outputs representations
denoted as tm and te:

tm = T (um; θT1), te = T (ue; θT2)

Our mention and entity type prediction are sim-
ilar to the Multi-label Classification in section
3.1.2. For each training pair (mi, ei), to predict
the l-th type, the binary prediction ŷlmi of the
mention and ŷlei of the entity are computed re-
spectively by: ŷlmi = FFNN(tm_clsi ; θF2), ŷ

l
ei =

FFNN(te_clsi ; θF3), where tm_clsi and te_clsi are
the representations corresponding to the position
of the [CLS] token of tmi and tei respectively. The
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losses of mention type prediction and entity type
prediction are calculated as follows:

Ltype_m = −
L∑

l=1

yllogŷlmi + (1− yl)log(1− ŷlmi)

Ltype_e = −
L∑

l=1

yllogŷlei + (1− yl)log(1− ŷlei)

where yl takes the value 1 if the l-th type is ex-
tracted from the description of the entity ei, and ei
is the corresponding entity of the mention mi.

3.2.3 High-level Candidate Generation
The high-level task in our candidate generation
model is the zero-shot entity linking candidate gen-
eration task. It takes the average of the extracted
features by BERT um, ue and the low-level task
encoder specific output tm, te as the input. We uti-
lizes another two independent transformer layers
T as the task-specific encoders:

fm = T (
1

2
(um+tm); θT3), fe = T (

1

2
(ue+te); θT4)

Finally, the score for a given mention mi and a
candidate entity ei is calculated as the dot product
of the corresponding vectors:

s(mi, ei) = fm_clsi · fe_clsi + um_clsi · ue_clsi

where fm_clsi , fe_clsi , um_clsi and ue_clsi are the
representations corresponding to the position of the
[CLS] token of fmi , fei , umi and uei respectively.

Following (Wu et al., 2020), our model is trained
on in-batch negatives. Within a batch, the corre-
sponding entity of the mention is the positive sam-
ple while other entities in the batch are all negative
samples of the mention. Thus, for the candidate
scoring, the loss needs to maximize the score of the
corresponding entity of the mention in the batch
with respect to the other entities of the same batch.
To achieve this, for each training pair (mi, ei) in a
batch of B pairs, the loss is computed as:

L(mi,ei) = −s(mi, ei) + log
B∑

j=1

exp(s(mi, ej))

where ei is the gold entity of the mention mi.

3.2.4 Hierarchical Multi-task Training
Our model incorporates three objectives, one for
candidate scoring and the others for the mention

Set World Entities Mentions

Training American Football 31929 3898
Doctor Who 40281 8334
Fallout 16992 3286
Final Fantasy 14044 6041
Military 104520 13063
Pro Wrestling 10133 1392
StarWars 87056 11824
World of Warcraft 27677 1437

Validation Coronation Street 17809 1464
Muppets 21344 2028
Ice Hockey 28684 2233
Elder Scrolls 21712 4275

Test Forgotten Realms 15603 1200
Lego 10076 1199
Star Trek 34430 4227
YuGiOh 10031 3374

Table 1: Overall statistics of the zero-shot entity linking
dataset.

type prediction and the candidate entity type pre-
diction. We jointly optimize these three objectives
during our training process. The final loss of the
candidate generation model is calculated as follows:

L = L(mi,ei) + Ltype_m + Ltype_e

4 Experiments

In this section, we compare our proposed method
to other state-of-the-art methods to demonstrate the
effectiveness of our model. We first introduce the
datasets we used and the implementation details of
our model. Then we briefly introduce the baselines
and present the overall performance of our model
in comparison with others.

4.1 Datasets

We train the entity typing model on the Ultra-Fine
Entity Typing dataset (Choi et al., 2018), which
has 10331 labels and most of them are defined as
free-form text phrases. Each type is marked as
one of the three classes: coarse, fine, and ultra-
fine. Note that this classification does not provide
explicit hierarchies in the types, and all classes are
treated equally during training.

We conduct our experiments mainly on the zero-
shot entity linking dataset 2, which is proposed
by (Logeswaran et al., 2019) and built using the
documents on Wikia 3. Table 1 shows the overall
statistics of the dataset. In this dataset, the entities
in the validation and test sets are from different

2https://github.com/lajanugen/zeshel
3https://www.wikia.com
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Model Forgotten Realms Lego Star Trek YuGiOh Macro Recall@64 Micro Recall@64

BM25 83.33 81.23 65.89 60.85 72.83 69.13
BLINK (base)∗ 90.67 89.99 82.45 71.40 83.63 80.61
BLINK (large) – – – – – 82.06
BLINK (large)∗ 90.92 90.58 84.03 73.30 84.71 82.02
KG-ZESHEL – – – – – 82.44
KG-ZESHEL∗ 91.25 90.40 84.43 73.77 84.96 82.35

Ours (base) 92.08 90.74 83.94 72.00 84.69 81.90
Ours (large) 92.83 91.66 85.38 74.78 86.16 83.45

Table 2: Recall@64 results on the test domains of the zero-shot entity linking dataset. Macro Recall@64 represents
the average Recall@64 score of these four test domains. Micro Recall@64 represents the weighted average
Recall@64 score of these four domains. * indicates the models are reproduced according to the implementation
details in their papers and released codes for a more detailed analysis. We use (base) and (large) to indicate the
version of the underlying pre-trained BERT model is BERT-base and BERT-large, respectively. All scores are
averaged 5 runs using different random seeds, and our results over all baselines are statistically significant with
p < 0.05 with the t-test. In the results, the highest values are in bold and the underlined ones are the second highest.

domains compared to the training set, allowing the
performance evaluation on entire unseen entities.
It uses 8 domains for training, 4 for validation,
and 4 for test. The training set has 49,275 labeled
mentions while the validation and test sets both
have 10,000 unseen mentions.

The samples of this dataset are categorized into
4 categories by (Logeswaran et al., 2019), which
are High Overlap (HO) whose mention string is
identical to its gold entity title, Multiple Categories
(MC) whose gold entity title is followed by a disam-
biguation phrase, Ambiguous substring (AS) whose
mention string is a substring of its gold entity title,
and Low Overlap (LO) are other mentions. Accord-
ing to the statistics of (Logeswaran et al., 2019),
5% of mentions are categorized as HO, 28% of
mentions are MC, 8% of mentions belong to AS,
and 59% of mentions are categorized as LO.

4.2 Implementation Details

In our experiments, we use BERT (Devlin et al.,
2019) as our base model. The evaluation metric
is the recall. We perform our experiments with 5
random seeds and report the average results. And
we perform the t-test to demonstrate the statistical
significance of our results.

For the entity typing model, the BERT we used
to extract mention-context and type description is
both the bert-base-uncased (Devlin et al., 2019).
We set the maximum sequence length of the input
text of mention-context and type description to be
128 and 80, respectively. In this setting, all tokens
are covered. The batch size is 32, and the learn-
ing rate is 2e-5 with a linear learning rate decay
schedule. We use ADAM (Kingma and Ba, 2015)

optimization algorithm to optimize our model.
For the candidate generation model, followed

(Wu et al., 2020), we use the bert-base-uncased and
the bert-large-uncased (Devlin et al., 2019) models
respectively. The maximum sequence length of the
mention and entity is set to 128. The learning rate
is 1e-5 and the batch size is 128. We also train the
model by utilizing the ADAM. Our experimental
code is available here 4.

4.3 Baselines

For the quantitative evaluation of our proposed
model, we use the following state-of-the-art base-
line methods for comparison. The first method is
BM25 (Robertson and Zaragoza, 2009), which is a
traditional IR approach and used by (Logeswaran
et al., 2019). The second method is BLINK (Wu
et al., 2020), which uses a bi-encoder architecture
to encode mentions and entity descriptions into
dense space to generate candidates. Our proposed
model extends BLINK bi-encoder by introducing
ultra-fine entity typing. Comparison results to
BLINK could also be regarded as the ablation study
to justify the advantage of our proposed model. The
last method is KG-ZESHEL (Ristoski et al., 2021),
which extends BLINK bi-encoder by utilizing a
knowledge graph. Note that we reproduced the
BLINK model and the KG-ZESHEL model for a
more detailed analysis according to the implemen-
tation details in their papers and released codes.

4.4 Overall Performance

The recall@64 results for the candidate generation
on the test domains of the zero-shot entity link-

4https://github.com/suixuhui/ETZEL
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ing dataset are shown in Table 2. We can observe
that our proposed model outperforms all baseline
models in all test domains and on average. This is
consistent with our main claim that our model can
improve the performance of the zero-shot entity
linking candidate generation task by utilizing the
extracted ultra-fine entity type information. Our
proposed method utilizes a hierarchical multi-task
way to fully mine useful training signals from the
low-level ultra-fine entity typing task to help the
entity linking candidate generation models learn
contextual commonality and improve their general-
ization ability. This is significant for the zero-shot
entity linking setting to generalize the models to
new domains and link unseen entities.

We observe that the bi-encoder-based methods
perform better than the traditional IR approach
BM25, which indicates the effectiveness of our cho-
sen base model. The bi-encoder method achieves
state-of-the-art results in the candidate generation
task. This approach also allows fast, real-time in-
ference, as the candidate representations can be
cached. It can be expected that the BERT-large-
based models work better than the BERT-base-
based models, due to the larger pre-trained model
which encodes more general knowledge. Despite
this, we still find that our proposed model with
the BERT-base version performs better than the
baselines with the BERT-large version in some test
domains (e.g., Forgotten Realms and Lego), which
further indicates the effectiveness of our proposed
method. In general, our proposed method outper-
forms the baseline approaches for 1.20% and 1.01%
on Macro Recall@64 and Micro Recall@64 on the
test set, respectively.

5 Analysis

5.1 Top-k Results

The micro recall@k results of the bi-encoder-based
models (BLINK, KG-ZESHEL and our proposed
model) for the candidate generation task on the
test set are shown in Figure 3. We can find that
our proposed model consistently outperforms the
baseline methods for all k values. The improve-
ment of our model compared to BLINK is pro-
nounced, while the KG-ZESHEL slightly improves
the performance of BLINK. This demonstrates the
effectiveness of our proposed method. It can also
be observed that our proposed model has a rela-
tively significant improvement in the first few can-
didates (e.g., recall@1, recall@4) over BLINK, al-
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Figure 3: Top-k entity linking recall on test set of zero-
shot entity linking dataset. Dashed lines indicate the
recall of the three methods and solid lines indicate the
relative improvement of our model and KG-ZESHEL
compared to the BLINK. The results we choose to report
are micro recall@1, recall@4, recall@8, recall@16,
recall@32 and recall@64.

.

Model HO MC AS LO

BM25 99.28 72.54 88.03 54.37
BLINK 98.92 91.04 97.06 74.24
KG-ZESHEL 99.04 91.41 97.69 74.52

Ours 99.04 93.69 97.27 75.42

Table 3: Micro recall@64 scores on the category-
specific test subsets including High Overlap (HO), Mul-
tiple Categories (MC), Ambiguous Substring (AS) and
Low Overlap (LO).

lowing for an improvement of more than 3%. This
indicates the effectiveness of utilizing extracted
ultra-fine entity type information and shows that
the ultra-fine entity typing task has strong positive
effect on the candidate generation task of zero-shot
entity linking. However, as the number of candi-
dates increases, the improvement becomes less and
this phenomenon is foreseeable, because there is a
tendency for all models to saturate as the number
of candidates continues to increase.

5.2 Results on Category-specific

In addition, we analyze the results of zero-shot
entity linking candidate generation models on dif-
ferent categories. There are four categories, and the
details about these categories have been described
in section 4.1. Table 3 shows the micro recall@64
scores on the category-specific test subsets of the
zero-shot entity linking dataset. We find that BM25
outperforms all other methods including our pro-
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Ours

Entity: Akiza Izinski

Types: person, character, leader, adult, garment, 

friend, female, politician, woman 

Mention with 

Context

Candidates 

with Type

… gets busy writing an article of team 5d ' s , 

with the help of Akiza leo, luna and mina …

Case 1

… other games have been based on, including a 

version of Prime Directive by amarillo design …

Case 2

BLINK

Entity: Arisa Kiyoto

Types: person, artist, musician, performer, singer

Gold Entity Akiza Izinski Prime Directive ( game )

Ours

Entity: Prime Directive ( game )

Types: object, idea, software, application, 

program, record

BLINK

Entity: Prime Directive

Types: object, idea, policy, aim, statement, law, 

position, writing, document

Figure 4: Examples of the compared candidate generation results of our proposed model and the baseline model
(BLINK), which are selected from the test set of the zero-shot entity linking dataset. The mentions are denoted
in yellow, the text in blue boxes are ground truth entities of the mentions, the candidate entity along with its type
extracted by our model and BLINK under the setting of Recall@1 are highlighted in green and pink, respectively.

posed method in HO. This demonstrates the superi-
ority of this traditional IR technique in dealing with
cases where the words of the mention string and the
entity title are highly overlapping. It can also be ob-
served that KG-ZESHEL performs better than our
model in AS, which suggests that using the knowl-
edge graph can be a better choice in some cases.
However, the performance of KG-ZESHEL in AS
is only slightly higher than our model. Finally, we
find that our proposed model improves more in
MC and LO. We conjecture that these two cate-
gories require more complex reasoning according
to the performance of candidate generation models
in these two categories is much lower than in the
other two categories. This indicates that our pro-
posed model learns more contextual knowledge and
has a more powerful reasoning ability to deal with
the zero-shot entity linking candidate generation
task by utilizing ultra-fine entity type information.

5.3 Case Study

To conduct qualitative analysis, Figure 4 shows two
cases from the test set of the zero-shot entity linking
dataset. In the case 1, the mention belongs to AS
category, whose mention string is a substring of its
gold entity title. The BLINK model will point to
the entity Arisa Kiyoto, while our proposed model
will point to the gold entity Akiza Izinski. Our
model learns the contextual commonality of each
type related entities during training by utilizing the
ultra-fine entity typing task in a hierarchical multi-
task way. At inference time, our model leverages
the learned contextual commonality to improve the
generalization ability. It will infer that there is some

information of gold entity types in the mention
with context in case 1 (e.g., character, leader, etc.
instead of artist, musician, singer, etc.). This helps
our model point to Akiza Izinski instead of Arisa
Kiyoto. The same is true for case 2, whose gold
entity title is followed by a disambiguation phrase
and belongs to MC. Our model also infers that there
is some information of some types(e.g., software,
application, program, etc. instead of policy, law,
writing, document, etc.), which helps our model
point to Prime Directive (game) instead of Prime
Directive like BLINK.

6 Conclusion

In this paper, we focus on the zero-shot entity link-
ing task, which links mentions to unseen entities
and only the textual information is available. This
task challenges the generalization ability and often
leads to a tendency of overfitting for entity linking
models. To tackle the problem, we introduce the
ultra-fine entity type information into the candidate
generation phase of this task. Considering only en-
tity description is available, we propose a two-stage
model. We first extract ultra-fine entity types from
each entity description, without depending on addi-
tional manually annotated data. Then we present a
hierarchical multi-task model for jointly modeling
candidate generation and ultra-fine entity typing,
which can help the model to learn contextual com-
monality of types about the gold entity to improve
the generalization ability. The experimental re-
sults demonstrate the effectiveness of utilizing the
ultra-fine entity type information and our proposed
method achieves state-of-the-art performance.
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Abstract

Quotation extraction aims to extract quotations
from written text. There are three components
in a quotation: source refers to the holder of
the quotation, cue is the trigger word(s), and
content is the main body. Existing solutions
for quotation extraction mainly utilize rule-
based approaches and sequence labeling mod-
els. While rule-based approaches often lead to
low recalls, sequence labeling models cannot
well handle quotations with complicated struc-
tures. In this paper, we propose the Context
and Former-Label Enhanced Net (CofeNet) for
quotation extraction. CofeNet is able to extract
complicated quotations with components of
variable lengths and complicated structures. On
two public datasets (i.e., PolNeAR and Riqua)
and one proprietary dataset (i.e., PoliticsZH),
we show that our CofeNet achieves state-of-
the-art performance on complicated quotation
extraction.

1 Introduction

Quotation extraction aims to extract quotations
from written text (Pouliquen et al., 2007). For
example, given one instance shown in Fig-
ure 1, we extract the quotation with source:
some democrats, cue: privately express, and con-
tent: reservations about .... As a point of view,
quotations provide opinions of the speaker, which
is important for analyzing the speaker’s stand. In
general, quotation extraction is the first step before
any further analysis, e.g., speaker stand detection.
In this paper, we focus on the extraction of the three
quotation components.

As illustrated in the above example, the extrac-
tion of content component in a quotation is com-
plicated and difficult due to three reasons: variable
length, unclear boundary, and indistinguishable

*Indicates equal contribution

Yet for all the symbolism and feel-good value of such an appointment, 
some democrats privately express reservations about entrusting a seat 
that could decide the balance of power in the closely divided senate to 
a candidate who has never won statewide, is considered less than 
dynamic and has been an anemic fundraiser. 

Figure 1: An example of quotations. Text spans with
orange, green and gray denote source, cue and content
respectively.

components. Specifically, the length of content
can be over 10, or even more than 50 tokens. More-
over, content does not come with a regular pattern,
which not only leads to a more unclear boundary
of itself, but also affects the estimation of source
and cue. For example, content in a quotation can
be a complete instance with subject, predicate, and
object. It is therefore hard to distinguish a noun
(subject or object) representing the source or a part
of content. Difficulty also exists in recognition of
cue when tackling with a predicate, e.g., verb. Thus,
as content may contain another quotation, such a
nesting structure further increases the difficulty of
extracting quotations.

Many existing solutions for quotation extraction
are rule-based methods (Pouliquen et al., 2007;
Krestel et al., 2008; Elson and McKeown, 2010;
Vu et al., 2018). Generally, quotations include di-
rect quotations and indirect quotations. Quotation
marks and their variants are clear; thus content can
be extracted by using regular expressions. How-
ever, not all quoted texts are quotations. Mean-
while, not all quotations are quoted. Another popu-
lar rule-based approach is to recognize cue words,
e.g., speak(s). Similarly, not all cue words are
related to quotations and vice versa. For both ap-
proaches, after recognizing content or cue, they
usually search for the nearby noun as source. In
short, rule-based methods only cover limited cases,
leading to serious low recall problems.

Quotation extraction has also been formulated
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as a sequence labeling task. Pareti et al. (2013);
Lee et al. (2020) directly adopt sequence labeling
for quotation extraction. However, these solutions
ignore the traits of quotations where lengths of quo-
tation components are variable and structures of
content are complicated. In general, source and
cue components are short, e.g., ≤ 3 tokens. How-
ever, content usually is over 10 tokens, or even
more. Further, the complicated structure of content
greatly reduces the performance of content extrac-
tion for sequence-labeling-based solutions.

In this paper, we propose Context and Former-
Label Enhanced Net (CofeNet) for quotation ex-
traction. CofeNet is a novel architecture to extract
quotations with variable-length and complicated-
structured components. Our model is also capable
of extracting both direct and indirect quotations.

CofeNet extracts quotations by utilizing depen-
dent relations between sequenced texts. The model
contains three components, i.e., Text Encoder, En-
hanced Cell, and Label Assigner. Given a piece
of text, the encoder encodes the instance and out-
puts the encoded hidden vectors. We design the
Enhanced Cell module to study semantic repre-
sentations of variable-length components with the
utilization of contextual information. Specifically,
the enhanced cell (i) uses a composer layer to en-
hance the input with the former labels (which are
predicted by the former cells), the former words,
the current word, and the latter words encoded by
the encoder; and (ii) uses a gate layer and an atten-
tion layer to control and attend the corresponding
input when predicting the label of the current word,
at the level of element and vector respectively. Ex-
perimental results on two public datasets (i.e., Pol-
NeAR and Riqua) and one proprietary dataset (i.e.,
PoliticsZH) show that our CofeNet achieves state-
of-the-art performance on complicated quotation
extraction.

2 Related Work

At first glance, quotation detection is a kind of
“triplet” extraction, making the task similar to an-
other two tasks, open information extraction (An-
geli et al., 2015; Gashteovski et al., 2017) and se-
mantic role labeling (Exner and Nugues, 2011).
However, these three tasks have different focuses.
Arguments extracted by semantic role labeling are
event-related factors. OpenIE aims to output a
structured representation of an instance in the form
of binary or n-ary tuples, each of which consists of

a predicate and several arguments. The extracted
text spans in both tasks are typically short and less
complicated, compared to the content in quotations.
Because content extraction is the key challenge
in quotation extraction, we will not further elabo-
rate on semantic role labeling and OpenIE. Prior
work on quotation extraction can be grouped into
rule-based and sequence labeling methods.

2.1 Rule-based Methods

Extracting indirect quotations without clear bound-
aries is a challenging task, so early studies fo-
cus on rule-based methods to extract direct quo-
tations (Pouliquen et al., 2007; Krestel et al., 2008;
Elson and McKeown, 2010). In fact, rule-based
methods perform well for marked texts, especially
for direct quotations.

Pattern matching is a popular method in early
studies. Pouliquen et al. (2007); Elson and McK-
eown (2010) identify content, cue and source by
known quote-marks, pre-defined vocabulary, and
rules of pattern recognition. The difference is that
Elson and McKeown (2010) add machine learn-
ing methods to the quote attribution judgment so
that they can process complex text. O’Keefe et al.
(2012) use regular expressions to recognize quote-
marks to extract components, then use sequence
labeling to recognize quotation triplets.

Hand-built grammar is another popular rule-
based method. Krestel et al. (2008) design a sys-
tem by combining common verbs corresponding
to cue and hand-built grammar to detect construc-
tions that match six general lexical patterns. PIC-
TOR (Schneider et al., 2010) utilizes context-free
grammar to extract components of quotations.

2.2 Sequence Labeling Methods

Due to the development of deep learning, sequence-
labeling-based approaches have attracted atten-
tion (Pareti et al., 2013; Lee et al., 2020). To iden-
tify the beginning of a quotation, Fernandes et al.
(2011) use sequence labeling with features includ-
ing part-of-speech and entity features generated by
a guided transformation learning algorithm. Then
they use regular expressions to recognize the con-
tent within quotations. Pareti et al. (2013) follow a
similar idea but use CRF to decode the label. Lee
et al. (2020) further use BERT to encode the text
and CRF to decode the label on a non-public Chi-
nese news dataset. However, these models cannot
well handle quotations with complicated structures.
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Figure 2: The architecture of CofeNet. Enhanced Cell is detailed on the right-hand side. (best viewed in color)

3 CofeNet Model

Figure 2 depicts the architecture of CofeNet. It
consists of three modules: Text Encoder, Enhanced
Cell, and Label Assigner. Text encoder is used to
encode the input text to get hidden representations.
Then, the enhanced cell is capable of building a
representation considering the trait of quotations in-
cluding variable-length and complicated-structured
components. Last, the label assigner is to assign la-
bels “B-source”, “B-cue”, “B-content”, “I-source”,
“I-cue”, “I-content” and “O”, with BIO scheme.

3.1 Text Encoder
CofeNet is generic and can be realized by popular
encoders such as LSTM (Hochreiter and Schmid-
huber, 1997), CNN (Kim, 2014), Recursive Neural
Network (Socher et al., 2011), and BERT (De-
vlin et al., 2019a). Unless otherwise specified,
CofeNet denotes the model using BERT (Devlin
et al., 2019b) as the encoder.

Given input text, hidden states of words are for-
mulated by:

{h1, h2, . . . , hN} = Encoder({x1, x2, . . . , xN}),
where, xi is the i-th word of input, and Encoder
denotes the Text Encoder. The hidden state hi
denotes the representation of i-th word xi while
encoding the preceding contexts of the position.

3.2 Enhanced Cell
As aforementioned, the challenge of quotation ex-
traction is to extract the complicated-structured

components with variable lengths. To this end,
we design the enhanced cell with composer layer,
gate layer, and attention layer, to study the seman-
tic representations of variable-length components.
At the same time, we also try to utilize contextual
information and predicted labels.

Shown in Figure 2, the composer is used to re-
format the input information to include the for-
mer labels yi−k, . . . , yi−1, the former hidden states
hi−m, . . . , hi−1, the current state hi, and the latter
states hi+1, . . . , hi+n. In this way, our model is
able to consider a long span with different struc-
tures in a more coherent manner on top of encoded
word representations. In general, the influence of
different inflow information is different. To this
end, we use a gate mechanism to control each el-
ement of input representations, and an attention
mechanism to weigh the input representations at the
vector level. Through the two mechanisms, we get
a refined representation so that we could hold the
complicated-structured and variable-length compo-
nents of quotations. Next, we detail the workflow
of the enhanced cell.

Composer Layer. The composer contains a
label embedding unit and a linear unit to re-
format the inflow information: the former la-
bels {yi−k, . . . , yi−1}, the former hidden states
{hi−m, . . . , hi−1} of previous m words, the cur-
rent state hi of the current word xi, and the latter
states {hi+1, . . . , hi+n} of latter n words.

First, the enhanced cell contains a label embed-
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ding unit, which is able to select the embedding of
the given label, formulated by:

ei = Emb(yi), (1)

where Emb denotes the mentioned label embedding
unit. The predicted label of word i is yi and the em-
bedding of yi is ei. Taking the former k predicted
labels into consideration, we get the former labels’
representations [ei−k, . . . , ei−1] by concatenation,
which is shown as a rectangle in green background,
in the Enhanced Cell in Figure 2.

Intuitively, contextual information is important
for us to predict the label of the current input word.
We take the following context through simple but
effective linear layers: the former predicted k la-
bels, the former m words, the current word i, and
the latter n words.

hyi = GELU([ei−k, . . . , ei−1]Wy + by) (2)

hfi = GELU([hi−m, . . . , hi−1]Wf + bf ) (3)

hci = GELU(hiWc + bc) (4)

hli = GELU([hi+1, . . . , hi+n]Wl + bl) (5)

In the above formulation, the hidden states
{hi−m, . . . , hi, . . . , hi+n} and label embeddings
{ei−k, . . . , ei−1} are the input. Wy,Wf ,Wc,Wl

and by, bf , bc, bl are the parameters of the linear
layers. Here, we adopt GELU as the active func-
tion. hyi , h

f
i , h

c
i , h

l
i denote the farther hidden states

of the former labels, the former words, the current
word and the latter words, respectively.

Gate Layer. The influence of different contexts
is different. Hence, we use a gate mechanism to
control the inflow hidden states at the element level.
Inspired by Hochreiter and Schmidhuber (1997),
we design a gate layer in the enhanced cell:

ryi = hyi ⊙ sigmoid([hyi , h
c
i ]W

z
y + bzy) (6)

rfi = hfi ⊙ sigmoid([hyi , h
c
i ]W

z
f + bzf ) (7)

rci = hci ⊙ sigmoid([hyi , h
c
i ]W

z
c + bzc) (8)

rli = hli ⊙ sigmoid([hyi , h
c
i ]W

z
l + bzl ) (9)

In the above formulation, ryi , rfi , rci , and rli denote
the adjusted states of the former labels, the former
words, the current word, and the latter word repre-
sentation, respectively. The operation ⊙ denotes
element-wise product. W z

y , W z
f , W z

c , W z
l , and bzy,

bzf , bzc , b
z
l are the parameters. We use sigmoid to

adjust each element of the inflow representations.

Attention Layer. Inspired by Wang et al. (2016);
Yang et al. (2016); Wang et al. (2018); Lin et al.
(2019); Meng et al. (2022), we use an attention
mechanism to attend the important part of ryi , rfi ,
rci , and rli. Since our target is to predict the label of
the current word, we use the concatenation of hyi
and hci to attend the four vectors by

αy, αf , αc, αl = softmax([hyi , h
c
i ]Ww + bw),

(10)
where αy, αf , αc, and αl are the weights for ryi , rfi ,
rci , and rli respectively. Ww and bw are the param-
eters. In the attention layer, softmax function is
used to calculate weights. Then, the current word
representation ri is obtained via:

ri = αyr
y
i + αfr

f
i + αcr

c
i + αlr

l
i (11)

To summarize, the Enhanced Cell uses the gate
and attention layers with contextual information
(i.e., former labels, former words, current word,
and latter words) to handle complicated-structured
components with variable lengths. Specifically,
to sense continuous span, we use attention layer
by attending contextual information at the vec-
tor (macro) level, by using former labels, and the
former, current, and latter word(s). Thus, the model
avoids undesirable interruption within an instance.
We also use the gate layer to control contextual
information at the element (micro) level, especially
former labels. Further, thanks to the ability of fine
control, the gate layer is capable of avoiding illegal
patterns, e.g., “O” followed by “I-*”.

3.3 Label Assigner
After getting the hidden representation of the cur-
rent word, we use label assigner module to compute
a probability distribution of the current label.

Briefly speaking, in label assigner, we use
softmax classifier to calculate the distribution Pi
of the current word i. Then argmax is used to as-
sign a label of the current word. The two operations
can be formulated as

Pi = softmax(riWp + bp), (12)

yi = argmax(Pi), (13)

where Wp and bp are the parameters.

3.4 Training Objective
The proposed CofeNet model could be trained in
an end-to-end way by backpropagation. We adopt
the cross-entropy objective function that has been
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used in many studies (Tang et al., 2015; Wang et al.,
2016, 2019).

Sequence Labeling Objective. Similar to se-
quence labeling tasks, we evaluate the label of all
words for each given training instance. Recall that
our objective is to predict the label of each word in
the given instance. The unregularized objective L
can be formulated as cross-entropy loss:

L(θ) = −
∑

i

∑

j

lji log(P
j
i ) (14)

For a given training instance, lji is the ground truth
of label j for word i. Correspondingly, Pji is the
probability of label j for word i. θ is the parameter
set.

4 Experiment

We now evaluate the proposed CofeNet on two
public datasets (i.e., PolNeAR and Riqua), and
one proprietary dataset (i.e., PoliticsZH) against
baselines. The implementation details and param-
eter settings are presented in Appendix A. On all
datasets, we train the model with the training set,
tune hyperparameters on the validation set, and
report performance on the test set.

4.1 Datasets

PolNeAR. Political News Attribution Relations
Corpus (PolNeAR) (Newell et al., 2018) is a corpus
of news articles in English, on political candidates
during US Presidential Election in November 2016.
PolNeAR annotations are univocal, meaning that
each word has only one label (source, cue, content,
or none). The average number of tokens is 46.

Riqua. RIch QUotation Annotations (Riqua) (Pa-
pay and Padó, 2020) provides quotations, including
interpersonal structure (speakers and addressees)
for English literary. This corpus comprises 11
works of 19th-century literature that are manually
annotated for direct and indirect quotations. Each
instance, typically a sentence, is annotated with its
source, cue, and content. The average number of
tokens in this corpus is 129, longer than PolNeAR.

PoliticsZH. Chinese Political Discourse (Politic-
sZH) contains politics and economics news col-
lected from mainstream online media of China in-
cluding Xinhua Net1. The news are in Chinese and
the average length of input is 69 tokens, longer than
PolNeAR but shorter than Riqua.

1http://news.cn/

Table 1: The statistics of three datasets. “Ave. len.”
refers to “Average length”.

Dataset
Number of sentences Ave. len. in tokens

Train Valid Test Source Cue Content

PolNeAR 17,397 1,925 1,814 3.27 1.88 14.49
Riqua 1,604 208 105 1.38 1.08 20.65
PoliticsZH 10,754 1,344 1,345 3.08 1.80 43.47

Table 1 presents the statistics of the three
datasets. We observe that the numbers of instances
of PolNeAR and PoliticsZH are at the order of 10k,
and the Riqua is at 1k. The length of source and
cue is less than 5 tokens. The length of content is
greater than 10, even 40 tokens. Note that for all
three datasets, the length of content is much longer
than source and cue.

4.2 Compared Methods

To provide a comprehensive evaluation, we ex-
periment on both deep learning (i.e., CNN, GRU,
(Bi)LSTM, BERT, and BERT-CRF), and traditional
methods (i.e., Rule and CRF).

Rule. O’Keefe et al. (2012) uses rules including
entity dictionary, reported speech verbs, and special
flag characters to extract components of quotations.

CoreNLP. CoreNLP (Vu et al., 2018) contains
quote extraction pipeline which deterministically
picks out source and content from a text while ig-
noring cue.

CRF. Lafferty et al. (2001) present CRF to label
sequence by building probabilistic models.

CNN. CNN (LeCun et al., 1995), a simple and
parallelized model, can be independently adopted
for sequence labeling tasks (Xu et al., 2018).

(Bi)LSTM. LSTM (Hochreiter and Schmidhuber,
1997) is able to exhibit dynamic temporal behavior
due to its well-designed structure. We use it and its
variants, i.e., Bidirectional LSTM (BiLSTM).

GRU. GRU is a slightly more dramatic variation of
LSTM (Cho et al., 2014).

BERT(-CRF). BERT is designed to pre-train deep
bidirectional representations from unlabeled text
by jointly conditioning on both left and right con-
texts (Devlin et al., 2019a).

4.3 Evaluation Metrics

The components of quotations are variable-length
and complicated. As a result, it requires more spe-
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Table 2: The F1 and J(accard) of methods on PolNeAR, Riqua and PoliticsZH datasets. The results marked with ∗

are obtained by calling the CoreNLP toolkit package directly.

Dataset Model
Source Cue Content

F1-E. F1-B. J F1-E. F1-B. J F1-E. F1-B. J

PolNeAR

Rule 10.7 13.0 8.8 22.8 25.3 14.4 5.6 10.5 6.1
CoreNLP∗ 13.9 21.3 11.1 - - - 17.5 18.7 12.8
CRF 50.6 56.2 42.1 53.4 63.3 44.1 28.6 50.9 42.3
CNN 52.7 65.9 45.1 58.4 67.8 49.4 16.2 60.6 30.2
GRU 46.5 58.2 36.7 59.1 68.1 48.8 51.3 65.0 51.3
BiLSTM 64.1 74.4 56.8 63.3 72.6 55.1 53.4 67.3 53.7
BERT 81.1 86.2 74.8 74.0 81.1 67.4 68.9 78.7 70.0
CofeNet 83.2 87.1 76.4 75.3 82.3 69.4 72.9 79.6 73.2

Riqua

Rule 16.8 16.8 11.2 36.5 36.5 22.3 0.0 2.4 2.4
CoreNLP∗ 22.8 22.8 17.9 - - - 63.8 63.8 46.9
CRF 46.9 51.0 32.9 59.6 65.7 46.6 42.7 85.9 62.2
CNN 52.7 59.1 39.6 85.2 85.2 74.2 45.2 95.4 58.5
GRU 55.8 62.9 43.4 77.1 77.1 62.8 92.5 95.2 89.6
BiLSTM 56.4 64.1 44.5 85.4 85.4 74.4 92.2 95.9 90.3
BERT 74.5 77.9 62.4 88.9 88.9 80.0 94.3 96.6 92.9
CofeNet 81.8 84.3 72.6 89.2 89.2 80.4 94.4 97.1 94.1

PoliticsZH

Rule 78.8 79.3 66.8 80.3 81.2 69.7 0.4 7.0 3.7
CoreNLP∗ 38.1 39.5 24.3 - - - 0.2 2.2 4.3
CRF 81.6 84.0 72.2 80.0 80.4 68.5 45.7 49.1 66.3
CNN 82.5 87.8 76.5 81.4 83.6 72.1 35.0 74.5 46.7
GRU 85.5 88.3 78.1 82.1 84.6 73.6 65.7 79.8 71.5
BiLSTM 87.5 91.3 83.3 86.2 88.6 79.9 70.3 81.8 74.9
BERT 92.6 93.7 88.2 89.5 90.8 84.0 73.7 83.6 84.4
CofeNet 93.7 94.4 89.8 90.3 91.1 85.4 78.0 86.9 88.7

cific metrics. To this end, we evaluate the perfor-
mance of models using our proposed “Jaccard”, in
addition to “Exact Match” and “Begin Match”.

Exact Match. To measure the overall prediction at
the instance level, we propose Exact Match index
to quantify whether the multi-label prediction ex-
actly matches the annotation. In the experiments,
we use accuracy, precision, recall, and F1 to evalu-
ate the exact match performance.

Begin Match. Exact match is harsh, especially
long text span. Generally, the length of source
and cue is short while the content is much longer.
As a result, exact match is hard for content. To
this end, we use begin match to evaluate only the
beginning location for text span matching (Lee and
Sun, 2019).

Jaccard. For text span matching, an important
index is a ratio of the overlapping span over the
total span. Thus we use “Jaccard” index to evaluate
the performance of model in this aspect. Given the
groundtruth text span Tg and its predicted text span
Tp, we can calculate the Jaccard index J through

J =
|Tp ∩ Tg|
|Tp ∪ Tg|

. (15)

4.4 Main Results

Table 2 lists the F1 and J(accard) performance on
the three datasets. In this table, the best results
are in boldface and the second-best are underlined.
We report results by exact match, begin match, and
Jaccard, of all models for the three components of
quotations. Here, F1-E. and F1-B. refer to the F1
based on exact match and begin match, respectively.
The precision, recall and accuracy are shown in the
page2 due to space limitation. Our CofeNet model
is listed in the last row of each dataset.

Table 2 shows that our CofeNet performs the best
against all baselines. BERT achieves the second-
best, followed by other deep-learning-based mod-
els. Note that due to the settled human-written
rules, the performance of Rule and CoreNLP is not
stable. For source and cue, on PoliticsZH, the per-
formance is good due to more comprehensive rules.
However, the rules on the other two datasets do
not fit the domain well. As a comparison, content
is on the opposite side. For content, the precision
and recall of CoreNLP are 97.2 and 47.5 on Riqua
dataset, which is better than PolNeAR. PoliticsZH
dataset shows the worst performance. This is be-

2https://thuwyq.github.io/docs/
cofenet-detail-exp.pdf
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Table 3: The F1 and J of methods on PolNeAR. B.L. and B.L.C. denote BiLSTM and BiLSTM+CRF respectively.

Model
Source Cue Content

F1-E. F1-B. J F1-E. F1-B. J F1-E. F1-B. J

CNN 52.7 65.9 45.1 58.4 67.8 49.4 16.2 60.6 30.2
w. CRF +8.3 +4.1 +8.0 +4.3 +2.2 +3.6 +25.8 +1.9 +19.3
w. Cofe +9.4 +3.9 +8.1 +3.7 +2.1 +3.2 +31.8 +3.1 +21.9

GRU 46.5 58.2 36.7 59.1 68.1 48.8 51.3 65.0 51.3
w. CRF +19.3 +13.7 +19.3 +6.2 +3.9 +6.8 +3.8 +0.8 +6.2
w. Cofe +20.5 +14.6 +19.7 +7.2 +4.6 +7.5 +6.9 +1.9 +6.2

LSTM 46.1 56.4 35.7 58.6 67.5 47.9 50.4 65.5 50.8
w. CRF +19.4 +14.7 +19.4 +6.4 +4.2 +6.7 +4.6 +0.3 +5.4
w. Cofe +21.8 +16.3 +20.9 +6.5 +4.3 +7.1 +7.6 +0.7 +6.0

BiLSTM 64.1 74.4 56.8 63.3 72.6 55.1 53.4 67.3 53.7
w. CRF +5.5 +1.3 +4.5 +3.4 +1.2 +2.6 +5.6 +2.1 +6.6
w. Cofe +7.1 +3.7 +7.0 +3.7 +1.3 +3.4 +8.8 +3.4 +9.1

BERT 81.1 86.2 74.8 74.0 81.1 67.4 68.9 78.7 70.0
w. CRF +1.1 +0.3 +0.8 +0.9 +0.9 +1.5 +2.1 +0.2 +2.8
w. CNN -0.3 +0.6 +0.5 +0.0 +1.0 +1.2 +0.7 +0.3 +0.8
w. LSTM +0.5 +0.4 +0.4 -0.3 0.0 +0.1 +2.0 +0.3 +1.0
w. B.L. -0.6 -0.1 -0.5 -0.5 +0.7 +0.5 +0.7 -0.2 -0.6
w. B.L.C. +1.4 +0.3 +1.2 +1.4 +0.9 +1.8 +2.9 +0.2 +2.4
w. Cofe +2.2 +0.9 +1.7 +1.3 +1.2 +2.0 +4.0 +1.0 +3.2

cause CoreNLP uses quote marks to extract quota-
tions. The number of direct quotations (i.e., quoted
content) on PolNeAR and Riqua is large, while
the PoliticsZH is small. This shows that the rule-
based methods cannot effectively identify indirect
quotations.

The level of difficulty in extracting source, cue,
and content is different. As a result, the perfor-
mances of source and cue are better than the dif-
ficult content. This is expected because content
is longer and complex in semantics. For example,
the content may contain another source, cue and
content. We design gate and attention mechanisms
to fit those so that our model performs well.

4.5 Comparison with CRF and BERT

Comparison with CRF. CRF is a popular ap-
proach to handle sequence labeling problems, e.g.,
NER (Ritter et al., 2011; Dong et al., 2016). We
compare CofeNet with CRF by changing the en-
coder, i.e., LSTM w. Cofe denotes the Cofe using
LSTM as text encoder. Recall that CofeNet specifi-
cally refers to the model using BERT as encoder,
marked as BERT w. Cofe in Table 3. To make
the comparison comprehensively and deeply, our
comparisons between CRF and Cofe are based on
various mainstream models including CNN, GRU,
LSTM, BiLSTM, and BERT.

Table 3 details the comparison results on PolN-
eAR, and the results of the other two datasets are

reported in the page3. (i) Results show that both
Cofe and CRF perform better than basic models,
and Cofe-based models perform better than CRF-
based models. The comparison results suggest that
our model architecture fits well with dependent se-
quence labeling tasks. As designed, the enhanced
cell is capable of building the dependency relations
of labels. (ii) Another interesting observation from
the results is that if the basic model (e.g., GRU) is
simple, a larger improvement is achieved. On the
contrary, the improvement over BERT is relatively
small. It makes sense because the improvement is
harder when the performance is already at a very
high level. (iii) We also note that CofeNet performs
better than CRF on all components of quotations.

Comparison with BERT. BERT based models are
strong baselines for many tasks, particularly when
there are clear patterns. The performance of models
could be improved if we adopt a dependent encod-
ing method based on BERT. To this end, based on
BERT, we use decoders including CNN, LSTM,
BiLSTM, BiLSTM+CRF in addition to CRF. The
bottom area of Table 3 shows the results. Results
show that the improvements of decoders includ-
ing CNN, LSTM and BiLSTM are not significant
than BiLSTM+CRF. Despite this, our CofeNet per-
forms best. When meeting simple text span (e.g.,

3https://thuwyq.github.io/docs/
cofenet-detail-exp.pdf
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B-source I-source B-cue I-cue B-content I-content O
<Start> 0.235 0.000 0.016 0.000 0.249 0.000 0.500

B-source 0.000 0.538 0.419 0.000 0.002 0.000 0.041

I-source 0.001 0.777 0.161 0.000 0.004 0.000 0.057

B-cue 0.054 0.000 0.000 0.380 0.342 0.000 0.225

I-cue 0.030 0.000 0.000 0.549 0.358 0.000 0.062

B-content 0.005 0.000 0.016 0.000 0.003 0.944 0.031

I-content 0.009 0.000 0.005 0.000 0.001 0.942 0.043

O 0.032 0.000 0.015 0.000 0.024 0.000 0.929

(a) The transition matrix of groundtruth

B-source I-source B-cue I-cue B-content I-content O
<Start> -0.006 0.000 -0.001 0.000 0.023 0.000 -0.016

B-source 0.000 0.022 -0.030 -0.001 0.002 0.000 0.006

I-source -0.001 -0.006 -0.005 0.000 0.000 0.000 0.012

B-cue 0.006 0.000 0.000 -0.014 0.000 0.000 0.008

I-cue 0.003 0.000 0.000 0.025 -0.011 -0.003 -0.014

B-content -0.001 0.000 0.002 0.000 0.002 -0.008 0.004

I-content 0.000 0.000 0.001 0.000 0.000 -0.001 0.000

O 0.000 0.000 0.003 0.000 0.003 0.000 -0.005

(b) The margin between groundtruth and CofeNet

Figure 3: The transition matrix and the margin of
groundtruth and our model on PolNeAR.

Cue), the improvement of our proposed CofeNet is
relatively small (1.3 point improvement, F1-Exact
Match, on the Cue of PolNeAR dataset). When
it comes to complex text span (e.g., Content), our
model shows large improvement over BERT model
(4.0 points improvement, F1-Exact Match, on the
Content of PolNeAR dataset).

From the comparisons, we demonstrate that our
proposed CofeNet achieves the state-of-the-art per-
formance on quotation extraction. To reveal the
essence of CofeNet, we show the transition matrix
of labels, the analysis on attention mechanism, and
the ablation study in the next sections.

4.6 Label Transition Matrix

The probability transition matrix of labels reflects
the particular features of source, cue and content.
Thus we can use them to reveal the transition mech-
anism of labels. To this end, we calculate the label
transition matrix of groundtruth, and the margin
between groundtruth and CofeNet. Figure 3 de-
picts the detail on PolNeAR. In all subfigures, the
column denotes the previous label and the row rep-
resents the current label. The value of Figure 3(a)
denotes the transition probability of true labels,
and the value of Figure 3(b) is the margin between
the true and the predicted. As the word saying,
“〈Start〉” denotes the location before the first word,
“B-” and “I-” denote the beginning and the inside
of the source, cue and content, respectively. “O”
refers to the other words.

The transition matrix of groundtruth shown in
Figure 3(a) reveals the statistics of the PolNeAR
dataset. Recall that the key for quotation extraction

Label B-source B-cue I-cue B-content I-content O
0.03 0.11 0.29 0.16 0.18 0.01

0.13 0.18 0.20 0.18 0.27 0.06

0.75 0.65 0.47 0.56 0.48 0.90

0.09 0.05 0.05 0.11 0.07 0.02

Word <Start> trump has denied every allegation ,
Label O B-cue I-cue B-content I-content I-content I-content

0.03 0.17 0.28 0.15 0.10 0.10 0.13

0.06 0.17 0.21 0.19 0.31 0.31 0.27

0.89 0.61 0.45 0.57 0.48 0.51 0.49

0.02 0.05 0.05 0.10 0.11 0.08 0.12

Word and has promised to fight back once
Label I-content I-content I-content I-content O

0.13 0.12 0.13 0.14 0.01

0.27 0.27 0.26 0.27 0.05

0.51 0.53 0.53 0.52 0.92

0.09 0.07 0.08 0.07 0.02

Word the election is over .

𝜶!
𝜶𝒇
𝜶𝒄
𝜶𝒍

𝜶𝒚
𝜶𝒇
𝜶𝒄
𝜶𝒍

𝜶𝒚
𝜶𝒇
𝜶𝒄
𝜶𝒍

Figure 4: The attention weights of one test data from
PolNeAR.

is the recognition of the “Begin”. Hence, the mar-
gin of “Begin” is the compass for evaluating the
performance. We find that the maximum absolute
margin of “Begin” is −0.03, when the precious la-
bel is “B-source” and the current label is “B-cue”.
This is because the length of source is short, and
cue word often follows source word closely. This
proves that our model performs well even in diffi-
cult situations.

For BIO labeling scheme, the “I-source/cue/con-
tent” exists except the corresponding “B-*” exists.
As a result, the transition value of “I-” could show
the recognition ability of the model for those pat-
terns. Also, Figure 3(b) shows almost all margins
of those values are zeros. This reveals that our
model could study those key patterns well.

4.7 Analysis on Attention Mechanism

In our design, the utilization of inflow information
(e.g., former labels, previous words, current word,
and latter words) is the key for quotation extraction.
Figure 4 shows the weights from the attention layer
of one test instance in PolNeAR. To avoid the bias
of a single case, we do a global prediction for all
texts in the test dataset of PolNeAR attached in Ap-
pendix B. (i) The current word information has the
largest weight, as expected. For the prediction of
“I-source/cue/content”, the former labels and for-
mer words information are the most important roles
after the current word. It indicates that our model is
capable of utilizing the former labels and sequence
information as we designed. (ii) Another inter-
esting observation is that the weights of the latter
words’ information for predicting “B/I-content” are
about 0.1, which are greater than the other weights
in αl. As we mentioned before, the length of con-
tent is longer than source and cue, so the utilization
of latter information improves the performance of
long-span extraction more efficiently.
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Table 4: Ablation study on PolNeAR dataset.

Model
Source Cue Content

F1-E. F1-B. J F1-E. F1-B. J F1-E. F1-B. J

CofeNet 83.2 87.1 76.4 75.3 82.3 69.4 72.9 79.6 73.2
w.o. g.m. -1.0 -0.6 -0.9 -0.2 -0.2 -1.0 -0.8 -0.3 -1.2
w.o. a.m. -0.9 -1.4 -1.5 -0.2 -1.0 -1.3 -1.2 -0.8 -1.3
w.o. f.l. -2.4 -0.8 -1.5 -1.9 -0.5 -1.5 -2.5 -0.3 -2.7
w.o. f.w. -0.9 -0.6 -1.1 -0.1 -0.3 -0.9 -1.3 -0.8 -1.1
w.o. c.w. -2.0 -1.4 -2.0 -1.1 -1.0 -1.6 -1.4 -1.2 -1.2
w.o. l.w. -1.0 -0.9 -1.2 -0.4 -0.4 -0.6 -1.7 -1.4 -1.0

4.8 Ablation Study

The CofeNet model uses gate mechanism g.m. and
attention mechanism a.m. (see Section 3) to utilize
information including former labels f.l., former
words f.w., current word c.w., and latter words
l.w.. To study the effect of the two mechanisms
and on the four information sources, we conduct
ablation experiments on PolNeAR dataset.

Table 4 reports the results of this ablation study.
(i) As expected, all mechanisms and information
are useful for quotation extraction. For content, the
Jaccard performance degrades at least 1.0 points
after removing mechanisms or input information,
which is similar to source and cue. As a com-
parison, the performance drop on F1-E. and F1-
B. is significantly less than J . It is because the
structure of source and cue is simpler than content.
This phenomenon shows our CofeNet is particu-
larly suitable for extracting quotations with long
and complicated structures. (ii) When removing
attention, larger drops on exact match are observed
than removing gate. It reveals that attention is ef-
fective for begin match while gate prefers exact
match. (iii) Further, we explore the performance
of inflow information. The “w.o. f.w.” on Table 4
shows that the former words’ information is not so
important for the prediction of cue because the cue
is the shortest of all three components. The former
label and the current word, the latter words are im-
portant for all of the components. It proves that
the latter words’ information is key for the recogni-
tion of content. This fits with our observations in
Section 4.7.

5 Conclusion and Future Work

In this study, we design the CofeNet model for
quotation extraction with variable-length span and
complicated structure. The key idea of CofeNet
model is to use gate and attention mechanisms to
control the important information including former

labels, former words, current word and latter words
at the element and vector levels. Experiments show
that the proposed model achieves the state-of-the-
art performance on two public datasets PolNeAR
and Riqua and one proprietary dataset PoliticsZH.

For quotation analysis, the extraction of quota-
tion components is the first step. In our study, we
split a long text into short texts to ensure that one
instance contains one source, one cue and one con-
tent. Thus the recognition of quotation triplets from
long text (e.g., across instance) is one important
future work. Another important direction is to go
deep into the nesting phenomenon, which makes
the recognition harder.
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Appendix

A Implementation Details

We list the implementation details of CofeNet.

Table 5: CofeNet-BERT experimental configuration on
PolNeAR, Riqua and PoliticsZH datasets. The sampling
ratio is the value selection ratio of the former label dur-
ing training. The three values represent the proportions
of truth label, predict label and random label.

Training hyperparameters

Optimizer Adam
Learning rate except BERT 1e-3

Learning rate of BERT 5e-5

The hyperparameters of BERT

Encoder layer 12
Attention head 12

Hidden size 768
Intermediate size 3,072

The hyperparameters of CofeNet

Hidden size 100
Label embedding 100

Number of Former labels k 1
Number of Former words n 3
Number of Latter words m 3

Table 5 lists the same settings for the two public
datasets (i.e., PolNeAR and Riqua) and our propri-
etary dataset (i.e., PoliticsZH). The learning rate
for model parameters except BERT are 1e − 3,
and 5e − 5 for BERT. We use typical 12-layers
BERT (known as bert-base-uncased 4) as a basic
encoder for the two English datasets. For the Chi-
nese dataset PoliticsZH, we use bert-base-chinese 5.
The middle part of Table 5 shows the important
hyperparameters of BERT. There are other hyper-
paramters for CofeNet except BERT related. The
hidden sizes of word representation and label em-
bedding are 100. The number of former labels, for-
mer words, and latter words is 1, 3, and 3, respec-
tively. The different hyperparameter for CofeNet
is the batch size due to the GPU memory limita-
tion. During training, we set the batch sizes for
PolNeAR, Riqua and PoliticsZH to 15, 15 and 16,
respectively.

We use Adam (Kingma and Ba, 2015) as our
optimization method. CofeNet is implemented on
Pytorch (version 1.2.0). NLTK is used to segment
text. For BERT model, we invoke the pytorch-
transformers package (version 1.2.0). To ensure the

4https://s3.amazonaws.com/models.huggingface.co/bert/bert-
base-uncased-pytorch_model.bin

5https://s3.amazonaws.com/models.huggingface.co/bert/bert-
base-chinese-pytorch_model.bin

B-source I-source B-cue I-cue B-content I-content O
<Start> 0.045 - 0.115 - 0.119 - 0.059
B-source - 0.143 0.119 0.236 - - 0.037
I-source 0.021 0.166 0.121 0.201 0.145 0.172 0.030
B-cue 0.044 - - 0.244 0.152 - 0.035
I-cue 0.053 - - 0.233 0.163 0.158 0.048
B-content 0.031 - 0.094 - 0.106 0.105 0.032
I-content 0.022 - 0.085 0.178 0.080 0.096 0.021
O 0.056 - 0.170 0.290 0.136 0.199 0.138

(a) The weight αy for former labels ryi

B-source I-source B-cue I-cue B-content I-content O
<Start> 0.134 - 0.165 - 0.190 - 0.093
B-source - 0.171 0.194 0.201 - - 0.095
I-source 0.090 0.148 0.170 0.172 0.166 0.214 0.070
B-cue 0.164 - - 0.200 0.203 - 0.088
I-cue 0.158 - - 0.201 0.201 0.252 0.117
B-content 0.148 - 0.198 - 0.200 0.295 0.107
I-content 0.150 - 0.198 0.236 0.180 0.297 0.078
O 0.113 - 0.159 0.177 0.151 0.203 0.110

(b) The weight αf for former words rfi

B-source I-source B-cue I-cue B-content I-content O
<Start> 0.720 - 0.651 - 0.600 - 0.794
B-source - 0.638 0.639 0.522 - - 0.829
I-source 0.792 0.622 0.653 0.568 0.596 0.532 0.864
B-cue 0.682 - - 0.488 0.552 - 0.843
I-cue 0.690 - - 0.488 0.530 0.486 0.779
B-content 0.714 - 0.602 - 0.586 0.488 0.809
I-content 0.731 - 0.650 0.488 0.632 0.527 0.869
O 0.754 - 0.620 0.473 0.637 0.512 0.705

(c) The weight αc for current word rci

B-source I-source B-cue I-cue B-content I-content O
<Start> 0.100 - 0.069 - 0.091 - 0.053
B-source - 0.048 0.048 0.041 - - 0.039
I-source 0.097 0.064 0.057 0.059 0.093 0.082 0.035
B-cue 0.110 - - 0.067 0.093 - 0.034
I-cue 0.099 - - 0.077 0.107 0.103 0.055
B-content 0.107 - 0.106 - 0.108 0.112 0.052
I-content 0.097 - 0.067 0.097 0.108 0.080 0.032
O 0.077 - 0.052 0.061 0.076 0.086 0.048

(d) The weight αl for latter words rli

Figure 5: The weights for hidden states on PolNeAR.

reliability of experimental results, we use the same
transformer package with the same initialization
parameters in BERT, BERT-CRF and CofeNet.

B Global Analysis on Attention
Mechanism

In our design, the utilization of inflow information
is the key for quotation extraction. Recall that the
information includes the former labels, the previ-
ous words, the current word and the latter words.
Hence, we use the attention to reveal the operating
principle of the model. Figure 4 has shown the
weights from the attention layer of one individual
case from test set of PolNeAR dataset. To avoid the
bias of a single case, we do a global prediction for
all texts in test set of PolNeAR shown in Figure 5.
The observations from Figure 5 are similar to that
reported in Section 4.7, so we will not repeat them.
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Abstract

Medical Relation Extraction (MRE) task aims
to extract relations between entities in medi-
cal texts. Traditional relation extraction meth-
ods achieve impressive success by exploring
the syntactic information, e.g., dependency
tree. However, the quality of the 1-best de-
pendency tree for medical texts produced by
an out-of-domain parser is relatively limited so
that the performance of medical relation extrac-
tion method may degenerate. To this end, we
propose a method to jointly model semantic and
syntactic information from medical texts based
on causal explanation theory. We generate de-
pendency forests consisting of the semantic-
embedded 1-best dependency tree. Then, a task-
specific causal explainer is adopted to prune
the dependency forests, which are further fed
into a designed graph convolutional network
to learn the corresponding representation for
downstream task. Empirically, the various
comparisons on benchmark medical datasets
demonstrate the effectiveness of our model.

1 Introduction

Medical relation extraction (MRE) refers to iden-
tifying relations among entities from medical lit-
erature and reports. It plays a very important role
in downstream tasks such as medical knowledge
graph construction (Li et al., 2020; Rotmensch
et al., 2017) and biomedical knowledge discov-
ery (Quirk and Poon, 2016). On the other hand,
as the number of medical literature increases, it
becomes increasingly important to automatically
discover the relation among entities in the litera-
ture (Peng et al., 2017).

The addition of syntactic structure has been
demonstrated to be beneficial for various natural
language processing tasks (Zaremoodi and Haf-
fari, 2017; Zhou et al., 2005; Le and Zuidema,

∗Equal contribution.
†Corresponding author.

2015). As a type of syntactic structure, the de-
pendency tree capturing long-distance connections
between words can indeed improve benchmark re-
lation extraction methods (Tian et al., 2021; Chen
et al., 2021; Zhang et al., 2018; Sun et al., 2020).
We demonstrate an example in Figure 1. Specifi-
cally, the 1-best dependency tree of the sentence
“Aminopropylindenes derived from Grundmann’s
ketone as a novel chemotype of oxidosqualene
cyclase inhibitors” in the CPR dataset. Amino-
propylindenes and oxidosqualene cyclase are the
entities, and the relation between them is “down
regulator”, denoted as “CPR:4”.

However, in the medical field, the quality of the
1-best dependency tree generated by the out-of-
domain parsers, e.g., parsers for the news domain,
is relatively deficient. Generally, the main verb
in a sentence is treated as the root node in the de-
pendency tree, while, as the example shown in
Figure 1, the entity Aminopropylindenes, appar-
ently a noun, is treated as the root node. To solve
this problem, multiple methods with dependency
forests have been proposed (Song et al., 2019; Jin
et al., 2020; Guo et al., 2021). Such approaches
focus on redesigning the parser or substituting the
parser with a semantic encoder, but the semantic
and dependency tree syntactic information is used
in a biased manner. Furthermore, the causality
between the edges in the dependency forests and
the performance of the model is not explored by
benchmark methods.

To this end, we propose a novel approach,
namely Causality-Pruned semantic dependency for-
est Graph Convolutional Network (CP-GCN). To
acquire the dependency forests enriched with se-
mantic and syntactic information in an unbiased
manner, we first obtain the 1-best dependency tree,
as the sentence syntactic information, which is gen-
erated by the out-of-domain parser, and then fuse
the syntactic information with the semantic infor-
mation by using a switch gate network. The seman-
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Aminopropylindenes derived from Grundmann 's ketone as a novel chemotype of oxidosqualene cyclase inhibitors .

pobj

prep

poss

caseacl

punct

case

det

amod

case

compound

compound

nmod

nmod

Figure 1: 1-best dependency tree for a biological sentence generated by the parser. Aminopropylindenes and
oxidosqualene cyclase are the entities in the sentence.

tic information is captured in different representa-
tion subspaces using multi-head attention (Vaswani
et al., 2017). To extract dependency forests’ edges
that are causally related to the MRE performance,
we construct a causal explanation dataset based on
Granger causality (Granger, 1969, 1980) and train a
task-specific causal explainer. We then obtain task-
specific explanations of the dependency forests
generated by the trained explainer and prune the
dependency forests by following the correspond-
ing explanations, which aim to eliminate the task-
irrelevant information from the dependency forests.
The pruned dependency forests are encoded by
DCGCNs (Guo et al., 2019b) for MRE task. Empir-
ically, the comparisons demonstrate that CP-GCN
achieves state-of-the-art on benchmark relation ex-
traction tasks, e.g., for the sentence-level relation
extraction task, our model obtains 67.3 and 92.9
scores on CPR and PGR, respectively. The contri-
butions are summarized as follows:

• We propose an approach to generate depen-
dency forests enriched with semantic and syn-
tactic information in an unbiased manner.

• We propose a causal pruning approach to re-
move task-irrelevant information from the de-
pendency forests, which is achieved by using
a task-specific explainer trained on a causal
explanation dataset for the target MRE task.

• CP-GCN achieves state-of-the-art on bench-
mark MRE datasets, and the ablation compar-
isons further support the effectiveness of each
part of our model.

2 Related Work

2.1 Medical Relation Extraction
Previous work performs the MRE task by construct-
ing the 1-best dependency tree of sentences (Peng
et al., 2017; Song et al., 2018). However, the ac-
curacy of the 1-best dependency tree generated by
the out-of-domain parser is relatively low, resulting

in a fall in MRE performance. Therefore, (Song
et al., 2019) proposes to use dependency forests to
solve this problem, which uses EDGEWISE and
KBESTEISNER algorithm to pick edges to con-
struct dependency forests. (Jin et al., 2020) encodes
all effective dependency trees generated by a parser
into dependency forests. (Guo et al., 2021) utilizes
multi-head attention and Kirchhoff’s Matrix-Tree
Theorem (MMT) (Koo et al., 2007) to automati-
cally generate latent dependency forests without
the usage of any parser. In general, (Song et al.,
2019) and (Jin et al., 2020) focus more on the syn-
tactic information in the 1-best dependency tree
generated by the out-of-domain parser, while (Guo
et al., 2021) directly discards the syntactic informa-
tion and focuses only on the semantic information.

2.2 Causal Explanation

Causal explanation is designed to explain the im-
portance of each module in a machine learning
model on the prediction, which receives increas-
ing attention recently (Datta et al., 2016; Schwab
and Karlen, 2019; Lin et al., 2021). There are sev-
eral viable forms of causality, including Granger
causality (Granger, 1969), causal Bayesian net-
works (Pearl, 1985), and structural causal mod-
els (Pearl, 2009). (Chattopadhyay et al., 2019) pro-
poses an attribution method based on the first princi-
ples of causality. (Schwab and Karlen, 2019) mod-
els the explanation task of image deep learning
models as a causal learning task and proposes a
causal explanation model based on Granger causal-
ity. (Lin et al., 2021) proposes a framework for
explaining graph neural networks using the first
principles of Granger causality.

3 Preliminaries

3.1 Task Definition

Our task is to extract relation between entities
in a sentence, focusing on both binary relation
extraction and ternary relation extraction. For-
mally, the input to our task is a sentence S =
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{w1, w2, . . . , wn} with n words and wi denotes
the i-th word in the sentence. S is annotated with
entity mentions E1 and E2

1. The output is the
relation between entities from a predefined relation
set R = {r1, r2, . . . , rm}, where m denotes the
number of relations.

3.2 Densely-Connected Graph Convolutional
Networks

Graph Neural Network is a set of models that can
effectively encode the information of graph struc-
ture, the classical models including Graph Atten-
tion Networks (GATs) (Velickovic et al., 2017),
Graph Convolutional Networks (GCNs) (Kipf and
Welling, 2016), etc. Densely-Connected Graph
Convolutional Networks (DCGCNs) (Guo et al.,
2019b) is a variant of GCNs, which introduces
dense connections to GCNs. Thus being able to
build multi-layer GCNs models with a large depth
and learn richer information than the shallower
GCNs models. More specifically, DCGCNs differs
from GCNs in that the embedding of node v in
the l-th layer receives information from all the pre-
ceding layers, which can be formulated as follows:

h(l)
v = ρ


 ∑

u∈N (v)

W (l) × g(l)u + b(l)


 (1)

where × denotes matrix multiplication, h(l)
v is the

embedding of node v in the l-th layer, ρ is an ac-
tivation function, N (v) denotes the neighbours of
node v, W (l) and b(l) are the weight matrix and
bias vector of the l-th layer respectively, and g(l)u
indicates the information about node u from all the
preceding layers. Mathematically, g(l)u can be cal-
culated by concatenating the initial embedding xu
and the node embedding h(1)

u ; . . . ;h
(l−1)
u produced

in layer 1, . . . , l − 1, respectively.

g(l)u = [xu;h
(1)
u ; . . . ;h(l−1)

u ] (2)

3.3 Dependency Tree Generation
To construct the 1-best dependency tree, we use
Standard CoreNLP Toolkits (SCT) (Manning et al.,
2014) to obtain the dependency tree T for each
input sentence S and represent T by a adjacency
matrix T = (ti,j)n×n2, where ti,j is the depen-
dency type (e.g., dobj) between wi and wj , e.g.,

1E1, E2 and E3 for ternary relation extraction.
2The adjacency matrix T adds the self-loop of each word

to the dependency tree T with the “self” dependency type and
regards the dependencies between words as unoriented.

ti,j = 0 if the connection between wi and wj do
not exist. Then, we encode ti,j to the correspond-
ing embedding cti,j with a learnable matrix, and use
C = (cti,j)n×n to denote the syntactic matrix.

4 Methodology

In this section, we introduce our proposed CP-GCN
model shown in Figure 2.

4.1 Causality-Pruned Semantic Dependency
Forest Generator

In the medical domain, the quality of the 1-best
dependency tree generated by the out-of-domain
parsers is relatively deficient. Thus, we propose
the Causality-pruned Semantic dependency Forest
Generator (CSFG) to generate dependency forests
enriched with syntactic and semantic information
and derive task-relevant information from them.

4.1.1 Semantic Embedding Module

In order to construct dependency forests that com-
bine both semantic and syntactic information in
an unbiased manner, we propose a semantic em-
bedding module to incorporate the semantic infor-
mation of the sentence into the 1-best dependency
tree.

Specifically, we model semantic information us-
ing the multi-head attention mechanism (Vaswani
et al., 2017) with N heads, which captures the se-
mantic relevance between words in a sentence. For
the p-th head, we compute the semantic matrix Ap

by using the query vectorQ and the key vectorK:

Ap =

(
Q×WQ

)
×
(
K ×WK

)⊤
√
d

(3)

whereWQ andWK are learnable transformation
matrices for Q and K, respectively, and d is the
dimension ofK.

Finally, the p-th dependency forest can be ob-
tained by summing the syntactic matrix C and the
semantic matrix Ap with a switch gate network and
a softmax function:

Fp = softmax ((1− α) Ap + αC) (4)

where α ∈ [0, 1] is a hyper-parameter to balance
the syntactic matrix C and the semantic matrix
Ap, and Fp is the adjacency matrix of the p-th
dependency forest.
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Figure 2: The overall architecture of CP-GCN with an example input sentence (“Cadmium” in red and “NADPH
oxidase” in blue are two entities of the sentence). The model consists of three components: 1) BiLSTM Encoder
obtains the sentence representation with a BiLSTM model. 2) CP-GCN is the main component of the model which
contains M identical blocks, and each block contains two modules. Causality-Pruned Semantic Dependency Forest
Generator combines the dependency tree and the multi-head attention with N heads to generate dependency forests
and then prunes them using a task-specific causal explainer. Dependency Forest Encoder uses DCGCNs to encode
the pruned dependency forests. 3) Relation Prediction module predicts relations using global and local max pooling
and feedforward neural networks (FFNN).

4.1.2 Task-Specific Causal Pruning Module

In this part, our major objective is to extract depen-
dency forests’ edges that are causally related to the
MRE performance. Inspired by (Lin et al., 2021),
we propose a method consisting of three processes
for pruning dependency forests based on Granger
causality. The first two processes aim to train a
task-specific causal explainer, which are illustrated
in Figure 3. The causal pruning process prunes
the dependency forests with the trained causal ex-
plainer.

Causal explanation generation process. This
process is designed to construct a causal expla-
nation dataset for a specific MRE task. Given a
pre-trained MRE model denoted by fMRE(·) and
the gold-standard relation r of the sentence S. We
start by using the semantic embedding module of
the pre-trained MRE model to generate N ∗ M
dependency forests of the sentence S, denoted by
G = {G1,G2, . . . ,GN∗M}. For any dependency
forestGi, it can be represented asGi = (Fi,H0),
where Fi is the fully-connected adjacency matrix
indicating the weights of the edges, and H0 is the
matrix of node features, which is the same for each
dependency forest. Then, we need to extract the top
K edges from the dependency forests that are most
relevant for predicting relation r. We implement
this based on Granger causality.3

3Granger causality describes the causal relationships be-
tween two (or more) variables. Specifically, if we are bet-
ter able to predict variable ỹ using all information U than
excluding information about variable x, which means that

Specifically, we use LG to denote the model er-
ror of fMRE(·) when taking the N ∗M dependency
forests into account, and LG\{ek} represents the
model error excluding the edge ek from each de-
pendency forest. According to Granger causality,
we can quantify the causal contribution of edge ek
to our MRE task by the change in model error after
removing edge ek:

∆ek = LG\{ek} − LG (5)

where ∆ek represent the causal contribution of
edge ek.

To calculate LG and LG\{ek}, we first take the
N ∗M dependency forests G and G \ {ek} as the
input to the pre-trained model, respectively, and
obtain their corresponding outputs rG and rG\{ek}:

rG = fMRE
(
F1, . . . ,FN∗M

)
(6)

rG\{ek} = fMRE
(
F1 \ {ek}, . . . ,FN∗M \ {ek}

)

(7)

We then use the cross-entropy loss function to
measure the model error, denoted as CE.

LG = CE (r, rG) (8)

LG\{ek} = CE
(
r, rG\{ek}

)
(9)

Finally, we filter out the edges with the top K
causal contributions to form the causal explana-
tion. In summary, our causal explanation dataset

the variable x helps predict variable ỹ. Then we say that x
Granger-causes ỹ (Granger, 1980), denoted by x→ ỹ.
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Figure 3: Illustration of training a task-specific causal explainer. Causal explanation generation process generates the
causal explanations for the dependency forests using a pre-trained MRE model and the designed rules. Task-specific
explainer training process trains a task-specific causal explainer with the generated causal explanation dataset.

is constructed with dependency forests and the cor-
responding causal explanations. Therefore, such a
dataset is relevant to the specific MRE task.

Task-specific explainer training process. This
process generates a task-specific explainer based
on the causal explanation dataset. Following (Lin
et al., 2021), we use an encoder-decoder architec-
ture as the explainer. The encoder consists of sev-
eral graph convolutional layers to aggregate infor-
mation between neighbors in the dependency forest
and learn node features. The decoder uses the inner
product operation to obtain the explanation matrix.
Specifically, the explanation matrix forGi can be
obtained by the explainer as:

Xi = σ
(
fGCN

(
Fi,H0

)
× fGCN

(
Fi,H0

)⊤)

(10)

where fGCN(·) denotes graph convolutional layers,
Xi is the explanation matrix and each value in
Xi represents the contribution of its corresponding
edge to the prediction relation r, and σ is the activa-
tion function. Causal pruning process. Based on
the pre-trained explainer, task-relevant explanation
of the dependency forest can be obtained. Given
the Fp calculated by Eq. 4 and the pre-trained ex-
plainer, the explanation matrix Xp corresponding
to Fp can be calculated via Eq. 10. Causal pruning
for Fp can be formulated as:

F̂p = softmax (Fp ⊙ (1 + βXp)) (11)

where ⊙ is the element-wise multiplication, and
β ∈ [0, 1] is a hyper-parameter to control the coef-
ficient of the explanation matrix Xp.

4.2 Dependency Forest Encoder
Given N pruned dependency forests, DCGCNs are
used to encode information from the forest struc-
ture. For the p-th pruned dependency forest, which
is represented by the adjacency matrix F̂p. We use
DCGCNs with L layers to aggregate information
about neighbors in F̂p, and the representation of
node i at the l-th layer can be calculated as:

h(l)
pi = ρ




n∑

j

F̂pij

(
W (l)

p × g(l)pj + b(l)p

)

 (12)

where F̂pij denotes the weight between node i and

node j in F̂p. g(l)pj denotes the information about
node j in the p-th pruned dependency forest from
all the preceding layers and can be obtained by the
same way as Eq. 2.

Then, we concatenate the representations ob-
tained from the N dependency forests and fuse
them using a linear layer. This process can be for-
mulated as follows:

Hb = Linear
(
[H1;H2; . . . ;HN ]

)
(13)

where Hi is the node representations obtained by
DCGCNs for the i-th dependency forest, and Hb
denotes the node representations of each block. M
identical blocks are combined in the same way as
above to obtain the final node representations for
sentence S, denoted as H.

4.3 Relation Prediction
To predict the relations among entities, the max
pooling mechanism is used. We obtain the global
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CPR PGR
TRAIN 16107 11780
DEV 10030 -
TEST 14269 219

Table 1: The number of instances of CPR and PGR.

sentence representation hS by applying the max
pooling function to all the words in sentence S:

hS = MaxPooling({h1, . . . ,hn}) (14)

where hi is the feature vector of word wi, and then
obtain the representation of each entity by applying
the max pooling function to the words that belongs
to an entity mention (i.e.,Eq). Therefore, the entity
representation of Eq can be obatined by:

hEq = MaxPooling({hi|wi ∈ Eq}) (15)

The sentence representation and entity represen-
tations are concatenated and fed into a feed-forward
neural network (FFNN), and then we transform it
into an m-dimensional vector hR using a linear
layer to make a prediction:

hR = Linear
(
FFNN

(
[hS ;hE1 ; . . . ;hEQ ]

))

(16)

whereQ is 2 in the binary relational extraction task
and is 3 in the ternary relational extraction task, m
denotes the number of relationsR.

5 Experiment

5.1 Datasets
We evaluate our model on three datasets with two
types of tasks: cross-sentence n-ary relation extrac-
tion and sentence-level relation extraction follow-
ing (Guo et al., 2021).

For the cross-sentence n-ary relation extraction
task, we use the dataset extracted by (Peng et al.,
2017) based on PubMed. Most of the instances in
this dataset contain multiple sentences, and the en-
tities in the instances are cross-sentence. In detail,
this dataset contains 6987 instances of ternary rela-
tions and 6087 instances of binary relations, each
of them is divided into five folders according to
(Song et al., 2018). The relation between entities
in each instance belongs to one of the relation sets,
including “resistance or non-response”, “sensitiv-
ity”, “response”, “resistance”, and “None”. Fol-
lowing (Guo et al., 2021), we define two sub-tasks
on this dataset: multi-class and binary-class rela-
tion extraction. For multi-class relation extraction,

we keep the original dataset unchanged, and for
binary-class relation extraction, we define the first
four relations as “Yes” and the “None” as “No”.

For the sentence-level relation extraction
task, we use two datasets for Medical Rela-
tion Extraction, namely, BioCreative Vi CPR
(CPR) (Krallinger et al., 2017) and Phenotype-
Gene relation (PGR) (Sousa et al., 2019). CPR
focuses on the relations between chemical compo-
nents and human proteins, which contains six rela-
tion types (“CPR:3”, “CPR:3”, “CPR:4”, “CPR:5”,
“CPR:6”, “CPR:9”, “None”). PGR focuses on
whether human phenotypes are related to human
genes, which contains two relation types (“TRUE”
for related and “FALSE” for unrelated). The num-
ber of instances for train/dev/test sets of CPR and
PGR datasets is shown in Table 1.

5.2 Implementation
During the causal explanation generation process,
we use a pre-trained CP-GCN model without the
task-specific causal pruning module as fMRE(·) and
choose 1/5 of the training set for the (Peng et al.,
2017) dataset while the full training set for other
datasets to generate the full dependency forests.
Then, we set K = 20 to construct causal explana-
tion datasets.

For evaluation, we follow previous studies to
use the test accuracy averaged over five cross vali-
dation folds for the cross-sentence n-ary task and
F1 scores for the sentence-level task. Refer to the
supplementary files for the details.

See Appendix A.1 for the hyper-parameter ex-
periment on N , α, and β.

5.3 Results on Cross-Sentence N-Ary Relation
Extraction Task

For the cross-sentence n-ary relation extraction
task, We compare CP-GCN against two kinds of
models and report the average test accuracies on
the (Peng et al., 2017) dataset in table 2.

Tree: models use the 1-best dependency tree.
DAG LSTM, GRN, and GCN(Full) use the full
dependency tree directly, while GCN(Pruned)
generates a pruned dependency tree with some
rules (Zhang et al., 2018). Besides, DAG LSTM
uses graph-structure LSTM to encode the depen-
dency tree, while GRN and GCN use graph recur-
rent networks and graph convolutional networks,
respectively.

Forest: models construct dependency forests.
ACGCN treats a fully connected graph obtained by
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Syntax Type Model
Binary-class Multi-class

Ternary Binary Ternary Binary
Single Cross Single Cross Single Cross Single Cross

Tree

DAG LSTM (Peng et al., 2017) 77.9 80.7 74.3 76.5 - - - -
GRN (Song et al., 2018) 80.3 83.2 83.5 83.6 - 71.7 - 71.7
GCN(Full) (Zhang et al., 2018) 84.3 84.8 84.2 83.6 - 77.5 - 74.3
GCN(Pruned) (Zhang et al., 2018) 85.8 85.8 83.8 83.7 - 78.1 - 73.6

Forest

AGGCN (Guo et al., 2019a) 87.1 87 85.2 85.6 - 79.7 - 77.4
AGGCN* (Guo et al., 2019a) 86.3 87.2 86.3 85.8 77.7 78.7 77.7 77.3
LF-GCN (Guo et al., 2021) 88 88.4 86.7 87.1 - 81.5 - 79.3
LF-GCN* (Guo et al., 2021) 88.2 88.3 87 86.3 82.9 83.9 80 79.6
AC-GCN (Qian et al., 2021) 88.8 88.8 86.8 86.5 - 84.6 - 81
CP-GCN(ours) 89.5 89.1 87.3 86.5 84.3 84.9 81 80.1

Table 2: Average test accuracies on the (Peng et al., 2017) dataset for binary-class n-ary relation extraction and
multi-class n-ary relation extraction. “Ternary” denotes drug-gene-mutation tuple and “Binary” denotes drug-
mutation pair. “Single” means considering the instances within a single sentence, while “Cross” means considering
all instances. Models with * indicate the accuracy of our reimplementation on their released implementation.

multi-head attention as a forest. LF-GCN automat-
ically generates latent forests using multi-head at-
tention and MMT. AC-GCN generates dependency
forests with multi-head attention and encodes them
with a 2D convolutional network.

As shown in Table 2, our proposed CP-GCN
model achieves state-of-the-art performance in
most settings. Specifically, the model using the
pruned dependency tree performs better than those
using the full dependency tree, suggesting that
noisy information does exist in the 1-best depen-
dency tree. In addition, the forest structure shows
an advantage on this task, while CP-GCN surpasses
the current state-of-the-art forest-structured model
(AC-GCN) by 0.7 and 0.3 points on the binary-
class ternary relation extraction task. The multi-
class n-ary relation extraction task in (Peng et al.,
2017) dataset is more challenging due to the unbal-
anced distribution of each relation, and CP-GCN
can consistently achieve comparable performance.

5.4 Results on Sentence-Level Relation
Extraction Task

For the sentence-level relation extraction task, we
implement our approach on the CPR and PGR
datasets and compare it against state-of-the-art
models. We classify these models into three groups
according to their syntax type.

None: models do not use tree or forest structures.
Att-GRU adds a self-attention layer to GRU, and
Bran uses a bi-affine self-attention model to capture
interactions in sentences. BioBERT is a biomedical
pre-trained language representation model.

Tree: models use the 1-best dependency tree.
GCN, Tree-DDCNN, and Tree-GRN encode the
full tree with GCN, DDCNN, and GRN, respec-

Syntax Type Model F1

None
Att-GRU (Liu et al., 2017) 49.5
Bran (Verga et al., 2018) 50.8

Tree
GCN (Zhang et al., 2018) 52.2
Tree-DDCNN (Jin et al., 2020) 50.3
Tree-GRN (Jin et al., 2020) 51.4

Forest

Edgewise-GRN (Song et al., 2019) 53.4
KBest-GRN (Song et al., 2019) 52.4
AGGCN (Guo et al., 2019a) 56.7
ForestFT-DDCNN (Jin et al., 2020) 55.7
LF-GCN (Guo et al., 2021) 58.9
AC-GCN (Qian et al., 2021) 65.8
CP-GCN(ours) 67.3

Table 3: Main results on CPR.

tively. BO-LSTM prunes the tree, retaining only
the shortest dependency path.

Forest: models construct dependency forests.
Edgewise-GRN chooses edges with weights greater
than the pre-defined threshold to form the depen-
dency forest. KBest-GRN constructs the forest by
aggregating K-best trees. ForestFT-DDCNN gener-
ates forests with a learnable dependency parser.

The results of CPR and PGR datasets are shown
in Table 3 and Table 4. CP-GCN achieves state-
of-the-art performance on both datasets. F1 score
increases by 1.5 and 0.5 on the CPR and PGR
datasets, respectively. Compared to models with
forest structure, CP-GCN performs significantly
better than both models with a bias towards syntac-
tic information (Edgewise-GRN, KBest-GRN, and
ForestFT-DDCNN) and models using almost only
semantic information (AGGCN, LF-GAN, and AC-
GCN), which demonstrates the effectiveness of our
proposed CSFG method.

5.5 Analysis and Discussion
Ablation study. To validate the effectiveness of
the ingredients of CP-GCN, i.e., the semantic em-
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Syntax Type Model F1
None BioBERT (Lee et al., 2020) 67.2

Tree
BO-LSTM (Lamurias et al., 2019) 52.3
GCN (Zhang et al., 2018) 81.3
Tree-GRN (Jin et al., 2020) 78.9

Forest

Edgewise-GRN (Song et al., 2019) 83.6
KBest-GRN (Song et al., 2019) 85.7
AGGCN (Guo et al., 2019a) 89.3
ForestFT-DDCNN (Jin et al., 2020) 89.3
LF-GCN (Guo et al., 2021) 91.9
AC-GCN (Qian et al., 2021) 92.4
CP-GCN(ours) 92.9

Table 4: Main results on PGR.

Model F1
CP-GCN 67.3
-semantic embedding module 66.7
-task-specific causal pruning module 65.7

Table 5: An ablation study for CP-GCN on CPR dataset.

bedding module and the task-specific causal prun-
ing module, we conduct the ablation study on
CPR. We train the complete CP-GCN, an abla-
tion model without the semantic embedding mod-
ule, and another ablation model without the task-
specific causal pruning module, respectively. Our
experimental results are reported in Table 5. We
observe that the performance of the model dropped
(compared with complete CP-GCN) regardless of
which module is removed, suggesting that both
modules can help construct dependency forests that
are more conducive to predicting relation. Com-
paring these two modules, the removal of the task-
specific causal pruning module has a greater impact
on performance, which suggests that the proposed
causal pruning method can effectively distinguish
vital information from noise.
Performance against sentence length. Figure 4
compares the F1 scores of our CP-GCN model and
the LF-GCN model (Guo et al., 2021) under differ-
ent sentence lengths. Following (Guo et al., 2021),
We divide the test set of CPR into three groups
((0,25], (25,50], >50) based on sentence length. In
general, CP-GCN outperforms LF-GCN against
various sentence lengths. Otherwise, our model
achieves a significant improvement on the more
challenging long sentences, which demonstrates
the ability of our model to capture long-range de-
pendencies. Moreover, the dependency forests of
the long sentences are more sophisticated, thus in-
dicating that the task-specific causal explainer is
able to extract task-relevant information from the
sophisticated graph structure.
Case study. To further validate the efficiency of
CP-GCN, we conduct a case study on an exam-

Figure 4: F1 scores against sentence length. The results
on LF-GCN are reproduced based on its released imple-
mentation.

Aspirin induced autophagy , a feature of mTOR inhibition .

nsubj dobj punct

punct

appos

det

nmod
case

compound

Aspirin induced autophagy , a feature of mTOR inhibition .

(a)

(b)

Figure 5: Visualizations of (a) 1-best dependency tree
and (b) top 10 highest causal weight edges of the pruned
dependency forest for the example input, where thicker
lines denote the connections with higher causal weights.

ple sentence “Aspirin induced autophagy, a feature
of mTOR inhibition”, which can be correctly pre-
dicted by our model to be a “down regulator” rela-
tion between Aspirin(E1) and mTOR(E2). Figure
5(a) shows its 1-best dependency tree, and Figure
5(b) visualizes the top 10 edges with the highest
causal weights in the pruned dependency forest
generated by the proposed CSFG and the thicker
lines referring to higher causal weights. In this
example, the connection between “induced” and
“feature” enhances in the pruned dependency forest,
and we reckon the latent reason is that CP-GCN can
capture richer semantic information. We observe
that there exists a strong connection between “au-
tophagy” and “feature” in the pruned dependency
forest, which improves the prediction of the rela-
tion between Aspirin and mTOR, supporting the
effectiveness of the task-specific causal explainer.

6 Conclusion

In this paper, we introduce a novel approach for
the medical relation extraction task, namely CP-
GCN, which proposes a causality-pruned depen-
dency forest enriched with semantic and syntactic
information. We first construct dependency forests
by incorporating semantic information into the de-
pendency tree generated by the off-the-shelf parser.
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Then, a task-specific causal explainer is trained
to prune the dependency forests. Experiments on
the benchmark medical datasets demonstrate the
superiority of CP-GCN over the state-of-the-art
methods for the medical relation extraction task.
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Figure 6: F1 scores with different hyper-parameter settings.

A Appendix

A.1 Hyper-Parameter Experiment
We perform several experiments on the CPR dataset
to study the influence of the hyper-parameters in
our proposed CP-GCN model, and the results are
shown in Figure 6. The hyper-parameter α bal-
ances semantic and syntactic information in the
dependency forest. The hyper-parameter β bal-
ances the impact of the task-specific causal prun-
ing module. The hyper-parameter N represents
the richness of semantic information. As (a), (b),
and (c) are shown in Figure 6, our proposed CP-
GCN model achieves comparable performance in
most settings, which indicates the robustness of our
model. Specifically, CP-GCN achieves the highest
F1 score 67.3 withN = 2, α = 0.9, and β = 1. As
shown in Figure 6(c), when N decreases to 1, i.e.
the semantic information decreases, CP-GCN per-
forms best when the weight of the dependency tree,
α, decreases as well, suggesting that our model is
able to balance the syntactic and semantic informa-
tion. As shown in Figure 6(a), when the weight of
dependency tree α increases, CP-GCN performs
best when the weight of task-specific causal prun-
ing module β increases as well. This demonstrates
that there is indeed some noise in the dependency
tree and our proposed task-specific causal pruning
module can remove task-irrelevant information.
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Abstract

Existing studies typically handle aspect-based
sentiment analysis by stacking multiple neural
modules, which inevitably result in severe error
propagation. Instead, we propose a novel end-
to-end framework, MRCOOL: MRC-PrOmpt
mOdeL framework, where numerous senti-
ment aspects are elicited by a machine reading
comprehension (MRC) model and their corre-
sponding sentiment polarities are classified in
a prompt learning way. Experiments show that
our end-to-end framework consistently yields
promising results on widely-used benchmark
datasets which significantly outperform exist-
ing state-of-the-art models or achieve compara-
ble performance.1

1 Introduction

Compared with traditional sentence-level or
document-level sentiment analysis tasks, aspect-
based sentiment analysis (ABSA) requires finer
grained analysis on the texts and extracting more
detailed information (Liu, 2012; Pontiki et al.,
2014a). ABSA contains many subtasks, such as
aspect category detection, opinion term extraction
(OE), etc. Aspect term extraction (AE) and aspect-
level sentiment classification (SC) are two elemen-
tal subtasks of ABSA. AE means extracting the
sentiment aspects from a given plain sentence and
SC implies recognizing the sentiment polarities of
the given aspects in a sentence. Combining the
above two subtasks, aspect term extraction and sen-
timent classification (AESC) establishes the third
fundamental subtask. The AE, SC and AESC for
the sentence Excellent food, although the interior
could use some help. are given in Figure 1.

In general, the existing mainstream approaches
can be roughly divided into two brands. The first

∗Corresponding author. This work was supported by Key
Projects of National Natural Science Foundation of China
(U1836222 and 61733011).

1https://github.com/yangyifei729/
MRC4absa

AE
• food
• interior

Excellent food, although the interior could use some help.

SC
• food-positive
• interior-negative

Aspect Term Extraction and Sentiment Classification
• (food, positive)
• (interior, negative)

Figure 1: An example of AE, SC and AESC. AE needs
to identify the aspect terms food and interior. When
given these two terms, SC should recognize the senti-
ment polarities of them as positive and negative sepa-
rately. AESC is going to complete these two tasks from
the given sentence.

employs the two-stage method which first accom-
plishes the AE and is followed by another model
to perform SC, thus achieving the AESC (Yu et al.,
2018; Hu et al., 2019; Fan et al., 2019). The second
tries to fulfill the three subtasks by a more unified
methodology which extracts the terms and their cor-
responding polarities in a joint or interactive way
(Liu et al., 2016; Wang et al., 2017; Li and Lam,
2017; Fan et al., 2018; He et al., 2019; Luo et al.,
2019; Li et al., 2019; Peng et al., 2020; Chen and
Qian, 2020; Chen et al., 2020; Wan et al., 2020).
However, the above mentioned schemes perform
ABSA task by stacking recurrent neural networks
(RNN) or attention mechanisms and usually lead
to too complex models.

In recent years, machine reading comprehension
(Li et al., 2020; Liu et al., 2020; Su et al., 2020;
Mao et al., 2021) quickly become a hot topic among
various challenging natural language understanding
tasks. Generally, MRC model may give a proper
answer for a query based on a given passage. There
are various types of MRC tasks according to the
desired answer forms, among which span MRC or
extractive MRC draw quite a lot of attention (Glass
et al., 2019; Wu et al., 2019; Zhang et al., 2020).
Most of the progress for MRC may be attributed
to the latest pre-trained language models (PrLMs)
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The waiters were very professional, courteous and attentive.

SC as Prompt Learning
Input to PrLM (before embedded)
[CLS] The waiters were very professional, courteous and attentive. [SEP] I felt the waiters was [MASK].
[CLS] The waiters were very professional, courteous and attentive. [SEP] I [MASK] the waiters.
[CLS] The waiters were very professional, courteous and attentive. [SEP] The waiters made me feel [MASK].
[CLS] The waiters were very professional, courteous and attentive. [SEP] The waiters is [MASK].
Output of Prompt Learning: positive

AE as MRC
Input to PrLM (before embedded)
[CLS] find the sentiment aspect terms in the text. [SEP] The waiters were very professional, courteous and attentive.
Output of MRC: waiters

Figure 2: An example of modeling AE as MRC task and SC as prompt learning task. This figure shows the final
input of two subtasks to the PrLM.

such as BERT (Devlin et al., 2019). For enhancing
multiple downstream tasks including MRC, PrLM
may serve as a powerful enough encoder in the cor-
responding model for effectively capturing salient
features from input text (they are passage and query
in MRC).

Prompt learning is a natural manner to leverage
the knowledge of PrLM which requires adapting
the downstream tasks into a self-supervised learn-
ing task of the corresponding PrLM. For example,
Chen et al. (2021) convert the relation extraction
task to the masked language model (MLM) task of
BERT and Sun et al. (2021) apply the next sentence
prediction (NSP) task to carry out the downstream
tasks. Even though MRC and prompt learning can
take advantage of the knowledge of PrLM and facil-
itate the performance on downstream tasks, these
paradigms still have obvious defects, (1) The query
for MRC can severely inhibit the performance of
downstream tasks, but the construction of query
is currently based on templates or empiric which
leads to huge labor costs and it is not guaranteed
to find the best matched query. (2) For the prompt
learning, after getting the output of PrLM, a stan-
dardized process is applying a verbalizer to project
the original labels to the label words of the down-
stream task. When adopting MLM to perform tag-
ging tasks, the current verbalizer selects the prob-
ability distribution of a few specific words from
the output word-embedding of [MASK] token to
determine the final prediction. This manner makes
the verbalizer very sparse and can not make full
use of the knowledge of PrLM.

To alleviate the above issues, we propose a novel
end-to-end framework named MRCOOL to han-
dle the AE, SC and AESC once for all. For AE, we

model it as an MRC task and propose a query en-
coder to search for the possible latent optimal query
in a continuous space. We treat SC as a prompt
learning task and apply a concise MLP verbalizer
to reduce the sparsity. Our experiments are con-
ducted on three widely-used benchmark datasets.
Results show that our framework outperforms the
current methods or gets comparable performance.

2 MRCOOL Framework

2.1 Task Formulation

The three subtasks can be formulated as a tuple
extraction task. Given an input sentence X =
{x1, x2, ..., xn} of length n, the corresponding
output is Y = {(a1, p1), (a2, p2), ..., (am, pm)}
where ai indicates an aspect and pi represents its
polarity.

Given a training dataset D =
{(X1, Y1), (X2, Y2), ..., (X|D|, Y|D|)}, the purpose
of our framework is to maximize the likelihood:

L(D) =
|D|∏

i=1

∏

(aj ,pj)∈Yi
P ((aj , pj) | Xi) (1)

The following section 2.2 and section 2.3 will
introduce our MRC modeling for AE and prompt
learning modeling for SC. An example of our mod-
eling is given in Figure 2.

The extractive MRC task requires to extract the
answer A = {a1, a2, ..., am} from a passage G =
{g1, g2, ..., gn} by answering a given query Q and
each ai in A is a span of G. The goal of a given
modelM is to maximize the likelihood:
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P (A | G,Q) =
∏

ai∈A
P (ai | G,Q) (2)

In this paper, we model AE as an extractive MRC
task. For a sentence X = {x1, x2, ..., xn} whose
aspects are A = {a1, a2, ..., am} where ai is a
span of X , we regard X as the passage G and
each sentiment aspect ai as a corresponding an-
swer. Following the procedure of MRC, we desire
to find each sentiment aspect ai by asking model
M a query Q. However, the query for the stan-
dard MRC task is given by the datasets, but AE
datasets do not contain such an element. To let our
task inputs compatible to the adopted MRC model,
we construct a dedicated query Q. A large num-
ber of studies also have shown that the query has
a significant impact on the performance of MRC
no matter if such a query keeps a meaningful in-
put or not. Following (Liu et al., 2021), we set a
fixed-initialized query Q whose embedding can be
optimized during the training process and search
for the optimal best matching query in a continuous
space for each sentence X .

2.2 Aspect Term Extraction as Machine
Reading Comprehension

In detail, our MRC module takes a PrLM M as a
backbone. The input X will be transformed into
word embeddingW = {w1, w2, ..., wn} by the em-
bedding layer E of M . Then we initialize a query
Q = {q1, q2, ..., qm}. Since the alternative query
can largely influence the performance of the MRC,
we add an encoder module to more effectively cap-
ture the optimal potential query embedding. The
query encoder module consists of a randomly ini-
tialized embedding layer E ′, a Bi-direction LSTM
layer and a double-layer MLP activated by RELU
function (Glorot et al., 2011). The embedding ri of
qi can be formalized as:

ri = MLP
([
BiLSTM

(
E ′(q0:i)

)
: BiLSTM

(
E ′(qi:m)

)])

(3)
Then we combine the encoded embedding of

query and sentence to form the input sequence
for M . The embeddings of two special tokens
[CLS] and [SEP] are bound to be inserted in the
sequence. The final input sequence is like:

{E([CLS]), r1, r2, ..., rm, E ([SEP]) , w1, w2, ..., wn}

After feeding the sequence into M , the context
representation S ∈ Rn×∥V∥ of W is the only out-

put we need for the next steps, where the V is the
vocabulary of PrLM.

Subsequently, we carry out the selection of as-
pects. We adopt two independent binary classifiers
to predict whether a token is a start or end posi-
tion of an aspect following (Li et al., 2020). For
the start position prediction, we first project the S
into the dimension of Rn×2 by a learnable weight
Ostart ∈ R∥V∥×2 and get S′. Then, we apply the
softmax to each row of S′ to form a probability dis-
tribution which indicates the probability of every
token to be the start word of an aspect. The above
process can be formalized as:

Pstart = softmaxeach row (S ·Ostart) ∈ Rn×2
(4)

Following the same process, the probability dis-
tribution Pend of whether a token to be the end
position of an aspect can be attained by the learn-
able weight Oend ∈ R∥V∥×2.

The next step is to match the start position and
end position in order to extract the final aspects.
By the Pstart and Pend, we can get the start as well
as end positions simply according to the argmax
function and store them into two sets, these are:

Istart =
{
i | argmax

(
P

(i)
start

)
= 1, i = 1, · · · , n

}

Jend =
{
j | argmax

(
P

(j)
end

)
= 1, j = 1, · · · , n

}

(5)
The start position istart ∈ Istart means the

xistart should be the start token of an aspect and
the jend ∈ Jend implies the end token xiend of an
aspect. Thus, we will train a sigmoid classifier to
predict the match possibility of the istart, jend to
be the boundary of one aspect, that is:

Pistart,jend = sigmoid (m · concat (Sistart , Sjend))
(6)

where m ∈ R1×2∥V∥.
During the training process, we leverage the

CrossEntropy loss as below:

Lstar = CrossEntropy (Pstart, Gstart)

Lend = CrossEntropy (Pend, Gend)

Lmatch = CrossEntropy (Pstart,end, Gstart,end)
(7)

where theGstart, Gend andGstart,end represent the
golden labels. The total loss of this MRC module
is the weighted sum of the above three losses:

LMRC = αLstart + βLend + γLmatch (8)
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where the α, β, γ ∈ [0, 1] are three hyper-
parameters to control the contributions of each ob-
jective function.

2.3 Aspect-level Sentiment Classification as
Prompt Learning

Incorporating the output from the MRC module,
we model the SC subtask as prompt learning, which
allows us to transfer a classification problem into
the form of predicting the [MASK] token contained
in a prompt sentence Q as a pre-specified word
w. Namely, for a given text X and its label Y ,
the purpose of prompt learning model M is to
maximize the likelihood:

P (Y | X) = P ([MASK] = w | X,Q) (9)

For a sentence X and one of its aspect aj ,
we insert aj into a pre-defined template T =
t1, ..., aj , ..., [MASK], ..., tm to form a prompt Q.
Then we feed the sequence [CLS]X[SEP]Q into
a moduleM to measure the likelihood of aj to be
classified as polarity pj :

P (pj | aj , X) = P ([MASK] = w | [CLS]X[SEP]Q)
(10)

In detail, first of all, we need to construct the
templates of prompts cautiously as the performance
of prompt learning is very sensitive to the choice of
prompts. Following (Seoh et al., 2021), we select
four efficient prompt templates:

• T0 =I felt the ai was [MASK].

• T1 =I [MASK] the ai.

• T2 =The ai made me feel [MASK].

• T3 =The ai is [MASK].

When given a sentence X and one of its aspect
aj , we fill Ti(i ∈ {1, 2, 3, 4}) to get four prompt
Qi and feed the sequence [CLS]X[SEP]Qi into
a PrLM, thus to attain its context representation Ci.

All we need is the representation Ci,[MASK] ∈
R∥V∥ of [MASK] which contains the prediction
information. To aggregate the prediction outcomes
of the four prompts, we simply add them all up:

C[MASK] =

3∑

i=0

Ci,[MASK] (11)

The current methods (Seoh et al., 2021;
Zhang et al., 2021) directly take the probabili-
ties of predicting [MASK] as several represen-
tative words to extract final sentiment polari-
ties. For instance, Seoh et al. (2021) map
the probabilities of three words {good, bad, ok}
to the probabilities of three sentiment polarities
{positive, negative, neutral} towards the tem-
plate T0:

P ([MASK] = good|X, ai) = P (pi = positive|X, ai)
P ([MASK] = bad|X, ai) = P (pi = negative|X, ai)
P ([MASK] = ok|X, ai) = P (pi = neutral|X, ai)

This seems to be an extremely blunt approach,
but we argue that it will increase the sparsity of
the model and can not plausibly exert all the intel-
ligence of C[MASK]. Following such practice, we
should exhaust all the tokens that can indicate sen-
timent to ameliorate this drawback. For example, if
we want to predict the positive polarity, in addition
to good, we also need to consider the words such
as nice, excellent, perfect, etc. Obviously, such
tedious work is not acceptable. In that case, we
propose to utilize a double-layer MLP head acti-
vated by a RELU function to address the limitations
mentioned above:

P (pi|ai, X) = MLP(C[MASK]) (12)

where the input dimension of MLP is ∥V∥ and the
output dimension is set to 3 indicating the probabil-
ity distribution over three polarities.

At this point, we merely need to follow the
idea of the maximum likelihood method and ap-
ply CrossEntropy loss to calculate LPL for prompt
learning, thus training MLP while fine-tuning
BERT.

2.4 Training
The above MRC model with prompt learning can
be trained together as a multi-task learning. We ag-
gregate the two losses together for conducting back
propagation and the total loss can be formalized as:

LTotal = LMRC + LPL (13)

2.5 Inference
When given trained MRC model for inferencing the
AE result, the start and end positions are separately
decided according to Istart and Jend (Eq.5) firstly.
The following sigmoid classifier (Eq.6) will detect
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{t1,…, aj,,…, [MASK]}

[CLS], x1, x2,…,xn,[SEP], t1,…, aj,…, [MASK] 

PrLM Encoder

Embedding Layer 
of PrLM

polarity pj

Aspect Term Extraction Aspect-level Sentiment Classification

(aj ,pj )

Figure 3: The architecture of our proposed MRCOOL framework.

Lap14 Res14 Res15
#s #a #s #a #s #a

train
test

3048
800

2373
654

3044
800

3699
1134

1315
685

1199
542

Table 1: The statistics of the three datasets (Wang et al.,
2017). #s and #a denote the numbers of sentences and
aspect terms.

the final start-end position combinations by Istart
and Jend. As for inferencing the SC result, the final
polarity p̂ of an aspect is:

p̂ =argmaxP (pi|X, ai)
= argmaxMLP(C[MASK])

(14)

For AESC, the above two inference processes
are united to obtain the final result. When given
a sentence X , our framework first inputs it into
the MRC model and receives the candidate aspect
terms set A. Then, each ai in A is enumerated
to construct four templates with its homologous
X . The prompt learning module takes them in
and outputs the polarity p̂, thus we get the triplet
(sentence, aspect, polarity) which is served as the
result of AESC.

3 Experiments

3.1 Setup
Datasets We conduct experiments on three widely
used benchmark datasets derived from SemEval

2014 (Pontiki et al., 2014a) and SemEval 2015
(Pontiki et al., 2014b). For each benchmark, the
golden boundaries of aspect terms are labeled and
the aspect terms are annotated with positive, neg-
ative, or neutral polarities. So AE, SC and AESC
subtasks are all available. LAPTOP2014 (Lap14)
contains the reviews of the products from the lap-
top domain. RESTAURANT2014 (Res14) and
RESTAURANT2015 (Res15) give some comments
on foods and dining halls. The training/test splits
are fixed for three datasets and more details about
them are shown in Table 1.

Metrics For all experiments, we adopt F1 score
as evaluation metric following the previous re-
searches. For AE and SC, a predicted aspect term
or polarity is correct only if it matches the golden
data. And for AESC, we regard it as a right predic-
tion only if an aspect term and its corresponding
polarity are both recognized accurately at the same
time.

PrLM and Settings For the fair comparison,
our selected PrLMs are consistent with the pre-
vious strong baselines. We apply the publicly
available BERT-Base-Uncased and BERT-Large-
Uncased models2 with the vanilla parameters and
sizes for our MRCOOL framework. We adopt
AdamW optimizer with the learning rate of 2e-5
and warmup over the first 15% steps to train for 3
epochs. We use 30 epochs to train our framework.

2https://github.com/google-research/bert
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Lap14 Res14 Res15

AE SC AESC AE SC AESC AE SC AESC

IMN-BERT 77.35 75.56 61.73 84.06 75.67 70.72 69.90 70.10 60.22
SPAN-BERT 82.34 62.50 61.25 86.71 71.75 73.68 74.63 50.28 62.29
RACL-BERT 81.79 73.91 63.40 86.38 81.61 75.42 73.99 74.91 66.05
DUAL-MRC 82.51 75.97 65.94 86.60 82.04 75.95 75.08 73.59 65.08
BART-ABSA 82.52 76.76 67.37 87.07 75.56 73.56 75.48 73.91 66.61

MRCOOL 86.50 75.78 69.47 88.31 79.41 77.12 77.35 70.76 65.62

Table 2: Main results on three benchmark datasets for AE, SC and AESC. All results are measured by F1. The
state-of-the-art results are in bold.

The batch size is 16 and the α, β, γ for MRC are all
set to 1/3. For each experiment, we train our frame-
work multiple times with different random seeds.
The average of the best three results is regarded as
a final result. We conduct all experiments on one
Nvidia Titan RTX GPU.

3.2 Baselines

We compare our proposed MRCOOL framework
with the following methods on AE, SC and AESC
subtasks:

RACL-BERT Chen and Qian (2020) propose
a RACL framework which stacks multiple layers.
They also propose a relation propagation approach
to obtain interactive signals among different sub-
tasks. With the BERT model, their framework
achieves good performance on AE, SC and AESC.

IMN-BERT He et al. (2019) put forward an end-
to-end multi-task learning model for AE, SC and
AESC. They apply a mechanism of information
transmission to enhance their model.

SPAN-BERT Hu et al. (2019) propose a pipeline
model for AESC. They apply BERT as their back-
bone network and a multi-target extractor is used
to detect the boundaries of the sentiment aspects.
Then a polarity classifier recognizes the polarity
for each aspect.

DUAL-MRC Mao et al. (2021) present a unified
framework for AESC. Two BERT models are con-
tained by their framework and two different MRC
tasks are carried out by them separately. The left
BERT recognizes the boundaries of aspect terms
and the right BERT extracts their polarities.

BART-ABSA Yan et al. (2021) propose the cur-
rent state-of-art model which can solve the AE, SC
and AESC. It redefine each subtask as a sequence
mixed by pointer indexes and sentiment class in-

dexes. Then they convert all ABSA subtasks into
a unified generative formulation. Finally, they use
pre-trained sequence-to-sequence model BART to
handle the subtasks in an end-to-end framework.

3.3 Main Results

Table 2 compares our results with other state-of-the-
art approaches on three benchmark datasets. The
results of AE are all obtained by MRC on BERT-
large model. As for SC, we obtain the best results
by taking the BERT-base model as the backbone
of prompt learning for LAPTOP2014, RESTAU-
RANT2015 datasets and the BERT-large model for
RESTAURANT2014. More about the selection of
different scale PrLM will be discussed in section
4.1. It is worth noting that our better results do
not derive from the better PrLM, owing to DUAL-
MRC (Mao et al., 2021) having already adopted
the BERT-large model.

For the AE subtask, our MRC method has made
good progress. We exceed the prior SOTA model
by +3.98%, +1.24% and +1.87% on Lap14, Res14
and Res15 respectively. For the SC subtask, with
our prompt learning method, we also achieve per-
formance comparable to the best results before.
For AESC subtask, our framework attains state-of-
the-art performance by considerable margins over
previous methods on Lap14 and Res14. Even if we
do not obtain the SOTA on Res15, we also obtain a
better result than most previous models.

The above results prove that our framework is
very effective. We directly use the knowledge of the
PrLM to avoid complex neural layers and feature
engineering to attain SOTA or the results close
to SOTA on multiple subtasks. The fine-tuning
of PrLM is also very time-saving. With only 30
training epochs, our framework can get such a good
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Figure 4: The F1 change curve with the increment of
the scale of PrLM on AE and SC.

Lap14 Res14 Res15

w/o Query Encoder 85.24 87.35 77.05
Query Encoder 86.50 88.31 77.35

Table 3: Ablation study on Query Encoder for MRC.
The BERT-large model is adopted. All results are F1 for
the AE subtask.

performance. The experimental results indicate
the effectiveness and simplicity of our MRCOOL
framework.

4 Ablation Study

4.1 Effect of different PrLM scale

Plenty of earlier studies have proved that the scale
of the PrLM has a great influence on the perfor-
mance of downstream tasks. Therefore, we adopt
BERT-base, BERT-large and BERT-large-wwm
models that derived from one series but of different
scales to test our framework. The results are given
in Figure 4.

For MRC, it can be speculated from the curve
that the PrLM of different scales is relatively sta-
ble on the three datasets. Among three PrLM,
the performance of BERT-large is usually bet-
ter than BERT-base and BERT-large-wwm. For
prompt learning, some not robust phenomena hap-
pen. BERT-base still performs well on the three
datasets. But with the BERT-large, a significant
loss of accuracy on the Res15 occurs. And BERT-
large-wwm produces disastrous results both on
Res14 and Res15. We check the training logs of
these poorly experiments and find that the training
loss usually reaches zero after 10 epochs but the
testing loss still maintains a high value. This means
that heavy overfitting could be triggered.

For these three benchmark datasets, BERT-large
seems to be usually the best choice and it is defi-
nitely not true that a larger scale of PrLM leads to

Lap14 Res14 Res15

w/o Prompt Encoder 75.78 79.25 70.76
Prompt Encoder 73.92 73.04 66.55

Table 4: Ablation study on Prompt Encoder for prompt
learning. The BERT-large model is adopted. All results
are F1 for the SC subtask.

Lap14 Res14 Res15

Selecting Words 74.40 78.95 69.45
Single-Layer MLP 74.69 79.21 69.29
Double-Layer MLP 75.78 79.25 70.76

Table 5: Ablation study on different verbalizer. Select-
ing words means the current dosage of selecting the
probability distribution of a few of words. The BERT-
large model is applied and all results are F1 for the AE
subtask.

a better result.

4.2 Effect of Query/Prompt Encoder Module

We propose a query encoder module in this paper to
find the potential optimal query for MRC. We also
directly think of whether we can learn a potential
optimal prompt template by the prompt encoder
module whose structure is the same as the query
encoder module. For example, we desire to find the
optimal embedding of I felt the ai was [MASK] in
the template T0. So we conduct ablation studies on
the query encoder of MRC module and prompt en-
coder of the prompt learning module, respectively.
The results are shown in the Table 3 and Table 4.

It can be indicated that the introduced query
encoder has facilitated the performance of MRC,
which is in line with the previous research that the
query plays an important role in MRC and also sup-
ports the effectiveness of the query encoder module.
But the prompt encoder harms to the prompt learn-
ing. The explanation we give is that we use four
different templates for prompt learning and it is too
difficult for a simple query encoder module to learn
perfect embeddings for them all. We attempted to
apply only one template and combine the query
encoder module. The result shows that the query
encoder module does boost the performance but
such a manner is far not as good as the combina-
tion of four templates. Thus, we abandon the query
encoder module in our framework.
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4.3 Effect of MLP Verbalizer

In this paper, one of our major improvements to
prompt learning is to desert the original verbalizer
that selecting the probability distribution of minor-
ity specific words from the output word-embedding
of [MASK] and we leverage an MLP with a RELU
activation function to overcome the sparsity and
loss of information. We respectively use the origi-
nal method, a single-layer MLP and a double-layer
MLP with RELU activation function for ablation
study. Table 5 displays the result.

Experiments express that MLP does have a rel-
atively large improvement in the effect of prompt
learning and the double-layer MLP with RELU has
a stronger ability to learn the probability distribu-
tion of three polarities. As a result, our proposed
simple MLP verbalizer shows quite effective.

5 Related Work

Open-domain sentiment analysis or ABSA requires
to extracting the aspect terms with their correspond-
ing sentiment polarities in the open domain, which
is an active research topic in recent years. Early
studies treat them as two separate tasks and use
some traditional algorithms such as Conditional
Random Fields (CRF) to complete the task. Wang
et al. (2016) apply recursive neural CRF to perform
ABSA. Shu et al. (2017) use a lifelong learning
CRF to extract the prior knowledge of past do-
mains. With the rise of deep learning technology,
more and more models based on neural networks
have begun to emerge. (Poria et al., 2016; Xu et al.,
2018; Shu et al., 2019; Wu et al., 2021) take con-
volutional neural network (CNN) to handle ABSA
tasks. In addition, some researchers apply RNN
and also make some progress (Wadawadagi and
Pagi, 2018; Han et al., 2018; Luo et al., 2019; Zeng
et al., 2019). In recent years, more studies have
proposed diverse attention mechanisms to extract
more knowledge from the text and boost the per-
formance of the model. Wang et al. (2017) put
forward a novel layer containing two attentions to
extract sentiment aspects, opinions and polarities.
Li et al. (2018) propose a history attention to ex-
ploit the opinion summary and the aspect detection
history. Rida-E-Fatima et al. (2019) propose a deep
learning-based multilayer dual-attention model to
extract the mediate relationships between the as-
pects and opinions.

Recently, offering promising performance,
PrLM has become an important and rapid devel-

opment area in the field of natural language pro-
cessing. However, minority studies directly utilize
the knowledge of PrLM. Even if the current state-
of-art model (Yan et al., 2021), it merely regards
BART (Lewis et al., 2020) as a powerful seq-to-seq
model without using its erudition. For extracting
the knowledge from PrLM, MRC is an excellent
solution. Li et al. (2020) convert named entity
recognition into an MRC task and achieve the state-
of-the-art. Mao et al. (2021) design a DUAL-MRC
framework for ABSA and get the promising re-
sult. Gan et al. (2021) employ MRC to handle
dependency parsing. Yu et al. (2021) and Chen
et al. (2021a) respectively propose a self question-
answering model and a bidirectional MRC model
for ABSA, but they can not solve all three AE, SC
and AESC tasks.

For prompt learning, many researchers regard it
as a new learning paradigm along with the swift
growth of PrLM and argue that it can effectively
reel off the enlightenment of PrLM. (Chen et al.,
2021b; Seoh et al., 2021) have applied prompt
learning to named entity recognition and sentiment
analysis respectively. Han et al. (2021) implement
a sentence classification model by prompt learning
and logic rules. On the selection and generation
of prompt, Shin et al. (2020) propose an automatic
prompt generation method and Liu et al. (2021) put
forward a p-tuning idea to improve the effective-
ness of prompt.

However, the above works do not pay attention
to the query generation of MRC and the sparsity of
the verbalizer of prompt learning. In this paper, we
propose a MRCOOL framework for ABSA which
designs a query encoder to improve the capability
of MRC and a simple MLP verbalizer is used to
reduce the sparsity of prompt learning.

6 Conclusion

In this paper, we propose a MRCOOL framework
to handle AE, SC and AESC subtasks of ABSA in
one shot through the process of MRC with prompt
learning. In detail, we first model aspect extrac-
tion as an MRC task and then let the MRC mod-
ule help aspect-level sentiment classification imple-
mented in a prompt learning way so that we present
an end-to-end framework to fulfill the complete
task requirement of ABSA. The experimental re-
sults demonstrate the effectiveness of our proposed
framework by providing consistent and general per-
formance improvement over strong baselines. In
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detail, our framework attains new state-of-the-art
for AE subtask by considerable margins over previ-
ous methods on three datasets and reaches state-of-
the-art performance for AESC on two datasets.
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Abstract

As a fundamental natural language process-
ing task and one of core knowledge extraction
techniques, named entity recognition (NER) is
widely used to extract information from texts
for downstream tasks. Nested NER is a branch
of NER in which the named entities (NEs) are
nested with each other. However, most of the
previous studies on nested NER usually apply
linear structure to model the nested NEs which
are actually accommodated in a hierarchical
structure. Thus in order to address this mis-
match, this work models the full nested NEs
in a sentence as a holistic structure, then we
propose a holistic structure parsing algorithm
to disclose the entire NEs once for all. Be-
sides, there is no research on applying corpus-
level information to NER currently. To make
up for the loss of this information, we intro-
duce Point-wise Mutual Information (PMI) and
other frequency features from corpus-aware
statistics for even better performance by holis-
tic modeling from sentence-level to corpus-
level. Experiments show that our model yields
promising results on widely-used benchmarks
which approach or even achieve state-of-the-
art. Further empirical studies show that our
proposed corpus-aware features can substan-
tially improve NER domain adaptation, which
demonstrates the surprising advantage of our
proposed corpus-level holistic structure model-
ing.1

1 Introduction

Named Entity Recognition is to find predefined
named entities such as locations, organizations or
people in text, which usually serves as an upstream
natural language processing (NLP) task (Huang
et al., 2015; Lample et al., 2016; Ma and Hovy,

∗ Corresponding author. † These authors made equal
contribution to this paper. This work was supported by Key
Projects of National Natural Science Foundation of China
(U1836222 and 61733011).

1https://github.com/yangyifei729/
NerAsParsing

… San Francisco of France

GPE GPE

GPE

…

Figure 1: An example of nested named entities. The
solid lines or brackets represents the start and end po-
sitions of a named entity. ‘GPE’ is a named entity
category, representing geographic or political entities.
France and San Francisco are nested by the San Fran-
cisco of France which forms a hierarchy structure.

2016) and one of key knowledge extraction tech-
niques in knowledge engineering.

Early works on NER (Liu et al., 2011; Ritter
et al., 2011) mostly cope with only flat NEs that
have no overlapped relationship with each other.
However, as a common language phenomenon,
nested NER appears universally in many corpora
such as the field of biology or news events. An
instance of overlapped NEs is shown in Figure 1.
Since solving the Nested NER task will bring more
contextual information than the Flat NER task and
promotes downstream tasks, it recently has aroused
great research interest (Luo and Zhao, 2020; Muis
and Lu, 2017; Wang and Lu, 2018). Although re-
searchers have made good progress on flat NER,
existing studies nested NER has not achieved a
more satisfactory result yet.

With the development of deep learning technol-
ogy, nested NER has gradually developed from the
methods based on handcraft features and traditional
machine learning (Alex et al., 2007; Kumar et al.,
2008) to the methods based on neural networks. In
recent years, myriad studies apply neural network
models to achieve state-of-the-art results.

From a perspective of deep learning, NER may
be conveniently cast to a multi-class classification
task or sequence labeling task (Fisher and Vla-
chos, 2019; Lample et al., 2016; Ma and Hovy,
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2016). Nevertheless, such modeling ways which
mostly suit for flat NER cannot well handle nested
NEs. Instead, there are two categories of models
for nested NER, Layered-based Model and Region-
based Model. The former recognizes the hierarchi-
cal structure by stacking multiple Flat NER layers
and the latter type enumerates all text spans to dis-
cover the possible named entity mentions.

However, all of the above methods still view all
nested NEs as a sequence structure and identify
all the possible tags one by one for each NE span,
which leads to two obvious drawbacks in model-
ing capability, (1) These methods require multiple
modules to cooperate and each module has to be
able to recognize NEs from a complete sentence,
which usually results in a too complicated model
and time-consuming processing (Luo and Zhao,
2020; Wang et al., 2020). (2) When relying on
multiple modules working together, these methods
further impose substantial information transmis-
sion among different modules, which inevitably
causes serious error propagation (Ju et al., 2018).

We address above limitation by modeling the
nested NEs in a sentence as a holistic structure and
propose a model which builds off work from re-
cently constituency parsing algorithm (Kitaev and
Klein, 2018). Although recent works (Lou et al.,
2022; Yang and Tu, 2021) model nested NER with
the similar idea, they ignore the global informa-
tion in the corpus. Thus, we extend our idea of
holistic structure modeling from sentence-level to
corpus-level by introducing corpus-aware features
according to the statistics of point-wise mutual in-
formation or frequency over dataset and aggregat-
ing the information to our model by span attention
(Tian et al., 2020). The corpus-aware features hope-
fully enhance the current model by making up for
such inability of the current representations.

Our experiments are conducted on three widely-
used benchmark datasets following previous stud-
ies (Luo and Zhao, 2020; Wang et al., 2020).
Results show that our model approaches or ex-
ceeds the current state-of-the-art with the newly-
introduced methods. Our contribution can be sum-
marized into three-fold:

• We take a holistic structure to model all nested
named entities in a sentence and adopt a chart
parsing algorithm to decode every levels of
nested named entities once for all, avoiding
the error propagation problem while offering
a concise and natural solution for so compli-

People need aid in Syria : UN relief office

NNS VBP NN IN NNP : NNP NN NN

GPE ORG

ORG

OOOO

S

O

ORG

ORG

GPE

Figure 2: An example of nested NE tree. We use the tag
‘O’ to label the span that is not recognized as a named
entity. The nested named entities form is transformed
by removing the tag ‘O’.

cated a task.

• We introduce corpus-aware features derived
from PMI or frequency statistics to further
boost model performance and enable the
model a good domain adaptation capability.

• With the simplicity of our modeling idea,
our proposed holistic structure parsing model
yields performance on par with or surpassing
the state-of-the-art on widely-used English
benchmark datasets.

2 Model

2.1 Holistic Structure Modeling for Nested
Named Entities

Given a sentence of n words X = {x1, x2, ..., xn},
we denote each named entity as a triplet (i, j, l),
where i, j are the beginning and ending positions
of a NE with label l ∈ L, and L represents the
set of NE types. Taking every levels of nested NE
as constituent as syntactic parsing, all the labeled
NE spans can form a tree structure like syntactic
constituent parse tree (shown in Figure 2).

Our model assigns a real value score s(i, j, l) to
each labeled span. Then the score of a candidate
tree T can be computed by the scores from all
spans inside the tree:

s(T ) =
∑

(i,j,l)∈T
s(i, j, l). (1)

Our model is trained and predicts the structure
by selecting the tree T̂ with the highest score by:

T̂ = argmax
T

s(T ). (2)
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Following (Gaddy et al., 2018; Taskar et al.,
2005), we apply margin-based training for such a
structured prediction problem. Our model is trained
to satisfy the constraint:

s(T ∗) ≥ s(T ) + ∆(T ∗, T ), (3)

where T ∗ is the golden tree and T covers all valid
trees. ∆ is the Hamming loss on labeled spans.
Such a constraint guarantees two points: (1) The
score of the golden tree is always greater than or
equal to the candidate trees. (2) It enforces the
model to make the tree structures with high scores
close to the golden structure. And our objective
function can be defined by hinge loss:

max

(
0,max

T
[s(T ) + ∆ (T , T ∗)]− s (T ∗)

)
.

2.2 Contextualized Encoding
Our model is implemented in an encoder-decoder
framework. For the encoder, it encodes each word
xt in the input sentence X = {x1, x2, ..., xn}
into vectors ht. Following (Fried et al., 2017; Ki-
taev and Klein, 2018), X will be transformed into
word embedding W = {w1, w2, ..., wn} by em-
bedding model. In addition, we embed part-of-
speech (POS) tag and word position in sentence
as mi and pi respectively for xi. We set these
three embeddings to the same dimension and then
add them together to generate the input vector
zi = wi +mi + pi for the encoder.

We adopt the Transformer (Vaswani et al., 2017)
as our encoder which is composed of 8 modules
of the same self-attention structure. Each struc-
ture contains a multi-head attention SubLayer1 and
a feed-forward SubLayer2. After each sublayer,
there will be a residual connection and a Layer
Normalization. So when given an input x, the out-
put y2 of each module is:

y2 = LayerNorm(y1 + SubLayer2(y1)), (4)

where LayerNorm denotes the Layer Normaliza-
tion and y1 is the output of the multi-head atten-
tion:

y1 = LayerNorm(x+ SubLayer1(x)). (5)

After 8 stacked modules, the final output ht for
word at position t is generated.

2.3 Decoder: Holistic Structure Parsing
Our decoder performs the needed holistic structure
parsing for every levels of nested NEs in a sentence.

After obtaining the context-aware representation
ht for each word, the representation of NE span (i,
j) is computed by:

ri,j = hj − hi, (6)

which assumes that the information of a subsequent
step is generated by merging a previous state with
the information of the span between them, so the
difference between two steps can represent the span.
In general, s(i, j, ·) for span (i, j) over label set
L is calculated by feeding ri,j into a multi-layer
perceptrons (MLP), with ReLU activated function,
which can be formalized by:

oi,j = ReLU(LayerNorm(W1 · ri,j + b1)), (7)

Finally, we have:

s(i, j, ·) =W2 · oi,j + b2, (8)

where W1, W2 and b1, b2 are all trainable parame-
ters.

We adopt CKY parsing algorithm (Younger,
1967) as our decoding algorithm to search for the
highest score s(i, j) for span (i, j). In details, to
begin with the span (i, i+ 1) of length 1, we only
need to consider its label:

s∗(i, i+ 1) = max
l∈L

s(i, i+ 1, l). (9)

Then, we can extract the highest score s∗(i, j)
for longer span (i, j) in a recursive way by search-
ing for the best matching label l and the best bound-
ary k:

s∗(i, j) = max
l∈L

s(i, j, l)

+ max
i<k<j

[s∗(i, k) + s∗(k, j)].
(10)

In this way, for the current span, the best label
and best split point are chosen separately to find
the highest score.

According to the above steps, for an entire sen-
tence, we use a bottom-up approach to find the
highest score s∗(0, n) which is the sum of the high-
est scores for its subtrees. The full structure for
the entire sentence can be rehabilitated by travers-
ing backpointers. Thus we parse the sentence as
a holistic structure and disclose all nested named
entities by giving the nested NE tree once for all.

As the same as classical chart parsing, the com-
putational complexity for the CKY algorithm to
parse a sentence of length n is O(n3), which is bet-
ter than enumerating all possible spans in O(n4).
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Figure 3: The architecture of our model, where the encoder converts the input sentence into a set of hidden states
and spans are represented based on them. Then the span representation and the span attention calculated by n-gram
are concatenated together and entered into CKY-decoder.

3 Corpus-aware Features

Though our proposed holistic structure parsing
model at sentence-level hopefully captures the en-
tire sentence for predicting all nested NEs, which
is supposed to yield more powerful model capabil-
ity than previous models, it still has the limitation
similar with the previous ones which only learn
the representation inside a sentence. Meanwhile,
NEs quite sparsely distribute in all text data such as
most NEs only occur for once in the entire corpus.
Besides, there may be a huge domain difference
among various corpora, which lets the model rec-
ognize new NEs even more difficultly. Thus, we
further introduce corpus-aware clues to alleviate
the above mentioned difficulties.

In detail, we consider corpus-level statistics in-
cluding frequency and point-wise mutual informa-
tion (PMI) over words and corresponding POS tags.
Therefore, we consider the following statistics to
form enhanced features, PMI on word (Word PMI),
word frequency (Word Freq), PMI on POS tags
(POS PMI) and on POS tags frequency (POS Freq).

Equipped with the corpus-aware features from a
large amount of unlabeled corpus, the model may
be enabled to effectively adapt to different domains
by alleviating the difficulty caused by the sparsity

of NEs distribution.

3.1 Point-wise Mutual Information and
Frequency

The PMI between two adjacent tokens x′,x′′ is cal-
culated as:

PMI(x′, x′′) = log
p(x′x′′)
p(x′)p(x′′)

(11)

We calculate the PMI between two adjacent
words in turn and split a sentence from the low
PMI positions to obtain multiple n-grams.

Similar with the above Word PMI processing, we
can also count every n-grams (n<10) to record their
frequency in the corpus, then perform sentence
segmentation according to a pre-specified threshold
tfreq following the same processing to obtain the
results of Word Freq.

In view of the sparsity of n-gram occurrence,
n-gram statistics like the above Word PMI or Word
Freq may still encounter the issue of data sparsity
and long-tail effect (Kordumova et al., 2016). Thus
we turn to the more informative POS which usu-
ally has a limited sized POS tag set (Benajiba and
Rosso, 2007; Diab, 2007).

To apply the POS information, we first perform
POS tagging over every sentences in the corpus
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and save the correspondence between the word and
the POS tag. Then we segment the spans of POS
tags according to PMI or frequency. Finally, we
convert these spans back to their corresponding
word n-grams.

3.2 Integration of Corpus-aware Features
Following (Tian et al., 2020), we incorporate
corpus-aware features into our model through span
attention scoring to update the original NE span
score in Eq. (6).

Before training our model, we extract all the n-
grams from the training set and development set by
Word PMI, Word Freq, POS PMI, POS Freq and
store them in a Lexicon N . Given a sentence X ,
we enumerate all the spans (i, j) in it and find the
spans which are included by N to generate a set
Ci,j = {ci,j,1, ci,j,2, · · · ci,j,v, · · · ci,j,mi,j}, where
mi,j is the total amount of the spans. By span
attention, each n-gram ci,j,v in Ci,j will be given
an attention score by:

ai,j,v =
exp(r⊤i,j · ei,j,v)∑mi,j
v=1 exp(r

⊤
i,j · ei,j,v)

, (12)

where ei,j,v ∈ Rdr refers to the embedding of ci,j,v.
By the weighted average of n-gram embeddings,
the resulted attention of span (i, j) is:

ai,j =

mi,j∑

v=1

ai,j,vei,j,v. (13)

As there are more short n-grams in the corpus
than long n-grams, it is necessary to encourage
these n-grams of various lengths in a balanced
way, since there is no difference in the probabil-
ity of being an entity. Thus, we split n-grams by
their lengths into different categories, i.e., Ci,j =
{Ci,j,1, Ci,j,2, · · · Ci,j,u, · · · Ci,j,n}, where u ∈ [1, n]
indicates the n-gram length and weight them by
each category following Eq. (12-13) to calculate
a
(u)
i,j,v and a

(u)
i,j . Thus the final attention of the split

n-grams is composed of the cascade all category
attentions:

ai,j = ⊕
1≤u≤n

δua
(u)
i,j , (14)

where the weight of attentions from different cat-
egories is counterpoised by trainable parameter
δu. After ai,j is calculated for span (i, j), our
model concatenates it with ri,j (generated by Eq.
6): r′i,j = ri,j ⊕ ai,j ∈ Rdr·(n+1). Then r′i,j will
be used to get s(i, j, ·) by Eq. (7-8).

4 Experiments

4.1 Setup
We evaluate our approach on three nested named
entity recognition benchmark datasets: GENIA,
ACE2005 and KBP2017 datasets.

ACE2005 (Walker et al., 2006) contains 25%
nested named entities and 7 entity types. We apply
the same setup as (Katiyar and Cardie, 2018; Lu
and Roth, 2015; Wang and Lu, 2018) by splitting
the dataset into training/development/test sets by
8:1:1, respectively.

GENIA dataset (Kim et al., 2003) is based on
the GENIAcorpus3.02p2. The dataset contains 10%
nested mentions and 5 entity types. We follow the
same train/dev/test as previous work (Finkel and
Manning, 2009; Lu and Roth, 2015) and split first
81% as training set, subsequent 9% as development
set, and last 10% as test set.

KBP2017 contains 19% nested entities. We
evaluate our model on the Event Nugget Detec-
tion Evaluation dataset (LDC2017E55) following
(Lin et al., 2019), and previous annotated datasets
(LDC2015E29, LDC2015E68, LDC2016E31 and
LDC2017E02) are added into training and devel-
opment sets. We split the datasets into 866/20/167
documents for training, development and test.

We use Precision (P), recall (R) and F-score (F1)
to evaluate the predicted named entities and we con-
sider a named entity to be correctly recognized only
if its boundary and category are both recognized
correctly.

4.2 Implementation
In our experiments, we use randomly initialized
embedding, variants of BERT (Devlin et al., 2019)
and XLNetlarge (Yang et al., 2019) to embed sen-
tences. Following (Tian et al., 2020), we initialize
all n-gram embeddings in the span attention mod-
ule and match their dimensions with the hidden
vectors from the encoder. During the training pro-
cess, we use Adam optimizer with the learning rate
5e-5, 1e-5, and 5e-6. We also fine-tune dropout
to attention, POS tag embedding and residual with
the rate of 0.2, 0.4, 0.5. We select the model with
the highest F1 on the development set and evaluate
it on the test set.

We set tpmi to 0 to determine which words to
form n-grams and 0.5 for POS tags since some
POS tags often appear next to each other, but their

2http://www.geniaproject.org/genia-
corpus/posannotation
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Model ACE 2005 GENIA KBP 2017

P R F1 P R F1 P R F1

Hyper-Graph (Katiyar and Cardie, 2018) 70.60 70.40 70.50 77.70 71.80 74.60 − − −
Seg-Graph (Wang and Lu, 2018) 76.80 72.30 74.50 − − − − − −
ARN (Lin et al., 2019) 76.20 73.60 74.90 75.80 73.90 74.80 77.70 71.80 74.60
Merge-BERT (Fisher and Vlachos, 2019) 82.70 82.10 82.40 − − − − − −
DYGIE (Luan et al., 2019) − − 82.90 − − 76.20 − − −
Path-BERT (Shibuya and Hovy, 2020) 82.98 82.42 82.70 78.07 76.45 77.25 − − −
BERT-MRC (Li et al., 2020) 87.16 86.59 86.88 85.18 81.12 83.75 82.33 77.61 80.97
Seq2seq-BART (Yan et al., 2021) 83.16 86.38 84.74 78.57 79.30 78.93 − − −
Seq2set (Tan et al.) 87.48 86.63 87.00 82.31 78.66 80.40 84.91 83.04 83.90
LexicalizedParsing (Lou et al., 2022) 85.97 87.87 86.91 78.39 78.50 78.44 - - -
Triaffine-ALBERT (Yuan et al., 2021) 88.88 88.24 88.56 - - - 89.42 85.22 87.27

Ours 86.81 88.70 87.75 79.76 75.74 77.70 88.25 87.10 87.67
-Corpus-Feat. 84.65 87.19 85.90 79.74 74.13 76.83 86.62 86.61 86.62

Table 1: Results for nested NER tasks.

DATA Pre-trained Word PMI Word Freq. POS PMI POS Freq. -Corpus-Feat.

P R F1 P R F1 P R F1 P R F1 P R F1

ACE2005

Random Init. 70.10 48.68 57.46∗ 73.35 46.10 56.62 72.13 49.31 58.58† 74.33 48.22 56.53 68.35 47.21 55.85
BERTbase 82.27 83.15 82.71∗ 80.94 83.05 81.98 81.47 82.61 82.04† 81.25 82.31 81.78 78.06 79.34 78.69
BERTwwm 84.05 85.47 84.75∗ 83.42 85.29 84.34 83.42 85.29 84.34† 82.75 84.22 83.48 82.38 83.93 83.15
XLNetlarge 86.81 88.70 87.75∗ 84.89 87.16 86.01 85.23 87.19 86.20† 84.95 87.40 86.16 84.65 87.19 85.90

GENIA

Random Init. 64.21 31.46 42.23∗ 71.05 29.44 41.63 61.85 43.97 51.40 73.03 47.28 57.40† 60.05 28.29 38.46
BERTbase 78.71 73.44 75.99∗ 77.60 72.43 74.92 77.75 73.57 75.60† 77.67 71.60 74.51 76.86 69.38 72.93
BERTwwm 79.07 74.92 76.94∗ 78.79 74.26 76.46 78.38 74.76 76.53† 77.05 74.56 75.79 76.11 74.01 75.05
XLNetlarge 79.84 75.43 77.57 79.82 75.66 77.69∗ 79.76 75.74 77.70† 79.21 75.30 77.21 79.74 74.13 76.83

KBP2017

Random Init. 75.73 49.32 59.73∗ 76.14 40.76 53.10 72.41 45.56 55.93 77.74 50.54 61.26† 70.21 40.32 51.22
BERTbase 83.45 80.22 81.80 82.95 81.18 82.06∗ 82.42 80.10 81.24† 82.46 78.76 80.57 76.34 74.66 75.49
BERTwwm 85.04 83.31 84.17 85.80 84.00 84.89∗ 85.56 82.83 84.17† 82.91 79.35 81.09 80.45 79.48 79.96
XLNetlarge 88.15 86.48 87.30∗ 87.96 86.41 87.18 88.25 87.10 87.67† 87.68 86.32 87.00 86.62 86.61 86.62

Table 2: Ablation study on the multiple corpus-aware features inducing approaches. ∗ and † indicate the higher F1

in Word PMI, Word Freq and POS PMI, POS Freq. Bold numbers indicate the highest F1 in an experiment.

corresponding words are meaningless. Such as the
POS tag pair (,VBD) has a high frequency of co-
occurrence but the corresponding span (, had) is
pointless, thus we set a higher threshold to filter
this situation. Similarly, we set tfreq to 2 for words
and 5 for POS tags.

4.3 Main Results

Table 1 compares our results with other state-of-
the-art approaches on three nested NER bench-
mark datasets. By adding corpus-aware feature, our
model has a significant improvement on KBP2017
which exceeds the state-of-the-art model (Yuan
et al., 2021) by 1.88 R and 0.4 F1. We also re-
ceive a comparable advancement on ACE2005 and
outperform Yuan et al. (2021) by 0.46 R.

On the GENIA , our model performs relatively
unsatisfactorily. But it is worth mentioning that
the GENIA has less nested structure and is more
close to flat NER, which indeed suits seq2seq (Tan
et al.) modeling. And the rare biological nouns in
the GENIA naturally fit for MRC method (Li et al.,

2020) that can better utilize the prior knowledge
of pre-trained language model. Apart from these
two strong baselines, our method still outperforms
better than most models on the GENIA.

After removing the corpus-aware features of
each model while the other training parameters
remaining unchanged, the results show that the F1

of all models receive a drop greatly, which proves
that our corpus-aware features indeed enhance the
effect. Although without them, our method also
surpasses the previous best results on the KBP2017
by a large margin and surmounts most preceding
approaches on ACE2005 and GENIA, which con-
firms modeling nested NER as holistic structure is
essentially feasible.

5 Ablation Study

5.1 Effect of different corpus-aware features

For exploring the effects of the four corpus-aware
features with significance test, we carry out twelve
sets of experiments. For each set of them, we com-
bine different features and pre-trained language
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models to conduct comparative analysis.
The results are shown in Table 2. For each

dataset, we use a randomly initialized word embed-
ding and three pre-training language models to ex-
periment separately and each pre-training language
model has been trained with four corpus-aware fea-
tures. During the training process, we allow the
model to fine-tune the pre-trained language model
in order to get better result. In order to better verify
the effect of them, we also conduct a set of con-
trolled experiment ablating corpus-aware features
as a comparison.

In the comparison between PMI and Freq, the
PMI-based features devote 8 highest F1 in all 12
experiments while the Freq-based features occupy
the remaining 4 highest results. Namely, PMI-
based features show more helpful than Freq-based
features for both Word and POS types, which im-
plies PMI is indeed a better statistical measure than
the common Freq for building informative corpus-
aware features. The result also shows that text-level
co-occurrence knowledge has more information
than vanilla frequency.

5.2 Role of POS Tags
The comparison of Word and POS is shown in
Figure 3. The Word-based features attain 7 highest
F1 while the POS-based features gain the rest 5
highest results. This phenomenon displays that
Word-based features are slightly better than POS-
based features. This conclusion is also in line with
common perception that words themselves provide
more knowledge than their POS tags.

The performance obtained by removing corpus-
aware features is always the calamity which like-
wise supports the significant improvement of our
proposed corpus-aware features. From overall view,
the Word PMI has the best lifting effect for our
model, followed by POS PMI. Word Freq and POS
Freq are slightly less effective while both of them
share the similar effect. Meanwhile, the proposed
corpus-aware features can be easily imposed into
any models that require span extraction.

5.3 Domain Adaptation Effects
In order to verify that the corpus-aware features
can enhance the domain adaptability of our model,
we conduct cross-domain experiments between the
three datasets. We find the best trained model on
one dataset and evaluate the effect of this model on
other datasets as our baseline (shown at the top in
Table 4). Subsequently, we retrain the best trained

Method P R F1

Ours 88.25 87.10 87.67
-POS embedding 87.64 86.21 86.92
-POS PMI 86.62 86.61 86.62
-Both 86.31 85.89 86.10

Table 3: Ablation study on POS tags.

model without changing any hyper-parameter set-
ting and add external unlabeled data separately.
In details, the model extracts n-gram from the
external unlabeled data by leveraging the corpus-
aware features and blends them into the lexicon
N gleaned from the labeled training dataset. The
changed lexicon N will be used to generate span
attention and the domain adaptation ability of our
model will be affected subsequently.

The lower part of Table 4 shows the results. It
can be inferred that when a best trained model is
joined a non-NER labeled dataset, the prediction
effect of the model on this dataset will improve.
The biggest improvement occurs when the KBP-
trained and ACE-trained model are added GENIA
non-NER labeled data. We deduce that the huge
increments are because ACE and KBP both derive
from the event domain while GENIA comes from
a different biological domain. The model will per-
form poorly in a domain which is pretty different
from the training corpus. Once the knowledge of
that domain is compensated through the corpus-
aware feature, the performance of the model in that
domain will be greatly improved. This result veri-
fies the effectiveness of our corpus-aware features
for better domain adaptation.

We unexpectedly discover that the domain adap-
tation between ACE and KBP datasets has not
made effective progress because they share the
same domain. The corpus-aware features can not
bring additional useful knowledge when the exter-
nal unlabeled datasets are in the same domain with
the training corpora. This inference is in line with
our intuition and likewise demonstrates that our
proposed corpus-aware features are able to extract
information from different domains. We also find
a counterintuitive fact that GENIA-trained model
with KBP unlabeled data outperforms the GENIA-
trained model with ACE unlabeled data on ACE.
So we infer that the knowledge in the news do-
main brought by KBP unlabeled data suits well
for this GENIA trained model and promotes its
performance on another news domain ACE dataset.

In summary, the corpus-aware features can not
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Model ACE 2005 GENIA KBP 2017

P R F1 P R F1 P R F1

ACE-trained Model 86.81 88.70 87.75 24.28∗ 10.19∗ 14.36∗ 73.89 76.06 74.96
GENIA-trained Model 6.49∗ 0.10∗ 0.19∗ 79.76 75.74 77.70 51.66∗ 2.18∗ 4.18∗

KBP-trained Model 73.49 71.78 72.62 5.88∗ 0.88∗ 1.54∗ 88.25 87.10 87.67

ACE-trained Model
+ GENIA Unlabeled Data 86.51 87.96 87.23 27.36∗ 14.09∗ 18.60∗ 74.40 74.60 74.50
+ KBP Unlabeled Data 85.72 87.50 86.60 22.50∗ 7.91∗ 11.71∗ 74.66 75.40 75.03∗

GENIA-trained Model
+ ACE Unlabeled Data 50.00∗ 1.20∗ 2.35∗ 79.38 74.80 77.02 37.64∗ 0.81∗ 1.59∗

+ KBP Unlabeled Data 51.05∗ 2.53∗ 4.82∗ 78.13 74.01 76.01 52.02∗ 3.13∗ 5.90∗

KBP-trained Model
+ ACE Unlabeled Data 73.87 71.85 72.85 16.60∗ 3.86∗ 6.26∗ 87.28 86.86 87.07
+ GENIA Unlabeled Data 74.19 70.91 72.51 17.01∗ 4.28∗ 6.83∗ 86.46 84.79 85.61

Table 4: Results for domain adaptation experiments. ∗ indicates unlabeled F1 due to different named entity
annotation standards. Bold numbers represent an improvement compared to the baselines.

only enhance the effect of the model but also can
effectively improve its domain adaptation ability.

6 Related Work

• Hypergraph model. This approach is a com-
mon method applied for the nested named
entities whose main idea is to apply hyper-
graph structure to represent nested NEs. Lu
and Roth (2015) first proposed a hypergraph-
based method by connecting multiple nodes
with edges to represent nested NEs. Muis
and Lu (2017) further employed multigraph
representation and introduced a novel notion
of mention separators to detect nested named
entity. However, these methods are not in-
telligent enough due to the need to manually
design explicit hypergraph.

• Stacking layered model. This is also a
widespread approach to handle nested NER.
Alex et al. (2007) stacked several neural lay-
ers to recognize the lower and higher level
NEs separately. Fisher and Vlachos (2019)
proposed a neural network that merges NEs
or tokens to generate nested structure and la-
bels them. Several recent researches applied
multi-layer GCN to accomplish nested NER
(Li et al., 2021; Luo and Zhao, 2020). These
are practical methods, nonetheless, the exist-
ing models with a huge depth are computa-
tionally impractical.

• Region-based model. This method is another
common method for nested NER, which enu-
merates all the possible subsequences and rec-
ognizes them. Sohrab and Miwa (2018) re-

garded all spans as potential NEs and used
neural networks to recognize them. A lay-
ered model that enumerates all the potential
subsequences while preserving the sequence
structure was presented by (Wang et al., 2020).
The biggest disadvantage of this method is
that the model has computational complexity
of at least O(n4) for the sentence of length n.
Thus, it requires a lot of time overhead.

• Parsing-based model. Some concurrent work
also model the nested NER as a parsing task.
Lou et al. (2022) put forward a latent lexi-
calized parsing model for nested NER. Yang
and Tu (2021) proposed a unified layer-by-
layer bottom-up model for nested NER and
constituency parsing. The formal addition-
ally considers dependency syntax information,
but its decoding speed is between O(n3) and
O(n4), which is much lower than ours and
not significantly better than our performance.
The latter leverages the cascade decoding and
suffers from the error propagation issue which
does not exist in our model. Essentially differ-
ent from us, none of them take into account
the information of the corpus.

7 Conclusion

NER, so as to achieve the purpose of labeling all
nested NEs once for all. On the basis of the pro-
posed holistic sentence structure modeling, we fur-
ther explore NER model enhancement from corpus-
aware statistics with the hope of alleviating the
serious sparsity issue of NEs. For this purpose,
we extend our holistic structure modeling from
sentence-level to corpus-level by offering multiple
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corpus-aware features including Word Freq, Word
PMI, POS Freq and POS PMI. The experimental re-
sults demonstrate the effectiveness of our proposed
model by providing consistent and general perfor-
mance improvement over strong baselines. In de-
tails, our model achieves performance approaching
state-of-the-art for two datasets and reaches new
state-of-the-art for one dataset. Last but not the
least, our corpus-level holistic structure modeling
shows surprising merit for effective domain adap-
tation.
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Abstract

Many recent sentence-level event detection ef-
forts focus on enriching sentence semantics,
e.g., via multi-task or prompt-based learning.
Despite the promising performance, these meth-
ods commonly depend on label-extensive man-
ual annotations or require domain expertise
to design sophisticated templates and rules.
This paper proposes a new paradigm, named
dialogue-based explanation, to enhance sen-
tence semantics for event detection. By say-
ing dialogue-based explanation of an event,
we mean explaining it through a consistent
information-intensive dialogue, with the origi-
nal event description as the start utterance. We
propose three simple dialogue generation meth-
ods, whose outputs are then fed into a hybrid
attention mechanism to characterize the com-
plementary event semantics. Extensive experi-
mental results on two event detection datasets
verify the effectiveness of our method and sug-
gest promising research opportunities in the
dialogue-based explanation paradigm.

1 Introduction

Event detection (ED) is a crucial task in informa-
tion extraction, which aims to identify event trig-
gers (words or phrases that indicate events) and
classify triggers into predefined event types. For
example, we can identify the trigger weddings and
classify it into Marry event type from the text “Giu-
liani regularly officiated at weddings while in of-
fice”. Sentence-level event detection plays a dom-
inant role in event detection and is significant for
various downstream NLP tasks.

However, it is usually challenging to accurately
detect events in a single sentence due to the lim-
ited information. Therefore, most prior methods
on sentence-level event detection make improve-
ments by enhancing sentence semantics, being

*Equal Contribution.
†Work was done when Yinyi Wei interned at Meituan.
‡Corresponding Author.

I got fired today. Could i get arrested for protesting?
User_1

User_2
If you do it from the street, no. But shouldn't you be trying to find a new job first man?

Well that'll be for tomorrow, today im pissed and hurt
User_1

User_2
Don't bother protesting. Update your resume, look for a new job. There's no win here.

User

肉都变质了，东西也不新鲜，投诉商家

=> The meat is spoiled and the food is not fresh, I want to complain to the merchant

亲亲，可以说一下什么商品不新鲜吗

=> My sweetie honey, can you tell us what commodities are not fresh? Agent

User

肉不新鲜，有一股变质味，土豆也是坏的

=> The meat is not fresh, smelled stale and the potatoes are also bad

亲亲，非常抱歉给您带来了不好的用餐感受，您这边现在的诉求是什么呢？

=> Sorry for the bad experience my honey. What's your demand now? Agent

Figure 1: Two examples of dialogues from Reddit and
FOSAED, respectively.

divided into two categories. The first category
mainly involves leveraging other information ex-
traction tasks (e.g., named entity recognition and
relation extraction) via multi-task learning (Wad-
den et al., 2019; Lin et al., 2020; Van Nguyen et al.,
2021). However, these efforts highly depend on
task-specific annotation, costing a vast amount of
human effort. The other popular line of research ex-
ploits pretrained language models (PLMs), e.g., via
prompt-based learning(Gao et al., 2021; Lee et al.,
2021; Li et al., 2022; Hsu et al., 2022). MRC-based
methods, which treat a task as a Machine Reading
Comprehension task (Liu et al., 2020; Li et al.,
2020; Du and Cardie, 2020), can also be regarded
as a weaker version of prompt-based learning. One
common bottleneck among these methods lies in
their reliance on domain expertise and human ef-
forts to devise sophisticated templates and rules.

To enhance sentence semantics more effectively
and efficiently, this work proposes to use generative
models to generate contextual information for a
sentence in the form of a dialogue, which consists
of multiple utterances between different roles on a
particular topic.

As two motivation examples, Figure 1 shows two
real-world dialogues. In the utterance from User_1
in the first example, models are easily induced by
arrested and protesting thus identifying fired as an
attack event, but the subsequent utterances serve as
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Original Sentence: Giuliani regularly officiated at weddings while in office.
Trigger: weddings     Event: Marry

Giuliani regularly officiated at weddings while in office. 

He was a wedding planner.

User

Bot

User

Bot

He's a wedding architect.
Bot

I think he's a funeral architect. He's a very good 
architect. I'm not sure if he's an architect or a 
funeral planner. I think he was a funeral designer.

User

Bot

Bot

Bot

Giuliani regularly officiated at weddings while in office. 
What event does the previous sentence describe ? 

I think he means the wedding where he was the one 
who officiated.

Ah, that makes sense. I was thinking more of 
the fact that he was a priest and not a priest.

I was thinking the same thing. I think he was just 
a priest, but he was also a priest at the wedding.

Original Sentence: 吃到一半吃出个铁丝🤮 （ Find a metal barbed wire halfway through the meal）
Trigger: 铁丝 (metal barbed wire)     Event:异物 (Impurities )

吃到一半吃出个铁丝🤮

=>Find a metal barbed wire halfway through the meal🤮

铁丝有骨头？这么厉害

Bot=> There are bones in the metal barbed wire? So powerful

哈哈哈哈哈哈哈。我也发现了！！

=> Ha ha ha ha ha. I found it too!!

你也是吧

Bot=> You too

User

吃到一半吃出个铁丝🤮,这句话描述了什么事件？

=>Find a metal barbed wire halfway through the meal🤮. 
What event does the previous sentence describe ? 

铁丝吃完还发出来

Bot=> The metal barbed wire comes out after eating

看到就肉疼

Bot=> I feel physical pain when I see it

以后都不要做了

Bot=> Don’t ever do that again

User

吃到一半吃出个铁丝🤮

=>Find a metal barbed wire halfway through the meal🤮

确实抱歉给亲亲带来不好的用餐体验了,

那亲亲您是什么原因要退款呢
=> I'm really sorry to bring a bad dining experience to 
my sweeite and why do you want a refund, my honey

Agent

User

菜里面，钉子

=> There are nails in the dish

亲亲，是钢丝球吗？

=> My sweetie honey, is it a metal barbed wire ball? Agent

(a)

(b)

Bot

Figure 2: Examples of dialogue generation for a specific sentence with three methods: (1) Direct generation; (2)
Generation with a prompt; (3) Further training and generation. Figure (a) shows the dialogue generation using
method (1)(2) on ACE05-E+. Figure (b) shows the dialogue generation using method (1)(2)(3) on FOSAED-R.

an explanation that fired is an End-Position event.
In the second example, the dialogue provides clues
about a natural association among multiple events,
including physical feelings of user, food quality and
complaints about the restaurant. Based on these
two examples, we conjecture two main merits of
dialogues over plain narrative texts in terms of en-
riching event context. On the one hand, a dialogue
is more consistent with the original sentence (see
Section 4.5 and 4.6). On the other hand, each utter-
ance is an independent semantic unit requiring no
additional segmentation, which is non-trivial for a
plain text generated, e.g., by GPT-2. And more im-
portantly, the interaction between these utterances
provides room for refining the dialogue-based con-
text. In this paper, we refer the generated dialogue
for an event description to dialogue-based explana-
tion and call our method DESED: Dialogue-base
Explanation for Sentence-level Event Detection.

In order to generate semantically rich dialogue-
based explanation, we propose three methods based
on pretrained dialogue GPTs (Radford et al., 2018,
2019): (1) direct generation on the original sen-
tence; (2) generation with a prompt on the original
sentence; (3) generation after further training on
dialogue data in the same domain. The three meth-
ods are illustrated in Figure 2. Note that prompts
we use are quite simple, and identical prompts can
be used in our dialogue generation for different
events and datasets. In contrast, the aforemen-
tioned prompt-based methods require redesigning
templates and prompts, demanding expertise across
different domains.

To exploit the information of generated dia-

logues, we then propose three methods: (1) token-
level attention with the self-attention mechanism
of PLMs; (2) utterance-level attention with an utter-
ance gate; (3) hybrid attention combining the both.
We conduct experiments on ACE2005 and another
event detection dataset based on real-world data
curated by ourselves. Experimentally, our method
achieves competitive performance than previous
multi-task and prompt-based works.

Our main contributions include:

• We propose dialogue-based explanation, a
novel paradigm to enrich sentence semantics
for event detection by generating a consistent
dialogue on specific events.

• We propose three conceptually simple meth-
ods to generate dialogue-based explanation
and design hybrid (token-level and utterance-
level) attention mechanisms that demonstrate
competitive results on two datasets.

• Our experiments reveal that compared with
plain narrative contexts, dialogues are more
consistent with original sentences and contain
richer contextual knowledge for event detec-
tion, and appropriate prompts or dialogue data
in a specific domain can guide pretrained mod-
els to generate better event-centric dialogues.

2 Related Work

2.1 Sentence-level Event Detection
To identify a trigger and classify the trigger into
an event type from a sentence, traditional feature-
based methods rely heavily on manually designing
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features (Ahn, 2006; McClosky et al., 2011). With
the development of deep learning, neural networks
have been widely used in event detection. The
most common usage for neural networks is token
classification, which encodes and classifies each
token with various neural methods (Chen et al.,
2015; Nguyen et al., 2016; Sha et al., 2018). Fur-
thermore, graph based (Liu et al., 2018; Yan et al.,
2019), multi-task (Wadden et al., 2019; Lin et al.,
2020; Van Nguyen et al., 2021; Lu et al., 2022),
MRC-based (Liu et al., 2020; Li et al., 2020; Du
and Cardie, 2020), Seq2Seq-based(Sequence-to-
Sequence-based) (Lu et al., 2021; Hsu et al., 2022;
Paolini et al., 2021) methods have also been intro-
duced to sentence-level event detection.

2.2 Prompt-based Learning

Prompt-based learning aims to stimulate the knowl-
edge of PLMs to serve downstream tasks (Schick
and Schütze, 2021). Unidirectional language mod-
els (e.g. GPTs (Radford et al., 2018, 2019)), bidi-
rectional language models (e.g. BERT (Kenton
and Toutanova, 2019)) and hybrid language mod-
els (e.g. BART (Lewis et al., 2020)) can all be
used as backbones. By retrieving similar instances
in the training set or adding manual definitions of
labels (Gao et al., 2021; Lee et al., 2021; Kumar
and Talukdar, 2021), or by converting information
extraction tasks to slot-filling tasks (Lu et al., 2021;
Hsu et al., 2022; Li et al., 2022), prompt-based
learning enables PLMs to have priori knowledge of
a task, thus contributing to the final performance.

2.3 Generation-based Dialogue System

Generation-based dialogue system can generate a
great diversity of responses which are not limited to
the existing corpus (Chen et al., 2017). By making
use of GPTs (Radford et al., 2018, 2019) and large
amount of dialogue data, generation-based models
can achieve excellent results on different languages
(Zhang et al., 2020; Wang et al., 2020).

3 Methodology

In this section, we present our dialogue-based ex-
planation for sentence-level event deteiction.

3.1 Task Description

In this paper, we formulate sentence-level event de-
tection as a sequence labelling task using BIO tag-
ging format. Given a trigger which evokes an event
EventType. Each token is tagged as B-EventType,

Pretrained Dialogue GPT

𝒔 𝒖! 𝒖" 𝒖#!$!

𝒖! 𝒖" 𝒖#!

+ + + +···

𝒖% ···

dialogue 
data for a 
specific 
dataset

(a) 𝒔 = original sentence

(b) 𝒔 = original sentence + prompt

(c) Further Training and Generation

Role_1 Dialogue GPT

Role_2 Dialogue GPT

𝒔 +  𝒖! +  𝒖" +  𝒖%

𝒖" 𝒖&

𝒔 +  𝒖! +  𝒖" +  𝒖%

Figure 3: Illustration of dialogue generation methods
and an example of dialogue generation with further
training on two roles.

I-EventType or O, indicating the token is at the
beginning, inside or outside of the trigger tokens.

Formally, denote S, Y , M as instance set, la-
bel set and bidirectional language model. For a
sentence instance s ∈ S, s = (s0, s1, . . . , sNs−1).
In the general setting, representation h =M(s),
h ∈ RNs×D, where D is the hidden size of M.
When using BIO tagging format, the set of all tags
is E , the total number of E is |E| = 2 × |Y| + 1.
To conduct sequence labelling, a weight matrix
W ∈ RD×|E| and a bias term b ∈ R|E| are intro-
duced to classify each token representation into a
tag in E . The classification logits p = hW + b,
p ∈ RNs×|E|. The final labelling results e =
argmax(p), e ∈ RNs ,where ei is the tag of si. The
optimization objective is set to a cross entropy loss
between classification logits p and golden tagging.

3.2 Dialogue Generation

A pretrained dialogue generation model G is used
to generate dialogues. The overview of dialogue
generation is shown in Figure 3.

3.2.1 Direct Generation
Given a sentence instance s = (s0, s1, . . . , sNs−1),
the goal is to generate NU utterances. s is firstly
fed into G to obtain an utterance u1, u1 = G(s).
Then s and u1 are concatenated as dialogue history
which is fed into G to get a new response utterance
u2, u2 = G(s+ u1). Circulating repeatedly, until
uNU is obtained, uNU = G(s+u1+· · ·+uNU−1).

3.2.2 Generation with a Prompt
To make the generated dialogue more focused on
a particular topic, we propose to adding a straight-
forward prompt at the end of the original sentence,
(e.g. What event does the previous sentence de-
scribe?), which means s = s + prompt. The
procedure described in 3.2.1 is then repeated until
NU utterances are obtained.
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Figure 4: Different attention mechanisms of exploiting
dialogue information. Figure (a) illustrates the token-
level attention; Figure (b) illustrates the utterance-level
attention; Figure (c) illustrates the hybrid attention.

3.2.3 Further Training and Generation
When dialogue data is provided for a dataset, fur-
ther training can be carried out based on this data.

For the dialogue data with k roles, k different
dialogue models are trained with role-specific re-
sponses in order to model the characteristics of dif-
ferent roles. When inferring, k different dialogue
models are used alternatively to generate utterances
from different roles. An example of dialogue gener-
ation on two roles is shown on the right of Figure 3.

3.3 Exploitation of Dialogue Information

We exploit generated dialogue information through
different attention mechanisms based on sequence
labelling. The overview is illustrated in Figure 4.

3.3.1 Token-level Attention
By encoding the concatenation of the original sen-
tence and generated utterances simultaneously with
a bidirectional language modelM, we can take ad-
vantage of the self-attention mechanism and the
ability to capture long-range dependencies inM.

Given a sentence instance s and generated utter-
ances u1, . . .uNU , we use the separator token of
M (e.g. [SEP] for BERT) to concatenate the origi-
nal sentence and all utterances. Thus the combined
input c = s [SEP] u1 [SEP] . . . [SEP] uNU . After
obtaining contextual representations by feeding c
intoM, the token representations corresponding
to s are classified into specific tags by a classifier.

3.3.2 Utterance-level Attention
Due to the uncertainty of G, generated utterances
may be disorganized and rambling. Directly com-
bining and applying self-attention mechanism may

introduce noise to the representation of the original
sentence. We therefore propose to use an utterance
attention mechanism and an utterance gate to inte-
grate dialogue information into the representation
of the original sentence.

Given a sentence instance s and generated utter-
ance u1, . . . ,uNU , assuming that the original sen-
tence and all utterances are of length n. As shown
in Figure 4(b), feeding them intoM, we can ob-
tain representation h = (h0,h1, . . . ,hNU ), where
h0 is the representation of s; hj , j ≥ 1, is the
representation of uj . For all hi, i ≥ 0, hi ∈ RD.

An attention mechanism is applied to get a dia-
logue state d with the representation of [CLS] token
hi[CLS] and learned attention weight αi:

d =

NU∑

i=0

αih
i
[CLS], d ∈ RD (1)

αi =
exp(si)∑NU
j=0 exp(sj)

(2)

si = tanh (h0
[CLS] · (Wa · (hi[CLS])

T + ba)) (3)

where Wa and ba are the weight matrix and the
bias term of a feed-forward neural network, si is
the relevance score between the original sentence
s and an generated utterance ui.

Knowing that d is the semantic abstraction of the
whole dialogue, we further propose an utterance
gate to fuse d into token representations of s.

For the representation of the original sentence
h0 = (h0

0,h
0
1, . . . ,h

0
n−1), the fused representation

p = (p0,p1, . . . ,pn−1) is computed as below:

pi = h
0
i ∥ fi (4)

fi = θi ◦ h0
i + (1− θi) ◦ d (5)

θi = sigmoid((h0
i ∥ d) ·Wg + bg) (6)

where ∥ is the notation for the concatenation of
two vectors, ◦ indicates scalar multiplication,Wg

and bg are the weight matrix and the bias term
of a feed-forward neural network. θ can be seen
as a dynamic threshold to determine how much
dialogue information needs to be incorporated into
token representations. A classifier is then applied
on p to get the final tagging result.

3.3.3 Hybrid Attention
To cover different levels of attention, we propose
to use attention mechanisms at both token-level
and utterance-level. To get a representation hc

with token-level attention, combined sentence c
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Form #Docs #Sents

Labelled
User Reviews 4,226 4,226

Unlabelled
Conversations 7,155 309,295

Table 1: Statistics of FOSAED. We show the number of
documents and sentences for different forms of data.

Dataset Split #Sents #Events

ACE05-E+
Train 19,216 4,419
Dev 901 468
Test 676 424

FOSAED-R
Train 3,380 3,893
Dev 423 494
Test 423 512

Table 2: Dataset statistics. We show the number of
sentences and events for different splits.

is fed intoM: hc = M(c). Then the utterance
attention mechanism and utterance gate are applied
to compute the dialogue state d and fuse d into
hc. Finally token classification is conducted on the
fused representations corresponding to s.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets and Evaluation Metrics
We evaluate on two event detection datasets,
ACE2005 (Doddington et al., 2004) and FOSAED.

ACE2005, a collection of documents from a di-
versity of domains, is the most widely used dataset
for event extraction. For data split and preprocess-
ing, we follow Lin et al. (2020), which adds back
pronouns and multi-token triggers. We use the En-
glish version which covers 8 event types and 33
event subtypes and refer to it as ACE05-E+.

Aiming at evaluating DESED on a specific do-
main, we curate and propose a new dataset named
FOSAED (Food Safety on User Reviews for Event
Detection). FOSAED is a real-world Chinese event
detection dataset, consisting of sentence-level user
reviews (reviews posted by users about orders and
restaurants) in the domain of food safety based on
a leading e-commerce platform for food service.
FOSAED focuses on 4 event types and 21 event
subtypes. Each event type and event subtype cor-
respond to a food safety issue (e.g. Abnormalities,
Uncomfortable and Undercooked). To support fur-
ther training, a number of unlabelled conversations
are collected, which are in the same domain (i.e.,

food safety) as the user reviews. These conver-
sations are dialogues between users and agents,
and have two sources: text conversations (users
communicate online with after-sale agents via text
messages) and phone conversations (users commu-
nicate with after-sale agents via telephone). Statis-
tics of FOSAED are shown in Table 1. We treat the
conversations as the further training dialogue data
and conduct event detection on the user reviews.
The version is denoted as FOSAED-R.

Statistics of ACE05-E+ and FOSAED-R are
shown in Table 2.

For evaluation, we use the same criteria in pre-
vious work (Li et al., 2013; Wadden et al., 2019;
Lin et al., 2020) and report F1-scores in our exper-
iments. Trig-I: A trigger is correctly identified if
its offset match any of the gold triggers. Trig-C:
The span of the trigger is correctly identified and
its event type is also correctly classified.

4.1.2 Baselines

We compare DESED to baselines with multi-task
learning and prompt-based learning. Specifically,
we compare with: (1) BILSTM+CRF(Hochreiter
and Schmidhuber, 1997; Lafferty et al., 2002),
using a bi-directional long short-term memory
network and a conditional random field layer;
(2) DMBERT(Wang et al., 2019), using BERT
and dynamic multi-pooling mechanism to assem-
ble features; (3) BERT(Kenton and Toutanova,
2019), fine-tuning BERT for token classification;
(4) BERT_QA_TRIGGER(Du and Cardie, 2020),
converting event detection to a MRC task; (5)
OneIE(Lin et al., 2020), a span-based model with
multi-task learning; (6) FourIE(Van Nguyen et al.,
2021), a span-based model using Graph Convo-
lutional Networks with multi-task learning; (7)
Text2Event(Lu et al., 2021), using a Seq2Seq
model to generate a manually designed structure
for each event; (8) DEGREE(Hsu et al., 2022), tak-
ing advantage of a Seq2Seq model with manually
designed templates and prompts; (9) PILED(Li
et al., 2022), using a prompt-based method to iden-
tify a event then adding event-specific demonstra-
tion to localize a trigger; (10) TANL(Paolini et al.,
2021), treating multi-task as translation between
augmented natural language and predicting struc-
tures with designed annotations; (11) UIE(Lu et al.,
2022), using a unified text-to-structure generation
with multi-task and prompt-based learning.
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Category Methods ACE05-E+ FOSAED-R

Trig-I Trig-C Trig-I Trig-C

Basic
BiLSTM+CRF 72.9 69.3 71.5 70.8
DMBERT 73.5 69.5 72.8 71.4
BERT 73.4 70.5 73.6 71.5

MRC-based BERT_QA_TRIGGER 74.6 71.5 72.9 71.8

Multi-task OneIE* 75.6 72.8 - -
FourIE* 76.7 73.3 - -

Prompt-based
Text2Event* - 71.8 - -
DEGREE* 76.7 72.7 - -
PILED* - 73.4 - -

Multi-task and
Prompt-based

TANL* 71.5 68.4 - -
UIE* - 73.4 - -

Dialogue-based
Explanation DESED

Direct Generation 76.2 72.3 75.8 74.3
Generation with a Prompt 76.9 73.5 75.8 74.3
Further Training - - 75.6 74.4

Table 3: Experimental results of sentence-level event detection on ACE05-E+ and FOSAED-R (F1-score, %). The
best results are in boldface. * indicates results cited from the original paper.

4.1.3 Implementation Details

For all experiments on sequence labelling, we se-
lect AdamW for optimization with a learning rate
of 3e-5, weight decay of 5e-5, adam ϵ of 1e-8 and
max gradient norm of 1.0. The max sequence
length is set to the max token length in a batch,
and the total max sequence length is set to 256
for ACE05-E+ and 512 for FOSAED-R. We use
a linear layer with a dropout rate of 0.3 for the
classifier. Each model is trained for 10 epochs
and choose the checkpoint with the best valida-
tion performance on the development set. For
ACE05-E+, we use a batch size of 4 and gradi-
ent accumulation step of 4, and BERT-large is
applied as backbone. For FOSAED-R, we use
a batch size of 4 and gradient accumulation step
of 2, and BERT-base-Chinese is applied as back-
bone. We do all the experiments on NVIDIA
Tesla V100. Our codes and datasets are released at
https://github.com/Ydongd/DESED.

In order to generate grammatically correct and
semantically rich dialogues, we use DialoGPT-
large for ACE05-E+ and CDial-GPTLCCC−large
for FOSAED-R as pretrained dialogue generation
models. Four prompts are used to generate dia-
logues. We generate 1-5 utterances from an origi-
nal sentence and report the best results. For further
training on dialogue data, since there is no suitable
and sufficient dialogue data in ACE05-E+, we only
conduct further training on FOSAED-R.

For unlabelled conversations in FOSAED, we
first eliminate mechanical responses according to

rules and merge consecutive utterances with the
same role, then select the utterances with events
(detected by a BERT model) and the next five
responses from those utterances as the dialogue
dataset which is used to train a user dialogue model
and an agent dialogue model. For the user dialogue
model, there is 36,395 dialogues in the training set
and 4,678 dialogues in the development set; while
for the agent dialogue model, there is 36,236 dia-
logues in the training set and 4,630 dialogues in the
development set. When further training, we use a
learning rate of 3e-5 and a max gradient norm of
1.0. We train the model for 10 epochs with 5000
warmup steps. The batch size is set to 8 and the
gradient accumulation steps is set to 32, which is
equivalent to a batch size of 256.

4.2 Main Results

From Table 3, we can see that DESED outper-
forms basic sequence labeling models (e.g., BiL-
STM+CRF and DMBERT) as expected. Compared
with the robust BERT token classification method,
DESED also achieves improvements of 4.3% Trig-
C F1 on ACE05-E+ (73.5% v.s. 70.5%) and 4.1%
Trig-C F1 on FOSAED-R (74.4% v.s. 71.5%). The
superiority of DESED can also be easily observed
by comparing it against a series of multi-task and
prompt-based methods. These results prove the
overall feasibility and effectiveness of our dialogue-
based explanation paradigm.

On ACE05-E+, generation with a prompt yields
better results than direct generation. The possible
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Generation Att ACE05-E+ FOSAED-R

Trig-I Trig-C Trig-I Trig-C

Direct
T 74.6 71.6 75.8 74.3
U 74.9 71.8 75.0 73.4
H 76.2 72.3 75.7 73.8

Prompt
T 75.2 72.3 75.1 73.7
U 76.2 73.5 75.8 74.3
H 76.9 73.3 74.3 72.9

Further
T - - 74.3 72.9
U - - 74.9 73.5
H - - 75.6 74.4

Table 4: Different attention mechanisms of DESED on
ACE05-E+ and FOSAED-R (F1-score, %). T, U and H
denote token-level, utterance-level and hybrid attention
mechanism respectively.

reason lies in that sentences in ACE05-E+ are cut
from documents, and many are unstructured, mak-
ing it difficult to generate high-quality dialogues
directly. While a clear and clarified prompt bridges
the gap between unstructured sentences and gener-
ated utterances. On FOSAED-R, different methods
produce similar results, as each user review is a
complete and independent sentence.

4.3 Attention Mechanisms in DESED

Results of different attention mechanisms are
shown in Table 4. Intuitively, more complex at-
tention leads to better performance. However, this
is not the case from the experimental results. There
are two main reasons: firstly, generated dialogues
have many noises and cannot simply be treated
as standard contextual texts; secondly, there are
differences in the training data for pretrained dia-
logue generation models. The English and Chinese
datasets are constructed from Reddit comments and
Weibo conversations, respectively. The latter has
shorter utterances and more meaningless content,
making the effects of our attention mechanisms
vary across languages.

In particular, by applying generation with a
prompt on ACE05-E+, though the contents of dia-
logues are more focused on a topic, they also have
some meaningless repetitive sentences which can
not be seen as normal contextual texts. Apply-
ing self-attention to such contents would mess up
token representations. For direct generation, the ca-
sualness and uncertainty of the generated contents
make the influence of various attention mechanisms
more consistent with our expectation.

On FOSAED-R, since user reviews are primar-

Prompt T U H

Prompt_1 72.3 72.6 73.0
Prompt_2 72.0 72.1 71.3
Prompt_3 71.6 73.5 71.8
Prompt_4 71.8 72.2 73.3

Table 5: Trig-C results(%) on ACE05-E+ with different
prompts to generate dialogues.

ily informal texts, generated utterances may have
jumbled characters and modal particles. And the
nature of Weibo conversations make generated dia-
logues having some meaningless sentences. With
direct generation, the sentence embeddings from
[CLS] tokens may be useless, potentially making
utterance attention impair performance. Genera-
tion with a prompt would yield consistent and co-
herent utterances, but the use of more attention
mechanisms may confuse the model and make it
more difficult to converge. When further training is
conducted, generated dialogues are more domain-
specific. However, as most of the utterances from
the agent are less informative, it does not show a
significant improvement in event detection.

4.4 Effect of Different Prompts

We design four simple prompts to generate dia-
logues: (1) What happened? (2) What happened
in the previous sentence? (3) What event does the
previous sentence describe? (4) Describe the event
in the previous sentence. The results on ACE05-E+

are shown in Table 5.
Prompt_1 for generation and direct generation

have the same trend under different attention
mechanisms, as Prompt_1 is less topic-specific.
However, it works better than direct generation.
Prompt_2 and Prompt_3 work similarly, with
Prompt_3 being slightly better than Prompt_2.
Both of them add a phrase in the previous sentence
to limit the scope of generated dialogues. Prompt_4
is the declarative form of Prompt_3, which imposes
fewer constraints than the interrogative form.

4.5 Exploration of Generated Dialogues

To reveal the quality of generated dialogues
and how the dialogue-based explanation impacts
event detection, we heuristically design a feature
p(consistent) to quantify the consistency of dia-
logues, which is defined as the percentage of gen-
erated dialogues consistent with the original sen-
tences. This indicator intuitively specifies that if
a sentence contains events, the generated dialogue
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Generation Indicator ACE05-E+ FOSAED-R

Direct

Length 54.6 62.1
p(event) 11.9 19.5
p(no-event) 93.2 72.2
p(consistent) 58.0 30.7

Prompt_3

Length 60.9 79.2
p(event) 21.2 24.0
p(no-event) 80.4 71.1
p(consistent) 54.7 34.0

Further

Length - 134.6
p(event) - 41.1
p(no-event) - 26.7
p(consistent) - 38.1

Table 6: Heuristic exploration of different dialogue gen-
eration methods based on BERT and four indicators.
The number of generated utterances is set to five.

Generation Indicator Context Dialogue

Direct

Trig-C 70.6 70.9
p(event) 22.5 11.9
p(no-event) 50.4 93.2
p(consistent) 38.3 58.0

Prompt_3

Trig-C 70.6 71.1
p(event) 23.5 21.2
p(no-event) 49.1 80.4
p(consistent) 38.0 54.7

Table 7: Experiments of using plain narrative contexts
or dialogues as additional information on ACE05-E+.
Five generated utterances are used for dialogue, and the
number of generated tokens is set to the average token
length of the five utterances for narrative contexts.

should contain all events in this sentence; if a sen-
tence has no events, the generated dialogue would
also has no events. The indicator can be divided
into two sub-indicators p(event) and p(no-event).
p(event) indicates the number of generated dia-
logues containing all events in the original sen-
tences as a percentage to the number of sentences
with events. And p(no-event) indicates the number
of generated dialogues having no events as a per-
centage to the number of sentences without events.
We employ a BERT model to detect events in the
generated dialogues consisting of five utterances.
The average token length of generated dialogues is
also used as a simple feature. It is noteworthy that
these four indicators do not reflect true fluency of
sentences and information intensity due to the in-
accuracy of the BERT model, but they still provide
a uniform quantitative metric for a relatively fair
comparison.

Intuitively, a generation method producing more
consistent dialogues should have higher scores on

Figure 5: Effect of number of utterance on ACE05-
E+ with dialogue generation with a prompt and on
FOSAED-R with dialogue generation with a prompt
along with further training and generation.

p(consistent), p(event), and p(no-event). As re-
flected in Table 6, on ACE05-E+, dialogues gener-
ated with Prompt_3 have higher p(event) and lower
p(no-event) compared with dialogues generated di-
rectly. Since generation with a prompt can compen-
sate for deficiencies in the structure and introduce
prior knowledge from the prompt, it can generate
more event-related dialogues, while more noise
would be introduced. Combining the performance
on event detection, we conclude that p(event) is a
more crucial factor on the final results, however, a
smaller p(no-event) may bring more noise, confus-
ing the model and making it harder to converge. On
FOSAED-R, generation with a prompt obtains bet-
ter results on p(consistent) than generated directly,
while generation after further training yields the
best. Nevertheless, generation after further training
significantly increases the average length of dia-
logues due to nonsensical utterances from an agent,
which introduces unnecessary noise, thus giving
limited improvement.

4.6 Comparison Between Dialogues and
Narrative Contexts

To investigate how dialogue-based explanation dif-
fers from narrative contexts, we experiment by
comparing the effects between using narrative
contexts (generated by GPT-2) and dialogues on
ACE05-E+. Since the structure of contexts gener-
ated by GPT-2 is confusing and difficult to split for
utilization, we only use token-level attention to de-
rive results. For a dialogue, we use five generated
utterances. For a narrative context, the number of
generated tokens is set to the average token length
of the five utterances.

As shown in Table 7, narrative contexts have
slightly higher p(event) compared with dialogues,
both generation directly and with a prompt, how-
ever, p(no-event) and p(consistent) are significantly
lower. This observation suggests that narrative con-
texts are less consistent with original sentences.
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Potential Issues Generated Dialogues

Imbalanced Data
in ACE05-E+

"User: The Pakistani supreme court last year [aquitted | Justice:Acquit] Ayub Masih, who had
denied uttering any word against Islam or the Prophet Mohammad. What happened?","Bot: He was
sentenced to death.","Bot: He got life."

Multiple Events
in ACE05-E+

"User: Police [arrested | Justice:Arrest-Jail] her in Abilene, Texas, Saturday where she had
[moved | Movement:Transport] with a friend June 2. What event does the previous sentence de-
scribe?", "Bot: I think it’s a reference to the fact that she was arrested in Abillene, Texas, and then
she was found in Abille, Texas.", "Bot: I thought it was a reference that she had been arrested in
Texas, but was found at a different location."

Multiple Events
in FOSAED-R

"用户:鱼都[没有煮熟 |食品不熟]，一股[腥 |感官异常]味，[恶心 |身体不适]死了", "客服:有
异味是吗亲亲,亲亲您方便把餐品照片发给商家吗", "用户:鱼鳞都没有刮干净,鱼腥味太重"
("User: The fish is [undercooked | Undercooked] and smells [fishy | Abnormalities], I feel [sick and
disgusted | Uncomfortable]","Agent: Is there a peculiar smell, my sweetie honey? Is it convenient
for you to send the pictures of the food to the merchant","User: The fish scales are not even scraped
clean, and the fishy smell is too strong")

Table 8: Case study for some potential issues in ACE05-E+ and FOSAED-R, we compare DESED to BERT token
classification based on original sentences as the baseline. The original sentence is the first utterance from User. The
other utterances are generated. The format of the trigger and event is represented as [Trigger | Event_Type], where
color in red means that DESED can recognize but the baseline cannot, while color in black means that both the
baseline and DESED can recognize.

The better performance using the generated dia-
logues also illustrates the superiority of dialogue-
based explanation. Another advantage of dialogues
over narrative contexts is that each utterance in a di-
alogue is an independent semantic unit that requires
no additional segmentation, which is essential for
various attention mechanisms.

4.7 Effect of Number of Utterance

Figure 5 shows the effect of number of utterance
on ACE05-E+ and FOSAED-R. On ACE05-E+,
we use Prompt_3. While on FOSAED-R, we use
the prompt: 这句话描述了什么事件？ (which
has the same English meaning as Prompt_3).

From the results, we can observe that: compared
with the token-level attention, the utterance-level
attention has a greater fluctuation on the number
of utterance, and the hybrid attention is a fusion of
them. Due to the randomness of dialogue genera-
tion, higher quality generated dialogues are more
beneficial than dialogues with more utterances. Af-
ter further training, the knowledge of the dialogue
generation model is limited to a specific domain,
thus having a smoother performance.

4.8 Case Study

We conduct a case study to further show the effec-
tiveness of DESED intuitively in Table 8.

There exists data imbalance problem in ACE05-
E+ (e.g. Justice:Acquit only accounts for 1.1%
of all events in the training set). Additional dia-
logue information can be utilized as an effective

semantic complement for rare events. For a sen-
tence with multiple events, while general methods
may have difficulties capturing the association be-
tween events, DESED can further discover multiple
events through generated dialogues.

5 Conclusion

In this paper, we propose a new paradigm, dialogue-
based explanation, to enhance sentence semantics
for sentence-level event detection. We propose
three conceptually simple methods to generate dia-
logues for given original sentences, which concen-
trate on casual dialogues, focused dialogues and
domain-specific dialogues respectively. To make
effective use of generated dialogues, we design
hybrid attention mechanisms at different levels of
granularity. Extensive experiments and analyses
show that DESED has promising performance on
event detection. In the future, we are interested in
generating dialogue-based explanation in a more
controllable way and extending dialogue-based ex-
planation to other tasks.
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Abstract

Few-shot knowledge graph completion
(FKGC) has become a new research focus in
the field of knowledge graphs in recent years,
which aims to predict the missing links for re-
lations that only have a few associative triples.
Existing models attempt to solve the problem
via learning entity and relation representations.
However, the limited training data severely
hinders the performance of existing models.
To this end, we propose to solve the FKGC
problem with the data augmentation technique.
Specifically, we perform data augmentation
from two perspectives, i.e., inter-task view and
intra-task view. The former generates new
tasks for FKGC, while the latter enriches the
support or query set for an individual task. It
is worth noting that the proposed framework
can be applied to a number of existing FKGC
models. Experimental evaluation on two
public datasets indicates our model is capable
of achieving substantial improvements over
baselines.

1 Introduction

Knowledge graphs (KGs) are structured seman-
tic knowledge bases used to describe concepts
and their interrelationships in the physical world
in symbolic form. Many KGs in the real world,
such as Freebase (Bollacker et al., 2008), YAGO
(Suchanek et al., 2007), WordNet (Miller, 1992),
Wikidata (Vrandecic and Krötzsch, 2014) and
NELL (Mitchell et al., 2018), consist of triple facts
in the form of (head entity, relation, tail entity), e.g.,
(Paris, capitalOf, France) indicates that Paris is the
capital of France. KGs have been introduced into
various downstream tasks of NLP, such as ques-
tion answering (Saxena et al., 2020), dialogue sys-
tems (He et al., 2017) and information extraction
(Hoffmann et al., 2011), etc. The integrity of KG
promotes the performance of downstream tasks.

∗ Corresponding author: Zhao Zhang and Chao Li.

However, KGs in the real world are far from com-
plete and comprehensive. Therefore, it is necessary
to complete KGs by inferring new triple facts.

To complete KGs, most existing embedding-
based KG completion models require adequate
triples for each relation as training data, such as
TransE (Bordes et al., 2013), RotatE (Sun et al.,
2019) and ConvE (Dettmers et al., 2017). However,
in reality, the number of triples for each relation
conforms to a long-tail distribution (Xiong et al.,
2018), i.e., only a small number of relations oc-
cur frequently, while most relations only occur a
few times in a KG. This phenomenon hinders to
learning reliable representations for infrequent re-
lations and further degrades the KG completion
performance.

This has motivated an emerging research topic
named few-shot knowledge graph completion
(FKGC), where one task is to predict the tail en-
tity t in a query (h, r, ?) given only a few entity
pairs of the task relation r. GMatching (Xiong
et al., 2018) is the first study on the FKGC task,
which proposes the basic framework and problem
formulation. FSRL (Zhang et al., 2020) and FAAN
(Sheng et al., 2020) further improve the attention
mechanism of the GMatching framework. MetaR
(Chen et al., 2019) and GANA (Niu et al., 2021)
adopt the meta-based paradigm in meta-learning as
the basic architecture. Although the above methods
achieve promising results for the FKGC problem,
they still suffer from the limited training data for
each relation. To this end, we propose to allevi-
ate the above issue using the data augmentation
technique.

Specifically, as shown in Figure 1, we aim to
augment the data of each task within its own dis-
tribution, and densify the task distribution by pro-
viding interpolated tasks. Therefore, we propose
to augment data from a hierarchical perspective.
The inter-task view generates new tasks for the
FKGC model. And the intra-task view provides
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Figure 1: Motivations behind data augmentation for FKGC. (a) Two tasks are sampled from the task distribution;
(b) Intra-task augmentation methods that augment each task within its own distribution; (c) Inter-task augmentation
densifies the task-level distribution by performing cross-task level interpolation or inversing task.

entity pairs for each individual task. This setting is
capable of enriching luxuriant data and densifying
the data distribution for FKGC models, which is
beneficial to achieving better performances. We
propose two data augmentation methods for each
view to enhance the existing FKGC model. Particu-
larly, the proposed technique is general and can be
applied to a number of existing FKGC models. To
the best of our knowledge, this is the first work to
solve the FKGC task using the data augmentation
technique. Finally, experimental results validate
the effectiveness of the proposed method.

In a nutshell, we highlight our main contribu-
tions as follows,

• To solve the problem of limited training data,
we propose to use the data augmentation tech-
nique for the FKGC problem. To the best
of our knowledge, this is the first work that
utilizes data augmentation for FKGC.

• To provide adequate data for the FKGC mod-
els, we propose to conduct data augmentation
from hierarchical perspectives, i.e., intra-task
perspective and inter-task perspective.

• Experimental results on benchmark datasets
show the proposed method can be applied to
various existing FKGC models and achieve
substantial improvements over baselines com-
petitors.

2 Background

In this section, we provide problem formulation
and the settings of FKGC.

2.1 Problem Formulation

A Knowledge graph G is represented as a collec-
tion of triples {(h, r, t)} = E × R × E , where E

and R are the entity set and relation set, respec-
tively. The task of knowledge graph completion
falls into two categories: predicting the unknown
relation r between the head entity and the tail en-
tity (h, ?, t), and predicting the missing entity t
or h based on the head/tail entity and the relation
(h, r, ?) or (?, r, t). In this paper, following pre-
vious FKGC work, we aim to predict the miss-
ing term in a given query (h, r, ?). Unlike tradi-
tional knowledge graph completion task that re-
quires abundant triples for the query relation during
training, FKGC is only accessible to a few train-
ing triples when predicting the tail entity. Specif-
ically, the goal of FKGC is to rank the true tail
entities ttrue higher than other candidate entities
Cr. Each relation r corresponds to a candidate en-
tity set, which is constructed based on entity type
constraints (Xiong et al., 2018; Toutanova et al.,
2015). In the test phase, the corresponding can-
didate entities are ranked, and the groud truth tail
entity is supposed to rank first among the candi-
dates.

2.2 FKGC Settings
FKGC follows the standard few-shot learning set-
tings, and the training data consists of a series of
tasks. In FKGC, each task corresponds to a relation
in KG r ∈ Rf , whereRf is the few-shot relation
set, and the rest of the relations in KG are back-
ground knowledge graph relationsRb, which con-
sist of high-frequency relations,Rf ∪Rb = R and
Rf ∩Rb = ϕ. The triples corresponding to each re-
lation in Rb form the background knowledge graph
G′, which is mainly used for pre-training the rep-
resentations of the entity set E and background
knowledge graph relations Rb. The head and tail
entity pairs {(hk,i, tk,i)} of a few-shot relation con-
stitutes a task. Each task Tk corresponds to one
support set Sk and one query set Qk, and a part of
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the task is selected to form the meta-training set
Tk ∈ Ttrain.
Train Prase: The goal of FKGC is to rank all enti-
ties in the candidate entity set with Sk as reference,
and the ground truth tail entity tk should be higher
than the other false entities tfalse. We formulize
the ranking loss function as Lθ and θ denotes the
model parameters, and the loss function is set to
reflect the rank of the true tail entities in Qk given
Sk. The objective of training the FKGC model is
defined as:

minθ
1

|Tt|
∑

T tk∈Tt

∑

(hk,i,tk,i)∈Qk

Lθ(tk,i|hk,i, Sk)
|Qk|

(1)
where |Tt| denotes the number of tasks in Ttrain
and the T tk is sampled from the meta-training set
Ttrain.
Test Prase: When training is complete and tail
entity completion is performed, FKGC models will
sample new tasks from the meta-test set Tk′ ∈ Ttest
for prediction. Meta-test set Ttest also has the
support set Sk′ and query set Qk′ , which are de-
fined in the same way as in meta-training. Sim-
ilarly, each task corresponds to a relation in the
meta-test relations rt ∈ Rtest that does not appear
in the training phase: Rtest ∩ Rtrain = ϕ and
Rtrain ∪ Rtest = Rf . These new relations only
need to be predicted for tail entity (tk′,i|hr′,i, Ck′)
in Qk′ with K triples of as Sk′ a reference.

3 Related Work

3.1 Data Augmentation Strategy

Data augmentation has been widely used to prevent
deep neural networks from over-fitting to the train-
ing data (Bishop, 1995). Most of the traditional
augmentation methods generate new data accord-
ing to the mixed application transformation of data
types or proposed target tasks (Cubuk et al., 2019),
which can be independently applied to various data
types and tasks, improving the generalization and
robustness of deep neural networks. Input mixup
(Zhang et al., 2017) linearly interpolates between
two input data, and trains the model using mixed
data with corresponding soft labels. Following this
work, a variety of mixup methods for data aug-
mentation have been proposed. Manifold mixup
(Verma et al., 2018) applies the mixup strategy in
the hidden feature space, and CutMix (Yun et al.,
2019) proposes an image mixup method based on
spatial copy and paste. Puzzle Mix (Kim et al.,

2020) proposes a mixup method based on saliency
and local statistics of the given data. MixSKD
(Yang et al., 2022) incorporates Mixup with self-
knowledge distillation into a unified framework
to regularize the two image views. Most of these
methods aim at the field of image processing. In
this paper, we specially tailor the mixup strategy
for the FKGC task.

3.2 FKGC models
Existing FKGC approaches fall into two categories:
metric learning-based methods and meta learner-
based methods. We outline the main structures of
these two methods and describe them separately in
the following
Metric learning-based methods. GMatching is
the first research work on FKGC (Xiong et al.,
2018), and it utilizes metric learning-based meth-
ods as the backbone and divides the model into
three subparts: neighbor encoder, entity pairs en-
coder, and matching processor. Neighbor encoder
is designed to enhance the representation of each
entity with its local connections in the knowledge
graph (one-hop neighbors).

Gmatching directly sums all neighbors on aver-
age, FSRL (Zhang et al., 2020) uses the attention
mechanism (Veličković et al., 2017) to encoding
neighbors, and FAAN (Sheng et al., 2020) lever-
ages the relation in task Rf to introduce the adap-
tive attention network. The embedding of entities
h, t ∈ Rd are then fed into the entity pairs encoder
Fr:

rqk,i = Fr(h
q
k,i, t

q
k,i), rsk,. = Fr(Sk) (2)

where (hqk,i, t
q
k,i) ∈ Qk, the query relation rqk,i ∈

Rd and support set relation rsk,. ∈ Rd are
then compared by matching processor function:
Score(rqk,i, r

s
k,.) = M(rqk,i, r

s
k,.), since rqk,i and

rsk,. represent the same task realtion rk, their score
should be as high as possible.
Meta learner-based methods. MetaR (Chen et al.,
2019) is the first model to use the Meta learner-
based method as backbone. In contrast to the stan-
dard gradient-based meta-learning, MetaR defined
two kinds of meta information which are shared
between support set and query set. It can be viewed
as a bi-level optimization problem.

Formally, the bi-level optimization process can
be formulated as:

θ∗ ← argminθ
∑

Tk∈Ttrain
[Lθ(rmetak,. , Qk)]
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s.t. rmetak,. = rsk,. − η▽rsk,. Lθ(r
s
k,., Sk) (3)

Where rsk,. is obtained by Equation 2; Lθ and η de-
note the knowledge graph loss function and inner-
loop learning rate. GANA (Niu et al., 2021) shares
a similar idea with MetaR, but learns the relation-
specific hyper-plane parameters to model complex
relations.

4 Methodology

The section describes the details of the data aug-
mentation for FKGC. It falls into two data augmen-
tation methods from the task perspective: intra-
task augmentation and inter-task augmentation.
inter-task augmentation generates new tasks for
the FKGC model, and the intra-task augmentation
provides entity pairs for each individual task. We
will describe how each of these data augmentation
methods is applied to metric learning-based meth-
ods and meta learner-based methods.

4.1 Intra-Task Augmentation

Intra-task augmentation only enlarges the pool of
triples to be sampled during training within each
individual task, not the number of tasks. Since all
entity pairs under the same task have the same rela-
tion, FKGC uses entity pairs to model few-shot re-
lationsRf . Assume rk,i is the relation embedding
vector modeled by the i-th entity pair (hk,i, tk,i) in
the k-th task Tk, and since both rk,i and rk,j be-
long to the same task, rk,j ≈ rk,i. We consider the
combination of different modeling vectors of the
same relation can still represent this task relation:
(rk,i, rk,j) ≈ rk,j . Therefore mixing different en-
tity pairs in the task after the entity pairs encoder
can generate a new modeling vector. It is worth
noting that what is generated is a new modeling vec-
tor belonging to this task relation instead of a new
triple. In detail, the mixing strategy follows Mani-
fold Mixup (Verma et al., 2019) where inputs and
hidden representations are mixed up. A task con-
tains a query set and a support set: Tk = (Qk, Sk),
so two types of intra-task augmentation can be de-
rived according to the differences in augmenting
settings:

4.1.1 Query Augmentation
Query augmentation enlarges the pool of evalua-
tion data to be sampled during training. Since the
structure of the two mainstream FKGC models is
different (details in Section 3.2), we will introduce

Algorithm 1 The Process of Intra-Augmentation

Require: Meta-training set Ttrain, model param-
eter θ, outer-loop learning rate φ, inner-loop
learning rate η, candidate set C.

1: while not converge do
2: Randomly sample a task Tk from Ttrain
3: if Metric Learning-Based Methods then
4: if Query Augmentation then
5: θ = θ − φErnewqk

▽θ Hθ(rnewqk,i , rsk,.).
6: else if Support Augmentation then
7: θ = θ − φErqk ▽θ Hθ(rqk,i, rnewsk,. ).
8: end if
9: else if Meta Learner-Based Methods then

10: if Query Augmentation then
11: θ = θ − φ▽θ Lθ(rmetak,. , Qnewk ) .
12: s.t. rmetak,. = rsk,.−η▽rsk,.Lθ(rsk,., Sk).
13: else if Support Augmentation then
14: θ = θ − φ▽θ Lθ(rmeta

′
k,. , Qk) .

15: s.t. rmeta′k,. = 1
|Sk|

∑|Sk|
i=0 rmeta′k,i .

16: end if
17: end if
18: end while

how query augmentation is applied to these two
types of models.

Metric Learning-Based Methods try to learn gen-
eralizable metrics and the corresponding matching
functionsM(·, ·) from a set of training tasks. As-
sume that rnewqk,i denotes a new modeling vector of
query set, we can formulate this change onM as:

M(rqk,i, r
s
k,.) :=M(rnewqk,i , rsk,.)

s.t. rnewqk,i = λrqk,i + (1− λ)rqk,j (4)

Where rqk,i and rqk,j are obtained by Eqn.2 and
λ ∈ [0, 1] is sampled from a Beta distribution
Beta(α, β). Then we construct a set of negative
queries Qnegk = {(hk,i, t−k,i)} by randomly corrupt-
ing the tail entity, where the false tail entity belongs
to the task entity candidate set: t−k,i ∈ Ck. The loss
function is formally defined as:

Hθ(rnewq

k,i , rsk,.) = [γ +M(rnewq

k,i , rsk,.)−M(rnegk,i , r
s
k,.)]+

(5)

where [x]+ = max(0, x) is standard hinge loss,
and γ is a margin separating positive and negative
queries.

Meta learner-based methods are a bi-level op-
timization process; query augmentation for meta
learner-based methods can improve the outer-loop
optimization. Like metric learning-based methods,
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we also construct a new query set, but due to the
outer-loop optimization process does not encode
the entity pairs of the query set into the relation
vector, we directly mix up the original entity pair:

Qnewk = {(λhqk,i+(1−λ)hqk,j , λtqk,i+(1−λ)tqk,j)}
(6)

where (hqk,i, t
q
k,i), (h

q
k,j , t

q
k,j) ∈ Qk and the Eqn.3

is reformulated as:

θ∗ ← argminθ
∑

Tk∈Ttrain
[Lθ(rmetak,. , Qnewk )] (7)

4.1.2 Support Augmentation
Support augmentation enlarges the pool of triples
to be sampled for the support set, not to increase
the value of K = |Sk|.

Metric Learning-Based Methods. Like the sup-
port augmentation, We also randomly sample two
relation modeling vectors for mixup to generate a
new support set and the Eqn.4 is reformulated as:

M(rqk, r
s
k,.) :=M(rqk, r

news
k,. )

s.t. rnewsk,i = λrsk,i + (1− λ)rsk,j (8)

where the rnewsk,i is obtained by aggregating all
rnewsk,i to represent the new support set relation
and the loss function of support augmentation for
metric learning-based methods is reformulated as:
Hθ(rqk, rnewsk,. ).

Meta Learner-Based Methods. Support augmen-
tation can be applied to support set in the inner-loop
to fine-tuning the relation vector rsk. This strategy
enlarges the pool of fine-tuning data. Since both
rsk,i and rsk,j represent the same task relation, their
fine-tuning gradients with respect to the task rela-
tion should be consistent, Therefore, we mix the
respective fine-tuned gradients of the two relation
vector and apply the resulting gradient to rsk,i.

rmeta
′

k,i = rsk,i − [λG(rsk,i) + (1− λ)G(rk,j)]
s.t. G(rk,j) = ▽rsk,iLθ[r

s
k,i, (h

s
k,i, t

s
k,i)] (9)

where entity pair (hsk,i, tsk,i) ∈ Sk and the rmeta′k,. =
1
|Sk|

∑|Sk|
i=0 rmeta′k,i will be used as the relation vector

of all entity pairs in the query set (hqk,i, r
meta′
k,. , tqk,j),

thus participating in the outer optimization of the
model parameters. Changing rmetak,. in Eqn.3 to
rmeta′k,. is the outer-loop optimization process of
support augmentation for meta methods.

4.2 Inter-Task Augmentation
Inter-task augmentation increases the number of
tasks by creating new relations r′k to enlarge the
task pool of meta-training set Ttrain. To enlarge the
value of |Ttrain|, we devise two task augmentation
methods: inverse augmentation and interpolation
augmentation.

4.2.1 Inverse Augmentation
FKGC models represent few-shot relationRf us-
ing entity pairs, which consist of head and tail enti-
ties. Intuitively, flipping the head and tail entities
to represent another relation can enrich the dataset,
e.g., the triple (Elon Musk,SonOf, Errol Musk) can
be flipped as (Errol Musk, ParentOf, Elon Musk),
where the entity pair (Errol Musk, Elon Musk)
can represent a new relation ParentOf. When we
generalize this augmentation to all tasks in the
meta-training set, a new reversed meta-training
set can be generated: T ′train = {T ′1 , · · · , T ′N},
where N is the number of tasks in Ttrain and
T ′k = {(tk,i, , hk,i)}|Tk|. Merge the two meta-
training sets to get a new larger meta-training set:
Tnewtrain = T ′train ∪ Ttrain. Therefore, the number
of tasks of T ′train is twice that of the original train
set Ttrain, and finally T ′train will replace Ttrain to
participate in the training process.

4.2.2 Interpolation Augmentation
We think that the combination of two different
relations can generate a new relation, such as
father+mother = grandma. We adopt a mixup
strategy for linear addition rather than direct combi-
nation: T ′mixi,j = λTi + (1− λ)Tj , which adjusts
the weight of the two task relations in the new rela-
tion by λ. Since λ is obtained by sampling from the
beta distribution Beta(α, β), the number of tasks
in the meta-training set tends to be infinite in theory.
When λ = 0.5, the mixup strategy is equivalent to
a direct combination.

Metric Learning-Based Methods. Input the en-
tity pairs of task i: Ti and task j: Tj into Eqn.8
respectively to obtain their corresponding relation
modeling vectors, and mix up the relation vectors
in these two tasks to generate a new task r′mixi,j .
We can formulate this process as follows:

rq
′
mixi,j ,k

= λrqi,k + (1− λ)rqj,k
rs

′
mixi,j ,k

= λrsi,k + (1− λ)rsj,k (10)

Then we pass rq
′
mixi,j ,k

and rs′mixi,j ,k through match-
ing processor function to calculating the similarity
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Algorithm 2 The Process of Inter-Augmentation

Require: Meta-training set Ttrain, inner-loop
learning rate φ, Beta distribution parameters
α, β, candidate set C.

1: if Inverse Augmentation then
2: minθET ′

k

∑
(hk,i,tk,i)∈Q′

k

Lθ(tk,i|hk,i,S′
k)

|Q′
k|

3: s.t. T ′k ∈ Tnewtrain = T ′train ∪ Ttrain
4: else if Interpolation Augmentation then
5: while not converge do
6: Sample two tasks Ti, Tj from Ttrain.
7: if Metric-Based Methods then
8: θ = θ − φ▽θ Hθ(rq

′
mixi,j ,k

, rs′mixi,j ,k).
9: else if Meta-Based Methods then

10: θ = θ−φ▽θ Lθ(rmeta
′

mixi,j ,k
, Q′mixi,j ) .

11: s.t. rmeta′mixi,j ,k
= λrmetai,k +(1−λ)rmetaj,k .

12: end if
13: end while
14: end if

score of them:M(rq
′
mixi,j ,k

, rs′mixi,j ,k). Since they
represent the same new task relation r′mixi,j , their
score should be as high as possible.

Meta Learner-Based Methods are different from
metric learning-based methods to generate a new
task; it not only needs to mixup the relation vec-
tor of the support set in the two tasks: rmeta′mixi,j

=

λrmetai,. + (1− λ)rmetaj,. , but also needs to generate
a corresponding query set:

Q′
mixi,j = {(λhqi,k + (1− λ)hqj,k, λtqi,k + (1− λ)tqj,k)}i ̸=j

(11)

Substituting rmeta′mixi,j
and Q′mixi,j into Eqn.3 is the

bi-level optimization process.

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets.
We evaluate our augmentation methods on two pub-
lic benchmark datasets: NELL-One and Wiki-One1.
In these datasets, few-shot relationsRf that have
more than 50 but less than 500 triples are selected
to construct few-shot tasks. There are 67 tasks and
183 tasks in NELL-One and Wiki-One datasets re-
spectively. Correspondingly, the partition 51/5/11
of the 67 tasks and the partition 133/16/34 of the
183 tasks are used for training/validation/test. Fur-
thermore, the background knowledge graph G′ ex-
cept few-shot relations are used to pre-train entity

1https://github.com/xwhan/One-shot-Relational-Learning

vectors andRb vectors. The statistic details of both
datasets are shown in Table 2.

5.1.2 Comparison Methods.
In order to evaluate the effectiveness of our aug-
mentation methods, We conduct experiments on
three metric learning-based methods and two meta
learner-based methods: GMatching, FSRL, FAAN
and MetaR, GANA (model details in Section 3.2).
All the above methods use the original datasets for
training without data augmentation.

5.1.3 Implementation Details.
For all the models, we initialize the entity and rela-
tion embeddings by background knowledge graphs
pre-trained on TransE, released by GMatching. The
K-shot (K = 1, 5) support pairs are selected ran-
domly and experimented for all the models. For
a fair comparison, we run the official code and
adopt the default hyperparameters for each baseline.
GMatching and FSRL do not report the experimen-
tal results in the 5-shot case, but we can adopt the
results reported by FAAN for these two models in
the 5-shot case. Moreover, FSRL and FAAN do not
report the experimental results in the 1-shot case,
so we run their released code to get baseline results
in the 1-shot case. we re-implement the GANA
model to make a fair comparison. For MetaR, we
choose both pre-train setting and in-train setting
to evaluation our augmentation methods. We set
α = 2 and β = 2 in Beta(α, β) and the and the
neighborhood’s maximum size is fixed to 50 on
both datasets. For other hyperparameters, we adopt
the default value of their released code.

5.1.4 Evaluation Metrics.
To evaluate the performance of all models on our
augmentation methods, which aims to rank the
ground truth tail entity tqk,i for each query among
the task candidates Ck. We report two standard eval-
uation metrics on both datasets: MRR and Hits@N .
MRR is the mean reciprocal rank and Hits@N is
the proportion of the ground truth entities ranked
in the top N ; in our experiments, we set N = 1, 5,
10 and the few-shot size is set to K=1, 3.

5.2 Experimental Results and Analysis
The MRR results of FKGC models with all aug-
mentation methods on NELL-One and Wiki-One
are shown in Table 1, we can conclude that:

1. Our augmentation methods applied to all base-
line models improve their original MRR val-
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NELL-One Methods Shot Vanilla Intra-Task Inter-Task
Query Support Inverse Interpolation

Metric-based

Gmatching 1-shot 0.168 0.185+0.017 0.175+0.007 0.179+0.011 0.205+0.037

5-shot 0.176 0.191+0.015 0.180+0.004 0.196+0.020 0.211+0.035

FSRL 1-shot 0.148 0.172+0.024 0.164+0.016 0.157+0.009 0.179+0.031

5-shot 0.153 0.178+0.025 0.165+0.012 0.169+0.016 0.185+0.032

FAAN 1-shot 0.194 0.231+0.037 0.216+0.022 0.209+0.015 0.224+0.030

5-shot 0.279 0.304+0.025 0.282+0.003 0.284+0.005 0.294+0.015

Meta-based

MetaR (Pre-Train) 1-shot 0.164 0.204+0.040 0.227+0.063 0.217+0.053 0.194+0.030

5-shot 0.209 0.224+0.015 0.240+0.031 0.233+0.024 0.217+0.008

MetaR (In-Train) 1-shot 0.250 0.308+0.058 0.319+0.069 0.254+0.004 0.266+0.016

5-shot 0.261 0.331+0.070 0.332+0.071 0.275+0.014 0.307+0.046

GANA 1-shot 0.254 0.278+0.024 0.291+0.037 0.286+0.032 0.261−0.007

5-shot 0.314 0.326+0.012 0.342+0.028 0.334+0.020 0.318+0.004

WiKi-One Methods Shot Vanilla Intra-Task Inter-Task
Query Support Inverse Interpolation

Metric-based

Gmatching 1-shot 0.200 0.234+0.034 0.224+0.024 0.218+0.018 0.215+0.015

5-shot 0.245 0.278+0.033 0.263+0.018 0.261+0.016 0.256+0.011

FSRL 1-shot 0.128 0.157+0.029 0.155+0.027 0.136+0.008 0.147+0.019

5-shot 0.158 0.186+0.028 0.176+0.018 0.171+0.013 0.165+0.007

FAAN 1-shot 0.272 0.301+0.029 0.285+0.013 0.289+0.017 0.279+0.007

5-shot 0.341 0.358+0.025 0.349+0.008 0.353+0.012 0.348+0.007

Meta-based

MetaR (Pre-Train) 1-shot 0.314 0.328+0.014 0.335+0.021 0.325+0.011 0.319+0.005

5-shot 0.323 0.334+0.011 0.347+0.024 0.328+0.005 0.331+0.008

MetaR (In-Train) 1-shot 0.193 0.198+0.005 0.207+0.014 0.190−0.003 0.184−0.009

5-shot 0.221 0.232+0.011 0.239+0.018 0.227+0.006 0.209−0.012

GANA 1-shot 0.261 0.272+0.011 0.286+0.025 0.266+0.005 0.273+0.012

5-shot 0.322 0.338+0.016 0.342+0.020 0.331+0.009 0.327+0.005

Table 1: Evaluation MRR of FKGC models with all augmentation methods on NELL-One and Wiki-One.

Dataset #Ent. #Rel. #Triples #Tasks

NELL-One 68,545 358 181,109 67
WiKi-One 4,838,244 822 5,859,240 183

Table 2: Statistics of datasets. Each column respectively
represents the number of entities, relations, triples and
tasks.

ues on both datasets upon all metrics. The
experimental results indicate that our augmen-
tation methods are effective for improving the
existing FKGC models.

2. After support augmentation on NELL-One
data, MetaR (Pre-Train) has increased by
38.4% compared to the original model, which
is the largest increase. On WiKi-One data,
query augmentation improves the MRR value
of FSRL by 22.7%. The improvement on
NELL-One is larger than that on WiKi-One
because the Wiki dataset is more extensive, so
the improvement brought by data augmenta-

tion is limited.

3. On the NELL-One dataset, intra-task augmen-
tation is better than inter-task augmentation
on metric learning-based models, but the op-
posite is true on meta learner-based models.
On the WiKi-One dataset, intra-task augmen-
tation outperforms inter-augmentation on all
FKGC models. We conjecture the reason
lies in that the WiKi-One dataset has more
tasks than NELL-One, therefore increasing
the number of triples within a task is more
effective than increasing the number of tasks.

5.3 Combining Augmentations

After studying each mode of data augmentation
individually, we combine intra-task augmentation
and inter-task augmentation to understand the in-
terplay between these two levels of augmentation
methods. We select the best-performing FAAN
model among metric learning-based methods for
experiments. As shown in Table 4, the augmented
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Model: MetaR (Pre-Train)

NELL-One MRR Hits@10 Hits@5 Hits@1
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Vanilla 0.164 0.209 0.331 0.355 0.238 0.280 0.093 0.141

Intra-Task
Query 0.204 0.224 0.376 0.383 0.295 0.298 0.131 0.149

Support 0.227 0.240 0.380 0.376 0.303 0.323 0.161 0.157

Inter-Task
Inverse 0.217 0.233 0.375 0.359 0.289 0.296 0.156 0.172

Interpolation 0.194 0.217 0.379 0.359 0.284 0.289 0.100 0.158
Wiki-One 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Vanilla 0.314 0.323 0.404 0.418 0.375 0.385 0.266 0.270

Intra-Task
Query 0.328 0.334 0.515 0.504 0.437 0.442 0.233 0.242

Support 0.335 0.347 0.509 0.507 0.447 0.451 0.235 0.256

Inter-Task
Inverse 0.325 0.328 0.499 0.513 0.433 0.436 0.233 0.237

Interpolation 0.319 0.331 0.500 0.509 0.426 0.444 0.223 0.235

Table 3: Evaluation results of MetaR (Pre-Train) with data augmentation on NELL-One and Wiki-One.

mode 1-shot 5-shot

FAAN 0.194 0.279
+Query, Inverse 0.240+0.046 0.307+0.028

+Query, Interp. 0.225+0.031 0.297+0.018

+Support, Inverse 0.221+0.027 0.288+0.009

+Support, Interp. 0.217+0.023 0.286+0.007

Table 4: MRR results of FAAN combining augmenta-
tions variants on NELL-One dataset. Interp. denote
interpolation.

model outperforms the original one under all set-
tings. Combined with Figure 2, we find the jointly
augmented models achieve better results than mod-
els using only one augmentation method. It shows
that the combination of inter-task augmentation and
intra-task augmentation is able to further improve
the results.

Figure 2: Visualization of relation vectors generated by
different augmentation methods

5.4 Hits@N for case study

MetaR improves the most with all augmentation
methods, and to get a complete picture of its perfor-
mance; we further analyze it using Hits@N, which
is summarized in Table 3. The augmentation meth-
ods bring the greatest improvement on Hits@5 and
Hits@10, indicating that the augmentation methods
mainly rely on the top-ranked recall to improve the
overall MRR value. The Hit@N of the WiKi-One
dataset is generally better than that of the NELL-
One dataset under the same settings, because the
former has more data to train.

5.5 Visualization

To better demonstrate the effectiveness of our aug-
mentation methods, we visualize the new relation
vectors generated by various augmentation meth-
ods in a 2-dimensional plane, i.e., using t-SNE
(Van der Maaten and Hinton, 2008) for dimension
reduction. As shown in figure 2, a new task is
generated using interpolation augmentation, which
can be well distinguished from other tasks and has
a small intra-task distance. Intra-task augmenta-
tion for existing tasks can generate more relational
vectors within the cluster. Therefore, the visualiza-
tion results validate the effectiveness of our data
augmentation method for FKGC.

5.6 Results on Different Relations

In addition to evaluating the augmented perfor-
mance of all models, we also conduct experiments
with FSRL on the NELL-One test data to evalu-
ate the performance of each task relation. Table 5
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reports the original performance of FSRL and the
MRR after our augmentation methods. It can be
seen from the table that no matter which augmenta-
tion method is used, the variance of the results is
high in different task relations. The main reason
for this is that the number of candidate entities is
different, and large candidate sets make prediction
difficult. Nonetheless, our augmentation methods
outperform the baseline results on all relations, es-
pecially the interpretation augmentation method
performs best on the FSRL model, indicating that
our augmentation methods are robust to different
task relations.

R-ID Vanilla Intra-task Inter-task

Query Support Inver. Interp.

1 0.975 0.982 0.980 0.982 0.983
2 0.064 0.072 0.068 0.070 0.085
3 0.472 0.601 0.602 0.595 0.610
4 0.005 0.008 0.007 0.008 0.011
5 0.210 0.242 0.232 0.268 0.272
6 0.045 0.048 0.047 0.049 0.063
7 0.141 0.163 0.149 0.156 0.231
8 0.118 0.121 0.123 0.133 0.128
9 0.561 0.562 0.550 0.566 0.586
10 0.009 0.011 0.010 0.012 0.023
11 0.373 0.397 0.378 0.394 0.427

Table 5: FSRL mrr results with 5-shot reference decom-
posed over different relations in NELL-One test dataset.
R-ID denote relation id, Inver. and Interp. denotes In-
verse augmentation and Interpolation augmentation.

6 Conclusion

To alleviate the limited data problem in the FKGC
task. In this paper, we propose to utilize the data
augmentation technique to enrich the training set
for FKGC models. Specifically, we design the
data augmentation method from hierarchical per-
spectives. The inter-task perspective generates new
tasks for the FKGC task, while the intra-task per-
spective provides more entity pairs for each task.
Furthermore, in order to fully perform data aug-
mentation, we design two augmentation methods
for each perspective, i.e., inverse augmentation and
interpolation augmentation for the inter-task view,
query augmentation and support augmentation for
the intra-task view. Experimental results validate
the effectiveness of the proposed method.
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Abstract

Transforming the large amounts of unstructured
text on the Internet into structured event knowl-
edge is a critical, yet unsolved goal of NLP, es-
pecially when addressing document-level text.
Existing methods struggle in Document-level
Event Extraction (DEE) due to its two intrin-
sic challenges: (a) Nested arguments, which
means one argument is the substring of another
one. (b) Multiple events, which indicates we
should identify multiple events and assemble
the arguments for them. In this paper, we pro-
pose a role-interactive multi-event head atten-
tion network (CLIO) to solve these two chal-
lenges jointly. The key idea is to map different
events to multiple subspaces (i.e., multi-event
head). In each event subspace, we draw the se-
mantic representation of each role closer to its
corresponding arguments, then we determine
whether the current event exists. To further
optimize event representation, we propose an
event representation enhancing strategy to regu-
larize pre-trained embedding space to be more
isotropic. Our experiments on two widely used
DEE datasets show that CLIO achieves consis-
tent improvements over previous methods.

1 Introduction

Cognitive scientists believe that humans remem-
ber and understand reality primarily in terms of
events (Shipley and Zacks, 2008). Event studies
are justifiably popular in Natural Language Pro-
cessing (NLP), such as Event Coreference Reso-
lution, Event Causality Identification, and Event
Extraction. Event extraction is the process of ex-
tracting structured event knowledge from unstruc-
tured text and can be divided into sentence-level
and document-level. Sentence-level Event Extrac-
tion has demonstrated promising results in empiri-
cal evaluations. However, in real-world scenarios,
a large number of event elements are expressed

∗Fang Fang and Wei Ma are the co-corresponding authors
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Figure 1: An illustration of DEE task. Different colored
tabels indicate different event types. DEE needs to
detect multiple event types and extract arguments for
the roles of each event type.

across sentences. Document-level Event Extrac-
tion (DEE) is needed when we want to capture
complete event information for the whole docu-
ment. In contrast to SEE, increased text length
brings more challenges, and DEE has still been
underachieving.

Recently, researchers have shown an increased
interest in DEE. Their works can be roughly di-
vided into classification-based models (Zhang et al.,
2020; Xu et al., 2021; Huang and Jia, 2021; Huang
and Peng, 2021), tagging-based models (Yang et al.,
2018; Du and Cardie, 2020), and generation-based
models (Li et al., 2021; Yang et al., 2021; Du et al.,
2021). The state-of-the-art approach (Liu et al.,
2021) frames DEE as a machine reading compre-
hension task, assisted by two data augmentation
regimes. Although scholars have made such valu-
able attempts in DEE, current methods still struggle
in DEE due to the following crucial challenges:

Nested arguments: In a document, there are
many nested arguments (i.e., one argument is the
substring of another one) that belong to different
roles. Figure 1 gives an example. In the “Trans-
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portation” event, “truck” (plays Origin role) and
“Ryder truck” (plays Vehicle role) are nested event
arguments. According to our statistics, 14.23% and
13.94% of documents in the WikiEvents (Li et al.,
2021) and RAMS (Ebner et al., 2020) datasets
have nested arguments, respectively. Unfortunately,
these nested arguments can’t be entirely identified
by traditional tagging-based methods, which can
not assign multiple labels to a token.

Multiple events: As shown in Figure 1, there
are three kinds of events: “Transportation”, “Ex-
changeBuySell”, and “Meet” in a single document,
and DEE should not only identify all events but
also assign arguments to the corresponding events.
The issue of multiple events is common in DEE
(86.88% of documents in the WikiEvents involve
multiple events). What’s more, the arguments of
these events are uniformly scattered across sen-
tences, making it hard to achieve accurate argu-
ments assembling. Previous works usually adopt
a fixed document representation to detect all event
types. However, different event types have different
roles and arguments, and the emphasis of document
representation should also be different.

For the nested arguments, which usually belong
to different roles, the intuition is that we should
extract arguments for each role independently. As-
suming there are N roles in an event, we can per-
form N independent extractions by tagging argu-
ments under each role. In this way, the argument
substring “truck” of role “Origin” and the argument
“Ryder truck” of role “Vehicle” can be identified at
the same time. To address the challenge of multiple
events, an intuitive way is to independently detect
each event type and assemble arguments for it. For
one event type, argument extraction can be sim-
pler due to the decrease in roles. On the contrary,
using role information specific to this event type
can better detect the current event type. We argue
that these two challenges can be solved jointly by
mapping each event type to a specific subspace.

Analogy to multi-head attention (Vaswani et al.,
2017), we propose a role-interaCtive muLti-event
head attentIon netwOrk (CLIO) for DEE. The most
critical part in CLIO is Role-interactive Multi-event
Head Attention module, which can solve the afore-
mentioned two challenges jointly. First, our atten-
tion module works in a role-centric way. That is
to say, for each role, we extract all of its corre-
sponding arguments independently. In this way, a
token can be assigned multiple role labels, which

can perfectly solve nested arguments problem. Sec-
ond, our attention module assigns each event type a
subspace by mapping it to each event head. In this
way, we can independently detect each event type
and assemble arguments for it, which can address
the challenge of multiple events. In each event
head, we use role information specific to this event
to represent document. Such event-specific docu-
ment representation eases the difficulty of detecting
multiple events from a single document.

In summary, our contributions are as follows:

• We propose a role-interactive multi-event
head attention network to handle the chal-
lenges of nested arguments and multiple
events simultaneously.

• We conduct experiments on two widely used
DEE datasets. Experimental results demon-
strate that CLIO outperforms previous meth-
ods and has significant improvement when
facing the vital challenges of DEE.

2 Methodology

We first describe the task formalization of DEE.
Formally, given an input document comprised of
m words D = {wi}mi=1, pre-defined event types
T = {ti}li=1, and role categorizies R = {ri}ni=1.
The DEE task aims to extract one or more event
records: {event type : t, r1 : [a11, a

2
1, ...], ..., ri :

[a1i , a
2
i , ...]}, where a1i is the first argument of role

ri, and so on.
Figure 2 illustrates the architecture of CLIO,

which consists of three key components: (1) Role-
interactive Multi-event Head Attention, (2) Multi-
ple Events Extraction, and (3) Event Representa-
tion Enhancing. Role-interactive Multi-event Head
Attention module can solve the challenges of nested
arguments and multiple events simultaneously.

2.1 Encoding

First, we construct an extended sequence S =
[CLS]D[SEP]R[SEP] by concatenating the docu-
mentD and role setR. Next, we use BERT (Devlin
et al., 2019) with hidden size d to encode contex-
tual embeddings of each word in the sequence S:

[Hw,Hr] = BERT(S) (1)

After this stage, we can obtain the word representa-
tion of document Hw ∈ Rm×d and role representa-
tion Hr ∈ Rn×d. This stage makes a deep fusion
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Figure 2: The overall architecture of CLIO. Role-interactive Multi-event Head Attention is designed to map each
event type to a specific subspace. In each subspace, we compare the roles and words to measure the degree of
relevance among them. Event Representation Enhancing is used to further optimize event representation. In Multiple
Events Extraction, we perform the two subtasks of DEE.

between the document and roles by multi-head and
multi-layer attention.

Norm-based Significance Score Intuitively, not
every word in document is significant. So we intro-
duce a norm-based significance score to measure
the ability of words to express essential meaning
based on the L2-Norm of word embedding. This
feature of L2-Norm has already been proven by
some promising works (Luhn, 1958; Chen et al.,
2020; Liu et al., 2020).

We use the L2-Norm of word embeddings as the
weight of them:

H′w = ∥Hw∥2 ⊙ Hw (2)

where H′w ∈ Rm×d is the weighted word embed-
ding, ⊙ means element-wise multiplication.

2.2 Role-interactive Multi-event Head
Attention

In this step, the goal is to solve the challenges of
nested arguments and multiple events simultane-
ously. We compare the role embeddings and word
embeddings under each event type and select role-
word pairs that have high semantic overlap as argu-
ment extraction results. We first consider a single
event type, then extend it to all event types.

Role-interactive Event Attention
In each event type, we measure the degree of rele-
vance between each role-word pair. We first project
the original d-dimensional features of words and
roles into a smaller dimension d′ through two fully
connected layers:

H̃w = H′wWw + bw
H̃r = HrWr + br

(3)

where Ww ∈ Rd×d′ , bw ∈ Rd′ ,Wr ∈ Rd×d′ , br ∈
Rd′ are learnable parameters, H̃w ∈ Rm×d′ , H̃r ∈
Rn×d′ .

Then we apply concat attention (Luong et al.,
2015) to measure the degree of relevance between
word representation H̃w and role representation H̃r.
We indicate St(H̃w, H̃r) as the correlation intensity
matrix of role-word pairs under the event type t:

SCOREt(H̃w, H̃r) = tanh([H̃w; H̃r]Wa) · va
St(H̃w, H̃r) = sigmoid(SCOREt(H̃w, H̃r))

(4)

where [H̃w; H̃r] ∈ Rm×n×2d′ , Wa ∈ R2d′×d′ and
va ∈ Rd′ are learnable parameters, SCOREt ∈
Rm×n,St ∈ Rm×n, t ∈ T .

2506











 

     



    

 











√

√

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

√

×

√

√

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

√

×

…

Intra-event

Contrastive Learning

…

𝑤1

𝑤2

𝑤3

𝑤4

𝑤𝑛

𝑟4𝑟1 𝑟2 𝑟3 𝑟𝑚

√

√

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

√

×

×

√

: positives

: negatives

Event Head

…𝑟4𝑟1 𝑟2 𝑟3 𝑟𝑛

𝑡𝑙

𝑡2
𝑡3
𝑡4

𝑡1

…

ℛ𝑡3 = {𝑟2, 𝑟3, 𝑟𝑛} 



:





: unmask operation

: mask operation

unmask operation

Figure 3: Event schema mask M. t and r denote event
type and role type, respectively. In each event type, we
mask those roles not in the pre-defined role set.

Multi-event Head Attention
We perform the above role-interactive event at-
tention on all event heads in parallel, which can
extract multiple events simultaneously. Formally,
we stack the role-interactive event attentions un-
der all event types to a multi-event head atten-
tion ST (H̃w, H̃r) ∈ Rl×m×n, where the number
of heads l is the size of event types.

For the DEE dataset, each event type ti has a
pre-defined role set Rti 1. We formalize it as the
event schema mask M (see Figure 3):

Mti,rj =

{
1, role rj inRti
0, role rj not inRti

(5)

Through the event schema mask M, we decrease
the number of roles to predict under each event
type, leave each event type a unique role candi-
date set and make a difference among event heads.
The final multi-event correlation intensity matrix
Smulti(H̃w, H̃r) is caculated as:

Smulti(H̃w, H̃r) = ST (H̃w, H̃r)⊙M (6)

where ST ∈ Rl×m×n,M ∈ Rl×n,Smulti ∈
Rl×m×n.

2.3 Multiple Events Extraction
Event Argument Extraction
The final multi-event correlation intensity matrix
Smulti(H̃w, H̃r) (Eq. 6) contains probabilities for
each role-word pair. We take those role-word pairs
whose probabilities are higher than threshold δEAE
as the argument extraction results under the current
role.

We use cross-entropy between the predictions
and golden labels to optimize our model:

LEAE = CE(Smulti,Ymulti) (7)
1The pre-defined role sets are provided by DEE dataset.

where Ymulti ∈ Rl×m×n is the ground truth label
for the correlation matrix between a document and
roles under the multi-event head.

Event-specific Document Representation
To better detect which event type is contained in the
document, we construct event-specific document
representation for each event head.

Given the role-interactive event attention
SCOREt(H̃w, H̃r) (Eq. 4) under event type t, we
first normalize SCOREt with respect to role, re-
ferred to as A. We obtain word representation H′′w
specific to event type t by using A to weighted sum
the roles H̃r. Through the mean pooling operation
we obtain document representation HD specific to
event type t:

A = softmaxr(SCOREt(H̃w, H̃r)⊙Mt,:)

H′′w = AH̃r

HD =
1

m

wm∑

w=w1

H′′w

(8)

where SCOREt ∈ Rm×n, Mt,: ∈ Rn, A ∈ Rm×n,∑
Ai,: = 1, H′′w ∈ Rm×d′ , HD ∈ Rd′ .

Event Type Detection
We detect each event type based on the correspond-
ing event-specific document representation. Con-
cretely, we perform binary classification on HD for
event type t to get the probability Pt:

Pt = softmax(HDWe) (9)

where We ∈ Rd′×2 is learnable parameters, Pt ∈
R2.

Then we expand Pt to the prediction of multiple
events Pevent ∈ Rl×2, which can identify multiple
events simultaneously. We apply cross-entropy loss
to update the model paremeters:

LED = CE(Pevent,Yevent) (10)

where Yevent ∈ Rl×2 is the ground truth label for
the event type.

2.4 Event Representation Enhancing
We find the language modeling of the above stages
produces anisotropic word embeddings. So we
apply intra-event contrastive learning to enhance
event representation by regularizing pre-trained em-
bedding space to be more isotropic. In DEE, we
need to pull each role closer to its arguments (pos-
itives) while pushing each role away from other
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words (negatives). Given a role, there are multiple
arguments, i.e., there is more than one positive.

We apply an approach, proposed by (Hoffmann
et al., 2022) based on InfoNCE, to include multiple
positives. More specifically, for a role hr ∈ H̃r,
words that are the arguments of role r form the set
of positivesP , and words that are not the arguments
of role r form the set of negativesN , P∪N = H̃w.
To measure the similarity between a pair of features,
we use the cosine similarity:

sim(x, y) =
x⊤y

∥x∥ · ∥y∥ (11)

The training objective becomes:

LCL = −log

∑
p∈P

exp( sim(hr,p)
τ )

∑
p∈P

exp( sim(hr,p)
τ ) +

∑
n∈N

exp( sim(hr,n)
τ )

(12)
where hr ∈ Rd′ is the embedding of role r, p ∈ Rd′

is the argument embedding, and n ∈ Rd′ is the
word embedding of the input document other than
arguments , τ is a temperature hyperparameter.

2.5 Joint Learning

The overall loss function is divided into three parts:
an event argument extraction loss LEAE, an event
type detection loss LED, and a contrastive loss LCL.
We let these three objectives learn jointly at the
same speed and update model parameters together.
We have the following training loss:

L = λ1LEAE + λ2LED + λ3LCL (13)

and λ1, λ2 are the weight dynamically adjusted
with the training steps, where λ1 = 1

LEAE
, λ2 =

1
LED

2, λ3 is hyperparameter.

3 Experiments

We evaluate our model’s performance on the two
commonly used DEE benchmarks and compare to
prior work. Then we conduct an ablation study on
how modules of our CLIO affect its performance on
DEE task. We also conduct case study to analyze
qualitatively the advantages and disadvantages of
our model.

2λ1 and λ2 only take the value of LEAE and LED, which
contain no gradient information.

3.1 Experimental Setup

Datasets. We conduct our experiments on
two widely used document-level event extrac-
tion datasets: RAMS (Ebner et al., 2020) and
WikiEvents (Li et al., 2021). RAMS provides 9,124
annotated examples from news based on 139 event
types and 65 roles. WikiEvents provides 246 an-
notated documents from news based on 50 event
types and 59 roles. According to our statistics,
13.94% of documents in the RAMS have nested ar-
guments. 14.23% and 86.99% of documents in the
WikiEvents involve nested arguments and multiple
events, respectively.

Evaluation Metrics. Our results are reported as
Precision (P), Recall (R) and F-measure (F-1) score.
Our argument extraction results are based on the
Exact Match criterion: the predicted argument span
should match exactly the gold one. As an event
type often includes multiple roles, we use micro-
averaged role-level scores as the final DEE metric.

Baselines. For strictly consistent comparison, we
involve the following strong baselines:

• BERT-CRF (Loshchilov and Hutter, 2018),
which combines BERT with Condition Ran-
dom Field (Lafferty et al., 2001), is the most
popular method in tagging-based event extrac-
tion.

• SpanSel (Ebner et al., 2020), which is based
on span ranking, enumerates each possible
span in a document to identify the most likely
event arguments.

• Head-Expand (Zhang et al., 2020), which
achieves state-of-the-art performance on the
RAMS. It first identifies the head of an argu-
ment and then expands its region.

• BART-Gen (Li et al., 2021), which bases
on the unfilled template and a given context,
frames the implicit EAE as conditional gener-
ation.

• DocMRC (Liu et al., 2021), which frames
DEE as Machine Reading Comprehension
task, assisted by two data augmentation
regimes.

Experimental Settings. We adopt pretrained
BERT (Devlin et al., 2019) (bert-base-cased for
English dataset), which has 12 hidden layers, each
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Methods RAMS WikiEvents

ED-F1 EAE-P EAE-R EAE-F1 ED-F1 EAE-P EAE-R EAE-F1

BERT-CRF (Loshchilov and Hutter, 2018)† - 36.7 41.1 38.8 - 54.4 23.8 33.1
SpanSel (Ebner et al., 2020)† - 38.0 38.4 38.2 - 56.2 26.2 35.7
Head-Expand (Zhang et al., 2020)† - - - 40.1 - 55.4 25.4 34.8
BART-Gen (Li et al., 2021)† - 20.7 30.3 24.6 - 14.2 7.8 10.1
DocMRC (Liu et al., 2021) - 41.2 45.2 43.1 - 58.5 30.5 40.1

CLIO 44.5 47.6 45.5 46.5 52.4 48.7 29.5 36.8
w/o LCL 43.4 46.9 44.5 45.7 52.5 51.8 25.6 34.3
w/o norm 43.3 47.1 45.3 46.2 50 50.2 24.0 32.5

Table 1: The ED (Event Type Detection) and EAE (Event Argument Extraction) results of all models on the RAMS
and WikiEvents datasets. Results marked † are from (Liu et al., 2021). DocMRC uses the expanded training data, 5
times and 30 times larger than RAMS and WikiEvents, to train its model. w/o LCL and w/o norm denote we remove
contrastive loss and norm-based significance weight respectively.

layer has 768 hidden units, and 12 attention heads.
During training, we adopt mini-batch mechanism
to train our model with batch size of 16, and the
maximum training epoch is set to 100. We regu-
larize our network using dropout, the dropout ratio
of linear is 0.3. The initial learning rate is 2e-5 for
BERT parameters and 2e-3 for other parameters.
We trained all models with the AdamW optimizer
(Loshchilov and Hutter, 2018). The warming up
proportion for learning rate is 10%. Besides, the
threshold δEAE for RAMS and WikiEvents is 0.6
and 0.65, respectively. We set temperature hyper-
parameter τ as 0.07. The weight of contrastive
loss for RAMS and WikiEvents is 0.5 and 0.05,
respectively.

In addition, the implementation of baselines does
not consider gold event types. The experiments on
RAMS consider event trigger information. We ap-
ply dot attention to measure the degree of relevance
between role and trigger, and then we use the prob-
ability as the weight of role embedding.

3.2 Main Results

Table 1 presents our main results. Since the base-
lines do not have the capability for event type de-
tection, the value of ED-F1 is replaced by ‘-’. We
think event type detection is an integral part of
DEE, while previous methods did not consider
it. From Table 1, we can see that CLIO has the
capability for event type detection. Our model
surpasses all previous methods with 46.5 EAE-F1
score on the RAMS benchmark. Compared with
the DocMRC, which uses 5 times more training
data, our approach on the RAMS benchmark can
bring substantial improvements in EAE, 3.4 F1
points. In the WikiEvents benchmark, our CLIO

RAMS WikiEvents

Subset-N Subset-O Subset-N Subset-O

DocMRC 40.6 43.4 39.9 41.3
CLIO 47.1↑6.5 44.0↑0.6 46.2↑6.3 32.6

Table 2: Overall EAE-F1 with nested argument han-
dling. Subset-N is a nested subset, while Subset-O is a
non-nested subset.

shows 3.0% drop in EAE-F1 scores compared to
DocMRC. The reason is that DocMRC applies data
augmentation, which expands training data to 30
times larger than WikiEvents. So it shows great
advantages on small-scale dataset WikiEvents (ex-
panding the original 246 documents to 7,491). Our
CLIO reaches competitive results using only 1/30
data compared with DocMRC. Compared with the
SpanSel, our approach on the WikiEvents bench-
mark can bring 1.1 points of improvement in EAE-
F1.

CLIO can extract nested arguments accu-
rately. We conduct additional experiments to eval-
uate the capability of CLIO to extract nested argu-
ments. The idea is to split the test data into two
portions: documents with and without nested ar-
guments (Subset-N and Subset-O). Table 2 shows
the results. On the Subset-N, CLIO significantly
outperforms DocMRC by 6.5 F1 and 6.3 F1 on
the RAMS and WikiEvents, respectively. We con-
clude that CLIO achieves superior performance in
both datasets largely because it solves the nested
argument issue.

CLIO can handle complex multi-event scenar-
ios. Figure 4 presents the additional experiment
results. From (a), we can observe that as the num-
ber of event types increases, the performance of
CLIO increases instead of decreases while the per-
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Figure 5: 2D visualization of projected word embed-
dings3. (a). Word embeddings trained by CLIO (without
contrastive learning). (b). Word embeddings trained by
CLIO.

formance of DocMRC decreases, which indicates
CLIO can handle complex multi-event scenarios.
In (b), we randomly choose a document from the
test set of WikiEvents and calculate the EAE-F1
under each event type. We find the EAE-F1 values
evenly distributed on all event types, which indi-
cates CLIO has the capability to handle multiple
events.

3.3 Ablation Study
We perform an ablation study to test how useful
our event representation enhancing and norm-based
significance weight. The results are shown in Ta-
ble 1. Specifically, “w/o LCL” denotes contrastive
loss is not considered in the joint learning, “w/o
norm” means word embeddings are not weighted
with norm significance score. In Figure 5, we com-
pare the 2D visualization of word embeddings with
or without contrastive learning. We can see that the
event representation enhancing strategy can alle-
viate the representation degeneration problem and
improve the isotropic properties of these represen-

3Note that we project the original word embeddings to a 2-
dimensional vector space using principal component analysis
(PCA) for the purpose of visualization.

tations.

3.4 Case Study
We present two examples from both datasets to
illustrate the capability of CLIO. The examples are
presented in Table 3, including input document and
event extraction results. From Table 3, we find that
CLIO can help DEE in two ways:

Handling nested arguments accurately In the
first example, “U.S.” and “U.S. officials” are nested
arguments, belonging to the role “place” and the
role “communicator” respectively. CLIO works in
a role-centric way, which can extract both of them
together and assign them to corresponding roles.
This case demonstrates how role-interactive event
attention can assign multiple role labels to each
token and solve the challenges of nested arguments.

Handling complex multi-event scenarios In
the second example, “E1”, “E2”, and “E3” indicate
three different event types. In multi-event scenario,
CLIO can not only identify all events but also as-
sign arguments to the corresponding events. CLIO
assigns each event type a subspace by mapping it to
each event head, where the event-specific document
representation eases the difficulty of detecting mul-
tiple events. This implies that CLIO is particularly
helpful for the extraction of multi-event scenarios.

4 Related Work

Sentence-level Event Extraction SEE extracts
the event trigger and its arguments from a single
sentence. Researchers have made a lot of progress
in this field. Li et al. (2013, 2015) employ various
hand-designed features to extract event; (Nguyen
and Grishman, 2015; Nguyen et al., 2016; Chen
et al., 2015; Liu et al., 2017, 2018) use neural based
models such as recurrent neural networks (Zaremba
et al., 2014) and convolutional neural network (Le-
Cun et al., 1998) to extract event. With the recent
success of BERT (Devlin et al., 2019), pretrained
language models have also been used for SEE
(Wang et al., 2019b,c; Yang et al., 2019; Wadden
et al., 2019; Tong et al., 2020; Wang et al., 2021;
Lu et al., 2021; Liu et al., 2022). These approaches
achieve remarkable performance in benchmarks
such as ACE 2005 (Walker et al., 2005) and similar
datasets (Ellis et al., 2015; Ji et al., 2016; Getman
et al., 2017).

Document-level Event Extraction Different
from SEE, DEE does not need to explicitly recog-
nize event triggers. The goal of DEE is to iden-
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Category Example

Nested arguments Ex1. From the media we discovered that some local authorities we approached
coordinated their negative decision with the federal government...Reporters at the State
Department ’s daily press briefing on Friday asked if [[U.S.]placeofficials]communicator
had advised [individual states]recipient not to allow in Russian observers. (Event type:
contact.requestadvise.correspondence)

Multiple events Ex2. Japanese [police]E1-Jailer have arrested a [man]E1-Detainee who admitted to
landing a drone with low-level radioactive sand on the roof of the prime min-
ister’s office...Tokyo metropolitan police said [Yasuo Yamamoto]E1-Detainee, 40,
turned himself in to authorities late Friday in Fukui in western Japan...The small
[drone]E2-IdentifiedObject found Wednesday had traces of radiation and triggered fears
of potential terrorist attacks using [unmanned aerial devices]E3-Instrument...

Table 3: Case study on the RAMS (Ex1) and WikiEvents (Ex2) test sets. The bold text indicates the argument word.
Predicted arguments are marked with [square brackets] span indicator. Ex2 includes multiple events, where E1:
Justice.ArrestJailDetain, E2: Cognitive.IdentifyCategorize, E3: Conflict.Attack.

tify event types and extract arguments of roles
from the whole document. On the task level,
most of these works fall into three categories: (1)
classification-based models (2) tagging-based mod-
els (3) generation-based models. Zhang et al.
(2020); Xu et al. (2021); Huang and Jia (2021);
Huang and Peng (2021) employ traditional clas-
sification paradigm to determine the event type,
then they identify the arguments and classify the
roles they play in an event; Yang et al. (2018);
Du and Cardie (2020) use the sequence labeling
model BiLSTM (Zhang et al., 2015) -CRF (Laf-
ferty et al., 2001) to automatically extract events;
Li et al. (2021) frame the problem as conditional
generation. Yang et al. (2021) apply cross attention
mechanism to extract structured events in a paral-
lel manner. Above methods conduct experiments
on MUC-4 (McLean, 1992), WikiEvents (Li et al.,
2021), RAMS (Ebner et al., 2020), and Chinese
financial dataset (Zheng et al., 2019).

Contrastive Learning In NLP, contrastive self-
supervised learning has been widely used for learn-
ing better representations by contrasting positive
pairs and negative pairs. The core idea is to con-
centrate positive samples while pushing apart neg-
ative samples. InfoNCE (Oord et al., 2018) is a
frequently used objective function in contrastive
learning. It maximizes the similarity of positive
pairs and minimizes the similarity of negative pairs.
More specifically, for a query q, a single positive
p and a set of negatives N = {n1, ..., nk} is given.
To measure the similarity between a pair of fea-
tures, it uses the cosine similarity as the training

objective:

LInfoNCE = −log
exp( sim(q,p)

τ )

exp( sim(q,p)
τ ) +

∑
n∈N

exp( sim(q,n)
τ )

(14)

Anisotropy Gao et al. (2019); Wang et al.
(2019a) have pointed out that language modeling
usually produces an anisotropic word embedding
space. This phenomenon is also observed in the
pretrained Transformers like BERT, GPT-2, etc
(Ethayarajh, 2019). Li et al. (2020) thinks that
“anisotropic” means word embeddings occupy anar-
row cone in the vector space. Through empirical
analysis, we find that the word representations in
documents have high cosine similarity between
each other, which is known as anisotropic word
embeddings. In a document, some words are event
arguments while others are event-irrelevant, which
means they should not learn similar word represen-
tations.

5 Conclusion

In this paper, we propose a role-interactive multi-
event head attention network (CLIO) for DEE. By
mapping different events to multiple subspaces, we
decomposed DEE into multiple substeps to handle
nested arguments and multiple events. To further
optimize event representation, we apply an event
representation enhancing strategy to regularize pre-
trained embedding space to be more isotropic. Ex-
perimental results show that CLIO can significantly
outperform previous methods, especially when fac-
ing the specific challenges of DEE. In future work,
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we would like to explore superior word representa-
tion specific to events.
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Abstract

Distance metric learning has become a popular
solution for few-shot Named Entity Recogni-
tion (NER). The typical setup aims to learn
a similarity metric for measuring the seman-
tic similarity between test samples and refer-
ents, where each referent represents an entity
class. The effect of this setup may, however,
be compromised for two reasons. First, there
is typically a limited optimization exerted on
the representations of entity tokens after initing
by pre-trained language models. Second, the
referents may be far from representing corre-
sponding entity classes due to the label scarcity
in the few-shot setting. To address these chal-
lenges, we propose a novel approach named
COntrastive learning with Prompt guiding for
few-shot NER (COPNER). We introduce a
novel prompt composed of class-specific words
to COPNER to serve as 1) supervision signals
for conducting contrastive learning to optimize
token representations; 2) metric referents for
distance-metric inference on test samples. Ex-
perimental results demonstrate that COPNER
outperforms state-of-the-art models with a sig-
nificant margin in most cases. Moreover, COP-
NER shows great potential in the zero-shot set-
ting. The source code is available at: https:
//github.com/AndrewHYC/COPNER.

1 Introduction

As a fundamental task in Nature Language Process
(NLP), Named Entity Recognition (NER) aims to
identify the spans of text according to a pre-defined
set of entity classes, such as person, organization
and location (Sang and De Meulder, 2003). Many
down-stream tasks heavily rely on these extracted
entities, such as aspect-level sentiment (Mao and
Li, 2021), intention recognition (Vedula et al.,
2020), and knowledge graph construction (He et al.,
2021). An enormous number of neural methods
have shown promising ability on NER tasks (Chiu

∗Corresponding author

and Nichols, 2016; Yadav and Bethard, 2018; Li
et al., 2020), whereas insufficient labeled data in
different domains are still a significant challenging
for the community. Considering obtaining full an-
notated data is labor-intensive and time-consuming,
few-shot NER studies (Fritzler et al., 2019; Yang
and Katiyar, 2020; Das et al., 2021; Cui et al., 2021;
Ma et al., 2021) are raising more attention, which
can alleviate annotation dependence and help neu-
ral methods transfer to other tasks easier.

Recently, Prompt Learning (PL) becomes a pop-
ular technology in NLP and shows great potential
for dealing with few-shot issues (Liu et al., 2021b;
Ding et al., 2021b; Chen et al., 2021; Mao et al.,
2022). Typical prompt learning is designed for
understanding sentence-level tasks by decoding a
special marker of an input. However, it is challeng-
ing to adapt PL to token-level tasks, which needs
to identify the class of each token. Inspired by
PL, TemplateNER (Cui et al., 2021) applies man-
ual templates for few-shot NER, which needs to
enumerate all potential spans and forward prop-
agate many times for each input, which is time-
consuming.

Compared with TemplateNER, distance metirc-
based approaches (Wiseman and Stratos, 2019;
Yang and Katiyar, 2020; Ziyadi et al., 2020) are
more popular and efficient in few-shot NER tasks.
The key idea of this paradigm is to learn a simi-
larity metric for measuring the semantic similarity
between test samples and referents (e.g., prototypes
or the nearest neighbors). The referents are usu-
ally derived from a few labeled samples through
a pre-trained language model, e.g., BERT (Devlin
et al., 2019). While being less costly, these meth-
ods are still limited in two aspects: Firstly, their
ability to capture entity-class-related semantics is
limited, because their main goal is to learn a suit-
able similarity function rather than optimizing the
parameters of a sentence encoder for better entity
representations. Secondly, as an anchored metric
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referent is derived from only few labeled data, it
is insufficient to properly represent the semantics
of the corresponding entity class. This issue may
severely impact the performance of a few-shot NER
model in the inference phase.

To address these issues, we propose a novel ap-
proach named COntrastive learning with Prompt
guiding for few-shot NER (COPNER). The core
idea of COPNER is to leverage class-specific
words (CWs) from natural language to serve as
the agents of corresponding entity types. Specifi-
cally, the CWs are included by appending a prompt
to the original input sentence. As shown in Figure
1(a), an original input sentence “[BOS] Obama
was born in 1961 [EOS]” is concatenated
with a prompt “person date none”, where
“person”, “date” and “none” are the CWs for
the entity classes of person, date, and non-entity,
respectively. In the training phase, the representa-
tions of CWs are served as token-level supervision
signals that guide the sentence encoder to pull the
representations of tokens belonging to the same
class, and also the representation of the anchored
CW, to be closer. In this way, the sentence en-
coder can learn to capture the dependence between
tokens for aligning the semantics of a mentioned
entity with the semantics of the corresponding CW
in the unified semantic space. In the inference
phase, the representations of CWs are treated as
metric referents for predicting entity classes. As
the representations of CWs contain general and dis-
criminates semantics at the scratch and are further
trained to align with the corresponding entity set,
they are more appropriate and stable than the ref-
erents derived from previous works. Further, we
explore different methods of prompt construction,
aiming to understand the effects of different forms
of prompts.

We summarize existing few-shot NER research
into three settings, including Cross-Label-Space,
Domain Transfer, and In-Label-Space. COPNER
is evaluated under all these settings. We con-
duct experiments on six NER datasets and COP-
NER largely outperforms state-of-the-art(SOTA)
approaches in most cases, especially in complex
scenarios. Specifically, compared with SOTA re-
sults in Few-NERD (INTRA) and Few-NERD (IN-
TER), COPNER raises the F1 scores of 8.28% and
8.03% in these two fine-grained few-shot NER
tasks. In Domain Transfer settings, COPNER also
improves by 9.0% averaged F1 scores under 1-shot

settings. Additionally, considering CWs can inher-
ently carry the relevant category information, we
explore the zero-shot ability of COPNER with sat-
isfied results. The main contributions of this paper
are summarized as follows:

• We propose a novel few-shot NER approach
named COPNER, which combines contrastive
learning and prompt guiding. By introducing
prompts as supervision signals and metric ref-
erents, COPNER overcomes the problem that
typical class referents cannot properly repre-
sent each category due to data scarcity, and
enhances entity representations for better dis-
crimination with contrastive learning.

• We detailly investigate the existing few-shot
NER research and summarize them into three
categories. COPNER is evaluated in all these
categories and outperforms SOTAs in most
cases. Further, we expand the boundaries of
COPNER’s ability to the zero-shot setting and
also achieve satisfied results.

2 Task Formulation

NER is normally treated as a sequence labeling
task. For each input sentence X = {x1, x2, ..., xt},
NER models aim to assign each token xi a label
yi ∈ C, where C is a predefined label set. The
assigned label shows either the token is a part of a
named entity or out of any entity classes.

For each entity class, few-shot NER tasks are
only provided with very limited annotations as su-
pervision for neural models. With a comprehensive
survey, we summarize existing few-shot NER re-
search into three settings, and COPNER is evalu-
ated in all these settings to demonstrate its effec-
tiveness and universality.

2.1 Cross-Label-Space Setting
For few-shot NER with Cross-Label-Space setting,
there is a rich-resource dataset (source set H) for
training and a low-resource dataset (target set L)
for adapting and testing. Notably, the target label
space CL is totally different from the source label
space CH , namely CL∩CH = ∅. Usually, the Cross-
Label-Space setting is combined with N -way K-
shot setting, e.g., a support set consists of N entity
classes and each class has K labeled examples.
To deal with this setting, an NER model needs to
be trained on H first, then adopts to a new label
space using the support set of L. It is challenging
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distance metric

(c) Inference in target label space

Pre-trained Language Model

[BOS]  Google is located in California [EOS]  none organization location [EOS]

origin text prompt

ORG     O     O O LOCPredict

…

Pre-trained Language Model

[BOS]  Tesla moved to Texas  [EOS]  none organization location [EOS]

origin text prompt

attraction

repulsion

Pre-trained Language Model

[BOS] Barack Obama was born in 1961 [EOS]  person date none [EOS]

origin text prompt

…

(a) Training in source label space

(b) Adapting to target label space with support set

…

…

Source Label Set: {PER, DATE, O}

M(PER) = person
M(DATE) = date
M(O) = none

Target Label Set: {ORG, LOC, O}

M(ORG) = organization
M(LOC) = location
M(O) = none

representations

Figure 1: The illustration of the COPNER framework based on Contrastive Learning with Prompt guiding: (a)
Training in the source label space {PER, DATE, O}. (b) Adapting to the target label space {ORG, LOC, O} with
support set. (c) Inferring by comparing test tokens with class-specific words.

that COPNER needs to handle the problems of low
resources and cross-label space.

2.2 Domain Transfer Setting

Similar to the Cross-Label-Space setting, there is
also a rich-resource dataset (source set H) for train-
ing and a low-resource dataset (target set L) for
adapting. The main difference is these two datasets
come from different domains. For example, H can
be news corpus while L comes from medical data.
Besides, the label spaces of H and L can overlap.
This setting needs COPNER to keep the domain
transfer capability with limited annotations.

2.3 In-Label-Space Setting

Different from the previous two settings that have
a rich-resource dataset, the In-Label-Space setting
supposes that only a small number of labeled ex-
amples can be used for training. Specifically, a
few-shot NER model is first trained on a dataset
Dtrain with a label space C, in which each entity
class has only K samples. Then, the model is eval-
uated by a test set Dtest with the same label space
C. It is a great challenge that COPNER needs to
learn the NER task with only few training samples.

3 Methodology

The key idea of COPNER is to construct prompts
with CWs for both the model training and inference.
For each sentence, the COPNER concatenates a
prompt to it and feeds the supplemented one into
a pre-trained language model (PLM). Then, the
PLM is trained in a contrastive learning fashion.
In this process, the prompts play the role of the
token-level anchors for constructing the positive
pairs and negative pairs of contrastive learning. Fi-
nally, in the inference stage, the representations of
CWs (in the prompt) are served as metric referents
for predicting.

The whole process of COPNER is shown in Fig-
ure 1. We first train the used PLM in source label
spaces. Next, the PLM is fine-tuned by a few sup-
port sets for adapting to new label spaces in eval-
uation tasks, e.g., Cross-Label-Space and Domain
Transfer. Finally, a token-level distance-based met-
ric classifier is employed to obtain the final results
in the inference phase.

3.1 Prompt Guided Few-shot NER Model

First, our method constructs task-specific prompts
for an employed dataset. A class-specific word
mapping M is manually defined, then a unique
class-specific word vi is obtained for each en-
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tity label ci ∈ C with M, where C is the pre-
defined label set. We use a simple yet effective
method to developM, i.g. using class names of
the given entities as CWs. For example, “LOC” is
used as the label for location entities in most NER
datasets, then the class-specific word “location”
will be assigned to location entities following
M(LOC) = location. These CWs inherently
contain the general semantic information of related
entity classes and can avoid biases from limited
labeled data.

In a specific few-shot task, COPNER maps each
entity class ci ∈ C into a CWs vi byM and con-
catenates these CWs to form a prompt. There are
three ways of concatenating CWs in COPNER,
which are described in Section 3.5.

Next, the generated prompt is appended to each
input sentence X to form the extended input se-
quence X ′ = {x1, x2, ... , xt, v1, ... , vn, vn+1}1,
where t is the length of original input sentence and
n is the number of entity class. Additionally, an
extra class-specific word is added to denote non-
entity class. Following, X ′ is fed into a PLM, e.g.,
BERT (Devlin et al., 2019), for generating con-
textualized representations. COPNER takes final
hidden layer output as the representations of each
token following:

H = [h1, ...,ht,h
′
1, ...,h

′
n]

= PLM([x1, .., xt, v1, ..., vn])
(1)

The representations of CWs in the prompt can be
treated as guides for training the representations of
tokens in the original sentence, which will detailed
in the next section.

3.2 Training in Source Label Space
We employ an episode training strategy (Ding et al.,
2021b) in COPNER, where a Greedy Sampling is
adopted to randomly select an episode set S at
each step. Specifically, the samples in an episode
set S contain N entity classes (N way) with 1∼2
examples per class.

Centered with CWs in the prompt as class an-
chors, COPNER trains the used PLM to reduce
representation distances between each token with
its related CWs while pulling way with unrelated
CWs. Specifically, for each extended input se-
quence X ′ ∈ S, COPNER obtains the representa-
tion sequence [h1, ...,ht,h

′
1, ...,h

′
n+1] by Eq. (1).

1For clarity, our formulates exclude the special marker
"[BOS]" and "[EOS]". The detail utilization of these markers
is shown in Fig 1.

Algorithm 1 Adapting process of COPNER
Input: Xsup: support data; PLM: word encoder; γ: loss

threshold;
Output: PLM
1: Lprev ∈ R+ (arbitrary large);
2: Lft = Lprev − 1;
3: repeat
4: Lprev = Lft;
5: for all (xi, yi) ∈ Xsup do
6: Calculate l(xi) as in Eq. (1) and Eq. (2);
7: end for
8: Calculate Lft as in Eq. (3);
9: Update PLM by back-propagation to reduce Lft;

10: until (Lft > Lprev ∩ Lft < γ)

Next, we construct positive and negative pairs
of each X ′ for contrastive learning. Positive pairs
are defined as (xp, vp), where xp is the pth token
in X and vp is the corresponding gold CW. Nega-
tive pairs are obtained by combining xp and other
unrelated CWs in the prompt.

Then, we can calculate the contrastive loss (Lin
et al., 2021) with respect to xp by:

ℓ(xp) = − log
exp(−d(hp,h′p)/τ)∑n+1
q=1 exp(−d(hp,h′q)/τ)

(2)

where τ denotes a temperature hyper-parameter
proposed by Chen et al. (2020). As in previous
metric-based works, we adopt the Euclidean dis-
tance as the similarity measure, which is calculated
by: d(hp,h′q) = ||hp−h′q||22. The total contrastive
loss L of the episode S is calculate by:

L =
1

|X |
∑

xi∈X
ℓ(xi) (3)

where X denotes the text token set in a sampled S .

3.3 Adapting to Target Label Space
As mentioned in Section 2.1 and 2.2, when han-
dling the settings of Cross-Label-Space and Do-
main Transfer, COPNER needs a certain extent of
transferring ability. For such a reason, COPNER
is fine-tuned with related support sets to adapt new
label spaces after the training phase. This proce-
dure is similar to the training stage, and the only
difference is that the used data come from different
label spaces or domains. Noticeably, such adapt-
ing process may make COPNER over-fit with the
used adapting data, because these adapting data
are usually with small numbers. Inspired by Das
et al. (2021), we develop an early stopping criterion
based on contrastive losses to alleviate the above
problem. In particular, we add a hyper-parameter
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γ as the loss threshold to prevent the model from
not adapting enough or over-fitting. The complete
adapting process with the early stopping criterion
is illustrated in Algorithm 1.

3.4 Inferring from Metric Referents
In the inference phase, CWs in the prompt are re-
garded as metric referents to calculate distance with
each token. We first obtain the representation of a
extended test instanceHtest following the rewritten
Eq. (1) as

Htest = [h1, ...,ht,h
′
1, ...,h

′
n,h

′
n+1]. (4)

For each token xi, COPNER can find the near-
est Metric Referent vj in the PLM representation
space, and the corresponding label cj will be as-
signed with this token.

ytesti = argmin
cj
||hi − h′j ||22 (5)

where hi denotes each token representation and h′j
denotes each CW representation.

Alternatively, COPNER employs the Viterbi de-
coding algorithm. The used transition probabilities
are calculated between three abstract NER tags (O,
I, I-Other) on the training data. The emission
probabilities are calculated by a SoftMax oper-
ation on the distance distributions between each
test token and CWs during inference. These two
probabilities are fed to a Viterbi decoder to obtain
the final prediction. For more details, please refer
to Structshot (Yang and Katiyar, 2020).

3.5 Prompt Construction
Liu et al. (2021b) shows that different forms of
prompts have different effects on prompt-based
approaches. For further explore these effects on
COPNER, we propose three prompt construction
methods. Figure 2 shows the examples for these
methods and the details are introduced as:

• Queue Prompt: Directly combining the CWs
in random order (the most intuitive way).

• Partition Prompt: Based Queue Prompt, ex-
tra special tokens “[S]” are used to separate
each CWs. “[S]” only serves as a partition
and does not have a specific meaning.

• Continual Prompt: This method employs
continuous representations as special tokens
to separate CWs. Similar with P-tuning (Liu

[CLS]  Barack  Obama  was  born  in  1961 [SEP]                    Prompt [SEP]

Prompt Encoder

BERT

ℎ2 ℎ3ℎ1ℎ0 𝑒(no) 𝑒(person) 𝑒(time)text embedding 𝑒([SEP]) 𝑒([SEP])𝑒([CLS])

[CLS]  Barack  Obama  was  born  in  1961 [SEP]  no person date [SEP]

[CLS]  Barack  Obama  was  born  in  1961 [SEP]  [S] no [S] person [S] date [S] [SEP]

Queue Prompt

Partition Prompt

Continual Prompt

Pseudo tokens[𝑃0] [𝑃1] [𝑃2] [𝑃3](b) The generation process of Continual Prompt

(a) The four different prompts

no person date

Figure 2: The illustration of prompt construction: (a)
Three different forms of the prompt. (b) The process
of generating continual prompts. A Prompt Encoder
is employed to generate continual prompts, which is
optimized with COPNER during training. e(x) denotes
the embedding of token x.

et al., 2021b), the employed continuous repre-
sentations are generated from an independent
prompt encoder (two Bi-LSTM layers). By
this way, we try to encode hidden associations
between CWs into these separated markers.

4 Experiment Setups

4.1 Datasets

COPNER is evaluated with six datasets, in-
cluding OntoNotes 5.0 (Weischedel et al.,
2012), WNUT’17 (Derczynski et al.,
2017), I2B2’14 (Stubbs and Uzuner, 2015),
CONLL’03 (Sang and De Meulder, 2003), MIT-
Movie (Liu et al., 2013), and Few-NERD (Ding
et al., 2021b). Among these datasets, the first five
datasets come from the different domains, which
correspond to the fields of general, social network,
medical, newswire, and review, respectively. The
last Few-NERD is the largest few-shot NER
dataset, which contains INTRA and INTER two
sub-settings, and a total of 66 fine-grained classes
across 8 coarse-grained categories. Details of the
datasets are shown in Table 6.

4.2 Baselines

(1) ProtoBERT is a popular few-shot method
based on the prototypical network (Snell et al.,
2017) with BERT (Devlin et al., 2019) as a back-
bone. (2) NNShot (Wiseman and Stratos, 2019)
is a simple method based on token-level nearest
neighbor classification. (3) StructShot (Yang and
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Katiyar, 2020) adopts an additional Viterbi decoder
based on NNShot. (4) CONTaiNER (Das et al.,
2021) leverages contrastive learning to infer the
distributional distance of Gaussian embeddings of
entities. (5) BERT-tagger (Devlin et al., 2019) is
a traditional BERT-based method which fine-tunes
the BERT model with a label classifier. (6) Tem-
plateNER (Cui et al., 2021) is a template-based
approach, which enumerates all possible n-gram
spans and classifies each of them. (7) EntLM (Ma
et al., 2021) is a few-shot NER method which lever-
ages an entity-oriented LM objective.

4.3 Evaluation on Three Settings

Cross-Label-Space Setting. For this setting, we
evaluate COPNER with the Few-NERD dataset,
which has two different tasks: Few-NERD (IN-
TER) and Few-NERD (INTRA). For INTER, all
the fine-grained entity classes are mutually dis-
joint in train, development, and test sets, while
the coarse-grained categories are shared. For IN-
TRA, the fine-grained entity classes in different
sets belong to different coarse-grained categories.
Few-NERD (INTRA) is more challenging due to
the restrictions of sharing coarse-grained types. We
evaluate COPNER 5000 episodes on the test set
under each setting. As shown in Table 1 and Table
2, COPNER largely outperforms present related
SOTAs in both tasks.

Domain Transfer Setting. This setting focuses
on transferring an NER model to a new domain.
Specifically, we train COPNER on the OntoNotes
5.0 dataset from the general domain and evaluate it
on the test sets of CoNLL’03, WNUT’17, I2B2’14,
which are from the newswire, social and medical
fields, respectively. The support sets of the target
domains are provided by Yang and Katiyar (2020).
For each experiment, COPNER is fine-tuned on
five support sets and the mean and standard devi-
ation of F1 scores on the test set is reported. As
shown in Table 3, COPNER also outperforms SO-
TAs in most cases, especially in the 1-shot setting.

In-Label-Space Setting. In this setting, we eval-
uate COPNER with two NER datasets from differ-
ent domains: CoNLL’03 (Sang and De Meulder,
2003) and MIT-Movie (Liu et al., 2013). As intro-
duced in Section 2.3, only K examples of each
class are available for training. To explore the
few-shot capability of COPNER with different size
of training data, we try different K values from
{5, 10, 20, 50}. For each K-shot values, COPNER

Table 1: F1 Scores (%) in Few-NERD (INTER). +Struct
means using Viterbi Decoding. We color code each
column as best and second best .

Model
5-way 10-way

Avg.
1∼2 shot 5∼10 shot 1∼2 shot 5∼10 shot

ProtoBERT 44.44 58.80 39.09 53.97 49.08
NNShot 54.29 50.56 46.98 50.00 50.46
StructShot 57.33 57.16 49.46 49.39 53.34
CONTaiNER 55.95 61.83 48.35 57.12 55.81

+Struct 56.10 61.90 48.36 57.13 55.87

COPNER 65.39 67.59 59.69 62.32 63.75
+Struct 65.98 67.70 59.56 62.37 63.90

Table 2: F1 Scores (%) in Few-NERD (INTRA). +Struct
means using Viterbi Decoding. We color code each
column as best and second best .

Model
5-way 10-way

Avg.
1∼2 shot 5∼10 shot 1∼2 shot 5∼10 shot

ProtoBERT 23.45 41.93 19.76 34.61 29.94
NNShot 31.01 35.74 21.88 27.67 29.08
StructShot 35.92 38.83 25.38 26.39 31.63
CONTaiNER 40.43 53.70 33.84 47.49 43.87

+Struct 40.40 53.71 33.82 47.51 43.86

COPNER 53.52 58.74 44.13 51.55 51.99
+Struct 54.26 58.84 44.26 51.18 52.14

is trained on three different sampled train sets pro-
vided by Ma et al. (2021), the mean and standard
deviation of F1 scores on the test set is reported.
As shown in Table 4, COPNER also outperforms
state-of-the-art methods in most cases.

5 Results and Discussion

In this section, we discuss the results of different
few-shot NER settings and conduct experiments
under the zero-shot setting. We also explore the
effectiveness of different components of COPNER.

5.1 Overall Few-shot Results
The experimental results demonstrate that COP-
NER achieves a convincing improvement in all
mentioned few-shot NER settings, and reaches
SOTA performance to our best knowledge.

As shown in Table 1 and 2, COPNER outper-
forms the baselines by a large margin in the Cross-
Label-Space setting. We observe a significant im-
provement in the 1-shot setting. A 1-shot sample
may not give sufficient information about the tar-
get class distribution, which limits the performance
of previous methods to a large extent. In contrast,
CWs in COPNER carry class-related semantic in-
formation to ensure excellent performance.

As shown in Table 3, COPNER demonstrates
strong domain transfer capability where support
data are extremely limited. COPNER performs
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Table 3: F1 scores (%) in Domain Transfer task. We report standard deviations from runs with five different support
sets sampled by Yang and Katiyar (2020). +Struct means using Viterbi Decoding. We color code each column as
best and second best .

Model
1 shot 5 shot

CoNLL WNUT I2B2 Avg. CoNLL WNUT I2B2 Avg.

ProtoBERT 49.9±8.6 17.4±4.9 13.4±3.0 26.9 61.3±9.1 22.8±4.5 17.9±1.8 34.0
NNShot 61.2±10.4 22.7±7.4 15.3±1.6 33.1 74.1±2.3 27.3±5.4 22.0±1.5 41.1
StructShot 62.4±10.5 24.2±8.0 21.4±3.8 36.0 74.8±2.4 30.4±6.5 30.3±2.1 45.2
CONTaiNER 57.8±10.7 24.2±2.9 16.4±1.7 32.8 72.8±2.0 27.7±2.2 24.1±1.9 41.5

+Struct 61.2±10.7 27.5±1.9 21.5±1.7 36.7 75.8±2.7 32.5±3.8 36.7±2.1 48.3

COPNER 67.0±3.8 33.8±2.5 34.6±1.8 45.1 74.9±2.9 34.8±3.1 41.1±1.6 50.2
+Struct 66.5±2.1 34.9±1.8 35.8±1.3 45.7 74.6±3.1 34.2±2.6 43.7±1.5 50.8

Table 4: F1 scores (%) in In-Label-Space NER task. We report standard deviations from runs with three different
support sets sampled by Ma et al. (2021). +Struct means using Viterbi Decoding. We color code each column as
best and second best .

Model
CONLL MIT-Movie

5 shot 10 shot 20 shot 50 shot Avg. 5 shot 10 shot 20 shot 50 shot Avg.

BERT-tagger 41.9±12.1 59.9±10.7 68.7±5.1 73.2±3.1 60.9 39.6±6.4 50.6±7.3 59.3±3.7 71.3±3.0 55.2
NNShot 42.3±8.9 59.2±11.7 66.9±6.1 72.6±3.4 60.3 39.0±5.5 50.5±6.1 58.9±3.5 71.2±2.9 54.9
StructShot 45.8±10.3 62.4±11.0 69.5±6.5 74.7±3.1 63.1 41.6±9.0 53.2±5.5 61.4±3.0 72.0±6.4 57.1
TemplateNER 43.0±6.2 57.9±5.7 66.4±6.1 72.7±2.1 60.0 46.0±3.9 49.3±3.4 59.1±0.4 65.1±0.2 54.9
EntLM 49.5±8.3 64.8±3.9 69.5±4.5 73.7±2.1 64.4 46.6±9.5 57.3±3.7 62.4±4.1 71.9±1.7 59.6

+Struct 51.3±7.7 66.9±3.0 71.2±3.9 74.8±1.9 66.1 49.2±8.9 59.2±4.0 63.9±3.7 73.0±1.8 61.3

COPNER 54.9±4.1 65.3±2.4 70.7±1.8 75.0±1.5 66.5 50.9±4.4 59.7±0.4 66.7±1.8 73.8±0.6 62.8
+Struct 54.2±7.9 66.2±2.9 71.8±1.8 77.0±1.4 67.3 50.1±3.6 61.9±1.4 68.9±2.4 74.6±0.3 63.9

significantly better than all previous methods, espe-
cially in the 1-shot setting. Specifically, COPNER
raises of 5.8%, 7.4% and 14.3% F1 scores on the
CoNLL, WNUT and I2B2 datasets, respectively.

As shown in Table 4, COPNER still achieves
SOTA performance in most cases. In the In-Label-
Space setting, the generalization ability of COP-
NER is examined by limiting the available training
samples. Additionally, the standard deviations of
F1 scores reported by COPNER are lower than
those of other baselines, which indicates that our
method is more stable than these baselines.

5.2 Zero-shot Learning
After trained on a rich-resource dataset, COPNER
has learnt hidden contextual associations between
CWs and tokens of input sentences. We aruge that
these learnt contextual associations help COPNER
to classify unseen entity categories even without
any support data. Several experiments are con-
ducted to demonstrate this idea. Specifically, for
the Cross-Label-Space task and the Domain Trans-
fer task, COPNER needs to make predictions on
the target label spaces without any support set after
training on the source label spaces. As shown in
Table 5, COPNER can handle zero-shot NER tasks

Table 5: F1 Scores (%) in Zero-shot setting. +Struct
means using Viterbi Decoding. We color code each
column as best .

Model
Few-NERD Domain Transfer

INTER INTRA CONLL WNUT I2B2
5 way 10 way 5 way 10 way - - -

COPNER 31.95 19.52 14.72 8.73 46.26 17.58 17.29
+Struct 33.97 20.92 16.06 9.64 49.39 17.41 17.47

with satisfied performance and the Viterbi decoding
can further boost the performance. In the domain
transfer tasks, COPNER under the zero-shot set-
ting is even comparable to the prototypical network
under the 1-shot setting.

5.3 Effect of Class-specific Words
Considering that the semantic information con-
tained in class names can benefit entity encoding,
the class names are selected as CWs introduced in
Section 3.1. To demonstrate the effect of semantics
of class names, we conduct experiments with the
following variants of the CWs:

• Misleading words: We randomly swap the
CWs between labels. For example, we as-
sign “location” for “PER”, “person” for
“ORG”, “organization” for “LOC”.
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Figure 3: F1 Scores (%) in Few-NERD (INTRA) with
the different variations of the CWs.

• Unrelated words: We randomly select some
tokens from BERT’s vocab as CWs, e.g.,
“fully”, “acoustic” or “new”, which are
semantically unrelated to labels.

• Meaningless words: We use the tokens that
are not used in BERT’s vocab for CWs,
such as “[unused0]”, “[unused1]”, etc.
These tokens are semantically meaningless.

As shown in Figure 3, the performance of the
three variants shows a significant decrease com-
pared to the original words. The wrong seman-
tic information in misleading words and unrelated
words may mislead the entity representation learn-
ing leading to huge performance loss. It demon-
strates that semantics matching the entity class is
more effective as a class anchor. The further de-
crease in the performance of meaningless words
further shows that semantic information is crucial
in few-shot metric learning.

5.4 Influence of Prompts

In this subsection, we explore the influences of in-
troducing prompts. In COPNER, prompts provide
category-specific information during the represen-
tation calculation of tokens. To explore its impact,
we conduct analytical experiments and the results
are shown in Table 7 in Appendix. In addition
to comparing the impact of three different prompt
forms introduced in Section 3.5, we construct a
baseline without adding any prompts: Fixed em-
bedding Guiding (FG). More details are described
in Appendix C. All three prompt-based methods
are much better than FG, which indicates that the
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Figure 4: Two-dimensional t-SNE visualizations of the
sampled 6 fine-grained classes from the location cat-
egory. The embeddings are obtained from ProtoBERT,
StructShot, CONTaiNER and COPNER, respectively.

introduction of prompts can effectively improve
the model capability. Both Partition Prompt and
Continue Prompt achieve excellent performance,
but the latter introduces additional parameters, so
we use Partition Prompt in our main experiments.

5.5 Effectiveness Analysis
In this subsection, we summarize two main aspects
to show the effectiveness of COPNER.

Enhanced Entity Representations. Figure 4
shows the two-dimension t-SNE visualization for
the embeddings obtained from four different metric-
based methods. Another one-dimension t-SNE vi-
sualization is shown as Figure 6 in Appendix D.
As shown as these two Figures, COPNER results
in better entity representations with greater differ-
entiation of entity distributions across categories
and more aggregation of similar entity distributions.
More details are described in Appendix D.

Stable Metric Referents. We further investigate
the metric results during inference. As shown in
Figure 5(a), COPNER is more capable of distin-
guishing the positive pairs from the negative pairs
with lower positive-negative distance ratios, which
indicates that the nearest CW inference in COP-
NER has stronger category discrimination ability.
COPNER is also the most stable and least influ-
enced by support set differences, as shown in Fig-
ure 5(b). More details are described in Appendix E.
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Figure 5: Effect of Metric Inference. (a) The ratio
of the positive-pair distance to the mean negative-pair
distance in inference of different models, (b) F1 scores
of different models on 10 different support sets.

6 Related Work

Prompt Learning. GPT-3 (Brown et al., 2020)
is the first try that used manual prompts in task
prediction to improve performance. Then some
ways to build templates manually were proposed
(Petroni et al., 2019; Sanh et al., 2021). Automatic
construction with different forms of templates was
explored, including discrete templates (Shin et al.,
2020; Jiang et al., 2020; Gao et al., 2020) and con-
tinuous prompts (Li and Liang, 2021; Liu et al.,
2021b,a; Qin and Eisner, 2021; Han et al., 2021).
A proper prompt can provide guidance information
for downstream tasks. Therefore, the prompt is
well suited for few-shot tasks where training data
are scarce. A number of works introducing prompt
learning to few-shot classification tasks have been
proposed (Mao et al., 2018; Ding et al., 2021a;
Chen et al., 2021; Madotto et al., 2021) in succes-
sion.

Few-shot NER. Generally, few-shot NER ap-
proaches can be categorized as metric-based and
prompt-based. The former aims to calculate the
similarity between test data and referents. Fritzler
et al. (2019) applied the prototype network (Snell
et al., 2017) to few-shot NER tasks. Inspired by the
nearest neighbor inference (Wiseman and Stratos,
2019), Yang and Katiyar (2020) proposed Struct-
shot, which used the Viterbi Decoder to capture la-
bel dependencies. Das et al. (2021) proposed CON-
TaiNER, which adopts Gaussian embeddings of
tokens for the metric. Prompt-based methods lever-
age prompt learning to exploit the prior knowledge
of pre-trained language models. Cui et al. (2021)
proposed a time-consuming template-based BART
for few-shot NER. Inspired by prompt tuning, Ma
et al. (2021) proposed an entity-oriented method

that fine-tuned the language model to predict class-
related label words rather than the original words.

7 Conclusion

In this paper, we propose COPNER, a novel few-
shot NER approach taking the advantage of con-
trastive learning and prompt guiding. COPNER
achieves SOTA performance in few-shot NER set-
tings by constructing prompts with CWs and ex-
ploiting the ability of contrastive learning to obtain
enhanced representations and stable metric refer-
ents. COPNER can also handle zero-shot NER
tasks. In the future, we will extend COPNER to
more token-level few-shot classification tasks and
further exploit its ability to handle zero-shot tasks.
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A Data statistics

In our experiments, we utilize a variety of different
NER datasets to fully validate the capability of our
proposed approach. A summary of these datasets
is given in Table 6.

Table 6: Data statistics

Datasets Domain #Class #Sent #Entity

OntoNotes General 18 76.7k 104.2k
WNUT’17 Social 6 5.7k 3.9k
I2B2’14 Medical 23 140.8k 29.2k
CoNLL’03 News 4 20.7k 35.1k
MIT-Movie Review 12 12.2k 26.6k
Few-NERD General 66 188.2k 491.7k

B Implementation Details

We use the "bert-base-uncased" pre-trained model
as the word encoder in all of our experiments. For
model training, the AdamW optimizer is employed
with learning rate of 1e-4. We set batch size=16 and
the loss temperature τ=0.05. As for prompt con-
struction, we adopt Partition Prompt in our main
experiments. The micro-F1 score is selected as the
standard evaluation metric in all experiments.

Tagging Scheme For fair comparison, we adopt
the IO tagging scheme following previous works,
where I-type represents that all of the tokens are
inside an entity, and O-type denotes all the other
tokens.

C Effect of Prompts

In order to explore the effect of prompts, we add a
baseline: Fixed embedding Guiding (FG). Specifi-
cally, we first obtain the embedding of each class-
specific word from the last layer output of the "bert-
base-uncased" pre-trained model. We then let these
embeddings guide entity representations by con-
trastive learning. No prompt is expanded after the
input text in FG and the embeddings of CWs are
fixed during training. We conduct experiments on
FG and the other three different prompts introduced
in Section 3.5. The experimental results are shown
in Table 7.

All the three prompt-based models outperform
FG, indicating that prompts are effective in pro-
viding category-related information when models
perform entity representation calculations. Despite
their excellent results, three prompts have some dif-
ferent effects. The best model is Continual Prompt.

Table 7: F1 Scores(%) in Few-NERD (INTRA) with
different prompts: QP, PP and CP mean to use Queue
Prompt, Partition Prompt and Continual Prompt, re-
spectively. And FG means to use the fixed embed-
ding guiding. We color code each column as best
and second best .

Model
5-way 10-way

Avg.
1∼2 shot 5∼10 shot 1∼2 shot 5∼10 shot

FG 43.55 51.85 37.49 48.79 45.42
QP 52.15 57.34 42.79 50.99 50.82
PP 53.52 58.74 44.13 51.55 51.99
CP 53.38 58.81 44.40 51.63 52.06

Whereas, it employs an extra Prompt Encoder to
generate semantic linkage representations, which
introduces additional training parameters. Parti-
tion Prompt achieves comparable performance to
Continual Prompt, while introducing no additional
parameters. This is the reason that we adopt it
in our main experiments. The relatively poor per-
formance of Queue Prompt indicates that putting
the CWs together instead of separating them with
some tokens has negative impacts on the model
performance.

D t-SNE Visualization

From the Few-NERD (INTRA) test set, we ran-
domly sample 100 examples from each of six fine-
grained classes in the location category. Then,
t-SNE is employed to project the entity represen-
tations obtained by the word encoder into two-
dimensional and one-dimensional spaces. It is clear
that the way of guiding entity representations by
COPNER is more effective.

Figure 4 shows the two-dimensional visual-
ization results of ProtoBERT, StructShot, CON-
TaiNER and COPNER, respectively. We can ob-
serve that: ProtoBERT has the weakest representa-
tion ability and fails to distinguish the entity repre-
sentations of different classes; StructShot improves
but tends to distribute the entity representations of
the same class to multiple clusters; CONTaiNER
further enhances entity representations, while it
is still weak in some classes, such as location-
bodiesofwater and location-island. COPNER per-
forms the best and brings similar entities together
as much as possible.

Figure 6 shows the one-dimensional visualiza-
tion results of different entity classes. The higher
aggregation of similar entity representations ob-
tained from COPNER further visualizes the superi-
ority of the way CWs guiding entity encoding.
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Figure 6: One-dimensional t-SNE visualizations of
the sampled 6 fine-grained classes’ examples from the
location category. The 6 different classes are visual-
ized separately.

E Effect of Metric Inference

In this sub-section, we investigate the effect of met-
ric referents for different models during inference.
We investigate the following two aspects: category
discrimination ability and metric stability.

Category Discrimination Ability: In the
distance-based inference, test examples are easily
and correctly distinguished when they are closer
to the positive metric referent and further away
from the negative metric referents. We randomly
sample a 1-shot support set containing six fine-
grained classes of the location category from the
Few-NERD (INTRA) test set, and then make pre-
dictions on the test examples sampled in Appendix
D. Each test example forms a positive pair with the
corresponding gold CW, and negative pairs with
other CWs. We calculate the ratio of the positive-
pair distance to the mean distance of negative pairs.
As shown in Figure 5(a), COPNER is more capable
of distinguishing the positive pair from the negative
pairs with lower positive-negative distance ratios,
which demonstrates that the nearest class-specific
word inference in COPNER is more appropriate.

Metric Stability: In the distance-based metric
approaches, the inference results of a good metric
should be insensitive to different support sets. We
randomly sampled 10 different 1-shot support sets
from the Few-NERD (INTRA) test set. Each con-
tains 6 fine-grained classes of the location category.

Figure 5(b) demonstrates the prediction results of
different models. The nearest class-specific word
inference in COPNER is the most stable, while
the nearest neighbor inference is sensitive to sup-
port set differences leading to large differences in
prediction results.

F Class-specific Word Examples

Table 8 illustrates several CWs selected by COP-
NER, which are usually class names with class-
specific semantics. For the classes with complex
class names, we choose concise words with similar
semantics.

Table 8: Several class-specific words selected by COP-
NER.

Few-NERD OntoNotes
#Class #Class-specific word #Class #Class-specific word

location-bodiesofwater water ORG organization
location-island island NORP country
person-athlete athlete ORDINAL number
person-director director WORK_OF_ART art

organization-show show QUANTITY quantity
organization-company company LAW law

building-airport airport EVENT event
building-hospital hospital CARDINAL cardinal

art-painting painting LOC location
art-film film FAC facility

... ... ... ...

I2B2 MIT-Movie
#Class #Class-specific Word #Class #Class-specific Word

DATE date CHARACTER character
PATIENT patient GENRE genre
DOCTOR doctor TITLE title

MEDICALRECORD record REVIEW review
HOSPITAL hospital RATING rating

IDNUM id YEAR year
FAX ip ACTOR actor

HEALTHPLAN plan DIRECTOR director
ZIP zip SONG song

STATE state RATINGS_AVG score
... ... ... ...

WNUT CoNLL
#Class #Class-specific Word #Class #Class-specific Word

location location ORG organization
group group PER person

corporation company LOC location
person person MISC miscellaneous

creative-work creativity
product product
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Abstract

Existing distantly supervised relation extrac-
tors usually rely on noisy data for both model
training and evaluation, which may lead to
garbage-in-garbage-out systems. To alleviate
the problem, we study whether a small clean
dataset could help improve the quality of dis-
tantly supervised models. We show that be-
sides getting a more convincing evaluation of
models, a small clean dataset also helps us to
build more robust denoising models. Specif-
ically, we propose a new criterion for clean
instance selection based on influence functions.
It collects sample-level evidence for recogniz-
ing good instances (which is more informative
than loss-level evidence). We also propose a
teacher-student mechanism for controlling pu-
rity of intermediate results when bootstrapping
the clean set. The whole approach is model-
agnostic and demonstrates strong performances
on both denoising real (NYT) and synthetic
noisy datasets.1

1 Introduction

Distant supervision was introduced to tackle the
lacking training data problem in information ex-
traction tasks (Mintz et al., 2009). By aligning
relation triples in knowledge bases (KB) with free
texts, it automatically builds labelled sentence in-
stances and easily extends the scale of training set
to hundreds of thousands samples. Due to this great
scalability, distantly supervised entity relation ex-
tractors have been extensively studied in the past
decade.

Like other weak signals, the major problem
about these automatically generated datasets is la-
bel noise: not all aligned sentences carry the same
semantic of a KB triple (e.g., not all sentences con-
taining “Obama” and “United States” express a
“born in” relation). Some applications (e.g., slot

*These authors contributed equally.
1Our codes are publicly available at: https://github.

com/Airuibadi/IF_DSRE.

filling of the TAC KBP track (Ji and Grishman,
2011)) could be less affected with the help of in-
stance bags, which only needs to seek one correct
instance among a bag of aligned sentences. For a
more general setting which aims to correctly de-
tect relations on individual sentences (Miwa and
Bansal, 2016; Sun et al., 2018; Wadden et al., 2019;
Wang et al., 2020), however, the noisy labels make
both learning and evaluation of models vulnerable:
we may draw a flawed conclusion by using a dirty
test set for a model learned with a dirty training set.

Many methods have been proposed to reduce
noise labels (denoise) in distant supervision. For
bag-level applications, models often rely on atten-
tion scores to either filter bad instances inside a bag
(intra-bag attentions, Lin et al. 2016) or filter bags
full of noisy instances (inter-bag attentions, Ye and
Ling 2019). The dilemma there is that, while we ex-
pect attention scores to indicate correct labels, we
have to train them to fit noisy labels since ground
truth labels are noisy. The same difficulty also
exists in recent instance-level denoising methods
(Qin et al., 2018a,b) where the reward of denoising
an instance is obtained by querying noisy labels.
Therefore, not only the extraction models but also
denoising models are questionable if only noisy
labels are given.

In this paper, we would like to restate the im-
portance of trustful data (clean dataset) in building
large-scale information extraction systems. Specif-
ically, if a small clean dataset (≈ 102 samples) is
available, we ask whether the robustness of both the
denoising model and final extraction model could
be improved.

We start from training a relation classifier on
the clean set and propose a new criterion to select
good instances from the dirty set. The main idea
is that if a testing instance is correctly labelled by
distant supervision, some instances in the clean set
should support it, and if we remove those support
instances, prediction error of the testing instance
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will increase. Comparing with previous work, the
criterion is based on perturbation analyses of clas-
sifiers instead of directly using output probabilities
(scores) of classifiers. Our tool is influence func-
tion (IF; Cook and Weisberg 1982; Koh and Liang
2017) which can effectively approximate how a
classifier’s parameters change when removing a
training point.

Next, to incrementally explore the dirty set, we
compile our instance selection algorithm into a
bootstrapping process: training a classifier on the
current clean set, selecting new clean instances us-
ing the classifier and retraining the classifier on the
updated clean set. The key challenge is how to
control purity of those intermediate datasets: one
noisy instance may bring more noisy instances. Ex-
isting works are either lack of such strategy, or
use heuristic thresholds on classifiers or dataset
size (Jia et al., 2019). Here, we propose a teacher-
student style update for learning intermediate classi-
fiers. It gradually controls the distance between the
current model and history models by regularizing
discrepancy of their predictions.

Our whole system could be deemed as a data
preprocessing method. Comparing with in-model
denoising method (e.g., attention scores), it outputs
a new clean set which can be applied to any infor-
mation extraction models (model-agnostic). We
conduct experiments on both real distantly super-
vised datasets (NYT) and synthetic datasets (built
on ACE05). The results demonstrate that besides
effectively selecting good instances, the influence-
function-based criterion can stratify noisy instances
according their difficulties for prediction (or impor-
tances for a better extractor). We also find that the
teacher-student update especially helps when the
proportion of incorrectly labelled instances is large.
Finally, when learned with clean sets built by our
methods, we are able to achieve competitive ex-
traction performances on manually labelled testing
set.

2 Preliminary

Distantly Supervised Relation Classification
Given an entity pair (eh, et) and a sentence s con-
taining the pair, we consider the task of determining
whether the entity pair expresses certain relation
r ∈ R, where R is the set of relation types (None
indicates no relation). Denote x = (s, eh, et, r) to
be an instance, y ∈ {0, 1} to indicate whether x is
positive or negative, and D = {(xi, yi)}|D|i=1 to be

a set of labelled instances. For simplicity, we also
define z = (x, y).

In the distant supervision setting, instances in D
are automatically obtained by aligning plain text
and knowledge bases: for a KB triple (eh, et, r),
every sentence containing (eh, et) is labelled with r.
Obviously, D is a dirty set with both false positives
(sentences don’t match the semantic of r) and false
negatives (sentences expressing relation r while
been labelled with None due to incompleteness of
KB). Here, we focus on false positives (much more
serious in current datasets) and don’t consider false
negatives for its very low quantity. The denoising
task is thus to find D′ ⊂ D containing correctly
labelled instances (especially, positive instances).

Influence Function (Cook and Weisberg, 1982;
Koh and Liang, 2017) provides a way to estimate
how individual training instances influence a model.
Typically, for a testing instance (x′, y′), it effi-
ciently answers the question that if a training in-
stance (x, y) is removed how the model’s predic-
tion on (x′, y′) changes.

Denote L(z, θ) to be a convex loss func-
tion of z with parameter θ, and θ̂ ≜
argminθ

1
n

∑n
i=1 L(zi, θ) to be the optimal model

parameter learned on a training set (n is the set
size). To study a training instance z’s influence on
θ̂, influence function considers an ϵ up-weight on z.
Define θ̂ϵ,z ≜ argminθ

1
n

∑n
i=1 L(zi, θ)+ϵL(z, θ).

Therefore, when ϵ = − 1
n , θ̂ϵ,z is the new model

parameter after removing z from the training set.
The key idea of influence function is that, when

ϵ is small (or training set size n is large), with the
first order Taylor approximation, we can measure
the difference between θ̂ and θ̂ϵ,z without retraining
the model,

θ̂ϵ,z − θ̂ ≈ −ϵH−1
θ̂
∇θL(z, θ̂) ≜ ϵIup,params(z),

where Hθ = 1
n

∑n
i=1∇2L(zi, θ) is the Hessian

matrix of the original loss function. 2

We can also get the change of the model’s pre-
diction on a testing instance z′ by the chain rule,

L(z′, θ̂ϵ,z)− L(z′, θ̂)
≈−ϵ∇θL(z′, θ̂)TH−1θ̂ ∇θL(z, θ̂) ≜ ϵIup,loss(z, z′).

We say z supports (or is helpful to) z′ if removing z
increases the testing loss of z′, that is S(z, z′) > 0,

2We follow (Koh and Liang, 2017) using a stochastic esti-
mation of H−1

θ when computing influence functions.
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where

S(z, z′) ≜ − 1

n
Iup,loss(z, z′). (1)

We will see in the next section that the group of
supporting instances is a key part in our denoising
algorithms.

3 Utilities of Clean Sets

We study the task of picking out correct instances
(D′) from a distantly supervised dataset D (the
dirty set). As discussed above, it is not easy for the
denoising model to either correctly evaluate its re-
sults or receive the right learning signals if we only
know noisy labels in D. Therefore, departing from
previous works, we additionally require a small
clean set C (C ∩D = ∅, |D| ≫ |C|) which con-
tains trustful annotations of instances (e.g., man-
ually labelled). In our experiments, |C| = 10 is
enough to bring significant improvement.

We build our denoising model based on a binary
classifier θ̂, which aims to recognize truly labelled
instances from D.3 The classifier could be learned
on D or C. For example, for an instance z, to test
whether it is correctly labelled or not, a broadly ap-
plied principle is to query the classifier’s confidence
on predicting z’s label: the lower loss L(z, θ̂), the
more possible z being correctly labelled.

Here, we go one step deeper: besides looking
at the loss function, we could first seek high im-
pact training samples on the classifier’s drawing of
L(z, θ̂), and then collect evidence from them. For
example, the more clean instances support z, the
more possible z being correctly labelled. We are
going to demonstrate that by probing the black-box
classification process, we could build more explain-
able (yet effective) criteria for selecting instances.

First, from the computation of influence function,
we can obtain a training instance’s influence on a
testing instances (Equation 1). Then, for a instance
zd ∈ D (as discussed above, we mainly focus on
positive zd = (x, y) where y = 1), we have two
possible directions to derive a selection criterion.

• Criterion 1. We can train a classifier on D. zd is
correctly labelled if it supports θ̂’s prediction on
the clean set C. Concretely, define S(zd, ⋆) ≜

3It is also possible to denoise by directly comparing similar-
ities among instances (e.g., using patterns or sentence embed-
dings). While these methods are important, we mainly focus
on classifier-based models whose settings are more analogous
to semi-supervised learning or active learning. Comparing
with them is beyond the scope of this paper.

1
|C|
∑

zc∈C S(zd, zc) to be the marginal S over
the testing set,

S(zd, ⋆) > 0 =⇒ zd is correct. (2)

• Criterion 2. We can also train a classifier on
C. In this case, zd is correctly labelled if θ̂’s
prediction on zd is supported by the instances in
C. Define S(⋄, zd) ≜ 1

|C|
∑

zc∈C S(zc, zd) to be
the marginal S over the training set,

S(⋄, zd) > 0 =⇒ zd is correct. (3)

Given the limited budget of clean instances C,
the two methods are different in their way of using
them. When taking C as the testing set (Criterion
1), we emphasize a valid feedback signal for eval-
uating the denoising model. On the other hand,
when taking C as the training set (Criterion 2), we
emphasize a clean learning signal for building the
denoising model. We would like to discuss more
on their pros and cons.4

For Criterion 1, as D is usually large enough,
we could obtain a sufficiently learned classifier
for denoising. More importantly, a large train-
ing set makes the estimation of influence function
more reliable (Taylor expansion works on small
ϵ). However, a good fitting of the dirty set could
be a double-edged sword, especially when the pro-
portion of wrongly labelled instances is large: we
do get the influence function estimation right but
it may not be applicable to our goal of denoising.
We can first consider an ideal setting where all in-
stances in D are true. In this case, Equation 2 is
trustable since the ideal parameter θ̂′ is trustable,
and it encodes the right information for detecting
supporting relationship between the training and
testing set. However, if a large part ofD is false, the
classifier θ̂ can diverge from the ideal θ̂′ severely,
thus makes Equation 2 no longer true (e.g., a nega-
tive zd could also satisfy the criterion as θ̂ is learned
with noise).

Furthermore, we can have the following charac-
terization of |L(zd, θ̂′) − L(zd, θ̂)| if L(z, θ̂) is in
the form of log-likelihood,

L(z, θ̂)=− log p(y|x, θ̂)=− log
exp (ŵ⊺

yh(x, φ̂))

Z
4Similarly, we can also select the wrongly labelled in-

stances by selecting the lowest influence function scores, we
try to flip the labels and add them to the training set, but we
find it barely working. The possible reason can be that these
instances are positive instances for other entities or relations
which adds too much noise for our classifier.
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where θ̂ = [ŵ0, ŵ1, φ̂], ŵ0, ŵ1 are class label em-
bedding, h(x, φ̂) is a learned representation of x
(encoder), and Z is the normalizer.

Lemma 1. Let z = (x, y) ∈ D, z′ = (x, y′) be
a relabelled z, and θ̂z,z′ be the optimal model pa-
rameter after replacing z with z′. Denote τx to be
the smallest singular value of∇φh(x, φ̂). Then for
any zd ∈ D, up to o(n−1), |L(zd, θ̂z,z′)−L(zd, θ̂)|
is lower bounded by

c

n

(
∥h(x, φ̂)∥+ τx∥ŵy − ŵy′∥

)
,

for some constant c. Proof is in Appendix A.

Therefore, if the classifier θ̂ fits well on the dirty
set (in the sense of a large ∥ŵ0 − ŵ1∥), S(zd, zc)
calculated with θ̂ could be far away from its value
being calculated with a clean training set (i.e., with
θ̂′). For the case of multiple updates, since the
group version of influence function may not faith-
fully reflect the change of parameters (Koh et al.,
2019), we are not able to obtain similar results with
Lemma 1. However, our empirical evaluations will
show that performances of Criterion 1 is highly
related to the proportion of clean instances in D.

For Criterion 2, comparing with training with
dirty D, C contains trustful data, thus the implica-
tion relation in Equation 3 is clear after training on
C. However, since the clean set is usually small,
Criterion 2 takes the risk of under-fitting, which
makes the prediction on zd ∈ D not sufficiently
exploit structures of clean samples in C. Moreover,
the estimation of influence function also becomes
unstable on small datasets (i.e., ε is larger). In sum-
mary, instead of measuring a wrong S(zd, zc) with
good accuracy (like Criterion 1), Criterion 2 may
struggle with measuring the right S(zc, zd) with
poor accuracy.

In the following section, we investigate boot-
strapping methods to enlarge C incrementally. We
hope that when the number of clean instances be-
comes larger, we could alleviate both under-fitting
and poor estimation of influence function gradu-
ally.

4 Bootstrapping the Clean Set

Given a initial small clean set C0 and a dirty set
D0,5 our bootstrapping framework incrementally
updates a denoising classifier θ̂. At iteration t,

5We use the subscript t to indicate the number of iterations.
In some cases, we drop it for simplicity.

we first collect a fixed-size clean set C̃ by sam-
pling from Ct. Second, a denoising classifier θ̂
is trained on the sampled set C̃, from which we
can use influence-function-based scores (Equation
1) to evaluate each instance in Dt and choosing
new clean instances Dc from Dt. Third, we update
Ct and Dt by merging and excluding instances
in Dc and retraining the denoising model again.
As discussed above, how to control the purity of
those intermediate clean sets is important (other-
wise, we will face the same challenge as Criterion
1). We propose teacher-student style update for
learning intermediate classifiers. It gradually con-
trols the distance between the current model and
history models by regularizing discrepancy of their
predictions. We summarize the whole process in
Algorithm 1. It is worth noting that the output of
the bootstrapping process is a new clean set, on
which we could build any relation classifier (i.e.,
model-agnostic denoising).

Denoising Classifier Our denoising model is
a binary classification model. For each x =
(s, eh, et, r), it predicts y ∈ {0, 1}. Here, we
simply apply a softmax layer on a CNN encoder
(the same setting of Lemma 1).6 Specifically,
h(x, φ) = CNN(s,p), where s contains embed-
dings of words in sentence s, and p contains posi-
tion embeddings which indicates two entities eh, et
in the sentence (Zeng et al., 2014).

Sampling To obtain a fixed-size clean set C̃, we
randomly sample instances from Ct with replace-
ment. We keep |C̃| = 200 so that the influence
function calculation is more efficient.

Fitting To fit the relation classifier on the sam-
pled set C̃, our objective is to minimize

θ̂ = argmin
θ

∑

z∈C̃
L(z, θ) (4)

The parameters θ̂ are applied in calculating IF.

Evaluating After obtaining the parameters θ̂, to
evaluate each instance zd ∈ Dt, we define a score
function by Criterion 2 as follows,

S(⋄, zd) ≜
1

|C̃|
∑

zc∈C̃
S(zd, zc) (5)

The score S(⋄, zd) is the average of clean training
instances’ influence on the test instance zd.

6The model could be any existing relation model. For
simplicity, we select a simple CNN.
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Algorithm 1 Bootstrapping Framework

Require: C0, D0, tmax, k
Ensure: Dr

1: For the student model, initialize θ randomly
2: For the teacher model, initialize θ̄ with θ
3: for t = 0 : tmax do
4: Sample C̃ from Ct randomly
5: Fit θ on C̃ by Eq.9
6: Fit θ̄ by Eq. 10
7: Evaluate S(⋄, zd) ∀zd ∈ Dt by Eq. 5
8: Select Dc by Eq. 6 and Eq. 7
9: Update Ct, Dt by Eq. 8

10: Dr = Ctmax \ C0

Selecting After obtaining the score for each in-
stance S(⋄, zd), we can select the clean instances
from Dt according S(⋄, zd) > 0 (Criterion 2). In
practice, we observe that adding a relaxation factor
works better. Formally, we denote it as follows,

D̃c
t = {zd ∈ Dt|S(⋄, zd) + r > 0} (6)

where r is a positive number. In addition, we adopt
a majority voting strategy: we consider not only
the current iteration, but also the previous iterations
to build the current cleaned set Dc, denoted as:

Dc =

{
zd|

t∑

i=0

1(zd ∈ D̃c
i ) > k

}
(7)

where 1(·) is the indicator function and k is a hyper-
parameter.

Updating Once we have the set Dc, we can up-
date Ct and Dt with simple set operations, denoted
as:

Ct+1 = Ct ∪Dc, Dt+1 = Dt \Dc (8)

Teacher-student Mechanism Even though we
have used an implicit majority voting to keep se-
lected instances clean, affected by under-fitting and
unstable estimation of influence function, error in-
stances will inevitably enter the clean set. Consider-
ing our algorithm is based on bootstrapping, errors
in previous rounds would have continuous impact
on subsequent selection. As mentioned before, the
model parameter θ is easily disturbed by wrong-
label instances, with the error propagation, the θ
would be rotten quickly. To avoid this case, we
introduce a teacher-student mechanism (Tarvainen
and Valpola, 2017).

Here,we deem θ as the student model, and use
another set of model parameters θ̄ as the teacher
model, In the fitting step, we add a consistency
regularizer to Equation 4:

θ̂ = argmin
θ
L(C̃, θ) + αKL(q(∗; θ̄)||p(∗; θ))

(9)
where the q and p are outputs of teacher model and
student model respectively, the KL-divergence pro-
vides a consistency loss and α is a hyper-parameter.
Furthermore, the θ̄ would not be updated in Equa-
tion 9, we update it by exponentially moving aver-
age as commonly used in teacher-student method:

θ̄t = βθ̄t−1 + (1− β)θ̂t (10)

Teacher-student mechanism is seen as a regular-
ization term of θ̃ during fitting, and we neglect
this term when calculating the influence function.
After tmax times loop, we remove the seed set
C0 from the Cmax and obtain our final result
Dr = Ctmax \C0. Then, we could train any model
on Dr.

5 Experiment

5.1 Configurations

NYT The NYT dataset is a widely-used distant
supervision benchmark, which is built by Riedel
et al. (2010) and rearranged by Jia et al. (2019).
The training set is annotated with distant supervi-
sion while both development set and test set are
manually annotated. For this dataset, We set D to
be the NYT training set, and C as to be the NYT
development set. 7

ACE05-N The ACE05-N dataset is a synthetic
noisy dataset which adapted from ACE05 (Walker
et al., 2006), a commonly used instance-level super-
vised dataset. We first add the same amount of neg-
ative instances (with None relation label) as the an-
notated instances, and then mix additional noisy in-
stances with different ratio, which are flipped None

instances. Detailed dataset specification could be
found in the supplementary.

Settings The settings and implementation details
are in Appendix B. We evaluate Precision, Recall,
and F1 with micro-averaging in instance-level.

7Noting that there is no instance leakage in the following
evaluation on development set: we have remove it from our
obtained clean set (line 10 of Algorithm 1).
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Encoder Method Dev Test
Prec. Rec. F1 Prec. Rec. F1

CNN

RL 42.50 71.62 53.34 43.70 72.34 54.49

Conf 83.41 56.03 67.03 58.09 58.09 67.75
Cr1 81.33 43.94 57.06 73.49 43.62 54.75
Cr2 76.82 61.54 68.34 79.71 60.48 68.78
Cr2TS 76.80 62.10 68.69 75.36 60.52 67.13

PCNN

ATT 68.09 47.49 55.95 67.31 49.83 57.27

Conf 82.18 57.23 67.47 80.15 58.48 67.62
Cr1 78.38 47.64 59.26 76.63 52.19 56.85
Cr2 75.94 62.87 68.78 78.71 61.86 69.27
Cr2TS 79.34 61.14 69.06 79.60 59.62 68.17

BiLSTM

ARNOR 78.14∗ 59.82∗ 67.77∗ 79.70∗ 62.30∗ 69.93∗

Conf 80.37 55.82 65.88 79.46 56.43 65.99
Cr1 80.73 55.28 62.06 69.28 54.16 60.79
Cr2 72.39 60.67 66.01 72.04 61.85 66.56
Cr2TS 77.38 60.00 67.59 74.90 58.65 65.78

Table 1: Comparison of our method and other baselines
with different encoders. We denote Conf, Cr1, Cr2,
Cr2TS as Confidence, Criterion 1, Criterion 2 and Cri-
terion 2 with teacher-student update style. The code of
ARNOR is not accessible now and we find it is hard to
reproduce the reported performances.

5.2 Baselines
ATT (Lin et al., 2016) is a classical bag-level
denoising method which tunes the attention weight
of each instance in bags during training to alleviate
the impact of noisy instances.

RL (Qin et al., 2018b) introduces reinforcement
learning method to train a instance selector that
could tell the noisy instances from the distant su-
pervised training set.

ARNOR (Jia et al., 2019) embeds the relation
pattern attention based on recurrent neural network
into a bootstrapping framework.

Confidence We implement another baseline for
fair comparison, which uses the trained model pa-
rameters θ̂ to select instances by confidence each
iteration instead of influence function criteria. As a
control, it also starts from a initial clean seed set.

5.3 Main Result
Table 1 lists overall performances on NYT dataset
with different relation classification models (recall
that our approach is model-agnostic). We compare
the results of our method with several baselines.
From the results, we find that,

• Comparing with prior methods, both Cr2 and
Cr2TS achieve better or comparable perfor-
mance with different encoders, which suggests
that our model-agnostic method could effectively
prevent RE model from noise data.

• Both Conf and Cr2 use the dev data as a refer-
ence, while Cr2 achieves superior performance.
Thus, our method is a better strategy which
makes use of limited clean set. We credit it to
that the influence function could select better in-
stances under the criterion 2.

• The results show that Cr1 performs much worse
than Cr2 on both dev and test set. As we men-
tioned before, Cr1 uses dirty set as training set,
leading to unreliable influence.

• The performance of Cr2TS is worse than that
of Cr2, which shows the teacher-student mecha-
nism has no advantage on this dataset. We guess
it’s relative to the noise ratio on dirty set, and
further discuss in next section.

6 Analysis and Discussion

Validating influence function. The calculation
of influence function is the key step of our method.
Here we show the high correlation between the real
influence (calculated by leave-one-out retraining)
and estimated influence. From the experimental re-
sults (see Appendix E), we find that the correlation
among high influential instances is 0.79, and 0.65
in all instances. The high correlation validate that
influence function is reliable in perform instance
perturbation analyses.

Bootstrapping process in detail. In this section,
we study the performance change of four selecting
strategies during the bootstrapping procedure, as
show in Figure 1.

• The performance curves of four strategies are
quite similar, which gradually rise to the peak at
the beginning and then fall to the line of original
noisy data. We think the main reason for this
phenomenon is that these strategies add more
clean instances into Dc

t in the early epochs, and
inevitably select more and more noisy instances
in the later training epochs.

• The curve of Cr2 and Cr2TS is higher than
Conf, which suggests that the effectiveness of
criterion 2. As expected, Cr1 fails in the later
period, which is even inferior to training with
original noisy data.

The impact of noise ratio. We conduct experi-
ments with different ratio of noise data to verify
the denoising ability of our method (Figure 2).

• Even the noise ratio is extreme high (90%), the
Cr2 and Cr2TS is still stable. We think that
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Figure 1: Bootstrapping result. Here we take 3 NYT relations as examples, we present performance change on dev
during the bootstrapping. The black dash lines are the performance without denoising.
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Figure 2: The denoising ability of our method with different noise ratio. Here we take three relation types from
ACE05-N as examples. We evaluate their performances with the different ratio of noisy instances that range from
10% to 90% for each relation type. The red dash line indicates the performance without any noisy.

our methods take the most of the clean set to
distinguish clean instances from the dirty set, so
the damage from the noise instances in dirty set
is quite slight.

• The Cr1 would crash when the noise ratio be-
yond a certain level, as we analysis before, the
higher noise ratio the train set has, the wider gap
between estimated influence and the real influ-
ence of noisy instances.

• It is worth noting that Cr2TS would be better
than Cr2 in the case of the high noise ratio,
which shows the effectiveness of teacher-student
mechanism. The teacher-student mechanism has
the advantage to help lower the lasting impact of
misclassified instances in the previous iteration.

The impact of initial clean set size. Our method
starts with an initial clean set, so we study the
impact of the set size in Table 2.

• In general, the performance goes down with the
number of clean instances decreasing. That is rea-
sonable for that the limited clean seed set would

Methods 10 30 50 ALL

Conf 31.43 34.28 35.89 36.95
Cr1 27.93 28.22 28.63 30.73
Cr2 35.1 36.23 37.42 37.87

Cr2TS 36.52 37.82 38.04 38.69

Table 2: We conduct our experiment on ACE05-N with
50% noise ratio to study the impact of initial clean set
size. Note that the F1-score is 27.50 without any se-
lecting strategy. Columns represents the result of using
different number of instances as initial clean set. For
each relation, we try to use 10, 30, 50 and all dev set as
the intial clean set.

suppress the methods to find more true positive
instances.

• The performance of Conf drops sharply with
few initial clean instances (10 instances). We
guess that the method only considering confi-
dence of instances is easily trapped into the lim-
ited clean set and hard to detect more clean in-
stances.

• Both Cr2 and Cr2TS show better robustness
even the the size is extreme small. We be-
lieve that the key factor is the influence func-
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Reference:Jeffrey Katzenberg, chief executive of
DreamWorks Animation, said. . .

Sentence TP/FP Score

Obvious
TP

. . . Richard C.Notebaert, the
cheif excutive of Qwest. . .

TP 3.46e-3

. . . and Bruce Wassertein,the
chairman and cheif excutive
of Lazard

TP 1.73e-3

Hard
instances

. . . last October, Ray Ozzie,
chief technical officer, who
joined Microsoft last year . . .

TP 3.39e-5

. . . Richard C.Noteaert, the
company’s chief executive,
said Qwest spent..

FP 4.91e-5

Potential
FP

Eric Foner is the De Witt
Clinton professor of history at
Columbia University and the
author. . .

TP -2.36e-3

As Bruce Wasserstein left St.
Regis Hotel in Manhattan on
Tuesday afternoon after pre-
senting Lazard’s plan . . .

FP -4.37e-3

Table 3: An example of layered phenomenon of in-
stances in the noisy dataset. We group instances by their
scores calculated by Cr2.

tion, which considers more than confidence and
is more practical to extend the scale of clean in-
stances from a small start.

Stratification of instances. Table 3 presents a
stratification of instances in the noisy dataset,
which is our source of inspiration. There are
three layers sorted by the score with Criterion 2.8

The first layer contains instances with large posi-
tive score, which usually have a similar syntactic
and semantic structure with the reference instance.
These instances are true positive instances, and
our method select them in every iteration. The
second layer is made up of instances with score
around zero. These instances are usually hard to
tell whether they are noisy or not. The true posi-
tive instances in this layer could be discovered by
extending clean set with bootstrapping. The last
layer is formed by instances with large negative
scores, which are quite different from the reference
instance. Some of these instances are indeed noise,
while some are still true positive instances but just
not be supported by this reference instance. These
true positive instances would be supported by other
reference instances in clean set which selected by
the average score in Criterion 2.

8We just take one reference instance as example, rather
than the average of all reference instances in criterion 2.

7 Related Work

We focus on distant supervision relation extraction
via influence function in this paper. For relation ex-
traction, various neural networks like CNN (Zeng
et al., 2014, 2015), RNN (Zhang et al., 2015) and
Tree-GRU (He et al., 2018). Distant supervision
provides a method to automatically label massive
training data (Mintz et al., 2009), meanwhile, bring-
ing excessive wrong label instances, so called noise,
which stems the training.

To solve the noisy problem, people first take a
multi-instance learning methods (Surdeanu et al.,
2012; Lin et al., 2016; Ye and Ling, 2019), which
puts instances with same entity pair into bags, to
alleviate the impact of noisy instances. Then, to
make training process closer to real-world appli-
cation, people focus on instance-level denoising
method. An instance-selector is utilized to pick
out trustable instance, which is trained by rein-
forcement learning (Qin et al., 2018b; Feng et al.,
2018) and adversarial learning (Qin et al., 2018a).
The bootstrapping framework (Jia et al., 2019; Li
et al., 2020) is also utilized to promote the ability
of classification model gradually from a small seed.
For influence function, which is commonly used in
robust statistics (Cook and Weisberg, 1982), Koh
and Liang (2017) introduce it in machine learning
area. As a technology that is aiming to analyse
the every training points’ influence on model pre-
diction, influence function is widely applied. Ren
et al. (2020) apply influence function on weighting
unlabeled data to promote semi-supervised learn-
ing. Xu and Kazantsev (2019) utilize influence
function to designed an efficient strategy for active
learning.

8 Conclusion

In this paper, we propose a model-agnostic denoise
method for distant supervision relation extraction.
We start from training a relation classifier on the
clean set and propose a new criterion to select good
instances from the noisy data. We leverage the
criterion in a bootstrapping learning to extent the
clean set iteratively. Further, we propose a teacher-
student to control the update. Our method has a
strong performance on NYT dataset and shows ro-
bustness under the high noise ratio circumstance or
very limited size of initial clean set on the synthetic
ACE05-N dataset.
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Supplementary Materials for
Few Clean Instances Help Denoising Distant Supervision

A Proof of Lemma 1

Proof. Following the same first order Taylor ap-
proximation as influence function, up to o(n−1),
we can get the update of parameters after replac-
ing z with z′ (see Equation 3 of (Koh and Liang,
2017)),

θ̂z,z′ − θ̂= n−1
(
Iup,params(z)− Iup,params(z′)

)

= n−1H−1
θ̂

(
∇θL(z, θ̂)−∇θL(z′, θ̂)

)
.

Since the set D is finite, we denote

c1 ≜ argmin(z,z′)
|L(z, θ̂z,z′)− L(z, θ̂)|

∥θ̂z,z′ − θ̂∥
,

then

|L(zd, θ̂z,z′)− L(zd, θ̂)| ≥ c1∥θ̂z,z′ − θ̂∥
=c1∥H−1

θ̂

(
∇θL(z, θ̂)−∇θL(z′, θ̂)

)
∥

≥c1(nσ)−1∥∇θL(z, θ̂)−∇θL(z′, θ̂)∥,

where σ is the maximum singular value of
the Hessian. Regarding the log-likelihood loss,
∇θL(z, θ̂) = ∇θ logZ − ∇θŵ⊺

yh(x, φ̂), and the
transpose of the second term is

( wy φ

0, h⊺(x, φ̂), ŵ⊺
y∇φh(x, φ̂)

)
.

Hence,

∥∇θL(z, θ̂)−∇θL(z′, θ̂)∥
=
√
2∥h(x, φ)∥2 + ∥∇φh(x, φ)⊺(wy − wy′)∥2

≥∥h(x, φ)∥+ τx√
2
∥wy − wy′∥.

Let c = c1(σ
√
2)−1, we get the lower bound.

B Implementation details

For basic CNN model, the window size of the con-
volution layer is set to 3 and the number of the filter
is set to 230. In bootstrapping procedure, the posi-
tion embedding dimension of CNN is set to 1 and
the word embedding is initialized with 100 dimen-
sional pre-trained glove embedding (Pennington

NYT Training Dev Test

# Sentence 233038 1596 1596
# Instance 367596 4567 4484

# Positive instances 106653 975 1050

Table 4: Statistics on NYT dataset.

NYT Training Dev Test

# /people/person/place lived 7197 198 185
# /location/location/contains 51766 479 611
# /people/person/nationality 8079 117 91
# /business/person/company 5595 105 113
# /people/person/children 506 6 11
# /people/dec. . . /place of death 1936 8 14
# /location/country/capital 7690 14 15
# /business/company/founders 800 10 6
# /people/person/place of birth 3173 13 15
# /location/nei. . . /nei. . . of 5553 6 7

Table 5: 10 relations on dev set. Our methods take the
dev set as clean set to denoise.

et al., 2014),9 which is for making IF focuses more
on semantic information. In training procedure, for
fair comparison, the position embedding dimension
of all models is set to 5, the word embedding dimen-
sion is set to 100 with random initialization and an
entity type embedding. And for the PCNN model
we have the same hype-parameters with Zeng et al.
(2015). For majority vote,we set k = 3. In selec-
tion step of bootstrap, we at most select n = 1

10 |Dt|
instances. For teacher-student, the α is set to 1 and
β is set to 0.9. To avoid the model just memorizes
the entity pairs, we mask the entity words in both
bootstrapping and training.

C Detailed statistics on NYT dataset

Overall statistics on NYT datset are shown in Table
4. And the detailed statistics of each relations on
dev set are in Table 5.

D Synthetic dataset ACE05-N

Table 6 shows the statistics on ACE05. Next
we show how to construct our synthetic dataset

9Download from https://nlp.stanford.edu/
projects/glove/.
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ACE05-N Training Dev Test

# GEN-AFF 290 73 55
# ORG-AFF 857 204 203
# PER-SOC 279 57 45
# PHYS 549 164 123
# PART-WHOLE 393 81 86
# ART 275 52 85
# NA 116572 27597 24363

Table 6: The statistics on ACE05.

NYT Training Dev Test

# GEN-AFF 580 146 110
# ORG-AFF 1714 408 406
# PER-SOC 556 104 90
# PHYS 1098 328 246
# PART-WHOLE 786 162 172
# ART 550 104 170

Table 7: The statistics of ACE05 after adding NA.

ACE05-N, which takes two steps: adding NA and
adding noise. The entity pair in a sentence that does
not express any positive relation would be consid-
ered as “NA”. The NA instances play two roles in
our synthetic dataset: the negative instances and
noisy.

Adding negative instances In DSRE, the noise
come from the wrong-labelled negative instances.
So the true negative instances are necessary for
evaluating the denoise ability. In our synthetic
dataset, we reconstruct the training, dev and test of
each relation by adding the NA. The size of NA is
same as the original size of training, dev and test.
After that, the dataset would be changed to Table 7.

Adding noisy An instance that don’t express re-
lation r but labelled with r is a noise instance to
the relation r. So the intentionally made noise is
relabelling a NA instance to a positive label. In the
experiment, we manually put a certain number of
noise instance to poison the dataset. If we poison
a train set with 50% noise, we mean that after poi-
soning, the noise ratio of this train set is 50%. For
example, if the train set of GEN-AFF in Table 7 is
poisoned with 50% noise, it would be put with 580
noise instances.
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Figure 3: The correlation between estimated change of
loss and real change of loss. We use a training set with
500 instances included two relation types and arbitrar-
ily pick four instances as testing instances to validate
computation of influence function. The picture shows
40 most influential points with their real difference in
loss (obtained by 500 steps leave-one-out retraining).

E Validating influence function

The calculation of influence function is the key step
of our method. Here we show the high correlation
between the real influence (calculated by leave-one-
out retraining) and estimated influence. From the
experimental results (Figure 3), we find that the cor-
relation among high influential instances is 0.79,
and 0.65 in all instances. The high correlation vali-
date that influence function is reliable in perform
instance perturbation analyses.
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Abstract

Few-shot named entity recognition (NER) aims
at identifying named entities based on only few
labeled instances. Current few-shot NER meth-
ods focus on leveraging existing datasets in the
rich-resource domains which might fail in a
training-from-scratch setting where no source-
domain data is used. To tackle training-from-
scratch setting, it is crucial to make full use
of the annotation information (the boundaries
and entity types). Therefore, in this paper, we
propose a novel multi-task (Seed, Expand and
Entail) learning framework, SEE-Few, for Few-
shot NER without using source domain data.
The seeding and expanding modules are respon-
sible for providing as accurate candidate spans
as possible for the entailing module. The entail-
ing module reformulates span classification as a
textual entailment task, leveraging both the con-
textual clues and entity type information. All
the three modules share the same text encoder
and are jointly learned. Experimental results
on four benchmark datasets under the training-
from-scratch setting show that the proposed
method outperformed state-of-the-art few-shot
NER methods with a large margin. Our code
is available at https://github.com/
unveiled-the-red-hat/SEE-Few.

1 Introduction

Named entity recognition (NER), focusing on iden-
tifying mention spans in text inputs and classifying
them into the pre-defined entity categories, is a
fundamental task in natural language processing
and widely used in downstream tasks (Wang et al.,
2019; Zhou et al., 2021; Peng et al., 2022). Super-
vised NER has been intensively studied and yielded
significant progress, especially with the aid of pre-
trained language models (Devlin et al., 2019; Li
et al., 2020; Mengge et al., 2020; Yu et al., 2020;
Shen et al., 2021; Li et al., 2021a; Chen and Kong,
2021). However, supervised NER relies on plenty

∗Corresponding author.

of training data, which is not suitable for some
specific situations with few training data.

Few-shot NER, aiming at recognizing entities
based on few labeled instances, has attracted much
attention in the research filed. Approaches for few-
shot NER can be roughly divided into two cate-
gories, span-based and sequence-labeling-based
methods. Span-based approaches enumerate text
spans in input texts and classify each span based
on its corresponding template score (Cui et al.,
2021). Sequence-labeling-based approaches treat
NER as a sequence labeling problem which as-
signs a tag for each token using the BIO or IO tag-
ging scheme (Yang and Katiyar, 2020; Hou et al.,
2020; Huang et al., 2021). Most of these span-
based and sequence-labeling-based methods focus
on leveraging existing datasets in the rich-resource
domains to improve their performance in the low-
resource domains. Unfortunately, the gap between
the source domains and the target domains may
hinder the performance of these methods (Pan and
Yang, 2009; Cui et al., 2021). Moreover, these ap-
proaches might fail under the training-from-scratch
setting where no source domain data is available.

Therefore, it is crucial to make full use of the in-
domain annotations, which consist of two types of
information: boundary information and entity type
information. However, most the approaches men-
tioned above fail to fully utilize these information.
(1) Most span-based methods simply enumerate all
possible spans, ignoring the boundary information
of named entities. As a large number of negative
spans are generated, these approaches suffer from
the bias, the tendency to classify named entities
as non-entities. (2) Most sequence-labeling-based
methods simply employ one-hot vectors to repre-
sent entity types while ignoring the prior knowl-
edge of entity types.

To overcome the disadvantages mentioned
above, firstly, inspired by three principles for
weakly-supervised image segmentation, i.e. seed,
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expand and constrain (Kolesnikov and Lampert,
2016), we seed with relatively high-quality uni-
grams and bigrams in the texts, then expand them
to extract the candidate spans as accurately as possi-
ble. Secondly, we cast span classification as textual
entailment to naturally incorporate the entity type
information. For example, to determine whether “J.
K. Rowling” in “J. K. Rowling is a British author.”
is a PERSON entity or a non-entity, we treat “J. K.
Rowling is a British author.” as a premise, then
construct “J. K. Rowling is a person.” and “J. K.
Rowling is not an entity.” as hypotheses. In such
way, span classification is converted into determin-
ing which hypothesis is true. Moreover, the size of
training data is increased by such converting which
is beneficial for few-shot settings.

In this paper, we propose SEE-Few, a novel
multi-task learning framework (Seed, Expand and
Entail) for Few-shot NER. The seeding and ex-
panding modules are responsible for providing
as accurate candidate spans as possible for the
entailing module. Specifically, the seed selector
chooses some unigrams and bigrams as seeds based
on some metrics, e.g., the Intersection over Fore-
ground. The expanding module takes a seed and
the window around it into account and expands it
to a candidate span. Compared with enumerating
all possible n̂-gram spans, seeding and expanding
can significantly reduce the number of candidate
spans and alleviate the impact of negative spans
in the subsequent span classification stage. The
entailing module reformulates a span classification
task as a textual entailment task, leveraging contex-
tual clues and entity type information to determine
whether a candidate span is an entity and what
type of entity it is. All the three modules share
the same text encoder and are jointly learned. Ex-
periments were conducted on four NER datasets
under training-from-scratch few-shot setting. Ex-
perimental results show that the proposed approach
outperforms several state-of-the-art baselines.

The main contributions can be summarized as
follows:

• A novel multi-task learning framework (Seed,
Expand and Entail), SEE-Few, is proposed for
few-shot NER without using source domain
data. In specific, the seeding and expanding
modules provide as accurate candidate spans
as possible for the entailing module. The en-
tailing module reformulates span classifica-
tion as a textual entailment task, leveraging

contextual clues and entity type information.

• Experiments were conducted on four NER
datasets in training-from-scratch few-shot set-
ting. Experimental results show that the pro-
posed approach outperforms the state-of-the-
art baselines by significant margins.

2 Related Work

2.1 Few-shot NER

Few-shot NER aims at recognizing entities based
on only few labeled instances from each category.
A few approaches have been proposed for few-
shot NER. Methods based on prototypical network
(Snell et al., 2017) require complex episode train-
ing (Fritzler et al., 2019; Hou et al., 2020). Yang
and Katiyar (2020) abandon the complex meta-
training and propose NNShot, a distance-based
method with a simple nearest neighbor classifier.
Huang et al. (2021) investigate three orthogonal
schemes to improve the model generalization abil-
ity for few-shot NER. TemplateNER (Cui et al.,
2021) enumerates all possible text spans in input
text as candidate spans and classifies each span
based on its corresponding template score. Ma
et al. (2021) propose a template-free method to re-
formulate NER tasks as language modeling (LM)
problems without any templates. Tong et al. (2021)
propose to mine the undefined classes from miscel-
laneous other-class words, which also benefits few-
shot NER. Ding et al. (2021) present Few-NERD, a
large-scale human-annotated few-shot NER dataset
to facilitate the research.

However, most of these studies follow the man-
ner of episode training (Fritzler et al., 2019; Hou
et al., 2020; Tong et al., 2021; Ding et al., 2021)
or assume an available rich-resource source do-
main (Yang and Katiyar, 2020; Cui et al., 2021),
which is in contrast to the real word application
scenarios that only very limited labeled data is
available for training and validation (Ma et al.,
2021). EntLM (Ma et al., 2021) is implemented
on training-from-scratch few-shot setting, but still
needs distant supervision datasets for label word
searching. The construction of distant supervi-
sion datasets requires additional expert knowledge.
Some works study generating NER datasets au-
tomatically to reduce labeling costs (Kim et al.,
2021; Li et al., 2021b). In this paper, we focus on
the few-shot setting without source domain data

2541



Label Annotations

PER: person entities

LOC: location entities

ORG: organization entities

MISC: miscellaneous entities

NONE: non-entities

Candidate Spans

Rui Gomez Pereira

GT entities (during training )

Rui Gomez Pereira in his book …

Premise

Rui Gomez Pereira is a person.

Hypotheses

Rui Gomez Pereira is not an entity.

…

Encoder
Rui Gomez Pereira is a person.

Rui Gomez Pereira is not an entity.

…
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Entailing

Encoder
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Input
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Figure 1: The architecture of the proposed approach, SEE-Few, which consists of three main modules: seeding,
expanding, and entailing.

which makes minimal assumptions about available
resources.

2.2 Three Principles for Weakly-Supervised
Image Segmentation

Semantic image segmentation is a computer vision
technique which aims at assigning a semantic class
label to each pixel of an image. Kolesnikov and
Lampert (2016) introduce three guiding principles
for weakly-supervised semantic image segmenta-
tion: to seed with weak localization cues, to expand
objects based on the information of possible classes
in the image, and to constrain the segmentation
with object boundaries.

3 Methodologies

3.1 Problem Setting
We decompose NER to two subtasks: span ex-
traction and span classification. Given an input
text X = {x1, . . . , xn} as a sequence of tokens,
a span starting from xl and ending with xr (i.e.,
{xl, . . . , xr}) can be denote as s = (l, r), where
1 ≤ l ≤ r ≤ n. The span extraction task is to
obtain a candidate span set C = {c1, . . . , cm}
from the input text. Given an entity type set
T+ = {t1, . . . , tv−1} and the candidate span set
C produced by span extraction, the target of span
classification is assign an entity category t ∈ T+ or
the non-entity category to each candidate span. For
convenience, we denote an entity type set including

the non-entity type as T = {t1, . . . , tv−1, tnone},
where tnone represents the non-entity type and v is
the size of T.

3.2 The Architecture

Figure 1 illustrates the architecture of the proposed
approach, SEE-Few, which consists of three main
modules: seeding, expanding, and entailing. The
input text will first be sent to the seeding module
to generate informative seeds, then the seeds will
be expanded to candidate spans in the expanding
module, finally the candidate spans will be classi-
fied with an entailment task in the entailing module.
We will discuss the details of each modules in the
following sections.

3.2.1 Seeding

Given an input text X = {x1, . . . , xn} consisting
of n tokens, a unigram consists of one token and
a bigram consists of two consecutive tokens. We
denote the set of unigrams and bigrams in the input
text as S = {s1, . . . , s2n−1}, where si = (li, ri)
denotes i-th span, and li, ri denote the left and right
boundaries of the span respectively.

Seeding is to find the unigrams and bigrams that
overlap with entities and have the potential to be
expanded to named entities, which is important for
the following seed expansion. It can be accom-
plished by constructing a seeding model and pre-
dicting the seed score for each candidate unigram
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or bigram.
Firstly, we feed the input text into BERT to ob-

tain the representation h ∈ Rn×d, where d is the
dimension of the BERT hidden states. For the span
si = (li, ri), its representation hseedi is the concate-
nation of the mean pooled span representation hpi
and the representation of the [CLS] token h[CLS].
The seed score is calculated as follows:

hpi = MeanPooling(hli , . . . , hri) (1)

hseedi = Concat(hpi , h
[CLS]) (2)

pseedi = Sigmoid(MLPs(h
seed
i )) (3)

where MLP denotes the multilayer perceptron with
a GULE function in the last layer. We set the thresh-
old α and select the span whose seed score is above
α as a seed to expand.

To train the seeding model, we need to construct
a dataset consisting of unigrams (bigrams) and their
seeding scores. We construct the seed score based
on Intersection over Foreground (IoF). Intersection
over Union (IoU) is used to measure the overlap be-
tween objects in object detection which is defined
as IoU(A,B) = A∩B

A∪B in NER, where A and B are
two spans (Chen et al., 2020; Shen et al., 2021).
However, IoU is not suitable for the seeding stage.
Considering an entity consisting of five words, e.g.,
“International Conference on Computational Lin-
guistics”, IoU between the bigram “International
Conference” and the entity is 0.4, not significant.
Intersection over Foreground (IoF) can be a bet-
ter choice which is defined as IoF(A,B) = A∩B

A ,
where A is the foreground (i.e., a unigram or bi-
gram) and B is the background (i.e., a named en-
tity). In the above example, IoF between “Interna-
tional Conference” and the entity is 1.0, indicating
that it is part of the entity and has the potential to
be expanded to the whole entity. We assign each s
the IoF between it and its closed named entity as
the ground-truth seed score ŷseedi which indicates
the potential to be expanded to the whole entity.

3.2.2 Expanding
For named entities consisting of more than two
words, the seeds generated in seeding stage are
only part of them and need to be expanded to the
whole entities. Expanding is a regression task to
learn the boundary offsets ô between a seed and the
named entity closed to the seed.

Expanding is allowed to offset the left and right
boundaries of the seed by up to λ, respectively,
which means that the longest entity we can get is an
entity of length 2 + 2λ. Besides, expanding needs
to consider a window around the seed in addition
to the seed itself. For the seed si = (li, ri), the
maximum expansion is denoted as:

sexp_max
i = (min(1, li−λ),max(n, ri+λ)) (4)

If we use sexp_max
i as the window around si, it

may not provide enough information to distinguish
the boundaries for the maximum expansion. Thus,
the window for si should be larger than sexp_max

i ,
defined as wi:

wli = min(1, li − 2λ) (5)

wri = max(n, ri + 2λ) (6)

wi = (wli, w
r
i ) (7)

We concatenate the mean pooled span represen-
tation hpi of seed si and the mean pooled span repre-
sentation hwi of window wi. Then the offsets oi of
left and right boundaries are calculated as follows:

hwi = MeanPooling(hwli
, . . . , hwri ) (8)

hexpi = Concat(hpi , h
w
i ) (9)

oi = λ · (2 · Sigmoid(MLPe(h
exp
i ))− 1) (10)

where oi ∈ R2. The first element of oi can be
denoted as oli, indicating the offset of the seed’s
left boundary. Likewise, the second element ori
indicates the offset of the seed’s right boundary,
and oli, o

r
i ∈ [−λ, λ]. We can obtain the result

of expanding, i.e., a candidate span with the new
boundaries l′i and r′i:

l′i = max(1, li +

⌊
oli +

1

2

⌋
) (11)

r′i = min(n, ri +

⌊
ori +

1

2

⌋
) (12)

The duplicate results and invalid results that l′i >
r′i are discarded. At this point, a set of candidate
spans are produced for span classification.
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3.2.3 Entailing
The entailing module reformulates span classifica-
tion as a textual entailment task, leveraging con-
textual clues and entity type information. To cast
span classification as textual entailment, we need
to construct textual entailment pairs. For the i-th
candidate span ci, the entailment pair is constructed
as (X,Eji ), where Eji = {ci, is, a, tj} and tj ∈ T.
Please refer to Appendix A for detailed templates
used to construct entailment pairs. The entailment
label ŷentaili,j for (X,Eji ) can be obtained by:

ŷentaili,j =

{
entail, if ci belongs to tj
not entail, otherwise

(13)
The entailment pair (X,Eji ) is fed into the

shared text encoder to obtain the representation
of the [CLS] token h[CLS]Ei,j

∈ Rd and the binary
textual entailment classification can be performed:

pentaili,j = Softmax(MLPentail(h
[CLS]
Ei,j

)) (14)

To ensure that all ground-truth entities are
learned, we add ground-truth entities to the can-
didate span set C during the training phase.

3.3 Training Objective
Both seeding and expanding are regression tasks,
the seeding loss Lseed and expansion loss Lexp are
defined as follows:

Lseed =
∑

i

SmoothL1
(
ŷseedi , pseedi

)
(15)

Lexp =
∑

i

∑

j∈{l,r}
SmoothL1

(
ôji , o

j
i

)
(16)

For the entailing module, since the number of
instances with the not entail label is bigger
than the number of instances with the entail
label, we use focal loss (Lin et al., 2017) to solve
the label imbalance problem:

FL(p, y) =

{
−(1− pi,j)γ log(pi,j), if y = 1
−(pi,j)γ log(1− pi,j), otherwise

(17)

Lentail =
∑

i

∑

j

FL(pentaili,j , ŷentaili,j ) (18)

where γ denotes the focusing parameter of focal
loss.

The multi-task framework is trained by minimiz-
ing the combined loss defined as follows:

L = β1Lseed + β2Lexp + β3Lentail (19)

where β1, β2 and β3 are hyperparameters control-
ling the relative contribution of the respective loss
term.

3.4 Entity Decoding

The entailing module will output an entailment
score pentaili,j for the entailment pair (X,Eji ), where
Eji = {ci, is, a, tj}, ci ∈ C and tj ∈ T. We collect
all entailment pairs associated with the candidate
span ci, then assign ci the entity type with the high-
est entailment score. If two candidate spans have
overlap, the span with a higher score will be se-
lected as the final result.

4 Experiment Settings

4.1 Training-from-scratch Few-shot Settings

Different from most previous few-shot NER studies
that assume source-domain data is available, we
consider a training-from-scratch setting, which is
more practical and challenging. Specifically, we
assume only K examples for each entity class in the
training set and validation set respectively, where
K ∈ {5, 10, 20}.

4.2 Datasets Construction

For fair comparison, we manually construct the
few-shot datasets. With K ∈ {5, 10, 20}, we fol-
low the greedy sampling strategy in (Yang and Kati-
yar, 2020) to ensure the sample number K of each
category. To make the experimental results more
convincing and credible, we randomly sample 5
different groups of training sets and validation sets
for each K. We employ these strategies on four
NER datasets from different domains: CoNLL2003
dataset (Sang and De Meulder, 2003) in news do-
main, MIT-Restaurant dataset (Liu et al., 2013) in
review domain, WikiGold dataset (Balasuriya et al.,
2009) in general domain and Weibo dataset (He and
Sun, 2016) in social media domain. Table 2 shows
the statistics on these original datasets. The self-
constructed datasets are public available with the
code for reproducibility.
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Datasets Methods K = 5 K = 10 K = 20
P R F1 P R F1 P R F1

CoNLL03

LC-BERT 42.83 30.72 35.06(6.09) 50.36 52.13 51.20(6.39) 56.33 63.85 59.84(1.43)
Prototype 38.26 43.14 40.37(8.06) 45.08 64.02 52.82(3.22) 43.94 69.72 53.89(1.95)
NNShot 32.11 38.42 34.92(3.30) 34.10 40.98 37.18(5.82) 38.43 47.85 42.61(2.23)

StructShot 30.04 21.33 23.43(4.52) 38.62 19.72 26.09(7.23) 44.96 28.59 34.87(1.30)
TemplateNER 26.90 23.46 23.13(8.40) 44.51 43.99 44.01(4.82) 52.16 56.46 54.01(5.09)

Ours 60.45 51.27 55.21(3.93) 66.19 58.68 61.99(1.73) 69.49 67.07 68.21(2.60)

MIT-Restaurant

LC-BERT 41.21 38.65 39.88(3.79) 43.60 48.93 46.08(3.75) 56.24 60.04 58.07(1.50)
Prototype 27.77 46.79 34.84(1.63) 30.37 50.64 37.97(2.29) 37.91 59.31 46.25(1.62)
NNShot 28.15 34.81 31.11(2.30) 30.28 37.65 33.56(1.48) 36.72 45.55 40.66(1.26)

StructShot 45.13 25.00 31.93(4.32) 43.94 28.19 34.30(2.56) 52.08 36.18 42.69(1.12)
TemplateNER 23.11 20.78 21.53(4.66) 39.45 28.77 32.71(8.14) 46.93 37.00 41.26(6.80)

Ours 53.08 39.47 45.25(3.18) 57.19 46.41 51.20(1.48) 64.79 57.22 60.75(2.07)

WikiGold

LC-BERT 36.02 8.02 12.57(7.81) 43.13 8.95 37.72(7.20) 50.68 50.73 50.68(5.94)
Prototype 20.55 21.46 19.28(8.12) 23.31 45.21 30.59(3.95) 27.31 56.22 36.56(8.65)
NNShot 27.81 34.16 30.63(1.91) 26.36 37.92 30.93(4.89) 28.33 39.07 32.81(5.41)

StructShot 49.00 13.37 20.88(4.61) 43.21 14.19 21.28(2.96) 43.51 15.94 23.16(2.18)
TemplateNER 18.45 19.45 17.26(12.73) 38.33 45.37 41.04(13.19) 57.39 56.00 56.60(3.22)

Ours 61.23 41.01 48.87(8.01) 63.36 48.74 54.98(3.24) 69.06 58.25 63.19(1.28)

Weibo

LC-BERT 36.93 26.32 29.95(13.93) 46.49 53.19 49.54(3.96) 54.27 58.53 56.23(1.48)
Prototype 14.32 37.68 20.64(7.07) 21.27 59.42 31.25(2.64) 21.27 59.42 37.39(2.58)
NNShot 4.64 10.57 06.45(2.65) 6.58 13.73 08.90(1.27) 11.77 26.61 16.32(0.80)

StructShot 16.77 1.53 02.80(1.63) 38.48 3.21 05.91(1.93) 52.05 5.93 10.65(1.73)
TemplateNER 4.12 16.70 04.41(4.67) 5.12 27.27 08.31(3.11) 10.70 29.57 15.24(7.09)

Ours 49.51 48.51 48.67(4.05) 55.12 57.65 56.07(1.62) 57.10 57.70 57.21(1.62)

Table 1: Performance comparison of SEE-Few and baselines on four datasets under different Ks.

Dataset Domain Language # Class # Train # Test

CoNLL03 News English 4 14,987 3,684
MIT-Restaurant Review English 8 7,660 1,521
WikiGold General English 4 1,017 339
Weibo Social Media Chinese 8 1,350 270

Table 2: Statistics on the original datasets used to con-
struct our few-shot datasets.

4.3 Baselines
We compare the proposed model with five compet-
itive baselines.

LC-BERT (Devlin et al., 2019) BERT with a
linear classifier which is applied to project the con-
textualized representation of each token into the
label space.

Prototype (Huang et al., 2021) A method based
on prototypical network (Snell et al., 2017), repre-
sents the entity categories as vectors in the same
representation space of individual tokens and uti-
lizes the nearest neighbor criterion to assign the
entity category.

NNShot and StructShot (Yang and Katiyar,
2020) NNShot is a metric-based few-shot NER
method that leverages a nearest neighbor classi-
fier for few-shot prediction. StructShot is based
on NNShot and use the Viterbi algorithm for de-
coding predictions. These methods pre-train the

model with a dataset from other rich-resource do-
main (source domain) which is unavailable in our
training-from-scratch setting. We re-implement
them and directly apply them on target domains.

TemplateNER (Cui et al., 2021) A template-
based prompt learning method which fine-tunes
BART (Lewis et al., 2020) to generate pre-defined
templates filled by enumerating text spans from
input texts.

4.4 Implementation Details

For the proposed model and all the baselines except
TemplateNER, we implement them based on “bert-
base-uncased” for English datasets and “bert-base-
chinese” for Chinese datasets. TemplateNER uses
BART-large (Lewis et al., 2020) as the backbone
on English datasets and Chinese BART-large (Shao
et al., 2021) as the backbone on Chinese datasets.
For all the baselines, we use the recommended
parameters provided by the original paper or the
official implementation.

For the proposed model, the number of epochs is
35. The batch sizes of seeding and expanding are 1,
and the batch sizes of entailing are 16, 16, 16, 8 on
CoNLL03, MIT-Restaurant, WikiGold and Weibo,
respectively. The threshold αs on CoNLL03, MIT-
Restaurant, WikiGold and Weibo, are set to 0.5, 0.6,
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Model
CoNLL03 MIT-Restaurant WikiGold Weibo

P R F1 P R F1 P R F1 P R F1

Full model 60.45 51.27 55.21 53.08 39.47 45.25 61.23 41.01 48.87 49.51 48.51 48.67
w/o seeding 63.20 45.46 52.36 53.45 38.11 44.15 61.79 36.66 45.68 56.46 40.72 47.23
w/o expanding 61.70 43.41 50.66 52.13 34.30 41.27 61.93 27.48 37.58 48.62 28.13 35.22
w/o entailing 50.93 41.15 45.01 46.60 31.43 37.13 69.39 28.47 40.02 38.32 22.58 27.14
w/o seed & exp 57.29 41.35 47.59 54.73 33.77 41.55 71.87 23.10 34.43 49.06 24.26 31.97
repl IoF with IoU 60.10 44.14 50.44 36.65 31.07 33.58 51.47 27.21 34.50 66.92 13.49 20.97

Table 3: Ablation study on 5-shot setting with the metrics of precision, recall and F1-score.

Model
CoNLL03 MIT-Restaurant WikiGold Weibo

|C| |C| / #Sen |C| |C| / #Sen |C| |C| / #Sen |C| |C| / #Sen

Full model 13464 (×0.15) 3.65 7435 (×0.28) 4.48 1461 (×0.11) 4.31 1030 (×0.04) 3.81
w/o seeding 59053 (×0.66) 16.03 17780 (×0.66) 15.74 9924 (×0.72) 29.27 19772 (×0.67) 73.23
w/o expanding 15055 (×0.17) 4.09 8281 (×0.31) 5.11 1662 (×0.12) 4.90 2093 (×0.07) 7.75
w/o entailing 19350 (×0.22) 5.25 7625 (×0.28) 4.68 1656 (×0.12) 4.88 1272 (×0.04) 4.71
w/o seed & exp 89648 (×1.00) 24.33 26991 (×1.00) 17.75 13833 (×1.00) 40.81 29352 (×1.00) 108.71
repl IoF with IoU 11190 (×0.12) 3.04 4098 (×0.15) 1.76 490 (×0.04) 1.45 276 (×0.01) 1.02

#Entity / #Sent 1.53 2.07 2.15 1.55

Table 4: Ablation study on 5-shot setting with entity-related statistics. |C| denotes the number of candidate spans
during the testing phase. |C| / #Sen denotes the average number of candidate spans per sentence during the testing
phase. #Entity / #Sent denotes the average number of named entities per sentence. (·) indicates the ratio to the
number of candidate spans that produced by w/o seed & exp (e.g., the number of all unigrams and bigrams).

0.7, 0.7, respectively. λ is set to 5. The focusing pa-
rameter of focal loss γ is set to 2. β1, β2 and β3 are
set to 1, 1 and 1, respectively. The dropouts before
the seeding, expanding and entailing are set with a
rate of 0.5. The loss function is minimized using
AdamW optimizer with a learning rate of 3e-05
and a linear warmup-decay learning rate schedule.

5 Experimental Results

5.1 Overall Results

Table 1 shows the performances of the proposed
method and the baselines under different K-shot
settings. From the table, we can observe that: (1)
The proposed method performs consistently better
than all the baseline methods. Specifically, the F1-
scores of our model advance previous models by
+18.72%, +18.24%, +14.84%, +5.37% on Weibo,
WikiGold, CoNLL03 and MIT-Restaurant respec-
tively on 5-shot setting, which verifies the effective-
ness of our approach in exploiting few-shot data.
(2) Compared to baselines, our method can achieve
comparable performance with less training data.
Specifically, our approach achieves an F1-score
of 55.21% on CoNLL03 dataset on 5-shot setting,
which is better than the result of TemplateNER on
20-shot setting.

5.2 Ablation Study

To validate the effectiveness of different compo-
nents in our approach, we performed ablation ex-
periments on 5-shot setting with a series of variants
of SEE-Few. Table 3 shows the results with the
metrics of precision, recall and F1-score, and Ta-
ble 4 demonstrates how the number of candidate
spans changes in ablations. The variants are as
follows:

w/o seeding: removing the seeding module and
directly enumerating all unigrams and bigrams as
the seeds to expand. With the aid of expanding,
this variant reduces 32.25% unigrams and bigrams
on average. The recalls and F1-scores drop by
4.83% and 2.15% on average, respectively. The
results show that the reduction of candidate span
is mainly contributed by the seeding module and
this variant suffers from the bias, the tendency to
classify named entities as non-entities because of a
large number of negative spans.

w/o expanding: removing the expanding mod-
ule and directly using the seeds as candidate spans
to entail. With the aid of seeding, this variant
reduces 83.25% unigrams and bigrams on aver-
age. The recalls and F1-scores drop by 11.74%
and 8.32% on average, respectively. Without ex-
panding, this variant can not identify the entities
whose lengths are greater than 2, achieving worse
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unigram: Dorothea von Schlegel was born in 1764 in Berlin [1 ] .

score: 0.93 0.98 0.95 0.01 0.02 0.01 0.22 0.03 0.96 0.13 0.02 0.01

bigram: Dorothea von von Schlegel Schlegel was was born born in in 1764 1764 in in Berlin Berlin [1 [1 ] ] .

score: 0.96 0.97 0.25 0.01 0.01 0.05 0.08 0.47 0.67 0.05 0.02

Seed

Expand

𝛼=0.7

input: Dorothea von Schlegel was born in 1764 in Berlin [1 ] .

label: PER LOC

seeds: Dorothea, von, Schlegel, Berlin, Dorothea von, von Schlegel

Dorothea → Dorothea von von → von Schlegel Schlegel → von Schlegel Berlin → Berlin

Dorothea von → Dorothea von Schlegel von Schlegel → Dorothea von Schlegel

candidate spans: Dorothea von, von Schlegel, Berlin, Dorothea von Schlegel

Entail
type

candidate span
NONE PER LOC MISC ORG

Dorothea von 0.9041 0.0284 0.0108 0.0130 0.0109

von Schlegel 0.0993 0.7368 0.0150 0.0146 0.0119

Berlin 0.0820 0.0173 0.8427 0.0180 0.0137

Dorothea von Schlegel 0.0544 0.9387 0.0158 0.0179 0.0127

output:
Dorothea von Schlegel was born in 1764 in Berlin [1 ] .

PER LOC

Figure 2: Case study. The result was predicted by SEE-Few trained on WikiGold, 5-shot setting.

performance.

w/o entailing: replacing the entailing module
with a multi-class classifier. With the aid of seed-
ing and expanding, this variant reduces 83.5% uni-
grams and bigrams on average. The F1-scores drop
significantly by 12.17% on average, while drop-
ping more sharply on datasets with fine-grained
entity types (i.e., MIT-Restaurant and Weibo) than
on datasets with coarse-grained entity types (i.e.,
CoNLL03 and WikiGold). The results demonstrate
that the improvement comes from exploiting of con-
textual clues and label knowledge, and the entailing
module can better distinguish different entity types
than a multi-class classifier.

w/o seed & exp: removing both the seeding
module and the expanding module in the same
way as the w/o seeding and w/o seeding variants.
This variant is equivalent to the entailing module
classifying all the unigrams and bigrams into the
entity categories or the non-entity category. In
addition to a significant drop in performance, this
variant is time consuming. It is on average 28.50
times slower than the full model on Weibo dataset.

repl IoF with IoU: using IoU as the ground-truth
seed score instead of IoF during seeding, and keep-
ing the threshold αs on CoNLL03, MIT-Restaurant,
WikiGold and Weibo as 0.5, 0.6, 0.7, 0.7, respec-

tively. The results demonstrate that IoF is a better
choice to evaluate the qualities of unigrams and
bigrams than IoU.

All the above experiments show the effective-
ness of each component in our approach. Seeding
and expanding can significantly reduce the num-
ber of candidate spans and alleviate the impact of
negative spans in the subsequent span classification
stage. The entailing module leverages contextual
clues and entity type information benefiting span
classification.

5.3 Case Study

Figure 2 shows an example of model predictions.
We visualize the seed scores and observe that the
unigrams and bigrams contained in the ground-
truth entities are assigned with higher scores. The
threshold α is set to 0.7 in the experiment, so
“Dorothea”, “von”, “Schlegel”, “Berlin”, “Dorothea
von” and “von Schlegel”, totally 6 spans, are se-
lected as seeds to expand. Among them, “Berlin”
already hits the entity exactly, “Dorothea von” and
“von Schlegel” are both expanded to a ground-truth
entity “Dorothea von Schlegel”. Other seeds are
not expanded to the ground-truth entities, but do
not lead an error in the final output, attributed
to the success of the entailing module in deter-
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mining “Dorothea von” is not an entity, and as-
signing a higher score to “Dorothea von Schlegel”
with PER type than another candidate span (i.e.,
“von Schlegel”) overlapping with “Dorothea von
Schlegel”. Considering that in a data-scarce sce-
nario where error propagation is inevitable, our
approach can still mitigate the impact of error prop-
agation to a certain extent, which demonstrates the
superiority of the proposed paradigm.

6 Conclusion

In this work, we propose a novel multi-task (Seed,
Expand and Entail) learning framework, SEE-Few,
for Few-shot NER without using source domain
data. The seeding and expanding modules are re-
sponsible for providing as accurate candidate spans
as possible for the entailing module. The entail-
ing module reformulates span classification as a
textual entailment task, leveraging both the con-
textual clues and entity type information. All the
three modules share the same text encoder and are
jointly learned. To investigate the effectiveness
of the proposed method, extensive experiments are
conducted under the training-from-scratch few-shot
setting. The proposed method outperforms other
state-of-the-art few-shot NER methods by a large
margin. For future work, we will combine the
framework with contrastive learning to effectively
make use of limited data and further enhance the
performance of few-shot NER.
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A Entity Types and Templates

In the span classification stage, the entailing mod-
ule reformulates span classification as a textual
entailment task to leverage contextual clues and
entity type information. Table 5 shows the entity
types in each dataset and corresponding natural
language templates we use in our experiments. Be-
sides, for English datasets, we use “is not an entity.”
as the template of the non-entity type. For Chi-
nese datasets, we use “不是命名实体。” as the
template of the non-entity type.
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Dataset Entity Type Template

CoNLL03

PER is a person.
LOC is a location.
MISC is a miscellaneous entity.
ORG is an organization.

MIT
Restaurant

Hours is a time.
Rating is the rating.

Amenity is an amenity.
Price is the price.
Dish is a dish.

Location is a location.
Cuisine is is a cuisine.

Restaurant_Name is a restaurant name.

WikiGold

PER is a person.
LOC is a location.
MISC is a miscellaneous entity.
ORG is an organization.

Weibo

GPE.NAM 是城市、国家的特指。
GPE.NOM 是城市、国家的泛指。
LOC.NAM 是地名的特指。
LOC.NOM 是地名的泛指。
ORG.NAM 是组织名的特指。
ORG.NOM 是组织名的泛指。
PER.NAM 是人名的特指。
PER.NOM 是人名的泛指。

Table 5: Entity types and their corresponding natural
language templates.
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Abstract

Rule mining is an effective approach for rea-
soning over knowledge graph (KG). Existing
works mainly concentrate on mining rules.
However, there might be several rules that
could be applied for reasoning for one relation,
and how to select appropriate rules for comple-
tion of different triples has not been discussed.
In this paper, we propose to take the context
information into consideration, which helps se-
lect suitable rules for the inference tasks. Based
on this idea, we propose a transformer-based
rule mining approach, Ruleformer1. It consists
of two blocks: 1) an encoder extracting the con-
text information from subgraph of head entities
with modified attention mechanism, and 2) a
decoder which aggregates the subgraph infor-
mation from the encoder output and generates
the probability of relations for each step of rea-
soning. The basic idea behind Ruleformer is
regarding rule mining process as a sequence
to sequence task. To make the subgraph a se-
quence input to the encoder and retain the graph
structure, we devise a relational attention mech-
anism in Transformer. The experiment results
show the necessity of considering these infor-
mation in rule mining task and the effectiveness
of our model.

1 Introduction

People built different Knowledge Graphs, such as
Freebase (Bollacker et al., 2008), to store complex
structured information and knowledge about ab-
stract and real world. The facts in KG are usually
represented in the form of triplets, e.g., (New York,
isCityOf, USA). KGs have been widely applied in
various intelligent systems such as question an-
swering (Yasunaga et al., 2021; Chen et al., 2022),
recommender system(Guo et al., 2020; Wong et al.,
2021; Zhang et al., 2021) and zero-shot learn-
ing(Geng et al., 2022; Chen et al., 2021b).

∗ Corresponding Author.
1Source code of Ruleformer is available at

https://github.com/zjukg/ruleformer.

isCityOf

belongsTo

What’s his/her
nationality?

ambassador
(major, diplomacy)
(bornIn, Yew York)

Rule1. nationality(X, Y) ← livesIn(X, Z) ^ isCityOf(Z, Y)

Rule2. nationality(X, Y) ← worksAt(X, Z) ^ belongsTo(Z, Y)

localEmployee
(bornIn, London)

(graduated, Cambridge)

Figure 1: Rules in different context.

Although these KGs already contain a large num-
ber of relations and entities, they still suffer from
the incompleteness of facts, whether constructed
automatically or manually. In order to further ex-
pand KGs, many reasoning methods have been
proposed to automated fact exploration, such as
knowledge graph embedding (KGE) (Bordes et al.,
2013; Trouillon et al., 2016; Dettmers et al., 2018;
Sun et al., 2019; Zhang et al., 2019b), graph neural
networks (Schlichtkrull et al., 2018), and rule min-
ing methods (Ortona et al., 2018; Galárraga et al.,
2013; Yang et al., 2017; Sadeghian et al., 2019;
Zhang et al., 2019a). Compared with deep learn-
ing approaches like KGE, rule mining methods are
preferred due to their interpretability for reasoning
and robustness for domain knowledge transfer. To
mine the structure and confidence of rules at the
same time in a fast way, differentiable rule learning
methods(Yang et al., 2017; Sadeghian et al., 2019)
are introduced and attract many research interests.

The learning targets of existing methods is de-
termining the confidence and structure of rules,
according to which reasoning tasks are conducted.
However, the uniform way of applying rules ig-
nores the context of specific triplets, for which
rules should be applied in different order.

Specifically, for a query (h, r, ?), there might
be multiple rules of relation r (not only one) that
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could be used to get the target answer. For a spe-
cific query triplet, not all rules of r are convincing
for reasoning, but how to select appropriate rule
has not been studied. For example, to infer the
missing fact, (localEmployee/ambassador,
nationality, ?) as Figure 1 illustrated, previous rule
mining methods only rely on the head relation na-
tionality, so rules of nationality will be used in a
fixed order. The two queries will get the same re-
sults, and whatever the order is, one of answers
will be wrong. More precious rules can be ob-
served if we pay attention to the head entity’s iden-
tity, which is localEmployee/ambassador.
Based on the observation, when the head entity is
a localEmployee, the rule nationality(X, Y)←
livesIn(X, Z) ∧ isCityOf(Z, Y) may derive more ac-
curate result. In another case, if we know the head
entity is an ambassador, then rule nationality(X,
Y) ← worksAt(X, Z) ∧ belongsTo(Z, Y) will be a
better choice for inferring. This example shows
that the order and choice of rules to be applied for
reasoning will significantly affect the results, and
context information could help determine proper
order.

In this paper, we investigate making rule mining
methods not only learn confidence and structures of
rules but also learn to choose suitable rules based
on the context of the head entity in completion
tasks, which is challenging because of the diversity
of context. We propose a Transformer-based model
to aggregate the context around the head entity
because of its excellent performance on informa-
tion interaction. Essentially, the model consists
of two blocks, 1) an encoder block aggregating
the information of the head entity’s subgraph and
completing the information intersection of context,
2) a decoder block utilizing the aggregated entity
embedding to generate the probability of relations
for each step in differentiable rule mining process.
Since Transformer framework is a sequence to se-
quence model, we design a converter that can turn
graph structure into sequence. Moreover, to main-
tain the information of subgraph, we modify the
attention mechanism of Transformer by adding the
relation information to the attention calculation pro-
cess, which we call relational attention mechanism.

Experimentally, we evaluate our model on
several datasets (UMLS (Kok and Domingos,
2007), FB15K-237 (Toutanova et al., 2015),
WN18RR (Dettmers et al., 2018)) on link predic-
tion and rule parsing task. The improvement in

both experiments demonstrate the effectiveness of
Ruleformer. A case study is also analyzed, and the
case proves our assumption and the ability of Rule-
former to select suitable rules for different triples.

In summary, our contributions are as follows:

• We draw attention to the problem of mining
and applying suitable rules depending on the
specific context for reasoning task in KG.

• We propose a new model, Ruleformer, that
can aggregate the information of subgraph
and use the context to support the reasoning
process.

• The experiment results prove that our model
outperforms existing rule mining methods on
link prediction task and rule quality assess-
ment. It successfully selects suitable rules
according to the exploitation of context.

2 Related work

2.1 Rule Learning Methods

The problem of learning rules over KG can be seen
as a type of statistical relational learning (Koller
et al., 2007). AMIE (Galárraga et al., 2013) concen-
trates on association rule mining with three opera-
tions, including dangling atom, instantiated atom
and closing atom that add different type of atoms
to incomplete rules and uses pre-defined evaluation
metrics to prune incorrect rules. AMIE+ (Galár-
raga et al., 2015) revises the rule extending process
and improves evaluation method based on AMIE.

Anyburl (Meilicke et al., 2019) proposed an
framework that can mine rules in an effcient way.
Based on the randomly sampled path, it replace
some entities with variables and get rules.

Rudik (Ortona et al., 2018) can mines positive
and negative rules. The positive rules can be used
to infers new facts in KG, and the negative rules
are useful for other tasks, like detecting erroneous
triples.

Generally, conventional symbolic-based rule
learning methods are built on effective search strat-
egy, pruning techniques and pre-defined static eval-
uation indicators. The inference processes are trans-
parent while they may suffer from large search
space.

More recently, differentiable rule learning meth-
ods based on TensorLog (Cohen, 2016) are pro-
posed, which can learn the confidence and structure
of rule at the same time. Neural-LP (Yang et al.,
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2017) use RNN to generate the possibilities of dif-
ferent relation for each step, and the parameters
can be optimized in a differentiable way. Based
on Neural-LP, DRUM (Sadeghian et al., 2019) is
proposed, which use low rank approximation to
get better results. Neural-Num-LP (Wang et al.,
2019) extends Neural-LP to learn the numerical
rules. Neural Logic Inductive Learning (Yang and
Song, 2020) uses transformer structure to get the
non-chain-like rules which To extend the diversity
of mined rules.

Whether it’s pure-symbolic or neural-symbolic
method, none of these models consider the problem
of utilizing the information about the head entity
during the process of mining or using rules.

2.2 Embedding-based Models

A lot of previous works (Bordes et al., 2013;
Trouillon et al., 2016; Dettmers et al., 2018; Sun
et al., 2019) concentrate on the embedding-based
paradigm. Most of them design a scoring func-
tion to get a value for a triplet in the embedding
space. Despite their simplicity, embedding-based
models achieved good performance on reasoning.
These works mostly rely on simple triplets, which
means they ignore the environment of the entities
and relations.

Some other embedding-based methods con-
sider context information during inferring process.
PTransE (Lin et al., 2015) uses the path embedding
from the source entity to target entity and the re-
lation embedding to train the model jointly. (Das
et al., 2017) further considers entities and entity
type in the path. Except concentrating on the path,
some methods (Schlichtkrull et al., 2018) utilize
information from context with graph neural net-
works (GNN). HittER (Chen et al., 2021a) uses hi-
erarchical Transformers to make contextualization
based on a source entity’s neighborhood because
they think the network architecture of GNNs is too
shallow.

These approaches prove contextual information
which plays an important role in reasoning, and this
aspires us to consider the environment of source
entity in rule mining to some extent. Although the
performance on link prediction task is good, these
works mostly are based on vector computation, so
the symbolic meaning and interpretability are miss-
ing while rule mining methods perform better in
this regard.

3 Methodology

Knowledge Graph G is composed by a set of triplets
like {(es, r, et)|r ∈ R, es,∈ E , et ∈ E}, where E
is a countable set of entities andR is a set of rela-
tions, respectively. For the task of rule mining, all
the triplets that belong to G are given to the model,
and for each head relation r, the model is supposed
to find meaningful rules that are interpretable and
understandable for humans. The rule we want is in
the following form:

r (X,Y )← r1 (X,Z1) ∧ ... ∧ rT (ZT−1, Y )

where T is the length of rule, r and ri are relations
belonging toR, X , Y and Zi are variables that can
be replaced by specific entities and r(X,Y ) is a
triplet. The triplet on the left of the arrow is called
head of rule and the right part of the arrow is called
rule body.

In this section, to provide an intuition about each
part of our model, we introduce the details about
Ruleformer. Firstly, an encoder is designed for
converting the subgraph structure to a sequence,
so that the context information of head entity can
be input to the Transformer framework with rela-
tional attention mechanism which is used to retain
the structure information of the graph completely.
Then we present how our model is deployed to
utilize the output of encoder to support the rule
mining process and generate the target sequence
that represents rule body. Finally, we propose a
case-based rule parsing algorithm to get symbolic
rules from the parameters.

3.1 Ruleformer
Now we introduce the subgraph encoding process
of the model, and Figure 2 shows the details. The
basic idea of our approach is to find rules for the
same head relation and let the model has the ability
to choose the suitable rule when the contextual
environment of the head entity is different.

For a query (h, r, t), we assume that the sub-
graph around the head entity h in KG contains
the potential knowledge needed for understanding
the environment, so we first extract the subgraph
around h. More precisely, let Sk(h) be the sub-
graph which contains the k-hop (shortest distance
to h) neighbor of h in the KG and the set of edges
connecting these entities.

As we stated before, KG is organized as a
graph structure, while Transformer (Vaswani et al.,
2017) is a seq2seq model, so we need to transfer
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Figure 2: The framework of Ruleformer and details about relational attention mechanism.

the graph to a sequence. Specifically, the nodes
in the subgraph are tokenized into a sequence,
Snode = [e1, e2, ...enum, ...blank], where num is
the number of entities in the subgraph, and a spe-
cial token blank is needed for padding. As shown
in the Figure 2, each node in the subgraph is ex-
tracted, and mapped to the initial embedding for
entities. The shortest distance to the head entity h
is also added as position embedding.

Meanwhile, the distribution of entity occurrence
is heavy tailed and hence it is hard to learn appro-
priate representations for each entity. To alleviate
this problem, we consider using the type of rela-
tions to help represent the entity. For each relation
r, we define two randomly initialized embedding
rdom and rran representing the domain and range
embedding of r, which can be learned during the
training process. An entity e gets its representation
xe by addition of the type embedding of relations
connecting to the entity and a randomly initialized
embedding ye as follows:

xe =

|R|∑

i=1

bdomi rdomi +

|R|∑

i=1

brani rrani + ye (1)

where bdomi and brani are the parameters which are
determined by the numbers of different relation
types after normalization, and can be given as:

bdomi =
ndomi∑|R|
j=1 n

dom
j

, brani =
nrani∑|R|
j=1 n

ran
j

(2)

where ndomi and nrani is the number of each type
relation connecting to and connected from e, specif-
ically.

Thus, the node sequence Snode in
mapped to a sequence of embedding
Se = [x1, x2, ...xnum, ...blank]. Note that
the above steps only use the entities in the
subgraph without the edges between them. In
order to utilize the edge information, we introduce
relational attention mechanism. Different from the
basic way of attention calculation in Transformer,
we modify the steps to compute the attention aij
between entity i and j with relations connectingin
the following way:

aij =
(xiW

Q)(xjW
K +

∑|R|
r=1 krxrW

K′
)√

dk
(3)

where xi and xj are the embedding of entity i and
j, respectively. xr is the embedding for relation
r which is different from rdom and rran. WQ

and WK are the query and key matrices for en-
tity, while WK′

is the key matrix for relation. dk
is the dimension of WK . kr is defined as kr = 1 if
r(ei, ej) ∈ G, else kr = 0.

Then the normalization step for attention is exe-
cuted:

αij =
exp aij∑n
k=1 exp aik

(4)

Similarly, we add the relation to the value com-
putation step:

zi =

n∑

j=1

αij(xjW
V +

|R|∑

r=1

krxrW
V ′
) (5)

where W V is the value matrix for entity and W V ′

for relation. By doing this, the information of rela-
tions has been inserted into the encoding process.
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The relational attention mechanism can ensure
sufficient information exchange between each en-
tity because the relations that clearly exist will be
emphasized, while the relations that do not appear
in the incomplete KG but may be correct will also
be reflected because of the interaction process.

With the encoder output sequence S′e, the de-
coder block does most of the lifting to aggregate
the information together with the head relation. As
we mentioned before, the rule mining process can
be regarded as a sequence generation problem. For
each step, the decoder generates the most suitable
relation fromR, until the length of decoder output
sequence Sr reaches the rule length T .

Specifically, the rule sequence Sr input to de-
coder starts with the head relations r’s embedding
xr, which means S0

r = xr. After cross attention
calculation with S′e, the decoder gets a vector which
implies the next relation. With this vector, an MLP
function is deployed, and we can get the probability
ωit of relation ri in step t, which will be used in the
reasoning process. The relation with the highest
probability is chosen as the next relation added to
Sr.

ωt+1 =MLP (CrossAttention(Str, S
′
e)) (6)

where ωt+1 ∈ R|R|×1 could be interpreted as the
probabilities of all relations in step t. Let rt+1 be
the relation with the max probability, then St+1

r =
[Str, xrt+1 ].

We repeat this step T times, and get the complete
rule body with length T . Moreover, considering
that rule length can’t be limited to a definite num-
ber T , we add a special relation self-loop which
connects entities with themselves, and we finally
remove this relation from the rule body so that we
can get rules with length less than T .

There is still a problem that it’s different from
the task of machine translation that we don’t have
labels to judge if the generated relation is an ap-
propriate choice for each step. To overcome this
issue, we deploy the Tensorlog framework here
to get the prediction results like Neural-LP (Yang
et al., 2017) and DRUM (Sadeghian et al., 2019) to
indirectly supply supervisory signal. Each entity ei
is represented as a one-hot vector vei ∈ {0, 1}|E|,
and each relation rk is represented as an adjacent
matrix Mrk ∈ {0, 1}|E|×|E|, where Mrk

ij = 1 if
rk(ei, ej) ∈ G, else Mrk

ij = 0.
Via applying the entity vector and relation ma-

trix, path queries could be answered by expanding

path as follows:

v′ = veiMrk (7)

Note that v′ is a multi-hot vector that refers to
several entities, which means these entities are con-
nected to ei via relation rk.

For step t, the probability ωt of all relations,
which is generated in Equation 6, are used by ap-
plying the above step in an indirect way as Equa-
tion 8. Let zt ∈ R|E|×1 be the vector representing
the probability of all entities in step t, and it is
a one-hot vector that represents the head entity if
t = 0. With zt−1 after t− 1 step inference, zt can
be computed as follow:

zt = zt−1 ×
|R|+1∑

i=1

ωitM
ri (8)

The special relation self − loop with an identity
adjacency matrix with Mr|R|+1 = I|E| is also con-
sidered. With this relation, the model can mine rule
with length shorter than the length T . ωit represents
the probability of the relation ri as the relation in
rules at step t.

Finally, we get the zT , which is the final result
after T steps reasoning. For triplet (h, r, t), the rea-
soning score is the similarity between the predicted
vector zT and the target entity vector v:

ϕ(t|h, r) = v · log[zT , γ]+ (9)

where [x, γ]+ denotes the maximum value between
each element of x and γ. The objective function
Ruleformer is:

min


−

∑

(h,r,t)∈G
ϕ(t|h, r)


 (10)

3.2 Rule Parsing
To decode symbolic rules from Ruleformer, we pro-
pose a rule parsing algorithm using the parameters
learned from training process. The basic idea is to
select appropriate relations with high weight. With
different triplets and the context information fed
to the model, Ruleformer may output different pa-
rameters, so even for the same relation, the rules
mined might be different. Specifically, for a query
(h, r, t), we recover possible rules via parameters
α. In each step, we choose relations whose weights
are over the threshold, and we will check if the
entities in the previous step are linked with this re-
lation. By performing this step cyclically until rule
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length reaches the max length T , the confidence of
each rule is computed by multiplying the weights
of relations selected. output symbolic rules with
high confidence. Finally, rules that may be useful
in reasoning process for a triplet will be output.
The detailed procedure is shown in Algorithm 1.

Then we summarize the number occurrences of
each rule, and for each time a rule is applied, a
confidence score will be calculated with ω and the
final score is the average confidence of this rule in
different cases. Specifically, a rule set is defined,
and for each triplet (h, r, t), we apply Algorithm 1
to parse rules from it. Finally, the score will be
calculated for all the rules in R.

Algorithm 1 Decode symbolic logical rules from
model
Input: attention {ωt|t = 1, 2...T} for each triplet
Initialize: P = {([Pr], [Pe], w)} , Pr = ∅, Pe =
head entity, w represents confidence;
Output: R

1: for t = 1 : T do
2: // Scale the attention
3: ωt = ωt/max(ωt)
4: for ([Pr, Pe], w) ∈ P do
5: for ωrpt ∈ ωt > thr do
6: // Expand a new path if possible
7: for n ∈ E can be linked with Pe[−1]

via rp do
8: // Compute the new confidence
9: w′ = w × ωrpt

10: add ([Pr + rp], [Pe + n], w′) to P
11: end for
12: end for
13: // Remove the old path
14: remove ([Pr, Pe], w) from P
15: end for
16: end for
17: for ([Pr, Pe], w) ∈ P do
18: // R[r, pr] is a list stores confidence scores
19: add w to R[r, pr]
20: end for

4 Experiment

4.1 Dataset

We conduct experiments on three different datasets
which are introduced as follows, and Table 2 sum-
marizes the data statistics. We count the average
degree for each dataset, because the sparsity has an
impact on the choice of subgraph.

• UMLS (Kok and Domingos, 2007): Unified
Medical Language System, is a knowledge
graph that brings together many health and
biomedical vocabulary and standards.

• FB15K-237 (Toutanova et al., 2015): This
dataset is a subset from Freebase(Bollacker
et al., 2008) and removes the inverse relation.
It stores commonsense facts such as topics in
movies, actors, awards, etc.

• WN18RR (Dettmers et al., 2018): WN18RR is
a link prediction dataset created from WN18,
which is a subset of WordNet. It’s created
to ensure that the evaluation dataset does not
have inverse relation test leakage.

4.2 Experiment Setup

The experiments are implemented with Pytorch
framework and are trained on RTX3090 GPU.
ADAM optimizer is used for parameter tuning and
the learning rate is set to 0.0001. Our model con-
sists of the encoder and decoder block, which are
two-layer Transformer and each layer has 6 heads
by default. The dimension of entity is set to 200,
as well as the position encoding dimension. We
also try 6 heads and 3 layers in Transformer and
larger dimension, which result in a little difference.
Dropout is applied with a possibility p = 0.1. The
γ used as threshold is set to be 10−20.

Since the average degree is different for each
dataset, to avoid the input sequence of entities be-
ing too long, the choice of subgraph is different, too.
We extract one-hop subgraph for FB15K-237, two-
hop subgraph for WN18RR. For UMLS, the shortest
distance is the same as the rule length. Meanwhile,
the maximum number of entities which is based on
the sparsity of each dataset is different. Consider-
ing that relations with a large number of neighbors
, like hasGender, don’t contain much information
relative to the huge number of entities, a max num-
ber of direct neighbor linked by one relation is set
for each entity. For UMLS, we set the max number
of context entities and max number of neighbors
for each entity as 140 and 40 respectively. For
FB15K-237 and WN18RR, they are 70 and 40, and
40 and 10 respectively. If the number of context or
neighbors exceeds our settings, we randomly select
the same number of entities as the setting.
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Methods
UMLS FB15K-237 WN18RR

MRR HIT MRR HIT MRR HIT
@1 @3 @10 @1 @3 @10 @1 @3 @10

TransE .668 46.8 84.5 93.0 .294 - - 46.5 .226 - - 50.1
DistMult .753 65.1 82.1 93.0 .241 15.5 26.3 41.9 .430 39.0 44.0 49.0
ComplEx .829 74.8 89.7 96.1 .247 15.8 27.5 42.8 .440 41.0 46.0 51.0

ComplEx-N3 - - - - .370 - - 56.0 .480 - - 57.0
ConvE .908 86.2 94.4 98.1 .325 23.7 35.6 50.1 .430 40.0 44.0 52.0

TuckER - - - - .358 26.6 39.4 54.4 .470 44.3 48.2 52.6
RotatE .948 91.4 98.0 99.4 .338 24.1 37.5 53.3 .476 42.8 49.2 57.1

PathRank .197 14.7 25.6 37.6 .087 7.4 9.2 11.2 .189 17.1 20.0 22.5
Neural-LP(T=2)* .751 63.0 84.7 94.0 .189 12.7 20.6 31.3 .371 35.9 37.4 39.6
Neural-LP(T=3)* .735 62.7 82.0 92.3 .239 16.0 26.1 39.9 .425 39.4 43.2 49.2

DRUM(T=2)* .791 64.5 92.7 96.8 .225 17.1 25.4 35.8 .379 36.8 38.5 40.9
DRUM(T=3)* .784 64.3 91.2 97.2 .328 24.7 36.2 49.9 .441 41.2 45.6 51.6

M-Walk - - - - .232 16.5 24.3 - .437 41.4 44.5 -
Ruleformer(T=2) .851 73.6 96.6 98.8 .237 17.4 25.7 36.0 .381 36.6 38.8 41.1
Ruleformer(T=3) .857 75.2 95.8 98.4 .342 25.5 37.4 51.3 .452 41.7 46.5 53.0

Table 1: Link prediction results on dataset UMLS, FB15K-237 and WN18RR. Note that for some algorithm, several
entities may get the same score. Instead of computing the rank of the right answer as m+ 1 where m is the number
of entities with higher possibilities, we select a random rank for the right answer among the entities with the same
possibility. Some methods reported their results in the previous setup in their original paper, and we rerun these
methods with the same evaluation process in our way. The results with [*] is reported with our evaluation protocol.

Datasst UMLS FB15K-237 WN18RR
#Triplet 5,960 310,116 93,003
#Entity 135 14,541 40,943
#Relation 46 237 11
#Avg.deg 88.3 42.7 4.5

Table 2: Knowledge graph datasets statistics.

4.3 Link Prediction

For the link prediction task, each triplet (h, r, t) in
test dataset and its inverse triplet (t, r−1, h) are
given to the model with the tail entity masked,
and the goal is to predict the masked tail entity
among all entities. Each candidate entity in KG
will get a score according to the inference result,
which is used to sort them, and the ground truth
entities are filtered out of the ranking list. Here,
we adopt the evaluation metrics the same as pre-
vious works (Bordes et al., 2013), Hit@1, Hit@3,
Hit@10, and mean reciprocal rank(MRR).

We compare our model with some embedding
methods including TransE (Bordes et al., 2013),
DisMult (Yang et al., 2015), ConvE (Dettmers
et al., 2018), TuckER (Balazevic et al., 2019) and
RotatE (Sun et al., 2019), and rule mining meth-
ods like PathRank (Lao and Cohen, 2010), Neural-

LP (Yang et al., 2017), DRUM (Sadeghian et al.,
2019) and M-Walk (Shen et al., 2018). Compared
to embedding methods, rule mining methods can
provide the interpretability, which is an advantage
to pure embedding methods. The results are shown
in the Table 1.

As the Table shows, our model outperforms the
other rule-based approaches on three datasets. On
UMLS, the competitive results demonstrates the
effectiveness of rule mining approaches. Rule-
former offers an absolute improvement in hit@1
about 10.9% (relatively 16.9%) compared against
baseline on UMLS. On dataset FB15K-237 and
WN18RR, our model also gets the best results on
rule mining methods which improves the overall
results about 1.4% and 1.1% (relatively 4.3% and
2.3%), respectively. Ruleformer achieves better
performance compared to other rule mining proves
the effectiveness of our method, and we think this
improvement is because other rule-based methods
don’t consider the head entity and its subgraph and
confirms the correctness of our hypothesis.

4.4 Quality Assessment of Minded Rules

In order to have an objective evaluation of the
mined rules, we adopt the Standard Confidence
(SC) (Galárraga et al., 2013) to assess the rules
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mined by different methods. Specifically, the aver-
age score of rules is calculated to show the quality.
Given a list of rules which is ranked by their confi-
dence calculated by their algorithm that is different
from SC, we report the average SC of the topK
(K = 50, 100, 200, 500) rules. The rules of Neural-
LP and DRUM are provided by their original code.
The Standard Confidence SC(B → r(X,Y )) is
calculated as follows:

#(X,Y ) : ∃Z1...Zm : B ∧ r(X,Y )

#(X,Y ) : ∃Z1, . . . , Zm : B

where B represents the rule body, X , Y and Z are
entity variables, and r is the head relation. This
score regards facts that are not in KG as false, in
another word, it implements a closed world setting.

Table 3 reports the results. We compare Rule-
former with other differentiable rule mining meth-
ods. The main difference between these methods
and ours is that Ruleformer could parse the rule
according to the environment, but others parse the
same rules for each triplet with the same relation.
There is a significant improvement in standard con-
fidence with our model and algorithm. Specifi-
cally, the standard confidence on UMLS improves
about 43.7% and on FB15K-237, the improvement
is 25.5%. This is not only because the model gener-
ates suitable rules during training, but also because
our parsing algorithm outputs the rules which can
be mapped to an existing path in KG.

Methods
UMLS FB15K-237
TOP TOP

50 100 200 50 200 500
Neural-LP(T=2) .228 .239 .221 .020 .044 .033
Neural-LP(T=2) .104 .145 .153 .020 .031 .034

DRUM(T=2) .400 .350 .303 .058 .036 .048
DRUM(T=3) .340 .284 .202 .020 .039 .027

Ruleformer(T=2) .837 .793 .740 .241 .338 .310
Ruleformer(T=3) .680 .652 .573 .313 .322 .282

Table 3: Average confidence of top ranked rules on
datasets UMLS and FB15K-237. The superscript [2] or
[3] means with rule length 2 or 3, respectively.

4.5 Case Study

As we introduced, for different prediction tasks, we
hope our model generate suitable rules in a better
way with context of head entity into consideration
rather than using them in the same order.

To verify the ability of generating appropriate
rules of our model, we choose four test triplets
from WN18RR that are shown in Figure 3.

(1)
(2)

(1)
(2)

(1)
(2)

(2)

0

1

_hypernym   _synset_domain_topic_of inv_also_see

(honeybee, _hypernym, bee)

(civilization, _hypernym, society)

(nuclear_reaction, _hypernym, natural_process)

(dissociation, _hypernym, psychological_state)

(1)

Figure 3: Decode output of four different triplets with
the same head relation _hypernym. (1) and (2) means
the first and second step.

Input these triplets into our model with rule
length T = 2, and the output contains four sets
of data which represent the probability of each re-
lation for two steps in different cases. The heatmap
in Figure 3 shows the output. Each row in the fig-
ure represents the probability for all relations in
a step, and each pair of rows correspond to rules
with different scores for the specific triplet which
is showed below each subfigure. The darker the
color is, the higher probability the relation has for
current step. Note that we added inverse relations
and self-loop so there are more than twice relations
in the dataset. The relations with high probability
are marked in the top of the figure.

As the figure shows, the four triplets have the
same head relation hypernym which means a
word that is more generic than a given word,
while the head entities are different. for differ-
ent triples with the same relation to be predicted,
the probability of relations generated for reason-
ing in each step are not the same. Take the first
case as an example, the rule with the highest confi-
dence is ’hypernym(X, Z)← hypernym(X,
Y) ∧ hypernym(Y, Z)’. While for the sec-
ond example, the rule is ’hypernym(X, Z)←
hypernym(X, Y) ∧ inv_alsoSee(Y, Z)’
where inv means inverse relation. These different
but all correct rules shows that our method suc-
cessfully generate different rules and contextual
information of triplets do have an impact on rule
reasoning.
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5 Conclusion

In this paper, we draw attention to using context
to assist rule mining. We regard it as a sequence
generation problem, and design a converter turn-
ing graph structure into a sequence. We propose a
transformer-based model, Ruleformer, which uti-
lizes the subgraph of head entity when learning
rules over knowledge graph. The experiment re-
sults show that in a specific environment, our pro-
posed model can mine and select different suitable
rules. The performance on link prediction task and
rule parsing also improves with our model and pars-
ing algorithm. Future work may focus on a more
effective way of rule mining and consider more
complex forms of rules.
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Abstract

This paper introduces the problem of determin-
ing whether people are located in the places
they mention in their tweets. In particular, we
investigate the role of text and images to solve
this challenging problem. We present a new
corpus of tweets that contain both text and im-
ages. Our analyses show that this problem is
multimodal at its core: human judgments de-
pend on whether annotators have access to the
text, the image, or both. Experimental results
show that a neural architecture that combines
both modalities yields better results. We also
conduct an error analysis to provide insights
into why and when each modality is beneficial.

1 Introduction

Twitter is a social network in which users post
short messages known as tweets. While statistics
vary depending on the source and publication time,
official reports state that 187 million users logged
in daily in the third quarter of 2020 (Twitter, 2020),
and 500 million tweets were published worldwide
on a daily basis in 2014—the last year the number
was made public (Twitter, 2014). According to a
recent report (Pew Research Center, 2019), 24% of
all Americans use Twitter (45% between 18 and 24
years of age), and 46% of them use it at least once
a day (26% more than once). Tweets contain not
only text (including hashtags, links, emojis, etc.),
but also multimedia content such as images and
videos. Indeed, 42% of tweets have images (Lee,
2015), and marketing research reveals that having
an image improves user engagement: 18% more
click throughs, 89% more likes and 150% more
retweets (Brandwatch, 2017).

When it comes to noisy user-generated content
and spatial information, most previous work falls
under two main topics: (a) named entity recogni-
tion (Baldwin et al., 2015) and disambiguation (Es-
hel et al., 2017), and (b) geolocation (Han et al.,
2016). The former identifies, among others, loca-

Figure 1: Examples of tweets in which the author is
and is not located in the place mentioned in the tweet
(Phoenix (left) and Atlanta (right) respectively).

tion named entities and links them to a knowledge
base without specifying who is there. The latter de-
termines one location per user—even if it is not ex-
plicitly mentioned. For example, place of residence
can be inferred, at least to a certain degree, from
the locations of other users and language usage
patterns. In this paper, we tackle a complimentary
problem: to determine whether people are located
in the places they mention in their tweets.

Extracting this kind of spatial information is
challenging. First, people often mention places
in their tweets even though they are not located
there. Second, one must often rely on nuances in
both the text and images to make a decision. Con-
sider the tweets in Figure 1. The author of the tweet
on the left was in Phoenix when the tweet was pub-
lished. Note that the text alone could arguably be
enough to conclude so, but the image provides ad-
ditional evidence: the background is compatible
with the Phoenix area (desert landscape, mountains,
etc.), and the person in the picture is (most likely)
enjoying the weather there during a short trip for
Memorial Day. The author of the tweet on the
right, on the other hand, was not in Atlanta when
the tweet was published. In this example, the image
together with the text provides evidence that the
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author is working rather than enjoying Memorial
Day in Atlanta with coworkers.

While the work presented here could be consid-
ered fundamental research, it opens the door to
several applications. For example, emergency man-
agement systems could issue customized alerts to
individuals who were, are, or are about to be lo-
cated near a natural disaster. Similarly, eyewitness
verification could benefit as the locations of peo-
ple and the events they claim to witness must be
compatible (within some temporal bounds).

The main contributions of this paper are:1 (a) a
corpus of 6,540 tweets with annotations indicating
whether the author was in the places mentioned in
the tweets; (b) analysis demonstrating that this is a
multimodal problem: the ground truth changes de-
pending on whether annotators have access to the
text, the image, or both; (c) experimental results
showing that taking into account both modalities is
beneficial; and (d) qualitative analysis providing
insights into (d.1) when are the text and image ben-
eficial, and (d.2) the remaining sources of errors.

1.1 Ethical Considerations

Determining where people are located has the
potential to open the door to malicious (or just
unwanted) tracking and surveillance. For exam-
ple, applications that track location data may turn
around and sell that data, revealing someone’s ev-
ery movement—whether it is to a retail store, an
abortion clinic, or a gay bar. Equally important,
Twitter users may not be aware that their tweets
can be used for research purposes (Fiesler and Pro-
feres, 2018). We are not interested in tracking
people or surveillance. Instead, we are interested in
investigating the very definition of the problem and
analyzing whether and how language and images
complement each other.

In order to alleviate the issues above and pre-
serve privacy, we implemented these safeguards.
First, our corpus (a) only contains one tweet per
user thus we do not enable user tracking or surveil-
lance. Second, our analyses and experiments only
take into account the text and image in a tweet—
we do not take into account user information or
any metadata. Third, we have designed a take-
down request process via an online form follow-
ing Mirowski et al. (2019).

1Corpus and code available at https://github.com/
zhaomin1995/coling2022_repo

2 Connections to Related Work

Extracting spatial information from social media
and tweets in particular has received substantial
attention (Zheng et al., 2018). For example, the
tasks of named entity recognition (i.e., identifying,
among others, location named entities mentioned
in text) and disambiguation (i.e., linking named
entities to entries in a knowledge base) have been
explored in this noisy user-generated domain (Rit-
ter et al., 2011; Baldwin et al., 2015; Shen et al.,
2013; Eshel et al., 2017). Unlike us, these efforts
do not aim at determining spatial information about
authors of tweets. As we shall see, people often
mention places where they are not located thus
identifying and disambiguating locations tell us
what places people tweet about—not the places
where they are located when they tweet.

Geolocating twitter users consists in assigning
one location to a user (e.g., place of residence). Ex-
isting corpora calculate the ground truth (i.e., the
location for each user) from the geotags attached
to tweets. For example, GeoText (Eisenstein et al.,
2010) and Twitter-US (Roller et al., 2012) select
the geotag of the first geotagged tweet from each
user, and Twitter-World (Han et al., 2012) and W-
NUT’16 (Han et al., 2016) select the majority city
after mapping geotags to city centers. State-of-
the-art models take as their input a user’s Twitter
stream, and combine the text in the tweets, meta-
data and the social network structure with a neural
architecture (Miura et al., 2017; Rahimi et al., 2017,
2018; Do et al., 2018). Unlike the work presented
here, geolocating assigns one location per user thus
it disregards that people participate in events and
as a result their locations change. In this paper, we
determine whether people are located in the places
they mention in their tweets—even if they only
mention the place once and regardless of how long
and how often they are there.

More related to our work, Li and Sun (2014)
determine whether people have visited, are cur-
rently at, or will soon visit points of interest (e.g.,
monuments, train stations). In their corpus, 47.3%
of points of interest are invalid, resulting in lit-
tle spatial information. More recently, Doudagiri
et al. (2018) annotate whether people are located at
the locations they tweet about (corpus size: 1,000
tweets), but they do not present experimental re-
sults. These two corpora were not publicly avail-
able at the time of writing. The work presented here
complements these efforts. First, we target any city
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mentioned in a tweet, not predefined points of in-
terest. Second, we show that both text and images
must be taken into account. Indeed, the ground
truth changes depending on which modalities anno-
tators have access to, and experimental results show
that models benefit from both modalities. Third,
we release a new corpus of 6,540 tweets.

Finally, we note that coupling language and vi-
sion has been proposed for, among others, machine
translation (Huang et al., 2016) and spatial role la-
beling (Kordjamshidi et al., 2017). Within social
media, some examples include determining the re-
lationship between text and images (Vempala and
Preoţiuc-Pietro, 2019), point-of-interest type pre-
diction (Sánchez Villegas and Aletras, 2021), mul-
timodal named entity recognition (Yu et al., 2020),
named entity disambiguation (Moon et al., 2018),
identifying fake news (Gupta et al., 2013), extract-
ing possessions (Chinnappa et al., 2019), revealing
demographic attributes (Sakaki et al., 2014), deter-
mining account types (Wijeratne et al., 2016), and
detecting user groups (Balasuriya et al., 2016). Our
work is inspired by these efforts, but to our knowl-
edge we are the first to target spatial information
about authors of tweets using both text and images.

3 A Corpus of Tweets and Spatial
Information about the Authors

Our main goal is to understand what kind of spa-
tial information one can infer between authors of
tweets and the places they mention in their tweets.
To our knowledge, we are the first to tackle this
problem, so we create a new corpus. This allows
us to explore whether human judgments change de-
pending on whether annotators have access to the
text, image or both (Section 4) as well as conduct
experiments to automate the task (Section 5).

Collecting tweets We collected 10,000 tweets
suitable for our purposes using the criteria below:

1. Each tweet contains both text and an image.

2. The text in each tweet:

(a) is written in English and has at least five
tokens;

(b) mentions an event that occurred within
14 days of the tweet publication date; and

(c) mentions a city.

We work with tweets that contain both text and
images because we want to explore how spatial

information depends on the interpretation of these
modalities. We identify the language in which a
tweet is written with langdetect2 and spaCy (Hon-
nibal et al., 2020). The list of events we consider
include the following: Christmas, Spring Break,
Thanksgiving, Election Day, Labor Day, Memo-
rial Day, and Veteran’s Day. Note that the Twitter
search engine does not simply match keywords,
thus small variations such as #veteransday are also
matches. Finally, we use a list of the 100 most
populous cities in the U.S.3 This list includes large
cities such as Los Angeles and Chicago as well as
smaller cities such as Irving, TX and Richmond,
VA (populations below 220,000).

We acknowledge that the events and cities we
work with make our corpus US-centric. We believe,
however, that the conclusions we reach are not US-
centric. In particular, our analyses and experiments
are not grounded on the specific events or cities that
we work with. A corpus that covers all countries
and events—assuming that doing so is possible—
is outside the scope of this paper.

Annotation guidelines We aim at capturing spa-
tial information intuitively understood by humans.
To this end, we crowdsource human judgments
from non-experts by asking a simple question.
More specifically, we show crowdworkers one
tweet at a time and ask them “Was the author of
the tweet located in city when the tweet was pub-
lished?,” where city is one of the cities identified
in the tweet during the collection process. Crowd-
workers choose between two options:

• yes: the author of the tweet was in city when
the tweet was published; or

• no: I cannot tell if the author of the tweet was
in city when the tweet was published.

Note that no does not guarantee that the author
was not in city, it rather indicates that the crowd-
worker cannot establish that the author was in city.

3.1 Annotation Process
We crowdsource annotations using Amazon Me-
chanical Turk. The annotation interface includes
instructions and examples. Crowdworkers provide
answers to the question above for one (tweet, city)
pair before moving to the next one. The interface

2https://github.com/Mimino666/
langdetect

3https://gist.github.com/Miserlou/
11500b2345d3fe850c92
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displays a screenshot of the tweet as shown on the
Twitter’s website (desktop version). Doing so en-
sures that special characters, symbols, and images
are displayed properly.

We collected annotations in three independent
phases: showing annotators (a) the original tweet
(text and image) (b) only the text, and (c) only the
image. There was no overlap between the crowd-
workers involved in each phase to avoid potential
biases. For example, we avoid the possibility that a
crowdworker remembers the image in the original
version of the tweet when the interface only dis-
plays the text. The three annotation phases allow
us to analyze whether crowdworkers understand
different spatial information if they cannot see the
text or image in the original tweet. We created
30,000 annotation tasks (Human Intelligence Tasks
in Mechanical Turk parlance; 3 versions per tweet),
and crowdsource five annotations for each. The
hourly pay ranges from $9 to $13 (the US federal
minimum wage is $7.25).

3.2 Annotation Quality

Ensuring annotation quality is critical in any crowd-
sourcing effort. Our first defense is to recruit crowd-
workers located in the United States and with previ-
ous approval rate above 95%. Additionally, we do
not allow workers to continue working on our tasks
if the average completion time per Human Intelli-
gence Task in the past (i.e., the average time spent
prior to submitting) is under 3 seconds. We decided
on the minimum time required to complete our task
based on observations during pilot annotations.

Our second defense is to collect five annotations
per Human Intelligent Task and filter out bad anno-
tations until we obtain substantial inter-annotator
agreement. We do so using Multi-Annotator Com-
petence Estimation (Hovy et al., 2013, MACE) and
Krippendorff’s α (Krippendorff, 2011). MACE is
designed to rank annotators by their competence
scores assessing their reliability. The adjudicated
labels are determined based on these scores—the
most frequent label is not always a good option.
Krippendorff’s α is a coefficient indicating inter-
annotator agreement when several annotators com-
plete different annotation tasks, as is common in
crowdsourcing. α = 0 indicates only the agree-
ment expected by chance, and α = 1 indicates that
annotators always agree. Krippendorff’s α at or
above 0.6 are considered substantial, and above
0.8 (nearly) perfect (Artstein and Poesio, 2008).

text image
yes no yes no

text + image
yes 74 26 91 9
no 72 28 81 19

Table 1: Percentage of label changes depending on the
information available to annotators. Many labels change
if the text or image is unavailable, especially if the label
when both are available is no (72% and 81%).

We ensure α ≥ 0.6 as follows:

1. Calculate the MACE score of all crowdwork-
ers and sort them by decreasing MACE score.

2. While Krippendorff’s α < 0.6:

(a) Drop all the annotations by the crowd-
worker with the lowest MACE score.

(b) If a Human Intelligent Task is left with-
out annotations, republish it.

We republish Human Intelligent Tasks (Step 2b)
at most twice in order to keep the crowdsourcing
costs reasonable. The final corpus consists of 6,540
annotated tweets with Krippendorff’s α = 0.61. In
the rest of this paper, we work with these tweets.

4 Corpus Analysis

The 6,540 tweets in our corpus mention 96 unique
cities. The most frequent cities are Miami (17% of
tweets) and Chicago (6%); other cities account for
at most 5% of tweets each. The tweets mention all
the events we target (Section 3). The most common
event is Spring Break (37% of tweets) followed by
Memorial Day (27%). Other events account for
between 5% and 10% of tweets except Election
Day, which accounts for 3% of tweets.

4.1 Do labels depend on the information
available to crowdworkers?

Yes, crowdworkers understand substantially differ-
ent spatial information depending on whether we
show them the original tweet (text and image), the
text only, or the image only. The label distribution
is as follows for each combination:

• text and image: yes: 51.09%, no: 48.91%
• only text: yes: 80.93%, no: 19.07%
• only image: yes: 69.74%, no: 30.26%

Note that the right label (i.e., the ground truth) is
the one obtained when crowdworkers have access
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txt img txt+img
yes no yes txt img txt+img

yes no no

txt img txt+img
yes yes yes

Figure 2: Examples of annotations depending on what information is available to annotators (text, image, or both
text and image). We only show the adjudicated label after adjudicating the crowdsourced labels. Annotations change
substantially (Table 1); the image or text alone often misleads annotators (examples on the left and middle).

text

image
VGG16

BERT . . .

. . .

. . . . . .
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FC (x2)
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text_image component

image component

FC

FC. . .

. . .

. . .

. . .. . .

. .
 .

. .
 .

. .
 .

Nothing says St. Patty’s in St. Louis 
more than #budweiserclydesdales 
and a parade! Hello Spring Break!

Figure 3: Neural network for determining whether people are located in the places they mention in their tweets. The
output layer combines individual representations of the text and image (top and bottom, text and image component),
and a joint representation of the text and image (middle, text_image component).

to both the text and image, as the author chose to
publish a tweet including both text and an image.

Table 1 shows that when the right label is yes

and we only show the text or image, crowdworkers
most often do not change the label (74% and 91%
respectively). When the right label is no, however,
it is usually the case that crowdworkers are tricked
when they are shown only the text or image (72%
and 81% respectively). These percentages demon-
strate that both the text and image must be taken
into account to determine spatial information about
the author of a tweet.

We show examples of annotation changes in Fig-
ure 2. In the example on the left, the image alone is
insufficient to make any spatial inference between
the author of the tweet and Miami. Indeed, it is hard
to make any connection between Miami and the bas-
ketball court. The text alone (“Happy Spring Break
from Miami”), however, is enough to understand
that the author is in Miami. The tweet in the middle
exemplifies how not having access to the image can
trick annotators. When crowdworkers only have ac-

cess to the text, they understand that the author was
in Raleigh celebrating Memorial Day. When they
are also shown the image, however, they realize that
it is an advertisement and do not conclude that the
author is in Raleigh. The tweet on the right shows
an example in which the annotations do not change
regardless of whether crowdworkers have access to
the text, image, or both. The text indicates that the
author is in Chicago (“Spring break in the chilly
Chicago weather”), and the image also facilitates
the same conclusion (cold weather, Cloud Gate in
Chicago). Showing both the text and images pro-
vides further evidence to conclude that the author
was in Chicago when the tweet was published.

5 Experiments and Results

Armed with our corpus (Section 3), we conduct
experiments to automatically determine whether
authors of tweets are located in the cities they men-
tion in their tweets. We reduce the problem to
a classification task. The input to the model is a
(tweet, city) pair, and the output is a label indicating
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P R F1

text 0.65 0.66 0.65
image 0.64 0.65 0.64
text_image 0.62 0.68 0.65
text + image + text_image 0.64 0.74 0.68

Table 2: Results obtained with the full network (text +
image + text_image) and individual components. Taking
into account the three representations is beneficial.

whether the author of the tweet was located in the
city when the tweet was published (yes or no). We
create stratified training and test splits (80% / 20%),
and reserve 20% of the training split for validation.
If the tweet includes more than one image (it only
applies to a handful of tweets), we only feed to the
classifier the first image. Our models do not take
into account network or user information. They
make predictions based exclusively on the content
of tweets (the text and image).
Neural Network Architecture We build a neural
network consisting of three main components (Fig-
ure 3): a component to represent the text (top), a
component to represent the image (bottom), and
a component to jointly represent the text and im-
age (middle). The three components use pre-
trained neural networks combined with a trainable
fully connected layer to reduce the dimensional-
ity of each representation individually (size: 512).
Then, we concatenate the three representations
(size: 3 × 512 = 1536) and apply two trainable
fully connected layers (sizes: 512 and 2) to make
the final prediction (yes or no). We use dropout
(Srivastava et al., 2014) in the second-to-last fully
connected layer (rate: 0.2). We tried different sizes
for the fully connected layers during the tuning
process, but we did not observe benefits.

The text component is BERT (Devlin et al.,
2019) and the image component is VGG16 (Si-
monyan and Zisserman, 2014). We use the pre-
trained models released by HuggingFace (Wolf
et al., 2020) and Pytorch (Paszke et al., 2019). We
train the neural network for up to 100 epochs us-
ing the Adam optimizer (Kingma and Ba, 2014),
categorical cross entropy as the loss function, and
batch size 8. We stop the training process before
100 epochs if there is no improvement in the vali-
dation set for 10 epochs. We implement the neural
network with PyTorch (Paszke et al., 2019).
Results Table 2 shows the results with the test split
using several variations of the neural network: only

the text component, only the image component,
only the text_image component, and all of them.
We observe that the three components by them-
selves obtain roughly the same results (F1: 0.64–
0.65). Combining the three components, however,
yields a slightly higher F1 (0.68), which is mostly
due to an increase in Recall (0.74 vs. 0.65–0.68).
These results show that the three components of
the network are beneficial. In particular, incorpo-
rating the individual representations for the text
and image in addition to the joint representation
(text_image) is beneficial.

6 Qualitative Analysis

To better understand why and when the text and
image are most beneficial, we perform a qualitative
analysis of the errors made by each model. More
specifically, we answer the following questions:

• When does the image complement the text?
• When does the text complement the text?
• When does the task remain challenging?

When does the image complement the text?
We start the qualitative analysis providing insights
into when is the image beneficial to solve the task.
Table 3 exemplifies the most common errors made
by the text component that are fixed by the full
network (text + image + text_image).

The most frequent error that benefits from tak-
ing into account the image (38%) occurs when
the image (apparently) does not have a connection
with the location at hand. Instead, it (visually) de-
picts some event that (a) occurred in the location
at hand and (b) is mentioned in the text. Consider
the example on the left (Table 3). The text is about
tornadoes in Miami, but the image is not a common
Miami scene—it shows the destruction caused by
the tornado. The text component alone is unable to
make the connection, but the full network makes
the connection and predicts that the author was in
Miami when the tweet was published.

The second most common error fixed by the full
network (31%) occurs when the tweet is an adver-
tisement and the text component alone wrongly
predicts yes (e.g., middle tweet in Table 3). In this
case, taking into account the image allows the full
network to identify the tweet as an advertisement
and predict no. We note that crowdworkers gener-
ally annotate advertisements with no unless there
is a connection between the author of the tweet
and the location (e.g., My Orlando Chapter Got
Something For Ya! [. . . ], right tweet in Table 4).
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(38%) Image depicts key event (31%) Advertisements (14%) Image depicts location

Location: Miami Location: Houston Location: Jacksonville
Gold: yes, Predictedtext: no Gold: no, Predictedtext: yes Gold: yes, Predictedtext: no

Table 3: Most common errors fixed by the full network compared to the network that only uses the text component.

(46%) Text describes key event (27%) Text describes location (10%) Advertisements

Location: Arlington Location: Miami Location: Orlando
Gold: yes, Predictedimage: no Gold: yes, Predictedimage: no Gold: yes, Predictedimage: no

Table 4: Most common errors fixed by the full network compared to the network that only uses the image component.

The third most common error that benefits from
taking into account the image (14%) occurs when
the image depicts a typical scene of the location at
hand. For example, in the right tweet in Table 3, the
picture depicts (presumably) Jacksonville beach.

When does the text complement the image?
We continue the qualitative analysis providing in-
sights into when is the text beneficial to solve the
task. Table 4 exemplifies the most common errors
made by the image component that are fixed by the
full network (text + image + text_image).

The most frequent error (46%) occurs
when (a) the image could have been taken in
several places and (b) the text describes an event
that occurred in the location at hand and is depicted

in the image. The tweet on the left (Table 4)
exemplifies this scenario. Indeed, the indoor
picture could have been taken in many indoor
spaces, but it shows an event described in the text
(i.e., the Kids Camp).

The second most common error fixed by the
full network (27%) occurs when (a) the image is
compatible with the location at hand and (b) the
text provides further evidence that the author was
there. Consider the middle tweet in Table 4. The
model that takes into account only the image fails
to identify that the author was in Miami. Taking
into account the text (“My city better than yours!
Period #Miami [. . . ]”), however, allows the full
network to make the right prediction (yes).

The third most common error (10%) addressed
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(56%) Missing Information (24%) Advertisements (8%) Sentence Fragments

Location: Arlington Location: Chicago Location: Miami
Gold: no, Predictedfull: yes Gold: no, Predictedfull: yes Gold: yes, Predictedfull: no

Table 5: Most common errors made by the full network (comparing with the ground truth).

when the text is taken into account are again adver-
tisements. As is usual with screenshots and adver-
tisement, the image component alone predicts no.
Taking into account the text allows the full network
to realize that the author most likely was in Or-
lando (My Orlando Got Something for Ya! [. . . ]).

Which tweets remain challenging? We close
the qualitative analysis with the most common er-
rors made by the full network (Table 5). To do
so, we look at the errors made by the full network.
(text + image + text_image).

The most common error (56%) occurs when (a)
neither the text nor image contains enough infor-
mation to determine whether the author was in the
location at hand, and (b) crowdworkers annotated
the tweet with no. Consider the left tweet in Table 5.
Crowdworkers did not indicate that the author was
in Arlington (no), as there is no evidence that the
author was there when the tweet was published. We
hypothesize that the full network makes a connec-
tion between the flags in the image and “all those
flags” from the text, and as a result, it predicts yes.

The second most common error (24%) are again
advertisements. Consider the middle tweet in Ta-
ble 5. Neither the text or image provide much evi-
dence of the author being in Chicago, as indicated
by the crowdworkers. The full network, however,
predicts yes, most likely because it recognizes an
urban environment in the picture.

Finally, the full network struggles when the text
is not a complete sentence and the connection be-

tween text and image is rather nuanced. For exam-
ple, the text in the tweet on the right (Table 5) is a
sentence fragment, and the picture depicts a fight
in a beach. The full network is unable to make the
connection between (a) Miami and “the beach,” and
(b) the fight and the sentence fragment (“Knuckle
Up: On Today’s Episode of Spring Break [. . . ]”).

7 Conclusions

We have introduced the task of determining
whether people are located in the places mentioned
in their tweets. Going beyond named entity recog-
nition and disambiguation, this problem is about
figuring out whether the authors of tweets are lo-
cated in the places mentioned their tweets. Our
new corpus (6,540 tweets) shows that people often
mention cities in their tweets even though they are
not located there (48.9% of city mentions)—or at
least there is not enough evidence in the tweet for
crowdworkers to conclude so.

Importantly, we have shown that human judg-
ments change substantially depending on whether
crowdworkers have access to the text, the image, or
both. These changes in human judgments indicate
that when it comes to understanding spatial infor-
mation about the authors of tweets, the text and
images complement each other. To our knowledge,
our corpus (Krippendorf’s α = 0.61) is the first to
tackle this challenging problem.

Experimental results show that the task can be
automated although our neural network obtains
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modest results. In particular, coupling independent
representations of the text and image (2 represen-
tations) with a joint representation of the text and
image yields the best results. These empirical re-
sults mirror the observation that human judgments
change depending on which modalities crowdwork-
ers have access to. We have also presented a qualita-
tive analysis providing insights into how the image
and text complement each other. In summary, they
are usually beneficial if they provide additional de-
tails about the location at hand or an event that
occurred in the location at hand.
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Abstract

Multi-modal entity alignment aims to identify
equivalent entities between two different multi-
modal knowledge graphs, which consist of
structural triples and images associated with
entities. Most previous works focus on how to
utilize and encode information from different
modalities, while it is not trivial to leverage
multi-modal knowledge in entity alignment be-
cause of the modality heterogeneity. In this
paper, we propose MCLEA, a Multi-modal
Contrastive Learning based Entity Alignment
model, to obtain effective joint representations
for multi-modal entity alignment. Different
from previous works, MCLEA considers task-
oriented modality and models the inter-modal
relationships for each entity representation. In
particular, MCLEA firstly learns multiple in-
dividual representations from multiple modali-
ties, and then performs contrastive learning to
jointly model intra-modal and inter-modal in-
teractions. Extensive experimental results show
that MCLEA outperforms state-of-the-art base-
lines on public datasets under both supervised
and unsupervised settings.1

1 Introduction

Knowledge graphs (KGs) such as DBpe-
dia (Lehmann et al., 2015) and YAGO (Mahdis-
oltani et al., 2015) employ the graph structure to
represent real-world knowledge, where the con-
cepts are represented as nodes and the relationships
among concepts are represented as edges. KGs
have been widely applied to knowledge-driven
applications to boost their performance, like
recommendation system (Cao et al., 2019b),
information extraction (Han et al., 2018) and
question answering (Lan et al., 2021). In recent
years, an increasing amount of knowledge has
been represented in multi-modal formats, such as
MMKG (Liu et al., 2019) and Richpedia (Wang

1The source code is available at https://github.com/lzxlin/
MCLEA.

et al., 2020). These multi-modal KGs usually
contain images as the visual modality, like profile
photos, thumbnails, or posters. The augmented
visual modality has shown the significant capability
to improve KG-based applications (Chen et al.,
2020a). It was also proven that the incorporation
of visual modality can enhance the contextual
semantics of entities and also achieve improved
KG embeddings (Wang et al., 2021).

Due to the large scope of real-world knowledge,
most KGs are often incomplete, and multiple differ-
ent KGs are usually complementary to one another.
As a result, integrating multiple KGs into a unified
one can enlarge the knowledge coverage and can
also assist in refining KG by discovering the poten-
tial flaws (Chen et al., 2020a). To integrate hetero-
geneous multi-modal knowledge graphs, the task of
multi-modal entity alignment (MMEA) is therefore
proposed, which aims to discover equivalent enti-
ties referring to the same real-world object. Several
previous MMEA works have shown that the inclu-
sion of visual modality in modeling helps to im-
prove the performance of entity alignment. For in-
stance, MMEA (Chen et al., 2020a) and EVA (Liu
et al., 2021) proposed distinct multi-modal fusion
modules to integrate entity representations from
multiple modalities into joint embeddings and they
achieved state-of-the-art performance.2 However,
these methods mainly utilize existing representa-
tions from different modalities, and customized rep-
resentation learning for EA is not fully explored. In
addition, existing methods only explore the use of
diverse multi-modal representations to enhance the
contextual embedding of entities, the inter-modal
interactions are often neglected in modeling.

To address aforementioned problems, we pro-
pose MCLEA, a Multi-modal Contrastive Learning
based Entity Alignment model, which effectively

2To distinguish the model MMEA from the task MMEA,
we use EA to denote multi-modal entity alignment for the rest
of the paper.
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integrates multi-modal information into joint rep-
resentations for EA. MCLEA firstly utilizes multi-
ple individual encoders to obtain modality-specific
representations for each entity. The individually
encoded information includes neighborhood struc-
tures, relations, attributes, surface forms (i.e., en-
tity names), and images. Furthermore, we intro-
duce contrastive learning into EA with intra-modal
contrastive loss and inter-modal alignment loss.
Specifically, intra-modal contrastive loss aims at
distinguishing the embeddings of equivalent enti-
ties from the ones of other entities for each modal-
ity, thus generating more appropriate representa-
tions for EA. Inter-modal alignment loss, on the
other hand, aims at modelling inter-modal interac-
tions and reducing the gaps between modalities for
each entity. With these two losses, MCLEA can
learn discriminative cross-modal latent embeddings
and ensure potentially equivalent entities close in
the joint embedding space, regardless of the modal-
ity. MCLEA is also generic as it can support a
wide variety of modalities. Moreover, it combines
multiple losses and simultaneously learns multiple
objectives using task-dependent uncertainty.

The contributions of this paper are three-fold:
(i) We propose a novel method, called MCLEA, to
embed information from different modalities into
a unified vector space and then obtain discrimi-
native entity representations based on contrastive
learning for entity alignment. (ii) We propose two
novel losses to explore intra-modal relationships
and inter-modal interactions, ensuring that to-be-
aligned entities between different KGs are semanti-
cally close with minimum gaps between modalities.
(iii) We experimentally validate the effectiveness
and superiority of MCLEA as it achieves state-of-
the-art performance on several public datasets in
both supervised and unsupervised settings. The
overall results also suggest that our MCLEA is ca-
pable of learning more discriminative embedding
space for multi-modal entity alignment.

2 Related Work

2.1 Multi-modal Knowledge Graph

While many efforts (Mahdisoltani et al., 2015;
Lehmann et al., 2015) have been made to achieve
large-scale KGs, there are just a few attempts to
enrich KGs with multiple modalities. For example,
MMKG (Liu et al., 2019) and Richpedia (Wang
et al., 2020) utilized the rich visual resources
(mainly images) to construct multi-modal knowl-

edge graphs. Their target was to enrich the KG
information via appending sufficient and diverse
images to textual entities but they also brought
challenges to the KG embedding methods. Unlike
traditional KG embedding methods, multi-modal
KG embedding methods model the textual and
visual modalities at the same time (Zhang et al.,
2019; Wang et al., 2021). For example, Zhang et al.
(2019) proposed MKHAN to exploit multi-modal
KGs with hierarchical attention networks on ques-
tion answering, and Wang et al. (2021) proposed
RSME to selectively incorporate visual information
during the KG embedding learning process.

2.2 Multi-modal Entity Alignment

Recent studies for entity alignment mostly focused
on exploring the symbolic similarities based on var-
ious features, including entity names (Wu et al.,
2019; Zhang et al., 2019), attributes (Liu et al.,
2020), descriptions (Zhang et al., 2019; Tang et al.,
2020) and ontologies (Xiang et al., 2021). Most
of them started with transforming entities from
different KGs into a unified low-dimensional vec-
tor space by translation-based models or graph
neural networks and then discovered their coun-
terparts based on the similarity metrics of entity
embeddings. Some surveys summarized that addi-
tional KG information, if appropriately encoded,
could further improve the performance of EA meth-
ods (Sun et al., 2020b; Zhang et al., 2020). Some
previous attempts even proposed to guide these
embedding-based EA models with probabilistic
reasoning (Qi et al., 2021). With such findings and
the increasing popularity of multi-modal knowl-
edge graphs, how to incorporate visual modality in
EA, namely multi-modal entity alignment, has be-
gun to draw research attention but the attempts are
limited. The pioneer method PoE (Liu et al., 2019)
combined the multi-modal features and measured
the credibility of facts by matching the underlying
semantics of entities. Afterward, MMEA (Chen
et al., 2020a) was proposed to integrate knowledge
from different modalities (relational, visual, and
numerical) and obtain the joint entity representa-
tions. Another method termed EVA (Liu et al.,
2021) leveraged visual knowledge and other aux-
iliary information to achieve EA in both super-
vised and unsupervised manner. Alternatively, the
method HMEA (Guo et al., 2021) modeled struc-
tural and visual representations in the hyperbolic
space, while Masked-MMEA (Shi et al., 2022)
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Figure 1: The overall architecture of MCLEA, which combines multiple modalities (§ 3.1) and learns through two
proposed losses (§ 3.2), intra-modal contrastive loss (ICL) and inter-modal alignment loss (IAL).

discussed the impacts of visual modality and pro-
posed to incorporate a selectively masking tech-
nique to filter potential visual noises. These meth-
ods mainly utilize multi-modal representations to
enhance the contextual embedding of entities, nev-
ertheless, customized entity representations for EA
and inter-modal interactions are often neglected
in modeling. Different from previous methods,
our proposed MCLEA can learn both intra-modal
and inter-modal dynamics simultaneously by the
proposed contrastive objectives, expecting to learn
more discriminative and abundant entity represen-
tation for EA.

3 Proposed Method

We start with the problem formulation and the no-
tations. A multi-modal KG is denoted as G =
(E,R,A, V, T ), where E,R,A, V, T are the sets
of entities, relations, attributes, images, and triples,
respectively. Given G1 = (E1, R1, A1, V1, T1)
and G2 = (E2, R2, A2, V2, T2) as two KGs to be
aligned, the aim of EA is to find aligned entity pairs
A = {(e1, e2)|e1 ≡ e2, e1 ∈ E1, e2 ∈ E2}, where
we assume a small set of entity pairs S (seeds) are
given as training data. The overall architecture of
the proposed MCLEA is shown in Figure 1, and
its primary components, multi-modal embeddings,
and contrastive representation learning will be de-
tailed in the following sections.

3.1 Multi-Modal Embeddings
Multi-modal KGs often depict various features with
multiple modalities (or views), which are comple-
mentary to each other. We investigate different
embeddings from different modalities for MCLEA,
including neighborhood structures, relations, at-
tributes, names (often termed as surface forms in
previous work (Liu et al., 2021)), and images. Each

modality is processed with an individual encoder
network adapted to the nature of the signal. Fur-
thermore, these uni-modal embeddings are aggre-
gated with a simple weighted mechanism to form a
joint embedding. Theoretically, MCLEA can sup-
port more modalities, e.g., numerical values (Chen
et al., 2020a), which will be left in our future work.

3.1.1 Neighborhood Structure Embedding
The graph attention network (GAT) is a typical
neural network that directly deals with structured
data (Velickovic et al., 2018). Hence, we leverage
GAT to model the structural information of G1 and
G2, shown as “Structure Encoder” in Figure 1.
Specifically, the hidden state hi ∈ Rd (d is the
hidden size) of entity ei by aggregating its one-hop
neighbors Ni with self-loop is formulated as:

hi = σ
(∑

j∈Ni αijhj
)
, (1)

where hj is the hidden state of entity ej , σ(·) de-
notes the ReLU nonlinearity, and αij denotes the
importance of entity ej to entity ei, which is calcu-
lated with the self-attention:

αij =
exp

(
η
(
aT [Whi ⊕Whj ]

))
∑

u∈Ni exp (η (a
T [Whi ⊕Whu]))

, (2)

where W ∈ Rd×d denotes the weight matrix, a ∈
R2d is a learnable parameter,⊕ is the concatenation
operation and η is the LeakyReLU nonlinearity.
Motivated by (Li et al., 2019), we restrict W to
be a diagonal matrix to reduce computations, thus
increasing the scalability of the model. To stabilize
the learning process of self-attention (Velickovic
et al., 2018), we perform K (K = 2) heads of
independent attention of Eq. (1) in parallel, and
concatenate these features to obtain the structure
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embedding of entity ei:

hgi =

K⊕

k=1

σ
(∑

j∈Ni α
k
ijhj

)
, (3)

where αkij is the normalized attention coefficient
computed by the k-th attention. In practice, we ap-
ply a two-layer GAT model to aggregate the neigh-
borhood information within multiple hops, and use
the output of the last GAT layer as the neighbor-
hood structure embedding.

3.1.2 Relation, Attribute, and Name
Embeddings

Because the vanilla GAT operates on unlabeled
graphs, it is unable to properly model relational
information in multi-relational KGs. To alleviate
this issue, we follow (Yang et al., 2019) and regard
the relations of entity ei as bag-of-words feature
and feed it into a simple feed-forward layer to ob-
tain the relation embedding hri . For the simplicity
and consistency of MCLEA, we adopt the same
approach for the attribute embedding hai and the
name embedding hni for entity ei. Therefore, these
embeddings are calculated as:

hli = Wlu
l
i + bl, l ∈ {r, a, n}, (4)

where Wl and bl are learnable parameters, uri is
the bag-of-words relation feature, uai is the bag-of-
words attribute feature, and uni is the name feature
obtained by averaging the pre-trained GloVe (Pen-
nington et al., 2014) vectors of name strings. To
avoid the out-of-vocabulary challenges brought by
the extensive proper nouns (e.g., person names) and
the limited vocabulary of word vectors, we further
incorporate the character bigrams (Mao et al., 2021)
of entity names as auxiliary features for name em-
bedding.

3.1.3 Visual Embedding

We adopt the pre-trained visual model (PVM), e.g.,
ResNet-152 (He et al., 2016), to learn visual embed-
ding, shown as “Visual Encoder” in Figure 1. We
feed the image vi of entity ei into the pre-trained
visual model and use the final layer output before
logits as the image feature. The feature is sent
through a feed-forward layer to get the visual em-
bedding:

hvi = Wv · PVM(vi) + bv. (5)

3.1.4 Joint Embedding
Next, we implement a simple weighted concatena-
tion by integrating the multi-modal features into a
single compact representation ĥi for entity ei:

ĥi =
⊕

m∈M

[
exp(wm)∑
j∈M exp(wj)

hmi

]
, (6)

where M = {g, r, a, n, v} and wm is a train-
able attention weight for the modality of m. L2-
normalization is performed on the input embed-
dings before the weighted concatenation.

The current joint embeddings are coarse-grained
and there are no interactions between modalities.
Therefore, two training strategies are designed for
learning the dynamics within (intra-) and between
(inter-) modalities.

3.2 Contrastive Representation Learning

As the core of MCLEA, we propose two novel
losses on the uni-modal and joint representations
to sufficiently capture the dynamics within and be-
tween modalities while preserving semantic prox-
imity and minimizing the modality gap.

3.2.1 Intra-modal Contrastive Loss (ICL)
Inspired by recent work on contrastive learning
(CL) (Chen et al., 2020b; Khosla et al., 2020), we
devise an intra-modal contrastive loss (ICL) that
enforces the input embedding to respect the simi-
larity of entities in the original embedding space.
Meanwhile, ICL allows MCLEA to distinguish the
embeddings of the same entities in different KGs
from those of other entities for each modality.

Given that S can be naturally regarded as pos-
itive samples, whereas any non-aligned pairs can
be regarded as negative samples due to the con-
vention of 1-to-1 alignment constraint (Sun et al.,
2018). Formally, for the i-th entity ei1 ∈ E1

of minibatch B, the positive set is defined as
Pi = {ei2|ei2 ∈ E2}, where (ei1, e

i
2) is an aligned

pair. The negative set includes two types, inner-
graph unaligned pairs from the source KG G1 and
cross-graph unaligned pairs from the target KG
G2, defined as N i

1 = {ej1|∀ej1 ∈ E1, j ̸= i} and
N i

2 = {ej2|∀ej2 ∈ E2, j ̸= i}, respectively. Both
N i

1 and N i
2 come from minibatch B. These two

types of negative samples are designed to constrain
the joint embedding space, in which the semanti-
cally similar entities from the same KG stay close-
by and the aligned entities from two KGs map to
proximate points. Overall, we define the alignment
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probability distribution qm(ei1, e
i
2) of the modality

of m for each positive pair (ei1, e
i
2) as:

qm(ei1, e
i
2) =

δm(ei1, e
i
2)

δm(ei1, e
i
2) +

∑
e
j
1∈Ni

1

δm(ei1, e
j
1) +

∑
e
j
2∈Ni

2

δm(ei1, e
j
2)
, (7)

where δm(u, v) = exp(fm(u)
T fm(v)/τ1), fm(·)

is the encoder of the modality m, and τ1 is a tem-
perature parameter. Especially, L2-normalization
is performed on the input feature embedding before
computing the inner product. Notably, the distri-
bution of Eq. (7) is directional and asymmetric for
each input; the distribution for another direction is
thus defined similarly for qm(ei2, e

i
1). The ICL can

be formulated as:

LICL
m = −Ei∈B log

[
1

2
(qm(ei1, e

i
2) + qm(ei2, e

i
1))

]
. (8)

We apply ICL on each modality separately and
also on the combined multi-modal representation
as specified in Eq. (6). ICL is performed in con-
trastive supervised learning to learn intra-modal
dynamics for more discriminative boundaries for
each modality in the embedding space.

3.2.2 Inter-modal Alignment Loss (IAL)
Since the embeddings of different modalities are
separately trained with ICL, their representations
are not aligned and it is difficult to model the com-
plex interaction between modalities solely with the
fusion module. To alleviate this, we further propose
inter-modal alignment loss (IAL), which targets at
reducing the gap between the output distribution
over different modalities, so that the MCLEA can
model inter-modal interactions and obtain more
meaningful representations.

We consider the joint embedding as the compre-
hensive representation due to its fusion of multi-
modal features; therefore, we attempt to transfer
the knowledge from the joint embedding back to
uni-modal embedding so that the uni-modal em-
bedding could better utilize the complementary in-
formation from others. Concretely, we minimize
the bidirectional KL divergence over the output dis-
tribution between joint embedding and uni-modal
embedding:

LIAL
m = Ei∈B

1

2
[KL(q′o(e

i
1, e

i
2) || q′m(ei1, e

i
2))

+KL(q′o(e
i
2, e

i
1) || q′m(ei2, e

i
1))],

(9)

where q′o(e
i
1, e

i
2), q′o(e

i
2, e

i
1) and q′m(e

i
1, e

i
2),

q′m(e
i
2, e

i
1) represent the output predictions with

two directions of joint embedding and the uni-
modal embedding of modality m, respectively.
Their calculation are similar to Eq. (7) but with a
temperature parameter τ2. We only back-propagate
through q′m(e

i
1, e

i
2), q

′
m(e

i
2, e

i
1) in Eq. (9) as knowl-

edge distillation (Hinton et al., 2015).
IAL aims at learning interactions between dif-

ferent modalities within each entity, which con-
centrates on aggregating the distribution of differ-
ent modalities and thus reduces the modality gap.
Some approaches (Zhang et al., 2019; Chen et al.,
2020a) attempt to learn a common space by impos-
ing alignment constraints on the features between
different modalities, but they introduce noises due
to semantic heterogeneity. Different from these
approaches, we distill the useful knowledge from
the output prediction of multi-modal representation
to the uni-modal representation, while maintain-
ing relatively modality-specific features of each
modality.

3.3 Optimization Objective

The overall loss of the MCLEA is as follows,

L = LICL
o +

∑
m∈M αmLICL

m +
∑
m∈M βmLIAL

m , (10)

whereM = {g, r, a, n, v}, LICL
o denotes the ICL

operated on joint embedding, αm and βm are hyper-
parameters that balance the importance of losses.
However, manually tuning these hyper-parameters
is expensive and intractable. Instead, we treat
MCLEA as a multi-task learning paradigm and
then use homoscedastic uncertainty (Kendall et al.,
2018) to weigh each loss automatically during
model training. We adjust the relative weight of
each task in the loss function by deriving a multi-
task loss function based on maximizing the Gaus-
sian likelihood with task-dependant uncertainty.
Due to space limits, we only show the derived re-
sult and leave the detailed derivation process in the
Appendix. The loss in Eq. (10) can be rewritten as:

L = LICL
o +

∑
m∈M

(
1
α2
m
LICL
m + 1

β2
m
LIAL
m + logαm + log βm

)
,

(11)
where αm and βm are automatically learned during
training.

To overcome the lack of training data, we in-
corporate a bi-directional iterative strategy used
in (Liu et al., 2021) to iteratively add new aligned
seeds during training. In the inference, we use the
cosine similarity metric between joint embeddings
of entities to determine the counterparts of entities.
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MCLEA can be extended to the unsupervised
setting, in which the pseudo-alignment seeds are
discovered based on feature similarities of entity
names (Mao et al., 2020a; Ge et al., 2021) or entity
images (Liu et al., 2021), accordingly resulting in
different unsupervised versions of MCLEA.

4 Experiments

4.1 Experimental Setup

Datasets. Five EA datasets are adopted for
evaluation, including three bilingual datasets
ZH/JA/FR-EN versions of DBP15K (Liu et al.,
2021) and two cross-KG datasets FB15K-
DB15K/YAGO15K (Liu et al., 2019). The detailed
dataset statistics are listed in Table 5 in the Ap-
pendix. Note that not all entities have correspond-
ing images and for those without images, MCLEA
would assign random vectors for the visual modal-
ity, as the setting of EVA (Liu et al., 2021). As
for DBP15K, 30% reference entity alignments are
given as S while as for cross-KG datasets, 20%,
50%, and 80% reference entity alignments are
given (Liu et al., 2019).
Baselines. We compare the proposed MCLEA
against 19 state-of-the-art EA methods, which
can be classified into four categories: 1)
structure-based methods that solely rely on struc-
tural information for aligning entities, including
BootEA (Sun et al., 2018), MUGNN (Cao et al.,
2019a), KECG (Li et al., 2019), NAEA (Zhu et al.,
2019), and AliNet (Sun et al., 2020a); 2) auxiliary-
enhanced methods that utilize auxiliary informa-
tion to improve the performance, including Mul-
tiKE (Zhang et al., 2019), HMAN (Yang et al.,
2019), RDGCN (Wu et al., 2019), AttrGNN (Liu
et al., 2020), BERT-INT (Tang et al., 2020) and
ERMC (Yang et al., 2021); 3) multi-modal methods
that combine the multi-modal features to generate
entity representations, including PoE (Liu et al.,
2019), MMEA (Chen et al., 2020a), HMEA (Guo
et al., 2021), and EVA (Liu et al., 2021); 4) un-
supervised methods, including RREA (Mao et al.,
2020b), MRAEA (Mao et al., 2020a), EASY (Ge
et al., 2021), and SEU (Mao et al., 2021).
Implementation Details. The hidden size of each
layer of GAT is 300, while the embedding size of
the other modalities is 100. We use the AdamW
optimizer with a learning rate of 5 × 10−4 to up-
date the parameters. The number of training epochs
is 1000 with early-stopping and the batch size is
512. The hyper-parameters τ1, τ2 are set to 0.1

and 4.0, respectively. To keep in line with previ-
ous works, we use the same entity name transla-
tions and word vectors provided by Xu et al. (2019)
for bilingual datasets. As for cross-KG datasets,
we do not consider surface forms for fair compar-
ison. For visual embedding, we adopt the prepro-
cessed image features provided by Liu et al. (2021)
and Chen et al. (2020a) for bilingual datasets and
cross-KG datasets, where the former uses ResNet-
152 as the pre-trained backbone, while the latter
uses VGG-16. Previous work has revealed that
surface forms are quite helpful for entity align-
ment (Liu et al., 2020). For fair comparison, we
divide the supervised methods on bilingual datasets
into two groups based on whether surface forms
are used, and we implement an MCLEA variant
(MCLEA†) where the name embedding is removed.
For the unsupervised setting, we implement two
variants, MCLEA-V and MCLEA-N, which gener-
ate pseudo-alignment seeds based on the similari-
ties of images and names, respectively.
Evaluation. We rank matching candidates of
each to-be-aligned entity and use the metrics of
Hits@1 (H@1), Hits@10 (H@10), and mean re-
ciprocal rank (MRR). In the following tables, the
best results are in bold with the second best re-
sults underlined, and “Improv. best %” denotes
the relative improvement of MCLEA over the best
baseline.

4.2 Overall Results

Table 1, Table 2, and Table 3 report the perfor-
mance of MCLEA against different baselines on
different datasets with different settings. Overall,
MCLEA and its variants mostly perform the best
across all the datasets on all the metrics.

Table 1 reports the performance of MCLEA
against the supervised baselines on bilingual
datasets in the settings of w/ and w/o surface forms.
Compared with the first group without using sur-
face forms, MCLEA† brings about 5.2% to 7.2%
relative improvement in H@1 over the best base-
line EVA. The superiority of MCLEA confirms that
the proposed contrastive representation learning
substantially promotes the performance. Specifi-
cally, compared with the second group with surface
forms involvement, there are two notable observa-
tions. On one hand, MCLEA shows a clear im-
provement when combined with name embedding,
suggesting that entity names provide useful clues
for entity alignment, which has been revealed in
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Models DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

w
/o

SF
BootEA (Sun et al., 2018) .629 .847 .703 .622 .854 .701 .653 .874 .731
KECG (Li et al., 2019) .478 .835 .598 .490 .844 .610 .486 .851 .610
MUGNN (Cao et al., 2019a) .494 .844 .611 .501 .857 .621 .495 .870 .621
NAEA (Zhu et al., 2019) .650 .867 .720 .641 .873 .718 .673 .894 .752
AliNet (Sun et al., 2020a) .539 .826 .628 .549 .831 .645 .552 .852 .657
EVA (Liu et al., 2021) .761 .907 .814 .762 .913 .817 .793 .942 .847
MCLEA† (Ours) .816 .948 .865 .812 .952 .865 .834 .975 .885

Improv. best % 7.2 4.5 6.3 6.6 4.3 5.9 5.2 3.5 4.5

w
/S

F

MultiKE (Zhang et al., 2019) .437 .516 .466 .570 .643 .596 .714 .761 .733
HMAN (Yang et al., 2019) .562 .851 – .567 .969 – .540 .871 –
RDGCN (Wu et al., 2019) .708 .846 – .767 .895 – .886 .957 –
AttrGNN (Liu et al., 2020) .777 .920 .829 .763 .909 .816 .942 .987 .959
BERT-INT (Tang et al., 2020) .968 .990 .977 .964 .991 .975 .992 .998 .995
ERMC (Yang et al., 2021) .903 .946 .899 .942 .944 .925 .962 .982 .973
MCLEA (Ours) .972 .996 .981 .986 .999 .991 .997 1.00 .998

Improv. best % 0.4 0.6 0.4 2.3 0.8 1.6 0.5 0.2 0.3

Table 1: Comparative results of MCLEA without (w/o) and with (w/) surface forms (SF) against strong supervised
methods on three bilingual datasets, and † denotes an MCLEA variant without name embedding.

previous work (Zhang et al., 2019; Liu et al., 2020;
Ge et al., 2021). On the other hand, MCLEA still
shows slightly better performance than the best
baseline BERT-INT with 0.4% to 2.3% relative
improvement in H@1 nevertheless with far fewer
parameters (13M vs. 110M). This also reveals that
MCLEA can effectively model robust entity repre-
sentations instead of attaching over-parameterized
encoders. Noteworthily, BERT-INT relies heavily
on entity descriptions to fine-tune BERT, but entity
descriptions may not be available for every entity,
and collecting them is labor-intensive, limiting the
scope of its application.

Table 2 shows the comparison of multi-modal
methods on two cross-KG datasets, which provides
direct evidence of the effectiveness of MCLEA.
When 20% training seeds are given, MCLEA out-
performs the best baseline MMEA with 67.9%
higher in H@1, 30.3% higher in H@10, and 49.6%
higher in MRR. The performance gains are still
significant when 50% and 80% alignment seeds are
given. It is worth noting that the performance gains
reach the highest in the 20% setting and MCLEA
(20%) obtains comparable results to EVA (80%), in-
dicating that MCLEA could better utilize the mini-
mum number of alignment seeds to obtain effective
representations. We also find that MMEA greatly
outperforms EVA, we speculate that the cross-KG
datasets are quite heterogeneous (w.r.t. the num-
ber of relations) compared to bilingual datasets, as
shown in Table 5 in the Appendix, and the structure
encoder of EVA struggles to model heterogeneous

information and EVA cannot utilize the numeri-
cal knowledge in cross-KG datasets, which is well
exploited in MMEA.

Models FB15K-DB15K FB15K-YAGO15K
H@1 H@10 MRR H@1 H@10 MRR

20
%

PoE .126 .251 .170 .113 .229 .154
HMEA .127 .369 – .105 .313 –
MMEA .265 .541 .357 .234 .480 .317
EVA∗ .134 .338 .201 .098 .276 .158
MCLEA (Ours) .445 .705 .534 .388 .641 .474

Improv. best % 67.9 30.3 49.6 65.8 33.5 49.5

50
%

PoE .464 .658 .533 .347 .536 .414
HMEA .262 .581 – .265 .581 –
MMEA .417 .703 .512 .403 .645 .486
EVA∗ .223 .471 .307 .240 .477 .321
MCLEA (Ours) .573 .800 .652 .543 .759 .616

Improv. best % 23.5 13.8 22.3 34.7 17.7 26.7

80
%

PoE .666 .820 .721 .573 .746 .635
HMEA .417 .786 – .433 .801 –
MMEA .590 .869 .685 .598 .839 .682
EVA∗ .370 .585 .444 .394 .613 .471
MCLEA (Ours) .730 .883 .784 .653 .835 .715

Improv. best % 9.6 1.6 8.7 9.2 -0.4 4.8

Table 2: Experimental results on two cross-KG datasets
where X% represents the percentage of reference entity
alignments used for training. The symbol ∗ denotes the
reproduced results.

When compared to the unsupervised methods
in Table 3, both MCLEA variants perform slightly
better than the best baseline with performance gain
in H@1 varying from 0.7% to 6.7%. Note that us-
ing image (-V) or name (-N) similarities to produce
seeds leads to almost identical results, demonstrat-
ing the effectiveness of such simple rules to enable
MCLEA in the unsupervised setting.
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Models DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MRAEA (Mao et al., 2020a) .778 .832 – .889 .927 – .950 .970 –
RREA (Mao et al., 2020b) .822 .964 – .918 .978 – .963 .992 –
EASY (Ge et al., 2021) .898 .979 .930 .943 .990 .960 .980 .998 .990
SEU (Mao et al., 2021) .900 .965 .924 .956 .991 .969 .988 .999 .992
MCLEA-V (Ours) .959 .995 .974 .977 .999 .987 .990 1.00 .994
MCLEA-N (Ours) .960 .994 .974 .983 .999 .990 .995 1.00 .997

Improv. best % 6.7 1.6 4.7 2.8 0.8 2.2 0.7 0.1 0.5

Table 3: Unsupervised experimental results on three bilingual datasets, where -V and -N denote different methods
to generate pseudo-alignment seeds.

4.3 Model Analysis

Ablation study. The ablation experiments are
performed on two bilingual datasets and the re-
sults are presented in Table 4. We first examine
the individual contribution of different modalities.
The removal of different modalities has varying
degrees of performance drop, and entity names
have shown the primary importance with the most
significant drop, which is in line with the previ-
ous findings (Mao et al., 2020a; Ge et al., 2021).
The structural information also shows its stable
effectiveness across different datasets and other
modalities make a slight contribution to MCLEA.
Especially, visual information can play a more pro-
nounced role in the absence of surface forms (Chen
et al., 2020a; Liu et al., 2021). Furthermore, we
inspect various training strategies in MCLEA. It
dramatically degrades the performance when re-
moving the ICL from MCLEA, which indicates
the importance of ICL in learning the intra-modal
proximity. The IAL learns the interdependence be-
tween different modalities and is also beneficial to
our model. Training MCLEA without the iterative
strategy and replacing the uncertainty mechanism
with uniform weights (i.e., w/o uncertainty) also
cause decreases in performance. Overall, the abla-
tion experiments validate the involvement of these
modalities and training strategies with empirical
evidence.

Impact of hyper-parameters τ1, τ2. We inves-
tigate the effects of hyper-parameters τ1, τ2 on
DBP15KZH−EN . As shown in Figure 2, different
values of τ1 have drastic effects on MCLEA, espe-
cially in terms of H@1 and MRR, which is because
τ1 controls the strength of penalties on hard nega-
tive samples and an appropriate τ1 is conducive to
learning discriminative entity embeddings. On the
other hand, we observe lower variance in the perfor-
mance w.r.t. τ2 and the performance saturates when

Models DBP15KZH−EN DBP15KJA−EN

H@1 H@10 MRR H@1 H@10 MRR

MCLEA .972 .996 .981 .986 .999 .991

M
od

al
iti

es

w/o structure .883 .956 .909 .947 .980 .959
w/o relation .967 .995 .978 .985 .999 .991
w/o attribute .961 .994 .974 .983 .999 .991
w/o name .816 .948 .865 .812 .952 .865
w/o visual .968 .994 .978 .985 .999 .991

Tr
ai

ni
ng

w/o ICL .782 .892 .818 .813 .909 .844
w/o IAL .966 .995 .977 .980 .998 .987
w/o iter. strategy .942 .991 .960 .964 .995 .976
w/o uncertainty .969 .996 .980 .984 .999 .990

Table 4: Ablation study on two bilingual datasets.

τ2 = 4.0. The KL divergence establishes the asso-
ciations between different modalities, within which
τ2 regulates the softness of the alignment distribu-
tion produced by input embedding and transfers the
generalization capability of the joint embedding to
uni-modal embedding.
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Figure 2: Performance comparison with different values
of τ1, τ2.

Similarity Distribution of Representations. To
investigate the effectiveness of entity representa-
tions, we experiment MCLEA with and without
ICL/IAL on DBP15KZH−EN and produce the vi-
sualization in Figure 3 by averaging the similar-
ity distribution of the test entities and their pre-
dicted counterparts for different modalities. It can
be observed that in every modality, especially in
structure and name, it holds a high top-1 similarity
and a large similarity variance. More importantly,
it meets our expectation that contrastive learning
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(ICL and IAL) enables more discriminative entity
learning in the joint representations.
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Figure 3: Similarity visualization of representations of
test entities and their top-10 predicted counterparts. The
vertical axis represents different modalities with (+) and
without (−) ICL/IAL and the horizontal axis represents
the index of ranked predictions.

5 Conclusion

This paper presented a novel method termed
MCLEA to address the multi-modal entity align-
ment. MCLEA utilizes multi-modal information
to obtain the joint entity representations and it is
composed of two losses, intra-modal contrastive
loss, and inter-modal alignment loss, to explore the
intra-modal relationships and cross-modal interac-
tions, respectively. We experimentally validated
the state-of-the-art performance of MCLEA in sev-
eral public datasets and its capability of learning
more discriminative embedding space for entity
alignment. For future work, we plan to explore
more side information such as entity descriptions
to boost alignment performance.
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Appendix

A Derivation for Adaptively Weighted
Multi-task Loss

In this section, we treat Eq. (10) as a multi-task loss
function and combine multiple objectives using
homoscedastic uncertainty (Kendall et al., 2018),
allowing us to automatically learn the relative
weights of each loss.

Firstly, the ICL can actually be regarded as a clas-
sification loss with negative log-likelihood, i.e., pre-
dicting whether two entities are equivalent. Here,
we rewrite the loss function of ICL as follows (for
simplicity, here we omit the modality index and the
inner-graph negative samples, and only consider
the unidirectional version):

LICL = −Ei∈B log q(ei1, ei2)
= −Ei∈B logP

(
c = 1|fW(ei1, e

i
2)
)
,

(12)

where c = 1 means that the two input entities are
equivalent, otherwise c = 0; fW(·, ·) is the model
output with parameter W. Following (Kendall
et al., 2018), we adapt the negative log-likelihood
to squash a scaled version of the model output with
an uncertainty scalar σ through a softmax function:

− logP
(
c = 1|fW(ei1, e

i
2), σ

)

= − log Softmax
(

1

σ2
fW(ei1, e

i
2)

)

= − 1

σ2
fW(ei1, e

i
2) + log

∑

j ̸=i
exp

(
1

σ2
fW(ei1, e

j
2)

)
,

(13)

where ej2 with j ̸= i is the cross-graph negative
samples defined in the main paper.

Applying the same assumption in (Kendall et al.,

2018):

1

σ

∑

j ̸=i
exp

(
1

σ2
fW(ei1, e

j
2)

)

≈
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c′
exp

(
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j
2)
)) 1

σ2

,

(14)

we can simplify Eq. (13) to:

− logP
(
c = 1|fW(ei1, e

i
2), σ

)

≈ − 1

σ2
fW(ei1, e

i
2) +

1

σ2
log
∑

j ̸=i
exp(fW(ei1, e

j
2)) + log(σ)

= − 1

σ2
logP

(
c = 1|fW(ei1, e

i
2)
)
+ log(σ),

(15)

where σ can be interpreted as the relative weight of
the loss and automatically learned with stochastic
gradient descent.

On the other hand, the IAL defines the KL di-
vergence over the output distribution between joint
embedding and uni-modal embedding (we omit the
modality index and only consider the unidirectional
version for simplicity):

LIAL = Ei∈B KL(q′o(e
i
1, e

i
2) || q′(ei1, ei2))

= Ei∈B q′o(ei1, ei2) log
q′o(e

i
1, e

i
2)

q′(ei1, e
i
2)

= Ei∈B [q′o(e
i
1, e

i
2) log q

′
o(e

i
1, e

i
2)

− q′o(ei1, ei2) log q′(ei1, ei2)],

(16)

where q′o(e
i
1, e

i
2) and q′(ei1, e

i
2) represent the out-

put predictions of joint embedding and the uni-
modal embedding, respectively. Since we only
back-propagate through q′(ei1, e

i
2) in Eq. (9), LIAL

is equivalent to calculating the cross-entropy loss
over the two distributions:

LIAL = −q′o(ei1, ei2) log q′(ei1, ei2). (17)

Dataset KG #Ent. #Rel. #Attr. #Rel tr. #Attr tr. #Image #Ref.

DBP15KZH−EN (Liu et al., 2021)
ZH 19,388 1,701 8,111 70,414 248,035 15,912 15,000EN 19,572 1,323 7,173 95,142 343,218 14,125

DBP15KJA−EN (Liu et al., 2021)
JA 19,814 1,299 5,882 77,214 248,991 12,739 15,000EN 19,780 1,153 6,066 93,484 320,616 13,741

DBP15KFR−EN (Liu et al., 2021)
FR 19,661 903 4,547 105,998 273,825 14,174 15,000EN 19,993 1,208 6,422 115,722 351,094 13,858

FB15K-DB15K (Liu et al., 2019)
FB15K 14,951 1,345 116 592,213 29,395 13,444 12,846DB15K 12,842 279 225 89,197 48,080 12,837

FB15K-YAGO15K (Liu et al., 2019)
FB15K 14,951 1,345 116 592,213 29,395 13,444 11,199YAGO15K 15,404 32 7 122,886 23,532 11,194

Table 5: Dataset Statistics.2583



Therefore, similar to ICL, we can automatically
learn the relative weight of IAL for each modality
through task-dependent uncertainty. As mentioned
above, the total loss in Eq. (10) can be rewritten as:

L = LICL
o +

∑
m∈M

(
1
α2
m
LICL
m + logαm

)

+
∑

m∈M
(

1
β2
m
LIAL
m + log βm

)
,

(18)

where αm, βm are learnable parameters. Large αm
(βm) will decrease the contribution of LICL

m (LIAL
m )

for the m-th modality, whereas small αm (βm) will

increase its contribution.

B Dataset Statistics

The detailed dataset statistics are listed in Ta-
ble 5, including the number of entities (#Ent.), rela-
tions (#Rel.), attributes (#Attr.), number of relation
triples (#Rel tr.) and attribute triples (#Attr tr.),
number of images (#Image), and number of refer-
ence entity alignments (#Ref.). It is worth noting
that not all entities have the associated images or
the equivalent counterparts in the other KG.
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Abstract
Neural topic models have been widely used
in discovering the latent semantics from a cor-
pus. Recently, there are several researches on
hierarchical neural topic models since the re-
lationships among topics are valuable for data
analysis and exploration. However, the exist-
ing hierarchical neural topic models are limited
to generate a single topic tree. In this study,
we present a nonparametric forest-structured
neural topic model by firstly applying the self-
attention mechanism to capture parent-child
topic relationships, and then build a sparse di-
rected acyclic graph to form a topic forest. Ex-
periments indicate that our model can automat-
ically learn a forest-structured topic hierarchy
with indefinite numbers of trees and leaves, and
significantly outperforms the baseline models
on topic hierarchical rationality and affinity.

1 Introduction

Topic model has been widely used in modeling
a collection of documents and encoding the text
content to a low dimensional feature space. Tradi-
tional topic models can be divided into probabilistic
graphical models and matrix factorization based
methods. Probabilistic graphical models, such
as Latent Dirichlet Allocation (LDA) (Blei et al.,
2003b), rely on approximate approaches (e.g., vari-
ational inference and Gibbs sampling) with com-
plex derivation or high computational costs to esti-
mate parameters (Srivastava and Sutton, 2017). Ma-
trix factorization based methods (Lee and Seung,
1999) can effectively decompose the document-
word representation into two sub-matrices but are
subject to a low stability (Chen et al., 2021b). Re-
cently, neural topic models based on Neural Vari-
ational Inference (NVI) (Srivastava and Sutton,
2017; Miao et al., 2017; Chen et al., 2021b) have
attracted great attention owing to the advantages of
fast parameter inference and flexibility.

∗The first two authors contributed equally to this work.
†The corresponding author.
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Figure 1: An example of forest-structured topics. Each
topic is represented by 5 top words.

Despite some notable successes for neural topic
models, most of the existing methods can only ex-
tract topics at the same level. This may cause confu-
sions on identifying the hierarchical structure about
the relationships among topics, which is valuable
for data analysis and exploration in various do-
mains (Paisley et al., 2015). To address this, a few
neural topic models have been developed to model
the hierarchical structure of topics (Isonuma et al.,
2020; Chen et al., 2021b,a). The above methods,
however, all assume that the hierarchical structure
is a tree with a single root node. This is a signif-
icant limitation because for a real-world corpus,
topics can be organized into several trees, where
the structure of each tree is independent. As an il-
lustration, Figure 1 shows two root topics on email
and study. Topics at level 2 include email contents
(i.e., politics and religion) and those describing the
mode of study (i.e., patients and rats). Some of
the topics at level 2 have several children topics
which are very specific to distinguish the scope of
politics (e.g., country and community) or focus of
biology (e.g., cell, protein and genes), and others
have only one child topic or none. It indicates that
the real-world hierarchical topic structure is more
likely to be a forest rather than a tree.

The forest-structured topic models still face chal-
lenges since the hierarchical structure of topics
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needs to be (1) rational—root topics are general and
children topics are specific to their corresponding
parent topics (Viegas et al., 2020); (2) affinitive—
each topic is more similar to their children topics
than topics from other parents (Kim et al., 2012);
(3) diverse—the topic-word distributions associ-
ated with parents and children are distinguishable
(Blei et al., 2003a); (4) flexible—children of each
topic are automatically assigned (Kim et al., 2012)
and topic numbers at each level are unbounded (i.e.,
nonparametric) (Chen et al., 2021b). Besides, the
number of root topics, depth, and width of a forest
structure are hard to be pre-defined.

In this work, we propose a nonparametric Forest-
structured Neural Topic Model (nFNTM) to tackle
these challenges, which firstly captures parent-
child topic relationships based on the self-attention
mechanism (Vaswani et al., 2017)1, and then learns
a sparse Directed Acyclic Graph (DAG) to build a
topic forest by federating document-topic distribu-
tions and parent-child relationships based on NVI.
To our best knowledge, the current topic models
with a DAG structure are based on Bayesian learn-
ing (Li and McCallum, 2006; Mimno et al., 2007)
or Non-negative Matrix Factorization (NMF) (Liu
et al., 2018; Viegas et al., 2020), and there is no
work under the NVI framework. To sum up, the
main contributions are summarized as follows:

• We are the first to introduce the sparse DAG
into neural topic modeling with the aim of
learning a forest-structured topic hierarchy.

• We develop a self-attention mechanism to cap-
ture the relationships among topics.

• We evaluate nFNTM on three benchmark
datasets. Empirical results indicate that our
model significantly outperforms baselines.

2 Related Work

Traditional topic models, such as LDA (Blei et al.,
2003b), are powerful tools for modeling text in
an unsupervised fashion, while they lack the ex-
ploration of the relationship among topics. To
overcome this issue, a tree-structured topic model
named hLDA (Blei et al., 2003a) was first proposed.
In hLDA, the nested Chinese Restaurant Process

1We use the self-attention mechanism as it is effective
to draw the global dependencies between input tokens with
little reliance on the external information (Yao et al., 2021).
Furthermore, it allows efficient computation by parallelization.

(nCRP) was used to generate a topic tree. To alle-
viate the single-path constraint assumed by nCRP,
a nested Hierarchical Dirichlet Process (HDP), i.e.,
nHDP (Paisley et al., 2015) was developed, which
provided the ability of cross-thematic borrowing
while keeping general topic areas in separate sub-
trees. The nested Chinese Restaurant Franchise
(nCRF) process developed in (Ahmed et al., 2013)
combined the advantages of HDP (Teh et al., 2004)
and nCRP. In (Kim et al., 2012), the recursive
Chinese Restaurant Process (rCRP) was proposed
to discover a hierarchical topic structure with un-
bounded depth and width.

These models based on the Chinese restaurant
process can be effectively employed to discover
the hierarchical topic structure by Bayesian learn-
ing, but the posterior inference method requires a
high computational cost. The scalability of NMF-
based methods (Liu et al., 2018; Viegas et al., 2020)
is also quite limited. There is a new direction to
build tree-structured topic models based on NVI
due to its advantages of fast parameter inference
and flexibility. A tree-structured neural topic model
(TSNTM) (Isonuma et al., 2020) was proposed,
which applied doubly-recurrent neural networks to
parameterize topic distributions over a tree. But it
lacked the ability of learning appropriate semantic
embeddings for topics and relied on heuristic rules
to update the tree structure. A nonparametric tree-
structured neural topic model (nTSNTM) (Chen
et al., 2021b) tackled these weaknesses by directly
sampling the leaf topics and generating the paths
from bottom up automatically. nTSNTM used a
common stick-breaking construction to infer topic
distributions from the leaf nodes to the root node
and applied dependency matrices to keep track of
the affiliations among topics. However, the depen-
dency matrices which determine the topic hierarchy
are neural weights between the network layers. It
results in the structure (i.e., depth and width) of the
tree can only be set in advance.

3 Methodology

3.1 Model Architecture

Our nFNTM consists of an encoder, a topic atten-
tion, and a decoder, as shown in Figure 2.

3.1.1 Encoder
Given a collection of documents, each document
d ∈ RV is represented by Bag-of-Words (BoW),
where V is the vocabulary size. For the encoder,
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we transform d into document-topic distribution π
by the Stick-Breaking Process (SBP) (Ishwaran
and James, 2001), which provides a solution to
define atomic measures associated Bayesian non-
parametric methods. Any almost sure (a.s.) dis-
crete probability measure P is an SBP if it can be
represented by:

P =

∞∑

i=1

πiδxi , πi =

{
v1 i = 1,
vi
∏
t<i (1− vt) i > 1,

(1)
where xi ∼ H, H is the base probability mea-
sure, δxi is a discrete measure concentrated at
xi, v ∼ Beta (α,β) with α and β being the
prior parameters, {πi} are random weights in-
dependent of H and satisfy 0 ≤ πi ≤ 1 and∑∞

i=1 πi = 1. SBP specifies to the Dirichlet pro-

cess if v ∼ Beta
(

1, β̂
)

, then the joint distribution
over the infinite sequence of stick-breaking weights
with concentration parameter β̂ is {πi} ∼ GEM
(β̂) (Teh et al., 2004).

Note that the existing nTSNTM (Chen et al.,
2021b) chooses the Kumaraswamy distribu-
tion (Kumaraswamy, 1980) to approximate the
Beta distribution since it does not have a differ-
entiable non-centered parametrization. However,
the Beta distribution is a one-parameter subfam-
ily of symmetric distributions and has more ways
of generating the distribution via physical pro-
cesses (Jones, 2009). To estimate the Beta distribu-
tion unbiasedly, we inference it through computing

implicit reparameterization gradients and the de-
tails will be introduced in Section 3.3. As shown
in Figure 2, we introduce an inference network to
build the Beta distribution. We obtain α and β by
α = lα (η) and β = lβ(η), where η = MLP (d)
is the low-dimensional representation of d, lα and
lβ are the single layer of linear connection, and
MLP denotes a multilayer perceptron.

3.1.2 Topic Attention
We intend the model to attend on relationships
among topics in a manner that the resultant atten-
tion is distributed according to the topics generated
from the corpus. We employ topic embeddings
TE ∈ RS×dt to perform attention on topics, where
S → ∞ is the breaking number in SBP, i.e., the
number of topics learned by SBP, and dt is the di-
mension of topic embeddings. Considering that
the relevance of each topic should be computed
and learned independently, we regard each topic
embedding as a subspace and project the input hid-
den representations to different topic embedding
subspaces as follows:

Q = TEWQ, K = TEWK, (2)

where WQ ∈ Rdt×dr and WK ∈ Rdt×dr are train-
able parameters, dr is the dimension of each topic
embedding subspace, Q ∈ RS×dr and K ∈ RS×dr
denote the matrices of queries and keys. Based
on queries and keys, we calculate a weighted ad-
jacency matrix C ∈ RS×S , where each element
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Ci,j denotes the parent-child correlation degree of
relevance between topics ti and tj2. To ensure that
each element Ci,j is discrete, a softmax function
with temperature τ is applied (Hinton et al., 2015):

Ci,j =
exp(

Ĉi,j
τ )

∑S
k=1 exp(

Ĉi,k
τ )

, (3)

where Ĉ = QKT .
To further incorporate the parent-child correla-

tions into document-topic distributions meanwhile
maintaining the nonparametric characteristic from
SBP, we firstly calculate the parent document-topic
distribution by integrating the weighted adjacency
matrix, i.e., π′ = π × C. Particularly, as the
weighted adjacency matrix has not captured parent-
child correlations at the beginning, the document-
topic distribution is initially represented byπ. With
the learning of our self-attention module, the qual-
ity of the weighted adjacency matrix C is steadily
enhanced, and π′ becomes a valuable supplement
of π due to strong parent-child topic relationships.
Then, we generate the consolidated document-
topic distribution by exploiting both π′ and π as
θ = (1−γ)π′+γπ, where γ is a decay coefficient.

3.1.3 Decoder
As the BoW document representations lack of the
word relatedness information, we incorporate pre-
trained word embeddings WE (Viegas et al., 2020;
Wu et al., 2020) into the network. For the de-
coder, we firstly obtain the topic-word distribution
Φ = softmax(TE ×WE), where WE ∈ Rdt×V
and Φ ∈ RS×V . Then, we reconstruct document d̂
by combining document-topic distribution θ with
topic-word distribution Φ.

3.2 Topic Forest Hierarchy

To construct the topic forest, we build a forest hi-
erarchy of topics from the weighted adjacency ma-
trix C which contains the parent-child relation-
ships among topics. However, the structure of
weighted adjacency matrix C may not be a reason-
able hierarchical structure, i.e., it may have loops
if without constraints. To tackle this challenge, we
propose to construct the structure of topics as a
sparse DAG. Zheng et al. (2018) have proved that

2Different from (Vaswani et al., 2017), we capture the
relationships among topics without using the value matrix.
This is because we found experimentally that topics trained
with value matrix tend to be the same, which might result from
concentrating on several important topics.

a weighted adjacency matrix C is a DAG if and
only if h(C) = tr

(
eC◦C

)
− d = 0, where ◦ is the

Hadamard product and eC is the matrix exponential
of C. We employ h(C) = 0 with an augmented
Lagrangian method to ensure the acyclicity of the
weighted adjacency matrix.

Considering that the topic hierarchy is reason-
able and children topics can be represented by
their parent topics, we assume that the sum of chil-
dren topics’ document-topic distributions is simi-
lar to their parent topics’ document-topic distribu-
tions. Accordingly, we learn the forest-structured
topic hierarchy by minimizing the difference be-
tween documents reconstructed by π × Φ and
those reconstructed by their parent document-topic
distributions (i.e., π′ × Φ) under the constraint
of h(C) = 0 using the augmented Lagrangian
method, as follows:

min
C∈RS×S

LC =
1

2
‖(π − π′)×Φ‖2F

+
ρ

2
|h(C)|2 + εh(C),

(4)

where ρ is a penalty parameter, and ε is the La-
grange multiplier. We update parameters ρ and
ε by following (Zheng et al., 2018), as follows:{
ρi = 2ρi−1

εi = εi−1 + ρhi−1
, where ρ0 = 1, ε0 = 0, i is

a training epoch, and h is a constraint value.
The generative process of nFNTM is described

as follows:

1. For each document d:

(a) Draw a topic proportion π ∼ GEM(β̂);
(b) Get the weighted adjacency matrix C;
(c) Get the correlational topic distribution θ.

2. For each word wd,n ∈ d:

(a) Draw a topic zd,n ∼ Mult(θ);
(b) Obtain the topic-word distribution Φ;
(c) Draw a word wd,n ∼ Mult(Φzd,n).

3.3 Parameter Inference
We apply NVI to inference network parameters,
which is proven to be efficient and flexible (Srivas-
tava and Sutton, 2017; Miao et al., 2017; Isonuma
et al., 2020; Chen et al., 2021b). The likelihood
of each reconstructed document d̂ is estimated by
p
(
d̂ | θ,Φ

)
=
∑
z p
(
d̂ | Φz

)
p (z | θ), where

z is the topic assigned for each word in d̂. To maxi-
mize the log-likelihood, we derive the lower bound
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as follows:

LB =Eq(θ,Φ|d)

[
log p

(
d̂ | θ,Φ

)]

−DKL [q (θ | d) ‖p (θ)]− LC ,
(5)

where Eq(θ,Φ|d)

[
log p

(
d̂ | θ,Φ

)]
is the re-

construction loss, DKL [q (θ | d) ‖p (θ)] is the
Kullback-Leibler (KL) divergence between the
prior Beta distribution p (θ) and the posterior Beta
distribution q (θ | d). The KL divergence of two
Beta distributions is given below:

KL(Beta(α1, β1)||Beta(α2, β2)) =

ln Γ(α2) + ln Γ(β2) + ln Γ(α1 + β1)

− (ln Γ(α1) + ln Γ(β1) + ln Γ(α2 + β2))

+ (α1 − α2)z(α1)

+ (β1 − β2)z(β1)

+ (α2 + β2 − α1 − β1)z(α1 + β1),
(6)

where z(x) = d
dx lnz(x) = z′(x)

z(x) .
Note that we transform d to the variational Beta

distribution, thus q (θ | d) is derived by:

q (θ | d) = Beta(θ | α,β))

= Beta(θ | lα (MLP(d)) , lβ (MLP(d))).
(7)

To compute reparameterization gradients, the
Beta samples are obtained from Gamma samples
since the latter do not require inverting the stan-
dardization function (Figurnov et al., 2018): for
z1 ∼ Gamma(α, 1) and z2 ∼ Gamma(β, 1), it
has z1

z1+z2
∼ Beta(α,β). The lower bound LB

is used to calculate gradients and parameters are
updated by Adam (Kingma and Ba, 2015).

4 Experiment

4.1 Experimental Setup

Datasets To evaluate our nFNTM3 comprehen-
sively, we conduct experiments on three datasets
which are observed to be hierarchical (Chen et al.,
2021b): 20News (Miao et al., 2017), Reuters (Wu
et al., 2020), and Wikitext-103 (Nan et al., 2019).
According to (Liu et al., 2018; Viegas et al., 2020),
a topic often comprises of some sub-topics and
owns a hierarchical structure in Web directory of
news (e.g., 20News and Reuters) and encyclope-
dia (e.g., Wikitext-103 which is extracted from
Wikipedia). For these datasets, each document

3https://github.com/Angr4Mainyu/nFNTM

is associated with a manually-curated hierarchy of
categories. Take 20News as an example, “rec.autos”
and “rec.motor.cycles” are sub categories of “rec”.
Instead of relying on the prior coarse-grained cate-
gories, we build the hierarchical structure from a
corpus at the fine-grained topic level, by automati-
cally mining a set of representative words for each
topic in a forest structure to help a user comprehend
her/his interested topics.

All datasets have undergone a preprocessing of
removing stop words and deleting low-frequency
words. Table 1 shows the numbers of training and
test documents, as well as the vocabulary size.

Dataset #Docs(Train) #Docs(Test) Vocabulary size

20News 11,314 7,531 1,995
Reuters 7,769 3,019 2,000
Wikitext-103 28,472 120 20,000

Table 1: Statistics of datasets.

Baselines We employ four tree-structured topic
models, including hLDA4 (Blei et al., 2003a),
rCRP5 (Kim et al., 2012), TSNTM6 (Isonuma
et al., 2020), and nTSNTM7 (Chen et al., 2021b),
and three DAG-structured topic models, including
hPAM (Mimno et al., 2007), HSOC (Liu et al.,
2018), and CluHTM (Viegas et al., 2020) as base-
lines. For tree-structured baselines, the max-depth
of topic tree is set to 3 by following (Isonuma et al.,
2020). In addition, we adopt seven flat topic mod-
els for comparison, including parametric models
of GSM8 (Miao et al., 2017), GSB (Miao et al.,
2017), NB-NTM9 (Wu et al., 2020) and GNB-
NTM9 (Wu et al., 2020), and nonparametric mod-
els of HDP10 (Teh et al., 2004), iTM-VAE11 (Ning
et al., 2020), and HiTM-VAE11 (Ning et al., 2020).
Except for GSB, we use the open source codes for
all other baseline models.

Hyper-parameter Settings To ensure fair com-
parisons, we follow (Chen et al., 2021b) to set
topic numbers to 50 and 200 for all parametric
models. For non-parametric models based on SBP
(i.e., iTM-VAE and nTSNTM), the maximum num-
ber of topics is set to 200, and the concentration

4https://github.com/joewandy/hlda
5https://github.com/uilab-github/rCRP
6https://github.com/misonuma/tsntm
7https: //github.com/hostnlp/nTSNTM
8https://github.com/linkstrife/NVDM-GSM
9https://github.com/mxiny/NB-NTM

10https://github.com/arnim/HDP
11https://github.com/walkerning/itmvae_public
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parameter β̂ of the GEM distribution is set to 20.
According to (Chen et al., 2021b), we select the
topic with a total probability exceeding 95% as
an active topic. Besides, the penalty parameter ρ
is updated by ρ = 2x, where x denotes the num-
ber of training epochs. The temperature τ changes
exponentially from 5 to 1×10−4 to ensure the adja-
cency matrix to be sparse. The hidden layer size of
the encoder is set to 256, which is consistent with
other models. In the construction of the weighted
adjacency matrix, we use an exponential change
strategy to dynamically adjust the decay coefficient.
This is because the quality of such a weighted adja-
cency matrix is gradually enhanced when learning
the self-attention module. Finally, the decay coef-
ficient γ changes exponentially from 1 to 0.5. We
implement our model by pytorch and run it on a
computer with NVIDIA 1080Ti and 128GB RAM.

4.2 Topic Hierarchy Analysis

To evaluate the rationality, affinity, and diver-
sity of the topic hierarchy generated by different
models, we adopt four metrics: topic specializa-
tion (Kim et al., 2012), Cross-Level Normalized
Point-wise Mutual Information (CLNPMI) (Chen
et al., 2021b), hierarchical affinity (Kim et al.,
2012), and Topic Uniqueness (TU) (Nan et al.,
2019). Key words of each topic are ranked by
the topic-word matrix Φ (Blei et al., 2003b).

Topic Hierarchical Rationality For the tree-
structured topics, the topics closer to the root node
will be more general, while topics closer to the leaf
node will be more specific. Topic specialization
score is to quantify this feature by computing the
cosine similarity of the word distribution between
each topic and the entire corpus. Since our forest-
structured model generates several trees, we pick
out all three-layer topic trees to obtain the average
score for comparison. Figure 3 shows the topic spe-
cialization results, from which we can observe that
our model outperforms baselines except for HSOC
and CluHTM. Although the topic specializations
of HSOC and CluHTM at different levels are close
to 1, they still lack rationality since the root topic
in a tree should be more general than others.

To measure the relationship between two con-
nected topics, a metric of CLNPMI (Chen et al.,
2021b) was proposed by calculating the aver-
age Normalized Point-wise Mutual Information
(NPMI) score of every parent and its children
topics, as follows: CLNPMI (Wp,Wc) =
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Figure 3: Topic specialization of different topics trees
generated from the three datasets. A higher score with a
growing trend means better performance.

Models 20News Reuters Wikitext-103

CLNPMI TU CLNPMI TU CLNPMI TU

hLDA 0.065 0.051 0.050 0.447 0.063 0.597
rCRP 0.098 0.285 0.072 0.227 0.088 0.355
TSNTM 0.086 0.430 0.027 0.370 0.065 0.615
nTSNTM 0.109 0.745 0.102 0.708 0.113 0.730

hPAM 0.046 0.606 0.011 0.470 0.047 0.713
HSOC 0.128 0.231 0.047 0.211 - -
CluHTM 0.123 0.116 0.016 0.117 - -

Ours 0.152 0.757 0.125 0.798 0.118 0.766

Table 2: The average CLNPMI and TU scores of hier-
archical topic models with top 5, 10, and 15 words for
each topic. A higher score means better performance
and the best scores are highlighted by boldface.

∑
wi∈W ′p

∑
wj∈W ′c

NPMI(wi,wj)

|W ′p||W ′c| , where W ′p =

Wp −Wc and W ′c = Wc −Wp, in which Wp and
Wc denote the top N words of a parent topic its
child topic, respectively. A higher CLNPMI indi-
cates that children topics are more coherent with
their corresponding parent topics. We compare our
nFNTM with hierarchical topic models mentioned
above, and the CLNPMI results of all models are
shown in Table 2. Note that the two NMF-based
models (i.e., HSOC and CluHTM) had not con-
verged after running for more than 48 hours on
Wikitext-103, thus we did not include their results
in the table. As shown in Table 2, our nFNTM
achieves the best performance on all datasets.

Topic Uniqueness To evaluate the diversity
of hierarchical topics, we calculate the topic
uniqueness by: TU =

Count(Set(WtopN ))
N×S , where

Count(Set(WtopN )) is the number of distinct
words in top N words of all topics. A higher TU
means that the generated topics are more diverse.
Table 2 shows the TU results for all models, from
which we can observe that our model generates
more diverse topics than others. The baselines of
HSOC and CluHTM perform quite poor since they
need to preset up to 600 topics for convergence.
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Topic Hierarchical Affinity A reasonable as-
sumption for topic hierarchy is that topics with
parent-child relationships show larger similarities
in their topic-word distributions than topics with-
out any parent-child relationship (Kim et al., 2012).
According to (Kim et al., 2012), we firstly evalu-
ate the similarity between parent-child topics and
non-parent-child topics by computing the cosine
similarity between their topic-word distributions.
Then, the topic hierarchical affinity is measured
according to the difference of those similarities.

Let Φ(k) be a topic at level k, λ(k) be children
topics of Φ(k), and λ̄(k) be non-children topics of
Φ(k). The topic hierarchical affinity metric com-
pares the average cosine similarity Sλ(k) between
Φ(k) and all topics in λ(k) against the average co-
sine similarity Sλ̄(k) between Φ(k) and all topics
in λ̄(k). A large difference between Sλ(k) and
Sλ̄(k) indicates a good topic hierarchical affinity.

Since all topics between paired levels in hPAM
are fully connected, it is impossible to clearly dis-
tinguish topics with parent-child and non-parent-
child relationships. Thus, we exclude hPAM in this
part. As shown in Figure 4, our model achieves
high similarities between parent-child topics and
low similarities between non-parent-child topics,
indicating a good hierarchical affinity. Note that
both HSOC and CluHTM are based on NMF, which
rely on a predefined number of topic trees. To
avoid missing potential topic sub-structures, these
models need to set a large number of topic trees
(e.g., 100) according to their default settings. Given
superabundant topic trees, the similarity between
non-parent-child topics will be underestimated due
to the huge number of non-parent-child topics, re-
sulting in a competitive hierarchical affinity. How-
ever, it leads to a very poor TU score for HSOC or
CluHTM, as already shown in Table 2.

4.3 Topic Interpretability

We employ the NPMI score (Lau et al., 2014) to
evaluate the interpretability of topics since this met-
ric is shown to be close to human judgments (Lau
et al., 2014). We extract top 5, 10, and 15 words for
each topic and compute the average NPMI scores
of all models over the three datasets. The higher
the value of NPMI score, the more interpretable the
generated topics is. The corresponding numbers
of topics automatically determined by our nonpara-
metric model on 20News, Reuters, and Wikitext-
103 are 61, 76, and 121, respectively.
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Figure 4: Topic hierarchical affinity results. For each as-
sociated topic, a larger difference of word distributions
between children and non-children topics is better.

Table 3 shows the NPMI scores of topics gen-
erated by different models. Although our nFNTM
outperforms hierarchical topic models by a large
margin, it performs slightly worse than the top-
performing flat topic model. The reason is that
NPMI is the average score of all topics, which
may be unfair for hierarchical topic models. Flat
topic models treat topics independently and result
in specific topics, while higher-level topics in hi-
erarchical topic models are general with a lower
NPMI score. Figure 5 shows two examples of topic
trees generated by nFNTM on Wikitext-103 (left)
and 20News (right), which focus on different top-
ics, i.e., politics and war in the left tree, and play,
religion, and computer in the right tree. Take the
left tree as an illustration, the NPMI score of the
root topic [day hour people home left] is obviously
lower than that of the leaf topic [force army battle
attack war], which affects the overall result. We
can also observe that the topics closer to root are
more general and those closer to leaves are more
specific. Besides, children topics are related to par-
ent topics, e.g., encryption is a child of computer,
and law is a child of governance. These examples
of topics validate the advantage of a forest structure
when compared with a tree structure: the former
can not only learn reasonable parent-child relation-
ships among topics, but also generate a flexible
topic hierarchy with unbounded depth and width.

4.4 Ablation Study

We perform ablation experiments on our model to
validate the effectiveness of each module. Table 4
shows the ablation results of our nFNTM without
three modules, where “Ours w/o SBP” denotes a
parametric model with Gaussian distribution in-
stead of SBP, “Ours w/o self-attention” means that
the weighted adjacency matrix is randomly set
rather than learned by the proposed self-attention
mechanism, and “Ours w/o self-attention + DAG”

2591



Datasets 20News Reuters Wikitext-103
Model 50 200 50 200 50 200

GSM 0.211 0.165 0.198 0.155 0.214 0.217
GSB 0.231 0.191 0.152 0.136 0.229 0.131
NB-NTM 0.188 0.223 0.248 0.245 0.127 0.125
GNB-NTM 0.240 0.228 0.237 0.255 0.127 0.093
HDP 0.192 0.266 0.157
iTM-VAE 0.195 0.201 0.184
HiTM-VAE 0.237 0.269 0.233

rCRP 0.186 0.206 0.201
hLDA 0.221 0.185 0.186
TSNTM 0.212 0.206 0.213
nTSNTM 0.219 0.234 0.237

hPAM 0.213 0.229 0.223
HSOC 0.223 0.210 -
CluHTM 0.219 0.161 -

Ours 0.235 0.251 0.240

Table 3: The average NPMI scores of different models
using top 5, 10, and 15 words for each topic. A higher
score means better performance and the best scores are
highlighted by boldface.
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government president minister committee election

officer commander soldier war service

force army battle attack warcourt law case right act

force attack air weapon bomb

12

Figure 5: Two examples of topic trees generated by
nFNTM on Wikitext-103 (left) and 20News (right).
Each node represents a topic with top 5 words, and
the arrow direction is from parent to children.

denotes reconstructing documents by their topic
distributions generated from SBP. Note that there
is a flat topic hierarchy without DAG, thus the
CLNPMI metric can not be calculated. As shown in
Table 4, nonparametric and self-attention modules
are beneficial to generate a good topic hierarchy
and achieve improvements in topic interpretability.

4.5 Concentration Parameter Evaluation

Here, we vary the values of concentration parame-
ter β̂ to validate the nonparametric property of our
model on 20News. Figure 6 shows that the topic
numbers of all nonparametric models are promoted
by increasing the value of β̂, which is reasonable
since a larger β̂ leads to a smoother distribution of
SBP, and the smoother distribution generates more
topic numbers than a denser distribution. It also
demonstrates that our model generates more topics
for a larger β̂ since these topics are dispersed (Wu

Model #Topics NPMI CLNPMI

Ours 61 0.235 0.152
Ours w/o SBP 50 0.223 0.135
Ours w/o self-attention 57 0.209 0.097
Ours w/o self-attention+DAG 48 0.203 -

Table 4: Ablation evaluation on 20News.
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Figure 6: Topic numbers derived by different nonpara-
metric models with various values of β̂.

et al., 2020), and our model performs better than
other models on approximating the nonparametric
property of HDP.

4.6 Forest-Structured Topic Visualization

In this part, we qualitatively analyze the rationality
of the topic forest generated by our model. We
determine parent-child topic relationships by the
value of the weighted adjacency matrix C. Ci,j ≈ 1
means that child topic ti connects to parent topic
tj . For clarity, we show an example of C and how
to build a topic forest from it in Figure 7. Such
a topic hierarchy is based on the assumption that
a document can be decomposed into a weighted
sum of multiple topics, where a topic can also be
decomposed into a weighted sum of multiple sub-
topics (Chen et al., 2021b).

Weighted adjacency matrix C

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 2

Topic 1

Topic 3

Topic 4 Topic 5

Topic forest hierarchy

Figure 7: An example of building a topic forest from a
weighted adjacency matrix.

Figure 8(a) shows the visualization of the
weighted adjacency matrix generated from Reuters.
Except for the dots on the diagonal, the rest of
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Figure 8: Visualization of the weighted adjacency matrix generated from (a) Reuters, (b) 20News, and (c) Wikitext-
103, respectively. The white dot means that there is a correlation between two topics indexed in the row and column.

dots present a discrete distribution to meet the con-
straints of DAG. In addition, we observe that topic
51 is connected to various topics and becomes the
parent topic of multiple topics, which is a general
root topic of the whole corpus. Figures 8(b) and
8(c) present the weighted adjacency matrices gen-
erated by our model on 20News and Wikitext-103,
respectively. The results also indicate that except
for the dots on the diagonal, the rest of dots present
a discrete distribution on both datasets, i.e., they
meet the constraints of DAG.

Besides, we use Gephi12 to visualize the topic
forests generated by our model over 20News,
Reuters, and Wikitext-103 in Figures 9, 10, and
11, where each node represents a topic with top
5 words and the arrow direction is from parent to
children. The color of each node is determined
by indegree. It indicates that the topic forest gen-
erated from Reuters contains a master tree whose
root topic is about interviews. Furthermore, the
topic forests generated from 20News and Wikitext-
103 both consist of multiple trees, where the root
topics mainly involve news and daily, respectively.
All results indicate a rational hierarchical structure
of topics obtained by our model, i.e., root topics
are general and children topics are specific to their
corresponding parents.

4.7 Speed Comparison
For speed comparison, we record the running time
by taking the average cost of training each model
for 5 times over 10k documents sampled from
20News. The running time for baseline methods
are: hLDA - 16.74s , HSOC - 50.97s, CluHTM -
49.72s, and nTSNTM - 1.57s. Our model takes
1.35s, which is significantly faster than models
based on Bayesian learning and NMF. Although

12http://gephi.org/

nTSNTM achieves a competitive result, it applies
Kumaraswamy distribution in parameter inference
which slows down the model speed. Besides, such
a tree-structured method is limited to local infor-
mation and data sparsity along the hierarchy of top-
ics (Viegas et al., 2020). In particular, the deeper
the topic tree, the less coincident data remains. This
deteriorates the quality of tree-structured methods
inevitably. Compared with a single deep tree, the
forest structure with several shallower trees could
circumvent the above problem theoretically. Fur-
thermore, with varied numbers of trees, a topic
forest has a more flexible hierarchical structure and
better adaptability than a fixed tree structure.

5 Conclusion

In this work, we present a forest-structured neu-
ral topic model named nFNTM. Particularly, the
self-attention mechanism is applied to capture topic
correlation and an augmented Lagrangian method
is employed to build the topic forest under DAG
constraints. By computing reparameterization of
Gamma distribution, the SBP is adopted to obtain a
nonparametric model. We empirically demonstrate
that our nFNTM generates more rational, affinitive,
and diverse topics than state-of-the-art hierarchi-
cal topic models, meanwhile achieves better topic
interpretability than various baselines. Although
flat topic models can generate distinguishable top-
ics with larger NPMI scores than hierarchical ones,
they treat all topics independently without explain-
ing the corpus well to a user.
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Figure 9: Visualization of the topic forest generated from 20News. Each node represents a topic and the arrow
direction is from parent to children. There are about 8 trees in the forest, two of which have complex levels and
structures, and two trees have only one root node. Take three of these trees as an illustration, the top 5 words of root
topics and their children topics are (1) [know, like, get, anyone, say]−→[article, thanks, please, also, university]; (2)
[apply, involve, position, assume, objective]−→[god, jesus, love, church, bible] and [game, year, team, play, win];
(3) [available, information, note, anonymous, contain]−→[ftp, information, program, available, message]−→[book,
read, follow, post, new]. The root topics are general while children topics are specific.
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Figure 10: Visualization of the topic forest generated from Reuters, where a huge tree is surrounded by several trees
with only two levels. The root topic of the largest tree contains words: [said, increase, plan, earli, grow], which are
commonly used during interviews. The surrounding areas are related to the topics of various categories, including
[mine, gold, ton, ounce, copper], [strike, worker, port, work, union], and [year, end, expect, last, period].
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Figure 11: Visualization of the topic forest generated from Wikitext-103. Possibly due to a large variety of topics in
this corpus, the result presents a more dispersed and shallower structure than others. The top words of two root
topics and their children topics are (1) [day, hour, people, home, left]−→[court, law, case, right, act] and [party,
government, support, right, general]; (2) [main, instead, rest, provides, included]−→[christmas, discus, holiday,
tom, expectation] and [gun, inch, class, battery, battleship].
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Abstract

Learning the embeddings of knowledge graphs
(KG) is vital in artificial intelligence, and can
benefit various downstream applications, such
as recommendation and question answering.
In recent years, many research efforts have
been proposed for knowledge graph embed-
ding (KGE). However, most previous KGE
methods ignore the semantic similarity be-
tween the related entities and entity-relation
couples in different triples since they sepa-
rately optimize each triple with the scoring
function. To address this problem, we pro-
pose a simple yet efficient contrastive learn-
ing framework for tensor decomposition based
(TDB) KGE, which can shorten the seman-
tic distance of the related entities and entity-
relation couples in different triples and thus im-
prove the performance of KGE. We evaluate
our proposed method on three standard KGE
datasets: WN18RR, FB15k-237 and YAGO3-
10. Our method can yield some new state-of-
the-art results, achieving 51.2% MRR, 46.8%
Hits@1 on the WN18RR dataset, 37.8% MRR,
28.6% Hits@1 on FB15k-237 dataset, and
59.1% MRR, 51.8% Hits@1 on the YAGO3-
10 dataset. Source codes and data of this paper
can be found at https://github.com/
Wentao-Xu/KGE-CL.

1 Introduction

The knowledge graph (KG) stores a vast number
of human knowledge in the format of triples. A
triple (h, r, t) in a KG contains a head entity h, a
tail entity t, and a relation r between h and t. The
knowledge graph embedding (KGE) aims to project
the massive interconnected entities and relations in
a KG into vectors or matrices, which can preserve
the semantic information of the triples. Learning
the embeddings of KG can benefit various down-
stream artificial intelligence applications, such as

∗The first two authors contributed equally.
†Corresponding author.

question answering (Huang et al., 2019), machine
reading comprehension (Yang and Mitchell, 2017),
image classification (Marino et al., 2016), and per-
sonalized recommendation (Wang et al., 2018).

In general, most of the KGE methods would de-
fine a scoring function f(hi, rj , tk), and the train-
ing target of KGE is maximizing the score of a
true triple (hi, rj , tk) and minimizing the score of
a false tripe (hi, rj , tx). In this way, the trained
embeddings of entities and relations in KG can pre-
serve the intrinsic semantics of a true triple. We
can mainly divide the existing KGE methods into
two categories. The first category is the distance
based (DB) methods, which use the Minkowski dis-
tance as scoring function to measure a triple’s plau-
sibility, include the TransE (Bordes et al., 2013),
TransH (Wang et al., 2014), TransR (Lin et al.,
2015), TransD (Ji et al., 2015) and TransG (Xiao
et al., 2016). The other category is the tensor de-
composition based (TDB) methods, which treat
a KG as a third-order binary tensor and use the
results of tensor decomposition as the representa-
tions of entities and relations. The TDB methods
include the CP (Hitchcock, 1927), DistMult (Yang
et al., 2015), RESCAL (Nickel et al., 2011) and
ComplEx (Trouillon et al., 2016).

However, existing methods only capture the se-
mantic connections among h, r and t in a same
triple. For example, the TransE optimize the dis-
tance between h + r and t, and the DistMult op-
timizie the dot product similarity among h, r and
t. Therefore, they overlook the connections be-
tween the related entities and entity-relation cou-
ples in different triples. In a KG, some entities
(entity-relation couples) that share the same entity-
relation couple (entity) are in the same type and
have semantic similarity. Capturing the seman-
tic similarity of these entities or couples can im-
prove the expressiveness of embeddings, which
is the performance in capturing semantic infor-
mation in KG (Dettmers et al., 2018; Xu et al.,
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(a) Entities with the same couple. (b) Entities with the same couple.

(c) Couples with the same tail entity United States. (d) Couples with the same head entity Joe Biden.

Figure 1: The examples of triples that share the same entities or entity-relation couples.

2020). For instance, in Figure 1 (a), the entities
New York and Los Angeles share the same entity-
relation couple (City_of, United States). There-
fore, the entities New York and Los Angeles should
have a similar embedding. Besides, in Figure 1
(c) the couples (New York, City_of ) and (Washing-
ton, D.C., Captical_of ) share the same tail entity
United States. Thus the representations of these
two couples should also be similar.

To correlate the related entities and entity-
relation couples in different triples, we propose a
simple yet efficient contrastive learning framework
called KGE-CL for KGE, which is quite general for
existing TDB methods. We first construct the posi-
tive instances for those entities that share the same
entity-relation couple and those entity-relation cou-
ples that share the same entity. For example, the
positive instance of Beau Biden in Figure 1 (b)
is the Hunter Biden, and the positive instance of
(Children, Beau Biden) in Figure 1 (d) is (Spouse,
Jill Biden). Then we calculate the contrastive loss
on the original instance and the positive instances.
Due to the design of the contrastive learning frame-
work, we can also increase the distance between
unrelated entities and couples. Finally, since each
triple has four positive instances (corresponding
to the four examples in Figure 1), we design a
weighted contrastive loss to control the weights on
different positive instances’ loss flexibly.

We evaluate our KGE-CL method on the
KG link prediction task using the standard
WN18RR (Toutanova and Chen, 2015), FB15k-
237 (Dettmers et al., 2018) and YAGO3-
10 (Mahdisoltani et al., 2015) datasets. Our pro-
posed method achieves new state-of-the-art results
(SotA), obtaining 51.2% MRR, 46.8% Hits@1 on

the WN18RR dataset, 37.8% MRR, 28.6% Hits@1
on the FB15k-237 dataset, and 59.1% MRR, 51.8%
Hits@1 on the YAGO3-10 dataset. Moreover, We
apply several experiments to further analyze the
inner mechanism of our method. At last, to clearly
explain why our method outperforms existing meth-
ods, we conduct the visualization of the KGE of
our method and some compared methods using
T-SNE (van der Maaten and Hinton, 2008).

In summary, this paper’s contributions include:

• We propose KGE-CL, a simple yet efficient
contrastive learning framework for TDB KGE.
It can capture the semantic similarity of the re-
lated entities and entity-relation couples in dif-
ferent triples, thus improving the performance
of KGE.

• Our proposed KGE-CL framework can also
push the embeddings of unrelated entities and
couples apart in the semantic space.

• The experiment results and analyses confirm
the effectiveness of our KGE-CL method.

2 Related Work

In recent years, knowledge graph embedding
(KGE) becomes a pretty hot research topic since its
vital role in various downstream applications. We
can categorize the existing KGE techniques into
two categories: the distance based KGE and tensor
decomposition based KGE.

Distance based (DB) methods describe relations
as relational maps between head and tail enti-
ties. The TransE is a representative distance based
method, which uses the relations as translations
and its scoring function is: f(hi, rj , tk) = −||hi +
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rj − tk||22. To improve the performance of TransE,
many its variants that follow the same direction
were proposed, such as the TransH (Wang et al.,
2014), TransR (Lin et al., 2015), TransD (Ji et al.,
2015), TranSparse (Ji et al., 2016), TransG (Xiao
et al., 2016) and RotatE (Sun et al., 2019). How-
ever, the TransE and its extensions can not capture
the semantic similarity between the related enti-
ties and entity-relation couples in different triples.
For example, given two triples (h1, r1, t1) and
(h1, r1, t2), TransE can only close the distance be-
tween h1 + r1 and t1 (or t2) in the same triple, it
does not close the distance between t1 and t2, so the
representations t1 and t2 can in different directions.

Tensor decomposition based (TDB) methods
formulate the KGE task as a third-order binary
tensor decomposition problem. RESCAL (Nickel
et al., 2011) factorizes the j-th frontal slice of X as
Xj ≈ ARjA>, in which embeddings of head and
tail entities are from the same space. As the relation
embeddings in RESCAL are matrices containing
lots of parameters, RESCAL is easier to be over-
fitting and more difficult to train. DistMult (Yang
et al., 2015) simplifies the matrix Rj in RESCAL
to a diagonal matrix, while the RESCAL can only
preserve the symmetry of relations, limiting its ex-
pressiveness. To model asymmetric relations, Com-
plEx (Trouillon et al., 2016) extends DistMult to
complex embeddings and preserving the relations’
symmetry in the real part and the asymmetry in
the imaginary part. Moreover, the QuatE (Zhang
et al., 2019) further extends the ComplEx to hyper-
complex space to model more complicated relation
properties, such as the inversion. All of the Dist-
Mult, ComplEx, and QuatE are the variants of CP
decomposition (Hitchcock, 1927), which are in real,
complex, and hypercomplex vector spaces, respec-
tively. On the other hand, the TDB methods usually
suffer from an overfitting problem; thus, some work
is trying to improve the TDB methods from the as-
pect of regularizer, such as the N3 (Lacroix et al.,
2018) and DURA (Zhang et al., 2020a) regularizers.
These regularizers bring more significant improve-
ments than the original squared Frobenius norm
(L2 norm) regularizer (Nickel et al., 2011; Yang
et al., 2015; Trouillon et al., 2016). Nevertheless,
the TDB methods can only capture the similarity
among h, r and t in a same triple. For example,
the ComplEx-DURA (Zhang et al., 2020a) mainly
capture the semantics similarity between the cou-
ple (hi, rj)’s embedding hiRj and tail entity tk’s

embedding tk in a sample triple.
Since both of the DB and TDB methods can not

correctly capture the semantic similarity between
related entities and couples in different triples, we
propose our KGE-CL method to address the limita-
tions of existing work.

3 Preliminaries

3.1 Knowledge Graph Embedding
Knowledge Graph Embedding (KGE) The
knowledge graph embedding (KGE) is to learn the
representations (may be real or complex vectors,
matrices, and tensors) of the entities and relations.
Its target is that the learned entities’ and relations’
embeddings can preserve the semantic information
of the triples in knowledge graphs. Generally, the
KGE methods define a scoring functionf(hi, rj , tk)
to score the corresponding triple (hi, rj , tk), and
the score measure the plausibility of triples.
Tensor Decomposition Based (TDB) KGE TDB
methods like RESCAL (Nickel et al., 2011) and
ComplEx (Trouillon et al., 2016), regard a KG as
a third-order binary tensor X ∈ {0, 1}|E|×|R|×|E|.
The (i, j, k) entry Xijk = 1 if (hi, rj , tk) is a true
triple otherwise Xijk = 0. The Xj denotes the j-th
frontal slice of X , that is, the corresponding matrix
of the j-th relation. Generally, a TDB KGE model
factorizes Xj as Xj ≈ Re (HRjT

>
), where the i-

th (k-th) row of H (T) is hi (tk), Rj is a matrix
that represents relation rj , Re (·) and · are the real
part and the conjugate of a complex matrix, respec-
tively. Then the scoring functions of TDB KGE
methods is: f(hi, rj , tk) = Re (hiRjt

>
k ). Note

that the real part and the conjugate of a real matrix
are itself. The goal of TDB models is to seek ma-
trices H,R1, . . . ,R|R|,T, such that Re (HRjT

>
)

can approximate Xj . In this paper, we aim to im-
prove the performance of existing TDB models,
such as the RESCAL and ComplEx models.

3.2 Contrastive Learning
Contrastive learning is an efficient representation
learning method that contrasts positive pairs against
negative pairs (Hadsell et al., 2006; He et al., 2020;
Chen et al., 2020; Khosla et al., 2020). The key idea
of contrastive learning is pulling the semantically
close pairs together and push apart the negative
pairs. The unsupervised contrastive learning frame-
work (Chen et al., 2020) would utilize the data
augmentation to construct positive pairs to calcu-
late the contrastive loss. The supervised contrastive
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learning framework (Khosla et al., 2020) calculates
the contrastive loss of all positive instances within
the same mini-batch. Motivated by these exiting
frameworks, we adopt the following function to
calculate the contrastive loss between an instance
zi and its all positive instances z+i :

CL
(
zi, z+i

)
=

−∑z+i ∈P (i) log
e
sim(zi,z

+
i )/τ

∑
zj∈N(i) e

sim(zi,zj)/τ

| P (i) | ,

(1)
where zi and z+i are the representations of zi and
z+i , respectively. P (i) is the set of all positive
instances in the mini-batch, and N(i) is the set
of all negative instances in the batch. In our
work, we define the negative instances as the in-
stances that do not belong to the positive instances.
sim(zi, z+i ) = zi · z+i is the dot product similarity.

4 Our Method: KGE-CL

In this section, we describe our KGE-CL method
that utilize the contrastive learning to capture the
semantic similarity of related entities and couples
in different triples. Our method is very general
and can be easily apply to arbitrary TDB meth-
ods. We can further name our KGE-CL method
as RESCAL-CL or ComplEx-CL when we use the
scoring function of RESCAL or ComplEx models.
In this section, we firstly present the contrastive
loss we designed for the KGE, then we introduce
the training objective of our method.

4.1 Contrastive Loss of KGE
In this subsection, we elaborate on the contrastive
loss that we designed for KGE.

Positive Instances The generation of positive in-
stances z+i for the instance zi is vital in contrastive
learning. Existing work in visual representation
learning (Wu et al., 2018; Chen et al., 2020; Chen
and He, 2020) used some data augmentation meth-
ods, such as cropping, color distortion, and rotation,
to take two random transformations of the same
images as zi and z+i . Meanwhile, in NLP, some
work (Wu et al., 2020; Meng et al., 2021) utilized
other augmentation techniques like word deletion,
reordering, and substitution. However, these data
augmentation methods are not proper to the KGE.
To capture the interactions between triples in a KG,
we design a new approach to construct the positive
instances for KGE. For a triple (hi, rj , tk), the cor-
responding scoring function of TDB methods is:

f(hi, rj , tk) = Re (hiRjt
>
k ) = Re (〈hiRj , tk〉)

= Re (〈hi, tkR>j 〉).
(2)

We define 〈·, ·〉 as the inner product of two real
or complex vectors: 〈u, v〉 = uv>. The hiRj and
tkR>j are the representations of the entity-relation
couples (hi, rj) and (rj , tk), respectively. The
Equation 2 means that we can firstly compute ei-
ther the hiRj or tkR>j in the scoring function. For
a head entity hi, we define its positive instances
h+i as those head entities that share the same re-
lation and tail entity with hi. Similarly, we de-
fine the tail entity tk’s positive instances t+k with
those tail entities that share the same head entity
and relation with tk. For the entity-relation cou-
ples (hi, rj) or (rj , tk), the corresponding posi-
tive instances (hi, rj)+ or (rj , tk)+ is those entity-
relation couples that share the same tail entity
with (hi, rj) or head entity with (rj , tk). The
(hiRj)

+ and (tkR>j )+ are the representations of
positive instances (hi, rj)+ and (rj , tk)

+, respec-
tively. Therefore, given a true triple (hi, rj , tk),
our method would construct four kinds of positive
instances: h+i , t+k , (hi, rj)+ and (rj , tk)

+, which
are corresponding to the four examples in Figure 1.
As mentioned in Section 3.2, for an instance hi, we
will use all of its positive instances h+i in the same
mini-batch. Besdies, there may be no positive in-
stances in a mini-batch for some tripels. Therefore,
we will add a postive instance for each triple in the
mini-batch, where the added instance is randomly
sampled from training set. We will study the effect
of postive instances by experiment in Section 5.3.

Contrastive Loss Given a true triple (hi, rj , tk),
we use the Equation 1 to compute the contrastive
loss of four types of positive instances, and the
overall contrastive loss for a triple (hi, rj , tk) is:

Lc(hi, rj , tk) = CL(hi,h+
i ) + CL(tk, t+k )

+ CL(hiRj , (hiRj)
+) + CL(tkR>j , (tkR>j )

+).

(3)

Theoretical Analysis To study how the Equa-
tion 3 takes effect, we apply a theoretical analysis
from the aspect of gradient. Taking the contrastive
loss term CL(hi,h+

i ) as an example, the gradient
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Contrastive Loss WN18RR FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CL(hi,h+
i ) .509 .465 .527 .588 .376 .284 .412 .557

CL(tk, t+k ) .509 .468 .425 .587 .376 .285 .411 .558
CL(hiRj , (hiRj)

+) .512 .469 .527 .595 .374 .282 .410 .557
CL(tkR>j , (tkR>j )+) .504 .462 .516 .580 .378 .286 .414 .559

Table 1: Link prediction results of RESCAL-CL that
merely uses one specific contrastive loss term.

of CL(hi,h+
i ) to embedding hi is:

∂CL(hi,h+
i )

∂hi
=

∑
h+i ∈P (i) ∂

(
hi · h+

i /τ − log
∑

hj∈N(i) e
(hi·hj/τ)

)

−|P (i)|∂hi

= −
∑

h+i ∈P (i) h+
i

τ |P (i)| +

∑
hj∈N(i)

(
e(hi·hj/τ)hj

)

τ
∑

hj∈N(i) e
(hi·hj/τ) .

(4)
Then when we update the embedding hi with the

gradient
∂CL(hi,h+

i )

∂hi
:

ht+1
i = hti − η

∂CL(hi,h+
i )

∂hi
, (5)

where η of learning rate for updating gradient.
The Equation 4 and Equation 5 show that the
embedding hti would update to the direction of
η
∑

h+i ∈P (i) h+
i

τ |P (i)| , which is the mean value of posi-

tive instances’ embeddings h+
i . Meanwhile, the hti

would also update away from the weighted value
η
∑

hj∈N(i)

(
e(hi·hj/τ)hj

)

τ
∑

hj∈N(i) e
(hi·hj/τ) of negative instances

hj . So our proposed contrastive loss Lc can not
only pull the related entities and entity-relation cou-
ples together in the semantic space but also push
the unrelated entities and couples apart.

Weighted Contrastive Loss There are four con-
trastive loss terms in Equation 3. We found that
different contrastive loss terms have different ef-
fects on different knowledge graphs during our re-
search process. This phenomenon happens may
because different knowledge graphs have diverse
graph properties, such as the ratio of the number
of entities to the number of relations, the num-
ber of triples compared with the number of en-
tities. Table 1 shows the results of RESCAL-
CL that merely uses one specific contrastive
loss term. In WN18RR dataset, using the term
CL(hiRj , (hiRj)

+) achieves the highest results,

while in FB15k-237 dataset, CL(tkR>j , (tkR>j )+)
is the best. Hence, we introduce a weighted con-
trastive loss, assigning a weight α∗ for each con-
trastive loss term, and α∗ is a hyper-parameter that
can be flexibly tuned for a specific KG. The con-
trastive loss Lwc (hi, rj , tk) after adding weights α∗
is:

Lwc (hi, rj , tk) =αhCL(hi,h+
i ) + αtCL(tk, t+k )

+αhrCL(hiRj , (hiRj)
+)

+αtrCL(tkR>j , (tkR>j )
+).

(6)

4.2 Training Objective
Given a training triple (hi, rj , tk) in a KG, the in-
stantaneous loss of our framework on this triple is:

L(hi, rj , tk) = Ls + Lr + Lwc , (7)

where Ls is the loss that measures the discrepancy
between scoring function’s output f(hi, rj , tk) and
the label Xijk. Lr is the regularizer, and Lwc is
the weighted contrastive loss we introduced in Sec-
tion 4.1. It should be noted that the additionally
added postive instances in the mini-batch is only
used to calculate the contrastive loss Lwc and would
not used to calculate the Ls and Lr losses.

Ls Loss Many previous efforts used the ranking
losses (Bordes et al., 2013), binary logistic regres-
sion (Trouillon et al., 2016) or sampled multiclass
log-loss (Kadlec et al., 2017) to calculate the dis-
tance between the scoring function’s output and
the triple’s label. Since (Lacroix et al., 2018) had
verified the competitiveness of the full multiclass
log-loss, we utilize it as the Ls loss in Equation 7.

Regularizer Most of the previous work use
the squared Frobenius norm (L2 norm) regular-
izer (Nickel et al., 2011; Yang et al., 2015; Trouil-
lon et al., 2016) in their object functions. More
recently, some work proposed more efficient regu-
larizers to prevent the overfitting of KGE, such as
the N3 (Lacroix et al., 2018) and DURA (Zhang
et al., 2020a) regularizers. Since the (Zhang et al.,
2020a) had shown that DURA regularizer outper-
forms L2 and N3 regularizers, we use the DURA
as the regularizer Lr in our work.

5 Experiment

In this section, we present thorough empirical stud-
ies to evaluate and analyze our proposed frame-
work. We first introduce the experimental setting.
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WN18RR FB15k-237 YAGO3-10

#Entity 40,943 14,541 123,182
#Relation 11 237 37
#Train 86,835 272,115 1,079,040
#Valid 3,034 17,535 5,000
#Test 3,134 20,466 5,000

Table 2: Statistics of the datasets.

Then we evaluate our framework’s performance on
the task of link prediction. Besides, we further ana-
lyze the details of our promotion by comparing our
method with a baseline on the triples with different
relations, and we also study the effect of positive
instances to our framework. Finally, we visualize
the embeddings of our method and some baselines
to explain why our method outperforms baselines.

5.1 Exeprimental Setting

Dataset We use three standard KG datasets—
WN18RR (Toutanova and Chen, 2015), FB15k-237
(Dettmers et al., 2018), and YAGO3-10 (Mahdis-
oltani et al., 2015) to evaluate the performance of
KGE. We divide the datasets into training, validat-
ing, and testing sets using the same way of pre-
vious work. Table 2 shows the statistics of these
datasets. WN18RR, FB15k-237, and YAGO3-10
are extracted from WN18 (Bordes et al., 2013),
FB15k (Bordes et al., 2013), and YAGO3 (Mahdis-
oltani et al., 2015), respectively. Some previous
work (Toutanova and Chen, 2015; Dettmers et al.,
2018) indicated the test set leakage problem in
WN18 and FB15k, where some test triplets may
appear in the training dataset in the form of recip-
rocal relations. Therefore, they suggested using the
WN18RR and FB15k-237 datasets to avoid the test
set leakage problem.

Compared Methods We compare our KGE-CL
method with existing state-of-the-art KGE methods,
including CP (Hitchcock, 1927), RESCAL (Nickel
et al., 2011), ComplEx (Trouillon et al.,
2016), ConvE (Dettmers et al., 2018), Ro-
ratE (Sun et al., 2019), MuRP (Balazevic
et al., 2019), HAKE (Zhang et al., 2020b),
ComplEx-N3 (Lacroix et al., 2018), ROTH (Chami
et al., 2020), REFE (Chami et al., 2020),
CP-DURA (Zhang et al., 2020a), RESCAL-
DURA (Zhang et al., 2020a) and ComplEx-
DURA (Zhang et al., 2020a).

Datasets Methods d m τ αh αt αhr αtr

WN18RR RESCAL-CL 512 512 0.9 0 0 2.0 0
ComplEx-CL 2000 2048 0.5 0 0 0 2.0

FB15k-237 RESCAL-CL 512 512 0.9 0 0 0 2.0
ComplEx-CL 2000 2048 0.5 2.0 0 0 0

YAGO3-10 RESCAL-CL 512 512 0.9 0 0 0 1.0
ComplEx-CL 2000 2048 0.5 0 1.0 0 0

Table 3: The selection of the hyper-parameters of
RESCAL-CL and ComplEx-CL on different datasets.

Implementation Details We implement our
method base on the PyTorch library (Paszke et al.,
2019), and run on all experiments with a single
NVIDIA Tesla V100 GPU. We leverage Adagrad
algorithm (Duchi et al., 2011) to optimize the ob-
jective function in Equation 7. We tune our model
using the grid search to select the optimal hyper-
parameters based on the performance on the vali-
dation dataset. We search the embedding size d in
{256, 512, 1024} for RESCAL-CL and {200, 500,
1000, 2000} for ComplEx-CL. We search the tem-
perature τ in Equation 1 in {0.3, 0.5, 0.7, 0.9, 1.0}.
We search the weights αh, αt, αhr and αtr in Equa-
tion 6 in {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5}.
The best choices of hyper-parameters, the number
of parameters, and the training time of RESCAL-
CL and ComplEx-CL on each dataset are listed in
Table 3. For a fair comparison, the RESCAL-CL
and ComplEx-CL have the same embedding size
as RESCAL-DURA and ComplEx-DURA, respec-
tively. Besides, the batch size is 512 for RESCAL-
CL and 200 for ComplEx-CL, and the learning rate
η as 0.1 for all methods. On WN18RR, we set the
number of training epochs as 50 for the ComplEx-
CL and 200 for the RESCAL-CL. On FB15k-237
and YAGO3-10, the number of training epochs is
200 for all methods.

5.2 Main Results

We evaluate the performance of our framework
on the link prediction task, which is a frequently-
used task to evaluate the KGE. Specifically, we
replace the head or tail entity of a true triple in the
test set with other entities in the dataset and name
these derived triples as corrupted triples. The link
prediction task aims to score the original true triples
higher than the corrupted ones. We rank the triples
by the results of the scoring function.

The evaluation metrics we used in the link predic-
tion are the MRR and Hits@N: 1) MRR: the mean
reciprocal rank of original triples; 2) Hits@N: the
percentage rate of original triples ranked at the top
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Methods WN18RR FB15k-237 YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CP .438 .414 .445 .485 .333 .247 .363 .508 .567 .494 .611 .698
RESCAL .455 .419 .461 .493 .353 .264 .385 .528 .566 .490 .612 .701
ComplEx .460 .428 .473 .522 .346 .256 .386 .525 .573 .500 .617 .703
ConvE .43 .40 .44 .52 .325 .237 .356 .501 .44 .35 .49 .62
RotatE .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670
MuRP .481 .440 .495 .566 .335 .243 .367 .518 - - -
HAKE .497 .452 .516 .582 .346 .250 .381 .542 .546 .462 .596 .694
ComplEx-N3 .491 .448 .505 .580 .366 .271 .403 .558 .577 .502 .619 .711
ROTH .496 .449 .514 .586 .344 .246 .380 .535 .570 .495 .612 .706
REFE .473 .430 .485 .561 .351 .256 .390 .541 .577 .503 .621 .712
CP-DURA .478 .441 .497 .552 .367 .272 .402 .555 .582 .511 .623 .708
RESCAL-DURA .498 .455 .514 .577 .368 .276 .402 .550 .579 .505 .619 .712
ComplEx-DURA .491 .449 .504 .571 .371 .276 .408 .560 .584 .511 .628 .713

RESCAL-CL .512 .468 .531 .597 .378 .286 .414 .559 .581 .507 .625 .713
ComplEx-CL .505 .458 .522 .595 .377 .285 .414 .564 .591 .518 .634 .722

Table 4: Link prediction results on WN18RR, FB15k-237 and YAGO3-10 datasets. We take the results of CP,
RESCAL, ComplEx, CP-DURA, RESCAL-DURA and ComplEx-DURA from the paper (Zhang et al., 2020a),
and the results of other baselines are from their original papers.

N in prediction. For both metrics, we remove some
of the corrupted triples that exist in datasets from
the ranking results, which is also called filtered set-
ting in (Bordes et al., 2013). For the metrics of
Hits@N, we use Hits@1, Hits@3, and Hits@10.

Table 4 shows the results of link prediction on
WN18RR, FB15K-237, and YAGO3-10 datasets.
Our proposed method achieves the highest results
on all datasets compared with the baselines. Specif-
ically, the RESCAL-CL achieves evidently better
results on the WN18RR dataset. The ComplEx-CL
outperforms the compared methods in the YAGO3-
10 dataset. On FB15k-237, the RESCAL-CL and
ComplEx-CL are both better than the RESCAL-
DURA and ComplEx-DURA, respectively. The
results of RESCAL-CL and ComplEx-CL verify
that correlating the entities and entity-relation cou-
ples in different triples can boost the performance
of KGE.

5.3 Model Analysis

Analyzing the Improvements To further ex-
plore why our method outperforms existing state-
of-the-art techniques, we compare our RESCAL-
CL method with the RESCAL-DURA on the triples
with different relations in WN18RR. Table 5 shows
the results of the comparison, and we found that
our RESCAL-CL is significantly better than the
RESCAL-DURA in 9 out of the 11 relations, ver-
ifying that the promotion of our framework is ex-
tensive and not just on some specific relations.

Relations #Train #Test RESCAL-DURA RESCAL-CL

MRR H@1 H@10 MRR H@1 H@10

_similar_to 80 3 0.446 0.333 0.667 0.756 0.667 1.000
_verb_group 1138 39 0.930 0.885 0.974 0.934 0.897 0.974
*domain_usage 629 24 0.400 0.354 0.542 0.447 0.396 0.542
*domain_region 923 26 0.329 0.269 0.442 0.360 0.289 0.500
_member_meronym 7402 253 0.251 0.164 0.415 0.318 0.221 0.506
_has_part 4816 172 0.223 0.151 0.375 0.245 0.174 0.384
_hypernym 34796 1251 0.193 0.140 0.288 0.204 0.152 0.296
_instance_hypernym 2921 122 0.431 0.348 0.603 0.461 0.369 0.631
_synset_domain* 3116 114 0.405 0.347 0.522 0.444 0.395 0.544
*related_form 29715 1074 0.957 0.951 0.967 0.959 0.954 0.969
_also_see 1299 56 0.606 0.554 0.679 0.621 0.571 0.696

Table 5: MRR, Hit@1 and Hit@10 results of RESCAL-
DURA and RESCAL-CL methods on the triples with
different relations in WN18RR dataset. We use * to
represent the abbreviation of some words in the relation
names. #Train and #Test are the number of triples with
the corresponding relations in the training and test set.

Effect of Positive Instances We apply an ab-
lation study to verify the effect of positive in-
stances. The variants of w/o Pos are the variants of
RESCAL-CL and ComplEx-CL, which remove all
original and additionally added positive instances
in a mini-batch when calculating the contrastive
loss. Table 6 shows the results of ablation study on
WN18RR and FB15k-237 datasets. From Table 6
we know the positive instance of KGE can signifi-
cantly improve the performance of KGE. Therefore,
the positive instances we constructed are effective
for the KGE.

Sparsity Analysis As mentioned by some other
work (Zhang et al., 2020a), the sparsity (the num-
ber of zero entries) of embeddings can save the
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Figure 2: The visualization of the entity-relation couples’ embeddings using T-SNE. A points represents a (hi, rj)
couple, and the points with the same color are the couples that connected with the same tail entity.

Methods Variants
WN18RR FB15k-237

MRR Hit@10 MRR Hit@10

RESCAL w/o Pos 0.501 0.581 0.368 0.551
-CL w/ Pos 0.512 0.597 0.378 0.559

ComplEx w/o Pos 0.493 0.579 0.370 0.560
-CL w/ Pos 0.505 0.595 0.377 0.564

Table 6: Effect of Positive Instances.
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Figure 3: Effect of sparsity on FB15k-237.

storage usage of KG, which is vital for large scale
real-world KGs. Therefore, we analyze the sparsity
of embeddings trainng by our contrastive learn-
ing (CL) framework. We follow the setting in
DURA (Zhang et al., 2020a), using a threshold
λ to mask a proportion of entries as zero, and ob-
serve the MRR results under different proportions.
Figure 3 shows the effect of embeddings’ sparsity
on FB15k-237. We can find that the embeddings
trained by CL have better results than DURA in the
sparse version, so CL can better reduce the storage
usage of KG and benifit the real-world KGs.

5.4 Visualization

To make our method more explainable, we visual-
ize the entity-relation couples via T-SNE (van der
Maaten and Hinton, 2008). Specifically, we ran-
domly pick up eight tail entities in WN18RR. We

find out the triples with these tail entities in the test
set, and extract (hi, rj) couples in these triples. We
visualize these couples’ embeddings trained by the
RESCAL, RESCAL-DURA, and RESCAL-CL.

Figure 2 shows the results of visualization. The
RESCAL method in Figure 2 (a) can not prop-
erly separate the couples with different tail entities.
Compared with RESCAL, the RESCAL-DURA
in Figure 2 (b) can relatively better separate the
couples with different tail entities. However, since
RESCAL-DURA can not capture the semantic sim-
ilarity of couples with the same entity, the distri-
bution of the couples connected with the same tail
entity is still wide. Our RESCAL-CL can well split
the couples in different types and shorten the dis-
tance of the couples connected with the same entity.
Hence, our RESCAL-CL can better preserve the
semantic information of the triples in knowledge
graphs and has a higher performance.

6 Conclusion and Future Work

In this paper, we propose a simple yet efficient
contrastive learning framework for TDB KGE to
improve its performance. Compared with the previ-
ous work, our method can pull the related entities
and entity-relation couples in different triples to-
gether in the semantic space and push the unrelated
entities and couples apart. The experimental results
on the standard datasets show that our method can
achieve new state-of-the-art results. Our analyses
further verify the effectiveness of our approach.

In the future, we plan to extend the critical in-
sights of contrastive learning to distance based
(DB) KGE methods and other representation learn-
ing problems in natural language processing.
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Abstract

Existing fake news detection methods aim to
classify a piece of news as true or false and pro-
vide veracity explanations, achieving remark-
able performances. However, they often tailor
automated solutions on manual fact-checked
reports, suffering from limited news coverage
and debunking delays. When a piece of news
has not yet been fact-checked or debunked, cer-
tain amounts of relevant raw reports are usually
disseminated on various media outlets, con-
taining the wisdom of crowds to verify the
news claim and explain its verdict. In this pa-
per, we propose a novel Coarse-to-fine Cas-
caded Evidence-Distillation (CofCED) neural
network for explainable fake news detection
based on such raw reports, alleviating the de-
pendency on fact-checked ones. Specifically,
we first utilize a hierarchical encoder for web
text representation, and then develop two cas-
caded selectors to select the most explainable
sentences for verdicts on top of the selected
top-𝐾 reports in a coarse-to-fine manner. Be-
sides, we construct two explainable fake news
datasets, which is publicly available. Experi-
mental results demonstrate that our model sig-
nificantly outperforms state-of-the-art detection
baselines and generates high-quality explana-
tions from diverse evaluation perspectives.

1 Introduction

During the COVID-19 pandemic, almost 80% of
consumers in the United States received fake news,
which has caused confusion and undermined pub-
lic health efforts1. The proliferation of fake news
has increased the demand for automatic fake news
detection (Guo et al., 2022). To further clarify and
explain detection results, explainable fake news de-
tection has gained more importance recently, aim-
ing to classify the truthfulness of a piece of news
and generate veracity explanations2 (Kotonya and

∗Corresponding authors.
1https://www.statista.com/topics/3251/fake-news
2Explanations and evidence are used interchangeably

Figure 1: An example for veracity explanation genera-
tion. The underlined explanations can be semantically
inferred from some relevant sentences in the reports 𝑅1
and 𝑅𝑛. “𝑅” denotes the raw report.

Toni, 2020a). However, existing methods have a
limitation in detecting fake news timely as they
heavily relied on debunked reports of investigated
journalism. Thus, it is urgent to develop explain-
able yet general methods to mitigate this issue.

Many previous approaches detected fake news
without any justifications (Wang, 2017; Ma et al.,
2018). Recently, some explainable methods high-
lighted salient words or phrases in relevant reports
as explanations (Popat et al., 2018; Wu et al., 2021),
which lack readable complete sentences. To al-
leviate these issues, some methods aimed to ex-
tract salient sentences from relevant reports via
attention mechanisms (Nie et al., 2019; Ma et al.,
2019), or pre-trained extractive-abstractive summa-
rization (Kotonya and Toni, 2020b), etc. As the
human justification about veracity labels can signif-
icantly improve the performance of veracity predic-
tion (Alhindi et al., 2018), Atanasova et al. (2020)
proposed the first study on producing veracity ex-
planations jointly with veracity prediction utilizing
the debunked report released by fact-checking web-
sites. However, such a debunked report is based
on manual endeavors, thus prone to be coverage-
limited and relatively inefficient.

A new study by MIT researchers suggests that
crowds of laypeople reliably rate claims as effec-
tively as fact-checkers do (Allen et al., 2021). To
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use the wisdom of crowds, we assume that crowds
of relevant raw reports (e.g., media reports, user
comments, blogs, etc.) published by different me-
dia outlets contain evidence for effectively detect-
ing fake news and explaining verdicts (Ma et al.,
2019; Popat et al., 2018). As shown in Figure 1,
given a false claim “Microwaving fabric masks is
a good way to sanitize them for reuse”, the check-
worthy reports 𝑅1 and 𝑅𝑛 are selected from all
reports [𝑅1, 𝑅2, · · · , 𝑅𝑛] and then some evidential
sentences (underlined) can be used to generate ve-
racity explanations. In contrast, existing methods
usually tailor models on one manual fact-checked
article, rarely attempting to detect fake news based
on raw reports.

To this end, we propose a general coarse-to-fine
cascaded evidence-distillation (CofCED) network
to detect fake news and explain verdicts directly
using raw reports, mitigating the dependency on
fact-checked reports. Specifically, we design a hi-
erarchical encoder for text representation, and then
we develop two coarse-to-fine cascaded selectors to
distill explainable sentences on top of the selected
top-𝐾 check-worthy reports. Our predictions of
explainable sentences can be obtained by explic-
itly considering four features, i.e., claim relevance,
richness, salience, and non-redundancy. Different
from FEVER (Thorne et al., 2018) using human-
crafted claims with credible Wikipedia articles, the
claims in our task are real-world news containing
some unreliable reports. Thus, detecting fake news
on raw reports is much more challenging and sig-
nificant than that in FEVER task.

Our contributions are as follows: 1) To the best
of our knowledge, we present the first study on
explainable fake news detection directly utilizing
the wisdom of crowds, alleviating the dependency
on fact-checked reports; 2) Our model has the ad-
vantage of revealing insight into the generation of
veracity explanations from various perspectives; 3)
We construct two realistic datasets, i.e., RAWFC
and LIAR-RAW, consisting of raw reports for each
claim. Experimental results on benchmarks demon-
strate the effectiveness of CofCED for detecting
fake news and and explaining verdicts based on
raw reports. Our resources are publicly available at
https://github.com/Nicozwy/CofCED.

2 Related Work

We review prior works closely related to ours based
on several surveys (Shu et al., 2017; Kotonya and

Toni, 2020a).

Black-boxed fake news detection. Many ex-
isting studies on fake news detection achieved
promising performances by incorporating claim
metadata to facilitate the detection, such as user
profiles (Wang, 2017; Long, 2017; Karimi et al.,
2018). Besides, various deep learning methods
have been proposed to capture report features, e.g.,
credibility (Popat et al., 2017), stances (Ma et al.,
2018), writing styles (Potthast et al., 2018), extra
knowledge (Dun et al., 2021), etc. Although these
methods could improve the detection performance,
they are lack of explainability on verdicts.

Explainable fake news detection. To address
the above issue, many explainable methods on this
task explored attention mechanisms to highlight
salient words (Popat et al., 2018; Wu et al., 2021),
news attributes (Yang et al., 2019), and suspicious
users (Lu and Li, 2020), to obtain relevant evidence,
providing a certain explainability. To improve the
readability in word-level methods, there are some
methods obtained evidential sentences using atten-
tion weights (Shu et al., 2019), semantic match-
ing (Nie et al., 2019), and entailment (Ma et al.,
2019). More recently, Atanasova et al. (2020) pro-
posed the first study on directly producing veracity
explanations using extractive summarization, and
Kotonya and Toni (2020b) made use of extractive-
abstractive summarization for explanation genera-
tion, independent of the veracity prediction. How-
ever, they significantly relied on the manual fact-
checked report and rarely attempted to consider
fine-grained features for this task. Thus, we uti-
lize the wisdom of crowds for fake news detection
based on raw reports, providing a highly explain-
able structure for explanation generation.

Datasets. For explainable fake news detection,
FEVER (Thorne et al., 2018) was crafted merely
from credible Wikipedia articles, and MultiFC (Au-
genstein et al., 2019) provided a real-world bench-
mark for multi-domain claims. While offering ev-
idence labels, they do not contain veracity expla-
nations. By contrast, LIAR-PLUS (Alhindi et al.,
2018) extended on LIAR (Wang, 2017) and PUB-
HEALTH (Kotonya and Toni, 2020b) on the pub-
lic health, providing manual explanations for ex-
plainable fake news detection. However, they only
contain the manual fact-checked report that is rel-
atively inefficient and coverage-limited. Thus, we
constructed two datasets by collecting raw reports,
which is more suitable and challenging for this task.
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Figure 2: An overview of our proposed CofCED framework. The document selector and the sentence selector are
used for selecting check-worthy reports (containing oracles) and oracles, respectively. “Agg.” denotes aggregation
and “ Corr.” denotes corresponding. We use different color to highlight different objects. Note that the green line
denotes the last output of sentence selection for checking redundancy.

3 Problem Statement

Given a fake news dataset {C}, C = (𝑐,D) is
a tuple representing a given claim 𝑐 and its rel-
evant raw reports D = {𝑑𝑖} |D |𝑖=1 , where each 𝑑𝑖 =
(𝑠𝑖,1, 𝑠𝑖,2, · · · , 𝑠𝑖, |𝑑𝑖 |) denotes a relevant report con-
sisted of a sequence of sentences and |.| denotes
the number of items. In the task of explainable
fake news detection, each claim 𝑐 is associated
with a veracity 𝑦 taking one of the class labels
from {True, False, · · · }, and each raw report 𝑑𝑖 is
associated with a binary label 𝑦𝑑𝑖 ∈ 𝑌 𝑑 indicating
that whether 𝑑𝑖 contains explainable sentences (i.e.,
oracles). For each sentence 𝑠𝑖, 𝑗 , 𝑦𝑠𝑖, 𝑗 ∈ 𝑌 𝑠 is a bi-
nary label indicating that whether 𝑠𝑖, 𝑗 is one of the
explainable sentences w.r.t. the gold justification.

We formulate this task as a multi-task learning
problem by considering check-worthy report se-
lection, explainable sentence extraction, and ve-
racity prediction. Formally, 𝑓 : 𝑓 (𝑐,D) →
( �̂�, 𝑌 𝑑 , 𝑌 𝑠, �̂�), where �̂� denotes the veracity ex-
planation (i.e., evidence) consisting of a set of pre-
dicted sentences (i.e., �̂�𝑑𝑖 = 1 and �̂�𝑠𝑖, 𝑗 = 1).

4 CofCED: The Proposed Method

Fig. 2 gives an overview of our proposed CofCED,
which consists of four parts: hierarchical encoding,
report selection, explainable sentence extraction,
and veracity prediction.

4.1 Hierarchical Encoding
Given a word sequence of a claim or report sen-
tence 𝑇 = (𝑤1 · · ·𝑤𝑡 · · ·𝑤 |𝑇 |), where 𝑤𝑡 ∈ ℝ𝑑 is a
𝑑-dimensional vector initialized with a text encoder.
Because words form a sentence and sentences form
a report, we utilize a hierarchical encoding method
for sentence and report representation in our model.
Specifically, for sentence encoding, we use the
special token “[CLS]” embedding from the final
contextual layer of the pre-trained language model
(Sanh et al., 2019) as the sentence representation.
Thus, we obtain the sentence representation for a
claim 𝑐 and each sentence 𝑠𝑖, 𝑗 in a raw report 𝑑𝑖 as
h𝑐 ∈ ℝ𝑑 and h𝑖, 𝑗 ∈ ℝ𝑑 , respectively.

For document encoding, we further adopt a
document encoder consisting of a bidirectional
LSTM (BiLSTM) (Rashkin et al., 2017) and a max-
pooling layer to aggregate all salient sentence fea-
tures as the representation of a report:

h̃𝑖, 𝑗 = BiLSTM(h𝑖, 𝑗 ,−→h 𝑖, 𝑗−1,
←−h 𝑖, 𝑗−1, \) (1)

h𝑖 = Max( [h̃𝑖,1; h̃𝑖,2; · · · ; h̃𝑖, |𝑑𝑖 |]) (2)

where h̃𝑖, 𝑗 ∈ ℝ𝑑 denotes the cross-sentence hidden
state, and h𝑖 ∈ ℝ𝑑 denotes the representation of the
report 𝑑𝑖 . Max denotes the max pooling, [;] denotes
concatenation, and \ denotes encoder parameters.

4.2 Report Selection
Since this task is formulated on massive raw re-
ports, our model aims to automatically narrow
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down the evidence extraction by ranking them and
capturing the top ones for further analysis. Taking
the claim in Fig. 1 as an example, there are 𝑛 re-
trieved reports about "microwaving fabric masks"
and the significant reports 𝑅1 and 𝑅𝑛 containing
oracles (i.e., underlined sentences) are selected for
veracity prediction and explanation generation.

To distill the check-worthy reports from massive
reports D that are helpful for veracity prediction,
we firstly develop a coarse-grained document selec-
tor by treating the claim as a query to find 𝐾 most
significant results. Then, global attention is utilized
to obtain the significance score for each report 𝑑𝑖:

𝛼𝑐→D = softmax(HD𝑊𝛼h𝑐) (3)

where HD = [h1; h2; · · · ; h |D |] compacts all hid-
den vectors of reports and 𝑊𝛼 ∈ ℝ𝑑×𝑑 is a train-
able parameter. We use 𝛼𝑐→D to rank all reports
and select the top-𝐾 results as the check-worthy
reports (i.e., �̂�𝑑𝑖 = 𝛼𝑖 (𝛼𝑖 ≥ 𝛼𝐾 ) and otherwise
�̂�𝑑𝑖 = 0(𝛼𝑖 < 𝛼𝐾 )). Note that the 𝑡-th sentence
representation in the 𝑘-th selected report 𝑑

′
𝑘 are

denoted as h′𝑘,𝑡 ∈ {h
′
𝑘,1, h

′
𝑖,2, ..., h

′
𝑘, |𝑑′

𝑘
|}, and its

document representation is denoted as h′𝑘 , which
are used for explainable sentence extraction.

4.3 Explainable Sentence Extraction
On top of selected reports, we treat explanation gen-
eration as a multi-document extractive summariza-
tion, where each report is visited sequentially for
explainable sentences. Such reports are regarded
as the wisdom of crowds when detecting a dubi-
ous claim. We assume that explainable sentences
for verdicts should be claim-relevant, informative,
salient, and non-redundant. Specifically, there may
exist redundancy between reports because a report
is generally self-contained and multiple raw reports
are more likely to contain semantically irrelevant
and redundant sentences (Ma et al., 2019).

In this paper, we develop a fine-grained sen-
tence selector to extract explainable sentences from
these check-worthy reports considering the follow-
ing four features: 1) claim relevance measures
the topic coverage of each sentence regarding the
claim; 2) richness measures the content informa-
tiveness of each sentence containing evidence; 3)
salience measures the significance of each sentence
regarding the entire report; 4) non-redundancy mea-
sures the novelty of each sentence regarding pre-
vious selected explainable sentences. Therefore,
we define a layer to predict the probability of each

sentence that should be selected via integrating the
four features as follows:

P(𝑦𝑠𝑘,𝑡 = 1|h𝑐, h′𝑘,𝑡 , h
′
𝑘 , h𝑑)

= 𝜎( h
′
𝑘,𝑡𝑊𝑐h𝑐︸     ︷︷     ︸

(claim relevance)

+ h
′
𝑘,𝑡𝑊𝑠︸ ︷︷ ︸
(richness)

+ h
′
𝑘,𝑡𝑊𝑟h

′
𝑘︸     ︷︷     ︸

(salience)

− h
′
𝑘,𝑡𝑊𝑑h𝑑︸     ︷︷     ︸

(non-redundancy)

) (4)

where 𝑦𝑠𝑘,𝑡 is a binary variable indicating whether
the 𝑡-th sentence in the selected report 𝑑

′
𝑘 should

be selected as part of explanations �̂� , and 𝑊∗ are
trainable parameters. h𝑑 is the redundancy vectors
initialized with all zeros and updated by selected
sentences in previously visited reports as follows:

h𝑑 = tanh(
∑︁
𝑡

h
′
𝑘−1,𝑡 · P(𝑦𝑠𝑘,𝑡 = 1)) (5)

Considering the number of report sentences,
our model learns to select the explainable sen-
tences with probabilities above a soft threshold
Y𝑘 = 1/|𝑑′𝑘 |, i.e., P(𝑦𝑠𝑘,𝑡 = 1) > Y𝑘 , where
P(𝑦𝑠𝑘,𝑡 = 1) is obtained by Eq. (4). Note that
h′′𝑘,𝑡 is used to denote the sentence representation
output from the explainable sentence selector.

4.4 Veracity Prediction
To enhance final veracity prediction, we further
employ the extracted explanation as additional ev-
idence besides the claims and all reports. Specifi-
cally, we aggregate the recognitions from such evi-
dence and reports for a target claim, respectively,
and then obtain the final representation by concate-
nating the claim representation, report representa-
tion, and explanation representation as follows:

h𝐷 = Max( [h1; h2; · · · ; h |D |]) (6)

h𝐸 = Max( [h′′1; h
′′
2; ...; h

′′
𝐾 ]) (7)

h† = [h𝑐; h𝐷; h𝐸] (8)

where h𝐷 denotes the integrated representation of
all report sentences, h𝐸 denotes the integrated rep-
resentation of all explainable sentences. h† denotes
the final representation for veracity prediction. 𝐾
denotes a hyperparameter controlling the maximum
number of selected reports. Similar to Eq. (2),
h′′𝑘 = Max( [h′′𝑘,1; h′′𝑘,2; · · · ; h′′

𝑘, |𝑑′
𝑘
|]) is the 𝑘-th re-

port representation in the extracted explanations.
Finally, h† is fed into a multi-layer perceptron

(MLP) layer to predict the veracity label as follows:

�̂� = softmax(MLP(h†)) (9)
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4.5 Model Training

It is inefficient to train report selection, explainable
sentence extraction, and veracity prediction inde-
pendently, considering their implicit correlations
and the pipeline for explainable fake news detec-
tion in the real world (Kotonya and Toni, 2020a).
Thus, we jointly optimize these three sub-tasks in
an end-to-end model. For model training, we mini-
mize the overall loss L𝑎𝑙𝑙 as follows:

L𝐷 = −
∑︁
𝑖

𝑦𝑑𝑖 log( �̂�𝑑𝑖 ) (10)

L𝑆 = −
∑︁
𝑘

∑︁
𝑡

𝑦𝑠𝑘,𝑡 log( �̂�𝑠𝑘,𝑡 ) (11)

L𝐶 = −𝑦log( �̂�) (12)

L𝑎𝑙𝑙 = 𝛽𝐷L𝐷 + 𝛽𝑆L𝑆 + 𝛽𝐶L𝐶 (13)

where L𝐷 , L𝑆 , and L𝐶 denote the cross-entropy
loss for check-worthy report selection, explanation
generation and veracity prediction tasks, respec-
tively. 𝑦𝑑𝑖 and �̂�𝑑𝑖 denote the gold and predicted
label of reports, respectively. 𝑦𝑠𝑘,𝑡 , and �̂�𝑠𝑘,𝑡 denote
the ground truth and the predicted probability of
the sentence for explanation, respectively. 𝑦 and
�̂� denote the ground truth and predicted veracity
probability of the claim, respectively. 𝛽 denotes the
trade-off parameter, controlling the task importance
in our work. We can automatically assign 𝛽𝐷 , 𝛽𝑆 ,
and 𝛽𝐶 with proper values using the adaptive strat-
egy, rather than the grid search (see Appendix B).

5 Experiments

5.1 Datasets and Settings

To the best of our knowledge, there is no public
dataset on raw reports available for this task. Thus,
we collect two explainable datasets, i.e., RAWFC
and LIAR-RAW, referring to two different fact-
checking sites (i.e., Snopes3 and Politifact4) for
gold labels, respectively. For RAWFC, we con-
structed it from scratch by collecting the claims
from Snopes and relevant raw reports by retrieving
claim keywords. For LIAR-RAW, we extended the
public dataset LIAR-PLUS (Alhindi et al., 2018)
with relevant raw reports, containing fine-grained
claims from Politifact. We process and separate
these datasets into train/valid/test sets by 8:1:1 fol-
lowing the same setting in (Atanasova et al., 2020).
More details are illustrated in Appendix A.

3www.snopes.com
4www.politifact.com

Dataset RAWFC LIAR-RAW
Claim 2,012 12,590

# pants-fire - 1,013
# false 646 2,466
# barely-true - 2,057
# half-true † 671 2,594
# mostly-true - 2,439
# true 695 2,021

Veracity Label 3 6
Explain sentence

# min 1 1
# max 110 209
# avg 18.4 4.1

Report per claim
# min 1 1
# max 30 30
# avg 21.0 12.3

Sentence per report
# min 1 1
# max 155 59
# avg 7.4 5.5

Table 1: Statistics of datasets. # half-true † is also
denoted as # half in RAWFC. The number of oracles in
datasets isn’t pre-defined.

For experimental setup, we initialized word em-
beddings with the base uncased DistilBERT (Sanh
et al., 2019) and 𝑑 = 768 dimensions. The hidden
size of LSTM is set to 384. We use Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 1e-5
and the mini-batch size is set to 1 to minimize joint
cross-entropy loss. The maximum number 𝐾 of se-
lected reports for each claim is empirically set to 12
and 18 for RAWFC and LIAR-RAW, respectively.
We use a soft threshold Y𝑖 = 1/|𝑑′𝑖 | for selection
while empirically setting the maximum number
of oracle sentences to 30 and 55 for RAWFC and
LIAR-RAW, respectively. We set the dropout rate
to 0.4 before final prediction and the maximum
number of training epochs to 8. For evaluation,
we employ macro-averaged precision (P), recall
(R), and F1 score (macF1) for veracity prediction,
and use ROUGE-𝑁 F1 score (𝑁 ∈ {1, 2, 𝐿}) and
the human evaluation to evaluate the quality of ex-
planations. Note that fact-checked reports are not
required during inference in our model.

5.2 Veracity Prediction Performance

Table 2 compares veracity prediction results with
the following strong baselines: 1) SVM (Pedregosa
et al., 2011): This uses bag-of-words features to
train SVM-based model for fake news detection;
2) CNN (Wang, 2017): This incorporates available
metadata features to enhance representation learn-
ing; 3) RNN (Rashkin et al., 2017): This learns
representation from word sequences without ex-
ternal resources; 4) DeClarE (Popat et al., 2018):
This combines word embeddings from the claim,
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Model RAWFC LIAR-RAW
P(%) R(%) macF1(%) P(%) R(%) macF1(%)

SVM (Pedregosa et al., 2011) 32.33 32.51 31.71 15.78 15.92 15.34
CNN (Wang, 2017) 38.80 38.50 38.59 22.58 22.39 21.36
RNN (Rashkin et al., 2017) 41.35 42.09 40.39 24.36 21.20 20.79
DeClarE (Popat et al., 2018) 43.39 43.52 42.18 22.86 20.55 18.43
dEFEND (Shu et al., 2019) 44.93 43.26 44.07 23.09 18.56 17.51
SentHAN (Ma et al., 2019) 45.66 45.54 44.25 22.64 19.96 18.46
SBERT-FC (Kotonya and Toni, 2020b) 51.06 45.92 45.51 24.09 22.07 22.19
GenFE (Atanasova et al., 2020) 44.29 44.74 44.43 28.01 26.16 26.49
GenFE-MT (Atanasova et al., 2020) 45.64 45.27 45.08 18.55 19.90 15.15
CofCED 52.99 50.99 51.07 29.48 29.55 28.93

Table 2: Experimental results of veracity prediction merely using raw reports (𝑝 < 0.05 under t-test).

report, and source to access the credibility of the
claim; 5) dEFEND (Shu et al., 2019): This utilizes
GRU-based model for veracity prediction with ex-
planations; 6) SentHAN (Ma et al., 2019): This
represents each sentence based on sentence-level
coherence and semantic conflicts with the claim; 7)
SBERT-FC (Kotonya and Toni, 2020b): This uses
SentenceBERT (SBERT) for encoding and detects
fake news based on the top-𝐾 ranked sentences; 8)
GenFE/GenFE-MT (Atanasova et al., 2020): This
detects fake news independently or jointly with
explanations in the multi-task set-up.

Table 2 demonstrates the detection performance
of our proposed CofCED compared with existing
strong baselines in terms of precision, recall and
macro F1 (macF1). From this table, we can ob-
serve that CNN and RNN outperform SVM on both
datasets, indicating that deep learning methods can
better capture semantic and syntactic features from
raw reports. By attentively aggregating multiple
features from the claim, reports, and source to es-
timate the veracity, dEFEND, DeClarE and Sen-
tHAN achieve better performance on RAWFC but
slightly worse results on LIAR-RAW, because fine-
grained labels contained in LIAR-RAW make it
more challenging.

SBERT-FC and GenFE outperform SentHAN
and dEFEND on both datasets, demonstrating the
superiority of pre-trained models. GenFE-MT per-
forms better than GenFE on RAWFC, but much
worse than other baselines on LIAR-RAW, imply-
ing the challenge of fine-grained fake news detec-
tion with explanation generation in the multi-task
setting. Generally, CofCED consistently achieves
much better performance on RAWFC and LIAR-
RAW, demonstrating the superiority of CofCED in
combining report selection, explainable sentence
extraction and veracity prediction for fake news
detection directly on raw reports, alleviating the
dependency on fact-checked reports.

5.3 Ablation Study

To evaluate the impact of each component, we con-
duct ablation experiments for CofCED by remov-
ing the following key components: 1) RS denotes
report selection; 2) SE denotes sentence selection;
3) RS&SE denotes RS and SE; 4) Four semantic
features: claim relevance, richness, salience, and
non-redundancy, for sentence selection.

As shown in Table 3, CofCED significantly out-
performs CofCED w/o ∗ (∗ indicates a component)
on both datasets, demonstrating all components
contribute to the effectiveness of CofCED in de-
tecting fake news. Specifically, CofCED’s perfor-
mance significantly decreases without RS&SE be-
cause there is noise in raw reports, affecting the
veracity prediction. CofCED w/o SE performs
much worse than the others because irrelevant or
redundant information contained in such reports
may weaken the effect of evidence for detection;
CofCED w/o RS also achieves worse performance
than CofCED because noisy reports may affect
sentence selection and model training. Further-
more, the performance of CofCED w/o claim rele-
vance significantly decreases, highlighting the im-
portance of selecting claim-relevant evidence for
final prediction. CofCED outperforms CofCED
without these four features for sentence selection,
respectively, demonstrating they contribute to ex-
tracting explainable sentences for fake news detec-
tion from different perspectives.

5.4 Explanation Evaluation

Table 4 reports the ROUGE results of the extracted
explanations regarding word overlapping. The
ROUGE F1 score is employed to evaluate their
qualities comparing with the following strong base-
lines: 1) LEAD-N (Nallapati et al., 2017): This
uses the first N sentences as explanation and 𝑁 = 5;
2) Oracle (Atanasova et al., 2020): This typically
presents the best greedy approximation of the gold

2613



Model RAWFC LIAR-RAW
P(%) R(%) macF1(%) P(%) R(%) macF1(%)

CofCED w/o RS&SE 45.01 45.02 44.98 25.69 24.55 24.80
CofCED w/o SE 52.27 46.36 43.80 27.59 23.81 23.74
CofCED w/o RS 49.26 46.92 46.37 27.08 25.32 25.52
CofCED w/o non-redundancy 48.80 46.98 47.48 26.54 27.36 26.65
CofCED w/o salience 43.96 49.24 46.44 26.36 24.88 25.23
CofCED w/o richness 48.08 47.50 47.12 27.06 25.82 26.05
CofCED w/o claim relevance 45.66 45.25 45.28 26.42 24.01 24.88
CofCED 52.99 50.99 51.07 29.48 29.55 28.93

Table 3: Ablation study results of our veracity prediction on test sets; w/o denotes ‘without’.

Model RAWFC LIAR-RAW
ROU-1 ROU-2 ROU-L ROU-1 ROU-2 ROU-L

LEAD-N 19.52 4.54 17.26 9.84 0.40 7.20
Oracle 37.62 13.22 34.67 25.50 9.28 22.61
EXTABS (Kotonya and Toni, 2020b) - - - 18.85 3.61 12.90
dEFEND (Shu et al., 2019) 19.95 5.08 17.21 17.03 3.26 11.42
GenFE-MT (Atanasova et al., 2020) 18.23 7.12 17.32 23.08 3.67 12.10
CofCED w/o non-redundancy 27.32 9.06 23.19 17.96 3.54 12.43
CofCED w/o salience 26.67 7.44 21.02 17.27 3.41 11.69
CofCED w/o richness 25.75 8.66 21.87 17.23 3.44 12.10
CofCED w/o claim relevance 25.56 8.07 20.73 17.08 3.31 11.25
CofCED w/o RS 26.64 8.96 22.69 17.51 3.72 13.20
CofCED 27.62 9.32 23.57 17.14 3.49 12.96

Table 4: ROUGE results of the generated explanation. ROU-𝑁 (𝑁 ∈ {1, 2, 𝐿}) denotes the ROUGE-𝑁 F1 score that
evaluates the token overlap between the explanation and human justifications. RAWFC is not suitable for EXTABS
because its gold justification is too long to train an abstractive-summarization model.

explanation with sentences extracted from reports;
3) EXTABS (Kotonya and Toni, 2020b): This
uses extractive-abstractive summarization model
pre-trained on extra news articles and summaries
dataset before fine-tuning (Liu and Lapata, 2019);
4) dEFEND: This uses internal attention weights
for explanations; 5) GenFE-MT: This incorporates
explanation generation using pre-trained models.

Overall, CofCED achieves the state-of-the-art
performance on RAWFC and comparable ROUGE
scores with GenFE-MT on LIAR-RAW, suggesting
that our CofCED can effectively distill explain-
able sentences that contributes to the final verac-
ity prediction, as shown in Table 2. Specifically,
the ROUGE results of LEAD-N and Oracle on
RAWFC and LIAR-RAW indicate that generating
explanations for fine-grained fake news detection
is a more complex challenge. EXTABS obtains
competitive results on LIAR-RAW due to addi-
tional news and summaries datasets for abstractive
summarization but it cannot deal with long justifi-
cations. GenFE-MT performs much better than dE-
FEND on both datasets, indicating the advantage of
pre-trained models in generating explanation from
raw reports but failing to trade off both tasks re-
garding Table 2. For ablation results, we observe
that some ablations of CofCED achieve slightly
better ROUGE scores but much worse veracity pre-

dictions on LIAR-RAW, indicating these four fea-
tures can effectively select explainable sentences
to enhance fake news detection. Besides, CofCED
performs better on RAWFC while only compara-
ble on LIAR-RAW than CofCED w/o RS, imply-
ing that generating explanations for fine-grained
veracity labels is much more challenging regard-
ing word overlapping. We further conduct human
evaluations as shown in Appendix D. In summary,
our CofCED can effectively generate accurate ex-
planations from raw reports and all components
contribute to focusing on veracity prediction.

5.5 Case Study

For in-depth analysis, we further explore the pro-
cess of CofCED in selecting explainable sentences.
We normalized scores for each abstract feature,
obtaining its overall probability for explaining de-
tection results. As shown in Table 5, given a false
claim about COVID-19, the top two sentences with
higher overall scores refute the claim from differ-
ent perspectives and the last two sentences with 0.3
and 0.2 overall scores contribute less to the veracity
prediction. The separated terms, i.e., claim rele-
vance, richness, salience, and non-redundancy, in
Eq. (4) are clearly visualized for seeking the major
factor responsible for the classification of each sen-
tence. In addition to being a state-of-the-art method
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Claim: Dr. Tasuku Honjo said that COVID-19 was “man-made" at a lab in Wuhan, China.
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[Prediction: False] Explanation: Honjo did not work at the Wuhan Institute of Virology, he did
not say that COVID-19 was “invented” or “man-made,” and the Twitter account posting similar
claims does not belong to the Nobel Prize winner. In addition, this rumor is all based on the
unfounded notion that COVID-19 was created as a bioweapon. (...)

[1] TOKYO, May 6 (Xinhua) – Japanese Nobel laureate Tasuku Honjo have refuted claim that
China manufacture the novel coronavirus, say those rumor be “dangerously distract.”

0.9 0.6 0.8 0.9 0.9
√

[2] Actually, the professor don’t have a Twitter account. 0.7 0.5 0.6 0.9 0.6
√

[3] The 2018 Nobel laureate encourage Japanese authority to adopt a more proactive approach. 0.3 0.5 0.4 0.8 0.3 ×
[4] China will have a big role to play. ... 0.2 0.2 0.1 0.7 0.2 ×

Table 5: Our visualization of explanation extraction from raw reports. Each row is a sentence in raw reports. The
score in the columns are normalized from each of the abstract features in Eq. (4), and the last column is the final
probability explaining to detection results.

(a) Veracity prediction (b) Explanation generation

Figure 3: Results of CofCED under different values
of the trade-off parameter 𝛽𝑆 and 𝛽𝐶 = 1 − 𝛽𝑆 . The
colored dashed horizontal lines denote the performance
of CofCED with our adaptive weighting.

(a) Veracity prediction (b) Explanation generation

Figure 4: Results of CofCED under different values of
the maximum number 𝐾 for report selection.

for explainable fake news detection, CofCED has
the additional superiority of being very explainable
for sentence extraction. Thus, such visualization
increases the transparency of the system and the
credibility of generated explanations for verdicts.

5.6 Parameter Sensitivity Study

We further investigate the impact of the trade-off
parameter 𝛽 in Eq. (13) on CofCED using the grid
search. For brevity, Fig. 3 only presents the re-
sults for a) veracity prediction and b) explanation
generation on development sets when 𝛽𝑆 varies
and 𝛽𝐷 = 0.5 is temporarily fixed. We also tried
various 𝛽𝐷 ∈ [0.1, 0.8] and consistently achieved
similar results. By varying the value of 𝛽𝑆 from
0.1 to 0.8, our model achieves better performances
on one task but poorer results on the other. This

is because these tasks show different importance
and priority for the final performance over time.
By contrast, our CofCED with our proposed multi-
task adaptive weighting (MAW) (i.e., the colored
dashed horizontal lines) consistently achieves bet-
ter performance. Thus, these results demonstrate
that CofCED with MAW can effectively find bet-
ter weights for explanation generation and veracity
prediction in multi-task learning, alleviating the
labor for the grid search for trade-off parameters.

To examine the impact of the maximum num-
ber of selected reports on CofCED, we conduct
experiments by varying 𝐾 while fixing other hyper-
parameters on the development sets of RAWFC and
LIAR-RAW. As shown in Fig. 4, we can see that
too few raw reports generally cause performance
reduction because the noise in the raw reports may
impose the model training bias. Since too many
raw reports will cause the out of memory problem,
we empirically choose a proper value in this study,
i.e., 𝐾 is set to 12 and 18 for RAWFC and LIAR-
RAW, respectively. Note that Y is a soft threshold
that can be automatically assigned regarding the
total number of report sentences.

6 Conclusion

We present a coarse-to-fine cascaded evidence-
distillation (CofCED) neural network for explain-
able fake news detection that achieves the best
detection performance and distills accurate verac-
ity explanations directly from raw reports. Be-
sides, CofCED has the additional advantage of
being explainable in producing veracity explana-
tions, explicitly considering the semantic features,
e.g., claim relevance, richness, salience, and non-
redundancy. Experimental results on real-world
datasets demonstrate the effectiveness of CofCED
for explainable fake news detection utilizing the
wisdom of crowds, effectively mitigating the de-
pendency on fact-checked reports.
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Appendices

A Dataset Details

Existing benchmarks for explainable fake news
detection collected official debunked reports writ-
ten by journalists as evidence for fake news detec-
tion (Kotonya and Toni, 2020a), which is labor-
intensive and relatively inefficient. However, de-
bunked reports are not always available for break-
ing news and are mixed up with raw reports, which
may contain more semantically irrelevant and re-
dundant information. To the best of our knowledge,
there is no available explainable dataset based on
crowds of raw reports to detect fake news before
official reports published. Thus, existing datasets
are not suitable for most real-life scenarios, espe-
cially when the fact-checked reports are not always
available. To address this issue, we collect two
new datasets, i.e., RAWFC and LIAR-RAW, con-
sidering a more general situation of detecting and
explaining fake news with relevant raw reports.

Note that we construct RAWFC and LIAR-RAW
with gold labels referring to Snopes5 and Politi-
fact6, respectively. RAWFC is constructed from
scratch as follows and LIAR-RAW are extended
with raw reports based on LIAR-PLUS (Alhindi
et al., 2018). Besides, we pre-processed LIAR-
RAW similar to RAWFC. The detailed statistics of
datasets are shown in Table 1.

A.1 Data Collection and Processing.

We crawled claims with their veracity labels and
relevant fact-checked reports that can be regarded
as gold explanations from Snopes. For each claim,
we extracted the claim-related keywords as the
search query and used Google API to retrieve the
top 30 relevant raw reports. To mitigate the de-
pendency on fact-checked reports, we filtered out
reports from fact-checking sites and removed the
raw reports published after the publication time of
the fact-checked report. We further removed the
summary from the remaining articles and improved
the quality of the dataset with data cleanings, e.g.,
removing reports containing less than 5 words or
more than 3000 words. Finally, we standardized
the original labels for 3-way classification: {true,
false, half }, i.e., {true, correct attribute, mostly
true}→ true, { false, misattribute, mostly false }
→ false, {mixture, unproven }→ half. Each sen-

5www.snopes.com
6www.politifact.com

Figure A.1: The word cloud of our RAWFC.

Figure A.2: The word cloud of our LIAR-RAW.

tence is annotated as evidence or not according to
their similarities with the gold explanation, where
we greedily extract sentences that achieve the high
cosine similarity and ROUGE F1 score, referred to
as oracles.

A.2 Evidential Sentence Annotation.

To help produce explanations from external raw
reports, each sentence in the article is annotated as
evidence or not. Different from selecting evidential
sentences based merely on the ROUGE score (Lin,
2004) with gold explanations (Atanasova et al.,
2020), we propose a more practical approach to
annotate sentences according to both textual-level
and semantic-level similarities.

For each candidate sentence, we adopt two met-
rics to assess whether it should be selected or not:
1) ROUGE measures the textual-level similarity re-
garding the gold explanation in terms of the 𝑛-gram
overlap; and 2) Cosine measures the semantic simi-
larity regarding the gold explanation. Formally,
for a candidate sentence 𝑠𝑖, 𝑗 ∈ 𝑑𝑖 = {𝑠𝑖, 𝑗} |𝑑𝑖 |𝑗=1
and its corresponding explanation sentences set
𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑛}, we define the 𝑛-gram over-
lap function 𝑓 𝑅𝑂𝑈 (𝑠𝑖, 𝑗 , 𝑒𝑖) and semantic similarity
𝑓 𝐶𝑂𝑆 (𝑠𝑖, 𝑗 , 𝑒𝑖) as follows:

𝑓 𝑅𝑂𝑈 (𝑠𝑖, 𝑗 , 𝑒𝑖) =
|𝑛-grams(𝑠𝑖, 𝑗) ∩ 𝑛-grams(𝑒𝑖) |

|𝑛-grams(𝑒𝑖) |
(A.1)

𝑓 𝐶𝑂𝑆 (𝑠𝑖, 𝑗 , 𝑒𝑖) = cos(ℎ𝑠𝑖, 𝑗 , ℎ𝑒𝑖 ), (A.2)
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Standardized Label Train Valid Test

true 561 67 67
false 514 66 66
half 537 67 67

Table A.1: Label statistics of claims in RAWFC.

Fine-grained Label Train Valid Test

pants-fire 812 115 86
false 1,958 259 249

barely-true 1,611 236 210
half-true 2,087 244 263

mostly-true 1,950 251 238
true 1,647 169 205

Table A.2: Label statistics of claims in LIAR-RAW.

where ℎ𝑠𝑖, 𝑗 and ℎ𝑒𝑖 is the sentence representation
encoded by SBERT (Reimers and Gurevych, 2019).
We calculate the textual similarity in terms of
ROUGE-1, ROUGE-2, and ROUGE-L F1 scores,
respectively; we also calculate the semantic sim-
ilarity in terms of Cosine. For sentence labeling,
we empirically set the thresholds of ROUGE-1,
ROUGE-2, and ROUGE-L F1 scores to 0.1, 0.0,
and 0.1, respectively, and the threshold of Cosine
to 0.6. Finally, we accepted the sentences that
exceed all given thresholds as gold explanation sen-
tences, i.e., oracle. The label statistics of claims
in RAWFC and LIAR-RAW are displayed in Table
1 and Table A.2, respectively. Moreover, we also
visualized their word clouds, as shown in Fig. A.1
and Fig. A.2, respectively.

B Multi-task Adaptive Weighting

Inspired by prior work (Chen et al., 2018; Liu et al.,
2019), we further propose a simple yet effective
remedy, namely Multi-task Adaptive Weighting
(MAW), to automatically keep a dynamic balance
among tasks for different benchmark datasets. We
define the weighting function 𝛽𝑘 (𝑡) as follows:

𝛽𝑘 (𝑡) = 𝑁𝑘 exp[ 𝑓𝑘 (𝑡)𝑔(𝑡)]∑
𝑖 exp[ 𝑓𝑖 (𝑡)𝑔(𝑡)] (B.1)

𝑓𝑘 (𝑡) = L𝑘 (𝑡 − 1)
L𝑘 (𝑡 − 2) , 𝑔(𝑡) =

log(𝑡 − 2)
𝑇

(B.2)

where 𝛽𝑘 = 𝛽𝑘 (𝑡), 𝑘 ∈ {D, S,C} and 𝑓𝑘 (𝑡) repre-
sents the loss rate for task where 𝑡 is an iteration
step; 𝑔(𝑡) is a global function that can generate a
growth value, contributing to an optimal balance
between tasks, since a large 𝑇 can result in a more
even distribution between different tasks. 𝑇 = 8

Algorithm 1: CofCED
Input: A set of training instances {(𝑐,D)};

Maximum selection number 𝐾;
Thresholds Y.

Output: Veracity label �̂�; Check-worthy
report labels 𝑌 𝑑; Explainable
sentence labels 𝑌 𝑠; Generated
Explanation �̂�

1 Initialize 𝛽𝐷 = 𝛽𝑆 = 𝛽𝐶 = 0.5, if 𝑡 ≤ 2;
2 for each instance (𝑐, {{𝑠𝑖, 𝑗} |𝑑𝑖 |𝑗=1}

|D |
𝑖=1 ) do

3 {Hierarchical Encoding}
4 h𝑐, h𝑖, 𝑗 ← DistilBERT;
5 h𝑖 ← Eq. (2);
6 {Task 1: Report Selection}
7 �̂�𝑑𝑖 , {𝑑

′
𝑘}𝐾𝑘=1 ← 𝐾; Eq. (3);

8 h𝐷 = Max( [h1; h2; ...; h |D |])
9 {Task 2: Explainable Sentence

Extraction}
10 for each report 𝑑𝑘 in {𝑑′𝑘}𝐾𝑘=1 do
11 �̂�𝑠𝑘,𝑡 ← Eq. (4);

12 {𝑠𝑘,𝑡 } |𝑑
′
𝑘 |

𝑡=1 , {h
′′
𝑘,𝑡 }

|𝑑′𝑘 |
𝑡=1 ← �̂�𝑠𝑘,𝑡 > Y𝑘

13 Explanations: �̂� = {{𝑠𝑘,𝑡 } |𝑑
′
𝑘 |

𝑡=1 }𝐾𝑘=1,
14 h′′𝑘 = Max( [h′′𝑘,1; h′′𝑘,2; · · · ; h′′

𝑘, |𝑑′
𝑘
|]);

15 h𝐸 = Max( [h′′1; h′′2; ...; h′′𝐾 ]);
16 {Task 3: Veracity Prediction}
17 h† = [h𝑐; h𝐷; h𝐸]
18 Verdicts: �̂� ← Eq. (9);

19 {Multi-task Training}
20 Optimize
L𝑎𝑙𝑙 = 𝛽𝐷L𝐷 + 𝛽𝑆L𝑆 + 𝛽𝐶L𝐶 ← Eq.
(10,11,12);

21 Update 𝛽𝐷 , 𝛽𝑆 , 𝛽𝐶 ;

denotes an initial temperature to control the soft-
ness of task weighting similar to (Caruana, 1997).
𝑁𝑘 = 3 indicates the total number of sub-tasks. We
simply initialize 𝛽𝑘 = 0.5 and update the average
loss over each iteration.

C CofCED Algorithm

Algorithm 1 shows our training procedure.

D Human Evaluation for Explanations

We also study the explanation quality by human
evaluation referring to (Atanasova et al., 2020).
Provided with three types of explanations, i.e., hu-
man justification, veracity explanation generated
by CofCED, and the ones generated by GenFE-MT,
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RAWFC
Annotator Gold Exp-GenFE-MT Exp-CofCED

<Informativeness>
# 1 1.38 2.17 1.89
# 2 1.63 2.32 2.01
# 3 1.24 1.76 2.05
ALL 1.42 2.08 1.98

<Readability>
# 1 1.74 1.98 1.81
# 2 1.15 1.76 1.63
# 3 1.97 2.35 2.07
ALL 1.62 2.03 1.84

<Overall>
# 1 1.54 1.98 2.13
# 2 1.43 1.76 1.73
# 3 1.60 2.24 1.91
ALL 1.52 1.99 1.94

LIAR-RAW
<Informativeness>

# 1 1.27 1.91 1.82
# 2 1.55 2.09 1.63
# 3 1.12 1.72 1.46
ALL 1.31 1.91 1.64

<Readability>
# 1 1.13 2.29 1.78
# 2 1.38 2.25 2.12
# 3 1.24 1.94 2.02
ALL 1.25 2.16 1.97

<Overall>
# 1 1.33 1.96 1.68
# 2 1.49 2.12 1.94
# 3 1.51 2.35 2.08
ALL 1.44 2.14 1.90

Table C.1: Mean Average Ranks (MAR) of the expla-
nations for each three evaluation criteria on RAWFC
and LIAR-RAW, respectively. Gold denotes the expla-
nations come from the justification, Exp-GenFE-MT
denotes the explanations generated by GenFE-MT, and
Exp-CofCED denotes the explanations generated by our
CofCED. Best performances are shown in bold, and the
second ones are underlined.

three English-speaking adult annotators were asked
to rank them with 1–Good, 2–Medium, 3–Poor, ac-
cording to three different criteria. To keep clear
and simple, we use the following criteria:

• Informativeness. The explanation contains
much evidential information that contributes
to fake news detection.

• Readability. The explanation is easy to un-
derstand.

Dataset P(%) R(%) macF1(%)
RAWFC 84.28 79.29 81.71
LIAR-RAW 14.98 61.06 24.06

Table E.1: Our results on report classification.

• Overall. The explanation is ranked based on
their overall quality.

For the annotation settings, we randomly sample
a set of 40 instances from the test set and prepare
three candidate explanations without any other in-
formation about these explanations. All of annota-
tors work independently.

Table C.1 shows the mean average results from
the manual evaluation. We also compute Krippen-
dorff’s inter-annotator agreement (Atanasova et al.,
2020) and obtain 0.37 for Informativeness, 0.43 for
Readability, 0.31 for Overall. From the results, we
can see that the human justification (Gold) achieves
the best quality and our Exp-CofCED achieves bet-
ter quality of explanations than Exp-GenFE-MT.
These results suggest that the ROUGE results in
Table 4 may be not sufficient for evaluating verac-
ity explanations because the ROUGE score only
accounts for word overlapping. Besides, the per-
formance of veracity prediction in Table 2 also
verifies the effectiveness of explanations in improv-
ing fake news detection. In summary, our proposed
CofCED can significantly improve final fake news
detection with overall better veracity explanations.

E Further Discussion

Table E.1 shows internal results about report classi-
fications regarding precision, recall, and macro F1
score. Our model outperforms better on RAWFC
than on LIAR-RAW, indicating that report classi-
fication for fine-grained claims is much challeng-
ing and further improving this part may contribute
to explainable fake news detection. Similarly, Ta-
ble E.2 shows internal results about explainable sen-
tence classifications. Overall, our CofCED signifi-
cantly outperforms GenFE-MT but only achieves
comparable results on LIAR-RAW in terms of
ROUGE scores (Table 4). This is probably be-
cause ROUGE scores w.r.t. word overlapping are
not sufficient for evaluating the qualities of gen-
erated explanations. Thus, we further introduce
human evaluation as a complementary measure.

F Example

Examples from RAWFC are shown in Table F.1.
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Model RAWFC LIAR-RAW

P(%) R(%) macF1(%) P(%) R(%) macF1(%)

GenFE-MT (Atanasova et al., 2020) 50.62 36.03 42.09 43.83 4.27 7.79
CofCED 55.56 41.67 47.62 14.29 22.22 17.39

Table E.2: Experimental results of explainable sentence classification regarding oracle sentences.

[Label: False] Claim: U.S. Rep. Alexandria Ocasio-Cortez started “chain migration" deportation
proceedings against First Lady Melania Trump and her parents.
Explanation: Illegal immigration remained a top issue for U.S. President Donald Trump and continued to
divide Americans in mid-2019, all the more so after Trump told several Democratic members of Congress
of immigrant parentage, all but one of them born in the United States, they should “go back and help fix
the totally broken and crime infested places from which they came.” (...) This is simply not true. For
context, “chain migration” is a term used to describe immigration procedures that allow adult U.S. citizens
to obtain citizenship for foreign-born adult relatives. Reportedly, the first lady’s parents secured their
citizenship through just such a procedure — though we needn’t belabor the point, because everything else
in the story is fictional (Melania Trump’s parents aren’t named “Oedipus and Jezebel Beelzebub.”
Raw Report Domain: www.newsweek.com
Content: The president have also be criticize for want to end “chain migration”, a program that let U.S.
citizen to sponsor immediate family member for legal residency, despite it be the program that Melania
Trump use to put her parent Viktor and Amalija Knavs on a path to American citizenship. (...)
Raw Report Domain: www.washingtonpost.com
Content: Melania Trump’ s parent be legal permanent resident, raise question about whether they rely on
“chain migration” She enjoy put her personal mark on the historic home and have redesign the family live
quarter. (...)
Raw Report Domain: www.kbzk.com
Content: Melania Trump’s parent, Viktor and Amalija Knavs, also go through the immigration process,
use the perjoratively call “chain migration” route the President have criticize. (...) A source with direct
knowledge of Melania Trump’s parent and their immigration status previously tell CNN that she have
sponsor her parent for their green card, a status that allow them to live and work in the US indefinitely and
pave the way for citizenship. (...)

[Label: True] Claim: The snakehead fish can survive on land.
Explanation: On Oct.10, 2019, many readers came across news stories about an invasive species of fish
called the snakehead fish that had been discovered in Georgia. While these stories largely dealt with
wildlife officials’ attempts to eradicate the species, what caught the attention of most readers were brief
mentions of this fish’s unique ability to survive on land. CNN reported: A snakehead fish that survives on
land was discovered in Georgia. Officials want it dead An invasive fish species that can breathe air and
survive on land has been found in Georgia for the first time. And officials are warning anyone who comes
into contact with the species to kill it immediately. The snakehead fish can truly survive on land. Here’s a
video of a snakehead in Thailand as it “walks,” crawls, or wiggles its way back to the water.
Raw Report Domain: www.cbsnews.com
Content: Northern snakehead be invasive fish that can breathe air and survive for day on land.
Lawrenceville, Georgia — Georgia’s Department of Natural Resources have a message for angler:
If you catch a northern snakehead, kill it immediately.
Raw Report Domain: www.nytimes.com
Content: Snakeheads can survive in freshwater and be describe a predator that can eat tiny animal, and
travel across land, live out of water for several day. There have be no end to the creepy description of the
snakehead fish, a slimy, toothy, large-jawed animal that can breathe on land and crawl like a snake, in the
decade that it have pop up in freshwater lake, pond and river in the United States. (...)

Table F.1: Examples from RAWFC.
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Abstract

Document-level Event Factuality Identification
(DEFI) predicts the factuality of a specific event
based on a document from which the event can
be derived, which is a fundamental and crucial
task in Natural Language Processing (NLP).
However, most previous studies only consid-
ered sentence-level task and did not adopt
document-level knowledge. Moreover, they
modelled DEFI as a typical text classification
task depending on annotated information heav-
ily, and limited to the task-specific corpus only,
which resulted in data scarcity. To tackle these
issues, we propose a new framework formulat-
ing DEFI as Machine Reading Comprehension
(MRC) tasks considering both Span-Extraction
(Ext) and Multiple-Choice (Mch). Our model
does not employ any other explicit annotated in-
formation, and utilizes Transfer Learning (TL)
to extract knowledge from universal large-scale
MRC corpora for cross-domain data augmenta-
tion. The empirical results on DLEFM corpus
demonstrate that the proposed model outper-
forms several state-of-the-arts.

1 Introduction

This paper focuses on Document-level Event Factu-
ality Identification (DEFI) task, which is defined as
identifying the factuality of a specific event based
on a document from which the event is derived.
As a sub-task in Event Factuality Identification
(EFI), different from Sentence-level Event Factu-
ality Identification (SEFI) focusing on just a sin-
gle sentence, DEFI requires comprehensive under-
standing documents with regard to events.

Figure 1 illustrates an example of document-
level event factuality. The current event is E1,
i.e., “Barack Obama joins Joe Biden’s cabinet”,
and the sentences S2-S6 contain the event men-
tions referring to E1. From Figure 1 we can know
that: 1) Factuality of event mentions vary among
sentences. S4, S5 and S6 negate E1 by the nega-
tive cues “not” and “denied”, and commit to E1 as

Event (E1): Barack Obama joins Joe Biden’s cabinet.

Document: (S1) “I will help him in any ways that I
can," Obama, said of his former vice president, in a
new interview with CBS Sunday Morning’s Gayle King.
(S2) With the victory of former US Vice President Biden
in the presidential election, there are speculations about
whether Obama will return to the White House and
serve in Biden’s cabinet. (S3) King also asked if he
would join Biden’s cabinet. (S4) “I’m not planning
to suddenly work on the White House staff or some-
thing,” said Obama. (S5) He also jokingly responded,
"There are probably some things I would not be doing,
because Michelle would leave me. ... ...”(S6) Although
Obama denied that he would take a position in Biden’s
cabinet, Susan Rice and Michèle Flournoy were among
Obama administration veterans reportedly being prob-
ably considered for key posts under Biden. ... ... (S7)
When Barack Obama was elected president in 2008, he
became the first African American to hold the office.

Document-level Factuality: certain negative / CT-

Figure 1: An example of document-level event factuality.
Speculative cues are blue, and negative cues are red.

“certain negative/CT-”. But some other sentences
express different factuality with regard to E1. S2
evaluates E1 as “possible positive/PS+” according
to the speculative cue “speculation”, and S3 com-
mits to E1 as “Underspecified/Uu” since the event
mention is in the clause led by “if”. However, the
document-level factuality of E1 is unique, i.e., CT-.
2) In addition to E1, there are irrelevant mentions
of other events in the document as well, e.g., the
PS+ event “Susan Rice and Michèle Flournoy were
considering for key posts under Biden”in S6, and
the CT+ event “Barack Obama was elected pres-
ident in 2008” in S7 , which may cause E1 to be
identified as PS+ or CT+ falsely.

Currently, most EFI studies limited to SEFI
(Saurí and Pustejovsky, 2012; Rudinger et al., 2018;
Qian et al., 2018a; Veyseh et al., 2019). While
DEFI is still in its early stage, and previous work
(Qian et al., 2019; Huang et al., 2019; Cao et al.,
2021) usually regarded DEFI as a typical text clas-
sification task. Currently, DEFI is mainly faced
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+ - u
CT/一定 CT+/一定发生 CT-/一定不发生 CTu/知道是否发生
PS/可能 PS+/可能发生 PS-/可能不发生 (NA)

U/未指定 (NA) (NA) Uu/未指定

Table 1: Event factuality values in English and Chinese.

with these limitations, i.e., 1) Most previous work
on EFI only considered sentence-level task, i.e.,
SEFI, which means DEFI catches much less at-
tention and has been in the preliminary phase; 2)
Related models on DEFI required various anno-
tated information, e.g., event triggers, speculative
and negative cues, and cannot be applied to real
world directly; 3) The performance of DEFI is lim-
ited by the scale of dataset, i.e., DLEF (Qian et al.,
2019), the only available DEFI corpus, and related
work did not adopt any form of data augmentation.

To address the above issues, we propose a new
end-to-end paradigm for DEFI, i.e., Document-
level Event Factuality identification via Machine
Reading Comprehension Frameworks with Trans-
fer Learning (DEFI-MRC-TL), casting DEFI into
MRC tasks, and considering both Span-Extraction
MRC (Ext-MRC) and Multiple-Choice MRC (Mch-
MRC). To address the problem of data insuffi-
ciency, we adopt Transfer Learning (TL) as Cross-
Domain Data Augmentation, which learns informa-
tion from large-scale source datasets and applies
it to the target dataset. Therefore, our model is
comprised of two sub-models that can be denoted
as Ext-TL and Mch-TL, respectively. Our MRC
formulation is mainly inspired by recent studies
formulating NLP tasks into MRC problems (Mc-
Cann et al., 2018; Li et al., 2019; Du and Cardie,
2020; Li et al., 2020b; Liu et al., 2020). To sum
up, the major contributions of our paper can be
summarized as follows:

1) We propose a new framework for DEFI by
formulating it as MRC tasks, and we consider both
span-extraction and multiple-choice MRC.

2) We consider a transfer learning mechanism
that trains our MRC model on large-scale MRC
corpora (e.g., SQuAD2.0, RACE) and fine-tunes on
the target dataset (i.e., DLEFM). To the best of our
knowledge, this is the first DEFI model considering
both MRC framework and transfer learning.

3) We construct the first MRC-style DEFI cor-
pus, i.e., DLEFM, annotating both events and
document-level event factuality. Empirical eval-
uations on DLEFM can prove the generalization

and effectiveness of our MRC framework for end-
to-end DEFI.

2 Approach

This section introduces our DEFI-MRC-TL model,
where Overview (§2.1) gives the definitions of
DEFI task, even factuality values, and transfer
learning used by our model, then §2.2 and §2.3
present the data formalization and detailed struc-
ture of Ext-TL and Mch-TL model, respectively.

2.1 Overview
Document-level Event Factuality Identification
can be defined as to identify a label y ∈ Y for the
event E (usually a sentence) based on a document
D, where Y is the set of event factuality values
defined in Table 1 (Qian et al., 2019). Therefore,
one sample S can be denoted as S = (y,E,D).

Event Factuality Values are composed of
modality and polarity (Saurí, 2008; Saurí and Puste-
jovsky, 2012). Modality conveys the certainty de-
gree of events, including these values:

• Certain/CT/一定(不): It is certain that the
event happens / does not happen.

• Probable/PR/很可能(不): It is probable that
the event happens / does not happen.

• Possible/PS/可能(不): It is possible that the
event happens / does not happen.

• Underspecified/Uu/未指定: The degree of
certainty of the event is unknown or uncom-
mitted.

while polarity expresses whether the event happens
by the following values.

• Positive / + /正极性/发生：It is certain /
probable / possible that the event happens.

• Negative / - /负极性/不发生：It is certain
/ probable / possible that the event does not
happen.

• Underspecified / u /未指定: The polarity of
the event is unknown or uncommitted.
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Figure 2: Overall architecture of our DEFI-MRC-TL models.

This paper uses the factuality values in Table 1
(Qian et al., 2019), where PSu and U+/- are not ap-
plicable (NA) semantically (Saurí and Pustejovsky,
2012). Compared with (Saurí and Pustejovsky,
2012), PS and PR are merged into PS due to simi-
lar semantics. Moreover, no event is annotated as
CTu although applicable. Therefore, there are five
applicable factuality values in DLEFM, i.e., Uu,
PS-, CT-, PS+, CT+.

Transfer Learning is adopted as Cross-Domain
Data Augmentation for DEFI, i.e., firstly learning
knowledge from large-scale source datasets, and
then applying it to the target datasets for fine-tuning.
The architecture of DEFI-MRC-TL model is shown
in Figure 2. With BERT (Devlin et al., 2019) as
the backbone, our models consists of 1) Shared
Layer, which is comprised of the first Ns layers of
BERT, and optimized when training on the source
datasets only; and 2) Task-Specific Layers, which
contains the remaining layers of BERT and all the
other networks in DEFI-MRC-TL, and is optimized
when both training on the source datasets and fine-
tuning on the target ones.

2.2 Ext-MRC Transfer Learning Model

We first give the data formalization of Ext-MRC
model, and then describe the structure of Ext-TL.

Data Formalization for Ext-MRC. A sample S
defined in §2.1 can be reformulated as a triple sam-
ple S = {Q,C,A}, where Q = {q0, . . . , q|Q|−1}
is the Question that integrates the information of
both event and candidate factuality values, C =
{c0, . . . , c|C|−1} is the Context that refers to the
document text D from which the event is derived,
and A = {a0, . . . , a|A|−1} ⊊ Q is the Answer that
is a sub-string of Q, and each ai belongs to Q. To

be specific, a Q in Ext-MRC can be denoted as:

• What is the factuality of the
event “E”, underspecified
underspecified, possible
negative, certain negative,
possible positive, or certain
positive?

While for Chinese samples, Q is denoted as:

• 事件“E”的事实性是未指定，可能不发
生，一定不发生，可能发生，还是一定发
生？

where E is the event, and all the applicable factu-
ality values are integrated into Q. Therefore, Ext-
MRC model extracts event factuality values from
questions, rather than contexts.

Ext-TL Model. MRC-style input data is fed
into MRC models defined below. To be in line
with BERT, we concatenate the question Q, the
context C, and the special token [CLS]/[SEP] as
the input sequence I , which is fed into BERT:

I = {[CLS],Q, [SEP],C, [SEP]} (1)

H0 = BERT(I) (2)

whereH0 ∈ Rd×NL , d is the dimension of hidden
states in BERT, and NL is the length of I . During
the phase of training on the source dataset, H0

is directly fed into softmax layer to compute the
probability distributions of start and end indices.

In terms of fine-tuning on the target dataset, we
have noticed several differences between typical
MRC task (e.g., SQuAD) and our MRC framework
for DEFI, i.e., 1) Instead of extracting answers from
contexts C, we extract answers from questions Q,
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and 2) Answers in typical MRC vary among docu-
ments. While in DEFI, the answer can only be one
of the factuality values defined in Table 1.

Therefore, when fine-tuning the model, we uti-
lize a variant of Residual Network (ResNet) (He
et al., 2016) as the Adapter Network to encodeH0

in order to bridge the information learned from
source and target datasets. Actually, we use two
ResNets to encode the information for the start and
end indices of the answer separately:

Hs = ResNets(H0) (3)

He = ResNete(H0) (4)

where ResNet is composed of a stack of several
residual layers, i.e., ResNet = {ResLayer}. For
any input U0, each ResLayer is computed as:

U1 = LN(Gelu(Wr1U0 + br1)) (5)

U2 = LN(Gelu(Wr2U1 + br2)) (6)

Ur = U2 +U0 (7)

whereWr1 ∈ Rh×d, br1 ∈ Rh,Wr2 ∈ Rd×h, and
br2 ∈ Rd are parameters, h is the dimension of
the hidden states in ResLayer, and LN is the Layer
Normalization. Then, the probability of start and
end index can be computed as:

ps = softmax(WsHs + bs) (8)

pe = softmax(WeHe + be) (9)

Finally, the predicted start and end indices are
obtained as:

îs = {i|argmax(ps(i))} (10)

îe = {i|argmax(pe(i))} (11)

where i = 0, 1, . . . , NL.
To ensure the generalization capability of Ext-

MRC model on both source and target datasets,
we do not discard the question Q or the context C
when computing start and end index. The objective
function L(θ) of Ext-MRC is designed as:

Ls(θ) = −
1

N

N−1∑

i=0

log ps(y
i
s|θ) (12)

Le(θ) = −
1

N

N−1∑

i=0

log pe(y
i
e|θ) (13)

L(θ) = ϵLs(θ) + (1− ϵ)Le(θ) (14)

where N is the number of samples, yis and yie are
annotated start and end indices of the i-th sample,
ϵ is the trade-off coefficient, and we set ϵ = 0.5.

2.3 Mch-MRC Transfer Learning Model
Data Formalization for Mch-MRC. While in
Mch-MRC, a sample S containing the event E
can be represented as a quad sample, i.e., S =
{Q,C,O, a}, where Q = {q0, . . . , q|Q|−1} is the
Question that integrates the information of event,
C = {c0, . . . , c|C|−1} is Context referring to the
document D from which the event E is derived,
O = {O0, . . . , O|O|−1} is the set of Options, and a
is the Answer that is one of the options, i.e., a ∈ O.
Specifically, a Q in our Mch-MRC task can be
denoted as:

• What is the factuality of the
event “E”?

For Chinese samples, a Q is denoted as:

• 事件“E”的事实性是什么？

where E is the event, and O is the option set. For
English samples, O={Uu, PS-, CT-, PS+, CT+},
and for Chinese samples, O={未指定/Uu,可能不
发生/PS-,一定不发生/CT-,可能发生/PS+,一定
发生/CT+} (Table 1).

Mch-TL Model. Similarly, our Mch-MRC
model encodes each option Oi with the question Q
and context C as previous work (Jin et al., 2020; Gu
et al., 2021). Formally, given each option Oi ∈ O,
where i = 0, . . . , |O| − 1, we can obtain a set of
input sequence I = {Ii}|O|−1i=0 for BERT. Each Ii
and its matrix representation are denoted as:

Ii = {[CLS],Q, [SEP], Oi, [SEP],C, [SEP]} (15)

Hi = BERT(Ii) (16)

where BERT encodes {Ii} as {Hi}. For eachHi,
the state hi[CLS] of [CLS] is selected as the vector
representation to make upH1:

H1 =
{
hi[CLS]

}|O|−1
i=0

(17)

where H1 ∈ Rd×No , and is fed into the softmax
when training on the source datasets.

Similar to Ext-MRC model, during the phase of
fine-tuning on the target dataset, we exploit residual
networks as adapters to encode eachHi in Eq. 16
as well, since the text genre of the target dataset is
different from that of the source dataset:

H̃i = ResNet(Hi) (18)

Then, we also use the hidden state of [CLS]
h̃i[CLS] to denote each option Oi, and H1 is com-

prised of h̃i[CLS], where i = 0, . . . , |O| − 1 (Eq. 17).
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Finally, we feedH1 into softmax layer to com-
pute the probability distribution of each option Oi.

po = softmax(WoH1 + bo) (19)

where Wo ∈ R1×d and bo ∈ R1 are parameters.
The objective function is defined as:

L(θ) = − 1

N

N−1∑

i=0

log po(y
i
o|θ) (20)

where N is the number of samples, yio is the anno-
tated label of i-th sample.

3 Experimentation

This section first introduces Experiment Settings
(§3.1), including target and source datasets, evalua-
tion metrics, implementation details, and baselines.
Then, experimental analysis focuses on the follow-
ing aspects, i.e., 1) Results and Analysis (§3.2)
discusses the comparisons of our model with base-
lines; 2) Ablation (§3.3) inspects the effectiveness
of source datasets and networks in DEFI-MRC-TL
model; 3) Case Study (§3.4) illustrates what our
Ext-TL model can learn from several samples to
reveal the internal mechanism of Ext-TL.

3.1 Experimental Settings
Target Dataset. DLEFM, whose formalization is
defined in §2, is the target dataset to verify our
DEFI-MRC-TL model, including two sub-corpora,
i.e., English (DLEFM-E) and Chinese (DLEFM-
C), whose statistics are shown in Table 2. The main
differences between DLEFM and previous DLEF
corpus lie in the following aspects:

Size. The sizes of Chinese sub-corpora are nearly
the same in them. But DLEF contains more Chi-
nese documents than English ones (4649 vs. 1727),
which is less suitable to evaluate the performance
on English texts. Hence, DLEFM annotates more
English documents than DLEF.

Annotation. DLEF annotates not only event trig-
gers and their sentence-level & document-level fac-
tuality, but also speculative and negative cues. And
DLEFM further annotates ONE document-level
event E based on event triggers in each document.
Due to MRC framework, DLEFM corpus anno-
tates questions for Ext-MRC (§2.2), while anno-
tates questions and options for Mch-MRC (§2.3).

Task. Since DLEF can offer various annotated in-
formation, previous work (Qian et al., 2019; Huang
et al., 2019) usually utilize annotated event triggers,

Uu PS- CT- PS+ CT+ Total
English 38 46 671 594 3181 4530

Train 21 31 404 357 1905 2718
Develop 8 7 140 122 629 906

Test 9 8 127 115 647 906
Chinese 20 38 1358 860 2374 4650

Train 14 24 824 513 1415 2790
Develop 4 7 257 164 498 930

Test 2 7 277 183 461 930

Table 2: Dataset statistics of DLEFM.

Corpus Language Task Used Total
SQuAD2.0 English Ext 20, 000 130, 217
NewsQA English Ext 20, 000 103, 960

RACE English Mch 20, 000 87, 866
CMRC2018 Chinese Ext 10, 111 10, 111

C3 Chinese Mch 6, 013 11, 869

Table 3: MRC corpora used as source datasets, where
Ext/Mch mean Ext-MRC/Mch-MRC, and “Used” &
“Total” means used & total samples in training sets.

sentence-level factuality, speculative and negative
cues directly. While this paper aims to model DEFI
as an end-to-end task, i.e., only considers questions,
contexts, and options without any other explicit an-
notated information. Therefore, our model can
apply to real-world applications directly.

Source Datasets. For cross-domain data aug-
mentation, the following corpora are selected as
source datasets whose statistics are shown in Ta-
ble 3: 1) SQuAD2.0 (Rajpurkar et al., 2018) con-
tains the existing SQuAD (Rajpurkar et al., 2016)
collected from Wikipedia. 2) NewsQA (Trischler
et al., 2017) collects news articles and highlights
from CNN. 3) RACE (Lai et al., 2017) contains
documents collected from the English exams for
students. 4) CMRC2018 (Cui et al., 2019) is com-
posed of human-annotated questions on Chinese
Wikipedia paragraphs. 5) C3 (Sun et al., 2020) is
the first free-form Chinese multiple-choice MRC
dataset sampled from Chinese examinations. Ac-
cording to the types, C3 can be divided into C3-
Dialogue (C3

D) and C3-Mixed (C3
M).

Evaluation. We focus on the performance of the
three main categories of factuality values, i.e., CT-,
PS+, CT+, since they occupy 98.15%/98.75% in
DLEFM-E/DLEFM-C, respectively, and we do not
consider the minor values (i.e., Uu and PS-) due
to their small proportions as previous work (Saurí
and Pustejovsky, 2012; Qian et al., 2018a, 2019).
F1-score is used as the main evaluation metrics for
each category of factuality values. To obtain the
performance of all the values, macro- and micro-
averaging F1 is also employed.

2626



Models CT- PS+ CT+ Macro-Ave Micro-Ave
LSTM-A 42.05 / 59.08 41.07 / 54.68 78.43 / 77.04 53.85 / 63.60 67.23 / 67.53
ULGN 45.87 / 61.07 43.05 / 49.58 81.87 / 76.49 56.93 / 62.38 70.55 / 66.27
BiDAF 50.66 / 67.84 49.75 / 60.94 81.06 / 81.21 60.49 / 69.99 72.86 / 73.23
BiDAF-TL 55.65 / 72.82 53.59 / 64.47 83.28 / 83.74 64.17 / 73.68 75.43 / 76.66
QANet 51.62 / 68.07 51.05 / 62.32 81.68 / 81.46 61.45 / 70.61 73.33 / 73.63
QANet-TL 55.81 / 72.91 53.25 / 65.05 83.38 / 83.39 64.14 / 73.78 75.61 / 76.58
BERT-B 54.22 / 71.11 53.11 / 63.11 81.30 / 81.55 62.88 / 71.92 74.18 / 74.84
Mch 54.09 / 71.86 52.39 / 63.66 82.01 / 81.48 62.83 / 72.33 74.42 / 75.16
Mch-TL 58.16 / 74.83 56.53 / 65.78 83.68 / 83.84 66.12 / 74.81 76.63 / 77.46
Ext 56.50 / 73.06 54.87 / 65.36 83.44 / 82.71 64.93 / 73.71 76.34 / 76.39
Ext-TL 61.85 / 77.20 58.91 / 69.92 85.23 / 84.91 68.66 / 77.34 78.09 / 79.43

Table 4: Performance of models on DEFI. Format: F1-scores for “English / Chinese” sub-corpus.

Models Source Datasets CT- PS+ CT+ Macro-Ave Micro-Ave
Ext-TL SQuAD2.0 61.85 58.91 85.23 68.66 78.09

NewsQA 60.68 59.22 84.85 68.25 77.87
Mch-TL C3-Dialogue 71.74 62.24 81.94 71.98 75.20

C3-Mixed 74.83 65.78 83.84 74.81 77.46
C3 74.04 64.03 83.81 73.96 76.62

Table 5: Performance of Ext-TL and Mch-TL on DEFI with difference source datasets. Format: F1-scores.

Implementation Details. BERT-Base version is
chosen as the backbone of DEFI-MRC-TL model.
We set 2 residual layers in the residual networks.
The dimension of the hidden states of residual net-
works is set as 768. Adam (Kingma and Ba, 2015)
is applied to optimize our model.

To take full advantage of knowledge learned
from source datasets, we fine-tune as few BERT
layers as possible on the target dataset. We ob-
serve that the performance on CT- and PS+ is very
low (F1-score< 10), or even no results can be ob-
tained if only fine-tuning the last layer of BERT.
Therefore, for those BERT-based transfer learning
models, we fine-tune the last two layers of BERT
(i.e., the shared layers contain Ns = 10 BERT lay-
ers) and all the layers of residual networks, and
freeze other layers.

For all the models, we report the average eval-
uation metrics of the five rounds of experiments.
For the training of TL models, each round adopts a
subset that has a fixed size and is sampled from the
source dataset randomly.

Baselines. For fair comparison with our DEFI-
MRC-TL models, we employ the following models
as baselines:

1) LSTM-A (Qian et al., 2019) uses dependency
paths from cues to event triggers as syntactic fea-
tures, and the sentences with event triggers as se-

mantic features;
2) ULGN (Cao et al., 2021) is based on graph

convolutional networks relying on event triggers;
3) BiDAF (Seo et al., 2017) employs bidirec-

tional attention flow to obtain query-aware context
representations;

4) QANet (Yu et al., 2018) adopts encoders
consisting exclusively of convolution and self-
attention;

5) BERT-B (BERT-Base) directly uses the event
E and document D as the input sequence;

6) Ext & Ext-TL are Ext-MRC models, and
Mch & Mch-TL are Mch-MRC models for DEFI.
TL mean Transfer Learning is considered.

3.2 Results and Analysis

The comparisons of the performance of various
models with our DEFI-MRC-TL model are sum-
marized in Table 4. LSTM-A and ULGN get rela-
tively lower results than other approaches, mainly
due to the cascade errors, since we use raw texts
as input for fair comparison, i.e., first extract-
ing event triggers (F1=83.19%/79.65% for En-
glish/Chinese sub-corpus), speculative and nega-
tive cues (F1=68.80%/75.42%), then identifying
document-level factuality.

BERT-B is a strong baseline compared with light-
weighted models with simple structures, which can
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Figure 3: The test performance (F1-scores) w.r.t. the size of questions sampled from the source datasets for several
transfer learning models on the English sub-corpus of DLEFM (i.e., DLEFM-E). For each sub-figure, the format of
the label is “model/source dataset”.

yield better results than LSTM-A and BiDAF when
only fine-tuning on DLEFM, and achieve similar
results with Mch.

Mch is slightly better than BERT-B. We argue
that Mch can be regarded as a variant of text classi-
fication model integrating context knowledge with
each option, whose input contains more informa-
tion than BERT-B. Ext can get better results than
BERT-B and Mch on both English and Chinese
sub-corpora, which can validate the advantages of
span-extraction MRC formulation for DEFI.

Table 4 demonstrates that all the TL models
can achieve better performance than their corre-
sponding original models that are only fine-tuned
on target dataset, which can manifest the signif-
icance of cross-domain data augmentation using
TL. For transfer learning models, BiDAF-TL and
QANet-TL obtain lower performance than both
Ext-TL and Mch-TL, since BiDAF and QANet
have much fewer parameters than those BERT-
based models. Ext-TL is superior to Mch-TL on
DEFI. The main reason is that Ext-MRC models
can extract meaningful and evidential texts for iden-
tifying document-level event factuality implicitly
on both source and target dataset. Samples and
analysis will be presented in §3.4 below.

Furthermore, Table 4 also shows that the perfor-
mance on the Chinese sub-corpus is better than that
on the English one, especial on CT- and PS+. The
reason is that the factuality value distribution on
the Chinese sub-corpus is more balanced than that
on the English one.

3.3 Ablation

Text Genre of Source Dataset. We investigate
the effects of source datasets with different text
genres on the test performance on DLEFM, and
present the performance of Ext-TL and Mch-TL
w.r.t. difference source datasets in Table 5. Ext-
TL achieves satisfactory performance employing
either SQuAD2.0 or NewsQA as the source dataset,
proving both of them can offer meaningful knowl-
edge transferred to DEFI task. Moreover, using
SQuAD2.0 obtains higher results than NewsQA,
mainly owing to the high quality of Wikipedia arti-
cles with correct grammar and semantics.

Size of Source Dataset. Since the size of
SQuAD2.0, NewsQA and RACE are quite large,
we explore the relationship between the perfor-
mance of DEFI on DLEFM-E and the scale of
source dataset, and give the results in Figure 3. We
can conclude that using too many samples from
the source dataset can not lead to higher perfor-
mance on the target dataset. For Ext-TL and Mch-
TL, results can not be improved using more than
20k samples, or even degrades. It is mainly at-
tributed to overfitting on source datasets when sam-
ples selected from them occupy too large quantities.
Therefore, we adopt suitable amount of training
samples from source datasets as shown in Table
3. For CMRC2018 and C3, we leverage the whole
training sets due to their limitations of the sizes.

In addition, we evaluate Mch-TL on Chinese
sub-corpus. The source dataset C3 consists of two
sub-corpora, i.e, C3

D and C3
M. Different from all
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Event (E1): 
Barack Obama joins Joe Biden's cabinet. 

Context: 
… …whether Obama will return to the White House 
and serve in Biden's cabinet. King also asked if he would 
[join Biden's cabinet. "I'm not planning to suddenly 
work on the White House] staff or something," said 
Obama. He also jokingly responded, "There are 
probably some things I would not be doing, ... ...''  

Document-level Event Factuality: 
Gold: certain negative (CT-) 
Pred: certain negative (CT-) 

Event (E3): 
White House imposes new restrictions. 

Context: 

… …"[Under no circumstances during a government 
shutdown will any government owned, rented, leased or 
chartered aircraft support] any Congressional 
delegation, without the express written approval of the 
White House Chief of Staff," Russell Vought, … … 

Document-level Event Factuality: 

Gold: certain negative (CT+) 
Pred: certain negative (CT-) 

Event (E2): 
New York City installs security barriers. 

Context: 

… … City Mayor Bill de Blasio announced the plan at 
a press conference held in Times Square on Tuesday. He 
said New York [City plans to install 1,500 new security 
barriers in high-profile locations] to guard against 
vehicle attacks and other terror-related incidents. ... ...  

 
Document-level Event Factuality: 
Gold: possible positive (PS+) 
Pred: possible positive (PS+) 

Event (E4): 
Hurricane Michael hits Florida. 

Context: 

… … Hurricane Michael is forecast to strike Florida 
Panhandle in southeastern United States on 
Wednesday … … Hurricane [Michael is currently 
centered about 360 miles (about 579 km) south of 
Panama City, Florida], and is moving north . … … 

Document-level Event Factuality: 
Gold: certain negative (PS+) 
Pred: positive, certain positive (NA) 

Event (E1): Barack Obama joins Joe Biden's cabinet.  [certain negative (CT-)/certain negative (CT-)] 

Document: … …whether Obama will return to the White House and serve in Biden’s cabinet. King also asked if he would join Biden’s 

cabinet. “I'm not planning to suddenly work on the White House staff or something,” said Obama. He also jokingly responded, “There are 

probably some things I would not be doing, ... ...” 

Event (E2): New York City installs security barriers.  [possible positive (PS+)/possible positive (PS+)] 

Document: … … City Mayor Bill de Blasio announced the plan at a press conference held in Times Square on Tuesday. He said New York 

City plans to install 1,500 new security barriers in high-profile locations to guard against vehicle attacks and other terror-related incidents. ... ... 

Event (E3): White House imposes new restrictions.  [certain positive (CT+)/certain negative (CT-)] 

Document: … …“Under no circumstances during a government shutdown will any government owned, rented, leased or chartered aircraft 

support any Congressional delegation, without the express written approval of the White House Chief of Staff,” Russell Vought, … … 

Event (E4): Hurricane Michael hits Florida.  [possible positive (PS+)/positive, certain positive (non-applicable value, NA)] 

Document: … … Hurricane Michael is forecast to strike Florida Panhandle in southeastern United States on Wednesday … … Hurricane 

Michael is currently centered about 360 miles (about 579 km) south of Panama City, Florida, and is moving north. … … 

Figure 4: Spans extracted by Ext-TL are underlined. Questions are neglected when extracting spans in the documents
to investigate the interpretability of Ext-TL. Speculative cues are blue, and negative cues are red. Format of labels:
[Annotated/Predicted].

the other datasets considered in this paper, C3
D is

made up of dialogs. Moreover, the average con-
text length of C3

D (76.31) is obviously shorter than
that of C3

M (180.21) and Chinese sub-corpus in
DLEFM (664.80). Hence, Mch-TL is not able to
get higher results when employing the whole C3

D,
but can achieve the best performance on Chinese
sub-corpus only using C3

M as the source dataset.
Light-weighted solutions. Furtherly, in order

to verify that TL models can benefit from ade-
quate samples in the source datasets rather than
only BERT-based models with large-scale and
complicated structures, we also consider the light-
weighted model, i.e., BiDAF and QANet based
TL models, in Figure 3. QANet-TL outperforms
BiDAF-TL, attributed to the more complicated at-
tention in QANet. Compared with Ext-TL and
Mch-TL, both BiDAF-TL and QANet-TL need
more samples when training on the source dataset
(i.e., SQuAD2.0) to reach the optimal performance,
mainly due to the simpler structure of BiDAF
and QANet than those BERT-based models. Both
BiDAF-TL and QANet-TL are superior to BiDAF,
BERT-B, and Mch, which can manifest the useful-
ness of transfer learning.

3.4 Case Study

As mentioned in §2, Ext-TL model discards neither
questions nor contexts, and extracts answers (i.e.,
event factuality values) from the whole input se-
quence. To explore the interpretability of Ext-TL,
we discard the questions in Equation 8 and 9, and
extract text spans from the contexts.

As shown in Figure 4, Ext-TL identifies the cor-

rect values for events E1 and E2. In E1, the ex-
tracted span contains the mention “I’m not plan-
ning to suddenly work on the White House” that
evaluates E1 as CT- according to the negative cue
“not”. While in E2, the extracted span commits to
the event “New York City installs security barriers”
as PS+ according to the speculative cue “plans”.

However, E3 and E4 get wrong results. In term
of E3, the extracted span contains no mention w.r.t.
“White House imposes new restrictions”, and an-
other CT- event “Government aircraft support Con-
gressional delegation” negated by “no” leads to the
mistaken value of E3. While for E4, to identify it
as PS+ correctly, we need to extract the event men-
tion with speculative semantics, e.g., “Hurricane
Michael is forecast to strike Florida Panhandle”.
But the actual span contains neither speculative
nor negative semantics, extracting a non-applicable
value that does not include “possible”.

Therefore, these cases illustrate that correct iden-
tification of document-level event factuality relies
on event mentions, speculative and negative infor-
mation that governs the event.

4 Related Work

Event Factuality Identification started with SEFI,
whose early work adopted rule-based models (Saurí
and Pustejovsky, 2012), traditional machine learn-
ing models (de Marneffe et al., 2012; Lee et al.,
2015), and hybrid models of them (Qian et al.,
2018b). Recently, with the successful applications
of neural networks in NLP, researchers focused on
SEFI via neural networks, and captured informa-
tion from sentences (He et al., 2017; Sheng et al.,
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2019), sequential (Rudinger et al., 2018; Qian et al.,
2018a) and graph-based (Veyseh et al., 2019) in-
formation from dependency trees, and furthurly
more syntactic knowledge produced by generative
adversarial networks (Qian et al., 2018a).

Compared with SEFI, DEFI remains at an initial
stage, and limits to DLEF corpus (Qian et al., 2019).
Previous studies (Qian et al., 2019; Huang et al.,
2019) utilized multi-layer LSTM networks with
attention to extract knowledge from dependency
paths and sentences. Cao et al. (2021) learned
local and global information of events by graph
convolution networks. They relied on annotated
information, e.g., event triggers, speculative and
negative cues, and ignored data augmentation.

MRC/QA-Style Formulation has been widely
utilized in NLP tasks over the past years, e.g, re-
lation extraction (Li et al., 2019), named entity
recognition (Li et al., 2020b), event extraction (Du
and Cardie, 2020; Liu et al., 2020; Li et al., 2020a).
To be specific, Li et al. (2020b) proposed a uni-
fied framework MRC handling both flat and nested
NER tasks. Li et al. (2020a) designed MQAEE
model casting event extraction into MRC problems
to extract triggers and arguments successively. Mc-
Cann et al. (2018) investigated MRC paradigms for
ten tasks, including machine translation, sentiment
analysis, semantic role labeling, etc.

Transfer Learning, or TL for short, is an ef-
fective technique for domain adaptation, and has
achieved satisfactory results on various NLP ap-
plications, e.g., text classification (Houlsby et al.,
2019; Stickland and Murray, 2019), sentiment clas-
sification (Fei and Li, 2020), neural machine trans-
lation (Aji et al., 2020), dialog system (Lin et al.,
2020). Particularly, researchers also investigated
TL for MRC/QA tasks. Kung et al. (2020) lever-
aged transfer learning to extract rationales through
QA for zero-shot task transfer. Chung et al. (2018)
explored both supervised and unsupervised trans-
ferability of knowledge learned among multiple-
choice QA. Furthermore, some studies considered
other TL paradigms, i.e., continual domain adap-
tation for domain drift in MRC (Su et al., 2020),
and multi-task learning for QA (Wang et al., 2021;
Lin et al., 2021) that is not dependent on specific
domain of data.

5 Conclusion

This paper designs a novel framework formal-
izing Document-level Event Factuality Identifi-

cation as MRC tasks, and considers both span-
extraction and multiple-choice MRC. Furthermore,
our model takes into account transfer learning as
cross-domain data augmentation capturing extra
knowledge from large-scale corpus in typical MRC.
Experiments on DLEFM corpus demonstrate that
our model can achieve state-of-the-art performance.
In the future, we will explore cross-document event
factuality identification and apply more effective
data augmentation method.
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Abstract

We leverage cross-language data expansion and
retraining to enhance neural Event Detection
(abbr., ED) on English ACE corpus. Machine
translation is utilized for expanding English
training set of ED from that of Chinese. How-
ever, experimental results illustrate that such
strategy actually results in performance degra-
dation. The survey of translations suggests that
the mistakenly-aligned triggers in the expanded
data negatively influences the retraining pro-
cess. We refer this phenomenon to “trigger
falsification”. To overcome the issue, we apply
heuristic rules for regulating the expanded data,
fixing the distracting samples that contain the
falsified triggers. The supplementary experi-
ments show that the rule-based regulation is
beneficial, yielding the improvement of about
1.6% F1-score for ED. We additionally prove
that, instead of transfer learning from the trans-
lated ED data, the straight data combination by
random pouring surprisingly performs better.

1 Introduction

We tackle ED, a task of recognizing trigger words
(triggers for short) that signal different types of
events (Ahn, 2006). For example, the trigger “meet-
ing” in (1) signals the CONTACT-MEET event.

(1) “We have the transcript of the meeting.”
Trigger: meeting
Type: CONTACT-MEET

The current study of ED, in general, utilizes neu-
ral classification models for determining the event
types in the word-by-word manner, including the
predefined ACE1 event types and Non-trigger
type. Correspondingly, supervised learning is ap-
plied to pursue the semantic-level distributed rep-
resentations of words, so as to provide perceptible
evidence for decoding event types.

∗Corresponding author.
1https://catalog.ldc.upenn.edu/LDC2006T06

他 还 将 前往【Transport】 沙特阿拉伯
(He) (also) (will) (travel to) (Saudi Arabia)

He will also travel【Transport】to【Transport】Saudi Arabia

Alignment Transmission

Chinese ED instance

Translation

Figure 1: A case study of trigger designation and class-
label transmission which is bridged by word alignment.

Expanding the training data is able to enhance
the ED-oriented neural classification models. It is
because there are a larger amount of knowledge and
diverse pragmatic phenomena can be introduced
into the supervised learning process, as claimed
in different tasks of natural language processing.
We childishly embrace this method, conducting
expansion by translating Chinese ED corpus and
pouring translations into the English training set,
where word alignment (Sabet et al., 2020) is used
for designating triggers in the translations.

What is beyond our expectation is that, however,
cross-language data expansion actually results in
performance degradation. We survey the transla-
tions which were used for expansion, and observe
that a large number of low-quality instances were
involved. The survey also suggests that the falsified
triggers in such instances probably misled neural
models during supervised learning. We provide an
example in Figure 1 where Chinese event mention
is taken from the publicly-shared ACE corpus of
Chinese ED, and word alignment is carried out for
trigger designation in English translation, as well
as transmission of class label information. It can be
found that the trigger “to” is mistakenly designated
and labeled for event class (viz., TRANSPORT) due
to inexact alignment, and undoubtedly it will cause
severe misleading (in terms of the high occurrence
frequency of “to” in English).

To overcome the issue, we explore a variety of
easily-accessible rules to purify the translated ED
instances (Section 2). Using the purified instances

2633



 

76.30% 76.30%

81.10%

77.90%

65%

75%

85%
P-score (EDE)
P-score (Baseline)
R-score (EDE)
R-score (Baseline)

Figure 2: P and R-scores obtained by the baseline and
EDE♣, where RoBERTa-base is used.

as external data, we conduct retraining and transfer
learning to strengthen the baseline ED models, in-
cluding the ones which are grounded on basic and
large RoBERTa (Liu et al., 2019), respectively (Sec-
tion 3). Experimental results (Section 4) show that
1) the rule-based regulation helps to avoid perfor-
mance degradation and yields substantial improve-
ments, and 2) conventional expansion by combin-
ing datasets is beneficial while, on the contrary,
transfer learning is less useful. We overview the
related work in Section 5 before concluding this
paper (Section 6).

2 Rule-based Purification Against Trigger
Falsification

We apply Google translation toolkit2 for translating
Chinese event mentions into English, and use SimA-
lign (Sabet et al., 2020) to pursue the alignment
between triggers in Chinese mentions and words in
the corresponding translations. The aligned words
are designated as triggers of translations and as-
signed with the manually-labeled event types in
Chinese corpus.

Word alignment unavoidably falsify triggers in
the translations. Therefore, we explore five heuris-
tic rules to regulate the falsified triggers.

Unbinding prepositions It has been exhibited
in Figure 1 that some prepositions (e.g., “to”) are
mistakenly designated as triggers due to inexact
alignment, i.e., a Chinese trigger is aligned to the
constituent that contains both verb and preposition.
The number of prepositions that serve as triggers
in translations is up to 326, occupying 8% of all
the designated triggers. In the cases, we unbind
verbs from prepositions, and designate the latter as
Non-trigger words.

2https://translate.google.com

Unbinding participles In some cases, a single
Chinese trigger is aligned to the present or past-
participle phrase, where the participle that stands
for an attributive is redundant for signaling a certain
event type and, more seriously, it is common and
generally leads a variety of word senses. For exam-
ple, the past-participle “opened” in (2) is redundant.
There are 38 participles found to be mistakenly des-
ignated as triggers, occupying about 1% of all the
designated triggers. We repeal the designation.

(2) 坦克向两辆正常行驶的民用车辆开火
Translation: Tanks opened fire on two normal
civilian vehicles
Chinese trigger: 开火; Type: ATTACK
Alignment: 开火=“opened fire”

Binary-choice exclusion Occasionally, a single
English word is aligned with a pair of Chinese
words, including not only a Non-trigger word
but trigger. For example, both the Non-trigger
word “提出” (i.e., “bring”) and trigger “上诉”
(“lawsuit”) are aligned to the English word “ap-
pealing” in (3). In the cases, we exclude the
Non-trigger type, but instead merely assign
the concrete event type (such as SUE in (3)) to the
aligned English word. There are 58 binary-choice
cases occurred in the translations, occupying 1.4%
of all the designated triggers.

(3) 我们正(提出)(上诉)
Translation: We are appealing
Chinese trigger: 上诉; Type: SUE
Alignment: (提出)(上诉)=“appealing”

Correcting far-fetched triggers Before align-
ment, some Chinese triggers are segmented into for-
mal characters or the ones holding less senses. As a
result, the Chinese triggers are easily aligned with
function words (prepositions and conjunctions) in-
stead of content words in English. Grounded on the
alignment results, the trigger designation method
produces a series of far-fetched triggers. For exam-
ple, the Chinese trigger “身中” (i.e., “injured”) in
(4) is mistakenly segmented into the characters “身”
(i.e., body) and “中” (“in”), and the aligned preposi-
tion “in” is designated as the INJURY trigger. The
number of English prepositions and conjunctions
that were designated as triggers is up to 226, occu-
pying 5.5%. We correct the errors by designating
them as Non-trigger words.

(4) 发射了80发胡椒弹并(身中)约57发
Segmentation: (发射)(了)(80)(发)(胡椒)—
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(弹)(并)(身)(中)(约)(57)(发)
Translation: Fired 80 pepper bombs at him,
with about 57 (in) his body
Chinese trigger: 身中; Type: INJURY
Alignment: (身中)=“in”

Skipping the omissions A large number of Chi-
nese triggers fail to be aligned with any English
word. For example, although the Chinese trigger
“启用” is semantically equivalent to the English
word “opened” in (5), the alignment is neglected.
This results in the omission of triggers in transla-
tions. More seriously, the omitted triggers will be
designated as Non-trigger word, and thus mis-
lead classification models during training. There-
fore, we skip the mentions in which trigger omis-
sion occurs. There are 426 cases of trigger omis-
sion found in the designation process, occupying
10.4% of all the Chinese triggers.

(5) 重新改建的勤务中心是在上午落成(启用)
Translation: The remodeled service center
was completed and (opened) in the morning
Chinese trigger: 启用; Type: Start-Org
Alignment: (启用)=“None”

3 Enhancing Classification Models

We use pretrained language models for ED, includ-
ing RoBERTa-base and RoBERTa-large (Liu et al.,
2019). RoBERTa-base is constructed by 12 trans-
former layers (Vaswani et al., 2017), each of which
contains a 12-head attention network and 768 hid-
den states. RoBERTa-large is constructed by 24
transformer layers, each of which contains a 16-
head attention network and 1,024 hidden states.
The input of both RoBERTa models is a sentence
no matter whether it appears as an event mention
containing triggers. The maximum input length
is set to 256 tokens, and padding is used if the
input sentence fails to reach the length (Section
4.2 presents other hyperparameters). The initial
word embeddings are obtained using look-up ta-
bles, and they are slightly strengthened by element-
wise fusion with position embeddings. Besides,
both RoBERTa models are connected with a linear
fully-connected layer and Softmax layer (Bridle,
1990). For each word in the input sentence, the
RoBERTa models conduct 34-class classification,
towards not only the predefined 33 ACE event types
but Non-trigger type.

We intend to enhance the classification models
by transfer learning (Bengio, 2012) and data expan-
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Figure 3: P and R-scores obtained by the baseline and
EDE♣, where RoBERTa-large is used.

sion (Journal and Alabert, 1989), using the trans-
lated Chinese ED corpus (MT-ED for short) as
the external data. The aforementioned rule-based
purification is utilized for regulating MT-ED. The
considered models in experiments are as below:

Baselines The baselines denotes the RoBERTa-
based classifiers which are merely trained on the
original training set. Such a training set contains
ED instances that were split from the English cor-
pus of the publicly shared ACE-2005 tasks.

EDT Transfer learning is used to enhance the
RoBERTa-based classifiers. We first train the classi-
fiers on MT-ED, and then train them on the original
training set. Within the double-stage training pro-
cess, the parameters obtained in the first stage (on
MT-ED) are transferred to the second stage (on the
original set). We refer the classifiers to EDTs.

EDE We use MT-ED to expand the original
training set by straight pouring, without any ad-
ditional handling. Using the expanded data set, we
train the RoBERTa-based classifiers from scratch.
We refer the obtained classifiers to EDEs.

4 Experimentation

4.1 Corpus and Evaluation Measure
We carry out experiments on the ACE-2005 bench-
mark dataset of English ED task, which comprises
599 documents. The documents contain about 5.2K
manually-labeled triggers for 33 predefined event
classes, and 280K Non-trigger words. We fol-
low the common practice to set up the training,
validation and test sets, which hold 529, 30, and 40
documents, respectively.

Besides, we use a set of Chinese ED instances
which are taken from the ACE-2005 multilingual
training corpus. Such data set comprises 633 doc-
uments scripted in Chinese, and involves about
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3.3K triggers of 33 ACE event classes as well as
170K Non-trigger words. After purification,
we collect 2.6K translated mentions, 2.6K triggers
and about 218K Non-trigger words for build-
ing MT-ED. It is taken into consideration during
transfer learning and data expansion (Section 3).

We evaluate all the considered classification
models using the measure of Precision (P), Recall
(R) and F1-score.

4.2 Hyperparameter Settings
The hyperparameters of both RoBERTa-base and
RoBERTa-large are set as follows. The learning
rate is set to 1e-5. We set epoch to 16 and batch
size to 8. AdamW (Loshchilov and Hutter, 2017)
optimizer is used where ε is set to 10e-8.

4.3 Results and Analysis
First, we examine the feasibility of cross-language
data expansion for enhancing ED. The performance
is indicated by EDE∗ in Table 1, where the mark
“*” denotes that EDE is trained on the unpurified
MT-ED. It can be observed that, compared to the
baseline, EDE∗ obtains worse performance. By
contrast, training EDE using the purified MT-ED
produces substantial performance gains, as indi-
cated by EDE♣ in Table 1. The test results reveal
the necessity of data purification when MT-ED is
combined with the original training set.

We compare RoBERTa-base to RoBERTa-large
when different training sets are used, including the
original training set, as well as the expanded ver-
sion with the purified MT-ED. Table 1 shows P
and R-scores they achieved, which are opposite to
each other. Specifically, as indicated by baseline
and EDE♣, RoBERTa-base achieves much higher
R-score and slightly lower P-score when data ex-
pansion is used, but on the contrary, data expansion
has exactly the opposite effect for RoBERTa-large.
We also evaluate the performance of binary clas-
sification for triggers and Non-trigger words.
Figure 2 shows the P and R-scores obtained by the
baseline and EDE♣ when RoBERTa-base is used,
while Figure 3 shows that of RoBERTa-large. It
can be observed that EDE♣ achieves much higher
R-score than baseline when RoBERTa-base is con-
sidered, but both of them achieve the same P-scores.
On the contrary, the P and R-scores obtained when
RoBERTa-large is considered change to be oppo-
site states. The phenomena imply that the deeper
neural networks like RoBERTa-large most prob-
ably overfit the common or homogeneous event

RoBERTa-base P (%) R (%) F1 (%)
Baseline 72.7 74.2 73.4
EDE∗ 70.3 76.0 73.0
EDE♣ 72.5 76.9 74.6△

RoBERTa-large P (%) R (%) F1 (%)
Baseline 72.9 78.5 75.6
EDE∗ 75.9 74.9 75.4
EDE♣ 76.2 76.7 76.5△

Table 1: Performance of 34-class classification for ED
when data expansion is used. The mark “*” denotes
the use of unpurified MT-ED data for expansion, “♣” is
that of purified, and “△” indicates the significance level
that p-value (Dror et al., 2018) is smaller than 0.05.

RoBERTa-base P (%) R (%) F1 (%)
EDT♣ 69.7 76.7 73.0
EDE♣ 72.5 76.9 74.6
RoBERTa-large P (%) R (%) F1 (%)
EDT♣ 77.6 75.1 76.3
EDE♣ 76.2 76.7 76.5

Table 2: Comparison between EDE♣ and EDT♣.

instances in the original training set and MT-ED,
though a small amount of novel knowledge within
MT-ED is impervious to them.

In a separate experiment, we compare the effect
of data expansion to that of transfer learning, where
EDT♣ and EDE♣ are considered. Table 2 shows
the comparison results. It can be observed that
EDE♣ outperforms EDT♣ for F1-score no mat-
ter what kind of RoBERTa (base or large) is used.
Note that the scale of external data they take from
MT-ED is the same. The comparison results sug-
gest that asynchronous learning from exotic event
knowledge to local contributes less to ED, com-
pared to synchronous learning on the shuffled data.

5 Related Work

Conventional ED models rely heavily on elabo-
rate feature engineering, such as that of context-
independent features (Ji and Grishman, 2008), as
well as cross-event (Liao and Grishman, 2010) and
cross-entity (Hong et al., 2011) statistical features.
In order to pursue the perception of deep event
semantics, the current study concentrates on the
utilization of neural networks, designing and devel-
oping a series of reliable neural ED models, includ-
ing those which are grounded on CNN (Nguyen
and Grishman, 2015), DMCNN (Chen et al., 2015),
RNN (Nguyen et al., 2016), GAN (Hong et al.,
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2018), GCN (Li et al., 2020) and VAE (Huang and
Ji, 2020). Recently, the pretrained language models
like BERT (Yang et al., 2019), RoBERTa (Wang
et al., 2021) and AD-DMBERT (Wang et al., 2019)
are used, yielding substantial improvements.

Data-driven enhancement strategies have been
explored for ED, most of which are implemented by
data augmentation. Yang et al. (2019) produce new
ED instances by entity replacement. It is potentially
effective to enhance entity-aware neural encoders
for detecting events that hold entities. Tong et al.
(2020) leverage knowledge distillation, which is
beneficial for bringing open-domain knowledge
into the understanding of local events. Veyseh et al.
(2021) use GPT-2 to generate new training data.
Teacher-student learning is applied for attenuating
the effect of the generated noises.

6 Conclusion

We use cross-language data expansion to enhance
neural ED models. Experimental results demon-
strate that unregulated data expansion yields less
improvement or even causes performance degra-
dation. By contrast, data purification by simple
heuristic rules produces substantial performance
gains. In addition, it is proven that data expansion
contributes more to ED then transfer learning.

Conducting multilingual data expansion poten-
tially contributes to the enhancement of ED mod-
els. It is because diverse pragmatics in different
languages and exotic event knowledge are infor-
mative for versatile encoding. However, it is chal-
lenging due to the lack of shareable purification
rules among different languages for trigger align-
ment. Therefore, we will develop an automatic
purification model that generalize well in different
languages, where the encoding of syntactic infor-
mation and reinforcement learning will be used.
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Abstract

Distant supervision (DS) is a strong way to ex-
pand the datasets for enhancing relation extrac-
tion (RE) models but often suffers from high
label noise. Current works based on attention,
reinforcement learning, or GAN are black-box
models so they neither provide meaningful in-
terpretation of sample selection in DS nor sta-
bility on different domains. On the contrary,
this work proposes a novel model-agnostic in-
stance sampling method for DS by influence
function (IF), namely REIF. Our method identi-
fies favorable/unfavorable instances in the bag
based on IF, then does dynamic instance sam-
pling. We design a fast influence sampling algo-
rithm that reduces the computational complex-
ity fromO(mn) toO(1), with analyzing its ro-
bustness on the selected sampling function. Ex-
periments show that by simply sampling the fa-
vorable instances during training, REIF is able
to win over a series of baselines which have
complicated architectures. We also demon-
strate that REIF can support interpretable in-
stance selection.

1 Introduction

To expand the training data for relation extraction
(RE), distant supervision (DS) was proposed by
Mintz et al. (2009) who assumed that if two enti-
ties are related in existing KBs, then all sentences
contain both of them express this relation. How-
ever, this heuristic inevitably suffers from wrong
labels (Takamatsu et al., 2012) and undermines
model performance. For example, the sentence
“Bill Gates redefined the software industry, ... said
Rob Glaser, a former Microsoft executive" does not
mention the relation founder but is still treated as a
positive training sample in DS. Dealing with noisy
instances in DS has been a focus in RE. There are
three main genres in the literature: (1) incorporat-
ing an attention module (Lin et al., 2016) to allocate
confidence level among instances in the same bag;
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Figure 1: Finding influential instances within a bag via
subsampling based on the calculated probability π. Note
that here negative ϕ means a beneficial sample.

(2) using reinforcement learning (Qin et al., 2018b)
for instance selection; and (3) leveraging adversar-
ial training (Wu et al., 2017) to enhance the RE
model’s robustness against noise. However, they
are either black-box models thus unable to provide
meaningful interpretation of sample selection or
sensitive to datasets. More importantly, none of
them is theoretically guaranteed to truely reduce
the “noise” from the dataset.

In this work, we propose to leverage influence
function (IF) to evaluate instance quality then do
instance selection for DS. Influence function is a
powerful tool drawn from robust statistics (Hu-
ber, 2004). It is able to approximate the influ-
ence of a single data point on the whole model
learned on the dataset. Creating to this merit, it has
been successfully utilized for inspecting outliers
(Boente et al., 2002) and denoising datasets (Wang
et al., 2020) based on shallow machine learning
models, e.g., logistic regression. Although Koh
& Liang (2017) extends IF to interpreting deep
networks, it is still elusive if it works for denois-
ing datasets for deep networks. In this work, we
develop the Relation Extraction by InFluence sub-
sampling (REIF) framework, which aims for de-
noising DS for deep learning RE models.

The high-level idea of REIF is shown by Fig.
1. Each instance is assigned a quality measure ϕ,
from which its sampling probability is obtained via
the sampling function π. Accordingly, the better
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an instance’s quality is, the more likely it is picked
during training. We will explain the operational
meaning of ϕ in Section 3.2. In a nutshell, the main
contributions of this paper are

• We develop a novel IF-based denosing frame-
work for DS RE, namely REIF, for denoising
RE by sampling favorable training instances.

• An efficient implementation of REIF enables
subsampling in O(1) complexity, instead of
theO(mn) complexity without our implemen-
tation.

• Empirical experiments show REIF’s superior-
ity over other baselines, and we identify its
capability to support interpretable instance se-
lection for RE by a case study.1

2 Related Work

There are a series of works trying to address the
noisy label difficulty in DS by multi-instance learn-
ing (MIL) (Hoffmann et al., 2011; Riedel et al.,
2010; Surdeanu et al., 2012). MIL considers the
training labels in bag level instead of instance level.
Each bag contains at least one instance with the
labeled relation while the exact label of each in-
stance is unknown. As MIL being proved effective
in relation extraction, it was firstly introduced to
neural relation extraction by Zeng et al. (2015),
where the piece-wise convolutional neural network
(PCNN) was developed, and only one instance with
the largest predicted probability was selected in
each bag.

Later, attention (Lin et al., 2016; Zhou et al.,
2018; Jia et al., 2019; Yuan et al., 2019; Ye and
Ling, 2020; Zhou et al., 2021), reinforcement learn-
ing (Feng et al., 2018; Yang et al., 2018; Qin
et al., 2018b; Chen et al., 2021), and adversar-
ial training (Wu et al., 2017; Qin et al., 2018a;
Han et al., 2018; Shi et al., 2018) have been pro-
posed for further improvement. However, above
works usually require intense trials in fine-tuning
of the hyper-parameters in practice, or are not in-
terpretable to human-beings. In this work, we pro-
pose a model-agnostic and interpretable instance
selection method via IF, which is easy-to-use for
most DL models without many hyperparameters to
choose.

1Code is available in the supplementary materials.

3 Methodology

In this section, we elaborate on the major steps of
REIF associated with the technical details and the
theoretic foundation of measuring data quality by
influences. Also, an analysis supporting our choice
of sampling function is given.

3.1 Relation Extraction by Influence
Subsampling

Our REIF is model-agnostic thus amenable to most
DL models. Without loss of generality, we pick
PCNN (Zeng et al., 2015) as the encoder for the
input texts. The flowchart of our framework is
shown in Fig. 2. It includes three main parts: 1)
backbone model and 2) instance selection.

Backbone Model. Inputs of the encoder are raw
sentences represented by indices of words, e.g., a
sentence x∗ with l words x∗ = {x∗,1, . . . , x∗,l}.
We transform them into dense real-valued represen-
tation vectors as w∗ = {w∗,1, . . . ,w∗,l}, by con-
catenating the word embedding from V ∈ Rda×|V |
(where |V | denotes the size of the vocabulary and
da is the dimension of word embedding) and po-
sition embedding with dimension dp together. As
there are two position embeddings, each word vec-
tor in w has dimension da + 2× dp. Convolution
layer processes the word representations as

x∗ = CNN(w∗). (1)

The CNN model receives representation vectors
w∗ and outputs the processed feature vectors x∗ ∈
Rd×l. The probability for relation prediction, tak-
ing x∗ as input, is given by

P (y = k|x∗) =
exp(β(k)⊤x∗)∑
k′ exp(β

(k′)⊤x∗)
, (2)

where β = {β(1) . . .β(K)} ∈ Rd×K is the weight
matrix of the last fully-connected layer; K is the
total number of relations.

Dynamic Instance Sampling. One possible way
to do sample selection by IF is post-hoc, i.e., it first
samples from the full training set, then retrains
the model on the subsamples. However, we argue
it is unsuitable for DS. In post-hoc sampling, all
instances are gathered together, hence the subsam-
ples are dominated by majority relations with lots
of training instances, resulting in severe class im-
balance. In an extreme case, minority relations may
completely disappear after subsampling.

On contrast, we propose dynamic instance sam-
pling (DIS) which is executed within bags during
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Figure 2: The flowchart of the instance-level subsampling method, where x is training sentence; x̃ is the validation
sample; ϕ is the computed influence; and a dotted box means the instance is dropped after subsampling.

training. Given a bag X = {x1, . . . , xn} contain-
ing n sentences, we try to sample a subset Xsub

with |Xsub| < n from X . To this end, we calculate
the influences Φi, ∀i = 1, . . . , n, and sampling
probabilities πi are

πi = π(Φi) :=
1

1 + exp(α× Φi)
, (3)

where πi is the probability of xi being selected and
α is a hyper-parameter. Consequently, the training
objective function J(θ) is

J(θ) =
1

|Xsub|
∑

xi∈Xsub
ℓi(θ), (4)

where ℓ(θ) is the abbreviation of loss function
ℓ(x, y; θ) for notation simplicity.

3.2 Theoretic Foundation of Influence-based
Sample Quality Measure

The core step of REIF is to measure the instance
influence Φ. Intuitively, adverse instances, which
cause model validation loss increasing, should be
assigned low probability being sampled, and vice
versa. We next present the property of Φ and sub-
stantiate this intuition in a rigorous way.

Consider a classification problem where we at-
tempt to obtain a model fθ : X → Y , which is
parametrized by θ, that can make prediction from
an input space X (e.g., sentences) to an output
space Y (e.g., relations). Given a set of training
data {xi}ni=1 and the corresponding labels {yi}ni=1,
the optimal θ̂ defined by

θ̂ := argmin
θ∈Θ

1

n

n∑

i=1

ℓi(θ). (5)

We evaluate the learned fθ̂ on an additional valida-

tion set {(xvj , yvj )}mj=1 such as

L(θ̂) :=
1

m

m∑

j=1

ℓvj (θ̂) (6)

where ℓvj (θ̂) is the validation loss on xvj .
In order to quantitatively measure the i-th train-

ing sample’s influence over model’s validation loss,
we can perturb the training loss ℓi(θ) by a small ϵ,
then retrain a perturbed risk minimizer θ̃ as

θ̃ := argmin
θ∈Θ

1

n

n∑

i′=1

ℓi′(θ) + ϵ× ℓi(θ). (7)

As a result, we are able to compute the validation
loss change of the validation sample xvj by

δj(ϵ) := ℓvj (θ̃)− ℓvj (θ̂). (8)

It indicates to what extent xi influences the predic-
tion on xvj . If ϵ = −1/n, according to Eq. (7),
xi’s loss ℓi(θ) is actually removed from the ob-
jective function. In this situation, δj(ϵ) > 0, i.e.,
ℓvj (θ̃)−ℓvj (θ̂) > 0, implies that removing xi causes
the validation loss on xvj increasing, i.e.,

δj

(
− 1

n

)
> 0→ xi is good for xvj . (9)

The influence function ϕi,j := ϕ(xi, x
v
j ; θ̂) linearly

approximate δj(ϵ) by

δj(ϵ) = ℓvj (θ̃)− ℓvj (θ̂) ≃ ϵ× ϕi,j , (10)

where the closed-form expression of ϕ is given in
(Koh and Liang, 2017) as

ϕi,j := −∇θℓvj (θ̂)⊤H−1θ̂ ∇θℓi(θ̂) (11)

and Hθ̂ :=
1
n

∑n
i=1∇2

θℓi(θ̂) is the Hessian matrix.
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In short, by Eq. (10), δj(−1/n) > 0 is equiv-
alent to ϕi,j < 0. We can compute xi’s influence
over the whole validation set by summation

Φi =

m∑

j=1

ϕi,j = −
m∑

j=1

∇θℓv⊤j (θ̂)H−1
θ̂
∇θℓi(θ̂).

(12)
Now, Φi < 0 implies that xi is good for the whole
validation set. Also, if Φi is smaller, then xi is more
likely to be a favorable sample, and vice versa.

3.3 On Robustness of Sampling Functions
With the influence measure Φ, it seems that we
can simply drop all unfavorable samples that have
Φ > 0. However, we argue that using 0 as the
threshold usually results in failure to the out-of-
sample test, due to its sensitivity to distribution
shift. Instead, we take the measure of probabilis-
tic sampling by designing a sampling function
π(Φ) ∈ [0, 1]. We give the reason of this choice
based on the deviation of the induced validation
loss by inaccurate estimate of influence. Let’s de-
note the validation loss with inaccurate influence
by ℓv(θ̃; Φ̂), thus

∆2(L) :=
1

m

m∑

j=1

(ℓvj (θ̃; Φ̂)− ℓvj (θ̃))2 (13)

indicates the robustness of the model under Φ̂. We
then give the following proposition on ∆2(L) with
respect to sampling function π. Proof can be found
in Appendix A.

Proposition 1 (Robustness of Probabilistic Sam-
pling under Inaccurate Influence). Let π′(Φi) be
the derivative of π(·) function when taking Φi as
its input, we have

sup
Φ,Φ̂

∆2(L) = γ

n∑

i=1

(π(Φ̂i)− π(Φi))2
m∑

j=1

ϕ2i,j

(14)

≃ γ
n∑

i=1

(
(Φ̂i − Φi)π

′(Φi)
)2 m∑

j=1

ϕ2i,j

(15)

where γ is a constant.

It can be viewed that ∆2(L) is controlled by
the derivative of sampling function π′(Φ). For the
sigmoid sampling in Eq. (3), it is easy to derive
that

π′(Φ) = −απ(Φ)(1− π(Φ)), (16)

which means max |π′(Φ)| = 1
4α when Φ = 0.

∆2(L) is hence controlled by the hyper-parameter
α. When |Φ| increases, |π′(Φ)| reduces sharply,
which ensures the variance’s upper bound being
tight all the time. By contrast, in deterministic sam-
pling, ∆2(L) is sensitive to inaccurate Φ̂ because
it is “hard", or more rigorously, because ∆2(L) is
probably large due to large |π(Φ)− π(Φ̂)| caused
by an improper dropout threshold.

4 Efficient Implementation

Recap Eq. (12), computing Φi requires ϕi,j in Eq.
(11) for j = 1, . . . ,m on all validation samples.
As a result, the computation of all {Φi}ni=1 has
O(mn) time complexity. Moreover, for DNNs
with massive parameters, computing the layer-wise
gradients∇θℓ(θ) is intractable. These limitations
prevent the use of IF from DL RE models. To
address it, we here propose a rather efficient im-
plementation of REIF. We demonstrate how to re-
duce the complexity of calculating influences from
O(mn) to O(n), then to O(1). In addition, we
show how to compute the influence function by
stochastic estimation.

4.1 Computing Influences in Linear Time

We argue that in Eq. (12), it is unnecessary to
calculate ϕi,j separately, since here we only care
about their summations. Specifically, since the
summation is only related to the subscript j, we
can cast it to

Φi = −∇θℓ⊤i (θ̂)H−1θ̂
m∑

j=1

∇θℓvj (θ̂) (17)

= −∇θℓ⊤i (θ̂)H−1θ̂ ∇θ
m∑

j=1

ℓvj (θ̂) (18)

= −m∇θℓ⊤i (θ̂)H−1θ̂ ∇θL(θ̂), (19)

where L(θ̂) comes from Eq. (6). By this derivation,
we can calculate L(θ̂) rather than all lj(θ̂), then
take derivative of L(θ̂). Since L(θ̂) only needs to
be calculated once and it is shared in calculating all
Φis, this process only requires O(n) time, without
loss of accuracy.

4.2 Linear Approximation for O(1)
Complexity

∇θℓ(θ̂) in Eq. (17) usually has complicated ex-
pression when fθ(·) is a neural network, hence the
previous works implemented it by the auto-grad
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systems like TensorFlow (Abadi et al., 2016) and
PyTorch (Paszke et al., 2019). However, when the
number of alternative training instances is large,
even O(n) is not satisfactory enough, because ad-
ditional differential operations need to be done on
each ℓi(θ̂) sequentially. Moreover, when faced with
complex neural networks with massive parameters,
computing the Hessian matrix Hθ̂ and its inversion
is intractable. Considering these issues, we pro-
pose a linear approximation approach to reduce
the complexity to O(1), and avoid operating on all
parameters of the neural network.

Suppose the cross entropy loss function is used:

ℓ(θ) = −
K∑

k=1

I{y = k} logP (y = k|x; θ) (20)

where I(·) is an indicator function. Let y, ŷ ∈ RK
be the one-hot label vector, e.g., (1, 0, 0)⊤, and pre-
diction vector, e.g., (0.8, 0.1, 0.1)⊤, respectively.
We replace ∇θℓ(θ) in Eq. (11) with the derivatives
on β (the weight of the last fully-connected layer):

∇θℓ(θ)⇒ ∇βℓ(θ) = (ŷ − y)x⊤ ∈ Rd×K (21)

where x is the input of the last fully-connected
layer. This closed-form expression allows comput-
ing batch gradients in O(1) time. Although the
calculated influence might be inaccurate, it is still
reliable for measuring instances’ relative quality in
general. We will validate this claim in our experi-
ments.

4.3 Algorithm
Algorithm 1 shows the details of REIF, please refer
to Appendix B. It has two hyper-parameters: the
sampling ratio r and the sigmoid sampling parame-
ter α. The optimal value of r depends on quality of
the dataset, since the higher quality it is, the more
favorable instances it might have. Keeping α = 1
is satisfactory in most scenarios.

In particular, on the line #14 of Algorithm 1, we
compute the product between the inverse Hessian
matrix and a gradient vector via the stochastic esti-
mation procedure by Koh & Liang (Koh and Liang,
2017). Denoting the vector ∇θL(θ̂) by v, it first
initializes the approximate inverse Hessian-Vector-
Product (HVP) by H̃−10 v ← v, then repeatedly
samples nb training instances and updates as

H̃−1t v ← v+

(
I − 1

nb

∑
∇2
θℓ(θ̂)

)
H̃−1t−1v (22)

until H̃−1t v converges. In our algorithm, we only
need to do this once after each epoch, to get the pre-
computed inverse HVP s = H−1

θ̂
∇θL(θ̂). There-

fore, during training, we directly compute ∇θℓi(θ̂)
for each instance according to Eq. (21), then multi-
ply it with the precomputed s.

5 Experiments

We concentrate on the following research ques-
tions:

RQ1. How does our REIF perform as compared
with classical baselines?

RQ2. How does the sampling ratio r influence
the performance of the REIF?

RQ3. Does the sigmoid function lead to more
robust sampling than the deterministic sampling?

RQ4. How does the proposed dynamic instance
sampling perform compared with the post-hoc sam-
pling using IF?

5.1 Datasets

In our experiments, we use two versions of widely
used NYT datasets, the NYT-SMALL and NYT-
LARGE. The small version is released in (Riedel
et al., 2010), by aligning Freebase with the New
York Times corpus. In particular, we use the filtered
version of the NYT-SMALL released by (Zeng
et al., 2015). The large version was released by
(Lin et al., 2016). Data statistics can be found in
Appendix C.

5.2 Experimental Setups

We pick PCNN (PCNN+ONE) (Zeng et al., 2015)
as the backbone in our experiments, and include
several baselines for comparison: the attention-
based PCNN (PCNN+ATT) and the naive average
method (PCNN+AVE) (Lin et al., 2016). Note that
our REIF method is model-agnostic, hence it is
applicable for other deep learning based backbones
as well, e.g., CNN and RNN. Setups of models can
be found in Appendix D.

We sample a clean validation set from training
set by a rule-based approach used in (Jia et al.,
2019), in order to obtain the inverse HVP required
for calculating influences. The details of its estab-
lishment and discussions of this validation set can
be found in Appendix E. During subsampling, we
set α = 1 and r ∈ {5%, 10%, 20%, 30%}2 for our
REIF.

2The ceiling function is used for rounding.
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Table 1: P@N for relation extraction results, on NYT-SMALL and NYT-LARGE, where the best ones are in bold.

Dataset NYT-SMALL NYT-LARGE

P@N (%) 100 200 300 Mean 100 200 300 Mean
PCNN + ONE 54.0 52.7 52.2 53.0 70.4 66.4 63.6 66.8
PCNN + AVE 52.7 50.8 47.3 50.3 73.0 71.2 67.8 70.6
PCNN + ATT 52.7 50.7 49.5 50.9 79.7 76.0 71.6 75.8
PCNN + REIF (Proposed) 75.2 65.1 60.8 67.0 86.4 82.5 80.3 83.1

Table 2: Prevision (%) of various DS methods using PCNN as backbones / other DS methods for different recalls
(0.1, 0.2, 0.3) on NYT-LARGE. The results of cited methods are drawn from their papers, and the best are in bold.

PCNN 0.1 0.2 0.3 Mean
+ONE 64.7 57.1 48.9 56.9
+ATT 74.3 63.3 56.5 64.7
+ONE+soft-label (Liu et al., 2017) 71.6 62.5 54.1 62.7
+ATT+soft-label (Liu et al., 2017) 75.1 67.5 55.8 66.1
+ONE+DSGAN (Qin et al., 2018a) 65.5 57.2 50.0 57.6
+ATT+DSGAN (Qin et al., 2018a) 70.5 62.2 53.3 62.0
+PE+REINF (Zeng et al., 2018) 70.1 66.2 56.1 64.1
+ONE+RL (Qin et al., 2018b) 66.7 56.1 48.3 64.1
+ATT+RL (Qin et al., 2018b) 68.3 60.0 52.2 60.2
+ONE+ADV (Wu et al., 2017) 71.7 58.9 51.1 60.6
+ONE+AN (Han et al., 2018) 80.3 70.2 60.3 70.3
+ATT-RA+BAG-ATT (Ye and Ling, 2020) 78.8 68.9 62.1 69.9
+SATT (Zhou et al., 2021) 78.2 69.1 59.5 68.9
DISTRE (Alt et al., 2019) 65.2 64.4 60.9 63.5
RedSandT (Christou and Tsoumakas, 2021) 73.1 67.3 58.0 66.1
Trans-SA (Xiao et al., 2022) 74.1 67.2 57.9 66.4
PCNN+REIF (Ours) 82.6 73.9 60.9 72.5

5.3 Effects of Influence Subsampling (RQ1)

Fig. 3 shows the precision-recall curve in held-out
evaluation of ONE, AVE, ATT, and our REIF, and
Table 1 illustrates the corresponding P@N of all
methods. Our REIF performs the best among all
methods. In details, on NYT-SMALL, our REIF
improves 14% over ONE, and 16.1% over ATT; on
NYT-LARGE, the improvements are 14.1% and
5.1%, respectively, in terms of the mean P@N.
Specifically, REIF only leverages part of instances
during training, while ATT involves all instances
but performs badly on NYT-SMALL, and ONE
only picks one instance per bag. It means that nei-
ther picking too many nor too few instances gains
satisfactory performance in distant supervision. On
contrast, our REIF can detect and pick those favor-
able ones from the noisy dataset, thus achieving a
better model. In distant supervision, our method is
effective for achieving nice trade-off between effi-
ciency and effectiveness. Moreover, we compare
our method with many DS baselines, including ad-

versarial training, reinforcement learning, attention,
and GAN based methods, using the reported results.
As shown in Table 2, REIF still is superior.

5.4 Effects of Sampling Ratio (RQ2)
We evaluate the performance of REIF with respect
to different r by repeat experiments. Results are re-
ported in Fig. 5. REIF keeps stable when sampling
ratio ranges from 5% to 30%, such that adding
more instances does not make much difference,
which might be due to high noise in the NYT
dataset, i.e., focusing on those favorable instances
is enough for training a satisfactory RE model.

5.5 Effects of Sigmoid Sampling & Dynamic
Sampling (RQ3, RQ4)

Our REIF is engaged with the proposed prob-
abilistic sigmoid sampling and DIS, namely
REIF+P+DIS. We would like to validate these two
techniques compared with the deterministic sam-
pling (REIF+D+DIS), and the post-hoc sampling
(REIF+P+PH). Our main observations from Fig. 4
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Figure 3: Aggregated precision-recall (P-R) curves ob-
tained by PCNN+ONE, PCNN+AVE, PCNN+ATT, and
the proposed PCNN+REIF on NYT-SMALL and NYT-
LARGE datasets.

are as follows:
(1) The probabilistic sigmoid sampling is crucial

for robust subsampling, as the REIF+D+DIS per-
forms the worst in both datasets. As mentioned in
Proposition 1, drawbacks of REIF+D mainly come
from the inaccurate estimate of influence Φ̂, due
to the non-convexity of neural networks and the
use of linear approximations. That is, we could
not determine the instances that have Φ̂ around the
threshold with very high confidence, e.g., determin-
istic ranking and selecting, since this causes high
variance of the resulting test loss, as indicated by
Eq. (14). By contrast, we should assign them simi-
lar probabilities to be sampled, as done in REIF+P,
to avoid sharp variation of the test loss caused by
inaccurate influences in deterministic selection.

(2) Our dynamic sampling method generally
performs better than post-hoc sampling in DS,
especially on the tail instances. When recall is
high, REIF+DIS performs better on the minor rela-
tions, thus has higher precision than REIF+PH. In
DIS, more minor relation instances are maintained,
which facilitates the model’s capacity of mining
minor relation instances. Considering efficiency
and the overall effectiveness, we shall prefer DIS
in practice.
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Figure 4: Precision-recall curve of compared REIF vari-
ants, where the REIF+P+DIS is the REIF with proba-
bilistic sigmoid sampling and dynamic sampling, +D
means deterministic sampling and +PH means post-hoc
sampling.

6 Manual Evaluation & Case Study

Held-out evaluation usually suffers from false neg-
ative examples in Freebase (Zeng et al., 2015). To
further check our method, we perform manual eval-
uation by choosing the entity pairs which are la-
beled as “NA” but predicted a relation (not “NA”)
with high confidence. The top-k precisions are
reported in Table 3, where the results of Mintz
(Mintz et al., 2009), MultiR (Hoffmann et al.,
2011), MIML (Surdeanu et al., 2012), PCNN+ONE
(Zeng et al., 2015) and APCNN (Ji et al., 2017)
are drawn from their papers. It could be seen our
method outperforms baselines in extracting new
facts from the false negative examples.

Fig. 6 reports an example of calculating influ-
ences that support instance selection. Picking a
relation children as the example, influences and at-
tention scores (Lin et al., 2016) are computed, from
which we can identify that the influences quanti-
tatively measure their individual quality. Recall
in Section 3.2 that the smaller influences indicate
better data quality. The first and the last instances
are clearly right and wrong, respectively, in terms
of indicating the relation children between their en-
tities. By contrast, the second one tends to be right
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Figure 5: Mean P@N (average of P@100/200/300)
varies with sampling ratio of REIF (IF) method. Red bar
represents standard error by 5 times repeat experiments.

Instances Influences
Att

Scores

… because of art rooney , the legendary steelers ' owner 
… and they have continued to be a family under his 
oldest son , dan rooney .

-2.23E-02 1.11E-04

mother of joseph paula and walter eva, grandmother of 
david, lauren, jacob, miriam and leah .

-1.07E-04 2.61E-09

… the suspense novelists mary higgins clark and carol 
higgins clark signed books and posed for photographs 
for five hours … 

1.50E-05 1.44E-07

…  daughter jamie baldinger and her husband, joseph; 
son david goldring and his wife rachel …

7.81E-04 1.39E-09

Figure 6: Examples of influences calculated with the re-
lation children, on NYT-LARGE. The words in bold are
entities. The Att Scores (Lin et al., 2016) are standard-
ized into [0, 1] by softmax, and Influence is the smaller
the better.

because it implies that Joseph is the parent of Ja-
cob. Although two entities in the third instance are
very similar, no evidence shows they are relatives.
Therefore, sampling probabilities can be obtained
via these influences for the further subsampling
process.

7 Conclusion & Discussion

In this work, we proposed an efficient subsam-
pling scheme to find the influential instances for
DS, namely REIF. Our method is model-agnostic,
therefore it can be engaged in the majority of RE
models. REIF can be generalized to other tasks
which also confront noisy data. For instance, in
other weak supervision scenarios such as active
learning, our method can be an effective approach

Table 3: Precision values for the top 100, 200 and 500
via manual evaluation. Avg denotes the average of the
former three columns. Best ones are in bold.

Accuracy (%) Top 100 Top 200 Top 500 Avg
Mintz 77 71 55 67.7

MultiR 83 74 49 68.7
MIML 85 75 61 73.7

PCNN+ONE 86 80 69 78.3
APCNN 87 82 72 80.3

PCNN+ATT 86 81 70 79.0
PCNN+REIF 88 84 76 82.7

to build data pipeline from data quality measure to
data selection. We leave this as our future work.
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A Proof of Proposition 1

Proposition 1 (Robustness of Probabilistic Sam-
pling under Inaccurate Influence). Let π′(Φi) be
the derivative of π(·) function when taking Φi as
its input, we have

sup
Φ,Φ̂

∆2(L) = γ
n∑

i=1

(π(Φ̂i)− π(Φi))2
m∑

j=1

ϕ2i,j

≃ γ
n∑

i=1

(
(Φ̂i − Φi)π

′(Φi)
)2 m∑

j=1

ϕ2i,j

(A.1)
where γ is a constant.

Proof.

∆2(L) ∝
m∑

j=1

(ℓvj (θ̃; Φ̂)− ℓvj (θ̃))2 (A.2)

=
m∑

j=1

(ℓvj (θ̃; Φ̂)− ℓvj (θ̂) + ℓj(θ̂)− ℓvj (θ̃))2

(A.3)

∝
m∑

j=1

(
n∑

i=1

π(Φ̂i)ϕi,j − π(Φi)ϕi,j
)2

(A.4)

≤
n∑

i=1

(π(Φ̂i)− π(Φi))2
m∑

j=1

ϕ2i,j (A.5)

Eq. (A.4) is obtained by definition of probabilistic
subsampling because

ℓvj (θ̃)− ℓvj (θ̂) ≃
n∑

i=1

ϵiϕi,j

∝
n∑

i=1

π(Φi)ϕi,j .

(A.6)

Details can be referred to (Wang et al., 2020). Tak-
ing linear Taylor expansion of the π(Φ̂i)− π(Φi)
at the last line yields the final result.

B Algorithm

C Dataset Statistics

D General Setups for Training PCNN

Following the configurations of previous works, we
employ word2vec3 to extract the word embeddings,
to process the raw data. Parameters of PCNN are
set according to (Zeng et al., 2015): window size
dw = 3, sentence embedding size ds = 230, word

3https://code.google.com/p/word2vec/

Algorithm 1 Finding Influential Instances for DS
on RE by Influence Subsampling.

Input: Training and validation data Dtr,Dva;
Hyper-parameters: r and α;

1: for epoch t = 1→ T do
2: repeat
3: Initialize the selected instances set
Xsub = ∅;

4: Sequentially sample a batch of bags
{X1, . . . , XB} from Dtr;

5: for bag b = 1→ B do
6: Obtain instance-level loss as ℓ⃗ ←

(ℓ1(θ̂t), . . . , ℓ|Xb|(θ̂t))
⊤;

7: Compute influences Φi ←
s⊤t ∇θℓi(θ̂t) ∀i = 1, . . . , |Xb|;

8: Compute sampling probability
πi ← 1/(1 + exp(α× Φi)) ∀i;

9: Sample r×|Xb| instances from Xb

to get X̃b, and Xsub ← Xsub ∪ X̃b;
10: end for
11: Update θ̂t using the selected subset

Xsub by gradient descent;
12: until going through all bags in Dtr.
13: Get validation loss by L(θ̂t) ←

1
m

∑m
j=1 ℓ

v
j (θ̂t) on Dva;

14: Obtain st ← H−1t ∇θL(θ̂t) by stochastic
estimation as done in Eq. (22);

15: end for

dimension da = 50 and position dimension dp = 5
for fair comparison. During training, we fix the
batch size B = 128, dropout ratio p = 0.5, and
use the ADADELTA (Zeiler, 2012) with parameters
ρ = 0.95 and ε = 10−6 for optimization. Since
we find the default hyperparameters already lead
superior performance of REIF, we did not make
further tuning.

E Establishing the Validation Set

Due to lacking clean validation set, we utilize au-
tomatic selection similar to ARNOR (Jia et al.,
2019). It takes top 10% high-frequency patterns
of each relation as initial pattern, then takes max
5 new patterns in one loop for each relation in
bootstrap procedure. We stop bootstrap until 10%
training samples are involved. Our experiments
demonstrate REIF can gain significantly from this
automatically built validation set, although it is
collected by heuristics and not absolutely clean.
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Table 1: Data statistics of used two NYT datasets. “#
Pos", “# Ins", “# Rel": number of postive bags, instances
and relations, respectively.

NYT-SMALL NYT-LARGE
Train Test Train Test

# Bags 65,726 93,574 281,270 96,678
# Pos 4,266 1,732 18,252 1,950
# Ins 112,941 152,416 522,611 172,448
# Rel 26 26 53 53
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Abstract

Distantly supervised relation extraction is chal-
lenging due to the noise within data. Recent
methods focus on exploiting bag representa-
tions based on deep neural networks with com-
plex de-noising scheme to achieve remarkable
performance. In this paper, we propose a sim-
ple but effective BERT-based Graph convolu-
tional network Model (i.e., BGM). Our BGM
comprises of an instance embedding module
and a bag representation module. The instance
embedding module uses a BERT-based pre-
trained language model to extract key infor-
mation from each instance. The bag represen-
taion module constructs the corresponding bag
graph then apply a convolutional operation to
obtain the bag representation. Our BGM model
achieves a considerable improvement on two
benchmark datasets, i.e., NYT10 and GDS1.

1 Introduction

In the distant supervision relation extraction (DS-
RE) setting, handling the noisy training data is
a major challenge for downstream applications.
To alleviate the severe noise problem in DS-RE,
Riedel et al. (2010) incorporate the multi-instance
learning (MIL) framework. Under this framework,
the instances (i.e., sentences) for an identical entity
pair are regarded as a bag. However, learning ef-
fective bag representations from the noisy data is a
challenge resulting in unsatisfactory performance.

Recently, to obtain effective bag representations,
various neural models are incorporated. Lin et al.
(2016) propose a selective attention mechanism
to capture relatively informative instances form-
ing the bag representation. Vashishth et al. (2018)
use graph convolution network (GCN) (Kipf and
Welling, 2017) to encode syntactic information ob-
tained from a dependency parser. However, the

*Corresponding author.
1Code and datasets are available at https://github.

com/ziqinrao.

GCN’s capacity in capturing the correlation among
instances is not sufficiently explored.

Meanwhile, a prevalent trend is to use pretrained
language models (PLMs) for various NLP tasks
(Alberti et al., 2019; Tang et al., 2021; Wang et al.,
2021; Li et al., 2021). PLMs work without ex-
plicit linguistic features and side-information like
POS tags and entity types. Alt et al. (2019) use
a PLM to incorporate more linguistic and seman-
tic information. The correlations among instances
are implicitly represented through a naïve attention
mechanism. Very recently, Chen et al. (2021) pro-
pose PLMs combined with the contrastive instance
learning (CIL) to build bag representations. CIL
captures the correlation among instances through
data augmentation with positive and negative pairs.
These PLMs-based methods achieve a fabulous
performance. Hence, a question arises, how about
combining PLMs and GCNs to learn the instance
correlations for bag representations?

Towards this goal, we propose an impressively
simple model, i.e, BGM. Our BGM comprises of a
PLM (e.g., BERT) and a concise GCN. The PLM
brings accurate contextual representations for in-
stances. The GCN whose nodes are instances en-
codes the correlation of instances in a bag through
mutually aggregation. Thus, we finetune an off-the-
shelf BERT with a GCN in an end-to-end fashion.
With the obtained bag representation, the entity
relation in a given sentence is then predicted.

Our contributions are twofold. 1) We propose
BGM model for DS-RE. Our BGM only comprises
a PLM and a GCN but without any prior knowledge
or data augmentation. 2) Experimental results on
two benchmark datasets show that BGM achieves
a consistent improvement on performance.

2 Related Work

The noisy data is a major challenge in DS-RE for
downstream applications. Previous works can be
divided into two categories: PCNN-based methods
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and PLMs-based methods. The former methods
use Piecewise Convolutional Neural Networks (i.e.,
PCNN) as the backbone to encode sentences. Thus,
various methods are proposed to acquire effective
bag representations. Lin et al. (2016) propose the
selective attention mechanism over the bag’s in-
stances to use more informative instances. This
method implicitly models the instance correlations.
Subsequently, Liu et al. (2017) propose a model
by providing a better supervision with soft labels
as golden labels. Han et al. (2018) exploit a hier-
archical attention paradigm to better capture valid
instances. Combined with previous intra-bag at-
tention, Ye and Ling (2019) design an inter-bag
attention to obtain bag-group representations. Cao
et al. (2021) build a co-occurrence graph to learn
embeddings to enhance bag representations. Shang
et al. (2022) employ a pattern-aware self-attention
network to automatically discover relational pat-
terns for pre-trained transformers.

Recently, PLMs-based methods achieve remark-
able performance in various NLP tasks, including
DS-RE. Alt et al. (2019) adopt PLMs to incor-
porate a great deal of commonsense knowledge.
Christopoulou et al. (2021) focus on relational to-
kens using the sub-tree parsing and capture infor-
mative instances with fine-tuning BERT. Chen et al.
(2021) combine PLMs with contrastive learning
with data augmentation to improve the overall per-
formance. Note that the three PLMs-based meth-
ods follow the soft attention mechanism adopted in
(Lin et al., 2016). The attention mechanism uses
the bag’s target relation to emphasize the instances
which better express the bag relation.

In this paper, we propose a simple but effective
model BGM. The BGM uses a PLM and a GCN
for DS-RE. To the best of our knowledge, we are
the first to use GCN to learn the bag representation
directly over the instances. Note that Vashishth
et al. (2018) also use GCNs but for encoding the
syntactic tree of instances. In addition, compared
with (Lin et al., 2016), we do not follow their se-
lective attention with bag’s target relation. Our
BGM uses a self-attention mechanism to capture
the correlation among instances.

3 Method

Suppose that an instance bag B(eh,et) =
{s1, s2, ..., sns} contains ns instances which all
include the entity-pair

(
eh, et

)
. Each instance

s = {x1, x2, ..., xnw} contains nw words. The

Pretrained Language Model
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[SEP]
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Figure 1: The overview of BGM of the embedding
layer and the bag representation layer. Here, the BGM
encodes a bag with four instances. For each instance,
[CLS], [ununsed0] and [unused2] are used.

DS-RE task aims to extract the specific relation be-
tween the entity-pair

(
eh, et

)
(i.e., the head and tail

entities). To this aim, we design the BGM model
shown in Figure 1, which includes an embedding
layer and a bag representation layer.

3.1 Embedding Layer

To represent each instance in a bag, we use a BERT-
based PLM as our embedding layer. Inspired by the
role of [CLS] in BERT, we adopt the [unused∗]
to represent two involved entities. This effectively
addresses the multi-word entities representation.
Specifically, for each instance, the token sequence
{[CLS], x1, x2, [unused0], eh, [unused1], · · ·,
[unused2], et, [unused3], xnw , [SEP ]} is fed
into the BERT encoder. Then, three hidden states,
i.e., {Hc, Hu0, Hu2} ∈ Rd which correspond to
the tokens [CLS], [unused0], and [unused2] are
obtained for representing each instance and the cor-
responding two entities.

3.2 Bag Representation Layer

With the embedding layer, we then construct the
bag graph G = {V,A} for each bag. The set of
nodes V are initialized by concatenating the rep-
resentations of instance and two entities, i.e., [Hc;
Hu0;Hu2]. Thus, the dimension of node dh equals
3d. Moreover, the adjacency matrix A ∈ Rns×ns

is generated as,

A = softmax

(
QWQ ×

(
KWK

)T
√
dh

)
(1)
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where Q and K are both the concatenated repre-
sentations of instances. Matrices WQ and WK ∈
Rdh×dh are trainable parameters.

Our GCN is updated by applying the classical
method (Kipf and Welling, 2017). Suppose that
H(l) denotes the input matrix of nodes of the l-th
layer. The computation of next layer is given as,

H(l+1) = ρ
(
ÃH(l)W (l) + b(l)

)
(2)

where W (l) ∈ Rdh×dh is the trainable weight ma-
trix, b(l) is the bias vector and ρ is an activation
function (e.g., ReLU). To maintain the instance’s
original semantics, a self-connection is added to
each node, i.e., Ã = A + I; I is an identity ma-
trix. Thus, for the last graph layer L, the node
representation H(L) is obtained, which is used for
constructing a bag representation.

3.3 Relation Prediction
We apply an average pooling on the bag represen-
tation H(L). A linear layer followed by a softmax
layer is used to predict the relation r̂ as follows,

r̂ = softmax
(
MLP(AvgPooling(H(L)))

)
.

(3)
The BGM is trained using a classical cross-entropy
loss with gradient descent optimization.

4 Experiment

4.1 Dataset and Metric
Two benchmark datasets2 are used. NYT10
(Riedel et al., 2010) is generated by aligning the
FreeBase’s instances with NYT News Corpus.
This dataset contains 39,528 entities and supports
53 types of relations (NA for no relation is in-
cluded). Following previous works, NYT10 is split
into 466,876/55,167/172,448 instances for train-
ing/validation/testing.

GDS (Jat et al., 2017) is recently built using
Google RE corpus3. To meet MIL’s expressed-at-
least-once assumption, at least one sentence for
each bag is correctly labelled which makes au-
tomatically evaluation more credible. The GDS
dataset is officially split into 11,297/1,864/5,663
for training/validation/testing.

Metrics. We adopt four metrics, including
precision-recall curve (PR), area under curve

2https://github.com/thunlp/OpenNRE
3https://research.googleblog.com/2013/04/50000-

lessons-on-how-to-read-relation.html
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Figure 2: PR curves comparison on NYT10.

(AUC), Precision@N (P@N) values, and Micro-F1
score (F1) for evaluation.

4.2 Implementations Detail

In our experiments, the BERT-base-uncased En-
glish version model4 is used. The maximum of
input sequence length of BERT is set to 120 and
the hidden size is 768. The GCN has two lay-
ers. In addition, we apply drop-out rate p of 0.3 to
GCN and 0.5 to all linear layers. The Adam opti-
mizer (Kingma and Ba, 2015) is adopted to train
the model with a learning rate of 2 × 10−5 and a
batch size of 32 for up to 3 epochs. All experiments
are conducted on an NVIDIA V100 GPU.

4.3 Baseline

We compare our BGM with the following
baseline methods, including Mintz (Mintz
et al., 2009), MultiR (Hoffmann et al., 2011),
MIMLRE (Surdeanu et al., 2012), PCNN (Zeng
et al., 2015), PCNN+ATT (Lin et al., 2016),
PCNN+ATT+soft_label (Liu et al., 2017),
BGWA (Jat et al., 2017), CNN+RL (Feng
et al., 2018), DSGAN (Qin et al., 2018), RE-
SIDE (Vashishth et al., 2018), PCNN+HATT (Han
et al., 2018), PCNN+BAG_ATT (Ye and Ling,
2019), DISTRE (Alt et al., 2019), PA-TMR (Kuang
et al., 2020), ToHRE (Yu et al., 2020), PA-
TRP (Cao et al., 2021), SRKBP (Christopoulou
et al., 2021), REDSandT (Christou and Tsoumakas,

4https://github.com/huggingface/transformers
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Method
P@N

AUC
100 200 300 500 1000 2000 MEAN

PCNN+ATT (Lin et al., 2016) 73.0 68.0 67.3 63.6 53.3 40.0 60.9 34.1
BGWA (Jat et al., 2017) 76.0 74.0 - - - - - 36.7
CNN+RL (Feng et al., 2018) 79.0 73.0 - - - - - 37.4
DSGAN (Qin et al., 2018) 80.0 78.0 - - - - - 38.0
RESIDE (Vashishth et al., 2018) 81.8 75.4 74.3 69.7 59.3 45.0 67.6 41.5
PCNN+HATT (Han et al., 2018) 82.0 79.5 75.3 67.0 57.7 41.9 67.2 42.0
PCNN+BAG_ATT (Ye and Ling, 2019) 91.8 83.0 76.3 70.2 52.0 34.2 67.9 42.2
PA-TMR (Kuang et al., 2020) 83.0 79.0 - - - - - 43.7
ToHRE (Yu et al., 2020) 91.5 82.9 79.6 74.8 63.3 48.9 73.5 -
PA-TRP (Cao et al., 2021) 87.0 79.5 77.3 68.6 59.0 44.6 67.9 41.5
SRKBP (Christopoulou et al., 2021) 83.0 75.5 73.0 - - - - 42.9
PSAN-RE (Shang et al., 2022) 79.2 71.1 66.8 65.9 60.4 48.1 65.2 43.8

DISTRE (Alt et al., 2019) ♯ 68.0 67.0 65.3 65.0 60.2 47.9 62.2 42.2
REDSandT (Christou and Tsoumakas, 2021) ♯ 78.0 - 73.0 67.6 - - - 42.9
CIL (Chen et al., 2021) ♯ 90.1 86.1 81.8 - - - - 50.8

Our BGM 90.3 86.5 80.0 74.6 67.5 50.7 74.9 51.5

Table 1: Comparison results on NYT10. The symbol ♯ denotes the PLMs-based methods.

2021), CIL (Chen et al., 2021), and PSAN-RE
(Shang et al., 2022). Note that the three methods,
including DISTRE, REDSandT, and CIL are
PLMs-based.

4.4 Results and Analysis

On NYT10. Figure 2 plots the PR curves on the
NYT10 dataset. We observe that compared with
baseline models, our proposed BGM achieves bet-
ter performance by a large margin. It means that
our model could make full use of the training data
and capture the critical information in noisy data.

Table 1 reports the P@N and AUC values on
NYT10 dataset. We notice that our model achieves
the best performance and outperforms the other
baseline models in almost all metrics. Compared
with the strong competitor CIL, our proposed
model improves P@100 and P@200 by 0.2% and
0.5% respectively and improves AUC score by
1.4%. In addition, compared with ToHRE on
P@MEAN, our model improves the score by 1.9%,
i.e., 73.5→ 74.9 .

On GDS. Table 2 reports the results on GDS
dataset. Our model achieves a comparable perfor-
mance on the GDS dataset, in terms of P@100,
P@200 and AUC, i.e., 100.0, 98.0 and 89.2. Our
BGM achieves better performance compared with
these baseline models.

Method P@100 P@200 AUC

PCNN+ATT (Lin et al., 2016) 94.0 93.0 80.3
BGWA (Jat et al., 2017) 99.0 98.0 81.5
CNN+RL (Feng et al., 2018) 100.0 96.0 85.5
DSGAN (Qin et al., 2018) 99.0 97.0 84.5
RESIDE (Vashishth et al., 2018) 100.0 97.5 89.1
PCNN+HATT (Han et al., 2018) 99.0 97.0 85.4
PA-TMR (Kuang et al., 2020) 100.0 98.0 86.5
PA-TRP (Cao et al., 2021) 100.0 98.0 87.3
PSAN-RE (Shang et al., 2022) 97.0 98.5 91.1
Our BGM 100.0 98.0 89.2

Table 2: Comparison results on GDS.

Method AUC P@M F1

Our BGM 51.5 74.9 52.4
BGM w/o GCN 46.7 (4.8↓) 68.3 (6.6↓) 51.6 (0.8↓)
BGM w/o EntCon 46.9 (4.6↓) 68.0 (6.9↓) 51.9 (0.5↓)

Table 3: Ablation study of our BGM on NYT10.

PLM AUC P@M F1

Bert-based-uncased 51.5 74.9 52.4
Bert-based-cased 49.7 71.0 53.7
Bert-large-uncased 52.9 72.4 56.3
Distilbert-base-uncased 49.5 71.5 50.9
Xlnet-base-cased 47.5 67.1 53.1
Albert-based-v2 48.3 72.1 50.3
Roberta-base 48.8 68.5 52.7
Roberta-large 53.2 74.5 57.1

Table 4: Comparison of PLMs in BGM on NYT10.
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4.5 Ablation Study

In Table 3, BGM w/o GCN degenerates our full
BGM to a naïve BERT. BGM w/o GCN has a com-
parable performance. However, it fails to inter-
relate the instances for encoding bag representa-
tions, the overall performance drops, i.e., AUC
(51.5 → 46.7), P@Mean (74.9 → 68.3) and F1
(52.4 → 51.6). BGM w/o EntCon only uses the
[CLS] token but not entity-aware instance represen-
tations. The AUC, P@M and F1 decrease. This
shows that the entity information is essential for
relation extraction. Moreover, to investigate the
impact of various PLMs in our BGM, we replace
the basic BERT-based with other representative
PLMs. In Table 4, we observe that BGM with
various PLMs as an embedding layer can achieve
competitive performance. Due to larger parameters,
Roberta-large achieves the best performance.

4.6 Case Study

We use two bags shown in Table 5 for
case study on three methods, including BGM,
BGM w/o GCN and BGM w/o EntCon. For
#1 bag, our BGM gives the relation, /lo-
cation/country/administrative_divisions. The
other variants give the wrong relation, /loca-
tion/location/contains. The reason is that BGM
w/o EntCon could not use the representations of
key phrases "in the state of" in S3. Besides, BGM
w/o GCN could not utilize the instance correlations
in the bag. The captured information in S3 is not
shared well with the other instances.

For #2 bag, it expresses the relation /peo-
ple/person/place_of_birth. Our BGM w/o
EntCon predicts the wrong relation, /peo-

Bag Instance

# 1

S1: ...she gazed at the work before her: ... and the
landscape of the [Jalisco] region of [Mexico] .

S2: ..., left his small ranch in the [Jalisco] region
of [Mexico] for work in the promised land of the
united states .

S3: ...Italian real estate magnates who relocated to
[Mexico] and built a series of sumptuous proper-
ties in the state of [Jalisco] that made it a magnet
for the super-rich .

# 2 S1: ..., like Freddy Rodriguez’s tribute to [Sammy
Sosa] , who was born in the [Dominican Republic]
, with a glass....

Table 5: Two bags from NYT10 for case study.

ple/person/place_lived. In contrast, BGM and
BGM w/o GCN can identify the golden truth. With
the entity-aware instance representation, they cap-
ture the contextual information of entities embed-
ded in “was born in”. This helps the model focus on
entities and capture the relation more effectively.

5 Discussion

Our BGM performs its calculation on the entire
graph. The GCN layer calculates weights adopting
the method of self-attention. In other words, the
node features of the entire graph are updated after
one calculation, and the learned parameters are not
heavily related to the graph structure. Compared
with other attention-based methods, we do not fol-
low their selective attention with the bag’s target
relation. Our BGM uses a self-attention mecha-
nism to capture the correlation among instances
which are taken as the nodes of the graph. There-
fore, GCN combined with self-attention is one of
effective ways for the setting of DS-RE.

6 Conclusion

In this paper, we propose a simple but effective
model, a.k.a. BGM based on PLMs and GCN for
DS-RE. Each instance is represented using a BERT-
based pre-trained language model. To capture the
instance correlations, GCN for multiple instances
within a bag is used. With this type of bag represen-
tation, a cross-entropy loss is applied for predicting
the relation between entities. Extensive experi-
ments on two benchmark datasets show the supe-
rior performance. In our future, we will investigate
the hidden theory in-depth for better explainabil-
ity of our BGM model. In addition, extending the
BGM to dealing with the case of a single-instance
bag is an interesting problem.

Acknowledgements

This work was supported in part by the National
Key Research and Development Program of China
under Grant 2019YFF0303300 and Subject II un-
der Grant 2019YFF0303302, and in part by the
National Natural Science Foundation of China un-
der Grant 62076032. The authors would also like
to thank the editor and anonymous reviewers for
their valuable comments on improving the final
version of this paper.

2655



References
Chris Alberti, Kenton Lee, and Michael Collins. 2019.

A bert baseline for the natural questions. arXiv
preprint arXiv:1901.08634.

Christoph Alt, Marc Hübner, and Leonhard Hennig.
2019. Fine-tuning pre-trained transformer language
models to distantly supervised relation extraction. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1388–
1398, Florence, Italy. Association for Computational
Linguistics.

Yixin Cao, Jun Kuang, Ming Gao, Aoying Zhou, Yong-
gang Wen, and Tat-Seng Chua. 2021. Learning re-
lation prototype from unlabeled texts for long-tail
relation extraction. IEEE Transactions on Knowl-
edge and Data Engineering, pages 1–1.

Tao Chen, Haizhou Shi, Siliang Tang, Zhigang Chen,
Fei Wu, and Yueting Zhuang. 2021. CIL: Contrastive
instance learning framework for distantly supervised
relation extraction. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6191–6200, Online. Association
for Computational Linguistics.

Fenia Christopoulou, Makoto Miwa, and Sophia Anani-
adou. 2021. Distantly supervised relation extraction
with sentence reconstruction and knowledge base
priors. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 11–26, Online. Association for Com-
putational Linguistics.

Despina Christou and Grigorios Tsoumakas. 2021.
Improving distantly-supervised relation extraction
through bert-based label and instance embeddings.
IEEE Access, 9:62574–62582.

Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and
Xiaoyan Zhu. 2018. Reinforcement learning for re-
lation classification from noisy data. In Proceedings
of the AAAI conference on Artificial Intelligence, vol-
ume 32.

Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and
Peng Li. 2018. Hierarchical relation extraction with
coarse-to-fine grained attention. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2236–2245, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S. Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
541–550, Portland, Oregon, USA. Association for
Computational Linguistics.

Sharmistha Jat, Siddhesh Khandelwal, and Partha P.
Talukdar. 2017. Improving distantly supervised rela-
tion extraction using word and entity based attention.
In 6th Workshop on Automated Knowledge Base Con-
struction, AKBC@NIPS 2017, Long Beach, Califor-
nia, USA, December 8, 2017. OpenReview.net.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Jun Kuang, Yixin Cao, Jianbing Zheng, Xiangnan He,
Ming Gao, and Aoying Zhou. 2020. Improving neu-
ral relation extraction with implicit mutual relations.
In 36th IEEE International Conference on Data En-
gineering, ICDE 2020, Dallas, TX, USA, April 20-24,
2020, pages 1021–1032. IEEE.

Zhengyan Li, Yicheng Zou, Chong Zhang, Qi Zhang,
and Zhongyu Wei. 2021. Learning implicit sentiment
in aspect-based sentiment analysis with supervised
contrastive pre-training. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 246–256, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2016. Neural relation extraction with
selective attention over instances. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2124–2133, Berlin, Germany. Association for
Computational Linguistics.

Tianyu Liu, Kexiang Wang, Baobao Chang, and Zhifang
Sui. 2017. A soft-label method for noise-tolerant
distantly supervised relation extraction. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1790–1795,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003–1011, Suntec, Singapore. Association for Com-
putational Linguistics.

Pengda Qin, Weiran Xu, and William Yang Wang. 2018.
DSGAN: Generative adversarial training for distant
supervision relation extraction. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),

2656



pages 496–505, Melbourne, Australia. Association
for Computational Linguistics.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 148–163. Springer.

Yu-Ming Shang, Heyan Huang, Xin Sun, Wei Wei, and
Xian-Ling Mao. 2022. A pattern-aware self-attention
network for distant supervised relation extraction.
Information Sciences, 584:269–279.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
455–465, Jeju Island, Korea. Association for Compu-
tational Linguistics.

Hongyin Tang, Xingwu Sun, Beihong Jin, Jingang
Wang, Fuzheng Zhang, and Wei Wu. 2021. Improv-
ing document representations by generating pseudo
query embeddings for dense retrieval. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 5054–5064. Associa-
tion for Computational Linguistics.

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga,
Chiranjib Bhattacharyya, and Partha Talukdar. 2018.
RESIDE: Improving distantly-supervised neural re-
lation extraction using side information. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1257–1266,
Brussels, Belgium. Association for Computational
Linguistics.

Yijun Wang, Changzhi Sun, Yuanbin Wu, Hao Zhou,
Lei Li, and Junchi Yan. 2021. UniRE: A unified label
space for entity relation extraction. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Zhi-Xiu Ye and Zhen-Hua Ling. 2019. Distant supervi-
sion relation extraction with intra-bag and inter-bag
attentions. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2810–2819, Minneapolis, Minnesota. Association for
Computational Linguistics.

Erxin Yu, Wenjuan Han, Yuan Tian, and Yi Chang. 2020.
ToHRE: A top-down classification strategy with hier-
archical bag representation for distantly supervised
relation extraction. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 1665–1676, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1753–1762,
Lisbon, Portugal. Association for Computational Lin-
guistics.

2657



Proceedings of the 29th International Conference on Computational Linguistics, pages 2658–2667
October 12–17, 2022.

Augmenting Legal Judgment Prediction with Contrastive Case Relations

Dugang Liu1,2, Weihao Du1,2, Lei Li3, Weike Pan1,2,*, Zhong Ming1,2,*

1Shenzhen University, Shenzhen, China
2Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China

3Hong Kong Baptist University, Hong Kong, China
dugang.ldg@gmail.com, {panweike,mingz}@szu.edu.cn

Abstract

Existing legal judgment prediction methods
usually only consider one single case fact de-
scription as input, which may not fully utilize
the information in the data such as case rela-
tions and frequency. In this paper, we propose
a new perspective that introduces some con-
trastive case relations to construct case triples
as input, and a corresponding judgment pre-
diction framework with case triples modeling
(CTM). Our CTM can more effectively uti-
lize beneficial information to refine the encod-
ing and decoding processes through three cus-
tomized modules, including the case triple mod-
ule, the relational attention module, and the
category decoder module. Finally, we conduct
extensive experiments on two public datasets
to verify the effectiveness of our CTM, includ-
ing overall evaluation, compatibility analysis,
ablation studies, analysis of gain source and
visualization of case representations.

1 Introduction

As an important component of legal intelligence in
civil law systems, legal judgment prediction (LJP)
has received a lot of attention and research in recent
years (Chalkidis et al., 2019; Zhong et al., 2020).
Given a case fact description, LJP usually includes
three sub-tasks, i.e., law article prediction, charge
prediction and terms of penalty prediction for this
case (Xiao et al., 2018), and an example of LJP is
shown on the left side of Figure 1. As an auxiliary
tool to serve legal practitioners and people without
professional knowledge in law, a more accurate
method for LJP is necessary.

The existing legal judgment prediction methods
mainly include two lines of single-task modeling
and multi-task modeling. The former usually fo-
cuses on targeted modeling of a certain sub-task,
such as introducing some more advanced network
architectures (Chen et al., 2019a; Le et al., 2020) or

*Co-corresponding authors

more sources of information (Luo et al., 2017; Hu
et al., 2018; Chen et al., 2019b). The latter takes
multiple sub-tasks as a whole and uses a multi-task
learning (MTL) framework for unified modeling.
The most representative methods in this line aim
to design different decoding structures, including
MTL (Zhong et al., 2018) that ignores the inter-task
dependency, TopJudge (Zhong et al., 2018) that
considers unidirectional topological dependency
among sub-tasks, and MPBFN (Yang et al., 2019)
that considers bidirectional topological dependency.
In this paper, we focus on the line of multi-task
learning because it is more aligned with practical
applications.

Although the existing methods have shown
promising results, as shown on the left side of Fig-
ure 1, most of them only consider the fact descrip-
tion of one single case as input when modeling.
This form of modeling ignores the full utilization
of the beneficial information contained in the data,
such as the case relation and frequency informa-
tion that might provide constraints for modeling.
We believe this may have an adverse effect on the
model and cause a performance bottleneck, such
as cases with low-frequency law articles or charges
suffer from insufficient training. As an example,
we show in Figure 2 the accuracy of MPBFN on
CAIL-small (Xiao et al., 2018) for law articles and
charges of different frequencies. We can find that
the accuracy drops significantly with decreasing
frequency.

To more effectively utilize the beneficial infor-
mation contained in the data, in this paper, we
propose a new perspective that introduces some
contrastive case relations to construct case triples
as the input of the model. Specifically, we sample
some similar and dissimilar cases for a current case
through some carefully designed contrasting case
relations, where these auxiliary cases will be bene-
ficial to improve the performance of the model. An
example of this new form of modeling is shown on
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Fact description

On the afternoon of December
22, 2012, the defendant XXX
took an Apple 4S worth 4,256
Chinese yuan (CNY) from the
owner XXX and did not return
it after using it to make a call.

Charge:  
The crime of theft 

Law article: 
No. 264 

Terms of penalty: 
5 months

encode

Case
representation

decode

On October 3, 2015, the defendant XXX took
away the mobile phone worth 2,253 Chinese
yuan (CNY) that was placed on the counter
by the owner XXX when no one was there.

encode

Case
representation

decode

Similar case

Dissimilar case
On August 17, 2014, the defendant XXX
threatened the victim XXX with a knife, and
fled the scene after stealing his wallet and an
Apple 4S worth 4,256 Chinese yuan (CNY).

Fact description
On the afternoon of December 22, 2012,
the defendant XXX took an Apple 4S worth
4,256 Chinese yuan (CNY) from the owner
XXX and did not return it after using it to
make a call.

Charge:  
The crime of theft 

Law article: 
No. 264 

Terms of penalty: 
5 months

Figure 1: On the left is an illustrative example of legal judgment prediction (LJP), including a case fact description
and the corresponding three prediction sub-tasks. On the right is an example of the proposed new form of modeling,
where some contrastive case relations are introduced to construct case triples as input. Note that in this paper
we focus on prediction of law articles and charges, since that of terms of penalty is known of high difficulty and
variance.
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Figure 2: The prediction accuracy of MPBFN on CAIL-
small for each law article and charge. Note that the IDs
on the horizontal axis have been sorted in a descending
order of frequency.

the right side of Figure 1, and the importance of
different phrases may be more accurately identified
through this case triple.

We then propose a corresponding judgment
prediction framework with case triple modeling
(CTM) to mine information from the constructed
case triples for improving the model. Specifically,
our CTM adds three customized modules to the
traditional encoder and decoder: 1) a case triple
module samples two similar cases and one dissimi-
lar case for an input case based on case labels and
frequency information to form two case triples; 2)
a relational attention module imposes a relational
constraint on the obtained case triples to refine the
encoding process; and 3) a category decoder mod-
ule acts as a switch to select a corresponding decod-
ing branch for a high-frequency or low-frequency
case to further refine the decoding process.

It is intuitive that our CTM does not depend on
a specific encoder or decoder. This means that
our CTM can be easily integrated with some ex-
isting legal judgment prediction methods, and we
will demonstrate its good compatibility in the ex-
periments by combining our CTM with different

encoder and decoder structures. In addition to this,
we conduct other empirical studies on two public
datasets to verify the effectiveness of our CTM,
including overall performance evaluation, ablation
studies, fine-grained performance evaluation and
case representation analysis.

2 Related Work

In this section, we briefly review some related
works on two research topics, including legal judg-
ment prediction and case relations modeling.
Legal Judgment Prediction. Legal judgment pre-
diction can be mainly summarized into two re-
search lines. The first line focuses on the targeted
modeling of a specific sub-task from the perspec-
tive of network architectures (Chen et al., 2019a;
He et al., 2019; Le et al., 2020), available infor-
mation sources (Luo et al., 2017; Hu et al., 2018;
Chen et al., 2019b), and interpretability of the
models (Jiang et al., 2018). The second line con-
siders multiple sub-tasks as a whole and uses a
multi-task learning framework for case modeling.
The most representative methods are MTL (Zhong
et al., 2018), TopJudge (Zhong et al., 2018) and
MPBFN (Yang et al., 2019), in which three dif-
ferent decoding structures are considered respec-
tively. Some recent works have designed some
more sophisticated architectures based on them, es-
pecially in combination with some graph learning
techniques and large-scale pre-trained models (Xu
et al., 2020; Chen et al., 2020; Dong and Niu, 2021;
Yue et al., 2021). Note that since the terms of
penalty prediction is usually of higher difficulty
and variance than the other two sub-tasks, we fo-
cus on law article prediction and charge prediction
similar to (Bao et al., 2019; Chen et al., 2021).
Case Relations Modeling. The idea of case rela-
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Figure 3: The architecture of a judgment prediction framework with our case triple modeling (CTM).

tions modeling is mainly applied to similar case
matching (SCM) tasks in some recent studies on
legal intelligence (Xiao et al., 2019; Peng et al.,
2020; Hong et al., 2020). Unlike legal judgment
prediction, this task is given a set of manually la-
beled case triples as training samples, where each
triple contains two similar cases and one dissimi-
lar case, and the goal is to learn a model that can
identify those two similar ones. This task can be
further relaxed to find some similar cases for a cur-
rent case (Tang and Clematide, 2021; Ostendorff
et al., 2021), which is important in the common law
system. To the best of our knowledge, our work is
the first to introduce a case triple structure to legal
judgment prediction based on some case relations.

3 The Proposed Framework

3.1 Architecture

The judgment prediction framework with case
triple modeling, or CTM for short, is shown in Fig-
ure 3. Note that similar to most works, we consider
each case with only one law article label and one
charge label for simplicity. Given a current case
f = [s; yl, yc, ya], where s = {s1, s2, . . . , sn} rep-
resents the fact description composed of sentences,
yl is the law article label, yc is the charge label, and
ya ∈ {0, 1} is a category label indicating whether
the case is a high-frequency case or not. Note that
a more specific description of high-frequency cases
can be found in the case triple module in Sec 3.2.
The case triple module samples two similar cases
and one dissimilar case to construct the case triple
(f, fsim, fdis) based on some contrastive case re-
lations. Then, a constraint is imposed on the en-
coded representations corresponding to the case
triple (i.e., vf , vfsim and vfdis) in the relational

attention module to refine the encoding process.
In the category decoder module, we first impose

a classification constraint on the category label ya
to inform the model to which category the current
encoded representation belongs, and then switch
the decoder of the corresponding category branch
to refine the decoding process. Finally, the model
obtains the predicted label of each sub-task and
compares it with the respective true label. The final
optimization objective function of our CTM can be
expressed as follows,

min
θ
LCTM = LM + LR + LC + λ∥θ∥, (1)

where LM , LR, and LC denote the prediction loss
for multi-task learning, the constraint loss for the
relational attention module and the loss for the cat-
egory decoder module, respectively, and λ and ∥θ∥
are the tradeoff parameter and the regularization
terms.

3.2 Training

In this section, we describe each module in detail
based on the training process.

The Case Triple Module. We propose a concept
called contrastive case relation that considers both
labels and frequency information for constructing
some case triples. Specifically, we use a threshold
ϕ to pre-divide the labels of the law articles (and
charges) into two sets of low-frequency Al (or Ac)
and high-frequency Bl (or Bc), where Al (or Ac)
contains the labels with the lowest ϕ frequency and
Bl (or Bc) contains the remaining labels. For a case
f , a similar case f lsim (or f csim) on the law articles
(or charges) is sampled from the candidate cases
with the same law article (or charges) label. Then, a
dissimilar case fdis on the charges is sampled from
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the candidate cases with different charge labels and
the corresponding labels do not belong to Ac. The
additional constraint that the labels do not belong
to Ac help cases with low-frequency charge labels
to be more fully trained based on a large number
of opposite references. Since the law articles can
be regarded as the leaf nodes of charges in civil
law systems, i.e., different charge labels must have
different law article labels, we regard this dissimilar
case on the charges as a shared dissimilar case, i.e.,
it is also regarded as a dissimilar case on the law
article. This can reduce the number of cases that
need to be encoded in a subsequent fact description
encoder module to reduce the size of the model.
Finally, we can obtain two types of case triples(
f, f lsim, fdis

)
and (f, f csim, fdis) for f .

Considering that when f is a high-frequency
case, i.e., yl ∈ Bl or yc ∈ Bc, the above two
case triples can enhance the distinction between the
high-frequency cases. When f is a low-frequency
case, i.e., yl ∈ Al or yc ∈ Ac, these triples can
improve its insufficient training and enhance the
distinction between it and the high-frequency cases
by introducing a large number of high-frequency
cases as opposite references. For ease of under-
standing, we give an example of the sampling pro-
cess in Figure 4.

Sampling

Sampling

Sampling

Figure 4: The schematic diagram of a sampling process,
where the law article and charge labels of a case f are
assumed to be yfl and yfc , respectively.

The Fact Description Encoder Module. After
constructing the case triples, we need to encode
the fact description of each case. Next, we use
hierarchical Bi-GRU (Yang et al., 2016) as an ex-
ample encoder1, which has also been adopted in
some recent works (Long et al., 2019; Xu et al.,
2020; Ma et al., 2021). Specifically, let each
sentence in the fact description be represented as

1Note that the fact description encoder can be any existing
encoder, and in the experiment section, we use a variety of
encoders to verify the compatibility of CTM.

si = [wi,1, wi,2, . . . , wi,m], where wi,j represents
the j-th word of sentence si, and m denotes the
number of words, a word-level Bi-GRU will act on
each sentence and output a corresponding represen-
tation (Yang et al., 2016),

hi,j = [
−−−→
GRU(wi,j),

←−−−
GRU(wi,j)] ∈ Rdw ,

αi,j =
exp(tanh(Wwhi,j + bw)

Tuw)∑
j exp(tanh(Wwhi,j + bw)Tuw)

,

vsi =
m∑

j=1

αi,jhi,j ,

where wi,j represents an embedding vector of
word wi,j , Ww ∈ Rdw×dw is a weight matrix,
bw ∈ Rdw is a bias vector and uw ∈ Rdw is a
trainable context vector. Then, a sentence-level
Bi-GRU will act on the representation sequence
of the sentences, i.e., [vs1 ,vs2 , . . . ,vsn ], to obtain
the encoded representation of case f (Yang et al.,
2016),

hi = [
−−−→
GRU(vsi),

←−−−
GRU(vsi)] ∈ Rds ,

αi =
exp(tanh(Wshi + bs)

Tus)∑
i exp(tanh(Wshi + bs)Tus)

,

vf =
n∑

i=1

αihi,

where the meaning of Ws,bs and us are similar
to that of Ww,bw and uw, respectively. Similarly,
we can also obtain the encoded representations of
other cases in the case triples, i.e., vlfsim , vcfsim and
vfdis .

The Relational Attention Module. To refine
the encoding process by extracting beneficial case
relation information from case triples, we first cal-
culate the attention vectors between case f and its
similar and dissimilar cases in the representation
space, as well as the anchor attention to itself,

rl = W3
l (σ(W

1
l vf + (W2

l vf + b2
l ))),

rlsim = W3
l (σ(W

1
l vf + (W2

l v
l
fsim

+ b2
l ))),

rldis = W3
l (σ(W

1
l vf + (W2

l vfdis + b2
l ))),

rc = W3
c(σ(W

1
cvf + (W2

cvf + b2
c))),

rcsim = W3
c(σ(W

1
cvf + (W2

cv
c
fsim

+ b2
c))),

rcdis = W3
c(σ(W

1
cvf + (W2

cvfdis + b2
c))),

where W1
l , W2

l , W3
l and b2

l are weight matrices
and bias vector for the first triple, the parameters
for the second triple are similarly defined, and σ(·)
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is the sigmoid activation function. Inspired by su-
pervised contrastive learning (Schroff et al., 2015;
Patro and Namboodiri, 2018), we impose a rela-
tional constraint on the two triples as an additional
optimization objective,

LR = max(0, βl + ∥rl − rlsim∥22 − ∥rl − rldis∥22)
+max(0, βc + ∥rc − rcsim∥22 − ∥rc − rcdis∥22),

(2)
where βl and βc are weight parameters. An intu-
itive explanation for the relational attention module
is that in the attention vector between two cases, a
higher attention value means that this dimension
plays a greater role in the similarity of the two cases.
By imposing the relational constraints in Eq.(2), we
can further reduce noise from the attention vector
between the current case and the corresponding
similar case, which contributes to the similarity
between the current case and dissimilar case.

The Category Decoder Module. To further
avoid the influence between the high-frequency and
the low-frequency cases, we set up a decoder for
each of them to refine the decoding process. Since
it is difficult for the model to know the category in-
formation of the current encoded representation in
practice, we first impose a classification constraint
to encourage the model to identify the category
information more accurately,

LC = L (ŷa, ya) , (3)

where ŷa = softmax(W2
ca ∗ relu(W1

cavf ) +
b2
ca), W

1
ca, W2

ca and b2
ca are weight matrices and

bias vector. After obtaining the category label
of the current case, we select the corresponding
branch to decode the encoded representation. Note
that the decoders on both branches have the same
structure. Next, we use a unidirectional topological
dependency structure similar to TopJudge (Zhong
et al., 2018) as an example decoder2. The decoding
process can be described as follows,

[
hl
cl

]
= LSTMCell

(
vf ,

[
hl
cl

])
,

[
hc
cc

]
=

(
Wc,l

[
hl
cl

])
+ bc,l,

[
hc
cc

]
= LSTMCell

(
vf ,

[
hc
cc

])
,

where hl and cl are the initial hidden state and
memory cell of the law article prediction task, Wc,l

2Note that in the experiment section, we use decoders
with other dependencies to verify the compatibility of CTM.

and bc,l are the transformation matrix and bias
vector that convert the task to charge prediction,
and hl and hc are the decoded representations for
these two tasks.

The Judgment Prediction Module. After ob-
taining the decoded representation of the current
case, we use a fully connected layer to obtain the
prediction of two different sub-tasks and the loss
of multi-task prediction,

ŷl = softmax(Wl
phl + blp),

ŷc = softmax(Wc
phc + bcp),

LM = L(ŷl, yl) + L(ŷc, yc),
(4)

where Wl
p, b

l
p and Wc

p, b
c
p are the parameters of

the respective prediction tasks.

4 Experiments

In this section, we first introduce the experimental
setup, and then conduct extensive empirical studies
and show the effectiveness of our CTM.

4.1 Experiment Setup
Datasets. We use the two most common bench-
mark datasets in our experiments, i.e., CAIL-small
and CAIL-big (Xiao et al., 2018). Following the
settings of most previous works, we remove the
cases with fewer than 10 meaningful words, and do
not consider cases associated with multiple law ar-
ticles or charges (Yang et al., 2019; Xu et al., 2020;
Yue et al., 2021). Note that for a more compre-
hensive evaluation, we do not additionally remove
the cases that contain law articles or charges with
a frequency of lower than 100 as they do. Also,
since CAIL-big does not provide a validation set,
we divide the original training set for training and
verification at a ratio of 9:1. The statistics of the
datasets are shown in Table 1.

Table 1: Statistics of the datasets, i.e., CAIL-small and
CAIL-big, used in the experiments.

CAIL-small CAIL-big

Training Cases 105,059 1,432,826
Validation Cases 14,266 159,372

Test Cases 27,953 186,523
Law Articles 177 181

Charges 191 193

Implementation Details. The baselines consid-
ered in the experiments include three existing rep-
resentative methods, i.e., MTL (Zhong et al., 2018),
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TopJudge (Zhong et al., 2018), and MPBFN (Yang
et al., 2019), and two recent state-of-the-art meth-
ods, i.e., LADAN (Xu et al., 2020) and Neur-
Judge (Yue et al., 2021), where LADAN can be in-
tegrated with the first three methods to obtain three
variants. All baselines are implemented on Tensor-
Flow 1.153, Keras 2.3.14 or PyTorch 1.9.15 by refer-
ring to the source code and parameter settings pro-
vided in (Xu et al., 2020; Yue et al., 2021)6,7. We
use four metrics for performance evaluation, includ-
ing accuracy (Acc.), macro-recall (MR), macro-
precision (MP) and macro-F1 (F1).

After some preliminary experiments, we fix the
values of some additional parameters of CTM to
reduce the search space, i.e., ϕ, βl and βc are set to
60%, 0.5 and 0.3, respectively. For all the methods,
we set the maximum number of iterations to 20,
and search the best batch size from {32, 64, 128}
by evaluating the accuracy of the law article predic-
tion on the validation set. We also adopt an early
stopping mechanism with a patience of 5 to avoid
overfitting to the training set. By setting a random
seed from 0 to 7, we run each method for eight
times on Intel(R) Xeon(R) E5-2698 with 8 Tesla
V100 GPU and report their average results8.

4.2 Overall Results

If not specified, we use hierarchical Bi-GRU as the
default encoder for reporting results, and constrain
the fact description of a case to contain up to 15
sentences, where each sentence contains up to 100
words (Yang et al., 2019; Xu et al., 2020). The com-
parison results between our CTM and the baselines
are shown in Table 2. We can see that our CTM
consistently outperforms all the baselines on all
the metrics across the two datasets of CAIL-small
and CAIL-big. Furthermore, by comparing the re-
sults of F1, we find that considering more complex
decoding dependency structure (i.e., MPBFN) is
more prone to misclassification of low-frequency
cases, and LADAN and NeurJudge alleviate this
problem to some extent by refining the encoding
process. Unlike them, our CTM can significantly
further improve the model performance by intro-
ducing the case triples and customized modules.

3https://www.tensorflow.org/
4https://keras.io/
5https://pytorch.org/
6https://github.com/prometheusXN/LADAN
7https://github.com/yuelinan/NeurJudge
8Note that the source codes are available at https://

github.com/dgliu/COLING22_CTM

4.3 Compatibility Analysis

As described in Sec. 3, since our CTM does not
depend on a specific encoder and decoder, it can
be easily integrated with existing decision pre-
diction methods. We first study the compatibil-
ity of our CTM under different encoder choices.
In addition to the default hierarchical Bi-GRU,
we consider two common encoder choices, i.e.,
TextCNN (Kim, 2014) and Lawformer (Xiao et al.,
2021). For TextCNN, we set the size of each filter
to 64 and the filter widths to (2, 3, 4, 5). Since Law-
former is a pre-trained language model with Long-
former (Beltagy et al., 2020) for legal long docu-
ments, we directly use their provided model9 for
fine-tuning. We compare our CTM variants with
different encoders against their respective baselines,
i.e., adding the same decoder as our CTM for dif-
ferent encoders. We report the results on our CAIL-
small in Table 3, from which we can see that our
CTM brings significant improvement in all cases.

Next, we explore the compatibility of our CTM
on different decoding structures. In addition to
the default unidirectional topological dependency
similar to TopJudge, we consider two decoding
structures, i.e., ignoring the intra-task dependency
similar to MTL and the bidirectional topological
dependency similar to MPBFN. We compare our
CTM variants with different decoding structures
against their respective baselines, i.e., prepending
the same encoder as our CTM for different de-
coding structures. The results on CAIL-small are
shown in Table 4, from which we can see that our
CTM has a significant advantage in all cases.

4.4 Ablation Studies

Moreover, we conduct ablation studies of our CTM
to analyze the role played by each proposed new
module. Specifically, we first consider the removal
of the category decoder module (denoted as ‘w/o
CD’), then consider using only the law article-
based triple in the case triple module and relational
attention module (denoted as ‘w/o CD+DS’), and
finally remove these two modules (denoted as ‘w/o
CD+CT+RA’). The results are shown in Table 5.
We have the following observation: 1) By compar-
ing ‘w/o CD+DS’ and ‘w/o CD+CT+RA’, the intro-
duction of case triples is beneficial to the improve-
ment of the model performance. 2) By comparing
‘w/o CD’ and w/o CD+DS’, multi-case triples are
more efficient than single-case triples. 3) By com-

9https://huggingface.co/xcjthu/Lawformer
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Table 2: Comparison results between our CTM and the baselines, where the significantly best results (p ≤ 0.05 via
two sample t-test) are marked in bold. Note that the accuracy of law article prediction is the main evaluation metric.

Datasets CAIL-small CAIL-big

Tasks Law Articles (%) Charges (%) Law Articles (%) Charges (%)

Metrics Acc. MR MP F1 Acc. MR MP F1 Acc. MR MP F1 Acc. MR MP F1

MTL 77.06 60.76 63.21 59.60 81.72 68.31 71.54 67.57 95.68 61.79 73.47 64.92 95.53 68.53 80.97 71.79
TopJudge 77.35 60.73 62.94 59.63 81.54 68.09 70.22 67.27 95.73 61.78 73.84 64.99 95.53 67.55 80.06 70.90
MPBFN 72.77 50.55 53.25 48.74 75.41 56.15 59.28 55.15 94.13 48.83 60.99 51.26 93.60 50.06 64.01 52.96

MTL-LADAN 77.95 62.62 64.91 61.25 82.84 71.01 73.74 70.24 95.98 64.41 76.01 67.63 95.86 71.15 82.78 74.57
TopJudge-LADAN 78.45 63.65 65.95 62.39 83.19 71.88 74.00 71.06 96.08 64.91 77.07 68.27 95.90 70.81 82.42 74.08
MPBFN-LADAN 75.49 56.26 59.54 55.04 78.75 63.25 66.26 62.46 95.16 54.44 66.31 56.93 94.64 56.09 70.93 59.18
NeurJudge 78.27 62.20 66.34 61.74 81.01 64.93 69.55 65.26 95.87 65.04 76.65 68.12 94.86 64.88 79.58 68.66

CTM 81.10 69.42 68.37 66.59 87.03 77.85 76.61 75.64 96.57 74.08 77.55 74.46 96.41 79.81 83.23 80.34

Table 3: Comparison results of our CTM variants with
different encoders and their respective baselines.

Tasks Law Articles (%) Charges (%)

Metrics Acc. MR MP F1 Acc. MR MP F1

TextCNN 75.97 54.30 60.84 53.52 80.05 60.72 65.22 60.54
Text-CTM 80.37 67.08 65.53 63.50 85.78 73.97 73.03 70.80

BiGRU 77.35 60.73 62.94 59.63 81.54 68.09 70.22 67.27
BiGRU-CTM 81.10 69.42 68.37 66.59 87.03 77.85 76.61 75.64

Lawformer 81.94 73.77 72.68 71.46 87.24 81.58 81.26 79.80
Law-CTM 84.12 74.63 76.56 73.83 89.82 81.79 83.40 81.05

Table 4: Comparison results of our CTM variants with
different decoding structures and their respective base-
lines.

Tasks Law Articles (%) Charges (%)

Metrics Acc. MR MP F1 Acc. MR MP F1

MTL 77.06 60.76 63.21 59.60 81.72 68.31 71.54 67.57
MTL-CTM 80.85 69.76 68.22 66.72 86.94 78.23 77.18 75.83

TopJudge 77.35 60.73 62.94 59.63 81.54 68.09 70.22 67.27
TopJudge-CTM 81.10 69.42 68.37 66.59 87.03 77.85 76.61 75.64

MPBFN 72.77 50.55 53.25 48.74 75.41 56.15 59.28 55.15
MPBFN-CTM 78.72 62.36 61.71 59.51 82.86 70.74 70.33 68.42

Table 5: Results of the ablation studies on CAIL-small.

Tasks Law Articles (%) Charges (%)

Metrics Acc. MR MP F1 Acc. MR MP F1

CTM 81.10 69.42 68.37 66.59 87.03 77.85 76.61 75.64

w/o CD 78.11 63.16 65.12 61.87 82.68 70.91 72.69 69.93

w/o CD+DS 77.77 62.90 64.59 61.66 82.60 70.66 72.63 69.90

w/o CD+CT+RA 77.35 60.73 62.94 59.63 81.54 68.09 70.22 67.27

Table 6: Average accuracies of our CTM variants and
their respective baselines across different frequency
groups.

Tasks Law Articles (%) Charges (%)

Groups H1 H2 L1 L2 H1 H2 L1 L2

MTL 89.30 81.06 53.73 10.86 88.53 83.60 68.75 44.86
MTL-CTM 89.89 84.73 68.50 21.83 89.74 85.28 83.39 59.92

TopJudge 89.01 78.60 43.04 6.26 89.16 80.47 60.13 27.63
TopJudge-CTM 90.49 84.03 69.96 22.50 89.65 84.67 84.03 63.94

MPBFN 85.94 76.78 40.82 3.64 86.34 78.46 58.08 24.62
MPBFN-CTM 87.78 80.13 60.74 12.87 86.17 79.52 75.71 52.94

paring CTM and ‘w/o CD’, the introduction of the
category decoder module results in greater gains.
This may be due to the fact that refining the en-
coding process alone is still limited by the biased
decoder training, and it is more beneficial to the
model by refining the encoding and decoding pro-
cesses jointly. Overall, the three customized mod-
ules we propose are necessary and can cooperate
to achieve significant performance improvement.

4.5 Analysis of Gain Sources
In order to have a deeper understanding of the
source of the performance gain, we compare and
analyze the accuracy of the three variants of our
CTM and the baselines on law articles and charges
with different frequencies. The results of this fine-
grained evaluation on CAIL-small are shown in
Figure 5, where the IDs on the horizontal axis are
sorted in a descending order of frequency. In Ta-
ble 6, we also report the average accuracies of the
CTM variants and their respective baselines across
four different frequency groups, i.e., the top 20%
(H1), 20% to 40% (H2), 40% to 70% (L1) and the
rest (L2) of the label frequencies. Combining the
above results, we can find that the improvement
of our CTM increases significantly with decreas-
ing frequency, which verifies the effectiveness of
the designed case triples, especially for the low-
frequency cases.

4.6 Visualization of Case Representations
Finally, we analyze the source of performance gain
from the perspective of model training, i.e., com-
pare the case representations generated by the base-
lines and its improved version via our CTM. We
take MPBFN and MPBFN-CTM as an example due
to space limitation. Specifically, in the case sam-
pling module, we have obtained the high-frequency
and low-frequency subsets of the law articles and
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Figure 5: The prediction accuracy of our CTM variants and their respective baselines on law articles and charges with
different frequencies from CAIL-small. Note that the IDs on the horizontal axis have been sorted in a descending
order of frequency.
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Figure 6: Visualization of the representations of some randomly sampled cases with high- and low-frequency
law articles (a) and charges (b) on CAIL-small by MPBFN and MPBFN-CTM. The dots in (c) and (d) are fine-
grained visualization of the representations obtained by MPBFN-CTM on each law article and charge, where the
representations with the same law article or charge are clearly grouped.
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charges. Then, we randomly sample 5 cases for
each high-frequency (or low-frequency) law article
and charge to construct their respective head (or
tail) case sets. We respectively visualize the case
representations generated by MPBFN and MPBFN-
CTM on different sets.

The results are shown in Figure 6(a) and 6(b).
We can find that the case representations generated
by MPBFN have confusion on the head and tail
sets (i.e., the green dots and red dots), and the case
representations generated by MPBFN-CTM can
cluster the head and tail sets separately and dis-
tinguish them effectively (i.e., the purple dots and
blue dots). This clearly shows that the introduc-
tion of the case relations helps guide the encoder
to learn the inter-class discrimination between the
high-frequency and the low-frequency cases. We
further present fine-grained visualization of the rep-
resentations obtained by our CTM on each law
article and each charge in Figure 6(c) and 6(d), re-
spectively. As expected, we can see that most of
the same law articles or charges, i.e., with the same
colors, are clearly grouped.

5 Conclusions and Future Work

In this paper, we introduce some contrastive case
relations to construct case triples as a new form of
modeling, and propose a general judgment predic-
tion framework with case triple modeling (CTM).
Our CTM includes three new modules, i.e., a case
sampling module for constructing case triples, a
relational attention module for extracting informa-
tion from case triples to refine the encoding pro-
cess, and a category decoder module for refining
the decoding process. Finally, we conduct exten-
sive experiments on two public datasets and find
that our CTM can effectively improve the perfor-
mance of legal judgment prediction, especially for
cases with low-frequency law articles or charges,
and is also of good compatibility.

For future works, we plan to extend our CTM
to more scenarios such as cases with multiple law
articles or charges by further improving the corre-
sponding case triple module and relational attention
module. We are also interested in generalizing our
CTM for prediction of the terms of penalty.
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Abstract
Query-focused summaries of foreign-language,
retrieved documents can help a user under-
stand whether a document is actually relevant
to the query term. A standard approach to this
problem is to first translate the source docu-
ments and then perform extractive summariza-
tion to find relevant snippets. However, in
a cross-lingual setting, the query term does
not necessarily appear in the translations of
relevant documents. In this work, we show
that constrained machine translation and con-
strained post-editing can improve human rel-
evance judgments by including a query term
in a summary when its translation appears in
the source document. We also present several
strategies for selecting only certain documents
for regeneration which yield further improve-
ments.

1 Introduction

Query-focused summarization creates an overview
of a document which reflects how that document
may be relevant to a provided query; such a task
is useful for any search engine, such as for news
articles or academic papers, where a user may want
to search documents by a given query. In this paper,
we further narrow the use case to one in which the
user seeks a document containing a single specific
query term (which may be a multi-word expres-
sion). For example, if the query is “dossier”, the
user is interested in finding information about a
specific type of collection of files, as might exist
in an intelligence investigation. A summary in the
user’s language can help them decide if a foreign
language document is relevant.

Our work focuses on query-focused extractive
summarization in a cross-lingual setting, where the

∗Work performed while at Columbia University
†Work performed while at the University of Maryland
‡Work performed while at the University of Edinburgh

summaries are generated in a language (here, En-
glish) different from the source language of the
documents (here, Farsi, Kazakh, and Georgian).
Because large summarization corpora do not ex-
ist in these languages, we follow a translate-then-
summarize approach (Wan et al., 2010) in which
we first apply machine translation (MT) to translate
documents into English, a language with abundant
summarization corpora, and then summarize the
translated document; however, this introduces ad-
ditional concerns. Translating a document once,
before a query term is known, can lead to word-
ing choices that are sub-optimal for any particular
query term (e.g., if the Kazakh for “dossier” were
translated as “file”, and it may be unclear whether
the specific meaning of dossier occurred in the
source as opposed to other meanings of “file”). To
address this, we present a constrained regeneration
framework where we translate a document, sum-
marize it with an extractive summarizer that uses
evidence from the source language, and select a
sentence to be regenerated under the constraint to
include the requested query term if appropriate.

Our work is implemented within a pipeline that
includes cross-lingual information retrieval (CLIR)
followed by summarization of retrieved documents;
in the latter step, a summary is generated for a doc-
ument given a specific query term. Based on the
intuition that seeing the query term in the summary
is a strong signal of relevance to end users, we first
present work on three types of constrained regener-
ation systems: Marian-C, a constrained version of
Marian (Junczys-Dowmunt et al., 2018); EDITOR
(Xu and Carpuat, 2021); and constrained automatic
post-editing (Wan et al., 2020, cAPE). In initial
experimentation, however, we found that these sys-
tems often insert the requested query term even in
cases when the foreign document did not contain a
suitable translation. To address this, we further in-
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troduce document selection methods to determine
when to apply regeneration and thus avoid inserting
query terms inappropriately. We perform a human
evaluation and show that the combined use of regen-
eration and document selection improve humans’
ability to accurately distinguish relevant and irrel-
evant non-English documents by their generated
English summaries.

Our approach combines complementary
strengths of the three primary modules needed for
cross-lingual query-focused summarization: CLIR
excels at discovering cross-lingual mappings at
the lexical level, neural MT produces complete
sentences that are often very fluent, but sometimes
at the expense of adequacy and term preservation,
and summarization helps users assess relevance
efficiently. The novelty of our approach lies in a
tight integration of these components, exploiting
CLIR to detect relevance, and combining summa-
rization and selective regeneration of summary
sentences to produce a human-useful summary.

Our contributions are as follows:

1. An approach to cross-lingual query-focused
summarization using constrained regeneration
to make it easier for humans to detect relevant
documents.

2. A method of document selection enabling se-
lective application of constrained regeneration
to avoid over-generation of the query term.

3. Human evaluation in three different languages
demonstrating that constrained MT performs
better than constrained automatic post-editing
for low-resource settings and that we can im-
prove the end user’s ability to identify relevant
documents using our approach.

2 Background

2.1 Problem Definition
In this work, we operate in the setting of cross-
lingual information retrieval and summarization.
Our work focuses primarily on the summarization
component of this problem, where we are given an
English document D, composed of multiple sen-
tences s1, s2, ..., sn, and a search query q (which
is a text string) and asked to generate a summary
of D that condenses the information relevant to q.
We apply extractive summarization, which means
that our output summary S will be a subset of the
sentences in D. In our setting, the English docu-
ment D is actually a translation of a document F
in another language, and the document-query pair

(⟨D,F ⟩, q) has been generated automatically by a
CLIR system which was given q and a corpus (of
length m) of source-language documents and their
English translations U = {Fi, Di}0<i≤m. This
introduces some uncertainty as to whether D is al-
ways truly relevant to q. Moreover, the retrieval
system uses a range of methods to deal with the mis-
match between the q, D and F vocabulary, such as
embeddings, n-best translations, query translation,
and query expansion, and the retrieval thus does
not guarantee that translations of the query terms
occur in D even for the highly relevant documents.

This setup introduces our two main challenges.
First, the initial translation of F into D was done
without any query in mind, so it may contain syn-
onyms or paraphrases of q, or it may have been
incorrectly translated despite being relevant. Sec-
ond, the generated summaries cannot always as-
sume ⟨D,F ⟩ is indeed relevant to q. Our goal is to
generate summaries that contain the query q if and
only if ⟨D,F ⟩ is relevant to q without rerunning a
large pipeline of CLIR and MT components.

2.2 Cross-Lingual Summarization Pipeline

Our system to translate from non-English docu-
ments and English query terms into English sum-
maries is made up of several components developed
by participants in the MATERIAL program1; its
architecture can be seen in Figure 1. Documents
are first translated from the source language into
English using two different MT systems, Marian
(Junczys-Dowmunt et al., 2018); and Google’s mul-
tilingual neural MT (Google NMT) (Johnson et al.,
2017).

The CLIR system, which retrieves relevant doc-
uments for a given query term and can work in
tandem with MT, consists of a combination of
6 retrieval systems, including (1) statistical rank-
ing (such as language models and BM25 (Robert-
son et al., 1995)), (2) neural ranking (Chen et al.,
2021b), (3) re-ranking of both types, (4) stem-
ming, (5) query expansion (using blind relevance
feedback), and (6) document expansion (using
DeepCT (Dai and Callan, 2019)). These systems
were selected to perform optimally on each lan-
guage and thus they differ for different languages.
CLIR provides the ranking of the documents by rel-
evance to the query, and also the cutoff point above
which the documents should be relevant. This cut-

1https://www.iarpa.gov/
research-programs/material
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Figure 1: The architecture of our system pipeline as described in subsection 2.2.

System Marian-C Marian EDITOR-C EDITOR

fa→en 33.1 31.3 26.3 24.8
kk→en 30.2 28.0 20.5 20.5
ka→en 17.6 15.6 25.0 23.4

Table 1: BLEU scores of our constrained and uncon-
strained MT systems, computed using SacreBLEU (ver-
sion string BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.5.1)

off uses an average of three estimates – the best
ranked cutoff, sum-to-one cutoff and query specific
threshold (Zhang et al., 2020) – and it is tuned to
achieve an optimal F1 score.

Finally, our summarizer takes a given English
document D and English query term q and gener-
ates an extractive summary S as relevant as possi-
ble to q using sentences from D. The summarizer
contains several rankers which each rank all the
sentences si of D from most to least relevant; these
rankers include

1. a count of exact matches to q,
2. a count of stemmed matches to q using Mor-

phAGram (Eskander et al., 2020),
3. mean cosine distance between the translated

English sentence si and q using the 6B and
42B tokens GloVe embeddings (Pennington
et al., 2014),

4. mean cosine distance between the source-
language sentence and the English query
term q using Probabilistic Structured Queries
(PSQ) (Darwish and Oard, 2003),

5. mean cosine distance between the source-
language sentence and the translated query
term using FastText embeddings (Bojanowski
et al., 2016) trained for the source language,

6. cosine distance between the translated English
sentence si and English query term q using
pretrained contextual Sentence-BERT embed-
dings (Reimers and Gurevych, 2019) based
on RoBERTa-large (Liu et al., 2019), and

7. a cross-language sentence selector (Chen
et al., 2021a, SECLR) that ranks directly us-
ing the sentences in the source language and
the query term q.

We combine these rankings using the Borda count
algorithm, a standard algorithm for unsupervised
combination of rankers (Lillis, 2020; Aslam and
Montague, 2001), to obtain a final relevance rank-
ing for all the sentences in the document. We score
the output of each MT system separately on each
sentence to select the most appropriate translation
for a given sentence, and then select the most rele-
vant sentences to add to the summary until a fixed-
length word budget is exhausted.

3 Our Models

Our approach to improve relevance judgments of
summaries is based on (1) constrained regeneration
models that encourage the inclusion of query terms
in document translations, and (2) document and
sentence selection models that identify documents
where the inclusion of query terms is appropriate.

3.1 Constrained Regeneration

We experiment with three approaches that constrain
the system to use the query term in the generated
summaries: autoregressive MT (section 3.1.1), non-
autoregressive MT (section 3.1.2), and automated
post-editing (section 3.1.3). These approaches rep-
resent diverse state-of-the-art strategies to encour-
age rather than enforce the inclusion of query terms
in translations (i.e., the query terms are soft rather
than hard constraints). In this work, we experiment
with soft constraints over hard constraints because
of the intuition that soft constraints give our models
the freedom to choose more natural synonyms and
morphology as needed, and and based on empirical
evidence that soft constraints result in more flu-
ent and overall better translations (Xu and Carpuat,
2021).
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3.1.1 Autoregressive Constrained Machine
Translation: Marian-C

Marian-C is a constrained variant of the Marian
system (Junczys-Dowmunt et al., 2018) trained on
augmented synthetic data to encourage it to include
English query terms in the translated English sen-
tence.2 Following Dinu et al. (2019),3 we use a
data augmentation technique to train our model to
copy supplied query terms into its output. Aug-
mentation simply consists in concatenating a query
term to the source side of each training sample
(with |||, a token of three pipe characters, as a
delimiter). We create synthetic query terms for our
parallel text by extracting random spans of target
text of 1 to 3 words. We augment the data in this
way with 75% probability. For the remaining 25%,
we use the original training sample, to preserve the
model’s ability to translate when a query term is not
available. During inference, the query q is simply
appended to the source with the same delimiter.

3.1.2 Nonautoregressive Constrained
Machine Translation: EDITOR

EDITOR takes the source sentence x =
(x1, x2, ..., xL) (where, in our case, x = si) and
optionally a sequence of constraint terms C =
(c1, ..., cm) (here, C = q) as inputs to generate a
translation y that contains most of the constraint
terms (Xu and Carpuat, 2021). The output is gen-
erated by iteratively editing an input sequence us-
ing repositioning, deletion and insertion operations.
Constraints are seamlessly incorporated in decod-
ing as the initial sequence y0 = C to be refined.
They can thus be incorporated into the generated
translation, or deleted, as the model sees fit. This
process does not require custom training. An ED-
ITOR model trained on a standard MT task can
incorporate constraints in this way out of the box.

Table 1 shows that the resulting systems provide
a wide range of quality levels as measured intrin-
sically by BLEU (Papineni et al., 2002). Farsi-
English is evaluated on IWSLT 2012 and 2013
(Federico et al., 2012; Cettolo et al., 2013), Kazakh-
English on WMT 2019 (Barrault et al., 2019), and
Georgian-English on the MATERIAL ANALYSIS
data described in section 4. Despite using simi-
lar parallel training sets, Marian performs better
than EDITOR on Farsi (fa) and Kazakh (kk), while
EDITOR outperforms Marian on Georgian (ka), re-

2See Appendix A for training details.
3Different from Dinu et al. (2019), we do not use additional

input factors.

flecting independent system development processes
that leverage monolingual data differently. Never-
theless, this provides a wide variety of translations
that the summarization model can choose from.

3.1.3 Constrained Automatic Post-Editing
In contrast to MT systems that generate a new trans-
lation from scratch, constrained automatic post-
editing (cAPE) edits the initial translation by incor-
porating desired words and fixing other potential
errors. Following Wan et al. (2020), we use an
autoregressive multi-source transformer model for
this task. It takes as input the source sentence and
the generated translation and outputs the corrected
English sentence with the desired query term.

We generate synthetic post-editing triplets for
training as follows. We use OPUS and ParaCrawl
if available (section 4), resulting in 1.2M training
examples for Kazakh-English, and 11.2M for Farsi.
Each parallel sentence pair is augmented with an
MT output from the relevant MT system (Marian
and Google NMT). The original target plays the
role of reference even though it was not generated
by post-editing. We apply the same terminology
set creation strategy and the same set of hyperpa-
rameters described in the original paper.

3.2 Document Selection

Due to the difficulty of cross-lingual retrieval and
propagation of errors through the pipeline, we are
likely to retrieve multiple documents that are not
relevant to the given query. This is particularly
problematic for regeneration, since the regenera-
tion systems are optimized for including the con-
straints in their output, and thus may mislead users
into judging summaries of irrelevant documents
as relevant. Furthermore, regeneration adds addi-
tional computational overhead to the system, so we
should run it only when we are relatively certain
that a source document F is relevant to the query.

Therefore, in order to reduce the number of false
positives, we add a document selection step that re-
scores the relevant documents by integrating scores
from the CLIR system as well as the summariza-
tion system. In particular, we consider three values:
(1) the document score from the SECLR query
relevance component (Chen et al., 2021b) of the
summarization system, (2) the CLIR system’s doc-
ument score, and (3) a binary variable that indi-
cates whether the CLIR system’s document score
is above an F1 maximizing cutoff that was tuned on
a development set (see Section 4). The new com-
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posite score is simply the sum of those three values,
all of which are bounded between zero and one.4

We tune a threshold for the composite score using
100-fold cross-validation to achieve an optimal F1-
score on the dev partition.5 We then develop two
systems to make use of this threshold.

+selection: This system presents documents se-
lected for regeneration to human annotators using
regenerated summaries and unselected documents
using summaries that have not undergone regener-
ation. We expect that most unselected documents
are not relevant, but this system favors high recall
of the sort that may be valuable in applications like
patent search or intelligence analysis.

+omission: This system assumes all unselected
documents are irrelevant, and only asks human
annotators for input on the regenerated summaries
of documents that were selected. This is because
some use cases may prefer higher precision at the
cost of lower recall (for example, a casual searcher
may prefer not to see irrelevant documents at all).

3.3 Sentence Selection

Once a document has been selected for regenera-
tion, we use PSQ, a component of our CLIR model,
to identify the sentences in the summary where it
would be most appropriate to insert the query term.
We rank each sentence by the maximum PSQ trans-
lation probability of any of its words with respect
to the query term. We then select the sentence with
highest rank (i.e., highest translation probability)
to be regenerated; we break ties by the combined
ranking of our other rankers as discussed in sec-
tion 2.2, thus preferring sentences that also appear
most conceptually related to the query term. In the
event that no translation equivalent can be found
through PSQ, regeneration would be aborted and
the summary presented as originally created, but
this never happens in our dataset.

4 Data

Machine Translation. The training corpora we use
for our regeneration MT systems come from the
WMT 2019 (Barrault et al., 2019), OPUS (Tiede-
mann, 2012), and MATERIAL-BUILD6 parallel
datasets for three languages: Farsi (FA), Kazakh

4We tried learning a logistic classifier; however, simply
taking the sum of the scores performed similarly.

5We take the mean threshold over the 100 folds as the final
threshold for our system.

6https://www.iarpa.gov/index.php/
research-programs/material

Language Collection #documents #queries

Farsi
ANALYSIS 388 221

DEV 11,662 221
EVAL 11,640 1264

Kazakh
ANALYSIS 388 400

DEV 11,622 400
EVAL 10,815 765

Georgian
ANALYSIS 388 412

DEV 11,662 412
EVAL 11,652 842

Table 2: Number of documents and queries for the MA-
TERIAL dataset for evaluation.

Corpus #Sentence

Farsi-English

Para

OPUS 8.5M
Hymers 22K
Mizan 1M
MATERIAL-BUILD 34K
ParaCrawl 178K
Lorelei 59K

Kazakh-English

Para

News Commentary 77K
Wikititles 117K
Kazakhtv 97K
Crawl2019 495K
OPUS 131K

Mono News2019 20M
News commentary.v15 608K

Georgian-English

Para
OPUS 1.7M
Crawled 101K
MATERIAL-BUILD 4K

Table 3: Parallel and monolingual corpora used in train-
ing the MT systems. The MATERIAL-BUILD corpus
for Kazakh-English is the same as News Commentary.

(KK), and Georgian (KA). The dataset statistics are
given in Table 3. We evaluate our full system on
the MATERIAL text dataset consisting of source
documents in the specified language as well as col-
lection of English query terms.

Cross-Lingual Information Retrieval. The
MATERIAL cross-lingual information retrieval
dataset is divided into ANALYSIS, DEV, and
EVAL, where ANALYSIS is intended for data
statistics and examination, DEV for tuning and
EVAL for test. The size of the splits are shown for
each language in Table 2, and the structure of the
data is similar to previous releases (Zavorin et al.,
2020). This data includes, for each of our three lan-
guages, a separate collection of non-English news
and blog documents, a separate collection of En-
glish query strings, and gold relevance annotations
for each document-query pair within a language.
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5 Experiments

For each of our three languages, we draw a random
sample of query-document pairs with a high like-
lihood of being relevant according to our trained
CLIR system for that language. Then, for each
query-document pair, we generate an extractive
summary with no regeneration applied; this is our
baseline system. We then apply each applicable
constrained regeneration system to each summary
independently, generating a new copy of the sum-
mary for each regeneration system.

We then submit each of these summaries to Ama-
zon Mechanical Turk for human evaluation, the
formulation of which is described in detail below
in section 5.1. The result of the human evalua-
tion is a relevance score for each summary–that
is, for each (q, ⟨D,F ⟩, regeneration system) triple.
We can evaluate different regeneration systems at
this stage by simply collecting the labels they are
assigned and comparing them to the ground truth
relevance labels. Finally, we apply our document
selection methods; we select a subset of documents
whose summaries should be regenerated according
to our document selection threshold, and we use the
collected scores from the regenerated and baseline
variants to evaluate the +selection and +omission
variants of the regeneration systems.

Our Farsi experiments are done on a random
sample of 1000 query-document pairs from the
documents returned by CLIR7 for the MATERIAL
EVAL partition, equally split between ground-truth
irrelevant and relevant documents. These query-
document pairs are selected such that the sum-
maries the baseline system produced did not con-
tain the query word, indicating an opportunity for
regeneration systems to incorporate query terms.
We repeat the experiments for Kazakh and Geor-
gian similarly, using samples of 2000 documents
for each language from their DEV partitions.

5.1 Human Evaluation
We evaluate our systems in an end-to-end fash-
ion; in our setup, this means that we compare the
ground-truth gold relevance label for each query-
document pair with the relevance judgment as-
signed to that pair by human evaluators. The sys-
tem we develop inherently includes a human in the

7Documents returned by CLIR are those above a threshold
that maximizes the Actual Query-Weighted Value (AQWV)
that was learned on the dev partition). Details on this metric
can be found at https://www.nist.gov/itl/iad/
mig/iarpa-material-program.

Score Precision Recall F1

Baseline 53.00 36.81 43.44

Baseline
+ omission 79.17 13.19 22.62

+cAPE 57.89 76.39 65.87*

+cAPE
+selection 59.79 53.01 56.20*

+cAPE
+omission 81.93 29.40 43.27*

+Marian-C 52.58 70.83 60.36*

+Marian-C
+selection 56.72 52.78 54.68

+Marian-C
+omission 72.41 29.17 41.58

+EDITOR 50.22 79.86 61.66

+EDITOR
+selection 57.89 53.47 55.60

+EDITOR
+omission 75.44 29.86 42.79*

Table 4: Farsi-English Document Relevance Evalu-
ation. Bold indicates the best score, and stars indicate
statistically significant improvement over the baseline
(by the approximate randomization test, p < 0.05).

loop, as its intended purpose is to allow a human
to find documents relevant to an intended search
term quickly and easily; therefore, we also involve
human annotators in its evaluation.

For our human evaluation of our summaries,
we asked workers on Amazon Mechanical Turk
whether generated summaries were relevant to the
given query term. We presented the summary, with
any exact matches to the query term highlighted
in a different color, to workers and asked them to
rate the relevance on a five-point scale: {definitely
irrelevant, probably irrelevant, unsure, probably rel-
evant, definitely relevant}. For evaluation purposes,
each worker’s rating was binarized such that “prob-
ably relevant” and “definitely relevant” correspond
to “relevant”, and the others to “irrelevant”. We
asked three workers to evaluate each summary and
aggregated their binarized judgments by majority
vote, yielding a single final “relevant” or “irrele-
vant” human label for each query-summary pair.
An example of the interface for this evaluation is
included in Appendix B.

5.2 Evaluation Metrics

Our problem is a binary classification problem: a
document-query pair is either relevant or irrelevant.
We compare relevance judgements obtained during
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Score Precision Recall F1

Baseline 25.18 39.08 30.63

Baseline
+omission 87.50 16.09 27.18*

+cAPE 25.48 75.86 38.15*

+cAPE
+selection 30.61 51.72 38.46*

+cAPE
+omission 89.29 28.74 43.48*

+Marian-C 21.52 81.61 34.05*

+Marian-C
+selection 31.37 55.17 40.00

+Marian-C
+omission 82.35 32.18 46.28*

+EDITOR 24.90 68.97 36.59

+EDITOR
+selection 26.76 43.68 33.19

+EDITOR
+omission 78.26 20.69 32.73*

Table 5: Kazakh-English Document Relevance Eval-
uation. Bold indicates the best score, and stars indicate
statistically significant improvement over the baseline
(by the approximate randomization test, p < 0.05).

human evaluation with reference judgments from
the MATERIAL data, using the standard precision,
recall and F1 metrics. Reporting precision and re-
call independently provides important indicators
of the incidence of false positives and false neg-
atives respectively. A false positive represents a
document that was not truly relevant to the query,
but for which the generated summary falsely con-
vinced the human annotators that it was relevant.
Conversely, a false negative represents a relevant
document whose summary failed to convey its rel-
evance to the query (and thus human annotators
judged it irrelevant). We hypothesize that the blind
application of regeneration to even irrelevant docu-
ments is likely to decrease the false negative rate,
but it may also increase the false positive rate.

We also note that the +selection and +omission
systems can be evaluated for each regeneration
system by replacing unselected documents’ human
evaluation with either the human evaluation of the
original, non-regenerated document (+selection),
or an automatic "irrelevant" judgment (+omission).

6 Results

The results of our experiments are shown in Ta-
ble 4 (Farsi-English), Table 5 (Kazakh-English),
and Table 6 (Georgian-English). Different result

Score Precision Recall F1

Baseline 14.35 29.25 19.25

Baseline
+omission 30.43 13.21 18.42*

+cAPE 18.11 45.28 25.88

+cAPE
+selection 17.02 37.74 23.46

+cAPE
+omission 35.38 21.70 26.90*

+Marian-C 15.00 62.26 24.18*

+Marian-C
+selection 18.31 49.06 26.67

+Marian-C
+omission 30.70 33.02 31.82*

+EDITOR 14.44 50.65 22.48

+EDITOR
+selection 16.18 42.86 23.49

+EDITOR
+omission 31.25 25.97 28.37

Table 6: Georgian-English Document Relevance Eval-
uation. Bold indicates the best score, and stars indicate
statistically significant improvement over the baseline
(by the approximate randomization test, p < 0.05).

trends emerge for the high-resource (Farsi) and
low-resource (Kazakh, Georgian) languages.

Beginning with Farsi, we see that applying re-
generation via cAPE performs best, improving the
F1 score by 20 points over the baseline; both con-
strained MT systems yield lesser but similar im-
provements. These improvements are due to dra-
matic increases in recall and similar precision as
compared to the baseline, indicating that relevant
documents are much more likely to be noticed and
selected by human annotators. In Farsi, however,
the additional layer of document selection is un-
helpful, as it mitigates the recall too much without
a large increase in precision; simply applying re-
generation to every returned document-query pair
performs best for Farsi.

For the low-resource languages, Kazakh and
Georgian, applying regeneration via cAPE or
Marian-C shows consistent and significant improve-
ment over the baseline, with Marian-C performing
best. EDITOR particularly improves recall over
the baseline, but overall the improvements are not
statistically significant. We see similar trends as in
Farsi, where applying any form of regeneration in-
creases recall and yields similar precision when not
using document selection, leading to increased F1.
When we include document selection as a pipeline
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step before applying regeneration, however, preci-
sion also increases for all systems while retaining
an improvement in recall (though not as large); as
the vast majority of documents are irrelevant to any
given query term, selection results in an overall net
increase in F1 for cAPE and Marian-C. EDITOR,
which is less aggressive in including its constraints,
interacts poorly with document selection in Kazakh
and yields reduced F1 under this setting. Finally,
the +omission variant of document selection actu-
ally performs best overall because of how much it
improves precision, although it does not increase
recall as much as the +selection variant. Thus we
see three variants of our systems (no selection, +se-
lection, +omission) occupying different points on
the precision-recall tradeoff in the low-resource
setting.

We therefore see that for our low-resource lan-
guages, adding document selection to our regen-
eration improves the overall performance because
it increases precision; the regeneration systems in
these languages tend to take irrelevant documents
and make their summaries appear relevant. How-
ever, in the case of our high-resource language,
the improvements to precision afforded by doc-
ument selection are minimal and do not balance
out its diminished recall. We note that from Ta-
ble 1, the performance of the base MT systems in
Farsi is better than that for the low-resource lan-
guages, and correspondingly, the performance of
our end-to-end system is best in Farsi, even for the
baseline. Our hypothesis is that the documents re-
turned by CLIR for Farsi are already relevant and
high-quality compared to those in the low-resource
languages; thus document selection helps identify
relevant documents in low-resource languages but
is not necessary for Farsi.

7 Related Work

Constrained Machine Translation. One of the
crucial components of our system is the ability of
the MT system to generate translations with spe-
cific terminology. Recent works use either con-
strained decoding, which modifies the decoding
scheme to specify which words must be incorpo-
rated in the output (Post and Vilar, 2018; Hokamp
and Liu, 2017; Hasler et al., 2018), or data augmen-
tation techniques which incorporate the query term
as an additional input in the training data (Dinu
et al., 2019; Wan et al., 2020; Xu and Carpuat,
2021), avoiding the need to add overhead to the

decoding scheme.
Cross-lingual Summarization. Prior work on

cross-lingual summarization has mostly focused
on two paradigms – summarize-then-translate
(Lim et al., 2004; Orăsan and Chiorean, 2008;
Wan et al., 2010) and translate-then-summarize
(Leuski et al., 2003; Ouyang et al., 2019). The
summarize-then-translate approach, however, re-
quires a large amount of summarization train-
ing data in the source language (Ladhak et al.,
2020), which makes them unsuitable for our set-
ting since the source languages in our setting are
low-resource. Prior work has shown that translate-
then-summarize approaches are prone to error prop-
agation (Ouyang et al., 2019; Ladhak et al., 2020),
and propose methods to produce more fluent sum-
maries. In our setting, having a fluent translation is
not sufficient – we also need to have a translation
with wording that is appropriate for the given in-
put query. Therefore, in our work we focus on an
integration of summarization with regeneration to
more clearly indicate relevance.

Query-Focused Summarization. Query-
focused summarization has been explored in both
the single-document (Nema et al., 2017; Egon-
mwan et al., 2019; Ishigaki et al., 2020; Laskar
et al., 2020; Xie et al., 2020; Zhong et al., 2021; Su
et al., 2021) and multi-document setting (Feigen-
blat et al., 2017; Baumel et al., 2018). Prior work
models this task as a question answering task, with
the query being a question and the summary being
similar to a terse answer to the question, sourced
from the document. Unlike prior work, which has
focused on monolingual settings, our work looks at
query-focused summarization in the cross-lingual
setting, where the query (and therefore the output
summary) is in a different language than the source
document.

8 Conclusion

We have presented a novel method of cross-lingual
query-focused extractive summarization in which
we apply regeneration to a generated summary in
order to force inclusion of the query term when
it appears in the source language document. We
demonstrated large, significant improvements over
the baseline in all cases through the addition of
regeneration, showing increased recall and preci-
sion over the baseline. For our noisy low-resource
languages, the combination of an aggressive con-
strained MT system and a document selection filter
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additionally allows the benefits of including the
query term in a relevant summary while avoiding
creating new false positives. We experimented with
three methods of constrained regeneration, which
attempt to re-translate or edit a given sentence to
include a given constraint: constrained automatic
post-editing (cAPE), nonautoregressive MT (EDI-
TOR), and our own implementation of autoregres-
sive MT (Marian-C). For low resource languages,
autoregressive MT consistently performed better,
while for Farsi, cAPE was best. We believe this
work opens the door to interesting future work ex-
perimenting with more complex varieties of docu-
ment selection; with different, customized kinds of
constrained regeneration; and with what types of
languages benefit from these and other techniques.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath-
leen McKeown. 2020. WikiLingua: A new bench-
mark dataset for cross-lingual abstractive summariza-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4034–4048,
Online. Association for Computational Linguistics.

Md Tahmid Rahman Laskar, Enamul Hoque, and Jimmy
Huang. 2020. Query focused abstractive summariza-
tion via incorporating query relevance and transfer
learning with transformer models. In Advances in Ar-
tificial Intelligence, pages 342–348, Cham. Springer
International Publishing.

Anton Leuski, Chin-Yew Lin, Liang Zhou, Ulrich Ger-
mann, Franz Josef Och, and Eduard Hovy. 2003.
Cross-lingual c*st*rd: English access to hindi in-
formation. ACM Transactions on Asian Language
Information Processing, 2(3):245–269.

David Lillis. 2020. On the evaluation of data fusion
for information retrieval. In Forum for Information
Retrieval Evaluation, FIRE 2020, page 54–57, New
York, NY, USA. Association for Computing Machin-
ery.

Jung-Min Lim, In-Su Kang, and Jong-Hyeok Lee. 2004.
Multi-document summarization using cross-language
texts. In NTCIR.

2677



Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Preksha Nema, Mitesh M. Khapra, Anirban Laha, and
Balaraman Ravindran. 2017. Diversity driven atten-
tion model for query-based abstractive summariza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1063–1072, Vancouver,
Canada. Association for Computational Linguistics.
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A Constrained Machine Translation
Training Frameworks

In the case of Marian-C, we train separate autore-
gressive unidirectional models for each of Farsi-
English, Kazakh-English and Georgian-English.
To train our models, we first preprocess the parallel
data using Moses (Koehn et al., 2007) punctuation
normalization, tokenization, and true-casing. We
then create a shared byte-pair encoding vocabu-
lary of 32k tokens following the method of Sen-
nrich et al. (2016), and tokenize our parallel data.
We train a Transformer-base model following the
method of (Vaswani et al., 2017) using the Marian-
NMT framework (Junczys-Dowmunt et al., 2018).
The models are trained until BLEU score perfor-
mance (Papineni et al., 2002; Post, 2018) on the
validation set ceases to improve for 15 checkpoints.
We use the English→X model to create backtrans-
lations (Edunov et al., 2018) of our monolingual
data, and train again on a concatenation of the par-
allel data and the backtranslations together, in the
same way, to create our final X→English models.

In the case of EDITOR, we train separate
unidirectional models for Farsi-English, Kazakh-
English and Georgian-English using the same pre-
processing steps as Marian-C except that we use
a shared byte-pair encoding vocabulary of 20k to-
kens. We apply sequence-level knowledge distilla-

tion from autoregressive teacher models as widely
used in non-autoregressive generation (Gu et al.,
2018, 2019; Xu and Carpuat, 2021). We train a
Transformer-base model (Vaswani et al., 2017) us-
ing fairseq (Ott et al., 2019). The models are trained
using Adam (Kingma and Ba, 2015) with initial
learning rate of 0.0005 for maximum 300,000 steps.
We select the best checkpoint based on validation
BLEU (Papineni et al., 2002).

B Amazon Mechanical Turk Interface

An example of our Amazon Mechanical Turk inter-
face for human evaluation can be seen in Figure 2.
Five such questions were presented in each Human
Intelligence Task (HIT).
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Abstract

Neural natural language generation (NLG) and
understanding (NLU) models are costly and re-
quire massive amounts of annotated data to be
competitive. Recent data programming frame-
works address this bottleneck by allowing hu-
man supervision to be provided as a set of la-
beling functions to construct generative mod-
els that synthesize weak labels at scale. How-
ever, these labeling functions are difficult to
build from scratch for NLG/NLU models, as
they often require complex rule sets to be spec-
ified. To this end, we propose a novel data pro-
gramming framework that can jointly construct
labeled data for language generation and un-
derstanding tasks – by allowing the annotators
to modify an automatically-inferred alignment
rule set between sequence labels and text, in-
stead of writing rules from scratch. Further, to
mitigate the effect of poor quality labels, we
propose a dually-regularized denoising mecha-
nism for optimizing the NLU and NLG models.
On two benchmarks we show that the frame-
work can generate high-quality data that comes
within a 1.48 BLEU and 6.42 slot F1 of the
100% human-labeled data (42k instances) with
just 100 labeled data samples – outperforming
benchmark annotation frameworks and other
semi-supervised approaches.

1 Introduction

Modern machine learning systems require large
amounts of labeled data. For many applications,
such labeled data is created by getting humans to
explicitly label each training example. However,
the standard labeling process that involves Wizard-
of-Oz (Kelley, 1984) and other crowd-sourcing ap-
proaches (e.g. (Wen et al., 2017; Coucke et al.,
2018; Budzianowski et al., 2018)) is restricted to
the level of individual examples, and so are slow
and static (Ratner et al., 2019). As a result, they
are not only costly but require relabeling for any
fine-grained domain revisions.

Manual Annotation

 x      x 
    

 x   
 x   

 x   

 x   

 x   

 x    x   

 x   

 x   
Distant Annotation

MR: restaurant_name=Ristorante   food=Italian   price_range=high

Text: Ristorante is an  expensive  Italian restaurant .

Labeling Function

Figure 1: Annotation scenario: Each × represents a labeled
data instance. The annotation framework allows to generalize
from few human-labeled instances (inner) to large amounts
of weakly labeled data (outer) by building rules (alignments)
between sequence labels and text via labeling functions.

Data programming is a successful paradigm
where humans provide low cost labeling rules writ-
ten in programming languages to build imperfect
training sets, which are then denoised for further
improvements (Ratner et al., 2016a, 2017). How-
ever, two caveats exist: (1) Heuristic rules are
costly to construct from scratch as exhaustive align-
ments between text and sequence labels have to be
specified manually (Evensen et al., 2020), and espe-
cially strenuous for language generation that trans-
forms meaning representations (MR) or slots into
textual descriptions (e.g. (Reiter and Dale, 2000;
Barzilay and Lapata, 2005)) where NLG is a one-to-
many process (i.e. ). (2) Labeling functions make
decisions based on discrete rules that heavily limit
the framework capability in making fine-grained
decisions due to the lack of probabilistic informa-
tion that guides the rule inference (Chatterjee et al.,
2019).

To this end, we present a new data programming
framework where language understanding and gen-
eration data can be jointly labeled. We argue that
joint NLG/NLU annotation not only improves the
overall data quality, but provide a greater degree of
compositionality where semantic units such as slot-
value pairs can be individually controlled. We tar-
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get a weak supervision scenario (shown in Figure 1)
consisting of small, high-quality expert-labeled
data and a large set of unlabeled MR or text in-
stances. In this framework, subject-matter experts
are to use labeling rules to modify the automatically-
inferred semantic alignments between MR and text,
which are probabilistic rules that can be used for
joint NLU/NLG labeling. The rules help to con-
struct weak data via iterative denoising, before the
dually-regularized NLU and NLG models can learn
from the clean seed data to generate high-quality
data. This work makes the following contributions:

• We introduce a novel annotation framework
based on data programming that allows for
joint labeling of language understanding and
generation data. We validate the framework
on two benchmarks and demonstrates its abil-
ity to create high quality data by expanding
rules and then denoising the noisy data with
dual regularization.

• We present a preliminary study to demon-
strate the compositionality of the framework
by showing that it can perform automatic do-
main revisions of MR slots without any rela-
beling efforts. This is especially beneficial in
use of annotation tools where frequent data
revisions are needed.

2 Related Work

Distant Supervision in Language Understand-
ing. Learning with weak supervision is a well-
studied area that is popularized by the rise of
data-driven neural approaches (Ratner et al., 2017;
Safranchik et al., 2020; Bach et al., 2017; Wu et al.,
2018; Jiang et al., 2018). In particular, recent liter-
ature explore knowledge distillation from rules by
either guiding the individual layers (Li and Sriku-
mar, 2019) or training the model weights within
constraints of the rule based system using a stu-
dent and teacher model (Hu et al., 2016). Simi-
larly, Snorkel and other techniques (Ratner et al.,
2016b; Bach et al., 2017; Varma et al., 2019) rely
on domain experts manually developing heuristics
for noisy labels. However, these approaches are
largely limited to NLU tasks and focus on provid-
ing discrete heuristics for tasks such as relations.
Thus, our work serves to bridge this gap by (1) pro-
viding a way to more readily create texts, and (2)
including probabilistic scores for labels.

Weak Supervision for Language Generation.
Past works on semi-supervised learning consider
settings with a large set of unlabeled data as in
machine translation (Artetxe et al., 2017; Lample
et al., 2017), or more relevantly the joint learning
framework for training NLU and NLG (Tseng et al.,
2020; Su et al., 2020; Schmitt and Schütze, 2019)
that also considers a small labeled data. In partic-
ular, unsupervised statistical machine translation
(e.g. (Artetxe et al., 2018; Lample et al., 2018))
utilizes statistical alignment models (Brown et al.,
1993) that automatically infer explicit alignments
between phrases in source and target sentences.
Our work exploits this explicit alignment by treat-
ing them as a modifiable rule set1, then using it to
noisily synthesize weak data, allowing for annota-
tion of NLU and NLG labels.

3 Annotation Framework Summary

Here we formally describe the joint annotation
framework. Let X denote the set of meaning repre-
sentation2 (MR) instances and Y denote the text se-
quences. In our setting, we have (1) a seed dataset
S which consists of k labeled pairs, and (2) a large
unlabeled MR or text set U where |U | ≫ k > 0.
The annotation framework targets the creation of la-
beled samples L = {(x1, y1), . . . , (xn, yn)}where
xt ∈ X is an MR instance and yt ∈ Y is its corre-
sponding text. To do so, we construct a probabilis-
tic rule set based on the seed data S (see §4) and
outline this process in Figure 2. In particular, we
draw the connection between the rule set composi-
tionality and coverage to data denoising and high-
light the framework advantages. The resulting rule
set allows to create a large set of noisily-labeled
data, where the framework then learns from the
mixture of clean (seed) and noisy data in the pro-
cess of data denoising (see §5) to create a higher
quality set of data.

4 Rule Set Construction

We use the rule set to define the semantic alignment
between MR and text. For instance, in a “cuisine”
domain, the fast food slot can be aligned with slot
value “Macdonald” and other related terms, and
likewise for each value that might be associated
with more than one slot. This relationship can

1This is similar to phrase table pruning (Zens et al., 2012;
Galbrun, 2009).

2They can be seen as sequence labels.
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  LF1: If a phrase is a restaurant_name is present and MR contains "restaurant_name", return 1

  LF2: If a phrase is in the list of food and MR contains "food", return 1 else return 0

  LF3: If a phrase is in price_range and MR contains "price_range", return 1 else return 0

Pruning

restaurant_name=blue spice   food=Indian  price_range=high    customer_rating=average 

Blue spice  is an  expensive  Indian restaurant  with  an average customer rating .
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ed
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MR

Text

Figure 2: Depiction of the labeling process, where x̂, ŷ denote the noisy labels. Labeling functions are shown as textual
descriptions, which are used to filter bi-directed rules below. In bi-directed rules, rules not removed by labeling functions are
shown in bold. For more labeling functions see Appendix ??.

be captured by the explicit many-to-many3 rules
derived from the MR-text pairs, which connects
NLU and NLG as they are then explicitly linked
with the alignments.

To build the rule set, we initialize the rule set in
three steps: (1) We first generate new in-domain
data using the pretrained language model (GPT-2)
– this helps to increase data size and diversify the
text distribution. (2) From this augmented data, we
automatically initialize the rule set (phrase table)
using a statistical alignment model. (3) Finally, we
prompt the subject-matter experts to explicitly mod-
ify the alignments between phrases in MR and text
with labeling functions, as these alignments help to
refine the semantic relationships. Specifically, the
aligned pairs are provided to experts where they are
asked to write labeling functions to prune the non-
matching phrases that contain incorrect semantic
alignments (See Figure 2).

4.1 Diversifying Rule Set Diversity

To increase the diversity (and thus coverage) of the
eventual annotation rule set generated, we perform
an initial augmentation of the seed labeled data set
S with additional weakly-labeled data, thus pro-
ducing a larger but more diverse weakly-labeled
dataset (L). We first generate additional MR via
value swapping for each MR slot as in Chang et al.
(2021a), then use GPT-2 (Radford et al., 2019)
to perform conditional data-to-text generation as
in Harkous et al. (2020); Mager et al. (2020). These
works showed that fine-tuning GPT-2 on the joint
distribution of MR and text for text-only genera-

3Relatedly, NLU is many-to-one and NLG is one-to-
many (Tseng et al., 2020).

tion yields decent performance. Given the sequen-
tial MR representation and a sentence in the seed
labeled data, we maximize the joint probability
pGPT-2(X,Y ), where each sequence is concatenated
into “[MR] x1 · · ·xM [TEXT] y1 · · · yN”. The
fine-tuned LM conditions on the augmented MR
sample set to generate the in-domain text4, and
thus produces the augmented dataset with noisy
texts. Similarly, for conditional MR generation
with pGPT-2(Y,X), we apply the same process with
text and MR flipped in the concatenation.

While the weak labels expands the seed data, it
creates noisy data by introducing false correlations
between MR and text. In what follows we discuss
the creation of the rule set and the use of labeling
functions that help to mitigate this noise.

4.2 Rule Set Initialization.

We extend the idea of a phrase table in statistical
machine translation to be the rule set in our con-
text: from the noisy augmented data L, we derive
a rule set that is constructed based on the fertility-
based5 alignment model (GIZA++) (Och and Ney,
2003)6 optimized using the EM algorithm (Demp-
ster et al., 1977). This allows to obtain the semantic
correspondences (or probabilistic rule set) Ri→j ⊆
{(i, j, Pi→j) : i = 1 · · · |x|; j = 1 · · · |y|} where
i and j refer to positions in flattened MR x and
text sequence y, and Pi→ĵ is the probability of

4We adopt the top-k random sampling with both k =
2 and k = 15 to encourage diversity and ensuring correct
outputs (Radford et al., 2019)

5Fertility is defined as the number of words that correspond
to a semantic unit.

6http://www.statmt.org/moses/giza/
GIZA++.html
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aligning the ith semantic unit in x to the jth unit
in y. Each semantic correspondence can be seen
as a bi-directed edge of a rule that connects se-
mantic units (or phrases) in MR to phrases in text,
where the granularity of each semantic unit is deter-
mined by the feature-based phrase-based alignment
model (Brown et al., 1993). Thus, we can likewise
induce Rj→i ⊆ {(j, i, Pj→i)} as the rule set that
can be derived for either NLU or NLG inferences.
We discuss the resolution of potential conflicts be-
tween rules in §5.

4.3 Building Labeling Functions
We ask a group of annotators to write Python code
snippets within the time limit of an hour each.
We denote these code snippets as labeling func-
tions (LFs). Each labeling function follows basic
rule relations, as shown in figure 2, and returns
one of the possible values: 1, −1, 0 (“valid”/“not
valid”/“undetermined”). To prune the rule set, we
apply the labeling functions to each rule, and judge
whether the given rule is strictly invalid or not.
Two types of LFs are designed: (1) slot-specific
LFs: one LF is written for each slot identified in
the MR, as all the decisions related to the slot can
be grouped together. For certain slots, such as
“restaurant_name”, a basic dictionary of correct
slot values is collected as to verify if mappings are
correct. (2) general LFs help to eliminate false
rules across all slots. One example is the rule that
links a conjunction of text with a specific slot of the
MR. Using the general LFs, such incorrect rules
can be removed altogether. Rules marked as “un-
determined” by the LFs are preserved and will be
further evaluated by the denoising mechanism. For
instance, the phrase “is a” may remain aligned with
“restaurant_name” as no LF may have marked it as
“not valid”.

4.4 Rule Coverage and Compositionality
MRs are structured and compositional as they typ-
ically consist of attributes in the form of flat or
tree-structured slot-value pairs (Balakrishnan et al.,
2019). Here, we define the compositionality of a
rule set as the average percentage of rules that cor-
rectly correlate MR and text over all slots. In our
framework, rule sets can be manipulated to directly
reflect high-level requirements in dialogue – such
as the need to remove or add values to a slot in both
MR and text for domain revisions. For slot removal,
this can be done directly via the addition of label-
ing functions to remove specific attributes from

MR and text altogether. An important trade-off
exists between rule coverage and compositionality
– higher rule coverage leads to lower composition-
ality, since a larger rule set tends to make more
erroneous correlations between MR and text.

In what follows we describe the process of data
denoising, in which the framework learns to utilize
both the noisy and clean data.

5 Data Denoising

Label bias is a well-studied problem (Lafferty et al.,
2001) where the frequency of some transitions
will far outweigh the others even when they have
roughly the same probability mass. Beneficially,
the joint use of both NLU/NLG models helps to
mutually shape the probability masses in token-
label pairs. Figure 3 represents a simple finite-state
model designed to map the two words “good” and
“review” to their respective labels. Suppose that the
observation sequence is “good review”. From start-
ing states 0 and 1, “good” matches both potential
label transitions “price” and “rating”, so the prob-
ability mass gets distributed rather equal among
those two transitions.

1 2 3

4 5 6

0

Figure 3: Example of resolving label bias: we place the
token-label pairs (xt:yt) on transitions rather than states.

While the two paths will be roughly equally
likely, but if one of the two labels is slightly more
common in the training set (i.e. price), the transi-
tions out of the start state will slightly prefer this
corresponding transition, and yielding incorrect
correlations. However, having both NLU and NLG
models alleviate this bias since we now have two
“versions” of the sequence in states {1, 2, 3} and
{4, 5, 6} that can help to break the ties and shape
the probability mass according to the sequential
information.

Thus, we initialize noisy data with rules using
the statistical base models and then training the
denoising models to distill from the mixture of
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noisy and clean data. This is done by iteratively
creating noisy labels with rules and then refining
these labeled data for higher quality ones. Further,
we maintain both statistical NLU and NLG models
for iterative joint labeling in the process.

5.1 Overview of the Denoising Mechanism
The denoising mechanism is achieved by first for-
mulating the NLG model p(y|x) as Brown et al.
(1993):

p(y|x) ≈
m=|y|∑

j=1

l=|x|∏

i=0

t(yj |xi)a(i|j,m, l) (1)

where t(·) and a(·) are the translation and align-
ment probabilities learned from the seed data for
x and y of lengths m and l respectively. Note
that for the NLU model, we simply flip y and x
in Eq. 1. Thus the formulation allows to estimate
both statistical NLU and NLG models by adjust-
ing the weights of log-linear combination of fea-
tures7 to optimize the evaluation metric (i.e. BLEU-
4 (Papineni et al., 2002)) on the validation corpus
via the minimum error rate training (MERT) (Och,
2003), which maximizes the BLEU-4 scores based
on given inputs and their noisy labels.

In what follows we describe the training objec-
tives to distill knowledge from the rule set into the
base models (Step-1), then introduce clean data in
Step-2 to improve upon the data quality.

Step-1: Distillation from Noisy Rules. We opti-
mize the parameters of the base version of the NLU
and NLG models (base models) by alternately fix-
ing the parameters of one model and optimizing the
other model until convergence8: (1) MERT com-
putes the optimal value for each model parameter
and greedily selects data based on the generated
candidate labels that leads to the largest gain in
BLEU-4. (2) Then it noisily labels the MR samples
with text or text with MR via the updated parame-
ters at each iteration so as to obtain a better approx-
imation of label candidates. The process of data
denoising is functionally beneficial in reducing the
label biases present in the imperfect labels.

Step-2: Adding Clean Data. The denoising
models are trained with the expert-labeled seed
data and the set of noisy data that were generated.

7This includes the bidirectional rule, lexical probabilities,
the language model, the reordering model, the word penalty
and the phrase penalty.

8Following the training procedures in Artetxe et al. (2018).

However, the performance on the seed data is better
than the pseudo-labels in the early rounds. This is
anecdotally observed in both NLU and NLG mod-
els on various datasets and leads to potentially sub-
optimal performance (Shen and Sanghavi, 2019a,b).
This motivates our proposal to reduce the total loss
by using NLU and NLG models to select only a
subset of data to train on – we filter out samples
with large cross-entropy losses in early iterations
with replacement, and train the models on the sam-
ples left after filtering. This serves to learn more
effectively from both clean and corrupted data.

Specifically, we propose the use of dual regular-
ization (DR) where s1, . . . , sn are the samples, θ
are the model parameters:

θ̂(DR) = argmin
θ

[
min

X̃⊂X:|X̃|=⌊β∗n⌋

∑

i∈X̃
LNLGθ(xi)

]
+

argmin
θ

[
min

Ỹ⊂Y :|Ỹ |=⌊β∗n⌋

∑

i∈Ỹ
LNLUθ(yi)

]
.

To find θ̂(DR), we minimize over both the (a) sample
subsets X̃, Ỹ given the ratio β and (b) the model
parameters θ. In (a), the MR-text sample size is
⌊β ∗ n⌋, where β = 0.19 is the ratio of training
samples to train on. X̃, Ỹ are the subsets of X , Y
selected for the NLU and NLG models.

In this formulation, NLU and NLG models
jointly select samples that are deemed to be less
challenging for each other, before proceeding to
learn from more challenging samples10. As such,
the NLU and NLG models are kept to be similar
in inference capabilities; this allows to select more
suitable samples for each other due to the smaller
degree of semantic misalignment.

6 Experiment Setting

We conduct experiments on the Weather (Balakrish-
nan et al., 2019) and E2E (Novikova et al., 2017b)
datasets. Weather contains 25k instances of tree-
structure annotations. E2E is a crowd-sourced
dataset containing 50k instances in the restaurant
domain. The NLU and NLG models are imple-
mented in PyTorch (Paszke et al., 2019) with 2
Bi-LSTM layers and 100-dimensional token em-
beddings and Adam optimizer (Kingma and Ba,
2014) with an initial learning rate of 0.0002. The

9Following (Shen and Sanghavi, 2019b), we set β to be
1%, as it was shown to work well in generative models.

10It is related to competence-based curriculum learn-
ing (Platanios et al., 2019) where samples are selected based
on their difficulties and the model competence.
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MR→ Text (NLG) Text→MR (NLU)

Text-only 100 150 200 250 300 SR VE 100 150 200 250 300 SR VE

seq2seq 35.55 41.79 41.63 43.50 46.62 39.20 40.61 47.61 51.33 51.94 52.53 53.83 52.38 56.84
JUG 37.62 42.32 42.01 45.42 48.27 40.88 42.64 48.60 53.40 52.78 52.44 54.23 54.38 56.56
stats (iter-10) 47.49 48.10 48.68 49.71 50.09 47.72 55.48 51.87 54.30 56.43 55.67 56.52 55.88 59.43
stats w/ GPT2 (iter-10) 52.81 53.77 54.11 54.24 55.27 50.21 57.31 53.91 56.62 59.15 56.97 58.40 59.00 60.36
stats (iter-20) 54.09 56.72 56.25 57.87 57.46 53.24 57.30 54.78 59.83 60.16 58.39 61.96 61.50 62.81
+ step-1 54.33 56.28 57.39 57.62 58.51 57.49 57.28 59.11 60.03 61.43 61.00 62.93 63.89 64.79

+ seed data 56.71 58.68 59.42 60.63 61.98 60.75 60.48 60.25 63.75 64.55 63.21 63.97 66.95 66.59
+ seed data & step-2 (Ours) 60.35 61.44 59.10 62.32 63.71 62.55 61.33 62.63 64.33 64.34 65.33 67.17 68.89 68.27

MR→ Text (NLG) Text→MR (NLU)

MR-only 100 150 200 250 300 SR VE 100 150 200 250 300 SR VE

seq2seq 31.05 32.92 33.53 36.27 35.09 31.43 30.04 48.61 52.33 52.94 53.53 54.83 53.38 57.84
JUG 35.05 36.84 36.66 39.61 38.5 35.96 33.17 51.02 55.26 55.74 55.07 55.92 55.68 59.14
stats (iter-10) 38.70 40.08 40.42 43.18 41.76 42.36 40.35 53.74 56.95 58.43 57.28 58.78 57.77 60.61
stats w/ GPT2 (iter-10) 41.84 43.20 43.83 46.27 45.67 45.64 43.60 56.24 59.06 61.15 58.29 61.16 60.69 62.59
stats (iter-20) 45.69 46.40 46.84 49.82 49.52 49.17 46.87 57.46 61.26 62.21 60.36 63.98 62.58 64.88
+ step-1 49.66 50.40 50.74 53.09 53.26 52.40 49.93 60.14 62.69 63.38 62.71 65.53 65.15 66.19

+ seed data 53.60 55.19 54.32 56.24 57.03 55.92 53.15 62.16 65.74 65.65 64.93 66.86 67.99 68.41
+ seed data & step-2 (Ours) 54.77 54.92 57.78 58.41 61.32 56.68 57.39 64.47 65.38 67.10 67.51 69.12 70.04 69.42

‘

Table 1: Ablation studies for text generation/NLG (BLEU-4) and slot filling/NLU (F1) on the E2E corpus with increasing
amounts of manually-annotated data (100-300 samples). We show the performance increase to the base model initialized from the
rule set (stats) as GPT2 augmentation, statistical NLG/NLU models with distillation from stats (step-1), and dually-regularized
sample selection (step-2) are added. Domain revisions are performed with 300 data instances. We train the following on the seed
data for comparison: (1) a semi-supervised baseline, JUG (Tseng et al., 2020) and (2) a LSTM-based baseline (seq2seq).

Slot Filling Text Generation
F1(%) Wrong BLEU4 Naturalness Wrong Diversity

E
2E

reference - - - 4.51 0 53.89
SLUG+100% - - 55.30 4.37 7 46.72
JUG+100% 73.7 29 57.72 4.49 38 46.21
seq2seq+100% 73.19 31 56.1 4.32 35 43.09

GPT2 54.83 55 40.84 4.23 65 44.55
Heuristic 62.81 39 53.08 3.82 19 31.37
COACH 48.35 49 - - - -
seq2seq+Snorkel 60.71 43 - - - -
seq2seq+Ours 66.42 36 54.62 4.39 22 40.65

W
ea

th
er

reference - - - 4.30 0 40.97
JUG+100% 67.09 11 51.43 3.30 14 33.61
seq2seq+100% 66.43 8 46.29 4.10 9 35.74

GPT2 36.51 46 34.01 3.95 35 40.28
Heuristic 50.33 29 38.83 3.40 16 31.45
COACH 46.21 32 - - - -
seq2seq+Snorkel 47.61 27 - - - -
seq2seq+Ours 54.71 22 44.63 3.80 23 36.76

Table 2: Performance and human evaluation comparing
Ours with the benchmarks in the text-only scenario with 300
training samples evaluated on the test samples. We count the
number of wrong slot-value pairs; and naturalness is based
on average of 15 human ratings on a scale of 5. Diversity
is the mean segmental type-token ratio (size=25) (Covington
and McFall, 2010). 100% indicates models trained on 100%
manual annotation (also highlighted in gray). A+B indicates
training the A model on the data generated by approach B.

scores are averaged over 10 random initialization
runs. Two subject-matter experts are employed to
construct labeling functions given labeled instances
for 1-hour of labeling time. The labeling functions
obtained were used for all subsequent scenarios.

Experimental Scenarios. We conduct experi-
ments on two few-shot scenarios (see Table 1):
Text-only consists of only unlabeled text; MR-only
is given unlabeled MR alone. Both scenarios are
given a small amount of clean, manual-annotated

data consisting of MR-text pairs.

To demonstrate the framework’s ability to per-
form domain revisions without relabeling, we ex-
plore two situations under the few-shot settings:
(1) in slot removal (SR), we remove the “cus-
tomer rating” slot by selecting from the original
seed/dev/test sets. (2) in slot value enhancement
(VE), we introduce additional restaurant names
through relabeling the data. We release the data
alongside our code. Note that we selected up to 300
training samples so as to simulate a low resource
scenario. We display some examples of SR and
VE in Figure 3.

We compare the performance of our framework
with additional benchmark systems on both E2E
and Weather datasets in Table 2. Note that our
framework is only given the seed data and the
additional unlabeled text or MR samples, while
some models are trained with up to 100% of the
data. The NLU benchmark systems include a base-
line sequence-to-sequence model (seq2seq), and
COACH (Liu et al., 2020) and a baseline data
programming framework (Snorkel) (Ratner et al.,
2017), both state-of-the-art systems on few-shot
settings. For NLG, we included a heuristic la-
beler, a GPT2 labeler (Harkous et al., 2020), and
the high-performing SLUG (Juraska et al., 2018)
on the E2E data. The Heuristic labeler was built
on top of the labeling functions, but was extended
to be a complete generative system. To compare
with models capable of performing both NLG
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we display the modeling advantage which showcase the improvement in performance as a function of the number of labeling
functions. Both plots are based on 300 clean data.

MR & Text

Slot Removal (SR):
[MR] name[the rice boat], food[italian], priceRange[cheap], area[riverside], familyFriendly[no],
customerRating[average] , near[express by holiday inn] [Text] the rice boat is located near express by holi-

day inn in riverside that serves italian food at a low price range .

Slot Value Enhancement (VE):
[MR] name[the rice boat], food[italian], priceRange[cheap], area[riverside], familyFriendly[no], customerRat-
ing[average], near[cobalt lane 32092] [Text] the rice boat is located at the cobalt lane 32092 , which is next to
the riverside that serves italian food at a low price range .

Table 3: Samples of heuristically-based annotation for the revised domain for SR and VE.

and NLU, we include JUG (Tseng et al., 2020),
which is a semi-supervised multi-task framework
that allows to perform inference on both NLU
and NLG. Table 2 contrasts the performance be-
tween seq2seq trained on 100% human annotation
(seq2seq+100%) and of the data generated by our
framework (seq2seq+Ours).

7 Results and Analysis

The results shown in tables 1 and 2 demonstrate the
flexibility of our framework to perform annotation
in both text-only and MR-only scenarios. Moreover,
we see in Table 2 that, with as little as 300 data
points, the framework is able to produce quality
data11 that allow the baseline seq2seq model to
come close to the performance of the same model
trained on full manual annotations; the combina-
tion reaches within 1.48 BLEU on NLG and 6.42%
F1 score for NLU. Moreover, the framework pro-
duces high quality data that effectively mitigate the
noise induced by automatic weak annotation, and
manages to generate natural and diverse text for
NLG purposes.

11The train-dev-test samples are 30-100-100 for the slot
manipulation.

In Table 1, we first observe that adding GPT-2
augmentation does diversify the text and improves
performance on both datasets maximally by 4.53
BLEU. The augmented system is used to initialize
the base model’s next iteration, and thus observe
that base models can be iteratively enhanced. This
is reflected across different sizes of seed data; the
effect of iterative denoising is most prominent with
seed data size= 300. Next, we see that the use
of denoising helps to further improve the models,
as it allows to learn from both the base model’s
initialization and from the effect of noisy label-
ing. The base model, in this case, serves as the
teacher model that guides the denoising models
to iteratively improve. As the knowledge is com-
pletely distilled, we see that the denoised data per-
forms slightly better than the base model (see left
of Figure 4), having learned to search through the
space of decoding for more optimal paths. We
find that, after 20 iterations, the improvements be-
come marginal for both datasets. Thus, we end our
experiments at iter=20. We also include the expert-
labeled (seed) data during denoising as an addition
to the large set of pseudo-labeled (noisy) data. This
brings about maximally a 3.47 BLEU (for NLG)
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and 3.72% F1 score improvement (for NLU) in
Text-only, and 3.77 BLEU (for NLG) and 2.84%
F1 score increase (for NLU) on the MR-only sce-
nario. With the proposed dually-regularized sample
selection, we further boost the performance by up
to 4.29 BLEU and 2.58% F1 and an average of
2.37 BLEU improvements for NLG. This shows
the efficacy of the proposed approach in modulat-
ing the effect of noisy and clean data.

Since the Text-only scenario consists of high-
quality manually-labeled text, it generally performs
better in NLG; similarly, in the MR-only scenario,
NLU performance is generally better as MR sam-
ples are ground-truth labels. However, this effect
is less prominent in the MR-only scenario as the
difference between ground-truth MR samples and
the weakly-labeled ones are often negligible.

Error Analysis. Word-level overlapping scores
(BLEU-4) usually correlate rather poorly with hu-
man judgements on fluency and information ac-
curacy (Reiter and Belz, 2009; Novikova et al.,
2017a). Thus, we perform human evaluation on
the E2E corpus on 100 sampled generation out-
puts, as seen in Table 2. We show that, with 100
instances, the denoising models yield significantly
fewer wrong slot errors, while having more natural
and diverse outputs. Moreover, we observe that
benchmark systems (e.g. COACH) fail to general-
ize from the small seed data, and suffers heavily in
terms of using the wrong facts (or slots).

8 Further Analysis

Analysis of Modeling Advantage. We further
explore the relationship between performance and
the number of labeling functions in the right plot
of Figure 4. At one extreme, very few number of
labeling functions will result in a very noisy set of

rules, which leads to poorly labeled data. We find
that, as the number of labeling functions grow, the
capability of the framework to denoise the initial
inferred rules improves. This continues until even-
tually the framework’s denoising capability reaches
its peak and starts to deteriorate – as some labeling
functions eliminate a useful subset of alignments,
as represented by the rule set.

Analysis of Dual Regularization. To analyze
the process of sample selection during the training
of denoising models, we experiment with selecting
samples based on the cross-entropy loss from (1)
NLU model, (2) NLG model or (3) the combined
use of NLU and NLG models for sample selection,
which is the proposed approach. We also compare
them with performance without sample selection
to show the contrast. In Figure 5 we show this com-
parison. We observe that selection based on either
NLU or NLG model is not sufficient to match the
performance of selection using both models. This
shows that it is crucial to ensure that the NLG and
NLU models learn at approximately the same rate,
thereby allowing the semantic alignments induced
from the base models to be preserved.

On Rule Coverage and Compositionality Trade-
Offs. As discussed in section 4.4, we evaluate
the framework limitations in composing seman-
tic alignments (compositionality) as the number of
rules becomes high. In Figure 5, we show that the
number of rules influence the proportion of rules
that correctly align MR and text, as indicated by
the percentage of compositionality. In particular,
with no labeling functions, the entire rule set is
used and this leads to poor performance as most
slots are being incorrectly aligned. As more label-
ing functions are introduced to reduce this rule set
to its useful subset, the models begin to construct
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better data with the right alignments. The labeling
functions thus serve to remove the incorrect, low-
impact rules, so that the high impact rules can play
a greater role in constructing the necessary seman-
tic alignments for both NLU and NLG – until too
little rules remain to construct the base model.

9 Limitations

Overall, while we observe effectiveness in the pro-
posed approach to recreate data, it remains to say
that the constructed texts suffer from two main
drawbacks: First, the diversity of the text is rather
limited by the original seed set, which in turn con-
strains the data augmentation process that intend to
enrich the text diversity. Second, the process of cre-
ating programmable labeling functions can indeed
be a cumbersome process – it relies heavily on the
adequate skill sets of the annotators who need to
understand the target domain and basic scripting in
order to proceed. It is then vital to ease the process
of programming script writing, and reuse functions
as much as possible to avoid overheads.

10 Conclusion and Future Work

In this paper, we show the efficacy of the frame-
work where both NLU and NLG data can be jointly
and automatically labeled to construct high qual-
ity data. We also demonstrate that the framework
is receptive to the changes in MR slots, allowing
for automatic domain revisions of MR and text
data. Importantly, we observe that the success of
the framework depends on finding the right bal-
ance between the number of labeling functions and
the inherent level of compositionality of the data
to be labeled. Thus, for future work we intend to
focus on identifying the level of compositionality
and predicting the threshold number of labeling
functions necessary for decent performance, poten-
tially manipulating the inherent graphical relation-
ships (Hong et al., 2019). Moreover, the initial seed
set in our experiments are assumed to be present, it
is therefore necessary to first sample unlabeled data
based on difficulty to annotate and the performance
considerations (Chang et al., 2021b,c), before fine-
tuning with pretrained language models which have
strong priors for better quality data (Chang et al.,
2022b,a).
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Abstract

Biomedical events represent complex, graph-
ical, and semantically rich interactions ex-
pressed in the scientific literature. Almost all
contributions in the event realm orbit around se-
mantic parsing, usually employing discrimina-
tive architectures and cumbersome multi-step
pipelines limited to a small number of target in-
teraction types. We present the first lightweight
framework to solve both event extraction and
event verbalization with a unified text-to-text
approach, allowing us to fuse all the resources
so far designed for different tasks. To this end,
we present a new event graph linearization tech-
nique and release highly comprehensive event-
text paired datasets, covering more than 150
event types from multiple biology subareas (En-
glish language). By streamlining parsing and
generation to translations, we propose baseline
transformer model results according to multiple
biomedical text mining benchmarks and natu-
ral language generation metrics. Our extractive
models achieve greater state-of-the-art perfor-
mance than single-task competitors and show
promising capabilities for the controlled gener-
ation of coherent natural language utterances
from structured data.1

1 Introduction

In recent years, events have become an influential
formalism for modeling complex relations men-
tioned within the text as semantic graphs (Frisoni
et al., 2021, 2022). In bioinformatics, an event
generally refers to an interaction between one or
more biomedical entities (e.g., proteins, genes, dis-
eases, drugs), each contributing with a specific role
(e.g., Theme, Cause, Site). For instance, biomedi-
cal events include molecular reactions, organism-
level outcomes, and adverse drug reactions. Their
expressive power and flexibility have supported

*Equal contribution.
1The data and the code to reproduce our baseline results

are available at https://github.com/disi-unibo-
nlp/bio-ee-egv
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Figure 1: Illustration of an event graph and its textual
mention from our datasets. All text-event pairs refer to
human-crafted annotations above the biomedical litera-
ture (abstracts or full papers).

many practical applications like literature-based
knowledge discovery (Wang et al., 2021b), biologi-
cal network construction (Björne et al., 2010), di-
agnosis prediction (Zhang et al., 2020c), document
summarization (Zhang et al., 2020b), and question
answering (Berant et al., 2014).

Text-to-event (or event extraction, EE) and event-
to-text (or event graph verbalization, EGV) systems
effectively bridge natural language and symbolic
representations. They provide a step towards de-
coupling concept units (what to say) from language
competencies (how to say it) (Mel’čuk, 1973).
Strongly linked to natural language understanding,
EE is a fundamental task to automatically identify,
monitor, and aggregate the relational knowledge
disseminated within life science papers, speeding
up medical progress and promoting discoveries.
Yet, although much attention has been paid to EE,
no research efforts have been directed to its in-
verse task, namely EGV. Even if under-explored,
EGV targets the generation of informative text con-
strained on semantic graphs, holding a lot of poten-
tial in applications like conversational agents and
summarization systems (Frisoni. et al., 2022; Moro
and Ragazzi, 2022; Moro et al., 2022).
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Most state-of-the-art (SOTA) approaches handle
structured prediction by employing task-specific ar-
chitectures and discriminative models. Ordinarily,
they need to be adapted to the target events and their
schema, or they are not flexible enough to work
with different domains or analysis granularities
(sentence- vs document-level). The extraction pro-
cess is typically divided into subtasks, executed in
a pipeline or joint manner, where the output of sev-
eral classifiers needs to be integrated. Additionally,
each task is often associated with its own output
space, limiting knowledge sharing and multi-task
learning (MTL). Classes (i.e., event, argument role,
and entity types) are specified implicitly through
numerical indices, and models contain no prior in-
formation about their meaning. Furthermore, mod-
ern deep learning solutions require a non-trivial
amount of examples to train, but event annotations
are expensive to produce—a discrepancy that re-
sults in multiple, stand-alone, and closed-domain
datasets with few records and potentially overlap-
ping labels (Miwa et al., 2013).

On a parallel track, transfer learning has been
the pinnacle of the latest breakthroughs in natural
language processing (NLP). Large pre-trained lan-
guage models (PLMs) are powerful backbones that
can be fine-tuned for different tasks to achieve im-
pressive performance in wide-ranging applications
(Kalyan et al., 2021). PLMs capture contextual
information and latent linguistic/relational knowl-
edge (Petroni et al., 2019; Roberts et al., 2020),
incorporating syntax and semantics. In that sense,
textual representations and conditional generative
modeling can be seen as natural ways of encoding
different events in a shared predictive space.

In this paper, we design a framework to solve
both EE and EGV as text-to-text problems, thus
leveraging SOTA PLMs and disposing of the need
for complex and hardly adaptable architectures.
Concretely, we propose a way to decompose events
into text sequences, neatly preserving structure and
labels. Above it, we present the Biomedical Text-
to-Event (BIOT2E) and Event-to-Text (BIOE2T)
datasets, two corpora of textualized biomedical
event graphs paired with their mention. Precisely,
we aggregate and preprocess gold annotations com-
ing from 10 popular EE benchmarks, intending
to systematize the community work matured with
public evaluation programs and solving the low
coverage issue. Among the exciting multimodal op-
portunities enabled by these datasets, we show that

out-of-the-box transformer models can effectively
learn text → event and event → text translations
(Figure 1). We achieve this symmetry by using the
same architecture for parsing and generation, as
well as for all event instances, originally belong-
ing to separate EE tasks with independent output
spaces. To the best of our knowledge, this is the
first study to handle such a variety of event schema
without distinct models or additional task-specific
modules. Our key contributions are the following:

1. We devise a novel event linearization with
a consistent textual output format based on
formal grammar (§3).

2. We introduce BIOT2E and BIOE2T, two
large-scale biomedical event-text aligned
datasets designed to frame the extraction and
verbalization of general biomedical events as
text-to-text tasks (§4).

3. We experiment EE, EGV, and MTL (§5
and §6). We demonstrate that autoregres-
sive seq2seq models can achieve SOTA
performance—previously attained only by
discriminative solutions—while being much
more flexible and scalable.

2 Related Work

Graph-Text Paired Data. Many graph-text
paired datasets have sprung up. Nevertheless, an-
notating text or semantic graphs is expensive, espe-
cially for specific fields like biology. Most of the
resources are domain-general and focus on knowl-
edge graphs (KGs). Although there are datasets as-
sembled by crowdsourced human annotators—such
as WebNLG (Gardent et al., 2017), one common
thread is using NLP tools and automatic alignment
heuristics to forge silver pairs massively, e.g., map-
ping Wikipedia sentences to Wikidata triples (Elsa-
har et al., 2018; Agarwal et al., 2021) or Wikipedia
paragraphs to Freebase subgraphs (Wang et al.,
2021a). Predicate linkers and PLMs are already
used to inherently construct KGs from the biomed-
ical literature (Geleta et al., 2021), but the rela-
tions extracted for each document are generally
not openly released. In contrast, we present the
first datasets directly pairing scientific sentences to
biomedical event graphs, usable as evaluation gold
standards thanks to expert user provenance.

Event Extraction. In the NLP field, EE is placed
within the more general information extraction (IE)
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and structured prediction (SP) areas. Specifically,
it aims to interpret and distill free-text chunks into
structured, semantic, and fine-grained relations cap-
turing an interplay between many different partic-
ipants (entities or other events) usually subjected
to a state change. EE requires to recognize triggers
(text spans that clearly testify the occurrence of a
real-world event), classify the type of the events
for which they act as lawyers, detect involved
0-N arguments (entity mentions and corresponding
classes, or sub-event triggers), predict their seman-
tic role, and establish some optional event-level
modifiers. For example, a Localization event is
indicated in Figure 1 at “liberates”, involving three
bio-entities. Notably, end-to-end EE systems usu-
ally integrate named entity recognition (NER) and
coreference resolution. Compared to the more tra-
ditional binary relation extraction, where the goal
is deriving subject-relation-object triplets, EE is a
more complex task that needs to deal with high-
level linguistic phenomena, an avalanche of narra-
tive styles, and syntactic constructions.

Early approaches tackled EE with pipeline archi-
tectures to decompose the problem in its sequential
subtasks and independently train a classifier for
each of them, also relying on gold-tagged entities
to eventually ignore NER objectives. Historically,
first attempts made use of pattern-based techniques
(Cohen et al., 2009) or data-driven methods cen-
tered on generalizing classical machine learning
algorithms to SP, including, among others, support
vector machines (Miwa et al., 2012). More recently,
joint and MTL architectures have gained popular-
ity among researchers, training a single model on
all EE sub- and linked-tasks simultaneously, bene-
fitting from information sharing and mutually im-
proving local predictions. Deep learning is the
main architect of this transition, with many EE ef-
forts rooted in transformers (Ramponi et al., 2020),
convolutional (Björne and Salakoski, 2018), recur-
rent (Li et al., 2019), and graph (Zhao et al., 2021)
neural networks (CNNs, RNNs, GNNs). Current
SOTA EE solutions train end-to-end neural models
on top of the features learned by domain-specific
PLMs, such as SciBERT (Beltagy et al., 2019).
In this line of work, DeepEventMine (Trieu et al.,
2020) presently holds leading performance on most
biomedical EE (BEE) benchmarks, with custom
discriminative classification layers above SciBERT-
encoded intra-sentence spans. Most BEE systems
work within the sentence scope, not being able to

scale to entire documents and facts with scattered
arguments. Our framework is designed for joint
EE, also including the NER subtask2, and is not
limited to sentence-level extraction in principle.

Data-to-Text. Data-to-text is the task of gener-
ating natural language text conditioned on source
content provided in the form of structured data. Dif-
ferent GNNs have been proposed to better encode
the input structure in the case of graphs, like Graph
Transformers (Koncel-Kedziorski et al., 2019) and
DualEnc for KG-triples ordering and verbalization
(Zhao et al., 2020). On the other hand, recent works
(Kale and Rastogi, 2020; Wang et al., 2021c; Agar-
wal et al., 2021) have favored seq2seq pre-trained
models—with T5 (Raffel et al., 2020) as promi-
nent example—which showcased better grammat-
ical correctness and domain-shift robustness. To
the extent of our knowledge, no prior research has
attempted to verbalize event graphs. In this paper,
we start from these heated evidences to fill the gap.

Seq2seq for Structured Prediction and Graph
Verbalization. It has become increasingly popu-
lar to cast structured prediction problems as trans-
lations between natural languages, linearizing data
when necessary and leveraging the transfer learn-
ing capacity of a transformer-based PLM. Text-
to-text reframing has been applied to many con-
texts, from general NLP tasks (Raffel et al., 2020)
and semantic role labeling (Blloshmi et al., 2021)
to relation extraction (Huguet Cabot and Navigli,
2021). Closer to us, TANL (Paolini et al., 2021)
and TEXT2EVENT (Lu et al., 2021b) are the only
works carrying out this strategy on EE. However,
the authors solely consider ACE2005 and ERE, two
simplistic newswire datasets with a small type cov-
erage and flat target structures. More importantly,
TANL encodes event annotations in the form of
augmented text, dividing EE into different subtasks
with the lack of support for nested events, modifiers,
or event overlapping, which are instead common
in biology, thus being not directly applicable to our
datasets. Instead, we solve BEE by generating the
output graph at once, supporting complex struc-
tures and schema. Outside of our work, symmetric
parsing and generation have been chiefly explored

2We do not predict relationships between gold entities,
as is frequently assumed in other works dependent on extra
input annotations or external NER tools that interrupt the
backpropagation process. On the contrary, our models are
directly trained to recognize target entities and classify their
type as a fundamental subtask for the ultimate goal of end-to-
end event extraction via text translation.
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with AMRs (Konstas et al., 2017; Bevilacqua et al.,
2021). The aforementioned publications highlight
the relevance of seq2seq models. Not only do they
exhibit strong performance, but they also lean on
decoding mechanisms rather than predefined type
sets, being easily extendable to new or unseen in-
puts. We also underline that, by conditioning future
decoding on previous generations, they implicitly
deal with dependencies among graph records (i.e.,
non-atomic extractions).

3 Event Linearization

Seq2seq models require that both the input and tar-
get be presented as a linear sequence of tokens. In
this section, we describe our format design concept
to reformulate event graphs as strings.

Events have an n-ary and potentially nested struc-
ture, with optional modifiers (e.g., “polarity”, “cer-
tainty level”) reshaping the described interaction.
Like many other relational data, events can be con-
veniently and naturally modeled as rooted directed
acyclic graphs (Frisoni et al., 2021). With this for-
malization, triggers and entities are nodes, while ar-
gument roles define edges. Each trigger, entity, and
trigger-trigger/trigger-entity association is assigned
to its type according to a predefined ontology3.

We revisit the formulation by (Paolini et al.,
2021) and put forward a formal event language de-
signed to be easy and deterministically reversible
to event graphs. While being more complex to
learn, our linearization comes with the advantage
of enclosing entire events in single expressions, re-
ducing the overhead of generating different output
sequences for trigger and argument annotations.
Each node is surrounded by the special tokens
[ and ], which represent semantic structure indi-
cators. Inside, a sequence of |-separated tags re-
ports the text span, the type (described in natural
words), and a list of X=Y relations, where X is the
argument role and Y is the target trigger. Note
that the same entity can be coupled to different
events (triggers) with distinct roles (i.e., double
tagging). The root trigger is a source vertex and
has not incoming edges. Trigger nodes also spec-
ify event-level modifiers as additional X=Y assign-
ments, in the form Property=Value (e.g., “Po-

3In this paper, we refer to closed-domain EE settings.
Please note that closed-domain EE exclusively searches for tar-
get events (e.g., positive/negative regulation, binding, carcino-
genesis) with a defined schema. On the contrary, open-domain
EE does not assume specific target types and aims to detect
general events unsupervised, thereby being more limited.

larity=Negative”). So, the information on event
components (i.e., nodes and their embedded in-
terconnections) are all within [. . . | . . .] patterns,
which can be nested in case of sub-events. The final
string minimizes the number of tokens to be submit-
ted or generated so as to make encoding/decoding
more efficient. Event constituents are sorted by
their order of appearance in the .a2 for consistency.

We define a context-free grammar (§A.1) and
test it with JFLAP (Rodger and Finley, 2006). Fig-
ure 2 depicts a practical example of textualized
nested bio-event.

[over-expressed | Gene_expression | Source = Other] 
[Bmi-1 | Gene |  Theme = over-expressed] 

[[promote | Positive_regulation | Cause = over-expressed] 
[tumorigenesis | Carcinogenesis | Theme = promote]]

over-
expressed

Gene expression 
Source=Other 

Theme Cause tumori-
genesis

Carcinogenesis

Bmi-1

Gene

Themepromote

+Reg

text

trigger

Type 
Modifier(s) 

event argument

Role
text

entity

Type

Figure 2: Example of textually linearized event graph.

4 Datasets

Based on §3, we build new corpora suitable for text-
or graph-conditioned sequence modeling. Here, we
present the construction process of BIOT2E and
BIOE2T, together with their main properties.

4.1 Construction Process

4.1.1 Data Collection
Obtaining a large gold dataset of jointly annotated
pairs of sentences and event graphs may require
years of labor (Kim et al., 2008). We overcome this
issue by combining the training sets of 10 influen-
tial real-world datasets originally designed for BEE,
primarily derived from the ongoing BioNLP-ST
series (Kim et al., 2019). Table 1 reports the char-
acteristics of the seed datasets used for BIOE2T
and BIOT2E construction4. These sources com-
prise seminal bioinformatics projects like GENIA
(Kim et al., 2013a) and well-known tasks meeting

4We intentionally focused on fusing existing benchmarks
to build a highly-comprehensive biomedical evaluation gold
standard (not possible with silver pairs forged with heuristics).
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biologists’ needs, including topics such as cancer
genetics (Pyysalo et al., 2013) and infectious dis-
eases (Pyysalo et al., 2011). Each focuses on a
particular domain, differs in the annotation schema,
and consists of human-curated event annotations
on top of PubMed abstracts and full papers (En-
glish language). The reader should be aware that
biomedical benchmarks generally support only two
boolean modifiers—negation and speculation. On
the flip side, modifiers are essential for a correct
event interpretation, even with instances having the
same triggers and arguments. Given the potential
and uniqueness of modifiers in event data, we in-
clude GENIA-MK (Miwa et al., 2012) to manage
more sophisticated forms of meta-knowledge dur-
ing translation. Details on embraced modifiers are
available in §A.2.

Corpus Domain(s) #Documents Annotation
Schema

Genia Event
Corpus (GE08)
(Kim et al., 2008)

Humans blood cells
transcription factors

1,000 abstracts
35 entity types,
35 event types

B
io

N
L

P-
ST

’1
1

Genia Event
2011 (GE11)
(Kim et al., 2012)

See GE08
1,210 abstracts,
14 full papers

2 entity types,
9 event types,
2 modifiers

Epigenetics and
Post-translational
Modifications
(EPI11)
(Ohta et al., 2011)

Epigenetic change
and common protein
post-translational
modifications

1,200 abstracts
2 entity types,
14 event types,
2 modifiers

Infectious Diseases
(ID11)
(Pyysalo et al., 2011)

Two-component
regulatory systems

30 full papers
5 entity types,
10 event types,
2 modifiers

Multi-Level
Event Extraction
(MLEE)
(Pyysalo et al., 2012)

Blood vessel
development from
the subcellular to
the whole organism

262 abstracts
16 entity types,
19 event types

GENIA-MK
(Miwa et al., 2012)

See GE08 1,000 abstracts

35 entity types,
35 event types,
5 modifiers
(+2 inferable)

B
io

N
L

P-
ST

’1
3

Genia Event
2013 (GE13)
(Kim et al., 2013a)

See GE08 34 full papers
2 entity types,
13 event types,
2 modifiers

Cancer Genetics
(CG13)
(Pyysalo et al., 2013)

Cancer biology 600 abstracts
18 entity types,
40 event types,
2 modifiers

Pathway Curation
(PC13)
(Ohta et al., 2013)

Reactions,
pathways,
and curation

525 abstracts
4 entity types,
23 event types,
2 modifiers

Gene Regulation
Ontology (GRO13)
(Kim et al., 2013b)

Human gene
regulation and
transcription

300 abstracts
174 entity types,
126 event types

Table 1: Summary of the biomedical event extraction
corpora used for constructing BIOT2E and BIOE2T.
All data is in public domain and licensed for research
purposes.

4.1.2 Data Preprocessing, Filtering and
Sampling

Annotations follow standoff .a*, .ann, or .xml for-
mats, where labels are connected to the text spans
of the document through (start, end) character off-
set pairs. We automatically produce the linearized
version of each event graph by parsing and nor-
malizing these files, otherwise having structure

and labeling variants depending on the original
dataset. For example, .ann files identify modifiers
with “A” instead of “M”; GENIA-MK specifies the
value of each property and not the active type only
(e.g., “Speculation=True” versus “Speculation”);
GRO13 supports the recognition of triggers or en-
tities with scattered text spans (e.g., “RFX . . . 3”
→ “RFX3”). Our encoding formalism constitutes
a straightforward approach to control such nuances
and unify all EE sources. To force a network to
learn the connection between linguistic phenomena
and event modifiers, we consistently report the lat-
ter in an expanded version, standardizing the names
in case of inconsistencies (e.g., “Negation”→ “Po-
larity=Negative”). We eliminate duplicate events,
instances with annotation errors (e.g., references
to undefined entities) or with nesting cycles. If
multiple overlapping linearizations from different
datasets correspond to the same event mention, we
keep the longest and most complete one.

For BIOE2T (verbalization), we map each tex-
tualized graph with its mention. At this juncture,
it is essential to clarify that, with the term “event
mention”, we refer to the complete sentences that
describe all the components of a certain event and
therefore contain all the offsets related to its trig-
gers and arguments. Note that an event mention
(generation target) can be longer than one sentence.
Linearizations of events sharing the same text span
(i.e., double tagging) are decomposed in multiple
records. Poorly represented event types (less than
three occurrences) are discarded. Similarly, single-
node (trigger only) events are ignored since pre-
dicting entire sentences from such a little context
would be unreasonable. Using stratified random
sampling, we split data in training, validation, and
test sets with a 90-5-5 proportion. We stratify on
multiple variables: (i) the source dataset; (ii) the
event type (the main one in case of nesting, i.e., the
graph root); (iii) the event mention length.

BIOT2E (parsing) is specular, except to include
a balanced number of negative examples, manage
double tagging by concatenating linearized events,
and not be filtered, thus enabling 1:N extractions.
We map a PubMed sentence to a target linearization,
if present, or to an empty string otherwise. Hence,
we perform BEE at a sentence level, but we do not
exclude the investigation of document granulari-
ties in future works thanks to efficient transformers
(Tay et al., 2020)—e.g., LongT5 (Guo et al., 2022).
By accommodating these steps, we treat originally
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distinct tasks as different datasets of the more gen-
eral BEE task.

4.2 Data Properties

We devote the last part of this section to quanti-
tatively analyze the composition of BIOE2T and
BIOT2E. Basic statistics are shown in Table 2.
Note that the total number of unique event, entity,
role, and modifier types are ∼170, ∼150, 19, and
6, respectively, considerably larger than those in
previous standalone corpora (Frisoni et al., 2021).
Figure 3 shows the distribution of event graph sizes
and mention lengths, skewed with a long tail.

Train Valid Test All
61,319 3,407 3,407 68,133

# Pairs
36,635 2,035 2,036 40,706

# Event types 166 168 95 90 96 96 166 170
# Entity types 148 141 81 66 85 72 150 142
# Argument role types 19 19 15 16 15 14 19 19
# Modifier types 6 6 6 6 6 6 6 6

min 2 1 2 1 2 1 2 1
mean 4.29 3.65 4.31 3.66 4.30 3.63 4.30 3.65# Nodes per

event
max 35 25 35 20 31 19 35 25
min 0 0 0 0 0 0 0 0
mean 2.43 2.26 2.44 2.35 2.40 2.25 2.42 2.26# Modifiers per

event
max 5 5 5 5 5 5 5 5
min 1 1 1 1
mean 1.19 1.19 1.19 1.19

# Sentences
per event
mention max 3 3 3 3

min 6 2 8 2 11 2 6 2
mean 58.55 38.57 58.61 37.67 58.66 39.18 58.56 38.56# Tokens per

event mention
max 301 301 212 161 301 174 301 301
min 0 0 0 0
mean 1.40 1.39 1.43 1.40# Events per

sentence
max 28 15 24 28

Table 2: Basic statistics about our BIOE2T and BIOT2E
(blue text) datasets.

5 Experimental Setup

In this section, we provide the formal definition of
text-to-event parsing and event-to-text generation.
Then, describe the setup of the experiments we
conducted to evaluate our framework in both tasks.

5.1 Tasks

We see event graph extraction and verbalization
as bidirectional transduction tasks via conditional
generation, similarly to machine translation.

Training an event parser means finding a set of
parameters θP for a model f that predicts an event
graph ê given a text span s:

ê = argmax
e

f(e|s; θP ). (1)

Training an event mention generator require
finding a set of parameters θG for a model f that
predicts a text span ŝ given an event graph e:

ŝ = argmax
s

f(s|e; θG). (2)

In both cases, we use the same family of pre-
dictors f (i.e., architectural symmetry without
dataset- or task-dependent modifications) by means
of seq2seq models. We focus on two data settings:
(i) multiple datasets for the same task (multi-dataset
based on BIOT2E and BIOE2T with independent
parameters θP and θG), and (ii) all datasets across
different tasks (multi-task with shared parameters).

5.2 Models
Given the above-reframed definition of EE and
EGV, we employ encoder-decoder architectures
to autoregressively predict the target sequence y
conditioned on the input sequence x:

p(y|x) =
|y|∏

i=1

p(yi|y<i, x), (3)

where y<i = y1 . . . yi−1 and p(yi|y<i, x) is the
probability over the target vocabulary V normal-
ized by softmax(·). Because most of the tokens
in linearized event representations are also natural
language words, we investigate two PLMs with dif-
ferent capacities, aiming to reuse their general text
and world knowledge: T5-Base (Raffel et al., 2020)
and BART-Base (Lewis et al., 2020). Details about
models, training, and hardware configurations are
listed in §A.3. According to our literature review,
T5 and BART are the two leading generative mod-
els adopted in this field. Basically, they are both
transformer-based models (with a subword vocabu-
lary) pre-trained on massive corpora through a de-
noising self-supervised task, i.e., reconstruction of
artificially corrupted spans. T5 comes pre-trained
also on a multi-task mixture of text-to-text super-
vised tasks, but none of these include language gen-
eration from structured data. As remarked by other
researchers for AMR (Bevilacqua et al., 2021), we
hypothesize that denoising pre-training is benefi-
cial for EE and EGV. Linearized events can be seen
as reordered and partially corrupted sentences that
a model must reconstruct, and vice versa. Given a
training dataset D = {(x1, y1), . . . , (x|D|, y|D|)},
the learning objective is the negative log-likelihood
(teacher forcing):

L = −
∑

(x,y)∈D
log p(y|x, θ). (4)

5.3 Evaluation
Parsing. While training is based on a likelihood
objective, we assess EE models using standard pre-
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Figure 3: Distribution of instance origins, event graph sizes, and event mention lengths across our BIOE2T and
BIOT2E datasets. Tokens refer to the T5 vocabulary.

cision, recall, and F1 scores according to the “ap-
proximate recursive matching” criterion (Kim et al.,
2011) with string correspondence equality. Since
our models stand on free generation, the derived
event annotations are not accompanied by offset
indices communicating their position in the origi-
nal documents, preventing the “approximate span
matching” relaxation. To avoid introducing error
sources affecting results interpretation, we do not
apply fragile heuristics such as likelihood-based
class predictions (Paolini et al., 2021) or offset re-
construction (Lu et al., 2021b). In fact, (i) BIOT2E
has a high type heterogeneity overhead; (ii) many
sequences mention multiple events with the same
trigger and scattering arguments, making difficult
to assume that the matching argument-utterance is
the one closest to the trigger.

Generation. To quantitatively compare predic-
tions against ground truth literature sentences on
the test set, we use a broad spectrum of natural
language generation (NLG) evaluation metrics. We
deepen them in §A.4 and refer the reader to (Celiky-
ilmaz et al., 2020) for further details on their prop-
erties. In line with previous graph-to-text works,
we include BLEURT (Sellam et al., 2020), a recent
regression-based measure showing an higher corre-
lation with human judgments than other simple yet
widespread n-gram-overlap-based metrics.

6 Results

6.1 Event Extraction

Multi-dataset and Text-to-Text EE. Table 3
summarizes the BEE F1-scores of our end-to-end
models trained on BIOT2E when evaluated on the
validation set of the individual tasks5. We report
complete precision and recall results in §A.5. Base-
line systems have been assessed on the official

5Task organizers’ servers for test set evaluation are cur-
rently non-available. Accessed on May 9th, 2022.

BEE datasets—following a standard <.txt, .a1, .a2>
structure—provided by each BioNLP shared task.
They adopt discriminative architectures, meaning
they train a distinct model for each task by rely-
ing on benchmark-specific event/entity/role target
classes covered in .a1 and .a2 files. Despite con-
ducting training on all tasks at once (unified thanks
to a text-to-text format), we separately evaluate our
models on each validation set, allowing for a fair
comparison with the baseline. Thanks to knowl-
edge sharing among several biomedical subareas
and seq2seq, we significantly push the state-of-
the-art on all the benchmarks, with T5 empirically
producing better results than BART. Compared to
the solutions previously known in the literature
(Frisoni et al., 2021), our framework’s main advan-
tage is a higher recall and generalization capacity.
We lay out a detailed error analysis in §A.6.

Low-resource. We experiment on the CG13
dataset, using only 1% to 10% of the training data
(Figure 4, §A.3). F1-scores in such low-resource
regime demonstrate that our framework is data-
efficient compared to DeepEventMine, the SOTA
discriminative model for BEE.
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Figure 4: F1 comparison of our proposed models and
DeepEventMine with train down-sampling on the CG13
validation set. Mean and standard deviation over 3 runs.
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Works
Datasets

GE08 GE11 EPI11 ID11 MLEE GE13 CG13 PC13 GRO13 GENIA-MK
si

ng
le

-t
as

k Shared task winner 43.12† 55.90 56.41 50.10 – 50.74† 55.41† 51.10† 22.00† –
Trieu et al. (2020)
w/o gold entities

– 56.64 55.81 50.10 51.73 45.95 54.27 50.53 – –

Abdulkadhar et al. (2021) 63.09† 61.74† – – – 58.30† – – – 61.58†

m
ul

ti-
ta

sk

Ours
T5-Base[BIOT2E] 70.74 73.62 84.43 84.13 79.91 81.18 80.10 83.19 81.91 83.24
BART-Base[BIOT2E] 68.50 69.55 78.79 78.16 73.82 73.84 72.05 73.20 71.79 75.25

Table 3: F1-score (%) performance comparison on the validation set of the most significant biomedical event
extraction tasks (eight BioNLP-STs, MLEE, and GENIA-MK). Top: original BioNLP-ST winning results and
current SOTA neural systems (with per-task models); Bottom: proposed framework (with multi-task models).
† indicates test set results if validation ones are unavailable. The highest scores are bolded. Both our models
significantly outperform competitors (student t-test, p<0.05).

6.2 Event Graph Verbalization

NLG metrics. In Table 4, we show the event-
to-text results achieved by T5 and BART on the
overall BIOE2T test set. Since there are many
ways to express the same symbolic concept, we use
beam search at inference time to return all the dif-
ferent top beam sequences (i.e., multi-output). To
give additional insights on generative performance,
we apply metrics to all target-output pairs and not
only to the one with the highest log-likelihood.
T5-Base performs the best across all the NLG
metrics, which—despite capturing different dimen-
sions (grammatical correctness, fluency, informa-
tiveness, adequacy, etc.)—prove to be consistent
with each other. Interestingly, we observe a relevant
score gap between max-likelihood and max-score
selection within a beam. This is strong evidence
of the decoding strategy impact (often overlooked),
also reinforcing the hypothesis that high quality
human language does not follow a distribution of
high probability next words (Holtzman et al., 2020).
Moreover, it should be emphasized how this de-
tachment is much more attenuated with evaluations
closer to a semantic level. Sequences generated
via beam search tend to be syntactically different
(albeit moderate) but semantically similar, under-
lining the importance of metrics to grasp meaning
preservation. From qualitative investigations, both
models displays promising abilities in translating
modifiers in elements of language (§A.7).

Graph Structure and Output Length Impact.
Figure 5 shows the effect of the event graph size
on verbalization, measured with BLEURT, abstract-
ness (Gehrmann et al., 2019), and repetitiveness
(Peyrard et al., 2017)6. In this experiment, we aver-

6Abstractness: percentage of new n-grams in the predic-
tions, compared to the references. Repetitiveness: average

T5[BIOE2T] BART[BIOE2T]

MAXL MAXS MAXL MAXS

BLEU 63.8 69.6 (+5.8) 53.1 59.6 (+6.5)
ROUGE-1 68.8 73.9 (+5.1) 60.0 65.6 (+5.6)
ROUGE-2 61.3 66.7 (+5.4) 49.8 55.7 (+5.9)
ROUGE-L 66.1 71.2 (+5.1) 56.2 61.8 (+5.6)
METEOR 66.6 72.1 (+5.5) 56.3 64.4 (+6.1)
BLEURT 68.9 73.5 (+4.6) 59.8 64.4 (+4.6)
NUBIA 65.2 73.1 (+7.9) 56.2 64.3 (+8.1)
BERTSCORE 94.1 95.0 (+0.9) 92.3 93.4 (+1.1)
BARTSCORE -2.5 -1.7 (+0.8) -2.31 -1.31 (+1.0)

Table 4: Event-to-text generation results on the BIOE2T
test set. We show the average metric score consider-
ing the sequence with maximum likelihood (MAXL)
within a beam and the one obtainable by taking the se-
quence with maximum ground-truth-match according
to the metric of interest (MAXS). The gap between the
two is shown in round brackets.

age the metric score for all the generated sequences
and divide the results by the node number. We find
that sequence quality increases as the event graph
size increases, following a logarithmic function.
This behavior is justified by the fact that BIOE2T,
differently from other datasets like WebNLG, con-
tains similar text lengths for various graph sizes.
When the input is a larger event graph, the model
has more contextual information to be leveraged
during the generation, approaching the target syn-
tactically and semantically. This thesis is also sup-
ported by the decline in abstraction, while repeti-
tiveness is generally low and appears proportional
to prediction length.

6.3 Multi-task Setting
Our method naturally allows us to train a single
model on multiple datasets covering different NLP
tasks, besides EE and EGV. In this setting, we use

number of n-grams with at least one repetition in the generated
sequences. We scan word-level unigrams.
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Figure 5: Average BLEURT score, abstractness, repeti-
tiveness, and prediction length compared to the size of
the event graph to condition on.

a task-specific prefix (e.g., “extract events:”) to
let the model know the requested transformation
for each input. In particular, we inspect the perfor-
mance gap on the PUBMED dataset (Cohan et al.,
2018) for single document summarization, reveal-
ing a fairly advantage in terms of ROUGE (Table 5).
Our intuition is that both EE (with its event-to-text
back translation) and summarization tasks aim to
distill salient information from massive text, pro-
viding complementary features for each other that
can be beneficial for general NLP.

T5-Base
(R / P / F1)

T5-Base
Event-driven MTL

(R / P / F1)
ROUGE-1 27.24 / 58.11 / 32.97 33.46 / 47.94 / 39.41
ROUGE-2 10.84 / 23.82 / 13.15 12.12 / 17.92 / 14.46
ROUGE-L 18.08 / 40.29 / 22.03 22.19 / 32.01 / 26.21

Table 5: Single document summarization performance
on PUBMED test set w/o and w/ event-driven MTL.

7 Conclusion

This paper presented the first sequence-to-sequence
framework for both biomedical event extraction
and verbalization. Concretely, we proposed
BIOT2E and BIOE2T, two highly comprehensive
datasets with parallel text-event gold annotations,
constructed through a novel linearization technique.
By training autoregressive language models on
them, we achieved an average F1-score of 0.81
on ten benchmarks, making considerable improve-
ments over previously published work. In stark con-
trast with discriminative solutions, we employed
the same architecture to perform previously dis-
tinct tasks, exploiting pre-trained knowledge and

label semantics. Experimental results also proved
the usefulness of (i) knowledge sharing between
different biomedical spheres in event-based tasks,
(ii) events in improving model understanding for
NLP tasks in general, like document summariza-
tion. We hope that our contributions will lead to
further progress in natural language understand-
ing and generation as transfer learning becomes
even more vital for graph-to-text and text-to-graph
translations.

Future directions At the edge of our knowl-
edge, this is the first work that proposes single
deep neural models capable of effectively extract-
ing (and back-translating to text) such a variety
of biomedical events and their components. This
high ontological coverage opens the door to numer-
ous applications and research blueprints. Future
work should tackle: (i) document-level granulari-
ties; (ii) prompting-based purely generative mod-
els (Ma et al., 2022); (iii) text←→graph boosting
approaches echoing autoencoders and Cycle-GT
(Guo et al., 2020); (iv) few-shot learning; (v) event
aggregation towards automatic corpus-level knowl-
edge graph learning (Frisoni et al., 2020a; Frisoni
and Moro, 2020; Frisoni et al., 2020c,b); (vi) con-
version of events to logic and constrained decod-
ing algorithms (Lu et al., 2021a); (vii) infusion of
events in pre-trained language models for tasks like
biomedical multi-document summarization (Moro
et al., 2022) and information retrieval (Moro and
Valgimigli, 2021).

8 Ethical Considerations

Largely pre-trained language models that we refer-
ence in our study might perpetuate and exacerbate
biases and stereotypes hardwired in the training
data, risking generating false or misleading infor-
mation (Zhang et al., 2020a; Nadeem et al., 2021).
Healthcare, in particular, requires strong guarantees
about the factuality and reliability of predictions,
but current state-of-the-art NLP solutions cannot
establish such assurance. We acknowledge these
issues and caution those who build on our frame-
work to consider the aforementioned implications
before deploying systems in the real world. Al-
though automatic extraction of semantic relations
from scientific documents is fundamental in the
biomedical field, we do not encourage users to em-
ploy our models, like previous ones, for critical
applications at present performance levels. No sen-
sitive information is contained within our datasets,
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which are derived from publicly and openly avail-
able PubMed articles. We honor and support the
ACL Code of Ethics.
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A Appendix

A.1 Formal Event Grammar

Linearized events follow the formal context-free
grammar orderly detailed in Table 6.

A.2 Insights on Event Modifiers

Table 7 recaps the event modifiers covered by our
work, their meaning and possible values.

A.3 Training Details and Reproducibility

T5 and BART. We reimplemented T5-Base
(∼220M parameters, 12-layers, 768-hidden, 12-
heads) in Flax (T5X) starting from the Google
Research codebase7 and built our BART-Base
(∼139M, 12-layers, 768-hidden, 16-heads) model
in PyTorch using the HuggingFace’s Transformers
library8. For all variants, weights are initialized
through the official checkpoints (C4 pre-training
for T5). For verbalization, we set the maximum
length for event mentions and linearized event
graphs to 200 and 400, respectively. For parsing,
we extended the linearization maximum length to
650. Instead, we used 1024 and 256 for single-
document summarization input/output (truncated).
We used BF16 mixed precision and a batch size
of 16 (with gradient accumulation every 2 batches)
for all models. We employed the Adam optimizer.
Following (Raffel et al., 2020), T5 models are fine-
tuned with a constant learning rate of 0.001, 1000
warmup steps, and a 0.1 dropout rate. For BART,
we used default hyperparameters, but we did not

7https://github.com/google-research/t5x
8https://huggingface.co/transformers/

model_doc/bart.html

penalize the model for the generation of repeated
ngrams, e.g., multiple opening or closing brack-
ets. We chose the best checkpoints based on the
ROUGE score on the validation set; we found that
it highly correlates with EE metrics (due to the
extractive nature of the task). At prediction time,
we used beam search with beam size 4 for genera-
tion and greedy decoding for parsing. We trained
single-task T5 and BART models for 50 epochs
(≈40 and ≈30 hours per full-training on BIOE2T
and BIOT2E, respectively). The estimated9 CO2
impact incurred by each model training belongs to
the range [6.09, 8.12] kg (carbon footprint). Re-
garding T5 MTL, we prepended task-specific tags
to the input records and performed 10 epochs using
a mixture with 100% data proportion sampling for
each task.

DeepEventMine. We reimplemented the train-
ing script (not released by the authors, accessed on
January 16th, 2022), faithfully following the steps
listed in the paper (Trieu et al., 2020). For compar-
ison, we modified the original evaluation script to
assess predictions without gold entities (not used
by our framework).

Low-resource. As outlined in §6.1, we experi-
mented on the CG13 dataset with only a limited
portion of the training set available. We selected 1,
2, 5, and 10 PubMed abstracts with an average num-
ber of mentioned events. To account for the small
dataset size, we fine-tuned on CG13 for a greater
number of epochs, proportional to the size of each
partition (50x, 25x, 10x, 5x). So, we trained T5
and BART for 2.500, 1.250, 500, and 250 epochs;
DeepEventMine for 4.000, 2.000, 800, and 400
epochs. We performed 3 runs (each model being
fine-tuned on the same 4 subsets of the training set
and then evaluated on the entire validation set).

Hardware Setup. We ran each experiment on
a workstation having two Nvidia GeForce RTX
3090 GPUs with 24GB of dedicated memory each,
64GB of RAM, and a Intel® Core™ i9-10900X
CPU @ 3.70GHz.

A.4 NLG Evaluation Metrics
Metrics (default parameters and official repository
implementation) are summarized in Table 8. As for
BARTSCORE and BLEURT, we used the BLEURT-
20 and BARTSCORE-CNNDM pre-trained models,
respectively.

9http://green-algorithms.org/

2705



Symbol Description
EV event
T trigger
A argument
TST text span trigger
TRG trigger role group
TSE text span entity
EVT event type
MG modifier group
M modifier name
MV modifier value
E entity
ET entity type
RG role group
R role

(a) Symbols in V

Symbol Type Set
tst ˆ[A-Za-z0-9]+$
tse ˆ[A-Za-z0-9]+$
evt EventTypes
m Modifiers
mv ModifierV alues
et EntityTypes
r RoleTypes

(b) Symbols in Σ

Id Rule Id ↓ Rule ↓
1 EV → T A 12 E → [TSE | ET |RG]
2 T → [TST | EV T MG TRG] 13 RG→ RG |RG
3 MG→MGMG 14 RG→ R = TST
4 MG→ |M =MV 15 TST → tst
5 MG→ ϵ 16 TSE → tse
6 TRG→ TRG TRG 17 EV T → evt
7 TRG→ |R = TST 18 ET → et
8 TRG→ ϵ 19 M → m
9 A→ AA 20 MV → mv
10 A→ E 21 R→ r
11 A→ EV 22 EV → EV EV

(c) Rules in R

Table 6: Formal definition of the event grammar G = ⟨V,Σ, R,EV ⟩. V is the finite set of variables (a); Σ is the
finite set of terminal symbols and therefore the alphabet of our event language (b); R is the finite set of production
rules (c); EV is the start variable. As for (b), each symbol on the left belongs to the type set on the right, which
depends on the dataset event schema. The only exception concerns tst and tse which are alphanumeric strings,
reported as regex for notational simplicity. The pipe marker is intended as a character and not as a logic operator.

Modifier Definition Possible values

Polarity
The truth value of an
event

Positive (default)
Negative

Speculation
Whether an event is
speculated or not

True, False (default)

Source
Origin of the knowledge
expressed by an event

Current paper (default)
Other

Manner
The intensity level of an
event

High, Low, Neutral (default)

Certainty level
The confidence of an
event being expressed

L1 (low confidence),
L2 (not complete confidence)
L3 (high confidence, default)

Knowledge type
The overarching
information expressed
by the event

Investigation, Observation,
Analysis, Fact, Method,
Other (default)

Table 7: Summary of the event modifiers in BIOT2E
and BIOE2T.

Metric U S Strategy Model(s)
BLEU ✓ N-gram recall –
ROUGE ✓ N-gram precision –

METEOR ✓ N-gram overlap
w/ synonym match

–

BERTSCORE ✓ Semantic similarity BERT

BARTSCORE ✓
Conditioned generation
for faithfulness, precision,
and recall

BART

BLEURT ✓ Human score prediction BERT

NUBIA ✓ Human score prediction
RoBERTa
GPT-2

Table 8: Metrics applied for evaluating event graph ver-
balization performance. U: unsupervised, S: supervised,
based on the need for human judgments to train. They
belong to [0, 1], with the exception of BARTSCORE,
whose range is ]−∞, 0]. The higher the score, the more
valid the hypothesis is.

A.5 Detailed Event Extraction Results

We report detailed event extraction performance
for our models in Table 9.

A.6 Error Analysis

A.6.1 Event Extraction
We quantitatively classify errors into three broad
categories: format, trigger, and argument errors.
Further, we organize the latter two in fine-grained
categories: under-prediction (i.e., expected but not
predicted), over-prediction (i.e., predicted but not
expected), and wrong type. Finally, we distinguish
the target type, especially keeping track of multi-
event outputs and nested (i.e., complex) events.
Table 10 reports the proportions of error types we
identified. We notice the most considerable fraction
of errors is due to triggers. From a closer look, we
found that over-predicted triggers are often linked
to generic words used very frequently to indicate
specific event types. For instance, similarly to what
emerged in previous works (Ramponi et al., 2020),
T5[BIOE2T] identifies a positive regulation event an-
chored at “activated” in the sentence: “Tax [...]
maximally activated HTLV-I-LTR-CAT and kappa
B-fos-CA” albeit the gold standard does not con-
tain the event in this instance. However, we believe
these errors are acceptable from a semantic point
of view and sometimes highlight a low-annotation
problem within the datasets. As for wrong trigger
and argument types, the model tends to generate
different but semantically equivalent labels, e.g.,
“sufficient to restore” instead of “restored”, “Pro-
tein_molecule” instead of “Protein”. This issue
underlines the need for alternative automatic evalu-
ation metrics operating at the semantic level. For-
mat errors are less frequent, proving that the model
can successfully manage bracket [. . . | . . .] rules.

2706



Works
Datasets

GE08 GE11 EPI11 ID11 MLEE GE13 CG13 PC13 GRO13 GENIA-MK

T5-Base[BIOT2E]

R
P
F1

67.71
74.05
70.74

74.57
72.68
73.62

92.28
77.81
84.43

90.28
78.77
84.13

71.56
90.45
79.91

73.18
91.15
81.18

70.83
92.17
80.10

75.68
92.36
83.19

74.84
90.45
81.91

75.79
92.32
83.24

BART-Base[BIOT2E]

R
P
F1

65.23
72.12
68.50

70.82
68.33
69.55

87.66
71.56
78.79

84.22
72.91
78.16

66.84
82.43
73.82

66.91
82.36
73.84

64.79
81.13
72.05

67.15
80.45
73.20

66.82
77.56
71.79

69.62
81.87
75.25

Table 9: Recall (R), Precision (P), and F1-score (%) performance of T5-Base[BIOT2E] and BART-Base[BIOT2E] on the
validation set of the most significant biomedical event extraction tasks.

Error Type Fraction

All Nested Multi-event
Format 5% 2% 3%
Trigger

Under-prediction 17% 8% 6%
Over-prediction 28% 16% 5%
Wrong type 10% 3% 4%

Argument
Under-prediction 13% 7% 4%
Over-prediction 23% 14% 5%
Wrong type 4% 2% 1%

Table 10: Quantitative event extraction error analysis of
T5[BIOE2T]. Average fraction values among the valida-
tion sets of all the ten datasets.

A.6.2 Event Graph Verbalization
To further assess the quality of the event-graph-
controlled text, we conduct an in-depth human eval-
uation study for a manual scrutiny of error sources.
Following previous works (Colombo et al., 2021),
human raters are presented with the source graph,
the predicted text, and the ground-truth. They are
asked to judge the prediction along six quality cri-
teria with binary rating.

• Coverage. Are all the information presented
in the event graph included in the text?

• Compliance. Does the text contains only the
information in the input event graph?

• Correctness. Are interactions modeled in the
event graph correctly mentioned (correct roles
and entity-linkage)?

• Factuality. Does the text contains only factual
information?

• Text Structure. Is the text well-structured,
grammatically correct and written in accept-
able English?

• Fluency. Does the text progress naturally? Is
it easy to understand? Is it a coherent whole?

Since the number of events is not balanced with

respect the biomedicine subarea (see Table 1), we
randomly sample eight graph-text pairs for each
dataset composing the BIOE2T test set (80 in to-
tal). The evaluation is performed for T5[BIOE2T]
and BART[BIOE2T]. For each prediction, we collect
scores from 3 expert evaluators and average them.

The average Kendall’s coefficient (Sen, 1968)
among all evaluators’ inter-rater agreement is 0.86.
Kendall’s coefficient ranges from -1 to 1, indicating
low to high association. Considering the subjectiv-
ity of the rating task, this number indicated high
human agreement for the EGV task.

Table 11 summarizes the results. We first note
a similar trend as in EE, with T5 outperforming
BART on most quality axes. We observe that the
generators mostly suffer from low compliance is-
sues due to the verbalization of additional informa-
tion not originally modeled in the input graph. We
investigated the reason for this error, finding three
main causes: (i) event mentions shared by multiple
events, (ii) a low number of nodes, and (iii) super-
ficial and often incomplete dataset annotations—
especially on GE08 and ID11. Hence, the error
is not attributable to a scarce expressive power of
events as semantic representations. Notably, de-
spite the frequent verbalization of further relation-
ships, models generally do not produce fabricated
facts, and the output quality is high. Compared to
T5, BART is more a victim of hallucinations and
tends to paraphrase the text more, mixing patterns
seen during training.

A.7 Parsing and Generation Examples
Some input-output examples for the EE and EGV
tasks are shown in Table 12 and Table 13, respec-
tively. We emphasize that current end-to-end neural
conversation models inherently lack the flexibility
to impose semantic control in the response gen-
eration process (Wu et al., 2021), justifying the
importance of EGV. This control is essential to en-
sure that users’ semantic intents are satisfied and
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Models

Perspectives T5[BIOE2T] BART[BIOE2T]

Coverage 0.97 0.94
Compliance 0.18 0.22
Correctness 0.96 0.91
Factuality 0.99 0.90
Text Structure 0.97 0.81
Fluency 0.99 0.83

Table 11: Human evaluation scores of the verbalized
event graphs on a random sample of 80 instances from
the test set. The highest are bolded.

to establish a degree of specificity on generated
outputs. Following this line, modifiers offer the
concrete opportunity of asking a model not only to
verbalize an event but also to do it with a particular
writing style. Multiple modifiers can be set at the
same time (e.g., “H2A may not be methylated”),
allowing great flexibility. EGV is also useful to
collect rationales from language models more ef-
fectively, revealing what knowledge is stored in
their parameters. The qualitative results obtained
indicate that the event graphs can indeed steer the
language model towards informative content fol-
lowing provided confidence measures or other lexi-
cal clue types.
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Text Extracted Event

We wanted to establish whether
BMP-6 also could affect the
viability of normal B cells.

Ground_truth
[affect | Regulation | Speculation = True]

[BMP-6 | Protein | Cause = affect]
[normal B cells | Cell | Theme = affect]y

affect

Reg 
Speculation=True 

BMP-6

Protein

normal B
cells

Cell

ThemeCause

T5[BIOE2T] ✓ BART[BIOE2T] ✓

We analyzed the methylation status
of hMLH1 and MGMT using
methylation-specific polymerase
chain reaction and DNA
sequencing analysis.

Ground_truth
[methylation | DNA_methylation | Speculation = True]

[MLH1 | Protein | Theme = methylation]
[methylation | DNA_methylation | Speculation = True]

[MGMT | Protein | Theme = methylation]y

methyl.

DNA_methylation 
Speculation=True 

MLH1

Protein

Theme
methyl.

DNA_methylation 
Speculation=True 

MGMT

Protein

Theme

T5[BIOE2T] ✓ BART[BIOE2T] ✓

We found a lack of PKD1
expression.

Ground_truth
[lack | Negative_regulation]

[[expression | Gene_expression | Theme = lack]
[PKD1 | Protein | Theme = expression]]y

lack

-Reg 

Theme
expres.

Gene_expression 

PKD

Protein

Theme

T5[BIOE2T]

[lacking | Negative_regulation]
[[expression | Gene_expression | Theme = lack]

[PKD1 | Protein | Theme = expression]]

BART[BIOE2T] ✓

Conversely, the murine kappa light
chain enhancer motif
(GGGGACTTTCCG) does not
efficiently bind the nuclear p50p50
from tolerant murine P388
macrophages.

Ground_truth
[bind | Binding | Polarity = Negative]

[kappa light chain | Protein | Theme = bind]
[p50 | Protein | Theme2 = bind]

[GGGGACTTTCCG | Entity | Site = bind]y

bind

Binding 
Polarity=Negative 

kappa
light c.

Protein
Theme

p50

Protein

Theme2

GG...

Entity

Site

T5[BIOE2T]

[bind | Binding | KT = Observation | Polarity = Negative | Source = Current]
[murine kappa light chain enhancer motif | DNA_domain_or_region | Theme = bind]

[p50p50 | Protein_complex | Theme = bind]
[not | Negative-Cue | Cue = bind]

BART[BIOE2T]

[bind | Binding | Polarity = Negative]
[kappa light chain | Protein | Theme = bind]
[p50 | Protein_molecule | Theme2 = bind]

Table 12: Input-output event extraction examples. Modifiers’ influence is highlighted in blue, while deviations
(positive or negative) from the ground truth are in red. The check-mark symbol denotes a full-correspondence
between the predicted text and the ground truth.
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Event Text

[Overexpression | Gene_expression]
[Bax inhibitor-1 | Gene_or_gene_product | Theme = Overexpression]

[[induces | Positive_regulation | Cause = Overexpression |
Theme = transformation]

[transformation | Cell_transformation]
[NIH3T3 cells | Cell | AtLoc = transformation]

[cell | Cell | Theme = transformation]]y

induces

+Reg

Cau
se

Theme

Over-
expression

Gene expression 

Theme 

transformation

Cell transform.

Bax
inhibitor-1 

Gene or gene product

NIH3T3
cells

Cell

cell

Cell

Theme
AtLoc

Ground_truth Overexpression of Bax
inhibitor-1 (BI-1) induces cell transformation
in NIH3T3 cells.

T5[BIOE2T] ✓
BART[BIOE2T] ✓

[regulated | Regulation]
[[Activation | Positive_regulation | KT = Observation | Theme = regulated]

[NF-kappa B | Protein_molecule | Theme = Activation]]
[phosphorylations | Other | Cause = regulated]y

regulated

Reg 

Activation

+Reg 
KT=Observation 

NF- 
kappa B

Protein_molecule

phosphor.

Other

Theme
Theme

Cause

Ground_truth Activation of NF-kappa B
in vivo is regulated by multiple phosphoryla-
tions.

T5[BIOE2T] ✓
BART[BIOE2T] Activation of NF-kappa B is

regulated by phosphorylations and rapid degra-
dation of its inhibitor I kappa B alpha.

[inhibit | Negative_regulation]
[DMI | Simple_chemical | Cause = inhibit]

[[growth | Cell_proliferation | Theme = inhibit]
[Ca3/7 cells | Cell | Theme = growth]]y

inhibit

-Reg 

DMI

Simple_chemichal

growth

Cell_proliferation 

Ca3/7
cells

Cell

ThemeCause Theme

Ground_truth DMI is suggested to inhibit
the growth of Ca3/7 cells.

T5[BIOE2T] Therefore, we examined the ef-
fect of DMI on Ca3/7 cells, resistant to growth
inhibition by the synthetic glucocorticoid flu-
ocinolone acetonide (FA).

BART[BIOE2T] The growth inhibition of
Ca3/7 cells by DMI is neither a consequence
nor the sole cause of growth arrest.

[involvement | Regulation | Speculation = True]
[[progression | Development | Theme = involvement]

[tumor | Cancer | Theme = progression]]
[TGF-beta | Gene_or_gene_product | Cause = involvement]y

involvement

Reg 
Speculation=True 

progression

Development 

tumor

Cancer

TGF-
beta

Gene_or_gene_product

ThemeTheme Cause

Ground_truth TGF-beta effects on angio-
genesis, stroma formation, and immune func-
tion suggest its possible involvement in tumor
progression.

T5[BIOE2T] In the present study, we investi-
gated the possible involvement of transform-
ing growth factor beta (TGF-beta) in tumor
progression.

BART[BIOE2T] An understanding of the
molecular basis of TGF-beta-mediated inhi-
bition of angiogenesis and tumor progression
will aid in the development of novel therapeu-
tics for the treatment of cancer.

Table 13: Input-output event graph verbalization examples. Modifiers’ influence is highlighted in blue. The
check-mark symbol denotes a full-correspondence between the predicted text and the ground truth.
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Abstract

During natural disasters, people often use so-
cial media platforms, such as Twitter, to post
information about casualties and damage pro-
duced by disasters. This information can help
relief authorities gain situational awareness in
nearly real time, and enable them to quickly
distribute resources where most needed. How-
ever, annotating data for this purpose can be
burdensome, subjective and expensive. In this
paper, we investigate how to leverage the co-
pious amounts of unlabeled data generated on
social media by disaster eyewitnesses and af-
fected individuals during disaster events. To
this end, we propose a semi-supervised learn-
ing approach to improve the performance of
neural models on several multimodal disaster
tweet classification tasks. Our approach shows
significant improvements, obtaining up to 7.7%
improvements in F-1 in low-data regimes and
1.9% when using the entire training data. We
make our code and data publicly available.1

1 Introduction

The upswing of text and image sharing on social
media platforms, such as Twitter, during mass emer-
gency situations has led to numerous opportunities
to gain timely access to valuable information that
can help disaster relief authorities act quicker and
more efficiently. Specifically, as a disaster unfolds,
information shared on social media can provide
insights into the infrastructure and utility damage,
casualties, and missing people. Recent studies have
focused on collecting and manually annotating dis-
aster data with respect to such situational aware-
ness categories, followed by training machine learn-
ing classifiers to automatically identify situational
awareness information, useful for relief operations
(Alam et al., 2018b; Ashktorab et al., 2014).

However, disaster events produce large amounts
of user-generated data, of which only a small frac-

1https://github.com/iustinsirbu13/multimodal-ssl-for-
disaster-tweet-classification

tion can be annotated, due to the time-sensitive
nature of the problem, together with high annota-
tion costs, and also inherent subjectivity associated
with annotating data (e.g., tweets).

To address this limitation, we propose a semi-
supervised multimodal approach that can lever-
age the copious amounts of unlabeled data to im-
prove the performance on various multimodal tasks.
Specifically, we extend the FixMatch (Sohn et al.,
2020) algorithm proposed for semi-supervised im-
age classification to a multimodal setting. To ac-
count for subjective annotations and potentially
overlapping labels, we use soft pseudo-labels in-
stead of the original hard pseudo-labels. We apply
the adapted FixMatch to the CrisisMMD labeled
dataset and tasks (Alam et al., 2018b), to improve
the performance of supervised baselines through
the use of unlabeled data. We use 122K unlabeled
tweets, containing both text and images, collected
automatically using text queries about disasters that
occurred during the year of 2017.

Experimental results show that our proposed ap-
proach produces performance improvements on all
three CrisisMMD tasks in various data regimes.
Notably, we obtain as much as 7.7% using as few
as 250 examples per class and 1.9% improvement
when using the entire data. To our knowledge, we
are the first to propose a semi-supervised method
for multimodal data using FixMatch and text-based
searches for collecting a large unsupervised dataset.
While our experiments focus on disaster tweets,
the method can be easily generalized. Finally, we
provide an extensive error analysis of our models.
We analyze how the supervised model’s predictions
change with the introduction of unlabeled data and
reinforce the importance of our improved version
of FixMatch.

Our contributions are as follows:
(1) We extend FixMatch algorithm to a multi-

modal scenario and offer two extensions to the
original approach relevant for text and multimodal
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datasets. (2) We show that inexpensive unlabeled
data gathered using text queries and basic prepro-
cessing can be leveraged by our multimodal Fix-
Match to improve performance on 3 classification
tasks. (3) We provide a detailed analysis into the
predictions of the semi-supervised approaches, and
compare them to their supervised counterparts.

2 Related Work

2.1 Semi-supervised learning

Semi-supervised learning combines labeled data
with large amounts of unlabeled data during
training to improve the performance of the models.
MixMatch (Berthelot et al., 2019b) uses a sharp-
ening technique and guesses low-entropy labels
for augmented unlabeled data. Next, it employs
MixUp (Zhang et al., 2017) to blend the labeled
and unlabeled examples. FixMatch (Sohn et al.,
2020) combines two standard semi-supervised
techniques: consistency regularization (Rasmus
et al., 2015; Sajjadi et al., 2016; Tarvainen and
Valpola, 2017) and pseudo-labeling (Lee et al.,
2013). The pseudo-labels are generated using the
current model’s predictions on weakly-augmented
unlabeled images. Next, the model predicts the
pseudo-labels for strongly augmented versions
of the same images. Noisy Student Training
(Xie et al., 2020) first trains a teacher model on
the labeled data to predict pseudo-labels for the
unlabeled examples. Next, it trains a larger student
model on all the data (i.e. labeled and unlabeled)
using augmentation and dropout. The teacher
model is then replaced by the student, and the
process is repeated until convergence.

Text and image SSL methods are usually
tightly related. For example, Miyato et al.
(2016) extends adversarial training from images
(Miyato et al., 2015) to text. Specifically, the
proposed approach leverages adversarial attacks
for consistency regularization by identifying an
optimal perturbation for each sample (instead of
using random perturbations). MixText (Chen et al.,
2020) adapts MixMatch for text and proposes
replacing MixUp method with TMix, a newly
introduced approach for interpolating texts in a
hidden space. Unsupervised Data Augmentation,
or UDA (Xie et al., 2019) has been shown to
be effective both for texts and images. It uses
common SSL techniques such as consistency
regularization, sharpening and data filtering (i.e.,
confidence based masking and balancing), together

with qualitative augmentations (i.e. RandAugment
for images and back-translation for texts).

2.2 Disaster tweet classification

A significant body of research focuses on the bene-
fits of social media information for improving dis-
aster relief efforts. Some of these studies focus on
learning from solely textual data (e.g., tweets) (Yin
et al., 2012; Guan and Chen, 2014; Yuan and Liu,
2018; Imran et al., 2015; Kryvasheyeu et al., 2016;
Li et al., 2018a; Enenkel et al., 2018; Alam et al.,
2018a; Mazloom et al., 2019; Neppalli et al., 2018;
Li et al., 2018b) including semi-supervised learn-
ing from text (Li et al., 2021, 2018c). Other studies
focus on learning only from images (Lagerstrom
et al., 2016; Alam et al., 2017; Li et al., 2019a;
Chaudhuri and Bose, 2020; Alam et al., 2018d;
Bica et al., 2017; Nguyen et al., 2017; Li et al.,
2019b; Weber et al., 2020). However, many tweets
posted during disasters contain both text and im-
ages, which, if studied jointly, can provide a better
portrayal of the damage produced by disasters, or
the needs of the affected individuals. Therefore,
it is not surprising that multimodal models in the
disaster space have recently started to gain popu-
larity (Mouzannar et al., 2018; Rizk et al., 2019;
Gautam et al., 2019; Nalluru et al., 2019; Agarwal
et al., 2020; Abavisani et al., 2020; Li and Caragea,
2020; Hao and Wang, 2020; Ofli et al., 2020).

Sosea et al. (2021) leverages the image-text rela-
tionship to improve the performance of multimodal
disaster tweet classification. Zou et al. (2021) pro-
poses a framework containing separate feature ex-
tractors for each modality, followed by a procedure
for fusing the two modalities. The approach pro-
posed in Pranesh et al. (2021) is similar, however,
the fusion is performed using an attention mech-
anism. Dinani and Caragea (2021) uses Capsule
Networks to classify disaster images and identify
the informativeness of a image. Alam et al. (2021)
uses Noisy Student Training (Xie et al., 2020) and
a multitasking setting to classify images from dis-
aster tweets. Bidari (2021) proposed a weighting
mechanism between predictions of a BERT (Devlin
et al., 2018) model trained on text and a VGG16
(Simonyan and Zisserman, 2015) model trained on
images.

These existing approaches, however, do not use
the large amounts of unlabeled multimodal data
generated during disasters. In this paper, we pro-
pose a semi-supervised approach to leverage this
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(a) This 4 BD/ 2 BA in Mora MUST be seen.
Call, text or direct message me for more info!

(b) St. Augustine bed & breakfast picking up
the pieces after Hurricane Irma

(c) A huge crane just collapsed
on top of building in down town
Miami

(d) Irma update: Free roof help available

(e) Magnitude 6.1 aftershock hits Mexico as
search for people and pets continues

Figure 1: Examples of errors of the MMBT model that are corrected by FixMatch on the Informativeness and
Humanitarian CrisisMMD tasks: (a) MMBT: informative; True: not informative (b) MMBT: infrastructure and
utility damage; True: not humanitarian (c) MMBT: not informative; True: informative (d) MMBT: infrastructure
and utility damage; True: rescue, volunteering, or donation effort (e) MMBT: infrastructure and utility damage;
True: rescue, volunteering, or donation effort

data to improve the multimodal disaster tweet clas-
sification. Our approach extends FixMatch (origi-
nally proposed for image classification) to the mul-
timodal setting and introduces two enhancements.

3 Methods

3.1 Baseline Modeling
We employ various single-modal and multi-modal
models to compare our proposed approach. First,
we experiment with an image-only model, ResNet-
152 (He et al., 2016), on top of which we add a
linear layer for classification. Next, we use a Multi-
modal Bitransformer (MMBT) (Kiela et al., 2019)
to leverage both the image and text for disaster
tweet classification, as it already showed good re-
sults on this task (Sosea et al., 2021). We randomly
crop and rescale the input images to 224x224, a
common size for these types of networks, and also
perform a standard horizontal flip and shift aug-
mentation. We denote these approaches by ResNet
Aug and MMBT Aug.

3.2 Semi-supervised learning
To leverage the large amounts of data generated dur-
ing disaster events, we adapt the FixMatch (Sohn
et al., 2020) algorithm to the multimodal setting.

FixMatch obtains impressive performance on sev-
eral Computer Vision tasks by combining consis-
tency regularization (Sajjadi et al., 2016; Laine
and Aila, 2016) and pseudo-labeling (McLachlan,
1975). FixMatch computes the overall loss l as
a weighted sum of two loss terms l = ls + λulu,
where λu is a weighting parameter, ls is the loss on
labeled data, and lu is the loss on unlabeled data.
Specifically, in the multimodal setting, the labeled
loss is defined as:

ls =
1

B

B∑

b=1

H(pb, pm(α(x
img
b ), β(xtxtb )))

where B is the batch size, H is the cross-entropy
loss, pb is the one-hot encoding of the true label
of a multimodal tweet (ximgb , xtxtb ), and pm is the
model’s prediction (i.e., probability distribution
over possible classes y) on a weakly augmented im-
age, α(ximgb ), and weakly augmented text, β(xtxtb ).
The unlabeled loss is defined as:

lu =
1

µB

µB∑

b=1

1τ (qb)H(q̂b, pm(A(uimgb ),B(utxtb )))
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where µ is the ratio between the number of la-
beled and unlabeled examples in a batch, and
qb = pm(α(u

img
b ), utxtb ) is the probability distri-

bution over classes y, for the unlabeled example
(uimgb , utxtb ). The function 1τ (qb) is used to filter
out examples for which the prediction confidence,
i.e., max

y
(qb), is less than a threshold, τ . For the re-

maining examples, the prediction is converted to a
pseudo-label using q̂b = argmax

y
(qb). Finally, the

cross-entropy loss is computed between the one-hot
encoding of this pseudo-label and the prediction
of the model on a strongly augmented version of
the current image,A(uimgb ), and the corresponding
augmented text, B(utxtb ). The strong augmenta-
tions for image use either RandAugment (Cubuk
et al., 2020) or CTAugment (Berthelot et al., 2019a).
For text augmentation we experiment with EDA
(Wei and Zou, 2019) and back-translation (Edunov
et al., 2018). We offer more details about our text
augmentation methods in Subsection 4.3.

In this paper, we apply the FixMatch algorithm
to our multimodal disaster domain, using MMBT
as the base model. To understand the benefits of
the multimodal representation, we also apply Fix-
Match on images only, using ResNet-152 as the
base model. We denote these methods by MMBT
FixMatch and ResNet FixMatch, respectively.

3.3 FixMatch Enhancements

We propose two key enhancements to the unlabeled
loss computation. First, we use soft pseudo-labels
(qb) instead of the hard labels (q̂b) used in the origi-
nal paper:

lLSu =
1

µB

µB∑

b=1

H(qb, pm(A(uimgb ),B(utxtb )))

We argue that, in the disaster domain, there can
be significant semantic overlap between two labels.
For instance, in Figure 1e, which is labeled with
Rescue, volunteering, or donation effort for the hu-
manitarian task, there is a destroyed building in the
background. By using soft labels, we can also in-
corporate information about the Infrastructure and
utility damage class instead of stirring the model
towards confidently predicting the example into the
Rescue, volunteering, or donation effort class.

Second, we consider a variable weighting
scheme for the loss, l. Originally, FixMatch em-
ployed a fixed weighting between the labeled and
unlabeled loss (e.g., λu = 1). We argue that the

predictions of the model during the first few epochs
are not qualitative, hence using the predicted labels
of unlabeled data can hurt the performance. To
prevent that, we employ a linear growth of the un-
labeled loss. Starting with 0 in the first epoch, we
increase this loss in steps of 2 each epoch. Our loss
becomes lLS = ls + λu(t)l

LS
u , where λu(t) = 2t,

and t is the epoch number. We denote the corre-
sponding MMBT semi-supervised model by MMBT
Fixmatch LS, while the corresponding ResNet-152
model is denoted by Resnet Fixmatch LS.

4 Experiments

4.1 Labeled Data

We evaluate our semi-supervised multimodal ap-
proach on CrisisMMD (Alam et al., 2018b), a mul-
timodal Twitter dataset from natural disasters. The
dataset contains 18, 000 tweets with both text and
images extracted during disasters such as the Iraq-
Iran Earthquakes or Hurricanes Irma, Harvey and
Maria. CrisisMMD wfas manually labeled for three
classification tasks: (1) Informativeness: A tweet is
labeled as Informative or Not Informative, depend-
ing on whether the tweet is useful for humanitarian
aid purposes or not useful. (2) Humanitarian: We
use the 5-class version of this data (Ofli et al., 2020)
to alleviate the skewed label distribution. (3) Dam-
age Assessment. We use a 2-class version of this
data, similar to prior works (Li et al., 2018d). Each
tweet image is labeled as depicting Damage or No
Damage.

Although a significant amount of prior work has
focused on multimodal tweet classification on Cri-
sisMMD, directly comparing our approach to these
methods is challenging, mainly because of the use
of different splits for training and evaluation or
different setups of the tasks. For example, Sosea
et al. (2021) uses different splits and a 3-class ver-
sion of the humanitarian class. Zou et al. (2021)
uses different splits as well and a 4-class version of
the humanitarian task. Dinani and Caragea (2021)
focuses on improving performance for specific dis-
asters and the data is divided disaster-wise. To this
end, in this paper we employ 2 setups. In the first
setup (Subsection 5.1), we create our own splits
which we release alongside our data. We show the
number of examples from the train, development,
and test sets for the 3 tasks in CrisisMMD in Table
1 and we provide the class distributions in Table 2.
Moreover, to validate our approach against some
prior work with publicly released splits, we also
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experiment with the splits released by Ofli et al.
(2020) (Subsection 5.2).

4.2 Unlabeled Data

We show that, by using text queries and prepro-
cessing for collecting the unlabeled corpus, the
performance of FixMatch can be improved even
though the two datasets are not sampled from the
same distribution. We used the Twitter Streaming
API with a list of relevant keywords for the text in
the training dataset. Then we selected 122k unique
tweets containing both text and images that do not
overlap with CrisisMMD.

The tweets were crawled from Twitter using
the Twitter Streaming API (with keywords such
as #hurricaneharvey, #harvey, #hurricane, #earth-
quake) during the following disasters that happened
in 2017: Hurricane Harvey, Hurricane Irma, Hur-
ricane Maria, Mexico Earthquake, and Chiapas
Earthquake. This collection was filtered for disas-
ter relevance using a Naive Bayes classifier trained
on CrisisLexT6 (Olteanu et al., 2014) to ensure
that it mostly contained tweets relevant to disasters.
Subsequently, duplicate tweets, retweets and non-
English tweets were removed. Finally, we selected
only tweets that contained both an image and text.

In addition, we used several methods to clean
and filter out duplicates between our dataset and
CrisisMMD. This is done in order to make sure
that test samples (from CrisisMMD) are not seen
during training, not even as unlabeled examples
(as part of our unlabeled dataset). First, we re-
moved all retweets (tweets with the “RT” token),
and normalized the texts removing characters repe-
titions (all consecutive identical characters of size
> 2 are reduced to only 2 characters) and user
mentions. Next, we removed duplicates using the
drop_duplicates function from the pandas library.

The resulting unlabeled corpus will be made pub-
licly available.

4.3 Data Augmentations

Data augmentations play a vital part in our Fix-
Match (Sohn et al., 2020) framework. Given the
multimodal nature of our model, we experiment
with both text and image augmentations. For im-
age augmentations, we follow FixMatch and use a
standard flip-and-shift as a weak augmentation and
RandAugment (Cubuk et al., 2020) as strong aug-
mentation. For the textual modality, we investigate
two different techniques:

• Easy Data Augmentation (EDA) (Wei and
Zou, 2019), which randomly applies 4 pos-
sible operators: synonym replacement, ran-
dom insertion of a word, random swap of 2
words or a random deletion of a word. We
used the EDA framework for applying these
transformations on 10% of the words in each
text.

• Backtranslation (Edunov et al., 2018) was
used previously in UDA (Xie et al., 2019)
and MixText (Chen et al., 2020). It consists
of translating a sentence to another language
and than back to the original language, aim-
ing to obtain a new example different from the
original text but keeping the same meaning.
Inspired by MixText (Chen et al., 2020), we
use FairSeq (Ott et al., 2019) with Russian
as an intermediate language and random sam-
pling with 0.9 temperature instead of beam
search in order to ensure the diversity of the
augmentations.

4.4 Experimental Setup

To separately assess the impact of using multimodal
data and of introducing text augmentations, we
conduct our experiments in two stages. First, to
ensure a fair comparison with the ResNet-based
models, which only use the image modality, we
experimented with versions of MMBT-based mod-
els where no text augmentation is used ( B is the
identity function). Second, we analyze the im-
pact of augmenting each modality separately or
performing both text and image augmentations.
We propose the following Fixmatch adaptations:
1) FixMatchLSimg solely augments the image,
2) FixMatchLSeda only augments the text us-
ing EDA, 3) FixMatchLSimg+eda augments both
modalities, using EDA for text augmentation, and
4) FixMatchLSimg+bt augments both modalities,
using back-translation for text augmentation.

To test the limits of our approach, we also experi-
ment with few labeled training examples (250/500)
per class on the Informative task. (Subsection 5.3).
All hyperparameters and model setups are available
in Subsection 4.5. To attain statistically significant
results, we ran each experiment 5 times and report
the average of the results. We used 4 Nvidia V100
GPUs to train our models. One experiment takes
roughly 20 hours to complete on a single GPU. To
improve reproducibility, we will release the splits
for each task alongside our code.
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DATASET SIZE TRAIN DEV TEST
INFORMATIVE 13494 10795 (80%) 1349 (10%) 1350 (10%)

DAMAGE 6089 4262 (70%) 913 (15%) 914 (15%)
HUMANITARIAN 8079 6126 (75.8%) 998 (12.4%) 955 (11.8%)

Table 1: Data splits for each task.

DATASET INFORMATIVE DAMAGE HUMANITARIAN

Labels

uninformative (55%) no damage (70%) not humanitarian (53%)
informative (45%) damage (30%) other relevant information (22%)

rescue volunteering or donation effort (15%)
infrastructure and utility damage (9%)

affected individuals (1%)

Table 2: Labels distribution for each task.

4.5 Hyperparameters

First, we tried to find the best FixMatch setup
for our experiments (without our extension). To
achieve this, we experimented with a variety of
setups, by manually tuning the FixMatch hyperpa-
rameters and choosing the values that yield the best
F1 score. The values that were tested for each pa-
rameter are detailed in Appendix A. The obtained
values that we used in all the reported results are the
following: ratio between unlabeled and labeled ex-
amples µ = 7, weight of the unlabeled loss λu = 1,
image size 224x224, dropout 0.2, exponential mov-
ing average (EMA) with decay 0.999, learning rate
10−5 with ReduceOnPlateau schedule and Adam
optimizer, confidence threshold τ = 0.7, batch size
of 8 with 16 gradient accumulation steps. For im-
age augmentation we used random horizontal flip
as weak augmentation and RandAugment as strong
augmentation in all our experiments.

We apply the best hyperparameters found for
the classic FixMatch algorithm to our extended
FixMatch LS version. Our changes are:

• we used soft labels instead of hard pseudo-
labels for the unlabeled data;

• we used a linear schedule for the unlabeled
loss weight λu.

Note that replacing pseudo labels with soft la-
bels for the unlabeled data completely removes the
confidence threshold parameter, τ . However, in-
troducing the linear schedule λu(t) = c ∗ t for the
unlabeled loss adds one extra parameter, c. This
is the only hyperparameter tuned for FixMatch LS.
We used λu(t) = 2 ∗ t in all the experiments.

5 Results

5.1 Our data split

As it can be seen in Table 3, our enhanced FixMatch
models, which use soft-labels and a linear schedule
for weighting the unlabeled loss, consistently out-
perform all the other models on all tasks. On the
Informative task, MMBT FixMatch LS improves
the F1 performance of the supervised MMBT Aug
model by as much as 3.5%. Interestingly, on the
Humanitarian task, the MMBT FixMatch approach,
which uses hard labels and a constant loss weight-
ing, obtains similar performance to MMBT Aug,
which uses no unlabeled data. We attribute this
to the nature of the humanitarian task, where the
boundary between classes may not be well defined,
i.e., an example annotated with class y1 can exhibit
characteristics specific to a different class y2. We
argue that the use of the “hard labeling” mechanism
for these types of tasks can lead to poor model per-
formance. On the other hand, the MMBT FixMatch
LS manages to prevent this shortcoming, and ob-
tains an F1 increase of 1% over the MMBT Aug
model. Finally, on the Damage task, we observe
that the ResNet and the MMBT perform similarly,
which is not surprising, given that the examples in
this task were annotated based only on the image in
the tweet. However, similar to the Informative task,
the best semi-supervised approach outperforms the
other method by as much as 2.9% F1.

5.2 Official data split

Table 4 shows the improvement obtained for the
best model so far (MMBT FixMatch LS) with the
introduction of text augmentation. Here, in order
to enable a fair comparison with other methods, we
test our best performing approach, FixMatchLS
using the data splits introduced by Ofli et al. (2020).
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INFORMATIVE DAMAGE HUMANITARIAN
MODEL P R F1 P R F1 P R F1

RESNET AUG 0.767 0.767 0.766 0.861 0.863 0.858 0.804 0.812 0.806

RESNET FIXMATCH 0.793 0.793 0.793 0.886 0.887 0.886 0.820 0.820 0.816

RESNET FIXMATCH LS 0.804 0.804 0.804 0.887 0.888 0.887 0.829 0.825 0.819

MMBT AUG 0.786 0.785 0.785 0.865 0.867 0.865 0.865 0.862 0.863

MMBT FIXMATCH 0.808 0.806 0.806 0.882 0.882 0.882 0.865 0.865 0.864

MMBT FIXMATCH LS 0.820 0.820 0.820 0.885 0.882 0.883 0.873 0.872 0.872

Table 3: Results on CrisisMMD tasks using image augmentations - best results for each task are highlighted in bold.

INFORMATIVE HUMANITARIAN
MODEL P R F1 P R F1

OFLI ET AL. (2020) - TXT 0.810 0.810 0.809 0.700 0.700 0.677

OFLI ET AL. (2020) - IMG 0.831 0.833 0.832 0.764 0.768 0.763

OFLI ET AL. (2020) 0.841 0.840 0.842 0.785 0.780 0.783

BIDARI (2021) - - - 0.860 0.830 0.840

PRANESH ET AL. (2021) - - - - - 0.855

ALAM ET AL. (2021) - Noisy Student - (*) - IMG 0.878 0.878 0.876 0.786 0.783 0.783

DINANI AND CARAGEA (2021) (*) - IMG 0.838 0.843 0.837 - - -
ZOU ET AL. (2021) (*) 0.875 0.876 0.875 0.872 0.911 0.891

SOSEA ET AL. (2021)(*) - - - 0.950 0.920 0.940

MMBT (supervised) 0.887 0.888 0.886 0.865 0.862 0.863

FixMatchLSimg 0.901 0.901 0.899 0.873 0.872 0.872

FixMatchLSeda 0.897 0.896 0.894 0.878 0.877 0.877

FixMatchLSimg+eda 0.907 0.906 0.904 0.885 0.881 0.881
FixMatchLSimg+bt 0.910 0.908 0.905 0.880 0.879 0.878

Table 4: Comparison of proposed method with state of the art models on official split of CrisisMMD. An asterisk at
the end (*) means that the paper uses different splits. Best results are highlighted in bold, for the official split only.

INFORMATIVE 250/CLASS INFORMATIVE 500/CLASS
MODEL P R F1 P R F1

MMBT (supervised) 0.666 0.667 0.666 0.713 0.704 0.705

FixMatchLSimg 0.695 0.688 0.689 0.741 0.730 0.730

FixMatchLSeda 0.687 0.673 0.673 0.741 0.731 0.722

FixMatchLSimg+eda 0.701 0.702 0.701 0.759 0.756 0.756

FixMatchLSimg+bt 0.744 0.742 0.743 0.772 0.759 0.760

Table 5: Results on CrisisMMD, Informative task, with few labeled examples per class - best results are highlighted
in bold.

IMAGE MODEL
LABEL

informative not informative

(a) MMBT AUG 0.71 0.29
FIXMATCH LS 0.09 0.91

(c) MMBT AUG 0.24 0.76
FIXMATCH LS 0.98 0.02

Table 6: Examples of predictions for the Informative Task
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All the methods without an asterisk (*) in this table
use the same data splits, so they are directly compa-
rable to one another and to our approach. However,
as the official splits for multimodal data in Crisis-
MMD (Alam et al., 2018c) were released in a sub-
sequent work (Ofli et al., 2020), many approaches
created their own splits, as we did in the Subsection
5.1. Although they are not directly comparable to
us, especially because they use fewer classes for the
humanitarian task, we also show some of these re-
sults in Table 4 and mark them with an asterisk (*).

First, we observe that our supervised MMBT
method performs better than the best comparable
baselines (i.e., Ofli et al. (2020) for the Informative
task and Pranesh et al. (2021) for the Humanitarian
task). Second, we note that augmenting a single
modality (i.e., either text or image) improves per-
formance on both tasks, by 1.4% F1 on Humani-
tarian and 1.3% F1 on Informative. Critically, we
obtain the best results when employing augmenta-
tions for both modalities simultaneously. Specif-
ically, FixMatchLSimg+eda outperforms both
FixMatchLSimg and FixMatchLSeda. Third,
we observe that the best text augmentation is task-
dependent. For example, FixMatchLSimg+eda
performs better on the Humanitarian task, while
FixMatchLSimg+bt is the best method for the In-
formative task.

Finally, there are two baselines that report
higher performance on the Humanitarian task,
namely Zou et al. (2021) and Sosea et al. (2021).
However, as previously explained, the results are
not directly comparable, as they use different
versions of the Humanitarian task, with 3 and
4 classes, respectively, instead of 5 classes, as
introduced in Ofli et al. (2020), which makes the
task a lot easier for them.

5.3 Low-data regimes

To test the limits of our approach, we also exper-
iment with few labeled examples (250/500) per
class on the informative task, as shown in Table
5. We emphasize that our SSL methods perform
substantially better than baselines in these low-
resource settings. This is extremely valuable for
disaster-related classification, where abundant data
at the time of the disaster is hard-to-acquire. Specif-
ically, our results show that, while augmenting the
image is more important than augmenting the text
in low-data regimes (FixMatchLSimg performs
better than FixMatchLSeda), it is once again
clear that augmenting both modalities is always

the best option. Using back-translation instead of
EDA gives the best results, obtaining up to 7.7%
F1 improvement over the supervised approach.

We emphasize that all improvements of the en-
hanced FixMatch over baselines in this paper are
statistically significant, according to a t-test with
p < 0.01. These results show the feasibility of
our proposed FixMatch variant: using cheap to ac-
quire unlabeled data, we improve the performance
of supervised models significantly.

5.4 Error Analysis
We investigate common errors of the models that
use no unlabeled data, which are corrected by our
FixMatch models. To this end, we first sample 20
such examples for each CrisisMMD task, followed
by manually inspecting the output probabilities and
the contents of the image and text. We show some
examples together with the corresponding ground
truths in Figure 1, and provide comparisons be-
tween predictions of the MMBT Aug and the Fix-
Match LS model in Tables 6 and 7.

We observed a few patterns. First, we spotted
some erroneous predictions due to semantic dispar-
ities between the textual and the image modalities
(i.e., the image and text pinpoint to different labels,
hence the final label is subjective). An example
is shown in Figure 1b. Second, we encountered
a significant number of examples where the im-
age modality is distorted, or contains noise. For
instance, in Figure 1c, the photo contains pertur-
bations (i.e., the rain drops) that hinder the capa-
bility to observe the main focus of the picture: a
collapsed huge crane. Third, we observe some
examples which contain characteristics specific to
more than one class. In Figure 1e, even though the
main focus of the tweet is on Rescue and volun-
teering efforts, the image also exhibits traits of the
Infrastructure and utility damage class: a destroyed
building.

Our proposed FixMatch variant is able to cor-
rect these types of errors. Moreover, the FixMatch
model is confident in its predictions, usually assign-
ing a probability over 90% to the correct class.

6 Limitations

While our approach provides significant improve-
ments on all CrisisMMD tasks, we also have to ac-
knowledge the limitations of the proposed method.
As it generally is the case with semi-supervised
approaches, the training time is significantly in-
creased, as more data needs to be passed through
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IMAGE MODEL
LABEL

not hum. other rescue damage affected

(b) MMBT AUG 0.36 0.06 0.04 0.51 0.09
FIXMATCH LS 0.89 0.01 0.02 0.07 0.01

(d) MMBT AUG 0.02 0.03 0.16 0.78 0.01
FIXMATCH LS 0.03 0.03 0.90 0.01 0.03

(e) MMBT AUG 0.01 0.01 0.02 0.95 0.01
FIXMATCH LS 0.01 0.01 0.93 0.04 0.01

Table 7: Examples of predictions for the Humanitarian Task

the model until convergence, comparing to a su-
pervised approach. Regarding our method of col-
lecting unlabeled data by searching for relevant
keywords, although it is generic and could be ap-
plied to datasets from other domains, it is limited
for datasets containing tweets. For other types of
datasets, obtaining a relevant unlabeled corpus in
the same manner could be more challenging.

7 Conclusion

We extended FixMatch to multimodal data and
proposed two improvements. We applied the im-
proved FixMatch on three disaster-centric multi-
modal tweet classification tasks, and showed that
the approach can leverage large unlabeled data to
improve supervised model performance. Our semi-
supervised approach is general enough and can be
easily applied to other datasets, being at the same
time very efficient as it does not add any inference
complexity to the base model.
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A Hyperparameters

First, we tried to find the best FixMatch setup
for our experiments (without our extension). To
achieve this, we experimented with a variety of
setups, by manually tuning the FixMatch hyperpa-
rameters and choosing the values that yield the best
F1 score:

• For the ratio µ between unlabeled and labeled
examples we tried values from the set {3, 5,
7}. We observed that setting µ to 7 produced
the best results. We did not try values bigger
that 7 due to computation limitations. How-
ever, 7 is the reported best µ in the original
FixMatch paper, too.

• For the weight of the unlabeled loss, λu, we
experimented with values in the set {1, 10, 50,
100}, and obtained the best results with value
1 (similar to the original paper).

• For image preprocessing, we cropped and
rescaled all images to 224x224 size. We also
tried to reduce the size of the images to 96x96
to improve computational performance, but
the results were heavily affected.

• For image augmentation we used random hor-
izontal flip as weak augmentation and Ran-
dAugment as strong augmentation in all our
experiments.

• Initially, the original paper used no dropout,
but we observed that adding 0.2 dropout im-
proved the results.

• Exponential moving average (EMA) with de-
cay 0.999 was kept as in the original paper.
We experimented with a smaller decay or with-
out EMA, but this negatively impacted the
performance.

• Instead of SGD and cosine learning rate
schedule, we used Adam with a ReduceOn-
Plateau schedule, which improved results.

• We experimented with learning rates from the
set {10−5, 5× 10−5, 10−4}, and picked 10−5

as the optimal value.

• For the confidence threshold τ , we found that
0.7 was the best for our tasks. This is compati-
ble with the value chosen in the original paper
on the ImageNet dataset. We experimented
with values in the set {0.5, 0.7, 0.85, 0.95}.

• Due to computation limitations, we used a
batch size of 8 with 40 gradient accumulation
steps in all our experiments.

We apply the best hyperparameters found for
the classic FixMatch algorithm to our extended
FixMatch LS version. Our changes are:

• we used soft labels instead of hard pseudo-
labels for the unlabeled data

• we used a linear schedule for the unlabeled
loss weight λu

Note that replacing pseudo labels with soft la-
bels for the unlabeled data completely removes the
confidence threshold parameter, τ . However, in-
troducing the linear schedule λu(t) = c ∗ t for the
unlabeled loss adds one extra parameter, c. This
is the only hyperparameter tuned for FixMatch LS.
After experimenting with values in the set {1, 2, 3},
we choose λu(t) = 2 ∗ t to be our weight in all the
experiments.

In order to attain statistically significant results,
we ran each experiment 5 times and report the av-
erage of the results. We used 4 Nvidia V100 GPUs
to train our models. One experiment takes roughly
20 hours to complete on a single GPU.
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Abstract

Automated essay scoring (AES) involves the
prediction of a score relating to the writing qual-
ity of an essay. Most existing works in AES
utilize regression objectives or ranking objec-
tives respectively. However, the two types of
methods are highly complementary. To this
end, in this paper we take inspiration from
contrastive learning and propose a novel uni-
fied Neural Pairwise Contrastive Regression
(NPCR) model in which both objectives are op-
timized simultaneously as a single loss. Specif-
ically, we first design a neural pairwise ranking
model to guarantee the global ranking order in
a large list of essays, and then we further extend
this pairwise ranking model to predict the rela-
tive scores between an input essay and several
reference essays. Additionally, a multi-sample
voting strategy is employed for inference. We
use Quadratic Weighted Kappa to evaluate our
model on the public Automated Student Assess-
ment Prize (ASAP) dataset, and the experimen-
tal results demonstrate that NPCR outperforms
previous methods by a large margin, achieving
the state-of-the-art average performance for the
AES task1.

1 Introduction

Automated Essay Scoring (AES) is to evaluate the
quality of essays and score automatically by using
computer technologies. Notably, reasonable grad-
ing can solve problems that consume much time
and require a lot of human effort. What’s more,
providing feedback to learners can promote self
improvement. It is one of the most important appli-
cations of natural language processing (NLP) and
is widely required in the educational field.

Most existing methods typically recast AES as
a regression task, where the goal is to predict the

* Equal contribution.
† Corresponding author.
1The source code is available at https://github.

com/CarryCKW/AES-NPCR.

score of an essay (Taghipour and Ng, 2016; Dong
and Zhang, 2016; Dong et al., 2017; Tay et al.,
2018). Although some promising results have been
achieved, these regression-based models cannot ex-
ploit the labelling information in the training data
efficiently and directly. Besides, another line of
research treats AES as a preference ranking prob-
lem with learning-to-rank methods. Yannakoudakis
et al. (2011) first proposed to rank the pair of doc-
uments by extracting features; later, Chen and He
(2013) transformed this task into a listwise ranking
problem. Cummins et al. (2016) also performed
transfer learning to rank two essays that are con-
strained to be from the same prompt.

However, most existing works in AES utilize
regression objectives or ranking objectives respec-
tively. As a matter of fact, the two types of methods
are highly complementary. On the one hand, only
using regression models for AES cannot explic-
itly model score relationships between essays in
the training data. On the other hand, only using
ranking-based models could not guarantee accu-
rate scores. In effect, in real-life situations, when a
teacher evaluates and grades a student’s essay, he
usually first compares it with one or multiple exem-
plar essays as reference and then gives a specific
score for it.

Recently, Yang et al. (2020) presents the first
work to combine regression and ranking in the AES
task by applying a multi-loss method that optimizes
regression loss and ranking loss jointly with a sim-
ple dynamic combination strategy. Nevertheless,
it is actually quite difficult to determine the com-
bination weights to achieve the tradeoff between
the two optimization objectives. Additionally, the
proposed batch-wise learning based ranking model
sacrifices the accuracy and only ranks essays in
each batch.

To address the above problems, in this paper
we explore a unified framework for the AES task
where both the regression objective and the ranking
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objective are optimized simultaneously, with the
goal of incorporating the merits of two popular
AES solutions. The key challenge here is how to
integrate two significantly different optimization
objectives into a single model with a single loss.

To this end, we take inspiration from contrastive
learning (Yu et al., 2021; Chen et al., 2020) and pro-
pose a novel unified Neural Pairwise Contrastive
Regression (NPCR) model that jointly optimizes
the two objectives in a principled way. In a nut-
shell, the goal of contrastive learning is to learn
a better representation space (Chen et al., 2020).
In particular, for two given essays, the distance be-
tween similar essays from the same category should
be small while the distance between dissimilar es-
says should be large, and the semantic relationship
can be reflected by measuring the distance in the
representation space. Thus, under the contrastive
learning framework, the proposed model aims to
map the input essays into the representation space
and calculates the differences between essays by
the relative scores. Specifically, we first design
a neural pairwise ranking model to guarantee the
global ranking order in a large list of essays, and
then we further extend this neural pairwise rank-
ing model to predict the relative scores between an
input essay and several reference essays. Addition-
ally, a multi-sample voting strategy is adopted for
the inference for every input test essay.

We use Quadratic Weighted Kappa to evaluate
our model on the Automated Student Assessment
Prize (ASAP) dataset, and the experimental results
demonstrate that the proposed model outperforms
previous methods by a large margin and establishes
new state-of-the-art on this public benchmark.

In summary, the contributions of this work can
be concluded as follows: (1) To the best of our
knowledge, we make the first attempt to explore
a unified framework for the AES task that per-
forms regression and ranking optimization simulta-
neously; (2) We propose a neural pairwise ranking
model for AES that guarantees the global ranking
order in a large list of essays; (3) Experimental
results on the public dataset ASAP show that the
proposed approach not only achieves the state-of-
the-art average performance but also obtains better
performance on almost all prompts compared to all
baselines.

2 Background

2.1 Task Description
Automated essay scoring systems are used in eval-
uating and scoring student essays written based on
a given prompt. The performance of these systems
is assessed by comparing their scores assigned to
a set of essays to human-assigned gold standard
scores. Since the output of AES systems is usually
a real-valued number, the task is often addressed
as a supervised machine learning task (mostly by
regression or preference ranking).

2.2 The Multi-loss Method for the
Combination of Regression and Ranking

In order to take advantage of the complementar-
ity of regression loss and ranking loss, Yang et al.
(2020) proposes a multi-loss objective to fine-tune
the BERT model for the AES task by using a simple
dynamic optimizing strategy as Formula 1. How-
ever, it is very difficult to determine the suitable
combination weights to achieve the tradeoff be-
tween the two losses.

L = τe × Lm + (1− τe)× Lr (1)

where Lm is the regression objective, Lr is the
result of the batchwise loss function, and τe is the
parameter that vary with the number of epoch.

Besides, Yang et al. (2020) uses a batch-wise
approach ListNet which ranks a list of essays each
time and measures the accuracy between the pre-
dicted ranking list and the ground truth label. The
major defect of this method is that it can only rank
essays in a batch and cannot guarantee precise
global order.

3 Pairwise Contrastive Regression for
AES

3.1 Methodology Overview
Traditionally, most existing works formulate AES
as a regression task, where the input is an essay
and the output is a predicted score relating to the
writing quality of the essay (Taghipour and Ng,
2016; Dong and Zhang, 2016; Tay et al., 2018).
Formally, given the input essay e with the score
label s, the regression problem is to predict the
score ŝ based on the quality of input essay:

ŝ = Rθ(FW (e)) (2)

where Rθ and FW are the regressor model and
the feature extractor parameterized by θ and W ,
respectively.
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Figure 1: The overall framework of neural pairwise contrastive regression model for AES.

However, optimizing the regression objective
alone is inadequate to make good use of the score
label information in the training data. In contrast,
the ranking-based methods could explicitly model
score relationships between essays (Yannakoudakis
et al., 2011). In order to take advantage of the
complementarity of these two types of methods, we
therefore propose to reformulate the AES problem
as regressing relative score between the input and
an exemplar. Let ei denotes the input essay, and
ej denotes the reference essay with score label sj ,
this regression problem can be re-written as:

ŝi = Rθ(FW (ei, ej)) + sj (3)

Note that the aim here is to predict the relative
score, i.e. the difference of the scores between the
input essay and a reference essay.

Technically speaking, the major challenge of suc-
cessfully predicting the relative score lies in how to
design effective regressor that takes as input a pair
of essays rather than a single essay. In contrast to
the single essay input, this regressor with the essay
pair input should satisfy more characteristics, such
as reflexivity and antisymmetry.

To achieve this, we propose a neural pairwise
contrastive regression model for AES to predict
the relative score. The overall framework of our
method is illustrated in Figure 1. Methodologically,
our pairwise contrastive regression model is actu-
ally a natural extension to a neural pairwise ranker
for AES.

In order to clearly articulate our approach, in the
following subsections, we first introduce the design
of a neural pairwise ranker for AES in detail, and
then we further extend it to a pairwise contrastive
regressor to reach this goal.

3.2 Neural Pairwise Learning to Rank for
AES

In this section, motivated by the DirectRanker
(Köppel et al., 2019), we aim to design a neural
pairwise ranking model for AES to predict a global
ranking order given a large list of essays. To do
this, given any two essays e1 and e2, we first define
a partial order operator e1 ⪰ e2 such that e1 has
higher score than e2. In order to achieve a consis-
tent and global order, this operator should satisfy
three characteristics: reflexivity, antisymmetry and
transitivity. Further, we use a ranking function
rf : F × F → R over the feature space F to
implement the operator:

x ⪰ y :⇔ rf(x, y) ≥ 0, for x, y ∈ F (4)

Thus, the three characteristics of this operator can
be defined through the function rf as follows:

(A) Reflexivity: rf(x, x) = 0

(B) Antisymmetry: rf(x, y) = −rf(y, x)

(C) Transitivity: (rf(x, y) ≥ 0 ∧ rf(y, z) ≥
0)⇒ rf(x, z) ≥ 0

Particularly, to meet these requirements, the rank-
ing function rf can be implemented by using a
neural network with specific structure.

Firstly, in order to map an input essay e to low-
dimensional vector space, we use BERT (Devlin
et al., 2019) which can make full use of rich seman-
tic information to obtain the text vector representa-
tion f :

h = BERT (e) ∈ Rrh∗|e| (5)

f = h[CLS] (6)
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where h is the hidden representations, rh is the
dimension of the hidden state and |e| represents the
length of the input essay. The vector f , a hidden
representation mapping to the special token [CLS],
is used as the text representation for the input essay
e.

Next, as shown in Figure 1, the feature extrac-
tion part of the model includes two subnets nn1
and nn2 which are composed of multi-layer per-
ceptron. The two subnets share the same structure
and parameters like weights, biases, activation, etc.
Then a difference vector of the two outputs from
two subnets nn1 and nn2 can be simply calculated
as follows:

dv = Fw(f1)− Fw(f2) (7)

where f1 and f2 are the representation vectors of
one essay pair, and Fw is the feature extractor pa-
rameterized by w.

After that, the difference vector dv is fed into
the third subnet nn3 which has only one output
neuron. As shown by (Köppel et al., 2019), the
antisymmetry can easily be guaranteed by choosing
antisymmetric activation functions and removing
the biases of the neuron.

In fact, it is easy to prove that the above three
characteristics can be satisfied in our model. More
specifically, we first utilize ϕ to define the antisym-
metric activation function, i.e. ϕ(−x) = −ϕ(x)
for ϕ : R → R.

(I) The satisfaction of (II) means that (I) can be
inferred.

rf(x, x) = −rf(x, x)⇒ rf(x, x) ≡ 0 (8)

(II) From the above mentioned, nn1 and nn2 have
the consistent network structure, thus they em-
ploy the same function g : F → Rn. Hence,
for two input feature vectors x, y ∈ F , (B)
can be proved as follows:

rf(x, y) = ϕ[w(g(x)− g(y))]
= −ϕ[wg(y)− wg(x)]

= −rf(y, x) (9)

where w is the weight vector.

(III) Assuming x, y, z ∈ F , rf(x, y) ≥ 0 and
rf(y, z) ≥ 0, the transitivity of the model

can be testified by:

rf(x, z) = ϕ[w(g(x)− g(z))]
= ϕ[wg(x)− wg(y) + wg(y)− wg(z)]

= rf(x, y) + rf(y, z) ≥ 0
(10)

where w is the weight vector and g is defined
as in (II). Hence, (C) is compliant.

3.3 Pairwise Contrastive Regression Model
for AES

Next, we extend the neural pairwise ranking model
illustrated in the previous section to form a pair-
wise contrastive regression model that predicts the
relative score between an input essay and an refer-
ence essay. In fact, it is relatively straightforward
to achieve this.

As the pairwise ranking model, the output of
the third subnet nn3 shown in Figure 1 is just a
binary value. If we allow the output value of this
subset to be a real value corresponding to a relative
score and specify the second input essay as the
reference sample, the converted model is actually
a basic contrastive regression model. Then, the
difference vector dv is fed into a fully connected
neural network which consists of only one output
neuron with antisymmetric activation and without
a bias. Given the difference vector dv, the pairwise
contrastive model can be simply defined as follows:

∆s = Rθ(dv) (11)

where ∆s represents the relative score of any two
essays and θ is the parameter of the regression
model. This regression problem of the relative
scores can be solved by minimizing the Mean
Squared Error (MSE) loss that can be computed
based on the predicted relative scores and the
golden relative scores over the training data. The
corresponding loss function for this pairwise con-
trastive regression is shown as follows:

Lr =
1

N

N∑

i=1

(∆si −∆s
′
i)
2 (12)

where N refers to the total number of essay pairs,
∆si and ∆s

′
i denote the predicted relative score

and the golden relative score, respectively.
In principle, this contrastive regression model

should satisfy three characteristics: reflexivity, an-
tisymmetry and accumulation. Specifically, the ac-
cumulation can be defined as follows:

rf(x, y) + rf(y, z) = rf(x, z) (13)
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Obviously, both reflexivity and antisymmetry can
easily be satisfied by adopting the same neural net-
work architecture as in the previous section. Nev-
ertheless, in theory, the accumulation in this con-
trastive regression model cannot be guaranteed by
any neural network model itself. Thus, a learning
goal of this contrastive regression model is to meet
accumulation as much as possible.

With this end in view, how to select the essays
pairs during training becomes critical. Therefore
we design an effective selection strategy for con-
structing the training data. Particularly, we first
arrange all essays in each prompt as a sequence
according to the order in which they appear in the
training data, then orderly pick every two adjacent
essays in the sequence as a pair. Furthermore, an
important additional step is imposed to cater the
need of accumulation. To be specific, if we pick
the essays pairs (ei, ej) and (ej , ek) as the training
instances, we should also add the pair (ei, ek) into
the training data in order to make the learned model
meet the accumulation. Additionally, to make the
input essay and the reference essay comparable,
we tend to select the essays that shares the same
prompt with the input essay as the references.

3.4 Inference
During inference, we employ a multi-sample voting
strategy. Intuitively, the selected reference samples
should be comparable to the input test essays. How-
ever, our dataset has eight prompts and different
prompts have different relative score ranges. In
order to solve the above problem, we select some
sample essays which have the same prompt with
the input essays.

Specifically, given an input essay etest, we se-
lect M samples from the training datasets to con-
struct M pairs using these M different samples
{emtrain}Mm=1 whose scores are {strain}Mm=1. Then
we will obtain M predicted scores and the final
score of the input essay is the average of these M
scores. The process of multi-sample voting can be
summarized as follows:

ŝmtest = Rθ(Fw(etest, e
m
train)) + smtrain (14)

ŝtest =
1

M

M∑

m=1

ŝmtest, m = 1, 2, ...,M (15)

where θ and w are the parameters of the pairwise
contrastive regression model. ŝmtest represents the

Prompt ID
Essay

Set Size
Original

Score Range
Relative

Score Range
1 1783 2-12 -10-10
2 1800 1-6 -5-5
3 1726 0-3 -3-3
4 1772 0-3 -3-3
5 1805 0-4 -4-4
6 1800 0-4 -4-4
7 1569 0-30 -30-30
8 723 0-60 -60-60

Table 1: The details of the ASAP dataset.

m-th predicted score and ŝtest denotes the final
predicted score of the input essay etest.

4 Experiments

4.1 Experimental Settings
4.1.1 Dataset
We use the widely used dataset ASAP (Automated
Student Assessment Prize) for experimental eval-
uation. This comes from the competition which
was organized and sponsored by the William and
Flora Hewlett Foundation (Hewlett). This dataset
contains eight prompts and has different genres and
different number of essays, as described in Table
1. Following previous work, we also utilize 5-fold
cross-validation to evaluate the model. In each run,
we use 60%, 20% and 20% of the dataset for each
prompt as training data, validation data and test set,
which are provided by (Taghipour and Ng, 2016).

4.1.2 Evaluation Metrics
In this paper, we use the commonly used metric
Quadratic Weighted Kappa (QWK) to measure the
agreement between the artificial scores and the pre-
dicted results. Specially, let the essay set be scored
on a scale of 1 to N , and the score from the expert
is i while the predicted score of the model is j.

K = 1−
∑

i,j wi,jOi,j∑
i,j wi,jEi,j

(16)

wi,j =
(i− j)2
(N − 1)2

(17)

where w, O, E are matrices of weights, observed
scores and expected scores, respectively. Further-
more, the value of Oi,j represents the number of
essays that receive a score i by the human rater and
a score j by the AES system. And Ei,j represents
the outer product between two histogram vectors
of the scores.
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Dataset/Prompts
Model 1 2 3 4 5 6 7 8 Avg

EASE(SVR) 0.781 0.630 0.621 0.749 0.782 0.771 0.727 0.534 0.699
EASE(BLRR) 0.761 0.621 0.606 0.742 0.784 0.775 0.730 0.617 0.705

ALL-MTL-cTAP (2016) 0.816 0.667 0.654 0.783 0.801 0.778 0.787 0.692 0.747
CNN+LSTM (2016) 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761

LSTM-CNN-attent (2017) 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764
SKIPFLOW (2018) 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.764

HISK+BOSWE (2018) 0.845 0.729 0.684 0.829 0.833 0.830 0.804 0.729 0.785
R2BERT (2020) 0.817 0.719 0.698 0.845 0.841 0.847 0.839 0.744 0.794

NPCR 0.856 0.750 0.756 0.851 0.847 0.858 0.838 0.779 0.817

Table 2: The QWK evaluation scores on ASAP dataset, and the results of baselines are adapted from their original
papers.

4.1.3 Implementation Details

Following previous work (Yang et al., 2020), we
also useBERTbase model for fair comparison. For
tokenization and vocabulary, and we all use the
preprocessing tools provided by the BERT model.
For the limitation of our GPU memory, we set the
max length of the essay is 512 words and the batch
size is 5. We train our model for 80 epochs and
select the best model based on the performance on
the validation set. We use AdamW as our optimizer
to train the model and the initial learning rate is set
to 1e − 5. In addition, we normalize all relative
scores to the range of [0, 1] during training and
the scores are rescaled back to the original score
range for evaluation. Following previous work, we
conduct the evaluation in prompt-specific fashion.

4.2 Overall Performance

In this section, we comprehensively compare our
overall performance with the following state-of-
the-art related methods that were evaluated on the
dataset ASAP.

4.2.1 Baselines

EASE The major non deep learning system that we
compare against is the Enhanced AI Scoring En-
gine (EASE). This system is publicly available and
also achieved excellent results in the ASAP com-
petition. Following previous works, we report the
results of EASE with the settings of Support Vec-
tor Regression (SVR) and Bayesian Linear Ridge
Regression (BLRR).

ALL-MTL-cTAP Cummins et al. (2016) used
a constrained multi-task pairwise-preference learn-
ing method to achieve the representation of the
essays.

CNN+LSTM Taghipour and Ng (2016) first de-
signed a neural network model which used CNN
for word sequence modeling and LSTM for text
level modeling. Then the essay representation is
achieved by mean of time pooling.

LSTM-CNN-attent Dong et al. (2017) proposed
to use hierarchical neural networks with attention
mechanism to extract features from sentences and
documents.

SKIPFLOW Tay et al. (2018) proposed the
model that considered neural coherence features
within the context of an end-to-end neural frame-
work to improve prediction.

HISK+BOSWE Cozma et al. (2018) combined
string kernels and word embeddings to extract more
semantic features and gained higher performance
in both in-domain and cross-domain settings.

R2BERT Yang et al. (2020) presented the first
work that employed a multi-loss method to com-
bine regression and ranking and to fine-tune BERT
models in AES tasks.

4.2.2 Performance Comparison

Table 2 shows the overall performance compari-
son between our model and the above state-of-the-
art AES models. From Table 2, we can see that
our approach substantially improves the average
QWK score by 2.3%, compared to the best baseline
R2BERT. It is worth noting that our model not only
achieves the state-of-the-art average performance
but also obtains better performance on almost all
prompts compared to all baselines, which shows
the superiority of the proposed pairwise contrastive
regression model for AES.
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Model Avg QWK
R2BERT-RegrOnly 0.768
NPCR-RegrOnly 0.770

R2BERT-RankOnly 0.756
NPCR-RankOnly 0.796

NPCR 0.817

Table 3: Ablation studies on the use of the regression
and ranking objectives in our model.

Model Avg QWK
NPCR-Accu 0.800
NPCR-Group 0.802

NPCR 0.817

Table 4: Performance comparison on the choice of ref-
erence essays during training and inference.

4.3 Analysis
4.3.1 Effect of Contrastive Regression

Learning
Unlike previous regression-based models for AES,
our approach integrates regression with ranking
within a contrastive regression framework. In this
section, we evaluate the effect of exploiting con-
trastive regression by the ablation test.

As shown in the first row of Table 3, two base-
lines are presented for comparison. The first base-
line R2BERT-RegrOnly refers to the regression
only version of R2BERT (Yang et al., 2020). On
the other hand, we also implement the second base-
line NPCR-RegrOnly, which is the regression only
version of our model NPCR by removing the con-
trastive learning from NPCR. More specifically,
we first use BERT to obtain the representations
of the input essays and then employ a fully con-
nected layer with a sigmoid activation function to
predict the scores. The results in Table 3 show that,
compared the two baselines, our full model NPCR
consistently improve QWK scores by 4.9% and
by 4.7% respectively, which clearly indicates the
importance of contrastive regression learning for
our model.

4.3.2 Effect of Pairwise Ranking
In this section, we inspect the effect of our neural
pairwise ranking model. In the second row of Table
3, the first baseline R2BERT-RankOnly refers to
the ranking only version of R2BERT (Yang et al.,
2020). Similarly, we also implement the second
baseline NPCR-RankOnly, which is the ranking
only version of our model NPCR by removing

Figure 2: The performance curve varying with different
number of reference essays.

the score prediction part from NPCR. In detail,
the output label of NPCR-RankOnly is a binary
value which represents the priority relationship be-
tween any two essays. During inference, NPCR-
RankOnly does not apply the multi-sample voting
strategy, which means M is set to 1. After observ-
ing the results in Table 3, we can infer the fol-
lowing two implications: Firstly, the performance
of NPCR-RankOnly is 4.0% better than R2BERT-
RankOnly, which shows that our neural pairwise
ranking method is superior to the neural batchwise
based ranking model in previous (Yang et al., 2020).
Secondly, the large gap between our full model
NPCR and the baseline NPCR-RankOnly clearly
demonstrates the complementarity of the two meth-
ods.

4.3.3 Effect of the Strategy of Choosing
Training Sample Pairs

In order to meet the accumulation of our model
NPCR, we propose a sample selection strategy for
building an effective training dataset, as illustrated
in Section 3.3. In this section, we inspect the effect
of this sample selection strategy. As a comparison,
we also implement a baseline NPCR-Accu, which
does not consider the accumulation while choosing
the training sample pairs. That is to say, only the
two adjacent essays in the given essay sequence are
added into the training dataset. The results in Table
4 show that the average QWK score of NPCR is
1.7% better than the baseline NPCR-Accu.

4.3.4 Effect of the Strategy of Choosing
Reference Essays

It is necessary to choose the number M in multi-
sample voting strategy for inference. In this sec-
tion, we investigate the relationship between the
prediction performance and the number of refer-
ence essays. Figure 2 shows the results predicted
with different number of reference essays. The per-
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Figure 3: Realtive Score Distribution Histogram and
Gaussian Kernel Density Estimation for model NPCR
and NPCR-Group in Prompt 1.

Model Avg QWK
NPCR-XLNet 0.816
NPCR-BERT 0.817

NPCR-RoBERTa 0.817

Table 5: Performance comparison of different pre-
trained language models.

formance curve in Figure 2 demonstrates that the
performance gradually improves as the number M
increases, and then the performance growth tends
to converge when M is greater than 40.

Furthermore, we consider the impact of differ-
ent sample scores’ distribution and devise a group-
testing strategy to verify it. Concretely, we first
divide the score range of training essays into M
non-overlapping intervals (called ′groups′), and
then select M reference essays by picking only
one essay from every group. From Table 4 we
can see that NPCR has better performance than
NPCR-Group that uses the group-testing strategy,
indicating that randomly choosing samples is better
than selecting samples from different score groups.
For detailed reason, we generate Relative Socres
Distribution Histograms and observe the Gaussian
Kernel Density Estimates for the training and test
essay pairs in all datasets, for instance Prompt 1 in
Figure 3, in order to study the characteristics of the
data distribution under different strategies of choos-
ing reference essays. We can find that NPCR has
better consistency w.r.t the distributions of relative
scores in training and test data than NPCR-Group.

4.3.5 Comparison of Different Pre-trained
Language Models

In this section we investigate the performance varia-
tion with different mainstream pre-trained language
models including BERT, XLNet and RoBERTa.
The experimental results in Table 5 show that the

performance remains almost constant when chang-
ing the underlying pre-trained language model in
our approach, which indicates that our AES model
NPCR under the contrastive regression learning
framework is relatively insensitive to the choice of
pre-trained language models.

4.3.6 Computational Cost
In this section, we analyze the computational cost
of the model NPCR. Compared with the previous
work dealing with a single essay, our model NPCR
really needs to take slightly more computational
cost. However, in our model NPCR, the runtime of
dealing with an essay pair is roughly similar to the
cost of dealing with a single essay in the baselines,
thus leading to the limitation of the increase of the
computational cost. Hence, the number of essay
pairs is a critical factor for analyzing the compu-
tational cost. In summary, during training, if the
number of essays in training dataset is n, the num-
ber of essay pairs to be calculated in NPCR is less
than 2*n; during inference, if the number of es-
says in the test set is n, the number of essay pairs
needed to be checked in NPCR should be M*n,
where M is the number of reference essays. In ef-
fect, when we record the running time of model
NPCR in Prompt 1 with GPU RTX3090Ti, the av-
erage training runtime is 90 seconds per epoch and
the average inference runtime is 0.7 second per 40
essay pairs.

5 Related Work

Automated essay scoring systems have been de-
ployed for high-stakes assessment since decades
ago. The early approaches for AES mainly in-
volved handcrafted feature based methods (Larkey,
1998; Chodorow and Burstein, 2004; Phandi et al.,
2015; Zesch et al., 2015), while the recent stud-
ies have explored deep learning based methods to
deliver state-of-the-art performance for this task.

In recent years, the mainstreams of AES methods
typically formulate AES as a regression task. Mul-
tiple deep learning architectures based regression
models for AES have been proposed. Taghipour
and Ng (2016) presents the first neural network
model for AES, which first uses the combination
of CNN and LSTM to extract features of essays to
generate text representation vectors and then apply
a linear layer with sigmoid activation to map the
vectors to valid scores. Dong and Zhang (2016)
uses a hierarchical structure to automatically learn
features from the word level and the sentence level.

2731



Dong et al. (2017) further introduces the attention
mechanism into the model and proves that CNN is
more conducive to obtaining local features, while
LSTM is more suitable for obtaining global fea-
tures. Tay et al. (2018) proposes to consider neural
coherence features as auxiliary features for predic-
tion within an end-to-end neural framework. Re-
cent advances in BERT (Devlin et al., 2019) model
have inspired researchers to use pre-trained lan-
guage model in AES (Rodriguez et al., 2019; Mim
et al., 2019; Song et al., 2020).

Another line of research focuses on applying
the learning to rank methods in AES tasks. Yan-
nakoudakis et al. (2011) firstly formulate AES as
a rank preference problem and then employ a pair-
wise ranking model RankSVM to rank two or more
essays based on statistical features. Chen and He
(2013) further utilizes the listwise ranking method
to learn a ranking model based on linguistic fea-
tures. Cummins et al. (2016) uses multi-task learn-
ing to address the problem of prompt adaptation by
treating each prompt as a different task and intro-
ducing a constrained preference-ranking approach.

Recently, considering the complementarity of
ranking and regression approaches, Yang et al.
(2020) proposes a multi-loss method to combine re-
gression and ranking in the AES task with a simple
dynamic combination strategy.

6 Conclusion

In this paper, aiming to incorporate the merits of
two popular AES solutions, we propose a novel uni-
fied model NPCR for AES which combines both
regression and ranking objective in a principled
way. Our approach is conceptually simple, how-
ever, the experimental results on the public dataset
ASAP demonstrate that NPCR significantly outper-
forms previous approaches, advancing the state of
the art in AES tasks.

In future work, we will explore more sophisti-
cated neural feature extractors under the pairwise
contrastive regression framework so that more pow-
erful text features can be learned from the input
essays, such as the hierarchical structure of a docu-
ment, coherence features and so on.
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Abstract

Current medical question answering systems
have difficulty processing long, detailed and
informally worded questions submitted by
patients, called Consumer Health Questions
(CHQs). To address this issue, we introduce a
medical question understanding and answering
system with knowledge grounding and seman-
tic self-supervision. Our system is a pipeline
that first summarizes a long, medical, user-
written question, using a supervised summa-
rization loss. Then, our system performs a
two-step retrieval to return answers. The sys-
tem first matches the summarized user question
with an FAQ from a trusted medical knowl-
edge base, and then retrieves a fixed number
of relevant sentences from the corresponding
answer document. In the absence of labels for
question matching or answer relevance, we de-
sign 3 novel, self-supervised and semantically-
guided losses. We evaluate our model against
two strong retrieval-based question answering
baselines. Evaluators ask their own questions
and rate the answers retrieved by our baselines
and own system according to their relevance.
They find that our system retrieves more rele-
vant answers, while achieving speeds 20 times
faster. Our self-supervised losses also help the
summarizer achieve higher scores in ROUGE,
as well as in human evaluation metrics. We re-
lease our code to encourage further research.1

1 Introduction

Motivation. Users of medical question answering
systems often write long questions, called Con-
sumer Health Questions (CHQs). Several aspects
of CHQs hinder the capacity of current question an-
swering (QA) systems to process them: long medi-
cal questions may contain peripheral information
like patient history (Roberts and Demner-Fushman,
2016) that are not necessary to retrieve relevant
answers. Consumer health questions may also use

1Link: https://github.com/KhalilMrini/
Medical-Question-Answering
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Figure 1: Overview of our proposed Consumer Health
Question Understanding and Answering model. The
input is a user question, called Consumer Heath Ques-
tion (CHQ). The goal is to match the CHQ to relevant
answer sentences associated with a Frequently Asked
Question (FAQ) from a medical knowledge base.

a distinct vocabulary from the one used by medi-
cal providers to describe the same health concepts
(Ben Abacha and Demner-Fushman, 2019a).

A growing number of approaches attempt to en-
hance the processing of consumer health questions
– or medical question understanding. These ap-
proaches include query relaxation (Ben Abacha and
Zweigenbaum, 2015; Lei et al., 2020), question en-
tailment (Ben Abacha and Demner-Fushman, 2016,
2019b; Agrawal et al., 2019), question summariza-
tion (Ben Abacha and Demner-Fushman, 2019a),
and question similarity (Ben Abacha and Demner-
Fushman, 2017; Yan and Li, 2018).

However, the above medical question under-
standing approaches stop short of retrieving an-
swers after processing consumer health questions.
The Medical Question Answering Task at TREC
2017 LiveQA (Ben Abacha et al., 2017) attempts
to fill the gap by proposing the task of Consumer
Health Question Answering. The goal is to retrieve
relevant answers obtained using online search for
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the corresponding CHQ. As part of their participa-
tion in this task, Yang et al. (2017) find that online
search engine queries introduce noise in perfor-
mance, and that even collected and curated medical
knowledge available offline can fare better.
Contributions. To enable the use of a curated med-
ical knowledge base for answering long user ques-
tions, we introduce a novel, knowledge-grounded
and semantically self-supervised system for Con-
sumer Health Question Understanding and Answer-
ing (CHQUA). We tackle a challenging aspect of
CHQUA: providing answers when no relevance la-
bels are available. Our contributions are as follows:

(1) We propose an end-to-end pipeline, as shown
in Figure 1, that takes as input a consumer health
question, and trains a summarizer model to gener-
ate a short, formally worded question. We optimize
a summarization training objective using the medi-
cal question summarization datasets.

(2) The medical knowledge base we use is sep-
arate from the question summarization datasets,
and therefore we have no labels to indicate which
knowledge base question matches a given con-
sumer health question. We design a novel,
semantically-guided self-supervised loss function
to ground the generated summary with knowledge
base FAQs, using semantic similarity as proxy to
question matching. The Matching FAQ similarity
loss helps the encoder pick the most semantically
similar knowledge base question.

(3) The large medical knowledge base we use
has no answer sentence relevance labels. We adapt
to this scenario by designing two complementary
self-supervised losses on the same encoder, and
by considering semantic similarity as a proxy to
relevance. The Answer Similarity loss pushes the
model to distinguish between relevant and irrele-
vant answer sentences, whereas the Answer Selec-
tion loss works in a complementary way to push
the model to select a given number of sentences.

Finally, we conduct an evaluation to compare
the relevance of our system with two strong base-
lines of retrieval-based question answering. We
ask evaluators to ask their own questions, and then
perform a blind evaluation of the retrieved answers
by each system. Seven evaluators find that our
system retrieves more relevant answers compared
to the two baselines, while achieving significantly
faster processing speeds. We also find that the
self-supervised losses help achieve better scores
in ROUGE and human evaluation metrics. How-

ever, we find that the task remains challenging,
with room for improvement. We release our code,
model, and matched datasets to encourage further
research in consumer health question understand-
ing and answering.

2 Related Work

Consumer Health Question Answering.
Ben Abacha et al. (2017) introduce the Medical
QA shared task at TREC 2017 LiveQA, where
the goal is to develop a consumer health question
answering system. The training data is comprised
of question-answer pairs. The questions are
informally worded CHQs received by the U.S.
National Library of Medicine (NLM). The answers
are formally worded and come from websites of
the U.S. National Institutes of Health or manually
collected by librarians. The evaluation scores are
given by humans, using a test set of CHQs and
reference answers.

Many participating teams adopt a question
matching approach, and train their models on ques-
tion similarity datasets like the Quora question pair
dataset (Iyer et al., 2017), or other datasets col-
lected from community question answering web-
sites. TODO (Mrini et al., 2021b)

In the MEDIQA 2019 Shared task, Ben Abacha
and Demner-Fushman (2019a) introduce a differ-
ently defined consumer health question answering
task. Here, the goal is to rank a given list of an-
swers according to their relevance with regard to
a CHQ. He et al. (2020) introduce a new disease
knowledge infusion training procedure for BERT
(Devlin et al., 2019) that scores well in this task.
Medical Question Answering. Medical QA ap-
proaches include translating questions to SPARQL
queries (Ben Abacha and Zweigenbaum, 2012), se-
mantic similarity between questions and candidate
answers (Hao et al., 2019), knowledge representa-
tions (Terol et al., 2007; Goodwin and Harabagiu,
2017), ranking candidate answers (Ben Abacha
et al., 2017, 2019), summarization of questions
and/or answers (Ben Abacha et al., 2021; Mrini
et al., 2021d,b,c), and medical entity linking
(Basaldella et al., 2020; Mrini et al., 2022).

There is a variety of definitions for the task of
medical QA and related sub-tasks in the literature.
Hao et al. (2019) define medical QA as the task of
finding the correct answer from a set of candidates
and a body of evidence documents. They propose
to work on two datasets: the National Medical Li-
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censing Examination of China (NMLEC) (Shen
et al., 2020), and Clinical Diagnosis based on Elec-
tronic Medical Records (CD-EMR), where the goal
is to predict the correct diagnosis based on patient
history.

Sharma et al. (2018) propose to tackle three
kinds of medical questions found in the BioASQ
challenge (Balikas et al., 2015): factoid questions
where answers are single entities, list-type ques-
tions where answers are a set of entities, and yes/no
questions.
Retrieval-based Question Answering. Recent
methods for retrieval-based QA systems use con-
textual text embeddings to evaluate a candidate
answer’s relevance to a given question.

Tay et al. (2018) propose to use Multi-Cast At-
tention Networks (MCAN), a new attention mecha-
nism, to model question-answer pairs.

Mrini et al. (2021e) introduce a recursive, tree-
structured model that models sentences according
to their syntactic tree. Their results show that tree
structure sets a new state of the art in conventional,
formally worded QA benchmarks like TrecQA and
WikiQA (Yang et al., 2015), but does not fare well
in informally worded, user-written datasets.

Karpukhin et al. (2020) introduce Dense Passage
Retrieval (DPR): a dual-encoder based on BERT
(Devlin et al., 2019), that predicts relevance scores
of passages with regard to a question. DPR en-
coders are trained on the relevance of passages
from datasets containing such labels, using a su-
pervised negative log-likelihood loss based on the
semantic similarity of questions and relevant pas-
sages.

Mao et al. (2021) modify the query part of
retrieval-based QA: they propose to use language
models to generate context for queries. They then
feed the extended queries to retrieval systems, such
as DPR or BM-25.

3 Problem Definition

We define knowledge-grounded Consumer Health
Question Understanding and Answering (CHQUA)
as the problem of retrieving a fixed number of an-
swer sentences from a medical knowledge base
that are the most relevant given a long and informal
user question – called a Consumer Health Question
(CHQ). There are three steps in CHQUA: ques-
tion summarization, matching the summarized user
question with a relevant FAQ from the knowledge
base, and retrieval of the relevant answer sentences

from the corresponding answer document.
Knowledge-grounded CHQUA is comprised of

three elements used for training. First, the CHQ
is the input of the task. Second, the Reference
FAQ (Frequently Asked Question) is the golden or
expert-written summary corresponding to the CHQ.
Whereas the CHQ is a long and informally worded
question, the reference FAQ is the corresponding
short, one-sentence, formally worded question. At
inference time, the reference FAQ is not available,
and we will therefore use a summary generated by
the model. Third, the medical knowledge base is
comprised of FAQs, where each FAQ has a corre-
sponding answer document with at least one sen-
tence. FAQs in the knowledge base are also short,
one-sentence, formally worded questions.

The goal of knowledge-grounded CHQUA is
to find a set R of n relevant answer sentences,
from a document comprised of answer sentences
Ai, such that Ai corresponds to question qi from
the knowledge base. We call qi the retrieved or
matching FAQ, such that qi is the most similar
question to the user’s summarized question qu:

qi = argmax
q∈Q

f(q, qu) (1)

whereQ is the set of questions (FAQs) in the knowl-
edge base, and f is a given similarity scoring func-
tion. qu is the reference FAQ (during training) or a
generated summary (during inference).

We find the setR of n relevant answer sentences
such that it maximizes the relevance score with the
user’s summarized question qu:

R = argmax
R′⊂Ai

∑

a∈R′
g(a, qu) (2)

where a is an answer sentence, and g is a given
relevance scoring function.

4 Our Pipeline

Our proposed pipeline for Consumer Health Ques-
tion Understanding and Answering has three main
components.

In the first step, our approach learns to under-
stand the intent of user questions (CHQs) by sum-
marizing them. We use an encoder-decoder-based
summarization model for this step.

The second step is question matching, or the
retrieval of the relevant FAQ from the knowledge
base: we ground the generated summary to a med-
ical knowledge base of FAQs and corresponding
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Consumer Health Question:
Asking about Hairy cell leukemia. 
I get report for my father from 
hospital it is saying that he have 
Hairy cell leukemia i am here to ask 
if this dissease dangerous and there 
is treatment for it  Also if The one 
who have it will live for long or 
not?  My father age is 55  We 
discover the dissease by blood test.

Encoder Decoder Generated Summary:
What are the treatments for hairy cell 
leukemia and how long does it live?

Reference FAQ (Summarization):
Where can I find information on hairy 
cell leukemia, including treatment 
and prognosis?

Knowledge 
base of FAQs 
and Answers

What are the symptoms of Hairy 
Cell Leukemia ?

How to diagnose Hairy Cell 
Leukemia ?

What are the stages of Hairy Cell 
Leukemia ?

What are the treatments for Hairy 
Cell Leukemia?

Top k most relevant FAQs  
with TF-IDF retrieval

Semantic 
Similarity
Ranking

Matching FAQ:
What are the treatments for 
Hairy Cell Leukemia?

Matching FAQ 
Similarity Loss

Summarization 
Loss

Summarization Model

Output Logits

Figure 2: The Consumer Health Question (user question) is first summarized, and we then retrieve a relevant
question from the knowledge base using the generated summary. The top half of the figure illustrates the first step:
question understanding through summarization (§4.1). The bottom half of the figure illustrates the second step:
question matching through self-supervised knowledge grounding (§4.2).

answer documents. As there are no question match-
ing labels, we consider semantic similarity as a
proxy to question matching, and we optimize a
self-supervised similarity loss.

The third step is the retrieval of the relevant an-
swer sentences: our model learns to select the top-k
most relevant answer sentences from the match-
ing answer document. To achieve this task in the
absence of answer relevance labels, we consider
semantic similarity as a proxy for relevance, and
we optimize two novel, semantically-guided, and
self-supervised loss functions. The first pushes the
model to discriminate between relevant and irrel-
evant sentences, and the other pushes the model
to consider only a fixed number of sentences as
relevant.

We show an overview of the model and learning
objectives in Figure 1. The entire pipeline is trained
together, as the summarizer encoder is re-used to
encode the questions and answer sentences.

4.1 Question Understanding through
Summarization

Our work aims to flip the burden of question under-
standing on the question answering model. Instead
of asking the user to shorten or reformulate their
question, we train an encoder-decoder abstractive
summarizer to shorten user questions. Figure 2
illustrates this part of the model.

At training time, we input a Consumer Health
Question (CHQ) to the summarization model. The
reference Frequently Asked Question (FAQ) is the

corresponding shorter and formal question. Given
a CHQ embedding x and the corresponding refer-
ence FAQ embedding yref , the summarization loss
is defined as the following negative log-likelihood
objective:

Lsum = −logp(yref |x; θ) (3)

4.2 Question Matching through
Self-Supervised Knowledge Grounding

In the next step, we match the summarized user
question with the most relevant FAQ from the med-
ical knowledge base. We use semantic similarity
as a proxy for question matching, in the absence of
such labels.

The knowledge-grounding process is comprised
of two steps. First, we use TF-IDF-weighted bag-
of-word and n-gram vectors to get the top k most
relevant FAQs from the knowledge base. This first
step acts as a fast filter to extract a small subset of
candidate FAQs. Our retrieval approach follows
the retrieval methods commonly used in question
answering systems (Chen et al., 2017; Dinan et al.,
2018). Dinan et al. (2018) note that the retriever is a
potentially learnable part of the model. In our case,
using TF-IDF retrieval is computationally optimal
and scalable given a large knowledge base with
thousands of FAQs. We use a TF-IDF embedder
fitted on all the FAQs of the knowledge base, as
well as reference FAQs from the training set of the
question summarization dataset.

The second step of knowledge-grounding is to
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Encoder
Semantic 
Similarity

Answer 
Similarity Loss

Answer 
Selection Loss

Generated Summary:
What are the treatments for hairy cell 
leukemia and how long does it live?

Retrieved Answer Document:
Extracted as Sentences

Selected Answer Sentences:
There are different types of treatment for 
patients with hairy cell leukemia.
Cladribine and pentostatin are anticancer drugs 
commonly used to treat hairy cell leukemia.

Figure 3: Illustration of the third step of our pipeline: answer retrieval through self-supervised similarity and
selection losses (§4.3). Following the same example as Figure 2, our model encodes sentences from the retrieved
answer document from the knowledge base, and compares them to the FAQ generated by the summarization model.
We use the encoder of the summarization model to embed sentences.

rank the top k FAQs using semantic similarity. To
get semantic embeddings of the generated sum-
mary and the corresponding top k most relevant
FAQs from the knowledge base, we use the encoder
of the summarization model. We take inspiration
from the precision formula of BERTSCORE (Zhang
et al., 2019), and compute the weighted semantic
similarity score as follows:

Sim(qu, qi) =
∑

w∈Wu

max
w′∈Wi

idf(w) · CosSim(xw,xw′)∑
w′′∈Wu

idf(w′′)

(4)

where qu is the reference FAQ (during training)
or the generated summary (during inference), qi
is the i-th question from the top k most relevant
FAQs, Wu and Wi are the corresponding sets of
words, CosSim is the cosine similarity function,
and idf(w) is the inverse document frequency of
the word w.

The matching FAQ is the knowledge base FAQ
with the highest similarity score with qu, as shown
in the example in Figure 2. During training, the
summarization model may produce low-quality or
degenerate FAQs. For this reason, at training time,
we choose to use the reference FAQ instead to com-
pute the semantic similarity scores and find the
matching FAQ. At test time, we only use the gener-
ated summary.

Since we are using different datasets for the ques-
tion summarization and for the knowledge base, we
have to reconcile the questions from the knowledge
base and the reference questions. We propose to
force the model to learn a representation space
that does not distinguish between the reference

FAQ and the most similar knowledge base FAQ.
To accomplish this, we compute the matching FAQ
similarity loss. Given the embedding of a summa-
rization reference FAQ qsum and the embedding of
a matching FAQ qmat, the matching FAQ similarity
loss is defined as:

Lmat = 1− ReLU (Sim (qsum, qmat; θ)) (5)

4.3 Answer Retrieval through Self-Supervised
Similarity and Selection Losses

After summarizing the user question and retrieving
a relevant FAQ from the knowledge base, the next
step is to retrieve relevant sentences from the corre-
sponding answer document. In our setting, we need
to retrieve a fixed number of sentences relevant to
the user question. However, we have no labels for
the answer sentences indicating relevance to the
user question. We propose two complementary
self-supervised learning objectives, that use seman-
tic similarity as a proxy to relevance scoring, and
satisfy the constraint of selecting a fixed number of
answer sentences.

We show an overview of our answer retrieval ap-
proach in Figure 3. In the example of the figure, we
show for simplicity a relatively short answer doc-
ument with four sentences, from which the model
chooses the two most relevant ones. In practice,
there are close to ten sentences in answer docu-
ments.

We compute semantic similarity scores between
the generated summary (for inference) or the refer-
ence FAQ (for training), and each of the sentences
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of the retrieved answer document. We obtain the
semantic embeddings of each sentence using the
encoder of the summarization model. We then com-
pute semantic similarity scores as shown in equa-
tion 4. Cosine similarity scores have values in the
[−1; 1] range. For a pair of sentences, a cosine simi-
larity value closer to−1 means that the correspond-
ing sentence embeddings are negatively correlated,
or that the sentences have opposite meanings. A
value closer to 0 means that the embeddings are not
correlated, and that there is no particular semantic
relation between the sentences. A value closer to 1
means that the sentence embeddings are positively
correlated, and the sentences are close semantically.
We consider that a sentence is relevant when the
values are closer to 1, and irrelevant otherwise. For
this reason, we apply a ReLU activation on the
cosine similarity scores before feeding them to the
loss functions.

We propose two learning objectives to achieve
the self-supervised selection of relevant answer sen-
tences. The semantic similarity loss pushes the
model to increase its confidence in the relevance
of answer sentences, whereas the answer selection
loss pushes the model to select only a fixed number
of sentences. The intuition for sharing the encoder
with the summarization model, is that these two
losses will enable the summarizer to absorb notions
of relevance and semantic similarity.

Given the summarization reference FAQ qsum
and the i-th sentence of the retrieved answer docu-
ment ai, we compute the ReLU-activated semantic
similarity score as follows:

S(qsum, ai; θ) = ReLU (Sim (qsum, ai; θ)) (6)

We then define the semantic similarity loss Lsim
and the answer selection loss Lsel as follows:

Lsim =

|A|∑

i=1

S(qsum, ai; θ) ∗ (1− S(qsum, ai; θ))

(7)

Lsel =

∣∣∣∣∣∣
min(n, |A|)−

|A|∑

i=1

S(qsum, ai; θ)

∣∣∣∣∣∣
(8)

where A is the set of sentences in the retrieved
answer document, and n is the fixed number of
sentences to be retrieved.

DATASET SPLIT TRAIN DEV TEST

MeQSum 405 50 50
HealthCareMagic 1,314 164 165

Table 1: Statistics of the medical dataset splits.

The semantic similarity loss Lsim pushes the se-
mantic similarity values to be either 1 (relevant)
or 0 (irrelevant). In combination with Lsim, the
answer selection loss pushes the model to only se-
lect up to n sentences to have semantic similarity
values close to 1. Our system then outputs the sen-
tences with the highest semantic similarity values
in the order in which they appear in the answer
document. Therefore, the particular semantic sim-
ilarity ranking of the relevant sentences does not
matter – it only matters that relevant sentences have
the n highest values.

Finally, the learning objective L is as follows:

L = Lsum + λ ∗ Lmat + γ ∗ (Lsim + Lsel) (9)

where λ and γ are hyperparameters. We use only
one weight for Lsim and Lsel as these two losses
are complementary.

5 Experiments and Results

In this section, we evaluate our proposed pipeline
for Consumer Health Question Understanding and
Answering, and we propose to compare our pro-
posed pipeline against two strong baselines. Seven
medical experts judge the performance of our sys-
tem and baselines by asking their own questions,
and rating the relevance of the answers retrieved.
Then, we analyze the results through the lens of
summarization metrics, human evaluation, and
computational speed.

5.1 Datasets
We use one medical knowledge base, MedQuAD
(Ben Abacha and Demner-Fushman, 2019b), and
two medical question summarization datasets:
MeQSum (Ben Abacha and Demner-Fushman,
2019a) and HealthCareMagic (Zeng et al., 2020).
All datasets are in English. We show dataset statis-
tics in Table 1.

5.1.1 Dataset Details
MedQuAD is a large-scale Medical Question
Answering Dataset. Ben Abacha and Demner-
Fushman (2019b) collect trusted medical question-
answer pairs by crawling them from 12 websites
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of the U.S. National Institutes of Health (NIH).
Each web page contains information about a health-
related topic, like a disease or a drug. The authors
automatically collect the question-answer pairs by
composing handcrafted patterns adapted to each
website based on document structure and section ti-
tles. They manually evaluate 1,721 CHQs to come
up with automatic wording patterns for each of 36
question types. Therefore, even though answers are
curated and written by medical experts, questions
are automatically formulated and may have some
noise.

We collect the publicly available (e.g. not copy-
righted) question-answer pairs from the MedQuAD
dataset2. We then use the NLTK sentence tokenizer
(Bird, 2006) to split answer documents into sen-
tences. We get 16,423 questions and 157,592 an-
swer sentences, making for an average of 9.6 an-
swer sentences for each question.

MeQSum (Ben Abacha and Demner-Fushman,
2019a) is a medical question summarization dataset
released by the U.S. National Institutes of Health
(NIH). It contains 1,000 consumer health questions
summarized into FAQ-style single-sentence ques-
tions by medical experts.

HealthCareMagic is a medical dialogue
dataset issued as part of the MedDialog dataset
(Zeng et al., 2020)3. It is crawled from
HealthCareMagic.com, an online healthcare
service platform. This dataset includes first a for-
mally worded, one-sentence question describing
the intent of the patient question, followed by 2
long utterances: a CHQ from the patient that in-
cludes a description of the problem and a question,
and then an answer from the doctor. To form a med-
ical question summarization dataset, we consider
the single-sentence descriptions as summaries of
the patient’s CHQ. We collect 226,405 question
pairs.

5.1.2 Knowledge-based Filtering of Datasets
We conduct experiments for each of the two
question summarization datasets, and we use
MedQuAD as the underlying knowledge base in
all experiments. For this reason, we decide to fil-
ter each of the question summarization datasets to
reconcile their differences with MedQuAD.

We first fit a TF-IDF embedding model, similar
to the one of (Dinan et al., 2018), on the refer-

2https://github.com/abachaa/MedQuAD
3https://github.com/UCSD-AI4H/

Medical-Dialogue-System

ence FAQs of each question summarization dataset
and the questions of MedQuAD. We then compute
the dot products of the TF-IDF-weighted vectors
for all possible pairs of summarization FAQs and
MedQuAD questions. We assign a matching score
m(qsum) to each summarization reference FAQ:

m(qsum) = max
q′∈QMedQuAD

tfidf(qsum) · tfidf(q′)
(10)

We manually evaluate the matching scores for
each summarization dataset to set a cutoff matching
score of filtering. This way, we obtain question
summarization datasets where reference FAQs have
matches in the medical knowledge base. Finally,
we perform a random and rough 80/10/10 split for
the train/dev/test sets. The dataset statistics are in
the main paper.

5.2 Training Settings
We adopt the BART encoder-decoder model (Lewis
et al., 2020), as it set a state of the art in abstractive
summarization benchmarks. We train our model
using the HuggingFace implementation (Wolf et al.,
2020), on a learning rate of 2 · 10−6. The question
matching pool retrieved by TF-IDF is comprised
of k = 32 knowledge base FAQs. Our answer se-
lection loss Lsel is optimized to select up to n = 3
sentences. We use λ = 0.01 and γ = 0.01 as
weights for the self-supervised losses. The BART
encoder is used for embedding sentences for ques-
tion matching and answer selection.

We train for 50 epochs for MeQSum, and 20
epochs for HealthCareMagic. Each training epoch
takes about 10 minutes for MeQSum, and about 35
minutes for HealthCareMagic. Inference takes 1
minute for the MeQSum test set and 3 minutes for
the HealthCareMagic test set. The best checkpoint
is selected based on the lowest loss value L on the
dev set.

We use BART Large pre-trained on the CNN-
Dailymail dataset, and each BART Large model
contains 406 million parameters, as per the Hug-
gingFace implementation.

5.3 Baselines
We propose the two following baselines in retrieval-
based question answering: Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020), and Generation-
Augmented Retrieval (GAR) (Mao et al., 2021).
We adapt these two baselines to our case, and adopt
BART-based pre-trained encoders.
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SYSTEM MeQSum HealthCareMagic Time/Query
DPR (Karpukhin et al., 2020) 1.42 1.73 47 seconds
GAR (Mao et al., 2021) 1.40 1.64 48 seconds
Ours 2.13 2.35 2 seconds

Table 2: Evaluation of the relevance (out of 5) of answers retrieved by our proposed system and two strong baselines
for questions asked by seven evaluators. The systems trained on MeQSum are evaluated on 60 questions by 3
evaluators, and the ones trained on the larger HealthCareMagic dataset are evaluated on 80 questions by 4 evaluators.
The column on the right shows the number of seconds it takes for a loaded system to retrieve the answer to a query.

Similarly to our own pipeline, we create a two-
stage retrieval to get answers. The first stage en-
codes questions from the knowledge base, and re-
trieves the question that is most relevant to the
query. The second stage encodes the corresponding
answer document, and retrieves the three sentences
that are most relevant to the query.

For DPR, the query is simply the user question.
For GAR, we need to generate a context to add to
the user question: we choose to add the summary
of the user question as the context. We train a
BART encoder to summarize user question, using
the question summarization datasets.

Whereas our system’s retrieval encoder is trained
on our proposed self-supervised objectives, the
retrieval encoders of the baselines are trained on
Wikipedia for the task of retrieval-based question
answering.

5.4 Do we retrieve relevant answers?

5.4.1 Evaluation Strategy

We hire seven annotators: four of which are medi-
cal doctors, and the remaining three hold degrees
related to healthcare or immunology.

We ask the evaluators to first write user ques-
tions, and then evaluate the answers retrieved by
our system and the two existing systems. Given that
our medical knowledge base has limited questions,
we ask the evaluators to limit their questions to the
topics covered by the nine sources from which the
knowledge base was extracted.

Then, we ask the evaluators to rate the relevance
of the answers retrieved by each system indepen-
dently, on a scale of 1 (not relevant) to 5 (relevant).
The full description of scores given to the annota-
tors is in the Appendix.

Each of the seven annotators wrote 20 questions,
and each question gets three answers (one per sys-
tem). We assign three annotators to the models
trained on MeQSum, and four to the models trained
on HealthCareMagic. The annotators rate answers

only for the questions that they wrote themselves.

5.4.2 Results and Discussion
We show the results of the evaluations in Table
2. The first three columns show the averages of
relevance scores that were given by annotators for
all systems.

The results show that the evaluators have pre-
ferred our system’s answers over the answers re-
trieved by the two baselines. Our system gets rele-
vance scores that are 0.6 to 0.7 points higher, out of
5 on the relevance scale. An annotator commented
that they find our system to be "more organized
and to-the-point than the rest of systems."4

The two baselines seem to perform similarly to
each other. This is likely due to the fact that the
main difference between them is that the query is
generation-augmented for GAR, whereas the query
is simply the user question for DPR.

Overall, the relevance scores are on the lower
side, as no system exceeds an average score of
2.5/5. This shows that consumer health question
answering and understanding is a challenging task,
especially since there are no labels to indicate
whether an answer is relevant to a particular ques-
tion, or which FAQ matches the user’s intent.

In addition, the challenges of the task are also
due to the limitations of the knowledge base. Some
annotators noted that the retrieved answers were
often not appropriate, or close to the topic but not
answering the question. This is due to the fact that
MedQuAD does not cover all possible illnesses
and medical conditions that the users could ask
about. Whereas a larger database would potentially
solve coverage problems, it could be at the expense
of the quality or verifiability of the answers. The
MedQuAD dataset is at times noisy, and contains
generic sentences that may not answer any ques-
tion, or generic templates related to percentages of
symptoms and how frequent they are.

4Annotators were not told that either system was ours or
not. The systems were simply numbered for a blind evaluation.
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CRITERIA Fluency Coherence Informativeness Correctness
EVALUATION Win Lose Tie Win Lose Tie Win Lose Tie Win Lose Tie
MeQSum 11 5 28 10 6 28 12 3 29 12 4 28
HealthCareMagic 45 17 42 44 19 41 46 18 40 44 18 42

Table 3: Question Understanding evaluation: blind evaluation by 2 annotators of the generated summaries for the
test set CHQs. A “Win” evaluation means that our model generates a better summary than the baseline summarizer.

DATASET MeQSum HealthCareMagic
METRIC R1 R2 RL R1 R2 RL
GAR (Mao et al., 2021) 45.72 30.43 42.02 31.04 13.68 27.90
Ours 46.74 30.10 42.81 33.13 14.71 30.18

Table 4: Question Understanding evaluation: summa-
rization results on test set (reference FAQs). The R1,
R2 and RL metrics refer to the F1 scores of ROUGE-1,
ROUGE-2 and ROUGE-L.

5.5 Computational Speed

We run our system on a single 11GB GPU, whereas
the two baselines are each run on four 16GB GPUs.
We show the average duration required to retrieve
answers for a single query in the right column of
Table 2.

We notice that, in addition to the higher rele-
vance scores, the advantage of our system is that
it is significantly (more than 20 times) faster com-
pared to the two baselines. This is largely due to the
fact that we limit to 32 the number of knowledge
base questions that we encode and compare the
query embedding to. In contrast, DPR and GAR
encode all questions in the knowledge base. This is
done at the beginning when loading the models, but
the query similarity computation is done at each
run, thereby lengthening the processing time.

5.6 Analysis of Question Understanding

An additional way that our system outperforms
the two baselines could be through summarization.
We evaluate the summarization of consumer health
questions using the ROUGE metric (Lin, 2004).
Our GAR baseline uses a BART model trained
on the summarization loss only. We show the re-
sults in Table 4. We notice that sharing encoder
parameters between the summarization loss and
our proposed self-supervised losses generally in-
creases ROUGE F1 scores across both datasets. For
HealthCareMagic, score increases exceed 2 points
in ROUGE-1 and ROUGE-L.

Given that ROUGE is notoriously unreliable, we
hire two additional annotators on Upwork who are
healthcare workers to judge the fluency, coherence,
informativeness and correctness of generated sum-

maries. We show the annotators the consumer
health question (source text), the reference FAQ
(target text) and two generated summaries. The
annotators do not know which system generated
which summary. We show the evaluation scores in
Table 3. We remove repetitions of reference FAQs
in the test sets put up for evaluation. The results
confirm that our self-supervised losses increase the
quality of generated summaries. Summaries gen-
erated with our model score more wins more often
than losses on all four metrics, and score more wins
than ties with the summarization-only baseline for
HealthCareMagic.

6 Conclusions

We introduce an end-to-end pipeline for knowledge-
grounded consumer health question answering and
understanding (CHQUA). Our challenge is that we
have no labels for question matching or answer
relevance. We propose to use semantic similarity
as a proxy for those labels, and we design three
novel self-supervised losses: one works to match
the user’s summarized question to a knowledge
base question, and the other two losses work com-
plementarily to teach our model to select a fixed
number of relevant answer sentences. We com-
pare our proposed system against two strong base-
lines of retrieval-based question answering. We
hire seven medical experts to ask their questions,
and they find that our system provides more rele-
vant answers. Our system also achieves processing
times that are more than 20 times faster. Finally,
we find that our proposed self-supervised losses
enable the summarizer model to achieve higher
scores in ROUGE and human evaluation metrics,
compared to a summarization-only baseline. How-
ever, we find that this task remains challenging and
that there is still room for improvement. We release
our code and model to encourage further research.

Ethical Considerations

Our model is for medical question answering, but
should be used with caution as it does not claim
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to provide medical advice. Potential users of our
system should be warned to not blindly trust the
answers given to their medical questions. Poten-
tial users should always consult their physician for
medical advice.

Each of our annotators spent between two and
four hours on the task we gave them. Each anno-
tator was compensated fairly for their work. We
answered all of the annotators’ questions about
the task before they started. Hiring platform Up-
work guarantees the payment, fair treatment and
informed consent of our nine hired annotators
through a mutually agreed-upon contract. The plat-
form fee for Upwork was paid by us, and not de-
ducted from the compensation of the annotators.
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A Annotation Details

A.1 Topics Covered by the Knowledge Base

We ask the annotators to limit their questions to
the nine sources of MedQUAD. The nine sources
from which questions and answer documents are
extracted are as follows:

• National Cancer Institute

• Genetic and Rare Diseases Information Cen-
ter: various aspects of genetic/rare diseases

• Genetics Home Reference (GHR): consumer-
oriented information about the effects of ge-
netic variation on human health

• MedlinePlus Health Topics: information on
symptoms, causes, treatment and prevention
for diseases, health conditions, and wellness
issues

• National Institute of Diabetes and Digestive
and Kidney Diseases

• National Institute of Neurological Disorders
and Stroke: neurological and stroke-related
diseases

• NIHSeniorHealth: health and wellness infor-
mation for older adults

• National Heart, Lung, and Blood Institute
(NHLBI): diseases, tests, procedures, and
other relevant topics on disorders of heart,
lung, blood, and sleep

• Centers for Disease Control and Prevention
(CDC)

A.2 Answer Relevance Scoring

We ask annotators to rate answers retrieved by our
system and the two baselines according to the fol-
lowing criteria:

• Score of 1/5: The system’s answer is com-
pletely irrelevant to the question, and does
not even contain any concept related to the
question.

• Score of 2/5: The system’s answer mentions
notions that are related to the question, but
does not contain a word or concept mentioned
in the question.
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• Score of 3/5: The system’s answer mentions
one or more words or concepts from the ques-
tion, but does not actually answer the ques-
tion.

• Score of 4/5: The system’s answer partially
answers the question, mentions one or more
words or concepts from the question, but does
not fully answer the question.

• Score of 5/5: The system’s answer fully an-
swers the question.

A.3 Question Understanding
For question summarization, we evaluate the gen-
erated summaries on 4 criteria. We define these
criteria for the two healthcare worker annotators as
follows:

• Fluency: which generated FAQ is more gram-
matically correct, and easier to read and to
understand?

• Coherence: which generated FAQ is better
structured and more organized?

• Informativeness: which generated FAQ cap-
tures the most out of the concern of the patient
who wrote the CHQ?

• Correctness: which generated FAQ is more
factually correct given the CHQ?

A.4 Upwork
We ask annotators to work on Google docs that we
share with them. We show in Figure 4 an example
of a Google doc that we shared with an annotator
(medical doctor) to ask their own question, and the
answers we pasted for them to evaluate.
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Figure 4: Example of a Google document, where a hired annotator (medical doctor) asks a question, and rates the
answers that we pasted once retrieved by our system and the two baselines.

2747



Proceedings of the 29th International Conference on Computational Linguistics, pages 2748–2758
October 12–17, 2022.

A Progressive Framework for Role-Aware Rumor Resolution
Lei Chen1, Guanying Li2,Zhongyu Wei1,3∗, Yang Yang4, Baohua Zhou2, Qi Zhang5, Xuanjing Huang5

1 School of Data Science, Fudan University, China
2 School of Journalism, Fudan University, China

3 Research Institute of Intelligent and Complex Systems, Fudan University, China
4 College of Computer Science and Technology, Zhejiang University, China

5 School of Computer Science, Fudan University, China
1,3,5{chenl18,zywei,qi_zhang,xjhuang}@fudan.edu.cn

2zhoubaohua@yeah.net;4yangya@zju.edu.cn

Abstract

Existing works on rumor resolution have shown
great potential in recognizing word appear-
ance and user participation. However, they
ignore the intrinsic propagation mechanisms
of rumors and present poor adaptive ability
when unprecedented news emerges. To exploit
the fine-grained rumor diffusion patterns and
generalize rumor resolution methods, we for-
mulate a predecessor task to identify trigger-
ing posts, and then exploit their characteristics
to facilitate rumor verification. We design a
tree-structured annotation interface and extend
PHEME dataset with labels on the message
level. Data analysis shows that triggers play
a critical role in verifying rumors and present
similar lingual patterns across irrelevant events.
We propose a graph-based model considering
the direction and interaction of information
flow to implement role-aware rumor resolution.
Experimental results demonstrate the effective-
ness of our proposed model and progressive
scheme.

1 Introduction

With the expansion of the Internet, online informa-
tion tends to spread quickly and widely including
fake news, misinformation and rumors, the last of
which is defined as circulating stories unverifiable
or deliberately false (DiFonzo and Bordia, 2007).
Especially in current situation with infectious epi-
demics and intensive international relationships, re-
searchers have witnessed more than 900% growth
in the number of English fact-checks during the
COVID-19 outbreak. (Brennen et al., 2020). Auto-
matically verifying rumors has become an urgent
need for individuals and society.

Conventional methods for rumor resolution de-
pend on exploiting the evolutionary characteristics
of content and spreaders (Kwon et al., 2013; Ma
et al., 2015). Benefiting from various attention

∗ Corresponding author

Two police officers have been injured in 
a shooting in #Montrouge in southern 
#Paris there is no direct link with the 
#CharlieHebdo attack

How the hell can you say there is 
no direct link, what proof do you 
have to prove this.

An intended shooting spree for 
policeman. yeah BBC worded 
it decent enough

Amplify

Deny

Clarify

Figure 1: An illustration of rumor cascades and typical
roles of messages helpful for rumor verification.

mechanisms, there is a growing tendency to re-
trieve evidential messages, indicative tokens and
critical users to enhance interpretability (Ma et al.,
2019; Lu and Li, 2020; Wu et al., 2020a). How-
ever, capturing patterns from historical records
faces great challenges while transferring to un-
precedented events as rumors evolve quickly and
recur infrequently. Besides, extracting features of
malicious users skips over the immediate indication
and allusive roles of the content itself.

Recently, researchers are dedicated to investi-
gating the intrinsic mechanism of rumor propa-
gation rather than linguistic or rhetorical features.
Vosoughi et al. (2018) reveal that it is the informa-
tion novelty that stimulates discussion desire which
makes rumors spread faster and deeper. Choi et al.
(2020) manage to locate echo chamber members
who tend to amplify rumor threads and find them
responsible for viral propagation. N. Zehmakan
and Galam (2020) divide rumor participants into 3
groups (seeds who adamantly convince the truth,
agnostics who firmly reject and others) and analyze
their roles during diffusion. Inspired by these soci-
ological findings, we propose to explore and model
different roles of messages as rumor evolves.

Figure 1 illustrates three types of messages with
2748



triggering effects via a cascade instance drawn
from PHEME dataset (Zubiaga et al., 2016; Kochk-
ina et al., 2018). The source tweet seemingly re-
ports objectively and amplifies discussion topics
regard to a shooting event. After several rounds of
retweet, someone presents an attitude of denying
and asks for evidence. Finally, a user comes out
to clarify the real condition and confirm the false-
ness of the source. Suchlike online discussion
is widely existed, however, only a few messages
present these critical roles and the majority are in-
significant reposts and comments. Accordingly,
our goal is to identify triggers, i.e., messages that
have prominent effects on rumor proliferation and
dominate the judgment of cascade credibility. We
also claim that identifying the role-aware propa-
gation mode will contribute to rational and sound
rumor verification.

To practice the idea, we formulate the task of trig-
ger identification and annotate all the messages in
PHEME to form a jointly labeled dataset. Based on
the well-adopted graph learning methods, we fur-
ther put forward the UGRN (Unsymmetric Graph
Recurrent Networks) framework by additionally
considering the direction and interaction of infor-
mation flow to simulate trigger effect. Moreover,
we devise the role-aware integration and warm-up
strategy to facilitate rumor verification.

Our contributions are of three-folds:

• Following the propagation mechanism of ru-
mors, we formulate trigger identification as
a prepositive task of rumor verification and
supplement message-level annotations to the
PHEME dataset.

• What’s more, we design a graph-based frame-
work to jointly identify triggers and ver-
ify rumors by progressively modeling tree-
structured rumor cascades.

• Taking advantage of our annotated dataset, ex-
tensive experiments are conducted and demon-
strate the effectiveness of our model.

2 Related Work

As our research focuses on technically resolving
rumors in social media, we relate it with existing
computational rumor resolution methods and our
motivation for applying graph neural networks.

2.1 Rumor Resolution
Since rumors online are enriched with multi-form
data, early work concentrates on extracting promi-

nent features from perspectives of content, user re-
liability and communication impact (Castillo et al.,
2011; Kwon et al., 2013; Liu et al., 2015). With
deeper understanding of rumor propagation, re-
searchers endeavor to model the whole cascade
considering it as time-series sequences (Ma et al.,
2015, 2016; Yu et al., 2017), tree-structured diffu-
sion networks (Ma et al., 2018b; Kumar and Carley,
2019; Wei et al., 2019; Ma and Gao, 2020; Li et al.,
2020) or the combination of both (Sun et al., 2022).

A remarkable progress lately is to exploit stance
information to enhance rumor verification. Kochk-
ina et al. (2018) treat rumor detection, stance clas-
sification and rumor verification as a consistent
pipeline and confirm the effectiveness of multi-task
learning. Following studies explore various mech-
anism of parameter sharing (Ma et al., 2018a; Wu
et al., 2019) and improve efficiency of data usage
(Yu et al., 2020). However, annotating stances in
all rumor cascades is labor-intensive thus existing
corpus cannot reach a perfect match between stance
and verification data, which requires superior multi-
task training skills and still fails to explain how
stance information instructs rumor verification.

Another trend is to excavate the explainability of
rumor resolution networks. Ma et al. (2019) utilize
hierarchical attention networks to locate eviden-
tial sentences. Lu and Li (2020) employ a graph-
based co-attention model to capture the relevance
between the source text and spreader behavior. Wu
et al. (2020a) select suspicious retweets and ap-
ply co-attention mechanisms to explore their rela-
tionship with the source at token level. Although
these approaches can identify unreliable words, sen-
tences and users, they only practice in range-fixed
and randomly-split corpus making them short of
stability when faced with unknown events.

Recently, researchers attempt to model rumor
cascades based on the widely-existed propagation
mechanism. Wu and Rao (2020) employ gated
mechanisms and devise adaptive interaction fusion
networks to model the emotional associations and
semantic conflicts which rationalize rumor verifica-
tion. Chen et al. (2020a) utilize discrete variational
autoencoders to model interaction between mes-
sages and capture their temporal evolution. Lin
et al. (2021) design hierarchical graph attention
networks to implement claim-guided rumor detec-
tion. Different from their work, our goal is to ex-
plicitly identify critical messages with triggering
effects so that we construct a jointly labeled dataset.
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What’s more, we also investigate how triggers pro-
gressively facilitate rumor resolution.

2.2 Graph Neural Networks

With increasing complexity of data structure and
ingenious construction of intrinsic relation, Graph
Neural Networks (GNNs) have gained incremen-
tal popularity in modeling topological or tree-
structured data (Wu et al., 2020b). Among all the
variants, the basic skeleton Graph Convolutional
Networks (GCNs) exploit structure information to
aggregate and share features of neighbors which
provides a rapid and effective solution for node
classification, link prediction and community de-
tection (Kipf and Welling, 2017). Following works
mainly focus on refined aggregation of adjacent
nodes, such as incorporating attention mechanism
(Velickovic et al., 2018) and sampling neighbors
to avoid over-smoothing and improve computation
efficiency (Hamilton et al., 2017).

Nowadays, GNNs are extensively applied in the
area of natural language processing, ranging from
syntax-based machine translation (Bastings et al.,
2017), knowledge-based question answering (Sax-
ena et al., 2020) and aspect-level sentiment clas-
sification (Chen et al., 2020b). Despite the tree
structure owned by rumor cascades, it is difficult to
model cascades directly via GNNs. On one hand,
propagation graphs present a high level of hetero-
geneity in which neighboring nodes usually possess
different roles, while most GNNs are only effective
for homogenous node classification by sharing mu-
tual features. On the other hand, traditional ways
of entire graph learning apply mean or attention
pooling which is too coarse to capture evolutionary
characteristics of rumor cascades. In this paper,
we come up with an innovative way of message
passing by inheriting the pioneering idea of Gated
Graph Neural Networks (Li et al., 2016) that up-
date node representation via gated recurrent unit,
but also considering the direction and integration
of information flow.

3 Task and Dataset

3.1 Task Formulation

The task of rumor verification is formulated as a
supervised classification problem on the cascade
level. Given a source tweet r0, the tree-structured
cascade can be constructed with its responsive
tweets {r1, r2, ..., rT } following the retweet rela-
tionship while their textual, temporal and user-

related features are available. The goal is to assess
the veracity of the cascade by classifying Yv into
true, false or unverified.

In this paper, we propose a progressive frame-
work to implement trigger identification during
verification which aims at recognizing the role of
each tweet Yti as amplify, deny, clarify or null. Am-
plify indicates tweets that initiate new concerns or
enlarge the discussion scale related to the social
event. Deny means presenting doubt or rejection
towards previous messages. Clarify introduces fac-
tual or substantial information. Other messages are
left as null which means they are insignificant for
rumor propagation or verification.

3.2 Dataset Construction

Our corpus is built on PHEME dataset released by
Zubiaga et al. (2016) including TWITTER threads
from 5 hot-debated social events. Although subse-
quently Zubiaga et al. (2018) expand the total event
amount to 9, the additional cascades are small-
scaled and extremely unbalanced, thus we only
consider the original 5 events. They also supple-
ment stance labels on the message level, but only
13% rumor cascades have been annotated limited
by visualization technique and labor resources.

To implement role-aware rumor resolution, we
annotate triggers for all the messages in rumor cas-
cades. The main difference between two types of
message-level labels is that stance just presents
sentiment polarity towards the source tweet, while
triggers imply their global roles for rumor evolution
and are more context-sensitive.

The annotation process consists of three steps.
First, We devise a tree-based annotation system
containing textual information and propagation
path1. We remove cascades that only contain
source tweet and drop messages missing parents.
Second, each cascade is sent to 3 undergraduates
who need to read all the tweets in the cascade to
understand how the circulating story develops, and
then assign trigger labels to messages with criti-
cal roles. We only adopt the label if more than 2
people reach an agreement. Other messages are
labeled as null to ensure the significance of trigger-
ing effects. Finally, we evaluate annotation quality
with Fleiss’s kappa coefficient (Fleiss, 1971) and
achieve a moderate agreement of 0.515. Anno-
tating triggers is challenging because social me-

1http://fudan-disc.com/project/
annotation/propagation/demo.html
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dia statements are full of abbreviations and slang
words. The incompleteness of cascades caused by
privacy restrictions also impedes global compre-
hension. Statistics of the extended dataset is shown
in Table 1.

event # of # of verify dist. trigger dist.
cas. mes. (F:T:U) (N:A:C:D)

CH 449 6110 114:187:148 4705:915:271:219
OS 467 6036 72:327:68 4793:868:254:121
SS 508 7832 76:378:54 5868:1050:471:443
FG 268 4516 8:9:251 3679:527:181:129
GW 237 2377 111:94:32 1762:388:147:80
All 1929 26871 381:995:553 20807:3748:1324:992

Table 1: Statistics of extended PHEME dataset. The
abbreviation of different events is in short of Charlie
Hebdo, Ottawa Shooting, Sydney Siege, Ferguson Un-
rest, Germanwings Crash respectively. The next two
columns represents the amount of cascades and mes-
sages involved in different events. As for distribution of
verification and trigger labels, capital letters stand for
possible categories (F: false, T: true, U: unverified, N:
null, A: amplify, C: clarify, D: deny).

3.3 Data Analysis

For purpose of exploring how triggers interact with
neighbors and affect rumor proliferation, we ana-
lyze their contextual content continuity and capture
their temporal characteristics as rumor develops.

Content Continuity. Since triggers are assumed
to be more context-sensitive, we attempt to measure
the similarity between successive messages using
the ratio of overlapped word count to the longer
sentence length. As propagation is irreversible,
we differentiate the information flow either from
parent nodes or child nodes. Specifically, after cal-
culating the similarity of all the message pairs, we
take the average of child posts as the similarity with
children. Figure 2 shows the content continuity for
different types of triggers in different events.
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Figure 2: Context similarity for different types of trig-
gers in different events. Scatter points represent the
averaged context similarity for a certain kind of trigger
in a specific event. Shapes of boxes depict the degree of
trigger assimilation for different events.

It shows that triggers with different background
tend to possess similar continuity property as the
length of all the boxes is comparatively short. The
type of amplify holds higher probability to bring
information novelty compared with its parent and
launch discussion associated with it, while the null
type is totally on the contrary. Words in deny posts
are less repeated in parent and child message. Posts
of clarify present a moderate similarity with both
parent and children partly because factual infor-
mation is usually targeted towards the preceding
content but also provides hints for further debate.

In addition, we can observe that the property of
triggers is naturally endowed no matter what social
event they are related to, and the same for their prior
categorical distribution (shown in Table 1). Hence,
we consider triggers hold higher transfer ability
focusing on the universally existed propagation
patterns instead of concrete topics or stories, which
is helpful to debunk rumors nonexistent in history.

Temporal Variation. In order to investigate what
role triggers play for verifying rumors, we calcu-
late the amount of triggers in different diffusion
stages. To ensure the amount declination is not
from cascades rather small, we select 1,297 cas-
cades whose conversation last for more than 30
minutes and count the number of different triggers
in every 3 minutes. Then we count how many trig-
gers of a certain type emerge in each evolution
stage for every cascade. As shown in Figure 3, the
y-axis represents the averaged number of specific
triggers for each cascade in the time interval.
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Figure 3: Temporal variation of trigger distribution.
Each subgraph represents a certain kind of trigger. Dif-
ferent line styles stand for the category of rumors.

On the whole, the majority of discussion burst
in early stages. Except the amplify, other types
of triggers are distinguishable in different rumors.
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Amount of null is relatively small in misinforma-
tion especially in early stages which means there
exist more triggering posts arguing about cascade
veracity. Deny and clarify appear more frequently
in false rumors, while clarify takes longer time to
fade away. With all the findings, we assume trigger
identification as an effective way to promote verifi-
cation and generalization for rumor resolution.

4 Proposed Model

Based on observations in previous section, we pro-
pose the Unsymmetric Graph Recurrent Networks
(UGRN) to identify triggers and progressively ver-
ify rumors. Figure 4 illustrates the overall archi-
tecture which is composed of two components, the
sharing GRN layers of two tasks and the trigger-
aware prediction module.

4.1 Unsymmetric Graph Recurrent Networks

We use pretrained model to encode textual infor-
mation for each tweet, and then decompose the
propagation tree as two unsymmetric adjacency
matrix to employ different GRN layer for interac-
tion direction control.

Graph Initialization. Following the online con-
versational records, each rumor cascade can be con-
structed as a graph G = (V, E) where V represents
the set of nodes (messages in this circumstance)
and E represents the set of edges (retweet relation-
ship). Node representation is initialized via the
pretrained BERTweet (Nguyen et al., 2020) and
fine-tuned afterwards. We directly take the final
representation of [CLS] token s as the semanti-
cally meaningful features of sentences.

Structure Decomposition. After representing
messages with pretrained model, node attributes
X ∈ Rd×|V| can be obtained by concatenating
{s1, s2, ..., s|V|}, where d is the dimension of
sentence embedding and |V| represents the total
amount of tweets in the cascade.

Generally, edges are represented with a sym-
metric adjacency matrix A ∈ R|V|×|V|, where
Aij = Aji = 1 if there exists an edge between
node i and j. However, implementing graph convo-
lution in this way ignores the direction of informa-
tion flow which is assumed prominent for classify-
ing triggers (denoted in section 3.3). Therefore, we
differentiate direction of information flow by de-
composing the original adjacency matrix into two
unsymmetric matrices Ap and Ac, where Ap

ij = 1

if child node i is connected with parent node j and
Ac
ij = 1 if parent i is connected with child j.
Since the decomposed adjacency matrix is sparse

especially for tree-structured data, we add self-
loops to the root (the source tweet) in Ap and all
the leave nodes (the last tweet of propagation path)
in Ac to ensure the sum for each row is larger than
0, thus can be divided for normalization. Figure 4
shows a concrete case to construct Ap and Ac for
a specific cascade. Then we employ unsymmetric
normalized transformation Âp = (Dp)−1Ap and
Âc = (Dc)−1Ac to avoid value scale changing
after graph convolution, where Dp,Dc ∈ R|V|×|V|
are the diagonal degree matrices where Dii equals
to the row sum of the adjacency matrix.

Graph Reccurent Networks. Our GRN layer is
based on the idea of Gated Graph Neural Networks
(Li et al., 2016) but we also employ efficient way of
graph convolution (Kipf and Welling, 2017). The
GRNs can be extended to L layers, the lth GRN
layer (l ∈ [1, L]) can be represented as follows.

First, we utilize the normalized unsymmetric
adjacency matrix (Âp for example) to aggregate
neighbor information from the top-down direction
to acquire the intermediate state for node i,

h
(l−1),p
i,p =

∑

j∈{j|Âp
ij ̸=0}

Âp
ijh

(l−1),p
j (1)

where h with a subscript of p means the interme-
diate information aggregated from parent and the
right h without p as subscript is the final output of
the (l − 1)th GRN layer.

Then we employ the Long Short-Term Memory
unit (Hochreiter and Schmidhuber, 1997) to recur-
rently implement graph convolution and obtain the
output hl,pi of lth GRN layer,

f li = σg

(
W fh

(l−1),p
i + Ufh

(l−1),p
i,p + bf

)
(2)

ili = σg

(
W ih

(l−1),p
i +U ih

(l−1),p
i,p + bi

)
(3)

oli = σg

(
W oh

(l−1),p
i +U oh

(l−1),p
i,p + bo

)
(4)

c̃li = σc

(
W ch

(l−1),p
i +U ch

(l−1),p
i,p + bc

)
(5)

cli = f
l
i ◦ c(l−1)i + ili ◦ c̃li (6)

hl,pi = oli ◦ σc
(
cli

)
(7)

whereW ∈ Rm×h, U ∈ Rm×h and b ∈ Rh (m is
the input size and h is the hidden size) are weight
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Figure 4: Overall architecture of our proposed model. The two squares on the left represent the decomposed
adjacency matrices Ap and Ac that control the direction of information flow. Both of the two tasks share the
unsymmetric GRN Layers. The updated node representation is used to predict trigger labels. Role-aware integration
mechanism is then applied to acquire cascade representation and produce verification prediction.

matrices and bias vector, σg and σc represent sig-
moid and hyperbolic tangent activation functions.

Computing hl,ci which integrates information
from child nodes is identical. Afterwards, we con-
catenate the representation from parent and chil-
dren to obtain updated node states h1

i , while 1 de-
notes that we only adopt one layer of GRN.

4.2 Progressive Prediction

After obtaining the node representation associated
with message interaction, we implement node clas-
sification to identify triggers and then exploit trig-
ger prediction to integrate nodes and make role-
aware verification on cascade level.

Trigger Identification. We simply apply a Feed
Forward Network (FFN) and softmax operator to
classify each node.

Yti = softmax(FFN(h1
i )) ∈ R4 (8)

The loss function of trigger identification is com-
puted by cross-entropy criterion,

Lt = −
1

|V|

|V|∑

i

Lt∑

j

Yt,ji log Ŷt,ji (9)

where Lt is the number of trigger classes, Ŷt,ji
represents the ground-truth label of trigger.

Role-Aware Verification. Since we assume that
triggers play an important role in rumor verification,
we briefly design a trigger-informed and role-aware
pooling mechanism that attends more to triggering

posts when integrating the whole cascade. Intu-
itively, we calculate the weight of each post by dot
product to weaken the impact of null messages.

ai =
[
0 1 1 1

]
Yti (10)

Then we apply softmax to normalize attention
weights in the cascade and sum up representa-
tions of all the nodes considering their role-aware
weights to obtain the cascade representation c.

c =

|V|∑

i

aih
1
i (11)

Similarly, we make verify prediction and com-
pute the loss function for verification,

Yv = softmax(FFN(c)) ∈ R3 (12)

Lv = −
Lv∑

j

Yv,j log Ŷv,j (13)

where Lv is the number of verification classes, Ŷv,j
represents the actual label.

Jointly Learning. We add two loss terms to ob-
tain a joint loss function L for optimization.

L = Lt + Lv (14)

Moreover, we adopt a warm-up strategy that only
reserves Lt in the first few rounds of training and
then employs the overall loss L to test the validity
of progressive learning.
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5 Experiments

5.1 Experimental Setup

Data Split. Based on our dataset, we adopt 2
types of cross validation to compare performance
and generalizaiton ability of different models. (1)
Random: to split the dataset into train, validation
and test set with a proportion of 8:1:1 randomly.
(2) LOEO: to implement leave-one-event-out cross
validation (Kochkina et al., 2018) which means
to treat data equally drawn from a target event as
test and validation set and leave others as train
set. Although model performance is usually un-
satisfactory to implement LOEO validation since
semantics differs a lot between events, it is more
representative of real world when unprecedented
event emerges.

Model Comparison. We compare various mod-
els by replacing node updating module with follow-
ing methods:

CNN: A CNN-based model (Yu et al., 2017) to
extract informative local comment.

RNN: A RNN-based model (Ma et al., 2016)
that treats rumor cascade as time series to capture
dynamic signals.

TreeLSTM: A treeLSTM-based network (Ku-
mar and Carley, 2019) to encode propatation tree.

TreeTrans: A model (Ma and Gao, 2020) using
transformer to recursively update tree nodes.

GCN: A GCN-based model (Wei et al., 2019)
first treating propagation trees as graphs.

GraphSage: A graph-based model (Li et al.,
2020) that randomly samples neighbors to aggre-
gate contextual information.

UGRN: Our proposed model.

Implementation Details. The network is trained
with AdamW optimizer (Loshchilov and Hutter,
2017). Hyperparameters performing best in vali-
dation set are recorded for testing. The batch size
(number of cascades) is set as 5. The hidden unit
size for GRN is set as 300. We adopt initial learning
rate of 8e-5, 2e-5 respectively for trigger classifier
layers and others. The maximum number of train-
ing epochs is 100. We have made our extended
dataset2 and code3 publicly available.

2http://fudan-disc.com/data/PHEME_
trigger.zip

3https://github.com/lchen96/trigger_
identification

5.2 Overall Performance

We implement the task of trigger identification and
rumor verification to evaluate the performance of
our proposed model, as shown in Table 2. Since
these two tasks are both evil-balanced, we choose
macro F1-score to compare model performance.

Method Trigger Verify
Random LOEO Random LOEO

CNN 0.524 0.501 0.741 0.308
RNN 0.562 0.560 0.785 0.314
TreeLSTM 0.538 0.514 0.710 0.317
TreeTrans 0.541 0.511 0.714 0.314
GCN 0.548 0.542 0.772 0.322
GraphSage 0.549 0.561 0.781 0.304
UGRN 0.574 0.570 0.819 0.346

Table 2: Results of trigger identification and rumor
verification. All the numerical values represent macro
F1-score when adopting random or LOEO cross valida-
tion. The result of LOEO validation is the average of 5
folds. Bold: the best performance in each column.

It can be seen that our model can identify triggers
more accurately and achieves the highest macro
F1-score for verification. Considering the task
of trigger identification, CNN model provides
the baseline for trigger identification using pre-
trained sentence representation for classification
(since features are not updated on message level
and pooling for nodes is not applied). Models
with reccurent unit (UGRN, RNN and TreeL-
STM) is more competitive for trigger identifica-
tion. Compared with the other two graph-based
models (GCN and GraphSage), our unsymmetric
and recurrent framework can model conversational
structures and learn high-quality representation of
triggering posts while preserving the effective op-
eration of graph convolution. As for the task of
rumor verification, models all present a drastic
decline faced with LOEO test. The direct reason
probably lies in the extreme imbalance of verify
labels between different events and the absence of
semantic sharing.

Besides, by comparing the performance between
different settings of cross validation, we find that
trigger identification is more robust when coming
cross underrepresented semantics as the decrease
in LOEO setting is not as significant as the task of
verification. The direct reason probably lies in the
extreme imbalance of verify labels between differ-
ent events, but we do expect trigger identification
to have higher transfer ability which can facilitate
handling unprecedented rumor cascades.
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5.3 Ablation Study
To examine the effectiveness of key components of
our UGRN framework, we perform ablation study
by degrading the birectional graph-based node rep-
resentation, as shown in Table 3. From bottom
to top, we first substitute the concatenated node
representation by only using parent aggregation
(UGRN-p) or child aggregation (UGRN-c). The
performance drops a lot when only considering in-
formation flow in one direction. Then we leave out
the process of structure decomposition and directly
use the symmetric adjacency matrix to apply re-
current graph convolution. The simplified model
(GRN) can hardly distinguish triggers indicating it
is valid to model information flow from different
directions.

Component Trigger Verify
Random LOEO Random LOEO

GRN 0.531 0.514 0.754 0.324
UGRN-c 0.541 0.522 0.768 0.321
UGRN-p 0.552 0.541 0.778 0.334
UGRN 0.574 0.570 0.819 0.346

Table 3: Ablation study on key components of UGRN.
Presentation of result is the same with Table 2.

5.4 Trigger Role for Verification
In this paper, we propose three types of mecha-
nisms to exploit trigger information for enhanced
rumor verification, including parameter sharing,
trigger-aware cascade pooling and warm-up of trig-
ger identification. We examine the effect of these
mechanisms to investigate the role of triggers.

Multi-Task Learning. We run our model on the
two tasks separately to demonstrate the validity of
multi-task learning. Table 4 shows the comparison
between single-task and multi-task settings. As can
be seen, the performance gain of multi-task learn-
ing is significant especially for the task of rumor
verification which demonstrates the strong correla-
tion between these two tasks and the rationality of
capturing triggers.

Task Trigger Verify
Random LOEO Random LOEO

Trigger 0.568 0.558 - -
Verify - - 0.795 0.286
Multi-Task 0.574 0.570 0.819 0.346

Table 4: The effect of multi-task learning framework.
Presentation of result is the same with Table 2.

Role-Aware Integration. Our model is designed
to pay more attention to messages with triggering
effect when implementing graph pooling. We re-
place the role-aware integration with general atten-
tion pooling to explore whether triggers can help
verify rumors. Figure 5 shows the difference when
converting the pooling strategy in different cascade
modeling methods. Although the performance con-
trast is not as obvious as multi-task learning, among
these 12 groups of experiments, 9 instances demon-
strate role-aware integration is better than plain
attention pooling which also covers that locating
triggers and take full advantage of their semantics
is favorable for rumor verification.
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Figure 5: The effect of role-aware integration.

Trigger Warmup. During training, we adopt a
warm-up strategy that only trains the network for
trigger identification in the first few epochs. Conse-
quently, we set various number of warm-up epochs
to see the effectiveness of progressive learning.
Figure 6 shows the impact of trigger warm-up in
different validation settings. For random valida-
tion, 1 rounds of warm-up can slightly improve the
verification performance but then the prediction
precision drops a lot as warm-up epochs increase.
However, the averaged performance of LOEO val-
idation is steadily increasing with increment of
warm-up epochs. Except when treating Charlie
Hebdo as test event, other folds perform better with
larger warm-up epochs. This is partly because the
network tends to learn refined node representation
under the supervision signal of triggers and pro-
vides better initialization for verification.
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Figure 6: The effect of trigger warm-up strategy. Blue
solid lines represent the averaged result and the dashed
lines stand for results with different test event.
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6 Conclusion and Future Work

In this paper, we propose the task of trigger identifi-
cation to progressively resolve rumors. We extend
PHEME dataset with annotations on message level.
We design the framework of Unsymmetric Graph
Reccurent Networks which significantly improves
performance of two tasks. In the future, we would
like to further model the relationship between trig-
gers and rumor cascades.
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Abstract

The widespread of fake news has detrimental
societal effects. Recent works model informa-
tion propagation as graph structure and aggre-
gate structural features from user interactions
for fake news detection. However, they usually
neglect a broader propagation uncertainty issue,
caused by some missing and unreliable interac-
tions during actual spreading, and suffer from
learning accurate and diverse structural prop-
erties. In this paper, we propose a novel dual
graph-based model, Uncertainty-aware Prop-
agation Structure Reconstruction (UPSR) for
improving fake news detection. Specifically,
after the original propagation modeling, we in-
troduce propagation structure reconstruction
to fully explore latent interactions in the ac-
tual propagation. We design a novel Gaussian
Propagation Estimation to refine the original
deterministic node representation by multiple
Gaussian distributions and arise latent interac-
tions with KL divergence between distributions
in a multi-facet manner. Extensive experiments
on two real-world datasets demonstrate the ef-
fectiveness and superiority of our model.

1 Introduction

Nowadays, fake news1 has posed detrimental ef-
fects on individuals and society. For example,
telecommunication towers were burned due to a
conspiracy theory linking COVID-19 with 5G tech-
nology (Ahmed et al., 2020). To help mitigate the
negative effects caused by fake news, it’s critical to
develop automatic methods to detect fake news.

Existing works generally leverage the user inter-
actions (e.g., retweet) and shared content in a so-
cial media conversation thread to detect fake news.
The key principle behind such work is that users
on social media share opinions, conjectures and
evidence for checking fake news. Some studies

* Corresponding author.
1We adopts a broad definition, i.e., fake news is false news

where news broadly includes claims, statements, posts, among
other types of information (Zhou and Zafarani, 2020).

(Ruchansky et al., 2017; Ma et al., 2016) flatten the
conversation in a chronological order to catch lin-
guistic and temporal features from the propagation
sequence, which does not make better use of the
network properties. Some works (Ma et al., 2018;
Kumar and Carley, 2019; Khoo et al., 2020; Ma
and Gao, 2020) build the conversation thread with
a tree structure to capture the structural patterns
from the interactions of information propagation.
Driven by the success of graph neural networks
(Kipf and Welling, 2017), recent methods (Bian
et al., 2020; Hu et al., 2021; Lin et al., 2021) regard
the conversation thread as a graph structure and
aggregate informative neighbors to learn a good
representation for detection.

However, most methods usually assume that the
propagation structure is deterministic and complete
at some point. In the real world, it is often the case
that each sample describes a partial propagation
structure that includes some missing and unreli-
able interactions due to various reasons such as
personal privacy protection and profit-driven so-
cial bots (Shao et al., 2018). This fact contributes
to the propagation uncertainty issue and makes it
challenging to discover effective structural patterns
for fake news detection. Wei et al. (2021) learned
relational bias to alleviate the negative effect of
unreliable interactions. But they only focus on ex-
plicit interactions between a tweet and its direct
retweets. Thus, they still ignore some latent inter-
actions that are not connected but may share similar
stances that are useful to debunk false information.
These vital but missing latent interactions in the
social media conversation thread are also key to
driving the propagation uncertainty issue. Thus,
how to model the propagation uncertainty issue
and learn effective structure-property is a practical
research topic to enhance fake news detection.

An intuitive way is to reconstruct the original
propagation structure to capture all possible inter-
actions between posting nodes. We argue that, in
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the propagation, many retweets that subconsciously
promote each other (such as similar stances or emo-
tions). Hu et al. (2021); Lin et al. (2021) have
shown the positive gains of implicit interactions
between sibling retweets from the same tweet. Be-
yond their assumptions, we make the attempt to
investigate more potential interactions of all post-
ings in the propagation structure, not limited to
sibling retweets. Besides, previous works (Wei
et al., 2021; Hu et al., 2021; Lin et al., 2021) usu-
ally measure interactions by learning deterministic
embedding of each tweet, which may be insuffi-
cient to depict potential interactions accurately and
comprehensively for uncertain propagation. There-
fore, it is desirable to study potential interactions
from multiple underlying facets, which can reflect
their fuzzy stances, emotions, and other factors.

In this paper, we investigate a broader propa-
gation uncertainty issue caused by missing and
unreliable interactions. Towards this issue, we
develop a novel dual graph-based model, named
Uncertainty-aware Propagation Structure Recon-
struction (UPSR), to adaptively learn accurate and
diverse structural properties. Specifically, inspired
by Chen et al. (2020), we first utilize deep graph
convolutional networks to fully model long-range
interactions in the original propagation. Then, in-
stead of directly using deterministic node repre-
sentations for reconstruction, we design a novel
Gaussian Propagation Estimation to sample node
representations from multiple Gaussian distribu-
tions where the covariance enables the model to re-
duce noisy interactions. We measure the Kullback-
Leibler (KL) divergence between distributions in a
multi-facet manner to update the propagation struc-
ture. Based on the reconstructed graph, we apply
root-aware graph convolutional networks to aggre-
gate features based on the learned latent interac-
tions. UPSR’s dual graph structure can not only
learn accurate structural information in the origi-
nal propagation but also capture diverse structural
patterns in the reconstructed propagation. Finally,
we exploit the dual-graph representation to identify
fake news.

We conduct extensive experiments on two real-
world public datasets. The experimental results
show that UPSR significantly outperforms the state-
of-the-art models, indicating the effectiveness for
fake news detection. The core contributions of this
paper are summarized as follows:

• To handle a broader propagation uncertainty

issue caused by missing and unreliable rela-
tions, we propose a novel Uncertainty-aware
Propagation Structure Reconstruction (UPSR)
to learn accurate and diverse structural prop-
erties for fake news detection.

• We design a Gaussian Propagation Estimation
(GPE) to reconstruct latent propagation struc-
ture by measuring KL divergence between
different Gaussian distributions of retweets.

• We evaluate the model on two real-world
benchmark datasets. Experimental results
demonstrate the effectiveness and superiority
of the proposed model.

2 Related Work

In the literature, some works (Jiang et al., 2019;
Shu et al., 2019b; Mishra, 2020; Nguyen et al.,
2020) leverage user characteristics to assist detec-
tion. As user information is not allowed recorded
in many cases, we mainly focus on detecting fake
news based on text and propagation.

Text-based fake news detection approaches (Mi-
halcea and Strapparava, 2009) emphasize inves-
tigating the truthfulness of news content by ex-
tracting its textual features. Early works relied
on feature engineering to capture textual charac-
teristics, e.g., topic features (Castillo et al., 2011),
writing styles and consistency (Popat, 2017; Pot-
thast et al., 2018). After the emergence of deep
learning, many works (Ma et al., 2016; Ruchansky
et al., 2017; Karimi and Tang, 2019) apply various
neural networks to automatically learn rich seman-
tic or syntactic features from the source news and
its retweets to detect fake news.

Propagation-based fake news detection ap-
proaches take advantage of the information related
to the dissemination of a news article. Many empir-
ical studies (Vosoughi et al., 2018; Jang et al., 2018)
have shown that compared to real news, fake news
has deeper propagation structures, and reaches a
wider audience. Shu et al. (2019a) jointly learned
the sequential effect of comments and correlation
between source news and the corresponding com-
ments. To capture structural propagation patterns,
Ma et al. (2016) constructed a tree-structured neu-
ral network to model the propagation structure.
Khoo et al. (2020) adopted Transformer (Vaswani
et al., 2017) to learn long-distance interactions. Re-
cently, Bian et al. (2020) regarded the propaga-
tion as a graph and applied two graph convolu-
tional networks (GCNs) (Kipf and Welling, 2017)
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to learn structural patterns from two distinct di-
rected graphs. Hu et al. (2021); Lin et al. (2021)
further explored multi-relational interactions in the
propagation graph. Wei et al. (2021, 2022) focused
on the propagation uncertainty and learned robust
structural features.

Differences with Existing Models. 1) The
aforementioned graph-based models (Bian et al.,
2020; Hu et al., 2021) are shallow structure, limit-
ing to explore latent interactions in a deeper prop-
agation. Inspired by Chen et al. (2020), we stack
more graph layers to explore long-range interac-
tions in propagation. 2) Most approaches learn
latent structural features on statics propagation
trees/graphs. They may be disturbed by missing
and unreliable behaviors easily, leading to a broader
propagation uncertainty issue. This paper designs
modules to reconstruct original propagation and ex-
plore more latent interactions from multiple facets.

3 Problem Statement

Formally, let G = (V, E) be a propagation struc-
ture, where V = {r, c1, ..., cN} is a set of nodes
representing the source news r and its retweets
c1, ..., cN . E refers to a set of explicit interactive
behaviors, e.g., retweet. Define the embedding of
the source news r as r ∈ Rd0 , and that of a retweet
ci ∈ Rd0 , where d0 is the dimensionality of tex-
tual features. Each propagation is annotated with a
ground-truth label yi ∈ {0, 1}.

We formulate the fake news detection problem
as a binary classification problem, i.e., each sample
can be real (yi = 0) or fake (yi = 1). Fake news
detection task can be seen as to learn a classifier f
from the labeled set, i.e., f : G → y.

4 The Proposed Model

In this section, we propose a novel dual graph-
based model, UPSR, to fully model long-range
dependencies in the original propagation and ex-
plore rich latent dependencies in the corresponding
reconstructed propagation.

4.1 Overview

The overview architecture of UPSR is presented
in Figure 1. Firstly, given the input text and prop-
agation structure, we apply deep graph convolu-
tions to learn long-range interactions in the original
propagation. To better alleviate the propagation
uncertainty issue, we design a Gaussian Propaga-
tion Estimation to reconstruct the propagation to

Figure 1: The overall architecture of UPSR.

discover more potential interactions. Then, based
on the reconstructed propagation, we further ag-
gregate node features with the guidance of latent
connections. Finally, both node representations
encoded in the original and latent propagation are
concatenated for fake news classification.

4.2 Original Propagation Modeling
Vosoughi et al. (2018) have verified that fake news
diffused significantly farther, deeper, and more
broadly than the truth. Thus, modeling long-range
interactions in the propagation are critical to dif-
ferentiate fake news and true news. Inspired by
(Chen et al., 2020), we develop a deep graph convo-
lutional network to capture long-range interactions
in the original propagation.

4.2.1 Graph Construction
First, we construct an undirected graph for each
propagation structure to aggregate bi-directional
interactions comprehensively. Formally, a propaga-
tion structure can be represented as an undirected
graph G = (V, E), where V denotes a set of tweet
nodes including source news r and its retweets
c1, ..., cn. E is a set of propagation behaviors. The
edge weights are set to 1 if there is an edge between
two nodes, i.e., Aij = 1.

4.2.2 Learning Long-Range Interactions in
the Original Propagation Graph

Chen et al. (2020) improved traditional graph con-
volutional networks by introducing the initial resid-
ual connection and an identity mapping to en-
able stack multiple graph layers, which has shown
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promising performance on recent downstream ap-
plications (Hu et al., 2022). For information prop-
agation, Vosoughi et al. (2018); Jang et al. (2018)
have shown that compared to real news, fake news
has deeper propagation structures, and reaches a
wider audience. Therefore, we apply deep graph
convolutional networks (Chen et al., 2020) on an
undirected graph to fully capture this kind of long-
range dependencies between two nodes in the orig-
inal propagation.

Given the undirected graph G = (V, E), the
graph convolution at the k-th layer is defined as
Eq. (1). A residual connection to the first layer
V(0) is added to the representation P̃V(k) and an
identity mapping I is added to the weight matrix
W

(k)
t . V(0) is initialized with the input embedding,

i.e., V(0) = [r, c1, ..., cN ].

V(k+1) = σ
(
((1− αk)P̃V(k) + αkV

(0))((1− βk)In + βkW
(k)
t )
)
,

(1)
where P̃ = (D+ I)−1/2(A + I)(D+ I)−1/2 is
the renormalized graph Laplacian matrix (Kipf and
Welling, 2017). A is the original adjacency ma-
trix of G. D is the diagonal degree matrix, and
I is the identity matrix. αk, βk are two hyperpa-
rameters. In experiments, αk = 0.1 to make node
representations consist of at least a fraction of the
input features even if we stack many layers. Let
βk = log(ηk + 1) to ensure the decay of the weight
matrix adaptively increases when stacking more
layers. η is also a hyperparameter. W(k)

t is the k-
th weight matrix. σ denotes the activation function.

Based on the above modifications, we can stack
many graph layers to capture long distant connec-
tions in the original propagation and provide more
accurate node representations for the subsequent
reconstructed propagation modeling. We denote
the number of graph layers asK and final node rep-
resentations as V(K) = {v(K)

r ,v
(K)
1 , ...,v

(K)
N }.

4.3 Reconstructed Propagation Modeling

To explore diverse structural patterns, we recon-
struct the original propagation for finding more la-
tent interactions and then encode the reconstructed
propagation graph for improving detection.

4.3.1 Gaussian Propagation Estimation

We design a Gaussian Propagation Estimation
(GPE) to reconstruct the original propagation from
multiple facets. Instead of directly measuring the
original deterministic embedding of each tweet, the

GPE module generate samples stochastic node rep-
resentations from multiple Gaussian distributions.
It can depict potential interactions accurately and
comprehensively for uncertain propagation.

Formally, given the deterministic embedding
v
(K)
i of each node vi, the uncertainty-aware node

representations is defined as distributional estima-
tion parameterised with estimated mean µmi and
estimated variance σmi ,

{µ1
i ,µ

2
i , ...,µ

M
i } = gθ(v

(K)
i )

{σ1
i ,σ

2
i , ...,σ

M
i } = ϕ(g′θ(v

(K)
i )),

(2)

where M is a parameter representing the number
of facets to estimate uncertain effects of nodes. gθ
and g′θ are two trainable neural networks such as
a multilayer perception (MLP). ϕ is a non-linear
activation function. {σ1,σ2, ...,σM} indicate the
uncertainty of tweets which impacts others in a
multi-facet manner. Then, the node representations
Qm = {qmr ,qm1 , ...,qmN} at the m-th view latent
propagation can be sampled from Nm

i (µmi ,σ
m
i

2),

qmi = µmi + ϵσmi , ϵ ∈ N (0, I). (3)

Then, GPE measures the latent interactions be-
tween nodes with KL divergence between distribu-
tions from multiple underlying facets. The edge
weight between node vi and node vj on the m-th
view reconstructed graph is computed as,

Smij = DKL(Nm
i (µmi ,σ

m
i

2)||Nm
j (µmj ,σ

m
j

2)).
(4)

According to the above computations, we can
obtain multi-view refined node representations
{Q1,Q2, ...,QM} and the corresponding adjacent
matrices {S1,S2, ...,SM}. They enable the model
to learn uncertain effects of nodes in multiple re-
constructed directed graphs.

4.3.2 Re-Learning Potential Interactions in
the Reconstructed Propagation Graph

Based on these reconstructed graphs, we further
apply two-layer graph convolutions to capture dif-
ferent potential interactions between two tweets.
The message-passing is defined as,

Um = σ
(
Ŝm(σ

(
ŜmQmW(0)

g

)
)W(1)

g

)
, (5)

where Ŝ represents the normalization of adjacency
matrix S. W

(0)
g and W

(1)
g are learnable param-

eter matrices in the first and second graph layer.
2762



Inspired by Bian et al. (2020), we concatenate hid-
den feature vectors of each node with that of the
root node after each graph convolution operation to
emphasize the vital role of source news in the prop-
agation. Then, the final representation of nodes in
the reconstructed graph is computed as,

Z = Wz[U
1;U2; ...;UM ] + bz, (6)

where Wz and bz are trainable parameters.
Through the above dual graph structure, we can

not only learn long-range interactions in the origi-
nal propagation but also capture potential interac-
tions between uncertain tweets.

We aggregate node representations in the graph
to form the graph representations. Given node rep-
resentations V in the original propagation and node
representations Z in the reconstructed graph, the
graph representation is computed as,

O = meanpooling([V;Z]), (7)

where meanpooling(·) refers to the mean-pooling
aggregating function.

4.4 Fake News Detection and Training
Based on the concatenation of two distinct graph
representations, label probabilities of all classes
can be defined by a full connection layer and a
softmax function, i.e.,

ŷ = softmax (WoO+ bo) , (8)

where Wo and bo are learnable parameter matri-
ces.

We optimize the fake news classification loss
function calculated by the cross-entropy criterion,
i.e.,

L = −y log(ŷ)− (1− y) log(1− ŷ), (9)

where y is the ground-truth label and ŷ is the pre-
diction distribution.

5 Experiments

In this section, we experimentally evaluate the per-
formance of our proposed model for fake news
detection.

5.1 Datasets
The dataset statistics are shown in Table 1. Politi-
Fact and GossipCop datasets are released by Fake-
NewsNet (Shu et al., 2020). Samples are collected

Dataset PolitiFact GossipCop
# News 314 5,464

# True News 157 2,732
# Fake News 157 2,732
# Retweets 40,740 308,798

# Avg. Nodes per Graph 131 58
# Avg. Breadth per Graph 73.62 44.35
# Avg. Depth per Graph 3.75 2.51

Table 1: The statistics of two benchmark datasets.

from PolitiFact2 and GossipCop3, which are two
websites for fact-checking political and celebrity
news, respectively. We follow the same procedure
as Shu et al. (2019a) to split each dataset, i.e., ran-
domly choose 75% of the news as the training data
while keeping the rest as the test data.

5.2 Experimental Setups

Since the fake news detection is a classification
task, we choose accuracy (Acc), prevision (P), re-
call (R), and macro-average F1 scores (F1) to mea-
sure the performance of each model.

All experiments are conducted on a single
GeForce RTX 3080Ti. For the input features of
text contents, we follow (Dou et al., 2021) and con-
sider 300-dimensional word2vec vectors (Mikolov
et al., 2013), which are pretrained on a large corpus
with 680k words by spaCy (Honnibal and Mon-
tani, 2017), i.e., d0 = 300. The dimension of
hidden vectors is set to 64. We train all models
via backpropagation and a wildly used stochastic
gradient descent named Adam (Kingma and Ba,
2015). The learning rate is set to 0.001 and 0.0005
for PolitiFact and GossipCop, respectively. The
training process is iterated upon 200 epochs and
early stopping (Yuan et al., 2007) is applied when
the validation loss stops decreasing by 10 epochs.
The final result is the average performance over 5
repeats.

5.3 Comparison Methods

Text-based fake news detection methods include:
mGRU (Ma et al., 2016) uses an RNN to capture
temporal-linguistic patterns recognized from se-
quences of retweets. CSI (Ruchansky et al., 2017)
learns the sequential retweet features by employ-
ing an LSTM. Propagation-based fake news de-
tection methods include: GCNFN (Monti et al.,
2019) models the propagation structure as a graph

2https://www.politifact.com/
3https://www.gossipcop.com/
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Method PolitiFact GossipCop
Acc P R F1 Acc P R F1

mGRU (Ma et al., 2016) 0.754 0.800 0.666 0.744 0.859 0.845 0.881 0.859
CSI (Ruchansky et al., 2017) 0.734 0.672 0.550 0.688 0.866 0.892 0.840 0.866
GAT (Velickovic et al., 2018) 0.861 0.848 0.883 0.853 0.958 0.957 0.959 0.957
GCNFN (Monti et al., 2019) 0.856 0.862 0.851 0.849 0.886 0.892 0.881 0.883
PLAN (Khoo et al., 2020) 0.868 0.861 0.879 0.858 0.962 0.960 0.945 0.953
BiGCN (Bian et al., 2020) 0.861 0.865 0.877 0.853 0.959 0.959 0.959 0.958
RumorGCN (Hu et al., 2021) 0.891 0.901 0.875 0.888 0.968 0.965 0.971 0.968
EBGCN (Wei et al., 2021) 0.896 0.898 0.909 0.891 0.964 0.966 0.962 0.963
UPSR 0.914 0.911 0.917 0.910 0.977 0.980 0.974 0.976

Table 2: Model performance for fake news detection on PolitiFact and GossipCop. The best result is in bold-face.

and uses GCN to encode the propagation graph.
We implemented the model by removing profile
information for fair comparison. GAT (Velickovic
et al., 2018) applies graph attention networks to en-
code the propagation structure. PLAN (Khoo et al.,
2020) uses the multi-head attention mechanism to
model long-distance interaction in the propagation
structure. BiGCN (Bian et al., 2020) employs two
GCNs to model the propagation graph and disper-
sion graph. RumorGCN (Hu et al., 2021) learns
multi-relational dependencies from the propagation
by using Relational GCNs. EBGCN (Wei et al.,
2021), a graph-based model, focuses on the un-
certainty issue in the propagation structure from a
probability perspective.

5.4 Fake News Detection Results

The overall performance for fake news detection is
reported in Table 2. From them, we we have the
following key observations:

1) Text-based methods achieve inferior perfor-
mance than propagation-based methods. It indi-
cates that propagation patterns are more beneficial
to detect fake news since fake news publishers al-
ways deliberately distort the text content of news.
2) PLAN captures long-range interactions in the
propagation sequence with attention modules and
obtains moderate results, even outperforming some
shallow graph-based models. However, they still
could not effectively distill latent interactions hid-
den in the propagation sequence and thus obtain
limited performance. 3) EBGCN and RumorGCN
achieve sub-optimal performance on PolitiFact and
GossipCop, respectively. It makes sense as Ru-
morGCN considers potential interactions from sib-
ling nodes; while EBGCN explores robust interac-
tions in an adjusted propagation tree, which can

Methods
PolitiFact GossipCop

Acc F1 Acc F1
UPSR 0.914 0.910 0.977 0.976

- w/o Root 0.891 0.886 0.974 0.973
- w/o GPE 0.904 0.894 0.972 0.961
- w/o OPM 0.828 0.817 0.975 0.974
- w/o RPM 0.873 0.867 0.962 0.961

UPSRGCN 0.891 0.886 0.972 0.971
UPSRGAT 0.899 0.894 0.973 0.973
UPSRBiGCN 0.886 0.880 0.974 0.973

Table 3: Results of ablation study and component analy-
sis. The best result is in bold-face.

provide more effective structural information for
detection. Nevertheless, their shallow networks
make it hard to model long-distance interactions in
the propagation, and thus they cannot be adaptive
for news that has a deeper propagation structure. 4)
Our UPSR yields consistently better performance
than all the baselines on both datasets. The benefit
mainly comes in two-fold. First, deep graph con-
volutions enable the model to focus on long-range
interactions in the original propagation modeling.
Second, UPSR further encodes the reconstructed
propagation based on uncertainty-aware node rep-
resentations, which can effectively capture more
potential interactions between retweets and learn
diverse structural patterns for detection.

6 Discussion

In this section, we conduct more experiemtns to
further understand the performance of UPSR.

6.1 Ablation Study

We conduct an ablation study to evaluate key com-
ponents in UPSR. 1) w/o Root indicates that encod-
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ing the reconstructed propagation graph does not
explicitly consider the influence of source news.
2) w/o GPE removes Gaussian Propagation Es-
timation module and measures cosine-similarity
between two node embedding. 3) w/o OPM refers
to removing the original propagation modeling and
directly reconstructing the propagation according
to input textual features. 4) w/o RPM is removing
the whole reconstructed propagation modeling.

The results of the ablation study are shown in the
first block of Table 3. The full model yields the best
performance in terms of accuracy and F1 score. 1)
Without the consideration of source news influence
in the reconstructed propagation modeling, the per-
formance of w/o Root slightly reduces on both
datasets, showing the vital role of source news in
the propagation. 2) w/o GPE is obviously inferior
to the full model, verifying that estimating propaga-
tion structure with multiple facets can successfully
adapt to the uncertain effect of retweets and enable
to derive accurate potential interactions. 3) When
removing the complete reconstructed propagation
modeling, w/o RPM obtains the inferior perfor-
mance in terms of two evaluation metrics, which
proves the effectiveness of the propagation recon-
struction. 4) After removing the original propaga-
tion modeling, the performance of w/o OPM also
drops significantly. This is intuitive since learning
from explicit interactions between retweets in the
original propagation could lead to relatively com-
prehensive representations, which enables GPE to
explore more effective interactions.

6.2 Comparison with Different Original
Propagation Modeling Modules

We further replace the deep graph convolutional
network in the original propagation modeling with
the following alternatives. 1) UPSRGCN adopts
vanilla two-layer GCNs (Kipf and Welling, 2017)
to model the original propagation. 2) UPSRGAT
replaces with vanilla two-layer GATs (Velickovic
et al., 2018). 3) UPSRBiGCN follows (Bian et al.,
2020) to apply bi-directional GCNs .

The results are reported in the second block of
Table 3. The degradation performance of these
variants indicates the superiority of our model,
which can capture long-range interactions in the
propagation by stacking multiple graph convolu-
tions. Besides, UPSR and its variants UPSRGCN
, UPSRGAT, UPSRBiGCN consistently outperform
the corresponding single graph models on both

Figure 2: F1 scores against different hyperparameters.

datasets. The reason is that the dual graph frame-
work can not only learn interactions in the original
propagation but also capture potential interactions
between uncertain tweets.

6.3 Parameter Analysis

Figure 2 explores the performance of UPSR against
two vital parameters, i.e., different numbers of lay-
ers in the original propagation modeling (OPM),
and different numbers of facets in the reconstructed
propagation modeling (RPM).

Effect of Graph Layers in Original Propaga-
tion Modeling. To investigate whether our model
can benefit from the multi-layer propagation in the
original propagation modeling, we vary the number
of graph convolutional layers in the range of {2, 4,
8, 16, 32, 64, 128, 256}. The best setting is 64 and
2 on PolitiFact and GossipCop, respectively. Prop-
agation structures are deeper on PolitiFact and thus
more graph layers are needed to capture long-range
interactions between nodes. The continual increase
of the layer number even harms the performance.
This might be caused by the overfitting issue.

Effect of Number of Facets in Reconstructed
Propagation Modeling. To investigate whether
our model can benefit from the multi-facet estima-
tion for uncertainty, we vary the number of facets
in the range of {1, 2, 3, 4, 5}. The optimal setting
is 1 and 4 on PolitiFact and GossipCop datasets,
respectively. These results indicate that estimating
nodes from multiple facets is more profitable for
detecting celebrity-related fake news, which can
boost to capture latent interactions between two
nodes sufficiently. Besides, dependencies between
retweets under celebrity news may be more com-
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(a) Original Propagation (b) Adjusted by EBGCN (c) Reconstructed by UPSR

Figure 3: A case study of fake news on PolitiFact, which is missed by BiGCN and EBGCN but detected by UPSR.
Node 0 refers to the source news and other nodes are its retweets. The breadth of the propagation is 15 and the
depth of the propagation is 5. The edge width represents the weight of interactions.

Figure 4: Performance on propagation structures with
different depths. Y-axis refers to the accuracy score.

plex and more facets need to be considered.

6.4 Propagation Depth Analysis

Figure 4 shows performance on propagation struc-
tures with different depths. From the figure, the
performance of BiGCN for detecting deeper propa-
gation clearly decreases on both datasets. This re-
veals that fake news detection is more challenging
with the deeper propagation which usually reflects
vital potential interactions between users. Com-
pared with BiGCN, UPSR and its variant obtain
better performance in recognizing deeper propaga-
tion. This indicates that the original propagation
modeling can effectively capture longer-range inter-
actions in the original propagation for fake news de-
tection. Moreover, UPSR achieves a considerable
improvement over almost any range of propagation
depth. We speculate, through estimating uncertain
effects of retweets to reconstructing the original
propagation, UPSR can further capture more poten-
tial interactions between two nodes and learn better
representations for detection. Thus, UPSR is not
sensitive to propagation depth and can be adaptive
for both shallow and deep propagation.

6.5 Case Study

Figure 3 visualizes a propagation structure of a
piece of fake news from PolitiFact. The news is
misclassified by BiGCN and EBGCN but is de-
tected by our model successfully.

Previous shallow graph networks (e.g., BiGCN,
EBGCN) would ignore the distant connections
such as the interaction between node 3 and 28 and
can only capture local structural propagation in-
formation. Through reconstructing the original
propagation, UPSR alleviates this issue to some
extent and aggregates more effective information
in the graph via reconstructed edges between two
distant nodes. Besides, compared with Figure 3(b)
and 3(c), EBGCN dealt with noisy edges by adap-
tively adjusting weights of explicit edges. How-
ever, they solely focus on explicit edges and limit
the message-passing in the graph. Different from
their model, UPSR not only is robust to these noisy
edges but also captures more valuable potential
interactions between nodes to improve detection.

7 Conclusion

This paper has studied a broader propagation uncer-
tainty issue in fake news detection. We propose a
novel Uncertainty-aware Propagation Structure Re-
construction (UPSR) to jointly model long-range
and potential interactions in the uncertain propa-
gation. Gaussian Propagation Estimation (GPE)
is developed to reconstruct latent propagation by
adapting the inherent uncertain effect of retweets
in the propagation. Experiments conducted on two
real-world benchmarks have shown that UPSR out-
performs recent detection methods.
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In the future, we will focus on improving the
detection performance of our model in scenarios
where training propagation data is limited.
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Abstract

Fake news’s quick propagation on social media
brings severe social ramifications and economic
damage. Previous fake news detection usually
learn semantic and structural patterns within a
single target propagation tree. However, they
are usually limited in narrow signals since they
do not consider latent information cross other
propagation trees. Motivated by a common
phenomenon that most fake news is published
around a specific hot event/topic, this paper
develops a new concept of propagation for-
est to naturally combine propagation trees in a
semantic-aware clustering. We propose a novel
Unified Propagation Forest-based framework
(UniPF) to fully explore latent correlations be-
tween propagation trees to improve fake news
detection. Besides, we design a root-induced
training strategy, which encourages representa-
tions of propagation trees to be closer to their
prototypical root nodes. Extensive experiments
on four benchmarks consistently suggest the
effectiveness and scalability of UniPF.

1 Introduction

Recently, social media platforms have facilitated
information dissemination greatly. Nevertheless,
they quicken the proliferation of fake news as well
due to the lack of authoritative regulators (Zhou
et al., 2021). Its extensive dissemination would trig-
ger great panic in society and severely impair the
public and individuals (Difonzo and Bordia, 2007;
Jin et al., 2017; Jankowski et al., 2020). To keep
social media a healthy environment, it is desirable
and socially beneficial to detect fake news.

Among previous works on automatic fake news
detection, textual news material is utilized by al-
most all extant studies on fake news detection (Ma
et al., 2016; Ruchansky et al., 2017; Popat, 2017;
Potthast et al., 2018; Zhou et al., 2020). However,
because fake news is purposefully designed to de-
ceive readers by imitating actual news, detecting

* Corresponding author.

and distinguishing them solely from news material
is challenging (Afroz et al., 2012; Shu et al., 2020a).
Hence, an increasing number of works (Ma et al.,
2016; Bian et al., 2020; Hu et al., 2021; Song et al.,
2021; Wei et al., 2021) have been devoted to learn-
ing potential propagation patterns by investigating
relationships among tweets for each news article.

However, most approaches usually consider that
propagation trees are independent and ignore la-
tent correlations across different propagation trees,
which are supportive for identifying fake news for
two-fold reason. 1) Most fake news is usually pub-
lished deliberately around a specific hot event /
topic and then widely disseminated in reality (Frig-
geri et al., 2014; Nourbakhsh et al., 2015). Hence,
potential semantical connections may exist across
them. 2) Some spreaders were social bots that
are manipulated by a malicious group (Shu et al.,
2020a). These deliberate and organized behaviors
during propagation may lead to similar structural
patterns across two propagation trees. We believe
that capturing these vital semantic and structural
characteristics across propagation trees is benefi-
cial to understanding the target propagation tree,
accordingly to make more accurate detection.

Yuan et al. (2019) built a global user-tweet
heterogeneous graph according to similar partic-
ipants but ignored semantic relations. Huang et al.
(2020) introduced word nodes and constructed a
user-tweet-word graph to capture fine-grained se-
mantic relations between source news. However,
these fine-grained (e.g., word-level) correlations
between news contents may compensate for se-
mantic information to some extent since some
fine-grained words may suffer from the polysemy
problem (Neelakantan et al., 2014). Given two
examples, the real news is Donald Trump: . . . Senate

I believe really wants to get something done because Oba-

macare is dead,...Obamacare is absolutely dead.; the fake
news is Donald Trump was pronounced dead this morning

following what some are describing as a violent heart attack....
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Figure 1: Overall architecture of Unified Propagation Forest-based (UniPF) framework.

Both Donald Trump and dead were mentioned in
both news, but sentence-level semantics are obvi-
ously different. The former news shows Donald
Trump saying that Obamacare is abolished. But
the latter falsely reported Donald Trump was pro-
nounced dead. Thus, there still lacks a unified
coarse-grained paradigm that considers effective
semantic and structural correlations cross propaga-
tion trees simultaneously for detection.

In this paper, we develop a new concept of
Propagation Forest that combines all propagation
trees to explore latent semantic and structural cor-
relations between propagation trees. Under the
propagation forest, we propose a general Unified
Propagation Forest-based framework (UniPF) to
enhance target sample’s embedding by exploring
latent semantic and structural correlations between
propagation trees. Root nodes in the propagation
forest are generated according to prototypes (Snell
et al., 2017) in a clustering manner. A prototype is
a typical embedding for a cluster of related propa-
gation trees. These root nodes can be interpreted as
coarse-grained topics or events on social media in
reality. Through aggregating neighbor features in
the propagation forest, potential patterns implied
in similar sub-propagation trees can be captured by
performing a high-level transformation of the prop-
agation forest. Besides, a new root-induced train-
ing strategy is designed to enhance the quality of
the propagation forest by modeling the consistency
of generated prototypical root nodes and observed
propagation trees. UniPF is of great scalability and
can easily be extended in any propagation-based
or content-based approaches. We conduct exper-
iments on four benchmarks to assess our frame-
work. The results consistently suggest that UniPF
can successfully strengthen fake news detection
performance whilst being scalable.

The following are main contributions: 1) We
develop a novel concept of Propagation Forest
that bridges all propagation trees in a semantic-
clustering manner. 2) We propose a general UniPF,
to enhance fake news detection by fully exploring
latent both semantic and structural correlations be-
tween similar propagation trees in the generated
propagation forest. 3) We devise a root-induced
training strategy to guarantee high-quality of proto-
typical roots in propagation forest. 4) Experiments
on four benchmarks consistently demonstrate the
scalability and effectiveness of UniPF.

2 Problem Statement

Let D = {(xi, Gtree
i )}|D|i=1 be fake news detection

dataset with |D| samples. Each sample includes a
specific source news xi and its unique propagation
tree Gtree

i . Text-based fake news detection tech-
niques mainly use x; while propagation-based tech-
niques use x andGtree. Gtree

i = (V tree
i , Etree

i ) refers
to the corresponding propagation tree of i-th source
news. V tree

i = {xi} ∪ Ci is a set of nodes repre-
senting the source news xi and comments Ci. Etree

i

refers to a set of directed edges based on anony-
mous propagation behaviors, e.g., retweet or com-
ment. Define the embedding of the source news
xi as xi ∈ Rd0 , and that of a comment cij ∈ Ci
as cij ∈ Rd0 , where d0 is the dimensionality of
textual features. Each sample is annotated with a
ground-truth label yi ∈ {0, 1}. We formulate the
fake news detection problem as a binary classifica-
tion problem, i.e., each sample can be real (yi = 0)
or fake (yi = 1), and learn a classifier f from the
labeled set, i.e., f : D → Y.

3 Methodology

This section offers Unified Propagation Forest-
based (UniPF) framework to boost fake news detec-
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tion by examining latent correlations across propa-
gation trees in a semantic-clustering manner. Fig-
ure 1 depicts an overview of UniPF framework.
It consists of three key components, propagation
forest construction, prototype-aware embedding
enhancement, and root-induced training strategy.

3.1 Propagation Forest Construction Based
on Cluster-Prototype

Given training samples, we perform semantic-
aware prototype clustering to generate root nodes,
which are ancestors for propagation subtrees and
are representative for propagation trees with a sim-
ilar structure as well as semantics. According to
pseudo labels of clustering, a propagation forest is
developed to combine all propagation trees.

3.1.1 Prototype Generation

Since most fake news is published around a specific
event or hot topic and is widely disseminated. it
is intuitive to find root nodes via clustering. The
goal of this module is to group the entire propaga-
tion trees to generate prototypical root nodes of the
propagation forest in a clustering manner. Inspired
by K-Means (Arthur and Vassilvitskii, 2007), we
perform semantic clustering to find several pro-
totypes. The number of clusters K is the only
parameter required by the algorithm.

The workflow of constructing a propagation for-
est based on the input is shown in Figure 2. Specif-
ically, at the preliminary stage, each source news
of propagation tree is projected into a unified se-
mantic space. Then, we exploit the clustering tool
to process the semantic representations of samples
and obtain their pseudo clustering labels to build
the propagation forest.

Given the textual embedding X = [x1, ...,x|D|]
of samples, we find K prototypes and assign prop-
agation trees to a prototype so as to minimize the
potential function ϕ. And K prototypes can be

denoted as {m1,m2, ...,mK}.

ϕ =

∑Z
z=1 ∥xz −m∥2
Z log(Z + β)

, (1)

where m ∈ Rd0 refers to a prototype. β is a smooth
variable that prohibits minor clusters from receiv-
ing an excessively high ϕ. Z is the number of data
points covered by each prototype. We minimize the
function in two distinct principles: 1) summation of
squared distance between a target propagation tree
and a cluster’s nucleus (i.e., prototype) is minimal;
2) each cluster covers more key-points, namely a
higher value ofZ. Within clusters, the less variance
there is, the more uniform the data points are.

3.1.2 Propagation Forest Construction
Based on the above generated prototypes and prop-
agation trees, we build a propagation forest to com-
bine propagation trees. The propagation forest is
formulated as an undirected graph structure, de-
noted as GForest = (V Forest, EForest), where V Forest

indicates a node set in GForest and EForest refers to
a undirected edge set in GForest.

Nodes. There are three node types in propagation
forest graph. V Forest = V S ∪ V R ∪ V C , where 1)
source news nodes represent the source news of a
propagation tree, denoted as V S = {x1, ..., xN};
2) root nodes represent prototypes, which can be
interpreted as latent topics or events on social me-
dia, denoted as V R = {m1, ...,mK}; 3) comment
nodes refer to subsequent retweets given the source
news, V C = {Ci}Ni=1, where Ci is the set of com-
ment nodes of the i-th propagation tree.

Edges. There are two types of edges in the prop-
agation forest graph. 1) For connections between
source news nodes and root nodes, we define undi-
rected edges based on pseudo cluster labels, i.e.,
each propagation tree is connected with the sub-
ordinate cluster. The edge weights are defined as
the probability that the source news is assigned to
the root node. 2) For connections between source
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news nodes and comment nodes, and connections
between two comment nodes, we define directed
edges based on retweet relations. For the i-th prop-
agation tree, if the j-th comment cij retweeted
the source news xi, there will be an directed edge
xi → cij ; if the q-th comment ciq retweeted the
j-th comment cij , there will be an directed edge
cij → ciq. The edge weights are set to 1 if there is
a directed edge between two nodes.

3.2 Root-aware Embedding Enhancement
Based on the propagation forest, we perform mes-
sage passing between root nodes and source news
nodes with graph-based transformations to explore
latent correlations cross similar propagation trees.
Then, we enhance the original message passing in
the target propagation tree to boost the understand-
ing of information propagation with the shared se-
mantics and structure from other propagation trees.

3.2.1 Modeling Latent Correlations in the
Propagation Forest

We transform the propagation forest using a differ-
entiable message passing method to explore rich
correlations between propagation trees. Motivated
by graph convolutional networks (Kipf and Welling,
2017), v(1)

i was calculated for source news node vi
in the first layer by aggregating neighborhood infor-
mation (i.e., neighbors indicated by the subordinate
prototype root nodes) using the transformation,

v(1)i = σ(
∑

j∈Ni
aijW

(1)v
(0)
j + aiiW

(1)
0 v

(0)
i ),

for i = 1, ..., N +K,

(2)

where v(0) is initialized with m for root nodes and
x for other nodes. W(1) and W

(1)
0 are trainable

parameters. σ is ReLU activation function. Ni
denotes neighbouring indices of node vi.

Based on the output, another neighborhood-
based transformation is applied on source news
nodes to integrate shared features from the root
nodes. The computations can be defined as,

v(2)i = σ(
∑

j∈Ni
aijW

(2)v
(1)
j + aiiW

(2)
0 v

(1)
i ),

for i = 1, ..., N +K,

(3)

where W(2) and W
(2)
0 are learnable parameters.

This stack of transformations effectively accumu-
lates a normalized sum of information from similar
propagation trees in the propagation forest.

In this way, latent correlations can be captured
by extracting and aggregating effective informa-
tion from the node’s neighbors. These root nodes
can not only transmit semantic and structural fea-
tures of adjacent samples, but also further integrate
features of similar clusters.

3.2.2 Improving Fake News Detection
Next, we exploit the embedding of source news
v
(2)
i learned by the above network to enhance

the embedding in the target propagation tree. To
highlight the impact of the source news during
propagation, we make a concatenation and ap-
ply a fully connected layer to compute the en-
hanced embedding of source news x′i and com-
ments C′i = [c′i1, c

′
i2, ..., c

′
iN ].

x′i = We[xi;v
(2)
i ] + be,

c′ij = We[cij ;v
(2)
i ] + be,

(4)

where We denotes the transform matrix and be
denotes the bias term. The representation of the
i-th propagation tree can be further encoded by the
existing fake news detection models.

ui = Model(x′i,C
′
i, G

tree
i ), (5)

where Model(·) refers to a base detection model,
given textual content and its propagation tree. Then,
the label probability ŷ is computed as:

ŷi = Softmax(Wuui + bu), (6)

where Wu and bu are learnable parameter matrices.

3.3 Root-induced Training Strategy

To guarantee the quality of generated root hubs, we
design the root-induced training strategy to con-
straint the consistency of the representation of the
target propagation tree to its prototypical root node
in the propagation forest. The strategy can take the
“confident" clustering assignments as soft labels,
and be assist to guide the optimizing procedure.

3.3.1 Supervised Classification Loss
We minimize the fake news classification loss cal-
culated by the Cross-entropy criterion. That is,

LFND = −y log(ŷ)− (1− y) log(1− ŷ), (7)

where y indicates the ground-truth label and ŷ rep-
resents the prediction label.
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3.3.2 Unsupervised Consistency Loss
To improve the embedding of prototypes, inspired
by Xie et al. (2016), we examine the similarity
between propagation tree representation u and pro-
totype m via a Student’s t-distribution.

qik =
(1 + ∥ui −mk∥2/α)−

α+1
2

∑K
k (1 + ∥ui −mk∥2/α)−

α+1
2

, (8)

where α are degrees of freedom of Student’s t-
distribution and qik can be interpreted as the prob-
ability of assigning the i-th sample to prototype
mk, which is a soft assignment. This option can
accommodate a variety of scaled clusters while still
being computationally efficient.

Then, leveraging propagation tree nodes, we pro-
gressively update root nodes by gaining knowl-
edge from high confidence predictions. As a conse-
quence, we outline our goal as a Kullback-Leibler
divergence between smooth assignments q and ac-
cessory distribution p:

LClus = KL(P∥Q) =
∑

i

∑

k

pik log
pik
qik

. (9)

Considering q are smooth assignments, using softer
probabilistic objectives p appears more natural and
adaptable. The auxiliary distribution p possesses
have three attributes: 1) improve the purity of cen-
ter clusters; 2) concentrate on highly relevant prop-
agation trees; 3) standardize contribution of each
centroid to reduce potential negative risk that larger-
scale clusters may obfuscate latent feature space.
By increasing qi to the second power and then
standardizing by cluster size, pi is derived:

pik =
q2
ik/
∑

i qik∑
k′ q

2
ik′/
∑

i qik′
. (10)

3.3.3 Joint Training Procedure
To recap, we optimize UniPF framework during
training through reducing supervised cross-entropy
objective of labeled data LFND and unsupervised
consistency objective of unlabeled root nodesLClus,

Θ∗ = argmin
Θ
LFND + λLClus, (11)

where λ is a trade-off hyper-parameter. Θ is all
trainable parameters of the model.

4 Experiments

In this section, we experimentally evaluate the per-
formance of our proposed UniPF.

Dataset Total # Real News # Fake News
PolitiFact 314 157 157
GossipCop 5,464 2,732 2,732
Twitter15 712 372 370
Twitter16 410 205 205

Table 1: The statistics of four public datasets.

4.1 Experimental Setup

Datasets We conduct experiments on four public
benchmarks. The dataset statistics are shown in
Table 1. PolitiFact and GossipCop are released
by FakeNewsNet (Shu et al., 2020a). Samples are
collected from PolitiFact1 and GossipCop2, which
are two websites for fact-checking political and
celebrity news, respectively. Each sample contains
text content of source news and comments, and
diffusion relations between anonymous posts. The
ground truth label is obtained according to jour-
nalists and domain experts. We follow Shu et al.
(2019a) and randomly select 75% of news as train-
ing data and the remaining as test data. Twitter15
and Twitter16, released by Ma et al. (2017), con-
tain a collection of source news on Twitter3 in 2015
(Liu et al., 2015) and 2016 (Ma et al., 2016), re-
spectively. Each sample contains text content of
source news and comments, and diffusion relations
between comments. Each sample is tagged as non-
rumor, false rumor, true rumor, or unverified rumor
based on veracity tags in rumor debunking web-
sites. Following Lu and Li (2020), we choose only
“true" and “fake" labels as the ground truth. Follow-
ing Bian et al. (2020); Wei et al. (2021), we conduct
5-fold cross validation for the two datasets.

Comparison Methods Text-based fake news de-
tection methods include: mGRU (Ma et al., 2016)
uses an recurrent neural network to capture sequen-
tial features from user comments. CSI (Ruchan-
sky et al., 2017) learns the sequential retweet fea-
tures by employing an LSTM network. Propaga-
tion-based fake news detection methods include:
GCNFN (Monti et al., 2019) models the propa-
gation tree as a graph and uses GCN to encode
propagation graphs. BiGCN (Bian et al., 2020)
employs two distinct GCNs to model propagation
directed graph and dispersion directed graph, re-
spectively. RumorGCN (Hu et al., 2021) learns
multi-relational dependencies from the propagation

1https://www.politifact.com/
2https://www.gossipcop.com/
3https://twitter.com/
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Method PolitiFact GossipCop
Acc P R F1 Acc P R F1

Te
xt

-b
as

ed mGRU 0.754 0.800 0.666 0.744 0.859 0.845 0.881 0.859
UniPF-mGRU 0.772↑ 0.846↑ 0.733↑ 0.771↑ 0.905↑ 0.894↑ 0.926↑ 0.905↑

CSI 0.734 0.672 0.550 0.688 0.866 0.892 0.840 0.866
UniPF-CSI 0.760↑ 0.783↑ 0.800↑ 0.754↑ 0.933↑ 0.932↑ 0.933↑ 0.932↑

P
ro

pa
ga

tio
n-

ba
se

d

GCNFN 0.856 0.862 0.851 0.849 0.886 0.892 0.881 0.883
UniPF-GCNFN 0.886↑ 0.902↑ 0.867 0.882↑ 0.958↑ 0.963↑ 0.954↑ 0.958↑

BiGCN 0.861 0.865 0.877 0.853 0.959 0.959 0.959 0.958
UniPF-BiGCN 0.906↑ 0.901↑ 0.906↑ 0.904↑ 0.968↑ 0.968↑ 0.969↑ 0.968↑

RumorGCN 0.891 0.901 0.875 0.888 0.968 0.965 0.971 0.968
UniPF-RumorGCN 0.899↑ 0.911↑ 0.881↑ 0.895↑ 0.968 0.986↑ 0.952 0.969
EBGCN 0.896 0.898 0.909 0.891 0.964 0.966 0.962 0.963
UniPF-EBGCN 0.911↑ 0.912↑ 0.904 0.909↑ 0.966↑ 0.965 0.973↑ 0.966↑

Table 2: Model performance for fake news detection on PolitiFact and GossipCop datasets. “↑" marks superior results
compared to the corresponding base model, which are significant at level p < 0.05 based on t-test.

Method Twitter15 Twitter16
Acc P R F1 Acc P R F1

Te
xt

-b
as

ed mGRU 0.881 0.888 0.860 0.880 0.893 0.906 0.874 0.893
UniPF-mGRU 0.923↑ 0.931↑ 0.912↑ 0.923↑ 0.928↑ 0.925↑ 0.928↑ 0.927↑

CSI 0.911 0.926 0.900 0.919 0.914 0.912 0.886 0.912
UniPF-CSI 0.931↑ 0.939↑ 0.921↑ 0.929↑ 0.927↑ 0.954↑ 0.911↑ 0.926↑

P
ro

pa
ga

tio
n-

ba
se

d

GCNFN 0.927 0.920 0.936 0.927 0.926 0.927 0.927 0.926
UniPF-GCNFN 0.938↑ 0.956↑ 0.917 0.938↑ 0.938↑ 0.929↑ 0.951↑ 0.938↑

BiGCN 0.942 0.950 0.934 0.942 0.936 0.937 0.936 0.936
UniPF-BiGCN 0.952↑ 0.959↑ 0.945↑ 0.952↑ 0.955↑ 0.962↑ 0.951↑ 0.955↑

RumorGCN 0.952 0.951 0.948 0.952 0.945 0.944 0.944 0.945
UniPF-RumorGCN 0.959↑ 0.936 0.987↑ 0.959↑ 0.956↑ 0.956↑ 0.948↑ 0.952↑

EBGCN 0.949 0.947 0.945 0.949 0.943 0.953 0.937 0.944
UniPF-EBGCN 0.955↑ 0.971↑ 0.941 0.955↑ 0.963↑ 0.951↑ 0.976↑ 0.963↑

Table 3: Model performance for fake news detection on Twitter15 and Twitter16 datasets. “↑" marks superior results
compared to the corresponding base model, which are significant at level p < 0.05 based on t-test.

tree by using relational GCNs. EBGCN (Wei et al.,
2021), a graph-based model to learn propagation
uncertainty in a probability manner, encodes propa-
gation tree with edge-enhanced Bayesian networks.

Evaluation Metrics Since fake news detection is
formulated as a classification problem, we evaluate
models with four commonly used metrics: Accu-
racy (Acc), Precision (P), Recall (R), and F1 scores.

Implementation All experiments are conducted
on a single Ge-Force RTX 3080Ti. For Politi-
Fact and GossipCop, we follow Dou et al. (2021)
and consider 300-dimensional word2vec vectors
(Mikolov et al., 2013) to initialize word embed-
dings, which are pretrained on a large corpus with
680k words by spaCy (Honnibal and Montani,
2017). For Twitter15 and Twitter16, following Ma
et al. (2018); Bian et al. (2020), we consider TF-

IDF features as a text encoder. We train models via
back-propagation and Adam optimizer (Kingma
and Ba, 2015). When validation loss stops reduc-
ing by 10 epochs, the training will be stopped ear-
lier (Yuan et al., 2007). The maximum value of
iterations is 200.

4.2 Results of Fake News Detection

Table 2 and Table 3 show the results of fake news
detection on four datasets. Through employing
UniPF, the performance of all baselines is improved
to different extents, which shows the effective-
ness of the framework. Several conclusions can
be drawn as follows:

1) Propagation-based methods are often superior
to those only using text information. This indicates
the importance of learning structural features for
fake news detection. As fake news publishers may
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Method PolitiFact GossipCop
Acc P R F1 Acc P R F1

UniPF-BiGCN 0.906 0.901 0.906 0.904 0.968 0.968 0.969 0.968
- w/o SC-G 0.868 0.864 0.867 0.866 0.963 0.959 0.968 0.963
- w/o RT 0.889 0.869 0.913 0.886 0.967 0.968 0.967 0.966

UniPFRS-G-BiGCN 0.871 0.871 0.871 0.869 0.963 0.964 0.964 0.963
- w/o RT 0.868 0.866 0.857 0.865 0.951 0.944 0.956 0.951

Table 4: The ablation study results on PolitiFact and GossipCop datasets.

Method Twitter15 Twitter16
Acc P R F1 Acc P R F1

UniPF-BiGCN 0.952 0.959 0.945 0.952 0.955 0.962 0.951 0.955
- w/o SC-G 0.951 0.952 0.951 0.950 0.947 0.953 0.942 0.946
- w/o RT 0.949 0.956 0.942 0.949 0.952 0.956 0.948 0.951

UniPFRS-G-BiGCN 0.945 0.950 0.939 0.945 0.951 0.930 0.976 0.951
- w/o RT 0.939 0.945 0.934 0.939 0.949 0.951 0.951 0.950

Table 5: The ablation study results on Twitter15 and Twitter16 datasets.

deliberately rub off on the heated topic or disguise
themselves by imitating other users, it is challeng-
ing to learn informative indicators from noisy texts.

2) In text-based fake news detection methods,
UniPF significantly boosts existing models’ perfor-
mance in terms of most metrics. It suggests that
fully exploiting deep semantic correlations between
similar propagation trees can provide positive aux-
iliary information to detect fake news. UniPF for-
mulates propagation forest as graph and retrieves
semantic-related patterns from textual contents of
other propagation trees. These patterns can purified
noisy fine-grained correlations obtained by origi-
nal base model and accordingly learn more easily
discernible semantic features for detection.

3) In propagation-based fake news detection
models, UniPF framework can also consistently im-
prove the corresponding base models. These base
models only capture structural features from the
target propagation tree. UniPF effectively explores
semantic-structural correlations between propaga-
tion trees with the guidance of prototypical root
nodes in the propagation forest, thus more discrim-
inative patterns are injected into the representation
of the target sample.

4.3 Ablation Study
We perform ablation studies by comparing with:
w/o SC-G refers to removing the graph-based trans-
formations and learning embedding of root nodes
with a simple fully-connected layer. w/o RT refers
to Root-induced Training strategy is removed in the
training process. UniPFRS-G performs Randomly-

Sampling to generate root nodes and apply Graph-
based transformations to explore deep correlations
in the propagation forest.

The results are shown in Table 4 and Table 5.
The full UniPF consistently yields the best per-
formance, which shows the effectiveness of the
proposed framework for enhancing the detection
performance.

1) UniPF w/o SC-G removing graph-based trans-
formations is inferior to UniPF. It shows the em-
bedding of the target sample can be enhanced by
explicitly modeling latent correlations in the propa-
gation forest.

2) After removing the root-induced unsupervised
clustering loss, results of both UniPF w/o RT and
UniPFRS-G w/o RT are reduced. Both variants
generate prototypical root nodes in a semantic-
clustering or random-sampling way. It implies the
efficacy of our training strategy, which ensures the
quality of prototypical root nodes. Accordingly,
more effective semantic-structural features can be
injected to boost the detection performance.

3) UniPFRS-G ignoring semantic-aware cluster-
ing achieves poor performance on four datasets,
which shows the effectiveness of semantic cluster-
ing in our model. The fact reveals more beneficial
correlations can be explored between semantically
similar propagation trees.

4.4 Parameter Analysis
Figure 3 shows the performance against different
numbers of root nodes K in the propagation forest.
From results, UniPF is influenced by the number of
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Figure 3: F1 score against different values of K.

Figure 4: F1 score against different values of λ.

root nodes since these root nodes act as propagation
tree’s ancestor in the forest and play a pivot role
to incorporate correlations between similar prop-
agation trees. Under too smaller number of root
nodes, some redundant or noisy features may be
introduced at the same time; while a larger number
of root nodes also hurts the performance since as-
signing more root nodes means propagation trees
are independent. The optimal value is 4, 15, 25,
and 20 on PolitiFact, GossipCop, Twitter15 and
Twitter16 datasets, respectively.

Figure 4 reports the performance against differ-
ent values of λ, a trade-off hyper-parameter of the
unsupervised node-induced clustering loss in the
root-induced training strategy. Performance first
gets better with the increase of λ. The improve-
ments demonstrate the effectiveness of the root-
induced training strategy, which can further ensure
high-quality root nodes in the propagation forest.
The best setting of 0.5, 0.5, 1, and 1 on PolitiFact,
GossipCop, Twitter15 and Twitter16 datasets, re-
spectively. However, performance declines when
applying a large value of λ. Because the model
with too large λ would pay more attention to se-

Figure 5: Performance with different textual features on
PolitiFact and GossipCop datasets.

Model Number of Parameters Average Time
BiGCN 427.5k 2.35s
UniPF-BiGCN 575.2k 2.47s

Table 6: Efficiency analysis on the PolitiFact dataset.

mantic clustering based on all propagation trees
and cannot effectively exploit structural informa-
tion of individual propagation trees.

4.5 Feature Analysis

BERT (Devlin et al., 2019) has shown powerful
ablity to encode textual features and been applied
in many NLP tasks (Hu et al., 2022a,b). To in-
vestigate the robustness and universality of UniPF,
we follow Dou et al. (2021) and evaluate the per-
formance against different feature extractors to ex-
plore that given different textual features, whether
UniPF can still fully explore latent correlations be-
tween propagation trees. Figure 5 shows the fake
news detection performance using two different
textual features, i.e., Word2Vec (Mikolov et al.,
2013) and BERT (Devlin et al., 2019).

From the results, the proposed framework can
effectively boost the performance of the baseline
model whether BERT or Word2Vec is used to ini-
tialize textual features, which reveals the robustness
and effectiveness of the proposed UniPF frame-
work. Besides, textual features extracted by BERT
are better than Word2Vec. The fact shows con-
textual features can be captured by the pre-trained
model from a large corpus.

4.6 Efficiency Analysis

As shown in Table 6, after employing UniPF, the
number of model parameters is 34.5% more than
that of BiGCN. The time difference is about 0.12s.
Although UniPF would introduce a small number
of parameters, the average spent time of each epoch
is similar to the base model. We argue it is worth-
while to cost a very small amount of computing
resources to provide better results.
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5 Related Work

Some works exploit user information to detect fake
news such as user credibility (Yuan et al., 2020),
user profiles (Shu et al., 2019b) and user social rela-
tions (Shu et al., 2019a). However, due to user pri-
vacy protection, user’s information is not allowed
recorded on social media. This paper focuses on
detecting fake news based on anonymous propa-
gation. We review related works in two groups:
content- and propagation-based detection methods.

5.1 Content-based Detection Methods

Content-based detection approaches investigate the
truthfulness of news content by extracting its tex-
tual features. Early works (Castillo et al., 2011;
Zhao et al., 2015; Popat, 2017; Potthast et al., 2018;
Ajao et al., 2019) reply on feature engineering to
capture textual attributes. After the emergence
of deep learning, many works (Ma et al., 2016;
Ruchansky et al., 2017; Shu et al., 2019a; Zhou
et al., 2020; Kaliyar et al., 2021) apply various
neural networks to automatically learn semantic
features from source content and its comments to
detect fake news. In reality, fake news is usually
published around a specific event/topic, leading to
potentially similar semantic characteristics. How-
ever, most of them usually extract fine-grained fea-
tures from words but may suffer from polysemy
problem and are not effective to learn shared seman-
tic features. This paper explores potential seman-
tics via generating cluster-prototype and integrating
information under the propagation forest, fully ex-
ploring shared and identifiable semantic features to
boost detection.

Understanding complicated dissemination pat-
terns from propagation trees is also critical since
this gives valuable hints into the discovery of fake
new. Prior studies (Castillo et al., 2011; Vosoughi
et al., 2018; Zhao et al., 2021) focus on several
propagation-related criteria such as total number
of nodes in a propagation tree, propagation tree
depth and breadth. Within a deep learning frame-
work, (Ma et al., 2016; Shu et al., 2020b; Khoo
et al., 2020) learn the representation of the target
propagation tree with neural networks to capture ge-
ometrical spreading patterns. More recently, many
mainstream studies (Hu et al., 2019; Dong et al.,
2019; Nguyen et al., 2020; Bian et al., 2020; Hu
et al., 2021; Silva et al., 2020; Wei et al., 2021,
2022; Silva et al., 2021) regard the propagation tree
as a graph structure and apply various graph-based

techniques to learn richer structural features. Al-
though obtaining promising results to some extent,
they usually assume propagation trees are indepen-
dent and ignore vital high-level correlations among
propagation. To alleviate this issue, we develop
the propagation forest and propose a generic frame-
work to fully explore latent semantic and structural
correlations across propagation.

6 Conclusion

In this paper, we investigate deep correlations be-
tween propagation trees and propose a generic
framework UniPF for improving fake news detec-
tion. UniPF builds a propagation forest to naturally
combine propagation trees in a semantic-clustering
manner. The representation of the target sample is
enhanced with shared patterns from similar propa-
gation trees and prototypical root nodes. Besides,
a node-induced training strategy is designed for
guaranteeing the consistency of the representation
of propagation trees and newly prototypical root
nodes. Experiments on four datasets consistently
prove the scalability and effectiveness of UniPF.

For future work, we will explore more available
information (such as images) for perfecting propa-
gation forest to enhance detection.
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Abstract

Framing is a political strategy in which journal-
ists and politicians emphasize certain aspects
of a societal issue in order to influence and
sway public opinion. Frameworks for detect-
ing framing in news articles or social media
posts are critical in understanding the spread
of biased information in our society. In this
paper, we propose CLoSE, a multi-task BERT-
based model which uses contrastive learning to
embed indicators of frames from news articles
in order to predict political bias. We evaluate
the performance of our proposed model on sub-
frames and political bias classification tasks.
We also demonstrate the model’s classification
accuracy on zero-shot and few-shot learning
tasks, providing a promising avenue for fram-
ing detection in unlabeled data.

1 Introduction

News media coverage shapes our attitudes, emo-
tions, and decisions toward public issues (Iyen-
gar, 1994; Pan and Kosicki, 1993; Jensen et al.,
2014). Research shows that people’s perceptions
of news can be manipulated by presenting the
same story with different expressions. For exam-
ple, participants of a study found a terrorist attack
caused by “al-Qaeda and associated radical Islamic
groups" considerably more threatening than a ter-
rorist attack by “domestic rebel separatist groups,”
which is an equivalent paraphrase (Kapuściński and
Richards, 2016). Hence, studies on the influences
of different presentations of issues, or the effects
of framing, play an essential role in understanding
political discourse.

Framing refers to emphasizing desired aspects
of an issue to promote and amplify a particular per-
spective (Entman, 1993). By selecting and thus
elevating the salience of a specific angle of a topic,
media sources can present the topic through their
choice of frames to induce particular attributes and
judgments among the public. Framing is widely re-

searched on various topics, from its effects on pub-
lic opinion on political issues such as the U.S. anti-
nuclear war movement (Entman and Rojecki, 1993)
and stem cell research (Nisbet et al., 2003) to the
economic impact of framing (Liu and Pennington-
Gray, 2015; Van Dalen et al., 2017).

In this work, we study framing detection for
three politically polarized issues in the U.S. news
media: abortion, gun control, and immigration. We
focus on framing in the news discourse to under-
stand a discrepancy in media consumption and its
influence on political bias polarization. With the
increase of news media outlets and social media
platforms, the public is overwhelmed with a flood
of information. Unfortunately, the increase of news
sources does not yield the sharing of information
across political views, often developing into biased
echo chambers on social media platforms. In fact,
there are stark differences in the social media and
news sources that liberals and conservatives use
and trust. Fox News is the primary news source for
nearly half of conservatives, while NPR, MSNBC,
and the New York Times are the most trusted news
sources for liberals (Mitchell et al., 2014).

Machine learning techniques have been applied
to detect and analyze political frames (Card et al.,
2015; Guo et al., 2016; Johnson et al., 2017a; Bha-
tia et al., 2021). In such framing analyses, the
performance of a framing detection model is tested
by predicting the political bias of an article or the
political affiliation or stance of a politician’s tweet
or speech. However, we suggest incorporating the
political bias information into the development of
the actual frame detection model. We focus on gen-
eral liberal and conservative bias rather than the
specific stances politicians may take on issues.

In this paper, we propose CLoSE, a framing em-
bedding model that jointly learns to predict political
bias. CLoSE fine-tunes BERT variants with a con-
trastive learning objective to generate (sub)frame
embeddings for a given input sentence. Then we
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add a prediction loss to classify the political bias
(liberal or conservative) of the embedded text.

For the embedding task, we use contrastive learn-
ing to place embeddings of the same subframe
closer together. Subframes are fine-grained sub-
categorizations of the general political frames of
Boydstun et al. (2014). The topic-specific lexicons
of subframes are the subframe indicators used to
identify specific framing language within a chosen
topic. We use the subframe indicators to identify
texts with frames and construct the Framing Triplet
Dataset. This dataset, built explicitly for a con-
trastive objective, consists of a triplet of an anchor
sentence, its positive sample, and its negative sam-
ple, and the political bias label of the anchor sen-
tence. The contrastive learning objective reduces
the distance between the anchor sentence and its
positive sample, which belongs to the same sub-
frame, while increasing the distance to its negative
sample that belongs to a different subframe.

CLoSE outperforms the baseline models in both
the subframe and political bias classification tasks.
The results also show that the contexts of subframes
improve the performance of the political bias clas-
sifier. Further, our pre-trained model accomplishes
superior performance in zero-shot and few-shot set-
tings. Finally, we design a topic modeling method
for the subframe embeddings that clusters nearby
embeddings, extracts statistically significant words
with class-based TF-IDF (Grootendorst, 2022), and
merges clusters with high overlapping words.

To summarize, our main contributions are as fol-
lows: (1) We collect and release the Triplet Fram-
ing Dataset1, a triplet of sentences that include
subframe indicators. (2) We propose CLoSE, con-
trastive learning of subframe embeddings model
that jointly generates embeddings and predicts
political bias of framed texts. The experiments
demonstrate our method’s performance on sub-
frame and political bias classification tasks and
investigate the effectiveness of political bias infor-
mation on subframe detection and vice versa. (3)
The experiments show that our pre-trained model
performs competitively on zero-shot political bias
classification and few-shot subframe classification
tasks. Namely, the pre-trained model can predict
the political bias of articles with previously unseen
topics and predict subframe groups with a limited
quantity of labeled data. This greatly reduces the

1Code and data available at https://github.com/
MSU-NLP-CSS/CLoSE_framing.

cost of data annotation for framing and bias tasks.

2 Related Work

Framing is a powerful political strategy that is used
to influence public opinion. Hence identifying what
and how frames are used is a critical task in politi-
cal communications. Framing in news media and
social networks has been studied to analyze polit-
ical polarization (Johnson and Goldwasser, 2016;
Tsur et al., 2015; Tourni et al., 2021). However, an-
notating data for framing is challenging due to the
nuanced language of frames across political issues.

To overcome this challenge, computational so-
cial scientists follow a topic-specific codebook to
manually annotate documents with frames (Terk-
ildsen and Schnell, 1997; Baumgartner et al., 2008;
Card et al., 2015). The most commonly used code-
book is the Policy Frames Codebook (Boydstun
et al., 2014), which proposes a general coding
scheme for fifteen high-level frames across policy
issues. Based on this codebook, Card et al. (2015)
collected and released the Media Frames Corpus
(MFC). The MFC contains more than 20,000 news
articles on three policy issues: immigration, smok-
ing, and same-sex marriage.

Following the release of MFC, the first large-
scale open-source frames dataset, many researchers
studied and analyzed frames by leveraging the
MFC. Johnson et al. (2017b) use political tweets
to extract phrases that frequently appear in each of
the frames and propose a framing detection model
that uses both linguistic features and the extracted
ideological phrases. Field et al. (2018) extend the
U.S. policy frames to Russian policy frames and
analyze 13 years of Russian news articles. They de-
rive the lexicons of each frame from the MFC and
translate them to Russian to generate Russian fram-
ing lexicons. Huguet Cabot et al. (2020) propose
a multi-task model that learns metaphor, framing,
and emotion in political discourse and uses the
MFC to predict frames. Although our method also
jointly models political bias and framing, our ap-
proach differs in that the main task of our model
is to embed language used in subframes with con-
trastive learning.

Additional research has narrowed down the gen-
eral policy frames to suggest issue-specific frames.
Johnson et al. (2017a) add Twitter-specific frames
to the policy frames and annotate and analyze the
tweets of U.S. politicians. Roy and Goldwasser
(2020) build topic-specific lexicons, which they de-

2781



fine as subframe indicators, by using an embedding
model to generalize the MFC lexicon for analyzing
media bias. We utilize their subframe indicators to
create our Framing Triplet Dataset. Our proposed
model also includes an embedding model that gen-
eralizes text containing subframe indicators. How-
ever, we integrate political bias information into
our model directly by adding bias classification as
an auxiliary task.

Other approaches for detecting frames are based
on topic modeling algorithms. Latent topics of a
given corpus are extracted with a topic modeling
algorithm, often Latent Dirichlet Allocation (LDA)
(Blei et al., 2003). LDA yields statistically signif-
icant words of each topic, which are used as can-
didate indicators for defining frames. Bhatia et al.
(2021) provide an open-sourced tool for analyzing
frames in multilingual texts. Given text inputs, their
web-based system sends the LDA topic modeling
output to a user’s email so that the user can decide
and label frames on the given topics. However, we
note that the output of LDA is a list of keywords
in each topic, not frame. The topic-based words
are helpful guidance in framing annotations and
exploratory analysis but are not appropriate data to
be used for supervised framing analysis.

3 Framing Triplet Dataset

We introduce the Framing Triplet Dataset, which
contains 25,627 news articles on three politically
polarized topics: abortion, gun control, and immi-
gration. We extend the hyper-partisan news dataset
(Kiesel et al., 2019) and the dataset by Roy and
Goldwasser (2020), which consists of news arti-
cles on the three topics until 2019. Open-source
crawlers pygooglenew and news-please
were used to collect recent articles from 2020 to
2022. We query the Google News RSS feed with
keywords of each topic and crawl the articles. The
keywords are “abortion” for the abortion data, “gun”
for the gun control data, and “immigrant” and “im-
migration” for the immigration data. Then we
assign the political bias label of each article ac-
cording to Media Bias Fact Check 2, the largest
crowdsourced media bias resource on more than
4,500 media sources and journalists. The Media
Bias Fact Check categorizes each media source into
one of the following five biases: “left bias,” “left-
center bias,” “least bias,” “right-center bias,” and
“right bias.” For our study, given the partisan divide

2mediabiasfactcheck.com

of current U.S. politics, we only consider articles
from “left bias” and “right bias” media. In total,
our dataset includes 12,911 left-biased articles and
12,761 right-biased articles. The detailed statistics
of the dataset can be found in Table 1.

After labeling the political bias of the collected
articles, we extract headlines and sentences in arti-
cles that contain subframe indicators. The sub-
frame indicators, suggested by Roy and Gold-
wasser (2020), are the issue-specific subclassifica-
tions of the policy frames by Boydstun et al. (2014).
These subframe indicators are collected via the fol-
lowing three steps. First, the top-250 unigrams for
each of the 15 policy frames are gathered based on
their Pointwise Mutual Information (PMI) scores
(Church and Hanks, 1990). Then, each paragraph
in the article is annotated with the policy frames
based on the number of unigram matches. Finally,
repeating phrases in the annotated paragraphs are
grouped to form subframes, which represent topic-
specific lexicons. They defined 20 subframes for
the topic of abortion, 22 subframes for the topic
of immigration, and 19 subframes for the topic of
gun control. The list of subframes can be found
in Appendix A. We refer to Roy and Goldwasser
(2020) for the full list of subframe indicators.

Finally, we construct triplets with the extracted
sentences. Given an anchor sentence sa, we define
its positive sample sp as a sentence with subframes
from the same subframe group and its negative
sample sn as a sentence with subframes from a
different subframe group. For example, the sen-
tence “The first backlash to the Roe decision came
primarily from groups representing U.S. Catholics.”
contains a subframe indicator “Roe decision” that
belongs to the subframe “Roe v. Wade.” Its positive
sample (sp) should be a sentence with a subframe
indicator of that same subframe, “Roe v. Wade.”
Its negative example (sn) will be a sentence with
a subframe indicator from a different, random sub-
frame group such as “Birth Control.” The triplet
is formed as (sa, sp, sn). An example of the triplet
data is shown in Figure 2.

3.1 Data Analysis

We analyze the usage of subframes in the Framing
Triplet Dataset by extracting the top-3 subframes
across time and issues. The results for the abortion
subdataset are shown in Table 2. (See Appendix B
for the results on the gun control and immigration
subdatasets.) Across the topics, we notice the trend
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News(#) Left(#) Right(#) Sent.(#) Left S.(#) Right S.(#) Time Span
Abortion 8,061 4,518 3,543 10,725 8,032 2,693 1984-2022
Gun control 9,476 4,238 5,238 8,138 3,918 4,220 2000-2022
Immigration 8,090 4,155 3,935 13,269 8,228 5,041 1996-2022

Table 1: Statistics of the Framing Triplet Dataset. For each topic, news articles are collected, their biases are
labeled according to Media Bias Fact Check, and sentences containing subframe indicators are extracted. Left S. are
sentences extracted from left-biased news articles. Right S. are extracted from right-biased news articles.

Years Liberal Conservative

2020-2022
Top-1 Roe v. Wade Roe v. Wade
Top-2 Abortion Funding Abortion Funding
Top-3 Birth Control Birth Control

2018-2020
Top-1 Roe v. Wade Roe v. Wade
Top-2 Birth Control Pregnancy Centers
Top-3 Abortion Funding Abort. Prov. Economy

2016-2018
Top-1 Birth Control Pregnancy Centers
Top-2 Health Care Abort. Prov. Economy
Top-3 Roe v. Wade Abortion Funding

2010-2016
Top-1 Abortion Funding Birth Control
Top-2 Birth Control Abort. Prov. Economy
Top-3 ⋆ Planned Parenthood

-2010
Top-1 Birth Control Roe v. Wade
Top-2 Roe v. Wade Right of Human Life
Top-3 ⋆ Abortion Funding

⋆ Potentially offensive or triggering language has been omitted.

Table 2: Top-3 Subframe Indicators of the Abortion
Triplet Dataset. Each row indicates the most frequently
used subframe indicators for liberal and conservative
biased media within the specified time frame.

that the most used subframes begin to overlap as
time passes. Before 2018, the top-3 subframes used
by the liberal and conservative media significantly
differed. Namely, the subframe indicators that the
media focused on to frame people’s opinions on
abortion are different based on the media’s politi-
cal bias. However, the most used subframes of the
left and right news are intersecting more recently.
From 2018 to 2020, the most used subframe of
both liberal and conservative media was “Roe v.
Wade.” The top-3 subframes from 2020 to 2022 of
both views are also identical. Similarly, from 2020
to 2022, the top-3 subframes for the gun control
subdataset, and the top-2 subframes for the immi-
gration subdataset, of both liberal and conservative
media are identical. These results show that in
recent years, news media with opposing political
biases cover common issues, sometimes with simi-
lar framing language. Despite this similar coverage,
political polarization in the U.S. remains dominant
(Doherty et al., 2021). Hence, we need a methodol-
ogy that captures not only which issues the media
chooses to spotlight for coverage but also how they
frame these issues for public perception. By jointly

Figure 1: Architecture of CLoSE. Our model consists
of a BERT- or RoBERTa-based encoder whose output
is fed through a pooling layer to generate sentence em-
beddings via a contrastive learning objective. These
embeddings are then used in the final political bias clas-
sification task. This example shows an input sentence
and its corresponding embedding (pink circle), which
is most similar to other embedded sentences of the Sub-
frame 1’s group. The final prediction here is liberal.

learning to predict political bias from the sentence
embeddings, our proposed method aims to capture
the different contexts of the opposing media.

4 Methodology

We propose CLoSE: a multi-task learning model
that jointly learns to embed sentence framing lan-
guage and predict political bias. As shown in
Figure 1, the model consists of a BERT-based or
RoBERTa-based encoder, followed by a pooling
layer that generates a sentence embedding, which
feeds into a classifier for political bias prediction.
We adopt a contrastive learning objective so that
a sentence with subframe indicators close to other
sentences of the same subframe and far from those
of different subframes will be similarly reflected in
the embedding space.

Embedding via pooling. Given a sentence s
of tokens {t1, · · · , tn}, we embed the sentence us-
ing BERT or RoBERTa to get a sequence of token
embeddings {e(t1), · · · , e(tn)}. Then a pooling
operation is applied to the token embeddings to
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derive a fixed size sentence embedding e(s). There
are three possible pooling strategies: (1) taking the
output of the CLS token, (2) computing the mean of
all output vectors, and (3) computing a max-over-
time of the output vectors. CLoSE employs the
default pooling operation of mean strategy, which
has shown the best experimental results on seman-
tic textual similarity and natural language inference
tasks (Reimers and Gurevych, 2019). Thus, the fi-
nal sentence embedding is e(s) = 1

n

∑n
i=1 e(ti).

Learn subframes with a contrastive learning
objective. We apply a contrastive learning objec-
tive to capture the framing embedding space. To
do so, we fine-tune the BERT-based (or RoBERTa-
based) encoder to encourage embeddings that will
fall within the same subframe group to be closer
and the embeddings within a different subframe
group to be more distant from a given anchor sen-
tence’s embedding. Every anchor sentence sa has
a positive sentence sp and a negative sentence sn,
corresponding to the triplets within the Framing
Triplet Dataset. For example, as shown in Figure 2,
the anchor sentence has a subframe indicator “Roe
decision” (shown in bold), which belongs to the
subframe group “Roe v. Wade.” While its posi-
tive sentence has subframe indicators “overturns
Roe” and “Roe v. Wade” that belong to the same
subframe group, the negative sentence has a sub-
frame indicator “March for Life” that belongs to a
different subframe group “Pro-Life.”

Given a triplet of sentences (sa, sp, sn), the con-
trastive learning loss is computed as follows:

Lc =max(0,

ϵ− ∥e(sa)− e(sn)∥+ ∥e(sa)− e(sp)∥)

where the margin ϵ is a hyperparameter, and ∥ · ∥
is the Euclidean distance. e(sa), e(sp), and e(sn)
are an embedding of the anchor sentence sa, its
positive sentence sp, and its negative sentence sn,
respectively. We set ϵ as 1 for the experiments.

Predict political bias. The proposed model adds
a binary classifier to the output of the BERT-based
encoder to predict the political bias of an input
(anchor) sentence. The sentence embedding of
this anchor sentence is given as an input to the
classifier, which predicts whether the sentence is
from a liberal (left) or conservative (right) news
source. Given an anchor sentence si, we predict
a stance label yi ∈ {0, 1}. We use binary cross-

Figure 2: Visualization of the Contrastive Learning Ob-
jective. The contrastive learning objective pushes the
anchor sentence closer to its positive sentence (decreas-
ing distance to positive example dp) and farther from its
negative sentence (increasing distance from dn).

entropy as the loss function:

LBCE =− 1

N

N∑

i=1

yi · log(p(yi))

+ (1− yi) · log(1− p(yi))

where N is the number of data in a batch. In our
experimental studies, the classifier is a single-layer
feedforward neural network with Dropout (Srivas-
tava et al., 2014) and ReLU activation (Nair and
Hinton, 2010).

Jointly learn framing and political bias. Fi-
nally, we combine the learned losses in order to
build an embedding space that can group subframes
as well as separate the contexts of opposing polit-
ical stances, i.e., distinguish between liberal and
conservative biased news. The final loss that com-
putes the weighted sum of the contrastive learning
loss Lc and the classification loss LBCE is:

L = (1− α) · Lc + α · LBCE (1)

where α is a hyperparameter. The default value of
α is 0.5.

5 Experimental Setup

We evaluate the performance of our proposed
method on the tasks of (1) political bias classifica-
tion and (2) subframe detection. For the first task,
a model makes a binary prediction of whether a
given text has a liberal or conservative perspective.
We compare the classification performance of our
proposed model to the baseline models. Further,
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an ablation study on the classification objective
is performed, and the classification performance
of the pre-trained models on unseen topic data is
studied. As for the second task, we test the per-
formance of subframe classification and analyze
the effect of the bias classification task on the sub-
frame classification. Finally, we propose a novel
topic modeling method for the output embeddings
and show experimental results.

5.1 Training Details

We leverage the pre-trained BERT and RoBERTa
models as the encoder for our proposed model.
We use the following pre-trained models
from Hugging Face: bert-base-cased,
bert-base-uncased, and roberta-base.
They are trained on English texts with 12 layers,
768 hidden units, and 12 attention heads. We use
Adam (Kingma and Ba, 2015) optimizer and set
learning rates to {1e − 5, 2e − 5}, an epoch to 5,
and a dropout rate to 0.5. For all models, PyTorch
was used for implementation. All experiments are
conducted on an Nvidia Quatro RTX 5000, 16 GB
memory GPU in a machine with Intel(R) Xeon(R)
Silver 4214 CPU @ 2.20GHz.

5.2 Baseline Models

We compare the performance on the political bias
classification task with the following baselines.

BERTcased: A pre-trained BERT with a single-
layer feedforward neural network. The BERT en-
coder is pre-trained with case-sensitive English
texts.

BERTuncased: A pre-trained BERT with a
single-layer feedforward neural network. The
BERT encoder is pre-trained with case-insensitive
English texts.

RoBERTa: A pre-trained RoBERTa model with
a single-layer feedforward neural network.

6 Results & Discussion

6.1 Political Bias Classification

We compare the performance of CLoSE against
the baseline models described in Section 5.2 on the
task of political bias classification. The results are
reported in Table 3. Our modeling approach outper-
forms the baseline models for both gun control and
immigration bias classification and showed com-
petitive results for abortion classification. This in-
dicates that jointly modeling the embeddings with

Abortion Gun Immig.
BERTcased 0.790 0.698 0.801
BERTuncased 0.788 0.722 0.824
RoBERTa 0.831 0.720 0.827
CLoSEBERT-cased 0.821 0.705 0.841
CLoSEBERT-uncased 0.803 0.716 0.818
CLoSERoBERTa 0.758 0.724 0.829

Table 3: F1 Scores for Political Bias Classification.
Scores in bold indicate the best performing model for
that topic.

Abortion Gun Immig.
CLoSEAbort. — 0.722 0.738
CLoSEGun 0.749 — 0.735
CLoSEImmig. 0.747 0.686 —

Table 4: F1 Scores for Zero-Shot Political Bias Classifi-
cation. Cells with — indicate the topic subdataset the
model was trained on.

α = 0 0.5 1
Abortion 0.297 0.821 0.787
Gun Control 0.328 0.705 0.514
Immigration 0.184 0.841 0.734

Table 5: Ablation Study. We compute F1 scores of the
political bias classification, dependent on the values of
α. For α = 0, only the contrastive learning objective is
used. For α = 1, only the political bias classification
loss is calculated. For brevity, other α values are omitted
but reflect similar patterns.

a contrastive learning objective improves bias clas-
sification.

Interestingly, our pre-trained model also per-
forms well in a zero-shot learning setting. That
is, our model can predict the political bias of arti-
cles from unseen topics. As shown in Table 4, the
model CLoSEAbort. trained on only the abortion
subdataset of the Triplet Dataset is able to predict
the political stance of articles from the gun control
and immigration subdatasets with F1 scores above
0.7. Furthermore, the F1 score for predicting bias
of the gun control topic is 0.722. This score is
extremely close to the best classification score on
the gun subdataset by CLoSERoBERTa, as shown
in Table 3. The performance of our modeling ap-
proach in this zero-shot learning setting indicates
the model’s ability to learn and transfer latent fram-
ing indicators for political bias detection across
topics.
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(a) Subframes (b) Political Bias

Figure 3: Visualization of the Embeddings for Immi-
gration. Subfigure (a) shows the clustering of subframe
groups. Subfigure (b) is labeled based on the political
bias of each article.

Abortion Gun Immig.
BERTcased 0.879 0.761 0.734
CLoSEBERT-cased 0.848 0.853 0.905

Table 6: F1 Scores of the Subframe Classification Task.

6.2 Ablation Study
To further verify the usefulness of our joint learning
objective, we compute F1 scores of the political
bias classification dependent on the values of the
α hyperparameter of Equation 1. For α = 0.5, we
compute the sum of the contrastive objective and
classification loss. When α = 0, the loss function
becomes the contrastive learning objective. On the
other hand, when α = 1, only the political bias
classification loss is considered. The results are
shown in Table 5.

We notice that when only the contrastive loss
is applied, the model performs poorly on the po-
litical bias classification task. As expected, the
performance improves when only the political bias
classification loss is used (i.e., when α = 1). The
interesting observation is that when we use both
the contrastive loss and the bias classification loss,
as we have proposed in this work, the F1 scores are
the highest. These results show that incorporating
subframe indicators indeed improves political bias
classification.

6.3 Subframe Classification
We evaluate whether our proposed model can cor-
rectly predict the subframe group of a given sen-
tence. The results are shown in Table 6. We add
a classifier to the pre-trained BERT-based encoder
and predict the subframe label of a given input. We
use CLoSEBERT-cased, which demonstrated com-
petitive performance across the data in the classi-
fication task, as our pre-trained encoder and com-
pare it to the baseline model BERTcased. For both

BERTcased CLoSEBERT-cased
Acc. F1 Acc. F1

Abort.
50 0.232 0.232 0.300 0.300

100 0.454 0.454 0.641 0.642

Gun
50 0.265 0.270 0.485 0.486

100 0.666 0.679 0.756 0.759

Table 7: Accuracy and F1 Scores of Subframe Clas-
sification in Few-shot Learning Setting. CLoSE, pre-
trained on immigration data, is fine-tuned on a limited
number (50 or 100 triplets) of abortion or gun control
data.

Original Data CLoSEBERT-cased
Abortion 0.413 (0.294) 0.347 (0.225)
Gun 0.303 (0.189) 0.198 (0.182)
Immig. 0.490 (0.297) 0.383 (0.281)

Table 8: Average Differences of Subframe Usage Be-
tween Political Ideologies. Standard deviations are
shown in parentheses.

gun control and immigration subdatasets, our pre-
trained model significantly outperforms the base-
line model. For the abortion data, the F1 score of
the baseline model is higher; yet the difference in
scores was not statistically significant.

Table 7 shows that our model outperforms the
baseline model even in few-shot learning. For this
experiment, CLoSEBERT-cased, pre-trained on the
immigration subdataset, is fine-tuned with a limited
number of unseen data to predict subframes. The
size of abortion and gun data is limited to 50 and
100 triplets. For both topics, our model’s accuracy
and F1 scores are higher than the baseline, when
the data size is 50 and 100 triplets. This result
shows that our pre-trained model only requires a
small amount of labeled data for fine-tuning, which
improves the scalability of data annotation.

In order to understand the influence of political
bias on framing, we compute the average differ-
ences in subframe usage between biases. Our con-
trastive objective encourages CLoSE to separate
different subframe groups farther apart. Simulta-
neously, binary political bias information is given
as context to the embedding space. We would like
to verify whether the bias objective distinguishes
amongst subframes that are used by both ideolo-
gies in similar usage percentages. For each sub-
frame group, we measure the percentage of its us-
age by the liberal and conservative media sources
and compute the average of the difference in those
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percentages. We then use the subframe group clas-
sifications of CLoSE and compare them to the true
subframe group labels of the original data.

The results are shown in Table 8. The average
differences of our model were smaller than those
of the original data across the datasets. Namely, the
overlapping usage of subframes between ideologies
is more clearly observed in our model.

Figures 3a and 3b are the visualizations of the
embeddings of the immigration data. Principal
Component Analysis (PCA) IS applied to reduce
dimensions, and the reduced embeddings ARE plot-
ted and labeled with color. Figure 3a displays the
clustering of subframe groups, and Figure 3b shows
the distribution of the liberal and conservative bi-
ased embeddings. Importantly, Figure 3b shows
the intersection of subframes between political bias,
which aligns with the experimental results of Ta-
ble 8. The embedding visualizations of the abortion
and gun control data can be found in Appendix C.

6.4 Topic Modeling for Frame Extension
Lastly, we propose a topic modeling method that
leverages the subframe embeddings output by our
proposed CLoSE model to predict new indicators
which can be used to extend or generalize the sub-
frames. First, we cluster the framing embeddings,
the outputs of our model, with k-means cluster-
ing. Then, we use class-based TF-IDF to cluster
the framing embeddings and to find topics (Groo-
tendorst, 2022). TF-IDF is a classic keyword ex-
traction method that combines term frequency and
inverse document frequency (Joachims, 1996). The
TF-IDF score of a token t in a document D is:

Wt,D = tft,D · log
N

dft
,

where tft,D is the frequency of the token t in the
document D, dft is the total number of documents
that contain t, and N is the total number of doc-
uments. The class-based TF-IDF generalizes TF-
IDF to clusters by considering all documents in a
cluster as a single document. It is defined as:

Wt,C = tft,C · log(1 +
A

tft
),

where tft,C is the frequency of the token t in a clus-
ter C, tft is the frequency of t across all clusters,
and A is the average number of tokens per cluster.

Finally, we merge the clusters with high over-
lap of keywords, or tokens with high class-based

1 reproductive, health, justice, women, freedom
2 federal, funding, abortions, Hyde, Amendment
3 ⋆

4 pregnancy, crisis, centers, Pro-Life, women
5 Wade, Roe, overturn, supreme, court
6 rights, anti-abortion, religious, catholic, abortion
7 Affordable, Care, Act, health, insurance
8 control, birth, health, save, prescription
9 Planned, Parenthood, selling, unborn, videos
10 life, unborn, right, baby, child
11 March, Life, Washington, national, Trump
12 industry, abortion, giant, business, profit
13 fetal, tissue, research, illegally, selling
14 Hobby, Lobby, access, coverage, insurance
⋆ Potentially offensive or triggering language has been omitted.

Table 9: Topics of Subframe Embeddings for Abortion.

TF-IDF scores. Suppose there are c clusters C =
{C1, C2, · · · , Cc}. For a cluster Ci, we rank to-
kens according to their class-based TF-IDF scores
and choose the top-k number of tokens. Then, we
compute the overlap of the tokens across clusters:

s(Ci, Cj) =
count(Ci ∩ Cj)

|Ci|
,

where i ̸= j. If s(Ci, Cj) is greater than a threshold
β, we merge Ci and Cj . For our experiments, the
default values are k = 50 and β = 0.4.

Table 9 shows the experimental results on the
abortion data. We observe the subframe indicators
of the original dataset as keywords. For instance,
topic 9 has the subframe indicators: “Planned Par-
enthood.” Interestingly, our topic modeling method
is able to identify important words that are not in
the subframe lexicons. Topic 2 has known indica-
tors from the subframe “Abortion Funding” as well
as new indicators “Hyde” and “Amendment.”3 This
indicates CLoSE’s ability to identify new subframe
indicators which would allow the development of
new frames or unsupervised frame detection. Ap-
pendix D presents experimental results for the top-
ics and subdatasets of gun control and immigration.

7 Conclusion

We have presented CLoSE, a framework that in-
corporates subframes and political bias using con-
trastive learning and multi-task learning. Our pro-
posed joint objective outperforms baseline models

3The Hyde Amendment, which was passed in 1976 by
the House, is a legislative provision that prohibits the use of
federal funds for performing abortions.
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in predicting subframes and political bias. Further,
our pre-trained model adapts to zero-shot learning
of political bias and few-shot learning of subframes.
Finally, we propose a topic modeling method for
the subframe embeddings and extract a list of key-
words, which can be helpful for future subframe
extensions and annotations. We plan to extend this
work to embed general policy frames for study in
unsupervised settings.
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Appendix A Subframes

Table 10 presents the list of subframes for each
topic. As subframes are issue-specific subclassi-
fications of the general policy frames, the frames
are written in bold, and subframes that fall under a
corresponding frame are displayed below the frame.
This table is from Roy and Goldwasser (2020).

Appendix B Top-3 Subframes

Table 11 shows the top-3 subframes used across
the period for the topic of gun control. Similarly,
Table 12 is the results for the topic of immigration.
High overlapping of subframes used by liberal and
conservative media is observed in both data. As
for the gun control data, all top-3 subframes from
the liberal and conservative articles from 2020 to
2022 are identical. Similarly, the top-2 subframes
from the liberal and conservative news from 2020
to 2022 are the same for the immigration data. We
did not extract the top-3 subframes of the immi-
gration data before 2010 because all the articles in
the immigration dataset were from liberal media
sources.

Appendix C Embedding Visualization

Figures 4 and 5 are the embedding visualizations of
the abortion data and gun control data, respectively.
The dimensions of the output embeddings of our
proposed method are reduced with PCA, and the re-
duced embeddings are mapped to 2D plots. Subfig-
ure (a) is labeled with color to show the clustering
of subframes. Subfigure (b) displays the liberal em-
beddings in blue and the conservative embeddings
in red. As we observed in the embedding plots of
the abortion data, Figures 4b and 5b display a high
percentage of overlap between the subframes used
by liberal and conservative articles.

Appendix D Topic Modeling of Framing
Embeddings

Table 13 shows the topics of the subframe embed-
dings of the gun control data, and Table 14 shows
those for the immigration data. After merging the
topics with high overlapping keywords, there are
12 and 15 topics for the gun control and immigra-
tion data, respectively.

As for the topics of the gun control data, names
and locations related to mass shootings are ob-
served in topics 10 and 11. In topic 6, the words
“Islamic” and “York” from New York appear along

(a) Subframes

(b) Political Bias

Figure 4: Visualization of the Embeddings of the Abor-
tion Dataset. Subfigure (a) shows the clustering of sub-
frame groups. Subfigure (b) is labeled based on the
political bias of each article.
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Abortion Gun Control Immigration
Economic: Economic: Economic:
- Health Care - Gun Buyback - Minimum Wage
- Abort. Provider Program - Salary Stagnation
- Abortion Funding - Gun Business - Wealth Gap
Fairness & Equality: Capacity & Resources: - Cheap Labor Availability
- Reproduction Right - School Safety - Taxpayer Money
- Right of Human Life Cultural Identity: Crime & Punishment:
Legality, Constitution - White Identity - Deportation: Illegal
ality, Jurisdiction: - Person of Color Identity Immigrants
- Hobby Lobby Legality, Constitution - Deportation: In General
- Late Term Abortion ality, Jurisdiction: - Detention
- Roe V. Wade - Ban on Handgun - Terrorism
Crime & Punishment: - Second Amendment Security & Defense:
- Stem Cell Research - Concealed Carry - Border Protection
- Sale of Fetal Tissue Reciprocity Act Legality, Const., Juri.
- Sexual Assault Victims - Gun Control to - Asylum
Health & Safety: Restrain Violence - Refugee
- Birth Control Crime & Punishment: - Birth citizenship &
Morality: - Illegal Gun 14th Amendment
- Sanctity of Life - Gun Show Loophole Policy Pres. & Eval.:
- Women Freedom Security & Defense - Amnesty
Quality of Life: - Background Check - Dream Act
- Planned Parenthood - Terrorist Attack - Family Separation
- Pregnancy Centers Health & Safety: Policy
- Life protection - Gun Research - DACA
Public Sentiment: - Mental Health Fairness & Equality:
- Pro-Life - Gun Homicide - Racism & Xenophobia
- Anti-Abortion Policy Pres. & Eval.: - Merit Based Immigration
- Pro-Choice - Assault Weapon - Human Right

Morality: Cultural Identity:
- Right to Self-Defense - Racial Identity
- Stop Gun Crime - Born identity

Table 10: Subframes of the Three Topics: Abortion, Gun Control and Immigration. Frames are written in bold.

Top-1 Top-2 Top-3

2020-2022
Left Gun Business Industry Conc. Carry Recip. Act Second Amendment

Right Gun Business Industry Conc. Carry Recip. Act Second Amendment

2018-2020
Left Background Check School Safety Assault Weapon

Right Background Check Assault Weapon Second Amendment

2016-2018
Left Gun Business Industry Terrorist Attack Conc. Carry Recip. Act

Right Gun Business Industry Terrorist Attack Assault Weapon

2010-2016
Left Gun Business Industry Background Check Mental Health

Right Terrorist Attack Gun Show Loophole Gun Business Industry

-2010
Left Second Amendment Gun Business Industry Terrorist Attack

Right Gun Business Industry Illegal Gun Second Amendment

Table 11: Top-3 Subframe Indicators of the Gun Control Triplet Dataset.
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Top-1 Top-2 Top-3

2020-2022
Left Asylum Detention Human Rights

Right Asylum Detention Racial Identity

2018-2020
Left Asylum DACA Human Rights

Right Asylum DACA Amnesty

2016-2018
Left DACA Human Rights Racial Identity

Right DACA Amnesty Dream Act

2010-2016
Left DACA Human Rights Detention

Right Birth Cit. & 14th Amen. DACA Dream Act

Table 12: Top-3 Subframe Indicators of the Immigration Triplet Dataset.

(a) Subframes

(b) Political Bias

Figure 5: Visualization of the Embeddings of the Gun
Control Dataset. Subfigure (a) shows the clustering of
subframe groups. Subfigure (b) is labeled based on the
political bias of each article.

with the subframe indicators related to “terrorism,”
which imply the co-ocurrence of a specific religion
with a place.

Similarly, Table 13 shows specific names and
places such as “Germany,” “Mexico,” and “ACLU,”
which is an acronym for the American Civil Lib-
erties Union that fights for civil rights, including
the rights of immigrants. The names of the two
former presidents are also found: “Trump” in topic
14 along with the keywords “build” and “wall” and
“Obama” in a keyword “Obama-era” in topic 5 with
keywords associated with the Dream Act.

1
Amendment, Second, rights, protect,
individual

2
background, checks, NICS, FBI,
criminal

3
industry, manufacturers, business,
selling

4
rifles, gun, firearms, semiautomatic,
automatic

5
illegal, guns, possessions, convicted,
dealers

6 terrorism, terrorist, Islamic, York, Trump
7 ill, mentally, illness, violence, mental
8 abusers, shootings, victims, health, age

9
ban, handgun, Concealed, Carry,
Reciprocity

10
school, violence, students, Parkland,
Florida

11
contempt, Orlando, Mateen, Black,
Americans

12
Buyback, program, deaths, restrictions,
mandatory

Table 13: Topics of Subframe Embeddings of the Gun
Control Data.
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1
detention, center, facilities, ICE,
children

2
Amnesty, plan, seekers, refugee,
Germany

3
Families, Separation, Policy, Trump,
parents

4
DACA, Democrats, childhood, arrivals,
program

5
Act, Dream, dreamers, children,
Obama-era

6
asylum, migrants, foreign, illegal,
caravan

7
rights, human, Civil, Liberties, Union,
ACLU

8
black, brown, undocumented,
immigrants, racial

9 labor, cheap, workers, wages, manual

10
illegal, deported, alien, deportation,
persons

11
white, identity, supremacist, nationalist,
racist

12 terrorist, threat, border, terrorism, terror

13
birthright, citizenship, Amendment, 14th,
Anton

14 build, wall, Trump, Republican, Mexico
15 minimum, wage, inequlaity, income, raise

Table 14: Topics of Subframe Embeddings of the Immi-
gration Data.

Appendix E Ethical Considerations

The Framing Triplet Dataset is an extension of
the existing public dataset by Kiesel et al. (2019)
and Roy and Goldwasser (2020). Additionally col-
lected documents are also from news texts that are
free to the public. Hence, the text corpus does not
contain private or sensitive information.

The code for the proposed method is open to
the public and can be used to study the impact
of news framing on public opinion. We do not
anticipate any significant risks of deployment. Still
we urge users not to use this research for malicious
intentions.
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Abstract

There has been much recent progress in natu-
ral language processing, and grammatical error
correction (GEC) is no exception. We found
that state-of-the-art GEC systems (T5 and GEC-
ToR) outperform humans by a wide margin on
the CoNLL-2014 test set, a benchmark GEC
test corpus, as measured by the standard F0.5

evaluation metric. However, a careful exam-
ination of their outputs reveals that there are
still classes of errors that they fail to correct.
This suggests that creating new test data that
more accurately measure the true performance
of GEC systems constitutes important future
work.

1 Introduction

Grammatical Error Correction (GEC) is a task that
has many real-world applications, such as proof-
reading, assisting language learners (Knutsson
et al., 2003; Chollampatt et al., 2016; Nadejde and
Tetreault, 2019), assisting children with develop-
mental language disorder (Balthazar et al., 2020),
etc. In order to measure the accuracy of a GEC
system, multiple evaluation metrics have been pro-
posed in the past. Ever since the CoNLL-2014
shared task (Ng et al., 2014), the F0.5 metric has
been used as the standard evaluation metric for
GEC. The F0.5 score has been found to have a bet-
ter correlation with human judgment compared to
F1 and other metrics (Grundkiewicz et al., 2015;
Napoles et al., 2015; Chollampatt and Ng, 2018).

As F0.5 is a reference-based metric, its compu-
tation relies on comparing a system’s output sen-
tences to human’s corrected sentences (called ref-
erences henceforth). Typically, there are multiple
ways to correct an input sentence. For example,
the CoNLL-2014 (Ng et al., 2014) official test set
contains 2 references for each input sentence, and
the BEA-2019 (Bryant et al., 2019) test set con-
tains 5 references. Choshen and Abend (2018)
even predict that a short sentence may have more

than 1,000 valid corrections. Thus, this evaluation
scheme tends to underestimate the performance
of a GEC system. Rozovskaya and Roth (2021)
have reported that GEC systems can obtain higher
scores if evaluated using references that are closer
to a system’s outputs.

The limited references mean that humans may
also not reach 100% F0.5 performance, because
their corrections need not be the same as the ref-
erences. Bryant and Ng (2015) was the first to
attempt to measure human performance on the
CoNLL-2014 test set by adding 8 new references
for each sentence, so that each sentence has 10 ref-
erences. Then, they calculate each annotator’s per-
formance by comparing his corrections to the other
9 annotators. The average F0.5 score of 72.58%
from all annotators is then considered as the es-
timated human-level performance. To compare a
GEC system’s performance against human perfor-
mance, a similar procedure is applied by taking the
average of the system’s performance on the 10 sets
of 9-annotator references.

Recently, much progress has been made in nat-
ural language processing. For example, for some
question answering datasets (such as SQuAD (Ra-
jpurkar et al., 2016) and CoQA (Reddy et al.,
2019)) and natural language understanding test
suites (SuperGLUE (Wang et al., 2019)), super-
human performance has been reported where the
performance of the best NLP system exceeds hu-
man performance. A natural question to ask is:
how does the performance of the latest state-of-
the-art (SOTA) GEC systems compare to human
performance? In this paper, we first attempt to an-
swer this question. We found that state-of-the-art
GEC systems (T5 (Rothe et al., 2021) and GEC-
ToR (Omelianchuk et al., 2020)) outperform hu-
mans by a wide margin on the CoNLL-2014 test
set, as measured by the F0.5 metric. However, a
careful examination of their outputs reveals that
there are still classes of errors that they fail to cor-
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rect. This suggests that creating new test data that
more accurately measure the true performance of
GEC systems constitutes important future work.

2 Are We There Yet?

At the time of writing this paper, the best pub-
lished GEC system using a sequence-to-sequence
approach is T5-XXL, and the best published
GEC system using a sequence-tagging approach
is the ensemble of GECToR XLNet and GECToR
RoBERTa. In this paper, we use both systems, but
with T5-XXL replaced by T5-Large due to resource
constraints, since T5-Large has 770M parameters
while T5-XXL has 11B parameters. Our evaluation
is based on the scheme proposed by (Bryant and
Ng, 2015), using 10 sets of human annotations of
the CoNLL-2014 official test set. The F0.5 scores
of T5 and GECToR are shown in Table 1. We find
that both systems outperform humans by a wide
margin – T5 outperforms humans by 6.05 points
and GECToR outperforms humans by 8.33 points.

Model F0.5 Score
Human 72.58
T5 78.63
GECToR 80.91

Table 1: The performance of SOTA GEC systems in
comparison to human performance.

However, even though the scores in Table 1
show that SOTA GEC systems have outperformed
humans, when we check the distribution of per-
sentence F0.5 scores, we find that both T5 and
GECToR generate sentences with a zero F0.5 score
even comparing to 9 references. Specifically, on the
CoNLL-2014 test set, T5 (GECToR) completely
fails to correct 9.1% (12.8%) of the sentences (Fig-
ure 1). On the BEA-2019 development set, the
proportion is higher, with 27% of the sentences
resulting in a zero F0.5 score for T5, and 29.9% for
GECToR (Figure 2)1.

3 Current Weaknesses

To understand what causes the low scores of the
top-performing GEC systems, we examine a sam-
ple of 100 sentences from the systems’ outputs
on the BEA-2019 development set, starting from
sentences with the lowest F0.5 score. We found

1However, note that since the BEA-2019 development set
has only one reference per sentence, there is a greater chance
of underestimating system performance.

that even though T5 and GECToR generally pro-
duced good corrections, they also sometimes made
obvious mistakes that humans will not make.

3.1 Unnatural Phrases

Source The first place was gotting by us .
T5 The first place was got by us .
GECToR The first place was gotting by us .
Target We won first place .

Table 2: An example of GEC systems failing to fix
unnatural phrases.

In the example in Table 2, GECToR completely
fails to produce any corrections, with the mis-
spelling uncorrected. T5 successfully makes the
sentence grammatical by applying the appropriate
edit, but it fails to make it sound natural. Similarly,
both systems also fail to correct the sentence in Ta-
ble 3. One possible reason is that this kind of sen-
tences where the target sentence corrects unnatural
phrases happen rarely in the training data, since the
human annotators are expected to make minimal
edits to make the sentence grammatically correct,
instead of making the sentence sounds more nat-
ural, like the goal of the JFLEG dataset (Napoles
et al., 2017).

Source I like personality with childlike , so I
like children .

T5 I like personality with childlike , so I
like children .

GECToR I like personality with childlike , so I
like children .

Target I like childlike people, so I like chil-
dren .

Table 3: Another example of GEC systems failing to fix
unnatural phrases.

3.2 Sentence Structure
In the example in Table 4, the systems fail to detect
that the object of the sentence consists of multiple
items. GEC systems sometimes fail to detect the
subject-verb relationship when the subject or ob-
ject is in a form of a complex phrase instead of a
single word. This observation is in line with Mita
and Yanaka (2021) who reported that the standard
Transformer-based GEC model has difficulties in
fixing subject-verb agreement on error patterns that
do not appear in the training data, even in simple
settings with limited vocabulary and syntax.
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Figure 1: Distribution of per-sentence F0.5 scores on
the CoNLL-2014 test set.

Figure 2: Distribution of per-sentence F0.5 scores on
the BEA-2019 development set.

Source There are a little kitchen , a great bed-
room , a bathroom with shower but
without bath and a cool living - room .

T5 There is a little kitchen , a great bed-
room , a bathroom with shower but
without bath and a cool living - room .

GECToR There is a little kitchen , a great bed-
room , a bathroom with shower but
without bath and a cool living - room .

Target There are a little kitchen , a great bed-
room , a bathroom with shower but
without bath and a cool living - room .

Table 4: An example of GEC systems failing to detect
the sentence structure.

3.3 Sentence Comprehension

The example in Table 5 requires a full comprehen-
sion of the sentence to make the right correction.
Another example in Table 6 also shows that the
GEC systems fail to understand that getting along
with his or her companion is what the writer wants
to convey, given the context of wanting to enjoy a
trip.

3.4 Error Rates

On the BEA-2019 development set, we analyze the
effect of error rate (the percentage of erroneous
tokens in a source sentence) on GEC systems’ per-
sentence F0.5 score. The error rate is computed
as the number of tokens in a source sentence that
are to be deleted or substituted by the edits in the
gold reference, divided by the total number of to-
kens in the sentence. Next, we remove the outliers,
which are sentences with error rates ± 3 standard

Source The implications for the beef indus-
try could be rather serious , where
everybody to boycott beef products .

T5 The implications for the beef indus-
try could be rather serious , where
everybody boycotts beef products .

GECToR The implications for the beef indus-
try could be rather serious , where
everybody to boycott beef products .

Target The implications for the beef indus-
try could be rather serious , were ev-
erybody to boycott beef products .

Table 5: An example of GEC systems failing to under-
stand a sentence’s meaning.

deviations from the mean, and we end up removing
1.64% of the sentences. The relationship between
the per-sentence F0.5 score of a sentence and its
error rate (rounded to the nearest 0.05) is presented
in Figure 3. We observe that GEC systems perform
better on sentences with low error rates (less than
0.05).

3.5 Long Sentences
We also analyze the effect of sentence length on
a GEC model’s performance. On the BEA-2019
development set, we count the number of words in
each source sentence and obtain the per-sentence
F0.5 score of the sentence. Then, we group the
sentences based on sentence length in step size of
5 words (0–4 words, 5–9 words, etc). We apply
the same outlier removal procedure in Section 3.4,
eliminating 1.25% of the sentences.

We observe that top GEC systems have difficul-
ties in generating accurate corrections for long sen-
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Source In order to enjoy a trip to Mexico I
suggest that the traveler find a manner
to get alone with his or her companion.

T5 In order to enjoy a trip to Mexico , I
suggest that the traveler find a way to
get alone with his or her companion.

GECToR In order to enjoy a trip to Mexico , I
suggest that the traveler find a manner
to get alone with his or her companion.

Target In order to enjoy a trip to Mexico , I
suggest that the traveler finds a way to
get along with his or her companion.

Table 6: Another example of GEC systems failing to
understand a sentence’s meaning.

Figure 3: Per-sentence F0.5 scores of top GEC models
for different error rates. The straight line segments
connect the mean values and the shaded region denotes
the variance.

tences. As shown in Figure 4, the per-sentence F0.5

shows a downward trend with increasing sentence
length.

3.6 Cross-Sentence Context

Most of the current GEC systems are working at
the sentence level. Cross-sentence GEC has not
been given enough attention, and only a few pa-
pers have pursued this direction (Chollampatt et al.,
2019; Yuan and Bryant, 2021). However, some sen-
tences indisputably require cross-sentence context
to correctly fix them. For example, the correction
for the sentence in Table 7 requires knowing the
context to realize that there is a misspelling in the
sentence. Typical errors that require cross-sentence
context to correct include pronoun agreement and
tense agreement (Table 8). However, the errors can

Figure 4: Per-sentence F0.5 scores of top GEC models
for different sentence lengths. The straight line seg-
ments connect the mean values and the shaded region
denotes the variance.

be of many kinds, in the form of sentence structure,
word choice, misspelling, and many more.

3.7 Adapting to a Different Domain

The common GEC training corpora, such as
NUCLE (Dahlmeier et al., 2013), FCE (Yan-
nakoudakis et al., 2011), Lang-8 (Mizumoto et al.,
2011), and W&I+LOCNESS (Granger, 1998; Yan-
nakoudakis et al., 2018), and GEC test corpora,
such as CoNLL-2014, BEA-2019, and JFLEG,
originated from essays written by English as a sec-
ond language (ESL) authors. Those datasets are
more situated in an academic setting. To know how
GEC models perform in a different domain, we
evaluate the models on the CWEB datasets (Flachs
et al., 2020) without additional training (Table 9)

The CWEB dataset is made from website data
to represent language correction “in the wild”. The
CWEB dataset consists of two subsets: CWEB-
S which has source sentences from government,
educational institution, and museum websites, and
CWEB-G from general websites. When tested on
CWEB, the F0.5 scores of both T5 and GECToR
drop drastically from their CoNLL-2014 test scores,
especially for T5. These reductions indicate that
current top GEC models are not robust to domain
change, even though GEC models are expected to
be able to correct all kinds of sentences.

4 Moving Forward

As we have seen examples of how SOTA GEC
models fail to correct sentences that are easy for hu-
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Context Is there a future for Privately owned
cars ? To be honest , I am not sure
. Although privately oned cars are
more and more popular , ...

Source I would say that most probably pri-
vate care are not " sustainables " in
the long term , ...

T5 I would say that most probably pri-
vate care is not " sustainable " in the
long term , ...

GECToR I would say that , most probably , pri-
vate care is not " sustainable " in the
long term , ...

Target I would say that , most probably , pri-
vate cars are not " sustainable " in
the long term , ...

Table 7: An example of a sentence that requires cross-
sentence context to correct.

Context For example there are girl she is in
my class she is beautiful . I love her
look . Her eyes looks as the sun .

Source But she is ignored me .
T5 But she is ignored me .
GECToR But she is ignored me .
Target But she is ignores me ..

Table 8: Another example of a sentence that requires
cross-sentence context to correct.

mans, we can conclude that GEC models have not
actually outperformed humans in practice. How-
ever, the current top GEC systems already reach
high scores on the standard benchmarks. Thus, we
argue that it is important to create a new test set
that contains more sentences that pose challenges
to SOTA GEC models but can be easily corrected
by humans. The test set may emphasize on sen-
tences with complex noun phrase subject/object,
sentences that require full comprehension to be cor-
rected, sentences that contain many grammatical
errors, sentences that are long, sentences that re-
quire cross-sentence context, etc. With a harder
test set, we can then more clearly assess how far
we are from considering GEC as a solved task.

5 Conclusion

In this paper, we have reported that the top GEC
systems using the sequence-to-sequence approach
(T5) and sequence-tagging approach (GECToR)
have produced F0.5 scores that exceed that of

Test data T5 GECToR
CoNLL-2014 65.07 66.05
CWEB-G Dev 38.91 40.79
CWEB-G Test 39.80 42.67
CWEB-S Dev 27.37 37.63
CWEB-S Test 28.51 33.07

Table 9: The performance of T5 and GECToR on the
CoNLL-2014 test set and CWEB.

humans, as measured by Bryant and Ng (2015).
Based on qualitative analysis of their outputs, we
conclude that even though GECToR and T5 achieve
F0.5 scores higher than that of human, they have not
outperformed humans in practice as they still fail
to correct sentences that can be easily corrected by
humans. We also report our qualitative analysis on
the weaknesses of current top GEC models, which
point to directions for future research. Lastly, we
argue that a new test set that emphasizes harder sen-
tences is needed to evaluate the progress of GEC
as a field.
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Abstract 

Clinical data annotation has been one of the 
major obstacles for applying machine 
learning approaches in clinical NLP.  Open-
source tools such as NegBio and CheXpert 
are usually designed on data from specific 
institutions, which limit their applications 
to other institutions due to the differences in 
writing style, structure, language use as 
well as label definition. In this paper, we 
propose a new weak supervision annotation 
framework with two improvements 
compared to existing annotation 
frameworks: 1) we propose to select 
representative samples for efficient manual 
annotation; 2) we propose to auto-annotate 
the remaining samples, both leveraging on 
a self-trained sentence encoder. This 
framework also provides a function for 
identifying inconsistent annotation errors. 
The utility of our proposed weak 
supervision annotation framework is 
applicable to any given data annotation 
task, and it provides an efficient form of 
sample selection and data auto-annotation 
with better classification results for real 
applications.      

1 Introduction 

Previous work (Wang et al., 2019) has showed 
clinical text classification can significantly benefit 
from supervised learning approaches when 
annotated data is available. However, annotation 
of clinical data is extremely expensive and time 
consuming since annotation needs human experts’ 
domain knowledge. To circumvent this, some 
rule-based methods have been developed using 
expert knowledge, e.g., NegBio (Peng et al., 

2018) and CheXpert (Irvin et al., 2019) using rule 
labeler to automatically detect the presence of 
observations in radiology reports. McDermott et 
al. (2020) mentioned that CheXpert is 
computationally slow, and its output is non-
differentiable, so they proposed to train a BERT 
based classier (CheXpert++) based on the output 
of CheXpert. Likewise, Smit et al. (2020) 
proposed to combine automatic labelers with 
expert knowledge by first fine-tuning BERT 
classifier on output of CheXpert and then on a 
small set of expert annotations augmented with 
automated backtranslation.  

While annotation is data and task specific 
(Irena et al., 2020), it is further complicated by the 
differences in writing style, structure, language 
use such as the vocabularies and phrase variability 
among different institutes and different countries. 
For example, phrases “airspace changes” and 
“infective change(s)” are commonly seen in our 
local data to describe pneumonia, but rarely seen 
in MIMIC data (Alistair et al., 2019). In addition, 
label definitions vary among institutes. For 
example, CheXpert classifies the sentence 
“suspicious for pneumonia” as “pneumonia 
uncertainty” based on their rule definition, while 
our clinicians/radiologists would consider it as an 
implication of “pneumonia positive”. These 
differences limit the application of open-source 
tools on different data, and further limit the 
applications of methods (McDermott et al., 2020; 
Smit et al., 2021) which heavily rely on open-
source tools.    
    Some active learning (Chen et al., 2015) and 
interactive learning methods (Wang et al., 2017) 
have been commonly used for reducing the 
experts’ annotation burden. Chen et al.  (2015) 
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proposed uncertainty-based and diversity-based 
sampling to annotate clinical NERs. Both 
sampling approaches adopt random sampling and 
longest sentence sampling, for comparison, to 
build the initial set for manual annotation. For 
subsequent annotation and updating, the 
uncertainty-based sampling relies on model’s 
predictions while diversity-based selects samples 
based on pair-wise sentence similarity. Pair-wise 
sentence similarity is calculated based on 
individual words, syntax or clinical concepts, with 
the aim to select samples with lower similarity to 
annotated samples in the initial set. Wang et al. 
(2017) proposed an interactive learning method, 
ReQ-ReC, which is very similar to the 
uncertainty-based sampling.  The method 
leverages on human experts’ domain knowledge 
to build a list of sense-specific contextual words 
and use them to search for related sentences to 
form the initial annotation set.  For subsequent 
sampling, it is based on the model’s prediction 
too. The more ambiguous samples will be selected 
for annotation.   

For the above approaches, it is not efficient in 
practice since they incur many rounds of model 
retraining (Chen et al., 2015) and multiple cycles 
of annotation by experts. Time taken for human 
annotation is normally affected more by the 
duration of the annotation cycle than by the 
sample sizes as experts are not readily available, 
especially in the clinical domain. Pair-wise 
sentence similarity is limited by using words, 
syntax or extracted clinical concepts to represent 
sentence since they cannot capture the semantic 
meaning of the whole sentence. In our data, it is 
very common to have sentences with the same 
clinical concepts annotated differently due to 
negation or speculation. In addition, distribution 
and the number of samples selected for initial 
annotation affects the performance of the model, 
which will then affect the prediction quality of the 
remaining samples.  

To effectively select samples for initial 
annotation and avoid multiple training cycles and 
annotation by human experts, in this paper, we 
propose a new weak supervision annotation 
framework to overcome the retraining and 
multiple annotation process. Within the proposed 
framework, we adopt deep neural networks 
(DNN) for sample selection and text 
classification, which can fill the gap of using 
DNNs in active learning for text classification 

(Schroder et al., 2020). Our work has the 
following contributions: 

1) We propose a generic weak supervision 
data   annotation framework which relies 
on sentence embedding for sample 
selection, error checking and auto-
annotation. 

2) We propose to select representative 
samples through sentence clustering to 
kick start the human annotation process, 
which is a more efficient approach than 
random selection and longest sentence 
selection (Chen et al., 2015). 

3) We show that our proposed annotation and 
training approach achieves better 
performance and requires fewer number of 
annotated samples.  

2 Related Works 

    Supervised Sentence Encoder. Earlier 
sentence encoders are trained in supervised way. 
InferSent (Conneau et al., 2017) is trained on 
Stanford natural language inference (SNLI) data 
with three labels. Universal Sentence Encoder 
(Cer et al., 2018) augments unsupervised learning 
on labelled SNLI dataset for improved 
performance. Reimers et al. (2019) proposed 
SBERT, built by adding a Siamese network on top 
of BERT model and then fine tuning on NLI data 
sets. Their experimental results show that SBERT 
achieves much better results compared to 
InferSent and Universal Sentence Encoder on 
STS tasks (Reimers et al., 2019).  For other tasks 
and domains, retraining SBERT on domain 
sentence pairs with labels are also preferred.  

Unsupervised Sentence Encoder. As to 
unsupervised approaches, with the advent of 
pretrained language models (PLMs), Devlin et al. 
(2018) tried to get sentence embeddings from 
BERT by either averaging the vectors obtained 
from the last layer or using [CLS] token.  
Recently, Wang et al. (2021) proposed the 
transformer-based sequential denoising auto-
Encoder (TSDAE) method by exploiting the 
encoder-decoder structure of transformer. During 
training, the encoder converts corrupted sentences 
into fixed-sized vectors and the decoder 
reconstructs the original sentences from this 
fixed-sized vectors. To make reconstruction as 
good as possible, the sentence embedding from 
the encoder must well represent the semantic 
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meaning of the sentences. At inference, only the 
encoder will be used for generating sentence 
embeddings.  

Sentence Textual Similarity (STS) in clinical 
domain. In clinical domain, there are also related 
work for evaluating sentence similarity.  Mahajan 
et al. (2020) proposed an iterative intermediate 
training (IIT) approach for calculating clinical 
STS by using multi-task learning (MTL). The 
final system attains promising results for clinical 
STS tasks by integrating module of Clinical 
BERT with other language models (BioBERT, 
MT-DNN, RoBERTa). But the method is not 
efficient for training sentence encoder as it 
involves high computation cost for the various 
pairs of regression tasks due to many possible 
combinations. Wang et al. (2020b) proposed to 
take advantage of general domain STS dataset and 
a small-scale in-domain training data to achieve 
an impressive result for clinical STS task.  

In this paper, we present both supervised and 
unsupervised sentence encoder training methods 
in our weak supervised framework for CXR data 
annotation (See Section 3.2). We evaluate both 
sentence encoders using a small set of CXR data 
with pathology labels for a multi-label 
classification task. We show that our proposed 
weak supervision framework is effective for semi-
supervised data annotation.   

3 Methodology 

          Diseases 
 
Sentences 

CXR diseases annotation  
CAT
1 

CAT
2 

CAT
3 

CAT
4 

atelectasis is seen at 
the right lower zone 
with vague air-space 
changes.   

  u      + 

the heart size cannot 
be accurately 
assessed in this 
projection but 
appears to be 
enlarged. no obvious 
consolidation is seen. 

  -    +    

Table 1.  Annotation examples of our CXR data. ‘’ 
indicates the pathology is not mentioned  

Our annotation task is to label each sentence in the 
CXR report into four pathologies, mainly 
pneumonia (CAT1), pneumothorax (CAT2), 
cardiomegaly (CAT3) and other diseases (CAT4) 
as illustrated in Table 1. For each pathology, we 

further label it as being ‘positive’(+), ‘negative’(-
), or ‘uncertain’(u). One sentence may have more 
than one pathology with one pathology as 
positive, while describing another pathology as 
negative or uncertain. If there are no pathologies 
described, we label it as ‘no findings’. 

3.1 The Proposed Framework 

Our proposed framework is depicted in Figure 1. 
This proposed new weak supervision annotation 
framework is applicable to any data annotation 
task. It exploits an efficient sentence encoder to 
get high quality sentence embeddings. Using 
these embeddings, 1) we perform unsupervised 
clustering to obtain the natural grouping of data 
based on its distribution.  2) We then select 
representative sentences for human annotation 
from each sentence cluster using sematic 
similarity score.  3) Auto error checking is then 
performed on the human annotations to reduce 
bias and inconsistences caused by human errors.  
4) We then perform automatic annotation on the 
remaining data in each cluster by measuring their 
semantic similarity with the annotated samples. 
Using this approach, we are able to obtain a set of 
high-quality data for our classification task.  
 
 
 
 
 

 

 

Figure 1. Proposed weak supervision annotation 
framework. Sentence Encoder is on our CXR data. 
Auto-checking checks the inconsistence and bias in the 
human annotation.  

3.2 Sample Selection Strategy 

We used HDBScan as our clustering method and 
divide the clusters into noisy clusters and clean 
clusters. We define the first cluster as Noisy 
Cluster as HDBScan always put all sentences it 
cannot group into this cluster. This noisy cluster 
has many variations on sentence length and 
keywords (mentions). For example, in Cluster 1 
of Table 2, sentence 1 mentions both 
cardiomegaly (enlarged heart) and pleural 
effusion (water in the lung), which are keywords 
used in CAT3 and CAT4 categories. Sentence 2 is 
much shorter with only the keyword “cardiac” 
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without further information. As the ambiguity is 
high in this pool, it would be a good source of 
sentences for human annotation. In our 
experiment, we selected all samples from this 
noisy cluster for expert annotation.   

We treat all other clusters as clean clusters and 
further divided them into Clean-Relevant and 
Clean-Irrelevant. Clean-Irrelevant (see Table 2) 
refers to clusters where most sentences do not 
mention keywords in any pathologies, and 
therefore are easily annotated, so we just choose 1 
or 2 samples for expert annotation. Clean-
Relevant clusters normally group sentences with 
the same pathology, but some sentences may 
describe more than one or different pathology 
with similar writing pattern. We selected more 
samples from them for expert annotation to have 
a more effective training dataset. 

Cluster 1: (Noisy Custer) 
1. comparing with the previous x-ray dated 
0/0/0 findings, cardiac size cannot be 
completely assessed on the given projection 
there is increasing homogeneous opacification 
of the right hemithorax, likely in keeping with 
underlying pleural effusion.  
2. suggest correlation cardiac size cannot be 
assessed on this suboptimal study 
3. nipple markers are noted.  
 … … 
Cluster 2: (Clean-Relevant) 
1. cardiac size is enlarged with perihilar 
vascular prominence. 
2. cardiac silhouette appears enlarged with 
prominent hilar vessels and upper lobe 
diversion 
3. cardiac size is enlarged with mild perihilar 
vascular congestion and bilateral perihilar air 
space shadows.  
…… 
Cluster 3: (Clean-Irrelevant) 
1. previous image done on 16 July 2016 is 
reviewed. 
2. findings were noted at time of reporting. 
3. comparison made with previous study dated 
17 Apr. 2013. 
…… 

Table 2. Examples of the Noisy, Clean-Relevant, 
Clean-Irrelevant clusters 

    Our data selection strategy can be illustrated 
in Equation (1). Assuming there are 𝑁  clean 
clusters and 𝐶  indicates the 𝑖 -th cluster ( 𝑖 =
1,2 … 𝑁),  𝑛  indicates the number of samples to 

be selected from 𝐶  . We first rank sentences 
based on their length for each cluster. Then we 
select 𝑙  samples comprising the longest one 
(𝑛 ), the shortest one (𝑛 ) and the 
one with medium length (𝑛 ) . For each 
sentence in 𝑙 samples, we use our trained sentence 
encoder to compute the cosine similarity between 
it with the rest of the sentences and select the least 
similar sentences to obtain 𝑛   samples for human 
annotation. 

 
here 𝑛 , 𝑛  and  𝑛  are used to 
control the length distribution in our training data. 
    In our experiments, we tried  
𝑛{ , , } = 1,2,3,  and find out 
n=2 works best by obtaining enough 
representative samples selected for efficient 
expert annotation. There are samples showing that 
within a cluster, the longer the sentence, the more 
pathologies it tends to describe.  For example, the 
third sample in cluster 2 describe ‘pneumonia’ 
(keyword: ‘air space shadows’) and ‘other 
diseases’ (keyword: ‘vascular congestion’) 
besides ‘pneumothorax’ (keyword: ‘cardiac size’ 
or ‘cardiac silhouette’) as the first and second 
samples do.  This is consistent with the 
assumption observed by Chen et al. (2015) in their 
clinical NER task too. 

3.3 Inconsistent Error Checking and 
Auto-annotation 

We also use the self-trained supervised sentence 
encoder to assist us in checking the 
inconsistencies among the human annotations via 
pairwise sentence comparison among the 
annotated sentences. If two sentences have high 
semantic similarity but different labels, we will 
flag out to the radiologists for label confirmation.  

With this high-quality set of human annotated 
samples, we can auto-annotate the remaining 
sentences using the same sentence encoder. This 
is done by assigning the sentence with the same 
label of the human annotated sentence with 
highest similarity score. During this automatic 
labelling process, we set a threshold to reject auto 
labelling. The rejected sample will be sent for 
human annotation. A label is assigned only if the 
cosine similarity value between two sentences is 
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more than 0.9. This threshold has been proved to 
be efficient in our experiment.   

3.4 CXR Sentence Encoder 

A good sentence encoder is important for our 
annotation framework on sample selection, error 
checking, and auto-annotation. We use supervised 
SBERT (Reimers et al., 2019) and unsupervised 
TSDAE (Wang et al., 2021) for sentence encoder 
training in our experiments (Figure 2).  
    To obtain our supervised sentence encoder, we  
utilize sentence transformer1 for sentence encoder 
training and testing. We first do a domain adapted 
fine-tuning on a pretrained language model using 
our in-house CXR and MIMIC data (Alistair et al., 
2019) based on Transformer 2   with default 
parameters. We use Roberta-large as the 
pretrained model as it performs significantly 
better than other pretrained models based on our 
experiments. We further train this fine-tuned 
model on large Semantic Textual Similarity (STS) 
tasks using SBERT architecture and apply a 
pooling operation to our fine-tuned language 
model to get a fixed size sentence embedding 
output. Different from Wang et al (2020b), we 
include both general STS and clinical STS in the 
training and validation. Besides STS tasks, we 
also study the effect of fine-tuning on Natural 
Language Inference (NLI) for our data annotation 
task. 

 
 
 
 
 
 
 
 
(a2) 
 
 
 
 
 
 

Figure 2.  Supervised Sentence Encoder Training: (a1) 
to get domain adapted model (CXR-Roberta-large) 
through behavior fine tuning on pretrained model; (a2) 
further trains the adapted model (CXR-Roberta-large) 
to obtain a supervised sentence encoder (CXR-
SBERT) on labelled clinical NLI or STS data. 

 
1 https://github.com/UKPLab/sentence-transformers 

Unsupervised Sentence Encoder Training: (b) train 
unsupervised sentence encoder on unannotated CXR 
sentences and Roberta-large.  

   The unsupervised TSDAE training is shown in 
Figure 2 (b). The data used for domain adaptation 
in (a1) is also used to train the TSDAE sentence 
encoder. We use Roberta-large as the base model 
and train 10 epochs with the batch size of 16 in 
our experiment.  As to other parameters, we use 
the default values as Wang et al. (2021) used.     

3.5 CXR Report Classification 

We frame our CXR disease labelling task as a 
multi-label classification task. We adopt one-hot 
encoding label strategy. For each sentence, we use 
one-hot vector with dimension 13 for the labelling.   
The first 12 dimensions refer to the labeling of the 
four diseases, each of which has three dimensions 
namely ‘1,0,0’ ‘0,1,0’”, ‘0,0,1’ to indicate ‘disease 
positive’, ‘disease negative’, and ‘disease 
uncertain’ respectively. The last dimension refers to 
the labelling of ‘no_findings’, we use ‘1’ to indicate 
no disease mentioned and ‘0’ for one or more 
diseases mentioned. For example, if the sentence 
has pneumonia positive and other disease 
uncertainty, its one-hot vector label will be 
[1,0,0,0,0,0,0,0,0,0,0,1,0]. This gives us a 
maximum of  (3 + 1)  labels, with label values 
within one disease mutually exclusive to each other 
and label values among different diseases 
independent to each other. Let 𝑋 =
{𝑋 , 𝑋 , … , 𝑋 }  denotes the input space,  Y =
{𝑌 , 𝑌 , … , 𝑌 }   denotes the finite set of labels, in 
which c is the number of labels, 𝑌 =
[𝐿 , 𝐿  ..., 𝐿 ] and 𝐿 ∈ {0,1}.  Our classification 
task is to build a multi-label classifier H that maps 
an instance 𝑥 to its associated set of labels: 𝐻(𝑥) =
𝑃(𝑦|𝑥), in which 𝑥 ∈ 𝑋, y ∈ 𝑌.  
    In this multi-label classification, the prediction 
may be partially correct, which we do not consider 
it as a correct prediction. We use precision, recall 
and F-score to measure the performance for each 
disease, and use accuracy to measure the 
performance on sentence or report level.   

4 Experiments 

4.1 Data Processing 

We use 8 years of CXR reports extracted from our 
local hospitals. All data have been anonymized 

2 https://github.com/huggingface/transformers 
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and annotation is performed by professional 
radiologists with more than 13 years of experience 
who are native English speakers. 

We segment all reports into sentences by using 
NLTK sentence tokenization tool (Bird et al. 
2009). The length of the sentences varies from 1 
to 52 words with an average of 10 words per 
sentence. We filter out all single word sentences 
as they do not have much context to infer 
pathology. We also filter out sentences describing 
other body parts (e.g., Abdomen, Supine, Neck, 
Back) as they are not related to our pathology. We 
obtain 12,350 sentences at the end after removing 
duplicates.  

The data used for unsupervised TSDAE training 
and supervised SBERT training are summarized in 
Table 3.   MIMIC CXR (Alistair et al., 2019) and 
in-house CXR are used to fine-tune Roberta-Large 
and TSDAE on the clinical domain. The data used 
to fine-tune the SBERT sentence encoders include 
(i) Combined NLI comprising MEDNLI 
(Romanov et al., 2018), general domain NLI 
(StanfordNLI (Bowman et al., 2015) and multi-
genre NLI (Nangia et al., 2017);   (ii) STS-B (STS 
Benchmark, Cer et al., 2017) consists of a mixture 
of news, captions, and forums; (iii) SemEval STS 
2012-2016 (Agirre et al., 2012-2016) for semantic 
textual similarity tasks; (iv) Clinical STS 2018  (v) 
Clinical STS 2019 (Wang et al., 2018 & 2020c) are 
the only available STS data in clinical domain. We 
use all the 5 datasets for SBERT training. 

 
data  train/dev/test average

length    
data for domain adaptation and TSDAE 
in-house CXR 12350 10  
MIMIC CXR 248k 14  
data for SBERT sentence encoder  
combined NLI 956k 11.4 
STS-B 5749/1500/1379 10.2  
STS 2012-2016 23,778 12 
clinicalSTS 2018  749/318 25.4  
clinicalSTS 2019 1641/412 19.3 

Table 3. Data used for sentence encoder training  

4.2 Experiments & Results 

4.2.1    Sentence Encoder   

We studied our proposed framework using three 
supervised sentence encoders and one 
unsupervised sentence encoder.  All three 
supervised sentence encoders are based on CXR-
SBERT but trained on different datasets. The open-

source sentence encoder “sts-robert-large” from 
sentence-transforms1 is used as the baseline in our 
experiment. The settings for the supervised 
sentence encoder are descried below. 

1) CXR-SBERT-nli-stsb: train CXR-SBERT 
on both NLI and STS-B, followed by 
continuous training on STS 2012-2016. 

2) CXR-SBERT-nli-sts: train CXR-SBERT 
on both NLI and STS-B, followed by 
continuous training on all data from STS 
2012-2016, clinicalSTS 2018 and Clinical 
STS2019. 

3) CXR_SBERT-sts: train CXR-SBERT on 
STS-B and STS 2012-2016, followed by 
continuous training on Clinical STS 2018 
and clinical STS 2019.   

    For training on NLI data set, we use 
classification objective function with the mean 
pooling strategy and the mean squared error loss. 
We set num_epoch as 4 and batch_size as 16.  We 
use Adam optimizer with learning rate 2e−5, and 
a linear learning rate warm-up over 10% of the 
training data. For training on STS data, we use 
regression objective function with mean pooling 
strategy and cosine similarity loss (Reimbers et al 
2019). We set num_epoch as 5 and batch_size as 
16. Other parameters are the same as Reimers et 
al (2019).  
 

Sentence encoder Accuracy  
sts-roberta-large 93.33 

CXR-SBERT-nli-stsb  94.33 
CXR-SBERT-nli-sts  98.33 
CXR-SBERT-sts 98.33 

CXR-TSDAE 96.67 

Table 4.  Sentence encoders’ comparison on auto-
annotation performance on a small CXR data set.  

    To select a suitable sentence encoder for our 
task, we use 360 CXR sentences from clean 
clusters generated by each sentence encoder for 
experts’ annotation. We use 60 as training data and 
300 as test data. The 60 sentences are distributed 
across clusters and are used for auto-annotating the 
300 sentences.  
    The results are shown in Table 4. From the 
result, we can see that sentence encoder CXR-
SBERT-sts and CXR-SBERT-nli-sts produce 
better results than other encoders, which means 
the encoders trained on large STS data generate 
better sentence embeddings on our data. The 
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model CXR-SBERT-nli-stsb has better 
performance than the out-of-the-box model (sts-
roberta-large), which means domain adapted fine 
tuning is helpful. The unsupervised sentence 
encoder CXR-TSDAE performs well but is not so 
good as SBERT encoder CXR-SBERT-sts. 

4.2.2      Semi Auto-annotation Strategy  

With good quality sentence embeddings obtained, 
we leverage HDBscan with Umap3 for clustering.  
We set parameters n_neighbors as 200 and 
n_components as 500 (original data dimension is 
1024) for Umap. We set HDBscan parameters 
min_samples as 10, min_cluster_size as 30. Using 
the above setting, we generate 94 clusters for 12 
thousand sentences (See Appendix A.1 for 
parameters setting).   

We follow the selection criterion in Section 3.2 
to select different number of samples for 
annotation (see Table 6). The selected samples are 
first annotated by two professional radiologists 
and checked by a third annotator. After human 
annotation, we conduct label auto-checking 
through similarity values. Some inconsistent 
annotations could be found during auto-checking 
due to human bias or mistake. These 
inconsistencies are verified by human annotators 
again and the verified annotated data is added to 
the reference for automatic annotation of the 
remaining sentences by measuring the similarity 
scores of the remaining sentences with these 
references. 

Categories (+) (-) (u) total  
pneumonia  949 489 79 1517 
penumothorax 900 294  76 1210 
cardiomeglay 1511 520 775 2806 
other diseases 3850 974 132 4956 
no_finiding            3436 

Table 5. The in-house data statistics, in which “(+) / (-
) / (u)” indicates positive/negative/uncertainty of each 
pathology.  

A total of 11,114 sentence samples are 
annotated using our proposed framework, during 
which 150 confusing samples were sent for 
further verification by our annotators.  The final 
data statistics is shown in Table 5. Most of the 
data (88%) include only one pathology, while 
12% of data include multiple pathologies.   

 
3 https://umap-
learn.readthedocs.io/en/latest/clustering.html#umap
-enhanced-clustering 

We perform analysis on the size of human 
annotation samples with respect to the accuracy of 
auto-annotation of the remaining data.  From the 
results shown in Table 6, we can see the 
annotation accuracy increased from 69.98% to 
90.05% by annotating about 19.8% of data, from 
a test set of 1,236 reports. 

#sents selected (% data) Auto annotation 
Accuracy 

876  ( 7.8%) 69.98% 
1236 (11.12%) 81.07% 
1656 (14.9%) 85.60% 
2200 (19.80%) 90.05% 

 
Table 6. Performance of auto-annotation performance 
on different number of samples selected from further 
annotation. ‘%data’ indicates the percentage of 
data selected from 11,114 sentence samples. 
 
4.2.3      Pathology classification  

In the experiment, we used 
SimpleTransformer 4  library for the multi-label 
classifier training and testing. We used train and 
evaluation batch of 8, epoch of 3, learning rate of 
4e-5 and threshold of 0.5. For other parameters, 
we use the default values. We split the annotated 
sentence samples into train data 9879, dev (1235) 
and test data (1236). The experiment results are 
shown in Table 7. We can see that most of the 
categories have f-score at around or more than 
95% except two uncertainty cases (pneumonia 
and others). This model also has been recently 
tested on 988 reports from local hospital with an 
accuracy of 98.1% on report level. This successful 
application of this framework on CXR data boosts 
our confidence on its application on other 
annotation tasks (See Appendix A.2). 

5 Discussion  

5.1 The Robustness of the classifier   

We observe that although the SBERT sentence 
encoder was trained on out-domain labelled STS 
data, it performs better than the unsupervised 
TSDAE sentence encoder. The result is consistent 
with the observation in Schick et al. (2021), who 
mentioned and demonstrated supervised sentence 
encoders perform better than unsupervised 

4 
https://github.com/ThilinaRajapakse/simpletransfor
mers 
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sentence encoders. Our auto-annotation 
experiments demonstrate very good performance 
on our CXR data. One possible reason can be due 
to the characteristics of our data.  Our data is in 
sentence level and some sentences are very 
similar (not much variation), so clustering can 
generate some very clean clusters which make the 
annotation inside those clusters very efficient; 
Besides, the average length of our data is about 10 
words, which possibly captures a good embedding 
for the sentence representation.     

 
Category precision recall f-score 
pneumonia (+) 93.30 98 95.59 
pneumonia (-) 94.70 94.74 94.74 
pneumonia (u) 85.71 75.00 78.00 
pneumothorax(+) 97.92 96.91 97.41 
pneumothorax(-) 86.96 95.24 94.05 
pneumothorax(u) 100 100 100 
cardiomegaly (+) 96.27 99.36 97.79 
cardiomegaly(-) 100 98.15 99.07 
cardiomegaly (u) 98.55 94.44 96.45 
others (+) 90.41 94.83 92.57 
others (-) 90.70 92.86 91.77 
others(u) 77.78 50 60.87 
no_finding 97.80 93.93 95.36 

Table 7. The classification comparison on each 
pathology, in which “(+) / (-) / (u)” indicates 
positive/negative/uncertainty of each pathology.   

Though sentence encoder could potentially be 
used as an annotation tool, it has limitations. It 
cannot differentiate multi-labels because it treats 
multi-label as one power set of labels. A classifier 
trained on annotated data is much more robust 
than a sentence encoder for label assignments 
because during classifier training, the weights of 
the classifier in multiple layers are iteratively 
updated to represent a sentence in a more accurate 
way. On the other hand, a sentence encoder 
converts each sentence to a vector in a fixed way 
and treats each dimension of sentence 
embeddings equally (Reimers et al., 2019).  
Therefore, we fine-tuned cxr-roberta-large on the 
annotated data to obtain a more robust classifier 
(see Section 4.2.3).   

5.2.  The Effectiveness of our method  

To demonstrate the effectiveness of our proposed 
annotation method, we compare our method with 
the uncertainty-based sampling method with the 
initial set selected randomly and based on 
sentence length (Chen et al., 2015). The reasons 

of using the two baselines of random sampling 
and sentence length-based sampling are because 
1) although random sampling is simple and 
straightforward, it performs competitive to most 
sophisticated strategies (Schroder et al., 2020); 
2)The length strategy is a data driven strategy, 
which is simple and has been tested to be effective 
for medical data (Chen et al., 2015), and it is 
slightly better than random sampling for medical 
data. 
    We use the total number of samples selected for 
manual annotation as an evaluation measure for the 
annotation efforts among different methods. Note 
that other methods will incur additional time for 
updating model and waiting time of more cycles of 
experts’ annotation. In this experiment, we used the 
same library and setting as Section 4.2.3. For data 
setup, we have 10k+ data for annotation 
experiments and 2000 data used for model 
evaluation.  For the batch sizes used in active 
learning, we use batch size of N= [100, 300, 600, 
1000, 1500, 2200, 2800, 3600, 4500, 5500, 6700, 
10350] for 12 iterations in our experiment, for the 
comparison among different annotation methods 
(see Figure 3).  

From Figure 3, we can see that with more data 
for training, the performances of all models 
increase. The performance increases faster when 
the number of samples is less than 2000. After 2000 
samples, the increasing trend slows down.  Our 
proposed method demonstrates better and faster 
performance improvement than other two methods 
as our method selects more representative 
sentences for human annotation and model 
training. The auto-checking further assists us to 
check for errors and control our data quality.  The 
sampling strategy based on longest sentences are 
better than the random selection, but when more 
and more samples are selected for training, the gap 
becomes smaller. Our experiment shows our 
proposed approach requires only 2200 manually 
annotated samples to perform auto-annotation of 
the remaining samples to reach the best 
performance where other methods need to 
manually annotate almost all the sentences to reach 
around 95.06% accuracy. This can contribute to our 
auto-annotation strategy with auto-checking 
process which reduces human annotation bias and 
errors and has a positive impact on the quality of 
the annotation data. 
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6 Conclusion 

We propose a semi-supervised annotation scheme 
which avoids multiple model re-training and 
expert annotation which is applicable to CXR text 
data and other domain data annotation (Appendix 
A.2). Within the framework, we investigate a gap 
mentioned by Schroder et al. (2020) by using fine-
tuning-based models in active learning for text 
classification. We utilize a self-trained sentence 
encoder for effective sample selection through 
clustering, error auto-detection and sample auto-
annotation. Based on the annotated data, we 
further fine-tune a pre-trained language model to 
obtain a robust classifier which demonstrates high 
performance on CXR data disease detection. This 
method greatly improves data annotation 
efficiency and relieves human annotation burden.  

 
Figure 3. Comparison of different annotation methods  
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A   Appendix  

A.1  HDBSCAN & UMAP parameters setting  

We had performed extensive clustering 
experiments on this CXR data.  The UMAP is for 
dimension reduction and n_neighbors and 
n_components are two of the most important 
parameters. The bigger n_neighbors, it will look 
at more global manifold structure.  If there are no 
ground truth labels, it is hard to know which 
values are best for those two parameters. And 
those values may change for different data.   

HDBSCAN has two important parameters 
min_cluster_size and min_samples, which can 
cause quite different clustering if we change them 
in a wide range. The large min_cluster_size, more 
data points will be rejected. Our strategy is to 
obtain the initial results using the default 
parameters and then adjust the values within a 
range to get good clustering. This clustering has 
been tried on another set of finance data and 
compared with K-means which needs to have the 
number of clusters specified first. The clusters 
generated by HDBSCAN with UMAP is much 
more sensible and preferred by clients.  

A.2   Application of the proposed method on 
anther data 

We have used the method on another financial in-
house data set for topic classification. The number 
of sentences used for training is 5044, and the 
average length of sentences is around 11, with 
maximum length 48 and minimum length 1.  The 
number of clusters generated is 24. Through the 
auto error checking and auto-annotation, we 
achieved satisfactory classification result.  

2811



Proceedings of the 29th International Conference on Computational Linguistics, pages 2812–2822
October 12–17, 2022.

uChecker: Masked Pretrained Language Models as Unsupervised
Chinese Spelling Checkers

Piji Li
College of Computer Science and Technology,

Nanjing University of Aeronautics and Astronautics
MIIT Key Laboratory of Pattern Analysis and Machine Intelligence

Nanjing, Jiangsu, China
pjli@nuaa.edu.cn

Abstract

The task of Chinese Spelling Check (CSC) is
aiming to detect and correct spelling errors that
can be found in the text. While manually anno-
tating a high-quality dataset is expensive and
time-consuming, thus the scale of the training
dataset is usually very small (e.g., SIGHAN151

only contains 2339 samples for training), there-
fore supervised-learning based models usually
suffer the data sparsity limitation and over-
fitting issue, especially in the era of big lan-
guage models. In this paper, we are dedicated
to investigating the unsupervised paradigm to
address the CSC problem and we propose a
framework named uChecker to conduct unsu-
pervised spelling error detection and correction.
Masked pretrained language models such as
BERT are introduced as the backbone model
considering their powerful language diagnosis
capability. Benefiting from the various and
flexible MASKing operations, we propose a
Confusionset-guided masking strategy to fine-
train the masked language model to further
improve the performance of unsupervised de-
tection and correction. Experimental results
on standard datasets demonstrate the effective-
ness of our proposed model uChecker in terms
of character-level and sentence-level Accuracy,
Precision, Recall, and F1-Measure on tasks of
spelling error detection and correction respec-
tively.

1 Introduction

Chinese Spelling Check (CSC) is a crucial and es-
sential task in the area of natural language process-
ing. It aims to detect and correct spelling errors in
the Chinese text (Chang, 1995; Wang et al., 2020b).
Generally, sequence translation (Wang et al., 2018;
Ge et al., 2018; Wang et al., 2019, 2020a; Kaneko
et al., 2020) and sequence tagging (Omelianchuk
et al., 2020; Liang et al., 2020; Mallinson et al.,
2020; Parnow et al., 2021) are the two most typical

1http://ir.itc.ntnu.edu.tw/lre/
sighan8csc.html

今天我非常高效！I am very productive today! 

今天我非常高校！I am very high school today! 

今天我非常高笑！I am very high laugh today! 

Correct

Spelling

error

Over-

correcting

I

II

Figure 1: Illustration for the task of Chinese spelling
check (operation path I) as well as the over-fitting phe-
nomenon existing in the current supervised learning
based models (operation path II).

technical paradigms to tackle the problem. Benefit-
ing from the development of pretraining techniques,
many researchers fine-tune the pretrained language
models such as BERT (Devlin et al., 2019) on
the task of CSC and obtain encouraging perfor-
mance (Zhao et al., 2019; Hong et al., 2019; Zhang
et al., 2020; Liu et al., 2021; Li et al., 2021; Huang
et al., 2021; Guo et al., 2021; Zhang et al., 2021;
Li and Shi, 2021; Dai et al., 2022). Meanwhile, it
should be emphasized that almost all of the above
mentioned models are trained via the supervised
learning paradigm.

However, during the investigating stage about
those newly typical state-of-the-art models, we ob-
serve some spiny and serious phenomenons: (1)
Occasionally those models may generate some spe-
cial over-correcting results. As shown in Figure 1,
operation path I is the regular spelling error detec-
tion and correction path, while operation path II
is also observable in the inference stage where the
models can detect the errors correctly but rectify
them using some other error tokens in the correc-
tion stage. (2) The spelling error detection and cor-
rection performance will drop dramatically when
those models did not see the spelling error cases
in the training dataset or the text are from differ-
ent genres and domains. This issue tells us that
the generalization capability of those models are
limited and need to be enhanced.

Then what are the causes of these phenomenons?
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Corpus #Train #ErrTrain AvgLen #Test #ErrTest AvgLen
SIGHAN13 350 350 49.2 1,000 996 74.1
SIGHAN14 6,526 3,432 49.7 1,062 529 50.1
SIGHAN15 3,174 2,339 30.0 1,100 550 30.5

Table 1: Statistics of the SIGHAN series datasets.

Since some of the models are already strong
enough (which are constructed based on big pre-
trained models), then we shift our eyes to the data
perspective. In real practical scenarios, natural
human-labeled spelling error corpus are difficult
and expensive to obtain. Although some works
such as Wang et al. (2018) employ OCR and ASR
based techniques to automatically synthetic the
paired samples by replacing the correct tokens us-
ing visually or phonologically similar characters,
obviously, the constructed data is unrealistic and
far from the real and objective scenarios. There-
fore, actually, the scale of the typical corpus for the
task of Chinese spelling check is very small. Con-
sidering that almost all the research works have
used SIGHAN series datasets (Tseng et al., 2015)
to train and evaluate their algorithms, we conduct
counting on those three corpora, and the statistics
results are shown in Table 1. From the results we
can observe that there are only 2k∼3k sentences
with spelling errors in the training dataset and really
far from the practical requirements.

Thus, sticking to train the supervised learning
models based on those scale-limited resources
might not be a wise direction. Therefore, in this
paper, we are dedicated to exploring unsupervised
frameworks to conduct Chinese spelling error de-
tection and correction. Fortunately, masked pre-
trained language models such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), ELEC-
TRA (Clark et al., 2020), etc. can satisfy the needs
of detecting and correcting spelling errors in an un-
supervised manner. First, the masked training strat-
egy is naturally a convenient and perfect shortcut
for us to conduct token-grained detection and cor-
rection. For example, we can mask any token and
predict it based on the bi-directional context to see
if the current token is appropriate or not. Second,
the pretrained language models are usually trained
using large-scale corpora, thus the language diag-
nosis capability is very strong. Intuitively, these
models can also guarantee the generalization ca-
pability considering the corpora may contain text
from a wide range of domains and genres.

Therefore, based on the masked pretrained lan-

guage models, we propose a framework named
uChecker to conduct unsupervised spelling error
detection and correction respectively. uChecker
is a two-stage framework and it will detect the
text token-by-token first and then correct the ab-
normal tokens. Models such as BERT are intro-
duced as the backbone model. Inspired by the pre-
vious works (Wang et al., 2019; Liu et al., 2021),
benefiting from the various and flexible mask-
ing operations, we also introduce a confusionset-
guided masking strategy to fine-train the masked
language model to further improve the performance
of unsupervised detection and correction. Though
uChecker is a two-stage framework, we design an
elegant method to let the information pass BERT
only once to guarantee the time efficiency. More-
over, interestingly, in unsupervised settings, we
experimentally find the performance of error de-
tection is crucial to the global and general perfor-
mance. It means that the correction capability of
the pretrained language models are strong enough,
then the key-point is how to improve the perfor-
mance of detection. Therefore, in uChecker, we
also design several algorithms to improve the per-
formance of seplling error detection. Yasunaga
et al. (2021) employ GPT2-like models to conduct
unsupervised English grammatical error correction
which also verifies the feasible of our direction.

In summary, our contributions are as follows:
• We propose an unsupervised framework

named uChecker to conduct Chinese spelling
error detection and correction.

• Benefiting from flexible masking operations,
we introduce s confusionset-guided masking
strategy to fine-train BERT to further improve
the performance.

• We experimentally find that error detection is
crucial to the global SCS performance. There-
fore, we also design some algorithms to im-
prove the capability of error detection.

• Extensive experiments on several benchmark
datasets demonstrate the effectiveness of the
proposed approach. And the results also show
that uChecker can even outperform some
strong supervised models.
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今天我非常高效！Rate

今天我非常高<MASK>！

今天我非常高语！

今天我非常高效！

20%:80%

20%:10%

20%:10%

Strategy

<MASK>

Random

Unchange

Figure 2: Illustration of the masking strategies of BERT
during the pretraining stage.

2 Background: Masked Language Models

BERT (Devlin et al., 2019) is the most typical
masked language model, and it is regarded as
the backbone model of our proposed framework
uChecker, therefore in this section we introduce
the technical details of this model, especially the
masking strategies.

BERT is constructed based on the model of
Transformer (Vaswani et al., 2017). After prepar-
ing the input samples, an embedding layer and a
stack of Transformer layers are followed to conduct
the bi-directional semantic modeling. Specifically,
for the input, we first obtain the representations by
summing the word embeddings with the positional
embeddings:

H0
t = Ewt +Ept (1)

where 0 is the layer index and t is the state in-
dex. Ew and Ep are the embedding vectors for
tokens and positions, respectively. Then the ob-
tained embedding vectors H0 are fed into several
Transformer layers. Multi-head self-attention is
used to conduct bidirectional representation learn-
ing:

H1
t = LN

(
FFN(H1

t ) +H1
t

)

H1
t = LN

(
SLF-ATT(Q0

t ,K
0,V0) +H0

t

)

Q0 = H0WQ

K0,V0 = H0WK ,H0WV

(2)

where SLF-ATT(·), LN(·), and FFN(·) represent
self-attention mechanism, layer normalization, and
feed-forward network respectively (Vaswani et al.,
2017). After L Transformer layers, we obtain the
final output representation vectors HL ∈ RT×d,
where T is the input sequence length and d is the
vector dimension.

The masking strategies used in BERT are shown
in Figure 2. There are 20% tokens will be masked,
and among them there are 80% tokens are replaced

with a special symbol such as <MASK>, and 10%
are replaced with a random token, and the left 10%
keep unchanged. What should be emphasized here
is the random replacing operation which plays an
crucial role in the following model designs about
the unsupervised detection and correction as well
as the confusionset-guided fine-training.

Finally, a linear function g with softmax acti-
vation is used to predict the masked token xt via:

p (xt|x≤t−1, x≥t+1) = softmax (g (ht)) (3)

3 The Proposed uChecker Framework

3.1 Overview
Figure 3 depicts the basic components of our pro-
posed framework uChecker. The backbone model
is masked language model, say BERT. Note that
all the parameters of BERT are frozen. Input
is an incorrect sentence X = (x1, x2, . . . , xT )
which contains spelling errors, where xi denotes
each token (Chinese character) in the sentence,
and T is the length of X . The objective of the
task Chinese spelling check is to detect and cor-
rect all errors in X and obtain a new sentence
Y = (y1, y2, . . . , yT ′). Benefiting from the var-
ious and flexible masking operations, we introduce
the confusionset-guided masking strategy to fine-
train BERT to further improve the performance of
CSC. We also design several algorithms such as
unsupervised detection (UnsupDetection), super-
vised detection (SupDetection), and Ensemble of
UnsupDetection and SupDetection to improve the
performance of error detection to further improve
the overall performance.

3.2 Unsupervised Spelling Error Detection
Given a pretrained BERT model, for a sentence
X = (x1, x2, . . . , xT ) which need to be checked,
the preconceived first guess is to mask the tokens
one each time from left to right diagonally, as
shown in Figure 4, and then input the masked se-
quence X ′ into BERT to conduct prediction. As-
sume token xt is masked, the predicted distribution
at position t is p(x′t), then we can obtain the proba-
bility of the corresponding original input token xt
by:

puxt = px′t=xt(x
′
t) (4)

Intuitively, if xt is just the correct token, then puxt
will be very large (say 0.99). Otherwise, error
may hide in this position. Therefore, the simple
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Pretrained Masked Language Model
Parameters are frozen.

今 天 我 非 常 高 校 ！

今 天 我 非 常 高 ！
Correct?

SupDetection

UnsupDetection

效笑肖小较

1   0

W×

E H

Figure 3: The proposed uChecker framework for unsupervised Chinese spelling error detection and correction.

<CLS><MASK>天我非常高校！<SEP>

<CLS>今<MASK>我非常高校！<SEP>

<CLS>今天我非常高校<MASK> <SEP>

<CLS>今天我非常高<MASK> ！<SEP>

<CLS>今天<MASK>非常高校！<SEP>

……

Figure 4: Illustration of the first guess diagonal mask-
ing strategy for unsupervised error detection and cor-
rection, which is actually time-consuming and not
necessary.

approach to conduct detection is to find a threshold
θu and diagnose the results by:

errort =

{
1, if puxt < θu

0, otherwise
(5)

where errort = 1 means that token xt is not cor-
rect in sentence X .

However, although diagonal masking strategy
is a natural way to conduct token diagnose, con-
sidering that for each sentence with length T , we
need prepare T sequences to feed BERT to conduct
prediction, which is a time-consuming procedure
with low efficiency, and it is also difficult to be de-
ployed and executed concurrently. Recall the mask-
ing strategies shown in Figure 2, besides replac-
ing the tokens with <MASK> symbol, BERT also
uses random tokens to conduct masking. There-
fore, we do not need to rigidly obey the <MASK>
based masking approach. On the contrary, we can
briefly regard the potential error tokens as the ran-
dom masking strategy and just feed the original
input sentence X into the BERT model to con-
duct probability estimation. And this approach can
execute with high concurrency because we can pro-
cess hundreds or even thousands of sentences in

a batch based on the parallel computing capabil-
ity of GPUs. Moreover, since random masking is
feasible, then how about conduct random masking
using the corresponding tokens from the confusion-
set? This is the inspiration of confusionset-guided
fine-training strategy which will be introduced in
the following sections.

For each sentence X , the spelling error detec-
tion stage will return a list containing the indices of
the wrong tokens Ie = [2, 5, i, . . . ], ranked by the
predicted corresponding probability in an ascend-
ing order. The order indicates that the most worse
token will be corrected firstly.

3.3 Unsupervised Spelling Error Correction
Given the detected wrong token indices Ie, the un-
supervised error correction component then scans
the list and chooses the most appropriate tokens
from the probability distribution to conduct cor-
rection. Specifically, for any index i ∈ Ie, the
predicted distribution is p(x′i), then we can straight-
forwardly select the token with the largest score as
the correct result:

xj = argmaxj px′i=xj (x
′
i) (6)

The operation of unsupervised spelling error correc-
tion is simple, therefore the correction performance
will completely depend on the capability of the pre-
trained backbone language models.

Confusionset-guided Token Selection Due to
the special input methods such as Pinyin and
Wubi, many Chinese characters are similar either
in phonology or morphology. There are about 76%
of Chinese spelling errors belong to phonological
similarity error and 46% belong to visual similarity
error (Liu et al., 2011). Intuitively, incorporating
the Confusionset with the token selection proce-
dure may improve the performance. Therefore, we
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Algorithm 1: Confusionset-guided Token
Correction
Data: Wrong token indices Ie; The

predicted distributions for all the
positions P; The predefined
confusionset C (hashmap<string,
list>).

Result: The correct tokens Y for Ie.
Y = [] ;
for i ∈ Ie do

Wi = top_k(Pi);
for wi ∈Wi do

if wi ∈ C(xi) then
Y.insert(wi);
break;

end
Y.insert(Wi[0]);

end
end

further build a simple confusionset-guided token
selection approach as shown in Algorithm 1.

Specifically, for each detected index i, we fist
fetch the top_k tokens according to the distribution
Pi). Then if the top_k tokens are also from the
corresponding confusionset, then we get the result.
Otherwise, we still select the best predicted result.

3.4 Self-Supervised Spelling Error Detection

Surprisingly and interestingly, during the experi-
ments stage, we find that the performance of er-
ror detection plays an crucial role in affecting the
global checking performance. Therefore, improv-
ing the capability of error detection can benefit the
whole system. But, there is a precondition that we
cannot adjust the original backbone BERT param-
eters because unsupervised error correction is the
essential component of our uChecker framework,
and we do not want to let the BERT parameters
collapse to some special areas or domains. So the
BERT parameters need to be frozen when design-
ing the error detection strategies.

As shown in Figure 3, after examining the model
carefully, we create a smart but straightforward
self-supervised detection method to tackle the
problem. The basic observation is that, based on
the masked language models, the information in the
output hidden states H will be more closer to the
true tokens because the model will use them (H) to
conduct masked prediction (Eq. 3). Moreover, the

information in the embedding layer E also contains
the token information. Then we assume that for any
correct token xi and error token xj , pair (ei,hi) for
normal token holds a more tight relationship than
the pair (ej ,hj) for wrong token, where e is the
learnt token embedding and h is the output layer
of BERT:

M(ei,hi) >M(ej ,hj) (7)

whereM is metric to represent the interaction rela-
tionship, and here we use the following calculations
to conduct the interaction modeling:

hsi = Ws(e
′
i;hi; e

′
i ⊙ hi; |e′i − hi|) + bs (8)

where ; is the concatenation operation and e′i is a
transformation of ei using:

e′i = We(ei) + be (9)

This transformation is essential and cannot be
ignored because that e and h are in different vector
space. Otherwise the training will not converge.

We use cross entropy as the optimization objec-
tive:

ysi = softmax(hsi )

Ls = −
1∑

i=0

logP s(yti|hsi )
(10)

For the self-supervised learning, we still employ
the masked training strategy to conduct training,
where we assign the label for random masking is 1
(position with errors), and 0 for those unchanged
positions. Let psxt = yst [1] be the self-supervised
probability of error, then we also set up a threshold
θs to conduct diagnose as well:

errort =

{
1, if psxt >= θs

0, otherwise
(11)

where errort = 1 means that token xt is not cor-
rect in sentence X .

Note that BERT parameters are frozen during
the self-supervised learning procedure, therefore
we only conduct optimization for a small group of
parameters in Eq. 8 and Eq. 9, which is a light-scale
training stage.

3.5 Ensemble Detection Methods
Obvious, we can collect all the detected error
positions (Ieu and Ies ) by unsupervised and self-
supervised detectors respectively, which we name
it ensemble detection operation.
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TestSet Model Detection Correction
PREC. REC. F1 PREC. REC. F1

SIGHAN13 Supervised Methods
LMC (Xie et al., 2015) 79.8 50.0 61.5 77.6 22.7 35.1
Hybird (Wang et al., 2018) 54.0 69.3 60.7 - - 52.1
Confusionset (Wang et al., 2019) 66.8 73.1 69.8 71.5 59.5 69.9
SpellGCN (Cheng et al., 2020) 82.6 88.9 85.7 98.4 88.4 93.1
Unsupervised Methods
uChecker (Sec.3) 81.6 93.0 86.9 95.8 93.1 94.4

w/o self-supervised detection 83.3 90.3 86.7 96.6 93.2 96.8
w/o confusionset 84.3 89.0 86.6 89.8 86.4 88.1

SIGHAN14 Supervised Methods
LMC (Xie et al., 2015) 56.4 34.8 43.0 71.1 50.2 58.8
Hybird (Wang et al., 2018) 51.9 66.2 58.2 - - 56.1
Confusionset (Wang et al., 2019) 63.2 82.5 71.6 79.3 68.9 73.7
SpellGCN (Cheng et al., 2020) 83.6 78.6 81.0 97.2 76.4 85.5
Unsupervised Methods
uChecker (Sec.3) 75.9 73.3 74.6 91.7 84.9 85.0

w/o self-supervised detection 72.4 66.1 69.2 92.9 81.4 86.8
w/o confusionset 78.0 68.5 72.9 84.3 78.2 78.3

SIGHAN15 Supervised Methods
LMC (Xie et al., 2015) 56.4 34.8 43.0 71.1 50.2 58.8
Hybird (Wang et al., 2018) 56.6 69.4 62.3 - - 57.1
Confusionset (Wang et al., 2019) 66.8 73.1 69.8 71.5 59.5 69.9
SpellGCN (Cheng et al., 2020) 88.9 87.7 88.3 95.7 83.9 89.4
PLOME (Liu et al., 2021) 94.5 87.4 90.8 97.2 84.3 90.3
Unsupervised Methods
uChecker (Sec.3) 85.6 79.7 82.6 91.6 84.8 88.1

w/o self-supervised detection 75.8 71.3 73.5 92.6 84.5 88.4
w/o confusionset 87.4 75.9 81.2 84.6 77.7 81.0

Table 2: The character-level performance on both detection and correction level. *We notice that character-level
detection performance of scrips from Hong et al. (2019) and Wang et al. (2019) are same. But the correction
performance is different. Usually the scrip from Wang et al. (2019) is used to conduct the correction evaluation.

3.6 Confusionset-Guided Fine-Training

As mentioned in Section 3.2, inspired by the ran-
dom masking strategy in the pretraining stage of
BERT, we tailor design a confusionset-guided ran-
dom masking strategy where the target token xt
will probably be replaced using its corresponding
tokens in the confusionset C(xt). The masking rate
will also be adjusted slightly. Recently we find that
confusionset-guided fine-training strategy has been
deployed in some related works (Liu et al., 2021;
Guo et al., 2021).

After fine-training, we can use the new BERT
model to conduct self-supervised/unsupervised de-
tection and unsupervised correction.

4 Experimental Setup

4.1 Settings

The core technical components of our proposed
uChecker is a pre-trained Chinese BERT-base
model (Devlin et al., 2019). The most important
parameters in our framework are the two thresh-
olds θu and θs and we set them to be 0.1 and 0.4

for unsupervised detection and supervised detec-
tion respectively. For the supervised error detection
training, Adam optimizer (Kingma and Ba, 2015)
is used to conduct the parameter learning and par-
tial of the training dataset from SIGHAN series are
employed as the trainset.

4.2 Datasets

The overall statistic information of the datasets
used in our experiments are depicted in Table 1.
As did in the previous works, we also conduct
evaluation on those three datasets: SIGHAN13,
SIGHAN14, and SIGHAN15 (Tseng et al., 2015)2.

4.3 Comparison Methods

Considering that we did not notice some typical
unsupervised methods with good results. There-
fore, in this Section we introduce several classical
and stage-of-the-art supervised approaches for
comparisons.
HanSpeller++ employs Hidden Markov Model

2http://ir.itc.ntnu.edu.tw/lre/
sighan8csc.html
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TrainSet Model Detection Correction
ACC. PREC. REC. F1 ACC. PREC. REC. F1

SIGHAN13 Supervised Methods
FASPell (Hong et al., 2019) - 76.2 63.2 69.1 - 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) - 80.1 74.4 77.2 - 78.3 72.7 75.4
DCN (Wang et al., 2021) - 86.8 79.6 83.0 - 84.7 77.7 81.0
Unsupervised Methods

uChecker (Sec.3, Ours) 73.4 75.4 73.4 74.4 70.8 72.6 70.8 71.7
w/o self-supervised detection 73.9 78.0 73.7 75.8 72.0 75.9 71.8 73.8
w/o confusionset 73.5 78.2 73.3 75.7 65.5 69.4 65.1 67.2

SIGHAN14 Supervised Methods
FASPell (Hong et al., 2019) - 61.0 53.5 57.0 - 59.4 52.0 55.4
SpellGCN (Cheng et al., 2020) - 65.1 69.5 67.2 - 63.1 67.2 65.3
DCN (Wang et al., 2021) - 67.4 70.4 68.9 - 65.8 68.7 67.2
Unsupervised Methods
uChecker (Sec.3, Ours) 73.3 61.7 61.5 61.6 71.3 57.6 57.5 57.6

w/o self-supervised detection 68.4 55.3 52.1 53.7 66.7 51.6 48.7 50.1
w/o confusionset 72.5 62.3 57.3 59.7 58.3 52.9 48.7 50.7

SIGHAN15 Supervised Methods
*FASPell (Hong et al., 2019) 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
*Confusionset (Wang et al., 2019) - 66.8 73.1 69.8 - 71.5 59.5 64.9
*SoftMask-BERT (Zhang et al., 2020) 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
*Chunk (Bao et al., 2020) 76.8 88.1 62.0 72.8 74.6 87.3 57.6 69.4
SpellGCN (Cheng et al., 2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9
DCN (Wang et al., 2021) - 77.1 80.9 79.0 - 74.5 78.2 76.3
Unsupervised Methods
uChecker (Sec.3, Ours) 82.2 75.4 72.0 73.7 79.9 70.6 67.3 68.9

w/o self-supervised detection 74.0 65.7 61.1 63.3 72.6 62.5 58.1 60.2
w/o confusionset 81.4 76.2 68.5 72.1 76.5 65.1 58.5 61.6

Table 3: The sentence-level performance on both detection and correction level. Evaluation script is from Hong
et al. (2019). * indicates the supervised methods which our unsupervised methods can outperform.

with a reranking strategy to conduct the prediction
(Zhang et al., 2015).
LMC presents a model based on joint bi-gram and
tri-gram LM and Chinese word segmentation (Xie
et al., 2015).
Hybrid utilizes LSTM-based seq2seq framework
to conduct generation (Wang et al., 2018) and
Confusionset introduces a copy mechanism into
seq2seq framework (Wang et al., 2019).
FASPell incorporates BERT into the seq2seq for
better performance (Hong et al., 2019).
SoftMask-BERT firstly conducts error detection
using a GRU-based model and then incorporating
the predicted results with the BERT model using a
soft-masked strategy (Zhang et al., 2020). Note
that the best results of SoftMask-BERT are
obtained after pre-training on a large-scale dataset
with 500M paired samples.
SpellGCN proposes to incorporate phonological
and visual similarity knowledge into language
models via a specialized graph convolutional
network (Cheng et al., 2020).
Chunk proposes a chunk-based decoding method
with global optimization to correct single character
and multi-character word typos in a unified

framework (Bao et al., 2020).
PLOME also employs a confusionset to conduct
training of BERT. Besides character prediction,
PLOME also introduces pronunciation prediction
to learn the misspelled knowledge on phonic
level (Liu et al., 2021).
DCN generates the candidate Chinese characters
via a Pinyin Enhanced Candidate Generator and
then utilizes an attention-based network to model
the dependencies between two adjacent Chinese
characters (Wang et al., 2021).

4.4 Evaluation Metrics
Following the above mentioned works, we employ
character-level and sentence-level Accuracy, Pre-
cision, Recall, and F1-Measure as the automatic
metrics to evaluate the performance of all systems.
Besides the official java-based evaluation toolkit
(sentence-level) (Tseng et al., 2015)3, as did in
the previous works, we also report and compare
the results evaluated by the tools from FASPell
(character-level and sentence-level) (Hong et al.,

3http://nlp.ee.ncu.edu.tw/resource/csc.
html
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Parameter Value Detection Correction
ACC. PREC. REC. F1 ACC. PREC. REC. F1

θs 0.2 76.3 99.0 76.4 86.3 65.5 98.9 65.4 78.7
0.4 76.8 99.3 76.8 86.6 66.4 99.2 66.2 79.4
0.5 75.3 99.3 75.3 85.6 64.9 99.1 64.6 78.3
0.6 72.2 99.5 71.9 83.4 62.5 99.4 62.0 76.4
0.8 61.2 99.4 60.7 75.3 54.6 99.3 54.8 69.8

θu 0.0001 21.9 99.1 20.2 33.5 21.9 99.1 20.2 33.5
0.01 44.3 99.6 43.2 60.2 41.9 99.6 41.7 57.8
0.1 53.3 98.2 53.0 68.9 49.7 98.1 49.4 65.7
0.5 53.1 97.9 53.0 68.8 48.2 97.7 48.1 64.5
0.9 44.2 96.7 44.3 60.8 38.4 96.2 38.4 54.9

Table 4: Parameter tuning on devset of SIGHAN2015 (sentence-level). Due to the limited computing resource, we
only conduct parameter tuning independently. Finally, we let θu = 0.1 and θs = 0.4.

2019)4 and Confusionset (character-level) (Wang
et al., 2019)5.

5 Results and Discussions

5.1 Main Results

Character-level Evaluation Table 2 depicts the
evaluation results on character-level on the datasets
of SIGHAN13, SIGHAN14, and SIGHAN15. It is
obvious most of the baseline methods are published
recently and their performance are very strong.
More importantly, almost all of the models are
supervised learning based approaches and some
of them are even trained using external large-scale
datasets. Nevertheless, surprisingly, our proposed
unsupervised framework uChecker has obtained
comparable or even better results than those strong
baseline methods. Moreover, during the investi-
gation about the evaluation methods, we notice
that character-level detection performance of scrips
from Hong et al. (2019) and Wang et al. (2019) are
same. But the correction performance is different.
Usually Wang et al. (2019) is used to conduct the
correction evaluation and results reporting.

Sentence-level Evaluation Figure 3 depicts the
evaluation results in sentence-level on those three
datasets. Evaluation script is employed from Hong
et al. (2019) in order to align the results and to con-
duct comparing fairly. We also find that the official
evaluation tool will output large values though the
predicted results are same. We are trying to figure
out the reasons.

From Table 3 we can observe that our proposed
unsupervised framework uChecker has obtained

4https://github.com/iqiyi/FASPell
5https://github.com/sunnyqiny/Confusionset-guided-

Pointer-Networks-for-Chinese-Spelling-Check

comparable or even better results than those strong
baseline methods in the sentence-level as well.

5.2 Parameter Tuning

Considering that the proposed unsupervised model
uChecker is simple and straightforward, there are
only two hyperparameters in our framework, θu

and θs, which are the threshold values to conduct
spelling diagnosis for unsupervised detectors and
supervised detectors respectively. And we only
need to tune those two parameters. The tuning is
conducted on the validation set of SIGHAN2015.
Due to the limited computing resource, we only
conduct tuning independently. Finally, we let θu =
0.1 and θs = 0.4.

5.3 Performance on small datasets

It is surprising that uChecker outperforms all the
strong supervised baselines on datasets SIGHAN13
in character-level evaluation, as shown in Figure 2.
After investigations we believe that the main reason
is that the scale of trainset of SIGHAN13 (350) is
much smaller than the other two corpora (6,526 and
3,174). This interesting phenomenon also verify
the advantages of the unsupervised learning based
methods, especially for the task of CSC which is
very difficult for collecting real labelled datasets.

5.4 Ablation Analysis

In the main results tables Table 2 and Table 3, we
also provide the results of our model uChecker
without the components of self-supervised detec-
tion and confusionset guided fine-training and de-
coding. Generally, the experimental results demon-
strate that the corresponding components can in-
deed improve the performance.
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6 Conclusion

In this paper, we propose a framework named
uChecker to conduct unsupervised spelling error
detection and correction. Masked pretrained lan-
guage models such as BERT are introduced as the
backbone model. We also propose a confusionset-
guided masking strategy to fine-train the model to
further improve the performance. Experimental
results on standard datasets demonstrate the effec-
tiveness of our proposed model uChecker.
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Abstract

Understanding textual content is critical to im-
proving the quality of news recommendation.
To achieve this goal, recent studies have pro-
posed to apply pre-trained language models
(PLMs) such as BERT for semantic-enhanced
news recommendation. Despite their great suc-
cess in offline evaluation, it is challenging to
apply such large PLMs in real-time ranking
tasks due to the stringent latency requirements
in model updating and inference. To bridge this
gap, we propose a plug-and-play pre-trainer,
namely PREC, to learn both user and news
encoders through multi-task pre-training. In-
stead of directly leveraging sophisticated PLMs
for end-to-end inference, we focus on how to
use the cached user and item representations to
boost the performance of traditional ID-based
models for click-through-rate prediction. This
enables efficient online inference as well as
compatibility to the widely-used models in in-
dustry, which would significantly ease the prac-
tical deployment. We validate the effectiveness
of PREC through both offline evaluation on
public datasets and online A/B testing in an
industrial system.

1 Introduction

Personalized news recommendation has become a
ubiquitous channel in various online applications,
such as Google News and MSN News, which helps
users discover their interested news information.
To deal with the massive amounts (usually mil-
lions) of daily news, industrial recommender sys-
tems usually apply a multi-stage recommendation
pipeline as illustrated in Figure 1. It generally in-
volves two phases, matching and ranking (Coving-
ton et al., 2016). The matching phase first generates
hundreds or thousands of news candidates from
multiple channels (e.g., popularity-based channel,
content-based channel (Wu et al., 2019a,b), and
collaborative filtering channel (Linden et al., 2003;

∗ Corresponding author.

Figure 1: A multi-stage pipeline for news recommen-
dation.

Sedhain et al., 2014)). Subsequently, the ranking
phase employs a news ranking task, such as click-
through rate (CTR) prediction, to rank the candi-
date news and finally return the top dozens of news
to the user interface.

The matching and ranking phases have different
goals and requirements. Concretely, the match-
ing phase aims for efficient and high-recall candi-
date retrieval from millions of news corpus. There-
fore, most studies construct two-tower networks
(e.g., NPA (An et al., 2019), LSTUR (Wu et al.,
2019a), and NRMS (Wu et al., 2019b)) to learn
user representations and item representations sepa-
rately, and then apply simple dot product to com-
pute similarity scores. As such, both user and item
representations can be pre-computed offline and
cached online for fast nearest neighbour search
(e.g., using Faiss (Johnson et al., 2019)). In con-
trast, the ranking phase targets at accurate scor-
ing of each candidate item based on CTR predic-
tion and thus requires networks to capture com-
plex feature interactions between users and news
(e.g., DeepFM (Guo et al., 2018), PNN (Qu et al.,
2016), and DCN (Wang et al., 2017)). These widely
adopted CTR prediction models in industry are usu-
ally small (e.g., 3 ∼ 5 layers) to meet the latency
requirements for online inference and enable fre-
quent model updates (e.g., hourly or daily).

To leverage powerful pre-trained language mod-
els (PLMs) to better capture the semantics of news
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content, some recent studies (Zhang et al., 2021a;
Wu et al., 2021b,a) propose the use of PLMs for
news recommendation. For example, as depicted
in Figure 1, PLM-NR (Wu et al., 2021a) replaces
original news encoders (e.g., CNN in Krizhevsky
et al. (2012) and multi-head attention in Vaswani
et al. (2017)) with PLMs such as BERT (Devlin
et al., 2019) to empower existing content-based
matching models (e.g., LSTUR (An et al., 2019),
NAML (Wu et al., 2019a), and NRMS (Wu et al.,
2019b)). Yet, these studies typically adopt the com-
mon pretrain-finetune strategy to train PLM-based
news encoder and user encoder jointly, which is ex-
tremely time-consuming given the massive amount
of click data. As a concrete example illustrated
in Figure 2, we estimate the updating time of the
end-to-end model and the hierarchically decoupled
model on MIND (Wu et al., 2020). Finetuning
“PLM-NR + NRMS” with the MIND click data
(4M clicks with 1M users and 100K news) takes
2800 minutes for one epoch. This might be tol-
erable during matching as reported in Wu et al.
(2021a), where user and item representations are
pre-computed offline, but is absolutely unaccept-
able for CTR prediction tasks.

In this paper, we explore the use of PLMs for
CTR prediction tasks and propose a plug-and-play
pre-trainer, namely PREC, to learn both user and
news encoders through multi-task pre-training. In
particular, our PREC model has the following key
advantages: 1) This is the first work to integrate
both news pre-trainer and user pre-trainer for rec-
ommendation. The former fuses multi-view news
features (e.g., title, abstract, category) for repre-
sentation learning, while the latter learns user rep-
resentations from historical interaction sequences
depending on the learned news representations
and iter-dependencies among them. 2) The PREC
model is constructed in a hierarchical decoupled
manner, bringing rich news contents and deep user
interests to CTR models while meeting the require-
ments of both inference and updating efficiency. As
shown in Figure 2, PREC’s model updating time
only reaches about 50 minutes, which is 50+ times
faster than PLM-NR under the same setting. 3) The
decoupled design makes PREC easily compatible
with various existing CTR prediction models (e.g.,
PNN (Qu et al., 2016), DCN (Wang et al., 2017),
DeepFM (Guo et al., 2018)), where user and news
representations learned from PREC could be used
as features or embedding initialization for down-

Figure 2: Model updating strategy of PLM-NR-like
model (left) and our PREC-like model (right) on the
MIND dataset. The “content”, “seq”, and “ID” sym-
bols respectively denote news content, user browsing
sequence, and ID-based features, which are fed to the
following model. Please refer to subsubsection 4.1.2 for
detailed settings.

stream models. This allows PREC to be easily
deployed in industrial recommender systems.

We conduct extensive experiments to validate
the effectiveness of PREC on two open benchmark
datasets for news recommendation, MIND (Wu
et al., 2020) and Adressa (Gulla et al., 2017).
The experiments show that our pre-trainer PREC
can consistently boost the performance of existing
lightweight CTR prediction models, even outper-
forming some state-of-the-art heavyweight models.
In addition, we have deployed PREC in the pro-
duction system and an online A/B test shows that
PREC leads to a 2.4% improvement on the overall
CTR metric.

2 Related Work

News recommendation has become increasingly
popular in recent years. Models based on deep
neural networks (Wang et al., 2018; Wu et al.,
2019b) have been proposed to learn news and user
representations by leveraging CNN (Krizhevsky
et al., 2012) or attention mechanism (Vaswani et al.,
2017). These end-to-end models focus on solv-
ing recommendation task and typically have lim-
ited ability in semantic understanding. Most re-
cently, PLMs such as BERT (Devlin et al., 2019)
have shown promising results in news recommenda-
tion (Zhang et al., 2021a; Wu et al., 2021c; Li et al.,
2022). Some works (Wu et al., 2021a,b; Yu et al.,
2021) leverage PLMs to learn news embeddings
by exploring out-domain knowledge and learning
news semantics. These models can be deployed in
matching stage, but not compatible to the ranking
stage due to intolerant model updating time. Some
use PLMs to learn user representations (Wu et al.,
2021c; Sun et al., 2019; Chen et al., 2019) by mod-
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eling user interests with historical news sequences.
Besides, we notice that SpeedyFeed (Xiao et al.,
2022) is presented to semi-decouple PLM-based
recommender models for faster training, but the
model updating time is still too long.

While pre-trained models have shown great
promise in content understanding, lightweight CTR
models (Wang et al., 2017; Guo et al., 2018; Lian
et al., 2018) still dominate industrial applications
due to its high efficiency, where PLMs cannot be
deployed due to its large size. Our proposed pre-
trainer can work seamlessly with these industrial
CTR models and provide them semantic news em-
beddings and user interest knowledge with almost
no overhead in inference time and deployment cost.

Model Pre-Training. The pioneer
works (Mikolov et al., 2013; Pennington et al.,
2014) introduced pre-training for natural language
understanding by providing a static representation
for each word. Later, some methods (Peters et al.,
2018; Devlin et al., 2019) proposed to dynamically
generate word representations according to the
context, which effectively resolves the ambiguity
problem. Very recently, the huge success of BERT
has led to a surge of interest in pre-training models.
A line of works (Zhou et al., 2020; Xie et al.,
2020; Wu et al., 2021a,c) have proposed to use
pre-training for new recommendation. However,
the pre-training tasks for news recommendation are
under-explored. In this paper, we propose multiple
tasks for multi-view news and user pre-training.

3 The Proposed Method

In this section, we present our proposed cascaded
pre-trainer for news recommendation (PREC). We
first introduce the model framework, pre-training
tasks and pre-training strategy. Then, we describe
how to apply the pre-trainer for downstream tasks.

3.1 Model Framework

Figure 3 presents the model framework of our pro-
posed cascaded pre-trainer PREC, which consists
of a news pre-trainer and a user pre-trainer. Both
news and users contain multiple feature sets, i.e.,
multiple views. For example, a news has title, en-
tities and abstract, and a user is usually character-
ized by her/his historical browsed news, location,
personal information, and so on. To capture the
rich semantics from these multi-view data, PREC
is designed to capture both intra-view and inter-
view knowledge based on Transformer, with the

news pre-trainer aimed at learning the deep seman-
tic meanings of the textual content while the user
pre-trainer targeting at capturing the inherent user
interests. Since browsing history is one of the most
significant views of users, the user pre-trainer re-
lies on the news embeddings learned from the news
pre-trainer. Thus, our model is built and trained in
a cascaded manner.

3.1.1 News Pre-trainer
We assume each news contains n views (e.g., ti-
tle, entities, abstract) and each view contains a
sequence of tokens. We use ti =

[
ti,1, ..., ti,|ti|

]

to represent the token sequence of the i-th view,
where i ∈ {1, ..., n} and |ti| is the total length of
the view. We propose a news pre-trainer to compre-
hend the deep semantic meanings of news by taking
a concatenated sequence of the multi-view content
as input. Following BERT (Devlin et al., 2019), the
input sequence starts with a special token ⟨CLS⟩,
and views are separated by another special token
⟨SEP⟩. For simplicity, these two special tokens are
omitted in the following description. After concate-
nating n views, the input token sequence is rep-
resented as t =

[
t1,1, ..., t1,|t1|, ..., tn,1, ..., tn,|tn|

]
,

and the token embedding can be obtained through
an embedding layer as follows:

Et
token = [et1, e

t
2, ..., e

t
s] ∈ Rs×d, (1)

where s =
∑n

i |ti| is the sequence length and d is
the embedding dimension. We also use position
embedding to encode the positional information
of a token, and view embedding to distinguish be-
tween different views. We denote the position em-
bedding and view embedding of a news as Et

pos

and Et
view, respectively. For a given token, the

input representation is obtained by summing up
the corresponding token, position embedding and
view embedding. Then, given a news, the inte-
grated input representation of the news pre-trainer
is obtained as follows:

Et = Et
token +E

t
pos +E

t
view. (2)

The news pre-trainer consists of two sub-
modules, news transformer and news aggregator.
The news transformer first learns the refined to-
ken representations Ēt of news content through
multiple Transformer layers, and then the news ag-
gregator combines the token representations into
a unified news representation t̄. The learned news
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Figure 3: The architecture of our PREC model.

representation will be used for news token embed-
ding in the user pre-trainer and the training of down-
stream CTR models.

3.1.2 User Pre-trainer
Similarly, users are characterized by m views, e.g.,
historical browsed news, location, and user pro-
file. We use ui =

[
ui,1, ..., ui,|ui|

]
to represent

the i-th view of a user, where i ∈ {1, ...,m},
and |ui| is the total length of the view. User
pre-trainer has a similar model framework as the
news pre-trainer, which consists of an embedding
layer, multiple Transformer layers, and a aggrega-
tor. It takes a sequence of concatenated multi-view
user information as input, which is represented as
u = [u1,1, ..., u1,|u1|, ..., um,1, ..., um,|um|]. Firstly,
the input token sequence of a user is transformed
into three embedding sequences, including token,
position, and view sequences, through an embed-
ding layer. Specifically, the token embedding se-
quence is represented as follows:

Eu
token = [eu1 , e

u
2 , ..., e

u
l ] ∈ Rl×d, (3)

where l =
∑m

i |ui| is the sequence length. Simi-
larly, we denote the corresponding position embed-
ding and view embedding of a user as Eu

pos and
Eu
view, respectively. Then, the integrated input user

representation for the user pre-trainer is obtained
by summing the three types of embeddings:

Eu = Eu
token +E

u
pos +E

u
view. (4)

As demonstrated by existing work (An et al., 2019;
Wu et al., 2019b), users’ historical browsed news
is key to discover user interests. For training effi-
ciency, we initialize the token embeddings of user
browsed news with the learned news embeddings
from the news pre-trainer, and keep them fixed
during training.

Then, the user transformer explores users’ poten-
tial interests through multiple Transformer layers
and produces the refined token representations Ēu,
and the user aggregator fuses the refined represen-
tations into a single user representation ū. Note
that we use average pooling as our news and user
aggregators as in Zhang et al. (2021a).

3.2 Pre-training Tasks

(a) Masked news token prediction.

(b) News view alignment.

Figure 4: Two pre-training tasks in PREC.

Masked News Token Prediction (MNTP) is de-
signed to learn context-aware token representations.
The framework is shown in Figure 4(a). In this
task, we first randomly sample a portion (15% in
our experiments) of tokens in each sequence t and
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replace them with other tokens. Specifically, for
each sampled token, there is an 80% probability of
being replaced with a unique identifier ⟨MASK_i⟩, a
10% possibility of being substituted with a random
token from the vocabulary, and another 10% prob-
ability of remaining unchanged. We then conduct
a classification task on the sampled tokens with
a multi-layer perceptron classifier by taking the
corresponding refined token embedding from the
news transformer as input. Thus, the MNTP task is
to minimize the following negative log-likelihood
loss:

Lmntp(θ,β1) = −Et∼Dt logP (ti,j |t\(i,j),θ,β1),
(5)

where θ denotes the model parameters of the news
transformer and aggregator, β1 denotes the model
parameters of the classifier, Dt is the training set
of the news pre-trainer, and P (ti,j |t\(i,j);θ,β1) is
the probability of correctly predicting the current
token ti,j given other tokens t\(i,j).

News View Alignment (NVA) aims to capture
inter-view relations. The framework is presented in
Figure 4(b). In this task, we manually construct out-
of-alignment news by replacing some views of the
considered news with those of a randomly sampled
one, and treat them as negative samples. More
precisely, for a piece of news, it will undergo one of
the following two operations randomly: (a) remains
unchanged (labeled as 1); (b) constructed as out-of-
alignment news (labeled as 0). Then, the processed
token sequence t′ is fed into the news pre-trainer
to generate the unified news representation t̄. We
perform a binary classification task with t̄ as input
by optimizing the following cross-entropy loss:

Lnva(θ,β2) = −Et∼Dt logP (l|t′,θ,β2), (6)

where β2 denotes the model parameters of the bi-
nary classifier, l ∈ {0, 1} represents the types of
news samples, and t′ is the reconstructed news after
the random operations.

News Category Prediction (NCP) is proposed
to capture global knowledge of news. The extracted
news embedding t̄ is leveraged to predict the cate-
gory of the considered news. The loss function of
this task is as follows:

Lncp(θ,β3) = −Et∼Dt logP (c|t,θ,β3), (7)

where β3 denotes the model parameters of the cat-
egory classifier, and c is the news category.

We also design Masked User Token Prediction
(MUTP) task and User View Alignment (UVA)

task for the user pre-trainer, which are similar to the
MNTP task and the NVA task, respectively. The
loss functions of the MUTP task and the UVA task
are as follows:

Lmutp(ϕ) = −Eu∼Du logP (ui,j |u\(i,j),ϕ,φ1),

(8)

Luva(ϕ) = −Eu∼Du logP (l|u′,ϕ,φ2), (9)

where ϕ denotes the model parameters of the user
transformer and aggregator, φ1 and φ2 denote the
model parameters of the classifier for the MUTP
task and the NUA task respectively, Du is the train-
ing set of the user pre-trainer, (i, j) is the index
of the masked token, and l ∈ {0, 1} represents
whether the views of the reconstructed token se-
quence u′ are aligned or not.

3.3 Pre-training Strategy

Stage One. The performance of the user pre-trainer
heavily relies on the quality of news embeddings,
thus we first conduct pre-training of the news pre-
trainer to obtain informative news embeddings. In
this stage, MNTP, NVA, and NCP tasks are per-
formed to capture intra-view and inter-view seman-
tic meanings of news, and the overall loss is formu-
lated as:

LNP = ωmntpLmntp + ωnvaLnva + ωncpLncp,
(10)

where ωmntp, ωnva, and ωncp are hyper-parameters
for balancing the losses of different tasks.

Stage Two. After obtaining news embeddings
from the news pre-trainer, we perform the MUTP
and UVA tasks to optimize the user pre-trainer with
the following loss:

LUP = ωmutpLmutp + ωuvaLuva, (11)

where ωmutp and ωuva are hyper-parameters for
balancing the losses of the two tasks.

This two-stage pre-training strategy has the fol-
lowing advantages. 1) It greatly simplifies the op-
timization of PREC by decoupling the optimiza-
tion of the news pre-trainer and user pre-trainer.
2) It allows to update the two pre-trainers in an
asynchronous manner, which nicely satisfies the re-
quirements of real industrial scenarios where user
representations are likely to be updated more fre-
quently due to the constant change of user interests.
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Table 1: Dataset statistics after preprocessing.

Number
MIND Adressa

small large 1Week 4Week

#News 65,238 104,151 81,018 81,018

#Users 94,057 750,434 214,464 400,279

#Clicks 347,727 3,958,501 354,181 877,605

#Samples 8,584,442 97,592,931 1,770,905 4,388,025

3.4 CTR Prediction with PREC

The learned news and user representations from
PREC are leveraged to boost the performance of
deep CTR prediction models. Generally, deep
CTR models, such as PNN (Qu et al., 2016),
DeepFM (Guo et al., 2018), and DCN (Wang
et al., 2017), take multiple user-side (e.g., user
id, browsed news ids, browsed news title sequence)
and news-side (e.g., news id, title) features as input.
These raw features are usually first transformed
into multi-field categorical format through a fea-
ture engineering module before being fed to a CTR
model. Then, the input features are transformed
into continuous embedding vectors through an em-
bedding layer of the model (Zhang et al., 2021b).
We use the pre-trained representations to initialize
the embedding vectors of news id and user id to
enrich the feature inputs of CTR models. Note
that we keep the pre-trained news and user rep-
resentations fixed during model training and add
additional transformation matrices to project them
into the same space of the embedding vectors of
other features. The two transformation matrices
are part of trainable model parameters and updated
during optimization.

4 Experiments

4.1 Experimental Settings

We conduct experiments on two large real-world
news recommendation datasets: MIND (including
small and large versions) (Wu et al., 2020) and
Adressa (including the 1-week and 4-week ver-
sions) (Gulla et al., 2017). Our experiments in-
clude two phases: pre-training and plug-and-play.
For the MIND dataset, we use news title and ab-
stract as news views, news category as the label
in the NCP task, and user history as user view.
As users’ profiles are missing, we omit the UVA
task on MIND. We set ωmntp = ωnva = ωncp =
ωmutp = 1, ωuva = 0. For the Adressa dataset, we
take the news title, description, and keywords as

Table 2: Comparison results between baseline mod-
els and PREC-boosted models on the MIND-small and
Adressa-1Week datasets.

MIND-small

Method DCN DCN+NP DCN+NP+UP Improv.

AUC 65.07 66.63 67.47 3.69%
MRR 33.12 33.62 34.88 5.31%

nDCG@5 34.02 34.95 36.20 6.41%
nDCG@10 40.06 41.23 42.33 5.67%

Method PNN PNN+NP PNN+NP+UP Improv.

AUC 61.80 65.24 66.55 7.69%
MRR 30.11 32.42 33.18 10.20%

nDCG@5 30.65 30.02 34.86 13.74%
nDCG@10 36.93 40.14 40.89 10.72%

Method DeepFM DeepFM+NP DeepFM+NP+UP Improv.

AUC 61.86 65.46 65.98 6.66%
MRR 29.77 33.26 33.42 12.26%

nDCG@5 30.15 34.31 34.92 15.82%
nDCG@10 36.74 40.73 40.94 11.43%

Adressa-1Week

Method DCN DCN+NP DCN+NP+UP Improv.

AUC 75.86 82.39 83.78 10.44%
MRR 93.26 95.07 95.61 2.52%

nDCG@5 95.30 96.60 97.31 2.11%
nDCG@10 95.51 96.81 97.32 1.90%

Method PNN PNN+NP PNN+NP+UP Improv.

AUC 71.21 79.64 81.92 15.04%
MRR 92.05 94.06 95.09 3.30%

nDCG@5 94.67 95.14 96.80 2.25%
nDCG@10 94.83 95.74 96.89 2.17%

Method DeepFM DeepFM+NP DeepFM+NP+UP Improv.

AUC 73.40 79.64 81.14 10.54%
MRR 92.43 94.29 94.68 2.43%

nDCG@5 94.43 95.99 96.07 1.74%
nDCG@10 94.83 96.22 96.42 1.68%

news view and use user history, location (country,
region, and city), and device information as user
view. Since news category information is miss-
ing, we omit the NCP task on Adressa. We set
ωmntp = ωnva = ωmutp = ωuva = 1, ωncp = 0.
For the pre-training phase, we first split the news set
into 4:1 as the training set and validation set (used
for early-stopping) respectively, and use them to
train the news pre-trainer. We then split the user set
in the same way and train the user pre-trainer. In the
plug-and-play phase for CTR prediction, we follow
the same splitting strategy as in Wu et al. (2020)
on the MIND dataset. For the Adressa dataset, we
perform 1:4 negative sampling since it has only
positive interaction samples. For Adressa-1Week,
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Table 3: Performance comparison among different approaches.

Method
End-to-end Pretrain-finetune PLM Plug-and-play PLM

PNN DeepFM DCN NAML LSTUR NRMS FIM UNBERT NRMSPLM-NR DCNBERT DCNPREC (ours)

MIND-small

AUC 61.80 61.86 65.07 66.12 65.87 65.63 65.34 67.62

/

66.12 67.47
MRR 30.11 29.77 33.12 31.53 30.78 30.96 30.64 31.72 33.53 34.88

nDCG@5 30.65 30.15 34.02 34.88 33.95 34.13 33.61 34.75 34.77 36.20
nDCG@10 36.93 36.74 40.06 41.09 40.15 40.52 40.16 41.02 40.95 42.33

MIND-large

AUC 66.33 67.00 66.52 66.46 67.08 67.66 67.87 70.68 70.64 68.46 69.12
MRR 32.32 32.77 32.32 32.75 32.36 33.25 33.46 35.68 35.39 34.05 34.47

nDCG@5 35.11 35.59 35.08 35.66 35.15 36.28 36.53 39.13 38.71 37.17 37.70
nDCG@10 40.83 41.30 40.83 41.40 40.93 41.98 42.21 44.78 44.38 42.82 43.35

PNN DeepFM DCN AutoInt xDeepFM FiBiNET GNUD DCNBERT DCNPREC (ours)

Adressa-1Week

AUC 71.21 73.40 75.86 71.80 75.99 71.21 72.03

/ /

77.30 83.78
MRR 92.05 92.43 93.26 91.90 93.18 91.08 92.24 93.66 95.61

nDCG@5 94.67 94.43 95.30 93.74 95.02 91.19 94.78 95.70 97.31
nDCG@10 94.83 94.83 95.51 94.31 95.35 92.82 94.91 95.83 97.32

Adressa-4Week

AUC 68.81 70.21 71.55 69.41 71.08 66.71 69.03

/ /

74.18 79.09
MRR 90.71 90.97 91.80 91.21 91.33 89.99 91.62 92.47 93.90

nDCG@5 92.35 91.51 94.03 93.54 92.76 91.42 95.28 94.59 95.67
nDCG@10 93.03 92.72 94.32 93.86 93.47 92.30 95.04 94.70 95.86

we use the first 5 days’ interaction data as user his-
tory, the 6-th day’s data as training set, and the 7-th
day’s data for validation (by randomly sampling
20% data) and testing (the remaining 80% data), re-
spectively. For Adressa-4Week, we construct user
history with the first 24 days’ data; the following
2 days’ data are used as the training set, and the
20% and 80% of the last 2 days’ data are used for
validation and testing, respectively. The statistics
of the datasets are summarized in Table 1.

4.1.1 Evaluation Protocols

We follow common practice Wu et al. (2020,
2021a) to evaluate the effectiveness of our method
with the widely-used ranking metrics: AUC, MRR,
nDCG@5, and nDCG@10.

4.1.2 Implementation Details

We tokenize the title, abstract, and text descrip-
tions in MIND and Adressa with the vocabulary
provided by BERT and NordicBERT1, respectively.
Note that entities and locations are special words,
so we do not tokenize them. We follow the set-
ting of BERT (Devlin et al., 2019) and output 768-
dimensional user and news vectors. For the news
pre-trainer, we use 3 Transformer layers. For the
user pre-trainer, we use 6 Transformer layers. We
initialize the parameters as in BERT wherever pos-
sible. We apply the open-source FuxiCTR (Zhu
et al., 2021) library for implementing downstream

1https://github.com/certainlyio/nordic_bert

CTR prediction tasks. We release the source code
for reproducibility2.

As illustrated in Figure 2, we make a fair com-
parison of the running time of NRMSPLM-NR and
DCNPREC. The number of Transformer layers, at-
tention heads, and dimension size of BERT (in
PLM-NR), news and user pre-trainer (in PREC)
are set to 12, 12, and 768, respectively. The news
title and user sequence length are set to 50 and 25
respectively. We record the model updating time
on a single NVIDIA GeForce RTX 3090 device.

4.1.3 Compared Models

We take 13 existing models as our baselines,
including typical CTR prediction models (i.e.,
DCN (Wang et al., 2017), DeepFM (Guo et al.,
2018), PNN (Qu et al., 2016) and xDeepFM (Lian
et al., 2018), AutoInt (Song et al., 2019), FiBi-
NET (Huang et al., 2019)), neural news recom-
mendation models (i.e., LSTUR (An et al., 2019),
NAML (Wu et al., 2019a), NRMS (Wu et al.,
2019b), GNUD (Hu et al., 2020), FIM (Wang
et al., 2020)), and PLM-based models (i.e., UN-
BERT (Zhang et al., 2021a), PLM-NR (Wu et al.,
2021a)). We also compare with the naive-BERT
model with 3 Transformer layers (same as ours) to
extract the news representations for DCN, denoted
as DCNBERT. In this setting, only the title view
is used and the masked language modeling task is
applied in news content pre-training. The repre-

2https://github.com/Jyonn/PREC
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Table 4: Ablation results on the Adressa-1Week dataset.
* indicates that only one mask identifier ⟨MASK⟩ is used
for different views. The exp. column indicates experi-
ments with different settings.

View in NP NP UP Method

exp. title desc key MNTP NVA MUTP UVA DCN PNN

a - - - - - - - 75.86 71.21

b ✓ ✓ ✓ ✓ - - - 80.06 77.82

c ✓ ✓ ✓ ✓ ✓ - - 82.39 79.64

d ✓ ✓ ✓ ✓ ✓ ✓ - 82.95 80.73

e ✓ ✓ ✓ ✓ ✓ ✓ ✓ 83.78 81.92

f ✓ - - ✓ - - - 77.30 74.77

g ✓ ✓ - ✓ - - - 78.84 76.08

h ✓ ✓ ✓ * - - - 79.47 77.25

sentations generated by the naive-BERT model are
fixed and not fine-tuned in the downstream task.
In particular, we apply PREC on DCN, which is
widely used in industry, to validate its effectiveness
and efficiency. We also test PREC on DeepFM and
PNN to demonstrate its broad applicability.

4.2 Performance Comparison

Table 2 shows the comparison between the base-
line models and PREC- boosted models, where
+NP means news embeddings are generated by the
news pre-trainer and +UP means user embeddings
are generated by the user pre-trainer. We can ob-
serve that using pre-trained news and user repre-
sentations can enhance the performance of each
downstream CTR model. Table 3 provides the
comprehensive results of different models on four
datasets. The results show that: 1) Our PREC-
based model achieves competitive results with
the pretrain-finetune PLM-based models, which
achieve state-of-the-art performance due to the fine-
tuning process and cannot be deployed in the rank-
ing stage. 2) With the pre-trained representations
as input features, the lightweight DCN model can
outperform sophisticated neural news recommen-
dation models such as FIM and GNUD, showing
the effectiveness of our approach.

4.3 Ablation Study

As demonstrated in Table 4, we explore different
variants during PREC pre-training. We find that
1) based on exp. a to e, each pre-training task
makes a considerable improvement; 2) based on
exp. bfg, each view offers better comprehension
to the news pre-trainer; 3) compared with apply-

Table 5: Influence of the Transformer layers of the
news pre-trainer on the Adressa-1Week dataset. Time
(h) denotes the pre-training time in hours.

Layers of NP 1 3 6 9 12

AUC 81.34 82.39 82.60 83.02 83.66

Time (h) 12.0 13.3 14.0 15.9 18.3

Improv. per Layer - 0.525 0.252 0.210 0.211
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Figure 5: Visualization of the news embeddings of the
MIND-small dataset. Different color indicates different
news category.

ing one mask identifier (exp. h), employing the
view-specific mask identifier (exp. b) achieves bet-
ter performance. We also conduct experiments
on the effect of the number of Transformer layers.
As depicted in Table 5, the performance improves
when the number of layers increases, since more
Transformer layers can capture deeper semantic
meanings. However, the pre-training time cost also
grows. Hence, we choose 3 layers as a trade-off
between performance and efficiency.

4.4 Visualization of News Embeddings

We use t-SNE (Van der Maaten and Hinton, 2008)
to visualize the news embeddings learned by differ-
ent settings. As depicted in Figure 5, we randomly
select three categories and observe the embedding
distribution. It can be seen that the news embed-
dings learned by the DCN model (Figure 5(a)) are
scattered while the news features obtained by the
news pre-trainer (Figure 5(b)) are clustered. When
the NCP task is adopted Figure 5(c), the news fea-
tures are more clustered.

4.5 Online A/B Testing

We have deployed our news pre-trainer in Huawei’s
news recommender system, serving millions of
users daily, to perform an online A/B test. CTR
prediction is applied in the ranking phase of recom-
mendation, which takes tens of user features (e.g.,
city, tags clicked in recent 1/3/7 days) and news fea-
tures (e.g., category, topic, tags, entities) as input
and outputs the predicted click probability of each
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user-news pair. The base model deployed online is
an optimized variant of the DeepFM model (Guo
et al., 2018) called FINAL and has a stringent la-
tency requirement (less than 50ms) for each request.
To improve the model performance, yet keep the
efficiency of model inference, we apply the PREC
pre-trainer to obtain cached representation vectors
of users and news. Then, these vectors are used to
initialize the embedding layers for training the rank-
ing model. The decoupling allows asynchronous
updates of both modules: the PREC pre-trainer is
updated on a daily basis while the ranking model
is updated on a minute level to adapt to new data
quickly. During the one-week online A/B test, the
PREC-boosted ranking model has achieved an aver-
age improvement of 2.4% in CTR over the baseline,
which is significant in our application scenario.

5 Conclusion

In this paper, we have developed a plug-and-play
pre-trainer called PREC to boost the performance
of traditional ID-based CTR models for news rec-
ommendation. PREC is built on Transformer
layers, utilizes multi-view features of news and
users, and is trained with tailored pre-training tasks
to learn semantic news and user representations.
Aside from its ability in content understanding,
PREC can be easily deployed in industrial recom-
mender systems to improve CTR prediction. Of-
fline experiments on public benchmark datasets and
online A/B testing in industrial recommender sys-
tems demonstrate the effectiveness and efficiency
of PREC.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their helpful comments.

References
Mingxiao An, Fangzhao Wu, Chuhan Wu, Kun Zhang,

Zheng Liu, and Xing Xie. 2019. Neural news recom-
mendation with long- and short-term user representa-
tions. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
336–345, Florence, Italy. Association for Computa-
tional Linguistics.

Xusong Chen, Dong Liu, Chenyi Lei, Rui Li, Zheng-Jun
Zha, and Zhiwei Xiong. 2019. Bert4sessrec: Content-
based video relevance prediction with bidirectional
encoder representations from transformer. In Pro-
ceedings of the 27th ACM International Conference
on Multimedia, pages 2597–2601.

Paul Covington, Jay Adams, and Emre Sargin. 2016.
Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM conference on rec-
ommender systems, pages 191–198.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem
Özgöbek, and Xiaomeng Su. 2017. The adressa
dataset for news recommendation. In Proceedings
of the international conference on web intelligence,
pages 1042–1048.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
et al. 2018. Deepfm: An end-to-end wide & deep
learning framework for ctr prediction. In Interna-
tional Joint Conferences on Artificial Intelligence.

Linmei Hu, Siyong Xu, Chen Li, Cheng Yang, Chuan
Shi, Nan Duan, Xing Xie, and Ming Zhou. 2020.
Graph neural news recommendation with unsuper-
vised preference disentanglement. In Proceedings
of the 58th annual meeting of the association for
computational linguistics, pages 4255–4264.

Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019.
Fibinet: combining feature importance and bilinear
feature interaction for click-through rate prediction.
In Proceedings of the 13th ACM Conference on Rec-
ommender Systems, pages 169–177.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. Advances in neural infor-
mation processing systems, 25.

Jian Li, Jieming Zhu, Qiwei Bi, Guohao Cai, Lifeng
Shang, Zhenhua Dong, Xin Jiang, and Qun Liu. 2022.
Miner: Multi-interest matching network for news
recommendation. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 343–
352.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang,
Zhongxia Chen, Xing Xie, and Guangzhong Sun.
2018. xdeepfm: Combining explicit and implicit
feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining,
pages 1754–1763.

Greg Linden, Brent Smith, and Jeremy York. 2003.
Amazon. com recommendations: Item-to-item col-
laborative filtering. IEEE Internet computing,
7(1):76–80.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In The International Confer-
ence on Learning Representations.

2831



Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong
Yu, Ying Wen, and Jun Wang. 2016. Product-based
neural networks for user response prediction. In 2016
IEEE 16th International Conference on Data Mining
(ICDM), pages 1149–1154. IEEE.

Suvash Sedhain, Scott Sanner, Darius Braziunas, Lexing
Xie, and Jordan Christensen. 2014. Social collabo-
rative filtering for cold-start recommendations. In
Proceedings of the 8th ACM Conference on Recom-
mender systems, pages 345–348.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan,
Yewen Xu, Ming Zhang, and Jian Tang. 2019. Au-
toint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 1161–1170.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-
quential recommendation with bidirectional encoder
representations from transformer. In Proceedings of
the 28th ACM international conference on informa-
tion and knowledge management, pages 1441–1450.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Heyuan Wang, Fangzhao Wu, Zheng Liu, and Xing
Xie. 2020. Fine-grained interest matching for neural
news recommendation. In Proceedings of the 58th
annual meeting of the association for computational
linguistics, pages 836–845.

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi
Guo. 2018. Dkn: Deep knowledge-aware network
for news recommendation. In Proceedings of the
10th international conference on World Wide Web.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang.
2017. Deep amp; cross network for ad click pre-
dictions. In Proceedings of the ADKDD’17, AD-
KDD’17, New York, NY, USA. Association for Com-
puting Machinery.

Chuhan Wu, Fangzhao Wu, Mingxiao An, Jianqiang
Huang, et al. 2019a. Neural news recommendation
with attentive multi-view learning. In International
Joint Conferences on Artificial Intelligence.

Chuhan Wu, Fangzhao Wu, Suyu Ge, Tao Qi, Yongfeng
Huang, and Xing Xie. 2019b. Neural news recom-
mendation with multi-head self-attention. In Pro-
ceedings of the 2019 conference on empirical meth-
ods in natural language processing and the 9th inter-
national joint conference on natural language pro-
cessing (EMNLP-IJCNLP), pages 6389–6394.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng
Huang. 2021a. Empowering news recommendation
with pre-trained language models. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1652–1656.

Chuhan Wu, Fangzhao Wu, Yang Yu, Tao Qi, Yongfeng
Huang, and Qi Liu. 2021b. NewsBERT: Distilling
pre-trained language model for intelligent news appli-
cation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 3285–3295,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Chuhan Wu, Fangzhao Wu, Yang Yu, Tao Qi, Yongfeng
Huang, and Xing Xie. 2021c. Userbert: Con-
trastive user model pre-training. arXiv preprint
arXiv:2109.01274.

Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan
Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing Xie,
Jianfeng Gao, Winnie Wu, et al. 2020. Mind: A large-
scale dataset for news recommendation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3597–3606.

Shitao Xiao, Zheng Liu, Yingxia Shao, Tao Di, Bhuvan
Middha, Fangzhao Wu, and Xing Xie. 2022. Train-
ing large-scale news recommenders with pretrained
language models in the loop. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 4215–4225.

Xu Xie, Fei Sun, Zhaoyang Liu, Jinyang Gao, Bolin
Ding, and Bin Cui. 2020. Contrastive pre-training
for sequential recommendation. arXiv preprint
arXiv:2010.14395.

Yang Yu, Fangzhao Wu, Chuhan Wu, Jingwei Yi, Tao
Qi, and Qi Liu. 2021. Tiny-newsrec: Efficient and
effective plm-based news recommendation. In ArXiv.

Qi Zhang, Jingjie Li, Qinglin Jia, Chuyuan Wang, et al.
2021a. Unbert: User-news matching bert for news
recommendation. In International Joint Conferences
on Artificial Intelligence.

2832



Weinan Zhang, Jiarui Qin, Wei Guo, Ruiming Tang, and
Xiuqiang He. 2021b. Deep learning for click-through
rate estimation. In International Joint Conferences
on Artificial Intelligence.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu,
Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. 2020. S3-rec: Self-supervised learning
for sequential recommendation with mutual informa-
tion maximization. In Proceedings of the 29th ACM
International Conference on Information & Knowl-
edge Management, pages 1893–1902.

Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and
Xiuqiang He. 2021. Open benchmarking for click-
through rate prediction. In Proceedings of the 30th
ACM International Conference on Information &
Knowledge Management, pages 2759–2769.

2833



Proceedings of the 29th International Conference on Computational Linguistics, pages 2834–2848
October 12–17, 2022.

Improving Fake News Detection of Influential Domain
via Domain- and Instance-Level Transfer

Qiong Nan1,2, Danding Wang1, Yongchun Zhu1,2, Qiang Sheng1,2

Yuhui Shi1,2, Juan Cao1,2∗, Jintao Li1

1Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
{nanqiong19z,wangdanding,zhuyongchun18s}@ict.ac.cn

{shengqiang18z,caojuan,jtli}@ict.ac.cn
shiyuhui221@mails.ucas.ac.cn

Abstract
Both real and fake news in various domains,
such as politics, health, and entertainment are
spread via online social media every day, ne-
cessitating fake news detection for multiple do-
mains. Among them, fake news in specific
domains like politics and health has more seri-
ous potential negative impacts on the real world
(e.g., the infodemic led by COVID-19 misin-
formation). Previous studies focus on multi-
domain fake news detection, by equally mining
and modeling the correlation between domains.
However, these multi-domain methods suffer
from a seesaw problem: the performance of
some domains is often improved at the cost
of hurting the performance of other domains,
which could lead to an unsatisfying perfor-
mance in specific domains. To address this
issue, we propose a Domain- and Instance-level
Transfer Framework for Fake News Detection
(DITFEND), which could improve the perfor-
mance of specific target domains. To trans-
fer coarse-grained domain-level knowledge, we
train a general model with data of all domains
from the meta-learning perspective. To trans-
fer fine-grained instance-level knowledge and
adapt the general model to a target domain, we
train a language model on the target domain
to evaluate the transferability of each data in-
stance in source domains and re-weigh each
instance’s contribution. Offline experiments on
two datasets demonstrate the effectiveness of
DITFEND. Online experiments show that DIT-
FEND brings additional improvements over the
base models in a real-world scenario.

1 Introduction

With the rapid popularization of the Internet, more
and more people tend to acquire news through so-
cial media platforms, such as Weibo1 and Twit-
ter2. Due to the above phenomenon, fake news

∗Corresponding author
1https://weibo.com
2https://twitter.com
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Figure 1: Illustration of the differences among single-
domain, multi-domain, and cross-domain (ours) fake
news detection.

has spread widely all over the world. During the
2016 U.S. presidential election campaign, the top
20 frequently discussed fake election stories gener-
ated 8,711,000 engagements on Facebook, which
is larger than the total of 7,367,000 for the top 20
most-discussed election stories posted by 19 major
news websites (Silverman, 2016). The wide spread
of fake news may break the authenticity balance of
the news ecosystem (Shu et al., 2017), and it not
only misleads many people but also leads to the so-
cial mobs and social panic (Chen, 2020). Therefore,
fake news detection is of significant importance.

Real-world news platforms categorize news
pieces by topic into various domains, e.g., poli-
tics, health, and entertainment. Although it is nec-
essary to detect fake news in every domain, the
societal effects of fake news from some specific
domains are more serious. For example, during
the U.S. election, fake news in the political do-
main may have dictated election results (Allcott
and Gentzkow, 2017), and Vosoughi et al. (2018)
find that false political news travels deeper more
quickly and more broadly, reaches more people,
and is more vital than other categories of false in-
formation. In the COVID-19 infodemic (Bursztyn
et al., 2020), thousands of fake news pieces have
caused social panic (Chen, 2020) and weakened
the effect of pandemic countermeasures (Bursztyn
et al., 2020). Therefore, it is important to detect
fake news for these specific news domains, e.g., pol-
itics (Wang, 2017; Jin et al., 2017), health (Bang
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et al., 2021; Shi et al., 2020). Some researchers
pay attention to fake news detection in the influen-
tial news domains by modeling each domain sepa-
rately (Wang, 2017; Allcott and Gentzkow, 2017;
Bovet and Makse, 2019; Dai et al., 2020; Cui et al.,
2020; Zhou et al., 2020; Shang et al., 2022). How-
ever, a single-domain dataset could only contain
limited data, e.g., the PolitiFact dataset of the politi-
cal domain only has 948 samples (Shu et al., 2020).
Fortunately, news pieces in different domains are
correlated (Nan et al., 2021; Silva et al., 2021), so
it is promising to exploit data of other domains to
improve performance for a target domain.

Recently, some works (Wang et al., 2018; Silva
et al., 2021; Nan et al., 2021) simultaneously model
various domains to improve the overall perfor-
mance of all domains. However, these multi-
domain methods suffer from a serious seesaw phe-
nomenon which could cause the performance of
some domains to be improved at the cost of hurt-
ing the performance of other domains (Tang et al.,
2020). For example, EANN (Wang et al., 2018)
performs quite well in Military (with f1-score of
0.9274), whereas the results is not satisfactory in
Politics (with f1-score of 0.8705) (Nan et al., 2021).
Moreover, it is hard to guide these multi-domain
models to improve the performance of a specific
target domain due to the lack of a target-oriented
design. In this paper, we focus on exploiting news
pieces of other domains to improve the detection
performance of a certain target domain, called
cross-domain fake news detection, which can
bring additional gains for target domains compared
to multi-domain methods. The differences among
single-domain, multi-domain, and cross-domain
fake news detection are shown in Figure 1. To
solve cross-domain fake news detection, we adopt
two key ideas:

Transfer domain-level knowledge. It is neces-
sary to transfer knowledge from multiple domains
because news pieces in different domains are cor-
related. Moreover, to alleviate the seesaw phe-
nomenon, improving the generalization ability of
a multi-domain model, which can adapt fast to the
target domain is necessary.

Transfer instance-level knowledge. The trans-
ferability varies from instance to instance. For
example, “A politician claimed COVID-19 is less
lethal than flu” and “New York Officials welcome
immigrants, legal or illegal” are two different news
pieces of politics. The former is more relevant to

health while the latter is irrelevant. In other words,
the former is more transferable. Therefore, it is
important to quantify the transferability of source
instances, in order to decrease the impact of irrele-
vant instances.

Along this line, we propose a Domain- and
Instance-level Transfer framework for Fake News
Detection (DITFEND). To transfer domain-level
knowledge, we exploit data from multiple domains
to train a general model from the meta-learning
perspective, which contains common knowledge
and can adapt fast to a specific domain. To transfer
instance-level knowledge, we first learn a domain-
adaptive language model which is endowed with
characteristics of the target domain. To weigh the
contribution to the target domain of every instance
in source domains, we adopt an index, perplexity
of the domain-adaptive language model, to quantify
the transferability of these instances. Because in in-
formation theory perplexity can measure how well
a probability model predicts an instance, in other
words, low perplexity on a news piece indicates
that the instance is highly related to the knowledge
contained in the language model. Finally, we adapt
the general model with instances from the target do-
main and weighted instances from source domains,
in order to achieve satisfying performance on the
target domain.

The main contributions of this paper can be sum-
marized as follows:

• We investigate the importance of cross-
domain fake news detection with multiple
sources for target domains for the first time.

• We propose a Domain- and Instance-level
Transfer Framework to improve fake news
detection of target domains.

• We evaluate our proposed DITFEND on both
English and Chinese real-word fake news
datasets, and experiments demonstrate the ef-
fectiveness of DITFEND.

2 Related Work

2.1 Fake News Detection
Fake news detection aims at automatically classi-
fying a news piece as real or fake. Existing meth-
ods can be generally grouped into two clusters:
social-context-based methods and content-based
methods (Shu et al., 2017). For social-context-
based methods, some analyze propagation pat-
terns to mine structural signals for fake news de-
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tection (Jin et al., 2014; Liu and Wu, 2018; Shu
et al., 2019; Mosallanezhad et al., 2022; Naumzik
and Feuerriegel, 2022), others use the wisdom of
crowds, such as emotion and stance, to detect fake
news (Zhang et al., 2021; Jin et al., 2016), and
Sheng et al. (2022) captures the environmental
signals to detect fake news posts. For content-
based methods, some extract evidence from ex-
ternal sources (Vlachos and Riedel, 2014; Shi and
Weninger, 2016; Chen et al., 2022; Xu et al., 2022;
Sheng et al., 2021), while others only analyze
news itself and focus on better constructing fea-
tures (Przybyla, 2020; Wang et al., 2018), which is
within the scope of our research.

Since real-world news platforms categorize news
pieces by topic into various domains, some re-
searchers pay attention to the fake news detection
performance of each domain, especially for that
with serious societal effects. Some only take one
specific domain into consideration and perform
single-domain fake news detection (Wang, 2017;
Allcott and Gentzkow, 2017; Bovet and Makse,
2019; Dai et al., 2020; Cui et al., 2020; Zhou et al.,
2020; Shang et al., 2022), however, they ignore use-
ful information from other domains. Some methods
simultaneously model various domains to improve
the overall performance of all domains (multi-
domain fake news detection) (Wang et al., 2018;
Silva et al., 2021; Nan et al., 2021; Zhu et al., 2022),
however, due to the seesaw phenomenon, the per-
formance on some target domains suffer from de-
generation. Huang et al. (2021) and Mosallanezhad
et al. (2022) propose to use a domain adaptation
strategy for cross-domain fake news detection, how-
ever, they only transfer knowledge from one sin-
gle source domain to ensure the model’s detection
performance on the target domain. However, in
the practical scenario, news pieces from multiple
source domains are inherently correlated with the
target domain. It is straightforward to combine all
source domains into one single domain and per-
form cross-domain fake news detection as (Huang
et al., 2021) and (Mosallanezhad et al., 2022) do,
but the improvement may not be significant. Hence,
it is necessary to find a better way to make full use
of all source domains to improve the performance
of a target domain.

2.2 Transfer Learning

Transfer learning aims to leverage knowledge from
a source domain to improve the learning perfor-

General 
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Figure 2: The overall framework of our DITFEND
model. Step I is the general model training procedure,
step II is the transferability quantifying procedure, and
step III is the target domain adaptation procedure. The
three steps correspond to Section 3.2, 3.3 and 3.4 re-
spectively.

mance or minimize the number of labeled examples
required in a target domain (Pan and Yang, 2009;
Zhuang et al., 2020). Recently, transfer learning
has been widely adopted for natural language pro-
cessing (Devlin et al., 2019; Liu et al., 2019; Lewis
et al., 2020), e.g., sentiment classification (Peng
et al., 2018), neural machine translation (Kim et al.,
2019), style transfer (Yang et al., 2018). Mean-
while, meta learning serves as a paradigm that
can be used to improve transfer learning prob-
lems (Hospedales et al., 2021). Benefit from its
ability to integrate prior experience as well as gener-
ality to all domains, meta learning has been widely
adopted in many applications (Li et al., 2018;
Wang et al., 2021). In this paper, we propose a
novel transfer framework based on meta-learning
for cross-domain fake news detection.

3 DITFEND: Domain- and Instance-
Level Transfer for Fake News Detection

3.1 Problem Statement

In the scenario of cross-domain fake news detec-
tion, there is one target domainDT and a collection
ofN source domainsDS = {D1,D2, ...,DN}. For
each domain, we have a collection of news pieces.
For a piece of news P , we pad it with additional
characters [CLS] and [SEP ]. Then we tokenize the
sentence into m tokens {t1, t2, ..., tm}, and encode
it to get the corresponding embedding vector e. To
distinguish between different domains, we denote
eT as the embedding vector of the target domain
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Algorithm 1 General Model Training Procedure.

Input: Given N source domains and one target domain.
Input: The base modelM(θ).
Input: Learning rate α and β.

1. randomly initialize θ
2. while not coverage do:
3. sample batch of training tasks {T1, ..., Tn}
4. for all Td ∈ {T1, ..., Tn} do:
5. Td contains two disjoint sets Dsd and Dqd
6. evaluate loss Lsd(θ) with Dsd
7. compute updated parameter

θd = θ − α ∂L
s
d(θ)

∂θ

8. evaluate loss Lqd(θd) with Dqd
9. end

10. update θ = θ − β∑Td∈{T1,...,Tn}
∂Lq

d
(θd)

∂θ

11. end

and eS ∈ {e1, e2, ..., eN} of source domains.
The core idea of our framework is to leverage

news pieces from all domains to train a target-
adaptive fake news detector. To achieve this, in
the first stage, we train a general model with news
pieces from all domains, such that the model can al-
leviate the seesaw phenomenon (i.e., domain-level
transfer); In the second stage, we evaluate and quan-
tify the transferability of instances from source do-
mains; And in the third stage, we adapt the general
model to the target domain. The overall framework
is shown in Figure 2.

3.2 General Model Training

For domain-level transfer, we take the advantage
of meta-learning and train a general modelM(θ)
to aggregate the knowledge from all the domains.

In each iteration of the parameter update, we
draw a batch of training tasks {T1, ..., Tn}, and for
each task Td ∈ {T1, ..., Tn}, we divide it into two
disjoint sets: a support set Dsd and a query set Dqd.
The model is trained with samples from support set
Dsd and feedback with the corresponding loss Lsd
from Dsd:

Lsd(θ) =
1

ms

ms∑

i=1

−yi log ŷi − (1− yi) log(1− ŷi),

(1)
where ms is the number of the data in the current
support set. We adopt cross-entropy loss because it
is widely used as the optimization goal for binary
fake news detection (Wang et al., 2018; Silva et al.,
2021; Nan et al., 2021). And then we use Lsd to
optimize the parameter of the current task Td via

gradient descent:

θd = θ − α∂L
s
d(θ)

∂θ
, (2)

where α is the learning rate of the training process
within each task, and θd is the optimized model
parameters for the current task Td.

And then the model is tested on samples from
the current query setDqd. The model is improved by
considering how the test error Lqd on Dqd changes
with respect to the parameters:

Lqd(θd) =
1

mq

mq∑

i=1

−yi log ŷi − (1− yi) log(1− ŷi),

(3)
wheremq is the number of data in the current query
set.

In effect, the testing error on Dqd serves as the
training error of the meta-learning process.

After we loop over all tasks in {T1, ..., Tn}, the
base model’s parameters θ can be updated as fol-
lows:

θ = θ − β∇θ
n∑

i=1

Lqi , (4)

where β is the learning rate of the meta-learning
process. The procedure of general model training
is summarized in Alg 1.

3.3 Transferability Quantifying
In order to endow the language model with target
domain knowledge, we perform the Masked Lan-
guage Modeling task on the target domain to get
a domain-adaptive language model. This second
phase of training the language model can bring sig-
nificant performance improvement on the follow-
ing task based on the language model (Gururangan
et al., 2020). And we utilize the domain-adaptive
language model to evaluate the transferability of
source instances.

Domain-adaptive Language Model Training.
Let DT be a dataset of news pieces from the tar-
get domain T , where PT is a news piece in DT
containing n tokens {w1, ..., wn}. We replace 15%
tokens in the input sequence with the [MASK] token,
a random token, or the original token. The model
is required to predict the masked tokens based on
the other tokens in PT . The training objective is
to minimize the cross-entropy loss of the language
model in predicting the masked tokens of the target
data:

min
θm

∑

x∈Dt
Lm(x, θm), (5)
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Figure 3: The D-value of different target language models’ perplexity on the same batch of source instances (Top:
Chinese dataset; Bottom: English dataset).

where θm is the parameters of the language model
(bert-base-uncased for English and bert-base-
chinese for Chinese).

After performing the Masked Language Model-
ing task on the target domain, we can effectively en-
dow the corresponding language model with knowl-
edge of the target domain.

Perplexity is an indicator that can measure how
well a language model predicts a sentence, i.e.,
the higher the probability of prediction is, the bet-
ter the language model is, and the lower the lan-
guage model’s perplexity is. Many researchers use
it to evaluate language models (Belinkov and Glass,
2019; Yogatama et al., 2018). We exploit perplex-
ity from another perspective – the better a language
model can predict a sentence, the better this sen-
tence fits the knowledge endowed in the language
model. Therefore, it is intuitive to compute the per-
plexity of the language model on a given sample to
quantify the sample’s transferability, i.e., the lower
perplexity indicates stronger transferability.

LetDS indicate one of the source datasets, where
PS is a news piece in DS containing m tokens
{w0, w2, ..., wm−1}. We pad it with two tokens,
i.e., [CLS] and [SEP ]. A masked sentence Pmask
is generated by masking a word/character in the
sentence as follows:

Pmask =< [CLS], ..., wi−1, [MASK], wi+1, ..., [SEP ] >,
(6)

where 0 ≤ i ≤ m − 1. Then the target-adaptive

language model is utilized to predict the probability
of the right words wi in the [MASK] position:

prob(wi) =MLM(P, wi). (7)

After we calculated the probability of all the
words in the sentence, the perplexity of the lan-
guage model on the whole sentence is calculated
as follows:

pp = N

√√√√
N−1∏

i=0

1

prob(wi)
. (8)

To show the difference in the target-adaptive
language model when assigning different target
domains, we compute the difference value of differ-
ent target-adaptive language models’ perplexity on
source instances. And we visualize the distribution
in Figure 3 in detail. From the distribution, we can
see that there exists an obvious difference in both
the Chinese and English datasets.

Finally, we quantify the transferability of in-
stances from source domains as follows:

w = 1/pp, (9)

where w is the indicator of the transferability of the
sample. In this way, we quantify the transferability
of source instances, i.e., assigning bigger weights
to samples with lower perplexity.
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3.4 Target Domain Adaptation
In this section, we aim to adapt the general fake
news detection model to the target domain. In Sec-
tion 3.3, we have assigned each sample in source
domains with a weight value to indicate its transfer-
ability. To make full use of source domain samples,
we re-weigh them based on their transferability,
along with the target domain samples to train the
general model.

We exploit the general model trained via meta-
learning (Section 3.2), and optimize it by minimiz-
ing the cross-entropy loss as follows:

Lce(y, ŷ) = −ylogŷ − (1− y)log(1− ŷ)
L = E(x,y)∼ps(x,y)w(x)Lce(y, ŷ)
+ E(x,y)∼pt(x,y)Lce(y, ŷ),

(10)

where y is the ground truth, ŷ is the predicted label,
and w(x) is the indicator of the transferability of
the instance x obtained in Section 3.3.

4 Experiments

In this section, we aim to answer the following
evaluation questions:

• EQ1: Can DITFEND improve the perfor-
mance of a target domain when coordinates
with different base models?

• EQ2: How effective are domain-level transfer
and instance-level transfer?

• EQ3: Can DITFEND perform well in a real-
world fake news detection scenario?

4.1 Datasets
We evaluate DITFEND on both Chinese and En-
glish datasets. And the statistics of datasets are
listed in Tables 1 and 2.

Table 1: Statistics of the Chinese dataset

Domain Science Military Edu. Disaster Politics

# Fake 93 222 248 591 546
# Real 143 121 243 185 306

Total 236 343 491 776 852

Domain Health Finance Ent. Society All

# Fake 515 362 440 1,471 4,488
# Real 485 959 1,000 1,198 4,640

Total 1,000 1,321 1,440 2,669 9,128

English Dataset. We combine two datasets
(PolitiFact and GossipCop) in FakeNewsNet (Shu
et al., 2020) and COVID (Li et al., 2020) into

Table 2: Statistics of the English Dataset

Domain PolitiFact GossipCop COVID All

# Fake 420 4,947 1,317 7,483
# Real 528 16,694 4,750 22,864

Total 948 21,641 6,067 30,347

an English dataset, which contains three domains,
namely PolitiFact, GossipCop and COVID.

Chinese Dataset (Nan et al., 2021). multi-
domain fake news detection dataset collected from
Sina Weibo. There are 9 domains in total, which
is Science, Military, Education, Disaster, Politics,
Health, Finance, Entertainment, and Society. In
our experiments, in order to evaluate the impact of
the domain number, we sample 3 domains (Politics,
Health, Entertainment) and 6 domains (Education,
Disaster, Health, Finance, Entertainment, Society)
from the Chinese dataset to construct the other two
multi-domain datasets, i.e., Chinese 3-domain and
Chinese 6-domain.

4.2 Baseline Models

In this paper, we focus on textual content-based
fake news detection. Technically, our DITFEND
framework can coordinate with any text-based mod-
els that produce post-representation. Thus, we use
8 representative text-based models as our base mod-
els, which can be divided into three groups: (1) text
classification models: TextCNN (Kim, 2014), Bi-
GRU (Ma et al., 2016), and RoBERTa (Liu et al.,
2019; Cui et al., 2019); (2) transfer learning models:
MMOE (Ma et al., 2018) and MOSE (Qin et al.,
2020); (3) multi-domain fake news detection mod-
els: EANNT (Wang et al., 2018), EDDFN (Silva
et al., 2021), and MDFEND (Nan et al., 2021).
Details about the base models are as follows:

TextCNN (Kim, 2014): Convolutional Neural
Networks (CNNs) have been proven to gain re-
markably strong performance on the task of text
classification. In our experiment, we use filter win-
dows of 1, 2, 3, 5, 10 with 64 feature maps each.

BiGRU (Ma et al., 2016): It is a widely used
models in natural language processing applications.
Different from (Ma et al., 2016), we treat each
piece of news as a sequential input to a one-layer
BiGRU model.

RoBERTa (Liu et al., 2019; Cui et al., 2019): It
is a robustly optimized BERT (Devlin et al., 2019)
pre-trained model. We utilize it to encode tokens
of news content and feed the extracted embedding
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Table 3: Performance comparison of base models with and without DITFEND on English dataset and Chinese
3-domain dataset.

Method

English dataset Ch-3 dataset
target: COVID target: Politifact target: Health target: Politics

F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc
BiGRU 0.7448 0.9114 0.8606 0.7339 0.8213 0.7375 0.8577 0.9367 0.8580 0.8384 0.9032 0.8637

+DITFEND 0.9219 0.9890 0.9501 0.8476 0.9043 0.8477 0.8792 0.9548 0.8795 0.8528 0.9261 0.8772
TextCNN 0.8322 0.9397 0.8955 0.7040 0.8046 0.7064 0.8716 0.9552 0.8720 0.8579 0.9067 0.8859

+DITFEND 0.8642 0.9706 0.9184 0.7913 0.8740 0.7913 0.8878 0.9582 0.8880 0.8563 0.9127 0.8807
RoBERTa 0.9014 0.9770 0.9377 0.7967 0.9078 0.7989 0.8955 0.9641 0.8955 0.8300 0.8948 0.8628

+DITFEND 0.9360 0.9901 0.9578 0.8608 0.9183 0.8609 0.9105 0.9708 0.9105 0.8445 0.9085 0.8725
EANNT 0.8836 0.9751 0.9282 0.7558 0.8612 0.7584 0.9189 0.9787 0.9190 0.8405 0.9074 0.8690

+DITFEND 0.8883 0.9825 0.9310 0.8040 0.9074 0.8046 0.9219 0.9760 0.9220 0.8574 0.9136 0.8854
MMOE 0.9379 0.9883 0.9588 0.8477 0.9408 0.8486 0.9215 0.9639 0.9215 0.8779 0.9388 0.8982

+DITFEND 0.9361 0.9911 0.9600 0.8613 0.9515 0.8615 0.9034 0.9657 0.9035 0.8523 0.9398 0.8766
MOSE 0.9326 0.9879 0.9588 0.8576 0.9447 0.8590 0.9023 0.9683 0.9025 0.8564 0.9138 0.8795

+DITFEND 0.9586 0.9880 0.9712 0.8732 0.9553 0.8732 0.9069 0.9711 0.9070 0.8642 0.9220 0.8865
EDDFN 0.9306 0.9891 0.9547 0.8505 0.9432 0.8509 0.9235 0.9735 0.9235 0.8440 0.9207 0.8702

+DITFEND 0.9401 0.9912 0.9600 0.8720 0.9466 0.8725 0.9245 0.9731 0.9245 0.8486 0.9251 0.8731
MDFEND 0.9331 0.9874 0.9565 0.8473 0.9391 0.8485 0.9419 0.9855 0.9420 0.8555 0.9259 0.8854

+DITFEND 0.9485 0.9934 0.9700 0.8589 0.9500 0.8593 0.9530 0.9856 0.9530 0.8663 0.9368 0.8895

into an MLP to obtain the final prediction. roberta-
base-chinese and roberta-base-uncased (Liu et al.,
2019; Cui et al., 2019) are exploited for Chinese
and English datasets, respectively.

EANNT (Wang et al., 2018): It is a model that
aims to learn event-agnostic features, which uses
a TextCNN module for text representation and
adopts an auxiliary event discriminator for adver-
sarial learning. In our experiments, we only use
the textual branch, and rather than event-level, we
perform domain-level adversarial training (i.e., use
the discriminator to classify different domains) to
learn domain-shared features.

MMOE (Ma et al., 2018) and MOSE (Qin et al.,
2020): These two models are proposed for multi-
task learning. In our experiments, we assume that
fake news in different domains are different tasks,
and use the two models for multi-domain modeling.

EDDFN (Silva et al., 2021): It is proposed for
multi-domain fake news detection, which models
different domains implicitly and jointly preserves
domain-specific and cross-domain knowledge.

MDFEND (Nan et al., 2021): It is a multi-
domain fake news detection model, which utilizes
a domain gate to aggregate multiple representations
extracted by mixture-of-experts for multi-domain
fake news detection.

4.3 Experiment Settings

Training Procedure. I. We use samples from all
domains to train a general model from the meta-
learning perspective. II. We use samples from the
target domain to train a domain-adaptive language

model via Masked Language Modeling task. III.
We calculate the perplexity of the domain-adaptive
language model on samples from source domains,
which is used to re-weigh the samples. IV. We
use samples from the target domain and source
domains (assigned with the corresponding weights)
to train the general model to adapt to the target
domain.

Target domain assignment. In practice, fake
news pieces of Politics, Health, and Finance have
more serious influence. For Ch-3 and Ch-9 dataset,
we choose Politics and Health as the target domain,
respectively. For Ch-6 dataset, we choose Health
and Finance as the target domain,respectively. For
English dataset, we choose PolitiFact and COVID
as the target domain, respectively.

Evaluation Metrics. We treat the fake news
detection problem as a binary classification task.
We report macro F1 score (F1), accuracy (Acc),
and Area Under ROC (AUC). For the online tests,
where the number of fake news is much lower than
real news, we should detect fake news as accu-
rately as possible without misclassifying real news.
Thus, we further report standardized partial AUC
(SPAUCFPR≤0.1).

Implementation Details. We limit the max
length of the sentence to 170 tokens for Chinese,
and 300 tokens for English. Following the set-
tings in (Nan et al., 2021), we tokenized sentences
with jieba3 (for Chinese), nltk (Bird, 2006) (for
English), and embed them with Word2Vec (Le and

3https://github.com/fxsjy/ jieba
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Mikolov, 2014; Mikolov et al., 2013) for BiGRU
and TextCNN. We use RoBERTa and the corre-
sponding tokenizer for other models. For the two
embedding types, we fix the dimension of embed-
dings to 768 for RoBERTa (Devlin et al., 2019)
and 200 for Word2Vec (Le and Mikolov, 2014;
Mikolov et al., 2013). For a fair comparison, we
set the same hyperparameters for all base models.
The MLP (Multi-Layer Perceptron) module used in
these models contains one dense layer (384 hidden
units).

4.4 Performance Comparison (EQ1)

To answer EQ1, the DITFEND framework coordi-
nates with each base model and compares with it re-
spectively on both the Chinese dataset and English
dataset. Experiment results are shown in Table 3
and Table 7 (Appendix A.1). The experimental re-
sults further reveal several insightful observations:

• DITFEND can coordinate with various base
models. From the results compared with these
base models, DITFEND can mostly bring im-
provements of the fake news detection per-
formance on target domains, which indicates
DITFEND has satisfying compatibility.

• The improvement on the English dataset is
bigger than the Chinese dataset. The main rea-
son could be that the English dataset contains
more samples than Chinese dataset, which can
bring benefits for knowledge transfer. During
target domain adaptation, the model can learn
more transferable information about the target
domain.

• We find that for the same target domains
(Health and Politics) in Ch-3 dataset and Ch-9
dataset, the performance of the target domain
in Ch-9 dataset exceeds the former with most
base models, while on the other hand, for the
same target domain (Health) in Ch-6 and Ch-9,
the performances are too close to call, which
indicates that more domains could bring more
transferable knowledge to some extent, but the
number of domain is not proportionate with
performance.

4.5 Analysis (EQ2)

To answer EQ2, we conduct both an ablation study
and a case study. In the ablation study, we evalu-
ate the effectiveness of domain-level transfer and
instance-level transfer respectively; In case study,

we aim to intuitively illustrate that our transferabil-
ity quantifying strategy can pick out related source
news pieces according to one specific domain.

Table 4: Ablation study on Chinese 9-domain dataset
with RoBERTa and EDDFN.

Methods
target: Health target: Politics

F1 AUC Acc F1 AUC Acc

RoBERTa 0.9090 0.9611 0.9090 0.8366 0.9034 0.8637
+DITFEND 0.9115 0.9739 0.9115 0.8775 0.9199 0.8982
w/o meta 0.9096 0.9654 0.9087 0.8557 0.9144 0.8795
w/o sources 0.9100 0.9712 0.9100 0.8687 0.9183 0.8928

EDDFN 0.9379 0.9807 0.9380 0.8478 0.9292 0.8754
+DITFEND 0.9399 0.9821 0.9400 0.8507 0.9308 0.8772
w/o meta 0.9380 0.9810 0.9380 0.8480 0.9295 0.8760
w/o sources 0.9385 0.9815 0.9383 0.8482 0.9302 0.8798

4.5.1 Ablation Study
We evaluate two ablation experiment groups based
on two representative fake news detection base
models to evaluate the effectiveness of different
modules in DITFEND framework. Table 4 shows
the experimental results. To evaluate the effec-
tiveness of domain-level transfer, we replace the
meta-training procedure with classical training and
use the weighted source data and target data to
train the general model to adapt to the target do-
main. From the results, we can see that w/o meta-
training performs worse than the whole DITFEND
framework but better than the original model. To
evaluate the effectiveness of instance-level trans-
fer, we abandon instances from source domains
when performing domain adaptation. The ablation
results show that without instances from source do-
mains, performance on target domains drops a little
bit. Comparing the degree of decline of the two
ablation experiments, we can also conclude that
meta-training procedure brings more boost com-
pared to instance from source domains.

4.5.2 Case Study
To further verify whether our transferability quan-
tifier can pick out useful samples from source
domains effectively, we conduct a case study on
both the Chinese dataset and the English dataset.
For each dataset, we have two assigned target do-
mains (i.e., Health and Politics for Chinese, COVID
and PolitiFact for English). According to Section
3.2, each instance has two different transferabil-
ity indicators depending on two different target
domains. Therefore, we use the corresponding in-
dicator to choose samples relevant to the target
domain, which can illustrate the interpretability of
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instance-level transfer to some extent. Represen-
tative samples are listed in Table 5. Taking Poli-
tics domain (as the target domain) in the Chinese
dataset for example, we successfully pick out some
instances from other domains, which contain some
knowledge related to Politics.

Table 5: Some representative examples selected depend-
ing on Transferability Quantifier. Words or phrases
underlined are some indicators related to the target do-
main.

Target: Health

I. The team will undergo nucleic acid tests in the coming
days as they resume individual training. [entertainment]
II. No one was injured when a test carriage derailed. [disaster]
III. Bask in inflatable dolls caused police cars and ambulances
all out in broad daylight. [society]

Target: Finance

I. It has become the first Tencent smart medical joint
innovation base in China. [health]
II. The central bank claimed to accelerate finance-technology
regulatory framework. [science]
III. There are barriers to electronic use for older people in
digital lifestyle. [society]

Target: Politics

I. Trump adviser urges Taiwan to come forward with ad-
vanced weapons program. [military]
II. Shandong provincial government and Tencent signed a
strategic cooperation agreement. [Finance]
III. Beijing municipal government announces the hukou score
to the society every year. [society]

4.6 Online Tests (EQ3)

To verify the real benefits of DITFEND bringing
to the online system, we conduct online testing
experiments. Different from the offline datasets,
this online dataset is much more skewed (30,977
real: 774 fake ≈ 40:1). The testing set contains
all news pieces in a whole month (ranging from
2021/10/10 to 2021/11/10), and the training set
contains news pieces published before 2021/10/10.
Both the training set and the test set come from the
same online system4. The DITFEND coordinates
with two online baselines: TextCNN and EANN,
respectively. In real-world scenarios, the number
of fake news items is much smaller than real news
items, which means that we should detect as many
fake news items as possible without misclassifying
real news items. In other words, the objective is
to improve the True Positive Rate (TPR) on the
basis of a low False Positive Rate (FPR). Thus, be-
yond AUC and F1, we follow (McClish, 1989; Zhu

4http://www.newsverify.com/os/index.html

et al., 2020) and adopt standardized partial AUC
(SPAUCFPR≤0.1). The online results in Table 6
demonstrate that DITFEND achieves a significant
improvement on AUC and SPAUC against the base-
lines, with greater improvements in SPAUC.

Table 6: Online test performance. The results below are
a relative improvement over the two baseline models.

Improvement on SPAUC AUC

TextCNN +2.07% +1.40%
EANN +3.40% +2.90%

5 Conclusion and Future Work

Conclusion. In this paper, we propose DITFEND,
a Domain- and Instance-level Transfer framework
to improve fake news detection in an influential
domain. For domain-level transfer, we adopt meta-
learning to learn common knowledge across do-
mains, in which way we can learn a general model;
For instance-level transfer, we transform the prob-
lem of transferability evaluation to the task of
character/word prediction by a language model en-
dowed with target knowledge. Experiments on the
Chinese dataset and English dataset demonstrate
the effectiveness of our DITFEND framework over
several fake news detection models. Ablation stud-
ies and case studies further evaluate the effective-
ness and interpretability of each module in DIT-
FEND. Online testing results verified the practical
performance of our DITFEND framework.

Future Work. (1) In this work, the domain la-
bel of the target domain is unknown in advance.
We will investigate how to handle the situation
when the domain label of the target domain and/
or source domains is unknown; (2) Temporal dis-
tribution shift is more challenging, and we plan to
investigate how to adapt fake news detection mod-
els to the data in the future; (3) We will explore
how to select source domains based on the analysis
of transferability between different domains.
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A Supplementary Experiments

A.1 Experiments on Chinese 6-domain and
Chinese 9-domain Dataset

We list our experimental results on the Chinese 6-
domain and Chinese 9-domain datasets in Table
7.

A.2 Experiments on Other Target Domains

In this section, we set other domains, which have
not been chosen as target domains in Section 4,
and evaluate the performance of the proposed DIT-
FEND on these domains. Experimental results are
shown in Table 8.
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Table 7: Performance comparison of base models with and without DITFEND on Chinese 6-domain dataset and
Chinese 9-domain dataset.

Method

Ch-6 dataset Ch-9 dataset
target: Health target: Finance target: Health target: Politics

F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc
BiGRU 0.8626 0.9442 0.8630 0.8254 0.9281 0.8642 0.8868 0.9574 0.8870 0.8356 0.9119 0.8590

+DITFEND 0.8991 0.9676 0.8992 0.8431 0.9343 0.8755 0.8789 0.9630 0.8794 0.8749 0.9334 0.8925
TextCNN 0.8832 0.9670 0.8835 0.8646 0.9498 0.8943 0.8768 0.9556 0.8770 0.8561 0.9225 0.8813

+DITFEND 0.8922 0.9631 0.8925 0.8581 0.9436 0.8887 0.9093 0.9742 0.9094 0.8768 0.9235 0.8962
RoBERTa 0.9100 0.9644 0.9100 0.8700 0.9553 0.8989 0.9090 0.9611 0.9090 0.8366 0.9034 0.8637

+DITFEND 0.9175 0.9769 0.9175 0.8768 0.9538 0.9044 0.9115 0.9739 0.9115 0.8775 0.9199 0.8982
EANN 0.9150 0.9761 0.9150 0.8621 0.9483 0.8906 0.9150 0.9762 0.9150 0.8705 0.9176 0.8918

+DITFEND 0.9224 0.9767 0.9225 0.8538 0.9466 0.8918 0.9250 0.9797 0.9250 0.8822 0.9367 0.9035
MMOE 0.9260 0.9754 0.9260 0.8546 0.9501 0.8887 0.9364 0.9774 0.9365 0.8620 0.9314 0.8842

+DITFEND 0.9271 0.9756 0.9271 0.8611 0.9563 0.8906 0.9199 0.9655 0.9200 0.8633 0.9357 0.8860
MOSE 0.9118 0.9720 0.9120 0.8639 0.9500 0.8921 0.9179 0.9700 0.9160 0.8673 0.9388 0.8918

+DITFEND 0.9200 0.9735 0.9200 0.8502 0.9533 0.8830 0.9050 0.9725 0.9050 0.8681 0.9422 0.8972
EDDFN 0.9280 0.9774 0.9280 0.8456 0.9436 0.8830 0.9379 0.9807 0.9380 0.8478 0.9292 0.8754

+DITFEND 0.9350 0.9821 0.9350 0.8801 0.9434 0.9019 0.9399 0.9821 0.9400 0.8507 0.9308 0.8772
MDFEND 0.9430 0.9851 0.9430 0.8749 0.9610 0.9023 0.9425 0.9846 0.9425 0.8774 0.9370 0.8994

+DITFEND 0.9451 0.9876 0.9450 0.8800 0.9649 0.9100 0.9500 0.9864 0.9500 0.8986 0.9541 0.9181

Table 8: Performance comparison (f1-score) of base models with and without DITFEND when assigning other
target domains on Chinese 9-domain dataset.

target domain science military Edu. Disaster Politics Health Finance Ent. Society
BiGRU 0.7269 0.8724 0.8138 0.7935 0.8356 0.8868 0.8291 0.8629 0.8485

+DITFEND 0.8061 0.8604 0.9089 0.8017 0.8749 0.8789 0.8665 0.8840 0.8483
TextCNN 0.7254 0.8839 0.8362 0.8222 0.8561 0.8768 0.8638 0.8456 0.8540

+DITFEND 0.7283 0.8882 0.8829 0.8301 0.8768 0.9093 0.8665 0.8840 0.8769
RoBERTa 0.7777 0.9072 0.8331 0.8512 0.8366 0.9090 0.8735 0.8769 0.8577

+DITFEND 0.8107 0.9129 0.8384 0.8574 0.8775 0.9115 0.8889 0.8889 0.8881
EANNT 0.8225 0.9274 0.8624 0.8666 0.8705 0.9150 0.8710 0.8957 0.8877

+DITFEND 0.8271 0.9419 0.8582 0.9060 0.8833 0.9250 0.8833 0.9100 0.8874
MMOE 0.8755 0.9112 0.8706 0.8770 0.8620 0.9364 0.8567 0.8886 0.8750

+DITFEND 0.8587 0.9186 0.8769 0.8836 0.8792 0.9350 0.8786 0.8923 0.8895
MOSE 0.8502 0.8858 0.8815 0.8672 0.8808 0.9179 0.8672 0.8913 0.8729

+DITFEND 0.8656 0.9121 0.8918 0.8627 0.8897 0.9200 0.8846 0.8987 0.8832
EDDFN 0.8186 0.9137 0.8676 0.8786 0.8478 0.9379 0.8636 0.8832 0.8689

+DITFEND 0.8061 0.8834 0.8887 0.8855 0.8492 0.9399 0.8647 0.8889 0.8754
MDFEND 0.8301 0.9389 0.8917 0.9003 0.8865 0.9400 0.8951 0.9066 0.8980

+DITFEND 0.8426 0.9419 0.9091 0.9145 0.8895 0.9550 0.8984 0.9100 0.8991
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A.3 Experiments on New Target Domains
In this section, we perform experiments to exclude
target domain data when training the general model,
in order to testify how our proposed framework
performs when the target domain is unseen during
general model training procedure.

We show the experimental results in Table 9
and Table 10. From the experimental results, we
can find that our framework DITFEND can bring
significant improvements to all domains.
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Table 9: Performance comparison of base models with and without DITFEND on English dataset and Chinese
3-domain dataset when the target domain is unseen during meta-training procedure.

Method

English dataset Ch-3 dataset
target: COVID target: Politifact target: Health target: Politics

F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc
BiGRU 0.7448 0.9114 0.8606 0.7339 0.8213 0.7375 0.8577 0.9367 0.8580 0.8384 0.9032 0.8637

+DITFEND 0.8949 0.9650 0.8950 0.8406 0.9052 0.8406 0.8746 0.9609 0.8750 0.8633 0.9316 0.8889
TextCNN 0.8322 0.9397 0.8955 0.7040 0.8046 0.7064 0.8716 0.9552 0.8720 0.8579 0.9067 0.8859

+DITFEND 0.8549 0.9658 0.9042 0.7851 0.8632 0.7850 0.8949 0.9650 0.8950 0.8587 0.9615 0.8810
RoBERTa 0.9014 0.9770 0.9377 0.7967 0.9078 0.7989 0.8955 0.9641 0.8955 0.8300 0.8948 0.8628

+DITFEND 0.9305 0.9800 0.9509 0.8493 0.9335 0.8497 0.9250 0.9743 0.9250 0.8302 0.9027 0.8655
EANNT 0.8836 0.9751 0.9282 0.7558 0.8612 0.7584 0.9189 0.9787 0.9190 0.8405 0.9074 0.8690

+DITFEND 0.9507 0.9896 0.9667 0.8664 0.9597 0.8671 0.9200 0.9768 0.9200 0.8615 0.9177 0.8889
MMOE 0.9379 0.9883 0.9588 0.8477 0.9408 0.8486 0.9215 0.9679 0.9215 0.8779 0.9388 0.8982

+DITFEND 0.9356 0.9907 0.9586 0.8542 0.9482 0.8555 0.9299 0.9735 0.9300 0.8659 0.9331 0.8896
MOSE 0.9326 0.9879 0.9588 0.8576 0.9447 0.8590 0.9023 0.9683 0.9025 0.8564 0.9138 0.8795

+DITFEND 0.9547 0.9889 0.9692 0.8725 0.9528 0.8728 0.9010 0.9685 0.9012 0.8568 0.9137 0.8812
EDDFN 0.9306 0.9891 0.9547 0.8505 0.9432 0.8509 0.9235 0.9735 0.9235 0.8440 0.9207 0.8702

+DITFEND 0.9383 0.9899 0.9586 0.8721 0.9466 0.8728 0.9150 0.9762 0.9150 0.8441 0.9337 0.8663
MDFEND 0.9331 0.9874 0.9565 0.8473 0.9391 0.8485 0.9419 0.9855 0.9420 0.8555 0.9259 0.8854

+DITFEND 0.9482 0.9932 0.9659 0.8599 0.9503 0.8613 0.9550 0.9877 0.9550 0.8507 0.9442 0.8772

Table 10: Performance comparison of base models with and without DITFEND on Chinese 6-domain dataset and
Chinese 9-domain dataset when the target domain is unseen during meta-training procedure.

Method

Ch-6 dataset Ch-9 dataset
target: Health target: Finance target: Health target: Politics

F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc
BiGRU 0.8626 0.9442 0.8630 0.8254 0.9281 0.8642 0.8868 0.9574 0.8870 0.8356 0.9119 0.8590

+DITFEND 0.8875 0.9548 0.8875 0.8400 0.9295 0.8710 0.8700 0.9612 0.8715 0.8541 0.9305 0.8816
TextCNN 0.8832 0.9670 0.8835 0.8646 0.9498 0.8943 0.8768 0.9556 0.8770 0.8561 0.9225 0.8813

+DITFEND 0.8901 0.9608 0.8902 0.8547 0.9431 0.8814 0.8854 0.9715 0.8855 0.8650 0.9230 0.8879
RoBERTa 0.9100 0.9644 0.9100 0.8700 0.9553 0.8989 0.9090 0.9611 0.9090 0.8366 0.9034 0.8637

+DITFEND 0.9249 0.9666 0.9250 0.8781 0.9347 0.9057 0.9149 0.9723 0.9150 0.8999 0.9294 0.9181
EANNT 0.9150 0.9761 0.9150 0.8621 0.9483 0.8906 0.9150 0.9762 0.9150 0.8705 0.9176 0.8918

+DITFEND 0.9184 0.9753 0.9184 0.8789 0.9649 0.9094 0.9196 0.9676 0.9196 0.8733 0.9178 0.8940
MMOE 0.9260 0.9754 0.9260 0.8546 0.9501 0.8887 0.9364 0.9774 0.9365 0.8620 0.9314 0.8842

+DITFEND 0.9145 0.9732 0.9150 0.8548 0.9503 0.8888 0.9200 0.9663 0.9200 0.8496 0.9459 0.8843
MOSE 0.9118 0.9720 0.9120 0.8639 0.9500 0.8921 0.9179 0.9700 0.9160 0.8673 0.9388 0.8918

+DITFEND 0.9110 0.9725 0.9112 0.8640 0.9512 0.8925 0.9048 0.9715 0.9049 0.8540 0.9386 0.8713
EDDFN 0.9280 0.9774 0.9280 0.8456 0.9436 0.8830 0.9379 0.9807 0.9380 0.8478 0.9292 0.8754

+DITFEND 0.9299 0.9745 0.9300 0.8471 0.9497 0.8868 0.9399 0.9768 0.9400 0.8240 0.8951 0.8596
MDFEND 0.9430 0.9851 0.9430 0.8749 0.9610 0.9023 0.9425 0.9846 0.9425 0.8774 0.9370 0.8994

+DITFEND 0.9450 0.9900 0.9450 0.8792 0.9486 0.9057 0.9600 0.9892 0.9600 0.8713 0.9452 0.8947
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Abstract

Machine-learning-as-a-service (MLaaS) has at-
tracted millions of users to their splendid large-
scale models. Although published as black-box
APIs, the valuable models behind these ser-
vices are still vulnerable to imitation attacks.
Recently, a series of works have demonstrated
that attackers manage to steal or extract the
victim models. Nonetheless, none of the previ-
ous stolen models can outperform the original
black-box APIs. In this work, we conduct un-
supervised domain adaptation and multi-victim
ensemble to showing that attackers could poten-
tially surpass victims, which is beyond previous
understanding of model extraction. Extensive
experiments on both benchmark datasets and
real-world APIs validate that the imitators can
succeed in outperforming the original black-
box models on transferred domains. We con-
sider our work as a milestone in the research
of imitation attack, especially on NLP APIs,
as the superior performance could influence
the defense or even publishing strategy of API
providers.

1 Introduction

Task-oriented NLP APIs have received tremen-
dous success, partly due to commercial cloud ser-
vices (Krishna et al., 2019; Wallace et al., 2020).
The enormous commercial benefit allures other
companies or individual users to extract the back-
end decision models of these successful APIs.
Some recent works have demonstrated that many
existing NLP APIs can be locally imitated or ex-
tracted (Krishna et al., 2019; Wallace et al., 2020;
Guo et al., 2022), violating the intellectual prop-
erty (IP) of NLP APIs. Equipped with recent ad-
vanced models pre-trained on large-scale corpus, it
is getting easier to train a decent attack model with
limited training samples retrieved from victims (He
et al., 2021a).

∗Most of the work was finished when the first author was
at ANU and Data61 CSIRO.

Despite their success, there are still a series of
restrictions on current attack paradigm. The first
restriction is that attackers and victims are trained
and evaluated under the same domain. Although
such setting simplifies the comparison of utility and
fidelity between victim and attack models, it is less
likely to be the case in real world. Generally, attack-
ers and victims do not, at least not willing to, share
their in-house datasets to the public. Moreover,
the competition between attackers and victims lies
in their performance on the application scenarios
(transferred domains), which vary by customers not
API providers. The second restriction is that tradi-
tional model extraction only refers a single victim
model, and none of the previous works manage to
build the extracted models that can surpass the orig-
inal black-box APIs (Tramèr et al., 2016; Krishna
et al., 2019; Wallace et al., 2020). Aggregating the
strength from diverse victims, however, can poten-
tially benefit the performance of attackers. This
may further enable the attack model to acquire a
superior performance, in the best case, even sur-
passing all the corresponding victim models.

Based on the above analysis, we are motivated to
address their restrictions by i) conducting imitation
attacks on a transferred domain and ii) utilizing
multiple victim ensemble. Our approach integrates
unsupervised domain adaptation and model ensem-
ble into the imitation attack. We conduct experi-
ments on two representative NLP tasks, namely sen-
timent classification (Lyu et al., 2020) and machine
translation (Wallace et al., 2020). We investigate
the attack performance on both the locally simu-
lated victim models and publicly available com-
mercial NLP APIs. Our results demonstrate that
the attackers could potentially achieve better per-
formance than victims in the transferred domains
and utilizing multiple victim models further im-
proves the performance of the attack models. For
those target domains that are relatively far from
victims’ source domains, e.g., sentiment analysis
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models on movie review domain to financial docu-
ment domain, the performance improvement of the
imitation model could be further amplified.

Overall, our empirical findings exacerbate the
potential risk concerns of public API services, as
malicious companies could provide a better service
in their specific domains by integrating several pub-
licly available APIs. Moreover, the new services
generally could cost far less than any of the original
victim services or the wage paid to human annota-
tors. The imitation attack not only infringes the IP
of victim companies by misusing the predictions of
their APIs, but also potentially corrupts the MLaaS
market by publishing new APIs, with higher perfor-
mance but lower price. We believe that explicitly
exposing the new imitation attack paradigm would
arouse significant attentions in the research commu-
nity and encourage companies to reconsider their
strategies of publishing API services.

2 Related Work

2.1 Model Imitation Attack

Model imitation attack (also referred to as model
“extraction” or “stealing”) has been studied for sim-
ple classification tasks (Tramèr et al., 2016), vision
tasks (Orekondy et al., 2019), NLP tasks (Krishna
et al., 2019; Wallace et al., 2020), and etc. Gener-
ally, model imitation attack aims to reconstruct a
local copy or to steal the functionality of a black-
box API. If the reconstruction is successful, the
attacker has effectively stolen the intellectual prop-
erty. Previous works on imitation attack (Krishna
et al., 2019; Wallace et al., 2020) mainly focus
on how to imitate a model with performance ap-
proximate to the victim API in the source domain.
Whether a more powerful attacker can steal a model
that is better than any victim API in new domains
is largely unexplored.

2.2 Unsupervised Domain Adaption

Domain adaptation is a task of adapting a pre-
trained model on a source domain to a target do-
main. It can be fulfilled in two mechanisms: su-
pervised adaptation and unsupervised adaptation.
The former can achieve an outstanding perfor-
mance with a small amount of in-domain labeled
data (Daumé III, 2007; Ben-David et al., 2007).
In contrast, the unsupervised domain adaptation
(UDA) (Miller, 2019; Ganin and Lempitsky, 2015)
does not require ground-truth labels in the target
domain, hence is more challenging but attractive.

This work is under the umbrella of UDA fam-
ily (Wang et al., 2021; Miller, 2019). We differenti-
ate our work from other UDA works in terms of the
intent. Other UDA works aim to improve the mod-
els in both source domains and target domains si-
multaneously, while our proposed imitation attack
mainly focuses on optimizing the adapted attack
models merely in target domains. We exploit UDA
from a dark side, where one can leverage domain
adaptation to violate IP of commercial APIs, but
benefit from such violations.

2.3 Ensemble for Knowledge Distillation

Model imitation attack is related to knowledge
distillation (KD) (Hinton et al., 2015). Emergent
knowledge distillation (Buciluá et al., 2006; Hin-
ton et al., 2015) aims to transfer knowledge from
a large teacher model to a small student model for
the sake of model compression. By encouraging
the student model to approximate the behaviors of
the teacher model, the student is able to imitate the
teacher’s behavior with minor quality loss but more
efficient inference (Furlanello et al., 2018; Dvornik
et al., 2019; Anil et al., 2018).

However, model imitation differs from distilla-
tion in terms of data usage. Particularly, the vic-
tim’s (i.e., teacher’s) training data is usually un-
known as the victim API is deployed in a black-
box manner. Thus, malicious users tend to consider
unlabeled queries more likely to be collected from
other domains (Xie et al., 2020) or generated from
pre-trained generative models (Ravuri and Vinyals,
2019; Kumar et al., 2020; Besnier et al., 2020). Our
work considers a more realistic setting, as victim
and attack models are under different domains and
express distinctive interests.

On the other hand, with the development of
multi-task learning, multi-teacher distillation has
been proposed, which is targeted at distilling mul-
tiple single-task models into a single multi-task
model (Tan et al., 2019; Clark et al., 2019; Saleh
et al., 2020). These lines of works lie in the spirit
of improving model performance and encouraging
parameter reduction via knowledge distillation.

The dichotomy between our work and previous
works is we are interested in an ensemble distilla-
tion of single-task models, where all teachers and
the student work on the same task, but could be in
different domain. The gist of this approach aims
to leverage the collective wisdom to obtain a better
student outperforming its teachers, which is sim-
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Figure 1: The workflow of the imitation attack and its harm. The attacker labels queries (x) using multiple victim
APIs, and then trains an attack model on the resulting data. Finally, the attacker could publish a new API service,
which could become a competitor of the victim services, thus infringing intellectual properties and eroding MLaaS
market shares of the victim services.

ilar to the ensemble learning (Opitz and Maclin,
1999). However, ensemble learning focuses more
on the aggregation of the predictions of different
models at the inference stage, whereas our pro-
posed method not only gathers the inputs and their
predictions, but also trains a new model on the
input-prediction pairs.

3 Imitation Attack Paradigm

In this section, we first explain the problem and
motivation of imitation attack (IMA) under domain
adaptation setting. Then, we connect our IMA
practice with a corresponding domain adaptation
theory (Ben-David et al., 2010; Wang et al., 2021).
After that, we introduce a multi-victim ensemble
methodology for IMA. Finally, we explain the ratio-
nality of a family of existing defense technologies
under the domain adaptation theory.

3.1 Problem Statement

In the real world, attackers may be interested in
their own new business, e.g., a new classification
or machine translation system in a new domain.
Generally, the attackers possess their own training
samples, X = {x1, x2, · · · , xN}, while the oracle
labels Y = {y1, y2, · · · , yN} of these samples are
not yet labeled. In order to train a model with
the least cost of annotation, attackers access the
publicly available commercial APIs for the target
task T . Moreover, the attackers could inquire mul-
tiple APIs for further performance improvement.
The underlying models of the attacked APIs are

K victim models, V = {h(1)v , h
(2)
v , · · · , h(K)

v }. As
illustrated in Figure 1, our attack can be formulated
as a two-step process:

1. The attacker queries the k-th vic-
tim model h

(k)
v with samples in X ,

and retrieves corresponding labels
Y(k) = {h(k)v (x1), h

(k)
v (x2), · · · , h(k)v (xN )}.

2. The attacker learns an imitation (attack) model
ha(x) based on the queries and concatenated
retrieved labels, ⟨X ,Y(k)⟩|Kk=1.

As the attacking process involves teaching a local
model by imitating the behavior of the victim mod-
els, we put this attack process under the umbrella
of imitation attack. The motivation of such attack
paradigm is twofold:

• Firstly, querying commercial APIs generally
costs far less than hiring human annotators.
Therefore, the price for training the attack
models using imitated labels is competitive
in the market;

• Secondly, the attackers are potentially able to
outperform the victims in terms of utility. As
demonstrated in Section 5, domain adaptation
and multi-victim ensemble further enhance
the attacker performance.

We believe that both price and performance ad-
vantages would lure companies or individuals to
imitation attack.
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3.2 Training for Imitation Attack

In imitation attack, the attacker utilizes the labels
from victim APIs for model training. Given a vic-
tim model hv(x), the attacker model ha(x) imitates
the behavior of victim model by minimizing the
prediction error on the target domain T ,

min
ha

Ex∼T [L(ha(x), hv(x))] . (1)

On the other hand, we assume that the victim
model has learned from oracle annotations y in
another source domain S , although those labels are
never used for training attacker in our IMA. The
loss for training victim model is

min
hv

Ex∼S [L(hv(x), y)] , (2)

where L(·, ·) is the loss function. In practice, we
use cross entropy as loss functions for training both
the victim and attack models. Note that jointly
optimizing Equation 1 and Equation 2 can derive
the unsupervised domain adaptation loss in (Miller,
2019; Ganin and Lempitsky, 2015). However, our
approach optimizes victim and attack models in ab-
solutely separate steps, as victim models and their
training processes are black-box to the attackers.

3.3 Imitation Attack as Domain Adaptation

We connect our new IMA paradigm with domain
adaptation theory. The error of the attacker is mea-
sured by attacker risk ϵa(h, ha) := Ex∼T [|h(x)−
ha(x)|]. According to domain adaptation the-
ory (Ben-David et al., 2010; Wang et al., 2021),
the upper bound of the attacker risk is

ϵa(h, ha) ≤ ϵv(h, hv) + 2d(P sX , P
t
X) (3)

+ min
T ∈{P sX ,P tX}

Ex∼T [|hv(x)− ha(x)|] ,

where d(P sX , P
t
X) is the total variation between the

distributions of source and target domains, which
is a constant determined by domains of the datasets
used by the victim and attacker. The first term,
ϵv(h, hv) := Ex∼S [|h(x) − hv(x)|], with oracle
decisions y = h(x), is the victim risk on the source
domain. It is optimized during the training of vic-
tim models as Equation 2. The last term is asso-
ciated with imitation training objective as Equa-
tion 1. Therefore, our imitation attack under do-
main adaptation setting is actually optimizing the
upper bound of the attacker risk ϵa(h, ha).

3.4 Multiple Victim Ensemble
Another approach to achieving further performance
improvement is to integrate the results from mul-
tiple APIs. This strategy is well motivated in real-
world imitation attack, as many cloud computing
companies share similar APIs for main-stream NLP
tasks, e.g, Google Cloud and Microsoft Azure both
support sentiment classification and machine trans-
lation. Attackers can improve their performances
by learning from multiple victim APIs. In more
detail, given independentK victim models h(k)v (x),
attackers can take the average advantage of all vic-
tim models by,

min
ha

1

K

K∑

k=1

Ex∼T [L(ha(x), h(k)v (x))]. (4)

According to ensemble theories (Breiman, 2001;
Bauer and Kohavi, 1999), the lower generalization
error of an ensemble model depends on i) better
performance of the individual models, and ii) lower
correlation between them. In real-world, compa-
nies are actually i) targeting on API with better per-
formance, and ii) using their own private training
datasets. The effort of these companies towards su-
perior API performance unfortunately exacerbates
these two factors for a successful ensemble model
as an attacker.

3.5 Defending Imitation Attack
Some existing IMA defense strategies (He et al.,
2021a) slightly distort the predictions of victim
models to reduce the performance of attackers,
by replacing hv(x) with noisy h′v(x). The vari-
ance introduced by distortion is ∆(hv, h

′
v) :=

Ex∼S [|hv(x) − h′v(x)|]. As the distortion should
not destroy the utility of victim model, the vari-
ance should be bounded by a small constant δ, i.e.,
∆(hv, h

′
v) ≤ δ. The victim risk, the first term in

(3), is relaxed to ϵv(h, h′v), where

ϵv(h, h
′
v) ≤ ϵv(h, hv) + ∆(hv, h

′
v). (5)

Therefore, the gentle distortion of victim outputs
results in a more relaxed upper bound for optimiza-
tion, which could potentially lead to better results
on defending the imitation attack.

4 Experimental Setup

4.1 Tasks and Datasets
In this paper, we focus on two essential NLP
tasks, classification and machine translation, both
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of which are predicting discrete outputs, and cross
entropy loss is used as the objective in optimization.
For classification tasks, as APIs provide continuous
scores of the predictions, we consider the settings
of soft label (using prediction scores) and hard label
(using predicted categories). In machine transla-
tion, the translation result is a sequence of discrete
words, which are considered as sequential hard
labels. Classification and translation tasks are eval-
uated by accuracy(%) (Schütze et al., 2008) and
BLEU (Papineni et al., 2002), respectively. The
datasets used in our imitation attack experiment are
summarized in Table 1.

Sentiment Classification. Imdb Movie Review
(IMDB) (Maas et al., 2011) is a large-scale movie
review dataset for sentiment analysis. Stanford Sen-
timent (SST) (Socher et al., 2013) is another movie
review dataset with relatively shorter text than
IMDB. Financial Sentiment (FST) (Malo et al.,
2014) provides sentiment labels on economic texts
in finance domain. We use IMDB to train local
victim models and consider SST and FST as target
domains in attack.

Machine Translation. We consider German (De)
to English (En) translation as our testbed. We first
study the attack performance on the local models
trained on a general domain. Specifically, we use
WMT14 (Bojar et al., 2014) to train the victim
models. Then, we investigate the imitation attack
on Law and Koran domains from OPUS (Tiede-
mann, 2012). We utilize Moses1 to pre-process
all corpora, and keep the text cased. A 32K BPE
vocabulary (Sennrich et al., 2016) is applied to all
datasets.

4.2 Victim Models
Locally Simulated NLP Services. We first use
models trained on our local server as local ser-
vices. Our models are trained on datasets in
source domain, i.e., IMDB for sentiment analy-
sis and WMT14 for machine translation. We vary
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) as pre-trained models for classification.
Transformer-base (TF-base) and Transformer-big
(TF-big) (Vaswani et al., 2017) are used as machine
translation architectures, more details about hyper-
parameter settings are described in Appendix A.

Commercial NLP API Services. To investigate
the performance of imitation attack on real-world

1https://github.com/moses-smt/mosesdecoder

commercial NLP APIs, we query and retrieve the
results of victim APIs for both sentiment analysis
and machine translation. Google Cloud API2 and
IBM Cloud API3 are inquired for sentiment analy-
sis. Google Trans4 and Bing Trans5 are used as
translation APIs. In this setting, we assume that dif-
ferent companies have various choices in datasets,
domains, model architectures and training strate-
gies. These settings are invisible to the attackers.

4.3 Imitation Attack Setup
For imitation attack, different from Wallace et al.
(2020), we leverage datasets in other domains
rather than those used for training victim models.
The rationale behind this setting is that i) the own-
ers of APIs tend to use in-house dataset, which
is difficult for attacker to access; ii) attackers are
more interested in their own private dataset, which
is also not visible to others. Therefore, our setting is
closer to the real-world attack scenario. The attack
models are trained based on the labels retrieved
from victim models, and tested on the labels from
the human-annotated sets. We consider SST and
FST as target domains for sentiment analysis. For
machine translation, we use Law and Koran. In
attack, we use BERT for classification. Regarding
machine translation, Transformer-base is used for
simulating local APIs, while mBART (Liu et al.,
2020) for experiments on commercial APIs6. We
also investigate the ensemble models, by concate-
nating all the outputs retrieved from multiple victim
models in training.

5 Experimental Results

In this section, we analyze our experimental re-
sults. Our experiments are designed to answer the
following research questions (RQs),

• RQ1: Are the attack models able to outper-
form the victim models in new domains?

• RQ2: Will the ensemble of victim APIs im-
prove the performance of the attack models?

• RQ3: Do traditional defense methods help
APIs reduce the performance of attackers in
our domain adaptation setting?

2https://cloud.google.com
3https://cloud.ibm.com
4https://translate.google.com/
5https://www.bing.com/translator
6We observe that mBART works better on attacking com-

mercial APIs than Transformers in our preliminary experi-
ments.
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Dataset #Train #Dev #Test Task Domain

IMDB 25,000 25,000 N/A Sentiment Classification Movie Review (long)
SST 6,920 872 1,821 Sentiment Classification Movie Review (short)
FST 1,413 159 396 Sentiment Classification Finance Document

WMT14 4.5M 3,000 N/A Machine Translation General
JRC-Acquis 2M 1,000 1,000 Machine Translation Law
Tanzil 579k 1,000 1,000 Machine Translation Koran

Table 1: Statistic of sentiment classification and machine translation datasets, with number of samples in train, dev
and test sets. The task name and corresponding domain for each dataset are also included.

Sentiment Classification Machine Translation

Model Label Arch. SST FST Label Arch. Law Koran

In Domain SST / FST BERT 91.49 97.72 Law / Koran TF base 38.52 19.49

Victim 1 IMDB BERT 87.92 74.94 WMT14 TF-base 23.33 9.82
Victim 2 IMDB RoBERTa 89.40 80.00 WMT14 TF-big 24.33 10.33

Attacks1 Victim 1 BERT 90.13 83.59 Victim 1 TF-base 23.82 10.04
Attacks2 Victim 2 BERT 90.72 88.76 Victim 2 TF-base 25.48 10.30

Attackm Victim 1+2 BERT 91.57 90.53 Victim 1+2 TF-base 25.74 10.48

Table 2: Experimental results of imitation attack on single and multiple victim models with settings, labels used
for training and model architectures (Arch.). Oracle models are trained on the human-annotated datasets in target
domain and victim models are trained on corpora from source domain. For all attack experiments, we report
the mean results over 5 runs. Attackers using single victim and multiple victims are indicated as Attacks and
Attackm. In domain models are trained on human labeled training sets in the target domain, which could arguably
be considered as upper bounds of those attack models. This experiment focuses on comparing Victim and Attack.

Locally Simulated Experiments. We first con-
duct the experiments of imitation attack on local
models, shown in Table 2. The models trained
on oracle human annotated datasets are much bet-
ter than the victim models, as the later ones are
trained on other domains. All our attack models
outperform the original victim models for both
classification and translation tasks. We attribute
this performance improvement to unsupervised do-
main adaptation. Ensemble models consistently
work better than each of the single model7. For
SST, although using the same architecture, the at-
tack model trained on the ensemble of two victims
surprisingly outperforms the model supervised by
oracle labels. This result also outperforms some
competitive supervised baselines (Tang et al., 2019;
McCann et al., 2017; Zhou et al., 2016). This ob-
servation suggests that, in some scenarios, it is
possible to achieve decent results only based on
some open APIs, without relatively more expensive
human annotations. As a result, some annotators
could lose their working opportunities of labeling

7More discussion on averaging strategies for ensemble the
classification APIs is discussed in Appendix B.

new datasets, and some API services might lose
their market share in new domains or tasks.

Experiments on Commercial APIs. We then
demonstrate the vulnerability of some real-world
commercial APIs to our IMA approach, in Table 3.
For classification task, the attacker uses soft labels,
as i) these APIs provide such scores and ii) attack-
ers using soft labels achieve better performance
than hard attacks in our defense experiments (see
Table 5). For machine translation, only hard label
could be used, as we can only have token sequences
without their perplexity scores from commercial
APIs. In all attacks on classification and translation
APIs, the attackers manage to achieve significantly
better results than the corresponding victim models,
with frighteningly low costs. Combining two com-
mercial APIs generally improves the performance
of the attackers.We observe that commercial APIs
work quite poor on FST, as it belongs to a more
professional domain. However, the performance
of the attacker catches up significantly on FST and
achieves an averaged accuracy of 89.82%, given
poor competitors (victims) both with accuracy less
than 70%. Google+Bing on Law is the only ensem-
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Task # Queries API Cost Victim Attacker Improv.

SST 9,613 Google Cloud $5 84.62 88.26 ± 0.22 +3.64
IBM Cloud Free 87.26 89.17 ± 0.33 +1.91
Google+IBM $5 - 89.75 ± 0.58

FST 1,968 Google Cloud Free 68.35 83.85 ± 1.05 +15.50
IBM Cloud Free 58.73 85.01 ± 0.81 +26.28
Google+IBM Free - 89.82 ± 0.81

Law 2M Google Trans $6,822 30.43 31.99 ± 0.05 +1.56
Bing Trans $3,396 34.22 35.45 ± 0.09 +1.23
Google+Bing $10,218 - 34.94 ± 0.11

Koran 579k Google Trans $1,211 14.31 14.63 ± 0.06 +0.32
Bing Trans $590 13.24 13.71 ± 0.05 +0.47
Google+Bing $1,801 - 15.25 ± 0.09

Table 3: A comparison of the commercial APIs (Victims) with attackers. The improvement (Improv.) of attackers
over victims is given by rows of single models. The estimated cost of the API is based on the price queried in a
single day. For all attack experiments, we report mean and standard deviations of the results over 5 runs.

ble model that fails to surpass all the single model.
We attribute this to the fact that Bing Trans and its
attack model has already achieved a decent result
on Law, outperforming Google Trans with a gap of
3% to 4%.

Estimated Attack Costs. In Table 3, we also
estimate the cost of querying the commercial APIs
as victim models. We find the costs are quite afford-
able to many companies or even individuals, given
the benefit of obtaining high-quality in-domain
classification and MT systems. The price is in ac-
cordance with retrieving the results in a day, using a
single month budget of a single account. The price
could be further decreased, by registering more ac-
counts or using more time. On the other hand, we
estimate that the costs for human to annotate the
datasets are $480.65 (SST), $98.4 (FST), $1.6M
(Law), and $463k (Koran), if we hire annotators
from Amazon Mechanical Turk. The price is de-
cided as 0.05 cents for each classification sample
and 0.8 dollar for each translation sample8. Al-
though the price is arguably floating, we give a
preliminary overview on the costs by human anno-
tators. We find that the cost of human annotation
could be 20 to 150 times higher than querying APIs.
This could become another motivation for attackers
to learn from APIs, instead of human annotators.

Impact of Model Ensemble. We conduct an

8In our preliminary experiment, annotators manage to fin-
ish about 10 classification and 1.5 translation annotations. The
corresponding wages are about $30/hr and $32/hr, higher than
the minimum wage in USA.

SST Law

Model #V Victim Attack Victim Attack

Model A 1 85.39 87.37 20.75 22.60
Model B 1 84.51 86.22 21.01 21.67
Model C 1 86.44 87.70 20.79 21.76
Model D 1 86.60 87.31 20.68 21.80

Model A+B 2 - 88.30 - 22.87
Model A+B+C+D 4 - 89.18 - 22.97

Model Full 1 87.92 88.58 23.33 23.82

Table 4: The comparison of imitation attacks with dif-
ferent model ensembles.

ablation study on the potential performance im-
provement of attacking multiple victim models, in
Table 4. The source domain training datasets are
equally separated into 4 disjoint subsets, coined A,
B, C and D. Then, we train 4 corresponding local
victim models, model A to D, respectively. Model
Full uses the victim models trained on the com-
plete training datasets in the source domains. The
attacker chooses to utilize the combined results of
these victim models for training, e.g., Model A+B
ensembles knowledge from victim A and B. We use
BERT for classification and Transformer-base for
machine translation in this study. Ensemble models
with more victims generally improve the attacker
performance on SST and Law. The ensemble of
multiple weaker models can catch up with those of
full model.

Defense Strategies.
We compare two possible defense strategies on

classification tasks in Table 5. We consider per-
2855



SST FST
Model Soft Hard P 0.1 P 0.2 P 0.5 Soft Hard P 0.1 P 0.2 P 0.5
Victim 1 87.92 87.92 87.94 86.79 78.06 74.94 74.94 75.24 69.27 58.33
Victim 2 89.40 89.40 88.79 87.73 80.71 80.00 80.00 78.08 76.46 65.42
Attacks1 90.44 88.58 90.23 90.07 87.98 82.03 80.25 83.65 83.75 76.41
Attacks2 90.12 90.12 90.49 90.47 88.72 87.85 85.57 88.86 85.16 82.03
Attackm 91.82 90.66 91.44 91.20 90.15 88.86 87.09 89.27 87.34 86.33

Table 5: The comparison of imitation attack results given victims with various defense strategies, soft label (Soft) to
hard label (Hard) and noise perturbation (P) with variance (σ).

turbing the original soft outputs by hard labeling or
adding Gaussian noise n ∼ N (0, σ2), as

h′v(x) = hv(x) + n.

The models utilizing hard labels manage to con-
sistently reduce the performance of the attackers
who use soft labels. Then we compare models
trained on labels with various perturbation (P) by
sampling random noise from Gaussian distribution
with variance σ ∈ {0.1, 0.2, 0.5} (Tramèr et al.,
2016). These experiments allow the noise to flip the
outputs of the original victim models, and more ex-
periments on perturbation without influencing util-
ity of victim models are provided in Appendix C.
We observe that gently disturbing the outputs of
victim models could crack down the attackers to
some extent and larger noise indicates better de-
fense. However, the harm to victims is generally
larger than those to attackers. We attribute this
to noise reduction in training attack model. Over-
all, our new IMA calls for more effective defense
methods in future.

6 Discussion

We consider our imitation attack approach has
achieved outperforming results that challenge the
current understanding of IMA. As a result, API
publishing strategies and defense methodologies
should be converted accordingly.

Suggested Actions. As in domain adaptation
settings, IMA manages to achieve superb perfor-
mance, while attacking models are not able to out-
perform victims in the same domain (Krishna et al.,
2019; Wallace et al., 2020), we suggest API ser-
vices could cover more domains to eliminate the po-
tential performance gain from UDA. Simply harm-
ing the utility of victim models seems not to be a
wise choice for service providers, but merely pro-
viding hard labels without probability scores could
avoid more superior attack performance. Adjusting

the pricing strategies of publishing API services or
adding watermark to API outputs (He et al., 2021b)
could be plausible solutions to avoid the illegal
stealing of the precious APIs of industrial compa-
nies.

Ethical Concerns. We recognize that our work
could be used for malicious purposes, for exam-
ple, a competing company may adopt our attack to
steal a better model for commercial benefits, thus
eroding the market shares of other business com-
petitors. However, the main purpose of our work
is to help commercial cloud services and regula-
tors raise awareness of model theft, and reconsider
how to deploy NLP APIs in a safe manner to avoid
being stolen and exceeded. In order to minimize
the potential negative influence of our work, i) we
will delete our models and retrieved results on our
local server; ii) we will report the vulnerability to
the API providers.

Follow-up Attacks. Recent works have demon-
strated that the extracted model could be used as a
reconnaissance step to facilitate later attacks (He
et al., 2021a; Krishna et al., 2019; Wallace et al.,
2020). For instance, the adversary could use the ex-
tracted model to facilitate private information infer-
ence about the training data of the victim model, or
to construct adversarial examples that force the vic-
tim model to make incorrect predictions. We leave
follow-up attacks that can leverage our imitated
model with better performance to future works.

7 Conclusion

We demonstrate a powerful imitation attack
paradigm which may produce better attack models
that surpasses the imitated models including the
real-world NLP APIs via domain adaptation and
ensemble. We believe such achievements would
potentially influence the price decision and publish-
ing strategies of primary NLP services. We also
take the first step of grounding our new attacking
approach with unsupervised domain adaptation the-
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ory and model ensemble. More broadly, we hope to
arouse prominent concerns on security and privacy
of API services in NLP applications. In future, we
plan to further explore the possibility of detecting
and defending the imitation attack.
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A Hyper-Parameter Settings

In order to have a fair and consistent comparison of experiments, we utilize the same hyper-parameters
for the same task, as demonstrated in Table 6. They are decided by our preliminary experiments on target
domains. All experiments could be conducted on a single RTX 6000 GPU.

Sent. MT

Learning rate 1e-05 5e-04
Batch size 16 sentences 32k tokens
Optimizer Adam Adam
Epoch 50 40
Max length 256 1024
Warm-up - 4000 steps

Table 6: Hyper-parameter used for sentiment analysis (Sent.) and machine translation (MT).

B Comparison of Ensemble Strategy

In this section, we compare two ensemble methods for sentiment classification, i) concatenating the
training samples (Concat.) and ii) averaging the prediction scores (Avg.). Both ensemble strategies are
competitive to the other, as demonstrated in Table 7. As we are not able to acquire scores of each token
from MT APIs, we cannot average the results of MT. In our paper, to have a consistent comparison,
Concate. is used in all our ensemble experiments on both classification and translation tasks.

Method Ensemble Accuracy

BERT+RoBERTa Concat. 91.57 ± 0.27
BERT+RoBERTa Avg. 91.58 ± 0.39

Google+IBM Concat. 89.75 ± 0.58
Google+IBM Avg. 89.76 ± 0.42

(a) Ensemble results on SST.

Method Ensemble Accuracy

BERT+RoBERTa Concat. 90.53 ± 0.38
BERT+RoBERTa Avg. 90.89 ± 0.48

Google+IBM Concat. 89.82 ± 0.81
Google+IBM Avg. 88.86 ± 1.22

(b) Ensemble results on FST.

Table 7: The comparison of imitation attack on multiple victims using concatenate samples (Concat.) and average
scores (Avg.).

C Comparison of Defense Strategies

In this section, we discuss the perturbation methods. Given an input sentence x, the probability score by
the victim model is hv(x). To compare the influence of API performance on attack model, we sample
a noise vector n from Gaussian distribution with a variance of σ, i.e., n ∼ N (0, σ2). The perturbed
prediction function is calculated as:

h′v(x) = hv(x) + n

It is worth noting that original victim model prediction is y = argmax(hv(x)), therefore, injecting n
could lead to different prediction y′ = argmax(h′v(x)). Consequently, the utility of victim model can
be corrupted as demonstrated in Table 5. However, such compromise can cause finance and reputation
losses to the API providers in real-world. To avoid these adverse effects, API providers can adopt a
label-preserved policy, where the injected noise n should not flip the originally predicted labels. In other
words, another noise will be sampled, if currently sampled noise changes the prediction of the original
model. The results of such defense strategy is shown in Table 8. As this setting is more conservative, the
performance of this defense is in between the performance of hard label and soft label.
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SST FST
Model Soft Hard P 0.1 P 0.2 P 0.5 Soft Hard P 0.1 P 0.2 P 0.5
Victim 1 87.92 74.94
Victim 2 89.40 80.00
Attacks1 90.44 88.58 90.48 89.96 89.35 82.03 80.25 82.84 81.92 81.72
Attacks2 90.12 90.12 90.30 90.02 89.23 87.85 85.57 88.10 87.29 84.41
Attackm 91.82 90.66 91.24 91.38 91.11 88.86 87.09 89.37 88.25 87.59

Table 8: The comparison of imitation attack results given victims with various defense strategies, soft label (Soft) to
hard label (Hard) and noise perturbation (P) with variance (σ). The predicted labels of victim models are not flipped
in the experiment.
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Abstract

Quantization, knowledge distillation, and mag-
nitude pruning are among the most popular
methods for neural network compression in
NLP. Independently, these methods reduce
model size and can accelerate inference, but
their relative benefit and combinatorial inter-
actions have not been rigorously studied. For
each of the eight possible subsets of these tech-
niques, we compare accuracy vs. model size
tradeoffs across six BERT architecture sizes
and eight GLUE tasks. We find that quan-
tization and distillation consistently provide
greater benefit than pruning. Surprisingly, ex-
cept for the pair of pruning and quantization,
using multiple methods together rarely yields
diminishing returns. Instead, we observe com-
plementary and super-multiplicative reductions
to model size. Our work quantitatively demon-
strates that combining compression methods
can synergistically reduce model size, and that
practitioners should prioritize (1) quantization,
(2) knowledge distillation, and (3) pruning to
maximize accuracy vs. model size tradeoffs.

1 Introduction

As increasingly large models dominate Natural
Language Processing (NLP) benchmarks, model
compression techniques have grown in popularity
(Gupta and Agrawal, 2020; Rogers et al., 2020;
Ganesh et al., 2021). For example, quantization
(Shen et al., 2020; Zafrir et al., 2019; Jacob et al.,
2018) lowers bit precision of network weights to
reduce memory usage and accelerate inference
(Krashinsky et al., 2020). Knowledge distillation
(KD; Hinton et al. (2015)), which trains a student
neural network using the logits (or representations)
of a teacher network, is used widely to transfer
knowledge to smaller models (Sanh et al., 2019;
Jiao et al., 2020; Sun et al., 2019, 2020). Pruning
identifies weights which can be omitted at test time
without significantly degrading performance. Some

pruning methods remove individual weights accord-
ing to magnitudes or other heuristics (Gordon et al.,
2020; Chen et al., 2020; Sanh et al., 2020), while
others remove structured blocks of weights or en-
tire attention heads (Wang et al., 2020; Hou et al.,
2020; Voita et al., 2019; Michel et al., 2019).

Recent work has begun combining these com-
pression methods for improved results. Sanh et al.
(2020), Zhang et al. (2020), and Bai et al. (2021)
have used knowledge distillation with pruning or
low-bit quantization to fine-tune BERT. As practi-
tioners look to combine methods more generally,
new research is needed to compare their empiri-
cal value and study interactions. This work ad-
dresses the questions: (1) Which popular compres-
sion methods or combinations of methods are usu-
ally most effective? (2) When combining methods,
are their benefits complementary or diminishing?

We address these questions by computing ac-
curacy vs. model size tradeoff curves for six pre-
trained BERT sizes fine-tuned on eight GLUE tasks
(Wang et al., 2019b), applying each of eight possi-
ble subsets of quantization-aware-training (QAT),
knowledge distillation (KD), and magnitude prun-
ing (MP). Our main findings are as follows:

1. When methods are applied independently,
QAT yields best accuracy-compression trade-
offs, followed by KD and then MP.

2. Strikingly, we observe no diminishing re-
turns when combining KD with QAT or
MP. Instead, KD mitigates the loss in accu-
racy caused by either method, thereby super-
multiplicatively reducing model size.

3. When used together, QAT and MP amplify
each other’s individual accuracy losses. How-
ever, combining all three methods (i.e., also
using KD) preserves accuracy, allowing 18x
and 11x compression for BERT-LARGE and
BASE respectively.
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2 Methods
In our work, we study three common model com-
pressions: quantization-aware-training, knowledge
distillation, and magnitude pruning. We prioritize
performant, broadly applicable approaches with ac-
cessible implementations, so our findings are most
useful to practictioners. Hyperparameters and ad-
ditional method details are in Appendices A & C.

BERT Architecture Sizes. We test each com-
pression combination across six different BERT
architecture sizes, seeing as they may have differ-
ent compressibilities. These pretrained models are
taken from Turc et al. (2019): LARGE (367 million
params), BASE (134M), MEDIUM (57M), SMALL

(45M), MINI (19M), TINY (8M). Including a range
of sizes makes our findings relevant to practition-
ers or deployment settings without resources for
architectures like LARGE or BASE. Additionally,
using smaller model sizes is a practical baseline to
compare our compression methods against.

Quantization-Aware-Training (QAT). While
most neural networks use 32-bit floats for weights
and activations, recent work has shown promise for
lower precisions. 16-bit floats cause no accuracy
loss for most architectures (Das et al., 2018), and
Zafrir et al. (2019) show that, with quantization-
aware-training (QAT), 8-bit integer (INT8) BERT
mostly preserves GLUE accuracy. The INT8 model
is nearly 4x smaller, and can achieve 2.4-4.0x infer-
ence acceleration with appropriate hardware (Kim
et al., 2021a). As lower precisions harm accuracy
significantly (Shen et al., 2020), we use an 8-bit
BERT with the QAT scheme described by Zafrir
et al. (2019), recapped in the Appendix.

Knowledge Distillation (KD). In KD, we fine-
tune a small student model by optimizing its
weights to mimic the outputs of a teacher model.
We use a common, simple variant of KD, emu-
lating Turc et al. (2019): we use a BERT-LARGE

fine-tuned for three epochs on the GLUE task as
the teacher, and the student is trained to minimize
KL-divergence between its predicted probabilities
and the teacher’s.

To further improve the utility of KD, we adopt
Jiao et al. (2020)’s approach of data augmentation
(DA) for GLUE training datasets. This technique
helps for all tasks, especially the smaller ones (e.g.
MRPC, RTE). Each example is copied 10, 20, or
30 times (more copies for smaller tasks), and each
copy has some of its words replaced with synonyms

(i.e. words with closest GLoVe embeddings). Many
of the copies have altered meanings, but the teacher
is able to adapt by making different predictions.
Before running all of our experiments, we ran a
few trials (on MRPC and QNLI) to confirm that
DA helped with distillation but not without, and so
we only used DA for the KD experiments.

Magnitude Pruning (MP). Several pruning
methods have been used in NLP (Hoefler et al.,
2021). We use unstructured weight pruning, which
can achieve higher sparsities than structured prun-
ing (Renda et al., 2020), and has comparatively
standard implementations.

Magnitude pruning masks the weights with low-
est magnitudes to achieve a target sparsity. As in
Sanh et al. (2020), we iteratively prune weights at a
linear schedule during training after some warmup
steps. Sanh et al. (2020) also propose movement
pruning, in which weights are pruned according to
their gradients during fine-tuning. We found that
movement pruning performs worse than magnitude
at moderate sparsities (40-60%), when accuracy
is retained (corroborated by Sanh et al. (2020)).
As we target accuracy-preserving pruning, we use
magnitude pruning for the experiments in this work.
We prune either 40% or 60% of encoder weights
only, as pruning embedding weights significantly
damages accuracy (Yu et al., 2020).

3 Results
Experiments For six BERT architecture sizes
and eight GLUE tasks1, we tested every possible
subset of compression methods: no compression
(Baseline), QAT, KD, MP, QAT+KD, QAT+MP,
KD+MP, and QAT+KD+MP. For each of 576
experiment settings, we log the max GLUE devel-
opment set accuracy across twelve hyperparameter
configurations and five repetitions of each configu-
ration. In Figure 1, we plot mean GLUE accuracy
across all eight tasks on the y-axis against decreas-
ing model size on the x-axis, for each compres-
sion combination. The curves without pruning in-
clude six points, one for each architecture size from
LARGE to TINY. With pruning, there are twice as
many points, as each architecture is pruned to ei-
ther 40% or 60% encoder sparsity. Results split by
task are available in Appendix Figure A1.

Individually, QAT and KD are most effective.
For all architectures, QAT (blue) reduces model
1 We excluded CoLA and WNLI to reduce experimental bur-
den and due to issues with WNLI (Wang et al., 2019a).
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Figure 1: Mean GLUE accuracy vs. decreasing model size, with curves plotted for each compression combination.
The different points for each curve represent the different BERT architecture sizes, from LARGE down to TINY.

size by 4× while minimally reducing accuracy:
the largest drop is −0.6% for BERT-BASE (sup-
porting Zafrir et al. (2019)), while other architec-
ture sizes are nearly unaffected. KD (orange) does
not reduce a given architecture’s size, but instead
yields a consistent boost to accuracy, especially
for smaller architectures. This upward shift on
the accuracy-model size curve means that larger
models can be downsized more effectively: e.g.,
LARGE’s baseline accuracy is matched by the KD
version of BASE, and KD SMALL outperforms
baseline MEDIUM. Compared to QAT or KD, MP
(green) is only modestly helpful. Typically, 40% of
encoder weights can be removed without much im-
pact, but pruning 60% (i.e., the second point in each
set of two) degrades accuracy. Also, removing 40%
of encoder weights corresponds to a < 40% model
size reduction because we do not prune embedding
weights. Therefore, while MP can be helpful for
LARGE and BASE, it cannot significantly compress
small architectures, which have a higher percentage
of their weights in embeddings.

Used together, KD mitigates accuracy losses
from both QAT and MP. Moving to combi-
nations of compression methods, we find that
the most successful pair combines QAT and KD
(red), which yields QAT’s 4× memory reduction
while retaining the improved accuracy over base-
line from KD. Meanwhile, QAT+MP (purple)

does poorly: though LARGE and BASE can prune
40% of weights while retaining accuracy, when
they are pruned and quantized, they have lower
accuracy than when they are only quantized. This
result suggests that pruning specifically damages
accuracy with quantization: practitioners should
expect additive (or worse) accuracy degradation
when combining QAT and MP. On the other hand,
with KD+MP (brown), 40% weights can be pruned
while retaining the accuracy boost from KD, for
all architectures. Thus, KD mitigates accuracy
losses from both MP and QAT. This result still
holds when we combine all three methods (black).
With QAT+KD+MP, 40% of encoder weights for
LARGE and 60% for BASE (and smaller) can be re-
moved while matching the accuracy of QAT+KD.
In our experiments, KD completely mitigates the
compounding losses from QAT+MP and even im-
proves accuracy. KD enables deeper compression
when practitioners combine methods.

Combining methods yields super-multiplicative
compression ratios. Building on our qualitative
findings, we were interested in quantitative esti-
mates for how much each method allows us to
compress each architecture size. So, we compute
compression ratios, i.e., the maximal size reduction
factor possible while preserving accuracy to within
0.5% of baseline. For example, baseline LARGE

(1341 MB) yields 92.8% accuracy on QNLI, while
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Size QAT KD MP QAT+KD QAT+MP KD+MP QAT+KD+MP

LARGE 1341 3.6× 3.4× 1.7× 12.6× 3.9× 5.8× 18.1×
BASE 438 2.6× 1.8× 1.7× 5.9× 3.1× 2.8× 11.1×
MEDIUM 166 2.9× 2.0× 1.2× 8.0× 4.0× 3.5× 14.1×
SMALL 115 3.6× 2.4× 1.2× 9.4× 4.7× 3.6× 14.1×
MINI 45 3.7× 1.2× 1.1× 4.7× 3.4× 1.8× 7.0×
TINY 18 3.4× 1.0× 0.7× 4.0× 2.2× 1.0× 3.9×

Table 1: Ratios, averaged across all GLUE tasks, measuring the maximum possible size reduction factor of a certain
architecture while within 0.5% of baseline accuracy. Uncompressed sizes are listed in megabytes (MB).

BASE with QAT, KD, and 40% MP (76 MB) is
the smallest model within 0.5% of that, at 92.6%
accuracy. Therefore, BERT-LARGE’s compression
ratio on QNLI is 1341

76 = 17.6×, and averaging this
value across tasks yields a net ratio of 18.1× (top-
right, Table 1). We similarly compute ratios for all
architectures and compression combinations.

As before, QAT usually retains accuracy and
yields a 4× size reduction. However, because there
are a few tasks for which QAT causes a > 0.5% ac-
curacy drop2, the task-averaged compression ratios
for LARGE and BASE of 3.6× and 2.6×. KD also
has high mean compression ratios, because it of-
ten boosts small architectures’ accuracies to match
larger baseline architectures. MP yields 1.7× com-
pression (from 40% pruning) for LARGE and BASE,
and even less for the smaller architectures.

When combined, we observe synergistic com-
pression between QAT and KD. We might expect
strong diminishing returns from combining meth-
ods, but even in their absence, we would expect
independent compression ratios to multiply. Strik-
ingly, though, we often see super-multiplicative
model size reductions with QAT+KD: e.g. BASE,
5.9 > 2.6 · 1.8 = 4.7; MEDIUM: 8.0 > 2.9 · 2.0 =
5.8. For KD+MP, the ratios multiply for LARGE

and BASE. Also, while pruning was originally
ineffective for MEDIUM and smaller, KD+MP
appears to make pruning more effective, again
with super-multiplicative compression (e.g. for
Medium: 3.5 > 2.0 · 1.2 = 2.4). These find-
ings show that KD mitigates the drop in accu-
racy from quantization (Zhang et al., 2020) and
pruning (Sanh et al., 2020), supporting qualita-
tive findings from prior literature. This mitiga-
tion effect, combined with the accuracy boost that
KD provides, yields joint compressions that are
more effective than the sum of their parts. Re-
markably, with all three compressions, we still see

2 Those tasks would be considered to have 1× compression.

super-multiplicative scaling for BASE and smaller
(e.g., BASE: 11.1 > 2.6 · 1.8 · 1.7 = 8.0;
MEDIUM: 14.1 > 2.9 · 2.0 · 1.2 = 7.0). At 18.1×,
LARGE is most compressible, but actually has a
sub-multiplicative ratio, perhaps because the indi-
vidual compressions already work very well.

4 Discussion and Future Work
We examine the relative benefits and interactions
of three widely-used compression methods in NLP:
knowledge distillation, INT8 quantization-aware-
training, and magnitude pruning. Though multiple
techniques are increasingly used simultaneously,
little work has studied the empirical interactions
between them.

Across six architecture sizes and eight GLUE
tasks, we find that INT8 quantization is most ben-
eficial, and combining quantization with KD miti-
gates any of its occasional accuracy drops. Quan-
tization and pruning yield diminishing returns,
with the two methods exacerbating accuracy losses
when used together. However, when all three meth-
ods are combined, KD restores accuracy above
baseline, yielding 18× and 11× net compression
for BERT-LARGE and BASE. We quantitatively
confirm that KD’s model size improvements are
complementary (often super-multiplicative) with
quantization and pruning. Given these benefits,
using larger, more recent GLUE winners as KD
teachers may yield further gains (e.g. ERNIE, Sun
et al. (2021)). We also hope that our observed bene-
fits inspire authors of new compression techniques
to evaluate complementarity with existing methods.

In future work, we hope to measure accuracy vs.
inference time tradeoffs, and compare these results
to our findings on model size. Though there is work
on accelerated inference with INT8 quantization
(Kim et al., 2021b) or pruning (Pool et al., 2021),
it is not clear how these speedups stack. Profiling
compression combinations on specialized hardware
would be an informative avenue to explore next.
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Broader Impacts

As NLP models dramatically scale in size, they rely
increasingly on specialized hardware (e.g. GPUs,
TPUs) to train and deploy them. The manufactur-
ing and energy consumption involved in the us-
age of such devices imposes a significant carbon
footprint (Strubell et al., 2019; Gupta et al., 2021).
Model compression is part of the broader move-
ment towards "Green AI", in which researchers
develop more energy-efficient models with similar
task accuracies in order to reduce usage of compute-
hungry hardware (Schwartz et al., 2020).

By careful empirical study of how to optimally
combine compression methods, we believe our
work takes further steps towards Green AI. In par-
ticular, rather than proposing a single architecture
that achieves a specific tradeoff, we equip practi-
tioners with a set of principles to apply depending
on their needs, hopefully increasing uptake of at
least some subset of compression methods. Apply-
ing our insights to widely-used deployment settings
(speech-to-text, search, etc.) could significantly re-
duce AI’s consumptive footprint.

Though model compression methods can dra-
matically mitigate deep learning’s carbon foot-
print, they may also create opportunities for harm
(Suresh and Guttag, 2021). Specifically, recent
work shows that pruning damages accuracy for mi-
nority classes in the training dataset (Hooker et al.,
2020), and that pruning may change model behav-
ior even when accuracy is preserved (Movva and
Zhao, 2020). Such predictive disparities can lead
to algorithmic harms: e.g., representational harms
for language models, or allocational harms for cer-
tain downstream task predictors (Blodgett et al.,
2020). More work is needed to systematically char-
acterize the relationship between compression and
algorithmic harms.
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A Experiment Details

A.1 Experiment Breakdown

In total, we tested 576 experimental conditions,
each of which involves fine-tuning a model on a
GLUE task. We used eight GLUE tasks: SST-
2, MRPC, STS-B, QQP, MNLI, MNLI-MM,
QNLI, and RTE. We excluded COLA and WNLI
from the pruning experiments to reduce the com-
putational burden (more on the compute budget
below), and because there are some known issues
with WNLI that make it difficult for a fair evalua-
tion (Wang et al., 2019a).

We used six architecture sizes (details about the
architectures are in Table 2), and eight subsets of
compression methods (including the baseline of
no compression). Note that, when we combine
compression methods, there is no concept of order,
because all methods function simultaneously and
independently: QAT simply adds additional oper-
ations after each Linear layer, KD only modifies
the loss, and MP gradually masks more weights.
Therefore, these eight subsets are exhaustive.

There were twice as many pruning experiments
as non-pruning experiments, since each pruning
experiment tested two different sparsity levels3. So,
there were 4 compression subsets without pruning,
4 compression subsets with 40% pruning, and 4
compression subsets with 60% pruning. Overall,
there were 6 · 8 · (3 · 4) = 576 experimental condi-
tions.

A.2 Training & Hyperparameters

For each experiment, we started by initializing the
BERT architecture with pretrained weights from
Turc et al. (2019). We fine-tuned for 3 epochs
(on either the base or augmented GLUE training
set, depending on whether we were performing a
distillation experiment). As is standard for BERT
fine-tuning on GLUE, batch size and LR can have a
significant effect on the results (Devlin et al., 2018;
Turc et al., 2019). For each experimental condi-
tion, we tested three batch sizes ({8, 16, 32}) and
four learning rates ({1e-5, 2e-5, 3e-5, 4e-5} for
LARGE and BASE; {3e-5, 5e-5, 0.0001, 0.0003}
for MEDIUM/SMALL/MINI/TINY). For each hy-
3Actually, we tested three sparsities (also including 80%),
but we only show experiments from 40% and 60% in the
main text. This was because 80% sparse models generally
performed poorly, and fell outside the accuracy-model size
frontier, so they did not affect our results – which focused on
the best possible tradeoffs for each method. We show these
additional results in Appendix C.3.

perparameter combination, we performed five rep-
etitions, so there were 3 · 4 · 5 = 60 total training
runs per experimental condition. We report max
accuracy across these 60 runs rather than taking
an average, as the BERT training on GLUE can
be unstable and lead to poor results a high frac-
tion of the time (Devlin et al., 2018). We use the
public GLUE development sets rather than the offi-
cial test sets, since it wouldn’t have been feasible
to make thousands of submissions to the GLUE
testing portal.

Overall, then, we performed 576 · 60 = 34560
fine-tuning experiments. This was feasible be-
cause the smaller architectures could be fine-tuned
quickly (from an hour for MEDIUM to a few min-
utes for TINY, on the largest GLUE tasks). We per-
formed all experiments on NVIDIA V100 GPUs,
and all told, we would estimate approximately 75K
GPU hours were necessary for our experiments.
As we set a rough budget of 100K GPU hours, this
was the reason why we had to make decisions like
excluding two GLUE tasks (CoLA, WNLI), not
performing data augmentation for non-distillation
experiments, and not performing pretraining distil-
lation; any of these decisions would have ballooned
our experimental burden. We recognize the privi-
lege of having had access to as much GPU time as
we did, and hope that other researchers can benefit
from this thorough empirical analysis.

B Task-Specific Results

In Figure A1, we plot similar curves to Figure 1,
split by each task. The data from Figure 1 are
replicated in the top-left plot. Tasks are ordered by
size (reading left-to-right and then top-to-bottom).
Most tasks have concordant trends with the curves
for average GLUE performance as discussed in the
main text, but there are a couple exceptions.

First, for magnitude pruning, we find that some
tasks experience worse accuracy-size tradeoffs than
baseline when pruned to 40% of weights remain-
ing; this was typically not the case when all task
accuracies are averaged. Specifically, for some
tasks (e.g. SST-2, STS-B, MRPC), pruning signif-
icantly degrades accuracy below baseline. Smaller
BERT architectures are especially harmed, since
they are already under-parameterized compared to
BERT-LARGE and BASE. This finding agrees with
Chen et al. (2020), who find that these particular
GLUE tasks are least prunable while preserving
accuracy (they also use magnitude pruning, but
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Architecture # Layers Hidden Dim. Params (Millions) Size (MB) Avg GLUE

LARGE 24 1024 367 1341 88.47
BASE 12 768 134 438 87.39
MEDIUM 8 512 57 166 85.11
SMALL 4 512 45 115 83.29
MINI 4 256 19 45 81.41
TINY 2 128 8 18 78.10

Table 2: Information on the different BERT architecture sizes we use in our experiments, with pretrained versions
of each size downloaded from (Turc et al., 2019) (in accordance with their license). The “Avg GLUE” column is the
mean GLUE accuracy across the eight tasks included in our experiments.

Figure A1: For each task, dev set accuracy vs. decreasing model size (from >1GB down to 10MB), with curves
plotted for each compression combination. Tasks are ordered by training dataset size (left-to-right). The grey
horizontal line in each plot is the baseline accuracy for BERT-LARGE.

a more compute-intensive version, allowing for
slightly higher sparsities than we report).

Second, we find that for MRPC and RTE, the
curves appear noisier, making some trends hard to
discern. This is for two reasons: one, the tasks
have the smallest training dataset, so they tend to
degrade more in response to pruning (Chen et al.,
2020). Second, we empirically found that these
tasks varied more in their accuracy from run-to-
run than other tasks (perhaps also because of their
smaller training datasets). Thus, the true trends for
different compression methods may be obscured
by lower-confidence accuracy metrics.

C Implementation Details

C.1 Quantization-Aware-Training
In this work, we use quantization-aware-training
(QAT) rather than naive post-training quantization

(PTQ). PTQ quantizes weights after training and
can significantly increase error due to the loss of
precision. Recently, QAT has been more common,
in which the effects of weight quantization are sim-
ulated during training with fake quantization oper-
ations (Jacob et al., 2017). Therefore, at inference
time, the model’s weights are better tailored to ac-
commodate a reduced precision.

We specifically quantize the embedding and lin-
ear modules in our BERT architecture to use INT8
weights, following the symmetric linear quantiza-
tion scheme from Q8BERT (Zafrir et al., 2019).
The following quantization operation is applied to
weights and activations, with scaling factor S and
max value M , to quantize a value x:

Quantize(x | S,M) = Clamp(⌊x ·S⌉,−M,M),

where ⌊·⌉ is the integer rounding function, and
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Clamp(·,−M,M) maps out-of-range values to
−M or M . M is determined by the number of
bits; with 8 bits, for example, we have up to 256
possible quantization levels, so M = 127. Follow-
ing Zafrir et al. (2019), the scaling factor S is set
so that the largest possible value for a weight or
activation matrix gets quantized to M . Thus, for a
weight matrix W , the scale SW is given by

SW =
M

max |W | .

For activations x from a given layer L, the scale
factor Sx is computed as an exponential moving
average of the max activation value during training,

Sx =
M

EMA(maxL |x|)
.

For quantization-aware-training, we add fake
quantization ops to the model’s weight matrices
and activations during the training forward pass,
therefore simulating the effect of quantization on
each layer’s output. However, Quantize(·) is not
differentiable due to the rounding operation, so the
backward pass simply ignores the quantization op
using the straight-through-estimator: ∂xq/∂x = 1⃗.
We model our fake quantization ops off the im-
plementation in Intel’s nlp-architect4 repos-
itory, authored by Zafrir et al. (2019) and others.

C.2 Knowledge Distillation

Knowledge Distillation (KD) aims to transfer the
knowledge from a large teacher model into a
smaller student model: ideally, our student’s predic-
tions will emulate the teacher’s, but with reduced
compute cost. Formally, models trained with KD
learn to minimize LKD, the difference between the
teacher’s and student’s functions fT and fS , across
the training set X :

LKD =
∑

x∈X
L
(
fT (x), fS(x)

)
.

The functions fT (·) and fS(·) include the final
output probabilities, and L(·) measures the cross
entropy between the student and teacher predicted
probabilities (Sanh et al., 2019).

While some approaches perform distillation dur-
ing BERT pretraining, we only distill during task
fine-tuning, which is also common. Focusing on
4https://github.com/IntelLabs/
nlp-architect

fine-tuning was necessary to make our experimen-
tal search space tractable, since BERT pretraining
can take multiple orders of magnitude more com-
pute than fine-tuning. Task-specific distillation is
also more critical to preserving accuracy than pre-
training distillation (Jiao et al., 2020). We follow
Jiao et al. (2020) in augmenting the GLUE datasets
by copying examples and replacing words with
synonyms. By running an ablation, they find that
augmentation is useful for all tasks, and especially
ones with less data (i.e., COLA and MRPC benefit
much more than MNLI). They use different aug-
mentation factors for each dataset, either scaling
up the size by 10, 20, or 30 times. We use the same
values in our work, copied here: {MNLI: 10, QQP:
10, QNLI: 20, SST-2: 20, STS-B: 30, MRPC: 30,
RTE: 30}.

We directly used their script,
data_augmentation.py, from the
TinyBERT5 Github repository. For each
GLUE training dataset, this script generates an
expanded file in the same format, except with
multiple words replaced with synonyms (i.e.,
L2 nearest neighbors from GLoVe embeddings
(Pennington et al., 2014)). We then take our teacher
model (fine-tuned BERT-LARGE on the same
GLUE task) and generate predicted probabilities
for every example in the augmented dataset, which
includes the original sentences and their synonym-
replacements. Note that, when using multiple
synonyms, some of the sentences change meaning,
leading to a substantially different prediction than
the original sentence. This is another reason (in
addition to little observable change in performance
and our compute budget) that we did not use
augmentation for the experiments which did not
use distillation.

C.3 Pruning

We use the magnitude pruning setup from the
nn_pruning Github repository6 (Sanh et al.,
2020). Importantly, because the nn_pruning
implementation of a “pruned” model stores the
weight values along with a dictionary of weights
to be masked, the real model sizes on disk are not
smaller. So, the pruned model sizes that we re-
port are theoretical rather than actual. That said,

5https://github.com/yinmingjun/TinyBERT;
no license visible on Github.

6https://github.com/huggingface/nn_
pruning; license allows commercial and private
use.
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it would be easy to attain a true size reduction if,
for example, the weights were changed to zeroes
and the model file was gzipped.

As in the movement pruning approach, we prune
gradually throughout training. We prune to three
possible sparsity levels: 40%, 60%, or 80% spar-
sity. Specifically, weights are masked on a linear
schedule after 5000 warmup steps, meaning that
a constant number of weights are masked at each
step in order to reach the target sparsity by the end
of training.

For most architectures, the 80% pruning results
were very poor: they caused significant accuracy
degradation, so they did not yield accuracy-model
size tradeoffs that were on the optimal frontier.
These results did not affect our conclusions, so
we removed the 80% sparse points from Figure 1.
We display these results here in the Appendix (Fig-
ure A2), by showing the same plots as Figure A1,
but with the 80% sparse points added to the curves.
There is often a steep accuracy dropoff from 60%
to 80% sparsity, especially for the smaller tasks
(STS-B, MRPC, RTE).

We acknowledge that there are some marginal
improvements on magnitude pruning or other forms
of weight pruning that may yield better results for
some architectures or tasks. For example, Chen
et al. (2020) use iterative magnitude pruning with
multiple rounds of full training to achieve higher
than 40% sparsities without accuracy loss. How-
ever, the goal of our work is not necessarily to
achieve the largest model size reductions possi-
ble, but rather to understand how methods interact;
therefore, we think our conclusions on magnitude
pruning would hold even with slight modifications
to the method.
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Figure A2: Accuracy vs. decreasing model size; same as Figure A1, but with the 80% pruning experiments also
included (i.e., 20% of weights remaining). There is a large dropoff when 80% of weights are pruned compared to
60%, especially for smaller tasks.
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Abstract

Adversarial training, which minimizes the
loss of adversarially perturbed examples, has
received considerable attention. However,
these methods require modifying all model
parameters and optimizing the model from
scratch, which is parameter inefficient and
unfriendly to the already deployed models. As
an alternative, we propose a pluggable defense
module PlugAT, to provide robust predictions
by adding a few trainable parameters to the
model inputs while keeping the original model
frozen. To reduce the potential side effects of
using defense modules, we further propose a
novel forgetting restricted adversarial training,
which filters out bad adversarial examples that
impair the performance of original ones. The
PlugAT-equipped BERT model substantially
improves robustness over several strong base-
lines on various text classification tasks, whilst
training only 9.1% parameters. We observe that
defense modules trained under the same model
architecture have domain adaptation ability
between similar text classification datasets.

1 Introduction

Deep neural networks have achieved great success
in many fields, but they can be easily fooled
by adversarial examples crafted by impercepti-
ble perturbations on their normal counterparts
(Goodfellow et al., 2015). Recent studies have
shown that this phenomenon is widespread in NLP
tasks (Jia and Liang, 2017; Liang et al., 2018;
Wallace et al., 2019). In response to adversarial
attackers, various adversarial defense methods
are proposed to improve model robustness while
maintaining high accuracy on both clean and
adversarial examples (Dinan et al., 2019; Wang
et al., 2021; Zheng et al., 2022; Liu et al., 2022).

∗∗ Equal contribution.
† Corresponding authors.

PlugAT

Adversarial 

Training

 Pluggable

↗ Speedup 4.1×

↘ Params 9.9M

Parameter Inefficient

Training from Scratch

Params 109M

Figure 1: Comparison of adversarial training and
our proposed PlugAT. Adversarial training requires
training the model from scratch and modifying all model
parameters, which is time-consuming and unfriendly
for the deployed model. The proposed defense module
improve the robustnesss of models in an extensible and
efficient manner.

Among them, adversarial training is generally
regarded as one of the strongest defense methods
(Madry et al., 2018).

A major drawback of adversarial learning based
methods is their high computational cost, as
they require multi-step gradient descent to gen-
erate adversarial examples (Andriushchenko and
Flammarion, 2020). The total time consumption
of adversarial training is much more than that
of standard training, and therefore some recent
works have attempted to reduce the computational
burden of adversarial training. FastAT (Wong
et al., 2020) uses weaker and cheaper adversarial
examples to replace strong ones and demonstrates
that extremely weak adversarial training is capable
of learning robust models. YOPO (Zhang et al.,
2019) limits the number of forward and backward
propagation without hurting the performance of the
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trained model. FreeAT (Shafahi et al., 2019) and
FreeLB (Zhu et al., 2020) leverage “free” strategies
to generate diversified adversarial examples at a
negligible additional cost compared to standard
training.

These efficient approaches mainly focus on re-
ducing the cost of generating adversarial examples,
which comes at the cost of training the model from
scratch with the parameters entirely modified. The
prohibitively huge training demand poses a severe
challenge for the deployment of practical robust
NLP systems. We seek to mitigate this problem by
learning external modules to achieve robust results.
This way, we only need to train and load a small
number of robustness-specific parameters without
retraining the entire model, greatly improving the
ease of use.

In this work, we propose PlugAT, a plug-and-
play module for transformer-based pre-trained
language models (PLMs) to defend against tex-
tual adversarial attacks. The defense module
consists of layerwise trainable parameters that
are prepended to the input sequence of each
PLM layer. By optimizing the defense module
with adversarial training, the model is guided to
response with robust outputs without updating
its parameters. To alleviate the possible damage
caused by training adversarial examples on the
performance of original examples, we propose
a novel forgetting restricted adversarial training,
which filter out “aggressive” adversarial examples.
PlugAT-equipped BERT has promising robust
performance on text classification tasks while
updating only 9.1% robustness-specific parameters,
reducing GPU time by about half compared to state-
of-the-art efficient adversarial training methods. In
addition, we prove that defense module has the
domain adaptation capability and can work when
transferred to similar tasks.Our codes are publicly
available at Github1. The main contributions of our
work are summarized as follows:

• A plug-and-play module PlugAT is proposed
to improve robustness of the deployed models
in an extensible and efficient manner.

• We propose the forgetting constrained ad-
versarial training to mitigate performance
degradation of the original examples caused
by training “aggressive” adversarial examples.

1https://github.com/ruizheng20/PlugAT

• We verify the effectiveness of the defense
module under three adversarial attacks and
enrich more potential applications of adversar-
ial training.

2 Related Work

2.1 Adversarial Attack

For the purpose of exploring robustness, adversarial
attack has been extensively studied for continuous
data of images (Goodfellow et al., 2015; Madry
et al., 2018) as well as discrete data of texts (Li
et al., 2018; Ren et al., 2019; Li et al., 2020), with
the latter aspect being more challenging than the
former. Textual attacks typically generate explicit
adversarial examples by swapping the components
of sentences into their counterparts, be it high in
similarity semantically (Ren et al., 2019) or in
terms of embedding (Li et al., 2020). TextFooler
(Jin et al., 2020) and TextBugger (Li et al., 2018)
leverages genetic algorithms to search for word-
level substitution that is semantically similar and
grammatically correct. To improve the success
rate of this kind of attack, Li et al. (2020) repeat
the process of searching and substituting until a
successful attack. In this work, we demonstrate
the effectiveness of our proposed method on the
mentioned adversarial attacks.

2.2 Adversarial Training

To improve models’ robustness against attacks,
adversarial defence has also attracted increasing
interests, the one of most powerful methods is
adversarial training. These methods generally
incorporate a min-max optimization between the
adversarial perturbations and the models by lim-
iting embedding-level perturbations to Frobenius
normalization balls, such as PGD (Madry et al.,
2018) and FreeLB (Zhu et al., 2020), or to token-
level normalization balls as implemented in TAVAT
(Li and Qiu, 2020). Since training a model
from scratch is time-consuming and effort-taking,
there has been a series of recent efforts to try to
improve the efficiency of adversarial training. Fast
adversarial training (Wong et al., 2020) uses weaker
and cheaper adversarial examples to replace strong
ones and achieves comparable performance. Free
adversarial training (Shafahi et al., 2019) recycles
the gradient information computed when updating
model parameters to generate adversarial examples
for free. These two methods eliminate the overhead
cost of generating adversarial examples. Zhang et
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al. (2019) restrict most of the forward and back
propagation within the first layer of the network
during adversary updates limits, which reduces the
total number of propagation and largely saves GPU
time. A more practical question is that adversarial
training needs to optimize all model parameters,
which is inefficient and unfriendly for the deployed
model in industrial applications.

2.3 Lightweight method

Researchers have long been studying how to effi-
ciently transfer pre-trained models to downstream
tasks (Ye et al., 2021; Ma et al., 2022). Adapter-
tuning (Houlsby et al., 2019) inserts small task-
specific trainable modules between the layers
of pre-trained language models, and only trains
these adapter modules while keeping the original
network frozen. Similarly , Side-tuning (Zhang
et al., 2020) trains a lightweight "side" network
that can be fused with a pre-trained network
through summation. Being even more lightweight,
Prefix-Tuning (Li and Liang, 2021) maintains
comparable performance while keeping model
parameters frozen and tuning only 0.1% of the
parameters to optimize a small continuous task-
specific vector. These methods have been proven
to reduce catastrophic forgetting in downstream
tasks, and because the parameters are optimized in
a limited space, they are more robust to adversarial
attacks (Han et al., 2021). We take inspiration from
these works and study how to use trainable modules
to conduct adversarial training in an efficient and
extensible method.

3 Methodology

In this section, we first detail the adversarial
training on PLMs and then introduce our proposed
plug-and-play defense module, PlugAT, which
helps PLMs to get rid of optimizing all model pa-
rameters from scratch when performing adversarial
training. Finally, we design a novel adversarial
training method based on gradient alignment
constraints and avoid performance degradation on
clean examples.

3.1 Preliminaries

For a classification dataset D = {X ,Y}, where
X is the set of input examples and Y is the set
of label classes, we have a Transformer-based
PLM with parameters θ, such as BERT to learn
a mapping function f : X → Y . Given an input

instance X ∈ X that consists of several tokens
X = {x1, . . . , x|X|} ∈ X , Y ∈ Y is the label, the
PLM first converts it into the embeddings:

Z0 = Embed(X) ∈ R|X|×d, (1)

where d is hidden size and Embed(·) denotes the
input embedding layer, then the hidden states are
encoded by l-th Transformer layer:

Zl = Transl(Zl−1) ∈ R|X|×d, (2)

where Transl(·) is l-th Transformer layer. Finally,
the hidden states ZL in last layer L is used to
decode Y .
Adversarial Training. Adversarial training is a
method for hardening classifiers against adversarial
attacks and involves training the network on
adversarially perturbed inputs. The adversarial
training solves a min-max optimization problem as
follows:

min
θ

E(X,Y )∼D max
∥Z′

0−Z0∥F≤ϵ
L(f(X ′, θ), Y ), (3)

where X ′ is an adversarial example of X and ϵ
is the maximum perturbation bound. The inner
maximization problem is to find an adversarial
example within the ϵ-ball centered at X in
the embedding space (∥Z ′0 − Z0∥F ≤ ϵ) that
maximizes the classification loss. PGD applies
the K-step stochastic gradient descent to search for
the perturbation δ (Madry et al., 2018):

δk+1 =
∏

∥δ∥≤ϵ

(
δk + η

g (δk)

∥g (δk)∥

)
, (4)

where g (δk) = ∇δL (f(X + δk, θ), Y ), δk is the
perturbation in k-th step and

∏
∥δ∥≤ϵ(·) projects the

perturbation back onto the Frobenius normalization
ball. Then robust training optimizes the network on
adversarially perturbed input X ′ = X + δK . And
the objective of the outer minimization problem is
to optimize the model parameters so that the loss
on the adversarial examples is minimized.

In traditional adversarial training, all PLM
parameters θ need to participate in the optimization
starting from pre-training weights. It leads to the
following limitations in practice: 1) it is not cost
effective to retrain a large-scale deployed model for
additional robustness; 2) it requires more training
iterations (typically 3 times or more) compared to
fine-tuning, so optimizing all model parameters is
time-consuming and parametrically inefficient.
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Figure 2: Architecture of the defense module and its
integration with the Transformer-based model. Input
plugin can be regarded as “virtual inputs", which is
added before the original input tokens. Attention
plugin is inserted into all multi-head self-attention
layers. Then we conduct adversarial training on defense
modules to improve robustness.

3.2 PlugAT
We propose a plug-and-play adversarial defense
module as an efficient alternative for the deployed
model without modifying its structure and parame-
ters. Inspired by recent prompt-based approaches,
we design the defense module Pϕ with parameters
ϕ, which is a series of tunable vectors that are added
before inputs of all Transformer layers to guide
the model to make correct predictions in the face
of adversarial examples. Thus, the inputs of the
first Transformer layer (i.e., outputs of the input
embedding layer) is:

Z∗1 = Embed(P0;Z0) ∈ R(N+|X|)×d, (5)

where P0 ∈ RN×d denotes the part of Pϕ in the
input embedding layer, N is the length of P0, and
Pϕ = {P0, P1, . . . , PL−1}. Then the modified
hidden states Z∗l output by l-th layer is:

Z∗
l = Transl(Pl−1;Z

∗
l−1[i > N ]) ∈ R(N+|X|)×d, (6)

where Z∗l−1[i > N ] is the hidden states at positions
larger thanN , which is the hidden states of original
input tokens. However, previous work found these
prefix parameters are difficult to optimize, which
confirms similar observations in our experimental
section. To tackle this problem, the structure of
Pϕ consists of two parts: input plugin Iϕ and
attention plugin Aϕ = {A0, . . . , AL−1}. They

are parameters that affect the model behaviour
globally and locally, respectively. The architecture
of PlugAT is illustrated in Figure 2.
Input Plugin. Input plugin can be regarded
as “virtual input tokens” that is added before
original input embeddings, and its effects will
propagate upward to all Transformer layers. Thus,
the augmented input embeddings in (5) can be
expanded as:

Z∗0 = Embed(Iϕ;X) ∈ R(NI+|X|)×d, (7)

where Iϕ is the “virtual input tokens” of length NI .
We optimize the parameters of the Iϕ only in the
embedding layer, while their hidden states in the
upper layers are automatically encoded by PLMs.
This means that Iϕ acts as a part of the original
inputs, providing global semantic information to
the model, which makes the optimization of Pϕ
more stable.
Attention Plugin. Attention plugin is composed
of feature vectors inserted into all multi-head
self-attention layers. The hidden states of l-th
Transformer layer is encoded as:

Z∗
l = Transl(Al−1;Z

∗
l−1[i > NA]) ∈ R(N+|X|)×d, (8)

where N = NI + NA and NA is the length
of attention plugin. The parameter of Aϕ are
independent at each layer, which avoids long-
range dependencies and introduces more trainable
parameters. The optimization of Al is sensitive
to the learning rate and initialization, thus Al
is reparameterized by a two-layer perceptron as
shown below:

Al =W2(tanh(W1A
′
l + b1) + b2), (9)

where W1 ∈ Rd′×d, W2 ∈ RNA×d′ , b1 ∈ Rd′ ,
b2 ∈ RNA×d and A′l ∈ Rd are trainable parameters.

3.3 Forgetting of Clean Examples
Deep networks do not perform well in the se-
quential continual learning setting because they
forget the past learned tasks after learning new
ones. Therefore, it is necessary to overcome
the problem of forgetting clean samples caused
by using PlugAT in the deployed model. Our
goal is to understand the effect of training ad-
versarial examples {X ′1, . . . , X ′|D|} on their clean
counterparts {X1, . . . , X|D|}. We follow a similar
analysis procedure used in the influence function
to implement it (Koh and Liang, 2017). First,
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the parameter changes induced from the training
of adversarial example can be calculated by
reweighting (X ′, Y ) with some λ: ϕ̂λ,X′ ≜
argminϕ

1
|D|
∑|D|

i=1 L(X ′i, ϕ) + λL(X ′, ϕ) where
L(X ′i, ϕ) is a shorthand of L(f(X ′i, ϕ), Yi). Atkin-
son et al. (1983) show that the influence of
reweighting X ′ on the parameters ϕ̂ is

dϕ̂λ,X′

dλ

∣∣∣
λ=0

= −H−1
ϕ̂
∇ϕL(X ′, ϕ), (10)

where Hϕ̂ ≜ 1
|D|
∑|D|

i=1∇2
ϕL(X ′i, ϕ̂) is the positive

definite Hessian matrix. Second, we apply the
chain rule to measure the influence of reweighting
X ′ on the loss of X:

F(X ′, X) ≜ dL(X ′
i, ϕ̂λ,X′)

dλ

∣∣∣
λ=0

= ∇ϕL(X, ϕ̂)T
dϕ̂λ,X′

dλ

∣∣∣
λ=0

= −∇ϕL(X, ϕ̂)TH−1

ϕ̂
∇ϕL(X ′, ϕ̂).

(11)

F(X ′, X) > 0 means the training process
of the adversarial example X ′ will impair the
performance of the clean one X . Pezeshkpour
et al. (2021) show that Hessian information is
unnecessary and F(X ′, X) can be approximated
as F(X ′, X) ≈ −∇ϕL(X, ϕ̂)TL(X ′, ϕ̂). For
computational reasons, we use the subset of
parameters corresponding to the last linear layer to
compute F(X ′, X).

By combining the above constraints with adver-
sarial training in (3), we propose the forgetting
restricted adversarial training (FRAT) for our
defense module:

min
ϕ

E(X,Y )∼D max
∥Z′

0−Z0∥F≤ϵ
L(f(X ′, ϕ), Y ),

s.t. F(X ′, X) ≤ 0.
(12)

We use only the parameters of proposed defense
module to optimize the above objectives, while
keeping the original model frozen.

4 Experimental Setup

We first introduce the experimental setup, includ-
ing datasets, baselines and adversarial attackers
involved in our experiments.

4.1 Datasets
We compare the proposed method with baselines
on two widely applied benchmark corpora: IMDB
dataset (Maas et al., 2011) and SST-2 dataset
(Socher et al., 2013). Collected from online movie

Method: PlugAT

Input: Training dataset D = {(Xi, Yi)}Mi=1, per-
turbation bound ϵ, initialization of perturbation
σ, ascent step size η, ascent steps K, a deployed
model fθ, learning rate τ , defense module Pϕ
Output: defense module parameters ϕ

1: Initialize Dϕ
2: for epoch= 1, . . . , Nep do
3: for minibatch B ⊂ P do
4: δ0 ← 1

Nδ
Uniform(−σ, σ)

5: for k = 0, . . . ,K − 1 do
6: gk ← ∇δL(fθ(X + δ, ϕ), Y )

7: δk ←
∏
∥δ∥F≤ϵ(δk + η · gk/∥gk∥F )

8: if F(X + δk, X) > 0 do
9: δk ← δk−1

10: break
11: end if
12: end for
13: ϕ← ϕ− τ∇ϕL(fθ(X + δk, ϕ), Y )

14: end for
15: end for

16: return: ϕ

reviews, IMDB contains long samples created by
users, while SST samples are shorter (with an
average length of 19 words) and show a higher
diversity.

4.2 Baseline Methods

We select four adversarial defence methods as
baselines for a thorough comparison, including
three methods of adversarial training, one from
information-theoretic perspective, and one of
adversarial data augmentation.
PGD (Madry et al., 2018): A gradient-based
adversarial training method that uses multiple pro-
jected gradient ascent steps to find the adversarial
perturbations, which is then leveraged to update
the model parameters.
FreeLB (Zhu et al., 2020): A similar gradient-
based method with PGD while accumulating the
gradients and then back propagate once, resulting
in a faster process of searching for more effective
perturbations.
TAVAT (Li and Qiu, 2020): An token-aware
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adversarial training method that crafts fine-grained
perturbations by constraining them into a token-
level normalization ball.
InfoBERT (Wang et al., 2021): A learning
framework for robust fine-tuning from an
information-theoretic perspective, where two
mutual-information-based regularizers are used for
model training.

4.3 Adversarial Attack Methods

Three widely accepted attack methods are used to
verify the ability of our proposed method against
baselines.
TextBugger (Li et al., 2018): An adversarial attack
method that is applicable in both white-box and
black-box scenarios. Important words or sentences
(in white- or black-box scenario respectively) are
first discovered, and then an optimal perturbation is
chosen from the generated perturbations, or, for the
black-box situation, a scoring function is leveraged
to find important words to manipulate.
BERT-Attack (Li et al., 2020): A method using
BERT to generate adversarial text, and thus the
generated adversarial examples are fluent and
semantically preserved.
TextFooler (Jin et al., 2020): A comprehensive
attack paradigm that creates adversarial exam-
ples that maintain human prediction consistency,
semantic similarity, and language fluency. The
important words for the target model are first
identified and are then replaced with words, which
are semantically similar and grammatically correct,
until the prediction is altered.

4.4 Evaluation Metrics

The evaluation metrics adopted in our experimental
analyses are listed as follows. For a robust defense
method, higher accuracy under attack as well as
query times is expected.
Clean Accuracy (Clean%): The accuracy on
the clean test dataset. Accuracy under Attack
(Aua%): The model’s prediction accuracy facing
specific adversarial attacks. Number of Queries
(#Query) The average number of times the attacker
queries the model, which means the more average
query number is, the harder the defense model is to
be compromised. Trainable Params: The number
of parameters to be optimized. Speed UP: The
training speedups re reported against PGD and we
evaluate all the adversarial defense methods on an
NVIDIA RTX3090 GPU.

4.5 Implementation Details

Our implementation of PlugAT is mainly based on
BERT and FreeLB, so most of the hyperparameter
settings are based on these methods.2 We use
AdamW as our optimizers with the learning rate
1e−5, a batch size ∈ {16, 32} and a linear learning
rate decay schedule with a warm-up of 0.1. The
dropout rate is set to 0.1 for all task-specific
layers. For the defense module, NA = 35,
Ni = 5 and d′ = 512. We set the adversarial
perturbation step as 2, the perturbation step size as
0.03, the constrain bound of perturbations as 0.1,
the initial magnitudes of perturbations as 0.05. The
maximum number of epochs is set to 10. Since the
results of the SST-2 test set need to be submitted to
the GLUE evaluation server and cannot be used for
adversarial attacks, the results of SST-2 are tested
on the development set.

We implement three adversarial attack methods
using TextAttack framework and follow the default
parameter settings.3 We adopt a “free” strategy
similar to FreeLB (Zhu et al., 2020) to solve the
inner maximization problem in (12) and obtain
more adversarial examples. The clean accuracy
((Clean%)) is tested on the whole test/dev set.
Other adversarial robustness evaluation metrics
(e.g., Aua% and #Query) are evaluated on the
dev set for SST-2 and 1000 randomly selected
test samples for IMDB. We choose models trained
during the last period to compare the robustness.
All experiments are conducted using NVIDIA
RTX3090 GPUs.

4.6 Main Results

Defense Effectiveness. As illustrated in Table 1,
BERT equipped with our module with forgetting
restricted adversarial training has seen an increase
in robustness against attacks while maintaining
clean accuracy. The adversarial training based
approachs, e.g., FreeLB, achieve higher clean
accuracy than the baseline and our proposed
method, and their improvement in robustness is
also very insignificant. Generally, PlugAT lifts
BERT’s accuracy under attack from 4.9% to 20.8%
on SST-2 and 12.2% to 36.1% on IMDB when
attacked by TextFooler, which outperforms all of
the compared methods. The improvements indicate
that our proposed defense module indeed helps
BERT achieve greater robustness against attacks

2https://github.com/huggingface/transformers
3https://github.com/QData/TextAttack
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Dataset Methods
Trainable Speed

Clean%
TextFooler BERT-ATTACK TextBugger

Params Up Aua% #Query Aua% #Query Aua% #Query

SST-2

Fine-tune 109M − 92.5 4.9 98.5 2.9 114.2 26.3 48.6

PGD 109M 1× 92.9 16.5 122.3 11.8 156.8 43.4 56.1

FreeLB 109M 2.1× 93.1 14.4 123.8 10.2 154.6 42.4 54.9

TAVAT 109M 2.8× 93.1 13.5 117.8 9.9 147.9 38.5 49.7

InfoBERT 109M 1.3× 92.1 18.3 121.4 14.4 162.3 40.3 51.2

PlugAT 9.9M 4.1× 92.6 20.8 126.5 15.6 162.4 41.8 56.3

IMDB

Fine-tune 109M − 94.2 12.2 1209.8 7.8 1572.2 25.8 783.2

PGD 109M 1× 94.6 34.5 1616.0 28.6 2454.7 43.5 957.3

FreeLB 109M 3.4× 94.7 27.2 1479.1 22.6 1954.7 36.0 907.3

TAVAT 109M 4.1× 94.3 21.2 1417.7 17.6 1825.4 32.9 842.6

InfoBERT 109M 1.2× 95.2 32.4 1572.2 26.0 2326.0 43.6 969.8

PlugAT 9.9M 6.1× 93.9 36.1 1624.9 32.8 2777.1 44.7 1045.3

Table 1: Main results of the adversarial robustness evaluation on two text classification datasets. The defense module
PlugAT achieves better robustness with fewer trainable parameters and less GPU time. The best performance is
marked in bold.

compared with a vanilla BERT with the same kind
of adversarial training while maintaining the clean
accuracy to a large extent. Moreover, our proposed
method helps BERT to undergo adversarial training
by learning only 9.1% parameters, and the compu-
tational cost is also outstanding among the baseline
methods.

Dataset
Methods Clean%

TextFooler
Source Target Aua% #Query

SST-2 IMDB

Fine-tune 90.8 2.0 564.1

FreeLB 89.2 22.5 874.2

PGD 89.9 20.0 827.8

PlugAT 93.8 34.0 1536.0

IMDB SST-2

Fine-tune 86.7 3.2 87.7

FreeLB 87.8 4.5 93.5

PGD 88.5 5.4 100.8

PlugAT 91.4 10.3 113.1

Table 2: Experimental results when the models are
trained on the source dataset and then transferred to
the target dataset for testing. BERT (fine-tuned on the
target dataset) equipped with our module (trained on
the source dataset) improves robustness to a large extent
and with minor damage to the clean accuracy.

Transferability. The proposed method is com-
petitive even in challenging scenarios, with the
extra robustness obtained by our defense module
being able to generalize across datasets. To get
a clear view of this phenomenon, we conduct
transferability experiments on IMDB and SST-2
datasets, which is reported in Table 2. The results

indicate that the robustness of BERT with PlugAT
trained on one dataset can transfer to the other to
a degree. To be more specific, BERT with the
defense module trained on SST-2 dataset transfers
its ability of defending to IMDB and vice versa,
while still outperforming the BERT trained on
each dataset in all of the three metrics. This
suggests that the defense module shows strong
potential in transferability, the resource of which
is left for a more thorough investigation of future
work. We believe that the reason for the above
phenomenon may be that these two datasets are
similar. Another possible explanation is that
due to the transferability of adversarial examples,
the adversarial examples generated by adversarial
training may be similar on SST-2 and IMDB. These
adversarial examples may make the model more
robust on both SST-2 and IMDB.

4.7 Intrinsic Evaluation

Several variants that affect the performance of
our method are compared, including the length
of input or attention plugins. Besides, we conduct
ablation experiments to study the contribution of
each component in the proposed method.
Effect of Attention Plugin. A longer attention
plugin introduces more trainable parameters, en-
abling stronger expressive power. The lengths of
5 to 45 with an interval of 5 are experimented. As
reported in Figure 3, Aua% increases as the length
increases up to a threshold (about 35) and then a
slight performance drop occurs.
Effect of Input Plugin. We find that the input
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Figure 3: Length of attention plugins vs. performance
on SST-2 and IMDB datasets. Performance increases
up to a threshold 35 and then a slight performance drop
occurs.

plugin makes the training process more stable and
reduces the performance fluctuations. Figure 4
shows that generally, the existence of input plugin
enables the deployed model to initialize better with
a starting point at a higher accuracy both on clean
data and under attack.
Ablation Study. The results of ablation experi-
ments are demonstrated in Table 3. The results
show that the model’s clean accuracy decreases
when forgetting restricted adversarial training is
removed, indicating that forgetting restricted adver-
sarial training can effectively mitigate forgetting
on clean data. As we showed before, the global
information provided by the input plugin makes
the training more stable and slightly improves the
performance. The attention plugin, on the other
hand, provides more local information, making the
model more expressive.

5 Conclusion

In this paper, we focus on improving adversarial
training in the NLP field. We propose PlugAT,
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Figure 4: Full vs. without input plugin. The input plugin
enables the training process to be more stable and reach
a better performance.

Methods Clean%
TextFooler

Aua% #Query
PlugAT 92.6 20.8 126.5

w/o FRAT 91.5 21.5 128.2

w/o Input Plugin 92.1 16.7 114.6

w/o Attention Plugin 91.9 6.3 101.2

Table 3: Ablation study of PlugAT. We can observe that
forgetting restricted adversarial training (FRAT) can
effectively mitigate forgetting on clean data.

a plug-and-play module, as an effective solution
in terms of lifting model’s robustness while
preserving its clean accuracy as well as cutting
down on the overall computational cost. It
is discovered that despite learning 10× fewer
parameters than conventional adversarial training,
the proposed defense module also shows the po-
tential in transferability. Empirical evaluations on
two widely used benchmark datasets demonstrate
that training models with the defense module
costs half the GPU time while outperforming the
existing adversarial training methods. Extensive
experiments demonstrate that our proposed module
can significantly improve the model robustness and
transfer the performance across different datasets
effectively. Besides, we hope our work could
inspire more research on improving adversarial
training in NLP.
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Abstract

The International Classification of Diseases
(ICD) is the foundation of global health statis-
tics and epidemiology. The ICD is designed to
translate health conditions into alphanumeric
codes. A number of approaches have been pro-
posed for automatic ICD coding, since manual
coding is labor-intensive and there is a global
shortage of healthcare workers. However, exist-
ing studies did not exploit the discourse struc-
ture of clinical notes, which provides rich con-
textual information for code assignment. In
this paper, we exploit the discourse structure
by leveraging section type classification and
section type embeddings. We also focus on
the class-imbalanced problem and the hetero-
geneous writing style between clinical notes
and ICD code definitions. The proposed rec-
onciled embedding approach is able to tackle
them simultaneously. Experimental results on
the MIMIC dataset show that our model outper-
forms all previous state-of-the-art models by a
large margin. The source code is available at
https://github.com/discnet2022/discnet

1 Introduction

The International Classification of Diseases (ICD)
is a classification system maintained by the World
Health Organization. The system is designed to
map health conditions to pre-defined ICD codes,
allowing the world to share healthcare data in a con-
sistent way between different regions. The founda-
tion of global health statistics and epidemiology is
based on the ICD.

The ICD coding task (as shown in table 1) is
usually performed by professional coders. Coders
review the whole clinical documents and manu-
ally assign the most appropriate codes. However,
manual coding is labor-intensive, expensive, and
error-prone. The approximate cost of ICD coding
is estimated to be about $25 billion per year in the
US (Lang, 2007).

∗Corresponding author.

Clinical
Document

History of Present Illness:
A 62-year-old male with Type II
diabetes mellitus, coronary artery disease,
hypertension, chronic kidney disease...
Past Medical History:
Hypertension
Type II Diabetes Mellitus
s/p cervical laminoplasty...
Brief Hospital Course: ...
Discharge Diagnosis:
Anasarca
Heart failure with restrictive physiology...

Assigned
ICD codes

428.31 Diastolic heart failure
584.9 Acute renal failure, unspecified
427.32 Atrial flutter ...

Table 1: An illustration of ICD coding task

In recent years, deep learning approaches have
demonstrated promising results on ICD coding.
Some of these studies improved clinical document
representation by leveraging Convolutional Neu-
ral Networks (CNN) (Mullenbach et al., 2018; Xie
et al., 2019). The others improved ICD code repre-
sentation by exploiting the dependencies between
codes (Xie and Xing, 2018; Vu et al., 2020; Cao
et al., 2020). However, these approaches entail lim-
itations. Firstly, they ignore the discourse structure
of clinical documents. Secondly, most of these ap-
proaches did not consider the writing style discrep-
ancies between ICD code descriptions and relevant
clinical documents related to the codes. Thirdly,
most of these approaches did not consider the class
imbalanced problem of the label spaces.

Why is the discourse structure important?
Medical professionals prepare clinical documents
in different sections. The sections convey
discourse-level information and follow rhetorical
moves of argumentation (Teufel et al., 1999). Such
as “History of Present Illness”, “Past Medical His-
tory”, followed by “Hospital Course”, etc. The
health conditions that appear in different sections
may contribute differently to code assignments. For
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example, in table 1, the s/p cervical laminoplasty
in the past medical history is not related to the cur-
rent hospitalization and does not contribute to code
assignment. In such cases, omitting discourse-level
information may mislead the coding task. The
identification of the discourse structure can also
benefit word sense disambiguation. For example,
the acronym BS probably signifies blood sugar
in the laboratory test section, but more likely sig-
nifies breath sounds in the physical examination
section (Li et al., 2010). Therefore the meaning
of a health condition must be considered from a
discourse-level point of view.

The heterogeneity between ICD code descrip-
tions and relevant clinical documents. Each
ICD code is associated with a code description. For
example, the code description of 414.01 is Coro-
nary atherosclerosis of native coronary artery. A
code description provides a formal definition of an
ICD code. On the contrary, clinical documents that
are written by physicians usually in an informal
way, accompanied with telegraphic phrases and
abbreviations. For example, Coronary artery dis-
ease is denoted by CAD. The writing style is highly
heterogeneous between the code descriptions and
relevant clinical documents.

The class imbalanced problem. Most of the re-
cently proposed methods are based on a per-label
attention mechanism that was initially proposed
by Mullenbach et al. (2018). In this setting, the
attention parameters for each label can be con-
sidered as the representation for each ICD code,
which are learned from relevant segments in clini-
cal documents (hereinafter referred to as “relevant
documents”) that are highlighted by the attention
mechanism. However, the label frequency follows
a highly skewed distribution. About 50% of the
codes have less than 5 occurrences. In such a case,
it is difficult to learn decent representations for
instance-scarce codes. Considering the nature of
code descriptions and the label distribution, we ar-
gue that instance-scarce code representations are
supposed to learn more from code descriptions,
since code descriptions are the essential definitions
of ICD codes. On the contrary, instance-rich code
representations are supposed to learn more from
relevant documents, since relevant documents pro-
vide various expressions of each code.

In this paper, we design a novel neural architec-
ture for automatic ICD coding given unstructured

clinical documents:

• To the best of our knowledge, our work is the
first to incorporate discourse-level features
into automatic ICD coding. Our proposed
Discourse Net (DiscNet) exploits discourse-
level features by utilizing section type embed-
dings. In addition, we combine word-level
features and sentence-level features for better
expressive power.

• We propose a Reconciled Embedding (RE) ap-
proach to learn ICD code representations, mit-
igating the class imbalanced problem while
reconciling the heterogeneity between code
descriptions and relevant clinical documents.

• Experimental results on the MIMIC-III
dataset (Johnson et al., 2016) show that our
method outperforms all previous state-of-the-
art methods across evaluation metrics by a
large margin.

2 Related Works

Recently released automatic ICD coding ap-
proaches are mainly based on deep learning and
performed on unstructured clinical documents.
Baumel et al. (2018) proposed a possibility to ex-
ploit discourse structure, which inspired our work.
Mullenbach et al. (2018) proposed a convolutional
attention model and outperformed existing state-of-
the-art methods (Baumel et al., 2018). Li and Yu
(2020) and Xie et al. (2019) improved the convo-
lutional attention model by exploiting multi-scale
features. However, it is challenging for a CNN-
based model to capture long-term dependencies in
a document.

Discourse analysis is a task to model language
phenomena that go beyond the individual sentences
(Joty et al., 2019). There are few relevant works
that focus on discourse analysis in the clinical do-
main. Li et al. (2010) focused on the discourse
analysis of clinical notes and performed argumen-
tative zoning (Teufel et al., 1999) using a hidden
markov model. Denny et al. (2009) leveraged NLP
techniques to categorize section headers in clinical
documents.

To reconcile the heterogeneous writing styles
of diagnosis descriptions and ICD code descrip-
tions, Xie and Xing (2018) proposed an adversarial
learning approach, which inspired our work.

Some studies worked on addressing the class
imbalanced problem. Mullenbach et al. (2018)
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proposed a regularization method using embedded
code descriptions to improve the performance on
infrequent codes. However, the method worsened
the average performance on the MIMIC-III dataset.
Some methods improved the performance on infre-
quent codes by modeling the hierarchical structure
of ICD codes (Xie et al., 2019; Vu et al., 2020).
Zhou et al. (2021) leveraged an interactive shared
representation network to alleviate the long-tail
problem.

3 Method

We propose a novel neural architecture for auto-
matic ICD coding given unstructured discharge
summaries. A discharge summary from an Elec-
tronic Health Record (EHR) is an unstructured clin-
ical document that outlines the details of a hospital
stay. We partition clinical documents into sections
and exploit the discourse structure by leveraging
section type embeddings. The ICD code represen-
tations are learned using a reconciled embedding
approach. Finally, we use a dot production to pre-
dict the codes.

3.1 Discourse Net
Discourse Net (DiscNet) exploits discourse-level
features, word-level features, and sentence-level
features to learn multi-granularity clinical docu-
ment representations as shown in Figure 1.

3.1.1 Section Type Embeddings
Clinical documents usually contain multiple sec-
tions with nonstandardized section headings. We
partition a document into sections by identifying
the locations of section headings using regular ex-
pressions. Terms that clinicians use to label sec-
tions are ambiguous and various, e.g. past medical
history might appear as pmh. Due to various writ-
ing conventions, we extracted more than 10,000
distinct headings. We chose the top 100 most fre-
quent headings as known section types since they
accounted for 93% of the total heading occurrence.
We map each section to known section types using
a naive bayes classifier based on TF-IDF vectorized
section contents. Concretely, each section content
is converted to a TF-IDF vector. Then a naive bayes
classifier is trained using known section types as
labels. Finally, the trained naive bayes model map
each section to known section types. We initial-
ize an embedding matrix for know section types:
S = {s1, s2, ..., s100}. Where each s is a d dimen-
sional vector, representing a known section type.

3.1.2 Input Layer

The input word sequence is mapped into an em-
bedding space using pre-trained word embeddings.
The word embeddings of size d = 100 are pre-
trained on the training set of the MIMIC-III dataset
using the word2vec CBOW method (Mikolov et al.,
2013). The word embedding sequence is denoted
as D = {w1,w2, ...,w|D|}, where w ∈ Rd de-
notes a word vector, |D| denotes the number of
words. The input embeddings are the sum of word
embeddings and section type embeddings, which
can be denoted as E = {e1, e2, ..., e|D|}. Each
ei is the sum of a word embedding wi and the
associated section type embedding sj .

3.1.3 Multi-Granularity Representations

E is a combination of word-level features and
discourse-level features. Besides that, we carry
sentence-level features for better expressive power.
We use a bidirectional GRU (Chung et al., 2014) to
model the sequential structure of E:

−→
H,
←−
H = BiGRU (E) , H =

(−→
H ∥ ←−H

)
W1

(1)
Where ∥ denotes concatenation. W1 ∈ R2d×d is a
trainable weight matrix to project the dimensional-
ity of the forward and backward hidden states from
2d to d.

Let C ∈ R|C|×d denote the ICD code represen-
tations obtained through the Reconciled Embed-
ding (RE) approach (refer to subsection 3.2). |C|
is the number of distinct ICD codes. C is used
as attention parameters to interact with document
representations. A per-label attention mechanism
(Bahdanau et al., 2014) is applied to re-express a
document with respect to each code.

Z =HCT, α = Softmax1 (Z)

V word = αTH
(2)

T denotes matrix transposition. α ∈ R|D|×|C| are
attention weights of a document representation as-
sociated with each code. Softmax1 is applied to the
first dimension of Z, ensuring the distribution over
locations in a document sum to 1. V word ∈ R|C|×d
is the code-specific document representations at
word level.

We concatenate the hidden state of
−→
H at the end

position of a sentence and the hidden state of
←−
H at

the start position of a sentence to embed a sentence.
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Figure 1: An illustration of how DiscNet works. The sentence embeddings e′1 and e′2 correspond to the input word
embeddings {wl

1, ...,w
l
5} and {wl

6, ...,w
l
9} respectively.

Then we concatenate all sentence embeddings:

e′ =
(−→
H[pend] ∥

←−
H[pstart]

)
W2

E′ = e′1 ∥ e′2 ∥ ... ∥ e′|P |
(3)

Where E′ represents sentence-level features.
W2 ∈ R2d×d is a weight matrix. |P | denotes the
number of sentences. We follow the computation
step of equation 1 and equation 2 with newly ini-
tialized network parameters to obtain V sen, which
is the code-specific document representations at
sentence level. Finally, we concatenate V word and
V sen. Then a Max Pooling is applied over the level
dimension to obtain the condensed code-specific
document representations:

V = MaxPooling
(
V word ∥ V sen) (4)

V ∈ R|C|×d is the condensed code-specific docu-
ment representations.

3.2 Reconciled Embedding (RE)

We focus on the class-imbalanced problem and the
heterogeneity between code definitions and rele-
vant documents. The proposed RE approach is
designed to reconcile them simultaneously.

3.2.1 Reconciling the heterogeneity
We initialize a new bidirectional GRU to encode
the word embeddings of code descriptions. Sim-
ilar to equation 1, the final hidden states of both
directions are extracted and projected. Let C̃ =
{c̃1, c̃2, ..., c̃|C|} ∈ R|C|×d denote the encoded
code descriptions. We design a gate mechanism as
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Figure 2: An example of equation 6 in two dimensional
space. γi is set to [0.75, 0.5]⊤, c̃i is set to [4.0, 7.0]⊤,
ui is set to [6.0,−1.0]⊤.

follows:

Q = ReLU
((
C̃ ∥ U

)
W3

)

Γ = sigmoid (QW4)
(5)

U = {u1,u2, ...,u|C|} ∈ R|C|×d is trainable
code-specific attention parameters, which are sup-
posed to learn from relevant documents. C̃ and U
are concatenated at the last dimension, followed
by a linear projection and a ReLU non-linearity.
W3 ∈ R2d×d andW4 ∈ Rd×d are trainable weight
matrices. Γ = {γ1,γ2, ...,γ|C|} ∈ R|C|×d is the
gate vectors to adjust C̃:

C = LayerNorm
(

tanh
((

Γ⊙ C̃ +U
)
W5

))

(6)
Where tanh is the hyperbolic tangent function. Lay-
erNorm denotes layer normalization (Ba et al.,
2016). ⊙ denotes hadamard product. W5 ∈ Rd×d
is a trainable weight matrix. C ∈ R|C|×d is the
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Figure 3: L2 norm of γs with respect to each code sorted
by code occurrences in descending order. A moving
average smoothing is applied with a window size equal
to 100. A smaller norm indicates less information flow
from code descriptions.

reconciled code embeddings to interact with docu-
ment representations. An example of equation 6 in
two dimensional space is given in figure 2.

We suggest the function of the gate mechanism
is twofold: Firstly, the element-wise addition of
C̃ and U is able to aggregate semantics both from
code descriptions and relevant documents. Con-
sidering their heterogeneous nature, we leverage
the gate vectors Γ to adjust C̃, reconciling the se-
mantic discrepancies between C̃ and U during the
element-wise addition. Each γi is able to tune both
the length and the direction of c̃i within the same
quadrant (as shown in figure 2). A naive example
is shown in figure 2. Secondly, each γi is able to
scale the information flow from c̃i. We assume for
rare classes, the norm of γ is required to be greater
than for frequent classes, since it is necessary to
learn more from the encoded code definitions for
rare classes.

3.2.2 Reconciling the class-imbalance

We assume taking more information from code
descriptions than relevant documents could bene-
fit the representation learning of rare codes. But
for frequent code, it could be beneficial to take
more information from relevant documents than
code descriptions. To examine our assumption,
we plot the L2 norm of the trained gate vectors
(i.e. {γ1,γ2, ...,γ|C|}) with respect to code oc-
currences sorted in descending order as shown in
figure 3. The observation supports our assumption.

The “self-taught” plot in figure 3 indicates that the
proportion of the information transferred is related
to the code distribution. The γs has learned to
transfer more information from code descriptions
to rare codes.

To better cope with the class imbalanced prob-
lem, we have found imposing a regularization on
γs according to code distribution to be beneficial.
We regularize the L2 norm of each γ according to
code distribution. The regularization encourages
the norm of rare codes’ γs to be large, forcing
them to learn more from the essential definitions in
code descriptions. Meanwhile, there’s less regular-
ization imposed on frequent codes since they can
learn their heterogeneous expressions from relevant
documents. Let K ∈ {k1, k2, ..., k|C|} denote the
number of occurrences of each code. The regular-
ization term is computed as follows:

k′i =
(

max (K)− ki
max (K)−min (K)

)τ

Lreg = −
|C|∑

i

k′i∥γi∥2
(7)

Firstly, a min-max normalization is applied to
rescale the range of K in [0, 1]. k′i is the regu-
larization weights associated with each code. τ is
a rescaling hyperparameter. As shown in figure 3,
the smaller τ is, the greater the regularization on
frequent codes.

3.3 Output Layer

Firstly, V is fed to a linear layer followed by a
ReLU non-linearity. Then a dot product of C and
V is applied. Finally, a sigmoid activation function
is applied to obtain the probability vector:

V = ReLU (VW6) , ŷ = sigmoid
(
CV T)

(8)
Let y denote the label vector. The code assign-
ment task is treated as a multi-label classification
problem. The training objective is to minimize
the binary cross-entropy loss and the regularization
term from subsection 3.2:

Loss(x,y,θ) = CrossEntropy (y, ŷ) + λLreg
(9)

Where x denotes input word tokens and θ denotes
all trainable parameters. λ is a hyperparameter.
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AUROC F1 P@k
Model Macro Micro Macro Micro 8 15

CAML* (Mullenbach et al., 2018) 0.895 0.986 0.088 0.539 0.709 0.561
DR-CAML* (Mullenbach et al., 2018) 0.897 0.985 0.086 0.529 0.690 0.548
MultiResCNN* (Li and Yu, 2020) 0.910 0.986 0.085 0.552 0.734 0.584
HyperCore* (Cao et al., 2020) 0.930 0.989 0.090 0.551 0.722 0.579
DiscNet+RE* (Ours) 0.945 0.991 0.137 0.579 0.760 0.608

MSATT-KG (Xie et al., 2019) 0.910 0.992 0.090 0.553 0.728 0.581
LAAT (Vu et al., 2020) 0.919 0.988 0.099 0.575 0.738 0.591
JointLAAT (Vu et al., 2020) 0.921 0.988 0.107 0.575 0.735 0.590
ISD (Zhou et al., 2021) 0.938 0.990 0.119 0.559 0.745 -
DiscNet+RE (Ours) 0.956 0.993 0.140 0.588 0.765 0.614

Table 2: Experimental results on the MIMIC-III full test set. Models with “*” are under a length limitation of 2,500.
Models without “*” are under a length limitation of 4,000. We ran our model 5 times and averaged the scores.

4 Experiments

4.1 Dataset and Preprocessing

We use publicly available and widely studied
MIMIC-III dataset (Johnson et al., 2016), which
is an extension of the MIMIC-II dataset (Saeed
et al., 2011). The dataset comprises de-identified
EHR associated with over 40,000 ICU admissions.
We follow the well studied MIMIC-III full setting
that was initially proposed by Mullenbach et al.
(2018), which consists of 8,929 ICD codes, 47,719,
1,631, and 3,372 discharge summaries for training,
development, and testing respectively.

To better investigate the performance of our
method on codes with different sample sizes, we
divide the test set into head, body, and tail subsets.
Each subset has the same number of discharge sum-
maries as in the MIMIC-III full test set but with
different range of codes. In the head subset there
are 1446 distinct codes with sample size greater
than or qual to 50. In the body subset there are
1779 distinct codes with sample size less than 50
and greater than 5. In the tail subset there are 860
distinct codes with sample size less than or equal
to 5. There are only 4085 distinct codes in total
present in the MIMIC-III full test set.

We tokenize the text, then lowercase and lem-
matize the words. All numbers are replaced with a
“NUM” token. We perform sentence segmentation
using spaCy library1.

4.2 Evaluation Metrics

For a complete comparison with previous studies,
we use macro-averaged and micro-averaged F1,
macro-averaged and micro-averaged AUC (area
under the receiver operating characteristic curve)

1https://spacy.io/

and P@k (precision at k).

4.3 Hyper-parameter Tuning and Training

The model is trained using Adam optimizer
(Kingma and Ba, 2014) and the initial learning
rate is set to 0.0005, the batch size is set to 12. The
d-dimensional word embeddings are trainable. A
dropout mechanism (Srivastava et al., 2014) is ap-
plied after each BiGRU with a dropout probability
of 0.2. We notice that the model with section type
embeddings is more prone to overfitting. Therefore
a dropout mechanism is applied on the section type
embeddings with a dropout probability of 0.5. τ is
set to 1,000, and λ is set to 0.0001.

4.4 Baselines

Some studies truncated the input text to a maximum
length of 2,500, the others to a maximum length of
4,000. We have noticed that there are performance
differences between different length limitation set-
tings. For a fair comparison, we conducted the
experiments under the length limitations of 2,500
and 4,000, then report the results separately.
CAML: The first per-label attention based model
for automatic ICD coding preposed by Mullenbach
et al. (2018).
DR-CAML: An extension of CAML which in-
corporates the code descriptions to improve the
performance on rarely observed codes. However,
DR-CAML performed worse on most metrics than
CAML.
MSATT-KG: The MSATT-KG (Xie et al., 2019)
approach employed a graph convolutional neural
network to capture the hierarchical relationships
among codes, alleviating the class imbalanced prob-
lem. The study achieved SOTA performance.
HyperCore: Proposed by Cao et al. (2020), which
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AUROC F1 P@k Macro F1
Model Macro Micro Macro Micro 8 15 head body tail

BiGRU 0.904 0.986 0.097 0.562 0.734 0.581 0.369 0.164 0.052
BiGRU+discourse 0.919 0.988 0.115 0.583 0.752 0.601 0.408 0.211 0.063
only DiscNet 0.919 0.988 0.119 0.583 0.757 0.605 0.419 0.216 0.064
only REself-taught 0.942 0.990 0.126 0.567 0.750 0.595 0.400 0.214 0.086
DiscNet+REself-taught 0.943 0.990 0.134 0.575 0.756 0.603 0.420 0.235 0.097
DiscNet+REconstantγs 0.938 0.990 0.129 0.574 0.757 0.603 0.419 0.225 0.082
DiscNet+REτ=100 0.947 0.991 0.132 0.578 0.756 0.606 0.420 0.241 0.106
DiscNet+REτ=1000 0.945 0.991 0.137 0.579 0.760 0.608 0.425 0.240 0.106
DiscNet+REτ=5000 0.946 0.991 0.132 0.579 0.756 0.604 0.419 0.229 0.100

Table 3: Ablation results on the MIMIC-III full test set under a length limitation of 2500. We ran each model 5
times and averaged the scores.

can jointly exploit code hierarchy and code co-
occurrence. The approach outperformed all ex-
isting baseline models.
MultiResCNN: The MultiResCNN (Li and Yu,
2020) leveraged a multi-filter convolutional layer
to capture various text patterns.
LAAT: A label attention model was proposed by
Vu et al. (2020). LAAT outperformed all existing
baseline models.
JointLAAT: An extension of LAAT, which lever-
aged a hierarchical joint learning mechanism to
handle the class imbalanced problem.
ISD: The ISD approach (Zhou et al., 2021) lever-
aged an interactive shared representation network
to alleviate the long-tail problem.

4.5 Compared with Baselines
Table 2 show the experimental results on the
MIMIC-III full dataset. Our model outperformed
all baseline models across all evaluation metrics
and achieves new state-of-the-art results. It is worth
noting that the macro-AUROC and macro-F1 were
improved by 1.8% and 2.1% compared with the
best baseline model. The improvements indicate
our model is more robust to infrequent code as-
signments, since macro-averaging highlights the
performance of infrequent classes. Meanwhile,
the micro-F1, P@8, and P@15 were improved by
2.9%, 2%, and 2.4% respectively. The results sug-
gest our model improves both macro-averaging and
micro-averaging measurements simultaneously.

4.6 Ablation study
We performed an ablation study as shown in table
3 and in figure 4. In order to investigate the ef-
fectiveness of our methods on codes with different
sample sizes, we use macro-F1 to evaluate each
ablation experiment on the head, body, tail sub-
sets of the MIMIC-III test set (refer to subsection

head body tail
0.0
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0.3

0.4

M
ac
ro

F1

BiGRU
BiGRU+discourse
only DiscNet
only REself-taught

DiscNet+REself-taught

DiscNet+REconstant𝛾𝛾𝛾s

DiscNet+RE𝜏=1000

Figure 4: Ablation experiments on head, body and
tail subsets demonstrate the improvements of DiscNet
on frequent codes and the RE approach on infrequent
codes.

4.1)2. For the BiGRU setting, we use a BiGRU
to model the input word embeddings, followed
by a per-label attention to perform classification.
For the BiGRU+discourse setting, we add section
type embeddings to the BiGRU setting, achiev-
ing 1.8% improvement on Macro-F1 and 2.1% on
Micro-F1, significantly improved Macro-F1 on the
head subset by 3.9%. The improvements demon-
strate the effectiveness of exploiting discourse-level
features. For the only DiscNet setting, we add
sentence-level features to the BiGRU+discourse
setting, The minor improvements indicate the ef-
fectiveness of sentence-level features. The only

2In the data splitting setting of Mullenbach et al. (2018),
there are only 4,085 distinct codes out of 8,929 present in the
test set. The F1 score of a non-appearing code is evaluated to
0. To better compare the F1 score of the head, body, and tail
subsets. We evaluate only the 4,085 codes that are present in
the test set.
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Case 1

with section type embeddings w/o section type embeddings

Brief Hospital Course:
#VB: She had increased bleeding ...
leading up to presentation...
Anemia: Ms. On HD#6, her hematocrit trended
down to 25 ...
... was transfused 2 units of red blood cells...
Discharge Diagnosis: Anemia...

Past Medical History:
1.Uterine fibroids 2.Anemia, iron-deficiency...
History of Present Illness:
... with history of anemia secondary...
Brief Hospital Course:
... her hematocrit trended down to 25...
Discharge Diagnosis: Anemia...

285.1 Acute posthemorrhagic anemia 285.9 Unspecified anemia

Case 2

“self-taught” constant γs

Smoked 30 yrs, 2 ppd, quit on...
... Patient recently quit smoking... We encouraged to
continue smoking abstinence... He quit smoking two
week ago due to shortness of breath...

We continued Lisinopril 5mg PO daily...
Spiculated pulmonary lesions: consider
infectious/inflammatory/neoplastic...
In the right, pulmonary artery embolus...

V15.82 prediction score: 0.70
personal history of tobacco use

V15.82 prediction score: 0.02
personal history of tobacco use

Table 4: Each example contains a predicted ICD code and relevant document with high attention score.

REself-taught setting, namely the “self-taught” model
in figure 3, achieving 3.8% improvement on Macro-
AUC, 2.9% on Macro-F1 and 3.4% on Macro-F1
on the tail subset compared to the BiGRU model.
The significant improvements demonstrate the ef-
fectiveness of RE, particularly on rare codes. For
DiscNet+REconstantγs setting, all γs are set equal to
1. The performance drop indicates the effectiveness
of the gate mechanism in 3.2.1. We experimented
with different τ values and τ = 1000 yields the
best results, which demonstrates the effectiveness
of the regularization approach in 3.2.2.

4.7 Case Study

To better understand the effectiveness of our ap-
proaches, we give examples shown in table 4. We
investigate the relevant documents with high atten-
tion scores associated with a predicted ICD code.
For the first case, the type of Anemia is not spec-
ified in the discharge diagnosis. The model with
section type embeddings correctly linked bleeding
in the “Brief Hospital Course” section to anemia.
On the contrary, the unspecified Anemia that ap-
pears in the “Past Medical History” and the “his-
tory of present illness” mislead the baseline model
to 285.9 unspecified anemia. The second exam-
ple illustrates the impacts of the heterogeneity be-
tween code descriptions and relevant documents.
The code description personal history of tobacco
use and relevant document (smoked, smoking ab-
stinence, and etc) are literally very different. The
“self-taught” model has successfully linked them
together. In contrast, the model with constant γs,
namely all γs are set equal to 1, failed to highlight

any meaningful relevant document.

5 Conclusion

This paper proposed a novel neural architecture for
automatic ICD coding. We leverage section type
embeddings to make our model discourse-aware.
We focus on the class imbalanced problem and the
heterogeneity between code definitions and rele-
vant documents. The proposed Reconciled Embed-
ding approach tackled them simultaneously. We
achieve state-of-the-art performance on the widely-
studied MIMIC-III dataset. DiscNet can be ap-
plied to all texts with a discourse structure, but not
limited to clinical texts. The proposed reconciled
embedding approach can be applied in scenarios
where there is auxiliary information associated with
labels.
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Abstract

The current advancement in abstractive docu-
ment summarization depends to a large extent
on a considerable amount of human-annotated
datasets. However, the creation of large-scale
datasets is often not feasible in closed domains,
such as medical and healthcare domains, where
human annotation requires domain expertise.
This paper presents a novel data selection strat-
egy to generate diverse and semantic questions
in a low-resource setting with the aim to sum-
marize healthcare questions. Our method ex-
ploits the concept of guided semantic-overlap
and diversity-based objective functions to opti-
mally select the informative and diverse set of
synthetic samples for data augmentation. Our
extensive experiments on benchmark health-
care question summarization datasets demon-
strate the effectiveness of our proposed data
selection strategy by achieving new state-of-
the-art results. Our human evaluation shows
that our method generates diverse, fluent, and
informative summarized questions.

1 Introduction

Online health information search is becoming con-
ventional for more and more consumers every day.
A recent survey showed that on average eight mil-
lion people in the United States seek health-related
information on the Internet every day1. One chal-
lenge towards assisting consumers in their health-
care information search is automatic question un-
derstanding. Generally consumers’ questions are
overly descriptive and include several peripheral
information (as shown in Figure-1), which are not
necessary to answer questions. Therefore, in this
study we tackle the task of consumer health ques-
tion understanding by summarizing the question.

Automatic text summarization is a non-trivial
task in Natural Language Processing (NLP) that
aims to generate human-readable, concise text con-

1https://pewrsr.ch/3l6m3mv

Figure 1: The highlighted text shows important key
aspects of the question which need to be considered
while generating the summary.

taining salient information of the original docu-
ment. The recent development in large-scale neural
language models (Devlin et al., 2019; Raffel et al.,
2020) have led to significant performance on sev-
eral abstractive summarization task. However, their
accuracy is partially due to the availability of large-
scale human-annotated training data. Moreover,
some domains such as biomedical and medical re-
quire domain experts to create high-quality training
datasets, which is tedious to create at a large-scale
level.

A potential solution that has shown effectiveness
in other generation and translation tasks is to aug-
ment the large-scale synthetically generated sam-
ples with a human-annotated training set. However,
a limited study focused on data selection strategy in
summarization, particularly for abstractive summa-
rization. The majority of the traditional data selec-
tion methods are based on word replacement that
mainly generates a synthetic sentence by changing
one or multiple words with their synonyms (Zhang
et al., 2015) or with a language model predicted
words (Kobayashi, 2018). However, these methods
make minor changes to the original sentence and
therefore fall short of generating a diversified sen-
tence.

To address this research gap, we present a novel
data selection strategy for abstractive consumer
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health question (CHQ) summarization task. In-
spired by the success of the round-trip translation
(RTT) (Hoang et al., 2018) – a process of trans-
lating the sentences to a pivot language and then
back translating to the original language, we aim to
explore the effect of RTT as a data augmentation
method in CHQ summarization. However, not all
the data samples obtained from RTT are diverse
and can contain redundant information.

Towards this, we enhance the capability of RTT
by devising multiple optimal data selection strate-
gies to select diverse and informative questions,
which leads to the significant performance improve-
ment of the CHQ summarization system. Our first
data selection strategy Frechét Question Distance
(FQD) is based on Frechét distance (Dowson and
Landau, 1982), which measures the distribution
distance between the gold and round-trip translated
question. The FQD ensures that questions having
near similar or very different distributions should
not be selected as additional data to train the sum-
marization system. We propose Precision Recall
Question Distance (PRQD) as our second data
selection strategy, which disentangles the question
distributions divergence into two components: pre-
cision and recall. These two components ensure
that the selected additional data brings diversity to
the whole training dataset. It is achieved by find-
ing the trade-off between precision and recall of
the distributions of the gold and round-trip trans-
lated questions. Our final data selection strategy
Question Semantic Volume (QSV) is based on
maximizing the semantic area formed by the points
obtained from the semantic representation of the
questions. The QSV aims to select the questions
which maximize the semantic area leading to the
selection of the additional questions which are non-
redundant and diverse in nature.

We evaluated the effect of the additional data
generated using the RTT and our proposed data
selection objective measures on benchmark CHQ
summarization dataset and two low-resource open
domain datasets. We assess the role of each objec-
tive measure in RTT based data selection technique
using five different pivot languages. Our results
show that the RTT-based data selection method
helps to improve the performance of the summa-
rization system. We summarize the contribution of
the work as follows:

1. We explored the role of the RTT-based data
selection technique on CHQ summarization

by experimenting with five different pivot lan-
guages.

2. We introduced the semantic-volume and
diversity-based data selection objective mea-
sure in RTT to optimally select the diverse
and informative synthetic questions.

3. Our unsupervised method achieves state-of-
the-art performance on benchmark consumer
healthcare question summarization datasets.
Further, our human analysis confirms the ef-
fectiveness of our proposed approach in gen-
erating fluent and informative summary.

2 Related Work

Neural Abstractive Summarization: The recent
advancement of neural networks models, particu-
larly sequence-to-sequence (seq2seq) (Sutskever
et al., 2014) models, attention mechanism (Bah-
danau et al., 2015), copy mechanism (Gu et al.,
2016), coverage mechanism (See et al., 2017)
has propelled the development of efficient abstrac-
tive summarization approaches on numerous open-
domain datasets. Several other methods have
utilized the reinforcement learning (RL) (Paulus
et al., 2018; Pasunuru and Bansal, 2018; Zhang
and Bansal, 2019) to guide the models to generate
faithful summaries. Recently, several studies have
investigated the pre-trained language models in the
abstractive summarization task (Qi et al., 2020; Liu
and Lapata, 2019) and have achieved the state-of-
the-art performance. Besides the supervised mod-
els, various other unsupervised approaches have uti-
lized variational autoencoders for automatic sum-
marization (Laban et al., 2020; Bražinskas et al.,
2020; Baziotis et al., 2019).

Consumer Health Question (CHQ) Summa-
rization: While major progress has been made
in open-domain abstractive summarization, CHQ
summarization is a relatively new task. Ben
Abacha and Demner-Fushman (2019) defined the
task of summarizing CHQ and introduced a bench-
mark dataset containing 1000 consumer questions
summaries. Recently, a first shared task was orga-
nized by Ben Abacha et al. (2021) with the task
of summarizing consumer health questions, radi-
ology reports, and multi-document answers. The
majority of the works (Lee et al., 2021; He et al.,
2021; Sarrouti et al., 2021; Sänger et al., 2021) used
pre-trained language models, ensemble approaches,
and knowledge-based methods for the CHQ sum-
marization task. A few other new methods (Yadav
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et al., 2021a) have enhanced the capability of trans-
former model by inducing the latent knowledge. In
the literature, several works have explored the con-
cept of RTT in machine translation (Nguyen-Son
et al., 2021), sentence construction (Zhou et al.,
2021), and style-transfer (Zhang et al., 2020b).

Our works advances the existing studies in
the consumer health question summarization by
proposing an unsupervised framework to optimally
select the diverse and information RTT questions,
which leads to significant improvement without the
need of additional labelled data.

3 Methods

3.1 Background

Given a consumer health question Q =
{q1, q2, . . . , qM}, the goal of this task is to gener-
ate a summarized question S = {s1, s2, . . . , sN}
that contains the key information of the origi-
nal question. Towards this, we build our ques-
tion summarization model over the Transformer-
based seq2seq (Vaswani et al., 2017) architec-
ture. It aims to learn the conditional likelihood
p(S|Q) =

∏t=N
t=1 p(st|s<t, Q), where, s<t denotes

all generated target tokens before st. We utilized
the pre-trained ProphetNet (Qi et al., 2020), as the
strong base model to summarize the questions. We
choose ProphetNet as it is specifically designed
for sequence-to-sequence training and it has shown
near state-of-the-art results on language generation
and CHQ summarization task (Yadav et al., 2021a).

3.2 CHQ Summarization with Round-trip
Translation

To train an effective neural network model for lan-
guage generation tasks, the requirement of suffi-
cient training data is indispensable. Synthetic data
augmentation is a way to mitigate the data scarcity
issue. It helps the model to reduce the brute-force
memorization and also introduce a regularization
effect.

In the literature, existing works (Yu et al., 2018;
Xie et al., 2020) have shown that the RTT-based
data augmentation methods create diverse sam-
ples while preserving the semantics. Inspired by
these studies, we perform RTT to generate the para-
phrases of the source CHQ that could lead to a
better summarization system. In order to avoid
the noise and keeping the fact intact, we did not
paraphrase the gold summarized questions.

Specifically, for a given original dataset Dorig =

{(Qi, Si) | i = 1, 2, . . . , L}, we translate
the source CHQ Qi ∈ Dorig into a non-
English pivot language (xx) to obtain Den→xx =
{(Qxxi , Si) | i = 1, 2, . . . , L} using the Google
translation. We then back-translate the Den→xx to
English and obtained Dxx→en. The final dataset is
obtained from forward (Den→xx) followed by the
backward (Dxx→en) translation as:

Den↔xxrtt = {(Q̂i, Si) | i = 1, 2, . . . , L} (1)

Further, to enhance the model’s generalization
ability, we enrich the original training dataset
Dorig with the additional RTT-based generated data
Den↔xxrtt . We call this as the augmented dataset
Den↔xxaug :

Den↔xxaug = Dorig ∪ Den↔xxrtt (2)

3.3 Data Selection Objective Measures

We define three different data selection objective
measures: (i) Frechét Question Distance, (ii) Preci-
sion Recall Question Distance, and (iii) Question
Semantic Volume, that assess both diversity and
quality of the RTT question by assigning low scores
to less informative questions (i.e., questions having
factual errors and lacking salient medical informa-
tion as present in the original question) or have
low-diversity.

In the literature, there are few metrics like BLEU,
Self-BLEU, Negative Log-Likelihood (NLL) that
individually account for quality and diversity in
the generated text. Alihosseini et al. (2019) shows
that these metrics neglect either the quality (in the
case of Self-BLEU) or the coverage (in metrics
like BLEU, NLL). Thus, it is necessary to have a
measure that could jointly consider both quality-
diversity in the generated text. We argue that the
distribution distance between the semantic repre-
sentations of the round-trip generated question and
the original question can be used simultaneously to
select the diverse and informative round-trip gener-
ated question.

Given a gold question Q and round-trip gen-
erated question Q̂, we first extract the ques-
tion semantic representations hQ and hQ̂ from
a Transformer-based (Vaswani et al., 2017) pre-
trained language model, which encodes the contex-
tual information of the questions. Unlike the other
work (Xiang et al., 2021), where the BERT has
been used to derive fixed-size sentence embedding,
we follow the idea of sentence-BERT (Reimers
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and Gurevych, 2019) which uses the siamese and
triplet networks (Schroff et al., 2015) to update
the weights such that the generated semantically
similar question representations are close in vector
space. Towards this, we utilized the pre-trained
MPNet (Song et al., 2020) model, which is fine-
tuned using the siamese and triplet networks as
discussed in Reimers and Gurevych (2019). We
obtain the semantic representation of the questions
from fine-tuned MPNet as:

hQ = MPNet(q1, q2, . . . , qM )

hQ̂ = MPNet(q̂1, q̂2, . . . , q̂M̂ )
(3)

In the following sub-sections, we use the semantic
representation of the questions to devise multiple
objective measures to select the diverse and infor-
mative round-trip generated question.

3.3.1 Frechét Question Distance
Heusel et al. (2017) introduced the metric Fréchet
Inception Distance (FID) to evaluate the perfor-
mance of the Generative Adversarial Networks
(Goodfellow et al., 2014) based image generation
models. FID is based on the Fréchet distance (Dow-
son and Landau, 1982) and is used to measure the
similarity of generated images to real ones. In-
spired by FID, we introduce FQD, which mea-
sures the distributional distance between the se-
mantic representation of the gold question and the
round-trip generated question. We assume that
question semantic representations follow the multi-
dimensional Gaussian distribution with first two
moments: mean and covariance. The distance be-
tween these two Gaussian distributions is measured
by the Fréchet distance.

Let the semantic representation hQ of the gold
question follow the Gaussian: hQ ∼ N (µq,Σq)
with mean µq and co-variance matrix Σq. Simi-
larly, let the semantic representation of the round-
trip question follow: hQ̂ ∼ N (µq̂,Σq̂). The

Frechét Question Distance between Q and Q̂ is
computed as follows:

dFQD(Q, Q̂) = ∥µq − µq̂∥22 +Tr(Σq +Σq̂ − 2(ΣqΣq̂)
1/2)
(4)

where Tr(X) is the trace of matrix X . To pro-
duce a uniform FQD score, we linearly scale the
dFQD(Q, Q̂) in the range [0, 1] using the following
min-max normalization:

FQD(Q, Q̂) =
dFQD(Q, Q̂)−min(dFQD)

max(dFQD)−min(dFQD)
(5)

where min(dFQD) and max(dFQD) represent the
minimum and maximum FQD in the dataset. When
the distribution of gold question is close to the dis-
tribution of the round-trip generated question, the
FQD score is close to zero. In order to have the
diverse, informative, and non-redundant samples
in the training set, one does not need to include the
round-trip generated questions whose FQD scores
with gold questions are either low (near same ques-
tion) or high (entirely different questions). Toward
this, we aim to select the round-trip generated ques-
tions such that FQD score with gold questions is
found to be in an optimal range. Given the round-
trip generated questions Den↔xxrtt with pivot lan-
guage (xx), we select a subset of the questions as
follows:
Den↔xx
rtt+fqd = {(Q̂i, Si) | µ1 < FQD(Qi, Q̂i) < µ2} (6)

where µ1 and µ2 are hyper-parameters (i.e., the op-
timal threshold) chosen based on the performance
of CHQ summarization system on the validation
dataset.
3.3.2 Precision Recall Question Distance
Inspired by the work of Sajjadi et al. (2018), which
uses the notion of precision and recall to compare
the reference and hypothesis distribution, we pro-
pose our second objective measure Precision Recall
Question Distance. Similar to the FQD, it measures
the distributional distance between semantic rep-
resentations of the gold and round-trip generated
questions; however, it does not require estimating
the moments of the probability distributions. Intu-
itively precision measures how much of hQ̂ can be
generated by a portion of hQ. In contrast, recall
measures how much of hQ can be generated by
a portion of hQ̂. Hence, the precision and recall
should be high for the approximately same ques-
tion distributions, whereas, if the question distribu-
tions are disjoint in nature, the precision and recall
will be zero. Therefore, we aim to select the RTT
questions whose precision and recall lies between
the optimal range to ensure diversity. To compute
PRQD, we follow the algorithm proposed by Saj-
jadi et al. (2018), which is based on the precision-
recall distance (PRD) curve. Toward this, we com-
pute pairs of precision prec(α) and recall rec(α)
for an equiangular grid of values of α.

prec(α) =
∑

v∈V
min(αhQ(v), hQ̂(v))

rec(α) =
∑

v∈V
min

(
hQ(v),

hQ̂(v)

α

) (7)

2895



Figure 2: Question semantic volume maximization us-
ing convex hull. The and are the selected and
non-selected candidates RTT questions using convex
hull. The left side figure shows the toy-example of the
convex hull. The right side figure shows the selected
RTT question with respect to the gold question .

where hQ and hQ̂ probability distributions are de-
fined on a finite state space V . In order to compute
a single-value metric, we compute the F1-score
corresponding to each α and select the maximum
F1-score as the PRQD distance dPRQD(Q̂,Q) as
follows:

dPRQD(Q̂,Q) = max

{
2 ∗ prec(α) ∗ rec(α)
prec(α) + rec(α)

∣∣∣∣ α ∈ Λ

}

(8)

where Λ = {tan( i
p+1

π
2 )|i = 1, · · · , p} and p ∈ N

refers to the angular resolution, which is a hyper-
parameter. Similar to FQD, we linearly scale the
dPRQD(Q̂,Q) in the range of [0, 1] following Eq. 5
and obtained the normalized score PRQD(Q̂,Q).

Given the round-trip generated questions
Den↔xxrtt with pivot language (xx), we select a sub-
set of questions as follows:

Den↔xx
rtt+prqd = {(Q̂i, Si) | β1 < PRQD(Q̂i, Qi) < β2}

(9)

where β1 and β2 are the optimal thresholds which
are chosen similar to µ1 and µ2.

3.3.3 Question Semantic Volume
Existing work in the literature (Yogatama et al.,
2015) shows that the sentences which maximize
the semantic volume in a distributed semantic space
are the most diverse and have least redundant sen-
tences. Motivated by this, first, we aim to find the
most diverse and least redundant round-trip gen-
erated questions from the pool of RTT questions
generated by considering different pivot languages.
Later, we devise a simple yet effective measure to
quantify the candidate RTT questions with respect
to the gold questions in terms of their semantic
distance. Specifically, for the given gold ques-
tion Q and a set of K RTT generated questions
{Q̂1, Q̂2, . . . , Q̂K}, first, we extract (cf. Eq. 3)

the semantic representation hQ for gold question
and each RTT questions {hQ̂1

, hQ̂2
, . . . , hQ̂K} and

form a data matrix H ∈ R(K+1)×d. Later, we
perform the linear dimensionality reduction using
Principal Component Analysis to project the data
matrix H to a lower dimensional space and obtain
the transformed data matrix H ∈ R(K+1)×2. In or-
der to find and compare the most diverse round-trip
candidate questions, we exclude the point corre-
sponding to the gold question from H . To find a
convex maximum volume, we find the convex hull
using the Quickhull algorithm (Barber et al., 1996)
as follows:

{p1, p2, . . . , pC} = ConvexHull(h1, h2, . . . , hK) (10)

The convex hull are the smallest convex set that
includes all points h1, h2, . . . , hK . The points
{p1, p2, . . . , pC} are the vertices of the convex hull.
It also guarantees to obtain the maximum semantic
area with the selected points. Intuitively, it selects
the RTT questions which are diverse in nature.

However, the vertices of the convex hull do not
reduce the redundant points over the convex hull,
and it lacks the notion of semantic distance from the
point representing the gold question. Due to this, it
usually selects the redundant round-trip generated
questions (cf. Figure 2). To tackle this, first, we
compute the euclidean distance d(pg, pi) between
the point pg representing the gold question and each
point pi from the vertices of convex hull. Then, we
only select the farthest apart round-trip question
Q̂j to include in the dataset if their semantic point
in vector space represented by pj is greater than an
optimal threshold.

D = {d(pg, pi) | i = 1, 2, . . . , C}
pj = argmax

p1,p2,...pC

(D) (11)

Finally, we select the optimal subset of the ques-
tions as follows:

Drtt+qsv = {(Q̂j , Sj) | d(pg, pj) > λ} (12)

where λ is an optimal threshold and chosen based
on the performance of CHQ summarization on the
validation dataset.

4 Experiments

4.1 Datasets
We experimented with a benchmark CHQ sum-
marization dataset (MEQSUM) (Ben Abacha and
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Demner-Fushman, 2019). The MEQSUM dataset
consists of domain-expert labeled 1000 question-
summary pairs. The dataset is derived from de-
identified consumer health questions (CHQs) re-
ceived by the U.S. National Library of Medicine,
National Institute of Health. Similar to the Ben
Abacha and Demner-Fushman (2019), we aug-
mented additional 4, 655 pairs of medical ques-
tions and shorter questions obtained from (Ely
et al., 2000) to the original MEQSUM dataset. We
use 5, 055 question-summary pairs as a training
dataset, 100 sample pairs for validation, and 500
sample pairs for testing. We also experimented
on an additional test collection containing 100
question-summary pairs released in BioNLP 2021
MEDIQA-QS shared task challenge (Ben Abacha
et al., 2021) that has the same training set as the
MEQSUM dataset.

We evaluated the performance of the proposed
models using ROUGE (Lin, 2004). Following the
existing works (Fabbri et al., 2021; Yadav et al.,
2022b; Gliwa et al., 2019; Yadav et al., 2022a,
2021b), we reported the Rouge-1, Rouge-2, and
Rouge-L. Additional implementation details are in
the Appendix.

4.2 Experimental Setups

We design the following experiments to assess and
compare the role of round-trip translation and the
proposed data selection objective measures.

1. Original Data: We trained the question sum-
marization system with the gold-standard
training dataset (Dorig) which consist of
source question and target summary and eval-
uated the performance on the test dataset.

2. RTT: We augmented the RTT questions with
the original data and obtainedDen↔xxaug (cf. Eq.
2). We performed this experiment with five
different languages (xx): Spanish (es), Ger-
man (de), Japanese (ja), Chinese Simplified
(zh-CN), and Chinese Traditional (zh-TW).

3. RTT + FQD: We utilize the FQD based ob-
jective measure to select the optimal subset
of RTT synthetic questions. The selected syn-
thetic questions (Den↔xxrtt+fqd) with the original
questions (Dorig) are used to train the ques-
tion summarization system.

4. RTT + PRQD: We use the PRQD based ob-
jective measure to select the optimal subset of
round-trip translated synthetic questions. Sim-
ilar to the RTT + FQD, we use selected syn-

thetic questions (Den↔xxrtt+prqd) along with the
original questions (Dorig) to train the question
summarization system.

5. RTT + QSV: With this experimental setup,
we select the optimal subset from round-trip
translated synthetic questions based on ques-
tion semantic volume obtained from the five
different languages. We train the system with
Drtt+qsv dataset (cf. Eq. 12) along with the
original questions (Dorig).

4.3 Results
We report the results on MEQSUM datasets in Ta-
ble 1. The results shows that our proposed method
outperforms all the baselines in terms of Rouge-1,
Rouge-2 and Rouge-L metrics on MEQSUM. Addi-
tionally, we also compared our proposed methods
with the state-of-the-art techniques on MEQSUM.
As evident from Table 1, our method outperforms
the array of existing approaches on both datasets
(in term of Rouge-L) without the need for any addi-
tional human-annotated training dataset. On MEQ-
SUM, Mrini et al. (2021) obtained the best perfor-
mance in terms of Rouge-1 and Rouge-2. It is to
be noted that (Mrini et al., 2021) performed experi-
ments on large-scale datasets from various health-
care forums which are restricted for data sharing
and crawling. Therefore, to not breach the pri-
vacy concern of users, we did not considered those
datasets for our experiments.

To understand the role of different data selection
method, we carried out a deep analysis of the re-
sults (cf. Table- 2 and Table 7 in Appendix) both
in terms of the performance (Rouge-1, Rouge-2,
and Rouge-L) and the number of training samples
selected. The results show that augmenting data
via RTT significantly improves the performance
of the model on all the three metrics. Especially
with Frechét Question Distance, we achieve the
highest Rouge-1, Rouge-2, and Rouge-L scores
46.59, 29.33, and 49.68 respectively. We also ob-
serve a similar gain on all the other language pairs
with FQD. The FQD proved to be better amongst
all the measures as it consider the semantic dis-
tance between the gold question and RTT generated
question in the distributional space compared to the
PRQD which computes a more abstractive distance.
The PRQD based objective measure also achieve
significant performance improvement over RTT
in all five languages. Our final semantic-volume-
based objective measure obtained the improvement
of 2.35/3.01/2.61 on Rouge-1/Rouge-2/Rouge-L
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Methods Rouge-1 Rouge-2 Rouge-L
Baseline Methods

Seq2Seq (Sutskever et al., 2014) 25.28 14.39 24.64
Pointer Generator (PG)
(See et al., 2017)

32.41 19.37 36.53

BertSumm (Liu and Lapata, 2019) 26.24 16.20 30.59
T5 (Raffel et al., 2020) 38.92 21.29 40.56
PEGASUS (Zhang et al., 2020a) 39.06 20.18 42.05
BARTLARGE (Lewis et al., 2020) 42.30 24.83 43.74
ProphetNet (Qi et al., 2020) 43.87 25.99 46.52

State-of-the-art on CHQ Summarization
PG + Data Augmentation
(Ben Abacha and Demner-Fushman, 2019)

44.16 27.64 42.78

BART + Data-Augmented Joint Learning
(Mrini et al., 2021)

48.50 29.70 44.90

ProphetNet + RL rewards
(Yadav et al., 2021a)

45.52 27.54 48.19

Proposed Method (RTT+FQD) 46.59 29.33 49.68

Table 1: Comparison of our proposed method with the
SOTA and other existing methods on the MEQSUM.

Method Rouge-1 Rouge-2 Rouge-L % of Additional
Samples

Original Data 43.87 25.99 46.52 –
RTT 44.67 27.68 47.34 100

RTT+FQD 46.59 29.33 49.68 13.16
RTT+PRQD 45.48 27.74 48.61 75.31
RTT+QSV 46.22 29 49.13 2.00

Table 2: Performance of proposed methods (best on
es language) on MEQSUM. The results for remaining
languages can be found in Appendix (Table 7).

points over the original data based experiment.
Our second set of experiments analyzed the num-

ber of training samples selected by different objec-
tives measures. It can be visualized from Table
2 that QSV outperforms the other selection mea-
sures by selecting only 2% of the RTT samples and
obtaining 46.22, 29 and 49.13 values of Rouge-1,
Rouge-2, and Rouge-L respectively. With FQD,
we observed a little higher improvement on de lan-
guage and reported 46.5, 29.53, and 49.45 values
for Rouge-1, Rouge-2, and Rouge-L by selecting
6.85% of RTT samples.

We also evaluated the performance of our pro-
posed objective measures on the MEDIQA-QS
test dataset. Since, the official training data for
MEDIQA-QS was MEQSUM annotated ques-
tions, we used the best-performing system (across
each language) developed on MEQSUM to evalu-
ate the performance (cf. Table-3) of each objective
measures on MEDIQA-QS test set. The results
shows that our proposed approach outperforms the
existing methods in terms of Rouge-1 and Rouge-L.
This confirms our data selection measures ensure
the training samples are diverse in nature which
leads to enhanced learning capability of the sum-
marization model.

Methods Rouge-1 Rouge-2 Rouge-L
Baseline Methods

T5 (Raffel et al., 2020) 29.6 10.7 26.7
PEGASUS (Zhang et al., 2020a) 31.2 11.8 28.1
BART (Lewis et al., 2020) 28.6 9.8 25.8
ProphetNet (Qi et al., 2020) 30.3 11.1 26.5

Existing Methods
Adversarial Training (Xu et al., 2021) 34.03 13.98 29.62
Transfer Learning (Lee et al., 2021) 33.52 15.97 30.90
Generative Transformers
(Sänger et al., 2021)

33.40 15.99 31.49

Knowledge-based Method
(He et al., 2021)

35.14 16.08 31.31

Proposed Methods
RTT 35.40 15.00 30.80
RTT+FQD 36.80 15.30 32.10
RTT+PRQD 36.20 15.10 31.60
RTT+QSV 36.50 15.40 32.00

Table 3: Comparison of our proposed methods with the
best performing models on the MEDIQA-QS test set.

4.4 Discussion

The results thus satisfy our two major claims: (i)
The data generated using the RTT helps to improve
the performance of the CHQ summarization model
by a significant margin, and (ii) our proposed di-
versity and semantic-volume-based objective mea-
sures are highly effective in filtering out redundant
and undesirable RTT questions, which makes the
augmented data more informative and helpful in
further improving the performance of the system.
Amongst all the objective measure QSV select least
amount of RTT samples, it is because QSV follow
the two-steps (hull formation, maximizing the dis-
tance from gold summary) process to evaluate the
informative and diverse samples. We analyze the
82.3% samples was excluded at the first step as
they do not form the hull.

From the obtained results, FQD can be chosen
among the proposed three objective measures. Al-
though the use of FQD does not lead to selection of
least training RTT samples, the results obtained by
FQD are consistent and are very near to the optimal
solution across all the languages. The complexity
of FQD lies in estimating the mean and co-variance
of the Gaussian. For the PRQD computation, we
need to compute multiple precision and recall to
form the PRD curve. The computation of precision
and recall is computationally intense as the samples
should be compared based on statistical regulari-
ties, which requires to obtain the histogram over
the k-means clustering of the union of two semantic
representations as discussed in Sajjadi et al. (2018).
For the QSV, we need to obtained multiple (K)
round-trip translated questions followed by their
2-d projection using PCA which requiresO(2∗d2).
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Figure 3: Selected RTT questions with the FQD, PRQD and QSV objective measures.

Thereafter, we need to obtain the convex hull of
the projection which requires O(KlogK). Thus,
the PRQD and QSV are computationally intense
objectives compare to the FQD.

4.5 Evaluation on Healthcare Answer
Retrieval Task

To determine whether the summarized questions
can help in improving the answer retrieval perfor-
mance, we performed experiments on the LiveQA
2017 test set (Abacha et al., 2017), consisting of
104 medical questions from the National Library
of Medicine (NLM). The task aims to retrieve a
correct answer to each medical question. Towards
this, we used our best-performing method (FQD)
on the CHQ summarization task to generate a sum-
mary for the LiveQA questions. We utilized the
answer retrieval model developed in Yadav et al.
(2022a) to retrieve the answer from the MedQuad
collection2. We used the judgment scores3 estab-
lished by the LiveQA shared task to judge the qual-
ity of retrieved answers: “Correct and Complete
Answer" (4), “Correct but Incomplete" (3), “Incor-
rect but Related" (2) and “Incorrect" (1). We ex-
cluded those questions for which the top answer’s
judgment score was unavailable. In this process,
we evaluated common 48 questions for which hu-
man judgment scores were available across original
questions, model-generated summarized questions
and human-generated summarized questions.

Results We used the official evaluation metrics
proposed by the LiveQA shared task to compare the
performance of answer retrieval using the original
versus summarized questions. Please note these

2https://github.com/abachaa/MedQuAD
3https://github.com/abachaa/

MedQuAD(QA-TestSet)

metrics evaluate the first retrieved answer for each
test question:

• avgScore(0-3): the average score for test ques-
tions by transferring 1-4 level grades to 0-3
scores. This is the main score to rank the
LiveQA systems.

• succ@k: the number of questions with a score
k or above (k = {2, 3, 4}) divided by the total
number of questions in test set.

• prec@k: the number of questions with a score
k or above (k = {2, 3, 4}) divided by the
number of questions answered by the system.

Table 4 shows the results obtained by the QA sys-
tem using: (i) the original questions, (ii) the sum-
marized questions by FQD, and (iii) expert-created
reference summaries as reported in (Ben Abacha
and Demner-Fushman, 2019).

Measures Original Questions Human Generated
Reference Summaries

FQD Generated
Summarized Questions

avgScore(0-3) 0.384 0.557 0.48
succ@2+ 0.23 0.336 0.288
succ@3+ 0.115 0.144 0.144
succ@4+ 0.038 0.076 0.048
prec@2+ 0.5 0.72 0.62
prec@3+ 0.25 0.312 0.312
prec@4+ 0.083 0.016 0.104

Table 4: Evaluation of the answers retrieved using the
original, human-generated, model-generated summaries
based on the LiveQA metrics.

The results show that summarizing the CHQ
can significantly improve the performance of the
IR/QA system in retrieving relevant answers from
the collection of curated answers. We also ob-
serve that the performance of the IR/QA model
using the automatically summarized questions by
our proposed approach is close to the performance
achieved using the manually created reference sum-
maries.
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Methods RTT Questions Generated Summary-MEQSUM Generated Summary-MEDIQA-QS

Diversity (DI) Informative (INF) Factually
Correct (FC) Incorrect Acceptable Perfect Fluent Incorrect Acceptable Perfect Fluent

ProphetNet NA NA NA 23 18.5 8.5 23 25 17.5 7.5 26
FQD 38.5 41.5 41 9 12.5 28.5 37 11.5 10.5 28 35
PRQD 35.5 39.5 38.5 11.5 15.5 23 35 12 12 26 30
QSV 37 41.5 40.5 10 13 27 37 9.5 11 29.5 33

Table 5: Human evaluation on selected (50 × 5 languages) RTT questions. The metrics (DI, INF, FC) shows
the average numbers of questions qualified for a given metric across all the 5 languages. The evaluation metrics
(Incorrect, Acceptable, Perfect, Fluent) shows the average numbers of questions qualified for a given metric.

Original Question-I: SUBJECT: health MESSAGE: I have been bleeding since
2010 and I have been having sharp pain on my left stomach since 2014 and
my stomach is so big and I feel weak I have don a lot of test and nothing was
seen. What could be wrong with me? And how can I conquer?

Reference: What are the causes of abdominal pain and swelling?

Proposed Approach: What are the causes and treatment for abdominal pain?

Original Question-II: SUBJECT: EPI 743 MESSAGE: My son, His age 4
month discovered it leigh disease infected from the mother side. and we
have full family history with the leigh disease. my Daughter she lived for 7
years with the same disease, we have her Hospital reports, it is confirmed leigh
Disease. Kindly, if there is any hope for my son with EPI743 treatment , and
we are appreciate to accept him in the treatment study. i have a full reports for
my son and the MRI... Hope get your help ASAP because he is in the first stage.
and we have a we are all hope he will be better.

Reference: Is EPI743 an effective treatment for leigh syndrome?

Proposed Approach: Can leigh disease be treated with EPI743?

Table 6: Generated summaries on the MEQSUM.
Example-I shows an acceptable summary and model ca-
pability of generating novel words (“abdominal pain”)
without being present in the original question. The sec-
ond example shows a semantically correct summary.

4.6 Human Analysis

To understand the role of each data selection mea-
sures, we conducted human analysis on randomly
selected 50 × 5 languages samples from RTT
datasets. A set of 2 annotators experts in med-
ical informatics evaluated the selected questions
on the basis of diversity, informativeness, and fac-
tual consistency to measure (1) whether the RTT
questions have novel n-grams, (2) whether the se-
mantics of the original question was retained in the
RTT questions and (3) whether the salient medi-
cal information were present in the selected RTT
questions. We also instructed annotators to anno-
tate the generated summaries into one of the fol-
lowing categories: ‘Incorrect’, ‘Acceptable’, and
‘Perfect’ and also report the whether the summary
was ‘fluent’ or not. We reported the detailed quan-
titative analysis in Table 5. The results shows that
FQD outperforms the other objective measures in
terms of selecting more diverse and factually cor-

rect questions. Figure 3 shows the de-identified
CHQ selected by the different objective measures.
In our second analysis on the generated summary
(cf. Table 5), we again observed the superiority
of defined objective measures over the Prophet-
Net model (trained without the augmented data).
This confirms the effectiveness of data selection
objective measures that enhance the model learn-
ing ability by introducing diverse and informative
questions (cf. Table 6), leading to the higher pro-
portions of perfect summaries. We also conducted
error analysis on generated summaries and iden-
tified two main source of errors: (i) the original
questions consists of multiple sub-questions, and,
(ii) if the question focus (medical entities) are not
transformed into correct medical terminologies.

5 Conclusion

This work propose novel data selection strategy
based on the concept of round-trip translation for
consumer health question summarization. We de-
vised three major data selection objective measures:
FQD, PRQD and QSV based on the distributional
distance to optimally select the diverse and infor-
mative samples from the pool of round-trip trans-
lated data. Extensive experiments show that pro-
posed methods can effectively improve the perfor-
mance without any additional labelled data. We
also achieves new state-of-the-art results on bench-
mark consumer healthcare question summarization
datasets. In future, we plan to explore these objec-
tive measures on other resource-scarce tasks.
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A Experiments

A.1 Implementation Details

The pre-trained large uncased version4 of Prophet-
Net is used as the base encoder-decoder model. We
use the fine-tuned verison5 of MPNet from Hug-
gingface (Wolf et al., 2020) to extract the semantic
representation of the questios. We use the Google
translation6 to translate the question into pivot lan-
guage and then back-translate them into English.
To decode the summary, we use beam search algo-
rithm with beam size 4. We fine-tuned the summa-
rization models on the respective training dataset
for 15 epochs. The length of maximum original
questions and summarized questions are set to 120
and 20, respectively. We choose the optimal value
of pairs of hyper-parameters (µ1, µ2), (β1, β2) and
λ using the grid search. We found the optimal pairs
(µ1, µ2)={(0.17, 0.4), (0.25, 0.35), (0.05, 0.23),
(0.19, 0.3), (0.04, 0.17)}, (β1, β2)={(0.3, 0.85),
(0.3, 0.6), (0.3, 0.6), (0.55, 0.85), (0.4, 0.85)} on
languages es, de, ja, zh-CN and zh-TW, respec-
tively. We obtain the 0.8 as optimal value of λ. To
compute PRQD, we follow the official implemen-
tation7 with the hyper-parameter value p = 1001.

4https://huggingface.co/microsoft/
prophetnet-large-uncased

5https://huggingface.
co/sentence-transformers/
paraphrase-mpnet-base-v2

6We also performed the initial experiment with
mbart-large-50-many-to-many-mmt (Tang et al.,
2021) and found that Google’s translation quality was much
better than mBART.

7https://github.com/msmsajjadi/
precision-recall-distributions

We obtained the first two principal components
using the scikit-learn8 library (Pedregosa et al.,
2011). The convex hull is computed using the
Sci-py Qhull9 library (Virtanen et al., 2020). To
compute Rouge, we use the py-rouge implementa-
tion10.

To update the model parameters, we used Adam
(Kingma and Ba, 2015) optimization algorithm
with the learning rate of 7e − 5 in all the ex-
periments. We also used the cosine annealing
(Loshchilov and Hutter, 2017) based learning rate
decay scheduler, where the learning rate decreases
linearly from the initial learning rate in the opti-
mizer to 0.

We have checked for the software usage agree-
ments. The licence details of the used software are
as follows: ProphetNet and MPNet Huggingface
(Apache-2.0 License), Google Translate (Apache-
2.0 License), scikit-learn (BSD-3-Clause License),
scipy (BSD-3-Clause License).

Computing Infrastructure: We performed all
the experiments on a single NVIDIA Tesla V100
GPU having GPU memory of 32GB.

Average Run Time: The average runtime (for
each epoch) to fine-tuned the ProphetNet model on
original and RTT augmented datasets are recorded
as 10.4 and 20.5 minutes respectively. For the
FQD, PRQD and QSV objective based methods
the average run time range between 11.5 and 17.2
minutes. It depends upon the number of samples
selected for a particular pivot language.

Number of Parameters: The ProphetNet model
has 391.32 million parameters. Since, we used
the same model for all our experiments there fore
we have the same 391.32 million parameters in all
variants of the proposed methods.

A.2 Experimental Setups

A.3 Limitation

In this study, we evaluated the model generated
summary using Rouge-1, Rouge-2 and Rouge-L
metrics. However, these automatic evaluation met-
rics do not fully capture the nuances of what should
or should not be included in a consumer question
summary. Although we have performed human
evaluation on a subset of summary, it has to be val-

8https://bit.ly/3DPdjeR
9http://www.qhull.org/

10https://pypi.org/project/py-rouge/
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Method Rouge-1 Rouge-2 Rouge-L % of Additional
Samples

Original Data 43.87 25.99 46.52 –
RTT 44.67 27.68 47.34 100

RTT+FQD 46.59 29.33 49.68 13.16es
RTT+PRQD 45.48 27.74 48.61 75.31

RTT 45.43 29 48.41 100
RTT+FQD 46.5 29.53 49.45 6.85de

RTT+PRQD 46.38 29.47 49.4 71.27
RTT 45.86 27.8 48.32 100

RTT+FQD 46.17 29.39 49.48 59.06ja
RTT+PRQD 46.02 28.2 49.26 81.34

RTT 44.81 27.71 47.75 100
RTT+FQD 45.75 28.04 48.71 17.55zh-CN

RTT+PRQD 45.66 28.54 48.6 11.36
RTT 45.23 27.76 48.12 100

RTT+FQD 46.13 28.45 49.16 51.46zh-TW
RTT+PRQD 45.88 27.69 48.66 67.02

RTT+QSV 46.22 29 49.13 2.00

Table 7: Performance comparison across all the languages on the proposed methods.

idated by clinical expert on a larger representative
collection.

A.4 Potential Risk
The ProphetNet pre-trained language model used
in this study are not checked for social bias and
diversity. It may not be the representative of the
whole world population and may contains region,
community, race or gender specific biases.

A.5 Ethics / Impact Statement
Our project involves publicly available datasets of
consumer health questions. It does not involve any
direct interaction with any individuals or their per-
sonally identifiable data and does not meet the Fed-
eral definition for human subjects research, specifi-
cally: “a systematic investigation designed to con-
tribute to generalizable knowledge" and “research
involving interaction with the individual or obtains
personally identifiable private information about an
individual."
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Abstract

Recognizing the layout of unstructured digital
documents is crucial when parsing the docu-
ments into the structured, machine-readable for-
mat for downstream applications. Recent stud-
ies in Document Layout Analysis usually rely
on visual cues to understand documents while
ignoring other information, such as contextual
information or the relationships between doc-
ument layout components, which are vital to
boost better layout analysis performance. Our
Doc-GCN presents an effective way to harmo-
nize and integrate heterogeneous aspects for
Document Layout Analysis. We construct dif-
ferent graphs to capture the four main features
aspects of document layout components, in-
cluding syntactic, semantic, density, and ap-
pearance features. Then, we apply graph con-
volutional networks to enhance each aspect of
features and apply the node-level pooling for
integration. Finally, we concatenate features
of all aspects and feed them into the 2-layer
MLPs for document layout component classi-
fication. Our Doc-GCN achieves state-of-the-
art results on three widely used DLA datasets:
PubLayNet, FUNSD, and DocBank. The code
will be released at https://github.com/
adlnlp/doc_gcn

1 Introduction

Digital documents (incl. Scanned Document Im-
ages and PDF files) are popular and convenient for
storing written textual information, so almost 2.5
trillion documents worldwide are available in the
digital format (Zhong et al., 2019). However, it is
challenging to automatically recognize the layout
and components of these unstructured digital doc-
uments and extract meaningful information using
this format. For example, the financial office would
require the scanned document image after their
client signed. It is then crucial to recognize and

∗Co-First Authors
†Corresponding Author (caren.han@sydney.edu.au)

extract the form component, such as the form title,
person name, and the date the document is signed.
This task is widely called Document Layout Anal-
ysis (DLA). The DLA task aims at understanding
the documents from either 1) the physical analy-
sis by detecting the document structure and the
boundaries of each layout region or 2) the logical
analysis by categorizing the detected layout compo-
nents (segments) into the predefined document ele-
ment classes, such as Title, Date, Author, and Fig-
ure (Binmakhashen and Mahmoud, 2019). In this
research, we focus on the logical DLA task to clas-
sify the different layout components of PDF docu-
ments by understanding the relationships between
components. Traditional deep learning-based DLA
approaches mainly focus on processing visual fea-
tures of layout components (Soto and Yoo, 2019;
Augusto Borges Oliveira and Palhares Viana, 2017;
Li et al., 2020a) using CNN-based models. Some
recent studies started to use texts to solve the prob-
lem with the support of semantic information for
each layout component (Li et al., 2020b; Xu et al.,
2020). However, applying visual and textual fea-
tures is not enough to analyze the characteristics
and relations of document layout components in
order to classify them. In this paper, we try to
fill this gap by defining and proposing: 1) Layout
Components Characteristic Representation and 2)
Relation Representation between components.

The first question would be ‘What would be the
best aspects to represent the characteristics of dif-
ferent document layout components?’. The text
density/sparsity in each document component is
a valuable feature. For example, a paragraph is
more dense and usually contains more texts than
a table. Moreover, syntactic information can be a
key characteristic. It is obvious that a title mainly
consists of noun phrases only, whereas a paragraph
contains more sentences with the noun and verb
phrases. Hence, in this research, apart from the
common visual features and semantic text features
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used by previous works, we propose the four ma-
jor aspects, including text density, components ap-
pearance, syntactic and semantic information of
textual contents, of each component in order to let
the model conduct more comprehensive learning
of the Documents properties. Another question
would be ‘How to represent the relation among
document layout components?’ Most DLA studies
did not apply multiple aspects of features. Even
if applied (Soto and Yoo, 2019; Xu et al., 2020),
those features are integrated via simple concatena-
tions and do not consider the influences of relation-
ships between layout components on the classifi-
cation performances. The characteristics of each
component/segment are not enough to analyze the
whole document layout and its corresponding com-
ponents. Assume a ‘text’ component is detected
based on its characteristics, but it is more accu-
rate to classify it as the ‘figure caption’ if it is right
above or below a figure. Thus, capturing and encod-
ing the relationships between layout components is
crucial for better layout analysis.

In this paper, we propose a novel Heterogeneous
Graph Convolutional Network (GCN)-based DLA
model, Doc-GCN, on a document page level, tak-
ing the document layout component (segment) as
nodes in the graph and encoding the relative posi-
tional and structural relations between layout com-
ponents. We first construct six different graphs,
each encoding one aspect of features among the
layout components’ syntactic, semantic, text den-
sity, and visual features. The syntactic and density
aspects have two graph variants based on the dif-
ferent node embedding initialization methods. We
use the GCN to update the node embedding by
learning from its intimate neighbors, and the node-
level pooling is then applied to integrate the graph
variants. We concatenate the updated features of
each aspect, getting the final layout component
representation for the final classification of layout
component types.

In summary, the contributions of our work are as
follows:

• To the best of our knowledge, this is the first at-
tempt to apply heterogeneous aspects of Doc-
ument Layout Analysis.

• Doc-GCN is the first to propose using multi-
aspect Graph Convolutional Networks for har-
monizing the characteristics and relationships
among document layout components (seg-
ments).

• Doc-GCN achieved the state-of-the-art perfor-
mance on three widely used DLA datasets,
PubLayNet, FUNSD, and DocBank.

2 Related Work

2.1 Document Layout Analysis

In the 1990s, rule-based methods (Klink and
Kieninger, 2001; Fisher et al., 1990; Niyogi and
Srihari, 1986) were widely used for the DLA tasks
until the rise of deep learning. Zhong et al. (2019)
used Faster RCNN (Ren et al., 2015) and Mask
RCNN (He et al., 2017) as the basic deep learning
models for DLA task. Recent works have exten-
sions. Soto and Yoo (2019) added the size of the
proposed Region of Interest (ROI) and normalized
page number as the additional contextual informa-
tion to the pooled feature vectors for both classi-
fication and regression network of Faster RCNN.
Augusto Borges Oliveira and Palhares Viana (2017)
proposed the 1-D CNN with the parallel opera-
tion of horizontal and vertical projection. Li et al.
(2020a) proposed a model based on the Feature
Pyramid Networks (FPN) object detector to solve
the cross-domain document layout classifications.

Some DLA works integrated not only visual fea-
tures but also textual features. Xu et al. (2020)
proposed a pretrained model that integrated each
token’s positional and text embeddings with the
corresponding image embeddings. Xu et al. (2021)
then applied additional pretraining tasks to enhance
the multi-modality interactions further and used a
spatial-aware attention mechanism to capture the
relative positional relationship between different
layout components. Gu et al. (2021) proposed the
pretraining framework with a cross-attention trans-
former to boost the more substantial alignment be-
tween visual and textual features for each document
element region. Li et al. (2020b) proposed a new
dataset on the token-level where each token is anno-
tated into a layout element class and experimented
with this dataset with pretrained language models:
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) by inputting the sequence of token em-
beddings with the corresponding bounding boxes.
Zhang et al. (2021) used a relation module upon
the multimodal representations integrated from vi-
sion and semantic features to detect the relations
between different components.

However, understanding the vision and semantic
aspects of individual objects/regions is not enough
to analyze the document layout and components.
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It is critical to consider the influences of relation-
ships between document layout components. This
is very similar to the trend that we can see in the
most visual-language tasks (Long et al., 2022a).
For example, the table caption should be around the
table, and each component should be semantically
related. Besides, it is also important to provide the
better interpretation of the DLA prediction seman-
tically, which has been considered as lot of NLP
tasks (Luo et al., 2021).

2.2 Graph Convolutional Networks

Graph Convolutional Networks (GCN) (Kipf and
Welling, 2016) is a type of Graph Neural Net-
work which applies convolution over graph struc-
tures, and it has been applied to many Natural
Language Processing (NLP) tasks. For example,
TextGCN (Yao et al., 2019) and MEGCN (Wang
et al., 2022a) focus on the text classification by
representing words and documents as graph nodes,
and TensorGCN (Liu et al., 2020b) captures their
relations in different aspects, including semantic,
syntactic, and sequential aspects. D-GCN (Chen
et al., 2020) performs sentiment analysis jointly
with aspect extraction for graph-based modeling.
Hier-GCN (Cai et al., 2020) proposes a hierarchi-
cal GCN to model the inner- and inter-relations
among multiple aspect categories and sentiments.
InducT-GCN (Wang et al., 2022b) enables the in-
ductive GCN learning model, which improves the
performance and reduces the time complexicity.

Such graph-based approach is also widely ap-
plied to multimodal tasks, especially for visual
question answering (Huang et al., 2020; Luo et al.,
2020), text-to-image generation (Johnson et al.,
2018; Han et al., 2020), and text-image match-
ing (Liu et al., 2020a; Long et al., 2022b). It
receives lots of attention in converting multiple
modalities and aspects into structured graphs and
enhancing joint learning. Some document-based
analysis works, such as document dating (Vashishth
et al., 2018), apply the GCN-based document dat-
ing approach by jointly exploiting the document’s
syntactic and temporal graph structures. (Wang
et al., 2022c) also uses two-stage GCN classifiers
for line splitting and clustering for paragraph recog-
nition in documents. In this work, we apply GCN
to the DLA task by joint-learning different aspects
of document layouts and capturing the relationship
between layout components.

3 Doc-GCN

We propose a graph-based network Doc-GCN to
encode and integrate the different aspects of docu-
ment layout components. For each PDF page with
N document layout components, we construct six
different graphs: Gden1, Gden2, Gappr, Gsyn1, Gsyn2
and Gsemc, capturing the features of all the doc-
ument layout components in the page from four
aspects: density, appearance, syntactic and seman-
tic. Each graph Gi = (Vi, Ei,Ai) consists of a set
of nodes Vi (|Vi| = N), a set of edges Ei, and an
adjacency matrix Ai ∈ RN×N . We regard each
layout component of the page as a node υn ∈ Vi in
a graph. We segment each layout component by its
bounding box. Different node embedding initial-
ization and edge connection methods are applied
for different graphs to match the characteristics of
different feature aspects and capture different node
relationships. The Graph Convolution Network
(GCN) is then trained to update the node embed-
dings by learning from the neighbors.

3.1 Preliminaries
GCN (Kipf and Welling, 2016) is a convolutional
neural network that operates directly on a graph
to update the node embeddings by learning from
the neighbors of each node. Given an initial node
embedding matrix H0 ∈ RN×d0 consisting of N
node features of size d0, GCN will conduct the
propagation through layers based on the rule in
Equation 1.

Hl+1 = f
(
Hl,A

)
= σ

(
ÂHlW l

)
(1)

The node embedding matrix will be updated from
Hl ∈ RN×dl toHl+1 ∈ RN×dl+1 after every GCN
layer, where l = 1, 2, ..., L indicates the layer num-
ber. Â = D̃− 1

2 ÃD̃ 1
2 represents the normalized

symmetric adjacency matrix where Ã = A + I
and I is the identity matrix for self-connection
inclusion. D̃ is the diagonal node degree matrix
with D̃(i, i) = ΣjÃ(i, j) and W l ∈ Rdl×dl+1 is
the trainable weight matrix associated with the l-th
layer. σ denotes the activation function that can be
different for different GCN layers.

3.2 Graphs Construction
3.2.1 Density-aspect Graph1

Text density can be a valuable characteristic in dis-
tinguishing different document layout components.

1Details of density and appearance graph construction pro-
cedure can be found in Appendix A.1
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Figure 1: The overall architecture of the proposed Doc-GCN for document layout component classification.

For example, a paragraph usually contains more
compact texts than a table with text in a sparser dis-
tribution. We construct two density-aspect graphs
Gden1 and Gden2 to encode the text density features
of each layout component based on the text density
ratio and the absolute character numbers respec-
tively.

We calculate the text density ratio for each layout
component as the division between the number of
character-level tokens it contains and the area size
of its bounding box as in Equation 2:

Ratiodensity =
#tokens

Area size of bbox
(2)

Given a bounding box bboxn of a layout compo-
nent with the top left coordinates (xn1 , y

n
1 ) and the

bottom right coordinates (xn2 , y
n
2 ), the area size

is calculated as (xn2 − xn1 ) × (yn2 − yn1 ). We use
the positional encoding approach (Vaswani et al.,
2017) to project the density ratio and the absolute
character numbers of each layout component into
a higher dimension d0 = 768 to get the initialized
node embedding for each density graph. The initial
node embeddings of all N layout components in
the document page form the initial node embedding
matrices of Gden1 and Gden2. As per Equation 3, t
denotes the value of density ratio or the absolute
character numbers of each node, and i is the ith
dimension of

−→
fn. The value at ith dimension would

change along with the odevity of i for any offset k.

−→
f in =

{
sin( t

100002k/dS
), i = 2k

cos( t
100002k/dS

), i = 2k + 1
(3)

We connect each node with its closest two
neighbors with the smallest gap distance between
their corresponding boxes. The edge weight is
set to be the inverse distance value to empha-
size the positional relationship between closer
nodes. For a node vn with bounding box bboxn

([(xn1 , y
n
1 ) , (x

n
2 , y

n
2 )]), we calculate its vertical dis-

tance values with other bounding box bboxm
([(xm1 , y

m
1 ) , (xm2 , y

m
2 )]) that is vertically under it

by DV = |ym1 − yn2 | or DV = |ym2 − yn1 | for
bounding box that is vertically above it. This yields
a set of distance values

{
D1
V , ..., D

m
V

}
, we connect

the node vn with other two nodes that have the
two smallest values DV . For a two-column PDF
page, in addition to the set ofDV , we also calculate
the horizontal distance value DH =

∣∣∣xj1 − xn2
∣∣∣ be-

tween bboxn and a horizontally aligned bounding
box bboxj with coordinates

[(
xj1, y

j
1

)
,
(
xj2, y

j
2

)]

that has the smallest vertical gap distance. We then
connect the node vn with the other two nodes with
the smallest distance values among the set of DV

and DH .

3.2.2 Appearance-aspect Graph
To learn and encode the appearance properties,
such as the color and font size, of layout compo-
nents in a PDF page, we use a pretrained Faster-
RCNN model to extract the appearance feature−−→
fappr based on the bounding box of layout com-
ponent as the initial embedding for each node in
Gappr. We apply the same method of the edge
connection and edge value setup as that for the
density-aspect graphs in Section 3.2.1.

3.2.3 Syntactic-aspect Graph2

To comprehensively encode the syntactic features,
we use the constituency parser (Kitaev and Klein,
2018) to extract both the first-level and second-
level syntactic parse of the texts in each layout com-
ponent and construct two variants of the syntactic-
aspect graphs: Gsyn1 and Gsyn2 respectively. The
first-level parse for each layout component contains
only one syntactic symbol, while the second-level
parse could be a sequence of different syntactic

2Details of syntactic and semantic graph generation can be
found in Appendix A.2
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symbols. For example, for an article title ‘Vitrifica-
tion preserves chromatin integrity, bioenergy poten-
tial and oxidative parameters in mouse embryos’,
the first-level parse is (S) and the second-level parse
is a sequence of (NP, VP). We use the same posi-
tional encoding as in Equation 3 to project a 768-
dim vector

−→
Sw for each syntactic symbol based on

their unique indexes, resulting in a sequence of syn-
tactic embeddings

−→
S1,
−→
S2, ...,

−→
Sw for the sequence

of parse for each layout component. We then feed
this syntactic embedding sequence to a single-layer
Bi-LSTM, and extract the last hidden state as the
initialized node embedding for Gsyn2. Since there
is only one syntactic symbol for the texts in each
layout component for the first-level parse, we pad
the single symbol embedding to the sequence of
length T for Bi-LSTM input, and get the initialized
node embeddings for Gsyn1. For both Gsyn1 and
Gsyn2, we connect every two nodes in the graph
and set binary edge value {0, 1} based on the exis-
tence of a parent-child relationship between every
two layout components.

For the training and validation, we use the parent-
child relations extracted from the document source
files provided in the datasets. We apply the OCR
detection to the cropped image of each document
layout component. Based on the detected OCR
tokens and texts in document source files, we use
fuzzy string matching and a reading order assign-
ing method proposed by (Ding et al., 2022) to
map each layout component with the correspond-
ing element in the XML/ LATEX source files for Pub-
LayNet/DocBank and identify the parent-child rela-
tions based on the hierarchical structure embodied
in these source files. We then train a transformer-
based relation prediction model on the training and
validation set utilizing those extracted parent-child
relations and predict the parent-child relations for
the test set 3.

3.2.4 Semantic-aspect Graph
We use the pretrained BERT model (Devlin et al.,
2019) to encode the semantic features of each lay-
out component to construct Gsemc and extract the
hidden state of the special token [CLS],

−−−→
fsemc, as

the initial node embedding of Gsemc. We apply
the same method for the edge connection and edge
value setup as for the syntactic-aspect graphs in
Section 3.2.3.

3Details of the parent-child relation extraction and
transformer-based relation prediction model are provided in
Appendix A.2 and Appendix A.3

3.3 Graph Embedding Learning
After the graph construction, we apply the
GCN learning on each graph to update the
node representations that preserve the four as-
pects of the layout components’ properties by
learning and integrating information from the
neighbor nodes. For each graph Gpi , i ∈
{den1, den2, appr, syn1, syn2, semc} where p
denotes the individual PDF page of the dataset,
there is an associated initial node embed-
ding matrix H0

i ∈ RN×d0 , where i ∈
{den1, den2, appr, syn1, syn2, semc} as defined
in Section 3.2.

We feed these initialized node embedding ma-
trices to GCN and update the weight matrices by
optimizing the category prediction of each com-
ponent node following the propagation rules as in
Equation 1. After the training, we again feed each
graph Gpi into the trained GCN and extract the hid-
den layer node representations out, resulting in an
updated node embedding matrix Opi ∈ RN×d for
each graph Gpi , where N denotes the number of
components in this PDF page and d is the dimen-
sion of each updated node embedding.

3.4 Multi-aspect Classification
To synthesize the six graphs to four graphs with
each representing one aspect of the layout com-
ponents, we apply a node-level max pooling
Pm over the updated node embedding matrix
Opi ∈ RN×d of the graph variants for each
type of the graphs, yielding the new node em-
bedding matrix Opa of each aspect a, where a ∈
{density, appearance, syntactic, semantic}.

Opa =





Pm(Opsyn1, O
p
syn2), a = syntactic

Pm(Opsemc, FC(H0,p
semc′)), a = semantic

Pm(Opden1, O
p
den2), a = density

Pm(Opappr, FC(H0,p
appr)), a = appearance

(4)

Specifically, as per Equation 4, for syntactic-
aspect and density-aspect graphs, we conduct the
max pooling over the learned node representations
Opsyn1 (Opden1) and Opsyn2 (Opden2). For semantic-
aspect and appearance-aspect graphs that consists
of only one graph variant, we apply the node-level
max pooling over the learned node embedding ma-
trix Opappr and Opsemc respectively with the initial
node embedding matrixH0,p

appr andH0,p
semc′ that con-

tains the fine-tuned
−−−→
fsemc, whereH0,p

appr ∈ RN×d0
and H0,p

semc′ ∈ RN×d0 are projected into a d-
dimensional features via fully connected layer FC
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first. We then concatenate each of the ultimate as-
pects features Opa and feed it to the 2-layer MLPs
for the final classification of each document lay-
out component in each PDF page. Our classifier is
optimized based on the standard CrossEntropy.

4 Evaluation Setup

4.1 Datasets
We conducted our experiments on three publicly
available document layout analysis datasets: Pub-
LayNet (Zhong et al., 2019), FUNSD (Jaume et al.,
2019) and DocBank (Li et al., 2020b) to evalu-
ate our model applicability. We adopted the same
train/val/test split as the original dataset.4

PubLayNet annotates five different categories
of layout components: Text, Title, List, Table and
Figure, for the 358,353 PDF document images in
total (94%/3%/3%) collected from the PubMed.

FUNSD is a much smaller dataset extracted from
the RVL-CDIP dataset (Harley et al., 2015) and
contains 199 scanned PDF pages (75%/0/25%) of
survey forms with only 4 different types of layout
components: Header, Question, Answer and Other.

DocBank has more sophisticated annotations
for layout components than PubLayNet. It
contains 500K PDF Document pages in total
(80%/10%/10%)5 with 13 different categories: Ab-
stract, Author, Caption, Date, Equation, Figure,
Footer, List, Paragraph, Reference, Section, Table
and Title. The PDF files of DocBank are collected
from arXiv.com with their LATEX source.

Both PubLayNet and FUNSD include docu-
ment page images, so it requires OCR6 in order
to extract the texts for each layout component. We
consider those two datasets as Image-based DLA.
However, DocBank datasets contain PDF files with
text source, which contains the text for each docu-
ment, so we consider this as PDF file-based DLA.
We test our Doc-GCN model with both Image-
based and PDF-based DLA datasets.

4.2 Baselines
We compare our model with four widely-used Doc-
ument Layout Analysis baselines.

Faster-RCNN (Ren et al., 2015) is an object
detection model that unifies the region proposal

4The ratio of official data split can be found in each dataset
description (train/val/test)

5DocBank only provides the data split ratio and the entire
dataset. We split the entire dataset using the same split ratio.

6We applied Google Vision API to PubLayNet dataset, and
directly used OCR result from FUNSD dataset

network and the Fast R-CNN to extract the visual
features from the proposed object regions for image
object classification. For the FUNSD and DocBank,
we fine-tuned the Faster-RCNN pretrained on the
ImageNet with our training set and evaluated the
test results. For the PubLayNet, we directly apply
their Pretrained Faster-RCNN 7.

BERT (Devlin et al., 2019) is a language model
which regards the DLA task as a text classification
task by predicting the category of each layout com-
ponent based on their sequence of text contents.

RoBERTa (Liu et al., 2019) has the same struc-
ture as BERT but is pretrained longer on the larger
corpus that contains longer sequences. RoBERTa
also applies a more dynamic masking pattern for
masked language model tasks for pre-training.

LayoutLM (Xu et al., 2020) is a pretrained
model that uses the BERT architecture to jointly
learn visual aspects (position) and textual features
of document layouts.

4.3 Implementation Details

For node features of Semantic graph and Appear-
ance graph, we extract [CLS] encoding (dim =
768) from pre-trained BERTBASE . The Faster-
RCNN with ResNet-101 pre-trained on ImageNet
is used to extract the visual features (dim = 2048)
to initialize the node embedding of the appearance
graph. We set T = 16 for the sequence padding
in syntactic graph construction. All the graphs are
trained on 2-layer GCNs for 10 epochs with Adam
optimizer using a learning rate of 1× 10−4 for Se-
mantic and Syntactic Graph and a learning rate of
0.001 for the other two graphs. We use ReLu as
the activation function for the first GCN layer, from
which we extract our learned node representations.
For final classification, we train the multi-aspect
classifier with Adam optimizer using the learning
rate of 2×10−5, dropout of 0.1 and Tanh as activa-
tion function. We trained the model using Intel(R)
Xeon(R) CPU @ 2.00GHz and NVIDIA Tesla K80
24GB, which took around 15 hours, 72 hours and
8 mins8 for training PubLayNet, DocBank and
FUNSD respectively. The number of trainable pa-
rameters is 126,401,796.

7PubLayNet Faster-RCNN: https://github.com/
ibm-aur-nlp/PubLayNet/

8With more aspects covered, Doc-GCN training is still
slightly smaller than other baselines recorded in each paper
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# % Faster-RCNN BERT-base RoBERTa-base LayoutLM-base Ours (Doc-GCN)
Text 91024 72.87 96.82 97.74 97.90 97.94 99.18
Title 19343 15.48 92.57 96.23 96.21 96.44 98.11
List 4913 3.93 49.51 76.73 79.08 76.21 88.11
Table 5018 4.02 95.49 91.61 91.30 91.30 98.16
Figure 4619 3.70 96.87 77.10 76.01 75.17 98.71
Overall 124917 100 96.96 95.96 96.08 96.03 98.63

Table 1: F1 comparison for each component category of PubLayNet test set. The number(#) and percentage (%) of
each component is listed. The best models are bolded, and Doc-GCN always achieved the best for each component.

# % Faster-RCNN BERT-base RoBERTa-base LayoutLM-base Ours (Doc-GCN)
Question 1077 46.18 74.40 87.23 87.02 87.08 89.32
Answer 821 35.21 69.26 82.44 84.11 81.72 88.81
Header 122 5.23 50.57 38.89 45.98 44.90 61.96
Other 312 13.38 65.12 57.33 56.20 56.19 72.76
Overall 2332 100 65.12 79.02 81.69 78.85 85.49

Table 2: F1 comparison for each component of FUNSD test set. The number(#) and percentage (%) of each
component is listed. The best models are bolded, and Doc-GCN always achieved the best for each component.

# % Faster-RCNN BERT-base RoBERTa-base LayoutLM-base Ours (Doc-GCN)
Abstract 420 0.70 0 70.04 60.61 58.27 78.69
Author 484 0.80 0 72.56 82.01 69.07 79.46
Caption 1840 3.05 4.44 77.33 76.48 74.78 87.38
Date 87 0.14 0 67.76 88.74 85.35 91.02
Equation 11846 19.66 81.80 85.92 86.08 86.00 90.06
Figure 1650 2.74 68.74 100 100 100 99.97
Footer 529 0.88 0 69.08 68.67 65.56 84.48
List 958 1.59 0 54.72 55.01 50.43 65.79
Paragraph 35496 58.92 83.69 89.44 89.69 89.05 96.50
Reference 1237 2.05 0 88.51 88.30 89.61 88.83
Section 4891 8.12 78.52 84.04 84.79 83.90 95.93
Table 525 0.87 0 49.29 51.79 49.17 59.06
Title 286 0.47 0 51.49 68.58 55.53 84.85
Overall 60249 100 71.02 86.65 86.97 86.16 91.83

Table 3: F1 comparison for each component of DocBank test set. The number(#) and percentage (%) of each
component is listed. The best models are bolded, and Doc-GCN always achieved the best/the second best.

5 Results

5.1 Performance Comparison

We compared the performance of our proposed
Doc-GCN with the baseline models on the test
set of PubLayNet, FUNSD, and DocBank. The
breakdown F1 scores on each layout component of
the three datasets are provided in Table 1, 2 and 3
respectively.

We can see from the overall F1 scores that Doc-
GCN outperforms all the baseline models on all
datasets. It achieves a 98.63% F1 score in Pub-
LayNet, which is 1.67% higher than the pre-trained
Faster-RCNN. The performances of Faster-RCNN
on FUNSD and DocBank are also much less com-

petitive than models utilizing semantic features,
which indicates the critical role of semantic in-
formation in the DLA task. Compared to BERT
and RoBERTa, which only uses the semantic fea-
tures, the F1 scores of our model are 2.55%, 3.8%,
4.86% higher than RoBERTa and 2.67%, 6.47%,
5.18% higher than BERT on PubLayNet, FUNSD
and DocBank respectively. Especially for FUNSD,
where there are only 144 training PDF pages, our
model still achieves around 85%. Such results
also prove the effectiveness of our multiple as-
pects of document layout component features for
low-resource DLA datasets. Though LayoutLM
also utilizes dual-aspect, visual aspect (position),
and textual features, our Doc-GCN produces better
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PubLayNet FUNSD DocBank
Syn Sem Dens Appr Precision Recall F1 Precision Recall F1 Precision Recall F1
O X X X 67.81 72.92 63.45 54.80 49.36 39.68 40.95 46.01 42.40
X O X X 96.70 96.37 96.48 81.68 82.33 81.84 88.68 88.54 88.61
X X O X 50.65 71.17 59.18 45.91 48.93 43.52 34.71 58.90 43.68
X X X O 96.53 95.95 96.15 70.82 70.88 70.63 87.18 85.91 86.27
X O X O 98.42 98.36 98.38 84.45 84.99 84.41 91.80 91.79 91.66
X O O O 98.49 98.45 98.46 84.55 84.31 84.42 91.95 91.94 91.74
O O X O 98.61 98.58 98.59 84.85 84.99 84.85 92.00 91.77 91.68
O O O O 98.64 98.65 98.63 85.54 85.55 85.49 92.07 91.94 91.83

Table 4: F1 comparison of using different aspects of graph features on the validation set of three datasets. Syn,
Sem, Dens and Appr stand for the Syntactic-based, Semantic-based, Density-based and Appearance-based graphs
respectively. "O" and "X" refer to the existence and absence of corresponding graph features for the classification.
The second best is underlined.

overall F1 scores on all datasets. The superior per-
formance of Doc-GCN demonstrates the effective-
ness of the multiple aspects we applied. It indicates
the positive contribution of graph representations
and the joint GCN learning for integrating multiple
features in the DLA task.

Furthermore, Doc-GCN shows significant per-
formance improvement for some important layout
component detection for each domain. It produce
a better result in all components in PubLayNet,
including the Title, Table, Figure, and the List
that contains the structural text information, as is
demonstrated in Table 1. Similar patterns can be
also observed in Table 2 for FUNSD, especially
with those important components of the forms:
Header (section title - e.g. the aim of the form)
and Answer (value - e.g. the content filled by the
form user). For DocBank in Table 3, it shows that
Doc-GCN works well with the essential compo-
nents of scientific academic publication, including
Abstract, Date, Section, Title. Those components
are generally extracted for understanding the con-
tent of documents.

5.2 Comparison of Aspect Variants

To inspect the effectiveness of each aspect fea-
ture captured by Doc-GCN, we further compare
its test performances by applying different combi-
nations of aspect features. As seen in Table 4, using
only semantic or appearance features already re-
sulted in around 96% and 88% in F1 scores on Pub-
LayNet and DocBank, respectively. For FUNSD,
using only appearance features results in 70.63%
in the F1 score, and using only semantic features is
around 10% higher. The combination of semantic
and appearance features improves the F1 scores

PubLayNet FUNSD DocBank
Bert-L 97.06 80.86 86.42
RoBERTa-L 96.15 79.47 86.67
LayoutLM-L 96.94 78.90 83.21
Doc-GCN-L 98.22 85.40 90.07

Table 5: Performances comparison (F1 score%) based
on large (L) pretrained models.

to 98.38%, 84.41%, and 91.66% for PubLayNet,
FUNSD, and DocBank, respectively. The seman-
tic and appearance features seem to dominate the
model’s performance in the DLA task, but the syn-
tactic and density features also positively contribute
to the performance. By adding syntactic features to
the semantic and appearance features, the F1 scores
on PubLayNet and FUNSD improve to 98.59%
and 84.85%, respectively. Further, adding den-
sity features results in the best performances of
98.63% and 85.49%, respectively. For DocBank,
adding density features improves the F1 score from
91.66% to 91.74% and finally reaches the best per-
formance of 91.83% after further including the syn-
tactic features. Though the density features and
syntactic features contribute differently in the cases
of different datasets, it is evident that the utilization
of both density features and syntactic features is
effective for performance improvement in the DLA
task. Such results also indicate that our proposed
aspects and their representations are practical for a
more comprehensive representation of the charac-
teristics of document layout components.

5.3 Impact of Pretrained Model Variants

To evaluate the effects of base and large pre-
trained models, we also tested the performances of
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(a) Ground Truth (b) RoBERTa-base (c) Faster-RCNN (d) Doc-GCN

Figure 2: Example output of Top3 models for a PubLayNet page. The color of layout component labels are: Text ,
Title , List , Table , Figure . Our Doc-GCN classified all layout components accurately.

PubLayNet FUNSD DocBank
Min Pooling 98.67 82.77 90.27
Avg Pooling 97.90 82.04 89.04
Max Pooling 98.63 85.49 91.83

Table 6: Performances comparison (F1 score%) of dif-
ferent node-level pooling methods on the test set.

large BERT, RoBERTa and LayoutLM over three
datasets. For a fair comparison, we deployed Doc-
GCN Large, shown as Doc-GCN-L in Table 5,
which uses the same graph construction and repre-
sentations as the original Doc-GCN except that the
large pretrained BERT is used for generating the
semantic-aspect graph features.

The result shows that large models have similar
performances as base models. Nevertheless, our
Doc-GCN-L still outperforms BERT-L, RoBERTa-
L and LayoutLM-L on all three datasets: Pub-
LayNet, FUNSD, and DocBank.

5.4 Impact of Pooling Variants

We applied the node-level pooling to integrate the
node features over the two graph variants as the
final features for each aspect representation. We
compared Minimum, Average, and Max Pooling
and used the method with the best results. From
Table 6, we can see that for FUNSD and DocBank,
Max Pooling resulted in the best performances.
Especially for the FUNSD dataset, Max Pooling
achieved almost 3% higher in F1 score compared to
the results of using Minimum Pooling and Average
Pooling. For PubLayNet, Minimum Pooling results
in the best performance but is only 0.03% higher
than Max Pooling. Hence, we used Max Pooling
as the ultimate pooling method in our Doc-GCN.

5.5 Case Study9

We visualized the sample results for the top 3 mod-
els on a document page of PubLayNet in Figure 2.
We can see that both RoBERTa and Faster-RCNN
have wrongly recognized a Text into List, whereas
our Doc-GCN has accurately recognized all com-
ponents. This case further proves that simply con-
sidering the semantic or visual information is hard
to distinguish the List and Text, indicating the im-
portance of capturing the structural relationships
between layout components for better performance.

6 Conclusion10

We successfully handled the importance of the
DLA task, Document Component/Segment Classi-
fication. It focused on extracting important infor-
mation (i.e., Title, Author, Date, Form Answer)
from the digital documents, including Scanned
Document Images and PDF files. We propose a het-
erogeneous graph-based DLA model, Doc-GCN,
which integrates text density, appearance, and syn-
tactic and semantic properties of the Document
layout components to generate comprehensive rep-
resentations of documents. The graph structure
also enables the model to capture and learn the re-
lationships between the layout components when
making predictions. Our model outperforms all
baselines on three publicly available DLA datasets.
We strongly hope that Doc-GCN will motivate and
provide insights into the future integration of differ-
ent modalities and aspects for the logical document
layout analysis task.

9More qualitative analysis for each of the three datasets can
be found in Appendix B, and the superiority of understanding
multiple aspects will be highlighted there.

10Appendix: https://github.com/adlnlp/doc_
gcn/tree/main/appendix
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Abstract

Essay exams have been attracting attention as
a way of measuring the higher-order abilities
of examinees, but they have two major draw-
backs in that grading them is expensive and
raises questions about fairness. As an approach
to overcome these problems, automated essay
scoring (AES) is in increasing need. Many
AES models based on deep neural networks
have been proposed in recent years and have
achieved high accuracy, but most of these mod-
els are designed to predict only a single overall
score. However, to provide detailed feedback
in practical situations, we often require not only
the overall score but also analytic scores corre-
sponding to various aspects of the essay. Sev-
eral neural AES models that can predict both
the analytic scores and the overall score have
also been proposed for this very purpose. How-
ever, conventional models are designed to have
complex neural architectures for each analytic
score, which makes interpreting the score pre-
diction difficult. To improve the interpretabil-
ity of the prediction while maintaining scor-
ing accuracy, we propose a new neural model
for automated analytic scoring that integrates a
multidimensional item response theory model,
which is a popular psychometric model.

1 Introduction

Rapid changes in society in recent years have led
to an increased need for cultivating and assessing
not only knowledge and skills but also practical
abilities, such as expression skills, logical thinking,
and creativity (Erguvan and Aksu Dunya, 2020;
Uto, 2021a). Essay exams are one of the test for-
mats that aim to evaluate these abilities, and conse-
quently, they have been used in various educational
and assessment settings (Erguvan and Aksu Dunya,
2020; Hussein et al., 2019). However, essay exams
have two considerable drawbacks in the time and
monetary costs required to grade them (Taghipour
and Ng, 2016). Furthermore, it is difficult to ensure

consistently fair and reliable evaluation due to sub-
jective influences on the part of the rater (Uto and
Ueno, 2020; Saal et al., 1980). Automated Essay
Scoring (AES) has been attracting attention as a
method for resolving these difficulties (Dong and
Zhang, 2016; Taghipour and Ng, 2016).

Conventional AES systems can be broadly clas-
sified into two categories (Hussein et al., 2019):
those that take a feature-engineering approach and
those that take a neural approach. The feature-
engineering approach, which has traditionally been
the greater used of the two, utilizes a statistical
or machine learning model with pre-defined hand-
crafted features (e.g. Attali and Burstein, 2006;
Chen and He, 2013; Phandi et al., 2015; Dascalu
et al., 2017; Hastings et al., 2018; Yao et al., 2019).
The neural approach, on the other hand, which
has become popular recently, uses deep neural
networks to extract features automatically from
texts (e.g. Alikaniotis et al., 2016; Taghipour and
Ng, 2016; Dong and Zhang, 2016; Tay et al., 2018;
Dong et al., 2017; Farag et al., 2018; Jin et al.,
2018; Uto et al., 2020; Rodriguez et al., 2019; Uto
et al., 2020; Ridley et al., 2020; Uto, 2021c). In
this study, we focus on the neural approach because
of the high accuracy it has achieved in many prior
studies.

Most neural AES studies have focused on holis-
tic scoring (Ridley et al., 2021; Ke and Ng, 2019),
which provides a single overall score for each essay.
However, to provide richer feedback, especially
when essay exams are used for educational pur-
poses, we often require not only the overall score
but also analytic scores corresponding to various
aspects of the essay, such as content, organization,
and word choice (Hussein et al., 2020). Several
AES models that can predict these analytic scores
along with the overall score have recently been pro-
posed for this purpose (Mathias and Bhattacharyya,
2020; Hussein et al., 2020; Mim et al., 2019; Ridley
et al., 2021). From here on, we will refer to such
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models as analytic AES models.
Mathias and Bhattacharyya (2020) proposed an

early neural analytic AES model that took the sim-
ple approach of separately applying a conventional
holistic scoring model (Dong et al., 2017) to each
analytic score. Then, Hussein et al. (2020) pro-
posed a multi-output model in which the output lay-
ers are branched by the number of analytic scores
and the other layers are shared. One of the more
recent models is a multi-output model proposed
by Ridley et al. (2021) that has a complex deep
neural architecture as the output layer for each ana-
lytic score. Although this model produces state-of-
the-art accuracy, it has some problems in terms of
interpretability.

1. It has a complex neural architecture for each
analytic score, decreasing the interpretability
of the prediction.

2. In general, analytic scores are designed to
measure latent abilities in examinees that a
test developer wishes to evaluate (Uto, 2021b).
However, this model ignores the existence of
an ability scale, further restricting the inter-
pretability of the score prediction.

To resolve these problems, we propose to extend
a conventional analytic AES model by integrating
it with an item response theory (IRT) (Lord, 1980)
model, a well-known psychometric model. Specifi-
cally, we extend the multi-output model of Ridley
et al. (2021) by replacing the complex output layers
for each analytic score with a multidimensional IRT
model (Yao and Schwarz, 2006). The advantages
of the proposed model are as follows.

1. The output IRT layer is explained by only
three types of parameters: the discriminatory
power and difficulty corresponding to each
analytic score and the latent ability of each
examinee. These allow us to better interpret
the reasoning behind score predictions.

2. Investigating an optimal number of ability di-
mensions in the multidimensional IRT model
layer and analyzing the estimated parameters
allows us to interpret the ability scale implied
by the multiple analytic scores.

In this study, we used benchmark datasets that
have been widely used in analytic AES research to
conduct experiments that evaluated the effective-
ness of our model. They showed that our model

offers reasonably interpretable parameters without
significantly degrading scoring accuracy. Further-
more, an interesting finding from our experiment
was that, although the benchmark dataset consisted
of many analytic scores for each essay, only one or
two latent abilities were measured by those multi-
ple scores.

Note that a similar AES framework combining
deep neural networks and IRT was recently pro-
posed (Uto and Okano, 2021). However, they used
IRT to improve the quality of training data by miti-
gating rater effects, so their research objective was
completely different from the one we focus on in
this study.

2 Conventional analytic AES model

This section introduces the conventional analytic
AES model proposed by Ridley et al. (2021), which
we use as a baseline model. The architecture of
this model is displayed on the left side of Figure 1.

This model takes in an essay from examinee
n and outputs multiple analytic scores {ŷnm |
m ∈ {1, 2, . . . ,M}}, where ŷnm is the m-th ana-
lytic score and M is the total number of analytic
scores. An essay from examinee n is defined as
a word sequence {wnsl | s ∈ {1, 2, . . . , S}, l ∈
{1, 2, . . . , ls}}, where wnsl is the l-th word in the
s-th sentence of examinee n’s essay, S is the num-
ber of the sentences in the essay, and ls is the num-
ber of words in the s-th sentence. Note that in our
paper, we regard the overall score as one of the
analytic scores.

The model consists of two types of layers: a
shared layer and an item-specific layer. The shared
layer receives the word sequence in each sentence
and produces a sentence-level distributed represen-
tation through an embedding layer, a convolutional
layer, and an attention pooling layer (Dong et al.,
2017). The sequence for the sentence-level dis-
tributed representation is used in the item-specific
layer.

The item-specific layer consists of the same num-
ber of heads as the number of analytic scoring
items, which are evaluation items corresponding
to analytic scores, such as content, organization,
and word choice. An item-specific layer for an
analytic scoring item receives the sequence of the
sentence-level distributed representation and pro-
duces a score value for the corresponding scoring
item. Specifically, the input sequence is first pro-
cessed through a recurrent neural network (RNN),
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Figure 1: Architecture of a conventional analytic scoring model (left) and our model (right).

one in which the long short-term memory (Hochre-
iter and Schmidhuber, 1997) was used as the RNN.
Then, an output sequence from the RNN layer is ag-
gregated into a fixed-length hidden vector through
an attention pooling layer (Dong et al., 2017). The
hidden vector is concatenated with a manually de-
signed feature vector Fn, and the concatenated vec-
tor hnm is input to the trait attention layer. For cap-
turing the relation between analytic scoring items,
the trait attention layer is defined as

anmt =
exp(hnm · hnt)∑M
t=1
t̸=m

exp(hnm · hnt)
, ∀t,∀m, t ̸= m

(1)

xnm =
M∑

t=1
t̸=m

anmthnt (2)

x̃nm = Concat(xnm,hnm). (3)

Finally, a linear layer with the sigmoid activation
maps x̃nm, a trait attention output vector, to the
prediction score ŷnm:

ŷnm = σ(Wmx̃nm + bm), (4)

where σ is the sigmoid function, Wm is a weight
vector, and bm is a bias value. Note that this model
uses a sigmoid function to predict scores, so ŷnm
takes values between 0 and 1. Thus, in the score

prediction phase, the output scores must be linearly
transformed to the original score scale.

This model is trained through a back-
propagation algorithm using the Mean Squared
Error (MSE) as a loss function. This is given by

LMSE =
1

NM

N∑

n=1

M∑

m=1

(ŷnm − ynm)2, (5)

where N is the number of essays and ynm is the
gold-standard score of examinee n for the m-th
analytic scoring item. The gold-standard scores
ynm must be linearly transformed into the range
between 0 and 1.

Note that Ridley et al. (2021) input the part-of-
speech (POS) tags instead of the words themselves
when applying the model to cross-prompt scoring
tasks. However, we use word sequences as input
because they are expected to be more accurate for
the prompt-specific scoring tasks used in this study.

As previously mentioned, this model has a com-
plex architecture for each analytic score, making it
difficult to interpret the score prediction. Our main
focus is to use IRT to increase the interpretability
of score prediction.

3 Item Response Theory

IRT (Lord, 1980) is a popular psychometric model
that has been widely used for making measure-
ments in educational and psychological research.
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Typical IRT models define the probability that an
examinee will receive a certain score on a test item
as a function of the examinee’s latent ability and
the item’s characteristic parameters, such as the
discrimination and difficulty parameters. Of the
various existing IRT models, we employ a multi-
dimensional generalized partial credit model (M-
GPCM) (Yao and Schwarz, 2006), a representative
multidimensional polytomous IRT model that can
be applied to ordinal score data and can examine
multidimensional latent abilities for each exami-
nee.

If we regard IRT parameters for test items as
those for analytic scoring items following the ap-
proach in previous studies (Uto, 2021b), then M-
GPCM defines the probability that examinee n will
receive score k for the m-th analytic scoring item
as

Pnmk =
exp(kαTmθn +

∑k
u=1 βmu)∑Km

v=1 exp(vα
T
mθn +

∑v
u=1 βmu)

, (6)

where θn = (θn1, θn2, . . . , θnd) is the d-
dimensional latent ability of examinee n, αm =
(αm1, αm2, . . . , αmd) is a d-dimensional discrimi-
nation parameter for analytic scoring item m, βmu
is a step parameter denoting the difficulty of the
transition between scores u − 1 and u in item m,
and Km is the number of possible scores for the
m-th item. Here, βm1 = 0 : ∀m is assumed for
model identification.

All of these model parameters, θn,αm, and βmu,
can be estimated from a collection of observed
scores. These parameters are clearly interpretable,
as will be explained in sections 4.3 and 5.3.

4 Proposed Model

We propose an analytic AES model that incorpo-
rates the M-GPCM mentioned in the previous sec-
tion. The architecture of this model is displayed on
the right side of Figure 1.

As Figure 1 shows, our model and the conven-
tional model share the same layers from the input
to the concatenate layer. Specifically, in both mod-
els, each sentence in an essay is fed to the embed-
ding layer, convolution layer, and attention pooling
layer, and then a sequence of the sentence-level dis-
tributed representation vectors is transformed into
a fixed-length vector through the recurrent layer
and the attention pooling layer. Finally, the con-
catenate layer creates an essay-level vector hn by

combining the output from the attention pooling
layer and the handcrafted feature vector Fn.

The main differences between the models occur
after the concatenate layer. Given the essay-level
vector hn, our model obtains the latent ability vec-
tor θn, which is used in the subsequent M-GPCM
layer, by applying a dense layer given by

θn =Whn + b, (7)

where W is a weights matrix and b is a bias vec-
tor. The latent ability θn is input to the M-GPCM
defined in Eq. (6) to obtain the score probabilities
for each analytic scoring item m. Our model then
uses the obtained probability Pnmk to predict the
analytic scores.

4.1 Model Training

We train our model using the following Categorical
Cross-Entropy (CCE) as a loss function:

LCCE = − 1

NM

N∑

n=1

M∑

m=1

Km∑

k=1

ynmk log(Pnmk).

(8)
We use this because the output IRT layer gives the
probability distribution over score categories Pnmk.
Note that during the training process, our model si-
multaneously estimates the IRT parameters, namely
θn, αm, and βm = (βm1, βm2, . . . , βmKm), and
the parameters in the other layers in an end-to-end
manner.

The hyper-parameters in our model are the
same as those in the conventional model (Rid-
ley et al., 2021), and we use the RMSProp Op-
timizer (Dauphin et al., 2015) with a learning rate
of 0.001. Furthermore, since IRT generally as-
sumes a normal distribution for θn, we apply an L2-
regularization for θn so that its distribution closes
to a normal distribution with mean zero.

4.2 Score Prediction

We have the following two options for predicting a
score based on the output score probabilities Pnmk.

• Argmax score: argmaxk Pnmk.

• Expected score:
∑Km

k=1 kPnmk.

We compare these two options in the experiments
discussed in section 5.2.
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Table 1: Summary of the ASAP and ASAP++ dataset: Org refers to organization, WC to word choice, SF to
sentence fluency, Conv to conventions, PA to prompt adherence, Lang to language, and Narr to narrativity.

Prompt Num Essays Mean Length Analytic Scoring Items Score Range
Overall Analytic

1 1783 350 Overall, Content, Org, WC, SF, Conv 2-12 1-6
2 1800 350 Overall, Content, Org, WC, SF, Conv 1-6 1-6
3 1726 150 Overall, Content, PA, Lang, Narr 0-3 0-3
4 1772 150 Overall, Content, PA, Lang, Narr 0-3 0-3
5 1805 150 Overall, Content, PA, Lang, Narr 0-4 0-4
6 1800 150 Overall, Content, PA, Lang, Narr 0-4 0-4
7 1569 250 Overall, Content, Org, Conv, Style 0-30 0-6
8 723 650 Overall, Content, Org, WC, SF, Conv, Voice 0-60 2-12

4.3 Interpretability of our model

As explained in section 3, the M-GPCM consists
of three types of trainable parameters: both the
discrimination parameters αm and the difficulty
parameters βm for each analytic scoring item and
the latent examinee ability parameter θn.

The discrimination parameter αm provides in-
formation on how well each analytic scoring item
distinguishes examinee ability, whereas the diffi-
culty parameter βm reflects how difficult exami-
nees find each score category for the m-th analytic
scoring item to be. The examinee ability parameter
θn represents the ability level of each examinee.
Section 5.3 shows an example of the interpretation
of these parameters.

Furthermore, our model enables us to perform
an analysis of the optimal number of ability dimen-
sions assumed under multiple analytic scores by
comparing its performance with different numbers
of dimensions. For example, if the score prediction
performance of our model is maximized when two
ability dimensions are assumed, then we can inter-
pret this as indicating that the given analytic scoring
items measure a two-dimensional latent ability of
examinees. We can also interpret what each ability
dimension measures by analyzing the multidimen-
sional discrimination parameter αm. Section 5.3
gives an example of how the ability dimension can
be interpreted.

Our model predicts the scores by using the out-
put IRT layer with the IRT parameters mentioned
above. Thus, interpreting these parameters allows
us to understand how the model determines ana-
lytic scores for a given essay.

5 Experiments

In this section, we discuss how the effectiveness
of our model was evaluated through experiments
using real-word data.

5.1 Real-word data
In our experiments, we used real-word data from
the Automated Student Assessment Prize (ASAP)1

and the ASAP++ (Mathias and Bhattacharyya,
2018).

The ASAP was introduced in the Kaggle com-
petition and has since been widely used in AES
research. The ASAP dataset consists of examinees’
essays for eight different prompts and scores for
them. Only an overall score is given for prompts 1
through 6, while some analytic scores are given
in addition to the overall score for prompts 7 and
8. The ASAP++, a dataset designed to supple-
ment ASAP, offers analytic scores for prompts 1
through 6.

Table 1 gives a summary of the ASAP with the
ASAP++ dataset.

5.2 Evaluation of our model
Using the ASAP with the ASAP++ dataset, we eval-
uated the scoring accuracy of our model while vary-
ing the number of ability dimensions from 1 to 3
and compared the results to those from the conven-
tional baseline model described in section 2. The
scoring accuracy was independently evaluated for
each prompt through a 5-fold cross validation using
the Quadratic Weighted Kappa (QWK), which is
used in AES studies. Concretely, we evaluated the
QWK score for each analytic scoring item and then
calculated the average QWK score for each prompt.
We examined two input types in this experiment: a
word sequence and a POS tag sequence. We used
Glove (Pennington et al., 2014), a pre-trained word
embedding, in the embedding layer for models us-
ing word sequences as inputs. Furthermore, in our
model, we evaluated the two types of prediction
scores, the argmax scores and the expected scores,
explained in section 4.2.

Table 2 and Table 3 show the results obtained
when the expected scores and the argmax scores

1https://www.kaggle.com/c/asap-aes
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Table 2: QWK scores for our model with the expected scores and the conventional model.

Input Model Prompts p-value
1 2 3 4 5 6 7 8 Avg. 1dim 2dim 3dim

POS

Conventional 0.688 0.632 0.610 0.680 0.686 0.684 0.694 0.548 0.653 0.460 0.169 0.767
Proposed-1dim 0.662 0.605 0.623 0.663 0.693 0.670 0.640 0.542 0.637 - 1.000 1.000
Proposed-2dim 0.671 0.627 0.608 0.657 0.680 0.669 0.669 0.555 0.642 - - 1.000
Proposed-3dim 0.678 0.629 0.615 0.643 0.691 0.677 0.682 0.544 0.645 - - -

Word

Conventional 0.685 0.655 0.660 0.720 0.706 0.750 0.694 0.568 0.680 0.009 0.699 0.014
Proposed-1dim 0.656 0.617 0.620 0.713 0.689 0.731 0.638 0.549 0.652 - 0.180 0.378
Proposed-2dim 0.666 0.631 0.637 0.722 0.699 0.732 0.704 0.576 0.671 - - 1.000
Proposed-3dim 0.679 0.633 0.642 0.704 0.698 0.734 0.696 0.553 0.667 - - -

Table 3: QWK scores for our model with the argmax scores and the conventional model.

Input Model Prompts p-value
1 2 3 4 5 6 7 8 Avg. 1dim 2dim 3dim

POS

Conventional 0.688 0.632 0.610 0.680 0.686 0.684 0.694 0.548 0.653 0.253 0.469 0.420
Proposed-1dim 0.651 0.616 0.620 0.670 0.682 0.685 0.619 0.480 0.628 - 0.053 0.755
Proposed-2dim 0.661 0.608 0.629 0.670 0.679 0.675 0.620 0.445 0.623 - - 1.000
Proposed-3dim 0.636 0.633 0.634 0.656 0.685 0.694 0.636 0.471 0.631 - - -

Word

Conventional 0.685 0.655 0.660 0.720 0.706 0.750 0.694 0.568 0.680 0.080 0.100 0.090
Proposed-1dim 0.641 0.625 0.646 0.718 0.690 0.737 0.637 0.464 0.645 - 1.000 1.000
Proposed-2dim 0.636 0.620 0.656 0.721 0.692 0.736 0.675 0.486 0.653 - - 1.000
Proposed-3dim 0.656 0.630 0.656 0.712 0.696 0.734 0.687 0.472 0.655 - - -

Figure 2: Confusion matrices between gold-standard scores and the expected scores from our model for prompt 1.

were used in our model, respectively. Note that the
results for the conventional model are the same in
both of these tables, and the highest QWK scores
for each setting are shown in bold.

At first, comparing the input types suggests
that the word input shows higher averaged per-
formances in all settings. Ridley et al. (2021)
used the POS tag input assuming cross-prompt
tasks, as noted in section 2, whereas our exper-
iment suggests that the word input is better for
prompt-specific tasks.

Next, comparing Tables 2 and 3 shows that us-
ing the expected scores with our model tended to
produce better results than when the argmax scores
were used. Figure 2 shows the confusion matrices
between the gold-standard scores and the expected

scores given by our model for all of the analytic
scoring items associated with prompt 1. According
to this figure, the diagonal components of the ma-
trices are responsive, indicating that the scores are
predicted relatively well.

Finally, comparing variants of our model with
different numbers of ability dimensions shows that
the two- and three-dimensional models tended to
outperform the one-dimensional model, although
the differences are relatively small. Moreover, al-
though the conventional model had the highest aver-
age performance, the degradations in performance
of our model were small overall. We performed
Bonferroni’s multiple comparison test to quantita-
tively measure whether there were significant dif-
ferences in the average QWK scores among the
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Table 4: IRT parameters for analytic scoring items estimated by the one-dimensional variant of our model.

α1 β12 β13 β14 β15 β16 β17 β18 β19 β1 10 β1 11

Overall 1.15 -2.61 -3.32 -3.00 -3.79 -1.48 -2.14 0.85 0.87 2.47 2.84
Content 2.01 -4.71 -3.85 -0.56 2.02 4.20 - - - - -
Org 1.88 -4.45 -3.59 -0.32 2.25 4.75 - - - - -
WC 2.09 -4.71 -3.76 0.06 2.51 4.59 - - - - -
SF 2.06 -4.74 -3.71 -0.36 2.20 4.82 - - - - -
Conv 2.01 -4.66 -3.56 -0.36 2.29 5.01 - - - - -

Table 5: IRT parameters for analytic scoring items estimated by the two-dimensional variant of our model.

α11 α12 β12 β13 β14 β15 β16 β17 β18 β19 β1 10 β1 11

Overall 1.81 0.14 -2.56 -3.53 -3.26 -3.75 -1.59 -2.24 0.95 1.09 2.90 3.19
Content 1.54 1.38 -4.80 -3.98 -0.60 2.04 4.35 - - - - -
Org 1.23 1.41 -4.38 -3.58 -0.39 2.18 4.65 - - - - -
WC 1.38 1.63 -5.10 -3.87 -0.01 2.55 4.73 - - - - -
SF 1.10 1.90 -4.73 -3.93 -0.49 2.21 5.02 - - - - -
Conv 1.04 1.95 -4.93 -3.87 -0.54 2.36 5.29 - - - - -

Figure 3: Scree plot for prompt 1.

models. The results are given in the p-value column
of Table 2. The p-values indicate that there was
no difference at the 5% significance level between
the conventional model and our model with opti-
mal dimension. This result is surprising because
the scoring accuracy remains even though the item-
specific layers in our model are described by sig-
nificantly fewer parameters than the conventional
model. Thus, we can conclude that our model does
not lead to a significant decrease in the scoring
accuracy.

5.3 Interpretation of our model

In this subsection, we explain how we interpreted
the predictions from our model.

We first examined the optimal number of ability
dimensions. In IRT studies, principal component
analysis (PCA) is generally used for investigating
the optimal number of dimensions (Nunnally and
Bernstein, 1994; Bjorner et al., 2003). For this
reason, Figure 3 shows the eigenvalues obtained
by PCA for different numbers of dimensions in
prompt 1; the horizontal axis shows the number
of dimensions (component), and the vertical axis
indicates the eigenvalue. A significant decrease
in the eigenvalues occurs at the point where the
component number is 2, suggesting that the ability

dimension assumed under the data for the multiple
analytic scores in prompt 1 is only explainable with
a one-dimensional ability scale. Other prompts
yielded the same results. Note that, as explained
in the previous section, the one-dimensional model
shows slightly lower QWK scores than the two- or
three-dimensional models, so if prediction accuracy
is a priority, then the two-dimensional model may
be a better choice. Thus, we will now explain
the interpretation of our model when one and two
dimensions are assumed.

Tables 4 and 5 show the IRT-layer parameters
for the analytic scoring items estimated with the
one- and two-dimensional variants of our model,
respectively. Only the results for prompt 1 are
given here as an example.

The discrimination parameters provide informa-
tion for interpreting how well the analytic scoring
items measure examinees’ abilities and what each
ability dimension measures. For example, accord-
ing to Table 4, the overall item has a lower dis-
crimination value than the other analytic scoring
items, suggesting that the overall item is relatively
inaccurate for measuring a one-dimensional latent
ability constructed by the multiple analytic scoring
items. This also suggests the possibility that the
ability measured by the overall item might differ
from that of the other items, something that can
be confirmed from the discrimination parameters
in the two-dimensional model shown in Table 5.
Specifically, the overall item in Table 5 has a large
discrimination value in the first dimension but an
extremely small value in the second dimension,
whereas the other analytic scoring items have large
discrimination values in the second dimension. Fur-
thermore, taking a closer look at the other analytic
scoring items, we can see that the content item
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Table 6: Examples of examinees’ latent abilities and the predicted scores estimated by our model.

Examinee n Ability θn
Predicted Scores

Overall Content Org WC SF Conv Avg.
4 0.14 8 4 4 4 4 4 4.67

27 2.21 11 6 5 6 5 5 6.33
31 -2.01 6 2 2 2 2 2 2.67
916 -4.19 2 1 1 1 1 1 1.17

1651 3.40 12 6 6 6 6 6 7.00

Figure 4: ICCs for the overall score.

Figure 5: ICCs for the content score.

is like the overall item in that it has a higher dis-
crimination value for the first dimension than for
the second dimension, while the other items have
higher discrimination values for the second dimen-
sion. These results suggest that the first ability
dimension measures the overall ability relating to
the skills for enriching content in an essay, while
the second dimension measures the ability shared
among organization, word choice, sentence fluency,
and convention, which would make it a technical
writing ability.

Furthermore, the difficulty parameters show how
the score categories are obtained for each ana-
lytic scoring item. For instance, Figures 4 and
5 show item characteristic curves (ICC), which il-
lustrate the probabilistic curve based on Eq. (6),
for the overall and content items under the one-
dimensional setting. In these figures, the horizontal
axis indicates the latent ability of the examinees,
and the vertical axis indicates the probability Pnmk.
Note that the horizontal axis shows values for abil-
ity θ around zero because, as was explained in
section 4.1, the distribution of the ability estimates
follows a normal distribution with zero mean. Fig-
ures 4 and 5 show that examinees with a higher

ability have a greater probability of obtaining a
high score. Moreover, scores of 2, 6, 8, 10, 11,
and 12 for the overall item are likely to be used
while scores of 3, 4, 5, and 7 tend to be avoided. In
the content item, a score of 2 tends to be avoided
slightly. It is in this way that the difficulty param-
eters enable us to make an interpretation of how
the score categories are used for the analytic scor-
ing items. Note that although we highlighted the
one-dimensional model results here, the difficulty
parameters in the one- and two-dimensional mod-
els are similar and, thus, provide similar interpreta-
tions.

Our model predicts analytic scores based on
these characteristics of the analytic scoring items
and on estimations of the examinees’ abilities. Ta-
ble 6 shows examples of examinees’ latent abilities
and the predicted analytic scores estimated by the
one-dimensional variant of our model. Table 6
indicates that our model tends to provide higher
scores for essays written by examinees with higher
abilities. Furthermore, comparing Table 6 with Fig-
ures 4 and 5, we can confirm that the predicted
scores for the overall and content items follow the
ICCs reasonably well. For example, examinee 4,
who had a nearly zero value of θn, obtained an
overall score of 8 and a content score of 4. The
ICCs show high response probabilities for these
scores around θn = 0.

These results demonstrate that our model enables
us to interpret predictions that are based on the IRT-
layer model parameters.

6 Conclusions

In this study, we proposed a new neural-based
analytic AES model that incorporates a multidi-
mensional IRT model. Through experiments us-
ing the well-known benchmark datasets ASAP and
ASAP++, we demonstrated that, compared to the
latest conventional model, our model succeeds in
improving interpretability without significantly los-
ing performance.

Our experiments also suggested that one- or two-
dimensional abilities can sufficiently explain the
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multiple analytic scores, including the overall score.
This is an important finding suggesting that the
analytic scoring items in the dataset may fail to
measure multiple aspects of ability. This is unde-
sirable because the objective of analytic scoring is
to evaluate multiple aspects of ability.

Future studies will be required to evaluate our
model using various datasets, including other
benchmark datasets. Moreover, another challenge
to address in future work is to develop an extension
of our model for cross-prompt tasks.
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Abstract

Text rewriting with differential privacy (DP)
provides concrete theoretical guarantees for
protecting the privacy of individuals in tex-
tual documents. In practice, existing systems
may lack the means to validate their privacy-
preserving claims, leading to problems of trans-
parency and reproducibility. We introduce
DP-Rewrite, an open-source framework for
differentially private text rewriting which aims
to solve these problems by being modular, ex-
tensible, and highly customizable. Our system
incorporates a variety of downstream datasets,
models, pre-training procedures, and evalua-
tion metrics to provide a flexible way to lead
and validate private text rewriting research. To
demonstrate our software in practice, we pro-
vide a set of experiments as a case study on the
ADePT DP text rewriting system, detecting a
privacy leak in its pre-training approach. Our
system is publicly available, and we hope that
it will help the community to make DP text
rewriting research more accessible and trans-
parent.

1 Introduction

Protecting the privacy of individuals has been
gaining attention in NLP. One particular setup is
text rewriting using local differential privacy (DP)
(Dwork and Roth, 2013), which provides proba-
bilistic guarantees of ‘how much’ privacy can be
lost in the worst case if an individual gives us their
piece of text that has been rewritten with DP. For
instance, given a text “I want to fly from Newark
to Cleveland on Friday”, the system may rewrite
it as “Flights from Los Angeles to Houston this
week”. Only a few recent works have touched
on this challenging topic. For example, Krishna
et al. (2021) proposed ADePT: A text rewriting
system based on the Laplace mechanism. However,
it turned out that their DP method was formally
flawed (Habernal, 2021). We also see another
recent approach, DP-VAE (Weggenmann et al.,

2022), which shows results that look surprisingly
good for the level of guaranteed privacy. How-
ever, neither ADePT nor DP-VAE published their
source codes, so the community has no means
to perform any empirical checks to validate the
privacy-preserving claims. Therefore, the lack of
transparency and reproducibility is the main ob-
stacle to the accountability of DP text-rewriting
systems.

We asked whether an open, modular, easily ex-
tensible, and highly customizable framework for
differentially private text rewriting could help the
community gain further insight into the utility and
potential pitfalls of such systems. We hypothesize
that by integrating various downstream datasets,
models, pre-training procedures, and evaluation
metrics into one software package, we improve the
transparency, accountability, and reproducibility of
research in differentially private text rewriting.

Our main contributions are twofold. First, this
demo paper presents DP-Rewrite, an open-
source framework for differentially private text
rewriting experiments. It includes a correct reimple-
mentation of ADePT as a baseline, integrates pre-
training on several datasets, and allows us to easily
perform downstream experiments with varying pri-
vacy guarantees by adjusting the privacy budget ε.
Second, DP-Rewrite allows us to easily detect
another privacy leak in the approach proposed in
ADePT, namely in the pre-training strategy of the
autoencoder, with the system memorizing the input
data. We demonstrate this in detail as a use case of
DP-Rewrite in Section 4.1

2 Related Work

Although the problem of simple data redaction is
a widely researched field with several promising
approaches (Hill et al., 2016; Lison et al., 2021),

1Our project is available at https://github.com/
trusthlt/dp-rewrite.
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the related problem of private text transformation
is still largely unexplored.

We only briefly sketch the main ideas of local
differentially private algorithms in text rewriting.
For a longer introduction to DP see, e.g., Haber-
nal (2022); Senge et al. (2021); Igamberdiev and
Habernal (2022). Let x, x′ ∈ X be two data points
such as texts or vectors, each belonging to a dif-
ferent person. In DP terminology, x and x′ are
neighboring datasets, as they differ by one person
(Desfontaines and Pejó, 2020). A (local) DP al-
gorithmM : X → Y is a function that takes any
single data point x ∈ X and produces its ‘priva-
tized’ version y ∈ Y which might be an arbitrary
object, such as a text or a vector. Privatization is
achieved by introducing randomness inM. As a
result, (ε, 0)-local DP guarantees that for any two
neighboring datasets x, x′ and any output y

ln

[
Pr(M(x) = y)

Pr(M(x′) = y)

]
≤ ε (1)

where ε is the privacy budget; the lower, the better
privacy is guaranteed. If a text rewriting algorithm
satisfies the local DP, it limits the probability of re-
vealing the true text x after observing the privatized
text y.

Krishna et al. (2021) proposed ADePT, a DP text
rewriting system. It consists of an auto-encoder that
learns a compressed latent representation of text,
and a DP rewriter that uses the trained auto-encoder,
adds Laplace noise to the latent representation vec-
tor, and generates the privatized text. Due to a for-
mal error in the scale of the Laplace noise, ADePT
violated differential privacy (Habernal, 2021).

Bo et al. (2021) proposed a text rewriting ap-
proach that generates words from a latent repre-
sentation while adding DP noise. However, unlike
holistic text rewriting with DP, perturbing text only
at the word level does not protect against privacy
attacks (Mattern et al., 2022).

Even more current, Weggenmann et al.
(2022) proposed an end-to-end approach to text
anonymization using a DP autoencoder, claiming
to produce coherent texts of high privacy standards.
However, several key aspects of the experiments
lack a detailed description, while their results look
surprisingly good. Since the code base is not pub-
lic, we cannot reproduce or reimplement their ap-
proach, and we cannot prove or refute our suspi-
cions.

3 Description of software

The goal of our system is to provide a seamless way
to perform differentially private text rewriting, both
on existing and custom datasets. A user can either
load a dataset that we provide out-of-the-box, or
use a custom one. In addition, we want to make it
fast and convenient to run experiments for existing
methodologies in DP text rewriting (e.g. ADePT),
as well as the ability to integrate novel approaches.
For this, we have a general autoencoder class based
on which out-of-the-box and custom models are
built. In this sense, our software is designed to
be open and modular, where the researcher can
swap out existing components to run a variety of
experiments, as well as use the software for one’s
own privatized text rewriting needs.

The core architecture of our system can be seen
in Figure 1. We divide the experiments into three
distinct modes, pre-training, rewriting, and down-
stream. For all three, the pipeline begins with a dat-
aloader which can either be a dataset provided in
the framework, or a custom dataset specified by the
user. Additionally, a rewritten dataset can be loaded
for downstream experiments. The loaded dataset
is then preprocessed according to user-specified
parameters and the user’s selected model, split
into different procedures depending on the model
type (e.g. RNN-based, transformer-based). The
model is then initialized, optionally from an ex-
isting checkpoint. At this point, the main experi-
ment is run based on the specified mode, either (1)
pre-training the autoencoder, (2) using an existing
checkpoint to rewrite the dataset, or (3) running
a downstream model on an original or rewritten
dataset. For each mode, a variety of evaluations are
available, such as BLEU (Papineni et al., 2002) and
BERTScore (Zhang et al., 2019) for pre-training
and rewriting, and various classification metrics
(e.g. F1 score) for downstream experiments. The
differential privacy component is incorporated dur-
ing the rewriting phase for systems such as ADePT,
although our framework also allows to incorporate
it during the pre-training stage.

4 Case study

We present here a case study that demonstrates
the process of using our framework and provides
insights into the ADePT system, for which we
provide an implementation in the software. Our
goal is to investigate the difference in rewritten
texts and downstream evaluations when we pre-
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Figure 1: Overall structure of DP-Rewrite. Colors represent groupings of similar components. Blue: Experiment
mode. Grey: Dataset preparation. Green: Datasets (original/rewritten). Orange: Model-related components. Red:
Main experiment loop. Yellow: Additional experiment outputs.

train an autoencoder on one dataset and use this
to rewrite another dataset. If we notice a lot of
tokens from the dataset used for pre-training in the
rewritten dataset, as well as comparatively higher
downstream scores when pre-training and rewrit-
ing on the same dataset, then we can be certain of
another form of privacy leakage in ADePT.

4.1 Datasets

As in Krishna et al. (2021), we use the ATIS
(Dahl et al., 1994) and Snips (Coucke et al., 2018)
datasets to conduct experiments on an intent classi-
fication task in English. For both datasets, we use
the same train/validation/test split provided by Goo
et al. (2018), with 4,478 training, 500 validation
and 893 test examples for ATIS, and 13,084 train-
ing, 700 validation and 700 test examples for Snips.
There are a total of 26 intent labels in ATIS and 7
in Snips.

4.2 Implementation

We start our experiment pipeline by pre-training
two models, one on ATIS (1) and the other on
Snips (2), in both cases using the training split. For
pre-training, we set the vocabulary to the maxi-
mum number of words from the training set. As
in ADePT, we do not incorporate a differential pri-
vacy component during pre-training, although we
clip encoder hidden representations with a clipping
constant value of 5. We limit sequence lengths to a
maximum of 20 tokens, pre-training for 200 epochs
with a learning rate of 0.003. In contrast to ADePT,
we do not use the ℓ2 norm for clipping due to issues
in privacy guarantees outlined by Habernal (2021)
and instead follow the suggested fix for the method
by clipping using the ℓ1 norm.

We then use these two models for rewriting,
applying both pre-trained models for rewriting
the training and validation partitions of ATIS and
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Snips, resulting in four rewriting settings in total.
For each setting, we rewrite using five ε values,
∞, 1000, 100, 10, and 1. We use the same clipping
constant value of 5 as in pre-training.

See Appendix B for details of the downstream
experiment setup.

4.3 Results and analysis

Our results can be seen in Figure 2. We observe
the main patterns as follows. First and most im-
portantly, datasets rewritten using a model that was
pre-trained on the same dataset generally show bet-
ter downstream results than datasets rewritten using
a model pre-trained on a different dataset. For in-
stance, at ε = 1, 000, rewritten Snips from a model
pre-trained on Snips has an F1 score of 0.94, while
rewritten Snips from a model pre-trained on ATIS
has only 0.20. In fact, this is true even at ε = ∞
(non-private setting), without any added noise (e.g.
0.94 F1 pre-trained Snips, rewritten Snips vs. 0.18
F1 pre-trained ATIS, rewritten Snips), since for the
latter case the model ends up rewriting the dataset
that was pre-trained on, having memorized many of
its examples. This can be seen in Figure 3, where
the rewritten sentences appear to have no resem-
blance to the original dataset used for rewriting, but
are very similar to the data used for pre-training.

Next, as expected, the results decrease for all
configurations as the privacy budget ε decreases,
except for rewritten ATIS from a model pre-trained
on Snips, where results are low for all ε values,
probably due to the same reasons as shown in Fig-
ure 3. At the lower ε values of 10 and 1, perfor-
mance is very low for all configurations. Since
there is so much noise added to the encoder hidden
representations, the utility of ADePT’s rewriting is
severely diminished, for any data inputs.

Finally, compared to running downstream exper-
iments on the original dataset, Snips rewritten with
a model pre-trained on Snips shows about the same
results at high ε values (e.g. 0.94 F1 pre-trained
Snips, rewritten Snips vs. 0.95 F1 original Snips
for ε = ∞). ATIS rewritten with a model pre-
trained on ATIS shows lower results in this case
(e.g. 0.73 F1 pre-trained ATIS, rewritten ATIS vs.
0.87 F1 original ATIS for ε = ∞). We speculate
that since ATIS is a smaller dataset, there are less
data points to effectively pre-train ADePT for the
autoencoding task. We additionally report random
and majority baselines in Appendix A on the origi-
nal datasets for comparison.

We have thus shown that, despite fixing the
theoretical privacy guarantees of ADePT, the pre-
training procedure still results in privacy leakage,
with rewritten datasets exposing a lot of informa-
tion from the dataset used for pre-training. As a
result, downstream performance is inflated if the
datasets for pre-training and rewriting are the same.
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Figure 2: Downstream macro-averaged F1 results for
case study experiments with pre-trained and rewritten
Snips/ATIS datasets, as well as comparisons with results
on the original datasets (“Original Snips” and “Original
ATIS”). Lower ε corresponds to better privacy.

Snips rewritten from ATIS

Original Snips doc. listen to westbam alumb allergic on google music

Rewritten Snips doc. how many people fly on after a turboprop airport

ATIS doc. similar how many people fly on a turboprop airport

ATIS rewritten from Snips

Original ATIS doc. what flights leave from phoenix

Rewritten ATIS doc. start playing my disney spring

Snips doc. similar start playing my disney playlist

Figure 3: Sample rewritten texts showing memorization
by ADePT model when pre-training and rewriting on
different datasets. For a given document in the original
dataset (“Original Snips/ATIS doc.”), its rewritten ver-
sion by the model (“Rewritten Snips/ATIS doc.”) has
no resemblance to it, but is very similar to another doc-
ument from the pre-trained dataset (“ATIS/Snips doc.
similar”).

5 Conclusion

We introduced DP-Rewrite, an open-source
framework for differentially private text rewriting
experiments. We have demonstrated a sample use-
case for our framework, which allows us to detect
privacy leakage in the pre-training procedure of
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the ADePT system, an example of how the modu-
lar and customizable nature of the software allows
for transparency and reproducibility in DP text-
rewriting research. DP-Rewrite is continuing
to be under active development, and we are incor-
porating new datasets and private text rewriting
methodologies as they are released. We welcome
feedback from the community.
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A Detailed results of the case study

Pretr. Dat. Rewr. Dat. ε Test F1

Snips Snips ∞ 0.94 (0.02)
Snips Snips 1,000 0.94 (0.02)
Snips Snips 100 0.91 (0.02)
Snips Snips 10 0.07 (0.01)
Snips Snips 1 0.06 (0.00)
ATIS Snips ∞ 0.18 (0.07)
ATIS Snips 1,000 0.20 (0.02)
ATIS Snips 100 0.19 (0.01)
ATIS Snips 10 0.06 (0.01)
ATIS Snips 1 0.06 (0.01)
Snips ATIS ∞ 0.51 (0.01)
Snips ATIS 1,000 0.52 (0.03)
Snips ATIS 100 0.52 (0.03)
Snips ATIS 10 0.50 (0.01)
Snips ATIS 1 0.50 (0.01)
ATIS ATIS ∞ 0.73 (0.06)
ATIS ATIS 1,000 0.68 (0.09)
ATIS ATIS 100 0.62 (0.03)
ATIS ATIS 10 0.50 (0.01)
ATIS ATIS 1 0.50 (0.01)

Snips Orig. 0.95 (0.01)
ATIS Orig. 0.87 (0.03)
Snips Rand. 0.14
ATIS Rand. 0.01
Snips Maj. 0.03
ATIS Maj. 0.13

Table 1: Downstream macro-averaged F1 results for
case study experiments with pre-trained and rewritten
Snips/ATIS datasets. We additionally show results on
the original datasets, as well as random and majority
baselines. Test F1 shown as “mean (standard deviation)”
over five runs with different random seeds. Lower ε
corresponds to better privacy.

B Downstream experiment setup

For downstream experiments, we use a pre-trained
BERT model (Devlin et al., 2018), with an addi-
tional feedforward layer that takes the mean of the
last hidden states as input and predicts the output
label. We use the rewritten training and validation
sets for each configuration, and the original test
sets for final evaluation. We run each configura-
tion with five different random seeds and report the
mean and standard deviation.
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Abstract
Social media platforms have become new bat-
tlegrounds for anti-social elements, with mis-
information being the weapon of choice. Fact-
checking organizations try to debunk as many
claims as possible while staying true to their
journalistic processes but cannot cope with its
rapid dissemination. We believe that the so-
lution lies in partial automation of the fact-
checking life cycle, saving human time for
tasks which require high cognition. We propose
a new workflow for efficiently detecting previ-
ously fact-checked claims that uses abstractive
summarization to generate crisp queries. These
queries can then be executed on a general-
purpose retrieval system associated with a col-
lection of previously fact-checked claims. We
curate an abstractive text summarization dataset
comprising noisy claims from Twitter and their
gold summaries. It is shown that retrieval per-
formance improves 2x by using popular out-
of-the-box summarization models and 3x by
fine-tuning them on the accompanying dataset
compared to verbatim querying. Our approach
achieves Recall@5 and MRR of 35% and 0.3,
compared to baseline values of 10% and 0.1,
respectively. Our dataset, code, and models are
available publicly here.

1 Introduction

Social media is increasingly used for business, en-
tertainment, and political discourse, thus, encour-
aging users to produce and consume large volumes
of information that may not always be accurate.
Due to a lack of digital awareness, the masses often
believe and forward such disputed claims in their
social circles. Such spread of misinformation often
culminates in incidents which cause damage to life
and property. It is well documented that misinfor-
mation is used as a tool by political agents to slan-
der their opposition (Allcott and Gentzkow, 2017)
and influence the opinion of the masses. It becomes
furthermore dangerous when such claims pertain to
religious beliefs, often leading to violence and mob

lynchings1. In the era of COVID-19, unverified
medical advice has also been circulated on social
media (Shahi et al., 2021) which has already led to
various health hazards.

Social media platforms have undertaken con-
certed efforts to tackle the fake news epidemic by
enforcing strict policies to weed out unverified and
sensitive content and ban habitual offenders. Jour-
nalistic organizations such as Alt News2, Factly3,
Boom Live4 and Snopes5 among others are also
fighting this problem by publishing fact-checking
articles investigating the veracity of viral dubious
claims. These articles detail the journalistic proce-
dures followed to fact-check the claim along with
suitable references.

Numerous researchers are working on AI-
based solutions for fact-checking claims. Many
datasets (Thorne et al., 2018; Sathe et al., 2020;
Fan et al., 2020; Schuster et al., 2021) have been
released to train models which can automate sub-
tasks such as claim verification, evidence retrieval
and assigning a verdict in a fact-checking work-
flow. A critical and insufficiently researched step
in the fact-checking workflow is- detecting whether
a claim has been fact-checked previously. This is
a repetitive task with immense scope for automa-
tion, shrinking the turnaround time for a claim and
ensuring that human efforts are put to better use
on tasks involving higher cognition, such as as-
signing a verdict. In literature, learning-to-rank
models (Shaar et al., 2020; Vo and Lee, 2020; Man-
sour et al., 2022) have been proposed for this step,
which on being queried, produce a ranked list of
results from a closed dataset of previously verified
claims. Dozens of fact-checking articles are be-
ing published every hour around the world. It is

1Article on Mob Lynching: Washington Post
2AltNews: Website
3Factly: Website
4Boom Live: Website
5Snopes: Website
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Figure 1: Proposed Workflow. In this work, we use
Fact Check Explorer as a black box Retriever. The
workflow proposed by previous works is denoted by a
dotted path.

difficult for journalistic organizations to maintain
such a large real-time collection of fact-checked
articles and claims, thus, making such an approach
infeasible in real-world scenarios.

We propose a novel workflow (as shown in Fig-
ure 1) for detecting previously fact-checked claims.
In this work, we use Google’s Fact Check Explorer,
a cross-publisher, cross-language search engine for
previously fact-checked articles, as a black box
retriever. As social media platforms contribute a
great deal to spreading misinformation, we deal
with naturally occurring textual claims on Twitter
in this study as opposed to artificial, well defined
and structured claims (Thorne et al., 2018; Aly
et al., 2021). Instead of querying using verbatim
claims, which are noisy, it is proposed that abstrac-
tive text summarization be used as a precursor to
querying to generate clear, succinct queries cap-
turing the claim in a minimum number of words.
Figure 1 represents a subpart of the complete fact-
checking pipeline (Barrón-Cedeno et al., 2020)
with our proposed changes in red. CCR and SMC
are defined in Section 3. In literature, no dataset
exists for abstractive summarization of tweets, and
no attempts have been made to address this prob-
lem using the Fact Check Explorer to the best of
our knowledge. Our contributions can be distilled
into the following:

1. Workflow: A novel workflow for detecting
previously-fact checked claims at scale.

2. Dataset: An abstractive summarization
dataset6 for tweets in the Indian context.

3. Models: Popular and large pre-trained abstrac-
tive summarization models, fine-tuned under

6Data and models are made available here: https://
github.com/varadhbhatnagar/FC-Claim-Det/

supervision on this data, which can be used
for other purposes involving tweet summariza-
tion.

4. Experimental Study and Analysis: We also
perform quantitative and qualitative analysis
for various outputs in our proposed workflow,
including an analysis of generated summaries.

The rest of this paper is organized as follows:
Section 2 discusses related work, Section 3 presents
the dataset, Section 4 discusses the approach, eval-
uation metrics and the experimental setup. The
results are presented and analysed in Section 5 fol-
lowed by Section 6 which concludes the work and
proposes future research directions. Section 8 and
9 discuss the ethical considerations and limitations.

2 Related Work

Sharma et al. (2019) describe the menace of mis-
information on the Internet and summarize mit-
igation techniques and available datasets in this
domain. Available intelligent technologies to assist
the process of fact-checking are surveyed by Nakov
et al. (2021a). This work highlights the partial over-
lap between current research endeavours and fact-
checkers desiderata over the life cycle of a claim in
a fact-checking pipeline.

A general-purpose four-step automatic fact-
checking pipeline is presented by Barrón-Cedeno
et al. (2020). The task of determining if a claim
has been previously fact-checked is the second step
in the pipeline. This problem is addressed in a
series of open challenges (Shaar et al., 2021c) at
Checkthat! workshop (Barrón-Cedeno et al., 2020;
Nakov et al., 2021b, 2022) as part of CLEF 7. Shaar
et al. (2020) collect, annotate and release datasets
of claim pairs and evidence sets, sourced from Poli-
tifact8 and Snopes for solving this task. They de-
velop and demonstrate the robustness of BM25 and
BERT (Devlin et al., 2019) based learning to rank
models on their dataset for this task. Vo and Lee
(2020); Mansour et al. (2022) also propose vari-
ants of a ranking approach to solve this problem.
Further, Shaar et al. (2021b) work with data from
political debates and model the context of a claim
and illustrate the positive impact this has in de-
termining if it has been previously fact-checked.
Shaar et al. (2021a) publish a dataset and develop
a system for detecting all previously fact-checked
claims in a lengthy document.

7CLEF: Website
8Politifact: Website
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Text summarization has been used to en-
able verdict explainability in automatic fact-
checking (Mishra et al., 2020; Stammbach and Ash,
2020) but it hasn’t been used for denoising tweets,
to the best of our knowledge.

Tchechmedjiev et al. (2019) publish the Claim-
sKG Knowledge Graph, containing 28K fact-
checked claims and their metadata such as sources,
truth value and entities. Structured queries can be
executed on this knowledge graph, enabling explo-
ration and information discovery. However, it does
not provide any mechanism to check if a claim
has been previously fact-checked. Fact Check Ex-
plorer9 is a tool developed by Google which pro-
vides browsing and searching capability for already
fact-checked articles which have the ClaimReview
Schema10 embedded. There are performance limi-
tations associated with this tool in the face of long
and complex queries.

3 Dataset

The following terms are defined for lucid perusal
of this work:

1. Social Media Claim (SMC): A social media
post (tweet, in this work) containing a claim
in need of fact-checking. It is analogous to
the output of the first step (check worthiness
estimation) in the automatic fact-checking
pipeline presented by Barrón-Cedeno et al.
(2020).

2. Fact Checked Article (FCA): An article pub-
lished by a fact-checking organization accept-
ing or refuting a claim11.

3. Summary of Claim Review (SCR): A short
summary of the claim added by the publish-
ing organization as part of the ClaimReview
Schema associated with every FCA. Our use
of the term SCR is the same as VerClaim
coined by Shaar et al. (2020).

4. Condensed Claim Representation (CCR):
A summary of the SMC generated using
trained models.

3.1 Dataset Curation

In this work, we focus on FCAs published by In-
dian organizations between 2018 and 2022. FCAs
from the following IFCN12 certified organizations:

9Fact Check Explorer: Web Search
10ClaimReview Schema
11Example FCA
12IFCN: Website

1) Alt News, 2) BoomLive, 3) India Today, 4) The
Logical Indian, 5) The Quint, 6) Factchecker, 7)
FactCrescendo, 8) Vishwas News, 9) PolitiFact, 10)
Snopes, and 11) Factcheck.org, were retrieved. In
order to make our dataset diverse, some FCAs from
the USA based fact-checkers are also included,
which shows that this workflow can be generalized.

Twint13 is used to crawl Twitter, looking for
URLs of the organizations mentioned above, in
the comment threads of tweets. This resulted in a
coarse collection of <Tweet, SCR> pairs. Those
pairs with tweets in languages other than English
and tweets containing only image/video content are
discarded. We perform annotation on this collec-
tion, keeping two aspects in mind: (1) the tweet
should contain a claim, and (2) it should be tex-
tually summarizable to the corresponding SCR.
URL removal from SMCs followed by pairwise
de-duplication is performed at this stage, resulting
in our final dataset, a collection of <SMC, SCR>
pairs, which can be used for training abstractive
text summarization models. The final dataset only
contains <SMC,SCR> pairs where both are in En-
glish.

Key world and Indian events have been cov-
ered as part of this dataset, such as the onset of
COVID-19 and subsequent immunisation, the Tal-
iban takeover of Afghanistan, Indian General Elec-
tions 2019 and US Presidential Elections 2020. Our
annotation process is detailed below.

3.1.1 Annotation Details

Two trained annotators were tasked with annotating
every <Tweet,SCR> pair from the coarse collection
(Subsection 3.1). Three categorical attributes viz.
Tweet language, SCR language, category and one
boolean attribute viz. ‘Summarizability’ had to be
populated for each pair.

The annotators were provided instructions to
mark a pair as ‘summarizable’ only when the SCR
is a condensed version of the tweet and named en-
tity coverage is more than 50%. For deciding entity
coverage, the annotators were allowed to take cues
from the mentions and hashtags in the tweet. As
majority of the FCA Publishers we dealt with are
Indian, a lot of tweets and SCRs were in Indian
languages such as Hindi, Hindi transliterated in
English, Tamil, Telugu, and some other Indian lan-
guages. Any such instances were pruned from our
dataset.

13Twint: Github Repository
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To understand the motivation behind these
SMCs, our annotators were also requested to cate-
gorize them into classes like a) Politics, b) Crime
and Terrorism, c) World, d) Entertainment, e) Tech-
nology, f) Food, g) Religion, h) Sports, i) Health,
j) Education, k) Business, l) Environment, and m)
Other (miscellaneous). Though not relevant to this
work, nor a part of the final dataset, we collect and
annotate this data as well for further research.

We observe an inter-annotator agreement of 92%
within the annotations provided by both.

3.2 Dataset Statistics

Data Entity Count

<SMC,SCR> pairs 567
Unique SMC 531
Unique SCR 369

FCA Source Country

India 93%
US 7%

Median Length Chars Words

SMC 193 33
SCR 70 11

Data Sets Cosine Similarity
Threshold

0.25 0.5 0.75

NP 59% 12% 2%
P-H-M 61% 13% 3%
Snopes (Shaar et al., 2020) 50% 8% 1%

Table 1: Dataset Statistics and Complexity Analysis.
NP and P-H-M are defined in Subsection 4.1.

The statistics of our final dataset, comprising
of 567 unique <SMC, SCR> pairs are presented
in Table 1. Owning to several tweets and several
FCAs about the same underlying event, 1:1 corre-
spondence is not observed in the dataset, as evident
from the first section in this table. Due to the 280
character limit imposed on tweets by Twitter, the
SMCs are not arbitrarily long, with a median length
of 33 words and the SCRs are observed to be very
short, with a median length of 11 words. Simi-
lar to (Shaar et al., 2020), the complexity of the
task is analyzed by reporting the word-level TF-
IDF weighted cosine similarity for <SMC, SCR>
pairs. Since our dataset supports summarization,
cosine similarity is higher compared to the Snopes
dataset by (Shaar et al., 2020), as expected. Fig-
ure 2 presents the FCA Source and SMC Topic

distribution. 46% of the SMCs are political or
religious, which is no surprise as these sensitive
topics polarise opinion very easily. A large chunk
of SMCs are health-related, owning to misinforma-
tion surrounding the COVID-19 immunization and
mass hysteria.

(a) FCA Sources (b) SMC Topics

Figure 2: Dataset Distribution

4 Our Approach

SMCs are very noisy in nature due to the in-
herent way people interact on social media and
micro-blogging platforms. On Twitter, tweets are
bounded by a character limit, forcing people to
use slang and abbreviations to communicate effec-
tively. It also allows for mentions and hashtags
to be embedded in tweets to encourage inter-user
interaction. Using these noisy SMCs verbatim (as
done by Shaar et al. (2020)) to check if they have
been previously fact-checked is challenging, as the
retrieval module has to do all the heavy lifting for
which it is not equipped.

In this work, it is hypothesized that a system
which extracts queryable content from SMCs by
dealing with its syntactic and semantic aspects be-
fore querying the retrieval module should perform
better than verbatim querying. Keeping in mind the
small scale at which fact-checking organizations
work and the continuously growing collection of
FCAs, Google’s Fact Check Explorer is used as
a retriever for previously fact-checked claims in-
stead of a closed collection of verified claims. The
Fact Check Explorer indexes the latest FCAs across
the world and provides easy to use search APIs for
free, which support filtering based on publisher and
language, among other features. Various text pre-
processing techniques on SMCs are experimented
with before using state-of-the-art abstractive text
summarization models to generate corresponding
CCRs. These CCRs are then used to query the re-
triever. These techniques and the models used are
detailed in the following subsections. Our prefer-
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ence for abstractive summarization over extractive
summarization arises because of two reasons; the
SMCs are noisy and unlikely to contain query-able
spans and due to the recent progress in abstractive
summarization research (Lewis et al., 2019; Zhang
et al., 2020; Raffel et al., 2020; Xiao et al., 2021).

This proposed workflow is generic in nature as
<SMC, SCR> pairs collected from other microblog-
ging platforms (using our curation methodology)
can be used to train summarization models after
applying text pre-processing techniques specific
to that platform. These models can also generate
queries for open-domain evidence retrieval, which
is the next step in a fact-checking pipeline. It is
also futuristic in the sense that a generative mod-
ule can replace the text summarization module to
support multimodal SMCs. However, this work
is kept limited to textual SMCs due to a lack of
suitable labelled data and the absence of a reliable
equivalent of Fact Check Explorer for joint text,
image and video search.

4.1 Twitter Specific Preprocessing

Most social media platforms encourage inter-user
interaction by allowing ’mentioning’ other users in
a post. Typically, some form of notification goes
to the user being mentioned, getting his attention
on the post content. It is also used as a way for
tagging people to establish their presence in photos
and videos. Hashtags are metadata tags which al-
low cross referencing of content by topic or theme.
They typically identify with some event or social
movement, allowing users to discover and associate
with trending content. Both hashtags and mentions
are available on Twitter along with emojis, which
are smileys embedded in text, providing emotional
cues to the reader.

We experiment with these three aspects of a
tweet. Most search engines do not deal with Emo-
jis, hence we replace them with a constant to form
the P+MRep set. Hashtags and Mentions provide
rich signals about named entities, hence it is im-
portant to incorporate them in the input in some
way. Upon manual analysis of the data, it was seen
that a lot of tweets mentioned users who were un-
related to the content in the tweet. Some recurring
instances of this phenomena that we came across,
were fact-checking requests mentioning many jour-
nalists and organizations and political tweets men-
tioning prominent members of the opposition polit-
ical party and prominent believers of the opposite

ideology. It was observed that hashtags were also
used in a similar manner. Another observation was
the existence of runs of space separated hashtags
and mentions and their occurrence at the beginning
or end of the tweet, signifying the preference of
users to separate actual tweet content from these
meta tags. These signals led us to create sets of
data where mention and hashtag runs are removed
except the first member in each run (P-MRR-HRR).
Further, some users used organization related twit-
ter handles or twitter handles in other languages
like Hindi. To deal with this, we replace these by
their original names on Twitter to get the P-MRR-
HRR+MRep set. With a clear intuition behind such
preprocessing, we now describe what Twitter spe-
cific text preprocessing techniques are applied to
SMCs to produce the following <SMC,SCR> sets,
from the final dataset:

1. Verbatim (NP): SMCs are used verbatim.

2. Preprocessed (P): Symbols for hashtags(#)
and mentions(@), emojis, punctuation and
redundant are removed, followed by lowercas-
ing of SMCs.

3. Pre-processed with Emojis Replaced
(P+ERep): Emojis are replaced by the string
$EMOJI$ in addition to techniques used in P.

4. Pre-processed with Hashtags and Mentions
Removed (P-H-M): All hashtags and men-
tions are removed in addition to techniques
used in P. Subsets with only hashtag removal
(P-H) and only mention removal (P-M) are
also created.

5. Pre-processed with Mention and Hashtag
Run Removed (P-MRR-HRR): Run of hash-
tags and mentions are removed, except the
first entity in each run, in addition to tech-
niques used in P.

6. Pre-processed with Mention and Hashtag
Run Removed and Mentions Replaced (P-
MRR-HRR+MRep): The remaining men-
tioned handles in P-MRR-HRR are replaced
by their official names from Twitter.

4.2 Summarization Models

For summarization, the following models were ex-
perimented with:

1. Truncate k: A naive summarizer which trun-
cates a SMC to the first k space-separated to-
kens. It is used as a baseline to show gains by
more complex models.
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2. T5: A transformer-based architecture by Raf-
fel et al. (2020) that uses a text to text ap-
proach for all tasks. It is pre-trained on a
multi-task mixture of supervised and unsu-
pervised tasks such as denoising on the high
quality C4 corpus, sentiment analysis, natural
language inference and question answering,
among others. To make the model cope with
this multi-task training, a task-specific prefix
is added to the input sentence.

3. BART: A transformer-based sequence to se-
quence model by Lewis et al. (2019) which
incorporates the bidirectional encoder of
BERT (Devlin et al., 2019) and the left-to-
right autoregressive decoder of GPT (Rad-
ford and Narasimhan, 2018; Radford and Wu,
2019), pre-trained in denoising autoencoder
style. It works well for downstream tasks in-
volving text generation.

4. PEGASUS: A transformer-based sequence to
sequence model by Zhang et al. (2020) which
uses a self-supervised pre-training objective
called gap-sentence generation, aimed at op-
timizing downstream abstractive summariza-
tion tasks. In gap-sentence generation, im-
portant sentences in a document are masked,
and the transformer model is asked to predict
those sentences. PEGASUS shows impres-
sive performance even with a small number
of samples during fine-tuning.

4.3 Decoding Strategies
Decoding strategies define how text should be gen-
erated by models that support language generation.
Based on the end application, the model may be
expected to generate text that can be lengthy, short,
non-repetitive, interesting, surprising, and so on.
Our application requires the output to be short and
crisp. In this work, we experiment with Greedy,
Beam Search, Top k and Top p (Holtzman et al.,
2019) decoding strategies.

4.4 Evaluation Metrics
Recall@k and Mean Reciprocal Rank (MRR) are
reported for all experiments, as is the norm in re-
trieval tasks. While checking if a claim was previ-
ously fact-checked, fact-checkers would not want
to look beyond the first few results. Keeping this in
mind, Recall@5 is used as the primary metric for
comparing retrieval performance. Figure 3 shows
the variation in Recall@k with increasing value
of k. The sharp bend at Recall@5, subsequent

plateauing also motivated us to report this metric
for retrieval. Also, it is practically feasible for a hu-
man fact-checker to go through 5 results per claim
rather than 10 or 20 results.

Figure 3: Recall Plateauing for Decoding Strategies

For evaluating the quality of the summary gener-
ated, word-level TF-IDF weighted cosine similarity
between SMCs and CCRs and between SCRs and
CCRs is reported. BLEU4 (Papineni et al., 2002).

4.5 Experiment Setup

In the experiments, the performance of summa-
rization models in both out-of-the-box settings and
through fine-tuning, i.e., training on the task under
supervision are compared. For the fine-tuning ex-
periments, 5-fold cross-validation is performed on
the data; and mean values along with the standard
deviation are observed. Other experiments are per-
formed on the entire data without any splits as no
parameter learning is involved.

All experiments performed with the help of
Transformer-based architectures in Table 2 use
Beam Search decoder with a beam size of 6 and the
maximum token length of a generated sequence,
set to 15 with early-stopping enabled. For Truncate
k experiments, k=11 is set. We arrive at these con-
stants by looking at the median summary length
provided in Table 1 and giving some leeway to
transformer models as they operate on sub-word
vocabularies. Hugging Face14 implementations of
the models mentioned in Subsection 4.2 are used
for all experiments involving transformers. For
the PEGASUS and BART experiments, we use the
distilled versions released by Shleifer and Rush
(2020) using the shrink and fine-tune approach on
the CNN dataset. The 16-layer-encoder 4-layer-

14Hugging Face: Website
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No Summarization Summarization using Out of the Box Models Summarization using Fine Tuned Models

Preprocessing
Strategies

None Truncate11 T5 D BART D PEGASUS T5 D BART D PEGASUS
R@5 MRR R@5 MRR R@5 MRR R@5 MRR R@5 MRR R@5 MRR R@5 MRR R@5 MRR

NP 9.52 .09 17.28 .14 15.52 .13 20.46 .17 22.40 .19 27.16 ±2.55 .23 ±.02 29.10 ±3.15 .26 ±.02 34.91 ±5.91 .30 ±.05

P 11.99 .11 18.34 .15 17.64 .15 17.99 .14 21.52 .17 28.38 ±6.55 .24 ±.05 28.21 ±6.88 .24 ±.06 27.69 ±2.63 .24 ±.02
-H 12.70 .12 17.99 .15 17.28 .15 17.64 .14 20.46 .16 24.87 ±5.13 .21 ±.04 30.15 ±6.08 .26 ±.06 29.61 ±6.59 .25 ±.05
-M 13.05 .12 18.69 .15 18.34 .15 17.64 .14 21.16 .17 26.80 ±5.33 .23 ±.03 30.15 ±4.98 .26 ±.04 29.10 ±2.45 .25 ±.02
-H-M 13.93 .13 18.87 .15 17.81 .15 17.28 .14 20.28 .16 26.46 ±4.69 .23 ±.03 27.51 ±4.09 .23 ±.04 26.28 ±2.36 .23 ±.02
+ERep 10.58 .10 17.46 .14 16.58 .14 17.99 .15 22.05 .18 27.51 ±6.13 .23 ±.05 28.20 ±5.89 .25 ±.05 30.15 ±5.72 .27 ±.05
-MRR-HRR 12.35 .11 17.81 .15 17.46 .15 17.81 .14 21.69 .18 28.75 ±6.38 .25 ±.05 27.33 ±5.94 .23 ±.05 25.92 ±1.98 .22 ±.01
-MRR-HRR
+MRep 12.70 .12 18.87 .15 18.34 .15 17.81 .14 21.87 .18 27.51 ±5.43 .24 ±.04 30.15 ±5.98 .25 ±.05 27.32 ±3.87 .24 ±.03

Skyline 63.85 .55

Table 2: Retrieval Results (Subsection 5.1). D BART and D PEGASUS stand for Distilled BART and Distilled
PEGASUS respectively, and Recall@5 is represented by R@5. All preprocessing strategies prefixed with ’+’ or ’-’
are applied on top of the P set.

decoder version of distilled PEGASUS15 and 12-
layer-encoder 6-layer-decoder version of distilled
BART16 are used. The base version of T517 is used
for all experiments involving T5. The number of
trainable parameters are 220M, 300M and 370M in
T5-base, Distilled BART and Distilled PEGASUS,
respectively. Since Fact Check Explorer is an ever-
growing and evolving system, CCRs are generated
for all experiments first, and then retrieval queries
are run, ensuring consistency across results. For
retrieval, the API documentation18 is followed and
retrieved URLs are compared with normalized (re-
moving redirection/parameters accompanying the
URL) URLs associated with an FCA.

5 Results and Discussion

This section discusses the results obtained at vari-
ous stages of our workflow.

5.1 Retrieval

We present the retrieval results in Table 2. From
top to bottom, the SMC pre-processing (Section 3)
complexity increases and from left to right, the
complexity of the summarization models (Subsec-
tion 4.2) increases. For the skyline numbers, Fact
Check Explorer is queried using the gold SCRs,
giving 63.85 Recall@5 and 0.55 MRR. We ob-
serve two evident trends via experimentation- (1)
the performance gain in using an out-of-the-box
summarization model, as compared to no summa-
rization, and (2) the benefit of learning under su-
pervision on our labelled dataset, indicated by the
sharp gain in performance of fine-tuned models as
compared to the corresponding out of the box mod-

15Distilled PEGASUS Model
16Distilled BART Model
17T5-base Model
18Fact Check Explorer: API Documentation

els. Since the PEGASUS model is pre-trained with
an objective to boost abstractive summarization
performance, it works quite well out-of-the-box,
giving a 2x increase in performance compared to
no summarization. The best performing model
is Distilled PEGASUS, fine-tuned on our dataset
(without any pre-processing), as exhibited by a Re-
call@5 of 34.91 and MRR of 0.3, which is more
than 3x improvement over verbatim querying.

We use three different summarization strategies-
(1) No Summarization, (2) Summarization using
out-of-the-box Models, and (3) Summarization us-
ing fine-tuned models as shown in Table 2. We
separately highlight the best performance in the
table itself in each of these cases. In the no summa-
rization experiments, we observe that complex pre-
processing techniques lead to a performance gain,
as indicated by the best Recall@5 and MRR of
18.87 and 0.15 on dealing with mentions and hash-
tags (for both P-H-M and P-MRR-HRR+MRep).
Among the out-of-the-box experiments, it is seen
that Distilled PEGASUS comfortably outperforms
T5 and Distilled BART, with the best Recall@5 and
MRR being 22.4 and 0.19, respectively. Highly pa-
rameterized models like BART and PEGASUS do
not benefit from input pre-processing.

The gap between the skyline numbers and
the best performing model can be attributed to
the fact that most models are pre-trained on
document level summarization datasets such as
CNN/Daily Mail (Nallapati et al., 2016) and Huge
News (Zhang et al., 2020). Hence, they struggle
with summarizing short input text.

5.2 Summarization Quality

The quality of CCRs is reported in Table 3. We
compare CCRs with SMCs and SCRs on two met-
rics (1) Word level TF-IDF Weighted Cosine Simi-
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Experiment n-Gram
Cosine Similarity BLEU4Threshold
0.25 0.5 0.75

E1 SMC vs CCR
1 80% 26% 2% -
2 83% 30% 2% -

E1 SCR vs CCR
1 76% 38% 14% 39.7
2 73% 38% 13% 39.3

E2 SMC vs CCR
1 83% 26% 4% -
2 85% 29% 3% -

E2 SCR vs CCR
1 68% 31% 11% 38.9
2 69% 33% 13% 39.2

Table 3: Summarization Quality Analysis (Subsection
5.2). E1 and E2 stand for Distilled PEGASUS with NP
and P-MRR-HRR+MRep experiments respectively (as
described in Section 4) and n-Gram stands for the value
of n in n-grams not appearing more than once in beam
search decoding.

larity and (2) BLEU4. Since BLEU4 is generally re-
ported between reference and generated sequences,
it does not make sense to report it for SMC vs
CCR rows. We observe high BLEU4 scores for the
CCRs signifying that our approach can generate
valid summaries, as can also be seen in Table 4.
For both E1 and E2, our BLEU4 scores are ap-
proaching (approx.) 40. On comparing SMC vs
CCR cosine similarities for both experiments with
the cosine similarity of SMC vs SCR (last section
in Table 1), we find higher values for all thresholds
indicating that our generated summaries are sig-
nificantly similar to the tweets as compared to the
gold summaries provided.

5.3 Decoding

Figure 4: Decoding Strategy Comparison (Subsec-
tion 5.3). MRR values are multiplied by 100 for better
visualization. BWkNGn corresponds to beam search
decoding with beam width k and no n-grams appearing
more than once in the generated output. k is set to 50 in
Top k and p is set to 0.92 in Top p.

Figure 4 shows the variation in retrieval results
on using different decoding strategies. Definitions

for E1 and E2 follow from Table 3.
As observed from this figure, BW6NG2 seems

to be the best performing decoding strategy. Hence,
this strategy is used for all experiments in Table 2.
BW6NG1 also seems to be a good alternative, but
the 1-gram constraint makes the queries very terse
and grammatically inconsistent (observed manu-
ally). Greedy, Top k and Top p strategies are not
competitive for such a task.

5.4 Larger Language Models

Figure 5: Effect of Larger Language Models on Re-
trieval Metrics

We study the variation in performance using
even larger models such as T5 Large19, which
has 770M parameters, three times that of T5-base.
CCRs generated by the larger model perform better
on both retrieval metrics across a variety of pre-
processed SMCs, but the performance gain is not
significant. It is offset by a longer training time
and heavy compute requirements leading to con-
siderable cost overheads. Since this is not a study
of large generative models and given the modest
resources owned by most fact-checking organiza-
tions, we do not explore any larger language mod-
els such as T5-3B and T5-11B, which have 3 Bil-
lion and 11 Billion parameters, respectively.

5.5 CCR Quality
Table 4 lists a few CCRs generated by the best
performing model, also listing the corresponding
SMCs and SCRs. The model successfully extracts
the core claim from the SMCs and ignores tokens
like mentions and hashtags that have no contribu-
tion to the core claim. Owning to the constraints
placed on length, it is seen that the generated CCRs
are succinct and context-independent. They seem
to be paraphrases of the gold SCRs, making them

19T5-large Model
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# SMC SCR CCR

1

Congratulations to Uttarakhand CM for
becoming the first CM ever to charge stranded
citizens for rescue operations! Helicopter
rides will now be chargeable during rescue
operations in Uttarakhand. And if you can’t
pay, you may safely die. #AchheDin #BJP

Passengers in Uttarkhand to be charged
for rescue operations

Uttarakhand CM has charged stranded
citizens for helicopter rides during rescue
operations

2

@AltNews We are getting various WhatsApp
forward regarding as Corona has been
emerges only due to 5G testing in world.
Please put some light, seems ,it is only a
brain shit.

5G radiation is the cause behind the
second wave of coronavirus pandemic
in India

Coronavirus outbreak due to 5G testing

3
This woman in Afghanistan was killed by Taliban
for not wearing the proper cloth. #Afghanistan
#Taliban @cnn @FoxNews @BBCWorld

Video shows a woman being shot in
the head by Taliban in Afghanistan
for not dressing appropriately

Woman killed by Taliban for not wearing
proper cloth

4

"India is ranked 102nd in the global hunger index,
out of 117 countries. We are ranked in between
Niger & Sierra Leone. We are the lowest ranked
South Asian country. Bangladesh is ranked 88th
and Pakistan 94th. They have only recently
overtaken us. Our rank was 55,only 5 years ago"

India’s ranking in Global Hunger Index
(GHI) has fallen from 55 in 2014 to 102
in 2019

India ranked 102nd in the global hunger index

5

"Oxygen donated from Saudi and relabelled in
india by Reliance, Share this with your contacts
in Saudi and make this viral .. Let the world know
the cheapness of this PM "

Oxygen sent from Saudi Arabia is being
distributed in the name of Reliance

Reliance taking credit for oxygen supplied
by Saudi Arabia

Table 4: SMCs and SCRs from the Dataset with corresponding CCRs (Subsection 5.5).

good candidates for querying the retrieval system.
It is also seen that our model finds factual inputs
which require reasoning, difficult to deal with. For
instance, #4 in Table 4 requires a model to under-
stand that going from rank 55 to 102 in the Global
Hunger Index is a fall and not a rise. Our workflow
does not expect the underlying language model
to understand and reason, and this workflow only
requires the generation of a valid summary.

6 Conclusion and Future Work

In this work, a new workflow for detecting previ-
ously fact-checked claims is proposed. This work-
flow uses text summarization as an intermediate
step before retrieval module invocation. Clean and
crisp summaries thus generated are then used for
querying a retrieval system. To this end, a first-of-
its-kind tweet summarization dataset in the Indian
context to train such models is curated and released
under the CC-BY-NC-SA 4.0 license. The perfor-
mance gained on using popular out-of-the-box and
fine-tuned summarization models before querying
the Fact Check Explorer is demonstrated, and dis-
cussed with qualitative samples. Various popular
decoding strategies are compared, and the implica-
tion of using larger pre-trained models is explored.
The aim of this work is to aid in the creation of
general-purpose and performant modules which
can speed up a fact-checking pipeline by equipping
fact-checkers with the tools to fight misinformation
at a large scale.

In future, we would also like to perform this
task in a more general context for news items from
various countries, extending our work in a multi-
lingual scenario. Also, named entities are crucial
in drafting a good query for any retrieval system.
Generating summaries based on the Named Enti-
ties (Zhang et al., 2020) found in SMCs is a promis-
ing avenue to explore. We do not take tweet threads
into account as our focus is SMCs by users and not
replies or comments to those SMCs, however, this
can be an interesting future direction. Other con-
trolled text generation (Keskar et al., 2019; Chan
et al., 2021) techniques can also be explored to ex-
tract the maximum information from noisy SMCs.
Better pre-training objectives for abstractive sum-
marization on noisy text can lead to efficient out-
of-the-box models for this task.

Most Indian fact-checking organizations in Sec-
tion 3.1.1 also publish FCAs in regional languages
such as Hindi, Tamil and Telugu. Twitter conver-
sations, spreading misinformation in other pure
and transliterated Indic languages are voluminous.
Cross-lingual summarization research (Zhu et al.,
2019) would go a long way in fighting misinforma-
tion in a holistic manner.
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8 Ethical Considerations

To the best of our knowledge, no code of ethics was
violated throughout the experiments performed for
this study. We report all hyper-parameters and other
technical details necessary to reproduce our results,
and release the code and dataset curated via this
work. We perform our experiments with the help of
various language models which may contain biases
as discussed by Weidinger et al. (2021). However,
we believe that our workflow and methodology are
solid and apply to any social media fake news set-
ting. Any quantitative results reported by us are
reproducible, subject to the ever growing number
of articles indexed by the Fact Check Explorer (re-
ported in Section 4.5). However, the qualitative
results (like generated summaries) are an outcome
of computational models that does not represent
our personal views. We do not include any identi-
fying information in the data that we use for our
experiments and ensure that the dataset release will
follow anonymization of any such information.

We would like to state that this dataset is col-
lected in a recent real-world setting (raw social
media claims from 2018-2022) and no attempt has
been made by us to subdue tweets on certain top-
ics and promote others. More precisely, we freely
assigned the tweets to our annotators without any
domain/topic specificity, however, they were re-
quired to label the tweet from a list of categories
(Section 3.1.1) to collect more information.

9 Limitations

We believe there is a limitation to our work, i.e.,
The limited size of this dataset; which can be
attributed to following reasons:

• Most fact-checking organisations (covered in
this work) emerged post-2017.

• Our data curation relies on a large number of
users replying to potentially misinformative
tweets. This user behaviour is limited by so-
cial network usage, awareness and internet
proliferation for a particular language, region
or country.

• The “manual pruning” step while curating the
tweet level summarization dataset was a very
time/effort-intensive process. For e.g., around
5000 coarse <Tweet,SCR> pairs were manu-
ally pruned to get the final dataset containing

567 <SMC,SCR> pairs, implying a rejection
rate close to 90%.
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Abstract
Explaining the reasoning of neural models has
attracted attention in recent years. Providing
highly-accessible and comprehensible expla-
nations in natural language is useful for hu-
mans to understand the model’s prediction re-
sults. In this work, we present a pilot study
to investigate explanation generation with a
narrative and causal structure for the scenario
of health consulting. Our model generates a
medical suggestion regarding the patient’s con-
cern and provides an explanation as the outline
of the reasoning. To align the generated ex-
planation with the suggestion, we propose a
novel discourse-aware mechanism with multi-
task learning. Experimental results show that
our model achieves promising performances in
both quantitative and human evaluation.

1 Introduction

Neural models have shown remarkable success in
various tasks, however, simply offering the predic-
tions may not satisfy the requirement of end-users.
Understanding how the decision has been reached
by the model is essential in real-world applications.
To provide a meaningful, human-comprehensible
explanation, presenting it in natural language is a
proper fashion. Note that simply present the ex-
planation as a shopping list or fragments of text-
highlight is not an ideal way. Humans prefer to
read a text composed of a narrative structure, or-
ganized by the discourse relations elaborating the
causality between the model input and output (Re-
iter, 2019). In this work, we propose a novel health
consultancy model which can provide medical sug-
gestions accompanied with natural language expla-
nations learned from medical specialists to help
humans make decisions in their daily life.

As many people are eager for help in addressing
their health concerns, a model is necessitated to
be capable of not only providing suggestions re-
garding their concerns, but also explaining the sug-
gestions, alleviating their worries before visiting

  male / (20~29), 2021/02/25 / Ask：

I went to the ER in April after having a fever, the initial diagnosis
is urethritis. The doctor gave me antibiotics and antipyretics,
however, my temperature didn’t stepped down and I went to
another hospital for examinations (a blood test and urine test).
The results came back normal but the temperature kept running
high. How come I am still having a fever? Are there any further
examinations I should take?

  OO hospital OOO M.D. / Internal Medicine Department / 2021/02/25 / Response：

It seems that you have been feeling feverishness for over a
month. To evaluate the possibility that the fever is not caused by
infections and assess the need for further referrals, I suggest
that you make an appointment with doctors of infectious disease
department.

Figure 1: A Data Instance from the Health Consultancy
Website

the doctors. Taking Figure 1 as an example, given
a question asked by a patient, the physician an-
swers it by explaining what disease might cause the
symptoms mentioned in the question and suggests
which medical specialty the patient should seek.
In this example, the response has a clear narrative
structure, where the explanation and suggestion
are denoted by the yellow and green highlights, re-
spectively. First, the patient’s concern is addressed
(e.g., having a fever for over a month). Then, be-
fore giving the suggestion, the physician explains
the causality between the concerns and the sugges-
tion. Recently, Explainable Artificial Intelligence
(XAI), which aims at explaining how the decision
is reached by the machine learning model (Ribeiro
et al., 2016; Mullenbach et al., 2018; Pezeshkpour
et al., 2019), has been gaining attentions in the re-
search community, including works that provide
textual explanations (Wu and Mooney, 2019; Ra-
jani et al., 2019; Brahman et al., 2021). Generally,
generating textual explanation can be regarded as a
natural language generation task. Typically, most
works collect explanations by asking annotators to
write free-text sentences. Since human annotation
is expensive, labor-intensive, and time-consuming,
especially in domains where expertise is needed,
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an alternative way is to construct synthesized expla-
nations by designing rules to exploit information
from other datasets as explanations (Li et al., 2018).
Although previous works demonstrate that intro-
ducing an auxiliary generation task to explain the
prediction enables performance improvement, two
main issues remain to be tackled: (1) The expla-
nations are annotation artifacts (Gururangan et al.,
2018) since the annotators typically write vanilla
and trivial description (Lei et al., 2020), resulting
in a lack of linguistic variety (Parikh et al., 2020)
that leads the model prone to overfit on annotator
characteristics (Geva et al., 2019). (2) Whether the
model faithfully explains the suggestion is still an
open question (Jacovi and Goldberg, 2020). Pro-
ducing an explanation just mimicking the way hu-
mans would say is impractical in fields involving
high-stake scenarios.

To address the aforementioned two issues, our
work is based on real-world data. We collect
86,399 question answering (QA) pairs 1 from an
online health consultancy website called Taiwan
e-Hospital,2 which allows users to ask questions
regarding their health conditions and physicians
will respond to their concerns. The linguistic di-
versity from multiple users is greater than free-text
produced by a few crowd-workers, and the expla-
nation within an answer is more natural than hand-
crafted annotation. Then we propose pilot models
to generate response consisting of explanation and
suggestion according to the question. Note that our
approach can be easily generalized since it is lan-
guage and domain independent. The contributions
of our work are summarized as follows:

1. We show a pilot study on health consulting
with professional explanations.

2. We propose a novel discourse-aware mech-
anism that aligns the generated explanation
with the suggestion.

3. Both qualitative and human evaluation show
that our discourse-aware model achieves
promising performances on suggestion and
explanation generation.

2 Dataset

As mentioned in Section 1, we construct our dataset
by crawling approximately 86k QA pairs from Tai-

1The dataset for this paper is available at https://
github.com/ntunlplab/tw-eH

2https://sp1.hso.mohw.gov.tw/doctor/

wan e-Hospital website, where an answer is a free-
text response written by the physician, containing
the explanation and suggestion as Figure 1 shows.
An ideal instance would be a triple of (q, s, e),
where q is the question asked by the patient, and
s and e are the suggestion and the explanation re-
sponded by the physician. However, the crawled
raw text often carries greeting terms, salutations,
and personal information, such as names of the pa-
tients and doctors, which are noise for our task and
should be pruned. To gather the desired (q, s, e),
we propose a rule-based keyword matching method
to extract text snippets that belong to the suggestion
and explanation, defined as follows.

• Suggestion: The suggested action regarding
the patient’s concerns, such as whether to seek
medical attention, the department for making
an appointment with, or the follow-up exami-
nation to undergo.

• Explanation: The text describing why a
physician gives the suggestion. Generally, it
includes medical knowledge to address the
patient’s concerns.

The details of our method are shown as follows.

Step1: We define a set of keyphrases G that
belongs to greeting terms or salutations by regular
expressions. Given a sequence of sentences
X = (x1, x2, ..., xn) in the response, the i-th
sentence xi that contains a word w ∈ G will be
filtered. Afterwards, a sequence of sentences X

′
is

obtained, where 1 ≤ |X ′ | ≤ n.

Step2: We find that the sentences belonging to
suggestions usually contain certain keywords such
as “suggest”, “recommend”, and the name of the
department to “seek”. Hence, to identify whether
a sentence x ∈ X

′
belongs to a suggestion, we

manually collect a set of keywords K from several
responses. Then, the sentences in X

′
that contain

a word w ∈ K are regarded as the suggestion,
and the remaining sentences are considered as the
explanation.

Step3: In addition to preparing the (q, s, e) triples,
we also construct binary labels (0/1) from s, de-
noting whether the patient should receive medical
assistance based on his/her health condition. Tak-
ing Figure 1 as an example, it would be labeled
as 1 since the doctor suggests the user to make an
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Setting Input Output

R1 [user’s question] [doctor’s response]

R2 Suggest: [user’s question] [doctor’s suggestion]
Explain: [user’s question] [doctor’s explanation]

R3 Suggest: [user’s question] [doctor’s suggestion]
Explain: [user’s question] [doctor’s explanation] [binary label for medical assistance]

Table 1: Three Input-Output Settings in the Experiments

Step1 Step2 Step3

0.82 0.80 0.81

Table 2: Evaluation Results of Regular Expressions in
the Three Steps

appointment. In our expectation, this label, which
indicates how serious the health risk the patient
is facing, can play a useful auxiliary task. We
compose a set of patterns to identify whether the
physician suggests the patient to seek medical at-
tention (e.g., mentioning a medical department in
the suggestion).

The processed result from each step, namely R1,
R2, and R3, is utilized as references for our differ-
ent proposed methods described in Section 3, i.e.,
mT5 (3.1), MTL mT5 (3.2), and DMTL mT5 (3.3),
respectively. The details of the dataset formats are
shown in Table 1.

To validate the results of our regular expressions
in Steps 1, 2, and 3, we randomly sample 100 in-
stances from R1, R2, and R3, respectively. And by
checking the correctness of these instances with hu-
man evaluation described as follows, we can assess
the quality of the regular expressions. For Steps
1 and 2, an instance is considered incorrect if it
contains sentences that should be filtered or miss-
ing sentences that should be retained. That is, the
regular expression admits or filters the wrong sen-
tences. Otherwise, it is considered as correct. For
Step 3, the correctness of an instance is determined
by checking if the binary label l is the same as
whether the physician suggests the patient to seek
medical attention or not. The results are measured
by # correct instances

100 and presented in Table 2. And
Table 3 shows the statistics of the top-10 depart-
ments ranked by the number of QA pairs, where
Exp. and Sug. indicate Explanation and Sugges-
tion, respectively.

Avg # sent.

Department # QA pairs Exp. Sug.

Gynecology & Obstetrics 11,676 7.28 1.45
Gastroenterology 7,497 6.36 1.56
Dermatology 7,487 5.93 1.38
Urology 6,895 8.55 1.42
Orthopedics 6,870 6.60 1.47
General Surgery 5,966 7.10 1.51
Ophthalmology 5,086 9.86 1.44
Otorhinolaryngology 5,010 7.54 1.60
Psychiatry 4,489 13.78 1.72
Dentistry 3,998 6.84 1.38

Table 3: Statistics of the Top-10 Departments with Av-
erage Numbers of Explanation (Exp.) and Suggestion
(Sug.) Sentences

3 Methodology

In this section, we introduce our models for the
task of suggestion and explanation generation. As
the references of suggestions and explanations are
collected by handcrafted rules without human an-
notation, the models are weakly supervised. Given
a question q, our goal is to learn a generator gen(·)
to generate a textual response with a narrative struc-
ture consisting of a suggestion s and an explanation
e. Three gen(·) models are described as follows.

3.1 The mT5 Model

We adopt the pre-trained multilingual T5-base
model (Xue et al., 2021), which casts natural lan-
guage processing problems in an unified “text-to-
text” form with great flexibility. The input and out-
put (label) data are the patient’s question and the
corresponding response R1, i.e., the result of Step
1 in Section 2. Since R1 does not explicitly extract
s and e from the given responses, the generated re-
sults of mT5 do not distinguish the suggestions and
the explanations. The pre-trained mT5-base model
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Full Response Suggestion Explanation

Method R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

mT5 20.335 6.844 17.135 – – – – – –
MTL mT5 21.470 7.429 19.383 22.559 7.615 21.764 20.691 7.296 17.679
DMTL mT5 22.176 7.619 20.096 22.717 7.840 21.893 21.789 7.461 18.811

Table 4: Results of Suggestion and Explanation Generation, Reported in ROUGE-1 (R-1), ROUGE-2 (R-2), and
ROUGE-L (R-L)

also serves as the backbone for the following two
gen(·)s.

3.2 The mT5 Model with Multitask Learning

Since mT5 does not always generate suggestions
and explanations as expected, i.e., the generated
response would sometimes contain only suggestion
or only explanation, we implement a multi-task
learning mT5-base model, MTL mT5, to address
this issue. To train the MTL mT5, we use R2 as the
output data. For input data, we add a prefix text,
“Suggest:” or “Explain:”, to specify which task the
model should perform. Concretely, given q and
a response (s, e) in R2, the two formats of (input,
output) data are (“Suggest: q”, s) and (“Explain: q”,
e). In this way, the MTL mT5 model can generate
suggestions and explanations explicitly.

3.3 Discourse-aware MTL mT5 (DMTL mT5)

With the multi-task setting, given an input ques-
tion q, both the suggestion s and the corresponding
explanation e are generated. Ideally, the user can
assess the need to seek medical attention based
on the model’s generated suggestion accompanied
with the explanation. However, if the explanation
cannot support the suggestion, i.e., they are not re-
lated, the user would be confused, so that s/he may
decrease the degree of confidence to the system.

To mitigate this problem, we use the dataset
R3, which contains the binary labels indicating
whether the patient needs to receive medical assis-
tance. We propose a discourse-aware mechanism
into the MTL mT5 model by introducing a new
objective function with a weighted parameter to fo-
cus on generating the correct binary label l, where
l ∈ {0, 1}. We view l as a concise summary of
the suggestion, and assume that the model would
generate explanations aligned with suggestions in
order to predict this binary label l. Specifically,
considering a sequence of n words with a binary
label Y = (y1, y2, ..., yn, l) output by DMTL mT5

and the reference sequence Ŷ = (ŷ1, ..., ŷn, l̂), the
weighted cross-entropy loss ψ of the task of expla-
nation generation is computed as follows:

ψ =

(
n∑

i=1

L(yi, ŷi)
)

+ α×
(
L(l, l̂)

)

where L denotes the cross entropy loss, and α is
a hyper-parameter for the weighted loss function.
We set α = 1.1 by tuning with the validation set.

Note that the main purpose of the binary label l is
to provide loss signals encouraging the generated
explanations to align with the suggestions. For
inference, l is not exposed to end-users, that is,
we conduct post-processing to trimmed l from the
generated explanation.

4 Experiments and Discussions

We conduct both quantitative and qualitative eval-
uations to compare the generated suggestions and
explanations of our proposed methods. The dataset
are randomly split into train, validation, and test
sets by the ratio 8:1:1 (69,119, 8,640, 8,640), where
every instance is a QA pair. And we adopt teacher-
forcing strategy (Williams and Zipser, 1989) with
the cross-entropy loss as the objective function for
optimizing all models, i.e., mT5, MTL mT5 and
DMTL mT5. The results reported in this section are
conducted on the test set.

4.1 Quantitative Evaluation

The ROUGE-1, ROUGE-2, and ROUGE-L
scores (Lin, 2004) between the generated responses
and the reference responses are shown in Table 4,
denoted as R-1, R-2, R-L, respectively. Since mT5
does not generate s and e individually, we combine
the generated s and e from the multi-task learning
models, i.e., MTL mT5 and Discourse-aware MTL
mT5, as one full response to compare across three
models. As shown in Table 4, the multi-task learn-
ing models outperform the mT5 model. It confirms
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Method Relevan. Suggest. Explan.

mT5 3.64 3.09 2.00
MTL mT5 3.75 3.52 2.21
DMTL mT5 3.87 3.56 2.42

Table 5: Results of Human Evaluation

that explicitly learning how to generate suggestions
and explanations is a proper fashion. Furthermore,
the Discourse-aware MTL mT5 outperforms other
models in all ROUGE metrics. It shows that in-
troducing weighted loss benefits the explanation
generation as well as the suggestion generation.

We also measure the statistical significance level
with the sampling-based bootstrap test, following
the guidelines of (Dror et al., 2018). We compare
the DMTL mT5 with mT5 and MTL mT5 on the
full response, and DMTL mT5 significantly outper-
forms the other models at p < 0.05. To further
measure the qualities of the generated suggestions
and explanations, we also conduct qualitative hu-
man evaluation in Section 4.2.

4.2 Human Evaluation

For human evaluation, we invite a group of physi-
cians and randomly sample 100 instances from the
test set, where each instance is assigned to two
physicians to assess the following three aspects:

1. Relevance: whether the generated response is
related to the patient’s question.

2. Correctness of suggestion: whether the gen-
erated suggestion is correct.

3. Correctness of explanation: whether the gen-
erated explanation can explain the generated
suggestion and help patients understand the
reason why such a suggestion is given.

Note that for the multi-tasking methods, we present
the generated suggestion and explanation of each
instance jointly as one response to the physicians.
Each aspect is ranging from zero (does not meet
the given aspect) to five (totally meets the given
aspect).

The evaluation results are reported in Table 5,
where Relevan., Suggest., and Explan. corre-
spond to the three aspects described above, respec-
tively. The Discourse-aware MTL mT5 achieves
the highest scores in all aspects, suggesting that
the discourse-aware mechanism enables the model

to generate explanations more aligned with sug-
gestions, and makes the response more relevant to
the question. Compared to the single task learning
mT5, MTL mT5 and Discourse-aware MTL mT5
obtain higher scores on “Correctness of Sugges-
tion” and “Correctness of Explanation”, indicating
that multi-task learning makes the model more at-
tend on learning information benefiting both tasks.
Overall, our proposed models achieve promising
performances on generating suggestions by learn-
ing from the QA pairs only. However, the scores
obtained on “Correctness of Explanation” are lower
than half of the full score. This might indicate that
generating correct explanations is still challenging
due to the lack of medical knowledge.

5 Conclusion

This paper proposes a discourse-aware generative
model based on multi-task learning to generate
narrative structured responses consisting of sug-
gestions and explanations to the questions. Ex-
perimental results show that our model with the
discourse-aware mechanism outperforms baseline
models on both quantitative and qualitative evalu-
ations. However, based on the human evaluation
results, there is still ample room for improvement
on providing medical explanations. As the correct-
ness of explanation is still relatively lower than our
expectation. On the other hand, without integrating
explicit medical knowledge, there exists potential
risks of producing unfaithful results. In the future,
we plan to incorporate external domain knowledge,
e.g., medical knowledge base, into the model to
generate enriched and faithful explanations that are
not only relevant to suggestions, but also contain
correct information.
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Abstract

Fast screening and diagnosis are critical in
COVID-19 patient treatment. In addition to the
gold standard RT-PCR, radiological imaging
like X-ray and CT also works as an important
means in patient screening and follow-up. How-
ever, due to the excessive number of patients,
writing reports becomes a heavy burden for
radiologists. To reduce the workload of radiolo-
gists, we propose DeltaNet to generate medical
reports automatically. Different from typical
image captioning approaches that generate re-
ports with an encoder and a decoder, DeltaNet
applies a conditional generation process. In
particular, given a medical image, DeltaNet
employs three steps to generate a report: 1)
first retrieving related medical reports, i.e., the
historical reports from the same or similar pa-
tients; 2) then comparing retrieved images and
current image to find the differences; 3) finally
generating a new report to accommodate identi-
fied differences based on the conditional report.
We evaluate DeltaNet on a COVID-19 dataset,
where DeltaNet outperforms state-of-the-art ap-
proaches. Besides COVID-19, the proposed
DeltaNet can be applied to other diseases as
well. We validate its generalization capabili-
ties on the public IU-Xray and MIMIC-CXR
datasets for chest-related diseases.

1 Introduction

Since December 2019, the world has been suffer-
ing from a serious health crisis: the outbreak of
COVID-19 (Wang et al., 2020). Fast screening and
diagnosis is critical in COVID-19 patient treatment.
In clinical practice, the Reverse Transcription Poly-
merase Chain Reaction (RT-PCR) is recognized
as the golden standard (Zu et al., 2020). How-
ever, due to high false-negative rate and shortage
of equipment (Fang et al., 2020; Ng et al., 2020),
medical imaging like X-ray and Computed Tomog-
raphy (CT) (Rubin et al., 2020) also works as

∗Corresponding author

an alternative means in COVID-19 diagnosis and
treatment which generates more timely results than
RT-PCR and helps in evaluating the severity degree
of COVID-19.

Given medical images of COVID-19 patients,
radiologists need to write relatively long reports
to address the impressions and findings. Consid-
ering the large volume of COVID-19 patients and
potentially infected population, writing medical
reports becomes a heavy burden for radiologists.
Furthermore, due to the varied expertise of radiolo-
gists, some abnormalities in medical images may
be ignored and thus not included in the final re-
ports. To alleviate the heavy workload and aid less
experienced radiologists, automatically generating
medical reports becomes a critical task.

Due to its importance in clinical practice, auto-
matically generating medical reports has attracted
extensive research interests in recent years (Zhou
et al., 2021). Existing works mainly follow the im-
age captioning approaches and employ an encoder-
decoder process. In the encoding stage, the visual
features are extracted from medical images via a
CNN; in the decoding stage, the reports are gen-
erated sequentially via an RNN. Such a two-step
framework has been proven effective in generating
general image captions, such as MS COCO. How-
ever, when applied to medical images, it may have
following two problems: 1) visual bias: for most
cases, the abnormal regions only occupy a small
fraction of the entire medical images, thus visual
features of normal regions dominate the extracted
visual embedding, and abnormal regions are diffi-
cult to identify; 2) textual bias: in current medical
reports, the majority of transcription focuses on
describing the normal regions which distract the
model from abnormal regions in training.

To address two problems mentioned above, we
propose DeltaNet, which is customized for medical
images. Different from encoder-decoder frame-
works that generate reports from a single medical
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image, DeltaNet introduces a retrieve-update pro-
cess which consists of the following three steps:
1) Retrieval: DeltaNet firstly retrieves conditional
medical images and reports from medical records.
For patients who’ve already been examined before,
we directly obtain his previous medical images
and reports. For patients examined for the first
time, we retrieve the medical images and reports
with similar visual features from other patients; 2)
Comparison: DeltaNet compares the embedding
difference between two medical images to capture
the visual difference; 3) Based on the identified vi-
sual difference and the retrieved reports, DeltaNet
conditionally generates the final report for current
medical image.

To prove the effectiveness of the proposed
DeltaNet, we collect a dataset of COVID-19 pa-
tients. For each patient, we manage to collect all
the historical medical images and the correspond-
ing reports that cover the complete treatment pro-
cess. The experimental results show that the pro-
posed DeltaNet outperforms the baselines, includ-
ing both the general image captioning approaches
and the existing medical report generation works.
Besides generating reports, DeltaNet can also high-
light the differences between previous and current
medical images and the corresponding updated re-
ports, which provides a clear explanation for the
generated report. In addition to COVID-19, the
proposed DeltaNet can also be applied to medical
report generation of other diseases. We evaluate
the generalization ability of DeltaNet on IU-Xray
and MIMIC-CXR datasets. DeltaNet consistently
outperforms baselines.

2 Related Works

2.1 Image Captioning

Image captioning aims to provide a short descrip-
tive sentence for a given image, which has recently
received extensive research interests (Vinyals et al.,
2015; Xu et al., 2015; Anderson et al., 2018; Huang
et al., 2019). Typical image captioning models, e.g.,
(Anderson et al., 2018; Huang et al., 2019), adopt
the encoder-decoder framework to accomplish the
image captioning task, where the encoder extracts
the visual representations from the images, and
the decoder transforms the acquired visual features
to texts. Different from typical image captioning
approaches, DeltaNet applies a retrieve-update pro-
cess, consisting of retrieval, comparison, and gener-
ation steps to generate reliable and robust reports.

2.2 Medical Report Generation

Medical report generation generally produces
longer texts than typical image captions (Zhou
et al., 2019). Employing the typical image cap-
tion encoder-decoder framework, Jing et al. (2018)
proposed to use a two-level hierarchical LSTM
to deal with long reports, with the top-level han-
dling topic generation and the bottom-level gen-
erating texts according to the currently selected
topic; Wang et al. (2018); Xue and Huang (2019);
Yuan et al. (2019) used attention mechanism to
drive the encoder and the decoder to emphasize on
more informative words or visual regions, resulting
in improved performance; Li et al. (2018, 2019);
Zhang et al. (2020); Liu et al. (2021) introduced ex-
ternal information such as template or knowledge
graph to guide the generation of medical reports;
Syeda-Mahmood et al. (2020) invited four clini-
cians to manually examine 220,000 reports and
build a taxonomy of 11,000 unique terms for de-
veloping an automatic labeling algorithm. Then,
they built and customized similar reports from a
large report database by fine-grained labels as the
generated report. However, for diseases not labeled
in advance, this method may not fit well. Some
other works (Wang et al., 2018) brought in aux-
iliary tasks to improve report generation, usually
requiring extra expert labeling. Our work uses a
new retrieve-update process to effectively gener-
ate reports automatically conditioned on historical
reports. Besides, our method enhances the model
by only using the information from the training
dataset, avoiding any expert labeling or external
information.

3 Model

In this section, we introduce the proposed DeltaNet.
Firstly, we formulate the conditional medical re-
port generation problem; secondly, we describe
the basic encoder-decoder based generation model;
then, we propose DeltaNet, a conditional medical
report generation model; finally, we further extend
DeltaNet to exploit multiple conditional reports.

3.1 Problem Formulation

We use a quadruple q = {I, Ic, R,Rc} to refer
to an input instance, in which I denotes the in-
put medical image and R = {w1, w2, . . . , wN}
denotes the corresponding report to be generated.
In this manner, medical report generation can be
formulated as estimating the parameters of the con-
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Figure 1: Framework of the proposed DeltaNet model including three major component: visual encoder, conditional
encoder and decoder. The visual encoder extracts features from input X-ray image. The conditional encoder extracts
features from conditional X-ray image, and embeds the conditional report by a BiLSTM, and acquires the difference
between input x-ray and conditional X-ray. The decoder decodes all features, difference and embeddings to generate
output report.

ditional probability P (R|I). In this paper, we in-
troduce a conditional image Ic and a conditional
report Rc = {w1, w2, . . . , wNc}. For patients who
have historical medical images, we select their pre-
vious medical image and report as Ic and Rc re-
spectively; as for patients without historical reports,
we retrieve the most similar medical image Ic and
report Rc from the pre-built medical report reposi-
tory. Then the conditional medical report genera-
tion problem can be formulated as P (R|I, Ic, Rc).

3.2 Basic Model
Many existing medical report generation works fol-
low the image captioning approaches and employ
the encoder-decoder two-step manner. Typically, a
Convolution Neural Network (CNN) is introduced
as the encoder, which extracts visual features from
the input medical image. In this paper, we extract
the output of the last convolution layer of the vi-
sual encoder following a linear projection layer as
visual features:

V = CNN(I), (1)

where V ∈ RK×D, K denotes the size of feature
maps and D denotes the number of feature maps;
in this paper, K is set to 49 and D is set to 512.

After acquiring the visual features V , the next
step is to generate medical reports which we refer

as the decoding process. In the decoding process,
we use LSTM to generate medical report sequen-
tially. At each timestamp, we firstly acquire current
hidden state:

ht = LSTM(wt−1, ht−1), (2)

where h0 = 0 and ht ∈ R1×D.
After acquiring ht, we attend it to the extracted

visual features. In Eq.(3), we use ht as query and
V as both the key and value:

at = MHA(ht, V, V ), (3)

where MHA(·, ·, ·) refers to the multi-head atten-
tion function proposed in (Vaswani et al., 2017).
The attention embedding at ∈ R1×D can be re-
garded as attended visual features given the current
hidden state.

Finally, we combine the hidden state ht and the
attention embedding at to estimate the probabil-
ity distribution of generating wt. The probability
distribution can be formulated as:

P (wt|w1, . . . , wt−1, V ) = σ([ht; at]Wp), (4)

where Wp ∈ R2D×E is a learnable linear projec-
tion and E is vocabulary size.
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3.3 Conditional Generation Model
In Section 3.2, we adopt the two-step encoder-
decoder framework to generate medical reports.
Although such a two-step approach has been
proven effective in general image captioning, e.g.,
MSCOCO, due to the unavailability of large-scale
labeled data, it is difficult to generate an accurate
yet fluent report when applying to the medical re-
port generation problem.

Observing the fact that during a complete treat-
ment process, one patient usually have been ex-
amined for multiple times, therefore he may have
multiple medical images. For example, the COVID-
19 patients may first take a chest X-ray examination
for diagnosis and take several more X-ray to track
the severity progresses of COVID-19 during the
treatment. We review the medical reports from the
same patient and find that the consecutive reports
share the majority of the content and only differ in
the disease progresses. Therefore, a natural thought
is to generate the medical report in a conditional
manner, not only from the current input medical im-
age but also from the historical images and reports.
For first time patients without previous reports, we
can also select reports with similar visual appear-
ances from other patients. For all medical images,
we extract their visual features with Eq.(5). Then
given an input image, we retrieve the most similar
images according to the cosine distance of visual
features. Let Ic and Rc denote the conditional im-
age and report respectively, then conditional medi-
cal report generation problem can be formulated as
P (R|I, Ic, Rc). Here we propose DeltaNet as the
medical report’s conditional generation model.

DeltaNet model first extracts the visual features
Vc and textual features Tc from the conditional
image and report.

Vc = CNN(Ic), (5)

Tc = BiLSTM(Rc), (6)

.
As demonstrated in (Wu et al., 2018), the sub-

traction of visual features is an efficient operation
to acquire the difference between features. Thus
DeltaNet acquires the varied visual features be-
tween V and Vc using:

∆Vc = V − Vc, (7)

In the decoding process, at each timestamp, after
generating the hidden state ht with Eq.(2), we at-
tend ht to both the varied visual features of medical

images and the textual features from the conditional
report as follows:

st = MHA(ht,∆Vc,∆Vc), (8)

ct = MHA(ht, Tc, Tc), (9)

Finally, besides the ht and at, we utilize st and
ct to estimate the probability distribution of gen-
erating wt. The probability distribution can be
formulated as:

P (wt|w1, . . . ,wt−1, V ) (10)

= σ([ht; at; st; ct]Wp),

where Wp is a learnable linear projection in the
shape of 4D × E and E is vocabulary size.

3.4 Multiple Conditional Generation Model
In the previous subsection, we mainly deal with
the cases that the patient only has one conditional
report. However, some patients have multiple his-
torical reports. For first time patients without pre-
vious reports, we can also retrieve multiple reports
according to the visual similarity from other pa-
tients. In this subsection, we extend the proposed
DeltaNet to fit for multiple conditional reports.

For each input image, we assume that it has
L conditional images and reports, we denote
them with two sets {I(1)c , I

(2)
c , . . . , I

(L)
c } and

{R(1)
c , R

(2)
c , . . . , R

(L)
c }. DeltaNet firstly extracts

the visual features and textual features from condi-
tional images and reports by two encoders:

V (i)
c = CNN(I(i)c ), (11)

T (i)
c = BiLSTM(R(i)

c ), (12)

Then DeltaNet acquires varied visual features:

∆V (i)
c = V − V (i)

c . (13)

As shown in Figure 1, for each textual feature
T
(i)
c extracted from the conditional report, we add

a textual gate to control its contribution since the
contribution of each report is different. Here we
introduce a gate weight gi as follows:

g(i) = σ(WvV +WcV
(i)
c + bi), (14)

where Wv and Wc are learnable linear projections.
The g(i) takes visual features of both input image
and conditional image into consideration which is
used to re-weight the textual features:

T̂ (i)
c = g(i) ∗ T (i)

c . (15)
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DeltaNet further concatenate varied visual features
and weighted textual features in a row-wise man-
ner:

∆Vc = [∆V (1)
c ; . . . ; ∆V (L)

c ], (16)

Tc = [T̂ (1)
c ; . . . ; T̂ (L)

c ], (17)

where ∆Vc ∈ RKL×D and Tc ∈ RNcL×D.
At each timestamp, DeltaNet use multi-head at-

tention to generate the subtractive visual attend
feature st and the context embedding ct.

st = MHA(ht,∆Vc,∆Vc), (18)

ct = MHA(ht, Tc, Tc), (19)

where both st and ct are in the shape of 1×D.
Then in each time step, the word wt is generated

according to the probability in Eq.(20).

P (wt|w1, . . . ,wt−1, V ) (20)

= σ([ht; at; st; ct]Wp).

4 Experiments

In this section, we evaluate the proposed DeltaNet
from three perspectives: (1) Whether incorporating
conditional reports can bring in performance gain
in medical report generation; (2) Whether increas-
ing the number of conditional reports can further
improve the performance; (3) Which will perform
better, the conditional reports that are acquired
from the historical reports of patients themselves
or retrieved from other patients according to visual
similarity.

4.1 Implementation Details
For first time patients without historical reports,
we retrieve conditional reports via the embedding
similarity of their corresponding images. The em-
beddings are acquired from an encoder pre-trained
on the ChestX-Ray14 dataset (Wang et al., 2017).
Since the lengths of conditional reports are differ-
ent, we use zero-padding for each conditional case
to pad each report to a fixed length. We adopt
ResNet-152 as our visual encoder for both current
input image and conditional images, a two-layer
bidirectional LSTM as conditional report encoder,
and a single-layer LSTM as medical report decoder.
The dimension of the visual feature and hidden
states are set to 512. We adopt the Adam optimizer
with an initial learning rate of 5e-4 and a mini-
batch size of 32. We train the model with cross
entropy loss for 100 epochs and early stop strategy
is adopted.

4.2 Datasets and Settings

We introduce three data sets COVID-19, IU-
Xray (Demner-Fushman et al., 2016) and MIMIC-
CXR (Johnson et al., 2019) to evaluate the pro-
posed DeltaNet.

The COVID-19 dataset includes 1,261 exams
(including both images and reports) from 1,085
patients from mobile field hospitals used in the
COVID-19 pandemic. The private information has
been removed during the data collection process.
Each case includes both the X-ray images and the
corresponding reports. The max, median, and mean
length of the reports are 180, 69, and 72 words,
respectively. Thus the report to be generated are
relatively lengthy. The ratio of patients with only
one visit is 57.48%. Among these 1,261 cases,
in terms of disease severity, 112 cases are severe,
1,113 cases are general, 30 cases are mild, and 6
cases are not labeled. More than 166 patients have
more than 2 reports; we select the latest one as the
prediction target and select the second latest one as
the conditional report. We split these 166 patients
in the ratio of 7:1:2, that is 116 for training, 16 for
validating, and 34 for testing. These three groups
have no overlap in patients.

IU-Xray (Demner-Fushman et al., 2016) is a
public data set which includes 3,955 radiology
reports and 7,470 frontal- and lateral-view chest
X-ray images. We follow the split of (Chen
et al., 2020) which divides the entire data set into
train/validation/test in the ratio 7:1:2.

MIMIC-CXR (Johnson et al., 2019) is the largest
dataset for the medical report generation, which
contains 377,110 chest X-ray images and 227,827
free-text radiology reports. The dataset contains
multi-view images, and we select frontal view im-
ages in this work.

For the COVID-19 data set, the conditional re-
port is selected from the previous one of the same
patient. As to the IU-Xray data set, we are unable
to acquire the historical reports for a patient. There-
fore we first acquire the visual feature for each
image via a CNN based model pre-trained on the
ChestX-Ray14 dataset. Then for each image, we se-
lect the conditional reports via cosine similarity of
visual feature. For the case in the train/validate/test
groups, we select their conditional reports only
from the training group. In this case, we avoid the
situation that the report to be generated appears as
the conditional reports in the training data set. As
a result, the label leakage is prevented.
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Table 1: The performance of baselines and the proposed DeltaNet on IU-Xray and MIMIC dataset. The conditional
reports are extracted from reports of other patients according to visual similarity. For the baseline methods, we cite
their performance reported in their papers and reported in (Li et al., 2018) and (Jing et al., 2018). The Basic refers
to the one introduced in Section 3.2.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L

IU-Xray

S&T (Vinyals et al., 2015) 0.216 0.124 0.087 0.066 0.294 0.306
SA&T (Xu et al., 2015) 0.399 0.251 0.168 0.118 0.302 0.323
AdaAtt (Lu et al., 2017) 0.220 0.127 0.089 0.068 0.295 0.308

TieNet (Wang et al., 2018) 0.286 0.160 0.104 0.074 / 0.226
CoAtt (Jing et al., 2018) 0.455 0.288 0.205 0.154 0.277 0.369

R2Gen (Chen et al., 2020) 0.470 0.304 0.219 0.165 / 0.371
PPKED (Liu et al., 2021) 0.483 0.315 0.224 0.168 0.351 0.376

Basic 0.417 0.264 0.184 0.138 0.467 0.343
DeltaNet-1C 0.470 0.307 0.224 0.175 0.853 0.369
DeltaNet-3C 0.485 0.324 0.238 0.184 0.802 0.379

MIMIC

S&T (Vinyals et al., 2015) 0.256 0.157 0.102 0.070 0.063 0.249
SA&T (Xu et al., 2015) 0.304 0.177 0.112 0.077 0.083 0.249
AdaAtt (Lu et al., 2017) 0.311 0.178 0.111 0.075 0.084 0.246

BU&TD (Anderson et al., 2018) 0.280 0.169 0.108 0.074 0.073 0.250
R2Gen (Chen et al., 2020) 0.353 0.218 0.145 0.103 / 0.277
PPKED (Liu et al., 2021) 0.360 0.224 0.149 0.106 / 0.284

Basic 0.335 0.206 0.138 0.100 0.156 0.263
DeltaNet-1C 0.355 0.221 0.152 0.113 0.220 0.279
DeltaNet-3C 0.361 0.225 0.154 0.114 0.281 0.277

For the MIMIC-CXR data set, we exclude the
patients without reports. Then we generate two
data sets to evaluate two types of conditional report
respectively: 1) MIMIC: this data set is the same as
original MIMIC-CXR dataset. We follow standard
split provided by (Johnson et al., 2019) to divide
the entire data set into train/validate/test and the
conditional cases are retrieved from the training set
using visual feature similarity; 2) MIMIC-Multi-
Visit: we first select the patients with more than
three reports as candidates. We choose their latest
reports as the prediction target and select three most
recent previous reports as the conditional reports.
The offical training/validation/testing sets split of
MIMIC-CXR is 222,758/1,808/3,269, respectively.
From the orignial MIMIC-CXR data set, we select
the patients with more than 3 visits, resulting the
data set MIMIC-Multi-Visit of 11,978/83/165, re-
spectively. To conduct a fair comparison, during
the training of the basic model and existing models,
we append the conditional reports into their train-
ing set. In this manner, the proposed DeltaNet will
not include extra labeled data in training.

We select the popular metrics for natural lan-
guage generation (NLG) tasks and a specific clini-
cal metric for evaluation. The NLG metrics include
BLEU-n (Papineni et al., 2002), CIDEr (Vedantam
et al., 2015), and ROUGE-L (Lin, 2004) score. The
results are computed by MS-COCO caption evalua-
tion tool 1 automatically. The clinical efficacy (CE)

1https://github.com/tylin/coco-caption

metric is proposed by R2gen (Chen et al., 2020)
to quantify the precision, recall, and f1 score of
medical terminology described in reference and
generated reports. Because the IU-Xray dataset
does not provide such labels, we only report CE
metric on the MIMIC-CXR dataset. For consis-
tency, we employ the CheXpert (Irvin et al., 2019)
to extract the labels from generated reports.

4.3 Quantitative Results

Baselines. The Tables display the comparison re-
sults between existing works and the proposed
DeltaNet. Among the baselines, S&T (Vinyals
et al., 2015), SA&T (Xu et al., 2015), AdaAtt (Lu
et al., 2017) and BU&TD (Anderson et al., 2018)
belong to general image captioning approaches;
while CoAtt (Jing et al., 2018), TieNet (Wang et al.,
2018), R2Gen (Chen et al., 2020) and PPKED (Liu
et al., 2021) focus on the specific medical report
generation task. Since MIMIC-Multi-Visit only
includes patients with more than three images, and
COVID-19 is a private data set, we cannot directly
cite the results of existing models. Therefore, we
re-train existing models on these two data sets. For
R2Gen, we directly use the implementation 2 pro-
vided by its authors; for CoAtt, we use the third
party implementation 3. For other works, we re-
implement them ourselves; The Basis Model refers
to the one described in Basic Model section; The

2https://github.com/cuhksz-nlp/R2Gen
3https://github.com/ZexinYan/Medical-Report-

Generation
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Table 2: The performance of baselines and the proposed DeltaNet on COVID-19 and MIMIC-Multi-Visit data sets.
The conditional reports are extracted from patients’ own historical reports.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L

COVID-19

S&T (Vinyals et al., 2015) 0.604 0.573 0.546 0.523 0.148 0.639
SA&T (Xu et al., 2015) 0.619 0.586 0.557 0.534 0.167 0.642
AdaAtt (Lu et al., 2017) 0.617 0.583 0.553 0.529 0.150 0.625

BU&TD (Anderson et al., 2018) 0.600 0.563 0.531 0.504 0.120 0.603
R2Gen (Chen et al., 2020) 0.610 0.576 0.547 0.523 0.176 0.624

Basic 0.614 0.566 0.530 0.503 0.256 0.610
DeltaNet 0.664 0.622 0.588 0.561 0.273 0.635

MIMIC-Multi-Visit

S&T (Vinyals et al., 2015) 0.300 0.176 0.111 0.074 0.066 0.246
SA&T (Xu et al., 2015) 0.284 0.170 0.114 0.080 0.046 0.234
AdaAtt (Lu et al., 2017) 0.310 0.180 0.114 0.075 0.068 0.240

BU&TD (Anderson et al., 2018) 0.284 0.170 0.111 0.079 0.089 0.253
R2Gen (Chen et al., 2020) 0.303 0.193 0.131 0.095 0.148 0.266

Basic 0.325 0.196 0.129 0.091 0.102 0.248
DeltaNet-1C 0.358 0.217 0.144 0.103 0.248 0.270
DeltaNet-3C 0.371 0.228 0.152 0.107 0.301 0.264

DeltaNet and DeltaNet-1C refers to the one intro-
duced in Conditional Generation Model section;
The DeltaNet-3C refers to the one introduced in
Multiple Conditional Generation Model section
with three conditional reports.

Conditional Reports from Other Patients. We
evaluate DeltaNet with conditional reports re-
trieved by the visual feature similarity from other
patients. Here we conduct experiments on IU-Xray
and MIMIC data sets. Since these two data sets are
public data sets and the split of train/validate/test
is in the standard manner, for existing works, we
directly cite the reported performance. As shown
in Table 1, DeltaNet consistently outperforms the
Basic Model. This demonstrates that besides us-
ing the historical reports of the same patient as the
conditional report, selecting similar reports as con-
ditional reports can also boost the performance. As
shown in Table 1 and Table 3, for the existing meth-
ods, the proposed DeltaNet with three conditional
reports outperforms almost all baselines on both
NLG and clinical efficiency metrics. As to the num-
ber of conditional reports, we evaluate DeltaNet
with 1 and 3 conditional reports. As shown in both
Table 2 and Table 1, the inclusion of more condi-
tional reports generally increases the performance.

Conditional Reports from the Patients Them-
selves. As shown in Table 2, DeltaNet signifi-
cantly outperforms the Basic Model which proves
the effectiveness of introducing conditional reports
in medical report generation. Furthermore, the
proposed DeltaNet outperforms state-of-the-art ap-
proaches almost all the metrics.

Table 3: The performance of clinical efficiency.

Dataset Model Precision Recall F1

MIMIC

S&T 0.084 0.066 0.072
SA&T 0.181 0.134 0.144
AdaAtt 0.265 0.178 0.197

BU&TD 0.166 0.121 0.133
R2Gen 0.333 0.273 0.276

DeltaNet-1C 0.460 0.353 0.376
DeltaNet-3C 0.470 0.399 0.406

4.4 Ablation Study

Self vs. Other Patients. Here we conduct an
experiment to compare the performance of two
types of conditional reports. We use MIMIC-CXR
dataset and select the patients with ≥2 reports. For
each patient, we select two most recent reports, that
is 49,180 images from 24,590 patients. The method
Self denotes that the conditional report is acquired
from the same patient; the method Others denotes
that the conditional report is retrieved via visual
feature similarity. To be fair, the conditional reports
of the Self methods are added into the training set
of the Others method. As shown in Table 4, the
BLEU-4 is 0.114 vs. 0.101. The conditional report
from the same patient outperforms the one from
other patients.

Table 4: The performance of two types of conditional
reports.

Conditional Reports BLEU-3 BLEU-4 CIDE-r ROUGE-L

Others 0.140 0.101 0.179 0.278

Self 0.158 0.114 0.231 0.289

Effectiveness of Conditional Image and Report.
Compared with the basic model, our model utilizes
two additional features Ic and Rc. To analyze the
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Figure 2: Visualizations of attention map on conditional/target image and report when DeltaNet generates the
highlight words.

contribution of each feature, we design two models
which separately concatenate Ic or Rc with visual
features. As shown in first two rows of Table 5,
the model with conditional reports outperforms
the model with conditional images, which shows
that the conditional reports are more effective than
conditional images. To analyze the effectiveness
of image feature subtraction in Eq.(7), we design a
model which directly concatenates both with visual
features. As shown in “Ic +Rc” and ours rows of
Table 5, the model directly concatenates with both
features is lower than DeltaNet, which shows the
benefit by combining current input and conditional
input by feature subtraction and cross attention in
DeltaNet.

Table 5: The contribution of conditional image and
report. Ic and Rc refer to the features of conditional
images and reports. Ic +Rc refers to feature concatena-
tion.

Dataset Model BLEU-3 BLEU-4 ROUGE-L

IU-Xray

Ic 0.137 0.103 0.281
Rc 0.176 0.134 0.310

Ic+Rc 0.208 0.162 0.329

Ours 0.224 0.175 0.369

MIMIC-Multi-Visit

Ic 0.108 0.075 0.222
Rc 0.126 0.090 0.238

Ic+Rc 0.127 0.091 0.242

Ours 0.144 0.103 0.270

COVID-19

Ic 0.481 0.456 0.572
Rc 0.507 0.482 0.595

Ic+Rc 0.531 0.508 0.619

Ours 0.588 0.561 0.635

4.5 Case Study

In this section, we demonstrate the effectiveness of
DeltaNet with a case study of a COVID-19 patient.
Here we select a patient who has two consecutive
X-ray examinations during COVID treatment. This
patient is in mild COVID-19 severity. We use the
report taken on Feb 29, 2020 as the conditional
report to generate the report taken on March 6,
2020.

On the left part of Figure 2, we visualize the
attention heat map to generate the phrase “no sign
of effusion”. The finding of “no sign of effusion”
remains the same in both conditional and current
reports. Therefore, generating this phrase attends
to both current and conditional medical images.
It also attends to the corresponding phrase in the
conditional reports. As a result, the combination of
the conditional report and both images enable the
correct generation of this phrase.

On the right of Figure 2, we visualize the atten-
tion heat map to generate the phrase “fibrous stripe
shadows”. Since this is a new finding which does
not exist in a conditional report, it only attends to
the current medical image. The proposed DeltaNet
can learn the difference between conditional and
current images and correspondingly generate this
new finding in the target report.

5 Conclusion and Future Works

In this paper, we targeted to automate the medical
report generation. Different from typical encoder-
decoder framework, we proposed a conditional gen-
eration model DeltaNet. For patients with historical
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reports, we combined the input image with the his-
torical report to generate reports. For first time pa-
tients without historical reports, we retrieved visual
similar reports from other patients as conditional
reports. We proved the advantage of the proposed
DeltaNet over state-of-the-art approaches on the
IU-Xray, MIMIC-CXR and COVID-19 datasets.

In this paper, for new patients without historical
reports, we retrieve the conditional reports only via
visual similarity. However, more features like age,
gender and diseases could be useful in selecting
conditional reports. In addition, we may attempt
to combine historical reports from the same patient
and simliar reports from other patients together to
futher improve the performance.
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A Appendix

A.1 Ethical Impact
This work aims to provide efficient and accurate
radiology reports to assist radiologists rather than
replace radiologists. It benefits the development of
human health. We conduct experiments on COVID-
19, IU-Xray, and MIMIC-CXR datasets. All per-
sonal information was de-identified. We have re-
moved the information related to the data collec-
tion. All necessary permissions have been obtained
and the appropriate institutional forms have been
archived.

A.2 Limitation
In this paper, our method applies a conditional
generation process that generates medical reports
based on historical medical records. There are still
some limitations. First, the generated medical re-
port only contains the diseases in the historical
medical records. Second, our method only con-
tains visual and textual information and lacks other
examination results (e.g., blood examination and
indication) and medical knowledge. We will ex-
plore how to involve more features to improve the
performance of the proposed method.

A.3 Potential Risks
Given a lot of medical images, it can automatically
generate radiology reports. The radiologists only
need to make revisions rather than write a new
report from scratch. However, inexperienced radi-
ologists may rely on it. Therefore, it is necessary
to take additional measures to avoid the abuse of
our model.
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Abstract

This paper introduces a generative system for
in-battle real-time commentary in mobile MO-
BA games. Event commentary is important for
battles in MOBA games, which is applicable
to a wide range of scenarios like live stream-
ing, e-sports commentary and combat infor-
mation analysis. The system takes real-time
match statistics and events as input, and an ef-
fective transform method is designed to con-
vert match statistics and utterances into consis-
tent encoding space. This paper presents the
general framework and implementation detail-
s of the proposed system, and provides experi-
mental results on large-scale real-world match
data.

1 Introduction

In recent years, MOBA (Multiplayer Online Battle
Arena) games have been popular all over the world.
As a popular mobile MOBA game, Honor of Kings
has a DAU of over 100 million, and has become an
official sport in the 2022 Hangzhou Asian Games.
In MOBA games, several players are divided in-
to two teams and carry out a battle against each
other. AI reseach in MOBA games has received
many attention (Ye et al., 2020, 2022). Real-time
commentary plays an important role in live stream-
ing of e-sports competitions, assists the audience
in the comprehension of game situation and events,
expanding the presence of MOBA games.

In-battle commentary aims at generating coher-
ent and informative natural language descriptions
based on game situation, match statistics and play-
er behaviour, as illustrated in Figure 1. Similar
systems have already been widely applied in real-
world applications such as automated news broad-
cast, television sports commentary, online video
description, etc (Chen and Mooney, 2008; Wise-
man et al., 2017; Nie et al., 2018; Puduppully et al.,
2019; Kale and Rastogi, 2020). In this paper, we
focus on the scenario of live e-sports commentary

Killer hero: Shangxiang Sun

Be killed hero: Yuanfang Li

Event: double kill

Commentary:

Hero Kills Deaths Assists ⋯ Gold Gold (variation)

Shangxiang Sun 12 4 7 ⋯ 14028 16.23/second

Que Bian 3 2 20 ⋯ 13428 19.53/second

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Ying Yun 8 6 8 ⋯ 15186 3.73/second

Yuanfang Li 9 7 8 ⋯ 12186 3.73/second

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

孙尚香拿下双杀，厉害！

Shangxiang Sun accomplished 

double kill, awesome!

Figure 1: The in-battle commentary generation task.

in mobile MOBA games and introduce MCS: an
in-battle commentary generation system 12.

Automatic commentary is grounded in in-battle
match statistics and events, regarded as a data-to-
text generation task. Recently, many large-scale
language models have been proposed and promoted
the advance in natural language generation (Rad-
ford et al., 2018; Devlin et al., 2019; Radford et al.,
2019). These pre-trained language models are also
beneficial for data-to-text tasks (Kale and Rastogi,
2020), in this work, we employ OpenAI’s GPT-2
model as the basic generator, and build a neural
pipelined approach for commentary generation.

Although recent works have shown promising
results regarding live comment generation (Chen
and Mooney, 2008; Wiseman et al., 2017; Noviko-
va et al., 2017; Dušek et al., 2018; Ma et al., 2019;
Zhang et al., 2020), there are still many challenges
for constructing a commentary generation model
for MOBA games: (1) Previous studies incorporat-
ed static data like final scores, while live e-sports
commentary uses changing match statistics as the
game goes on. Current statistics as well as his-
tory statistics are both vital for text generation.
For example, the narrowing of advantages may
cause anxiety, while overturn from deficit can be

1This work is licensed under a Creative Common-
s Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.

2Demonstration video: https://youtu.be/G0lKZKd7eco.
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• 这个亚瑟追着打
• 辅助应该撤退的
• 这波不亏
• ……

• 这个亚瑟太强了啊
• 这就是国服亚瑟
• 亚瑟伤害也太高了吧
• ……

• 亚瑟伤害也太高了吧
• 这个亚瑟太强了啊
• 这就是国服亚瑟
• ……

亚瑟伤害也太高了吧

The damage of Yase is 

incredibly high! 

input

generation

&

hero selection

restricted token

decoding

fine-grained

ranking
output

Hero K D A ⋯ Gold Gold (variation)

Yase 5 4 3 ⋯ 9658 20.23/second

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Xin Han 3 8 5 ⋯ 8546 20.23/second

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Figure 2: Pipeline of the proposed MCS, including three stages: initial commentary generation, restricted token
decoding and fine-grained ranking.

a morale booster. Therefore, the problem of com-
mentary generation employing dynamic structured
data needs to be tackled. (2) Neural network based
text generators are claimed to be unreliable in the
consistency and accuracy of generated texts. How-
ever, commentary generation is highly correlated
with in-battle data, which requires high conformity
in the generated sentence and input data. In many
approaches, retrieval methods are used instead of
generative methods. How to solve the problem of
generative methods and improve reliability remains
challenging.

The proposed MCS has the following advan-
tages: (1) We apply GPT-2 model into data-to-text
task, and design a hero selection loss to focus on the
target hero behaviour for commentary. (2) Previous
studies on sports commentary generation incorpo-
rated only static data like final scores, while the
proposed MCS uses dynamic match statistics dur-
ing generation, as current and history statistics are
both vital for e-sports commentary. (3) Commen-
tary is highly correlated with in-battle data, which
requires high conformity in the generated sentence
and input data. A restricted token decoding method
is employed to improve generation reliability.

2 System Framework

We first introduce the general framework of the pro-
posed MCS system. The system consists of three
modules in a pipeline, as presented in Figure 2.
Taking in-battle statistics as input, the system pro-
duces a descriptive sentence based on current and
history data.

2.1 Initial commentary generation

The first module focuses on generating initial texts:
in this stage, several candidate sentences are gen-

event: long range kill

be killed hero

killer hero

Ban Lu

kills

Boluo

(a) Long range kill by hero Ban Lu.

event: quadra kill

Bu Lv

kills

Yi Hou
a few moments ago

(b) Bu Lv quadra kill.

Figure 3: Examples of events. (a) A critical event
of long range kill, active hero: Ban Lu, passive hero:
Boluo; (b) A critical event of quadra kill, active hero:
Bu Lv, passive hero: Wei Dian.

erated in an end-to-end manner, used as inputs for
further polishing. All statistics of the ten heros as
well as critical events are included in network input.
The critical event is defined by a triplet including
event type, active hero, and passive hero. For in-
stance, single killing is a typical event that occurs
frequently in MOBA games, in which the active
hero is the hero kills someone, and the passive hero
is the killed one. Figure 3 shows two examples of
events. Beside all hero statistics, critical events are
also included in network input as most commen-
taries focus on the heros involved in these events.

2.2 Restricted token decoding

The second module performs restricted decoding
based on the initial text generator. Restricted gen-
eration can increase the reliability of neural lan-
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equips

kills, deaths, assists, golds

(a) Data panel in game.

Table 1: Structured data for network input

Data Description

Hero ID Unique identifier of the hero
Kills Number of kills of the hero
Kills (variation) The variation of kills in the last 30 seconds
Deaths Number of deaths of the hero
Deaths (variation) The variation of deaths in the last 30 seconds
Assists Number of assists of the hero
Assists (variation) The variation of assists in the last 30 seconds
Gold In-game virtual currency income of the hero
Gold (variation) The variation of Gold in the last 30 seconds

R1 [SEP] R2 [SEP] B1 [SEP] B2 [SEP] [EOD] Text⋯ ⋯[CLS]

⋯

Text
0 / 1 0 / 1 0 / 1

GPT - 2

Figure 5: Network architecture.

[               ][     ][                       ][    ]

Hero Kills Deaths Assists Gold
Gold

variation

Kills

variation

Deaths

variation

Assists

variation

Position

(current)

Position

(previous)

Equipments

(current)

Equipments

(previous)

13 0 2 3 0 1 7232 515

3 5

(18283, 0, 35530) (9035, 0, 6088)

18 0 35 9 0 6hero id 13 0 2 3 0 1 equip id 1 … equip id 6

[                     ]

[ ]

equip 1 …… equip 6 [                     ]

[ ]

equip 1 …… equip 6

equip id 1 … equip id 6

Figure 6: Serialization of structured data of a hero.

4

(b) Data and description.

Figure 4: Match statistics in game. Left: the kills/deaths/assists and other attributes are displayed on the data panel.
Right: the data used as system input and description.

[   ] [     ][                       ][    ]

Hero Kills Deaths Assists Gold
Gold

variation

Kills

variation

Deaths

variation

Assists

variation

13 0 2 3 0 1 7232 515

3 5hero id 13 0 2 3 0 1

Is alive ?

1

Gold

rank

True 1

KDA

rank

1

[     ]1 1

Figure 5: Serialization of structured data of a hero.

guage generation (Elder et al., 2020; Dathathri
et al., 2020). Inspired by retrieval text generation,
we construct event-specific corpus from the col-
lected dataset, which is used in the token decoding
process. With this approach employed, the generat-
ed sentences are expected to be controlled within a
reasonable range around the corresponding event.

2.3 Fine-grained ranking

The final module conducts fine-grained ranking
on sentences generated through the previous two
modules. A pairwise scoring model is constructed
following textual matching methods, to avoid topic
shift and destruction of text fluency, the scoring
model is trained against topic irrelevant commen-
taries and faulty sentences. After ranking, the com-
mentary achieving the highest score serves as final
output of the MCS system.

3 System Implementation

In this section, the implementation details of the
proposed three modules are provided. In general,
the network architecture are constructed following
the pipeline of language models. As described
in Figure 4, features are serialized and fed as the
inputs, the network predicts a target hero ID and
generates a comment as the outputs.

3.1 Initial commentary generation

For the initial commentary generator, the network
input is composed of critical events and match s-
tatistics of the ten heros. A triplet including event

type and two hero IDs is used to represent the event,
as described in Section 2.1. For match statistics,
the data entries used in the proposed MCS includes
Hero ID, Kills, Deaths, Assists, etc, as presented in
Figure 4. Since the statistics are changing over time
and the changes are important in indicating hero
status and highlight events, we also include varia-
tions of the above data entries in network input. For
example, a hero with high kills and gold usually
means that it can cause high damage in battle. If
the kills of a hero rise rapidly in a short time, it is
likely that the hero has outstanding performance
and human commentators will comment on it.

To adapt the structured data to a sequential input
of the network, we design a method to transform
hero attributes into decimal digits. For each hero,
a unique identifier is assigned and placed at the
beginning of its data sequence, followed by a token
indicating whether the hero is alive or not. The
other indicators are discretized by dividing into
segments, Figure 5 illustrates an example of data
serialization. Kills, Deaths, Assists and the varia-
tions are encoded by 600 digits, 100 for each, as
they are usually less than 100 in a single match. In
extreme cases where the indicators exceed 100, the
real digits are replaced by 100 to avoid confusion.
In a single match, the Gold of each hero usually
varies from 0 to 40000, it is discretized by dividing
into 20 segments, 2000 golds for one segment. The
variation of Gold is encoded in a similar way, each
segment represents 90 golds per minute, and the
maximum variation is set to 4500 golds per minute.
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At the end of the sequence, we use two extra tokens
to represent the ranking of Gold and KDA of the
correspoding hero among all 10 heros. The data
sequence of all 10 heros are connected by a special
token "[SEP]", and another special token "[EOD]"
is added after the last data block to separate text
from data sequence.

In general, the network architecture is illustrated
in Figure 6. Previous studies have proven that pre-
trained language models can improve data-to-text
generation (Peng et al., 2020; Chen et al., 2020;
Kale and Rastogi, 2020), we use Open-AI’s GPT-2
model to build the basic text generator. The GPT-2
model used in this work was pre-trained using Chi-
nese copora LCCC (Large-scale Cleaned Chinese
Conversation (Wang et al., 2020). In addition to
standard language model loss, we design a hero
selection loss to focus on the match data of the
target hero, which is helpful to increase generation
consistency.

3.2 Restricted token decoding

In this stage, the collected dataset is divided into
event-specific groups by a triplet retrieval key. The
retrieval key is composed of event type, active hero
ID, and passive hero ID. During generation, the
triplet retrieval key can be extracted from in-battle
statistics, and the corresponding event-specific cor-
pus can be retrieved. In retrieval text generation ap-
proaches, a selection strategy is designed to choose
a proper sentence from the corpus as the final result.
In the proposed MCS system, we employ the event-
specific corpus to restrict the sentences generated
by neural networks.

The Plug and Play Language Model (PPLM)
(Dathathri et al., 2020) module is employed to con-
trol the token decoding process, restricting the gen-
erated texts around the corresponding event. Basi-
cally, the restriction is accomplished by updating
the last hidden layer features ht:

ht ← ht −∇
|corpus|∑

i=1

log(p(wi|ht)) (1)

where |corpus| represents the size of a event-
specific corpus and wi denotes a word in the cor-
pus. After a few iterations of updating, the hidden
features are softly adjusted towards decoding the
words in the event-specific corpus.

Table 1: Experimental results, best results are indicat-
ed in bold. The upper two rows are results of existing
methods, the bottom rows are results of our method.

ROUGE-1 ROUGE-2 ROUGE-L Validity

Seq2Seq (Sutskever et al., 2014) 0.1306 0.0032 0.1296 0.69
GPT-2 (Radford et al., 2019) 0.1568 0.0102 0.1491 0.85

Initial commentary generator 0.1921 0.0111 0.1903 -
Restricted token decoding 0.2025 0.0140 0.2001 -
Fine-grained ranking 0.2028 0.0144 0.2006 0.91

3.3 Fine-grained ranking
The final stage performs a ranking on the generated
candidate sentences. We build a pairwise ranking
network on top of the GPT-2 generator. Taking
two sentences as input, the GPT-2 outputs two en-
coding vectors respectively. These encodings are
then fed into the ranking network, and a score is
derived which indicates the relative order of the
two sentences. After all candidate sentences are
processed, the best sentence is regarded as the final
commentary.

4 Materials and Results

The structured data and commentary history of 30
million matches in professional leagues and live
broadcasts of Honor of Kings were collected and
used to train and evaluate the proposed system. Per-
plexity is used to evaluate the fluency of generated
sentences, ROUGE-1, ROUGE-2 and ROUGE-L
are used to measure the distance between generated
sentences and ground truth. We also calculate the
generation validity by human evaluation.

The experimental results are presented in Table 1.
Quantitatively, the system achieves an averaged per-
plexity of 1.27. Comparing the generated sentences
with those written by human commentators among
the collected data, the ROUGE-1, ROUGE-2 and
ROUGE-L scores are 0.1921, 0.0111 and 0.1903
for the initial commentary generation, respectively.
Combined with target hero prediction and restrict-
ed token decoding, the metrics improved to 0.2025,
0.0140 and 0.2001. The final ROUGE scores are
0.2028, 0.0144 and 0.2006 employing fine-grained
ranking. Besides statistical indicators, we also car-
ried out human evaluation of the system, and the
generated commentaries achieve a validity of 0.91.
This means that the system has the potential to be
used in real-world applications. Our system is com-
pared with two mainstream generation approaches:
the RNN-based Seq2Seq (Sutskever et al., 2014)
and the transformer-based standard GPT-2 (Rad-
ford et al., 2019), and outperforms both of them.
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R1 [SEP] R2 [SEP] B1 [SEP] B2 [SEP] [EOD] Text⋯ ⋯[SEP]

⋯

Text
0 / 1 0 / 1 0 / 1

GPT - 2

Event[CLS]

Figure 6: Architecture of the generation network. The network is based on GPT-2 model. The beginning of
network outputs accomplish target hero selection, the remaining represents the generated tokens. "Event" denotes
the triplet of critical event, "R1" - "R5" represents the data of the 5 heros on the red side, "B1" - "B5" represents
the data of the 5 heros on the blue side.

Figure 7 shows two cases of the generated com-
mentaries.

Commentary:

这个大可惜呀。

The ULT misses, what 

a great pity!

(a) The ULT of Ganjiang Moye misses, a few moments later, he is killed by Mozi.

Commentary:

这是真的太细节。

The player’s control is 

full of precise details.

(b) Anqila draws first blood by killing Master Fu.

Figure 7: The examples of commentaries generated by
the proposed system.

5 Conclusion

We propose MCS, a model for in-battle real-time
commentary generation in MOBA games. MO-
BA is a type of games popular all over the world,
commentary plays an important role in game com-
prehension for audience. The proposed MCS is
designed with the ability of analyzing real-time
match statistics and generating coherent descrip-
tive contents. It has a wide range of applications
such as e-sports commentary, combat information
analysis, etc, and has the potential to promote game
development and improve match environment.
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Abstract
Framing is a communication strategy to
bias discussion by selecting and emphasizing.
Frame detection aims to automatically analyze
framing strategy. Previous works on frame de-
tection mainly focus on a single scenario or
issue, ignoring the special characteristics of
frame detection that new events emerge con-
tinuously and policy agenda changes dynam-
ically. To better deal with various context
and frame typologies across different issues,
we propose a two-stage adaptation framework.
In the framing domain adaptation from pre-
training stage, we design two tasks based on
pivots and prompts to learn a transferable en-
coder, verbalizer, and prompts. In the down-
stream scenario generalization stage, the trans-
ferable components are applied to new issues
and label sets. Experiment results demonstrate
the effectiveness of our framework in different
scenarios. Also, it shows superiority both in
full-resource and low-resource conditions.

1 Introduction

Framing is a communication strategy, used to bias
the discussion toward a specific stance, by select-
ing particular aspects of reality and making them
more salient (Entman, 1993; Liu et al., 2019a). It
is widely adopted by politicians, the media, and
the voting public to seek support, express opin-
ions, and advance political agendas (Levendusky,
2013), thus having important implications for pub-
lic opinion understanding and policy decision-
making (Mendelsohn et al., 2021). Boydstun et al.
propose 15 generic frame dimensions based on pol-
icy agenda, including economic, morality, and so
on, paving the way for frame analysis. In order
to analyze the framing strategy automatically, re-
searchers explore the task of frame detection.

Given a piece of statement related to a topic,
frame detection aims to recognize which dimen-
sions of frames are employed. Formally, it’s a

∗Corresponding author.

Issue Source
# 

label
Example Frame

abortion

tweets

14

Women have the freedom to 

make their own choices about 

their reproductive health care. 

#AbortionLaw protects the safety

of women. 

gun

news

9
Florida shooter a troubled loner

with white supremacist ties.

gun

debates

5
The 2nd amend does not say 

people need guns for self defense !

Fairness & 

Equality

Health & Safety

Mental Health

Race/Ethnicity

Legality, 

Constitutionality 

and 

Jurisprudence

Figure 1: A brief landscape of frame detection. These
three samples are taken from twitter (Johnson et al.,
2017), gvfc (Liu et al., 2019a), fora (Hartmann et al.,
2019) respectively.

multi-label classification task with a pre-defined
label set. Existing researches for automatic frame
detection explore different supervised methods
including feature-based machine learning, deep
neural networks, and fine-tuning pre-trained mod-
els (Card et al., 2016; Naderi and Hirst, 2017; Liu
et al., 2019b). Despite the success and contribution
made by previous studies, these methods ignore
the special characteristics of frame detection that
events develop quickly and political focus of agen-
das changes frequently.

We demonstrate the landscape of frame detec-
tion in Figure 1 with examples picked from three
existing datasets and three challenges stand out.
(1) Dynamic nature of languages: framing is used
in complex scenarios of quite different styles of
language expressions, i.e., coming from different
sources and discussing various issues. Previous
methods didn’t consider learning from existing is-
sues, thus once new issues emerge, data annotation
and model training must be repeated. (2) Diverse
categories of frame dimensions: frames are defined
from different perspectives that can be general like
fairness & equality or issue-specific like mental
health. (3) Variance of frames across issues: la-
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bel set of frames changes for different issues. The
complex label system means frame detection can
not be easily transferred, unlike traditional tasks
including sentiment analysis and stance detection
that shares a common label set. In order to ad-
dress these three challenges and mitigate the limi-
tations of existing research, we propose to develop
a generalized framework for frame detection that
obtains robust language modeling capability, pos-
sesses background knowledge of framing strategy,
and can be adapted to new issues easily. Recently,
progress in prompt learning provides a mechanism
to exploit pre-trained models by task-specific cloze
or prefix prompts. Previous research shows its
effectiveness in few-shot and zero-shot learning
(Schick and Schütze, 2020b; Liu et al., 2021a).
Motivated by the success of prompt learning on
low-resource sentence classification, we aim to de-
sign a prompting framework for frame detection.

In this paper, we propose a two-stage adaptation
framework for frame detection based on prompt
learning that optimizes prompts and a pre-trained
language model for the general domain of framing
and applies it to new scenarios. In the framing do-
main adaptation from pre-training stage, we train
a pivot-based encoder on top of the pre-trained
language model based on a generic corpus with a
general framing label set. Then, we design a shared
prompt and several issue-specific prompts and learn
their parameters by prompt learning and adversar-
ial training to acquire transferable prompts and a
verbalizer. In the downstream scenario generaliza-
tion stage, we adopt the transferable components
to new issues and scenarios. Our contributions are
mainly three-fold:

• We propose a generalized prompting frame-
work for frame detection that can deal with dif-
ferent scenarios, issues, and typologies, bridg-
ing the gap of cross-issue generalization miss-
ing in previous work.

• Different from previous transfer learning, our
framework does not train the target data with
the source data together, but only reuses the
parameters, ensuring data security in the real
environment. It is more flexible since data
related to politics can be confidential and sen-
sitive in some countries.

• We present the largest study of frame detec-
tion, covering 5 datasets from 3 different sce-
narios. Experiment results show the effective-

ness of our framework in both full-source and
low-resource situations.

2 Framing Domain Adaptation from
Pre-training

Given a sentence x and a set of frame labels F , we
aim to detect which frames are used. It is a multi-
label classification problem. Since we hope the
model can deal with various issues and label sets,
it’s necessary to urge the model to learn general and
transferable knowledge related to frames. In this
stage, namely framing domain adaptation from pre-
training, we design two tasks to achieve this goal.
A generic corpus C is used as an anchor corpus for
the training in this stage.

2.1 Transferable Pivot-based Encoder
Primarily, we design a masked-pivot prediction task
(Task1 in Figure 2) to learn a transferable encoder,
to capture issue-unrelated features of frames. The
process is divided into two steps.

Frame Pivots Generation According to Field
et al., some indicators are informative for frame
detection, e.g., cost, wage, economy for economic
frame. We believe these indicators are similar to
transferable sentiment words in sentiment classi-
fication, which can serve as pivots. We generate
frame pivots by mutual information (Church and
Hanks, 1990). For a given frame F in C, we calcu-
late point-wise mutual information (PMI) for each
word by:

I(F,w) = log
P (F,w)

P (F )P (w)
= log

P (w | F )
P (w)

(1)

where P (w | F ) is estimated as Count(w)
Count(allwords) by

taking all texts annotated with F , while P (w) is
similarly computed using the entire corpus. Words
that occur in fewer than 0.5% or more than 98% of
documents will be discarded. Finally, we reserve
topK words with highest PMI score for each frame,
where K is a hyper-parameter.

MLM Training We optimize an encoder on top
of a pre-trained language model based on model-
ing the relationship between pivots and non-pivots
following (Li et al., 2020; Ben-David et al., 2020).
Concretely, we employ a pre-trained BERT (De-
vlin et al., 2019), optimized by an MLM objective.
As shown in Task1 in Figure 2, given a document,
we randomly mask pivots with probability pv and
mask non-pivots with probability pn, instead of
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Figure 2: The framework architecture in framing domain adaptation from pre-training stage. In masked-pivot
prediction task(left), we train a transferable encoder. In prompt learning-based frame detection task(right), we
further optimize the prompts, encoder and verbalizer.

masking each token with the same probability. Like
what is done in BERT, for the chosen (non-)pivot
words, most of the time they are changed to the
mask token, with a small probability of being un-
changed. Besides, we don’t predict the token on the
entire vocabulary size, but only focus on whether
the masked token is a pivot or not and which pivot
it is. Therefore, it’s a classification task with p+ 1
classes, where p is the number of unique pivots.
Then, masked cross-entropy is used to calculate the
loss for masked token prediction.

LMLM =
1∑
mi

n∑

i=1

mi · L (ŷpi ,y
p
i ) (2)

where mi ∈ {0, 1} indicates whether the token is
masked, and L (ŷpi ,y

p
i ) denotes the cross entropy

loss for pivot prediction.

2.2 Transferable Prompts and Verbalizer

To pre-train transferable prompts and verbalizer,
we adopt the second task, prompt learning-based
frame detection (Task2 in Figure 2). Each compo-
nent will be described in detail as follows.

Prompt Template To retrieve the knowledge en-
coded in the pre-trained language model, we design
a template to wrap the original input text into a
prompt, by discrete natural language or continuous
parameters (Liu et al., 2021a,c). To avoid trou-
blesome prompt engineering, we use continuous

prompt embeddings. Inspired by Wang et al., for
prompt configuration, we build a private prompt
template for each issue, and a shared prompt tem-
plate for all the issues, constituting the prompt li-
brary in Figure 2. For each input text x of issue i,
the issue-specific template and the shared template
will respectively convert the input as:

t(i)(x) = w
(i)
1 , ..., w(i)

m , x, w
(i)
m+1, ..., w

(i)
M , w[mask]

(3)
ts(x) = ws1, ..., w

s
m, x, w

s
m+1, ..., w

s
M , w[mask]

(4)
where wm is prompt pseudo token (Liu et al.,
2021c), M is the number of prompt pseudo tokens.
A bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) with multi-layer perceptrons are applied
as prompt encoders. We can get prompt embedding
by:

PE(i)(x) =MLP (BiLSTM(t(i)(x))) (5)

and the shared template will get:

PEs(x) =MLP (BiLSTM(ts(x))) (6)

Then, the average of both prompts will result in
the final prompt embedding, which is a sequence
as the input of the encoder for frame detection, as
shown in Figure 2.

Verbalizer Learning for Frames In prompt
learning, a mapping from words to labels, e.g.,
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good, great for label positive, which is also called
verbalizer, is needed for final prediction. How-
ever, manual label word selection needs domain-
expert knowledge and is defective in dealing with
answers of different lengths. Moreover, it’s dif-
ficult to express the meaning of a frame label by
single words, e.g., neither word school nor safety
is a proper answer to a cloze problem about school
safety. To overcome this problem, we attempt to
use the average of the token embeddings to get
label embedding. One of the biggest advantages
of doing this is the implicit flexibility and transfer-
ability of label embedding. For example, once we
learned token embedding for label health in the pre-
training stage, it’s beneficial to better understand
label mental health in a new dataset, since they
share the common token health. Specifically, we
tokenize the original label, extract corresponding
token embeddings and take the average as the final
label representation:

El =
1

nl

nl∑

i=1

TE(tokeni) (7)

where nl is the number of tokens of label l,
and TE(tokeni) represents token embedding of
tokeni. Then, we calculate the dot product of
MLM output with each label embedding. Finally, a
binary-cross entropy loss (BCE) is applied for each
label. Thus, loss for frame detection is:

Lframe = −
1

N

N∑

j

F∑

k

yfj (k) log ŷ
f
j (k) (8)

where yfj (k) ∈ {0, 1}, N is the number of samples,
and F is the number of unique frame labels.

Adversarial Training for Prompts In order to
learn a shared prompt that can be easily transferred
to new issues, we hope the shared prompt pays
attention to cross-issue features related to frames,
rather than any specific issue or topic content. To
achieve this goal, we design an issue adversarial
task to make the shared prompt cannot distinguish
issues. Concretely, as shown in Figure 2, we use
the shared template only to wrap each input text,
and we input this issue prompt to the encoder to
predict the corresponding issue. Here, a Gradi-
ent Reversal Layer (GRL) (Ganin and Lempitsky,
2015) is involved, before the input is sent to the
encoder. During the backpropagation, it reverses
the gradient by multiplying a negative scalar. For
this single-label prediction task, the target is to
minimize the cross-entropy loss:

Lissue = −
1

N

N∑

j

I∑

k

yij(k) log ŷ
i
j(k) (9)

where where yij(k) ∈ {0, 1}, N is the number of
samples, and I is the number of unique issues in
the generic corpus C.

In this case, we train the model using following
loss:

L = Lframe + λLissue (10)

where λ is a hyper-parameter controlling the weight
of different losses.
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3 Downstream Scenario Generalization

After the pre-training stage, we get a set of issue-
specific prompt encoders, a shared prompt encoder,
and an encoder that can be adapted to downstream
scenarios. In the generalization stage, we reuse
these transferable components for frame detection
in new scenarios. As shown in Figure 3, for issues
that have been “seen” in the generic corpus C, we
initialize the prompt encoder by the corresponding
private prompt encoder in the prompt library, and
for those unseen issues, the shared prompt encoder
is applied for generalization. And encoder along
with its token embeddings (used for verbalizer) in
the previous stage is also adopted here.

4 Datasets

Based on review of previous work on frame detec-
tion, we get datasets available mainly from three
resources: (1) news media (articles), (2) social me-
dia, (3) debates and statements. Five datasets are
listed.

mfc News articles of 15 general frame annotation,
constructed by Card et al.. The last version covers 6
issues-climate change, death penalty, gun control,
immigration, same-sex marriage and tobacco, with
5,199 articles for each issue on average.

gvfc (Liu et al., 2019a) 1,300 headlines of news
articles on gun violence, annotated with 9 issue-
specific frames.

twitter (Johnson et al., 2017) 2,050 tweets posted
by 40 politicians, annotated with 17 general frames
(among which 14 are the same with mfc, and
3 designed specifically for tweets). 5 issues are
included-abortion, aca, immigration, isis and lgbt.
We also treat each as an independent dataset, to
verify effectiveness of our framework on unseen
new issues like abortion.

immi (Mendelsohn et al., 2021) tweets about im-
migration, published by the public, among which
2,325 are annotated with general frames and 1,375
are annotated with issue-specific frames.

fora (Hartmann et al., 2019) 868 arguments on
online discussion fora, annotated with 5 most fre-
quent general frames, covering 4 topics.

Following Johnson et al., we drop other category
in mfc and immi, and the overview of the datasets
is shown in Table 1. Considering that mfc is the
largest existing corpus with the generic setting of

Datasets Typology #Label Size
mfc general 14 31,960
gvfc issue-specific 9 1,300

twitter general 17 2,050

immi
general 14 2,325

issue-specific 11 1,375
fora general 5 868

Table 1: Statistics of listed datasets.

frames, it is used in the framing domain adaptation
from pre-training stage. Note that, any other corpus
can also be used as the anchor in our framework.

5 Experiment and Results

5.1 Experiment Setup
Models for Comparison. We compare our
model with some state-of-art methods for frame de-
tection as well as some prompt learning and trans-
fer learning methods.

- Bi-LSTM (Naderi and Hirst, 2017) with ini-
tialization by GloVe word embeddings (Pen-
nington et al., 2014).

- Bi-GRU (Naderi and Hirst, 2017) with initial-
ization by GloVe word embeddings.

- FT, fine-tune a pre-trained language model
(PLM). (Mendelsohn et al., 2021)

- MP, use a manually-designed prompt and
verbalizer to implement prompt learning on
specific datasets. We use manual prompt
T (X) = X. It emphasizes [MASK]., ac-
cording to definition of framing.

- P-tuning, use vanilla ptuning (Liu et al.,
2021c) prompt to implement prompt learning
on specific datasets and use label embedding
in our framework as verbalizer.

- P-tuning v2 (Liu et al., 2021b), adds prefix
into each layer of the PLM and use a fully-
connected layer for classification.

- FT-mtl (Sun et al., 2019), fine-tunes PLM by
multi-task learning, where frame detection on
mfc dataset serves as the auxiliary task.

- FT-adv (Hu et al., 2019), on the basis of FT-
mtl, it fine-tunes PLM with an additional ad-
versarial domain loss, where domains are is-
sues in mfc dataset.
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Method gvfc twitter immi-general immi-specific fora

MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF

Bi-LSTM 66.52 59.92 49.26 38.00 46.22 39.84 33.13 21.67 69.87 68.17
Bi-GRU 71.49 60.58 46.25 32.82 42.72 35.98 33.65 19.39 75.29 74.00
FT 83.09 77.29 65.37 56.98 74.38 67.51 60.19 45.71 80.94 81.65

MP 82.38 74.80 62.73 50.27 70.58 60.01 58.11 41.36 78.13 77.89
P-tuning 84.17 77.09 63.38 55.45 74.06 67.23 60.32 46.20 78.64 78.94
P-tuning v2 82.87 76.12 62.31 51.55 71.52 63.87 60.21 51.41 78.07 78.63

FT-mtl 84.51 73.02 62.02 52.75 71.54 60.05 62.58 44.84 78.53 79.41
FT-adv 81.50 72.20 59.91 42.36 71.89 63.89 60.94 39.01 75.82 76.22
FT-meta 81.69 75.03 62.25 51.14 68.58 61.22 61.24 46.87 76.43 75.77

Ours 85.25 80.36 66.39 60.56 75.07 68.15 62.59 50.66 81.26 82.61

Table 2: Results in full-resource experiments across datasets. (Bold: the best performance in the column)

Method aca abortion isis

MiF MaF MiF MaF MiF MaF

Bi-LSTM 28.33 8.01 41.60 9.52 38.85 17.46
Bi-GRU 35.55 15.92 36.97 17.89 55.01 25.41
FT 55.29 30.06 42.84 15.04 53.91 26.96

MP 54.88 24.74 46.57 13.72 57.16 20.15
P-tuning 54.68 28.18 47.36 17.70 60.32 33.55
P-tuning v2 56.34 26.37 44.44 14.32 68.04 29.21

FT-mtl 37.23 14.63 34.28 7.22 67.41 25.11
FT-adv 40.61 13.55 34.89 8.91 64.58 23.66
FT-meta 39.92 13.57 35.71 10.09 64.41 24.61

Ours 56.72 29.18 53.03 19.74 65.19 36.04

Table 3: Results in full-resource training on unseen
issues in twitter dataset. (Bold: the best performance
in the column)

- FT-meta (Wang et al., 2020), where typical in-
stances of each issues in mfc dataset are used
to train a meta learner, and the meta learner is
further fine-tuned by specific new datasets.

- Ours, method proposed in this paper.

Experiment Settings (1) Full-resource setting:
all training data are used. (2) Zero-shot setting:
the training set and validation set are not available.
Models are required to detect frames directly on
the test set. Since recurrent neural networks and
fine-tuning are not applicable, we only compare
the prompting-based methods. (3) Few-shot set-
ting: N-Way K-shot setup is applied where N is
the number of classes in each dataset, and for each
class, we take K samples for training and valida-
tion respectively. K is set to 2, 4, and 8 in our
experiments.

Evaluation Metrics. Since each text can have
more than one frame, this prediction task is a multi-
label classification task. Results are reported in

terms of micro- and macro-F1 score.

5.2 Implementation Details

For pre-trained language model involved
in our framework and baselines, we use
bert-base-uncased (Devlin et al., 2019).
For pivot generation, we reserve top 50 frame
indicators for each frame dimension. For masking
probability, we set pv = 0.5 and pn = 0.1,
following (Ben-David et al., 2020). We set training
batch size = 16, learning rate of encoder=2e-5,
learning rate of prompt encoder = 1e-2, λ =
1. Early stopping strategy is applied to avoid
over-fitting. Empirically, we find the best threshold
of multi-label classification by validation set for
each model respectively. Our implementation1 is
partially based on OpenPrompt (Ding et al., 2022).

5.3 Overall Performance

Results for supervised learning across different
methods are reported in Table 2. We can find: (1)
Our method has shown improvement compared to
all other baselines. Results across different datasets
indicate that our method can handle frames of dif-
ferent topics and typologies in a unified framework.
(2) Previous study (Vu et al., 2021) has shown
that it’s not easy for prompt tuning to surpass fine-
tuning when using a small PLM like BERT. Bene-
fiting from the pre-training stage, we can achieve
comparable results to vanilla fine-tuning. (3) Tra-
ditional transfer methods don’t perform as well as
expected. It demonstrates that it’s not easy to opti-
mize multiple objectives due to the gaps between
datasets. Encoding knowledge of auxiliary data

1Codes are publicly available at https://github.
com/xymou/Frame_Detection
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Method Avg MiF Avg MaF

Full Implementation 74.11 68.47
:w/o pivot-based encoder 72.64 66.69
:w/o issue adversarial training 73.18 66.09
:w/o both 72.55 65.59

Table 4: Results for ablation study. (Bold: the best
performance in the column)

into PLM in the pre-training stage is an alternative.
Table 3 presents the results individually learned

on unseen issues in twitter dataset, where training
data is less. The results show that learned prompts
can be well adapted to unseen issues.

5.4 Ablation study

We implement an ablation study to verify the ef-
fectiveness of pivot-based encoder and adversarial
training for prompts. When we test without a pivot-
based encoder, we use an ordinary BERT backbone.
The average MiF and MaF of all datasets in abla-
tion study are in Table 4. It is shown that both
components contribute to the framework. This indi-
cates that motivating both encoder and prompts to
learn shared, transferable information across issues
is crucial for frame detection.

5.5 Zero-shot and Few-shot Analysis

Method gvfc twitter immi-general immi-specific fora

MP 43.03 34.48 59.08 19.92 67.21
P-Tuning 43.51 35.71 57.58 20.03 67.60
Ours 44.65 37.44 60.30 20.28 68.96

Table 5: P@1 in zero-shot experiments. We only com-
pare prompt-based methods since neural networks and
fine-tuning with random initialization is not applicable.
(Bold: the best performance in the column)

Table 5 shows results in zero-shot setting. We
didn’t report the performance of neural networks,
fine-tuning, and P-tuning v2 because a randomly
initialized classifier may not produce reasonable
results. Since validation data is not available, com-
paring F1 scores of different models using a ran-
dom threshold may be unfair, we only illustrate
P@1(precision at one). It indicates that prompting
methods without fine-tuning can already induce rea-
sonable predictions. Furthermore, with framing do-
main pre-training, our method shows effectiveness
in mining frame-related knowledge in pre-trained
language models.

Table 6 shows results in few-shot setting. Over-
all, prompting methods outperform fine-tuning by

a large margin. Meanwhile, our method shows
superiority in most datasets. Surprisingly, MP per-
forms best in immi-specific. Several factors may
account for this result. (1) With a manual template
and verbalizer, MP has the least additional parame-
ters and thus has the least risk of over-fitting. (2)
Since the labels have some uncommon words like
humanitarian, having less overlap with those in the
pre-training stage, the label embedding verbalizer
for this dataset is not well initialized in the general-
ization stage. Once we replace the verbalizer with
a manual mapping, performance can be improved
by about 3%. (3) Some data in immi is singly an-
notated without consensus-coding, so the potential
noise brings more randomness to few-shot training.

6 Discussion

(a) (b)

(c) (d)

Figure 4: (a)error type proportion in gvfc; (b)error type
proportion in twitter and immi; (c)error type propor-
tion in fora; (d)P@1 across three setups with a varying
number of pivots. (Best viewed in color.)

6.1 Analysis on the Number of Pivots
Here, we explore impact of different number of
pivots. We reserve top 10, 20 and 50 frame indica-
tors for each frame in Sec 2.1. Figure 4d presents
our results. It is observed that the performance is
stable across pivot numbers, especially for datasets
having labels with more overlap to mfc dataset, i.e.,
twitter and immi-general.
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Shot Method gvfc twitter immi-general immi-specific fora

MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF

2

FT 28.06 22.44 14.59 11.75 29.92 28.53 19.52 18.85 35.69 34.85
MP 35.86 25.93 26.32 20.79 26.10 18.62 33.63 25.49 52.55 52.18
P-tuning 42.73 27.06 29.40 26.39 52.44 49.43 21.32 15.36 64.22 64.26
Ours 43.66 29.65 29.45 26.61 52.09 47.60 22.91 17.38 65.92 64.85

4

FT 30.27 25.39 17.12 14.17 33.16 29.13 20.54 18.36 36.54 35.82
MP 53.05 40.82 37.06 26.99 36.89 26.55 32.78 23.84 51.09 50.31
P-tuning 48.49 36.27 35.69 27.08 57.34 52.02 24.24 14.76 66.85 67.04
Ours 53.18 41.03 38.90 29.33 58.44 52.86 26.39 19.34 66.99 66.20

8

FT 47.58 40.53 21.74 16.48 41.45 36.46 23.51 19.87 38.27 37.47
MP 57.88 52.80 42.13 31.91 37.11 25.79 36.44 28.19 65.03 64.40
P-tuning 56.83 48.88 39.91 33.03 60.20 54.48 31.33 21.02 68.43 67.66
Ours 58.46 50.14 42.93 35.56 60.35 54.99 31.97 23.55 68.49 67.97

Table 6: Results in few-shot experiments, where we randomly sample 2,4,8 samples of each class for training.
(Bold: the best performance in the column)

6.2 Error Analysis
We identify prediction errors by analyzing 100 ran-
dom samples for each scenario. On the basis of
(Mendelsohn et al., 2021), we add several addi-
tional types, and all error types included are shown
in the table in Appendix A. Using the sampled in-
stances, we also counted the proportion of each
error type to all errors and get Figure 4a, 4b and
4c. We notice that missing necessary contextual
knowledge is a common challenge, where key lex-
icons like names of politicians are cued, but the
model lacks real-world knowledge or meta-data to
make the right induction. External knowledge may
be useful to deal with this issue. Also, overgen-
eralizing is a tricky problem, where informative
words appearing in different contexts may mislead
models. Compared to other models, ours is mainly
trapped by this problem, since we have focused on
the pivots, which sometimes can be misleading in
highly-related frames like legality, constitutionality
and jurisdiction and crime and punishment. Be-
sides, there are scenario-specific challenges. For
social media where expression is informal and di-
verse, slang and abbreviations like hashtags are
useful but models may not make full use of them.

7 Related Work

Framing (Entman, 1993) is a communication strat-
egy widely adopted by news media (Card et al.,
2015) and politicians (Mou et al., 2021). Most
researches on frames focus on news media. Boyd-
stun et al. firstly conclude 15 frames that cross-cut
issues from the policy agenda and use them to ana-
lyze news articles on 3 issues. Based on this, Card
et al. construct Media Frame Corpus (mfc), one of

the first large-scale datasets of frame annotations on
news articles. This corpus is used to detect frames
by dirichlet persona model (Card et al., 2016), deep
recurrent neural networks (Naderi and Hirst, 2017)
and lexicon analysis(Field et al., 2018). (Liu et al.,
2019a) curated Gun Violence Frame Corpus (gvfc),
which contains news headlines. They fine-tune
BERT (Devlin et al., 2019) for prediction. Frames
have also been studied on tweets and statements of
politicians and the public. Johnson et al. annotated
some tweets of politicians and use the Probabilis-
tic Soft Logic model to detect frames. Roy et al.
use a similar method to identify Morality frames
in tweets. Since framing is an important communi-
cation strategy, frame detection in online fora and
debates also aroused researchers’ interest (Hart-
mann et al., 2019; Ajjour et al., 2019; Heinisch and
Cimiano, 2021).

According to Boydstun et al., there are mainly
two frame schemas, i.e., general and issue-specific.
Although most work focuses on general frame pre-
diction, some studies specialize in frames designed
for a certain issue. Mendelsohn et al. fine-tune
RoBERTa (Liu et al., 2019b) for analysis of differ-
ent typologies of frames in immigration. Liu et al.
conclude 9 issue-specific frames for gun violence
issue.

Prompt learning aims to wrap the original input
text using a template with a cloze or prefix prompt,
and then the language model is used to fill the un-
filled information to obtain a final string, which will
be mapped into labels by a verbalizer (Schick and
Schütze, 2020a; Liu et al., 2021a). This paradigm
performs well on few-shot and zero-shot settings
(Brown et al., 2020). Prompts can be manually
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designed or learned with differentiable parameters
(Liu et al., 2021c). Despite progress in prompt
learning, few studies explore the transferability of
prompts. Recently, (Vu et al., 2021; Wang et al.,
2021) verify the effectiveness of reusing prompts
of similar tasks to realize task transfer.

Massive work on cross-domain applies domain
adversarial approaches to learn domain-invariant
features (Ganin and Lempitsky, 2015; Ganin et al.,
2016). Some researches on cross-domain senti-
ment classification extract common shared features,
called pivots, which are frequent in both source and
target domains and are prominent (Ziser and Re-
ichart, 2018; Ben-David et al., 2020). Learning
pivots and non-pivots help capture features for the
task, rather than a specific domain.

8 Conclusion and Future Work

In this paper, we propose a general framework for
frame detection that can handle various issues and
frames. With the help of domain adaptation tech-
niques, we enable both the encoder and prompts
to learn transferable knowledge related to frames,
thus yielding improvement on several datasets. Tak-
ing advantage of prompt learning, the framework
can also deal with low-resource scenarios. In the
future, we plan to conduct experiments on other
formulations of framing analysis, e.g., diffusion of
frames.
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A Error Types

Table 7 shows the common error types mentioned
in Error Analysis.
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Code Error Type Description Examples

1 Annotation Difficulty

These instances highlight the challenges of
annotation: there are convincing arguments
that model’s predicted frames can be
appropriate labels.

Oh and the death penalty does not deter
crime.
Model predicted Policy Evaluation.

2
Missing Necessary
Contextual
Knowledge

Some frames are cued by lexical items but
lack real-word knowledge or meta-data to
induce the frames. E.g., model doesn’t
know the author of tweets is politicians so
that it can not recognize “my collegues”
refers to Political Factor.

Joined 210 of my colleagues in
urging supremecourt to ensure equal
marriage rights.
Model missed Political Factor.

3 Overgeneralizing
Some words are highly related. The model
makes erroneous predictions when such
features are used in different contexts.

American bombs aren’t yet falling on
syria, but chuck hagel suggested they will.
Model erroneously predicted Security.

4
Inferring Frames
not Explicitly Cued
in Text

Model predicts frames that may capture
an author’s intention but without sufficient
evidence from the text.

Stop immigration.
Model erroneously predicted Public Order.

5
Special Expressions,
Slang, and
Abbreviations

Some special terms, hashtags,
abbreviations that indicate certain frames
but not captured by the model.

American tax dollars must not be used
to aid and abet any dictatorial regime
that stands with terrorists! #noaid2egypt
Model missed External Reputation.

6 Unfamiliar Words

Some unfamiliar but important clues are
mentioned. Since they appear infrequently
during training, language models may not
understand them well enough .

Dementia complicates us gun ownership.
Model missed Mental Health.

Table 7: Common errors in frame detection.
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Abstract

Automatically summarizing patients’ main
problems from daily progress notes using nat-
ural language processing methods helps to
battle against information and cognitive over-
load in hospital settings and potentially assists
providers with computerized diagnostic deci-
sion support. Problem list summarization re-
quires a model to understand, abstract, and gen-
erate clinical documentation. In this work, we
propose a new NLP task that aims to generate
a list of problems in a patient’s daily care plan
using input from the provider’s progress notes
during hospitalization. We investigate the per-
formance of T5 and BART, two state-of-the-art
seq2seq transformer architectures, in solving
this problem. We provide a corpus built on
top of progress notes from publicly available
electronic health record progress notes in the
Medical Information Mart for Intensive Care
(MIMIC)-III. T5 and BART are trained on gen-
eral domain text, and we experiment with a data
augmentation method and a domain adaptation
pre-training method to increase exposure to
medical vocabulary and knowledge. Evaluation
methods include ROUGE, BERTScore, cosine
similarity on sentence embedding, and F-score
on medical concepts. Results show that T5
with domain adaptive pre-training achieves sig-
nificant performance gains compared to a rule-
based system and general domain pre-trained
language models, indicating a promising direc-
tion for tackling the problem summarization
task.

1 Introduction

The progress note is a common note type in the
electronic health record (EHR) that also contains
the necessary details for medical billing; there-
fore, every hospital day will contain at least one

Figure 1: When a sick patient arrives to the hospital, diagnos-
tic evaluations are performed to assess the patient’s condition
and deduce the problems causing the illness.

progress note for a patient. Healthcare providers
write them to document a patient’s daily progress
and care plan (Brown et al., 2014). The progress
note contains both subjective and objective infor-
mation gathered by the care team, and it is up-
dated daily and serves as the most viewed clini-
cal document by providers. The complexity of the
progress note increases as the patient’s illness wors-
ens with progress notes collected in the intensive
care unit (ICU) representing the sickest patients in
the hospital. In the ICU, information and cognitive
overload occur frequently, with more opportunities
for missed diagnoses and medical errors (Furlow,
2020; Hultman et al., 2019). Automatically gen-
erating a set of diagnoses/problems in a progress
note may assist providers in overcoming cogni-
tive biases and heuristics and apply evidence-based
medicine via information synthesis to accurately
understand a patient’s condition. These processes
may ultimately reduce the effort in document re-
view and augment care during a time-sensitive hos-
pital event (Devarakonda et al., 2017).
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Clinical note summarization using natural lan-
guage processing (NLP) has demonstrated promise
in previous work. Hirsch et al. (2015) introduced
HARVEST, an EHR summarizer that is currently
deployed at point-of-care in a New York hospi-
tal. The NLP components of HARVEST include
a Markov chain named-entity tagger that identi-
fies diseases explicitly mentioned in clinical notes
and a TF-IDF scorer that weighs the importance of
the mentions (Lipsky-Gorman and Elhadad, 2011;
Hirsch et al., 2015). With the advances of neural
methods, recent work has focused on radiology
report summarization (Zhang et al., 2018; MacA-
vaney et al., 2019; Gharebagh et al., 2020) with
pointer generator network (See et al., 2017), and
doctor-patient conversation summarization (Yim
and Yetisgen-Yildiz, 2021; Zhang et al., 2021) with
transformer architectures (Vaswani et al., 2017;
Raffel et al., 2020). Few investigations apply trans-
formers to Problem Summarization progress notes
to identify and generate the top diagnoses during a
patient’s hospitalization.

Problem summarization requires complex cog-
nitive processes to arrive at an accurate diagnosis.
When a patient is admitted to the hospital, medical
evaluations and diagnostics are initially performed
to understand a patient’s condition. The review
is accompanied by documentation in the progress
notes to include pertinent details about the patient’s
symptoms, medications, physical exam findings,
radiology findings, laboratory results, etc. These
data are organized in the progress note and used
with the physician’s medical knowledge to arrive
at an assessment of the current problems followed
by a treatment plan. The system of nonanalytic and
analytic reasoning strategies represent clinical di-
agnostic reasoning, a process involving clinical ev-
idence acquisition with integration and abstraction
over medical knowledge to synthesize a conclusion
in the form of a diagnosis(Barrows et al., 1980;
Bowen, 2006). We hypothesize that to summarize
a patient’s problems and ultimately develop com-
puterized diagnostic decision support systems, the
ability of clinical diagnostic reasoning is the key
for NLP systems, a gap in existing NLP literature.
In this work, we propose a new summarization task
designed to meet the real-world need in the hospital
setting as the first step to developing NLP models
for clinical diagnostic reasoning. The task is built
on a new annotation subset of MIMIC-III (John-
son et al., 2016), a large and publicly available

EHR. We formulate the task as a problem list sum-
marization, as we see the task as the first step in
a bigger vision of generating entire notes or sec-
tions of notes. Ultimately, the task is designed with
our clinical informatics partners to move toward
a future real-world application, where a system
generating relevant diagnoses can assist healthcare
providers and overcome the cognitive burden and
information overload. Our contributions include:

• The first knowledge-intensive summarization
task towards building NLP systems for com-
puterized diagnostic decision support (sec §3),
with an annotated set of clinical notes that are
publicly available (sec §4);

• An evaluation of two transformer models
for this task, T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020), to examine
progress in using the state-of-the-art models
over a rule-based medical concept extractor
(sec §5);

• Domain adaptive pre-training to establish
benchmark performance for this task across
multiple evaluation metrics (sec §6), with dis-
cussion of key challenges and future direc-
tions (§7).

2 Related Work

In this section, we provide a brief overview of re-
cently published papers on clinical summarization
that use neural methods.

Task setup The stream of recent work on clinical
summarization may be divided into two groups: ex-
tractive summarization and abstractive summariza-
tion. The data corpora are heterogeneous, with mul-
tiple note types represented. For extractive suma-
rization, Liang et al. (2019) proposes a summa-
rization task that extracts sentences from progress
notes. Adams et al.(2021) introduces a clinical
note summarization task to generate a discharge
summary generated from prior notes during hos-
pitalization. More efforts have been made toward
abstractive summarization. Several work focus on
summarizing radiology reports into an impression,
a short piece of text stating the findings from the
source image (Zhang et al., 2018; MacAvaney et al.,
2019; Gharebagh et al., 2020). Another task is
doctor-patient conversation summarization where
the output is a summary describing the patient’s
visit: (Yim and Yetisgen-Yildiz, 2021; Manas et al.,
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Input Assessment and Subjective Sections
(Assessment) Pt is a 78 y.o female with h.o COPD, HTN,
recent MVA with R.ankle/foot fx who presents with hypoxia
and LLL infiltrate.
Chief Complaint: Pt does not feel better than at admission,
still very fatigued and weak. SOB unchanged. No chest pain.
No other complaints.
Allergies: No Known Drug Allergies
Review of systems is unchanged from admission except as
noted below Review of systems:

Figure 2: An input example of assessment and subjective
sections available in the notes: Chief Complaint, Allergies,
Review of systems.

2021; Zhang et al., 2021); or generating clinical
notes using both extractive and abstractive summa-
rization: (Krishna et al., 2021). Our work is similar
to (Liang et al., 2019) in the emphasis on summa-
rizing problems from progress notes. Yet, Liang
et al. (2019) uses a disease-specific dataset (hy-
potension and diabetes), and formulates the prob-
lem as extractive summarization. Our annotations
span a broad range of diagnoses across multiple
disciplines (surgery, medicine, neurology, cardiol-
ogy, trauma, etc.) and investigate extractive and
abstractive approaches in the task.

Evaluation Prior work has relied on
ROUGE (Lin, 2004) as the primary evalua-
tion metric for summarization. Most papers also
report human evaluation with aspects of clinical
relevancy, factual accuracy and readability (MacA-
vaney et al., 2019; Gharebagh et al., 2020; Krishna
et al., 2021; Yim and Yetisgen-Yildiz, 2021; Zhang
et al., 2021). Few have evaluated using a concept
F-score, measuring if the predicted summaries
contain accurate medical concepts (Liang et al.,
2019; Zhang et al., 2021). Our work follows
prior work and uses ROUGE, concept F-score,
and human evaluation to assess the quality of
generated summaries. We also evaluate content
quality based on semantic representation using
BERTScore (Zhang* et al., 2020) and cosine
similarity for sentence embedding.

3 Task Description

Many clinical NLP applications aim to improve
physicians’ efficiency and decision-making by au-
tomatically highlighting essential information from
the large body of textual data in the EHR. The
goal of Problem Summarization is to identify and
generate the problems and diagnoses for the pa-
tient’s ICU stay. The Problem Summarization task
could be developed using a multi-document ap-
proach with all notes captured during a hospital

encounter. A patient encounter may generate mul-
tiple clinical notes (e.g. admission note, transfer
note, daily progress notes, etc.), involving different
modalities of data such as structured EHR data and
radiology images. However, we are particularly
interested in facilitating NLP model development
for clinical diagnostic reasoning. We define the
task as single-document summarization and focus
only on a cross-sectional point in time with a single
progress note. Our work will show that summa-
rizing a patient’s problems over a single progress
note is a challenging task and a necessary founda-
tion that requires clinical text understanding and
reasoning over sequences of medical concepts.

The progress note is organized in the ubiquitous
SOAP format with four components: Subjective,
Objective, Assessment, and Plan, a documentation
method designed to present patient’s problems in
a highly structured way and developed by Larry
Weed, MD (Weed, 1964). Each component has
multiple sections gathering patients’ information,
helping the healthcare providers quickly recognize
medical events and active problems. SUBJECTIVE

sections are written in natural language and record
information about health concerns expressed by
patients (e.g. CHIEF COMPLAINTS), and past med-
ical events and history (e.g. ALLERGIES, FAM-
ILY HISTORY). OBJECTIVE sections are primar-
ily structured data, including vital signs, lab tests,
medications. ASSESSMENT is a brief description
of passive and active diagnoses. It states why the
patient is admitted to the hospital and the active
problem for the day, usually accompanied by the
patient’s comorbidities. PLAN section includes
multiple subsections, each listing a medical prob-
lem and treatment plan. The progress note is time-
sensitive EHR data because it is documented daily.
As a patient’s condition changes and the length
of stay increases, the progress note may also in-
crease in length. Another reason for the increasing
size is from copy-and-paste behaviour, also known
as “note bloat" adding redundant information or
noise and hindering the efficiency in data synthesis,
which increases the risk for medical error (Rule
et al., 2021; Tsou et al., 2017; Shoolin et al., 2013).
This reiterates our motivation to develop an NLP
system that automatically generates problems and
diagnoses to assist providers in clinical workflow
and improve diagnostic accuracy.

Our task took Subjective and Assessment sec-
tions in progress notes as input and omitted the
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Objective sections. Both the Subjective sections
and the Assessment section contained information
about the reason for admission; therefore, they be-
came the source text (see Figure 2 for an exam-
ple). The reference summary is a list of problems
mentioned in each Plan subsection relevant to the
reasons for hospitalization. We will explain the
annotation process in the next section. 1

4 Data

All progress notes were sourced from MIMIC-III,
a publicly available dataset of de-identified EHR
data from approximately 60,000 hospital ICU ad-
missions at Beth Isreal Deaconess Medical Center
in Boston, Massachusetts. We randomly sampled
a subset of 768 progress notes and annotated the
text spans for the SOAP components. The goal of
the annotation was to obtain lists of problems from
the Plan subsections. For each Plan subsection, the
annotators marked the text span for the Problem,
separating the diagnosis/problems from the treat-
ment or action plans. The annotators subsequently
determined if the problem was a primary diagnosis
(Direct), or a past medical problem or consequence
from the primary diagnosis (Indirect). Two more
labels were available for annotating the Plan sub-
section: Neither if the problem or diagnosis was
not mentioned in the progress note; Not Relevant if
the Plan subsection contained non-diagnostic com-
ments such as describing nutrition, prophylaxis, or
disposition. Finally, we concatenated the Direct
and Indirect problems using semi-colons and used
them as reference summary. Two medical school
students were trained as annotators under the su-
pervision of two board-certified critical care ICU
physicians. On the four labels, they achieved a
Cohen’s Kappa of 0.74 on 10 randomly sampled
notes, considered as good quality given the com-
plexity of the task. More details may be found in
the Appendix A. 2

Figure 3 illustrates the task setup. The Direct
and Indirect problems were labeled from each Plan
subsection using information presented in the input
Assessment (entire progress note was also available
to the annotators for more information), forming
the reference summary (All Problems in the bot-
tom). A total of 1404 and 1599 text spans were la-
beled as Direct and Indirect Problems, respectively.

1Training script is available at: https:
//git.doit.wisc.edu/smph/dom/
UW-ICU-Data-Science-Lab/drbench.

2Annotation is available through PhysioNet.

The majority of the Direct problems were found
in the input Assessment but many of the Indirect
problems were not explicitly mentioned in the in-
put Assessment and may be found in other parts of
the progress note (abdominal pain finding in Sub-
jective or pneumothorax finding in chest imaging
result of Objective). We also performed medical
concept mapping through UMLS (see §5) on the
input Assessment and kept the overlap with the
reference summaries and categorized them Explicit
Mention of Problems as an automated labeling ap-
proach and baseline. Therefore, the problems rep-
resent extractive and abstractive medical concepts.
We presented the results across these subgroups as-
suming the complexity increases as we move from
Explicit to Direct to Indirect problems.

5 Experiment Setting

The Unified Medical Language System (UMLS)
from the National Library of Medicine is the largest
resource containing biomedical concepts and their
relationships (Bodenreider, 2004). We applied the
concept extractor from QuickUMLS (Soldaini and
Goharian), a fast and lightweight Python package,
to identify all the medical concepts in the text as
the baseline system. Two state-of-the-art seq2seq
transformers were selected to compare with the
rule-based method: T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020). The transformer mod-
els are known as data hungry and pre-trained on do-
main general text, yet our training data was limited
in size but full of medical terms. To help the model
learn the medical vocabulary and knowledge, we
used data augmentation to generate more training
samples for our experiments (§5.1 and §5.2).

5.1 Data augmentation

Figure 4 presents a workflow of the data augmen-
tation method across the following three steps:
(1) concept identification; (2) synonym mapping;
and (3) augmented sample generation. Given an
input text, the step of concept identification ex-
tracted ngram terms that were matched concepts
with UMLS entities, from QuickUMLS. This step
was done through a text matcher algorithm using a
cosine similarity threshold, setting as Jaccard score
with cosine similarity as 1 in our use case. The
results returned Concept Unique Identifiers (CUI),
a symbolic ID for the medical concept from UMLS.
An example output of this step is illustrated in Fig-
ure 4: a dictionary of the matched ngrams, e.g.
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Figure 3: Top: An example assessment input with all the concepts (highlighted in color box ) identified through QuickUMLS, a
state-of-the-art off-the-shelf medical concept extractor. Middle: Two example plan subsections with the the annotated problems,
with relation labels omitted. Bottom: The reference summary (All Problems) consists of problems annotated as the main reasons
for hospitalization (Direct Problems) and secondary concerns (Indirect Problems); explicit mention of the problems is detected
by overlapping the concepts identified through UMLS in input and reference summary.

Set Fine-tuning Data Augmt. DAPT

#Notes 700 132k 293k
Input Lens(σ) 43.3324.75 212.7478.39 46.1970.95

Table 1: Size and average input length (and standard deviation
σ) of training set for different experiment settings: the original
annotated set for fine-tuning, the data generated from data
augmentation method, and DAPT.

“pancreatic cancer”, with start and end character
positions and CUIs, e.g. [C0235974]. The map-
ping module in step 2 found synonyms through
CUIs. Here, we used OWLReady (Lamy, 2017)
that automatically constructed an UMLS ontology
graph, linking the concepts with relations and en-
abling a quick synonym lookup given a CUI. The
synonyms were then passed to the last module for
augmented sample generation. The last module ran-
domly chose the synonyms and replaced concepts.
An input text may contain n concepts, with each
concept having r maximum number of synonyms,
the number of combinations of synonyms rn grows
exponentially as n increases. Considering the ef-
ficiency, we limited the number of combinations
generated by concept replacement to 1000. We ran
the pipeline on both reference summary and input
assessment, and obtained approximately 132,000
pairs of samples for additional training data. We
conducted quality measurement on the augmented
samples and report the results in the Appendix B.

Figure 4: Workflow of the data augmentation method with
an input reference summary and output augmented sample

5.2 Domain adaptive pretraining with
random concept masking

The summarization task requires clinical text un-
derstanding and medical knowledge, exposing chal-
lenges for models pre-trained from the general do-
main. Previous work proposed strategies of contin-
uously training the pre-trained language model on
domain-specific tasks to enable domain knowledge
learning. (Gupta et al., 2021; Pruksachatkun et al.,
2020; Gururangan et al., 2020). We followed a
similar approach to investigate the effect of domain
adaptive pre-training (DAPT) on our summariza-
tion task. Specifically, we continuously trained
T5 on ASSESSMENT AND PLAN sections from
all progress notes in MIMIC, excluding the set of
notes for the test set. The result set had 293,000
notes, with the top 3 most frequent note types as
Nursing Progress Notes (181k), Physician Resident
Progress Notes (61k), and Intensivist Notes (25k).
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T5 was trained by random token masking: given
a text string, it randomly replaced the token spans
with a special tag “<extra_id_>" and learned to
generate the masked tokens. However, not all
words were equally important in our task and we
wanted the model to learn clinical semantic types
such as symptoms and diseases. Previous work pro-
posed masking on biomedical entities and time ex-
pression, achieving performance gains when com-
pared to BERT without entity masking (Lin et al.,
2021; Pergola et al., 2021). Inspired by these work,
we adapted a concept masking policy where we
randomly masked the concepts identified through
UMLS. We set the mask token ratio to 15%. For
example, the highlighted text in Figure 3 was ran-
domly replaced with the special tag. The statistics
of the training set are shown in Table 1.

5.3 Evaluation

We use ROUGE-L (Lin, 2004), a conventional met-
ric in summarization evaluation that based on n-
gram overlap, as well as BERTScore (Zhang* et al.,
2020), reporting maximum pairwise cosine similar-
ity on word embedding from reference summary
and predicted summary. ROUGE fails to recog-
nize synonyms and abbreviations, which are com-
mon in biomedical text: e.g., heart attack is the
same clinical diagnosis as myocardial infarction,
and MI is the abbreviation of myocardial infarc-
tion. BERTScore compensates this limitation by
using contextualized word embeddings from Sap-
BERT (Liu et al., 2021), a state-of-the-art BERT
encoder (Devlin et al., 2019) for biomedical entity
representation that assigns high cosine similarity
for synonyms and abbreviations based on UMLS.
The reliability of both metrics are validated in liter-
ature, thus we report them as main results.

Meanwhile, to better understand the system out-
put, we provide two additional metrics that measure
the quality of higher-level information and medi-
cal concepts. We took the hidden states of the last
layer from SapBERT when taking reference and
predicted summary as input, and measure the co-
sine similarity on sequence embedding (Sent.θ).
To evaluate the model’s performance in predicting
medical concepts, we ran QuickUMLS to get all
CUIs from the reference and predicted summaries
and computed the F-score. This metric has its own
limitation due to the tricky parameter tuning in
matching algorithms, causing superfluous or defi-
cient extraction. Regardless, we include them as

approximate solutions towards knowledge-based
evaluation for clinical summarization, and leave
the metric development for future work.

In the experiments, we set the maximum input
and output length to 512 and 128 tokens, respec-
tively. The input text was truncated if the maximum
length was exceeded. All experiments occurred on
two NVIDIA Tesla V100 32GB GPUs. We used
early stopping on the development set during train-
ing and saved the models with the highest valida-
tion ROUGE-L F-score for evaluation. More imple-
mentation details are presented in the Appendix C.

6 Results and Analysis

We evaluated all systems on a test set of 92 progress
notes and summaries. Recall that the progress notes
contained the Subjective, Objective, Assessment
and Plan sections. We set two types of input to
the models: (1) Assessment section only (ASSMT),
(2) Assessment and Subjective sections (length per-
mitting) (A+SUBJ). Both input settings also had
augmented samples from the data augmentation
method introduced earlier. We started with a sim-
ple rule-based system that was a UMLS concept
extractor on the Assessment section. The evalua-
tion metrics across the rule-based, fine-tuned T5
and BART (§6.1), and T5 with domain adaptation
pre-training (DAPT, §6.2) are shown in Tables 2
and 3. T5 with DAPT outperformed all other sys-
tems and established a benchmark performance
for the task. We include a qualitative analysis to
provide data-driven insights of the task (§6.3).

6.1 Overall performance of fine-tuned models

Table 2 represents ROUGE-L F-score, cosine simi-
larity on sentence embedding (Sent.θ), BERTScore
and CUI F-score. Overall, scores dropped from
Explicit Mentions to Direct Problems to Indirect
Problems, likely due to increasing complexity with
more abstractive concepts over extractive concepts.
Explicit Mention summarization was the easiest
and Indirect Problem summarization was the hard-
est. The rule-based system outperformed all T5
and BART variants on the Explicit Mentions, given
that it identified the obvious entity mentions. For
T5 and BART, fine-tuning with augmented sam-
ples slightly improved the ROUGE scores. Adding
subjective sections (A+SUBJ) did not bring bene-
fits, possibly because most subjective sections are
empty in ICU progress note. T5 had more variants
with better scores than BART. In our manual in-
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Model Setting Explicit Mentions Direct Problems Indirect Problems All Problems

RL-F Sent.θ BS CUI RL-F Sent.θ BS CUI RL-F Sent.θ BS CUI RL-F Sent.θ BS CUI

Rule-based ASSMT 34.45 58.81 59.80 38.97 12.31 55.33 40.13 34.23 9.49 55.58 44.46 33.16 13.45 68.61 50.32 43.93

T5

ASSMT 32.77 59.57 57.75 41.73 13.68 53.44 39.72 36.10 10.40 54.76 44.16 35.08 14.82 67.49 49.89 44.51
++ 31.76 58.74 57.12 42.19 13.78 53.65 40.30 35.84 10.55 54.10 43.48 35.20 15.00 67.32 50.36 44.55

A+SUBJ 20.24 50.04 47.55 33.44 9.52 51.91 39.72 30.43 7.10 54.14 43.87 30.29 10.89 64.63 49.75 39.02
++ 20.72 59.64 57.97 33.56 9.46 53.55 39.52 18.76 7.35 54.69 44.36 14.40 10.93 67.19 50.42 24.83

BART

ASSMT 25.70 54.98 52.99 32.49 10.00 53.66 39.08 29.41 8.04 54.66 43.12 29.04 11.56 66.86 48.48 38.36
++ 28.22 57.04 55.16 32.28 10.33 53.40 39.21 30.75 8.29 54.48 44.01 32.08 11.65 66.67 49.23 40.69

A+SUBJ 18.80 49.19 46.77 26.96 7.04 51.70 38.24 25.30 6.00 54.29 43.71 26.01 9.25 64.95 48.19 34.02
++ 20.23 57.91 54.68 32.91 7.88 53.85 40.21 30.09 6.85 54.61 43.15 30.12 9.84 67.00 49.70 38.72

Table 2: ROUGE-L F-score (RL-F), sentence embedding cosine similarity (Sent.θ), BERTScore (BS), and evaluation using CUI
F-score (CUI) from fine-tuning T5 and BART on the two input settings: Assessment (ASSMT), Assessment with Subjective
sections(A+SUBJ.) ++ represents the training with data augmentation.

Setting Model Token Masking Concept Masking

RL-F Sent.θ BS CUI RL-F Sent.θ BS CUI

Explicit ASSMT 32.66 61.34(↑2.53) 56.68 47.10(↑8.13) 29.86 55.87 53.91 40.27(↑2.14)
++ 26.94 59.40(↑0.59) 55.05 42.73(↑3.76) 32.82 58.21 56.80 43.16(↑4.19)

Direct ASSMT 12.69 53.63 42.40(↑2.27) 35.39(↑1.16) 14.90(↑2.59) 55.48(↑0.15) 47.10(↑6.97) 35.29(↑1.06)
++ 10.44 53.47 43.46(↑3.33) 37.45(↑3.22) 15.76(↑5.22) 56.82(↑1.49) 48.72(↑8.72) 37.74(↑3.51)

Indirect ASSMT 10.07(↑0.58) 52.72 41.47 38.19(↑5.03) 13.58(↑4.36) 53.44 44.91(↑0.45) 33.56(↑0.40)
++ 8.04 51.84 40.45 37.53(↑4.37) 13.28(↑4.06) 55.02 45.51(↑1.05) 35.10(↑1.94)

All ASSMT 14.49(↑1.04) 62.40 49.62 40.44 18.72(↑5.27) 64.69 54.03(↑3.71) 42.69
++ 12.12 63.08 50.20 45.58(↑1.65) 18.80(↑5.35) 66.08 55.29(↑4.86) 44.56(↑0.63)

Table 3: Performance of T5 with domain adaptation pre-training using Assessment (ASSMT) as input, under two mask policies:
Token Masking and Concept Masking. We report Rouge-L F-score (RL-F), and BERTScore (BS), as well as Sentence embedding
cosine similarity (Sent θ) and CUI F-score. Numbers with green background address the highest performance across all results,
with subscript number (↑) denoting the improvements over rule-based results.

Figure 5: Performance drops (lighter color) and gains (darker
color) over baseline (first column) on ROUGE-L Recall (top
4 rows) and Precision (bottom 4 rows). The darker the cell
color is, the higher performance gain the model obtains over
baseline.

vestigation, we find that BART generated text that
are not relevant to medical domain3. In sum, all
fine-tuned model performance were tied with the
baseline, which is impressive given that the base-
line uses domain knowledge (medical concept).

6.2 The effect of domain adaptation
pre-training

Table 3 contains results from training T5 with
DAPT and fine-tuned on the annotated set across
two methods for masking: random token (T5-
DAPT-TKS) and concept masking (T5-DAPT-

3see Appendix D for example output for all models

CUI). To highlight the differences before and af-
ter DAPT, we showed four scores as well as the
performance gained over the baseline system on
ASSMT input. Overall, both DAPT settings deliv-
ered better performance. The performance gain of
T5-DAPT-TKS was mainly from the CUI F-score
(+1.16 to +8.13). Superior results were seen from
T5-DAPT-CUI, achieving best performance on all
setting except for Explicit Mention, yielding large
performance gained on ROUGE F score(+2.59 to
+5.35) and BERTScore (+0.45 to +8.72).

In addition, Figure 5 includes the ROUGE Re-
call and Precision drops and gains from all mod-
els over baseline. ROUGE Recall measures the
content coverage and Precision computes content
relevancy in predicted summary (Lin, 2004). All
models reported lower recall compared to baseline,
indicating their coverage was limited. T5 DAPT
variants showed higher gains on precision, yield-
ing the largest gain (+5 to +12 for T5-DAPT-CUI).
These results indicate that continuously training T5
with domain vocabulary is a promising direction to
solve the task.

3Semicolons are removed during fine-tuning and evalua-
tion. We manually inserted them back for presentation pur-
pose.
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Figure 6: Two cherry-picked examples from T5-DAPT-CUI
output, with cyan fonts highlighted the correct diseases.4

6.3 Qualitative analysis

Besides the numeric metrics reported above, we
provide example predicted summaries and quali-
tative analysis done by a domain expert (a critical
care ICU physician). We cherry-picked two exam-
ples from T5-DAPT-CUI that best represent the
characteristics of medical diagnostic consistency in
clinical diagnostic reasoning, and present them in
Figure 6. Example 6.1 shows the model performed
extractive summarization: it generated both hy-
pertension and hypotension as relevant diagnoses
that represent an Indirect label for past medical
history of hypertension, and Direct label for an
active problem during the hospitalization with hy-
potension. In example 6.2, the model performed
abstraction summarization. The last half of the
Assessment highlights a type of heart attack (e.g.,
“NSTEMI") requiring an emergent medical proce-
dure (e.g., “cath wtih DES in LAD and LMCA"),
and the model summarized a rather complex state-
ment into a single, accurate diagnosis of Coronary
Artery Disease in its abbreviated form as “CAD".

7 Discussion

Our work begins with a single note in cross-
sectional design to build our models; however, a
patient’s hospitalization is a multi-document work-
flow with repeated measures of progress notes and
other note types across several days and multiple
providers. In addition, providers generate their di-
agnoses via a reasoning process that includes struc-
tured data from vital signs, laboratory results, etc.
Images and radiology reports are another modality
that highlights the multi-modality approach in diag-
nostic reasoning. Nonetheless, our work opens the
door for future research on knowledge intensive
clinical summarization. This section includes a
discussion of future directions in solving this task.

Figure 7: Two example reference (REF) and predicted sum-
maries (PRED) from T5-ALL (input with objective sections).

Exploring structured data The objective sec-
tion of the progress note contain embedded struc-
tured data, delivering rich information regarding pa-
tient’s problem. Recall the example in Figure 3, the
reference summary contains diagnosis: “Leukocy-
tosis" (high white blood cell count), “anemia"(low
red blood cell count). These diagnosis are usu-
ally found in laboratory results. To investigate the
use of objective sections and structured data, we
append both Subjective and Objective sections in
chronological order to the Assessment and input to
T5 for fine-tuning and evaluation (T5-ALL), and
we let the T5 tokenizer truncate the text when it
exceeds the 512 token limit. On test set, the scores
are too low to report. Yet, we observed that T5-
ALL, instead of generating medical concepts, often
extracts lines of lab values that strongly associate
with the disease in reference summary (see Figure
7.1 and 7.2). This preliminary result indicates the
future direction of understanding the association
between disease and lab values in summarization.

Incorporating knowledge into models We pro-
pose a knowledge intensive summarization task
that requires clinical text understanding, knowledge
representation and diagnostic reasoning. The exper-
iment results showed that the models pre-trained
on medical concepts effectively improved the per-
formance, while challenges remain in understand-
ing the associations among medications, symptoms
and disease. Recent work on event extraction and
clinical relation extraction incorporates biomedical
knowledge graph into pre-trained language mod-
els (Huang et al., 2020; Roy and Pan, 2021). Our
future work will investigate the incorporation of
knowledge graph into seq2seq pre-trained models.

Evidence-based evaluation Medical diagnosis
is a critical component of effective healthcare but
misdiagnosis is a major contributor to medical er-
rors, especially in critical care settings where quick
decision-making is needed. Medical diagnoses
predicted by systems that are not redundant must
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be contextually relevant to the data gathered in a
progress note to achieve valid reasoning. We be-
lieve an automated evaluation method for problem
summarization should assess the knowledge repre-
sentation, non-redundancy, and evidence relevancy,
and the automated metrics used in our work cover
partial aspects. Recently, Moramarco et al. (2021)
studied a fact-based evaluation for medical summa-
rization using human evaluation, which we plan to
carry out in future work.

8 Conclusion

We propose a problem summarization task that ad-
dress diagnostic reasoning, and show that T5 with
DAPT achieves benchmarking performance for the
task, but some key challenges remained. Our work
lays the ground for future research on knowledge
fused clinical summarizers as well as real-world
clinical diagnostic decision support system. Future
work will investigate the uses of structured data,
evidence-based evaluation metric and better models
for knowledge representation and summarization.

Ethical Statement The use of the data in this
research came from a fully de-identified dataset
(contains no protected health information) that we
received permission for use under a PhysioNet
Credentialed Health Data Use Agreement (v1.5.0).
The study was determined to be exempt from hu-
man subjects research. All experiments followed
the PhysioNet Credentialed Health Data License
Agreement.

Medical charting by providers in the electronic
health record is at-risk for multiple types of bias.
Our research focused on building a system to over-
come the cognitive biases in medical decision-
making by providers. However, statistical and so-
cial biases need to be addressed before integrating
our work into any clinical decision support sys-
tem for clinical trials or healthcare delivery. In
particular, implicit bias towards vulnerable popula-
tions and stigmatizing language in certain medical
conditions like substance use disorders are gen-
uine concerns that can transfer into language model
training (Thompson et al., 2021; Saitz et al., 2021;
Karnik et al., 2020). Therefore, it should be as-
sumed that our corpus of notes for this task will
carry social bias features that can affect fairness and
equity during model training. Before the deploy-
ment of any pre-trained language model, it is the
responsibility of the scientists and health system to
audit the model for fairness and equity in its per-

formance across disparate health groups (Saleiro
et al., 2018). Fairness and equity audits alongside
model explanations are needed to ensure an ethical
model trustworthy to all stakeholders, especially
patients and providers.
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A Annotator Training

We recruited two medical students as annotators
who received training in medical school curriculum
in SOAP note documentation. A three-week ori-
entation and training was conducted by one of the
critical care physicians. Each annotation achieved
an inter-annotator agreement with a kappa score
above 0.80 with the adjudicator. Another round

Input Sent.θ Jaccard Length Diff.

ASSMT 89.00 37.85 6.13 (4.12)
SUMM 83.14 14.43 9.42 (5.99)

Table 4: Quality measurement on augmented input assess-
ment (ASSMT) and reference summary (SUMM). For ever pair
of original and augmented sample, we report cosine similarity
between text embedding (θ), Jaccard token overlap, and mean
and standard deviation (σ) of length difference.

Hyper-parameter Setting

Optimizer AdamW
Epoch 10 (with early stopping)

Learning rate 1e-3, 1e-4
Batch size 256

Gradient accumulation True

Table 5: Hyperparameters for T5 DAPT

of training was performed on 200 notes and the
inter-annotator agreement was measured between
annotators and the adjudicator. The annotation was
reviewed if the kappa score is below 0.80 threshold.

B Quality Measure for Data
Augmentation

The quality of augmented data directly affected the
training process. To ensure a high-quality training
corpus, we randomly selected 2,000 pairs of aug-
mented samples. We evaluated how well the mean-
ings were preserved in the augmented sample, and
how much lexical variance was introduced into the
augmented samples. We reported cosine similarity
between the embedding pairs for quality of mean-
ings, and we reported Jaccard similarity for degree
of string overlap. Specifically, given a pair of the
original sample and the augmented sample, we gen-
erated a text embedding through SapBERT (Liu
et al., 2021), a BERT encoder pre-trained to repre-
sent biomedical entities using UMLS. We expected
a high cosine similarity if the augmented samples
expressed the same meanings as the original sam-
ples. We ran Jaccard similarity by treating the
samples as lists of tokens, and expected a low Jac-
card score if there were new terms introduced in
the augmented samples, e.g. ARF and Acute Renal
Failure. We also reported the mean and standard
deviation of the length differences between orig-
inal and augmented samples (Table 4). On both
input assessment and reference summary, the co-
sine similarity between original and augmented
samples was higher than 0.80. Assessment input
contained more words that were not biomedical
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Input ALCOHOL ABUSE Assesment: This is a 37 year-old male with a history of alcoholism with multiple admissions for
detox and history of DTs/withdrawal seizures who presents with intoxication followed by withdrawal.
Reference ETOH intoxication; Elevated lipase

FT-T5 ALCOHOL ABUSE Assesment: This is a 37 year-old male with multiple admissions for detox and history of
DTs/withdrawal seizures who presents with intoxication followed by withdrawal.
FT-BART ALCOHOL ABUSE DIAGNOSIS Assesment: This is a 37 year-old male with a history of alcoholism with
DTs/withdrawal seizures. He presents with intoxication followed by withdrawal. Alcoholics Anonymous: He is an alcoholic
with multiple admissions for alcohol abuse and drug addiction. This male is the only person in the state of Alabama with alcohol
dependence.
T5-DAPT-TKS This is a 37 year-old male with history of DTs/withdrawal seizures who presents with intoxication followed by
withdrawal
T5-DAPT-CUI history alcoholism history history of dts/withdrawal seizures admissions alcohol abuse history

Figure 8: Given an input assessment, we show the reference summary, example output from fine-tuning T5 and
BART, and T5 DAPT with token masking and concept masking. The red fonts show the information that is outside
the input text.

Hyper-parameter Setting

Optimizer Adam
Epoch 10 (with early stopping)

Learning rate 1e-4, 1e-5, 1e-6
Batch size 4

Task Prefix (t5) “summarize:"
Encoder max length 512
Decoder max length 128

Beam size 10
Length penalty 1

no repeat ngram size 2

Table 6: Hyperparameters for fine-tuning T5 and BART

concepts; thus, the augmented sample had a greater
proportion of overlapping text than the reference
summary. Both had more than 6 token differences
in length. In conclusion, our proposed strategy of
data augmentation successfully produced a high
quality training corpus.

C Hyperparameters

Here we report the hyper-parameters we used for
T5 DAPT experiments in table 5, and fine-tuning
for t5 and BART in table 6. The input length to both
T5 and BART is set to 512 tokens. On the train-
ing data, the average length of input assessment
is 43.33 tokens, and the average length of input
and subjective sections is 70.97 tokens. Therefore
the maximum encoder length is appropriate for our
task.

D Model Example Output

Figure 8 shows the example output from fine-
tuning T5 and BART, and T5-DAPT with token
masking as well as concept masking policy. T5-
DAPT-CUI extracts medical concepts. FT-T5 and
T5-DAPT-Tks extract sequence of text from input

assessment. FT-BART produces text with informa-
tion that is not mentioned in the input (red fonts).
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Abstract

Current NLP techniques have been greatly ap-
plied in different domains. In this paper, we
propose a human-in-the-loop framework for
robotic grasping in cluttered scenes, investigat-
ing a language interface to the grasping pro-
cess, which allows the user to intervene by nat-
ural language commands. This framework is
constructed on a state-of-the-art grasping base-
line, where we substitute a scene-graph rep-
resentation with a text representation of the
scene using BERT. Experiments on both sim-
ulation and physical robot show that the pro-
posed method outperforms conventional object-
agnostic and scene-graph based methods in the
literature. In addition, we find that with human
intervention, performance can be significantly
improved. Our dataset and code are available
on our project website 1.

1 Introduction

Grasping (Mahler et al., 2019) is a fundamental
task for robot systems. It is useful for warehousing,
manufacturing, medicine, retail, and service robots.
One setting in robotic grasping is to grasp object
orderly without disturbing the remaining in clut-
tered scenes (Chen et al., 2021b; Mees and Burgard,
2020; Zhang et al., 2021a) (called collision-free
grasp). To solve this problem, a typical method
(Zhu et al., 2021) parses the input into a scene
graph first (Figure. 1(b)), in order to infer the spa-
tial relation between objects and select a collision-
free object for grasping. In particular, as shown in
Figure. 2(a), nodes in a scene graph represent ob-
jects and edges represent their spatial relationship.
Such structural knowledge can effectively improve
the grasping performance as compared to an end-
to-end model without scene structure information
(Chu et al., 2018) (Figure. 1(a)).

∗ Corresponding Author
1https://sites.google.com/view/

hitl-grasping-bert

Figure 1: Various model structures for robotic grasp-
ing. (a) End2End (Chu et al., 2018) outputs an object-
agnostic grasping by directly modeling on the input
images. (b) Scene-Graph Representation fuses a gen-
erated scene graph with visual feature to predict grasp-
ing. (c) Scene-Text Representation (ours) makes use
of language scene description and visual feature for
achieving collision-free grasping.

As a structured representation of the scene, the
scene graph has a few limitations. For example, it
can be costly to manually label scene graphs, and
the amount of existing labeled data is quite small.
In practice, due to variance in the working environ-
ment, it can be necessary to calibrate a scene under-
standing model when deployed on physical robots
(Zhu et al., 2021). This problem can be regarded
as a domain adaptation task, which requires a cer-
tain amount of labeled scene graph data (Xu et al.,
2017). In addition, graphs are relatively abstract
and thus inconvenient for human-robot interaction.

We consider a natural language representation
of the scene for substituting a scene graph struc-
ture representation. As shown in Figure. 2(a),
small texts such as “notebook placed under pli-
ers” and “apple on notebook” are used to indi-
cate the recognized objects and their stacking re-
lations. Compared with a scene graph structure,
natural language scene representation has the fol-
lowing advantages. First, the cost of manual label-
ing is relatively lower thanks to the availability of
speech recognition systems (Chiu and Raffel, 2018)
and the relative independence from labeling GUI
(Srivastava et al., 2021). Second, the state-of-the-
art pre-trained representation models (Kenton and
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Toutanova, 2019; Radford et al., 2019) can be used
to improve scene understanding, which contains
external knowledge beyond a scene graph structure.
Third, online human interaction can be achieved by
using human input of the natural language scene
representation to replace incorrect robot scene un-
derstanding through speech communication2.

As shown in Figure. 1(c), we adopt the model of
Zhu et al. (2021) by substituting the scene graph
with a text description of the object to grasp and
its spatial context, and using a neural image-to-text
model for scene understanding and a pre-trained
language model to represent the scene text for vi-
sual language grounding in subsequent grasping
decisions. We compare the model performance
with a dominant two-stage end-to-end planar grasp-
ing baseline (Chu et al., 2018) (Figure. 1(a)) and
the baseline scene graph model (Figure. 1(b)). For
all models, the grasping backbone is implemented
using an extended version model of (Chu et al.,
2018) with extra scene knowledge input.

For training and evaluation, we make extensions
to the Visual Manipulation Relationship Dataset
(VMRD) (Zhang et al., 2019b) by manually adding
text descriptions and scene graphs to the scenes, re-
sulting in a new dataset L-VMRD, as shown in Fig-
ure. 2(a). Experimental results show that (1) human
language description can be a highly competitive
alternative to the scene graph representation, giving
better results for grasping; (2) online human lan-
guage intervention is useful for improving the final
grasping results, which is a new form of human-in-
the-loop grasping. This indicates the promise of
NLP models, especially pre-trained language mod-
els, for human-robot interaction. To our knowledge,
we are the first to consider explicit textual scene
representation and human intervention correction
for robot grasping decisions, where BERT (Ken-
ton and Toutanova, 2019) is firstly introduced into
the internal structure of a robotic model as a state
representation.

2 Task and Dataset

The input of the robotic grasping task is an image
from robotic camera observation and the output
is a grasping configuration (a grasping bounding
box). As shown in Figure.1(c), we introduce a
language description for the scene (image) during
the inference process. We take a human-in-the-

2We adopt the typed text to simulate the process here since
voice recognition is beyond our research scope

(a) Overview of proposed dataset L-VMRD

(b) Relationship tree & Scene graph.
Figure 2: (a): L-VMRD is built on VMRD. We extend
(i) scene language description, (ii) scene graph and (iii)
surface per grasp, including 112, 965 scene object re-
lationship expressions and 21, 713 surface attributes
paired with grasp bounding boxes. (b): relationship tree
vs. scene graph.

loop setting, where the language description can be
obtained from a scene understanding model (Self-
explanation) or human (Human-intervention).

Existing grasping datasets (e.g., VMRD Zhang
et al. (2019b)) cannot be employed directly, be-
cause they do not include scene knowledge in hu-
man language. Hence, we develop an extended
language version of VMRD, named L-VMRD, to
evaluate our method. L-VMRD is an integrated
dataset, and each sample is organized as a 6-tuple
(image, language descriptions, scene graph, ob-
ject bounding box, grasping bounding box, sur-
face) shown in Figure. 2. L-VMRD contains
4, 676 samples, and is split into (train/validate/test)
= (3, 740/468/468). The detail of dataset gener-
ation and usage in modeling are demonstrated in
Appendix A.1.1 and A.1.2. Below we describe the
main extensions from VMRD (Figure.2(a)).

Language Description in L-VMRD Object
pairs in an image are sampled and labeled with
a scene description. There exist many factors that
affect collision-free grasping, in which stacking
is the most significant one (Avigal et al., 2021).
We first label the objects with the stacking rela-
tionship, e.g., “apple on notebook” or “notebook
sitting under pliers” in Figure. 2(a), and then label
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Figure 3: Overview of our proposed model. Firstly, a scene image is given to a human and an image-to-text model
to generate a scene description. Secondly, scene description is fed into a BERT-based language grounding model to
select a collision-free object. Thirdly, the grounded object is as the internal result fused into the language-based
grasping model.

the horizontal relationship between non-stacked.
Then considering the distribution of the horizontal
relationships (“left”, “right”, “front”, “back”) in
our dataset, we use “left” and “right” to indicate
the scene relationships.

Scene Graph The original VMRD dataset in-
cludes partial relationships for adjacent objects,
encoded by a relationship tree that only reveals the
stacking relationship between two objects but is not
able to indicate the relationship between objects
stacked directly. To facilitate inference, we add a
full scene graph to encode the pair-wise relation-
ships of objects per image, where nodes and edges
present objects and relationships, respectively. De-
tail is available in Appendix A.1.3.

Grasp-wise Spatial Attribute We introduce
each grasp bounding box with a new attribute
named surface. It is a binary variable indicating
whether the grasped object sits on the top (True –
on the top, False – stacked by other objects.). It is
a grasp-wise label and can improve the robustness
of the grasping model. An example is available in
Appendix A.1.4.

3 Our Approach

The overall framework is shown in Figure. 3. The
input scene image is fed into convolutional-based
grasping model (Sec. 3.1) and scene understanding
model (Sec. 3.2; Sec. 3.3), respectively. The scene
understanding model is an image-to-text compo-
nent that produces a sentence that describes the ob-
ject to grasp and its context, such as “toothpaste put
above box”. That scene description is then fused

with intermediate grasping results to select object-
related grasping candidates by pre-trained language
model and language grounding model. The final
grasping output is selected with high probability
after re-optimization. A grasp command is sent to
a real robot to complete a collision-free grasping
operation. For the human-in-the-loop scenario, an
extra conditional input from human-intervention
will be given to correct scene description when the
description from the image-to-text model is incor-
rect.

3.1 Overall of Language-based Grasping
Model

Let I denote an image as perceptive information
from the environment (i.e., cluttered scenes). Our
robot f first identifies the grasp configuration from
observation I . A typical 5-dimensional grasp con-
figuration is given by:

gi = f(I) = (x, y, θ, w, h), (1)

where (x, y) is the center position of the grasp rect-
angle, θ is the orientation angle with the x-axis,
and (w, h) is the weight and height of the grasp
rectangle. A general robotic grasping is presented
by a probability P (gi|I), where gi ∈ G and G is a
set of grasping candidates.

To achieve more stable and safe grasping, a joint
probability P (gi,Kg|I) can integrate additional
scene knowledge Kg as auxiliary information to
guide vision-based grasping. It can be decomposed
into conditionally independent two parts, given by:

P (gi ,Kg|I) = P (gi |I,Kg)P (Kg|I) , (2)
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where P (Kg|I) is a scene understanding model. It
can be a scene structure parsing model (Zhu et al.,
2021; Figure. 1(b)), an image-to-text model (Fig-
ure. 1(c); Sec.3.2) with grounding model (Sec.3.3)
or direct human intervention with grounding model
(Sec.3.3). P (gi |I,Kg) is a convolutional network
and the details are described in Appendix A.2.

3.2 Grasping Scene Understanding
A state-of-the-art image-to-text model (MMT)
(Cornia et al., 2020) is used to generate the
scene description in our work, which is a stan-
dard encoder-decoder Transformer-based model
(Vaswani et al., 2017), that learns a multi-level
representation of the relationships between image
regions integrating with learned prior knowledge,
and uses a mesh-like connectivity at decoding stage
to exploit low- and high-level features. More de-
tails are in Appendix A.3.

Encoder A set of image regions I as Input is fed
into encoding layer following Eq. (3).

Z = AddNorm (Mmem (I)) ,

X̃ = AddNorm (F (Z)) ,
(3)

where AddNorm indicates the composition of
a residual connection and layer normalization.
Mmem is memory-augmented attention operation
in Eq. (4). F (Z) is a position-wise feed-forward
layer composed of two affine transformations with
a single non-linearity. X̃ = (X̃1, ..., X̃i..., X̃N ) is
the set of all encoding layers and N is the number
of layers.

Men (I) = Attention (WqI,K, V ) ,

K = [WkI,Mk] ,

V = [WvI,Mv] ,

(4)

where Attention is the self-attention operations
used in (Vaswani et al., 2017). Wq, Wk, Wv are
matrices of learnable weights. Mk and Mv are
learnable prior information.

Decoder The decoder takes an input sequence
of vector Y and output layers from encoder X̃ , and
then outputs sequence Ỹ , in Eq. 5.

Z = AddNorm
(
Mde

(
X̃
)
, Y
)
,

Ỹ = AddNorm (F (Z)) ,
(5)

where Mde is defined in Eq. 6. Y is the input
sequence of vector (groundtruth).

Mde

(
X̃, Y

)
=

N∑

i=1

αi⊙C
(
X̃i, Y

)
,

C
(
X̃i, Y

)
= Attention

(
WqY,WkX̃

i,WvX̃
i
)
,

αi = σ
(
Wi

[
Y,C

(
X̃i, Y

)]
+ bi

)
,

(6)

where C is cross-attention operation, σ the sigmoid
activation function, and ⊙ element product.

We make use of two adaptations during training.
The first replaces the region features in MMT3 (Cor-
nia et al., 2020) with the concatenation of region
features with bounding box features. Secondly, we
add an extra score to multiply the CIDEr-D reward
(Rennie et al., 2017) during training by maximizing
a reinforcement learning based reward, since the
description of subject object is usually the grasped
one in our task. The score is computed by the cor-
rect rate of the subject over all generated sentences
for each training batch.

3.3 Language Grounding for Grasping
We make use of visual language grounding mod-
els to map a scene description to a specified ob-
ject. For visual language grounding, let Q repre-
sent a query sentence from human or image-to-
text model and I ∈ RH×W×3 denote the image of
width W and height H . The task aims to find the
object region Kg represented by its center point
(xt, yt) and the object size (wt, ht). The overall
method can be formulated as a mapping function
(xt, yt, wt, ht) = ϕ(Q, I).

In this paper, considering the real-time robotic
control, we deploy our task on a one-stage language
grounding model4 (Yang et al., 2019) based on
YOLOv35 (Redmon and Farhadi, 2018) with differ-
ent language encoders for the mapping function ϕ.
Formally, the scene image I and scene description
Q are input to the visual encoder and text encoder,
respectively, and the grounding module outputs the
grounded object with encoders’ features following
Eq. 7.

Zvis =Mvis (I) ,

Zlang =Mlang (Q) ,

Kg = Ground ([Zvis, Zlang, Zspatial]) ,

(7)

where Mvis is Darknet-53 (Redmon and Farhadi,
2018) pre-trained on COCO object dataset (Lin
et al., 2014) and fine-tuned on our proposed
L-VMRD. Ground is the same as the out-
put layers of YOLOv3. Zspatial is spatial
feature of visual feature defined as follows:
( i
W , jH ,

i+0.5
W , j+0.5

H , i+1
W , j+1

H , 1
W , 1

H ), which de-
notes top-left, center, bottom-right plane coordi-
nates, sizes of the each pixel in visual feature

3https://github.com/aimagelab/meshed-memory-
transformer

4https://github.com/zyang-ur/onestage_grounding
5YOLOv3 is a typical object detection model and derives

many multimodal variants.
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mapping Zvis, respectively, normalized by the
width W and height H of the feature mapping.
i ∈ {0, 1, ...,W − 1} and j ∈ {0, 1, ...,H − 1}.

For Mlang of the text encoder, we choose BERT
(Kenton and Toutanova, 2019)6 and the encoder of
Transformer (Vaswani et al., 2017) (simply named
Transformer). BERT is a pre-trained language
model and builds on the Transformer network.
Each description is fed into Mlang, resulting in 768
dimensions embeddings of all the tokens as natu-
ral language representations. Transformer7 can be
regarded as randomly initialized BERT without pre-
training. Each description is embedded into 1, 024
dimensions embeddings. The model is randomly
initialized.

3.4 Training Details
We break an end-to-end grasping training pro-
cess into three submodules, (i) image-to-text (self-
explanation), (ii) language grounding, and (iii)
language-based grasping successively. The first
two models are trained based on the original project
configurations. The detail of the last one is de-
scribed in Appendix A.4.

4 Evaluation

We construct both simulation and physical experi-
ments to investigate four research questions:
Q1: How much natural language (unstructured)
scene description perform better than scene graph
(structured) knowledge in collision-free grasping
task?
Q2: How much does the pre-trained model perform
better than the randomly initialized model in our
task?
Q3: How and where does human intervention us-
ing NLP improve grasping performance under the
proposed human-in-the-loop framework?
Q4: How does our method perform on a physical
robot? Does data collection from our proposed
human-in-the-loop framework improve efficiency
during the fine-tuning process?

4.1 Settings
Scene and Platform Implementation In simula-
tion experiments, we use the test set split in Sec. 2
to evaluate our method. In the physical experiment,
we collect objects and set up the placement as sim-
ilar as possible to the training set, in which 2-6

6We use bert-base-uncased model in our work.
7https://github.com/pytorch/examples/tree/master/

word_language_model (6 encoder_layers implemented)

objects are randomly placed (stacked) on a white
table. But the reality gap is usually inevitable, espe-
cially in a robotic environment, which also tests the
robustness of our method implicitly. Other details
of the robot and training framework are described
in Appendix A.5.
Evaluation Metrics We take Benchmark Perfor-
mance and Success Rate as the main evaluation
metrics. The first is used in both simulation and
physical experiments, and the second one is only
used in the physical robot experiment:
• Benchmark Performance: In simulation exper-
iment, we evaluate model performances of the
collision-free grasp using the object retrieval top-k
recall (R@k) and top-k precision (P@k) metrics
to evaluate multi-grasp detection (Hu et al., 2016).
Chen et al. (2021b) proposes above metric to eval-
uate language-based multi-grasping. We do not
compare it with our work directly, because: (i)
their work (including dataset) is not open-sourced.
(ii) it is just a command-based end-to-end grasping
method that did not consider language scene under-
standing with human-in-the-loop. In physical robot
experiment, accuracy is the percentage of correct
cases over all test cases. The correct case is defined
in Appendix A.6.
• Success Rate: In the physical robot experiment,
we calculate the percentage of successful collision-
free grasps over all grasping trials.

4.2 Models

We compare different pipeline methods visualized
in Figure. 1. The baselines include:
End2End We re-train a state-of-the-art end-to-end
object-agnostic planar grasp detection model Multi-
Grasp (Chu et al., 2018) on L-VMRD, shown in
Figure. 1(a).
SceneGraph-Rep This is shown in Figure. 1(b) us-
ing a structured form of the scene graph generation8

(IMP) (Xu et al., 2017) encoded with relational
graph convolution network (RGCN) (Schlichtkrull
et al., 2018) shown in Figure. 3. It replaces the
subprocess from Image-to-Text Model to Language
Grounding Model in Figure. 3 to select the grouned
object. See details in Appendix A.7.1.
Our proposed models (Scene-Text Representation
in Figure. 1 (c)) include:
SceneText-{BERT, Transformer} They are mod-
els using image-to-text MMT (Cornia et al., 2020)
with language grounding (Yang et al., 2019) to re-

8https://github.com/jwyang/graph-rcnn.pytorch
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Method R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10
End2End 42.5 66.2 78.9 88.9 42.5 40.5 40.1 37.5
SceneGraph-Rep 72.2 85.6 90.3 92.2 73.8 70.7 69.0 64.0
SceneText-Transformer 72.2 85.6 88.3 90.3 72.4 68.8 66.2 61.6
SceneText-BERT 73.7 88.9 91.8 93.1 73.9 71.9 69.2 65.3

With Human-intervention
SceneText-Interv-Oracle 77.0 89.1 90.8 91.4 78.0 76.4 75.0 71.7
SceneText-Interv-Transformer 75.9 88.8 91.8 92.4 76.3 71.2 69.2 64.9
SceneText-Interv-BERT 76.9 90.3 93.0 94.9 76.3 75.3 73.6 69.1

Table 1: Results of self-explanation and human-intervention models in the simulation experiment. The best
performance is highlighted in bold.

Figure 4: Visualization of baseline models and our pro-
posed models in our work. S means a successful case,
while F means a failure case.

alize explainable grasping (Self-explanation w/o
Human-intervention).
SceneText-Interv-{BERT, Transformer} They
bring in human-intervention shown in Figure. 3.
In SceneText-Interv-Oracle, the retrieval region
of language grounding from the groundtruth is fed
directly into the downstream grasp model (Self-
explanation w/ Human-intervention).

4.3 Simulation Results

Scene Knowledge Table 1 gives the results of the
end-to-end, scene-graph based method, and our
method on L-VMRD data. In this setting, the input
of the model is only the image and models pre-
dict a collision-free grasping. Although End2End
(Chu et al., 2018) is the state-of-the-art method in
object-agnostic grasping, it performs poorly on the
cluttered scene grasping tasks. In contrast, by first
obtaining a scene graph and then predicting the se-
lected object, the SceneGraph-Rep model gives
much improvement, with 72.2% over End2End
R@1. This shows the necessity of scene under-
standing for the collision-free grasping task. As a

case study, in Figure. 4(a)(b), SceneText-* gener-
ate self-explanation expression and obtain correct
collision-free grasping, while End2End predicts
incorrect grasping (incorrect object selection and
low-quality grasp detection).

Scene Graph vs. Natural Language For Q1, com-
pared with SceneGraph-Rep model which has R@1
of 72.2%, our method SceneText-BERT gives a bet-
ter R@1 of 73.7%. This shows the feasibility of
using natural language to replace the scene graph
for object selection. Both methods are trained un-
der the same settings, yet a natural language is
more useful for achieving expandability in real-
time human-robot interaction, thanks to its direct
connection to the natural representation of the
scene. For Q2, among our models, BERT can better
parse the generated scene descriptions than Trans-
former model in both P@k and R@k, which shows
the benefit of external pre-training. Note that Trans-
former alone does not outperform SceneGraph-Rep
in Table 1. The results show that pre-training al-
lows a textual representation of the scene to com-
pete with a standard graph representation. More
case studies can be found in Appendix A.7.2.

Human-intervention For Q3, the last two rows
in Table 1 show that the models can take human
language descriptions about the cluttered scene
as a guidance or error correction for its own tex-
tual scene representation. By comparing results
in Table 1, we can find that our proposed human-
in-the-loop framework improves the performance
from SceneText-* to SceneText-Interv-*. For exam-
ple, compared with SceneText-BERT, SceneText-
Interv-BERT improves the R@1 value from 73.7%
to 76.9%, which shows that human intervention can
be useful in practical scenarios. As a case study
shown in Figure. 4(c)(d), the image-to-text model
generates an incorrect relationship between “box”
and “mobile phone”, leading to a failed collision-
free grasping detection on the stacked box. In con-
trast, an extra human scene language description
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Inter(%) 0 25 50 75 100
baseline

(L-VMRD)
MMT 44.6 45.4 49.2 51.7 55.0 12.5
LangGr 91.3 91.7 90.8 92.1 92.9 79.6

Table 2: Results of image-to-text accuracy and language
grounding accuracy @0.5 in the physical experiment.
Inter- for short of intervention rate, e.g., Inter-100.

corrects the self-explanation description and helps
the model to obtain a correct collision-free grasp-
ing detection. Within the above process, 21.1%
scene language description from a robot is incor-
rect and intervened by human-correction. We also
present the results of different human-intervention
rates on F1 score, between SceneText-BERT and
SceneText-Interv-BERT. As shown in Figure. 6(a),
with the increase of human-intervention, the F1
score improves steadily. This shows that human
language intervention can compensate for the flaws
of scene understanding from the image-to-text mod-
els effectively.

4.4 Physical Robot Results
We only investigate the performance of BERT-
based models (SceneText-BERT, SceneText-Interv-
BERT) in the physical robot experiment. We re-
cruit five graduate students to participate in our
real-world experiment, who observe one whole
process of a cluttered grasping with human-like
grasping object selection each time by turns. When
the image-to-text (self-explanation) model outputs
an erroneous description, they correct the scene
description by text typing decisively. Ultimately
we collect 400 samples, including 160 correct
output samples without human-intervention (self-
explanation) and 240 human corrected (interven-
tion) samples using the model trained on L-VMRD.
Each sample contains an image, a language descrip-
tion sentence, and a grounded object bounding box.
A pipeline case containing human-intervention is
shown in Figure. 5.
Human-in-the-loop Learning Deployment In-
spired by Lu et al. (2022), we take 160 samples
as the training set to fine-tune our model based on
different intervention rates (proportion of human-
intervention samples, Inter for short). We ran-
domly sample 80 samples from the remaining
240 human-intervention samples (getting rid of
training used) as our test set. We repeat the pro-
cess three times to generate three different test
sets. The results in Table 2 show the mean val-
ues of models test on three test sets. For Q4, Ta-

Figure 5: A pipeline of real robot execution with human.

ble 2 shows the Benchmark Performance of mod-
els fine-tuned on different intervention rate train-
ing sets. The values of baseline are from the
image-to-text model (MMT) and language ground-
ing model (LangGr) trained on L-VMRD, respec-
tively, which show the necessity of domain adapta-
tion. For both MMT and LangGr, the models fine-
tuned on human-intervention data (intervention
rate 100%) achieve the best performance (55.0%
and 92.9%). For MMT, the best model improves
up to 42.5% compared to baseline (12.5%) and
10.4% compared to the model fine-tuned on self-
explanation (44.6%, intervention rate 0%). For
LangGr, the best model improves up to 13.3%
compared to baseline (79.6%) and 1.6% compared
to the model fine-tuned on self-explanation data
(91.3%). This shows that the data collected from
human-intervention can achieve better performance
in domain adaptation from simulation to physical
environment.
Evaluation on Physical Robot For a final per-
formance test, we conduct extra 80 grasping tri-
als9 for each model settings corresponding to Ta-
ble 2. Grasping performance execution by a physi-
cal robot is shown in Figure. 6(b). End2End is the
result from our baseline model trained on L-VMRD
in Figure. 1(a). MMT and MMT+LangGr are
models fine-tuning image-to-text or both image-
to-text and language grounding respectively in
SceneText-BERT setting. +human adds extra hu-
man intervention (SceneText-Interv-BERT) with
Inter-100 fine-tuning model during grasping.

As shown in Figure. 6(b), our proposed method,
which fine-tunes on human-intervention collec-
tion data, achieves 67.9% and 75.6% success
rate compared to our baseline (63.8%). For Q3
and Q4, our proposed methods achieve 71.8%(↑
3.9%) and 80.8%(↑ 5.2%) success rate with
human-intervention (+human) compared to with-
out human-intervention (67.9%, 75.6%), in which

9We keep 80 object placements for each setting consistent.
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46.3% scene language description from a robot is
incorrect and intervened by human-intervention.
This shows that human language intervention can
improve the performance of grasping online on
a real robot compared to the only image-to-text
(self-explanation) method. Moreover, results from
MMT and MMT+LangGr show that using human-
intervention samples to train models can achieve
better performance when there are very few to fine-
tune the model. This indicates our proposed human-
in-the-loop framework is applicable and performs
well on the physical robot.

5 Related Work

Natural Language and Robotics Natural lan-
guage has been used with a variety of robot plat-
forms, ranging from manipulators to mobile robots
to aerial robots (Ahn et al., 2022; Raychaudhuri
et al., 2021; Thomason et al., 2016; Chen et al.,
2021a; Scalise et al., 2019). Most existing work is
related to language understanding and language
generation problems. For human-to-robot, lan-
guage grounding is the mainstream means to learn
the connection between percepts and actions in vi-
sual language navigation (Anderson et al., 2018;
Ku et al., 2020) and robotic grasping tasks (Can
et al., 2019; Zellers et al., 2021; Wang et al.,
2021). For robot-to-human, multi-modal natural
language generation (NLG) is widely adopted to
lessen the communication barriers between humans
and robots (Vinyals et al., 2015; Li et al., 2020;
Cornia et al., 2020; Yuan et al., 2020; Shi et al.,
2021; Zhang et al., 2021b), converting non-verbal
data to the language that human can understand
(Singh and JV, 2020). For bidirectional human-
robot, Yuan et al. (2022) propose an explainable
artificial intelligence system in which a group of
robots predicts users’ values by taking in situ feed-
back into consideration while communicating their
decision processes to users through explanations.
Our work is in line with the above work in exploit-
ing information from natural language to facilitate
decision-making. This is important because natural
language is the most intuitive means of human-
robot interaction. However, from the aspect of
language, the main difference from existing work
is that we take a step forward to not only consider-
ing language scene description as input for a robot
but also as an interface of the model for online
self-explanation simultaneously.
Grasping in Cluttered Scene Conventional meth-

(a) F1 score on different intervention rates.

(b) Results of Grasping Success Rate in physical experiment.
Figure 6: Evaluation results.

ods (Chu et al., 2018; Mahler et al., 2019; Morri-
son et al., 2020; Kumra et al., 2020) focus more
on object-agnostic grasp points detection (Figure. 1
(a)) missing parsing the object stacking scenario.
For cluttered grasping, scene understanding and hu-
man instruction are usually considered. Zhu et al.
(2021); Zhang et al. (2019a) adopt structured scene
understanding (e.g., scene graph or relationship
tree) to realize cluttered grasping detection. Mees
and Burgard (2020); Chen et al. (2021b) fuse a nat-
ural language command and an observation image
to detect a grasping in a two-stage and an end-to-
end manner, respectively. Shridhar and Hsu (2020);
Zhang et al. (2021a) receive natural command and
image input, and then grasp a specified object. Ex-
isting work exploits human language to specify an
object from the clutter, but does not allow human
intervention for error correction. While existing
method take language as external input, our scene
language description is an internal component of
the model. Moreover, we adopt the pre-train lan-
guage model instead of RNN models in existing
work.

6 Conclusion

We investigate language scene representation to
robotic grasping, which enables a robot to ex-
plain its object selection to the user and allows
the user to intervene with the selection by natural
language. Experiments show that the proposed ex-
plainable textual scene representation outperforms
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both object-agnostic and scene-graph based meth-
ods. By human language intervention, the perfor-
mance can be broadly increased. Our results indi-
cate the promise of using NLP models in a robotic
system both as a representation and for human in-
tervention. To our knowledge, we are the first to
consider textual scene encoding and human correc-
tion in robotic grasping tasks, which can improve
grasping performance using natural language (vs.
w/o human-in-the-loop) and robustness (by pre-
trained language model).

7 Ethical Statement

Five graduate students who studied electronic engi-
neering are hired to cooperate with a collaborative
robot (Kinova) in our real-world experiment. Be-
cause of the subject background, they can be easy
to decide whether give human language interven-
tion based on human-like grasping behavior each
turn. The participants need to annotate the object
bounding box for each sample during the data col-
lection stage. All participants have received labor
free corresponding to their amount of trials.

Acknowledgements

We would like to thank anonymous reviewers
for their insightful comments and suggestions to
help improve the paper. This publication has em-
anated from research conducted with the finan-
cial support of the Pioneer and "Leading Goose"
R&D Program of Zhejiang under Grant Number
2022SDXHDX0003, Shanghai Science and Tech-
nology Innovation Action Plan under Grant Num-
ber 19511120400, and Hangzhou City Agriculture
and Social Development General Project under
Grant Number 20201203B118. Yue Zhang is the
corresponding author.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen

Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages
3674–3683.

Yahav Avigal, Vishal Satish, Zachary Tam, Huang
Huang, Harry Zhang, Michael Danielczuk, Jeffrey
Ichnowski, and Ken Goldberg. 2021. Avplug: Ap-
proach vector planning for unicontact grasping amid
clutter. In 2021 IEEE 17th International Conference
on Automation Science and Engineering (CASE),
pages 1140–1147. IEEE.

Ozan Arkan Can, Pedro Zuidberg Dos Martires,
Andreas Persson, Julian Gaal, Amy Loutfi, Luc
De Raedt, Deniz Yuret, and Alessandro Saffiotti.
2019. Learning from implicit information in nat-
ural language instructions for robotic manipulations.
NAACL HLT 2019, page 29.

Feilong Chen, Xiuyi Chen, Can Xu, and Daxin Jiang.
2021a. Learning to ground visual objects for visual
dialog. arXiv preprint arXiv:2109.06013.

Yiye Chen, Ruinian Xu, Yunzhi Lin, and Patricio A
Vela. 2021b. A joint network for grasp detection
conditioned on natural language commands. In 2021
IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4576–4582. IEEE.

Chung-Cheng Chiu and Colin Raffel. 2018. Monotonic
chunkwise attention. In International Conference on
Learning Representations.

Fu-Jen Chu, Ruinian Xu, and Patricio A Vela. 2018.
Real-world multiobject, multigrasp detection. IEEE
Robotics and Automation Letters, 3(4):3355–3362.

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi,
and Rita Cucchiara. 2020. Meshed-memory trans-
former for image captioning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 10578–10587.

Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi
Feng, Kate Saenko, and Trevor Darrell. 2016. Natu-
ral language object retrieval. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 4555–4564.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie,
and Jason Baldridge. 2020. Room-across-room: Mul-
tilingual vision-and-language navigation with dense
spatiotemporal grounding. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4392–4412.

Sulabh Kumra, Shirin Joshi, and Ferat Sahin. 2020. An-
tipodal robotic grasping using generative residual
convolutional neural network. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 9626–9633. IEEE.

3000



Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision,
pages 121–137. Springer.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Jinghui Lu, Linyi Yang, Brian Namee, and Yue Zhang.
2022. A rationale-centric framework for human-in-
the-loop machine learning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6986–6996.

Jeffrey Mahler, Matthew Matl, Vishal Satish, Michael
Danielczuk, Bill DeRose, Stephen McKinley, and
Ken Goldberg. 2019. Learning ambidextrous robot
grasping policies. Science Robotics, 4(26).

Oier Mees and Wolfram Burgard. 2020. Composing
pick-and-place tasks by grounding language. In In-
ternational Symposium on Experimental Robotics,
pages 491–501. Springer.

Douglas Morrison, Peter Corke, and Jürgen Leitner.
2020. Learning robust, real-time, reactive robotic
grasping. The International journal of robotics re-
search, 39(2-3):183–201.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sonia Raychaudhuri, Saim Wani, Shivansh Patel, Un-
nat Jain, and Angel X Chang. 2021. Language-
aligned waypoint (law) supervision for vision-and-
language navigation in continuous environments.
arXiv preprint arXiv:2109.15207.

Joseph Redmon and Ali Farhadi. 2018. Yolov3:
An incremental improvement. arXiv preprint
arXiv:1804.02767.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2016. Faster r-cnn: towards real-time object
detection with region proposal networks. IEEE trans-
actions on pattern analysis and machine intelligence,
39(6):1137–1149.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 7008–7024.

Rosario Scalise, Jesse Thomason, Yonatan Bisk, and
Siddhartha Srinivasa. 2019. Improving robot success
detection using static object data. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 4229–4235. IEEE.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

Zhan Shi, Hui Liu, Martin Renqiang Min, Christopher
Malon, Li Erran Li, and Xiaodan Zhu. 2021. Re-
trieval, analogy, and composition: A framework for
compositional generalization in image captioning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 1990–2000.

Mohit Shridhar and David Hsu. 2020. Interactive visual
grounding of referring expressions for human-robot
interaction. The International journal of robotics
research, 39(2-3):217–232.

Yuvaram Singh and Kameshwar Rao JV. 2020. Ai sens-
ing for robotics using deep learning based visual
and language modeling. In Second Grand-Challenge
and Workshop on Multimodal Language (Challenge-
HML), pages 60–63.

Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Martín-Martín, Fei Xia, Kent Elliott Vainio,
Zheng Lian, Cem Gokmen, Shyamal Buch, Karen
Liu, et al. 2021. Behavior: Benchmark for everyday
household activities in virtual, interactive, and eco-
logical environments. In 5th Annual Conference on
Robot Learning.

Jesse Thomason, Jivko Sinapov, Maxwell Svetlik, Pe-
ter Stone, and Raymond J Mooney. 2016. Learning
multi-modal grounded linguistic semantics by play-
ing" i spy". In IJCAI, pages 3477–3483.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural image
caption generator. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 3156–3164.

Ke-Jyun Wang, Yun-Hsuan Liu, Hung-Ting Su, Jen-Wei
Wang, Yu-Siang Wang, Winston Hsu, and Wen-Chin
Chen. 2021. Ocid-ref: A 3d robotic dataset with
embodied language for clutter scene grounding. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5333–5338.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-
Fei. 2017. Scene graph generation by iterative mes-
sage passing. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
5410–5419.

3001



Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing
Huang, Dong Yu, and Jiebo Luo. 2019. A fast and
accurate one-stage approach to visual grounding. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4683–4693.

Chenxi Yuan, Yang Bai, and Chun Yuan. 2020. Bridge
the gap: High-level semantic planning for image cap-
tioning. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
3157–3167.

Luyao Yuan, Xiaofeng Gao, Zilong Zheng, Mark Ed-
monds, Ying Nian Wu, Federico Rossano, Hongjing
Lu, Yixin Zhu, and Song-Chun Zhu. 2022. In situ
bidirectional human-robot value alignment. Science
Robotics, 7(68):eabm4183.

Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh
Mottaghi, Aniruddha Kembhavi, Ali Farhadi, and
Yejin Choi. 2021. Piglet: Language grounding
through neuro-symbolic interaction in a 3d world.
arXiv preprint arXiv:2106.00188.

Hanbo Zhang, Xuguang Lan, Site Bai, Lipeng Wan,
Chenjie Yang, and Nanning Zheng. 2019a. A multi-
task convolutional neural network for autonomous
robotic grasping in object stacking scenes. In 2019
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6435–6442. IEEE.

Hanbo Zhang, Xuguang Lan, Site Bai, Xinwen Zhou,
Zhiqiang Tian, and Nanning Zheng. 2019b. Roi-
based robotic grasp detection for object overlapping
scenes. In 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
4768–4775. IEEE.

Hanbo Zhang, Yunfan Lu, Cunjun Yu, David Hsu,
Xuguang La, and Nanning Zheng. 2021a. Invigo-
rate: Interactive visual grounding and grasping in
clutter. In Robotics: Science and Systems (RSS).

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021b. Vinvl: Revisiting visual represen-
tations in vision-language models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5579–5588.

Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and
Yuke Zhu. 2021. Hierarchical planning for long-
horizon manipulation with geometric and symbolic
scene graphs. In 2021 International Conference on
Robotics and Automation (ICRA), pages 6541–6548.
IEEE.

3002



A Appendix

A.1 Details of Dataset

A.1.1 Dataset Generation

VMRD contains 4, 683 samples for 31 classes orig-
inally. Each sample has an image labeled with
object bounding boxes, object class10, and grasp
bounding boxes. Also, stacking relationships be-
tween objects in images are provided in a relation-
ship tree. Based on this, we further label various
language descriptions and a scene graph for each
sample in VMRD11 based on the spatial informa-
tion from object bounding box and relationship
tree. An auxiliary grasp-wise spatial attribute sur-
face is also introduced for better cluttered grasping
performance.

A.1.2 Dataset Usage

For the image-to-text model, (image and language
descriptions) are used. For the language ground-
ing model, (image, language descriptions, and ob-
ject bounding box) are used. For scene graph gen-
eration and graph-based object selection model,
(image, scene graph, object bounding box, grasp-
ing bounding box) are used. For grasping model
(vanilla), (image, object bounding box, grasping
bounding box, surface) are used. All of model are
setup in Sec. 4.2.

A.1.3 Scene Graph Example

For example, in Figure.2(b), the relationship tree
only shows relationships as “mobile phone-on-box”
and “box-on-notebook”, but cannot encode the re-
lationship between “mobile phone” and “notebook”
(e.g., “mobile phone-on-notebook”).

A.1.4 Surface Example

In Figure. 2(a), the “notebook” is stacked by an
“apple”, thus the surface corresponding to “apple”
grasping groundtruth is “False”. As for the tooth-
paste, it is not under any other objects, thereby la-
beled “True” for surface. In our task, this attribute
can improve grasping performance.

10The object class is used to generate language description
of the scene and construct the scene graph in our proposed
dataset.

11Note that we filter seven samples with incorrect labeling
in the original VMRD.

A.2 Details of Language-based Grasping
Model

A.2.1 Backbone Model
Our backbone model is developed on top of the two-
stage grasp detection pipeline (Chu et al., 2018) (a
grasp-version Faster RCNN (Ren et al., 2016)), fus-
ing the language knowledge as guidance. In doing
so, we propose a Knowledge-guided Grasp Pro-
posal Network (K-GPN) to replace with Region
Proposal Network (RPN) in Figure. 7, for fusing
the grounded object feature with the visual feature.
In our framework, we formulate the grasp detection
as three parts: (1) Grasp Proposals, (2) Grasp Ori-
entation Classification and Multi-grasp Detection,
and (3) Grasp Stacking Classification, described
below.

Finally, the highest-confidence angles are se-
lected for each grasp bounding box, and the grasp
bounding box (predicted from proposals) corre-
sponding to the highest confidence (mean of the
bounding box confidence and surface confidence)
is selected as gi in Eq. (1) with the selected angle.

A.2.2 Grasp Proposals
The module aims to fuse grounded object feature
and visual feature to the grasped object. The
visual feature used here is a feature map (z ∈
R50×50×1024) of the intermediate layers of ResNet-
101, and the grounded object feature (k ∈ R1×4,
also named Kg) is obtained from language ground-
ing model (in Sec.3.3) based on Self-explanation
or Human-intervention. The proposed K-GPN
is employed to fuse z and k and output a new fea-
ture vector 1× 1× 512, which is further fed into
a two-layer Multi-Layer Perceptron (MLP) to pre-
dict the probability of grasp proposal and region of
interest (ROI). Different from RPN used by (Chu
et al., 2018), which takes positive and negative pro-
posals with groundtruth over the whole image, the
proposed K-GPN samples proposals based on lan-
guage knowledge and produces ROI related to the
selected object in Algorithm 1. The ROI features
from K-GPN is fed into the following module to re-
optimize and predict the final grasp, shown in Fig-
ure. 7. The details are described in Appendix A.2.3
and A.2.4.

As shown in Algorithm 1, our method takes
in visual feature z and grounded object feature k.
And then, the grasp proposals G generated from
RPN is selected by satisfying iou constraints and
tiou constraints (language knowledge). ggt is the
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Figure 7: The architecture of Language-based Grasping Model. The input of the scene image is fed into ResNet101-
C4 to extract visual features, which is one of the inputs of our proposed K-GPN. The grounded object feature k
is another input of K-GPN. K-GPN predicts grasp proposals and output proposal grasping region (also named
ROI) features, which forwards into ROI-Pooling and ResNet101-C5 to obtain 2048 dimensions feature vectors.
These feature vectors are used to predict the final grasping location, orientation, and surface. The highest confidence
grasping candidate is selected to execute by a real robot.

Algorithm 1 Knowledge-guided Grasp Proposal
Network (K-GPN)
Input: visual feature z, grounded object feature k
Model: K-GPN
Output:Grasp Proposals G
1: Global proposal set Gg = RPN(z)
2: Positive proposal set and Negative proposal set:Sp, Sn
3: while size(Sp) and size(Sn) are less than the sampling

count do
4: Sampling a grasp proposal g from Gg
5: if iou(g, ggt) > 0.5 and tiou(g, k) > 0.5 then
6: Put g into Positive proposal set Sp
7: else
8: Put g into Negative proposal set Sn
9: end if

10: end while
11: return Grasp Proposals G = {Sp, Sn}

groundtruth grasp corresponding to the proposed g.
size(·) is the number of the set. iou(·) is the con-
ventional Intersection-over-Union (IoU) function
(Ren et al., 2016). tiou(·) is a function defined in
Eq. (8), used to select knowledge-guided ROI:

tiou (g, k) =
|g⋂ k|
|g| , (8)

where g is the grasp proposal, and k is the grounded
object feature (visual-language grounded object
bounding box).

The proposal loss is defined in Eq. (9)

Lp

({
(pc, tc)

C
c=1

})
=
∑

c

Lcls (pc, p
∗)

+ λ1
∑

c

p∗Lloc (tc, t
∗),

(9)

where C is the set of all proposals, Lcls is the cross
entropy loss of grasp proposal classification (bi-
nary classification). Lloc is the smooth L1 regres-
sion loss of the proposal locations. (pc, tc) is the
binary class and proposal location to the i-th pro-
posal. pc is True if a grasp is specified, and False
if not. (p∗, t∗) is the groundtruth. λ1 is the weight
coefficient.

A.2.3 Grasp Orientation Classification and
Multi-grasp Detection

Our model quantizes the orientation θ into R + 1
classification problem by discretizing the contin-
uous orientation angles into R values. Another
non-grasp case is also considered in the classifica-
tion problem and in that case, the grasp proposal is
considered incorrect. We select the highest score
class as the orientation angle value. In practice, we
use equal intervals of 10◦ to discretize the angles
and R+ 1 = 19. The loss function is as follows:

Lg

({
(ρl, βl)

C
c=0

})
=
∑

c

Lcls (ρl, ρ
∗)

+ λ2
∑

c

1c̸=0(c)Lloc (βc, β
∗),

(10)
where ρl denotes the probability of class l and βl
corresponds to the grasp bounding box. Lcls is the
cross entropy loss of the orientation angle classifica-
tion (19-class classification). Lloc is the smooth L1
loss of bounding boxes with the weight coefficient
λ2 when angle class c ̸= 0, where c = 0 is short
for non-grasp case. (ρ∗, β∗) is the groundtruth.
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Figure 8: The architecture of scene-graph based scene understanding module.

A.2.4 Surface Classification
We propose a binary classification task to predict
whether the grasped object is on the top of a stack
of objects. The loss function is as follows:

Ls

({
(pc)

C
c=1

})
=
∑

c

Lcls (sc, s
∗), (11)

where the same as Eq. (9), Lcls is the cross entropy
loss of grasp proposal surface classification (binary
classification). sc is False if the grasped object
is stacked by others, and True if not. s∗ is the
groundtruth. Detail is available in Appendix A.1.4.

The total training loss for language-based grasp-
ing detection is:

Ltotal = Lp + Lg + Ls. (12)

A.3 Image-to-text Model

MMT is shown in Figure. 9. Input is the region
features and bounding box detected from the robot
observed image. Output is a description of the spa-
tial relationships of objects in the scene. We hope
the subject object can be grasped without collision
based on the described spatial relationship.

A.4 Training Details of Language-based
Grasping Model

For the baseline model, during ROI sampling in
K-GPN, the positive and negative sampling counts
for loss calculations are both 128. The optimizer is
Adam and the learning rate is 1e−4 for 100 epochs
with batch size 8. λ1 and λ2 are both 1.0.

It is noted that for grounded object feature k, we
first use the groundtruth of the language grounding
model to train from scratch and fine-tune the model
using the outputs of the language grounding model.

A.5 Hardware and Software Implementation

The grasping execution is taken place on a single-
arm Kinova Jaco 7DOF robot under the framework
of Robot Operating System (ROS) Kinetic, shown

Figure 9: The overview of the image-to-text model
applied in our self-explanation pipeline.

in Figure.3. We use an Intel RealSense SR300
RGB-D camera to obtain RGB-D images mounted
on the wrist of the robot. All the computation
is completed on a PC running Ubuntu16.04 and
Pytorch 1.7 with one Intel Core i7-8700K CPU and
one NVIDIA Geforce GTX 1080ti GPU.

A.6 Metric Details

R@k is the percentage of cases where at least one
of the top-k detection is correct. P@k is the correct
rate for all top-k predictions.

In the simulation setting, a correctly detected
grasp has a Jaccard Index greater than 0.25 and
the absolute orientation error less than 30◦ relative
to at least one of the groundtruth grasps of the
collision-free object (Kumra et al., 2020).

In the physical setting, for the grounding model,
the correct label is Intersection-over-Union (IoU)
over 0.5, and for the image-to-text model, the cor-
rect label is human-annotated.
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A.7 Scene Graph based method
A.7.1 Model Structure
The model SceneGraph-Rep uses a scene-graph
based scene understanding module (shown in Fig-
ure. 8) to realize the function of red frame in Fig-
ure. 7.

The module is hierarchical including two sub-
modules: (i) Iterative Message Passing (IMP)(Xu
et al., 2017) to generate a scene graph in our
work. (ii) Relational Graph Convolution Network
(RGCN)(Schlichtkrull et al., 2018) to realize bi-
nary classification (can or cannot be grasped for
each node). The IMP and RGCN are trained on our
proposed L-VMRD same as our proposed method.

The input is region features from common ob-
ject detection model (Faster RCNN (Ren et al.,
2016)) using scene image I . IMP outputs the scene
graph Sg in the form of triple (i.e., <subject, predi-
cate, object>), which is fed into RGCN to predict
the graspability of each node (object). The high-
confidence object is selected corresponding with
the bounding box. The whole process can be for-
mulated as follows:

Z,B = Detecton (I) ,

Sg = IMP (Z) ,

(xt, yt, wt, ht) = RGCN (Sg, B) ,

(13)

where Detecton is a common object detection
model. Z and B are the set of region features and
the set of bounding boxes for each detected object,
respectively. {xt, yt, wt, ht} is the bounding box
of selected object, same as definition in Sec.3.3.

A.7.2 Case Study
In Figure. 10, we give two failure cases caused by
low-quality scene graph generation, indicating that
SceneGraph-Rep highly depends on the output
quality of the scene graph generation model. In
Figure. 10(a), failure is caused by the incorrect
scene graph generation. In Figure. 10(b), failure
is mainly caused by the error classification from
RGCN.

Figure 10: Visualization of MMT (image-to-text) and
IMP (scene graph) based self-explanation models. S
means successful case, while F means failure case.
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Abstract

Automatic Essay Scoring (AES) is the task of
using the computer to evaluate the quality of
essays automatically. Current research on AES
focuses on scoring the overall quality or single
trait of prompt-specific essays. However, users
expect to obtain not only the overall score but
also the instant feedback from different traits
to help improve their writing. Therefore, we
first annotate a multi-trait dataset ACEA in-
cluding 1220 argumentative essays from four
traits, i.e., the essay organization, topic, logic,
and language. And then we design a Hierarchi-
cal Multi-task Trait Scorer (HMTS) to evaluate
the quality of writing by modeling these four
traits. Moreover, we propose an inter-sequence
attention mechanism to enhance information in-
teraction between different tasks and design the
trait-specific features for various tasks in AES.
The experimental results on ACEA show that
our HMTS can effectively score essays from
multiple traits, outperforming several strong
baselines.

1 Introduction

Automatic Essay Scoring (AES) is a task of using
the computer to evaluate the quality of students’ es-
says. An efficient AES system can bring many ben-
efits to the field of education, including avoiding
the influence of subjective factors on essay scoring,
greatly reducing teachers’ workload, and providing
instant feedback for students’ written essays.

Early work treated AES as a classification
(Larkey, 1998; Rudner and Liang, 2002), regres-
sion (Attali and Burstein, 2005; Phandi et al., 2015),
or ranking problem (Yannakoudakis et al., 2011;
Chen and He, 2013), addressing AES by super-
vised learning. Recently, with the progress of deep
learning, the end-to-end models based on neural
networks (e.g., LSTM-based models or the com-
bination of LSTMs and CNNs) have achieved im-
pressive results (Alikaniotis et al., 2016; Taghipour
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and Ng, 2016; Dong and Zhang, 2016; Dong et al.,
2017; Tay et al., 2018).

In consideration for more feedback in AES sys-
tems, some studies began to focus on scoring spe-
cific traits of essays, such as word choice, content
(Page, 1966), organization (Persing et al., 2010;
Song et al., 2020a), thesis clarity (Persing and Ng,
2013), prompt adherence (Persing and Ng, 2014),
argument persistent (Ke et al., 2018), style (Page,
1966), etc. Most of the above studies focused on
scoring prompt-specific essays. As previous re-
searchers had pointed out (Jin et al., 2018; Ridley
et al., 2020), it was difficult and expensive to access
ample target-prompt essays in the real-world AES
system. Therefore, some researchers on English
AES had began to explore cross-prompt AES (Rid-
ley et al., 2020; Phandi et al., 2015; Jin et al., 2018).
Their methods utilized non-target-prompt essays to
train models and score target-prompt essays.

In reality, people usually judge the essay from
different perspectives to give the final overall holis-
tic score. Apart from (Ridley et al., 2021; Kumar
et al., 2021), few studies had combined the overall
score with the feature-specific scores. Therefore, to
make AES more interpretable and verify whether
the information learned in the traits contributes to
the learning of the overall score, we use multi-task
learning to evaluate the overall holistic score from
multiple traits and the score of each trait.

This paper focuses on scoring Chinese essays
and their traits. It is worth noting that most of the
previous studies were conducted on the English-
language dataset ASAP1, which contains eight dif-
ferent collections of essays with specific prompts.
Unlike that, our Chinese dataset is thematically di-
verse and does not contain prompts, so it is more
challenging than the English task.

There are some issues between English and Chi-
nese for the overall score and the traits scores.
First, they have different expression problems. The

1https://www.kaggle.com/c/asap-aes.
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most significant differences are that Chinese is a
parataxis language while English is hypotaxis. In
the task of English AES, word usage is the most im-
portant factor in English expression (Ridley et al.,
2021). English text mainly forms semantic rep-
resentation by combining the similarity between
words. While Chinese essays pay more attention
to sentence-level and paragraph-level expression.
Second, Chinese and English essays have different
evaluation emphases that we should evaluate the
essay quality from different perspectives. For ex-
ample, for text expression, the evaluation criteria
for English essays are using language correctly and
high-level vocabulary, while the evaluation criteria
for Chinese essays are using beautiful sentences
and smooth expressions.

Therefore, our task of scoring Chinese essays
and their traits exhibits two challenges. First, we
need to select appropriate traits to express Chinese
essays and design the proper model to combine
the different traits to prompt the performance of
overall scoring. Second, a good model is needed to
fully express the deep semantics of Chinese essays,
which should have a good generalization ability to
perform well in different trait tasks.

In this paper, we design a Hierarchical Multi-
task Trait Scorer (HMTS) for the task of automated
Chinese essay scoring. To cope with the first chal-
lenge, we created a dataset named ”Automatic Chi-
nese Essay Assessment (ACEA)” extended from
the dataset used in Song et al. (2020b), which con-
tains 1220 essays, the overall score of each essay,
and the scores of the four traits (i.e., topic, organi-
zation, logic, and language). And then we utilize
the multi-task learning framework to learn the trait
levels. Specially, to better combine different trait
expressions, we propose an inter-sequence atten-
tion mechanism, which can integrate the represen-
tations of different trait tasks. We believe that dif-
ferent trait tasks can complement each other. For
example, an essay that scores well on logic will
also score well on language performance. Besides,
since different tasks have different evaluation crite-
ria, we also obtain trait-specific features to enhance
the representation of the specific trait tasks.

To cope with the second challenge, we utilize the
hierarchical model to obtain the shared sentences
and paragraph representation, and essay represen-
tation independent for each task. We use the XL-
Net as the sentence encoder, which is a pre-trained
model trained on large-scale datasets and can get

better text semantic representation. In a word, the
contributions of this paper are as follows:

• We are the first to introduce the multi-trait
scores to Chinese AES, and grade our ACEA
dataset with four traits, i.e., organization,
topic, logic and language.

• We design a hierarchical multi-task trait scorer
HMTS, which can superior express the seman-
tics of Chinese essays and give the overall
score as well as the trait scores for essays
without prompt.

• We use the inter-sequence attention mecha-
nism to fuse the representation of different
traits to share the contribution of the other
trait tasks, and use the trait-specific features to
enhance the representation of each trait task.

2 Related Work

In this section, we first introduce the prompt-
specific and cross-prompt holistic scoring methods
and then describe the prompt-specific and multi-
task trait scoring methods. Finally, we briefly intro-
duced the task of Chinese AES.

2.1 Holistic Scoring

Prompt-Specific Holistic Scoring For the over-
all essay score, early studies mainly leveraged re-
gression, classification or ranking algorithms com-
bined with manual features (Page, 1966; Attali and
Burstein, 2005; Larkey, 1998; Rudner and Liang,
2002; Yannakoudakis et al., 2011; Chen and He,
2013; Miltsakaki and Kukich, 2004; Burstein et al.,
1998). In recent years, many studies (Taghipour
and Ng, 2016; Cummins et al., 2016; Alikaniotis
et al., 2016; Dong and Zhang, 2016; Dong et al.,
2017; Tay et al., 2018) had shown that neural net-
work methods can capture the deep semantics of
essays more effectively. For example, Dong et al.
(2017) used the attention mechanism to obtain the
contribution of words and sentences to the essay.
Tay et al. (2018) measured similarity between adja-
cent sentences to model coherence to evaluate text
quality.

Cross-Prompt Holistic Scoring In fact, it’s un-
realistic to get ample essays with a specific prompt.
A good AES should be able to provide feedback
to essays on any prompt. Therefore, some studies
on English focused on cross-prompt scoring. Song
et al. (2020b), Phandi et al. (2015) and Cummins
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et al. (2016) trained the model with large quantities
of non-target-prompt and a small quantity of target-
prompt essays and performed transfer learning to
score target-prompt essays. However, these meth-
ods still need essays with target prompts. Some
recent work explored cross-prompt scoring without
target prompts. Jin et al. (2018) applied a two-
stage approach, in which the first stage utilized
the prompt-independent features to award pseudo
labels to target prompt essays. Then in the sec-
ond stage, the pseudo-labeled essays were used as
training data to award the final score. Ridley et al.
(2020) applied a single-stage neural network-based
method that utilizes a set of general features to
award scores to target-prompt essays.

2.2 Trait Scoring

Prompt-Specific Trait Scoring In addition to the
overall score, students also expect to get feedback
from different aspects through AES, which can
assist students’ growth.

In the last decade or so, some studies focused on
scoring the single essay trait. For example, Song
et al. (2020a) proposed a hierarchical multi-task
learning model to evaluate the organization quality
by learning the sentence and paragraph function.
Ke et al. (2018) modeled argument persistence and
the attributes of those arguments in student essays.
Some more recent studies had adapted a leading
prompt-specific holistic scoring method to output
the score for different traits. Mathias and Bhat-
tacharyya (2020) adapted some leading approaches
for prompt-specific persistent scoring to the task
of trait scoring. Hussein et al. (2020) also adapted
a leading prompt-specific holistic scoring method,
employing a multi-task architecture to output the
overall score and scores for various traits simulta-
neously.

Multi-task Trait Scoring To obtain more feed-
back, some studies used multi-task learning to
score essay traits and the essay itself. Kumar et al.
(2021) proposed a prompt-specific method and in-
troduced the multi-task learning (MTL) method to
essay scoring, where scoring the overall essay score
is the primary task, and scoring the essay traits is
the auxiliary task. Ridley et al. (2021) provided
a new approach named Automated Cross-prompt
Scoring of Essay Traits, which can give the holistic
score as well as the scores for different traits in
the cross-prompt setting. The drawback of these
studies is that their methods are not suitable for

Chinese AES and also are prompt-specific. Due
to the different evaluation criteria of Chinese and
English essays, traits selection should be different.

2.3 Chinese AES

Research on Chinese AES is later than that of
English AES and only a few works focused on
this task. Among them, Yang and Cao (2012) ap-
plied LDA (Latent Semantic Analysis) to score
Chinese essays. Fu et al. (2018) improved the
accuracy of Chinese AES by identifying beauti-
ful sentences and taking them as literary features.
Song et al. (2020a) evaluated the organizational
score of high school argumentative essays, and
Song et al. (2020b) explored cross-prompt holistic
scoring on four different essay sets, with articles
in each dataset responding to a different prompt.
However, their dataset is not publicly available.

3 ACEA Dataset

Following the college entrance examination essay
scoring standard, we selected four traits of topic,
organization, logic, and language for our multi-task
learning, which can help evaluate the level of essay
quality.

3.1 Traits Selection

For the essay topic, whether the essay conforms
to the topic’s meaning and whether the center is
prominent is one of the criteria to evaluate the es-
say’s grade based on the essay evaluation criteria
of the college entrance examination.

For the essay organization, Song et al. (2020a)
showed that organization is a critical aspect of Chi-
nese writing. A well-organized article should have
a clear structure to accurately and logically develop
ideas. Chen (2016) had set up a set of solutions to
evaluate the quality of the Chinese essays, taking
the organization as one of the evaluation criteria.

For the essay logic, Yan (2019) showed that the
intention of the essay should be profound and re-
flect the correct and positive thought and value
orientation, and be consistent with the mainstream
of social development and the spirit of the times.
Therefore, we take logic as one of the traits, which
takes whether the logic is clear and the content is
profound as the evaluation standard.

For the essay language, Liu (2015) and Liu et al.
(2016) used the rhetorical recognition of paral-
lelism metaphor to express the literary grace of the
article. Gong (2016) conducted in-depth research
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Trait Evaluation Criteria

Topic
Grades

Bad: The topic is not clear; the material can’t describe the topic; the center is unclear.
Medium: The essay has a clear topic and center; the material can basically describe the topic.
Great: The content revolves around the topic; the material is rich enough to express the topic;
the center is prominent.

Organization
Grades

(Song et al., 2020a)

Bad: The essay is poorly structured. It is incomplete or misses key discourse elements.
Medium: The essay is well structured and complete, but could be further improved.
Great: The essay is fairly well structured and the organization is very clear and logical.

Language
Grades

Bad: It is plain language or the sentence pattern is single.
Medium: Some languages are beautiful; the overall language is fluent; there are changes in
sentence patterns.
Great: Beautiful and fluent language or flexible sentence pattern.

Logic
Grades

Bad: Unclear logic; The discussion is not profound.
Medium: The logic is clear and the discussion is not profound or logic and discussion are
not too bad.
Great: Clear logic and profound discussion.

Table 1: Trait grades and their evaluation criteria.

on rhetorical devices in Chinese essays and real-
ized an AES system based on the figure of speech
recognition, which showed that the introduction of
rhetorical devices has produced good results for the
system scoring. Therefore, we take the language as
one of the traits. Language evaluation criteria in-
clude the use of beautiful sentences and the fluency
of sentences.

3.2 Traits Grades

We evaluate the quality of topic, organization, lan-
guage, and logic of the essay with three grades.
The evaluation criteria are shown in Table 1.

3.3 Data Annotation

Our dataset contains 1220 argumentative essays
published by Song et al. (2020a), which were writ-
ten by senior high school students and selected
from LeLeKetang2. These essays contain various
topics and do not have specific prompts. The over-
all scores we used come from the LeLeKetang web-
site and the organization scores have been given by
Song et al. (2020a). We asked two annotators who
are Chinese teachers in high school to assign other
three trait grades for each essay.

For the other three trait scores, we counted the
consistency rate of annotation. According to kappa
calculation, the internal annotation consistency of
topic, logic and language were 0.87, 0.9 and 0.88
respectively. A third annotator was introduced to
discuss and analyze essays with disagreed annota-
tions to get the final decision. Table 2 shows the
statistics of the dataset.

2http://www.leleketang.com/zuowen/.

Trait Bad Medium Great
Organization 245 670 305

Topic 209 549 462
Logic 302 596 322

Language 259 648 313
Overall 250 645 325

Table 2: Essay distribution on trait and grade.

4 HMTS Model

We employ a hierarchical model to learn the seman-
tic representation of texts and reinforce the expres-
sion of each trait task through multi-task learning.
For our hierarchical neural model, we utilize XL-
Net (Yang et al., 2019) to learn the sentence expres-
sions and LSTM to learn the paragraph and essay
expressions, which can simulate the coherence be-
tween the sentence and paragraph sequences. We
also use the attention pooling to encode sentences,
which aims to capture more relevant sentences that
contribute to the paragraph semantic representation,
thereby further expressing the quality of an article.

For our multi-task framework, unlike the English
multi-task AES designed by Ridley et al. (2021)
and Kumar et al. (2021), we choose different traits
for Chinese trait scoring, and our test dataset con-
tains essays with multiple prompts rather than a sin-
gle prompt. To share information between different
traits more clearly, we propose the inter-sequence
attention mechanism to help each trait pay attention
to the information contained in the other traits. We
also introduce the trait-specific features to represent
the trait quality.

Our HMTS model includes two stages and the
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Figure 1: Architecture of our HMTS. The left part shows the sentence encoder and paragraph encoder in the common
layer, and the essay encoder in the private layer. The right part contains the inter-sequence attention and trait-specific
features in the private layer, in which BSS (Beautiful Sentence Scorer) is used to extract language-specific feature.

details are shown in Figure 1. HMTS includes two
layers: 1) Common Layer: this layer aims to learn
the useful low-level representations for all tasks,
including the sentence and paragraph representa-
tion; 2) Privates Layer: this high-level layer is em-
ployed to learn more task-specific representations,
including essay representation, the inter-sequence
mechanism, and trait-specific features. High lev-
els in multi-task architecture can represent more
complex information (Sanh et al., 2019).

4.1 Common Layer

The parameters in the lower layer of our model
HMTS are shared, so as to enable the sharing of
information relevant to all trait tasks. Specifically,
the lower layer includes the sentence encoder and
the paragraph encoder.

Sentence Encoder A sequence of words si=
{w1,w2,...,wm} is modeled with a XLNet encoder,
and the vector representation of the last word is
used as the final sentence representation sei .

Paragraph Encoder Firstly, BiLSTM is used
to encode the paragraph with the sentence se-
quence

{
sei , sei+1 , ..., sei+n−1

}
as follows, where

hi ∈ R512 is the hidden representation at the time-
step i.

hi = BiLSTM(sei ,hi−1) (1)

A common attention pooling layer is then applied
to the hidden representations to learn the paragraph
representation as follows.

ei = tanh(We · hi + be) (2)

ai =
exp(wa · ei)∑n
j=1 exp(wa · ej)

(3)

P =
n∑

i=1

ai · hi (4)

where We and Wa are weight matrix and vector
respectively, be is the bias vector, ei and ai are
the attention vector and attention weight of the i-
th sentence, n denotes the number of sentences
in a paragraph. P ∈ R512 is the final paragraph
representation.

4.2 Private Layer
There are M (M=5) tasks in total (four trait tasks
and one overall task), and each component in the
private layer has M separate copies.

Essay Encoder We encode the paragraph se-
quence with BiLSTM as follows and the mean of
hidden layers is used as essay representation.

Hj
i = BiLSTM(Pji ,H

j
i−1) (5)

Ej = mean(Hj
1,H

j
2, ...,H

j
m) (6)

where for the j-th task, Pji is the paragraph repre-
sentation of the i-th paragraph, Hj

i is the hidden
representation at the time-step i, and Ej is the essay
representation.

Inter-sequence Attention Mechanism To ob-
tain the contribution of the other tasks to the current
trait task, we introduce the inter-sequence attention
mechanism as follows.

ET = {E1,E2,E3,E4,E5} (7)

E = tanh(ET) (8)

a = softmax(vT · E) (9)

Rt = tanh(ET · aT ) (10)
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where T = {E1,E2,E3,E4,E5} is the concatena-
tion of the essay representation of each task. We
initialize a training parameter v ∈ R512 to obtain
the final trait fusion Rt ∈ R512 representation.

Task-specific Features To obtain a final rep-
resentation for each task, we introduce the task-
specific features to enhance the task representation.

Topic-task feature Since our dataset lacks
prompts, we use the essay title as the topic task
feature. Specifically, we encode the essay title with
XLNet and concatenate the last word representation
with the topic representation as the final topic-task
essay representation as follows.

f top = XLNet(st) (11)

Etop = Dense(concatenate(f top,Rt)) (12)

where st is the word sequence of the essay topic,
f top is the topic feature representation, and Etop is
the final topic-task representation.

Language-task feature According to the lan-
guage level evaluation rules in Subsection 3.2,
beautiful and fluent language is an important influ-
ence for the language level. Therefore, we trained
a model to predict whether sentences are beauti-
ful or not. We selected 8840 underlined sentences
from LeLeKetang as beautiful sentences, of which
underlined sentences are beautiful sentences anno-
tated on the website and 6714 bad sentences from
the low-level essays. We split the dataset into the
training dataset (80%) and testing dataset (20%)
and used the XLNet classification model to encode
the sentence and fed the last word representation
into a dense layer for prediction, and the results are
Y es and No.

We used the pre-trained beautiful sentence scorer
(BSS) to predict sentences in each essay. All pre-
diction results were concatenated with the language
representation of the essay as the final language-
task essay representation as follows.

s
′
ij = BSS(sij) (13)

f lang = concatenate(s
′
i1, s

′
i2, ..., s

′
in) (14)

Elang = concatenate(f lang,Rt) (15)

where sij is the j-th sentence of the i-th essay, s′ij is
prediction result, f lang is the language-task feature,
and Elang is the final language-task representation.

4.3 Prediction
Finally, a dense layer with a tanh activation func-
tion was applied to the representation of each task
as follows.

yj = tanh(Wj
y · Ej + by) (16)

where Ej is the representation of the j-th trait task.
For the organization-task, the logic task and the
overall score, Ej = Rt; for the language task,
Ej = Elang; for the topic task, Ej = Etop. yj
is the predicted score for the j-th task, tanh is the
activation function, Wj

y is a weight vector, and by
is a bias.

4.4 Loss
To train the parameters, we minimized the binary
cross-entropy loss function. Given N essays and
M tasks, the loss was calculated as follows.

L = − 1

N ·M
N∑

i=1

M∑

j=1

T∑

c=1

(yijc · log(Pijc)) (17)

where T denotes the number of grades. If the
golden grade of the sample i equals to c, yijc =
1; otherwise yijc = 0. Pijc denotes the prediction
probability that the sample i belongs to the grade
c. where T denotes the number of grades. If the
golden grade of the sample i in the task j equals
to c, yijc = 1; otherwise yijc = 0. Pijc denotes the
prediction probability that the sample i in the task
j belongs to the grade c.

5 Experimentation

In this section, we first introduce the experimental
settings and then report the experimental results.
Finally, we analyze the results on different aspects.

5.1 Experimental Settings
We conduct the experiments on our dataset ACEA
described in Section 3. The average number of
paragraphs and sentences per essay is 8 and 28,
and the figure of words per sentence is 21. The
maximum number of sentences and paragraphs in
an essay (n andm) is set to 50 and 20, and the max-
imum number of sentences in a paragraph (np) is
set to 20. The sentences and paragraphs shorter or
longer than the limitations are padded or truncated.

We split our dataset into five folds as Song et al.
(2020a). Cross-validation is conducted and the
average performance is reported. Each fold has
a similar distribution over essay grades. During
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Parameter Value
Embedding size 768
Dimension of BiLSTM hidden state 256
Batch size 32
Learning rate 0.0001
Optimizer Adam

Table 3: Hyper-parameters and their values.

training, 10% of the training data was selected
randomly as the validation set to find the optimal
hyper-parameters. The detailed settings of hyper-
parameters are listed in Table 3.

To evaluate the performance of our model, we
use the Quadratic Weighted Kappa (QWK) met-
ric, which has been widely adopted in both holistic
essay scoring and essay trait scoring research (Rid-
ley et al., 2020; Mathias and Bhattacharyya, 2020;
Hussein et al., 2020) and is designed to measure
the level of agreement between two raters.

5.2 Baselines

To verify the effectiveness of our HMTS, we con-
duct six strong baselines for comparison as follows.

CNN_LSTM_att (Dong et al., 2017): This
model is a leading overall scoring model for
specific prompt, which treated input essays as
sentence-document hierarchies.

MTL (Kumar et al., 2021): This model uses
CNN_LSTM_att to obtain the essay representation
and concatenated it with the predicted trait scores
to score the essay holistically. We use the multi-
task architecture to train the model on each trait
individually.

Song2020 (Song et al., 2020a): This model is
proposed for organization evaluation of Chinese
argumentative student essays, utilizing a hierarchi-
cal multi-task approach for joint discourse element
identification and organization evaluation. We use
a single-task architecture to train the model on each
trait individually.

XLNet (Yang et al., 2019): This model uses the
pre-trained model XLNet to obtain the paragraph
representation, and then concatenate them and feed
them into the dense layer to predict the essay grade.

5.3 Experimental Results

We reported the results of our experiments using
single-task and multi-task models. Table 4 shows
the performance comparison of the baselines and
HMTS on the dataset ACEA.

We can find out that CNN_LSTM_att and MTL
both perform poorly. There are two reasons for this
result. First, CNN_LSTM_att and MTL are models
designed for essays with specific prompts, while
our dataset does not have specific prompts. Second,
these models are designed for English AES and
pay more attention to the contribution of words
to sentences and essays, while Chinese AES pays
more attention to sentence expression. In addition,
we can find out that XLNet alone has achieved
good performance, which shows the effectiveness
of using the pre-trained model to obtain semantic
information.

In comparison with the above single-task models,
Song2020 achieves the best overall QWK. How-
ever, its QWK is still lower than our HMTS, since it
only considers the organization element. Compared
with the best baselines Song2020 on sing-task and
XLNet on multi-task, our HMTS significantly im-
proves overall QWK by 3.07 and 9.28, respectively.
This result shows that our HMTS on four traits is
effective for the overall essay scoring.

Table 4 also shows the performance compari-
son of the baselines and HMTS on each trait task
on ACEA and we also can find that our HMTS
achieves the best QWK on all four traits, i.e., orga-
nization, topic, logic and language. These results
verify the fact that our HMTS also is effective on
scoring traits. Besides, our model was significantly
superior to all baselines with a p-value<0.05.

5.4 Analysis on Multi-task Learning

In Table 4, compared with the single-task HMTS,
our multi-task HMTS significantly improves over-
all QWK by 5.15, and this result indicates the ef-
fectiveness of the multi-task framework on essay
scoring. This is due to the fact that the single-task
HMTS can not fully utilize the information con-
tained in the article, while our multi-task HMTS
can share the information between different traits,
which contributes to the final performance of each
trait task. Comparing the performance gap (1.59)
between single-task and multi-task XLNet, this gap
(5.15) between our HMTS is much larger. This also
verifies the effectiveness of the multi-task frame-
work of our HMTS.

In comparison with the single-task HMTS, our
multi-task HMTS also achieves better QWK on
three traits, i.e., organization (+2.03), topic (+6.52)
and logic (+2.17), while it achieves comparable
performance on the language trait (-1.16).
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Task Type Model Overall Organization Topic Logic Language

Single-task

CNN_LSTM_att 40.13 39.0 37.50 40.23 52.58
XLNet 52.13 52.47 48.84 52.55 56.68

Song2020 54.78 55.76 46.23 52.84 50.28
HMTS 57.85 59.11 49.75 58.44 60.71

Multi-task

CNN_LSTM_att 41.58 39.25 39.26 41.64 50.85
MTL 43.59 41.50 38.82 42.70 52.51

XLNet 53.72 52.76 49.52 53.30 56.75
HMTS 63.00 61.14 56.27 60.61 59.55

Table 4: Performance comparison (QWK) of the baselines and HMTS on ACEA.

Model QWK
HMTS 63.00

w/o Organization -0.98
w/o Topic -1.91
w/o Logic -2.39

w/o Language -0.91

Table 5: Ablation Experiments.

To gain some insight into the effectiveness of
each trait, we conducted the ablation experiments
as shown in Table 5, which remove one trait from
HMTS one by one. We can find out the fact that the
performance of the model HMTS will decline if
we remove one trait task from the multi-task frame-
work, which can reflect the contribution of each
task to the overall score. We find out that the result
decreases the most after removing the logic evalua-
tion, which shows that logic is the most important
trait that contributes to the overall score, compared
with the organization, topic and language. The rea-
son is that the essay scoring standard of college
entrance examination is divided into the basic level
and development level, and whether the logic of the
essay is clear or whether the discussion is profound
belongs to the development level, is the key factor
to distinguish the excellent essay from other levels.

5.5 Analysis on Inter-sequence Attention

Table 6 shows the effectiveness of the trait-specific
feature and the inter-sequence attention. In Table 6,
HMTS (w/o inter-att) is the simplified version of
HMTS without the inter-sequence attention mech-
anism. We can find out that HMTS outperforms
HMTS (w/o inter-att) on QWK on all trait tasks.
These results indicate that the inter-sequence at-
tention can improve the overall score and traits
score effectively, especially the topic trait with the
highest improvement (+3.08).

5.6 Analysis on Task-specific Features

The use of well-designed trait-specific features
is important for each trait task, because different
traits have different evaluation criteria. In Table 6,
HMTS (w/o trait-feat) is the simplified version of
our HMTS without the task-specific features. Com-
pared HMTS (w/o trait-feat) with HMTS, we can
find out that the additional topic-task and language-
task features improve the results of all trait tasks,
especially the topic trait. This proved the effective-
ness of the language-task and topic-task features.

We also evaluated the effectiveness of the beauti-
ful sentence scorer (BSS), The F1 score is 0.91 and
this indicates that our BSS can accurately identify
beautiful sentences. These sentences are usually
fluent in the language, flexible in sentence patterns,
and good at using rhetoric and famous aphorisms.

5.7 Error Analysis

In analyzing the experimental results, we find that
most essays with recognition errors were recog-
nized as their adjacent grades. That is, the essays
with the bad and great grades tend to be misclas-
sified as the grade medium, and those with the
medium grade tend to be misclassified as the grade
great or bad. Especially, our model HMTS tends to
wrongly assign a lower grade to an essay, which ac-
counts for 62.9%, 71.0%, 65.8%, 55.5% and 54.1%
on the overall score and the scores on the traits
organization, logic, topic and language.

The accuracy of our HMTS identifying the es-
says with the great, medium, and bad grades are
58.0, 72.9 and 64.0, respectively. As we men-
tioned above, our HMTS has the underestimation
trend and the accuracy on the bad essays is better
than those on great essays. In addition, since the
medium grade is the majority class, it achieves the
best accuracy.
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Model Overall Organization Topic Logic Language
HMTS 63.00 61.14 56.27 60.61 59.55

w/o trait-fea -0.56 -0.34 -1.41 -0.59 -0.29
w/o inter-att -1.78 -1.06 -3.08 -0.59 -1.84

w/o inter-att&trait-fea -2.07 -1.22 -3.44 -0.81 -1.96

Table 6: The effectiveness of the trait-specific feature and the inter-sequence attention.

6 Conclusion

We first annotate a multi-trait essay scoring dataset
ACEA from the topic, organization, logic, and lan-
guage aspects. And then we propose a multi-task
learning framework HMTS for the Chinese AES
task. Moreover, we propose an inter-sequence at-
tention mechanism to enhance information interac-
tion between the different trait tasks and design the
trait-specific features for various trait tasks. The
experimental results show that our HMTS can ef-
fectively score essays from multiple traits, outper-
forming several strong models. In the future, we
will focus on incorporating the traits task into the
overall task in a more effective framework.
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Abstract

Based on the tremendous success of pre-trained
language models (PrLMs) for source code com-
prehension tasks, current literature studies ei-
ther ways to further improve the performance
(generalization) of PrLMs, or their robustness
against adversarial attacks. However, they have
to compromise on the trade-off between the two
aspects and none of them consider improving
both sides in an effective and practical way. To
fill this gap, we propose Semantic-Preserving
Adversarial Code Embeddings (SPACE) to
find the worst-case semantic-preserving attacks
while forcing the model to predict the correct la-
bels under these worst cases. Experiments and
analysis demonstrate that SPACE can stay ro-
bust against state-of-the-art attacks while boost-
ing the performance of PrLMs for code1.

1 Introduction

Inspired by the tremendous success of large pre-
trained language models (PrLMs) in natural lan-
guage understanding (NLU) field (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019; Clark
et al., 2020), many attempts have been made to
pre-train a language model for source code compre-
hension, aiming at learning good code embeddings
to help code-related downstream tasks like detect-
ing vulnerable codes, searching codes with natu-
ral language queries or answering questions about
codes (Zhou et al., 2019; Husain et al., 2019; Liu
and Wan, 2021; Kanade et al., 2020a; Buratti et al.,
2020; Feng et al., 2020; Guo et al., 2021). Based
on this, current literature focuses on either meth-
ods to further improve the performance of PrLMs
(Jain et al., 2021; Ding et al., 2021; Phan et al.,
2021; Wu et al., 2021), or their robustness against

∗ Corresponding author. This paper was partially sup-
ported by Key Projects of National Natural Science Founda-
tion of China (U1836222 and 61733011).

1Our codes and data are available at https://
github.com/EricLee8/SPACE

adversarial attacks (Zhang et al., 2020; Springer
et al., 2020; Yang et al., 2022; Srikant et al., 2021).
However, they have to compromise on the trade-off
between the two aspects and none of them consider
improving both sides in an effective and practical
way (Bielik and Vechev, 2020; Yefet et al., 2020).
For example, CodeBERT (Feng et al., 2020) and
GraphCodeBERT (Guo et al., 2021) are two most
widely used PrLMs for code and they have signif-
icantly boosted the performance of source code
comprehension models. Unfortunately, these pow-
erful models are vulnerable to adversarial attacks
that slight perturbations can make them produce
wrong labels (Yang et al., 2022). To tackle this
problem, previous works attempt to adopt adversar-
ial training framework or data augmentation tricks
to improve model robustness, yet they fail to main-
tain accuracy on the origin clean test set (Bielik
and Vechev, 2020; Yefet et al., 2020), or are too
complicated to be practical (Ramakrishnan et al.,
2020).

A natural question can be asked here: is there
a simple yet effective way to subtly avoid the
trade-off between performance and robustness and
make them both improved? To make the answer
yes, we propose Semantic-Preserving Adversar-
ial Code Embeddings (SPACE) to find the worst-
case semantic-preserving attacks while forcing the
model to predict the correct labels under these
worst cases. Different from previous works which
also adopt adversarial training on codes (Ramakr-
ishnan et al., 2020; Bielik and Vechev, 2020), we
search for the inner worst-case perturbations in
the continuous embedding space instead of the
discrete token space. Compared with the latter,
which is usually a complicated combinational opti-
mization problem, our method is naturally differen-
tiable which makes it easy to be incorporated into
the gradient-based training framework and much
more efficient. Besides, adding perturbations to
the embedding layer is a natural solution to avoid
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the aforementioned trade-off between performance
and robustness, which is observed and proved on
multiple NLU tasks on plain texts (Miyato et al.,
2017; Cheng et al., 2019). Nonetheless, its efficacy
on source code comprehension tasks has not been
fully investigated. Besides, our experiments show
that simply adopting vanilla adversarial training is
not enough to gain significant improvements in the
context of programming languages, since it can not
preserve the semantic meaning and grammatical
correctness.

Therefore, in this paper, we combine adversarial
training with the data characteristics of program-
ming languages to propose SPACE: we find ways
to generate worst-case perturbations that preserve
the semantic meaning and grammatical correctness
of programming languages. Experiments show that
our SPACE is superior to the vanilla adversarial
training and significantly outperforms strong base-
lines of CodeBERT and GraphCodeBERT on sev-
eral datasets while staying robust against the SOTA
attacking methods.

To sum up, the contributions of our SPACE are
the following four folds:
• To the best of our knowledge, we are the first

to explore the efficacy of adversarial training on
the continuous embedding space for source code
comprehension tasks.

• We innovatively combine adversarial training
with the data characteristics of programming lan-
guages to propose SPACE, which is able to boost
the performance and robustness of PrLMs for
code simultaneously.

• SPACE is practical and effective, which is natu-
rally differentiable and easy to be incorporated
into the gradient-based training framework with
only a few lines of code.

• Experiments and analyses on several benchmark
datasets demonstrate that our SPACE outper-
forms strong baselines by large margins, and
stays robust against state-of-the-art attacks.

2 Related Work

2.1 Pre-trained Language Models for Code

In recent years, the prosperity of PrLMs has been
witnessed in natural language understanding field.
Inspired by this, researchers start to investigate
the power of PrLMs for source code comprehen-
sion tasks. To name a few, Kanade et al. (2020b)
adopt masked language modeling (MLM) and next
sentence prediction (NSP) to pre-train BERT on

Python corpus. Buratti et al. (2020) propose C-
BERT, which makes use of a carefully designed
tokenizer and whole word masking (WWM) objec-
tive to pre-train on C language. Feng et al. (2020)
present CodeBERT, a bi-modal PrLM trained on
massive code-text pairs using masked language
modeling (MLM, Devlin et al. 2019) and replaced
token detection (RTD, Clark et al. 2020) objec-
tives, in an attempt to handle bi-modal tasks like
natural language code search. Guo et al. (2021) de-
sign GraphCodeBERT, an even stronger PrLM that
leverages the graph-structured code data flow to
model the dependency relation between variables.
There are many other PrLMs for source code (Jain
et al., 2021; Bui et al., 2021; Wang et al., 2021).
We do not try our SPACE on all of them since
it will cost too much time and computational re-
sources. Without loss of generality, in this paper,
we choose CodeBERT and GraphCodeBERT, two
most widely-used and easy-to-use models, as our
backbone.

2.2 Attacks and defenses on Code

Aiming at testing and improving the robustness of
code models, researchers have conducted a series
of experiments on attacks and defenses.

For attacks, Srikant et al. (2021) utilize program
obfuscations, which are conventionally used to
avoid attempts at reverse engineering programs,
as adversarial perturbations. They design alternate
optimization (AO) and joint optimization (JO) to
solve the problem of where and how to inject ob-
fuscations, which yield a satisfying attack success
rate. Zhang et al. (2020) propose a Metropolis-
Hastings sampling-based identifier renaming tech-
nique (MHM) to efficiently generate semantic-
preserving adversarial examples. Yang et al. (2022)
present ALERT (Naturalness Aware Attack) that
considers the natural semantic of generated adver-
sarial examples. They make use of the masked
language prediction function of PrLMs to produce
a ranked list of potential substitutes for each token,
and design genetic algorithms to search for the op-
timal combination of variables and corresponding
substitutes. ALERT is the state-of-the-art attack
method and the first to attack PrLMs, yet our ex-
periments demonstrate that our SPACE is able to
maintain robustness under ALERT by reducing the
attack success rate over 10%.

For defenses, Ramakrishnan et al. (2020) adopt
adversarial training framework to improve the ro-
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# A python example
# Tell if string_b
# is a substring
# of string_a
def is_substring(

string_a,
string_b
):
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Figure 1: The overview of our model, which consists of three parts: a Byte Pair Encoding (BPE) Tokenizer, an
Adversarial Block and a PrLM Encoder. The detailed process is explained in Section 3.3.

bustness of models against various code transfor-
mations (e.g. dead code insertion and identifier
renaming,). They define the inner maximization
problem of adversarial training as finding the worst
code transformations, which is a discrete combina-
tional optimization problem. To solve it, they limit
the number transformations to 1 and deploy a com-
plicated program sketching trick to approximately
solve the inner maximization in a gradient-based
way. Their work is too complicated to be practical,
on the contrary, our SPACE is performed on the
continuous embedding space, which is naturally
compatible with the gradient-based training frame-
work and easy to apply with only a few lines of
code. Bielik and Vechev (2020) also employ adver-
sarial training framework specifically for the type
prediction task. They design uncertainty scores
and a program abstractor to solve the inner combi-
national optimization problem using integer linear
programming (ILP). Their work suffers the trade-
off between robustness and performance, while our
SPACE is capable of improving both aspects simul-
taneously.

3 Methodology

In this section, we will first briefly introduce the
background knowledge: the general adversarial
training and it on the continuous embedding space,
then present the proposed SPACE in detail.

3.1 Background: Adversarial Training
Adversarial training is defined as a min-max prob-
lem, where a model should be learned to minimize
the maximum risk posed by the attacking perturba-
tions (Goodfellow et al., 2015). Formally, it can be
formulated as follows:

min
θ

E(X,y)∼D [maxL(fθ(A(X)), y)] (1)

Here X and y are the input and its corresponding
label sampled from data distribution D, L is the
loss function, fθ is the target model with trainable
parameter θ andA is the adversarial transformation
applied to X.

Previous works that adopt adversarial training on
source code comprehension tasks usually define A
as some semantic-preserving code transformations,
which yields actual adversarial examples in the dis-
crete token space and is hard to optimize (Bielik
and Vechev, 2020; Ramakrishnan et al., 2020). Dif-
ferent from them, we propose to define A as per-
turbations on the continuous embedding space:

min
θ

E(X,y)∼D

[
max
∥δ∥F≤ϵ

L(fθ(A(X, δ)), y)
]

(2)

where δ is the perturbation matrix on X, whose
Frobenius norm is constrained to be less than ϵ.
This definition produces virtual adversarial exam-
ples in the embedding space, which is easy to opti-
mize via gradient-based methods.
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Algorithm 1: Semantic-Preserving Adver-
sarial Training for Programming Languages

Data: Training samples D = {(X, y)}, perturbation
bound ϵ, learning rate α, ascent steps K,
adversarial learning rate η.

Output: Model parameters θ.
1 Initialize model parameters θ
2 for epoch = 1, 2, . . . , Nep do
3 for mini-batchB ⊂ D do
4 for i = 1, 2, . . . ,m do
5 δi0 ← 0 ∈ Rki×d
6 end
7 g0 ← 0
8 for t = 1, 2, . . . ,K do
9 δt−1 ← 0 ∈ Rn×d

10 for p = 1, 2, . . . , n do
11 if position p is the jth sub-word of

identifier di then
12 δt−1[p]← δit−1[j]
13 end
14 gt ← gt−1 +

1
K
E(X,y)∈B [∇θL(fθ(A(X, δt−1)), y)]

15 for i = 1, 2, . . . ,m do
16 giadv ←

∇δi
t−1
L(fθ(A(X, δt−1)), y)

17 δit ← Π∥δi
t−1∥F≤ϵ(δ

i
t−1 + η ·

giadv/∥giadv∥F )
18 end
19 end
20 θ ← θ − gK
21 end
22 end
23 return θ

3.2 Adversarial Training on Embeddings
Before presenting SPACE, we first introduce the
vanilla adversarial training on embedding space.

Given an input code sequence, we first tokenize
it into multiple sub-words using a Byte Pair Encod-
ing Tokenizer (BPE, Sennrich et al. 2016), which
is illustrated in the left part of Figure 1. After
obtaining the sub-word sequence X = {wi}ni=1,
we embeds them into a high-dimensional embed-
ding space with an embedding look-up table ϕ:
E = ϕ(X) = {ei}ni=1 ∈ Rn×d, where d is the
dimension of the embedding space. At this point,
we are supposed to find the optimal δ ∈ Rn×d
to maximize the inner part of Eq. (2), where
A(X, δ) = ϕ(X) + δ and ∥δ∥F ≤ ϵ. This opti-
mization is non-concave for neural networks, hence
we suppose the loss function is locally linear and
apply multiple gradient ascent steps to solve it:

g(δt) = ∇δtL(fθ(A(X, δt)), y)
δt+1 = Π∥δ∥F≤ϵ(δt + ηg(δt)/∥g(δt)∥F )

(3)

Here Π is a projecting function that constrain δ
within the ϵ-ball. It is proved in literature that the

above Projected Gradient Descent (PGD) algorithm
is able to neatly solve the maximization problem
(Madry et al., 2018).

In our implementation, we utilize the Free Large-
Batch algorithm (FreeLB, Zhu et al. 2020) to im-
prove the efficiency during training. The target
model fθ is the PrLM Encoder (see the right part
of Figure 1), which is CodeBERT or GraphCode-
BERT in our experiments.

3.3 Semantic-Preserving Adversarial Training
for Programming Languages

Vanilla adversarial training suffices to produce
good virtual adversarial examples for natural lan-
guage. However, it is not suitable for programming
languages, which are grammatically and syntacti-
cally strict. The key problems here are two-fold.
First, the keywords in programming languages are
so sensitive that small perturbations on them could
change the functionality of the original code snip-
pet, resulting in label flipping (Sato et al., 2018).
Second, different perturbations added to instances
of the same identifier will lead to different em-
beddings for the same identifier, which breaks the
grammar rule of programming languages. To avoid
the first problem, the simplest and most efficient
way is to add adversarial perturbations only on the
embeddings of identifiers (e.g. names of functions,
variables, and classes) and leave the keywords un-
changed. For the second problem, we maintain the
same adversarial perturbation for each identifier,
making sure the embeddings of the same identi-
fier are still identical after perturbing. In conclu-
sion, we aim to find constrained perturbations that
preserve the semantic meaning and grammatical
correctness of programming languages.

Motivated by the above discussion, we pro-
pose Semantic-Preserving Adversarial Code Em-
beddings (SPACE). Specifically, for each identi-
fier di that contains ki sub-words di = {sij}kij=1,
we maintain a specific perturbation δi ∈ Rki×d
for it. Each perturbation δi is then copied and as-
signed to the positions of its corresponding identi-
fier instances in the code snippet. As illustrated
in the Adversarial Block of Figure 1, the BPE
Tokenizer tokenizes the input code sequence into
sub-word tokens, which are then embedded into
high-dimensional word embeddings by a Sub-word
Embedding Layer. After that, we maintain the dif-
ferentiable perturbations for each sub-word that
belongs to the same identifier, and add them to
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the corresponding word embeddings and positional
embeddings to form the distributed embeddings,
which are finally further encoded by the PrLM
Encoder. In Figure 1, different colors represent
different identifiers and their shade indicates dif-
ferent sub-words. The differentiable perturbations
are updated according to their gradients to the final
loss using the gradient ascent algorithm, in order to
maximize the negative impact of the perturbations
to the model.

The whole training process is shown in Alg. (1).
We first initialize the model parameters θ, then for
every mini-batch in an epoch, we initialize the per-
turbations for all identifiers, δi0, to zero. After that,
K steps of adversarial training will be conducted.
In each step t, the perturbations of each identifier
δit−1 will be assigned to the positions of their corre-
sponding identifier instances to form δt−1, which
is then used to attack the model in order to accu-
mulate the gradient of θ and update each δit for the
next step. After K steps, we update θ using the ac-
cumulated gradient gK . Experimental results and
analysis in the following sections demonstrate that
the obtained model is better than normal training
and stays robust against adversarial attacks.

4 Experiments

To comprehensively evaluate our SPACE, we con-
duct experiments on three types of source code
comprehension tasks: code defect detection task for
classification style, natural language code search
task for retrieval style, and code question answer-
ing task for generative style. Meanwhile, they are
code-to-code, natural-language-to-code and code-
to-natural-language tasks, respectively. In this sec-
tion, we will first introduce each task and its corre-
sponding dataset, then present the results of them.

4.1 Tasks and Datasets

Code Defect Detection requires a model to predict
whether a code snippet contains malicious parts
that may attack software systems. We conduct this
experiment on the Defects4J dataset (Zhou et al.,
2019), which defines defect detection as a binary
classification task.
Natural Language Code Search is to retrieve
the most relevant code snippet from a database
given a natural language query, which is helpful
to reuse codes when developing new systems. We
conduct this experiments on the CodeSearchNet
dataset (Husain et al., 2019) and follow Guo et al.

Model Accuracy
CodeBERT GraphCodeBERT

baseline 62.08 64.06
+ADV. 64.85 64.45
+SPACE 66.01 66.12
+augmentation 63.25 63.47
+rand. ADV. 64.02 64.41
+rand. SPACE 64.57 65.08

Table 1: Results on Defects4J dataset, where the upper
half presents the main results based on two PrLMs and
the lower half presents ablation results.

(2021) to process the data. This dataset contains six
subsets for different languages: Ruby, JavaScript,
Go, Python, Java, and PHP.
Code Question Answering aims at learning a
model to answer questions with regard to a snippet
of code. In this setting, the answer should be gen-
erated as natural language by a decoder rather than
copied from the source code. We conduct this ex-
periment on CodeQA dataset (Liu and Wan, 2021),
which contains two subsets for Java and Python.

For statistics about these datasets, please refer to
Appendix A. For more details about our experimen-
tal settings (e.g. hyper-parameters, environments,
and hard-wares), please refer to Appendix B.

4.2 Experimental Results

Results on Defect Detection are shown in Table
1, we follow Lu et al. (2021) to use accuracy score
as our evaluation metric. In this section, we focus
on the upper half of Table 1, where the main results
are presented. The baselines here are pure Code-
BERT and GraphCodeBERT with a linear classi-
fier on top and +ADV. is the abbreviation for the
vanilla adversarial training method. We see from
the table that vanilla adversarial training can im-
prove the performance to a certain extent, while our
SPACE is constantly better than it and outperforms
strong baselines by large margins: over 3.93% and
1.96% on CodeBERT and GraphCodeBERT, re-
spectively. This observation demonstrates that our
SPACE, which takes the advantage of source code
characteristics, is superior to vanilla adversarial
training on all tokens.

Results on Natural Language Code Search are
tabulated in Table 2, where the evaluation metric is
Mean Reciprocal Rank (MRR) following Husain
et al. (2019). We see from the table that our SPACE
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Model AdvTest CodeSearch
Python Ruby JavaScript Go Python Java PHP Average

CodeBERT 27.2 67.9 62.0 88.2 67.2 67.6 62.8 69.3
+ADV. 28.3 68.5 62.3 88.5 67.5 67.6 62.6 69.5(↑ 0.2)
+SPACE 32.6 69.4 62.7 89.1 68.3 68.5 63.3 70.2 (↑ 0.9)

GraphCodeBERT 35.2 70.3 64.4 89.7 69.2 69.1 64.9 71.3
+ADV. 37.8 70.7 64.9 89.7 69.5 69.4 64.7 71.5 (↑ 0.2)
+SPACE 41.3 72.1 65.8 90.1 70.6 70.3 65.4 72.4 (↑ 1.1)

Table 2: Results on CodeSearchNet dataset.

Model Python Java
BLEU ROUGE METEOR EM F1 BLEU ROUGE METEOR EM F1

CodeBERT 34.86 30.28 12.51 4.93 31.56 32.40 28.22 10.10 6.20 29.20
+ADV. 36.15 32.84 14.07 5.84 34.08 33.03 29.13 10.60 6.24 30.02
+SPACE 36.47 33.03 14.14 6.14 34.38 33.49 29.64 11.01 6.42 30.66

GraphCodeBERT 35.95 32.31 13.39 5.86 33.52 33.22 29.24 10.78 6.52 30.22
+ADV. 36.57 33.29 14.15 6.24 34.52 33.84 30.41 11.33 6.76 31.42
+SPACE 37.03 33.97 14.65 6.41 35.25 34.11 30.96 11.68 6.92 32.01

Table 3: Results on CodeQA dataset.

outperforms vanilla adversarial training and base-
lines in all languages, demonstrating the univer-
sality of our method, which is language-agnostic
and can be used to boost the performance of mod-
els for different programming languages. Beside,
Lu et al. (2021) provide an adversarial test set for
Python, which replaces all arguments of a function
with {arg_0, arg_1, . . . , arg_n}. We also test our
method in this adversarial test set to preliminarily
verify the robustness of SPACE. In this setting, we
observe slight improvements on robustness using
vanilla adversarial training, yet they are still far
from satisfactory. In contrast, our SPACE boosts
the performance on this test set by 5.4% and 6.1%
over the baseline of CodeBERT and GraphCode-
BERT, respectively. It is worth noting that the cal-
culation of MRR score in this adversarial test set is
different from the clean test set, hence the results
are not directly comparable with the original ones.
For the robustness test with stronger adversarial
attacks, we present it in Section 5.2.

Results on Code Question Answering are
shown in Table 3, where we use PrLMs (Code-
BERT and GraphCodeBERT) as the encoder to
build representations for the source code and its
corresponding question, then apply a Transformer
Decoder (Vaswani et al., 2017) to generate answers.
Following Liu and Wan (2021), we use BLEU,
ROUGE-L, METEOR, EM, and F1 as the evalu-
ation metrics. BLEU computes the n-gram over-
lapping between candidates and references, while
METEOR is an improvement of BLEU that con-
siders some grammatical and lexical information,

such as synonyms, roots, and affixes. ROUGE-L
computes the longest common subsequence (LCS)
between the candidates and references, then calcu-
lates the F1 ratio by measuring the recall over ref-
erences and precision over candidates. EM stands
for Exactly Match and F1 is the character-wise F1
score between candidates and references. Similar
observations can be seen in Table 3 that SPACE
yields the best result compared with baselines and
vanilla adversarial training for both Python and
Java dataset, which further demonstrates the effec-
tiveness of our method in generative tasks.

5 Analysis

In this section, we conduct a series of experiments
and analyses to get a more in-depth understand-
ing of SPACE and its robustness against various
adversarial attacks, including state-of-the-art ones.

5.1 Ablation Study

There are multiple factors that could be the po-
tential reasons for the performance improvements:
more virtual augmented samples by the FreeLB al-
gorithm, or simply the virtual perturbations on em-
bedding space. To investigate whether these factors
could yield performance improvements as good
as SPACE, we conduct additional experiments on
each of these factors.

Notice that in Alg. (1), we accumulate the gra-
dient of θ in each of the K steps, resulting in K
times more virtual augmented samples compared
with the original training samples. To simulate the
augmented samples and also to explore whether ac-
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tual data augmentation would be enough to boost
the performance, we perform semantic-preserving
code transformations for each training sample and
get a K times larger augmented training set. After
that, we average the gradient of each K-samples
to update the parameters similar in Alg. (1). Re-
sults on this setting is presented in the fourth row
of Table 1, where we observe a slight performance
improvement on CodeBERT and a performance
drop on GraphCodeBERT. This observation demon-
strates that simple data augmentation is not able
to enhance the model as effectively as our SPACE.
Besides, training with actual augmented samples
via code transformations can even hurt the perfor-
mance, which is also observed in the paper of Ra-
makrishnan et al. (2020).

Now that actual augmented samples can not help,
do the improvements just come from virtual aug-
mented samples with any kind of perturbations
on the embedding space? To answer this ques-
tion, we add random perturbations on all tokens
(denoted as +rand. ADV. in Table 1) or with the
same semantic-preserving way as SPACE (denoted
as +rand. SPACE) to see their effect on baseline
models. Note that we also perform random pertur-
bations K times and average the gradient of the
obtained K samples, for a fair comparison. As
shown in the last two rows of Table 1, random per-
turbations are sub-optimal compared with those by
solving the inner maximization problem, resulting
in just slight performance gains on both models.
In addition, we also observe that random perturba-
tions added with the semantic-preserving way are
constantly better than those on all tokens, which
further confirms the motivation of our SPACE. In
conclusion, gradient-based perturbations working
in tandem with the semantic-preserving mechanism
(i.e., SPACE) result in the best performance.

5.2 Robustness against Advanced Attacks

In Section 4.2, we preliminarily demonstrate the
robustness of SPACE in the Python adversarial test
set provided by Lu et al. (2021). To test SPACE
with stronger adversarial attacks, we conduct com-
prehensive experiments with various kinds of
source code attacks, including state-of-the-art ones.

We first introduce two advanced attacking meth-
ods we experiment with. Zhang et al. (2020) pro-
pose Metropolis-Hastings Modifier (MHM) to at-
tack code classification models, which defines iden-
tifier renaming as a sampling problem. MHM is

Model Attack Success Rate
MHM Greedy-A ALERT

baseline 55.17 71.89 76.95
+augmentation 56.24 69.91 75.91
+rand. ADV. 54.89 70.69 74.75
+ADV. 52.36 69.34 73.53
+rand. SPACE 50.27 65.81 69.54
+SPACE 44.32 61.01 65.89

Table 4: Results of advanced attacks on Defects4J
dataset of GraphCodeBERT, where lower ASRs are
better. Greedy-A means ALERT attack with Greedy
Algorithm while ALERT stands for the one with Ge-
netic Algorithm.

a classical Markov chain Monte Carlo sampling
approach, which generates a sequence of adversar-
ial examples given the current stationary distribu-
tion and the probability output by the classification
model. Yang et al. (2022) present ALERT (Nat-
uralness Aware Attack) that considers the natural
semantic of generated adversarial examples. They
make use of the masked language prediction func-
tion of PrLMs to produce a ranked list of potential
substitutes for each token, and design genetic al-
gorithms to search for the optimal combination of
variables and corresponding substitutes. ALERT
is the current state-of-the-art attacking method that
yields a high Attack Success Rate (ASR) on strong
source code comprehension models. Meanwhile,
they are the first to attack PrLMs for code.

Results of MHM and ALERT attacks are tabu-
lated in Table 4, where we use ASR as the evalua-
tion metric following Yang et al. (2022). Suppose
N+ represents the number of correctly predicted
samples on the original clean test set, while N−

stands for the number of those that become incor-
rect after being attacked. ASR is then calculated
as ASR = N−

N+ . According to the definition, lower
ASR means stronger robustness against adversarial
attacks. We see from the table that our SPACE is
the most robust one among all models, which re-
duces the ASR of GraphCodeBERT by over 10%
on all attacking methods. The second row of the
table tells us that training models with actual aug-
mented samples by semantic-preserving code trans-
formations can hardly help to improve the robust-
ness against advanced attacking methods. When it
comes to training with virtual adversarial samples,
Table 4 shows that gradient-based perturbations
(+ADV., +SPACE) are constantly better than ran-
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Model CodeSearch-Adv
Ruby JavaScript Go Python Java PHP Average

CodeBERT 62.6(↓ 5.3) 54.8(↓ 7.2) 84.1(↓ 4.1) 61.1(↓ 6.1) 62.1(↓ 5.5) 58.2(↓ 4.6) 63.8(↓ 5.5)
+ADV. 63.3(↓ 5.2) 55.5(↓ 6.8) 85.6(↓ 2.9) 62.1(↓ 5.4) 62.9(↓ 4.7) 58.7(↓ 3.9) 64.7(↓ 4.8)
+SPACE 67.1(↓ 2.3) 59.5(↓ 3.2) 88.5(↓ 0.6) 65.8(↓ 2.5) 66.5(↓ 2.0) 62.3(↓ 1.0) 68.3(↓ 1.9)

GraphCodeBERT 63.2(↓ 7.1) 57.2(↓ 7.2) 84.5(↓ 5.2) 62.5(↓ 6.7) 62.6(↓ 6.5) 58.2(↓ 6.7) 64.7(↓ 6.6)
+ADV. 65.3(↓ 5.4) 59.1(↓ 5.8) 86.9(↓ 2.8) 64.9(↓ 4.6) 64.8(↓ 4.6) 61.3(↓ 3.4) 67.1(↓ 4.4)
+SPACE 69.8(↓ 3.2) 62.9(↓ 2.3) 89.2(↓ 2.9) 67.8(↓ 0.9) 68.1(↓ 2.2) 64.1(↓ 1.3) 70.3(↓ 2.1)

Table 5: Adversarial results on CodeSearchNet dataset, where the downward arrows indicate the performance drop
compared with the original clean test set, smaller drop means better robustness.

Model Python
BLEU ROUGE METEOR EM F1

GraphCodeBERT 32.40(↓ 3.55) 27.95(↓ 4.36) 10.78(↓ 2.61) 4.21(↓ 1.65) 28.64(↓ 4.88)
+ADV. 33.32(↓ 3.25) 28.94(↓ 4.35) 11.69(↓ 2.46) 4.74(↓ 1.50) 29.98(↓ 4.54)
+SPACE 34.91(↓ 2.12) 30.52(↓ 3.45) 12.37(↓ 2.28) 5.21(↓ 1.20) 31.72(↓ 3.53)

Model Java
BLEU ROUGE METEOR EM F1

GraphCodeBERT 30.12(↓ 3.10) 25.28(↓ 3.96) 8.48(↓ 2.30) 4.96(↓ 1.56) 26.36(↓ 3.86)
+ADV. 31.21(↓ 2.63) 26.95(↓ 3.46) 9.35(↓ 1.98) 5.42(↓ 1.34) 27.88(↓ 3.54)
+SPACE 32.86(↓ 1.25) 28.34(↓ 2.62) 10.26(↓ 1.42) 6.18(↓ 0.74) 29.33(↓ 2.65)

Table 6: Adversarial results on CodeQA dataset, where the downward arrows means the same in Table 5.

dom perturbations (+rand. ADV., +rand. SPACE),
and adding perturbations under the constraint of
preserving semantics (+rand. SPACE, +SPACE)
are constantly better than simply adding them on all
tokens (+rand. ADV., +ADV.). These observations
further demonstrate the significance of combining
gradient-based adversarial training with the data
characteristics of programming languages.

We explain the superiority of SPACE from the
following two perspectives. Firstly, the gradient-
based perturbations are stronger than the random
ones since they are basically the worst-case ones.
Training with worse adversarial examples is more
likely to generate more robust models. Secondly,
performing semantic-preserving adversarial pertur-
bations is consistent with the data characteristics
of programming languages, which maintains gram-
matical correctness and avoids label flipping prob-
lem caused by small perturbations on keywords.

5.3 Robustness against Code Transformations

MHM and ALERT require the probability output
by classification models, thus incompatible with
retrieval and generative tasks. To evaluate the ro-
bustness of SPACE on these tasks and also to test its
robustness under various semantic-preserving code
transformations, we select the top-three effective
code transformations in the experiments of Ramakr-
ishnan et al. (2020) to construct a model-agnostic
adversarial testing set for both CodeSearchNet and
CodeQA. Note that on the CodeQA dataset, some

questions and answers contain identifier names on
the corresponding code snippets. Therefore, when
performing the identifier-renaming transformation,
we also rename those identifiers on questions and
answers to ensure their correctness.

Results on the adversarial test sets of both
datasets are presented in Table 5 and Table 6, re-
spectively. Similar observations can be seen in both
tables that SPACE is the most robust model against
attacks by the combination of various semantic-
preserving code transformations. On the Code-
SearchNet dataset, our SPACE reduces the perfor-
mance drop by 3.6% and 4.5% on average over all
languages for CodeBERT and GraphCodeBERT,
respectively, compared with the baseline models.
We also notice that vanilla adversarial training can
mitigate the impact of adversarial attacks, yet only
to a slight extent (typically less than 0.5%). We
infer that this is because vanilla adversarial training
on all tokens is not in line with the legal semantic-
preserving code transformations, since it breaks the
grammatical correctness and affects the semantic
meaning of keywords, which are vital and sensitive
in code texts. On the contrary, our SPACE only per-
turbs the embedding of identifiers and leaves the
keywords unchanged, which preserves the gram-
matical correctness and functionality of codes.

6 Conclusion

In order to fill the gap of performance and ro-
bustness for source code comprehension models,
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we propose Semantic-Preserving Adversarial Code
Embeddings (SPACE) in this paper. SPACE takes
the advantage of adversarial training and is special-
ized to fit the data characteristics of programming
languages. To the best of our knowledge, we are the
first to explore the efficacy of adversarial training
on the continuous embedding space for source code
comprehension tasks. Thorough experiments and
analysis on three kinds of tasks have justified the
effectiveness and universality of our model to im-
prove both performance and robustness for source
code comprehension models.
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Language Training Samples Dev Queries Testing Queries Code Database
Go 167,288 7,325 8,122 28,120
Java 164,923 5,183 10,955 40,347
JavaScript 58,025 3,885 3,291 13,981
PHP 241,241 12,982 14,014 52,660
Python 251,820 13,914 14,918 43,827
Ruby 24,927 1,400 1,261 4,360

Table 7: Statistics of CodeSearchNet Dataset.

Java Python
Training Samples 95,778 56,085
Dev Samples 12,000 7,000
Testing Samples 12,000 7,000

Table 8: Statistics of CodeQA Dataset.

A Dataset Statistics

A.1 Defects4J Dataset
To propose a high-quality dataset for the defect
detection task, Zhou et al. (2019) invested a team
of security to manually label the data. They first
collect functions from 4 large C-language open-
source projects: Linux Kernel, QEMU, Wireshark,
and FFmpeg, then ask the team of four professional
security researchers to perform a two0round data
labeling and cross-verification. The final dataset
contains 21, 000 samples for training, 2, 700 sam-
ples for validation and 2, 700 samples for testing.

A.2 CodeSearchNet Dataset
This dataset contains six programming languages,
which is naturally suitable to test language-agnostic
methods. In our experiments, we use the fil-
tered dataset by Guo et al. (2021), where for each
language, it contains a training set denoted as
{code, query}Ni=1. For validation and testing, the
answer is supposed to be retrieved from a code
database given the query. The detailed statistics of
this dataset are tabulated in Table 7.

A.3 CodeQA Dataset
CodeQA contains two subsets for Java and Python,
respectively. The detailed statistics of this dataset
are shown in Table 8.

B Experimental Settings

B.1 Environments
We conduct our experiment with Pytorch imple-
mentation and CUDA version 11.4. For Defects4J

and CodeQA, we train our model on an RTX 3090
24GB GPU, and for CodeSearchNet, we train our
model on a Tesla V100 32GB GPU. The default
settings of our experiments require about 20GB
of GPU memory. Our experiments are single-runs
over the same seed due to the limits of computa-
tional resources.

B.2 Evaluation on CodeSearchNet

Note that we use the same settings for evaluation
on the CodeSearchNet dataset following Guo et al.
(2021), where during validation and testing, the
answer should be retrieved from the whole code
database, rather than from 1,000 candidates as in
the original paper of Husain et al. (2019). We use
this setting for a fair comparison with the baselines
of CodeBERT and GraphCodeBERT.

B.3 Hyper-parameters

We search for the best hyper-parameters on the
validation set of each dataset and test the best model
on the test set. We list the best hyper-parameters
we use in our experiments here.

B.3.1 Defect Detection
For both CodeBERT and GraphCodeBERT, we set
the learning rate to 2e-5, batch size to 16, and the
number of epochs to 5. For the inner gradient
ascent of adversarial training, we set its steps to 3
steps and its learning rate to 5e-4. For CodeBERT,
the maximum sequence length is 512. While for
GraphCodeBERT, which requires extra data flow
information, we set the maximum sequence length
for code to 384 and the maximum data flow length
to 128.

B.3.2 Natural Language code Search
For normal hyper-parameters, we set the maximum
code sequence length to 320, data flow length to 64,
and maximum query length to 128. The learning
rate, batch size, and the number of training epochs
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Language
CodeBERT GraphCodeBERT

learning rate steps learning rate steps
Ruby 5e-4 3 5e-5 3
JavaScript 5e-5 3 5e-5 3
Go 5e-5 3 5e-5 3
Python 5e-5 3 5e-4 3
Java 5e-5 3 5e-5 3
PHP 5e-5 3 1e-4 3

Table 9: Hyper-parameters for Adversarial Training on CodeSearchNet Dataset.

are set to 2e-5, 32, and 10, respectively, following
the original settings of Guo et al. (2021).

For hyper-parameters of adversarial training (i.e.,
adversarial steps and adversarial learning rate), we
tune them for each language, which is presented in
Table 9.

B.3.3 Question Answering over Source Code
For normal hyper-parameters, the learning rate,
batch size, and the number of training epochs are
set to 1e-4, 64, and 20, respectively. For Code-
BERT, the maximum code sequence length is set
to 256, while for GraphCodeBERT, the maximum
code sequence length and data flow length is set to
240 and 60, respectively.

For hyper-parameters of adversarial training, we
set the adversarial steps to 3 for all languages on
both CodeBERT and GraphCodeBERT. As for the
adversarial learning rate, we set it to 5e-5 for all
languages on GraphCodeBERT, and 5e-4, 1e-4 for
Java and Python on CodeBERT, respectively.
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Abstract

Since open social platforms allow for a large
and continuous flow of unverified informa-
tion, rumors can emerge unexpectedly and
spread quickly. However, existing rumor de-
tection (RD) models often assume the same
training and testing distributions and can not
cope with the continuously changing social
network environment. This paper proposed
a Continual Prompt-Tuning RD (CPT-RD)
framework, which avoids catastrophic forget-
ting (CF) of upstream tasks during sequential
task learning and enables bidirectional knowl-
edge transfer between domain tasks. Specifi-
cally, we propose the following strategies: (a)
Our design explicitly decouples shared and
domain-specific knowledge, thus reducing the
interference among different domains during
optimization; (b) Several technologies aim
to transfer knowledge of upstream tasks to
deal with emergencies; (c) A task-conditioned
prompt-wise hypernetwork (TPHNet) is used
to consolidate past domains. In addition, CPT-
RD avoids CF without the necessity of a re-
hearsal buffer. Finally, CPT-RD is evaluated
on English and Chinese RD datasets and is ef-
fective and efficient compared to prior state-of-
the-art methods. 1

1 Introduction

Online platforms such as social media are facing
new and ever-evolving cyber threats at the infor-
mation level — rumor. A rumor is an unconfirmed
claim related to an object, event, or issue of pub-
lic concern that is spread when its integrity is un-
known (Guo et al., 2020). It is very necessary
to study automated RD, because rumors are ex-
tremely harmful to society and manual detection
is time-consuming and labor-intensive (Oshikawa
et al., 2018).

However, automated RD has significant chal-
lenges and still faces the following difficulties:
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Figure 1: Illustration of the RD model training proce-
dure in the traditional static (a) and continual dynamic
event transfer (b) setup.

First, rumors are highly event domain-specific
(Wang et al., 2018), each event domain may have
a different input text distribution and fraudulent in-
tent. Second, detecting rumors at their early stage
of spreading faces the problem of insufficient la-
beled samples (Zhou et al., 2020). Third, rumor
detectors operating on online social platforms of-
ten encounter continuous event domain changes.
This poses a significant challenge to existing RD
models.

Previous work (Wang et al., 2018; Bian et al.,
2020; Zhang et al., 2021; Lin et al., 2021; Ben-
David et al., 2021) usually assume the same distri-
bution of training and testing data, and have dif-
ficulty coping with changing social network en-
vironments. In Fig.1 (a), there are no updates to
the model regardless of how many unseen events
will appear in the future, which requires the un-
reasonable assumption that the model’s general-
ization capability is enough. In addition, as the
social network environment changes, the original
training set data will become outdated (Lee et al.,
2021), so that the model’s ability on more recent
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events will diminish. For example, the COVID-19
pandemic caused massive trouble for existing RD
models (Lu et al., 2021; Patwa et al., 2021b).

In social media, the ideal RD model must con-
tinuously detect event stream and react rapidly to
emergencies. To study this ability, we propose a
continual dynamic event transfer (CDET) setup (il-
lustrated in Fig.1 (b)), which makes the RD model
dynamically updates the parameters θ over a series
of sequential events and assume that each event
goes through three stages from burst to normaliza-
tion: zero-shot stage with no samples, few-shot
stage with a small number of samples, and full-
shot stage with large-scale labeled samples. This
is because rumors must be detected early to avoid
the social harm caused by their spread, but there
are only a few or no labeled samples in the early
stages of an event.

Existing RD models still face many challenges
in the CDET setup: (1) Catastrophic forgetting:
When a neural model is trained in a sequence of
tasks, the downstream tasks may catastrophically
interfere with the upstream tasks. (2) Knowledge
transfer and accumulation: Transfer the knowl-
edge learned from upstream tasks for rapid gen-
eralization, accumulating knowledge from down-
stream tasks to better cope with upstream tasks; (3)
Parameter explosion: Previous research (Wang
et al., 2021a; Ke et al., 2021a) often require dy-
namically expanding neural modules for each task,
which is undoubtedly aggravating for pre-trained
language models (PLM) with billions of parame-
ters, with limited memory; (4) Data privacy: Af-
ter learning a task, training data is usually dis-
carded due to user privacy concerns (Chen and
Liu, 2018). This requires models to share learned
parameters, rather than saving data to retrain the
model.

To address the above challenges, a novel frame-
work called Continual Prompt-tuning RD (CPT-
RD) has been proposed. Technically, CPT-RD
can be seen as a continuously migrated version
of P-tuning v2 (Liu et al., 2021b). From Fig.2,
we can clearly decouple domain-specific knowl-
edge (tuning parameter) and shared knowledge
(frozen parameter). This provides the basis for
achieving memory of task-specific parameters and
bidirectional domain knowledge transfer. Bidi-
rectional knowledge transfer includes: (1) For-
ward Knowledge Transfer: CPT-RD has vari-
ous prompt initialization strategies to adapt fast
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[SEP]

Label Words
True
Real
Yes
Fake
False
No

Labels

rumor
non-rumor

Comments

Figure 2: Illustration of deep prompt tuning for RD.

to rumors of emergencies. (2) Backward Knowl-
edge Transfer: A task-conditioned prompt-wise
hypernetwork (TPHNet) learns latent distribution
of soft-prompts, encouraging CPT-RD to accumu-
late knowledge in sequential events while avoiding
data replay.

We collected RD datasets with 14 different do-
mains for both, English and Chinese. Through
empirical analysis, we find that CPT-RD essen-
tially avoids catastrophic forgetting. On the En-
glish dataset, the knowledge transfer indicators
FWT and BWT (Lopez-Paz and Ranzato, 2017)
achieve positive indicators of 23.9% and 0.9%, re-
spectively. Finally, the effectiveness of our im-
provement is demonstrated through ablation exper-
iments.

Our main contributions are: (1) We propose a
CDET setup in RD for evaluating rapid general-
ization and continual detection problems simul-
taneously. (2) To completely avoid the CF en-
countered in continual detection, we optimize and
store domain-specific soft-prompt for each event
domain and use it selectively. (3) We propose var-
ious forward knowledge transfer strategies to deal
with early emergency rumors and accumulate de-
tection experience through TPHNet for backward
knowledge transfer. (4) Our experiments on the
collected Chinese and English social media RD
datasets demonstrate the superior performance and
efficiency of our proposed method.

2 Related work

2.1 Rumors detection

Social media has gained much attention as a
source of research rumors, but existing RD meth-
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ods still perform poorly in the face of unknown
events and struggle to consistently respond to the
dynamic and changing social network environ-
ment (Zubiaga et al., 2018; Guo et al., 2020).
Wang et al. (2018) proposed an event adversar-
ial neural network (EANN) which extracts event-
invariant features by removing event-specific fea-
tures. Lu et al. (2021) consider unseen event RD
as a few-shot learning problem, and Wang et al.
(2021b) apply meta-learning to obtain the optimal
generalization initial parameters. Ben-David et al.
(2021) used prompt-tuning to consider RD as do-
main adaptation and committed to improving out-
of-distribution issues. The above methods can al-
leviate the problem of domain drift, but they are
all learned with offline static settings. Lee et al.
(2021) considered the continual detection capabil-
ity on online social media and applied rehearsal-
based replay techniques to resist CF. However, this
approach does not consider generalizing to the
unseen domain quickly and faces problems such
as inference efficiency and data privacy. Differ-
ent from the above methods, our proposed model
considers both fast generalization and knowledge
transfer for continual detection and is not based on
any data replay.

2.2 Prompt-based tuning

Recent research has found that converting down-
stream tasks to language modeling tasks via tex-
tual prompts is more effective to use PLM than typ-
ical fine-tuning (Liu et al., 2021a). Early prompt-
ing method, GPT-3 (Brown et al., 2020) and
PET/iPET (Schick and Schütze, 2020) for exam-
ple, uses hand-crafted prompt templates. However,
the performance of these methods relies heavily
on the selection of predefined prompt templates.
Hand-crafting prompts are very time-consuming,
and the performance may be sub-optimal. Shin
et al. (2020) propose AutoPrompt to search for bet-
ter prompts based on gradient descent approach.
Instead of searching for discrete template words,
Li and Liang (2021) propose prefix-tuning, where
tokens with trainable continuous embeddings are
placed at the beginning of the text to perform gen-
erate tasks. P-tuning v2 (Liu et al., 2021b) also
uses soft-prompt to achieve promising natural lan-
guage understanding and knowledge probing tasks.
Different from the above methods, they studied
single-step adaptation, and we are interested in
prompt transfer in CL environment.

2.3 Continual learning with fast
generalization

Mitigating CF is usually a priority in CL or life-
long learning research proposals (Hadsell et al.,
2020). Recently, the demands on CL have in-
creased further, not only to combat CF but also
to generalize quickly in unseen tasks. Integra-
tion with meta-learning is a promising approach,
concerned with balancing stability (preservation
of past knowledge) and plasticity (rapid absorp-
tion of current knowledge). MER (Riemer et al.,
2018) achieves gradient alignment by constraining
the direction of the gradient angle between differ-
ent task samples. Subsequently, OML (Javed and
White, 2019) and La-MAML (Gupta et al., 2020)
optimize and supplemente the training speed and
effect of MER, respectively. Meta-MbPA (Wang
et al., 2020) combine the above meta-learning,
rehearsal-based replay of CL and BERT. Wang
et al. (2021a) uses global and local memory net-
works to capture different classes of cross-task pro-
totype representations, adds a new frozen classifi-
cation module for each task, and requires BERT
to update slowly. Ke et al. (2021b) and Jin et al.
(2021) freezes part of the backbone model against
CF. They introduce an additional adapter layer
(Houlsby et al., 2019) to learn task-specific knowl-
edge, avoiding inefficient data replay and reducing
parameter tuning and growth rates. Different from
the above methods, CPT-RD is based on PT. Al-
though it is similar to adapter in terms of parame-
ter tuning, PT is more effective in parameters, and
CPT-RD has a more intuitive means of knowledge
transfer and avoids data replay.

3 Methodology

In this section, we first present the task defini-
tion and execution process of CPT-RD in CDET,
then elaborate prompt encoding method and bidi-
rectional knowledge transfer strategy.

3.1 Task definition and description

Suppose RD model M1:k−1 has performed learn-
ing on a sequence of tasks from 1 to k − 1, de-
noted as T1:k−1 = {T1, . . . , Tk−1}. Each task
is a domain-specific rumor binary classification
problem (non-rumor or rumor), and the inputs are
claim and comments texts. The goal of the RD
model is to use the knowledge gained from up-
stream {T1:k−1} tasks to help learn a better de-
tector M1:k for the k-th task Tk while avoiding
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Figure 3: Illustration of the execution of CPT-RD in a single task in CDET.

forgetting knowledge learned from past tasks. We
use the terms domain and task interchangeably be-
cause each task is from a different domain.

Often, each task consists of three stages: zero-
shot stage, few-shot stage, and full-shot (large-
scale labeled training) stage, which corresponds
to the development process of rumors from ger-
mination to normalization as described in Sec.1.
As shown in Fig.3, in the zero-shot and few-shot
stages, CPT-RD applies various forward knowl-
edge transfer strategies proposed in Sec.3.3 to
query the soft-prompt as the prompt initialization
of the current task. Note that the soft-prompt of the
current task is randomly initialized if the source
prompt library (SPL) is empty. In the full-shot
phase of the current task, CPT-RD starts training
with a randomly initialized soft-prompt instead of
using the soft-prompt in SPL because, in exper-
iments, we found that the former works better.
CPT-RD obtains knowledge accumulation in full-
shot annotated samples through TPHNet. The op-
timized soft-prompt specific to the current task is
stored in the SPL at the end of full-shot training.

3.2 Prompt encoding

Prompt tuning (PT) formalizes RD as a masked
language modeling problem using a pre-trained
language model (PLM). In Fig.2, given the k-th
task input, the pretrained embedding layer e of
PLM converts the claim and comments text into
token embeddings Xk = e(claim) ∈ Rm×d and

Ck = e(comments) ∈ Rn×d, m,n is the token
length, and d is the hidden dimension of PLM.
We prepend l randomly initialized soft-prompt to-
kens Pk = {P 1

k , P 2
k , . . . P l

k} ∈ Rl×d before them,
where P i

k ∈ Rd is an embedding vector. Then, we
add a [MASK] token, which is used to predict the
label words y ∈ Y . The input embedding of PLM
is:

x = Pk, [MASK],Xk, [SEP],Ck, (1)

and only Pk is learnable. Hence the tuned parame-
ters in PT are extremely fewer than full-parameter
fine-tuning, which is friendly for model deploy-
ment.

One key ingredient of PT is the verbalizer: a
mapping from the class label to a word token in
the PLM vocabulary. PLM gives the probability
of each word v in the vocabulary being filled in
[MASK] token p([MASK] = v|x). To map the proba-
bilities of words into the probabilities of labels, we
define the verbalizer as ver, which form the label
word set V , to the label space Y , i.e., ver : V 7→ Y .
We use Vy to denote the subset of V that is mapped
into a specific label y, ∪y∈YVy = V . Then the
probability of label y, i.e., p(y|x), is calculated as:

p(y|x)=fver (p([MASK]=v|x)|v ∈ Vy) , (2)

where fver is a function transforming the probabil-
ity of label words into the probability of the label.

3032



The training objective is:

LPk
= −

∑

xi,yi∈DTk

log(p(yi|xi)), (3)

where DTk
is defined as the training data for task

Tk.
PT only inserts soft-prompt into the input em-

bedding sequence of PLM. We follow the deep
prompt tuning of P-tuning v2, adding the prompts
of different layers as prefix tokens to the input se-
quence independently of other layers to increase
tunable task-specific parameters and improve sta-
bility. In experiment Sec.4.3, CPT-RD evaluates
the above two soft-prompt placement methods re-
spectively.

3.3 Forward knowledge transfer

Due to the lack of samples or even no training sam-
ples (zero-shot and few-shot) in the early stage of
rumor events, it is necessary to forward transfer
the knowledge from upstream tasks for fast de-
tection. An intuitive way of knowledge transfer
is to reuse knowledge gained from previous tasks,
which often improves and accelerates learning for
future tasks.

Therefore, SPL is responsible for storing up-
stream soft-prompts {Pj}j<k and task embed-
dings {zj}j<k, where Pj is obtained after train-
ing on DTk

in the full-shot stage, zj =
1

|DTk
|
∑|DTk

|
i=1 fe(X

i
k,C

i
k), fe is an encoder model,

i.e. BERT. Based on SPL, three types of prompt
initialization are proposed.

CLInit: Use the previous task’s soft-prompt
Pk−1 to initialize the current task’s soft prompt
Pk. SimInit: Select Pk from {Pj}j<k with the
highest similarity to the current task representation
zk ∈ Rd for initialization. Note that zk is calcu-
lated based on the training data of task Tk, which
does not need to be labeled. Straightforwardly, we
compute euclidean distances E and cosine similar-
ities C for task embedding pairs in the two groups
and use the averaged results as the final similarity
metrics:

E(zk, zj) =
1

1 + ‖zk − zj‖
,

C(zk, zj) =
zk · zj

‖zk‖‖zj‖
.

(4)

When CPT-RD faces the upstream task domain
samples again, it directly reuses the soft-prompt

of the corresponding task, thus completely avoid-
ing the occurrence of CF, but CLInit and SimInit
are single-source transfer strategies.

Single-source reuse initialization strategy can
completely avoid CF, but only a single task is con-
sidered in the forward knowledge transfer. Intu-
itively, knowledge available for transfer should be
present in all upstream tasks. MeanInit: Calcu-
late the average of {Pu

j }j<k to obtain Pk. In deep
prompt tuning, each layer of soft-prompt is cor-
respondingly averaged. MeanInit considers multi-
source transfer, but none of the above strategies
can accumulate to transfer backward knowledge.
We empirically compare these three strategies in
Sec.4.3.

3.4 TPHNet for backward knowledge
transfer

Although storing the training-optimized Pk after
labeled train on task Tk can avoid forgetting, it
ignores the backward knowledge transfer of the
tasks. Hypernetwork is usually used to consol-
idate the knowledge of sequence tasks and has
a certain ability of backward knowledge transfer
(von Oswald et al., 2019; KJ and N Balasubrama-
nian, 2020; Jin et al., 2021). It is a network that
explores the meta-parameter space of another net-
work. Similar to Hypernetwork, instead of model-
ing the final classification result, task-conditioned
prompt-wise hypernetwork (TPHNet) learns a la-
tent distribution space of soft-prompt with task-
specific priors, aiming to accumulate knowledge
in sequential and use it for all future tasks.

Specifically, when the CPT-RD completed the
learning of task Tk−1, and before the full-shot
phase of Tk starts, the current task embedding zk

and the soft-prompt set {Pj}j<k already exist in
SPL as described in Sec.3.3. Here, the task repre-
sentation zk for task Tk is optimized jointly while
learning the task. Taking the PT case as an ex-
ample, adding soft-prompt to the embedding layer,
deep prompt tuning only needs to modify the gen-
eration dimension of soft-prompt. TPHNet g gen-
erates a soft-prompt Pk through an auto-encoder,
using zk as input:

g(zk) = W2(tanh(W1zk + b1)) + b2, (5)

where W1 ∈ Rd′×d, b1 ∈ Rd′
,W2 ∈ R(l×d)×d′

and b2 ∈ Rl×d′
are trainable parameters, d′ = 64

is the middle dimension.
Then, in each step of learning T i

k , we randomly
sample a prior task soft-prompt Pj(j < k) to regu-
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larize the TPHNet learning. It penalizes the ℓ2 dis-
tance between the soft-prompt generated at the cur-
rent step Pi

k = g(zi
k) and the pre-computed one,

i.e., ||Pi
k−Pj ||22. Therefore, we avoid the TPHNet

changes its output for a prior task too much during
the sequential task learning, so that the knowledge
accumulation is better guaranteed for the learned
model. The following overall loss function:

LTk
= ˆLPk

+
β

k − 1

k−1∑

i=1

||Pi
k − Pj ||22, (6)

where ˆLPk
is the cross entropy like Eq.3. Accord-

ing to this equation, optimizing the overall loss
will update the patameters of the TPHNet g, task
embedding zk and prompt-based PLM. β = 0.01
is a hyperparameter that controls the strength of
the regularizer. After training, if Pk obtains bet-
ter (or the same) performance than Pj on Tj , we
update Pj to Pk.

4 Experiments

To evaluate the proposed CPT-RD, we closely fol-
low the settings proposed in prior works (Lopez-
Paz and Ranzato, 2017; Jin et al., 2021), and con-
duct comprehensive experiments. In particular, we
mainly consider whether CPT-RD effectively ad-
dresses the four challenges mentioned in Sec.1.
We carefully compare CPT-RD with state-of-the-
art methods of different categories under proper
experiment settings. Moreover, we conduct ex-
tensive ablation studies to provide a deeper under-
standing of our method.

4.1 Datasets and evaluation metrics
We collected 14 domain events for each dataset,
Chinese and English. Each piece of data con-
tains a claim, comments, and label (non-rumor
or rumor). We split the data for each event into
train/validation/test datasets with a split ratio of
30%/35%/35%. The details about the statistics are
shown in Table 6, and the PHEME and Weibo (Lu
et al., 2021) datasets are well divided by event
domain. We also added the COVID-19 dataset
(Patwa et al., 2021a) for the English dataset, which
comes from the competition2. In addition, for
datasets without split of events, including Twit-
ter15 and Twitter16 (Ma et al., 2018), we use
Tweeter-LDA (Diao et al., 2012), an LDA vari-
ant widely used for short and noisy tweets, to de-
termine topic clusters as well as important words

2https://competitions.codalab.org/competitions/26655.

with their weights. We removed the label of unver-
ified rumors in Twitter15 and Twitter16, retained
the rumors and non-rumor, and divided them into
five-event domains. The similarity between the
datasets we calculated using TF-IDF is shown
in Fig.5. To prepare the model inputs for both
datasets, first, we replace the URLs with the spe-
cial token [unused10]". Then, we also replace
the usernames with the special token [unused11]".
These two datasets will be released on GitHub
along with our experimental code.

To evaluate the performance of RD using F1
score as a metric, Rj,i is defined as the F1 score
on the test set of task Ti after training on task Tj .
We follow the two indicators, FWT and BWT, pro-
posed by Lopez-Paz and Ranzato (2017) to eval-
uate the knowledge transfer ability of CPT-RD in
the process of continual learning. We evaluate the
average F1 performance for all tasks after full-shot
training on the final task TN :

Avg.F1 =
1

N

N∑

i=1

RT,i. (7)

where N is the number of tasks. According to
Lopez-Paz and Ranzato (2017), two metrics are
defined to measure the effect of forward and back-
ward transfers:

BWT =
1

N − 1

N−1∑

i=1

RN,i − Ri,i, (8)

FWT =
1

N − 1

N∑

i=2

Ri−1,i − R0,i. (9)

FWT is the average zero-shot performance on a
new task and evaluating the model’s generalization
ability. BWT assesses the impact of learning on
the subsequent task has on the previous task. A
negative BWT indicates that the model has forgot-
ten some previously acquired knowledge.

In addition, to evaluate the models performance
early in the birth of the rumor, we also recorded the
average few-shot performance of each new task
during the continual cumulative training, which is
a cumulative value:

fs.F1 =
1

N

N∑

i=1

Rfs
i,i , (10)

where Rfs
i,i denotes the F1 performance of training

on the few-shot training set of the i-th task and
testing on the test set of the i-th task.
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PHEME + Twitter15&16 + Covid19 Weibo

Method Avg.F1 FWT BWT fs.F1(val) Avg.F1 FWT BWT fs.F1(val) +Params Tune Params

Fine-tuning† 54.6 (± 1.2) 7.0 -24.3 67.5 45.6 (±3.1) 18.3 -23.2 75.6 0 100%
EANN† 57.9 (± 1.5) 8.1 -20.3 68.3 49.4 (±2.1) 18.5 -20.9 77.1 1.8% 100%
Adapter⋆ 66.7(± 2.5) 13.7 -14.2 74.6 58.0 (±2.3) 24.4 -17.5 83.9 2.1% 2.1%
ParallelAdapter⋆ 61.5 (± 2.2) 2.8 -4.7 68.7 55.8 (±2.5) 8.5 -7.1 75.3 2.3% 2.3%
prompt-tuning (CLS)⋆ 60.0 (± 1.5) 7.4 -15.7 75.9 67.8 (±1.8) 18.3 -5.1 84.1 0.03% 0.03%
p-tuning v2 (CLS)⋆ 62.9 (± 2.1) 5.1 -9.3 73.0 67.6 (±1.6) 24.4 -3.0 80.4 0.6% 0.6%
prompt-tuning (VER)⋆ 65.0 (± 1.5) 7.1 -10.2 75.7 70.5 (±1.8) 18.7 -7.5 82.8 0.03% 0.03%
p-tuning v2 (VER)⋆ 69.7 (± 1.1) 13.9 -11.0 76.3 71.8 (±1.6) 29.5 -6.8 82.6 0.6% 0.6%

Prompt-tuning based (PT-based)

CPT-RD (CLInit)⋆ 65.1 (± 0.8) 15.0 0 75.5 70.0 (±0.7) 18.3 0 79.0 0.03% 0.03%
CPT-RD (SimInit)⋆ 66.3(± 0.9) 15.8 0 76.7 71.6(±1.6) 19.8 0 83.6 0.03% 0.03%
CPT-RD (MeanInit)⋆ 64.5(± 1.2) 14.8 0 75.6 70.3(±1.5) 18.5 0 80.9 0.03% 0.03%
CPT-RD (SimInit+TPHNet)⋆ 66.7(± 1.3) 15.3 0.2 76.0 71.9(±1.2) 20.0 0.5 84.0 0.1% 0.1%

P-tuning v2 based (PTv2-based)

CPT-RD (CLInit)⋆ 68.2 (± 1.0) 19.8 0 76.1 73.1(±0.7) 30.7 0 83.2 0.6% 0.6%
CPT-RD (SimInit)⋆ 72.2(± 1.1) 23.3 0 79.1 75.0(±1.2) 31.2 0 84.9 0.6% 0.6%
CPT-RD (MeanInit)⋆ 70.6(± 1.5) 20.5 0 75.5 73.5(±1.3) 28.7 0 83.0 0.6% 0.6%
CPT-RD (SimInit+TPHNet)⋆ 75.0(± 1.3) 23.5 0.9 79.3 76.5(±1.6) 31.4 1.1 85.7 1% 1%

Table 1: Results evaluated on test datasets for all tasks in PHEME + Twitter15&16 + Covid19 and Weibo.
The following averaged over 5 random task orders (Table 7) are reported, where (⋆) and (†) indicate frozen lan-
guage model parameters and fine-tuning, (+Params) and (Tune Params) are additional parameters and the tunable
parameters for each task. CLS and VER denote the output predictions with CLS token classifier and Verbalizer
head, respectively. The fs.F1 is the result on the validation dataset, and the k-shot is 16.
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Figure 4: The few-shot performance of each model on the dataset PHEME + Twitter15&16 + Covid19.

4.2 Compare models

In the experiments, BERT-base is used as the
PLM weights, and CPT-RD will be compared
with the following advanced models: Fine-tuning:
Fine-tune the model on new task data continually.
EANN: Wang et al. (2018) uses adversarial net-
works to extract event invariant features for gener-
alization when new events arrive. For comparison,
EANN is modified to use BERT as the encoder and
only text data. Adapter: Freeze the pre-trained
model and train a residual Adapter(Houlsby et al.,
2019). ParallelAdapter: A variant by trans-
ferring the parallel insertion of prefix tuning
into adapters (He et al., 2021). prompt-tuning
(CLS/VER): which only tunes soft-prompts with
a frozen language model (Lester et al., 2021),
prompt for transformer’s first layer. p-tuning v2
(CLS/VER): Using multilayer soft-prompts (deep

prompt tuning), where CLS/VER denotes the pre-
dicted output with [CLS] token and Linear clas-
sification layer and verbalizer MLMhead, respec-
tively. MTL p-tuning v2 (CLS/VER): P-tuning
v2 in a multi-task manner instead of CL. Train a
single prompt using all tasks data concurrently.

4.3 Main results

The higher the FWT score, the better the model
works for the unseen domain. A negative BWT
indicates that the model produces forgetting, and
if it is positive, it can accumulate knowledge.

Compare model performance. In Table 1, un-
surprisingly, the Fine-tuning model has a severely
CF, the BWT value of -24.3 under the CL set-
ting. The level of catastrophic forgetting in EANN
(Wang et al., 2018) is somewhat reduced com-
pared to Fine-tuning but is still severe. Prompt-
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Task ID Task Fine-tuning p-tuning v2(VER) CPT-RD(CLInit) CPT-RD(SimInit) CPT-RD(MeanInit) CPT-RD(SimInit+TPHNet)

1 Charlie Hebdo 22.1 64.1 75.3 77.1 75.3 78.0
2 TwitterEvent4 65.1 88.0 72.1 65.2 70.6 74.4
3 Ferguson 24.7 62.4 70.3 72.7 67.5 72.8
4 Germanwings-crash 50.6 63.4 65.9 60.6 64.7 61.3
5 Ottawa Shooting 52.7 74.3 70.5 72.2 74.6 78.3
6 Prince Toronto 98.7 71.4 98.1 95.6 93.7 94.3
7 Putin missing 53.0 55.3 53.0 66.0 53.5 72.1
8 TwitterEvent1 77.1 77.1 77.1 77.8 70.7 74.5
9 Sydney Siege 42.8 72.5 74.2 65.7 75.8 74.9
10 TwitterEvent5 71.4 67.5 69.8 70.5 71.7 73.5
11 Gurlitt 43.7 48.3 42.2 62.3 52.5 62.5
12 Covid19 47.6 86.7 87.9 84.3 85.3 88.3
13 TwitterEvent2 57.8 69.0 60.5 70.8 65.2 72.4
14 TwitterEvent3 56.9 74.9 37.9 70.9 67.3 71.3

Avg. 54.6 69.7 68.2 72.2 70.6 75.0

Table 2: The F1 score evaluated on the final model after all 14 tasks are visited in the test set. We use Avg. to
represent the average F1 of all tasks for each method. The gray numbers indicates that CPT-RD (p-tuning v2 based)
does not perform as well as normal p-tuning v2 in a single task.

tuning and p-tuning v2 are somewhat related to
the adapter method in the form of parameter tun-
ing (He et al., 2021), but their performance in CL
differs. The prompt-based model is better than the
adapter in both datasets. From Tabel 4 in Sec.4.5,
consistent with Liu et al. (2021b), CLS token
classification is better than the verbalizer when p-
tuning v2 is under multi-task learning mode. The
performance of multi-task learning is usually con-
sidered the upper limit of the CL model. However,
verbalizer’s FWT and final F1 scores in the CL set-
ting were better than CLS but more prone to CF.
Since SPL lets the model not generate CF, we next
develop CPT-RD using prompt-tuning (PT) and p-
tuningv2 (PTv2) baseline with verbalizer.

CPT-RD performance. We have developed
CPT-RD based on PT and PTv2 respectively. We
can find that since CPT-RD has SPL, the BWT val-
ues are all greater than or equal to 0, which in-
dicates that this fundamentally eliminates the CF.
The more stable performance among the three for-
ward transfer strategies is SimInit. CLInit is the
most unstable, probably because the soft-prompt
from the previous task is not necessarily benefi-
cial to the learning of the next task and is prone
to cumulative negative effects on subsequent tasks
in CL. It can be observed by Tabel 2 that the F1
score of CLInit on the last two tasks of the last se-
quence task is significantly lower than other strate-
gies, 60.5 and 37.9 respectively. MeanInit with
multi-source prompt does not work as expected
and is only slightly better than CLInit. Finally,
we added TPHNet to SimInit to achieve backward
knowledge transfer, but the performance on PT is
not stable enough, probably because PT has fewer
tunable parameters. Furthermore, TPHNet incor-
porates additional tunable parameters but still has

parameter-efficient that is much lower than Fine-
tuning.

Final model performance. The final model
performance is the model’s performance after
learning the last task in the sequence. In Table 2,
although CPT-RD solves CF, in the ideal case, the
final model performance should outperform PTv2.
We can find that the final performance of CLinit is
inferior to PTv2 in 7 tasks, simInit and meanInit in
6, and SimInit+TPG in 5, which further indicates
that TPHNet achieves a certain degree of back-
ward knowledge transfer. Among them, we can
find that in CLinit, the last task is as low as 37.9,
indicating that directly reusing the soft-prompt of
the previous task may have a more significant im-
pact on the subsequent tasks.

Data privacy and Parameter explosion. From
Sec.3.4, we propose TPHNet in the context of hy-
pernetwork, which avoids rehearsal-based data re-
play and thus preserves data privacy. For a more
comprehensive evaluation of our method, we re-
place TPHNet with a rehearsal-based technique,
more details in Sec.4.4. From Table 3, it can be
found that TPHNet can achieve comparable per-
formance to the rehearsal-based method.

Besides, it can be seen from Sec.3.3 that CPT-
RD avoids parameter explosion by using SPL to
store soft-prompt (without dynamic model expan-
sion). And the storage space occupied by SPL is
negligible. In Table 2, the tuning parameter of the
Adapter-based model is 2.1-2.3%, which is more
parameter-efficient than the 100% of the Fine-
tuning model. However, CPT-RD adds only 0.03-
1% tunable parameters based on more parameter-
efficient PT and can achieve better performance.

Few-shot performance. There is a lack of sam-
ples in the early burst stages, so few-shot perfor-
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mance is critical for RD models. The final model
is the model obtained after learning the last task.
From Fig.4 (a), it can be found that Fine-tuning
has a very unstable few-shot performance in CL.
PTv2 still shows better few-shot capability than
Fine-tuning in CL, which indicates that the PT-
based model is more suitable for domain gener-
alization. In Fig.4 (b), the average fs.F1 of CPT-
RD (SimInit+TPHNet) is higher than that of PTv2,
indicating that continuously accumulated knowl-
edge can be better used for few-shot.

4.4 CPT-RD with rehearsal buffer

To verify the gap between TPHNet and rehearsal-
based technology, we randomly sample 50 pieces
of data from each domain training set in mem-
ory, and jointly trained on the future domain
dataset. It can be observed from Table 3 that
the rehearsal-based technology reflects the certain
ability to backward knowledge transfer by accu-
mulating data in past domain tasks. From Table
1, the BWT value of TPHNet is 0.9, which shows
that our method is close to rehearsal-based tech-
nology, but our advantage is that the memory oc-
cupies small, and there is no data privacy problem.

Buffer size Methods (PTv2-based) Avg. F1 FWT BWT

0/domain

p-tuning v2 (VER) 69.7 13.9 -11.0
CPT-RD (CLInit) 68.2 19.8 0
CPT-RD (MeanInit) 70.6 20.5 0
CPT-RD (SimInit) 72.2 23.3 0

50/domain

p-tuning v2 (VER) 71.2 14.1 1.5
CPT-RD (CLInit) 72.1 20.1 1.1
CPT-RD (MeanInit) 71.7 19.4 0.8
CPT-RD (SimInit) 75.3 23.8 1.2

Table 3: The performance of CPT-RD (PTv2-based) on
the PHEME + Twitter15&16 + Covid19 (En-
glish) dataset using rehearsal-based technology.

4.5 Multi-task learning performance

The performance of multi-task learning methods
is often defined as an upper bound on the perfor-
mance of continual learning. Multi-task learning
avoids CF by visiting data from different domain
tasks at different times. In Table 4, we experi-
mented with the model’s performance in the multi-
task learning mode under the Chinese and English
datasets. Consistent with the experimental conclu-
sion of Liu et al. (2021b), p-tuning v2 using CLS
token classification outperforms the verbalizer un-
der multi-task learning. However, the verbalizer
outperforms CLS in FWT and final F1 score in the
CL setting, but is more prone to CF.

Methods Avg. F1 +Params Tune Params

PHEME + Twitter15&16 + Covid19

MTL p-tuning v2 (CLS) 80.3 (± 0.8) 0.6% 0.6%
MTL p-tuning v2 (VER) 77.9 (± 0.8) 0.6% 0.6%

Weibo

MTL p-tuning v2 (CLS) 85.3 (± 0.8) 0.6% 0.6%
MTL p-tuning v2 (VER) 83.8 (± 0.8) 0.6% 0.6%

Table 4: The performance of the baseline model p-
tuning v2 in the multi-task learning mode.

model Avg.F1 FWT BWT

CPT-RD 75.0 23.5 0.9
w/o TPHNet 72.2 23.3 0
w/o SimInit 71.3 14.2 0.9
w/o SimInit+TPHNet 69.7 13.9 -11.0

Table 5: Ablation study on the effectiveness of the CPT-
RD (SimInit+TPHNet) PTv2-based on the test set in
the PHEME + Twitter15&16 + Covid19.

4.6 Ablation study

To understand the effectiveness of the different
techniques proposed, we conducted an ablation
study. From Table 1, we know that CPT-RD is
more stable in PTv2-based than PT-based, which
indicates that the model can benefit from more
tunable parameters. Conventional PT do not use
forward transfer strategy and TPHNet with lower
FWT values. In PTv2-based, the overall perfor-
mance is highest when SimInit and TPHNet are
used together. In Table 5, removing either of TPH-
Net or SimInit will result in a decrease in overall
performance. This shows the validity of our im-
provements, which would degrade to p-tuning v2
if SimInit and TPHNet were both removed.

5 Conclusion

We explore how to continually detect a social
network environment with frequent unseen do-
mains in RD. The novel framework Continual
Prompt-tuning RD (CPT-RD) is proposed, which
includes various knowledge transfer techniques.
In the face of emergency domains, CPT-RD
can use soft-prompt initialization strategies to
achieve fast generalization. There is also a task-
conditioned prompt-wise generator network (TPH-
Net) in terms of continual accumulation of detec-
tion knowledge. Future works include extending
usage of CPT-RD to task agnostic scenarios and
designing more diverse knowledge transfer strate-
gies.
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A Appendix

A.1 Event correlation

After filtering the stopping words, we use TF-IDF
to calculate the event relevance of each task do-
main, as shown in Fig.5.

Datasets tasks non-rumor rumor total

Gurlitt 77 61 138
Putin missing 112 126 238
Prince Toronto 4 229 233

PHEME Germanwings-crash 231 238 469
Ferguson 859 284 1143
Charlie Hebdo 1621 458 2079
Ottawa Shooting 420 470 890
Sydney Siege 699 522 1221
TwitterEvent 1 63 156 219
TwitterEvent 2 89 164 253

Twitter15&16 TwitterEvent 3 153 198 351
TwitterEvent 4 146 200 346
TwitterEvent 5 128 436 564

Covid19 Covid19 3060 3360 6420

total 7662 6902 14564
MH370 133 262 395
Olympics 173 81 254
Urban managers 94 149 243
Cola 215 419 634
Child trafficking 94 172 266
Waste oil 133 57 190

Weibo Accident 100 82 182
Earthquake 117 58 175
Typhoon 107 64 171
Rabies 101 42 143
College entrance exams 147 590 737
Lockdown the city 86 24 110
Zhong Nanshan 55 21 76
Wuhan 167 69 236

total 1722 2048 3770

Table 6: Statistics of PHEME + Twitter15&16 +
Covid19 (English) and Weibo (Chinese) datasets.

A.2 Implementation details

We tune hyperparameters on the PHEME +
Twitter15&16 + Covid19 and Weibo val-
idation sets. We tune learning rates by enumer-
ating over [3e-3, 5e-3, 7e-3], and finally use a
learning rate of 7e-3 for all CPT-RD approaches
where a learning rate of 1e-4 for TPHNet. The
learning rate of the fine-tuning approaches is 5e-
5, and the learning rate of the adapter approaches
is 1e-4. Regarding the PT and PTv2, includ-
ing the MTL approach, we use a learning rate
of 5e-3. We use a batch size of 16 across ex-
periments. We train the model for at most 100
epochs for each training task with a patience of
4 epochs without validation performance improve-
ment. Before training on a new task, we revert
the model to the checkpoint with the best vali-
dation performance in the previous task. In the
few-shot learning stage, we use the same learn-
ing rate and train the model for 500 steps (k ∈
{16, 8, 4}), assuming no validation sets to per-
form early stopping. The length of the input se-
quence on data set PHEME + Twitter15&16

+ Covid19 is 300, and Weibo is 128. We
also experimented with the length of different soft-
prompt tokens, such as {20, 40, 60, 80}, and found
that the performance of 40/60 is relatively sta-
ble, so 40 is uniformly used as the length of soft-
prompt in the experiment.
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Task Order Tasks

PHEME + Twitter15&16 + Covid19
Order1 Charlie Hebdo, TwitterEvent4, Ferguson, Germanwings-crash, Ottawa Shooting, Prince Toronto, Putin missing,

TwitterEvent1, Sydney Siege, TwitterEvent5, Gurlitt, Covid19, TwitterEvent2, TwitterEvent3
Order2 Sydney Siege, ferguson,TwitterEvent1, Gurlitt, Ottawa Shooting, TwitterEvent3, Prince Toronto, TwitterEvent4,

Putin missing, Charlie Hebdo, TwitterEvent5, Germanwings-crash, TwitterEvent2, Covid19
Order3 TwitterEvent3, Charlie Hebdo, TwitterEvent2, Ferguson, TwitterEvent1, TwitterEvent5, TwitterEvent4, Putin missing,

Ottawa Shooting, Prince Toronto,Gurlitt, Germanwings-crash, sydneysiege, Covid19
Order4 TwitterEvent1, Germanwings-crash, TwitterEvent4, Ferguson, Gurlitt, Sydney Siege, TwitterEvent3, Charlie Hebdo,

Ottawa Shooting, Prince Toronto,TwitterEvent2, TwitterEvent5, Putin missing, Covid19
Order5 Covid19, Germanwings-crash, Prince Toronto, TwitterEvent3, TwitterEvent5, Sydney Siege, Ferguson, Ottawa Shooting,

Charlie Hebdo,TwitterEvent4, TwitterEvent2, Gurlitt, Putin missing, TwitterEvent1

Weibo
Order1 Typhoon, Olympic, MH370, Earthquake, Rabies, College entrance exams, Cola, Urban managers, Child trafficking, Acci-

dent, Waste oil, Zhong Nanshan, Wuhan, Lockdown the city
Order2 Olympic, Child trafficking, Rabies, Accident, Earthquake, Cola, College entrance exams,Typhoon, Urban managers, Waste

oil, MH370, Zhong Nanshan, Wuhan, Lockdown the city
Order3 Zhong Nanshan, Wuhan, Lockdown the city, Cola, Accident, Urban managers, Waste oil, Earthquake, Olympic, Child

trafficking,Typhoon, Rabies, College entrance exams, MH370
Order4 Cola, Accident, Olympic, Waste oil, Typhoon, Zhong Nanshan, Wuhan, Lockdown the city, College entrance exams, Urban

managers, Rabies, Child trafficking, MH370, Earthquake
Order5 Zhong Nanshan, Wuhan, Lockdown the city, MH370, Urban managers, Child trafficking, Typhoon, Earthquake, Olympic,

Cola, Accident, Rabies, Waste oil, College entrance exams

Table 7: Order of continual learning tasks in PHEME + Twitter15&16 + Covid19 and Weibo datasets.
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Abstract

To automatically correct handwritten assign-
ments, the traditional approach is to use an
OCR model to recognize characters and com-
pare them to answers. The OCR model easily
gets confused on recognizing handwritten Chi-
nese characters, and the textual information of
the answers is missing during the model in-
ference. However, teachers always have these
answers in mind to review and correct assign-
ments. In this paper, we focus on the Chinese
cloze tests correction and propose a multimodal
approach1 (named AiM). The encoded repre-
sentations of answers interact with the visual
information of students’ handwriting. Instead
of predicting ‘right’ or ‘wrong’, we perform
the sequence labeling on the answer text to
infer which answer character differs from the
handwritten content in a fine-grained way. We
take samples of OCR datasets as the positive
samples for this task, and develop a negative
sample augmentation method to scale up the
training data. Experimental results show that
AiM outperforms OCR-based methods by a
large margin. Extensive studies demonstrate
the effectiveness of our multimodal approach.

1 Introduction

The growing number of students has brought much
pressure on teachers to correct assignments man-
ually in the educational field. Recently, Optical
Characters Recognition (OCR) based methods are
widely used in several applications2 to automat-
ically complete this task. The OCR model first
recognizes the text in the image, and then the
OCR output is compared with the correct answer
to feedback correction results. In this pipeline

∗Contribution done during internship at Tencent Cloud
Xiaowei. Qingyu Zhou is the corresponding author.

1Our codes and data are available at https://github.
com/YusenZhang826/AiM.

2Educational applications such as http://kousuan.
yuanfudao.com, https://jiazhang.zuoyebang.
com and https://www.zuoye.ai.

Figure 1: Task examples and correction methods. The
OCR-based method misunderstands student’s intent due
to the width between “车” and “可” in Question 2. AiM
can tackle this problem since it takes both the handwrit-
ing image and the textual answer into consideration.

method, the post-comparison mainly relies on the
pre-recognition. Without prior knowledge of an-
swers, the OCR model easily gets confused when
recognizing handwritten Chinese characters, espe-
cially for various handwriting styles, ligatures, and
shape-similar characters. However, most of them
can be distinguished by human teachers, because
they take answers in mind at first.

In this paper, we focus on the Chinese cloze
correction (CCC) and propose an Answer-in-Mind
correction model (AiM) to tackle the above prob-
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lem. Figure 1 shows examples of the CCC task and
the comparison of the OCR-based method with our
method. We look at Question 2. Obviously, the
student knows the correct answer and writes down
“轲”, but it is recognized as “车可” by the OCR
model because of the slightly large width of the
hand-written content. Consequently, the correction
result is ‘wrong’. We hypothesize that the informa-
tion of correct answers can help the neural model
to understand student handwriting. As shown in
Figure 1, AiM is a multimodal model, which takes
the image and the answer text as input. Through the
interaction of two modality information, our model
understands the handwritten content and feeds back
the ‘right’ correct result.

In the AiM model, the image is encoded to se-
quential feature representations through Resnet (He
et al., 2016), where each of them represents a fixed-
width pixels block. The answer text is encoded
by word embedding. Then Transformer (Vaswani
et al., 2017) self-attention is adopted to compute
contextual representations for each modality. In
order to fuse them, we develop a cross-modal at-
tention. It renders the textual representations to
interact with the visual information of students’
handwriting. On the top of AiM, instead of pre-
dicting ‘right’ or ‘wrong’, our model performs se-
quence labeling on the answer text to infer which
character differs from the handwritten content.

To train AiM, we collect EinkCC, a dataset con-
taining about 5k handwriting images, answers, and
correction results of cloze questions, from our ed-
ucational application. Teachers distribute cloze
tests in our app, and students practice on the elec-
tronic paper hardware. In addition to EinkCC, OCR
datasets can be used for this task. We take samples
of OCR datasets (Liu et al., 2011) as the positive
samples, and construct negative samples by replac-
ing the label characters with shape-similar ones
derived from an open-sourced confusion set (Wu
et al., 2013). The same method also augments
EinkCC to scale up the training set.

We pretrain the image encoder in AiM to get
better visual representations, and further train AiM
with the correction objective. Experimental results
show that compared with OCR-based methods (Liu
et al., 2020; Du et al., 2021), AiM achieves 11%
accuracy improvements. Extensive analyses verify
that with the interactions between two modalities
through our attention mechanism, AiM can under-
stand student handwriting and ligatures, and more

handwritten characters confused by OCR can be
predicted well by AiM.

The main contributions are summarized as fol-
lows: i) We propose AiM, a multimodal model
for Chinese cloze correction, to make up for short-
ages of OCR-based methods. ii) We extend OCR
datasets using a negative sample augmentation
method to fit this task. iii) Comprehensive experi-
ments show that AiM achieves better performance
compared with OCR-based methods, and it’s effec-
tive and necessary to use a multimodal approach to
correct Chinese cloze tests.

2 Preliminary

2.1 Chinese Cloze Correction
We first give the description of the Chinese cloze
correction (CCC) task in this section. Given
a handwriting image I and the textual answer
A = [a1, a2, ..., am] of the corresponding question,
assuming that the handwritten characters in the im-
age is C = [c1, c2, ..., cn], the target of the task is
to predict a label y ∈ {0, 1}. The y = 0 indicates
the correction result is ‘right’ (i.e. the handwritten
content is a correct answer, C = A), otherwise it
is ‘wrong’.

2.2 Transformer
Suppose the input of Transformer (Vaswani
et al., 2017) is a pack of embeddings X0 =
[x1,x2, ...,x|x|]. If we have L stacked Transformer
blocks, the final output is like:

Xl = Transformerl(Xl−1), l ∈ [1, L] (1)

where each block consists of a self-attention layer,
a feed-forward layer, residual connection (He et al.,
2016) and layer normalization.

Self-Attention For the l-th block, the output Al

of a self-attention head is:

Q = Xl−1WQ
l ,K = Xl−1WK

l

Mi,j =

{
0, allow to attend
−∞, forbid to attend

Al = SelfAttention(Xl−1)

= softmax(
QKT

√
dk

+M)(Xl−1WV
l )

(2)

where WQ
l ,W

K
l ,W

V
l can project previous output

to queries, keys, and values, respectively. M ∈
R|x|×|x| is a mask matrix that controls whether two
tokens can attend each other.
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Figure 2: The architecture of AiM. The image encoder of AiM is initialized by OCR pretraining. In AiM, the visual
and textual representations are fused by cross-modal attention.

3 Method

We first introduce the sequence labeling conversion
for the CCC task in Section 3.1. Model architec-
ture of AiM is shown in Section 3.2 and Figure 2.
Finally, we describe the data augmentation and pre-
training methods in Section 3.3.

3.1 Label Space

The CCC task is to feedback ‘right’ or ‘wrong’ on
the handwritten content. In this paper, we perform
sequence labeling on the answer text, and the cor-
responding labels are defined as:

• del: the current character does not appear in
the image.

• add: compared to the handwritten content,
one or more characters should be inserted be-
tween the current and the next character3.

• sub: compared to the handwritten content,
the current character should be substituted by
another one.

3A placeholder <BLK> is inserted at the beginning of the
textual answers to handle the character missing at the first
position.

We get these labels by calculating the edit distance
between the answer and the handwritten content4.

The BIO annotation (Ratinov and Roth, 2009)
is adopted that the label space is {O, B-sub,
I-sub, B-del, I-del, B-add}. It is similar
to the label space of the Grammatical Error Detec-
tion/Correction (GED/GEC) task, but our method
compares the answer text to the handwritten con-
tent, instead of the erroneous sentence to the correct
sentence. After this conversion, AiM is trained in
a fine-grained way. If the predicted sequence only
contains ‘O’, the correction result of AiM is ‘right’,
otherwise it is ‘wrong’.

3.2 Model Architecture
The model architecture of AiM is shown in Figure
2. Components include: i) an image encoder with
Resnet and the self-attention mechanism to extract
the visual features, ii) a fusion module with the
cross-modal attention to mine the interactions be-
tween modalities, and iii) an output layer to predict
the label sequence.

Image Encoder To understand the handwritten
content in images, we follow Liu et al. (2020) to
adopt Resnet (He et al., 2016) as the image encoder.

4The handwritten text is annotated or taken from the OCR
dataset for calculating the label sequence of AiM.
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The image encoder maps the input image I to a
sequence of visual features Hv ∈ RNv×d with a
linear transformation:

H′v = Linear (ResNet(I))

Hv = H′v +Pv
(3)

where Nv = max_width
32 , max_width is the max-

imum width of input images and d is the hidden
size of the visual representation. Each element in
sequence represents a fixed-width pixels block in
the image. Besides, there is a learnable positional
embedding matrix Pv ∈ RNv×d where each row is
a positional representation for each element in Hv

to capture the location information.
We perform a padding operation on the image

with extra white pixels blocks to ensure all images
have the same width. Then we adopt Transformer
blocks to capture the contextual information in vi-
sual modality and the l-th output is:

Slv = Transformer(Sl−1v ), l ∈ [1, Lv]. (4)

where Lv is the number of Transformer blocks.
Notes that S0

v = Hv and Sv = SLvv .

Fusion Module Assuming that the input answer
has Nt characters, the answer characters are first
converted to dense vectors X = [x1, x2, ..., xNt ]
through a word embedding. The linear transforma-
tion and positional embedding are also employed
to compute the textual representation Ht ∈ RNt×d
as follows:

H′t = Linear(X)

Ht = H′t +Pt
(5)

where Pt is the positional embedding matrix.
Then our fusion block further encodes and

merges the information of textual and visual modal-
ity. As shown in Figure 2, each fusion block
contains a textual self-attention layer and a cross-
modal attention layer. Self-attention mechanism is
employed to encode textual representations:

S′t = SelfAttention(Ht)

St = LayerNorm(Ht + S′t)
(6)

To capture the interactions between them, we de-
velop a cross-modal attention as follows:

Q = StW
Q,K = SvW

K

Mf
i,j =

{
−∞, padding token or pixels block
0, otherwise

Sf = softmax(
QKT

√
d

+Mf )(SvW
V )

(7)

where WQ projects St to queries, WK and WV

project Sv to keys and values, and Mf ∈ RNt×Nv
is the mask matrix to ensure only valid tokens
and pixels blocks can attend to each other. The
fused representations Sf are followed by the feed-
forward layer, residual connection, and layer nor-
malization.

Finally, we stack our fusion blocks to obtain
more informative fused features. It can be seen that
our fusion module is similar to the Transformer de-
coder. Different from the cross-attention of Trans-
former, our cross-modal attention merges the visual
and textual information, which allows each valid
answer character to attend to all valid pixels blocks,
without the order restriction of language modeling.
Besides, the Transformer decoder decodes words
one by one, but our module outputs fused features
at once.

Output Layer We denote the above fused fea-
tures as Hf . To project the hidden representation
to the space of labels, the fusion features is fed to
the fully-connected layer and a softmax function to
get the final output O ∈ RNt×m:

O = softmax(HfWo) (8)

where Wo ∈ Rd×m is the weight matrix and m
is the number of labels. During the training, we
apply the cross-entropy function as our correction
objective and the training loss is computed as:

L = −
Nt∑

i=1

log p(i, ki), p(i, ki) ∈ O (9)

where ki is the label of the i-th character and
p(i, ki) is the probability of the i-th character being
predicted to label ki.

3.3 Data Augmentation and Pretraining

Data Augmentation The sample of the OCR
dataset contains an image and the corresponding
written text, which can be easily extended for the
CCC task. We directly take the annotated text as
the answer to augment our positive CCC samples.
Then we develop a negative sample augmentation
method. Given a CCC sample, we keep the im-
age unchanged and modify the answer text. The
modifications include random character insertion,
deletion and substitution. Especially for the charac-
ter substitution, we attempt to construct hard neg-
ative samples by replacing the original character
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Algorithm 1: Negative Sample Augmenta-
tion

Input: S = {(Ii,Ci,Ai,Li, yi)}Ni=1, where Ii is
the image, Ci is the handwritten content, Ai

is the answer text, Li is the label sequence of
AiM and yi is the correction result.

D ← S
for (Ii,Ci,Ai,Li, yi) in S do

repeat
Âi ← Ai

Randomly select an index j in Âi

Âi[j]←Ai[j] ’s shape-similar character
Get L̂i comparing Ci and Âi

ŷi = 1

D.append ((Ii,Ci, Âi, L̂i, ŷi))
until Random times
repeat

Âi ← Ai

Randomly select an index j in Âi

Delete Âi[j]

Get L̂i comparing Ci and Âi

ŷi = 1

D.append ((Ii,Ci, Âi, L̂i, ŷi))
until Random times
repeat

Âi ← Ai

Randomly select an index j in Âi

Insert a common Chinese character at Âi[j]

Get L̂i comparing Ci and Âi

ŷi = 1

D.append ((Ii,Ci, Âi, L̂i, ŷi))
until Random times

Output: the augmented dataset D

with shape-similar ones. The shape-similar char-
acters are derived from an open-sourced confusion
set5 (Wu et al., 2013). The pseudo code of negative
sample augmentation is presented in Algorithm 1.

Pretraining Before the AiM training, we first
pretrain our image encoder with the OCR objective.
We follow the Liu et al. (2020) to use CTC (Graves
et al., 2006) as the loss function and apply high
dropout rates after each max-pooling layer. As
shown on the left side in Figure 2, the input image
is converted to a sequence of dense representations
through Resnet. A linear layer is added on the top
of Resnet to transform the space dimension to the
size of the vocabulary.

4 Experiment

In this section, we first introduce datasets, base-
lines, and other details of our experiments. Then
we show experimental results and perform analyses
from different views.

5It is taken from URL.

Dataset Train set Dev set Test set
#img #sample #img #sample #img #sample

EinkCC 4256 10610 - - 673 673
HWCC 41781 166984 10499 41767 - -
SynCC 150594 602376 - - - -

Total 196631 779970 10499 41767 673 673

Table 1: Data statistics. “#img” means the number of
handwriting images. “#sample” means the number of
CCC samples. In each train or dev set, the “#sample” is
larger than “#img” because of our data augmentation in
Section 3.3.

Dataset OCR Model CER

HWCC
PP-OCRv2 0.3936
CNN-CTC-CBS 0.2943
Resnet-CTC 0.0663

EinkCC
PP-OCRv2 0.3115
CNN-CTC-CBS 0.2325
Resnet-CTC 0.1661

Table 2: The OCR performance on dev and test sets.

4.1 Dataset

EinkCC EinkCC is collected from our educa-
tional application. Teachers distribute cloze tests
in our app, and students practice on the e-ink dis-
play hardware. When students finish tests, teachers
can correct them and feedback to students. Each
sample in EinkCC contains a student’s handwriting
image, the answer text and the correction result
marked by teachers. It mainly covers the dictation
of ancient poetry, the idiom application, and the
reading comprehension. Besides, we manually an-
notate the image text for the OCR training and the
AiM label sequence calculation.

HWCC CASIA-HWDB (Liu et al., 2011) is a
benchmark for the handwritten Chinese text recog-
nition(HCTR) task. We select the HWDB 2.x set
to be the positive CCC samples.

SynCC To further enlarge the scale of CCC
datasets, we first build a synthetic OCR dataset.
The details of the data construction are presented
in Appendix. Then all OCR samples are taken as
the positive CCC samples.

We split EinkCC into train and test sets, and
split HWCC into train and dev sets. All train sets
and dev sets are extended by our negative sample
augmentation method of Section 3.3. The data
statistics are shown in Table 1.
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Dataset Model Sequence level Binary level
P R F1 P R F1 Acc

HWCC

PP-OCRv2 0.3590 0.4661 0.4057 0.7508 0.9997 0.8576 0.7510
CNN-CTC-CBS 0.4584 0.5563 0.5026 0.7604 0.9994 0.8637 0.7635
Resnet-CTC 0.8157 0.8877 0.8502 0.8578 0.9989 0.9230 0.8751
AiMwo-PT 0.4893 0.5602 0.5223 0.9083 0.9306 0.9193 0.8571
AiM 0.9735 0.9717 0.9726 0.9926 0.9937 0.9932 0.9898

EinkCC

PP-OCRv2 0.1146 0.6847 0.1964 0.2128 1.0000 0.3509 0.4502
CNN-CTC-CBS 0.1829 0.8108 0.2985 0.2710 1.0000 0.4264 0.6003
Resnet-CTC 0.2311 0.7748 0.3561 0.3322 0.9964 0.4987 0.7013
AiMwo-PT 0.0568 0.2252 0.0907 0.2025 0.6497 0.3088 0.5676
AiM 0.2795 0.5766 0.3765 0.4262 0.7799 0.5512 0.8113

Table 3: Main results on dev and test sets. AiMwo-PT is the AiM model without the OCR pretraining. Resnet-CTC is
trained using the same data source as AiM, which is a strong OCR baseline in a fair comparison.

Model CER

Resnet-CTCwo-Syn 0.1916
Resnet-CTCwo-E 0.2995
Resnet-CTCwo-H 0.3304
Resnet-CTC 0.1661

Table 4: Data ablation of the Resnet-CTC OCR perfor-
mance on the EinkCC test set.

4.2 Evaluation Metrics
We use the character error rate (CER) to evaluate
the OCR performance in the pretraining stage, and
compute the following metrics to evaluate the CCC
performance:

Sequence level We use the widely-used metrics,
Precision (P ), Recall (R), and F1, to measure the
quality of label sequences outputted by AiM.

Binary level We transform label sequences to
binary labels (‘right’ or ‘wrong’) to compute the
accuracy of binary classification. We report the
P,R, and F1 of negative samples (i.e. y = 1) to
evaluate model’s ability to identify wrong answers.

4.3 Implementation Details and Baselines
Our training dataset {(Ii,Ci,Ai,Li, yi)}Ni=1 con-
tains the image Ii, the handwritten content Ci, the
answer text Ai, the label sequence of AiM Li and
the correction result yi. We pretrain the image en-
coder Resnet on the subset {(Ii,Ci)}Ni=1, and train
the AiM model on the subset {(Ii,Ai,Li)}Ni=1.

In the OCR pretraining, we follow Liu et al.
(2020) to set the number of convolution blocks
to {2,3,1,4}. The height of every input image is set
to 128 pixels and the width is scaled to the corre-
sponding value, so the shape of each pixels block
is 128 × 32. The learning rate is set to 1e-3, the
batch size is 8 and the training epoch is 15.

Model Sequence Level
P R F1

AiMwo-Syn 0.0212 0.1712 0.0378
AiMwo-E 0.1857 0.3964 0.2529
AiMwo-H 0.2660 0.4865 0.3440
AiM 0.2795 0.5766 0.3765

Table 5: Data ablation of the AiM performance at the
sequence level on the EinkCC test set.

In the AiM training, the learning rate is 1e-4,
the batch size is 8 and the training epoch is set
to 14. The dimension of hidden states d is 768.
The number of image encoder blocks Nenc and
fusion module blocks Nfus in AiM are both 2. We
adopt AdamW optimizer (Loshchilov and Hutter,
2018) and cosine-annealing strategy. To accelerate
training, the parameters in Resnet are frozen when
training AiM. We ignore punctuation in the text.

OCR-based methods are our baselines, where
the correction results are derived from the post-
comparison between the OCR results and answers.
The following OCR models are evaluated: Resnet
-CTC is the image encoder of AiM (Resnet) trained
with the CTC function on the subset {(Ii,Ci)}Ni=1.
PP-OCRv2 (Du et al., 2021) is an open-sourced
widely-used OCR model in Chinese recognition,
and we take its text recognition server model6 for
evaluation. CNN-CTC-CBS (Liu et al., 2020) is
a handwritten text-line recognition model, and we
take the released well-trained model7 for evalu-
ation. Table 2 shows the OCR performance of
baselines on our datasets.

6https://github.com/PaddlePaddle/
PaddleOCR.

7https://github.com/intel/
handwritten-chinese-ocr-samples.
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Figure 3: Data ablation of the AiM and its baseline
performance at the binary level on the EinkCC test set.

4.4 Results and Analyses

The main results are shown in Table 3. We evaluate
OCR models at the OCR level and the binary level.
For AiM and its variants, we evaluate them at the
sequence level and the binary level. We describe
our observations from the following perspectives:

• How do OCR models perform in CCC?

• Does AiM improve the performance and
whether the two modalities are well fused?

• Do data augmentation and pretraining work
and what’s the impact of data source?

4.4.1 Limitation of OCR-based Method
As shown on Table 3, the recall of OCR-based
methods is extremely high (nearly 1.0), but the pre-
cision and F1 are much lower. This means that
OCR models can correct almost all wrong hand-
written answers but mark many students’ right text
as wrong. Oppositely, AiM improves the precision,
F1, and accuracy with large margins.

Image:
Handwritten: 骆驼祥子 铺垫
Answer: 骆驼祥子 铺垫
OCR result: 骆马它祥子 铺挚
AiM output labels: O O O O O O O O
Correction label: ✓ ✓
Correcting by OCR: ✕ ✕
Correcting by AiM: ✓ ✓

Table 6: Examples on EinkCC test set. Resnet gives the
wrong outputs in all examples. The mistakes made by
Resnet are shown in bold with underline, while AiM
predicts correctly. Notes that the first label is for the
placeholder ‘<BLK>’.

4.4.2 Influence of Data Source
We conduct an ablation study on the training data.
The suffix ‘-wo-E’, ‘-wo-Syn’, ‘-wo-H’ means
the model is trained without the EinkCC training
set, SynCC set and HWCC training set, respec-
tively. The performance of Resnet and its variants
is shown in Table 4 and Figure 3(a). The CER
reaches the lowest level when Resnet is trained
with all training sets, which can prove the necessity
of data extension for OCR models. Table 5 and
Figure 3(b) show the performance of AiM. Remov-
ing any training set, all metrics at sequence level
drops, as well as the binary level. It means suffi-
cient data is valuable in the CCC task. Meanwhile,
comparing Figure 3(a) and 3(b), although the data
scale decreases, the performance of AiM is always
better than Resnet, which demonstrates the AiM is
more robust and stable to data variation.

Notice that the model performance are always
better on the HWCC dev set than it on the EinkCC
test set. This is because all negative samples of
HWCC are synthetic samples that are augmented
in the same way. This suggests that AiM learns
the error patterns well from our negative sample
augmentation.

4.4.3 Effectiveness of Multimodal
As shown in Table 3, with AiM, the recall of nega-
tive label decreases8 but the precision and F1-score
increase significantly at the binary level. We give
two examples on EinkCC in Table 6 to further ana-
lyze the effectiveness of AiM. Obviously, Resnet
generates wrong outputs while AiM makes no mis-
take. In the first example, Resnet considers one
left-right structured character as two independent
characters, which never happens when manually
correcting. In the second example, Resnet gets

8We perform an analysis on the recall drop in Appendix.
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Sequence level Binary level
Nenc Nfus Text Self-Att in Fusion P R F1 P R F1 Acc

1 1 ✕ 0.1150 0.3513 0.1733 0.3515 0.7099 0.4702 0.7623
1 1 ✓ 0.1773 0.4775 0.2585 0.3794 0.7908 0.5128 0.7727
2 2 ✕ 0.1235 0.3694 0.1851 0.3630 0.7161 0.4818 0.7667
2 2 ✓ 0.2795 0.5766 0.3765 0.4262 0.7799 0.5512 0.8113
3 3 ✓ 0.2501 0.5495 0.3436 0.3682 0.7398 0.4917 0.7727

Table 7: An ablation study of components in AiM on EinkCC test set.
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Correct
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<BLK>
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转

而

看

着

Source Image:

Pixels Block:

Correct
Answer

(b)

Figure 4: Cross-modal attention visualization. The figure shows the cross-attention scores between characters in
answer and the pixels blocks in image.

confused by the shape-similar characters. AiM
predicts successfully in these examples. More pre-
dictions on the dev and test sets are presented in
Appendix to illustrate that AiM is able to identify
all situations of the mismatch between the image
and answer text.

Comparing AiM and AiMwo-PT in Table 3, with-
out the pretraining, the performance of AiM drops
significantly, even worse than Resnet. It demon-
strates that visual modality features can be better
understood through pretraining.

4.4.4 Learning of Modal Fusion

We conduct experiments to explore the contribu-
tion of each component. Experimental results are
shown in Table 7. AiM reaches a better perfor-
mance when encoding text information with the
self-attention than only using token embeddings.
This suggests that self-attention brings better tex-
tual representation. Meanwhile, stacking each mod-
ule with a proper number of layers helps AiM cap-
ture interactions between modalities. We visualize
the cross-modal attention scores in Figure 4. We
find that characters manage to attend the most rel-
ative pixels block. For instance, in this sub-figure
(a), the character “集” appears twice in different po-
sitions, and the model captures the context feature

and both of them attend the corresponding pixels
block in order. It shows that cross-modal attention
can match multimodal information effectively.

5 Related Work

5.1 OCR Model

OCR models have evolved for a long period. Re-
searchers usually used hybrid CNN and RNN archi-
tectures (Breuel, 2017) with CTC (Connectionist
temporal classification) loss (Graves et al., 2006).
For handwritten Chinese text recognition (HCTR)
task, Liu et al. (2020) has achieved the state-of-the-
art performance. They use the simple end-to-end
CNN-CTC method and ease the overfitting prob-
lem with a high-rate dropout strategy.

5.2 Multimodal Model

Multimodal models have attracted more and more
attention and have been applied in many fields,
such as visual question answering (Antol et al.,
2015), Chinese spell checking (Xu et al., 2021;
Li et al., 2022) and other applications (Toto et al.,
2021; Hu et al., 2021; Aguilar et al., 2019). Unsu-
pervised pretraining (Kenton and Toutanova, 2019)
has provided informative representations and fine-
tuning techniques (Cui et al., 2019; Li et al., 2021)
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have brought further performance gains. Several
large-scale pre-trained models are utilized in multi-
modal models (Anderson et al., 2018; Toto et al.,
2021; Xu et al., 2021). To capture multimodal
features, one common method is to concatenate
encoders’ output from two sides and then feed to
the downstream multi-layer perceptrons (Nie et al.,
2021). While some works use attention mechanism
to get fusion representation (Lu et al., 2019; Tan
and Bansal, 2019; Tsai et al., 2019).

6 Conclusion

In this paper, we propose a multimodal model AiM
to effectively correct Chinese cloze tests. AiM em-
ploys cross-modal attention to understand the cor-
relation between modalities. We collect data from
different sources and develop a data augmentation
method. Experiments show that AiM outperforms
traditional OCR-based methods with over 11% ac-
curacy improvements.
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A Annotation Process

We present the process of annotation in our se-
quence labeling task in Figure 5. We put a label
to individual character in textual answer referring
to hand-written content and each label stands for a
kind of editing operation.

B SynCC Data Construction

To build a synthetic OCR dataset, we first collect
handwritten character images from the HWDB 1.0
set of CASIA-HWDB (Liu et al., 2011) and our
educational application. Then the character images
are spliced together into text-line images according
to the sentences or clauses of our online essay cor-
pus. We also replace characters with shape-similar
ones and their images to enhance OCR models to
recognize them. The synthetic OCR examples are
shown on Table 8. These samples are taken as the
positive CCC samples, and negative sample aug-
mentation introduced in Section 3.3 is applied to
construct SynCC dataset.

Image:
Content: 是一个宁静的世界

Image:
Content: 是一个宁静的曲界

Image:
Content: 阴森森的面孔

Image:
Content: 阴林森的面孔

Image:
Content: 心烦意乱中又收到了一页书笔

Image:
Content: 心烦意乱中又政到了一页书笔

Image:
Content: 从此孤独的我不再孤独

Image:
Content: 从此似独的我不再孤独

Table 8: Synthetic OCR examples of SynCC.

C Recall Drop on EinkCC

Table 3 shows that AiM improves the correction
precision and F1 but the recall drops on EinkCC.
We present several false-positive predictions on Ta-
ble 9. All examples are annotated as wrong by

teachers but are predicted as right by AiM. In the
first example, the student writes down “斯” but
there is a extremely large margin between the left
and right sides. In the rest examples, students write
down shape-similar characters but AiM can’t de-
tect them and tend to predict as right. Thus, even
though we use a confusion set to enhance AiM to
detect shape-similar characters, there is still a lot
of room for improvement in this regard.

Image:
Answer: 弗洛斯特
Labels: O O O B-sub O

Image:
Answer: 清
Labels: O B-sub

Image:
Answer: ... 已经满是桃儿...
Labels: ... O O O B-sub O O ...

Image:
Answer: 不畏浮云遮望眼
Labels: O O O O O B-sub O O

Table 9: False-positive predictions on EinkCC test set.
All above answer characters are predicted to ‘O’ by
AiM. The character marked by the underline indicates
why the correction result should be wrong.

D Predictions of AiM

Table 10 shows several cases of AiM’s predictions.
AiM is able to identify all kinds of modifications be-
tween the answer and hand-written content includ-
ing substitutions, deletions and insertions, which
proves that it’s reasonable to format the fill-in-the-
blank assignments correction task to sequence la-
beling. In this way, AiM can not only indicate
the correctness of students’ answers, but also can
locate where the errors occur.
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Image

Hand-written 
Content 亭   亭   净   直 唐       高     峰     _       云    清   流   见   _
Textual 
Answer <BLK> 亭   亭   净   植    <BLK>   高   峰    入     云    清   流   见   底

Sequence 
Labels O B-add   O   O    B-del  O   O   O   O   B-delO O O B-sub

Figure 5: Examples of sequence labeling annotation. For the first sample, to convert the answer to the hand-written
content, the last character in the answer “植” should be replaced by “直”. So the label ‘B-sub’ is annotated to “植”
and ‘O’ for the rest. For the latter one, the character “入” and “底” do not appear in the hand-written content so the
labels are both ’B-del’. Moreover, the character “唐” should be inserted at the first position in answer for conversion,
so we put a ‘B-add’ label to the placeholder ‘<BLK>’.

Image:
Handwritten Content: 前认为的早 5亿年

Correct Answer: 麻前镅认为的早 5亿材嚓年
AiM Labels: O B-del O B-del I-del O O O O O O B-del I-del O

AiM Predictions: O B-del O B-del I-del O O O O O O B-del I-del O

Image:
Handwritten Content: 《中度》

Correct Answer: 《中庸》
AiM Labels: O O O B-sub O

AiM Predictions: O O O B-sub O

Image:
Handwritten Content: 自缘身在最高层

Correct Answer: 不畏浮云遮望眼
AiM Labels: O B-sub I-sub I-sub I-sub I-sub I-sub I-sub

AiM Predictions: O B-sub I-sub I-sub I-sub I-sub I-sub I-sub

Image:
Handwritten Content: 自己寻找工作

Correct Answer: 自寻工作
AiM Labels: O B-add B-add O O

AiM Predictions: O B-add B-add O O

Table 10: Several outputs of AiM on dev and test sets. Some answers are generated through our data augmentation.
AiM can identify editing operations between answers and hand-written content. Characters are shown in bold with
underline if the corresponding label is not ‘O’.
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Abstract

ICD coding is designed to assign the disease
codes to electronic health records (EHRs) upon
discharge, which is crucial for billing and clin-
ical statistics. In an attempt to improve the
effectiveness and efficiency of manual coding,
many methods have been proposed to automat-
ically predict ICD codes from clinical notes.
However, most previous works ignore the deci-
sive information contained in structured med-
ical data in EHRs, which is hard to be cap-
tured from the noisy clinical notes. In this pa-
per, we propose a Tree-enhanced Multimodal
Attention Network (TreeMAN) to fuse tab-
ular features and textual features into multi-
modal representations by enhancing the text
representations with tree-based features via
the attention mechanism. Tree-based features
are constructed according to decision trees
learned from structured multimodal medical
data, which capture the decisive information
about ICD coding. We can apply the same
multi-label classifier from previous text mod-
els to the multimodal representations to pre-
dict ICD codes. Experiments on two MIMIC
datasets show that our method outperforms
prior state-of-the-art ICD coding approaches.
The code is available at https://github.
com/liu-zichen/TreeMAN.

1 Introduction

The International Classification of Diseases (ICD),
maintained by the World Health Organization, is
a hierarchical classification of codes representing
diseases, injuries, and so on. ICD codes have
been used in diverse areas, including insurance re-
imbursement, epidemiology, and clinical research
(Park et al., 2000).

In the hospital, when patients discharge, their
electronic health records (EHRs) and all associated
data are transferred to the information management
department, where clinical coders manually assign

∗Corresponding author

Automatic 
Multimodal 

ICD 
Coding 
Model

Clinical Text

ITEM VALUE

Medicine Insulin

… …

Hematocrit abnormal

ICD Code Disease Name

250.13
type I diabetes
mellitus

403.90	
Hypertensive
renal disease

584.9
Acute renal
failure

585.3
Chronic kidney
disease

… …

ITEM VALUE

Heart Rate 120 bpm

… …

O2 Flow 15 L/min

Figure 1: An example of automatic multimodal ICD
coding. Model inputs include physiological data and
medical records in addition to clinical text.

the appropriate ICD codes using rigid ICD coding
guidelines after reviewing records (O’malley et al.,
2005). The manual code assignment is expensive,
labor-intensive, and error-prone due to the large
volume of medical record information and high
professional requirements (Nguyen et al., 2018).

Since deep learning has achieved great success
in lots of healthcare applications (Cai et al., 2019),
many neural methods have been proposed to auto-
mate the ICD coding process by researchers (Teng
et al., 2022). Recent works formulate automated
ICD coding as a multi-label document classifica-
tion task, using clinical notes as model input, pre-
dicting coding with a multi-label classifier, and
learning text features through word embedding
techniques and neural networks such as RNNs and
CNNs (Mullenbach et al., 2018; Vu et al., 2020;
Zhou et al., 2021). To improve the code representa-
tion learning, researchers further leverage features
of ICD codes such as hierarchical structures (Cao
et al., 2020) and descriptions (Mullenbach et al.,
2018; Zhou et al., 2021). However, most previous
methods ignore structured medical data, including
physiological data collected by medical sensors
and medical record information such as prescrip-
tions and microbiology test results in EHRs. The
few methods that leverage structured data are ei-
ther ensemble-based approaches (Xu et al., 2019)
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or data-mining methods that discard semantic in-
formation (Ferrão et al., 2021).

In this work, we argue that structured medical
data can improve coding accuracy by enhancing
semantic representations and providing more in-
formation because clinical notes are noisy and am-
biguous. For example, there are many different
types of insulin, like “Insulin Aspart” and “In-
sulin Glargine”, which are often written the same
in notes but clearly distinguished by Generic Se-
quence Numbers (GSNs) in medical records. Con-
sidering different writing styles and polysemous
abbreviations, predicting ICD codes from clinical
notes is more complicated. However, automatic
multimodal ICD coding (as Figure 1 shown) is
challenging for the following reasons: 1) medical
data is naturally heterogeneous, with data types
including numerical quantities, categorical values,
and derived time series such as perioperative vi-
tal sign signals (Zhou et al., 2021); 2) the feature
selection method needs to be designed especially
for multi-ICD codes as it’s a multi-label classifica-
tion task; 3) decisive information for a code in the
long clinical note may be contained in short seg-
ments that are likely different for different codes
(Mullenbach et al., 2018).

In this paper, we propose a novel Tree-enhanced
Multimodal Attention Network named TreeMAN
to address the aforementioned problems. Since it’s
hard to do feature engineering for structured medi-
cal data, we construct tree-based features from the
structured medical data through decision trees that
require little data preparation (Safavian and Land-
grebe, 1991) instead of manually crafting features
based on medical knowledge. Inspired by previous
works (Wang et al., 2018; He et al., 2014), we repre-
sent the tree-based features by embedding vectors.
Taking the tree-based embeddings and text repre-
sentations as input, TreeMAN applies an attention
mechanism to select relevant tree-based features for
text representations and output fused multimodal
representations that contain richer information to
benefit the downstream classifier. However, our
method has limitations in handling long-tailed la-
bels as it is difficult to build a decision tree from
less than 10 positive samples.

Contributions. In summary, the main contribu-
tions of our work include:

• We propose a multimodal ICD coding frame-
work that exploits structured medical data in

EHRs to construct tree-based features to en-
hance text representations.

• We propose TreeMAN, a tree-enhanced mul-
timodal attention network, which fuses text
representations and tree-based features into
unified multimodal representations by the at-
tention mechanism. To the best of our knowl-
edge, it’s the first model to jointly learn multi-
modal features for the ICD coding task.

• Experiments demonstrate the effectiveness of
our proposed method. Results on two datasets
show that TreeMAN outperforms previous
state-of-the-art ICD coding methods.

2 Related Work

2.1 ICD Coding

Research on Automatic ICD coding can be traced
back to nearly 30 years ago when Larkey and Croft
(1996) proposed an ensemble algorithm to inte-
grate different types of classifiers to assign ICD
codes to inpatient discharge summaries. A series
of methods based on Deep Neural Networks has
been implemented on this task since this paradigm
achieved colossal success in Clinical NLP. Perotte
et al. (2014) built “hierarchical” Support Vector
Machines (SVMs) outperforming the "flat" classi-
fier. Mullenbach et al. (2018) built a convolutional
attention model which combined the single filter
CNN module and the per-label attention module. A
series of network modules based on attention mech-
anism have been utilized after the early attempts,
including multi-scale attention module (Xie et al.,
2019), residual convolution module (Li and Yu,
2020). We also notice that the hierarchical struc-
ture of ICD-9 could be effectively described by a
joint-classification module on different levels (Vu
et al., 2020) or in the form of specific hyperbolic
representation (Cao et al., 2020).

Multimodal learning methods help to integrate
multiple information like test reports, nursing notes,
etc., in the MIMIC-III datasets. An early at-
tempt was made by (Xu et al., 2019), in which
an ensemble-based approach was developed to in-
tegrate the structured and unstructured text of dif-
ferent modalities. Rajendran et al. (2021) made
full use of unstructured information by effectively
exploiting the geometric properties of pre-trained
word embeddings.
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Figure 2: An overview of our proposed multimodal ICD coding framework.

2.2 Tree-based Method

Decision trees are a supervised learning algorithm
broadly applied in regression and classification
tasks (Quinlan, 1986). They are trained on labeled
data while requiring little data preparation and do-
main knowledge while the preprocessed features
are able to be fused with text representations easily.
Multiple skills have been implemented to ensem-
ble relatively simple decision trees to get better
performance (Banfield et al., 2007; Gashler et al.,
2008). Among all of these ideas, Gradient boost-
ing decision tree (GBDT) is an important instance
which introduces iterative functional gradient de-
scent algorithms to boosting models firstly (Fried-
man, 2001). Significant improvement made by
XGBoost (Chen and Guestrin, 2016) and Light-
GBM (Ke et al., 2017) which use different gra-
dient information to improve accuracy and train-
ing efficiency respectively. Many attempts (Trofi-
mov et al., 2012; Ling et al., 2017) have been
made based on decision-tree boosting algorithm
since people found it could generate interpretable
and effective cross-feature and is easy to fix with
other models. A combination of GBDT with lin-
ear model like Logistic Regression(LR) effectively
helps the models to make explainable predictions
by selecting top cross features (He et al., 2014).
Wang et al. (2018) argued that the tree-enhanced
embedding method would benefit from the explain-
ability of tree-based models, thus improving gen-
eralization ability compared with other pure em-
bedding ways. Incorporating decision tree learning
with matrix factorization would help to extract the
latent factors and get Fine-Grained embedding with
rich semantic information (Kim et al., 2020), which
could contribute to solve cold-start problems even

further (Tao et al., 2019; Zhou et al., 2011).

3 Method

In this section, we first give an overview of our
framework (Section 3.1), and then detail the key
module in our framework: the tree-enhanced multi-
modal attention network TreeMAN (Section 3.2).
Finally, we introduce the processing of structured
medical data and decision tree learning (Section
3.3).

3.1 Overview

Figure 2 shows the overview of our method. Upon
discharge, there are two types of data available
for our model: clinical notes written by doctors
and structured medical data, including physiologi-
cal data collected by sensors and medical records,
such as lab measurements and prescriptions. Given
a clinical note and the associated structured data,
two modules in the model process them separately
to obtain text representations and tree-based fea-
tures. Considering in the poor performance of Bert-
like models on ICD coding (Zhang et al., 2020;
Chalkidis et al., 2020), we train the text model from
scratch instead of fine-tuning a pretrained language
model. Structured medical data is first processed
as tabular data and then fed into a trained decision
tree to obtain tree-based features that we project
into embedding vectors: the tree embeddings T
and the leaf embeddings L (detailed in Section 3.3).
The other module is the text encoder designed to
capture the semantic information in the document
and provide textual representations.

Text encoder Given an input document with N
words {wi}Ni=1, the encoder first maps each word
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wi to a de-dimensional pre-trained word embed-
ding ei, then concatenates embeddings into the ma-
trix E = [e1, e2, ..., eN ]. To capture contextual
information, the word embedding matrix E is fed
into a bidirectional LSTM layer to compute the text
representations H, which is a concatenation of the
forward output and the backward output:

−→
hi =

−−−−→
LSTM(e1:i),

←−
hi =

←−−−−
LSTM(ei:N ),

H = [
−→
h1 ⊕

←−
h1,
−→
h2 ⊕

←−
h2, ...,

−→
hn ⊕

←−
hn].

(1)

Then, text representations H together with the
tree embeddings T and the leaf embeddings L gen-
erated from tree-based features are fed to Tree-
MAN to obtain the multimodal representation M
(detailed in Section 3.2):

M = TreeMAN(H,L,T). (2)

In the output layer, following Mullenbach et al.
(2018), we apply the per-label attention network to
compute representations for each label.

Label attention The label attention network
takes multimodal representations M ∈ Rdm×N
as input and compute the per-label representa-
tions V ∈ Rdm×|L| with a matrix parameter U ∈
Rdm×|L|, where |L| represents the number of la-
bels:

A = softmax(MU),

V = ATM.
(3)

Finally, to compute the probability ŷi of the ith

label, the label representation vi of V is fed into a

corresponding linear layer followed by a sigmoid
transformation. For training, the model is opti-
mized to minimize the binary cross-entropy loss
between the prediction ŷ and the target y:

Loss =

|L|∑

i=1

−yilog(ŷi)−(1−yi)log(1−ŷi). (4)

3.2 TreeMAN
TreeMAN, a tree-enhanced multimodal attention
network, is designed to fuse tree-based features and
text representations and provides enhanced multi-
modal representations for multi-label classification.
We argue that the critical information in text rep-
resentations is respective and fragmented because
decisive information for different labels in the docu-
ment is likely contained in different short segments
(Mullenbach et al., 2018). Therefore, we use the
attention mechanism to learn the relevant features
for each text vector and then fuse tree-based fea-
tures and text information into a unified multimodal
representation.

An illustration of TreeMAN is shown in Figure
3. Specifically, for each text vector hi ∈ Rdh in H,
we first project it to a query vector qi by a learnable
parameter Wq ∈ Rdt×dh :

qi = Wqhi. (5)

The vector qi ∈ Rdt is used to generate the
attention weight αi by computing with the tree
embeddings T ∈ Rdt×|T |, where |T | represents
the number of decision trees:

αi = softmax(TTqi). (6)
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The attention vector αi is then multiplied with the
leaf embeddings L ∈ Rdl×|T | to produce the spe-
cial representation si for the text vector:

si = Lαi. (7)

To fuse the text information and tree-based fea-
tures, we concatenate the special representation
with text vector and then apply a linear projection:

mi = Wo[hi||si], (8)

where Wo ∈ Rdm×(dl+ds) is a learnable parameter.
All the multimodal vectors are concatenated to for-
mulate the output matrix M = [m1,m2, ...,mN ] ∈
Rdm×N .

3.3 Construction of Tree-based Features
In this section, we introduce how we construct the
tree-based features from structured medical data.
Based on the characteristics of the data, we divide
the structured medical data into three types: 1)
derived time series data such as perioperative vital
sign signals; 2) multivalued vertical data denotes
data with multiple records for one admission, such
as lab measurements and prescriptions; 3) single
horizontal data indicates data with only a single
record for an admission, such as admission type
and patient age. We process different types of data
into tabular data in different ways: 1) for derived
time series data, we compute mean, maximum,
and minimum values for each class of data; 2) for
multivalued vertical data, we convert it into binary
vector to indicate whether a test is abnormal or a
medication is prescribed; 3) for single horizontal
data, we directly put it into the table as it is.

Then, we use the processed tabular data to con-
struct decision trees by applying decision trees,
which are trained with ICD codes as the target,
using one-versus-all strategy for multi-label clas-
sification. Formally, we get a set of decision trees,
Q = {Q1, ..., Q|T |}, where each tree maps the tab-
ular data x to a leaf node, which can be represented
by a one-hot vector. The representation of tree-
based features is a multi-hot vector q which is a
concatenation of one-hot vectors:

q = [Q1(x), ..., Q|T |(x)]. (9)

Therefore, there are |T | elements of value 1 in q
indicates activated leaf nodes.

Inspired by the success of TEM (Wang et al.,
2018), we project q into an embedding matrix L

MIMIC-III 50 MIMIC-II 50
Vocubulary Size 51,917 30,688
# Samples 11,371 3,726
# *Drugs 2350 52
# *Lab Items 245 217
# *Organism 183 135
# *Specimen 74 63
# *Antibiotic 30 30
# *Chart Items 200 -
Mean # labels per
document

5.7 3.4

Mean # tokens per
document

1530 1014

Table 1: The statistics of the two MIMIC datasets and
the structured medical data used therein, where "#" in-
dicates "the number of" and "*" denotes the number of
classes is counted.

as leaf embeddings. For the attention computation
in Section 3.2, we also generate a tree embedding
matrix T based on the number of decision trees.

4 Experiments

4.1 Datasets

To make a fair and all-round comparison with
former SOTA models, we evaluate our model
on two widely used Medical Information Mart
for Intensive Care (MIMIC) datasets: MIMIC-III
(Johnson et al., 2016) and MIMIC-II (Saeed et al.,
2002). Because it’s hard for our method to be im-
plemented on ICD codes with less than 10 positive
samples, we filter out records not relative to the top
50 most frequent ICD codes (denoted as MIMIC-III
50, MIMIC-II 50) to train and evaluate our method.

MIMIC-III 50. Except for structured medical
data, we use the same experimental setup includ-
ing the same splits as previous works (Mullenbach
et al., 2018; Cao et al., 2020; Vu et al., 2020). For
structured medical data, we use the following tables
in MIMIC-III dataset 1 : 1) Admissions contains
patients’ admission information such as admission
time; 2) Patients contains patients’ basic informa-
tion such as date of birth; 3) Chartevents contains
charted data including patients’ routine vital signs;
4) Labevents contains laboratory measurements
such as pH of blood; 5) Microbiologyevents con-
tains microbiology information such as organism
test information; 6) Prescriptions contains medica-
tions related to order entries including the Generic
Sequence Number (GSN) of drugs.

1A detailed introduction to MIMIC-III tables can be found
at https://mimic.mit.edu/docs/iii/tables.
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MIMIC-II 50. We subset the MIMIC-II full used
in previous works (Mullenbach et al., 2018) based
on the 50 most frequent labels and use a set of 3,726
admission samples in which there are 2980 samples
for training, 373 for validation and 373 for test. For
structured medical data, we use the following tables
in MIMIC-II dataset 2: 1) Admissions; 2) Patients;
3) Medevents is similar to Prescriptions in MIMIC-
III; 4) Labevents; 5) Microbiologyevents.

Basic statistic information of all the datasets
shows on Table 1.

4.2 Implementation Details
Following the preprocessing schema of previous
works (Mullenbach et al., 2018; Li and Yu, 2020;
Xie et al., 2019), we lowercase all tokens and re-
move tokens that contain unrelated alphabetic char-
acters like numbers and punctuations. We imple-
ment the word2vec CBOW (Mikolov et al., 2013)
method to pre-train word embeddings and truncate
all discharge summary documents to the maximum
length of 4,000 tokens. We employ XGBoost 3

to implement the decision trees in our approach.
There is only one decision tree built for each label
where the learning rate and the maximum depth of
the tree are set as 0.99 and 5, respectively, while
the rest of settings follow the default. The sizes
of the tree embedding T and the leaf embedding
L are 128 and 30, respectively. We set the size of
multimodal representations to be the same as that
of text representations.

For the baseline methods we reproduced on the
MIMIC-II 50 dataset, we used the same implemen-
tations used by the authors on MIMIC-III 50. To
reduce randomness, we repeated all experiments 5
times with different random seeds and report the
average performance.

4.3 Metrics
To compare with previous and potential future work
thoroughly, we measured our model mainly on in-
dicators of macro-averaged and micro-averaged
F1, macro-averaged, and micro-averaged AUC
(area under the ROC curve) and Precision@k
(P@k). Among these metrics, the “micro-averaged”
method takes every single decision into considera-
tion by pooling all text-code pairing and then cal-
culating an effectiveness indicator on the pooled

2A detailed introduction to MIMIC-II tables can be found
at https://archive.physionet.org/mimic2/UserGuide/UserGui-
de.pdf .

3https://xgboost.readthedocs.io.

data. And “macro-averaged based" metrics would
provide statistics from the perspective of label in-
stead of pair-relationship. Furthermore, we rank
predictive probabilities to compute the precision
of the top-k predicted labels, denoted as P@k. We
set k to be five on MIMIC-III 50 dataset and three
on MIMIC-II 50 dataset for the average discharge
summary has 5.7 labels in MIMIC-III 50 while 3.4
in MIMIC-II 50. We believe a full comparison of
all the above metrics will provide insight into our
work.

4.4 Baselines
We compare our model TreeMAN with the follow-
ing baseline; all of them were SOTA when they
were proposed initially.

CAML Convolutional Attention network
for Multi- Label classification (CAML) and
description Regularized CAML was proposed
by Mullenbach et al. (2018), which combined a
single-layer CNN with attention layer to generate
ICD coding for given text.

LAAT&Joint-LAAT LAbel ATtention and Joint
LAbel ATtention model was proposed by Vu et al.
(2020). It encodes the input text with BiLSTM
layer and implements self-attention mechanism to
learn label-specific vectors representation. A hi-
erarchical joint learning architecture is utilized to
improve performance in the second model.

HyperCore Hyperbolic and Co-graph Represen-
tation was proposed by Cao et al. (2020). It lever-
aged hierarchical structure of ICD code in hy-
perbolic space and used graph convolutional net-
work(GCN) to capture co-occurrence correlation
of labels.

ISD Interactive Shared Representation Network
with Self-Distillation Mechanism was proposed
by Zhou et al. (2021), they implemented a self-
distillation learning mechanism to alleviate the
noisy text and only focus on noteworthy part of
text.

4.5 Results
Table 2 reports mean ± standard deviation of
TreeMAN’s results on two datasets, the perfor-
mance of baselines on MIMIC-III 50 and the results
of our implementation of baselines on MIMIC-II
50. Compared with previous text methods, our
multimodal approach achieves the best results on
all metrics on both datasets. It indicates that our
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Model
MIMIC-III 50 MIMIC-II 50

AUC F1
P@5

AUC F1
P@3

macro micro macro micro macro micro macro micro
CAML 0.875 0.909 0.532 0.614 0.609 0.871 0.902 0.426 0.553 0.552
HyperCore 0.895 0.929 0.609 0.663 0.632 - - - - -
LAAT 0.925 0.946 0.666 0.715 0.675 0.874 0.908 0.436 0.557 0.556
Joint LAAT 0.925 0.946 0.661 0.716 0.671 0.875 0.908 0.434 0.547 0.560
ISD 0.935 0.949 0.679 0.717 0.682 - - - - -

TreeMAN 0.937 0.953 0.690 0.729 0.682 0.883 0.916 0.479 0.574 0.605
±0.002 ±0.000 ±0.002 ±0.002 ±0.001 ±0.002 ±0.002 ±0.001 ±0.001 ±0.004

Table 2: Results on MIMIC-III 50 dataset, MIMIC-II 50 dataset andmean±standard deviation of each indicator
gained from replicated experiments with random initial states. Baseline scores are from the corresponding papers in
Section 4.4.

Model
AUC F1

P@5
macro micro macro micro

text 92.6 94.5 67.4 71.4 66.6
maxpooling 93.1 94.9 68.4 72.3 67.5
average 93.4 95.1 68.9 72.7 67.6
TreeMAN 93.7 95.3 69.0 72.9 68.2

Table 3: Results of ablation experiments on the MIMIC-
III 50 dataset (in %).

model benefits from the rich information contained
in structured medical data. Furthermore, the small
standard deviations demonstrate that the good re-
sults our model achieved are stable. We also ob-
serve more significant improvements in the f1-
marco and f1-micro metrics compared to other
ranking-based metrics. Since the binary output
is produced by a fixed threshold 0.5, a possible
reason for the disparity is that the sigmoid function
of our model in the final layer outputs more dis-
persed probabilities due to the decisive information
provided by structured medical data.

4.6 Ablation Experiment

To testify the effectiveness of the different mod-
ules in TreeMAN, we perform a series of ablation
experiments on the MIMIC-III 50 dataset, design
following experiments, and report the results in
Table 3.

The Effect of Structured Medical Data To
study the effectiveness of the information captured
from structured medical data, we remove the tree-
based features in TreeMAN and directly feed the
unfused text representations to the multi-label clas-
sifier (text in Table 3). The experimental results
of all metrics decreased significantly compared to

TreeMAN, demonstrating the importance of the
tree-based features constructed based on structured
medical data. It’s also a comparison between the
text representations and the multimodal represen-
tations, which proves that TreeMAN is capable of
learning multimodal features.

The Effect of Attention Mechanism To exam-
ine the effectiveness of the attention mechanism
in TreeMAN, we design two experiments by re-
placing the attention network with the max-pooling
layer (maxpooling in Table 3) and the average layer
(average in Table 3) on leaf embeddings. Formally,
we change the Equation 7 as:

{
maxpooling: si = max_pooll∈L(l),
average: si = 1

|T |
∑

l∈L(l),
(10)

where l and T represent a vector in the leaf embed-
dings L and the number of decision trees, respec-
tively. As shown, the experimental results of max-
pooling and average are both better than text and
worse than TreeMAN. Thus, the attention mecha-
nism improves TreeMAN’s ability to learn multi-
modal information and the information captured by
tree-based features is robust to learn.

4.7 Parameter Studies
We have already analyzed the efficacy of our pro-
posed model, and now we want to conduct a se-
ries of experiments to test the effect of two critical
hyper-parameters in the TreeMAN module: the
maximum depth of the decision tree and the size
of leaf embeddings L. The former decides how
tree-based features are constructed from structured
medical data, and the latter is the representation for-
mat of the tree-based features. Various metrics of
different settings would help us to demonstrate how
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(b) Performance of TreeMAN with different Leaf Embedding
Dimensions

Figure 4: Results of different maximum tree depth and leaf embedding size on MIMIC-III 50.

TreeMAN extracts information from multimodal
data:

The Effect of Maximum Depth of the Decision
Trees The maximum depth of the decision tree
would decide the number of feature extracted and
the properties of the leaf embedding layer, for each
of the leaf nodes represents a tree-based feature.
For example, if we set the maximum depth to 3,
we would get 401 leaves and 4752 leaves for a 7-
layer tree. A shallow decision tree cannot extract
enough features to represent the latent information
of initial input. However, a too deep tree would
risk over-fitting as well as colossal costs in the
training process. Based on this assumption, we
make a complete comparison of different pre-set
depths of the decision tree. As the Figure 4 (a)
shows, a tree of depth 5 outperforms other decision
trees, especially on the indicator of f1_marco and
f1_micro because of the improvement in the aspect
of recall ratio. Furthermore, we also notice that
changes in this hyper-parameter don’t seriously
affect the performance of our module, proving the
robustness of our method.

The Effect of Leaf Embeddings As we project
multimodal information gained in the decision tree
to leaf embeddings L, we need the proper capacity
of this layer to collect and store them. Thus we
experiment with the leaf embedding size ranging
from 10 to 50 to study the effect of the setup. Figure
4(b) shows that a vector with 30 dimensions is a
proper choice because short vectors would abandon
helpful information, while long ones would carry
redundant information. Taking note of the limited
size of datasets, relatively simple architecture could
be a practical solution. These results also indicate

that TreeMAN has learned an operative and steady
pattern to learn from various types of multimodal
information.

5 Conclusion

In this paper, we proposed a tree-based multi-
modal method for the ICD coding task, which
constructs tree-based features by decision trees
learned from structured medical data and fuses the
tree-based features and text representation by a
novel tree-enhanced multimodal attention network
(TreeMAN). Experimental results on two MIMIC
datasets show that our method outperforms state-
of-the-art methods. Further ablation studies demon-
strate that structured medical data and the attention
mechanism in TreeMAN have improved the perfor-
mance.

For future work, we plan to investigate the inter-
pretability of our method since tree-based methods
are naturally interpretable. We are also interested in
exploring a generalized and robust way to construct
the tree-based features to capture more generalized
medical information from structured medical data.
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Abstract
Currently, human-bot symbiosis dialog sys-
tems, e.g., pre- and after-sales in E-commerce,
are ubiquitous, and the dialog routing compo-
nent is essential to improve the overall effi-
ciency, reduce human resource cost, and en-
hance user experience. Although most existing
methods can fulfil this requirement, they can
only model single-source dialog data and can-
not effectively capture the underlying knowl-
edge of relations among data and subtasks. In
this paper, we investigate this important prob-
lem by thoroughly mining both the data-to-
task and task-to-task knowledge among vari-
ous kinds of dialog data. To achieve the above
targets, we propose a Gated Mechanism en-
hanced Multi-task Model (G3M), specifically
including a novel dialog encoder and two tai-
lored gated mechanism modules. The proposed
method can play the role of hierarchical infor-
mation filtering and is non-invasive to exist-
ing dialog systems. Based on two datasets col-
lected from real world applications, extensive
experimental results demonstrate the effective-
ness of our method, which achieves the state-of-
the-art performance by improving 8.7%/11.8%
on RMSE metric and 2.2%/4.4% on F1 metric.

1 Introduction

Traditionally, a lot of human resource cost is
spent on supporting the calling/online centers for
customer care, such as pre-and after-sales for E-
commerce and banking. With the rapid develop-
ment of AI techniques for dialog systems, various
bot agents have been deployed in those scenarios
to reduce parts of human workload. Both the bot
and human agents constitute a new and practical
symbiosis dialog system which can keep a bal-
ance between service quality and human resource
cost (Oraby et al., 2017).

In such a human-bot symbiosis environment, it
is commonly seen that users’ needs continuously

∗This work was done when they were in IBM Research
China, and Zhuoxuan Jiang is the corresponding author.

Dialog Router
Bot Agent skilled at
simple queries

Human Agent A skilled at
‘Technical Issue’ category

Human Agent B skilled at
‘Completion Issue’ category

①

②

…

user

Human-bot Hybrid Dialog System

User Utterance NPS Dialog Category

… … …

Utterance i 6.5 Finding Content

Utterance i+1 5.8 Finding Content

Utterance i+2 4.3 Completion Issue

… … …

Sorry for not being very
helpful. You can’t find the
course in your learning
queue and the progress are
all gone, correct?

You did not answer my
question, I can’t find
the course and I want
to resume it

Response Module

Figure 1: An example of dialog routing in human-bot
symbiosis dialog system.

change, or sometimes they are dissatisfactory with
the current servicing agents. They would request
the dialog system to replace the agents with more
qualified ones, because usually each bot or human
agent is trained for specific domains. For exam-
ple, some agents are good at handling after-sales
complaints, while some others would do well in
providing technical guidance. To make the whole
system operate efficiently, a dialog routing compo-
nent is necessary to take charge of when to transfer
the conversation and which domain of agents is
suitable to provide service.

To illustrate the process of dialog routing task
more clearly, Figure 1 shows an example. At the
beginning, the user’s query is operated by the bot
agent through Flow 1⃝, and the dialog router would
continuously monitor the user’s satisfactory degree
by inferring Net Promoter Score (NPS) and current
dialog category. When the inferred NPS (4.8) is
lower than a hand-crafted threshold (5) at the ith di-
alog turn, the router chooses to switch the dialog to
one of human agents skilled at the inferred category
via Flow 2⃝. Here human agent B is good at the
category of ‘Completion Issue’ dialogs. From this
picture, we could realize that how to implement
the accurate matching between user’s needs and
skilled agents is greatly correlated with the whole
system’s efficiency and user experience.

Currently, most existing deployed systems are
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heuristic and support to trigger the dialog routing
when users actively click a button or say/type some-
thing like ‘transfer to human’. This method is less
user-friendly and cannot fully leverage the abil-
ity of contemporary deep leaning techniques. Re-
cently, some learning based methods are proposed.
Yu et al. well defines the dialog routing as text re-
gression and classification problems, and proposes
a learning network with CNN and RNN modules
to encode dialog data (Yu et al., 2020). However,
it only models the token-level utterance data and
misses the information from other kinds of dialog
data1; Meanwhile the model structure is shared by
the two tasks (in single-task way) which cannot
capture the underlying knowledge within data-to-
task (intrinsic) and task-to-task (extrinsic) relations.
In this paper, we investigate the dialog routing task
from the multi-task learning perspective to further
capture the intrinsic and extrinsic information.

Intuitively, the decision making process of dialog
router could be decomposed to two subtasks, NPS
prediction and dialog category classification. We
adopt the same NPS prediction task as (Yu et al.,
2020) since the supervised data can be obtained
without any human-labeling effort. Furthermore,
we observe that the data-to-task (intrinsic) and task-
to-task (extrinsic) information should be leveraged
to make better routing performance. On the one
hand, we can argue that the more accurate NPS
is predicted, the more precise the dialog category
is classified, and vice verse. On the other hand,
in addition to the token-level utterance data, other
kinds of dialog data can also affect the final task
performance. For example, if a user utterance is
about the intent of ‘ask_technical_problem’, the
intent information is an obvious indicator that the
user should be served by the agent who is skilled at
‘Technical Issue’ category. Note that the categories
of agents and dialog intents of users are often dif-
ferent, and usually the former is much less than the
later.

To achieve the above motivation, in this paper,
we propose a novel Gated Mechanism enhanced
Multi-task Model (G3M). Firstly, the model ex-
tends the BERT encoder to encode various kinds
of dialog data in a hierarchical way. Moreover,
two modules of gated mechanism are proposed to
explicitly model the data-to-task and task-to-task
information under multi-task learning framework.

1Other kinds of dialog data include speaker roles,
utterance-level sequence, intent information, etc.

Another advantage of G3M is its good compatibil-
ity, such that it can be easily integrated into existing
human-bot dialog systems in a plug-in manner. We
conduct various experiments on two datasets col-
lected from the real world. The results demonstrate
our method can achieve the state-of-the-art perfor-
mance on both tasks, and the ablation experiment
proves our model is effective to simultaneously
capture the intrinsic and extrinsic information.

In summary, this paper’s contributions include:

• We argue that both the data-to-task and
task-to-task information are important to
achieve better dialog routing. Hence, we
propose a new multi-task learning solution,
called Gated Mechanism enhanced Multi-task
Model (G3M), to implement the motivation.

• We extend the BERT encoder to encode vari-
ous kinds of dialog data in a hierarchical man-
ner, and develop two modules of gated mech-
anism to explicitly model the data-to-task and
task-to-task information.

• We conduct extensive experiments on two real
world datasets. The results prove our model’s
effectiveness, which can achieve the state-of-
the-art performance.

2 Related Work

Compared with other dialog system tasks, there
are not many related work on dialog routing study.
Recently, a learning network with attention based
CNN and RNN is proposed (Yu et al., 2020). It
mainly models the token-level dialog data and is a
single-task model, i.e., the NPS regression and dia-
log classification tasks share the same model struc-
ture except the last inference layer. This method
cannot sufficiently leverage the underlying knowl-
edge within subtasks and various kinds of dialog
data. Another similar work is a demo system for
dialog transition (Huang et al., 2021) which tries
a vanilla multi-task learning method (i.e., a dia-
log encoder tailed with two prediction subtasks).
However, it still hardly fully utilizes the knowledge
among dialog data and subtasks. Different from
them, we further investigate the problem by simul-
taneously modeling data-to-task and task-to-task
information, achieving a much advanced perfor-
mance.

The dialog routing task is fundamentally de-
composed to two subtasks, dialog NPS regres-
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𝑢0 [SEP]
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Figure 2: Architecture overview of Gated Mechanism enhanced Multi-task Model with zoomed in NC-Gated (right
top blue part) and IC-Gated (right down yellow part) modules.

sion and dialog classification, which feature en-
coding various kinds of dialog data and have been
separately studied by researchers from the NLP
community. The representative research studies
include CNN-based models (Kim, 2014), RNN-
based models (Wang et al., 2018), regression-based
models (Dereli and Saraçlar, 2019; Ngo-Ye and
Sinha, 2014) and deep bi-directional transformers
model with pre-training (Devlin et al., 2019; Co-
han et al., 2019). From these works, we learn that
dialog data encoder is the common key module to
make sure good performance on final tasks (Dereli
and Saraçlar, 2019). Those methods have not been
demonstrated to be effective in the multi-task situa-
tion of dialog routing, without thoroughly mining
the relations among data and subtasks.

Recently, multi-task learning on dialog data has
been studied and proven successful, such as joint
slot filling and intent prediction (Goo et al., 2018),
dialog act sequence labeling (Kumar et al., 2018),
and dialog response generation (Ide and Kawahara,
2021). These studies suggest that dialog data con-
tains rich information and multi-task learning could
dig out the underlying knowledge among data and
subtasks. Moreover, among multi-task learning
methods, multi-gated mechanism is widely utilized
for information remembering and filtering (Chen
et al., 2018; Xiao et al., 2018; Du et al., 2019),
which is much suitable for tidying dialog data. In-
spired by the above ideas, we propose a novel
model to combine them together in our solution

for further improving the performance of dialog
routing task.

3 Problem Definition

We define the investigated problem formally in this
section. In our task, we use the available data in a
conversation session as inputs, including an utter-
ance list U = {u1, ..., uL}, a speaker role list R =
{r1, ..., rL}, and an intent list I = {e1, ..., eL},
where ui is an utterance, ri indicates the role of the
ith utterance (user or agent), ei is known intent of
the ith utterance, and L is the number of utterance
sequences in a conversation session. Each utterance
has a token-level sequence ui = {wi1, ..., wiM},
where wij means the jth token in the ith utterance
andM is the length of the token sequence. Here we
can leverage the intent information since we use an
intent extraction tool2. Our model is also scalable
to capture more dialog data, such as entity and dia-
log act information if they are available. We adopt
the intent information in our solution based on the
intuitive consideration of data-to-task motivation.

For the outputs of our task, at each dialog turn
i, our model can make predictions of NPS y

(N)
i

and dialog category y
(C)
i . In summary, given

Ui = {u1, ..., ui}, Ri = {r1, ..., ri} and Ii =
{e1, ..., ei}, we formally state the problem as fol-
lows:

2More information can be referred in Section Experiments.
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y
(N)
i , y

(C)
i = f(Ui, Ri, Ii). (1)

4 Proposed Method

The proposed model generally contains three parts:
(1) Dialog Encoder, (2) Gated Mechanism, and
(3) Multi-Task Prediction. Figure 2 shows the
overview of model’s architecture, which will be
introduced next.

4.1 Dialog Encoder

To encode the various kinds of dialog data, we
leverage and extend the BERT encoder. As pre-
sented in Figure 2, given an utterance sequence
{u1, ..., ui}, firstly all the utterances are flattened
and concatenated to a long token sequence. Then
we add a [CLS] token at the beginning and insert
[SEP] tokens between any two utterances. Simi-
lar to BERT encoder that embeds the whole token
sequence by Transformer structure, we get the rep-
resentation of the ith [SEP] token, Ti[SEP ], and
regard it as the representation of the ith utterance.
The representation of head token, T[CLS], would be
used in the following Gated Mechanism part as a
kind of context information which encodes all the
utterances.

With the utterance representations of Ti[SEP ],
the role {r1, ..., ri} and intent {ei, ..., ei} informa-
tion (one-hot vectors) are concatenated to their cor-
responding utterance representations. After a MLP
operation, we can obtain the final representation
of each utterance by Tnewi[SEP ] = MLP (ri ⊕ ei ⊕
Ti[SEP ]).

Our method to encode dialog data is inspired
by the Sequential Sentence Classification (SCC)
model (Cohan et al., 2019) which also is based
on BERT encoder and organizes the dialog data in
the hierarchical manner. However, our model is
different from SCC model in two aspects. Firstly,
the representation of head token [CLS] is addition-
ally utilized as context information in the following
modules. Secondly, our encoder can integrate the
extra role and intent information.

4.2 Gated Mechanism

Besides the basic mechanism via sharing parame-
ters of the encoder in vanilla multi-task learning
paradigm, we leverage gated mechanism and pro-
pose two modules for dialog routing to better model
the task-to-task and data-to-task information.

4.2.1 IC-Gated Module
The Intent-Category-Gated (IC-Gated) module is
designed to model the relation between intent, role
and dialog category (data-to-task) information. The
right down yellow part in Figure 2 illustrates the
detailed module structure.

With the context representation T[CLS] and ut-
terance representations Tnewi[SEP ], we extend a com-
monly used way (Goo et al., 2018) to capture the
relations between intent, role and dialog context
by learning a weighted feature for data-to-task (i.e.,
intent, role to dialog category) modeling. Thus
we obtain the weighted feature from various levels
of the input dialog data after max pooling opera-
tion on the utterance sequence by the following
equation:

g(I) = V · tanh(T[CLS]

+W · Pooling(Tnew1[SEP ], ..., T
new
i[SEP ])),

(2)

where V and W denote the parameters to learn.
With the weighted feature g(I) that attends intent

and role information on dialog context, the context
information T[CLS] is used again to calculate the
final weighted representation of dialog data with a
flatten operation as the following equation3:

T (IC) = Flatten(g(I) · (T[CLS])
T). (3)

The IC-Gated module can learn the representa-
tion from dialog data and meanwhile consider the
related information between intent, role and dia-
log context, which would benefit the later dialog
category classification task.

4.2.2 NC-Gated Module
The NPS-Category-Gated (NC-Gated) module is
designed to further model the underlying relation
between subtasks (task-to-task). The right top blue
part in Figure 2 shows the structure detail.

We set a task-to-task relation matrix D ∈
RdN×dC to preserve the empirical distribution of
co-occurrence between NPS and dialog categories
among dataset with min-max normalization (Singh
et al., 2015), where dN and dC are the numbers of
NPS intervals and dialog categories respectively.
We partition the NPS ranging from 0 to 10 into
ten intervals. Then with the representation from
IC-Gated module T (IC), the output representation
of NC-Gated module is calculated by combining a
MLP layer and the task-to-task relation matrix D:

3Flatten(·) function reshapes the input matrix into a one-
dimension vector.
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T (NC) = Di ⊙MLP (T (IC)), (4)

where ⊙ is Hadamard product to measure the sim-
ilarity. Di is the ith row vector which means a
representation of the ith NPS interval correspond-
ing to every dialog category, and it depends on
the predicted NPS. The reason that uses NPS to
query the matrix instead of using predicted dialog
category to query NPS, is that we empirically find
the effect from the NPS regression task is more
significant than the dialog category classification
task.

Note that except for the multi-task learning
paradigm that can capture the relation between
tasks via parameter sharing, we use the relation
matrix D as prior knowledge (or attention weights)
and design the NC-Gated module for better repre-
sentation learning of dialog data by further captur-
ing the task-to-task information.

4.3 Multi-Task Prediction

Dialog routing has two subtasks, namely NPS re-
gression and dialog category classification. For
the former task, the enhanced representation T (IC)

learned by the IC-Gated module from data-to-task
information and the dialog context representation
T[CLS] are concatenated together to make the pre-
diction of NPS. The predicted NPS ŷ(N) can be
defined as:

ŷ(N) =W (N)(T[CLS] ⊕ T (IC)) + b(N). (5)

W (N) and b(N) are parameters to learn.
The dialog classification task uses the enhanced

representation T (NC) as input, which is learned by
the NC-Gated module from task-to-task informa-
tion. The predicted dialog category ŷ(C) is calcu-
lated by a softmax function:

ŷ(C) = Softmax(W (C)T (NC) + b(C)). (6)

W (C) and b(C) are parameters to learn.

4.4 Model Training

To jointly train our model from the two tasks
together under the multi-task learning paradigm,
we design a loss function by combining a mean
squared loss for NPS regression and a cross-entropy
loss for dialog classification. To avoid over-fitting,
L2 regularization terms are adopted. The overall
objective function is defined as:

L =
α

N

N∑

k=1

[ŷ
(N)
k − y(N)

k ]2

︸ ︷︷ ︸
NPS regression task

− β

N

N∑

k=1

∑

y

y
(C)
k log(ŷ

(C)
k )

︸ ︷︷ ︸
dialog classification task

+
γ

2
(∥W (N)∥22+∥W (C)∥22)

︸ ︷︷ ︸
regularization terms

,

(7)

where N is the number of all training samples,
ŷ
(N)
k and ŷ(C)

k are the inferred NPS and category
labels, and y(N)

k and y(C)
k are the ground truth. α, β

and γ are hyper-parameters to balance the weights
of terms.

5 Experiments

5.1 Corpus

To our knowledge, there is no public corpus con-
tains both the NPS and category labels, we collect
two corpora from the real-world dialog systems to
evaluate our method.

Learning Corpus is collected from an online
education platform, where the dialog system for
customer care is constituted of 7 dialog categories
with all human agents: Badge Issue, Completion
Issue, Finding Content, System Help, Technical
Issue, Ticket Status, and Other.

MacHelp Corpus is collected from an after-sale
technical support platform for users who have trou-
bles with their Mac laptops, where the dialog sys-
tem is constituted of 4 dialog categories for human
agents: Login Problem, Apps Issue, Raise Tickets,
Account Issue.

5.2 Corpus Preprocessing

For the two raw corpora, we preprocess them into
a consistent format for model training and testing.
Table 1 shows an example of the data structure of
dialog session. In a dialog session, we have an
utterance sequence, a role sequence to indicate the
speaker role of each utterance (0 means user and 1
means agent), and an intent sequence labeled by us-
ing an online tool which is separately trained from
supervised information for the domain of customer
care4. We use the off-the-shelf extraction tool and
obtain 66 and 28 types of intents on the two corpora
respectively.

Within a dialog session, we partition the data
to several training and testing samples. At the

4https://www.ibm.com/products/watson-assistant. The in-
tent detection accuracy is about 92% in additional assessment.
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role utterance intent
1 (agent) Hello, how may I assist you? greeting
0 (user) Hello greeting

0 (user) I am looking some training which will
help me to learn more about Github. request

1 (agent)

In Your Learning webpage, you have
a search field, you can type what you
want to learn about, and it will bring
you all courses related to that topic.

guidance

User NPS: 9.0 Dialog Category: Finding Content

Table 1: Data format example of a dialog session.

ith dialog turn, a sample is defined as Si =

{{u1, ..., ui}, {r1, ..., ri}, {e1, ..., ei}, y(N)
i , y

(C)
i }.

Ground truths are obtained by the following rules:

• The NPS of ui+1 is regarded as the label (i.e.,
y
(N)
i ) for NPS regression task.

• The agent category of ui+1 is regarded as the
label (i.e., y(C)

i ) for dialog classification task.

• If there is no feedback provided by user
on the session, our task degrades to gated-
mechanism single-task dialog classification.

Note that although the ground truths of NPS and
category label are naturally obtained from the users’
feedback and human agent category, to guarantee
the data quality, three humans are invited to review
the correctness of all the labels, and we only adopt
the samples agreed by all of them. As a result, we
obtain about 90% valid sessions from the corpora.
Table 2 shows the statistic information of the final
two processed datasets.

The real NPS is from user’s feedback by click-
ing or typing a score, and the two corpora have
different NPS ranges (one is an integer in [0,10]
and the other is a decimal in [0,5]). Therefore we
use zero-mean normalization (z-score) (Singh et al.,
2015) method to normalize the scores with a mean
of 0 and a standard deviation of 1 as the follow-
ing: z-score = xi−x

σ , where xi is NPS, x is the
mean value and σ is the standard deviation. By our
statistics, we have about 47% and 56% of dialog
sessions that have valid NPS labels for Learning
and MacHelp datasets respectively, which makes
the dialog routing become a much more challeng-
ing task in the real world.

5.3 Training Settings
We implement our model based on the Transformer
library5. We use the Adam (Kingma and Ba, 2014)

5https://github.com/huggingface/
transformers

Learning MacHelp
avg. tokens per utterance 10.19 10.29

avg. turns per dialog session 22.23 30.43
# of total tokens 66,031 154,023

# of total dialog sessions 22,897 37,944
# of dialog categories 7 4

# of intents 66 28

Table 2: Statistics for Learning and MacHelp datasets

optimizer to train models on each dataset for 5
epochs. The learning rate is set as 2e-5 and the
dropout rate is set as 0.1. We use the largest batch
size that can fit in the memory of GPU. α, β and γ
are set as 0.9, 1, 0.01 respectively by our empirical
experiments. All the experiments are conducted
on V100 32GB GPUs. Each dataset is randomly
split into training/validating/testing sets in the pro-
portion of 8:1:1. All the parameters are tuned on
the validation set and the results follow the 5-fold
cross validation in testing set.

5.4 Baselines

We compare our proposed model to several base-
lines which belong to two groups. One includes
single-task models for NPS prediction and dia-
log category classification separately, while the
other contains methods under multi-task learning
paradigm. To make a fair comparison between
baselines and the G3M, we concatenate the role
and intent information ahead each utterance only
if the baseline model can employ that information.
Thus all the baseline models have the consistent
input information as ours. The evaluated baselines
are listed as follows:

• fastText (Joulin et al., 2017) is a simple and
efficient model for regression or classification.

• HAN (Yang et al., 2016) is a document classi-
fication model based on hierarchical attention
network by considering both word-level and
sentence-level information.

• textReg (Dereli and Saraçlar, 2019) is a re-
gression model based on convolution neural
networks, which achieves the state-of-the-art
performance on financial prediction.

• CNN-BiRNN-Att (CBA) (Yu et al., 2020) is a
cascade model with CNN, bi-directional RNN
and attention mechanism. We adapt the last
layer to support either the regression or classi-
fication tasks.

• BERT (Devlin et al., 2019) is a model which
can be fine-tuned by adjusting the task-
specific output layers. We use the pre-trained
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BERT-base-cased model to separately fine-
tune the two tasks with default parameters.

• XLNET (Yang et al., 2019) is a generalized
auto-regressive pre-training method which
can be fine-tuned by tailing a task-specific
output layers. We fine-tune the two tasks with
this pre-trained model similar to BERT.

• Joint-CNN-BiRNN-Att (Joint-CBA) is a
multi-task model by extending the last layer
of CBA model to simultaneously predict NPS
and dialog categories.

• Vanilla Multi-task Model (VMM) follows the
vanilla multi-task learning paradigm and uses
the standard BERT encoder to encode only the
utterance data (Huang et al., 2021), without
any gated-mechanism modules.

To measure the performance, we use the root
mean squad error (RMSE) for the NPS regression
task and micro F1 score (Micro-F1) for the dialog
category classification task.

5.5 Results and Analysis

We compare our model with various single-task and
multi-task baselines on the two datasets, and the
first two sections of Table 3 report the results. The
performance of NPS regression task is reflected
by RMSE metric, while that of dialog category
classification task is embodied by Micro-F1 metric.
We can learn some observations from Table 3.

Firstly, the performance of our proposed model
G3M is consistent on both datasets and can outper-
form all the baselines. More specifically, for the
NPS regression task, G3M’s RMSE is 8.72% and
11.83% lower than the best RMSE score of baseline
models (VMM for Learning dataset and Joint-CBA
for MacHelp dataset) on two datasets. And for the
dialog category classification task, G3M upgrades
the performance by achiving 2.17% and 4.40%
higher Micro-F1 scores compared with the best
baseline method (VMM). All the results demon-
strate that our model is effective and achieves the
state-of-the-art performance on both subtasks.

Secondly, comparing the single-task models with
multi-task models among baselines, it is consistent
that multi-task models can surpass the single-task
counterparts, especially from the comparison be-
tween Joint-CBA and VMM with their single-task
versions (CBA and BERT). The results suggest that
the underlying relation between the two tasks is
helpful and multi-task learning paradigm can well
capture the knowledge.

Models
Learning MacHelp

RMSE Micro-F1 RMSE Micro-F1

Single-task

fastText 0.9711 77.85 1.2365 85.88
HAN 0.9981 78.85 1.1276 84.19
textReg 0.9689 77.98 1.1099 85.55
CBA 0.9697 79.42 1.1383 86.02
BERT 0.9702 80.04 1.1025 86.39
XLNET 0.9648 80.21 1.1084 86.25

Multi-task
Joint-CBA 0.9555 80.38 1.0624 87.21
VMM 0.9302 81.88 1.0767 87.49
G3M 0.8491 83.66 0.9367 91.34

Ablation
- IC-Gated module 0.8892 82.57 0.9883 90.63
- NC-Gated module 0.8878 82.73 0.9831 90.36
- both gated modules 0.9187 82.01 1.0591 88.27

Table 3: Comparison between G3M and baselines on
Learning and MacHelp datasets. RMSE is for NPS
prediction and Micro-F1 (%) is for dialog classification.

𝑉

(a) Learning Corpus
𝑉

(b) MacHelp Corpus

Figure 3: The parameter effect on different dimensions
of V in IC-Gated module of G3M.

Thirdly, comparing three multi-task models, we
observe that G3M is better than the other two meth-
ods. We can conclude that both our proposed di-
alog encoder and gated mechanism are effective,
since Joint-CBA and VMM do not contain either of
the modules. Another observation is that under the
same multi-task learning paradigm, BERT based di-
alog encoder (VMM) is better than the CNN-RNN
based dialog encoder (Joint-CBA).

5.6 Ablation Study
To probe G3M’s effectiveness in terms of gated
module level, we conduct ablation experiments and
report the results in the bottom section of Table 3.
We could obtain three variant models by once de-
ducting one or two gated modules: G3M without
IC-Gated module, G3M without NC-Gated mod-
ule, and G3M without either module. Based on the
experiments, we have some findings.

Comparing the three ablated variant models of
G3M, both modules contribute positively to the two
tasks. Therefore, they are effective to model the
data-to-task and task-to-task information among
dialog data. Specifically, it is not very clear that
which module is more important than the other.
However, ablating both them would damage the
final performance.

Furthermore, we compare the performance be-
tween G3M without both gated modules and multi-
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task baselines (Joint-CBA and VMM), we find the
former model performs better than the later, which
may indicate that our proposed dialog encoder is su-
perior than the CNN-RNN based and BERT based
dialog encoders.

5.7 Parameter Effect
In the IC-Gated module, there is an important pa-
rameter to be preset by humans, which is the di-
mension of V . It determines the size of weighted
feature g(I) and therefore controls to what degree
the data-to-task information can be leveraged. We
investigate the effect of various dimensions of V
on both datasets. From the curves of RMSE and
Micro-F1 scores in Figure 3, we find that the final
performance is related to this parameter. Empiri-
cally, the optimal setting is 6 for Learning dataset
and 4 for MacHelp dataset. We can also observe
too small or too large dimensions may both play
a harmful effect on extracting important knowl-
edge from the data-to-task information. Another
interesting phenomenon is that the optimal parame-
ter values are coincidentally close or equal to the
numbers of dialog categories to be classified, and
we would explore the potential correlation in the
future.

5.8 Case Study
We conduct a case study to demonstrate how our
method could work to improve the system effi-
ciency and user experience by integrating our dia-
log routing component into a human-bot symbiosis
dialog system. Table 4 lists the dialog utterances
along with the predicted NPS and dialog category.
Here the user (U) has a requirement to solve course
enrollment issue. At first, the bot agent (A1) serves
the user which is skilled at ‘Finding Content’ di-
alogs, but it wrongly understands the user that she
would find some course materials. By using the
dialog routing component to monitor the dialogs,
the predicted NPS decreases from 5.8 to 4.8, which
means the user is dissatisfactory with the A1 and
the routing to other agent should be triggered6. As
a result, based on the dialog category classifica-
tion by dialog routing component, the dialog is
transferred to a human agent (A2) who is skilled
at ‘Completion Issue’ dialogs. Thanks to the right
time to transfer and the correctly assigned agent,
the NPS is up to 7.8 and the user is finally satisfac-
tory with this service.

6We can set a dissatisfaction threshold based on real situa-
tions, e.g. 5 in this case.

Role Utterances
U Hi
A1 Hello, how may I assist you?

U
I have enrolled in Deep Learning Course but today
I can’t see this enrollment

U I have completed more than 80%
U Can you please help me to find / resume the course
A1 I’m sorry that we are not able to do that
U Why so
U and what help you can do?

Current NPS: 5.8
Current dialog category: Finding Content

A1
You could get more information in the completion
dashboard in the system

U
You did not answer my question, I can’t find the
course and I want to resume it

U Can you please help me to find / resume the course
A1 I’m sorry that we are not able to do that

Current NPS: 4.8 (under the threshold and trigger routing)
Current dialog category: Completion Issue
A2 Sorry for not being very helpful.

A2
You can’t find the course in your learning queue and
the progress are all gone, correct?

U Exactly
Current NPS: 6.7
Current dialog category: Completion Issue
A2 Is it an internal course in the Learning system, right?
U Yes

Current NPS: 6.9
Current dialog category: Completion Issue

A2
Sorry for your confusion, sometimes it may be
caused by technical issues.

A2
A ticket has been created for you so that it will be
reflected correctly.

A2
Normally the technical team will get back to you
in 24 hours

U Thanks, bye
A2 Bye

Current NPS: 7.8
Current dialog category: Completion Issue

Table 4: A dialog session along with the predicted NPS
and dialog category by equipping a dialog routing com-
ponent with our method.

This case could also reveal that our method
would not affect the existing dialog systems and the
dialog routing system can be deployed in a plug-in
manner, which has a good compatibility and is con-
venient for both dialog routing system and dialog
system to upgrade their ability.

6 Conclusion

In current ubiquitous human-bot symbiosis dialog
systems for customer care, the dialog routing com-
ponent is necessary to improve the overall system
efficiency, reduce human resource cost, and en-
hance user experience. In this paper, we argue
that the data-to-task and task-to-task information
among various kinds of dialog data and subtasks
should be jointly leveraged to perform better dialog
routing ability. We propose a Gated Mechanism
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enhanced Multi-task Model (G3M) to implement
that motivation. Specifically, we design a new di-
alog encoder to learn various kinds of dialog data
by extending the BERT encoder, and two gated
mechanism modules are proposed to capture data-
to-task and task-to-task information. Extensive ex-
periments on two real-world datasets demonstrate
the effectiveness of our proposed model, which can
achieve the state-of-the-art performance.
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Abstract

With the success of contextualized language
models, much research explores what these
models really learn and in which cases they
still fail. Most of this work focuses on specific
NLP tasks and on the learning outcome. Little
research has attempted to decouple the mod-
els’ weaknesses from specific tasks and focus
on the embeddings per se and their mode of
learning. In this paper, we take up this research
opportunity: based on theoretical linguistic in-
sights, we explore whether the semantic con-
straints of function words are learned and how
the surrounding context impacts their embed-
dings. We create suitable datasets, provide new
insights into the inner workings of LMs vis-a-
vis function words and implement an assisting
visual web interface for qualitative analysis.

1 Introduction

Recently, tremendous progress has been observed
in the development of contextualized language
models (LM). After the introduction of contextu-
alized embeddings like ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019), earlier static word
embeddings (Mikolov et al., 2013; Pennington
et al., 2014) have been sidelined, and new stan-
dards have been set for the state-of-the-art. Particu-
larly, LMs have been shown to learn task-agnostic
properties of language (e.g., Belinkov, 2018; Con-
neau et al., 2018; Peters et al., 2018) and linguistic
properties that imitate the classical NLP pipeline
(Tenney et al., 2019a). Despite this success, LMs
cannot be taken to understand language the way
humans do, as they fail to generalize on unseen
data and tasks requiring compositionality (McCoy
et al., 2019; Richardson et al., 2020).

Research efforts concentrate on shedding light
on what these models learn and consequently how
they can be improved. One strand of work relies
on probing/diagnostic tasks, where classifiers are

∗Equal contribution.

trained on LMs to determine whether they can en-
code specific linguistic properties, e.g., Marvin and
Linzen (2018); Tenney et al. (2019b); Hewitt and
Manning (2019); Talmor et al. (2020). Another
strand of research focuses on creating adversarial
test sets with hard linguistic phenomena to observe
where the models fail and thus reverse-engineer
them, e.g., McCoy et al. (2019); Richardson et al.
(2020); Nie et al. (2020). Both strands of research
have approached their goals by employing specific
tasks, e.g., Natural Language Inference, Question-
Answering, etc., and this has revealed weaknesses
of the current models, e.g., that negation is not
treated according to its semantic nature. Never-
theless, there is still little work, e.g., Ethayarajh
(2019); Sevastjanova et al. (2021), decoupling the
weaknesses of LMs from specific NLP tasks and
focusing on which of their inner workings are re-
sponsible for these weaknesses.

In this paper, we attempt to fill this gap by taking
a closer look at function words, i.e., words with
little lexical meaning. Function words have been
traditionally ignored in NLP, being dismissed as
stopwords. Since the rise of contextualized em-
beddings, function words are not dismissed any-
more but do not receive any special treatment ei-
ther; instead, they are contextually learned like any
other word. However, the linguistically-motivated
datasets created in this work and tested within the
masked-language-modeling (MLM) task show that
this context-based learning does not effectively cap-
ture the functionality of such words and, thus, that
the weaknesses that LMs show in semantic tasks
can be attributed to these ill-learned representations.
Particularly, our work sheds light to the type and
quality of masked-word predictions when nega-
tion, coordination, and quantifiers are involved.
This work focuses on English masked LMs, but the
basic findings should be extendable to other lan-
guages since the training process of most masked
LMs is relatively similar.
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With this, the contributions of this work are four-
fold. First, we show the semantic constraints of
three of the most studied classes of function words
– negation, coordination, and quantifiers. Second,
we provide linguistically-motivated datasets that
capture the semantic constraints of these function
words. Based on these datasets, we offer new quan-
titative and qualitative insights into the treatment
of function words in masked LMs. The qualitative
insights are facilitated by an openly-available web
interface that visualizes LM predictions and allows
researchers to easily test their hypotheses.

2 Related Work

Most related work, i.e., probing studies and adver-
sarial testing has focused on specific NLP tasks and
on the learning outcome of the models. However,
recently, research has also concentrated on explor-
ing the learning procedure per se and understand-
ing the LM inner workings as per the way of their
training. With this, the study of contextualization
has emerged. The embeddings are learned based
on the co-occurrence of words in particular con-
texts. Thus, the LM embeddings are contextualized,
i.e., a word has different representations based on
the context it is found in. Particularly, Ethayarajh
(2019) shows that the embeddings become more
contextualized, i.e., more context-specific, in the
upper layers of BERT, and that contextualization is
not entirely driven by polysemy: (non-polysemous)
stopwords such as ‘and’, ‘of’, ‘the’ and ‘to’ also be-
come increasingly contextualized in the upper lay-
ers, and their representations are among the most
context-specific ones. Rather, he finds that contex-
tualization seems to be driven by the variety of con-
texts a word appears in. These findings are further
explored by Sevastjanova et al. (2021), who show
that contextualization is neither driven by polysemy
nor by pure context variation, but by the combina-
tion of functionality, sense variation, syntactic vari-
ation, and semantic context variation: BERT can
efficiently model polysemous, homonymous and
monosemous words, and also words that appear in
semantic contexts of high and low variation and in-
dependently of their polysemy. But it cannot model
words that have a semi-functional/semi-content na-
ture (e.g., modals, quantifiers, temporal adverbials).
In this work, we take up this research direction and
further explore what is exactly learned during the
learning of function words and how their surround-
ing context influences their learned embeddings.

3 Negation, Coordination, and Quantifiers

3.1 Theoretical Linguistics

Traditionally in theoretical linguistics, there is a dis-
tinction between function and content words and
several criteria to distinguish the two. The probably
most popular criterion is that of semantic content:
content words establish a specific semantic content
and contribute to the principal meaning of a sen-
tence; function words are rather “non-conceptual"
and mainly fulfill some grammatical function, glu-
ing content words together. Other criteria include
membership openness (i.e., whether new members
can be added to each of the two classes), the flex-
ibility of syntactic attachment (i.e., whether they
can combine with any syntactic phrase), and separa-
bility from complements (i.e., whether they can be
detached from their lexical head) (Corver and van
Riemsdijk, 2001). The distinction between the two
classes is not always clear-cut as there are words
that share both functional and lexical properties.
Thus, it has often been argued that function and con-
tent words should rather form a quasi-continuum
(‘squishiness’) (Ross, 1972; Emonds, 1985). For
example, prepositions are less functional than arti-
cles, e.g., some prepositions are associated with a
locative or directional meaning, but they are also
more functional than nouns or verbs, e.g., because
they are inseparable from their content words.

In this work, we focus on three types of func-
tion words, which represent core notions of logic,
mathematics, and human reasoning and ones that
a state-of-the-art NLP system should efficiently be
able to handle: the boolean notions of complement
(negation), intersection (conjunction) and union
(disjunction), and the notion of existential and uni-
versal quantification. Specifically, we study the
negation markers not and without, the coordination
markers or and and, and the existential quantifier
some and the universal quantifiers all and no.

Negation Markers Not can be considered syn-
tactic negation while without, being a preposition
with some lexical content, can be considered lexi-
cal negation. Semantically, at the heart of negation
lies the notion of inconsistency (Ladusaw, 1996):
A given sentence and its negation, as in the episodic
pair (1) and the generic pair (2), are inconsistent
with each other, i.e., they have disjoint truth condi-
tions (where e.g. MOTHER is short for {x : x is a
mother} and A is the complement of A):
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(1) Maria is a mother. m ∈ MOTHER

Maria is not a mother. m ∈ MOTHER

(2) A mom is a mother. MOM ⊆ MOTHER

A mom is not a mother. MOM ⊆ MOTHER

Additionally, negation in natural language interacts
with its clausemate elements for meaning composi-
tion in interesting ways. To name one case, nega-
tion is a well-known “hole” for presuppositions,
i.e., it can negate the at-issue, propositional content
of its clause but not its presupposed content (Kart-
tunen and Peters, 1979). For example, the sentence
Joe isn’t sick with covid again denies that Joe has
covid now (at-issue content), but it does not deny
that he had covid before (presupposed content). In
this paper, we concentrate on the notion of incon-
sistency or disjointness and test whether current
LMs have grasped this semantic functionality.

Coordination Markers Moving on to the coor-
dination markers and and or, the former is used to
form conjunctions and the latter disjunctions. In
its run-of-the-mill boolean use, and semantically
amounts to the intersection operation: Predicat-
ing a conjunctive property of an individual, e.g.
Joe, amounts to asserting membership to the in-
tersection of the two conjuncts, as in (3-a). In
contrast, though the purely semantic content of A
or B amounts to set union and thus to inclusive
disjunction (meaning ‘A, B or both’), this meaning
is typically strengthened to that of exclusive dis-
junction (i.e., ‘A or B and not both’) (Horn, 1972;
Sauerland, 2004). This is linked to Hurford’s ob-
servation that a disjunction of shape A or B is odd
if there is an entailment relation between A and B,
as defined in (4) and illustrated in (3-b) (Hurford,
1974; Singh, 2008; Ippolito, 2020):

(3) a. Joe is a dolphin and a mammal.
j ∈ DOLPHIN ∩ MAMMAL

b. #Joe is a dolphin or a mammal.
j ∈ DOLPHIN ∪ MAMMAL ∧ j /∈ DOL-
PHIN ∩ MAMMAL

(4) Hurford’s Constraint:
A disjunction of the form A or B is infelici-
tous (i.e., #) if A entails B or vice-versa.

This means that and and or have different semantic
signatures when it comes to the relation between
their coordinated terms: A and B allows for A to
entail B, whereas A or B prohibits it. We will test
whether LMs are able to detect and learn these

different meaning signatures.

There are other interesting semantic properties
of coordination markers in natural language that
could be explored. To name just one, and has, in
addition to its boolean meaning, a non-boolean
meaning that roughly amounts to the creation of a
new complex plural individual (Link, 2002). For
example, (5) allows not only for the boolean, dis-
tributive reading (5-a) and also for the non-boolean,
collective reading (5-b).

(5) Jane and Paul built a castle.
a. ‘Jane built a castle and Paul built a

castle.’
b. ‘Jane and Paul together built a castle.’

Quantifiers Semantically, quantifiers like
all/every, some and no denote relations between
the set P coming from the noun phrase headed by
the quantifier and the set Q coming from the rest
of the sentence (Barwise and Cooper, 1981):

(6) a. JAll Ps are QK = 1 iff P ⊆ Q
b. JSome Ps are QK = 1 iff P ∩ Q ̸= ∅
c. JNo Ps are Q]K = 1 iff P ∩ Q = ∅

Two points follow from these lexical entries.
First, all and no are polar opposites (i.e., they are
contrary –though not complementary– items (Ladu-
saw, 1996; Cruse, 2011)). This means that the
statements All Ps are Q and No Ps are Q are in-
consistent with each other. Second, the statement
All Ps are Q technically entails the statement Some
Ps are Q (under the assumption that set P is non-
empty). However, the two quantifiers form part of
the lexical scale <some, several, ... , many, most,
all>, where the leftmost item is the weakest, and
the rightmost item is the strongest (Horn, 1972).
As it typically happens with scales in natural lan-
guage, pragmatic implicatures are routinely run on
the weaker terms, leading to readings not entailed
anymore by the stronger terms. In the case of some,
its original weaker reading ‘some and possibly all’
in (6-b) is upgraded into the stronger pragmatic
reading ‘some but not all’ in (7). Under this second
reading, the statement All Ps are Q does no longer
entail the statement Some Ps are Q; rather, the two
are incompatible with each other.

(7) JSomestr Ps are QK = 1 iff
P∩Q ̸= ∅ and P⊈Q
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For an LM understanding the meaning of the
quantifiers all, some, and no and for a fixed value
of P, the Q-embeddings (i.e., embeddings of the set
Q) of the noun phrase All Ps should be radically
different from the Q-embeddings of No Ps, since
they are polar opposites (i.e., contraries). Similarly,
the Q-embeddings of the noun phrase All Ps should
differ substantially from the Q-embeddings of the
pragmatically strengthened Some Ps, since they are
incompatibles. In other words, in both cases, the
Q-embedding of the quantificational noun phrases
under comparison should be disjoint. We will test
whether LMs show traces of semantic understand-
ing in being able to create such disjoint predictions.

3.2 Computational Linguistics/NLP

Within computational linguistics, function words
have mostly been treated as stopwords. The term
was coined by Luhn (1960) to mean very common
words that do not add much to the meaning of a
text but ensure the structure of a sentence is sound.
Historically, one of the main reasons for removing
stopwords was to decrease the computational time
for text mining (Huston and Croft, 2010) and help
search engines to give better results. Nowadays,
this reason for removing stopwords is not valid
anymore since we have computationally more pow-
erful hardware; nevertheless, various NLP tasks
such as topic modeling and information retrieval,
continue to use the practice as it is often argued
to improve performance (e.g., Fan et al. (2019);
Sarica and Luo (2020)).

With the rise of distributional semantics and
word embeddings, more research focused on the
nature of these words and the special treatment re-
quired (e.g., (Bernardi et al., 2013; Hermann et al.,
2013; Linzen et al., 2016; Tang et al., 2016)). More
recently, the special nature of function words has
also interested the LM community. In one of the
probing tasks proposed by Kassner and Schütze
(2020) it is shown that LMs cannot distinguish
between negated (“Birds cannot [MASK]”) and
non-negated (“Birds can [MASK]”) questions. The
researchers insert the negation not into the LAMA
dataset (Petroni et al., 2019) and create positive
and negative cloze questions. By comparing the
predictions of LMs on these pairs, they find that
the positive and negative predicted fillers have high
overlap and correlation, i.e., models are equally
likely to generate true (e.g. birds can fly) and in-
correct statements (e.g., birds cannot fly). High

correlation means that the models do not under-
stand negation; correct answers for positive and
negative questions are expected to be disjoint. In-
terestingly, the researchers show that BERT can
learn both positive and negative facts correctly if
they occur in training but still fails to generalize to
unseen (positive and negative) sentences.

4 Experiments

In this work we focus on the three functional
categories discussed and set out to complement
the existing research on the treatment of function
words within contextualized LMs. First, we cre-
ate datasets that can be used to evaluate how LMs
have learned to capture the semantic constraints of
these functional categories. Second, we generate
quantitative insights into the contextualization of
function words, which we qualitatively investigate
through a user-friendly web interface, which also
allows researchers to evaluate their own datasets.

4.1 Data

Motivated by the experiment performed by Kassner
and Schütze (2020) on the negated LAMA dataset
and the theoretical linguistic research about the
type of data needed for this kind of exploration,
we create two datasets of different types.1 For
the creation of the datasets, we combine existing
resources: the family and location relations of the
analogy dataset used by Mikolov et al. (2013), the
English occupations dataset of the European Skills
and Competences, Qualifications and Occupations
(ESCO) initiative2 and 5 common-sense relations
found in ConceptNet (Speer et al., 2016) (has-a,
used-for, is-a, has-property, capable-of ). Based
on these resources, we create templates which are
then used to produce the sentences of our datasets.
Examples for both datasets can be found in the
Appendix. More details are given in the following.

Inconsistent Dataset The Inconsistent Dataset
aims at revealing whether the predictions in sen-
tences with inconsistent meaning are indeed dis-
joint. Disjointness is factored in through inconsis-
tent function words, as described in Section 3.1.
Parts of the inconsistent sentences are masked and
the goal is to detect overlapping predictions within
each pair. An overlap means that the LM has not

1Can be found under: https://function-words.
lingvis.io/

2ec.europa.eu/esco/portal/download
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learned the functionality of the inconsistent func-
tional words. The Inconsistent Dataset consists
of 1272 pairs and can be split into three subsets:
the negation subset (534), the coordination subset
(500), and the quantifiers subset (238).

The negation subset contains pairs with positive
and negative sentences, whereby the negation can
be syntactic or lexical. Concerning syntactic nega-
tion, the subset contains examples with the copula
verb be and its negation, and transitive verbs and
their negation with not and no. As far as lexical
negation is concerned, inconsistent sentences are
created with the copula verb be and transitive verbs
and based on the preposition with-without. The
coordination subset contains a single type of in-
consistency by using the markers or and and and
masking the second part of the coordination. The
quantifiers subset has two types of opposing con-
texts: the first one is formulated through all-no and
the second one through all-some. Both transitive
and intransitive sentences are considered.

Semantic Dataset Although the Disjoint Dataset
goes beyond the negated LAMA in that it contains
an additional type of negation (lexical negation)
and two further types of inconsistency (coordina-
tion and quantifiers), it can indicate whether the
LMs learn the semantic constraints of these func-
tional categories only indirectly, i.e., by capturing
the predictions’ overlap. Thus, a different “seman-
tic” dataset is required, on which we can directly
judge the correctness of the predictions. This can
be made clearer with an example such as A mother
is not a [MASK]: based on the semantic constraints
of negation discussed in Section 3.1 and the generic
reading ‘For any x, if x is a mom, then x is not a
MASK’, predicted masks should not be one of the
words mom, grandmother, grandma, granddaugh-
ter, bride, wife, woman, niece, stepmother, daughter,
aunt, etc. Another example is the sentence John
was born in Berlin or in [MASK], where the pre-
dicted masks should not contain the word Germany;
again, see constraints in Section 3.1. We call these
words forbidden although they could be valid sen-
tences in some (e.g., figurative) contexts and could
theoretically have been seen during LM training.
However, since these sentences are logically incor-
rect and do not represent the prototypical concepts
of things, they should not be among the most likely
predictions of the LM – since LMs learn based
on the occurrences of things, literal, prototypical
meanings should have been encountered more of-

ten. Thus, if the most likely predictions contain
the forbidden words, it means that the model has
neither learned the functionality of the correspond-
ing operator nor any proper world knowledge, e.g.,
that a mother is the same as a mom or that Berlin is
part of Germany.

The creation of such a dataset is particularly chal-
lenging because the examples need to be chosen
in a way that the necessary semantics is captured
within the words themselves and not based on the
co-occurrence of the words. Only in this way can
we reliably evaluate whether LMs have learned
something about the actual semantic constraints of
the functional markers or they simply reproduce
common concordances of the training data. This
means that an example such as John lives in Berlin
or in [MASK] is not suitable because any predicted
word could be right. Thus, to produce such ex-
amples, we systematically create examples related
to concepts for which we can selectively define
invalid predictions according to the particular con-
cept’s characteristics. We choose family relations
and occupations for syntactic negation, animals
and their main body parts and activities for lexical
negation, and capital countries and animals and
their hypernyms for coordination. For the selected
quantifiers, no “semantic” examples with forbidden
answers could be created because of the very na-
ture of quantifiers, i.e., even the universal all is not
strong enough to create logical invalid examples
in the real world. The Semantic Dataset contains
a total of 2780 sentences with 187 examples of
syntactic and 123 examples of lexical negation and
2470 examples of coordination. The size of the
dataset is comparable to existing datasets used in
other related experiments (e.g., the negated LAMA
dataset by Kassner and Schütze (2020)).

4.2 Models

For our study, we use the huggingface (Wolf et al.,
2020) implementation of three pretrained LMs,
BERT (Devlin et al., 2019)3, RoBERTa (Liu et al.,
2019)4, and ALBERT (Lan et al., 2019)5, which
have been shown to achieve state-of-the-art results
on the GLUE, RACE, and SQUAD benchmarks.
Our two datasets are input to each of the three mod-
els to extract the masked predictions, layerwise
attentions, and the word embeddings of all words

3https://huggingface.co/
bert-base-uncased

4https://huggingface.co/roberta-base
5https://huggingface.co/albert-base-v2
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of each sentence. The embeddings are taken from
layer 11, as the higher layers of models like BERT
have been shown to mostly capture semantic prop-
erties, while the last layer has been found to be very
close to the actual classification task and thus to be
less suitable (Jawahar et al., 2019; Lin et al., 2019).
Word piece embeddings are merged to their cor-
responding word embeddings through averaging.
Based on the predictions, the word embeddings,
and attentions, we calculate the following:

• the cosine similarity between the embedding
vector of the predicted word to each other
word of the sentence

• the layerwise average attention of the pre-
dicted word to each other word of the sentence

• for the Inconsistent Dataset: the overlap of the
predictions between the two inconsistent ver-
sions of the sentences; overlap in the first re-
turned prediction (overlap@1), in the first 5
(overlap@5), and first 10 (overlap@10)
returned predictions

• for the Semantic Dataset: the percentage of ex-
amples containing at least one forbidden word
within the 1st prediction (forbidden@1),
the first 5 (forbidden@5), and the first 10
predictions (forbidden@10).

4.3 Web Interface
In addition to the quantitative results, i.e., predic-
tion overlaps and forbidden predictions, we im-
plement a web interface6 that visually shows the
predictions, the layerwise average attentions, and
the word similarities. The interface provides quali-
tative insights into similarity patterns that are com-
mon for different prediction outcomes.

In the interface, the user can select one of the
three models (i.e., BERT, ALBERT, or RoBERTa)
to explore its predictions. Sentences belonging to
one dataset are grouped together, whereby disjoint
sentence pairs from the Inconsistent Dataset are
placed underneath each other for better compara-
bility. The visualization of predictions consists of
multiple elements, e.g., see Figure 1. Each pre-
diction of a masked word is displayed as a row in
the visualization (i.e., 10 rows for 10 predictions).
On the left, we display the prediction’s probabil-
ity through a horizontal bar representation. Next
to the probability, we display the sentence tokens

6https://function-words.lingvis.io/

visualized as colored rectangles. The color of the
rectangle represents its cosine similarity or its lay-
erwise average attention to the predicted word of
the particular sentence. The darker the color, the
higher the similarity/attention. Note that ALBERT
and RoBERTa generally show higher cosine simi-
larities between the predicted and the surrounding
context words than BERT, i.e., they are displayed
with darker colors on the visualized figures. On the
right, we display the predicted word. To support
the analysis of prediction overlaps as well as pre-
diction of forbidden words, we color the words that
overlap or are forbidden, respectively, in red color.

5 Results and Discussion

The results of our experiments can be found in
Tables 1 and 2. Table 1 shows the percentages
of overlap of the inconsistent predictions within
the first @1, @5, and @10 predictions. Table 2
shows the percentages of at least one forbidden
word being included within the first @1, @5, and
@10 predictions of the models.

model Incons. Dataset @1 @5 @10

B
E

R
T

coord 50 53 57
neg 46 46 47

quant 27 38 40
all 41 45 48

A
L

B
E

R
T coord 61 80 81

neg 42 42 42
quant 27 28 31

all 43 50 51

R
oB

E
R

Ta coord 40 58 63
neg 38 40 41

quant 25 29 31
all 34 42 45

Table 1: Inconsistent Dataset: percentage of inconsis-
tent pairs with overlapping predictions within the first x
predictions.

model Semantic Dataset @1 @5 @10

B
E

R
T

synNeg 41 56 60
lexNeg 51 72 73
coord 32 73 87

all 41 67 73

A
L

B
E

R
T synNeg 14 51 60

lexNeg 38 63 66
coord 6 31 47

all 19 53 58

R
oB

E
R

Ta synNeg 48 64 71
lexNeg 21 31 42
coord 27 68 82

all 32 54 65

Table 2: Semantic Dataset: percentage of sentences in
which there is at least one forbidden prediction within
the first x predictions.
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5.1 Findings
In the following, we describe findings made using
quantitative and qualitative evaluation methods.

Same predictions for inconsistent pairs: We
can reproduce and extend the findings by Kass-
ner and Schütze (2020). The first prediction
(overlap@1) of disjoint pairs overlaps in 41% of
the cases for BERT, 43% for ALBERT, and 34% for
RoBERTa. The first 5 predictions (overlap@5)
overlap in 45% for BERT, 50% for ALBERT, and
42% for RoBERTa, while the first 10 predictions
(overlap@10) overlap in 48% for BERT, 51%
for ALBERT, and 45% for RoBERTa. Specifically,
overlap@10 is worse in the coordination subset
in all 3 models and best in the quantifiers subset.
This overlap shows that the models neither learn
nor consider the functional nature of these markers.

Figure 1: BERT: Similarity visualization of the first 10
predictions of the negation sentences A mom is not a
[MASK] - A dad is not a [MASK].

Forbidden predictions for semantic pairs:
forbidden@1 lies at 41% for BERT, 19% for
ALBERT, and 32% for RoBERTa. forbidden@5
is at 67% for BERT, 53% for ALBERT, and
54% for RoBERTa, while forbidden@10 lies
at 73% for BERT, 58% for ALBERT, and 65% for
RoBERTa. For BERT and RoBERTa the coordina-
tion subset seems to be the hardest. The easiest for
BERT is the syntactic negation, and for RoBERTa –
the lexical negation. In contrast, for ALBERT the
easiest is the coordination subset, and the hardest
is the lexical negation subset. These results might
create the impression that BERT has the most dif-
ficulty in this task and that newer models such as
ALBERT perform better. However, the further find-
ings and the interpretation following shall shed
light on this preliminary impression. Also, consid-
ering the embarrassingly easy examples included in
our datasets, the amount of forbidden predictions is
alarming for all datasets (see Figure 1, Figure 27).

7Note that the sentence The painter does not paint is not
an impossible sentence, and thus an LM might have seen it.

Figure 2: BERT: Similarity visualization of the first 10
predictions of the negation sentences A singer does not
[MASK] - A painter does not [MASK].

[ALBERT] Similar predictions independently
from context: For negation and quantifiers,
RoBERTa and ALBERT perform better than BERT.
However, if we examine the examples more closely,
we see that ALBERT predicts similar words no
matter the exact sentence (see Figure 3). For the
Inconsistent Dataset, all positive sentences have
similar predictions to each other and all negative
ones as well. It is doubtful that the training data
contained such concordances and this raises the
question if this model is contextualized in the same
way BERT is.

Figure 3: ALBERT: Similarity visualization of the first
10 predictions of the sentences All cars have an [MASK]
- All buildings have an [MASK].

[ALBERT, RoBERTa] Predictions correlate
only with the predicate: For the lexical nega-
tion subset of the Semantic Dataset, ALBERT’s
predictions are not based on the entire context, i.e.,
the predicate, the subject, and any function words,
but rather correlate only with the predicate of the
sentences. For example, all sentences containing
the verb fly lead to the same predictions, no mat-
ter whether it is a fly, an owl or a bird flying (see
Figure 4).

Similar observations can be made for RoBERTa.

However, as noted in Section 4.1, LMs should have mainly
learned prototypical notions, and thus such predictions should
not occur within the 10 most probable ones.
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Figure 4: ALBERT: Similarity visualization of the first
10 predictions of the lexical negation sentences A fly
flies without [MASK] - A bird flies without [MASK].

It has been shown that LMs can learn stereotypical
associations reasonably well, e.g., that walk is re-
lated to shoes as in the given example in Figure 5.
These associations suggest that LMs are capable
of learning commonsense reasoning – knowledge
accepted by the majority of people, e.g., how the
world works (Bhargava and Ng, 2022). Although
the given examples suggest that the models are ca-
pable to learn such associations, the visualizations
reveal that the predictions are stronger related to
the sentence’s predicate than the subject. The same
goes for the predicates such as swim or see.

Figure 5: RoBERTa: Similarity visualization of the first
10 predictions of the lexical negation sentences A cat
walks without <mask> - A bear walks without <mask>.

[BERT] Prediction quality dependent on spe-
cific named entities: Taking a closer look at the
coordination partition of the Semantic Dataset and
the location examples specifically, we observe a
high similarity between the named entity of the
location already contained in the sentence and the
predicted word, which is also a named entity in
100% of the cases (see Figure 6). This not only
indicates that the presence of named entities has a
strong influence on the learning outcome because
the remaining context is ignored, but also that the
specific named entities have an impact on the pre-
dictions’ quality. Particularly, some country/state-
capital combinations lead to more forbidden predic-

tions than others. For example, the US states Texas,
California, Arizona, Florida are more often within
the forbidden@1 than states such as Indiana,
Tennessee, Minnesota. This might suggest that the
training data of BERT contained more instances of
the former combinations, and the model learned a
strong relation between these named entity pairs,
ignoring any other (functional or lexical) words.

Figure 6: BERT: Similarity visualization of the first 10
predictions of the sentences Tina comes from Bern or
[MASK] - Peter was born in Memphis or in [MASK].

5.2 Insights and Interpretation

In the following, we describe some potential rea-
sons why current LMs fail in making linguistically
correct word predictions.

Function words ignored in semantically related
contexts: We find that if the masked word has
some semantic relation with the other main concept
of the sentence – most often the subject, then the
functional word embeddings have low similarity
to the masked word. In contrast, if no semantic
relation can be established, there is a higher simi-
larity to the function words. For example, in Figure
7, we can see that all predictions that are related
to (animals’) body parts and have some semantic
relation with the subject insects do not exhibit any
cosine similarity to the quantifiers, i.e., the first cell
of the matrix is white, while for irrelevant predic-
tions such as nothing, died, eaten there is a similar-
ity between the predicted word and the quantifier.
This indicates that in many cases the predictions
are dominated by semantically rich words and the
model ignores other functional operators.

Contextualization of function words: The vi-
sualizations show that if all words of the sentence
have similar (high or low) similarities to the pre-
dicted word, then the predictions are mostly neither
inconsistent nor forbidden – even if they do not be-
long to the average common sense. This suggests
that if the masked word is predicted considering
the whole context, it should have a similarity to
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Figure 7: BERT: Similarity visualization of the first 10
predictions of the disjoint pair All insects have [MASK]
- No insect has [MASK].

all words in the context. Related work supports
this assumption (Ethayarajh, 2019; Sevastjanova
et al., 2021): functions words have high similarity
to the rest of the words in higher layers because
they are highly contextualized, i.e., they become
very context specific. However, our findings show
that this mode of learning leads to the negligence
of function words: in some cases, the contextual-
ization of function words is indeed high, i.e., their
similarity to the predicted word is high, and then
no inconsistent predictions arise. But when the sen-
tence contains words that are semantically related,
the model gets distracted, the function words are
glossed over and their similarity to the predicted
word drops. In consequence, their semantic nature
is not captured.

Attention confirms insights: Visualizing atten-
tion can show whether the observed behavior is spe-
cific to cosine similarity or can also be retraced in
attention patterns. Indeed, we observe that through-
out the layers the first word receives the most atten-
tion no matter its part-of-speech. Function words,
such as not and or in Figure 8, receive higher at-
tention only in the middle layers, which have been
shown to mainly capture syntactic properties (Jawa-
har et al., 2019). Thus, it seems that the semantic
constraints of these words, which should be cap-
tured in the higher layers, are indeed left unac-
counted for.

Models are sensitive to minor input changes:
While extracting predictions for RoBERTa model,
we noticed its high sensitivity to the provided in-
put. Even additional space(s) between tokens in
the input context can produce different prediction
probabilities, ranks, or even different predictions.
Thus, we want to sensibilize researchers to be care-
ful when working on similar experiments in order
to avoid such potential, undesired errors.

Figure 8: BERT: Attention visualization of 2 predictions
of the sentences A mother is not a [MASK] and Joe
comes from Athens or [MASK]. For each prediction,
rows represent the layerwise average attention from the
predicted word to the words (columns) in the sentence.

6 Conclusion

This paper presented the extent to which LMs learn
semantic constraints of function words. Based
on theoretical linguistic literature, we created new
datasets for testing three functional classes, and
showed that popular masked LMs make problem-
atic predictions. The visualizations in the devel-
oped web interface highlighted potential reasons
for this poor performance. In this work, we set
out to shed light on a subset of function word cate-
gories. Future work shall look into other function
word categories that ought to be challenging for
LMs and uncover additional reasons for the poor
model performances.
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A Appendix A: Sample of Datasets

Examples

In
co

ns
is

te
nt

D
at

as
et

ne
ga

tio
n

Cairo is not located in [MASK].
Cairo is located in [MASK].

A guitar does not have [MASK].
A guitar has [MASK].

A chair has no [MASK].
A chair has [MASK].

Maria is a mother without a [MASK].
Maria is a mother with a [MASK].

A cat sees without [MASK].
A cat sees with [MASK].

co
or

d.

Joe is a dolphin or an [MASK].
Joe is a dolphin and an [MASK].

Tina is a bird or an [MASK].
Tina is a bird and an [MASK].

qu
an

tifi
er

s

All cars have an [MASK].
No car has an [MASK].

All cooks [MASK].
No cook [MASK].

Some shoes have [MASK].
All shoes have [MASK].

Se
m

an
tic

D
at

as
et

sy
n.

ne
ga

tio
n A mom is not a [MASK].

forbidden: mom, mother, grandmother,
grandma, granddaughter, bride, wife,

woman, niece, stepmother, daughter, aunt
A designer does not [MASK].

forbidden: design
A guitar does not have [MASK].

forbidden: strings

le
x.

ne
ga

tio
n A bird flies without [MASK].

forbidden: wings
John is a father without a [MASK].

forbidden: child
Peter is a brother without a [MASK].

forbidden: sibling

co
or

di
na

tio
n

Mark was born in Athens or in [MASK].
forbidden: Greece

Tina died in Beijing or in [MASK].
forbidden: China

George comes from Berlin or [MASK].
forbidden: Germany

Kate is a cat or an [MASK].
forbidden: animal

Table 3: Sample sentences from each dataset and each
subset. The complete datasets can be found under:
https://function-words.lingvis.io/.

3085



Proceedings of the 29th International Conference on Computational Linguistics, pages 3086–3097
October 12–17, 2022.

Tales and Tropes: Gender Roles from
Word Embeddings in a Century of Children’s Books∗

Anjali Adukia1, Patricia Chiril1, Callista Christ1, Anjali Das2

Alex Eble2, Emileigh Harrison1, Hakizumwami Birali Runesha1

(1) University of Chicago
{adukia, pchiril, callistac, harrisone, runesha}@uchicago.edu

(2) Columbia University
ad3888@columbia.edu, eble@tc.columbia.edu

Abstract

The manner in which gender is portrayed in
materials used to teach children conveys mes-
sages about people’s roles in society. In this
paper, we measure the gendered depiction of
central domains of social life in 100 years
of highly influential children’s books. We
make two main contributions: (1) we find that
the portrayal of gender in these books repro-
duces traditional gender norms in society, and
(2) we publish StoryWords 1.0, the first word
embeddings trained on such a large body of
children’s literature. We find that, relative
to males, females are more likely to be rep-
resented in relation to their appearance than
in relation to their competence; second, they
are more likely to be represented in relation
to their role in the family than their role in
business. Finally, we find that non-binary or
gender-fluid individuals are rarely mentioned.
Our analysis advances understanding of the
different messages contained in content com-
monly used to teach children, with immediate
applications for practice, policy, and research.

1 Introduction

Educators and parents use books to teach children
messages about society, conduct, and the world.
These messages may be encoded in how different
identities are, and are not, represented. If there are
systematically different associations between spe-
cific identities and depictions, such messages can
shape how children view the roles that they them-
selves, as well as others, can occupy in society. In
this paper, we apply Natural Language Processing
(NLP) tools to analyze the gendered association of
different attributes (e.g., traits, occupations, phys-
ical characteristics) to measure how females and
males are portrayed in children’s books.1

∗All the authors contributed equally to this work.
1As gender is not a binary construct, we wished to include

characters who identified as non-binary or gender fluid, in ad-
dition to those who identified as female or male. In an analysis

To measure portrayal, we use word embeddings,
a prediction-based method for analyzing the se-
mantic meaning of words in context using high-
dimensional vectors. We supplement our analysis
by training a model to detect individual sentences
containing stereotypes in order to gain a deeper
understanding of the implicit and explicit messages
conveyed to children by the books they read. This
awareness can, in turn, also help inform content-
selection decisions of educators and caregivers.

Messages about gender-specific abilities and
roles may influence children’s beliefs and career
paths (Leslie et al., 2015; Riley, 2017; Bian et al.,
2017, 2018). Gender representation in children’s
content has traditionally been measured by manual
content analysis, in which one or multiple annota-
tors slowly read through the text of written content
to classify the messages within one or multiple di-
mensions (Neuendorf, 2016). The key advantage
of this approach is that it is able to measure deep
meaning in books; the main disadvantage is that
it is highly labor-intensive, making it prohibitively
costly to comprehensively characterize representa-
tion in large bodies of content, and requires a high
degree of fidelity in the management and training
of the coders (Krippendorff, 2018). It is difficult to
avoid human biases in this type of traditional con-
tent analysis, though these biases are of course also
baked into any content analysis, including comput-
erized approaches (Buolamwini and Gebru, 2018).

Advances in computer-driven content analysis
began to address these concerns through automa-
tion. Early efforts focused on a numerical account-
ing of words which represented different genders
– such as counts of pronouns and the genders of
named entities – and these counts were then com-
pared across bodies of text (Krippendorff, 2018;

of a subset of books which center LGBTQIA+ experiences, we
only found two characters with non-binary identities (0.37%
of total characters). Because there would not be a sufficient
sample size to estimate embeddings for this group, we limit
our main analysis to females and males.
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Gentzkow et al., 2019). Simple token counts, how-
ever, primarily capture superficial representation.
If a female or male is frequently present but por-
trayed in a stereotypical or narrow manner, then
the mere existence of representation will not only
be insufficient but also possibly counterproductive.

In this paper, we address this gap by using word
vectors to measure how different genders are de-
picted, vis-a-vis societal roles, in English-language,
award-winning children’s books commonly found
in schools and homes over the past century, com-
plementing existing measurement of whether they
appear (Adukia et al., 2022). This involves con-
verting high-dimensional measures of the semantic
meaning of words in text into one-dimensional mea-
sures of gender representation in children’s books.
Our study makes two primary contributions:
(1) We apply established NLP tools to a policy-
relevant body of text with clear implications for
child development and education in order to un-
derstand how roles are differentially portrayed
by gender (cf. Section 5). Specifically, we ex-
amine the gender associations of societal domains
such as appearance vs. competence, family vs.
business, and female vs. male professions.
(2) We release a word embeddings dataset
trained on our sample of award-winning chil-
dren’s books (named the StoryWords 1.0
dataset) so that other researchers can use these data
(cf. Section 3).2

How different identities are portrayed in these
books has the potential to shape children’s beliefs
about themselves as well as their beliefs about oth-
ers, which affects their effort in school, future ed-
ucational decisions, and later life outcomes. Our
work also demonstrates how NLP tools can be used
to measure the messages contained in bodies of
text being considered for use in curricular settings.
This has clear and immediate applications for both
the practice of education and for research on the
linkages between the content of books and on the
educational outcomes of children exposed to them.

2 Related Work

External stimuli may have important influences
in shaping beliefs, actions, and outcomes (Bian
et al., 2017; Bordalo et al., 2017; Rodríguez-
Planas and Nollenberger, 2018). For example, his-

2The data and associated code are available at: https:
//github.com/miielab/GenderEmbeddingsPap
er

torical analysis of changes in textbooks using a
quasi-experimental framework has shown that such
changes shape both people’s preferences and their
view of history (Fuchs-Schündeln and Masella,
2016; Cantoni et al., 2017). Less is known about
the representation of identities in the content in
these books and how these identities are depicted.

Recent work has attempted to address this ques-
tion by estimating the frequency of female and
male presence in stories. Research enumerating
gender counts in children’s books shows inequality
in how frequently females are present in the text
relative to males over time regardless of the mea-
sure, for example, in gendered pronouns and in the
gender of named characters (Adukia et al., 2022).
While these findings are illustrative, they show only
superficial representations and neglect to demon-
strate whether the trend towards numeric equality
is inclusive or rather one of an increased incidence
of imbalanced representations. If the frequency of
inclusion of underrepresented identities increases
without a change in the underlying equity in the
manner of representation, simple frequency-based
measures might overstate the equity of representa-
tion in books that children are given.

Recent work has addressed how characters of
different genders are portrayed. Xu et al. (2019)
analyzes female characters’ emotional dependency
on male characters in a collection of books, movie
synopses and movie scripts. That study defines
narratives in which a man serves as a woman’s path
to a happy, fulfilling life as characterized by the

‘Cinderella complex’. Using pretrained word2vec
models, they constructed a vector representing the
dimension of happy vs. unhappy that was used
for calculating the ‘happiness scores’ of words sur-
rounding specific female and male characters. They
first selected the movie synopsis of Cinderella; cal-
culating happiness scores for it, the study shows
that the happiness of Cinderella depends on the
prince, but not vice versa. Further testing on differ-
ent movie genres showed that the happiness score
of the female characters portrayed in the same con-
text as male characters was higher than when the
females were portrayed alone. They also find that
male characters are more likely to be described us-
ing verbs, while female characters are more likely
to be described using adjectives.
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2.1 Gender in Language Models

Word embeddings have become one of the most
used types of features in many NLP models and
are widely used for a variety of downstream tasks.
However, these word representations have been
proven to reflect social biases (such as race and
gender) inherited from data used to train them
(Caliskan et al., 2017). To automatically quantify
these biases, several fairness metrics (i.e., func-
tions that measure the association degree between
target and attribute words in a word embedding
model) have been proposed in the past few years
(Caliskan et al., 2017; Garg et al., 2018; Sweeney
and Najafian, 2019; Ethayarajh et al., 2019; Dev
and Phillips, 2019). More recently, researchers
have started quantifying, analyzing and mitigating
the gender bias exhibited by contextualized embed-
dings (Zhao et al., 2019; Kurita et al., 2019; Tan
and Celis, 2019; Guo and Caliskan, 2021). Their
results show that contextualized word models in-
herit human-like biases, which are then propagated
to downstream tasks.

2.2 Gender Stereotypes in Social Sciences

Gender stereotypes are defined by the Office of the
High Commissioner for Human Rights (OHCHR)
as ‘a generalised view or preconception about at-
tributes, or characteristics that are or ought to be
possessed by women and men or the roles that are
or should be performed by men and women’.3

One significant consequence of gender stereo-
types is the reinforcement of gender inequality;
within this framework, agency (i.e., traits such as
competence and independence) and communion
(i.e., concerns about the welfare of others and rela-
tionship with them) are the core dimensions used to
characterize gender stereotypes. Although biologi-
cal attributes may impact a person’s behaviour and
choice of occupational roles, research indicates that
gender differences in beliefs about gender stereo-
types develop over time, and that they are influ-
enced by family, friends and education (Dhar et al.,
2018; Eble and Hu, 2020, 2022). For example,
one set of gender stereotypes posits that women
are communal, kind and family oriented, whereas
men are more agentic, skilled and work oriented
(Ellemers, 2018).

In light of changes in the positions occupied by
women in society, as well as the broadening of

3Source: https://www.ohchr.org/en/women
/gender-stereotyping, accessed September 14, 2022.

opportunities presented to women, Haines et al.
(2016) characterize the extent to which gender
stereotypes have changed between 1983 and 2014.
In that study, participants assessed the likeliness
of a set of gendered characteristics (e.g., traits, be-
haviours, occupations, physical characteristics) to
belong to a typical man or woman, similar to the
methods used by Deaux and Lewis (1984). The
study assessed whether people’s beliefs changed
over time in parallel with changes in society. They
also measured whether these beliefs vary by age,
measuring this for people from 19 to 73 years of
age, as opposed to the college students studied in
Deaux and Lewis (1984). Surprisingly, the authors
find no indication of a substantial change in ba-
sic stereotypes over time in spite of many relevant
societal changes.

Although widely studied in psychology, commu-
nication studies and social science (Allport et al.,
1954; Crawford et al., 2002; Beike and Sherman,
2014; Biscarrat et al., 2016), in NLP, gender stereo-
types have been studied mainly to detect or re-
move gender bias in word embeddings or word
association graphs (Bolukbasi et al., 2016; Park
et al., 2018; Madaan et al., 2018; Dev and Phillips,
2019; Du et al., 2019) as well as to identify dis-
parity across gender in various applications like
co-reference resolution (Zhao et al., 2018) and sen-
timent analysis (Felmlee et al., 2019). A notable
exception is the work by Chiril et al. (2021) who
use gender stereotypes detection as an auxiliary
task to improve sexism classification.

3 Data

3.1 Primary Data: Children’s Books

School libraries and classrooms serve as major pur-
veyors of sanctioned literary content for children.
The books they offer are accompanied by an im-
plicit state-sanctioned stamp-of-approval. These
books are chosen because their content is perceived
to be appropriate for children. They are often in-
tended to transmit clear narratives about appropri-
ate conduct, an account of important historical mo-
ments, or other, often identity-specific messages.

We draw from a set of children’s books written
in English that are likely to be found in U.S. school
libraries – namely, those that received awards ad-
ministered or featured by the Association for Li-
brary Service to Children, a division of the Amer-
ican Library Association. Out of the 3,447 books
that either won an award or received an honourable
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mention, we were able to collect and digitize a sam-
ple of 1,130 books using both library and online
resources.

In order to understand whether representation
differs depending on the focus of efforts to high-
light different kinds of books, we divide these
award-winning corpora into two collections: the
Mainstream collection and the Diversity
collection. Figure 1 shows the sample size of each
collection by decade.

Figure 1: The sample size of the Mainstream and
Diversity collections over time. The aggregate
number of words in the Mainstream collection is
6,289,116 words and in the Diversity collection is
9,599,638 words.

Mainstream Collection. The Mainstream
collection comprises books that have received
recognition through the Newbery or Caldecott
Medals, the two oldest children’s book awards in
the United States starting in the 1920s to present
day. These books are selected for their perceived
contribution to children’s literature and not popu-
larity. Receipt of the award facilitates the book’s
entry into the canon of U.S. children’s literature
(Smith, 2013; Koss et al., 2018). These books are
all in English, but are likely to be translated into
other languages.

Diversity Collection. To examine how purpose-
ful efforts to highlight typically excluded or
marginalized identities perform, we draw from
books likely to be placed on ‘diversity lists’ such as
during Black History Month or Women’s History
Month.4 Awards in this collection were first dis-

4Specifically, we examine books that have received recog-
nition from the following awards: American Indian Youth
Literature, Américas, Arab American, Asian/Pacific American

tributed in 1970, with a gradual rollout of different
awards over the following decades.

We compare the estimates for the Mainstream
and Diversity collections to examine whether
intentional efforts to highlight underrepresented
identities more equitably portray females and males
compared to unintentional, ‘general’ efforts. We
hypothesize that books which are recognized for
highlighting one underrepresented identity may
also highlight other underrepresented identities.

3.2 Data Collection and Pre-processing

We use Google Vision Optical Character Recog-
nition (OCR) to extract text from scanned pages
of each children’s book.5 Note that this process
is restricted to the conversion of scanned text into
ASCII characters. A manual error analysis on a
random sample of 10 children’s books shows that
the average Word Error Rate (WER) of the text
extracted using OCR was 2.62%. Since our sam-
ple of children’s books contains many illustrations,
most of the error can be attributed to random char-
acters added to the extracted text when the OCR
software mistook a shape in a illustration as an
ASCII character.

Once the text is extracted, we pre-process the
data to reduce variability and noise. We first di-
vide each award corpus into sentences using the
pre-trained Punkt tokenizer from Python’s NLTK li-
brary (Bird et al., 2009). For each sentence, we then
lowercase the text and remove digits, line breaks,
punctuation, and special characters.6

Our goal is to characterize how females and
males have been overall represented in each collec-
tion of books, as well as how this representation has
changed over time. We therefore combine the data
at two levels: (1) at the collection level, in order to
measure overall representations between each of
the collections, and (2) at the collection-by-decade
level, to measure changes over time.

Award for Literature, Carter G. Woodson, Coretta Scott King,
Dolly Gray, Ezra Jack Keats, Middle East, Notable Books
for a Global Society, Pura Belpré, Rise Feminist, Schneider
Family, Skipping Stones Honor, South Asia, Stonewall, and
Tomás Rivera Mexican American Book Awards.

5Source: https://cloud.google.com/visio
n/docs/ocr

6We refrain from removing stopwords because a prelimi-
nary inspection of the sensitivity of our results to the inclusion
or exclusion of stopwords prior to the learning process showed
that our results remain similar.
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3.3 Supplemental Data: HistWords

In addition to the children’s books, we incorporate
data from the HistWords dataset, a collection of
books gathered from over 40 university libraries
containing more than 361 billion English words
(Michel et al., 2011). These books span from 1800
to 2000 and contain text from of a variety of gen-
res.7 We include these data as a numeraire, cap-
turing the representations of females and males
across the last two centuries in books intended for
adult consumption, rather than children’s consump-
tion. Because the only publicly available data for
HistWords is in the form of word2vec embed-
dings, we directly incorporate the embeddings they
provide in our final visualizations rather than run-
ning the lexicon through our pipeline, as outlined
in Section 4.8

3.4 Gender as a Non-binary or Fluid
Construct

Our main goal is to measure the relationship be-
tween different gender groups and societal domains.
Gender is not a binary construct and can comprise
females, males, non-binary, and gender-fluid indi-
viduals. However, as far as we are aware, there
is no systematic way of measuring non-binary or
gender-fluid identities in off-the-shelf NLP pack-
ages such as those we use. Instead, to evaluate
the presence of non-binary identities in our data,
we manually search for non-binary characters in
a set of books that received awards for center-
ing LGBTQIA+ experiences (i.e., Stonewall Book
Awards), which we expect would have a greater
representation of individuals who identify as non-
binary or gender-fluid. This exercise entails manu-
ally coding the gender for each human named en-
tity (e.g., Mary) mentioned more than once in each
book as measured by spaCy’s Named Entity Recog-
nition software (Honnibal and Montani, 2017). The
manually coded gender labels are: male, female,
non-binary, or unknown. We use context clues
within the books to determine gender. These con-
text clues include the character’s own identification
or, if the character’s input is absent, pronouns and
gendered descriptions (e.g., Character X was a
woman.). In the absence of sufficient context clues,

7We limit analysis of HistWords starting in the 1920s
as the first book in our corpus was published in the 1920s.

8The aggregate model across all decades for the
HistWords collection is not publicly available. We dis-
cuss how we estimate HistWords collection-level measures
for word embeddings in Section 4.1.

we label the gender as unknown.
Out of 539 named human entities, only two char-

acters identified as non-binary (0.37%). As a result,
the sample size in our data would be insufficient to
accurately and precisely estimate embeddings for
non-binary and gender-fluid identities. As a result,
performing the computational methods used in this
paper on non-binary groups, separate from females
and males, would not yield reliable results. In light
of this, we focus our analysis on only females and
males, though we note that this extremely small
proportion of explicitly non-binary characters in
the collection of books most likely to represent
them is an important finding in itself.

4 Methodology

4.1 StoryWords 1.0
We use word embeddings to capture the ways in
which gender is represented in these texts. Word
embeddings operate under the assumption that
words which appear in similar contexts have similar
meanings (Firth, 1951; Harris, 1954). In practice,
word embeddings are generated by neural networks
which map each word to a high-dimensional vector
representation of that word. Each word vector en-
capsulates semantic and syntactic information by
incorporating information from the nearest neigh-
bors (context) of that word. Word embeddings
permit analysis between sets of vectors, includ-
ing calculating similarity measurements between
words using cosine distance.9

We use the word2vec package from Python’s
Gensim library to estimate word embeddings (Re-
hurek and Sojka, 2010).10 Our word2vec imple-
mentation uses the Skip-Gram with Negative Sam-
pling (SGNS) model architecture introduced by
Mikolov et al. (2013).11 When setting the hyper-
parameters of our models, we followed the rec-
ommendations of Levy et al. (2015). After train-
ing, the algorithm outputs 300-dimensional vec-
tors of every word in the lexicon of each book.
We train separate word2vec models on the aggre-
gate collection data as well as on the collection-

9Word embeddings are categorized as prediction-based
embeddings because they use Machine Learning to predict
context words.

10While we show results from the implementation of
word2vec, our results are similar when we use GloVe (Pen-
nington et al., 2014).

11We chose the SGNS architecture as it outperforms other
architectures on various linguistic tasks. It is fast to train and
inexpensive in terms of memory consumption and disk space
(Levy et al., 2015).
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by-decade data (cf. Section 3.2). Because aggre-
gate measures are not available at the collection
level for HistWords, we average the measures
for HistWords for each decade starting from the
1920s through the 1990s to estimate an overall mea-
sure for this collection and are not able to calculate
statistics to generate an overall measure.

Each time a word2vec model is trained with the
exact same hyperparameters, word neighborhoods
may change, which can generate different embed-
ding estimates for each round of training (Hellrich
and Hahn, 2016; Antoniak and Mimno, 2018; Bur-
dick et al., 2018). To minimize the influence of id-
iosyncratic variation in shaping our results, we train
50 separate word2vec models with identical hyper-
parameters on the collection-by-decade and aggre-
gate collection data (cf. Section 3.2).12 We name
the resulting embeddings dataset StoryWords
1.0. We make this available on our GitHub.

4.2 Word Embedding Association Tests

Group (Gender) Words. We develop a vocab-
ulary of words that comprise two gender groups
(females, males). The words associated with fe-
males and males were generated by drawing upon
commonly used words for each category, in addi-
tion to incorporating words from sources such as
those lists provided by Caliskan et al. (2017) and
Senel et al. (2018). We fine-tune the categories to
the linguistic particularities of the domain of chil-
dren’s literature by incorporating vocabulary that
is commonly used in these books. For example,
words such as princess and king are included in our
gender group word lists, but are not in prior group
lexicons, such as those in Caliskan et al. (2017)
and Garg et al. (2018).13 Our lexicon includes 71
pairs of (females, males) words. Each word within
a given category is exclusive to that category only.
The final list of gendered words can be found on
our GitHub.

Domain Words. We seek to understand how fe-
males and males are depicted within these chil-
dren’s books in relation to different attributes (e.g.,
traits, behaviours, occupations, physical charac-

12Because there is only one embedding model published
for each decade of the HistWords dataset, we cannot per-
form this exercise on the HistWords data.

13Our choice of gendered vocabulary is over 3 times as
large as the gendered word lists used in Garg et al. (2018), who
use 20 male words and 20 female words, and approximately
9 times larger than the gendered word lists in Caliskan et al.
(2017), who use 8 male words and 8 female words.

teristics). The choice of these attributes is based
on their importance for children’s beliefs and per-
ceptions of themselves and others. Each of these is
commonly portrayed in children’s literature (Nodel-
man, 2008; Rudd, 2012; Beauvais, 2015).

Our empirical analysis follows Caliskan et al.
(2017), supplemented with analysis of whether fe-
males are more associated with descriptions of ap-
pearance and related terms than males. Our deci-
sion to add this analysis follows prior research in-
dicating that men are often described by words that
pertain to behaviour, whereas women are typically
described by adjectives that refer to their physical
appearance and sexuality (Caldas-Coulthard and
Moon, 2010).

We constructed our final word lists as follows.
We first began with the domain lists provided by
Caliskan et al. (2017) and Senel et al. (2018). We
then manually augmented them by drawing upon
a set of commonly used words for each domain
category: appearance (93 words; e.g., alluring, el-
egant), competence (93 words such as persuasive,
reasonable), family (39 words), and professions
(340 words; e.g., dancer, educator for women;
architect, professor for men).14 Our augmenta-
tion of these lists was performed through Concept-
Net (Speer et al., 2017), a multilingual knowledge
graph for natural language words or phrases in their
undisambiguated forms. The final list of domain
words can be found on our GitHub.

Each word within a given category is exclusive
to that category only. For example, the family cat-
egory is notably smaller than other lists because
many ’family’ words are gendered and therefore
were included in the male/female lists instead of
the family list.

4.3 Gender Stereotype Detection

While word embedding association tests help us
understand gender stereotypes in collections of text,
it is also important to be able to identify specific
stereotypes found in individual books so parents
can make informed decisions about which books
are appropriate for their children. A recently pub-
lished report shows that nearly two-thirds of pre-
teenagers in America read for pleasure at least once
a week (Rideout et al., 2022). As a parent, mon-
itoring what content their children do or do not
consume is difficult without information to guide

14We used the occupation census data provided by Garg
et al. (2018).
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their decisions. Information on gender stereotypes
in specific books can be obtained, for example, by
using online platforms such as Common Sense Me-
dia. In a preliminary exploration of this resource,
we found that only 25% of the books included in
our corpus have a review.

To automatically identify potential stereotypical
topics, we employ SentenceBERT, a modification
of BERT that derives semantic sentence embed-
dings that can be compared using cosine similarity
(Reimers and Gurevych, 2019). We leverage three
manually annotated corpora with gender stereotype
information from previous studies: the Automatic
Misogyny Identification (AMI) dataset collection
from both IberEval (Fersini et al., 2018b) and
Evalita (Fersini et al., 2018a)), and the dataset
released by Chiril et al. (2021). We selected these
datasets as they are freely available to the research
community.15 This method classifies a sentence
as containing a stereotype if the cosine similarity
between the sentence and another sentence which
has already been labeled as containing a stereotype
is higher than a threshold (T ). For our analysis, we
apply SentenceBERT to a subset of six books from
our corpora of children’s books that had commen-
tary in the What Parents Need to Know section of
Common Sense Media reviews. This section high-
lights topics that may be of particular concern to
parents, flagging content to which they might not
want their kids being exposed. We experimentally
set the threshold to T = 0.45.

5 Results and Discussion

Word Embeddings. For conducting the exper-
iments, we relied on the Word Embedding Fair-
ness Evaluation (WEFE) framework (Badilla et al.,
2020), an open source software that encapsulates,
evaluates and compares different fairness metrics
proposed in the literature. Here, we present the
results obtained by using the WEAT metric from
Caliskan et al. (2017), the most commonly used
association test for word embeddings.16 WEAT
assesses the extent to which a model associates
two sets of target words (i.e., females and males)
with sets of attribute words (i.e., appearance

15These datasets contain tweets that are annotated at differ-
ent granularity levels. While the AMI corpora only indicates
the presence of a stereotype, the dataset released by Chiril
et al. (2021) offers a finer characterization.

16Looking across results from the 50 models, we observe a
small amount of variation in our results, both for the aggregate
and over time measures. In light of this, our results report
averages over the 50 models.

and competence, family and business, female and
male professions). With values that can range
between −2.0 and 2.0, a positive score means
that females are more associated with words
related to appearance, family or female
professions, and a negative score means that
males are more associated with the aforemen-
tioned attributes.

The representation and visibility of women has
increased substantially over the last century, includ-
ing in occupations that have been traditionally dom-
inated by men (Goldin, 2014). Despite this consid-
erable progress, differential treatment of women in
many dimensions of the economy persists into the
21st century (Blau and Kahn, 2017). Our analysis
reflects these patterns, highlighting the incidence
and persistence of professional role stereotyping
in these corpora (cf. Figure 2 (a)). In addition,
our results also highlight that females are more
likely to be associated with words related to fam-
ily than words related to business, relative to these
likelihoods for males (cf. Figure 2 (b)). While the
association between females and family appears
to decrease slightly in the HistWords data over
time, we see no evidence of a similar decline in our
children’s book collections (c.f. Figure 2 (e)).

Finally, we quantify the degree to which the lan-
guage used to describe females and males is dif-
ferent. Figure 2 (c) shows that females are much
more likely to be associated with words related to
their looks (as opposed to males, who tend to be
associated with words related to their competence).
This association between females and appearance
is decreasing over time in the HistWords and
Mainstream collections, but increases in the
most recent decades within the children’s book col-
lections.

These results show that all three collections (i.e.,
Diversity, Mainstream, and HistWords)
contain biased representations. We found no evi-
dence that the Diversity collection, meant to
highlight typically excluded or marginalized iden-
tities, portrays females more equitably than the
’general’ efforts of the Mainstream collection.

Stereotype Detection. We next apply the
method for detecting particularly salient incidences
of gender stereotypes in text, as described in Sec-
tion 4.3. First, we access reviews from the Com-
mon Sense Media platform to identify books that
are likely to possess highly gender stereotypical lan-
guage. We then apply stereotype detection to iden-
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(a) Female vs. Male Professions (b) Family vs. Business (c) Appearance vs. Competence

(d) Female vs. Male Professions (e) Family vs. Business (f) Appearance vs. Competence

Figure 2: Which domains are females more associated with relative to males?
Note: We present the WEAT effect sizes, which show whether females, as compared to males, are more associated with one
set of attribute words relative to another. We present these both overall in panels (a)-(c), and over time in panels (d)-(f).
Panels (a) and (d) show female professions relative to male professions; panels (b) and (e) show family
relative to business; panels (c) and (f) show appearance relative to competence.

tify specific sentences associated with the themes
that were highlighted in the review and that present
egregious cases of this type of messaging.

Here we present two sentences from a book in
our corpora that this method identifies as containing
such stereotypes. This book lends a commentary
on rape culture.:

(1) And I know you’re on your period, but there’s
no need to get cranky with me. (T = 0.552)

(2) If I had boobs like that, I’d wear a burka or
something. (T = 0.466)

Sentence (1) appears to reinforce the stereo-
type of the hysterical menstrual woman, while sen-
tence (2) discriminates against women based on the
widely held belief that the exposure of the chest is a
sexual act. It is important to acknowledge that this
method does not take into account the context sur-
rounding these sentences when identifying them as
containing stereotypes. These detected sentences,

together with the results from our word embed-
dings analysis, provide us with evidence of how
highly gender stereotypical messages can appear in
the text of children’s books, even those recognized
in highly prominent national book awards.

Future work should more deeply interrogate the
stereotypes being transmitted in these children’s
books, as highlighted by these few examples. Such
work should also include an exploration of the con-
text of such phrases.

6 Conclusion

In this paper we demonstrate how NLP tools can be
used to investigate the incidence of systematically
different associations between females and males
and their societal roles, as transmitted through chil-
dren’s stories. These findings underscore the impor-
tance of tracking not only whether different identi-
ties are included in stories, but also how they are
portrayed. We make two primary contributions.
First, we analyzed how gender roles are portrayed
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in children’s literature. Second, we created the first
word embeddings trained on a century of award-
winning children’s literature, StoryWords 1.0.
Consistent with previous research, our results show
that females are more likely than males to be rep-
resented in relation to their appearance and their
roles in the family.

While we cannot speak to what ‘optimal’ repre-
sentation would look like, our tools make it pos-
sible for practitioners, policymakers, and parents
with a given goal to measure representation in a
given set of books in order to help them make their
choices.

Important directions for future work include us-
ing more precise tools, such as coreference resolu-
tion, to better understand and disentangle the indi-
rect and direct messages contained in these texts.
In addition, researchers or practitioners using these
tools could expand their analysis to other targets:
different groups (to understand how other identi-
ties may be differentially represented), as well as
additional attributes that convey different societal
meanings. Furthermore, researchers must expand
definitions of gender to account for non-binary and
gender-fluid identities. In the future, we also plan
to account for polysemous words by using contex-
tualized word vectors.

Ethical Approval. The research reported in this
article involved no human participants and so no
human subjects review was sought. Our use of the
text data in the children’s books in our study is
transformative, analyzing the books’ content and
transforming it, via this analysis, into separate and
distinct data, which we conduct under the fair use
principle.

An important limitation is that our measure of
gender representation binarizes gender, constrain-
ing it as female and male, and does not account
for non-binary or gender-fluid identities. This
comes as a direct result of the low number of char-
acters identified as non-binary (cf. Section 3.4).
With respect to the stereotypical language identi-
fied through the sentence similarity approach, we
make no claims about the intentions of the authors
of these books. The context of these phrases re-
mains to be explored in future work.

Future work should innovate to address these
challenges and spur new developments in this
under-explored area.
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Abstract

Pre-trained Language Models (PLMs) have
achieved remarkable performance gains across
numerous downstream tasks in natural lan-
guage understanding. Various Chinese PLMs
have been successively proposed for learning
better Chinese language representation. How-
ever, most current models use Chinese char-
acters as inputs and are not able to encode se-
mantic information contained in Chinese words.
While recent pre-trained models incorporate
both words and characters simultaneously, they
usually suffer from deficient semantic interac-
tions and fail to capture the semantic relation
between words and characters. To address the
above issues, we propose a simple yet effec-
tive PLM CLOWER, which adopts the Con-
trastive Learning Over Word and charactER
representations. In particular, CLOWER im-
plicitly encodes the coarse-grained information
(i.e., words) into the fine-grained representa-
tions (i.e., characters) through contrastive learn-
ing on multi-grained information. CLOWER is
of great value in realistic scenarios since it can
be easily incorporated into any existing fine-
grained based PLMs without modifying the pro-
duction pipelines. Extensive experiments con-
ducted on a range of downstream tasks demon-
strate the superior performance of CLOWER
over several state-of-the-art baselines.

1 Introduction

Pre-trained language models (PLMs) have gained
tremendous success in the field of natural language
processing recently. As a major milestone of PLMs,
BERT (Devlin et al., 2019) and its variants (Yang
et al., 2019; Liu et al., 2019; Clark et al., 2019)
have demonstrated outstanding performance on
a wide variety of natural language understanding
(NLU) tasks, such as sentiment analysis and ma-
chine reading comprehension tasks. The archi-
tecture of Transformer (Vaswani et al., 2017) is

∗Equal contribution.
†Corresponding authors.

typically the foundation for these models, which
models the semantic and syntactic relationships be-
tween the tokens of the entire input text and learns
the contextual representations for each token.

Early Chinese PLMs (Sun et al., 2019) often
take the sequences of Chinese characters as the
input. These models require relatively small vo-
cabulary and learn the representations of each char-
acter from the corpus, which avoids the Out-Of-
Vocabulary problem (Li et al., 2019). However, the
meanings of a Chinese word can be totally differ-
ent from the meanings of each Chinese character
in the word. For example, the meaning of “小
心” (careful) can not be derived from summing the
meaning of “小” (small) and “心” (heart). In gen-
eral, the phenomenon of semantic gaps between
coarse-grained language units and fine-grained lan-
guage units (e.g., words & characters, phrases &
words) exists not only in Chinese but also in many
other languages.

To alleviate the gap, prior studies improve the
pre-trained models in two directions. One direction
is to enrich the masking strategies in the masked
language model (MLM) objective to mask coarse-
grained units, such as the whole word masking
(WWM) (Cui et al., 2021) and phrase masking (Sun
et al., 2019). These methods encourage the pre-
trained model to recover the coarse-grained masks
with fine-grained tokens. However, the relation be-
tween the coarse-grained and fine-grained represen-
tations is modeled in an implicit manner, leading to
less effective representations. The other direction is
to leverage the multi-grained tokenizations as input.
AMBERT (Zhang et al., 2021) encodes both the
fine-grained and coarse-grained token sequences
and performs the masked language modeling tasks
correspondingly, while LICHEE (Guo et al., 2021)
merges the multi-grained token embeddings explic-
itly to integrate the information. Lattice-BERT (Lai
et al., 2021) adopts the lattice graph to construct
the multi-grained input. Nevertheless, these mod-
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els require additional computational costs (e.g., to-
kenization, graph construction, multi-grained en-
coding) and the multi-grained information is only
integrated in the embedding layer other than the
full encoder, leading to limited usability with low
effectiveness.

To fully leverage the semantic information of
multi-granularity and preserve the flexibility of
single-grained models in the fine-tuning stage, we
propose a novel PLM named CLOWER to effi-
ciently model the multi-grained semantic informa-
tion in pre-training to improve the representation
capability. CLOWER adopts the contrastive learn-
ing framework to carry out the semantic interac-
tion between multi-grained representations. Specif-
ically, in the pre-training stage, we perform both
character and word level tokenizations separately
for each input sequence and feed them into the
encoder to obtain the contextual representations.
Then we conduct the contrastive learning over char-
acter and word representations on both token-level
and sentence-level. In this way, the word-level se-
mantic information is encoded into the character
tokens by bringing their representations closer. Dif-
ferent from AMBERT or LICHEE, in fine-tuning,
CLOWER requires no additional computation and
can be directly used in any fine-grained PLMs. The
merit makes CLOWER production-friendly since
it could be deployed easily without modifying the
established production pipeline.

We perform comprehensive experiments on dif-
ferent downstream NLU tasks. The experimental
results show that CLOWER achieves considerable
improvements over several baselines. Ablation
studies demonstrate the effectiveness of contrastive
learning in our pre-training framework. Our contri-
butions are summarized as follows:

• We present a novel approach that adopts con-
trastive learning over both word and charac-
ter representations, which effectively captures
their semantic relations.

• With the help of the aforementioned con-
trastive learning approach, we introduce a Chi-
nese pre-trained language model that connects
multi-grained semantic information for learn-
ing high quality word and character encoders.

• We conduct an extensive set of experiments
on several benchmarks and demonstrate the
effectiveness of the proposed model.

2 Related Work

Multi-grained Pre-trained Language Models
There have been some efforts to explore the multi-
granularity information on the pre-trained language
models (Tay et al., 2021; Xue et al., 2022). Cui
et al. (2021) adopts the whole word masking strat-
egy to select the masking tokens for pre-training.
Similarly, ERNIE 1.0 and 2.0 (Sun et al., 2019,
2020), utilize named entity masking and phrase
masking to encode the coarse-grained information
into the models, while ERNIE-Gram (Xiao et al.,
2021) uses explicit n-gram identities as predicted
targets for the enhancement with coarse-grained
information. Besides, Joshi et al. (2020) propose
the SpanBERT to mask text spans and train the
span boundary objective. However, these methods
mainly concentrate on fine-grained tokens. The
coarse-grained information is only implicitly ex-
plored in the masked language modeling by design-
ing the masking strategies and the coarse-grained
representations are absent.

Instead of designing the coarse-grained masking
strategy on the fine-grained token sequences, sev-
eral methods focus on improving the pre-training
models with multi-grained tokenization. AMBERT
(Zhang et al., 2021) utilizes two encoders with
shared parameters to process the fine-grained and
coarse-grained token sequences. LICHEE (Guo
et al., 2021) proposes to merge the multi-grained
tokenizations at the embedding level to incorporate
multi-grained information of input. Recently, Lai
et al. (2021) propose the Lattice-BERT, which intro-
duces the lattice graph constructed from characters
and words to explicitly explore the word represen-
tations in a multi-granularity way. However, these
models are either computationally intensive or lack
the integration of multi-grained information in the
deep encoder layers, resulting in the limitations of
usability and effectiveness.

Contrastive Learning in Pre-trained Language
Models As contrastive learning become popu-
lar in visual representation learning (Chen et al.,
2020; He et al., 2020; Khosla et al., 2020) and
NLP tasks (Wu et al., 2020; Meng et al., 2021;
Wang et al., 2021), there have been several works
exploring the effects of contrastive learning for
pre-trained language models. CERT (Fang et al.,
2020) adopts the framework of MOCO (He et al.,
2020) and performs the sentence augmentations
by back-translation. Zhang et al. (2020) propose

3099



Figure 1: An overview of CLOWER. Fine-grained and coarse-grained representations are encoded by two
encoders.Token-level and sentence-level contrastive learning are conducted together with the MLM and WWM-
MLM tasks.

the unsupervised sentence embedding model IS-
BERT, increasing the mutual information between
the global representations and the local context
when training the model. ConSERT (Yan et al.,
2021) applies a variety of data augmentation tech-
niques to generate various input views at the em-
bedding level for contrastive learning. Similarly,
SimCSE (Gao et al., 2021) utilizes dropout acts as
data augmentation in sentence-level. The above
methods conduct the contrastive learning to fine-
tune the pre-trained language encoder. As for pre-
training the language model, DeCLUTR (Giorgi
et al., 2021) and CLEAR (Wu et al., 2020) utilize
the architecture of SimCLR (Chen et al., 2020)
to combine the contrastive learning objective with
the masked language modeling. Compared to the
above models, our CLOWER conducts the con-
trastive learning over word and character represen-
tations in pre-training and we have the flexibility
to fine-tune it in specific downstream tasks.

3 Methodology

In this section, we present CLOWER, the pre-
trained language model based on contrastive learn-
ing over word and character representations. We
first present the overall model architecture of
CLOWER, and then we introduce its details in the
pre-training stage. Finally, we discuss the strategy

of fine-tuning the model efficiently using only the
fine-grained input.

3.1 Model Architecture

Figure 1 illustrates an overview of CLOWER pre-
training, where the contrastive learning framework
is leveraged across multiple granularity informa-
tion to enhance the representation ability of the
model.

CLOWER takes the text sequences as input and
performs multi-grained tokenization on the input
to obtain the fine-grained and coarse-grained token
sequences. It should be noted that the fine-grained
and coarse-grained tokens share the same vocab-
ulary, which aims at improving the alignment of
embedding spaces between multi-grained tokens.
In this paper, we treat the characters and words
as fine-grained and coarse-grained tokens respec-
tively. Formally, given the input text sequence s,
we denote the fine-grained and coarse-grained to-
ken sequences by sf = {ωf1 , · · · , ωfi , · · · , ω

f
m}

and sc = {ωc1, · · · , ωcj , · · · , ωcn}, where m and n
are the lengths of two tokenized sequences.

Consistent with the shared vocabulary,
CLOWER adopts the shared embedding layers
to map the tokens ωfi and ωcj to the embedding

representations efi and ecj ∈ Rd respectively,
where d is the dimension of the embedding. The
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fine-grained and coarse-grained embeddings
are then passed to the two encoders to obtain
the contextualized representations respectively.
The encoders utilized in CLOWER can be any
pre-trained language model and two encoders of
fine-grained and coarse-grained have independent
parameters. In this paper, we adopt Chinese
BERT(Devlin et al., 2019) as the encoders.

Token-level and sentence-level contrastive learn-
ing are conducted over the fine-grained and coarse-
grained contextualized representations from the
above encoders, together with the traditional MLM
task and WWM-MLM task.

3.2 Pre-Training

Masked Language Model In the pre-training
stage, CLOWER adopts the MLM task at multi-
grained levels. Specifically, we denote the masked
fine-grained and coarse-grained token sequences
as s̃f and s̃c. The masked fine-grained and coarse-
grained tokens are represented as smf and smc re-
spectively. Then, the object of our MLM task at
multi-grained levels is to optimize the following
loss function:

Lmlm =−
∑

ωmf ∈smf

logPθ(ω
m
f |s̃f )

−
∑

ωmc ∈smc
logPθ(ω

m
c |s̃c),

(1)

where θ denotes the model parameters.
We adopt the WWM strategy (Cui et al., 2021)

as the strategy of fine-grained token sequences and
the conventional masking strategy introduced by
BERT(Devlin et al., 2019) for the coarse-grained
token sequences.

Contrastive Learning To fully learn from the
multi-grained information, we conduct contrastive
learning between the fine-grained representa-
tions and their corresponding coarse-grained rep-
resentations at both token-level and sentence-
level. Formally, for each pair of multi-grained
token sequences sf and sc, we randomly
choose some of the coarse-grained tokens sa =
{ωc1, · · · , ωci , · · · , ωck} ⊂ sc as anchors, where k
is the maximum number of anchors for each se-
quence. The strategy of selecting the anchors will
be detailed in Section 4.1.

Given the anchor ωci , which is composed of the
fine-grained tokens ωfb(i), · · · , ω

f
e(i) where b(i) de-

notes the begin index of the anchor ωci and e(i)

denotes the end index of the anchor ωci , we can ob-
tain its coarse-grained representation hci generated
by the word encoder and its fine-grained represen-
tation pfi = AVG

(
hfb(i) · · ·h

f
e(i)

)
generated by

the character encoder, where AVG(·) means the
average pooling.

Our motivation is to close the gap between the
fine-grained representations and their correspond-
ing coarse-grained representations while enlarge
the gap between unrelated representations. Fol-
lowing the contrastive learning paradigm, it can be
implemented by constructing positive and negative
instance pairs. For the coarse-grained representa-
tion hci , we mark the fine-grained representations
of the same anchor pfi as its positive instance and
the fine-grained representations of the other an-
chors in the same mini-batch pfj as the negative
instances. We further introduce the “[CLS]” em-
beddings of each sentence as the sentence-level
representations, namely h̃c for the coarse-grained
representation and h̃f for the fine-grained repre-
sentation. Similar to the token-level, we treat the
multi-grained representations (h̃c, h̃f ) of the same
sentence as the positive instance pair and the multi-
grained representations of different sentences in a
mini-batch as the negative instance pairs.

Following the contrastive objective in Chen et al.
(2020), we utilize the normalized temperature-
scaled cross-entropy loss (NT-Xent) for both the
token-level and sentence-level representations. We
optimize the symmetric cross-entropy loss in the
pre-training. Specifically, the objective of con-
trastive learning in multi-grained token-level repre-
sentations Ltcl is as follows:

Lctcl = −
1

N

N∑

i=1

log
esim(hc

i ,p
f
i )/τ

∑
j e

sim(hc
i ,p

f
j )/τ

, (2)

Lftcl = −
1

N

N∑

i=1

log
esim(pfi ,h

c
i )/τ

∑
j e

sim(pfi ,h
c
j)/τ

, (3)

Ltcl =
1

2
(Lctcl + Lftcl), (4)

where N indicates the number of in-batch anchors,
sim(·) denotes the similarity function as we use the
cosine similarity, and τ is a temperature hyper-
parameter. Similarly, we define the symmetric
sentence-level contrastive loss Lscl with a mini-
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batch size M as:

Lcscl = −
1

M

M∑

i=1

log
esim(h̃c

i ,h̃
f
i )/τ

∑
j e

sim(h̃c
i ,h̃

f
j )/τ

, (5)

Lfscl = −
1

M

M∑

i=1

log
esim(h̃f

i ,h̃
c
i )/τ

∑
j e

sim(h̃f
i ,h̃

c
j)/τ

, (6)

Lscl =
1

2
(Lcscl + Lfscl), (7)

Therefore, the final object of contrastive learning
Lcon is the sum of Ltcl and Lscl.

Sentence Order Prediction Apart from the
MLM and contrastive learning tasks, we adopt the
sentence order prediction (SOP) task (Lan et al.,
2019) to effectively model the relationship of sen-
tence pairs and denote the training loss as Lsop.
Hence, the overall training loss of CLOWER in
pre-training is the combination of three tasks:

L = Lmlm + λLsop + µLcon (8)

where λ and µ are the hyper-parameters of balanc-
ing three task objectives.

3.3 Fine-Tuning

Note that the usage of the character encoder of
CLOWER is virtually the same as the fine-grained
Chinese PLMs like BERT, thus we can directly sub-
stitute them with our character encoder without any
modification while having the benefit of the coarse-
grained information encoded in the fine-grained
representations.

For the sentence-level downstream tasks, like sin-
gle sentence classification and sentence pair classi-
fication, we conduct classification base on the con-
textualized sentence-level representation h̃f . As
for the token-level tasks, such as question answer-
ing, fine-grained contextualized representations of
each token are extracted and used for predictions.

4 Experiments

We conducted comprehensive experiments on var-
ious Chinese NLU tasks to examine the effective-
ness of CLOWER. In this section, we first introduce
the details of pre-training and fine-tuning, includ-
ing the datasets and experimental settings. Then,
we present the overall results on different tasks and
conduct an in-depth analysis. Ablation studies are
also conducted to evaluate the impact of multi-level
contrastive learning in our model.

Dataset MSL BS LR Epoch

ChnSentiCorp 256 32 3e-5 10
THUCNews 512 16 3e-5 10

Tnews 128 32 3e-5 10

Bq Corpus 128 64 3e-5 10
Lcqmc 128 64 3e-5 10
Ocnli 128 32 3e-5 10
Xnli 128 64 3e-5 10

CMRC2018 512 8 3e-5 5
DRCD 512 8 3e-5 5

Table 1: Hyper-parameters settings for 9 fine-tuning
tasks. MSL: Maximum Sequence Length; BS: Batch
Size; LR: Learning Rate.

4.1 Pre-training Datasets

To the best of our knowledge, WuDaoCor-
pora (Yuan et al., 2021) is the largest open-source
Chinese corpora for pre-training. We utilize the
base version of WuDaoCorpora1, consisting of
about 200GB training data and 72 billion Chinese
characters in total. Following the settings of most
Chinese PLMs, we consider the characters as the
fine-grained tokens. We utilize Jieba2 to perform
the word segmentation on texts and the segmented
words are treated as the coarse-grained tokens.
There are 5, 466 Chinese characters and 40, 014
words in our vocabulary, together with other to-
kens like digits and some basic English tokens. We
conduct the fine-grained and coarse-grained tok-
enizations based on the vocabulary and the words
will be split to characters if they are not in the vo-
cabulary. For contrastive learning, we select up to
k anchors whose lengths are between 2 and 4 from
each sequence. Note that for semantic integrity,
the words that have been masked either on coarse-
grained sequences or their fine-grained characters
will not be selected as anchors.

4.2 Fine-tuning tasks

To thoroughly examine the effectiveness of
CLOWER, an extensive set of experiments are
performed on various Chinese NLU tasks, in-
cluding three single sentence classification (SSC)
tasks, four sentence pair classification (SPC) tasks
and two machine reading comprehension(MRC)
tasks. Specifically, three SSC tasks are ChnSen-
tiCorp (Tan and Zhang, 2008), THUCNews (Li

1https://resource.wudaoai.cn/home
2https://github.com/fxsjy/jieba
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Model Tnews THUCNews ChnSentiCorp AverageDev Dev Test Dev Test

BERT-wwm 66.59 98.16 97.41 94.97 95.55 90.53
BERT-wwm-sop 66.42 98.31 97.49 94.87 95.32 90.48

MM-BERT 66.39 98.18 97.53 94.92 94.80 90.36
MM-BERT-sop 66.27 98.16 97.45 94.62 95.65 90.43

MacBERT 67.07 98.29 97.34 95.16 95.18 90.61

CLOWER 67.15 98.39 97.74 95.18 95.84 90.86

Table 2: Experimental results on single sentence classification tasks.

Model Ocnli Lcqmc Xnli Bq AverageDev Dev Test Dev Test Dev Test

BERT-wwm 74.87 89.37 86.93 79.50 78.89 85.39 84.37 82.76
BERT-wwm-sop 75.73 89.75 87.30 79.74 78.45 85.73 84.81 83.07

MM-BERT 75.34 89.55 87.08 79.56 78.66 85.37 84.51 82.87
MM-BERT-sop 75.44 89.85 87.18 79.42 78.62 86.00 84.84 83.05

MacBERT 75.90 89.58 86.59 80.54 79.10 85.71 84.95 83.20

CLOWER 76.25 89.92 88.10 80.14 79.19 86.01 85.26 83.55

Table 3: Experimental results on sentence pair classification tasks.

Model
CMRC2018 DRCD

Dev Dev Test
EM F1 EM F1 EM F1

BERT-wwm 68.15 86.32 88.20 93.63 87.13 92.55
BERT-wwm-sop 67.47 85.86 87.54 93.15 87.33 92.61

MM-BERT 68.61 86.42 88.45 93.65 87.36 92.85
MM-BERT-sop 67.57 86.18 88.30 93.50 87.18 92.76

MacBERT 68.31 86.38 88.92 94.08 88.04 93.22

CLOWER 68.73 86.52 88.27 93.44 87.68 92.94

Table 4: Experimental results on MRC tasks.

and Sun, 2007) and Tnews (Xu et al., 2020); four
SPC tasks include Bq Corpus (Chen et al., 2018),
Lcqmc (Liu et al., 2018), Ocnli (Hu et al., 2020)
and Xnli (Conneau et al., 2018); two MRC tasks
are CMRC2018 (Cui et al., 2019) and DRCD (Shao
et al., 2018).

4.3 Experiment Settings

4.3.1 Pre-training
In pre-training of CLOWER, we initiate both
the character and word encoder with the Chinese
BERT-base released by Google3 in order to reduce
the total convergence time. Given a word not in the
vocabulary, we initiate its embedding with the av-

3https://github.com/google-research/
bert

erage pooling of the embeddings of the characters
that make up the word. For MLM tasks, as with
the BERT, 15% of the tokens are masked randomly.
For token-level contrastive learning, the maximum
number of anchors for each sequence is set as 20
and the temperature is 0.05. The hyper-parameters
λ and µ in Equation 8 are both set as 1. We set
the maximum sequence length to 512 throughout
the pre-training and adopt the ADAM (Kingma
and Ba, 2014) optimizer with weight decay whose
learning rate is 2e− 5. We train the model with a
batch size of 960 (24×40) for 300, 000 steps. The
pre-training is carried out on 40 NVIDIA V100
GPUs. To improve efficiency, mixed precision
training (Micikevicius et al., 2017) is adopted.

4.3.2 Fine-tuning

To make a fair comparison, we adopt the same
hyper-parameters for each fine-tuning task among
different models. The detailed parameter settings
are shown in Table 1. During fine-tuning, we en-
code each example using the fine-grained encoder
(i.e., character encoder). For three SSP tasks and
four SPC tasks, the “[CLS]” embedding is used
to represent the sentence and the classification ac-
curacies are reported. For two MRC tasks, the
token embeddings are used to extract the answer
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Figure 2: Ablation Results. We report the accuracy for sentence classification tasks and EM for MRC tasks.

span from the sentence, and both exact match (EM)
and F1-score are reported. For each task, we per-
form the experiments five runs with different ran-
dom seeds and report the average performance to
promise the results convincing. We report the re-
sults both on the development sets and test sets, ex-
cept for Tnews, Ocnli and CMRC2018, whose test
sets are not publicly available. Since each article in
the Tnews dataset consists of a title and several key-
words, we associate the titles with keywords as the
input sequences to perform the classification task.
We fine-tune all the models for each downstream
task on one NVIDIA V100 GPU.

4.4 Main Results

Since most of the existing Chinese PLMs are
trained with different corpus and setups, it is hard
to conduct ideally fair comparisons. Therefore,
we select the most representative Chinese PLM
(i.e., Chinese BERT-base) as the baseline and
achieve several pre-training models with differ-
ent settings on the same corpus. More concretely,
we implement the following four baselines: (1)
BERT-wwm (Cui et al., 2021), a BERT-base model
trained with the additional fine-grained WWM
task, (2) BERT-wwm-sop, a BERT-base model
trained with the addtional WWM and SOP tasks,
(3) MM-BERT, a BERT-base model trained with
the multi-grained MLM tasks, including a fine-
grained WWM task and a coarse-grained MLM
task, (4) MM-BERT-sop, Multi-grained MLM on
a BERT-base model trained with the multi-grained
MLM task and the SOP task. In addition, we also
include MacBERT (Cui et al., 2021) as a strong

baseline, which is one of the state-of-the-art Chi-
nese PLMs in literature. MacBERT utilize the
WWM as well as N-gram masking strategies to-
gether during pre-training. In terms of the masking
implementation, MacBERT masks the word with a
similar word rather than the [Mask] placeholder to
improve the performance further. The experimental
results of MacBERT are achieved with the released
model4 under the identical settings with the other
baselines among all downstream tasks.

For three SSC tasks, the results are shown in
Table 2. From the results, we can find that our
CLOWER yields consistent improvements over all
baselines on all three tasks (both on the develop-
ment and test sets), which proves the effectiveness
and advantages of our model. CLOWER outper-
forms the 4 baselines pre-trained with the identical
data while different settings, which demonstrates
the advantages of our multi-level contrastive learn-
ing approach. In addition, CLOWER outperforms
MacBERT by 0.25 points on average and achieves
a new state-of-the art on Chinese SSC tasks.

As for the SPC tasks, fair comparisons are
performed and the results are reported in Ta-
ble 3. From the results, we also observe that
CLOWER also achieves consistent improvements
over baselines on the four tasks. In comparison
to the four baselines pre-trained with the iden-
tical data, CLOWER outperforms the best one
(i.e., MM-BERT-sop) by 0.33 points on average.
In comparison to MacBERT, CLOWER achieves
a performance gain of 0.33 points on average.
CLOWER performs best on all datasets except Xnli

4https://github.com/ymcui/MacBERT
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Model Tnews THUC Chn Ocnli Lcqmc Xnli Bq Average

CLOWER 67.15 97.74 95.84 76.25 88.10 79.19 85.26 84.22

w/o tcl 66.51 97.54 95.43 75.22 87.24 78.53 84.64 83.59
w/o scl 66.34 97.50 95.02 75.06 87.76 78.40 84.71 83.54

w/o tcl & scl 66.27 97.45 95.65 75.44 87.18 78.62 84.84 83.64

Table 5: Ablation results on SSC and SPC tasks. For Tnews and Ocnli, the results are on development sets and
others are on test sets.

Model
CMRC2018 DRCD

Dev Dev Test
EM F1 EM F1 EM F1

CLOWER 68.73 86.52 88.27 93.44 87.68 92.94

w/o tcl 67.93 86.25 88.01 93.34 87.19 92.69
w/o scl 68.35 86.18 88.05 93.38 87.21 92.68

w/o tcl & scl 67.57 86.18 88.30 93.50 87.18 92.76

Table 6: Ablation results on machine reading compre-
hension tasks.

Dev set.
The above SSC and SPC tasks are all sequence-

level tasks, to further examine the effectiveness of
our model, we also perform comparisons on MRC
tasks which are document-level span-extraction
tasks. The resuls are depicted in Tabel 4. Specif-
ically, for CMRC2018, CLOWER outperforms
MacBERT by 0.40 points and 0.14 points on EM
and F1 score respectively. As the EM score is
a stricter measurement of machine reading com-
prehension, the improvements over MacBERT are
considerable. While for DRCD, we find that the
performance of CLOWER is not as competitive
as the baselines. We conjecture that the reason
may be the original dataset of DRCD is in Tradi-
tional Chinese whereas our pre-training corpus is
in Simplified Chinese. Although we convert the
data to Simplified Chinese literally, there are some
differences such as syntax and semantics yet, the
performances of the pre-trained models may be
affected inevitably.

4.5 Ablation Study

To further investigative the effects of contrastive
learning over word and characters in CLOWER,
we conduct ablation study on the model variants
without token-level or sentence-level contrastive
learning tasks. Figure 2 shows the ablation results
on sentences classification and machine reading
comprehension tasks. The detailed ablation results
on 9 downstream NLU tasks are reported in Table 5

and 6 respectively.
When removing the token-level contrastive learn-

ing task (w/o TCL) or sentence-level (w/o SCL)
from CLOWER, there is a distinct drop in the per-
formance on sentence classification tasks (i.e., SSC
and SPC). Furthermore, when removing all the
contrastive learning tasks, i.e., actually the MM-
BERT-sop model, the performance is almost same
as the w/o TCL or w/o SCL models. It indicates
that only if the token-level contrastive learning task
works jointly with the sentence-level contrastive
learning task in pre-training, there will be a positive
impact on the sentence-level downstream tasks. We
conclude that it is vital for the model to encode the
coarse-grained semantic information into the fine-
grained sequences at token-level and sentence-level
consistently when we apply it on sentence-level
downstream tasks.

As for the MRC tasks, the EM score on
CMRC2018 drops a lot when removing the token-
level contrastive learning task, which demonstrates
the effectiveness of token-level task on the extrac-
tive MRC task. While removing the sentence-level
contrastive learning task, the EM metric of the
model drops less than that without the token-level.
Also, the performance of model without both con-
trastive learning tasks perform worst among these
models on CMRC2018. The results on DRCD re-
veal the similar trend.

5 Discussions

5.1 Flexibility
Compared to other Chinese PLMs which utilize
fine-grained and coarse-grained information, one
notable advantage of CLOWER is the high flexi-
bility of deployment. In real-world scenarios, fine-
grained PLMs are more popular due to its flexibil-
ity on processing inputs/outputs and low compu-
tational costs. Please recap that CLOWER could
be deemed as a fine-grained character encoder dur-
ing inference, which is enhanced with the coarse-
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Figure 3: Similarity Analysis of Embeddings. Top: the
words with length 2; Bottom: the words with length
longer than 2.

grained word encoder during pre-training. In partic-
ular, if a production system already deploys a fine-
grained Chinese PLM (e.g., the vanilla BERT), the
fine-grained encoder of CLOWER can be adopted
as a substitute without extra tailor cost seamlessly.
CLOWER also provides the coarse-grained en-
coder (i.e., word encoder) for scenarios where Chi-
nese word sequences are designed as input. The
coarse-grained encoder of CLOWER has also been
updated and acquired the knowledge from the large
corpus during pre-training. We can make flexible
choices according to downstream scenarios and
conditions when utilizing CLOWER.

5.2 Multi-grained Information Modeling

Through the pre-training, CLOWER implements
the multi-grained semantic information modeling
by performing the contrastive learning over words
to characters and thus implicitly encodes the coarse-
grained semantic information into fine-grained to-
kens and vice versa. To evaluate the character/word
representations learned by the interactions, we
adopt the measures of cosine similarity and Eu-

clid distance as proxies. We calculate the cosine
similarity and Euclid distance between the embed-
dings of words and the mean embeddings of the
characters that compose the words. In our cor-
pus, 72.1% words are composed of two characters.
So we conduct the similarity analysis by split the
words into two groups, two-character words and
the other words composed at least three characters.
The similarities produced by four models are shown
in Figure 3. We can clearly see that the token-level
contrastive learning task play an important role
of bringing the word and character embeddings
closer, as the similarity of CLOWER and w/o scl
are higher than the other two models and so is the
Euclid distance. According to the intuitive results,
we corroborate that our model indeed achieves our
motivation to encode the coarse-grained informa-
tion into fine-grained tokens.

6 Conclusion

To fully leverage the information of characters and
words in Chinese PLMs, we propose a novel PLM
CLOWER based on contrastive learning over word
and character representations jointly. Through the
token-level and sentence-level contrastive learn-
ing in the pre-training stage, the model encodes
the coarse-grained semantic information into fine-
grained tokens. We can not only enhance the model
with coarse-grained semantics but also enjoy the
flexibility of fine-grained inputs/outputs. The flexi-
bility promises that our model could be deployed
conveniently in real scenarios, where certain PLMs
like BERT have been established. Comprehensive
experiments on a variety of downstream natural
language understanding tasks demonstrate the com-
petitive performance of CLOWER. We also con-
duct a ablation study to evaluate the multi-grained
contrastive learning mechanism in CLOWER.
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Abstract

Several studies in the literature on the inter-
pretation of Neural Language Models (NLM)
focus on the linguistic generalization abilities
of pre-trained models. However, little attention
is paid to how the linguistic knowledge of the
models changes during the fine-tuning steps.
In this paper, we contribute to this line of re-
search by showing to what extent a wide range
of linguistic phenomena are forgotten across 50
epochs of fine-tuning, and how the preserved
linguistic knowledge is correlated with the res-
olution of the fine-tuning task. To this end, we
considered a quite understudied task where lin-
guistic information plays the main role, i.e. the
prediction of the evolution of written language
competence of native language learners. In ad-
dition, we investigate whether it is possible to
predict the fine-tuned NLM accuracy across
the 50 epochs solely relying on the assessed
linguistic competence. Our results are encour-
aging and show a high relationship between the
model’s linguistic competence and its ability to
solve a linguistically-based downstream task.

1 Introduction

In the last few years, interest in assessing the lin-
guistic generalization abilities of Neural Language
Models (NLMs) has given rise to numerous studies
aimed at investigating how the models are able to
encode different types of linguistic phenomena. To
this end, the most widespread methodology is the
probing classification approach (Conneau et al.,
2018; Warstadt et al., 2019; Hewitt and Liang,
2019), which showed that NLMs are able to en-
code a variety of language properties (Rogers et al.,
2020). Even if most of the work is focused on
the linguistic competence of pre-trained models,
a complementary line of research is devoted to
understanding whether and to what extent the exist-
ing competence is modified by fine-tuning the pre-
trained model on a supervised downstream dataset
(Merchant et al., 2020).

In this paper, we continue this line of research
and carry out a study aimed at adopting a prob-
ing task approach to investigate how the linguistic
competence of one of the most prominent NLM
model, BERT (Devlin et al., 2019), is altered after
a fine-tuning stage with the main focus on which
specific phenomena are preserved or forgotten and
which fine-tuning epochs are mainly involved. As a
testbed, we chose a downstream task where linguis-
tic information plays the main role. It consists in
predicting the evolution of written language com-
petence relying on the linguistic style of chrono-
logically ordered productions written by language
learners (Richter et al., 2015; Miaschi et al., 2021a).
To the best of our knowledge, it has been never con-
sidered in the NLM interpretability literature, and
differently from previous studies, the task was car-
ried out at sentence rather than at document level.
The present study addresses two further related
issues: the first one concerns the debated relation-
ship between the linguistic competence of an NLM
and its ability to resolve a task (Ravichander et al.,
2021). Secondly, we aim to investigate whether it
is possible to predict the accuracy of a fine-tuned
model across multiple training epochs solely rely-
ing on the linguistic probing task results reflecting
BERT’s linguistic competence.

Contributions. In this paper, we i) compared the
ability of BERT’s and a Support Vector Machine
classifier, which uses a set of explicit linguistic
features, in the prediction of the chronological or-
der of two sentences written by the same student
across two school years, ii) showed the impact of
the fine-tuning stage on BERT’s linguistic compe-
tences, focusing in particular on how they change
across 50 epochs of fine-tuning, iii) assessed which
types of linguistic competence are mainly related
to BERT’s ability to solve the downstream task,
iv) predicted the fine-tuned BERT’s performance
across 50 epochs relying on the linguistic compe-
tence of the model.
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2 Related work

Several methods have been proposed in the liter-
ature to obtain meaningful explanations of how
NLMs are able to capture syntax- and semantic-
sensitive phenomena (Belinkov et al., 2017), also
taking inspiration from human language experi-
ments (Ettinger, 2020). Despite highly debated
(Belinkov, 2021), one of the mostly explored meth-
ods is the definition of probing tasks which a model
can solve only if it has encoded a precise linguistic
phenomenon within its representations.

Particularly relevant to our study are the multi-
ple papers focused on the impact of the fine-tuning
stage on how and the extent to which the linguis-
tic knowledge encoded in the pre-trained model
is modified, such as Mosbach et al. (2020); Mer-
chant et al. (2020); Durrani et al. (2021); Sarti
et al. (2021); Miaschi et al. (2020); Yu and Ettinger
(2021) to mention the most recent ones. Even with
some main differences concerning the NLMs, and
the fine-tuning and probing tasks considered, they
agree that the main changes are typically larger for
the output layers of a fine-tuned model than for
the first ones. However, a shared consensus about
whether the linguistic information are preserved, re-
inforced or forgotten is still missing. For example,
Mosbach et al. (2020); Merchant et al. (2020); Sarti
et al. (2021) report both a general not catastrophic
forgetting and in some cases a substantial improve-
ment of the linguistic competence directly involved
in the resolution of the downstream task. On the
contrary, Yu and Ettinger (2021) found that fine-
tuning on phrase meaning composition sets does
not exhibit noteworthy benefits, and Miaschi et al.
(2020) show that BERT tends to lose its precision
in encoding a wide set of linguistic features after
the fine-tuning process. However, to the best of our
knowledge, none of the prior works provide a com-
prehensive analysis of the impact of the fine-tuning
stage across the training epochs.

An orthogonal debated issue we are going to ad-
dress in this study regards the question raised by
Ravichander et al. (2021) and concerning the ex-
tent information encoded in NLMs is indicative of
information needed to perform downstream tasks.
Differently from the authors who demonstrated that
NLMs are able to encode linguistic properties even
if they are not needed for a given downstream task,
our results show that there is a strong correlation
between the ability to encode a linguistic property
and the accuracy to solve the task. An additional

novelty of this study is the language we focus on,
i.e. Italian. While the vast majority of these studies
are focused on English, relatively little work has
been done to interpret non-English models. Ex-
ceptions are represented by de Vries et al. (2020)
focused on Dutch and by Miaschi et al. (2021b);
Guarasci et al. (2022) dealing with Italian.

3 Our Approach

Our study includes multiple experiments. Firstly,
we test BERT’s ability to solve the downstream
task, by comparing the performance of the fine-
tuned model against a Support Vector Machine
classifier which uses a set of explicit features re-
sulted particularly relevant in the resolution of the
task, as shown by Richter et al. (2015); Miaschi
et al. (2021a). Then, we use a suite of probing
tasks to test the linguistic abilities of pre-trained
and fine-tuned BERT, with a specific focus on how
they change across multiple training epochs of
fine-tuning and on which linguistic properties are
mostly correlated with the resolution of the down-
stream task. As linguistic probing tasks, we use the
same set of linguistic features used by the SVM.
The last experiment is devoted to assess whether it
is possible to predict the fine-tuning performance
using the accuracy of the linguistic probing tasks.

3.1 Data

We used two datasets: (i) the Universal Depen-
dency Italian Treebank (IUDT) for probing the lin-
guistic knowledge learned before and after a fine-
tuning process; (ii) a collection of chronologically
ordered essays contained in the CItA corpus, which
we used to solve the predicting evolution task and
for fine-tuning.

IUDT dataset. It includes all 5 sections of the
Italian treebank built in the framework of the UD
project (de Marneffe et al., 2021), version 2.5, for
a total of 33,017 sentences.

CItA (Corpus Italiano di Apprendenti L1).
The corpus is the first longitudinal collection of
productions written by first language (L1) learners
existing for the Italian language (Barbagli et al.,
2016). It includes 1,352 essays written by a total
of 156 students, aged 11-12, followed from the
first to the second year of four different Italian
lower secondary schools. Note that this tempo-
ral span is considered quite crucial for Italian L1
learners, since a number of relevant transforma-
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Linguistic Feature Label
Raw Text Properties (RawText)

Sentence Length sent_length
Word Length char_per_tok

Vocabulary Richness (Vocabulary)
Type/Token Ratio for words and lemmas ttr_form, ttr_lemma

Morphosyntactic information (POS)
Distribution of language–specific POS xpos_dist_*
Lexical density lexical_density

Inflectional morphology (VerbInflection)
Inflectional morphology of lexical verbs and auxiliaries verbs_*, aux_*

Verbal Predicate Structure (VerbPredicate)
Distribution of verbal heads and verbal roots verbal_head_dist, verbal_root_perc
Verb arity and distribution of verbs by arity avg_verb_edges, verbal_arity_*

Global and Local Parsed Tree Structures (TreeStructure)
Depth of the whole syntactic tree avg_max_depth
Average length of dependency links and of the longest link avg_links_len, max_links_len
Average length of prepositional chains and distribution by depth avg_prep_chain_len, prep_dist_*
Clause length avg_token_per_clause

Order of elements (Order)
Relative order of subject and object subj_pre, subj_post, obj_post, obj_pre

Syntactic Relations (SyntacticDep)
Distribution of dependency relations dep_dist_*

Use of Subordination (Subord)
Distribution of subordinate clauses subordinate_prop_dist
Average length of subordination chains and distribution by depth avg_subord_chain_len, subordinate_dist_*
Relative order of subordinate clauses subordinate_post

Table 1: Linguistic features used in the experiments.

tions in writing competence occurs during these
two years, as shown by studies in experimental
pedagogy (Barbagli et al., 2015). Accordingly, the
corpus has been also successfully exploited to de-
velop NLP-based approaches for tracking the evo-
lution of written language competence (Miaschi
et al., 2021a).

3.2 Linguistic Probing Tasks

To evaluate the linguistic competence encoded by
BERT, we adopted the linguistic probing paradigm
defined by Conneau et al. (2018) and followed the
approach devised by Miaschi et al. (2020) who de-
fined a suite of 68 probing tasks each correspond-
ing to a distinct linguistic property of a sentence
extracted from the IUDT sentences using Profiling-
UD (Brunato et al., 2020), a tool able to acquire a
wide set of linguistic features from linguistically
annotated corpora according to the UD formalism.
Each task consists in predicting the value that spe-
cific property has in IUDT using the representa-
tions learned by the NLM during the pre-training
and fine-tuning processes. The set is reported in
Table 1 and covers 9 main aspects of the structure
of a sentence. They range from quite simple as-
pects concerning raw text properties (sentence and
word length), vocabulary richness, the distribution
of language-specific Parts-Of-Speech and of verbal
inflectional properties (i.e. mood, tense, person).1

More challenging probing tasks concern the ability
to encode global structures of the sentence, such
as the depth of the whole syntactic tree, and lo-

1For the list of Parts-Of-Speech refer to
http://www.italianlp.it/docs/ISST-TANL-POStagset.pdf

cal features. We also paid a specific attention to
testing the models knowledge of specific sub-trees,
including a group of features modelling the verbal
predicate structure, the order of subjects and ob-
jects with respect to their verbal head, and the use
of subordination.

3.3 Models

Neural Language Model. We considered a
BERT-base cased model trained on the Italian
Wikipedia and texts from the OPUS corpus (Tiede-
mann and Nygaard, 2004).2 Sentence-level rep-
resentations are obtained using for each of the 12
layers the activation of the first input token ([CLS]).

Support Vector Machines Model. The SVM
classifier is based on a linear kernel using the lin-
guistic features described in Table 1. For each pair
of sentences (si, sj), the feature vectors Vsi , Vsj
were combined in the final feature vector Vsi,sj =
Vsi − Vsj , and normalized in the range [0,1].

Probing Model. We used a linear Support Vec-
tor Regression tested on 10,000 randomly selected
IUDT sentences and trained on remaining ones. It
takes as input layer-wise sentence-level representa-
tions extracted from the pre-trained and fine-tuned
BERT model. As evaluation metric, we used the
Spearman correlation coefficient (ρ score) between
the values of the linguistic properties predicted by
BERT and their gold values in IUDT sentences.

2https://huggingface.co/dbmdz/bert-base-italian-cased
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4 Predicting the Evolution of Written
Language Competence

Our first experiment is aimed at assessing BERT’s
ability to predict the evolution of written language
competence of L1 learners. Following Richter et al.
(2015) and Miaschi et al. (2021a), we modelled the
task as a binary classification one. We started from
the assumption that, given a set of chronologically
ordered essays written by the same student, a doc-
ument dj should have a higher quality level with
respect to the ones written previously (di). How-
ever, differently from previous studies, our analysis
was carried out at the sentence level. Thus, given
two sentences si and sj , belonging to document di
and dj respectively, the task consists in predicting
whether t(sj) > t(si), where t(si) identifies the
time in which the sentence si was written.

To this end, we built a dataset composed of all
possible pairs (si, sj) of sentences contained in the
CItA corpus and written by the same student in the
two school years. We considered only the sentences
contained in the first essay written during the first
year and the penultimate of the second year of four
different schools, for a total of 3,562 sentences and
33,566 pairs. This is motivated by the fact that
this represents the widest temporal span. For each
pair, we assigned two labels: 1 if t(sj) > t(si) and
0 otherwise. To balance the dataset, we included
only one of the two labels, i.e. 50% of the pairs
with label 0 (randomly selected) and the remaining
of the pairs with label 1.

CItA statistics. As a preliminary analysis, we in-
vestigated which linguistic phenomena are mostly
involved in the writing transformations across the
two years. Thus, we compared the distribution of
the linguistic features automatically extracted from
the set of paired sentences and described in Table
1. Table 2 shows the top 15 features ordered by de-
creasing number of times their value is higher in the
first-year sentences.3 The main differences concern
the behaviour of verbs, both in terms of distribu-
tion of auxiliaries (dep_dist_aux) possibly used in
compound tenses, and of characteristics specific
to the verbal inflectional morphology, e.g. indica-
tive mood (aux_mood_dist_Ind), and participial
forms (verbs_form_dist_Part). The different use
of connecting elements characterising the internal
structure of a sentence, such as coordinating con-

3All variations across the two years are statistically signifi-
cant according to the Wilcoxon Rank Sum Test.

Ranking Feature Difference
1 dep_dist_aux 10081
2 xpos_dist_VA 9365
3 aux_mood_dist_Ind 9046
4 verbs_form_dist_Part 8452
5 aux_form_dist_Fin 8206
6 dep_dist_conj 7642
7 aux_tense_dist_Pres 7619
8 verbs_num_pers_dist_Sing+3 -7307
9 dep_dist_cc 6493

10 xpos_dist_CC 6440
11 dep_dist_punct -6411
12 verbs_form_dist_Fin -5330
13 xpos_dist_E -4707
14 verbs_tense_dist_Pres -4688
15 xpos_dist_SP -4525

Table 2: Ranking of first 15 features by decreasing
number of times the feature value is higher in the first-
year than in the second-year sentence.

junctions (xpos_dist_CC, dep_dist_cc) and punc-
tuation (dep_dist_punct), represents an additional
aspect of variation.

4.1 Results

The SVM and BERT classification systems were
evaluated with a 4-fold cross-validation in which
every fold uses as a test set the sentences of the
school not included in the corresponding training
set. The accuracy for each fold refers to the per-
centage of sentences correctly classified and the
final accuracy is the average score.

Figure 1 reports the task performances achieved
by BERT for each of the 50 fine-tuning epochs. As
we can see, the highest accuracy is 0.78 and it is
achieved at the 11th epoch. It is worth noting that
lower accuracy, ranging from 0.73 to 0.76, was ob-
tained at epochs 2, 3 and 4 which were suggested as
optimal hyperparameters in many tasks by Devlin
et al. (2019).

Note that BERT outperforms the results achieved
by the SVM classifier, which is able to solve the
task with an accuracy of 0.70. The relatively small
difference in terms of accuracy between a deep
NLM and a simple linear classifier, which does not
exploit words of the sentence as features but only
linguistic properties, seems to confirm our intuition
regarding the linguistic nature of the chosen task.
A more in-depth analysis focused on the contribu-
tion of specific linguistic features used by the SVM
classifier highlights that the most predicting ones
are represented by the use of verbs, in particular
of the auxiliary verbs, and of punctuation and con-
junctions. This is in line with the statistics reported
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Figure 1: BERT accuracy on the downstream task across 50 fine-tuning epochs (BERT) and on average (Mean).

in Table 2, where we showed that a change in the
distribution of these linguistic features is among
the most relevant writing transformations occurring
across the two school years.

5 How Does Linguistic Competence
Change Across the Fine-tuning Epochs?

BERT linguistic competence was tested by adopt-
ing a supervised probing classifier approach, which
accounts for 68 probing tasks. As detailed in Sec-
tion 3.3, we trained a LinearSVR probing model
which uses the sentence-level representations ex-
tracted from the pre-trained and fine-tuned model.
Since many of our probing features are strongly
related to sentence length, we compared the results
with the ones obtained using a baseline computed
by using a probing model trained using only sen-
tence length as an input feature.

Pre-training linguistic competence. Figure 2 re-
ports the probing task results obtained using the
pre-trained BERT’s representations. As a general
remark, we can notice that BERT’s scores always
outperform the baseline ones, with the obvious ex-
ception of the sentence length (n_tokens). However,
as expected, the results are more similar for the
probing tasks whose resolution is highly influenced
by the length of the sentence. This is the case of
global and local properties of the sentence such as
the depth of the syntactic tree (avg_max_depth)
and the length of the longest dependency links
(max_links_len). They correspond to linguistic phe-
nomena that the NLM masters very well. Neverthe-
less, differently from the baseline, BERT shows to
encode quite accurately also the only lexical prop-
erty we considered, i.e. the Type/Token ratio, and
a raw text feature highly related to the use of lexi-
con, i.e. the length of tokens (char_per_tok). Pre-
trained representations are also very good at pre-
dicting the distribution of functional information

both in terms of Parts-Of-Speech such as prepo-
sitions (xpos_dist_E), coordinating conjunctions
(*_CC), determinative articles (*_RD), and of de-
pendency relations linking a functional POS to its
head (i.e. dep_dist_case, *_cc, *_det respectively),
and of punctuation, in particular of commas (*_FF)
and full stops (*_FS). Lastly, concerning BERT’s
knowledge about verbs, we can note that the model
encodes quite accurately the tense, person and
mood of auxiliary verbs (aux_*) and the distribu-
tion of verbal heads (verbal_head_per_sent).

When we move to the analysis of how the com-
petence changes across layers, we can observe that
it generally tends to decrease when the output layer
is approaching. This is in line with previous find-
ings (Liu et al., 2019; Miaschi et al., 2020) and it
could be due to the fact that Transformer layers
trade off between task-oriented (e.g. Masked Lan-
guage Modeling) information and general linguistic
competence. A such decreasing trend can be specif-
ically appreciated by observing the evolution of the
black dotted line reported in Figure 3. It shows how
BERT’s competence in the 9 groups of linguistic
phenomena introduced in Table 1 evolves across
the 12 layers. As it can be seen, however not all
features have the same decreasing trend. The main
exceptions are represented by quite complex lin-
guistic features, such as the order of subject/object
with respect to the verbal head (Order of elements),
the use of subordination and the verbal predicate
structure, which increase consistently across layers,
even if they decrease in the output layer. These
linguistic features model syntactic sub-trees of the
sentence, that require an in-depth knowledge of
the syntactic structure of the sentence, which is en-
coded starting from the middle layers, as shown for
English (Tenney et al., 2019; Miaschi et al., 2020).

Fine-tuning impact. Coloured lines in Figure
3 report the layer-wise ρ scores we obtained us-
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Figure 2: Layer-wise ρ scores for the 68 probing tasks obtained with the pre-trained model. Baseline score are
reported in column B.

Figure 3: Pre-trained and fine-tuned BERT layerwise ρ scores for groups of probing features.

ing the representations extracted by each of the 50
epochs of fine-tuning on the CItA corpus. Differ-
ently from scholars who found that some linguistic
abilities are reinforced after the fine-tuning pro-
cess, such as Merchant et al. (2020) and Mosbach
et al. (2020), but more similarly to Miaschi et al.
(2020), our analysis shows that BERT tends to lose

the linguistic competence acquired during the pre-
training phase. However, such loss has a different
impact across the 50 epochs and the 12 layers. For
all epochs, all linguistic competencies are mostly
altered starting from the 8th layer, thus resulting
mostly modified in the 12th one. This might be
possibly due to the fact that during these layers the
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Figure 4: ρ scores for groups of probing features at the 12th layer of pre-training and across the 50 epochs of
fine-tuning.

model is storing task–specific information at the
expense of its ability to encode general knowledge
about the language (Kovaleva et al., 2019).

In addition, note that the impact of the fine-
tuning stage is less evident in the first epochs (blue
lines in the figure) than in the last ones (green lines).
Since the main changes are observed in the 12th

Groups of probing features slope r-value
Raw Text Properties 1.679 0.966
Global and Local Parsed Tree Structures 1.644 0.955
Use of Subordination 1.622 0.961
Verbal Predicate Structure 1.618 0.964
Inflectional morphology 1.581 0.955
All features 1.574 0.965
Syntactic Relations 1.542 0.965
Order of elements 1.534 0.964
Morphosyntactic information 1.534 0.965
Vocabulary Richness 1.449 0.958

Table 3: Ranking of groups of probing features accord-
ing to decreasing slope of the regression lines. Correla-
tion coefficients are also reported (r-value).

layer, we deepen the analysis and report in Figure
4 the probing scores for each group of features at
each epoch. The trend shows that for all groups
of features a first main drop (with respect to the
pre-training scores) occurs after the first epoch,
then the sentence properties are constantly forgot-
ten across the 50 epochs. However, such a negative
impact is different for each group. For example,
the knowledge of simple raw text features, which
BERT knows very well, drops from 0.8 to 0.1. Sim-
ilarly, the generalization abilities of a highly related
group of features, i.e. those referring to global and
local syntactic characteristics of a sentence, de-
crease quite considerably.

To further investigate which group of features is
forgotten most rapidly across the epochs, we calcu-
lated a slope of a linear regression line between the
50 epochs and the decay of competencies for each

Figure 5: Layer-wise correlation between the average
ρ score for groups of features and BERT’s accuracy on
the downstream task. Blank cells are non statistically
significant correlations.

linguistic group.4 Results are reported in Table 3
where we show the 9 groups of features ordered
according to decreasing slope values. As it can
be noted, the ranking does not reflect BERT’s lin-
guistic competence. Namely, in the top and last
position we find groups of features that pre-trained
BERT knows very well, i.e. Raw text properties
and Vocabulary Richness. Similarly, the groups
that are scarcely mastered are scattered along the
ranking. This might suggest that the change of
competencies across the epochs is not related to the
pre-trained knowledge but possibly to some charac-
teristics useful in the resolution of the downstream
task.

6 Task Resolution and Linguistic
Competence

Correlating task accuracy with linguistic compe-
tence. For each single feature and each group of lin-
guistic features, Figures 5 and 6 report the results of

4decay = (probing score at layer 12 of pre-training - prob-
ing score at layer 12 epoch i) / probing score at 12 layer of
pre-training
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Figure 6: Layer-wise correlation between the Spearman coefficient value of the 68 linguistic features and the
accuracy over the 50 epochs considered for the fine-tuning.

the Spearman correlations between the layer-wise
probing scores and the accuracy of BERT in the
resolution of the downstream task for all epochs.
The results were compared with a baseline com-
puted as the Spearman correlation between BERT’s
accuracy on the downstream task and a list of num-
bers from 50 to 1 (ρ=0.55)5. As a general remark,
in the first layers (from 1st to 7th), we noticed a
non-significant or low correlation, most of the time
lower than the baseline scores. On the contrary, the
scores are higher, always above the baseline, in the
central layers (8-10) and they tend to decrease in
the 11th and 12th layers, where task-specific infor-
mation is stored. The trend suggests that the higher
BERT’s linguistic competence, the more accurate
the resolution of the downstream task is. This is
a global trend as showed by All features, even if
there are some differences among the studied lin-
guistic phenomena. Namely, information about
verbs (both in terms of inflectional morphology
and predicate structure) and the order of nuclear
elements of sentence results to be the linguistic
competence mostly correlated with the resolution

5Such baseline was chosen since it simulates the decreas-
ing trend of probing score accuracy during the 50 epochs of
fine-tuning as shown in Figure 4.

of the task. In particular, the distribution of auxil-
iary verbs (both in terms of POS and dependency
relations), clitic pronouns, tense, person and mood
of both auxiliary and lexical verbs, of subjects in
their canonical order (i.e. in the pre-verbal posi-
tion), show a very high correlation (ρ ≥ 0.70) in
either the 9th or 10th layer. Interestingly, these
linguistic phenomena are the mostly involved in
the writing transformations across the two school
years (see Table 2).

Predicting task accuracy with linguistic com-
petence. The last experiment is aimed at testing
whether it is possible to predict BERT’s accuracy in
the resolution of the downstream task on the basis
of its linguistic competence assessed by the lin-
guistic probing tasks. For this purpose, we trained
a linear Support Vector Regressor using a Leave-
one-out strategy. Namely, each time, we used as
training the average accuracy of the probing tasks
(in terms of ρ scores) achieved at the 12th layer of
49 epochs, and the excluded epoch as the test. As
an evaluation metric, we used the Spearman corre-
lation and the Mean Squared Error (MSE) between
the predicted values and the actual ones. We de-
vised two baselines: the first one consists of a list of
50 numbers corresponding to the average BERT’s
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Figure 7: Predicted accuracy at the 12th layer and BERT’s actual accuracy for each epoch of fine-tuning.

accuracy in the resolution of the downstream task
considering all the epochs. In this case, since the
value is always the same for all the epochs, the pre-
diction was evaluated only in terms of MSE. The
second baseline is a linear SVR using a decreasing
list of numbers from 50 to 1, simulating the decreas-
ing trend of the probing accuracy across the epochs.
Here, we were able to compute also the correlation
scores. The results show that the SVR achieves
very high scores (ρ=0.76, MSE=0.011) which out-
perform the two baselines (ρ=NA, MSE=0.017;
ρ=0.54, MSE=0.017). This demonstrates that the
BERT accuracy can be reliably predicted by study-
ing its linguistic abilities. The reliability of this
result is corroborated by Figure 7 where we com-
pare the trends of the predicted (Predicted) and
BERT actual accuracy. It is worth noting that the
two lines are almost overlapping, showing a very
similar trend.

7 Conclusion

In this paper, we carried out an extensive study
aimed at investigating in detail the relation between
the fine-tuning stage and the linguistic knowledge
encoded by BERT. For our study, we chose the pre-
diction of the evolution of written language compe-
tence of native language learners as a downstream
task, since the morpho-syntactic and syntactic in-
formation plays an important role in the resolu-
tion. We showed in particular how the knowledge
assessed during the pre-training stage is progres-
sively forgotten across 50 epochs of fine-tuning.
We observed that the main changes concern the
12th layer of all epochs and they are more evident
in the last than in the first epochs. An in-depth anal-
ysis showed that the types of linguistic phenomena
forgotten most rapidly across epochs are not related
to the linguistic knowledge of the pre-trained NLM
but possibly to some characteristics useful to solve
the downstream task. We also found a strong cor-

relation between the linguistic knowledge encoded
by BERT and its ability to resolve the task. Specifi-
cally, we showed that the verbal inflectional mor-
phology, the predicate structure, and the canonical
order of subject and object are the most correlated
aspects. Interestingly, these linguistic characteris-
tics, in particular those referring to verbs, resulted
to be the most predictive types of features exploited
by the SVM classifier and the most involved in the
writing transformations. A such strong relationship
between the ability to the resolution of the task and
linguistic competence is particularly evident in our
last experiment, where we obtained very strong ac-
curacy in predicting BERT’s performance using the
encoded linguistic competence. Besides investigat-
ing the nature of BERT this outcome could open
the way to define a new linguistically motivated
stop-function of the fine-tuning process.
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any harmful uses of data.
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Abstract

Pre-trained Language Models (PLMs) are the
cornerstone of the modern Natural Language
Processing (NLP). However, as PLMs become
heavier, fine tuning all their parameters loses
their efficiency. In this paper, we propose Lay-
erConnect (hypernetwork-assisted inter-layer
connectors) to enhance inference efficiency.
Specifically, a light-weight connector with a
linear structure is inserted between two Trans-
former layers, and the parameters inside each
connector are tuned by a hypernetwork com-
prising an interpolator and a down-sampler. We
conduct extensive experiments on the widely
used GLUE benchmark. The experimental
results verify the inference efficiency of our
model. Compared to Adapter, with our struc-
ture, parameters are reduced to approximately
11.75% for base PLMs and 8.82% for large
PLMs, while the performance degradation is
kept to less than 5% (2.07 points on average).

1 Introduction

The emergence of pre-trained language models
(PLMs) has brought Natural Language Process-
ing (NLP) to a new era (Qiu et al., 2020). Fine
tuning all PLMs parameters has become the most
common strategy to apply them to downstream
tasks (Zheng et al., 2021a; Lai et al., 2021; Wang
et al., 2021, 2022; Chen et al., 2022; He et al., 2022;
Zheng et al., 2020; Wang et al., 2020; Zheng et al.,
2021b,c; Zhang et al., 2020; Zhou et al., 2021).
However, in this manner, one should store a full
copy of a PLM for each downstream task because
all its parameters are updated during the fine-tuning
stage. Thus, this strategy challenges the usage of
the PLMs on edge devices (e.g., mobile phone and
embedded systems) that have limited storage space.
Under this background, parameter efficiency has
gradually attracted attention from both the research
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community and industries (Houlsby et al., 2019;
Li and Liang, 2021; Zaken et al., 2021; Liu et al.,
2021; Ding et al., 2022; Zhang et al., 2021). The
core concept of parameter efficiency is to reduce
the trainable parameters of PLMs. Consequently,
when deploying a PLM, only the different trained
parameters from multiple tasks must be stored, to-
gether with one copy of the shared frozen parame-
ters.

Currently, there are three main types of param-
eter efficiency methods: (1) Specification-based
methods train only a small part of the parameters in
the original PLM, while the others are frozen. For
example, Bitfit (Zaken et al., 2021) only updates
the parameters of the bias and task-specific layers
in PLMs. (2) Prompt-based methods prepend addi-
tional context (i.e., prompts) to the original input,
and change only the prompt parameters during fine
tuning. In this manner, P-tuning (Liu et al., 2021)
adopts an extra network to functionalize the op-
timization of the continuous prompt embedding.
Then, Prefix-tuning (Li and Liang, 2021) is pro-
posed to use trainable prefixes to accomplish a
parameter-efficiency task. (3) The Adapter-based
methods inject small-scale neural modules to PLMs
and update only these modules during fine tuning.
Adapter (Houlsby et al., 2019) simply injects two
linearly trainable projectors (i.e., Adapter layers)
into each transformer layer of PLMs. Karimi Ma-
habadi et al. (2021) further make the weights of
Adapter layers conditioned on hypernetworks (Ha
et al., 2016) facilitating parameter sharing across
multiple tasks. Later, Hu et al. (2021) propose Low-
Rank Adaptation (LoRA), a layer-parallel structure
which contains less parameters than Adapter.

In view of hypernetwork (Ha et al., 2016) which
generates weights for another network, although its
superiority has been proved in multi-task parameter
efficiency (Karimi Mahabadi et al., 2021), the sin-
gle linear projector used in their hypernetwork con-
tinues to have under-explored abilities (e.g., avoid-
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ing local optima and performance compensation
when linear structure size is reduced). Furthermore,
the PLM used in Karimi Mahabadi et al. (2021)
is T5 (Raffel et al., 2020), a pre-trained encoder-
decoder model. Therefore, the effectiveness of the
hypernetwork remains unknown in encoder-only
PLMs (e.g., BERT and RoBERTa). To this end, we
propose LayerConnect, a hypernetwork-assisted
inter-layer connector. Specifically, in the proposed
architecture, we first insert a connector between
every adjacent transformer layer in a PLM. Only
the parameters of the inserted connector are up-
dated during the fine-tuning stage. Then, to share
parameters across multiple tasks and avoid local
convergence, the weights of the connector are con-
ditioned on a well-designed hypernetwork that is
equipped with an interpolator and a down-sampler.
The proposed hypernetwork reduces the required
parameters in the connectors and ensures sufficient
optimization space. We conduct extensive experi-
ments on the GLUE benchmark (Wang et al., 2018).
The experimental results show that compared with
Adapter, our LayerConnect requires only 11.75%
of its parameters, while keeping the performance
degradation to less than 5%.

2 Method

We propose hypernetwork-assisted inter-layer con-
nectors (i.e., LayerConnect), as shown in Figure 1,
the Transformer encoder (Vaswani et al., 2017) is
used as the backbone of our LayerConnect and a
connector is inserted between Transformer layers,
named inter-layer connector. Specifically, the con-
nectors linearly transform the hidden states of each
Transformer layer:

C l(Xl) = Xl ·Al +Bl (1)

where X l ∈ Rn×d is the hidden state of the l-th
Transformer layer (l ∈ {1, 2, · · · , L}), n and d
are the input size and the hidden size of Trans-
former, respectively. Further, Al ∈ Rn×n and
Bl ∈ Rn×d are the trainable parameters where
each row in Al or Bl is a repetition of a vector
al or bl with length n. In the entire model, the
only tunable parameters areA = [a1; a2; · · · ; aL]
and B = [b1; b2; · · · ; bL]. Compared with pre-
vious intra-layer Adapters (Houlsby et al., 2019;
Karimi Mahabadi et al., 2021), our inter-layer con-
nector contains fewer trainable parameters due to
(1) the number of inserted layers in our model is L
while the counterpart of others is 2L; and (2) the
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Figure 1: LayerConnect architecture.

parameters count in our connector is n+d, which is
less than 2d · dm(1 ≤ dm < d) existing Adapters.

To prevent the model from converging to the lo-
cal optima due to the small number of parameters,
the weights ofA andB are conditioned on a hyper-
network. Unlike the approach of Karimi Mahabadi
et al. (2021), whose hypernetwork is a single linear
projector, we design a new hypernetwork equipped
with an interpolator and a down-sampler. In detail,
we first utilize a learned task embedding et ∈ RL×d
for each task, and then, use an interpolator to raise
dimensionality, followed by a ReLU non-linearity:

ein = ReLU(Winet) (2)

where Win ∈ RmL×L is the set of trainable param-
eters of the interpolator and m is a hyper parameter.
In this manner, sufficient interpolator parameters
are provided to optimize the connectors. Subse-
quently, a down-sampler is used to project Xin

back to the original dimensionality. Finally, the
weights ofA andB are generated from the down-
sampled vector:

eds =Wdsein (3)

(A⊤,B⊤) =Xds(W
A,WB) (4)

where Wds ∈ RL×mL, WA ∈ Rd×n and WB ∈
Rd×d are trainable parameters.

We specify the parameters of hypernetwork for
different tasks during fine tuning. After that, the
hypernetwork is discarded when deploying models,
indicating that the parameters of the hypernetwork
do not influence storage space during reasoning.

3121



Method Para. Size SST-2 QNLI M.-MM QQP RTE STS-B CoLA MRPC
Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1

Vanilla Fine-Tuning 108.31M 91.46 91.00 83.91 91.08 87.93 69.67 89.73 89.35 60.74 86.17 90.12
ADA1 27.66K 90.60 88.14 78.77 85.54 80.51 63.82 86.99 86.97 51.12 77.79 85.22
ADA8-random 13.06K 90.51 86.34 72.54 82.71 77.90 58.48 83.63 83.25 34.36 72.07 82.67
ADA8 156.76K 91.48 90.84 81.46 88.11 83.98 69.82 88.08 88.08 57.12 84.46 88.94
ADA8-hyper 156.76K 91.40 90.87 81.96 88.58 84.71 70.51 88.07 88.07 56.01 85.29 89.42
Bitfit 102.91K 90.78 87.70 78.15 85.50 80.90 67.22 87.22 87.22 47.92 78.14 85.67
LayerCon. (our) 18.43K 92.45 88.58 78.96 85.73 81.16 68.73 87.46 87.63 53.86 86.17 90.11
LayerCon. (w/o B) 9.21K 90.52 87.13 75.62 84.71 79.79 64.98 85.86 85.74 49.72 80.94 87.18
LayerCon. (w/o A) 9.21K 89.48 85.25 75.63 82.49 77.97 57.40 70.10 81.25 42.98 69.61 81.66
LayerCon. (w/o A&B) 18.43K 89.79 84.79 82.55 83.06 78.43 58.19 84.63 84.63 40.94 74.21 83.11

Table 1: Experimental results on the GLUE benchmark, based on BERT-base. M.-MM = MNLI-MM. Para. Size:
additional parameters for PLM inference in a single task. The bold denotes the best results.

Method Para. Size SST-2 QNLI M.-MM QQP RTE STS-B CoLA MRPC
Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1

Vanilla Fine-Tuning 125.31M 94.65 93.11 87.16 91.49 88.70 77.36 90.00 89.79 59.66 88.57 91.75
ADA1 27.66K 92.09 88.19 82.48 85.74 80.95 58.34 81.93 81.99 37.82 77.09 81.92
ADA8-random 13.06K 90.51 80.97 75.46 82.69 77.82 58.53 87.38 87.26 30.09 68.38 81.22
ADA8 156.76K 93.85 90.90 86.63 88.29 84.56 70.18 90.63 90.31 58.92 87.60 91.08
ADA8-hyper 156.76K 94.50 91.77 85.13 87.30 83.23 70.21 88.86 89.22 61.14 84.74 88.66
Bitfit 103.68K 90.60 88.49 75.79 85.23 81.08 67.22 84.56 84.41 54.17 80.88 86.15
LayerCon. (our) 18.43K 93.58 89.51 83.57 87.04 82.98 66.13 86.74 86.85 55.17 79.88 85.67
LayerCon. (w/o B) 9.21K 91.28 87.59 80.66 85.34 81.03 59.01 83.08 83.45 41.86 75.29 83.66
LayerCon. (w/o A) 9.21K 92.66 84.57 71.52 83.55 79.46 60.72 78.09 78.38 43.27 70.10 81.68
LayerCon. (w/o A&B) 18.43K 91.50 86.73 72.76 85.90 81.91 63.29 84.66 83.55 46.56 73.70 82.21

Table 2: Experimental results on GLUE benchmark, based on RoBERTa-base.

Therefore, we only need to restore the connector
parameters, i.e.,A andB, for each task.

3 Experiment

3.1 Setup

The PLMs used in our experiments are BERT and
RoBERTa models implemented by the Transform-
ers library (Wolf et al., 2020). More details are
given in Appendix A.

3.2 Dataset and Metric

Following previous work (Houlsby et al., 2019;
Karimi Mahabadi et al., 2021), we evaluate model
performance on the GLUE benchmark (Wang et al.,
2018). Note that some test sets in GLUE are not
publicly available, thus, the corresponding valida-
tion sets are used as alternatives. The main metric is
accuracy (Acc.). For the QQP and MRPC, we use
the F1-measure; for the STS-B, we use the Spear-
man and Pearson correlation coefficients (SCC and
PCC).

3.3 Baselines

We compared our model with the following meth-
ods. (1) Vanilla Fine-Tuning: Fine-tuning all pa-
rameters in PLMs; (2) Adapter (Houlsby et al.,
2019) under different settings: specifically, we ad-
just the middle size of its bottleneck structure to 1

and 8, which we denoted as ADA1 and ADA8, re-
spectively; (3) ADA-random: We randomly add an
Adapter layer1 to the PLM as a baseline. (4) ADA8

-hyper: We equip the original Adapter of size 8 with
our hypernetwork. (5) Bitfit (Zaken et al., 2021).

Moreover, we also modify our LayerConnect
(LayerCon.) into the following three variations: (1)
LayerCon. (w/o B) uses only the hypernetwork to
generate the weights ofA; (2) LayerCon. (w/o A)
uses only the hypernetwork to generate the weights
of B; (3) LayerCon. (w/o A&B) removes the hy-
pernetwork and randomly initializes the weights of
A andB.

3.4 Results

We first analyze the effectiveness of LayerConnect
and hypernetwork through the experimental results
of the base model (Table 1 and Table 2).
Effectiveness of LayerConnect. Our LayerCon-
nect outperforms Bitfit in most of the benchmark
datasets. For the Adapter baselines, a larger
Adapter achieves the higher performance (ADA1

vs. ADA8). As a strong baseline, Adapter even
outperforms the vanilla fine-tuning in some bench-
mark datasets. However, when the Adapter is
equipped with parameters similar to those of Layer-
Connect, its performance declined (ADA8-random

1We choose to add only one Adapter layer since the train-
able parameters in this strategy are most close to our model.
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Method Para. Size SST-2 QNLI M.-MM QQP RTE STS-B CoLA MRPC
Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1

Vanilla Fine-Tuning 333.58M 93.12 92.36 86.55 91.44 88.43 75.45 90.08 90.17 65.12 87.74 91.28
ADA1 76.82K 92.09 91.62 83.30 87.37 83.04 68.23 89.63 89.53 58.81 71.08 81.73
ADA8-random 36.88K 91.97 83.56 77.52 85.25 80.83 64.34 84.58 85.13 57.54 78.43 85.53
ADA8 417.98K 92.93 92.11 86.60 89.17 86.30 72.99 90.19 90.06 61.07 86.12 90.18
ADA8-hyper 417.98K 92.84 92.12 85.90 89.72 86.28 75.71 90.03 89.51 62.70 87.84 91.35
Bitfit 272.38K 92.20 90.03 85.90 87.15 83.63 70.03 89.90 89.65 57.79 79.75 90.21
LayerCon. (our) 36.88K 92.59 91.10 83.36 85.72 84.43 72.42 90.08 87.63 60.90 87.50 91.24
LayerCon. (w/o B) 18.43K 92.09 89.71 81.11 85.03 80.76 68.95 88.12 88.87 57.02 80.15 86.61
LayerCon. (w/o A) 18.43K 91.86 89.99 80.67 84.70 80.24 67.15 88.50 88.25 58.58 82.35 82.04
LayerCon. (w/o A&B) 18.43K 91.97 89.86 81.77 84.56 80.05 59.21 87.45 87.42 55.63 76.47 84.81

Table 3: Experimental results on GLUE benchmark, based on BERT-Large.

Method Para. Size SST-2 QNLI M.-MM QQP RTE STS-B CoLA MRPC
Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1

Vanilla Fine-Tuning 356.51M 96.61 94.94 89.98 91.92 89.45 85.12 92.28 92.09 65.08 88.48 91.75
ADA1 76.82K 95.07 91.96 88.17 86.61 82.51 71.12 90.63 90.54 55.59 86.27 90.48
ADA8-random 36.88K 95.18 75.97 84.94 84.67 80.43 73.29 88.48 88.53 52.06 83.33 88.51
ADA8 417.98K 95.94 94.56 89.66 89.25 85.97 72.74 92.01 91.08 62.75 89.07 92.17
ADA8-hyper 417.98K 96.58 94.73 90.03 89.34 86.03 73.19 90.05 89.88 59.06 89.46 92.31
Bitfit 273.41K 95.37 93.04 88.46 87.49 83.79 72.22 91.05 90.91 59.70 86.64 90.21
LayerCon (our) 36.88K 95.41 93.67 88.60 88.04 83.00 76.92 91.50 91.46 63.61 87.00 90.21
LayerCon. (w/o B) 18.43K 93.23 90.85 86.44 86.24 82.32 73.29 86.34 86.32 54.23 70.83 81.89
LayerCon. (w/o A) 18.43K 93.35 92.29 86.90 85.77 85.99 70.76 86.55 86.57 53.95 82.50 83.86
LayerCon. (w/o A&B) 36.88K 94.61 92.36 87.28 86.24 81.92 68.23 82.91 83.56 56.53 77.45 85.40

Table 4: Experimental results on GLUE benchmark, based on RoBERTa-Large.

Para. Size CoLA(Acc.) MNLI-MM(Acc.)
2m. 55.17 83.57
4m. 55.47 84.01
10m. 55.48 84.22

Table 5: The effect of the size of hypernetwork under
the RoBERTa-base model.

vs. ADA8) and is worse than ours on most datasets.
Moreover, the trainable inserted parameters in our
model are only 11.75% of that in ADA8. The Layer-
Connect performance is competitive with the best
Adapter, with an average performance deterioration
of 1.42% (1.0 points) and 3.96% (3.3 points) for
BERT-base and RoBERTa-base, respectively.
Effectiveness of the Hypernetwork. We also
demonstrate that the hypernetwork is necessary
for the connectors. We compare the results of our
model with or without hypernetwork (LayerCon.
vs. LayerCon. (w/o A&B)). The former outper-
forms the latter except for MNLI-MM. We analyze
this because the hypernetwork provides sufficient
parameters during the fine-tuning stage to tune the
connectors effectively. We also remove theA and
B in our hypernetwork, respectively, to further re-
duce the parameters. However, the performances
are all worse than that of the original hypernetwork
(LayerCon. vs. LayerCon. (w/o B) and LayerCon.
(w/o A)), demonstrating the rationality of our hy-
pernetwork. Moreover, we attempt to equip the
best Adapter with our hypernetwork, the results are
only slightly changed compared with the original
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Figure 2: Parameter size as the number of tasks grows.

Adapter (ADA8 vs. ADA8-hyper). We conclude that
our hypernetwork is more effective on fewer param-
eters’ inserted layers since its provided parameters
are more valuable to them.

We additionally test our model and baselines
based on BERT-large and RoBERTa-large models.
The corresponding results are shown in Table 3 and
Table 4, respectively. The average performance de-
terioration is 2.12% (1.74 points) and 0.79% (0.85
points) for BERT-large and RoBERTa-large, respec-
tively; both are lower than that of the base models.
The trainable inserted parameters in LayerConnect
are only 8.82% of that in ADA8.

4 Discussion

As presented in Table 5, we adjust the middle value
of the hypernetwork shape in our method to 4 and
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10, respectively. A larger size resulted in a slight
performance improvement. This result suggests
that the hypernetwork size has a positive effect in
our LayerConnect.

We compare the parameter size in the deploy-
ment for model inference as the number of tasks
grows, as shown in Figure 2. In model inference,
considering the scalability, for the Bitfit, one may at
least store multiple copies of the bias (i.e., 1,324K).
However, the structure and the bias locations are
also necessary. The parameter sizes of the Adapter
and the Adapter with the hypernetwork are the
same (i.e., the size of the bottleneck structure). In
contrast, our connectors require an extremely small
parameter size. That is to say, one can easily de-
ploy several tens of the tasks, and the total size of
the parameters just arrives at the same level as that
of a single task when using the others.

5 Conclusion

To enhance the parameter efficiency in the fine-
tuning stage of PLMs, we propose the ultra-light
connectors to be embedded into the Transformer
layers. Furthermore, to keep the performance of
such a small structure, we use the hypernetwork
to assist the tuning of the parameters within the
connectors. We compare our method with main-
stream methods (Adapter and Bitfit). Experimental
results show that our method outperforms Bitfit in
most cases. Compared with ADA8 (with best per-
formance in most cases), our method reduces the
trainable parameters to 11.75% for base models
and 8.82% for large models, while keeping the per-
formance degradation to less than 5% (2.07 points
on average). By analyzing the results, we verify
that reducing the number of parameters on the basis
of Adapter will seriously reduce the performance,
and the introduction of hypernetwork promises an
effective way to compensate for performance. This
reveals a new direction of the study on model ef-
ficiency. Additionally, LayerConnect shows scal-
ability, especially for the memory-sensitive and
storage-sensitive edge devices e.g., smartphones,
embedded devices, micro containers, and IoT/IoH
devices.
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A Setup and Evaluation Metric

A.1 Setup
Connectors: The LayerConn.(ours), Layer-
Conn.(w/o B) and LayerConn.(w/o A) are shown
as Equation 5 to Equation 7, respectively:

C l(Xl) = Xl ·Al +Bl (5)

C l(Xl) = Xl ·Al (6)

C l(Xl) = Bl (7)

where X l ∈ Rn×d, Al ∈ Rn×n and Bl ∈ Rn×d,
l ∈ {1, 2, · · · , L}) is the layer ID. For both Bert-
base and RoBERTa-base model, L = 12; for both
Bert-large and RoBERTa-large model, L = 24.
Each row inAl orBl is a repetition of a vector al or
bl with length n. The only tunable parameters are
A = [a1; a2; · · · ; aL] and B = [b1; b2; · · · ; bL].
n and d are the input size (max. length) and the
hidden size of Transformer, respectively. For both
Bert-base and RoBERTa-base model, n is 128, and
d is 768; for both Bert-large and RoBERTa-large
model, n is 128, and d is 1024.

Hypernetwork: Aa interpolator can be ex-
pressed as:

ein = ReLU(Winet) (8)

and a down-sampler can be expressed as:

eds =Wdsein (9)

where Win ∈ RmL×L, and Wds ∈ RL×mL, they
are the trainable parameters of the interpolator and
the down-sampler, respectively. m is a hyper pa-
rameter. In the experiment, the minimum m = 2.

PLMs: The learning rates are 2 × 10−5 and
5× 10−6 for BERT (base and large) and RoBERTa
(base and large), respectively. We select AdamW
as the optimizer. We choose random seeds for each
model and report the average results of five runs.

A.2 Evaluation Metric
The metrics vary across different tasks, expect for
the commonly used accuracy and F1 Score. We
briefly introduce other metrics as follows:

Pearson Correlation Coefficient. The Pearson
Correlation Coefficient is used to calculate the sim-
ilarity of sentence pair from Sx and Sy, as shown
in Equation 10:

ρSx,Sy =
E[(Sx − µSx)(Sy − µSy)]

σSxσSy
(10)

where µ and σ are the mean and standard deviation
for Sx and Sy, respectively.

Spearman Correlation Coefficient. The Spear-
man Correlation Coefficient is another way to cal-
culate the similarity of sentence pair from Sx and
Sy. Its format is the same with Pearson one. How-
ever, the samples are transformed into the level
variable, and the calculation is simplified as shown
in Equation 11:

ρ =
6
∑n

i=1(S
(i)
x − S(i)

y )2

N(N2 − 1)
(11)

where S(i)
x and S(i)

y are sentence sample from Sx
and Sy, and N is the total number of the samples.

Matthews Correlation Coefficient (MCC).
The performance of CoLA is evaluated by MCC,
as shown in Equation 12:

MCC =
TP · TN − FP · FN√

Q

Q = (TP + FP ) · (TP + FN)·
(TN + FP ) · (TN + FN)

(12)

where TP is true positive, TN is true negative,
FP is false positive, and FN is false negative.

A.3 Performance Degradation
The performance degradation is calculated by Equa-
tion 13:

Degradation =
BaselineScore−OurScore

BaselineScore
(13)

Negative degradation means an improvement.
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Abstract
Post-processing of static embedding has been
shown to improve their performance on both
lexical and sequence-level tasks. However,
post-processing for contextualized embeddings
is an under-studied problem. In this work, we
question the usefulness of post-processing for
contextualized embeddings obtained from dif-
ferent layers of pre-trained language models.
More specifically, we standardize individual
neuron activations using z-score, min-max nor-
malization, and by removing top principal com-
ponents using the all-but-the-top method. Ad-
ditionally, we apply unit length normalization
to word representations. On a diverse set of pre-
trained models, we show that post-processing
unwraps vital information present in the repre-
sentations for both lexical tasks (such as word
similarity and analogy) and sequence classifica-
tion tasks. Our findings raise interesting points
in relation to the research studies that use con-
textualized representations, and suggest z-score
normalization as an essential step to consider
when using them in an application.

1 Introduction

Contextualized word embeddings have been cen-
tral to the recent revolution in NLP, achieving state-
of-the-art performance for many tasks. They are
commonly used in the form of fine-tuning based
transfer learning and feature extraction (Peters
et al., 2018, 2019).1 Feature-based approach gen-
erates contextualized embedding vectors and that
are used as frozen features in a classifier towards
a downstream task. A similar pipeline is used for
static embedding except that here a word acquires
different embeddings depending on the context it
appears in. While fine-tuning based is the more
commonly used method, feature-based approach
has shown to be a viable alternative with many ap-
plications (Peters et al., 2019). For example, it has

∗The work was done while the author was at QCRI
1We have used feature-based transfer learning for this ap-

proach in the paper.

Figure 1: Layer-wise variance

been used as a tool to analyze the inner learning
of pre-trained contextualized models (Dalvi et al.,
2017; Liu et al., 2019a; Belinkov et al., 2020).

The literature on static embedding has empha-
sized the usefulness of post-processing of embed-
dings to maximize their performance on the down-
stream tasks. For example, Mu and Viswanath
(2018) showed that making static embedding
isotropic is beneficial to lexical and sentence-level
tasks. Similarly, Levy et al. (2015); Wilson and
Schakel (2015) showed that using normalized word
vectors improve performance on word similarity
and word relation tasks.

While the efficacy of post-processing has been
empirically demonstrated for static embedding, it
has not been studied whether it can be beneficial
when applied to the representations extracted from
the contextualized models such as BERT (Devlin
et al., 2019), GPT2 (Radford et al., 2018, 2019), etc.
Ethayarajh (2019) found contextualized word repre-
sentations to be anisotropic. Given that isotropy is a
desirable property with proven benefits in the static
embedding arena, would encouraging isotropism
in the contextualized embeddings also result in per-
formance gains?

Similarly, different layers of a pre-trained model
exhibit different variance patterns, particularly the
first and last layers (see Figure 12 where we plot

2The variance of the middle layers of GPT-2 was very high.
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this for several pre-trained models). When used for
feature-based transfer learning, a high variance in
features may result in sub-optimal and misleading
results (Kaufman and Rousseeuw, 1990). Would
normalizing the variance in contextualized embed-
dings be beneficial for their applications? It is
important to address these questions to unwrap the
full potential of contextualized embeddings when
used for feature-based learning. In the context of
analyzing pre-trained models, they enable a fair
comparison between different layers and models.

In this paper, we make a pioneering attempt
on the realm of post-processing contextual repre-
sentation. To this end, we analyze the effect of
four post-processing methods on contextualized
embeddings. More specifically, we standardize
features (individual neurons) using (i) z-score nor-
malization (zscore), (ii) min-max normalization
(minmax), and (iii) all-but-the-top (abtt) post-
processing method (Mu and Viswanath, 2018). We
also post-process word representations using unit
length normalization (ulen). The first two are
standard feature normalization methods shown to
be an effective pre-processing step in building a
successful machine learning model (Jiawei Han,
2011). abtt removes top principal components
of contextualization representations (Ethayarajh,
2019) and improve isotropy of the representations.
ulen has shown to be effective in improving the
performance of static embedding for word similar-
ity and analogy tasks (Levy et al., 2015).

We consider contextualized embeddings of a
variety of pre-trained models covering both auto-
encoder and auto-regressive in design. We eval-
uate the effect of post-processing contextualized
embeddings using various lexical-level tasks such
as word similarity, word analogy, and using sev-
eral sequence classification tasks from the GLUE
benchmark. Our results show that:

• Post-processing helps to unwrap the informa-
tion present in the representations

• The major improvement achieved for the last
layer shows that while it is optimized for the
objective function, it still possesses most of
the knowledge learned in the previous layers

• z-score and all-but-the-top are orthogonal and
results in best performance when used in tan-
dem for lexical tasks

We limit the y-axis to show the pattern of variance of other
models.

• z-score achieves substantial improvement on
the sequence classification tasks, particularly
using the representations from the middle and
higher layers

We further discuss the relation between post-
processing of contextualized embeddings and the
research on representation analysis. In a prelimi-
nary experiment on analyzing individual neurons in
pre-trained models, we show that post-processing
enables a fair comparison among neurons of vari-
ous layers. For example, after post-processing, we
find that the last layer of BERT also has a substan-
tial contribution towards the top neurons learning
part of speech properties. Supported by our results,
we recommend that normalization of a layer rep-
resentation should be considered as an essential
first step before using contextualized embeddings
for end applications such as transfer learning and
interpretation of representations.

The paper is organized as follows: Section 2
accounts for related work. Section 3 describes our
approach and post-processing strategies. Section 4
presents the experimental setup. Section 5 reports
our findings. We carry out the discussion supported
by an application in Section 6. Section 7 concludes
the paper.

2 Related Work

Static Embedding Normalization A number of
post-processing methods have been proposed to
improve the performance of static embedding such
as, length normalization (Levy et al., 2015), center-
ing the mean (Sahlgren et al., 2016), and removing
the top principal components (Mu and Viswanath,
2018; Arora et al., 2017). Arora et al. (2017) re-
moved the first principal component where com-
ponents are dataset specific as they compute the
representations for the entire dataset. On the other
hand (Mu and Viswanath, 2018) removed the top k
components by computing such representations on
the entire vocabulary. They assume that higher vari-
ance components are corrupted by the information
which is different than lexical semantics. Wang
et al. (2019) proposed two normalization methods
(i) variance normalization – normalizes the princi-
ple components of the pre-trained word vectors, (ii)
dynamic embedding – learns the orthogonal latent
variables from the ordered input sequence. The
post-processed static representations are then eval-
uated on both intrinsic and extrinsic tasks, which
demonstrates the effectiveness of these methods.
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Contextualized Embeddings In the context of
representations of contextual pre-trained models,
the effectiveness of post-processing methods have
not been explored. Most of the work that uses
contextualized representations use them without
any pre-processing. In this work, we explore the
usefulness of two commonly used post-processing
methods on the embeddings extracted from pre-
trained models.

Peters et al. (2018, 2019) used contextualized
embeddings in feature-based setting for several se-
quence classification tasks. Similar to static embed-
ding, the contextualized embeddings are used as in-
put to an LSTM-based classifier. However, a word
can have different embedding depending on the
context. In addition, a plethora of work on the anal-
ysis and interpretation of deep models used feature-
based approach to probe the linguistic informa-
tion encoded in the representations (Belinkov et al.,
2017b; Conneau et al., 2018b; Liu et al., 2019a;
Tenney et al., 2019b,a; Voita et al., 2019; Durrani
et al., 2019; Arps et al., 2022). The most common
approach uses probing classifiers (Ettinger et al.,
2016; Belinkov et al., 2017a; Adi et al., 2017; Con-
neau et al., 2018a; Hupkes et al., 2018), where a
classifier is trained on a corpus of linguistic anno-
tations using representations from the model under
investigation. For example, Liu et al. (2019a) used
this methodology for investigating the represen-
tations of contextual word representations on 16
linguistic tasks. Dalvi et al. (2019); Durrani et al.
(2020) expanded the work on representation anal-
ysis3 to neuron-level analysis. Similar to probing
classifier used in the representation analysis, they
used a linear classifier with ElasticNet regulariza-
tion. Recently, Sajjad et al. (2022b); Dalvi et al.
(2022) introduced an unsupervised method that
clusters contextualized representations of words
to analyze the representations.

An orthogonal analysis comparing models and
their representations relies on similarities between
model representations. Bau et al. (2019) used this
approach to analyze the role of individual neurons
in neural machine translation. Wu et al. (2020)
compared representations of several pre-trained
models using various similarity methods. Another
class of work on understanding the contextualized
representations looked at the social bias encoded
in the representations (Bommasani et al., 2020).

3Please see (Belinkov and Glass, 2019; Sajjad et al., 2022a)
for comprehensive surveys on representation analysis.

Ethayarajh (2019) provided a different angle
to the analysis of contextualized embeddings and
explored the geometry of the embedding space.
They showed that contextualized embeddings are
anistropic and questioned the effectiveness of con-
textualized representations given the well known
benefits of isotropic representations.

The work of Ethayarajh (2019) is in-line with
ours where they studied the geometry of contextu-
alized representations. Our work builds on top of
their analysis and provides an empirical evidence
supporting post-processing of embeddings. In rele-
vance to the above mentioned studies on analyzing
representation of deep models, our work has di-
rect implications on their findings. The effect of
post-processing is dependent on various factors
such as, the model used for feature-based transfer
learning, and the goal of the task. We suggest that
post-processing particularly the z-score normaliza-
tion should be considered as an essential step while
designing experiments using the contextualized em-
beddings.

3 Approach

Consider a pre-trained model M with L layers
l1, l2, ..., lL.4 Let D be a dataset composed of nw
words of interest, w1, w2, ..., wN . Our model M
encodes input tokens depending on their context.
We first normalize each contextualized embedding
using various post-processing methods. For each
word wi, we then form a single representation, sim-
ilar to a static embedding, for every layer in L. We
evaluate the word representation on lexical-level
tasks and sequence classification tasks. In the latter,
we train a BiLSTM classifier pre-initialized with
our processed embedding.

3.1 Word Representations

Let swi be a sentence containing the word wi. Let
zlwi,swi

represents the contextual embedding from
layer l of model M for the word wi, with the given
context swi , specifically,

zlwi,swi
= M(swi)[wi]l ∈ Rd (1)

where M(swi) is a shorthand for the contextual
embeddings for all tokens in s, from which we pick
only one that is relevant to the word of interest
wi, and further index into a specific layer l. d
is the number of features (i.e., size of the hidden

4We consider each transformer block as a layer.
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dimension in a layer), which is 768 per layer in the
models analyzed in this paper.

In order to form a single representation for each
word,5 we first extract contextual embeddings for
each word wi in at least Cmin contexts. These con-
texts are derived from a large corpus of sentences,6

and are randomly chosen from all sentences con-
taining the word wi. We also employ an upper
limit Cmax for the maximum number of contexts
used for any word, to avoid the dominance of fre-
quent words such as closed class words. In our
analysis, Cmin is set to 50 and Cmax is set to 200.
Thus, each word in our dataset D will then have
between Cmin and Cmax contextual embeddings
extracted from the model M. We then aggregate
these contextual embeddings by mean pooling each
dimension:

clwi =
1

nc

nc∑
zlwi,swi

(2)

where Cmin ≤ nc ≤ Cmax is the number of
contexts (sentences) the word wi was present in.

3.2 Post-processing Methods
We perform four kinds of post-processing on the
representations zlwi,swi before aggregating them
into clwi . They are; (i) z-score normalization, (ii)
min-max normalization, (iii) unit length, and (iv)
all-but-the-top normalization. The former two are
common feature normalization methods used in
machine learning.7 The latter two have shown to
be effective in post-processing static embedding.
All of these post-processing methods except unit
length are applied at the feature-level which is a
neuron (single dimension) in our case. The unit
length is applied for each word representation.

Let Z represents the set of all word occurrence
embeddings z’s for all words in the dataset D.

z-score Normalization (zscore) Centering
and scaling input vectors to have zero-mean and
unit-variance is a common pre-processing practice
in many machine learning pipelines. Concretely,
each feature’s (in our case 1 of 768 dimensions
from each layer’s representation) mean and vari-
ance is computed across all words in our dataset D,

5We form a single representation to limit the number of
tokens. In Section 6, we use contextualized embedding of a
word in the application. Our results show that our findings
generalize to both static and contextualized embeddings.

6We used Wikipedia dump collected on 3rd February 2020.
7https://en.wikipedia.org/wiki/

Feature_scaling

followed by subtraction of the mean and division
of the standard deviation for each of the feature’s
value for each embedding zlwi,swi .

µl =
1

|Z|
∑

z∈Z
z ∈ Rd

σl =

√
1

|Z|
∑

z∈Z
(z − µl)2 ∈ Rd

z̃lwi,swi
=
zlwi,swi

− µl
σl

∈ Rd (3)

where z̃lwi,swi is the post-processed representa-
tion of word wi in context swi from layer l.

Min-max Normalization (minmax) The min-
max normalization rescales each feature range be-
tween 0 and 1. Given values of a feature, minmax
is calculated as follows:

z̃lwi,swi
=

zlwi,swi
−min(z)

max(z)−min(z)
∈ Rd (4)

where min and max represent the minimum and
maximum values of feature z.

Unit Length (ulen) The normalization of word
vectors to unit length is shown to be effective for
static embedding (Levy et al., 2015). Here, we
evaluate its efficacy for contextualized embeddings.
Different from other post-processing methods men-
tioned in this work where we normalize each fea-
ture, ulen is applied at each word vector i.e., a set
of features that represent a vector. We normalize
vectors using L2 norm.

All-but-the-top (abtt) Mu and Viswanath
(2018) showed that all word representations share a
large common vector and similar dominating direc-
tions which influence them. Eliminating such di-
rections yields isotropic word representations with
better self-normalization properties.

We hypothesize that contextualized embeddings
belonging to different layers might be influenced by
various design factors e.g., initial layers of BERT
may have a strong influence of position embedding,
Kovaleva et al. (2019) showed that the last layer
of BERT is optimized for the objective function.
These factors if dominating the contextual represen-
tations may result in sub-optimal performance. We
apply abtt to eliminate such kind of dominating
directions.
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Algorithm 1: All-but-the-top procedure
Input: Word representations {v(z) = zlwi,swi

,
zlwi,swi

∈ Z}, a threshold parameter k
1 Compute the mean of {v(z), z ∈ Z}, µ←

1
|Z|
∑
z∈Z v(z), ṽ(z)← v(z)− µ

2 Compute the PCA components:
u1, ..., ud ← PCA({ṽ(z), z ∈ Z}).

3 Preprocess the representations:
v′(z)← ṽ(z)−∑k

i=1(u
T
i v(z))ui

Output: Processed representations z̃lwi,sj = v′(z).

Algorithm 1 shows the overall process of abtt
from the original paper, modified with the notation
used in this paper. Here, the number of dominating
directions to remove is a hyper-parameter k. We
used the recommended value of k as suggested by
Mu and Viswanath (2018) which is k = d/100
where d = 768.

4 Training and Evaluation Setup

Data We used the Wikipedia dump of 124 mil-
lion sentences collected on 3rd February 2020.
We tokenized the text using the Moses tok-
enizer (Koehn et al., 2007). Given a pretrained
model, we extracted the contextualized embedding
of words from the Wikipedia corpus and gener-
ated a single word representation as described in
Section 3.1.

Contextualized models We analyzed the con-
textualized embedding of four 12-layer pre-
trained models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), XLNet (Yang et al.,
2019) and GPT2 (Radford et al., 2018, 2019). The
former two are auto-encoder in nature while the
latter two are auto-regressive.

Lexical-level tasks We used seven word similar-
ity datasets: WordSim353 split into similarity and
relatedness (Zesch et al., 2008; Agirre et al., 2009),
MEN (Bruni et al., 2012), Mechanical Turk (Radin-
sky et al., 2011), Rare Words (Luong et al., 2013),
SimLex-999 (Hill et al., 2015) and RG65 (Ruben-
stein and Goodenough, 1965). The datasets contain
a word pair with their human annotated similarity
scores. The quality of a word embedding is calcu-
lated based on the cosine similarity score between
a given pair of words, in comparison with their
human-provided scores.

Moreover, we used three analogy datasets:
MSR (Mikolov et al., 2013b), Google (Mikolov
et al., 2013a) and SemEval2012-2 (Jurgens et al.,

2012). The analogy tasks involve predicting a word
given an analogy relationship like “a is to b” as “c
is to d” where d is the word to predict. For more
details on each task, we refer the reader to Levy
et al. (2015). We used the word embedding bench-
mark toolkit8 to evaluate word representations on
the word analogy and word similarity tasks.

Sequence classification tasks We evaluated us-
ing six General Language Understanding Evalua-
tion (GLUE) tasks (Wang et al., 2018):9 SST-2
for sentiment analysis with the Stanford sentiment
treebank (Socher et al., 2013), MNLI for natural
language inference (Williams et al., 2018), QNLI
for Question NLI (Rajpurkar et al., 2016), RTE for
recognizing textual entailment (Bentivogli et al.,
2009), MRPC for Microsoft Research paraphrase
corpus (Dolan and Brockett, 2005), and STS-B
for the semantic textual similarity benchmark (Cer
et al., 2017). We compute statistical significance in
performance differences using McNemar test.

We trained a BiLSTM model using Jiant (Phang
et al., 2020), with the following parameters set-
tings: vocabulary size 30k, sequence length 150
words, batch size 32, dropout 0.2, hidden layer size
1024, number of layers 2, AMSGRAD, learning
rate decay 0.99, minimum learning rate 1e−06. The
embedding layer is of size 768 for all experiments.

5 Analysis and Findings

We experiment with four post-processing methods
as mentioned in Section 3.2. We analyze the ef-
fect of each post-processing using lexical and se-
quence classification tasks. Due to limited space,
we present the average results of three models only.
The task-wise results of all models including GPT2
are provided in Appendix D and C. We did not
observe any difference in task-specific trends com-
pared to the average trend present in the paper.

5.1 Lexical-level Tasks
Figure 2 presents the average layer-wise results
using the lexical tasks. raw represents the embed-
ding before applying any post-processing.

Post-processing is generally helpful. Compar-
ing raw (blue line) with the rest, other than a few
exceptions, layers of all models benefited from the
post-processing steps. Surprisingly, ulen did not
result in any change in the performance compared

8https://github.com/kudkudak/
word-embeddings-benchmarks

9See Appendix for data statistics and download link.
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(a) BERT (b) RoBERTa (c) XLNet

Figure 2: Average lexical tasks results. X-axis: layers where 0 is the embedding layer

to raw.10 minmax resulted in poor performance
than raw. The two promising post-processing
methods are zscore and abtt. In the follow-
ing, we mainly discuss the results of zscore and
abtt.

Higher layers achieve major improvements in
performance. The general performance trend from
lower layers to higher layers suggest that it is es-
sential to post-process the representations of higher
layers in order to unwrap the information present
in those layers for the lexical tasks. In other words,
the higher layer representations though optimized
for the objective function still possess similar or
better lexical-level information compared to the
lower layers.

Comparing post-processing combinations.
With the exception of the lower layers of BERT and
the last two layers of RoBERTa, zscore (red line)
achieved competitive or better performance than
using the raw (blue line) representations. Compar-
ing the variance of each layer (Figure 1), zscore
is very effective for high variance layers such as
the last layer of XLNet and most of the layers of
GPT2 (see Appendix B). While RoBERTa has the
most smooth variance curve, zscore is still quite
effective in improving the performance from layer
1 to 10. The sudden drop in the performance of the
last two layers is surprising. The reason could be
an extremely low variance of these layers as can
be seen in Figure 1 and applying zscore alone
amplifies the amount of noise.
abtt outperformed or is competitive to the

best performing individual post-processing meth-
ods (yellow line in Figure 2). The consistent im-
provement across all models for the lower layers
reflects that the lower layer representations consist
of top principle components that negatively influ-

10The results of ulen and raw were identical up to two
decimal points. The line of ulen is not visible because it is
hidden behind raw in the figure.

ence the representations in the context of lexical
tasks. For example, the representations from the
lower layers of BERT might have a strong influence
of position embeddings which may be harmful for
word similarity and analogy tasks. On the top two
layers, abtt does not seem to be very effective on
RoBERTa and XLNet suggesting fewer dominating
principle components in the higher layers.

Since zscore and abtt targets different prop-
erties in the representation, we apply them in suc-
cession. Using both methods in any order resulted
in better representation quality especially for the
higher layers (see green line abtt+zscore that
outperformed or has competitive performance to
the best result on all layers). These results show
the potential of combining various post-processing
methods, like abtt+zscore, in achieving better
performance on the lexical tasks.

Comparing models. While post-processing
methods benefited all models, XLNet showed
the most increase in the performance with lower-
middle layers (3,4) and higher layers outperform-
ing all layers across all models. BERT also showed
similar gains with more consistent trend i.e. an in-
crease in performance with every higher layer. We
did observe gains for RoBERTa. However, they are
less substantial compared to BERT and the results
on last layer dropped compared to other layers.

5.2 Sequence classification Tasks
Figure 3 presents the average layer-wise results us-
ing six GLUE tasks.11 The performance improve-
ments when post-processing the higher layers are
found to be statistically significant at p=0.05. Addi-
tionally, the embedding layer of XLNet and middle
to higher layers of RoBERTa achieved statistically
significant improvements. Due to the poor perfor-
mance of ulen and minmax, we did not report
and discuss their results.

11We observed similar trends for GPT2 (see Appendix B).

3132



(a) BERT (b) RoBERTa (c) XLNet

Figure 3: Average GLUE tasks results

Post-processing is generally helpful. Similar to
the performance on the lexical tasks, we observed
that zscore and abtt post-processing methods
resulted in competitive or better performance than
raw. Particularly, zscore substantially improved
the performance of the middle and higher layers
(see red line and blue line representing zscore
and raw respectively). abtt has comparable or
better results than raw, although it never outper-
formed zscore. An interesting observation is the
embedding layer where abtt resulted in similar
performance to raw across all models. The embed-
ding layer may encode information related to word
identity and position, as in the case of BERT and
RoBERTa which is neither useful nor harmful for
the downstream tasks. abtt removed these high
principle components while maintaining the perfor-
mance of the embedding layer. Combining both
post-processings did not result in any consistent
benefit over using zscore alone.

All layers possess information about the tasks.
In contrast to the common notion (Kovaleva et al.,
2019) that the last layer is optimized for the objec-
tive function, and hence it is sub-optimal to use for
down-stream tasks, we found that after zscore,
the results of the last layers substantially improved,
showing competitive results to the best performing
layer for each model.

Task-wise performance Overall, majority of
the tasks showed significant improvement with the
post-processing of higher-layers. Additionally the
embedding layer of XLNet benefited substantially
with zscore. For example, the QNLI perfor-
mance improved from 69.6 to 80.7 for the embed-
ding layer, and 66.6 to 82.2 for the last layer. The
only exception is the SST task that showed mini-
mum benefit of the post-processing methods across
all models. The performance differences between
raw and post-processing methods are within 1%
range, and are found to be insignificant.

6 Application and Discussion

The effectiveness of the post-processing of rep-
resentations, particularly zscore, raises several
interesting points in relation to the studies that use
contextualized representations like feature-based
transfer learning (Dalvi et al., 2020) and analy-
sis/interpretation of deep models. For example,
the work on probing layer representations typically
builds a linear classifier and uses the classifier’s
performance as a proxy to judge how much linguis-
tic information is learned in the representation. Our
results show that even when using a strong classifi-
cation model based on BiLSTM, it is essential to
normalize the representations before training. A
linear classifier is likely to be more vulnerable to
the variance in the features and may not capture the
true potential present in the representation. Sim-
ilarly, feature-based transfer learning is directly
affected by this post-processing and is likely to
improve performance as shown by our sequence
classification results.

In order to probe whether the post-processing of
representations would impact representation anal-
ysis, we conducted a preliminary experiment on
analyzing individual neurons in pre-trained mod-
els. Durrani et al. (2020) used the Linguistic Cor-
relation Analysis (LCA) method to identify a set
of neurons with respect to a linguistic property.
The method trains a linear classifier on the lin-
guistic property of interest while using neurons
of the pre-trained model as features (12 layers x
768 dimensions = 9984 features). The output of
the method results in a list of salient neurons with
respect to the property in hand. We consider part-
of-speech tagging (POS) as our linguistic property
of interest and reproduce their results using the
raw and the zscore post-processed contextual-
ized embeddings of BERT and XLNet. Since LCA
considers contextualized embeddings, we did not
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(a) BERT (b) XLNet

Figure 4: Layer-wise contribution of neurons with respect to POS tagging. x-axis corresponds to layers.

aggregate the contextualized embeddings of a word
into a single word embedding as describe in Sec-
tion 3.1. Thus, we use the contextualized embed-
ding extracted from pre-trained models directly in
the training of the linear classifier.

Figure 4 presents the layer-wise distribution of
salient neurons identified by the algorithm using
raw and zscore contextualized embeddings. On
BERT, the most surprising result is the contribution
of last layer which was minimum in the case of
raw but after zscore, it is among the top con-
tributing layers from which the most salient POS
neurons are selected. The results of XLNet are
also interesting. The contribution of embedding
layer’s neuron (0 index on x-axis) is zero in the
case of raw contextualized embeddings while the
first layer dominates the distribution. The zscore
contextualized embedding picked the most number
of salient neurons from the embedding layer and
selected relatively less neurons from the first layer.
This result shows that any analysis obtained by ap-
plying external probes on the features generated
from pre-trained models needs to consider the ef-
fect of normalization into account as it provides an
alternative view. In the future, we plan to extend
this investigation further by analyzing the effect
of post-processing on various other similarity and
interpretation analysis works.

While the benefits of post-processing is evident
in our experiments, the choice of when to use post-
processing is application dependent. In analyzing
representations of a network using a classification
model, it is recommended to have standardized
features to learn the best model. The choice of
learned model architecture also plays a role here.
The methods invariant to affine transformations
would be least effected by the variability of fea-
tures (Kaufman and Rousseeuw, 1990). For other
applications e.g., identifying the importance of a

neuron in a pre-trained model, the variance in the
values of a neuron can be a signal of its importance
and post-processing like zscore would result in
the loss of such information.

7 Conclusion

We analyzed the effect of four post-processing
methods on the contextualized representations us-
ing both the lexical and sequence classification
tasks. We showed that for lexical tasks, post-
processing methods zscore and abtt are essen-
tial to achieve better performance. On the sequence
classification tasks, zscore alone outperformed
all post-processing methods and raw. The most
astonishing results are the large improvements in
the performance of the last layers which reflect
that they also possess equal amount of information
about the lexical and classification tasks but the
information is not readily available when used in
feature-based transfer learning.

Our work opens several interesting frontiers with
respect to the work that uses contextualized repre-
sentations. In a preliminary experiment on repre-
sentation analysis, we showed that post-processing
the representations resulted in different findings.
We suggested zscore as an essential step to con-
sider when using contextualized embeddings for
the feature-based transfer learning.

Ethics and Broader Impact

We used publicly available datasets, following their
terms in the licenses. This includes seven datasets
for similarity tasks, three datasets for analogy tasks,
and six GLUE datasets. We do not see any harm or
ethical issues resulting from our study and findings.
Our study benefits the feature-based transfer learn-
ing at large and has direct implications towards the
work on interpreting and analyzing deep models.
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Appendix

A Data Statistics

In table 1, we present statistics of the different
datasets that we used for the experiments.

Task Train Dev Task Train Dev

SST-2 67,349 872 QQP 363,846 40,430
MRPC 3,668 408 RTE 2,490 277
MNLI 392,702 9,815 STS-B 5,749 1,500
QNLI 104,743 5,463

Table 1: Data statistics (number of sequences) on the
official training and development sets used in the ex-
periments. All are binary classification tasks, except
for STS-B, which is a regression task. Recall that the
test sets are not publicly available, and hence we use
10% of the official train as development, and the official
development set as our test set. Exact split information
is provided in the code README. The data is available
at https://gluebenchmark.com/tasks.

B GPT-2 Average Results on GLUE

In Figure 5a and 5b, we report the average results
for different GLUE and lexical tasks across differ-
ent L/Ns, respectively.

(a) Average GLUE results

(b) Average Lexical task results

Figure 5: GPT2

C Sequence Classification Results

In the following tables, we provide results obtained
from raw embedding, z-socre normalization and

all-but-the-top, for BERT: 2, 3, 4; XLNet: 5, 6, 7;
RoBERTa: 9, 10 and GPT2: 11, 12, 13.

L/N QNLI MNLI MRPC SST STS RTE RTE

0 0.82 0.724 0.775 0.88 0.801 0.578 0.578
1 0.815 0.724 0.797 0.885 0.8 0.581 0.581
2 0.816 0.712 0.784 0.89 0.808 0.581 0.581
3 0.805 0.716 0.779 0.894 0.807 0.57 0.57
4 0.818 0.734 0.775 0.89 0.806 0.588 0.588
5 0.824 0.74 0.779 0.901 0.804 0.578 0.578
6 0.813 0.739 0.777 0.896 0.799 0.56 0.56
7 0.821 0.735 0.777 0.888 0.802 0.581 0.581
8 0.813 0.733 0.784 0.882 0.8 0.563 0.563
9 0.8 0.726 0.784 0.896 0.799 0.56 0.56
10 0.794 0.725 0.787 0.889 0.8 0.542 0.542
11 0.773 0.716 0.772 0.898 0.794 0.542 0.542
12 0.805 0.728 0.77 0.878 0.785 0.542 0.542

Table 2: BERT: raw embedding

L/N QNLI MNLI MRPC SST STS corr RTE uvar

0 0.801 0.705 0.77 0.881 0.792 0.581 0.755
1 0.802 0.727 0.765 0.885 0.797 0.588 0.761
2 0.818 0.728 0.784 0.886 0.804 0.588 0.768
3 0.809 0.71 0.775 0.885 0.81 0.61 0.767
4 0.807 0.727 0.762 0.886 0.804 0.596 0.764
5 0.813 0.729 0.772 0.896 0.812 0.585 0.768
6 0.816 0.726 0.775 0.901 0.813 0.574 0.768
7 0.822 0.726 0.799 0.892 0.816 0.588 0.774
8 0.813 0.742 0.787 0.892 0.816 0.574 0.771
9 0.811 0.734 0.77 0.897 0.82 0.567 0.767
10 0.812 0.734 0.797 0.894 0.819 0.592 0.775
11 0.808 0.733 0.789 0.901 0.817 0.578 0.771
12 0.808 0.733 0.799 0.883 0.821 0.581 0.771

Table 3: BERT: z-score normalization

L/N QNLI MNLI MRPC SST STS corr RTE abtt

0 0.82 0.72 0.772 0.872 0.801 0.61 0.766
1 0.823 0.729 0.779 0.882 0.811 0.596 0.770
2 0.808 0.727 0.777 0.881 0.811 0.596 0.767
3 0.817 0.732 0.784 0.886 0.815 0.574 0.768
4 0.819 0.724 0.789 0.885 0.81 0.599 0.771
5 0.824 0.73 0.775 0.89 0.807 0.596 0.770
6 0.822 0.73 0.775 0.888 0.81 0.563 0.765
7 0.829 0.729 0.784 0.886 0.814 0.585 0.771
8 0.817 0.734 0.775 0.896 0.82 0.56 0.767
9 0.813 0.737 0.775 0.891 0.811 0.542 0.762
10 0.815 0.732 0.772 0.896 0.801 0.531 0.758
11 0.814 0.726 0.779 0.894 0.807 0.542 0.760
12 0.824 0.746 0.782 0.885 0.813 0.549 0.767

Table 4: BERT: all-but-the-top

L/N QNLI MNLI MRPC SST STS corr RTE

0 0.696 0.705 0.691 0.853 0.52 0.531
1 0.81 0.717 0.789 0.892 0.812 0.588
2 0.81 0.735 0.797 0.891 0.814 0.592
3 0.803 0.736 0.777 0.898 0.82 0.603
4 0.791 0.735 0.777 0.893 0.824 0.599
5 0.803 0.729 0.801 0.888 0.818 0.625
6 0.813 0.734 0.787 0.901 0.805 0.606
7 0.812 0.733 0.784 0.901 0.807 0.556
8 0.782 0.726 0.814 0.896 0.79 0.596
9 0.794 0.723 0.797 0.893 0.803 0.563
10 0.76 0.724 0.772 0.897 0.791 0.57
11 0.722 0.669 0.777 0.884 0.75 0.563
12 0.666 0.641 0.733 0.892 0.732 0.545

Table 5: XLNet: raw embedding
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L/N QNLI MNLI MRPC SST STS corr RTE

0 0.807 0.722 0.775 0.885 0.805 0.552
1 0.806 0.727 0.792 0.896 0.809 0.578
2 0.807 0.733 0.777 0.897 0.816 0.574
3 0.815 0.742 0.772 0.898 0.822 0.599
4 0.816 0.736 0.77 0.894 0.828 0.603
5 0.821 0.733 0.792 0.896 0.826 0.614
6 0.813 0.715 0.782 0.896 0.827 0.585
7 0.815 0.738 0.787 0.894 0.825 0.599
8 0.815 0.735 0.797 0.9 0.823 0.592
9 0.808 0.735 0.799 0.9 0.823 0.606
10 0.809 0.733 0.806 0.89 0.82 0.596
11 0.821 0.746 0.799 0.89 0.828 0.578
12 0.822 0.74 0.792 0.886 0.824 0.556

Table 6: XLNet: z-score normalization

L/N QNLI MNLI MRPC SST STS corr RTE

0 0.661 0.708 0.703 0.853 0.509 0.542
1 0.803 0.724 0.77 0.891 0.815 0.596
2 0.823 0.735 0.76 0.899 0.819 0.581
3 0.823 0.731 0.794 0.89 0.824 0.581
4 0.813 0.744 0.794 0.888 0.825 0.57
5 0.824 0.736 0.792 0.897 0.824 0.574
6 0.824 0.733 0.789 0.892 0.829 0.599
7 0.827 0.732 0.801 0.891 0.826 0.567
8 0.817 0.729 0.799 0.893 0.812 0.556
9 0.824 0.726 0.809 0.892 0.813 0.585
10 0.789 0.693 0.779 0.891 0.812 0.527
11 0.657 0.6 0.721 0.876 0.536 0.527
12 0.805 0.696 0.77 0.89 0.828 0.542

Table 7: XLNet: all-but-the-top

L/N QNLI MNLI MRPC SST STS corr RTE

0 0.817 0.742 0.784 0.875 0.818 0.574
1 0.814 0.724 0.806 0.891 0.809 0.588
2 0.812 0.726 0.789 0.893 0.809 0.574
3 0.813 0.74 0.787 0.882 0.803 0.585
4 0.807 0.722 0.775 0.884 0.806 0.592
5 0.804 0.722 0.775 0.896 0.798 0.588
6 0.794 0.725 0.775 0.892 0.785 0.56
7 0.795 0.72 0.782 0.883 0.788 0.56
8 0.792 0.726 0.775 0.878 0.784 0.56
9 0.789 0.732 0.775 0.883 0.787 0.596
10 0.793 0.716 0.792 0.893 0.791 0.545
11 0.783 0.715 0.782 0.892 0.785 0.534
12 0.732 0.708 0.755 0.865 0.643 0.545

Table 8: RoBERTa: raw embedding

L/N QNLI MNLI MRPC SST STS corr RTE

0 0.824 0.735 0.789 0.89 0.803 0.603
1 0.815 0.729 0.792 0.903 0.816 0.581
2 0.819 0.729 0.787 0.901 0.814 0.592
3 0.824 0.73 0.772 0.901 0.823 0.581
4 0.825 0.728 0.804 0.905 0.829 0.617
5 0.817 0.734 0.792 0.9 0.824 0.588
6 0.815 0.73 0.799 0.894 0.826 0.592
7 0.818 0.732 0.804 0.9 0.824 0.592
8 0.815 0.73 0.804 0.884 0.824 0.599
9 0.821 0.742 0.792 0.901 0.825 0.585
10 0.81 0.739 0.794 0.897 0.823 0.614
11 0.817 0.73 0.797 0.894 0.826 0.588
12 0.814 0.737 0.792 0.89 0.827 0.56

Table 9: RoBERTa: z-score normalization

L/N QNLI MNLI MRPC SST STS corr RTE

0 0.814 0.734 0.797 0.876 0.826 0.585
1 0.821 0.744 0.809 0.891 0.813 0.567
2 0.819 0.727 0.799 0.908 0.81 0.585
3 0.826 0.738 0.797 0.889 0.817 0.585
4 0.823 0.737 0.787 0.888 0.817 0.581
5 0.824 0.736 0.806 0.89 0.821 0.574
6 0.813 0.733 0.792 0.896 0.808 0.563
7 0.818 0.739 0.797 0.885 0.812 0.592
8 0.817 0.738 0.794 0.884 0.815 0.578
9 0.816 0.741 0.789 0.884 0.814 0.592
10 0.817 0.74 0.787 0.896 0.799 0.574
11 0.813 0.733 0.789 0.881 0.805 0.567
12 0.794 0.716 0.767 0.876 0.745 0.542

Table 10: RoBERTa: all-but-the-top

L/N QNLI MNLI MRPC SST STS corr RTE

0 0.804 0.719 0.75 0.868 0.763 0.567
1 0.705 0.706 0.748 0.885 0.79 0.545
2 0.707 0.695 0.713 0.882 0.714 0.57
3 0.674 0.663 0.696 0.892 0.388 0.534
4 0.667 0.633 0.672 0.884 0.429 0.556
5 0.667 0.648 0.699 0.901 0.414 0.563
6 0.65 0.655 0.689 0.901 0.428 0.542
7 0.662 0.649 0.708 0.898 0.252 0.57
8 0.655 0.665 0.672 0.896 0.376 0.581
9 0.658 0.584 0.686 0.894 0.268 0.567
10 0.665 0.663 0.676 0.893 0.313 0.538
11 0.666 0.647 0.689 0.892 0.353 0.531
12 0.638 0.623 0.703 0.847 0.274 0.538

Table 11: GPT-2: raw embedding

L/N QNLI MNLI MRPC SST STS corr RTE

0 0.805 0.724 0.784 0.891 0.811 0.549
1 0.801 0.738 0.777 0.89 0.817 0.57
2 0.805 0.742 0.789 0.881 0.82 0.57
3 0.803 0.734 0.789 0.888 0.818 0.567
4 0.809 0.722 0.804 0.885 0.818 0.578
5 0.817 0.743 0.792 0.898 0.821 0.592
6 0.816 0.73 0.804 0.898 0.824 0.596
7 0.81 0.738 0.787 0.892 0.822 0.596
8 0.81 0.72 0.806 0.889 0.822 0.596
9 0.812 0.736 0.784 0.9 0.819 0.621
10 0.804 0.728 0.794 0.888 0.813 0.588
11 0.798 0.726 0.787 0.892 0.809 0.606
12 0.796 0.717 0.779 0.881 0.802 0.563

Table 12: GPT-2: z-score normalization

L/N QNLI MNLI MRPC SST STS corr RTE

0 0.803 0.732 0.765 0.865 0.786 0.545
1 0.752 0.71 0.787 0.89 0.802 0.574
2 0.722 0.685 0.784 0.897 0.812 0.567
3 0.757 0.708 0.76 0.881 0.795 0.552
4 0.754 0.712 0.765 0.888 0.804 0.556
5 0.763 0.713 0.767 0.892 0.8 0.567
6 0.77 0.717 0.762 0.89 0.812 0.56
7 0.754 0.716 0.762 0.888 0.806 0.556
8 0.756 0.714 0.752 0.891 0.791 0.56
9 0.739 0.697 0.765 0.893 0.774 0.556
10 0.726 0.683 0.748 0.884 0.769 0.545
11 0.722 0.67 0.708 0.893 0.688 0.538
12 0.677 0.599 0.713 0.85 0.47 0.531

Table 13: GPT-2: all-but-the-top

D Lexical task-wise Results

In the following tables we provide task-wise results
across different results for different models: BERT:
14, 15, 16; XLNet: 17, 18, 19.
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L/N MEN WS353 WS353R WS353S SimLex999 RW RG65 MTurk Google MSR SemEval2012_2 Average

L0 0.617 0.543 0.606 0.326 0.445 0.539 0.515 0.609 0.324 0.706 0.220 0.495
L1 0.671 0.530 0.635 0.369 0.462 0.600 0.575 0.671 0.341 0.729 0.222 0.528
L2 0.683 0.514 0.639 0.390 0.481 0.617 0.590 0.689 0.364 0.749 0.222 0.540
L3 0.678 0.508 0.672 0.406 0.488 0.624 0.593 0.710 0.369 0.733 0.224 0.546
L4 0.679 0.482 0.719 0.419 0.499 0.620 0.569 0.734 0.379 0.721 0.233 0.550
L5 0.677 0.463 0.768 0.441 0.502 0.612 0.535 0.744 0.395 0.748 0.233 0.556
L6 0.666 0.454 0.777 0.440 0.508 0.587 0.494 0.723 0.395 0.754 0.242 0.549
L7 0.687 0.472 0.789 0.449 0.524 0.608 0.514 0.741 0.397 0.765 0.239 0.562
L8 0.713 0.498 0.822 0.464 0.539 0.636 0.558 0.751 0.397 0.767 0.229 0.579
L9 0.710 0.478 0.844 0.457 0.537 0.613 0.543 0.708 0.399 0.774 0.220 0.571
L10 0.686 0.444 0.825 0.444 0.500 0.579 0.513 0.666 0.398 0.772 0.221 0.550
L11 0.654 0.406 0.824 0.414 0.479 0.528 0.477 0.605 0.402 0.781 0.215 0.526
L12 0.643 0.406 0.771 0.413 0.488 0.558 0.517 0.620 0.406 0.820 0.188 0.530

Average 0.674 0.477 0.746 0.418 0.496 0.594 0.538 0.690 0.382 0.755 0.224 0.545

Max 0.713 0.543 0.844 0.464 0.539 0.636 0.593 0.751 0.406 0.820 0.242 0.579

Table 14: BERT: raw embedding

L/N MEN WS353 WS353R WS353S SimLex999 RW RG65 MTurk Google MSR SemEval2012_2 Average

L0 0.588 0.513 0.606 0.263 0.432 0.511 0.505 0.562 0.326 0.706 0.215 0.480
L1 0.632 0.529 0.619 0.302 0.444 0.558 0.552 0.610 0.342 0.729 0.222 0.495
L2 0.655 0.540 0.620 0.347 0.459 0.586 0.564 0.644 0.365 0.751 0.223 0.519
L3 0.656 0.536 0.662 0.376 0.467 0.593 0.560 0.663 0.368 0.731 0.218 0.522
L4 0.670 0.541 0.675 0.410 0.480 0.597 0.546 0.692 0.379 0.721 0.225 0.533
L5 0.689 0.541 0.706 0.461 0.490 0.620 0.546 0.737 0.394 0.748 0.231 0.561
L6 0.697 0.555 0.717 0.490 0.511 0.629 0.542 0.747 0.397 0.751 0.235 0.567
L7 0.711 0.561 0.719 0.502 0.524 0.648 0.563 0.759 0.398 0.761 0.227 0.570
L8 0.742 0.562 0.748 0.514 0.541 0.692 0.622 0.791 0.397 0.768 0.227 0.583
L9 0.762 0.563 0.773 0.516 0.544 0.712 0.650 0.790 0.400 0.778 0.220 0.588
L10 0.769 0.570 0.775 0.511 0.534 0.725 0.667 0.797 0.400 0.778 0.222 0.597
L11 0.763 0.562 0.778 0.500 0.527 0.716 0.660 0.787 0.407 0.793 0.210 0.595
L12 0.744 0.524 0.740 0.486 0.530 0.719 0.667 0.784 0.411 0.831 0.193 0.583

Average 0.698 0.546 0.703 0.437 0.499 0.639 0.588 0.720 0.383 0.757 0.221 0.553

Max 0.769 0.570 0.778 0.516 0.544 0.725 0.667 0.797 0.411 0.831 0.235 0.597

Table 15: BERT: z-score normalization

L/N MEN WS353 WS353R WS353S SimLex999 RW RG65 MTurk Google MSR SemEval2012_2 Average

L0 0.608 0.542 0.633 0.303 0.441 0.557 0.526 0.623 0.300 0.714 0.235 0.522
L1 0.657 0.547 0.645 0.323 0.450 0.603 0.579 0.667 0.324 0.737 0.231 0.546
L2 0.684 0.577 0.672 0.369 0.473 0.624 0.594 0.685 0.351 0.750 0.234 0.564
L3 0.694 0.580 0.715 0.404 0.483 0.635 0.585 0.714 0.360 0.743 0.226 0.571
L4 0.715 0.585 0.740 0.438 0.502 0.640 0.572 0.748 0.379 0.736 0.240 0.584
L5 0.732 0.576 0.759 0.490 0.514 0.663 0.590 0.771 0.394 0.757 0.240 0.606
L6 0.741 0.545 0.785 0.514 0.537 0.678 0.597 0.788 0.398 0.764 0.248 0.631
L7 0.755 0.554 0.786 0.526 0.549 0.696 0.614 0.800 0.399 0.772 0.248 0.630
L8 0.777 0.577 0.804 0.537 0.565 0.733 0.664 0.828 0.397 0.775 0.239 0.643
L9 0.775 0.536 0.845 0.528 0.567 0.734 0.672 0.820 0.398 0.782 0.232 0.642
L10 0.757 0.509 0.852 0.509 0.542 0.710 0.644 0.795 0.398 0.780 0.240 0.636
L11 0.739 0.485 0.851 0.491 0.528 0.676 0.607 0.768 0.404 0.792 0.240 0.625
L12 0.773 0.519 0.815 0.516 0.560 0.735 0.687 0.797 0.404 0.816 0.225 0.639

Average 0.723 0.549 0.762 0.458 0.516 0.668 0.610 0.754 0.377 0.763 0.237 0.603

Max 0.777 0.585 0.852 0.537 0.567 0.735 0.687 0.828 0.404 0.816 0.248 0.643

Table 16: BERT: all-but-the-top

E Computing Infrastructure and Models’
Parameter

We used a server with NVIDIA Tesla V100-SXM2-
32 GB GPU, 56 cores, and 500GB CPU memory.

Models and Number of Parameters: Below,
we list the values of the hyper-parameters for dif-
ferent models.

• BERT (bert-base-uncased): L=12, H=768,

A=12, total parameters: 110M; where L is the
number of layers (i.e., Transformer blocks),
H is the hidden size, and A is the number of
self-attention heads;

• RoBERTa (roberta-base): similar to BERT-
base, but with a higher number of parameters
(125M);

• XLNet (xlnet-base-cased) L=12, H=768,
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L/N MEN WS353 WS353R WS353S SimLex999 RW RG65 MTurk Google MSR SemEval2012_2 Average

L0 0.663 0.578 0.684 0.441 0.502 0.686 0.617 0.760 0.332 0.712 0.233 0.564
L1 0.696 0.599 0.732 0.476 0.523 0.690 0.617 0.761 0.364 0.759 0.237 0.587
L2 0.723 0.595 0.758 0.507 0.540 0.706 0.638 0.777 0.387 0.785 0.233 0.605
L3 0.755 0.594 0.792 0.557 0.564 0.713 0.635 0.787 0.409 0.814 0.232 0.623
L4 0.754 0.583 0.810 0.584 0.574 0.709 0.629 0.791 0.420 0.825 0.237 0.629
L5 0.735 0.564 0.816 0.576 0.569 0.693 0.605 0.780 0.417 0.814 0.240 0.619
L6 0.733 0.501 0.841 0.547 0.573 0.655 0.573 0.760 0.411 0.810 0.243 0.604
L7 0.725 0.483 0.837 0.536 0.568 0.650 0.559 0.749 0.409 0.805 0.241 0.597
L8 0.671 0.444 0.802 0.504 0.543 0.593 0.485 0.708 0.400 0.790 0.234 0.561
L9 0.663 0.451 0.797 0.498 0.532 0.591 0.475 0.716 0.394 0.779 0.235 0.557
L10 0.706 0.466 0.840 0.502 0.541 0.642 0.540 0.748 0.412 0.808 0.239 0.586
L11 0.711 0.462 0.804 0.487 0.544 0.646 0.537 0.750 0.412 0.810 0.198 0.578
L12 0.514 0.314 0.732 0.263 0.370 0.450 0.351 0.593 0.409 0.838 0.208 0.458

Average 0.696 0.510 0.788 0.498 0.534 0.648 0.559 0.745 0.398 0.796 0.232 0.582

Max 0.755 0.599 0.841 0.584 0.574 0.713 0.638 0.791 0.420 0.838 0.243 0.629

Table 17: XLNET: raw embedding

L/N MEN WS353 WS353R WS353S SimLex999 RW RG65 MTurk Google MSR SemEval2012_2 Average

L0 0.665 0.555 0.702 0.407 0.495 0.678 0.628 0.750 0.334 0.711 0.227 0.559
L1 0.691 0.562 0.728 0.448 0.515 0.691 0.636 0.765 0.367 0.762 0.241 0.582
L2 0.714 0.565 0.734 0.489 0.531 0.699 0.641 0.774 0.389 0.788 0.232 0.596
L3 0.760 0.582 0.779 0.543 0.557 0.714 0.646 0.795 0.412 0.812 0.230 0.621
L4 0.760 0.582 0.795 0.568 0.571 0.707 0.634 0.792 0.420 0.824 0.234 0.626
L5 0.744 0.582 0.784 0.564 0.570 0.693 0.612 0.782 0.417 0.815 0.239 0.618
L6 0.741 0.584 0.790 0.560 0.568 0.691 0.614 0.785 0.412 0.807 0.244 0.618
L7 0.745 0.583 0.795 0.557 0.562 0.695 0.625 0.782 0.409 0.802 0.241 0.618
L8 0.719 0.571 0.758 0.538 0.538 0.659 0.569 0.765 0.405 0.792 0.231 0.595
L9 0.717 0.568 0.756 0.534 0.541 0.663 0.574 0.768 0.403 0.785 0.230 0.594
L10 0.758 0.583 0.816 0.546 0.554 0.700 0.623 0.792 0.417 0.812 0.238 0.622
L11 0.777 0.583 0.810 0.552 0.565 0.733 0.661 0.809 0.420 0.829 0.231 0.634
L12 0.798 0.562 0.864 0.553 0.563 0.767 0.702 0.829 0.430 0.859 0.231 0.651

Average 0.738 0.574 0.778 0.528 0.548 0.699 0.628 0.784 0.403 0.800 0.235 0.610

Max 0.798 0.584 0.864 0.568 0.571 0.767 0.702 0.829 0.430 0.859 0.244 0.651

Table 18: XLNET: z-score normalization

L/N MEN WS353 WS353R WS353S SimLex999 RW RG65 MTurk Google MSR SemEval2012_2 Average

L0 0.728 0.600 0.732 0.469 0.535 0.725 0.676 0.786 0.288 0.683 0.244 0.588
L1 0.731 0.613 0.797 0.494 0.535 0.722 0.657 0.783 0.339 0.759 0.247 0.607
L2 0.756 0.635 0.798 0.532 0.549 0.732 0.662 0.796 0.387 0.802 0.253 0.627
L3 0.799 0.646 0.840 0.587 0.575 0.737 0.666 0.799 0.410 0.825 0.252 0.649
L4 0.795 0.635 0.840 0.606 0.583 0.733 0.657 0.811 0.421 0.837 0.253 0.652
L5 0.781 0.614 0.835 0.602 0.581 0.726 0.645 0.805 0.420 0.831 0.253 0.645
L6 0.778 0.631 0.835 0.601 0.580 0.726 0.650 0.807 0.416 0.828 0.261 0.647
L7 0.788 0.630 0.825 0.603 0.574 0.728 0.661 0.796 0.413 0.822 0.256 0.645
L8 0.741 0.498 0.827 0.558 0.565 0.669 0.581 0.760 0.411 0.817 0.257 0.608
L9 0.745 0.524 0.805 0.567 0.561 0.680 0.591 0.778 0.412 0.814 0.258 0.612
L10 0.739 0.465 0.861 0.529 0.555 0.686 0.591 0.772 0.420 0.830 0.257 0.610
L11 0.740 0.440 0.861 0.522 0.560 0.681 0.566 0.777 0.421 0.841 0.236 0.604
L12 0.702 0.375 0.828 0.454 0.523 0.582 0.446 0.709 0.420 0.854 0.221 0.556

Average 0.756 0.562 0.822 0.548 0.560 0.702 0.619 0.783 0.398 0.811 0.250 0.619

Max 0.799 0.646 0.861 0.606 0.583 0.737 0.676 0.811 0.421 0.854 0.261 0.652

Table 19: XLNET: all-but-the-top

A=12, total parameters: 110M.

• GPT2 L=12, H=768, A=12, total parameters:
117M.
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Abstract
Does BERT store surface knowledge in its bot-
tom layers, syntactic knowledge in its middle
layers, and semantic knowledge in its upper lay-
ers? In re-examining Jawahar et al. (2019) and
Tenney et al.’s (2019a) probes into the structure
of BERT, we have found that the pipeline-like
separation that they asserted lacks conclusive
empirical support. BERT’s structure is, how-
ever, linguistically founded, although perhaps
in a way that is more nuanced than can be ex-
plained by layers alone. We introduce a novel
probe, called GridLoc, through which we can
also take into account token positions, training
rounds, and random seeds. Using GridLoc, we
are able to detect other, stronger regularities
that suggest that pseudo-cognitive appeals to
layer depth may not be the preferable mode of
explanation for BERT’s inner workings.

1 Introduction

“Surface information at the bottom, syntactic in-
formation in the middle, semantic information at
the top” (Jawahar et al., 2019). This conclusion is
also drawn by Tenney et al. (2019a). While this
portrait of multiple layers of linguistic structure
has indeed been projected into pipline architectures
by some NLP systems before (e.g., Manning et al.,
2014), the projection of this understanding onto
the internal structure of BERT is now widely ac-
cepted both in the BERTology community (Tenney
et al., 2019a,b; Hewitt and Liang, 2019; Zhu et al.,
2022) and by researchers working on downstream
application tasks with BERT (Xiao et al., 2021).

At the same time, there is nevertheless scepti-
cism about the premises of probing itself. As He-
witt and Liang (2019) pondered: “when a probe
achieves high accuracy on a linguistic task using
a representation, can we conclude that the repre-
sentation encodes linguistic structure, or has the
probe just learned the task?” Furthermore, Pi-
mentel et al. (2020) “cast doubt on whether prob-
ing makes sense as a scientific endeavour,” because

from an information-theoretic perspective, BERT
cannot introduce new linguistic information by pro-
cessing the input sequence.

In our view, this debate does not need to hin-
der the endeavour of uncovering structure within
BERT. Regardless of stance, all parties agree with
the existence and importance of different levels of
information within BERT itself or its embeddings.
There is, however, room for improvement in the
investigative methods of both Jawahar et al. (2019)
and Tenney et al. (2019a) (J&T), which seem to
have been limited to observational confirmations
of what they sought to find.

Our own exploratory analysis has revealed that
BERT is indeed linguistically founded, although
not in a way that suggests a classical pipeline ar-
chitecture, other than what factors through our own
functional understanding of NLP’s terminology and
subtasks. In addition to examining BERT layers, as
J&T did, we have also examined BERT’s structure
through the lenses of the choice of random seed,
training iterations, and, most importantly, token
position. We also present several statistical tests of
J&T’s own conclusions.

We propose GridLoc,1 a self-attention-based
probing method that can probe across all of these
aforementioned dimensions. Using this novel prob-
ing approach and our statistical testing suite, a
much more comprehensive picture of the structure
of BERT arises. Specifically:
• BERT’s task-specific features appear in different

token positions in an idiosyncratic but consistent
pattern for each task;

• the attending task-specific features exhibit vari-
ance across different sentences, different training
durations, and different random seeds;

• probe results for tree depth, in particular, show
an anomalous distribution of linguistic evidence

1The implementation, data, plots and results of GridLoc are
available online: https://github.com/frankniujc/gridloc_probe
and https://doi.org/10.5683/SP3/PCZHN4.
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when taking both layers and token position into
consideration.

2 Attributing the CNLP to BERT

That there is or was a classical or traditional NLP
pipeline is a rather naïve view to take of the his-
tory of natural language processing. While there
were discussions of independent stages of token-
level, syntactic and semantic processing already
in the earliest work on machine translation, the
pioneers who first engaged with these stages of
analysis were of the considered opinion that care-
ful restraint had to be exercised at every level of
analysis so that as much of the inherent ambigu-
ity of linguistic input could be carried forward as
possible, in the interests of both efficiency and ac-
curacy (Sparck Jones, 2000). It was not until the
late 1970s and early 1980s that an excessive re-
liance on classical logic by the NLP technologists
of the grammatico-logical movement, together with
contemporaneous psycholinguistics and cognitive
science research pointing to a modularity of linguis-
tic structure in human sentence processing (Garrett,
1975, 1980; Fodor, 1983), led to a pipeline-based
view that, almost immediately, was apologized for
as a convenient abstraction, “incremental” (Levelt,
1989), “highly flexible” and “even opportunistic”
(Marslen-Wilson and Tyler, 1987) (see Jackend-
off (2000) for a more detailed discussion). While
the smoother numerical allocations across tasks
in BERTology work, and the distributional graphs
drawn by Tenney et al. (2019a) in particular, may
at first seem to be commensurate with or even sug-
gest these more nuanced views of a language pro-
cessing pipeline, the haze of smoke surrounding
the visualization of probing evidence makes it ex-
tremely difficult to draw precise conclusions from
these figures, as we will argue below. Nevertheless,
probe methods in general (Adi et al., 2017; Hupkes
and Zuidema, 2018; Conneau et al., 2018; Jawahar
et al., 2019; Pimentel et al., 2020) are to be credited
as one of the few means that we have of approach-
ing the seemingly impossible task of interpreting
the neural feature representations within BERT.

Generally, a probe can be performance-based or
attention-based.

2.1 Performance-based Probing

A performance-based probe uses an auxiliary task
to test for evidence of a particular type of knowl-
edge, by training a supervised classifier with only

Figure 1: Layer performance probing result of Jawa-
har et al. (2019), as presented in their Table 2. For
clearer visualisation, we transformed this table into a
heat map. Each column corresponds to a task, with
the best-performing layer in that column containing the
performance as a percentage, and the remaining cells
displaying their deviation from the best performer in raw
percentage points. Surface tasks perform better near the
top; syntactic tasks and semantic tasks perform better
near the bottom, but their performance patterns are not
distinguishable by layer.

BERT’s embeddings as input. Good performance
of the classifier is interpreted as evidence of rele-
vant linguistic knowledge being present.

Jawahar et al.’s (2019) analysis is a typical appli-
cation of performance-based probing. They used
SentEval (Conneau et al., 2018; Conneau and Kiela,
2018) which contains 10 probing tasks at 3 linguis-
tic levels:
• surface tasks: sentence length (SL) and word

content (WC);
• syntactic tasks: bigram shift (BS), tree depth

(TD) and top constituent (TC);
• and semantic tasks: tense, subject number (SN),

object number (ON), semantic odd man out
(SOMO) and coordination inversion (CI).2

Figure 1 shows the performance of Jawahar
et al.’s (2019) probing tasks for each layer. Jawa-
har et al.’s (2019) visual examination of the results
prompted the conclusion that began our introduc-
tion. But the observation that semantic information
is at the top is puzzling. Except for the SOMO
task, all 4 semantic tasks reach peak performance
between layers 6 and 9, and all 3 syntactic tasks at-
tain their peak performance within the same range.
The similarities between syntactic and semantic

2One of our reviewers expressed concerns about why “se-
mantics” and “syntax” were even appropriate labels. Sub-
ject/object number and tense, for example, are arguably syn-
tactic/morphological. We agree.
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tasks are more apparent with our visualisation of
the relative performance differences in Figure 1:
the large, dark area in the lower right quadrant is
due to an indistinguishability of layers across syn-
tactic and semantic task types.

Reappraisal of Jawahar et al. (2019) Some sta-
tistical tests may be more illuminating, such as
Kendall’s (1938) τ analysis of rank correlation be-
tween Jawahar et al.’s (2019) probe performance
and a putatively discrete pipeline (surface: 1, syn-
tactic: 2, and semantic: 3). There are two ways to
convert Jawahar et al.’s (2019) results into ordinal
layer numbers: using a task’s top-performing layer
number, in which a single number may be selected
by multiple tasks (this seems to be what Jawahar
et al. (2019) were informally doing), or forcing
each task into a distinct layer so that the combined
accuracy (the product of all accuracies) of the en-
tire pipeline is maximized. To find this maximal
layer assignment, we used SciPy’s linear sum as-
signment to find the maximum sum of logarithms
of performance. Both possible layer assignments
are shown in Table 1.

The last two columns of Table 1 show the τ
scores. Both layer assignment methods exhibit
moderate correlations, but a post hoc exclusion of
the surface tasks reveals only a weak correlation
at the syntactic and semantic levels. These results
corroborate our observation that, of the three, only
the surface tasks are distinguishable.

2.2 Attention-based Probing

Attention has somewhat controversially been inter-
preted as an explanation of a model’s reasoning
(Clark et al., 2019). Typically, an attention mecha-
nism assigns a scalar weight to each input source.
Hence, the attention mechanism will enhance the
important features’ effect during training, and so
the magnitude of attention weights is often inter-
preted as an importance score. Clark et al. (2019)
and Vig (2019) directly studied the attention mecha-
nism of BERT. Since BERT’s attention mechanism
does not cross layer boundaries, however, a new
probe with an auxiliary attention mechanism is re-
quired.

Tenney et al. (2019a) used this attention-based
probe to determine which layer contains more
task information. Tenney et al. (2019a) exploit a
scalar “attention” weight sτ = softmax(aτ ) for
each layer. The probe classifier is trained us-
ing a weighted sum of embeddings (defined as

hi,τ = γτ
∑L

ℓ=0 s
(ℓ)
τ H

(ℓ)
i ) as input, where H(ℓ)

i is
the ℓ-th layer of the i-th token’s BERT embedding.
The value of the attention weights is optimised
during the training process, and therefore, the mag-
nitude of the attention weight is understood as a
measure of the amount of task-specific knowledge
in the corresponding BERT layer.

These scalar weighted embeddings are then
leveraged into an improved performance probe that
uses cumulative scoring. Jawahar et al.’s (2019)
probe classifier has access only to a single layer.
Tenney et al. (2019a) argue that, since task-specific
knowledge can spread out across multiple layers,
probing a single layer cannot reveal the full picture.
Therefore, they propose to train L probes, each
having access to the scalar weighted embeddings
from layer 1 to layer ℓ. The ℓ-th probe therefore has
access to strictly one more layer’s worth of infor-
mation compared to the (ℓ− 1)-th probe. They can
then measure the amount of information each layer
introduces by calculating the difference between
two adjacent probes: ∆(ℓ)

τ = Score(ℓ)τ −Score(ℓ−1)τ .
They deploy their two tests on the 8 span probing

tasks of Tenney et al. (2019b), and aggregate each
task’s per-layer scalar mixing weights results into
a centre of gravity score (E[ℓ] =

∑L
ℓ=0 ℓ · s

(ℓ)
τ ),

and the cumulative scoring results into an expected
layer score (E∆[ℓ] =

∑L
ℓ=1 ℓ ·∆

(ℓ)
τ /

∑L
ℓ=1∆

(ℓ)
τ ).

Reappraisal of Tenney et al. (2019a) Again,
by visually observing these scores, they conclude
that “the tasks [are] encoded in a natural progres-
sion: POS tags processed earliest, followed by con-
stituents, dependencies, semantic roles, and coref-
erence.” Again, we prefer quantitative tests: while
the Pearson’s correlation between the centre of
gravity and the pipeline ordering of the tasks is
weak (r = 0.319, p = 0.44), the correlation be-
tween expected layer and the pipeline ordering is
very strong (r = 0.933, p = 0.0005). On the other
hand, the correlation between the Kullback-Leibler
divergence of the difference scores from a uniform
distribution and the pipeline ordering is also very
strong (r = −0.869, p = 0.005).

2.3 Discussion
There are numerous scales along which tasks can
be ordered: deep vs. shallow, semantic vs. surface,
difficult vs. easy, and over- vs. underdispersed, to
name a few. The thesis of Tenney et al. (2019a) is
that the first two proceed in lockstep. The last two
are highly correlated (r = −0.879, p = 0.004).
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Task SL WC TD TC BS Tense SN ON SOMO CI τ τ syn sem
Top 3 4 6 7 9 9 6 7 12 9 0.596 0.269

Distinct 3 4 6 8 11 5 9 7 12 10 0.455 0.049

Table 1: Optimal task layer assignment and Kendall’s τ between the layer assignment and the pipeline (surface,
syntactic and semantic information). The “τ syn sem” column reports Kendall’s τ over only the syntactic task and
semantic tasks.

POS Const Deps Ent SRL Coref SPR Relns
0.659 0.413 0.493 0.377 0.333 0.428 0.370 0.261

Table 2: Kendall τ values of sequences of difference
scores, by task, with depth.

The essential problem with Tenney et al.’s (2019a)
claims is that their final three, most semantic tasks,
are not localizable at all. Because of this, “expected
layer,” which is really more of a layer torque, is
uninterpretable, and not convincingly relatable to
layer depth. Even in less dispersed tasks, weighing
difference scores by layer number is a statistical
fallacy, because layer numbers are ordinal data.
Instead, we could look at the positions of the n
layers with the highest difference scores, in which
n is arbitrary, or analyse the entire sequence of
difference scores as a sequence.

Because those scores are not provided in their pa-
per other than in relative terms through unlabelled
histograms, what the present authors can do is ar-
range the ranks of difference scores (1 is highest)
by layer (lowest is first) and compute a Kendall’s
coefficient with respect to the ordered sequence
1, . . . , 24 (BERT-large has 24 layers). “Deep” tasks
should receive low scores. These coefficients are
shown in Table 2. While the Pearson correlation
of the pipeline ordering with these scores is strong
(r = −0.793, p = 0.02), it is not as strong as with
the KL divergence of the underlying difference
score distributions from uniformity. The claim that
BERT mimicks the NLP pipeline is therefore, at
best, inconclusive. The empirical data are equally
consistent with the counterclaim that BERT is pos-
sessed of stripes of surface, syntactic and semantic
information that are distributed in parallel through-
out its layers, with the semantic information being
more evenly dispersed.

The difference score of every probing task in
Tenney et al. (2019a) peaks in the first four layers,
incidentally, and, in 6 of the 8 tasks, peaks in the
first layer.

Performance is Not a Practical Indicator of
Knowledge Performance-based probes are ill-
suited to investigating the structure of BERT, be-

Figure 2: Excerpts of Tenney et al.’s (2019a) layer-wise
metrics (Figure 2). Solid (blue) are mixing weights sτ ;
outlined (purple) are difference scores ∆τ .

cause performance is inherently unstable. Taking
the tense task from Jawahar et al.’s (2019) result
(Figure 1) as an example; the largest delta between
layer 6 (definitely a middle layer) and layer 11 (def-
initely a top layer) is only 0.3%.

Because Tenney et al.’s (2019a) difference
scores are learned, they are not the actual inter-
layer deltas of F1 performance. Here, however,
each probe has access to exactly one more layer
of BERT’s contextual representation, and therefore
higher layer probes should have access to no less
information than lower layer probes. Thus, if probe
performance is a good indicator of linguistic knowl-
edge, no higher layer probes should perform worse
than lower layer probes. And yet performance
drops are prevalent and substantial (Figure 2). Ten-
ney et al. (2019a) suggest that the added new layer
introduces distracting features causing the probe
classifier to overfit. This means that performance
results reflect a combination of knowledge and the
probe classifier’s ability to generalise — this may
be true, but these two variables are hard to separate.
Furthermore, neural architectures are stochastic,
and so the effect of randomness in performance
must also be considered. This is why statistical
analysis of observations is crucial to the integrity
of the conclusions.

The debate on how to interpret performance in
probing is still on-going. Hewitt and Liang (2019)
pondered: “when a probe achieves high accuracy
on a linguistic task using a representation, can we
conclude that the representation encodes linguistic
structure, . . . has the probe just learned the task?”
There are two alternative interpretations of perfor-
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Figure 3: GridLoc model architecture (§3). The BERT-encoded representation of an input sentence first goes
through a self-attention pooling process (Lee et al., 2017): an RNN model takes each layer’s BERT embeddings
H(ℓ) as input and specifically generates an attention weight Atoken,(ℓ) for that layer. Then the attended representation
Ĥ goes through another self-attention pooling process, and generates a layer attention weight Alayer. We finally train
an MLP classifier that takes the combined representation H̃ as input, and generates a prediction for the probing task.
By observing the two attention weights, Atoken and Alayer, we can understand which part of BERT’s representation
the model assigns importance to.

mance: ease of extraction (Hewitt and Liang, 2019),
and mutual information (Pimentel et al., 2020; Pi-
mentel and Cotterell, 2021).

Our reappraisal of Jawahar et al. (2019) and Ten-
ney et al.’s (2019a) results shows that performance
is neither intuitively interpretable nor an accurate
reflection of knowledge, if performance can be re-
garded as a reflection at all. It is also a measure
entangled with the quality of the probe classifier
and randomness.

Better Control over Attention-based Probing
Attention-based probing is less subject to the afore-
mentioned issues. Firstly, since attention is not the
optimisation target, it does not suffer the problem
of overfitting. Secondly, although not completely
exempt from controversy, attention has generally
proven to be a good indicator of feature-importance
(Serrano and Smith, 2019; Wiegreffe and Pinter,
2019). Therefore, we can adopt the view of probing
results as a reflection of the existence of linguis-
tic, task-specific features. More importantly, since
the attention mechanism is purposefully introduced
into the probing procedure, we can have a greater
degree of freedom and better control over what is
probed and where.

Tenney et al. (2019a) used a single shared set
of attention weights for every input sentence. This
practice cannot capture BERT’s variance across
sentences (as we will show in §5). But this is not

inherent to any limitation of probing techniques in
general — the self-attention pooling mechanism
(Lee et al., 2017) trains a separate attention network
that can assign different attention weights based on
the input. Lee et al.’s (2017) self-attention pool-
ing method was originally used by Tenney et al.
(2019b) to generate a single span representation
over an arbitrarily long span of tokens. The method
can also yield a different attention weight for every
input sentence. Furthermore, self-attention pooling
provides an attention weight distribution over token
positions. The similarities between token position
attention and layer attention in fact could allow one
to analyse the distribution of task knowledge across
token positions.

3 GridLoc

To leverage all of these degrees of freedom, we
present here a novel probing method called Grid-
Loc. Figure 3 presents an overview of the probing
process. Given an input sentence S = [t1, . . . , tT ],
BERT produces an L-layer embedding for each
token Ht = [H

(1)
t , . . . ,H

(L)
t ]. GridLoc can pro-

duce a more complete picture of where task specific
knowledge resides, by breaking down the probe’s
attention weight across both token positions and
layers, as well as across random seeds and training
iterations.
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Surface Syntactic

SL WC TD TC BS

Semantic

SN ON Tense CI SOMO

Figure 4: GridLoc average layer attention weight distribution for every SentEval task. For each task, the plot shows
the average layer attention weight of all of the test set sentences during the top-performing epoch (by validation set)
with random seed 0. We observed a moderate τ = 0.503 with the entire pipeline (surface + syntactic + semantic),
but a mere τ = 0.134 with only the syntactic and semantic tasks. GridLoc confirms our earlier observation: surface
tasks attend to lower layers, but syntactic and semantic tasks are inseparable.

(a) Layer attention weights of the same probe of the first three Bigram Shift test-split sentences. The layer attention weight
distributions differ widely.

Seed: 0, Epoch: 7. Seed: 1, Epoch: 8.

(b) Distribution of the layer with the highest attention score over the Bigram Shift test-set
sentences for two probing runs with different random seeds. Both probes are generated at their
top performing (by validation) epochs. Distributions can exhibit substantial variance (left:
σ = 2.16, right: σ = 0.78). For the run with seed 0 (left), there is also a spike in sentences at
the 12th layer that is not observed in the run with seed 1 (right).

Task σ
SL 1.468
WC 0.786
BS 1.95
TD 0.584
TC 1.025

Tense 2.359
SN 1.188
ON 0.903

SOMO 1.589
CI 0.953

(c) Standard deviation of the
distribution of the layer with
the highest attention score of
every SentEval probing task.

Figure 5: Variance of probing results among sentences.

epoch: 1 5 10 15 20 25 30

Figure 6: An example (SOMO with random seed 0) of the average attention weight distribution change over training
iterations.
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Token Position To understand the task-specific
feature distribution across token for each layer, we
exploit the aforementioned self-attention pooling
(Lee et al., 2017) method to learn a token attention:

Atoken,(ℓ) = softmax(wtoken · RNN(H(ℓ)))

specific to each layer of embeddings H(ℓ) =

[H
(ℓ)
t1
, . . . ,H

(ℓ)
tT

]. Then, we can obtain an attended
hidden representation:

Ĥ = Atoken ·H

Layer Then, we learn a sentence-specific layer
attention:

Alayer = softmax(wlayer · Ĥ(ℓ))

from the attended contextual embedding of the en-
tire sequence. Finally, we can train the probe classi-
fier on the fully attended representation of the input
sequence:

H̃ = Alayer · Ĥ
by attending to both the tokens and the layers.

Randomness and Training To understand the
variance of the probe result relative to the random
seed, we repeat each of our experiments with 20
seeds (0 ∼ 19). We also maintain a record of 30
epochs of training for each probe.

4 Experimental Setup

We used all 10 tasks in SentEval (Conneau and
Kiela, 2018) as described in §2.1. To be consistent
with J&T’s results, we conducted our experiment
using the uncased BERT-base model and Jawahar
et al.’s (2019) hyperparameters.3

5 Experimental Results

5.1 Layers Alone do Not Recapitulate the
Pipeline

With our new probe, we calculate the average layer
attention weight for each task and report in Fig-
ure 4 an example for every task. The average layer
attention weight is calculated by summing up ev-
ery test sentence’s layer attention weight, and then
normalising by the size of the test set. The average
task layer attention weight is a good global indica-
tor of the spread of task-specific features in BERT.
Our results agree with our observations based upon

3https://github.com/ganeshjawahar/interpret_bert

Figure 7: Token-position attention-weight plots for the
first 3 sentences of the SentEval test set on all SentEval
tasks (from top left to bottom right: SL, WC, Tense, SN,
ON, BS, TC, SOMO and CI). The attention weights are
displayed as a 2-dimensional heat map; each column
corresponds to a token and each row corresponds to a
BERT layer. Brighter colours represent larger attention
weights. For most sentences, the token-position atten-
tion at every layer attends to the same token, hence the
bright vertical line.

POS Count Top Layer
PUNCT 23402 7.18
NOUN 19077 7.33
VERB 18277 5.03
PRON 16120 6.68
ADP 11129 3.19

(a) Average best-attending
layer of the 5 most common
POSs. Maximum and mini-
mum are highlighted in bold.

POS 1 POS 2 |PB r|
PUNCT ADP 0.483
ADJ ADP 0.462
ADP DET 0.460
NOUN ADP 0.438
PRON ADP 0.399

(b) Best 5 absolute point-
biserial correlations between
the best attending layers of to-
kens with different POSs. p-
values are less than 10−323.

Table 3: The tree depth probe attends to tokens with
different POS at different layers.

Jawahar et al. (2019): although surface task fea-
tures are dense in lower layers, and both syntactic
and semantic task features are spread out between
mid to upper layers; the inseparable syntactic and
semantic tasks show that BERT layers alone do not
recapitulate the putative pipeline.

This observation is corroborated by a Kendall’s
τ test between every run (20 random seeds × 30
epochs) of each task’s top performing layer and
the 1–3 pipeline-based ranking described in §2.1.4

Since now we have 600 data points for each task,
our correlation test result is more robust. Again,
we observed a moderate τ = 0.503 with the en-
tire pipeline (surface + syntactic + semantic), but
a mere τ = 0.134 with only the syntactic and se-
mantic tasks.

5.2 Variance through Sentences, Randomness
and Training Time

Nevertheless, average attention weight is a global
measure that withholds important nuances regard-
ing the variance of the probe along several dimen-
sions. As shown in Figure 5a, layer attention as-

4The unique ranking test is discarded as it cannot gener-
alise to our situation with multiple runs.
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(SL) The probe classifier attends to the [CLS] token,
as it is often regarded as the “embedding of the sen-
tence,” and length is a global feature of the sentence.

(WC) The probe classifier attends to the target word.
In this particular example, every token-position weight
attends to the target token “clay.”

(Tense) The probe classifier attends to the verb or
its tense-morphology-bearing “wordpiece” (Wu et al.,
2016), such as ##ed or ##es.

(SN) The probe classifier attends to the subject noun
or its number-morphology-bearing “wordpiece.”

(ON) Similar to SN, the classifier attends to the ob-
ject noun of the sentence or its number-morphology-
bearing “wordpiece.”

(BS) The probe classifier attends to the words that are
being inverted. In this case, the two inverted words
are “corners” and “the.” If an original sentence is en-
countered, the classifier will place heavier weights on
places where inversions are noticeable, such as prepo-
sitions, determiners and punctuation.

(TC) Top constituents attend to the first one or two
words in the sentence, as tags with one presentential
modifier followed by NP VP are commonplace. E.g.,
in this case, the sequence is labelled as RB_NP_VP_.

(SOMO) The probe classifier attends to the verb or
noun (here, the verb “confused”) that is replaced. Upon
encountering an unaltered sentence, the classifier will
attend to common verbs and nouns that are likely to be
replaced.

(CI) The probe classifier attends to the coordinating
conjunction (CC). CC is crucial in determining whether
the sentence has inverted coordination since different
CCs serve different purposes when connecting two
parts of a sentence.

Figure 8: Example token-position attention plots and their pattern analyses. Similar to Figure 7, the attention weight
is displayed in a 2-dimensional heat map, with larger weights associated with brighter colours. The tokens of the
example sentence are displayed along the x axis. The number on each cell is the attention weight as a percentage.
Since attention weight is normalised by softmax at each layer, numbers in every row should sum up to 100.

Figure 9: Tree Depth token-position attention weights. The token-position attention tends to focus on tokens with
different parts-of-speech at different layers. For instance, prepositions such as to, of, on and at have higher attention
weights at lower layers, and punctuation has higher attention weights at higher layers.
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signs drastically different weights to different input
sentences. This observed variance is not idiosyn-
cratic. Figure 5b aggregates counts of the layer
with the highest attention score over the test set
sentences. The difference between seed 0 and seed
1 also emphasises that probe results are not immune
to random initialization effects. This high variance
is also not unique to Bigram Shift. Table 5c shows
the overall standard deviation of every SentEval
task. In all but two tasks, the standard is one full
layer or more. Figure 6 shows how average at-
tention weight can change during training. In this
particular run, the distribution does not stabilize
until about epoch 15. This again demonstrates the
importance of utilising the self-attention pooling
mechanism, which enables us to capture these vari-
ations.

5.3 Consistently Idiosyncratic Token Positions

Contrary to the variance we observed by layer, our
token-position attention results are more stable —
tree depth is the only exception, and we will dis-
cuss it shortly. As indicated in Figure 7, almost
every sentence’s token-position attention focuses
on the same token in every layer. The choice of that
token position is not arbitrary — there are linguis-
tic reasons for them. Figure 8 shows one example
for every task along with our analysis.

5.4 Tree Depth: an Insightful Anomaly

The token-position attention-weight result of the
tree-depth task is the only exception to the bright
vertical line pattern. Here, the probe attends to mul-
tiple tokens at different layers (Figure 9). The atten-
tion patterns are not arbitrary, however. As shown
in Table 3a, tokens with different parts-of-speech5

(POS) receive the most attention from the probe at
different layers. Among the tokens, nouns attend to
the highest layers at 7.33 (middle) and prepositions
attend to the lowest layers at 3.19 (low). To verify
the significance of the mapping between POS and
layer attention, we conducted point-biserial corre-
lation tests (Table 3b). We observed a moderate
correlation between several pairs of POS, confirm-
ing that the probe can discriminate between them
in this manner.

Although how any of this might relate to tree
depth is unclear, this finding is still important in
two ways. First, the Damoclean sword that the
probe classifier is merely able to generalise the

5Generated by the Stanza (Qi et al., 2020) package.

probing corpus (Hewitt and Liang, 2019; Pimentel
et al., 2020) has been removed from over the claim
that BERT is in possession of linguistic knowledge.
POS information is certainly not self-evident in a
corpus labelled with tree depth. Here we have a
probe on one auxiliary linguistic task attesting to
another linguistic phenomenon.

Second, the distribution of linguistic features de-
fies J&T’s proposed distribution of knowledge in
BERT. What we see here is not different levels of
linguistic knowledge from the pipeline occupying
different layers of BERT, but rather different infor-
mation from the same pipeline level (i.e., distinct
POS labels) occupying different layers of BERT.
This insight would not have been available without
a probe that takes both the token position dimen-
sion and the layer dimension into account.

6 Conclusion

Did BERT rediscover an NLP pipeline? Not in a
naïve, architectural sense. GridLoc reveals a struc-
ture in BERT that is more intricate than a flowchart
of a pipeline could accurately portray, and yet it
does seem to be linguistically founded. We find that
probing results regarding BERT layers are unsta-
ble, diverging across sentence input, random seeds
and the early iterations of training. The distribu-
tion of linguistically motivated task features along
token positions, on the other hand, is relatively
more stable. Moreover, GridLoc’s results on tree
depth provide preliminary evidence of POSs being
used to conduct novel but linguistically general-
izable inference concerning a derivative syntactic
phenomenon.
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Abstract

Learning word embeddings is an essential topic
in natural language processing. Most existing
works use a vast corpus as a primary source
while training, but this requires massive time
and space for data pre-processing and model
training. We propose a new model, HG2Vec,
that learns word embeddings utilizing only dic-
tionaries and thesauri. Our model reaches the
state-of-art on multiple word similarity and re-
latedness benchmarks. We demonstrate that
dictionaries and thesauri are effective resources
to learn word embeddings. In addition, we ex-
ploit a new context-focused loss that models
transitive relationships between word pairs and
balances the performance between similarity
and relatedness benchmarks, yielding superior
results.

1 Introduction

Word embeddings are highly effective for various
applications, ranging from recommender systems
to named entity recognition (Kubal and Nimkar,
2019). They aim to map words into vectors in a
high dimensional space, such that a higher simi-
larity between word embeddings captures a closer
semantic relationship, whereas a low or negative
similarity indicates unrelated or opposite meaning.
As a result, predicting whether the embeddings of
two words are similar or not is a common approach
to evaluate the quality of the embeddings.

There are two main perspectives to describe the
relationship between a pair of words according to
Hill et al. (2015): similarity and relatedness. Simi-
larity means that the two words can substitute for
each other without generating grammatical mis-
takes, while relatedness means that the two words
always appear together in a context. For example,
coffee and tea is a word pair with high similar-
ity and low relatedness. Being popular breakfast
drinks, they share many similar properties (both
physically and grammatically), but they are not

related to each other. On the other hand, green
and tea is a word pair with high relatedness and
low similarity since green tea is a common type of
tea. They do not share similar proprieties, but it is
common for them to appear together in a sentence.

Most existing works utilize a large corpus to
train word embeddings. However, as pointed out
by Kiela et al. (2015), models based on associa-
tion data, like Wikipedia corpus, have better perfor-
mance on relatedness tasks, whereas models based
on thesauri have better performance on similarity
tasks. Therefore, in this paper, we propose a new
model, HG2Vec, that only relies on dictionaries
and thesauri to construct contexts via a heteroge-
neous graph. We demonstrate that this method can
improve the performance of relatedness tasks while
maintaining high accuracy on similarity tasks. Our
main contributions are as follows:

• We utilize dictionaries and thesauri as the only
resources (without using any text corpus) to
train word embeddings, and obtain state-of-art
results on several benchmarks.

• We demonstrate that learning synonyms and
antonyms is necessary for word embedding
models, so a model can distinguish the words
with opposite meanings that appear in similar
contexts.

• We propose a context-focused loss to boost
learning in closely related contexts. It is based
on modeling transitive synonym and antonym
relationships from the thesauri as well as word
co-occurrences from dictionary definitions,
which balances the performance between sim-
ilarity and relatedness tasks.

2 Related Work

Many models require a large corpus to learn word
embeddings; Word2Vec (Mikolov et al., 2013) is
one of them. It iterates through the text with each
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target word generating a surrounding context win-
dow and corresponding negative samples. The goal
is to learn embeddings that maximize the similarity
between the target and context words while mini-
mizing the similarity between the target and neg-
ative sampled words. BERT (Devlin et al., 2018)
is an effective contextual embedding model. It
tokenizes the input sentences, iterates through the
corpus text by blocks, and learns token embeddings
by utilizing the attention-based transformer model.
BERT uses masked-language modeling and next
sentence prediction as the self-supervised tasks dur-
ing pre-training.

Several approaches leverage dictionaries and
other external sources to improve the performance
of Word2Vec and BERT. Faruqui et al. (2014) pre-
train with other models and then use a dictionary-
based relational graph to retrofit semantic informa-
tion. The paper minimizes the difference between
a word embedding from pre-trained models and
its corresponding embeddings from the relational
graph, and maximizes the similarity between a re-
lational graph word embedding with its neighbors.
dLCE (Nguyen et al., 2016) extends the skip-gram
model with negative sampling introduced by (Levy
and Goldberg, 2014) with synonyms and antonyms.
Dict2Vec (Tissier et al., 2017) introduces dictionar-
ies as a resource to train word embeddings. Word
pairs are grouped into two types: strong pairs and
weak pairs. For each target word, Dict2Vec max-
imizes the similarity between a context word and
its strong and weak pairs for each target word.
DRG2Vec (Shu et al., 2020) creates a graph based
on the TF-IDF relationship between word pairs in
dictionaries. It applies both depth-first and breadth-
first based sampling to generate context paths from
the graph. It trains the model on both the Wikipedia
corpus and the generated context. Dict-BERT (Yu
et al., 2021) appends the definition of rare words at
the end of the input corpus. Besides mask language
modeling, it maximizes the mutual information
between the context and the definitions. It also
samples wrong definitions during training to check
whether the model can distinguish them.

Some models do not rely on a text corpus. CPAE
(Bosc and Vincent, 2018) is an auto-encoder model
that only relies on dictionaries. It uses an LSTM to
reproduce the target word after processing its def-
initions. Ruzzetti et al. (2021) propose DefiNNet
and DefBert to utilize dictionaries to predict the
meanings for out-of-vocabulary words. Jana et al.

(2022) create a Distributional Thesaurus Network
to gather the information from thesauri, showing
that utilizing thesauri can improve the performance
of Word2Vec. In addition, Zhang et al. (2019) lever-
age dictionaries as a tool to visualize how other
word embeddings contribute to the target word em-
bedding, which is helpful in analyzing the model
and improving the performance.

Our model is an enhancement over Dict2Vec and
DRG2Vec, where we create a heterogeneous graph
from dictionaries and thesauri, and generate doc-
uments from the sampled paths. Then, we train
the documents to maximize the similarity with re-
lated pairs, explicitly considering synonyms and
antonyms (along with their transitive relationships),
as well as strong and weak pairs.

3 HG2Vec Methodology

3.1 Graph Construction

We first parse the word pairs from the dictionaries
and thesauri, and construct a heterogeneous graph
for sampling paths. Fig. 1 shows an example of an
undirected heterogeneous graph. Each node refers
to a word, and each edge refers to a relationship be-
tween two words. There are four different types of
edges: strong edge (purple), weak edge (blue), syn-
onym edge (black), and antonym edge (red). The
edges also have weights, so the graph is weighted,
and heterogeneous in terms of edges.

Figure 1: A sample undirected heterogeneous graph in
HG2Vec. Each node refers to a word, and each edge
refers to a relationship between words. There are four
types of edges: strong (purple), weak (blue), synonym
(black), and antonym (red). There may be more than one
type of edge between two nodes, but all nodes are of the
same type (for illustration only, we use green to mark
the synonyms of grant, and red to mark its antonyms).
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Strong and Weak Edges Following the ap-
proach in Dict2Vec (Tissier et al., 2017), for a word
pair (wa, wb), if wa appears in the definition of wb
in a dictionary, then there is a weak edge between
them. If wb also appears in wa’s definition, we in-
stead add a strong edge between the two. In Fig. 1,
since agree appears in the definition of allow, there
is a weak edge between the two. Since consent
and allow both appear in each other’s definition,
there is a strong edge between them. To model
the relative importance of these two relationships,
the weight of strong vs. weak edges is 2 : 1 in our
undirected heterogeneous graph.

Synonym and Antonym Edges We directly ex-
tract the synonym and antonym pairs from thesauri.
For a word pair (wa, wb), if wa appears as a syn-
onym of wb, then there is a synonym edge between
wa and wb. If wa appears as an antonym of wb,
then there is an antonym edge between them. For
example, in Fig. 1, refuse is a synonym of deny and
an antonym of grant. The weights of synonym and
antonym edges are 1 : −1 in the graph.

Heterogeneous Graph From Fig. 1, we can see
that there may be more than one type of edge be-
tween two nodes. In most cases, strong edges and
weak edges indicate a relationship between words
with similar meanings. However, some corner
cases refer to the opposite meaning. For example,
there is an antonym edge and a weak edge between
grant and deny. As a result, although strong edges
and weak edges can depict the relatedness of differ-
ent words, they may also contain negative words
in terms of semantics. If we only use strong edges
and weak edges, the model may obscure the op-
posite meanings. Instead, we leverage thesauri as
an external source to automatically consider these
related but opposite pairs.

3.2 Path Generation

Our heterogeneous graph has edges with both pos-
itive and negative weights, so we cannot directly
sample paths from the graph. We first illustrate the
sampling for positive edges (strong and weak pairs,
and synonyms) and then discuss how to handle
negative weights (antonyms).

As such, dictionaries generate strong and weak
edges, and thesauri generate synonym and antonym
edges. We first generate the paths comprising
strong and weak edges and then generate the paths
comprising synonym and antonym edges.

Random Walks We generate the paths via ran-
dom walks 1 that combine both Depth-first Sam-
pling (DFS) and Breadth-frist Sampling (BFS)
as first introduced in Node2Vec (Grover and
Leskovec, 2016). We denote by nx the x-th node
in a walk, and we start generating the walk with
node n0. For a node nx = vi, the next node is
denoted nx+1 = vj , and the previous node is de-
noted nx−1 = vh. Both vh and vj are neighbors of
vi. After we randomly choose one of vi’s neighbor
as nx+1, we choose one of vj’s neighbor as nx+2.
We keep iterating until the path reaches a desired
length L (we use L = 20 in our model). The proba-
bility that we choose a node vj from the neighbors
N(vi) of vi is defined as follows:

p(nx+1 = vj |nx = vi) =
πij∑

a∈N(vi)
πia

(1)

where

πij = α(h, j) · |wij | (2)

In Eq. (2), wij is the edge weight from node vi
to node vj . Since we have edges with negative
weights, we use the absolute value of edge weight.
Therefore, an antonym edge is equivalent to a syn-
onym edge when calculating the probability. Note
also that the probability of jumping to vj also de-
pends on the previous node vh, which can be at
a distance of d = 0, 1, or 2 hops from vj in the
walk. As detailed below in Eq. (3), α(h, j) is a
coefficient that controls the tendency of sampling
between DFS and BFS; if α(h, j) = 1, the algo-
rithm is exactly the same as a random walk.

Node Sampling The distance from a node to
the origin is increasing along the walk for DFS,
which tends to explore the nodes away from the
source. For example, in Fig. 1, the path may
be consent, agree, grant, deny if we utilize DFS.
In contrast, BFS samples all the neighbors from
the source first. It tends to explore the nodes
around the origin. In Fig. 1, the path may be
consent, agree, allow, grant if we utilize BFS.

As above, let nx−1 = vh, nx = vi, and
nx+1 = vj for a sampled walk vh, vi, vj . Here,
vh = nx−1 is the node visited in the previous turn,
and vj = nx+1 is the node sampled in the next
turn. In Eq. (2), α(h, j) is a coefficient to balance

1We allow paths to have repeated nodes.
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between DFS and BFS, defined as:

α(h, j) =





p−1, if d(h, j) = 0

1, if d(h, j) = 1

q−1, if d(h, j) = 2

(3)

In Eq. (3), d(h, j) is the distance between vh and vj .
If d(h, j) = 0, it means the next node is the same
as the previous node, so it reflects the tendency to
return to the source. When d(h, j) = 1, vj and vi
are both neighbors of vh. It reflects the tendency
to explore around the node nx−1. Finally, when
d(h, j) = 2, the parameter reflects the tendency to
sample new nodes away from the origin. Here, p is
called return parameter, and a smaller p increases
the tendency to return to the origin, whereas q is
called in-out parameter, and a smaller q leads to
a tendency to explore new nodes. For example, in
Fig. 1, if vh is grant and vi is agree, a small p leads
to choosing grant as vj , a small q leads to choosing
consent, and the walk samples allow if both p and
q are large.

Generating Paths We separately sample the
walks comprising of strong and weak edges, and
those consisting of synonyms and antonym edges.
The former directly uses the random walk approach
outlined above. Fig. 2 shows a sample path con-
sisting of strong and weak edges sampled from the
heterogeneous graph in Fig. 1.

Figure 2: A path with strong (purple) and weak (blue)
edges.

The sampling for synonym and antonym edges
is more involved. We assume that all the nodes in
one path have similar semantic meanings, so we
cannot append an antonym to a path with synonyms
since their meanings are opposite. However, since
an antonym’s antonym is essentially a synonym,
we can directly attach that to an existing path. We
then generate two paths: one for synonyms and
another for antonyms. The first path stores the
origin and nodes with a similar semantic meaning
to the origin. The second path stores the nodes
with opposite semantic meanings to the origin. We
start at the source and generate the synonyms path
via application of Eq. (1). However, when we en-
counter an antonym (of the source), we put this

node as the first node in the antonyms path. We
continue appending nodes to the antonyms path
for all additional synonym edges encountered. If
we visit another antonym, it means that the new
node has a similar semantic meaning to the source,
so we append the new node to the synonyms path.
We continue to append to the synonyms path if we
encounter additional synonym edges, and so on.
Fig. 3 illustrates this process.

Figure 3: Random walks with synonym (black) and
antonym (red) edges. The path on the top is if we were
to sample both edges together. Instead, we divide it
into two paths: the synonyms path stores the source
node and other nodes with similar meanings, whereas
the antonyms path stores the nodes with opposite mean-
ings to the source. As a result, the nodes have a similar
semantic meaning within each path. Starting with ac-
knowledge, when we encounter refute, it goes to the
antonyms path along with its synonyms contradict and
deny. When we encounter grant, which is an antonym
of deny, we append it to acknowledge. Finally, refuse
again goes to the antonyms path.

3.3 Sampling Set for Training

We treat each sampled path above as a text doc-
ument in our model. Next, we iterate through
each text document with a context window. For
a target word t at position x in a document, using
window size ϕ, the context comprises the words
[x − ϕ/2 : x + ϕ/2]. For example, consider the
path refute, contradict, deny, refuse in Fig. 3. With
window size ϕ = 3, for the target word contra-
dict, its context, denoted C(t), is (refute, contra-
dict, deny). The window selects the context nodes
surrounding the target node, indicating a strong
positive correlation with the target.

For each context word c ∈ C(t), we sample
five negative, strong, weak, synonym, and antonym
word pairs for c, denoted as N (c), S(c), W(c),
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Y(c), and A(c), respectively. The negative words
N (c) are the words sampled from the word dictio-
nary that do not appear in the context C(t). The
other word pairs are sampled from the dictionaries
and thesauri, from the set of c’s strong and weak
pairs, or from c’s synonyms and antonyms.

3.4 Context-focused Model
Like Word2Vec, we have two embeddings for each
word w: input embeddings I(w), and output em-
beddings O(w). After training, we use the output
embeddings for testing and evaluation.

To maximize the similarity of two embeddings,
a and b, we calculate their dot product p = a · b. A
large positive value suggests that the two objects
are similar, a large negative value suggests that they
are negatively related, and a value around 0 sug-
gests that the two are unrelated. We use − log σ(p)
as the loss function where σ(p) = 1/(1+exp(−p))
denotes the Sigmoid function.

Context-focused Transitive Loss HG2Vec con-
siders six different contextual features to learn ef-
fective embeddings, namely, the context, negative
sampled words, strong and weak pairs, and syn-
onyms and antonyms. Each of these contributes to
the overall loss function.

For a given target word t, we first maximize the
similarity between t and its surrounding context
words c. We use the output embeddings for the tar-
get words and the input embeddings for the context
words. Therefore, the loss is given as the sum over
each word pair (t, c) where c ∈ C(t):

It =
∑

c∈C(t)
− log σ(O(t) · I(c))

To calculate the terms in overall loss, for each
word c ∈ C(t), we sample a set of strong pairs
S(c), weak pairsW(c), synonyms Y(c), antonyms
A(c), and negative words N (c). The aim is to
maximize the similarity of c with its strong, weak,
and synonym pairs; and to minimize the similarity
with its antonym and negative pairs. Therefore, we
divide these sets into two groups, the positive group
P+(c) = {S(c),W(c),Y(c)}, and the negative
group P−(c) = {A(c),N (c)}.

The loss functions within each group are similar;
we use synonym pairs as an example. We want
to maximize the similarity of c to any of its syn-
onyms in Y(c); at the same time, the synonyms
of other words in C(t) may also be synonyms of
c. For example, in Fig. 1, for the context (consent,

allow, grant), the synonyms of grant (e.g., acknowl-
edge) are also the synonyms of consent. However,
there is no such synonym path from acknowledge
to consent in the graph since thesauri do not in-
clude all the possible transitive relations. However,
HG2Vec models these transitive synonym relation-
ships by sampling five synonyms for each context
word (e.g., if the context window is 5, then we will
consider 25 synonyms in a context). We maximize
the similarity between the word c and all the sam-
pled synonyms from the context. The synonym
loss for c is given as:

L+
Y(c) = βY

∑

x∈C(t)

∑

p∈Y(x)
− log σ(O(c) · I(p))

Here, βY is a hyperparameter, denoting the impor-
tance of synonyms to the overall loss.

For the negative group P−, we want to min-
imize the similarity. Considering all (transitive)
antonyms of c in a context, the loss is given as:

L+
A(c) = βA

∑

x∈C(t)

∑

p∈A(x)
− log σ(−O(c) · I(p))

Here, βA specifies the weight for antonyms. As
such βP+ = {βS , βW , βY}, and βP− = {βA, βN }
specify the weights for each set in the positive and
negative groups.

The loss for one target word t in a path (or docu-
ment) is given as:

Lt = It +
∑

c∈C(t)

∑

X∈P+(c)

L+
X (c)

+
∑

c∈C(t)

∑

X∈P−(c)

L−X (c)

(4)

Finally, we sum over all the targets in a path and
sum up all the paths to get the total loss.

4 Experiments

For training, all experiments were conducted on a
machine with a dual 20 core 2.5 GHz Intel Xeon
Gold 6248 CPU, and Nvidia Tesla V100 GPU with
32GB memory. Our HG2Vec implementation is
available as open source at https://github.
com/Qitong-Wang/HG2Vec.

4.1 Datasets
Dictionaries and Thesauri For the strong pairs
and weak pairs, we use the same data sources as
Dict2Vec (Tissier et al., 2017) and DRG2Vec (Shu
et al., 2020). After removing stop words, they
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extract the strong and weak pairs from the Cam-
bridge, Oxford, and Collins dictionaries, and dic-
tionary.com. We extract the synonym and antonym
pairs from Roget’s Super Thesaurus 4th Edition
(McCutcheon, 2010). In total, our heterogeneous
graph contains 211,675 unique nodes/words, with
4,273,743 strong and weak edges, and 119,512 syn-
onym and antonym edges.

Wikipedia HG2Vec does not rely on text corpus
data, so we do not need to use Wikipedia corpus
during training. However, for the baseline models,
we pre-process the Wikipedia corpus from Nov.
2021 (https://dumps.wikimedia.org/),
using the first 50 million words from the cleaned
data.

4.2 Experimental Settings

Hyperparameters The hyperparameters for
Dict2Vec and DRG2Vec are the same as those re-
ported in their papers. For HG2Vec, for generating
the paths, we use ϕ = 5, p = 1.5, q = 5.0 and
L = 20. Word embedding size is 300. We use
five strong, weak, synonym, antonym, and nega-
tive samples for the loss computation. We train the
model for five epochs; in each epoch, we sample
one strong-weak path and one synonym-antonym
path per node in the heterogeneous graph. To tune
the β hyperparameters, we use a grid search from
0.1 to 5. We find that βS = 0.4, βW = 0.4, βY =
1.0, βA = 1.0, βN = 3.5 give the best results.
We try from 0.001 to 0.01 for the learning rate
and choose 0.003 as the default. The weight for
strong vs. weak edges is 2 : 1, and for synonym vs.
antonym edges is 1 : −1. Since both types of paths
are sampled independently, the edge weights have
importance only within their group.

Testing After we train the model, we extract the
output word embeddings O(w), and use them for
the benchmark evaluation. We train each model
three times and report the average performance.

4.3 Benchmarks

We evaluate our model on word similarity bench-
marks, which provide several pairs of words with a
human-evaluated similarity score. We calculate the
cosine similarity between the embedding vectors
for each pair and rank the values from largest to
smallest. Then, we use Spearman rank correlation
to compare the order of pairs for each model versus
the ground truth. A higher value indicates that the

rank order of word pairs generated by a model is
similar to the ground truth.

We collect the following datasets: Card-660
(Pilehvar et al., 2018), MC-30 (Miller and Charles,
1991), MEN-TR-3K (Bruni et al., 2014), MTurk-
287 (Radinsky et al., 2011), MTurk-771 (Halawi
et al., 2012), RG-65 (Rubenstein and Goodenough,
1965), RW-STANFORD (Luong et al., 2013), Sim-
Lex999 (Hill et al., 2015), SimVerb-3500 (Gerz
et al., 2016), WS-353-ALL (Finkelstein et al.,
2001), WS-353REL (Finkelstein et al., 2001), WS-
353-SIM (Finkelstein et al., 2001), YP-130 (Yang
and Powers, 2006). Among these datasets, MEN-
TR-3K, MTurk-771, RG-65, YP-130, and WS-353-
REL focus on testing the relatedness, and Sim-
Lex999, SimVerb-3500, and WS-353-SIM focus
on testing the similarity between the word pairs.
WS-353-ALL is the combination of WS-353-REL
and WS-353-SIM. Card-660 and RW-STANFORD
focus on testing rare words.

After generating the Spearman correlation of
each dataset, we also report the weighted average
over all the datasets, with the weight of each dataset
being proportional to its size.

4.4 Baseline Methods

We compare HG2Vec with Word2Vec(Mikolov
et al., 2013), Dict2Vec(Tissier et al., 2017), and
DRG2Vec(Shu et al., 2020). For comparison, We
include HG2Vec(wiki), for which we use the 50M
Wikipedia corpus with dictionaries and thesauri
as the input resource. We also compare with a
target-only based model HG2Vec(target) where we
replace C(t) with t in Eq. (4). This allows us to
compare the effectiveness of context-focused loss.
Note also that we report the result of Dict2Vec and
DRG2Vec based on our runs. If we use wiki corpus
as an external source and we use paths sampled
with TF-IDF pairs from strong and weak pairs, we
obtain DRG2Vec. If we omit the graph and use
wiki corpus with strong and weak pairs, we obtain
Dict2Vec. Finally, we also report ablation results
when we omit strong, weak, synonyms, antonyms,
and negative pairs, one at a time.

5 Evaluation

5.1 Similarity and Relatedness Experiments

Effectiveness of Dictionaries and Thesauri The
results of evaluating the similarity and related-
ness benchmarks are shown in Table 1. We can
see that HG2Vec scores higher than Word2Vec,
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Type Benchmark Word2Vec Dict2Vec DRG2Vec HG2Vec HG2Vec HG2Vec
wiki target

MEN-TR-3K 0.612 0.688 0.721 0.771 0.782 0.779
MTurk-287 0.577 0.568 0.558 0.666 0.642 0.650

Relatedness MTurk-771 0.540 0.609 0.640 0.755 0.778 0.773
RG-65 0.617 0.814 0.845 0.895 0.915 0.913

WS-353-REL 0.548 0.579 0.605 0.671 0.658 0.660
YP-130 0.257 0.528 0.610 0.756 0.780 0.771

SimLex999 0.338 0.444 0.476 0.735 0.742 0.752
Similarity SimVerb-3500 0.190 0.379 0.425 0.732 0.732 0.742

WS-353-SIM 0 .679 0.696 0.728 0.813 0.811 0.811
Rare Card-660 0.234 0.388 0.513 0.667 0.657 0.668

Words RW-STANFORD 0.398 0.476 0.482 0.549 0.552 0.558
Mixed MC-30 0.682 0.748 0.738 0.867 0.898 0.900
Words WS-353-ALL 0.626 0.682 0.699 0.747 0.736 0.734

Average 0.416 0.529 0.558 0.712 0.717 0.721

Table 1: Evaluation of HG2Vec versus baseline methods for similarity and relatedness benchmarks. Spearman rank
correlation values shown for each benchmark, as well as a weighted average across datasets. Best results in bold.

Dict2Vec, and DRG2Vec on all the tests. Among
the baselines, DRG2Vec typically outperforms oth-
ers except for mixed words datasets. Our HG2Vec
model improves the performance on all the relat-
edness tests. For example, compared to DGR2Vec,
on MTurk-771 it has 20.8% higher performance,
and on RG-65 8.0% higher. We have a consider-
able improvement on similarity tests, such as Sim-
Lex999 (57.9% higher) and SimVerb-3500 (74.6%
higher). Likewise, we see substantial improve-
ments on rare words. Looking at average cor-
relation scores, HG2Vec outperforms DGR2Vec
by 29.2%, Dict2Vec by 36.3%, and Word2Vec by
73.3%.

These improvements show that dictionaries and
thesauri are suitable replacements for a large corpus
for training word embeddings since our model does
not make use of any text corpus. Furthermore, since
Dict2Vec also uses dictionaries as a resource, the
improvement in similarity benchmarks indicates
that thesauri are a powerful resource for learning
the similarity of word embeddings. Other models
only use negative sampling to decrease the simi-
larity score between dissimilar word pairs, which
can contain high uncertainty. In contrast, thesauri
contain both synonyms and antonyms which are
more reliable sources for our model to learn the
word pairs with similar and opposite meanings.

Corpus Resource HG2Vec(wiki) includes both
the Wikipedia corpus and the dictionaries and
thesauri as the input resource. Compared with

HG2Vec, HG2Vec(wiki) has better performance
on MTurk-287 by 2.4 % and WS-353-REL by 1.7
%, which are both relatedness datasets. In con-
trast, HG2Vec has 2.3 % improvement on Sim-
Lex999 and 1.4 % improvement on SimVerb-3500.
It shows that combining Wikipedia corpus can in-
crease the performance of relatedness tests but can
also decrease the performance on similarity. How-
ever, since incorporating the Wikipedia corpus does
not lead to a significant improvement, and the data
pre-processing and training time are not negligible,
we choose to discard them from input resources.

Context-focused versus Target-only loss Com-
pared with the target-only model HG2Vec(target),
our context-focused model HG2Vec increases the
performance for similarity benchmarks while keep-
ing most of the performance for relatedness bench-
marks. Context-focused model has 1.3% improve-
ment on SimLex999 and SimVerb-3500. Further-
more, the context-focused model increases the per-
formance on benchmarks with rare words. It has
a 1.7% improvement on Card-660. Target-only
model only has a smaller improvement in related-
ness tests, such as a 1.2% improvement in YP-130.

5.2 Ablation Tests
We conduct ablation tests to examine the contri-
bution of each type of edge to the final Spearman
correlation, as shown in Table 2. We can see that
synonym and negative pairs contribute to both re-
latedness and similarity tasks. Strong pairs help
the models learn relatedness but negatively im-
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Type Benchmark -strong -weak -synonym -antonym -negative HG2Vec
MEN-TR-3K 0.762 0.688 0.788 0.782 0.426 0.779
MTurk-287 0.610 0.517 0.642 0.677 0.318 0.650

Relatedness MTurk-771 0.755 0.707 0.756 0.770 0.562 0.773
RG-65 0.902 0.826 0.899 0.913 0.715 0.913

WS-353-REL 0.642 0.542 0.641 0.650 0.359 0.660
YP-130 0.754 0.756 0.727 0.815 0.660 0.771

SimLex999 0.771 0.725 0.636 0.711 0.644 0.752
Similarity SimVerb-3500 0.755 0.715 0.626 0.694 0.671 0.742

WS-353-SIM 0.794 0.748 0.784 0.816 0.591 0.811
Rare Card-660 0.683 0.578 0.589 0.682 0.169 0.668

Words RW-STANFORD 0.553 0.555 0.504 0.569 0.352 0.558
Mixed MC-30 0.898 0.826 0.888 0.901 0.707 0.900
Words WS-353-ALL 0.720 0.654 0.720 0.732 0.499 0.734

Average 0.718 0.679 0.665 0.707 0.515 0.721

Table 2: Ablation study: Column indicates the omitted word pairs; HW2Vec is the full model. Best results in bold.

keyword DRG2Vec HG2Vec
Adjective Query Words

red
reds yellow blue carmine crimson vermillion

purple green orange scarlet fuchsia ponceau

local
locals regional district regional parochial locals
mudir municipal stations subregional provincial endemic

Verb Query Words

sleep
sleeps sleeping awake doze snooze shuteye
asleep quiescent waking slumber catnap siesta

listen
call attentively hear listened listeners relisten

listening listened callers listenin heed listener
Noun Query Words

animal
animals plant ruminant critter varmint brute
person pets organism beast mammal coyote

coffee
tea grape cocoa coffees coffea canephora

beverage beans drinks tea arabica coffeebeans

Table 3: Qualitative Evaluation: Top 6 similar words to the query word.

pact some similarity tasks, such as SimLex999 and
SimVerb-3500 (the model improves by removing
strong pairs for these datasets). For some similarity
datasets, omitting synonyms can sometimes help
(e.g., MEN-TR-3K). Likewise, for antonyms (on
YP-130). Overall, HG2Vec balances between re-
latedness and similarity tasks to yield the highest
performance.

5.3 Case Study

To qualitatively evaluate the word embeddings, we
divide the words into three types: adjectives, verbs,
and nouns. We sample query words from each cat-
egory and report the top six words with the highest

cosine similarity to the query word in Table 3.

We observe that for the adjective query red,
HG2Vec word pairs contain several of its syn-
onyms, such as vermillion and scarlet. DRG2Vec
lists other colors that co-occur in similar contexts,
like blue and green. Likewise, for the adjective
local, HW2Vec returns high similarity words, but
DRG2Vec generates nouns that frequently combine
with local, such as stations. In general, HG2Vec
outperforms other models since it can generate
more synonyms of the input word.

Comparing verb and noun queries is somewhat
harder, but overall, HG2Vec focuses more on se-
mantics, whereas DRG2Vec pays more attention
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to co-occurrence. For example, DRG2Vec outputs
awake as similar to the query verb sleep, but they
are in fact opposite in meaning. On the other hand,
the top results for HG2Vec are all similar to sleep.
Likewise, for the noun query animal, DRG2Vec
returns person, and for coffee it returns grape, as
one of the top similarity words. HG2Vec avoids
such obviously non-similar words. This suggests
that models can struggle to learn opposite word
pairs without thesauri if their contexts are similar.
HG2Vec performs better because of the synonym
and antonym edges.

6 Conclusions

We propose HG2Vec, a model that solely relies on
dictionaries and thesauri without the use of a huge
textual corpus. Despite this, our model yields state-
of-art on many similarity and relatedness bench-
marks. We also provide strong evidence (via the ab-
lation study) that learning synonyms and antonyms
is necessary for improved word embedding mod-
els. Our work highlights the use of dictionaries and
thesauri as effective sources to learn word embed-
dings.

One interesting finding is that when we parse the
thesaurus, some word pairs are both synonyms and
antonyms. For example, according to Roget’s Su-
per Thesaurus, the synonyms of advance are help,
hasten, quicken, aid, assist, further, forward, facili-
tate, back, and the antonyms of back are progress,
advance. The reason back is a synonym is because
to advance someone is to back them. On the other
hand, back is also an antonym since to go back
is the opposite of to advance. Thus, advance and
back are both synonyms and antonyms, suggesting
that the relationship between two words may be op-
posite in different contexts and situations. This is
a challenging topic for training word embeddings,
which we plan to investigate in the future.

In the future, we plan to also include more rela-
tionship types, such as derivative words and partici-
ples. Furthermore, while HG2Vec uses definitions
only to construct strong and weak pairs, we plan
to study ways of using the full definition text in
addition to the heterogeneous graph.
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Abstract

Semantic parsing considers the task of map-
ping a natural language sentence into a target
formal representation, where various sophis-
ticated sequence-to-sequence (seq2seq) mod-
els have been applied with promising results.
Generally, these target representations follow
a syntax formalism that limits permitted forms.
However, it is neither easy nor flexible to ex-
plicitly integrate this syntax formalism into
a neural seq2seq model. In this paper, we
present a structure-aware self-attention lan-
guage model to capture structural information
of target representations and propose a knowl-
edge distillation based approach to incorporat-
ing the target language model into a seq2seq
model, where grammar rules or sketches are
not required in the training process. An abla-
tion study shows that the proposed language
model can notably improve the performance
of the baseline model. The experiments show
that our method achieves new state-of-the-art
performance among neural approaches on four
semantic parsing (ATIS, GEO) and Python
code generation (Django, CoNaLa) tasks.

1 Introduction

Semantic parsing aims to map a natural language
sentence into a machine executable formal repre-
sentation, which has been considered as one of the
prime challenges nowadays in natural language pro-
cessing (NLP). These target formal representations
can generally be divided into three categories (Ka-
math and Das, 2018), i.e., logical forms, like first
order sentences or λ-calculus expressions (Zettle-
moyer and Collins, 2005), programming language
statements, like Python code or SQL programs, and
graph-based forms, like labeled graphs in Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013). In this paper, we focus on semantic parsing
that yields logical forms.

∗The corresponding author.

Target logical forms often follow a syntax for-
malism that limits permitted formulas, which can
be used to filter the output and improve the perfor-
mance of semantic parsing. For example, in the pre-
neural era, CCG based approaches (Kwiatkowski
et al., 2013) achieved significant performance gains
by introducing a linguistically motivated gram-
mar induction scheme. Some neural semantic
parsers (Yin and Neubig, 2018; Sun et al., 2020)
first transduce the natural language utterance into
an Abstract Syntax Tree (AST), then serve it as
an intermediate meaning representation to incor-
porate with grammar rules for the target logical
form. Semantic parsing can also be considered as a
seq2seq transduction problem, where the decoder
can leverage structural features of target represen-
tations. In particular, hierarchical tree decoders
are applied in (Dong and Lapata, 2016; Alvarez-
Melis and Jaakkola, 2017; Sun et al., 2019) to take
into account the tree structure of the logical expres-
sion. Decoders constrained by a grammar model
are applied in (Xiao et al., 2016; Yin and Neu-
big, 2017; Krishnamurthy et al., 2017; Dong and
Lapata, 2018). The uncertainty-driving adaptive
decoding is used to guide the decoder in (Zhang
et al., 2019). Relatively sizeable monolingual cor-
pus of the target programming language is used
in (Norouzi et al., 2021) to improve performance.

Note that, manually specified grammar rules and
sketches for target logical forms are required in
most of these approaches, which limits their adapt-
abilities and scalabilities to a new semantic parsing
task with updated target logical forms. In this pa-
per, we consider using a structure-aware language
model to capture formal patterns for target repre-
sentations and incorporating the language model
into seq2seq models for semantic parsing.

We first train the structure-aware language model
on target logical forms to capture structural infor-
mation. Then, we incorporate the language model
to a seq2seq model for semantic parsing.
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Integrating a language model into a seq2seq
model has been considered in automatic speech
recognition (ASR) and neural machine translation
(NMT). In particular, shallow fusion and deep
fusion (Gulcehre et al., 2015) are two such ap-
proaches in NMT. Cold fusion (Sriram et al., 2018)
is tested on ASR tasks. Bai et al. (2019) proposes
a knowledge distillation based training approach
to transferring knowledge from a language model
to a seq2seq model for ASR. Here, we follow the
knowledge distillation structure to integrate the lan-
guage model to the baseline seq2seq model for
semantic parsing.

We evaluate our approach on two semantic
parsing datasets, ATIS (Dahl et al., 1994) and
GEO (Zelle and Mooney, 1996) datasets, where
target logical forms are λ-calculus expressions
and two code generation tasks, Django(Oda et al.,
2015) and CoNaLa(Yin et al., 2018), where target
logical forms are Python code. We train the tar-
get language model based on target logical forms.
The experimental results show that our approach
achieves state-of-the-art performance among neural
network based approaches on ATIS, GEO, Django
and CoNaLa datasets.

In this paper, we show that the proposed lan-
guage model can be used to capture structural fea-
tures of target logical forms and the knowledge dis-
tillation structure can be used to transfer knowledge
to a seq2seq model for semantic parsing, where
manually specified grammar rules or sketches are
no longer required. Notice that, this approach can
be applied to various sophisticated seq2seq models,
which results a more flexible and scalable method
for neural semantic parsers to leverage structural
features of target representations. The main contri-
butions of the paper are summarized as follows:

• We propose a structure-aware self-attention
language model to capture structural informa-
tion of target logical forms.

• We propose a knowledge distillation structure
to transfer knowledge from target language
model to a seq2seq model, which suggests
a more flexible and scalable method for neu-
ral semantic parsers to leverage structural fea-
tures of target representations.

• We implement the approach on baseline
seq2seq models, which achieves new state-of-
the-art performance among neural semantic

parsers on ATIS, GEO, Django and CoNaLa
datasets.

2 Related Work

2.1 Neural Semantic Parsing

Neural semantic parsing has achieved promising
results in recent years. In particular, AST based
parsers (Yin and Neubig, 2018; Sun et al., 2020,
2019) first map a nature language sentence into
an abstract syntax tree (AST), then parse the AST
to the corresponding target logic form. On the
other hand, seq2seq based semantic parsers often
leverage structural features of natural language
sentences or target representations to improve
the performance. Specifically, a sequence-to-tree
(seq2tree) model (Dong and Lapata, 2016) updates
the decoder into a hierarchical LSTM tree, which
helps the model to utilize the hierarchical structure
of logical forms. A graph-to-sequence (graph2seq)
model (Xu et al., 2018) updates the encoder into a
graph encoder. Graph neural networks (GNNs) are
also used in semantic parsing (Shaw et al., 2019)
to incorporate information about relevant entities
and their relations during the parsing. A sequence-
to-action (seq2action) model (Chen et al., 2018)
considers semantic parsing as an end-to-end se-
mantic graph generation process. A coarse-to-fine
(coarse2fine) model (Dong and Lapata, 2018) de-
composes the decoding process into two stages.
The first stage predicates a rough sketch of the
meaning representation and the second stage fills
in missing details conditioning on the natural lan-
guage input and the sketch itself. The AdaNSP
model (Zhang et al., 2019) proposes an adaptive
decoding method to avoid intermediate represen-
tations in the parsing process, where the decoder
is guided by the model uncertainty. TAE (Norouzi
et al., 2021) exploit a relatively sizeable monolin-
gual corpus of the target programming language to
improve performance.

Notice that, manually specified grammar rules or
sketches are required in most of these neural seman-
tic parsing approaches to leverage structural fea-
tures of natural language sentences or target repre-
sentations. In this paper, we consider using the pro-
posed target language model to capture these for-
mal patterns and incorporating the language model
into seq2seq models for semantic parsing.
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2.2 Structural Language Models

In recent years, language models that capture
structural information in natural language have
been developed. (Shen et al., 2018) proposed a
PRPN(Parsing-Reading-Predict Networks) model,
which uses the syntactic structure information of
natural language to better perform language model-
ing. The model is divided into three parts: parsing
module, reading module and prediction module.
The parsing module uses the convolutional neural
network to predict the syntactic distance of two ad-
jacent words, and obtains the syntactic tree of the
sentence through the syntactic distance; the read-
ing module uses the syntactic tree obtained by the
parsing module to model the context; the predic-
tion module predicts the next word. The PRPN
model achieved good results at the time on both
unsupervised syntactic analysis tasks and language
model modeling.

(Shen et al., 2019) proposed the ON-LSTM (Or-
dered Neurons-LSTM) model, which gives LSTM
neuron level information to model the hierarchi-
cal structure information of sentences. The author
believes that the level of a word is related to its
span in a sentence. The higher the level, the larger
the span, so words with higher levels should be
retained longer and are not easily updated. So
the model proposes a new LSTM neuron: the or-
dered neuron, which enforces the order in which
the neurons are updated. All lower-order neurons
must be deleted before higher-order neurons can be
deleted or updated, thus controlling the update fre-
quency of neurons. The ON-LSTM model achieves
good performance on four different tasks, language
modeling, unsupervised parsing, target grammar
evaluation, and logical reasoning.

(Wang et al., 2019) proposed the Tree Trans-
former model, which improved the Transformer
to learn syntactic information in natural language.
The Tree Transformer adds an additional constraint
of "Constituent Attention" to the attention head
of the Transformer’s encoder to enhance attention
to natural language tree structures. The compo-
nent constraint module judges whether two adja-
cent words can form a phrase, and if so, assigns
more attention scores to these two words. Tree
Transformer is designed for natural language pars-
ing tasks and has achieved good results on unsu-
pervised parsing tasks. In addition to the syntac-
tic analysis task, the author also changed the Tree
Transofmer into a mask language model, and com-

pared it with BERT on the corpus WSJ. Since the
syntactic information can be learned in the Tree-
Transformer, the effect of the language model is
better than that of BERT.

(Li et al., 2021) proposed a StructuralLM model
to improve BERT to learn structural information
in documents. StructuralLM treats each cell in the
document as a semantic unit, and then makes the
model’s training goal to classify the cell location to
take full advantage of the cell and layout informa-
tion. The pre-trained StructuralLM model achieved
state-of-the-art results on three downstream tasks:
form understanding, document visual question an-
swering, and document image classification.

In this paper, we propose the structure-aware lan-
guage model that use structure-aware self-attention
to explicitly capture the structural information of
the target forms.

2.3 Integrating Language Model into
Seq2Seq Models

Integrating a language model into a seq2seq model
has been considered in multiple NLP tasks, like
automatic speech recognition (ASR) and neural
machine translation (NMT). In particular, shal-
low fusion and deep fusion (Gulcehre et al., 2015)
are proposed to integrate a language model into
a seq2seq model. Both methods first train a lan-
guage model and a translation model separately,
then use the language model in the inference step.
Specifically, shallow fusion performs a log-linear
interpolation between the decoder and the language
model to re-weight the translation model’s scores
during the beam search. Deep fusion concatenates
the language model and decoder’s hidden states
next to each other, then uses the the hidden states
to fine-tune the model. Cold fusion (Sriram et al.,
2018) is tested on AST tasks. Cold fusion uses
the logic outputs of the trained language model as
features to train the translation model. Simple fu-
sion (Stahlberg et al., 2018) uses the output of a
trained language model together with the output of
a translation model to train the translation model.
Component fusion (Shan et al., 2019) first trains
a source language model, later freezes the source
language model and trains the translation model,
then replaces the source language model with a
target language model in the inference process.

The LST (Learning Spelling from Teachers) ap-
proach (Bai et al., 2019) proposes a knowledge
distillation based training approach to transferring
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knowledge from a language model to a seq2seq
model for ASR. It first trains a recurrent neural
network based language model (RNNLM) on large
scale external text, then considers the RNNLM as
the teacher to generate soft labels of speech tran-
scriptions to train the decoder in the seq2seq model.

In this paper, we follow the knowledge distilla-
tion structure to transfer knowledge from target lan-
guage model to the decoder of a baseline seq2seq
model for semantic parsing. Different from LST, a
new Transformer-based structure-aware language
model is considered here, which can capture struc-
tural information of formal patterns for target rep-
resentations. We show that the approach achieves
new state-of-the-art performance on ATIS, GEO,
Django and CoNaLa datasets.

3 Preliminaries

3.1 A Seq2Seq Model for Semantic Parsing

The training procedure of a baseline seq2seq model
for semantic parsing is illustrated in Figure 1. The
parsing model maps natural language sentences
into target expression. The training procedure of
a basic seq2seq parsing model is illustrated in Fig-
ure 1.

First, a natural language sentence is pre-
processed into a sequence of word indexes x =
{x1, . . . , xm} and the labeled logical form is pre-
processed into a sequence of word indexes y∗ =
{y∗1, . . . , y∗n}. Then, the encoder network pro-
duces the sequence x = {x1, . . . , xm} into a high
level contextual representation h = {h1, . . . , hm}.
Later, the decoder network generates the target out-
put y = {y1, . . . , yn} from h.

𝒚𝟏
∗ , 𝒚𝟐

∗ , … , 𝒚𝒏
∗

Encoder Decoder

LPAR 
𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎

𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏

Figure 1: A basic seq2seq model for semantic parsing.

At time step t, current token yt is generated by
the following equation:

PPAR(yt) = p(yt | y<t,x), (1)

where y<t = y1 . . . yt−1, x represents the input
word indexes.

The training criterion is cross entropy:

LLM = −
N∑

i=1

|V |∑

k=1

1 {yt = k} logPLM (yt = k)

(2)
where PPAR is computed from Equation1, T is the
length of the target sequence, |V | is the size of the
vocabulary, 1 is the indicator function.

3.2 Self-Attention

The multi-head self-attention module is a key com-
ponent in Transformer (Vaswani et al., 2017). In
particular, transformer’s sub-layers employ h atten-
tion heads to perform self-attention. The results
from each attention heads are concatenated and
transformed to form the output of the sub-layer.

Given a sequence x = (x1, . . . , xn) as input,
each attention head uses scaled dot-product atten-
tion to compute a new sequence z = (z1, . . . , zn)
of the same length, i.e.,

zi =

n∑

j=1

αij
(
xjW

V
)
, (3)

where W V is a matrix of parameters and αij are
normalized by a softmax function, i.e.,

αij =
exp (eij)∑n
k=1 exp (eik)

, (4)

where eij is computed using a compatibility func-
tion that compares two input elements, i.e.,

eij =

(
xiW

Q
) (
xjW

K
)>

√
dz

, (5)

where WQ,WK are parameters to be learned.

4 Method

In this section, we specify details of our method,
i.e., using a knowledge distillation based structure
to transfer knowledge from a structure-aware tar-
get language model to a seq2seq model. We first
introduce the architecture of the new model. Then,
we describe the proposed target language model.
At last, we provide details of the method in the
training process.

4.1 Model Overview

An overview of the new model’s architecture is
shown in Figure 2. Note that, the new model is
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generated from the basic seq2seq model in Fig-
ure 1 by introducing a knowledge distillation struc-
ture where the pretrained structure-aware language
model serves as the teacher to guide the parsing
model.

In specific, the structure-aware language model
is pre-trained on target logical forms. The language
model contains a structure-aware self-attention
transformer encoder to explicitly capture the struc-
tural information. It is used to provide soft labels as
prior knowledge to "teach" the parsing model in the
training process, where the Kullback-Leibler diver-
gence between estimated probabilities is intended
to be minimized.

Notice that, there is no specific requirement for
the seq2seq model in the architecture. Then, be-
sides the basic seq2seq model, this knowledge dis-
tillation structure can be applied to other sophisti-
cated seq2seq models to leverage structural features
of target representations.

4.2 Target Language Model
Here we specify details of the proposed target lan-
guage model, i.e., structure-aware self-attention
language model. Architecture of the language
model is shown in Figure 3.

Since the target logical forms can all be seen as
bracket trees, they’re tree-structured. Self attention
in Transformer learns how much attention to put
on words in a sequence, but it ignores the syntactic
information of trees. The siblings of tree nodes
may have long distance in a sequence position,
but they’re related closely. Therefore, we propose
structure-aware self-attention to encode the depth
information of sibling nodes into self-attention to
capture this information.

Motivated by (Shaw et al., 2018), we extend
the self-attention architecture to explicitly encode
the relation between an element pair (xi, xj) by
modifying Equation (5) to

eij =
xiW

Q
(
xjW

K + aKij

)>
√
dz

. (6)

Different from (Shaw et al., 2018), we redefine the
relation representations aij .

We assume that the depth information is less
useful when it is too deep. We define the maximum
s as a constant k:

aKij = wKclip(s(i,j),k)

clip(x, k) = min(x, k)
(7)

where s(i, j) is defined as follows:

s(i, j) =

{
dep(i), father(i) = father(j),
0, otherwise,

(8)
where dep(i) is the depth of node i in a tree,
father(i) means the father of node i.

Figure 4 shows an example we chose in GEO
dataset for demonstration.

We replace the original self-attention architec-
ture of transformer encoder with our structure-
aware self-attention. The encoder is bidirectional,
so we add the subsequent mask (originally applied
in the transformer decoder) to it to specify it as a
language model. The subsequent mask creates a
lower triangular matrix where the elements above
the diagonal will be modified to zero and the ele-
ments below the diagonal will be set to whatever
the input tensor is. Therefore, the prediction for
position i will depend only on the known outputs
at positions less than i.

The generation of the language model is deter-
mined by:

PLM(yt) = p(yt | y<t). (9)

In our experiments, the language model is
trained based on λ-calculus expressions and python
codes appeared in the training sets of the ATIS,
GEO, Django and CoNaLa datasets respectively.
The training objective of the language model is to
minimize the cross-entropy with target expressions:

LLM = −
N∑

i=1

|V |∑

k=1

1 {yt = k} logPLM (yt = k)

(10)
where N is the length of the target sequence, LLM

denote the training objective functions for the lan-
guage model, PLM is computed by Equation (9)
respectively.

Given a sequence of preprocessed logic form
indexes y∗ = {y∗0, . . . , y∗n−1} obtained from a la-
beled logical form (y∗0 is the start symbol, y∗n is the
end symbol), the language model produce likeli-
hoods of the target distribution as soft labels, i.e.,
it generates yS = {yS1 , . . . , ySn}.

4.3 Training

In the training process, we need to combine the loss
from the seq2seq model, LPAR, and the loss from
knowledge distillation, LKD.
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Figure 2: An overview of the proposed model’s architecture.
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Figure 3: An overview of structure-aware language
model’s architecture.

In specific, to make the seq2seq model learn
the knowledge from the language model, we put
target sequences into the language model to get
estimated probabilities, then we minimize the
Kullback-Leibler (KL) divergence between output
of the language model and output of the decoder.
The loss from knowledge distillation is:

LKD = −
T∑

i=t

|V |∑

k=1

KL
(
PPAR(yt = k), PLM(yt = k)

)

(11)
where PLM denotes the output of the language
model computed by by Equation (9) and the func-
tion KL computes the KL divergence.

At last, the loss for the entire model is the com-
bination:

L = ηLPAR + (1− η)LKD (12)

where η is a coefficient between 0 and 1.

5 Experiments

In order to evaluate the performance of our pro-
posed model, we conduct the experiments detailed
below.

5.1 Language Modeling

In this section, we evaluate our structure-aware lan-
guage model on language modeling. We evaluate
the performance on language modeling by measur-
ing the perplexity(PPL) of target sentences. We
use 31425 lambda statements and 51877 python
statements collected from the github website as the
language model dataset, and follows the ratio of
8:1:1 to devide the training set, validation set and
the test set. It should be noted that the lambda
statements and python statements in all test sets in
the semantic parsing datasets are removed from the
training dataset to prevent any impact.

We reproduce and test open-source structural lan-
guage models in recent years, and compare them
with proposed structure-aware language model, us-
ing perplexity as an evaluation indicator. In order
to explore the contribution of the structure-aware
self-attention module in the language model to the
model, we also conduct an ablation experiment that
removes the structure-aware self-attention.

Table 1 shows the result of our structure-aware
language model and other stuctural language mod-
els on language modeling. Compared with other

3169



lambda $0 e

and

from $0 ci0 to $0 ci1

(a)

lambda $0 e and from $0 ci0 to $0 ci1

1 1 1 2 3 3 3 3 3 3

(b)
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(c)

Figure 4: (a): An example of the tree structure of a
logical form. (b): depth of (a). (c): the structure of (a),
which is the input of the structure-aware self-attention.

Model lambda python
ON-LSTM (Shen et al., 2019) 67.9 72.4
Tree Transformer (Wang et al., 2019) 58.3 68.5
Ours
SLM 46.3 52.8
-structure-aware 60.1 70.9

Table 1: Results of SLM on language modeling.

stuctural language models, our structure-aware lan-
guage model proposed explicitly obtain the tree
structure of target sentences, and explicitly encode
the tree structure in the self-attention structure,
so that the language model can make full use of
the structure information of target sentences, and
achieve lower perplexity performance.

5.2 Semantic Parsing
In this section, we evaluate our approach on ATIS,
GEO, Django and CoNaLa datasets and compare it
with other approaches. We also conduct an ablation
study to explore the effectiveness of the proposed
structure-aware language model.

We first specify details of our implementation
including the datasets, the hyperparameters, hard-

ware, and software for training and testing net-
works. Then we present the experimental results,
which show that our model achieves new state-of-
the-art performance among various neural semantic
parsers on all four datasets.

5.3 Datasets

We evaluate our approach on four semantic parsing
and code generation benchmarks:

ATIS contains natural language questions of a
flight dataset paired with a lambda calculus query.
We follow the standard train-dev-test split of the
datasets in (Zettlemoyer and Collins, 2007), which
is 4434/491/448.

GEO contains natural language questions about
US geography paired with Prolog database queries.
We use the corresponding λ-calculus expressions
with the same meaning as in (Kwiatkowski et al.,
2011). We follow the standard train-dev-test split
of the datasets in (Zettlemoyer and Collins, 2005),
which is 600/0/280.

Django contains lines of Python source code
extracted from the Django framework paried with
an NL description. We follow the standard train-
dev-test split of the datasets in (Oda et al., 2015) ,
which is 16000/1000/1805.

CoNaLa contains mannully annotated NL ques-
tions paired with python solution on STACKOVER-
FLOW. We follow the standard train-dev-test split
of the datasets in (Yin et al., 2018), which is
2379/0/500.

Model ATIS GEO
ZC07(Zettlemoyer and Collins, 2007) 84.6 86.1
FUBL(Kwiatkowski et al., 2011) 82.8 88.6
KCAZ13(Kwiatkowski et al., 2013) - 89.0
Neural network models
Seq2Seq(Dong and Lapata, 2016) 84.2 84.6
Seq2Tree(Dong and Lapata, 2016) 84.6 87.1
JL16(Jia and Liang, 2016) 83.3 89.3
TranX(Yin and Neubig, 2018) 86.2 88.2
Coarse2fine(Dong and Lapata, 2018) 87.7 88.2
Seq2Act(Chen et al., 2018) 87.7 88.2
Graph2Seq(Xu et al., 2018) 85.5 88.9
AdaNSP (Zhang et al., 2019) 88.6 88.9
GNN(Shaw et al., 2019) 87.1 89.3
TreeGen(Sun et al., 2020) 89.1 89.6
PASCAL(Xie et al., 2021) 90.2 90.7
Ours
Baseline 88.6 88.9
+ SLM KD fusion 90.4 91.1
- structure-aware 88.8 89.3

Table 2: Results on ATIS and GEO datasets.
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Model Django
TranX(Yin and Neubig, 2018) 73.7
Coarse2fine(Dong and Lapata, 2018) 74.1
TranX2 (Yin and Neubig, 2019) 77.3±0.4
TranX2+BERT 79.7±0.42
Reranker (Yin and Neubig, 2019) 80.2±0.4
TAE (Norouzi et al., 2021) 81.03±0.14
Ours
Baseline 81.03
+ SLM KD fusion 81.83
- structure-aware 81.16

Table 3: Results on Django dataset.

Model CoNaLa
TranX(Yin and Neubig, 2018) 24.3
Reranker (Yin and Neubig, 2019) 30.11±0.6
EK (Xu et al., 2020) 27.20
EK+100k (Xu et al., 2020) 28.14
EK+100K+API (Xu et al., 2020) 32.26
TAE (Norouzi et al., 2021) 32.57±0.3
Ours
Baseline 32.57
+ SLM KD fusion 33.10
- structure-aware 32.62

Table 4: Results on CoNaLa dataset.

5.4 Implementation Details

We use AdaNSP(Zhang et al., 2019), a competi-
tive seq2seq semantic parsing model built on Al-
lenNLP(Wallace et al., 2019), as our base model for
two semantic parsing tasks. The model uses adap-
tive decoding method that guide the decoder by
model uncertainty and automatically uses deeper
computations when necessary. The AdaNSP model
is not the state-of-the-art model now, but it is based
on seq2seq architecture and open-sourced so it is
easy to implement our method. We adapt the same
hypeparameters as in (Zhang et al., 2019). We use
TAE (Norouzi et al., 2021), a seq2seq code genera-
tion model as our base model for two code genera-
tion tasks. The model exploit a relatively sizeable
monolingual corpus of the target programming lan-
guage to a transformer-based seq2seq model and
reach a superior performance.

We trained our model with the hyperparameters
listed in Table 5, which was chosen based on the
performance of the model on the validation set
for ATIS, Django and on the randomly selected
training set for GEO, CoNaLa, where the validation
set is not provided. For structures of the language
model, we set the number of layers 3, positional
feed forward dimensions 512, and attention heads
8.We trained the parsing model with the original
settings of the baseline system. We trained the
language model for 100 epoches respectively, and

Hyperparameter Value
learning rate 0.0005
batch size 256
dropout 0.1
η 0.8
k 10

Table 5: Hyperparameters.

the entire model for 200 epoches on an Nvidia
GeForce RTX 3090 GPU, which takes around 5
hours.

5.5 Evaluation

We use logical form accuracy as the evaluation
metric for ATIS and GEO datasets, which is com-
puted with pared trees of the predictions and gold
logical forms. The order of the children can be
changed within conjunction nodes. We use STree
parser code from (Dong and Lapata, 2018) to parse
the target lambda expressions and predictions into
bracket trees and compare them. We use exact
match accuracy as the evaluation metric for Django
dataset and corpus-level BLEU for CoNaLa.

5.6 Results

We compare our method with state-of-the-art se-
mantic parsers on ATIS, GEO, Django and CoNaLa
datasets. Table 2- 4 show the results of our model
and existing semantic parsers on four datasets. Our
model achieves the state-of-the-art performance on
four datasets.

We also performed an ablation study by remov-
ing the proposed structure-aware self-attention. In
specific, we use an original transformer encoder as
the language model and integrate it into the parsing
model by knowledge distillation. The results show
that the model using the structure-aware language
model outperforms the one using only original lan-
guage model.

6 Conclusion

In this paper, we present a structure-aware self-
attention language model to capture structural in-
formation of target representations and propose a
knowledge distillation based approach to incorpo-
rating the target language model into a seq2seq
model. We show that using knowledge distil-
lation from a target language model provides a
flexible and scalable way for neural semantic
parsers to leverage structural features of target rep-
resentations. Our method achieves strong results
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and doesn’t need any manually designed rules or
sketches.

For future direction, we are interested in explor-
ing other datasets to verify the model’s ability for
structural data. We will also attempt to integrate
grammar rules to this model to have a better perfor-
mance on semantic parsing tasks.
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Abstract

Pre-trained language models (PLMs) such as
BERT and RoBERTa have dramatically im-
proved the performance of various natural lan-
guage processing tasks. Although these models
are trained on large amounts of raw text, they
have no explicit grounding in real-world enti-
ties. Knowledge graphs (KGs) are manually
annotated with factual knowledge and store the
relations between nodes corresponding to en-
tities as labeled edges. This paper proposes
a mechanism called KG-attention, which inte-
grates the structure of a KG into recent PLM
architectures. Unlike the existing PLM+KG
integration methods, KG-attention generalizes
the embeddings of neighboring entities using
the relation embeddings; accordingly, it can
handle relations between unconnected entities
in the KG. Experimental results demonstrated
that our method achieved significant improve-
ments in a relation classification task, an entity
typing task, and several language comprehen-
sion tasks.

1 Introduction

Pre-trained language models (PLMs) have signifi-
cantly improved the performance of various natural
language processing (NLP) tasks (Devlin et al.,
2019; Liu et al., 2019). Although these models are
trained on large amounts of raw text, they have no
explicit grounding in real-world entities. Figure 1
shows a causal reasoning task on which PLM fails.
The performance can be improved by represent-
ing factual knowledge as various relations between
entities, e.g., “engine is part of a car”, in the PLM.

Knowledge graphs (KGs) are manually anno-
tated with factual knowledge and store the relations
between the nodes corresponding to entities as la-
beled edges (e.g., HasA, IsA, and PartOf ) (Miller,
1995; Bollacker et al., 2008; Speer et al., 2016).
Although the various relations recorded in KGs
can potentially improve the performance of PLMs,
KGs are graphs and structurally unsuitable for di-

Figure 1: Example of the outputs of Choice of Plausible
Alternatives (COPA), a well-known causal reasoning
task. “PLM” represents the causal reasoning model us-
ing BERTLARGE and “PLM+KG” represents the model
using BERTLARGE and Knowledge Graph (WordNet).
Solid and dotted lines indicate the relations between en-
tities connected in KG and entities not connected in KG,
respectively. The relation between unconnected entities
were estimated from KG embeddings in our proposed
method.

rect incorporation into PLMs. Some of the more
suitable forms of factual knowledge are pre-trained
KG embeddings (Bordes et al., 2013; Sun et al.,
2019; Nguyen, 2020; Chao et al., 2021). KG em-
beddings embed two entities registered in a KG
such that the corresponding embedding vectors are
at a specific relative position depending on the rela-
tion between the entities. The embedding vectors
corresponding to the entities are called KG entity
embeddings and the specific relative positions are
called relation embeddings. In addition to avoid-
ing the direct use of structural encoding of KGs,
KG embeddings can be generalized; that is, entities
having a specific relation to a query entity can be
estimated even when their relation is not actually
recorded in the KGs (Bordes et al., 2013). For ex-
ample, if there is no PartOf connection between
car and engine in the KG, the embedding of
engine can be estimated from the embedding of
car and the relation embedding of PartOf.

One remaining problem is the incorporation of
KG entity embeddings and relation embeddings
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into PLMs. Recently, several PLM and KG inte-
gration methods have been proposed (Zhang et al.,
2019; Yang et al., 2019; Lin et al., 2019; Wang
et al., 2019; Sun et al., 2020; Wang et al., 2021).
For example, Zhang et al. (2019) concatenated
embedding vectors obtained from PLM word em-
beddings and KG entity embeddings for down-
stream tasks. Wang et al. (2021) jointly trained
a masked language model (MLM) and a KG em-
bedding model to align factual knowledge and lan-
guage representation in the same semantic space.
Although KG entity embeddings have been utilized,
how the informative relation embeddings should be
incorporated into PLMs is not obvious. Actually,
the relation embeddings have been ignored, while
KG entity embeddings have been well utilized.

Herein, we propose Integrating PLMs and KGs
through Attention Mechanisms (ILKA), which han-
dles both the KG entity embeddings and the rela-
tion embeddings through our attention mechanism
(KG-attention). A key feature of KG-attention
is that it fully utilizes the generalization ability
of pre-trained KG embeddings, meaning that KG-
attention can handle relations between entities not
connected in the original KG.

Our contributions are summarized below.

• We propose ILKA with KG-attention that in-
corporates both the KG entity embeddings
and relation embeddings with the embedding
vectors obtained from PLMs in a consistent
manner.

• We experimentally demonstrate that ILKA
achieves improvements in a relation classi-
fication task, an entity typing task, and several
language comprehension tasks.

2 Related Works

Pre-trained language models PLMs such as
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2020) have achieved great suc-
cess in many NLP tasks. As a result, pre-training
language models and fine-tuning them in down-
stream tasks has become a new standard in NLP.
However, PLMs do not explicitly learn the relations
between entities and may not properly identify fac-
tual knowledge (Peters et al., 2019; Wang et al.,
2021).

Knowledge graph embedding KGs such as
WordNet (Miller, 1995) and ConceptNet (Speer

Approximate formula
TransE (Bordes et al., 2013) v(t) ≈ v(h) + v(r)
TransR (Lin et al., 2015) vr(t) ≈ vr(h) + v(r)
RotatE (Sun et al., 2019) v(t) ≈ v(h) ◦ v(r)
PairRE (Chao et al., 2021) v(t) ≈ v(h)◦vH(r)⊘vT (r)

Table 1: List of approximate formulas of KG embed-
ding models. vr(·) is the embedding function specific
to the relation r. ◦ is the Hadamard product. ⊘ de-
notes the element-wise division. vH(r) and vT (r) are
embeddings of the relation r for head and tail entities,
respectively.

et al., 2016) have also become important resources
in many NLP tasks. In general, a KG is a col-
lection of relational facts often represented as a
triplet (h, r, t) ∈ V × R × V (e.g., (car, IsA,
vehicle)), where V is the vocabulary and R is
the set of relations. h is a head entity, r is a relation,
and t is a tail entity.

Several learning methods have been proposed
for embedding KGs into a continuous vector space
while preserving the relational structure (Nickel
et al., 2011; Bordes et al., 2013; Schlichtkrull et al.,
2018; Lin et al., 2015; Sun et al., 2019). In most
KG embedding models, the triplet (h, r, t) is em-
bedded to satisfy the following:

vKG(t) ≈ ϕh(vKG(h),vr(r)), (1)

where vKG : V 7→ RdKG is the embedding func-
tion, and vr(r) ∈ RdKG is the embedding vector
corresponding to the relation r. ϕh denotes the
relationship between the embedding vectors; for
example, ϕh(vKG(h),vr(r)) = vKG(h) + vr(r) in
TransE (Bordes et al., 2013). Table 1 gives the
approximation formulas of typical KG embedding
models.

One benefit of KG embedding is that enti-
ties with a specific relation to the query entity
can be retrieved even when the relation between
the entities is not connected in the KG (Bordes
et al., 2013). For example, in Figure 2, enti-
ties e connecting the “IsA” relation with car can
be estimated by extracting the entities satisfying
vKG(e) ≈ ϕh(vKG(car),vr(IsA)). vKG(e) en-
codes not only words having the “IsA” relation
with car in the KG (i.e., automobile, vehicle),
but also words not having the “IsA” relation with
car but having similar meanings to automobile
and vehicle (i.e., motorcar in Figure 2). In this
paper, the vector ϕh(vKG(w),vr(r)) is called the
KG-neighbor embeddings of entity w and the en-
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Figure 2: Example of car and its neighboring entities
in KG. The words in the solid circles (e.g., automobile,
city) have a relation defined in KG whereas the words in
the dotted circles (e.g., motorcar, road) indicate words
whose relation is not defined in KG.

tities corresponding to the KG-neighbor embed-
dings (i.e., e) are called KG-neighbors. Note
that KG-neighbors may be unconnected to entity
w in the original KG. For some KG embedding
methods such as TransE, we can also consider
KG-neighbor embeddings as ϕt(vKG(w),vr(r)),
where w corresponds to a tail entity. In Figure 2,
the KG-neighbor embeddings in the “PartOf” re-
lation with car (i.e., seats, ignition, engine) are
represented by ϕt(vKG(car),vr(PartOf)), such
as ϕt(vKG(car),vr(PartOf)) = vKG(car) −
vr(PartOf) in TransE. In the following, ϕ refers
to either ϕh or ϕt.

Integrating PLMs and KGs Several recent stud-
ies have integrated KGs with PLM. In some studies,
the KGs and PLM were combined to perform spe-
cific downstream tasks (Yu et al., 2018; Wang and
Jiang, 2019; Yasunaga et al., 2021). Yasunaga et al.
(2021) proposed an end-to-end question answering
(QA) model that leverages PLM and KG by scoring
the relevance of KG nodes conditional on a given
QA context. These downstream task-focused meth-
ods are effective and robust for the given task, but
they do not enhance PLM for general purposes.

In another approach, PLM and KG are integrated
at the model level (Zhang et al., 2019; Peters et al.,

2019; Yang et al., 2019; Lin et al., 2019; Wang
et al., 2019; Sun et al., 2020; Wang et al., 2021).
Zhang et al. (2019) concatenated PLM word em-
beddings and KG entity embeddings and Sun et al.
(2020) trained an MLM by concatenating the en-
tity sequences obtained from a KG and input word
sequences. However, these PLM+KG methods are
limited in that they do not effectively employ rela-
tion embeddings. A relation embedding encodes
the semantic direction of the predefined relations
in KGs and plays an important role in representing
neighboring entities in KG and generalizing rela-
tions between entities not included in the KG. The
existing methods either do not consider relation
embeddings (Zhang et al., 2019) or cannot handle
the relations between entities not connected in the
KG (Sun et al., 2020; Wang et al., 2021).

3 Methodology

3.1 Main idea: KG-attention
When KG embedding is integrated into PLMs, the
performance can be improved by representing fac-
tual knowledge as various relations (e.g., IsA, HasA,
AtLocation). Below, we propose KG-attention that
consistently integrates the embedding of entities
and relations into an attention mechanism. The ben-
efits of KG-attention are twofold: (1) KG-attention
can explicitly assign attention between a query en-
tity and entities in the input sentence that are related
through KG embeddings; (2) KG-attention can han-
dle KG-neighbors even when the relation between
entities is not connected in the KG.

Figure 3 shows an application example of KG-
attention, which explores the attention between an
input sentence and KG-neighbors such as carIsA,
carHasA, and carAtLocation. For example, the atten-
tion between engine and carHasA represents the
knowledge “a car has an engine.” When integrat-
ing a KG embedding with a PLM, how to incor-
porate the relation represented by ϕ into a PLM
comprising a transformer is not always evident.
We solve this difficulty by carefully designing the
query, key, and value of the attention. Given an
input sequence w = [w(1), . . . , w(L)], where w de-
notes a subword and L denotes the length of the
sequence, KG-attention integrates ϕ into attention
mechanism as follows:

Q = {Q(i)}i∈{1,...,L}, (2)

K = V = {K(i,j)}i∈{1,...,L}, j∈{0,...,|R|} (3)

Q(i) = vKG(w
(i))⊕ vPLM(w(i)) (4)
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Figure 3: Example of KG-attention applied to sentence
classification. The input sentence is “Premise + Alter-
native 2” in Figure 1.

K(i,j) =





vKG(w
(i))⊕ vPLM(w(i)) if j = 0

ϕ(vKG(w
(i)),vr(r

(j)))⊕ vPLM(w(i))

if j ∈ {1, . . . , |R|}
(5)

where Q(i) and K(i,j) are dKG +dPLM dimensional
vectors, Q is a set of L vectors, and K(= V) is
a set of L × (|R| + 1) vectors. vKG(·) ∈ RdKG

is the KG entity embedding and vPLM(·) ∈ RdPLM

is the PLM embeddings. dKG and dPLM are the
dimensions of the KG and PLM embeddings, re-
spectively. ⊕ is the concatenation operation, and
r(j) represents the j-th relation.

Why and how does KG-attention treat seman-
tically related tokens defined in KGs? In general,
the attention mechanism seeks key tokens, which
are similar to query tokens. Accordingly, the KG-
attention aims to seek for key tokens that are lo-
cated at the KG-neighbors of the query token. For
example, K(i,j) (for w(i) = car) in Figure 3 is
constructed from KG-neighbor embeddings such
as carIsA, carHasA, and carAtLocation. These KG
embeddings are concatenated with the PLM em-
bedding of car and then used as the keys and values
of the attention. To obtain Q(i) (for w(i) = car),
we can simply compute and concatenate the KG
and PLM embeddings of car. As KG-neighbor em-
beddings are obtained from KG entity embeddings
ofw and r(j) by the approximation function ϕ, they
can be regarded as the embeddings of a represen-
tative entity having relation r with an entity w. If
engine and the representative entity of carHasA are
similar, KG-attention can obtain the attention be-
tween them even if engine and car are unconnected

Relation Relation
PLM between entities between entities

Model +KG connected not connected
ERNIE ✓
KnowBERT ✓ ✓
CoLAKE ✓ ✓
KEPLER ✓ ✓
ILKA (ours) ✓ ✓ ✓

Table 2: Comparison of ILKA with existing methods.
“Relation between entities connected” indicates that the
model only handle the relation between entities con-
nected in the KG (e.g., automobile in Figure 2); “Rela-
tion between entities not connected” indicates that the
model handle relations between entities not connected
in KG (e.g., motorcar in Figure 2).

in the original KG. Thus, KG-attention achieves
flexible attention by exploiting generalized KG-
neighbor embeddings.

3.2 ILKA

This section describes our proposed model ILKA
incorporating KG-attention. As shown in Figure 4,
ILKA consists of the following three modules.

(1) PLM and KG Embeddings: The input sen-
tences are fed to the PLM and pre-trained KG em-
bedding model to obtain the PLM word embed-
dings and KG entity embeddings. The KG embed-
ding model additionally obtains the KG relation
embeddings of all relations defined in the KG.

(2) KG-attention: The KG-attention mechanism
integrates the PLM word embeddings, KG entity
embeddings, and KG relation embeddings.

(3) Classifier: Classification is performed by
a transformer encoder-based classifier with self-
attention. KG-attention, which consistently in-
corporates the relational information of the KG
and PLM embeddings, can be regarded as the first
layer of the transformer encoder-based classifica-
tion model.

Table 2 compares the features of our method
with those of four existing PLM+KG methods.
ILKA approximates KG-neighbor embeddings
based on KG relation embeddings and can consider
the attention between the input sentence and KG-
neighbors even if the relation between the entities
is not connected in the KG. Among the compared
methods, only ILKA achieves this functionality.
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Figure 4: Overview of ILKA, which comprises three steps: (1) Obtain the PLM and KG embeddings; (2) Apply
KG-attention to integrate the PLM word embeddings, KG entity embeddings, and KG relation embeddings; (3)
Perform classification using a transformer encoder-based model.

Figure 5: Procedure for obtaining the word embeddings shown in Figure 4 (1). The blue and red shading highlight
the PLM word embeddings and KG entity embeddings, respectively.

3.3 Implementation
PLM word embeddings (shaded blue in Fig-
ure 5): Transformer-based PLMs often require
a tokenization step to solve the out-of-vocabulary
problem. For example, the sentence “The engine
overheated” can be divided into the subword se-
quence “The engine over ##heat ##ed.” PLMs
give the word embeddings of each subword unit.
We use existing PLMs for PLM word embeddings.

KG entity embeddings (shaded red in Figure 5):
Unlike PLMs, KG entities are registered as word or
phrase units. To obtain KG entity embeddings, the
tokenized sentences are preprocessed as follows:

(1) After reverting the subwords to the original
words, the original word is duplicated n times,
where n is the number of subwords (e.g.,
[over, ##heat, ##ed] → [overheated, over-
heated, overheated]).

(2) The conjugated words are returned to their
original form (e.g., broke → break, over-
heated → overheat). Uppercase letters are
made lowercase (e.g., The→ the).

In typical KGs, words with multiple meanings
are registered as different entities. ILKA morpho-
logically analyzes the input sentence to find the
part-of-speech (POS), and then selects an entity
with the same POS among the registered entities1.
Among various registered entities, this process al-
lows the selection of words with similar usage to
those in the input sentences. If no embedding vec-
tor is obtained from the KG embedding model, then
a zero vector is used. A zero vector is also allocated
to special tokens such as [CLS], [SEP], and [PAD].

KG-attention Here we describe three implemen-
tations of KG-attention on TransE as an example.

1) ILKA-head: TransE embeds the head and
tail entities as vKG(t) ≈ vKG(h)+vr(r). Our KG-
attention is designed to integrate the head→ tail
relation with the PLM embeddings as follows:

K
(i,j)
head = (vKG(w

(i)) + vr(r
(j)))⊕ vPLM(w(i)).

(6)
1If multiple entities have the same POS as the input word,

the first entity is used. In contrast, if no entity has the same
POS as the input word, an entity with a different POS is used.
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2) ILKA-tail: A similar integration of the tail
→ head relation with the PLM embeddings is given
as

K
(i,j)
tail =(vKG(w

(i))− vr(r
(j)))⊕ vPLM(w(i)).

(7)

3) ILKA-both: The two relations above can
be combined by concatenating the head and tail
vectors from vKG(w

(i)):

K
(i,j)
both =

{
K

(i,j)
head if j ∈ {1, . . . , |R|}

K
(i,j−|R|)
tail if j ∈ {|R|+ 1, . . . , 2|R|}.

(8)

Note that K(i,0) = vKG(w
(i)) ⊕ vPLM(w(i))

for all implementations and Khead,Ktail ∈
RL(|R|+1)×(dKG+dPLM), while Kboth ∈
RL(2|R|+1)×(dKG+dPLM).

Transformer encoder-based classifier For the
classifier, we employed the transformer encoder
model proposed by Vaswani et al. (2017), which
comprises a stack of N = 6 identical layers.
Each layer has two sub-layers: a multi-head self-
attention mechanism and a position-wise fully con-
nected feed-forward network.

4 Experiments

4.1 Benchmark Methods
The ILKA model was competed against two
PLM-only methods: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019)), and four PLM+KG
methods: ERNIE (Zhang et al., 2019), Know-
BERT (Peters et al., 2019), CoLAKE (Sun et al.,
2020) and KEPLER (Wang et al., 2021).

4.2 Experimental Settings
The KG-attention was implemented in Py-
Torch (Paszke et al., 2019). As the KG embedding
model, we employed the TransE model trained on
WordNet and Wikipedia. The KG was based on
WordNet (WN18 (Bordes et al., 2014) containing
18 relations) or Wikipedia (DBpedia50k (Shi and
Weninger, 2018) containing 351 relations). De-
tails can be found in Appendix A. We implemented
TransE using PyKEEN (Ali et al., 2021) and trained
it for 1,000 epochs. Following Bordes et al. (2013),
the dimension of the KG embeddings was set to
dKG = 50 (see Appendix B for details). The PLM
was implemented in two settings: BERTBASE for
comparison with the BERT-based models ERNIE

and KnowBERT and RoBERTaBASE for compar-
ison with the RoBERTa-based models CoLAKE
and KEPLER. The PLM implementations were
obtained from HuggingFace Transformers (Wolf
et al., 2020). For the classifier, we employed a
transformer encoder with six self-attention layers.
The batch sizes were set to 32 and 4 for the models
with WN18 and DBPedia50k, respectively, and
the maximum sequence length of the token was
128. All experiments were conducted on a 24GB
NVIDIA® TITAN RTX™ GPU.

4.3 Tasks

ILKA was evaluated on three tasks: relation clas-
sification, entity typing, and language comprehen-
sion.

Relation Classification Relation classification
determines the type of relation between two entities
in a text. We employed TACRED as the relation
classification task2. TACRED contains more than
106k sentences with typed subject and object spans
and relation labels across 41 relations along with a
no-relation label. The hyperparameters and other
experimental settings were set following KEPLER.

Entity Typing Entity typing is the task of classi-
fying a given entity into a pre-defined type. This
task was evaluated using OpenEntity (Choi et al.,
2018)3. Comparisons with ERNIE, KnowBERT,
CoLAKE, and KEPLER were performed on nine
general entity types under the same experimental
settings.

Language Comprehension We adopted the
General Language Understanding Evaluation
(GLUE) (Wang et al., 2018) and Choice of Plausi-
ble Alternatives (COPA) (Roemmele et al., 2011)
as language comprehension tasks. GLUE is a col-
lection of diverse natural language comprehension
tasks used in various PLM papers (Devlin et al.,
2019; Liu et al., 2019). Existing PLM+KG meth-
ods have evaluated the GLUE task to determine
whether their methods degenerate the performance
on common NLP tasks (Zhang et al., 2019; Wang
et al., 2021) (see Appendix C for details). We used
the implementation and evaluation script imple-
mented by the HuggingFace Transformers library

2TACRED is available from LDC. https://catalog.
ldc.upenn.edu/LDC2018T24

3OpenEntity data can be obtained from ERNIE’s githab
page. https://github.com/thunlp/ERNIE
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Base-model Model P R F1

BERT

BERT 67.2 64.8 66.0
ERNIE 70.0 66.1 68.0
KnowBERT 73.5 64.1 68.5
ILKA-head 72.6 68.9 70.7

RoBERTa
RoBERTa 70.8 69.6 70.2
KEPLER 71.5 72.5 72.0
ILKA-head 73.9 71.9 72.9

Table 3: Micro precision, recall and F1 scores on TA-
CRED (%). The KnowBERT results shown in Table 3
were reevaluated in Wang et al. (2021).

for GLUE 4. To investigate whether our method
is effective for complex language comprehension
tasks using COPA, a causal inference task that re-
quires world knowledge. In COPA, the models
were given a premise and two alternatives and were
required to choose the alternative with a higher
causal relation to the premise. Figure 1 is an exam-
ple of COPA.

In the GLUE and COPA tasks, we selected the
best fine-tuning learning rate (among 5e-5, 4e-5,
3e-5, and 2e-5) on the Dev set for the BERT setting
according to the BERT experiments and (among
3e-5, 2e-5, and 1e-5) for the RoBERTa setting ac-
cording to the RoBERTa experiments. Our classifi-
cation was essentially that of BERT’s framework of
“[CLS] sentenceA [SEP] sentenceB [SEP],” where
[CLS] is a special token for classification purposes.

4.4 Results

Relation Classification Table 3 shows the result
of TACRED. As in Wang et al. (2021), we show
the KnowBERT result without entity type inputs
for a fair evaluation. ILKA-head represents our
model with WN18. ILKA-head achieved higher F1
scores than the existing studies using PLM and KG
(BERT-based and RoBERTa-based models). The
results suggest that the relation classification was
accurately solved by both the KG embedding of
the input sentence and the generalized embedding
of neighboring entities.

Entity Typing Table 4 shows the experimen-
tal results of OpenEntity. ILKA-head based on
RoBERTa achieved higher F1 scores than the ex-
isting models using PLM and KG. In the BERT-
base model, ERNIE and ILKA-head obtained the
highest F1 and Recall scores, respectively. In the
RoBERTa-base model, ILKA-head had the high-

4https://github.com/huggingface/
transformers/blob/master/examples/
pytorch/text-classification/run_glue.py

Base-model Model P R F1

BERT

BERT 76.4 71.0 73.6
ERNIE 78.4 72.9 75.6
KnowBERT 77.9 71.2 74.4
ILKA-head 75.5 74.4 75.0

RoBERTa

RoBERTa 75.1 73.4 74.3
CoLAKE 77.0 75.7 76.4
KEPLER 77.8 74.6 76.2
ILKA-head 75.3 78.1 76.7

Table 4: Micro precision, recall and F1 scores on Ope-
nEntity (%). The results of BERT and RoBERTa were
reported by Wang et al. (2021). Other benchmark results
were taken from the respective papers.

est F1 score. As our method obtained the highest
Recall in both BERT-base and RoBERTa-base, we
inferred that using the KG-neighbors provides a
consistently high coverage of various relations.

Language Comprehension The experimen-
tal results of GLUE are shown in Table 5.
ILKA-headBERT outperformed BERT-original and
ERNIE in the following tasks: MNLI-mm,
QQP, CoLA, STS-B, MRPC, and RTE. More-
over, ILKA-headRoBERTa outperformed RoBERTa-
original, CoLAKE, and KEPLER in the following
tasks: MNLI-m/mm, CoLA, and MRPC. On aver-
age, our model with a RoBERTa performed compa-
rably to the RoBERTa-original model. The result
suggests that integrating PLM and KG exerts no
significant negative impact.

Table 6 presents the COPA results. ILKA out-
performed the original BERT and RoBERTa in all
settings. Causal reasoning is one of the tasks requir-
ing world knowledge. ILKA worked effectively
even for the large-scale PLM, suggesting that KG-
attention provides an inference ability that cannot
be matched by word co-occurrence alone.

5 Analysis

5.1 Ablation Study
Model Variants Table 7 presents the results of an
ablation study for ILKARoBERTa on the TACRED
and OpenEntity tasks. In the “ILKAw/o-KGneighbors”
model, only the KG entity embeddings are pro-
vided in the input sentence (the KG-neighbor em-
beddings are omitted). This model is similar to
ERNIE but has a slightly different network struc-
ture. “ILKA-head”, “ILKA-tail”, and “ILKA-both”
represent different implementations of ILKA as de-
scribed in subsection 3.3.

ILKA-head and ILKA-tail obtained higher F1
scores “ILKAw/o-KGneighbors”, suggesting that when
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Base- MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE
model Model 392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k

BERT
BERT (Devlin et al., 2019) 84.6/83.6 71.2 90.5 93.5 52.1 85.8 88.9 66.4
ERNIE (Zhang et al., 2019) 84.0/83.2 71.2 91.3 93.5 52.3 83.2 88.2 68.8
ILKA-headBERT (OURS) 83.8/84.4 87.7 90.7 92.2 62.6 89.3 91.1 69.0

RoBERTa

RoBERTa (Liu et al., 2019) 87.5/87.3 91.9 92.8 94.8 63.6 91.2 90.2 78.7
CoLAKE (Sun et al., 2020) 87.4/87.2 92.0 92.4 94.6 63.4 90.8 90.9 77.9
KEPLER (Wang et al., 2021) 87.2/86.5 91.7 92.4 94.5 63.6 91.2 89.3 85.2
ILKA-headRoBERTa (OURS) 87.7/87.6 88.1 92.6 94.5 64.4 91.1 92.0 75.8

Table 5: Test results of GLUE. The number below each task denotes the number of training examples. The results of
the benchmark methods were taken from the respective references. KEPLER represents the result of KEPLER-wiki,
the most accurate model for GLUE in (Wang et al., 2021). The F1 scores are reported for QQP and MRPC,
Spearman correlations are reported for STS-B, and the accuracy scores are reported for the other tasks.

Model Accuracy

BERTBASE
BERTBASE 68.8 ± 1.3
ILKA-headBERTBASE 69.9 ± 1.1

BERTLARGE
BERTLARGE 76.5 ± 2.7
ILKA-headBERTLARGE 77.7 ± 1.2

RoBERTaBASE
RoBERTaBASE 73.7 ± 1.3
ILKA-headRoBERTaBASE 74.9 ± 2.1

RoBERTaLARGE
RoBERTaLARGE 87.7 ± 0.9
ILKA-headRoBERTaLARGE 88.6 ± 1.6

Table 6: Test results on COPA. The results
of BERTLARGE and RoBERTaLARGE were reported
by Kavumba et al. (2019).

TACRED OpenEntity
Model P R F1 P R F1
ILKAw/o-KGneighbors 73.7 70.8 72.2 77.8 71.0 74.3
ILKA-head 73.9 71.9 72.9 75.3 78.1 76.7
ILKA-tail 75.4 72.9 74.1 76.4 79.9 78.1
ILKA-both 76.4 70.7 73.5 74.0 73.2 73.6

Table 7: Results of the ablation study on TACRED and
OpenEntity using the proposed ILKARoBERTa.

both the KG-neighbor and KG entity embeddings
are employed, the model becomes more effective.
ILKA-both, which simply concatenates the KG-
neighbor embeddings of the head and tail entities,
was less accurate than ILKA-head and ILKA-tail.

Knowledge Graph Variants Table 8 shows
the experimental results for different KGs.
ILKA-headWordNet outperformed ILKA-headWiki,
possibly because the large number of relations in
ILKA-headWiki leads to a sparser embedding space.
Nevertheless, ILKA-headWiki is still comparable to
benchmark methods shown in Table 3 and Table 4.

5.2 Training Runtime Comparison
Most of the existing PLM+KG methods jointly
learn contextualized representations of both lan-
guage and KG with the MLM objective. In general,
learning a model from scratch by this method is ex-

TACRED OpenEntity
Model P R F1 P R F1
ILKA-headWordNet 73.9 71.9 72.9 75.3 78.1 76.7
ILKA-headWiki 74.5 69.5 71.9 75.1 77.8 76.4

Table 8: Results of the Knowledge Graph Variants
on TACRED and OpenEntity using the proposed
ILKARoBERTa.

cessively time-consuming. For example, CoLAKE
training on 8 32G NVIDIA V100 GPUs required 38
hours (Sun et al., 2020). Our method reduced the
training time because it requires only fine-tuning.
Specifically, the training runtimes of ILKARoBERTa
with fine-tuning in three epochs on CoLA, STS-B,
MRPC, and RTE were approximately 10 mins (see
Appendix D for details). Despite its short learning
time, our method was more accurate than the exist-
ing PLM+KG methods.

Our method needs more training time than pure
PLMs because it requires POS tagging first and
then entity lookup. In our experimental environ-
ment (24GB NVIDIA® TITAN RTX™ GPU),
RoBERTa’s fine-tuning runtime is 3.9 and 2.8 min
for CoLA and STS-B, respectively. In contrast,
ILKA-head takes about 11.5 and 7.8 min for CoLA
and STS-B, respectively (details in Appendix D),
so it takes about three times longer for fine-tuning.
For inference, we observed the same tendency. We
believe that the increase in learning time does not
pose a significant practical problem.

5.3 Discussion

Our proposed method improves the F1 scores for
the relation classification task (TACRED) and the
entity typing task (OpenEntity), as shown in Tables
3 and 4. However, it is also true that the improve-
ment is insignificant. An analysis of the number
of KG entities in a sentence shows that only a few
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entities appear in an input sentence. Specifically,
the average number of entities in a sentence is 6.5
subwords (5% for a maximum token length of 128),
and the rest are empty. This could have hampered
learning efficiency.

6 Conclusion

We proposed the KG-attention mechanism and de-
veloped the ILKA model to integrate KGs into
PLMs in a consistent manner. Unlike the exist-
ing PLM+KG integration methods, KG-attention
generalizes the embeddings of neighboring entities
using the relation embeddings, and selects a pro-
portion of these embeddings through the attention
mechanism. Accordingly, it can handle relations
between unconnected entities in the KG. In the re-
lation classification and entity typing experiments,
ILKA yielded higher Recall and F1 scores than con-
ventional PLM+KG methods. In the GLUE task,
factual knowledge produced no negative effect on
language comprehension by ILKA. In addition, the
higher scores for COPA than for the PLM alone
suggest that our method adequately processes com-
plex language comprehension tasks.

Our proposed method has one limitation: when
the number of relations is large, the dimension
of the attention enlarges accordingly. To avoid
this size explosion, we could employ the weighted
sums of relation embeddings as keys and queries
instead of arranging all relation embeddings in the
direction of attention.

Ethical Concerns

This study used the existing datasets WN18 (Bor-
des et al., 2013), DBpedia50k (Shi and Weninger,
2018), TACRED (Zhang et al., 2017), OpenEn-
tity (Choi et al., 2018), GLUE (Wang et al., 2018),
and COPA (Roemmele et al., 2011), which are not
expected to present any ethical concerns.
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A Details of WN18 and DBpedia50k

Table 9 present the scale of WN18 and DBPe-
dia50k and Table 10 presents the types of relations
in WN18.

WN18 DBPedia50k

#(ENTITIES) 40,943 49,900
#(RELATIONS) 18 351
#(Triples in Train) 141,442 32,388
#(Triples in Valid) 5,000 399
#(Triples in Test) 5,000 10,969

Table 9: Scales of WN18 and DBPedia50k.

_hyponym,_hypernym,_part_of,
_derivationally_related_form,
_has_part,_similar_to,_also_see
_member_meronym,_member_holonym,
_member_of_domain_topic,
_synset_domain_topic_of,
_instance_hyponym,_instance_hypernym,
_member_of_domain_region,_verb_group,
_synset_domain_region_of,
_member_of_domain_usage,
_synset_domain_usage_of

Table 10: Types of relations in WN18.

B Training TransE using PyKEEN

PyKEEN is a Python package designed for training
and evaluating KG embedding models. It simply
describes the training of the knowledge embedding
model in the form of a pipeline. Figure 6 shows the
code for training the knowledge embedding model.
A KG embedding model can be trained by speci-
fying the training conditions in PyKEEN (e.g., the
model, dataset name, and number of dimensions).

C GLUE task

The GLUE is the common language comprehen-
sion task in NLP. It consists of nine tasks: two
single-sentence tasks (SST-2, CoLA), three sen-
tence similarity tasks (MRPC, STS-B, QQP), and
four natural language inference (NLI) tasks (MNLI,
QNLI, RTE, WNLI). Following Zhang et al. (2019),
we evaluated ILKA for eight tasks excluding WNLI.
WNLI was excluded from the evaluation data be-
cause none of the benchmark methods were evalu-
ated against it. The reasons are described in (Devlin
et al., 2019).

Code 1 Training TransE in PyKEEN
1: modeldir = "dirname"
2: model = pipeline(
3: model=’TranE’,
4: dataset=’wn18’,
5: model_kwargs=dict(
6: embedding_dim=50,
7: ),
8: training_kwargs=dict(
9: num_epochs=1000,

10: batch_size=128,
11: checkpoint_name=’checkpoint.pt’,
12: checkpoint_frequency=50,
13: checkpoint_directory=dirname,
14: ),
15: )

Figure 6: Code for training the knowledge embedding
model in PyKEEN. This model uses WN18 with TransE.

D Training Runtime

Figure 7 shows the training runtimes of
ILKARoBERTa over three epochs of fine tun-
ing in the CoLA, STS-B, MRPS, and RTE
of the GLUE task. Plotted are the averages of
five training runs under each condition. The
fine-tuning time of ILKARoBERTa on these tasks
was approximately 10 minutes.

Figure 7: Training runtime for fine-tuning (epochs = 3).
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Abstract
Generic statements such as “ducks lay eggs”
make claims about kinds, e.g., ducks as a cat-
egory. The generic overgeneralization effect
refers to the inclination to accept false uni-
versal generalizations such as “all ducks lay
eggs” or “all lions have manes” as true. In
this paper, we investigate the generic overgen-
eralization effect in pre-trained language mod-
els experimentally. We show that pre-trained
language models suffer from overgeneraliza-
tion and tend to treat quantified generic state-
ments such as “all ducks lay eggs” as if they
were true generics. Furthermore, we demon-
strate how knowledge embedding methods can
lessen this effect by injecting factual knowl-
edge about kinds into pre-trained language
models. To this end, we source factual knowl-
edge about two types of generics, minority
characteristic generics and majority character-
istic generics, and inject this knowledge us-
ing a knowledge embedding model. Our re-
sults show that knowledge injection reduces,
but does not eliminate, generic overgeneraliza-
tion, and that majority characteristic generics
of kinds are more susceptible to overgeneral-
ization bias. We release the dataset and code1.

1 Introduction

Generics are sentences such as “tigers have stripes”
that express generalizations about kinds, although
they are not universal or without exceptions. For
example, there are albino tigers that do not have
stripes. Even though there are exceptions, generics
are regarded as true. However, universally quanti-
fied statements such as “all ducks lay eggs” should
be perceived as false as they can easily be inval-
idated because the quantifier all does not allow
exceptions; it is only mature female ducks that are
capable of laying eggs.

Empirical data from linguistics studies show that
children and adults often tend to treat quantified

1https://github.com/sello-ralethe/
GOG-in-PLMs

PLM PLM+KEPLER

# BERT RoBERTa BERT RoBERTa

1 All Some Mountain Male
2 Most Most Young Mountain
3 Some All Male Sea
4 Every Many Most Some
5 Many Even Some Most

Table 1: The top 5 words predicted by BERT and
RoBERTa for filling the mask in the generic “[MASK]
lions have manes”. The outputs are shown before and
after knowledge injection with KEPLER.

statements such as “all tigers have stripes” as if they
were generics (Khemlani et al., 2007; Hollander
et al., 2002). Leslie et al. (2011) term this phenom-
ena the generic overgeneralization (GOG) effect
and allot it to a cognitive tendency that causes peo-
ple to overgeneralize from the truth of a generic
(“lions have manes”) to the truth of a corresponding
universal statement (“all lions have manes”).

Pre-trained language models (PLMs) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019b) learn useful language representation
from large-scale unstructured text and are able to
store information about the world in their parame-
ters (Clark et al., 2019; Liu et al., 2019a; Rogers
et al., 2020). In this paper, we investigate the
GOG effect in PLMs, and ask if embedding fac-
tual knowledge about kinds during pre-training can
reduce this effect.

First, we investigate if PLMs can improve the
classification accuracy of distinguishing between
generic and non-generic statements. We construct
datasets of minority and majority characteristic
generics of kinds, and use these to train and evalu-
ate a baseline model and the PLMs. Results show
that the pre-trained language models outperform
the baseline on the classification task. We also
demonstrate that the fine-tuned language models

3187



classify quantified statements such as “all ducks
lay eggs” as generics, indicating that the models do
overgeneralize and thus exhibit the GOG effect.

Next, we define a masked word prediction task
to test if the PLMs exhibit the GOG effect by
observing if the PLMs predict quantifiers to fill
the masked words. For example, we ask PLMs
to fill the masked position in a statement such as
“[MASK] lions have manes” (Table 1). The low
performance of the PLMs on this task, evaluated
using mean reciprocal rank and precision at 5, con-
firms the presence of the GOG effect.

Given these observations, we ask whether inject-
ing factual knowledge about kinds during language
model pre-training reduces the GOG effect. We
source factual knowledge about kinds from AS-
CENT KB (Nguyen et al., 2021), a knowledge base
which contains facet-enriched assertions together
with their associated context. The knowledge from
ASCENT KB is injected into the PLMs using KE-
PLER (Wang et al., 2021b), a model for embedding
knowledge into PLMs using entity descriptions and
entity relations data. Experimental results suggest
that the injected knowledge lessens the GOG effect,
but does not eliminate it completely.

Our contributions are: (i) we introduce new
datasets for evaluating generic overgeneralization
in PLMs, (ii) we demonstrate that PLMs exhibit the
GOG effect, (iii) we show that embedding factual
knowledge can reduce the GOG effect, and (iv) our
results suggest that majority characteristic generics
are more susceptible to overgeneralization bias. To
the best of our knowledge, we present the first work
investigating generic overgeneralization in PLMs.

2 Background

2.1 Genericity and the Generic
Overgeneralization Effect

Generics express generalizations about kinds, and
lack explicit quantifiers such as all, some and most.
Unlike quantified statements, generics do not com-
municate information about how many members
of the kind have the property in question.

Similarly, there is no direct relation between the
prevalence of a property among members of a kind
and the acceptability of the relevant generic. For
example, the generic statement “ducks lay eggs” is
accepted even though only mature fertile females
lay eggs, but the generic statement “ducks are fe-
male” is rejected (Leslie et al., 2011).

If people believe that the statement “ducks lay

eggs” is true, they will tend to accept a quantified
statement such as “all ducks lay eggs”, because re-
sorting to a default operation saves cognitive effort.
This phenomena is called the generic overgeneral-
ization (GOG) effect and is defined as “overgener-
alizing from the truth of a generic to the truth of the
corresponding universal statement” (Leslie et al.,
2011, p. 17).

Quantifiers have been shown to influence the
GOG effect, but the question of which types of
quantified statements are susceptible to overgen-
eralization has not been resolved yet (Karczewski
et al., 2020).

In this paper we focus on minority characteristic
generics and majority characteristic generics. Mi-
nority characteristic generics include generics such
as “lions have manes”, which are only true about
a minority of the kind and usually refer to gender-
related properties. Conversely, majority charac-
teristic generics include generics such as “tigers
have stripes”, which refer to properties that are
directly related to the nature of the kind and are
prevalent, though not universal, among members of
the kind (Prasada et al., 2013). Majority character-
istic generics do not need to express exceptionless
universal generalizations, since some tigers (e.g.,
albino tigers) may fail to possess the property.

2.2 Genericity in NLP

Genericity is a key component in the study of hu-
man cognition because it demonstrates our inclina-
tion to organize our experience of the world into
categories, kinds or classes (Lazaridou-Chatzigoga,
2019). The importance of generic language has
been recognized in the artificial intelligence and
natural language processing community for tasks
that involve knowledge acquisition, ontology devel-
opment, and semantic inference (Monahan et al.,
2015; Zhou et al., 2015).

Reiter and Frank (2010) developed a corpus-
based supervised learning approach for identi-
fying generic noun phrases in context, using
linguistically-motivated features in a Bayesian net-
work classifier. Their experiments were restricted
to generic noun phrases, as at the time there were
no corpora available that contain annotations for
genericity at the sentence level. Friedrich and
Pinkal (2015) presented a discourse-sensitive gener-
icity labeler, using Conditional Random Fields as
a sequence labeler. Their experiments showed that
context information improves accuracy, and their
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model outperforms the approach proposed by Re-
iter and Frank (2010).

Govindarajan et al. (2019) proposed a semantic
framework for modeling linguistic expressions of
generalization, suggesting that such expressions
should be captured in a continuous multi-label sys-
tem, rather than a multi-class system. This was
accomplished by decomposing categories such as
episodic, habitual, and generic into simple refer-
ential properties of predicates and their arguments.
The framework was used to construct a dataset
covering the full Universal Dependencies English
Web Treebank. Furthermore, Govindarajan et al.
(2019) presented models for predicting expressions
of linguistic generalization, which combine hand-
engineered type- and token-level features with
static and contextual learned representations.

In summary, although multiple prior works cover
genericity in NLP, the generic overgeneralization
effect has not yet been investigated specifically.

2.3 Knowledge Enhanced PLMs

Incorporating commonsense knowledge is neces-
sary and beneficial for language inference (LoBue
and Yates, 2011; Bowman et al., 2015; Rashkin
et al., 2018b), reading comprehension (Mihaylov
and Frank, 2018; Rashkin et al., 2018a), and gener-
ation based question answering (Chen et al., 2020).
Recent research has shown that PLMs do not suffi-
ciently capture factual commonsense world knowl-
edge from the text used in their pre-training (Wang
et al., 2021a; Yu et al., 2022; Gong et al., 2020). To
address this problem, knowledge embedding meth-
ods have been proposed with the aim of encoding
the relational facts in knowledge graphs through
entity embeddings (Liu et al., 2020; Tang et al.,
2020; Dai et al., 2020).

In this paper, we implement KEPLER (Wang
et al., 2021b) to inject factual knowledge into PLMs
(BERT and RoBERTa) with the aim of reducing the
GOG effect. KEPLER jointly optimizes parameters
with knowledge embedding and masked language
modelling objectives to blend factual knowledge
with language representations. The texts and en-
tities are encoded into a unified semantic space
using a single PLM encoder. For the knowledge
embedding objective, entity descriptions are en-
coded as entity embeddings and are trained simi-
larly to other knowledge embedding methods such
as AutoETER (Niu et al., 2020), which is a knowl-
edge graph embedding framework with automated

entity type representation. The masked language
modelling objective is implemented using existing
approaches such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019b).

3 The GOG Effect Evaluation Task

We introduce the GOG effect evaluation task, de-
scribe how the datasets were created, and discuss
how the factual knowledge about kinds that can be
used for knowledge injection was extracted.

3.1 Task Definition

We introduce two tasks: a classification task, and
a masked language modelling task. The classifica-
tion task evaluates whether a model can classify
a statement as generic or non-generic: PLMs can
be fine-tuned on this task using the training data
provided. However, this task does not evaluate the
GOG effect directly.

Secondly, we propose a masked language mod-
elling task to evaluate if PLMs exhibit the GOG
effect. We mask the position preceding a generic
statement and use the PLM to predict the token.
For example, given the generic “lions have manes”,
we ask a PLM to fill the blank in “[MASK] lions
have manes”. We use mean reciprocal rank (MRR)
on the predicted word distribution to evaluate the
PLM’s ability to fill the masked position; preci-
sion at 5 (P@5) measures the relevance of top 5
predicted words. We evaluate whether one of the
following universal quantifiers are predicted: all,
every, most, some, few and many. Here, we do not
consider the truthfulness of the quantified generic
statement; that is, although the resulting quantified
statement might not be factual, our aim is to eval-
uate if the PLMs would give a high probability to
quantifier tokens when asked to predict the mask
token. The higher the rank of the quantifiers, the
stronger the PLM exhibits the GOG effect; a very
low rank or low precision would indicate that the
PLM does not exhibit the GOG effect.

3.2 Task Data

The proposed tasks focus on minority and majority
characteristic of kind generics. These are generics
that are only true about a minority or majority of a
kind. We created a list of animals, which includes
reptiles, fish, birds, mammals and amphibians, and
used it to sample generic statements from Generic-
sKB (Bhakthavatsalam et al., 2020). GenericsKB is
a large repository of 3.4M standalone generics har-
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Animal
Types

ASCENT KB
Triplets

Generic
Statements

Minority
Generics

Majority
Generics

Amphibians 18 6 783 1 856 256 414
Reptiles 31 18 349 4 266 598 862
Fish 60 38 633 5002 471 788
Birds 76 63 967 10 604 1 051 1 811
Mammals 263 275 101 38 640 3 508 4 875

Total 448 402 833 60 368 5 884 8 750

Table 2: Datasets statistics. The minority and majority characteristic generic statements are used for evaluation
and excluded from the other generic statements used for training.

vested from a webcrawl of 1.7B sentences. Gener-
icsKB was constructed by first using a set of rules
to identify candidate standalone generic sentences,
and then applying a crowdsource-trained BERT
classifier to assign a confidence to each generic
sentence (Bhakthavatsalam et al., 2020).

Our list contains animals that are present in both
GenericsKB and in ASCENT KB; the latter is used
to sample factual assertions for each animal (see
§3.3). For each animal, we sampled generic sen-
tences with an associated confidence score greater
than 0.5. Table 2 shows the statistics of the datasets
we constructed. In total, we have three disjoint
generic statements datasets.

To construct the minority characteristic generics
dataset, we created a list of identifiers to sample
generic statements about each animal from Gener-
icsKB: female, male, infant, young, adult, mature,
and old. Furthermore, we sampled generic state-
ments from GenericsKB that have existential quan-
tifiers some and few. In the final dataset, we re-
moved the identifier words and the quantifiers from
all generic sentences. For example, a generic state-
ment such as “male lions have manes” is stored
in the minority characteristic generics dataset as
“lions have manes”.

We similarly constructed the majority charac-
teristic generics dataset by sampling quantified
generic statements from GenericsKB that had these
quantifiers: all, many, every, and most. Quantifiers
were also removed from the generic statements be-
fore adding them to the dataset. For example, a
generic statement such as “all zebras have differ-
ent stripes” is stored in the majority characteristic
generics dataset as “zebras have different stripes”.

The third dataset consists of other types of
generic statements about the animals in our list.
We use this dataset to train models for the classi-

fication task and to further pretrain the language
models, while the gold minority and majority char-
acteristic generics datasets were used for evaluation
and knowledge probing.

Additionally, we created a dataset of non-generic
statements for training the classifiers by sampling
sentences with a confidence score of les that 0.3
from GenericsKB. This dataset contains statements
such as “a pitbull mauled a child” and “the snake
laid some eggs”. These statements are not generics
because they apply only to a specific individual
member of a kind.

3.3 Commonsense Knowledge Data

In order to perform PLM knowledge injection us-
ing KEPLER we need factual knowledge in the
form of <Subject, Predicate, Object> triplets, and
textual description data for each subject in a given
triplet. We use the list of animals to sample SPO
triplets from ASCENT KB (Nguyen et al., 2021)
as a source of factual knowledge. For each ani-
mal in our list, we webcrawled A-Z-Animals.com2

and scrapped textual data that include description
like classification and evolution, anatomy and ap-
pearance, distribution and habitat, behaviour and
lifestyle, reproduction and life cycles, and diet and
prey. This information is then used as entity de-
scriptions for each subject in the SPO triplets. For
each SPO triplet, we align the textual description
data with each subject in the triplet. For example,
given a triplet <elephant, uses, its trunk>, we align
the textual data about Elephants crawled from A-Z-
Animals.com. Table 2 shows the number of SPO
triplets extracted from ASCENT KB for each of
the different types of animals in our list.

The factual data includes general information
about the kinds, and makes exceptions to generic

2https://a-z-animals.com/animals/
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statements salient. For example, existence of al-
bino tigers implies that not all tigers have stripes.
Therefore we hypothesize that the factual knowl-
edge could be used to reduce the GOG effect in
language models with respect to universal majority
and minority characteristic generics. For majority
characteristic generics, the factual data includes
information about differences between sub-kinds
of a given kind, such as the color of fur and type of
food. For minor characteristic, it contains knowl-
edge that emphasizes gender differences such as
the different sizes or different roles of males and
females.

4 Task Results

4.1 Generics Classification Task

First we train and evaluate models to classify state-
ments as generics or not. As a baseline, we train
a bi-directional LSTM on the generic and non-
generic statements training dataset (which excludes
the minority and majority characteristic generics).
We use the base versions of BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019b) as PLMs
and fine-tune them on the same classification task.

For the classification task, we had 60k generic
statements, and sampled 50k non-generic sen-
tences from GenericsKB, which resulted in 110k
training sentences for the classification task. From
these, we used 20% of the sentences for testing
and then used the held out minority and majority
characteristic generics data for evaluation.

We report the F1-score and accuracy of the gener-
ics classification in Table 3, evaluated using the
minority generics dataset and majority generics
dataset. The results show that, as expected, the
PLMs outperformed our baseline on the classifica-
tion task.

4.2 The GOG Effect Evaluation Task

In this evaluation, we use the generics training data
(not include minority and majority characteristic
generics) to further pretrain the PLMs. The masked
token prediction task is used to determine if the
PLMs exhibit the GOG effect. We implement KE-
PLER (Wang et al., 2021b) to inject factual knowl-
edge into the PLMs, using the data extracted from
ASCENT KB (§3.3). The presence of quantifiers
in the highest-ranked words that the PLMs predict
in the masked positions would indicate that the
PLMs exhibit the GOG effect. For each minority
or majority characteristic generic statement in our

datasets, we evaluate whether one of the follow-
ing universal quantifiers are predicted: all, every,
most, some, few and many. We conduct separate ex-
periments for minority characteristic generics and
majority characteristic generics in order to demon-
strate which type of generics is more susceptible to
overgeneralization bias.

The results in Tables 4 and 5 show that the MRR
and P@5 scores are considerably lower after knowl-
edge injection for both BERT and RoBERTa. This
means that knowledge injection with KEPLER de-
creases the likelihood of predicting quantifiers, and
therefore reduces the GOG effect. The scores of
majority characteristic generics are higher than
those of minority characteristic generics, indicat-
ing that majority characteristic generics are more
susceptible to overgeneralization effect.

However the injection of factual knowledge re-
sults in a bigger reducing in the GOG effect for
majority characteristics, such that the overgener-
alization scores on minority and majority charac-
teristics are very similar after knowledge injection.
We postulate that this could be due to the quantity
of factual knowledge that made exceptions more
salient for majority characteristic generics. That
is, a higher number of triples sampled from AS-
CENT KB contain factual knowledge about major-
ity characteristic of kinds than factual knowledge
about minority characteristic of kinds. Thus, more
knowledge about majority characteristic of kinds
was injected in the PLMs compared to knowledge
about minority characteristic of kinds.

As a qualitative example, we asked BERT
and RoBERTa to fill in the mask in the state-
ment “[MASK] lions have manes” before and after
knowledge injection (Table 1). Without knowledge
injection, both models exhibits a preference for
universal quantifiers, although RoBERTa ranks the
conditional quantifier some highest, which suggests
less overgeneralization than BERT which ranks all
at the top. After knowledge injection the top three
words are no longer quantifiers, which shows that
overgeneralization is reduced. However, the pres-
ence of most among the top 5 predictions indicates
that the GOG effect has not been eliminated com-
pletely in either model.

5 Probing the Injected Knowledge

The results reported in the previous section war-
rant us to probe the injected knowledge in order to
determine if the PLMs “understand” the injected
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Minority Generics Majority Generics

Model F1 Accuracy F1 Accuracy

Bi-LSTM 0.80 0.83 0.82 0.86
BERT 0.88 0.90 0.89 0.91
RoBERTa 0.90 0.93 0.92 0.95

Table 3: Results of the generics classification task, comparing the PLMs (BERT and RoBERTa) against a Bi-LSTM
baseline on minority and majority characteristic generics datasets.

PLM PLM+KEPLER

Model MRR P@5 MRR P@5

BERT 0.326 0.305 0.137 0.106
RoBERTa 0.329 0.307 0.135 0.108

Table 4: Mean Reciprocal Rank (MRR) and Precision
at 5 (P@5) of universal quantifiers on the GOG ef-
fect evaluation task for minority characteristic generics.
We report the scores before and after injecting factual
knowledge into the PLMs with KEPLER. Lower scores
indicate less overgeneralization.

PLM PLM+KEPLER

Model MRR P@5 MRR P@5

BERT 0.337 0.318 0.138 0.109
RoBERTa 0.428 0.411 0.152 0.117

Table 5: Mean Reciprocal Rank (MRR) and Precision
at 5 (P@5) of universal quantifiers on the GOG ef-
fect evaluation task for majority characteristic generics.
We report the scores before and after injecting factual
knowledge into the PLMs with KEPLER. Lower scores
indicate less overgeneralization.

factual knowledge. For example, do the PLMs un-
derstand that it is only mature, male lions that can
have manes? Furthermore, do PLMs, with factual
knowledge, correctly predict relevant tokens that
could make quantified generic statements true?

5.1 Quantified Statement Classification

We fine-tune the knowledge-enhanced PLMs on
the generics classification task (§4.1) and test if
quantified statements are classified as generics. We
quantify the minority characteristic generics with
the quantifiers many and most, and the majority
characteristic generics with few and some. This al-
lows us to falsify the generics in both datasets. For
example, the statement “most lions have manes” is
not a true generic statement because only a minor-

ity of lions have manes. Similarly, “few tigers have
stripes” is also not a true generic statement because
most tigers do have stripes. Although the classi-
fiers were trained to classify if a given statement
is a generic, we aim to evaluate if the PLMs can
use the injected knowledge to resolve that the falsi-
fied generics are wrongly quantified statements and
should be classified as non-generic. This is because
the injected knowledge has factual information that
should contradict the falsified generics.

Table 6 reports the accuracy of zero-shot clas-
sification of universally quantified statements as
non-generics, before and after knowledge injection.
Knowledge injection almost doubles classification
accuracy, but all the models still overwhelmingly
predict that the statements are true generics. Knowl-
edge injection leads to a bigger (absolute) improve-
ment in accuracy for majority characteristic gener-
ics than for minority characteristic generics.

Based on this result, we postulate that the PLMs
do not understand that the quantifier all in a noun
phrase such as all lions implies male + female li-
ons. This is made evident by the presence of quan-
tifiers when asking to fill in the blank for a generic
sentence such as “[MASK] lions have manes”. We
sampled factual knowledge from ASCENT KB that
emphasizes minority and majority characteristic of
kinds. This includes assertions such as “male lions
have manes”; therefore, natural language inference
should lead to the conclusion that “all lions have
manes” cannot be a true generic statement because
the factual knowledge emphasized gender differ-
ences, thus making exceptions more salient.

5.2 GOG Effect Evaluation Probing

We extend the evaluation of the effect of PLM
knowledge injection on the GOG effect (§4.2) to
probe whether knowledge injection enables the
model to distinguish between which quantifiers
make a minority or majority characteristic generics
true and which quantifiers make them false. For ex-
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Quantified Minority Generics Quantified Majority Generics

Model PLM PLM+KEPLER PLM PLM+KEPLER

BERT 0.083 0.14 0.10 0.18
RoBERTa 0.064 0.12 0.081 0.19

Table 6: Accuracy of classifying universally quantified versions of minority and majority generic statements in the
test set as false, using the PLM generics classifiers, before and after injecting factual knowledge with KEPLER.

# BERT RoBERTa

1 Eyes Heads
2 Manes Eyes
3 Heads Manes
4 Teeth Tails
5 Tails Teeth

Table 7: The top 5 words predicted by BERT and
RoBERTa, with injected factual knowledge, for filling
the mask in the generic “most lions have [MASK]”.

# BERT RoBERTa

1 Mountain Male
2 Female Female
3 White Mountain
4 All Young
5 Young All

Table 8: The top 5 words predicted by BERT and
RoBERTa, with injected factual knowledge, for filling
the mask in the generic “[MASK] lions are animals”.

ample, the token “stripes” should be ranked among
the top tokens that the PLM predict when asked
to fill in the mask token in the statement “most
tigers have [MASK]”. On the other hand, the PLM
should not predict the token “stripes” when asked
to fill in the blank for the statement ‘few tigers have
[MASK]”.

For this probing task, we evaluate statements us-
ing four quantifiers: few, many, most, and some. We
quantify both minority and majority characteristic
generics and mask the final token in the statement
(corresponding to the object or predicative com-
plement). We generate probing datasets using the
template: quantifier + (generic statement - final
token) + [MASK].

We report the mean reciprocal rank of both mi-
nority and majority characteristic generics for each
quantifier. If the model successfully learns how to
interpret each quantifier, the masked final tokens

should be ranked higher together with a quantifier
that makes the generic statement true and lower
with the quantifier that make the generic statement
false. Table 9 shows the results of this probing task.

The results show that for minority characteris-
tic generics the PLMs correctly assign a higher
masked token MRR to true statements quantified
by few or some than to statements quantified by
many or most. Conversely, for majority characteris-
tic generics the PLMs also correctly assign higher
MRR when statements are quantified by many or
most instead of with few or some. However, state-
ments with the quantifier some are still ranked rela-
tively high, indicating that the PLMs struggle more
to interpret that quantifier correctly.

The MRR for masked tokens in true statements
is higher for majority characteristics than minor-
ity characteristics, but the MRR for false state-
ments is relatively lower on minority character-
istics. Despite learning the distinction between
different kinds of quantifiers, the MRR across the
models and quantifiers is arguably still too high
with quantifiers that falsify a generic statement.

As an example, Table 7 shows the tokens pre-
dicted for the statement “most lions have [MASK]”.
Here we expect the original token, “manes”, not
to feature among the top predicted tokens for the
quantifier most because the injected factual data
should make salient the knowledge that it is only a
minority population of lions that have manes. How-
ever the two PLMs still rank “manes” as second and
third most likely token, respectively. In contrast,
when the first token in the statement is masked, i.e.,
“[MASK] lions are animals”, the only quantifier in
the top 5 is all, at position 4 and 5.

6 Conclusion

We investigated the generic overgeneralization
(GOG) effect in PLMs and demonstrated that PLMs
do overgeneralize and treat quantified statements
as if they were generics. We introduced datasets on
minority and majority characteristic generics that
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Minority Generics with Quantifier Majority Generics with Quantifier

Model Few Some Many Most Few Some Many Most

BERT 0.58 0.69 0.43 0.45 0.51 0.65 0.71 0.74
RoBERTa 0.61 0.70 0.38 0.40 0.49 0.63 0.76 0.80

Table 9: Mean Reciprocal Rank (MRR) scores of masked final tokens using PLMs with knowledge injection under
different quantifiers. Scores indicate how each model perform on the probing task for each quantifier when applied
to minority and majority characteristic generics.

can be used to evaluate the GOG effect, as well as a
source of factual knowledge about kinds to evaluate
PLM knowledge embedding methods. Our results
suggest that knowledge injection reduces the GOG
effect in PLMs but does not eliminate it, and that
majority characteristic generic statements are more
susceptible to overgeneralization bias. Probing the
models after knowledge injection, we were able
to determine which quantifiers make minority or
majority characteristic generics to remain as true
quantified generic statements and which quantifiers
make the generics to become non-generic state-
ments.

Our paper makes the case for future research
on methods for injecting commonsense into PLMs
more effectively so that they can perform better
natural language inference based on the knowledge
presented. This would be an important step towards
advancing commonsense reasoning in PLMs.
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Abstract

This paper presents a comprehensive set of
probing experiments using a multilingual lan-
guage model, XLM-R, for temporal relation
classification between events in four languages.
Results show an advantage of contextualized
embeddings over static ones and a detrimen-
tal role of sentence level embeddings. While
obtaining competitive results against state-of-
the-art systems, our probes indicate a lack of
suitable encoded information to properly ad-
dress this task.

1 Introduction

Time is a pervasive element of human life
with no counterpart in any other cognitive do-
mains (Bonomi and Zucchi, 2001). Such perva-
siveness is mirrored in natural languages through
sets of devices that allows speakers to refer to time,
to reason about time and things that unfold in time.
Reasoning about time is one of the central com-
ponents of common sense knowledge (Pianesi and
Varzi, 1996; Boyd, 2010; Geva et al., 2021) and
its modeling has been at the core of many early
approaches in Computational Linguistics and Ar-
tificial Intelligence (Schank and Abelson, 1975;
McDermott, 1982; Allen, 1984; Passonneau, 1988;
Moens and Steedman, 1988). More recently, spe-
cific Natural Language Understanding (NLU) tasks
related to time have been developed, ranging from
the identification of temporal expressions (Mani
et al., 2001; Mazur and Dale, 2010), to measur-
ing the duration of events (Pan et al., 2006b,a;
Zhou et al., 2019), and the ability to order them
chronologically(Mani et al., 2003; UzZaman and
Allen, 2010; Ning et al., 2018; Wen et al., 2021).
More complex tasks have challenged models to
extract storylines (Chambers and Jurafsky, 2008;
Minard et al., 2015; Caselli and Inel, 2018), under-
stand narratives (Mostafazadeh et al., 2017, 2020;
Lal et al., 2021), and answer temporally related
questions (Llorens et al., 2015; Ning et al., 2020).

Recent work has focused on recasting temporal
relation classification as a Natural Language In-
ference (NLI) task where fine-tuned pre-trained
language models (PTLMs) have achieved good re-
sults (Vashishtha et al., 2020).

Embedding representations, both static and con-
textual, have shown to play a key role to improve
systems’ results on different time-related bench-
marks, especially for the classification of tempo-
ral relations between pairs of events (Mirza and
Tonelli, 2016; Cheng et al., 2020). When it comes
to contextualized embeddings the probing of such
models for temporal knowledge has not been prop-
erly investigated yet. If we embrace the vision of
PTLMs as large repositories of linguistic knowl-
edge (Derby et al., 2021; Mosbach et al., 2020; Mi-
aschi et al., 2020), it is a natural question to probe
these models for their knowledge about events and
time. We present an extensive study on temporal
relation probing of PTLMs using five temporally
annotated corpora in four languages (i.e., English,
French, Spanish, and Italian). Although the se-
lected languages all belong to Indo-European fam-
ily, they present differences for the tense-mood-
aspect (TMA) system while showing similarities at
the lexico-pragmatic level. Our probing tasks fo-
cus on temporal ordering of pairs of events (E–E),
either in the same sentence or in different ones.

Our contributions Our work has three contribu-
tions: (i) it is the first work to probe a multilingual
PTLM, XLM-R base, for temporal knowledge
between event pairs; (ii) we study the impact of
multilingual contextualized representations against
monolingual counterparts based on static word em-
beddings; (iii) we compare zero-shot PTLM against
fine-tuned models for temporal reasoning to inves-
tigate whether the models have acquired real tem-
poral knowledge. Code and data are available.1

1https://github.com/irenedini/tlink_
probing
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2 Data Overview

We have selected five corpora annotated with lan-
guage specific adaptations of ISO-TimeML (Puste-
jovsky et al., 2010). ISO-TimeML is, at the same
time, an annotation meta-model for marking events,
temporal expressions, and relations between them,
and a full-fledged annotation language. ISO-
TimeML has 13 values used to classify tempo-
ral relations, based on Allen’s interval temporal
logic (Allen, 1983) where each value expresses
how an event chronologically relates to another
event or a temporal expression. In the following
paragraphs we present a short overview of the five
corpora we have used. For our experiments, we
have extracted all temporal relations between event
pairs, either occurring in the same sentence or in
difference sentences. Table 1 presents a summary
of the temporal relations between events for each
corpus.

EN-TimeBank The English TimeBank (Puste-
jovsky et al., 2003) is a corpus of 183 documents
manually annotated following the TimeML anno-
tation guidelines (Saurı et al., 2006). The whole
corpus has gone through a curation phase for the
SemEval 2013 TempEval-3 task (UzZaman et al.,
2013), where an extra test set of 20 documents
has been annotated with the same guidelines. In
our experiments, we follow the TempEval-3 split
for training and test distributions, excluding the
automatically annotated data (i.e., silver data dis-
tribution). EN-TimeBank uses the full 13 temporal
values from ISO-TimeML to classify event-event
relations.

IT-TimeBank The Italian TimeBank (Caselli
et al., 2011) has 254 documents, comparable in
size and annotation to the EN-TimeBank. We have
followed the official split into train and test from
the EVALITA 2014 EVENTI task (Caselli et al.,
2014). Similarly to EN-TimeBank, the 13 fine-
grained temporal values have been used to classify
temporal relations.

FR-TimeBank French TimeBank (Bittar et al.,
2011) is a corpus of 107 documents in French anno-
tated following an adaptation to French of TimeML.
The corpus does not present an official split into
train and test. To obviate to this, we have first
extracted all temporally annotated event pairs and
then created a train and test distribution following
a 75-25 split. FR-TimeBank also uses the full 13

temporal values for classifying temporal relations

EN-TB-Dense The TimeBank-Dense cor-
pus (Cassidy et al., 2014) contains only 36
documents from the training portion of the
EN-TimeBank. EN-TB-Dense approximates a
complete graph of all possible temporal relations
over events and temporal expressions by labeling
all pairs locally, i.e., same sentence and adjacent
sentence pairs. EN-TB-Dense simplifies the set of
possible temporal relation values by reducing it to
five and introducing a new value, VAGUE, for all
relations that do not carry a clear semantics.

ES-TimeBank The Spanish TimeBank (Saurı
and Badia, 2012) contains 210 documents in Span-
ish. We have followed the official release into train
and test splits. Similarly to the EN-TimeBank-
Dense, the authors have simplified the set of pos-
sible temporal relations to five plus VAGUE. How-
ever, the overlap is limited only to BEFORE AFTER,
with the other three being new.

3 Temporal Probing

Our probing task investigates the capabilities of
PTLMs to encode information about events and
their temporal ordering. To probe such informa-
tion across multiple languages, we use XLM-R
base (Conneau et al., 2020),2 a large multilingual
model that has achieved state-of-the-art results on
many NLU tasks. Following previous work (Ten-
ney et al., 2019; Jawahar et al., 2019; Vulić et al.,
2020; de Vries et al., 2020, inter alia), we extract
embedding representations from each layer and use
them to train a linear SVM whose objective is to
predict the value of a temporal relation between a
given pair of events. By default, we feed the SVM
with four concatenated embeddings: the embed-
dings of the sentence containing each event in the
pair and those of each event. In case the event pair
occurs in the same sentence, we duplicate the sen-
tence representation. Sentences are represented by
averaging the embeddings of the tokens excluding
XLM-R base’s special tokens.

We compare the default settings with three vari-
ations: (i) we use only the embeddings of the
events in the pair; (ii) we use the embeddings
from two XLM-R base models previously fine-
tuned with the EN-TimeBank and EN-TB-Dense

2https://huggingface.co/
xlm-roberta-base

3198



EN-TimeBank IT-TimeBank FR-TimeBank EN-TB-Dense ES-TimeBank
Temporal Relation Train Test Train Test Train Test Train Test Train Test

BEFORE 180 83 167 38 107 32 884 378 834 62
AFTER 184 90 79 15 36 10 729 275 499 47
INCLUDES 67 15 47 19 2 3 207 57 – –
IS_INCLUDED 64 29 46 28 2 1 265 52 – –
DURING 4 0 0 0 125 30 – – – –
SIMULTANEOUS 132 45 131 46 26 9 72 22 – –
IMM_BEFORE 11 1 2 1 6 1 – – – –
IMM_AFTER 5 1 3 0 0 1 – – – –
BEGINS 11 0 0 0 15 5 – – – –
BEGUN_BY 11 0 1 0 5 1 – – – –
ENDS 4 1 0 1 3 2 – – – –
ENDED_BY 21 0 2 0 7 1 – – – –
IDENTITY 140 15 217 50 78 42 – – – –

OVERLAP – – – – – – – – 4,478 307
BEFORE_OVERLAP – – – – – – – – 907 74
OVERLAP_AFTER – – – – – – – – 336 26
VAGUE – – – – – – 1,995 634 29 5

Table 1: Summary of the distribution of the temporal relations between pairs of events in all five corpora. For the
EN-TB-Dense, the values for the training are obtained by merging together the training and the development sets.

corpora recasted in forms of Natural Language In-
ference pairs for temporal reasoning as described
in Vashishtha et al. (2020); (iii) we use monolin-
gual static word embeddings obtained with the
word2vec skip-gram (w2v) model (Mikolov
et al., 2013) (see Appendix A for details). Lastly,
all probing variations are compared with a dummy
classifier predicting the majority class in each cor-
pus.

4 Results

Figure 1 summarizes the results for all corpora and
settings. Details per corpus are in Appendix B.

Although all probing models outperform their
respective baselines, our results further confirm
that temporal relation classification is a challenging
task. XLM-R embeddings consistently obtain the
best results across all languages and granularities of
the temporal relations, improving the performance
of static embeddings. With the exclusion of EN-
TB-Dense, the presence of sentence embeddings is
detrimental, confirming previous findings (Miaschi
and Dell’Orletta, 2020). Although temporal rela-
tions are a discourse phenomenon at the interface
of the semantics and pragmatics dimensions, it ap-
pears that the event only embeddings from XLM-R
already store sufficient semantic information to per-
form this task.

Regardless of the granularity of the temporal re-
lations, it clearly emerges from all the plots that the
best results for XLM-R are obtained between layers
6 and 8. Performances are consistently sub-optimal

for early layers, especially 1–4. For higher layers,
i.e., 10–12, results are disappointing, with the ex-
ception for English whose best probe is at layer
11.Given the task and previous findings on the en-
coding of linguistic knowledge in PTLMs (Tenney
et al., 2019; Jawahar et al., 2019), this is not fully
expected. Ideally, if PTLMs tend to encoded more
semantic features in the top layers, performances
for this task should not degrade on the top layers,
as we see for Spanish, Italian, and French, or, at
least, they should remain on a plateau.

A further finding concerns the role of fine-
tuned models for temporal reasoning, namely
XLM-R_tbd and XLM-R_tb. The models have
been fined-tuned using the English corpora EN-
TB-Dense and EN-TimeBank recasted for tem-
poral reasoning. We expected the embeddings
from these models to be more competitive than
basic XLM-R, but this is not the case. In general,
we observe a better performance for XLM-R_tbd
than XLM-R_tb, in-line with the results reported
by Vashishtha et al. (2020). The better results of
XLM-R_tbd hold also in cross-lingual settings, re-
gardless of the granularity of the temporal values
used in the specific corpus.

When comparing results across corpora, two di-
mensions are at play: the first is the granularity
of the temporal values; the second is the number
of training examples. A general pattern we ob-
serve is the following: the less temporal values
are to be learned, the better the results of a trained
model, provided that the annotated data are consis-
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Figure 1: Overview of the probing results across all corpora. For each plot, the x-axis reports the layer id of XLM-R
base, the y-axis reports the micro-F1. In the legend on the bottom left side, ns stands for “no sentence”; tbd and
tb refer to the fine-tuned XLM-R base models for temporal reasoning: tbd stands for EN-TB-Dense, tb stands
for EN-TimeBank.

tent. To better illustrate this, we focus our analysis
on the EN-TB-Dense and ES-TimeBank first. Both
corpora adopt coarse grained temporal values and
have the largest number of annotated data. Nev-
ertheless, the way the value VAGUE is used in the
two corpora is not the same. In EN-TB-Dense,
given the specific annotation framework, VAGUE

is used both in case of an existing temporal rela-
tion with an unclear semantics but also for event
pairs with no temporal relation. This is not the case
in Spanish. Such a difference is mirrored in the
results: as soon as we remove VAGUE, scores in
the EN-TB-Dense improve while they remain the
same in ES-TimeBank. When considering the cor-
pora with fine-grained temporal values, we observe
that the F1-score in EN-TimeBank is the lowest (in
absolute terms), while results are much better for
IT-TimeBank and FR-TimeBank. The differences
in this case can only be due to a more consistent ap-
plication of the annotation guidelines in Italian and
French than in English. Support to this claim can
be found in the fact that Italian and French have a
lower number of sentences in training, 695 and 412
respectively, than English, namely 834. To gain
insights, we have analyzed the overlapping events
between Train and Test splits, i.e., how many times
the same event appears in Train and Test, even if
coupled with a different event and with a differ-
ent temporal value. While FR-TimeBank has the
largest overlap (58%), IT-TimeBank has the lowest

(29%) and EN-TimeBank is in the middle (35%).
If it was just a matter of data, we would expect
the EN-TimeBank to obtain better F1-scores than
IT-TimeBank.

Comparison with state of the art is limited to EN-
TB-Dense and IT-TimeBank. No previous work
for this task is available FR-TimeBank and ES-
TimeBank, and for EN-TimeBank we only have
access to systems which classified temporal rela-
tions from raw text. Concerning the EN-TB-Dense,
the best system, SECT (Cheng et al., 2020), adopts
a multi-task learning approach using a GRU archi-
tecture. On the E–E classification it achieves an
F1-score 0.650, gaining 0.098 points with respect
to our best training layer. A more similar architec-
ture, CATENA (Mirza and Tonelli, 2016) a linear
SVM combining pre-trained word embeddings and
additional features, obtains an F1-score of 0.519,
only 0.012 points above us. As for Italian, the best
system, FBK-HTL-time (Mirza and Minard, 2014),
a feature-based linear SVM, achieves an F1-score
of 0.688, beating our approach of 0.062 points.

Statistical significance testing We also per-
formed statistical significance tests across all the
probing systems using the McNemar’s test. We
ran the significant tests using two different settings:
first by considering the last embedding layer of the
PTLMs and subsequently the embedding layer that
gave the best results for each probing. Details can
found in Appendix C.

3200



All probing experiments are consistently signifi-
cant when compared to their respective baselines,
with the exclusion of the EN-TimeBank corpus.

When focusing on the differences between the
PTLM embeddings and the static ones, the results
are more scattered, with different behaviors across
each dataset. We observe significant differences
in the majority of cases when sentence representa-
tions are excluded from the static embeddings. Two
datasets, ES-TimeBank and IT-TimeBank, present
peculiar behaviors when compared to the others.
For the ES-TimeBank, probes with PTLM embed-
dings tend to be not statistically significant with
respect to the static ones. The opposite trend, on
the contrary, can be observed for the IT-TimeBank.

Finally, across all the PTLM probes, a clear ten-
dency that emerges is that significant differences
can be observed only when using XML-R_tb
embeddings, while only in few cases the signifi-
cant difference can be observed when using the
XML-R_tbd embeddings.

5 Conclusion

This paper investigates the knowledge encoded in a
large multilingual PTLM, XLM-R base, for tem-
poral relation classification between pairs of events
in four languages and five corpora with varying
granularities of temporal values. Our results point
out that temporal relation classification between
events is very challenging and the linguistic knowl-
edge in XLM-R is limited to properly address it.
While contextual embeddings are more “powerful”
than static ones, current fine-tuned models for tem-
poral reasoning (Vashishtha et al., 2020) are not
helpful as one would expect. Our probes indicate
that adding more information, i.e., sentence repre-
sentations, to lexical entities is detrimental, mean-
ing that “global” semantic information is already
encoded at the lexical level. Finally, our models
are competitive with state-of-the-art systems, indi-
cating that improvements are due either to specific
architectures or extra features capturing additional
knowledge not available in the contextual embed-
dings.
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A Monolingual Static Embeddings

All monolingual static word embeddings have been taken from this repository: https://vectors.
nlpl.eu/repository/ . We have used the versions from the 2017 CoNLL shared task.

B Probes Models: Detailed Results

The following Tables presents detail results for each corpus from our experiments. We have highlighted in
green the best results for each corpus across all models. For each probe model, we have highlighted in
bold the best results. Scores correspond to micro-F1.

Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.409 0.435 0.432 0.464 0.465 0.475 0.492 0.486 0.468 0.461 0.507 0.496 –
XLM-R_NS 0.362 0.396 0.392 0.416 0.434 0.439 0.451 0.486 0.498 0.469 0.500 0.479 –
XLM-R_TBD 0.425 0.473 0.448 0.46 0.467 0.479 0.497 0.487 0.476 0.481 0.496 0.502 –
XLM-R_TB 0.418 0.432 0.418 0.455 0.447 0.461 0.459 0.437 0.444 0.432 0.416 0.428 –

W2V – 0.398
W2V_NS – 0.470

BASELINE – 0.447

Table B.1: Results on EN-TB-Dense

Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.564 0.593 0.57 0.601 0.618 0.622 0.645 0.664 0.66 0.651 0.655 0.656 –
XLM-R_NS 0.603 0.605 0.603 0.607 0.633 0.614 0.670 0.689 0.668 0.672 0.672 0.653 –
XLM-R_TBD 0.564 0.566 0.570 0.562 0.601 0.605 0.614 0.618 0.608 0.620 0.618 0.610 –
XLM-R_TB 0.580 0.555 0.595 0.605 0.607 0.610 0.633 0.643 0.633 0.631 0.626 0.601 –

W2V – 0.622
W2V_NS – 0.628

BASELINE – 0.589

Table B.2: Results on ES-TimeBank

Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.286 0.321 0.275 0.307 0.318 0.371 0.396 0.379 0.379 0.379 0.400 0.346 –
XLM-R_NS 0.264 0.300 0.336 0.300 0.307 0.336 0.332 0.368 0.371 0.389 0.404 0.354 –
XLM-R_TBD 0.293 0.307 0.311 0.336 0.361 0.393 0.382 0.393 0.339 0.336 0.357 0.282 –
XLM-R_TB 0.279 0.307 0.300 0.296 0.271 0.271 0.279 0.296 0.268 0.279 0.271 0.246 –

W2V – 0.279
W2V_NS – 0.268

BASELINE – 0.321

Table B.3: Results on EN-TimeBank
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Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.480 0.460 0.520 0.515 0.545 0.551 0.535 0.540 0.581 0.581 0.545 0.530 –
XLM-R_NS 0.490 0.540 0.545 0.551 0.591 0.621 0.621 0.591 0.606 0.616 0.586 0.601 –
XLM-R_TBD 0.460 0.470 0.505 0.535 0.510 0.535 0.510 0.515 0.535 0.586 0.545 0.566 –
XLM-R_TB 0.470 0.500 0.485 0.530 0.495 0.490 0.460 0.465 0.455 0.465 0.414 0.338 –

W2V – 0.369
W2V_NS – 0.444

BASELINE – 0.253

Table B.4: Results on IT-TimeBank

Layer score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12

XLM-R 0.338 0.324 0.338 0.396 0.424 0.482 0.511 0.511 0.482 0.460 0.446 0.439 –
XLM-R_NS 0.331 0.345 0.388 0.403 0.424 0.482 0.511 0.525 0.518 0.511 0.511 0.453 –
XLM-R_TBD 0.331 0.324 0.367 0.432 0.432 0.468 0.475 0.482 0.460 0.439 0.460 0.475 –
XLM-R_TB 0.353 0.345 0.324 0.388 0.353 0.388 0.410 0.381 0.396 0.345 0.353 0.295 –

W2V – 0.345
W2V_NS – 0.317

BASELINE – 0.216

Table B.5: Results on FR-TimeBank

C Statistical Testing

The Tables from C.1 to C.10 illustrate the results of the McNemar’s tests for each language and each
probing model (including the baseline based on the most frequent class). The values in all the Tables
correspond to p-values. The threshold of the α value for significance has been set to < 0.05.

C.1 PTLMs last layer
The Tables from C.1 to C.5 report the p-value scores for each language when using the last layer of each
PTLM.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.235 0.734 < 0.001 < 0.001 0.147 0.007
XLM-R_NS – 0.171 0.006 < 0.001 0.652 0.085
XLM-R_TBD – < 0.001 < 0.001 0.055 < 0.001
XLM-R_TB – 0.057 0.002 0.033
W2V – < 0.001 0.002
W2V_NS – 0.069
BASELINE –

Table C.1: Significance EN-TB-Dense - last layer.
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Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.911 0.037 0.014 0.136 0.203 0.003
XLM-R_NS – 0.053 0.024 0.181 0.271 0.006
XLM-R_TBD – 0.740 0.664 0.498 0.410
XLM-R_TB – 0.242 0.065 0.031
W2V – 0.736 0.057
W2V_NS – 0.006
BASELINE –

Table C.2: Significance ES-TimeBank - last layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.888 0.038 0.004 0.053 0.028 0.555
XLM-R_NS – 0.022 0.002 0.040 0.022 0.444
XLM-R_TBD – 0.358 1.000 0.760 0.343
XLM-R_TB – 0.386 0.624 0.033
W2V – 0.780 0.290
W2V_NS – 0.184
BASELINE –

Table C.3: Significance EN-TimeBank - last layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.029 0.435 < 0.001 0.024 0.556 < 0.001
XLM-R_NS – 0.419 < 0.001 < 0.001 0.024 < 0.001
XLM-R_TBD – < 0.001 0.001 0.171 < 0.001
XLM-R_TB – 0.047 < 0.001 0.009
W2V – 0.065 < 0.001
W2V_NS – < 0.001
BASELINE –

Table C.4: Significance IT-TimeBank - last layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R – 0.832 0.359 0.003 0.099 0.019 < 0.001
XLM-R_NS – 0.728 0.001 0.060 0.011 < 0.001
XLM-R_TBD – < 0.001 0.007 0.728 < 0.001
XLM-R_TB – 0.222 0.766 0.080
W2V – 0.327 0.005
W2V_NS – 0.038
BASELINE –

Table C.5: Significance FR-TimeBank - last layer.
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C.2 PTLMs best layer
The tables from C.6 to C.10 report the p-value scores for each language when using the best layer of each
PTLM.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (11) – 0.639 0.830 0.005 < 0.001 0.036 < 0.001
XLM-R_NS (11) – 0.901 0.017 < 0.001 0.081 0.003
XLM-R_TBD (12) – 0.013 < 0.001 0.055 < 0.001
XLM-R_TB (6) – < 0.001 0.608 0.430
W2V – < 0.001 0.002
W2V_NS – 0.069
BASELINE –

Table C.6: Significance EN-TB-Dense - best layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (8) – 0.198 0.037 0.152 0.067 0.124 0.002
XLM-R_NS (8) – < 0.001 0.005 0.001 0.004 < 0.001
XLM-R_TBD (8) – 0.597 0.935 0.740 0.251
XLM-R_TB (10) – 0.640 0.897 0.003
W2V – 0.736 0.057
W2V_NS – 0.006
BASELINE –

Table C.7: Significance ES-TimeBank - best layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (11) – 1.000 0.043 0.002 < 0.001 < 0.001 0.045
XLM-R_NS (11) – 0.066 0.003 < 0.001 < 0.001 0.035
XLM-R_TBD (9) – 0.241 0.097 0.052 0.691
XLM-R_TB (8) – 0.668 0.470 0.520
W2V – 0.780 0.290
W2V_NS – 0.184
BASELINE –

Table C.8: Significance EN-TimeBank - best layer.

Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (10) – 0.256 1.000 0.212 < 0.001 0.072 < 0.001
XLM-R_NS (7) – 0.382 0.015 < 0.001 0.003 < 0.001
XLM-R_TBD (10) – 0.177 < 0.001 0.036 < 0.001
XLM-R_TB (4) – 0.013 0.532 < 0.001
W2V – 0.065 < 0.001
W2V_NS – < 0.001
BASELINE –

Table C.9: Significance IT-TimeBank - best layer.
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Model XLM-R XLM-R_NS XLM-R_TBD XLM-R_TB W2V W2V_NS BASELINE

XLM-R (8) – 0.804 0.503 < 0.001 < 0.001 < 0.001 < 0.001
XLM-R_NS (8) – 0.286 0.003 < 0.001 < 0.001 < 0.001
XLM-R_TBD (8) – 0.015 0.009 0.002 < 0.001
XLM-R_TB (7) – 0.608 0.164 < 0.001
W2V – 0.327 0.005
W2V_NS – 0.038
BASELINE –

Table C.10: Significance FR-TimeBank - best layer.
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Abstract

We study the problem of integrating cogni-
tive language processing signals (e.g., eye-
tracking or EEG data) into pre-trained mod-
els like BERT. Existing methods typically fine-
tune pre-trained models on cognitive data, ig-
noring the semantic gap between the texts and
cognitive signals. To fill the gap, we propose
CogBERT, a framework that can induce fine-
grained cognitive features from cognitive data
and incorporate cognitive features into BERT
by adaptively adjusting the weight of cognitive
features for different NLP tasks. Extensive ex-
periments show that: (1) Cognition-guided pre-
trained models can consistently perform better
than basic pre-trained models on ten NLP tasks.
(2) Different cognitive features contribute dif-
ferently to different NLP tasks. Based on this
observation, we give a fine-grained explana-
tion of why cognitive data is helpful for NLP.
(3) Different transformer layers of pre-trained
models should encode different cognitive fea-
tures, with word-level cognitive features at the
bottom and semantic-level cognitive features
at the top. (4) Attention visualization demon-
strates that CogBERT can align with human
gaze patterns and improves its natural language
understanding ability.1

1 Introduction

Pre-trained models such as BERT (Devlin et al.,
2019), GPT (Radford and Narasimhan, 2018) and
RoBERTa (Liu et al., 2019) have brought promis-
ing improvements to natural language processing
(NLP) tasks, such as event prediction (Li et al.,
2019) and sentiment analysis (Hoang et al., 2019).

On the other hand, from a language processing
perspective, cognitive neuroscience studies the bi-
ological and cognitive processes underlying lan-
guage processing in human brains. Researchers
specifically designed pre-trained models to cap-
ture how the brain represents language meaning

1Our code will be released upon publication.
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Figure 1: Human attention in different settings. NR
(Normal Reading) means human reading without tasks.

(Schwartz et al., 2019; Toneva and Wehbe, 2019).
Prior work mainly incorporates cognitive signals
by explicitly fine-tuning the pre-trained model to
predict language-induced brain recordings.

However, this line of work cannot give a fine-
grained analysis and interpretation of why cogni-
tive data is helpful for NLP. This is of great im-
portance to guide future cognition-inspired NLP
studies on what kind of cognitive features should
be induced from cognitive data and how these cog-
nitive features contribute to NLP tasks. For exam-
ple, Figure 1 shows eye-tracking data from native
speakers of English, where Figure 1 (a) illustrates
the number of fixations during the normal reading
of humans. Figure 1 (b) and (c) show the num-
ber of fixations given the NLP task of sentiment
classification (SC) and named entity recognition
(NER), respectively. We can observe that human
attention is different for the same sentence, given
different NLP tasks. In particular, for the SC task,
people pay more attention to emotion words, such
as “terrible” and “chaos”. While for the NER task,
people tend to focus on named entity words, such
as “ISIS” and “Syria”. Unfortunately, prior studies
cannot give such fine-grained analysis by simply
fine-tuning pre-trained models on cognitive data.

To facilitate this, we propose CogBERT, a
cognition-guided pre-trained model. Specifically,
we focus on the effects of using eye-tracking data,
which provides gaze information from native speak-
ers by tracking eye movements and measuring fixa-
tion duration. Instead of directly fine-tuning BERT
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Name Independent Strands Index
Word Position ✓ Lower 1
Word Length ✓ Lower 2
NER Word ✓ Lower 3
Content Word ✓ Lower 4
Noun Phrase ✓ Upper 5
Emotion Word ✓ Upper 6
Active/Passive Aux

✓ Upper 7Poss/Prep Mod
Coordinating Conj
Prep/Adj Comp ✓ Upper 8Prep Obj

Table 1: Cognitive feature set. For syntactic features, to
avoid sparsity issue, we group active and passive aux,
poss and prep mod, and coordinating conj as one feature.
Prep, adj comp, and prep obj are grouped as one feature.
Aux, Poss, Prep, Mod, Conj, Adj, Comp, Obj are abbre-
viations for auxiliary, possession, preposition, modifier,
conjunction, adjective, complement and objective.

on cognitive data, we first extract psycholinguistic
features based on cognition theory (Scarborough
et al., 2009). Then we filter out statistically in-
significant features in the eye-tracking data (which
means that the human attention of words with these
features is not significantly higher/lower than the
average attention of words). Subsequently, we in-
corporate these cognition-validated features into
BERT by fine-tuning on different NLP tasks. In
the fine-tuning process, we would learn different
weights for each type of feature according to differ-
ent NLP tasks.

Our results show that CogBERT can perform
better than baseline systems on three benchmark
datasets across ten NLP tasks. We give a detailed
quantitative analysis of the contributions of differ-
ent cognitive features to different NLP tasks. Case
studies show that CogBERT does learn patterns of
human reading behavior compared to BERT. Our
findings can provide more insights into cognition-
enhanced NLP.

2 CogBERT

CogBERT works in a two-stage setting. The first
stage is to induce cognitive features from texts and
assign weights for these features guided by hu-
man reading signals. In the second stage, we inte-
grate cognitive features into BERT and learn task-
specific feature weights for different NLP tasks.

2.1 Cognitive Features Induction and
Validation

Psycholinguistic studies (Scarborough et al., 2009)
indicate that the acquisition of human reading abil-

Figure 2: Feature prediction by the Bi-LSTM.

ity is reflected in two aspects: “lower strands”
and “upper strands”. The lower strands (including
phonology, morphology, etc.) work together as the
reader becomes accurate and automatic with repe-
tition and practice. Meanwhile, the upper strands
(including language structures, semantics, etc.) re-
inforce each other and weave together with the
lower strands to produce a skilled reader. Inspired
by previous work, we construct an initial cogni-
tive feature set including 46 fine-grained cogni-
tive features extracted from texts using the spaCy
tool (Honnibal and Montani, 2017) and divide them
into lower strands features (word-level) and upper
strands features (semantic/syntax-level).

However, not all cognitive features are statis-
tically significant in eye-tracking data (Zuco 1.0
(Hollenstein et al., 2018), Zuco 2.0 (Hollenstein
et al., 2020), and Geco (Cop et al., 2016))2. Hence,
we filter out cognitive features that the human atten-
tion of words with these features is not significantly
higher/lower than the average attention of words,
retaining 14 usable cognitive features and group
them as 8 independent features shown in Table 1.
The statistically significant values of each cognitive
feature and details of feature validation are shown
in Appendix Table 1.

2.2 Learning Weighted Cognitive Feature
Vector

We can extract features from texts by using the
spaCy tool. Nevertheless, these features should not
be assigned to the same or random weights, as their
contributions to fitting human understanding of sen-
tences are different. Hence, as shown in Figure 2,
given an input sentence S = {w1, w2, . . . , wl}
with l words, we train a four-layer Bi-LSTM to

2Eye-tracking data is preprocessed by averaging across
readers.
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Figure 3: CogBERT Architecture. The Bi-LSTM generates feature vectors, which are used to generate feature
matrices m and feature vectors v. The readability score R and embeddings of [CLS] tokens HCLS are used to
compute feature weights o.

map each word embedding to a weighted eight-
dimensional cognitive feature vector. According to
the cognitive theory (Scarborough et al., 2009), we
believe that cognitive features can explain the allo-
cation of human gaze information. Hence, we use
gaze information (the number of fixations, nFix) of
eye-tracking data (Zuco 1.0, Zuco 2.0, and Geco)
as the supervision signals to train the Bi-LSTM
model (We also use fixation duration as the super-
vision signals and achieve the same experimental
results). We use the Mean Square Error (MSE)

loss lossG =
1

l

∑l
i=1(xi − yi)2, where x ∈ Rl is

the predicted nFix score and y ∈ Rl is the golden
feature score.

On the other hand, to avoid predicting an un-
reasonable feature score, we also compute the
MSE between the predicted feature score matrix
P = {p1, . . . ,pl} ∈ Rl×r and the golden score
matrix Q = {q1, . . . ,ql} ∈ Rl×r (for exam-
ple, if a word wi is a NER word, its golden fea-
ture score is 1 on the feature dimension of NER),
where pi and qi is a r-dimensional vector and
r is the number of features, which we denote as

loss lossF =
1

l

∑l
i=1

1

r

∑r
j=1(pij − qij)2. Then

the model is trained with the objective lossT =
α× lossG + (1− α)× lossF , where α ∈ [0, 1] is
a model parameter to weight the two loss functions
(the best development results were obtained with
α = 0.5).

Note that we use the Bi-LSTM model to predict
cognitive features rather than using a regression
model to compute the feature score. The main
reason is that our goal is to learn the human reading
behavior rather than simply fitting the data.

2.3 Incorporating Cognitive Features into
BERT

2.3.1 Feature Vectors/Matrices Generation
As shown in Figure 3 (a), for each input sentence
S with l words, we can obtain its an l × r feature
matrix from the Bi-LSTM model.
• For each lower strands feature (i.e., word length,
word position, NER and content word), we can
generate an initial l-dimensional feature vector v
for it from the Bi-LSTM model, respectively.
• For each upper strands feature (i.e., NP chunk,
emotion word, Mod&Aux and Obj&Comp), we
can generate an initial l × l feature matrix m for
it from the Bi-LSTM model, respectively. If k
adjacent words make up an upper strands feature,
its value in m is the average feature score of k
adjacent words obtained from the Bi-LSTM model.
The rest of values in m are filled with 0.

2.3.2 Task-Specific Feature Weight Sampling
We argue that different cognitive features should
be given different weights when learning different
NLP tasks. For example, the emotion word feature
should be more important than others for a senti-
ment classification task. To address this issue, we
utilize the Flesch readability assessment (Kincaid
et al., 1975) to evaluate the contribution of cog-
nitive features to sentence readability of different
NLP tasks. In other words, given a specific task, if
a feature can improve the readability of the input
sentence, it should be given a higher weight.

Formally, we use the Flesch readability assess-
ment score R and the embedding of [CLS] token
HCLS of a layer in BERT to control the weights of
different features. Given a sentence S, the number
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of words in S is sw and the number of syllables in
S is ss. Then the readability score of this sentence
is calculated as R(S) = 206.835 − 1.015sw −
84.6

ss
sw

, where constants (i.e., 206.835, 1.015 and

84.6) in R(S) are empirical values from Kincaid
et al. (1975).

Since R ∈ R1 is a one-dimensional number,
HCLS ∈ Rn×1 is a n-dimensional vector (n = 768
for BERT-Base) and cognitive features set T con-
tains eight features including {v1, ..v4,m1, ..m4},
where v represents a feature vector and m repre-
sents a feature matrix, respectively, we first need to
map R and HCLS to an eight-dimensional vector
O, to assign a reasonable weight for each feature.

In particular, as shown in Figure 3 (b), we mapR
and HCLS to a variance set σ = {σ1, . . . σr} ∈ Rr
of a normal distribution B ∼ Norm(0, σ2), where
the mean of B is zero. σ is computed as:

σ = f (NTR) ◦ f (MTHCLS ) = {σ1 , . . . , σr}, (1)

where ◦ is the Hadamard product and f is the tanh
activation function. N ∈ R1×r is a mapping vector
and M ∈ Rn×r is a mapping matrix. Then the
weighted feature set T

′
is computed as:

T
′
= T ◦O = {o1v1, . . . , o4v4, o5m1, . . . , orm4},

O = B(0, σ2) =
1

σ
√
2π

exp

(
− x2

2σ2

)

x=0

=
1

σ
√
2π

= {o1, . . . , or},

(2)

where oi is the ith feature weight sampled from the
normal distribution B with sample point x = 0.

2.3.3 Cognitive Feature Enhanced Attention
Inspired by the previous work (Jawahar et al.,
2019), which indicates that BERT captures surface
features in lower layers and semantic features in
higher layers, as shown in Figure 3 (c), we incorpo-
rate different cognitive features in different layers,
where lower strands are in lower layers and upper
strands are in higher layers. We use CNN (Le-
Cun et al., 2015) to compute a feature-enhanced
attention score for lower strands and upper strands,
which we denote as ML ∈ Rl×l and MU ∈ Rl×l,
respectively,

ML = Diag(1DCNN(v1,v2,v3,v4)),

MU = 2DCNN(m1,m2,m3,m4),
(3)

where Diag refers to filling the output of 1DCNN
in the diagonal of the feature-enhanced attention

matrix ML, this is because the generated lower
strands features by the Bi-LSTM are word-level fea-
ture vector rather than a matrix, and 1DCNN and
2DCNN means 1-dimensional and 2-dimensional
CNN network. The kernel size of both 1DCNN
and 2DCNN is 3, respectively. Then we obtain
the cognitive feature-enhanced lower layer atten-
tion matrix A′L ∈ Rl×l and higher layer attention
matrix A′U ∈ Rl×l as:

A′L =ML ◦GL +AL ◦ (1−GL),
A′U =MU ◦GU +AU ◦ (1−GU ),
GL = f(JTHL),

GU = f(JTHU ),

(4)

where AL ∈ Rl×l and AU ∈ Rl×l are the orig-
inal attention matrix of lower and higher layers,
respectively. G ∈ R1×l is a gated vector for a
transformer head, which is used to balance the
combination between the original attention and
the cognitive feature-enhanced attention. H =
{HCLS , H0 . . . , Hl} ∈ Rn×l is the hidden state of
the input sentence S, in which HCLS is the em-
bedding of [CLS] token of BERT. J ∈ Rn×1 is a
vector to map H to the gate vector G in a specific
head. The ◦ is the row-level Hardmard product that
each value of G multiplies with each row of the
matrix (e.g., ML), so that the size of the matrix
remains the same after multiplication. The process
is same for all layers of BERT.

2.4 Training Details
We train the Bi-LSTM model with hidden size 256,
dropout ratio 0.15, 300-dimensional GloVe em-
bedding (Pennington et al., 2014) and 40 epochs.
In experiment, we fine-tune the CogBERT using
AdamW (Loshchilov and Hutter, 2017) optimizer
with learning rate from [1e-5, 3e-5, 5e-5], warm-up
ratio of 0.1. The training epochs are form [3, 5, 10]
and batch size from [16, 32] for GLUE Benchmark.
For CoNLL2000 Chunking, we use batch size from
[64, 128], learning rate from [5e-6, 1e-5, 5e-5], and
epochs from [40, 60].

3 Experiments

To show the effectiveness of CogBERT, we com-
pare it with baselines on three benchmark datasets
across ten NLP tasks and an eye-tracking predic-
tion task.

3.1 Baselines
We compare CogBERT with:
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Models SST2 COLA MRPC RTE MNLI(m/mm) QQP STS-B QNLI
BERT-Base 93.5 51.7 87.2 67.2 84.3/83.7 71.1 85.4 90.4
Syntax-BERT-Base 94.0 54.1 89.2 68.9 84.9/84.6 72.0 86.7 91.1
fMRI-EEG BERT-Base 93.4 52.9 87.4 67.5 84.3/83.8 71.2 85.3 90.5
Eye-tracking BERT-Base 93.3 51.9 87.5 67.3 84.3/83.7 71.2 85.8 90.6
CogBERT-Base (Random) 93.2 51.1 85.4 66.0 84.1/83.2 71.0 85.3 88.6
CogBERT-Base 94.0 55.1 89.5 69.4 84.9/84.6 72.1 87.2 91.3
BERT-Large 94.9 60.5 89.3 70.1 86.8/85.9 72.1 86.5 92.7
Syntax-BERT-Large 96.1 61.9 92.0 74.7 86.7/86.6 72.5 88.5 92.8
fMRI-EEG BERT-Large — — — — — — — —
Eye-tracking BERT-Large 94.7 60.7 89.2 70.2 86.6/85.7 72.3 86.7 92.5
CogBERT-Large (Random) 94.4 60.1 88.7 69.2 86.3/85.4 71.8 86.3 92.4
CogBERT-Large 96.1 62.1 92.1 74.9 86.8/86.6 72.8 89.7 92.8
RoBERTa-Base 95.4 57.1 90.8 73.8 86.3/86.2 72.5 87.4 92.2
Syntax-RoBERTa-Base 96.1 63.3 91.4 81.2 87.8/85.7 73.5 88.3 94.3
CogRoBERTa-Base (Random) 95.3 56.8 90.5 73.4 86.1/85.8 72.1 87.2 92.0
CogRoBERTa-Base 95.7 63.5 91.7 79.3 88.1/86.2 73.8 88.5 93.9
RoBERTa-Large 96.3 63.8 91.0 84.2 89.5/89.7 72.7 90.2 94.2
Syntax-RoBERTa-Large 96.9 64.3 92.5 85.0 90.2/90.0 73.1 91.4 94.5
CogRoBERTa-Large (Random) 96.1 63.6 90.7 83.8 89.2/89.4 72.3 90.0 94.0
CogRoBERTa-Large 96.5 64.6 92.8 85.3 90.4/90.3 73.5 90.5 94.5

Table 2: Results on the test set of GLUE Benchmark. F1 scores are reported for QQP and MRPC. Spearman
correlations are reported for STS-B, and accuracy scores are reported for the other tasks. The best results are bold.
For the SST2 task, the Emotion feature weight of CogBERT is set as 0.

• BERT (Devlin et al., 2019): A transformer-based
pre-trained language model achieved SOTA perfor-
mances on various NLP tasks.
• Syntax-BERT (Bai et al., 2021): A syntax-
enhanced pre-trained model outperformed conven-
tional pre-trained models on various NLP tasks.
• fMRI-EEG BERT (Schwartz et al., 2019): This
model is fine-tuned on EEG and fMRI data, which
showed improvements in brain activity prediction
and achieved competitive performances on various
NLP tasks.
• Eye-tracking BERT: It fine-tunes BERT on nFix
eye-tracking data following the method used in
fMRI-EEG BERT.
• CogBERT (Random): The feature weight of
CogBERT is randomly generated rather than super-
vised learning by human reading signals.

3.2 GLUE Benchmark

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019) is a set
of tasks to test the model’s ability to understand
natural language. We implement our method in
BERT, RoBERTa on its development set. Results
are shown in Table 2. Based on the observation of
the experiment results, we find that:

(1) Compared with BERT and RoBERTa, Cog-
BERT achieves consistently better results (when
compared with RoBERTa, we use RoBERTa as the
base pre-trained model of CogBERT) on all tasks
from SST2 to QNLI showing the effectiveness of

Models P (%) R (%) F1 (%)
BERT-Base-Cased 95.32 95.23 95.33
SeqVat (unsupervised) 95.39 95.47 95.45
SeqVat (supervised) 96.36 96.31 96.34
CogBERT-Base (Random) 94.46 95.03 94.74
CogBERT-Base 96.48 96.59 96.54

Table 3: Results of CoNLL-2000 text chunking. Cog-
BERT is based on BERT-Base-Cased.

incorporating eye-tracking can be useful for vari-
ous tasks.

(2) Comparison between Syntax-BERT and Cog-
BERT shows that cognitive features can further
improve the performance of BERT on NLP tasks.
This is mainly because on the one hand cognitive
features used in this paper have already included
fine-grained syntax structure features. On the other
hand, we involved more psycholinguistic features
in CogBERT validated by eye-tracking data.

(3) CogBERT outperforms fMRI-EEG BERT
and Eye-tracking BERT, which indicates that fine-
tuning on cognitive data cannot fully exploit the
value of cognitive data. By inducing fine-grained
cognitive features from cognitive data can provide
a new perspective for this line of work.

(4) Compared to CogBERT (Random), Cog-
BERT achieves consistently better performances,
which confirms that different cognitive features
contribute differently to language comprehension
in brains. Learning weighted cognitive feature vec-
tor is effective for CogBERT.
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Tasks Word Length Content Word NER Word Position Emotion NP Chunk Mod & Aux Comp & Obj
COLA 0.42 0.56 0.59 0.41 0.78 1.00 0.83 0.60
MRPC 0.52 0.68 1.00 0.45 0.95 0.76 0.88 0.74
RTE 0.54 0.83 0.67 0.52 0.91 1.00 0.73 0.64
CoNLL-2000 Chunking 0.54 0.83 0.94 0.52 0.92 1.00 0.64 0.93
CoNLL-2003 NER 0.44 0.51 1.00 0.49 0.42 0.39 0.49 0.51

Table 4: Results of intrinsic evaluation of CogBERT-base. The numbers are feature weights in different tasks.

3.3 Sequence Labeling

In addition to the GLUE benchmark, we also eval-
uate CogBERT on the CoNLL-2000 dataset (Sang
and Buchholz, 2000) for text chunking and the
CoNLL-2003 dataset (Sang and Meulder, 2003)
for NER. The results are shown in Table 3 (as the
space is limited, the results of NER are shown in
Appendix Table 3). Note that for the Chunking and
NER task, the NP Chunk and NER feature weight
of CogBERT is set as 0, respectively, to ensure no
data leakage problem.

We compare CogBERT with SeqVat (Chen et al.,
2020), which uses virtual adversarial training to im-
prove the model’s performance and robustness on
the CoNLL-2000 text chunking task. We observe
that our method outperforms all baselines on the
benchmark dataset, which demonstrates that Cog-
BERT could also benefit sequence labeling tasks.

3.4 Intrinsic Evaluation

As shown in Table 4, we present an intrinsic evalu-
ation to output the feature weight of CogBERT in
different tasks, which is sampled from the Gaus-
sian Distribution in Equation (2). Due to the space
limitation, we only demonstrate feature weights
of the BERT-base model in COLA, MRPC, RTE,
CoNLL-2000 Chunking, and CoNLL-2003 NER
tasks. The feature weight C

′
f ∈ Ri scaled by the

data size and the feature density is calculated as:

fd =
1

Z

z∑

k=1

Uk/(sum(Uk)),

Cs =
1

Z

z∑

k=1

Ck/fd,

C
′
f = Cs/max(Cs),

(5)

where the data size of a task is Z ∈ Rz , the aver-
aged feature weight of 12 layers from CogBERT is
C ∈ Rr×z , and the density of feature is fd ∈ Rr.
Cs is the feature weight scaled by fd, and the count
of each feature in the task is U ∈ Rr×z (for exam-
ple, if there are 3 entity words in a training example,
the count of NER feature of this example is 3).

Models Zuco Geco (EN) Geco (NL)
BERT-EN 93.42(0.02) 93.68(0.14) —
BERT-NL — — 91.81(0.23)
BERT-MULTI 93.74(0.05) 93.73(0.12) 91.90(0.16)
XLM-17 92.05(2.25) 91.79(1.75) 91.04(0.70)
XLM-100 93.97(0.09) 93.04(1.40) 92.31(0.22)
CogBERT (Random) 93.23(0.13) 93.36(0.38) 91.59(0.35)
CogBERT 93.99(0.02) 93.90(0.14) 91.97(0.09)

Table 5: Results of eye-tracking prediction. Standard
deviation of 5 runs is reported in parentheses.

We find that CogBERT can assign reasonable
weights to different features in various tasks. In the
COLA (a linguistic acceptability judgment task),
CogBERT evaluates NP Chunk (i.e., the noun
phrase) as the most important feature and gives a
high score to other syntax-related features. This is
because the syntax structure helps judge linguistic
acceptability. In the MRPC (a sentence paraphras-
ing task), CogBERT considers NER and emotion as
the two most important features. The main reason
is that if two sentences do not share the same entity
and emotion, they are probably not a paraphrase. In
the RTE (a text entailment task), CogBERT thinks
of NP Chunk as the most important feature, and
this is probably because if a sentence can be in-
ferred from another sentence, they might have a
similar phrasal structure or meaning. In CoNLL-
2000 Chunking and CoNLL-2003 NER tasks, it is
not surprising that CogBERT ranks NP Chunk and
NER as the most crucial feature, respectively.

3.5 Eye-tracking Prediction

We argue that CogBERT can be useful not only for
NLP tasks but also for language comprehension in
brains. Hence, we also evaluate the effectiveness
of CogBERT on eye-tracking prediction (Hollen-
stein et al., 2021) tasks using three eye-tracking
benchmark datasets, including Zuco (Zuco 1.0 and
Zuco 2.0), Geco (EN), and Geco (NL). The training
details are the same with Hollenstein et al. (2021)3.
This task tests the model’s ability to learn human
eye-tracking data, including first fixation duration
(FFD), total reading time (TRT), number of fixa-

3Geco (EN) and Geco(NL) are the English and Dutch parts
of Geco eye-tracking data, respectively.
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Models SST2 MRPC RTE
CogBERT 93.7 89.7 70.1
w/o lower strands 93.4 89.1 68.2
w/o upper strands 92.9 88.7 67.3
w/o all strands 92.3 87.4 66.4
w/o readability 93.2 88.9 68.5
w/o layer-wise 93.1 88.5 67.9

Table 6: Results of ablation study.

tions (nFix), mean fixation duration (MFD), first
pass duration (FPD), fixation proportion (FProp),
number of re-fixations (NREFIX), re-read propor-
tion (REPROP). The performance is evaluated by
the mean absolute error (MAE), and we report
100–MAE as the result in this experiment.

We compare our method with BERT-EN, BERT-
NL (de Vries et al., 2019), BERT-MULTI, (Wolf
et al., 2020)4 and XLM (Lample and Conneau,
2019) (XLM is a cross-lingual pre-trained language
model. XLM-17 pre-trains on 17 languages and
100 for XLM-100 ). CogBERT is based on BERT-
EN and BERT-NL, respectively. The results are
shown in Table 5.

We find that CogBERT outperforms BERT-
EN, BERT-NL, BERT-MULTI, and XLM-17 and
achieves comparable performance with XLM-100,
even though CogBERT is based on BERT, which
only pre-trained on one language whereas XLM-
100 pre-trained on more than 100 languages. This
also shows the effectiveness of our cognitive fea-
tures induced from cognitive data for understanding
and explaining human gaze behavior.

3.6 Ablation Study

We conduct ablation studies over several factors
related to CogBERT’s performance on the down-
stream tasks. All results are obtained on the devel-
opment sets of SST2, MRPC and QNLI, and are
shown in Table 6.

We observe that replacing lower or upper strands
cognitive features can decrease the model perfor-
mance, and removing all strands cognitive features
would further affect the model performance. We
also notice that although the readability is not as
important as cognitive features for our model, re-
moving it also harms the performance. This is
mainly because this factor also constrains the learn-
ing process of CogBERT from a cognitive perspec-
tive. Without layer-wise means that we integrate
all features into each layer of BERT, The poor per-

4BERT-EN, BERT-NL and BERT-MULTI, are English,
Dutch and multilingual version of BERT.

Figure 4: Performances of layer study.

formance of without layer-wise demonstrates that
incorporating features in a layer-wise manner is an
effective way for cognition-guided NLP.

3.7 Layer Study
In this section, we quantificationally discuss which
layer of BERT should be the boundary for the lower
and upper strands cognitive features. We conduct
comparative experiments on the development sets
of SST2, MRPC, QNLI and STS-B tasks, and illus-
trate results in Figure 4. The Y -axis is the perfor-
mance for different NLP tasks. The X-axis is the
number of layers. For example, if the number of
layer is 6, we incorporate lower strands cognitive
features into 1-6 layers of BERT and upper strands
cognitive features into the rest.

We find that all tasks reach the best performance
when the layer boundary is around 4, which means
that BERT’s lower layers are more suitable for in-
corporating lower strands cognitive features and
upper strands cognitive features are more useful
when we incorporate them in higher layers. These
results can effectively guide the future research
of cognition-enhanced pre-trained models. Simi-
larly, previous research (Tenney et al., 2019) also
finds that the BERT behaves like a pipeline manner
where the lower layer processes basic information
and upper layer processes the sentence based on
the information of previous layers, in which its
argument is similar to ours and our research fur-
ther validates their research and further proved this
argument from the perspective of model implemen-
tation level.

3.8 Attention Visualization
To qualitatively analyze the effectiveness of our
method, we visualize the attention case of Cog-
BERT and compare it with BERT and humans. We
select cases from SST2, NER and MRPC tasks. To
compare with human cognition, given a specific
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Figure 5: Attention cases selected from the SST2 and CoNLL-2003 NER task, respectively.

NLP task, we ask four annotators to highlight their
attention words when reading the sentences. For
BERT and CogBERT, we select attention scores
from higher layers of pre-trained models, which
can capture task-specific features (Merchant et al.,
2020). The attention visualizations of SST2 and
NER are illustrated in Figure 5 (MRPC is shown
in Appendix Figure 1).

Figure 5 (a) presents the attention visualiza-
tion for the CoNLL-2003 NER task, illustrating
that CogBERT pays more attention to NER words
‘Asian Cup’, ‘Japan’ and ‘Syria’ like humans,
whereas BERT gives little attention to these words.
Figure 5 (b) illustrates the attention visualization
for the SST2 task, showing that CogBERT cap-
tures the critical emotion words ‘fun’ and ‘okay’,
which are also important for the human judgments.
In contrast, BERT fails to focus on these words.
These experimental results indicate that although
pre-trained models have achieved promising im-
provements in numerous NLP tasks, they are still
far from the level of human intelligence. Cognition-
guided pre-trained models can provide an effective
way to approach human cognition, by learning the
attention mechanism in human reading.

4 Related Work

Prior neuroscience studies have demonstrated that
cognitive data is associated with language compre-
hension activity in human brains (Just and Carpen-

ter, 1980; Brooks and Meltzoff, 2005), showing
longer duration links to a greater processing load
in different language units (words, clauses, texts).
These studies established the theoretical grounding
for cognition-guided NLP.

In cognitively motivated NLP, researchers in-
vestigate the impact of cognitive language pro-
cessing signals on NLP tasks, especially focusing
on improving neural networks by utilizing cogni-
tive data. Early researches mainly used LSTM
or CNN to incorporate cognitive signals (Barrett
et al., 2018; González and Søgaard, 2018; Hollen-
stein and Zhang, 2019; Sood et al., 2020; Ren and
Xiong, 2021; Takmaz et al., 2020).

As pre-trained models have shown their great
power on various NLP tasks, a line of work focuses
on exploring cognitive-data-enhanced pre-trained
models (Hollenstein et al., 2019, 2021; McGuire
and Tomuro, 2021), mainly by fine-tuning pre-
trained models on cognitive data.

However, these methods cannot give a fine-
grained analysis of how cognitive data contributes
to different NLP tasks. In contrast, CogBERT is
inspired by the theory in psycholinguistics and en-
codes cognitive features induced from eye-tracking
data into pre-trained models in a layer-wise manner
with carefully designed architecture, enabling us to
perform a fine-grained analysis of how cognitive
data contributes to different NLP tasks and further
improved the performance of pre-trained models
comparing to previous simply fine-tuned ones.
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5 Conclusion

We present CogBERT, a framework that can effec-
tively incorporate cognitive signals into pre-trained
models. Experimental results show that CogBERT
achieves new SOTA results on three NLP bench-
mark datasets. Analyses suggest that CogBERT
can adaptively learn task-specific cognitive feature
weights to give fine-grained explanations of how
cognitive data works on NLP tasks. This work
provides a new paradigm in learning cognition-
enhanced pre-trained models, and extensive elabo-
rated experiments can guide future researches.
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A Appendix

A.1 Training Details
A.1.1 Bi-LSTM Model Training
The eye-tracking data to train the Bi-LSTM model
contains 1637 sentences and 76,937 words. The
embedding size of Glove Vector (Pennington et al.,
2014) is 300, which is accessible on the page.5

We used the embedding trained on Common Crawl
corpus, and the embedding is not trained along
with the Bi-LSTM model. The hidden size of Bi-
LSTM is 256, the dropout ratio in the feed-forward
network is 0.15. We train the Bi-LSTM model with
40 epochs with learning rate 1e-3, and we use the
AdamW optimizer(Loshchilov and Hutter, 2019).
We evaluate the LossG on the test set of nFix and
select the model with the best performance.

A.1.2 CogBERT Model Training
For Transformers, we set layer number as 12 to
keep the layer setting the same with the different
base versions of pre-train models, the hidden di-
mension of intermediate layers as 512, dropout

5https://github.com/stanfordnlp/GloVe

3219



ratio as 0.15, and the dimension of the fully con-
nected layer before Softmax activation as 2000.
The learning rate is initialized as 5e-4 for the
AdamW optimizer, and we use the linear learning
rate schedule with the warm-up ratio of 0.1.

For BERT and RoBERTa, we use the pre-trained
version of different models released by Hugging-
Face.6For GLUE Benchmark. We use AdamW
optimizer with learning rate from [1e-5, 3e-5, 5e-
5] on GLUE benchmark. The training epochs are
from [3, 5, 10]. We also use the linear learning rate
schedule with a warm-up ratio of 0.1. The batch
size is 32 for all tasks. The kernel size for both
1DCNN and 2DCNN is 3. The 2DCNN module
does not have bias, and the padding strategy is the
"same".

For CoNLL-2000 chunk and CoNLL-2003 NER
tasks, we use AdamW optimizer with learning rate
from [1e-6, 3e-6, 5e-6]. The training epochs are
from [40, 60]. We also use the linear learning rate
schedule with a warm-up ratio of 0.1. The batch
size is 32 with a gradient accumulation step of 4 to
avoid memory issues.

For the Eye-tracking Prediction task, we follow
Hollenstein et al. (2021) and replace the BERT
model with our model. The training setting is pre-
cisely the same as the original task setting released
on the page.7 The results are AdamW optimizer
with a learning rate of 5e-5 and a weight decay
of 0.01. We employ a linear learning rate decay
schedule over the total number of training steps.
We clip all gradients exceeding the maximal value
of 1. We train the models for 100 epochs, with early
stopping after seven epochs without improving the
validation accuracy.

A.2 Eye-tracking Feature Validation
For word-level features, the results are computed
using the percentage of the word that carries a spe-
cific feature with a higher nFix value than sentence
average, which means the feature is a strong indi-
cator for this word that carries this feature to be
fixated or not.

For semantic features, the strategy is different.
For noun phrases, we take the nFix of the first word
and found that the first word of nFix always has
a below-average nFix value, which shows that a
below-average first word of a phrase is an indicator
to show that this is a noun phrase. We take the nFix

6https://huggingface.co/transformers/
7https://github.com/DS3Lab/

multilingual-gaze

average of the emotion phrase and compare it with
the sentence average nFix value. For dependency
relation, we check the equality relation between the
nFix of two words, and the percentage is computed
using that the ratio of a head word has a nFix that
is greater or less than the tail word. We checked
46 features that cover a large portion of existing
syntax features, and the results are in Table 7.

Additionally, some dependency relations are
very uncommon, which does not hold a statistical
count above one hundred in those eye-tracking cor-
pora. We do not use uncommon relations with less
than 100 counts in the corpus, which we label these
relations as sparse in the Table 7. In this research,
we do not consider any relationship that is sparse in
the model. We hope this table is helpful for future
research in this area. Since word length and po-
sition are already proven to be directly connected
to eye-tracking data in psycholinguistics (Slattery
and Yates, 2017;Kliegl et al., 2004;Kuperman et al.,
2010), therefore we do not further validate these
two features again in our research.

A.3 CoNLL-2003 NER Task
We are not able to reproduce the BERT results in
CoNLL-2003 NER tasks, which is also discussed
in different GitHub issues8910. The official GitHub
page of BERT says they used a complicated pre-
processing script to process the entity word before
training using BERT. However, they are not plan-
ning to release the pre-processing script.

A.4 MRPC Attention Case
Besides SST2 and CoNLL-2003 NER task, we
also present another attention case in MRPC. In
this example. Sentence 1 is "Sanitation is poor..
there could be typhoid and cholera" and sentence
2 is "Sanitation is poor drinking water is generally
left behind..there could be typhoid and cholera".
These two sentences are a paraphrase, which states
poor sanitation might cause typhoid and cholera.

From the cognition of humans, human labels
"Sanitation is poor," "typhoid" and "cholera" as
the keywords to label these two sentences as a para-
phrase.

The attention of CogBERT, BERT, and humans
is in Figure 6. Since this is a classification task

8https://github.com/dmlc/gluon-nlp/
issues/593

9https://github.com/kyzhouhzau/
BERT-NER/issues/2

10https://github.com/google-research/
bert/issues/223
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Feature Zuco 2.0 Zuco 1.0 Geco Avg Sparse Trands
Word Length ✓ ✓ ✓ ✓ ✓ Lower
Word Position ✓ ✓ ✓ ✓ ✓ Lower
Punctuation × × × × × Lower
Marker 29.60% 29.41% 31.83% 30.28% True Lower
ContentWord 96.0% 98.20% 99.50% 97.90% False Lower
NER 67.70% 68.90% 83.10% 73.20% False Lower
Determiner 7.60% 10.80% 14.06% 10.82% False Lower
Negation 33.30% 43.62% 47.00% 41.31% False Lower
Emotion 75.00% 66.67% 88.89% 93.85% False Upper
NPChunk 75.00% 89.30% 85.60% 83.30% False Upper
Parent-Child 54.80% 55.20% 62.00% 57.33% False Upper
Token-Head 46.00% 47.90% 43.82% 46.00% False Upper
Word and subtree 56.67% 54.81% 64.49% 58.66% False Upper
Adjective Modifier 63.79% 62.85% 57.40% 61.35% False Upper
Noun Subject 35.88% 49.17% 32.47% 39.17% False Upper
Compound 60.79% 51.30% 35.58% 49.22% False Upper
Adjective Complement 81.30% 60.30% 85.76% 75.79% False Upper
Adjective Clause 52.94% 41.00% 54.50% 49.48% True Upper
Adverbial Clause Modifier 51.85% 59.45% 58.70% 56.67% False Upper
Adverbial Modifier 52.03% 46.70% 53.05% 50.59% False Upper
Agent 0.00% 5.71% 5.33% 3.68% True Upper
Appositional Modifier 40.62% 43.50% 58.30% 47.47% True Upper
Auxiliary 12.87% 21.95% 30.18% 21.67% False Upper
Passive Auxiliary 24.72% 14.38% 10.88% 16.66% False Upper
Coordinating Conjunction 5.71% 11.34% 17.46% 11.50% False Upper
Clausal Complement 53.13% 48.45% 48.52% 50.03% False Upper
Conjunct 51.34% 48.59% 53.05% 50.99% True Upper
Clausal Subject 0.00% 100% 83.33% 61.00% True Upper
Dative 33.33% 36.36% 25.19% 31.63% False Upper
Direct Object 38.55% 43.58% 37.32% 39.82% True Upper
Expletive 0.00% 76.47% 78.70% 52.00% True Upper
Interjection — 0.00% 44.23% 22.00% True Upper
Meta Modifier 0.00% 0.00% 0.00% 0.00% True Upper
Modifier of Nominal 70.00% 48.83% 44.44% 54.00% False Upper
Noun Phrase as Adverbial Modifier 60.29% 52.90% 59.09% 57.43% False Upper
Passive Nominal Subject 35.53% 32.43% 31.29% 33.08% False Upper
Numeric Modifier 41.13% 34.24% 31.29% 33.08% False Upper
Object Predicate 60.00% 54.54% 59.36% 58.00% True Upper
Parataxis 50.00% 12.50% 63.92% 42.00% True Upper
Complement of Preposition 66.67% 85.71% 88.15% 80.18% False Upper
Object of Preposition 91.21% 91.50% 84.43% 89.05% False Upper
Possession Modifier 29.00% 34.16% 26.56% 30.00% False Upper
Pre-correlative Conjunction 0.00% 47.05% 64.71% 37.00% True Upper
Predet 0.00% 14.29% 36.90% 17.00% True Upper
Prepositional 8.27% 12.44% 16.77% 12.00% True Upper
Particle 0.00% 32.25% 20.85% 18.00% True Upper
Modifier of Quantifier 70.00% 50.00% 20.05% 47.00% True Upper
Relative Clause Modifier 34.00% 40.00% 49.79% 41.00% True Upper
Open Clausal Complement 41.17% 40.43% 46.65% 42.75% True Upper

Table 7: Validation Table of Features nFix Data. — means this relation does not exist in this corpus based on the
annotation result of Spacy. ×means this relation cannot be checked. ✓means this relation has been verified by
previous research. Sparse means the number of this relation in any corpus is less than 100.

between two sentences, a [SEP] token will be in-
serted between them. In an ideal attention situation,
for the paraphrase classification task, sentence 1
should attend to the same words of sentence 2, and
sentence 2 should attend to the same words of sen-
tence 1, respectively.

From the Figure 6, we can see that CogBERT
can align more accurately with human annotation.
CogBERT can give more attention to "Sanitation
is poor" from sentence 1 to sentence 2 and from

sentence 2 to sentence 1. In contrast, the BERT
model gives very little attention to this phrase. Ad-
ditionally, CogBERT is also able to focus on the
"typhoid" word, which is tokenized into several
subwords. However, the BERT model is not able
to capture this in both sentences. Moreover, for the
word "cholera," even both CogBERT and BERT
can focus on it, CogBERT can give more attention
compared to the BERT model.
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Figure 6: MRPC Attention Case
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Figure 7: Upper strands feature matrices.

A.5 Model Efficiency

Since CogBERT works in a two-stage setting and
uses Spacy to annotate the sentence, it is necessary
to report the processing speed to show that process-
ing efficiency is not a significant concern in our
work.

A.5.1 Processing Efficiency

First, we report the training time to train the Bi-
LSTM model. In a 2GHz four-core Intel Core i5,
training the Bi-LSTM model requires 30 minutes
in 40 epochs.

The most time-consuming part is the Spacy an-
notation processing. In the same chip setting, take
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Models P (%) R (%) F1 (%)
LISA-Base 90.7 92.2 91.4
SGNET-Base 90.9 92.6 91.7
BERT-Base (Devlin et al., 2019) — — 92.4
BERT-Base (Li et al., 2021) 91.0 92.3 91.6
CogBERT-Base (Random) 90.3 91.2 90.7
CogBERT-Base 91.4↑ 92.6↑ 91.9↑
LISA-Large 91.3 92.6 92.0
SGNET-Large 91.5 92.8 92.1
BERT-Large (Devlin et al., 2019) — — 92.8
BERT-Large (Li et al., 2021) 91.7 93.1 92.4
CogBERT-Large (Random) 91.1 91.4 91.2
CogBERT-Large 92.0↑ 93.2↑ 92.6 ↑

Table 8: Results of CoNLL-2003 NER. CogBERT is
based on BERT-Cased. ↑ means that we outperform
previous implementation of BERT (Li et al., 2021).

SST2 tasks for example; the training part of the
SST2 dataset contains 67,349 examples. In this
amount of data, producing feature vectors/matrices
with Spacy’s annotation for lower and upper strands
will take about 15 minutes in different runs. For
much larger datasets like QNLI that contains more
than 100,000 training examples, running the gener-
ation process will take about 40 minutes.

Since most of the data in our experiments are less
than 10,000 examples, we do not think the feature
vector/matrix generation process is a problem in
our model. The generation processing of most tasks
can be done in 10 minutes.

A.5.2 Storage Efficiency
Another point to mention is the data size of gener-
ated feature vector and matrix. We used a sparse
matrix to store the generated feature vector/matrix,
which enables us to store them efficiently and re-
cover them in only several lines of code.

Take SST2 for example, the size of generated
feature vector/matrix of the whole data is 158.3 Mb,
and 708.5 Mb for QNLI, roughly ten times the size
of the text version. Since text size is considerably
small in different tasks, our generated vector/matrix
does not use too much disk storage. Therefore disk
storage is not a concern in most tasks.

A.5.3 Training Efficiency
For the training speed of the second stage, since
we did not put too many parameters in our model,
which are just several linear transformations and
two CNN networks. For example, in the MRPC
task, the total parameter size of the BERT model is
109M, and the total parameter size of our model is
116M.

Additionally, the CNN network is efficient since
the architecture of CNN is suitable for parallel com-
putation. Thus, the training speed in downstream

Models nFix Loss Feature Loss
Bi-LSTM 0.092 —
Bi-LSTM (with feature) 0.051 0.006

Table 9: Results of nFix prediction. We sample 20%
nFix data as test set. The evaluation criteria is the MSE
loss.

tasks is close to the training speed in different base
pre-train models implementation.

A.6 nFix Prediction

First, we report the results of the nFix prediction
in Table 9. The base model is Bi-LSTM with four
layers only trained with nFix prediction, whereas
our model will first predict feature score and further
predict the nFix following our description.

From the results, we could tell that by training
with loss LT . Our model gives a lower loss, which
means the proposed training method can give a
more accurate nFix estimation by combining dif-
ferent feature scores. This proves that these fea-
tures help predict the nFix value, and the model
can assign adaptive weight to different features and
combine them to better estimate nFix.

A.7 The Effect of Spacy Tool

From the noun phrase in Figure 8, we could see the
annotation is not perfect, like the a Busby Berkeley,
this phrase is only a part of the whole noun phrase.

Reasonably, the performance of the Spacy tool
certainly affects our model’s performance. How-
ever, the annotation of Spacy is correct in most
situations. Details about the performance of the
Spacy tool are on the official website.11.In this re-
search, we use the medium size Spacy annotation
model in all tasks. For the Eye-tracking Prediction
task of Geco(NL), we also use the medium-sized
Netherlands model released by Spacy.

A.8 Sample Input/Output of Bi-LSTM Model

We present a sample Bi-LSTM prediction case in
Figure 8, the generated feature vectors for lower
strands are in Figure 9, and the generated feature
matrices for upper strands are in Figure 7.

Figure 9 presents the generated feature vectors
of lower strands, including Word Length, Word Po-
sition, NER, and Content Words. These features
correspond to a single word, which means these
features are word-level rather than phrase or sen-
tence level features. Therefore the output of the

11https://spacy.io/
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Figure 8: Bi-LSTM Feature Prediction. The number inside each cell of the prediction map are weighted scores
computed by the Bi-LSTM model. The top part is the nFix prediction given by our model, the brown line means the
prediction, and the pink line means the target nFix measured by human gaze.
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Figure 9: Lower strands feature vectors.

Bi-LSTM model will be directly used as feature
vectors for different lower strands features.

Figure 7 presents the generated feature matrices
of upper strands containing Noun Phrase, Emotion,
Mod&Aux, and Comp&Obj. These features might
correspond to several words or a phrase, which
means they are phrase-level features compared to
lower strands features.

For noun phrase, we take the average weight
from the prediction of the Bi-LSTM model of
words in the same noun phrase, then we assign the
average weight to the noun phrase feature matrix, if
the phrase length is N , then we have a noun phrase
feature matrix N ×N .In this example, we take the
noun phrase "the fizz" for example, the Bi-LSTM
predicts 0.76 and 0.88 for those two words in the
noun phrase dimension. The average weight is 0.82
for this phrase, and then we fill a 2× 2 matrix with

this value in the whole feature matrix. This pro-
cess is the same for both noun phrase feature and
emotion feature.

For dependency relations, if word wi is the tail
word of wj of the dependency relation we use in
this paper, then we assign the prediction of weight
for wi in this relation to Eij , where E is the feature
matrix of this feature. Take first "the" word of this
sentence in the Mod&Aux dimension, this word is
the determiner of the word "fizz," and "the" is the
tail word of the head word "fizz." The prediction
value from Bi-LSTM for word "the" in Mod&Aux
dimension is 1.8. Following our generation rules,
we assign 1.8 from word "the" to word "fizz" in
the corresponding position of the feature matrix
of Mod&Aux. In this case, we assign 1.8 to E23.
This process is the same for both Mod&Aux and
Comp&Obj features.
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A.9 Attention Annotation
To compare the attention produce by CogBERT,
BERT and human, we select several cases from
MRPC, SST2 and NER cases and asked four anno-
tators, which are all students majoring in Computer
Science and have background knowledge about
NLP, to highlight the words that they think are im-
portant for this task. We then collect the average
importance given by the annotators which repre-
sents as the importance score for words in that
sentence for different tasks.
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Abstract
Recursive processing is considered a hallmark
of human linguistic abilities. A recent study
evaluated recursive processing in recurrent neu-
ral language models (RNN-LMs) and showed
that such models perform below chance level
on embedded dependencies within nested con-
structions – a prototypical example of recur-
sion in natural language. Here, we study if
state-of-the-art Transformer LMs do any bet-
ter. We test eight different Transformer LMs
on two different types of nested constructions,
which differ in whether the embedded (inner)
dependency is short or long range. We find that
Transformers achieve near-perfect performance
on short-range embedded dependencies, sig-
nificantly better than previous results reported
for RNN-LMs and humans. However, on long-
range embedded dependencies, Transformers’
performance sharply drops below chance level.
Remarkably, the addition of only three words to
the embedded dependency caused Transform-
ers to fall from near-perfect to below-chance
performance. Taken together, our results re-
veal how brittle syntactic processing is in Trans-
formers, compared to humans.

1 introduction

One of the fundamental principles of contemporary
linguistics states that language processing requires
the ability to deal with nested structures. Recur-
sion, a specific type of computation that involves
repeatedly applying a function to its own output, is
suggested to be at the core of this ability (Hauser
et al., 2002). The strongest evidence for recur-
sion in human language processing arises from the
tree-like nested structure of sentences in natural
language, in which phrases of a particular type (i.e.
NPs) can be embedded in other phrases of that
same type (Figure 1). Humans, it is argued, are
endowed with a unique competence for recursive
processing, which allows them to represent and pro-
cess such nested tree structures (Chomsky, 2000;
Hauser et al., 2002; Dehaene et al., 2015).
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Figure 1: A tree-structure representation of a recursive
structure with two long-range dependencies, one nested
within the other one.

In recent years, neural language models (NLMs)
have shown tremendous advances on a variety of
linguistic tasks, such as next-word prediction, trans-
lation or semantic inference. Furthermore, evalua-
tions of their syntactic abilities have shown promis-
ing results, with similar or even above-human per-
formance on a variety of different tasks (Marvin
and Linzen, 2018; Goldberg, 2019; Jumelet et al.,
2021; Giulianelli et al., 2018). However, nega-
tive results were recently also presented (Warstadt
et al., 2020; Hu et al., 2020). In particular, when
it comes to recursive processing, Lakretz et al.
(2021b) showed that while recurrent neural network
language models (RNN-LMs) perform well on
long-range dependencies, such as the relationship
between keys and are in sentences like “The keys
that the man near the cabinet holds, are red” (Fig-
ure 2), they perform below chance on the shorter,
embedded dependency (man-holds). Humans, in-
stead, perform significantly better on such depen-
dencies, although interestingly, for them too, the
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shorter inner dependency is more difficult than the
long outer one.

The study by Lakretz et al. illustrates how in-
vestigations of neural networks can inspire exper-
iments about human language processing. How-
ever, their study focuses on only a single architec-
ture, an RNN-LM with LSTM units (Hochreiter
and Schmidhuber, 1997), which is currently outper-
formed on many fronts by the newer Transformer
models (Vaswani et al., 2017). In this short paper,
our main question is therefore whether Transformer
models do any better when it comes to processing
recursive constructions. We then further explore
similarities and differences in performance patterns
of RNN and Transformer language models.

Our main results show that when tested on nested
constructions with a short-range embedded depen-
dency, Transformers outperform RNN-LM across
all conditions, with error rates close to zero. How-
ever, when the embedded dependency is long-
range, their performance dramatically drops to be-
low chance, similarly to the case of RNNs. The
mere addition of a short prepositional phrase (‘near
the cabinet’ in the example shown in Figure 1) to
the embedded dependency causes model perfor-
mance to drop from near perfect to below chance
level. Thus, contrary to what might be expected
based on their much improved performance and
the fact that they are trained on substantially more
data, Transformer models share RNNs’ shortcom-
ing when it comes to recursive, structure-sensitive,
processing.

Last, almost all models made more errors when
trying to carry a noun in the singular across depen-
dencies which involved a plural noun, than in the
converse situation. Interestingly, this bias towards
greater interference by plural than by singular is op-
posite to that reported in Italian RNN-LMs (Lakretz
et al., 2021b), and is akin to the Markedness Effect
reported for humans.

2 Related Work

In psycholinguistics, grammatical agreement be-
came a standard method to probe online syntac-
tic processing in humans (Bock and Miller, 1991;
Franck et al., 2002), since it is ruled by hierarchical
structures rather than by the linear order of words
in a sentence. More recently, it has also become a
standard way to probe grammatical generalization
in NLMs (Linzen et al., 2016; Bernardy and Lap-
pin, 2017; Giulianelli et al., 2018; Gulordava et al.,

The keys that the man holds are ...

(a) Short-Nested

The keys that the man near the cabinet holds are ...

(b) Long-Nested

Figure 2: Experimental Design: the two number-
agreement tasks – Short-Nested and Long-Nested. In
Short-Nested, the embedded dependency is short-range
(in bold); in Long-Nested, it is long-range, through the
insertion of a three-word prepositional phrase.

2018; Jumelet et al., 2019; Kersten et al., 2021;
Lakretz et al., 2019; Sinha et al., 2021), pointing
to both similarities and differences between human
and model error patterns.

Lakretz et al. (2019) showed that RNN-LMs
trained on a large corpus with English sentences
develop a number-propagation mechanism for long-
range dependencies. The core circuit of this mecha-
nism was found to be extremely sparse, comprising
of only a very small number of units. This sparsity
of the mechanism suggests that models are not able
to process two long-distance dependencies simul-
taneously, and indeed, this was later confirmed in
simulations (Lakretz et al., 2021b). Inspired by this
finding, Lakretz et al. (2021b) conducted a follow-
ing experiment with humans, which showed that
they, too, make more errors on nested long-range
dependencies. However, contrary to LMs, their
performance was above chance on these construc-
tions. This finding suggests that human recursive
processing remains significantly better than that of
RNN-LMs.

Recursive processing of nested constructions in
RNN-LMs was also studied using artificial gram-
mars (Cleeremans et al., 1989; Servan-Schreiber
et al., 1991; Gers and Schmidhuber, 2001; Chris-
tiansen and Chater, 1999; Hewitt et al., 2020). Re-
cently, Suzgun et al. (2019) showed that memory-
augmented RNNs can capture recursive regulari-
ties of Dyck languages (also known as "bracket
languages"). However, when tested on a simple
extension of these languages, RNN-LMs failed
to generalize to unseen data with a greater nest-
ing depth (Lakretz et al., 2021a). Specifically, the
models failed also in cases in which the training
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(a) Short-Nested.

(b) Long-Nested.

Figure 3: Error rates on nested constructions in English, for the LSTM and all causal Transformers, for both the
main and embedded agreements. Conditions are marked by the value of the grammatical number of all nouns
in the sentence. For example, condition SP means that the first noun is singular and the second is plural. While
error-rates are near zero for Short-Nested, they are worse than chance-level for one of the incongruent conditions of
Long-Nested, consistently across all models. In this condition (PSP), grammatical agreement is with respect to the
second noun, which is singular.

data contained deep structures, up to five levels of
nesting. This suggests that the poor recursive pro-
cessing of RNN-LMs is not merely due to shallow
nesting depth in natural data, which is typically not
more than two (Karlsson, 2007).

Taken together, previous work suggests that
RNN-LMs struggle to capture recursive regularities
in either natural or artificial data. Inspired by this
line of work, we focus here on Transformer LMs:
do they show different patterns when it comes to
processing recursive structures? Do they better
approximate human ability for recursion?

3 Experimental Setup

We largely follow the experimental setup of Lakretz
et al. (2021b), and we consider two different lan-
guages (English and Italian) and a different set of
models.

Data We consider two number-agreement tasks
(NA-tasks): Short-Nested and Long-Nested. Both
tasks contain two subject-verb dependencies; they
differ in terms of whether the embedded depen-
dency is short- or long-range. In Short-Nested, the

subject and verb in the nested dependency are adja-
cent (Figure 2a). They are embedded in a sentence
by inserting an object-relative clause to modify the
subject of a different sentence. The Long-Nested
task (Figure 2b) uses the same constructions, ex-
cept that an additional three-word prepositional
phrase (e.g., “near the cabinet”) is added in the
embedded dependency.1

Models We run experiments with all causal
transformer-based NLMs that are currently com-
patible with the BigBench framework, available
from HuggingFace2, and also with two masked-
language models (MLMs). Specifically, we include
four GPT-2 models that differed in size: GPT2,
GPT2-Medium, GPT2-Large and GPT-XL (Rad-
ford et al., 2019); and two masked-language mod-
els: RoBERTa and RoBERTa-Large (Liu et al.,
2019). In addition, as a baseline, we conduct an
experiment with an English LSTM-LM, which was

1All data sets are available in the BigBench collabo-
rative benchmark https://github.com/google/
BIG-bench/tree/main/bigbench/benchmark_
tasks/subject_verb_agreement

2https://huggingface.co/transformers/
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studied in numerous work in the past (Gulordava
et al., 2018).

Model evaluation Following previous work, we
evaluated model performance on agreement by
comparing the output probabilities for the correct
(e.g., ‘are’) vs. wrong (‘is’) verb form. For both
tasks, we evaluated model performance on agree-
ment for both the embedded and the inner verb, and
separately for each task condition (see SM).

4 Results

Causal Transformers, such as GPT-2, receive word
input incrementally, similarly to humans. In con-
trast, masked language models (MLMs), such as
RoBERTa (Liu et al., 2019) have access to all to-
kens in the input in parallel. In sections 4.1 and 4.2
we first focus on English causal models, rather than
on MLMs, due to the similarity in input processing,
which makes the human-model comparison more
direct. In section 4.3, for completeness, we fur-
ther report results from MLMs. Finally, in section
4.4., we report results for another language, namely,
Italian.

4.1 Short-Nested task
In Figure 3a, we show model performance on the
Short-Nested task for all causal models trained
on English. Overall, the English LSTM made
more errors on the main (outer) dependency com-
pared to the embedded (inner) one, with more than
20% errors, across all four conditions. In con-
trast, Transformers, and in particular GPT2-XL,
achieved close to perfect performance across all
conditions, on both the embedded and main de-
pendency. For GPT2, GPT2-Medium and Large,
the longer main dependency was, however, overall
more difficult than the embedded one, but with no
more than 20% errors in the incongruent conditions
(SP and PS; Table S2).

Interestingly, consistently across all models,
both Transformers and the LSTM model made
more errors on conditions in which the agreement
was with respect to singular, compared to plural.

4.2 Long-Nested task
In Figure 3b, we further show the performance
of all English causal models for the Long-Nested
task. Overall, all models made more errors across
all conditions compared to Short-Nested, but with
the same tendency of making more errors on de-
pendencies with respect to singular compared to

plural. The most striking difference between the
two tasks was the performance of the models on
the embedded dependency. In particular, for Trans-
formers, their error rate was close to zero in Short-
Nested, but dropped to below-chance on one of
the incongurent conditions (PSP) in Long-Nested.
Similarly, For the LSTM, this was the case for both
incongruent cases (PSP and SPS).

In contrast to the embedded dependency, all mod-
els performed above chance on the main, longer,
dependency. This shows that for Long-Nested, the
length of the dependency affected model perfor-
mance less than the presence of recursive embed-
ding.

4.3 Masked-Language Transformer Models
In Figure 4, we show the performance of the
masked-language models, for both the Short- and
Long-Nested tasks. Similarly to causal models,
masked-language models achieved near perfect per-
formance on all conditions of the Short-Nested
task (except for RoBERTa-Large on the PS condi-
tion, but with no more than 30% errors). Impor-
tantly, for the Long-Nested task, the addition of
only three words to the inner dependency caused
the performance of the masked-language models to
drop from near perfect to below chance, similarly
to the results from causal models. The large drop
in performance occurred in both incongruent con-
ditions (SPS and PSP), and not only for the PSP
condition (as in case of causal Transformers).

4.4 Italian Models
Following the suggestion of anonymous review-
ers, we further tested the ability of Transformer-
based models to process nested structures in an-
other language. Specifically, we tested all versions
of Transformers trained on Italian, which were com-
patible with the BigBench framework and avail-
able from HuggingFace (footnotes 1 and 2): (1) a
Transformer-based model named Gepetto, and (2)
a small version of GPT-2.

We tested the performance of these models on
both the Short- and Long-Nested tasks, in the same
manner as for the English Transformers above.
For Short-Nested, unlike the English Transform-
ers, the Italian models achieved relatively poor per-
formance, with below-chance performance on the
outer dependency in the incongruent conditions
(SP and PS). This performance is significantly be-
low that of humans and that of recurrent neural
networks on the same structures (Lakretz et al.,
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(a) Short-Nested.

(b) Long-Nested.

Figure 4: Error rates on nested constructions in English
for masked-language models (RoBERTa and RoBERTa-
Large). Same color scheme as in Figure 3. Similarly
to the case of causal Transformer-based models (Figure
3), the addition of only three words to the embedded de-
pendency (from Short-Nested to the Long-Nested task)
caused the performance of masked-language models to
drop from near perfect to below chance on the incogru-
ent conditions (SPS and PSP).

2021b), which suggests that the current available
Transformer-based models for Italian are under-
trained. Therefore, further conclusions about syn-
tactic processing in these models are limited.3 The
results for both Short- and Long-Nested tasks can
be found in Figure S1 in the supplementary materi-
als.

5 Discussion

In this study, we evaluated the recursive abilities of
Transformer LMs on two number-agreement tasks
that were previously shown to be exceptionally
challenging for LSTM language models. Our ex-

3Note that their performance on an adjacent dependency
between a noun and a verb, as in the embedded dependency
of Short-Nested, is relatively good and above chance level,
which shows that their overall poor performance is not due to
experimental-setup issues, such as tokenization.

periments showed that, overall, Transformers out-
performed LSTM-LMs, and in particular, achieved
near perfect performance on short embedded de-
pendencies. However the addition of only a short
prepositional phrase to the embedded dependency
caused model performance to sharply drop to below
chance level.

Furthermore, we found that all causal models
showed a bias towards plural and therefore err more
when the subject of a verb is in the singular. A sim-
ilar bias was previously observed in Italian LSTM
models (Lakretz et al., 2021b), however, in the
opposite direction, with more errors on plural de-
pendencies. We hypothesize that this difference
might be due to marking of the verb form, given
that in English, the marked form of the verb is sin-
gular, whereas in Italian, it is plural. Related biases
were previous reported for humans, a phenomenon
known as the Markedness Effect (Bock and Miller,
1991; Vigliocco et al., 1995). The relation between
emerging biases in NLMs and humans is an inter-
esting topic for future work.

In LSTM-LMs, the poor performance was pre-
dicted by the underlying neural mechanism for
grammatical agreement identified in the models
(Lakretz et al., 2019, 2021b). The fact that Trans-
former models perform similarly poorly on these
constructions, both casual and masked-language
models, and on the same dependency (inner),
raises interesting questions. Do transformers
use syntactic-processing strategies akin to those
emerged in RNN-LMs? And what does that tell
us about the data that those models are trained on
and about the potential processes that humans may
use to process such constructions (Lakretz et al.,
2020)?

However, currently, the neural mechanisms un-
derlying syntactic processing in transformers are
poorly understood (Belinkov and Glass, 2019). Our
findings of below-chance performance by trans-
former models calls for a further investigation in
how these models achieve their earlier found suc-
cesses on syntactic related tasks, and why they
generalise so poorly on constructions which only
minimally differ (a single three-word prepositional
phrase) from the constructions they process well.
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Abstract

Using prompts to utilize language models
to perform various downstream tasks, also
known as prompt-based learning or prompt-
learning, has lately gained significant success
in comparison to the pre-train and fine-tune
paradigm. Nonetheless, virtually most prompt-
based methods are token-level such as PET
based on mask language model (MLM). In this
paper, we attempt to accomplish several NLP
tasks in the zero-shot and few-shot scenarios
using a BERT original pre-training task aban-
doned by RoBERTa and other models——Next
Sentence Prediction (NSP). Unlike token-level
techniques, our sentence-level prompt-based
method NSP-BERT does not need to fix the
length of the prompt or the position to be pre-
dicted, allowing it to handle tasks such as entity
linking with ease. NSP-BERT can be applied
to a variety of tasks based on its properties. We
present an NSP-tuning approach with binary
cross-entropy loss for single-sentence classifi-
cation tasks that is competitive compared to
PET and EFL. By continuing to train BERT on
RoBERTa’s corpus, the model’s performance
improved significantly, which indicates that
the pre-training corpus is another important de-
terminant of few-shot besides model size and
prompt method.1

1 Introduction

GPT-2 (up to 1.5B (Radford et al., 2019)) and GPT-
3 (up to 175B (Brown et al., 2020)) are ultra-large-
scale language models with billions of parameters
that have recently demonstrated outstanding per-
formance in various NLP tasks. Compared with
previous state-of-the-art fine-tuning methods, they
can achieve competitive results without any or with
just a limited quantity of training data. Although
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1Our code and pre-trained models are publicly at: https:
//github.com/sunyilgdx/Prompts4Keras.
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Figure 1: Prompts for various NLP tasks of NSP-BERT.

studies have shown that scaling up the model im-
proves task-agnostic and few-shot performance,
some studies have shown that by constructing ap-
propriate prompts for the model, models like BERT
(Devlin et al., 2018) or RoBERTa (Liu et al., 2019)
can achieve similar performance despite having a
parameter count that is several orders of magnitude
smaller (Schick and Schütze, 2021b,a; Wang et al.,
2021). Since then, the area of natural language pro-
cessing has seen a fresh wave of developments, in-
cluding the introduction of a new paradigm known
as prompt-based learning or prompt-learning,
which follows the "pre-train, prompt, and predict"
(Liu et al., 2021) process. In zero-shot and few-
shot learning, prompt-learning has achieved a lot
of success. Not only does it achieve outstanding
performance, prompt-learning better integrates pre-
training and downstream tasks and brings NLP
tasks closer to human logic and habits.

The input text for the classification task, for ex-
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Figure 2: (Left) MLM task for token-level prompt-learning. (Right) NSP task for sentence-level prompt-learning.

ample, “The Italian team won the European Cup.”,
should be assigned to one of the candidate labels,
such as Gaming, Sports, or Finance. At this point,
the template “This is [MASK] news.” will be
added to the original text, and the model will be
asked to predict the missing word or span. The
model’s output will then be mapped to the can-
didate labels. We could utilize the pre-training
tasks of several types of language models (LM)
to predict the abovementioned templates, includ-
ing but not limited to Left-to-right LM (GPT se-
ries (Radford et al., 2018, 2019; Brown et al.,
2020)), Masked LM (BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019)), prefix LM (UniLM
(Dong et al., 2019; Bao et al., 2020)) and Encoder-
decoder LM (T5 (Raffel et al., 2019), BART (Lewis
et al., 2020)).

Although most research on prompt-learning has
been conducted, the majority of the pre-training
tasks used in prompt-learning are token-level, re-
quiring the labels to be mapped to a fixed-length
token span (Schick and Schütze, 2021b,a; Cui et al.,
2021). On the one hand, when the number of labels
grows rapidly, this necessitates a lot of human labor.
On the other hand, tasks with variable-length op-
tions make Left-to-right LM (L2R LM) or masked
LM (MLM) difficult to cope with. The length of
each candidate entity’s description, for example,
varies significantly in the entity linking task.

At the same time, we observed that there is an
original sentence-level pre-training object in vanilla
BERT——NSP (Next Sentence Prediction), which
is a binary classification task that predicts whether
two sentences appear consecutively within a doc-
ument or not. Many models, like RoBERTa (Liu
et al., 2019) and many others (Conneau and Lam-
ple, 2019; Yang et al., 2019; Joshi et al., 2020),
have questioned and abandoned this task during
pre-training. Nevertheless, based on the task’s fea-
tures and object, we believe it is appropriate to use
in prompt-learning.

Unlike most prior works, we present NSP-BERT,
a sentence-level prompt-learning method. The pa-

per’s main contributions can be summarized as fol-
lows:

• We propose the use of NSP, a sentence-level
pre-training task for prompt-learning, which
can ignore the uncertain length of the label
words. Our NSP-BERT has a strong zero-shot
learning capacity and can be applied to a wide
range of tasks, which is extremely motivating
for future work.

• We present NSP-tuning for single-sentence
classification tasks. Without abandoning the
original NSP head, binary cross-entropy loss
is utilized to make the zero-shot capacity of
NSP-BERT continue to few-shot by building
coupled positive and negative instances.

• By using RoBERTa’s corpus to continue pre-
training the BERT model, although the com-
putational cost is only about 2% of RoBERTa,
our BERTCB+Mix5

has been greatly improved
in both zero-shot and few-shot scenarios. We
believe that the effect of pre-training corpus
on few-shot learning is decisive, so we suggest
that all few-shot learning baselines, even if
cannot use the same pre-trained model, should
be based on the same pre-training corpus. In
this way, a fair comparison can be made.

2 Related Work

2.1 Token-Level and Sentence-Level
Token-Level Prompt-Learning Token-level pre-
training tasks, such as MLM (Shown in the left part
of Figure 2) (Jiang et al., 2020; Schick and Schütze,
2021b,a) or L2R LM(Radford et al., 2019; Brown
et al., 2020; Cui et al., 2021), are commonly used in
token-level prompt-learning approaches. Although
the expected answer may be in the form of tokens,
spans, or sentences in token-level prompt-learning,
the predicted answer is always generated token by
token. Tokens are usually mapped to the whole vo-
cabulary or a set of candidate words (Petroni et al.,
2019; Cui et al., 2021; Han et al., 2021; Adolphs
et al., 2021; Hu et al., 2021). Take PET model
(Schick and Schütze, 2021b,a) as an example, the
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IsNext
NSP head

[CLS] Manchester United lose 4:0 to Brighton This is sports news. This is politics news. This is business news.

Sports
IsNext Prob

Politics
IsNext Prob

Business
IsNext Prob

···

···

Next Sentence Prediction

BCE Loss

1 0 0 ···label

prob

Figure 3: NSP-tuning for single-sentence classification. “Manchester United lose 4:0 to Brighton” is the original
input, the gold label is Sports. The negative instances are building with wrong label Politics, Bussiness, etc.

sentiment classification input/label pair is refor-
mulated to “x: [CLS] The Italian team won the
European Cup. This is [MASK] news. [EOS], y:
Sports”.

Sentence-Level Prompt-Learning Sentence-
level methods concentrate on the relationship
between sentences, with the model’s output usually
mapped to a relationship space. As far as we know,
EFL (Wang et al., 2021) is the only sentence-level
model. It reformulates NLP tasks into sentence
entailment-style tasks. For example, the sentiment
classification input/label pair is reformulated to “x:
[CLS] The Italian team won the European Cup.
[SEP] This is Sports news.[EOS], y: Entail”.
The output of model is Entail or Not Entail.
The EFL model can perform well on few-shot
learning but relies on labeled natural language
inference (NLI) datasets like MNLI (Williams
et al., 2018).

2.2 Optimization methods
Automated Prompt Manually designed prompts
are highly unstable. Sometimes it is necessary to
be familiar with the particular task and language
model in order to construct a high-quality prompt.
As a result, several studies attempt to automatically
search for and generate prompts. LM-BFF (Gao
et al., 2021) model use conditional likelihood to au-
tomatically select labels words, and use T5 (Raffel
et al., 2019) to generate templates. AUTOPROMPT

(Shin et al., 2020) uses a gradient-guided search to
create prompts. Compared to the discrete prompt
search methods mentioned above, P-tuning (Liu
et al., 2021) employs trainable continuous prompt
embeddings on GPT.

Training Strategy There are many optimization
methods in prompt-learning. ADAPET (Tam et al.,
2021) uses more supervision by decoupling the
losses for the label tokens and a label-conditioned
MLM objective over the full original input. PTR

(Han et al., 2021) incorporates logic rules to com-
pose task-specific prompts with several simple sub-
prompts. (Zhao et al., 2021) use content-free inputs
(e.g. “N/A”) to calibrate the model’s output prob-
abilities and improved the performance of GPT-2
and GPT-3.

3 Framework of NSP-BERT

Problem of MLM: Span Prediction As the
most important pre-training task of BERT-like mod-
els, MLM has been used for prompt-learning in
most previous studies, and achieved satisfactory
results on GLUE (Wang et al., 2019) and other
English datasets or benchmarks. In those English
tasks, we can use just one token to map each label.
But in some cases, we need more than one token.

xinput = [CLS] x It was [MASK].[EOS]

xinput = [CLS] x这是 [MASK][MASK]新闻.[EOS]

As shown in the above example, in the first En-
glish sample, x is the original sentence, we can use
just one [MASK]token to predict the label word
“Sports” in a classification task. But in the sec-
ond Chinese sample, we need [MASK][MASK]to
map the label word “体育” (which has the same
meaning with “Sports”), and use their probability
product to represent the probability of the label
(detailed description is in the Appendix A.1 ). As
the number of [MASK]increases, it becomes diffi-
cult for the MLM to predict correctly. At the same
time, it is impossible to compare the probability
of label mapping words (spans or sentences) with
different number of [MASK]tokens, entity linking
is one of the scenarios. Therefore, especially in the
Chinese task, there is a obvious gap between the
pre-training and the downstream task.

3.1 Next Sentence Prediction
The next sentence prediction is one of the two ba-
sic pre-training tasks (the other is MLM) of the
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vanilla BERT model (Devlin et al., 2018) (Shown
in the right part of Figure 2). This task inputs two
sentences A and B into BERT at the same time to
predict whether sentence B comes after sentence A
in the same document. During specific training, for
50% of the time, B is the actual next sentence that
follows A (IsNext), and for the other 50% of the
time, we use a random sentence from the corpus
(NotNext).

xinput = [CLS]x
(1)
i [SEP]x

(2)
i .[EOS]

Let M denote the model trained on a large-
scale corpus. This model is trained on both MLM
task and NSP task at the same time. x

(1)
i and

x
(2)
i denote sentence A and sentence B, respec-

tively. The model’s input is xinput, and qM de-
notes the output probability of model’s NSP head.
s = Wnsp(tanh (Wh[CLS] + b)) 2, where h[CLS]

is the hidden vector of [CLS]and Wnsp is a ma-
trix learned by NSP task, Wnsp ∈ R2×H . The
loss function of NSP task LNSP = − log qM(n|x),
where n ∈ {IsNext,NotNext}.

qM(nk|xi) =
exp s(nk|x(1)

i ,x
(2)
i )

∑
n
exp s(n|x(1)

i ,x
(2)
i )

(1)

3.2 Prompts in NSP-BERT
NSP-BERT, like other prompt-based learning meth-
ods, requires the construction of appropriate tem-
plates for various tasks. In order to make the model
have better zero-shot performance and better few-
shot initialization, the template’s building form
must closely match the original NSP task. In this
section, we’ll show how to construct templates for
different tasks (also shown in Figure 1).

In order to apply NSP to zero or few-shot learn-
ing, we treat most tasks as multiple-choice tasks.
Same as the right side in Figure 2, an NSP-BERT’s
input can be expressed as:

xinput = [CLS]xi[SEP]p
(j)
i [EOS].

We define the template T as a combination of input
xi and the prompts, T (x) = [CLS]x [SEP]This
is ... news.[EOS]. Unlike prompt-tuning based
on MLM (Schick and Schütze, 2021a; Gao et al.,
2021) which requires mapping labels to vocabu-
laries, for our NPS-BERT, labels can be mapped

2Devlin et al.(2018) use an additional nonlinear layer to
pool the hidden vector of [CLS]for NSP task, but not men-
tioned in their paper.

to words or phrases of arbitrary length in “...”. To
map labels to the prompts, we define a verbalizer
as a mapping f : Y 7→ P . The label y(j)i can be
mapped to prompt p(j)i ∈ P .

In single-sentence classification tasks, all sam-
ples share the same label space Y , where |Y| is
the number of classes. For label of the jth class
y(j) ∈ Y can be mapped to prompt p(j). For those
tasks where each sample corresponds to different
labels, such as cloze-style task, word sense dis-
ambiguation, entity linking, we define the label
space corresponding to the ith sample as Yi, and
y
(j)
i ∈ Yi.

[CLS] [SEP] [EOS]The phone on the desk rang. It hung up after two minutes. phoneIt means

Prompt

[CLS] [SEP] [EOS]Franklin drafted and signed the Declaration of Independence. ####Franklin is

Prompt

Figure 4: Two-stage prompt, examples in coreference
resolution and entity linking/typing tasks.

In tasks such as entity linking, there are more
than one entity in the sentence, in order to iden-
tify target entity words, we recommend using two-
stage prompt (as shown in Figure 4) to indicate
the target word using natural language descriptions:

• Stage 1: Prompt the target word at the end of
sentence A. This stage’s purpose is to provide
enough context for the target word.

• Stage 2: Prompt the description of the candi-
date word sense in sentence B.

Let p(j)i,1 and p(j)i,2 denote the first and the second
part of the prompt. The model’s input is:

xinput = [CLS]xi, p
(j)
i,1[SEP]p

(j)
i,2[EOS].

For sentence-pair tasks such as text entailment
and text matching, since the NSP task is in the form
of sentence pairs we still use the same input as the
original NSP task.

3.3 Answer Mapping

Because not all datasets can provide contrastive
candidate answers (sentiments, topics, idioms, or
entities), we propose two answer mapping meth-
ods, candidates-contrast answer mapping and
samples-contrast answer mapping, for different
situations.
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Candidates-Contrast For datasets with multiple
candidates, such as candidate sentiments, candidate
topics, candidate idioms and candidate entities. For
the above datasets, there is a template p(j)i (or pi)
corresponding to the label y(j)i (or yi), we choose
the IsNext probability as the output of each can-
didate answer. The logit of label y(j)i (the value
ranges from 0 to 1, but is not an actual probability)
is:

q(y
(j)
i |xi) ∝ qM(n = IsNext|xi, p(j)i ) (2)

In the prediction stage, we take the highest probabil-
ity output byM among the candidates as the final
output answer where the condition is IsNext:

ŷi = argmax
j

q(y
(j)
i |xi)

= argmax
j

qM(n = IsNext|xi, p(j)i )
(3)

Samples-Contrast For sentence-pair tasks, the
IsNext output probabilities of most samples are
close to 1 (see details in Appendix B.2), which
makes it difficult to judge the relationship between
two sentences through a single sample. So we pro-
pose the samples-contrast answer mapping method
(Figure 3), to determine the label of a individual
sample by contrast the probability of IsNext be-
tween samples. To put it simply, by ranking3

in ascending order, the samples with a relatively
higher IsNext probability are divided4 into la-
bels with a higher degree of matching, such as
Entailment. On the contrary, samples with
lower IsNext probability will be divided to la-
bels such as NotEntailment. This procedure is
summarized in Algorithm 15.

Considering the fairness of the comparative ex-
periment, we consider two preconditions. One is
that a complete development set and a test set can
be obtained at the same time; the other is that only
the development set can be obtained, and the test
samples must be predicted one by one or batch by
batch during testing. In our experiment, we use
the development set to determine the thresholds of
probability, and use these thresholds to predict the
test set.

3Sort samples in ascending or descending order according
to IsNext probability.

4Divide the dataset (or sample batch) into subsets accord-
ing to the proportion of each label in development set.

5This method is currently only suitable for sentence-pair
tasks, and can only be applied in zero-shot scenarios.

Algorithm 1 Samples-Contrast Answer Mapping
Input: Test set D = {xi}Ni=1, where xi =

(x
(1)
i ,x

(2)
i ), Oder o ∈ {“ascending”, “descend-

ing”}, distribution of labels d, batch size bs.
Output: {xi, ŷi}Ni=1

1: for i = 1, ..., N do
2: qi ← qM(n = IsNext|x(1)

i ,x
(2)
i )

3: end for
4: {Bj}

⌈N
bs
⌉

j=1 ← divide (D, bs)
5: for j = 1, ..., ⌈Nbs⌉ do
6: B′j = {xr(1), ...,xr(bs)} ← rank(Bj , qi, o)
7: {Bm}Mm=1 ← divide (B′j , d)
8: for i = 1, ..., bs do
9: ŷi ← m where xi ∈ Bm

10: end for
11: end for

3.4 NSP-tuning

Since we treat tasks with candidates as multiple-
choice problems, when we need to perform few-
shot learning, we need to choose some methods
to continue the initialization advantages of NSP-
BERT in zero-shot. We name this method NSP-
tuning used on few-shot single-sentence classifica-
tion tasks, as shown in Figure 3.

Building Instances Taking the single-sentence
classification as an example, for the ith sam-
ple, we take it’s gold label y+i as a posi-
tive instance (T (xi, y+i ), 1) , while taking the
rest of the labels in Y as negative instances
{(T (xi, y−i ), 0)}

|Y|−1
y−i ̸=y

+
i ,y

−
i ∈Y

and {0, 1} represent
the labels of the binary classification. Both the pos-
itive instance and negative instances of the same
sample, a total of |Y|, will be coupled and input to
the model in a same batch.

Loss function Since the output probability of
IsNext has been already normalized to [0, 1] by
softmax after a nonlinear layer during pre-training,
if we want to do NSP-tuning without changing
the structure of the pre-training model, we need to
choose the binary cross-entropy loss as the loss
function. Of course, we can re-initialize the out-
put ofM to implement a multiple-choice method
with linear layer+softmax cross-entropy loss same
as (Radford and Narasimhan, 2018), but we think
this is not conducive to preserving the zero-shot
advantage of NSP to few-shot.
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English Tasks Chinese Tasks

SST-2 MR CR MPQA Subj Yahoo! AGNews EPR. TNEWS(K) CSLDCP IFLY.

Full
Majority 50.9 50.0 50.0 50.0 50.0 10.0 25.0 50.0 6.7 1.5 0.8
Fine-Tuning 93.6 89.0 89.3 89.3 97.0 76.5 94.7 90.0† 71.0† 68.0† 66.0†

Zero
PET 67.6 65.3 61.2 63.9 61.0 25.6 54.5 60.7 28.0 / 35.6 22.4 34.8
NSP-BERT 75.6 74.4 59.4 59.9 53.9 47.0 77.5 86.9 51.9 / 57.0 47.6 41.6

Few

Fine-tuning 77.9±5.9 68.0±9.4 79.1±8.9 65.2±6.3 89.7±1.1 61.8±1.5 82.4±1.2 78.7±5.8 51.1±1.1 / 58.0±1.4 51.7±2.1 45.1±2.2

PET 86.0±1.6 80.0±1.6 88.9±0.6 83.3±2.4 86.2±1.5 64.3±1.3 84.2±0.8 82.5±2.0 54.7±1.1 / 61.2±0.9 52.6±1.2 45.9±2.1

EFL w/ PT 86.9±1.8 80.6±1.2 88.1±0.9 86.1±0.7 86.0±3.3 63.0±1.2 83.8±1.3 84.8±1.6 53.2±1.5 / 59.2±1.6 52.0±1.6 47.9±1.5

EFL w/o PT 81.2±5.1 76.1±9.1 79.2±4.0 79.1±1.6 75.1±9.4 60.8±4.2 84.6±0.7 84.6±2.1 54.7±1.3 / 60.3±1.7 53.8±0.9 49.5±1.2

NSP-BERT 86.8±1.3 80.5±1.5 86.0±2.2 83.9±1.1 86.4±1.8 64.5±0.5 85.9±0.8 87.7±0.7 55.7±1.0 / 61.6±0.9 55.0±1.5 49.5±1.1

Table 1: Main zero-shot and few-shot learning results on single-sentence classification tasks. In addition to the
accuracy, we also report the standard deviation for few-shot learning. For English tasks, we use vanilla BERT-
LARGE. For Chinese tasks, we use UER’s Chinese BERT-BASE. Full: full training; Zero: zero-shot; Few: few-shot;
†: human performance; Majority: majority class; EFL w/ PT: few-shot tuning of EFL with pre-training on MNLI;
EFL w/o PT: few-shot tuning of without pre-training on MNLI; TNEWS(K): use the keyword (K) field or not.

4 Experiment

4.1 Tasks and Datasets

English Datasets For English tasks, following
(Gao et al., 2021; Hu et al., 2021; Liang et al.,
2022), we choose 7 single-sentence and 5 sentence-
pair English tasks. See details in Appendix B.1.

Chinese Datasets For Chinese tasks, we choose
FewCLUE (Xu et al., 2021), a Chinese Few-shot
Learning Evaluation Benchmark, which contains 9
NLU tasks in Chinese, with 4 single-sentence tasks,
3 sentence-pair tasks and 2 reading comprehension
tasks. Additionally, we select the entity linking
dataset DuEL2.06 to verify the word sense disam-
biguation ability. And we divide DuEL2.0 into two
parts: DuEL2.0-L (entity linking) and DuEL2.0-T
(entity typing).

4.2 Baselines

Fine-Tuning Standard fine-tuning of the pre-
trained language model on the FewCLUE train-
ing set. The models are fine-tuned with cross en-
tropy loss and using the BERT-style model’s hidden
vector of [CLS] h[CLS] with a classification layer
softmax(Wh[CLS]), where W ∈ R|Y|×H , |Y| is
the number of labels.

Prompt-based methods Since our method is a
brand-new basic prompt-learning method, our main
purpose is to demonstrate its effectiveness com-
pared to MLM-like methods, and we think it is not
necessary to compare with more complex methods
such as continuous prompt or automatic prompt
methods. Therefore we choose token-level model
PET (Schick and Schütze, 2021b,a) based on MLM

6https://aistudio.baidu.com/aistudio/competition/detail/83

and sentence-level model EFL7 (Wang et al., 2021)
based on entailment as two baselines.

4.3 Experiment Settings
Evaluation Protocol For few-shot learning, we
follow the evaluation protocol adopted in (Gao
et al., 2021; Liang et al., 2022) and assume K
samples per class for training set. For English tasks
the K of training set is set to 16, and the size of the
development set is 10 times the size of the training
set. The number K of FewCLUE has been set to
8 or 16 according to Xu et al. (2021). For each
experiment, we run 5 experiments with 5 differ-
ent training and development set (split by 5 fixed
random seed) and report the average results and
standard deviations.

Language Models In order to conduct compara-
tive experiments fairly, for our main experiments,
we use the same pre-trained language model for
the same dataset. For English tasks, we adopt
the vanilla English BERT-LARGE8. For Chinese
tasks, we adopt the Chinese BERT-BASE9 trained
by UER using MLM and NSP (Zhao et al., 2019).

Hyper-parameters For few-shot learning, we
train 10 epochs on all the datasets. We set learning
rate as 2e-5 for English tasks, and 1e-5 for Chinese
tasks. The batch size is 8. All baselines use the
same hyper-parameters described above.

4.4 Main Results
The Table 1 reports the main results on 7 English
and 4 Chinese single-sentence classification tasks.

7We use MNLI(Williams et al., 2018) and OCNLI(Hu
et al., 2020) to pre-train EFL.

8https://github.com/google-research/bert
9https://github.com/dbiir/UER-py
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Model Corpus English Tasks

SST-2 MR CR MPQA Subj Yahoo! AGNews

Zero
PET

RoBERTa
CB 81.2 75.6 76.6 63.3 63.6 18.7 47.8
CR 83.6 80.8 79.5 67.6 53.6 25.6 54.5

BERT
CB 67.6 65.3 61.2 63.9 61.0 25.6 54.5
CB+Mix5 75.0 70.1 67.4 64.2 55.3 28.5 38.4

NSP-BERT BERT
CB 75.6 74.4 59.4 59.9 53.9 47.0 77.5
CB+Mix5 81.2 78.3 76.9 72.4 53.0 56.8 75.8

Few
PET

RoBERTa
CB 88.6±1.5 83.9±0.8 87.8±0.7 82.0±1.1 82.8±5.6 65.2±1.3 86.0±0.4

CR 91.7±0.6 88.0±0.5 91.5±0.9 85.6±2.1 87.8±2.2 68.9±1.0 87.8±0.9

BERT
CB 85.3±1.7 80.3±2.1 89.2±0.3 83.3±2.4 85.4±1.9 64.3±1.3 84.0±1.0

CB+Mix5 87.6±0.9 85.0±0.8 89.6±0.8 85.0±1.7 90.5±1.2 68.4±0.7 87.8±0.6

NSP-BERT BERT
CB 86.7±2.1 80.3±1.8 86.7±1.7 83.9±1.1 86.6±0.9 64.5±0.5 85.9±0.8

CB+Mix5 89.4±0.7 83.3±1.1 88.7±1.0 85.3±1.0 92.1±1.1 68.3±1.3 87.6±0.5

Table 2: Impact of pre-training corpus. CB: pre-training from scratch with BERT’s corpus; CR: pre-training from
scratch with RoBERTa’s corpus; CB+Mix5: continue pre-training with RoBERTa’s corpus based on vanilla BERT.
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Figure 5: The accuracy of the 4 methods for each epoch
during few-shot training on Yahoo! and AGNews.

Since we use the same pre-trained language model
for all methods, this experiment is fair enough. It is
clear that our NSP-BERT offers distinct advantages
in zero-shot scenario, particularly for multi-topic
classification tasks such as Yahoo!, AGNews, and
all Chinese datasets. In few-shot scenario. its per-
formance is comparable to the MLM-based PET
(Schick and Schütze, 2021a) on the most datasets.
Compared with EFL (Wang et al., 2021) with-
out pre-training on the NLI dataset, NSP-BERT
is much better. Our NSP-BERT has the fastest con-
vergence speed based on convergence curves, as
shown in Figure 5. NSP-BERT usually achieves
the best performance during the first few epochs.

Ablation studies on NSP-tuning It can be seen
from Table 3 that coupling positive and negative
samples + BCE loss function is the most effective
and robust way of NSP-tuning. Other modifications
in the table will degrade the performance of the
model and make the results unstable. We believe
this is due to the special output of the NSP Head,
and re-initialization will lose the knowledge gained
during pre-training.

SST-2 MR CR MPQA

NSP-BERT 86.8±1.3 80.5±1.5 86.0±2.2 83.9±1.1

coupled→decouple 86.8±1.2 78.9±2.3 85.8±9.5 81.5±5.8

BCE→softmax 83.8±5.0 76.4±6.4 80.5±10.0 73.3±9.5

w/o NSP head 83.8±6.5 74.3±9.2 79.0±8.1 73.2±10.1

linear head+softmax 80.2±7.6 71.9±12.3 82.6±6.7 73.8±11.1

Table 3: Ablation studies of NSP-BERT on vanilla
English BERT-Large. coupled→decouple: change
coupled positive and negative samples to decoupled;
BCE→softmax: change binary cross-entropy loss to
softmax loss; w/o NSP head: use an initialized sigmoid
head; linear head+softmax: use an initialized sigmoid
head and softmax loss.

Impact of Pre-training Corpus Compared with
the RoBERTa model, the original BERT model has
a large gap in the pre-training corpus. BERT is only
pre-trained on Wikipedia and BookCorpus(Zhu
et al., 2015), and the size is about 16GB, while
RoBERTa additionally uses CC-News10, OpenWeb-
Text (Gokaslan and Cohen, 2019) and Stories(Trinh
and Le, 2018) corpus, which is 145GB more. We
use the above 5 corpora11 to pre-train the vanilla
BERT model incrementally. Due to the limited
computing power, our total training steps are about
30% of the BERT model and 2% of the RoBERTa
model. As shown in Table 2, although it has not yet
reached the level of RoBERTa, our BERT model
(BERTCB+Mix5

) has greatly improved the perfor-
mance of zero-shot and few-shot learning, and this
improvement even exceeds the changes brought by
the prompt method.

10https://commoncrawl.org/2016/10/news-dataset-
available/

11Since there is no public Stories corpus, we refer to the
construction method of (Trinh and Le, 2018) and build it on
the basis of CC-100 (Conneau et al., 2020).
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Figure 6: The performance of the samples-contrast answer mapping method under different preconditions on
OCNLI, BUSTM, CSL and CLUEWSC. Batch size |B| ∈ {1, 2, ..., 128,ALL}, when the batch size is 1 (1 and 2 for
OCNLI), the result is a random guess, when the batch size is ALL, indicating that the entire test set is obtained at
one time. Thresholds means that the thresholds are obtained through the dev set, and then used for the prediction
of the test set.
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Figure 7: Accuracy of PET and NSP-BERT on
EPRSTMT and TNEWS under 4 different model sizes.

Impact of Model Size Only under the premise of
fixing the same pre-training corpus, we can verify
the effect of model size on NSP-BERT. We care-
fully selected 4 sizes of UER’s BERT (tiny, small,
base and large) trained on same corpus for vali-
dation on two datasets, EPRSTMT and TNEWS.
Figure 7 shows the impact of different sizes of mod-
els on NSP-BERT and PET, it can be seen that our
method is still very competitive on small models12.

4.5 Applications of NSP-BERT

We validate applications of NSP-BERT on the
tasks shown in Table 4, including NLI (OCNLI,
MNLI, SNLI, QNLI and RTE), text matching
(BUSTM), keyword recognition (CSL), Chinese
idiom cloze test (ChID), and coreference resolution
(CLUEWSC). In these tasks, the zero-shot learning
prediction ability of NSP-BERT is demonstrated
with the help of the sample-contrast method. From
Figure 6, we can see that even a small contrast
batch size can help the sentence-pair tasks, and as
the batch size increases, this improvement becomes
more obvious and tends to be stable.

Our NSP-BERT can be applied to the task of
entity typing, and can even handle entity linking

12PET fails to fit on tiny and small models for no reason.

task. The difficulty of entity linking for MLM-
based model such as PET is that the description of
the entity is of variable length. In these tasks with
more than one target words or entity, the effect of
two-stage prompt is obvious, see Table 5.

Chinese Tasks

OCNLI BUSTM CSL WSC ChID

Majority 38.1 50.0 50.0 50.0 14.3
PET 40.3 50.6 52.2 54.7 57.6
NSP-BERT 37.4 63.4 64.4 59.4 52.0

English Tasks

MNLI-m MNLI-mm SNLI QNLI RTE

Majority 32.7 33.0 33.8 49.5 52.7
PET 47.1 46.0 36.0 49.0 51.6
NSP-BERT 39.4 39.2 43.4 67.6 55.6

Table 4: Applications of NSP-BERT on FewCLUE
tasks in zero-shot scenario. We report accuracy for
all datasets. We only use the candidate-contrast method
on ChID, and use the sample-contrast method on the
rest of the datasets.

DuEL2.0-L DuEL2.0-T

PET - 40.0
NSP-BERT 61.2 / 69.7↑ 31.4 / 40.0↑

Table 5: Word sense disambiguation task. DuEL2.0-
L: DuEL2.0 entity linking part; DuEL2.0-T: DuEL2.0
entity typing part. The left side of the slash is the one-
stage prompt, and the right side is the two-stage prompt.

5 Conclusion

In this paper, we show that NSP can also be an ap-
posite zero-shot or few-shot learner same as MLM.
This not only provides a new route for prompt-
learning, but also makes us rethink the role of
sentence-level pre-training tasks. At the same time,
we continue to pre-train the BERT model with a
small amount of computing power, and its perfor-
mance improves significantly on both zero-shot
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and few-shot learning, whether to use PET or NSP-
BERT. We believe that not only the size of the
model, but also the pre-training corpus, both de-
termine the upper limit of the model’s ability on
few-shot learning.
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A Models

A.1 Probability Formula

We compared the output probability formulas of
different zero-shot prompt-learning models include
our NSP-BERT. The following description is a gen-
eral situation, assuming that each label it mapped
to a span with a length is greater than or equal to
1. When the length of the label word is equal to 1,
the form of the pre-training and downstream tasks
tend to be unified. When the length is greater than
1, there is a gap between them, even we use the
model pre-trained by whole word masking (Cui
et al., 2019) or span masking (Joshi et al., 2020).

PET-ZERO Denote the token in position i as
ti, the label span will be replaced by [MASK]l:r.
When ignoring special tokens such as [CLS]and
[PAD], the input of PET-ZERO is:

xinput = t1, ...,[MASK]l, ...,[MASK]r, ...
(4)

The output probability for label y(j)i is:

q(y
(j)
i |xi) = softmax

1⩽j⩽M
(
∏

l⩽v⩽r
qMMLM

(t(j)v |xinput)). (5)

NSP-BERT For our NSP-BERT, the label span
t
(j)
l:r will be replaced in turn:

x
(j)
input = t1, ...,[SEP], ..., t

(j)
l , ..., t(j)r , ... (6)

The output probability for label y(j)i is:

q(y
(j)
i |xi) = softmax

1⩽j⩽M
(qMNSP

(x
(j)
input)). (7)

A.2 Parameters of Models

For FewCLUE, we use the Chinese vanilla-BERT-
BASE pre-trained by UER (Zhao et al., 2019) for
the main results of our NSP-BERT. We also report
the results of the other scales (tiny, small and large)
model. Following the implementation of (Xu et al.,
2021), we use Chinese RoBERTa-wwm-ext-BASE

pre-trained by HFL (Cui et al., 2019) and NEZHA-
Gen (Wei et al., 2019) for the baselines.

For English datasets, following the implementa-
tion 13 of (Gao et al., 2021). We use vanilla-BERT-
LARGE pre-trained by Google (Devlin et al., 2018)
for our NSP-BERT, and RoBERTa-LARGE14 for
the baselines.

13https://github.com/princeton-nlp/LM-BFF
14https://github.com/pytorch/fairseq/tree/main/examples/roberta

Table 6 shows the hyperparameters of the mod-
els used in our experiment. The English and Chi-
nese models are a little different in total parame-
ters, mainly due to the different vocabulary size.
It should be noted that not all pre-trained models
fully stored NSP head and MLM head, so we need
to select deliberately.

Model L H A
Total Parameters

ZH / EN

RoBERTa 12 768 12 102M -
RoBERTa-LARGE 12 768 12 - 355M

BERT-TINY 3 384 6 14M -
BERT-SMALL 6 512 8 31M -
BERT-BASE 12 768 12 102M -
BERT-LARGE 24 1024 16 327M 355M

Table 6: The parameters of different models used in
our experiment. L: number of layers; H: hidden size;
A: number of self-attention heads; “-”: not used in our
paper; ZH: Chinese model; EN: English model.

A.3 Others

Marks and Two-stage prompt In the Figure 8,
we compare the markers that usually appear in su-
pervised training (Huang et al., 2019; Soares et al.,
2019; Wu and He, 2019; Zhong and Chen, 2021).
The marker are special tokens such as [noun],
[pron]and [e]. They are usually added before
and after the target words. The two-stage prompt
plays the same role as the markers, but it uses a
natural language description method.

B More Details

B.1 Datasets

FewCLUE FewCLUE (Xu et al., 2021) is a Chi-
nese few-shot learning evaluation benchmark with
9 Chinese NLU tasks in total. There are 4 single-
sentence tasks which are EPRSTMT, TNEWS,
CLSDCP and IFLYTEK. EPRSTMT is a binary
sentiment analysis dataset for E-commerce reviews.
TNEWS (Xu et al., 2020) is a short text classi-
fication for news title with 15 topics. CSLDCP
is a text classification dataset including abstracts
from a variety of Chinese scientific papers and with
67 categories in total. IFLYTEK (IFLYTEK CO.,
2019) is a long text classification dataset for App
descriptions. There are 3 sentence-pair tasks which
are OCNLI, BUSTM and CSL. OCNLI (Hu et al.,
2020) is an original Chinese NLI tasks. BUSTM
(of OPPO XiaoBu, 2021) is a dialogue short text
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[CLS] [SEP] [EOS]The phone on the desk rang. It hung up after two minutes. phoneIt means

Prompt

[CLS] [EOS]The [noun] phone [/noun] on the desk rang. [pron] It [/pron] hung up after two minutes.

Marker Marker

[CLS] [SEP] [EOS]Franklin drafted and signed the Declaration of Independence. ####Franklin is

Prompt

[CLS] [SEP] [EOS][e] Franklin [/e] drafted and signed the Declaration of Independence. ####

Marker

markers in Coreference Resolluation two-stage prompt in Coreference Resolluation

markers in Entity Linking two-stage prompt in Entity Linking

Figure 8: The comparison of markers (Left) and two-stage prompt (Right), examples in coreference resolution and
entity linking/typing tasks.

matching task. CSL is a abstract-keywords match-
ing task. There are other two tasks ChID and
CLUEWSC. ChID (Zheng et al., 2019) is a Chinese
idiom cloze test dataset. CLUEWSC is a corefer-
ence resolution task.

For all the datasets in FewCLUE, we evaluate
our model on the public test set. Although Few-
CLUE provides a large number of unlabeled sam-
ples, we did not use them in the our experiment,
so the results are unable to be compared with the
results on the leaderboard15. For dataset TNEWS,
we did not use the information of keywords follow-
ing (Xu et al., 2021). We treat CLUEWSC as a
sentence-pair task due to its data characteristics.

DuEL2.0 We divide DuEL2.0 into two parts. In
the first part, the entity linking part, there are 26586
samples. All the samples’ mention can be mapped
to single or multiple entities in the knowledge base,
and each mention can be linked to 5.37 entities on
average. In the second part, the entity typing part,
there are 6465 samples. Those samples’ mention
cannot be found in the knowledge base, but they
will be divided into their corresponding upper en-
tity types. There are a total of 24 upper entity types,
and we do not remove the Other type. When per-
forming the entity linking part, we only use the
entity’s summary information, without using more
entity triples.

Entity Linking Ave. Entities Entity Tpying Types

26586 5.37 6465 24

Table 7: Since the DuEL2.0’s test set is not public, we
use the dev set to test our model. The the number of the
original text lines is 10000. According to the predicted
target (entities in knowledge base or upper types), we
manually divide it into two parts, entity linking and
entity typing.

15https://www.cluebenchmarks.com/fewclue.html

English Datasets Following (Gao et al., 2021;
Hu et al., 2021; Liang et al., 2022), we evaluate
our model on 7 single-sentence and 5 sentence-
pair English tasks. For the datasets SST-2 (Socher
et al., 2013), MNLI (Williams et al., 2018), QNLI
(Rajpurkar et al., 2016), RTE (Dagan et al., 2005;
Bar Haim et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009), we follow (Gao et al.,
2021) and (Zhang et al., 2021) and use their origi-
nal development sets for testing. For datasets MR
(PANG, 2005), CR (Hu and Liu, 2004), MPQA
(Wiebe et al., 2005), Subj (Pang and Lee, 2004),
Yahoo! and AGNews(Zhang et al., 2015), we use
the testing set randomly sampled from training set
and leaved from training by (Gao et al., 2021)16.
For SNLI (Bowman et al., 2015), we use their offi-
cial test sets.

B.2 Results

Different Templates We compared in detail the
performance of NSP-BERT under different prompt
templates. This experiment wad conducted on 4
Chinese single-sentence classification datasets.

• Template 1 uses just the original label words.
• Template 2 adds pronouns and copulas such

as “I am”, “it is” or “this is”, to make the
template become a complete sentence.

• Template 3 incorporates more domain infor-
mation into the prompts, such as “shopping”,
“news”, “paper” and “app”. This makes the
original input sentence and prompt have better
connectivity.

For zero-shot learning, the prompt templates have
a strong impact on the performance, and for dif-
ferent models, there is a big difference. Therefore,
we verified the influence of templates for different
models versions and scales. The results are shown
in Table 9, Table 10, Table 11 and Table 12.

16https://nlp.cs.princeton.edu/projects/lm-bff/datasets.tar
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Category Corpus #Train #Test |Y| Task Type Metrics Source

English Tasks

SST-2 6,920 872 2 Sentiment Analysis Acc. Movie Reviews
MR 8,662 2,000 2 Sentiment Analysis Acc. Movie Reviews

Single- CR 1,775 2,000 2 Sentiment Analysis Acc. E-commerce Reviews
Sentence MPQA 8,606 2,000 2 Opinion Polarity Acc. World Press

Subj 8,000 2,000 2 Subjectivity Acc. Movie Reviews
Yahoo! 1,400,000 6,000 10 Question Classification Acc. Yahoo
AGNews 8,551 7,600 4 News Topic Classification Acc. Web

MNLI 392,702 9,815 3 Natural Language Inference Acc. Speech, Fiction and Reports
MNLI-mm 392,702 9,832 3 Natural Language Inference Acc. Speech, Fiction and Reports

Sentence- SNLI 549,367 9,842 3 Natural Language Inference Acc. Image Captions
Pair QNLI 104,743 5,463 2 Natural Language Inference Acc. Wikipedia

RTE 2,490 277 2 Natural Language Inference Acc. News and Wikipedia

Chinese Tasks (FewCLUE)

EPRSTMT 32 610 2 Sentiment Analysis Acc. E-commerce Reviews
Single- TNEWS 240 2,010 15 Short Text Classification Acc. News Title
Sentence CSLDCP 536 1,784 67 Long Text Classification Acc. Academic CNKI

IFLYTEK 928 1,749 119 Long Text Classification Acc. App Description

Sentence- OCNLI 32 2,520 3 Natural Language Inference Acc. 5 genres
Pair BUSTM 32 1,772 2 Short Text Matching Acc. AI Virtual Assistant

CSL 32 2,828 2 Keyword Recognition Acc. Academic CNKI

Others ChID 42 2,002 7 Chinese Idiom Cloze Test Acc. Novel, Essay News
CLUEWSC 32 976 2 Coreference Resolution Acc. Chinese Fiction Books

Table 8: Task descriptions and statistics. In FewCLUE we omit the unlabeled dataset because it is not used. Test
of FewCLUE indicates the number of samples in the public test set. The 5 text genres of OCNLI are government
documents, news, literature, TV talk shows and telephone conversations.

ORG Models Template 1 Template 2 Template 3
(Dev/Test) (Dev/Test) (Dev/Test)

UER

BERT-TINY 68.13/76.56 75.00/80.82 81.88/80.33
BERT-SMALL 85.00/87.70 82.50/87.70 87.50/86.72
BERT-BASE 60.00/54.59 78.75/80.98 88.13/86.89
BERT-LARGE 78.13/82.79 83.75/82.62 84.38/84.43

Table 9: Zero-shot acc. of NSP-BERT on EPRSTMT.

ORG Models Template 1 Template 2 Template 3
(Dev/Test) (Dev/Test) (Dev/Test)

UER

BERT-TINY 38.80/36.62 39.25/36.37 41.07/38.56
BERT-SMALL 38.98/38.81 39.80/40.35 41.80/42.19
BERT-BASE 41.26/41.84 46.99/48.66 50.64/51.00
BERT-LARGE 45.17/42.79 48.72/48.31 54.28/53.83

Table 10: Zero-shot acc. of NSP-BERT on TNEWS.

Probability of NSP in sentence-pair tasks To
further explain the necessity for us to propose
sample-contrast mapping method, we show the
NSP output probability of the sentence-pair tasks
in Figure 9 and Figure 10. It’s not difficult to see
that the NSP probability of most samples is close
to 1. So we can not judge its label for a individual
sample. We need to contrast different samples, and
predict the label by obtaining the distribution of the

ORG Models Template 1 Template 2 Template 3
(Dev/Test) (Dev/Test) (Dev/Test)

UER

BERT-TINY 24.03/25.73 27.37/29.60 25.68/28.81
BERT-SMALL 28.48/30.72 29.35/31.45 29.78/31.78
BERT-BASE 39.80/40.53 44.87/45.80 45.26/47.59
BERT-LARGE 44.73/42.83 44.00/44.34 45.89/46.92

Table 11: Zero-shot acc. of NSP-BERT on CSLDCP.

ORG Models Template 1 Template 2 Template 3
(Dev/Test) (Dev/Test) (Dev/Test)

UER

BERT-TINY 32.70/32.65 31.97/34.13 33.65/34.59
BERT-SMALL 32.27/32.42 35.54/34.65 35.25/34.76
BERT-BASE 36.41/36.59 42.39/40.19 43.12/41.62
BERT-LARGE 37.73/36.94 44.28/42.60 44.87/42.42

Table 12: Zero-shot acc. of NSP-BERT on IFLYTEK.

dataset.

Impact of batch size for samples-contrast In
one case, we cannot get the entire test set at
once, then we need to predict the samples of the
test set batch by batch. We set the batch size
|B| ∈ {1, 2, ..., 128,ALL}, to observe the results
predicted by samples-contrast method (see Table
13). As the batch size increases, the performance
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improves and stabilizes. Of course, when the batch
size is less than the number of labels, the result is
equivalent to random guessing. In another case, we
cannot get the distribution of the test set, that is, we
don’t know the proportion of each label. Then we
can use the development to calculate the NSP prob-
ability threshold of each label to predict the test set.
The model can also get the desired performance.

Strategies for datasets For different datasets,
according to their characteristics, the position of
the prompt (prefix or suffix), and the mapping
method (candidates-contrast or samples-contrast)
are different. We take Chinese tasks as exam-
ples, all the strategies are shown in Table 14. In
the single-sentence classification tasks (EPRSTMT,
TNEWS, CSLDCP, IFLYTEK), the prompts are
all prefixed, and we adopt candidates-contrast. For
the word sense disambiguation tasks (CLUEWSC
and DuEL2.0), since we need to utilize two-stage
prompt method, we all use the suffix. In sentence-
pair tasks (OCNLI, BUSTM and CSL), we choose
the appropriate order through the development set
to arrange the two sentences, where suffix means
using the original order and prefix means using the
reverse order.

Prompts for datasets Due to the number of data
sets in our paper, we report in detail the prompt
templates of the more important Chinese datasets in
Table 16, and briefly report the prompts of English
datasets in Table 15.
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Figure 9: The NSP output probability of the 4 sentence-pair tasks OCNLI, BUSTM, CSL and CLUEWSC in
Chinese benchmark FewCLUE. The x-axis represents the proportion of the samples. And the y-axis represents the
NSP probability of the samples.

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

NS
P p

rob

Q N L I
0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0 . 6 5

0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

NS
P p

rob

R T E
0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

0 . 9 9 7 0
0 . 9 9 7 5
0 . 9 9 8 0
0 . 9 9 8 5
0 . 9 9 9 0
0 . 9 9 9 5
1 . 0 0 0 0

NS
P p

rob

M R P C

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

NS
P p

rob

Q Q P
0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

NS
P p

rob

S T S - B
0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

NS
P p

rob

M N L I
0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

NS
P p

rob

M N L I - m m

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

NS
P p

rob

S N L I

Figure 10: The NSP output probability of the 8 English sentence-pair tasks QNLI, RTE, MRPC, SNLI, QQP, STS-B,
MNLI and MNLI-mm. The x-axis represents the proportion of the samples. And the y-axis represents the NSP
probability of the samples.

Dataset Dev Test

|B| =1 |B| =2 |B| =4 |B| =8 |B| =16 |B| =32 |B| =64 |B| =128 |B| =All Threshold

OCNLI 37.50 33.33 33.33 35.75 36.51 36.90 37.26 37.50 36.83 36.90 37.38
BUSTM 62.50 50.00 56.09 67.79 59.59 59.93 61.06 61.40 61.85 63.43 63.43
CSL 64.38 50.00 58.91 62.09 62.79 62.86 62.79 63.07 63.00 63.85 64.41
CLUEWSC 57.23 50.00 53.69 54.30 54.51 54.71 55.53 56.56 56.56 58.61 59.43

MNLI-m 41.67 35.22 35.22 39.08 40.04 39.08 39.63 39.33 39.48 39.33 39.41
MNLI-mm 39.58 35.45 35.45 38.41 38.59 38.62 38.19 37.69 38.24 38.17 39.17
SNLI 43.75 34.28 34.28 44.14 44.21 43.54 43.20 43.17 43.13 43.35 43.42
QNLI 87.50 49.46 62.37 64.63 65.37 66.58 66.87 67.23 67.34 67.56 67.56
RTE 62.50 52.71 52.71 54.87 53.43 55.60 54.15 54.15 54.87 51.99 55.60

Table 13: The performance of the samples-contrast answer mapping method under different preconditions on
sentence-pair tasks. Batch size |B| ∈ {1, 2, ..., 128,ALL}, when the batch size is less than the number of labels,
the result is a random guess, when the batch size is ALL, indicating that the entire test set is obtained at one time.
Thresholds means that the thresholds are obtained through the development set, and then used for the prediction
of the test set.
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Strategies Single-Sentence Task Sentence-Pair Task Others DuEL2.0

EPRSTMT TNEWS CSLDCP IFLYTEK OCNLI BUSTM CSL ChID CLUEWSC Entity Linking Entity Typing

Prompt Prefix ✓ ✓ ✓ ✓ ✓ ✓
Suffix ✓ ✓ ✓ ✓ ✓

Answer C-C ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mapping S-C ✓ ✓ ✓ ✓

Table 14: Strategies adopted on the 10 datasets in FewCLUE and DuEL2.0. The prefix means to put the prompt in
front of the original text, and the suffix is the opposite. C-C means candidates-contrast answer mapping method,
and S-C means samples-contrast answer mapping method.

Task Method Prompt Templates

SST-2

Original Labels: negative; positive

PET
Mapping Words: terrible; great
Prompt Template: x It was [label].

NSP-BERT
Mapping Words: terrible; great
Prompt Template: A [label] piece of work [SEP] x

MR

Original Labels: negative; positive

PET
Mapping Words: terrible; great
Prompt Template: x It was [label].

NSP-BERT
Mapping Words: terrible; great
Prompt Template: A [label] piece of work [SEP] x

CR

Original Labels: negative; positive

PET
Mapping Words: terrible; great
Prompt Template: x It was [label].

NSP-BERT
Mapping Words: terrible; great
Prompt Template: It was [label]. [SEP] x

Subj

Original Labels: negative; positive

PET
Mapping Words: subjective; objective
Prompt Template: x This is [label].

NSP-BERT
Mapping Words: subjective; objective
Prompt Template: A [label] comment [SEP] x

MPQA

Original Labels: negative; positive

PET
Mapping Words: terrible; great
Prompt Template: x It was [label].

NSP-BERT
Mapping Words: negative; positive
Prompt Template: It is [label]. [SEP] x

Yahoo!

Original Labels:

Society & Culture; Science & Mathematics; Health;
Education & Reference; Computers & Internet; Sports;
Business & Finance; Entertainment & Music; Family
& Relationships; Politics & Government

PET
Mapping Words:

Society; Science; Health; Education; Computer;
Sports; Business; Entertainment; Relationship; Politics

Prompt Template: [label] question: x

NSP-BERT
Mapping Words:

Society; Science; Health; Education; Computer;
Sports; Business; Entertainment; Relationship; Politics

Prompt Template: [label] question: [SEP] x

AGNews

Original Labels: political; sports; business; technology

PET
Mapping Words: political; sports; business; technology
Prompt Template: A [label] news : x

NSP-BERT
Mapping Words: political; sports; business; technology
Prompt Template: A [label] news : [SEP] x

Table 15: The prompts used in English datasets. We only show the template with best performance. We select
the most suitable prompt template for PET and NSP respectively. [label] is the token will be replaced by the
mapping words. EFL(Wang et al., 2021) uses the exact same prompts as NSP-BERT.
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Task Prompt Templates Mapping words of PET Mapping words of NSP-BERT

EPRSTMT
Template 1: x [SEP]很[label].
Template 2: x [SEP]东西很[label].
Template 3: x [SEP]这次买的东西很[label]

好;差 好;差

TNEWS
Template 1: x [SEP] [label].
Template 2: x [SEP] [label]新闻.
Template 3: x [SEP]这是一则 [label]新闻.

故事;文化;娱乐;体育;财经;
房产;汽车;教育;科技;军事;
旅游;国际;股票;农业;电竞

故事;文化;娱乐;体育;财经;
房产;汽车;教育;科技;军事;
旅游;国际;股票;农业;电竞

CSLDCP
Template 1: x [SEP] [label].
Template 2: x [SEP] [label]论文.
Template 3: x [SEP]这是一篇 [label]论文.

材料;作物;口腔;药学;教育;
水利;理经;食品;兽医;体育;
核能;力学;园艺;水产;法学;
地质;能源;农林;通信;情报...

材料科学与工程;作物学;口腔医学;
药学;教育学;水利工程;理论经济学;
食品科学与工程;畜牧学/兽医学;
体育学;核科学与技术;力学;园艺学...

IFLYTEK
Template 1: x [SEP] [label].
Template 2: x [SEP] [label]类软件.
Template 3: x [SEP]这是一款 [label]类软件.

打车;地图;免费;租车;同城;
快递;婚庆;家政;交通;政务;
社区;赚钱;魔幻;仙侠;卡牌;
飞行;射击;休闲;动作;体育;
棋牌;养成;策略;竞技;辅助...

打车;地图导航;免费WIFI;租车;
同城服务;快递物流;婚庆;家政;
公共交通;政务;社区服务;薅羊毛;
魔幻;仙侠;卡牌;飞行空战;射击游戏;
休闲益智;动作类;体育竞技...

Table 16: The prompts used for single-sentence classification tasks in FewCLUE. [label] is the token will be
replaced by the mapping words. The mapping words of PET need to be manually converted to equal length. Since
there are two options for the prompt, prefix and suffix, we select the most suitable one through the development set.
For dataset with a lot of labels, due to space considerations, we have omitted some of them.
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Abstract

Prompting method is regarded as one of the cru-
cial progress for few-shot nature language pro-
cessing. Recent research on prompting moves
from discrete tokens based “hard prompts”
to continuous “soft prompts”, which employ
learnable vectors as pseudo prompt tokens and
achieve better performance. Though show-
ing promising prospects, these soft-prompting
methods are observed to rely heavily on good
initialization to take effect. Unfortunately, ob-
taining a perfect initialization for soft prompts
requires understanding of inner language mod-
els working and elaborate design, which is
no easy task and has to restart from scratch
for each new task. To remedy this, we pro-
pose a generalized soft prompting method
called MetaPrompting, which adopts the well-
recognized model-agnostic meta-learning algo-
rithm to automatically find better prompt ini-
tialization that facilitates fast adaptation to new
prompting tasks. Extensive experiments show
MetaPrompting tackles soft prompt initializa-
tion problem and brings significant improve-
ment on four different datasets (over 6 points
improvement in accuracy for 1-shot setting),
achieving new state-of-the-art performance.

1 Introduction

Enabling models to learn from a few labeled ex-
amples, i.e., Few-Shot Learning (FSL), is one of
the key steps toward more human-like artificial
intelligence. Recently, taking advantage of large-
scale Pretrained Language Models (PLM) (Brown
et al., 2020), prompting-based methods achieve im-
pressive results for few-shot learning of Natural
Language Processing (NLP) (Gao et al., 2021; Liu
et al., 2021a; Zhao et al., 2021).

Prompting-based methods insert a piece of text,
i.e. prompts, to the input examples, so that the few-
shot task can be formulated as a (masked) language

* Equal contribution.
†Email corresponding

Figure 1: Comparison between conventional soft-
prompting method (left) and proposed MetaPrompting
(right). x denotes the query sentence, and z is learnable
pseudo tokens in soft prompts. ϕ represents all train-
able parameters. MetaPrompting exploits optimization-
based meta-learning to find an initialization ϕmeta that
facilitates better and faster adaptation to new tasks.

modeling problem. For example, say we want to
classify the sentiment of the book review “I will
never read it again.”, we can append a prompt “It
was” to the sentence, getting “I will never read it
again. It was”. It is natural to expect a higher prob-
ability from the PLM to generate “terrible” than
“great” then. Such converting bridges the gap be-
tween pre-training and target tasks. Consequently,
it has better transferability and less dependence on
target task data.

The performance of prompting methods is found
to be greatly affected by the design of prompts (Gao
et al., 2021). That is, a good prompt makes sig-
nificant difference. Early attempts take manually-
designed prompts or search prompts automatically.
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Schick et al. (2020) and (Schick and Schütze, 2021)
explore to automatically identify label words. In
pursuit of better performance compared to hand-
picked prompts, Gao et al. (2021) proposes LM-
BFF to search both prompt templates and label
words. AutoPrompt (Shin et al., 2020) lever-
ages gradient-based searching to find out the best
prompts. These prompts consist of discrete to-
kens, which limits the prompt search space. To fur-
ther liberate the potential of prompts, recent works
employ learnable vectors as prompt content and
learn optimal prompts in continuous space, which
is so-called “soft prompts” (Liu et al., 2021c; Li
and Liang, 2021). Since they no longer require
prompts to be composed of real words, these meth-
ods greatly expand the possibilities of prompts and
thus achieve better performance (Liu et al., 2021b).

However, despite the promising prospects of soft
prompts, learning a good prompt is still far from
trivial. Because soft-prompts search for optimal so-
lutions in an infinite continuous space, the choice of
the starting point for the search (i.e., prompt initial-
ization) becomes crucial. Soft-prompt is observed
to be more sensitive to different initialization than
discrete prompts in low data setting (Li and Liang,
2021; Liu et al., 2021b). Unfortunately, creating
a perfect prompt initialization requires both un-
derstanding of LMs’ inner workings and trial-and-
error. Lester et al. (2021) initialize soft prompt with
the token embeddings of hand-crafted prompt di-
rectly. Zhong et al. (2021b) search discrete tokens
as better initialization, which shows better perfor-
mance. What’s worse is that these initializations
are task-bounded. Every time we confront a new
task, the costly process of initialization design has
to start from scratch.

In this paper, to tackle the above issues, we let
loose the prompt design of a specific task, but in-
stead focus on obtaining a task general prompt
initialization that facilitates faster and better adap-
tation to new prompting tasks. Recently proposed
optimization-based meta-learning algorithms, such
as MAML (Finn et al., 2017) and Reptile (Nichol
et al., 2018), achieve better adaption by learning a
parameter initialization. Following their essence,
we tackle soft prompt initialization problem by
proposing MetaPrompting, which is a generalized
soft prompting method powered by meta-learning
algorithms. MetaPrompting learns general meta-
knowledge from source domain tasks to form a
better soft prompt initialization, and thus adapts

faster and better across various target domain tasks
(See Figure 1). Extensive experiments show that
MetaPrompting achieves promising performance
with desired robustness.

We summarize the main contribution of this pa-
per as follows:

(1) We propose a novel prompting method
MetaPrompting, which employs optimization-
based meta-learning algorithm to find adaptive ini-
tialization for soft-prompt methods. To the best of
our knowledge, this is the first study of applying
meta-learning to prompting problem setting.

(2) We conduct extensive experiments on four
different datasets with various few-shot settings,
and results show the superiority of MetaPrompting
over normally fine-tuned soft-prompt methods and
SOTA meta-learning baselines.

(3) Further analysis experiments indicate that
MetaPrompting significantly alleviates soft prompt
initialization problem, and learns general meta-
knowledge to counter the instability of prompt vari-
ance. We also study MetaPrompting’s compatibil-
ity with different meta-learning methods and give
empirical analysis of their performance difference.

All code and data will be publicly available at
https://github.com/Dousia/MetaPrompting.

2 Preliminaries and Related Works

In this section, we review related work and provide
preliminaries about Language Model Prompting
and Meta-learning.

2.1 Prompting Language Models

Prompting methods are proposed to better apply
pre-trained language models to downstream tasks
by aligning them with pre-training tasks. For
Masked Language Models (MLMs), the first step
is to convert a sample text x to xprompt by insert-
ing prompt words which contain [MASK] tokens.
Taking the news headline classification task as an
example, the prompted text is given as:

xprompt = [CLS] x The topic is [MASK] . [SEP], (1)

where “The topic is [MASK]” are prompt tokens.
Then, we ask pre-trained MLM to complete the
prompted text xprompt, and the word to be filled
at [MASK] position is regarded as an answer. An
answer-label map is then used to convert the word
probability distribution at [MASK] to classifica-
tion results. For example, answers ‘arts’ and ‘cul-
ture’ can be mapped to label ‘ARTS & CULTURE’,
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while ‘environment’ can be mapped to label ‘EN-
VIRONMENT’. The average probability of each
label’s corresponding answers is computed as the
label’s final probability.

Early prompting methods, such as GPT-
3 (Brown et al., 2020) and PET/iPET (Schick and
Schütze, 2021), use hand-crafted prompt templates.
Although promising results are achieved, the per-
formance of these methods heavily relies on the se-
lection of pre-defined prompt templates. Moreover,
designing prompts is extremely time-consuming,
and hand-crafted prompts may be sub-optimal.

A number of recent works propose to automate
the search of discrete prompt templates (Shin et al.,
2020; Gao et al., 2021; Davison et al., 2019; Jiang
et al., 2020; Haviv et al., 2021), while others treat
prompt tokens as continuous trainable parame-
ters (Li and Liang, 2021; Liu et al., 2021c; Qin
and Eisner, 2021). In this work, we follow P-
tuning (Liu et al., 2021c) to combine soft prompt
and anchor tokens as templates. Instead of directly
applying the model in few-shot tasks, however, we
adopt meta-learning methods to find a better ini-
tialization point for both soft prompt embeddings
and MLM parameters, because they are very sen-
sitive to initialization in few-shot settings (Li and
Liang, 2021; Liu et al., 2021b). Note that a re-
cent work (Zhong et al., 2021a) also learns prompt
model on a number of source domain tasks, but
their method consumes heavy human labor to de-
sign hard prompts for each task, and directly fine-
tunes the model without involving meta algorithms.

2.2 Meta Learning

Meta-learning algorithms can be classified into
metric-based methods, model-based methods and
optimization-based methods. Metric-based meth-
ods such as Siamese Network (Koch et al., 2015),
Matching Network (Vinyals et al., 2016) and Proto-
typical Network (Snell et al., 2017), are proposed
to learn a metric space that gathers similar samples
and separates distinct ones. Model-based meta-
learning algorithms use additional meta learners to
assist model prediction (Graves et al., 2014; Mishra
et al., 2018; Qiao et al., 2018).

Different from above algorithms, optimization-
based meta-learning methods learn to improve
model’s optimization procedure. Optimization-
based approach is more suitable for prompting
models as it neither requires a specific task form
(i.e., metric learning form) nor additional archi-

x    z   topic is arts .
arts           Arts&Culture
culture
tech          Technology
politics      Politics
        :               :
        :               :

MLM

x    z   topic is        .

···
Trainable param
 
Frozen param
 
Sample text 
tokens
 
Soft prompt
tokens

x

z

···

Figure 2: An illustration of soft-prompting method. x
refers to the sample text, and z represents soft prompt
tokens. All trainable parameters are colored in blue,
while fixed ones are colored in grey.

tecture (e.g. memory-augmented components in
model-based algorithms). Andrychowicz et al.
(2016) and Ravi and Larochelle (2017) train re-
current neural networks to transform vanilla gradi-
ent descent direction for better optimization results.
MAML (Finn et al., 2017) optimizes model param-
eters to find a better initialization point, so that the
model can adapt faster and better to unseen tasks.
In addition to MAML, more elaborate methods also
learn inner loop gradient descent direction (Li et al.,
2017) and inner step sizes (Antoniou et al., 2019).
Utilizing first-order derivatives, FOMAML (Finn
et al., 2017) and Reptile (Nichol et al., 2018) are
proposed to reduce the memory consumption of
high-order derivative calculation.

3 Method

Since prompt-based methods, especially those
adopting soft prompts, are very sensitive to pa-
rameter initialization (Li and Liang, 2021; Liu
et al., 2021b), we introduce optimization-based
meta-learning methods into prompting methods to
find better initialization points for prompt-based
models and further explore their capabilities in few-
shot scenarios. In this section, we first introduce
the prompt-based model tuning process used in our
method (§3.1), and then describe how to construct
Meta Prompting tasks (§3.2). Finally, we elaborate
and formulate the Meta Prompting objective and
parameter updating strategies (§3.3 and §3.4).

3.1 Prompt-based Model Tuning
In this work, we use soft prompts with anchor to-
kens. As illustrated in Figure 2, prompt tokens
consist of soft tokens which are represented as
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trainable parameters (blue) as well as anchor to-
kens which are fixed as the embeddings of specific
words (grey). Hard-soft combined prompt tem-
plates render the model more flexible, while pre-
serving enough semantic information to trigger the
MLM to produce correct predictions. Similar to
P-tuning (Liu et al., 2021c), we implement transfor-
mation layers on soft prompt embeddings, allowing
them to escape from local minima smoothly.

In this way, we define MLM parameters as θ and
soft prompt token embeddings as ϕ. Given a few-
shot task τ where Dτ = {(xi,yi)}i∈τ represents
training samples, the prompt tuning objective can
be formulated as follows:

θ∗, ϕ∗ = argmin
θ,ϕ

LDτ (fϕ,θ)

= argmax
θ,ϕ

∑

(xi,yi)∈Dτ
logP (yi|xi;ϕ, θ),

(2)

where L is the loss function, and fϕ,θ is prompt-
based model parameterized by MLM parameters θ
and soft prompt embeddings ϕ.
Dτ contains few labeled data because of the high

annotation cost in real-world scenarios. As a result,
the initialization of parameters θ and ϕ are more
than crucial to the model’s performance.

3.2 Constructing Meta Prompting Tasks
To get a better initialization point for parameters
θ and ϕ, we propose to sample Meta Prompting
tasks from accessible source data and conduct meta-
training on these sampled tasks. This meta training
process aims to simulate the model’s adaptation to
new few-shot tasks.

We sample each Meta Prompting task τi as:

τi = (Dsupportτi ,Dqueryτi ), (3)

where Dsupportτi indicates the support set and
Dqueryτi indicates the query set in traditional few-
shot learning settings. Note that meta training tasks
and meta testing tasks should be sampled from dif-
ferent domains, to prevent the model from simply
memorizing training samples.

3.3 Applying Meta-learning to Prompting
Models

After constructing Meta Prompting tasks, we train
our prompting model on these tasks to find a
better initialization point. Figure 3 illustrates
the meta training and meta testing procedures of
MetaPrompting. Given a Meta Prompting task τi,
we clone the model’s parameters and simulate the

Back propagation
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Adapt lo ss

Adapt

Query
Set

Meta loss
Meta
loss

Meta
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Meta training stage
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Set

Adapt lo ss
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Set

Adapt
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Predictions

n

Soft prompt 
embeddings & 
MLM parameters

×

Figure 3: Meta training and testing procedures of
MetaPrompting.

adaption process of few-shot tasks by updating
cloned model parameters θ0i and ϕ0i on Dsupportτi .
The adaption objective is given in Equation (2), and
this process can be formulated as:

θki = θk−1i − α∇θk−1
i
LDsupportτi

(fϕk−1
i ,θk−1

i
),

ϕki = ϕk−1i − α∇ϕk−1
i
LDsupportτi

(fϕk−1
i ,θk−1

i
),

(4)

where α indicates learning rate and k = 1, 2, 3, . . .
indicates the inner step. The goal of learning with
Meta Prompting tasks is to minimize the loss of
the adapted prompting model, which is parameter-
ized as fϕi,θi , on Dqueryτi . This objective can be
described as follows:

θobj , ϕobj = argmin
θi,ϕi

LDqueryτi
(fϕi,θi). (5)

Optimizing towards this objective is to mimic
real few-shot text classification scenarios, and en-
able prompting model to find a better initialization
point for fast adaptation to new tasks. Let β be the
learning rate when updating model parameters on
Dqueryτi , and H be Hessian matrix. We formulate
the second-order gradient of prompt parameter ϕ
computed on Dqueryτi in the following form:

ϕ← ϕ− β · gsecondϕ

= ϕ− β∇ϕLDqueryτi
(fϕi,θi)

= ϕ− β∇ϕiLDqueryτi
(fϕi,θi) · ∇ϕ(ϕi)

= ϕ− β∇ϕiLDqueryτi
(fϕi,θi)·

(I− αHϕ(LDsupportτi
(fϕ,θ))),

(6)
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where we assume ϕi is ϕ adapted for one inner
step on Dsupportτi . In practice, inner steps can be in-
creased for better performance. Pre-trained MLM
parameters θ is updated in the same way as prompt
parameters ϕ in Equation (6).

3.4 Stable and Memory-efficient Meta
Prompt Learning

Although broadly used in meta-learning tasks,
MAML suffers from training instability and ex-
ploding memory consumption when model size
and inner step grow. To address the first problem,
we follow Antoniou et al. (2019) to introduce Multi-
Step Loss Back-propagation (MSLB) into prompt-
ing model tuning process. In this way, prompting
model parameters receive optimization information
from each inner step during adaptation, alleviat-
ing the vanishing/exploding gradient problem in
the stacked deep neural architecture constructed in
adaptation process.

As for the exploding memory consumption is-
sue, we also explore to combine memory-efficient
alternatives such as FOMAML (Finn et al., 2017)
and Reptile (Nichol et al., 2018) with prompting
model. FOMAML removes the high-order deriva-
tives term in Equation (6), providing a cheap ap-
proximation for MAML. Reptile updates model
parameters towards the optimal point of each task,
which is obtained by adapting the model on the
support set samples. Equipped with these algo-
rithms, MetaPrompting can learn meta knowledge
with limited memory consumption.

4 Experiment

We conduct experiments by evaluating the pro-
posed methods on four widely-used benchmark
datasets with various low resource settings.

4.1 Dataset
Following Bao et al. (2019); Xu and Xiang
(2021), we use the following four text classifica-
tion datasets for experiments, which provide well-
founded benchmarks for the meta-train & meta-test
setting and vary in domain and text length.

HuffPost headlines contains around 36, 900
news headlines from 2012 to 2018 obtained from
HuffPost (Misra, 2018). These headlines cover 41
news categories and the average text length is 11.

For other datasets used in Bao et al. (2019), RCV1 (Lewis
et al., 2004) is not included due to overly long text lengths,
while FewRel (Han et al., 2018) is excluded because it does
not provide each label’s semantic meanings.

Amazon product data contains around 24, 000
product reviews from 1996 to 2014 from Ama-
zon (He and McAuley, 2016). These reviews con-
tain 24 categories corresponding to their respective
product categories with varying text lengths. The
average text length is 140.

20 Newsgroups contains 18, 820 newsgroup
documents of 20 different topics (Lang, 1995). We
used 20news-18828 version following Bao et al.
(2019). The average text length is 340.

Reuters contains 620 document-level news arti-
cles of 31 different topics from 1987 (Lewis, 1997).
The average text length is 168.

We adopt the same pre-processing and data-
splitting strategy with Bao et al. (2019) to process
the above datasets.

4.2 Implementation
We use the pre-trained BERT (bert-base-uncased)
with HuggingFaces codebase (Wolf et al., 2019) as
the pre-trained language model.

For soft prompting model, we follow Liu et al.
(2021c) to use a two-layer biLSTM and a two-layer
MLP to transform soft-prompt embeddings. We di-
vide the learnable parameters of prompting model
into two parts: pre-trained model and prompt em-
beddings. AdamW (Loshchilov and Hutter, 2018)
is used to optimize two types of parameters, with
initial learning rates of 1e−5 and 5e−5, respec-
tively. For pre-trained model parameters, we set
weight decay to 0.1. We also adopt linear warmup
and linear decay strategy for learning rates. Batch
size is set as 16 for all stages, and the model adapts
for 15 epochs on test episodes. We run 3 indepen-
dent runs with random seeds for each setting.

Before meta-training stage, we generate 10, 000
training episodes, 2, 500 validation episodes and
1, 000 testing episodes comprehensively and ran-
domly. During the training stage, we train the
model with 100 sampled training episodes per
epoch. When there is no validation accuracy in-
crease for 10 epochs, we apply early stopping. For
meta-testing, we test the model on all 1, 000 test
episodes and report the average accuracy.

4.3 Baselines
We compare with the following baselines:

1-NN is a 1-nearest-neighbor classifier based on
Euclidean distance.

FT (Chen et al., 2019) pre-trains a classifier on
source domain data, and then fine-tunes (FT) it on
each support set before evaluation.
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Method 20 News Amazon HuffPost Reuters Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

1-NN 38.8 51.9 51.4 67.1 31.5 42.3 57.8 82.9 44.88 61.05
FT 33.0 47.1 45.7 63.9 32.4 44.1 70.9 91.0 45.50 61.53
PROTO 37.8 46.5 41.9 59.2 34.8 50.2 61.0 72.1 43.88 57.00
MAML 37.2 48.6 43.6 62.4 38.9 53.7 61.5 72.0 45.30 59.18
RR 44.8 64.3 60.2 79.7 37.6 59.5 69.1 93.0 52.93 74.13
DS (2019) 52.1 68.3 62.6 81.1 43.0 63.5 81.8 96.0 59.88 77.23
DE-MLMAN (2021) − − − − 49.7 60.9 − − − −
DE-MAML (2021) − − − − 51.8 67.3 − − − −
DE-PROTO (2021) − − − − 52.3 69.6 − − − −
KGML-PROTO (2021) − − 58.6 74.5 42.3 58.7 − − − −
KGML-MAML (2021) − − 51.4 58.8 44.2 54.1 − − − −
P-TUNING (2021c) 56.21 77.70 62.18 79.13 54.48 65.75 90.01 96.66 65.72 79.81
FROG-GNN (2021) − − 71.5 83.6 54.1 69.6 − − − −
LASAML-PN (2021) − − − − 62.1 70.1 − − − −
CONTRASTNET (2022) 71.74 81.57 76.13 85.17 53.06 65.32 86.42 95.33 71.84 81.85

OURS (PRETRAIN INIT) 68.42 79.11 75.12 83.27 70.82 75.47 95.07 97.29 77.36 83.79
OURS (META INIT) 68.83 82.95 77.65 85.54 71.93 76.32 95.20 97.17 78.40 85.50

Table 1: Results of 1-shot and 5-shot classification on four datasets in terms of accuracy. The rows below the
mid-line are results of MetaPrompting. ‘-’ means that the result of this dataset is not given in the original paper.
We do not show standard deviation of our experiment results here due to space limits. Full results can be found in
Appendix A.

RR (Bertinetto et al., 2019) adopts ridge regres-
sion (RR) for classification.

MAML (Finn et al., 2017) meta-learns a classi-
fier with MAML algorithm, so that the model can
adapt faster and better to target domain tasks.

Prototypical network (Snell et al., 2017) is a
metric-based method which meta-learns a metric
space by minimizing the Euclidean distance be-
tween the centroid of each category and the corre-
sponding samples.

DS (Bao et al., 2019) is trained within a meta-
learning framework to map the distribution signa-
tures (DS), i.e., characteristics of the underlying
word distributions, into attention scores to extract
more transferable features.

DE (Ohashi et al., 2021) generates distinct label
representations that embed information specific to
each label to aid classification tasks. During exper-
iments, it is combined with MAML (DE-MAML)
and prototypical network (DE-PROTO), as well as
MLMAN (Ye and Ling, 2019) (DE-MLMAN).

KGML (Yao et al., 2021) extracts additional rep-
resentation for each sentence from external knowl-
edge base, to bridge the gap between meta-training
and meta-testing tasks. During experiments, it
works with MAML (KGML-MAML) and proto-
typical network (KGML-Proto).

P-tuning (Liu et al., 2021c) is a prompt-based
method that uses masked language model to con-

The above 6 baselines uses fastText embeddings (Joulin
et al., 2016) and each word’s inverse document frequency to
produce sentence embeddings.

vert target tasks into cloze problems. It employs
soft-prompting techniques to optimize prompts in
continuous space.

Frog-GNN (Xu and Xiang, 2021) is a graph
neural network based method, which extracts bet-
ter query representations with multi-perspective
aggregation of graph node neighbors.

LaSAML-PN (Luo et al., 2021) is a meta-
learning framework that mines semantic informa-
tion in labels and attaches it to the sentence as the
input of the encoder to obtain discriminative sen-
tence embeddings.

ContrastNet (Chen et al., 2022) is the SOTA
method. It introduces instance-level and task-level
regularization loss into vanilla contrastive learn-
ing model based on BERT representations for bet-
ter generalization performance. The regularization
loss is computed with samples augmented by an
additional BERT model.

4.4 Main Results

We evaluate the proposed methods in both 5-way
1-shot and 5-way 5-shot settings and report per-
formance on four different datasets with different
text styles. As shown in Table 1, our model out-
performs previous SOTA method ContrastNet with-
out using additional PLM. Averagely, our model
improves 1-shot accuracy by 6.56 (9.13% ↑) and
5-shot accuracy by 3.65 (4.46% ↑) across four
datasets. MetaPrompting gains less improvement
on 20Newsgroup and Amazon, because their la-
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bels are hard to interpret as natural words, which
poses difficulties for prompting models (Shin et al.,
2020; Cui et al., 2022). Various methods are pro-
posed to address this problem (Shin et al., 2020;
Gao et al., 2021; Hambardzumyan et al., 2021; Cui
et al., 2022; Jiang et al., 2021). In this work, how-
ever, we do not spend much effort on elaborate
answer design but instead focus on soft prompt
initialization problem. Although equipped with
simply designed answer sets, MetaPrompting still
achieves new state-of-the-art performance across
the four datasets.

Meanwhile, we have following observations
based on Table 1:

(1) Compared with other soft-prompting meth-
ods, i.e., P-tuning, our method obtains superior
results. Although meta learning is conducted on
completely different source domain Meta Prompt-
ing tasks, our method still learns a better prompt
model initialization point, which allows faster and
better adaption to new prompting tasks.

(2) When compared to traditional supervised
learning methods, such as FT, all prompt-based
methods achieve significant improvements, which
demonstrates the effectiveness of prompting mech-
anism in narrowing the gap between pretraining
and downstream tasks.

(3) Metric learning-based baselines, such as
ContrastNet and LASAML-PN, perform as the
strongest baselines on Amazon and HuffPost
datasets, respectively. We find that directly using
prompt-based method may not necessarily perform
better, because of the absence of domain-related
initialization. The proposed MetaPrompting allevi-
ates the above issue and achieves new state-of-the-
art performance. Among strong metric-learning
baselines, Frog-GNN conducts transductive learn-
ing with additional label propagation information,
and ContrastNet uses an additional BERT model
to regularize the main model with augmented data.
Our model achieves better performance without
implementing any of above tricks.

(4) Compared with other optimization-based
meta-learning methods such as MAML, DE-
MAML and KGML-MAML, MetaPrompting con-
sistently performs better, demonstrating good com-
patibility between prompting methods and meta-
learning. Note that KGML-MAML adopts an addi-
tional knowledge base, while our model does not
but still achieves better performance.

(5) To further demonstrate meta learning

Method HuffPost Amazon 20 News Reuters

BASELINE 65.75 79.13 77.70 96.66
OURS 73.06 83.64 81.79 97.26

Table 2: PLM frozen, MetaPrompting still achieves
better performance over randomly initialized baseline
on test domains. Results are given in 5 shot setting.

Source domain Target domain Acc

− HuffPost 65.75
Metatuning HuffPost 67.46

Reuters HuffPost 69.18
20 Newsgroup HuffPost 71.04

Amazon HuffPost 71.47
HuffPost (Diff. label set) HuffPost 76.32

Table 3: Given irrelevant source domain data,
MetaPrompting still learns meta knowledge to improve
the performance on target domains.

method’s effectiveness in prompt learning, we con-
duct ablations study by removing the Meta Prompt-
ing Objective and learn an initialization by pre-
training soft prompt model on Meta Prompting
Tasks described in Section 3.2. The results are
shown as OURS (PRETRAIN INIT). Performance
drops are witnessed across all four datasets and
few-shot settings, validating the necessity of meta
objectives in finding a better initialization.

4.5 Analysis

In this part, we analyze the proposed method from
different aspects.

MetaPrompting tackles soft prompt initializa-
tion problem. Main results displayed in Section
4.4 are obtained with LM parameters tuned for
fair comparison with previous SOTA baselines. To
further validate the importance of learning a good
prompt initialization, we freeze PLM’s parameters
while leaving soft prompt parameters unfrozen to
only learn a better prompt initialization on source
domains. We test our meta-learning-based initial-
ization strategy against random initialization, and
the results are shown in Table 2. The randomly ini-
tialized soft prompt baseline performs poorly and
unstably, while our method consistently yields bet-
ter results with lower variance across four datasets,
which verifies our hypothesis and the validity of
the MetaPrompting.

MetaPrompting learns general meta-knowledge
from various source domains. Although
MetaPrompting shows promising results when
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meta trained on source domain tasks from the
same dataset, it is impractical to always build
corresponding meta-training tasks for each
few-shot scenario. To this end, we conduct
meta-training on Out-Of-Domain (OOD) tasks
to better analyze MetaPrompting’s ability in
transferring meta-knowledge from various source
domains.

Table 3 shows the results of 5-shots setting. Even
given irrelevant meta-training data and prompt
templates from other datasets, MetaPrompting
still learns meta knowledge to tackle target do-
main tasks and outperforms the baseline robustly.
Among OOD datasets, Metatuning (Zhong et al.,
2021a) contains a series of text classification
tasks, and each task is accompanied by several
hand-crafted questions which require yes/no an-
swers. The task formulation of Metatuning is
distinct from HuffPost. However, MetaPrompt-
ing still makes it to transfer meta-knowledge from
Metatuning to HuffPost’s target domains, improv-
ing model performance by approximately 2 points.
Although MetaPrompting’s performance varies
among source domain tasks according to their data
quality for generalization purposes, the proposed
model outperforms the baseline across all source
domain tasks, verifying MetaPrompting’s effective-
ness in transferring meta-knowledge.

Anti-disturbance analysis We expect the meta-
learned initialization alleviates prompting models’
susceptibility to varying prompt forms. To verify
this, we test the prompting model with multiple dif-
ferent prompt forms and report the standard devia-
tion. Specifically, we add two more discrete prompt
templates, and randomly replace the template to-
kens with pseudo tokens to test MetaPrompting’s
robustness across different templates.

Table 4 shows the results. While changing the
prompting form indeed impacts the performance
for both our method and normal soft prompting
methods, the proposed meta-learning method sig-
nificantly reduces performance fluctuation, show-
ing impressive anti-disturbance ability. Therefore,
the proposed method is promising in real-world
applications, because prompt designing requires
heavy workload and domain-specific knowledge.
Applying MetaPrompting significantly reduces the

We add “The topic/product category: [MASK]. Input: x”
and “x. What is the topic/product category ? [MASK].”,
where topic and product category are used for HuffPost and
Amazon dataset respectively.

Method HuffPost Amazon
1 shot 5 shot 1 shot 5 shot

P-TUNING ±3.46 ±1.90 ±5.30 ±1.85
OURS ±0.23 ±0.09 ±0.17 ±0.45

Table 4: Analysis for anti-disturbance against changing
of prompting form.

Setting MAML++ MAML FOMAML Reptile

1 SHOT 71.93 71.43 70.56 69.76
5 SHOT 76.32 76.04 76.08 74.09

Table 5: MetaPrompting’s performance with different
meta learning methods.

cost of prompt engineering.

Applying different meta-learning methods to
prompting models. In this part, we conduct em-
pirical analysis on different optimization-based
meta-learning methods applied in prompting mod-
els. Results are shown in Table 5. Stabilizing
MAML training procedure, MAML++ performs
the best among all methods, while Reptile fails
to achieve comparable performance with others.
We attribute Reptile’s low performance to PLM’s
sensitivity to parameter tuning process, which can
be distorted by Reptile’s parameter updating strat-
egy. MAML and FOMAML show similar results,
because MetaPrompting’s slow tuning process nar-
rows the gap between their calculated gradient dur-
ing meta-training.

Analysis for learning procedure of prompting
methods. We analyze the decreasing trend of
adaptation loss to better understand the learning
procedure of soft-prompt model. Specifically, we
visualize model adaptation loss curve during meta-
testing on 5 shot Amazon dataset.

As shown in Figure 4, task-related initialization
(Ours (Pretrain Init)) helps the model converge
faster and end up at a lower position than randomly
initialized baseline. The proposed meta-learning-
based method (Ours (Meta Init)) further improves
the learning process in new tasks, indicating that
the meta-learned initialization point contains more
generalizable meta knowledge to aid new tasks.

We only include the MSLB trick of MAML++ (Antoniou
et al., 2019) due to the incompatibility (BN layer tricks) or triv-
ial performance improvement (Per-step adaption loss, cosine
annealing learning rates).
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Figure 4: Analysis on prompt learning process.

5 Conclusion

In this paper, we introduce a generalized
optimization-based meta-learning approach
MetaPrompting for few-shot NLP problems. Uti-
lizing sampled meta tasks and meta-learning-based
optimization, MetaPrompting learns to find an ini-
tialization that alleviates soft prompt initialization
problem, and allows better and faster adaption to
new tasks. Extensive experiments on four few-shot
learning benchmarks show that MetaPrompting
significantly outperforms vanilla soft-prompting
models and strong meta-learning baselines,
achieving new state-of-the-art performance.
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Abstract

Recently, Mixture-of-Experts (short as MoE)
architecture has achieved remarkable success
in increasing the model capacity of large-scale
language models. However, MoE requires in-
corporating significantly more parameters than
the base model being extended. In this paper,
we propose building a parameter-efficient MoE
architecture by sharing information among ex-
perts. We adopt matrix product operator (MPO,
a tensor decomposition from quantum many-
body physics) to reconstruct the parameter ma-
trix in the expert layer and increase model
capacity for pre-trained language models by
sharing parameters of the central tensor (con-
taining the core information) among different
experts while enabling the specificity through
the auxiliary tensors (complementing the cen-
tral tensor) of different experts. To address
the unbalanced optimization issue, we fur-
ther design the gradient mask strategy for the
MPO-based MoE architecture. Extensive ex-
periments based on T5 and GPT-2 show im-
proved performance and efficiency of the pre-
trained language model (27.2x reduction in
total parameters for the superior model per-
formance, compared with the Switch Trans-
formers). Our code is publicly available at
https://github.com/RUCAIBox/MPOE.

1 Introduction

Large-scale pre-trained language models (PLMs),
such as BERT (Devlin et al., 2018) and T5 (Raffel
et al., 2020), have become the de facto standard
in natural language processing (NLP). By involv-
ing a huge number of parameters pre-trained on
the general-purpose corpus, PLMs can achieve ex-
cellent performance in many NLP tasks. In order
to increase the model capacity, a promising direc-
tion is to explore the scaling properties with the
mixture-of-experts (MoE) paradigm (Jacobs et al.,

∗Authors contributed equally.
†Corresponding author.

1991; Shazeer et al., 2017) for developing more
powerful PLMs. By incorporating multiple expert
networks, MoE schedules the learning of data sam-
ples through a routing component that is usually
implemented by some gating function, which in-
creases model capacity without a proportional in-
crease in computation costs. Despite the effective-
ness, it has been shown that the MoE architecture
is parameter inefficient (Zuo et al., 2021), consid-
ering the yielded improvement w.r.t. the involved
costs. Most of the existing studies (Yang et al.,
2021; Roller et al., 2021; Lewis et al., 2021) at-
tribute this issue to the unbalanced load of experts,
focusing on improving the routing strategies.

However, an important question about the MoE
architecture has been neglected in previous studies:
whether the increased parameters from the experts
are all necessary to increase the model capacity. As
different experts from an MoE network are often
trained with correlated data samples (e.g., sample
correlation from training data), it is likely to lead to
parameter redundancy across experts. Indeed, ex-
pert redundancy has been identified in existing stud-
ies, where Fedus et al. (2021) distills sparse MoE
models into dense models and Kim et al. (2021)
prunes experts to compress MoE models. This find-
ing motivates us to develop a parameter-efficient
MoE architecture by reducing its parameter redun-
dancy. Intuitively, a straightforward approach is
to share a certain proportion of parameters among
experts. However, it is difficult to identify and op-
timize the key parameters that encode the shared
information across experts, since expert networks
typically consist of dense matrices.

To address this issue, we propose a novel param-
eter sharing approach inspired by the matrix prod-
uct operators (MPO) decomposition from quantum
many-body physics (Gao et al., 2020), which de-
composes a matrix into a sequential product of
local tensors (either central or auxiliary tensors).
Unlike other matrix decomposition methods, MPO
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can effectively reorganize and aggregate important
information of the original matrix into the central
tensor. The auxiliary tensors, on the other hand,
serve to complement the central tensor for recov-
ering the original matrix (Liu et al., 2021). In the
setting of MoE, considering the small parameter
variations among experts, we speculate that the
central tensors of different experts (with MPO de-
composition for each expert) are likely to be very
similar. If the central tensors could be shared for
all expert networks, we would significantly reduce
the parameters of the MoE architecture.

To this end, we propose a novel MPO-
based parameter-efficient MoE architecture,
called MPOE. Based on classic MoE architec-
ture (Shazeer et al., 2017), our approach introduces
a major extension allowing experts to share a
global central tensor while keeping expert-specific
auxiliary tensors. In our setting, the parameter
matrix of in a single expert is formed by the
product of the globally shared central tensor and
the corresponding auxiliary tensors. Since the
central tensor contains most of the parameters
from an MPO decomposition, our MPOE approach
can significantly reduce the parameters of the
original MoE architecture. Another major merit of
MPO is that auxiliary tensors are closely entangled
with the central tensor (Pirvu et al., 2010), and
it is theoretically guaranteed that any change
from auxiliary tensors can be propagated to the
central tensor. That is to say, though a large
proportion of parameters are shared, local auxiliary
tensors still enable the experts to capture specific
variations or differences according to routing
data samples. However, directly optimizing
the MPOE architecture is likely to lead to an
unbalanced optimization issue, where the central
tensors are updated more frequently than auxiliary
tensors during fine-tuning. Therefore, we further
propose a gradient mask strategy that masks the
central tensor gradient to effectively alleviate the
unbalanced optimization issue.

To the best of our knowledge, this is the first
attempt to reduce the parameter redundancy of the
MoE architecture with structural matrix decompo-
sition. We conduct extensive experiments to evalu-
ate the effectiveness of the MPOE architecture on
two representatives PLMs, T5 and GPT. Experi-
ments have demonstrated the effectiveness of our
approach in increasing model capacity (27.2x fewer
parameters for the superior model performance,

compared with several competitive MoE-enhanced
PLMs.

2 Preliminary

2.1 Mixture-of-Experts (MoE)

We first describe the mixture-of-experts architec-
ture (MoE) (Shazeer et al., 2017), which has been
used to enhance the model capacity of Transformer
based models. Let G(x) and Ei(x) denote the out-
put vectors of the gating network and the output
of the i-th expert network for a given input x, re-
spectively. The output of MoE architecture y can
be formally computed as:

y =

n∑

i=1

G(x) · Ei(x). (1)

The softmax function is widely adopted as the
gating function G(x). The sparsely-gated MoE
architecture, which uses a noisy top-k gating mech-
anism to reduce the computational cost, has been
proposed in Shazeer et al. (2017). It adds tunable
Gaussian noise with H(·), and then keeps only the
top-k values with KeepTopK(·) and sets the rest
−∞. This keeps only the top k experts to be evalu-
ated with:

G(x) = softmax(KeepTopK(H(x), k)). (2)

Furthermore, Switch Transformer designs a
switch routing strategy to simplify this gating func-
tion by routing to a single expert (Fedus et al.,
2021).

2.2 Tensor and Matrix Product Operators

We refer to one-dimensional arrays as vectors (de-
noted by bold lowercase letters, e.g., v), two-
dimensional arrays as matrices (denoted by bold
uppercase letters, e.g., W), and arrays of higher di-
mensions as tensors (denoted by calligraphic bold
uppercase letters, e.g., T ).

MPO decomposition (Oseledets, 2011) (a.k.a.
tensor-train decomposition) has been a widely used
matrix decomposition technique from quantum
many-body physics, which decomposes a matrix (2-
order tensor) into m local tensors (Pirvu et al.,
2010). Given a matrix WI×J ∈ RI×J , the MPO
decomposition is given in the following format:

MPO (W) =

m∏

k=1

T(k)[dk−1, ik, jk, dk], (3)
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Figure 1: MPO decomposition for matrix WI×J with
five local tensors. Auxiliary tensors ({Ai}4i=1) and cen-
tral tensor (C) are marked in orange and blue, respec-
tively.

where I =
∏n
k=1 ik and J =

∏n
k=1 jk, T(k) is a

4-order tensor with size dk−1 × ik × jk × dk. The
dk is dimension of bond linking T(k) and T(k+1).

According to Gao et al. (2020), the original ma-
trix W can be exactly reconstructed by tensor con-
traction of MPO(W) without truncation of the con-
nection bond {dk}mk=1. Figure 1 presents the illus-
tration of the MPO decomposition procedure for a
matrix (m = 5). More detailed analysis on differ-
ent factorization ways (i.e., m = 3, 5, 7, 9) will be
given in Section 4.5. After MPO decomposition,
the central tensor (the tensor right in the middle)
with most of the parameters can encode the core
information of the original matrix, while the aux-
iliary tensors (the rest of these tensors) with only
a small proportion of parameters play the role of
complementing the central tensor.

3 Approach

To reduce the information redundancy across dif-
ferent experts, we design an MPO-based MoE ar-
chitecture for increasing the model capacity in a
parameter-efficient way. We firstly describe the
MPO-based MoE architecture and then introduce
an improved optimization algorithm for learning
the parameters in this architecture.

3.1 MPO-based Mixture-of-Experts
Previous MoE architecture (Jacobs et al., 1991;
Shazeer et al., 2017) usually treats different ex-
perts as individual components, requiring a com-
pete copy of network parameters for each expert.
Although it has been found (Fedus et al., 2021; Kim
et al., 2021) that there exists redundant information
among different experts in the MoE architecture,
it is not easy to identify the shareable parameters
from the highly coupling network.

Considering this issue, our solution is inspired
by an important merit of MPO decomposition: it
can reorganize and aggregate the core information
in central tensors (Gao et al., 2020) as aforemen-
tioned. Based on this property, the core idea of
our approach is to share the central tensors for all

the expert layers and enable specificity via expert-
specific auxiliary tensors.

Parameter-Efficient MoE Architecture. The
Transformer network consists of two major neu-
ral components, namely FFN and multi-head at-
tention. Following previous work on MoE-based
PLMs (Shazeer et al., 2017; Fedus et al., 2021),
we consider FFN layers as experts to be extended,
while our approach is generally applicable to vari-
ous matrix-based model components. A straightfor-
ward method to reducing information redundancy
is to share a proportion of parameters across ex-
perts. However, in Transformer-based networks,
the experts (i.e., FFN here) are mainly composed
of large dense matrices, which are difficult for shar-
ing partial parameters from these matrices. As our
solution, we consider parameter sharing through
the MPO decomposition, so that the derived central
tensors can be flexibly shared across matrices.

Lightweight MoE Design. Specifically, we sim-
plify the discussion by assuming that an expert
corresponds to one parameter matrix at each layer,
and it is similar for the multi-matrix cases. We
consider a MoE architecture of n experts each
with L layers, so that there are L × n matrices
in total, denoted by {W(l,i)}L,nl=1,i=1. As discussed
in Section 2.2, a matrix can be decomposed into
m tensors, consisting of one central tensor and
m − 1 auxiliary tensors. In this work, we con-
sider five decomposed tensors, i.e., m = 5. At
the l-th layer, the decomposition results can be
denoted by {C(l,i),A(l,i)

1 ,A(l,i)
2 ,A(l,i)

3 ,A(l,i)
4 }ni=1,

where C(l,i) and A(l,i)
· are the central and auxil-

iary tensors of the i-th parameter matrix, respec-
tively, at the l-th layer. To develop the MPO-based
MoE architecture, the core idea is to share the cen-
tral tensors as global parameters and keep expert-
specific auxiliary tensors as local parameters, i.e.,
C(l,1) = C(l,2) · · · = C(l,n) (∀ l = 1 · · ·L), and we
denote the global central tensor at the l-th layer by
C(l). In this way, we can only keep L central cen-
sors for a L-layer MoE architecture. For MPO, the
decomposition process is transparent to external
modules, so that we can reuse the previous rout-
ing mechanism (Section 2.1) by distributing data
samples to different experts. A slight difference is
that we only need to consider the routing to local
tensors for each matrix since the global tensor is
shared across experts. We call such an MPO-based
MoE architecture as MPOE.
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(a) MPO-based mixture-of-experts architecture. (b) Gradient mask strategy.

Figure 2: Illustration the proposed MPOE architecture and gradient mask strategy. We decompose the weight matrix
of each expert in the MoE architecture into five local tensors using MPO, containing four auxiliary tensors and
one central tensor, which are marked in orange and blue, respectively. In our approach, the central tensor of the n
experts is shared in the MPOE architecture. During optimization, each backward propagation process updates a set
of auxiliary tensors while updating the central tensor with a probability of pb (the mask probability of the central
tensor), which can effectively avoid the unbalanced optimization of the central tensor.

Discussion. Since the central tensor contains most
of the information from original parameter matri-
ces (Gao et al., 2020), a key question is whether
the current architecture enables sufficient flexibil-
ity and specificity for each expert. To answer
this question, we refer to an important property
of MPO decomposition from quantum many-body
physics (Pirvu et al., 2010): it is guaranteed in
principle, that any change on one tensor will be
propagated to the entire local tensor set. In other
words, only tuning the auxiliary tensors (keeping
the central tensor fixed) can lead to the same effect
as tuning the whole matrix. Since the parameters of
the central tensor are shared, our approach can sig-
nificantly reduce the number of actual parameters
given the MoE architecture with the same number
of experts. Assuming the original model consisting
of n experts with T parameters each, we have a
total number of n · T parameters. Specifically, let
γ denote the parameter ratio of the auxiliary tensor
to the central tensor for expert networks. Given the
total number T for an expert network, the central
and auxiliary tensors correspond to the parameters
numbers of γ

γ+1T and 1
γ+1T , respectively. Since

our MPOE approach shares the central tensor, the
final number of parameters will be γ

γ+1T + n
γ+1T .

Thus, our MPOE approaches corresponds to a ratio
of n+γ

n(γ+1) of the original parameter scale. In our

experiments, the ratio γ is about 12, and n+γ
n(γ+1)

approximately equals to 0.19 when n = 8. Such a
ratio will be further decreased when we have more
experts. It can be seen that our MPOE approach is
able to effectively reduce the parameter scale.

3.2 Alleviate Unbalanced Optimization
As the experts share the central tensor in the MPOE
approach, the corresponding parameters of the cen-
tral tensor will be updated more frequently than
those in the auxiliary tensors during fine-tuning. It
tends to lead to the unbalanced optimization issue
as reported by Xu et al. (2021), due to deviation
from the pre-trained weights. As a result, it is
crucial to develop a more stable optimization tech-
nique that is suited to the MPOE architecture.

Inspired by the solution of gradient dropout strat-
egy (Tseng et al., 2020; Xu et al., 2021), we pro-
pose to mask the gradients for the central tensor
to improve model optimization for the MPO-based
MoE architecture. At each iteration, we take a
certain probability pb to discard the update in the
central tensor. This can effectively alleviate the
unbalanced optimization which is caused by the
frequent updates of the central tensor. Specifically,
we generate a binary mask b drawn from Bernoulli
distribution with a mask probability pb, which can
be calculated by b ∼ Bernoulli(pb). We denote
the ∆C as the update of the central tensor at each
iteration:

∆C = η
∂L(C)
∂C ⊙ (1− b). (4)

The larger pb is, the less frequently the central ten-
sor is updated. In particular, when pb is equal to 1,
it means that the parameters of the central tensor
are frozen for each input of the data. The compu-
tational cost of central tensor update can be also
reduced with this trick.
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Note that the gradient mask trick is only applied
to central tensors. For auxiliary tensors, we per-
form the standard gradient update for learning the
parameters. Compared with two alternative ways to
implement the gradient mask technique, i.e., mask
pre-activation or post-activation in FFN layers, we
find that such a sampling-based masking strategy
can effectively improve the model performance in
our experiments.

3.3 The Overall Algorithm Procedure
Our approach can be generally applied to various
MoE-based models for increasing the model ca-
pacity. In this work, we adopt the MoE-extended
PLMs (Radford et al., 2019) for study.

Algorithm 1 presents a complete procedure for
the proposed update procedure, which can be
briefly summarized as follows. First, we obtain the
PLM and perform MPO decomposition for each
weight matrix of the FFN layers in the Transformer.
For each weight matrix, we decompose it into one
central tensor C and a list of auxiliary tensors A.
In the original MoE architecture, we will have n
sets of such decomposed parameters. Next, the key
point lies in that we share the central tensor C in
the decomposition process but keep expert-specific
auxiliary tensors. In this way, each expert is com-
posed of a set of auxiliary tensors and a shared
central tensor. To recover the original FFN matrix
in some specific expert, we can simply multiply the
shared central tensor by expert-specific auxiliary
tensors. Then, we apply the gradient mask strat-
egy to update the parameters in these experts, i.e.,
masking the gradient of the central tensor.

Since the parameters of the central tensor are
two orders of magnitude larger than the parameters
of the auxiliary tensors (Liu et al., 2021), the cost
of MoE-based networks will be largely reduced by
sharing the central tensor.

3.4 Discussion
For the parameter inefficiency issue of MoE-based
networks, existing studies mainly focus on alleviat-
ing the unbalanced load of experts, which have pro-
posed different routing methods to balance the rout-
ing probabilities of different experts, such as BASE-
Layer (Lewis et al., 2021), HASHLayer (Roller
et al., 2021), GShard (Lepikhin et al., 2021) and
Switch Transformers (Fedus et al., 2021). As a
comparison, we aim to reduce information redun-
dancy by sharing common parameters among ex-
perts. Actually, the MPOE approach can be further

Algorithm 1 The proposed updating procedure.

Require: {{Aj}4j=1, C}: Initialize experts
Require: α: learning rate
Require: pb: mask probability
Require: time step t← 0 (Initialize timestep)

1: while not converged do
2: t← t+ 1
3: gtC ←

∂L(Ct)
∂(Ct) , gtA ←

∂L(At)
∂(At)

(Get gradients at timestep t)
4: b← GenerateMask(pb)

(Compute gradient mask)
5: Ct ← Ct−1 − α · gtC ⊙ (1− b)

(Update central tensors)
6: At ← At−1 − α · gtA

(Update the routed auxiliary tensors)
7: end while
8: return {{Atj}4j=1, Ct} (Resulting parameters)

enhanced with existing improved routing methods.
Specifically, Deepspeed-MoE proposed to use

pyramid residual MoE architecture to reduce the
parameters of the MoE architecture (Rajbhandari
et al., 2022), while our work takes a different per-
spective to improve the original MoE architecture
by sharing parameters among different experts.

4 Experiments

In this section, we first set up the experiments and
then report the results and analysis. Then, we con-
duct a detailed analysis under different experimen-
tal settings. Here, we use T5 (Raffel et al., 2020)
and GPT-2 (Radford et al., 2019) models as the
base model in our experiments.

4.1 Experimental Setup

Datasets. To evaluate the effectiveness of the pro-
posed MPOE as an efficient strategy to improve
the model capacity of PLMs, we follow the set-
ting of T5 and GPT-2 to perform experiments on
Natural Language Understanding (NLU) and Nat-
ural Language Generation (NLG) tasks. Specifi-
cally, we evaluate the NLG tasks in GLUE bench-
mark (Wang et al., 2018), the language modeling
task with WikiText-2 (Merity et al., 2017), the text
generation task with IMDB (Maas et al., 2011) and
EMNLP2017 WMT News (Guo et al., 2018). Fur-
thermore, we follow the setup of Raffel et al. (2020)
on the GLUE benchmark for a direct comparison
with the T5 model.

GLUE benchmark covers multiple datasets
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NLU with T5
Experiments MNLI QNLI SST-2 RTE QQP CoLA MRPC STS-B Avg. #To (M)

T5-Large 89.23 94.03 96.20 83.94 91.54 55.10 90.15 91.90 86.51 737
+MoEfication♦ 87.50 93.20 95.40 86.40 90.20 55.50 87.50 90.60 85.79 737
+MoEfication++ ♦ 88.70 93.60 96.20 87.50 91.30 59.40 89.30 91.00 87.13 737
+Switch♣ / / / / / / / / 88.50 26000
+MPOE 87.16 94.12 96.80 88.60 90.63 67.63 93.65 91.97 88.82 956

T5-Base 87.78 93.82 94.72 71.74 91.11 53.49 89.16 91.16 84.12 223
+Switch♣ / / / / / / / / 86.70 3800
+Switch♠ 87.73 93.85 94.87 77.53 91.59 59.90 91.64 91.16 86.03 1015
+MoE⋆ 86.98 92.82 94.60 69.56 90.02 64.56 87.68 90.89 84.64 1015
+MPOE 87.60 93.30 94.81 77.13 90.81 65.53 93.14 91.17 86.69 294
+MPOE++ 87.78 93.93 94.83 77.42 91.61 65.90 91.14 91.65 86.78 365

NLG with GPT-2

Experiments WikiText-2 EMNLP News IMDB #To (M)PPL (↓) BLEU-2 BLEU-4 BLEU-2 Self-BLEU-2 BLEU-2 Self-BLEU-2

GPT-2 21.27 28.69 9.46 62.61 74.67 73.12 83.85 124
+MoE⋆ 21.86 28.27 9.14 65.27 79.79 74.46 90.01 578
+Switch♠ 21.25 28.71 9.44 64.62 81.11 75.35 91.82 578
+MPOE 20.72 28.78 9.51 66.99 83.10 76.30 92.72 157
+MPOE++ 20.73 28.82 9.57 68.49 83.11 76.82 93.08 171

Table 1: Performance comparison of different models on NLU and NLG tasks (in percent). “#To (M)” denote the
number (in millions) of total parameters. We set the number of experts n = 8 in these models, MPOE. Furthermore,
we use n = 16 for a more powerful version of our approach, denoted by MPOE++. We report the average test
performance of three runs, and the best results are highlighted in bold. ♦: Experimental results by Zhang et al.
(2021b) ♣: Experimental results by Fedus et al. (2021) ♠: Our re-implementation by Fedus et al. (2021). ⋆:Apply
method by Shazeer et al. (2017).

(MRPC, QQP, SST-2, MNLI, RTE, QNLI, CoLA)1.
The original test sets are not publicly available, and
following Zhang et al. (2021a), for datasets fewer
than 10K samples (RTE, MRPC, STS-B, CoLA),
we divide the original validation set in half, using
one half for validation and the others for the test.

Evaluation Metrics. We use perplex-
ity (PPL) (Brown et al., 1992) to measure
how well the probability model predicts a sample
compared with the ground-truth. To evaluate
the ratios of the overlapping n-grams between
generated and real samples, we use BLEU-n
score (Papineni et al., 2002). We also take into
account the Self-BLEU-n score (Zhu et al.,
2018) to evaluate the diversity of generated
samples especially. For metrics used in the GLUE
benchmark, we follow Mahabadi et al. (2021) and
use Matthew’s correlation for CoLA, Pearson for
STS-B, and accuracy for the other tasks.

Comparison methods. We adopt the T5 and
GPT-2 as the base architectures for both MoE and
MPOE. Following Shazeer et al. (2017), we ex-

1Following Raffel et al. (2020), as a common practice, due
to the adversarial nature of WNLI with respect to the training
set, we do not experiment with WNLI

tend the FFN components with the MoE archi-
tecture containing n experts in each Transformer
block of the T5 and GPT-2 model. We refer to this
method as “+MoE”. The Switch Transformers (Fe-
dus et al., 2021) use a simplified strategy that routes
to only a single expert instead of top-2 routing in
MoE. We refer to this method as “+Switch”. To
ensure a fair comparison, we maintain the same
number (n = 8) of experts for baselines and
MPOE. We also implement an enhanced version of
MPOE with n = 16 experts, which is referred to as
“+MPOE++”. Based on the released gpt2 model2,
t5-base model3 and t5-large model4 provided by
Huggingface, we first initialize the experts, then
fine-tune the models on the downstream tasks. For
the T5 model, we follow the setting in Mahabadi
et al. (2021) and fine-tune all parameters of the
model on all tasks. For different downstream tasks,
we run a hyperparameter sweep and select the best
configuration according to the accuracy results on
the validation set. The hyperparameters that we
tune include the epochs, batch size and learning
rates.

2https://huggingface.co/gpt2
3https://huggingface.co/t5-base
4https://huggingface.co/t5-large
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4.2 Mains Results
In our main experiments, we adopt T5 (Raffel
et al., 2020), GPT-2 (Radford et al., 2019), Switch
Transformers (Fedus et al., 2021) and MoEfica-
tion (Zhang et al., 2021b) as baselines, and report
the comparison results of both NLU and NLG tasks
in Table 1.

Overall, compared to these MoE variants,
our proposed MPOE approach achieves perfor-
mance improvement while being more parameter-
efficient. For the NLU task, our proposed approach
(“+MPOE”) outperforms the best baseline method,
i.e., “+Switch” (88.82 vs. 88.50 for T5-Large) with
up to 27.2x reduction in total parameters in the
GLUE benchmark. By zooming into low-resource
datasets such as CoLA and MRPC, our approach
yields more significant improvements. This sug-
gests that sharing parameters across experts rein-
forces the positive transfer effects5 of informa-
tion from other datasets toward the learning of
low-resource datasets. For the NLG task, GPT-
2+MPOE achieves gains in BLEU-2 score (1.72
for GPT-2+MoE and 2.37 for GPT-2+Switch) with
3.7x reduction in total parameters on the EMNLP
News dataset. This indicates that GPT-2 also bene-
fits from sharing central tensors.

Moreover, T5+MPOE++ and GPT-2+MPOE++

perform better when we add more auxiliary tensors
as additional experts. This demonstrates the neces-
sity of improving model capacity (Shazeer et al.,
2017), as more parameters of experts tend to result
in an improved model capacity.

4.3 Evaluation on Multi-task Learning
To demonstrate the efficiency of MPOE in multi-
task learning, we adopt the T5-Base model for anal-
ysis to be comparable with Hyperformer (Mahabadi
et al., 2021). We conduct experiments on the multi-
task GLUE benchmark. The detailed metrics can
be found in Section 4.1. Note that compared to Hy-
performer, MPOE approach does not incorporate
additional neural network components, thus it is
more flexible to be used with the PLMs.

Table 2 shows the results on GLUE benchmark
for T5-base (Raffel et al., 2020), Hyperformer (Ma-
habadi et al., 2021) and MPOE. As we can see, the
performance of the MPOE approach is consistently
better than the Hypernetwork in all cases, while

5Here, the positive transfer effects can be referred to Ma-
habadi et al. (2021), which means that the transferred knowl-
edge can lead to improved performance for unseen in-domain
tasks.

Datasets T5-Base Hyper♣ +MPOE

MNLI (acc) 87.73 85.74 87.83
QNLI (acc) 93.51 93.02 93.89
SST-2 (acc) 92.50 94.03 94.73
RTE (acc) 75.41 75.36 75.51
QQP (acc) 91.12 90.28 91.17
CoLA (mcc) 54.93 63.73 65.85
MRPC (acc) 89.21 89.66 90.10
STS-B (pearson) 90.75 90.00 90.92

Avg. 84.39 85.23 86.25
#To (M) 223 343 258

Table 2: Performance of multi-task learning on GLUE
benchmark obtained by fine-tuning T5-Base (in percent).
♣: Experimental results from Hyperformer (Mahabadi
et al., 2021).

Variants WikiText-2 #To (M)PPL (↓) B2 B4

+MoE⋆ 21.86 28.27 9.14 578

w/o PS 21.28 28.67 9.44 153
w/o GM 21.17 28.71 9.47 157

+MPOE 20.72 28.78 9.51 157

Table 3: Ablation study on the WikiText-2 dataset about
the NLG tasks (in percent). “B2” and “B4” are short
for BLEU-2 and BLEU-4, respectively. ⋆: The method
from Shazeer et al. (2017)

the MPOE is more parameter-efficient (258M vs.
343M in total parameters). It further demonstrates
the potential benefits of the MPOE approach in a
multi-task learning setting, where the central tensor
learns common information across tasks and the
auxiliary tensor learns task-specific information.

4.4 Ablation Results

Our approach has incorporated two novel improve-
ments: (1) MoE architecture with parameters shar-
ing (PS) among experts based on MPO decom-
position and (2) gradient mask (GM) to alleviate
unbalanced optimization.

To verify the effectiveness of each component,
we conduct the ablation study on the WikiText-2
dataset to analyze the contribution of each part. We
adopt PPL, BLEU-2 and BLEU-4 as the evalua-
tion metrics, and consider removing the parameters
sharing and gradient mask strategy respectively.
The ablation results of our MPOE approach are
shown in Table 3. We can see that removing any
component would lead to a decrease in the model
performance. It shows the effectiveness of all these
components in our approach. Besides, parameter
sharing seems more important than the gradient
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Variants
PPL (↓)

WikiText-2
B2 B4

#To (M)

GPT-2 21.27 28.69 9.46 124.4
MPOE (m=3) 24.01 27.86 8.93 130.3
MPOE (m=5) 20.72 28.77 9.48 157.4
MPOE (m=7) 20.73 28.76 9.47 198.7
MPOE (m=9) 20.78 28.45 9.38 214.6

Table 4: Evaluation with different factorization man-
ner on the WikiText-2 dataset about the NLG tasks (in
percent). “B2” and “B4” are short for BLEU-2 and
BLEU-4, respectively.

mask strategy, which yields a larger performance
drop after being removed.

4.5 Detailed Analysis
MPO decomposition has different factorization
manners. However, the MPOE approach requires
a defined MPO decomposition form to be given
before it can be used. Therefore, different factor-
ization manners may affect the efficiency of the
MPOE approach. To vertify this, we perform a
detailed analysis on different factorization man-
ners of MPO decomposition. We present three
variants of MPOE with different lengths of local
tensors produced by MPO decomposition empiri-
cally. Tabel 4 shows the evaluation results on the
WikiText-2 dataset about NLG tasks. As we can
see, the variants of m > 3 are all superior to the
GPT-2 model. Additionally, we can observe that
more local tensors performs similarly but leads to
higher memory cost. Thus we finally choose to
set m = 5 for MPOE architecture considering the
trade-off between the cost and quality.

5 Related Work

We will review the related works in four aspects.

PLMs with MoE. It has been reported that mod-
els with more parameters are usually considered to
have a larger model capacity (Fedus et al., 2021;
Zuo et al., 2021). In order to increase the model ca-
pacity, a promising direction is to explore the scal-
ing properties with MoE architecture which was
introduced by Jacobs et al. (1991). Thus, Shazeer
et al. (2017) first applied the MoE architecture to
large-scale language models. Then, Switch Trans-
formers (Fedus et al., 2021), GShard (Lepikhin
et al., 2021), BASELayer (Lewis et al., 2021) and
HashLayer (Roller et al., 2021) studied how to
build large-scale Transformer-based model with
MoE as well as improving routing strategy, which

can better utilize the model capacity. In addi-
tion, Zhang et al. (2021b) proposed a strategy for
sparse activation of MoE architecture. He et al.
(2021) suggested a distributed training system for
fast training of MoE. Zoph et al. (2022) proposed a
sparse expert model with more stable training. Yu
et al. (2022) proposed a sparse expert model based
on all-MLP architecture. In contrast, our approach
aims to reduce information redundancy by sharing
parameters among experts.

Matrix Product Operators Decomposition.
Matrix product operators (MPO) (Pirvu et al., 2010)
decomposition was proposed in quantum many-
body physics, a.k.a. tensor-train (TT) decomposi-
tion (Oseledets, 2011). A major category of MPO
studies relies on model compression (Gao et al.,
2020). They focus on compressing weight ma-
trix and convolutional layers (Novikov et al., 2015;
Garipov et al., 2016; Sun et al., 2020). Furthermore,
the MPO decomposition was used to compress the
PLMs as well as enable lightweight fine-tuning in
downstream tasks (Liu et al., 2021). In this work,
we utilize such a decomposition mechanism for pa-
rameter sharing to construct a parameter-efficient
MoE architecture.

Improved Variants of MoE. Despite the
achieved performance performance, MoE archi-
tecture has been hindered by the model complexity
and high memory costs (Shazeer et al., 2017; Fe-
dus et al., 2021). This problem can be alleviated
by using distillation (Fedus et al., 2021) and ex-
pert pruning (Kim et al., 2021). Then, Kudugunta
et al. (2021) and Zuo et al. (2021) indicated that
sub-networks can be employed when using the
model. Indeed, our approach can be further en-
hanced by these existing methods for improving
inference time.

Multi-task Learning. The exploitation of MoE
architectures for multi-task learning is a very
promising direction in recent years (Ma et al.,
2018). Houlsby et al. (2019) suggested training
adapters for each task separately while keeping the
model fixed. Further research suggested that model
parameters could be shared across tasks, and task-
specific adapter parameters were introduced (Stick-
land and Murray, 2019). Based on this idea, Ma-
habadi et al. (2021) and Pilault et al. (2020)
proposed that parameter-efficient multi-task fine-
tuning for transformer-based models via shared
hypernetworks. Our approach differs from these
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works in that the MPOE approach allows us to re-
duce model size while keeping the same number
of experts, and meanwhile achieve performance
improvement for multi-task learning.

6 Conclusion

In this paper, we proposed a parameter-efficient
MoE architecture for increasing model capacity
based on the MPO decomposition. First, we shared
the central tensors among different experts based
on MPO decomposition, which largely reduced the
model parameters of MoE architecture. Then, we
designed the gradient mask strategy to alleviate
the unbalanced optimization issues and ensured
that different tensors capture different types of in-
formation efficiently. Extensive experiments have
shown that our approach outperforms several com-
petitive PLM scaling strategies, especially in terms
of improving the parameter efficiency of the MoE
architecture.

In the future, we will enhance the proposed
MPOE approach with recently proposed routing
methods, such as BASELayer (Lewis et al., 2021),
HASHLayer (Roller et al., 2021) and GShard (Lep-
ikhin et al., 2021). We will also consider exploring
additional decomposition methods for developing
parameter-efficient MoE architecture.
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Abstract

Pre-trained masked language models have
demonstrated remarkable ability as few-shot
learners. In this paper, as an alternative, we
propose a novel approach to few-shot learning
with pre-trained token-replaced detection mod-
els like ELECTRA. In this approach, we refor-
mulate a classification or a regression task as a
token-replaced detection problem. Specifically,
we first define a template and label description
words for each task and put them into the in-
put to form a natural language prompt. Then,
we employ the pre-trained token-replaced de-
tection model to predict which label descrip-
tion word is the most original (i.e., least re-
placed) among all label description words in the
prompt. A systematic evaluation on 16 datasets
demonstrates that our approach outperforms
few-shot learners with pre-trained masked lan-
guage models in both one-sentence and two-
sentence learning tasks. 1

1 Introduction

Few-shot learning aims to learn models with a few
examples and the learned models generalize well
from very limited examples like humans. Recently,
few-shot learning has become an important and
interesting research field of intelligence (Lake et al.,
2015; Yogatama et al., 2019). Compared to data-
rich supervised learning, few-shot learning greatly
overcomes the expensive data annotation challenge
in reality.

Some large pre-trained language models such as
GPT-3 (Brown et al., 2020) have achieved remark-
able few-shot performance by reformulating tasks
as language model problems. However, its hun-
dreds of billions of parameters deter researchers
and practitioners from applying it widely. To tackle
this, a new paradigm, equipping smaller masked

∗*Corresponding author
1Our code is available at https://github.com/

cjfarmer/TRD_FSL

language models (Devlin et al., 2018) with few-
shot capabilities (Schick and Schütze, 2020a,b;
Gao et al., 2021) has been explored, wherein down-
stream tasks are treated as cloze questions. Typi-
cally, as illustrated in Figure 1(b), each input sen-
tence is appended with a prompt phrase such as “It
was [MASK]” to each input sentence, allowing the
model to fill in the [MASK] by reusing the masked
language model head.

Instead of masked language models, another self-
supervised pre-training task called token-replaced
detection has been proposed by Clark et al. (2020)
and it trains a model named ELECTRA to distin-
guish whether each token is replaced by a gen-
erated sample or not. One major advantage of
token-replaced detection pre-training modeling
is that it is more computationally efficient than
masked language modeling. Moreover, their re-
search demonstrates that given the same model
size, pre-trained token-replaced detection models
achieve substantially better performance than the
pre-trained masked language model such as BERT
(Devlin et al., 2018) and RoBERTa (Liu et al.,
2019) in many downstream tasks.

In this paper, inspired by the above unique effec-
tiveness of the pre-trained token-replaced detection
model, we propose a new approach, pre-trained
token-replaced detection models as few-shot learn-
ers, aiming to further improve the few-shot learning
performances. The key idea of our approach is to
reformulate downstream tasks as token-replaced
detection problems. Specifically, we first define a
template and label description words which will be
used to convert the input sentence into a prompted
text. Then, we directly insert the template and all
label description words into the sentence to form a
prompt that might be an ungrammatical sentence.
The motivation of this operation is to make our in-
puts similar to those in the data for training ELEC-
TRA, having some replaced tokens. Lastly, we
use a pre-trained token-replaced detection model
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Figure 1: Different approaches of applying pre-trained models to sentiment classification.

to distinguish which label description word is the
most original (i.e., least replaced) among all label
description words. For instance, as illustrated in
1(c), when performing a sentiment classification
task, the input sentence “I am so excited about the
concert.” is converted into a new one “I am so
excited about the concert. It was great terrible”
where “great” and “terrible” are two label descrip-
tion words for the two sentimental categories: pos-
itive and negative. Consequently, the pre-trained
token-replaced detection model may predict the la-
bel description word “great” is more original (i.e.,
less replaced) than “terrible”, which indicates that
the input belongs to a positive category. Compared
to few-shot learners with pre-trained masked lan-
guage models, in general, there are two major dif-
ferences as follows. First, the designed phrases of
few-shot learners with pre-trained masked don’t
contain any label description word. However, in
our approach, we put them in prompts directly,
which is easier to understand. Second, few-shot
learners with pre-trained masked language models
predict which label description word is the most
appropriate to fill in [MASK], but our approach
predicts which label description word is the most
original (i.e., least replaced).

To evaluate the few-shot capacity of our
approach, we use both ELECTRA-Base and
ELECTRA-Large as pre-trained token-replaced de-
tection models to perform few-shot learning in our

approach and conduct experiments in a wide vari-
ety of both one-sentence and two-sentence tasks.
Empirical studies demonstrate that our approach
outperforms few-shot learners with pre-trained
masked language models.

The contributions of this study are as follows:

• We propose a new approach for few-shot learn-
ing, which is simple and effective. To the best
of our knowledge, few-shot learners with pre-
trained token-replaced detection models is a
novel branch of research that has not been
explored in few-shot learning studies.

• A systematic evaluation of 16 popular datasets
demonstrates that when given only a small
number of labeled samples per class, our ap-
proach outperforms few-shot learners with
pre-trained masked language models on most
of these tasks.

The remainder of this paper is organized as
follows. Section 2 overviews related studies
about few-shot learning approaches and pre-trained
token-replaced detection models. Section 3 pro-
poses our few-shot learner with a pre-trained token-
replaced detection model in detail. Section 4
presents the experimental results and analysis. Fi-
nally, Section 5 discusses the conclusions and fu-
ture work.
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2 Related Work

2.1 Prompt-based few-shot learning

Few-shot learning with language model prompting
has arisen with the introduction of GPT-3 (Brown
et al., 2020), which adds a task description (prompt)
with a training example demonstration to make
the language model a few-shot learner. GPT-3’s
naive “in-context learning” paradigms have been
applied to various tasks such as text classification
(Min et al., 2021; Lu et al., 2021), question an-
swering (Liu et al., 2021a), and information ex-
traction (Zhao et al., 2021), which shows that a
large pre-trained language model can achieve re-
markable performance with only a few annotated
samples. However, GPT-3’s dependence on gigan-
tic pre-trained language models narrows its scope
of real applications.

Instead of using a gigantic pre-trained language
model, Schick and Schütze (2020a,b) reformulates
a natural language processing (NLP) task as a cloze-
style question with smaller masked language mod-
els (Devlin et al., 2018). Their results show that it is
possible to achieve few-shot performance similar to
GPT-3 with much smaller language models. Due to
the instability of manually designed prompts, many
subsequent studies explore automatically searching
the prompts, either in a discrete space (Gao et al.,
2021; Jiang et al., 2020; Haviv et al., 2021; Shin
et al., 2020; Ben-David et al., 2021) or in a continu-
ous space (Qin and Eisner, 2021; Hambardzumyan
et al., 2021; Han et al., 2021; Liu et al., 2021b;
Zhang et al., 2022). The discrete prompt is usually
designed as natural language phrases with blank
to be filled while the continuous prompt is a se-
quence of vectors that can be updated arbitrarily
during learning. For instance, LM-BFF (Gao et al.,
2021) employs pre-trained mask language models
and generates discrete prompts automatically. Liu
et al. (2021b) propose a prompt-based approach
named P-tuning, which searches prompts in the
continuous space by LSTM. Zhang et al. (2022)
propose another prompt-based approach named
DifferentiAble pRompT (DART), which optimizes
the prompt templates and the target labels differen-
tially.

Different from all existing above few-shot learn-
ing approaches, our approach reformulates NLP
tasks as token-replaced detection problems and
leverages label description words in the prompt.

2.2 Token-replaced detection

The token-replaced detection pre-training task is
first introduced by Clark et al. (2020). Similar to
the structure of GAN (Goodfellow et al., 2014), it
pre-trains a small generator to replace some tokens
in an input with their plausible alternatives and then
a large discriminator to distinguish whether each
word has been replaced by the generator or not.
The unique effectiveness of the pre-trained token-
replaced detection model intrigues many studies
to apply it in many NLP tasks, such as fact veri-
fication (Naseer et al., 2021), question answering
(Alrowili and Shanker, 2021; Yamada et al., 2021),
grammatical error detection (Yuan et al., 2021),
emotional classification (Zhang et al., 2021; Gu-
ven, 2021), and medication mention detection (Lee
et al., 2020). There are also some other studies
that upgrade or extend the token-replaced detec-
tion pre-training mechanism. For instance, Meng
et al. (2021) jointly train multiple generators of
different sizes to provide training signals at various
levels of difficulty. Futami et al. (2021) transfer the
mechanism to visual pre-training and Fang et al.
(2022) propose an extended version of ELECTRA
for speech recognition.

Different from all the above studies, to the best
of our knowledge, this paper is the first study to
apply pre-trained token-replaced detection models
to few-shot learning.

3 Our approach

A pre-trained token-replaced detection model like
ELECTRA (Clark et al., 2020) trains a discrimina-
tor D that detects whether a token xt in an input
token sequence x = [x1, . . . , xt, . . . , xn] is an orig-
inal or replaced one. Suppose that the output from
the discriminator is y = [y1, . . . , yt, . . . , yn]. Then,
yt = 0 (or 1) indicates that xt (at the position t) is
an original (or a replaced) token. Specifically, in
ELECTRA (Clark et al., 2020), the discriminator is
trained together with a masked language modeling
generator which is used to generate replaced tokens
in a token sequence. Finally, the discriminator per-
forms the prediction with a sigmoid output layer,
i.e.,

P (yt | xt) = sigmoid
(
wThD (xt)

)
(1)

where hD (xt) is the encoder function in the dis-
criminator D.
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3.1 Few-shot Classification
3.1.1 Few-shot Fine-tuning Phase
Suppose that the downstream classification task is
a one-sentence classification problem and it has
k labels with label space Y where |Y | = k. For
the i-th category, we hand-craft a label description
word LABEL(i). Then an input x is rewritten as
a prompt as follows:

xprompt =x It was LABEL(1) . . .

LABEL(i) . . .LABEL(k)
(2)

When the downstream classification task is a two-
sentence classification problem, the input (x1, x2)
is rewritten as a prompt as follows:

xprompt = < x1 > ? LABEL(1) . . .

LABEL(i) . . .LABEL(k), < x2 >
(3)

Suppose that this sample belongs to the i-th la-
bel and the positions of the label description words
are [t1, . . . , ti, . . . , tk]. Thus, the output of the i-th
description word yti is set to be 0 and this label
description word is considered as original. In con-
trast, the outputs of all the other label description
words are set to be 1 and these description words
are considered as replaced. Note that the outputs
of all tokens beyond label description words are set
to be 0. Formally, the output of the whole prompt
is obtained as follows:

yprompt = [. . . , yt1−1 = 0, yt1 = 1, . . . , yti = 0,

. . . , ytk = 1, ytk+1 = 0, . . .]
(4)

For instance, in a 5-category sentiment classifi-
cation task, an input x ="This is one of his best
films." could be rewritten as xprompt = "This is one
of his best films. It was great good okay bad ter-
rible" where "great", "good", "okay", "bad", and
"terrible" are used as the label description words
for the very positive, positive, neutral, negative,
and very negative category. The output of xprompt
becomes yprompt = [. . . , 0, 0, 1, 1, 1, 1].

All prompt samples, together with their labels
are used to update the parameters in the discrimi-
nator D of the pre-trained token-replaced detection
model. Specifically, following the original progress
of pre-training a token replaced model, we train the
discriminator D by minimizing the binary cross en-
tropy loss. It is important to note that our approach
reuses the pre-trained weights wT in the formula
(1) and does not use any other new parameters.

3.1.2 Testing Phase
In the testing phase, a testing sample is rewritten
as a prompt according to formula (2) or (3) and the
labels of all label description words in this prompt
is predicted with the following formula, i.e.,

P (y | LABEL(i)) = sigmoid (

wThD(LABEL(i))
)

(5)
Then, the real label of the sample, i.e., ltest , is
determined by the following formula, i.e.,

ltest = argmax
i

(P (y = 0 | LABEL(i))) (6)

3.2 Few-shot Regression

3.2.1 Few-shot Fine-tuning Phase
Suppose that the downstream task is a regression
problem and it has label space Y where Y is a
bounded interval [vl, vu]. Following Gao et al.
(2021), we reformulate the problem as a "binary
classification"—predicting the probabilities of be-
longing to two opposing poles, {cl, cu} with values
vl and vu respectively.

Then, a few-shot regression problem can be han-
dled as a few-shot classification problem that has
two labels with label space {cl, cu}. Same as clas-
sification tasks above, we rewrite an input x as a
prompt for a one-sentence regression task as fol-
lows:

xprompt = x It was LABEL(l)LABEL(u) (7)

When the downstream task is a two-sentence re-
gression task, we rewrite an input x as a prompt as
follows:

xprompt = < x1 > LABEL(l)LABEL(u),

< x2 >
(8)

where LABEL(l) and LABEL(u) denote the la-
bel description words for the low and upper bound
categories.

Suppose that the positions of the two label de-
scription words are [tl, tu]. Then, the output of the
whole prompt is obtained as follows:

yprompt = [. . . , ytl−1 = 0, ytl = (1− P (cl | x)) ,
ytu = (1− P (cu | x)) , ytu+1 = 0, . . .]

(9)
where P (cl | x) and P (cu | x) are the posterior
probabilities of x belonging to cl and cu and satisfy
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Category Dataset |Y | #Train #Test Type

One-sentence

SST-2 2 6,920 872 sentiment
SST-5 5 8,544 2,210 sentiment
MR 2 8,662 2,000 sentiment
CR 2 1,775 2,000 sentiment
MPQA 2 8,606 2,000 opinion polarity
Subj 2 8,000 2.000 subjectivity
TREC 6 5,452 500 question classification
CoLA 2 8,551 1,042 acceptability

Two-sentence

MNLI 3 392,702 9,815 natural language inference
MNLI-MM 3 392,702 9,832 natural language inference
SNLI 3 549,367 9,842 natural language inference
QNLI 2 104,743 5,463 natural language inference
RTE 2 2,490 277 natural language inference
MRPC 2 3,668 408 paraphrase
QQP 2 363,846 40,431 paraphrase
STS-B R 5,749 1,500 sentence similarity

Table 1: The details of 16 datasets: |Y |: # of classes for classification tasks (Note that STS-B is a regression task
over a bounded interval [0, 5]). In our few-shot experiments, we train and develop on limited examples sampled
from the original training set and evaluate on the complete test set.

the equation, i.e., P (cl | x) + P (cu | x) = 1. Fol-
lowing Gao et al. (2021), these two probabilities
could be estimated as follows:

P (cl | x) =
vu − y
vu − vl

(10)

P (cu | x) =
y − vl
vu − vl

(11)

For instance, in a two-sentence similarity regres-
sion task over the interval [0, 5], the label value of
two sentences "Kittens are eating food." and "Kit-
tens are eating from dishes." is 4.0. We use No and
Yes as the label description words for the low and
upper bound categories. According to formula (8-
11), we construct its xprompt as "Kittens are eating
food. No Yes, Kittens are eating from dishes." and
obtain its output yprompt = [. . . , 0,0.8,0.2, 0, . . .].

Same as classification tasks, we also adopt bi-
nary cross entropy loss and utilize all prompt sam-
ples together with their labels to fine-tune the dis-
criminator D. It is important to note that our ap-
proach reuses the pre-trained weights wT in the
formula (1) and does not use any other new param-
eters.

3.2.2 Testing Phase

In the testing phase, a testing sample xtest is rewrit-
ten as a prompt according to formula (7) or (8) and
the outputs of the few-shot learner is obtained with

the following formula, i.e.,

yl = sigmoid
(
wThD(LABEL(l))

)
(12)

yu = sigmoid
(
wThD(LABEL(u))

)
(13)

From formula (9), we can get

P (cl | xtest ) = 1− yl (14)

P (cu | xtest ) = 1− yu (15)

Note that these two posterior probabilities might
not satisfy the equation, i.e., P (cl | x) +
P (cu | x) = 1. Therefore, we use a normaliza-
tion method to update the two probabilities, i.e.,

P ′ (cl | xtest ) =
P (cl | xtest )

((P (cl | xtest ) + P (cu | xtest ))
(16)

P ′ (cu | xtest ) =
P (cu | xtest )

((P (cl | xtest ) + P (cu | xtest ))
(17)

Then, the regression value of the test sample, i.e.,
vtest , is obtained by using the following formula
(Gao et al., 2021):

vtest = vl ·P ′ (cl | xtest )+vu ·P ′ (cu | xtest ) (18)
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Task Template Label Space Label(1) . . . Label(k)
One-sentence
SST-2 <S1> It was Label(1) . . . Label(k) positive, negative great, terrible

SST-5 <S1> It was Label(1) . . . Label(k) very positive, positive, neutral,
negative, very negative

great, good, okay,
bad, terrible

MR <S1> It was Label(1) . . . Label(k) positive, negative great, terrible
CR <S1> It was Label(1) . . . Label(k) positive, negative great, terrible
MPQA <S1> It was Label(1) . . . Label(k) positive, negative great, terrible
Subj <S1> This is Label(1) . . . Label(k) subjective, objective subjective, objective

TREC Label(1) . . . Label(k): <S1>
abbreviation, entity, description,

human, location, numeric
Expression, Entity, Description,

Human, Location, Number
COLA <S1> This is Label(1) . . . Label(k) grammatical, not_grammatical correct, incorrect
Two-sentence
MNLI <S1> ? Label(1) . . . Label(k), <S2> entailment, neutral, contradiction Yes, Maybe, No
MNLI-MM <S1> ? Label(1) . . . Label(k), <S2> entailment, neutral, contradiction Yes, Maybe, No
SNLI <S1> ? Label(1) . . . Label(k), <S2> entailment, neutral, contradiction Yes, Maybe, No
QNLI <S1> ? Label(1) . . . Label(k), <S2> entailment, not_entailment Yes, No
RTE <S1> ? Label(1) . . . Label(k), <S2> entailment, not_entailment Yes, No
MRPC <S1> Label(1) . . . Label(k), <S2> equivalent, not_ equivalent Yes, No
QQP <S1> Label(1) . . . Label(k), <S2> equivalent, not_ equivalent Yes, No
STS-B <S1> Label(1) . . . Label(k), <S2> [0,5] Yes, No

Table 2: Manual templates and label description words in our experiments.

4 Experiments

In this section, we compare our approach with a
few-shot learning approach based on pre-trained
masked language models. Furthermore, we evalu-
ate the impact of different templates, label descrip-
tion words and training data scales.

4.1 Evaluation Setting

We conduct a systematic empirical study based on
the datasets used in Gao et al. (2021). The experi-
mental data contains 16 datasets from many kinds
of NLP tasks such as sentiment analysis, question
classification, opinion polarity, subjectivity, accept-
ability, natural language inference, paraphrase, and
sentence similarity (Wang et al., 2018; Bowman
et al., 2015). Following Gao et al. (2021), we divide
these tasks into two categories, i.e., one-sentence
(single sentence) input and two-sentence (sentence
pair) input tasks. In addition, these tasks not only
contain binary or multi-class classification but also
contain regression. See the statistics of datasets in
Table 1.

4.2 Evaluation protocol

Note that the results of few-shot learning experi-
ments are very sensitive and unstable to the dif-
ferent splits of data and hyper-parameter setups
(Dodge et al., 2020; Zhang et al., 2020), because the
size of the training examples is so small. Thus, we
follow the evaluation protocol of (Gao et al., 2021)
by running 5 experiments with 5 different training

and development splits, randomly sampled from
the original training set using a fixed set of seeds,
and then measuring the average results and stan-
dard deviations. Note that, following (Gao et al.,
2021), we sample the same size of development
set as the training set. For the hyper-parameters,
we also utilize grid search to get the best hyper-
parameter setup. We set the weight_decay to be
2e-3, max_length to be 256 and use AdamW opti-
mizer with epsilon 1e-8. We change the learning
rate in the set of {1e-5,2e-5,3e-5,4e-5,5e-5} and
the batch size between 4 or 8. Besides, we use
manual templates and label description words for
each task and the details are shown in Table 2.

4.3 Main results

We use 16 samples per class for few-shot learn-
ing experiments and conduct our experiments on
both base-level and large-level pre-trained model
scenarios. We compare our approach with several
baselines including 1) Fine-tuning: standard fine-
tuning of pre-trained models; 2) P-tuning (Liu et al.,
2021b): few-shot learner that searches prompts in a
continuous space by LSTM; 3) LM-BFF (Gao et al.,
2021): few-shot learner that employs pre-trained
mask language models and discrete prompts. For
a fair comparison, we use the same templates and
label description words as our approach and do not
use any demonstrations; 4) DART (Zhang et al.,
2022): few-shot learner that optimizes the prompt
templates and the target labels differentially.
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One-sentence SST-2
(acc)

SST-5
(acc)

MR
(acc)

CR
(acc)

MPQA
(acc)

Subj
(acc)

TREC
(acc)

CoLA
(matt)

AVG

Fine-tuning(RoBERTa) 77.8 (2.8) 38.5 (1.6) 70.1 (4.9) 76.7 (2.8) 70.1 (8.0) 89.7 (0.8) 81.5 (4.3) 18.9 (11.7) 65.4
Fine-tuning(ELECTRA) 82.8 (3.5) 41.6 (3.6) 73.9 (3.5) 82.9 (4.1) 70.7 (5.1) 92.0 (0.5) 78.5 (5.8) 39.3 (3.4) 70.2
P-tuning(RoBERTa) 83.3 (5.3) 43.1 (2.1) 81.7 (1.2) 86.0 (3.6) 74.0 (5.2) 89.0 (1.1) 76.9 (8.3) -0.8 (2.5) 66.7
LM-BFF(RoBERTa) 87.2 (1.3) 44.5 (0.8) 83.4 (1.4) 89.1 (1.5) 81.3 (3.9) 89.3 (1.8) 77.5 (6.1) 5.3 (5.3) 69.7
DART(RoBERTa) 88.9 (0.5) 45.3 (1.5) 83.7 (1.0) 89.2 (1.4) 76.6 (6.3) 88.9 (2.2) 77.3 (7.2) 4.2 (5.0) 69.3
Ours(ELECTRA) 91.7 (0.8) 49.7 (1.0) 86.8 (2.8) 90.8 (1.0) 84.5 (1.5) 87.5 (1.2) 82.2 (3.3) 24.7 (11.8) 74.7

Two-sentence MNLI
(acc)

MNLI-MM
(acc)

SNLI
(acc)

QNLI
(acc)

RTE
(acc)

MRPC
(f1)

QQP
(f1)

STS-B
(pear)

AVG

Fine-tuning(RoBERTa) 38.6 (2.5) 39.5 (2.7) 48.0 (4.7) 63.2 (6.7) 51.9 (1.6) 74.5 (4.4) 58.6 (6.0) 65.2 (8.7) 54.9
Fine-tuning(ELECTRA) 46.9 (3.6) 48.9 (3.8) 50.6 (2.1) 59.9 (2.3) 52.6 (2.5) 76.9 (2.9) 64.1 (2.8) 72.4 (2.0) 59.0
P-tuning(RoBERTa) 50.6 (1.1) 50.6 (1.1) 55.0 (4.3) 58.1 (3.1) 56.0 (4.2) 70.2 (2.3) 58.7 (2.8) - 57.0
LM-BFF(RoBERTa) 59.1 (2.4) 60.9 (2.4) 64.3 (2.9) 61.8 (4.8) 57.9 (6.7) 72.3 (6.6) 62.7 (2.1) 68.6 (5.7) 63.5
DART(RoBERTa) 55.3 (2.4) 55.3 (2.4) 62.6 (2.6) 58.4 (4.3) 58.2 (6.0) 72.4 (2.5) 60.4 (1.7) - 60.4
Ours(ELECTRA) 59.7 (2.4) 61.8 (2.0) 68.9 (3.2) 61.9 (2.4) 61.5 (2.9) 73.9 (3.9) 58.0 (3.8) 66.6 (2.9) 64.0

Table 3: Experimental results of different approaches when base pre-trained models are used.

4.3.1 RoBERTa-Base and ELECTRA-Base
Results

Table 3 gives the experimental results of different
prompt-based approaches to few-shot learning with
a base pre-trained model, i.e., RoBERTa-Base or
ELECTRA-Base. The best performance in each
task is bold in the table. Note that since there
is no implementation for regressions tasks in the
two baseline approaches, i.e., P-tuning and DART
and thus we do not reproduce their approach on
STS-B which is a regression task. From this table,
we discuss the results in two scenarios, i.e., one-
sentence and two-sentence tasks.

In one-sentence tasks, first, fine-tuning with
RoBERTa-Base performs worse than fine-tuning
with ELECTRA-Base on average (65.4% vs.
70.2%), which indicates that ELECTRA-Base is
a better fine-tuner even when only a few training
samples are available. This result is consistent with
the conclusion reported in Clark et al. (2020) when
many training samples are available. Second, all
prompt-based approaches greatly outperform stan-
dard fine-tuning on most tasks, which indicates that
few-shot learners with either base masked language
model or base token-replaced detection model are
powerful in few-shot learning. One big exception
is CoLA (Warstadt et al., 2019) where few-shot
learning approaches perform much worse than fine-
tuning approaches. This might be because the task
aims to detect whether a sentence is grammatical or
non-grammatical which is difficult to find suitable
label description words. However, interestingly,
we find that ELECTRA-Base performs much better
than RoBERTa-Base in this task. Third, our ap-
proach yields excellent results and performs much
better than P-tuning, LM-BFF and DART on aver-

age (74.7% vs. 66.7%, 69.7% and 69.3%), which
encourages using a pre-trained token-replaced de-
tection model for few-shot learning in one-sentence
tasks.

In two-sentence tasks, first, standard fine-tuning
with RoBERTa-Base still performs worse than fine-
tuning with ELECTRA-Base. Second, all prompt-
based approaches greatly outperform standard fine-
tuning on most tasks, which once again indicates
that few-shot learners with either mask language
model or token-replaced detection model are pow-
erful in few-shot learning. Third, our approach
performs better than P-tuning, LM-BFF and DART,
although the average improvements are quite lim-
ited (64.0% vs. 57%, 63.5% and 60.4%).

4.3.2 RoBERTa-Large and ELECTRA-Large
Results

Table 4 gives the experimental results of different
prompt-based approaches to few-shot learning with
a large pre-trained model, i.e., RoBERTa-Large or
ELECTRA-Large. The best performance in each
task is bold in the table. From this table, we discuss
the results in two scenarios, i.e., one-sentence and
two-sentence tasks.

In one-sentence tasks, first, fine-tuning with
RoBERTa-Large performs a bit better than fine-
tuning with ELECTRA-Large on average (68.1%
vs. 70.4%), which indicates that the choice of
ELECTRA and RoBERTa might depend on the
tasks when large models are used. Second, all
prompt-based approaches greatly outperform stan-
dard fine-tuning on most tasks, which indicates
that few-shot learners with either large masked
language models or large token-replaced detec-
tion models are powerful in few-shot learning.
However, CoLA is still the exception and even
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One-sentence SST-2
(acc)

SST-5
(acc)

MR
(acc)

CR
(acc)

MPQA
(acc)

Subj
(acc)

TREC
(acc)

CoLA
(matt)

AVG

Fine-tuning(RoBERTa) 81.4 (3.8) 43.9 (2.0) 76.9 (5.9) 75.8 (3.2) 72.0 (3.8) 90.8 (1.8) 88.8 (2.1) 33.9 (14.3) 70.4
Fine-tuning(ELECTRA) 79.9 (7.9) 41.2 (1.9) 73.0 (5.4) 75.0 (6.4) 65.3 (6.9) 94.0 (1.0) 82.8 (8.0) 33.4 (10.4) 68.1
P-tuning(RoBERTa) 89.6 (2.6) 48.0 (1.3) 85.4 (1.9) 88.7 (2.6) 76.3 (3.3) 90.9 (1.5) 86.2 (3.4) 4.0 (5.3) 71.1
LM-BFF(RoBERTa) 92.7 (0.9) 47.4 (2.5) 87.0 (1.2) 90.3 (1.0) 84.7 (2.2) 91.2 (1.1) 84.8 (5.1) 9.3 (7.3) 73.4
DART(RoBERTa) 91.6 (1.0) 47.4 (3.3) 85.7 (3.0) 90.3 (0.8) 66.6 (6.4) 89.9 (1.7) 84.8 (4.6) 10.0 (8.4) 70.8
Ours(ELECTRA) 92.8 (0.6) 50.7 (2.9) 89.4 (0.8) 90.5 (2.2) 83.2 (1.4) 92.1 (0.7) 87.2 (3.8) 16.3 (15.1) 75.3

Two-sentence MNLI
(acc)

MNLI-MM
(acc)

SNLI
(acc)

QNLI
(acc)

RTE
(acc)

MRPC
(f1)

QQP
(f1)

STS-B
(pear)

AVG

Fine-tuning(RoBERTa) 45.8 (6.4) 47.8 (6.8) 48.4 (4.8) 60.2 (6.5) 54.4 (3.9) 76.6 (2.5) 60.7 (4.3) 53.5 (8.5) 55.9
Fine-tuning(ELECTRA) 54.4 (2.4) 56.7 (1.7) 58.8 (4.8) 62.9 (4.1) 53.8 (3.7) 78.7 (3.1) 67.2 (3.4) 78.5 (0.5) 63.9
P-tuning(RoBERTa) 59.7 (3.0) 59.7 (3.0) 71.8 (3.5) 62.5 (6.5) 61.8 (2.6) 72.7 (7.4) 64.2 (1.5) - 64.6
LM-BFF(RoBERTa) 68.3 (2.3) 70.5 (1.9) 77.2 (3.7) 64.5 (4.2) 69.1 (3.6) 74.5 (5.3) 65.5 (5.3) 71.0(7.0) 70.1
DART(RoBERTa) 67.1 (2.6) 67.0 (2.5) 74.0 (4.0) 63.1 (3.0) 64.5 (5.2) 75.9 (4.7) 63.4 (4.4) - 67.9
Ours(ELECTRA) 69.2 (4.0) 71.0 (3.5) 79.3 (3.2) 69.0 (4.5) 74.2 (3.1) 73.2 (7.5) 68.2 (3.4) 74.7 (2.9) 72.4

Table 4: Experimental results of different approaches when large pre-trained models are used.

worse, the performance of few-shot learning with
ELECTRA-Large performs worse than ELECTRA-
Base, (16.3% vs. 24.7%). This result shows that the
prompting style in our few-shot learning approach
seems not suitable for the task of grammatical or
non-grammatical detection. Third, our approach
yields performances better than P-Tuning, LM-BFF
and DART, achieving 4.2%, 1.9% and 4.5% aver-
age improvements respectively.

In two-sentence tasks, first, fine-tuning with
RoBERTa-Large performs much worse than fine-
tuning with ELECTRA-Large (55.9% vs. 63.9%).
Second, all prompt-based approaches greatly out-
perform standard fine-tuning on many tasks, which
once again indicates that few-shot learners with
either mask language model or pre-trained token-
replaced detection model are powerful in few-shot
learning. Third, our approach performs better than
P-Tuning, LM-BFF and DART on average (72.4%
vs. 64.6%, 70.1% and 67.9%).

4.4 Impact of templates and label description
words

We further conduct experiments on the one-
sentence task SST-2 and the two-sentence task
MNLI to study the impact of different templates
and label description words in our approach. Due to
a large number of trials in the grid search, we use a
fixed batch size 4 and learning rate 2e-5 in this part.
Table 5 shows the results of the LM-BFF approach
with RoBERTa-Base, the best-performed approach
in all prompt-based baselines, and our approach
with ELECTRA-Base in the tasks of SST-2 and
MNLI. From this table, we can see that the impact
of different templates and label description words
for our method is similar to LM-BFF. In terms of

label description words, the more semantic-related
the designed label words are to the categories, the
more likely to achieve stable and excellent results.
For instance, in SST-2, regardless of LM-BFF or
our approach, the semantic-related label descrip-
tion words great/terrible and good/bad always
outperform the words dog/cat and terrible/great
which are semantically irrelevant or even opposite
with the categories positive and negative. In terms
of templates, the performance is a bit sensitive to
the templates, even a punctuation mark. Besides,
there seems to be no general principle to design
templates to optimally adapt to our approach and
LM-BFF. For instance, In MNLI, LM-BFF obtains
the best performance with the template "<S1>. La-
bel(1) . . . Label(k), <S2>", while our approach
obtains the best performance with the template
"<S1>? Label(1) . . . Label(k), <S2>".

4.5 Impact of training data scales

We further conduct experiments on the one-
sentence task SST-2 and the two-sentence task
MNLI to study the impact of the numbers of la-
beled instances in our approach. In this part, we
also use a fixed batch size 4 and learning rate 2e-5.
Figure 2 shows the trends of the LM-BFF approach,
the best-performed approach in all prompt-based
baselines, and our approach when using different
numbers of labeled instances. From this figure, we
can see that our approach outperforms LM-BFF
in different numbers of labeled instances in the
one-sentence task SST-2. In the two-sentence task
MNLI, our approach performs similarly to LM-
BFF when the numbers of labeled instances are
less than 64. But our approach outperforms LM-
BFF when the numbers of labeled instances are

3281



Task Template Label(1) . . . Label(k) LM-BFF
(acc)

Our approach
(acc)

SST-2
(positive/negative)

<S1> It was Label(1) . . . Label(k)

great, terrible 88.6 (1.3) 91.4 (1.6)
good, bad 88.9 (0.6) 91.0 (2.0)
dog, cat 85.2 (2.0) 79.6 (7.3)
terrible, great 82.4 (3.3) 89.2 (1.9)

Label(1) . . . Label(k) : <S1>

great, terrible 85.6 (3.0) 91.1 (1.2)
good, bad 87.5 (0.4) 90.8 (0.7)
dog, cat 80.1 (3.5) 69.7 (8.2)
terrible, great 67.4 (3.5) 76.4 (9.6)

MNLI
(entailment/neutral

/contradiction)

<S1>? Label(1) . . . Label(k), <S2>

Yes, Maybe, No

58.3 (2.4) 58.8 (2.5)
<S2>. Label(1) . . . Label(k), <S1> 58.7 (1.3) 57.6 (2.5)
<S1> Label(1) . . . Label(k) <S2> 56.4 (1.8) 53.6 (2.2)
<S1>. Label(1) . . . Label(k), this is good, <S2> 54.0 (2.4) 55.8 (3.5)

Table 5: The impact of different templates and label description words.

Figure 2: LM-BFF vs. our approach when using different numbers of labeled instances (K: # of labeled instances
per class).

among [128, 512].

5 Conclusion and Future Work

In this paper, we propose a novel few-shot learn-
ing approach with pre-trained token-replaced de-
tection models, which transforms traditional clas-
sification and regression tasks into token-replaced
detection problems. Empirical studies on 16 NLP
datasets demonstrate that, in both one-sentence and
two-sentence learning tasks, our approach gener-
ally achieves better performances in the few-shot
scenario when compared to the masked language
model-based few-shot learner. These results high-
light that our approach is a comprehensive alterna-
tive for few-shot learning.

In the future, we would like to explore the follow-
ing directions. First, we notice that in some tasks
like CoLA, standard fine-tuning is also a strong
baseline and even performs much better than few-
shot learners based on either a masked language
model or a token-replaced detection model. Thus,
it is interesting to combine [CLS] output vector,
i.e., the standard fine-tuning style, with the prompt-

ing style, to further improve the few-shot learning
performance. Second, we would like to apply our
approach to some other NLP tasks, such as multi-
label text classification and sequence labeling tasks
like named entity recognition.

Acknowledgement

This work was supported by a NSFC grant
(No.62076176). We also acknowledge reviewers
for their valuable suggestions.

References
Sultan Alrowili and K Shanker. 2021. Large biomedical

question answering models with albert and electra.
CLEF (Working Notes).

Eyal Ben-David, Nadav Oved, and Roi Reichart. 2021.
Pada: A prompt-based autoregressive approach
for adaptation to unseen domains. arXiv preprint
arXiv:2102.12206.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

3282



Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang,
and Furu Wei. 2022. Corrupted image modeling for
self-supervised visual pre-training. arXiv preprint
arXiv:2202.03382.

Hayato Futami, Hirofumi Inaguma, Masato Mimura,
Shinsuke Sakai, and Tatsuya Kawahara. 2021. Asr
rescoring and confidence estimation with electra.
arXiv preprint arXiv:2110.01857.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. Advances in neural information
processing systems, 27.

Zekeriya Anil Guven. 2021. The effect of bert, electra
and albert language models on sentiment analysis for
turkish product reviews. In 2021 6th International
Conference on Computer Science and Engineering
(UBMK), pages 629–632. IEEE.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu,
and Maosong Sun. 2021. Ptr: Prompt tuning
with rules for text classification. arXiv preprint
arXiv:2105.11259.

Adi Haviv, Jonathan Berant, and Amir Globerson. 2021.
Bertese: Learning to speak to bert. arXiv preprint
arXiv:2103.05327.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. 2015. Human-level concept learning
through probabilistic program induction. Science,
350(6266):1332–1338.

Lung-Hao Lee, Po-Han Chen, Hao-Chuan Kao, Ting-
Chun Hung, Po-Lei Lee, and Kuo-Kai Shyu. 2020.
Medication mention detection in tweets using electra
transformers and decision trees. In Proceedings of
the Fifth Social Media Mining for Health Applica-
tions Workshop & Shared Task, pages 131–133.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Yu Meng, Chenyan Xiong, Payal Bajaj, Paul N Bennett,
Jiawei Han, Xia Song, et al. 2021. Pretraining text
encoders with adversarial mixture of training signal
generators. In International Conference on Learning
Representations.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2021. Noisy channel language
model prompting for few-shot text classification.
arXiv preprint arXiv:2108.04106.

Muchammad Naseer, Muhamad Asvial, and Riri Fitri
Sari. 2021. An empirical comparison of bert, roberta,
and electra for fact verification. In 2021 International
Conference on Artificial Intelligence in Information
and Communication (ICAIIC), pages 241–246. IEEE.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Timo Schick and Hinrich Schütze. 2020a. Exploit-
ing cloze questions for few shot text classification
and natural language inference. arXiv preprint
arXiv:2001.07676.

Timo Schick and Hinrich Schütze. 2020b. It’s not just
size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118.

3283



Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi.
2021. Efficient passage retrieval with hashing for
open-domain question answering. arXiv preprint
arXiv:2106.00882.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, et al. 2019. Learning and evaluat-
ing general linguistic intelligence. arXiv preprint
arXiv:1901.11373.

Zheng Yuan, Shiva Taslimipoor, Christopher Davis, and
Christopher Bryant. 2021. Multi-class grammatical
error detection for correction: A tale of two systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
8722–8736.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun Chen.
2022. Differentiable prompt makes pre-trained lan-
guage models better few-shot learners. In Interna-
tional Conference on Learning Representations.

Shunxiang Zhang, Hongbin Yu, and Guangli Zhu. 2021.
An emotional classification method of chinese short
comment text based on electra. Connection Science,
pages 1–20.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. arXiv preprint arXiv:2006.05987.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages
12697–12706. PMLR.

3284



Proceedings of the 29th International Conference on Computational Linguistics, pages 3285–3295
October 12–17, 2022.

Evaluating Diversity of Multiword Expressions in Annotated Text

Adam Lion-Bouton1, Yağmur Öztürk2,
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Abstract

Diversity can be decomposed into three dis-
tinct concepts, namely: variety, balance and dis-
parity. This paper borrows from the extensive
formalization and measures of diversity devel-
oped in ecology in order to evaluate the variety
and balance of multiword expression annota-
tion produced by automatic annotation systems.
The measures of richness, normalized richness,
and two variations of Hill’s evenness are con-
sidered in this paper. We observe how these
measures behave against increasingly smaller
samples of gold annotations of multiword ex-
pressions and use their comportment to validate
or invalidate their pertinence for multiword ex-
pressions in annotated texts. We apply the vali-
dated measures to annotations in 14 languages
produced by systems during the PARSEME
shared task on automatic identification of mul-
tiword expressions and on the gold versions of
the corpora. We also explore the limits of such
evaluation by studying the impact of lemmati-
zation errors in the Turkish corpus used in the
shared task.

1 Introduction

Diversity of naturally occurring phenomena and
artefacts is a desirable property of many environ-
ments and systems. It has been modelled and mea-
sured in many domains, including linguistics but
has rarely been formalized with respect to particu-
lar linguistic phenomena within one language. This
paper addresses diversity of one particular phe-
nomenon: multiword expressions (MWEs), which
are combinations of words, such as out of the blue
or pay a visit, exhibiting idiosyncratic properties at
lexical, morphological, syntactic and/or semantic
level (Baldwin and Kim, 2010). Automatic annota-
tion of multiword expression occurrences in texts –
henceforth referred to as MWE identification fol-
lowing nomenclature from Constant et al. (2017) –
has been the focus of many works, among which
the PARSEME shared tasks (Savary et al., 2017;

Ramisch et al., 2018, 2020). During these tasks,
performances of participating systems were evalu-
ated on the precision, recall, and F1-score of their
annotations.

In order to get a better understanding of how par-
ticipating MWE identifiers behave, performances
were also measured for specific subtasks such as the
annotation of light verb construction occurrences
(pay a visit, give a lecture), or the annotation of
MWEs that were not seen during training. Such
analysis of the resulting annotation stems from a
need to make sure that the systems getting the best
scores are not simply performing well on a few eas-
ier, more rewarding subtasks while ignoring others.
Thus, these evaluation scenarios implicitly address
some aspects of data and system diversity.

In this paper we follow the same objectives but
we address diversity explicitly and formally. We
suggest that diversity measures could later be used
to put performance measures in perspective, by
favoring NLP tools which cover diverse types and
not only easy and repetitive cases.

The paper is organized as follows. We first
present related work in estimating diversity in lin-
guistics and NLP (Sec. 2). We present the data
used in experiments (Sec. 3). We formalize diver-
sity with respect to the MWE phenomenon and
propose concrete measures (Sec. 4). Then we ex-
periment with these measures to estimate diversity
in MWE-annotated corpora and in annotations pro-
duced by systems participating in the PARSEME
shared task 1.2 (Sec. 5) and we offer a discussion
of the results (Sec. 6). Finally, we conclude and
suggest perspectives for future work (Sec. 7).

2 Related Work in Linguistic Diversity

Measuring diversity, – often along its three dimen-
sions: variety, balance and disparity (Sec. 4) – has
been practiced in domains such as ecology, econ-
omy, public policy, information theory, social me-
dia, etc. (Morales et al., 2021).
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Diversity is also a central notion in linguistic
debates. Evans and Levinson (2009) oppose to
the hypothesis of the existence of language univer-
sals (Greenberg, 1966) and suggest that linguistic
research should rather use diversity as a starting
point.

Quantifying linguistic diversity has been per-
formed for decades. Greenberg (1956) measured
the probability of monolingual members of a popu-
lation to speak the same language. Nettle (1999),
cited by Harmon and Loh (2010), modelled lan-
guage diversity in terms of richness (the number of
different languages in a given geographical area),
phylogenetic diversity (the number of different
lineages in the phylogenetic tree of languages)
or structural diversity (variation among structures
within languages). The Terralingua initiative1 sug-
gested that linguistic diversity should be regarded,
from a holistic perspective, as part of biocultural
diversity, and proposed indices to follow the num-
ber of world’s active languages, the distribution of
mother-tongue speakers among them and the rate of
language extinction (Harmon and Loh, 2010). Also
socio-linguistic diversity was measured in terms
of the probability of using more than one common
language in multilingual communication, as well
as the degree of diversity of language policies (Gaz-
zola et al., 2020).

All these measures are inter-linguistic. We are,
conversely, interested in intra-linguistic measures
which would represent diversity of linguistic phe-
nomena within one language, and more precisely
within NLP artefacts such as language resources
and outcomes of NLP tools.

The need for diversity in training data and its
impact of the performance of NLP tools has been
stressed in parsing (Narayan and Cohen, 2015) or
question answering (Yang et al., 2018). In these
works, however, the notion of diversity was used
loosely and in ad hoc manner (e.g. to describe
adding noise to training data, or using multiple
knowledge sources and topics) rather than formally
defined.

In other works more precise diversity measures
do occur. This is especially the case in natural
language generation (NLG), where the so-called
quality-diversity tradeoff problem is observed (sys-
tems reduce the potential diversity of their gener-
ated outputs to better fit the reference). We notice,

1https://terralingua.org/what-we-do/
the-loss-of-diversity/

however, that the use of diversity in NLG is not
standardized. Li et al. (2016) calculate the num-
ber of distinct unigrams and bigrams in generated
text and Zhang et al. (2020) use Shannon’s entropy,
measures which relate to richness and balance, re-
spectively. Agirre et al. (2016) define Word Em-
bedding Similarity, i.e. the average cosine distance
between utterance embeddings. Zhu et al. (2018)
use SelfBLEU, i.e. the BLEU measure applied
to generated utterances rather than to the refer-
ence. Palumbo et al. (2020) mix the 2 previous
measures with Jaccard, i.e. the average word over-
lap across utterances. These are distance measures
which might be used to model disparity (if items
and types are properly defined). Some of those
measures are also implemented in NLG toolboxes
(Li et al., 2021). Thus, diversity estimation is be-
coming an inherent component of NLG models.

On the other hand, complexity, a notion some-
what similar to diversity has also been measured
in NLP (Brunato et al., 2016), e.g. for the sake of
language learning or text simplification.

We, conversely, are interested in diversity (a no-
tion larger than complexity) and in its promotion
in language resources and tools. In this paper, we
mainly focus on two of the three aspects of di-
versity, variety and balance. Especially the latter
seems to have rarely been formalised and measured
in NLP.

3 Data

Before going into details on what our diversity
measures will be, we take a look at the data and the
ways we use them in our experiments.

The PARSEME shared task 1.2 on automatic
identification of verbal MWEs (VMWEs) was con-
ducted on 14 languages. The corpus of each lan-
guage, annotated for morpho-syntax and VMWEs,
was split into three corpora, TRAIN, DEV and
TEST. The TRAINs, DEVs, and blind version of
TESTs corpora (with annotation for VMWE hid-
den) were given to the participants of the shared
task, which were tasked to annotate the blind
TESTs with their systems.

We will apply our diversity measures to GOLD
annotations (VMWEs manually annotated in
the TEST corpora) and SYSTEM annotations
(VMWEs automatically annotated by systems par-
ticipating in the shared task 1.2). In addition, in sec-
tion 5.1 we use the French corpus Sequoia (Candito
et al., 2021) which is annotated in similar fashion,
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not only for VMWEs, but for all syntactic types of
MWEs.

Diversity measures for SYSTEM annotations
make sense mainly for correctly annotated MWE
occurrences. A MWE occurrence is considered
correctly annotated in a given corpus if all its to-
kens annotated in the corresponding GOLD corpus,
and only those tokens, have been annotated as part
of the same MWE occurrence. Trivially, this defini-
tion also applies to MWEs from the GOLD corpus
itself, which are all considered correctly annotated.

For example, if sentence 1 below is considered
the gold annotation, where paid visit and out of the
blue are respectively annotated as MWE A and B,
then in sentence 2 only MWE D out of the blue is
correctly annotated and in sentence 3 no MWE is
correctly annotated.

1. I paidA them a visitA outB ofB theB blueB

2. I paidC them aC visitC outD ofD theD blueD

3. I paidE them a visitF outF ofF theF blueF

In PARSEME shared task, identification sys-
tems were also tasked to assign a category (light-
verb construction, verbal idiom, inherently reflex-
ive verb, etc.) to each annotated MWE, however,
we will not look at these annotations. A MWE can
therefore be considered correctly annotated by a
system even if its attributed category was wrong.

In this paper, we will be interested in the diver-
sity both of GOLD annotation and of SYSTEM
annotations. In the latter case, we will consider
only correctly annotated MWEs.

4 Diversity Measures

The concept of diversity is usually divided into
three distinct notions: variety, balance and dispar-
ity (Stirling, 1998). Each of these notions goes
by other names and, adding to the confusion, is
sometimes referred to as diversity.

The notion of diversity relies heavily on the con-
cepts of items and types. In ecology, items usually
refer to specimens/individuals, and types refer to
the species these specimens are affiliated to.

In this paper, items will refer to the correctly
annotated MWE occurrences and types will refer
to what PARSEME calls MWE types, meaning
the multisets of lemmas of the annotated MWE
occurrences.

Formally, we define items and types as follows:
Let I be a set of items, T a set of types, and τ :
I → T a mapping of each item to a type.

We define items i ∈ I as correctly annotated
MWE occurrences (cf. Sec. 3), and types t ∈ T
as multisets of lemmas linked to items through the
mapping τ defined bellow:

τ(i) = { lemma(w) | ∀w ∈ i } (1)

Here, an item i is seen as a sequence of the
annotated wordforms of the MWE occurrence, and
lemma(w) the function returning the lemma of a
wordform.

Thus, under this definition, two correctly anno-
tated MWE occurrences (items) are of the same
type if their component words have the same lem-
mas, e.g. pay visit and visits paid are items of type
{pay, visit}.

We note here that such a definition of a type,
relying on the notion of a lemma, does not per-
fectly capture what we would instinctively refer to
as MWE types. For instance, two senses of put
down: ‘execute’ and ‘belittle’ are assigned to the
same type despite their different meanings. Sec. 5.3
brings to light other issues related to the data qual-
ity. Still, we consider our approximation of types
good enough to be useful.

Given these definitions of items and types, we
will see variety as a measure of the number of
types in a set of items, that is to say, a measure of
how many different MWE types are present in an
annotation. The more MWE types an annotation
has, the more varied it is. Balance is seen as a
measure of the equilibrium of the distribution of
items per type, meaning that it scores distribution
based on how close the MWE types are from being
equally represented. Disparity is seen as a measure
of the distance among the types present in a set of
items.

While some authors, such as Stirling (1998), ad-
vocate for a complete diversity measure – meaning
that all three aspects of diversity are taken into ac-
count jointly – we take the opposite stance and
aim to measure each aspect of diversity as indepen-
dently of the others as possible. We consider that
such an approach would be easier to interpret and
sidesteps the issue of finding the right aggregation
of our notions of diversity.

Henceforth, we will no longer address the notion
of disparity in this paper and leave it for future work
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instead. Let us only mention two main challenges
behind this concept:

1. Disparity usually relies on a notion of distance
which can be computed by various means and by
taking any of the properties of MWE types into
consideration. The choice of the precise properties
calls for insightful studies. 2. The disparity of a
set of types is often described as an aggregation of
the pairwise distances between the types (Stirling,
1998). Thus, the choice of the aggregation used
imposes some defining properties on the disparity.
One such property is the monotonicity in types
(Weitzman, 1992), which states that the disparity of
a set of types can only increase when a new type is
added to the set. Two disparities based on the same
notion of distance, one with this property, the other
without, will work in completely different ways,
showcasing how the question of the aggregation is
central to disparity.

4.1 Variety
We measure the variety of a set of items by its

richness (2). The richness is a simple count of the
number of types actually represented in a set of
items.

Formally, we can define richness as the follow-
ing (with I being a set of items):

| { τ(i) | ∀i ∈ I } | (2)

By its simplicity, such a measure of variety can
be quite effective when it is used to compare how
two MWE identification systems produce item sets
of different variety from the same corpus. It, how-
ever, does not allow for a comparison of variety of
item sets generated from different corpora.

In an attempt to compare variety across differ-
ently sized corpora, we normalize the richness of a
set of items by its number of items.

| { τ(i) | ∀i ∈ I } |
|I| (3)

We refer to this measure as the normalized rich-
ness. Similar concepts can be found in measures
such as type-token ratio (TTR) (Richards, 1987).2

Normalized richness is quite intuitive, note how-
ever that badly performing systems (e.g. a system
with only 1 correctly annotated MWE occurrence)
may have an optimal value for this measure.

2In TTR in NLP, though, types are often defined as dif-
ferent surface forms, not different lemmas. Thus, pay visit
and visits paid would be considered different types for TTR,
conversely to normalized richness.

4.2 Balance
Measuring balance is not as easy of a matter. A

great number of balance measures have been pro-
posed, and their properties described and compared
to one another (Smith and Wilson, 1996; Tuomisto,
2012). Despite these efforts, none of the measures
proved more appropriate than the others.

Balance measures are computed on a probability
mass function pT . In this paper we approximate
pT by the relative frequency fT as shown in (4). 3

pT (t) ≈ fT (t) =
|{ i | ∀i ∈ I, τ(i) = t }|

|I| (4)

We will use one of the earliest evenness mea-
sures which was designed with the goal of sepa-
rating the concept of variety and balance as much
as possible. Hill (1973) defines the continuum of
evenness measures (5) where x and y can take any
real values (as long as x > y):

Ex,y =
Nx

Ny
(5)

The Hill number (6) noted Na, also known as
‘true diversity’, is defined as the exponentiation of
a base b (usually 2, e or 10) to the power of Ha

given in (7)4.

Na = bHa =

(∑

t∈T
pT (t)

a

) 1
1−a

(6)

(7) was defined by Rényi (1961) as a class of
entropy functions of order a, with the entropy of
order 1 being Shannon’s entropy (8) noted H .

Ha =
1

1− a logb
∑

t∈T
pT (t)

a (7)

lim
a→1

Ha = H1 = H (8)

While just about any values of x and y would
form a valid evenness Ex,y, only E1,0 and E2,1

seem to have been of interest to the community.
Many arguments have been advanced favoring
one or the other (Alatalo, 1981; Gosselin, 2006;
Tuomisto, 2012). We will, for now, only mention
that E2,1 is supposedly less sensitive to sampling
bias than E1,0 (Alatalo, 1981) and investigate fur-
ther upon this in section 5.1.

3In accordance with established practice the parameter pT
of measures in equations (5), (6), (7), and (8) is omited for
brevity sake.

4Where the base b is also used as logarithmic base in Ha.
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Figure 1: Richness in terms of Sequoia sample size
(higher is more varied).

5 Results

The previous section introduced formalization of
measures for two diversity facets: variety and bal-
ance. In this section, we apply these measures
on MWE-annotated corpora and MWE identifiers
(Sec. 3) so as to assess their appropriateness to
the MWE phenomenon (Sec. 5.1), use them as
evaluation scenarios in the PARSEME shared task
framework (Sec. 5.2), and show one of their limits
related to data quality (Sec. 5.3).5

5.1 Diversity Measure Validation

We first focus on the French Sequoia corpus (Can-
dito et al., 2021), which is one of the source cor-
pora used for the PARSEME French corpus. It has
the particularity of being annotated not only for
verbal MWEs, but also for non-verbal ones (non-
VMWEs).

In Figures 1, 2, 3, and 4 we apply richness (2),
normalized richness (3), E1,0 and E2,1 (5) respec-
tively, considering either all MWEs, only VMWEs,
or non-verbal MWEs. We also take this occasion to
consider how our indices behave when populations
are randomly sampled. To this end, we randomly
sample 10%, 20%, 30%, . . . , 100% of the sentences
composing the Sequoia corpus, and compute our
indices on these samples (12 repeats per sample
size). Results are 12-sample averages plotted in
function of the size of the sample used.

Quite unsurprisingly, in Figure 1, richness in-
creases with the size of the sample. This growth
however appears to be non-linear. Non-verbal
MWEs are consistently richer than verbal ones.
These results seem to be quite stable as the stan-
dard deviations (marked as bands around the lines)
are barely visible on this plot.

Figure 2: Normalized richness in terms of Sequoia sam-
ple size (higher is more varied).

Inversely, in Figure 2, normalized richness de-
creases with the size of the samples. As noted by
Richards (1987), this is a consequence of the quasi
linear relation between the number of sentences
and number of items on the one hand, and the non-
linearly slower growth of the number of types on
the other hand (the latter is shown in Figure 1). This
shows that, conversely to our previous intuitions,
normalized richness does not allow us to reliably
compare diversity of corpora of different sizes. A
bigger corpus will most often be disadvantaged by
this measure.

Regarding evenness (Figures 3 and 4), E2,1,
which we thought to be less sensitive to sampling
bias, appears to be more volatile (i.e. having higher
standard deviation) than its counterpart E1,0. E1,0

clearly considers the distributions of VMWEs to be
more balanced than the distributions of all MWEs.
On the other hand, E2,1 finds the distributions of
all MWEs slightly more balanced than those of
VMWEs on large samples, but the opposite on
small samples.

In an attempt to determine which evenness mea-
sure best fits the nature of the data, we first proceed
to visually inspect the rank-frequency distributions
of all MWEs for sample sizes 10% to 100% (Figure
5), which makes us believe that our rank-frequency
distributions follow a Zipfian distribution. This
would explain the non-linear relation between the
number of sentences and richness. Given the ap-
parent shape of our distributions and the relative
ubiquity of Zipf distribution in linguistic phenom-
ena (Ryland Williams et al., 2015), we will work

5Code and data of these experiments are avail-
able at https://github.com/AdamLionB/mwe_
diversity_experiment_coling_2k22.
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Figure 3: Evenness (E1,0) in terms of Sequoia sample
size (higher is more balanced).

Figure 4: Evenness (E2,1) in terms of Sequoia sample
size (higher is more balanced).

under the hypothesis that the annotated MWEs fol-
low a Zipfian distribution.

In the following, we argue that one of the param-
eters describing the Zipfian distribution can be used
as a measure of balance. A random variable X fol-
lowing Zipfian distribution, notedX ∼ Zipf(s,N),
is characterized by parameters s, N and the proba-
bility mass function (9).

Zs,N (x) =

(
xs

N∑

n=1

n−s
)−1

(9)

Where N is the number of types in the distribution
and s the exponent characterizing the curvature
of the distribution. When N grows the distribu-
tion is slightly squeezed as follows: Zs,N+1(x) =

Zs,N (x)·
(
1 + (N+1)−s∑N

n=1 n
−s

)−1
thus leaving room for

the distribution to extend on its right while keeping
its sum equal to 1. This hardly affects the shape
of the distribution as the multiplication factor does
not involve x. We therefore consider s (but not
N ) to be the parameter determining the shape of

Figure 5: Rank-frequency distribution of types of all
MWE according to sample size

Figure 6: 1
s best fitting Sequoia samples in term of their

size

the distribution. Furthermore, the distribution is
uniform when s = 0, it also becomes monotoni-
cally more and more skewed when s grows. We
therefore argue that the value of s describing the
Zipfian distribution which best fits an actual dataset
constitutes an index of un-balance. When s is low
the balance is high and vice versa. In other words,
1
s acts as a balance index.

Considering 1
s as a measure of balance, in Figure

6 we plot the values of 1
s found for our samples. s

was optimised for the least square error disregard-
ing overfitting, with N set to the number of types
in the sample. By comparing Figure 6 to Figures 3
and 4 we find that E2,1 and s both place all MWEs
as more balanced than VMWEs for large samples
and all MWEs as about as balanced as VMWEs
for smaller samples. E1,0 on the other hand always
places VMWEs as more balanced than all MWEs.
E2,1 being in relative agreement with s in this study
case, we will from now on use E2,1 for the rest of
this paper.
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One might wonder why then use E2,1 to mea-
sure balance and not simply s. Using s made
sense here since we saw the distribution of the
data and assumed that it follows a Zipfian distribu-
tion. While this hypothesis might very well hold
for other GOLD corpora given the Zipfian nature
of the language, there is little reason to believe
that this hypothesis holds for distribution of MWEs
annotated by automatic identifiers. In the general
case we will therefore favor a measure which is
agnostic of the distribution followed by the data.

5.2 PARSEME Shared Task Use Case

In this section we apply our diversity measures,
validated in the previous section, to the GOLD
corpora of the PARSEME shared task and to the
correct annotations (true positives) produced by the
participating systems.

In Table 1 we see that MTLB-STRUCT produces
the richest annotations on 8 out of 14 corpora,
and one of the 3 richest on the other 6 corpora.
Travis-mono and Travis-multi also produce quite
rich annotations. Seeing MTLB-STRUCT, Travis-
mono and Travis-multi as producing rich annota-
tions is coherent with these systems’ F-measure
performances.67 On the other hand, annotations
produced by Seen2Seen have notably low richness
despite its relatively high performances. This is
consistent with the fact that Seen2Seen was not
designed to identify MWEs unseen during train-
ing, and made the bulk of its score on seen MWEs,
therefore limiting the number of types it could rec-
ognize and annotate. We note that the richness of
the systems’ annotations on Irish (GA), Hebrew
(HE) and Hindi (HI) are notably low, compared to
the richness of the GOLD annotations. Training
sets for Irish and Hindi were very small, with very
few MWE occurrences, which most likely explains
these results. Finding reasons for Hebrew requires
more insight and, likely, a native knowledge of the
language.

Table 2 shows the evenness scores of the sys-
tems’ annotations according to E2,1. (Systems’
evenness closest to GOLD underlined.) For each
language except Hebrew, at least one system has
more balanced correct annotations than GOLD.

6Linear correlation between the richness of systems’ anno-
tation’s and precision, recall and F1-score are 0.49, 0.83 and
0.78 respectively.

7http://multiword.sourceforge.net/
sharedtaskresults2020

Moreover, for 7 languages (EU, FR, HI, PL, RO,
SV, ZH) annotations of most systems are more
balanced than of GOLD. We discuss the case of
systems’ annotations with higher eveness than the
gold in Section 6. Seen2Seen produces the most
balanced annotations on 7 out of 14 languages and
a more balanced annotation than the GOLD on 11
out of 14 languages. In most cases, Seen2Unseen
produces annotations very slightly less balanced
than Seen2seen. Note also the particularly high
scores of FipsCo and TRAVIS-mono on German
and Hindi, respectively, with 36% and 2% of types
correctly identified (cf. tab. 1). 8

On the whole, MTLB-STRUCT and TRAVIS-
mono stand out as the systems producing the
most varied annotations and Seen2Seen and
Seen2Unseen as those producing the most balanced
annotations. While a better understanding of our
diversity measures is still needed, we hope that this
constitutes a good first step toward a more system-
atic evaluation of diversity in MWE identification,
and possibly in NLP overall.

5.3 Limits of the Diversity Measures: Case
Study of Turkish

The morphosyntactic annotation of the Turkish cor-
pus of PARSEME9 was realized automatically us-
ing UDPipe (Straka, 2018). Afterwards, VMWE
annotation was made manually according to the
unified annotation guidelines of PARSEME10. The
automatic morphosyntactic annotation was then
partly modified and enhanced for better identifi-
cation of MWEs. Thus, we have access to two
versions of the same PARSEME corpus for this lan-
guage: one with automatically produced lemmas
and one with manual corrections of some lemmati-
zation errors (Öztürk et al., 2022). We decided to
examine this corpus to gain a better understanding
of our diversity measures, and more precisely to
study how the quality of the lemmas, central to
our definition of types, influences the estimation of
MWE diversity.

As an agglutinative language, Turkish is highly
inflectional and derivational, which results in high
surface variability in word forms. This makes it

8Linear correlation between the E2,1 of systems’ annota-
tion’s and precision, recall and F1-score are -0.47, -0.62 and
-0.61 respectively.

9https://gitlab.com/parseme/parseme_
corpus_tr

10https://parsemefr.lis-lab.fr/
parseme-st-guidelines/1.2/
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DE EL EU FR GA HE HI IT PL PT RO SV TR ZH

GOLD 585 682 561 712 310 443 335 638 689 815 466 495 719 551

ERMI 230 352 327 392 37 95 183 165 355 453 312 241 390 272
FipsCo 212 191 392
HMSid 454
MTLB-STRUCT 400 472 387 505 73 171 234 330 465 549 365 345 455 365
Seen2Seen 274 358 280 406 22 116 67 315 384 489 250 208 389 249
Seen2Unseen 290 381 333 466 48 123 170 336 416 521 259 223 435 253
TRAVIS-mono 381 55 531 7 341 487 369 307 472 398
TRAVIS-multi 348 452 368 471 14 144 176 310 449

Table 1: Richness of GOLD and SYSTEMs annotations of PARSEME corpus

DE EL EU FR GA HE HI IT PL PT RO SV TR ZH

GOLD 43.40 63.95 30.30 40.42 63.88 91.08 42.48 57.05 51.38 71.67 30.89 69.28 58.59 38.12

ERMI 42.53 59.32 34.61 42.42 65.76 90.75 50.55 52.49 54.18 69.61 34.20 69.43 57.58 43.85
FipsCo 85.67 55.44 47.98
HMSid 45.46
MTLB-STRUCT 43.00 62.34 33.57 41.97 56.13 89.33 41.32 56.06 53.87 71.79 33.16 69.63 58.41 42.62
Seen2Seen 41.72 62.22 39.05 44.73 70.14 88.30 50.31 58.34 56.73 72.65 35.54 74.38 60.06 45.66
Seen2Unseen 41.68 62.14 36.94 43.52 60.90 88.20 40.89 58.03 55.84 72.02 35.24 73.81 59.61 45.59
TRAVIS-mono 42.09 75.34 41.76 89.33 56.18 54.15 33.20 69.15 56.97 42.25
TRAVIS-multi 41.52 62.46 34.28 41.91 80.37 90.34 64.68 55.34 54.09 35.46 72.94 57.93 45.04

Table 2: E2,1 (%) evenness of GOLD and SYSTEMs annotations of PARSEME corpus

a good case study for diversity. The surface vari-
ability in the MWE occurrences can be observed in
examples (10)–(12). All three examples contain the
same VMWE with different surface forms. Next
to the gloss (2nd line in each example) we report
in parentheses the automatic lemmatization of the
verb. In example (10) we can see the correct lemma-
tization (dava) aç. Inadequate lemmatization can
be observed in (11) and (12).

(10) dava
dava
lawsuit

aç-tı
aç-PAST (lemma:
open-PAST

aç)

‘(someone) commenced lawsuit’

(11) dava
dava
lawsuit

aç-ıl-abil-ir
aç-PASS-POT-HAB (lemma:
open-PASS-POT-HAB

*açılab)

‘lawsuit could be commenced’

(12) dava
dava
lawsuit

aç-ıl-acak
aç-PASS-FUT (lemma:
open-PASS-FUT

*açıla)

‘lawsuit will be commenced’

All VMWE annotations were manually inspected
in this corpus, to check the lemmas of all compo-
nents and correct them if needed. Thus, the verb
obtained the correct lemma aç in (11) and (12).
After these corrections, the enhanced corpus was
re-evaluated for richness and evenness. It was also

used to retrain and re-evaluate Seen2Seen, one of
the leading systems of the PARSEME shared task.

The results are presented in Table 3. In the
corpus, the E2,1 evenness becomes slightly lower,
while the richness drops significantly, which sig-
nals that the number of types has decreased. This
makes the Turkish corpus go down from the sec-
ond to the fifth richest across all 14 languages in
table 1. This outcome was expected since with
correct lemmatization, items which were wrongly
assigned to different types, like (10), (11) and (12),
are now correctly assigned to one type.

As far as the MWEs correctly identified by
Seen2Seen are concerned, evenness is almost sta-
ble but richness increases. This might be due to the
fact that this system relies heavily on lemmas. It
extracts the MWEs annotated in the training data
and looks for co-occurrences of the same multisets
of lemmas in the test corpus. If lemmas have better
quality, this process is more efficient.

In brief, the main issue caused by inadequate
lemmatization was that MWE items of the same
type could be found in different clusters. The in-
adequate stripping of the suffixes resulted in more
clusters (types) than there should be. These ex-
amples show the limits of diversity estimation on
automatically annotated corpora. Namely, it heav-
ily depends on the quality of the data. Here, when
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lemmatization is unreliable, both the richness and
the evenness artificially go up. In other words,
paradoxically, bad data quality "favors" diversity
in this case. This experiment also shows that high
diversity of a language at a certain level (here: mor-
phological) might make the estimation of diversity
at other levels (here: MWE level) less reliable.

GOLD Seen2Seen

Richness
TR 719 389
TR’ 660 401

E2,1 (%)
TR 58.59 60.06
TR’ 58.14 60.08

Table 3: Diversity measures of GOLD and Seen2Seen
on the Turkish corpus, before (TR) and after (TR’)
lemma corrections.

6 Discussion

In Section 4 we define items as correctly annotated
MWE occurrences, meaning that incorrect anno-
tations are ignored during diversity measurements.
This was motivated by the fact that variety would
otherwise be artificially increased by wrong MWE
types and balance affected by the likely abundance
of wrong MWE types with very few occurrences.
As a consequence the variety of systems’ annota-
tions cannot be higher than that of the gold.

This is however not the case for balance (as can
be seen in Figure 2). This raises the question of
whether it is preferable for a system annotation to
be more balanced than its target (gold) annotation
or to be as close to its gold annotation as possible.
When training identification systems the aim is usu-
ally to approach gold annotations as close as pos-
sible. This is however already measured through
scores such as precision and balance. When used
in conjunction with performance measures we be-
lieve that balance should be simply interpreted as
"higher is better".

In Section 4 we choose to define our types
through a lexical approach of MWEs. This de-
cision was motivated by multiple reasons: (i) it
is easy to implement, (ii) non-parametric, (iii) it
results in clear-cut types (non-fuzzy), (iv) it offers
a good granularity (for balance measures), (v) it
is very similar to the PARSEME notion of MWE
types and (vi) it is a quite adequate approximation
of what we would consider linguistically motivated
MWE types (MWEs sharing lexemes and mean-

ing). In future work we might use alternative def-
initions of types, e.g. cluster MWEs having the
same syntactic structure (verb-object, subject-verb,
adjective-noun), the same semantics (to kick the
bucket, to bite the dust), or the same MWE cate-
gories (light verb construction, verbal idiom).

7 Conclusions and Future Works

In this paper, we borrowed the formalization of the
notion of diversity from the literature in ecology.
We focused on two out of the three main aspects
of diversity, namely variety and balance. Our con-
tribution is to apply these measures to assess intra-
linguistic diversity, focusing on the particular phe-
nomenon of multiword expressions. We not only
formalize variety and balance measures in this con-
text but we also put forward methods for selecting
those variants of these measure which fit the nature
of the MWE phenomenon. This validation method-
ology is based on corpus sampling with variable
sample size. As a result, we retain richness and the
E2,1 evenness as the optimal variety and balance
measures for MWEs (among those studied by us).
We apply these measures to the corpora and system
results in the PARSEME shared task on automatic
identification of MWEs. The results show that rich-
ness of the correct annotations produced by the
systems is roughly consistent with their F-measure
performances. However, their balance is much less
correlated with more traditional measures. We also
display the limits of the richness and balance mea-
sures, when calculated on automatically annotated
data, due to incorrect approximation of types under
improper lemmatization in a morphologically rich
language.

Further investigation, particularly on the even-
ness, is needed as an impressive amount of even-
ness measures have been proposed throughout the
years. Furthermore, the notion of disparity was
only briefly touched upon in this paper. Disparity
measures might be based on lexical overlap be-
tween types, similarity of syntactic structures or
distributional semantics. These directions consti-
tute future work.
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Abstract

At least 5% of questions submitted to search
engines ask about cause–effect relationships
in some way. To support the development
of tailored approaches that can answer such
questions, we construct Webis-CausalQA-22,
a benchmark corpus of 1.1 million causal ques-
tions with answers. We distinguish different
types of causal questions using a novel typol-
ogy derived from a data-driven, manual anal-
ysis of questions from ten large question an-
swering (QA) datasets. Using high-precision
lexical rules, we extract causal questions of
each type from these datasets to create our cor-
pus. As an initial baseline, the state-of-the-art
QA model UnifiedQA achieves a ROUGE-L
F1 score of 0.48 on our new benchmark.

1 Introduction

The term “causality” usually refers to a directed
relationship between events in which one is the
cause of the occurrence of the other, called the ef-
fect. Many empirical studies begin with a research
question about a causal relationship, ranging from
“yes/no”-questions such as “Does the quality of ed-
ucation affect economic growth?” to open-ended
questions such as “What causes depression?”. But
the general public also frequently asks causal ques-
tions. Figure 1 shows an example of the top Google,
Bing, and Naver search result for the question “Can
broccoli cause constipation?”. While Bing directly
answers the question in the affirmative, Google’s
featured snippet and Naver’s first snippet claim that
broccoli actually has the opposite effect.

With at most a few thousand question–answer
pairs, existing causal question answering datasets
are relatively small and include only one type of
causal question, e.g., “yes/no”-questions (Hassan-
zadeh et al., 2019; Kayesh et al., 2020), “what-if”-
questions (Tandon et al., 2019), “why”-questions
(Verberne et al., 2006a, 2008, 2010; Lal et al.,
2021), or multiple-choice questions (Gordon et al.,

Can broccoli cause constipation?

Foods that may help prevent constipation

For many people, eating more high fiber foods
can help ease constipation. These foods
include: most vegetables, including carrots,
peas, broccoli, and okra.

https://www.medicalnewstoday.com › ...

List of foods that can cause constipation
and how to prevent it
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Since broccoli is so rich in fiber,
too much of it can in fact cause
diarrhea or even constipation.
Fiber draws water into the GI
tract, so if you aren’t drinking
enough water then your GI tract
may become dehydrated. This
means the stools become hard
and much more difficult to pass.
Soluble fiber is the main culprit
for this.
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Poop? SOLVED! - Health…
healthbriefly.com
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Can broccoli cause constipation?

Figure 1: “Can broccoli cause constipation?” Google’s
and Naver’s top results both disagree with that of Bing.

2012). The effectiveness of question answer-
ing (QA) systems on these benchmarks range from
F1 scores of 0.67 to 0.72. In contrast, QA systems
have already performed better than humans for ar-
bitrary questions. For instance, the F1 score of the
most effective system on the SQuAD benchmark
is 0.93, while that of humans is only 0.89 (Ra-
jpurkar et al., 2018).1 Since neither SQuAD nor
other large QA benchmarks explicitly label causal
questions, the difference in effectiveness between
causal and other questions remains unclear. But the
inconsistent results of Bing compared to Google
and Naver in Figure 1 suggest that more research
is needed on answering causal questions.

We take the first steps towards a more thorough
investigation of causal question answering by cre-
ating the Webis-CausalQA-22 benchmark,2 which
consists of 1.1 million questions and answers about
causal relationships.3 The resource compiles causal
questions from the ten QA datasets shown in Ta-
ble 1. To identify the causal questions in these

1https://rajpurkar.github.io/SQuAD-explorer/
2Leaderboard: https://causalqa.webis.de
3Code and data: https://github.com/webis-de/COLING-22
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Table 1: Characteristics of the question answering datasets used to create Webis-CausalQA-22. We removed
questions without answer (respective datasets marked by ∗; in total, 25,841 causal questions without answers).

Dataset Type Size Length (Words) Reference

Question source Answer Questions Causal questions Caus. qu. Answ.

PAQ Generated with BART Term(s) 64,875,601 769,606 (1.2%) 9.6 2.7 Lewis et al. (2021)
GooAQ Google’s autocomplete Term, Passage 5,030,530 146,286 (2.9%) 7.3 44.3 Khashabi et al. (2021)
MS MARCO QnA∗ Bing query log Passage 1,010,916 25,569 (2.5%) 6.4 17.5 Nguyen et al. (2016)
Natural Questions∗ Google query log Passage 315,203 1,208 (0.4%) 9.8 10.8 Kwiatkowski et al. (2019)
ELI5∗ Reddit questions Passage 272,634 131,033 (48.0%) 32.5 99.0 Fan et al. (2019)
SearchQA Human-written Term(s) 216,136 780 (0.4%) 16.8 1.8 Dunn et al. (2017)
SQuAD v.2.0∗ Human-written Term(s) 142,192 3,209 (2.3%) 10.5 6.2 Rajpurkar et al. (2016)
NewsQA∗ Human-written Term(s) 119,633 652 (0.5%) 7.2 6.1 Trischler et al. (2017)
HotpotQA Human-written Term(s), Passages 112,662 390 (0.4%) 21.8 3.8 Yang et al. (2018)
TriviaQA Human-written Term(s) 109,767 703 (0.6%) 19.4 3.1 Joshi et al. (2017)

Webis-CausalQA-22 Mixed Mixed 72,205,274 1,079,436 (1.5%) 12.0 22.5 This paper

datasets, we manually analyzed samples and devel-
oped a two-dimensional typology of causal ques-
tions based on their semantic properties and prag-
matic interpretation (Section 3). Using a set of
manually created lexical rules, we extract causal
questions with 80% recall at near-perfect precision
(Section 4). When applied to a large sample of a
query log from a commercial search engine, we
also find that at least 5% of submitted queries are
causal, highlighting the need for tailored technolo-
gies. As an initial baseline, we evaluate the Uni-
fiedQA model (Khashabi et al., 2020) fine-tuned
on our resource (Section 5). It achieves an average
ROUGE-L F1 score of 0.48 across datasets.

2 Related Work

We review the literature in four areas: prior ty-
pologies of causal questions, causal QA, as well as
generic QA datasets and QA systems.

2.1 Causal Question Typologies
In the QA literature, causal questions are usually
considered in terms of their lexical surface form
and their answer type (i.e., the content of the an-
swer). Most of the existing causal question typolo-
gies only deal with questions clearly identifiable
by the question word “why”. Somewhat conse-
quently, early open-domain QA research only had
a single type covering all “why”-questions (Hovy
et al., 2000; Moldovan et al., 2000, 2003) before
Verberne et al. (2006b) subcategorized them based
on the answer type as cause (no deliberate human
intention involved), motivation (human intention
involved), circumstance (strict condition for the
resulting event), or generic purpose (physical func-
tion of an object). For Webclopedia, Verberne et al.

(2007) suggested five types: motivation, physical
explanation, non-physical explanation, etymology,
and nonsense. Later, Breja and Jain (2017) pro-
posed another, rather reasoning-based, typology of
causal questions: informational / factual (reason-
ing about a fact), historical (reasoning about the
past), situational (reasons for an event at a particu-
lar time), and opinion (personal reasons).

Interestingly, all these typologies lack abstrac-
tion and do not capture general properties of causal
relations. For instance, physical, non-physical,
and etymology can be seen as subtypes of a class
“causal explanation” that specify the nature of the
explanation. The typologies also operate at differ-
ent granularities, which makes comparisons diffi-
cult. For instance, Verberne et al. (2007) address
specific properties of causes (physical, linguistic),
whereas Breja and Jain (2017) focus on the strength
of the evidence (fact vs. opinion).

In contrast, an objective, data-neutral approach
to categorizing questions in general had been pro-
posed by Lehnert (1977), including some causal
types dependent on the structure of the causal de-
pendencies. Our typology builds on Lehnert’s, and
we derive subtypes of causal questions in a sys-
tematic way along with their semantic and prag-
matic characteristics: analytically at the semantic
level and in a data-informed fashion at the prag-
matic level. Moreover, our approach is not limited
to causal “why”-questions as in most of the prior
work, but characterizes the type of causal questions
independent of their surface form.

2.2 Causal Question Answering
The related work on causal QA is rather limited.
Most datasets for causal QA focus on “why”-
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questions and are relatively small (Gordon et al.,
2012; Hassanzadeh et al., 2019; Verberne et al.,
2006a, 2008, 2010; Tandon et al., 2019; Kayesh
et al., 2020; Lal et al., 2021). Usually, QA sys-
tems only achieve F1 scores of around 0.7 on
these datasets—worse than the effectiveness ob-
served for many other question types. For in-
stance, Ishida et al. (2018) and Iida et al. (2019)
retrieve “compact” answers for “why”-questions
from a web corpus using a pointer-generator net-
work (See et al., 2017). Kayesh et al. (2019) ad-
dress causal “yes/no”-questions by transfer learn-
ing, while Hassanzadeh et al. (2019) use large-scale
text mining. Finally, Heindorf et al. (2020) suggest
to use CauseNet, a large knowledge graph with
more than 11 million cause–effect relationships ex-
tracted from ClueWeb12 web pages and Wikipedia
articles. With Webis-CausalQA-22, we create a
larger dataset to enable training and testing causal
QA approaches on a dedicated broader benchmark.

2.3 Question Answering Datasets
Current QA research is characterized by the grow-
ing sizes of datasets (see Table 1) to improve neu-
ral QA models, and by a diversification across do-
mains and question types (e.g., HotpotQA specif-
ically includes comparative questions) and lan-
guages (e.g., TyDi QA features eleven languages).
QA systems have meanwhile outperformed hu-
mans on Rajpurkar et al.’s (2018) SQuAD bench-
mark for reading comprehension. Hence, new
task-specific smaller benchmarks such as Com-
monsenseQA (14,000 “yes/no”-questions by Tal-
mor et al. (2019, 2021)) for common sense rea-
soning have been published as new challenges.
On CommonsenseQA v. 2.0, for instance, Lourie
et al.’s (2021) T5-based UNICORN model achieves
an accuracy of 0.7, but this is still below the 0.94
of humans (Talmor et al., 2021). Out of the many
available open-domain QA datasets, we selected
those that are well-known enough to be mentioned
in surveys (e.g., Cambazoglu et al. (2020)), con-
tain lexically diverse question types, and have more
than 100,000 QA pairs (cf. Table 1 for the selected
datasets and their characteristics).

Artificial datasets. With 65 million QA pairs,
PAQ (Lewis et al., 2021) is the largest of the se-
lected datasets. Its questions were generated us-
ing the BART-base model (Lewis et al., 2020)
fine-tuned on the questions, answers, and context
passages from Natural Questions (Kwiatkowski

et al., 2019), TriviaQA (Joshi et al., 2017), and
SQuAD (Rajpurkar et al., 2016). Fine-tuning on
human questions ensures some naturalness, but
the answers were automatically extracted from
Wikipedia. Among our selected datasets, PAQ is
the only automatically generated one. We include
it since the generation evaluation by Lewis et al.
shows the questions to be plausible and since more
than 700,000 causal questions are contained.

User-generated datasets. GooAQ (Khashabi
et al., 2021), MS MARCO QnA (Nguyen et al.,
2016), Natural Questions (Kwiatkowski et al.,
2019), ELI5 (Fan et al., 2019), SearchQA (Dunn
et al., 2017), and TriviaQA (Joshi et al., 2017) con-
tain real-world questions submitted to search en-
gines or posted on web fora. The GooAQ dataset
contains about five million QA pairs with questions
collected from Google’s query auto-completion
when prompted with a given question word. The
answers were extracted from Google’s featured
snippets shown as direct answers on top of the
search results. The MS MARCO QnA corpus con-
tains about one million questions that were sampled
from Bing’s query logs, with long answers (text pas-
sages) extracted from web documents retrieved by
Bing, and short answers (terms) written manually
by crowdworkers. Similarly, the Natural Questions
dataset contains more than 300,000 queries sam-
pled from Google’s search logs. Long answers and
short answers were manually selected by crowd-
workers from Wikipedia articles.

The about 270,000 ELI5 questions were col-
lected from Reddit’s subreddit “Explain Like I’m
Five (ELI5)” where users provide simple answers
to posted questions. Only answers (text passages)
with at least two more up-votes than down-votes
were used. The more than 215,000 questions in
SearchQA and their short answers (terms) stem
from Jeopardy!, while context passages were ob-
tained by querying Google and collecting at least
40 result snippets. The more than 100,000 QA pairs
in TriviaQA were scraped from various trivia and
quiz websites. Each QA pair is complemented with
context passages in the form of web documents
from Bing’s search results or from Wikipedia.

Crowdsourced datasets. The SQuAD (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2017), and
HotpotQA (Yang et al., 2018) datasets were exclu-
sively constructed using crowdsourcing. SQuAD
version 2.0 contains about 140,000 QA pairs writ-
ten by crowdworkers who were shown paragraphs
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from Wikipedia and tasked to compose up to five
questions and answers about them. The about
120,000 QA pairs in NewsQA were similarly
crowdsourced using CNN news articles’ headlines
and their summaries, but different crowdworkers
wrote the questions and the answers. Lastly, Hot-
potQA contains about 113,000 entries with ques-
tions, answers, and supporting facts written by
crowdworkers based on Wikipedia paragraphs. De-
signed for multi-hop QA, these questions require
a system to “hop” over several supporting facts
(mostly sentences) from different text passages to
arrive at a short answer.

2.4 Question Answering Systems
Early question answering systems such as Baseball
(Green et al., 1961) used dictionaries of attribute–
value pairs to answer questions, usually in narrow
domains. Recent, more sophisticated QA systems
can be divided into systems based on textual data
and systems based on knowledge graphs.

Text-based systems, like UnifiedQA (Khashabi
et al., 2020) that we employ as a first baseline for
our new benchmark, mainly use language models.
Their input may just be a question but often also
is a question with context like some text passage
or even the whole Wikipedia (Chen et al., 2017).
The actual answering process ranges from binary
classification (answer selection) over span extrac-
tion (identifying answer boundaries within a text)
to abstractive text summarization and generation.

Knowledge base question answering (KBQA)
systems operate on graphs with a single or up to
thousands of edge types (e.g., DBpedia by Auer
et al. (2007)). Typically, they use manually de-
signed templates of graph patterns to detect an-
swers (Zheng et al., 2018; Vollmers et al., 2021),
use knowledge graph embeddings (Sharp et al.,
2016; Huang et al., 2019; Saxena et al., 2020),
or train neural networks on knowledge graphs
(Chakraborty et al., 2021). Questions are often di-
vided by their answer type being a single graph rela-
tion (Mohammed et al., 2018), a path with multiple
hops (Saxena et al., 2020), or complex answers
requiring reasoning (e.g., combining information
from multiple paths; Lu et al. (2019); Mitra and
Baral (2016); Asai et al. (2020)).

3 A Typology of Causal Questions

While various types of causality-related questions
have been previously addressed in automated ques-

tion answering, there has been no attempt so far to
systematize “questions about causality” as a class
in the QA community. Computational process-
ing of causal structures, however, dates back to
the 1970s and the early AI research on causal de-
pendencies between events in the context of story
comprehension. Notably, Lehnert (1977) devel-
oped a computational model of question answer-
ing based on a theory of “conceptual information
processing”. Their QUALM system was capable
of answering 13 types of questions about stories—
9 types being related to causal relationships.

Following Lehnert, we define questions about
causal relationships in terms of causal chains
(Schank, 1975) and integrate Lehnert’s causal cat-
egories into a more specific typology of causal
questions. While Lehnert’s definitions and cate-
gories are motivated by and directly linked to pro-
cessing strategies in a story comprehension system,
our typology is more generic and motivated by the
semantic and pragmatic properties of causal ques-
tions. At the semantic level, we group causal ques-
tion types in terms of which component of a causal
chain a question addresses. Our type set combines
Lehnert’s causality-related categories and Verberne
et al.’s categories of “why”-questions (Verberne
et al., 2006b, 2007) as subtypes. At the pragmatic
level, we group question types in terms of the as-
sumed purpose of inquiry or the so-called intent of
a question. We arrived at the pragmatic categories
in a data-driven fashion by analyzing 1,000 ques-
tions (100 sampled from each of the 10 selected
QA datasets; cf. Table 1). In the following sections,
we first define the category causal question and
then present the semantic and pragmatic dimen-
sions of our typology.

3.1 The Causal Question Category
We define the category causal question by referring
to knowledge resources required in providing an
answer, specifically, to inference based on causal
chains (Schank, 1975). A causal chain is a se-
quence of alternating events (or statestions) linked
by relationships expressing causal dependencies be-
tween them: an event can enable, result in, be the
reason of, cause, or lead to another event. A ques-
tion is a causal question if answering it requires
(1) identifying causal chains, (2) inference on those
chains, and (3) verbalizing the causal relations in-
volved when answering it. By this definition the
question “Why is there something rather than noth-
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Table 2: (a) The semantic and (b) the pragmatic dimensions of causal questions; the set of subtypes in (b) is not
exhaustive, but serves to show that the top-level categories are well-motivated—considering that coherent subtypes
can be identified—and to illustrate the range of domains of the requests. (c) Rules to classify causal questions in
the labeled sample of 1,000 questions. Reported: precision and recall for the class of causal questions and number
of matches in Webis-CausalQA-22. For the rules not present in the initial random sample, we sampled 50 random
questions afterwards, manually labeled them, and calculated a precision (numbers are given in gray).

(a)

Category Examples

Questions about an antecedent
Cause Why does a mosquito bite itch?
Goal Why did Jean Valjean take care of Cosette?
Purpose Why do gaming chairs have a race car design?
Enablement How can FIFA be so blatantly corrupt?

Questions about a consequent
Result What does increasing water vapor lead to?

Questions about the causal chain
Verification Would hydrophobic coating affect swimming?

(c)

Measure Lexical rules

R1 R2 R3 R4 R5 R6 R7 R1–7

Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.59 0.11 0.07 0.02 0.01 – – 0.80

Matches 505K 313K 132K 131K 10K 15K 4K 1.1M

(b)

Intent Examples

Solution seeking
Problem solving

Practical problems Why can’t I log in into Facebook?
Medical problems Can broccoli cause constipation?

Problem prevention
Medical problems What to do to prevent cancer?
Societal problems What to do to prevent global warming?

Coping with problems
Mental coping Why do you think about the people who are gone?
Anger Why doesn’t a director fire a stupid employee?

Knowledge seeking
Physical world Why do chemical reactions depend on pH?
Politics / history How did World War II start?
Language Why is a notebook called “notebook”?
Trivia / fun facts What happens if you scan a mirror?

Opinion seeking
Social issues Why do men cheat on their wives?
Entertainment Why is Messi not playing on the team?
Rational future outcomes What will happen if Trump wins another election?
Irrational future outcomes What will happen if one dreams of pregnancy?

ing?” can be interpreted as causal and eliciting a
physical cause for existence, whereas the question
“What is your name?” will not be considered causal
even though a causal chain leading to a person be-
ing given a name may be identified; the answer
“My name is Mary” does not verbalize the causal
chain and an answer like “My mother named me
Mary”, while it may be considered as related to
the question, provides irrelevant information under
standard assumptions about responsiveness.

3.2 The Semantic Dimension
Our three top-level semantic categories for causal
questions reflect the question’s target with respect
to the structure of causal chains: questions about
an antecedent ask about events, actions, or states
that in a (maybe just hypothetical) causal chain pre-
cede the ones mentioned in the question, questions
about a consequent ask about events, actions, or
states that follow the ones mentioned in the ques-
tion, and questions about the chain ask about some
property of the causal chain itself. Each of these
three categories has further more specific subtypes;
selected subtypes with example questions are given
in Table 2a. Note that the list of subtypes is not
meant to be exhaustive: we show only those types
that we actually encountered in the literature or in
our annotated datasets.

Cause questions ask about a general cause due
to which the consequent holds; the causal depen-
dency may be of any type: physical cause, social,
psychological, etc. Goal questions ask about in-
tentional motives behind an action, be it general
future goals or inner motivations, whereas purpose
questions ask about a generic purpose of the con-
sequent, and enablement questions ask about the
circumstances that enable / enabled the consequent.
Result questions ask about the general effect of the
antecedent, and verification questions ask whether
a causal chain between events exists.

In this typology, Lehnert’s disjunction is sub-
sumed under the more general verification cate-
gory (properties of the verified proposition possi-
bly marked as attributes) and expectational is an
attribute of cause, since the only difference be-
tween Lehnert’s cause and expectational categories
is that in the case of the latter, the consequent act
presumably did not occur. Verberne et al.’s moti-
vation, essentially a combination of Lehnert’s goal
and circumstance, is our enablement category with
possibly Charniak’s (1975) additional attributes.

Note that answering procedural questions (e.g.,
“how to . . . ”) also often involves inferences based
on somewhat “causal” chains. However, procedural
questions usually reflect a non-causal underlying
information need in the sense that they ask about
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the sequential nature of a chain but not about the
causal relations. Such questions can rather be con-
sidered manner questions, as also suggested by
Hovy et al. (2002), so that we do not include them
in our typology of causal questions.

3.3 The Pragmatic Dimension
At the pragmatic level, we model the inquirer’s
assumed motive for asking, i.e., their “visceral
need” in Taylor’s (1962) terminology or the “query
intent” in Broder’s (2002). We link the causal
questions’ intents to the pragmatic function of
the inquiries—their “illocutionary force” (Austin,
1962). Much as recognizing the underlying func-
tion of a question affects a listener’s response strat-
egy, also in the case of web search, being able to
identify a query’s underlying speech act can guide
the choice of what resources (e.g., what document
subset) to use in a search for answers.

Our analysis of the 1,000 question sample
dataset revealed three core categories of intent in
causal questions: solution seeking, knowledge seek-
ing, and opinion seeking. These intents, in turn, can
be interpreted in terms of their illocutionary force
as indirect requests for help (some of the ques-
tions under solution and opinion) or as genuine
requests for information (solution and knowledge).
Solution seeking and non-trivia/-trivial knowledge
seeking calls for search in authoritative knowledge
sources, whereas opinion seeking calls for search,
for instance, in discussion fora or social media.
Moreover, recognizing a request for help (falls into
coping with problems in our typology) in a question
might justify additional content in the generated
response, such as advice where to seek help in case
of a medical question. Subtypes of the three in-
tent categories are exemplified in Table 2b. Again,
the presented subtypes are not meant to be exhaus-
tive, but rather to show that the top-level categories
are well-motivated and to illustrate the range of
possible information needs in causal questions.

3.4 Causal Questions in Web Search
Finally, to gain some insights into causal questions
that people actually submit to search engines, we
briefly analyze a dataset of all question-like queries
submitted to Yandex in 2012; dataset created by
Völske et al. (2015) and also used by Bondarenko
et al. (2020). The question-like queries were ex-
tracted from the complete 2012 Yandex log by
matching any of 58 hand-crafted syntactic ques-
tion indicators (e.g., queries starting with “how”,

“what”, “where”, etc.). The final set contains about
1.5 billion question-like log entries with about
730 million unique questions. Applying trans-
lated versions of the seven lexical rules we use for
our benchmark corpus construction (cf. Table 3),
about 81.7 million causal questions are mined from
the log (about 5% of the 1.5 billion question-like
log entries). The most frequent causal questions
are “why”-questions (50 million; frequent example:
“Why can’t I log in into VKontakte?”) followed by
“what to do if”-questions (13.1 million) and “what
happens if”-questions (11 million). Interestingly,
from manual spot checks of 1,000 mined “what
happens if”-questions, it seems that 90% of them
are about dream interpretation (e.g., “What will
happen, if one dreams of pregnancy?”). This cat-
egory of somewhat fictitious causality, raises the
interesting question about how search engines or
QA systems should deal with respective informa-
tion needs. However, somewhat unsurprisingly,
such examples are not contained in current stan-
dard QA datasets. Another manual inspection of a
sample of 1,000 questions explicitly asking about
causes or effects shows that most of them target
causes of medical conditions or effects on health.

4 The Webis-CausalQA-22 Corpus

In this section, we describe how we extract causal
questions from the ten QA datasets in Table 1 and
briefly analyze or resulting new benchmark corpus.

4.1 Corpus Construction
Table 1 gives an overview of the QA datasets from
which we extract causal questions to construct the
Webis-CausalQA-22 benchmark. The datasets ful-
fill three selection criteria: (1) they contain lexi-
cally diverse questions, (2) they are well-known in
the research community, and (3) they are large.

We investigate causal questions in two steps:
based on prior work and based on a manual analy-
sis of 1,000 questions randomly sampled from the
QA datasets (100 from each). We asked two anno-
tators to label whether a given question is causal
or not, considering a question to be causal if the
answer may only be provided as a result of causal
reasoning involving entities from the question. To
discover new patterns beyond more “obvious” ones
like “What are the effects of X?” or “What causes
Y?”, we did not provide examples, but specified
that the question may be asking about explicit or
implicit causal relationships. They achieved an
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ID [Regular Expression] / Example

R1 [why]
Why does mosquito bite itch?

R2 [cause(s)?]
What causes broken blood vessels?

R3 [how come|how did]

How did the constellation Bootes get its name?
R4 [effect(s)?|affect(s)?]

What was the effect of the silk road on religions?
R5 [lead(s)? to]

What does increasing water vapor lead to?
R6 [what(will|might)? happen(s)?]∧[if|when]

What happens if we drink very hot water?
R7 [what(to do|should be done)]∧[if|to|when]

What to do if my Xbox won’t connect to the Wi-Fi?

Table 3: Lexical rules used to match causal questions in
a regular expression syntax. E.g., a question matching
R6 must contain ‘what happens’ or ‘what will happen’
or ‘what might happen’ and ‘if’ or ‘when’.

inter-annotator agreement of Cohen’s κ = 0.54
(moderate agreement). Coding differences were
reconciled in a discussion with a third annotator
and a total of 86 questions labeled as causal.

Based on the causal questions from our sample
and based on existing question typologies (Lehnert,
1977; Graesser and Person, 1994; Graesser et al.,
2008; McClure et al., 2001; Gelman, 2011; Gel-
man and Imbens, 2013), we hand-crafted the seven
lexical rules to identify causal questions (cf. Ta-
ble 3). Rules R1–R5 achieve a precision of 1.0
on our labeled sample (cf. Table 2c), while no in-
stances matched Rules R6 and R7 (derived from
prior work). We thus randomly sampled 50 ques-
tions from the QA datasets using these rules and
manually checked that their precision also is 1.0.

We run these seven high-precision rules on the
ten standard QA datasets and extract a total of about
1.1 million causal questions that, together with their
answers and context passages (if available), form
the Webis-CausalQA-22 benchmark corpus.

4.2 Corpus Analysis
Table 2c shows how many causal questions have
been extracted by each of the seven lexical rules.
About half of the causal questions are open-ended
“why”-questions (e.g., “Why does a mosquito bite
itch?”). Questions about causes (e.g., “What causes
broken blood vessels?”) constitute another 28% of
our corpus. Interestingly, the least frequent ones
are “what to do if”-questions (e.g., “What to do if
my Xbox won’t connect to the Wi-Fi?”) that at less

than 1% are by far less common than their 11% in
real web search questions (cf. Section 3.4).

The context available for the question–answer
pairs in our Webis-CausalQA-22 corpus de-
pends on the source dataset and varies from
Wikipedia passages (e.g., PAQ, Natural Ques-
tions, SQuAD) to search engine snippets (e.g.,
SearchQA) or passages from web documents (e.g.,
MS MARCO QnA). Also the average question and
answer lengths vary widely per extraction source.
While, on average, a question contains 12 words (cf.
Table 1), the questions from MS MARCO QnA,
for instance, are much shorter (6.4 words, Bing
search) and questions from ELI5 are much longer
(32.5 words, extracted from Reddit). Similarly,
on average, an answer has 23 words but the an-
swers from SearchQA are way shorter (1.8 words,
human-written answers for Jeopardy! clues) while
the answers from ELI5, again, are much longer
(99 words, human-written answers with explana-
tions). Besides the causal nature of the questions,
also this diversity of questions and answers in our
corpus poses a challenge to (causal) QA systems.

5 Evaluation

To establish a first baseline effectiveness for causal
question answering on the Webis-CausalQA-22
benchmark, we report the results achieved by the
state-of-the-art UnifiedQA model Khashabi et al.
(2020, 2022). UnifiedQA is a text-based ques-
tion answering model that has been reported by
Khashabi et al. to perform well on 32 QA datasets,
including SQuAD v. 2.0, where it achieved a bag-
of-word-based F1 score of 0.90. We experiment
with Version 2 of the model, Checkpoint 1363200,
using (1) the base model, and (2) a version fine-
tuned on Webis-CausalQA-22 using the hyperpa-
rameters of Khashabi et al. (2022).4 In a pilot
study, we attempted to fine-tune a joint model on
all datasets but found fine-tuning per source dataset
to yield better results. Moreover, we experiment
with the causal questions extracted from the origi-
nal train/dev splits proposed by the authors as well
as a random 90/10 train-test split of our own. The
reason for the latter is that, for some datasets, by
chance, only few causal questions are part of the
original train/dev splits (compare the number of

4All experiments were conducted on an NVIDIA A100
GPU. Fine-tuning: 60K steps in general, or 6K steps to avoid
overfitting on datasets containing less than 50K causal ques-
tions; AdamW optimizer (Loshchilov and Hutter, 2019); learn-
ing rate 5e−5; batch size 2.
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Table 4: Effectiveness of the UnifiedQA model on causal question answering on the Webis-CausalQA-22 corpus:
(a) the base model (Version 2) and a fine-tuned version on the original train/dev splits per dataset if availalbe; (b) a
fine-tuned version on a random 90/10 train/test split. N: number of questions used for evaluation, P: precision,
R: recall, F1: F1 score, EM: exact match. The star (*) indicates datasets usually evaluated using ROUGE-L.

Dataset Original train/dev split Random 90/10 split

N Base model Fine-tuned model N Fine-tuned model

ROUGE-L Traditional ROUGE-L Traditional ROUGE-L Traditional

P R F1 EM F1 P R F1 EM F1 P R F1 EM F1

PAQ 76,961 0.79 0.85 0.80 0.69 0.80 0.95 0.95 0.94 0.91 0.94 76,961 0.95 0.95 0.94 0.91 0.94
GooAQ* 33 0.29 0.04 0.06 0.00 0.07 0.14 0.11 0.12 0.00 0.15 14,629 0.17 0.15 0.15 0.00 0.19
MS MARCO QnA* 2,558 0.44 0.19 0.23 0.05 0.24 0.49 0.40 0.39 0.10 0.41 2,557 0.45 0.42 0.39 0.13 0.40
Natural Questions 71 0.14 0.05 0.06 0.01 0.07 0.34 0.37 0.33 0.18 0.34 121 0.37 0.34 0.32 0.16 0.33
ELI5* 13,104 0.26 0.04 0.06 0.00 0.08 0.16 0.09 0.10 0.00 0.12 13,104 0.16 0.09 0.10 0.00 0.12
SearchQA 117 0.20 0.22 0.20 0.15 0.20 0.63 0.64 0.62 0.53 0.62 78 0.55 0.54 0.54 0.47 0.54
SQuAD v.2.0 252 0.79 0.81 0.78 0.63 0.78 0.84 0.84 0.83 0.66 0.83 321 0.96 0.96 0.95 0.93 0.95
NewsQA 29 0.57 0.55 0.53 0.31 0.53 0.65 0.56 0.58 0.45 0.58 66 0.76 0.76 0.73 0.58 0.73
HotpotQA 35 0.49 0.39 0.40 0.14 0.40 0.60 0.55 0.53 0.26 0.54 39 0.73 0.73 0.73 0.67 0.72
TriviaQA 66 0.37 0.35 0.34 0.26 0.35 0.43 0.41 0.40 0.27 0.40 71 0.44 0.43 0.42 0.28 0.42

Macro-averaged 9,323 0.43 0.35 0.35 0.23 0.35 0.52 0.49 0.48 0.34 0.49 10,795 0.55 0.54 0.53 0.41 0.53
Micro-averaged 65,447 0.70 0.72 0.68 0.58 0.68 0.82 0.81 0.81 0.75 0.81 58,505 0.73 0.72 0.72 0.65 0.73

causal questions reported in Table 1 to the left Sub-
column N in Table 4. The original test sets are
often not publicly available, but only indirectly via
run submission to a leaderboard.

Effectiveness is measured using the ROUGE-L
scores precision, recall, and F1 (Lin, 2004), as well
as the traditional exact match (EM) and F1 mea-
sures. The ROUGE-L measures are based on the
longest common subsequence between a predicted
answer and a ground truth answer, whereas EM re-
quires the order of all tokens to match and the tra-
ditional F1 measure is based on an order-invariant
bag-of-words representation. If a question has
more than one ground truth answer, the maximum
score per measure and question is taken. Effec-
tiveness is measured both per constituent dataset
of Webis-CausalQA-22, and averaged using micro-
and macro-averaging across datasets.

Table 4 shows the effectiveness scores achieved
by UnifiedQA. The columns “Original train/dev
split” shows the effectiveness on the causal ques-
tions that we have identified in the original dev
split using our lexical rules, yielding the number of
causal question–answer pairs indicated in Subcol-
umn N.5 We observe that UnifiedQA is most effec-
tive on PAQ across all measures, perhaps due to the
large number of questions–answer pairs available
and/or the fact that the models underlying PAQ
and UnifiedQA have both been trained (among
others, respectively) on SQuAD. For GooAQ and
ELI5, the effectiveness is lowest, perhaps due to

5For PAQ and ELI5, no dedicated dev sets are available
and we performed a random 90/10 split.

the lack of context information in these datasets.
Fine-tuning UnifiedQA on the respective datasets
increases its effectiveness in terms of ROUGE-L
F1 across the board. Overall, the scores of the fine-
tuned models are between 0.12 and 0.62 with the
exception of PAQ (0.94) and SQuAD (0.83). This
generally indicates plenty of room for improve-
ments in causal QA.

The columns “Random 90/10 split” reports
the corresponding effectiveness scores of Uni-
fiedQA for the fine-tuned model version, where
fine-tuning was repeated on the different train-
ing set. Comparing the ROUGE-L F1 scores to
the fine-tuned model on the original split, we ob-
serve the largest differences for the datasets Hot-
potQA (from 0.53 in the original split to 0.73 in the
new one), NewsQA (from 0.58 to 0.73), SQuAD
(from 0.83 to 0.95), SearchQA (from 0.62 to 0.54),
and GooAG (from 0.12 to 0.15). The effectiveness
on HotpotQA increases because the original split
used more difficult questions for the dev set than
for training (Yang et al., 2018). The effectiveness
on the new splits of SQuAD v. 2.0 and NewsQA
increases because the UnifiedQA base model was
trained on both datasets causing a leakage of train-
ing data. The effectiveness on SearchQA decreases
potentially due to overfitting to the training set, or
a particularly easy dev set in the original dataset by
chance as the original dataset was split by time (dif-
ferent years for dev and test sets than for training).
The effectiveness on GooAQ increases slightly be-
cause the original train/dev sets were explicitly
made dissimilar by avoiding word overlaps while
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our random split does not. Moreover, with the new
split, GooAQ is evaluated on many more questions
because the original dev set contained far fewer
causal questions than 10% of the whole dataset.

Overall, when comparing macro-averages across
datasets, we find that fine-tuning improves the
macro-averaged ROUGE-L F1 scores from 0.35
to 0.48 on the original train/dev split, and to 0.53
on the random 90/10 split. Micro-averaging gen-
erally results in higher scores when compared to
macro-averaging due to imbalanced distribution of
question–answer pairs across datasets, where PAQ
has the largest influence. Interestingly, when com-
paring the macro-averaged ROUGE-L F1 scores of
the original train/dev split with the random one, and
the corresponding micro-averaged ones, the micro-
averaged ones decrease from 0.81 to 0.72, while the
macro-averaged ones increase as mentioned above.
This is mainly caused by GooAQ having a much
higher weight overall due to contributing more than
14,500 question–answer pairs, the second-largest
amount following PAQ, compared to only 33 in the
original train/dev split.

It is a matter of debate, which of the two splits
and which of the two averages are to be preferred
as a baseline. At present, we recommend using the
original train/dev split (especially, if a model was
trained on one of our corpus’s constituent datasets,
like UnifiedQA), and then the macro-averaged
ROUGE-L F1 score. In case of UnifiedQA, this
score is 0.48 for the model version fine-tuned on
each constituent dataset individually.

6 Conclusion

We constructed Webis-CausalQA-22, the first large
benchmark dataset of 1.1 million causal question–
answer pairs, which serves to advance research
in causal question answering. To ensure diver-
sity of questions, we extracted them using seven
hand-crafted high-precision lexical rules to capture
as many subtypes of causal questions as possible.
These rules were derived from a new typology of
causal questions, which in turn is based on relevant
related work on question typologies. A manual
analysis of a sample of questions was used to char-
acterize causal questions in terms of two dimen-
sions: (1) their semantic properties, i.e., according
to which element of the causal structure the ques-
tion is asked (antecedent, consequent, or the causal
chain) and (2) their pragmatic interpretation, i.e.,
the underlying intention or assumed information

need of the questioner (e.g., prevention of medical
problems). Furthermore, a subsequent analysis of
the causal questions contained in a search engine
log showed that a significant proportion of 5% of
question queries are causal. Finally, we evaluated
the state-of-the-art model UnifiedQA on our corpus
as an initial baseline for causal question answering.

Causal questions represent a hitherto poorly con-
sidered challenge for both search engines in general
and QA systems in particular. In this respect, our
typology serves as a guide for the development of
new technologies: The semantic dimension is rele-
vant for understanding queries, while the pragmatic
dimension may guide search engines and QA sys-
tems in finding and presenting answers. In addition,
linking current text-based models with algorithms
for causal inference is a promising direction to an-
swer more complex questions for which answers
cannot be found directly on the web. CauseNet
may also prove useful here, as the graph of cause–
effect relationships already makes such connec-
tions. However, to maximize user confidence in an
information system’s answers to causal questions,
all causal claims must be supported by evidence
(e.g., in the form of scientific studies).
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Abstract

Acronym extraction is the task of identifying
acronyms and their expanded forms in texts
that is necessary for various NLP applications.
Despite major progress for this task in recent
years, one limitation of existing AE research
is that they are limited to the English language
and certain domains (i.e., scientific and biomed-
ical). Challenges of AE in other languages and
domains are mainly unexplored. As such, lack-
ing annotated datasets in multiple languages
and domains has been a major issue to pre-
vent research in this direction. To address this
limitation, we propose a new dataset for mul-
tilingual and multi-domain AE. Specifically,
27,200 sentences in 6 different languages and 2
new domains, i.e., legal and scientific, are man-
ually annotated for AE. Our experiments on
the dataset show that AE in different languages
and learning settings has unique challenges,
emphasizing the necessity of further research
on multilingual and multi-domain AE.

1 Introduction

Acronyms are short forms of longer phrases that
are often constructed using a few letters selected
from the long phrases. Due to their functionality,
acronyms are common in many languages and do-
mains. For instance, 73% of abstracts of scientific
papers contain at least an acronym (Barnett and
Doubleday, 2020). As such, in text processing ap-
plications, e.g., question answering and machine
translation, it is necessary to correctly identify the
acronyms and their meanings. Toward this goal,
our work focus on the task of Acronym Extraction
(AE), aiming to recognize acronyms and their def-
initions/long forms in text. For instance, in the
sentence “They will meet in the conference of the
World Trade Organization (WTO)", an AE system
should identify “WTO” and “World Trade Organi-
zation” as the acronym and long form, respectively.

Despite all progress in recent years, prior work
on AE has mainly limited to specific domains and

languages. Specifically, biomedical and scientific
texts in English have been the main focus in prior
work. However, recognition of acronyms in other
languages and domains is also important and might
involve challenges not reflected in English biomed-
ical/scientific texts. For instance, many existing
AE methods for English employ uppercase letters
to identify acronyms (Veyseh et al., 2020). How-
ever, in non-case sensitive languages, e.g., Arabic
or Persian, uppercase letter concept does not ex-
ist, thus causing a failure of existing AE systems.
Moreover, in each domain or language, different
styles might be exerted to shorten a longer phrase
to produce acronyms. For instance, initial letters
of the words in the phrases are commonly used to
form acronyms in scientific English; however, in le-
gal English or Danish documents, the use of initial
letters for acronym detection is less effective (see
Section 3). As such, it is desirable to study AE in
more diverse domains and languages to better sup-
port multi-domain and multilingual applications.

Unfortunately, to the best of our knowledge,
there is no existing dataset for multilingual and
multi-domain AE, thus impeding research effort in
this area. To this end, our work addresses this issue
by introducing a new manually labeled dataset for
AE. In particular, based on two different domains
of scientific and legal texts, our dataset annotates
AE data for sentences in six different languages:
English, Danish, Spanish, French, Persian, and
Vietnamese. As such, legal texts, Danish, Spanish,
French, Persian, and Vietnamese are not explored
for AE in prior work. In addition, our dataset is
large-scale, providing 27,200 annotated sentences
for AE to support advanced model development
(e.g., with data-hungry deep learning models).

Finally, we conduct extensive experiments to
understand the challenges of AE in the created
dataset. Our experiments show that the AE task
in our dataset presents significant challenges for
existing models in different domains and languages.
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This is even more pronounced in the cross-lingual
and cross-domain transfer settings where existing
models perform poorly on our AE dataset. As
such, more research effort is needed to address the
challenges of acronym understanding in different
settings. We will publicly release the dataset to
foster research in this area.

2 Data Annotation

Data Collection: We collect data in two domains
of legal and scientific documents for AE annota-
tion. For each domain, documents in different
languages are required. As such, for the legal
domain, we employ the United Nations Parallel
Corpus (UNPC) (Ziemski et al., 2016) and the Eu-
roparl corpus (Koehn, 2005). The UNPC corpus
contains official records in 6 languages while the
Europarl corpus consists of the proceedings of the
European Parliament in European languages. To ac-
commodate our annotation budget and diversify the
resulting dataset, we choose documents from four
languages in the two corpora (i.e., English, French,
and Spanish in UNPC, and Danish in Europarl) for
our AE annotation. In addition, for the scientific
domain, we employ the publicly available papers
and M.S./Ph.D. theses in the field of computer sci-
ence for AE annotation. Specifically, we collect the
papers published in the ACL anthology of natural
language processing research for English. Also, for
typologically different languages, we crawl public
computer science thesis in Persian and Vietnamese.

Following (Veyseh et al., 2020), we split the
selected documents into sentences that will be an-
notated separately by annotators. In addition, to
optimize the annotation cost with greater numbers
of acronyms, we apply the same procedure in (Vey-
seh et al., 2020) to filter out sentences that has low
chance to contain acronyms or long forms. In par-
ticular, the procedure only retains sentences that
involve at least one acronym candidate (i.e., a word
with more than a half of characters as capital let-
ters) and a sub-sequence of words to match the
acronym candidate (i.e., concatenating the initials
of the words can form the candidate) (Veyseh et al.,
2020). Here, we only apply this procedure for
English, French, Spanish, and Danish as our Per-
sian and Vietnamese data is small and the sentence
filtering procedure will leave less sentences for an-
notation. Finally, given the retained sentences for
each language, we randomly sample a subset of
sentences for manual AE annotation. The numbers

of annotated sentences are presented in Table 1.
Annotation Process: To annotate the sampled sen-
tences, we recruit native speakers in each language
from the crowd-sourcing platform upwork.com
with freelancer annotators across the globe. For
each language, we select annotator candidates who
have experience in related annotation projects and
an approval rate of more than 95% (provided by Up-
work). The annotator candidates are trained with
guidelines and examples for AE in their language.
In our annotation guideline, acronyms are required
to be single words (including abbreviations). Also,
for a sentence in a language, we only annotate the
long forms that are in the same language as the
sentence’s. Afterward, for each language, we re-
tain two candidates who pass and achieve highest
results in our designed test for AE as our official
annotators. Next, the two annotators in each lan-
guage independently perform AE annotation for
the sampled sentences of that language. Finally,
the two annotators will discuss to resolve any dis-
agreement in the annotation, thus producing a final
version of our MACRONYM dataset.

Domain IAA Size # Unique # Unique
& Language Acronyms Long-forms

L
eg

al

English 0.824 4,000 3,688 3,037
Spanish 0.810 6,400 4,059 4,437
French 0.823 8,000 5,638 5,728
Danish 0.810 3,000 907 923

Sc
ie

nt
ifi

c English 0.811 4,000 3,604 4,260
Persian 0.782 1,000 641 203
Vietnamese 0.791 800 270 61

Table 1: Statistics of MACRONYM. IAA scores use
Krippendorff’s alpha with MASI distance based on ini-
tial independent annotations. Size refers to the number
of annotated sentences.

To study the challenges of AE in each language,
following (Veyseh et al., 2020), we compute the
inter-annotator agreement (IAA) scores using Krip-
pendorff’s alpha (Krippendorff, 2011) with the
MASI distance metric (Passonneau, 2006) for the
initial independent annotations of the two annota-
tors, i.e., before resolving the conflicts. Table 1
shows the IAA scores for each language. Overall,
we find that the IAA scores are high for all con-
sidered languages and domains, thus demonstrat-
ing the quality of our annotated dataset. Among
several factors, a major scenario of annotation dis-
agreement occurs in Persian or Vietnamese when
a sentence contains a long form term that is trans-
lated from an original English term. However, the
acronym for this long form in the Persian or Viet-
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namese sentence is still formed via initials of the
words in the English term. As such, some anno-
tators consider this English-based acronym as an
acronym in the Persian or Vietnamese sentence
while other annotators simply ignore it in the anno-
tation. For instance, in the Persian sentence:

است“ زیر شرح به (ANOP) شبکه پیشرفته ,1"عملیات

the acronym “ANOP” is expressed in English
letters but its long form, i.e., شبکه“ پیشرفته ,2"عملیات
is presented in Persian. In the resolving, we have
decided to annotate any acronym that is formed
using characters in the six languages in our dataset.
Data Analysis: We show the main statistics of
MACRONYM in Table 1. This table shows that
the density of acronyms in texts varies across differ-
ent languages. On average, English sentences tend
to involve more acronyms than other languages in
both legal and scientific domain while Danish and
Vietnamese sentences contain least acronyms in
the legal and scientific domain respectively. Com-
paring English texts in the legal and scientific do-
mains, we find that the ratio between the numbers
of unique long-forms and acronyms is greater in the
scientific domain, thus implying the higher ambi-
guity of acronyms in scientific documents. Finally,
we note that the number of unique acronyms ex-
ceeds the number of unique long forms in Persian
and Vietnamese as we do not apply the sentence
filtering procedure in the data collection, thus al-
lowing many sentences with only acronyms and no
associated long forms to be annotated in the data.

3 Experiments

This section studies the challenges of the multilin-
gual and multi-domain AE task in MACRONYM.
In particular, for each pair of available languages
and domains (we have 7 pairs in total), we first
prepare the data by randomly splitting the corre-
sponding set of annotated sentences into separate
training/development/test portions with the ratios
of 80/10/10 (respectively). Afterward, we report
the performance of the representative AE models
on the test set for each possible pair of languages
and domains under different learning settings.

AE Models: We examine the performance of
three representative state-of-the-art (SOTA) mod-
els for AE. First, we employ the rule-based system
for AE proposed in (Veyseh et al., 2021) (called

1English translation: “Advanced network operations
(ANOP) include the followings”

2English translation: “advanced network operations"

Rule-Based). This system serves as the current
SOTA rule-based method for AE (Veyseh et al.,
2021). In general, to detect acronyms, words with
more than 60% characters as uppercase letters are
selected. To find long-forms, if a detected acronym
is bounded between parentheses and the initial let-
ters of preceding words can form the acronym, the
system predicts the preceding words a long form.
Second, motivated by prior work (Veyseh et al.,
2020; Zhu et al., 2021), we solve AE as a sequence
labeling problem using BIO tagging schema. In par-
ticular, following the current SOTA deep learning
model for AE (Zhu et al., 2021), we employ a pre-
trained BERT-based language model followed by
a feed-forward network layer with softmax in the
end to predict BIO-based label for each word in the
sentence. To facilitate the learning on multiple lan-
guages, we explore two multilingual transformer-
based language models, i.e., mBERT (Devlin et al.,
2019) and XLMR (Conneau et al., 2020), leading to
two models mBERT and XLMR for this approach.

Settings: MACRONYM enables the evaluation
of AE models on four different settings: (i) Mono-
Lingual Mono-Domain: In this setting, training
and test data of the models come from the same
language and domain. As we have 7 possible pairs
of languages and domains, this setting involves 7
different evaluations for each AE model; (ii) Mono-
Lingual Cross-Domain: Training and test data for
models belongs to the same languages, but differ-
ent domains in this setting. In MACRONYM, this
setting is only possible for English where AE mod-
els are trained on the legal domain but tested on the
scientific domain and vice versa (i.e., two possible
evaluations).; (iii) Cross-Lingual Mono-Domain:
Assuming the same domain for training and test
data, this setting trains models on English training
data and evaluate them on test data of other lan-
guages. We thus have 3 and 2 possible evaluations
for the legal and scientific domains respectively.;
(iv) Cross-Lingual Cross-Domain: Training and
test data for models originates from different lan-
guages and domains in this setting. As such, we
also consider five evaluations in this setting. In the
first two evaluations, models are trained on English
data in the legal domain and evaluated on Persian
and Vietnamese test data in the scientific domains.
In contrast, for the other three evaluations, English
data in the scientific domain is used for model train-
ing while Spanish, French, and Danish test data in
the legal domain is used for evaluation.
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Domain Mono-Lingual Mono-Lingual Cross-Lingual Cross-Lingual
& Language Mono-Domain Cross-Domain Mono-Domain Cross-Domain

Rule-Based mBERT XLMR mBERT XLMR mBERT XLMR mBERT XLMR
L

eg
al

English 16.55 61.66 62.07 54.92 56.88 - - - -
Spanish 10.82 51.43 55.41 - - 38.88 40.13 35.48 36.92
French 10.05 58.77 61.14 - - 48.82 50.70 44.21 46.83
Danish 8.78 50.05 48.38 - - 40.71 42.94 38.18 41.95

Sc
ie

nt
ifi

c English 20.72 60.51 59.00 56.71 59.88 - - - -
Persian 60.59 62.41 63.10 - - 49.13 50.21 42.95 43.72
Vietnamese 53.44 58.71 59.13 - - 50.72 51.44 48.32 50.17

Table 2: Model performance (F1 scores) in different settings. The performance in each row is evaluated on the test
data for the corresponding pair of language and domain. Mono-Lingual Cross-Domain: trained on English data of
one domain and tested on English data of the other domain; Cross-Lingual Settings: trained on English data of
one domain and tested on the other language data of the same domain (if Mono-Domain) or the other domain (if
Cross-Domain).

We fine-tune the hyper-parameters for the mod-
els using the development data for each pair of
languages and domains. Our fine-tuning process
returns similar values of hyper-parameters for the
models across languages and domains. In partic-
ular, for English legal data, we use 2 layers of
feed-forward neural networks with 200 hidden di-
mensions for hidden vectors. The learning rate is
set to 3e-4 for the Adam optimizer and the batch
size of 8 is utilized for training.

Results: Table 2 presents the performance of
three AE models in four different settings. Note
that as the Rule-Based system does not require
training, its performance in the mono-lingual and
mono-domain setting can be applied to other set-
tings. There are several observations from the table.
First, the Rule-Based system achieves decent per-
formance for Persian and Vietnamese, but performs
poorly for other languages. The main reason has
to do with the dominance of acronyms over long
forms in Persian and Vietnamese data (see Table
1). This is in contrast to other languages where
acronyms and long forms are more balanced. As
acronyms can be identified more easily with rules
than long forms, the Rule-Based system is more
effective in the data with much more acronyms of
Persian and Vietnamese. Second, in the legal do-
main where long forms are better presented, the per-
formance of the models on English is significantly
better than those for other languages, thus demon-
strating the more challenging nature of non-English
language for AE. Third, compared to deep learning
models, the significant lower performance of the
Rule-Based model in the monolingual and mono-
domain setting signifies the brittleness of human-
designed rules for AE that necessitates learning

models to improve the portability of models to
different languages and domains. Fourth, across
all learning models and language-domain pairs
for test data, the lower performance in the cross-
lingual mono-domain setting compared to its mono-
lingual counterpart suggests the difference between
languages that hinder cross-lingual transfer learn-
ing for AE. Fifth, the cross-domain performance
also under-performs their mono-domain counter-
part for almost all learning models and language-
domain pairs for testing, thus highlighting domain
shifts as an important challenge for AE. Finally,
across all the learning settings, the performance
of the AE models is still far from being perfect in
MACRONYM, thus presenting ample opportuni-
ties for future research.

4 Related Work

Early attempts for AE have employed rule-based
methods (Park and Byrd, 2001; Wren and Gar-
ner, 2002; Schwartz and Hearst, 2002; Adar, 2004;
Nadeau and Turney, 2005; Kirchhoff and Turner,
2016) or feature engineering models (Kuo et al.,
2009; Liu et al., 2017; Li et al., 2018). Recently,
deep learning methods have delivered SOTA per-
formance for AE (Veyseh et al., 2021; Wu et al.,
2015; Antunes and Matos, 2017; Charbonnier and
Wartena, 2018; Ciosici et al., 2019; Jaber and
Martínez, 2021; Li et al., 2021). Despite such
progress, prior AE research and datasets have
mainly focused on English biomedical and scien-
tific texts, leaving non-English languages and other
domains less explored. Here, we note that there
exist some acronym glossaries for non-English lan-
guages (Pomares-Quimbaya et al., 2020; Ménard
and Ratté, 2011). However, such resources do not
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annotate sentences/texts in multiple languages and
domains for AE as we do in MACRONYM.

5 Conclusion

We present the first multilingual and multi-domain
dataset for AE, involving annotation for 6 lan-
guages and 2 domains. Our experiments show that
the proposed dataset presents significant challenges
for AE methods in different learning settings and
languages. In the future, we will expand the dataset
to include more domains and languages for AE.
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Abstract

A significant limitation in developing therapeu-
tic chatbots to support people going through
psychological distress is the lack of high-
quality, large-scale datasets capturing conver-
sations between clients and trained counselors.
As a remedy, researchers have focused their
attention on scraping conversational data from
peer support platforms such as Reddit. But the
extent to which the responses from peers align
with responses from trained counselors is un-
derstudied. We address this gap by analyzing
the differences between responses from coun-
selors and peers by getting trained counselors
to annotate≈17K such responses using Motiva-
tional Interviewing Treatment Integrity (MITI)
code, a well-established behavioral coding sys-
tem that differentiates between favorable and
unfavorable responses. We developed an an-
notation pipeline with several stages of quality
control. Due to its design, this method was able
to achieve 97% of coverage, meaning that out
of the 17.3K responses we successfully labeled
16.8K with a moderate agreement. We use this
data to conclude the extent to which conversa-
tional data from peer support platforms align
with real therapeutic conversations and discuss
in what ways they can be exploited to train
therapeutic chatbots.

1 Introduction

Demands of the modern world are increasingly re-
sponsible for bringing adverse impacts on our men-
tal health. World Health organization estimates
psychological distress affects 29% of people in
their lifetime (Steel et al., 2014). Shortage of men-
tal health workers and the stigma associated with
mental health further demotivates people in actively
seeking out help. Thus, provision of mental health
support through the use of AI-driven conversational
agents to complement traditional therapy has be-
come an interesting area of research (Fitzpatrick
et al., 2017; Inkster et al., 2018; Mousavi et al.,

2021). But one challenge associated with develop-
ing such agents is the lack of large-scale psycho-
therapeutic conversations. They are either limited
or are not available publicly due to ethical reasons.

Nowadays, with the expansion of social media,
it could be observed that people use social media
platforms such as Reddit to vent their distress and
peers are seen to actively respond to such posts.
These conversations are available in abundance and
are publicly accessible through web scraping APIs.
Thus, conversations scraped from such platforms
are seen as an alternative to overcome the above
challenge (Welivita and Pu, 2022). Prior work has
found that responses from peers contain higher em-
pathic concern for posts for seeking help as many
peers share similar distressful experiences (Hodges
et al., 2010). But the extent to which responses
from peers align with responses from trained coun-
selors remain a major limitation. Knowing these
differences can shed light on to what extent such
conversational data could be used in training thera-
peutic chatbots and what pre-processing or rephras-
ing steps that one should take if they are being used
for such purposes.

Though studies have been conducted indepen-
dently to assess the competency of counselors and
peers offering support (Pérez-Rosas et al., 2016;
Klonek et al., 2015; Gaume et al., 2009; Sharma
et al., 2020a; De Choudhury and De, 2014), studies
that comparatively analyse the differences between
them are limited. One such study was conducted
by Lahnala et al. (2021), where they show that a
classifier can distinguish between responses pro-
vided to help-seeking posts regarding mental health
by professionals and peers. Mousavi et al. (2021)
conducted a similar analysis between responses
collected from psychotherapists and non-expert di-
alogue writers and noted linguistic variability in the
two types of responses. However, all these analyses
are limited to the lexical level.

To address the above gaps, we comparatively an-
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Figure 1: The annotation process to label the listeners’ statements in the CounselChat and RED datasets with labels
adapted from MITI. The process was conducted in three main stages.

alyze responses from professional counselors and
peers by annotating these responses using labels
adapted from a well-established behavioral coding
scheme named Motivational Interviewing Treat-
ment Integrity (MITI) code (Moyers et al., 2014).
The MITI code is used in psychological literature
to evaluate how well a mental health practitioner
responds to those seeking help with their mental
health related issues. Specific response types from
the MITI code have shown to increase the like-
lihood of positive health outcomes (Pérez-Rosas
et al., 2018; Gaume et al., 2009). For this purpose,
we make use of post-response pairs scraped from
the CounselChat website (counselchat.com) that
contains high-quality therapist responses to emo-
tional distress related questions from individuals
and dialogues curated from several mental-health
related subreddits in Reddit, in which peers engage
in actively to respond to those seeking help.

Annotating dialogue responses with labels from
the MITI coding system is known to be very time
consuming and expensive as it requires expert an-
notators trained in the practice of psychology and
careful attention to the labelling task (Pérez-Rosas
et al., 2016). This human labour is difficult to
find. But the availability of crowdsourcing plat-
forms such as UpWork 1 and Fiverr 2 have made it
more accessible to find human labour that satisfy
our requirements. Thus, we were able to recruit
professionally trained mental health practitioners
through UpWork to annotate dialogue responses
with labels adapted from the MITI code. Our anno-
tation pipeline consisted of three stages as depicted
in Figure 1. Two workers were involved in the first

1http://upwork.com
2https://www.fiverr.com

stage and high-quality workers who scored high
observed agreements with a peer in the first stage
acted as judges to resolve conflicting labels in the
second and third stages contributing to increased
observed agreement and inter-rater reliability.

Using these annotations, we conducted a com-
parative analysis between responses from peers and
counselors to identify to what extent they align with
each other. Based on these findings, we recommend
ways of boosting peers’ responses to match as close
as possible to counselors’ responses. The recom-
mendations made in this paper can contribute to
improve the perceived therapeutic effectiveness of
a chatbot trained on data from peer support forums.

Our contributions are three fold. 1) We develop
an MI dataset having client-counselor and peer-
peer dialogues, in which ≈17K listeners’ utter-
ances are annotated with labels adapted from the
MITI code.3 2) We discuss the details of the anno-
tation process followed in increasing the agreement
between the workers when annotating with MITI
codes. 3) Based on these annotations, we conduct
a comparative analysis between counselors’ and
peers’ responses and draw useful conclusions on
to what extent responses from peers align with re-
sponses from trained counselors and recommend
ways of boosting peers’ responses such that it can
increase the perceived effectiveness of therapeutic
chatbots trained on such data.

2 Related Work

Motivational Interviewing Treatment Integrity
(MITI) is a behavioral coding system that measures

3The dataset can be downloaded at
https://github.com/anuradha1992/
Motivational-Interviewing-Dataset.
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how well a mental health practitioner uses motiva-
tional interviewing in therapy (Moyers et al., 2003).
It exclusively focuses on the verbal behaviour of
a counselor and is used to increase clinical skill
in the practice of motivational interviewing (MI).
This coding system has been used extensively to
to improve the understanding of the counseling
practice alone (Can et al., 2012; Pérez-Rosas et al.,
2018, 2019). Pérez-Rosas et al. (2016) developed
an MI dataset consisting of ≈22K counselors’ re-
sponses during Motivational Interviewing encoun-
ters annotated with 10 behavioral codes from the
MITI. Althoff et al. (2016) conducted a quantita-
tive study on counseling conversations to measure
how various linguistic aspects of conversations are
correlated with conversation outcomes. However,
the datasets used in such analyses are not publicly
available due to ethical reasons. Thus, it is difficult
to use such resources in training therapeutic chat-
bots even though real counselor responses are the
ideal candidates for this purpose.

There are a number of research efforts taken
to develop therapeutic chatbots (Fitzpatrick et al.,
2017; Inkster et al., 2018; Welch et al., 2020;
Mousavi et al., 2021). Among them, recent work
focuses on using dialogue data from peer-support
forums (Sharma et al., 2020b; Welivita and Pu,
2022). For example, Welivita and Pu (2022) devel-
oped a knowledge-graph containing distress consol-
ing responses for specific types of stressors using
peer-support responses from Reddit and utilized
it in single-turn dialogues. Some studies specifi-
cally focus on attributes such as perceived empa-
thy and information richness in mental health re-
lated discourse in peer support forums that suggests
they are good candidates for training such chatbots
(Nambisan, 2011; De Choudhury and De, 2014;
Sharma et al., 2020a,b). But these studies lack
comparisons with responses generated by profes-
sional counselors. In our work, we mainly attempts
to address this limitation.

3 Methodology

In this section, we describe the methodology in-
cluding the labels chosen to annotate the listeners’
statements, the datasets used, and different stages
of the annotation process.

3.1 Labels Adapted from MITI

The labels we used for annotation were adapted
from MITI code 2.0 (Moyers et al., 2003) and 4.2.1

(Moyers et al., 2014). Table 1 shows the MITI la-
bels that were used for annotation with descriptions
and examples. Altogether, there are 15 labels. They
also include labels Self-Disclose and Other, which
are not included in the MITI code. We included the
label Self-Disclose because in conversations involv-
ing peer support, Self-Disclosure is an important
aspect that enables the sharing of lived experience
and is seen to occur quite frequently in the majority
of such conversations (Truong et al., 2019). The
above labels were used to annotate each sentence
in the listeners’ utterances.

3.2 Datasets

We used two datasets containing distress consoling
dialogues for annotation: 1) CounselChat that con-
tains responses from professional counselors; and
2) RED that contains responses from peers.

CounselChat Dataset: The CounselChat
dataset consists of high-quality therapist responses
to emotional distress related questions from indi-
viduals. This data is scraped from the CounselChat
website (counselchat.com), which is an online plat-
form that helps counselors to make meaningful
contact with potential clients. On the website, pro-
fessional counselors respond to questions posed
by users suffering from mental health issues and
emotional distress. The dataset consists of 2,129
post-response pairs that span across 31 distress re-
lated topics, the most frequent topics being depres-
sion, relationships, and intimacy. This dataset is
publicly available. 4 Out of this data, we randomly
selected 1,000 post-response pairs to be annotated
with labels derived from the MITI code.

Reddit Emotional Distress (RED) Dataset: To
obtain a dialogue dataset containing utterances
from peer-supporters as response for posts contain-
ing emotional distress, we scraped a new dataset
from Reddit, containing dialogues that discuss real-
world distressful situations. Reddit was chosen
since it is publicly available and peers actively en-
gage in Reddit to support others going through
distressful situations in life. We used the Pushshift
API (Baumgartner et al., 2020) to collect and pro-
cess dialogue threads from a carefully selected
set of 8 subreddits: mentalhealthsupport; offmy-
chest; sad; suicidewatch; anxietyhelp; depression;
depressed; and depression_help, which are popular
among Reddit users to vent their distress. We ex-

4https://github.com/nbertagnolli/
counsel-chat
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MITI label Description Examples

1. Closed Question Questions that can be answered with an yes/no response
or a very restricted range of answers.

Do you think this is an advantage?

2. Open Question Questions that allow a wide range of possible answers. What is your take on that?
3. Simple Reflection Repetition, rephrasing, or paraphrasing of speaker’s pre-

vious statement.
It sounds like you’re feeling worried.

4. Complex Reflection Repeating or rephrasing the previous statement of the
speaker but adding substantial meaning/emphasis to it.

Speaker: Mostly, I would change for
future generations.
Listener: It sounds like you have a
strong feeling of responsibility.

5. Give Information Educating, providing feedback, or giving an opinion
without advising.

Logging your cravings is important as
cravings often lead to relapses.

MI Adherent Behaviour Codes:
6. Advise with Permis-
sion

Advising when the speaker asks directly for advice. In-
direct forms of permission can also occur, such as when
the listener says to disregard the advice as appropriate.

If you agree with it, we could try to
brainstorm some ideas that might help.

7. Affirm Encouraging the speaker by saying something positive
or complimentary.

You should be proud of yourself for
your past’s efforts.

8. Emphasize Auton-
omy

Emphasizing the speaker’s control, freedom of choice,
autonomy, and ability to decide.

It is really up to you to decide.

9. Support Statements of compassion or sympathy. I know it’s really hard to stop drinking.
MI Non-Adherent Behaviour Codes:
10. Advise without Per-
mission

Making suggestions, offering solutions or possible ac-
tions without first obtaining permission from the speaker.

You should simply scribble a note that
reminds you to take a break.

11. Confront Directly and unambiguously disagreeing, arguing, blam-
ing, criticizing, or questioning the speaker’s honesty.

Yes, you are an alcoholic. You might
not think so, but you are.

12. Direct Giving orders, commands, or imperatives. Don’t do that!
13. Warn A statement or event that warns of something or that

serves as a cautionary example.
Be careful, DO NOT stop taking meds
without discussing with your doctor.

Other:
14. Self-Disclose The listener discloses his/her personal information or

experiences.
I used to be similar where I get ob-
sessed about how people look.

15. Other Statements that are not classified under the above codes Good morning, Hi there.

Table 1: The set of labels adapted from the MITI code, which were used to annotate listeners’ responses.

tracted the dialogue turns out of these threads and
subjected these dialogues to a rigorous data clean-
ing pipeline, which included removal of profanity
from listener responses. By this, we were able to
curate ≈ 1.2M dyadic conversations having on
average 2.66 turns per dialogue. Out of them, 1K
dialogues were randomly selected for annotation.

3.3 Annotation Experiment

We used UpWork, a leading crowdsourcing plat-
form to recruit trained counselors to annotate di-
alogue responses from CounselChat and RED
datasets. Altogether 12 workers were recruited to
annotate 2K dialogues, 1K from CounselChat and
1K from RED. They contained 17,261 individual
sentences in the listener utterances in total.

The task was carried out in three stages. First,
the workers were asked to annotate each sentence
contained in the listener utterances of the dialogues
from CounselChat and RED datsets with one of

fifteen MITI labels. We bundled ten dialogues into
one batch (a batch contained five CounselChat and
five RED dialogues interchangeably) and assigned
two workers per batch. At the beginning, a tuto-
rial about the labels accompanied by a practice
task was offered to self-validate the workers’ an-
swers. As the task was ongoing, we computed
the observed agreement of each worker with peers
and offered more batches for the workers whose
observed agreement was better than the others.

At the end of stage 1, we noticed that the two
workers assigned for each batch did not agree on a
common label for more than half of the listeners’
sentences in the two datasets. Manual inspection
of their answers revealed majority of the disagree-
ments occurred because there are highly confusing
pairs of labels that need more careful attention to
differentiate (e.g. Complex Reflection and Give
Information can be easily confused). Hence, we
launched a second stage of the experiment by ask-
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ing four workers who scored the highest observed
agreement with a peer in the first stage to act as
judges to resolve these conflicting labels. A judge
was presented with the two labels the workers spec-
ified in the first stage along with the listener’s sen-
tence and the dialogue context and was asked to
select either one of the two labels if one of them
agreed with the listener’s sentence. Only if none
of the labels agreed with the listener’s sentence, he
was instructed to select a label from the rest.

At the end of stage 2, most of the conflicting
labels were resolved by the judge’s annotations.
But there was a small percentage of listeners’ sen-
tences for which a label was still not agreed upon.
We noticed for 68.15% of such unresolved sen-
tences, at least one annotation was given by a rel-
atively poor performing worker whose observed
agreement score with a peer was below average
as measured in the first stage. We decided such
labels are not worth considering since they cloud
the decision process and chose to launch a third
stage of the experiment by removing one annota-
tion given by the poorest performing worker for
each such unresolved sentence. Similar to stage 2,
we recruited the same judges and presented them
with the two remaining labels to be resolved. This
entire annotation pipeline is illustrated in Figure 1.

4 Results

Table 2 shows the statistics of the results from each
stage of the experiment. At the end of stage 1, out
of 17,261 listeners’ sentences, 7,152 received a la-
bel as agreed by the two annotators. Altogether, by
end of stage 1, we could yield an observed agree-
ment percentage of 41.43% and an inter-rater agree-
ment (Fleiss’ kappa) score of 0.3391 indicating fair
agreement. At the end of stage 2, another 8,875
labels were resolved, yielding an observed agree-
ment of 87.79%. The updated inter-rater agreement
(Fleiss’ kappa) after this stage was 0.5292, which
is a significant increase compared to the previous
stage. After the end of completion of stage 1 and
stage 2 of the annotation process, from among the
total of 17,261 listeners’ sentences in CounselChat
and RED datasets, 16,027 of them were able to
receive a label as agreed by at least two workers.
This is 92.85% of the entire data.

From the remaining 1,234 sentences for which a
label was not agreed upon, 841 (68.15%) sentences
were annotated by at least one poor worker whose
observed agreement with a peer was below average.

At the end of stage 3 of the experiment, which was
conducted by removing such annotations given by
the poor workers, a second judge was able to agree
with one of the two remaining labels for 784 sen-
tences, yielding an observed agreement of 93.22%.
The updated inter-rater agreement (Fleiss’ kappa)
after the third stage was 0.5453 (moderate agree-
ment), showing a slight increase compared to the
score in the previous stage. The lower kappa scores
are potentially due to the inherent difficulty of dis-
tinguishing some of the MI labels, which we elabo-
rate below. A similar annotation experiment con-
ducted by Perez-Rosas et al. (2016) report similar
kappa scores ranging from 0.31 to 0.64 on different
MI labels.

The confusion matrices computed at each stage
of the experiment are denoted in the appendices.
We could observe that the label pair Complex Re-
flection - Give Information had the highest percent-
age of disagreement between the two workers in
both CounselChat and RED datasets. In addition,
the label pairs Advise with Permission - Advise
without Permission and Give Information - Advise
without Permission were highly confusing to dif-
ferentiate in the CounselChat dataset. Whereas, in
RED, the label pairs Affirm - Support and Advise
without Permission - Direct were difficult to be dif-
ferentiated. These observations were quite intuitive
since these pairs of labels either contained similar
semantic content (e.g. Complex Reflection - Give
Information, Advise with Permission - Advise with-
out Permission, Give Information - Advise without
Permission, Advise without Permission - Direct)
or used similar language constructs (e.f. Affirm -
Support, Advise without Permission - Direct).

Final aggregated statistics of the three stages of
the annotation process is shown in Table 3. It could
be observed how the labels grew to cover a larger
portion of the listeners’ sentences as the annotation
process advanced through the stages. Finally, close
to 97% of the listeners’ sentences (16,812 in total)
were annotated with the MITI labels.

5 Analysis of the MI Dataset

In Figure 2, we show the distribution of labels
adapted from the MITI code in CounselChat and
RED datasets, separately. Table 4 shows the spe-
cific number of each label in CounselChat and RED
datasets and the increase/decrease in each label in
the two datasets compared to each other. Based on
these statistics, we discuss seven major differences
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Description CC RED CC + RED

Stage 1:
Total number of listeners’ sentences annotated 9,893 7,368 17,261
Sentences for which a label was agreed upon by both annotators 4,067 3,085 7,152
Observed agreement between the two annotators 41.11% 41.87% 41.43%
Inter-rater agreement (Fleiss’ kappa) 0.3059 0.3577 0.3391
Stage 2:
The number sentences, for which, the label had to be resolved 5,826 4,283 10,109
The number of times the judge agreed with one of the given labels 5,111 3,764 8,875
Observed agreement between the judge and one of the two annotators 87.73% 87.88% 87.79%
Updated inter-rater agreement (Fleiss’ kappa) 0.5029 0.5440 0.5292
Stage 3:
The number sentences, for which, the label had to be resolved 479 362 841
The number of times the judge agreed with one of the given labels 450 334 784
Observed agreement b/w the judge and one of the remaining annotators 93.95% 92.27% 93.22%
Updated inter-rater agreement (Fleiss’ kappa) 0.5193 0.5601 0.5453

Table 2: Statistics of the three stages of the annotation experiment. The CounselChat dataset is abbreviated as CC.

Description CC RED CC +
RED

# listener sentences 9,893 7,368 17,261
# labels agreed 3,085 4,067 7,152
in stage 1 (41.11%) (41.87%) (41.43%)
# labels agreed 9,178 6,849 16,027
in stage 2 (92.96%) (92.77%) (92.85%)
# labels agreed 9,628 7,183 16,811
in stage 3 (97.49%) (97.32%) (97.39%)

Table 3: Final aggregated statistics of the three stages
of the annotation process.

observed between responses from counselors and
peers and state our recommendations when using
this data to train therapeutic conversational agents.

Questions: There is ≈23% and ≈26% increase
in closed and open questions, respectively, in coun-
selor responses from CC compared to peer-support
responses from RED. Questioning plays a cen-
tral role in therapeutic interactions as it builds
up mutual dialogue between client and therapist
(Poskiparta et al., 2000). But Hill et al. (1983)
observed with time-limited counseling, fact finding
through closed questions is rated lower in helpful-
ness. It can result in the speaker saying less and
less and the listener feeling pressured to ask more
questions to keep the interaction going. However,
in both CounselChat and RED datasets, the number
of open questions is nearly half of the number of
closed questions. Hence, mechanisms should be
devised to increase the percentage of open ques-
tions to balance the number of closed questions.
This combination would be more effective than a
disproportionate reliance on closed questions.

Reflections: The number of reflections is pos-
itively associated with the perceived empathy

(Klonek et al., 2015). It is also a competence indi-
cator in assessing MI competency (Moyers et al.,
2003). Non-surprisingly, both simple and complex
reflections are observed to be higher (≈20% and
≈30% increase in simple and complex reflections,
respectively) in counselors’ responses compared to
peers’. Thus, it would be beneficial to boost the
percentage of reflections among peer support dia-
logues when using them to train therapeutic agents.

Scholars emphasize that listeners should formu-
late more reflections than closed questions (Klonek
et al., 2015). As we observed, some closed ques-
tions such as "Are you eating because you are
bored?" are identical to reflections, differing only
in the voice intonation at the end. They could
be easily reformulated into reflections such as "It
seems that you are eating because you are bored".

Giving information: In counselor responses,
there is a 200.33% increase of Give Information
type of sentences compared to responses from
peers. It is quite unsurprising since counselors are
relatively knowledgeable about the subject being
discussed and hence are in a position to provide
information that can help the speaker. Informed by
this observation, steps should be taken to boost the
amount of information in peer-support responses.

MI Adherent Behavior Codes: Supporting the
client with statements of compassion and sympa-
thy are surprisingly higher among peers (≈95%
increase) compared to counselors. Affirming the
speaker by saying something positive or compli-
mentary is also seen to be comparatively higher
in RED (≈21% increase). These are very good
indicators that show peer-support responses if uti-
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Figure 2: Distribution of MITI labels in CounselChat and RED datasets.

Label No. of labels No. of labels Increase in CC Increase in RED
in CounselChat in RED compared to RED compared to CC

Closed Question 500 405 23.46% ↑ -19.00% ↓
Open Question 264 212 24.53% ↑ -19.70% ↓
Simple Reflection 304 252 20.63% ↑ -17.11% ↓
Complex Reflection 732 562 30.25% ↑ -23.22% ↓
Give Information 3,643 1213 200.33% ↑ -66.70% ↓
MI Adherent Behavior Codes:
Advise with Permission 417 67 522.39% ↑ -83.93% ↓
Affirm 428 517 -17.21% ↓ 20.79% ↑
Emphasize Autonomy 152 101 50.50% ↑ -33.55% ↓
Support 418 815 -48.71% ↓ 94.98% ↑
MI Non-Adherent Behavior Codes:
Advise without Permission 1,414 871 62.34% ↑ -38.40% ↓
Confront 142 176 -19.32% ↓ 23.94% ↑
Direct 460 438 5.02% ↑ -4.78% ↓
Warn 67 46 45.65% ↑ -31.34% ↓
Other:
Self-Disclose 174 1216 -85.69% ↓ 598.85% ↑
Other 513 292 75.68% ↑ -43.08% ↓

Table 4: Statistics of MITI labels in CounselChat and RED datasets and the increase/decrease in each label in the
two datasets compared to each other. The increases/decreases that are favourable for the interaction are indicated in
green while those that are unfavourable are indicated in red. The increases/decreases in Self-Disclose and Other are
not assigned a color as their role in therapeutic interventions are quite blurry and subjected to debate.

lized in training therapeutic agents will reflect more
compassion, sympathy, positivity, and compliments
towards the user in distress. On the other hand, em-
phasizing the speaker’s control and autonomy is ob-
served to be higher in counselors’ responses (≈50%
increase) compared to responses from peers.

Advising with and without permission: Giving
advices is generally seen to be higher in counselor
responses. There is ≈522% increase in advising af-
ter asking for permission and ≈62% increase in ad-
vising without asking for permission among coun-
selors’ responses compared to those from the peers.
Advising without asking for permission takes a por-
tion of 77.22% of the total number of advices given

in counselor responses. Thus, counselors, though
professionally trained, tend to make the mistake of
advising without prior asking for the speaker’s per-
mission. This percentage is higher in peer-support
responses in which advising without permission
takes a portion of 92.86% of the total number of
advices given by the peers. Thus, in both datasets,
steps should be taken to reformulate advices in a
way that the agent asks for the speakers’ permission
before giving advice.

MI Non-Adherent Behavior Codes: Con-
fronting the client by directly disagreeing, arguing,
or criticizing is higher in peers’ responses (≈24%
increase) compared to those of the counselors’.
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Such interactions reflect uneven power sharing, ac-
companied by disapproval and negativity (Moyers
et al., 2003). Directing the speaker by giving or-
ders and also warnings are quite surprisingly seen
to be slightly higher in the responses given by the
counselors compared to the responses of the peers
(≈5% and ≈46% increase for Direct and Warn,
respectively). These are non-favourable response
types that negatively affect the therapeutic interac-
tion between the speaker and the listener and thus
should be detected and eliminated as a preliminary
step before using such responses to train chatbots.

Self-Disclosure: The role of self-disclosure in
therapeutic interventions is quite blurry. For ex-
ample, psychoanalysts believe that self-disclosure
is counterproductive as it distorts client’s transfer-
ence. Conversely, Cognitive Behavioural therapists
believe that self-disclosure can be a useful tool in
therapy as it models and reinforces new perspec-
tives for the client. Digging deep, there are two
broad types of self-disclosure used by counsellors:
1) intra-session disclosure, where the counselor
discloses a feeling about the client that is relevant
to the therapeutic process; and 2) extra-session dis-
closure, where the counselor reveals information
about themselves that occurs outside the session.
In most cases, intra-session disclosure is the most
useful type of self-disclosure (Levitt et al., 2016).

As we manually inspected the statements la-
beled as Self-disclosure in CounselChat and RED
datasets, it was found out that Intra-session dis-
closure is seen higher in CC compared to RED,
whereas Extra-session disclosure is seen higher
in RED compared to CC. Table 5 provides some
examples of such statements. This suggests that
counselors are more careful when disclosing infor-
mation about themselves and when they do they
make sure that the information they disclose is rel-
evant to the therapeutic process. Extra-session dis-
closure too has its place in therapeutic interactions
specially contributing to building rapport between
the client and the therapist. However, as suggested
by R. Schwartz (2021), this type of disclosure must
be used wisely with caution since it can as well be
counterproductive distorting client’s transference.

6 Discussion and Conclusion

This paper discussed the curation process of a large-
scale distress consoling dialogue dataset containing
utterances from trained counselors and peers. A
carefully designed annotation process was followed

Examples of intra-session disclosure in CounselChat:
- Personally, I can tell you that I would want my clients to
tell me about anxiety they feel 100% of the time.
- I have had clients asking the same question and there is
often an underlying fear that they "can’t be helped" or they
will "be too much for their therapist."

Examples of extra-session disclosure in RED:
- You remind me a lot of my best friend that I had when I
was young. Being her friend was exhausting.
- I too suffer from psychosis from my schizo-affective dis-
order, yelled at my former best friend for gangstalking me,
called her all kinds of horrible names.

Table 5: Examples of different types of self-disclosure
observed in CounselChat and RED datasets.

to annotate each response statement with labels
adapted from the MITI code. We saw the effec-
tiveness of our annotation process as it contributed
in increasing the observed agreement and inter-
rater reliability as the process advanced through
different stages. Based on the comparative analy-
sis between responses from counselors and peers,
we reported seven major differences between them,
highlighting the strengths and limitations of us-
ing abundantly available peer-support dialogues
for purposes such as training therapeutic chatbots.
In summary, peers’ responses tend to be more sup-
portive, compassionate, and encouraging than coun-
selors’ as observed by the increased percentage of
Support and Affirm labels. But important thera-
peutic techniques such as asking more open ques-
tions than closed ones, reflections, giving informa-
tion and advices with permission, and emphasizing
speaker’s autonomy require further boosting. MI
non-adherent behaviors such as confronting is also
seen higher among peers and thus should be elim-
inated. Careful attention should also be paid to
self-disclosure among peers as the majority of such
statements are of the type extra-session disclosure,
which is less useful for the therapeutic process.

Curating this dataset is the first step in our gen-
eral goal of boosting the therapeutic competency in
peer-support responses. Using this dataset we plan
to train an MITI classifier to automatically identify
favourable and unfavourable response types present
in peers’ responses. Being able to detect MI non-
adherent behaviors such as confronting will enable
us to directly eliminate such responses from the
data. Next, we intend to develop an MITI rephraser
that can convert certain types of responses such as
closed questions and advices without permission
into more favourable reflections and advices with
permission, respectively. We plan on investigating
simple linguistic rule based approaches as well as
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unsupervised text style transfer methods that can
be trained on unparalleled corpora (Malmi et al.,
2020; Jin et al., 2022) for this purpose. We believe
this will largely boost the therapeutic competency
in peer-support responses and will increase the ther-
apeutic effectiveness in chatbots trained on them.

7 Ethics Statement

Data curation: Analysis of posts of a website such
as Reddit is likely considered “fair play" as indi-
viduals are anonymous and users are aware that
their responses remain archived on the site unless
they explicitly delete them. The Reddit privacy
policy also states it allows third parties to access
public Reddit content through the Reddit API and
other similar technologies. 5 Reddit’s data is al-
ready widely available in larger dumps such as
Pushshift (Baumgartner et al., 2020). We collected
only publicly available data in Reddit and the cu-
ration process did not involve any intervention or
interaction with the Reddit users. The CounselChat
dataset is also available publicly. But Fiesler and
Proferes (2018) in a study on user perceptions on
social media research ethics empahsizes some po-
tential harms that can be caused due to social com-
puting research because internet users rarely read
or could fully understand website terms and con-
ditions. Since this dataset in particular contains
sensitive information, we adhere to the guidelines
suggested by Benton et al. (2017) for working
with social media data in health research, and share
only anonymized and paraphrased excerpts from
the dataset so that it is not possible to recover user-
names through a web search with the verbatim post
text. In addition, references to usernames as well
as URLs are removed from dialogue content for
de-identification.

Human annotation: Considering the qualifica-
tions of the workers we recruited, who were all
trained in the practice of counseling, we were de-
termined to pay them a wage considerably above
the US minimum wage of $7.12 per hour. We paid
them $10 per batch of 10 dialogues in the first stage
of the experiment, in which average task comple-
tion time took ≈30 minutes (excluding the time
taken by workers who took an unusually long time
to complete the task). A bonus of $5 was offered
for each batch if a worker obtained an above av-
erage observed agreement with a peer. For the

5www.redditinc.com/policies/
privacy-policy-october-15-2020

second and third stages of the annotation task, we
offered the workers 5 per batch of 10 dialogues.
The average completion time per batch was ≈15
minutes in these two stages. Since the dataset is
in English, all the annotators recruited were either
native speakers or had professional competency
in the English language. The fact that the dataset
is English-only potentially perpetuates an English
bias in NLP systems.

Therapeutic chatbots: Finally, there can be
certain ethical implications associated with the de-
velopment of therapeutic chatbots as highlighted
by several researchers (Lanteigne, 2019; Mon-
temayor et al., 2021; Tatman, 2022). However,
the idea of therapeutic chatbots is not a new con-
cept. Chatbots such as SimSensei (DeVault et al.,
2014), Dipsy (Xie, 2017), Emma (Ghandeharioun
et al., 2019), Woebot (woebothealth.com),
and Wysa (www.wysa.io) are some examples.
As Czerwinski et al. (2021) state, About 1 billion
people globally are affected by mental disorders; a
scalable solution such as an AI therapist could be
a huge boon. Thus, even though therapeutic chat-
bots may encompass certain ethical implications,
based on previous studies we already can acknowl-
edge that the use of chatbots has the potential to
improve therapeutic services notably in relation to
accessibility and anonymity.

We curated this dataset for the ultimate develop-
ment of a chatbot that adheres to MI strategy when
responding to emotional distress. With the signif-
icant performance achieved by recent pre-trained
language models, going for a deep learning-based
solution is one of the choices that can be taken
when developing such an agent. But it should not
be undermined that because of the unpredictabil-
ity associated with generative models, they always
carry a risk when delivering emotional support to
those undergoing distress. Thus, caution should
be taken to avoid the delivery of inappropriate re-
sponses. This may not be limited to avoiding pro-
fane or judgemental responses. As pointed out by
R. Tatman (2022) a response such as “You’re not
alone" may be comforting to someone with de-
pression, however, can bring detrimental effects to
someone suffering from paranoia. Hence, caution
should be taken when developing therapeutic chat-
bots based on this dataset. Real-world deployment
of such agents may still encompass potential dan-
gers and if deployed, should be done with human
supervision.
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A Annotation Experiment

A.1 User Interfaces
Figures 5 and 6 shows the user interfaces of the
first and second stages of the MITI annotation ex-
periment conducted in UpWork. The first stage
is when two workers from UpWork were asked to
annotate each sentence contained in the listener
utterances of the dialogues from CounselChat and
RED datasets and the second stage is when a high
quality worker was asked to act as a judge to re-
solve the disagreements occured in the first stage.
Interfaces similar to the second stage were used
in the third stage as well. To educate the worker
on the MITI coding scheme and the labels we de-
rived out of it, a detailed tutorial was shown to the
worker at the beginning of the task. This is shown
in Figure 3c. A practice task to self-evaluate their
competence in annotating responses with the labels
derived from the MITI code followed next. Figure
4c depicts this.

A.2 More About the MITI
The MITI does not contain an exhaustive list of
all possible codes; thus not all sentences can be
mapped to a label from the MITI code. In this case,
the annotators were asked to select Other. Also, the
labels from the MITI code are mutually exclusive.
Thus, the same sentence could not receive more
than one label.

A.3 Worker Quality
In stage 1 of the annotation process, to motivate
the workers to pay attention to the task, we of-
fered to pay them a bonus of $5 for each batch of
dialogues that scored an above average observed
agreement with a peer worker. Out of 400 worker
assignments (200 batches × 2 workers per batch),
140 of them (35%) were able to receive this bonus.
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As the task progressed, those who scored higher
observed agreements with the peer workers were
allocated more batches to annotate.

In the second and third stages, to validate the
quality of the judges and their attentiveness to the
task, hidden checkpoints were included to measure
the workers’ attentiveness to the task. These check-
points were based on the labels agreed by the two
workers in the first stage of the task. In each batch
of 10 dialogues, we randomly selected 10 sentences
for which a label was agreed in the first stage. For
each such sentence, we randomly sampled another
label out of the remaining labels and showed it
along with the correct label for the judge to select
from. The four judges we recruited were able to
get in overall 84.3% questions correct in stage 2
of the annotation task. The scores for each of the
four judges were 80.00%, 86.47%, 86.47%, and
87.50%. In the third stage, they were able to get in
overall 82.93% questions correct. Their individual
scores were 83.00%, 83.64%, 82.00%, and 83.00%.
All the scores being above 80% in both stages indi-
cates that they all were paying significant attention
to the task.

A.4 Confusion Matrices

Figure 5 shows the confusion matrices in stage 1 of
the experiment between the two annotators for the
CounselChat and RED datasets separately. Labels
such as Give Information, Advise without Permis-
sion, and Closed Question had the highest agree-
ment between the two workers in the CounselChat
dataset, whereas in RED, the highest agreed labels
were Self-Disclose, Give Information, and Support.

Figure 6 shows the confusion matrices between
the two annotators for sentence for which the label
was unresolved in stage 1 and between each of
these annotators and the judge in stage 2 of the
annotation process. From the second and third
confusion matrices corresponding to each dataset,
it could seen how the judge’s annotations aligned
with annotations from each annotator from stage 1.

Figure 7 shows the confusion matrices between
the two remaining annotators after the annotations
from the poorly performed worker are removed and
between each of these annotators and the second
judge in stage 2 of the annotation process. Note
that in the remaining two annotations, the first one
comes from a relatively better performed worker
from stage 1 and the second one comes from the
first judge from stage 2. By observing the confu-

sion matrices, it was noted that 73.34% times, the
second judge agreed with the annotation provided
by the first judge in stage 2. This further validated
the quality of the judges selected.
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(a) The dashboard interface (b) Instructions

(c) The tutorial (d) The annotation task interface

Figure 3: User interfaces of the first stage of the MITI annotation experiment.
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(a) The dashboard interface (b) Instructions

(c) The practice task (d) The task interface for resolving labels

Figure 4: User interfaces of the second stage of the MITI annotation experiment.
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(a) CounselChat dataset (b) RED dataset

Figure 5: Confusion matrices between the two annotators for responses in the CounselChat and RED datasets during
stage 1 of the annotation process.

(a) Annotator 1 vs. Annotator 2 (b) Annotator 1 vs. Judge (c) Annotator 2 vs. Judge

CounselChat dataset (For stage 1 unresolved labels)

(d) Annotator 1 vs. Annotator 2 (e) Annotator 1 vs. Judge (f) Annotator 2 vs. Judge

RED dataset (For stage 1 unresolved labels)

Figure 6: Confusion matrices between the two annotators for sentence for which the label was unresolved in stage
1 and between each of these annotators and the judge in stage 2 of the annotation process. From the second and
third confusion matrices corresponding to each dataset, it could seen how the judge’s annotations aligned with
annotations from each annotator from stage 1.
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(a) Stage 1 annotator vs. First judge (b) Stage 1 annotator vs. Second judge (c) First judge vs. Second judge

CounselChat dataset

(d) Stage 1 annotator vs. First judge (e) Stage 1 annotator vs. Second judge (f) First judge vs. Second judge

RED dataset

Figure 7: Confusion matrices between different annotators for sentences which were still unresolved after stage 2
that contained at least one annotation from a poorly performed worker. It could be observed that the second judge’s
annotations in stage 3 aligned mostly with the first judge’s annotations in stage 2.
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Abstract

The Chinese text correction (CTC) focuses on
detecting and correcting Chinese spelling er-
rors and grammatical errors. Most existing
datasets of Chinese spelling check (CSC) and
Chinese grammatical error correction (GEC)
are focused on a single sentence written by
Chinese-as-a-second-language (CSL) learners.
We find that errors caused by native speak-
ers differ significantly from those produced by
non-native speakers. These differences make
it inappropriate to use the existing test sets di-
rectly to evaluate text correction systems for
native speakers. Some errors also require the
cross-sentence information to be identified and
corrected. In this paper, we propose a cross-
sentence Chinese text correction dataset for na-
tive speakers. Concretely, we manually anno-
tated 1,500 texts written by native speakers.
The dataset consists of 30,811 sentences and
more than 1,000,000 Chinese characters. It
contains four types of errors: spelling errors,
redundant words, missing words, and word or-
dering errors. We also test some state-of-the-art
models on the dataset. The experimental results
show that even the model with the best perfor-
mance is 20 points lower than humans, which
indicates that there is still much room for im-
provement. We hope that the new dataset can
fill the gap in cross-sentence text correction for
native Chinese speakers.

1 Introduction

Chinese text correction (CTC) aims at detecting
and correcting errors in Chinese text. Text correc-
tion has important applications in the domain of
education, journalism, and publishing. For many
native Chinese speakers, such as journalists, writ-
ers, and bloggers, a text correction system for na-
tive Chinese speakers will greatly improve the ef-
ficiency of their proofreading. In the field of NLP,
Chinese text corrections usually includes two tasks:
Chinese spelling check (CSC) (Hong et al., 2019;
Cheng et al., 2020; Wang et al., 2021) and Chi-

non-native examples

WRONG:             父母对孩子的爱情在世界上是最重要的。
CORRECT:          父母对孩子的关爱在世界上是最重要的。
TRANSLATION:  The love of parents for their children is the most
                             important in the world.

WRONG:             这一点可以说是吸烟对个人健康的利益。
CORRECT:          这一点可以说是吸烟对个人健康的好处。
TRANSLATION:  This can be said to be a benefit of smoking to 
                             the health of the individual.

WRONG:             弹奏者只有做到手臂、肘部与腕部都能够完全随着指
                            尖动作运行，才能有信息弹奏出均匀、流畅的音符，
                            音色也会更加出挑。
CORRECT:         弹奏者只有做到手臂、肘部与腕部都能够完全随着指
                            尖动作运行，才能有信心弹奏出均匀、流畅的音符，
                            音色也会更加出挑。
TRANSLATION:  Only when the player is able to run his arms, elbows
                             and wrists completely with the fingertip movements 
                             can he have the information confidence to play     
                             even, smooth notes and have a more distinguished 
                             tone.

native examples

Figure 1: Comparison between the errors caused by na-
tive and non-native speakers. The non-native examples
are from CGED 2018, and the native examples are from
CCTC.

nese grammatical error correction (GEC) (Yuan
and Briscoe, 2016; Omelianchuk et al., 2020; Wang
et al., 2020).

The existing CSC and Chinese GEC test sets
(Tseng et al., 2015; Rao et al., 2018; Zhao et al.,
2018) are mainly generated from essays written by
Chinese-as-a-second-language (CSL) learners. The
essays written by CSL learners are significantly dif-
ferent from those written by native Chinese speak-
ers. Specifically, essays written by CSL learners
usually contain more errors and are more likely to
make mistakes in the misuse of words. In contrast,
texts produced by native speakers contain sparser
errors and typically make mistakes that are caused
by oversight. These significant differences prevent
researchers from using the existing test sets directly
to evaluate text correction systems for native speak-
ers.
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Figure 1 shows the errors made by CSL learners
and native speakers, respectively. We can see the
CSL learners make some mistakes that are obvi-
ous to native speakers. The word “爱情” usually
refers to the love between a couple, while “关爱”
indicates the love of an elder for a younger child.
In Chinese, these two words are not interchange-
able. However, For CSL learners, it is easy to
mistakenly write “关爱” as “爱情” because they
can both be translated into “love” in English. Sim-
ilarly, the words “利益” and “好处” can both be
translated into “benefit” in English, but the word
“利益” cannot be used with “健康” (health) in Chi-
nese. Native speakers will not make these mistakes.
For native Chinese speakers, the most common
errors are caused by oversight, which the writers
themselves are capable of correcting. For example,
the misspelling of “信息”(information) as “信心”
(confidence) is due to the similarity of the Pinyin
for xinxi and xinxin, respectively. Besides, the test
sets for non-native speakers, such as CGED (Rao
et al., 2018), and SIGHAN (Tseng et al., 2015) tend
to write simpler sentences with limited topics. In
contrast, the texts written by native speakers tend
to have complicated sentences with various topics.

Moreover, the existing datasets of CSC and GEC
are mainly for sentence-level correction. How-
ever, some errors usually need to be corrected via
the cross-sentence information (Chollampatt et al.,
2019; Yuan and Bryant, 2021). For example, in Fig-
ure 2, it is difficult to see what is wrong with each
sentence individually. According to the previous
sentences, we know that the word “蜘蛛” (spider)
should be corrected as “红蜘蛛” (red spider).

To better evaluate the text correction system’s
performance on document-level texts produced by
native speakers, we propose a new dataset CCTC
(Cross-Sentence Chinese Text Correction). Since
every Chinese character may be erroneous, the
scale of annotation is large. Without any auxiliary
hints, the annotators will be prone to miss the er-
rors. Therefore, we give the annotators some hints
about the position and type of errors produced by
several CSC and GEC systems. We first annotate
all the sentences from 200 documents and find only
11.4% sentences with errors. Errors in sentences
with candidate errors account for more than 90% of
all errors. In order to maximize the diversity of top-
ics and increase the number of errors in the dataset,
we only annotate the sentences with error candi-
dates for another 1,300 documents. Concretely, we

 WRONG:            红蜘蛛俗称火蜘蛛、火龙。红蜘蛛……。危害特点：
                            蜘蛛是一种危害作物种类较多的害虫，以成虫、幼虫
                            或若虫群聚在叶背吸取汁液。
  
 CORRECT:         红蜘蛛俗称火蜘蛛、火龙。红蜘蛛……。危害特点：
                            红蜘蛛是一种危害作物种类较多的害虫，以成虫、幼
                            虫或若虫群聚在叶背吸取汁液。
  
 TRANSLATION: Red spider  is commonly known as fire spider
                           and fire dragon.  Red spider … . Damage 
                           characteristics:  Spider Red spider is a pest 
                           that affects more crop species, with adults,
                           larvae, or worm clusters in the back of the
                           leaves to suck sap.

Figure 2: An example for cross-sentence text correction.

annotate 1,500 texts from the Internet, and the an-
notated text includes a total of 30,811 sentences
and more than 1 million Chinese characters.

We utilize several types of state-of-the-art mod-
els for experiments and analyses on our dataset. We
also evaluate the performance of native speakers on
CCTC. The experimental results show that even the
model with the best performance is still 20 points
worse than the human, which indicates that there is
still much room for improvement.

To summarize, our contributions are as follows:

• We propose a new Chinese text correction
dataset, which can be used to evaluate text
correction systems for native speakers better.

• Our dataset is based on document-level text.
We have done some experiments and analy-
ses for cross-sentence errors, which we hope
will be helpful for subsequent studies of cross-
sentence text correction.

• We systematically compare our dataset with
other CSC and GEC datasets and test four
state-of-the-art models on the new dataset.

We hope that CCTC will contribute towards
the development of cross-sentence Chinese text
correction for native speakers. Our datasets are
publicly available at https://github.com/
destwang/CTCResources.

2 Existing Datasets

The Chinese text correction related datasets mainly
include Chinese spelling check (CSC) and gram-
matical error correction (GEC). Statistics informa-
tion is shown in Table 1, and the features of these
datasets are shown in Appendix.

2.1 English GEC Datasets
CoNLL14 The test set (Ng et al., 2014) consists of
essays written by English as a Second Language
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Datasets # sents Avg. Sent. Length Avg. Doc. Length Err. Sent. (%) Sent-K # tokens Language Task

CoNLL 2014 1,312 22.9 - 75.8 0.25 30,045 En GEC
JFLEG 747 18.9 - 86.4 0.53 14,118 En GEC
CWEB-S 2,864 23.9 - 24.5 0.39 68,450 En GEC
CWEB-G 3,981 20.3 - 25.6 0.44 80,814 En GEC

SIGHAN 2015 1,100 30.5 - 50.0 - 33,550 Zh CSC
OCR Text 1,000 10.2 - 100.0 - 10,198 Zh CSC
CGED 2018 3,549 39.6 - 56.0 - 140,655 Zh GEC
NLPCC 2018 GEC 2,000 29 - 99.2 - 59,325 Zh GEC

CCTC-Train 12,689 41.9 818.6 9.8 0.76 532,088 Zh CTC
CCTC-W 14,338 38.8 856.6 9.4 0.72 556,767 Zh CTC
CCTC-H 3,784 41.4 784.2 11.4 0.78 156,836 Zh CTC

Table 1: Statistics of datasets. For datasets CGED 2018, NLPCC 2018 GEC and SIGHAN 2015, the statistics
here are about their test sets. All test sets are sentence-level except for our dataset CCTC. Here, tokens mean the
subwords obtained after tokenizing of BERT, which are mainly individual Chinese characters for Chinese. Sent-K
is Cohen’s Kappa at sentence level. CCTC-H means a high-quality test set, and CCTC-W means a test dataset
which contains a wider range of documents.

(ESL) learners from the National University of Sin-
gapore, which are annotated for grammatical errors
by two native English speakers.

JFLEG The JFLEG corpus (Napoles et al., 2017)
consists of sentences written by English language
learners for the TOEFL exam. The texts have been
corrected for grammatical errors and fluency.

CWEB This dataset (Flachs et al., 2020) is de-
signed to annotate English web text, which cor-
responds to a dataset containing both native and
non-native speakers.

CWEB is the closest to our proposed dataset
among the known datasets. There are three main
differences: (i) our dataset is document-level, while
CWEB is sentence-level; (ii) our data only focus
on the texts written by native speakers; (iii) our
proposed dataset is designed for Chinese.

2.2 CSC Datasets

SIGHAN 2015 The text of SIGHAN 2015 (Tseng
et al., 2015) is collected from the essay section of
the computer-based Test of Chinese as a Foreign
Language (TOCFL). Thus, the spelling errors are
mainly caused by CSL Learners. SIGHAN 2015 is
based on the sentence, and the rate of the erroneous
sentences is manually adjusted to be higher than
the original text.

OCR Text The dataset is produced from OCR re-
sults of Chinese subtitles in videos (Hong et al.,
2019). Therefore, these sentences are from native
Chinese speakers, but these errors are automatically
generated by the OCR method and not caused by
human writing.

2.3 Chinese GEC Datasets

CGED 2018 The corpora used in CGED 2018 (Rao
et al., 2018) are taken from the writing section of
the HSK (Hanyu Shuiping Kaoshi, Pinyin of “A test
of Chinese level”). The grammatical errors are also
produced by non-native speakers. There are four
kinds of errors, which are spelling errors, redundant
words, missing words, and word ordering errors.
NLPCC 2018 GEC The training data (Zhao et al.,
2018) is mainly collected from Lang-8. The test
data is extracted from the PKU Chinese Learner
Corpus, which is constructed by the Department of
Chinese Language and Literature, Peking Univer-
sity.
MuCGEC The dataset consists of 7,063 sentences
collected from CSL learner sources. MuCGEC
(Zhang et al., 2022) is a multi-reference multi-
source evaluation dataset for Chinese Grammatical
Error Correction.

In contrast to CGED 2018, NLPCC 2018
GEC and MuCGEC datasets, CCTC is based on
document-level texts written by native speakers.

3 CCTC Dataset

We construct a new cross-sentence Chinese text cor-
rection dataset for native speakers. We extract the
raw text from WuDaoCorpora (Yuan et al., 2021),
which mainly includes news, blogs, and some pop-
ular science articles. We pre-process the collected
documents, remove personal information, adver-
tisements, and noisy articles, then sample 1,500
documents for annotation. We take 100 of these
documents for verification. We can determine by
the author’s information that all the 100 documents
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Candidate Methods # sents # err. sents

BERT-CSC 3,905 2,192
BERT-GEC 2,213 1,404
BERT-CGED 2,083 356
Others 2,734 40

Total 10,935 3,992

Table 2: Statistics of different candidate generation
methods. # sents is the number of candidates gener-
ated by these methods and # err. sents is the number of
real erroneous sentences. Others indicates the sentences
which are labeled without error candidates in CCTC-H.

are written by native Chinese speakers, which illus-
trates that almost all of the documents are written
by native Chinese speakers. Table 1 shows the
statistical information.
Candidates Generation To facilitate manual an-
notation and reduce error omission, we utilize sev-
eral different models to generate error candidates.
Specifically, we select three different kinds of mod-
els as follows. The detailed information of the
training set will be described in the next section.

• BERT-CSC: We train a BERT-based (Devlin
et al., 2019) Chinese spelling check model via
the pseudo-data similar to Cheng et al. (2020).

• BERT-GEC: We replace, insert, delete and
shuffle some tokens randomly to construct
GEC pseudo-data and train a BERT-based se-
quence labeling model.

• BERT-CGED: We train a BERT-based se-
quence labeling model using the CGED train-
ing dataset.

To cover as many errors as possible, we lower
the thresholds of the three models. In this way,
these models will generate more candidates to find
out the erroneous parts of the documents.
Annotation Following Rao et al. (2018), errors
are divided into four types: spelling errors (word
selection errors), redundant words, missing words,
and word ordering errors. The data are annotated by
five annotators, with an average of about 120 hours
and 2K sentences each. Our annotators annotate the
dataset on an annotation tool prepared in advance.
We pay our annotators appropriately according to
the number of annotated sentences.

We firstly annotate 3,784 sentences from 200
documents, including sentences with error candi-
dates and sentences without candidates. After an-
notating, we find that there are only 431 sentences

Figure 3: The rate of different error types.

with errors. Errors in candidate sentences account
for more than 90% of all errors. In order to maxi-
mize the diversity of topics and increase the num-
ber of errors in the dataset, we only annotate the
sentences with error candidates for another 1,300
documents. We name the dataset with 200 anno-
tated documents as CCTC-H, which means a high-
quality dataset. The remaining 1,300 documents
are divided into two parts, 650 of which are used as
the training set and the other 650 documents as the
CCTC-W, which means this test dataset contains
a wider range of documents. To conclude, we an-
notate 1,500 documents from the Internet, and the
annotated texts include a total of 30,811 sentences
and more than 1 million Chinese characters. The
detailed statistics of different candidate generation
methods are shown in Table 2.

In order to ensure the quality of the annotated
data, we take 500 sentences from the training set,
validation set, and test set, respectively, and anno-
tate these sentences without candidate errors. Sim-
ilar to Flachs et al. (2020), annotator agreement
is calculated at the sentence level using Cohen’s
Kappa. Kappa is 0.76, 0.72, and 0.78 for the CCTC-
Train, CCTC-W, and CCTC-H, respectively, show-
ing that our dataset has a higher agreement than the
previous dataset.

Dataset Analysis Table 3 shows examples of the
four types of errors. Figure 3 shows the rate of sen-
tences corresponding to the four error types. We
can see that Chinese spelling errors (word selection
errors) are the most common in documents writ-
ten by native speakers, accounting for about 60%
of the total. Word ordering errors have the least
percentage of all errors. For texts written by non-
native speakers from CGED, redundant words and
missing words occur at a relatively greater rate than
texts written by native speakers. The occurrence of
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Error Type Example sentence Translation

Spelling Errors 进 入 大 学 ， 就 是 进 入 一 个 新 的 环
境，结出（接触）新的人，你的所有过去
对于他们来说是一张白纸。

Entering college means entering a new environ-
ment, you will bear (meet) new people, and all
your past is a blank sheet of paper to them.

Redundant
Words

突然有一天，一个女人来看来看孩子。 Suddenly one day, a woman came to see came to
see the child.

Missing Words 今天要讲（的）是他在一年时间里面的教
师生涯。

What today is going (to) be talking about is his
career as a teacher inside a year.

Word Ordering
Errors

一般室内环境采用200系列材质即可，而
室外需环境（环境需）使用304材质。

General indoor environment needs to use 200
series material, while outdoor needs environment
(environment needs) to use 304 series material.

Table 3: Examples of different error types caused by native speakers.

Figure 4: The rate of different error types with POS
tagging. We count the multi-token errors according to
the POS tags of multi-token. If the multi-token errors
can be segmented into k words, the count of each type
will increase by 1/k. (S: Spelling errors, M: missing
words, R: redundant words)

word ordering errors is rare for native speakers and
somewhat more frequent for non-native speakers.

To better analyze the difference between errors
made by native and non-native Chinese speakers,
we perform statistical lexical analysis for each error
type. In this paper, we use LTP (Che et al., 2010)
for the Part-of-Speech (POS) tagging of the text.
The statistical results are shown in Figure 4. We
find that the most common mistake made by native
speakers is the misuse of auxiliaries. In contrast,
non-native speakers tend to write a sentence with
redundant or missing auxiliaries.

We count the length of the error span, which can
be seen in Figure 5. Except for the word ordering
errors, the errors with one token are in the majority.
The decline in the percentage of spelling errors of
two consecutive tokens is faster than the percentage
for redundant and missing words. Errors of more
than three consecutive tokens are rare.

We perform a manual statistical analysis of the
dataset and find that 68% of errors are caused by
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Figure 5: The length of error span.

oversight, such as spelling errors caused by the
Pinyin Input method. The word “接触” (meet)
may be incorrectly entered as “结出” (bear) due
to similar pronunciation as shown in Table 3. This
type of error is varied, making this type of error
more difficult to correct. The remaining errors are
mainly due to misuse of some words with similar
semantics or method of use, such as the auxiliaries
“的” and “地”. In Chinese, “的” is usually used as
a suffix of adjective and “地” is used as a suffix of
adverb, and they are pronounced the same, so these
two words are often misused in Chinese.

We analyze the spelling errors more specifically.
The spelling errors can be divided into the follow-
ing five types: misuse of words, single Chinese
character error in a word, pronoun errors, auxiliary
errors, and other single Chinese character errors,
accounting for 28%, 23%, 8%, 30%, and 11%, re-
spectively.

4 Experiments

4.1 Training Dataset

There are no training datasets specifically anno-
tated for errors caused by native speakers before.
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Dataset # sents err. sents (%)

CGED 44,754 94.7
NLPCC GEC 1,200,000 89.8
SIGHAN 281,381 100.0
Pseudo-data 3,000,000 99.6

Table 4: Statistics of training dataset.

In this paper, in addition to our proposed training
set, we use training data from multiple sources, in-
cluding CGED (Rao et al., 2018), SIGHAN (Tseng
et al., 2015), and NLPCC 2018 GEC dataset (Zhao
et al., 2018). For the CGED data1, we use CGED
training data from 2014 to 2016, totaling about 45K
sentences. For NLPCC dataset2, there are multiple
correction sentences for each sentence. We ran-
domly select part of the correction sentences as our
training set. For SIGHAN, we use the training data
of SIGHAN, as well as the automatically gener-
ated corpus (Wang et al., 2018). Besides, we also
use our training set of CCTC to train these mod-
els. For the GECToR model, we only use CCTC to
fine-tune after the pseudo-data training the same as
Omelianchuk et al. (2020).

As mentioned above, native speakers make a
wider variety of errors, so we use heuristics to con-
struct pseudo-data in the hope that we can cover as
many types of errors as possible. We construct a
large-scale pseudo-data using Chinese Wikipedia.
The pseudo-data generation method for GEC is sim-
ilar to Zhao et al. (2019), which randomly delete,
add, replace, and shuffle the tokens. To better check
the Chinese spelling errors, for the replacement op-
eration, 80% of the tokens are from the confusion
set provided by Wu et al. (2013) and 20% of the to-
kens are from the corpus. The pseudo-data of CSC
are generated by the same replacement operation.
Table 4 shows the statistics of the training data.

4.2 Models

We evaluate performance on our proposed dataset
using four state-of-the-art approaches to CSC or
GEC. The specific models are described as follows.

• SpellGCN (Cheng et al., 2020): This model
incorporates phonological and visual similar-
ity knowledge into BERT via a specialized
graph convolutional network.

1http://www.cged.tech
2http://tcci.ccf.org.cn/conference/2018/taskdata.php

• ResBERT (Wang et al., 2020): ResBERT is
the state-of-the-art model in CGED competi-
tion, by adding ResNet to the BERT model to
achieve better performance.

• GECToR (Omelianchuk et al., 2020): GEC-
ToR achieves the correction of errors such as
redundant words, missing words, and spelling
errors by the BERT model.

• CopyNet (Zhao et al., 2019): CopyNet is a
transformer-based seq2seq model, which can
pay more attention to the grammatical errors
through the copy mechanism.

4.3 Metrics
In the previous works, GEC systems are usually
evaluated using F0.5-score based on MaxMatch
(Dahlmeier and Ng, 2012) since that the precision
of the GEC system is more critical for ESL or
CSL learners. On the contrary, recall is usually
more important than precision for native Chinese
speakers because most errors are caused due to
oversights. They can make correct judgments about
most grammatical errors by themselves. Therefore,
we use the F2-score to evaluate the performance
on the CCTC dataset. The specific equation is as
follows:

F2-score =
5× Precision× Recall

4× Precision + Recall
(1)

Given that native speakers can generally make
correct judgments by themselves, it is also essential
for them to detect the position of errors as well. Re-
garding CGED (Rao et al., 2018), SIGHAN (Tseng
et al., 2015), and NLPCC (Zhao et al., 2018), we
perform three kinds of evaluation, namely sentence-
level, position-level, and correction-level evalu-
ation. The sentence-level evaluation determines
whether there is an error in a sentence, while the
position-level evaluation needs to label the error
position correctly. For the correction-level evalua-
tion, we statistically score the systems by the error
position, error type, and correction results similar
to Rao et al. (2018). The difference is that we use
F2-score because the recall for native speakers is
usually more important.

4.4 Experimental Settings
We use the RoBERTa-wwm (Cui et al., 2019) as
the base models of SpellGCN, GECToR, and Res-
BERT. The training hyperparameters of SpellGCN
and CopyNet are kept consistent with Cheng et al.
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Test Set Train Set Model Sentence-Level Position-Level Correction-level
P R F2 P R F2 P R F2

CCTC-W

SIGHAN SpellGCN 23.59 41.66 36.12 10.99 21.88 18.26 9.49 18.89 15.77
CGED ResBERT 15.96 73.14 42.61 6.50 33.50 18.30 - - -
NLPCC GECToR 27.90 30.90 30.25 8.38 10.57 10.04 7.29 9.20 8.74

Pseudo-data
CopyNet 14.04 78.75 40.98 1.59 16.22 5.72 0.90 9.14 3.22
ResBERT 26.13 40.61 36.56 11.34 20.01 17.36 - - -
GECToR 26.29 44.39 39.02 11.61 22.25 18.80 8.17 15.66 13.24

CCTC-Train
SpellGCN 55.61 43.48 45.46 38.96 31.44 32.71 35.19 28.40 29.54
ResBERT 17.62 49.89 36.51 13.38 37.65 27.63 - - -
GECToR 43.13 45.88 45.30 23.37 26.26 25.63 20.36 22.87 22.32

CCTC-H

SIGHAN SpellGCN 26.27 36.71 34.01 11.51 18.10 16.24 10.81 17.00 15.26
CGED ResBERT 19.24 64.44 43.83 7.59 29.07 18.56 - - -
NLPCC GECToR 32.55 29.25 29.86 9.58 10.05 9.96 8.07 12.25 11.10

Pseudo-data
CopyNet 18.55 79.73 48.04 2.13 17.37 7.13 1.10 8.96 3.68
ResBERT 26.02 33.08 31.37 9.65 14.26 13.02 - - -
GECToR 27.82 37.67 35.18 10.84 16.45 14.91 8.07 12.25 11.10

CCTC-Train
SpellGCN 61.33 35.80 39.05 40.44 23.68 25.82 36.07 21.12 23.03
ResBERT 25.86 39.49 35.72 16.84 25.93 23.40 - - -
GECToR 49.87 33.86 36.19 24.66 17.28 18.38 22.60 15.84 16.85

Table 5: Experimental Result. For the GECToR model, we use CCTC-Train to fine-tune after the pseudo-data
training the same as Omelianchuk et al. (2020).

(2020) and Zhao et al. (2019) respectively. For
ResBERT, we use the BIO encoding (Kim et al.,
2004) the same as Wang et al. (2020). We fine-
tune the models using the sentences with errors in
CCTC-train.

For CopyNet and GECToR, they will generate
a corrected sentence. To evaluate the performance
of position-level detection for the two models, we
use the Levenshtein3 distance to convert the sen-
tence pairs into the corresponding error types. Con-
cretely, Levenshtein distance can generate three
types of operations: delete, insert and replace,
which correspond to redundant words, missing
words, and spelling errors. Then we convert the ad-
jacent insertion and deletion operations into word
ordering errors. In this way, we can evaluate the
detection performance of the two models. Since
spelling errors accounted for the highest percentage
of all errors, we also test directly using the Spell-
GCN model, which can only correct the spelling
errors.

4.5 Experimental Result
The experimental results are shown in Table 5. The
overall performance of the models after training
with the CCTC-Train is better than other datasets.
CopyNet trained with pseudo-data achieves the best
performance for sentence-level detection on CCTC-
H. For all the models without CCTC-train, Res-
BERT with CGED dataset achieves the best results
on position-level detection. However, ResBERT

3https://github.com/ztane/python-Levenshtein

Model Sentence-Level Position-Level
P R F2 P R F2

SpellGCN 75.0 33.3 37.5 42.1 20.5 22.9
GECToR 71.4 41.7 45.5 34.8 20.5 22.4
ResBERT 48.0 47.4 47.5 31.7 33.8 33.4

Human 85.4 67.3 70.3 61.7 56.0 57.1

Table 6: Experimental results for comparison with hu-
mans. The results of humans are the average results
of two untrained native speakers. All the models are
trained with CCTC-Train dataset.

only detects the errors, but it cannot correct the
sentence. Surprisingly, SpellGCN performs best
for correction. This may be because spelling errors
account for most errors, and SpellGCN is better
able to correct them using phonological and vi-
sual similarity knowledge. ResBERT trained with
CGED dataset achieves better performance than the
model using pseudo-data. We find that ResBERT
with CGED is more effective in detecting auxil-
iary errors such as the misuse of “的” and “地”,
which account for a relatively large proportion of
all errors.

Besides, we can see that the precision of each
model is higher overall on CCTC-H than on CCTC-
W, and the recall is lower. This may be because all
sentences in CCTC-H are labeled, and the coverage
of errors is greater.

4.6 Analysis
To better evaluate the effectiveness of these models,
we test the performance of humans for text correc-
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Figure 6: Experimental results for different input se-
quence length in inference stage, the model is a single-
sentence trained ResBERT model.

tion. The low error density in the actual text makes
it very difficult for humans to correct texts. Thus,
we take 200 sentences from the CCTC-H dataset
and adjust the erroneous sentences to about 50%.
Two untrained native speakers are asked to correct
these 200 sentences. We want to know what perfor-
mance the native Chinese speaker can achieve. The
corresponding experimental results are shown in
Table 6. More detailed results are in the Appendix.

After increasing the error density, the perfor-
mance of almost all the models improves. Human
performs much better than these models. Even the
model with the best results is 20 points worse than
the human, indicating that the models still have
much room for improvement.

Also, with the human test, native speakers often
miss errors without being informed of the error po-
sition in advance, even though we have increased
the error rate to about 50%. For example, in Figure
7, an annotator missed the error “有限” (limited)
because this word also appears frequently. When
we point out this position, native speakers can eas-
ily correct the error.

5 Cross-Sentence Errors

We randomly analyze 100 errors and find that cross-
sentence information is necessary for only 11% of
the errors. However, cross-sentence information
can be helpful for 38% of errors, such as when the
corrected word appears in context.

To test the help of cross-sentence information
for Chinese text correction, we try a simple cross-
sentence correction method, which increases the
length of the input sequence. We vary from single-
sentence correction to multi-sentence correction,
and Figure 6 shows the experimental results. From

       
WRONG:             用户只能使用支持VR视频的三星手机观看，还要下载
                            NBC体育应用并验证自己是NBC有限电视或卫星电视的
                            订户。
      
CORRECT:          用户只能使用支持VR视频的三星手机观看，还要下载
                            NBC体育应用并验证自己是NBC有线电视或卫星电视的
                            订户。
  
TRANSLATION: Users can only use VR video-enabled Samsung
                            phones to watch, and need to download the NBC
                            Sports app and verify that they are subscribers to NBC
                            limited cable or satellite TV.

WRONG:             天生桥位于今香格里拉县城东10公里处，…… 。作品中
                            人与自然和谐而存的主题也是天生与自然的特点。 
      
CORRECT:          天生桥位于今香格里拉县城东10公里处，…… 。作品中
                            人与自然和谐而存的主题也是天生桥自然的特点。
  
TRANSLATION: Tiansheng Bridge is located 10 kilometers east of
                            Shangri-La County, …… . The theme of harmony
                            between man and nature in the work is also a natural
                            feature of natural Tiansheng Bridge.

Figure 7: Examples of CCTC. The above sentence is
an example of failure to correct during human testing,
and the below one is an example for mis-correction by
SpellGCN.

the experimental results, we can see that for a
trained model, the performance of the model in-
creases as the input sequence length grows. This
also shows that the cross-sentence information is
helpful for Chinese text correction.

The models often mis-correct some low-
frequency words due to the lack of context of a
document. In Figure 7, the model mistakenly mod-
ify “天生桥自然” (Tiansheng Bridge) as “天生与
自然” (Natural). In fact, the word “天生桥” has
appeared many times in the context of the docu-
ment. If we could better use the cross-sentence
contextual information, it would help better with
the correction. Based on this, we do not simply
split the document into individual sentences but
keep the complete cross-sentence information. We
hope it will be helpful for subsequent studies of
cross-sentence text correction.

6 Conclusion

In this paper, we propose a novel cross-sentence
Chinese text correction dataset for native speakers.
Concretely, we manually annotated 1,500 Chinese
texts written by native speakers collected from the
Internet. The new dataset consists of 30,811 sen-
tences and more than 1,000,000 Chinese characters.
It contains spelling errors, redundant words, miss-
ing words, and word ordering errors. CSC and
GEC systems developed for native speakers can
be better evaluated on CCTC than the previous
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datasets. We also test some state-of-the-art models
on the dataset. The experimental results show that
even the model with the best performance is still
20 points worse than the human, which indicates
that there is still much room for improvement.
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Model
Sentence-Level Position-Level Correction-Level
P R F2 P R F2 P R F2

SpellGCN 75.0 33.3 37.5 42.1 20.5 22.9 39.5 19.2 21.4
GECToR 71.4 41.7 45.5 34.8 20.5 22.4 32.6 19.2 20.9
ResBERT 48.0 47.4 47.5 31.7 33.8 33.4 - - -

Human 85.4 67.3 70.3 61.7 56.0 57.1 52.2 46.2 47.2

Table 7: Experimental results for comparison with humans.

Dataset Native Speakers Real Errors Original Distribution Cross-Sentence Grammatical Error

CoNLL 2014 ✓ ✓
JFLEG ✓ ✓
CWEB - ✓ ✓ ✓
SIGHAN 2015 ✓
OCR Text ✓
CGED 2018 ✓ ✓
NLPCC 2018 GEC ✓ ✓
CCTC (Ours) ✓ ✓ ✓ ✓ ✓

Table 8: The features of different datasets. The CWEB dataset contains sentence produced by both native English
speakers and non-native English speakers. In contrast, our dataset CCTC only contains text written by native
Chinese speakers.

A Appendix

Table 7 shows the correction-level experimental
results for comparison with humans. Table 8 shows
the features of different datasets.
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Abstract

Intelligent medical services have attracted
great research interests for providing auto-
mated medical consultation. However, the
lack of corpora becomes a main obstacle to re-
lated research, particularly data from real sce-
narios. In this paper, we construct RealMed-
Dial, a Chinese medical dialogue dataset based
on real medical consultation. RealMedDial
contains 2,637 medical dialogues and 24,255
utterances obtained from Chinese short-video
clips of real medical consultations. We col-
lected and annotated a wide range of meta-
data with respect to medical dialogue includ-
ing doctor profiles, hospital departments, dis-
eases and symptoms for fine-grained analysis
on language usage pattern and clinical diagno-
sis. We evaluate the performance of medical
response generation, department routing and
doctor recommendation on RealMedDial. Re-
sults show that RealMedDial are applicable to
a wide range of NLP tasks with respect to med-
ical dialogue.

1 Introduction

The COVID-19 pandemic has dramatically
changed how outpatient care is delivered in health-
care practices. To decrease the risk of transmitting
the virus to either patients or healthcare workers
within their health practice, providers are deferring
or selectively prohibiting in-person visits, but fortu-
nately, they are usually converting in-person visits
to telemedicine visits (Mann et al., 2020). During
the telemedicine, patients describe their symptoms
of suffered diseases and/or adverse reactions of
the taking drugs to doctors, while doctors provide
medical consultations through online video con-
ferences. Although telemedicine is convenient and
timely for disease diagnoses, the continuous growth
of telemedicine visits significantly increases the
burden and workload of doctors, and meanwhile,
the health conditions of remote patients become

∗Corresponding author

increasingly difficult to be tracked. Thus, how to
relieve the burden of doctors and effectively track
the patient’s health conditions remains an open re-
search question.

Researchers from related fields are trying to
solve this issue by developing medical dialogue
systems to serve as virtual doctors, which greatly
facilitates users to obtain medical and healthcare
information. Recent advances in medical dialogue
systems have benefited medical applications such
as psychological consultation (Das et al., 2022),
elderly care (Keshmiri et al., 2019), and disease
pre-diagnosis (Nasreen et al., 2021). To build effec-
tive medical dialogue systems, related studies are
focusing on optimizing medical dialogue from var-
ious aspects, including automatic diagnosis (Wei
et al., 2018; Xu et al., 2019), medical information
extraction (Zhang et al., 2020), medical slot fill-
ing (Shi et al., 2020), and medical conversational
summarization (Joshi et al., 2020). Although these
researches have improved the performance of med-
ical dialogue, this challenging task is still facing
great difficulty in generating effective responses
due to the particularity and professionalism of the
medical field.

In general, several key challenges have not been
thoroughly considered in the current medical dia-
logue datasets. First, as shown in Table 1, most
existing medical dialogue datasets extract the data
from online medical or healthcare community,
which is non-real time communication records
between doctors and patients. In fact, such data
are more similar to question and answering (Q&A)
data, instead of medical dialogue. Besides, the
static Q&A data are largely different from real-
time medical consultations in language expressions
and interaction patterns. In real-time medical con-
sultations, doctors make accurate diagnosis predic-
tions not only based on symptom descriptions from
patients, but also according to observations of pa-
tient health status and medical examination results,
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Dataset Name Source #Dialogues #Utterances #Diseases Department
MZ(Wei et al., 2018) Online health community 710 - 4 Pediatrics
DX(Xu et al., 2019) Online health community 527 2,186 5 Pediatrics

CMDD(Lin et al., 2019) Online health community 2,067 87,005 4 Pediatrics
MIE(Zhang et al., 2020) Online health community 1,120 18,129 6 Cardiology
MedDG(Liu et al., 2020) Online health community 17,864 385,951 12 Gastroenterology

COVID-EN(Zhou et al., 2021) - 603 - 1 COVID
COVID-CN(Zhou et al., 2021) - 1,088 - 1 COVID

MedDialog-EN(Zeng et al., 2020) Online health community 257,332 514,664 96 29 Departments
MedDialog-CN(Zeng et al., 2020) Online health community 3,407,494 11,260,564 172 51 Departments

RealMedDial (Ours) Online short-video clips 2,637 24,255 55 17 Departments

Table 1: Comparison between our dataset and other existing medical dialogue datasets.

which are usually missing in the current medical
dialogue datasets. Thus, it is essential to build a
real-time medical dialogue dataset, which can be
used for developing workable dialogue systems.

Second, when patients use online health commu-
nity to ask for help from doctors, they usually input
their symptoms as detailed as possible. Then doc-
tors predict possible diagnoses based on patients’
inputs. Such a working procedure leads to a com-
mon shortage of existing medical dialogue data ex-
tracted from online health community, that is, they
only have a few communication rounds or utter-
ances. For instance, the average number of utter-
ances in a dialogue is only 3.3 in the largest Chinese
medical dialogue dataset MedDialog-CN (Zeng
et al., 2020). In real-world medical consultations,
a doctor seldom makes any decisions just based on
limited number of interactions with patients. There-
fore, such datasets may be not suitable for training
a real medical dialogue model.

Third, doctors, especially domain experts, are
usually very busy and do not have enough time to
answer online questions frequently. In order to at-
tract more patients to use the health community, the
companies have to hire graduate students studying
in medical schools as online doctors. They will be
paid when replying patients’ questions. Compared
with experts’ replies, the quality of the answers
from graduate students is usually not very high in
some dialogues. The low quality issue of existing
datasets also impedes the development and learning
of medical dialogue models.

To tackle all the aforementioned limitations, in
this paper, we construct a real-time, high-quality,
and large-scale medical dialogue dataset named
RealMedDial, which is extracted from online Chi-
nese short-video clips. In particular, the videos are
downloaded from a popular Chinese video-based
social media named Kuaishou1, where many med-
ical physicians record the short-videos when they

1https://www.kuaishou.com

communicate with their online or offline patients
and post them to Kuaishou. Those short-videos
are all real-time medical consultations, which are
high quality and representative for diagnosing dis-
eases. Moreover, the contents between doctors and
patients not only include disease diagnoses but also
treatment plans as well as prognoses. We transcribe
the real-scenario medical conversations into text,
which is used to simulate real doctor-patient con-
sultations for training effective medical dialogue
models. Besides, we also extract video titles, doc-
tor profiles, disease, symptoms, and hospital de-
partments. An example is shown in Figure 1.

Compared with existing medical dialogue
datasets based on online health community, our
dataset also has two extra advantages. The first
advantage is that it enables us to conduct the mod-
eling of language usage patterns. On online health
community, doctor-patient conversations are often
completed offline. Offline language usage tends to
adopt written expressions, which is quite different
from the oral expressions in real medical consul-
tation. Since our dataset is realistic starting from
the dialogue scenario, dialogue models based on
our dataset are more conducive to better modeling
the language usage patterns for training a robust
response generation model.

The second advantage is comprehensiveness of
information. The constructed dataset not only con-
tains medical conversations between doctors and
patients during clinical consultations. We also col-
lected and annotated a wide range of meta-data
with respect to medical conversations including
doctor profiles, hospital departments, diseases and
symptoms. The meta-data can be used for fine-
grained modeling and analysis on medical dialogue.
For example, doctor profiles could be incorporated
into an expertise-specific dialogue model for per-
sonalized response generation. Diseases and symp-
toms can be used to mine patients’ dialogue intents
for precise clinical treatments.

The main contributions of this work are sum-
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Figure 1: An exemplar offline medical consultation, which includes (1) a video clip with doctor profile, (2) video
title, (3) dialogue between doctor and patient, and (4) disease, symptom and department.

marized as follows.

• We construct a large-scale medical dialogue
dataset - RealMedDial, which contains (1) 2,637
real-scenario medical conversations from pre-
recorded video clips by 59 doctors in their daily
clinical consultations, and (2) comprehensive
metadata of medical dialogues, such as the exper-
tise of doctors, hospital departments and diseases
that each doctor is good at treating. To the best of
our knowledge, RealMedDial is the first medical
dialogue dataset based on real consultations.

• We annotate all the medical dialogues with
dialogue-specific diseases and symptoms, which
can be used for medical information extraction
and intent mining. Combined with doctor pro-
files, personalized medical dialogue model could
be developed to meet diversified medical intents
and improve automatic healthcare services.

• We validate the usability of RealMedDial on
three tasks, including medical response gener-
ation, department routing and doctor recommen-
dation. Experimental results demonstrated the
usefulness of our dataset, meanwhile indicating
a large space for future research.

The rest of this paper is organized as follows.
Section 2 reviews related work to our paper. Sec-
tion 3 introduces our data collection including data
source, cleaning, annotation strategy and statistics.
Section 4 provides our experiments of dialogue

generation, department routing and doctor recom-
mendation on the constructed dataset. Section 5
concludes this work and provides future directions
for the constructed dataset.

2 Related Work

Our work primarily concerns two lines of related
work: medical dialogue systems and medical dia-
logue datasets.

2.1 Medical Dialogue Systems

Recent research on medical dialogue systems has
mostly focused on natural language understanding
and dialogue management. Various natural lan-
guage understanding tasks have been investigated
in medical dialogue, such as medical information
extraction (Lin et al., 2019; Du et al., 2019a,b;
Zhang et al., 2020), medical slot filling (Shi et al.,
2020), and medical conversational summarization
(Joshi et al., 2020). For dialogue management,
inspired by the successful application of reinforce-
ment learning in dialogue management strategy
(Dhingra et al., 2017; Li et al., 2017; Peng et al.,
2018), Wei et al. (2018) first addressed automatic
diagnosis in medical dialogue using reinforcement
learning framework. Xu et al. (2019) further pro-
posed an end-to-end relational dialogue system to
enhance medical diagnosis using knowledge-routed
deep Q-network. Xia et al. (2020) proposed a GAN-
based policy gradient framework for automatic di-
agnosis. However, most previous work merely fo-
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cused on a single module of the pipeline-based
medical dialogue system, and built task-specific
datasets for model evaluation. Our work aims to
build a real-time based medical dialogue dataset
that contains as much information as possible to
facilitate various tasks of medical dialogue.

2.2 Medical Dialogue Datasets

For medical dialogue datasets, the MZ dataset (Wei
et al., 2018) and the DX dataset (Xu et al., 2019)
were first launched for symptom extraction using
self-reports of patients and conversations in on-
line healthcare community. Similarly, Shi et al.
(2020) collected a dialogue dataset with the pur-
pose of medical slot filling. Since these datasets
are collected for symptom extraction tasks, they are
hardly applied to other medical dialogue tasks. Lin
et al. (2019) released the CMDD dataset with 2,067
pediatric-related dialogues. Zhang et al. (2020) col-
lected the MIE dataset with 1,120 cardiovascular-
related dialogues. Zhou et al. (2021) collected two
dialogue datasets, CovidDialog in English and in
Chinese, containing doctor-patient conversations
about COVID-19. CMDD, MIE and CovidDi-
alog are built for understanding disease-specific
natural language, but not for dialogue generation.
Zeng et al. (2020) built two large-scale medical dia-
logue datasets, MedDialog-CN and MedDialog-EN
from different healthcare communities. Liu et al.
(2020) released a large-scale high-quality medical
dialogue dataset related to 12 types of common gas-
trointestinal diseases. Existing medical dialogue
datasets are mostly built from the offline question
answering in online healthcare communities to sim-
ulate real-time dialogue, which partly hinders the
performance of medical dialogue systems. Unlike
previous work, we build our dataset based on real
medical consultations to enhance medical dialogue
performance. We compare our dataset and other
existing medical dialogue datasets in Table 1.

3 Data Collection

3.1 Dataset Overview

Our raw data are crawled from the short-video
clips of Kuaishou, which is one of the largest Chi-
nese short-video clip platform with over three hun-
dred professional doctors out of about 300 million
users. Doctors regularly release their daily medi-
cal consultation video clips for healthcare services.
The video clips of medical consultation record the

# dialogues 2,637
# utterances 24,255
Avg. # of utterances in a dialogue 9.20
Median # of utterances in a dialogue 8
Max # of utterances in a dialogue 48
Min # of utterances in a dialogue 2
# doctors 59
Max # of dialogues of a doctor 184
Min # of dialogues of a doctor 4
# departments 17
Avg. # of dialogues of a department 155.12
Avg. # of doctors of a department 3.47
Avg. # of diseases of a department 4.26
Avg. # of symptoms of a department 8.48

Table 2: The statistics of the RealMedDial dataset.

whole process of medical diagnosis with conversa-
tions between doctors and patients.

We manually searched and selected 125 profes-
sional doctor accounts with totally 4.7K video clips
as our primary data source. To avoid potential eth-
ical risks and ensure the quality of the data, we
manually filtered the video clips that have been
edited or only included introduction to popular sci-
ence medical knowledge, retaining those contain-
ing complete multi-turn patient-doctor dialogues.
Finally, we obtained 2,637 video clips released by
59 doctor accounts with multi-turn doctor-patient
dialogue. Table 2 shows the statistics of our dataset
containing medical dialogues transcribed from real-
scenario medical consultations.

Besides, since the collected dialogues are from
real doctors, we crawled the profiles of doctors
from Kuaishou user homepages and Baidu Ency-
clopedia2 as supplement metadata for fine-grained
medical dialogue research. We categorized the doc-
tors according to hospital departments, which could
be used to build fine-grained dialogue model for
different hospital departments. We show the statis-
tics of hospital departments of our datasets in Table
3. In the following sections, we describe our data
cleaning , annotation strategy and quality control
in detail.

3.2 Data Cleaning

We transcribed the contents of the selected video
clips as text. Fifteen graduate students participated
in the transcription process with five-fold cross val-
idation to ensure the quality of the transcribed text.

2https://baike.baidu.com/
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ID Department # doctors # dialogues
1 Cardiovascular 7 240
2 Andrology 3 35
3 Dermatology 6 272
4 Internal Medicine 6 326
5 Gastroenterology 9 150
6 Orthopedics 4 182
7 Anorectal 3 116
8 Obstetrics 3 130
9 Gynecology 2 48
10 Rheumatology 6 424
11 Chinese Medicine 4 202
12 Urology 1 26
13 Endocrinology 2 86
14 Nephrology 3 260
15 Brain 1 26
16 Respiratory 1 4
17 Pediatrics 2 110

Table 3: The hospital departments of the RealMedDial
dataset.

Each transcribed medical dialogue contains four
fields: video title, multi-turn dialogue, diseases and
symptoms. The video titles often appear in the
form of question sentences, indicating the medical
problems that the video contents aim to solve. The
dialogue is the entire process of real-time medical
consultations with multi-turn patient-doctor ques-
tion answering. The diseases and the symptoms
are annotated based on Chinese medical subject
headings (Li et al., 2001). We removed personal
information, duplicate video clips and single turn
dialogues by rule-based filtering.

3.3 Annotation Strategy and Quality Control

We annotated the transcribed medical dialogue
with user intents, including diseases and symptoms.
Other medical intents can be extended in future
studies. The annotation process is achieved by fif-
teen native Chinese graduate students under the
guidance of a professional expert. The annotators
followed detailed annotation instructions with stan-
dard principles and potentially occurred difficulties.
In the annotation process, formal training lessons
and regular seminars are carried out to exchange
ideas and discuss problems on annotation once a
week during the six-week annotation process. The
annotation guidelines changed three times as we
added information on newly found annotation diffi-
culties during the entire annotation period.

Specifically, we divided fifteen students into five
groups, and each group consisted of three student
annotators. Using cross-validated annotation, the
three-member groups annotated the user intents,
and the expert participated in the final decision

Figure 2: The interface for data annotation.

when there was divergence. If an agreement could
not be reached on certain data annotation, everyone
discussed and determined the annotation to ensure
its accuracy and consistency.

We used a standardized method to achieve high-
quality annotation. An interface, shown in Figure 2,
was provided to allow the annotators to precisely
enter intent information. To promote the correc-
tion of the entered terms, we employed Chinese
medical subject headings as a support tool to ob-
tain more specialized expressions of user intents.
Since the annotation process is based on the an-
notators’ intuition, the results may be subjective.
To verify the reliability of annotations, we adopt
Kappa score (Sidney and John, 1988) to measure
inter-annotator agreement, which is widely used in
annotation scheme of computational linguistics. To
measure inter-annotator agreement, the annotators
were given the same 1,000 medical dialogues to an-
notate the intents. The agreements on the intents of
diseases and symptoms were 0.78 and 0.74, which
means the annotation is substantially reliable.

4 Experiments

The RealMedDial dataset is built from real-
scenario medical consultations, and thus, it can be
used to simulate medical dialogue in a real environ-
ment for developing effective automatic medical
chatbot. Except for generating useful responses of
medical dialogue, RealMedDial can also be used
for the department routing task and the doctor rec-
ommendation task. Next, we provide detailed eval-
uation on these three tasks, respectively.

4.1 Medical Response Generation

Medical response generation is one of the most
important tasks for medical dialogue, aiming to
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generate informative and instructive responses in
consideration of the dialogue context and health
conditions of patients. Since we collect the doctor-
patient conversations from real medical consulta-
tions, the data can largely cover language usage pat-
terns of real human-to-human oral conversations.
Therefore, our dataset is more conducive to cap-
turing and modeling semantic information in the
dialogue by the machine, thereby simulating artifi-
cial language patterns to generate useful responses
and fully grasp the contextual information of the
current dialogue.

4.1.1 Model Pretraining
We trained several response generation models on
the RealMedDial dataset as benchmark results for
future comparison. Response generation can be
generally formulated as a language modeling pro-
cess in recent proposed models. Given the dialogue
context with multi-turn conversations, the proba-
bility on the sequence of tokens in the response is
modeled as follows:

p(r|c) = p(r1|c)
n∏

i=2

p(ri|c, r1, ..., ri−1), (1)

where c denotes the multi-turn dialogue context,
and r denotes the next token in the generated re-
sponse.

Based on this idea, the pretrained GPT2 model
(Radford et al., 2019) is proposed to use Trans-
former decoder to model the generative conditional
probability, which enhances the GPT model (Rad-
ford et al., 2018) with a few modifications. GPT2
achieves good performance on several text genera-
tion tasks reported from existing work (Mass and
Roitman, 2020; Bai et al., 2021).

BERT-GPT (Wu et al., 2020; Lewis et al., 2020)
is another pretrained language model that integrates
the BERT-based encoder and the GPT-based de-
coder. In BERT-GPT, BERT is used to encode the
input token sequence with masks, which is then fed
into the GPT decoder for recovering the masked
tokens and generating the dialogue responses.

CDial-GPT is a recently proposed pretrained
model for Chinese dialogue generation, which is
built on a large-scale cleaned Chinese conversation
dataset LCCC (Wang et al., 2020). CDial-GPT fills
up the gaps in the pre-trained Chinese GPT lan-
guage models, and provides a reliable model for
Chinese dialogue generation. We use the pretrained
GPT2, BERT-GPT and CDial-GPT, and fine-tune

these models on the RealMedDial dataset to exam-
ine their performance for dialogue generation.

We split the RealMedDial dataset into a train-
ing set, a validation set, and a test set with the
ratio of 8:1:1. The split was carried out separately
in different departments, which was based on di-
alogues instead of source-target pairs. For CDial-
GPT and GPT2, we used the implementation by
THU-COAI3, and followed the default hyperpa-
rameter settings in the original CDial-GPT (Wang
et al., 2020). For BERT-GPT, we used the im-
plementation by UCSD-AI4H4, and also followed
the default hyperparameter setting of the original
model. The maximum length of input sequences
was truncated to 300, and that of output sequences
was truncated to 100. Top-k random sampling (Fan
et al., 2018) with k=50 was used for decoding in
all the used models.

We evaluated the trained models using automatic
metrics including Perplexity, NIST-n (Doddington,
2002) (where n is the size of n-gram and is set as
4), BLEU-n (Papineni et al., 2002) (where n is set
as 2 and 4), METEOR (Lavie and Agarwal, 2007),
Entropy-n (Zhang et al., 2018) (where n is set as 4),
and Dist-n (Li et al., 2016) (where n is set as 1 and
2). Perplexity measures the language quality of the
generated responses. NIST, BLEU, and METEOR
measure the similarity between the generated re-
sponses and the ground truths via n-gram match-
ing. Entropy and Dist measure the lexical diversity
of the generated responses. CDial-GPT was pre-
trained on LCCC-base (a large-scale cleaned Chi-
nese conversation dataset), which is filtered from
79 million conversations from one of the largest
Chinese social media website Weibo. BERT-GPT
was pretrained by UCSD-AI4H on Chinese cor-
pus collected from a large scale Chinese corpus
for NLP5. GPT2 was pretrained by UCSD-AI4H
on Chinese Chatbot Corpus6 containing 14 million
dialogues and 500K Chinese dialogues7.

4.1.2 Evaluation Results
Table 4 shows the response generation performance
on the RealMedDial dataset. From the table, we

3https://github.com/thu-coai/CDial-GPT
4https://github.com/UCSD-AI4H/

Medical-Dialogue-System
5https://github.com/brightmart/nlp_

chinese_corpus
6https://github.com/codemayq/chinese_

chatbot_corpus
7https://drive.google.com/file/d/

1nEuew_KNpTMbyy7BO4c8bXMXN351RCPp/view
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CDial-GPT GPT2 BERT-GPT
Perplexity 21.25 16.40 29.95
NIST-4 10.30 9.30 0.55
BLEU-2 1.196 1.123 0.068
BLEU-4 0.481 0.439 0.028
METEOR 1.403 1.385 0.009
Entropy-4 7.00 6.21 8.99
Dist-1 0.178 0.215 0.090
Dist-2 0.602 0.647 0.469

Table 4: Performance of response generation on the
RealMedDial dataset.

Figure 3: An example of generated responses on the
RealMedDial test set.

observe that GPT2 achieved the better performance
than the other two models in terms of Perplex-
tiy, Dist-1 and Dist-2. Since these three met-
rics are used to measure the informativeness and
diversity of the generated text, it indicates that
GPT2 can generate more diverse and informative
responses. Although CDial-GPT yielded better
performance on four machine translation metrics,
NIST-4, BLEU-2, BLEU-4 and METEOR, these
metrics are all auxiliary metrics that evaluate the
performance of dialogue generation in terms of n-
gram matching (Liu et al., 2016). The CDial-GPT
model is pretrained using the social media data
which may not be well applied in medical dialogue
task, thus leading to much lower values of these
metrics compared with other tasks, such as machine
translation. To further illustrate the comparison of
different models, we provide two examples of the
generated responses in Figure 3 and Figure 4.

4.2 Department Routing

The task of department routing is to attribute cur-
rent dialogue with patient descriptions to the cor-
responding hospital departments for optimizing di-

Figure 4: Another example of generated responses on
the RealMedDial test set.

alogue models according to the characteristics of
the departments. Since the RealMedDial dataset
contains a wide range of hospital departments with
respect to different medical domains, we design
this task for providing more targeted dialogue ser-
vices for patients. The department routing task can
be tackled by multi-class classification. Namely,
given a brief description of the health issues of an
patient, related departments can be matched for the
patient, which could be helpful to get more accu-
rate medical services and fine-tune the pretained
dialogue model for generating more personalized
and useful responses.

4.2.1 Model Pretraining
We use three BERT-based models, BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2020), for department routing.
These models have been proved to be effective in
various NLP tasks. Besides, we also adopt the
CPT (Shao et al., 2021) model, which is designed
as a Chinese pre-trained unbalanced Transformer
to utilize the shared knowledge between natural
language understanding and natural language gen-
eration through a shared encoder, an understand-
ing decoder, and a generation decoder. We input
health descriptions into these models and predict
the department that the corresponding disease or
symptom belongs to.

4.2.2 Implementation Details
We labeled the dialogue texts with index of de-
partments and doctors respectively, and split the
dataset into a training set and a test set with the
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Metrics CPT RoBerta BERT ALBERT
Accuracy 0.749 0.705 0.686 0.611
m-Prec. 0.552 0.485 0.452 0.377
m-Recall 0.540 0.487 0.481 0.371
m-F1 0.536 0.480 0.462 0.359
w-Prec. 0.707 0.654 0.627 0.553
w-Recall 0.749 0.705 0.686 0.611
w-F1 0.723 0.674 0.652 0.566

Table 5: Performance of department routing on the
RealMedDial dataset.

ratio of 4:1. Pretrained language models are the
primary ingredients of the state-of-the-art text clas-
sifiers including BERT, RoBERTa, ALBERT and
CPT. These models are trained on the training set,
and the weighting parameters were learned with
AdamW (Loshchilov and Hutter, 2017), whose ε
was set as 1e-8. The initial learning rate was set
as 4e-5. The learning rate scheduler was set as
Linear. We evaluate the models with metrics in-
cluding Accuracy, macro/weighted Precision (m/w-
Prec.), macro/weighted Recall (m/w-Recall) and
macro/weighted F1 score (m/w-F1).

4.2.3 Evaluation Results
Table 5 shows the experimental results for depart-
ment routing. From the table, we can observe that
CPT outperforms other models in all the evaluation
metrics. This is because CPT can capture specific
knowledge of this task using a shared encoder, an
understanding decoder, and a generation decoder.
Compared with other models, CPT takes full advan-
tage of previous pre-trained models and achieves
better performance in department routing.

4.3 Doctor Recommendation

Doctor recommendation aims to recommend suit-
able doctors based on patients’ health status. Since
RealMedDial contains real medical consultation
records of multiple doctors, we can model dif-
ferent doctors according to the characteristics of
their language usage and unique forms of question-
answering by building doctor profiles. The doctor
profiles can be used to build chatbots to assist in
the completion of various medical health services.

4.3.1 Evaluation Results
Similar to department routing, doctor recommenda-
tion task is also a multi-class classification problem,
and we still use BERT, RoBERTa, ALBERT and
CPT as baselines. Table 6 shows the experimen-
tal results for doctor recommendation. From the
table, we can observe that CPT still outperforms

Metrics CPT RoBerta BERT ALBERT
Accuracy 0.621 0.523 0.552 0.348
m-Prec. 0.379 0.247 0.263 0.115
m-Recall 0.375 0.277 0.293 0.144
m-F1 0.353 0.240 0.256 0.110
w-Prec. 0.564 0.409 0.439 0.228
w-Recall 0.621 0.523 0.552 0.348
w-F1 0.565 0.438 0.465 0.247

Table 6: Performance of doctor Recommendation on
the RealMedDial dataset.

other models in terms of different evaluation met-
rics. Like the performance trends of department
routing, CPT contributes to effective modeling of
language usage pattern and profiles of doctors by in-
corporating more comprehensive domain-specific
information into the learned model, and yields bet-
ter doctor recommendation results.

4.4 Further Discussion

We validate the usability of RealMedDial on med-
ical response generation, department routing and
doctor recommendation. Experimental results have
shown the usefulness of RealMedDial in these
tasks, which also provides benchmark results for
future studies. Advanced models trained using
RealMedDial could consider more special nature
of medical consultation for generating accurate and
low risk medical responses. To this end, more ef-
fective models trained on RealMedDial can be de-
vised by comprehensively using the wide range of
metadata of our corpus, such as doctor profiles and
disease descriptions. Although experiments in this
work are our preliminary attempts on demonstrat-
ing the usefulness of our corpus, we will extend
our future work to consider more domain-specific
information to develop more effective generation
models. Although our dataset is in Chinese, the
application scenario is not limited to Chinese appli-
cations. To adapt RealMedDial to research in other
languages, dialogue contents can be tokenized to
token IDs, which can thus be used to train dialogue
models for other language-based research. We will
also use automated methods, such as the automatic
transcription software 8, to reduce the time cost
and manual labor in constructing and expanding
our dataset in future.

5 Conclusion and Future Work

To facilitate automatical medical consultation, we
construct RealMedDial, a high-quality Chinese

8https://sonix.ai/

3349



dataset of medical dialogue based on real scenario
medical consultation from online short-video clips.
Real medical consultation contributes to learning
more powerful and human-like dialogue models
by considering communications in reality between
doctors and patients instead of question answering-
based communications on online health commu-
nity. We collected and annotated a wide range of
meta-data with respect to the medical dialogue in-
cluding titles of short-video clips, doctor profiles,
hospital departments, diseases and symptoms for
fine-grained analysis on language usage pattern
and clinical diagnosis. We evaluated the perfor-
mance of medical response generation, department
routing and doctor recommendation on RealMed-
Dial. Results show that RealMedDial is applicable
to various medical dialogue tasks. As for future
work, we will build personalized dialogue models
by incorporating more professional knowledge into
medical response generation.

6 Ethical Consideration

The original short-video clips of our study are col-
lected from Kuaishou, one of the largest Chinese
short-video clip platform with over three hundred
professional doctors out of about 300 million users.
The doctor profiles are collected from Kuaishou
user homepages and Baidu Encyclopedia. All the
collected data are public available, which do not
contain any personal privacy information of pa-
tients and doctors. We have ensured that the doc-
tors obtain patient consent in the first place to post
videos of consultations, and the short videos are
without any personal information of patients. The
constructed corpus is completely anonymous, and
the identity of the patient or doctor cannot be in-
ferred from it. The transcribed texts in RealMed-
Dial are randomly shuffled so that it is hard to find
connections between the original videos and the
transcribed text without the identity of the doctor.
Therefore, there is no privacy issue for the data we
use. When annotating the dataset, all annotators
were paid based on their workload and submitted
all required consent forms. Since this work only
focuses on medical dialogue without additional
identified and private information, the protection
of privacy is preserved.
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Abstract

Language evolves over time, and word mean-
ing changes accordingly. This is especially true
in social media, since its dynamic nature leads
to faster semantic shifts, making it challenging
for NLP models to deal with new content and
trends. However, the number of datasets and
models that specifically address the dynamic
nature of these social platforms is scarce. To
bridge this gap, we present TempoWiC, a new
benchmark especially aimed at accelerating
research in social media-based meaning shift.
Our results show that TempoWiC is a challeng-
ing benchmark, even for recently-released lan-
guage models specialized in social media.

1 Introduction

One of the most studied challenges in NLP is lexi-
cal ambiguity. Solutions include word sense disam-
biguation (Navigli, 2009) or entity linking (Ling
et al., 2015), where words are linked to sense inven-
tories such as WordNet (Miller, 1995) or Wikipedia.
Recently, notable progress has been made with the
advent of Language Models (LMs) and contextual-
ized embeddings, crucially well equipped for mod-
eling meaning in context (Pilehvar and Camacho-
Collados, 2020; Bevilacqua et al., 2020).

One notable limitation with current lexical se-
mantics benchmarks, however, is that they are typ-
ically clean and time-invariant, where standard
grammar is the norm, and have little to no account
of language usage in real-world platforms like so-
cial media. However, there is ample agreement that
modeling changes in language and topic distribu-
tions is crucial for modern NLP (Loureiro et al.,
2022a). Thus, there is a rich body of literature con-
cerned with, e.g., adapting existing word represen-
tations (mainly word embeddings) diachronically
(Hamilton et al., 2016; Szymanski, 2017; Rosen-
feld and Erk, 2018; Hofmann et al., 2021), expos-
ing LMs to time-specific data (Lazaridou et al.,

∗Annotation team.

2021), or temporal adaptation in general (Luu et al.,
2021; Agarwal and Nenkova, 2022; Jin et al., 2021;
Loureiro et al., 2022a). The lack of real-world data
to serve as ground truth has typically limited the
evaluation of diachronic word-level NLP models.
This limitation has been addressed in a myriad of
ways, e.g., by comparing distributional similari-
ties with human judgments (Gulordava and Baroni,
2011), contrasting change vs. frequency (Hamil-
ton et al., 2016), comparing time-sensitive repre-
sentations with stripped-down versions (Frermann
and Lapata, 2016) or, more recently, determining
whether a word has acquired new senses over time
by looking at relatively large targeted subcorpora
(Van Hee et al., 2018), or probing for diachronic
awareness in settings reminiscent of knowledge
base completion (Dhingra et al., 2021; Hofmann
et al., 2021).

Despite the above, few works have attempted
to model the connection between meaning shift
and social media. Among them, Del Tredici et al.
(2019) showed that trending words are a mean-
ingful signal for predicting meaning shifts. This
platform-specific insight is the main basis for the
construction of our dataset. TempoWiC follows the
simple formulation from the SuperGLUE Word-in-
Context (WiC) challenge (Pilehvar and Camacho-
Collados, 2019), which is particularly well suited
for temporal meaning shift evaluation given that it
is not reliant on a reference sense inventory. This
change of paradigm has seen wide adoption, with
multilingual extensions such as XL-WiC (Raganato
et al., 2020), Am2ico (Liu et al., 2021) or MCL-
WiC (Martelli et al., 2021), or reformulations such
as WiC-TSV (Breit et al., 2021). In contrast to
these, TempoWiC is crucially designed around
meaning shift and instances of word usage tied
to Twitter trending topics. As an additional contri-
bution, along with the benchmark, we provide a set
of robust baselines and analyses that highlight the
challenging nature of the task.
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Tweet 1 Tweet 2 Label

2019-02 2020-02
"I ain’t gone let the ppl frisk me "Set up a stop and frisk outside a T

if I’m dirty homie" white club and catch coke heads"

2019-04 2020-04
"i wish i still had images of my old animal crossing new leaf villager "How does villager trading in New horizons even work T

he was good boy" like tf"

2019-08 2020-08
"This dude just said "Boys of the Backstreet" He made em sound "my target app said they didn’t have folklore cds but F

like a whole folklore" when i went inside they had some i’m so happy"

2019-08 2020-08
"In case you were wondering facial devotion "With these mask at work customers are F

still worked with a face mask on" forever confusing me and Reyna lmao"

Table 1: Examples from the training set of TempoWiC. Target words in italic. The label T (True) indicates that the
word has the same meaning in the two tweets, the label F (False) indicates that the meaning is different.

2 TempoWiC: Temporal Word in Context

In this section, we describe our process to build our
evaluation benchmark for detecting meaning shift
in social media. The task is framed as a simple bi-
nary classification problem in which a target word
is present in two texts (tweets) posted during differ-
ent time periods. The goal is to decide whether the
meaning corresponding to the first target word in
context is the same as the second one or not. Table
1 lists a few examples.

2.1 Data collection

Word Selection. Since this work focuses on
meaning shift, we do not consider neologisms and
use lemmas from WordNet as an initial set of po-
tential words of interest (82K lemmas, ignoring
multi-word expressions, stopwords and numbers).
From a corpus of 100M tweets collected from the
Twitter API for the period between the start of 2019
and September of 2021, we compiled monthly fre-
quency counts for this set of known words, and
computed trending scores following Chen et al.
(2021). Each trending word peak is estimated as the
day with highest frequency during the year/month
with most occurrences. As the prior date, we con-
sidered the same date exactly one year before. This
is done in order to avoid seasonal confound factors,
which are known to affect models in social media
(Chae et al., 2012; Barbieri et al., 2018). After-
wards, we selected the top 10 words with highest
trending scores from each month, resulting in 210
words which are candidates for annotation. For this
selection, we ignored words with fewer than 100
occurrences in our corpus during their peak date.

Obtaining Paired Tweets. In this phase we col-
lected, for each trending word, 100 tweets posted
during the peak date, and 100 tweets posted during
the prior date. For this phase we used the Twitter
APIs, setting filters to request only English tweets,
and ignoring replies and retweets.1 We prepro-
cessed each tweet using spaCy (Honnibal et al.,
2020) and we randomly paired tweets from the
prior and peak sets for specific words that match
both in surface form and part-of-speech tag.

2.2 Annotation

Annotators. We recruited four annotators
through our internal institution recruitment office.
This ensured that the annotators were part of the
process, trained and understood all the details
of the task.2 Annotators, who were all native or
near-native English speakers, were all paid the
equivalent of a research assistant per hour.

First stage. The annotation was split into two
phases. First, we took a breadth-first approach
in which a relatively short number of instances
(i.e., 10) of a large number of the selected words
(210 in total) were annotated. The motivation for
this initial phase was to understand which words
had some sort of meaning shift to start with. The
selection of the words to be included in the dataset
was then restricted to words which had more than
3 out of 10 instances with meaning shift.

1We retrieved additional tweets with the APIs as we in-
cluded trending words that had a minimum occurrences of
100 tweets on peak day in our initial dataset, but some words
included less than 100 tweets on the prior date.

2The full guidelines provided to the annotators are avail-
able in the task website.
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Word # Instances Trending Agreement
(% Diff. Meaning) Date (Krippendorf’s α)

Tr
ai

n

frisk 99 (54%) 11/2/2020 0.718
pogrom 99 (5%) 25/2/2020 0.482
containment 100 (33%) 12/3/2020 0.274
virus 96 (48%) 12/3/2020 0.254
epicenter 100 (71%) 14/3/2020 0.124
ventilator 99 (17%) 27/3/2020 0.541
villager 100 (64%) 10/4/2020 0.546
turnip 100 (95%) 10/5/2020 0.316
bunker 98 (61%) 1/6/2020 0.408
mask 99 (76%) 14/7/2020 0.255
teargas 98 (3%) 18/7/2020 0.786
paternity 100 (22%) 30/7/2020 0.289
entanglement 99 (89%) 1/8/2020 0.623
folklore 82 (92%) 3/8/2020 0.917
parasol 100 (85%) 2/9/2020 0.446

Va
lid

at
io

n impostor 99 (76%) 23/9/2020 0.544
lotte 98 (43%) 27/9/2020 0.514
recount 100 (28%) 6/11/2020 0.682
primo 100 (77%) 9/11/2020 0.528

Te
st

milker 99 (50%) 4/3/2021 0.699
moxie 97 (83%) 5/3/2021 0.755
unlabeled 100 (90%) 10/3/2021 0.711
pyre 100 (32%) 27/4/2021 0.243
gaza 100 (60%) 15/5/2021 0.749
ido 91 (83%) 27/5/2021 0.712
airdrop 99 (40%) 6/6/2021 0.918
bullpen 99 (9%) 16/6/2021 0.388
crt 100 (68%) 26/6/2021 0.867
monet 98 (94%) 8/7/2021 1.000
burnham 100 (16%) 1/8/2021 0.964
delta 100 (100%) 11/8/2021 1.000
gala 100 (46%) 14/9/2021 0.498
launchpad 99 (81%) 17/9/2021 0.558
vanguard 99 (95%) 21/9/2021 0.421

Table 2: Details all the words included in TempoWiC.
Maximum pairwise agreement is reported.

Second stage. The second phase was based on a
depth-first approach in which 100 instances of all
selected words from the first stage were annotated.
We ensured that each instance was annotated by
three annotators. The final label attributed to each
instance was determined by majority vote.3

2.3 Statistics and Inter-annotator Agreement

The outcome of our annotation pipeline is a dataset
of 3,297 instances divided in train/validation/test
sets of size 1,428/396/1,473 instances, respec-
tively. We measured inter-annotator agreement
using Fleiss’ Kappa at 0.446, and using Krippen-
dorff’s α at 0.439. Since each instance is assigned

3Some words proved too difficult to reliably annotate ac-
cording to feedback from the annotators as well as low agree-
ment scores computed after annotation (more details in Sec-
tion 2.3). Consequently, these words were removed from the
dataset. Among the various challenges to be expected from
annotating social media, mixed language (e.g., English and
Hindi) was among the most frequent issues.

a majority vote label, we also computed the max-
imum pairwise Krippendorff’s α at 0.627, which
should be more revealing of the expected perfor-
mance on this task. Words with Krippendorff’s α
below 0.1 were removed from the dataset. Table 2
provides a summary of the most relevant details of
the dataset after annotation.

3 Evaluation

In this section, we report baseline results on Tem-
poWiC using two different approaches which have
proven successful on the WiC task that inspired this
work. More concretely, we report results based on
pretrained LMs using fine-tuning on the tweet pair
as well as comparing the similarity of contextual
embeddings.4

Evaluation metrics. The results are reported ac-
cording to the standard Macro-F1 metric for multi-
class classification problems. Accuracy is also re-
ported for completeness but, given the unbalanced
nature of the dataset, Macro-F1 should provide a
more accurate representation of the performance.

3.1 Models

Our experiments include the following LMs:
RoBERTa base and large pretrained on general do-
main corpora (Liu et al., 2019); RoBERTa base
with continued training on tweets until the end
of 2019, and a similar model trained with more
tweets until the end of 2021 (Loureiro et al., 2022a,
TimeLMs); LMs based on RoBERTa but trained
from scratch on tweets, both base and large ver-
sions (Nguyen et al., 2020, BERTweet).

Each of these LMs is fine-tuned representing in-
stances as "<s> Tweet 1 </s> Tweet 2 </s>",
with each tweet represented by the encodings pro-
duced by each model’s tokenizer.5 Additionally,
we trained a logistic regression classifier on the
cosine similarity of the contextual embeddings cor-
responding to the target word on each tweet of
the pair. This approach based on contextual em-
beddings is sensitive to the choice of layers from
the LM used to represent embeddings. Follow-
ing Loureiro et al. (2022b), we use SP-WSD layer
pooling weights (model specific) that are suited for
sense representation (see Appendix B for ablation
results with alternative pooling strategies). Both

4Additional baselines are reported in Appendix A.
5We experimented concatenating the encodings for the

target word at the end of the sequence as proposed by Wang
et al. (2019) for WiC, but found no improvements.
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Model Accuracy Macro-F1
Fi

ne
-t

un
in

g

RoBERTa-base 66.89% 58.26%
RoBERTa-large 66.49% 59.10%
TimeLMs-2019-90M 66.46% 57.70%
TimeLMs-2021-124M 65.04% 54.75%
BERTweet-base 61.46% 51.27%
BERTweet-large 67.93% 60.62%

Si
m

ila
ri

ty

RoBERTa-base 67.96% 52.89%
RoBERTa-large 72.98% 67.09%
TimeLMs-2019-90M 74.07% 70.33%
TimeLMs-2021-124M 71.01% 63.51%
BERTweet-base 69.45% 65.16%
BERTweet-large 69.18% 56.95%

N
ai

ve Random 50.00% 50.00%
All True 36.59% 26.79%
All False 63.41% 38.80%

Table 3: Main results on the test set of TempoWiC. Fine-
tuning results are the average of 3 runs.

approaches are implemented with Wolf et al. (2020,
Transformers).

3.2 Results
Our results on Table 3 show that TempoWiC is
a challenging task with room for improvement.
While the best results using both fine-tuning and
similarity approaches are obtained by models
adapted to the Twitter domain, this advantage isn’t
substantial over generic RoBERTa. Interestingly,
we find that the straightforward similarity approach
manages to substantially outperform fine-tuning,
with a Twitter base model trained with data before
any word’s trending peak achieving the best perfor-
mance. While this result may be surprising consid-
ering that fine-tuning performs better on WiC, this
finding is in line with recent work in word sense
disambiguation showing that approaches based on
contextual embeddings can be more robust and gen-
eralizable than fine-tuning (Loureiro et al., 2021).

Analysis by word. Table 4 provides a detailed
breakdown of the results of the best performing
model (i.e., TimeLMs-2019-90M) by individual
words. As can be observed, there are large differ-
ences between words, which are also due to the
unbalanced natural distribution of certain words to
start with (see Table 2). More interesting is perhaps
the gaps between fine-tuning and similarity tech-
niques. While similarity appears to be generally
more robust, in words such as bullpen or vanguard,
the tendency is reversed.

Word Accuracy Macro-F1
Fine-tune Similarity Fine-tune Similarity

airdrop 40.48% 65.31% 30.13% 65.18%
bullpen 67.68% 38.38% 44.53% 34.54%
burnham 27.67% 83.00% 27.62% 69.15%
crt 64.98% 79.80% 46.26% 73.24%
delta 85.37% 98.98% 46.05% 49.74%
gala 47.67% 78.00% 36.71% 77.86%
gaza 67.01% 69.39% 66.74% 64.61%
ido 83.88% 90.11% 63.04% 75.78%
launchpad 81.82% 80.81% 45.00% 59.26%
milker 46.13% 64.65% 37.28% 63.44%
monet 93.54% 94.90% 48.33% 62.96%
moxie 89.35% 68.04% 74.75% 56.48%
pyre 64.29% 51.02% 62.78% 50.84%
unlabeled 65.67% 76.00% 47.71% 57.48%
vanguard 95.96% 73.74% 68.80% 42.44%

Table 4: Performance by word on the TempoWiC test
set. Using TimeLMs-2019-90M as the best similar-
ity model, and BERTweet-large as the best fine-tuning
model (average of 3 runs).

3.3 Future Work

This work only covers English, but future work
should include additional languages and experi-
ment with both multilingual and monolingual mod-
els. We leave an analysis explaining the difference
between the 2019 and 2021 models for future work
as well, alongside the development of methods that
leverage the dates provided with each instance to-
wards improved performance, similarly to Dhingra
et al. (2021); Rosin et al. (2022).

4 Conclusion

This work introduced a new lexical semantics task
and a dataset, TempoWiC, focused on meaning
shift detection in Twitter. While meaning repre-
sentation is at the core of the task, the challenges
of this task go beyond simple word sense disam-
biguation with a focus on its temporal aspect. To
make the task realistic, we extracted Twitter trend-
ing words for different periods and paired them
with tweets from past periods. This makes the task
more challenging and grounded in real-world appli-
cations for social media. We performed extensive
experiments with standard meaning representation
approaches based on language models. The results
show that the task leaves ample room for improve-
ment, with several avenues for future research on
how to better integrate time-aware social media
models with meaning representation techniques.
The TempoWiC dataset and baseline scripts are
available at github.com/cardiffnlp/tempowic.
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A Additional Baselines

Besides the fine-tuning and similarity methods de-
scribed in the main paper, we also experimented
with additional approaches in order to better under-
stand the difficulty of this dataset.

In this appendix we provide additional results
based on an MLP trained with concatenated con-
textual embeddings (Table 5), and another MLP
trained with the concatenation of the average of
static embeddings from each tweet (Table 6). Em-
beddings are L2 normalized after concatenation.

The hyper-parameters used with these MLPs
were determined by grid search on 24 different
configurations which were tested on the validation
set. The parameters tested were hidden layer sizes
((embedding size, 100) or (100)), solver (adam or
sgd), batch size (32 or 64), and maximum number
of iterations (50, 100 or 200).

Static embeddings are based on fastText (Bo-
janowski et al., 2017) and learned from Twitter
data on the same corpora used for Loureiro et al.
(2022a). These embeddings are trained with skip-
gram for 300-dimensions, min-ngram size 2 and
max-ngram size 12.

Model Accuracy Macro-F1

RoBERTa-base 68.11% (0.77%) 55.00% (1.88%)
RoBERTa-large 68.82% (1.06%) 55.17% (2.60%)
TimeLMs-2019-90M 68.68% (0.68%) 58.62% (0.81%)
TimeLMs-2021-124M 68.23% (0.90%) 57.55% (3.57%)
BERTweet-base 65.51% (0.91%) 57.03% (3.56%)
BERTweet-large 66.55% (0.59%) 54.16% (0.09%)

Table 5: Performance of MLP trained with concatena-
tion of the target word’s contextual embeddings (SP-
WSD pooling), tuned on the validation set. Reporting
average of 3 runs, and standard deviation.

Model Accuracy Macro-F1

CommonCrawl 55.53% (0.78%) 48.98% (0.57%)
TimeLMs-2019-90M 57.64% (0.71%) 49.46% (0.28%)
TimeLMs-2021-124M 55.20% (0.31%) 52.30% (0.57%)

Table 6: Performance of MLP trained with concatena-
tion of the average of static embeddings from each tweet.
Reporting average of 3 runs, and standard deviation.

B Pooling Contextual Embeddings

Table 7 reports results using the similarity method
described in the main paper with alternative choices
for layer pooling. We considered the final layer and
the sum of the last 4 layers as these are common
choices in word sense disambiguation settings.

Model Final Layer Sum Last 4 SP-WSD

RoBERTa-base 40.89% 60.33% 52.89%
RoBERTa-large 38.80% 53.32% 67.09%
TimeLMs-2019-90M 59.93% 67.69% 70.33%
TimeLMs-2021-124M 53.14% 60.26% 63.51%
BERTweet-base 67.35% 66.91% 65.16%
BERTweet-large 38.80% 41.75% 56.95%

Table 7: Performance of Contextual Similarity method
according to choice of layer pooling approach.
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Abstract
This paper presents novel methods to automat-
ically convert posts and their comments from
discussion forums such as Reddit into multi-
turn dialogues. Our methods are generalizable
to any forums; thus, they allow us to generate a
massive amount of dialogues for diverse topics
that can be used to pretrain language models.
Four methods are introduced, GreedyBaseline,
GreedyAdvanced, Beam Search and Threading,
which are applied to posts from 10 subreddits
and assessed. Each method makes a noticeable
improvement over its predecessor such that the
best method shows an improvement of 36.3%
over the baseline for appropriateness. Our best
method is applied to posts from those 10 sub-
reddits for the creation of a corpus comprising
10,098 dialogues (3.3M tokens), 570 of which
are compared against dialogues in three other
datasets, Blended Skill Talk, Daily Dialogue,
and Topical Chat. Our dialogues are found to
be more engaging but slightly less natural than
the ones in the other datasets, while it costs a
fraction of human labor and money to generate
our corpus compared to the others. To the best
of our knowledge, it is the first work to create
a large multi-turn dialogue corpus from Reddit
that can advance neural dialogue systems.

1 Introduction

With the advent of encoder-decoder frameworks
(Brown et al., 2020; Lewis et al., 2020; Raffel
et al., 2020), neural-based open-domain dialogue
models have recently gained a tremendous interest
as they start sounding more human-like than ever
(Adiwardana et al., 2020; Zhang et al., 2020;
Roller et al., 2021). Training robust neural-based
models requires a huge amount of dialogue data in
numerous topics that is difficult to procure as real
human-to-human conversations are expensive and
time-intensive to conduct (Godfrey et al., 1992).
Several studies have presented large dialogue data
created by crowdsourcing (Zhang et al., 2018; Di-
nan et al., 2019; Rashkin et al., 2019; Gopalakr-

ishnan et al., 2019). However, it still requires non-
trivial configurations in the cloud platform and the
performance of crowd workers needs to be moni-
tored constantly while paying them and the service
a good amount of fees.

Most encoder-decoder models used in dialogue
systems are not pretrained on dialogues, just fine-
tuned on relatively small dialogue datasets, which
is a limiting factor. Few studies have utilized com-
ment threads in discussion forums for the creation
of dialogue data and enhanced the performance of
dialogue systems (Al-Rfou et al., 2016; Mazaré
et al., 2018). However, these comment-originated
dialogues tend to be short and not as sensible due
to a lack of contexts from the main posts that are
unsuitable for training multi-turn dialogue models.
Such data scarcity points toward a necessity for a
parameterized model that generates dialogues of
different forms, styles, and topics in high quantity.

In this paper, we first introduce four algorithms
to automatically convert posts and their associated
comments from discussion forums such as Reddit
into multi-turn one-to-one dialogues (Section 3).
Our approach leverages the vast and available suite
of human content and interaction online, with the
potential to create many diverse dialogues, where
the choice of subreddits constitutes topic selection.
It also adapts a sentence-level language model for
estimating likelihoods among posts and comments
to sequence sounding utterances, and is analyzed
across 10 subreddits (Section 4). We then create a
large dialogue corpus and demonstrate the efficacy
of our approach through head-to-head evaluation
against dialogues from three well-known datasets,
which indicates that our dialogues are as engaging
and natural as those from others that are manually
generated (Section 5). This work will facilitate the
development of dialogue models in all kinds of ar-
eas that have been hindered by the data scarcity.1

1Our resources are available through https://github.
com/emorynlp/reddit-to-dialogue.
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2 Related Work

Several dialogue datasets that are created through
crowdsourcing have been presented. Persona Chat
was created by assigning specific personas to two
annotators who act as characters with those per-
sonas and generate a dialogue (Zhang et al., 2018).
Wizard of Wikipedia was created by assigning two
roles to annotators, the appentice acting as a cu-
rious learner of a specific topic and the wizard in-
forming about the topic with a retrieved Wikipedia
article (Dinan et al., 2019). Empathetic Dialogues
was created by assigning two roles to annotators,
the speaker describing a situation when a specific
emotion would occur and the listener reacting to
such a emotional situation (Rashkin et al., 2019).
Blended Skill Talk was created by asking annota-
tors to combine the personal, knowledgeable, and
empathetic aspects of the previous three datasets
together to generate more natural dialogues (Smith
et al., 2020). Topical Chat was created by giving
Wikipedia sections, fun facts, and news articles for
a specific topic to annotators and asking them to
generate a dialogue (Gopalakrishnan et al., 2019).

Only a few dialogue datasets have been created
automatically. Daily Dialogue was crawled from
various websites including dialogues scripted for
English learners to practice daily conversations (Li
et al., 2017). Mazaré et al. (2018) scrapped Reddit
comments with replies and considered them short
dialogues, which would not be multi-turn.

2.1 Comparisons to BST, DD, and TC

For comparisons to our corpus (Section 5.2), Topi-
cal Chat was chosen because it was least restricted
in creation among crowdsourced datasets, Blended
Skill Talk was chosen because it combined those 3
important aspects in dialogue, and Daily Dialogue
was chosen because it was not crowdsourced but
scripted by English educators. Table 1 shows com-
parisons among popular datasets and our corpus.

Data DIA UTT TOK

Empathetic Dialogues 24,850 107,104 1,627,973
Wizard of Wikipedia 22,311 201,999 3,359,456

Daily Dialogue 13,118 103,632 1,504,635
Persona Chat 12,949 195,180 -
Topical Chat 10,784 235,434 4,614,506

Blended Skill Talk 6,808 77,502 1,058,325

Our Corpus 10,098 109,916 3,317,807

Table 1: The statistics of dialogue datasets including
our corpus presented in Section 5. DIA/UTT/TOK: the
total number of dialogues/utterances/tokens.

3 Reddit-to-Dialogue Generation

We introduce four algorithms for the dialogue gen-
eration: greedy baseline (Section 3.1), greedy ad-
vanced (Section 3.2), beam search (Section 3.3),
and threading (Section 3.4). The main objective is
to generate a multi-turn dialogue using a post and
its comments (and replies)2 that flows naturally in
context. All algorithms assume that the number of
sentences in the input post is less than or equal to
the number of comments. The generated dialogues
involve two speakers where utterances of Speakers
1 and 2 are extracted from the post and comments,
respectively. All algorithms are evaluated on posts
from diverse subreddits (Section 4).

3.1 Greedy Baseline Algorithm

Algorithm 1 depicts the baseline greedy approach
that finds the most appropriate top-level comment
for each sentence in a post. Given the input post
P = [p1, .., pn] where pi is the i’th sentence in P ,
and the set of P ’s comments C = {C1, .., Cm} s.t.
Cj = [cj1, .., cj`] where Cj is the j’th comment in
C and cjk is the k’th sentence in Cj , it first creates
the set of comment segments T using C (L2), then
visits every sentence pi ∈ P (L3), which gets ap-
pends to the output dialogueD (L4). Next, it finds
the most-likely segment t̂ ∈ T (L5)3 and adds t̂ to
D (L6). Finally, T gets trimmed with t̂ (L7) and
the algorithm returns D as the output (L8).

Algo. 1: GreedyB: greedy baseline
Input : P : a post, C: a set of P ’s top-level

comments.
Output: D: a dialogue.

1 D ← [ ];
2 T ← segment(C);
3 while ∃ pi ← first(P ) do
4 D ← D ⊕ [pi];
5 t̂← argmax∀t∈T ranker(D, t);
6 D ← D ⊕ [t̂];
7 T ← trim(T, t̂);
8 return D;

The first method removes and returns the first sen-
tence in P . The segment method makes each com-
ment a segment s.t. segment(C) = {C ′1, . . . , C ′m},
where C ′j = cj1

_..._cj` (_: text concatenation).

2In this section, ‘comments’ imply the top-level comments of
the post, and “replies” imply the replies to those comments.

3The any method returns any item in the input set.
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The ranker method takes D comprising all previ-
ous utterances and pi, then estimates the likelihood
of t being the next utterance. Two models are used
for this estimation, the human-like classifier (HLC)
in DialogRPT (Gao et al., 2020) and BERT’s next
sentence predictor (NSP) (Devlin et al., 2019). At
last, the trim method removes t̂ = C ′j from T such
that trim(T, t̂) = T \ {C ′j}.

For HLC, pi and t are fed into the model, which
gives a score of how natural t is to follow pi.4 For
NSP, since the original language model does not
expect dialogue contents as input, we finetune it on
the Multi-Session Chat dataset (Xu et al., 2022),
the largest human-to-human chat dataset compris-
ing≈300K utterances. Given the finetuned model,
the last two utterances in D (the last one is pi and
the second last one is a comment selected for pi−1)
are fed into the model with t, which gives scores
for the two labels, IsNext and NotNext, s.t.

score_of (IsNext) - score_of (NotNext)

is used for our likelihood estimation.5

3.2 Greedy Advanced Algorithm

Algorithm 2 shows the advanced greedy approach
that makes two major updates from Algorithm 1.

Algo. 2: GreedyA: greedy advanced
Input : P : post, C: comment set, q: the

max-length of comment segments.
Output: D: a dialogue.

1 D ← [ ];
2 T ← segmenta(C, q);
3 while ∃ pi ← first(P ) do
4 D ← D ⊕ [pi];
5 if ∃ pi+1 ∈ P then T ← T ∪ {pi+1};
6 t̂← argmax∀t∈T ranker(D, t);
7 if t̂ = pi+1 then
8 P ← [last(D)_first(P )]⊕ P ;
9 else

10 D ← D ⊕ [t̂];
11 T ← trima(T, t̂, q);
12 if ∃ pi+1 ∈ T then T ← T \ {pi+1};
13 return D;

4Since HLC expected a sing-turn as input, we fed only pi,
although we also experimented by feeding more utterances
in D, which led to worse performance.

5Feeding only pi to NSP gave worse results whereas feeding
more than two utterances in D gave very similar results, im-
plying that BERT successfully learned to weigh more on the
last two utterances. We also used only score(IsNext) as
the estimator, which resulted in slightly worse performance.

First, it treats the next sentence pi+1 ∈ P as a
segment to rank if it exists (L5). If pi+1 is selected
(L7), implying that it is better to have both pi and
pi+1 in one utterance, pi is removed from D by
last(D), pi+1 is removed from P by first(P ), and
their concatenation is prepended to P (L8). Once
processed, pi+1 is removed from T (L12).

Second, the segmenta method is updated (L2)
such that it generates finer-grained segments using
Algorithm 3. It is inspired by the fact that a single
comment can (and often) address multiple aspects
expressed in sentences that are not adjacent in P .
In other words, one part of the comment may be
appropriate for pi while another part may be for pj
not adjacent to pi; thus, using the whole comment
as a response to either of them would be unnatural.

Algo. 3: segmenta: comment segmentation
Input : C: a set of comments, q: the max

# of sentences to join.
Output: T : a set of comment segments.

1 T ← ∅;
2 foreach Ch ∈ C do
3 foreach i ∈ [1, |Ch|] do
4 n← min(i+ q − 1, |Ch|);
5 foreach j ∈ [i, n] do
6 T ← T ∪ {join(Ch, i, j)};
7 return T;

The algorithm takes C and q, indicating the max-
number of sentences allowed in any segment, and
visits every commentCh = [ch1, .., ch`] ∈ C (L2).
For each sentence chi ∈ Ch (L3), it joins all sen-
tences between chi and chj using the join method
as follows (L4: i ≤ j ≤ min(i+ q − 1, |Ch|)):

join(Ch, i, j) =

{
chi if i = j

chi
_ . . ._ chj otherwise

All joined segments are added to T (L5-6), which
is returned as the output set (L7). For our experi-
ments, q = 3 is used since the average number of
sentences in Reddit comments (in our data) is< 4.

When segmenta is applied to Algorithm 2 (L2),
t̂, which is appended to D, is a segment of a com-
ment (L10). Let t̂ = cjk where cjk is the k’th
segment ofCj . The trima method then removes all
segments generated forCj from T (L11) such that

trim(T, cjk, q) = T \ segmenta({Cj}, q)
It is possible to keep the rest of unused segments
from Cj that have no overlap with cjk. However,
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such segments generally sound like “speeches out
of context”. Thus, we decided to remove all seg-
ments associated with Cj for the future selections.

3.3 Beam Search Algorithm

Algorithm 4 shows the beam search approach with
an additional parameter k for the beam size. It
creates the beam set B with the tuple of 6 items:
(an input post P , a dialogue D, a segment set T , a
sequence score θ, a sequence count φ), and the set
of output dialogues F (L1-2). While there is any
beam, the state setG is initialized (L3-4). Let Ωα

be (Pα, Dα, Tα, θα, φα). For every beam Ωα ∈ B,
the first sentence pi ∈ Pα is added to Dα (L5-7);
pi+1 is added to Tα if it exists (L8-9). For each
segment t ∈ Tα, the copies P ′α, D

′
α, T

′
α are created

from their correspondents in Ωα (L11) and t gets
handled the same as in Algorithm 2 (L12-16).

Algo. 4: Beamk: beam search
Input : P : post, C: comment set, q: max

segment length, k: a beam size.
Output: D: a dialogue, θ: the sequence

score, φ: the sequence count.
1 B ← {(P, [ ], segmenta(C, q), 0, 0)};
2 F ← ∅;
3 while B 6= ∅ do
4 G← ∅;
5 foreach Ωα ∈ B do
6 pi ← first(Pα);
7 Dα ← Dα ⊕ [pi];
8 if ∃ pi+1 ∈ Pα then
9 Tα ← Tα ∪ {pi+1}

10 foreach segment t ∈ Tα do
11 (P ′α, D

′
α, T

′
α)← copy(Ωα);

12 if t = pi+1 then
13 P ′α ←

[last(D′α)_first(P ′α)]⊕P ′α;
14 else
15 D′α ← D′α ⊕ [t];
16 T ′α ← trima(T

′
α, t, q);

17 s← ranker(D′α, t);
18 (θ′α, φ

′
α)← (θα + s, φα + 1);

19 if ∃ pi+1 ∈ T ′α then
20 T ′α ← T ′α \ {pi+1};
21 G← G ∪ {(Ω′α, s)};
22 else
23 F ← F ∪ {(D′α, θ′α, φ′α)};
24 B ← top-k(G, k);
25 return best(F);

Given the ranking score s, the new sequence score
θ′ and count φ′ are measured (L17-18). If pi+1

exists, it is removed from T ′α and the state (Ω′α, s)
is added to G, where Ω′α = (P ′α, D

′
α, T

′
α, θ
′
α, φ

′
α)

(L19-21). If pi+1 /∈ T ′α, no more sentences exist;
thus, the current dialogue D′α, its score θ′α and the
count φ′α are stored inF . Once all beams are used,
B is reinitialized by the top-k states inG (L24) s.t.

G′ ← [(Ω1, s1), . . . , (Ω|G|, s|G|)] (∀i. si ≥ si+1)

B ← top-k(G, k) = map(λx : x[0], G′)[: k]

Finally, best(F) = (Dβ, θβ, φβ) is returned (L25)
where θβ ≥ θi : ∀i.(Di, θi, φi) ∈ F . Notice that
although dialogues in F at L25 may comprise dif-
ferent lengths, the number of predictions made for
every dialogue is the same as depicted in Figure 1.
Although the first and second dialogues consist of
8 and 2 utterances respectively, the number of pre-
dictions made is 4 for both of them so that the min-
length of any dialogue generated by our algorithm
is 2 while the max-length is 2 · n where n = |P |.
Thus, it is safe to use θi as the sequence score, that
is the sum of all prediction scores for the i’th path
instead of the average score of θi/φi.

3.4 Threading Algorithm

Many top-level comments have threads of replies
responded by the author of the post or other users.
These replies are left out from our previous algo-
rithms (Sections 3.1, 3.2, 3.3) because they do not
necessarily address contents in the post. However,
some of them can be used as bridging statements
between comments selected by the algorithms and
their following sentences from the post, which had
been written before the comments were made. The
challenge is how to glue a reply with the following
sentence so that it does not sound disjointed.

Algo. 5: thread: threading
Input : P : post, D: dialogue, t: comment

segment to be appended to D.
Output: D: the output dialogue including t

and possibly a reply of t.
1 if R← replies(t) then
2 r̂ ← argmax∀r∈R score(P,D, t, r);
3 if glue(P,D, t, r̂) then
4 if P = ∅ then return D ⊕ [t, r̂];
5 else P ← P ⊕ [r̂_first(P )];
6 return D ← D ⊕ [t];
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Figure 1: A demonstration of our beam search algorithm where one beam never selects pi+1 whereas the other
beam always chooses pi+1 (the two extreme cases). The orange lines indicate the paths of the two beams where
the solid lines are deterministically chosen while the dashed lines are predicted. The first beam results in D1 =
[p1, c12, p2, c41, p3, c21, p4, c33] and the second beam results in D2 = [p_1 p

_
2 p

_
3 p4, c11].

Algorithm 5 describes the threading algorithm that
replaces L15 in Algorithm 4 as follows:

D′α ← thread(P ′α, D
′
α, t)

Given the post P , the dialogueD, and the segment
t from L14 in Algorithm 4, it first retrieves the set
R of all top-level replies using the replies method
for the comment that t belongs to (L1). For every
reply r ∈ R, given the last utterance p ∈ D (that is
pi from L7 in Algorithm 4) and the next sentence
n = first(P ), the score method measures how nat-
ural r̂ would be in between t and n such that (L2):

score(P,D, t, r) =
{

(1− γ)P(r|p, t) + γP(n|t, r) if P = ∅
P(r|p, t) otherwise

P(r|p, t) estimates how likely r is to follow p & t
while P(n|t, r) estimates how likely n is to follow
t & r. For this likelihood estimation, the next sen-
tence predictor NSP in Section 3.1 is adapted s.t.:

P(r|p, t) = NSP(p_t, r)

P(n|t, r) = NSP(t_r, n)

For our experiments, γ = 0.7 is used, which gives
more weight on P(n|t, r) than P(r|p, t). Then,
the glue method takes the highest scoring reply r̂
and adjusts the score by its length as follows (L3):

ŝ = score(P,D, t, r̂) · (1 + 0.01(λ− |r̂|))

In our case, λ = 15 so that it would boost the score
if |r̂| < 15, indicating that the number of tokens in
r̂ is less than 15, whereas it would drop the score if
|r̂| > 15. This guides the algorithm to select short
replies that are found to be more useful. The glue
method returns a boolean value as follows:6

glue(P,D, t, r̂) =




true if P = ∅ and 0 < ŝ

true if P 6= ∅ and wor(p, t, n) < ŝ

false otherwise

wor(p, t, n) = (1− β)P(t|p) + βP(n|t)
If there is no more sentence to be added and 0 < ŝ,
t and r̂ are appended toD, which is returned (L4).
If P 6= ∅ and ŝ is greater than the weighted sum of
P(t|p) and P(n|t), implying that it is more natural
to include r̂, the next sentence n ∈ P is prepended
by r̂ (L5). In our case,7 β = 0.5 so that P(t|p) and
P(n|t) get equally weighed. Once R is processed,
D is appended by t and returned (L6).8

6Note that ŝ < 0 if λ < |r̂|−100 (in our case, 115 < |r̂|) that
is intended since it is better not to select such long replies.

7The hyperparameters β, γ, and λ are optimized by analyzing
their performance on the dataset in Table 2.

8Since t and r_n are introduced as separate utterances in D,
estimating P(r, n|t) = NSP(t, r_n) instead of P(n|t, r) =
NSP(t_r, n) seems to make more sense. However, we tried
many different combinations of n-gram estimations includ-
ing P(n|t, r), and the ones presented in this section yielded
the best results overall.
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3.5 Title Repetition Handling

Often on Reddit, the earlier part of a post assumes
the context in the title so that it makes more sense
to consider the title the first utterance of Speaker 1.
On the other hand, the title and the first sentence in
a post can be nearly or exactly the same such that
including such a redundant title with the first sen-
tence would lower the naturalness of our generated
dialogue. Thus, any title that has a string match of
70% or higher with the first sentence in the post is
excluded from the generation.

4 Algorithm Analysis

This section provides an in-depth analysis among
the following five methods:

• GB: Greedy Baseline (Section 3.1)

• GA: Greedy Advanced (Section 3.2)

• B2: Beam Search, k = 2 (Section 3.3)

• B4: Beam Search, k = 4 (Section 3.3)

• T2: Threading, k = 2 (Section 3.4)

To evaluate the quality of dialogues generated by
these methods, diverse posts are collected from the
following 10 subreddits:

• ADV: Advice • BKS: Books
• COL: College • CaC: Casual_Conversation
• FIT: Fitness • LTM: LetsTalkMusic
• MOV: Movies • GAM: TrueGaming
• WRT: Writing • TFR: TalesFromRetail

Table 2 shows the statistics of our analysis set con-
sisting of 50 posts uniformly distributed across the
subreddits. On average, posts have 11.4 sentences
(200.1 tokens) with 107.8 top-level comments that
comprises 3.3 sentences (46.2 tokens), where a
comment has 0.7 top-level replies (23.1 tokens).9

The number of top-level comments varies quite a
bit by the popularity of each subreddit.

All dialogues created by the five methods above
are assessed by two undergraduates trained for this
task. For this assessment, every utterance in these
dialogues is double-annotated for whether it is ap-
propriate for the context; more explicitly: “Is this
a normal response or continuation of the previous
statement?”. This metric is chosen to evaluate the
quality of dialogues as closely aligned with human
dialogue-related intuition as possible.
9Tokens are split by whitespace, not linguistically.

Subreddit Posts Comments Replies

ADV 5 (16.9) 36.3 (5.3) 0.2 (38.0)
BKS 5 (7.9) 591.4 (2.8) 0.6 (14.9)
CaC 5 (8.4) 142.4 (3.0) 0.7 (27.3)
COL 5 (7.1) 30.8 (3.9) 0.5 (39.3)
FIT 5 (3.9) 155.5 (3.5) 0.8 (27.7)
GAM 5 (19.0) 32.9 (6.5) 0.9 (52.0)
LTM 5 (13.6) 23.2 (5.5) 0.7 (49.0)
MOV 5 (8.8) 22.7 (2.5) 0.6 (21.5)
RET 5 (22.4) 23.5 (3.0) 1.0 (35.5)
WRT 5 (5.1) 35.0 (4.8) 0.3 (40.0)

Total 50 (11.4) 107.8 (3.3) 0.7 (23.1)

Table 2: The analysis set used to evaluate our genera-
tion methods. Comments/Replies: the average number
of top-level comments/replies per post/comment, (*) in
Posts & Comments: the average number of sentences,
(*) in Replies: the average number of tokens.

Table 3 shows the analysis results. Note that only
the first 10 sentences in every post are used to cre-
ate dialogues for this analysis to fairly score ones
from distinct subreddits, although posts from cer-
tain subreddits (e.g., FIT, WRT) do not have 10
sentences on average, yielding shorter dialogues.

κ σ UT TK1 TK2 TKa

GB 55.9 39.1 13.9 20.2 35.4 27.8
GA 27.1 51.1 11.4 21.2 35.1 28.1
B2 24.0 67.2 9.8 22.9 36.9 29.9
B4 45.8 58.9 9.8 23.0 38.1 30.5
T2 41.8 75.4 12.2 20.6 36.1 28.2

Table 3: The analysis results from the five methods. κ:
Cohen’s kappa, σ: the avg-score of dialogues, UT: the
avg-number of utterances, TK1|2|a: the avg-number of
tokens in every utterance from Speaker 1, Speaker 2,
and all speakers, respectively.

For the inter-annotator agreement, Cohen’s Kappa
is used, which shows moderate agreements for GB

and T2, where most utterances are found to be in-
appropriate and appropriate respectively such that
they are easier to assess. The score of the dialogue
is measured by macro-averaging the scores of the
two annotators as follows (n = 50: the number of
dialogues, m = 2: the number of annotators):

1

n

n∑

j=1

(
1

m

m∑

i=1

#i of appropriate utterances
# of utterances

)

GA shows a good improvement of 12% over GB ,
implying that it is often natural to include multiple
sentences to compose utterances for Speaker 1. B2

shows even a larger improvement over GA, depict-
ing the effectiveness of beam search, although no
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ID Utterance

S1 How do I get over the loss of a pet? Yes I have loss Pets before and I was sad.. But in this case I had a dog named
Oscar he was in my life ever since toddlerhood.

S2 Losing a pet is like losing a family member. I think you might be taking this death harder because he didn’t die on
his own accord.

S1 I was even the one to name him.
S2 Unfortunately from my personal experience you don’t really get over it but as days go on it gets easier. Just allow

yourself to feel the emotions and get them out.
S1 Everyday I walked to my great granny’s house to see him. He was my best friend seeing him became harder after

my great grandmas death.
S2 Give yourself time. Accept your feelings and know that grieving is a process.
S1 He moved to Texas and I was only able to see him every summer.
S2 This will just make your grief and depression deeper and could spark an unending cycle of sadness. Join a support

group. Speak with others who are also grieving.
S1 He was in my life srom toddler hood to now 17 years old.
S2 Unfortunately there is no real guideline to how long after the person is deceased, it is normal to be depressed, it will

be different for everyone.
S1 He was in Texas and got hit by something being old and scared he wouldn’t let anyone work on him.

Table 4: An example dialogue generated by T2 using a post from the Advice subreddit. The original post can be
found https://www.reddit.com/r/Advice/comments/ub7k62. S1/2: Speaker 1/2.

improvement is made when the bigger beam size is
used for B4. T2 gives an additional improvement
of 8.2% over B2 and achieves the average score of
75.4%, implying that over 3/4 of utterances in these
dialogues are found to be appropriate.

For the dialogue lengths, it is not surprising that
GB yields longer dialogues as each sentence in the
post is considered a separate utterance. Notice that
B∗ yield shorter dialogues than the others, indicat-
ing that the beam search prefers to combine more
sentences from the post to compose utterances for
Speaker 1. It makes sense because the NSP scores
between consecutive sentences from the post are
likely higher than ones with comments. However,
the length is resolved with T2 when the replies are
concatenated to those sentences so that their NSP
scores become more comparable to the NSP scores
with the comments. Utterances for Speaker 2 tend
to be longer than Speaker 1’s ones. Table 4 shows
a dialogue example generated by T2, where most
utterances are found to be appropriate.

5 Multi-turn Dialogue Corpus

With our best method, Threading (Section 3.4), we
create a corpus consisting of 10,098 dialogues that
can be used to pretrain language models for multi-
turn dialogue systems (Section 5.1). Among those,
570 of them are compared to dialogues from three
other datasets for quality assurance (Sec. 5.2).

5.1 Corpus Creation

A total of 28,686 posts and their comments/replies
are collected from the 10 subreddits in Section 4

using the Python Reddit API Wrapper (PRAW).10

The corpus creation follows 3 stages, pre-filtering,
dialogue generation, and post-filtering. During the
pre-filtering, posts that meet any of the following
criteria are discarded:

• Include many non-standard characters (e.g.,
unicode characters, ones not in English)

• Include reddit-specific markers (e.g., REPLY,
DELETE, EDIT, OP, TL;DR)

• Include many URLs, lists, or numbers

• Reference posts or comments in other posts

• The title includes the word ‘thread’ or the first
sentence includes the word ‘title’.

• The title is redundant to other posts.

The Threading algorithm is run on pre-filtered
posts to automatically generate dialogues. During
the post-filtering, any dialogue with the average
sequence score (θ/φ in Algorithm 4) less than 6.0
gets discarded. Finally, dialogues are assessed by
GRADE (Huang et al., 2020), an automatic co-
herence metric for open-domain dialogue, discard-
ing dialogues with utterances with scores less than
0.21. Table 5 describes the statistics of each stage.
48.5% and 31.7% of the posts are discarded after
the pre- and post-filtering, respectively. Our cor-
pus consists of 109,916 utterances and 3,317,807
tokens, which makes it one of the largest dialogue
datasets. More importantly, new large corpora can
be created for a variety of topics with our method.
10PRAW: https://praw.readthedocs.io
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It is especially useful for those who already have a
small dialogue dataset and need a large corpus to
pretrain language models for performance boost.

SR ORG PRE POST UTT TOK

ADV 6,339 3,078 1,527 10.7 30.1
BKS 2,476 1,419 1,077 10.6 29.7
CaC 3,386 1,959 1,441 9.7 26.7
COL 4,008 1,637 1,117 8.3 30.0
FIT 1,964 422 342 10.5 29.2
GAM 1,873 1,057 632 15.9 37.4
LTM 1,882 1,049 819 12.7 36.1
MOV 2,341 1,417 1,071 8.5 26.0
RET 1,997 1,035 780 18.3 27.7
WRT 2,897 1,701 1,292 8.9 30.4

Total 28,686 14,774 10,098 10.9 30.2

Table 5: The statistics of our dialogue corpus. ORG:
the number of collected posts, PRE/POST: the number
of posts retained after pre/post-filtering, UTT/TOK: the
avg-number or utterances/tokens.

5.2 Dialogue Evaluation
To evaluate the quality of our corpus, 570 of them
are selectively sampled by their sizes and sources.
Three size groups are formed, small, medium, and
large, comprising dialogues with [6, 10], [11, 14],
and [15, 17] utterances, respectively. Dialogues in
this evaluation set are uniformly distributed across
the 10 subreddits for fair comparisons.

Each of our dialogues is displayed with another
dialogue with a similar size (and topic if possible)
from one of the three datasets, Blended Skill Talk
(BST), Daily Dialogue (DD), and Topical Chat
(TC) such that a total of 1,710 (570 × 3) pairs
are generated for comparisons.11 Each pair is then
compared by two annotators for engagingness and
naturalness as follows:

Engagingness:
Which dialogue is more engaging or interesting?

Naturalness:
Which sounds more natural or human-like?

• 2: A is significantly more engaging/natural
than B.

• 1: A is more engaging/natural than B.

• 0: A is as engaging/natural as B.

• -1: A is less engaging/natural than B.

• -2: A is significantly less engaging/natural
than B.

11Section 2.1 explains why BST/DD/TC are chosen and gives
detailed comparisons between their and our datasets.

The order of Dialogue A and B in each pair is ran-
domly shuffled so that the annotators would not be
able to tell their sources. For the annotation, we
hired a professional team through SurgeHQ12 and
paid $0.5/task, costing a total of $1,710. Table 6
shows the evaluation results.

CT Be Bn De Dn Te Tn
SM 190 0.39 -0.19 0.77 0.01 -0.51 -0.22
MD 190 0.52 -0.14 0.82 -0.03 -0.23 -0.16
LG 190 0.56 -0.28 0.71 -0.07 -0.04 -0.23

ADV 60 0.57 -0.23 0.76 0.05 -0.19 -0.07
BKS 60 0.53 -0.06 0.64 -0.16 -0.2 -0.23
CaC 60 0.38 -0.29 0.68 0.02 -0.39 -0.38
COL 43 0.28 -0.20 0.8 0.07 -0.43 -0.15
FIT 57 0.26 -0.34 0.56 -0.09 -0.53 -0.3
GAM 50 0.67 -0.12 1.05 0.18 0.13 -0.01
LTM 60 0.61 -0.11 1.02 0.16 -0.14 -0.20
MOV 60 0.66 -0.16 0.92 0.17 -0.12 0.00
RET 60 0.41 -0.50 0.43 -0.55 -0.40 -0.45
WRT 60 0.49 -0.04 0.87 -0.10 -0.33 -0.18

All 570 0.49 -0.21 0.77 -0.03 -0.26 -0.20

Table 6: The evaluation results. CT: the number of
dialogues, B/D/T: BlendedSkillTalk, DailyDialogue,
TopicalChat, ∗e/n: the engagingness/naturalness score,
SM/MD/LG: the small/medium/large size set.

For each annotation, our dialogue gets the score of
2/-2 if it is significantly better/worse, 1/-1 if it is
better/worse, and 0 if it is as good as the other dia-
logue. The overall score is estimated by averaging
all individual scores. In general, our dialogues are
more engaging than BST and DD (0.49 and 0.77)
but slightly less engaging than TC (-0.26) although
longer dialogues are competitive to ones in TC (-
0.04). On the other hand, our dialogues are less
natural than the others although the differences are
marginal (< 0.21). Our dialogues are found to be
more natural for 6 out of 10 subreddits compared
to DD. Considering how many human labors are
involved for the creation of BST and TC while it
costs no labor to create our corpus, these results
are very promising. Example dialogues from this
evaluation can be found in Appendix A.

It is worth mentioning that we first tried crowd-
sourcing our annotation through Mechanical Turk,
which yielded random results as most turkers kept
marking only Dialogue A without reading both of
them carefully. When we switched the annotation
tasks to SurgeHQ, a remarkable improvement was
observed although the inter-annotator agreements
were still low, 30.8% and 24.4% for the engaging-
ness and naturalness tests, respectively. Such low
12SurgeHQ: https://www.surgehq.ai
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agreements have been observed by previous works
created the other datasets as well because this task
is highly subjective. We will explore a more robust
way of evaluating dialogues in the future.

6 Conclusion

We present four algorithms for the automatic con-
version of posts and their comments/replies from
Reddit discussion forums to multi-turn dialogues.
Each algorithm is carefully designed and analyzed
for high-quality generation. Our best method can
generate dialogues with the 75% appropriateness
level. Using this method, a large corpus is created
consisting of 10,098 dialogues from 10 subreddits.
The quality of our dialogues is tested by compar-
ing them to dialogues from three popular datasets,
BlendedSkillTalk, DailyDialog, and TopicalChat.
Our dialogues are more engaging, but slightly less
natural than those from the other datasets overall.

For future work, we will improve our methods,
apply them to broader subreddits, and adapt them
to other discussion forums as our methodology is
not limited to Reddit. We will also train dialogue
models on our corpus for a more in-depth extrinsic
evaluation against other dialogue datasets.
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A Appendix

A.1 Example Dialogues from Each
Evaluation Grading Category

This section give example dialogues rated as “Less
Natural, Less Engaging” (Table 7), “More Natural,
More Engaging” (Table 8), “Significantly More
Natural, Significantly More Engaging” (Table 9),
and “Significantly Less Natural, Significantly Less
Engaging” (Table 10). Note that these ratings are
given in relation to a conversation, omitted here,
from one of our comparison datasets (Section 5.2).

The negatively-rated dialogues exhibit several
of our methodology’s weaknesses, namely lack of
interaction from Speaker 1, Speaker 2 responses
to content which has not yet been introduced by
Speaker 1, and references to Reddit-specific ter-
minology such as threads which wouldn’t be dis-
cussed often in regular dialogue.

The positively-rated dialogues, on the other
hand, demonstrate our methodology’s strengths:
both successfully use threading (e.g., Utterance 5
in Table 8 and Utterance 3 in Table 9), there is con-
sistently natural grouping of Speaker 1’s content,
and Speaker 2 responds for the most part at natu-
ral times to the content Speaker 1 introduces while
also adding relevant content to the conversations.
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ID Utterance

S1 Bittersweet musical legacies: an examination. The popularity of the recent Big Star thread got me thinking
about how bittersweet it is for music fans to deeply love a band that were either struck down by tradegy,
failed to launch due to bad decisions, or never received their day in the sun beyond a cult following.

S2 I’d say Badfinger certainly qualifies for this thread. They had the support of the Beatlesĺabel, they looked to
be on the road to a successful career with many big hits like ""Day After Day"", ""No Matter What"", and
""Come and Get It"" (and their song ""Without You"" was made a big hit by Nilsson)

S1 One of the saddest legacies for me is Emitt Rhodes, a guy who at the tender age of 20 in 1970 put out an
album with musical chops worthy one Sir Paul McCartney.

S2 I would argue The Kinks belong in this thread. Yeah they have some songs that poked through the fog
(You Really Got Me, Lola, Sunny Afternoon), but they should really be considered right in the mix in the
Beatles/Stones conversation. I feel like The Kinks are not given that same respect but they deserve it.

S1 Having that level of widespread public acknowledgement is quite rare. A cynic may say he cribbed macca’s
sound, and in all honesty a song could’ve appeared on his first solo album, but at the age of 20 he had many
years ahead of him to transcend his influences....except that he didn’t.

S2 ...and then they got royally screwed over financially, had a lot of issues within the band (I believe the
royalties to "Without You" were among the reasons they fought), and because of all the fallout of the
financial ruin and such, in the end, two of the band members ultimately committed suicide in eerily similar
fashion. Such a sad, sad story.

S1 The fact he had a kid on the way when he hanged himself is tragic. A handful of albums into his career
he was beset by lawsuits and record company entanglements that saw him walk away from releasing music
in 1973 and not appear again with a new album until 2016(!).. If you look at the photos of Emitt and then
jump to the album Rainbow Ends, it’s like a joyful/sad pair of
bookends for a man who in interviews talked about his regrets with music and his lack of success.

S2 I also think of The Verve and how the copyright shenanigans robbed them of their hit Bittersweet Symphony.
And then that was kind of it for them.

S1 I loved Urban Hymms, listened to that record so much over my life. This is made even more sad by the fact he
died in his sleep last year of heart failure at age 70.

S2 These are examples of artists who missed out on their full commercial potential in life rather than good artists
that we like to think could’ve been great artists because the circumstances weren’t right. I’m not familiar enough
with Emmitt Rhodes to say whether he fits in either camp, just my two cents on the issue.

S1 I’d add Townes Van Zandt to that list. His talent as a songwriter was undeniable.
S2 Sadly the music industry is littered with tragic stories and acts that should have been much larger than they were,

but for whatever reason, weren’t. One of my favorite ""one hit wonders"" was a dude named Jonathan Edwards
who had a hit with in 1971 about the craziness of the music industry and that was pretty much it despite making
great music up into the 80s.

S1 The press called him a one man Beatles due to the fact he played and recorded all his own instruments at his
home studio.

S2 his story is particularly sad, simply because he faced so much tragedy and hardship, and no one was really there
for him. the one album he put out is a reflection of his life and mental health issues and is as equally as beautiful
as it is heartbreaking. tim buckley, on the other hand, released 9 albums over the span of a 9 year career and
could’ve have become a musical legend similar to that of a lot of psychedelic folk/folk rock artists of the time.

Table 7: An example dialogue generated by T2 using a post from the LetsTalkMusic subreddit that was
graded as less natural and less engaging. The original post can be found at https://www.reddit.com/r/
LetsTalkMusic/comments/pnwg25/bittersweet_musical_legacies_an_examination/.
S1/2: Speaker 1/2.
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ID Utterance

S1 Do you use a bench/machine if someone says "I’m still using it" when they’ve left nothing there to show?
I see the benchpress spot free and no sign of being used.

S2 so I can use it. Then walk away and use any other machine.
S1 No hoodie, no towel, no water bottle nothing.. So I put my hoodie down on the ground while I go get a

paper towel to clean some sweat on the bench.. Then, some guy says ""Hey I’m still using that""
S2 If he’s on another machine he’s not on the one you want to use. Use it.
S1 Idek how to sue lol. He’s about 25 feet away just standing and talking to someone.
S2 Just ignore him entirely and bench lol If the guy wants to say something, he can have some manners

and come over instead of shouting over.
S1 His tone was kinda rude too, as if it was obvious that the damn thing’s still in use.
S2 If it becomes an issue, just keep an eye out for whatever he’s doing and as soon as you see him go to any

piece of equipment, yell Hey, I’m using that. . . even if you are in the middle of your set, in another
machine, across the room. On the other hand, maybe the guy is not a complete jerk and he really was
using it and it’s no big deal.

S1 Stuff gets annoying
S2 Screw that guy. Getting knocked out isn’t that bad lol. Hell you may even get a bunch of money out of it.
S1 I swear.
S2 Nothing by on equipment? Take it, get your sets, and remain oblivious to obnoxious behavior.

Table 8: An example dialogue generated by T2 using a post from the fitness subreddit that was graded as more
natural and more engaging. The original post can be found at https://www.reddit.com/r/Fitness/
comments/tth3in/do_you_use_a_benchmachine_if_someone_says_im/. S1/2: Speaker 1/2.

ID Utterance

S1 Smartest Theft Plan That Almost Worked. When I was 17, I had a part-time job as a cashier for Rona..
During my time there I met some very interesting people at the till.

S2 Best concealment I ever saw on the job as a cashier is some guy tried to fill a beanbag chair with
vitamin bottles...

S1 Thats some clever thinking! Once, a man walked in wearing what looked like a Halloween construction
worker costume and headed for what looked like the power tools section.. Although, I later found out
he went to the cleaning aisle first where we sell commercial yellow mops and buckets.. He opened one
box and put the mop and bucket on the sales floor to make it look like it belonged to the store.. Then he
used the empty box and filled it with expensive power tool kits and batteries.

S2 He assembled them in his cart and loaded them up with all the toys he wanted. Then tried to just pay for
two boxes that come flat packed and obviously had to be opened. Surprise surprise they were heavy.....

S1 11 times. He had the box in a shopping cart and went up to my till.
S2 When I worked at a big box hardware store we one day had a guy come in and grab some of the $5

heavy duty moving boxes.
S1 This week. This was an elaborate plan up till now, unfortunately, he placed the box the wrong way

in the cart where I couldn’t just use my scanner to get to the barcode.. He tried to turn the box but
since he put all these heavy tools and batteries in it, he couldn’t do it.

S2 Hilarious. Pretty smart. Wonder if you would have caught him if he had put the box in the right direction.

Table 9: An example dialogue generated by T2 using a post from the TalesFromRetail subreddit
that was graded as significantly more natural and significantly more engaging. The original post can
be found at https://www.reddit.com/r/TalesFromRetail/comments/ppsa29/smartest_
theft_plan_that_almost_worked/. S1/2: Speaker 1/2.
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ID Utterance

S1 Your money is gone! Please calm down! So, I recently got a job at a store that sells cheap stuff for around
a dollar or more.

S2 The grocery store I go to has a sign at each till saying don’t put money on the belt as it could cause damage.
Any money lost is not the responsibility of the store. Yet, idiots still do it, but their clearly posted sign
covers them and they just shrug their shoulders.

S1 Most customers are usually polite and very pleasant to talk to.
S2 In Finland some stores have signs that explicitly says no money or recycling slips on the belt, probably

because alot of people used to put their recycling slips in with the groceries.
S1 Im not a fin (sorry) what is a recycling slip? Some however, make me seriously regret accepting this job..

Today I had one of those customers. . . A woman came into my line today with one thing and, she did the
dumb thing of putting her cash on the belt.. Which you should never do because the belt acts like a vending
machine when you put paper money on it.. Henceforth the belt took her $5 bill and she instantly started
flipping out like crazy, and I mean she was hysterical.

S2 My brother had something similar happen at a grocery store but the customer said it was a $100 bill and
my brother didn’t witness it.

S1 A hundred is much worse than a $5. She stated how she wasn’t leaving until she gets her five dollars back.
S2 The worst thing I’ve seen one of those belts try to eat was a 2L of coke. The bottle fell on its side on the

belt and got caught and poked a hole in the side. Then the bottle kept rolling at the end of the belt spraying
soda all over the place.

S1 There is no service desk. Then she starts making a list of demands such as. . . - wanting to talk to the owner
of the store.

S2 Everyone just kinda froze until the cashier stopped the belt and someone grabbed the bottle and put a
fingerbover the hole until they could throw it out. It was horrible and hilarious at the same time.

S1 The store I work in is very small.

Table 10: An example dialogue generated by T2 using a post from the TalesFromRetail subred-
dit that was graded as significantly less natural and significantly less engaging. The original post can
be found at https://www.reddit.com/r/TalesFromRetail/comments/tx1fg0/your_money_
is_gone_please_calm_down/. S1/2: Speaker 1/2.
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Abstract

Figures of speech, such as metaphor and irony,
are ubiquitous in literature works and collo-
quial conversations. This poses great challenge
for natural language understanding since fig-
ures of speech usually deviate from their os-
tensible meanings to express deeper semantic
implications. Previous research lays empha-
sis on the literary aspect of figures and seldom
provide a comprehensive exploration from a
view of computational linguistics. In this pa-
per, we first propose the concept of figurative
unit, which is the carrier of a figure. Then
we select 12 types of figures commonly used
in Chinese, and build a Chinese corpus for
Contextualized Figure Recognition (ConFig-
uRe). Different from previous token-level or
sentence-level counterparts, ConFiguRe aims
at extracting a figurative unit from discourse-
level context, and classifying the figurative unit
into the right figure type. On ConFiguRe, three
tasks, i.e., figure extraction, figure type classifi-
cation and figure recognition, are designed and
the state-of-the-art techniques are utilized to
implement the benchmarks. We conduct thor-
ough experiments and show that all three tasks
are challenging for existing models, thus re-
quiring further research. Our dataset and code
are publicly available at https://github.
com/pku-tangent/ConFiguRe.

1 Introduction

Figures of speech, also known as rhetoric figures
or figurative languages, are a ubiquitous part of
spoken and written discourse. These rhetorical
techniques, such as metaphor, irony and paral-
lelism, greatly enrich the expression of human lan-
guages (Roberts and Kreuz, 1994). They intention-
ally deviate from the literal meaning of language to
provide deeper semantic expressiveness, therefore

∗Corresponding author
†Author emails:{dwzhu, zhanqiusi, zhouzhejian, yfsong,

zhangjiebin, lisujian}@pku.edu.cn

Discourse Fragment: {…} [1] 这样的想了一想，[2]

我的断绝了联络的知觉，[3] 又重新恢复了转来，
{[4] 一股同蒸气似的酸泪，} metaphor/simile（比喻） [5]

直涌了出来。[6] 我踉跄往后退了几步，[7] 倒在
外床她叠好在那里的那条被上。[8] 两手紧紧抱着
了这一条被，{[9] 我哭着，[10] 哭着，[11] 哭着，
[12] 哭了一个尽情。} Parallelism（排比） {…} 

Translation: {…} Thinking of this,  my disconnected 

senses started to restore again, [and a stream of sour 

tears gushed out like steam. ]metaphor/simile I stumbled 

back a few steps and fell out of the bed on the quilt 

she folded there. Holding this quilt tightly with both 

hands, [I cried, cried, cried and cried my heart 

out.]Parallelism {…} 

Figure 1: An annotated case of ConFiguRe. We present
English translation in the second block for reading con-
venience. Clause groups in italic are figurative units,
with the specific figure type denoted in subscription.

posing a big challenge to natural language under-
standing.

Linguists have a long history of studying rhetoric
figures, extensively analyzing their use in literature,
culture and psychology (Zhang, 1963; Wilks, 1975;
Drew and Holt, 1998; Group, 2007; Shapin, 2012).
These works mainly focus on collecting qualita-
tive evidence. Figures of speech have also drawn
attention from the NLP community. Many down-
stream applications could be improved, should fig-
ures be precisely identified and carefully dealt with.
For example, a faithful translation should adapt
the metaphors used in the source language to an
authentic expression in the target language, and
sentiment analysis should benefit from the correct
identification of irony and sarcasm.

Despite its significance, a comprehensive study
of identifying rhetoric figures from discourse re-
mains under-explored. Previous works mainly em-
phasize specific figures, such as metaphor (Steen,
2010; Fass, 1991; Dodge et al., 2015; Su et al.,
2020) and sarcasm (Khodak et al., 2017; Davidov
et al., 2010; Wallace et al., 2014; Lee et al., 2020),
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or identify rhetoric figures at a token or sentence
level (Wen et al., 2019; Chen et al., 2021). How-
ever, in real-world settings, figurative languages
are hidden in a long context and the potential figure
type is usually unknown. Motivated by this, we
construct a comprehensive dataset of 12 commonly
used figures in Chinese, and include discourse frag-
ment as context for each instance.

First we describe our guideline towards con-
structing a rhetoric corpus, which is devised upon
linguistic theory and existing reading practice. The
design of the guideline is oriented with two key
questions: (1) What is the language carrier of
a specific figure? (2) Which figures should be
included in our corpus? For the first question,
we propose the concept of figurative unit——the
smallest continuous clause sequence containing a
complete expression of a specific figure. For the
second question, we approach it from a linguistic
view. Linguistically, figures can be divided into
two main groups: schemes and tropes. Schemes
reflect a deviation from the ordinary pattern or ar-
rangement of words, while tropes involve deviation
from the ordinary and principal signification of
words (Corbett, 1999). Following previous work
of Chinese linguists (Zhang, 1963) and existing
reading-comprehension practice, we select 7 tropes
and 5 schemes commonly used in Chinese in our
work.

Following the aforementioned guideline, we
leverage human annotation to build ConFiguRe,
a Chinese corpus for Contextualized Figure Recog-
nition. Each instance in ConFiguRe includes a
discourse fragment with several annotated figura-
tive units attached to it. An annotated instance of
ConFiguRe is illustrated in Figure 1. In this in-
stance, the fragment includes 12 Chinese clauses
and 2 figurative units. Clause 4 alone is a figura-
tive unit labeled with the metaphor type, while the
latter 4 clauses constitute another figurative unit
labeled parallelism. ConFiguRe is, to the best of
our knowledge, the first rhetoric dataset that in-
volves both extracting a figurative unit from the
discourse-level context and classifying this unit
into the right figure type. In comparison, previous
datasets mainly focus on detecting a specific figure
from a given sentence (Joshi et al., 2016; Khodak
et al., 2017).

For benchmark settings, we design three tasks
based on ConFiguRe, namely figure extraction, fig-
ure type classification, and figure recognition. We

deploy state-of-the-art models as baselines, and re-
veal that all three tasks remain challenging through
thorough experiment. We also conduct subsidiary
experiments to explore future directions for these
tasks, which will contribute to the research of this
area.

To sum up, our main contribution is threefold:

• We design the guideline towards constructing a
discourse-level rhetoric corpus based on linguis-
tic theory, and propose the concept of figurative
unit as the basic element for analysis.

• We construct ConFiguRe, a human-annotated
Chinese corpus for contextualized figure recog-
nition, which includes 12 most frequently used
figure types. Upon this, we design three tasks as
benchmarks: figure extraction, figure type classi-
fication, and figure recognition.

• We implement models based on recent state-of-
the-art techniques as baselines, and conduct thor-
ough experiments and analysis. We find that all
three tasks on ConFiguRe are challenging with a
lot of room to improve.

2 Related Work

Over the last decade, automated detection of figu-
rative languages has become a popular topic, and a
considerable number of datasets in this area have
been constructed. These datasets can be roughly
divided into two categories: the first is to extract
the span of a specific figure given a sentence and
its context (span extraction); the second is to de-
termine whether a sentence is figurative (sentence
classification). For span extraction, it is usually ac-
complished by marking out tokens carrying the tar-
get figure. These works include VUA (Joshi et al.,
2016) and the NTU Irony Corpus (Tang and Chen,
2014). For sentence classification, there are two
lines of relevant research. The first is a binary sen-
tence classification task for determining whether a
given sentence is figurative, e.g. SARC (Khodak
et al., 2017) for sarcasm, and the Chinese rhetoric
question dataset built by Wen et al. (2019). The sec-
ond is to classify a figurative sentence into its corre-
sponding figure type (multi-classification), such as
the Chinese multi-label rhetoric dataset constructed
by Chen et al. (2021) for joint rhetoric and emotion
identification.

On the basis of existing datasets, a series of meth-
ods have been developed, ranging from feature en-
gineering (Bulat et al., 2017; Köper and Schulte im
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Walde, 2017; Tsvetkov et al., 2014) to neural net-
works (Liu et al., 2018; Chen et al., 2021; Mu et al.,
2019; Dankers et al., 2020; Joshi et al., 2017; Leong
et al., 2020, 2018). However, perhaps limited by
the fact that existing datasets only target at one
figure, previous works mainly deal with specific
figure types. A comprehensive study of a collection
of figure types remain under-explored.

One further observation is that previous datasets
are rarely shipped with wider contextual informa-
tion. They mainly approach the subject from a
token-level or sentence-level perspective. That be-
ing the situation, a series of works have pointed
out that leveraging contextual information is ben-
eficial in figure detection (Dankers et al., 2020;
Mu et al., 2019; Jang et al., 2015; Joshi et al.,
2017, 2015). Joshi et al. (2015) proposed to use
text incongruity from linguistic theory for sarcasm
detection. Dankers et al. (2020) used a general
and a hierarchical attention mechanism for model-
ing discourse, improving SOTA for the 2018 VU
Amsterdam (VUA) metaphor identification shared
task (Leong et al., 2018) by 6.4 F1-scores. Other
contextual clues such as author context (Bamman
and Smith, 2015; Ghosh and Veale, 2017), multi-
modal context (Schifanella et al., 2016; Castro
et al., 2019), conversation context (Joshi et al.,
2016; Ghosh et al., 2017), have also been proven
to improve figure detection.

In this paper, we propose Chinese Corpus for
Contextualized Figure Recognition (ConFiguRe),
which, to the best of our knowledge, is the first
comprehensive corpus that includes more than 10
commonly used figures in Chinese, with relevant
discourse fragments serving as contextual informa-
tion for each instance. Our dataset can be used
for both figure extraction and figure type classifica-
tion.

3 Corpus Construction

Previous rhetorical studies (Group et al., 2007; Har-
ris et al., 2018) have contributed many useful an-
notation paradigms. However, These annotation
paradigms are primarily customized for one spe-
cific figure type, or tailored to scheme figures that
present themselves with strict patterns, which are
quite inapplicable in our setting. In this section,
we present our self-devised annotation guideline to
build ConFiguRe with 7 trope figures and 5 scheme
figures.

1. Metaphor/Simile: 阳光像金子一样珍贵，
(Sunshine is as precious as gold)

2. Parallelism: 童年是小草的芽儿，充满了生机；

童年是早晨的太阳，充满了活力；童年是清润的
雨水，充满了欢乐。 (Childhood is the bud of grass, 

full of vitality; childhood is the morning sun, full of 

vitality; childhood is the rain, full of joy.)

Figure 2: Two examples for figurative units. First is a
Simile unit containing one single clause, the second is a
Parallelism unit composed of six clauses.

3.1 Annotation Guideline

Figurative Unit For the convenience of analyz-
ing figures, we first posit the concept of figurative
unit as the basic language carrier of a figure. A fig-
urative unit is defined as "the smallest continuous
clause sequence carrying a complete expression of
a specific figure". 1 The intuition is that, under
most circumstances, a figure instance only com-
prises a limited portion of a sentence. Hence, we
prefer clauses as elementary constituent of a figure,
as it is more fine-grained than a sentence. In Fig-
ure 2, we demonstrate two examples of figurative
units with their corresponding figure types. In the
first example, a single clause is a figurative unit
carrying the figure Simile; while in the second ex-
ample, six clauses together form a figurative unit
of Parallelism.
Figure Types Upon selection of figure types, we
refer to the linguistic categories from English (Bur-
ton, 2016) and Chinese (Zhang, 1963). We choose
the most frequently used ones in written litera-
ture. It should be noted that while some figures
are widely used in English, they do not have exact
counterparts in Chinese, therefore excluded from
our dataset. At the same time, we avoid choosing
the figures whose identification may involve deep
semantic background, e.g. Pun, Paradox, and leave
them for future study. Specifically, we adopt the
following 12 figures: Metaphor/Simile2, Personifi-
cation, Metonymy, Hyperbole, Irony, Synaesthesia,
Rhetorical question, Parallelism, Duality, Repeti-
tion, Antithesis, Quote (For detailed description of
each figure, see Appendix A.1). For simplicity, we
temporarily use the first four or five characters as

1It is debatable about the definition of a Chinese clause.
Here for simplicity, we define a clause as a text span separated
by the separator punctuations. A full list of punctuations is
included in Appendix A.2.

2In Chinese, these two figures are combined as a single
figure type which means a comparison made by referring to
one thing as another.
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the abbreviation of each figure in this paper. Note
that we do not aim at including all figure types in
our research, but hope to recognize the commonly-
used figures out of the discourse.

In linguistics, figures are divided into two main
groups: schemes and tropes. Schemes reflect a de-
viation from the ordinary pattern or arrangement
of words, while tropes involve deviation from the
ordinary and principal signification of words (Cor-
bett, 1999). Among the 12 commonly used figures,
the first 7 are tropes and the last 5 are schemes.
We adopt this categorization to facilitate following
analysis below.

3.2 Data Collection
Though a common technique in communication,
figurative languages are actually sparsely dis-
tributed in main-stream corpora, consisting of news,
dialogs, etc. For a higher proportion of figurative
languages, we build our dataset on a collection of
literary works. 98 Chinese literary works, most of
which are novels and proses, are collected from
publicly available resources.

We then divide each literary work into fragments
comprising of whole paragraphs, while also ensur-
ing that each fragment contains no more than 500
words. In this way, we assert that the discourse is
neither too short to miss important contextual infor-
mation nor too long to distract annotators’ attention.
In total, we obtain 12,976 fragments. These frag-
ments are later presented to human annotators for
manual annotation.

3.3 Human Annotation
We recruit 17 annotators whose native language is
Chinese. These annotators are all well-educated,
mostly majoring in linguistics. We divide them into
two groups as fragment annotators and figurative
unit annotators, provide instructions with detailed
definitions and examples of each figure type, and
train them for figure annotation before setting out
on the full dataset. The annotation process is car-
ried out coarse-to-fine in two stages.

The first stage is for coarse classification, where
5 fragment annotators are asked to classify frag-
ments as figurative or not. Each fragment is anno-
tated by one annotator only once, since we suppose
classifying a discourse fragment as figurative or
not is a binary classification task that is relatively
easy.

The second stage involves 12 figurative unit an-
notators. Each figurative fragment is presented to

Split # frag. wd./frag. cls./frag. # figUnit. figUnit./frag.

train 2934 419.7 41.9 6254 2.1
valid 419 417.5 42.1 886 2.1
test 839 419.2 41.3 1870 2.2

Total 4192 419.4 41.8 9010 2.1

Table 1: Statistics of train, valid and test set in our Con-
FiguRe. frag., wd., cls., figUnit. is short for fragment,
word, clause, figurative unit, repectively.

two annotators, who are independently required to
extract figurative units (one fragment can contain
several units) and assign the corresponding figure
types. We make sure that each figurative unit can
only be labeled with one figure type. Additionally,
conflict-solving strategies are devised in case of
inconsistent labeling. For example, suppose an-
notators A1 and A2 respectively extract figurative
units u1 and u2, the inconsistency can be roughly
divided into 3 categories: 1) u1 and u2 are figura-
tive units that do not overlap, in this case we keep
both of them. 2) u1 is a subset of u2, and they
are assigned the same figure type, in this case we
choose u1 as the gold annotation, since figurative
unit is defined to be the smallest clause group con-
taining a complete expression of a specific figure.
3) u1 overlaps with u2 but is neither a superset or
subset, or they are assigned with different figure
types, we regard this case as the most complex one
and ask another annotator to make a decision based
on the annotation results of annotators A1 and A2.
Besides, if an annotator extracts several figurative
units in one go, inconsistency can be solved simi-
larly.

In addition to identifying the figurative units and
their types, we also ask the annotators to corrob-
orate their judgement with evidence (e.g. strong
feature words denoting the figure) which may ben-
efit future work.

The main reason of designing this coarse-to-fine
annotation process is that the work of fragment
annotators can narrow down the context of a figure
and make the figurative unit annotators pay more
attention to identifying the boundary and type of a
figure.

3.4 Dataset Analysis

Through human annotation, we present ConFiguRe
with 4,192 figurative fragments and 9,010 figura-
tive units. Note that each instance in ConFiguRe is
a discourse fragment carrying figurative languages.

3377



Figures # figurative unit words/unit clauses/unit
train valid test

Meta. 2226 306 683 18.5 1.55
Pers. 768 94 243 19.5 1.64
Meto. 411 69 123 18.3 1.68
Hyper. 473 72 145 19.5 1.75
Irony 24 4 5 27.5 2.36
Syna. 18 6 10 22.9 1.76
Rheq. 868 115 202 19.5 2.07

Para. 291 41 99 37.1 3.90
Dual. 272 37 76 16.8 2.24
Repe. 382 57 105 16.6 2.98
Anti. 179 23 62 28.7 2.73
Quote 342 63 117 33.3 3.90

Total 6254 886 1870 20.7 2.05

Table 2: Statistics of each figure in train, valid and test
set. For simplicity, we temporarily use the first four or
five characters as the abbreviation of each figure in this
paper. First seven figures are tropes, last five figures are
schemes.

Each fragment may contain one or more annotated
figurative units. Table 1 demonstrates basic statis-
tics of the train, valid and test set, according to the
split proportion of 7:1:2.

Detailed information of each figure type is ren-
dered in Table 2. We can see that metaphor/simile,
personification, and rhetoric question occur more
frequently than others, while synaesthesia and
irony are extremely hard to gather in our corpus.
For these two figure types, we may collect more
instances in the future. From Table 2, we can also
see that the average number of clauses for schemes
is consistently larger than that of tropes. This can
be attributed to the fact that schemes are usually
only identifiable in a sequence of clauses, while
tropes can be directly expressed within one clause.
Interestingly, the average word number of irony
figures is comparable to or even longer than many
scheme figures. A priori is that the expression
of an irony requires more contextual information.
Scheme figures duality and repetition are relatively
short, probably due to the fact that duality often
leverages short clauses and repetition evinces at the
word level.

4 Task Definition and Baseline Models

Based on ConFiguRe, we propose three benchmark
tasks. Task 1 is figure extraction, which extracts
figurative units from input text. Task 2 is figure
type classification, which classifies a figurative unit

into the corresponding figure type. Task 3 is fig-
ure recognition composed of previous two tasks,
which extracts figurative units from input text and
determines their corresponding figure types simul-
taneously.

Although there have been a lot of methods in
rhetoric detection, we find that these methods
mostly catered for one specific figure (Leong et al.,
2020; Ghosh et al., 2020), and therefore not quite
consistent with our task settings. For baseline mod-
els, we adopt self-designed approaches backboned
with the state-of-the-art RoBERTa model. We give
a formal definition for each task and introduce the
corresponding baseline models as follows.

4.1 Task 1: Figure Extraction

Given a discourse fragment D comprising m
clauses and n words, let D = {ci}mi=1, where
ci = {wj}nij=1 refers to the i-th clause consisting of
ni words, and

∑m
i=1 ni = n. Task 1 aims to extract

figurative units u1 = (cb1 , . . . , ce1), · · · , uk =
(cbk , . . . , cek) from D, where k is the number of
figurative units in D, ui is the i-th figurative unit,
and the subscripts bi and ei denote the beginning
and ending positions, respectively. Note that each
figurative unit is the smallest continuous clause se-
quence carrying a complete expression of a specific
figure. (See Section 3.1 for detailed explanation of
clause and figurative unit)

To perform figure extraction, we first use
RoBERTa encoder and perform clause-wise mean
pooling to obtain contextualized representations
hc = (hclause1 , . . . , hclausem) for each clause,
where m is the number of clauses. Based on this,
we design the following baselines for Task 1:
FESeq FESeq is implemented by modeling fig-
ure extraction as a clause-level sequence labeling
task. Following traditional settings, the labels "B"
"I" and "O" are assigned to each clause when it is
the first clause of a figurative unit, inside but not
the first of a figurative unit, and not in a figurative
unit accordingly. A classification layer is added on
top of RoBERTa, casting hidden representations
into 3-dimensional logits for "B", "I" or "O".
FECRF Since Conditional Random Field (Laf-
ferty et al., 2001) is a common strategy in sequence
labeling tasks, we design the FECRF model by
adding a CRF layer on top of FESeq model.
FESpan FESpan is developed by modeling fig-
ure extraction as a clause-level binary span tagging
task. It adopts two binary MLP classifiers upon
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encoder to detect the start and end position for each
figurative unit, respectively. More precisely, FES-
pan assigns each clause a binary tag (0/1), which
indicates whether the current clause corresponds to
a start or end position of a figurative unit.

4.2 Task 2: Figure Type Classification
Given a figurative unit comprising n words u =
{wi}n1 , and its context comprising m words C =
{wj}m1 , task 2 aims to classify this unit u into the
right figure type.

First, the RoBERTa encoder produces contextu-
alized representations hi for each token wi:

h = (h1, . . . , hn) = Encoder(w1, . . . , wn) (1)

Mean pooling is then applied on h to get hidden
representation hu for the figure unit u. Based on
this, we design the following baselines for task 2:
FTCLS FTCLS is built by adding a classification
head on top of RoBERTa, which then classifies the
input into one of 12 figure types.
FTCXT Since context information has proven
to yield improvement for metaphor and sarcasm
detection (Dankers et al., 2020; Mu et al., 2019;
Joshi et al., 2016; Ghosh et al., 2017), FTCXT is
designed to incorporate contextual information in
figure classification and explore its effect across all
figure types. Specifically, hidden representation hC

for context C is also calculated by the encoder. hu

and hC are then concatenated for classification.

f = Classification(
[
hu;hC

]
) (2)

where f is the predicted figure type.

4.3 Task 3: Figure Recognition
Similar to task 1, given a discourse fragment D
comprising m clauses and n words, Task 3 aims to
extract figurative units (u1, · · · , uk) from D, and
classify each figurative unit into a specific figure
type as f1, · · · , fk in the same time, where k is the
number of figurative units in text D.

Following task 1, contextualized representations
hc = (hc1 , . . . , hcm) for the m clause are pro-
duced by RoBERTa encoder. Based on this, we
define following baselines:
Rule-based Method Some figures in our dataset
manifest obvious patterns. For example, the
type of Metaphor/Simile usually comes with in-
dicators such as the Chinese words “像 (like)” ,
“如 (as)”. The Parallelism type is composed of sim-
ilar clauses, most commonly separated by colon.

To exploit these obvious patterns, we design heuris-
tic rules for figure recognition as a complement to
our neural methods.
Pipeline Since figure recognition can be naturally
tackled as first extraction and then classification,
we set our pipeline baseline as the combination
of best-performing models in extracion task and
classification task. Specifically, we first use FECRF
to extract figurative units from input text, then use
FTCXT to classify the extracted figurative units
into their corresponding figure types.
E2ESeq By modeling figure recognition as a se-
quence labeling task, E2ESeq model shares the
same architecture as the FESeq model mentioned
before. The difference is that, in this case, we as-
sign clauses of different figure types with different
"B" and "I" labels. For instance, for a figurative
unit of irony, we assign "B-Irony" to its first clause
and "I-Irony" to other clauses in this unit.
E2ECRF Similar to FECRF, we add a CRF layer
on top of the above E2ESeq model to construct a
E2ECRF model.

5 Experiments

Implementation Details We implement our
models using HuggingFace’s Transformers (Wolf
et al., 2020). We choose the RoBERTa-zh-
Large (Cui et al., 2020) checkpoint trained on Chi-
nese corpus. For fine-tuning, we generally stick
to a dropout rate of 0.1, a batch size of 16, an
epoch of 30, the Adam (Kingma and Ba, 2017) op-
timizer, and a learning rate of 1e−5. We select our
hyperparameters based on the best performance on
validation set and report the average results from 5
runs with different random seeds.

We present main experiment results on our
dataset for all three tasks in Table 3. For the ex-
traction task, we report precision, recall and Micro
F1 score for each model. For other tasks, we ad-
ditionally report Macro F1 score by averaging out
F1 scores of all figure types. We also conduct sub-
sidiary experiments and analysis for each task. By
doing so, we shed light on promising directions for
future work.

5.1 Evaluating Figure Extraction

Model performance for figure extraction is pre-
sented in the first block of Table 3. FECRF yields
the best result, surpassing FESeq by 1.27 F1 score
and FESpan by 1.77 F1 score, suggesting that fig-
ure extraction can be modeled as a sequence label-
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Task Model Precision Recall Micro F1 Macro F1

Extraction
FESeq 34.06 29.23 31.46 -
FECRF 32.56 31.60 32.07 -
FESpan 39.41 24.61 30.30 -

Classification FTCLS 78.82 78.82 78.82 65.22
FTCXT 79.49 79.49 79.49 68.72

Recognition

Rule 7.74 12.76 9.64 5.24
Pipeline 31.10 25.52 28.03 18.17
E2ESeq 29.21 25.97 29.47 17.35
E2ECRF 30.87 31.10 30.99 21.27

Table 3: Main experiment results. We highlight the highest numbers among models in bold.

Figure
Extraction Recognition
(FESeq) (E2ECRF)

Exact match 572 563
Wrong figure type - 75

Super prediction 201 215
Sub prediction 289 227

Overlapping prediction 40 45
Non-lapping prediction 665 699

Total predictions 1757 1824

Table 4: Error analysis for model predictions in extrac-
tion and recognition task.

ing problem which CRF is specialized in. We also
find that FESpan gives the highest precision but
low recall value. This may be attributed to the fact
that using two classifiers to predict the boundaries
of figures imposes further restrictions.

Overall, the performance of figure unit extrac-
tion is not satisfactory, since it is somewhat dif-
ficult to precisely compartmentalize the smallest
clause sequence containing figurative languages.
Only 572 out 1757 predictions exactly matches
gold label. We observe that the prediction errors
can be largely categorized as follows: 1) Super/Sub
prediction, the predicted clause sequence is a su-
perset/subset of the gold figurative unit; 2) Over-
lapping prediction, the predicted clause sequence
overlaps with a part of the gold figurative unit but
is neither its superset nor subset; 3) Non-lapping
prediction, the predicted clause sequence does not
overlap with any gold figurative unit, i.e. predict-
ing non-figurative clause groups as figurative. Col-
umn 2 in Table 4 presents the numbers of each
error category according to prediction results of
FESeq. More than half of the wrong predictions
do not overlap with any gold figurative unit. Other
wrong predictions are mainly supersets or subsets

Figure
FTCLS FTCXT

P R F1 P R F1

Meta. 84.16 87.12 85.61 83.40 88.29 85.78
Pers. 66.80 67.08 66.94 66.27 67.99 67.07
Meto. 62.24 49.59 55.20 66.67 47.15 55.24
Hyper. 57.66 54.48 56.03 58.06 49.66 53.53
Irony 50.00 20.00 28.57 50.00 40.00 44.44
Syna. 0.00 0.00 0.00 25.00 10.00 14.29
Rheq. 93.75 96.53 95.12 92.89 97.03 94.92

Para. 79.66 94.95 86.64 82.05 96.97 88.89
Dual. 70.13 71.05 70.59 70.13 71.05 70.59
Repe. 89.91 93.33 91.59 90.65 92.38 91.51
Anti. 67.31 56.45 61.40 78.43 64.52 70.80
Quote 85.34 84.62 84.98 87.93 87.18 87.55

Table 5: Figure type classification results w/ or w/o
contextual information for each figure of speech. First
seven figures are tropes, next five figures are schemes.

of certain gold figurative unit. Based on these ob-
servations, we conclude that the SOTA models are
not doing very well in either discerning figurative
languages or determining the exact boundary of fig-
urative unit in our corpus, perhaps because the size
of our corpus is relatively small and imbalanced.

5.2 Evaluating Figure Type Classification
For figure type classification, we present results of
FTCLS and FTCXT in the second block of Table 3.
The latter gives an improvement of 0.67 micro F1
point and 3.5 macro F1 point over the former. Com-
pared to figure extraction, the performance of figure
type classification exhibits a high score.

Detailed classification results for each figure
w/o contextual information is presented in Table 5.
From this table, Columns 2-4 give FTCLS’ classi-
fication results for each figure. It can be seen that
classification accuracy is quite imbalanced across
all figure types. On the one hand, F1 scores on
schemes are relatively higher than tropes on the
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whole. We suppose it is because schemes tend to
manifest obvious patterns like repetition, which is
easier for a model to capture, while tropes involve
deviation from superficial meaning, which is more
challenging to models and even humans. We ex-
pect more efforts on modeling semantics to benefit
figure type classification. Notably, Rhetoric Ques-
tion (Rheq.) gives the highest F1 score of 95.12
while being a trope. We suppose it is because the
question mark (i.e. "?") in Rheq. units serve as an
obvious clue to facilitate classification.

Table 5 reveals that even among trope figures,
model performance is quite imbalanced. F1 score
on Metahpor achieve 85.61 while on irony and
synaesthesia it is 28.57 and 0.00, repectively. We
suppose the reason for this performance gap is
twofold. Firstly, figures such as irony and synaes-
thesia are demanding to collect, resulting in their
fairly low distribution in ConFiguRe. To effec-
tively train models for such low-frequency figures,
it is necessary to incorporate other specialized tech-
niques. Secondly, figures as epitomized by irony,
are strongly related to a wider context, without
which the identification of such figures becomes
insufficient.
Context Benefits Figure Type Classification To
inspect the extent that context information benefits
figure classification, we include result of FTCXT in
Columns 5-7 of Table 5. This serves as an "ablation
study" that undergirds the usefulness of contextual
information in figure classification. By comparing
results of FTCLS and FTCXT, it can be seen that
context information consistently improves classifi-
cation accuracy for most figures. Further, among
all figure types, contextual information is especially
conducive to Irony, Synaesthesia and Antithesis, re-
spectively boosting F1 score by 15.87, 14.29 and
9.40 point. This observation is consistent with the
linguistic assumption that the identification of these
figures usually depends on more context.

5.3 Evaluating Figure Recognition

For figure recognition, baseline results can be
found in the third block of Table 3. Similar to
figure extraction task, we observe that the sequence
labeling model with CRF achieves the best re-
sult, surpassing the non-CRF version with 1.52
micro F1 score and 3.92 macro F1 score. It also
outperforms the pipeline approach combining the
best-performing extraction model and classification
model, which suffers from error propagation. F1

Sequence 1: 从胡乱对付事情这方面来说，你完全
可以称得上是个天才（In terms of messing up with 

affairs, you may well be called a genius）

Sequence 2: 你完全可以称得上是个天才（You 

may well be called a genius）

Figure 3: Example of two clause sequences marked as
figurative unit for irony.

score of the rule-based method is the lowest com-
pared to pipeline and end2end methods, indicating
that figure recognition requires much more efforts
beyond recognizing shallow and obvious patterns.

Same as figure extraction task, errors of this task
incorporates the following types: Super prediction,
Sub prediction and Overlapping prediction. Be-
sides, we introduce Wrong figure type error, where
the model successfully extracts the figurative units
but classifies them into wrong figure type. Accord-
ing to the result of E2ECRF, numbers of each error
type is presented in Column 3 of Table 4. We ob-
serve that a high percentage of precisely identified
figure units are correctly classified with the figure
type, and only 75 out of 638 predictions fail in clas-
sification. Resonating with figure extraction, we
conclude that discerning figurative units is quite
challenging for state-of-the-art models.

5.4 Discussion
Revisiting Figurative Unit From Subsection 5.1,
we obtain a rather low performance in recognizing
figurative units. We investigate the classification
results of the models and find them rather satisfying.
We therefore impute the poor performances to the
difficulties in delimiting the boundary. Even if we
clearly define a figure unit as the smallest clause
sequence, such concept is somewhat controversial
under certain circumstances. Figure 3 illustrates
two instances which are ambiguous in deciding the
gold figure unit. For this reason, it is necessary
to improve the annotation process and evaluation
metrics in the future.
Revisiting Tropes and Schemes Interestingly,
our work can also serve as a supporting evidence
for the linguistic categories of tropes and schemes.
Schemes reflect deviation from the ordinary pat-
tern or arrangement of words, while tropes involve
deviation from the ordinary and principal signi-
fication of a word (Corbett, 1999). A heat map
of confusion matrix in figure type classification is
presented in Figure 4. It is intuitively suggested
that, even misclassified, the predicted label tends
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Figure 4: Confusion matrix from FTCLS’s results in
figure type classification. First seven figures are tropes,
last five figures are schemes.

to fall into the same category as the gold label. For
the example of hyperbole, there is a 61% proba-
bility of being classified correctly, a 20% proba-
bility as metaphor/simile, and a 6% probability as
metonymy, all falling into the category of tropes.
In the meantime, the probability of being classified
as schemes is merely 7%. In other words, a trope
figure is more similar to other trope figures than
scheme figures, and vice versa.

6 Conclusions and Future Work

In this paper, we argue that it is necessary to rec-
ognize figures from the discourse level. For the
first time, we propose the concept of figurative unit
as language carrier of one figure and construct a
Chinese corpus for Contextualized Figure Recog-
nition (ConFiguRe). ConFiguRe includes 12 most
commonly used figures in Chinese, with discourse-
level contextual information attached to each figure
instance. On ConFiguRe, we design three tasks
of figure extraction, figure type classification and
figure recognition, and implement state-of-the-art
models. A series of experiments show that all three
tasks remain challenging and worth exploring.

In future, we hope to increase the size of our
corpus, especially adding more figure instances
for the types with fewer instances such as irony
and synaesthesia. At the same time, we will to
improve the model performance with consideration
of incorporating contextual information and using

more training data.
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A Annotation Details

A.1 Figure Definition
We define these 12 figure categorites in reference
to silva rhetoricae (http://rhetoric.byu.
edu/), an authoritative website for rhetoric fig-
ures. We also follow a canonical work on rhetorics
by Chinese linguistics Gong Zhang (1963). De-
tailed definition and example for each figure type
above is provided in Figure 5.

A.2 Punctuation List
Below is punctuation list we use to separate clauses:
{， ,； ,。 ,？ ,！ ,…… ,—— ,： }
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Figure Definition Example

比喻
(Metaphor/

Simile)

A comparison made by referring to 

one thing as another.

阳光像金子一样珍贵。(Sunshine is as precious 

as gold.)

比拟
(Personific

ation)

Reference to abstractions or 

inanimate objects as though they 

had human qualities or abilities.

我心情愉悦，听见鸟儿在林中歌唱。(I was 

very happy and could hear the birds singing in 

the woods.)

借代
(Metonymy)

Reference to something or someone 

by naming one of its attributes.

据说他们是世界上最优秀的笔杆子。(They are 

said to be the best pens of the world.)

夸张
(Hyperbole)

Rhetorical exaggeration which is 

often accomplished via comparisons, 

similes, and metaphors.

他雄辩滔滔，仿佛能开岩裂石。(His 

eloquence would split rocks.)

反语(Irony) Speaking in such a way as to imply 

the contrary of what one says, often 

for the purpose of derision, mockery, 

or jest.

这个勤奋的学生每周读书的时间从不超过一
小时。(This diligent student seldom reads more 

than an hour per week.)

通感
(Synaesthe

sia)

The production of a sense 

impression relating to one sense or 

part of the body by stimulation of 

another sense or part of the body.

品尝莫扎特音乐的味道。(Taste the music of 

Mozart.)

问语
(Rhetorical 

question)

Any question asked for a purpose 

other than to obtain the information 

the question asks.

这不是非常明显的例证吗？ (Isn’t this a very 

obvious evidence? )

排比
(Parallelis

m)

Similarity of structure in a pair or 

series of related words, phrases, or 

clauses.

童年是小草的芽儿，充满了生机； 童年是早
晨的太阳，充满了活力；童年是清润的 雨水，
充满了欢乐。(Childhood is the bud of grass, 

full of vitality; childhood is the morning sun, full 

of vitality; childhood is the rain, full of joy.)

对偶
(Duality)

Two similarly structured elements 

having the same length
不要对谦卑者傲慢，也不要对傲慢者谦卑。
(Never be haughty to the humble; never be 

humble to the haughty.)

反复
(Repetition)

Repeat a word or a sentence. 他现在看起来比以前衰老很多很多了。(He 

looks much, much older now than before.)

对比
(Antithesis)

Juxtaposition of contrasting words 

or ideas (often, although not always, 

in parallel structure).

有的人活着，他已经死了；有的人死了，他
还活着。(Some live, when they are already dead; 

others have died, but are still alive..)

引语
(Quote)

A group of words taken from a text 

or speech and repeated by someone 

other than the original author or 

speaker.

“众人拾柴火焰高”，让我们用我们自己的
双手建设我们的家园！。(The fire burns high 

when everybody adds wood to it, let's build our 

gardon with our own hands.)

Figure 5: Definition and example for each figure type.
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Abstract

Social media platforms host discussions about
a wide variety of topics that arise everyday.
Making sense of all the content and organising
it into categories is an arduous task. A com-
mon way to deal with this issue is relying on
topic modeling, but topics discovered using this
technique are difficult to interpret and can dif-
fer from corpus to corpus. In this paper, we
present a new task based on tweet topic classi-
fication and release two associated datasets12.
Given a wide range of topics covering the most
important discussion points in social media, we
provide training and testing data from recent
time periods that can be used to evaluate tweet
classification models. Moreover, we perform a
quantitative evaluation and analysis of current
general- and domain-specific language models
on the task, which provide more insights on the
challenges and nature of the task.

1 Introduction

Social media platforms, e.g., Twitter, Snapchat,
TikTok and Instagram, provide an environment for
content creation and information sharing among
people. On social platforms, every individual can
express their views about current events or anything
that they care about, influencing and guiding dis-
cussions among their friends and followers. Social
media platforms are highly studied to understand
behaviors among users, groups, organizations, or
even societies (Yang et al., 2021), and in particular
to understand opinion of people regarding a variety
of topics such as politics (Zhuravskaya et al., 2020),
diversity and inclusion (Chakravarthi, 2020), TV
shows (Wohn and Na, 2011), sports events (Lim
et al., 2015), or finance (Hu et al., 2021). However,
one of the biggest challenges in understanding this

1https://huggingface.co/datasets/
cardiffnlp/tweet_topic_single

2https://huggingface.co/datasets/
cardiffnlp/tweet_topic_multi

∗Equal contribution.

type of user generated content, is the noise and va-
riety of these texts (Morgan and Van Keulen, 2014;
Baldwin et al., 2013). Consequently, identifying
topics within social media platforms from their
posts is not a trivial task.

Existing solutions can be divided into topic mod-
eling and topic classification. For topic model-
ing, topics are detected in an unsupervised way
with models such as Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and subsequent varia-
tions (Steyvers and Griffiths, 2007). Similarly, so-
lutions that use new BERT contextualized embed-
dings (like BERTopic (Grootendorst, 2022)) have
increased in popularity as they offer increased per-
formance. However, these approaches assume that
(i) all the topics of interest are represented in the
documents included in the study, and (ii) the terms
present in these documents are enough to charac-
terize each topic. For these reasons, these methods
are usually built as an ad-hoc analysis. Another
limitation of these models is interpretability, as it
is hard to generalize and label each cluster topic.

On the other hand, topic classification ap-
proaches the problem in a supervised manner and
assigns multiple topics to each document based
on a predefined set of categories. This approach
overcomes the issues of interpretability and is not
based on assumptions about the vocabulary distri-
bution mentioned above. However, the downside of
topic classification is that relies on curated datasets
labeled by human annotators, and this can be ex-
pensive and time consuming to create.

In this paper, we introduce TweetTopic, a topic
classification dataset on Twitter data. To the best
of our knowledge, this is the first large-scale topic
classification dataset specifically tailored to social
media, rather than standard text as news articles
(Greene and Cunningham, 2006) or scientific pa-
pers (Lazaridou et al., 2021). The dataset consists
of a total of 11,267 tweets collected through a time
period from September 2019 to August 2021. Each
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tweet is assigned one or more topics from a prede-
fined set of categories curated by social platform
experts. Aiming to test the robustness of our dataset
through time and across topics, we perform sev-
eral classification experiments, both single-label
and multi-label, while utilizing state-of-the-art lan-
guage models.3

2 Related Work

Social media. Social media have become an im-
portant aspect of the daily life of millions of people,
with 81% of adults in the U.S. stating to have used
at least one social platform in 2021 (Auxier and
Anderson, 2021) and over 57% of people in EU
interacting through social media in 2020 (Euro-
stat, 2021). In recent years, an increasing number
of corporations seem to dedicate a more signifi-
cant portion of their marketing funds to advertising
on social platforms compared to other more tradi-
tional mediums (Eid et al., 2020). At the same time,
social media has become a political battleground
where politicians both debate between them and
try to communicate with their voters, (Stier et al.,
2018; Llewellyn and Cram, 2016). Finally, social
platforms have been used extensively by their users
as a means for almost instantaneous news updates
both for day-to-day events (Hermida, 2012), and
human and natural disasters (e.g., the Ukrainian
war or the COVID-19 pandemic) (Khaldarova and
Pantti, 2016; Banda et al., 2021).

Therefore, a large volume of content is being
generated in social media everyday. Its polymor-
phism also means that performing any targeted
analysis on the data can be a challenging and time-
consuming process (Weller, 2015; Stieglitz et al.,
2018). Furthermore, even though there are various
existing tools focused on analyzing social media
data (Batrinca and Treleaven, 2015), there is no
established way to efficiently identify and filter
only relevant and valuable content (Nugroho et al.,
2020).

Topic modeling. Topic models are unsupervised
methods to identify relevant topics given a text
corpus. LDA (Blei et al., 2003) is one of the
most popular algorithms for topic modeling. How-
ever, despite being successful in identifying topics
in traditional media (Martin and Johnson, 2015;
El Akrouchi et al., 2021), LDA often struggles

3Tweet classification models associated with TweetTopic
have been integrated into TweetNLP (Camacho-Collados et al.,
2022).

when applied to short, unstructured, and con-
stantly evolving texts, such as Twitter data (Zhao
et al., 2011). It also typically underperforms
when compared to other supervised methods (Arias
et al., 2015). More recently, several variations of
LDA have been proposed to address these chal-
lenges with social media texts, such as combin-
ing author-topic modelling with LDA (Rosen-Zvi
et al., 2004; Steinskog et al., 2017), frameworks
like Twitter-LDA (Zhao et al., 2011) where noisy
words and author information are taken into ac-
count, and SKLDA (Tajbakhsh and Bagherzadeh,
2019), where semantic relations between words
extracted from WordNet are taken into account.

However, LDA-based methods are often not
ideal when we need to assign more than one topic
to a document. Even though there are approaches
to acquire multiple labels for each topic, they are
usually based on hierarchical (Griffiths et al., 2003)
or graph (Li and McCallum, 2006) architectures
which, depending on the use case, make assump-
tions about relations of the topics that may not be
present in a given corpus (i.e. parent/children top-
ics). Furthermore, semi-supervised or supervised
variations of LDA, such as PLDA (Ramage et al.,
2011) and sLDA (Mcauliffe and Blei, 2007), have
been been used on Twitter data (Resnik et al., 2015;
Ashktorab et al., 2014). While such methods have
potential for increased performance they usually
require prior labelling or information about the doc-
uments and thus remove a major advantage they
have compared to supervised approaches.

Finally, as a mainly unsupervised technique,
evaluating the results of topic modeling can be a
hard task. Metrics such as purity, mutual informa-
tion and pairwise F-measure are used to evaluate
the quality of topics/clusters created by the models
(Nugroho et al., 2020). On the other hand, qualita-
tive analysis is usually difficult to perform due to
the lack of interpretability of topics produced and
the difficulty increases with the amount of topic.

In contrast to traditional LDA approaches, tech-
niques such as BERTopic (Grootendorst, 2022) and
Top2Vec (Angelov, 2020) attempt to make use
of existing knowledge from pretrained language
models by extracting embedding representations
of tweets and using them to perform topic clus-
tering. Both BERTtopic and Top2Vec tend to be
easier to use than LDA, without the need for ex-
tensive hyper-parameter tuning, and often result
in increased performance (Egger and Yu, 2022).
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However, they do have disadvantages, namely: not
performing well on small datasets (Abuzayed and
Al-Khalifa, 2021), generating a lot of outlier top-
ics (Silveira et al., 2021), and requiring existing
knowledge. Finally, these approaches suffer sim-
ilar drawbacks to LDA regarding evaluation and
interpretability.

Topic classification. Given a text as an input,
topic classification is the task of associating it with
a specific topic (or topics) from a pre-defined set of
categories. In what concerns social media, pre-
vious work has focused on predicting hashtags
as classes (Dhingra et al., 2016). However, the
dynamic nature of the events discussed in those
platforms makes any dataset focused on hashtags
quickly become sparse and outdated. Any new
model needs to be trained from scratch since the
category set will be different based on the rele-
vance of hashtags. Nevertheless, by focusing on
higher-level topics like Sports or Arts & Culture,
widespread and recurrent in social platforms, the
data can be leveraged for more extended periods,
and any model trained on it can be easily updated
with more data as the label set is fixed. It also
improves interpretability since there is a clear se-
mantic meaning to the proposed categories, while
hashtags might be ambiguous or require additional
interpretation.

In terms of previously released data, existing
datasets mainly focus on the news articles domain,
e.g., BBC News (Greene and Cunningham, 2006),
Reuter (Lewis et al., 2004), 20 Newsgroups (Lang,
1995), and WMT News Crawl (Lazaridou et al.,
2021) with few exceptions like scientific (arXiv)
(Lazaridou et al., 2021) and medical (Ohsumed)
(Hersh et al., 1994) domains. Therefore, these
datasets offer different sets of challenges with re-
spect to social media.

3 Tweet Topic Classification

This section presents the pipeline to construct
TweetTopic, our topic classification dataset based
on Twitter data. This pipeline is divided into three
steps: (i) tweet collection, (ii) data filtering, and
(iii) topic annotation. These steps are explained in
more detail in the next subsections.

3.1 Tweet collection
Our goal is to collect a set of tweets with a high cov-
erage of diverse topics over time. We fetched the
tweets given specific keywords and time periods

Figure 1: Text filtering pipeline to reduce noise from
the tweets and avoid near duplicates.

using the Twitter API. Since the tweets returned
by the API are in reverse chronological order, we
decided to split the queries into small time win-
dows to make sure that the tweets are distributed
over time. In our case, we queried 50 tweets ev-
ery two hours from September 2019 to October
2021. As the keywords used to create queries, we
collected lists of trending topics from Snapchat4 in
each week during the period (e.g. pink super moon,
social distancing, and NBA). This step allowed us
to collect tweets with a similar distribution to top-
ics in the real world over time. For this step we
also added conditions to exclude retweets, replies,
quotes, and tweets with media, as well as specify-
ing the language as English only. In the end, we
collected a total of 1,264,037 raw tweets from the
API.

3.2 Data Filtering

Tweet filtering. Since the raw tweets may con-
tain irrelevant content, we applied several text
filtering techniques to get a cleaner tweets cor-
pus. Our text filtering pipeline consists of two
steps as described in Figure 1: pre-filtering and
near-deduplication. This filtering fulfilled different
goals such as removing abusive content, improv-
ing quality and avoiding near-duplicates. In the
pre-filtering, we first removed non-English tweets
by using a fastText based language identifier5 (Bo-
janowski et al., 2016). Then, we removed tweets
that contained incomplete sentences (e.g., too short
or end in the middle of the sentence) or abusing
words by using rule-based heuristics. Then, we
applied a near-duplication filter to drop duplicated
tweets. In particular, we first normalized each
tweet, and kept unique tweets only in terms of

4Available at https://trends.snapchat.com/.
We were not able to access Twitter trends since they are not
publicly available through APIs.

5https://fasttext.cc/blog/2017/10/02/
blog-post.html
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their normalized form. The normalizer first con-
verted full-width to half-width and removed sub-
strings from the tweet such as emoji, web URLs,
punctuation, stopwords, and personally identifiable
information (PII).6 Then, we lemmatized and low-
ercased each word in the tweets and removed iden-
tical tweets after normalization.

Trend filtering. Given our budget and in order
to further reduce the number of tweets to annotate
while ensuring diversity, we grouped the tweets by
the trending topics used to query the raw tweets in
each week, and selected the top 15 most common
trends within the week.7 We applied the trending
topic filtering for every week which resulted in our
final dataset, consisting of 28,573 tweets in total.
Note that the trends are different every week, so
the tweets are diverse across weeks regarding the
trends.8

3.3 Annotation

To attain topic annotations over the tweets, we con-
ducted a manual annotation on Amazon Mechan-
ical Turk. We randomly sampled 11,374 tweets
from the cleaned tweets and each tweet was anno-
tated by five annotators, collecting 56,870 anno-
tations in total. We manually constructed a topic
taxonomy that contained 23 initial topics across
diverse genres, asked workers to annotate the rele-
vant (possibly multiple) topics to the tweet.9 The
initial list of 23 topics was shared with us by a re-
search team of Snapchat. This list was selected and
curated by a team of social media experts from the
company over time to ensure a tailored coverage of
social media content.

We ensured several quality control mechanisms
within the test, including a qualification test. Each
tweet was annotated by five turkers and the fi-
nal budget for the total estimated annotation cost
was $4,000. Each single assignment contained 50
tweets to be annotated where each annotation is
completed with an interface that we include in the
Appendix. As quality control, each assignment
contained three qualification tweets and only those

6We detected PII with scrubadub and other components
are all based on NLTK.

7More details about this process can be found in the Ap-
pendix.

8In the Appendix we provide a detailed breakdown of the
distribution of trends in each week. There, we can confirm that
the top trend does not go beyond 20% in most cases, which
ensures a diverse set of trends.

9The actual instructions shown to workers are included in
the Appendix.

Raw Pre-filter De-duplication Trend-filter Annotated

1,264,037 596,028 202,604 28,573 11,267

Table 1: Number of total tweets after each step.

who annotated them correctly were accepted. A
small number of raters (10) and their respective
tweets were also discarded as they displayed un-
usual behavior selecting on average more than 5
labels for each tweet where the global average was
1.6 labels per tweet. Also, workers were not al-
lowed to work on the assignment more than once.

Post-aggregation. We followed Mohammad et al.
(2018) by assigning a label to a tweet provided that
the label was suggested by at least two annotators.
We opted out of a majority rule as this way our
dataset can be used to develop more robust sys-
tems that can handle real-world data, which are
rarely straightforward and instead can often con-
tain complex linguistic phenomena (Mohammad
et al., 2018). Tweets where none of the classes
received at least two votes were discarded. The
number of tweets in each process is summarized in
Table 1.

Inter-annotator agreement. Several metrics can
be used to evaluate the quality of an annotation
task (Artstein and Poesio, 2008) and it is often
difficult to select the most appropriate one. In our
experiment, we utilized Krippendorff’s alpha (Krip-
pendorff, 2011) with MASI distance (Passonneau,
2006), which is a common combination when deal-
ing with multi-rater and multi-label tasks (Artstein
and Poesio, 2008). For our task the alpha statis-
tic results in 0.35. As a comparison reference, a
completely random annotation would produce a
0 alpha statistic. When considering the percent
agreement of each pair of annotators we acquire
a value of 0.87 in contrast to 0.62 for random an-
notation. These inter-annotator agreement results
appear to be inline or slightly better then previous
similar multi-label annotation tasks (Mohammad
et al., 2018).

3.4 Settings and temporal split

In order to investigate potential temporal differ-
ences in the corpus we split the datasets into two
periods: (1) from September 2019 to August 2020
(referred to as training data) and (2) from Septem-
ber 2020 to August 2021 (test data). The moti-
vation behind this temporal split is to make the
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Tweet Topics

Apple Removed More Than 30,000
Apps From The Chinese App Store

- bus & ent
- news & soc
- sci & tech

#copreps Football:
End of the line for FLHS season

sports & games

Table 2: Sample tweets for each setting studied (top:
multi-label; botttom: single-label).

task more realistic and evaluate the generalizability
performance of the classifiers on future data.

We established two classification settings: (1)
multi-label and (2) single-label. Sample instances
from both settings are displayed in Table 2.10 With
this distinction, we aim to provide flexibility to
users, and increase the usability of the dataset for
settings and analyses, where a more fine-grained
classification of tweets is not required (i.e. single-
label).

Multi-label. By applying a final post-aggregation
step to exclude categories that may not be relevant
for social media, we removed those categories with
fewer than 50 labels overall, leaving a final set of
19 topics.

Single-label. In an effort to keep the classes rel-
atively balanced, we firstly excluded tweets that
were labeled with the most dominant of the classes,
i.e., news & social concern (32.82% of total tweets),
which is highly cross-category. Following this, the
remaining ten most prominent classes were con-
sidered. Finally, based on logical assumptions re-
garding the similarity of the classes and also the
overlap between them, several labels were grouped
together. More specifically: gaming and sports
(35% overlap) were grouped as sports & gaming;
music, celebrity & pop culture, and film tv & video
(44% and 31% overlap) became pop culture; di-
aries & daily life and family (54% overlap) were
grouped together as daily life. These three new
classes along with the original arts & culture, busi-
ness & entrepreneurs, and science & technology
composed the final set of topics. Finally, in this
setting, tweets containing more than one of these
six labels were dropped.

3.5 Statistics
The final set of annotated tweets is 11,267 and
6,997 for the multi-label and single-label settings,

10For readability, tweet examples have been slightly mod-
ified within the paper, removing links and usernames which
are anonymized in the dataset.

Figure 2: Percentage of tweets that were annotated with
a given topic (multi-label setting) for each time period.

respectively. Figures 2 and 3 display the percent-
age of tweets that were classified in each topic,
for each time period studied, after the aggregation
of annotations for multi-label and single-label set-
tings, respectively.11 The imbalanced nature that
can be observed, e.g., sports consisting of 26%
of the 2019/20 multi-label dataset while travel &
adventure only 2%, is explained due to the way
tweets were collected, where we aimed to mimic
the distribution of real-world data on Twitter.

Number of labels. When considering the multi-
label setting, 50% of the tweets are classified with
only one label while only 2.7% are given four or
more labels, with the maximum amount being six.
However, the dataset is diverse enough with 35%
and 12% of the tweets having two and three labels
respectively. This coder behavior (i.e. preferring to
select only one class) can be observed on similar
multi-label annotation tasks (Véronis, 1998; Poesio
and Artstein, 2005).

Class distribution across time periods. We note
that the distribution of classes between the two
time periods studied remains largely similar in both
settings with the largest difference being in the
music and news & social concern classes being
3.5% more populous in 2019/20. This observation
suggests that our curated topics are broad enough
to be relatively robust to temporal trends.

11For the multi-label setting the percentages sum up to more
than 100% due to the nature of the annotation.
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Class length punc upp/low # @ emojis mtld count
arts & culture 166.9 ±67.5 6.5 ±3.4 0.2 ±0.6 0.8 ±1.4 0.4 ±0.5 0.1 ±0.3 140.9 577
business & entrepreneurs 186.3 ±65.5 6.4 ±3.1 0.1 ±0.2 0.6 ±1.1 0.5 ±0.5 0.0 ±0.2 159.0 554
celebrity & pop culture 155.5 ±67.8 7.4 ±3.7 0.2 ±0.9 0.6 ±1.0 0.8 ±0.7 0.1 ±0.4 145.8 1685
diaries & daily life 168.3 ±68.4 5.4 ±3.3 0.1 ±0.7 0.4 ±0.9 0.4 ±0.5 0.1 ±0.5 132.5 1525
family 165.1 ±68.5 5.2 ±3.2 0.2 ±1.4 0.5 ±1.0 0.4 ±0.5 0.2 ±0.5 112.7 358
fashion & style 147.9 ±55.4 7.8 ±3.1 0.2 ±0.5 1.0 ±1.5 0.6 ±0.5 0.1 ±0.3 98.8 251
film tv & video 157.7 ±66.3 7.5 ±3.7 0.2 ±0.8 0.6 ±1.1 0.7 ±0.6 0.1 ±0.4 145.1 1723
fitness & health 195.4 ±67.1 6.3 ±2.8 0.1 ±0.1 0.5 ±0.9 0.6 ±0.5 0.1 ±0.3 168.5 508
food & dining 165.2 ±64.5 6.1 ±3.1 0.1 ±0.2 0.5 ±1.0 0.4 ±0.5 0.1 ±0.4 154.7 255
gaming 159.6 ±68.9 6.5 ±3.9 0.1 ±0.2 0.5 ±1.0 0.5 ±0.6 0.0 ±0.2 128.4 437
learning & educational 191.8 ±65.8 5.9 ±2.9 0.1 ±0.1 0.6 ±1.0 0.5 ±0.6 0.0 ±0.2 156.7 293
music 143.5 ±64.0 8.4 ±4.4 0.3 ±1.1 0.7 ±1.1 0.8 ±0.7 0.1 ±0.5 119.8 1919
news & social concern 183.1 ±70.5 6.6 ±3.0 0.2 ±1.3 0.4 ±0.8 0.6 ±0.6 0.0 ±0.2 165.1 3698
other hobbies 160.9 ±69.2 6.3 ±3.4 0.2 ±0.7 0.6 ±1.0 0.4 ±0.6 0.1 ±0.4 143.6 568
relationships 162.4 ±70.6 5.3 ±3.5 0.2 ±1.6 0.4 ±0.9 0.5 ±0.6 0.2 ±0.9 111.9 432
science & technology 177.9 ±69.4 6.7 ±2.8 0.1 ±0.5 0.5 ±1.0 0.6 ±0.5 0.0 ±0.1 164.2 542
sports 162.8 ±65.9 6.4 ±3.2 0.2 ±1.4 0.5 ±0.8 0.7 ±0.6 0.1 ±0.3 152.8 2977
travel & adventure 175.2 ±72.3 6.2 ±3.1 0.2 ±1.8 0.5 ±1.0 0.5 ±0.5 0.1 ±0.2 173.1 190
youth & student life 202.0 ±62.4 5.9 ±3.2 0.1 ±0.1 0.5 ±0.9 0.5 ±0.6 0.1 ±0.2 155.6 174

Table 3: General lexical statistics for each class. The averages of the length of tweet, punctuation count, upper/lower
case ratio (upl/low), hashtags count, mentions count, emojis count are reported along with their standard deviation.
Frequency metrics are normalized based on the text length. The last two columns correspond to the lexical diversity
(mtld) and total number of tweets.

Figure 3: Percentage of tweets that were annotated with
a given topic (single-label setting) for each time period.

Topic features. In order to get a better under-
standing of the data, and to investigate potential sig-
nificant characteristics, we extract various statistics
from the tweets in the multi-label dataset. Table 3
displays the average values of tweet length, number
of punctuation symbols, upper to lower case ratio,
number of hashtags, number of mentions and num-
ber of emojis, along with their standard deviations

for each topic. In order to have a fair comparison,
all the metrics are normalized based on the tweet
length ((metric/length) ∗ 100). The Measure of
Textual Lexical Diversity (MTLD) (McCarthy and
Jarvis, 2010) is also reported as an indication on
the vocabulary richness of each class, as well as
the number of tweets for each class. The topics
celebrity & pop culture and music have the highest
occurrences of mentions "@" (0.8). This is intu-
itively due to the fact that a large number of tweets
belonging to these classes will mention recogniz-
able users such as artists or athletes. Similarly,
tweets belonging to the fashion & style topic tend
to include more hashtags (#) on average (1 hashtag
per tweet), which can be attributed to the nature of
hashtags in Twitter, usually employed to indicate
popular and trending topics. Finally, topics that
can be considered more accessible to the general
public such as fashion & style, family, and relation-
ships achieve a relatively low lexical diversity score
(98.8, 112.7, 111.9) while more specialized or ad-
vanced topics such as travel & adventure, business
& entrepreneurs and fitness & health display higher
lexical diversity (173.1, 159.0, 168.5).

4 Evaluation

In this section, we present our experimental results.
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4.1 Experimental setting

Datasets. We perform experiments in our tweet
classification annotated datasets. In particular, our
experiments are based on two settings, single-label
and multi-label (see Section 3.4 for details).
Comparison systems. To evaluate our dataset,
we first use simple baselines: Majority (most fre-
quent class in training) and Random (uniform prob-
ability for each class). As comparison systems,
we train a traditional bag of words with SVM
and a fastText classifier (Bojanowski et al., 2016)
that utilizes pretrained embeddings (Mikolov et al.,
2018). Furthermore, BERT base and large (De-
vlin et al., 2018) and both base and large versions
of RoBERTa (Liu et al., 2019) are used as com-
parison systems. As classifiers specialized on so-
cial media, i.e. trained on Twitter data, BERTweet
(Nguyen et al., 2020), TimeLM-19, and TimeLM-
21 (Loureiro et al., 2022), all based on a RoBERTa
architecture, are also utilized. BERTweet is trained
on a corpus of 845M tweets mainly from 01/2012
to 08/2019, while also including 5M COVID-19
related tweets from 01/2020 to 03/2020. On the
other hand, TimeLM-19 is trained on 95M tweets
gathered between 2018 and 2019. For complete-
ness, we also report results of TimeLM-21, trained
on 125M tweets from 2018 to 2021, but excluded it
from our main analysis given the time overlap with
the test set (reminder that one of the motivations of
this task is to be able to process tweets in real time).
TimeLMs models use the RoBERTa-base model
as initial checkpoint, while BERTweet is trained
from scratch. The implementations provided by
Hugging Face (Wolf et al., 2019) are used to train
and test all language models.12

Evaluation metrics. For both settings macro aver-
age Precision, Recall and F1, as well as Accuracy,
are used to evaluate the models tested. As an al-
ternative metric for the multi-label setting, Jaccard
Index (JI) is also utilized, as it can offer useful
insights about the models performances (Pereira
et al., 2018; Tsoumakas et al., 2009). More specif-
ically, the index is calculated for each tweet indi-
vidually and the final metric is computed as the
average over all entries.

4.2 Results

Table 4 displays the results of all comparison sys-
tem on both settings. While only a number of

12More details about the exact hyperparameters are included
in the Appendix.

Model Multi-label Single-label
Pr Rec F1 Acc JI Pr Rec F1 Acc

B
as

el
in

es Random 8.4 48.3 12.6 0 7.9 15 14.2 11.9 15.5
Majority 1.5 5.3 2.3 18.0 22.6 6.7 16.7 9.5 40
SVM 69.4 23.7 30.5 37.1 51.8 73.6 47.4 50.2 75.8
fastText 67.0 18.0 24.0 31.9 43.5 56.0 46.0 48.0 74.0

L
an

gu
ag

e
m

od
el

s BERT-base 69.7 42.5 50.1 45.5 63.9 62.4 60.0 58.8 81
BERT-large 64.4 51.5 56.4 44.6 65.1 62.4 61.7 61.7 84.3
RB-base 68.5 49.2 55.8 46.5 66.2 64.8 66.7 65.6 85.9
RB-large 72.2 48.9 56.3 47.9 67.7 66.1 56.2 58.3 84.5
BERTweet 66.9 46.1 52.7 47.1 66.9 64.9 65.6 63.8 85.2
TimeLM-19 71.1 50.4 57.2 47.7 67.5 76.5 68.9 70.0 86.4
TimeLM-21 66.1 54.2 58.8 47.1 67.6 73.9 69.8 70.1 86.8

Table 4: Macro average Precision (Pr), Recall (Rec),
F1, and accuracy results in TweetTopic (temporal split).
Jaccard Index (JI) is reported for the multi-label setting.

models were tested, the results suggest that domain-
specific knowledge appears to be more important
than the size of the model, with Twitter base mod-
els outperforming large generic language models.
Given the larger number of labels and more chal-
lenging setting, multi-label classification appears
to be most challenging setting with the best model
TimeLM-21, barely achieving 58.8% F1 and 67.6%
Jaccard scores, in comparison to 70.1% F1 and
86.8% Accuracy in the single-label setting. How-
ever, it is important to note that TimeLM-21 has
the unfair advantage of being trained with a more
recent corpus and more specifically a corpus from
the same time period as the test set. Taking this
into consideration, the next best performing model
is TimeLM-19 with 57.2% and 70% F1 scores,
for the multi-label and single-label settings respec-
tively. Even though the differences in the average
F1 scores between the two models is relatively
small, 1.6% and 0.1% for multi/single settings,
when taking into account their performance in each
individually topic, we can identify topics where
TimeLM-21 clearly outperforms TimeLM-19 (see
Section 5.1 for more details).

5 Analysis

In this section, we analyse two important aspects
of the TweetTopic dataset, mainly its temporal di-
mension (Section 5.1) and the errors made by the
systems (Section 5.2).

5.1 Temporal analysis

The strong performance of TimeLM-21 provided
evidence regarding the importance of an up-to-date
training corpus. We continue our investigation by
training the same set of models on a random split
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Figure 4: Relative (%) differences in F1 scores when
TimeLM-19 is trained in a temporal and in a random
setting for the single-label setting. Negative values in-
dicate that when using the temporal split the model’s
performance decreases.

of the data (i.e., both training and test sets with
tweets from 2019 to 2021). To make the results
comparable, we created training and test sizes of
the same size as the original temporal split.13

Table 5 displays the F1 scores, while using a
multi-label setting for each class in both the tempo-
ral and random splits. Every model tested performs
better when trained using information from both
time periods, i.e using random split. Taking into ac-
count that in both splits the distribution of classes is
similar (Figure 2), we can assume that the temporal
differences in the data provide useful information.
It is worth noting that the "specialized" Twitter
models display a more robust performance regard-
ing the training data used. In particular, there are
8, 9 and 4 topics where BERTweet, TimeLM-19,
and TimeLM-21 respectively perform better while
using the temporal split in contrast to 3 and 1 of
RoBERTa base and large respectively (models that
have a similar architecture).

We continue our analysis by investigating in
more detail TimeLM-19’s results, which is the best
performing model according to the evaluation (Sec-
tion 4). Figure 4 displays the TimeLM-19 per-
formance differences between the temporal and
random splits on the single-label setting. In gen-
eral, results are overall better in the random split,
with an overall relative decrease of 4.3% in Macro-

13While the distribution of labels may naturally be altered,
this change is minimal, as we can recall from Figures 2 and 3.

Figure 5: Confusion matrix of the TimeLM-19 results
for the single-label setting. The values displayed are
normalized by row.

F1 for the temporal split. The largest decrease
in performance is observed for the arts & culture
topic in both settings, which can be attributed to a
fast evolving vocabulary. In contrast, business &
entrepreneurs does not see any decreased in perfor-
mance in both settings, and results are even slightly
better on the temporal split.14

5.2 Error analysis

To better understand the nature of errors made by
language models, Figure 5 shows a confusion ma-
trix for the best-performing TimeLM-19 model in
the single-label setting. The model seems to strug-
gle with tweets assigned to the arts & culture topic
with 68% of them being misclassified as daily life.
These errors include entries such as “Happy Day
of the Dead 2020! #GoogleDoodle” or “Gifts of
love are the ingredients of a #MerryChristmas Give
your loved ones a physical/virtual crypto gift card
within the {{USERNAME}} app”. While these
tweets revolve around religious/cultural holidays,
one might also associate them to daily life events,
which also shows the challenging nature of this
dataset. Another topic that is frequent misclas-
sified is science & technology, with 41% of the
tweets being assigned to the wrong topic. When
looking at the errors we identify tweets such as
“Bill Gates-Funded Company Releases Genetically
Modified Mosquitoes in US”, classified as business
& entrepreneurs, and “Monday’s Google Doodle

14In the Appendix we provide a detailed analysis by quarter,
in order to better understand the temporal aspect. The results
confirm how the performance of arts & culture decreases over
time, while for the rest of the topics the trend is unclear.
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Class Random SVM BERT RB RB-large BERTweet TimeLM-19 TimeLM-21
temp rand temp rand temp rand temp rand temp rand temp rand temp rand temp rand

arts & culture 8.6 8.3 3.6 27.7 17.8 35.9 20.9 41.2 28.0 44.0 9.8 28.2 21.3 39.1 35.4 44.8
business & entrepreneurs 8.7 7.4 18.0 28.7 53.3 49.2 56.7 57.1 50.9 56.5 59.7 54.5 58.6 55.3 56.3 54.0
celebrity & pop culture 22.8 22.9 22.3 41.7 34.4 54.3 47.2 52.7 50.5 59.6 43.7 54.9 48.6 47.8 46.4 57.6
diaries & daily life 18.2 21.2 25.8 34.4 45.2 44.0 46.2 50.3 43.5 49.3 44.6 49.9 44.5 51.2 44.7 49.8
family 3.5 6.3 33.9 46.4 47.2 48.3 50.6 56.8 52.8 63.4 46.1 49.1 46.4 55.2 53.1 56.2
fashion & style 4.8 4.1 38.4 57.6 52.8 74.8 66.4 74.1 66.4 77.4 56.0 68.8 66.4 75.2 67.2 75.2
film tv & video 22.8 22.0 47.3 58.6 62.8 68.2 64.4 71.4 64.7 71.3 66.8 69.2 66.1 72.2 65.4 70.6
fitness & health 6.6 9.3 35.7 36.0 53.6 52.2 52.4 53.2 62.4 65.4 48.2 38.7 55.7 42.2 58.6 52.6
food & dining 3.5 4.6 25.0 41.7 70.1 68.2 75.1 75.3 79.3 68.2 74.5 65.7 75.4 70.7 80.4 71.6
gaming 6.9 7.5 31.8 45.0 57.4 61.2 58.4 61.4 63.8 69.1 66.1 67.6 64.6 69.2 64.8 71.2
learning & educational 4.2 4.5 13.0 13.9 38.2 43.2 49.5 48.7 49.8 45.8 42.9 36.2 49.3 47.1 48.9 47.0
music 24.7 25.5 76.1 81.8 83.6 86.0 86.0 87.1 87.4 88.1 86.9 87.2 88.1 87.8 86.9 88.2
news & social concern 39.3 39.9 69.8 76.9 83.8 83.8 83.9 84.6 85.5 85.9 83.5 84.3 84.4 86.2 84.5 85.0
other hobbies 10.5 9.6 4.2 15.0 27.0 23.6 25.0 28.4 31.7 35.4 23.1 21.5 27.7 30.3 31.1 26.2
relationships 6.4 7.3 13.7 36.3 30.8 35.2 37.6 51.8 39.3 56.8 36.8 51.2 35.3 51.6 44.5 54.0
samples avg 13.8 14.3 57.0 63.7 70.3 72.0 73.1 74.2 74.4 76.4 73.8 73.2 74.3 75.2 74.7 75.2
science & technology 8.3 9.3 17.4 35.8 45.9 50.3 54.2 56.4 52.1 59.4 46.9 53.2 50.5 56.0 50.2 52.1
sports 36.6 34.8 82.2 89.1 93.1 93.2 94.8 94.2 94.6 95.4 95.4 94.4 95.6 94.8 95.2 94.8
travel & adventure 2.2 3.5 17.7 9.8 21.7 20.6 41.5 47.7 46.3 59.9 38.5 0.0 57.1 56.0 52.2 54.7
youth & student life 1.7 2.9 2.9 12.4 33.3 44.6 49.2 52.4 21.0 46.0 31.6 35.2 50.4 43.6 50.8 51.0
macro avg 12.6 13.2 30.5 41.5 50.1 54.6 55.8 60.3 56.3 63.0 52.7 53.1 57.2 59.6 58.8 60.9

Table 5: Macro average F1 scores for the multi-label setting when using temporal (temp) and random (rand) split.
Highlighted with bold is the best score for each model.

Celebrates Jupiter And Saturn On The Winter Sol-
stice via Forbes”, classified as daily life. In other
cases, further investigation would be required to
understand the source of the mistakes, e.g., “A year
ago we looked at PE10s across the world on URL
The latest Weekly Macro Themes takes a look at
how the Euro Area stacks up now.” was classified
as sports instead business & entrepreneurs. The na-
ture of these types of error, as well as the relatively
low performance of models compares to other topic
classification datasets, suggest that there is ample
room for improvement.

When considering the multi-label setting, there
are topics with high percentage of errors such as
celebrity & pop culture and diaries & daily life.
There are entries like “Anyone else notice {O Shea
Jack Nichol son} hasn’t tweeted about the Lakers
making the conference finals? Weird. You good
man?” where the model correctly classifies it as
sports but fails to classify it as celebrity & pop
culture, being probably unaware of the celebrity
status of the person being mentioned. The diaries
& daily life topic seems to be particular confusing
for the model and fails to identify it in tweets such
as “Lost all my bets on the Kentucky Derby today
but scored a tee time at {{USERNAME}} Black
course next weekend I’d say I came out a winner.”,
and “Faceing difficulty while login to internet bank-
ing for the 1st time using Id and password provided
in the welcome kit didn t expected this from such
a good bank {Canara Bank}”, even though they
are correctly assigned the sports and business &

entrepreneurs topics, respectively.

6 Conclusions & Future Work

In this paper we presented TweetTopic, the first
large-scale dataset for tweet topic classification.
Given the prominence of social media in recent
times, this dataset can help build supervised mod-
els for clustering and organising the online con-
tent. The curated set of topics contains a diverse
and broad set of categories that cover most topics
present in social platform data. This dataset can
further motivate research on the evolution of these
initial topics on social platforms, i.e., the exten-
sion of the existing categorization to new topics or
subtopics that will emerge and fade over time due
to user engagement. Moreover, TweetTopic has
been shown to be relatively resilient to temporal
changes, and it offers easily interpretable results.
Based on these contributions, we believe that this
dataset will be useful for a significant number of
researchers and practitioners working on social me-
dia, including Computational Social Science and
Data Mining experts, given the relevance of the
topic for extracting information and understanding
online behavior.

Finally, while this first iteration of TweetTopic
focuses on English, our aim is to apply the same
methodology to other languages, for which our
guidelines and process to construct the dataset de-
scribed in Section 3 can serve as the main basis.
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A Tweet filtering

Figure 6 illustrates the weekly trend filtering
pipeline utilized. Figure 7 displays the weekly
distribution of the top 15 trending topics used to
query the raw tweets.

B Annotation Interface

Figure 9 presents our annotation interface. Figure
8 displays the instructions provided to annotators
along with a small description of each topic.

Figure 6: Weekly trend filtering to remove tweets that
are irrelevant to the popular topics in each week.

Figure 7: Ratio (%) of tweets in each of top 15 trending
keywords for every week.
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Figure 8: The instructions shown to the annotators during the annotation phase.

Figure 9: Tweet classification annotation interface. An-
notators are allowed to select multiple topics.

C Evaluation Results

Hyperparameters. Language models are trained
using a batch size of 8 for 20 epochs, while uti-
lizing an Adam optimizer (Loshchilov and Hutter,
2017) with learning rate 2e−5 and a weight decay
of 0.01. Furthermore, an early stop callback termi-
nates the training process after 3 epochs without
performance improvement. Finally, for the single-
label experiments cross entropy loss along with a
softmax activation function were used, while for
the multi-label setting binary cross entropy loss and
a sigmoid activation for each of the 19 topics are
used.

Analysis by quarter. In order to get a better
understanding of the evolution of the corpus and

identify potential performance decays due to tem-
poral differences we inspect the performance of
TimeLM-19 in each quarter (i.e., three months) of
the temporal’s split test-set. Figure 10 displays the
F1 scores of each class (single-label setting) for
each quarter of the time period tested. While most
topics do not seem to be greatly affected by time,
we can indeed observe a performance drop in arts
& culture, which is the topic more affected by the
temporal variable. Figure 11 illustrates the relative
differences in F1 scores for each class in the multi-
label setting, when TimeLM-19 is trained using
the temporal split and when trained on the random
split.

Confusion matrices. Figure 12 displays the con-
fusion matrices for TimeLM-19 when trained in
the multi-label setting using the temporal split.

Figure 10: F1 performance of TimeLM-19 through time
(single-label setting).
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Figure 11: Relative (%) differences in F1 scores when
TimeLM-19 is trained in a temporal and in a random
setting for the multi-label setting. Negative values in-
dicate that when using the temporal split the model’s
performance decreases.
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Figure 12: Confusion-matrix of TimeLM-19 (multi-label setting).

3400



Proceedings of the 29th International Conference on Computational Linguistics, pages 3401–3411
October 12–17, 2022.

Layer or Representation Space:
What makes BERT-based Evaluation Metrics Robust?

Doan Nam Long Vu1, Nafise Sadat Moosavi2, Steffen Eger3

1 Department of Computer Science, Technical University of Darmstadt, Germany
2 Department of Computer Science, The University of Sheffield, UK

3 NLLG, Faculty of Technology, Bielefeld University, Germany
doannamlong.vu@stud.tu-darmstadt.de

Abstract

The evaluation of recent embedding-based eval-
uation metrics for text generation is primarily
based on measuring their correlation with hu-
man evaluations on standard benchmarks. How-
ever, these benchmarks are mostly from simi-
lar domains to those used for pretraining word
embeddings. This raises concerns about the
(lack of) generalization of embedding-based
metrics to new and noisy domains that con-
tain a different vocabulary than the pretraining
data. In this paper, we examine the robust-
ness of BERTScore, one of the most popular
embedding-based metrics for text generation.
We show that (a) an embedding-based metric
that has the highest correlation with human
evaluations on a standard benchmark can have
the lowest correlation if the amount of input
noise or unknown tokens increases, (b) taking
embeddings from the first layer of pretrained
models improves the robustness of all metrics,
and (c) the highest robustness is achieved when
using character-level embeddings, instead of
token-based embeddings, from the first layer of
the pretrained model.1

1 Introduction

Evaluating the quality of generated outputs by Nat-
ural Language Generation (NLG) models is a chal-
lenging and open problem. Human judgments
can directly assess the quality of generated texts
(Popović, 2020; Escribe, 2019). However, human
evaluation, either with experts or crowdsourcing,
is expensive and time-consuming. Therefore, auto-
matic evaluation metrics, which are fast and cheap,
are commonly used alternatives for the rapid de-
velopment of text generation systems (van der Lee
et al., 2019). Traditional metrics such as BLEU
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and ROUGE (Lin, 2004) measure

1The code of our experiments is avail-
able at https://github.com/long21wt/
robust-bert-based-metrics

n-gram overlap between generated and reference
texts. While these metrics are easy to use, they
cannot correctly assess generated texts that contain
novel words or a rephrasing of the reference text.

Recent metrics like BERTScore (Zhang et al.,
2020), MoverScore (Zhao et al., 2019), COMET
(Rei et al., 2020), BARTScore (Yuan et al., 2021),
and BLEURT (Sellam et al., 2020) adapt pretrained
contextualized word embeddings to tackle this is-
sue. These novel metrics have shown higher cor-
relations with human judgments on various tasks
and datasets (Ma et al., 2019; Mathur et al., 2020).
However, the correlations are measured on stan-
dard benchmarks containing text domains similar
to those used for pretraining the embeddings them-
selves. As a result, it is unclear how reliable these
metrics are on domains and datasets containing
words outside the vocabulary of the pretraining
data.

The goal of this paper is to investigate the robust-
ness of embedding-based evaluation metrics on
new and noisy domains that contain a higher ratio
of unknown tokens compared to standard text do-
mains.2 We examine the robustness of BERTScore,
one of the most popular recent metrics for text
generation.3 In order to perform a systematic eval-
uation on the robustness of BERTScore with regard
to the ratio of unknown tokens, we use character-
based adversarial attacks (Eger and Benz, 2020)
that introduce a controlled ratio of new unknown
tokens to the input texts. Our contributions are:

• We investigate whether the use of character-
based embeddings instead of token-based em-
beddings improves the robustness of embedding-
based generation metrics. Our results show that

2We connect to recent research that investigates the behav-
ior of metrics in adversarial situations (Sai et al., 2021; Kaster
et al., 2021; Leiter et al., 2022; Zeidler et al., 2022).

3E.g., as of September 2022, BERTScore is cited ∼1200
times while it is ∼200 and 400 for MoverScore and BLEURT,
respectively.
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the evaluations based on character-level embed-
dings are more robust.

• We examine the impact of the hidden layer used
for computing the embeddings in BERTScore.
We show that the choice of hidden layer affects
the robustness of the evaluation metric.

• We show that by using character-level embed-
dings from the first layer, we achieve the high-
est robustness, i.e., similar correlation with hu-
man evaluations for different ratios of unknown
tokens.

2 BERTScore

BERTScore (Zhang et al., 2020) computes the
pairwise cosine similarity between the reference
and hypothesis using contextual embeddings. It
forward-passes sentences through a pretrained
model, i.e., BERT (Devlin et al., 2019), and ex-
tracts the embedding information from a specific
hidden layer. To select the best hidden layer,
BERTScore uses average Pearson correlation with
human scores on WMT16 (Bojar et al., 2016) over
five language pairs. For instance, the best layer is
the ninth layer for BERTbase−uncased.

BERTScore with character-level embeddings.
Existing embedding-based metrics, including
BERTScore, use token-based embeddings that are
taken from pretrained models like BERT (Devlin
et al., 2019). In this paper, we investigate the im-
pact of using character-level embeddings instead
of token-level embeddings in BERTScore (Zhang
et al., 2020). We use ByT5 (Xue et al., 2021),
which encodes the input at the byte level. It tok-
enizes a word into a set of single characters or con-
verts it directly to UTF-8 characters before forward-
ing the input sequence into the model. Xue et al.
(2021) show that ByT5 is more robust to noise com-
pared to word-level embeddings. For computing
BERTScore using character-level embeddings, we
use ByT5 instead of BERT in BERTScore computa-
tions. We adapt three variants of ByT5 (small, base,
large) in BERTScore. Table 1 presents the best
layer of ByT5 models for computing BERTScore.

3 Experimental settings

3.1 Evaluation on a standard benchmark

We report the results on the WMT19 dataset (Ma
et al., 2019) that contains seven to-English lan-
guage pairs. Each language pair has 2800 sen-

Model Best Layer Score

ByT5-small 1 0.510
ByT5-base 17 0.581
ByT5-large 30 0.615

Table 1: Best layers with different ByT5 variants and
their average Pearson correlation score on WMT16.

Language Pairs No. Segment Sample (DARR)

de-en (German-English) 85365
fi-en (Finnish-English) 38307
gu-en (Gujarati-English) 31139
kk-en (Kazakh-English) 27094
lt-en (Lithuanian-English) 21862
ru-en (Russian-English) 46172
zh-en (Chinese-English) 31070

Table 2: To-English language pairs of WMT19. DARR
denotes Direct Assessment Relative Ranks, in which
all available sentence pairs of DA (Direct Assessment)
scores are taken into account.

tences, each corresponding to one reference, plus
the systems’ output sentences. Totally, the hu-
man evaluation in WMT19 has 281k segment sam-
ple scores for each of the output translation in to-
English language pairs. Table 2 shows the language
pairs considered, as well as the number of segments
per language pair.

3.2 Evaluating Robustness
Evaluation on different ratios of unknown to-
kens. To evaluate the robustness of evaluation
metrics on new domains, we use character-level
attacks to introduce a controlled ratio of unknown
tokens in the corresponding reference texts of the
evaluation sets.4 We examine five different attacks
from Eger and Benz (2020): (a) intruders: in-
serting a character—e.g., ‘.’, ‘/’, ‘:’—in between
characters of a word, (b) disemvoweling: remov-
ing vowels—e.g., ‘a’, ‘e’, ‘i’—from the word, (c)
keyboard typos: randomly replacing letters of a
word with characters that are nearby the original
characters on an English keyboard, (d) phonetic:
changing a word’s spelling in such a way that its
pronunciation stays the same, and (e) visual: re-
placing characters with a symbol that is its visually
nearest neighbor (Eger et al., 2019). We can control
the ratio of tokens that are affected by the adversar-

4We need human annotations for evaluating the correla-
tion of evaluation metrics with human judgments, and such
annotations are available for standard domains like WMT
datasets. As a result, we introduce unknown tokens by using
character-level attacks to artificially introduce more unknown
tokens.
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Setting Sentence

no-attack Now they have come to an agreement.
intrude Now they have c/o/me t+o a>n agreement.
disemvowel Nw thy have come to an grmnt.
keyboard-typo No3 they have come to xn agrrement.
phonetic Nau they have cohm to an agrimand.
visual Now thẸỸ hẲve come to aᷠ aᵹᴚḕḘmḔnƫ.

Table 3: Examples for the character-level attacks (Eger
and Benz, 2020; Keller et al., 2021) at perturbation level
p = 0.3, i.e., the probability that each letter in a sentence
is attacked is 0.3.
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Figure 1: The number of average unknown tokens
per segment across seven to-English language pairs in
WMT19 given different attacks and perturbation levels.

ial attack by the perturbation level (p), e.g., p = 0
denotes no attack and p = 0.3 indicates that each
letter in the sentence is attacked by the probability
of 0.3. Table 3 shows an example of each of these
attacks at p = 0.3.

Figure 1 shows the average number of un-
known tokens, as determined based on BERT’s
tokenizer, per segment across seven to-English lan-
guage pairs given different attacks and perturba-
tion levels. We count a token as an unknown to-
ken if (1) BERT represents it as [UNK], or (2)
BERT splits it into subwords, e.g., ‘pre-trained’ to

‘pre’,‘##train’,‘##ed’.5 As we see from the figure,
the number of unknown tokens increases as we ap-
ply these character-level attacks with higher pertur-
bation levels. In our experiments in Section 4, we
report the results using visual attacks. The results
using other attacks are also reported in Appendix
B, and they follow the same patterns as those using
the visual attack.

Evaluation on low-resource language pairs.
Apart from the experiments on WMT19, we also
perform the evaluations on the (Xhosa, Zulu) and
(Bengali, Hindi) language pairs from WMT21 (Fre-

5Please refer to the detailed algorithm in Appendix A.

Language pair No. unknown tokens

bn-hi (Bengali-Hindi) 19.235
hi-bn (Hindi-Bengali) 23.478
xh-zu (Xhosa-Zulu) 28.930
zu-xh (Zulu-Xhosa) 28.743

Table 4: The number of average unknown tokens per
segment for each language pair in our low-resource
datasets.
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Figure 2: Average Kendall correlation of 7 to-English
language pairs in WMT19 given different perturbation
level from p = 0.0 to p = 0.3 using the visual attack.

itag et al., 2021). BERTScore uses multilingual
BERT for evaluating non-English languages. Mul-
tilingual models contain a higher ratio of unknown
tokens for low-resource languages, and therefore,
evaluating the correlation of embedding-based met-
rics with human judgments on low-resource lan-
guages is also an indicator of their robustness. Ta-
ble 4 shows the number of unknowns tokens per
segment to multilingual BERT in four different low-
resources language pairs in WMT21 dataset. We
refer to the number of segments of low-resources
dataset in Table 7 in Appendix C.

4 Experiments

4.1 Impact of Character-level Embeddings

Table 5 shows the results of BERTScore using dif-
ferent embeddings on WMT19’s to-English lan-
guage pairs (using p = 0). Figure 2 shows the
average correlation score over all seven to-English
language pairs given different perturbation level
from p = 0 to p = 0.3 using the visual attack.

We observe that computing BERTScore using
the ByT5-small models results in a slightly lower
average correlation with human scores over the
seven to-English pairs at p = 0 compared to
BERTScore using BERT and larger ByT5 models.
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de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

BERT-base 0.180 0.339 0.288 0.438 0.364 0.209 0.410 0.318
BERT-large 0.194 0.346 0.292 0.442 0.375 0.208 0.418 0.325
ByT5-small 0.172 0.286 0.278 0.422 0.307 0.194 0.373 0.290
ByT5-base 0.197 0.326 0.297 0.419 0.358 0.215 0.418 0.319
ByT5-large 0.193 0.333 0.304 0.427 0.354 0.208 0.415 0.319

Table 5: Segment-level Kendall correlation results for to-English language pairs in WMT19 without any attack, i.e.
p = 0. The correlation of BERTScore with human are reported using different embeddings including bert-base-
uncased, bert-large-uncased, ByT5-small, ByT5-base, and ByT5-large.

Model bn-hi hi-bn xh-zu zu-xh

BERT-multi 0.073 0.364 0.266 0.488
ByT5-small 0.096 0.411 0.311 0.523

Table 6: Kendall correlation scores of BERTScore for
WMT21 low-resource language pairs Hindi-Bengali and
Zulu-Xhosa using BERT-base-multilingual and ByT5-
small embeddings.

However, the average correlation using ByT5-
small remains around the same value given dif-
ferent ratio of unknown tokens, indicating higher
robustness of the metrics using ByT5-small. On the
other hand, while using BERT-large embeddings re-
sults in the highest average correlation with human
scores in Table 5, its correlation drops consider-
ably in the presence of more unknown tokens in
Figure 2.

For Hindi-Bengali and Zulu-Xhosa, we com-
pare the results against using the BERT-base-
multilingual model in Table 6. We observe that the
BERTScore metric that uses ByT5-small achieves
higher correlations with humans throughout. Given
that low resources languages contain more out-
of-vocabulary words for pretrained models, this
observation confirms our previous results using
character-level attacks on the WTM19 dataset.

4.2 Impact of the Selected Hidden Layer

Our results in Section 4.1 show the robustness of
BERTScore when using the ByT5-small model for
computing the embeddings. However, as Table 1
shows, the selected hidden layer for getting em-
beddings varies when using different pretrained
models. For instance, when using ByT5-small em-
beddings, the model uses the embeddings of the
first layer while it uses the embeddings of the 30th
layer for ByT5-large. Zhang et al. (2020) show
that BERTScore correlation scores with humans
drop as they select the last few layers of BERT
for getting the embeddings. Therefore, the robust-

ness of examined metrics may also depend on their
corresponding selected layers for computing em-
beddings.

In this section, we evaluate the impact of the se-
lected hidden layer on the robustness of the metric.
We evaluate three settings where we use: (a) the
embeddings of the first layer for all models, (b) the
embeddings of the best layer for each model (cf.
Table 3), and (c) the mean of aggregated embed-
dings over all layers. We perform the robustness
evaluations using the visual attack at p = 0.3. Fig-
ure 3 shows the average results of this experiment6.
We make the following observations.

First, using the embeddings of the first layer
closes the gap between the correlations of different
variations of the ByT5 model, i.e., small, base, and
large, in the presence of more unknown tokens, i.e.,
p = 0.3.

Second, using the embeddings of the first layer
improves the robustness of BERTScore using
BERT embeddings, i.e., improving the correla-
tion from 0.033 to 0.174 for BERT-base given
p = 0.3. However, the correlation of the result-
ing BERTScore is still considerably lower than us-
ing ByT5 embeddings at the presence of more un-
known tokens. This indicates that both the choices
of the hidden layer as well as the pretrained model
play an important role in the robustness of the re-
sulting embedding-based metric. A reason why
the first layer may be more effective in our setup
is that, in the presence of input noise or unknown
tokens, embeddings of higher layers may become
less and less meaningful, as the noise may propa-
gate and accumulate along layers. We provide an
example from the similarity matrix of the resulting
embeddings for different layers in Figure 5 in the
Appendix E.

Overall, our results indicate that optimizing the
layer on a standard data set such as WMT16 may

6In Table 8 and 9 in Appendix D, we report scores for each
language pair.
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Figure 3: Average segment-level Kendall correlation results for seven to-non-English language pairs in WMT19 to
fist layer, default layer, and mean of aggregated embeddings setting in BERTScore.

be suboptimal in terms of the generalization of
the resulting metrics. Concerning efficiency of the
resulting metrics (a core aspect of modern NLP
(Moosavi et al., 2020)), BERT-base has 110 mil-
lion parameters, while ByT5-small has 300 million
parameters. With the default BERTScore setting,
passing the input through 9 layers results in a longer
inference time. However, using the embeddings of
the first layer results in a very fast inference for
both models.

5 Conclusion

Embedding-based evaluation metrics will be used
across different tasks and datasets that may contain
data from very different domains. However, such
metrics are only evaluated on standard datasets that
contain similar domains as those used for pretrain-
ing embeddings. As a result, it is not clear how
reliable the results of such evaluation metrics will
be on new domains. In this work, we investigate
the robustness of embedding-based metrics in the
presence of different ratios of unknown tokens. We
show that (a) the results of the BERTScore using
BERT-based embeddings is not robust, and its cor-
relation with human evaluations drops significantly
as the ratio of unknown tokens increases, and (b) us-
ing character-level embeddings from the first layer
of ByT5 significantly improves the robustness of
BERTScore and results in reliable results given dif-
ferent ratios of unknown tokens. We encourage the
community to use this setting for their embedding-
based evaluations, especially when applying the
metrics to less standard domains.

In future work, we aim to address other aspects
of robustness of evaluation metrics beyond an in-
creased amount of unknown tokens as a result of
spelling variation, such as how metrics cope with

varying factuality (Chen and Eger, 2022) or with
fluency and grammatical acceptability issues (Rony
et al., 2022). We also plan to investigate the impact
of pixel-based representations (Rust et al., 2022)
(which are even more lower-level) for enhancing
the robustness of evaluation metrics.
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Algorithm 1: Count UNK token in a BERT
tokenized sentence

1 def count UNK:
Data: sentence: a tokenized sentence as

a list of string
output :count: number of UNK token

of input tokenized sentence

2 count←− 0
3 buffer←− empty list
4 for token in sentence do
5 if [UNK] in token then
6 count←− count +1
7 else if ## in token then
8 Add token to buffer
9 else

10 if len(buffer) != 0 then
11 count←− count +1
12 Empty buffer
13 end
14 end
15 end
16 if len(sentence) ≥ 2 then
17 if ## in last token of sentence then
18 count←− count +1
19 end
20 end
21 return count

A Counting UNK token

Algorithm 1 shows how we count UNK tokens
that the BERT tokenizer creates from a sentence.
In BERT, [UNK] represents the UNK tokens that
are not in their given vocabulary. Besides [UNK],
BERT use WordPiece tokenizer concept, which
breaks the unknown word into sub-words using a
greedy longest-match-first algorithm, such as splits
“bassing” into ‘bass’ and ‘##ing’ where ‘##’ de-
notes the join of sub-words. Thus, the UNK word
becomes two known words. ‘##’ is the indication
for the starting of a UNK word if the previous to-
ken does not contain ‘##’. In case the next token
still contains ‘##’, it indicates that the token still
belongs to a word and does not count as a UNK
token, e.g., “verständlich” to ‘vers’, ‘##tä’, ‘##nd’,

‘##lich’ and count it as one UNK token. It lasted
until we finally found non contain ‘##’ token. With
a word-piece tokenizer, the beginning token of a to-
kenized sentence is either [UNK] or known word,
and we also consider the case where the last token

Language Pair No. Segment

bn-hi (Bengali→ Hindi) 4,461
hi-bn (Hindi→ Bengali) 4,512
xh-zu (Xhosa→ Zulu) 2,952
zu-xh (Zulu→ Xhosa) 2,502

Table 7: Amount of segments in WMT21 for Hindi←→
Bengali and Zulu←→ Xhosa.

contains “##”.

B WMT19

The results of other attacks are illustrated in Fig-
ure 4.

C FLORES

Table 7 shows the number of provided human an-
notations in FLORES.

D Impact of layer choice in BERTScore

Table 8 and 9 show the particular results of each
language pair with different settings in BERTScore
without attack and with visual attack at p = 0.3
respectively.

E Effectiveness of the first layer

In Figure 5, we show four different settings
and their cosine similarity matrix computed by
BERTScore using bert-base-uncased. In both nor-
mal reference with 1st or 9th setups, matched to-
kens get higher similarity score. 9th layer setting
gathers information for relevant tokens, which re-
sults in higher similarity score across the matrix.
As in the case with attacked reference, 1st layer
setting penalizes the unmatched tokens and the
magnitude of matched tokens are as high as using
normal reference with 1st layer setup. However,
by using 9th layer for attacked reference, we can
observe the hue color of matched tokens with low
score. Thus, we conclude the accumulated noise to
higher layer cause the problem with effectiveness
in our previous setup with WMT19 dataset.
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Figure 4: Average Kendall correlation of seven to-English language pairs in WMT19 under attack with perturbation
level from p = 0.0 to p = 0.3

Setting Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

Default

BERTScore-bert-base-uncased 0.18 0.339 0.288 0.438 0.364 0.209 0.41 0.318
BERTScore-byt5-small 0.172 0.286 0.278 0.422 0.307 0.194 0.373 0.290
BERTScore-byt5-base 0.197 0.326 0.297 0.419 0.358 0.215 0.418 0.319
BERTScore-byt5-large 0.193 0.333 0.304 0.427 0.354 0.208 0.415 0.319

First

BERTScore-bert-base-uncased 0.147 0.295 0.263 0.421 0.318 0.183 0.361 0.284
BERTScore-byt5-small 0.171 0.285 0.279 0.422 0.307 0.194 0.370 0.290
BERTScore-byt5-base 0.164 0.276 0.280 0.414 0.307 0.191 0.362 0.285
BERTScore-byt5-large 0.161 0.277 0.280 0.416 0.308 0.189 0.361 0.285

BERTScore-bert-base-uncased 0.17 0.326 0.289 0.437 0.351 0.206 0.397 0.311
Mean of BERTScore-byt5-small 0.170 0.292 0.284 0.420 0.313 0.202 0.372 0.293
aggregation BERTScore-byt5-base 0.188 0.324 0.305 0.427 0.347 0.207 0.408 0.315

BERTScore-byt5-large 0.185 0.322 0.311 0.431 0.343 0.208 0.411 0.316

Table 8: Segment-level correlation metric results Kendall for seven to-non-English language pairs in WMT19 with
respect to fist layer, default layer and mean of aggregated embeddings setting without any attack i.e. p = 0.
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Setting Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

Default

BERTScore-bert-base-uncased -0.003 -0.014 -0.027 0.149 -0.022 0.024 0.126 0.033
BERTScore-byt5-small 0.155 0.266 0.239 0.392 0.264 0.175 0.360 0.264
BERTScore-byt5-base 0.014 -0.009 0.026 0.147 0.052 0.042 0.155 0.061
BERTScore-byt5-large 0.011 -0.055 -0.018 0.141 -0.015 0.032 0.155 0.036

First

BERTScore-bert-base-uncased 0.074 0.215 0.082 0.215 0.234 0.120 0.278 0.174
BERTScore-byt5-small 0.155 0.266 0.239 0.392 0.264 0.175 0.360 0.264
BERTScore-byt5-base 0.147 0.256 0.262 0.403 0.264 0.166 0.348 0.264
BERTScore-byt5-large 0.138 0.258 0.259 0.394 0.262 0.170 0.352 0.262

BERTScore-bert-base-uncased 0.053 0.144 0.052 0.214 0.149 0.082 0.240 0.133
Mean of BERTScore-byt5-small 0.070 0.089 0.094 0.244 0.109 0.107 0.273 0.141
aggregation BERTScore-byt5-base 0.025 -0.029 0.022 0.263 -0.019 0.056 0.123 0.063

BERTScore-byt5-large 0.054 0.005 0.020 0.255 0.013 0.095 0.156 0.085

Table 9: Segment-level correlation metric results Kendall for seven to-non-English language pairs in WMT19 with
respect to fist layer, default layer and mean of aggregated embeddings setting under visual attack at 0.3 perturbation
level.
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(a) 9th layer, attacked reference:
“Tḣis was the ₚos⦞ible caṲse of the fิ⒭e. ”

(b) 9th layer, normal reference:
“This could possibly be the cause of the fire.”

(c) 1st layer, attacked reference:
“Tḣis was the ₚos⦞ible caṲse of the fิ⒭e.”

(d) 1th layer, normal reference:
“ This could possibly be the cause of the fire.”

Figure 5: Similarity Matrix using BERTScore with bert-base-uncased for candidate: “ This could possibly be the
cause of the fire.” in different setups.
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Abstract

Difficulties with social aspects of language are
among the hallmarks of autism spectrum disor-
der (ASD). These communication differences
are thought to contribute to the challenges that
adults with ASD experience when seeking em-
ployment, underscoring the need for interven-
tions that focus on improving areas of weakness
in pragmatic and social language. In this paper,
we describe a transformer-based framework for
identifying linguistic features associated with
social aspects of communication using a corpus
of conversations between adults with and with-
out ASD and neurotypical conversational part-
ners produced while engaging in collaborative
tasks. While our framework yields strong accu-
racy overall, performance is significantly worse
for the language of participants with ASD, sug-
gesting that they use a more diverse set of strate-
gies for some social linguistic functions. These
results, while showing promise for the devel-
opment of automated language analysis tools
to support targeted language interventions for
ASD, also reveal weaknesses in the ability of
large contextualized language models to model
neuroatypical language.

1 Introduction

Autism spectrum disorder (ASD) is a neurodevel-
opmental disorder with an estimated global preva-
lence of 1 in 100 worldwide (Zeidan et al., 2022).
The majority of people diagnosed with ASD today
are verbal (Rose et al., 2016) and have average
or above average intellectual ability (Christensen
et al., 2016). Nevertheless, young adults with ASD
are employed at significantly lower rates than their
peers with other neurodevelopmental conditions,
including learning disabilities and intellectual dis-
ability (Shattuck et al., 2012).

Difficulty with social communication is one of
the diagnostic criteria for ASD (American Psychi-
atric Association, 2013) and is reported to be one of
the strongest contributors to negative professional

outcomes (Hurlbutt and Chalmers, 2004; Baldwin
et al., 2014). For this reason, language skills are
commonly targeted for intervention in individu-
als with ASD (Parsons et al., 2017), but it can be
difficult to identify specific areas in need of reme-
diation. Most prior work on quantifying pragmatic
deficits in ASD has relied on manual analysis of
speech transcripts (Loukusa et al., 2007; Paul et al.,
2009; Conlon et al., 2019), a process that is time
consuming and requires expertise.

In this paper, we use a spoken language corpus
collected specifically for training automatic sys-
tems to explore social communication and pragmat-
ics in ASD. The corpus consists of transcribed con-
versations between adults with and without ASD
as they engage with neurotypical interlocutors in
collaborative tasks designed to resemble workplace
activities. We review the careful manual process
of assigning pragmatic feature values and dialog
act labels to each utterance. Following recent prior
work on these features in other contexts, we pro-
pose a BERT-based framework (Devlin et al., 2019)
for automatically assigning these values and labels.

Although our models achieve higher accuracy
than previous neural and non-neural approaches to
these labeling tasks on this dataset, we observe that
models for some features show significantly weaker
performance on utterances produced by individuals
with ASD. An error analysis with logistic mixed-
effects regression reveals that these models fail to
recognize unusual or idiosyncratic strategies for
conveying certain social and pragmatic meanings.
Our results, while showing promise for the auto-
mated analysis of social communication in ASD,
point to an unsurprising but potentially problematic
bias in models trained primarily on news and web
data toward neurotypical language.

2 Background

Much of the prior work on extracting social com-
munication and discourse features from conversa-
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tions has focused on dialogue acts, yielding both
a large number of corpora and nearly as many
distinct annotation schemes (Stolcke et al., 2000;
McCowan et al., 2005; Zhang et al., 2017; Bunt
et al., 2019). Conversational corpora, mostly writ-
ten, have also been manually annotated at the ut-
terance level for specific pragmatic features, in-
cluding politeness (Danescu-Niculescu-Mizil et al.,
2013); uncertainty (Vincze, 2014; Farkas et al.,
2010); and informativeness, formality, and implica-
ture (Lahiri, 2015). Early work relied primarily on
bag-of-words models with statistical classifiers, but
recently transformer-based models have been used
with success for many of these tasks (Aljanaideh
et al., 2020; Hayati et al., 2021; Wu et al., 2020;
Żelasko et al., 2021; Wu et al., 2021). We follow
this prior work in our use of BERT (Devlin et al.,
2019) for predicting feature labels.

While many recent studies have explored auto-
mated analysis of language in ASD, particularly in
children (Parish-Morris et al., 2016; Adams et al.,
2021; Salem et al., 2021), the most relevant to ours
is Yang et al. (2021), which introduced a corpus
of conversations between adults with and without
ASD and neurotypical conversational partners, par-
tially annotated for three pragmatic features. We
go beyond this work in three ways. First, we com-
plete the annotation and introduce a new feature,
dialog act (see Section 3.2), which has not been
studied previously in ASD language. Second, we
use BERT directly rather than using BERT embed-
dings for prediction. Lastly, we give a statistical
analysis of performance across diagnostic groups.

3 Data

3.1 Participants and tasks

The corpus used in the present study includes data
previously described in Yang et al. (2021), which
consists of conversations between neurotypical con-
versational partners (CPs) (n = 11) and adult
experimental participants (EPs) 18-30 years of
age with ASD (n = 16) and with typical develop-
ment (TD, n = 9). ASD EPs met the diagnostic
criteria for ASD on the Autism Diagnostic Observa-
tion Schedule (ADOS) (Lord et al., 2002). All EPs
and CPs were monolingual speakers of American
English, with no history of intellectual disability,
language impairment, or hearing difficulties.

Each EP engaged with a CP in two collaborative
discussion tasks. In the map task (Anderson et al.,
1991), the EP and the CP were each given a map of

the same area with slight differences in labels and
obstacles. The EP was tasked with giving verbal
directions to their CP to lead them to their marked
position on the map. In the island task (Klippel
et al., 1984), the EP and CP jointly viewed a set
of labeled pictures of various items and discussed
which items they would choose to bring to a de-
serted island. The conversations were transcribed
by a team of three undergraduate research assistants
yielding a total of 9433 utterances: 3091 produced
by EPs with ASD; 1846 by EPs with TD; 2842 by
CPs of ASD EPs; and 1654 by CPs of TD EPs.

The number of participants, while small, is quite
typical for work that involves manual analysis of
language in ASD, particularly for adults (Maw-
hood et al., 2000; Young et al., 2005; Parsons et al.,
2017). We additionally note that our methods are
applied to individual utterances rather than individ-
ual participants. The overall number of utterances
in our dataset is on par with that of many widely
used NLP datasets hand-labeled for similar features
(Danescu-Niculescu-Mizil et al., 2013; Braley and
Murray, 2018; Wang et al., 2019), and the statisti-
cal analyses we employ are appropriate for the size
and distribution of our corpus.

3.2 Pragmatic feature annotation

The transcripts had previously been partially anno-
tated by trained undergraduates with dual majors
in Computer Science and either Linguistics or Psy-
chology for three ordinal features: politeness, un-
certainty, and informativeness (Yang et al., 2021).
In our work, we completed this annotation process
and introduced a new categorical feature, dialog
act. For the ordinal features, two annotators, from
a pool of four trained undergraduates double major-
ing in Computer Science and either Linguistics or
Psychology, assigned to each utterance a rating on
a three-point scale, achieving inter-annotator agree-
ment as measured by Krippendorf’s α (Artstein and
Poesio, 2008) of 0.7, 0.76, and 0.83 for politeness,
uncertainty, and informativeness, respectively. The
final score for each utterance was the mean of the
annotations for that feature. Example utterances
with their respective scores for each of these fea-
tures are shown in Table 1, and a brief overview of
the annotation guidelines is provided in Appendix
A. We refer the reader to Yang et al. (2021) for
further details.

For the new categorical feature, dialog act, the
annotator assigned to each utterance one from a
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Task Utterance Politeness Uncertainty Informativeness dialog act

Map Do you have a pond on your map? 2 2 2 request for information

Map Not at my area, no. 2 1 1 polar answer

Island I don’t care. 1 1 1 providing opinion

Island You’re on a deserted island. 2 1 2 providing information

Table 1: Examples of manual annotations for each task.

dialog act Description

Request for Information A request for factual information: do you have a pond on your map?
Providing Information Answering a request for information or providing factual information unprompted:

I don’t see that on my map
Request for Opinion A request for an opinion or suggestion: what do you think?
Providing Opinion Answering a request for opinion or providing an opinion unprompted:

I think we should have the pot
Polar Answer Answering a polar question: yeah, no, mm-hm
Command An utterance giving instruction or direction including indirect instruction:

and then could you go left?
Filler Filler words or phrases used to fill pauses in the conversation: hm, anyways, okay so
Backchannel An utterance that indicates the participant is listening and understanding:

okay, mm-hm, gotcha, sounds good
Nicety Utterances which primarily serve to express apology, gratitude, or to otherwise

maintain a pleasant conversation: sorry, I didn’t mean to cut you off, no you’re good
Comment An utterance that contains extraneous commentary on the task, such as narrating or explaining

the participant’s actions: So this is like Easy Street haha, How the heck do I say this?
Interjection Short exclamations or interjections such as ah, oops, yay, wow
Fragment Short abandoned or interrupted utterances that are too incomplete to classify

Table 2: Descriptions of the dialog acts used in the annotations.

set of 12 possible dialog acts chosen specifically
for the two tasks, which are illustrated in Table 2.
Two annotators first independently annotated 60%
of all utterances (α = 0.83). Disagreements were
then resolved via discussion. Finally, the remaining
utterances were annotated by one of the two anno-
tators and later reviewed by the other annotator.
More details are found in Appendix A.

4 Method

We remind the reader that the goal of this work is
not to identify features that distinguish typical de-
velopment from ASD, as in prior work on applying
NLP to language in autism (see Section 2). Instead,
we aim to exploit known effective approaches to
develop robust models for predicting linguistic fea-
tures tied to social and pragmatic aspects of com-
munication known to be impacted in ASD in order
to support targeted communication interventions.
Crucially, the models we develop must perform
similarly for individuals with and without autism.

We begin with three baseline classification mod-
els: majority class, where every sample is assigned
the most frequent label; stratified, where labels are
assigned randomly according to their distribution in

the training data; and random, where labels are as-
signed uniformly randomly from the set of possible
labels. Previous work (Yang et al., 2021) on a sub-
set of this dataset using a different cross-validation
strategy has shown that these baselines yield com-
petitive performance to bag-of-words models and
existing statistical models (Meyers et al., 2019)
trained on separate corpora of written texts for
these features.

We compare these baselines to neural models
trained with BERT (Devlin et al., 2019) using
MaChamp (van der Goot et al., 2021) and its
default parameters for classification tasks.1 We
did not explore statistical models here since neu-
ral models were shown to be substantially bet-
ter in Yang et al. (2021). To learn how models
might perform differently for participant groups
whose linguistic features are potentially atypical,
we measure model performance separately for each
speaker group: ASD EPs, TD EPs, CPs when in-
teracting with ASD EPs, and CPs when interacting
with TD EPs. Model performance was indexed
with raw accuracy and weighted F1 scores.

1Here we trained separate models for each feature; training
models on the combined features yielded very weak results.
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Features ASD TD CP (with ASD) CP (with TD)

Model F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Politeness Majority 0.75 0.83 0.75 0.83 0.80 0.86 0.77 0.84
MaChamp 0.85 0.86 0.89 0.89 0.89 0.90 0.90 0.90

+ context MaChamp 0.85 0.86 0.89 0.89 0.89 0.90 0.90 0.90

Uncertainty Majority 0.48 0.63 0.48 0.63 0.49 0.63 0.57 0.70
MaChamp 0.74 0.76 0.75 0.76 0.76 0.77 0.78 0.79

+ context MaChamp 0.73 0.77 0.75 0.77 0.77 0.77 0.78 0.79

Information Majority 0.37 0.53 0.32 0.48 0.37 0.53 0.42 0.58
MaChamp 0.80 0.81 0.81 0.81 0.80 0.80 0.82 0.82

+ context MaChamp 0.80 0.80 0.81 0.82 0.80 0.82 0.83 0.83

Dialog Act Stratified 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.14
MaChamp 0.73 0.74 0.77 0.77 0.77 0.78 0.78 0.79

+ context MaChamp 0.75 0.73 0.79 0.78 0.80 0.78 0.80 0.80

Table 3: Comparison of F1 scores and accuracy across different groups of speakers given each feature, using
held-out transcript cross-validation; + context indicates that training input included the preceding utterance; “CP"
stands for conversational partner; we present only the result from the best baseline among the three.

Prior work has demonstrated that incorporating
contextual information (in this case, previous utter-
ances) is useful for predicting dialog act labels for
both human-human (Liu et al., 2017) and human-
chatbot (Khatri et al., 2018) interactions. To see
whether a similar approach will be effective in our
setting, we applied an evaluation scheme of held-
out transcript 2, where we iteratively held out the
data from one full transcript (i.e., the full conver-
sation between one EP and one CP) as the test set
and used the data from the remaining transcripts as
the training set. This allowed us to incorporate con-
textual information by embedding the preceding ut-
terance for feature prediction without enabling the
models to learn individual speaker characteristics.

5 Results
Table 3 shows, unsurprisingly, that neural models,
trained both with and without using the previous
utterance as context, consistently outperform base-
lines for all four features, particularly the more
challenging task of dialog act labeling.

To investigate whether adding contextual infor-
mation was helpful in feature prediction, we com-
pared for each feature the performance of the mod-
els with context to those without using logistic
mixed-effects regression. The dependent variable
was whether the feature value predicted by the
model matched the manually assigned value; the
fixed effect was the model (with or without the
context of the previous utterance); and participant
identity was included as a random intercept to con-
trol for repeated measurements of the same speaker.

2Held-out-speaker yielded comparable results.

Though the results revealed no significant differ-
ence for the three ordinal features, including con-
text appears to help improve model performance
for dialog act (β = 0.14, p < 0.001). All further
results presented will pertain to the models trained
with prior contextual information.

We now turn to the question of whether there are
differences in neural model performance on the ut-
terances of ASD vs. TD experimental participants
(EPs), as well as the utterances of conversational
partners (CPs) of EPs with ASD vs. CPs of EPs
with TD. Again, we applied logistic mixed-effects
regression. The regression structure was similar to
that described above, except that the group to which
the speaker of the utterance belongs was used as
the fixed effect (ASD EP vs. TD EP; or CP of ASD
vs. CP of TD). Without using speaker identity as a
random intercept, we found a significant effect of
speaker group for EPs (β = −0.31, z = −3.423,
p < 0.001) for politeness, which indicates that
model predictions for politeness are more accurate
for the TD group; we observed no such effect for
CP groups. For dialog acts, there was also signifi-
cant difference in accuracy between groups for EPs
(β = −0.38, z = −5.46, p < 0.001), indicating
that the models were more accurate for TD than
for ASD utterances; a similar but weaker pattern
was observed for CPs (β = −0.22, z = −2.93,
p < 0.01). No significant differences were ob-
served for uncertainty or informativeness. Run-
ning the same analysis using speaker identity as
a random intercept, the significant differences for
politeness and dialog acts are weaker but main-
tained for EPs (politeness: β = −0.32, z = −2.00,
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Task Utterance Feature Manual annotation Model prediction

Map Uh I don’t mean to have you turn the map
around it’s just kind of how I think Politeness 3 2

Island Oh yeah that’s right okay yeah that’s that’s smart Politeness 3 2

Map We’re going to go past the duck Dialog act Command Providing Information

Table 4: Examples of incorrectly classified ASD utterances.

p < 0.05; dialog acts: β = −0.32, z = −2.15,
p < 0.05), suggesting that the observed differences
in model accuracy may be driven by certain individ-
uals, a finding that aligns with prior observations
of heterogeneity in ASD language.

To qualitatively understand why our models
might be more accurate for TD utterances, we in-
spected some of the incorrect predictions for ASD
utterances. At times we observe similar unusual
communication features in multiple ASD subjects,
while other strategies appear to be idiosyncratic. Ta-
ble 4 shows a few examples of misclassified ASD
utterances. We observed many utterances like the
first in this table, in which the ASD EP struggles
to explain his reasoning, and many like the sec-
ond, in which ASD EP evaluates the quality of his
CP’s prior statement. These strategies tend to be
rare among TD EPs. In the third example, the EP
uses “we” to politely give commands, a choice that,
while easily recognized as a command-giving strat-
egy by our annotators, was unique to that EP and
was consistently misclassified.

6 Conclusions

Using a corpus of collaborative conversations be-
tween adults with and without ASD and their
neurotypical conversational partners, we outline
a framework for automatic identification of linguis-
tic features associated with social communication.
Although transformer-based models were able to
achieve strong performance overall, when compar-
ing results between diagnostic groups, we found
that models fall short on the language of partici-
pants with ASD, especially in cases of politeness
rating and dialog act labeling. This suggests that
as powerful as transformer models are in capturing
certain linguistic aspects of (written) data produced
by (presumably) neurotypical speakers (see Linzen
and Baroni (2021) for a review), they do not suf-
fice in characterizing language in ASD, a finding
that has broad implications for work applying these
models to any potentially atypical language.

7 Ethical Considerations

All work described here was carried out with the
approval of the Institutional Review Boards of
all of the participating institutions. In accordance
with our IRB protocol, we plan to release the
full set of annotations of the corpus to interested
researchers who can demonstrate completion
of their institution’s human subjects protection
training curriculum.
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A Appendix: Annotation guidelines

The politeness feature measures how well an ut-
terance contributes to a polite and non-demanding
dialogue, marked by agreeableness, positivity, and
willingness to compromise. An utterance with a
low politeness rating of 1 is given to utterances ex-
pressing negative comments or frustration (you’re
wrong, ugh I don’t know) and utterances which use
a more blunt way of phrasing commands (go back).
A high politeness rating of 3 is given to utterances
with niceties (e.g., thanks, sorry) or affirmative
words (wonderful, awesome) and indirect phrasing
of commands (if you could make a turn).

The uncertainty feature measures the amount
of uncertainty expressed about the correctness or
legitimacy of the utterance. An utterance with a
low uncertainty rating of 1 shows no uncertainty
at all, or contains only a few filler words. A rating
of 2 indicates some hesitation. It is given to po-
lar questions, either-or questions, short abandoned
utterances, and utterances containing many filler
words (um, uh) or hedge phrases (I guess). An ut-
terance with high uncertainty (rating of 3) has open
questions (what do you see?) or expresses explicit
uncertainty or confusion (I have no idea).
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The informativeness feature is defined as a
measure for the overall information content and
specificity of an utterance. Utterances provide no
information, contain only polar answers (yes, no)
or vague words with low specificity (that thing,
over there) are given a low informativeness rating
of 1. For the map task, a rating of 2 is given to
utterances that contain words for general objects
and do not specify a specific location on the map
(another path), while a high informativeness rating
of 3 is given to utterances which contain proper
nouns or labels or descriptions that point specific
location on the map (near the red pandas). In
the island task, a rating of 2 is given to utterances
which contain only a short phrase indicating the

item (I want the fishing pole), and a rating of 3 is
given to utterances which contain multiple item
words or a longer explanation of the items (the
fishing pole is good for catching fish).

Rather than using one of the many existing (and
conflicting) sets of dialog acts, we devised a small
set specific to this dataset and commonly observed
characteristics of language in ASD. When assign-
ing dialog act labels, the annotators were instructed
to consider the surrounding utterances, in order to
fully capture the function of the utterance in the
larger conversation. A complete list of each dialog
act with a description and examples for each one
can be found in Table 2.
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Abstract

This paper is devoted to the extraction of en-
tities and semantic relations between them
from scientific texts, where we consider sci-
entific terms as entities. In this paper, we
present a dataset that includes annotations for
two tasks and develop a system called TER-
Minator for the study of the influence of lan-
guage models on term recognition and com-
parison of different approaches for relation
extraction. Experiments show that language
models pre-trained on the target language are
not always show the best performance. Also
adding some heuristic approaches may im-
prove the overall quality of the particular task.
The developed tool and the annotated corpus
are publicly available at https://github.com/iis-
research-team/terminator and may be useful for
other researchers.

1 Introduction

Nowadays the amount of scientific publications is
constantly growing. In this regard, the processing
of scientific texts becomes especially relevant in
relation to rapidly developing scientific fields, for
example, computer science. Information extrac-
tion from scientific texts can be useful in domain-
specific areas, for completion of knowledge graphs,
in search and question-answering systems. This
paper describes the study on entity recognition and
relation extraction from scientific texts on computer
science in Russian.

Currently, there are a number of datasets with
annotations of entities and relations in a general
domain (Doddington et al., 2004; Roth and Yih,
2004; Loukachevitch et al., 2021), biomedical do-
main (Kim et al., 2003; Gurulingappa et al., 2012;
Li et al., 2016), or even multi-domains (Terryn
et al., 2020). Still it is more difficult to find a pub-
licly available dataset such as SciERC (Luan et al.,
2018) for scientific fields other than biomedical,
and especially in languages other than English.

Despite that the named entity recognition task
is well studied, it still faces multiple challenges
(Li et al., 2022a), namely, NER in domain-specific
areas (Weber et al., 2021), NER from noisy data
(Derczynski et al., 2017), code-mixed data (Fe-
tahu et al., 2021), and detection of fine-grained and
nested named entities (Kim and Kim, 2021; Ring-
land et al., 2019; Loukachevitch et al., 2021). This
is caused by several issues: defining boundaries of
compound terms; recognition of whether a lexical
unit is part of a compound term; identification of
a lexical unit as a term depending on the context
and topic of the text in which this lexical unit is
used etc. The relation extraction task also remains
an unsolved problem, as it often requires the use
of knowledge outside the text (for example, from
knowledge bases or obtained in another way), and
also due to the lack of a large amount of labeled
data in different languages.

Selection of the most appropriate language
model, which is able to provide the best quality
for extraction of terms and relations from scientific
texts is one of the relevant issues. Our experimen-
tal results not only show the usefulness of the pro-
posed dataset, but also provide baselines for further
research.

We make the following contributions:

• Provide a new dataset for both tasks (term
recognition and relation extraction) for Rus-
sian scientific texts and develop a TERMinator
tool for further research experiments.

• Study of influence of language models (with-
out additional information, with heuristics and
dictionaries) on term extraction.

• Compare three approaches for relation extrac-
tion (based on lexical patterns, classification
with a CLS-vector, and combination of them).
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2 Related Work

Entity recognition and relation extraction are the
main tasks in information extraction. There are
various approaches to solve them.

A traditional approach includes two stages: ex-
tracting n-grams which potentially may be terms,
and then classification whether this n-gram is a
term or not. In (Stanković et al., 2016) authors
proposed to use dictionaries and morphological
and syntax information. There are some works
which use pre-defined ontologies for terms extrac-
tion (Ivanisenko et al., 2020). Another idea is to
solve this task as a sequence labeling (Kucza et al.,
2018). It allows to implement terms extraction
in one stage and take into account syntax and se-
mantic information from the context. For terms
extraction the main challenge is to identify the ex-
act term boundaries. In (Zhu and Li, 2022) authors
proposed to use boundary smoothing as a regular-
ization technique to overcome this problem.

Relation extraction is usually considered as a
classification problem: for two given terms one
needs to determine whether there is a semantic re-
lation between them or not, and if they are related
then to define its type. Some works describe the use
of knowledge bases for relation extraction (Li et al.,
2019; Baldini Soares et al., 2019). With the spread
of transformers-based architectures, different pre-
trained language models are used to solve this task
(Shi and Lin, 2019). Some researchers try to make
use of incorporating external data sources in the
model, for example the list of hand-written syntax
patterns (Tao et al., 2019), information about sen-
tence syntax tree (Ningthoujam et al., 2019; Nayak
and Ng, 2019).

Recently, special attention has been paid to sys-
tems which solve terms recognition and relation
extraction jointly. The authors propose an archi-
tecture that sequentially extracts entities and rela-
tionships between them, but in end-to-end settings
(Eberts and Ulges, 2020; Ji et al., 2020; Huang
et al., 2019; Miwa and Bansal, 2016). Another idea
is to train a model with two outputs: one output
is for term extraction, and the other is for relation
extraction (Xue et al., 2019). However such ap-
proaches require quite a lot of annotated data to
find hidden regularities.

3 Data Preparation

For the experiments we create an annotated dataset,
which consists of abstracts of scientific papers on

Information Technology in Russian.
As entities we consider nouns or noun groups,

which are terms in this particular domain. Terms
that we recognize as entities may consist of one or
several tokens (“software”, “non-preemptive multi-
tasking”), abbreviations (“CPU”, “DLL”), names
of programming languages (“Python”, “C++”) and
libraries (“Pytorch”, “SpaCy”), hyphenated con-
cepts containing Latin characters (”n-gram”, ”web-
service”). Thereby we consider all possible chains
of tokens that can be terms, except for those that
are recursive or overlap. The entities are marked in
the BIO format: each token is assigned a B-TERM
tag if it is the initial tag for an entity, I-TERM if it
is inside a term, or O if it is outside any entity.

Statistics for our dataset is presented in Table 1.

Unit train test
texts 136 80
tokens 12 809 11 157
terms 2 028 2 027
relations 356 620

Table 1: Dataset statistics

The list of relations is selected based on the
following criteria. At first, a relation should be
monosemantic (for example, we don’t consider a
semantic relation <Entity-Destination> because it
has indirect meaning as well). Secondly, a relation
should link scientific terms (for example, in rela-
tion <Communication-Topic> (an act of communi-
cation is about topic) the actants are not scientific
terms). Thus, six semantic relations were selected.
Types of relations in a corpus, their meanings and
distribution by train and test sets are presented in
Table 2.

Relation type Meaning train test
CAUSE x is the cause of y 19 19
ISA x is y 96 93
PART_OF x is part of y 23 87
SYNONYMS x is the same as y 35 22
TOOL x allows to create/etc. y 54 38
USAGE x is used for/in y 126 330

Table 2: Types of relations

Here is a sample sentence where two
terms and the relation between them are
highlighted: Pokazany preimushchestva prime-
neniya <e1>mul’timedijnyh tekhnologij</e1> v
<e2>uchebnom processe</e2> i effektivnost’ ih
ispol’zovaniya vo vremya lekcij i seminarov. (The
advantages of using multimedia technologies in
the educational process and the effectiveness of
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their use during lectures and seminars are shown.).
The relation between e1 and e2 is USAGE.

The dataset is available for other researchers1.

4 Influence of language models on term
extraction

4.1 Models without additional information

The experimental methodology is as follows: texts
are fed as input; during the vectorization procedure,
each text is divided into spans (in our case these are
BPE tokens), each of which is assigned to a vector.
Initially, the model learns to match tokens with
labels by using the training data; then based on the
revealed regularities the model makes predictions
on the validation data. In this way, the metrics are
fixed after each training epoch. The output is a set
of labels associated by the system with each word
from the input text.

We experimented with two models: multilingual
BERT (Devlin et al., 2018) and BERT pre-trained
on Russian texts (Kuratov and Arkhipov, 2019).

In the first stage of the experiment each pre-
trained language model was fine-tuned on the train
set described above. The optimal learning rate
was chosen as 10−6, and the batch size was 12.
Such values prevent overfitting and obtain the best
results. At this stage, the metrics show that on
partial match both models give the same perfor-
mance, while in exact match the model pre-trained
on Russian-language texts gives better scores.

Then we extended a train set by adding 212 texts
with a pseudo labeling method. We collected a dic-
tionary (list of scientific terms) in a semi-automatic
way:

• We extracted 2-, 3- and 4-grams from the sci-
entific papers and manually filtered phrases,
which potentially can be terms.

• We extracted all titles of articles from
Wikipedia, which are included in a subgraph
of category “Science”, and then manually se-
lected words and phrases, which potentially
can be terms.

Thus we obtained a list of 17 252 terms, which
we used for pseudo labeling. This technique is
useful for rapidly changing areas of knowledge,
when it is difficult to have dictionaries of terms and
keep them up to date.

1https://github.com/iis-research-team/ruserrc-dataset

Due to the less detailed checking of the markup
of the corpus, even with its comparatively large
size, the metrics received with the models trained
on it turned out to be lower than those of the same
models trained on the manual annotated texts.

4.2 Models with heuristics

Experimentally we found out that in order to im-
prove the quality of term extraction, we need to
improve the definition of term boundaries. The
task of defining terms’ boundaries is more chal-
lenging than classifying a token as a “term” type.
To improve the recognition of term boundaries, we
apply some heuristics to handle such cases as re-
moving a preposition as a first token of a term and
some others. From the results shown in Table 3, it
can be seen that the heuristics improve the quality
of term extraction on the exact match.

4.3 Models with heuristics and dictionaries

It the third stage, the system extracts terms not only
with the trained model, but also with the use of
the dictionary described above. Heuristics are also
applied.

Table 3 shows that the ruBERT model fine-tuned
on the manually annotated train set extracts the
terms in half of the cases, which is the best re-
sult of a exact match. On the pseudo-labeled train
set, this combined method gives good results for
the multilingual BERT both for exact and partial
matches.

Both models solve the task of term recognition
with a high quality, which can be seen from the
good results on a partial match. The best result on
an exact match pertains to the RuBERT model sup-
ported by a dictionary and heuristics. The results
of the models on the exact match are expectedly
lower than the results on a partial match, which
again draws our attention to the task of defining
terms’ boundaries in texts.

The markup quality significantly affects the qual-
ity, as we can note from a comparison of the re-
sults of the first and second stages of the experi-
ment (see Sections 4.1, 4.2). Fine-tuning on the
manually-annotated training set gives better per-
formance than fine-tuning on the pseudo-labeled
training set, even though its size is larger than the
size of the manually-annotated one. It is hard to
compare results with other researchers as this is the
first corpora for scientific texts in Russian as far
as we know. But for the similar dataset in English
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Train set Model F-M P F-M R F-M F1 P-M P P-M R P-M F1

Manually
labeled

mBERT 0.40 0.46 0.43 0.89 0.88 0.88
mBERT + h 0.49 0.45 0.47 0.86 0.86 0.86
mBERT + d + h 0.47 0.50 0.48 0.86 0.87 0.87
ruBERT 0.48 0.50 0.49 0.89 0.88 0.88
ruBERT + h 0.52 0.47 0.49 0.89 0.88 0.88
ruBERT + d + h 0.49 0.51 0.50 0.86 0.87 0.87

Pseudo
labeled

mBERT 0.33 0.34 0.34 0.80 0.75 0.75
mBERT + h 0.42 0.38 0.40 0.80 0.79 0.79
mBERT + d + h 0.41 0.39 0.40 0.80 0.80 0.80
ruBERT 0.32 0.32 0.33 0.78 0.76 0.75
ruBERT + h 0.40 0.37 0.38 0.79 0.79 0.79
ruBERT + h + d 0.38 0.39 0.38 0.79 0.74 0.76

Table 3: Metrics for full match (F-M) and partial match (P-M) terms extraction; d is for dictionary, h is for heuristics.

SciERC (Luan et al., 2018) the authors (Eberts and
Ulges, 2020) reported F1-measure to be 0.70.

We observed that for the term extraction task
the model mistakes in recognizing the exact term
boundaries. Another problem arises when a term
is divided by other words or signs in the sentence,
for example, "Morphological and syntax analysis".
Probably, it should be solved at a post-processing
stage.

5 Comparison of approaches for relation
extraction

5.1 Using lexical patterns

At first, we applied an approach for relation identi-
fication based on lexical patterns. It consists in the
following: for texts with tagged terms, we extract
a context between each pair of terms, lemmatize
it, and compare it with the lexical patterns. If they
match, these two terms are connected by this rela-
tion. The length of the context should not exceed
six words. This value was obtained experimentally
by changing it and comparing the quality of the
model. The obtained metrics for this approach are
shown in Table 4. We used 111 patterns; exam-
ples of patters and their distribution by relations
are presented in Table 5.

Relation type Precision Recall F1
CAUSE 0.07 0.05 0.06
ISA 0.18 0.19 0.19
PART_OF 0.17 0.14 0.15
SYNONYMS 0.23 0.82 0.35
TOOL 0.06 0.08 0.07
USAGE 0.21 0.39 0.27
NO-RELATION 0.96 0.92 0.94
macro-average 0.27 0.37 0.29

Table 4: Metrics for lexical pattern’s approach

5.2 Classification task with a CLS-vector

The second approach we used for the relation ex-
traction is similar to R-BERT, and is used by other
authors (Hosseini et al., 2022; Aldahdooh et al.,
2021; Li et al., 2022b). We consider the task of
relation extraction as a classification task (with 7
classes of relations: CAUSE, ISA, PART-OF, SYN-
ONYMS, TOOL, USAGE, NO-RELATION). We
take the vector of a special token CLS (it is con-
sidered as a vector of the input text) and the vector
of two terms (connected by the relation). These
three vectors are concatenated and the resulting
vector is fed to the classifier (Wu and He, 2019).
We tried to use three different language models:
mBERT, ruBERT (Kuratov and Arkhipov, 2019)
and cointegrated/rubert-tiny2.

In addition, some features of the training are
noteworthy. Firstly, to train the models, we used
the corpus of Russian texts without dividing it into
training and validation sets, and the most appropri-
ate number of epochs was selected experimentally,
because there are very few examples for some re-
lations, and therefore the validation set would be
unrepresentative to determine the quality of the
model. Secondly, to reduce the imbalance between
the number of examples in the classes, we added
only 50% of the randomly selected pairs of terms to
the training set, excluding those with the distance
between tokens more than 10.

Finally, we implemented an ensemble which in-
cludes both approaches: model and lexical patterns.
All metrics are presented in Table 6. F1-score for
all types of relations for combined approach are
presented in Table 7. For comparison, the state-of-
the-art result achieved on SciERC with the SpERT
(using SciBERT) method is 50.84% for relation
extraction (Eberts and Ulges, 2020). Our results
may also be related to insufficient data, as Russian

3423



Relation
type

Examples of patterns (transliteration) Examples of patterns (translation) N

CAUSE Uvelichivsheesya potreblenie rafinirovannyh pro-
duktov pitaniya yavlyaetsya prichinoj mnozh-
estva takih zabolevanij.

Increased consumption of refined foods is the
cause of many diseases.

23

ISA Odnim iz samyh tochnyh i effektivnyh sposobov
upravleniya zhestami yavlyaetsya upravlenie ak-
tivnost’yu myshc.

One of the most accurate and effective ways to
control gestures is to control muscle activity.

13

PART_OF Process referirovaniya sostoit iz pyati osnovnyh
shagov.

The referencing process consists of five main
steps.

5

SYNONYMS Stat’ya posvyashchena issledovaniyu ver-
tikal’nogo poleta robota s mashushchim krylom,
takzhe nazyvaemogo ornitopterom.

The article is devoted to the study of the vertical
flight of a robot with a flap wing, also called an
ornithopter.

5

TOOL V stat’e predstavlen opyt razrabotki informa-
cionnoj sistemy, avtomatiziruyushchej process
raspredeleniya studentov po bazam praktik.

The article presents the experience of develop-
ment of the information system, which auto-
mates the process of distribution of students by
the bases of practice.

29

USAGE V nastoyashchee vremya aktivno razvivaetsya
napravlenie, svyazannoe s proektirovaniem ne-
jronnyh setej dlya ispol’zovaniya v mobil’nyh
ustrojstvah.

Currently, the development of neural networks
for use on mobile devices is growing rapidly.

36

Table 5: Examples of lexical patterns

is morphologically rich, which additionally compli-
cates the work of the language model. Moreover,
error analysis of relation extraction revealed that
relations are often present implicitly between terms
and one can recognize them if one only knows
these particular terms. Quite many terms in IT
texts are abstract (for example, "program imple-
mentation", "testing", etc.) and it can be difficult
to define, whether there is any semantic relation
between them or not. We plan to study this aspects
in the future.

Model Precision Recall F1
mBERT 0.26 0.32 0.26
ruBERT 0.26 0.34 0.27
rubert-tiny2 0.22 0.23 0.22
mBERT + p 0.26 0.41 0.29
ruBERT + p 0.29 0.35 0.28
rubert-tiny2 + p 0.29 0.24 0.24

Table 6: Metrics for different language models and
combined approach; p is for patterns

Relation type mBERT ruBERT ruBERT-tiny2
CAUSE 0.06 0.09 0.10
ISA 0.30 0.28 0.14
PART_OF 0.14 0.04 0.00
SYNONYMS 0.32 0.33 0.38
TOOL 0.04 0.07 0.00
USAGE 0.27 0.22 0.11
NO-RELATION 0.93 0.95 0.94
macro-average 0.29 0.28 0.24

Table 7: F1-score for all types of relations for combined
approach

6 Conclusion

In this paper, we built a new dataset and study
several methods for term recognition and relation
extraction from computer science texts in Russian.
We conducted several experiments with different
pre-trained language models for both tasks. The re-
sults of our experiments show that language models
pre-trained on the target language are not always
show the best performance. Also adding some
heuristic approaches may improve the overall qual-
ity for the particular task.
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jana Lazić, and Aleksandra Trtovac. 2016. Rule-
based automatic multi-word term extraction and
lemmatization. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evalu-
ation (LREC’16), pages 507–514, Portorož, Slovenia.
European Language Resources Association (ELRA).

Qiongxing Tao, Xiangfeng Luo, and Hao Wang. 2019.
Enhancing relation extraction using syntactic indi-
cators and sentential contexts. In Proceedings of
the International Conference on Tools with Artificial
Intelligence (ICTAI), pages 574–580, Piscataway, NJ.

Ayla Rigouts Terryn, Veronique Hoste, and Els Lefever.
2020. In no uncertain terms: a dataset for mono-
lingual and multilingual automatic term extraction
from comparable corpora. Language Resources and
Evaluation, 54:385–418.

Leon Weber, Mario Sänger, Jannes Münchmeyer,
Maryam Habibi, Ulf Leser, and Alan Akbik. 2021.
Hunflair: an easy-to-use tool for state-of-the-art
biomedical named entity recognition. Bioinformatics,
37(17):2792–2794.

Shanchan Wu and Yifan He. 2019. Enriching pre-
trained language model with entity information for
relation classification. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 2361–2364. ACM.

Kui Xue, Yangming Zhou, Zhiyuan Ma, Tong Ruan,
Huanhuan Zhang, and Ping He. 2019. Fine-tuning
bert for joint entity and relation extraction in chi-
nese medical text. In Proceedings of the 2019
IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 892–897.

Enwei Zhu and Jinpeng Li. 2022. Boundary
smoothing for named entity recognition. ArXiv,
arXiv:2204.12031. Version 1.

3426



Proceedings of the 29th International Conference on Computational Linguistics, pages 3427–3437
October 12–17, 2022.

LipKey: A Large-Scale News Dataset for Absent Keyphrases Generation
and Abstractive Summarization

Fajri Koto♠ Timothy Baldwin♠♥ Jey Han Lau♠
♠ School of Computing and Information Systems, The University of Melbourne

♥ Department of Natural Language Processing, MBZUAI
fajri.koto91@gmail.com tb@ldwin.net jeyhan.lau@gmail.com

Abstract

Summaries, keyphrases, and titles are differ-
ent ways of concisely capturing the content
of a document. While most previous work
has released the datasets of keyphrases and
summarization separately, in this work, we
introduce LipKey, the largest news corpus
with human-written abstractive summaries, ab-
sent keyphrases, and titles. We jointly use
the three elements via multi-task training and
training as joint structured inputs, in the con-
text of document summarization. We find that
including absent keyphrases and titles as ad-
ditional context to the source document im-
proves transformer-based summarization mod-
els.1

1 Introduction

Key content of an article can be presented in dif-
ferent ways, including summaries, keyphrases, and
titles. While most previous research has addressed
each element individually (e.g. news summariza-
tion (Zhang et al., 2020a; Lewis et al., 2020; Koto
et al., 2020a) and keyphrase generation in the sci-
entific domain (Meng et al., 2017, 2021)), in this
work we release a novel news dataset that consists
of highly absent keyphrases (i.e. keyphrases which
abstract over the content of the document), abstrac-
tive summaries, and titles to investigate the three
elements in the context of single-document abstrac-
tive summarization.

Previous work has mainly utilized present
keyphrases (i.e. keyphrases that are directly drawn
from the source text) through unsupervised and
supervised methods for summarization. For in-
stance, traditional summarization models (Zhang
et al., 2004; D’Avanzo and Magnini, 2005; Wan
et al., 2007; Riedhammer et al., 2010; Qazvinian
et al., 2010) and modern neural models (Müngen
and Kaya, 2018; Nallapati et al., 2016; Liu et al.,

1Data and code used is available at: https://github.com/
fajri91/LipKey

2021) have been combined with the top-k frequent
words, TF-IDF, and TextRank (Mihalcea and Tarau,
2004) to obtain keyphrases. Elsewhere, Gehrmann
et al. (2018); Li et al. (2020) used words contained
in both the summary and article as keyphrases to
improve summarization.

This paper aims to study how absent keyphrases
(i.e. keyphrases that do not match any words in
the source text) can be incorporated into summa-
rization systems. Compared to present keyphrases
used in previous work, absent keyphrases poten-
tially better complement abstractive summariza-
tion methods. Previous work has been hindered
by the unavailability of a large annotated dataset
with gold-standard summaries and keyphrases, thus
opting for present keyphrase extraction (Qazvinian
et al., 2010; Liu et al., 2021).

We additionally study the utility of titles in sum-
marization. The underlying hypothesis is that titles
and keyphrases are concise, complementary repre-
sentations of an article, and provide relevant clues
for summarization. While previous summarization
datasets such as CNNDM (Hermann et al., 2015),
NYT (Sandhaus, 2008), and XSUM (Narayan et al.,
2018) do not include keyphrases and titles, we
present a novel large-scale dataset containing both.

Following Koto et al. (2020a), we crawl
Liputan62 — an Indonesian news portal — to ob-
tain 105K news articles with titles, abstractive sum-
maries, and absent keyphrases, all authored by jour-
nalists. Note that the dataset of Koto et al. (2020a)
is based on the time period 2000–2010, at which
point Liputan6 did not include keyphrases, while
our dataset is based on the time period 2019–2021.3

Furthermore, the fact that the dataset is in Indone-
sian contributes to language diversity in NLP (Joshi
et al., 2020).

2https://www.liputan6.com
3Koto et al. (2020a) also do not release the titles. We

performed online crawling using an RSS feed taken from a
two year period to obtain the dataset.
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Dataset / Lang Size Includes #Key per AbsKey
Summ? doc (%) (%)

LipKey (ours) / id 105,537 Yes 4.5 51.2
DUC-2001 / en 308 Yes 8.1 3.7
PT-BN-KP / en 110 No 23.7 2.5
KPCrowd / en 500 No 48.9 13.5
KPTimes / en 289,923 No 5.0 54.8
WikiNews / fr 100 No 11.8 5.0

Table 1: LipKey and other keyphrase datasets in the
news domain. “AbsKey” is the percentage of “absent”
keyphrases, relative to the source article.

To summarize our contributions: (1) we re-
lease LipKey, the largest news corpus containing
human-written abstractive summaries and absent
keyphrases, as well as being the first large-scale In-
donesian keyphrase dataset; (2) through extensive
experimentation, we benchmark multi-task train-
ing and structured input methods using keyphrases
and titles for Indonesian text summarization over
different pretrained language models. We find that
incorporating keyphrases and titles as structured
inputs performs better than multi-task training, and
consistently improves summary quality.

2 Related Work

Most keyphrase datasets are in the domain of En-
glish scientific publications (Hulth, 2003; Krapivin
et al., 2009; Kim et al., 2010; Meng et al., 2021).
In Table 1, we compare our corpus, LipKey, with
other keyphrase datasets in the news domain. Most
datasets such as DUC-2001 (Wan and Xiao, 2008),
PT-BN-KP (Marujo et al., 2012), KPCrowd
(Marujo et al., 2011), and WikiNews (Bougouin
et al., 2013) are small in size and consist of highly
present keyphrases, with KPTimes (Gallina et al.,
2019) being the only exception. DUC-2001 is
the only dataset with both keyphrases and sum-
maries, but has only 308 documents. In compari-
son, LipKey is a large news corpus that includes
human-written summaries and absent keyphrases,
as well as being the first large-scale Indonesian
keyphrase dataset.

Incorporating keyphrases into summarization
has been explored in other languages such as Chi-
nese (Jiang et al., 2018; Mihalcea and Tarau, 2004),
but using present keyphrases. This is the first
work to combine the two tasks in the Indonesian
language, with previous work separately tackling:
(1) keyphrase extraction, over Twitter (Mahfuzh
et al., 2019), consumer-health questions (Saputra

|Vocab| #Word #Sentence

mean std mean std

Article 346,564 436.5 277.7 22 17.5
Title 58,113 10.1 2.2 1 0
Summary 63,086 19 6.6 1.2 0.4
Keyphrases 33,976 8.9 4.6 4.5 1.9

Table 2: Per-article summary statistics for LipKey.
For keyphrases, #sentence indicates #keyphrases.

Dataset Size % of novel n-gram

1 2 3 4

IndoSum 18,764 3.1 10.8 16.2 20.3
Liputan6 215,827 12.9 41.6 57.6 66.9
LipKey (summary) 105,537 7.5 25.2 35.1 40.9
LipKey (title) 105,537 26.8 65.4 84.5 92.7

Table 3: Abstractiveness of summaries (and titles) in
Indosum, Liputan6, and LipKey, compared to the ar-
ticle.

et al., 2018), or scientific articles (Asrori et al.,
2020; Trisna and Nurwidyantoro, 2020) with lim-
ited data;4 or (2) document summarization in the
news domain (Kurniawan and Louvan, 2018; Koto
et al., 2020a).

3 Data Construction

Liputan6 is one of the largest Indonesian news por-
tals, containing news on topics such as politics,
health, business, and popular culture.5 Koto et al.
(2020a) found that Liputan6 summaries are highly
abstractive, written by journalists, and suitable for
Indonesian text summarization research. The sum-
mary and keyphrases are encapsulated in javascript
variables window.kmklabs.article with
the keys shortDescription and keywords,
respectively.6 In crawling Liputan6, we use article
ID to ensure there is no redundancy in the dataset.
LipKey articles span the period December

2019 to March 2021, and each article is associated
with a summary, title, and keyphrase(s).7 In Table 2
and Table 3, we show the overall data statistics of
LipKey, and compare it with previous Indonesian

4None of the datasets are publicly available.
5According to https://www.alexa.com, Liputan6 was

ranked 16th and 308th in Indonesia and worldwide, respec-
tively, in November 2021 in terms of popularity.

6In 2012, Liputan6 added keyphrases for articles. These
keyphrases are also assigned manually by the journalist.

7Since the data is crawled between December 2019 and
March 2021, models trained on this data will likely be biased
towards events and issues occurring in this period.
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Genre Total (%) Article Title Summary Keyphrase Word-level

|Vocab| µ(#word) |Vocab| µ(#word) |Vocab| µ(#word) µ ED Entropy

general 33.5% 155,834 421.6 29,155 10.1 31,935 18.8 4.3 11.6 10.8
sport 12.3% 66,303 340.2 11,359 9.9 13,178 18.9 5.2 12.1 10.4
business 12.2% 82,899 524.7 13,377 9.6 15,591 18.3 4.1 10.8 10.5
local 9.5% 76,417 391.0 14,266 9.9 18,969 21.9 4.8 13.3 10.5
entertainment 8.6% 62,677 270.2 14,206 11.8 12,265 13.8 4.0 12.3 10.7
lifestyle 6.3% 75,566 434.7 11,456 10.2 13,177 17.2 4.8 11.6 10.7
international 5.5% 61,007 460.4 9,822 10.7 11,545 19.4 5.2 10.9 10.8
health 4.7% 44,916 380.8 8,314 10.3 9,468 19.2 5.7 11.8 10.5
technology 3.2% 39,338 418.4 6,195 9.3 8,503 20.2 4.3 11.1 10.3
automotive 2.7% 35,870 369.8 5,855 9.3 8,247 24.9 3.7 10.7 10.5
other 1.5% 37,512 603.7 4,131 10.5 5,278 18.0 4.7 12.4 10.3

Table 4: Data statistics based on news genre. ED is the average character-level Levenshtein edit distance, computed
between two pairs of keyphrases, while word-level entropy (1-gram) is calculated based on the concatenation of
article, title, and summary.

summarization datasets: IndoSum (Kurniawan and
Louvan, 2018) and Liputan6 (Koto et al., 2020a).
We observe that summaries in LipKey are more
abstractive than IndoSum in terms of novel n-grams
(computed relatively to the article). Interestingly,
we found that LipKey’s titles are even more ab-
stractive than the summaries in all datasets. Note
that the median summary length in LipKey is one
sentence, and shorter than Liputan6 (Koto et al.,
2020a) at two sentences, despite both datasets be-
ing crawled from the same news portal.

In constructing LipKey, we discard instances
where: (1) one of the keyphrases has more than
6 words (which tends to be noise); (2) the arti-
cle has less than 15 words; or (3) the summary
has less than 5 words. This results in 105,537 in-
stances that we split into 96,541/4,154/4,842 for
train/development/test. In terms of the number of
words, 33% and 43% of keyphrases consist of 1
and 2 words, respectively, with the remainder being
3–6 words (see Table 10 in the Appendix for some
examples).

We also perform manual analysis over 100 ran-
dom samples to examine why the keyphrases are
absent (i.e. do not occur) in the source article. We
find that 80% of keyphrases partially match the arti-
cle or are word-order variants (see Table 5). More-
over, 15%, 12% and 14% of absent keyphrases are
acronyms, synonyms, or morphological variants.

LipKey consists of diverse news genres as
shown in Table 4. “General”, “sport”, “business”,
“local”, and “entertainment” are the top-5 most com-
mon news genres found in the dataset, covering
75% of all articles. We observe that “entertain-
ment” articles tend to be shorter than other genres,

Category % Examples
(keyphrase vs. article)

Acronym 15 manchester united vs. man
utd

Synonym 12 kepribadian “characteristic”
vs. sifat “characteristic”

Morphology 14 pemotor “motorcyclist” vs.
motor “motorcycle”

Different order or partial 80 Virus Corona di Aceh “coro-
navirus in Aceh” vs. Virus
Corona “coronavirus”

Not a synonym but related 44 N/A
Found in title (not in article) 24 N/A

Table 5: Analysis of keyphrases from 100 random sam-
ples.

and “automotive” has the longest summaries but
the fewest keyphrases on average. The average edit
distance between two pairs of keyphrases in each
genre is almost similar, ranging between 10–13,
indicating the diversity of keyphrases in each arti-
cle. Lastly, word-level entropy in each genre is also
similar (around 10) indicating the similar low-level
redundancy in each news genre.

4 Experiments

4.1 Set-Up

As described in Figure 1, we experiment in two
settings: (1) multi-task training (title/keyphrases
= output); and (2) training with structured input
(title/keyphrases = input). For the first, we use
summary s, title t, and keyphrase(s) k as the sep-
arate target texts, and perform multi-task training
with article a as the source text (thus three tasks:
summarization, keyphrase generation (KPG), and
title generation). The total loss L for multi-task

3429



Pretrained LM

[ARTICLE] text </s>

[SUMMARY] text </s>

[TITLE] text </s>

[KEYPHRASES] key1 <sep> ... keyn  </s>
Pretrained LM

[TITLE] text [KEYPHRASES] key1 <sep>
key2 ... <sep> keyn [ARTICLE] text </s>

[SUMMARY] text </s>

Figure 1: Experimental set-up. Left: multi-task train-
ing, Right: training with structured input.

training is defined as Ls + Lt + Lk. For the sec-
ond, the goal is to learn P (s|t, k, a) that is realized
by concatenating title t, keyphrases k, and article
a to form the source text, and use summary s as
the target text. To distinguish the four text types
and structure the input, we introduce the special to-
kens of [SUMMARY], [TITLE], [KEYPHRASES], and
[ARTICLE] for all pretrained language models. In
the case of multiple keyphrases, we use <sep> as
a separator. The maximum number of tokens for
the article is 512, and for the summary, title, and
keyphrases it is 100.

We use the huggingface transformers li-
brary (Wolf et al., 2020) for our experiments with
three pretrained language models: IndoBERT8

(Koto et al., 2020b), mT5 (base)9 (Xue et al., 2021),
and mBART (large)10 (Liu et al., 2020). For the
monolingual IndoBERT, we follow Liu and Lapata
(2019) in adding a raw transformer decoder (lay-
ers = 6, hidden size = 768, feed-forward = 2,048,
and heads = 8) on top of IndoBERT, and train it
on 4×V100 16GB GPUs for 200K steps. For the
multilingual mT5 and mBART, we train them on
4×V100 32GB GPUs for 60 epochs (around 20K
steps) with an initial learning rate of 1e-4 (Adam
optimizer). We pick the best checkpoint based on
ROUGE scores (Lin, 2004) on the development
set (see the Appendix for more details of hyper-
parameters).

Additionally, we train keyphrase generation
(KPG) models (Seq2Seq) with the same ar-
chitectures and configurations as the summa-
rization models. We compare the generated
keyphrases with: (a) human-written keyphrases;
and (b) keyphrases from RAKE, an unsuper-
vised language-independent keyphrase extraction
method (Rose et al., 2010).

8indolem/indobert-base-uncased
9google/mt5-base

10facebook/mbart-large-50

Model R1 R2 RL Foc. Cov.

Lead-1 36.6 26.1 34.1 58.5 71.8
Oracle 69.2 58.9 66.9 76.4 87.2

IndoBERT (base) + raw decoder with 153M parameters

summary 41.8 30.1 39.3 66.6 73.8

multi-task training
summary, keyphrase 41.8 30.1 39.3 66.6 73.9
summary, title 42.9 31.1 40.4 67.0 74.4
summary, keyphrase, title 42.6 31.1 40.2 66.8 74.5
training with additional context
+ keyphrase 43.4 31.8 41.0 67.2 74.6
+ title 43.2 31.5 40.7 67.4 74.3
+ keyphrase + title 43.7 31.9 41.2 67.4 74.6

mBART (large) with 600M parameters

summary 43.1 31 40.5 67.6 73.9

multi-task training
summary, keyphrase 43.6 31.3 41.0 68.1 74.0
summary, title 42.2 30.0 39.5 67.3 73.4
summary, keyphrase, title 43.5 31.6 40.8 67.8 74.1
training with additional context
+ keyphrase 43.5 31.2 40.9 68.1 73.8
+ title 43.1 30.8 40.4 67.7 73.8
+ keyphrase + title 44.8 32.3 42.0 68.8 74.6

mT5 (base) with 580M parameters

summary 45.2 33.7 42.7 67.5 76.2

multi-task training
summary, keyphrase 44.7 33.2 42.1 66.9 76.3
summary, title 44.6 33.1 42.0 66.6 76.4
summary, keyphrase, title 43.7 32.0 41.0 66.1 76.0
training with additional context
+ keyphrase 46.4 34.8 43.8 68.2 76.6
+ title 45.4 33.8 42.9 67.5 76.4
+ keyphrase + title 46.7 35.1 44.2 68.4 76.9

Table 6: Summarization results on LipKey. “Foc” and
“Cov” are Focus and Coverage, respectively, of FFCI.
Entries in bold and underline refer to the best overall
score and the best score for each model, respectively.
“Oracle” is obtained by greedily selecting the subset
of sentences in the article that maximizes the ROUGE
score based on the reference summary.

For evaluating the summarization models, we
use F1 of ROUGE scores (R1, R2, and RL), and Fo-
cus and Coverage from the FFCI framework (Koto
et al., 2022), computed based on Precision and Re-
call of BERTSCORE (Zhang et al., 2020b) using
mBERT uncased.11 For evaluating KPG, we use
macro-averaged F1@5, F1@O, and F1@M, fol-
lowing Meng et al. (2021), and additionally report
R1, Focus, and Coverage. Detailed definitions of
the metrics are provided in the Appendix.

11For details of BERT layer selection, see Koto et al. (2021).
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Model R1 Foc. Cov. F1@5 F1@O F1@M
RAKE 7.8 40.0 58.7 1.0 1.0 1.0
IndoBERT 58.8 74.2 79.4 45.5 45.2 46.5
mT5 (base) 62.0 75.7 81.7 53.3 52.9 54.5
mBART (large) 63.4 76.4 81.9 54.5 54.4 56.0

Table 7: Keyphrase generation results on LipKey.

4.2 Results

In Table 6, we show the full experimental results on
the test set. First, we observe that vanilla models
(trained only using the article) substantially out-
perform Lead-1 for all models.12 We find that
the vanilla model of mT5 performs better than In-
doBERT and mBART, with an improvement of
+3.4 and +2.1 R1, respectively.

Training with additional context as structured
input consistently improves over multi-task train-
ing, with the best results generally being obtained
with both keyphrases and title, and mT5 being the
best model. When incorporating each element sep-
arately, keyphrases are generally better than titles,
improving over the vanilla model, with IndoBERT
(with multi-task training) being the notable excep-
tion. We also observe that mBART (large) and
mT5 (base) are similar in parameter size (600M),
but mT5 is substantially better. The FFCI frame-
work shows that both models have similar Focus (=
precision), but mT5 has higher Coverage (= recall).

Next, in Table 7, we present results for keyphrase
generation on the LipKey test set, and observe
that mBART (large) achieves the best performance
across all metrics. Interestingly, RAKE performs
very poorly,13 in part emphasizing the limitations
of the extractive RAKE method (vs. the highly
absent keyphrases in LipKey).

Lastly, to benchmark the effect of different
keyphrases in summarization we perform an abla-
tion study over the best summarization model, mT5,
using keyphrases sourced through three different
methods: (1) RAKE, (2) Seq2Seq, and (3) human-
assigned. We use RAKE for this study because
there is no suitable keyphrase dataset for train-
ing neural models to extract present keyphrases
in Indonesian. As seen in Table 8, adding RAKE
keyphrases hurts summarization results, but when
using Seq2Seq keyphrases (generated by mBART),
the performance consistently improves across all

12We choose Lead-1 because the average #sentence of the
summary is 1.2 in Table 2.

13For each article, we pick the top-5 keyphrases based on
RAKE scoring.

Model R1 R2 RL Foc. Cov.

Vanilla 45.2 33.7 42.7 67.5 76.2
+ keyphrases (RAKE) 44.8 33.3 42.3 66.5 75.6
+ keyphrases (Seq2Seq*) 46.0 34.4 43.5 68.1 76.4
+ keyphrases (Human) 46.4 34.8 43.8 68.2 76.6

Vanilla + title 45.4 33.8 42.9 67.5 76.4
+ keyphrases (RAKE) 43.7 32.1 41.2 67.3 76.1
+ keyphrases (Seq2Seq*) 45.9 34.1 43.3 67.9 76.4
+ keyphrases (Human) 46.7 35.1 44.2 68.4 76.9

Table 8: Ablation study of mT5 (base) over different
keyphrases on test set. * denotes using mBART (large).

metrics, close to the performance of human-
assigned keyphrases. Considering this finding, it
would be interesting to explore the transferability
of keyphrase generation models to other languages,
to see if it can be reproduced.

5 Conclusion

In this paper, we release LipKey, the largest news
corpus with human-written keyphrases, summaries
and titles which is also the first-large scale Indone-
sian keyphrase dataset. We experimented with in-
corporating keyphrases (and titles) into summa-
rization training via multi-task training or as struc-
tured inputs, and found that the latter works better.
In this preliminary results, we show that absent
keyphrases benefit summarization systems more
than present keyphrases extracted by RAKE.

6 Ethical Considerations

According to Indonesian Copyright Law number
28 year 2014 article 44, the use, retrieval, reproduc-
tion, and/or change of works and/or related rights
products in whole or substantial part are not re-
garded as a copyright infringement if the source
is mentioned or cited in full for the purpose of
education and research.14
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A Overview and Analysis of Keyphrases

Text % Avg. of present keyphrases

Keyphrases level Word level

Article 66.8 86.9
Summary 39.8 55.3
Title 48.2 62.9

Table 9: Proportion of keyphrases which match article,
summary, and title

#Word Freq Example

1 167,203 COVID-19; Netflix
2 214,672 New Normal; Diego Michels
3 84,162 Klasemen Liga Inggris “Premier League”
4 22,780 Ganjil Genap Kota Bogor

“odd-even policy in Bogor”
5 6,366 Kru KM Lambelu Positif Covid-19

“KM Lambelu Crew Positive Covid-19”
6 1,623 Cara Menulis Daftar Pustaka dari Internet

“ways to write a bibliography from Internet”

Table 10: Frequency of keyphrases in LipKey based
on #Word.

B Training configurations

Summarization and keyphrase generation use the
same models and architecture. For IndoBERT,
we follow the Liu and Lapata (2019) architec-
ture by adding a raw transformer decoder (lay-
ers = 6, hidden size = 768, feed-forward =
2,048, and heads = 8) on top of IndoBERT, and
train it on 4×V100 16GB GPUs for 200K steps
with the Adam optimizer and learning rate lr
= 2e−3 · min(step−0.5, step · 20, 000−1.5) and
0.1·min(step−0.5, step·10, 000−1.5) for IndoBERT
and the transformer decoder, respectively. We use
a warmup of 20,000, a dropout of 0.2, a batch size
total of 200 (10 x 4 GPUs x gradient accumula-
tion of 5), and save checkpoints every 10,000 steps.
We compute ROUGE scores (R1) to pick the best
checkpoint based on the development set.

For mT5 and mBART, we train them on 4×V100
32GB GPUs for 60 epochs (around 20K steps) with
an initial learning rate of 1e-4 (Adam optimizer).
We use a total batch size of 400 (10 x 4 GPUs x
gradient accumulation of 10), a warmup of 10% of
total steps, and save checkpoints every 1,000 steps.
We also compute ROUGE scores (R1) to pick the
best checkpoint based on the development set.

C Evaluation Metrics

For summarization, we use ROUGE scores (Lin,
2004), and Focus and Coverage from the FFCI
framework (Koto et al., 2022). Following Koto
et al. (2021), for non-English text, focus and cov-
erage are computed based on the precision and
recall of BERTSCORE (Zhang et al., 2020b) using
mBERT uncased at layers 12 and 6, respectively.
For Y and Y ′ as the reference and system summary,
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BERTSCORE is computed as follows:

PBERT =
1

|Y ′|
∑

ti∈Y ′
max
sj∈Y

tTi sj

RBERT =
1

|Y |
∑

sj∈Y
max
ti∈Y ′

tTi sj

FBERT = 2
PBERT · RBERT

PBERT +RBERT

where sj and ti are token embeddings of Y and Y ′.
For evaluating the keyphrase generation model,

we use macro-averaged F1@5, F1@O, and
F1@M, following Meng et al. (2021). Given
gold-standard keyphrases Y and the prediction
Ŷ = {y′1, .., y′m}, we truncate the prediction to
Ŷ = {y′1, .., y′min(k,m)} when only the top k pre-
dictions are used for evaluation. Precision, Recall,
and F1 are consequently conditioned on k, and
computed as follows:

P@k =
|Ŷ:k ∩ Y|
|Ŷ:k|

R@k =
|Ŷ:k ∩ Y|
|Y|

F1@k =
2 ∗ P@k ∗ R@k

P@k + R@k

Thus F1@5 is F1@k when k = 5, F1@O is F1@k
when k is the number of oracle (ground truth)
keyphrases, and F1@M is when k = |Ŷ|.
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IndoBERT: 
Kementerian perhubungan (Kemenhub) memastikan pelaksanaan
protokol di kereta rangkaian listrik (KRL) Jabodetabek terus
berjalan 

IndoBERT with additional contexts (+ keyphrases + titles): 
Kemenhub memastikan pelaksanaan protokol di kereta rangkaian
listrik (KRL) jabodetabek terus berjalan . 

mBART: 
Permenhub 18/2020 secara tegas telah menyatakan adanya
beberapa syarat yang wajib dipenuhi penumpang moda
transportasi publik seperti KRL. 

mBART with additional contexts (+ keyphrases + titles): 
Adita mengatakan, Permenhub 18/2020 secara tegas telah
menyatakan adanya beberapa syarat yang wajib dipenuhi
penumpang moda transportasi publik seperti KRL. 

mT5: 
Kemenhub memastikan pelaksanaan protokol di Kereta Rangkaian
Listrik ( KRL ) Jabodetabek terus berjalan. 

mT5 with additional contexts (+ keyphrases + titles): 
Juru Bicara Kementerian Perhubungan Adita Irawati menyatakan,
pihaknya telah mengeluarkan Permenub Nomor 18/2020 yang
telah mengatur operasional moda transportasi di masa pandemi.

Title: 
Ada Warga Positif Corona di KRL, Ini Kata Kemenhub 

Gold Keyphrases: 
krl, COVID-19, Corona 

Article: 
Liputan6 . com , Jakarta Kementerian Perhubungan ( Kemenhub )
memastikan pelaksanaan protokol di Kereta Rangkaian Listrik (
KRL ) Jabodetabek terus berjalan . Pernyataan ini dikeluarkan
pasca adanya 3 penumpang asal Bogor yang dinyatakan positif
corona pasca dilakukan test swab . Juru Bicara Kementerian
Perhubungan Adita Irawati menyatakan , pihaknya telah
mengeluarkan Permenub Nomor 18/2020 yang telah mengatur
operasional moda transportasi di masa pandemi . Khususnya pula
di daerah yang telah menjalankan Pembatasan Sosial Berskala
Besar ( PSBB ) seperti di Jabodetabek . Perlu dipahami bahwa
penularan Covid-19 bisa terjadi dimana saja , tidak hanya di di KRL
, " kata Adita , Selasa ( 5/5/2020 ) . Adita mengatakan , Permenhub
18/2020 secara tegas telah menyatakan adanya beberapa syarat
yang wajib dipenuhi penumpang moda transportasi publik seperti
KRL . Pertama , penumpang wajib menggunakan masker . Kedua ,
sambungnya , petugas mengecek suhu tubuh penumpang.  

[254 words are abbreviated from here] 

Title: 
Corona positive passengers are detected on the KRL, this is what
the Ministry of Transportation says 

Gold Keyphrases: 
krl, COVID-19, Corona 

Article: 
Liputan6 . com , Jakarta The Ministry of Transportation
(Kemenhub) ensures that the implementation of the protocol on the
Jabodetabek Electric Circuit Train (KRL) continues. This statement
was issued after 3 passengers from Bogor were tested positive for
corona after a swab test was carried out. Spokesman for the
Ministry of Transportation, Adita Irawati, stated that her party had
issued Permenub No. 18/2020 which had regulated the operation
of transportation modes during the pandemic. This is particularly
the case in areas that have implemented Large-Scale Social
Restrictions (PSBB) such as in Jabodetabek. It should be
understood that the transmission of Covid-19 can occur anywhere,
not only in KRL," said Adita, Tuesday (5/5/2020). First, passengers
are required to wear masks. Second, he continued, officers check
passengers' body temperatures.  

[254 words are abbreviated from here] 

IndoBERT:
The Ministry of Transportation (Kemenhub) ensures that the
implementation of the protocol on the Jabodetabek Electric Circuit
Train (KRL) continues

IndoBERT with additional contexts (+ keyphrases + titles):
The Ministry of Transportation ensures that the implementation of
the protocol on the Jabodetabek electric circuit train (KRL)
continues.

mBART:
Permenhub 18/2020 has explicitly stated that there are several
conditions that must be met by passengers of public transportation
modes such as KRL.

mBART with additional contexts (+ keyphrases + titles):
Adita said that Permenhub 18/2020 has explicitly stated that there
are several conditions that must be met by passengers of public
transportation modes such as KRL.

mT5:
The Ministry of Transportation ensures that the implementation of
the protocol on the Jabodetabek Electric Circuit Train (KRL)
continues.

mT5 with additional contexts (+ keyphrases + titles):
Spokesperson for the Ministry of Transportation, Adita Irawati,
stated that her party had issued Permenub No. 18/2020 which
regulates the operation of transportation modes during the
pandemic.

Gold summaries: 
Kemenhub menyebutkan Permenhub 18/2020 secara tegas telah
menyatakan adanya beberapa syarat yang wajib dipenuhi
penumpang moda transportasi publik seperti KRL .

Gold summaries:
The Ministry of Transportation stated that Permenhub 18/2020 has
explicitly stated that there are several conditions that must be met
by passengers of public transportation modes such as KRL.

   Indonesian    English (translation)

Figure 2: Example from the LipKey dataset, with gold-standard and generated summaries.
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Gold Keyphrases: 
Relawan Uji Vaksin, Vaksin Sinovac 

Article: 
liputan6 . com , jakarta - manajer lapangan tim riset uji klinis vaksin
covid-19 sinovac , dr eddy fadliyana menyebut sejauh ini sudah
ada sekitar 1 . 020 calon relawan yang mendaftarkan diri untuk
mengikuti uji vaksin dari tiongkok itu . dia mengatakan ,
pelaksanaan uji vaksin itu akan dilakukan selasa 11 agustus 2020 .
pada hari pertama itu , uji vaksin bakal dilakukan di rumah sakit
pendidikan ( rsp ) universitas padjadjaran , jalan eyckman , kota
bandung . " sebetulnya sama saja , hanya pemeriksaan di rsp itu ,
tes usapnya ( swab test ) didahulukan . sama saja sih prosedurnya
, tidak ada yang berbeda , besok rsp imunisasi , kalau di tempat
lain baru tahap awal , " kata eddy di bandung , senin ( 10/8/2020 ) .
dikutip dari antara , menurut eddy , semua tempat yang ditunjuk
menjadi lokasi uji vaksin covid-19 ini dipastikan sudah siap . mulai
dari sarana prasarananya , menurutnya sudah sesuai dengan
protokol kesehatan yang berlaku . dia mengatakan , uji vaksin itu
dilakukan di enam lokasi , di antaranya yakni rsp unpad , balai
kesehatan unpad dipatiukur , puskesmas dago , puskesmas
sukapakir , puskesmas garuda , dan puskesmas ciumbuleuit . dari
seluruh calon relawan yang sudah mendaftar , menurutnya tak
menutup kemungkinan sudah ada asn yang ikut mendaftar .
karena , pendaftaran untuk menjadi relawan itu terbuka untuk
umum . " dari asn mungkin ada , saya tidak melihat statusnya apa
pokoknya masyarakat yang mau silakan saja , " katanya . meski
terbuka untuk umum , menurutnya ada beberapa syarat yang perlu
dipenuhi oleh calon relawan antara lain usia relawan dalam
rentang 18 hingga 59 tahun , dan dalam keadaan sehat tanpa
penyakit bawaan .

   Indonesian    English (translation)

Gold Keyphrases: 
Vaccine Test Volunteers, Sinovac Vaccines 

Article: 
liputan6 . com, Jakarta - field manager of the Sinovac Covid-19
vaccine clinical trial research team, Dr. Eddy Fadliyana, said that
so far there have been around 1. 020 prospective volunteers who
registered to take part in the vaccine test from China. He said the
implementation of the vaccine test would be carried out on
Tuesday, August 11, 2020. On that first day, the vaccine test will be
conducted at the Teaching Hospital (RSP) at Padjadjaran
University, Jalan Eyckman, Bandung City. "it's actually the same,
only the examination at the rsp, the swab test takes precedence.
the procedure is the same, nothing is different, tomorrow the
immunization rsp, if it's in place others are only in the early stages,"
said Eddy in Bandung, Monday (10/8/2020). Quoted from Antara,
according to Eddy, all the places designated to be the test locations
for the COVID-19 vaccine are confirmed to be ready. starting from
the infrastructure, according to him, it is in accordance with the
applicable health protocol. he said the vaccine test was carried out
in six locations, including the Unpad Hospital, Dipatiukur Health
Center, Dago Health Center, Sukapakir Health Center, Garuda
Health Center, and Ciumbuleuit Health Center. From all
prospective volunteers who have registered, according to him, it is
possible that there are already ASN who have registered. because
, registration to become a volunteer is open to the public . " From
the ASN there may be , I do not see what the status is , basically
people who want to go ahead , " he said . although it is open to the
public , according to him , there are several requirements that need
to be fulfilled by prospective volunteers , including the age of
volunteers in the range of 18 to 59 years , and in good health
without any congenital disease .

Gold Keyphrases: 
buaya terkam warga, Sulbar 

Article: 
liputan6 . com , mamuju tengah - kejadian nahas menimpa h ( 40 )
warga desa barakkang , kecamatan budong-budong , mamuju
tengah , sulawesi barat . ibu rumah tangga itu diterkam seekor
buaya saat mandi dan buang air besar di sungai . kapolsek
budong-budong akp suparman membenarkan pristiwa nahas itu ,
ia mengatakan , peristiwa terjadi pada selasa ( 4/8/2020 ) dini hari ,
sekitar pukul 05 . 30 wita . korban yang tengah buang air besar itu
tiba-tiba diterkam buaya yang memiliki panjang kurang lebih 7
meter . " menurut saksi andi ( 38 ) yang merupakan adik korban ,
buaya itu tiba-tiba menerkam korban dari belakang , " kata
suparman kepada liputan6 . com . petani labuhan batu utara
diterkam buaya di depan anak istri suparman menambahkan ,
saksi juga sempat mendengarkan teriakan korban dan berusaha
untuk menolong . namun , belum sempat menolong , buaya
tersebut sudah terlebih dahulu menarik korban ke dalam air . "
beberapa saat kemudian korban dan buaya muncul di permukaan
air namun hanya sesaat lalu kemudian tenggelam lagi ke dalam air
, " jelas suparman . hingga saat ini korban belum juga ditemukan ,
warga bersama pihak kepolisian sempat melakukan pencarian
dengan peralatan seadanya . pihak bpbd mamuju tengah dan
basarnas mamuju pun sudah dihubungi . " saat ini bpbd dan
masyarakat serta basarnas sudah ada di tkp melakukan pencarian
, " tutup suparman .

Gold Keyphrases: 
Crocodile devours residents, Sulbar 

Article: 
liputan6 . com, Mamuju - an unfortunate incident happened to H
(40) a resident of Barakkang Village, Budong-Budong District,
Central Mamuju, West Sulawesi. The housewife was attacked by a
crocodile while bathing and defecating in the river. The head of the
Budong-Budong Police, AK Suparman, confirmed the unfortunate
incident, saying that the incident occurred on Tuesday (4/8/2020)
early in the morning, around 05 am. 30 pm. The victim who was
defecating was suddenly attacked by a crocodile which has a
length of approximately 7 meters. " According to witness Andi ( 38 )
who is the victim 's younger brother , the crocodile suddenly
pounced on the victim from behind , " said Suparman to liputan6 .
com . The farmer in North Batu Harbor was attacked by a crocodile
in front of his wife and children. Suparman added that the witness
had also heard the victim's screams and tried to help. however ,
before they could help , the crocodile had already pulled the victim
into the water . " a few moments later the victim and the crocodile
appeared on the surface of the water , but only a moment later
then sank again into the water , " explained Suparman . Until now
the victim has not been found , residents together with the police
had conducted a search with makeshift equipment . The Central
Mamuju BPBD and Mamuju Basarnas have also been contacted. "
Currently , BPBD and the community as well as the National Basis
are already at the scene conducting a search , " concluded
Suparman .

Figure 3: Example of articles and keyphrases in the LipKey dataset. We highlight words in the article that match
its absent keyphrases with different colours. Yellow means partial match, green means acronym, and blue means
morphology variants. The English translation is for illustration purposes.
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Abstract

Attention mechanism has been used as
an important component across Vision-and-
Language(VL) tasks in order to bridge the se-
mantic gap between visual and textual features.
While attention has been widely used in VL
tasks, it has not been examined the capabil-
ity of different attention alignment calculation
in bridging the semantic gap between visual
and textual clues. In this research, we con-
duct a comprehensive analysis on understand-
ing the role of attention alignment by looking
into the attention score calculation methods and
check how it actually represents the visual re-
gion’s and textual token’s significance for the
global assessment. We also analyse the condi-
tions which attention score calculation mech-
anism would be more (or less) interpretable,
and which may impact the model performance
on three different VL tasks, including visual
question answering, text-to-image generation,
text-and-image matching (both sentence and
image retrieval). Our analysis is the first of
its kind and provides useful insights of the im-
portance of each attention alignment score cal-
culation when applied at the training phase of
VL tasks, commonly ignored in attention-based
cross modal models, and/or pretrained models.
Our code is available at: https://github.
com/adlnlp/Attention_VL

1 Introduction

The relative maturity and flexibility of deep learn-
ing allow us to build upon the success of com-
puter vision and natural language processing to
face many complex and multimodal Vision-and-
Language (VL) tasks, such as Visual Question An-
swering (VQA), Text-and-Image Matching (T&I
Match), or Text-to-Image Generation (T2I Gen).
For these VL tasks, it is crucial to effectively align
the multimodal information in both visual and lin-
guistic domains. For example, to pick the right
answer in VQA, the model should empower infor-
mation from the input image, together with aligning

the linguistic meanings with visual clues.
Attention mechanism (Bahdanau et al., 2015; Lu-
ong et al., 2015a) has been used as an important
component across a wide range of VL models; from
the early-stage attention-based fusion VL models
(Shih et al., 2016; Wang et al., 2019; Xu et al.,
2018a; Yang et al., 2016) to the recent VL mul-
timodal transformer-based pretrained models (Hu
et al., 2021; Li et al., 2020b; Lu et al., 2019; Long
et al., 2022a). Those attention-based VL models
mainly focus on 1) exploring new features to repre-
sent visual and linguistic information as an input of
attention layer, 2) deciding the position or the num-
ber of attentions in the model, or 3) investigating
the interpretability of attention distribution on VL
tasks by emphasising the specific image regions or
textual tokens (Luo et al., 2021).

While such approaches and investigations have
resulted in interesting findings in different aspects
of VL tasks, the attention alignment calculation
between vision and language modalities has been
less explored. However, the alignment calcula-
tion is directly linked to the main purpose of us-
ing attention mechanisms in VL tasks, which is
to effectively bridge and align two different visual
and linguistic information. In other words, the
essence of the attention mechanism in VL tasks
is the alignment score calculation, as it quantifies
the amount of “Attention” that the visual features
would place on each of the language representa-
tions (or linguistic features would empower on the
specific visual regions) when bridging the semantic
gap between visual and language features. Most
existing VL models directly apply the two attention
alignment functions, a general and a dot-product
(Luong et al., 2015a), which are commonly used in
several NLP tasks. Since Vaswani et al. (2017) pro-
posed a scaled dot-product for the transformer with
full attention, almost every VL paper has directly
applied those three attention alignment score func-
tions. Instead, little work has been done towards
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understanding the role of attention alignment calcu-
lation methods applied to bridge visual and linguis-
tic features, and exploring the impact on different
VL model performance.

In order to address this limitation, the overarch-
ing goal of this research is to perform an exten-
sive and systematic assessment of the effect of a
range of attention alignment mechanisms pertain-
ing to VL tasks, including three major VL tasks: Vi-
sual Question Answering (VQA), Text-and-Image
Matching (T&I Match), and Text-to-Image Gener-
ation (T2I Gen). Towards that end, we systemat-
ically analyse the impact of the position of query
and key in attention alignment on VL tasks. We in-
vestigate the following three questions: i) Which at-
tention alignment score calculation yields the most
benefit in VL tasks? ii) What if we linearly trans-
form the query Q instead of the key K (or vice
versa) before the multiplication? For example, as-
sume the textual feature T is a query Q, and the
image feature I is a key K. We analyse the impact
of linear transforming Q or K in alignment score
calculation. iii) Do the attention alignment calcu-
lation techniques with better performance provide
better attention distribution interpretability?

In brief, our main contributions are as follows:
1) We conduct a comprehensive analysis of the

role of attention alignment score calculation in VL
tasks (including three widely-used VL tasks, such
as Visual Question Answering, Text-and-Image
Matching, and Text-to-Image Generation). 2) We
perform a comparative analysis of the position of
query and key (language and visual feature) for
the alignment calculation. 3) We evaluate the inter-
pretability of the best and worst attention alignment
calculation models. 4) We make the code and the
data publicly available to encourage reproducibility
of results.

2 Related Works

VL models directly adopt the attention mechanism
to bridge the visual and linguistic modal informa-
tion. In this section, we review the related works
for the role of attention mechanisms in different
VL tasks within the focus of our analysis.

Text-to-Image Generation AttnGAN (Xu et al.,
2018a) first proposed to use dot-product for measur-
ing the alignment between visual subregions and
word tokens to guide the image generation process.
Many of the later approaches directly adapted the
dot-product attention from AttnGAN (Han et al.,

2020; Li et al., 2020a, 2019; Pande et al., 2021;
Qiao et al., 2019a,b; Yin et al., 2019; Zhu et al.,
2019). A few models apply the element-wise multi-
plication (Qiao et al., 2019a,b) or cosine similarity
(Zhang et al., 2021a) for measuring the attention
alignment.

Text-and-Image Matching The cosine similar-
ity based attention alignment proposed by SCAN
(Lee et al., 2018) is most widely used in Text-and-
Image Matching (Chen et al., 2020; Chen and Luo,
2020; Diao et al., 2021; Dong et al., 2021; Liu
et al., 2019). They applied text-to-image (t2i) and
image-to-text(i2t) attention in two separate variants
to filter the cross-modal relevant representations
for later image-sentence matching. Some other ap-
proaches applied (scaled) dot-product instead (Fei
et al., 2021; Liu et al., 2020; Wang et al., 2019; Wei
et al., 2020; Long et al., 2022b).

Visual Question Answering (VQA) Both tex-
tual query-guided image attention and image-
guided textual query attention have been commonly
used in VQA approaches, which utilised one modal-
ity to guide the focus on the other. Several cate-
gories of alignment calculations or their variants
were included, such as adapting neural networks
(Anderson et al., 2018; Patro and Namboodiri,
2018; Yang et al., 2016; Zhu et al., 2016) or ap-
plying (scaled) dot-product (Gao et al., 2019; Guo
et al., 2021; Huang et al., 2020; Hudson and Man-
ning, 2018; Rahman et al., 2021; Yu et al., 2019;
Zhang et al., 2021b) etc.

Text-based Visual Question Answering Recent
TextVQA approaches directly augmented existing
VQA models and their cross-modal attention with
additional OCR inputs (Biten et al., 2019a,b; Singh
et al., 2019; Wang et al., 2020). Both early-stage
model M4C (Hu et al., 2020) and the most recent
pretrained model TAP (Yang et al., 2021) fed the
question, image and OCR text together into a mul-
timodal transformer and jointly encoded them via
scaled-dot product attention in the transformer en-
coder.

Nevertheless, there is a lack of research on ex-
ploring the most effective cross-modal attention
alignment. Hence, we apply different cross-modal
attention alignment methods to the most widely
adopted baselines for these aforementioned VL
downstream tasks: AttnGAN (Text-to-Image Gen-
eration), SCAN (Text-to-Image Matching), MAC
(VQA), and M4C (TextVQA), and examine the
impact of different attention alignment score via
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in-depth analysis.

3 Attention Alignment Mechanism

There are various attention mechanisms applied in
different multimodal VL downstream tasks. Two
commonly used approaches are the cross-attention
and the self-attention. First, the cross-attention is
performed between visual and textual inputs. More
specifically, given a sequence of textual features
T = {t1, t2, t3, . . . , tM} and image features I =
{i1, i2, i3, . . . , iN}, it takes T as the query Q and I
as the key K (or vice versa) to compute attention
and context vectors c as the attended representa-
tions of the input elements in the following way:

axy = f(Qx,Ky) (1)

αxy =
exp(axy)∑nK
y=1 exp(axy)

(2)

cKx =

nK∑

y=1

αxyKy (3)

where f is a function to calculate attention score,
nK is the number of elements in K, and cKx is
the context vector of K with respect to the x-th
element of Q. The second approach, self-attention
(Vaswani et al., 2017), is performed over all inputs
from both modalities. In other words, the approach
combines T and I as a complete sequence S = T ∪
I , and converts all elements in S into Q, K and V
via learnable matrices, which are used to compute
attention by multiple heads in the following way:

Attention(Q,K, V ) = Softmax(f(Q,K))V (4)

where the results from different heads are com-
bined together. Then, it applies layer normalization,
residual connections and fully connected layers in
order to obtain the attended representation of the
input tokens. With both approaches, we explore
the effect of the attention alignment calculation f
for different VL tasks with the following five dif-
ferent alignment score functions. We also include
Cosine similarity-based attention for only Text-
and-Image Matching as it is widely used in that
specific domain.
Dot product attention It was proposed in
NMT (Bahdanau et al., 2015) to compute vector
similarity between encoder hidden states and de-
coder hidden states. This function (Luong et al.,
2015a) has been widely adopted as f in the cross-
attention mechanism as shown in Equation 1.

f(Q,K) = QK (5)

Scaled dot product attention The higher dimen-
sion of data representation would lead to the
smaller gradient of softmax function. Hence, the
scaling factor was introduced by (Vaswani et al.,
2017), and applied to the self-attention-based VL
approaches as represented in Equation 4.

f(Q,K) =
QK√
d

(6)

General attention Along with dot product atten-
tion, general attention (Luong et al., 2015a) re-
ceived lots of interest as an alternative alignment
calculation method that computes attention score
using an extra learnable matrix to linearly trans-
form K into the same embedding space as Q. This
can be considered as one of the neural network
based methods mentioned in Section 2.

f(Q,K) = QWK (7)

There are several variants of neural network based
general attention calculation methods. First, Bi-
ased general attention is introduced by (Sordoni
et al., 2016) using more bias towards more impor-
tant keys regardless of the query context.

f(Q,K) = Q(WK + b) (8)

Secondly, Activated general attention. (Ma et al.,
2017) applies an additional nonlinear activation
term, which is able to amplify the emphasis on
query elements that are highly relevant to the key.

f(Q,K) = act(Q(WK + b)) (9)

In this paper act is the ReLU activation since it is
a widely used function in VL downstream tasks.

4 Vision-Language Models

We use publicly available implementations of the
most widely adopted VL baseline models1 in or-
der to train and evaluate different attention align-
ment score calculation for three different VL tasks:
(i) AttnGan for Text-to-Image Generation (T2I
Gen), (ii) SCAN for Text-and-Image Matching
(T&I Match), (iii) MAC and M4C for each Vi-
sual Question Answering (VQA) and Text-based
Visual Question Answering (TVQA).

1All the VL pretrained models are just based on BERT
(attention-oriented transformer-based). It is still quite early-
stage in this field, and more VL pretrained models are still
emerging in 2022 (Zhuge et al., 2021; Hong et al., 2021)
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4.1 T2I Gen: AttnGAN

The goal of text-to-image generation is to gener-
ate a visually realistic image that matches a given
text description. The AttnGAN (Xu et al., 2018b)
generates images by using multiple generators with
the attention mechanisms. To improve the image
quality at each step, a cross-attention mechanism
is performed between caption words and image re-
gions, and it produces the attended word context for
each image region. Given a caption of M words,
an image with N sub-regions would be generated
by an upsampling network. The words and image
regions are represented as d-dimensional vectors
{tm} ∈ T and {in} ∈ I respectively. Then image
representation I is applied as Q the query and cap-
tion representation T is applied as K the key for
the cross-attention mechanism (Equations 1, 2, 3),
where the dot product attention score calculation is
used as f . The resultant textual context would be
fused with word region representations as a guide
for the generator at the next time step to focus on
different words. Note that we evaluate different
alignment calculation methods as f to investigate
the impact of the image generation performance.
We fix I as Q and T as K, and replace the dot
product with other alignment score calculations.

4.2 T&I Match: SCAN

Text-and-image matching (a.k.a. Text-and-image
retrieval) refers to measuring the visual-semantic
similarity between a sentence and an image. The
SCAN model (Lee et al., 2018) performs a pair-
wise cross-attention between image regions and
caption words for fine-grained T&I Match. This
can be done in two directions. Given a caption of
M words and an image having N detected objects,
d-dimensional representations {tm} and {in} are
obtained as T and I respectively. To obtain the
attended image context for each caption word, the
cross-attention mechanism (described in Equations
1, 2) is applied with T being the query Q and I be-
ing the key K, and an alignment score is measured
by using cosine similarity between each caption
word and its image context. These alignment scores
would be aggregated via a pooling function as the
final alignment score between the given image and
caption. Such scores can be obtained by using T as
K and I as Q to calculate the sentence context for
each image region. In experiments, we fix T as Q
and I as K, and replace the cosine similarity with
other alignment score calculations.

4.3 VQA

We explore two VQA downstream tasks, Visual
Question Answering with compositional reasoning
and Text-based Visual Question Answering.

4.3.1 VQA: MAC
First, we focus on the visual question answering
task that requires responding to natural language
questions about images, specifically with a com-
positional and structured nature. The MAC cir-
cuit (Hudson and Manning, 2018) applies a cross-
attention mechanism to answer a question based
on a given image. Instead of computing attention
between textual and visual input, MAC introduces
a d-dimensional learnable control state e as a guid-
ance for MAC cells to selectively attend to different
aspects of inputs at each time step. Within each
MAC cell, there is a control unit to attend to the
question words and a read unit to attend to the im-
age regions. Given a question of M words and an
image having N detected objects, d-dimensional
representations {tm} and {in} are obtained as T
and I respectively. Instead of using Equation 1, the
control unit applies e as Q and T as K to compute
the attention score in the following way:

ay =W ′(f(Q,Ky)) + b′ (10)

where f indicates element-wise dot product multi-
plication to obtain a d-dimensional similarity vec-
tor, and W ′ and b′ are learnable parameters to out-
put a scalar as the score. Then the control unit
follows Equations 2, 3 to obtain textual context
as an update for e. Similar to the control unit,
the read unit applies e as Q and I as K to obtain
the question-guided visual context from the im-
age, which is later aggregated to predict an answer.
Therefore the read unit can be considered as a main
component in MAC that involves multimodal align-
ment. Hence, for the evaluation, we fix the control
state e (which majorly contains textual question in-
formation) asQ and image-based knowledge graph
I as K, and adapt the focused attention alignment
calculation methods f with the element-wise mul-
tiplication manner in the read unit.

4.3.2 TVQA: M4C
Secondly, Text-based visual question answering
(TVQA) is an extension of VQA, which requires
the model to read text over the image to answer
the questions. The M4C model (Hu et al., 2020)
applies a multimodal transformer over all input
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Tasks Dataset Train Dev Test

T2I Gen CUB 8,855 - 2,933
MS-COCO 82,783 - 15,000

T&I Match Flickr30k* 29,000/145,000 1,000/5,000 1,000/5,000
MS-COCO* 29,000/145,000 1,000/5,000 1,000/5,000

VQA CLEVR* 70,000/699,989 15,000/149,991 15,000/149,988
Text-VQA* 21,953/34,602 3,166/5,000 3,289/5,734

Table 1: Details of train/dev/test split for each dataset.
Note that * indicates the dataset having different num-
bers for visual and textual inputs. It reports the num-
ber of images followed by the number of captions or
question-answer pairs, separated by backslash (/).

modalities to perform iterative answer prediction
for the TextVQA task. More specifically, given a
question of M words, an image having N detected
objects andO detected OCR tokens, d-dimensional
representations {squesm }, {sobjn } and {socro } are ob-
tained as input sequence S. The self-attention
mechanism (Equation 4) with scaled dot product
attention is applied over S, the sequence of all
M +N +O entities. In this way, both intra-modal
interactions and inter-modal interactions are cap-
tured to aggregate the input to form an answer pre-
diction via classical transformer layers. Similarly
to other tasks, we replace the scaled dot product
attention calculation with the other aforementioned
options for f to investigate the impact in TVQA.

5 Evaluation Setup

5.1 Datasets

We conducted experiments on three VL task
datasets. The statistics is shown in Table 1. We
followed the work of the base models, including
AttnGAN (Xu et al., 2018b), SCAN (Lee et al.,
2018), MAC (Hudson and Manning, 2018), M4C
(Hu et al., 2020) for dataset preprocessing and di-
viding for train/dev/test.

5.1.1 T2I Gen

Two benchmark datasets are used: Caltech-UCSD
Birds 200 (CUB)2 and MS-COCO3. CUB has
11,788 images of 200 bird categories downloaded
from the Flickr website, each with 10 textual cap-
tions. MS-COCO provides 123,287 images of com-
plex everyday scenes with 5 manually written tex-
tual descriptions per image. We use a train/test split
of 8,855/2,933 and 82,783/15,000 images respec-
tively for CUB and MS-COCO.

2http://www.vision.caltech.edu/
visipedia/CUB-200-2011.html

3https://cocodataset.org/#home

5.1.2 T&I Match

Flickr30k4 contains around 31k images collected
from the Flickr website with 5 crowd-sourced cap-
tions per image. We test on Flickr30k with train/de-
v/test split of 29k/1k/1k images and on MS-COCO
(as described above) with 29k/1k/1k images.

5.1.3 VQA

We have two VQA tasks: 1) Visual Question
Answering with compositional reasoning, and 2)
Text-based Visual Question Answering. We used
CLEVR5 and TextVQA6 respectively. CLEVR
contains 100,000 synthetic images of 3D shapes
with 999,968 questions/answers in total. We use
a subset of 70,000 images with 699,989 QAs for
training, 15,000 images with 149,991 QAs for val-
idation and 15,000 images with 149,988 QAs for
test. TextVQA consists of 45,336 questions asked
by (sighted) humans on 28,408 images from the
Open Images dataset (Krasin et al., 2017). We use
the original split: 21,953 images with 35,602 QAs,
3,166 images with 5,000 QAs and 3,289 images
with 5,734 QAs for training, validation and test.

5.2 Evaluation Metrics

We describe metrics for assessing the impact of
attention alignment mechanism for each VL task.

5.2.1 T&I Match: R@K

We measure the performance of sentence retrieval
and image retrieval by recall at K (R@K), which
is defined as the percentage of queries that get the
correct item at the closest K points to the query.
The higher the value, the better the performance.

5.2.2 T2I Gen: Inception Score(IS) & FID

The evaluation measurement we use is Inception
Score (IS) which seeks to capture the image quality
and image diversity properties of a collection of
generated images. The higher the inception score,
the better the model. Fréchet Inception Distance
(FID) measures the similarity between the gener-
ated images and the real images by comparing their
Frechét distance between the maximum entropy
distribution. Lower FID indicates higher similarity.

4http://shannon.cs.illinois.edu/
DenotationGraph/

5https://cs.stanford.edu/people/
jcjohns/clevr/

6https://textvqa.org/dataset
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Attention
Sentence Retrieval Image Retrieval

Flickr30K MS-COCO Flickr30K MS-COCO
R@1 R@10 Rsum R@1 R@10 Rsum R@1 R@10 Rsum R@1 R@10 Rsum

cosine similarity⋄ 62.4 93.3 243.8 61.4 94.5 243 43.9 81.8 199.9 45.7 88.2 212.5
dot product 62.1 92.1 240.4 59.7 95.2 243.5 44.8 82.1 200.6 46.0 87.9 212.6
scaled dot product 63.0 93.8 244.9 59.3 95.1 243.7 44.9 81.9 200.4 45.8 88.3 213.4
general* 63.2 93.6 245.0 59.8 95.2 243.7 46.7 81.8 201.8 45.6 87.8 212.1
general† 56.6 90.1 229.9 53.8 93.1 231.5 38.4 77.0 182.0 39.3 83.4 195.3
biased general* 56.6 89.8 230.3 52.2 91.7 227.0 39.6 77.3 185.0 38.7 83.4 194.5
biased general† 55.8 89.7 228.3 52.6 93.2 231.1 39.3 77.4 184.6 39.8 84.2 197.3
activated general 56.2 90.5 229.2 53.9 92.9 231.3 39.2 77.4 184.7 39.5 84.0 195.6

Table 2: R@1, R@10 and the sum of (R@1+R@5+R@10) on Flickr30K and MS-COCO for T&I Match. The
definition of ⋄, *, † can be found in footnote 8. Q refers to caption words and K refers to image regions.

5.2.3 VQA
For the VQA with compositional reasoning, over-
all accuracy is used to measure the performance of
the VQA models. The higher the accuracy, the bet-
ter the performance of the model. For the TVQA, it
is designed for the VQA context where 10 ground
truth answers are provided for each question-image
pair. The accuracy of a single prediction is a soft
score obtained by a vote of the 10 ground truth an-
swers. Overall accuracy is obtained by taking the
average across all instances. We also use the Av-
erage Normalized Levenshtein Similarity (ANLS)
score (Biten et al., 2019b) to eliminate the dropped
performance caused by OCR recognition error by
comparing the string similarity between the ground
truth and the prediction.

5.3 Experimental Settings

For T&I Match: SCAN (t-i) AVG models, all set-
tings of hyper-parameters follow the configuration
of the SCAN. The batch size is 128, the margin
of triplet loss α is 0.2 and the threshold of maxi-
mum gradient norm for gradient clipping is 2. For
Flickr30k models, the learning rate is set as 0.0002
for the first 15 epochs and then lowered to 0.00002
for another 15 epochs. Total training epochs are 30
and the best model is selected with the highest sum
of R@K score. For MS-COCO models, we trained
with a learning rate of 0.0005 for 10 epochs and
then lowered the learning rate to 0.00005. The best
model is selected with the highest sum of R@K
score. Training epochs are 20. For T2I Gen: At-
tnGan model on CUB dataset, the batch size is
set to be 20 and we trained with 400 epochs in
total. On the MS-COCO dataset, the batch size is
14 and total epochs are 90. In addition to this, all
settings are the same as the AttnGan. For VQA:
MAC models, the training epoch is set to be 8 and
other hyperparameter settings are consistent with
MAC. More specifically, the batch size is 128, the

learning rate is 0.0001 with 0.5 learning decay rate
and the threshold of maximum gradient norm for
gradient clipping is 8. For TVQA: M4C model on
the Text-VQA dataset, we followed the exact same
setting as M4C, applying the batch size of 128 and
100 epochs for training, All model variants would
train to convergence within 80 epochs.

All experiments for T2I Gen, T&I Match and
VQA are conducted on a variety of cloud instances
from Google Colab, with each utilising an NVIDIA
Tesla T4 GPU of 16GB RAM. For TVQA the ex-
periments are conducted utilising NVIDIA Titan
RTX GPU with 24GB RAM, 16 Intel(R) Core(TM)
i9-9900X CPU @ 3.50GHz with 128GB RAM, and
the operating system of Ubuntu 20.04.1.

6 Results

We analyse the impact of attention alignment mech-
anisms in different VL tasks, and explore the inter-
pretability based on attention distribution.

6.1 Test Performance

A primary goal of this work is to identify the most
effective and successful attention alignment cal-
culation functions for VL tasks. Tables 2, 3, and
4 7 detail the results of our experiments compar-
ing performance of individual alignment functions
with each VL models. Each table visualises the
trends with a heatmap. The darker the colour of
the cells, the better the performance. As shown in
Table 2 for the T&I Match task that the original cal-
culation function, cosine similarity, achieved quite
good performance. However, scaled dot product
and general* demonstrated a consistent superior-
ity for both sentence retrieval and image retrieval
on both Flickr30K and MS-COCO. Comparatively,

7⋄ indicates the original attention alignment function used
by the base models. * indicates f(K,Q) (swapping query and
key), and † indicates f(Q,K) (without swapping query and
key) for Equations 7 and 8
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Attention Acc.
dot product⋄ 0.966
scaled dot product 0.973
general* 0.967
general† 0.962
biased general* 0.959
biased general† 0.963
activated general 0.971

(a) VQA on CLEVR

Attention Acc. ANLS
dot product 0.407 0.545
scaled dot product⋄ 0.419 0.554
general* 0.407 0.546
general† 0.416 0.554
biased general* 0.412 0.553
biased general† 0.414 0.551
activated general 0.413 0.548

(b) TVQA on Text-VQA

Table 3: Results for VQA/TVQA. The definitions of ⋄,
*, † are in footnote 8. For VQA, Q refers to the control
state and K refers to image-based knowledge graph in
read unit. For TVQA, Q and K are transformed union
of all caption words, image object and OCR features.

Attention CUB MS-COCO
IS FID IS FID

dot product⋄ 4.32 25.72 23.28 40.19
scaled dot product 4.31 25.74 23.84 42.33
general* 4.36 28.21 24.28 40.82
general† 4.26 26.94 24.63 42.45
biased general* 4.13 26.97 23.05 43.10
biased general† 4.30 25.89 25.24 43.64
activated general 4.41 28.39 23.56 42.65

Table 4: Results on CUB and MS-COCO for T2I Gen.
The definitions of ⋄, *, † are in footnote 8. Q refers to
caption words and K refers to image subregions.

biased and activated general attentions produced
very low results overall.

Table 3 details the performance of alignment
functions for VQA tasks, including (a) VQA with
compositional reasoning (CLEVR) and (b) TVQA
(Text-VQA). Surprisingly, both VQA and TVQA
models produced the best performance with a
scaled dot product alignment, highlighting its over-
all effectiveness for the VQA tasks. We note that
the activated general attention (ReLU activation)
performed well for VQA but produced one of the
lowest ANLS scores in TVQA. The general atten-
tion alignment function also showed the similar
trend. Considering the different nature of general
VQA and TVQA, where the latter mainly focuses
on OCR text input, it is unsurprising that the im-
pact of alignment mechanism is discrepant. Hence,
it is remarkable to find that the scaled dot product
achieved the best in both tasks.

The T2I Gen results in Table 4 illustrated quite
different trends compared to the two aforemen-
tioned tasks. First, none of the alignment func-
tions produced a consistently better performance
in both evaluation metrics, IS or FID. While neural
network-based alignment functions (i.e. general,
biased and activated general) achieved higher IS
scores than others, the dot product dominated in

FID scores, for both CUB and MS-COCO. The
scaled dot product obtained comparably good FID
results but not in IS. This can be aligned with the
different metrics of measurement that FID counts
on the similarity between the ground-truth images
and the images generated from the text whereas
IS expects the diversity of the generated image.
Hence, a better VL alignment leads to the better
FID but not necessarily the better IS.

In summary, we can find the scaled dot product
can be the best alignment calculation function for
both cross and self-attention that can successfully
bridge the visual and textual information, as it pro-
duces considerably and consistently better results
for all three VL tasks across all six VL datasets.

6.2 Impact of Key and Query

Since the previous works (Luong et al., 2015b;
Sordoni et al., 2016; Ma et al., 2017) do not have
a standard choice of linearly transforming key or
value when calculating attention scores, we also
investigated the impact of position of query and
key in the attention alignment calculation process,
especially when extra learnable weights and bi-
ases are involved. We explore the difference be-
tween linearly transforming the key K to multiply
with the query Q (f(K,Q) = KWQ) and trans-
forming the query Q to multiply with the key K
(f(Q,K) = QWK) in general attention and bi-
ased general attention calculation. Specifically, we
initially fixed the textual information as a query Q
and visual information as a key K (Equation 7 and
8) and swapped the position in different general
attention alignment score measurements. In Table
2, 3, and 4, * indicates the functions with f(K,Q),
whereas † refers to those with f(Q,K).

Table 2 shows that Flickr30K performed bet-
ter with general* or biased general*, whereas MS-
COCO does not have obvious trends. Similar pat-
terns can be found in both cross-attention mecha-
nisms (VQA models, T2I Gen models), and self-
attention mechanism TVQA models. Interestingly
but unsurprisingly, we note that there is no obvious
and consistent performance improvement pattern
in different positions of textual information (query
Q) and visual information (key K) when it cal-
culates the alignment. It depends on the specific
downstream tasks and dataset. We can conclude
that the way of calculating alignment is the crucial
point in VL tasks, compared to the position/order
of different modal information.
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Attention Exist Query Compare Count Compare
Attribute Attribute Integer

(single) (single) (two) (multiple) (multiple)
scaled dot product 0.9912 0.9928 0.9860 0.9200 0.9780
biased general* 0.9883 0.9920 0.9832 0.8938 0.9014

Table 5: Breakdown analysis of VQA accuracy regard-
ing different question types. The number of queried
objects in the questions are included in the brackets.

6.3 Breakdown Analysis

VQA To further investigate the difference be-
tween attention calculation methods, we report the
accuracy for the best/worst performing attention
calculation methods regarding different question
categories in CLEVR. As shown in Table 5, the
two models achieved similar performance for ques-
tion types Exist, Query Attribute, and Compare
Attribute. Exist and Query Attribute types normally
contain single queried object in the question, and
Compare Attribute questions would contain two
queried objects. Those question types only require
models to attend to one or two objects in the image,
so it is easier for model to capture the pattern when
learning the alignment between image and ques-
tion. However, the Count and Compare Integer
questions are challenging to answer as finding mul-
tiple objects with the same attributes is required.
The models need to learn how to align multiple
objects to one noun phrase. In this case, scaled dot
product attention always works better than biased
general attention by up to 7.66% accuracy, which
suggests that scaled dot product attention can learn
more accurate alignment between image regions
and question words.

T&I Match The VQA (CLEVR) only includes
a limited set of objects with limited attribute de-
scriptions, so we also investigated the effect of
real-world images with more diverse types of ob-
jects and descriptions using MS-COCO. We com-
pared the retrieval Rsum of the best performing and
the worst performing attention calculation methods
in terms of different image annotation supercate-
gories in Figure 1 and the number of caption nouns
in Figure 2. The supercategories on the x-axis in
Figure 1 are sorted based on the percentage of the
test set images which contain that specific supercat-
egory in the annotations, as indicated by the value
in the brackets below each supercategory. From
Figure 1a, it is clearly observed that scaled dot
product attention can consistently perform much
better than the biased general* attention for most
categories such as person, vehicle and electronic,

(a) Text Retrieval

(b) Image Retrieval

Figure 1: Breakdown analysis of T&I Match on
MSCOCO image supercategories.

(a) Image Retrieval (b) Text Retrieval

Figure 2: Breakdown analysis of T&I Match on the
number of nouns in MS-COCO captions.

which are easier to be distinguished based on con-
sistent visual features or shapes. Visual elements
under food and sports categories are difficult to be
distinguished and aligned due to vastly different
types of visual cues (such as shapes, colors and
textures). However, for image with annotations of
these challenging categories, scaled dot product
still manages to outperform biased general* atten-
tion, even though by a smaller performance gain.
Regarding the image retrieval task, we can observe
a similar pattern. Visual element like electronic and
outdoor can have consistent and common linguis-
tic terms such as phones, microwaves, fridges and
fields that can be easily distinguished in the descrip-
tion, therefore those images are easier to be aligned
to and retrieved given a text. In this case, scaled dot
product can outperform biased general* attention
by a large margin. However, for other image su-
percategories such as food, sports and person, the
description can be very different due to subjectivity
and variety of phrasing choices, making them more
difficult to be aligned to and retrieved. Therefore
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Figure 3: Qualitative example of VQA-CLEVR from
the MAC trained by different attention alignment.

the scaled dot product attention only manages to
perform better than biased general* attention by a
relatively small margin. Based on the observations
above, we can conclude that the scaled dot product
can perform better than biased general* attention
in visual-linguistic alignment, especially for easily
alignable linguistic and visual cues.

In terms of the number of nouns to be aligned in
the captions, we can see from Figure 2a that scaled
dot product attention can maintain a consistent per-
formance margin over biased general* attention
when retrieving images, regardless of whether there
is no object, only a few objects or many objects in
the caption to be aligned. However, they performed
the same at 12 as there is only one caption with 12
nouns in the test set and the models cannot really
be distinguished on the single instance. When we
group the images based on the maximum number
of objects that can be possibly contained in their
descriptions, we can see from Figure 2b that scaled
dot product attention can still outperform biased
general* attention in most cases when retrieving rel-
evant descriptions except for the two image query
instances with the maximum of only one possible
object to be aligned in the description. Based on
the above patterns, we can conclude that scaled dot
product can generally learn better visual-linguistic
alignment than biased general* attention.

6.4 Qualitative Analysis

We visualised the prediction interpretability of the
best and worst attention alignment calculation for
VQA task on the question category Count and Com-
pare Integer. More examples on other tasks can be
found in Appendix A. Figure 3 shows a question
asking for a count of multiple objects for the given

Figure 4: Qualitative example of VQA-CLEVR from
the MAC trained by different attention functions.

attributes. MAC using scaled dot product attention
correctly aligned to required objects at different
steps. However, the model with biased general* at-
tention focused on the big things before noting the
condition left of the green cube, and failed to filter
out irrelevant objects, giving a wrong prediction by
aligning to additional objects. In Figure 4, MAC
model using scaled dot product attention focuses
on the key objects purple metal object, brown rub-
ber objects, and green blocks in both question and
the image, so it can successfully give the correct an-
swer yes. However, the model trained with biased
general* attention focused on green blocks in the
question in the last two steps but failed to find the
target in the image, thus giving a wrong prediction
no. These examples clearly align with the finding
in Section 6.3 that scaled dot product can learn
better alignment than biased general* attention for
questions querying multiple objects.

7 Conclusion

We systematically examined the role of attention
alignment score calculation in vision-and-language
tasks, including VQA, T&I Match, and T2I Gen.
We found that the scaled dot product can be the
best attention alignment calculation for either cross
or self-attention in overall VL tasks while the ap-
propriate position of visual and textual information
may vary from different VL tasks/datasets. Based
on the breakdown analysis, we found out that the
type of image objects and their textual description
would affect the performance of different attention
calculation functions. It is hoped that our analysis
provides a great insight into the selection of the
most effective attention alignment for different VL
tasks.
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A Appendix

In this section, we demonstrate some more atten-
tion alignment examples of best and worst perform-
ing attention methods for each task we investigated.

A.1 Additional Qualitative Examples - VQA
We include more comparison examples for MAC
model in this section to show the difference be-
tween scaled dot product (best) and biased general*
(worst) in the VQA context. In Figure 5, a question
what number of small metallic things are left of the
brown matte object in front of the brown thing on
the right side of the gray ball is raised towards an
image with several cylinders, cubes and spheres.
The MAC model with scaled dot product attention
is able to correctly focus on the brown matte object
from both the question and the image, while putting
slight attention on the brown thing on the right side
as mentioned in the question. Then in step 3 and 4
the model is able to locate the small metallic thing
on the left in the image as guided by the question
context, giving a correct prediction of 1. However,
the MAC model trained with biased general* atten-
tion slightly focuses on the target metallic object
at the very beginning, and shifts its main attention
to the brown matte object in the consecutive steps,
which is not the final target the question is asking
for, therefore it fails to make a correct prediction.

Figure 6 shows a picture featuring several cubes
and spheres. With a scaled dot product for attention
score calculation, when the model focuses on the
keyword metal cubes from the textual question, the
only metal cube in the image is emphasized during
the first two steps. Then, it correctly detects 4 ob-
jects from the image by highlighting the keywords
objects and either objects. Additionally, the model
looks for the purple metal cube from the picture
as asked by the question, but it does not exist in
the picture so none of the objects are highlighted at
step 4. However, the model with the biased general
attention tries to count the number of objects on the
right of the metal cube in step 3 but it inaccurately
focuses on the metal cube itself in addition to the
correct ones. In the last step the model puts more
focus on the farthest right objects, resulting in a
wrong prediction of 3.
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Figure 5: Qualitative examples of VQA-CLEVR from
the MAC trained by different attention functions.

Figure 6: Qualitative examples of VQA-CLEVR from
the MAC trained by different attention functions.

In Figure 7, a question what number of objects
are either gray rubber spheres or rubber things be-
hind the green metal cylinder is asked. MAC model
using scaled dot product attention approaches this
question by firstly attending to what and or in the
question. Then it focuses on the relevant objects
green metal cylinder, gray rubber spheres, and re-
maining rubber things in both question and the
image, so it can successfully give the correct an-
swer 3. However, the model trained with biased
general* attention firstly focused on the number of
rubber things before noting the condition behind
the green metal cylinder, so it failed to filter out
irrelevant objects, giving a wrong prediction 4.

A.2 Additional Qualitative Examples - TVQA

We include some qualitative examples for M4C
model in this section to show the difference be-
tween scaled dot product (best) and dot product
attention (worst) in the context of TVQA.

Figure 7: Qualitative examples of VQA-CLEVR from
the MAC trained by different attention functions.

Figure 8: Qualitative examples of TVQA-TextVQA
from the M4C trained by different attention functions.
Question words that receive attention weights greater
than 0.01 are indicated in bold and coloured in blue.

Figure 9: Qualitative examples of TVQA-TextVQA
from the M4C trained by different attention functions.
Question words that receive attention weights greater
than 0.01 are indicated in bold and coloured in blue.

Figure 8 shows that the model with scaled dot
product focused on the keywords what, word and
handwritten to focus on the handwritten word jesus
in the image and retrieved the correct OCR token
with highest attention weight. However, with dot
product attention, all the question words received
little attention by the model (< 0.01), failing to
find the appropriate OCR token in the image.

In Figure 9, all the three words from the question
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Figure 10: Qualitative examples of TVQA-TextVQA
from the M4C trained by different attention functions.
Question words that receive attention weights greater
than 0.001 are indicated in bold and coloured in blue.

Figure 11: Qualitative examples of TVQA-TextVQA
from the M4C trained by different attention functions.
Question words that receive attention weights greater
than 0.001 are indicated in bold and coloured in blue.

who must survive received attention > 0.01 in the
scaled dot product model, and the target OCR an-
swer in the image received top attention among all
OCR tokens. However, the dot product model put
much less attention on all question words, instead
the OCR tokens for must and survive in the image
were receiving top attention weights, followed by
OCR token winter which is irrelevant to the ques-
tion. Therefore scaled dot product model predicted
correctly but dot product model did not.

In Figure 10, keywords what’s the name from
the question what’s the name of the store received
attention > 0.001 in the scaled dot product model,
similarly the dot product model put much less atten-
tion on all question words, and none of the question
words received attention> 0.001. Both models put
most attention weights on the OCR token gift from
the image, but scaled dot product managed to put
more focus on the store name tanamera than the
coffee brand name nespresso, which is the opposite
case of the dot product model. Therefore scaled dot
product model predicted correctly but dot product
model did not.

In the example shown by Figure 11, there are
lots of OCR tokens present in the image, making it

Figure 12: Qualitative examples of T&I Match-
MSCOCO with SCAN by different attention functions.

Figure 13: Qualitative examples of T&I Match-
MSCOCO from the SCAN trained by different attention
functions.

more difficult to retrieve the correct answer tokens.
As we can see from the picture, the model learned
using dot product attention diverted its top attention
to unrelated OCR token cola, and the top 3 OCR
tokens receiving highest attention (mike, cola and
petition) are not aligned with the predicted answer
tokens (senator mike lee), while the model learned
using scaled dot product attention put highest at-
tention to expected or related OCR tokens that are
aligned with the ground truth answers.

A.3 Additional Qualitative Examples - T&I
Match

In this section, we visualize some examples for
T&I Match models that show the attention received
by retrieved captions with respect to the selected
object region. Figure 12 shows some examples for
T&I Match. With general attention* and scaled
dot product, the SCAN model is able to include 4
correct captions among the top 5 retrieved captions,
while biased general attention can only extract 3
correct captions. With respect to the helmet indi-
cated by the blue box in the image, both general
attention and scaled dot product can put more fo-
cus on the words red/helmet/hat from the caption,
whereas the biased general attention would rather
focus on prepositions, determinants or other ob-
jects.
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Figure 14: Qualitative examples of T&I Match-
Flickr30k from the SCAN trained by different attention
functions.

Figure 15: Qualitative examples of T&I Match-
Flickr30k from the SCAN trained by different align-
ment functions.

In Figure 13 we can see that the best two mod-
els (i.e. models trained with general* attention or
scaled dot product attention) can capture all key
elements, man, bicycle/bike, riding, as the top at-
tended words from the retrieved captions most of
the time. However, the model trained using biased
general* attention would capture at most one key
element from each retrieved caption, and pay high
attention to preposition, determinants or words re-
lated to other object regions. In the example shown
by Figure 14, the model trained with scaled dot
product attention can always capture the main ob-
ject hat from all the retrieved captions, while the
other two models sometimes fail to do so. In Fig-
ure 15, all three models sometimes wrongly recog-
nise the dog’s color (i.e. brown dog in wrongly
retrieved captions). However, the best two models
can retrieve the caption that is not in the ground
truth list but also semantically matched to the given
image (i.e. A dog running through a grassy field).
The worst model trained with biased general† at-
tention fails to do so, and it sometimes attends to
objects from the caption that is not actually in the
image (e.g. red ball).

Figure 16: Qualitative examples of T2I Gen-MSCOCO
with AttnGAN trained by different attention functions.

Figure 17: Qualitative examples of T2I Gen-CUB from
the AttnGAN trained by different attention functions.

Figure 18: Qualitative examples of T2I Gen-CUB from
the AttnGAN trained by different attention functions.

A.4 Additional Qualitative Examples - T2I
Gen

In this section, we visualize and compare the best
and the worst T2I Gen model.

Figure 16 shows the images generated by At-
tnGAN using both the best and the worst attention,
dot product and biased general† respectively. At-
tnGAN with a dot product, can generate a relatively
more realistic image. From a low resolution picture,
the model focuses on the words based on the fol-
lowing order, television, flat, old, screen, console,
in order to refine the image to include the objects
and corresponding features gradually. Compared to
that, the biased general attention model generates a
surrealistic image by focusing on flat, screen, top,
console, television in the first step.
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Figure 19: Qualitative examples of T2I Gen-CUB from
the AttnGAN trained by different attention functions.

In Figure 17, the images generated by two mod-
els are highly similar but the worst model trained
with activated general attention fails to attend to
the key word white, so the bird it generated in the
picture does not clearly have a white throat and
chest.

In Figure 18 and Figure 19, the activation func-
tion used in the attention mechanism of the worst
model makes it difficult to differentiate among the
caption words when their attention weights are all
very low. Therefore the model fails to attend to any
useful facts in each attention layer, which makes it
impossible to provide interpretability of model de-
cision, despite generating an image that can roughly
match the description in Figure 19. In Figure 18
the quality of the generated image is even worse -
the feature of the bird does not match with the key
phrases in the description (i.e. red with white, short
beak).

Overall, based on the qualitative analysis in dif-
ferent VL tasks, we reveal that the better attention
alignment calculation function can produce better
interpretability in terms of the prediction.
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Abstract
In recent years, data augmentation has become
an important field of machine learning. While
images can use simple techniques such as crop-
ping or rotating, textual data augmentation
needs more complex manipulations to ensure
that the generated examples are useful. Varia-
tional auto-encoders (VAE) and its conditional
variant the Conditional-VAE (CVAE) are often
used to generate new textual data, both relying
on a good enough training of the generator so
that it doesn’t create examples of the wrong
class. In this paper, we explore a simpler way
to use VAE for data augmentation: the train-
ing of one VAE per class. We show on several
dataset sizes, as well as on four different binary
classification tasks, that it outperforms other
generative data augmentation techniques.

1 Introduction

Data augmentation (DA) has been shown to
be an efficient technique for deep neural net-
works (Ramirez Rochac et al., 2019), consisting
in artificially creating new labelled examples and
therefore inflating the size of the dataset. While a
great number of data augmentation techniques have
been developed in recent years, most of these re-
quire external data, either in a database form (Wei
and Zou, 2019), pretrained embeddings (Marivate
and Sefara, 2020), or neural networks (Wu et al.,
2019). Even if these techniques help improve clas-
sifiers, they cannot be used in a variety of contexts,
most notably in artificial intelligence for rare lan-
guages, where there simply isn’t enough training
data to pre-train efficient models (Feldman and
Coto-Solano, 2020), or where the collection of la-
belled data for fine-tuning is difficult. The ethi-
cal importance of considering smaller communi-
ties and other languages in machine learning re-
search has been noted repeatedly (Bender et al.,
2021; Fazelpour and De-Arteaga, 2022), and con-
sequently, it is important to develop techniques that
can work for languages other than English.

In this paper, we take a special look at generative
models for data augmentation, and more specifi-
cally at Variational Auto-Encoders (VAE), for bi-
nary classification tasks. Generative algorithms
such as the VAE are especially interesting because
they do not require external data and, therefore, can
be used on a variety of domains. In particular, we
show that using one separate VAE per class and
generating new data by random sampling of the
latent space is a very efficient way of inflating the
size of a dataset. To the best of our knowledge, this
technique has been considered only once before, in
the context of balancing unbalanced datasets, and
with somewhat disappointing results (Qiu et al.,
2020). Contrary to them, we study the technique
in the context of pure data augmentation, on more
datasets and various starting sizes of datasets, and
conclude that it is an efficient technique. We test
two variations of this method, with or without shar-
ing parameters between the VAEs, and show that
both variations are equally efficient.

We compare this technique to two others genera-
tive techniques that are commonly used in the DA
literature, mainly using VAEs as a paraphrasing
system, or using a Conditional VAE (CVAE) for di-
rectly generating from a given class. We show that
they perform consistently worse than the separate
VAE approach. We surmise that this is because,
while we lose the ability to perform style transfer
between classes, we gain a stronger guarantee that
the generated examples will not be of an erroneous
class. We furthermore compare to another tech-
nique that showed excellent results, CBERT (Wu
et al., 2019), and show using one VAE per class for
DA outperforms it as well.

This paper is organized as follows: Sections 2, 3,
and 4 present respectively a brief summary of
VAEs, the relevant literature to our paper, and the
description of our various generative DA methods.
Then, Section 5 and 6 present our datasets and the
results of our experiments. Finally, we present a
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discussion of the results in Section 7, the broader
implications of our work in Section 8, and conclude
in Section 9.

2 Variational Auto Encoders

VAEs are generative models introducing a latent
variable z ∼ p(z), where data points (in our case,
sentences) are assumed to be generated following
p(x|z). VAEs follow the general auto-encoder
structure, with an encoder that predicts the pa-
rameters associated with the latent distribution,
most often a diagonal Gaussian, and a decoder
that takes samples from the latent distribution and
transforms them into sentences. At training time,
sampling is done using the reparametrization tech-
nique (Kingma and Welling, 2014), which samples
from z = µ+ σϵ, where ϵ ∼ N (0, 1). This allows
the gradient to flow through µ and σ. The training
objective is the ELBO, or Evidence Lower Bound:

L = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z))
(1)

where ϕ represents the parameters of the encoder,
and θ, the parameters of the decoder. The CVAE
is a modification of the VAE where we instead
assume that x is generated conditioned on both the
class of the example and the latent space, formally
p(x|z, c), where c is the class. In practice, this
means that we give the class to the model while
both training and generating, so that we can directly
generate examples from the desired class (Yan et al.,
2016).

In order to use the VAE for text, the standard
solution is to replace both the encoder and the de-
coder with Recurrent Neural Networks (RNN). We
show a simple example of a textual VAE model in
Figure 1.

Figure 1: A textual VAE model. Image from Semeniuta
et al. (2017).

This, however, often comes with the problem
of KL-collapse, where the VAE relies entirely on
the powerful decoder to generate sentences and
collapses the latent distribution to a single point.

To prevent this, we resort to two common tech-
niques, namely KL-annealing, which slowly brings
the strength of the KL-term in the ELBO from 0
to 1, and word dropout, which randomly masks
words for the decoder while training (Bowman
et al., 2016). Both of these techniques encourage
the VAE to rely on the latent distribution.

3 Related Work

Data augmentation has been studied exten-
sively (Feng et al., 2021; Shorten and Khoshgoftaar,
2019). We focus our review on studies targeting
data augmentation for sentence classification, as
well as works using the VAE for DA, which are the
most pertinent studies for our work.

The general principle of data augmentation is
fairly direct: starting with a dataset of fixed size,
we generate new (hopefully) diverse data that we
can then use to feed the classifier, diminishing gen-
eralization error. While DA for images can perform
simple operations, such as cropping or rotating the
images (Wang et al., 2017), things are a little more
complicated for textual data, since operations on
words (such as replacing or deleting words), have a
chance of generating examples of the wrong class.
As such, a lot of the focus is put on class-coherence,
which simply means that generated examples have
the class we want them to.

Many approaches have been developed for data
augmentation for sentence classification, the sim-
plest ones consisting in performing word-level op-
erations. For example, the authors of (Marivate
and Sefara, 2020) use W2V (Mikolov et al., 2013)
for replacing random words in a sentence, picking
words that are close to the original one in a pre-
trained embedding space. In (Xiang et al., 2021),
replacements are made using the part of speech
information to ensure they only replace content
words. More operations can also be considered,
as in EDA (Wei and Zou, 2019; Liesting et al.,
2021), which performs four operations on the sen-
tences: replacement by a synonym, deletion of
words, swapping words, and inserting synonyms of
words at random positions. In EDA, synonyms are
found by using WordNet (Miller, 1995) instead of
pretrained embeddings.

Substitutions can also be made using pretrained
neural networks with a masked word task, such as
an LSTM (Kobayashi, 2018), or conditional-BERT
(CBERT) (Wu et al., 2019), which is a simple ex-
tension of BERT where we prepend the class of
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the example to the sentence, in the hope that it will
learn to generate class-coherent outputs.

Generative models, and most notably VAEs, are
frequently used in data augmentation, often using
a conditional model to directly generate from a
given class (Zhuang et al., 2019; Malandrakis et al.,
2019; Wang et al., 2020; Rizos et al., 2019). This,
however, relies on the assumption that the CVAE is
learning to correctly generate from the wanted class.
While CVAEs have made tremendous progress in
recent years, it remains a difficult task for textual
CVAE.

The use of unconditional VAEs is also com-
monly explored. In Islam et al. (2021), the bound-
ary decision is found in the latent space so that
generation can be made on either side of it, depend-
ing on the class we want to generate data for. A
popular technique is to use the VAE as a paraphrase
machine (Mesbah et al., 2019; Malandrakis et al.,
2019), encoding and decoding the data points and
relying on the stochasticity of the system to gen-
erate variations of the examples. This technique,
however, is also based on the hope that the algo-
rithm will learn to generate from the same class
as the input example. Finally, VAEs have also
been used to generate new data that is not class
dependent, such as spoken utterances for spoken
language understanding (Yoo et al., 2019).

Qiu et al. (2020) attempt, similarly to our pa-
per, to use one VAE per class for balancing data.
They compare it to CVAE as well as EDA. They
show, however, that generative algorithms barely
outperform sampling strategies when balancing the
data, on two datasets. Contrary to them, we study
the use of one VAE per class in a pure data aug-
mentation context, with already balanced classes,
and show that it does work better than other algo-
rithms. We also test all the algorithms on several
dataset sizes and on four datasets, providing anal-
ysis and examples of why and how it works. Last
but not least, we show that it works with modern
classification algorithms (in this case, BERT), and
show that it works better than state-of-the-art data
augmentation.

4 VAE for data augmentation

In this paper, we revisit the technique of Qiu et al.
(2020), which trains one VAE per class for generat-
ing new examples for unbalanced data, but use it for
general data augmentation. We test two variants of
this, one with parameter sharing (sharing of the en-

coder and embeddings), denoted VAE-Linked, and
one where everything is separated, denoted VAE-
Sep. Concretely, in VAE-Sep we initialize and train
m VAEs, where m is the number of classes, and
each VAE is trained only on the data of one class,
that is to say on all examples xi|yiϵck, where yi
is the class of the example xi, and ck is the class
number k. For VAE-Linked, we initialize one VAE
model with m decoders, each decoding only exam-
ples of one class. When generating, we first choose
the class we want to generate from, select the corre-
sponding VAE, and generate by randomly sampling
from its latent space. This process is illustrated in
Figure 2.

Figure 2: Illustration of the generation process of a neg-
ative movie review with the three VAE models tested in
this paper. In VAE-Par, the new examples are created
by passing sentences through the VAE and relying on
its stochasticity to create paraphrases. In CVAE, the
sentence is generated by sampling from the latent space
and conditioning the decoding on the negative class. Fi-
nally, in VAE-Sep, we train two different VAEs, one
for the negative sentences and one for the positive ones.
We generate negative examples by sampling from the
latent space and using the negative decoder. In VAE-
Linked, the generation happens identically to VAE-Sep,
but while training, we share the encoder and the embed-
dings between classes. Positive examples are generated
in a similar way but passing a positive sentence, the
positive label, or using the positive decoder.

We compare this to two popular DA techniques
using VAEs: conditional generation (CVAE) and
paraphrasing (VAE-Par). While both VAE-Sep and
VAE-Linked lose the advantage of style transfer
between classes and also have fewer data points to
learn to generate sentences, it also greatly reduces
the risk of generating examples of the wrong class.

As mentioned, generative models for textual DA
are interesting due to the fact that they do not need
external data to work. As such, we do not use pre-
trained embeddings in the RNNs of the VAEs1. We

1While outside the scope of this study, preliminary exper-
iments with GLoVE embeddings (Pennington et al., 2014),
in place of embeddings initialized randomly, did not bring a
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discuss in Section 9 ideas for future research in a
context where the use of external data is encour-
aged.

5 Datasets

We compare the models on four binary sentence
classification tasks. We use movie critics clas-
sification with SST-2 (Socher et al., 2013), de-
tection of fake news articles with the FakeNews
dataset2, detection of ironic tweets with the dataset
Irony (Van Hee et al., 2018), and detection of sub-
jective questions with Subj (Bjerva et al., 2020).
Characteristics of the datasets are summarized in
Table 1.

Dataset # Ex. Av. Sent. Length
SST-2 6920 19.3

FakeNews 12799 12.5
Irony 2683 14.3
Subj 13990 5.6

Table 1: Characteristics of the datasets used in this study.
The average length represents the average number of
words, when tokenized at white spaces.

6 Experiments

Because we are interested in domains where data
is limited, we sample portions of the datasets to
act as our initial training sets. We test 4 different
datasets sizes: 500, 1000, 1500, and 2000. When
sampling, we make sure to balance classes. We run
each experiment 15 times and report the average
results. As our baseline, we train BERT without
data augmentation.3

We report in Table 2 the basic hyperparameters
for all four variational algorithms. We use a GRU
with 1 layer as our RNN for both the encoder and
decoder, and a sigmoid function σ(x) for annealing
the KL-divergence from 0 to 1, which takes in the
parameters x0, controlling where σ(x) = 0.5, and
a parameter k which controls the strength of the
slope. While we fix x0 at 15 (out of 30 epochs),
we calculate it in practice according to the total
number of batches, taking a step of annealing at
every batch. Doing so allows us to keep a fixed k
parameter, which makes the final KL-weight lower

better performance to VAE-Sep. We leave the exploration of
this phenomenon for future work.

2https://www.kaggle.com/c/fake-news/
overview

3Code is available at https://github.com/
smolPixel/DACOLING2022

x0 15
k 0.0025

Batch Size 32
Latent Size 15
Hidden Size 2048
Nb Epoch 30
Dropout 0.5

Word dropout 0.6
Nb layers GRU 1

Table 2: Basic hyperparameters used for all three varia-
tional algorithms

Figure 3: Annealing of the KL weight for various
dataset sizes.

for a smaller dataset size (which are more prone
to KL-collapse) and achieves 1 for a larger dataset
size, as shown in Figure 3. We found that this
setting worked well for all four sizes tested. To
simulate a real world environment, we fine-tune to
generate good sentences before testing on the test
set.

It is to note that this might not be ideal, as it
also means that the smaller dataset sizes will have
a stronger KL term from the beginning, but we
leave the full fine-tuning for future work. In the
same vein, variational auto-encoders can be finicky
to train correctly, so while the hyperparameters
presented in Table 2 hold true for most experi-
ments, we sometimes had to fine-tune it a bit fur-
ther, mostly by changing the latent size.

In addition to the four generative DA algorithms
mentioned in Section 4, we compare ourselves
to CBERT4, a data augmentation algorithm that
showed good results on sentence classification (Wu
et al., 2019). CBERT predicts masked words in

4https://github.com/1024er/CBERT_aug
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a sentence using BERT (Devlin et al., 2019). To
ensure class coherence, the label is prepended to
the sentence so that BERT learns to generate words
of the right class. Finally, we use BERT from the
jiant toolkit (Pruksachatkun et al., 2020) as our
classifier.

Table 3 shows the average accuracy over the
four datasets for each algorithm and starting sizes,
while doubling the number of sentences5. Standard
deviations over the 15 runs and all datasets range
from 0.4 to 1.0, with CBERT and VAE-Sep achiev-
ing the lowest on average. We can also observe
that VAE-Sep and VAE-Linked perform the best,
surpassing the other algorithms by 0.3 points, on
average. Linking the encoders and embeddings
ultimately does not improve the performance over
having completely separate systems. We posit that
this is because the main advantage of VAE-Sep is
that the separate decoders have little chance of gen-
erating examples of the wrong class, and therefore
sharing the encoders is not advantageous as long as
the system is good enough to help correctly train
the decoder(s). We analyze this phenomenon fur-
ther in Section 7. We show that even if the improve-
ment is small in terms of performance, VAE-Sep
and VAE-Linked bring a clear advantage over the
other generative algorithms when looking at the
number of erroneous sentences generated.

We also notice that CBERT and CVAE perform
the second-best on average. While CBERT per-
forms well when the dataset size is bigger, it under-
performs on small datasets. CVAE on the other
hand performs well on small dataset sizes, but
badly on larger ones, similarly to the VAE-Par. Fi-
nally, we observe that the larger the initial dataset
size, the harder it is to get an augmentation of per-
formance, as noticed in (Dai and Adel, 2020).6

In Figure 4, we show the performances of our
algorithms on the individual datasets. We see that
while VAE-Sep globally outperforms other algo-
rithms, it sometimes has more difficulties, such as
for the Irony or FakeNews datasets. It is possi-
ble that this is due to the nature of the data itself,
where differences between the classes come more
from syntactic differences than from differences in
vocabulary. This implies that chances of generat-

5For reference, the maximum accuracy obtained when
training with all data and no data augmentation is of 90.9%
for SST-2, 95.6% for FakeNews, 69.0% for Irony, and 99.96%
for Subj.

6We also note that even if it has a small standard deviation,
the performance of CBERT is very uneven through the datasets
and dataset sizes.

500 1000 1500 2000 Aver.
Baseline 81.2 83.8 85.6 86.8 84.4
CBERT 82.2 84.5 85.8 86.9 84.9
VAE-S 83.1 85.0 86.0 87.0 85.2
VAE-L 83.0 84.8 85.9 87.0 85.2
VAE-P 82.2 84.0 85.3 86.3 84.5
CVAE 83.0 84.6 85.6 86.5 84.9

Table 3: Average accuracy for the four starting sizes
over the four datasets. VAE-S stands for VAE-Sep,
VAE-L for VAE-Linked, and VAE-P for VAE-Par. By
running a multivariate t-test between the baseline results
and the augmentation, we found that all presented a
significant difference (p<0.05) except for CBERT 1500,
VAE-S 1500, VAE-L 1500, CVAE 1500, and VAE-S
2000. Bold results indicate the best results for each
starting sizes.

ing from the wrong class augment, and therefore it
loses a bit of its advantage.

In Table 4, we show examples of generated sen-
tences, which help give a clearer picture of the out-
put of the algorithms. We analyze the results and
the limits of each algorithms in the next section.

7 Analysis

We showed that the VAE-Sep method outperformed
other methods by 0.3% globally. In this section, we
analyze the algorithms and posit some hypothesis
as to why it works better.

7.1 Erroneous sentences

We first take a look at the generated sentences and
present the percentage which is erroneous (either
has the wrong label or a human is unable to label
it), as well as the percentage of sentences that are
copies of genuine examples. For the former, we
take the data generated for SST-2 with a starting
size of 1000 (see Table 4), and manually look at
100 randomly selected examples, 50 positives and
50 negatives. For the latter, we look through all
starting dataset sizes and all datasets and compute
the percentage of generated sentences that are iden-
tical to a sentence in the training set (a total of 5000
sentences per algorithm). We also report various
averages of length to give a better idea of the gen-
eration process, namely the length of erroneous
sentences, the length of identical sentences, and the
average length of generated examples.

Table 5 presents the results of our analysis. We
see first that VAE-Sep, VAE-Linked, and CBERT
clearly produce less errors than the other meth-
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(a) SST-2

(b) FakeNews

(c) Irony

(d) Subjectivity

Figure 4: Performance of the various augmentation tech-
niques on four dataset sizes (500, 1000, 1500, 2000) for
the four datasets. Results are averaged over 15 runs.

Algo Generated sentence Polarity

VAE-S

a rather brilliant little cult
item: a pastiche of chil-
dren’s entertainment, su-
perhero comics.

Positive

the problem with all of the
characters, the characters
forget their lines and no
surprises.

Negative

VAE-L

it’s a pleasure to watch. Positive
it’s a frankenstein-monster
of a film that doesn’t know
what to be.

Negative

CVAE

it is a coming-of-age, and
cautionary parable, but
he was a great character
study.

Positive

ultimately, the film
amounts to being lectured,
you’s not up for the mate-
rial, and offer’s spiritual
quest to sustain it.

Negative

VAE-P

about schmidt is nichol-
son’s goofy, heartfelt king
lear.

Positive

the whole is a disaster, but
capra are rolling in the
face.

Negative

CBERT

like a tarantino movie with
heart, alias betty is richly
detailed, deftly executed
and utterly absorbing.

Positive

an awkwardly garish
showcase that diverges
from anything remotely
probing or penetrating.

Negative

Table 4: Examples of generated sentences for each al-
gorithm for the SST-2 dataset and with a dataset size of
1000.

ods, which is unsurprising due to the nature of
the algorithms, and highlights the benefits of us-
ing separate decoders instead of a unique one. We
note that CBERT has a very large proportion of
examples that are identical to the starting exam-
ples. We find that this is a natural consequence
of using a large pre-trained model. As they are
trained to predict masked words, they will natu-
rally tend to predict the correct masked words with
high accuracy, and therefore often produce identi-

3459



VAE-S VAE-L CVAE VAE-P CBERT
Av. len 12.7 13.9 13.2 13.9 15.1

% wrong 5 6 34 27 5
Av. len 12.8 15.2 18.1 18.8 7.8

% id 1.5 6.7 1.1 2.9 43.5
Av. len 7.7 10.6 8.8 7.2 12.4

Table 5: Some statistics on the generated sentences for
the five algorithms. % wrong refers to the percentage
of erroneous sentences (unable to label or of the wrong
class), and % id refers to the percentage of identical
sentences generated by the algorithm.

Algo Sentence

VAE-S
he’s rare to be said, but it’s never.
a sleek advert youthful anomie
anomie that strives for equals.

VAE-L
amazingly dopey.
a company.

VAE-P

he doesn’t take a great, and he
doesn’t have a very real.
ponderous a kiss, a film is a fea-
ture film.

CVAE
an exit, while that this is that it,
not entirely.
the story is as the get-go.

CBERT
not enjoyable.
a processed marvelous chop suey.

Table 6: Examples of erroneous sentences (pos/neg) for
the SST-2 dataset with a starting dataset size of 1000.

cal examples. This also explains why their average
length is much higher than for the generative algo-
rithms, which have a tendency to produce duplicate
examples when they end their generation process
prematurely. CBERT, in opposition, produces du-
plicates as a natural consequence of its inner work-
ing. It is curious that VAE-Linked tends to produce
more duplicate examples than the other genera-
tive algorithms. Most of these happens when the
dataset size is small (500, 1000), and we posit that
it is because using separate decoders for important
characteristics (in this case, the class) makes the
model more robust than a normal VAE, allowing
it to have a lower reconstruction error. While this
is supported by our qualitative analysis of the gen-
erated sentences of the VAE-Linked, which seems
better than both generated sentences by VAE-Sep
and VAE-Par, a full analysis of this phenomenon is
outside the scope of this work.

Figure 5: Accuracy vs final dataset size for a starting
size of 1000 and the SST-2 task.

In Table 6, we show examples of erroneous sen-
tences for all five algorithms. We observe that for
the four generative algorithms, errors come mostly
from examples that are neither positive nor nega-
tive. Rather, they are simply ill-formed. VAE-Sep
and VAE-Linked create fewer of these because, as
they are trained on the vocabulary of only one class,
there are generally some words that pop up that al-
low us to determine, however tenuously, the correct
class.

7.2 Number of generated sentences

Up to now, we asked the DA methods to double the
size of the starting set. Here, we wonder whether
generating more data would be useful, and to what
extent.

Figure 5 shows for SST-2 what happens when
we double, triple, etc, the size of the dataset with a
starting size of 1000 sentences. The figure reveals
an interesting phenomenon. None of the genera-
tive algorithms seem to benefit much from more
augmentation, but CBERT does. However, the per-
formance stops increasing at 88.6% of accuracy,
which VAE-Sep reaches by simply doubling the
dataset. This phenomenon is most likely directly
related to the repetition of sentences produced by
CBERT. In order to get the same amount of new
informative sentences as VAE-Sep, the augmenta-
tion algorithm has to be applied several times. An
alternative could be to introduce a filter that only
accepts augmented sentences if it is not already
present in the dataset, but since the focus of this
study was on the VAE models and not on improv-
ing existing DA techniques, we leave this for future
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work7.

8 Implications

In this work, we show that VAE-Sep, a data aug-
mentation algorithm that doesn’t require external
data, obtains a satisfying performance, even sur-
passing CBERT, a data augmentation algorithm
using a pretrained neural network. While the VAE-
Sep algorithm, at the moment, only on BERT for
English sentence classification, the next step of the
research is to test it on rare languages.

A large portion of NLP research focuses on En-
glish text, and even as pretrained multilingual mod-
els are allowing a good performance on multilin-
gual data, such as XLM (CONNEAU and Lample,
2019), mBart (Liu et al., 2020), or M2M100 (Fan
et al., 2021), labelled data in the target language is
still needed for fine-tuning.

The VAE-Sep approach that we use in this pa-
per does not require any form of external data, and
is therefore usable for data augmentation for rare
languages. We have also shown that it works well
on BERT, so we expect that it would also help on
multilingual pretrained transformers, most directly
mBERT (Pires et al., 2019), but we leave the con-
firmation of this hypothesis for future work.

9 Conclusion and future work

Efficiently augmenting datasets is a central issue in
machine learning. It can increase performance for
all kinds of tasks, and has also been shown to help
while distilling models (Kamalloo et al., 2021).

In this paper, we consider data augmentation us-
ing simple generative models based on the VAE
architecture, which has the advantage that they do
not need external data to work. We compare two
methods used in the literature, paraphrasing and
conditional generation, to another where we train
one separate VAE per class. Furthermore, we com-
pare ourselves to an established method, CBERT,
which performs substitutions of random words in
the sentence using a pre-trained conditionnal BERT
model. We show that VAE-Sep and VAE-Linked
consistently outperform other methods (CBERT,
CVAE, VAE-Par), with an average gain in accuracy
of 0.3%, on four binary classification tasks and four
initial dataset sizes.

7Preliminary experiments indicate however, that it does
not improve the performance of CBERT in any significant
manner.

This study opens the door to interesting follow-
up research. First, we contrasted generative ap-
proaches with CBERT, which showed good per-
formance. However, due to a lack of objective
comparison in the literature, we cannot guarantee
CBERT delivers SOTA results. Such a comparison
would help the field hone in on efficient techniques
and work with a common basis. It would also
be interesting to observe how VAE-Sep algorithm
performs on multi-class datasets, since each VAE
receives only members of one class and therefore
would receive less training data on multiclass tasks.

The VAE-Sep algorithm also has possibilities of
improvements. While in this study we used basic
textual VAEs, there are many systems that have
been developed for better VAEs that could be used.
As mentioned, we take interest in VAEs because
they allow data augmentation without using exter-
nal data, which is useful for domains with limited
data, but it would be interesting to see the perfor-
mance if we allowed the usage of external data, for
example by using pre-trained embeddings or even
pre-trained transformers (Park and Lee, 2021; Li
et al., 2020).

Finally, there is always the question of under-
standing why exactly data augmentation helps.
While it is starting to be studied (Jha et al., 2020),
we are far from fully understanding the DA pro-
cess. Understanding it would not only help create
stronger DA algorithms for modern deep neural net-
works, but furthermore help understand how these
networks learn data representation.
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Truşcă. 2021. Data augmentation in a hybrid ap-
proach for aspect-based sentiment analysis. In Pro-
ceedings of the 36th Annual ACM Symposium on
Applied Computing, SAC ’21, pages 828–835, New
York, NY, USA. Association for Computing Machin-
ery.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual Denoising
Pre-training for Neural Machine Translation. Trans-
actions of the Association for Computational Linguis-
tics, 8:726–742. Place: Cambridge, MA Publisher:
MIT Press.

Nikolaos Malandrakis, Minmin Shen, Anuj Goyal,
Shuyang Gao, Abhishek Sethi, and Angeliki Met-
allinou. 2019. Controlled Text Generation for Data
Augmentation in Intelligent Artificial Agents. In Pro-
ceedings of the 3rd Workshop on Neural Generation
and Translation, pages 90–98, Hong Kong. Associa-
tion for Computational Linguistics.

Vukosi Marivate and Tshephisho Sefara. 2020. Im-
proving Short Text Classification Through Global
Augmentation Methods. In Machine Learning and
Knowledge Extraction, Lecture Notes in Computer
Science, pages 385–399, Cham. Springer Interna-
tional Publishing.

Sepideh Mesbah, Jie Yang, Robert-Jan Sips, Manuel
Valle Torre, Christoph Lofi, Alessandro Bozzon, and
Geert-Jan Houben. 2019. Training Data Augmenta-
tion for Detecting Adverse Drug Reactions in User-
Generated Content. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language

3462



Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2349–2359, Hong Kong, China. As-
sociation for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space.

George A. Miller. 1995. WordNet: a lexical database
for English. Communications of the ACM, 38(11):39–
41.

Seongmin Park and Jihwa Lee. 2021. Finetuning Pre-
trained Transformers into Variational Autoencoders.
In Proceedings of the Second Workshop on Insights
from Negative Results in NLP, pages 29–35, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How Multilingual is Multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computational
Linguistics.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel R. Bowman. 2020. jiant: A Software Toolkit
for Research on General-Purpose Text Understand-
ing Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 109–117, Online. As-
sociation for Computational Linguistics.

Siyuan Qiu, Binxia Xu, Jie Zhang, Yafang Wang, Xi-
aoyu Shen, Gerard de Melo, Chong Long, and Xi-
aolong Li. 2020. EasyAug: An Automatic Textual
Data Augmentation Platform for Classification Tasks.
In Companion Proceedings of the Web Conference
2020, pages 249–252. Association for Computing
Machinery, New York, NY, USA.

Juan F. Ramirez Rochac, Nian Zhang, Lara Thompson,
and Timothy Oladunni. 2019. A Data Augmentation-
Assisted Deep Learning Model for High Dimensional
and Highly Imbalanced Hyperspectral Imaging Data.
In 2019 9th International Conference on Informa-
tion Science and Technology (ICIST), pages 362–367.
ISSN: 2573-3311.

Georgios Rizos, Konstantin Hemker, and Björn Schuller.
2019. Augment to Prevent: Short-Text Data Augmen-
tation in Deep Learning for Hate-Speech Classifica-
tion. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Manage-
ment, CIKM ’19, pages 991–1000, New York, NY,
USA. Association for Computing Machinery.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2017. A Hybrid Convolutional Variational Au-
toencoder for Text Generation. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 627–637, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Connor Shorten and Taghi M. Khoshgoftaar. 2019. A
survey on Image Data Augmentation for Deep Learn-
ing. Journal of Big Data, 6(1):60.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of The 12th Interna-
tional Workshop on Semantic Evaluation, pages 39–
50, New Orleans, Louisiana. Association for Compu-
tational Linguistics.

Jason Wang, Luis Perez, and others. 2017. The effec-
tiveness of data augmentation in image classification
using deep learning. Convolutional Neural Networks
Vis. Recognit, 11:1–8.

Qian Wang, Fanlin Meng, and T. Breckon. 2020. Data
Augmentation with norm-VAE for Unsupervised Do-
main Adaptation. ArXiv.

Jason Wei and Kai Zou. 2019. EDA: Easy Data Aug-
mentation Techniques for Boosting Performance on
Text Classification Tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6382–6388, Hong Kong,
China. Association for Computational Linguistics.

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han,
and Songlin Hu. 2019. Conditional BERT Contextual
Augmentation. In Computational Science – ICCS
2019, Lecture Notes in Computer Science, pages 84–
95, Cham. Springer International Publishing.

Rong Xiang, Emmanuele Chersoni, Qin Lu, Chu-
Ren Huang, Wenjie Li, and Yunfei Long. 2021.
Lexical data augmentation for sentiment analysis.
Journal of the Association for Information Sci-
ence and Technology, 72(11):1432–1447. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.24493.

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak
Lee. 2016. Attribute2Image: Conditional Image Gen-
eration from Visual Attributes. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Com-
puter Vision – ECCV 2016, volume 9908, pages 776–
791. Springer International Publishing, Cham. Series
Title: Lecture Notes in Computer Science.

3463



Kang Yoo, Youhyun Shin, and Sang-goo Lee. 2019.
Data Augmentation for Spoken Language Under-
standing via Joint Variational Generation. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
33:7402–7409.

Peiye Zhuang, Alexander G. Schwing, and Oluwasanmi
Koyejo. 2019. FMRI Data Augmentation Via Synthe-
sis. In 2019 IEEE 16th International Symposium on
Biomedical Imaging (ISBI 2019), pages 1783–1787.
ISSN: 1945-8452.

3464



Proceedings of the 29th International Conference on Computational Linguistics, pages 3465–3479
October 12–17, 2022.

NLG-METRICVERSE: An End-to-End Library for
Evaluating Natural Language Generation

Giacomo Frisoni, Antonella Carbonaro, Gianluca Moro,
Andrea Zammarchi and Marco Avagnano

Department of Computer Science and Engineering (DISI)
University of Bologna, Via dell’Università 50, I-47522 Cesena, Italy

{giacomo.frisoni,antonella.carbonaro,gianluca.moro}@unibo.it
{andrea.zammarchi3, marco.avagnano}@studio.unibo.it

Abstract

Driven by deep learning breakthroughs, natu-
ral language generation (NLG) models have
been at the center of steady progress in the
last few years, with a ubiquitous task influ-
ence. However, since our ability to generate
human-indistinguishable artificial text lags be-
hind our capacity to assess it, it is paramount to
develop and apply even better automatic evalu-
ation metrics. To facilitate researchers to judge
the effectiveness of their models broadly, we
introduce NLG-METRICVERSE—an end-to-
end open-source library for NLG evaluation
based on Python. Our framework provides a
living collection of NLG metrics in a unified
and easy-to-use environment, supplying tools
to efficiently apply, analyze, compare, and visu-
alize them. This includes (i) the extensive sup-
port to heterogeneous automatic metrics with
n-arity management, (ii) the meta-evaluation
upon individual performance, metric-metric
and metric-human correlations, (iii) graphical
interpretations for helping humans better gain
score intuitions, (iv) formal categorization and
convenient documentation to accelerate met-
rics understanding. NLG-METRICVERSE aims
to increase the comparability and replicability
of NLG research, hopefully stimulating new
contributions in the area. 1

1 Introduction

Natural language generation (NLG) is a sub-field of
natural language processing (NLP) concerned with
automatically generating human-understandable
text from input data, like prompts, tables, graphs,
and images. Remarkably, the ability of a machine
to produce text indistinguishable from that written
by humans is a pre-requisite for Artificial General
Intelligence (AGI)—the holy grail of AI. Recent ad-
vancements in deep learning have yielded tremen-
dous improvements in the NLP sector, making

1The code is publicly available at https://github.
com/disi-unibo-nlp/nlg-metricverse

Metrics

Scores

Vi
su

al
iz

at
io

n

M
eta-Evaluation

K

Scorer
metric-performance

metric-metric

Standard 
Benchm

arks
H

um
an 

Scores

m
etric-

hum
an

Predictions References

1:1 1:N N:M

Contexts

Figure 1: NLG-METRICVERSE operational represen-
tation. Dashed boxes denote optionality. A set of auto-
matic metrics is selected to build a Scorer object, concur-
rently appliable to contexts, predictions, and references
with arbitrary n-arity. A Meta-Evaluation module al-
lows to inspect metrics’ performance on the input data
or standard benchmarks. Finally, a Visualization mod-
ule can be applied to overcome opacity and understand
metric-specific scoring processes.

NLG the object of fast-growing interest from the re-
search community, as aptly demonstrated by GPT-3
(Brown et al., 2020). Pre-trained language mod-
els with transformer-based architectures (Kalyan
et al., 2021) continue to push the envelope with un-
precedented performance and encourage more and
more applications. Indeed, today NLG includes a
wide variety of tasks, such as machine translation,
single/multi-document summarization, data-to-text,
text-to-text, dialogue generation, free-form ques-
tion answering, and image/video captioning (Gatt
and Krahmer, 2018).

As NLG models get better over time, accurately
evaluating them is becoming an increasingly press-
ing priority for tracking progress in the area and
convincingly recognizing state-of-the-art systems.
However, the assessment of NLG model output
is notoriously a challenging problem (Howcroft
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et al., 2020; Novikova et al., 2017). It involves the
consideration of multiple intrinsic quality dimen-
sions (e.g., informativeness, fluency, coherence,
adequacy) and open-ended scenarios, where dif-
ferent plausible or equal-meaning responses may
exist for the same user input. Human evaluation is
typically regarded as the gold standard. Neverthe-
less, designing crowdsourcing experiments accom-
panied by elaborated guidelines is an expensive and
high-latency process, which does not easily fit in a
daily model development pipeline with the need for
automatic benchmarking and tuning at scale. Fur-
thermore, as NLG models improve, evaluators are
asked to read longer passages of text conditioned on
large amounts of context. In these cases, errors are
often content-based (e.g., factual inaccuracies or
context inconsistencies) rather than fluency-based,
making superficial reads and non-expert annotators
insufficient (Clark et al., 2021).

Given these issues, NLG researchers have set-
tled for automatic evaluation metrics computing
a holistic or dimension-specific score, an accept-
able proxy for effectiveness and efficiency. Un-
fortunately, despite the rapid surge of machine-
generated language, evaluation metrics have fallen
behind, leaning on the conservative use of surface-
level lexical similarities, which fail to cope with
diversity and capture the text’s underlying meaning.
To overcome this severe bottleneck, the commu-
nity has witnessed—in a relatively short time—a
prolific, variegated, and original research produc-
tion. New NLG metrics are constantly being pro-
posed in top conferences, exhibiting one or more
of the following characteristics: (i) use of contextu-
alized word embeddings (Zhang et al., 2020), (ii)
pre-training on massive unlabeled corpora (Sellam
et al., 2020), (iii) fine-tuning on data annotated with
human judgments (Kane et al., 2020), (iv) manage-
ment of task-specific nuances (Dhingra et al., 2019;
Wang et al., 2020).

Per contra, NLG metrics today are often de-
signed and implemented from scratch with distinct
environments, assumptions, properties, settings,
benchmarks, and features. Such heterogeneity and
disgregation make them difficult to compare or
move to slightly different contexts. Concretely, the
absence of a collective and continuously updated
repository—well-documented and covering the en-
tire NLG evaluation pipeline—discourages the use
of modern solutions and slows down their under-
standing and practical application. Such barrier

is highlighted also by the latest surveys (Sai et al.,
2022). In the quest to fill this gap, we present NLG-
METRICVERSE

2, an open-source (MIT licensed)
end-to-end library for NLG evaluation, devised to
provide a shared and collaborative codebase for
fast application, analysis, comparison, visualiza-
tion, and prototyping of automatic metrics.

The rest of the paper is organized as follows.
First, we enumerate the design principles at the
basis of NLG-METRICVERSE (§3), clarify the
context, and summarize prior work related to this
project (§2). Then, we describe the overarching
NLG evaluation framework that constitutes the
conceptual foundation for our contributions (§4).
Next, we examine the main modules of the library:
metrics, meta-evaluation, and visualization (§5).
Lastly, we close the discussion and point out possi-
ble extensions (§7).

2 Background and Related Work

Early lexical NLG metrics, such as the BLEU (Pa-
pineni et al., 2002) and ROUGE (Lin, 2004), still
appear to dominate the landscape, waiting for fea-
sible, robust, and widely-adopted alternatives. De-
spite the high number of criticisms and studies
proving their poor correlation with human judg-
ment (Zhang et al., 2004), the popularity of first-
generation metrics has not declined but expanded
with the emergence of deep neural networks and
new tasks. Simplicity, consistency, unsupervision,
lightweight, and fast computation are the central
basis of this success.

However, it has become increasingly clear that
such adoption is often not prudent. Metrics mea-
suring surface-level overlap are unsuitable for ad-
vanced evaluation, especially for modern text gen-
eration systems trained on mammoth data and with
impressive paraphrasing capabilities (Mathur et al.,
2020)—where ideal metrics should be sensitive to
the underlying semantics. As a remedy, NLG re-
searchers have started injecting learned/learnable
components into their metrics, moving from a dis-
crete space of word tokens to a continuous high-
dimensional space of word vectors, thereby captur-
ing distributional semantics. Over the years, many
strong NLG evaluation metrics have been proposed,
particularly transformer-based, like BLEURT (Sel-

2We coin the term "Metricverse" to denote the microcosm
of automatic evaluation metrics powered by the overt ongoing
rise of NLG models. According to this metaphor, we see
metrics as planets belonging to galaxies and superclusters
according to the taxonomy presented in Section 4.
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lam et al., 2020), BERTScore (Zhang et al., 2020),
and BARTScore (Yuan et al., 2021).

The trend towards the definition of model-based
metrics and the resolution of task-specific needs
have created a fertile ground for research. Ac-
cording to Sai et al. (2022), from 2002 (when
BLEU was proposed) to 2014 (when Deep Learn-
ing became prevalent), there were only about 10
automatic NLG evaluation metrics in use; since
2015, at least 36 new metrics have appeared. On
the other side, metrics are often scattered online,
non-maintained, undocumented, implemented in
various languages, inconsistent with the paper re-
sults. This not only hampers reproducibility but
also inhibits scalability, as each research paper ends
up creating its own implementation almost from
scratch. Some libraries have already tried to make
an integrated environment. To our best knowl-
edge, NLGEval (Sharma et al., 2017), HugginFace
Datasets (Lhoest et al., 2021), Evalaute3, Torch-
Metrics (Detlefsen et al., 2022), and Jury (Cavu-
soglu et al., 2022) are the only resources available.
However, none of them possess all the properties
listed below: (i) large number of heterogeneous
NLG metrics, (ii) concurrent computation of more
metrics at once, (iii) support for multiple references
and/or predictions, (iv) meta-evaluation, and (v) vi-
sualization. Table 1 summarizes the discrepancies
between NLG-METRICVERSE and related work.

3 Design Principles

NLG-METRICVERSE has been designed with five
main principles in mind, which, we argue, can help
researchers and practitioners in a number of ways.

Comprehensiveness Given the impressive pace
at which the field is growing, comprehensiveness
is imperative, with the ultimate goal of providing
a unique, smooth, and up-to-date access point to
all the most relevant NLG evaluation metrics dis-
seminated in different streams of literature. We
also comprise organization and consistency across
the library, with a coherent interaction between
modules and sub-modules. This principle revolves
around consolidating an all-in-one community-
driven library, integrating ready-to-use n-gram- and
embedding-based metrics—supervised and unsu-
pervised, trained and untrained, reference- and
statistics-based, task-specific and general-purpose,
sentence- and document-level. From this synergy,

3https://github.com/huggingface/
evaluate

we hope to spur the adoption of newly proposed
contributions, unleashing their potential and con-
cretizing the view of Sellam et al. (2020), accord-
ing to which "Machine Learning (ML) engineers
should enrich their evaluation toolkits with more
flexible, semantic-level metrics".

Ease-of-use The focus on simplicity is another
key factor in fostering impact and usability, allow-
ing users to write less code, reduce errors, and
prototype faster. It is also meant to minimize the
implementational burden and quickly move from
papers to practical applications. We concentrate
our efforts on designing an intuitive Application
Programming Interface (API) accompanied by rich
documentation with a curated list of executable
notebooks and examples. This makes the software
useful for both academia and industry.

Reproducibility Reproducibility is a core con-
cept of utmost concern in ML and NLP, a prerequi-
site to trustworthiness. NLG evaluation exacerbates
the problem even more, with well-known plagues
like heavy undocumented preprocessing pipelines,
non-transparent dataset selections, and concealed
parameter settings (Post, 2018; Gao et al., 2021;
Chen et al., 2022). A critical design objective of
NLG-METRICVERSE is permitting experimental
evaluation results to be seamlessly reproduced, pro-
moting a fully detailed specification. In this way,
users can simply integrate their original research
into the shared codebase and fairly compare their
solution with the existing literature. Besides serv-
ing for sound and consistent scientific research,
reproducibility is a means to speed up the devel-
opment of new metrics. When it comes to model-
based metrics, transparency also applies to hard-
ware setup, runtime measures, and CO2 impact.

Modularity In NLG-METRICVERSE, simplic-
ity is sometimes bent in favor of modularity and
reusability. This principle is essential for ensuring
scalability and collaboratively bringing the code-
base to maturity. An emphasis on module indepen-
dence is maintained to guarantee the stand-alone
usability of individual module functionalities and
facilitate the learning of each library component.

Education One more principle is taking charge
of an educational role. NLG-METRICVERSE is ide-
ally suited to non-expert users, helping to sharpen
their understanding. We believe that it is indis-
pensable to democratize the field and gain greater
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NLG-Metricverse NLGEval Datasets Evaluate TorchMetrics Jury
#NLG-specific Metrics 38 + Datasets 8 22 22 13 19 + Datasets
More metrics at once ✓ × × ✓ × ✓
Multiple refs/preds ✓ ✓ × × × ✓
Meta-evaluation ✓ × × × × ×
Visualization ✓ × × × × ×

Table 1: Comparison of our library (v1.0.0) with existing NLG evaluation packages: NLGEval (v2.3.0), Datasets
(v2.4.0), Evaluate (v0.2.2), TorchMetrics (v0.8.2), Jury (v2.2). "+ Datasets" stands for an automatic fallback towards
HuggingFace Datasets in case of unsupported metrics (lower bound).

awareness of how metrics work. To unlock a teach-
ing potential, our contributions want to include
the release of standardized and content-rich metric
cards, other than visualization tools conceived to
aid unprecedented levels of score interpretation.

4 Framework

NLG-METRICVERSE is implemented as a Python
library that provides a wrapper around a panoply of
NLG evaluation metrics and complementary needs.

Regardless of the task, an NLG model generally
produces one or more predictions (i.e., hypotheses,
candidates) p = p1, . . . , pk conditioned on a given
context or source c = c1, . . . , cp. Then, one or
multiple human-created references (i.e., ground-
truths) r = r1, . . . , rl may be provided to assist
the evaluation. In Table 2, we list sample contexts,
predictions, and references for common NLG tasks
to which NLG-METRICVERSE can be applied.

NLG Task Context Pred/Ref

Machine Translation Source language sentence Translation
Document Summarization Document(s) Summary

Data-to-Text
(Semi-)structured data,
e.g., graphs, tables Verbalization

Dialogue Generation Conversation history Response
Question Answering Question (+ context) Answer

Question Generation
Passage / Image /
Knowledge Base Question

Image/Video Captioning Image / Video Caption
Text Completion Prompt Continuation

Table 2: Popular NLG tasks settings.

Set these premises, NLG automatic evaluation
metrics can be distinguished according to several
overlapping criteria. To further dig into these dis-
tinctions, we lay out a taxonomy (Figure 2) serv-
ing as a foundation for experts and the broader
public to build a shared overview of the possi-
ble solutions and their characteristics. Metrics
can be broadly categorized based on the input for-
mat and data availability. Context-free metrics do
not consider the context while judging the appro-
priateness of the prediction, typically being task-
agnostic and adaptable to a wide variety of NLG

Context-free

Context-dependent

Reference-based

Reference-free

Task-specific

Task-agnostic

Trained

Untrained

Automatic 
Evaluation

Metric

Statistical-based

Grammar-based

Ngram-based

Embedding-based

Distance-based

Supervised

Unsupervised

End-to-end

Figure 2: Taxonomy of automatic evaluation metrics.
Different color nodes represent partially overlapping
classification criteria (i.e., orthogonal categories).

tasks. On the flip side, context-dependent metrics
take into account the context and are consequently
task-specific. Reference-based metrics evaluate
generated text with respect to one or a small set
of reference text samples. Reference-free metrics
do not rely on gold-standard references and are
mainly statistics-based (e.g., full sequence distri-
bution comparison). Further, they are suitable for
an open-ended generation where there typically are
several plausible continuations for each context,
and creative generations are desirable; popular ex-
amples are Perplexity (Jelinek et al., 1977) and
MAUVE (Pillutla et al., 2021). Finally, metrics can
be classified according to their techniques. Met-
rics can have learnable components (trained) or not
(untrained). In the first case, metrics can exploit hu-
man annotation data (supervised)—even with end-
to-end architectures—or being human judgment-
free (unsupervised). By end-to-end supervised met-
rics, we mean model-based NLG metrics trained
on human-annotated data to directly output evalu-
ation scores without additional techniques based
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on learned representations and placed outside the
backpropagation process. They typically refer to
solutions based on regression, ranking, and clas-
sification tasks (e.g., COMET (Rei et al., 2020),
FactCC (Kryscinski et al., 2020), BLEURT (Sel-
lam et al., 2020), NUBIA (Kane et al., 2020)). Un-
trained and unsupervised metrics use a fixed set
of heuristics and input features, such as n-gram
overlapping, edit distance, static or contextualized
embeddings. In this context, grammar-based mea-
sures do not rely on ground-truth references and
try to quantify aspects like readability (i.e., the
ease with which a reader can understand a passage)
and grammaticality. To provide a concrete exam-
ple, BERTScore is a context-free, reference-based,
trained and unsupervised metric.

5 Main Modules

NLG-METRICVERSE is organized into three main
modules: Metrics (§5.1), Meta-Evaluation (§5.2),
and Visualization (§5.3). The library is intended to
be a continuous and collaborative project, extended
as new solutions become available. In what follows,
we describe the features provided at the current
stage of development. Figure 1 shows the opera-
tional representation of the modules and their in-
terplay within the framework detailed in §4. NLG-
METRICVERSE is in turn built on top of open-
source libraries, including Datasets (Lhoest et al.,
2021), NumPy (van der Walt et al., 2011), SciPy
(Virtanen et al., 2020), and Matplotlib (Hunter,
2007). Where possible, metrics are implemented
using canonical repositories released by authors.

5.1 Metrics

To construct a full-scale NLG evaluation library,
the selection methodology is crucial to collect met-
rics with desired properties. We concentrate on
four factors. (i) Diverse classes, supervision con-
straints, and evaluation tasks, as defined in §4.
NLG is a versatile field; the input/output scenar-
ios and evaluation strategies can vary from case to
case. Sometimes, the predicted text is short and
accompanied by human target references; other
times, diversity is preferred; still different times,
the generation is open-ended, long, and without
references. (ii) Diverse application tasks. Met-
rics can apply to multiple NLG evaluation tasks
or manage task-specific quality needs. Hence, we
include a broad spectrum of real-world tasks to
boost the relevance of our library. (iii) Eval dimen-

sion. Evaluation can be done by assessing different
quality perspectives. Most existing metrics cover
a small subset of these axes. Still, some of them—
particularly the trainable ones—can handle several
dimensions by requiring to maximize correlation
with each type of judgment separately (Rei et al.,
2020) or not (Yuan et al., 2021). (iv) Popularity.
We give priority to the metrics prominently used in
NLG research. Currently, 34 metrics are supported
(see §A.1 for details); more solutions are under
development. We tried to cover a balanced mixture
of metrics and paid importance not to overweight
a specific class. Future contributions can easily be
integrated into NLG-METRICVERSE. We ensure
the integrity of each metric within the codebase
through automated tests.

Input Format We design a unified metric input
type, also handling n-arity for candidate and refer-
ence texts (Table 3)—a feature as vital as neglected
by current systems. In fact, there may exist multi-
ple equally good outputs for the given input, and
comparing against one gold reference can be er-
roneous. An extensive set of out-of-the-box data
loaders takes the responsibility of processing the
raw data from files and directories.

Cardinality Syntax

1:1 preds = [p1, . . . , pk], refs = [r1, . . . , rk]
1:N

preds = [p1, . . . , pk]
refs = [[r11, . . . , r1n], . . . , [rk1, . . . , rkn]]

N:M
preds = [[p11, . . . , p1n], . . . , [pk1, . . . , pkn]]
refs = [[r11, . . . , r1m], . . . , [rk1, . . . , rkm]]

Preds only preds = [p1, . . . , pk]
Table 3: Prediction-reference input formats.

Metrics Application Evaluating artificial text re-
quires just two lines of code: (i) create a Scorer ob-
ject with the desired metrics; (ii) apply the Scorer
object to the input data. So, many metrics may be
executed in one go. During step (ii), the proper
strategy for computing each metric is automat-
ically selected depending on the recognized in-
put format. If a prediction needs to be compared
against multiple references, the user is left with
the possibility to specify the aggregation strategy
of preference through the reduce_fn parame-
ter. For example, reduce_fn="max" considers
only the prediction-reference pair with the highest
score for each dataset instance. Inherently, NLG-
METRICVERSE allows all NumPy function names
and custom aggregation functions as well. An asyn-
chronous execution with a separate process for each
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metric can be specified to push efficiency and scala-
bility (run_concurrent), bringing parallelism
to the evaluation loop. Additionally, to contain the
library size, we do not directly include all the pack-
ages required for running every supported metric,
but we invite the user to install them if necessary.
Figure 3 provides a practical example.

1 scorer =
NLGMetricverse(metrics=["bertscore",
"bartscore"], run_concurrent=True)

↪

↪

2 score = scorer(preds, refs) # reduce_fn

Figure 3: Definition and application of a Scorer object
for the concurrent evaluation of multiple metrics.

By employing the load_metric() function
for step (i), NLG-METRICVERSE falls back to
the Datasets implementation in case of metrics
not yet supported. Consequently, our library en-
globes at least any metrics that the Datasets pack-
age has. When defining the Scorer, a maximum
degree of freedom is retained to allow the setting
of metric-specific hyperparameters and different in-
stantiations of the same metric (Figure 4). Further,
since metrics generally involve several hyperparam-
eters and results can deviate significantly for other
choices, we accompany the output with a config
report (hyperparams setting, hardware setup, etc.)
for increasing comparability and replicability.

The Scorer application is meant to return a dic-
tionary containing each metric’s score(s), together
with tracked performance metadata, including the
computation time and CO2 emissions (measured
with codecarbon (Schmidt et al., 2021)).

1 metrics = [
2 load_metric("bleu",

resulting_name="bleu_1",
compute_kwargs={"max_order": 1}),

↪

↪

3 load_metric("bleu",
resulting_name="bleu_2",
compute_kwargs={"max_order": 2}),

↪

↪

4 load_metric("rouge")]
5 scorer = NLGMetricverse(metrics=metrics)

Figure 4: Definition and application of a Scorer object
through the load_metric() function, encompassing
two versions of BLEU with distinct hyperparameters.

Metric Documentation and Search NLP prac-
titioners typically use automated metrics with a
specific goal in mind, whether they are looking
to answer a research question or develop a practi-
cal application system. To that end, they need to

quickly identify which metric is most appropriate
for the task at hand and understand how various
attributes/properties might help with or, conversely,
run contrary to their purpose. To let the user sift our
NLG evaluation toolbox, we attach to each metric
a set of structured tags (based on §4). Figure 5
exhibits APIs that allow users to list supported met-
rics and dig for those having preferred properties.
We provide metric cards—inspired from aimed at
evolving the Datasets ones—holding standardized4

information about metric functioning, technical as-
pects, output bounds, etc. Since a metric’s life con-
tinues beyond its initial release—from discovered
weaknesses to newly found task adaptabilities, the
metric card is conceived as a living document. The
tags and metric cards are filled manually by the con-
tributors who introduce the metrics to the library.
The NLG-METRICVERSE community-driven na-
ture and the GitHub-backend versioning provide an
opportunity to keep the documentation up-to-date
as further information comes to light.

1 NLGMetricverse.list_metrics()
2 # All
3 NLGMetricverse.filter_metrics(

category=Categories.Embedding,
appl_task= ApplTasks.DataToText)

↪

↪

4 # ["moverscore", "bleurt", "bartscore"]
5 NLGMetricverse.filter_metrics(

trained=True, unsupervised=True,
quality_dim=QualityDims.Factuality)

↪

↪

6 # ["bartscore"]

Figure 5: Taxonomy-guided metrics exploration.

Custom Metric NLG-METRICVERSE offers a
flexible and uniform API for easily creating custom
user-defined metrics. It only requires inheriting
the MetricForNLG class (i.e., the common base
class for each metric) and implementing the ab-
stract functions linked to the possible input formats
(Figure 6). We pursue the idea of enabling the user
to create complex setups without superimposing
constraints that may not suit future research.

1 class CustomMetric(MetricForNLG):
2 def _compute_single_pred_single_ref(
3 self, preds, refs, reduce_fn=None,

**kwargs↪

4 ): ...
5 def _compute_single_pred_multi_ref ...
6 def _compute_multi_pred_multi_ref ...

Figure 6: Custom metric implementation.

4https://bit.ly/metric-card-guideline
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5.2 Meta-Evaluation

With the ever-growing number of proposed met-
rics, evaluating NLG evaluation has notoriously
become a compelling exigency. The meta_eval
module of NLG-METRICVERSE encompasses the
most widely used methodologies for judging and
comparing the effectiveness, reliability, and effi-
ciency of automatic metrics. Few lines of code are
sufficient to equitably assess a large number of pub-
lished or prototype metrics on shared benchmarks.

Correlation Measures and Significance Tests
Examining a set of NLG metrics usually presup-
poses the computation of different correlation mea-
sures on paired data {(x1, y1), . . . , (xn, yn)} de-
pending on the goal and the relationship type be-
tween the two variables of interest X and Y . We
support four standard correlation coefficients:

• Pearson Correlation (Freedman et al., 2007),
measures the X-Y linear dependence;

• Spearman Correlation (Zar, 2005), measures
the X-Y monotonic relationships (whether
linear or not);

• Kendall’s τ (Kendall, 1938) measures the X-
Y ordinal association (ranking preservation);

• DARR (Ma et al., 2018), a robust variant of
Kendall’s τ to account for potential noise in
Y through pairs filtering.

We refer the reader to Sai et al. (2022) for an in-
depth discussion on their differences and selection
criteria. In all cases, coefficients take values in[−1, 1], from low to high agreement, with 0 denot-
ing total independence. To compute the statistical
significance of the quantified dependency strength,
NLG-METRICVERSE considers the p-value of a
hypothesis test examining the evidence against the
null hypothesis that "population correlation coeffi-
cient equals 0". A smaller p-value means stronger
evidence in favor of the alternative hypothesis, i.e.,
the population correlation is non-zero. The library
also allows bootstrapping methods (Koehn, 2004)
for rigorous pair-wise significance tests. Following
previous works (Kilickaya et al., 2017; Novikova
et al., 2017), we also incorporate the Williams’ test
(Williams, 1959) for evaluating the significance
between two dependent correlations sharing one
variable (i.e., X1, X2, and Y ).

Metric-Human Correlation One of the primary
goals of meta-eval is to analyze the extent
to which different automatic evaluation metrics
agree with human judgments (Figure 7). To do

so, we provide tools for constructively computing
metric-human correlations on popular bench-
marks or custom user ground truths, where X
and Y correspond to metric and human scores,
respectively. As for benchmarking, we underline
the urgency of standardized datasets containing
<context, prediction, reference,
human scores> tuples for multiple tasks,
quality dimensions, and languages. The devel-
opment of NLG evaluation metrics relies on
their availability, both for training and evaluation
purposes. Unfortunately, despite the evolving
interest, there is still a scarcity of contributions
in this direction. Currently, we use the annual
public records from the WMT Metrics Shared
Task (Bojar et al., 2017)—the largest collection
of human ratings at the time of writing (i.e.,
human-annotated machine translation pairs).

1 metric_human_correlation(preds, refs,
metrics=load_metric("rouge",
compute_kwargs={"rouge_types":
["rougeL"]}),
human_scores=Benchmarks.WMT17,
corrs=[CorrelationMeasures.Pearson])

↪

↪

↪

↪

↪
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Figure 7: Segment-level metric-human correlation scat-
terplot. ROUGE vs. human scores on WMT17.

Metric-Metric Comparison On the trail of the
most frequent evaluation setups used in literature,
we supply functional features for checking out the
behavior of many models side-by-side. In fact, met-
rics are best understood when compared to each
other on common datasets. This comparison refers
to performance aspects (e.g., computation time,
CO2 impact for model-based metrics) and corre-
lations (i.e., input-output similarities). Ultimately,
NLG-METRICVERSE showcases the results with
a set of meaningful charts intended to embolden
scientific documentation (examples in Figure 9).
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5.3 Visualization
In contrast to human evaluation, automatic metrics
generally assign a single score to a given hypothe-
sis, and it is often not clear which quality perspec-
tive this score captures or corresponds to; ergo, they
are difficult to interpret (Sai et al., 2022). Score
uninterpretability not only applies to contemporary
model-based solutions but also to historical n-gram
approaches (Zhang et al., 2004). More generally,
visualization tools have become a cornerstone of ex-
plainability research in NLP. To increase the trans-
parency of NLG evaluation metrics, we provide
static and interactive visual tools for understanding
why certain scores are produced. Visually inspect-
ing internal mechanisms is particularly useful in
instances when metrics disagree on. The interac-
tive visualizations are built using web technologies
manipulated through D3.js (Bostock et al., 2012).
Supported ones include soft and hard alignments
from MOVERScore and BERTScore (Figure 8).
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[SEP]
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(b) BERTScore, Color-coded cosine similarity word matching.

Figure 8: Examples of plots for visual metric analysis.

6 Case Study: Graph-Augmented
Biomedical Abstractive Summarization

In this section, we use NLG-METRICVERSE to
examine the summaries generated by a language
model infused with semantic parsing graphs. In-
jecting explicit semantic structures—like events
(Frisoni et al., 2021, 2022), abstract meaning

representations (AMRs) (Banarescu et al., 2013),
and corpus-level knowledge (Frisoni et al., 2020;
Frisoni and Moro, 2020)—is a new trend followed
by the NLP community to overcome lexical super-
ficiality and draw a complementary path to archi-
tectural scaling, fundamental in low-resource set-
tings (Moro and Ragazzi, 2022). Graph-augmented
methods unlock a higher level of abstraction and
more accurate emulation of human interpreta-
tion, rewriting, and paraphrasing. Faced with
semantic-driven models, researchers must avoid
being confined to traditional overlap-based metrics
and monolithic quality dimensions, thus outlining
a valuable testbed for our library.

6.1 Experimental Setup
We employ COGITOERGOSUMM (Frisoni. et al.,
2022), a language model for biomedical single-
document summarization, enhanced by AMRs and
structured representations of factual evidence ex-
tracted from the source text. By employing the
same hyperparameters proposed by the authors, we
train and evaluate the neural network on CDSR
(Guo et al., 2021)—a dataset designed for health
literacy, where the training, validation, and test
sets contain 5178, 500, and 999 samples, respec-
tively. To quantitatively inspect model performance
on the test set, we apply NLG-METRICVERSE

for computing ROUGE-1/2/L (F1), BERTScore,
BARTScore (Recall), Abstractness, and Repetitive-
ness. Additionally, since CDSR targets the acces-
sibility of the biomedical literature, we calculate
readability scores: Gunning Fog Index, Flesch-
Kincaid Reading Ease, Coleman-Liau Index. See
A.1 for details about metrics functioning, and A.2
for replicability. To better gauge summary quality
and compare metrics’ effectiveness, we conduct a
human evaluation study. We randomly select 30
test set instances, and invite 3 expert annotators
to score generated summaries in conformity with
four independent perspectives, each measured on
a Likert scale from 1 (worst) to 5 (best): (i) in-
formativeness, i.e., conveying salient content; (ii)
factualness, i.e., being faithful with respect to the
article; (iii) fluency, i.e., being fluent, grammatical,
and coherent; (iv) succinctness, i.e., non containing
redundant and unnecessary information.

6.2 Results
Figure 9 reports human and automatic evaluation
results, together with computation times, metric-
metric, and metric-human correlations (Pearson).
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Human
Informativeness Factualness Fluency Succinctness
3.67 3.61 3.61 3.50

Auto

ROUGE-1/2/L BERTScore BARTScore Abstractness
0.49/0.19/0.25 0.87 -2.68 0.36

Repetitiveness
Gunning Fog
Index Flesch-Kincaid

Coleman-Liau
Index

0.37 13.45 12.64 13.84

(c) Qualitative and quantitative evaluation scores.

Figure 9: Abstractive summarization analysis through NLG-METRICVERSE.

Human scores are averaged for each dimension;
the mean Kendall coefficient among all evaluators’
inter-rater agreement is 0.16. We observe that the
abstractive and semantically-consistent nature of
the model is not appreciable by the ROUGE scores
alone. The highest correlations with human judg-
ment are achieved by BERTScore, Abstractness,
and Flesch-Kincaid—especially according to fac-
tualness and succinctness (see A.2). These results
prove that the model tends to be more factual when
it re-frames the target concept units, further tes-
tifying the inadequacy of overlap-based metrics.
Notably, in contrast to other model-based metrics
like BERTScore, BARTScore appears significantly
slower (72× compared to ROUGE).

7 Conclusion

The NLG evaluation community demands efforts
toward making research more transparent, repro-
ducible, and open. Easy access to a wide variety
of automatic metrics and related features holds a
lot of potential. A central hub would democratize
research, increase comparability, mitigate the com-
putational/implementational burden, and hopefully
steer innovation to more robust contributions. In
fact, researchers would be able to evaluate their
NLG systems at scale without being limited to very
few metrics whose code is easily available. They

would also be able to critically examine existing
metrics, perform white-box attacks, or carefully
craft adversarial examples.

With NLG-METRICVERSE, we take an impor-
tant step towards a single, unified, coherent, end-to-
end, and easily extendable framework for NLG
evaluation. A solid reference point and shared
resource for researchers and practitioners work-
ing in the area. Being a community-driven effort,
we plan in both the near and medium terms to
support more recent task-specific metrics, bench-
marks, meta-evaluation techniques for robustness,
and skew factor analyses. We also intend to include
more document-level measures. We hope that this
library may trigger a positive reinforcement loop
within our community, nudging it to explore the
metric universe.
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A Appendix

A.1 Supported Metrics
Table 5 and Table 6 enumerates the metrics cur-
rently supported by NLG-METRICVERSE.

A.2 Case Study Replicability and Details
We used NLG-METRICVERSE on a workstation
having one Nvidia Tesla T4 GPU with 16GB of
dedicated memory, and an Intel® Xeon™ CPU
@ 2.20GHz. Where applicable, we ran the met-
rics on GPU. For the sake of reproducibility, Ta-
ble 4 lists all metrics’ hyperparameters. Please
note that ROUGE, BERTScore, Abstractness, and
Repetitiveness bounds are in [0, 1], BARTScore
in ]−∞, 0[. Gunning Fog Index, Flesch Kincaid
Reading Ease, and Colemain-Liau Index estimate
the years of education generally required to un-
derstand a text document; lower scores indicate
that the text is easier to read (U.S. college-level
readability belongs to the range [13−16]).

Metric Hyperparameters

ROUGE

rouge_types=["rouge1","rouge2","rougeL"],
use_aggregator=True,
use_stemmer=False,
metric_to_select="fmeasure"

BERTScore

lang="en", idf=False,
batch_size=64, nthreads=4,
rescale_with_baseline=False,
use_fast_tokenizer=False,
return_average_scores=False

BARTScore
model_checkpoint="bartscore-large-cnn",
batch_size=4, segment_scores=False

Abstractness ngrams=1

Table 4: Hyperparameters initialization for metrics ap-
plied in the case study.
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Metric Technique Property Appl. Tasks Trained Unsupervised

Gunning Fog Index
Gunning 1952 G

readability test for English writing: count of sentences, words, and complex
words consisting of three or more syllables in the text SUM × ✓

Flesch-Kincaid
Kincaid et al. 1975 G

the most widely used readability test for English writing; two versions
(Flesch Reading-Ease and Flesch-Kincaid Grade Level) SUM × ✓

Coleman-Liau Index
Coleman and Liau 1975 G character-based readability test for English writing SUM × ✓

Accuracy
Pedregosa et al. 2011 N proportion of correct predictions among the total number of cases processed MT × ✓

Precision
Pedregosa et al. 2011 N

fraction of correctly labeled positive examples out of all of the examples
that were labeled as positive

MT × ✓

Recall
Pedregosa et al. 2011 N fraction of positive examples correctly labeled by the model as positive MT × ✓

F1
Pedregosa et al. 2011 N harmonic mean of the precision and recall MT × ✓

MER
Morris et al. 2004a N % words incorrectly predicted and inserted (match error rate) SR × ✓

Abstractness
Gehrmann et al. 2019 N % novel n-grams in the predictions, compared to the references SUM × ✓

Repetitiveness
Xiao and Carenini 2020 N

average number of n-grams with at least one repetition in the generated
sequences SUM × ✓

Coverage
Grusky et al. 2018 N % summary words present in the source text SUM × ✓

Density
Grusky et al. 2018 N

average length of extracted fragments which every word from the
summary belongs to SUM × ✓

Compression
Grusky et al. 2018 N

ratio between the length of the original text and the length of the
generated abstract SUM × ✓

BLEU
Papineni et al., 2002 N n-gram precision

MT, IC, DG,
QG, RG × ✓

NIST
Doddington 2002 N n-gram precision w/ IDF-weighted n-grams MT × ✓

ORANGE (SentBLEU)
Lin and Och 2004 N n-gram precision w/ smoothing MT × ✓

ROUGE
Lin, 2004 N n-gram recall MT × ✓

WER
Morris et al. 2004b N % of insert, delete, replace MT, SR × ✓

METEOR
Banerjee and Lavie 2005 N

n-gram harmonic mean w/ paraphrase knowledge (e.g., stemming,
synonyms) and penalty factor for fragmented matches MT, IC, DG × ✓

CIDEr
Vedantam et al. 2015 N cosine similarity between TF-IDF weighted n-grams IC × ✓

TER
Snover et al. 2006 N translation edit rate (i.e., WER + shift movement as extra editing step) MT × ✓

ChrF(++)
Popović 2017 N character-level precision and recall MT, IC, SUM × ✓

WMD
Kusner et al. 2015 E, D earth mover’s distance on words IC, SUM × ✓

SMS
Clark et al. 2019 E, D earth mover’s distance on sentences IC, SR, SUM × ✓

CharacTER
Wang et al. 2016 N character-level TER MT × ✓

SacreBLEU
Post 2018 N standardized BLEU MT × ✓

METEOR++
Guo and Hu 2019 N METEOR w/ copy knowledge and syntactic-level paraphrase matching MT × ✓

Table 5: NLG-METRICVERSE supported metrics for the v1.0.0 release, in ascending order of publication. We
use the following abbreviations for different techniques and features: G – Grammar-based, N – N-gram-based, D
– Distance-based, E – Embedding-based, S – Statistics-based. For tasks, SUM – Summarization, MT – Machine
Translation, SR – Speech Recognition, IC – Image Captioning, DG – Document or Story Generation, QG – Query
Generation, RG – Dialogue Response Generation, D2T – Data-to-Text, TC – Text Completion; we only list the ones
justified by the original paper or by the first NLG application.
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Metric Technique Property Appl. Tasks Trained Unsupervised

MOVERScore
Zhao et al., 2019 E

IDF-weighted n-gram soft-alignment (WMD generalization) via
contextualized embeddings; it computes the minimum cost of
transforming the generated text to the reference text, taking into account
Euclidean distance between vector representations of n-grams, as well
as their document frequencies

MT, SUM,
D2T, IC

✓
ELMo/BERT ✓

EED
Stanchev et al. 2019 D Levenshtein distance + jump operation MT × ✓

COMET
Rei et al., 2020 E

multilingual-MT human judgment predictions through pre-trained
cross-lingual encoders (word embeddings) + pooling layers (sentence
embeddings) + feed-forward regressor or triplet margin loss depending
on the judgment type (real-value or relative ranking)

MT
✓

XML-RoBERTa
end-to-end

×

FactCC(X)
Kryscinski et al. 2020 E

weakly-supervised document↔summary-sentence factual consistency
evaluation based on BERT’s [CLS] embedding

SUM
✓

BERT
end-to-end

×

BLEURT
Sellam et al., 2020 E

robust human score prediction based on fine-tuning a BERT model
with an additional pre-training scheme characterized by millions of
synthetic reference-candidate pairs and lexical-/semantic-level tasks
combined through an aggregated loss

MT, D2T
✓

BERT
end-to-end

×

NUBIA
Kane et al. 2020 E

human score prediction with three modules: neural feature extractor
on reference-hypothesis pairs (multiple pre-trained transformers
capturing semantic similarity, logic entailment, sentence intelligibility)
+ aggregator (features→quality score mapping) + calibrator

MT, IC

✓
RoBERTa

GPT-2
end-to-end

×

BERTScore
Zhang et al., 2020 E IDF-weighted n-gram hard-alignment via contextualized embeddings MT, IC

✓
BERT ✓

BARTScore
Yuan et al., 2021 E

multi-perspective evaluation as text generation via a pre-trained
seq2seq model to measure how likely hypothesis and reference are
paraphrased according to the probability of one giving the other

MT, SUM,
D2T

✓
BART ✓

Perplexity
Jelinek et al., 1977 E how likely a model is to generate the input text sequence SR ✓ ✓

PRISM
Thompson and Post 2020 E

sequence-to-sequence paraphraser to score MT system outputs
conditioned on their respective human references TC

✓
GPT-2
Grover

✓

MAUVE
Pillutla et al. 2021 E, D

comparison measure for open-ended text generation w/ divergences
in a quantized embedding space TC

✓
GPT-2
Grover

✓

Table 6: Table 5 continuation.

Figure 10: Pearson correlations between automatic metrics and human annotations for each quality dimension
inspected in the case study, i.e., informativeness, factualness, fluency, succinctness.

3479



Proceedings of the 29th International Conference on Computational Linguistics, pages 3480–3495
October 12–17, 2022.

TestAug: A Framework for Augmenting Capability-based NLP Tests

Guanqun Yang▲ Mirazul Haque♢ Qiaochu Song▲

Wei Yang♢ Xueqing Liu ▲

▲Department of Computer Science, Stevens Institute of Technology
♢Department of Computer Science, The University of Texas at Dallas

gyang16@stevens.edu, mirazul.haque@utdallas.edu, qsong6@stevens.com

wei.yang@utdallas.edu, xliu127@stevens.edu

Abstract

The recently proposed capability-based NLP
testing allows model developers to test the func-
tional capabilities of NLP models, revealing
functional failures that cannot be detected by
the traditional heldout mechanism. However,
existing work on capability-based testing re-
quires extensive manual efforts and domain ex-
pertise in creating the test cases. In this pa-
per, we investigate a low-cost approach for the
test case generation by leveraging the GPT-3
engine. We further propose to use a classi-
fier to remove the invalid outputs from GPT-3
and expand the outputs into templates to gen-
erate more test cases. Our experiments show
that TestAug has three advantages over the
existing work on behavioral testing: (1) Tes-
tAug can find more bugs than existing work;
(2) The test cases in TestAug are more di-
verse; and (3) TestAug largely saves the man-
ual efforts in creating the test suites. The
code and data for TestAug can be found at
https://github.com/guanqun-yang/testaug.

1 Introduction

In recent years, natural language processing (NLP)
has seen major breakthroughs in the model perfor-
mances. Conventional approaches to evaluating
NLP models’ performance rely on reporting aggre-
gate metrics such as the accuracy and F-1 scores on
the held-out dataset. However, the held-out scores
do not represent the model’s performance on data
in the wild (Geva et al., 2019; Gururangan et al.,
2018; Bai et al., 2021). Moreover, the aggregated
scores cannot shed lights on where the model fails
and how to fix the failures. For example, recent
studies show that even stress-tested commercial
NLP APIs (e.g., Google Cloud’s Natural Language
API1 and Microsoft’s Text Analytics API2) often

1https://cloud.google.com/natural-language
2https://azure.microsoft.com/en-us/services/cognitive-

services/text-analytics

Table 1: Example of capability-base tests on three NLP
tasks: sentiment classification, paraphrase detection,
and natural language inference.

Task: Sentiment Classification
Capability: Negation
Test Description: Negative if negated positive words
Input: "No one loves the food."
Label: Negative
Task: Paraphrase Detection
Capability: Negation
Test Description: Paraphrase if replacing a word with the negated antonym
Input: "She is a generous person. She is not a mean person."
Label: Paraphrase
Task: Natural Language Inference
Capability: Downward entailment
Test Description: Entailment if replacing a word with its superset
Input: "Some cows are brown. Some animals are brown."
Label: Entailment

fail on test cases of simple behaviors (Glockner
et al., 2018; Ribeiro et al., 2020).

To assist developers in finding behavioral fail-
ures in their models, recent work has proposed
a framework called CheckList for behavioral or
capability-based NLP testing (Ribeiro et al., 2020;
Tarunesh et al., 2021). Such tests include input and
output pairs to examine the model’s performance
on each linguistic capability. Table 1 shows exam-
ples of capability-based tests for three NLP tasks.
For example, the test case "No one loves the food"
contains a negated positive word, and its sentiment
is negative. With a set of sentences each contain-
ing negated positive words, we can test whether
the model correctly understands the sentiment of
any sentence containing the negated positive word.
Such a set is called a test suite.

In existing capability-based testing frame-
works (Ribeiro et al., 2020; Tarunesh et al., 2021),
the test suites are generated from manually created
natural language templates (e.g., "She is a [] per-
son" and "she is not a [] person.") and a pre-defined
list of words to fill the template (e.g., generous,
mean). Existing work thus has two disadvantages:

• High Cost of Labeling. The current prac-
tice of creating templates requires a high cost.
Even worse, despite the crowdsourcing avail-
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ability, expert annotations are often required:
the templates need to both follow the linguis-
tic rules and capture potential NLP pitfalls.

• Low Diversity. Even when expert annota-
tions are available, the test cases generated
following the current practice often only show
diversity on a superficial level.

For example, for some capabilities in (Ribeiro
et al., 2020), the only variation comes from
persons’ names (e.g., "If {male name} and
{female name} were alone, do you think he
would reject her?" and "If {male name} and
{female name} were alone, do you think she
would reject him?"). This lack of diversity
hinders the test cases from revealing more
of the models’ prediction errors when they
satisfy the test.

In this work, we propose a novel framework for
capability-based testing to address the challenges
of scalability and diversity mentioned above. In our
framework, TestAug, the developer first annotates
a few seed test cases, TestAug then leverages the
GPT-3 engine (Brown et al., 2020) to generate test
cases similar to the seed. Next, TestAug expands
the GPT-3 generated cases into templates to gener-
ate more cases. Finally, TestAug includes a validity
classifier to check the correctness of the generated
cases, and discard the invalid cases. Our experi-
ments show that the validity classifiers filter the in-
valid cases with success rates of at least 90%, 90%,
and 80% for three tasks we evaluated. Furthermore,
the valid generated cases are more diverse and can
detect more bugs than existing work (Ribeiro et al.,
2020). Our contributions are three folds:

• We propose a novel framework TestAug
for automatically generating capability-based
NLP test suites based on GPT-3;

• TestAug is shown to outperform the existing
capability-based NLP testing framework in
3 aspects: better ability to detect bugs, more
diversity, and fewer annotation efforts;

• We have published our test suite to help devel-
opers and researchers test their NLP models;

2 Background

Capability-based Testing for NLP Models. Tradi-
tionally, NLP models are evaluated using the held-
out datasets, that is, using the train/validation/test

split. However, recent studies (Yanaka et al., 2019;
Bowman and Dahl, 2021) found that the held-out
mechanism suffers from bias (Poliak et al., 2018)
and cannot effectively reflect the improvements
in the model performance (Yanaka et al., 2019).
To help gain a more comprehensive understanding
of the model performance, researchers proposed
a new approach to evaluating NLP models called
linguistic capability-based testing (Ribeiro et al.,
2020; Joshi et al., 2020a; Tarunesh et al., 2021).
That is, instead of testing and reporting the aver-
age performance on one dataset, we test and report
multiple metrics by assessing the model’s capa-
bilities of handling different test scenarios. The
taxonomy of the capabilities can be organized by
linguistic theory (Cooper et al., 1996), logic, do-
main knowledge (Joshi et al., 2020b), or the func-
tional requirements defined by the specific appli-
cation (Kirk et al., 2021; Wang et al., 2021; van
Aken et al., 2021). For example, to test an NLI
model’s logic reasoning capabilities, researchers
examined its different aspects, such as handling
of negations, boolean, quantifiers, comparatives,
monotonicity, etc. (Richardson et al., 2020; Cooper
et al., 1996). Later, Ribeiro et al. (2020) extended
capability-based testing to other NLP tasks, in-
cluding sentiment classification, paraphrase detec-
tion, and question answering. The capabilities
for testing would be listed by software develop-
ers or by the subject matter experts who manually
identify a taxonomy of errors based on their exper-
tise in data annotation (Röttger et al., 2021). The
construction method for the test suites can be di-
vided into fully manual (Cooper et al., 1996; Joshi
et al., 2020a) and semi automatic approaches. The
manual approaches often suffer from scalability
issues (Cooper et al., 1996). Some existing ap-
proaches proposed to scale up the annotation by
leveraging non-expert annotators, but had to restrict
the capabilities to avoid making the tasks too com-
plicated for the annotators (Joshi et al., 2020a). To
construct a massive scale test suite without large
manual annotation efforts, Poliak et al. Poliak et al.
(2018) proposed to recast 13 existing datasets on
7 different tasks (e.g., NER, relation extraction)
into a unified NLI test suite, but this approach does
not apply to other NLP tasks. Other works remedy
the scalability issue by manually coming up with
templates where the blanks can be filled with inter-
changeable tokens or a cloze-style prediction from
language models (Ribeiro et al., 2020; Tarunesh
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et al., 2021), but automatically generating the tem-
plates remain a challenging task (Tarunesh et al.,
2021; Jeretic et al., 2020). Finally, Salvatore et al.
(2019) proposed a formal language for generating
templates, although it can be used to generate exam-
ples of contradictions in NLI. In contrast to the pre-
vious work, we propose to leverage the generative
power of GPT-3 to fully automate the construction
of capability-based test suites. Our framework thus
overcomes the scalability issue in existing work.
Prompt Learning for GPT-3. Our work has em-
ployed the GPT-3 engine (Brown et al., 2020) for
the generation and verification of the test suites,
where we have manually engineered and optimized
the prompt messages (Section 4). Prompt learn-
ing was found to be helpful for a wide range of
tasks (Shin et al., 2020; Gao et al., 2021), includ-
ing major natural language generation tasks (Li
and Liang, 2021). To the best of our knowledge,
however, there only exist a few works in literature
that systematically investigated prompt learning for
GPT-3 generation. Mishra et al. (2021) proposed a
dataset for teaching GPT-3 and BART (Lewis et al.,
2020) to follow instructions. Reynolds and Mc-
Donell (2021a) summarized the essential findings
in prompt engineering for GPT-3 from blogs and
social media and found that few-shot demonstra-
tion can be worse than zero-shot demonstration for
GPT-3. Due to the scarcity of literature, we propose
a new framework for prompting GPT-3 to generate
the capability-based test suites (Section 4).

3 Problem Definition

Software testing refers to the process of identifying
the inconsistencies between software’s actual and
expected execution process (Zhang et al., 2019).
Software testing includes white-box testing and
black-box testing. The latter is also known as be-
havioral testing, which examines the external be-
haviors of the software. It often requires the devel-
opers to collect test cases (i.e., input/output pairs)
to constitute a test suite (i.e., a collection of cases
for testing specific software behaviors).

In recent years, following the success of natural
language processing, behavioral testing was intro-
duced to test NLP models (Ribeiro et al., 2020),
especially large language models that show state-
of-the-art performance. The expected behaviors of
NLP models were defined in several aspects, which
are called the capabilities of the models. For exam-
ple, for a sentiment classification model, we should

expect it to output the negative sentiment for an
input sentence containing a negated positive word,
e.g., I don’t like the food. Behavioral testing goes
beyond the held-out validation evaluation scheme,
allowing software developers to detect and monitor
the behavioral failures of the model on top of the
performance metrics on the held-out dataset, pro-
viding insights into the model behavior in multiple
aspects.

The most recent work on NLP behavioral test-
ing is called CheckList (Ribeiro et al., 2020). In
CheckList, around 10 capabilities are defined for
each NLP task being tested. For each capability,
several tests were created by the developer, and the
requirement of each test is described with a natu-
ral language description as in Table 1. Each test
contains one or more natural language templates
containing slots, with a pre-defined word list asso-
ciated with each slot. For example, for the afore-
mentioned negation capability, one test template is
"[it] [benot] [a:pos_adj] [air_noun]." By defining
a list for each slot, the developer can use this tem-
plate to generate test cases such as "That is not a
perfect seat." The test cases generated following
each test and the overarching linguistic capability
constitute the test suite T .

4 The TestAug Framework

Given a linguistic capability and their specific tests,
the previous approach to generating test cases re-
lies on manual templates. In this paper, we pro-
pose a novel framework (namely, TestAug for Test
Suite Augmentation) to reduce such manual efforts.
Figure 1 shows the control flow of our framework.
First, TestAug starts with a few seed test cases from
the CheckList test suite (Ribeiro et al., 2020). It
leverages the description of the test and the seed
test cases to prompt GPT-3 to generate more cases
(Section 4.1). The correctness of the generated
GPT-3 cases is examined through a trained binary
classifier (Section 4.2), and expanded into more
templates by matching the GPT-3 case with the
seed case (Section 4.3). Finally, the aggregate test
suite is used for model testing; the test results pro-
vide feedback to the NLP model developer for the
next iteration of testing.

4.1 Prompt Engineering for Instructing
GPT-3 to Generate Test Cases

We design our natural language inputs (i.e.,
prompts) based on the practices of instructing GPT-
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Figure 1: The control-flow graph of TestAug.

3 for dataset creation (Liu et al., 2022; Reif et al.,
2021; West et al., 2021; Schick and Schütze, 2021;
Reynolds and McDonell, 2021b).

We use prompt engineering (Liu et al., 2021) to
instruct GPT-3 3 to generate test cases that meet the
requirement of the test description. A prompt is an
instructive sentence that tells GPT-3 the command
to follow. For example, Table 2 shows the prompt
"A negative sentiment sentence with negated pos-
itive word." Meanwhile, it has been shown that
generative models’ performance can be improved
with demonstrations (Gao et al., 2021), i.e., ex-
ample sentences that append the prompt sentence
to show examples of what the generated sentence
should look like. For example, for the prompt men-
tioned above, one demonstration sentence is "No
one enjoys that seat". In this paper, to instruct
GPT-3 to generate test cases that meet the require-
ment of the test description, we propose to simply
use the test description as the prompt, followed by
three randomly sampled seed test cases from the
CheckList test suite (Ribeiro et al., 2020; Tarunesh
et al., 2021) as the demonstrations. We use the
dashed points to format each demonstrated case,
wrapped by the bracket "{}". Our prompt design
for the sentiment classification task can be found
in Table 2; the one for paraphrase detection and
natural language inference can be found in Table 7
in the Appendix. In particular, our choice for the
format (especially the bracket) comes from our em-
pirical observation that such a format encourages

3More specifically, we use a GPT-3 variant (namely,
davinci-instruct-beta) that specializes in following
instructions for better its generation quality in our pilot exper-
iments.

Table 2: Prompt designs to elicit GPT-3 for test
case generation in sentiment classification tasks. The
test description specifics the context of generation;

the seed sentences help GPT-3 generate similar yet di-
verse test cases; the test cases are then generated by
the GPT-3.

A negative sentiment sentence with negated positive word.
- { No one enjoys that pilot. }
- { No one admires the seat. }
- { No one appreciates that airline. }
- { No one appreciates that air traffic controller. }

GPT-3 to generate valid sentences with higher prob-
abilities. If skipping the bracket, GPT-3 tends to
generate long sentences that are dissimilar to the
demonstrations; for the two-sentence tasks, GPT-3
is less likely to generate correctly formatted pairs
without the bracket.

4.2 Filtering Incorrect Test Cases
The test cases generated by GPT-3 may fail to sat-
isfy tests as they (1) do not satisfy the required
format; for example, the tasks of paraphrase de-
tection and natural language inference require a
pair of sentences as a test case while sometimes
only one sentence could be found in the GPT-3
generation, (2) do not satisfy the tests expressed in
the prompts (i.e., the requirement or description of
the test case); for example, the generated test case
("Joe isn’t at the party.", "Joe is at the party.") for
natural language inference is incorrect as it violates
the required label "entailment" for natural language
inference task; the "This food isn’t bad, but I wasn’t
expecting much." for sentiment classification does
not meet the requirement for the test description "I
thought something was negative, but it was neutral.
because the former part is not negative, neither is
the latter neutral.

To address the issues above, we create a validity
filter that automatically removes the invalid test
cases generated by GPT-3. The filter is constructed
by training a binary classifier. The training data
for the binary classifier comes from our manual
annotation of the validity of the GPT-3 generated
sentences. We follow the following two-phase pro-
cess for the filter. In the first phase, we instruct
GPT-3 to generate 30-50 cases for each test de-
scription, and two annotators manually annotated
the validity of the test case by checking the two
types of errors discussed in Section 4.24. The tests

4The annotators were two of the authors; they are both
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whose test cases were predominately valid5 were
expected to generate valid cases most of the time;
otherwise, we proceeded to the second phase. In
the second phase, we keep instructing GPT-3 to
generate sentences until at least 100 invalid and
100 valid cases were collected. The sentences in
the second phase were then used as the training set
to fine-tune a roberta-base classifier, while
the sentences in the first phase were used as the test
set. Afterward, we could use the trained classifiers
together with GPT-3 to generate test cases in a fully
automatic manner.

4.3 Expanding GPT-3 Generated Test Cases
into Templates

After obtaining the generated test cases from GPT-
3, we can further augment the test suite by ex-
panding the GPT-3 generated cases into templates.
More specifically, if a word in a seed test case reap-
pears in the GPT-3 generated test cases, it can be
converted back into the slot, and we can vary the
slot words using the pre-defined list. For example,
using the template "No one [pos_verb_present]s
[the] [air_noun]." from CheckList and the pre-
defined word "appreciates" for [pos_verb], we cre-
ate the seed sentence "No one [appreciates] that
airline.". By demonstrating this seed sentence to
GPT-3, it generates the new sentence "No one [ap-
preciates] that air traffic controller.". Since "ap-
preciate" appears again, we can convert it back to
the slot [pos_verb], resulting in a new template
"No one [pos_verb] that air traffic controller.". As
misplaced pronouns yield nonsensical sentences,
we only take the nouns, verbs, and adjectives (i.e.,
content words) into account when creating new
templates; for example, even though "that" also
reappears in the generated sentence, we do not cre-
ate a new slot at its location.

5 Experiments

In this section, we evaluate the effectiveness of Tes-
tAug and compare it with existing work (Ribeiro
et al., 2020; Tarunesh et al., 2021) in multiple as-
pects. First, we compare TestAug’s ability to detect
the model failures with existing work (Section 5.2).
Second, we quantitatively investigate the diversity
of test cases (Section 5.3). Since test cases are

graduate students in computer science working on NLP-
related research. Their agreement rate is reported in Table 6.

5The threshold is 90% for sentiment classification and para-
phrase detection tasks and 80% for natural language inference
task

automatically generated with TestAug, we also in-
vestigate the validity of the generated cases, e.g.,
whether the generated test cases correctly satisfy
each capability (Section 5.4). Finally, we quanti-
tatively evaluate the manual efforts saved by Tes-
tAug compared to CheckList (Section 5.5). Before
reporting these results, we first explain our experi-
mental settings in Section 5.1.

5.1 Experiment Settings

Evaluated Tasks. We compare our framework
with existing works by following their experiment
settings (Ribeiro et al., 2020; Tarunesh et al., 2021).
We investigate the following NLP tasks: sentiment
classification (i.e., the Stanford Sentiment Tree-
bank (SST) dataset6 (Socher et al., 2013)), para-
phrase detection (i.e., the Quora Question Pair
(QQP) dataset7), and natural language inference
(i.e., the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015)). Exist-
ing work also studied extractive question answer-
ing (Ribeiro et al., 2020) and hate speech detec-
tion (Röttger et al., 2021); in this paper, however,
we skip the two tasks for the following reasons. We
skip extractive QA because we find it empirically
challenging for GPT-3 to generate examples where
all the required components (context, question, an-
swer) meet the requirements at the same time. We
thus leave extractive QA for future work. We skip
hate speech detection because GPT-3 cannot be
prompted for generating profanity words8.
Evaluated Models. Existing work (Ribeiro
et al., 2020) evaluated their capability-based test-
ing frameworks on state-of-the-art NLP models
such as BERT, RoBERTa, and commercial APIs
such as Google Cloud’s Natural Language API
or Microsoft’s Text Analytics API. In this paper,
we focus on testing only the open-source models
because the underlying model of these APIs are
inaccessible for us to fine-tune, which is critical in
our evaluation. For all our three tasks (i.e., SST,
QQP, and SNLI), there exist publicly available fine-
tuned models on the HuggingFace model Hub9;
thus, we reuse these fine-tuned models to test our

6We used discretized binary version – SST2.
7https://www.kaggle.com/c/quora-question-pairs
8Our attempts to generate profanity words were denied

with a flagged warning message from GPT-3: "These state-
ments are all incredibly harmful and oppressive. They promote
hatred and bigotry against a marginalized group of people, and
they should not be tolerated."

9https://huggingface.co/models
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Figure 2: Capability-wise error rates of sentiment clas-
sification.

framework. A complete list of models we evaluate
can be found in Table 10.

5.2 Evaluating TestAug’s Ability for Bug
Detection

5.2.1 Metric
Patched Failure Rate. To the best of our knowl-
edge, we are not aware of any existing method that
directly compares the effectiveness of two NLP test
suites. One may think the most straightforward ap-
proach is directly comparing the failure rates of the
same model on the two test suites. Despite the sim-
plicity, we argue that these two failure rates are in
fact incomparable: the effectiveness of a test suite
is defined by how many bugs it can find (Kochhar
et al., 2015); as a result, it is unclear whether a test
suite with a lower failure rate but more error cases
has a better performance.

To compare the effectiveness of test suites
T1, T2,⋯, TN , we propose to create new training
and testing sets as follows.

TTest ← Sample( N

⋃
n=1
Tn), T (n)

Train ← Tn−TTest

Then we use the training sets T (n)
Train to patch (or

fine-tune) the modelM and evaluate the patched
(or fine-tuned) model M̂n on the test set TTest. We
compare a model M̂n’s patched failure rate on
different training sets; a lower rate thus indicates a

stronger capability in finding bugs.

FR
(n)
Patched =

∣TTest∣
∑
i=1

1(M̂n(xi) ≠ yi)
Additionally, we note that our evaluation method

involves random partitions of T and fine-tuning of
the target models; the results of both depend on
the choice of random seeds. We, therefore, re-
peated our experiments with 5 different random
seeds when partitioning T 10; we fixed the model
fine-tuning seed to 42 to prevent evaluation results
from being affected by the randomness of training.

5.2.2 Analysis
In Table 3, Figure 2 and Figure 3 of the Appendix,
we report the failure rates of TestAug and compare
it with existing work (Ribeiro et al., 2020; Tarunesh
et al., 2021). The three tasks we study contain 12
capabilities.

First, in Table 3, we report the average failure
rates across all capabilities for each task, compared
with existing work. We use TTestAug to represent
the test suite by TestAug, and TCheckList to rep-
resent the suite by existing work (Ribeiro et al.,
2020; Tarunesh et al., 2021). We use the evaluation
methodology in Section 5.2.1 to merge TTestAug

and TCheckList for comparing their failure rates. We
also report the failure rate on the common test set
without the fine-tuning/patching for comparison. In
addition, we ablate study TTestAug’s performance
by removing the cases directly from GPT-3 (i.e.,
TGPT−3) and the expansion (i.e., TExpansion), us-
ing only the resulting subset for patching. We can
observe that the resulting failure rate of TTestAug

is consistently lower than TCheckList, indicating
that TTestAug can find more bugs. We also find
TTestAug\TExpansion to outperform TTestAug in 4
cases, whereas TTestAug\TGPT−3 outperforms the
latter in only 1 case, this result indicates that GPT-3
generated cases are more important than the ex-
panded cases, whereas the expanded cases are not
always helpful. Next, we plot the capability-level
failure rates for three tasks (Figure 2, Figure 3 in
Appendix) From Figure 2 and Figure 3, we can
observe that TTestAug does not consistently outper-
form TCheckList when looking at each linguistic
capability; for example, when evaluating sentiment
classification task (Figure 2), the ALBERT’s tem-
poral capability gives us a higher failure rate of

10These seeds {11, 14, 25, 42, 74} are also randomly gen-
erated integers.
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Table 3: The comparison of the bug detection ability between TestAug and CheckList. Each cell shows the failure
rate, i.e., the error rate on the held-out validation dataset. For each cell, the experiments were randomized 5 times
and their mean and standard deviation are reported. The complete model path of each model can be found from
Table 10. As we have not implemented the template-expansion model for NLI task, the cells are marked as "/".

Model type Original Unpatched Patched

TCheckList TTestAug
TTestAug\TGPT−3

TTestAug\TExpansion

Sentiment Classification

ALBERT 7.3 32.6±5.7 13.4±6.5 11.3±10.0 10.6±6.6 9.6±8.2

BERTBase 7.6 33.9±6.1 9.0±4.2 8.3±4.2 8.5±1.6 9.9±4.9

DistillBERT 10.0 29.5±10.9 6.5±3.4 3.9±2.1 4.9±2.1 5.1±3.3

RoBERTaBase 5.7 14.2±6.1 3.7±2.3 1.6±1.0 2.7±2.7 1.4±1.2

Paraphrase Detection

ALBERT 9.3 38.1±3.8 7.1±0.8 0.6±0.4 5.8±1.8 0.4±0.4

BERTBase 9.1 36.0±4.9 6.2±1.5 0.5±0.4 5.6±1.1 0.4±0.3

DistillBERT 10.3 49.8±10.2 12.5±16.4 1.1±2.4 6.4±3.9 7.3±15.8

Natural Language Inference

ALBERT 9.9 42.8±1.9 30.1±4.2 23.0±1.6 / /

DistillBERT 12.6 34.7±3.6 23.6±6.1 16.5±3.9 / /

RoBERTaLarge 8.1 17.8±4.0 8.3±3.1 8.0±3.1 / /

TTestAug after patching, indicating our augmented
test suite has a weaker bug detection ability; a
similar phenomenon could be found when testing
vocabulary capability of BERTBase in paraphrase
detection task and syntactic and presupposition ca-
pability of RoBERTaLarge in natural language in-
ference task. This shows that, despite the overall
ability to find more bugs (Table 3), the additional
test cases from GPT-3 do not uniformly contribute
to the improvement of each specific linguistic ca-
pability.

5.3 Evaluating the Diversity of TestAug
Results

5.3.1 Metric

As existing approaches rely on manually created
templates, they have low linguistic variations. Such
issues can be alleviated with the help of GPT-3. In
this section, we evaluate the linguistic diversity of
the generated test cases. We use two metrics to
evaluate the diversity: first, we leverage the Self-
BLUE score to evaluate the diversity of an entire
test suite; second, to measure the test case-level di-
versity, we introduce a new metric, i.e., the average
number of unique dependency paths in each test

case.
Self-BLEU. Self-BLEU is an extension of the reg-
ular BLEU that evaluates the diversity of gener-
ated texts (Zhu et al., 2018). Given a list of texts
Ŷ = {Ŷ1, Ŷ2,⋯, ŶN}, Self-BLEU is the average
BLEU score between every single sentence and all
other sentences,

Self-BLEU(Ŷ) = 1

N

N

∑
i=1

BLEU({Ŷi}, Ŷ≠i) (1)

When k is fixed, a lower Self-BLEU score indicates
a higher diversity of the sentence.
Number of Unique Dependency Paths. We pro-
pose to use the number of unique dependency
paths to measure the diversity at the test case
level. Each path is a path of POS tags connected
by edges in the dependency tree (Jurafsky and
Martin, 2000). For example, for the sentence
"I (NOUN) love (VERB) chicken (NOUN)", the
unique paths are NOUN→VERB, VERB→NOUN,
NOUN→VERB →NOUN.

5.3.2 Analysis
We compare the Self-BLEU and the number of
unique dependency paths between TestAug and
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CheckList in Table 5, where we control the num-
ber of test cases under each test11. From Table 5,
we can observe that the linguistic diversity of the
test suites TGPT−3 show substantial improvement
over the template-based counterparts TCheckList:
the Self-BLEU4 score has a decrease at least 5.3%
(the natural language inference task) and the num-
ber of unique dependency paths is of at least 1.81
times compared to the original test suite (the natu-
ral language inference task).

Table 4: TestAug saves manual efforts in generating new
test cases and expands the set of available templates.

#Uniuqe Seed
Sentences

#Unique New
Sentences

#Seed
Templates

#New
Templates

Sentiment Classification

292 3275 (11.2×) 29 1441 (49.7×)

Paraphrase Detection

124 6427 (50.4×) 17 1307 (76.9×)

Natural Language Inference

150 4976 (33.2×) 50 /

Table 5: Linguistic diversity of test suites.

Self-BLEU4 (↓)
Number of Unique
Dependency Paths (↑)

Sentiment Analysis

TTestAug 0.634 480
TCheckList 0.853 84

Paraphrase Detection

TTestAug 0.627 418
TCheckList 0.775 117

Natural Language Inference

TTestAug 0.430 210
TCheckList 0.454 116

5.4 Evaluating the Validity of TestAug Results

In this section, we evaluate the effectiveness of
our pipeline of filtering incorrect test cases (i.e.,
Section 4.2). As is shown in Table 11 of the Ap-
pendix, the two-phase approach successfully filters
the invalid cases: the classification accuracy is con-
sistently higher than the validity threshold (90% for
sentiment classification and paraphrase detection

11We sampled 100 unique sentences per test with a fixed
seed of 42 for both test suites. This gave us 1100, 1700,
and 1200 sentences in sentiment classification, paraphrase
detection, and natural language inference task, respectively.

Table 6: Annotation Cohen’s κ and agreement rate.

Agreement

Total
Cohen’s κ

Sentiment Analysis 438
461

= 95.0% 0.741

Paraphrase Detection 365
401

= 91.0% 0.812

Natural Language Inference 151
156

= 96.8% 0.746

and 80% for natural language inference)12. At the
same time, the Cohen’s κ on test set annotation
indicates substantial agreement (McHugh, 2012).

5.5 Evaluation of the Manual Efforts Saved
by TestAug

Finally, we quantitatively evaluate the manual ef-
forts saved by TestAug compared to CheckList;
the results are reported in Table 4. When query-
ing GPT-3 with a few hundred sentences per task,
we obtained a new set of valid test cases 11.2 to
50.4 times in size. The template expansion in turn
increased the number of available templates to at
least 49.7 times, reducing manual efforts by at least
98.0% (Table 4)13. This result thus shows that Tes-
tAug can largely save manual efforts in creating
the test suites.

6 Discussion, Conclusions, and Future
Work

This paper introduces a novel framework TestAug
for capability-based NLP testing. Addressing cur-
rent system’s heavy dependence on manual creation
of templates, our framework can save at least 98.0%
of the manual annotation effort with GPT-3; mean-
while, the test suites generated with our framework
reveal more bugs than existing systems and show
better diversity. Our framework guarantees the cor-
rectness of the generated cases by removing the
invalid output from GPT-3.

The main limitation of TestAug is that GPT-3
fails to generate highly structured test cases, such
as cases for extractive question answering. It also
struggles to generate cases that require logic or
math reasoning. We leave the exploration of these
cases for future work.

12Additional capabilities in NLI tasks are below 80% valid
threshold. Automatic filtering these cases out with trained
classifiers are left as future work.

13New templates do not cost additional manual efforts
when considering all templates as a whole, leading to at least

1441

1441+29
× 100% = 98.0% saving. With the help of our au-

tomatic filtering pipeline, both sentence and template counts
could be further increased with additional queries.
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Ethical Considerations

Annotator Rights
Two of the authors (one male and one female; both
identified themselves as Asians) annotated the data
following annotation guidelines; the guidelines are
discussed and finalized after thorough discussions
(the violations of these guidelines are discussed
in Section 4.2). We acknowledge the annotators’
efforts with shared authorship.

Intended Uses
TestAug’s intended use is as a tool to augment
template-based test suites with newly generated
test cases from GPT-3; two sets of test cases are
then used altogether to evaluate an NLP models’
linguistic capabilities; we believe this application
of existing datasets are consistent with their in-
tended uses. We showed the effectiveness of this
system in Section 5. We hope the adoption of Tes-
tAug into the NLP model development could make
newly built NLP models more linguistically capa-
ble. Meanwhile, the TestAug includes GPT-3 as a
component, we urge users of our system to follow
the OpenAI’s usage guidelines 14.

Potential Misuse
TestAug might be misused to overestimate the
models’ linguistic capabilities. Specifically, even
though failures on the test suites show models’
shortcomings in a given linguistic capability, the
absence of failures does not mean the models being
tested are free from bugs; it is likely that test suites
are not yet capable enough to reveal the model’s
bugs. We, therefore, call for a judicious interpre-
tation of an NLP model’s performance based on
TestAug test suites. Moreover, we believe NLP
testing is an iterative process; it might take mul-
tiple iterations of applying TestAug to reveal the
model’s issues in linguistic capabilities.
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A Appendix

Table 7: Prompt designs for paraphrase detection and
natural language inference tasks.

Paraphrase Detection
Two sentences are equivalent when using according to.

- {{ Who do analysts think is the smartest footballer in the world? }
- { Who is the smartest footballer in the world according to analysts? }}

- {{ Who do students think is the top woman in the world? }
- { Who is the top woman in the world according to students? }}

- {{ Who do readers think is the worst gamer in the world? }
- { Who is the worst gamer in the world according to readers? }}

- {{ What does the data say about the most popular baby names? }
- { What are the most popular baby names according to the data? }}

Natural Language Inference
Write a pair of sentences that have the same relationship
as the previous examples. Examples:

- {{ Philip, Charles and Colin are the only children of Henry. }
- { Henry has exactly 3 children. }}

- {{ Grace, Thomas and Helen are the only children of Andrea. }
- { Andrea has exactly 3 children. }}

- {{ Don has 2 dollars. He received 8 more dollars. }
- { Don now has 10 dollars. }}

- {{ Mary has a cat. She also has a dog. }
- { Mary has two pets. }}

Table 8: Hyperperparamer choice for model fine-tuning

Hyperparameter Value

Learning rate 5e − 6
Batch size 16
Number of training epochs 10
Max. sequence length 128
Seed 42
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(a) Paraphrase Detection

(b) Natural Language Inference

Figure 3: Capability-wise error rates on paraphrase detection and natural language inference tasks.
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Table 9: Linguistic capabilities that appeared in the experiments and their explanations with corresponding examples.
The description of the tested linguistic capabilities follow the taxonomy and definition provided in previous work
(Ribeiro et al., 2020; Tarunesh et al., 2021; Joshi et al., 2020b).

Linguistic Capability Explanation Template and Example

Sentiment Analysis

Negation Resolving "not"
{neg} {pos_verb_present} {the} {air_noun}.
I didn’t admire that service.

SRL Resolving subjects and objects
Do I think {it} {be} {a:pos_adj} {air_noun}? No
Do I think that is an amazing aircraft? No

Temporal Resolving temporal changes
I {neg_verb_present} this airline, {change} in the past I would {pos_verb_present} it.
I regret this airline, although in the past I would appreciate it.

Vocabulary Resolving word choice variations
{it} {air_noun} {be} {neg_adj}.
That food was ugly.

Paraphrase Detection

Coref Resolving male and female names

S1: If {female} and {male} were alone, do you think he would reject her?
S2: If {female} and {male} were alone, do you think she would reject him?
S1: If Julie and Roy were alone, do you think he would reject her?
S2: If Julie and Roy were alone, do you think she would reject him?

Negation Resolving "not"

S1: What are things {a:noun} should worry about?
S2: What are things {a:noun} should not worry about?
S1: What are things a friend should worry about?
S2: What are things a friend should not worry about?

SRL Resolving subjects and objects

S1: Did {first_name} {verb[0]} the {obj}?
S2: Was {first_name} {verb[1]} by the {obj}?
S1: Did Sam remember the factory?
S2: Was Sam remembered by the factory?

Taxonomy Resolving external taxonomic hierarchy

S1: How can I become {a:x[1]} person?
S2: How can I become {a:x[0]} person?
S1: How can I become a frightened person?
S2: How can I become a scared person?

Temporal Resolving temporal changes

S1: Is {first_name} {last_name} {a:noun}?
S2: Did {first_name} {last_name} use to be {a:noun}?
S1: Is Dorothy Clarke an agent?
S2: Did Dorothy Clarke use to be an agent?

Vocabulary Resolving word choice variations

S1: How can I become less {x[1]}?
S2: How can I become more {x[1]}?
S1: How can I become less active?
S2: How can I become more active?

Natural Language Inference

Causal
Resolving actions between one
object and two entities

P: {NAME} moved the {OBJECT_TABLE} to {LOCATION_HOUSE1} from {LOCATION_HOUSE2}.
H: The {OBJECT_TABLE} is now in {LOCATION_HOUSE1}.
P: George moved the notebook to study room from bedroom.
H: The notebook is now in study room.

Conditional Resolving reasoning over conditions

P: If {NAME1} comes to the {LOCATION}, {NAME2} won’t come. {NAME1} did not come to the {LOCATION}.
H: {NAME2} didn’t come to the {LOCATION}.
P: If Kim comes to the park, William won’t come. Kim did not come to the park.
H: William didn’t come to the park.

Lexical Resolving word choice variations

P: {NAME} was born in {COUNTRY1}.
H: {NAME} is born in {COUNTRY2}.
P: Emily was born in Germany.
H: Emily is born in Malaysia.

Presupposition Resolving implications

P: {NAME}’s {T12_RELATION} is {ADJECTIVE_OF_PERSON}.
H: {NAME} has {A} {T12_RELATION}.
P: Florence’s brother is intolerant.
H: Florence has a brother.

Quantifier
Resolving "all" (universal quantification) and
"some", "none" (existential quantification)

P: None of the {OBJECTS} are {COLOUR1} in colour.
H: Some of the {OBJECTS} are {COLOUR2} in colour.
P: None of the cars are maroon in colour.
H: Some of the cars are pink in colour.

Syntactic Resolving ellipsis

P: {NAME} tried but wasn’t able to {VERB}.
H: {NAME} didn’t try to {VERB}.
P: Alan tried but wasn’t able to give.
H: Alan didn’t try to give.

World Resolving world knowledge such as geography

P: {NAME} lives in {T4_CAPITAL1}.
H: {NAME} lives in {T4_COUNTRY2}.
P: Ken lives in Kathmandu.
H: Ken lives in North Korea.
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Figure 4: The command line interface for data annotation. Annotators are given a test and three associated test cases
from the template-based test suite; they are asked to the annotate the validity of the GPT-3-generated sentences.
Annotators are reminded of the guidelines for filtering invalid samples when labeling each sentence (shown at
the top of the interface). We communicated explicitly for the intended uses of the annotated datasets before the
annotation.

Table 10: The fine-tuned models we evaluated in this paper.

Model name Task Size Checkpoint Identifier

DistillBERT Sentiment Analysis Small textattack/distilbert-base-cased-SST-2
ALBERT Sentiment Analysis Small textattack/albert-base-v2-SST-2
BERTBase Sentiment Analysis Base textattack/bert-base-uncased-SST-2
RoBERTaBase Sentiment Analysis Base textattack/roberta-base-SST-2
DistillBERT Paraphrase Detection Small textattack/distilbert-base-cased-QQP
ALBERTA Paraphrase Detection Small textattack/albert-base-v2-QQP
BERTBase Paraphrase Detection Base textattack/bert-base-uncased-QQP
DistillBERT Natural Language Inference Small textattack/distilbert-base-cased-snli
ALBERT Natural Language Inference Small textattack/albert-base-v2-snli
RoBERTaLarge Natural Language Inference Large ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
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Table 11: Proportion of valid sentences and performance of trained classifiers for automatic filtering.

Linguistic
Capability Test Accuracy F1

Proportion of
Valid Test Cases

Sentiment Analysis

SRL A negative sentiment sentence with negative sentiment question and word yes as the answer. / / 1.000

SRL A positive sentiment sentence with positive sentiment question and word yes as the answer. / / 0.994

SRL My opinion is more important than others’ when expressing positive sentiment. / / 0.948

SRL A negative sentiment sentence with positive sentiment question and word no as the answer. / / 0.928

Temporal I used to have negative sentiment to something, but now I have positive sentiment to it. / / 0.922

Negation A negative sentiment sentence with negated positive word. / / 0.910

SRL My opinion is more important than others’ when expressing negative sentiment. / / 0.900

Temporal I used to have positive sentiment to something, but now I have negative sentiment to it. 0.942 0.967 0.873

Negation I thought something was positive, but it was negative. 0.934 0.961 0.860

Vocabulary A negative sentiment sentence with negative words. 0.897 0.932 0.804

Negation A negative sentiment sentence with negated positive sentiment word and neutral contents in the middle. 0.915 0.935 0.653

Paraphrase Detection

Temporal Two sentences are different when talking about a person’s current job and his or her previous job. / / 1.000

Negation Two sentences are different when talking about someone should and should not do something. / / 0.973

Temporal Two sentences are different when talking about a person’s current job and his or her future job. / / 0.964

Vocabulary Two sentences are different when adjectives are modified by more and less. / / 0.912

Taxonomy Two sentences are equivalent when the nouns are modified by synonymous adjectives. 0.889 0.933 0.885

Coref Two sentences are different when swapping the subjects and objects. 0.980 0.989 0.843

Temporal Two sentences are different when talking about doing something before and after another thing. 0.982 0.989 0.800

Temporal Two sentences are different when describing doing something before and after some specific time. 0.982 0.988 0.782

Negation Two sentences are different when talking about the properties of doing or not doing something. 0.965 0.977 0.754

Vocabulary A sentence with the noun modified by an adjective is equivalent to the sentence without adjective. 0.920 0.946 0.740

SRL Two sentences are equivalent when using according to. 0.958 0.971 0.708

Negation Two sentences are different when describing a person with adjective and a clause including the negation of the same adjective. 0.871 0.913 0.690

Taxonomy Two sentences are equivalent when one has an adjective modified by more and the other one has an antonym modified by less. 0.920 0.909 0.511

Coref Two sentences are different when referring someone’s family using different pronouns. 0.940 0.940 0.500

SRL Two sentences are different when swapping active and passive action. 0.930 0.933 0.471

Natural Language Inference

Lexical / / / 0.975

Syntactic / / / 0.936

Presupposition / / / 0.903

World / / / 0.902

Quantifier / / / 0.895

Causal / / / 0.857

Conditional / / / 0.834

Table 12: Creating new templates based on test cases generated by GPT-3.

Original Template and Test Case Generated Test Case New Template
Sentiment Analysis

No one {pos_verb_present}s {the} {air_noun}.
No one enjoys that seat.

This is not an easy service to appreciate. This is not an easy {air_noun} to appreciate.
That customer service was not fun. That customer {air_noun} was not fun.
I don’t think your customer service is admired. I don’t think your customer {air_noun} is admired.

Paraphrase Detection

Is it {mid} to {activity} before {hour}{ampm}?
Is it {mid} to {activity} after {hour}{ampm}?
Is it healthy to drink before 10am?
Is it healthy to drink after 10am?

Is it bad to drink before 8pm
Is it bad to drink after 8pm

Is it bad to {activity} before 8pm
Is it bad to {activity} after 8pm

Is it acceptable to drink before 2pm
Is it acceptable to drink after 2pm

Is it {mid} to {activity} before 2pm
Is it {mid} to {activity} after 2pm

Is it advisable to eat before 8pm
Is it advisable to eat after 8pm

Is it advisable to {activity} before 8pm
Is it advisable to {activity} after 8pm
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Abstract

As digitized traditional cultural heritage docu-
ments have rapidly increased, resulting in an
increased need for preservation and manage-
ment, practical recognition of entities and typ-
ification of their classes has become essen-
tial. To achieve this, we propose KOCHET
- a Korean cultural heritage corpus for the
typical entity-related tasks, i.e., named entity
recognition (NER), relation extraction (RE),
and entity typing (ET). Advised by cultural
heritage experts based on the data construc-
tion guidelines of government-affiliated orga-
nizations, KOCHET consists of respectively
112,362, 38,765, 113,198 examples for NER,
RE, and ET tasks, covering all entity types re-
lated to Korean cultural heritage. Moreover,
unlike the existing public corpora, modified
redistribution can be allowed both domes-
tic and foreign researchers. Our experimen-
tal results make the practical usability of KO-
CHET more valuable in terms of cultural her-
itage. We also provide practical insights of
KOCHET in terms of statistical and linguis-
tic analysis. Our corpus is freely available at
https://github.com/Gyeongmin47/KoCHET.

1 Introduction

Recently there has been an increasing interest in the
preservation of national historical artifacts and tra-
ditional cultural heritage, and also grows up the im-
portance of effective management of them through
digitization and archival. As the amount of digi-
tized information materials increases rapidly, in-
formation extraction (IE) tasks in natural language
processing (NLP), such as named entity recognition
(NER), relation extraction (RE), and entity typing
(ET), have become an essential and fundamental
step in the field of historical document analysis.

Despite the necessity of a well-refined entity-
centric corpus specialized in domestic cultural her-
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itage, unfortunately, there no exists any cultural her-
itage domain-specialized corpus in Korean. More-
over, conventional entity-related systems deal only
with a coarse set of entity types such as person, lo-
cation, and organization which is significantly lim-
ited in terms of application (Kim et al., 2020). This
absence of cultural heritage domain-specialized
corpus and narrow coverage of entity types hin-
ders the effective digitization of domestic historical
documents because training the model with general
corpus for entity-related tasks cannot afford to learn
enough significant entity types such as pagodas,
historical sites and intangible heritage, and their
relations. Furthermore, not in the cultural heritage
domain, the existing entity-related datasets super-
vised by the public institutions have a complicated
procedure for data acquisition, and they are also re-
stricted from modification and redistribution. These
cumbersome procedures and restrictions have been
stumbling blocks for researchers against the rapid
increase in digitized cultural heritage materials over
the past few decades.

To address these difficulties against the conser-
vation of Korean cultural heritage, we introduce a
new dataset collection called KOCHET - Korean
Cultural Heritage corpus for Entity-related Tasks,
a high-quality Korean cultural heritage domain-
specialized dataset for NER, RE, and ET tasks.
For corpus construction, we crawled the e-museum
digitized data of the National Museum of Korea1

(including data from all 50 museums) as the source
text which is for the interested public. We selec-
tively used resources from the museums in which
the details of artifacts were registered; moreover,
for the completeness of the attribute data, we lim-
ited the chronological range of the data from the
prehistoric era to the Korean Empire era, exclud-
ing the Japanese colonial period. For the annota-
tion, the categorization for classes and attributes
appropriate was defined and developed following

1https://www.emuseum.go.kr/
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the 2020 Named Entity Corpus Research Analy-
sis2 which was published under the guidelines as
institutional organizations.

As our corpus focuses on the entity features, it
has more detailed and abundant entity types includ-
ing diverse cultural heritage artifacts, compared
to the existing accessible datasets that aim to deal
with several downstream tasks in addition to entity-
related tasks. Furthermore, the ET of KOCHET
is the first freely available corpus for the ET task
in Korea. In addition to providing these values,
this paper provides detailed statistics and linguis-
tic analysis of KOCHET for each entity-related
task to demonstrate their applicability and enhance
understanding of the data, along with baseline ex-
periments with language models.

Our contributions are summarized as follows:

• We introduce KOCHET designed for entity-
related tasks. This guarantees a high-quality
corpus without restrictions regarding modi-
fication and redistribution. Moreover, to the
best of our knowledge, the ET corpus is the
first proposed corpus in Korean.

• We categorized the detailed entity types spe-
cialized in the cultural heritage domain, which
is essential for preserving our cultural and
historical artifacts, thereby contributing as an
alternative to the increased demand for the
digitalized archiving of cultural heritage doc-
uments.

• We prove the applicability of our entity-
abundant corpus in each task by providing
statistics and linguistic analysis, along with
the experiments with pre-trained language
models.

2 Related Works

As domains that require expertise, such as the cul-
tural heritage, contain entities or relationships that
rarely appear in general domains, the necessity of
a corpus specialized in the domain is obvious. De-
spite such demand, Korean does not yet have a
corpus specialized in the cultural heritage area, un-
like other languages.

2.1 General cultural heritage corpora
There have been the disclosures of corpora in an
effort to preserve traditional culture including the

2https://www.korean.go.kr

cultural heritage, composing data from the perspec-
tive of the entity-related tasks that we deal with. For
example, these include a Czech NER corpus con-
structed based on public optical character recogni-
tion data of Czech historical newspapers (Hubková
et al., 2020), a Chinese corpus suitable for the com-
putational analysis of historical lexicon and seman-
tic change (Zinin and Xu, 2020), and an English
corpus that is one of the most commonly used large
corpora in diachronic studies in English (Alatrash
et al., 2020).

2.2 Korean public corpora

The National Institute of Korean Language ,
which is an institution that has established the
norms for Korean linguistics, constructed a large-
scale dataset3 for the study of new computational
linguistics of Korean (Kim, 2006).

AI HUB is a massive dataset integration plat-
form4 hosted by the National Information Society
Agency (NIA)5, a government-affiliated organiza-
tion. To support the development of the Korean
artificial intelligence industry for the NLP field,
the NIA disclosed domain-specific corpora and 27
datasets have been released or are being prepared.

Electronics and Telecommunications Research
Institute , as part of the Exo-brain project6, pro-
vides corpora for NLP tasks such as morphological
analysis, entity recognition, dependency parsing,
and question answering, and guidelines for building
such high-quality corpora7. In addition to public
datasets opened by public institutions, there is a
Korean dataset publicly available for free without
the requirement for an access request.

Korean Language Understanding Evaluation
(KLUE) dataset was recently released to evaluate
the ability of Korean models to understand natural
languages with eight diverse and typical tasks (Park
et al., 2021b). The tasks include natural language
inference, semantic textual similarity, dependency
parsing, NER, and RE.

3 KOCHET

Following the guidelines of Korean institutional
organizations, KOCHET is a domain specialized

3https://stdict.korean.go.kr/
4https://aihub.or.kr/
5https://www.nia.or.kr/
6http://exobrain.kr/pages/ko/result/outputs.jsp
7https://www.etri.re.kr/
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corpus for cultural heritage, which ensures quality
and can be freely accessed. In this section, we re-
port the annotation process and guidelines in detail.

3.1 Annotation Process
To improve the quality of annotations on our entity-
rich corpus related to cultural heritage, we con-
ducted the annotation process based on expertise
in the cultural heritage domain.

Annotation Guidelines The raw corpus anno-
tated by each annotator is equally divided by the
category. The annotators were instructed to follow
two types of rules by the aforementioned entity
guidelines in Section 1; one is related to tagging
units and categories, and the other is the principle
of unique tagging. The minimum unit is based on
one word for the tagging units and categories. In
addition, it is applied only to cases written in Ko-
rean, where the notation is possible. It is not tagged
in the case of Chinese characters and English, but
if it is read in Korean, it is included in the tagging
range. For the principle of unique tagging, there are
cases of duplication in entities that belong to two or
more semantic regions. This guideline grants a sin-
gle tag to a semantically suitable word and refers
to assigning only one tag by prioritizing it accord-
ingly. There are two cases in which this principle
should be applied. The first case is where the entity
belongs to two semantic categories regardless of
the context. The second refers to the case where it
may vary depending on the context. In both cases,
tagging is determined according to the pre-defined
priority.

Annotator Training and Cross-Checking We
recruited 34 college and graduate annotators who
have been professionally educated on the cultural
heritage domain in Korea to participate in the an-
notation process. All annotators were trained for a
week, and each of them was familiarized with the
annotation guideline and conducted practice anno-
tation on test samples. The annotation team met
once every week to review and discuss each mem-
ber’s work during the annotation process. All entity
types and relations were reviewed by four cross-
checking annotators, afterward, were additionally
checked by two expert supervisors. The discrep-
ancy between annotators on the annotated entity
types and relations is also discussed and agreed
upon in the period. These procedures allowed the
reliability and validity of KOCHET on the cultural
heritage objects to be improved.

3.2 Schema for Task Annotation
3.2.1 Named Entity Recognition

Label Train Dev Test

Counts (%)

Artifacts (AF) 91,453 (35.57) 11,374 (35.54) 11,366 (35.35)
Person (PS) 51,758 (20.13) 6,455 (20.17) 6,744 (20.97)
Term (TM) 25,781 (10.02) 3,175 (9.92) 3,159 (9.82)
Date (DT) 23,636 (9.19) 2,943 (9.20) 3,078 (9.57)
Political
location (LCP)

20,076 (7.80) 2,375 (7.42) 2,384 (7.41)

Civilization (CV) 15,404 (5.99) 1,929 (6.03) 1,835 (5.71)
Material (MT) 8,893 (3.45) 1,160 (3.62) 1,046 (3.25)
Location (LC) 6,881 (2.67) 857 (2.68) 881 (2.74)
Animal (AM) 4,376 (1.70) 578 (1.81) 566 (1.76)
Plant (PT) 3,952 (1.53) 549 (1.72) 498 (1.55)
Geographical
location (LCG)

2,821 (1.09) 354 (1.11) 348 (1.08)

Event (EV) 2,045 (0.79) 254 (0.79) 248 (0.77)

Table 1: The counts of entities and their distributions
(%) in our NER data.

As described in Table 1, we defined 12 entity
types. They were tagged with the character-level
beginning-inside-outside (BIO) tagging scheme,
which is the generally adopted method for sequence
labeling problems. For example, “아시아 (Asia):
Geographical Location (LCG)” is tagged as “아:
B-LCG,” “시: I-LCG,” “아: I-LCG.” Therefore, we
evaluated the model not only with entity-level F1
score but also with character-level F1 score (Park
et al., 2021b).

Label Description

• Artifacts (AF) generally refer to objects cre-
ated by humans corresponding to common
and proper nouns and also include cultural
properties. Therefore, artificial materials such
as buildings, civil engineering constructions,
playground names, apartments, and bridges
fall under this category.

• Person (PS) is a category for content related
to people, including real persons, mythical
figures, fictional characters in games/novels,
occupations, and human relationships.

• Term (TM) includes the color, direction,
shape, or form that describes an artifact. Pat-
terns and drawings are classified as TM, ow-
ing to the characteristics of movable cultural
properties.

• Civilization (CV) is defined as terms related
to civilization/culture. It targets words classi-
fied by detailed civilizations/cultures, such as
clothing and food.
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• Date (DT) includes all entities related to date
and time, such as date, period, specific day, or
season, month, year, era/dynasty. However, in
the case of an unclear period that cannot be
tagged with a separate entity, tagging is not
performed.

• Material (MT) includes a substance used as a
material or an expression for the substance. In
other words, it indicates the entity correspond-
ing to the detailed classification of a substance
(metal, rock, wood, etc.). When an entity can
be tagged as both natural objects (AM, PT)
and MT, tagging as MT takes precedence.

• Geographical location (LCG), Political lo-
cation (LCP), and Location (LC) are de-
fined as geographical names, administrative
districts, and other places, respectively.

• Animal (AM) and Plant (PT) are defined as
animals and plants, respectively, excluding hu-
mans. If it is applied as a subject of a picture,
it is also included in the category of animals
and plants.

• Event (EV) contains entities for a specific
event/accident. In principle, social movements
and declarations, wars, revolutions, events,
festivals, etc., fall under this category and
should be classified only if they exist as a
separate entity.

3.2.2 Relation Extraction
Unlike the other existing corpora, our corpus has
the advantage of capturing various relationships
between multiple entities that are included in a sen-
tence because more than one relation can exist per
raw sentence. We consider the relations between
annotated entities in the NER annotation procedure.
In the case of certain tokens, it can be a subject
or an object depending on the relationship with
other tokens. A relationship in the form of a self-
relationship between identical tokens does not exist.
As shown in Table 2, our RE corpus consists of

14 labels, and these were defined based on the En-
cyves ontology research of the National Culture
Research Institute8.

Label Description

• “A depicts B” implies the relationship be-
tween an object and its color, shape or pattern,

8http://dh.aks.ac.kr/Encyves/wiki

Label Train Dev Test

Counts (%)

A depicts B 14,157 (22.09) 1,803 (22.45) 1,711 (21.85)
A documents B 10,214 (15.94) 1,244 (15.49) 1,220 (15.58)
A hasSection B 6,542 (10.21) 818 (10.19) 776 (9.91)
A servedAs B 6,546 (10.22) 780 (9.71) 740 (9.45)
A hasCreated B 6,136 (9.58) 759 (9.45) 744 (9.50)
A OriginatedIn B 5,456 (8.51) 679 (8.45) 663 (8.47)
A consistsOf B 4,331 (6.76) 569 (7.09) 586 (7.48)
A isConnectedWith B 3,489 (5.44) 501 (6.24) 461 (5.89)
A fallsWithin B 3,454 (5.39) 415 (5.17) 483 (6.17)
A isUsedIn B 1,906 (2.97) 238 (2.96) 244 (3.12)
A hasTime B 934 (1.46) 111 (1.38) 95 (1.21)
A wears B 798 (1.25) 97 (1.21) 86 (1.10)
A hasCarriedOut B 112 (0.17) 15 (0.19) 19 (0.24)
A hasDestroyed B 5 (0.01) 2 (0.02) 3 (0.04)

Table 2: Relation counts and distributions (%) for our
RE corpus.

etc. For example, “Green Door” corresponds
to this relationship. It can also represent a
descriptive relationship such as “Picture of a
place-the place where it was taken” or “Pic-
ture of a person-the person who is the object
of the painting.”

• “A documents B” implies “∼ records -.” ;a
relationship such as “Record-The person who
records it” can be represented by this. It also
indicates the relationship like a record written
on an object such as “Postcard-Explanation"
or a specific language written on a document
such as “Record-Chinese characters.”

• “A hasSection B” indicates “∼ is located at -.”
It represents the relationship between a statue,
building, or specific attraction and a location,
such as a certain city and place.

• “A servedAs B" implies “∼ is the role of -,”
which corresponds to the relationship between
a person, and his/her position or occupation,
etc.

• “A hasCreated B” demonstrates, for example,
“Person-Documents” or “Person-Painting,”
which refers to the relationship between a per-
son and a document such as a book, map, or
drawing, or his/her activities to record works.

• “A OriginatedIn B” means “∼ is discovered
at –” or “∼ is produced at -(time).” It indi-
cates that cultural property is produced at a
specific time such as “Craft-Year" or is dis-
covered at a particular place such as “Object-
Place," or is produced at a certain site such as
“Document-Place." For example, the relation
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Figure 1: Visualization of all the labels that cover 84% of the entity types is shown on the left side, and 106 general
and fine-grained entities with their distributions (%) are shown on the right side.

between earrings and tombs or a newspaper
and the company of the newspaper fall into
this.

• “A consistsOf B” refers to the relation be-
tween an object and its raw ingredients, such
as soil, iron, and wood that constitute an ob-
ject.

• “A isConnectedWith B” represents a person-
to-person association. The relationships be-
tween two positions or a person and the posi-
tion he or she holds do not fall into this.

• “A fallsWithin B” implies “∼ is denominated
as -.” It indicates the relationship of alternate
names such as “Person-Specific name," or be-
tween a name and designation in front of the
name, or between words that refer to synony-
mous concepts such as “Verse-Poetry.”

• “A isUsedIn B” indicates “∼ is used for the
purpose of -” or literally “∼ is used in -.” For
example, it can also indicate the material used
for a certain object, such as “Raw material-
Clothes.” The relationship between an object
and the place where the object is used, such as
a signboard and a palace, or the relationship
between certain means of performing a func-
tion and an object such as “Bowl-Rice cake”
can correspond to this category.

• “A hasTime B” implies “∼ has happened at -.”
For example, it can indicate the relationship
between a particular event and a specific date,
such as “Presidential election-1928." The re-
lation between a specific date and a certain
work, such as the year of production of a work
and the year of construction of a building, can

fall under this category, for example, “Year-
Craftwork."

• “A wears B” implies “∼ puts - on.” For in-
stance, not only clothes such as school uni-
forms but also crafts, etc. may correspond to
the object argument.

• “A hasCarriedOut B” indicates “- is caused
by ∼.” It can represent a relationship between
a specific organization or group and an event
conducted by it, such as a festival or social
movement.

• “A hasDestroyed B” implies the event that
caused destruction such as “War-Destroyed
place," or the collapse of a country in a spe-
cific year such as “Country-Year,” or the rela-
tionship in which a building, structure, monu-
ment, etc. is destroyed at a particular period.

3.2.3 Fine-grained Entity Typing
Given a sentence and entity mention within it, the
ET task predicts a set of noun phrases that describe
the mention type. For example, in “김홍도는조선
후기의화가이다. (Kim Hong-do was a painter of
the Joseon era of Korea.),” Joseon should be typed
as “dynasty/Date” and not “country/Location.”
This typification is crucial for context-sensitive
tasks such as RE, coreference resolution, and ques-
tion answering (e.g., “In which era was Kim Hong-
do, an artist?”). Unlike high resource languages,
we found that the Korean corpus for the ET task
has not been released. In dealing with this data
scarcity problem and promoting universal studies,
we release a Korean ET task corpus for the first
time, to the best of our knowledge.

3500



Sentence with Entity Mention Entity Types

조선시대에는전통관습을잇기위한많은향로가제작되었다.
(In the Joseon dynasty, many fragrance burners were created
for traditional customs.)

DT_DYNASTY, DT_DURATION
LCP_COUNTRY, LCP_CITY, LCP_COUNTY
LC_OTHERS, AF_DOCUMENTS

노란바탕의모란이양쪽에그려져있다.
(The yellow background peony is drawn on both sides.)

PT_FLOWER, PT_TYPE, PT_OTHERS,
TM_SHAPE

19세기후반청주의재정을파악할수있는자료가있다.
(There are data to comprehend the finances of Cheongju in
the late 19th century.)

DT_YEAR, DT_DYNASTY, DT_DURATION

Table 3: Examples including entity mentions and their fine-grained entity types. Entity mentions and the correct
types in the given context are bold. All fine-grained entity types are shown in Figure 1.

The schema for the ET task was designed with
reference to the data construction process of the
Fine-Grained Entity Recognition dataset (Ling and
Weld, 2012). Considering the properties of the
cultural heritage domain, we categorized the 12
general entity types aforementioned in the NER
task (Section 3.2.1) into a fine-grained set of 94
types with detailed meanings. Particularly, the cul-
tural taxonomy defined in the Cultural Properties
Protection Law9 was applied to AF, and the 2004
Cavalier-Smith’s classification system (Cavalier-
Smith, 2004) was applied to the biological scope
of PT and AM. All fine-grained entity types are
detailed in Figure 1.

The fine-grained entities for entity-related
downstream tasks in the cultural heritage domain
enable a more detailed contextualized represen-
tation for each entity mention than the previous
typing schemas, which only predict relatively
coarse types of entities. Table 3 lists three example
sentences with entity mention that can represent
several fine-grained types. Given a sentence
with an entity mention, the appropriate type that
describes the role of the entity span in the sentence
should be predicted. Our fine-grained entity types
can embrace all the existing general types and
categorize them in greater detail. Accordingly,
they can let models understand richly the noun
phrases including entity, compared to when the
models are trained to predict only relatively coarse
types. For Figure 1, the circle on the left shows
the visualization of fine-grained entity types that
possess approximately 84% among all labels in the
corpus, and the set on the right shows the detailed
distributions of all fine-grained types. Each
example includes 2.94 fine-grained entities on
average; there are up to nine several fine-grained

9www.cha.go.kr

entity types per entity. The category to which the
most entities belong is “AF_DOCUMENTS,"
which possesses 17.9%, and that on the second
place is “PS_NAME," having 16.7%.

Label Description

• 12 general types: PS, AF, AM, CV, DT, EV,
PT, MT, TM, LC, LCG, LCP

• 94 fine-grained types, which were mapped
to the cultural heritage-specialized fine-
grained entity labels, were inspired by prior
works (Ling and Weld, 2012; Gillick et al.,
2014; Choi et al., 2018).

3.3 Analysis on KOCHET

3.3.1 Diachronic and Linguistic Analysis
There are mainly two differences between the en-
tities in the proposed corpus and those commonly
used.

First, archaic expressions that are not used in
modern times are frequently shown in our corpus.
Specifically, such expressions continually appear
when ancient documents or historical artifacts are
quoted. Let us consider the phrase “한번사신레꼬-
드는승질상밧고거-나믈느지는안슴니다” in sen-
tence 1 in Table 4. Although it is written using
syllables of modern Korean, the grammar and the
vocabulary are fairly dissimilar from those of con-
temporary Korean, such as word spacing and syl-
labification, i.e., separation rule between the units
of the word. When translating the sentence with
quotation marks into modern Korean, it can be ex-
pressed as “한번사신레코드는성질상바꾸거나
무르지는않습니다 (Once a record is purchased, it
cannot be exchanged or refunded due to its charac-
teristics)."
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Index Example sentences

1 앞면좌측하단에 ‘한번사신레꼬-드는승질상밧고거-나믈느지는안슴니다’문구가있음.
There is a phrase ‘한번사신레꼬-드는승질상밧고거-나믈느지는안슴니다’(archaic Korean) on
the left corner of the front side.

2 1면에는안창호씨(安昌浩氏)의연설,편집실여언(餘言)등의기사가, · · ·,인쇄됨.
On the first page, articles such as Mr. Changho Ahn(安昌浩氏)(Chinese character)’s speech and
editorial comments(餘言)(Chinese character), · · ·, were printed.

3 ‘戰爭の訓示’, · · ·,등의기사와일본언어학자가나자와쇼자부로(金澤庄三郎, 1872∼1967)의
현대국어음운에대한연구물인 「朝鮮語發音篇」의일부를게재함.
‘戰爭の訓示(Japanese)’, · · ·, the articles and 「朝鮮語發音篇」(Chinese character), the part of a
study on the modern Korean phonology of Japanese linguist Kanazawa Shouzaburou(金澤庄三郎
(Chinese character), 1872∼1967) were published.

Table 4: Example sentences contained in our corpus. These examples include not only Korean but also Japanese and
Chinese characters. Also, they contain archaic expressions that are not used in modern times. These characteristics
make it more suitable for the learning of cultural heritage domain. Note that we omitted some of the words in the
sentence for brevity.

Task Train Dev Test

NER # of examples 89,884 11,245 11,233
# of entities 393,076 32,003 32,153

RE # of examples 31,012 3,876 3,877
# of relations 64,080 8,031 7,831

ET # of examples 90,558 11,320 11,320
# of mentions 266,209 33,226 33,395

Table 5: Statistics of KOCHET for each task.

Second, several entities contained in KOCHET
written in Korean are followed by the descriptions
written in either Chinese or Japanese characters.
For example, as shown in sentence 2 in Table 4,
the description with Chinese characters in paren-
theses follows the entity “안창호씨," and is usu-
ally written such as “안창호씨(安昌浩氏)." Fur-
ther, Japanese characters are also present through-
out the corpus, enhancing the polyglot property
of the corpus, as shown in sentence 3. Therefore,
to fully understand such expression types in our
corpus, multilingual factors of language models
should be considered; particularly in the case of
token classification tasks, in which the meaning of
each token directly affects the model performance.

3.3.2 Statistics

The overall statistics of KOCHET are showed
in Table 5. For the NER corpus, 457,232 entities
from 112,362 examples in total. For the RE corpus,
79,942 relations from 38,765 examples were an-
notated in total. For the ET corpus, 332,830 entity
mentions from 113,198 examples were annotated
in total. The annotated corpus was divided into

three subsets for each task, i.e., a ratio of 8:1:1 for
training, development, and testing, respectively. In
this section, we describe our corpus statistically in
the order of NER, RE, and ET.

First, as shown in Table 1, we used 12 entity
types for our cultural heritage NER corpus. Due to
the properties of the cultural heritage domain, the
three primary entity types, i.e., artifacts (AF), per-
son (PS), and term (TM), account for the majority
of the total entity population. AF, PS, and TM en-
tities possess approximately 36%, 20%, and 10%,
respectively, which are used as crucial information
in the cultural heritage domain. The AF type in-
cludes cultural assets and historical landmarks, the
TM type includes patterns or traces engraved on
certain cultural assets, and the PS type particularly
includes not only general people but also particular
types of persons such as mythical figures. On the
other hand, the EV type occupies the most minor
proportion, approximately 0.8%, because our cor-
pus especially aims to concentrate on the cultural
heritage.

Second, Table 2 demonstrates the distribution
of 14 RE labels. In the case of “A depicts B” and
“A documents B,” cultural assets left in a specific
form such as records, drawings, and photographs
are included, whereas “A hasSection B" contains
cultural heritage or historical landmarks located at
a specific place. Among them, “A depicts B,” “A
documents B,” and “A hasSection B” are the most
relationship labels with approximately 22%, 16%,
and 10% of the total, respectively. “A depicts B”
and “A documents B" include cultural assets left
in a specific form such as records, drawings, and
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Model NER RE ET

Entity F1 (σ) Character F1 (σ) F1 (σ) F1 (σ)

Multilingual fine-tuned Models

Multilingual BERT 59.81 (0.09) 71.80 (0.12) 80.85 (0.39) 91.64 (0.10)

XLM-RoBERTa-base 76.57 (0.13) 82.69 (0.09) 80.29 (0.53) 91.13 (0.16)

Korean fine-tuned Models

KLUE-BERT-base 39.31 (0.10) 55.63 (0.15) 82.44 (0.18) 93.08 (0.27)

KLUE-RoBERTa-base 38.92 (0.28) 55.47 (0.21) 82.42 (0.57) 92.80 (0.17)

Table 6: Experiments results on the NER, RE, and ET tasks. F1 score (%) is used for the evaluation metric with σ
which shows the standard deviation of the score. We divide the baseline models into two parts: the Multilingual
models and the Korean models, marking the highest performances with bold text.

photographs, whereas “A hasSection B" contains
cultural heritage or historical landmarks located
at a particular place. “A hasDestroyed B" has the
smallest proportion with ten relations in total be-
cause, in actual history, significant events such as
the collapse of a nation or the loss of cultural prop-
erties are not as diverse as the types of general
cultural assets.

Finally, among the fine-grained entity types, the
“AF_DOCUMENTS" type, such as historical doc-
uments, occupies the largest part with 17.9%, and
“PS_NAME" including the names of historical fig-
ures, takes second place by occupying 11.5%. On
the other hand, the entity types to which belong to
the AM, PT, MT, and EV almost account for under
1.0%.

4 Experiment

The detailed experimental settings are in Ap-
pendix A.

Experimental results According to Table 6, two
tendencies are observed. One is that in the NER
task, the multilingual models, i.e., multilingual
BERT and xlm-RoBERTa-base, showed better per-
formance by more than 30% difference in both
Entity F1 and Character F1 scores compared to the
Korean models, i.e., KLUE-BERT-base and KLUE-
RoBERTa-base. The other is that in the RE and ET
tasks, the performances of the Korean models were
at least 1.1% higher than those of the multilingual
models.

Experimental Analysis As the token classifi-
cation tasks are directly affected by segmenta-
tion (Kim et al., 2021; Park et al., 2021a), models
with linguistic knowledge of Chinese and Japanese
overperform in such tasks (Pires et al., 2019). In

Model UNK_dev (%) UNK_test (%)

Multilingual BERT 0.8156% 0.7684%

XLM-RoBERTa-base 0.1952% 0.1810%

KLUE-BERT-base 5.8670% 5.9677%

KLUE-RoBERTa-base 5.8670% 5.9677%

Table 7: Unknown (UNK) token ratio (%) of each model
for development and testing set in the corpus. Baseline
models pre-trained in Korean show the same proportions
because they use identical vocabulary and tokenizers.

other words, the multilingual models are consid-
ered to segment better each token composed of var-
ious languages, especially in the NER corpus. In
addition, in Table 7, the Korean models, i.e., KLUE-
BERT-base and KLUE-RoBERTa-base show a sig-
nificantly higher ratio of unknown tokens than the
multilingual language models. It is attributed that
the NER task requires more polyglot features of the
model compared to the other tasks, i.e., RE and ET,
which has the properties of sentence classification
tasks. On the other hand, as the RE or ET task does
not classify all tokens in a sentence, the correct
answer can be satisfactorily inferred from only the
given Korean words; thereby, the language models
pre-trained in Korean show better performance in
the two tasks compared to the multilingual model.

5 Conclusion

In this paper, we introduced KOCHET - a Korean
cultural heritage corpus for three typical entity-
related tasks, i.e., NER, RE, and ET. Unlike the
existing public Korean datasets with additional re-
strictions, KOCHET obviated the cumbersome
prerequisite and can be freely modified and redis-
tributed. Furthermore, we proved the applicability
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of our entity-abundant corpus with the experiments
employing the various pre-trained language models
and provided practical insights regarding the sta-
tistical, diachronic, and linguistic analysis. Above
all, the most significant contributing point is that
the disclosure of our corpus is expected to serve
as a cornerstone for the development of IE tasks
for a traditional cultural heritage. We hope that the
continuous effort to preserve cultural heritage with
the effective management of digitized documents
containing cultural artifacts is encouraged by this
research.
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A Experimental Setup

As the baseline models, we employed two
global language models: multilingual bidirec-
tional encoder representations from transformers
(BERT) (Devlin et al., 2019) and a cross-lingual
language model XLM-RoBERTa-base (Conneau
et al., 2020) containing the Korean language, and
two KLUE language models: KLUE-BERT-base,
KLUE-RoBERTa-base, which were recently pub-
lished covering various Korean downstream tasks.
In all the model experiments, the performance of
each model was measured five times, and the aver-
age of each result was evaluated as the final result.
Further, we set our environment for the experiment
with four A6000 GPUs and 384 GB memory. The
hyperparameters in the fine-tuning step were set as
follows. The learning rate and weight decay were
consistently set at 5e-5 and 0.01 across all three
tasks. The number of training epochs was set to 10
in NER, RE and 3 in ET. The batch size in training
and testing procedures was set to 128 in NER, RE
and 256 in ET. In the case of max sequence length,
the lengths of 256 and 128 were used for each task.

We evaluated our system by employing F1 score,
which is standard metric for classification tasks.
Specifically, the evaluation metrics for NER task
were Entity F1 and Character F1 based on previous
research (Park et al., 2021b). Entity F1 is a metric
that is recognized as a correct answer only when all
types included in an entity are matched accurately.
Conversely, Character F1 is a metric that evaluates
each type of syllable in a sentence individually. The
evaluation metrics for the RE task were F1 score
in the Scikit-learn library (Pedregosa et al., 2011).
As for ET, we adopted the evaluation metrics of
loose F1 score following the same evaluation crite-
ria used in previous works (Ling and Weld, 2012;
Wang et al., 2020).

3505



Proceedings of the 29th International Conference on Computational Linguistics, pages 3506–3513
October 12–17, 2022.

MonoByte: A Pool of Monolingual Byte-level Language Models

Hugo Abonizio
FEEC, UNICAMP, Brazil

NeuralMind, Brazil
hugo.abonizio@gmail.com

Leandro Rodrigues de Souza
FEEC, UNICAMP, Brazil

l231250@g.unicamp.br

Roberto Lotufo
FEEC, UNICAMP, Brazil

NeuralMind, Brazil
lotufo@unicamp.br

Rodrigo Nogueira
FEEC, UNICAMP, Brazil

NeuralMind, Brazil
rfn@unicamp.br

Abstract

The zero-shot cross-lingual ability of models
pretrained on multilingual and even monolin-
gual corpora has spurred many hypotheses to
explain this intriguing empirical result. How-
ever, due to the costs of pretraining, most re-
search uses public models whose pretraining
methodology, such as the choice of tokeniza-
tion, corpus size, and computational budget,
might differ drastically. When researchers pre-
train their own models, they often do so under
a constrained budget, and the resulting models
might underperform significantly compared to
SOTA models. These experimental differences
led to various inconsistent conclusions about
the nature of the cross-lingual ability of these
models. To help further research on the topic,
we released 10 monolingual byte-level models1

rigorously pretrained under the same configu-
ration with a large compute budget (equivalent
to 420 days on a V100) and corpora that are 4
times larger than the original BERT’s. Because
they are tokenizer-free, the problem of unseen
token embeddings is eliminated, thus allowing
researchers to try a wider range of cross-lingual
experiments in languages with different scripts.
Additionally, we release two models pretrained
on non-natural language texts that can be used
in sanity-check experiments. Experiments on
QA and NLI tasks show that our monolingual
models achieve competitive performance to the
multilingual one, and hence can be served to
strengthen our understanding of cross-lingual
transferability in language models.

1 Introduction

Shortly after the publication of BERT (Devlin et al.,
2019), researchers showed that multilingual models

1https://huggingface.co/monobyte

pretrained on the masked language modeling objec-
tive can achieve remarkable zero-shot cross-lingual
performance on various NLP tasks (i.e., a multilin-
gual model finetuned on a high-resource language
and directly evaluated in other languages) (Con-
neau et al., 2019; Hu et al., 2020).

These empirical results triggered a wave of re-
search that aimed to explain this behavior. Pires
et al. (2019) raised the “anchor tokens” hypothe-
sis, i.e., that tokens shared between two languages
act as a reference point so models can learn sim-
ilar concepts. Artetxe et al. (2020) and Conneau
et al. (2020) questioned these findings and pointed
out that, even without a shared vocabulary, models
achieve great cross-lingual transfer performance by
leveraging shared parameters only.

Perhaps even more surprising is the perfor-
mance of monolingual models in a cross-lingual
setting. For instance, models pretrained and fine-
tuned only on English can perform well in French
tasks (Oladipo et al., 2022). de Souza et al. (2021)
also show that monolingual models finetuned on a
foreign language (i.e., a language that differs from
pretraining) achieve comparable results to models
finetuned on their language.

Recent work investigates properties of the pre-
training corpora that contribute to the model’s per-
formance on natural language tasks. Models are
pretrained on non-natural language corpora, such
as code, music, proteins, and artificial languages
and their performances are compared with natu-
ral language models (Papadimitriou and Jurafsky,
2020; Chiang and yi Lee, 2020; Lu et al., 2021;
Ri and Tsuruoka, 2022). Evidence shows that pre-
training on a corpus that contains artificial recursive
or hierarchical structure between tokens results in
a similar performance when compared to models
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pretrained on a natural language.
However, an outstanding problem is that these

experiments are made either 1) using models pre-
trained by different research groups, whose pre-
training configuration differs widely, or 2) using
models pretrained under a compute budget or pre-
training corpus that are orders of magnitude smaller
than the ones used by SOTA models. For instance,
Chiang and yi Lee (2020) pretrain their models
on a dataset 200 times smaller than BERT’s. This
is problematic because certain skills are learned
only when corpus size and training budget are large
enough (Zhang et al., 2020).

These differences in the pretraining methodol-
ogy and undertrained models make it difficult to
draw a conclusion about the nature of the cross-
lingual ability of such models. Additionally, since
most models use subword tokenization, it is diffi-
cult to experiment with languages that do not have
a significant subword vocabulary overlap. For ex-
ample, if a model is pretrained and finetuned on
English, it cannot be tested in Chinese because
there is very little token overlap in their vocabu-
laries, and hence, Chinese token embeddings are
not learned. This is a problem even for languages
with the same script. For example, many Spanish
embeddings are not learned in an English-only pre-
training, and hence it is difficult to tell whether a
model’s inability to learn cross-lingual representa-
tions is due only to tokenization issues (Rust et al.,
2021).

Following Bommasani et al. (2021), who advo-
cate for the release of pretraining models, corpus,
and script as a way to strengthen the field, we re-
lease byte-level models pretrained on large corpora
from the same domain and using exactly the same
training setup and compute budget. Because they
rely only on bytes to represent strings, they can
be used to compare languages that use different
scripts.

Each model takes approximately 210 hours
of pretraining, resulting in more than three
months of TPU computing. The models are
available at https://huggingface.co/monobyte and
the code used for finetuning can be found at
https://github.com/lersouza/lang-agnostic.

2 Related work

In the last years, many monolingual versions of
BERT (Devlin et al., 2019; Souza et al., 2020; Chan
et al., 2020; Martin et al., 2020; Antoun et al., 2020;

Lee et al., 2021; Nguyen and Tuan Nguyen, 2020;
Cañete et al., 2020; Bhattacharjee et al., 2021) and
T5 (Raffel et al., 2020; Carmo et al., 2020; Sarti
and Nissim, 2022) have been released. The authors
often claim that these versions outperform multilin-
gual models in their languages. Rust et al. (2021)
showed that the tokenizer plays a critical role in
achieving those results. More recently, Xue et al.
(2021a) released the ByT5 model, which would
overcome this issue by leveraging a byte-level vo-
cabulary. This model is pretrained on several lan-
guages and achieves great results when compared
to mT5 (Xue et al., 2021b). However, no mono-
lingual version of ByT5 has been released, which
makes it difficult to conduct further investigation
on the model’s pretraining and cross-lingual perfor-
mance that is not impacted by the tokenization in
different languages.

Current research on the properties of pretraining
often relies on monolingual models or models pre-
trained on artificial languages. Researchers often
rely on models released by other groups (de Souza
et al., 2021) or pretrain models in a very controlled
setup (Artetxe et al., 2020; Papadimitriou and Ju-
rafsky, 2020; Fujinuma et al., 2022). In both cases,
it is not clear if the results suffer from these differ-
ent methodologies or undertrained models. Blevins
and Zettlemoyer (2022), for instance, suggests that
language contamination (i.e., a monolingual cor-
pus composed of sentences in more languages) is
the reason for monolingual zero-shot effectiveness.
The same happens with models pretrained on non-
natural language corpora (Chiang and yi Lee, 2020;
Lu et al., 2021; Ri and Tsuruoka, 2022), where the
corpus size differs from the ones trained on natu-
ral language, which might affect the conclusions
drawn from the experiments. We hope to bridge
this gap by releasing the set of monolingual models
presented in this paper.

3 Pretraining

To train our monolingual models, we used
mC4 (Xue et al., 2021b), the same corpus used
to train mT5 and ByT5, which comprises 101 natu-
ral languages extracted from the Common Crawl
web scrape. For each model, we selected only the
documents written in the specific language, which
was originally identified using cld3 by Xue et al.
(2021b). The mC4 is a large corpus with different
language distributions, with some being more rep-
resented than others. Thus, we trimmed each pre-
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training corpus in approximately 65 billion UTF-8
bytes for all languages. The only exception was
Bengali, which was trimmed on 32 billion bytes,
corresponding to its total size.

The pretraining was conducted on a TPU VM
v3-8 using Flax (Heek et al., 2020) library and
the pretraining script for T5-like span-masked lan-
guage modeling available on HuggingFace Trans-
formers library.2 We chose the smaller architecture
of ByT5, with 300 million parameters, and used
similar hyper-parameters as reported on ByT5 (Xue
et al., 2021a) and mT5 (Xue et al., 2021b) papers.
We did not experiment with larger models due
to their computational cost. We set the sequence
length to 1024 tokens (UTF-8 bytes) and train for
1 million steps with a batch of 216 bytes, resulting
in approximately 65 billion bytes. Since we could
only fit a batch of 8 examples per device, we used
gradient accumulation of 128 steps to achieve a
larger batch size. The learning rate starts at 10−3

and decays linearly throughout the pretraining.
In comparison with the original ByT5, our

models are pretrained on a 16 times smaller cor-
pus. However, our pretraining corpus is 4 times
larger than BERT’s, which was trained on 3,300M
words (Devlin et al., 2019) — i.e., approximately
16 billion characters, considering an average of 5
characters per word in English (Bochkarev et al.,
2015). In comparison with GPT-2, our corpus is
1.6 times larger (Radford et al., 2019).

Compared with other monolingual models re-
search, Rust et al. (2021) pretrained on a corpus
of approximately 77GB, according to the reported
number of steps and tokens per batch. Ri and Tsu-
ruoka (2022) pretrained on a corpus of 1.2GB of
artificially generated text. A more extensive com-
parison to other work is presented in Table 1 and
demonstrates that our pretraining is comparable to
SOTA monolingual models and much larger than
corpora used in the majority of monolingual stud-
ies.

To sanity-check and validate the performance of
our pretrained models, we compared their results
with different baselines proposed in the literature.
The first synthetic pretraining strategy, called nest-
ing parentheses, was proposed by Papadimitriou
and Jurafsky (2020), which recursively generates
random symbols respecting a hierarchical structure.
This was proposed to evaluate how this recursion

2https://github.com/huggingface/
transformers/blob/main/examples/flax/
language-modeling/run_t5_mlm_flax.py

Model name Language Size

PTT5 (Carmo et al., 2020) pt 15
BERT (Devlin et al., 2019) en 16
BERTimbau (Souza et al., 2020) pt 17
PhoBERT (Nguyen and Tuan Nguyen, 2020) vi 20
AraBERT (Antoun et al., 2020) ar 24
BanglaBERT (Bhattacharjee et al., 2021) bn 35
KoreALBERT (Lee et al., 2021) ko 43
North ByT5 (Kummervold, 2022) no 45
CamemBERT (Martin et al., 2020) fr 138
IT5 (Sarti and Nissim, 2022) it 215

Chiang and yi Lee, 2020 en, artificial 0.08
Papadimitriou and Jurafsky, 2020 many, artif. 0.5
Deshpande et al., 2021 many 0.5
Ri and Tsuruoka, 2022 many, artif. 1.2
Rust et al., 2021 many 77

MonoByte (ours, each model) many 65

Table 1: Comparison of pretraining corpus sizes in GB
of monolingual models. Models which does not explic-
itly report the corpus size were estimated based on the
reported amount of tokens.

structure of the pretraining corpus transfers into
modeling real languages. Their work showed that
the models pretrained on the synthetic hierarchical
corpus were able to predict human language far
better than other baselines (e.g., random, music,
and code), with a perplexity comparable to real
languages.

We used the code released by the authors, with
the vocabulary being the 50,000 most frequent
words based on the first one million documents
of the Spanish mC4 corpus, and their sampling
probability based on the Zipf distribution over the
same Spanish corpus.3 We generated examples un-
til reaching the same size as our natural languages
corpora sizes to make a fair comparison.

The second pretraining baseline was proposed
by Krishna et al. (2021), dubbed nonsense, where
the authors explored the knowledge transfer hypoth-
esis of the downstream performance improvement
of transfer learning. The authors pretrained on doc-
uments consisting of random n-grams and achieve
similar performance on summarization over differ-
ent datasets when compared to pretraining on real
language. We generated examples using the orig-
inal code4 to match the same corpus size of our
natural language models.

3https://github.com/toizzy/
tilt-transfer/

4https://github.com/acmi-lab/
pretraining-with-nonsense/
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de en es pt ru vi zh avg.

Nonsense 33.33 33.55 33.27 50.00 33.33 33.57 34.19 35.89
Hierarchical 66.01 69.32 68.04 65.65 62.12 64.49 62.83 65.49

Monolingual 70.85 76.76 75.07 83.40 67.39 70.37 69.91 73.39
Multilingual 76.02 80.55 78.39 67.73 73.58 73.01 73.39 74.67

∆(multi - mono) 5.16 3.80 3.32 -15.67 6.19 2.64 3.48 1.28

Table 2: Results (accuracy) for Natural Language Inference in each language.

ar bn en ko pt ru avg.

Nonsense 0.22 0.00 0.45 0.00 0.26 0.27 0.20
Hierarchical 67.23 0.38 28.03 9.99 3.63 32.85 23.68

Monolingual 78.17 53.89 60.15 51.17 64.88 58.26 61.09
Multilingual 81.81 70.28 68.51 54.70 42.37 72.97 65.11

∆(multi - mono) 3.65 16.39 8.36 3.54 -22.51 14.71 4.02

Table 3: Results (F1 Score) for Question Answering in each language.

4 Experiments

Our models are evaluated on two downstream tasks:
Natural Language Inference (NLI) and Question
Answering (QA). We use a similar setting as the
In-language model, described by Hu et al. (2020),
where the model is finetuned and evaluated in the
subset of the task that corresponds to its pretrain-
ing language. The following subsections provide
details about the datasets used and the results. The
monolingual models are compared to the ByT5
Small checkpoint. The latter is expected to per-
form better since it is pretrained on a much larger
set of a more diverse corpus, as investigated by Fu-
jinuma et al. (2022). For additional information on
the finetuning procedure, please refer to Appendix
A.

Natural Language Inference. The XNLI5

dataset (Conneau et al., 2018) is used for finetuning
and evaluating our German, English, Spanish, Rus-
sian, Vietnamese, and Chinese models. For the Por-
tuguese model, we select the Recognizing Textual
Entailment (RTE) task of the ASSIN2 dataset (Real
et al., 2020). Performance is measured by using
the accuracy metric.

Results are reported in Table 2. Compared to the
multilingual ByT5, our models achieve competitive
performance. The difference in accuracy is about
1.28 on average. The results in Russian represent
the largest gap (6.19 points), while those in Viet-
namese represent the smallest (2.64 points). Non-

5We use the machine-translated version of XNLI
for training in different languages. Available at
https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip

sense achieves a near random performance, while
Hierarchical approaches the models pretrained on
natural language, as also evidenced by Papadim-
itriou and Jurafsky (2020) and Chiang and yi Lee
(2020).

Question Answering. The gold passage version of
the TydiQA (Clark et al., 2020) dataset (TydiQA-
GoldP) is selected for finetuning and evaluating the
Arabic, Bengali, English, Korean and Russian mod-
els. For finetuning the Portuguese model, we use
the FaQuAD (Sayama et al., 2019). Performance
is measured by the F1 Score metric as described by
Rajpurkar et al. (2016).

Results are reported in Table 3. For Portuguese,
our model outperforms the Multilingual checkpoint
by 22.51 points, while, for Bengali, it stays 16.39
points behind. Our monolingual models stay, on
average, 4 points behind the multilingual model
released by Google. Looking at the difference be-
tween monolingual and multilingual models for ev-
ery language, we see a higher variation. Nonsense
and Hierarchical results are very distant. Ques-
tion answering is a more difficult task (Vania et al.,
2021) and a good benchmark for model quality. We
hypothesize that this difference in task complexity
requires more from the model. Pretraining with
token structure emphasis only may not provide the
required knowledge for good performance.

5 Conclusion

In this work, we introduced a pool of 10 tokenizer-
free language models pretrained on large monolin-
gual corpora. We demonstrated that our monolin-
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gual models can achieve competitive results to the
multilingual ByT5, although having a smaller and
less diverse pretraining — single language, com-
pared to all languages concatenated.

The main goal of our work was to release a set of
monolingual models that carefully follow the same
pretraining methodology to support the research of
monolingual language models, pretraining proper-
ties, and cross-linguality. We hope that by releasing
our models, we bridge this gap of having a more
controlled and reproducible setup for rigorous ex-
periments.

Acknowledgments

This research was partially funded by grants
2020/09753-5 and 2022/01640-2 from Fundação
de Amparo à Pesquisa do Estado de São Paulo
(FAPESP). We also would like to thank Google
Cloud for credits to support this work.

References
Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.

AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 9–15, Marseille, France. European
Language Resource Association.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4623–4637, Online. Association
for Computational Linguistics.

Abhik Bhattacharjee, Tahmid Hasan, Wasi Uddin
Ahmad, Kazi Samin, Md Saiful Islam, Anindya
Iqbal, M. Sohel Rahman, and Rifat Shahriyar. 2021.
Banglabert: Language model pretraining and bench-
marks for low-resource language understanding eval-
uation in bangla.

Terra Blevins and Luke Zettlemoyer. 2022. Language
contamination explains the cross-lingual capabilities
of english pretrained models.

Vladimir V Bochkarev, Anna V Shevlyakova, and
Valery D Solovyev. 2015. The average word length
dynamics as an indicator of cultural changes in soci-
ety. Social Evolution and History, 14(2):153–175.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dal-
las Card, Rodrigo Castellon, Niladri S. Chatterji,
Annie S. Chen, Kathleen Creel, Jared Quincy

Davis, Dorottya Demszky, Chris Donahue, Moussa
Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren Gillespie, Karan Goel,
Noah D. Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John He-
witt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing
Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,
Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh,
Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. 2021. On the opportunities and risks of
foundation models. CoRR, abs/2108.07258.

Diedre Carmo, Marcos Piau, Israel Campiotti, Rodrigo
Nogueira, and Roberto Lotufo. 2020. Ptt5: Pretrain-
ing and validating the t5 model on brazilian por-
tuguese data.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-
ish pre-trained bert model and evaluation data. In
PML4DC at ICLR 2020.

Branden Chan, Stefan Schweter, and Timo Möller. 2020.
German’s next language model. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6788–6796, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Cheng-Han Chiang and Hung yi Lee. 2020. Pre-training
a language model without human language.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in ty-
pologically diverse languages. Transactions of the
Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel R. Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. "XNLI: Evaluating Cross-
lingual Sentence Representations". In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Emerging cross-
lingual structure in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6022–
6034, Online. Association for Computational Lin-
guistics.

3510



Leandro Rodrigues de Souza, Rodrigo Nogueira, and
Roberto Lotufo. 2021. On the ability of monolingual
models to learn language-agnostic representations.

Ameet Deshpande, Partha Talukdar, and Karthik
Narasimhan. 2021. When is bert multilingual? iso-
lating crucial ingredients for cross-lingual transfer.
arXiv preprint arXiv:2110.14782.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yoshinari Fujinuma, Jordan Boyd-Graber, and Katha-
rina Kann. 2022. Match the script, adapt if multilin-
gual: Analyzing the effect of multilingual pretraining
on cross-lingual transferability.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar-
vin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. 2020. Flax: A neural network
library and ecosystem for JAX.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A Massively Multilingual Multi-
task Benchmark for Evaluating Cross-lingual Gener-
alisation. In International Conference on Machine
Learning, pages 4411–4421. PMLR.

Kundan Krishna, Jeffrey Bigham, and Zachary C. Lip-
ton. 2021. Does pretraining for summarization re-
quire knowledge transfer? In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 3178–3189, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Per E Kummervold. 2022. North T5. https://
github.com/peregilk/north-t5.

Hyunjae Lee, Jaewoong Yoon, Bonggyu Hwang,
Seongho Joe, Seungjai Min, and Youngjune Gwon.
2021. Korealbert: Pretraining a lite bert model for
korean language understanding.

Kevin Lu, Pieter Abbeel, Aditya Grover, Igor Mordatch,
and Google Brain. 2021. Pretrained transformers as
universal computation engines.

Louis Martin, Benjamin Muller, Pedro Javier Or-
tiz Suárez, Yoann Dupont, Laurent Romary, Éric
de la Clergerie, Djamé Seddah, and Benoît Sagot.
2020. CamemBERT: a tasty French language model.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7203–
7219, Online. Association for Computational Lin-
guistics.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020.
PhoBERT: Pre-trained language models for Viet-
namese. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1037–1042,
Online. Association for Computational Linguistics.

Akintunde Oladipo, Odunayo Ogundepo, Kelechi
Ogueji, and Jimmy Lin. 2022. An exploration of
vocabulary size and transfer effects in multilingual
language models for african languages. In 3rd Work-
shop on African Natural Language Processing.

Isabel Papadimitriou and Dan Jurafsky. 2020. Learn-
ing Music Helps You Read: Using transfer to study
linguistic structure in language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6829–6839, Online. Association for Computational
Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is Multilingual BERT? ACL 2019 -
57th Annual Meeting of the Association for Compu-
tational Linguistics, Proceedings of the Conference,
pages 4996–5001.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions for
Machine Comprehension of Text.

Livy Real, Erick Fonseca, and Hugo Gonçalo Oliveira.
2020. The assin 2 shared task: A quick overview.
In Computational Processing of the Portuguese Lan-
guage, pages 406–412, Cham. Springer International
Publishing.

Ryokan Ri and Yoshimasa Tsuruoka. 2022. Pretrain-
ing with artificial language: Studying transferable
knowledge in language models.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118–3135, Online. Association
for Computational Linguistics.

Gabriele Sarti and Malvina Nissim. 2022. It5: Large-
scale text-to-text pretraining for italian language un-
derstanding and generation.

3511



H. F. Sayama, A. V. Araujo, and E. R. Fernandes.
2019. FaQuAD: Reading Comprehension Dataset
in the Domain of Brazilian Higher Education. In
2019 8th Brazilian Conference on Intelligent Systems
(BRACIS), pages 443–448.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.

Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo.
2020. Bertimbau: Pretrained bert models for brazil-
ian portuguese. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 12319
LNAI:403–417.

Clara Vania, Phu Mon Htut, William Huang, Dhara
Mungra, Richard Yuanzhe Pang, Jason Phang,
Haokun Liu, Kyunghyun Cho, and Samuel R. Bow-
man. 2021. Comparing test sets with item response
theory. ACL-IJCNLP 2021 - 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, Proceedings of the Conference,
pages 1141–1158.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021a. Byt5: Towards a token-free
future with pre-trained byte-to-byte models.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021b. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Yian Zhang, Alex Warstadt, Haau-Sing Li, and
Samuel R. Bowman. 2020. When do you need bil-
lions of words of pretraining data?

3512



A Finetuning Details

The experiments were carried out in a single
NVIDIA A100 80GB GPU. We use the Adafactor
optimizer (Shazeer and Stern, 2018) with a con-
stant learning rate of 10−4. The models were fine-
tuned using three different seeds, and we report an
average of the results. We have chosen hyperpa-
rameters based on preliminary experiments with
the ByT5 Small checkpoint6 on both XNLI and Ty-
diQA datasets. We do not perform any exhaustive
hyperparameter search, and use the same settings
(per-task) for all models.

Natural Language Inference. For all NLI exper-
iments, we use a batch size of 16, accumulating
gradients for 4 steps. The maximum input length
was 1024, trimmed by batch. We train the model to
output the class identifier (a number). We train for
10 epochs and evaluate every 0.2 epoch. We also
perform early stopping with patience of 5 evalua-
tions and select the best model on the validation set
of each task. The results are reported against the
test set of each dataset.

Question Answering. For QA, the selected batch
size is 6, accumulating gradients for 4 steps. The
maximum input length was 2048 (question and
context concatenated), trimmed by batch. We train
the model to output an answer to the question with
a maximum length of 768 bytes. We train for 10
epochs and evaluate at the end of each epoch. We
also perform early stopping with patience of 3 and
select the best model on the validation set of each
task.

6Available at: https://huggingface.co/
google/byt5-small
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Abstract

Conversational Task Assistants (CTAs) are
conversational agents whose goal is to help hu-
mans perform real-world tasks. CTAs can help
in exploring available tasks, answering task-
specific questions and guiding users through
step-by-step instructions. In this work, we
present Wizard of Tasks, the first cor-
pus of such conversations in two domains:
Cooking and Home Improvement. We crowd-
sourced a total of 549 conversations (18,077
utterances) with an asynchronous Wizard-of-
Oz setup, relying on recipes from WholeFoods
Market for the cooking domain, and WikiHow
articles for the home improvement domain.
We present a detailed data analysis and show
that the collected data can be a valuable and
challenging resource for CTAs in two tasks: In-
tent Classification (IC) and Abstractive Ques-
tion Answering (AQA). While on IC we ac-
quired a high performing model (≥85% F1),
on AQA the performance is far from being
satisfactory (∼27% BertScore-F1), suggesting
that more work is needed to solve the task of
low-resource AQA.

1 Introduction

In recent years, the way to access web information
has changed from using keyword- and semantics-
based search (Manning et al., 2008), to Question
Answering (QA) (Chen et al., 2017) and Conver-
sational Agents (CAs) (Radlinski and Craswell,
2017). CAs have evolved to support different types
of interaction and information: there are CAs for
chatting (Zhou et al., 2020) and CAs that let users
interact with existing information systems to ac-
complish specific tasks, e.g., booking a restaurant,
as in task-oriented dialogues (Bobrow et al., 1977;
Wen et al., 2017).

A specific type of information humans are look-
ing for is how to perform tasks, e.g., cooking a
dish or fixing a household problem. The Web con-
tains articles accompanied by images or videos

with step-by-step instructions to perform variegate
tasks. Existing CAs can be used mainly to browse
tasks or to answer specific questions. However,
they fail in providing a comprehensive natural con-
versation that includes search, context-aware QA,
step-by-step instructions, and multi-modal informa-
tion sharing.

The Alexa Prize TaskBot1 Challenge (Gottardi
et al., 2022) is a research challenge sponsored by
Amazon to foster research on CTAs to assist hu-
mans in executing real-world tasks. The targeted
tasks require multiple steps and decisions, includ-
ing multi-modal (voice and visual) user experi-
ences. The challenge includes two domains: Cook-
ing, i.e., guiding people in preparing recipes; and
Home Improvement, i.e., guiding people through
common household do-it-yourself tasks such as
painting a wall or pruning trees. As shown in Fig-
ure 1, CTAs should support QA capabilities on Web
sources as well as selected recipes or articles, dia-
log management to support step-by-step instruction
navigation, and multi-modal interaction.

In this paper, we present Wizard of Tasks2

(WoT), the first dataset for CTAs. We collected
a total of 549 conversations with ∼ 18K utter-
ances in two domains with a Wizard Of Oz (WOZ)
crowd-sourcing setting, where one worker is will-
ing to execute a task, while another worker has the
relevant knowledge to perform it and guides the
first towards its execution. We adopted an asyn-
chronous strategy to collect conversations, so that
neither worker needs to wait for the other to re-
spond and can multi-task better, enabling faster
data collection. We present a detailed analysis of
the dataset as well as experiments in two tasks: In-
tent Classification (IC) and Abstractive Question
Answering (AQA). We show that a transformer-

1https://www.amazon.science/
alexa-prize/taskbot-challenge

2https://registry.opendata.aws/
wizard-of-tasks/
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Figure 1: First few turns of one Wizard of Tasks conversation from the Home Improvement (DIY) domain.

based IC model can achieve ≥85% F1. In contrast,
the performance on AQA is still far from satisfac-
tory (∼27% BertScore-F1), suggesting the need for
better QA models for low-resource settings.

In the rest of the paper, Section 2 discusses re-
lated work. Section 3 presents our data collection
strategy. In sections 4 and 5 we discuss the data
analysis and experimental evaluation. Finally, in
Section 6, we state our conclusions.

2 Related Work

There is a large body of work focusing on the de-
velopment of training corpora for conversational
agents. In the following section, we summarize the
work done to collect conversations for task-oriented
and open-domain CAs.

2.1 Task-oriented Agents
The goal of task-oriented agents is to assist users in
completing a task that is grounded in a knowledge
base. For example, an agent can assist users in
making a restaurant reservation by eliciting their
preferences, building a database query and sharing
the available options. While some of the previ-
ous work has focused on single-domain data sets
(Moon et al., 2020; Wen et al., 2017), most of it
focused on multi-domain data (Budzianowski et al.,
2018; El Asri et al., 2017; Shah et al., 2018).

One of the approaches for collecting task-
oriented conversations is to use computer simula-
tions and templates to generate synthetic data sets

(Shah et al., 2018; Rastogi et al., 2020; Zhao and
Eskenazi, 2018), possibly also rephrasing using
crowd-sourcing (Rastogi et al., 2020; Shah et al.,
2018). A second approach is to let users interact
with existing dialog systems (Williams et al., 2016)
to improve their performance.

Perhaps the most well-known approach is to
crowdsource conversations using a pool of pub-
lic workers. Specifically, the WOZ paradigm is
often used where one human is playing the role of
a conversational agent and the other one is playing
that of a user (Wen et al., 2017; Budzianowski et al.,
2018; Zang et al., 2020; Eric et al., 2020; Moon
et al., 2020; El Asri et al., 2017). The advantage is
that the resulting data consists of natural conversa-
tions compared to using computer simulations. In
some studies (Wen et al., 2017; Ikeda and Hoashi,
2018), the data was collected in an asynchronous
manner by assigning each conversation turn to an
available worker who writes an utterance based on
all previous turns.

2.2 Open-domain Agents

Open-domain dialog agents can converse with
users about topics without a clear goal. The conver-
sations are usually grounded in some knowledge
source, e.g., a Wikipedia page. The main approach
for collecting data for open-domain dialog systems
is to collect conversations between humans using
a crowd-sourcing platform and the WOZ setting.
In some studies, only one worker has access to the
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knowledge source (Dinan et al., 2018). In other
works, both sides have access to some knowledge
source (Gopalakrishnan et al., 2019; Zhou et al.,
2018; Moghe et al., 2018; Zhang et al., 2018) to
simulate a scenario where two humans share some
amount of background knowledge.

3 Crowd-sourcing a CTA Dataset

We designed a crowd-sourcing task to create a
dataset suitable for a CTA to assist users in complet-
ing complex tasks requiring multiple steps and rea-
soning. We collected conversations for two target
domains3: i) Cooking, i.e., assisting users in per-
forming recipes and ii) Home Improvement (DIY),
i.e., assisting users in performing tasks to improve
their home.

3.1 Worker Roles and Expectations

Our data collection adopts a WOZ paradigm, where
one worker (i.e., the student) communicates with
another worker (i.e., the teacher) about tasks and
how to perform them. Each worker is assigned only
one of the two roles for the duration of the study to
avoid potential quality issues.

3.1.1 Teacher Role
The teacher is defined as a knowledgeable expert
who instructs the student to complete an assigned
task, while keeping the conversation engaging and
natural. The teacher is given a set of informative
documents about the task to help the student.

A conversation starts with a student asking about
the task. The teacher is expected to understand the
document, find relevant instructions and respond
to the student. The teacher can also access external
resources to search for the needed information with
their preferred search engine. In this case, we ask
the teacher to provide the URL of any reference
used to produce their response. One interesting fea-
ture in our dataset is the adoption of multi-modality
to share information between the agent and the user.
Creating such a multi-modal experience is not triv-
ial, and requires more understanding on how peo-
ple behave in such a setting. Thus, the teacher can
share various types of content with the student re-
garding the task to enrich their response (e.g., step
images, step text, ingredients, and tools).

3Whole Foods Market (https://www.
wholefoodsmarket.com/recipes) for cooking
tasks and Wikihow (https://www.wikihow.com/
Main-Page) for DIY tasks.

Teacher Task. The teachers are required to an-
swer four domain-independent questions for each
turn before submitting their responses:

• Is the last student message relevant and coher-
ent to the conversation history?

• Is the last student message useful for proceed-
ing to the next steps?

• What is the action of your message?

• Write your response to the last student.

The first two questions provide relevance and
usefulness labels for the previous student turn. The
answer to these questions is a binary label (yes/no).
The last two questions ask for the action of the
teachers and their response.4 The teachers can
choose among the following actions: i) return a
list of ingredients/tools; ii) return the next step;
iii) answer a question only using the current task
document; iv) answer a question using external
knowledge (e.g., via common sense or search); v)
ask a question to the student.5

3.1.2 Student Role
The student is defined as a curious learner who
is willing to complete a task, while keeping the
conversation engaging and natural. Initially, the
student is given only a task title, and is expected to
start the conversation by asking about the task, the
required ingredients or the next steps. As the task
progresses, the student is responsible for following
the teacher instructions and moving toward task
completion. The student is encouraged to ask at
least one open-ended question about ingredients
or general questions about the current step before
moving to the next step. This helps to minimize
the chance that the student simply requests the next
step in the task without meaningful interactions.

Student Task. The students must answer six
questions to submit their responses as follows:

• Is the last teacher’s message relevant and co-
herent to the chat history?

• Is the last message of the teacher useful for
proceeding to the next steps?

• Which shared content, if any, can cause poten-
tial harm to people or property damage?

4We disabled the copy-paste function to force the teachers
to write their final response.

5This is to encourage teachers to ask questions to produce
more natural conversations.
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• What would you do in real-life if you were
doing the task?

• What is the intent of your response?

• What is your response to the previous teacher?

While the first two questions are similar to the
ones asked to the teacher, the third is added to label
potentially dangerous content or activities provided
by the teacher. The fourth question is meant to
create a more realistic annotation experience. Since
we do not expect workers to really do the tasks,
by asking what the worker would do in real-life
(e.g., “walk to the refrigerator, grab a pear and start
cutting it”), we hope they can better focus on the
tasks and generate more realistic sentences.

The last two questions are used to collect the
intent and the message of the student. The options
are: i) request ingredients/tools; ii) request next
step; iii) ask a question about ingredients/tools;
iv) ask a question about a step; v) stop. More
details about crowdsourcing tasks are available in
Appendix A.

3.2 Crowdsourced Data Collection
We used Amazon Mechanical Turk6 to collect
Wizard of Tasks. We paid $0.20 for each
completed task.7 We also used an on-boarding
task to filter out low-quality workers. The con-
versational data was collected in two batches to
enable a data quality check during the process. The
first batch of Cooking data (66%) was collected
between Oct. 5 and Oct. 8 (2021) and the second
batch between Jan. 1 and Jan. 4 (2022). The first
batch of the DIY data (75%) was between Oct. 14
and Oct. 30 (2021) and the second batch between
Jan. 4 and Jan. 12 (2022).

3.2.1 Asynchronous Strategy for
Conversational Data Collection

Unlike previous data collection approaches for
conversations (Budzianowski et al., 2018; Zang
et al., 2020; Eric et al., 2020; Moon et al., 2020),
we adopted an asynchronous strategy (Ikeda and
Hoashi, 2018) to collect Wizard of Tasks.
This approach has several advantages over syn-
chronous conversation. The main advantage is that
two workers are not required to be online at the
same time. This allows them to work on multiple

6https://www.mturk.com/
7To estimate the task price, we recruited five domain ex-

perts to work on demo tasks for 60 minutes and we computed
the single task price according to a pay of $12.5 per hour.

assignments simultaneously, a common practice
among crowd-sourcing workers. Moreover, decou-
pling the workers will free them from waiting for
the other party to reply, making the collection more
time efficient, and thus, reducing costs for each
task. As a side effect, more than two workers par-
ticipate in a single conversation. This may bring
more diversity into the language and writing styles
as against using the same two workers.

In practice, for each turn i of a conversation, the
worker (either a student or a teacher) can see some
information, including the task title, the history
of the conversation up to turn i − 1, the content
shared by the teachers, and, only for the teacher,
the document content. The worker is expected
to use the included information to understand the
context and decide how to reply (i.e., to provide the
ith turn). After answering the required questions,
the worker can submit a task. This triggers the
automatic creation of a new task for the next turn
i + 1, which can be accessed by the next worker,
who may be different from the previous ones.

3.2.2 Automated Quality Assurance
One disadvantage of the asynchronous strategy is
that workers can abuse it.8 We developed a heuris-
tic to block malicious workers. When workers
submitted a task, we retrieved their k=5 most re-
cent submissions and evaluated the average rele-
vancy and usefulness. If either value fell below a
threshold (p=0.5), those workers were temporarily
blocked. Each day, we manually analyzed sam-
ple submissions from temporarily blocked workers
to decide whether each worker should be perma-
nently blacklisted or unblocked. Finally, if both
the average relevancy and usefulness were greater
than p=0.9 in the latest k=5 submissions, we paid
a bonus of $0.08.

4 Wizard of Tasks Analysis

In this section, we present the analysis of the
Wizard of Tasks data. Dataset statistics are
presented in section 4.1, followed by a linguistic
analysis in section 4.2.9

4.1 Dataset Statistics

The dataset consists of 272 (277) conversations
in the Cooking (DIY) domain comprising 7, 908

8In an early phase, we observed some workers inputting
random and repetitive responses.

9We report additional statistics in Appendix D and conver-
sations examples in Appendix C.
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Figure 2: Conversation Length Histogram. Each point
x in the x-axis corresponds to the interval [x, xr) where
xr is the closest point to the right of x.

(10, 169) utterances. 238 (159) workers partici-
pated in the Cooking (DIY) experiments with an
average number of utterances per worker of 33.2
(63.9). The average number of unique tasks per
worker is 20.1 (35.1) for Cooking (DIY). The aver-
age number of utterances per conversation is 29.1
for Cooking and 36.7 for DIY. Figure 2 shows his-
tograms of the conversation length. We speculate
that the difference between the two domains is that
DIY tasks are generally more complex and require
more information for their completion.

Cooking DIY
Role Relevance Usefulness Relevance Usefulness

Student 97.2% 90.2% 97.1% 90.9%
Teacher 96.5% 94.4% 97.7% 95.7%

Table 1: The percentage of student and teacher utter-
ances that were marked as relevant or useful by crowd-
sourcing workers.

Utterance Quality. In Table 1, we report the per-
centage of utterances that were assessed positively
by other workers with respect to relevance and use-
fulness. The results demonstrate the high quality
of the collected utterances with averaged relevancy
higher than 95% in both domains. Please note that
teacher utterances achieved higher usefulness than
student utterances. This can be attributed to the
asymmetry of roles: while the student mostly asks
questions, the teacher has to answer them which is
more informative and thus useful.

External Resources and Shared Information.
In 6.4% (3.5%) of teacher utterances for the Cook-
ing (DIY) domain, the workers reported that they
used external URLs. In 56.4% (63.4%) of teacher
utterances in Cooking (DIY), the workers shared
information from the recipe/article itself. A pos-
sible explanation of the difference is that recipes
are generally shorter, thus teachers were willing to
share more in the DIY domain.

Student Intents Cooking DIY
Request Step (Previous or Next) 45.8% 51.1%
Steps Question 32.7% 30.8%
Request Ingredients/Tools 13.8% 11.0%
Stop 6.8% 5.9%
Chit-chat 0.4% 1.1%
Other 0.5% 0.2%

Teacher Actions Cooking DIY
Return Step (Previous or Next) 49.1% 54.1%
Internal Fact Answer 17.0% 19.1%
External Fact Answer 23.7% 18.7%
Return Ingredients/Tools 6.7% 5.2%
Chit-chat 1.5% 0.7%
Other 0.2% 0.3%
Ask Question 1.8% 1.9%

Table 2: The percentage of student and teacher utter-
ances in each intent/action type.

Intent and Action Types. In Table 2, we report
the percentage of utterances for each intent/action.
The two most common student intents (>78%) are
requesting a step or asking a question about ongo-
ing steps. The two common teacher actions (>66%)
are either returning a step or answering a question
about the given steps/tasks. The large portion of
question/answer interactions attests to the complex-
ity of the underlying tasks.

4.2 Linguistic Analysis

Utterance Length. The average number of to-
kens in utterances is 18.5 (21.7) and 14.2 (15.6)
for teachers and students, respectively, in the Cook-
ing (DIY) domain.10 Figure 3 shows the full dis-
tribution of utterance length across conversations.
The histogram shows different distributions for stu-
dents and teachers, which we attribute again to the
asymmetry of the roles.

The average number of sentences per utterance
is slightly higher for teachers, i.e., 1.4 (1.4) and 1.5
(1.6) average sentences per utterance for students
and teachers, respectively, in Cooking (DIY). In
general, the low values demonstrate the conversa-
tional nature of the dataset. Even though teacher
utterances have more words, the workers used a
small number of sentences to construct them.

Linguistic Patterns Analysis. To investigate the
linguistic patterns in the collected data, we ran a
dependency parser on the sentences. To construct a
pattern from a sentence, we first identify the child
tokens of the sentence root. Then, we concatenate
their dependency to generate a template.11 Exam-
ples of the three most frequent patterns for students

10To perform the linguistic analysis, we used the spaCy
library (https://spacy.io/).

11The dependencies are concatenated based on the order of
the corresponding tokens in the sentence.
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Figure 3: Utterance Length Distribution. The number
of tokens in utterances of students and teachers.

and teachers are presented in Table 3 (for the DIY
domain, refer to Table 11 in the Appendix).

In Table 4, we report statistics of the patterns.
The results demonstrate diverse linguistic patterns
in the data. In both domains, the average number
of sentences per pattern (i.e., the average number
of sentences expressing a pattern) is around 3. Fur-
thermore, we can observe a slightly lower average
number for teachers compared to students. A pos-
sible explanation is that teachers have access to
the article/recipe from different sources which may
have increased the linguistic variance of their re-
sponses. The table also shows that the average
length of patterns (i.e., the average number of chil-
dren of a root node) is around 4. Finally, we mea-
sured the similarity between teacher and student
patterns. Specifically, the Jaccard index between
the set of unique patterns of students and teachers
is 0.101 (0.119) for Cooking (DIY) which shows
the different language used in the different roles.

In Figure 4, we further look at the patterns’
length. It shows higher variance in length in teacher
utterances compared to student ones. We argue that
student utterances are focused on asking for guid-
ance and are usually not grounded in any document.
On the other hand, there can be a large variety of
possible responses for the teachers.

Finally, we further examined the frequency of
the different patterns by computing the percentage
of linguistic patterns appearing in different sen-
tences. About 70% of the patterns appear only in
a single sentence. This further demonstrates the
linguistic diversity in the data. We also observe
that the percentage of patterns with more than 10
appearances is substantial. These are common ut-
terances across all conversations, such as asking
for the next step or asking for tools/ingredients.
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Figure 4: Linguistic Pattern Length Distribution. The
portion of sentences with a specific pattern length.

5 Experiments and Results

In this section, we experiment with two tasks: in-
tent classification and abstractive question answer-
ing, to demonstrate the value of the Wizard of
Tasks dataset for improving existing CTAs.

5.1 User Intent Classification
For this task, we aim to predict the intent of student
utterances. Overall, there are six possible intents
that students annotated according to Table 2. We
will only focus on the four most common intents
since we observed that the Chit-Chat and Other
labels cover only about 1.0% of the data.

For modeling, we fine-tuned a pre-trained BERT
(Devlin et al., 2018) model with the collected con-
versations. We experimented with two variants: i)
encoding only the last user utterance (Utti); ii) en-
coding the last utterance along with the k previous
turns (Utti + Utti−1 ... Utti−k).

With these experiments, we aim to verify the
potential improvements provided by contextual in-
formation. The assumption is that the context could
provide useful information in disambiguating in-
tents, especially when ambiguous (e.g., Step Ques-
tions vs. Ingredients/Tools Questions).

In the first setting, each turn i is encoded as
[CLS] Utti [SEP ]. The second setting uses
[CLS] Utti [SEP ] Utti−1 ... Utti−k [SEP ].12

The final classification is done by applying a
linear transformation layer to the encoding of the
[CLS] token where intent probabilities are com-
puted using the softmax function.

Experimental Setup and Results. To evaluate
the performance of the models, we used 5-fold
cross validation. We trained all models for 10
epochs with early stopping. In Table 5, we report
the performance of the model as a function of k, the
number of previous turns. The table includes the

12Notice that more conversational oriented encodings could
be adopted, but this is out of the scope of this analysis.
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Linguistic Pattern Examples
Students

dobj aux nsubj ROOT advcl punct What do I do when the skillet is hot? | What should I do once I’m done slicing the omelet?
dobj aux nsubj ROOT advmod punct What can I do now? | What am I doing next?

dobj aux nsubj ROOT prep punct What do I do after heating the oil? | What should I do after my oven preheats?
Teachers

nsubj aux ROOT dobj punct I’ve included the step for reference. | You will need tofu and various seasonings.
nsubj ROOT xcomp punct The first step is to combine ingredients in a blender. | The first step is to heat the oil.

nsubj aux ROOT xcomp punct You will need to swirl the pan to coat grains with oil. | You are going to cover with a plate or a heavy can to drain.

Table 3: The three most frequent linguistic patterns in student and teacher utterances (Cooking); only patterns with
at least two dependencies are included in the table.

Cooking DIY
Student Teacher Student Teacher

# Sentences 5764 5621 7609 8244
# Unique Patterns 1606 1934 2128 2349

Avg. # Sentences per Pattern 3.6 2.9 3.6 3.5
Avg. Pattern Length 4.4 4.3 4.6 4.2

Table 4: Linguistic Pattern Statistics. “Avg. # Sen-
tences per Pattern” is the avg. number of sentences
expressing a pattern (# Sentences / # Unique Patterns).

overall performance of the model (Accuracy and
Macro-F1) as well as the F1 score of each label.

As shown in Table 5, the overall accuracy of the
model is higher than 0.85 for both domains and for
all values of k. The results show that the classifica-
tion task is slightly more challenging for the DIY
domain than Cooking. A possible explanation is the
linguistic differences (e.g., the length of utterances
and the number of linguistic patterns) between the
two domain, as analyzed in Section 4. Surprisingly,
we did not observe noticeable difference in F1 after
using the conversation history, possibly due to a
limited number of training conversations.

Next, focusing our attention on the per-label
performance in Table 5, we can see that some la-
bels are substantially harder to predict than others.
Specifically, the F1 of Request Step is at least 12%
(27%) larger than the F1 of Steps Questions (Ingre-
dients/Tools Questions) for both domains and all
values of k. A possible reason for this can be that
student questions can be very specific to the task
performed while other type of utterances (e.g., Re-
quest Step utterances) use language that is shared
across tasks to a greater extent. Breaking out the
performance by labels, we can also see that us-
ing the conversational history improves the perfor-
mance of some labels and lowers the performance
of others. For example, the F1 of Steps Question
improves from 0.822 (0.805) to 0.835 (0.812) in
Cooking (DIY) when changing the value of k from
0 to 5; an opposite trend is observed in Ingr./Tools
Questions. This result suggests that the amount of
conversational history used by the model should
potentially vary across different types of utterances,

k Accuracy
F1

Ingr./Tools Steps Request
Macro-Avg Question Question Step Stop

Cooking
0 0.876 0.867 0.736 0.822 0.939 0.970
1 0.877 0.865 0.720 0.829 0.939 0.970
3 0.879 0.867 0.720 0.834 0.939 0.974
5 0.879 0.865 0.715 0.835 0.940 0.969

DIY
0 0.863 0.821 0.599 0.805 0.936 0.944
1 0.857 0.812 0.579 0.797 0.931 0.942
3 0.862 0.816 0.581 0.810 0.933 0.941
5 0.864 0.821 0.592 0.812 0.933 0.947

Table 5: IC results w.r.t. the number of previous con-
versation turns (k). In bold, the best result in a column.

Test Domain Cooking DIY
Train Domain Cooking DIY DIY Cooking
Ingr./Tools Question 0.736 0.538 0.599 0.454
Steps Question 0.822 0.804 0.805 0.771
Request Step 0.939 0.929 0.936 0.926
Stop 0.970 0.959 0.944 0.931
Macro-F1 0.867 0.807 0.821 0.771

Table 6: Comparing the performance of an intent clas-
sification model in a cross-domain setting (k = 0).

which is an interesting direction for future work.
Finally, in Table 6, we analyze the performance

of using a model that was trained on one domain
to predict the intent of utterances in the other do-
main. The results show the overall importance of
domain-specific information for the task. Still, the
necessary information for the prediction of some
labels is shared between domains to a greater extent
than in the case of other labels. For example, while
in the case of Request Step both models perform
similarly in both domains, using the cross-domain
model substantially deteriorates the performance
of the Ingr./Tools Question prediction.

Error Analysis. We observed that our model pro-
duced the least number of errors on the Stop intent,
probably because Stop utterances often contain in-
formative keywords (e.g., “stop” and “done”). We
also observed that some Request Step utterances
can contain similar keywords (e.g., “I am done
with this step”). This explains why sometimes the
model confused a Stop intent with a Request Step
intent in both the Cooking and the DIY domains.
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We also observed a challenge in distinguishing be-
tween Ingredient/Tool Question intents and Steps
Question intents, primarily due to some ambigu-
ity between these question types (Table 7). For
instance, the model predicted Steps Question when
the user asked about plastic bag substitution, but
predicted Ingredient/Tool Question for zipper sub-
stitution. Conversely, the model predicted Ingredi-
ent/Tool Question when the user asked about edge
sander. This is because while the first part of the
sentence is a substitution question, the second sen-
tence actually links back edge sander to the next
step. For further analysis, refer to Appendix E.

Cooking:

True: Request Step, Predicted: Steps Question
Do I need to let the cake cool first?
True: Ingr./Tools Question, Predicted: Steps Question
Does the vinegar’s flavor profile change when it becomes a syrup?
True: Steps Question, Predicted: Ingr./Tools Question
Should these other ingredients be sprinkled in a specific order?
True: Steps Question, Predicted: Request Step
What do I need to do in order to get my grill prepped?

DIY:

True: Request Step, Predicted: Steps Question
Now it is planted. Should I water the plant?
True: Ingr./Tools Question, Predicted: Steps Question
Could I substitute a plastic bag if I don’t have a paper bag?
True: Steps Question, Predicted: Ingr./Tools Question
Can you teach me how to replace a zipper?
I have an edge sander. Do I need it for the next step?
True: Steps Question, Predicted: Request Step
What should I do if I see a few drips of water when I run the water?

Table 7: Intent classification errors.

5.2 Abstractive Question Answering

In this task, we seek to generate natural language
answers for the questions asked by student work-
ers. The ground truth answers are provided by
the teacher workers. We focus on utterances with
the following student intents to prepare our dataset
for this task: Step Questions and Ingredients/Tools
Questions (from Table 8). We randomly sample
80% of the available question-answer (QA) pairs
as training data, with the remaining 20% equally
split into validation and test sets. We only use in-
formation from the available document (recipe or
article) and the conversational history to generate
answers to questions, without considering any ex-
ternal knowledge. Thus, our test set only consists
of QA pairs where answers from the teacher do not
contain any links to external resources.

Domain Total # QA pairs # Internal QA pairs
Cooking 1378 538
DIY 1435 684

Table 8: Statistics of student-teacher QA pairs.

Experimental Setup and Results. We fine-tune
two state-of-the-art pre-trained language models,
BART (Lewis et al., 2019) and T5 (Raffel et al.,
2019) with our identified QA pairs for both do-
mains, for the task of natural language answer gen-
eration. As input, we provide the models the user
question and a context, which consist of document
(recipe or article) text, a list of ingredients or tools
associated with the document, and the prior conver-
sational history. We evaluate different variations of
the context using the natural language generation
metrics of BLEU, ROUGE and BERT-score (Zhang
et al., 2019). In the interest of space, Table 10
shows the results for the two fine-tuned models,
using two turns of conversational history and the
entire content of the document as input context for
both domains. We also report as a baseline answer-
ing model, the document step most similar to the
input question (MSS). We compute the most simi-
lar step according to the cosine similarity between
the steps’ and questions’ representations, obtained
by using Sentence-BERT (Reimers and Gurevych,
2019). BART outperforms MSS in both domains,
while T5 only outperforms MSS on BERT-score in
the Cooking domain. MSS performs better on DIY,
than the Cooking domain. A possible explanation
could be that for DIY tasks teachers seem to rely
more on the document content to answer questions,
whereas for cooking tasks, they are more likely to
summarize or paraphrase the document content to
generate answers. We also observe that the fine-
tuned BART model outperformed the T5 model
by about 1-13% across different context settings
and domains in terms of generated answer quality.
This may be due to a smaller number of allowed
input tokens (512 for T5 vs 1024 for BART), since
the average (standard deviation) of input context
length is 286 (80) for the recipe domain and 1532
(451) for the DIY domain.

We present the BERT-score for the fine-tuned
BART model in Figure 5, across different con-
textual settings for both domains. We observe a
maximum model performance of 0.27 BERT-score
F1 points for both the Cooking and DIY domains.
Including conversational history as part of the in-
put context improves the answer generation perfor-
mance by 1-3% across both domains. This gain is
further enhanced by 1-2% with the addition of the
list of tools/ingredients to the context. In general,
the inclusion of a greater number of document steps
in the context contributes the most to the answer
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generation quality, followed by the conversational
history and the list of ingredients/tools.

The low performance (<0.3) using state-of-the-
art NLG models for both domains emphasizes the
challenges involved in solving tasks associated
with low-resource settings and indicates that there
is still a lot of room for improvement. We observed
that these models commit various types of factual
errors and stylistic or grammatical errors during an-
swer generation (examples can be found in Table 9
and in Appendix F), which points out the scope of
tackling these open research problems in the future.
In addition, in this work we simply concatenated
the different sources of information (conversational
history, list of tools/ingredients, document steps)
to create the input context. Evaluating different
ways to generate a concise, useful context, with the
possible use of some external knowledge, can also
help improve the answer quality.

Error Analysis. Overall, we observed a better
sentence structure and a much fewer number of
grammatical or stylistic errors in the generated an-
swers for the DIY domain, as compared to the
Cooking domain (Table 9). Our model produced
the largest number of factual errors which are nu-
merical in nature, as compared to the other types of
errors. This includes both hallucinating numerical
terms that did not exist in the input context, as well
as generating numbers or units that are different
from their ground truth values. This is possibly
because the pre-trained NLG language models we
used are not well trained or equipped to encode
and predict the numerical information. Incorpo-
rating the list of ingredients/tools in the input text
when generating an answer helps reduce the erro-
neous generation of specific ingredients, tools or
materials used in the tasks (e.g., “knife” vs. “thick
spoon” in the top part of Table 9 or the definition
of “cheesecloth” in the bottom part).

6 Conclusions

In this paper, we presented Wizard of Tasks,
a novel dataset for conversations in the area of Con-
versational Task Assistants. This dataset is inspired
by the Alexa Prize TaskBot Challenge, where the
participants have to create a dialog agent on top of
the Alexa platform to help users in performing real
world tasks in two domains: Cooking and Home
Improvement. To the best of our knowledge, our
task-oriented conversational dataset is the first of
its kind in these two domains. We discussed our

Cooking:
Factual, Numerical Errors→ Correct Answer
Bake the cake for 15 minutes→ You should bake for 20 minutes.
Factual, Non-numerical Errors→ Correct Answer
You can turn on a stovetop and cook until smooth.→ No stovetop is
required.
Grammatical/Stylistic Errors→ Correct Answer
Yes can use the same knife.→ You can use the same knife
DIY:
Factual, Numerical Errors→ Correct Answer
Yes, it takes about 8 to 10 days for the seeds to grow.→ The sprouts take
four days to grow.
Factual, Non-numerical Errors.→ Correct Answer
The cheesecloth is a thin layer of plastic.→ A cheesecloth is a loosely
woven cotton cloth.
Grammatical/Stylistic Errors→ Correct Answer
Yes, there are any safety concerns with opening the valve.→ Open with
caution in well ventilated room and no flame exposed.

Table 9: Abstractive QA errors. Erroneous terms in
utterances are boldfaced.

Model Ctxt. Hist. BLEU ROUGE BERTScore
Cooking

MSS None 0 0.077 0.148 0.071
T5-base All 2 0.066 0.136 0.119
BART-base All 2 0.116 0.211 0.270

DIY
MSS None 0 0.125 0.208 0.224
T5-base All 2 0.053 0.134 0.183
BART-base All 2 0.119 0.235 0.276

Table 10: Abstractive QA results. ‘Ctxt.’ and ‘Hist.’
refer to context and history, respectively.
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Figure 5: BERT-score of fine-tuned BART using differ-
ent context settings on Cooking (left) and DIY (right).
k denotes history size, while the x-axis shows the num-
ber of recipe/article steps used as part of the input con-
text. The upper two figures (dashed line) refer to using
context without ingredients/tools, whereas the lower
two figures refer to using them.

dataset collection asynchronous strategy in a crowd-
sourcing setting. We reported multiple analyses of
the collected data as well as initial experimental
evaluations on two tasks: Intent Classification and
Abstractive Question Answering. Despite the small
size of the collected data, we hope it can foster re-
search in the novel area of CTAs. In the future, we
plan to expand the dataset to additional domains.
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A Data Collection User Interface Design

As shown in Figure 6 and 7, we developed four
widgets to optimize the presentation: i) annotation
guidelines; ii) chat history; iii) task content; and iv)
annotation questions and answers. All of these wid-
gets are slightly tuned to support both teacher and
student roles. For example, we do not show any
article/recipe content to students except for their
title. On the other hand, every bit of information
including a list of ingredient/tools, steps text, im-
ages, and summary are available to teachers. There
are also variations in annotation guidelines and the
type of questions we ask to students vs. teachers.

For chat history, we always show the entire con-
versation history since our data collection is done
asynchronously. This is important because for any-
one to contribute to an existing conversation, under-
standing the context is a prerequisite for generating
any next response. Workers were also able to click
the “Share” button to see the information that was
shared on a particular turn. We developed these
mechanisms to help workers to quickly figure out
what is happening inside different conversations
and decide the next possible response.

B Additional Details of the Data
Collection

In total, 238 (159) crowd workers participated in
the Cooking (DIY) experiments and the average
number of utterances per worker is 33.2 (63). The
average number of unique tasks per worker is 20.1
(35.1) for Cooking (DIY). Finally, we observed that
93 workers participated in both tasks. The differ-
ence between domains might be due to the higher
complexity and diversity in DIY tasks compared to
Cooking, which might attract fewer workers that
are interested in participating in the task.

C Examples of Collected Conversations

We report in Table 18 and 19 two Wizard of
Tasks conversations from the Cooking and the
DIY domain.

D Additional Dataset Statistics

In Table 12, we report the distribution of utterance
length in terms of the number of sentences. The av-
erage number of sentences per utterance is slightly
higher for teachers (i.e., 1.4/1.5 and 1.5/1.7 aver-
age sentences per utterance for students and teach-
ers, respectively, in Cooking/DIY). In general, the

low values demonstrate the conversational nature
of the data set: even though teacher utterances have
more words, the workers used a small number of
sentences to construct them.

In Table 13, we further examine the frequency
of the different patterns. In the table, we can see
the percentage of linguistic patterns with a specific
number of sentences that they appear in. The re-
sults show that about 70% of patterns appear only
in a single sentence which demonstrates the linguis-
tic diversity in the data. We also observe that the
percentage of patterns with more than 10 appear-
ances is substantial. These patterns can be common
utterances across all conversations, such as asking
for the next step or asking for a list of tools or
ingredients.

E Error Analysis: Intent Classification

We present the confusion matrix for both domains
in Table 14 and 15 to see the performance trade-offs
between different intent labels.

The tables show that our model produced the
least number of errors on the Stop intent. This
is expected because Stop utterances often contain
informative keywords (e.g., “stop” and “done”).
Interestingly, we also observed that some Request
Step utterances can contain similar keywords (e.g.,
“I am done with this step”). This explains why
sometimes the model confused a Stop intent with
a Request Step intent in both the Cooking and the
DIY domains.

The confusion matrices also demonstrate the
great challenge in distinguishing between Ingre-
dient/Tool Question intents and Steps Question in-
tents. Although our intent labels were designed
to capture the differences between these two types
of questions, we noticed that this boundary can
become ambiguous from time-to-time.

F Error Analysis: Abstractive Question
Answering

In this section, we report the errors committed by
our fine-tuned BART answer generation model in
the abstractive question answering task, where it
fails to generate the correct answer to a user’s ques-
tion. A sample of the different types of errors are
shown in Tables 16 and 17, and the erroneously
generated terms are shown in bold.
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Linguistic Pattern Examples
Students
dobj aux nsubj ROOT prep punct What should I do after that? | What should I do after getting rid of the clippings?
ccomp punct dobj aux nsubj ROOT advmod punct Okay I have watered them what do I do now? | I’ve gathered the materials requested what do i do next?
dobj aux nsubj ROOT advmod punct What should I do next? | What do I do now?
Teachers
nsubj aux ROOT dobj punct I’ve shared details about the mulch here. | Shade will reduce the potency of the lavender plant.
nsubj aux ROOT dobj advmod punct I’ve shared the details here. | You’re doing great so far!
nsubj ROOT xcomp punct We want to water our soil until saturated. | A sauna helps to cleanse the skin and make you feel healthy.

Table 11: The three most frequent linguistic patterns in student and teacher utterances (DIY); only patterns with at
least two dependencies are included in the table.

Cooking DIY
# Sentences Teacher Student Teacher Student

1 63% 68% 53% 65%
2 29% 24% 32% 27%
3 5% 7% 11% 7%

>3 2% 1% 4% 2%

Table 12: The distribution of number of sentences for
teacher and student utterances.

Cooking DIY
# Sentences Student Teacher Student Teacher

(0, 1] 69% 73% 70% 71%
(1, 10] 26% 23% 26% 24%
(10,∞) 5% 4% 4% 4%

Table 13: Pattern Frequency. The percentage of pat-
terns that appear in a given number of sentences.

Request Ingr./Tools Steps
Step Question Question Stop

Request Step 1799 14 49 11
Ingr./Tools Question 24 427 112 1

Steps Question 133 156 1046 2
Stop 2 1 0 276

Table 14: Intent classification confusion matrix (Cook-
ing).

Request Ingr./Tools Steps
Step Question Question Stop

Request Step 2538 18 101 10
Ingr./Tools Question 41 302 231 0

Steps Question 166 115 1296 11
Stop 10 0 3 292

Table 15: Intent classification confusion matrix (DIY).
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Factual, Numerical Errors Correct Answer
Bake the cake for 15 minutes You should bake for 20 minutes.
You should preheating the oven to 475F. It takes about 15-20 minutes to preheat the oven.
Yes, the recipe does not include popcorn. Yes! You’ll need 2 cups of popcorn.
Factual, Non-numerical Errors Correct Answer
You can turn on a stovetop and cook until smooth. No stovetop is required.
You can use a knife. You will need a thick spoon.
Grammatical/Stylistic Errors Correct Answer
Yes can use the same knife. You can use the same knife
You should preheating the oven to 475F. You should preheat the oven to 475F.

Table 16: Abstractive QA errors (Cooking). Erroneous terms in boldface.

Factual, Numerical Errors Correct Answer
Yes, you will need to cut them every two weeks Yes because they prevent the rhubarb from growing big and strong
Yes, it takes about 8 to 10 days for the seeds to grow. The sprouts take four days to grow.
Factual, Non-numerical Errors. Correct Answer
The cheesecloth is a thin layer of plastic. A cheesecloth is a loosely woven cotton cloth.
The soil will have to be moist. The soil just needs to be very loose with chunks of bark and other organic matter
Grammatical/Stylistic Errors Correct Answer
Yes, there are any safety concerns with opening the valve. Open with caution in well ventilated room and no flame exposed.
Yes, there is no set amount of space in a small closet. A great option is to use space bags. I’ve shared more information with you.

Table 17: Abstractive QA errors (DIY). Erroneous terms in boldface.
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Figure 6: Teacher task user interface. Teachers are expected to find and provide relevant answers to students’
questions. Teachers can also use the checkmarks in the task information section to share selected content if the
textual response is not sufficient to deliver the full information.

Figure 7: Student task user interface. Students are expected to understand the task status at each turn and engage
with the teacher to progress toward task completion. The students can click on “Shared” button to view shared
content of the current and previous turns. By default, only the task title and image are shown to the student.
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Utterance Notes
User What do I need besides Salmon for this recipe?
Agent Here is what you need [Teacher shares some ingredients]
User What is the first step that should be performed after preparing these ingredients?
Agent The first step is to cut the salmon. I’ve shared below [Teacher shares a step]
User Now that the salmon is in the bowl, what is next?
Agent The next step is to mix it with some seasoning. I’ve shared the step below [Teacher shares a step]
User What specific seasonings will I need?
Agent You will need soy sauce, sesame oil, and sesame seeds. [Teacher shares some ingredients]
User The salmon and seasonings are now mixed in the bowl. What comes next?

Agent Refrigerate the mixture for a minimum of 15 minutes.
You can leave it in for up to 4 hours for better flavor.

User Does the refrigeration time affect the texture of the mixture?
Agent It will not affect the texture, it just makes the flavors meld together better.
User Am I done? let me know please?
Agent Yes, now you’re just plating and enjoying! [Teacher shares the last step ]
User I have an odd question, Why is this called Poke (Salmon poke)?
Agent Poke means “cut into pieces”, and is how Hawaiians first described the dish. [Answer found in external URL]
User Good to know! Thanks for the help, it’s time to go eat now!

Table 18: Example of one full Wizard of Tasks conversation from the Cooking domain.

Utterance Notes
User Can you help me with cleaning of wool rugs?
Agent Sure! First you should gather all the supplies needed that I have listed. [Teacher shares some tools]
User What should I do now I have the supplies?

Agent Start with taking the rug outside and shaking it off,
using a broom to help get off the dirt and dust. [Teacher shares a step]

User After I’ve shaken as much dust and dirt out of the rug,
what do I need to do a deeper job, that doesn’t seem like enough.

Agent No, that in itself won’t be enough. Now run a vacuum cleaner over your rug. [Teacher shares a step]

User Ok, the rug has been shaken of dirt and dust and then vacuumed...
is there anything else to do?

Agent Yes, you will need to shampoo your rug.
Please follow the attached instruction for shampooing your rug. [Teacher shares a step]

User
Do I need to use a sponge or can I use a cleaning scrub brush of
sorts to get out extras stains? Is this a situation that I can
deviate a little or do I need to be precise?

Agent A sponge is less harsh but either will work.

User I’ve rubbed a lot of soap through it and rinsed until the soap is gone.
What should I do with it next?

Agent You want to dry your rug immediately [Teacher shares a step]
User Why does the rug need to be dried immediately?
Agent Because it needs extensive drying to get rid of the moisture [Teacher shares the last step ]

User
Squeezing it with my hands left a lot of water still in.
Could I make a pad of dry towels on the floor, then lay the rug down,
then put more towels on top and apply pressure to it to blot up more water?

Agent That would work you could also try hang drying the wool rug for the final step
User Okay, good to know! What should I do after drying the rug?
Agent Cleaning and drying wool rug is complete
User Could the steps that I just took for my wool rug work on my cotton rug as well?
Agent I would check the care tag on the rug before doing anything.

User What about these instructions makes this care particularly
well-suited for wool rugs?

Agent Wool is very delicate and needs a lot of care
User Thanks for the help cleaning my rug!

Table 19: Example of one full Wizard of Tasks conversation from the Home Improvement (DIY) domain.
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Abstract

Online hate speech detection has become an
important issue due to the growth of online
content, but resources in languages other than
English are extremely limited. We introduce
K-MHaS1, a new multi-label dataset for hate
speech detection that effectively handles Ko-
rean language patterns. The dataset consists of
109k utterances from news comments and pro-
vides a multi-label classification using 1 to 4 la-
bels, and handles subjectivity and intersection-
ality. We evaluate strong baselines on K-MHaS.
KR-BERT with a sub-character tokenizer out-
performs others, recognizing decomposed char-
acters in each hate speech class.

1 Introduction

The growth of online content including social
media (Zampieri et al., 2020), news comments
(Gao and Huang, 2017), Wikipedia (Wulczyn
et al., 2017), and in-game chat (Weld et al., 2021)
presents challenges in detecting hate speech us-
ing advanced Natural Language Processing. Hate
speech is language that attacks or diminishes indi-
viduals or groups based on certain characteristics
such as physical appearance, religion, gender, or
other attributes, and it can occur across different
linguistic styles (Fortuna and Nunes, 2018). Hate
speech detection is intrinsically a complex task
(Wang et al., 2020) due to the fuzzy boundary with
other overlapping concepts such as abusive lan-
guage (Nobata et al., 2016), toxic comments (Wul-
czyn et al., 2017), or offensive language (Davidson
et al., 2017).

Recently, the rise in popularity of Korean TV,
movies, and music (e.g. Squid Game, BTS) has
led to many young people showing an interest in
learning Korean. This phenomenon could result
in exposure to harmful content and hate speech in

∗Corresponding author (caren.han@sydney.edu.au)
1The dataset is available at https://github.com/adlnlp/K-

MHaS.

Korean. However, (1) the most common language
in hate speech research is English and only limited
resources are available in other languages such as
Arabic (Mubarak et al., 2017), Dutch (Caselli et al.,
2021), and Korean (Moon et al., 2020). In addition,
most datasets are annotated (2) using a single label
classification of particular aspects, even though the
subjectivity of hate speech cannot be explained
with a mutually exclusive annotation scheme.

We propose K-MHaS, a Korean multi-label hate
speech detection dataset that allows overlapping
labels associated with intersectionality, a concept
from sociology that identifies combined attributes
(Crenshaw, 1989). Our dataset consists of 109,692
utterances from Korean online news comments,
labeled with 8 fine-grained hate speech classes. K-
MHaS is compatible with previous work on hate
speech in other languages, by providing binary clas-
sification and multi-label classification from 1(one)
to 4(four) labels.

We investigate the K-MHaS dataset by analyz-
ing label distribution, keywords, and label pairs. In
addition, we provide strong baseline pre-trained
language models using Multilingual-BERT, Ko-
ELECTRA, KoBERT, and KR-BERT, and compare
the results using six metrics for multi-label classi-
fication tasks. Overall, the KoELECTRA model
achieves the best performance for all labels, indi-
cating the effects of the pre-training data source.
The KR-BERT with a sub-character-level tokenizer
outperforms the others on several label pairs, show-
ing that decomposing various Korean characters
is essential for the task. Our contribution can be
summarized as follows:

• We propose a large size Korean multi-label
hate speech detection dataset that represents
Korean language patterns effectively;

• We propose a multi-label hate speech annota-
tion scheme, which can handle the subjectivity
of hate speech and the intersectionality;
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Publication Language Source Data size Labels M-label
Waseem and Hovy (2016) English Twitter 16.2k Sexism, Racism, Neither N
Davidson et al. (2017) English Twitter 24.8k Hate Speech, Offensive, Neither N

Wulczyn et al. (2017) English
Wikipedia
comments

115k
Toxic, Severe Toxic, Obscene, Threat,
Insult, Identity Hate, Neutral

Y

Ibrohim and Budi (2019) Indonesian Twitter 11k
(a) Individual, Group
(b) Religion, Race, Pysical, Gender, Other
(c) Weak, Moderate, Strong Hate Speech

P

Fortuna et al. (2019) Portuguese Twitter 5.6k
(a) Hate Speech, Not Hate Speech
(b) Sexism, Body, Origin, Homophobia, Racism,
Ideology, Religion, Health, Other-Lifestyle

P

Ousidhoum et al. (2019)
English
French
Arabic

Twitter
6k (EN)
4k (FR)
3k (AR)

Labels for five different aspects
(a) Directness, (b) Hostility, (c) Target,
(d) Group, and (e) Annotator

P

Moon et al. (2020) Korean
News
comments

9k
(a) Hate Speech, Offensive, None
(b) Gender, Others, None

N

Ours Korean News
comments 109k

(a) Hate Speech, Not Hate Speech
(b) Politics, Origin, Physical, Age, Gender
Religion, Race, Profanity, Not Hate Speech

Y

Table 1: Comparison of datasets. A "M-label" indicates a multi-label annotation scheme that allows overlapping
labels for intersectionality (P = partially applied). The (a) - (e) indicates a layer containing a single label from each
aspect.

• We evaluate strong baseline experiments on
our dataset using Korean-BERT-based lan-
guage models with six different metrics.

2 Korean Multi-label Hate Speech
Detection Dataset (K-MHaS)

Our dataset is based on the Korean online news
comments available on Kaggle 2 and Github 3. The
unlabeled raw data was collected between January
2018 and June 2020. In order to curate the data,
we randomly select more than 109,692 news com-
ments. Our data preprocessing is designed to to-
kenize a Korean character and to filter the length.
We remove URLs and bad characters (e.g. U+1100
to U+11FF - Hangul Jamo) using regular expres-
sions while keeping uppercase and lowercase let-
ters in English and emoji. We discard sentences
with fewer than 10 characters as it is often only one
word. For the data derived from online comments,
we normalized repeated characters by truncating
their number of consecutive repetitions to two.

Multi-label Annotation We consider a multi-
label annotation scheme in order to deliver fine-
grained hate speech categories and intersection-
ality from the overlapping labels. The annota-
tion scheme has two layers: (a) binary classifica-
tion (‘Hate Speech’ or ‘Not Hate Speech’) and (b)
fine-grained classification (8 labels or ‘Not Hate

2https://www.kaggle.com/datasets/junbumlee/kcbert-
pretraining-corpus-korean-news-comments

3https://github.com/kocohub/korean-hate-speech

Speech’). For the fine-grained classification, a
‘Hate Speech’ class from the binary classification
is broken down into 8 classes associated with the
hate speech category 4. As shown in Table 1, this
scheme allows non-exclusive concepts, accounting
for the overlapping shades of given categories. We
select the 8 hate speech classes in order to reflect
the social and historical context as the nature of
hate speech is different in each language (Kang
et al., 2020). For example, the ‘politics’ class is
chosen due to a significant influence on the style of
Korean hate speech.

Annotation Instructions Given the subjectivity
of the task and our annotation scheme, we perform
a preliminary round to identify the topics of hate
speech and develop annotation instructions. We
begin with the common categories of hate speech
found in literature and match the keywords for each
category. After the preliminary round, we investi-
gate the results to merge or remove labels in order
to provide the most representative subtype labels of
hate speech contextual to the cultural background.
Our annotation instruction includes the criteria as
follows: Politics: hate speech based on political
stance; Origin: hate speech based on place of ori-
gin or identity; Physical: hate speech based on
physical appearance (e.g. body, face) or disabil-
ity; Age: hate speech based on age; Gender: hate

4 Fine-grained labels (matching in Korean) : Politics (정
치성향차별), Origin (출신차별), Physical (외모차별), Age
(연령차별), Gender (성차별), Religion (종교차별), Race
(인종차별), and Profanity (혐오욕설)
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Figure 1: Overview of Annotation Process.

speech based on gender or sexual orientation (e.g.
woman, homosexual); Religion: hate speech based
on religion; Race: hate speech based on ethnicity;
Profanity: hate speech in the form of swearing,
cursing, cussing, obscene words, or expletives; or
an unspecified hate speech category from above;
and Not Hate Speech.

Our annotation instructions explain a two-
layered annotation to (a) distinguish hate and not
hate speech, and (b) the categories of hate speech.
Annotators are requested to consider given key-
words or alternatives of each category within social,
cultural, and historical circumstances. For exam-
ple, a comment using the word “women” is not
hate speech, whereas, if it is critical of “women” or
uses language that attacks the group, it is classified
as ‘gender’. Notably, we annotate multi-labels if a
comment includes several hate speech categories.
Since hate speech can be varied, any comments
in the form of swearing or cursing are marked as

‘profanity’. For instance, a comment containing
hate speech about appearance, political stance, and
gender in profane language (e.g. "fuck you ugly
communist bitch.")5 is labeled within ‘physical’,

‘politics’, ‘gender’ and ‘profanity’ classes.

Annotation Process Five native speakers were
recruited for manual annotation in both the pre-
liminary and main rounds. During the preliminary
round, we facilitated the annotation instructions
by conducting an annotators’ discussion and pro-
viding some examples of keywords for each class.
As shown in Figure 1, we introduced an iterative
process that enables faster annotation in the main
round. We provided an ‘uncertain’ additional field
that was used for the unspecified label in annotation
guidelines or when the annotator had difficulties in
choosing labels. Any ‘uncertain’ labeled data was
flagged by individual annotators, then reviewed by
five annotators. The final labels were chosen based
on the majority vote, and the annotation guidelines
were updated to handle similar cases. Addition-
ally, the other labeled data was reviewed, in line

5 (Korean) “면상도개조가치생겼네개빨갱이년”

Label Types Count (%)
Total Utterances 109,692 (100%)

Multi-label
(Hate Speech)

1 label (Single) 36,470 (33.2%)
2 labels 12,073 (11.0%)
3 labels 1,440 (1.3%)
4 labels 94 (0.1%)

Not Hate Speech 59,615 (54.3%)

Table 2: Dataset Statistics. The total is the combination
of all ‘hate speech’ and ‘not hate speech’ label. Together
the ‘hate speech’ label makes up 45.7% of the data.

Class Count - Single (%) Count - Multi (%)
Politics 6,931 (19.0%) 4,961 (17.2%)
Origin 5,739 (15.7%) 4,458 (15.5%)
Physical 5,443 (14.9%) 3,364 (11.7%)
Age 4,192 (11.5%) 3,178 (11.0%)
Gender 3,348 (9.2%) 4,696 (16.3%)
Religion 1,862 (5.1%) 513 (1.8%)
Race 160 (0.4%) 163 (0.6%)
Profanity 8,795 (24.1%) 7,509 (26.0%)

Table 3: Fine-grained label distributions on hate speech
labels. A ‘not hate speech’ label is not included. A
single means 1 label and a multi is the sum of 2, 3, and
4 labels. A multi-labeled data counts each overlapping
class.

with the annotation guideline by two random an-
notators for the final dataset. The inter-annotator
agreement returns an average Cohen Kappa score
of 0.892, indicating substantial agreement (Siegel
and Castellan, 1988).

3 Dataset Analysis

K-MHaS dataset contains 109,692 comments as
shown in Table 2. For binary classification, the
proportion of the ‘hate speech’ (45.7%) and ‘not
hate speech’ (54.3%) satisfies data balancing. The
‘hate speech’ label consists of a single label (33.2%)
and multi-labels (12.4%), containing from 2 to 4
labels. Other hate speech datasets reviewed have
an approximate ratio of ‘hate speech’ to ‘not hate
speech’ of around 40% (Vidgen and Derczynski,
2020). Our dataset is consistent with this figure,
where the ‘hate speech’ in a single label to ‘not
hate speech’ ratio is 38%.

Label Distribution Table 3 shows the fine-
grained label distribution across our K-MHaS. For
both single (s) and multi-label (m) distribution, the
‘profanity’ class (24.1%-s, 26.0%-m) is more fre-
quent than any other class, indicating that swear
words are critical for detecting hate speech. Also,
the ‘religion’ (5.1%-s, 1.8%-m) and ‘race’ (0.4%-s,
0.6%-m) classes are the smallest portions in both
distributions, which are significantly more com-
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Rank Politics Origin Physical Age
1 재앙 (1427) 짱깨 (615) 얼굴 (962) 틀 (1918)
2 문재인 (951) 전라도 (596) 돼지 (772) 나이 (599)
3 좌파 (464) 중국 (539) 여자 (294) 노인 (139)
4 좌빨 (402) 쪽 (448) 성형 (216) 충 (112)
5 빨갱이 (367) 짱 (446) 관상 (183) 놈 (106)

Rank Gender Religion Race Profanity
1 여자 (1704) 개독 (526) 흑인 (44) 새끼 (1103)
2 남자 (990) 신천지 (460) 백인 (32) 년 (1014)
3 페미 (172) 사이비 (409) 양키 (32) 지랄 (564)
4 맘충 (138) 종교 (305) 깜둥이 (19) 개 (459)
5 여성 (134) 예수 (227) 놈 (13) 놈 (404)

Table 4: Top 5 keywords associated with each fine-
grained label. The number in brackets is the token count.
The keyword analysis is from the total dataset and dif-
ferent from some examples in annotation guidelines.
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Figure 2: Average utterance length. (a) label types from
1 to 4 labels. 8 class types (b) in a single label and (c)
in multi-labels.

mon in other hate speech datasets. This difference
could be because Korea is a highly homogenous
monoculture with little variation in race and reli-
gion (Kang et al., 2020). Interestingly, the ‘gender’
class (16.3%) occurs at almost twice the frequency
in a multi-label distribution, compared to a sin-
gle label distribution (9.2%). This indicates that
gender-based hate speech is used extensively in
combined aspects.

Keyword Analysis To understand the lexical as-
pects, we list the top 5 keywords for each hate
speech category in Table 4, identifying which to-
kens are highly associated with each class. In the
‘politics’ class, we find that far-right extremism is
dominant, and new tokens such as “catastrophe”
[jae ang](재앙) appears related to the former presi-
dent’s given name ([jae in]) as the two words are
near-homophones. Across all classes, one-word
tokens are often used in their stem form to modify
the meanings of other words. For example, a token
[teul] (틀) comes from the word “denture” [teulni]
(틀니) which is used as an offensive reference to
the elderly. In addition, one-word tokens can be
used as a prefix (e.g. “dog” [gae] (개)) or a suffix
(e.g. “insect” [chung] (충)), and combined with
other neutral words to create a new offensive term.

Label Pair Analysis Figure 2 shows the average
length of utterance by label count and class type.

Model F1 (macro) F1 (micro) F1 (weighted) E.M. AUC H.L. (↓)
BERT 0.6912 0.8139 0.8119 0.7579 0.8878 0.0464
KoELECTRA 0.7245 0.8493 0.8480 0.7994 0.9122 0.0380
KoBERT 0.7651 0.8413 0.8424 0.7926 0.9083 0.0401
KR-BERT-c 0.7444 0.8500 0.8470 0.7901 0.9028 0.0368
KR-BERT-s 0.7245 0.8445 0.8437 0.7825 0.9076 0.0390

Table 5: Overall multi-label classification performance
on K-MHaS for the five baseline models at epoch 4
(E.M.:Exact Match, H.L.:Hamming Loss / KR-BERT-*:
c = character-level, s = sub-character-level)

Metric # labels BERT KoELECTRA KoBERT KR-BERT-c KR-BERT-s

F1
(micro)

1 0.8190 0.8490 0.8320 0.8553 0.8392
2 0.8043 0.8612 0.8854 0.8405 0.8703
3 0.7517 0.7987 0.8290 0.7827 0.8329
4 0.7093 0.7044 0.6832 0.7439 0.7771

Table 6: A breakdown of F1 for multi-label classifica-
tion from 1 to 4 labels.

The total average length of an utterance is 33 to-
kens. An increase in the number of labels shows an
increasing trend in utterance length, indicating that
multi-labeled hate speech contains more linguistic
content. The ‘gender’ class has relatively longer
lengths (43 tokens) compared to other classes in
a single label, whereas all multi-labels utterances
have a similar length. This indicates that the gender
class has different linguistic features.

4 Experiment Setup

Data Preparation We split the data into train/test
in the proportions of 0.8/0.2. From the training
set, we randomly select 0.1 as a validation set
(78,977/8,776/21,939 samples for train/val/test sets,
preserving the class proportion). The data passed
to the models is the preprocessed sentences and
binary label vectors.

Baselines We select four baselines. 1) Multi-
BERT (Wolf et al., 2020) is pre-trained on
Wikipedia in 104 different languages. We adopted
the BERT-Base, uses the WordPiece tokenizer
and contains 110M parameters and 119K vocabs.
2) KoELECTRA (Park, 2020) is pre-trained on
34GB Korean news, Korean Wikipedia, Namuwiki
(Korean-based wiki) and Modu (Korean corpus
data publicly provided by the Korean government).
The KoELECTRA-Small-v3 is used with the Word-
Piece tokenizer and contains 14M parameters and
35K vocabs. 3) KoBERT (SKTBrain, 2019) is
pre-trained on 54M words from Korean Wikipedia,
used the SentencePiece tokenizer, 92M parameters
and 8K vocabs. 4) KR-BERT (Lee et al., 2020)
is pre-trained on 2.47GB corpus with 233M words
from Korean Wikipedia and news. We applied
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Label Pairs # pairs F1 (macro) F1 (micro)

Overall Performance (F1)
BERT KoELECTRA KoBERT KR-BERT-c KR-BERT-s BERT KoELECTRA KoBERT KR-BERT-c KR-BERT-s
0.6912 0.7245 0.7651 0.7444 0.7245 0.8139 0.8493 0.8413 0.8500 0.8445

Profanity & Politics 323 0.1959 0.2045 0.2072 0.2013 0.2034 0.8379 0.8853 0.9010 0.8687 0.8616
Profanity & Physical 311 0.1931 0.2061 0.2115 0.2099 0.2121 0.8393 0.9096 0.9331 0.9369 0.9334
Profanity & Origin 269 0.1887 0.1989 0.1987 0.1961 0.2050 0.8144 0.8731 0.8729 0.8661 0.9070
Gender & Origin 242 0.2035 0.2017 0.2134 0.1905 0.2141 0.8920 0.8780 0.9440 0.8354 0.9494
Politics & Origin 224 0.1962 0.1976 0.1991 0.1872 0.2013 0.8666 0.8714 0.8846 0.8295 0.8918
Age & Politics 222 0.1996 0.2114 0.2104 0.1964 0.2014 0.8765 0.9329 0.9357 0.8734 0.8878
Gender & Profanity 181 0.1895 0.1991 0.1957 0.1911 0.2054 0.8157 0.8715 0.8542 0.8450 0.8994
Gender & Physical 177 0.1160 0.1833 0.1958 0.1813 0.1953 0.4562 0.7867 0.8455 0.8045 0.8585
Age & Profanity 132 0.1908 0.2102 0.2139 0.2063 0.2043 0.8414 0.9240 0.9459 0.9105 0.9095
Gender & Age 130 0.1738 0.1781 0.1903 0.1517 0.1339 0.7277 0.7452 0.8159 0.6368 0.5686

Table 7: F1 score for the top 10 two-label pairs on the K-MHaS dataset for the five pre-trained language models at
epoch 4 (# total label pairs = 2,439 / KR-BERT-*: c = character-level tokenizer, s = sub-character-level tokenizer).

either (1) the character-level tokenizer or (2) the
sub-character-level tokenizer6.

Evaluation Metrics In multi-label classification,
the prediction contains a set of labels, which means
the prediction can be fully correct, partially correct,
or fully incorrect. We propose to use the widely
used six metrics (Godbole and Sarawagi, 2004) for
conducting our multi-label classification, including
F1-[macro, micro, weighted], Exact Match, AUC
and Hamming Loss (Sorower, 2010).

5 Results

Evaluation for All Labels The overall perfor-
mance for all labels is provided in Table 5. The
F1(micro) range between 0.8139 (Multi-BERT),
0.8493 (KoELECTRA) and 0.8500 (KR-BERT-c),
while the F1(macro) scores show a range from
0.6912 (Multi-BERT) to 0.7651 (KoBERT) with
4 epochs. We observe that all baselines achieve
a similar performance, whereas Multi-BERT pre-
trained on 104 languages present relatively lower
performance. The KoELECTRA obtains overall
the best or second best among six metrics, although
this model has a seven times smaller parameter size
(14M) than an average of other models (99M). This
indicates the effects of the pre-training data source,
considering that the KoELECTRA includes the cor-
pus from Namuwiki and Modu that contain modern
slang and buzzwords, while other models generally
use Korean Wikipedia.

Evaluation for Multi-labels Table 6 shows the
breakdown F1(micro) for multi-label classification
from 1 to 4 labels7. A single label task, achiev-
ing 0.8553 and 0.8490 from the KR-BERT-c and

6The KR-BERT tokenization variants can be found as fol-
lows: https://github.com/snunlp/KR-BERT#tokenization

7Further details are shown in Appendix Table 8.

KoELECTRA, outperforms other multi-label tasks
due to domain similarity. For the multi-label clas-
sification, KR-BERT-s achieved the best perfor-
mance. It uses a sub-character tokenizer that can
decompose Hangul(Korean language) syllable char-
acters into sub-characters. Therefore, it provides
greater granularity in detecting hate speech words,
by identifying the sub-characters from different
hate speech categories.8.

Evaluation for Label-pairs Table 7 shows the
F1-[macro, micro] scores for curated label pairs
based on the proportion in the 2-labels classifica-
tion. It illustrates that the KR-BERT-s model out-
performs in six label pairs. In particular, it is very
effective at detecting the origin and gender pairs,
achieving the highest F1 micro scores of 0.9494
across all label pairs and models. This model uses
the sub-character-level tokenizer that can decom-
pose various Korean characters (Hangul syllables)
into sub-characters or graphemes to enable han-
dling the bottom consonant (e.g. "gold-digger"
[kko#t#baem]꼬#ㅊ#뱀) or initial consonant (e.g.
[k]ㅋ). This approach can detect new slang even
if it is only a minor variation from other neutral
words.

6 Conclusion

We propose K-MHaS, a new large-sized dataset
for Korean hate speech detection with a multi-label
annotation scheme. We provided extensive baseline
experiment results, presenting the usability of a
dataset to detect Korean language patterns in hate
speech. In future work, the automatic hate speech
moderation and counter-speech can be expanded.

8(e.g.) 개빠ㄹ갱이년 =개 ("dog" - profanity) +빠ㄹ갱
이 ("communist" - politics) +년 ("bitch" - gender)
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A Appendix

Ethics/Broader Impact Statement The study
follows the ethical policy set out in the ACL code
of Ethics9 and addresses the ethical impact of pre-
senting a new dataset. As described in the data sec-
tion 2, our annotated dataset is based on the online
news comments data publicly available on Kaggle
and Github. All annotators were recruited from
a crowdsourcing platform. They were informed
about hate speech before handling the data. Our in-
structions allowed them to feel free to leave if they
were uncomfortable with the content. With respect
to the potential risks, we note that the subjectivity
of human annotation would impact on the quality
of the dataset.

The Korean language The Korean language is
morphologically rich and the character structure is
different to Latin-based language. A brief compo-
nents used in the paper as follows:

• Consonant (자자자음음음) : A consonant is a sound
such as ‘p’, ‘f’, ‘n’, or ‘t’ which you pro-
nounce by stopping the air flowing freely
through your mouth.
- initial consonant (초성)
- bottom consonant (받침)

• Vowel (모모모음음음) : A vowel is a sound such as
the ones represented in writing by the letters
‘a’, ‘e’, ‘i’, ‘o’, and ‘u’, which you pronounce
with your mouth open, allowing the air to flow
through it.

• Syllable (음음음절절절) : A syllable is a part of a
word that contains a single vowel sound and
that is pronounced as a unit. So, for example,

9https://www.aclweb.org/portal/content/acl-code-ethics

‘book’ has one syllable, and ‘reading’ has two
syllables.
- Korean romanization : (e.g. [kko#t#baem])
- Character level : (e.g. 꽃#뱀)
- Sub-character level : (e.g. 꼬#ㅊ#뱀)

Implementation Details For all baselines, we set
the number of epochs as 4 and use a batch size of
32. For other hyper-parameters, we follow the con-
figuration in the official GitHub implementation
of the baselines. The source codes or pre-trained
models for the baselines are available at the fol-
lowing GitHub addresses: Multilingual BERT10,
KoELECTRA11, KoBERT12 and KR-BERT13.

Experiments. A brief of tables displayed in Ap-
pendix as follows:

• Table 8: a breakdown of multi-label classifi-
cation performance from 1 to 4 labels;

• Table 9: overall binary classification perfor-
mance;

• Table 10: a breakdown of binary classification
performance;

• Table 10: F1 score for the top 10 three-label
pairs in 3-labels classification;

• Table 12: F1 score for the top 5 four-label
pairs in 4-labels classification.

10https://github.com/google-research/bert
11https://github.com/monologg/KoELECTRA
12https://github.com/SKTBrain/KoBERT
13https://github.com/snunlp/KR-BERT

3536



# Labels Model F1 (Macro) F1 (Micro) F1 (Weighted) E.M. AUC H.L. (↓)

1

BERT 0.6666 0.8190 0.8202 0.7919 0.9011 0.0406
KoELECTRA 0.6953 0.8490 0.8508 0.8263 0.9213 0.0341
KoBERT 0.7321 0.8320 0.8370 0.8142 0.9110 0.0379
KR-BERT(w. char) 0.7336 0.8553 0.8543 0.8239 0.9145 0.0318
KR-BERT(w. sub) 0.6985 0.8392 0.8419 0.8062 0.9123 0.0360

2

BERT 0.6389 0.8043 0.8174 0.5580 0.8524 0.0788
KoELECTRA 0.6777 0.8612 0.8700 0.6511 0.8934 0.0577
KoBERT 0.7249 0.8854 0.8911 0.6794 0.9112 0.0482
KR-BERT(w. char) 0.6748 0.8405 0.8451 0.5912 0.8735 0.0642
KR-BERT(w. sub) 0.6718 0.8703 0.8723 0.6535 0.9000 0.0542

3

BERT 0.5784 0.7517 0.7522 0.2448 0.8040 0.1402
KoELECTRA 0.6146 0.7987 0.7953 0.3310 0.8362 0.1169
KoBERT 0.6523 0.8290 0.8251 0.3759 0.8589 0.1019
KR-BERT(w. char) 0.5828 0.7827 0.7732 0.2828 0.8239 0.1230
KR-BERT(w. sub) 0.6164 0.8329 0.8263 0.3586 0.8615 0.0996

4

BERT 0.4776 0.7093 0.7029 0.1200 0.7610 0.2222
KoELECTRA 0.4511 0.7044 0.6639 0.0000 0.7680 0.2089
KoBERT 0.4177 0.6832 0.6460 0.0400 0.7510 0.2267
KR-BERT(w. char) 0.4837 0.7439 0.7226 0.1200 0.7930 0.1867
KR-BERT(w. sub) 0.5068 0.7771 0.7618 0.1200 0.8120 0.1733

Table 8: A breakdown of multi-label classification performance from 1 to 4 labels on K-MHaS for the five pre-trained
language models at epoch 4 (E.M.:Exact Match, H.L.:Hamming Loss / KR-BERT (w. *): char = character-level,
sub = sub-character-level)

Model F1 (Macro) F1 (Micro) F1 (Weighted) E.M. AUC H.L. (↓)
BERT 0.8495 0.8507 0.8505 0.8507 0.8488 0.1493
KoELECTRA 0.8756 0.8766 0.8765 0.8766 0.8750 0.1234
KoBERT 0.8687 0.8692 0.8693 0.8692 0.8696 0.1308
KR-BERT (w. char) 0.8846 0.8850 0.8851 0.8850 0.8862 0.1150
KR-BERT (w. sub) 0.8869 0.8879 0.8877 0.8879 0.8857 0.1121

Table 9: Overall binary classification performance on the K-MHaS dataset for the five pre-trained language models
at epoch 4 (E.M.:Exact Match, H.L.:Hamming Loss / KR-BERT (w. *): char = character-level, sub = sub-character-
level)

Label Model F1 (Macro) F1 (Micro) F1 (Weighted) E.M. H.L. (↓)

Hate Speech

BER 0.4518 0.8243 0.9037T 0.8243 0.1757
KoELECTRA 0.4606 0.8540 0.9212 0.8540 0.1460
KoBERT 0.4666 0.8746 0.9331 0.8746 0.1254
KR-BERT (w. char) 0.4611 0.8558 0.7892 0.8558 0.1442
KR-BERT (w. sub) 0.4724 0.8953 0.8458 0.8953 0.1047

None

BERT 0.4662 0.8733 0.9323 0.8733 0.1267
KoELECTRA 0.4726 0.8960 0.9452 0.8960 0.1040
KoBERT 0.4637 0.8645 0.9273 0.8645 0.1355
KR-BERT (w. char) 0.4772 0.9126 0.8709 0.9126 0.0874
KR-BERT (w. sub) 0.4687 0.8821 0.8268 0.8821 0.1179

Table 10: A breakdown of binary classification performance on the K-MHaS dataset for the five pre-trained language
models at epoch 4 (E.M.:Exact Match, H.L.:Hamming Loss / KR-BERT (w. *): char = character-level, sub =
sub-character-level, bi = Bidirectional WordPiece tokenizer)
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Label Triplets # triplets F1 (macro) F1 (micro)

Overall Performance (F1)
BERT KoELECTRA KoBERT KR-BERT-c KR-BERT-s BERT KoELECTRA KoBERT KR-BERT-c KR-BERT-s
0.6912 0.7245 0.7651 0.7444 0.7245 0.8139 0.8493 0.8413 0.8500 0.8445

Origin & Politics & Profanity 41 0.2780 0.2935 0.2954 0.2937 0.3125 0.8224 0.8739 0.8869 0.8739 0.9316
Politics & Profanity & Age 37 0.2781 0.3054 0.3174 0.2981 0.2971 0.8205 0.9126 0.9395 0.8867 0.8824
Physical & Politics & Profanity 32 0.2483 0.2809 0.2960 0.2823 0.2939 0.7296 0.8304 0.8750 0.8421 0.8764
Origin & Profanity & Gender 30 0.2545 0.2314 0.2527 0.2463 0.2886 0.7467 0.7397 0.7368 0.7671 0.8712
Physical & Profanity & Gender 24 0.2151 0.2665 0.2730 0.2459 0.2811 0.6306 0.7869 0.8226 0.7521 0.8413
Origin & Physical & Profanity 14 0.2692 0.2811 0.2873 0.2351 0.2865 0.7532 0.8378 0.8312 0.7273 0.8421
Politics & Age & Gender 14 0.2593 0.2933 0.2830 0.2319 0.2406 0.7606 0.8684 0.8158 0.6970 0.7059
Profanity & Age & Gender 13 0.2686 0.2712 0.2932 0.2593 0.2695 0.8182 0.8060 0.8732 0.8000 0.8358
Origin & Physical & Gender 12 0.2692 0.2327 0.2407 0.2347 0.2703 0.7812 0.6780 0.7458 0.7143 0.8065
Origin & Age & Gender 10 0.2736 0.2781 0.3093 0.2428 0.2411 0.8235 0.8302 0.9123 0.7347 0.7600

Table 11: F1 score for the top 10 three-label pairs on the K-MHaS dataset for the five pre-trained language models at
epoch 4 (# total label triplets = 290 / KR-BERT-*: c = character-level WordPiece tokenizer, s = sub-character-level
WordPiece tokenizer)

Label Quadruplets # quadruplets F1 (macro) F1 (micro)

Overall Performance (F1)
BERT KoELECTRA KoBERT KR-BERT-c KR-BERT-s BERT KoELECTRA KoBERT KR-BERT-c KR-BERT-s
0.4776 0.4511 0.4177 0.4837 0.5068 0.7093 0.7044 0.6832 0.7439 0.7771

Origin & Profanity & Age & Gender 5 0.3567 0.2950 0.2346 0.2932 0.3086 0.8000 0.6875 0.5806 0.7500 0.7879
Origin & Physical & Profanity & Gender 4 0.2582 0.2804 0.2508 0.3302 0.3757 0.5385 0.7200 0.6400 0.7692 0.8571
Origin & Physical & Politics & Profanity 3 0.4000 0.3333 0.3111 0.3333 0.3667 0.9091 0.8000 0.7368 0.8000 0.8571
Origin & Politics & Profanity & Age 3 0.4222 0.3444 0.3667 0.4444 0.4444 0.8800 0.8000 0.8571 1.0000 0.9600
Origin & Politics & Profanity & Gender 2 0.1852 0.2963 0.2593 0.2963 0.2963 0.5455 0.7692 0.6667 0.6667 0.7692

Table 12: F1 score for the top 5 four-label pairs on the K-MHaS dataset for the five pre-trained language models at
epoch 4 (# total label quadruplets = 25 / KR-BERT-*: c = character-level WordPiece tokenizer, s = sub-character-
level WordPiece tokenizer)
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Abstract

FAQs are important resources to find informa-
tion. However, especially if a FAQ concerns
many question-answer pairs, it can be a difficult
and time-consuming job to find the answer you
are looking for. A FAQ chatbot can ease this
process by automatically retrieving the relevant
answer to a user’s question. We present Vac-
cinChatNL, a Dutch FAQ corpus on the topic
of COVID-19 vaccination. Starting with 50
question-answer pairs we built VaccinChat, a
FAQ chatbot, which we used to gather more
user questions that were also annotated with
the appropriate or new answer classes. This
iterative process of gathering user questions,
annotating them, and retraining the model with
the increased data set led to a corpus that now
contains 12,883 user questions divided over 181
answers. We provide the first publicly avail-
able Dutch FAQ answering data set of this size
with large groups of semantically equivalent
human-paraphrased questions. Furthermore,
our study shows that before fine-tuning a classi-
fier, continued pre-training of Dutch language
models with task- and/or domain-specific data
improves classification results. In addition, we
show that large groups of semantically simi-
lar questions are important for obtaining well-
performing intent classification models.

1 Introduction

In quickly changing contexts, like the COVID-19
pandemic, getting access to relevant and correct in-
formation in a fast and easy way is of crucial impor-
tance. Although websites with frequently-asked-
questions (FAQ) sections provide such information,
finding the representative question that matches
a user’s request can be hard and time-consuming,
especially when the list of question-answer (QA)
pairs is long. A FAQ chatbot does this matching
for the user, speeding up the process of finding an
answer to the posed question: users speak or type
their questions and the system retrieves the best
matching answer available.

Intent: faq_ask_why
Waarom zou ik mij laten vaccineren?
Why would I get vaccinated?
Wat zijn de voordelen?
What are the advantages?
Waarom moet je je laten inenten?
Why do you need to get vaccinated?
Ik snap niet waarom ik me moet laten
vaccineren.
I don’t understand why I must get vaccinated.
Waarom is vaccineren belangrijk?
Why is vaccination important?
Hoezo moet ik mij laten inenten tegen covid?
Why should I get vaccinated against covid?
Waarom dringen ze zo aan op het vaccin?
Why are they so insistent on the vaccine?
Intent: faq_ask_certificate
Krijgen we een attest na vaccinatie?
Do we get a certificate after vaccination?
Moet ik later kunnen bevestigen dat ik een
vaccinatie gehad heb?
Do I have to be able to confirm later
that I have had a vaccination?
Kunnen instanties me vragen te bewijzen of ik
gevaccineerd ben?
Can authorities ask me to prove that I have
been vaccinated?

Table 1: Examples of paraphrases for two intents in the
corpus.

Standard FAQs consist of a list of QA pairs,
where each answer is coupled with one instance of
a general question. However, to train an automatic
classifier of answers, more than just one example
of questions is needed. Different paraphrases or
versions of the same question will improve the
classification performance. In this work we de-
scribe the data collection process for VaccinChat1,

1https://vaccinchat.be

3539



Figure 1: Example dialogue in VaccinChat.

a Dutch FAQ chatbot on the COVID-19 vaccines.
The result is VaccinChatNL, the first Dutch FAQ
answering data set, containing 12,883 questions
that refer to 181 different answers. With Dutch
we refer to the Dutch used in the Flemish region
of Belgium as opposed to the Dutch used in the
Netherlands. Table 1 shows some examples of user
questions for two different answers and Figure 1
shows an example dialogue in VaccinChat.

Commercial organizations that use or develop
FAQ chatbots, usually keep their FAQ answering
data sets private. However, VaccinChat was built
for research purposes and the released corpus was
checked and anonymized with respect to privacy-
sensitive information. The number of FAQ answers
(181) is a lot higher than on the average FAQ page
on the web holding only six answers (De Bruyn
et al., 2021b). In addition, the corpus does not just
hold QA pairs, but groups of questions per answer,
providing a unique set of many-to-one mappings
of questions to answers. Unlike FAQs on the web
with ‘clean’, grammatically correct questions, the
questions in our corpus come from actual users
and may contain typing errors and/or other omis-

sions/mistakes.
Questions referring to the same answer are not

always paraphrases (e.g., “Should we get a vaccine
on a yearly basis?” and “How long will the vaccine
protect me?”: both refer to the same answer), but
in a lot of cases they are (see the examples in Table
1). So, although VaccinChatNL is not a paraphrase
corpus in the strictest sense of the word, it does
contain a lot of paraphrases. And unlike most of
the available paraphrase corpora that contain para-
phrase pairs, VaccinChatNL contains paraphrase
groups that have many more than two paraphrases.

Our FAQ chatbot uses an intent classifier, mean-
ing that user questions are classified into an answer
class (intent), after which the answer of the clas-
sified intent is returned to the user. To train such
a classifier we need the user questions and their
intent labels. Since we also have the text of the an-
swers, the VaccinChatNL corpus could be used to
train a model that considers the similarity between
(the representations of) a question and its answer.
ConveRT (Henderson et al., 2019) is an example
of such a model for English, and a Dutch version
was developed by De Bruyn et al. (2021a).
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On top of the above-mentioned qualities of the
corpus, the topic of the corpus – COVID-19 vac-
cines – makes VaccinChatNL relevant. Although
the data provides a blueprint of questions and an-
swers for the Flemish situation in the first half of
2021, the topic is relevant and similar for the whole
world. Translated data could be used for training
models in other languages. Since Dutch (FAQ)
data is scarce, the corpus is an excellent addition
to multilingual FAQ approaches and data sets.

Despite the multipurpose nature of the corpus,
we focus on using the data for training an intent
classifier as one of the possible applications for
the COVID-19 FAQ domain. Rather than finding
the best possible model for this purpose, we fo-
cus on inspecting the effect of pre-training with
task- and/or domain-specific data. In this work
we describe those experiments as well as the data
collection process. The VaccinChatNL corpus is
publicly available2 on the HuggingFace dataset hub
(Lhoest et al., 2021).

2 Related Work

This section contains related work concerning
domain- and task-adaptation, and considering the
overlap of VaccinChatNL with FAQ and paraphrase
corpora, we review the existing literature on these
types of data resources.

2.1 Domain- and Task-Adaptation

Since large labeled data sets for classification are
not always easy to build, pre-trained language mod-
els are used as a starting point for fine-tuning on
the classification task. Edwards et al. (2020) show
the importance of using domain-specific data for
further unlabeled pre-training of a language model,
improving performance for sentiment and emoji
classification (among other things) of twitter utter-
ances. Similarly, Wiedemann et al. (2020) show the
benefit of domain-adaptation of a RoBERTa-large
model for binary offensive language detection.

Zhu et al. (2021) found that domain-adaptation is
mainly beneficial in low-resource settings. Increas-
ing the amount of labeled data available for fine-
tuning, reduces the impact of further pre-training
with domain-specific data. Similar to the work
of Mehri et al. (2020) they also investigated pre-
training with task-specific data (i.e., data for the
downstream task) and concluded as well that the im-

2https://huggingface.co/datasets/clip
s/VaccinChatNL

pact of both domain- and task-adaptation depends
on the type of task, the model, and the amount of
data for fine-tuning. We therefore tested the impact
of domain- and task-adaptation for our particular
case, i.e., the size of our training set in combination
with the BERT- (Devlin et al., 2019) and RoBERTa-
based (Liu et al., 2019) text classification models
we used (see section 4.2).

In this paper we not only analyse the impact of
pre-training with task- and/or domain-specific data
on the overall classification performance, but we
also investigate the linguistic effects by doing an
error analysis of how different intent types (FAQ,
chitchat, and out-of-domain data) are affected.

2.2 FAQ and Paraphrase Data Sets

Faq-Finder (Hammond et al., 1995) created FAQs
on multiple topics based on an English data set
collected from Usenet news groups. The FAQIR
dataset (Karan and Šnajder, 2016) contains 1,233
English queries retrieved from the “maintenance &
repairs” section of the website Yahoo! Answers. A
data set of similar size is StackFAQ (Karan and Šna-
jder, 2018), containing 1,249 user queries from the
StackExchange domain. LocalGov is a Japanese
FAQ corpus with 784 user queries in the domain of
government (Sakata et al., 2019).

In the domain of question answering the seman-
tic similarity between questions is relevant. The
Kaggle Quora Question Pairs corpus3 contains over
400,000 English question pairs labeled for semantic
similarity.

Marsi and Krahmer (2014) developed a large
Dutch aligned treebank corpus to study semantic
similarity. It covers various text genres, such as
texts from books, auto-cue subtitle pairs, news
headlines, press releases about news events, and a
section with QA-system output. This last part con-
cerns a QA-system in the medical domain (van den
Bosch and Bouma, 2011), that searched answers
to questions in e.g., medical encyclopedia and lay-
man websites. It resembles a FAQ answering data
set, but instead of just QA pairs, it contains 100
questions that on average each have two answers
(almost 200 answers in total). Although the com-
plete corpus is large and consists of over 2M tokens,
the size of the QA section is small and does not
include variations or paraphrases of the questions.

The Dutch part of the multilingual TaPaCo

3https://quoradata.quora.com/First-Qu
ora-Dataset-Release-Question-Pairs
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corpus (Scherrer, 2020) contains sentential para-
phrases: 23,561 paraphrases divided over 9,441
semantically similar paraphrase sets. This means
that a group of similar semantics on average has
2.5 paraphrases. Because we collected user queries
via our VaccinChat chatbot, the average number of
queries per answer (including paraphrases) is a lot
larger.

More specifically in the domain of COVID-19
Zhang et al. (2020) recently released COUGH, a
multilingual FAQ retrieval dataset. A total of ∼16k
FAQ items were scraped from 55 authoritative insti-
tutional websites, covering a wide range of topics
on COVID-19, from general virus information to
specific COVID-related instructions for a healthy
diet. Almost 7k FAQ items were scraped from
non-English FAQ sources. Besides FAQ items (QA
pairs), the corpus also contains a Query Bank with
1,236 human-paraphrased user queries (three hu-
man paraphrases per given FAQ question), be it
only for the English part of the corpus. Our Vaccin-
ChatNL corpus is similar to COUGH in the sense
that both are FAQ data sets and the topic is similar,
although COUGH covers a wider range of COVID-
19 issues than VaccinChatNL, that narrows the fo-
cus on vaccines and vaccination. Unfortunately,
the Dutch part of COUGH only consists of 142 QA
pairs and no human-paraphrased versions of ques-
tions. VaccinChatNL by comparison consists of
12,883 questions referring to 181 different answers,
so each answer on average has 71 different versions
of questions referring to it. Also note that in Vaccin-
ChatNL the questions are actual user questions and
not paraphrased versions of a set of given questions
(as is the case for the English part of COUGH).

3 Dutch VaccinChatNL Corpus

In this section, we present our new Dutch Vaccin-
ChatNL corpus, a FAQ answering data set with
many-to-one mappings of user questions to FAQ
answers.

3.1 RASA Chatbot as a Data Collection Tool

Building a chatbot in RASA (Bocklisch et al.,
2017) is an iterative, conversation driven, devel-
opment process. This implies that the chatbot is
continuously improved by (semi-automatically) an-
notating new user conversations or by adding new
elements not yet present in the chatbot, after which
the model is retrained. Because of this cyclic, user-
driven way of development and an easy user in-

terface, we chose RASA for building our chatbot,
while simultaneously collecting user data.

3.2 Data Set Collection
3.2.1 Cold Start
We started with collecting approximately fifty FAQ
pairs from the Belgian governmental webpage on
vaccination4. Some of the answers were mildly
adapted to better suit the conversational domain,
i.e., sometimes answers were shortened to get the
message across faster and we made sure none of the
answers started with “yes” or “no”, making them
applicable not only to yes/no questions but also to
semantically similar questions or utterances.

Together with a fallback option, a start mes-
sage, and a few basic chitchat intents (e.g.,
chitchat_ask_bye and chitchat_ask_thanks), these
FAQ pairs were entered in a RASA environment,
and a first version of our FAQ chatbot was trained.

3.2.2 Improvement Phase
In the second data collection phase we grew the
corpus by having a small group of users test the
chatbot. The user questions were annotated with
the relevant answer classes. In addition, we per-
formed error analysis on a 20% held-out data set
to find out which user questions could benefit from
adding more paraphrases. This iterative process
also revealed missing information, leading to up-
dates of already existing answers and the addition
of new answers. In May 2021 VaccinChat was
opened to the public generating a surge of user
questions that had to be annotated. The growth
of the corpus was maintained until July 2021, re-
sulting in 181 different answers and 11,650 user
questions in total.

3.2.3 Testing Phase
In addition to the above described data collection
effort, another 1,267 user queries were collected
and annotated for an ongoing study on the com-
parison of different versions of the chatbot (Poels
et al., 2021). Participants in the study had no prior
knowledge about the chatbot and were instructed
to use the chatbot for five minutes by typing in
questions they might have on COVID-19 vaccina-
tion. Before and after the chatting phase, they were
given questionnaires about vaccination-related top-
ics. The post-questionnaire also informed about
the chatbot’s user-interface aspects.

4https://www.info-coronavirus.be/nl/v
accinatie
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3.3 Data Annotation

As described in section 3.2, the data collection and
manual annotation of the user queries happened
incrementally. The complete VaccinChatNL data
set was checked and corrected by three annotators
(without overlap), starting from the RASA predic-
tions. These annotators were computational lin-
guists.

To assess the consistency in assigning the rele-
vant answer classes and measure Inter-Annotator-
Agreement, we, afterwards, had four different
Dutch-speaking persons annotate a small subset
(62 randomly selected user queries) of our com-
plete annotated data set. Two of the annotators had
a computational linguistics profile (one was not
an author of the paper), and the other two had an
end-user profile.

All four of the annotators were instructed to first
get acquainted with the type of answers available
by going over the list of possible intent names.
They were also told to use the label nlu_fallback if
the question was incomprehensible or completely
irrelevant (e.g., an insult), and to use the label
faq_ask_general_information if the question was
COVID-19 related but not concerning vaccination.
The raters were provided a document with all the
intent names and answers, and were instructed to
use this document to search for keywords related to
the user query. Fleiss’ kappa showed that there was
good agreement between the raters’ judgements,
κ = .663.

3.4 Ethics and Privacy

Users of VaccinChat were informed that the chatbot
could give irrelevant answers to their questions, and
that their conversations would be used to further
improve the performance of the chatbot.

Afterwards, the collection of data was checked
for privacy-sensitive information, such as names
and telephone numbers. Two user queries with
names were removed, as well as three with tele-
phone numbers. We also removed 28 entries con-
taining codes that were used in the Testing phase
(section 3.2.3) to link conversations to user ques-
tionnaires, and we removed three entries containing
a URL.

Although we checked for other metadata that
could reveal personal information (age, domicile,
gender, disease, job), such entries were not deleted,
because they could not be traced back to a specific
person; in our corpus the combinations of meta-

data never revealed a specific identity, e.g, "persons
aged 71 living in Antwerp" is not specific enough
to characterize an individual person.

In addition, all annotated user queries are stored
as separate QA pairs that no longer link back to
their original user conversations. This means that
information can not be combined with user infor-
mation that was revealed somewhere else in that
respective conversation.

3.5 Data Set Statistics
The final VaccinChatNL corpus consists of 12,883
user queries referring to 181 different answers. On
average each answer class has 71 (SD = 92; Mdn =
47) user queries. The class with the highest number
of user queries is the fallback class, also referred
to as the unanswerable questions. The corpus con-
tains 903 of such examples, representing 7.01%
of the total number of user questions. The second
biggest paraphrase group contains the user queries
referring to the general side effects of the COVID-
19 vaccines (faq_ask_general_side_effects). This
group contains 416 paraphrases (3.23%).

3.6 Evolution over Time
During the COVID-19 pandemic the stream of
information was constantly changing. When we
started developing VaccinChat, vaccines were
becoming available, and the vaccination campaign
just began. One of the things people were asking
questions about at that time was when they
would be invited for vaccination and whether
or not they belonged to a group that would get
priority (answer class: faq_ask_priority_groups).
A little later, people were most concerned
with how long the vaccines would pro-
tect them against COVID-19 (answer class:
faq_ask_duration_of_protection) and e.g., the
blood clots side effects of the AstraZeneca vaccine
(answer class: faq_ask_astrazeneca_blood_clots).
Towards the summer of 2021, people started
informing about their chances of going on holiday
while also having to be available for their second
vaccination (answer class: faq_ask_holidays)5.

4 Experiments

In this section we describe a number of differ-
ent classification models, built with VaccinChatNL
data.

5A data visualisation of this evolution can be found at
https://public.flourish.studio/visualisa
tion/6517886/
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Train Dev Test
Size (total 12,883) 10,542 1,171 1,170
Intents # % # % # %
nlu_fallback 740 7.02 82 7.00 81 6.92
faq_ask_general_side_effects 303 2.87 56 4.78 57 4.87
faq_ask_priority_groups 291 2.76 46 3.93 45 3.85
faq_ask_protection_rate 225 2.13 34 2.90 35 2.99
faq_ask_general_information 200 1.90 55 4.70 55 4.70
faq_ask_no_risk_patient 200 1.90 18 1.54 18 1.54
faq_ask_astrazeneca_blood_clots 189 1.79 22 1.88 21 1.79
faq_ask_contra_indication 189 1.79 15 1.28 15 1.28
faq_ask_holidays 188 1.78 21 1.79 23 1.97
faq_ask_no_answer 174 1.65 36 3.07 35 2.99
faq_ask_duration_of_protection 153 1.45 24 2.05 24 2.05
faq_ask_trustworthy 137 1.30 27 2.31 28 2.39
faq_ask_choice 131 1.24 26 2.22 25 2.14
faq_ask_why 127 1.20 13 1.11 11 0.94
faq_ask_when_and_why 126 1.20 15 1.28 14 1.20

Table 2: Summary of VaccinChatNL data in terms of number of user questions per train, development and test set.
The bottom part shows the absolute numbers (#) and percentages (%) of user questions for the 15 most frequent
FAQ intents.

4.1 Train, Development, and Test Sets

To present the models’ performance on unseen data,
the corpus was split up in a train, a development,
and a test set. The collected data in the Testing
phase was mixed together with a random 10% of
the data collected in the Improvement Phase. The
merged data were split into a development and test
set. The remaining 90% of the Improvement phase
data was kept for training. Statistics of these sets
are presented in Table 2, which also shows the ab-
solute numbers and percentages of the fifteen most
frequent intents in the corpus. The most frequent
intent is the fallback option. This includes out-of-
domain questions, insults, jokes, and questions that
are incomprehensible because they contain either
too many typing mistakes or only keywords that
could refer to multiple answers.

4.2 Baseline Models

Here we present a number of baseline models for
our VaccinChatNL corpus. We start with a sim-
ple majority class baseline and the RASA baseline
classifier. In addition, we use pre-trained Dutch
language models: BERTje (de Vries et al., 2019)
and CoNTACT (Lemmens et al., 2022), based on
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), respectively.

4.2.1 Majority
The majority baseline always gives the same, most
frequent answer. It thus always returns “Ik begrijp
het niet. Kunt u het anders zeggen?” (“I don’t
understand. Could you rephrase the question?”).
This is the fallback for unanswerable questions.

4.2.2 RASA DIET Classifier
RASA (Bocklisch et al., 2017) uses a multitask
transformer architecture for NLU: Dual Intent and
Entity Transformer (DIET)6. This DIET classifier
can deal with both intent classification and entity
recognition simultaneously. Only intent classifica-
tion applies to our chatbot.

4.2.3 BERTje
BERTje is a Dutch pre-trained BERT model (De-
vlin et al., 2019) developed by de Vries et al. (2019).
Several high-quality level Dutch corpora were used
for pre-training, including collections of books,
news articles, and Wikipedia documents.

4.2.4 BERTje+
This is the BERTje model, but further pre-trained
with a masked-language learning (MLM) approach

6https://rasa.com/blog/introducing-du
al-intent-and-entity-transformer-diet-st
ate-of-the-art-performance-on-a-lightw
eight-architecture/
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Number of train items Test set
Per class Total P R F1

1 181 0.01 (0.005) 0.01 (0.004) 0.01 (0.004)
2 351 0.02 (0.010) 0.02 (0.009) 0.02 (0.009)
4 679 0.07 (0.011) 0.07 (0.011) 0.07 (0.011)
8 1,331 0.20 (0.018) 0.19 (0.017) 0.20 (0.017)

10 1,655 0.23 (0.021) 0.23 (0.021) 0.23 (0.021)
30 4,648 0.41 (0.013) 0.41 (0.012) 0.41 (0.013)

100 8,591 0.63 (0.008) 0.63 (0.007) 0.63 (0.008)
300 10,099 0.65 (0.006) 0.65 (0.005) 0.65 (0.006)

Table 3: The effect of the training set size (number of train items per class) on test set performance: average
Precision (P), Recall (R) and F1 from 10-fold cross-validations. Standard deviation is shown between brackets.

on task-specific data, i.e., the VaccinChatNL user
queries excluding the nlu_fallback class. This
model was used to show the effect of task adap-
tation on the classification task.

4.2.5 CoNTACT
CoNTACT7 (Lemmens et al., 2022) is a Dutch
RoBERTa-based language model, adapted to the
domain of COVID-19 tweets by extra pre-training
with this data of the Dutch RobBERT model (Delo-
belle et al., 2020). It was used to show the effect of
domain adaptation on the classification task.

4.2.6 CoNTACT+
Similar to BERTje+, this is the CoNTACT model
with extra MLM pre-training on the VaccinChatNL
user queries. It shows the effect of domain- and
task-adaptation simultaneously.

4.3 Train Settings

For the data set size experiments (see 5.1) the
RASA DIET Classifier was trained for 12 epochs.
This was based on initial experiments where train-
ing for more epochs revealed a maximum (accu-
racy) performance on the development set at 12
epochs.

For the domain- and task-adaptation experiments
(see 5.2) hyper-parameter search revealed optimal
results on the development set with a maximum
sequence length of 64, a batch size of 16, learning
rate of 2e-5, and warm-up ratio of 0.1. The BERTje
models were trained for 7 epochs and a weight
decay of 0.01, and the CoNTACT models for 10
epochs, with weight decay of 0.1. In all cases early
stopping was applied based on the development
set performance. This resulted in stopping after 7

7https://huggingface.co/clips/contact

epochs for BERTje, after 5 epochs for BERTje+,
and after 6 epochs for CoNTACT and CoNTACT+.

5 Results

5.1 Effect of Data Set Size

To show the importance of having enough para-
phrases per class to train a sentence classifier, we
experimented with training the RASA baseline
model (DIET classifier) with different numbers of
training examples per class. Table 3 shows the av-
erage results (precision, recall, and F1) of 10-fold
cross-validation experiments on the test set. Each
model was trained for 12 epochs.

Note that the mentioned numbers of training ex-
amples per class only apply to the classes that have
that many training examples. If a class has fewer
items than the stated number, all training items for
that class are used. The second column in the table
shows the total number of training examples.

Results clearly show that in order to get a near-
optimal performance on the test set, the number of
training examples per class should at least be 100.

5.2 Effect of Models

Although the majority class (the fallback for unan-
swerable questions) has a high number of occur-
rences in the corpus (903), this class still only rep-
resents 7.00% and 6.92% of the data in the devel-
opment and test set respectively. This means that
the majority baseline model gives an accuracy of
6.9% on the test set.

Best results with the RASA DIET classifier on
the development set were obtained with 12 epochs
of training. We get a test set accuracy of 64.7%,
which is a big improvement over the majority base-
line.
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Model Test set accuracy
Majority 6.9
RASA DIET classifier 64.7
BERTje 74.7
BERTje+ 77.7
CoNTACT 77.1
CoNTACT+ 77.9

Table 4: VaccinChatNL accuracy scores (% correct)
with different models. +: models with extra MLM pre-
training on task-specific data, i.e., the VaccinChatNL
user queries from the train set, excluding the out-of-
domain ones labelled as nlu_fallback. Results for these
models are better than for the models without task-
specific pre-training. Overall, CoNTACT+, the model
with domain- as well as task-adaptation, performs best.

All other models - BERTje(+) and CoNTACT(+)
- were Dutch pre-trained language models fine-
tuned on a sentence classification task with the
VaccinChatNL train data set. The results of all
these models are shown in Table 4. All BERTje
and CoNTACT models are a clear improvement
over the RASA DIET classifier, showing the im-
portance of using language-specific (i.e., Dutch)
pre-trained language models.

Table 5 provides more specifics on the misclas-
sifications of the above models per answer type
(fallback answers, chitchat, and FAQ answers). In
general, all models with extra task- and/or domain-
specific pre-training perform better than BERTje,
which had no such continued pre-training. In the
following section we show the effect of domain-
and task-adaptation on the classification perfor-
mance by means of an error analysis.

6 Discussion

When taking a more in-depth look into the type of
errors made by the BERTje model and its domain-
and task-adapted versions, a main observation is
that all models make errors for user questions with
infrequent words, like place names (e.g., "Kessel-
Lo", "rotselaar") or typos (see Table 6).

With respect to the fallback and chitchat intents,
the results show a better performance for the CoN-
TACT models than for the BERTje models (see Ta-
ble 5). This suggests a benefit of pre-training with
domain-specific data, in terms of a better recog-
nition of the non-domain-specific user questions.
Some examples of chitchat intents that are correctly
classified with the CoNTACT models but misclassi-
fied with the BERTje models are shown in Table 7.

We also see a decrease in FAQ errors with
domain-specific pre-training, but only for the case
where no task-specific pre-training was done (CoN-
TACT vs. BERTje). For CoNTACT+, the model
that was pre-trained on both domain- and task-
specific data, we only see FAQ improvements com-
pared to CoNTACT, but not compared to BERTje+.
Unlike the FAQ intents, fallback and chitchat in-
tents are better recognized with CoNTACT+ than
with BERTje+, but there is no difference with CoN-
TACT. In general, CoNTACT+ shows the best per-
formance.

For task-specific pre-training a clear improve-
ment was observed for user questions containing
domain terminology, i.e., words like KU Leuven,
Facebook, SARS-COV-2, Kovid 19, Jnj, QVAX, etc.
This was to be expected, since these words were
actually in the task-specific data.

In summary, we can conclude that task-specific
pre-training improves FAQ intent classification,
whereas domain-adaptation mainly benefits the fall-
back and chitchat intent classification, i.e., the out-
of-domain user questions.

7 Conclusions and Future Work

We have presented VaccinChatNL, the first Dutch
FAQ answering corpus with over 12k of user
queries about COVID-19 vaccines, and on average
71 example questions per answer. As the corpus
holds lots of paraphrased versions of questions, it
can serve as a paraphrase corpus as well. Existing
Dutch paraphrase corpora, or Dutch parts of mul-
tilingual corpora are sometimes bigger, but do not
contain sentential paraphrases (less long phrases or
single words), or have less paraphrases per seman-
tically similar group (typically paraphrase pairs).
The many-to-one mapping characteristic of this
corpus is unique in FAQ and paraphrasing corpora.

As an example application of VaccinChatNL,
we described training an intent classifier and we
have shown that for a classifier with many classes
(i.e., different answers), performance improves
with more examples of user questions per class.

This work also showed the importance of us-
ing domain- or task-adapted pre-trained language
models for the fine-tuning task of sentence clas-
sification. More specifically, domain-adaptation
(COVID-related tweets) led to improvements for
the non-FAQ questions, whereas task-adaptation
improved performance for FAQ questions with
domain-specific terminology.
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Nr. of errors BERTje BERTje+ CoNTACT CoNTACT+
Total 299 263 271 261
Fallback intent 36 37 29 31
Chitchat intent 18 18 14 14
FAQ intent 245 208 228 216

Table 5: Number of errors for the test set with different models, split up per intent type: fallback, chitchat, and FAQ.
The table shows the positive impact of task-specific pre-training (+models) on FAQ questions, and the benefit of
domain-adaptation on mainly chitchat and fallback utterances: CoNTACT(+) vs. BERTje(+). Overall, CoNTACT+
is the best performing model.

User question True label Predicted label
Mag ik na het vaccin terug reizne
After the vaccine can I travle again faq_ask_holidays faq_ask_what_after_vaccination
Moey ik mij laten vaccineren
Doy I have to get vaccinated faq_ask_obligatory nlu_fallback
Hoe word ik vrijwillgier?
How do I become a voluneter? faq_ask_volunteer faq_ask_why_and_when
worden gezonde mensen zien van corona
Do healthy people get see from corona faq_ask_why nlu_fallback

Table 6: Dutch examples of misclassification made by all models: user questions with infrequent words like typos.
Translated utterances in italics and typos in bold.

User question True label Predicted label (BERTje)
nou doeeiiii
Well byeee chitchat_ask_bye nlu_fallback
DAg
BYe chitchat_ask_bye nlu_fallback
ok ben niet neig overtuig maar dank u wel
okay not real convinced but thank you chitchat_ask_thanks faq_ask_no_answer
Oké. Alles is duidelijk.
Okay. Everything is clear. chitchat_ask_thanks chitchat_ask_bye

Table 7: Dutch examples of misclassification in the chitchat intent class made by the BERTje models, but not with
the CoNTACT models. Translated utterances in italics.

Although our focus has been on classification, it
would be interesting to use a retrieval approach for
FAQ answer selection, because there is a certain
amount of overlap in the answers. A predicted an-
swer with a different label than what was annotated,
is not necessarily wrong. It could still include infor-
mation that is relevant to the user. In addition, the
VaccinChatNL corpus would be a good source for
e.g., the purpose of training generative paraphrase
models. Instead of just sentence pairs, the corpus
provides many examples that have similar semantic
meaning relevant for the corresponding answers.

Acknowledgements

We thank the reviewers for providing constructive
feedback. In addition, we thank the involved anno-
tators for contributing to this work. This research
received funding from the Flemish Government
under the “Onderzoeksprogramma Artificiële Intel-
ligentie (AI) Vlaanderen” programme.

References
Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and

Alan Nichol. 2017. Rasa: Open source language un-
derstanding and dialogue management. Computing
Research Repository, arXiv:1712.05181. Version 2.

Maxime De Bruyn, Ehsan Lotfi, Jeska Buhmann,
and Walter Daelemans. 2021a. ConveRT for

3547



FAQ answering. Computing Research Repository,
arXiv:2108.00719. Version 3.

Maxime De Bruyn, Ehsan Lotfi, Jeska Buhmann, and
Walter Daelemans. 2021b. MFAQ: a multilingual
FAQ dataset. In Proceedings of the 3rd Workshop
on Machine Reading for Question Answering, pages
1–13, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord,
and Malvina Nissim. 2019. BERTje: A Dutch
BERT model. Computing Research Repository,
arXiv:1912.09582.

Pieter Delobelle, Thomas Winters, and Bettina Berendt.
2020. RobBERT: a Dutch RoBERTa-based lan-
guage model. Computing Research Repository,
arXiv:2001.06286. Version 2.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Aleksandra Edwards, Jose Camacho-Collados, Hélène
De Ribaupierre, and Alun Preece. 2020. Go simple
and pre-train on domain-specific corpora: On the role
of training data for text classification. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5522–5529, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Kristian Hammond, Robin Burke, Charles Martin, and
Steven Lytinen. 1995. Faq finder: a case-based ap-
proach to knowledge navigation. In Proceedings the
11th Conference on Artificial Intelligence for Appli-
cations, pages 80–86. IEEE.

Matthew Henderson, Iñigo Casanueva, Nikola Mrkšić,
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Abstract

Patients with low health literacy usually have
difficulty understanding medical jargon and
the complex structure of professional medical
language. Although some studies are proposed
to automatically translate expert language into
layperson-understandable language, only a
few of them focus on both accuracy and read-
ability aspects simultaneously in the clinical
domain. Thus, simplification of the clinical
language is still a challenging task, but unfor-
tunately, it is not yet fully addressed in previ-
ous work. To benchmark this task, we con-
struct a new dataset named MedLane to sup-
port the development and evaluation of au-
tomated clinical language simplification ap-
proaches. Besides, we propose a new model
called DECLARE that follows the human anno-
tation procedure and achieves state-of-the-art
performance compared with eight strong base-
lines. To fairly evaluate the performance, we
also propose three specific evaluation metrics.
Experimental results demonstrate the utility of
the annotated MedLane dataset and the effec-
tiveness of the proposed model DECLARE1

1 Introduction

Health literacy is generally defined as the ability of
patients to obtain, process, understand, and com-
municate basic health information (Parker et al.,
1999), which is significantly important for mak-
ing health decisions and ensuring treatment out-
comes. The increasing accessibility of technology
information makes patients have more opportuni-
ties to access health information. However, it is
challenging for patients, especially with limited
health literacy, to read and understand health mate-
rials such as clinical notes written by doctors, with
medical jargon (Korsch et al., 1968), abbreviations,
and professional language (Friedman et al., 2002).

∗Corresponding author.
1The source code of DECLARE and the MedLane

dataset can be found in the https://github.com/
machinelearning4health/MedLane.

The lack of proper communication between doc-
tors and patients not only results in a tense doctor-
patient relationship (Ha and Longnecker, 2010) but
also increases the risk of adverse health outcomes
over time (Sudore et al., 2006). Therefore, there is
a great need to simplify professional clinical lan-
guage to layperson-understandable language.

1.1 Why We Need a New Dataset?

To implement an automated clinical language sim-
plification system, the first step is to prepare the
dataset for model training. Although there are sev-
eral annotated medical datasets that are summa-
rized in Table 1, most of them do not focus on
the clinical domain. As we discussed before, the
writing style of clinical materials is significantly
different from that used in the general biomedical
area. Thus, those datasets cannot be used to train a
clinical simplification model.

To the best of our knowledge, there are only two
datasets focusing on clinical language simplifica-
tion tasks. The n2c2-track3 dataset (Henry et al.,
2020) focuses on clinical term normalization, i.e.,
recovering the full-term expressions for those ab-
breviations and acronyms in clinical notes. This
term-level recovery cannot guarantee the simplicity
of the translated sentences because the full expres-
sions may still be hard to be understood by patients
with low levels of health literacy. For example, the
full expression of the acronym “NC” is “nasal can-
nula”, which is still a professional medical term
instead of plain language.

In (Sakakini et al., 2020), the authors annotate
a clinical language simplification dataset, but it
is private. Besides, the number of the annotated
free-text parallel sentences/instances is only 1,541,
which is too small to be enough for evaluating the
real performance of machine learning models, es-
pecially for deep learning-based models. Finally,
this dataset only focuses on sentence-level simplifi-
cation and does not provide term-level annotation,
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Text Source Dataset Name Accessible Term Normalization Sentence Simplification
Abbreviations Acronyms Complex Phrase Style Transfer Training Annotations

Biomedical
Article

CLEF (Elhadad et al., 2013) X X X - - -
MSD (Cao et al., 2020) X - - - X -
CDSR (Guo et al., 2021) X - - - X X
(Devaraj et al., 2021) X - - - X X

Perscription e-perscription (Zheng et al., 2021) X - - - X X

Wiki
(Van den Bercken et al., 2019) - - - - X X
AutoMeTS (Van et al., 2020) X - - - X X

Clinical
Note

n2c2-track3 (Henry et al., 2020) X X X - - -
(Sakakini et al., 2020) - - - - X X
MedLane (Ours) X X X X X X

Table 1: Dataset comparison.

which leads to the difficulty of evaluating whether
professional medical terms can be correctly trans-
lated and further decreases the reliability of ma-
chine learning models. Thus, it is essential to
create a publicly available, large-scale yet fully-
annotated dataset for the clinical language simpli-
fication task.

1.2 Why We Need a New Model?

Existing models for automatic text simplification
(ATS) in the biomedical domain are mainly de-
signed based on the available datasets, which either
mainly focus on term normalization or directly ap-
ply neural machine translation techniques.

The term normalization technique aims to re-
cover the full-term expressions for medical ab-
breviations and acronyms using a dictionary (Vy-
diswaran et al., 2014; Elhadad and Sutaria, 2007;
Deléger and Zweigenbaum, 2008; Qenam et al.,
2017; Rahimi et al., 2020; Liu et al., 2021), i.e.,
only targeting the term-level simplification and
without considering the readability and understand-
ability of the whole sentences. Another line of
work treats the original sentences as the source
language and the simplified sentences as the tar-
get language, i.e., the sentence-level simplification.
They usually borrow the ideas from neural machine
translation models to only learn the style mapping
function between the original and simplified sen-
tences (Weng et al., 2019; Pattisapu et al., 2020;
Li et al., 2020; Devaraj et al., 2021) but ignore the
term-level translation.

In fact, the drawbacks of existing studies make
them impossible to be applied to the new anno-
tated dataset. Therefore, we need to design a
new model to achieve term-level simplification and
layperson-understandable sentence generation si-
multaneously.

1.3 Our Contributions

• Dataset. We manually annotate a new Medical
Language simplification dataset named MedLane,

which not only provides aligned sentence pairs but
also offers term-level annotations. The dataset con-
sists of 12,801 training samples, 1,015 validation
samples, and 1,016 testing samples.
• Approach. Following the human annotation pro-
cedure, we design a novel end-to-end Dictionary-
enhanced clinical language simplifier (shorten for
DECLARE), which consists of three parts, including
a complex word locator, a neural lexical interpreter,
and a restricted syntactic polisher. The locator is in
charge of automatically recognizing medical jargon
and abbreviations in the input sentences. The neu-
ral lexical interpreter aims to replace the located
terms with appropriate professional expressions
selected from a predefined dictionary. Finally, a
syntactic polisher is implemented to simplify the
modified sentences by the interpreter and further
increases the readability and understandability of
original sentences, which should be significantly
helpful for users with low health literacy.
• Baseline. We compare the proposed DECLARE

against nine baselines, including a dictionary-
based approach, a statistical machine translation
approach, three neural machine translation ap-
proaches (i.e., Seq2Seq (Bahdanau et al., 2015)
and its two variants), a modified text summa-
rization model PointerNet (Vinyals et al., 2015),
two state-of-the-art transformer-based pre-trained
Seq2Seq models (i.e., T5 (Raffel et al., 2019) and
BART (Lewis et al., 2019)), and PMBERT-MT
that is built upon the pre-trained language model
PubMedBERT (Gu et al., 2020), for validating the
usability of the MedLane dataset and the effective-
ness of our model. We also list EditNTS (Dong
et al., 2019), an approach in the general ATS do-
main, as a baseline.
• Evaluation. Different from bilingual translation
tasks, our task is to translate professional medi-
cal language to layperson-understandable language.
We not only require the translated results to be read-
able but also accurate and easily understandable.
Thus, we design three new yet general evaluation
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metrics for the clinical simplification task. Be-
sides, we still evaluate the results with commonly-
used evaluation metrics, including BLEU (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,
2015), and SARI (Xu et al., 2016).

2 Related Work

2.1 Medical Text Simplification Datasets

We summarize the widely-adopted clinical-related
text simplification datasets and make a comparison
with our proposed MedLane from different angles
as shown in Table 1.

The first type of datasets focus on the normal-
ization of abbreviations and acronyms by choosing
proper explanations for them from a predefined
dictionary, e.g., n2c2-track3 (Henry et al., 2020)
and CLEF (Elhadad et al., 2013). The datasets are
designed for a classification problem and do not
include any sentence-level polishing and complex
phrase translation. Thus, the readability of the sim-
plified sentences may still be low even after the
term-level normalization.

The second type of datasets, including
MSD (Cao et al., 2020), CDSR (Guo et al., 2021),
e-prescription (Zheng et al., 2021) and (Van den
Bercken et al., 2019), focus on the style translation
setting, which ignores the term-level simplification.
The most similar dataset is the work (Sakakini et al.,
2020). Except for missing the term-level annota-
tion, it is not publicly available and only contains a
small number of annotated free-text sentence pairs,
which cannot be used by deep learning models.

2.2 Medical Text Simplification Method

Medical text simplification is a sub-task of auto-
matic text simplification (ATS) (Laban et al., 2021;
Dong et al., 2019; Stahlberg and Kumar, 2020;
Paetzold and Specia, 2016, 2017), whose goal is
to reduce the linguistic complexity of the original
text to improve the readability. Besides increasing
the readability, another target of the medical text
simplification task is to accurately simplify pro-
fessional medical terms. Existing approaches for
medical text simplification can be roughly classi-
fied into two categories.

Dictionary-based approaches rely on using the
expert-curated medical dictionaries to simplify the
professional medical sentences (Kandula et al.,
2010; Zeng and Tse, 2006; Zeng-Treitler et al.,
2007; Chen et al., 2017; Lalor et al., 2019) or

link medical terms with lay definitions (Chen
et al., 2018) and definitions in controlled vocab-
ularies (Polepalli Ramesh et al., 2013). These ap-
proaches are highly reliable yet cannot manage the
case of polysemant, i.e., and a term can have multi-
ple correct explanations under different cases. To
solve this issue, (Sakakini et al., 2020) utilizes a
pre-trained language model to select the most possi-
ble answer and then replaces the selection with the
located hard terms. This approach is an advanced
version of the dictionary-based approach. However,
this simple replacement may lead to a decrease in
sentence readability, which further makes the sim-
plified sentence still difficult to be understood by
users or patients.

Researchers also try to borrow ideas from ma-
chine translation, like aligning word embeddings
between professional terms and daily expressions
to achieve the translation (Kang et al., 2016;
Weng and Szolovits, 2018), or further using back-
translation procedures (Weng et al., 2019) and
denoising autoencoder (Pattisapu et al., 2020) to
improve the simplification results under unsuper-
vised conditions. For supervised approaches, Phar-
mMT (Li et al., 2020) uses the Seq2seq (Bahdanau
et al., 2015) model pulsing a numerical checker to
perform the simplification. (Devaraj et al., 2021)
improves the BART(Lewis et al., 2019) model
using the unlikelihood constraint (Welleck et al.,
2019) to penalize the model generating technical
words. Although the readability of these methods is
higher compared to the dictionary ones by directly
modifying sentences, the accuracy of term-level
translation cannot be guaranteed. To address these
problems, in the design of the DECLARE, we ab-
sorb the advantages of both machine translation
and dictionary-based approaches to simplify clini-
cal text from both sentence and term levels.

3 MedLane: A New Benchmark Dataset

3.1 Data Collection

The MIMIC-III database (Johnson et al., 2016) con-
tains de-identified data from 58,976 ICU patient
admissions, which includes several types of med-
ical information such as demographics, medica-
tions, clinical notes, and so on. We first select
clinical notes from the NOTEEVENTS table of
the MIMIC-III v1.4 dataset2 focusing on the fol-
lowing three sections: (1) History of present ill-

2https://mimic.physionet.org/
mimictables/noteevents/
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Algorithm 1: Sentence Selection Algorithm
Input: Target sentence s, top-3000 word set T ,

medical abbreviation set A
Output: Selected sentence set

1 Tokenize s into words [w1, ..., wn];
2 for i = 1 to n do
3 if wi ∈ A then
4 abb = abb + 1;
5 end
6 w′i = lemmatize(wi);
7 if w′i /∈ T then
8 unc = unc+ 1;
9 end

10 end
11 if n < 10 or unc+abb

n
> 0.5 or unc+abb

n
< 0.1 then

12 return False;
13 else
14 return True;
15 end

ness, (2) Brief summary of hospital course, and
(3) Brief hospital course. These three sections con-
tain thoughts and reasoning for the communica-
tion between clinicians, which are usually written
with professional medical jargon and abbreviations.
However, they still contain many plain sentences
such as “She now also reports of being hunger.”. To
avoid translating them again, we design a heuristic
feature-based sentence selection approach to filter
out such sentences. In particular, we first tokenize
each sentence into a set of words and then use a
dictionary-based approach to match medical abbre-
viations. We also count the number of commonly-
used English words within a given list3. Based on
the length of the sentences (greater than 10), the
ratio of medical abbreviations (smaller than 0.5),
and the ratio of top-3000 words (greater than 0.1),
we can automatically select candidate sentences.
The sentence selection algorithm is summarized in
Algorithm 1.

3.2 Data Annotation
After we collect a set of source sentences, the next
step is to annotate them. However, annotating med-
ical sentences is different from creating a parallel
bilingual translation corpus. The medical language
translation task aims to “translate” professional
and clinical jargon to layperson-understandable
language, which is still from the same language
but uses different expressions. Besides, annotat-
ing bilingual translation data focuses on readability
and accuracy. Except for those two perspectives,

3https://www.ef.com/wwen/
english-resources/english-vocabulary/
top-3000-words/

annotating medical sentences also considers under-
standability, which is from the perspective of pa-
tients or customers. Based on the above guidance,
we invited six researchers to annotate the data. All
of them are familiar with medical data. For each
sentence, there are two extra senior researchers
holding the Doctor of Medicine (M.D.) degree to
check the annotation quality. For the translated
sentences with low quality, senior researchers need
to re-translate them.

The purpose of this work is to create a bench-
mark for the automated clinical language under-
standing task, which is not only used for training
translation models but also for fair evaluation of
different approaches. Thus, we set different re-
quirements for workers when annotating the train-
ing data and validation/testing data. In general,
they use two steps when annotating each source
sentence. The first step is to paraphrase the abbre-
viations with the whole words or phrases. For each
abbreviation, there may be several full forms. For
example, “TLC” has two full forms4. One is “thin-
layer chromatography”, and the other is “total lung
capacity”. Therefore, it is important for workers to
understand the context in which the abbreviation or
term has been used. Note that we do not provide a
dictionary for workers, and they search the full ex-
pressions on the Internet if they are not sure about
the abbreviations. The second step is to use simple
words to replace professorial medical expressions.
Take the word “hematocrit”5 as an example, which
means the ratio of the volume of red blood cells
to the volume of the whole blood. If we use the
expression, “the proportion of red blood cells in
the blood”, it is much more understandable for pa-
tients compared with directly using professional
clinical jargon. An example in Figure 1 illustrates
the annotating procedure.

When annotating the training data, workers are
asked to return the final understandable sentences,
i.e., the simplified ones, which will be checked by
experts again to guarantee the annotation quality.
For validation and testing data, we require workers
to return both rephrasing and simplifying forms for
each source sentence.

Note that for all the training, validation, and test-
ing data, there is a special case that we do not need

4https://medical-dictionary.
thefreedictionary.com/TLC

5https://www.mayoclinic.org/
tests-procedures/hematocrit/about/
pac-20384728
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Patient was 92 % on RA when seen by EMS and started on 2L NC.

Patient was 92 % on [room air] when seen by [emergency medical 
service] and started on 2L [nasal cannula] .

Patient was 92 % on [room air] when seen by [emergency medical 
service] and started on 2L tube insertion on nose.

Source

Rephrasing

Simplifying

Figure 1: An example of annotating a sentence by a
worker using two steps, i.e., rephrasing and simplifying.
In the rephrasing step, three abbreviations are replaced
by full forms. In the simplifying step, the full form
“nasal cannula” is replaced by “tube insertion on nose”.

to translate the source sentence. For example, it is
easy to understand the sentence “He had a set of
surveillance blood cultures drawn last week, which
were negative.”. These sentences are extremely
useful when training an understandable translation
model because they can be considered as important
indicators for guiding model learning. In the vali-
dation and testing data, another special case is that
the sentence may not be simplified any more. For
example, the source sentence is “She also had sub-
jective SOB with CXR suggesting fluid overload.”,
and the rephrased and simplified sentences are the
same, which is “She also had subjective [short-
ness of breath] with [chest x-ray] suggesting fluid
overload.”.

# of tokens in the source sentences 14,780
# of tokens in the target sentences 14,278
# of overlapped tokens between source & target 12,501
Avg. length of the source sentences 20.6
Avg. length of the target sentences 24.0
Avg. # of abbreviations in validation & testing sets 1.2

Table 2: MedLane data statistics.

3.3 Dataset Statistics

The MedLane dataset contains 12,801 sentences
for training, 1,015 sentences for validation, and
1,016 sentences for testing. Table 2 shows the
statistics of the MedLane dataset, which are dif-
ferent from those of traditional machine translation
datasets. First, the way of annotation is different, as
we discussed in the previous section. Second, there
are a large number of overlapped tokens between
source and target sentences, which is also differ-
ent from traditional machine translation. These
differences make our task unique and challenging.

4 DECLARE: An Effective Approach

Motivated by the annotation steps, we propose an
effective end-to-end model named DECLARE for
the automated clinical language simplification task.

In particular, we collect a medical dictionary to esti-
mate the possible full-term expressions of abbrevi-
ations in the input sentences. The proposed model
is shown in Figure 2, which consists of three main
modules, i.e., a complex word locator (CWL), a
dictionary-based neural lexical interpreter (DNLI),
and a restricted syntactic simplification polisher
(RSSP).

Given a tokenized professional medical sentence
W = [w1, w2, · · · , wn], where n denotes the num-
ber of tokens, the locator aims to dig out possible
phrases that need to be simplified or translated. In
the neural lexical interpreter, the chosen phrases
will be replaced with full-term expressions selected
from the medical dictionary. Finally, the replaced
sentence will pass the polisher to generate the final
output Y . These three parts tightly work together
and enhance each other. Next, we introduce the
design details of each module, respectively.

4.1 Complex Word Locator (CWL)
As we discussed in Section 3, clinical language
understanding is different from the traditional ma-
chine translation task, and we only need to modify
a part of professional medical jargon in the input
sentence W = [w1, w2, · · · , wn] and keep the re-
maining words. Towards this end, we design a
complex word locator to find out the tokens that
need to be modified. Note that in the annotated
dataset, we have such indicators that which tokens
are modified. In particular, we use a pre-trained
BERT model (Devlin et al., 2019) with PubMed
data, i.e., PubMedBERT (Gu et al., 2020), to learn
a representation for each input token wi, and a
fully-connected layer (FC) followed by the soft-
max function is used to calculate the probability of
each token to be modified or not. Let p̂i denote the
binary probability vector, and we have

p̂i = softmax(FC(PubMedBERT(wi))). (1)

Let pi ∈ {0, 1}2 be the ground truth vector for
the i-th token and Lp denote the average cross-
entropy (CE) loss function, i.e.,

Lp =
1

n

n∑

i=1

CE(pi, p̂i). (2)

4.2 Dictionary-based Neural Lexical
Interpreter (DNLI)

When workers annotate the source sentence, the
first step is to rephrase the abbreviations. Using the
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𝑇

She was taken  to  IR where ...

Pre-trained BERT Model

C
W

L

DNLI

𝑊: 

�̂�    �̂�      �̂�      �̂�  �̂�    �̂�      ...

Context (𝑐): She was taken to [MASK] where ... Question (𝑞): IR

Options: 
𝑎 : interventional radiology 
𝑎 : insulin resistance 
𝑎 : irritant reaction 
…

Encoder
Answer Option Interaction 

Bidirectional Matching
(DCMN+)

Options: 
𝑞 : interventional radiology (0.85) 
𝑞 : insulin resistance (0.10)
𝑞 : irritant reaction (0.02)
…

𝑊: She was taken to { interventional radiology } where ...

R
SS

PTransformer + Attention-based LSTM

𝑌: She was taken to {image-guided therapy} where ...

Figure 2: Overview of the proposed DECLARE model.

designed locator, DECLARE is able to identify the
possible abbreviations. Then we use a dictionary-
based neural lexical interpreter to automatically
substitute it with an appropriate full form for each
located token. Note that if the located token does
not have any full-term expression, we will keep it
in the sentence. Some abbreviations have several
full-term expressions, and the proposed neural lexi-
cal interpreter will automatically choose one with
the highest probability based on the context infor-
mation, i.e., the remaining tokens in the sentence.
The details of constructing the dictionary can be
found in Section 5.1.

To recover the most appropriate full version
of located token wi, we borrow the idea of
DCMN+ (Zhang et al., 2020) to design the
dictionary-based neural lexical interpreter. Specif-
ically, we mask the located token wi from the
input sentence, i.e., the masked sentence is
W ′ = [w1, · · · , wi−1, [MASK], wi+1, · · · , wn],
which can be considered as the context information.
Then the located token wi can be regarded as the
question, and all the full terms A = {a1, · · · , am}
are considered as options, where m is the number
of possible full versions. The goal is to select the
best candidate âj from the options A when given
the context vector W ′ and the question wi.

We first encode W ′ with PubMedBERT and de-
note the encoded vector as c. Similarly, the ques-
tion wi can also be mapped to a vector q, and each
option aj can be converted to a vector aj . Then
using answer option interaction and bidirectional
matching modules in DCMN+, we can estimate
the probability of each full-term expression to be
selected, which is denoted as q = [q1, · · · , qm].

Note that there may be multiple located tokens in
a sentence, and we will generate the corresponding
number of {context, question, options} pairs. Be-
sides, when annotating the MedLane dataset, the

annotators use square brackets “[]” to indicate the
correct full term expressions as shown in Figure 1.
Thus, there are ground truths that are denoted as
q̂ for {context, question, options} pairs. Assume
that there are l located tokens in the input sentence,
then we will have the following loss function:

Lq =
1

l

l∑

j=1

CE(qj , q̂j). (3)

The output of the dictionary-based neural lexical
interpreter is a new sentence by replacing located
tokens in the locator with the best candidates se-
lected from the dictionary, which is denoted as
W̃ = [w̃1, · · · , w̃n′ ], where n′ is the number of
tokens in the new sentence W̃ .

4.3 Restricted Syntactic Simplification
Polisher (RSSP)

The second step of annotation is to polish the sen-
tences to make them more fluent, simple, and under-
standable by patients with low health literacy. An
easy way is to directly “translate” the new sentence
W̃ to the target sentence with a neural machine
translation model. However, as we mentioned be-
fore, the clinical language understanding task is
different from traditional neural machine transla-
tion, which aims to make the professional clinical
jargon understandable by patients. In fact, most
of the tokens in the sentences can be kept and do
not translate again, and we only polish the terms
labeled by the locator and replace them with the
interpreter. Thus, this is a partial translation task.

First, we add special markers to W̃ to in-
dicate the tokens to be polished, i.e., W̃ =
[w̃1, · · · , {w̃i, · · · , w̃j}, · · · , w̃n′ ], where the to-
kens from w̃i and w̃j will be “translated” by the
polisher. The polisher first encodes the input sen-
tence W̃ via Transformer (Vaswani et al., 2017),
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i.e., vi = transformer(wi|w1, · · · , wn′), where vi
is the representation of the i-the token. Then an
attention-based LSTM (Hochreiter and Schmidhu-
ber, 1997; Sutskever et al., 2014; Bahdanau et al.,
2015; Zhou et al., 2021) is used as the decoder to
generate the t-th word yt within braces. Let ht
represent the hidden state outputted by the decoder
LSTM, and then we can obtain the weighted con-
text vector st using the attention mechanism as
follows:

st =
n∑

i=1

αtivi, αti =
exp(oti)∑n

j=1(exp(otj))
, oti = htv

>
i .

Finally, we can obtain the probability of the t-th
word: rt = softmax(W[ht; st] + b), where W
and b are two parameters. Assume that the k-the
element of rt corresponds to the truth token, and
then we have the loss of the polisher as follows:

Lr = −
1

j − i+ 1

j∑

t=i

log(rt[k]). (4)

4.4 Training
The proposed DECLARE is an end-to-end model,
and we can train the model using the following loss
function:

L = Lp + Lq + Lr. (5)

In the evaluation stage, we can run these three mod-
ules one by one to generate the final understandable
sentences.

5 Experiments

5.1 Experimental Setups
Dictionary Construction. We construct the map-
ping dictionary by collecting medical abbrevia-
tions and their corresponding full forms from the
book (Dorland, 2016) and online sources, including
Charleston Area Medical Center6, Taber’s Medical
Dictionary7, your dictionary8, MedicineNet9, and
Wikipedia10.
Baselines. We use the following approaches as
baselines: a simple term replacement approach
named Dictionary-based model, a statistical ma-
chine translation (SMT) system Moses11, neu-
ral machine translation approaches, including

6https://bit.ly/3uMexm6
7https://bit.ly/3uR4DzL
8https://bit.ly/3fkuNEu
9https://bit.ly/3oqUw27

10https://bit.ly/3yg7l3K
11http://www.statmt.org/moses/

Seq2Seq (Bahdanau et al., 2015) and its two vari-
ants Seq2Seq− and Seq2Seq-S, a modified version
of the pointer network (Vinyals et al., 2015) Pointer-
Net, state-of-the-art language models BART (Lewis
et al., 2019) and T5 (Raffel et al., 2019), and a mod-
ified BERT-based simplifier BERT-MT. We also
include EditNTS (Dong et al., 2019) – a method pro-
posed for the general ATS – as a baseline. Although
there are other more advanced methods (Martin
et al., 2020, 2019; Maddela et al., 2020) in the
general ATS domain, they all require special gram-
mar level information like the part of speech and
syntactic tree information, which is hard to obtain
for our clinical domain dataset. Thus, they are not
compared in our experiments.
Parameter Settings. For the dictionary method,
we use the pre-constructed dictionary as the same
as the DECLARE model. For the statistical model
Moses, we follow the training procedure listed on
the User Manual and Code Guide file12. For neural
machine translation models and text summariza-
tion baseline, we all conduct a grid search to find
the optimal parameters. For Seq2Seq, Seq2Seq−,
Seq2Seq-S, and PointerNet, the hidden size is set
to 256 for both encoder and decoder by greedy
search, and the learning rate is set to 1e − 3. We
use Adam (Kingma and Ba, 2014) as the optimizer.
Tokenization is performed using NLTK word tok-
enizer (Bird et al., 2009). The early stop is also
applied by checking the BLEU score (Papineni
et al., 2002) on the validation set, and the training
batch size is set to 30.

For EditNTS, we use the original default param-
eter setting with the learning rate of 1e− 3 for the
Adam optimizer. For the BERT-MT model, the
hidden size is the same as that of PubMedBERT,
which is 786. We also use the default AdamW op-
timizer used by PubMedBERT with the learning
rate as 5e − 5, the warm-up method, the default
PubMedBERT vocabulary, and tokenization are
applied. For BART and T5, the setting of the op-
timizer and training procedure is the same as the
BERT-MT.

For the proposed DECLARE, the locator is based
on PubMedBERT to perform token-level classifi-
cation, and we use the default setting of PubMed-
BERT to train the locator. For the dictionary-based
neural interpreter, we use the same parameter set-
ting as (Zhang et al., 2020). The max size of the

12http://www.statmt.org/moses/manual/
manual.pdf
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU METEOR ROUGE-L CIDEr SARI HIT CWR AScore
Dictionary 0.7158 0.6364 0.5684 0.5076 0.6070 0.3933 0.7308 4.2037 37.3391 0.5572 0.6407 0.5948

Moses 0.7880 0.7130 0.6530 0.6016 0.6889 0.4237 0.8188 5.1046 51.6827 0.6823 0.7543 0.6859
Seq2seq 0.7136 0.6322 0.5969 0.5160 0.6147 0.3533 0.7609 4.1299 46.1328 0.7388 0.7980 0.6648
Seq2seq- 0.5066 0.3315 0.2373 0.1787 0.3135 0.1859 0.4948 1.2670 24.5346 0.6427 0.8367 0.4070

Seq2seq-S 0.7180 0.6386 0.5778 0.5267 0.6153 0.3604 0.7683 4.2635 46.5085 0.7331 0.7953 0.6630
PointerNet 0.6870 0.5904 0.5158 0.4541 0.5618 0.3338 0.7285 3.9458 42.2857 0.6414 0.7555 0.5949
EditNTS 0.8213 0.7801 0.7452 0.7132 0.7649 0.4674 0.7401 5.9508 62.6036 0.6405 0.6915 0.7116
BART 0.7148 0.6755 0.6396 0.6060 0.6590 0.5320 0.7616 4.9783 70.3058 0.5266 0.7311 0.6191

T5 0.7223 0.6812 0.6445 0.6103 0.6646 0.5305 0.7645 5.0629 71.3255 0.5262 0.7342 0.6220
BERT-MT 0.8003 0.7428 0.6952 0.6531 0.7228 0.4566 0.8218 5.3293 72.2260 0.7808 0.7358 0.7417
DECLARE 0.8624 0.8291 0.8004 0.7737 0.8165 0.5290 0.8894 6.7212 70.8583 0.7986 0.7328 0.7983
↑ +5.0% +6.3% +7.4% +8.5% +6.7% -0.5% +8.2% +26.1% -1.9% +2.2% -12.4% +7.6%

Table 3: Performance evaluation of all the baselines with different metrics. ↑ denotes the percentage of performance
gain compared with the best baselines.

answers is set to 8. The maximum length of the
input sentence is set to 64 during training. The
learning rate is set to 5e− 5 with ten epochs, and
an early stop is adopted. For the restricted polisher,
the setting is the same as the BERT-MT model
except for the restricted translation setting. Pub-
MedBERT is applied with an LSTM decoder that
has the same hidden size.

In the evaluation stage, the same NLTK word
tokenizer is applied as baselines to break the sen-
tences into words for calculating the scores for a
fair comparison. All models are trained on Ubuntu
16.04 with 128GB memory and an Nvidia Tesla
P100 GPU.

Evaluation Metrics. We use BLEU (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007),
ROUGE-L (Lin, 2004), and CIDEr (Vedantam
et al., 2015) scores as the evaluation metrics, which
are widely-used for the machine translation task.
Besides, we use SARI (Xu et al., 2016), which is
specially designed for the general ATS task. It com-
bines the n-gram evaluation method of the BLEU
score and rewards the replacement of the input
words. However, it fails to cover the accuracy re-
quirement of the professional medical term simpli-
fication.

Since our task is different from traditional ma-
chine translation and ATS tasks, directly applying
existing evaluation metrics cannot fairly evaluate
the performance of different models. Since our task
is different from traditional machine translation
tasks, directly applying existing evaluation metrics
cannot fairly evaluate the performance of different
models. Here, we use an example in Figure 3 to
demonstrate the failure of existing evaluation met-
rics, such as the BLEU score. If we directly copy
the original source sentence as the answer, a very
high BLEU score can be obtained, which is 0.85.
However, the critical term “pt” is not translated.

Without translating this term, patients or customers
may not totally understand the meaning of this sen-
tence. Thus, it is necessary to design task-specific
metrics.

Source: vascular saw the pt and
did not feel that there was an acute
need for an invasive procedure.
Target: vascular saw the patient
and did not feel that there was
an acute need for an invasive
procedure.

Figure 3: Example of the failure of existing metrics.

• Hit Ratio (HIT). A key challenge of medical
language translation is to translate professional
medical jargon into layperson-understandable
words. Let np denote the number of professional
medical terms in a source sentence and nt be the
number of correctly translated terms in the target.
We then have the HIT ratio, which is HIT = nt

np
.

• Common Word Ratio (CWR). To evaluate the
simplicity of the translated sentences, we follow the
work of Dale–Chall readability (McClure, 1987)
to calculate the common word ratio for each out-
put sentence. We first lemmatize each word of the
output. If the lemmatized form is in the top-3000
commonly-used English words, then it is a com-
mon word. Otherwise, it is not a common word.
Let nc denote the number of common words in the
translated sentence, and n represents the length of
the translated sentence. The common word ratio
score is CWR = nc

n .
• Aggregation Score (AScore). The quality of the

translated sentences is not only decided by the read-
ability (BLEU) but also related to the correctness
(HIT) and simplicity (CWR). Among these three
perspectives, readability and correctness should be
more important than simplicity. Thus, we design a
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new score to model them jointly, which is

Ascore =
1 + α2 + β2

α2

BLEU + β2

HIT + 1
CWR

,

where α and β are parameters for controlling the
importance of BLEU and HIT scores. If any of the
three metrics is 0, then it will be added to a very
small number such as 10−8 to avoid AScore being
0. We take α = 2 and β = 1.5 in our experiments.

5.2 Experimental Result Analysis
Table 3 shows the experimental results of all base-
lines and DECLARE on different evaluation metrics.
The Dictionary method is the simplest approach,
but its performance is not the worst compared with
other baselines in terms of transitional machine
translation evaluation metrics such as BLEUs. The
reason is that there are many overlapping tokens in
both source and target sentences, which is the main
difference between the traditional machine transla-
tion task and our clinical language understanding
task. These results also confirm that we need to
design new evaluation metrics for this new task.

General neural network-based approaches, in-
cluding Seq2Seq, its variants, and PointerNet, have
a relatively low BLEU score. The reason is that the
labeled data is insufficient for them to train a power-
ful translation model from scratch. For the general
ATS method EditNTS, we can observe a relatively
high score for BLEU. EditNTS is good at keeping
the information. However, due to the lack of exter-
nal knowledge support, the HIT score is still not
satisfactory enough, proving the importance of the
DNLI module. In addition, EditNTS is designed
for the general ATS domain. Many attributes are
not suitable for our task, which can also contribute
to the bad performance. For the transformer-based
pre-trained sequence to sequence models T5 and
BART, the BLEU score is relatively high but with
a much lower HIT score compared to Seq2Seq and
PointerNet. The unsatisfied results may be related
to the domain shifting problem since T5 or BART
models are not pre-trained for the medical text-
domain. On the contrary, BERT-MT conducting
pre-training on a large medical language corpus
significantly increases the ability of model learning.
Hence, the performance of BERT-MT is the best
among all the baselines. However, the proposed
DECLARE mimics the human annotation procedure
and employs a mapping dictionary with a novel
model design, which leads to achieving the best
performance compared with all the baselines.

Using the pre-trained language models is help-
ful to attain a higher SARI score because the pre-
training technique can increase the models’ gener-
alization ability and benefit the word replacement
rewards of the SARI metric. However, SARI does
not focus on the accuracy of simplifying profes-
sional medical abbreviations, which makes it un-
able to comprehensively and fairly evaluate the
results.

From the view of the HIT score, we can find a
sufficient gap between generation-based methods
(including Seq2Seq, Seq2Seq-S, BERT-MT, and
DECLARE) and other methods. To achieve a high
HIT score, the accurate recognition of abbrevia-
tions is necessary. Moreover, the models should
understand the context correctly, which is an ad-
vantage of neural network-based models. Besides,
another requirement is the generation ability. The
use of a reference mechanism probably limits the
generation ability of the PointerNet model, and
thus, it does not achieve a high HIT score.

The CWR score can reflect the simplicity of sen-
tences in a scene. However, we should notice that
the higher CWR scores do not mean better perfor-
mance. The reason is that translating professional
medical terms will inevitably result in some un-
common words. Thus, we should attach less im-
portance to the CWR score when calculating the
comprehensive rank.

The top 3 models in the view of AScore are DE-
CLARE, BERT-MT, and EditNTS, which is reason-
able. The AScore attaches the highest importance
to BLEU, followed by the HIT and CWR scores.
Using the harmonic mean can make sure that we
penalize the tendency of going overboard on one
subject and guarantee good general performance.

6 Conclusion

This paper aims to benchmark a new, challeng-
ing, yet practical task of automated clinical lan-
guage simplification by constructing a high-quality
MedLane dataset and proposing a new model DE-
CLARE that mimics the human annotation proce-
dure. We conducted experiments on the annotated
MedLane dataset by implementing nine strong
baselines against DECLARE. Experimental results
confirmed the utility of the constructed MedLane
dataset and the effectiveness of the proposed DE-
CLARE for addressing the automated clinical lan-
guage simplification task.
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7 Broader Impacts

Current health care service and health information
technology (HIT) system design strive to provide
accessible ways for patients to be engaged in their
own care and make informed decisions. One in-
stance is to make personal health records acces-
sible to patients through patient portals (the elec-
tronic personal health record systems connected
to organizations’ electronic health record systems).
However, only providing access to health records
is insufficient to fully empower patients. Patients
may struggle to understand those records due to
such reasons as low health literacy, unfamiliarity
with medical jargon and clinical abbreviations, or
difficulty in understanding the complex structure
of medical language. Currently, only a few studies
target this practical issue. In this paper, we not only
provide a human-annotated dataset, design a new
model but also propose three evaluation metrics for
benchmarking the clinical language simplification
task. Our work will expedite research in multiple
domains, including but not limited to, natural lan-
guage processing, machine learning, and healthcare
informatics.

8 Ethical Consideration

The original data of our study are directly ex-
tracted from the MIMIC-III database (Johnson
et al., 2016), where all private health information
was de-identified. The MIMIC-III database was
performed under Health Insurance Portability and
Accountability Act (HIPAA) standards, which re-
quire the removal of all the identifying data ele-
ments in the list of HIPAA (e.g., name, phone num-
ber, address, and so on). Thus, this is no privacy
issue for the data that we use. When annotating
the dataset, all annotators submitted all required
consent forms. Since this work only focuses on
simplifying clinical text, and no additional identi-
fied and private information is added. As a result,
the protection of privacy is preserved. For dissem-
inating our dataset to be publicly available, we
will follow the same requirement of the MIMIC-III
data. In other words, the requester must complete a
recognized training for protecting human research
participants and sign an agreement to protect the
data privacy following the requirement of the Phys-
ioNet13 (Goldberger et al., 2000).

13https://physionet.org/
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Abstract

Most comparative datasets of Chinese varieties
are not digital; however, Wiktionary includes
a wealth of transcriptions of words from these
varieties. The usefulness of these data is lim-
ited by the fact that they use a wide range
of variety-specific romanizations, making data
difficult to compare. The current work collects
this data into a single constituent (IPA, or In-
ternational Phonetic Alphabet) and structured
form (TSV) for use in comparative linguistics
and Chinese NLP. At the time of writing, the
dataset contains 67,943 entries across 8 vari-
eties and Middle Chinese.1 The dataset is val-
idated on a protoform reconstruction task us-
ing an encoder-decoder cross-attention archi-
tecture (Meloni et al., 2021), achieving an ac-
curacy of 54.11%, a PER (phoneme error rate)
of 17.69%, and a FER (feature error rate) of
6.60%.

1 Introduction

The Chinese language family consists of many
mutually unintelligible languages, which linguists
cluster into seven well-established subgroups
(Mandarin, Yue, Wu, Min, Hakka, Gan, and Xi-
ang) and a few more debated subgroups (Jin, Hui,
and Pinghua; Handel 2015). Each subgroup is
made of varieties that may or may not be mutually
unintelligible. Most scholars of Sinitic believe that
all varieties except for Min languages descended
from Middle Chinese (Handel, 2015), which is a
set of old varieties documented in Qièyùn (切韻),
a rhyme dictionary compiled in 601 CE.
Today, there are a total of 1.3 billion speakers

of Sinitic varieties, making the family one of the
largest in terms of speaker count (Eberhard et al.,
2022). Eight of the subgroups have at least tens of

1The data is available at https://github.
com/cmu-llab/wikihan and the code is avail-
able at https://github.com/cmu-llab/
meloni-2021-reimplementation/.

millions of speakers. In all Chinese-speaking soci-
eties except for Hong Kong, Mandarin is the lan-
guage of administration, meaning that other vari-
eties are not commonlywritten, although it is possi-
ble to do so, either with Han characters (Chinese lo-
gographic characters) or romanized orthographies.
Because Standard Written Chinese diverged from
the spoken varieties over time (Chen, 2015), it is
unclear which Han characters should be used for
transcription, for many words in the spoken va-
rieties. However, scholars can trace from which
“original character” in Middle Chinese or Old Chi-
nese the modern word descended (běnzì 本字)
(Yang, 2000).
To determine the pronunciations of these orig-

inal characters in Middle Chinese, historical lin-
guists and dialectologists compare the pronunci-
ations of words across modern Sinitic varieties.
More broadly, protoform reconstruction is the in-
ference of morphemes or words as they appeared
in the ancestral languages of a set of daughter
languages. Cognates—words deemed to descend
from the same ancestral form—are inputs to the re-
construction, while this ancestral form is the output
of the reconstruction. See Table 2 for an example
of a cognate set, with Middle Chinese as the proto-
form and all columns to its right as the cognates in
the daughter languages.
To enable fair comparison across the daughter

languages, the pronunciations should be in a com-
mon phonetic or phonemic transcription system, as
opposed to divergent romanizations. The problem
is that large datasets that do offer phonetic tran-
scriptions such as the Great Dictionary of Modern
Chinese Dialects現代漢語方言大詞典 (Li, 2002)
are often in print form. Wiktionary, on the other
hand, offers a digital compilation of pronuncia-
tion entries across several sources manually en-
tered by users (Wiktionary contributors, 2022a).
However, entries are stored in subgroup-specific
romanizations on the back end. The IPA transcrip-
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tions are generated on the front end by Lua scripts
that convert romanizations to IPA2 and as such
are not available in data exports, which only store
the romanized forms. To obtain a large dataset of
pronunciations in IPA, one could scrape the front
end of Wiktionary, but this would be inefficient.
Instead, we write our own romanization to IPA
conversion modules in Epitran (Mortensen et al.,
2018) for each subgroup based on those fromWik-
tionary. Using the outputs of these Epitran mod-
ules, we compile a large dataset of pronunciation
entries in IPA in TSV form. We then show that
the entries we generate can be used in a computa-
tional protoform reconstruction ofMiddle Chinese,
demonstrating that our dataset addresses the inad-
equacies of previous digital comparative Sinitic
datasets with respect to computational reconstruc-
tion.

2 Related Work

Linguists have created digital comparative datasets
since the birth of computers. Refer to Table 1 for
a list of Sinitic datasets. Wang (1970) in particu-
lar features Middle Chinese, Sino-Xenic (Japanese
Kan-on, Japanese Go-on, and Sino-Korean) loan-
words, and Old Mandarin (from the Zhōngyuán
Yīnyùn中原音韻). Similar to ours, the main objec-
tive of the dataset was to provide data for computer-
assisted reconstructions of Chinese phonology.
The Multi-function Chinese Character Database is
interesting in that it organizes characters by all the
possible syllables in the dialect, including the tone.
The Database is itself a compilation of multiple
print sources. Wu and List (2021) stand out for
their manual annotation of salient morphemes that
contributed to cognacy judgments, which they use
to convert partial cognates to full words in creating
cognate sets and wordlists for phylogenetic infer-
ence.
One challenge with many of the aforementioned

datasets is that they organize entries by words in-
stead of characters. Across subgroups, synonymic
compound words may use different characters to
express the same meaning.3 Even though par-
tial cognacy of such compounds is possible, the

2See https://en.wiktionary.org/wiki/Module:
nan-pron for an example of a conversion script.

3For instance, tears is 目屎 (lit. eye feces) in Hokkien,
目汁 (lit. eye juice) in Hakka, and眼淚 (eye tears) in Man-
darin (Wiktionary contributors, 2022b). Here目屎 and目汁
are partial cognates since not every character descends from
the same protoform.

method by which partial cognates are coded into
full cognates in word lists will affect the down-
stream task of phylogenetic inference, which as-
sumes that words in the inputted word lists de-
scend from the same proto-word (Wu and List,
2021). Many other sources exist and may have
significantly more entries, such as the Great Dic-
tionary of Modern Chinese Dialects. However,
to our knowledge, they are not digitized, making
computer-assisted reconstruction difficult.

3 Dataset and Methodology

We obtain Sinitic pronunciation entries using a
CBOR snapshot of the zh-pron module on Wik-
tionary.4 For heteronyms, characters with multi-
ple pronunciations within a variety, each pronun-
ciation is stored as a separate entry in the snap-
shot and is grouped along with pronunciations in
other varieties believed to be cognate with that
particular pronunciation. The dataset spans eight
subgroups: the seven conventionally recognized
ones (Mandarin, Yue, Wu, Min, Xiang, Gan, and
Hakka) and the proposed Jin subgroup, for which
Wiktionary has entries. We chose the dialects with
the most data to represent each subgroup. Refer to
Table 3 for the full list of dialects.5 We restrict
the dataset to single characters (morphemes), al-
lowing us to establish cognacy between pronun-
ciation entries across subgroups by assuming that
readings grouped under the same character byWik-
tionary are cognates descended from the same orig-
inal character (本字).
To convert from romanization to IPA, we ex-

tend Epitran with additional modules for each sub-
group (Mortensen et al., 2018). Refer to Table 3 to
see which romanization system was used for each
subgroup. Wiktionary supplies mapping tables for
each variety6, and we compare the mapping tables
with other sources such as Wiktionary’s Lua con-
version scripts (see Appendix A for the full list).
We represent tones using IPA tone letters. We

do not mark the neutral tone, as opposed to mark-
ing it as IPA tone 3. The transcription is relatively
narrow, with diphthongs always represented as se-

4https://tools-static.wmflabs.org/
templatehoard/dump/latest/zh-pron.cbor

5We acknowledge that including Taiwanese Hokkien en-
tries may present a problem during reconstruction because its
dialects are a mix of the Quanzhou and Zhangzhou dialects of
Hokkien (a language within the Southern Min branch of the
Min subgroup) to varying degrees.

6See https://en.wiktionary.org/wiki/
Wiktionary:About_Chinese/Xiang for an example
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Name Citation Varieties Sets Entries Transcription Format

Great Dictionary of Modern
Chinese Dialects

Li (2002) 42 — 170,000+ SIPA print

Dictionary on Computer Wang (1970); Streeter
(1972)

17 2,444 58,012 SIPA tabular

Multi-Function Chinese
Character Database

Research Centre for
Humanities Computing,
CUHK

20 7,554 — SIPA HTML

Peking University Peking University (2021) 18 905 18,059 SIPA CLDF

Wiktionary dial-pron
module

Hóu (2004) 39 1,023 >39,000 IPA XML

Phonological Database of
Chinese dialects

List (2021) 15 140 2,789 SIPA CLDF

Liu et al. (2007) annotated
with salient morphemes

Wu and List (2021) 19 201 > 3,000 CLDF CLDF

WikiHan (ours) N/A 8 21,227 68,368 IPA TSV

Table 1: Comparative Sinitic datasets. “SIPA” refers to “Sinological IPA.” In our dataset, a heteronymic character
can have multiple cognate sets, reflecting different sets of pronunciation variants that are only cognate with variants
in the same set. Entries refers to the total number of pronunciation records across all varieties.

quences of vowel symbols and glides marked by
the IPA non-syllabic diacritic: [ia̯] rather than [ja].
Fewer symbols are preferred over many: [ɲ] rather
than [n̠ʲ].
Middle Chinese (MC) transcriptions following

Baxter and Sagart (2014) are derived programmat-
ically from fǎnqiè formulae7 from Qièyùn (avail-
able for around 20,000 characters). Despite con-
cerns raised by Norman and Coblin (1995) and oth-
ers, we treat MC pronunciations as the gold stan-
dard protoform. We process the Qièyùn descrip-
tions in three stages. First, the Middle Chinese de-
scriptions of initial, final, tone, division (等), and
openness (合開) are converted to theASCII roman-
ization system in Baxter and Sagart (2014). The
romanizations are then converted to IPA with Epi-
tran, using a mapping table based on SinoPy (List,
2019). Finally, we rewrite some IPA phonemes to
match the phonetic transcription convention used
in this dataset (e.g. [ʨ] →[t͡ɕ], [ȵ] →[ɲ]). For the
tones, we use superscripts 1 through 4 to indicate
what would traditionally be denoted as平上去入.
The final result is a list of nearly 20,000 characters,
each with a reconstruction written in IPA symbols.

4 Experiments

We show that the dataset can be used for the proto-
form reconstruction task. Meloni et al. (2021)
model the Latin protoform reconstruction task as a
sequence to sequence transduction problem with a

7Fǎnqiè spelling provides equivalence classes for the pro-
nunciation of a syllable by using one character with the same
onset and another with the same rhyme.

character-based encoder-decoder (Cho et al., 2014)
with cross-attention (Bahdanau et al., 2015).8 We
reimplement their architecture, originally written
in DyNet (Neubig et al., 2017), in PyTorch. The
architecture consists of a language and token em-
beddings, an encoder GRU (Cho et al., 2014), a
decoder GRU, and a multi-layer perceptron.
All daughter forms within one cognate set are

concatenated into one string before entering the en-
coder. To distinguish between each variety, a lan-
guage code is first prepended before each pronunci-
ation entry. In the encoder, a language embedding
is learned for each dialect. The same is done in
the decoder for the proto-language. Token embed-
dings are applied to individual characters (close to
a phone) in the input and are shared across each
language. There is a residual connection between
the attention output and the decoder RNN output
before entering the multi-layer perceptron. The ob-
jective function is cross-entropy loss between the
protoform and the predicted protoform.
The only difference between our PyTorch ver-

sion and their code is that we do not imple-
ment variational dropout in the encoder (Gal and
Ghahramani, 2016), but DyNet comes with this fla-
vor of dropout in its RNN modules. We do imple-
ment variational dropout for the decoder, though.9

8Meloni et al. (2021)’s code is available at
https://github.com/shauli-ravfogel/Latin_
reconstruction.

9PyTorch’s RNN, LSTM, and GRU modules do not come
with variational dropout. It is possible to overwrite the re-
spective classes with a version that implements variational
dropout, though.
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Character Middle Chinese Yue Gan Hakka Jin Mandarin Min Wu Xiang

犬 /kʰwen²/ [hyːn˧˥] [t͡ɕʰy̯ɵn˨˩ ˧] [kʰie̯n˧˩] [t͡ɕʰy̯e˩˩ ˩] [t͡ɕʰy̯ɛn˨˩] [kʰiɛ̯n˥˩] [t͡ɕʰy̯ø˧˦] [ t͡ɕʰy̯e̞˦ ˩]

Table 2: Example of a complete cognate set in the dataset for the word犬 (dog)

Subgroup Dialect Chosen Romanization 犬 romanized Number of entries

Mandarin Beijing Pinyin quǎn 20369
Yue Cantonese Jyutping hyun2 16727
Wu Shanghainese Wiktionary’s romanization 2qyoe 2877
Min Hokkien Pe̍h-oē-jī khián 6145
Hakka Sixian Pha̍k-fa-sṳ khién 5215
Gan Nanchang Wiktionary’s romanization qyon3 1195
Xiang Old Xiang Wiktionary’s romanization qye3 1258
Jin Taiyuan Wiktionary’s romanization qye1 1410

Table 3: The dialect chosen for each subgroup and its romanization of the word犬, in addition to a count of the
number of pronunciation entries per subgroup. For Min, the pronunciations are a mix of the Xiamen, Quanzhou,
Zhangzhou, and Taiwanese dialects of Hokkien. For Middle Chinese, we have 14653 entries.

We find that dropout makes a significant difference
when trained on the small 39-variety dataset of
1,000 cognate sets from Hóu (2004) (which ended
up being around 800 sets because not every entry
in Hóu (2004) had an entry in the Qièyùn).10

We now discuss how we adapted our dataset
for Meloni et al. (2021)’s model. In order
for the model to learn correspondences between
phonemes as linguists would, we tokenize by
phonemes, for example /tʰ/ and /t͡ɕʰ/, instead of
characters. These two example phonemes should
each be treated as one consonant despite being rep-
resented with several Unicode characters. We treat
diphthongs and triphthongs as one token because
they constitute one syllable, phonetically speaking.
We also restrict ourselves to cognates with at least
4 entries including Middle Chinese to avoid being
biased to varieties with more entries, such as Man-
darin. Another decision we made is to arbitrarily
take the first pronunciation when multiple variants
are included in the same entry on Wiktionary.
We compare Meloni et al. (2021) against two

baselines. The random daughter baseline se-
lects a daughter form at random and takes that as
the reconstructed protoform. This assumes that
no sound change occurred from the protoform
to the daughter. The majority constituent base-
line first separates daughter forms into onset, nu-
cleus, and coda with the consonantal feature of

10Available on Wiktionary at https://en.
wiktionary.org/wiki/Module:zh/data/dial-pron/
documentation.

the phoneme obtained using PanPhon (Mortensen
et al., 2016), reflecting domain knowledge about
the syllable structure of Chinese languages. This
allows us to easily obtain sound correspondences
across the daughter languages. Within each con-
stituent (onset, nucleus, and coda), we take the
most common phoneme sequence. This relies on
the majority wins heuristic employed by historical
linguists wherein the most frequent sound across
the daughter languages is chosen as the proto-
sound (Campbell, 2013).
Meloni et al. (2021) outperforms both baselines

on 3 different metrics (see Table 4): (1) Accuracy,
the rate at which hypothesis and reference match
exactly, (2) Phoneme Error Rate (PER), the cumu-
lative number of phoneme edits between the hy-
pothesis and the reference normalized by the total
length of the reference (in phonemes), and (3) Fea-
ture Error Rate (FER) the cumulative edit distance
in terms of PanPhon (Mortensen et al., 2016) fea-
tures (drawn from articulatory phonetics) between
the hypothesis and the reference, normalized by
the total number of features in the reference (the to-
tal length of the reference in phonemes multiplied
by the number of features per phoneme).
PER is more suited for the protoform reconstruc-

tion task than character error rate or edit distance
because many phonemes are written with more
than 1 character in IPA, as shown in the examples
from above. As for FER, its benefit lies in how
it is able to assign partial credit to hypothesized
phonemes that are more phonetically similar. Intu-
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Model Accuracy Phoneme error rate Feature error rate
Meloni et al. (2021) 0.5411 0.1769 0.0660
Random daughter 0.0290 0.7367 0.2600
Majority constituent 0.0271 0.7320 0.2209

Table 4: Evaluation of Meloni et al. (2021)’s model and 2 baselines on our dataset using 3 different evaluation
criteria.

itively, we would want, for example, [t] to be pe-
nalized less than [x] in some scenario where the
reference is [tʰ]. Both [t] and [x] differ from the
reference by one character, but [t] and [tʰ] are both
voiceless alveolar plosives that differ only in as-
piration. Finally, we prefer error rates over edit
distances because it is difficult to compare results
across different language families, which differ in
word lengths. Sinitic words in particular are often
shorter than Romance words because the former is
composed of monosyllabic characters.

5 Discussion and Future Work

Our dataset is intended for a computational recon-
struction of Middle Chinese, as we have demon-
strated in the experiments, but can be used to ac-
complish much more. It can also be used for cog-
nate prediction and for dialectometry (quantifying
relationships between linguistic varieties). Along
the same lines, it can be used to build phyloge-
netic models of Sinitic that can shed light on the
history of Chinese populations. Additionally, Chi-
nese speech models could benefit from a phonetic
language model (Dalmia et al., 2019) trained on
our data or from estimations of phone distributions
(Li et al., 2021) in low resource varieties present in
our dataset.
In a future release, we will include other vari-

eties available on Wiktionary (Taishanese, South-
west Mandarin, Teochew, Min Bei, and Min
Dong). Wiktionary also contains pronunciations
for Sino-Xenic loanwords in Korean, Japanese,
and Vietnamese, which linguists often reference
when creating Chinese reconstructions. The more
languages we include, the fewer the number of
sources that Chinese historical phonologists need
to consult, reducing the tediousness of work in this
field.
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• https://en.wikipedia.org/wiki/Jyutping

• https://en.wiktionary.org/wiki/Wiktionary:
About_Chinese/Cantonese

• https://en.wikipedia.org/wiki/Help:
IPA/Cantonese
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nan-pron

• https://en.wiktionary.org/wiki/Wiktionary:
About_Chinese/Hakka

• https://blgjts.moe.edu.tw/doc/tmt_compare.
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• Ministry of Education, Taiwan (2008)

• https://zh.wikipedia.org/wiki/Help:
%E8%87%BA%E7%81%A3%E8%A9%B1%E5%9C%8B%
E9%9A%9B%E9%9F%B3%E6%A8%99

A.5 Xiang
• https://en.wiktionary.org/wiki/Module:

hsn-pron

• https://en.wiktionary.org/wiki/Wiktionary:
About_Chinese/Xiang

• https://zh.wikipedia.org/wiki/%E6%B9%98%
E8%AF%AD

A.6 Jin
• https://en.wiktionary.org/wiki/Module:

cjy-pron

• https://en.wiktionary.org/wiki/Wiktionary:
About_Chinese/Jin

A.7 Gan
• https://en.wiktionary.org/wiki/Wiktionary:

About_Chinese/Gan

• https://en.wiktionary.org/wiki/Module:
gan-pron

A.8 Wu
• https://en.wiktionary.org/wiki/Wiktionary:

About_Chinese/Wu

• https://en.wiktionary.org/wiki/Module:
wuu-pron

A.9 Hakka
• https://en.wiktionary.org/wiki/Wiktionary:

About_Chinese/Hakka

• https://en.wikipedia.org/wiki/Sixian_
dialect

• https://en.wiktionary.org/wiki/Module:
hak-pron
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Abstract

We present a new multimodal dataset called
Visual Recipe Flow, which enables us to learn
each cooking action result in a recipe text. The
dataset consists of object state changes and the
workflow of the recipe text. The state change is
represented as an image pair, while the work-
flow is represented as a recipe flow graph (r-
FG). The image pairs are grounded in the r-FG,
which provides the cross-modal relation. With
our dataset, one can try a range of applications,
from multimodal commonsense reasoning and
procedural text generation.

1 Introduction

Our aim is to track how foods are processed and
changed toward the final food product by each
cooking action given a recipe text. This requires
some knowledge of the actions: what foods and
actions are involved and how the action changes
them. Skilled chefs can easily imagine these action
effects while understanding the required foods. We
are interested in building an autonomous agent en-
dowed with this ability, as illustrated in Figure 1.
This example involves two cooking actions, and
the agent imagines the second action result: the
shredded cabbage in the bowl. This also implicates
the food requirement: the shredded cabbage pro-
duced by the previous action. The prediction for
the required foods and action results is indeed a nat-
ural ability for humans when they cook something.
Thus, this is also crucial for intelligent autonomous
agents to understand recipe texts.

Previous work on this line of research pro-
vided visual annotation for each cooking instruc-
tion (Nishimura et al., 2020; Pan et al., 2020).
Nishimura et al. (2020) attached an image with
bounding boxes of objects to each instruction,
while Pan et al. (2020) split an instruction into
sentences and attached frames to each sentence.
However, their annotations are often insufficient to
predict the action result for each object. A typical

Figure 1: Our goal is to build an agent that tracks object
state changes and predicts what observations can be
obtained by cooking actions.

case is an instruction in a sentence that directs mul-
tiple actions. For example, the instruction of “slice
the tomato and put it into the bowl” produces two
action results: the sliced tomato and that put in the
bowl. Therefore, an instruction-wise visual anno-
tation is insufficient for our task, and action-wise
visual annotation is required. Preparing a more
dense visual annotation is one straightforward way
to handle this case.

Toward the realization of an agent that predicts
the result of each action, we introduce a new mul-
timodal dataset called Visual Recipe Flow (VRF).
The dataset consists of object1 state changes caused
by every action and the workflow of the text. The
change is given as an image pair, while the work-
flow is given in the format of recipe flow graph
(r-FG) (Mori et al., 2014). Each image pair is
grounded in the r-FG, which gives the cross-modal
relation. Figure 2 shows an example of our dataset.

We focus on recipe text involving various cook-
ing actions, foods, and state changes, which is
one of the representatives of procedural texts. Un-

1In our work, object refers to food or tool.
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Figure 2: Example of our dataset. A pair of images in the visual observation corresponds to the states of object
before and after a cooking action. They are grounded in the action in the instruction list. The black solid arrows
denote recipe flows, which describe the relationships between expressions (e.g., cooking actions, foods, and tools).

derstanding these texts by tracking object state
changes is one of the recent trends (Dalvi et al.,
2018; Bosselut et al., 2018; Tandon et al., 2020;
Nishimura et al., 2021; Papadopoulos et al., 2022).
Our work also contributes to this line of research.
Since images directly express object appearances
in the real world (Isola et al., 2015; Zhang et al.,
2021), our dataset would provide rich informa-
tion for the changes. The sequential nature of
our dataset can also be used to test the reading
comprehension ability of large-scale language mod-
els (Srivastava et al., 2022). Furthermore, since our
dataset has arbitrary interleaved visual and textual
annotations, it is also possible to evaluate the few-
shot capability of vision-language models on such
data (Alayrac et al., 2022).

2 The VRF dataset

The Visual Recipe Flow (VRF) dataset is a new
multimodal dataset. It provides visual annotations
for objects in a recipe text before and after a cook-
ing action. We identify expressions including the
action in the text by using recipe named entities (r-
NEs) (Mori et al., 2014), which can be extended to
other procedural tasks. Based on the r-NEs, it also
provides a representation of the recipe workflow
as a recipe flow graph (r-FG) (Mori et al., 2014).
In this section, we first explain the overview of the
r-FG and then introduce our visual annotation.

2.1 Recipe flow graph (r-FG)
The r-FG represents the cooking workflow of a
recipe text. It consists of a set of recipe flows. The
recipe flow is expressed as a directed edge that
takes two r-NEs as the starting and ending vertices.
It also has a label that describes the relationship
between them. It connects one cooking action with
the next and expresses its dependencies. For ex-

ample, in Figure 2, the first action is connected
with the second one, which means that the sec-
ond action requires the products of the first action:
shredded cabbage and carrot. This helps us to iden-
tify what foods are required for the actions. The
annotation has the flows from the ingredient lists to
track foods from raw ingredients (Nishimura et al.,
2021), which allows us to convert the r-FG into
cooking programs (Papadopoulos et al., 2022).

2.2 Visual annotation
Our visual annotation is given as an extension of
the r-FG. Each annotation consists of a pair of im-
ages which represent object state change by the
action. Each image pair is linked with the action
in the r-FG. In some cases, a single action can re-
quire multiple objects and change their states. Our
annotation provides an image pair to all of these
state changes. In Figure 2, for example, the first
action is linked with two image pairs because it
induces the state changes of two objects: cabbage
and carrot. This dense annotation would help de-
velop autonomous cooking agents because these
images provide visual clues for each action.

3 Annotation standards

In this section, we describe our annotation stan-
dards. The annotation consists of three steps in or-
der: (i) r-NE annotation, (ii) r-FG annotation, and
(iii) image annotation. Each recipe has an ingre-
dient list, an instruction list, and a cooking video.
Figure 3 shows an example of the annotations.

r-NE annotation. First, we annotated words in
the ingredient and instruction lists with r-NE tags2.

2We segmented sentences into words beforehand by using
a Japanese tokenizer, KyTea (Neubig et al., 2011), because
words in a Japanese sentence are not typically separated by
whitespace.
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Figure 3: Example of annotation process for a single
instruction. The instruction is sequentially annotated
with r-NE tags, recipe flows, and images.

i

We used the eight types of r-NE tags, following
Mori et al. (2014). See Appendix A for details.

r-FG annotation. Second, we annotated the r-
NEs in the first step with the r-FG. We used the 13
types of r-FG labels, following Maeta et al. (2015).
See Appendix A for details.

Image annotation. Third, we annotated object
states with images, sampled at 3 frames per second
from the videos. Each object required for any cook-
ing action is annotated as a pair of frames of states
before and after the action. When there are mul-
tiple suitable frames, we prioritize the one based
on the visual clarity of the object. In some cases,
objects are always heavily covered by human hands
or abbreviated from the video. We treat them as
missing data.

4 Annotation results

This section first describes our annotation process
and the statistics for the annotation results. It then
investigates the dataset quality and finally assesses
our dataset by conducting experiments.

4.1 Annotation process

We started by collecting recipes and cooking videos
since the existing r-FG datasets (Mori et al., 2014;
Yamakata et al., 2020) are not necessarily associ-
ated with the videos. We collected 200 recipes in
Japanese and videos from the Kurashiru website3.
In the video, each cooking process is recorded in
detail by a fixed camera. Thus, we can annotate
the object states with a fixed viewpoint. Consid-
ering the future cooking agent developments, we
focused on salad recipes, in which the procedures
are simple but still contain 89 unique expressions
for cooking action and 275 unique ingredients.

We asked one Japanese annotator, familiar with
the r-NE and r-FG, to annotate the recipes. How-
ever, filling spreadsheets manually (Mori et al.,
2014) is heavy, and it also might cause unexpected
annotation errors. Therefore, we developed a web
interface to help the annotation. The interface sup-
ports all three annotation steps. With this interface,
the annotator can annotate recipes with r-NE tags,
r-FG labels, and images by simple mouse opera-
tions. An illustration of the interface is provided in
Appendix B. The whole annotation took 120 hours.

In the annotation collection process, we created
annotation guidelines to check annotation errors
and reproduce high-quality annotations by another
annotator. Starting with a draft, we iteratively re-
vised the guidelines when the first 10, 20, and 50
recipe annotations were finished. In the verifica-
tion process, we shared the guidelines and three
annotation examples with the second annotator.

4.2 Statistics

The recipes contained 1, 701 ingredients, 1, 077 in-
structions, and 33, 400 words in total. The average
number of ingredients and instructions per recipe
was 8.51 and 5.31, respectively. The r-NE annota-
tion resulted in 11, 686 r-NEs, while the r-FG anno-
tation resulted in 11, 291 recipe flows. We provide
the detailed statistics for them in Appendix A.

Table 1 shows the statistics for the image anno-
tation results. We annotated 3, 705 objects in the
r-FGs with images. Among them, 2, 551 had both
pre-action and post-action images, 485 had only
a post-action image, 72 had only a pre-action im-
age, and 597 had no image. In total, 5, 659 images
(3, 824 unique images) were used.

3https://www.kurashiru.com, accessed on
2021/12/14.
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Annotated image
# objectsPre-action

state
Post-action

state
597

✓ 72
✓ 485

✓ ✓ 2,551
Total 3,705

Table 1: Statistics for the image annotation results. Ob-
jects have image annotation of a pre-action or post-
action state if it is checked.

Annotation Precision Recall F-measure
r-NE 97.93 98.88 98.40
r-FG 86.18 86.04 86.11
Image 75.13 70.60 72.80

Table 2: Inter-annotator agreements of the annotations.

4.3 Dataset quality

To investigate the correctness and consistency of
the annotation results, we asked another annotator
to re-annotate 10 recipes, which were randomly
sampled from the collected recipes and contained
623 named entity tags, 616 recipe flows, and 199
visual state changes. We then measured the inter-
annotator agreements in precision, recall, and F-
measure. The agreements were calculated between
the two sets of annotations by taking the first one
as the ground truth.

Table 2 lists the results. The F-measure for the
r-NE was 98.40, which was almost perfect agree-
ment. The F-measure for the r-FG was 86.11,
which was also quite high considering that all the
r-NEs were presented as candidate vertices. The
F-measure for the images was 72.80, which was
smaller than the former steps. However, this was
still high, considering that annotation differences
in the former steps affected this step.

4.4 Experiments

We conducted multimodal information retrieval ex-
periments to assess our dataset. The experiments
aimed to find a correct post-action image from a
set of candidate images by using the cooking ac-
tion verb and pre-action image information. We
used a joint embedding model (Miech et al., 2019)
and briefly explain the calculation here4. We calcu-
lated a vector for an estimated post-action object

4See details in Appendix C

Used input
R@5 (↑) MedR (↓)Action

verb
Pre-action

image
2.37 149.00

✓ 21.24 26.70
✓ 33.77 12.60

✓ ✓ 37.01 10.40

Table 3: R@5 and MedR for the models with different
inputs. The model uses action verb or pre-action image
if it is checked. The first line denotes random search.

state from the action verb and pre-action image
information. This vector is mapped into a shared
embedding space. On the other hand, the candi-
date post-action images are mapped into vectors
and mapped them into the embedding space. We
searched for the correct post-action image from the
estimated post-action state based on their similari-
ties in the embedding space.

Our model was trained with different input con-
figurations. We used the Recall@5 (R@5) and the
median rank (MedR) as evaluation metrics. Ta-
ble 3 shows the results. The second and third lines’
scores show that the image provides more informa-
tion than the text. The fourth line’s scores imply
that the textual and visual modalities provide differ-
ent information, and using them together is more
effective. These results demonstrate that the visual
modality provides critical information for finding
post-action images. These also indicate the useful-
ness of our annotation.

5 Application

5.1 Multimodal commonsense reasoning

Multimodal commonsense reasoning in recipe text
is one of the recent trends (Yagcioglu et al., 2018;
Alikhani et al., 2019). With our dataset, one can
try reasoning about the food state changes from
a raw ingredient to the final dish with the visual
modality (Bosselut et al., 2018; Nishimura et al.,
2021). One can also use our dataset for analyzing
the cooking action effects throughout a recipe.

5.2 Procedural text generation

Generating procedural text from vision is an im-
portant task (Ushiku et al., 2017; Nishimura et al.,
2019). To correctly reproduce procedures, the gen-
erated instructions should be consistent. The r-FG
has the potential to make them more consistent as
it represents the flow of the instructions. Since our
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recipes are associated with cooking videos, one can
use our dataset for that purpose.

6 Conclusion

We have presented a new multimodal dataset called
Visual Recipe Flow. The dataset provides dense vi-
sual annotations for object states before and after a
cooking action. The annotations allows us to learn
each cooking action result. Experimental results
demonstrated the effectiveness of our annotations
for a multimodal information retrieval task. With
our dataset, one can also try various applications,
including multimodal commonsense reasoning and
procedural text generation.
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Tag Meaning # tags
F Food 5,098
T Tool 758
D Duration 129
Q Quantity 1,778

Ac
Action by chef

(cooking action)
2,532

Af Action by food 353
Sf State of food 971
St State of tool 67
Total — 11,686

Table 4: r-NE tags and the number of annotated tags of
each type.

Label Meaning # labels
Agent Action agent 330
Targ Action target 2,961
Dest Action destination 1,025
T-comp Tool complement 157
F-comp Food complement 20
F-eq Food equality 2,397
F-part-of Food part-of 330
F-set Food set 987
T-eq Tool equality 4
T-part-of Tool part-of 0
A-eq Action equality 1
V-tm Head of clause for timing 112
other-mod Other relationships 2,967

Total — 11,291

Table 5: r-FG labels and the number of annotated labels
of each type.

A Detailed statistics for the textual
annotation

This section provides the detailed statistics for the
annotated r-NE tags and r-FG labels.

A.1 r-NE tags

Table 4 shows the statistics for the annotated r-NE
tags with the explanation of each tag. Among the
tags, Ac, F, and T are specially important in our
work. Ac denotes human cooking action, which is
distinguished from action by food (Af). For exam-
ple, in the instruction of “leave the salad to cool,”
“leave” is tagged with Ac, while “cool” is tagged
with Af. F denotes foods including raw ingredients,
intermediate products after cooking action, and the
final dish. T denotes tools used for cooking. In our
work, objects refer to the foods or tools. Our image
annotation targeted the states of these objects.
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A.2 r-FG labels
Table 5 shows the statistics for the annotated r-FG
labels with the explanation of each tag. The cook-
ing action (Ac) requires the objects (F or T). Targ
describes this relationship taking the action and
object as the starting and ending vertices, respec-
tively. During the image annotation, we identified
the required objects by using the flows labeled with
Targ.

B Web interface

Our developed web interface is illustrated in Fig-
ure 4. In the first step (r-NE annotation), the an-
notator can annotate words in the ingredient and
instruction lists with an r-NE tag by clicking the
words and tag. In the second step (r-FG annotation),
the annotator can annotate the r-NEs with a recipe
flow by clicking starting and ending vertices and
a label for them. In the final step (image annota-
tion), the annotator can annotate the pre-action and
post-action object states with images by clicking a
frame and the button for the state. All objects for
annotation are automatically prepared by tracing
the recipe flows.

C A joint embedding model

In this section, we provide the detailed calculation
of our model and experimental settings.

C.1 Model description
We first calculate a vector for an estimated post-
action object state baesd on an action verb a, an ob-
ject information o, and a pre-action image ipre. The
object is obtained by tracing a recipe flow labeled
with Targ. a and o are converted to dt-dimensional
vectors ha and ho, respectively, by first embed-
ding words into dv-dimensional representations via
a lookup table and then encoding them into dt-
dimensional vectors by using a bidirectional LSTM
(BiLSTM) (Graves and Schmidhuber, 2005). For
ipre, we extract its feature hprei ∈ Rdi by using a
pre-trained convolutional neural network (CNN)
and transform it into ĥprei ∈ Rdt as follows:

ĥprei =W T
1 h

pre
i + bT1 , (1)

where W T
1 ∈ Rdt×di and bT1 ∈ Rdt are learnable

parameters. Given these fixed-size vectors, we then
compute the vector for the estimated post-action
object state ĥo as:

ĥo =W T
3 (ReLU(W T

2 [ha;ho;h
pre
i ] + bT2 )) + bT3 ,

(2)

where ; denotes concatenation, and W T
2 ∈

R3dt×3dt , W T
3 ∈ Rdt×3dt , bT2 ∈ R3dt , and bT3 ∈

Rdt are learnable parameters. ĥo is then mapped to
the joint embedding space as:

ht = (W T
4 ĥo + bT4 ) ◦

σ(W T
5 (W T

4 ĥo + bT4 ) + bT5 ), (3)

h̃t =
ht
||ht||2

, (4)

where W T
4 ∈ Rde×dt , W T

5 ∈ Rde×de , bT4 , bT5 ∈
Rde are learnable parameters.

The post-action image ipost is fed to the pre-
trained CNN to extract its feature hposti ∈ Rdi .
Based on this feature, we compute ĥi as:

ĥi =W I
2 (ReLU(W I

1 h
post
i + bI1)) + bI2, (5)

where W I
1 ,W

I
2 ∈ Rdi×di , and bI1, b

I
2 ∈ Rdi

are learnable parameters. Following Miech et al.
(2018), the feature vector ĥi is then mapped to the
joint embedding space as follows:

hv = (W I
3 ĥi + bI3) ◦

σ(W I
4 (W

I
3 ĥi + bI3) + bI4), (6)

h̃v =
hv
||hv||2

, (7)

where σ is the sigmoid function, ◦ denotes the
element-wise multiplication, W I

3 ∈ Rde×di , W I
4 ∈

Rde×de , and bI3, b
I
4 ∈ Rde are learnable parameters.

Loss function. After mapping the inputs to the
joint embedding space, we calculate the distance
between these vectors as:

D(h̃t, h̃v) = ||h̃t − h̃v||2. (8)

Given n examples of
((h̃t,1,h̃v,1), · · · , (h̃t,n, h̃v,n)), we minimize
the following triplet loss (Balntas et al., 2016):

L =
n∑

i=1

{max(Di,i −Di,j + δ, 0)

+max(Di,i −Dk,i + δ, 0)}, (9)

where Di,j = D(h̃t,i, h̃v,j), and δ denotes a mar-
gin. In Equation (9), Di,i is the distance for a pos-
itive pair, and Di,j and Dk,i are the distances for
pairs with negative text and image feature vectors,
respectively. For negative sampling, we simply
sample negative examples from a mini-batch.
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Figure 4: Our web annotation interface. The annotator can complete annotations only by mouse operations. The
web page is written in Japanese.

C.2 Settings

Model parameters. We used a 1-
layer 256-dimensional BiLSTM to en-
code words. We set the dimensions as
(dv, dt, di, de) = (496, 512, 2048, 128). We
used ResNet-152 (He et al., 2016), which was pre-
trained on ImageNet (Russakovsky et al., 2015), to
extract a feature vector of 2048 dimensions from
an image.

Optimization. We used AdamW (Loshchilov
and Hutter, 2019) with an initial learning rate of
1.0× 10−5 to tune the parameters. During training,
we froze only the parameters of the CNN. Each
model was trained for 350 epochs, and we created
a mini-batch with 4 recipes at each step. We set
δ in Equation (9) to 0.1. We evaluated the model
performance through 10-fold cross-validation by
splitting the dataset into 90% for training and 10%

for testing.
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Abstract

Automatic evaluation of grammatical error cor-
rection (GEC) is essential in developing use-
ful GEC systems. Existing methods for au-
tomatic evaluation require multiple reference
sentences or manual scores. However, such
resources are expensive, thereby hindering au-
tomatic evaluation for various domains and cor-
rection styles. This paper proposes an Impact-
based Metric for GEC using PARAllel data,
IMPARA, which utilizes correction impacts
computed by parallel data comprising pairs of
grammatical/ungrammatical sentences. As par-
allel data is cheaper than manually assessing
evaluation scores, IMPARA can reduce the cost
of data creation for automatic evaluation. Cor-
relations between IMPARA and human scores
indicate that IMPARA is comparable or better
than existing evaluation methods. Furthermore,
we find that IMPARA can perform evaluations
that fit different domains and correction styles
trained on various parallel data.

1 Introduction

Grammatical error correction (GEC) is a task of
correcting grammatically incorrect sentences (Yuan
and Briscoe, 2016; Chollampatt and Ng, 2018a;
Junczys-Dowmunt et al., 2018; Kaneko et al., 2020,
2022; Omelianchuk et al., 2020). A GEC system
is designed to be applicable in various domains,
such as web text (Flachs et al., 2020) and essays
written by language learners (Yannakoudakis et al.,
2011) and in different correction styles, such as
minimal and fluency edits (Ng et al., 2013; Napoles
et al., 2017; Hotate et al., 2019). Idealy, GEC
models should be evaluated by manually assessing
the quality of corrections made by these models for
certain target domains and styles. However, it is
expensive to perform manual evaluation every time
a GEC model outputs a correction; we thus need
to establish an automatic evaluation method that
correlates well with manual assessments.

Method Fine-tuning Domain
data dependence

Based on language models None No
With manual assessments P and M on P and M
This work (IMPARA) P on P

Table 1: Comparison of reference-less methods (P: par-
allel data; M: manual assessment data). As discussed
in Section 3, the method that is based only on language
models underperforms the others. IMPARA achieves
a comparable or better performance than the method
trained on manual assessments, although IMPARA does
not depend on manual assessment data.

Automatic evaluation methods of GEC are cat-
egorized into two. The first category is reference-
based methods (Dahlmeier and Ng, 2012; Napoles
et al., 2015; Bryant et al., 2017) that evaluate the
closeness of output sentences from a GEC system
and human-written reference sentences. In general,
an ungrammatical sentence can be corrected in dif-
ferent ways. Thus, reference-based methods re-
quire multiple reference sentences for the accurate
evaluation. However, Choshen and Abend (2018b)
argued that it is unrealistic to prepare reference
sentences that cover all possible corrections. In
addition, they showed that low-coverage reference
sets deteriorate the reliability of evaluation.

The second category is reference-less method,
which uses only input sentences and system out-
puts (see Table 1 for comparison). Several stud-
ies applied language models for automatic eval-
uation (Napoles et al., 2016; Flachs et al., 2020;
Islam and Magnani, 2021). However these stud-
ies had low correlations with human judgements
because the perplexity of language models does
not necesarily reflect the grammaticality but the
frequency of words. Therefore, Asano et al. (2017)
and Yoshimura et al. (2020) proposed using human
assessment scores for training automatic evalua-
tion models and hence reported performance im-
provements. However, applying their methods to
various domains and styles is expensive because
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they require a dataset of human assessment for
each domain/style and because the availability of
such datasets is limited. In addition, it is diffi-
cult to create a reliable dataset for human assess-
ment (Choshen and Abend, 2018a).

We propose a novel reference-less method called
Impact-based Metric for GEC using PARAllel data
(IMPARA)1. This method can be trained using
only parallel data comprising ungrammatical and
grammatical sentence pairs, which are widely avail-
able in various domains and correction styles. Fur-
thermore, creating parallel data is less expensive
than manually rating GEC outputs. Therefore, we
can use IMPARA for various domains/styles with
much less effort than performing manual assess-
ments.

The simplest way to build a model for correction
quality judgement is learning to discriminate be-
tween original and grammatical sentences in paral-
lel data. However, this approach has two problems.
First, an automatic evaluation method receives a
pair of original sentence and GEC output, whereas
the parallel data only includes pairs of original and
grammatical sentences. Therefore, the discrim-
inator may receive a pair of two ungrammatical
sentences during inference, although it is trained
only with pairs of ungrammatical and grammat-
ical sentences. Second, an automatic evaluation
method must handle incomplete corrections made
by GEC methods. Even if an original sentence in-
cludes multiple grammatical errors, a GEC method
may correct some of the errors and leave others.
Hence, the supervision data for training an auto-
matic evaluation method should include instances
where grammatical errors are partially corrected.

IMPARA addresses these issues by automatic
generation of supervision data with partially-
corrected sentences. Decomposing corrections be-
tween original and corrected sentences into edits,
we measure the impact of each edit to determine
the preferences of edits. Then, we generate pairs
of partially corrected sentences from parallel data
and determine the preference order of generated
pairs based on the impacts of the involved edits.
The evaluation model is trained on the generated
pairs so that it reproduces the preference order of
sentence pairs.

The meta-evaluation (Section 3) demonstrates
that IMPARA achieves a comparable or better eval-
uation performance than existing reference-less

1https://github.com/Silviase/IMPARA

methods, even without tailored data of human as-
sessments, but only with parallel data. Furthermore,
IMPARA exhibits high capability of adapting its
evaluation metric to the target domain and style
given by the parallel data.

2 IMPARA

2.1 Architecture

IMPARA comprises quality estimator (QE) and
similarity estimator (SE) based on BERT (Devlin
et al., 2019), as illustrated in Figure 1. Given a
pair of original sentence and GEC output, the QE
evaluates the quailty of the GEC output. Then, the
SE computes the semantic similarity of two sen-
tences. We use a pre-trained BERT model without
fine-tuning to build the SE, but fine-tune the BERT
model for the QE.

Let X and Y denote an original sentence and an
output of GEC system, respectively. Given a GEC
output Y , the QE yields a score QE(Y ) ∈ [0, 1].
Given X and Y , the SE computes the similarity
SE(X,Y ) ∈ [0, 1] of the sentences. Equation 1
defines the overall score of the correction from X
to Y ,

score(X,Y ) =

{
QE(Y ) (if SE(X,Y ) > θ)
0 (otherwise)

.

(1)
Here, θ is a threshold to output the score of the QE;
the score is SE(X,Y ) if the semantic similarity
is higher than θ and 0 otherwise. The threshold
prevents the high overall score even when output
Y is deviated from original sentence X .

This study aims to build a relative evaluation
measure that can compare two sentences in terms
of the quality of grammatical correction2. We
are not interested in building an absolute mea-
sure, unlike other metrics, e.g., recall and precision
used in M2 (Dahlmeier and Ng, 2012). Adjusting
score(X,Y ) with manual assessment scores may
be possible. However, we leave this as a future
work because our focus is to learn an evaluation
measure only from parallel data.

2.2 Quality estimator

The QE computes a score as a dot product between
a parameter vector and contextualized embeddings
from the BERT model, followed by the sigmoid

2Therefore, score(X,Y ) = 0.99 does not mean that 99%
of errors in X are corrected in Y .
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GEC

BERT

Linear

SigmoidCosine similarity

BERT

Similarity
estimator

Quality
estimator

Figure 1: The IMPARA model architecture

function σ. Formally, let y ∈ Rd denote the con-
textualized embeddings of the first token of the
output sentence Y at the final layer of the BERT
model (where d is the number of dimensions of em-
beddings). We define q(Y ) ∈ R as a dot product
between parameter vector w ∈ Rd and embeddings
y of sentence Y ,

q(Y ) = w⊤y. (2)

Then we compute a QE score

QE(Y ) = σ(q(Y )). (3)

We train the parameter vector w by fine-tuning the
BERT model on the supervision data T (to be de-
scribed in Section 2.4). Supervision data comprises
pairs of positive S+ and negative S− sentences. We
train the model so that it prefers positive sentences
to negative ones by minimizing loss function L.

L =
1

|T |
∑

(S−,S+)∈T
σ (q(S−)− q(S+)) (4)

Here, we use the sigmoid function σ(.) to stabilize
training3.

2.3 Impact of edits
Before describing the procedure for generating the
supervision data T , we introduce the notion of an
edit and its impact in grammatical error correction.

Let (S, T ) be a pair of sentences from parallel
data and E be a set of edits to obtain the corrected
sentence T from the original one S. Here, edits are

3Preliminary experiments confirmed that the sigmoid func-
tion contirubted to improve the evaluation performance.

extracted automatically by using ERRANT (Bryant
et al., 2017), a tool for aligning two sentences and
extracting edits and their types.

For an edit e ∈ E , T−e denotes the sentence with
all edits except for e, i.e., E \ {e}, applied to S. In
other words, T−e presents the sentence where edit
e is omitted when rewriting S into T . Hence, T is
obtained by applying edit e to T−e. We evaluate
the impact of edit e in terms of the magnitude of
the semantic change from T−e to T ,

impact(T, e) = 1− BERT(T ) · BERT(T−e)
∥BERT(T )∥∥BERT(T−e)∥

.

(5)

Here, BERT(T ) ∈ Rd presents the mean pool-
ing of contextualized embeddings of all tokens in
sentence T at the final layer of the BERT model.
Equation 5 provides a higher impact to an edit that
greatly changes the meaning between T−e and T .
Given a set of edits E, we define its overall impact
I(T,E) as the sum of impacts of all edits,

I(T,E) =
∑

e∈E
impact(T, e). (6)

Choshen and Abend (2018a) also proposed the
concept of computing an impact of an edit. How-
ever, they define an impact as the number of ap-
plied edits without considering the impact of an
individual edit. Conversely, we assume that a sen-
tence with more semantically important corrections
should receive a higher impact than others with se-
mantically unimportant corrections.

2.4 Generating supervision data for QE
As detailed in Equation 4, the QE model requires
supervision data T with pairs of positive and nega-
tive sentences. We cannot use parallel data of origi-
nal and corrected sentences as they are because the
QE model needs to measure the quality of imper-
fect corrections. In addition, in some parallel data
with fluency corrections (e.g., JFLEG (Napoles
et al., 2017)), the difference from an original to its
corrected sentence is so large that the QE model
may not learn the importance of each individual
edit in parallel sentences.

Therefore, we generate partially corrected sen-
tences from the sentence pairs of parallel data and
determine the preference order between two sen-
tences. Figure 2 depicts the generation process for
a pair of the original S and corrected T sentences in
the parallel data. First, we apply ERRANT (Bryant
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We looked in every hotel in Town trying to give you the best offerd.

We looked at every hotel in town, trying to give you the best offer.

Original 𝑆𝑆:

Corrected 𝑇𝑇:

Parallel corpus

Edit ℇ Impact

in / at 0.00451

Town / town, 0.01775

offerd / offer 0.00799

Edits from 𝑆𝑆 to 𝑇𝑇

Edit 𝐸𝐸1 ⊆ ℇ

in / at

Town / town,

Edit 𝐸𝐸2 ⊆ ℇ

Town / town,

offerd / offer

𝐸𝐸− 𝐸𝐸+

𝐼𝐼 𝑇𝑇,𝐸𝐸1 = 0.02226 𝐼𝐼 𝑇𝑇,𝐸𝐸2 = 0.02574<

Extract edits and 
compute their impacts

Create two 
subsets of ℇ

We looked at every hotel in town, trying to give you the best offerd.

We looked in every hotel in town, trying to give you the best offer.

𝑆𝑆−:

𝑆𝑆+:

An instance of the supervision data for QE: 𝑆𝑆−, 𝑆𝑆+ ∈ 𝒯𝒯

Apply 𝐸𝐸− and 𝐸𝐸+ to 𝑆𝑆 and     obtain 𝑆𝑆− and 𝑆𝑆+, respectively

Figure 2: Procedure for generating supervision data for QE. We generate partially corrected sentences from a pair of
original and corrected sentences in the parallel data, and determine their preference orders.

et al., 2017) to automatically extract a set of edits
E between the original sentence S and corrected
sentence T in the parallel data. We generate two
subsets of edits E1, E2 ⊆ E using the procedure
presented in the subsequent paragraph. We choose
E− and E+ from the two subsets E1 and E2 such
that I(T,E−) < I(T,E+),

E− = argmin
E∈{E1,E2}

I(T,E), (7)

E+ = argmax
E∈{E1,E2}

I(T,E). (8)

Finally, we obtain two sentences S− and S+ by
applying E− and E+, respectively, to the original
sentence S. In this way, the supervision data T
provides tuples of (S−, S+) where the sentence
S+ has a higher impact than S− measured by the
impacts of edits (Equation 6).

At last, we describe the procedure to obtain E1

and E2 from E . We randomly create a subset E1 ⊆
E with k elements, where k ∈ {1, 2, . . . , |E|}
is chosen from the discrete uniform distribution.
Then, we modify E1 to obtain another subset
E2 ⊆ E . Initializing E2 = E1, we perform the
following operation for each element e ∈ E with
the probability 1

|E| :

E2 ←
{
E2 ∪ {e} if e /∈ E1 ∧ e /∈ E2

E2 \ {e} if e ∈ E1 ∧ e ∈ E2

. (9)

We discard E1 and E2 if E1 = E2 even after re-
peating the operation. Consequently, we randomly
sample partial edits from E and enhance the diver-
sity of partially corrected sentences.

2.5 Similarity estimator
The SE computes the semantic similarity between
the original sentence X and its GEC output Y .
Specifically, we compute the cosine similarity be-
tween contextual embeddings of two sentences X
and Y ,

SE(X,Y ) =
BERT(X) · BERT(Y )

∥BERT(X)∥∥BERT(Y )∥ . (10)

Here, the definition of BERT(.) is compatible with
that for Equation 5.

3 Experiments

We conducted two types of experiments to examine
the performance of IMPARA over existing meth-
ods. First, we compared correlations between auto-
matic evaluation metrics and human assessments
in GEC; this experiment measures the closeness of
automatic and human evaluations. Second, we eval-
uate automatic evaluation metrics trained and tested
in different text domains and correction styles; this
experiment investigates the importance to train
evaluation metric in a target domain/style and the

3581



ability of IMPARA to adapt to different domains
and styles.

3.1 Experimental settings

3.1.1 Hyperparameters

We used BERT-BASE-CASED4 on HuggingFace
as the pre-trained BERT model for the SE and QE.
We kept the number of training instances |T | con-
stant to 4096, regardless of test sets, to avoid the ef-
fects of the size of training data on the performance.
The maximum number of training instances gen-
erated from a parallel sentence pair is 30. We set
the learning rate to 10−5 and the batch size to 32.
A dataset is split into training, validation, and test
sets at a ratio of 8 : 1 : 1. We selected the num-
ber of epochs from 1, 2, ..., 10 that showed the best
performance on the validation set. The threshold
θ is set to 0.9 for the SE. This similarity value is
higher than the maximum similarity value com-
puted for any combinations of corrected sentences
in the CoNLL-2014 dataset.

3.1.2 Baselines

Baseline methods include two reference-less au-
tomatic evaluation methods with different archi-
tectures: SOME (Yoshimura et al., 2020) and
Scribendi Score (Islam and Magnani, 2021).

SOME employs BERT models optimized on hu-
man assessments for corrections and estimates cor-
rection quality from three perspectives: grammat-
icality, fluency, and meaning preservation. Mod-
els were trained on tmu_gfm_dataset5, where
five human raters manually assign evaluation scores
for sentence pairs in the CoNLL-2013 dataset, with
the hyperparameter settings of Yoshimura et al.
(2020). Note that SOME was trained with addi-
tional human assessments for the CoNLL-2013
dataset, whereas IMPARA was trained only on the
parallel data of the CoNLL-2013 dataset. Scribendi
Score uses a language model to determine whether
a correction improves the quality of a sentence.
It also performs a superficial comparison of sen-
tences to determine whether a correction is appro-
priate. We employed the pre-trained model gpt-2
released by HuggingFace and fuzzywuzzy6, a
publicly available Python package to calculate the

4https://github.com/huggingface/
transformers

5https://huggingface.co/datasets/tmu_
gfm_dataset

6https://pypi.org/project/fuzzywuzzy

token sort ratio and Levenshtein distance ratio for
sentence comparison.

3.1.3 Datasets and meta-evaluation metrics
The first experiment measured correlations be-
tween automatic evaluation metrics and human
assessments on the dataset presented by Grund-
kiewicz et al. (2015). This dataset contains human
rankings created for the outputs of 12 GEC systems
on the CoNLL-2014 dataset. We computed Pear-
son’s correlation coefficient (Pea) and Spearman’s
rank correlation coefficient (Spe) at the corpus level
using the Expected Wins shown in Table 3(b) of
Grundkiewicz et al. (2015). We also measured
accuracy (Acc) and Kendall’s rank correlation co-
efficient (Ken) for sentence-level comparison.

Meanwhile, Choshen and Abend (2018a) pro-
posed MAEGE, an automatic methodology for
GEC metric validation. MAEGE generates multi-
ple partially corrected sentences from an incorrect
sentence, and assigns pseudo scores to them, which
are based on the number of edits applied. Then
it computes correlation coefficients between the
pseudo scores and the scores computed by auto-
matic evaluation metrics. As this method do not
require human assessment, it overcame difficul-
ties such as low inter-rater agreement on human
rankings. We calculated five correlations coeffi-
cients for meta-evaluation: Pearson’s correlation
coefficient (Pea) and Spearman’s rank correlation
coefficient (Spe) at corpus and sentence levels; and
Kendall’s rank correlation coefficient (Ken) at the
chain level.

For the second experiment, we conducted meta-
evalution using MAEGE on four different corpora:
CoNLL-2013 dataset (Ng et al., 2013) (minimal
edits), JFLEG (Napoles et al., 2017) (fluency ed-
its), CWEB (Flachs et al., 2020) (website texts)
and FCE (Yannakoudakis et al., 2011) (essay). We
meta-evaluated IMPARA with different combina-
tions of training and test sets to examine whether
IMPARA can incorporate the characteristics of a
dataset in the GEC evaluation. In this evaluation,
we split each dataset into training and test sets at a
ratio of 9 : 1. In addition, we compared IMPARA
with the two baseline methods in terms of domain
adaptability on the four datasets.

3.2 Correlations with human assessments

Table 2 shows correlations between automatic eval-
uation metrics and human rankings. As we could
not reproduce the scores reported in Islam and Mag-
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Method Corpus Sentence
Pea Spe Acc Ken

Scribendi Score (paper) 0.951 0.940 - -
Scribendi Score (ours) 0.303 0.729 0.414 -0.170
SOME 0.956 0.923 0.777 0.555
IMPARA 0.974 0.934 0.748 0.496
IMPARA (parallel only) 0.936 0.929 0.742 0.485

Table 2: Correlation with manual evaluation (Grund-
kiewicz et al., 2015) on CoNLL-2014.

Method Corpus Sentence Chain
Pea Spe Pea Spe Ken

Scribendi Score 0.884 0.981 0.374 0.421 0.824
SOME 0.965 1.000 0.394 0.439 0.563
IMPARA 0.951 0.990 0.522 0.608 0.692

Table 3: Meta-evaluation result using MAEGE on
CoNLL-2014.

nani (2021), the first two rows presents the scores
reported in their paper (“paper”) and reproduced
by our implementation (“ours”).

IMPARA and SOME are the contenders in this
evaluation; IMPARA was better than SOME at the
corpus level, but inferior at the sentence level. It
should be noted that IMPARA achieves the com-
parable performance to SOME without additional
human assessments on the CoNLL-2013 dataset7.
We also show IMPARA trained without the super-
vision data described in Section 2.4, but only on the
parallel data (“parallel only” in Table 2). We ob-
served the improvement by generating supervision
data, comparing the last two rows in Table 2.

Table 3 reports the meta-evaluation results us-
ing MAEGE. As Choshen and Abend (2018a) sug-
gested, we regarded this evaluation more important
than the evaluation of Table 2. Again, IMPARA
exhibits a comparable performance to SOME in
this evaluation. Although IMPARA is slightly in-
ferior to SOME at the corpus level, the correla-
tion coefficients are quite high (≈ 1) to compare
the two methods. Therefore, we focused on the
evaluation at sentence and chain levels, which is
more fine-grained than that at the sentence level.
At the sentence and chain levels, IMPARA outper-
formed SOME with wide margins, +0.128 point
(Pea), +0.169 point (Spe), and +0.129 point (Ken)8.

7Again, we emphasize that SOME uses additional supervi-
sion data tmu_gfm_dataset for training the model.

8Scribendi Score overwhelmes other metrics in Ken, but
this is because Scribendi Score assigns tie scores to many
instances. Although such instances are difficult to decide
preference orders, the MAEGE implementation excludes tie
instances from the evaluation. In other words, MAEGE did not
evaluate difficult instances for Scribendi Score. For reference,
the ratios of tie instances are 42.5% (Scribendi Score), 0.04%

Dataset Dataset Corpus Sentence Chain
(eval) (train) Pea Spe Pea Spe Ken

CoNLL-2013 0.932 1.000 0.411 0.515 0.688
CoNLL- CWEB 0.961 1.000 0.380 0.468 0.574
2013 JFLEG 0.959 0.990 0.344 0.408 0.568

FCE 0.967 1.000 0.404 0.490 0.567

CWEB

CoNLL-2013 0.750 0.836 0.331 0.328 0.713
CWEB 0.790 0.963 0.472 0.432 0.780
JFLEG 0.757 0.818 0.353 0.354 0.775
FCE 0.805 0.936 0.350 0.397 0.775

JFLEG

CoNLL-2013 0.959 0.990 0.516 0.604 0.677
CWEB 0.952 0.972 0.524 0.572 0.644
JFLEG 0.937 1.000 0.618 0.685 0.783
FCE 0.961 0.990 0.581 0.649 0.627

FCE

CoNLL-2013 0.865 0.972 0.377 0.388 0.758
CWEB 0.882 0.990 0.435 0.441 0.753
JFLEG 0.852 0.972 0.390 0.429 0.739
FCE 0.853 0.990 0.541 0.616 0.848

Table 4: Performance of IMPARA with different com-
binations of datasets used for training and evaluation.
Using parallel data of the same domain and correction
style for training and evaluation is important.

Dataset Method Corpus Sentence Chain
Pea Spe Pea Spe Ken

CoNLL-2013
Scribendi 0.938 0.984 0.331 0.355 0.698
SOME 0.961 1.000 0.370 0.419 0.502
IMPARA 0.932 1.000 0.411 0.515 0.688

CWEB
Scribendi 0.637 0.451 0.177 0.194 0.616
SOME 0.767 0.663 0.055 0.155 0.678
IMPARA 0.790 0.963 0.472 0.432 0.780

JFLEG
Scribendi 0.932 0.945 0.255 0.303 0.574
SOME 0.955 0.990 0.523 0.531 0.639
IMPARA 0.937 1.000 0.618 0.685 0.783

FCE
Scribendi 0.869 0.933 0.342 0.449 0.897
SOME 0.843 0.972 0.165 0.254 0.663
IMPARA 0.853 0.990 0.541 0.616 0.848

Table 5: Performance of IMPARA and the two baseline
methods on different datasets.

These results suggest that IMPARA achieves better
evaluation performance than existing reference-less
methods even without tailored data of human as-
sessments, but only with parallel data.

3.3 Evaluation on other datasets

Table 4 summarizes correlation coefficients com-
puted by MAEGE with different combinations of
datasets used for training and evaluating the IM-
PARA model. For example, the second row of
Table 4 shows the performance of IMPARA trained
on CWEB and tested on CoNLL-2013. The table
also indicates that IMPARA performed the best
when the QE model was trained and evaluated on
the same dataset. This observation is clearer when
we evaluate IMPARA at the sentence and chain
levels. Given that creating tailoerd evaluation data

(SOME), and 0.07% (IMPARA).
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Error type Impact (10−2) Frequency
NOUN 0.652 408
VERB:TENSE 0.649 480
VERB 0.580 557
NOUN:NUM 0.385 534
PUNCT 0.367 473
DET 0.364 1142
PREP 0.325 700

Table 6: Edit impacts for different error types (exclud-
ing OTHER) and their frequencies of occurrences in
CoNLL-2014.

for each dataset with different domains and styles
is expensive, IMPARA can provide a useful and
practical solution, requiring only the parallel data
on domains and styles.

Table 5 reports the performance of IMPARA and
the two baseline methods on different datasets. IM-
PARA was trained on the training split of a dataset
and evaluated on the test split. We did not adapt
Scribendi Score to a target dataset because it is
purely based on a pre-trained language model. It
is impossible to adapt SOME to a target dataset
because no human assessment data is available on
the other datasets. SOME and Scribendi Score
exhibits low performance on CWEB, FCE, and JF-
LEG in Table 5. In contrast, IMPARA achieved the
highest correlations among all datasets. This result
demonstrates the ability of IMPARA in adapting
its evaluation metric to the target domain and style
given by the parallel data.

3.4 Analysis
We analyzed the characteristic of edit impacts
(Equation 5) computed by the BERT model. We
examine edit impacts of different error types ex-
tracted by ERRANT on the CoNLL-2014 dataset.
Table 6 presents the mean of edit impacts of error
types, which appeared more than 400 times (ex-
cluding OTHER type)9. It is reasonable to find that
edits for content words, such as NOUN (nouns) and
VERB (verbs), have higher impacts than those for
functional words, such as DET (determiner) and
PREP (prepositions).

We focused more on the characteristics of im-
pact by analyzing the highest and lowest correc-
tion impacts. Table 7 presents the corrections with
the five largest edit impacts in the CoNLL-2014
dataset. In the first example, the sentence is not
grammatical, and in the third, fourth, and fifth ex-
amples, the meanings of the sentences have been

9Insertion, replacement, and deletion are considered the
same type.

changed10. These sentences with higher impacts
have relatively short length, indicating that a single
correction has a large impact on the meaning of
the entire sentence. In contrast, edits with the top
five lowest impacts appeared in very long sentences
(in 80, 235, 235, 235, and 235 words). Therefore,
the longer a sentence, the smaller an impact of a
correction in the sentence. These observations are
consistent with the definition of Equation 6 and the
importance of corrections recognized by humans.

When we generated supervision data in Section
2.4, edit impacts are not affected by the sentence
length, which is constant for a given corrected sen-
tence. Therefore, we compared edit impacts for
the same corrected sentence. Table 8 shows an
example of edits for content and functional words
applied to the same corrected sentence. It demon-
strates that the content word (i.e., VERB) has a
higher impact than the functional words (i.e., DET,
PREP) in the same corrected sentence, which is
consistent with the results presented in Table 6.

4 Related Work

Reference-based metrics. Reference-based
metrics for GEC use manually written ref-
erence sentences to evaluate a GEC system.
M2 (Dahlmeier and Ng, 2012), I-measure (Felice
and Briscoe, 2015), and ERRANT (Bryant et al.,
2017) are methods for evaluating GEC systems
based on F-score. These methods requires explicit
edit annotations to recognize the difference be-
tween the output and reference sentences to cal-
culate precision, recall, and F0.5. Napoles et al.
(2015) proposed GLEU, a variant of BLEU met-
ric (Papineni et al., 2002) commonly used for ma-
chine translation. GLEU does not require explicit
edit annotations because it evaluates the quality
of correction at the n-gram level. However, the
reliability of reference-based metrics is low when
reference sentences have low coverage (Choshen
and Abend, 2018b).
Reference-less metrics. To address the issue of
reference-based metrics, Napoles et al. (2016) in-
troduced the reference-less metric that does not use
reference sentences for the GEC evaluation. Their
metric comprises a grammatical error detection tool
and a language model, and showed a comparable
performance to reference-based metrics. Islam and
Magnani (2021) proposed Scribendi Score, which

10The correction of the second example in Table 7 is erro-
neous, but it actually appears in the CoNLL-2014 dataset.
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Error Type Sentence Impact (10−2)
VERB As a consequence , interpersonal skills _ / are affected . 6.57
NOUN To some extent , this makes our life more luxurious and blundering / _ . 5.16
NOUN One of the diseases is sickle cell trait / anaemia . 4.95
DET People and friends often mock your / their conditions . 4.93
NOUN They may not be able to enjoy a _ /life normal people can enjoy . 4.68

Table 7: Top-5 examples with the largest edit impacts in CoNLL-2014.

Error Type Sentence Impact (10−2)

Correct Using text-messaging language as an informal way of communicating on social media
networks also has a bad effect on us in the long term .

VERB Using text-messaging language as an informal way of communicating on social media 0.421networks also brings in / has a bad effect on us in the long term .

PREP Using text-messaging language as an informal way of communicating on social media 0.236networks also has a bad effect for / on us in the long term .

DET Using text-messaging language as an informal way of communicating on social media 0.164networks also has a bad effect on us in a / the long term .

Table 8: Examples of edits and their impacts computed for the same corrected sentence in CoNLL-2014.

is based on the perplexity of GPT-2 (Radford et al.,
2019), token sort ratio, and Levenshtein distance
ratio. These metrics require no GEC-specific lan-
guage resource (e.g., supervision data for GEC).
However, they cannot be adapted specifically to
a particular domain or a correction style. Our ex-
periments showed that they cannot evaluate GEC
output robustly for a variety of domains and correc-
tion styles.

Some researchers proposed methods to directly
optimize evaluation metrics on manual assess-
ment scores for GEC outputs. Asano et al.
(2017) presented a metric to evaluate GEC sys-
tems by combining sub-metrics of grammaticality,
fluency, and meaning preservation. This metric
is based on a regression model trained on GUG
data (Heilman et al., 2014), language model, and
METEOR (Denkowski and Lavie, 2014) as sub-
metrics. Yoshimura et al. (2020) proposed a BERT-
based metric wherein sub-metrics were optimized
for human assessment scores. However, Takahashi
et al. (2022) discovered that differences in learners’
CEFR proficiency level11 of a dataset affect the reli-
ability of these metrics. Manual assessment scores
are essential to these metrics to work in various
domains and correction styles.
Meta evaluation methods. The performance
of the metrics were judged by their closeness to
human assessments (Banerjee and Lavie, 2005).
A metric is generally compared using correlation
coefficients between system outputs and human as-
sessments for the outputs. Several studies have con-

11https://www.cambridgeenglish.org/
exams-and-tests/cefr/

ducted meta-evaluations of automatic evaluation
methods for several GEC systems (Grundkiewicz
et al., 2015; Napoles et al., 2016; Asano et al.,
2017). However, human annotations are known
to yield poor inter-rater agreement. Therefore,
Choshen and Abend (2018a) proposed MAEGE
to meta-evaluate metrics without human annota-
tions using sentence pairs ranked by the number of
editing operations applied to ungrammatical sen-
tences.
Reranking methods. Reranking methods used
in GEC systems also estimate the quality of GEC
outputs for choosing better corrections. Chollam-
patt and Ng (2018b) proposed the first neural-based
reranking model that does not require any hand-
crafted features for GEC. Using language models
trained on large-scale corpora, such as BERT, sev-
eral studies have improved the GEC performance
further (Chollampatt et al., 2019; Kaneko et al.,
2019). Liu et al. (2021) considered interactions
of multiple outputs instead of evaluating them in-
dependently in reranking GEC outputs. The goal
of these reranking models is to improve the GEG
performance by selecting a better candidate from
multiple candidates, not replicating a human GEC
evaluation as in our study.

5 Conclusion

In this paper, we presented IMPARA, a novel
reference-less metric for GEC. This method gener-
ates partially corrected sentences from parallel data
comprising ungrammatical and grammatical sen-
tence pairs. IMPARA learns their preference order
of pairs of partially corrected sentences, which are
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determined by the impact of edits. The experiment
results demonstrated that IMPARA achieved a com-
parable or better evaluation performance than ex-
isting reference-less methods even without tailored
data of human assessments. In addition, IMPARA
exhibited a high capability of adapting its metric to
the target domain and style given by parallel data.

Future work includes providing an interpretable
scale to scores computed by IMPARA. In addition,
we plan to incorporate parallel data obtained by
grammatical error generation. This may reduce the
cost of building the parallel data and improve the
quality of automatic evaluation metrics.
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Abstract
We present a novel collection of news arti-
cles originating from fake and real news media
sources for the analysis and prediction of news
virality. Unlike existing fake news datasets
which either contain claims or news article
headline and body, in this collection each arti-
cle is supported with a Facebook engagement
count which we consider as an indicator of
the article virality. In addition we also pro-
vide the article description and thumbnail im-
age with which the article was shared on Face-
book. These images were automatically anno-
tated with object tags and color attributes. Us-
ing cloud based vision analysis tools, thumb-
nail images were also analyzed for faces and
detected faces were annotated with facial at-
tributes. We empirically investigate the use of
this collection on an example task of article vi-
rality prediction.

1 Introduction

Fake news articles are widely spread across so-
cial media platforms such as Facebook and Twitter.
This is mainly due to the fact that social media is
gradually becoming the main source of news con-
sumption (Shu et al., 2018). Due to the sharing
features that these platforms offer, fake news prop-
agate rapidly and their effects resonate and persist
across many users (Baly et al., 2018). The wide
spread of fake news in social media has lead to
the development of automatic fake news detection
approaches (Ruchansky et al., 2017; Pérez-Rosas
et al., 2018; Nguyen et al., 2019; Zellers et al.,
2019), to name a few. Developing fake news detec-
tion models require annotated collections of fake
and real news articles. Most prior work on the
creation and annotation of such collections has fo-
cused on this task. Significant number of these
collections contain claims fact-checked for verac-
ity (Vlachos and Riedel, 2014; Wang, 2017). A
recent survey of such collections is provided in
Guo et al. (2022).

On the other hand there exist collections of fake
news articles that contain article headline and body
text (Horne et al., 2018; Potthast et al., 2018; Zhou
et al., 2020). Given that these and other existing
fake news collections were developed mainly for
fake news detection they can’t be used for analysing
and predicting fake news virality which is the set of
tasks of our focus. Recently, Shu et al. (2018) cre-
ated FakeNewsNet, a collection of ∼24k news arti-
cles labeled as fake or real using the fact-checking
websites PolitiFact (PolitiFact, 2017) and Gossip
Cop (Gossip Cop, 2021). Articles in this collection
are annotated with social engagement information
obtained through the Twitter search API. However
this collection doesn’t include thumbnail images
and article descriptions which, along with the head-
lines, are the only sources of information readers
are exposed to on social media platforms regard-
less of their choices whether to click the link of the
shared article or not.

To address this drawback we present Evons – a
collection of news articles originating from fake
and real news media sources where each article has
the thumbnail image and description with which it
was shared on Facebook. We use the article engage-
ment count on Facebook as an implicit indicator
of the article virality. Given that fake news writers
profit from advertising revenue rather than subscrip-
tion fees, the body text of fake news articles (which
are only shown after clicking the link) are known
to be repetitive and lacking in informational value
(Horne and Adali, 2017). Therefore we believe
that these two article components are important for
social media sharing. Thumbnail images are anno-
tated with content tags and color attributes while
detected faces are annotated with facial attributes.
The Evons collection is accessible through https:
//github.com/krstovski/evons. We
showcase the use of this collection on the task of
article virality prediction which we consider as one
example task that could be created wit this dataset.
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2 Collection Construction

The Evons collection contains 92,969 news articles
from fake and real news media sources published
in the period between January 2016 and Decem-
ber 2017. We selected this time period to reflect
on the 2016 Presidential election which many be-
lieved that fake news had a significant impact on.
Across both media sources we focused on news
articles originating from the same news sections
therefore covering similar or the same set of topics.
We also don’t consider any article author related
information. The set of fake news sources was cre-
ated using information from 3 independent lists of
fake news websites that were developed through
human curation. It contains only fake news sources
that were cross-referenced by at least 2 of the 3
lists. We follow the most widely used definition of
fake news as "intentionally and verifiably false, and
could mislead readers" by Allcott and Gentzkow
(2017) and exclude satire and parody websites.

We used the “Questionable Sources” list from
Media Bias Fact Check (MBFC) (Media Bias/Fact
Check, 2019) which includes sources with extreme
bias, propaganda and conspiracies, and fake news.
We filtered the websites to retain only those that
are explicitly annotated as “some fake news” or
“fake news”, indicating that the source deliberately
publishes hoaxes and/or disinformation.

Our second list is the "Politifact’s Fake News
Almanac" (PolitiFact, 2017). This list was created
in partnership with Facebook and includes "fake
news" websites which were found to contain delib-
erately false or fake stories that have appeared in
people’s news feeds on Facebook.

The third list is from the "BS Detector" collec-
tion. This is a list of "unreliable or otherwise ques-
tionable sources" curated by professionals (Risdal,
2017).

After cross-referencing, we obtained 16 fake
news sources that appeared in at least 2 of the lists.
We then removed sources that were republishing
news content from other sources and websites that
started publishing after the 2016 elections. Our
final list contains the following 6 fake news media
sources: American Freedom Fighters (AFF), Bar-
racuda Brigade (BB4SP), MadWorldNews (MWN),
Puppet String News (PSN), USA Supreme (USAS),
and YourNewsWire (YNW). The set of real news
sources was obtained from the readily available
"All the news 2.0" dataset (Thompson, 2019) which
consists of 18 American mainstream sources. We

Media Source # of Articles
AFF 7,536
BB4SP 2,792
MWN 11,315
PSN 6,576
USAS 3,038
YNW 11,519
Total from fake 42,776
The Guardian 9,811
NPR 11,813
NYT 5,439
Reuters 14,993
WP 8,137
Total from real 50,193
Total 92,969

Table 1: Number of articles in the Evons collection.

focused on sources that had “high” or “very high”
scores in factual reporting and "very slight" or "neu-
tral" political biases according to MBFC. There
were 5 such sources in this dataset: The Guardian,
National Public Radio (NPR), New York Times
(NYT), Reuters, and Washington Post (WP). We
use articles published in the same time period as
our fake media set. In Table 1 we provide the num-
ber of articles across the fake and real news media
sources.

We used the webpreview1 package for extracting
thumbnail images. These images come from the
thumbnails that are carefully curated by the news
producers. They decide what title, description, and
thumbnail image would be the most effective in
achieving their goal, whether it is to best represent
the content or simply attract the most engagement
for larger advertising revenue. With this package
we also extract article description which is the text
that appears as preview when the article is shared.

All articles contain a thumbnail image except for
USAS and BB4SP were 0.1% and 11.1% of the
articles don’t have thumbnails. Thumbnail images
are either a picture or a logo of the news media
source. Table 2 gives statistics of the number of
real and fake articles with and without thumbnail
images. Unlike real news articles where a small
percentage of them had the media source logo as
the thumbnail image, fake news articles always
used pictures as thumbnails.

1https://pypi.org/project/webpreview
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Thumbnail Type Real Fake Total
Picture 48,592 42,464 91,056
Logo 1,601 0 1,601
None 0 312 312

Table 2: Thumbnail statistics.

Engagement Statistics Real Fake
Min # of engagements 0 0
Max # of engagements 4.78m 1.08m
Mean # of engagements 6.73 1.58

Table 3: Engagement statistics.

2.1 Engagement Count

A commonly used measure for virality by market-
ing and communication researchers is how many
times a piece of information is shared (Berger and
Milkman, 2012; Scholz et al., 2017). Here we use
Facebook engagements as a proxy of how much
attention the post generated. Facebook engage-
ments is the sum of the number of Facebook shares,
likes, and comments. Facebook provides the num-
bers received by an URL through the Facebook
sharing debugger (FSD) (Facebook, 2022). Since
FSD works on individual URLs we used the Shared
Count API (SharedCount, 2022) to automate the
process of fetching these numbers for multiple ar-
ticles, except for articles from USAS which was
blacklisted on Facebook. For this website we used
BuzzSumo (BuzzSumo, 2022) which is another
third-party measurement dashboard that fetches
data from FSD. Both platforms do not provide nor
maintain any user related information and have
been used in the past across an array of research
topics (Xu and Guo, 2018; Xu, 2019; Obiała et al.,
2021; Rhodes, 2022). In Table 3 we provide en-
gagement statistics.

2.2 Image Annotation

We performed two types of automatic image anno-
tation. Using Microsoft Azure (Microsoft, 2022)
images are analyzed for visual features and color
schemes. With the Amazon Rekognition platform
(Amazon, 2022) images are analyzed for the pres-
ence of faces and detected faces were annotated
with facial attributes. Accuracy of both platform
on these annotation tasks have been extensively
evaluated and confirmed in the past across a variety
of image types which include images commonly
used as thumbnails (Kyriakou et al., 2019; Liu and

Image Tag Statistics Real Fake
Min # of tags 0 0
Max # of tags 99 86
Mean # of tags 9.47 9.08

Table 4: Image tag statistics.

Wilkinson, 2020; Malone and Burns, 2021).

2.2.1 Object Detection and Tagging
Images are automatically annotated with content
tags such as objects, living beings, scenery, and
actions. There were 5,160 distinct tags identified.
Articles originating from fake media sources had
3,670 distinct tags with 379 being unique to fake.
Real sources contained 4,781 distinct tags with
1,490 unique to real. Table 4 shows image tag
statistics. Table 5 shows the top 10 most frequent
tags discovered across all media sources, unique to
fake, and real news sources.

2.2.2 Color Schemes
Thumbnail images are automatically annotated
with three color attributes: dominant foreground
and background color, and a set of dominant col-
ors across the whole image. There are 12 colors
used: black, blue, brown, gray, green, orange, pink,
purple, red, teal, white, and yellow. Dominant back-
ground and foreground colors can take on a single
value. Thumbnails are also annotated with accent
color, which is the most vibrant color in the image,
and whether the image is in black and white (bw).
In Appendix A we provide summary of the colors
present as dominant attribute in thumbnail images.

2.2.3 Facial Analysis
Detected faces are annotated with a bounding
box and the following attributes: person’s gender,
whether the person is smiling, wearing eyeglasses
or sunglasses, has a mustache or eyes open, bright-
ness, and sharpness. We also obtain the emotions
that appear to be expressed on the face which in-
clude: fear, sad, happy, calm, angry, confused, sur-
prised, and disgusted. Table 6 provides face statis-
tics. In Appendix B we show the distribution of
dominant face emotions.

3 Example Task

We use the task of predicting article virality as
an example task (out of many different tasks) that
could be constructed using the Evons collection.
The example task is a multi-class classification
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All Unique to Real Unique to Fake
1. person 1. salad 1. photo caption
2. clothing 2. minimalist 2. television presenter
3. human face 3. raquet sport 3. thong
4. man 4. racketlon 4. shout
5. text 5. piece de resistance 5. g-string
6. outdoor 6. tennis player 6. f-15 eagle
7. suit 7. soft tennis 7. salumi
8. indoor 8. modern 8. salami
9. smile 9. professional boxing 9. ciauscolo
10. tie 10. camera lens 10. ostrich

Table 5: Top 10 most frequent tags across all media sources, unique to real, and fake news sources.

Face Statistics Real Fake
% of images with face/s 74.26 77.08
Mean # of faces per image 3.31 2.74

Table 6: Face statistics.

problem which we created by dividing articles from
fake and real news media sources into two groups
based on their engagement count: real-low, real-
high, fake-low, and fake-high. We use the me-
dian number of engagements to create almost equal
groups of real and fake articles with low and high
number of engagements. We empirically investi-
gate how well do various approaches, which we
consider as baselines, perform on this task.

3.1 Experimental Setup and Results

The task dataset consists of articles with pictures
as thumbnails where the picture contained at least
one tag and face. There are 68,793 such articles
out of which 36,072 come from real and 32,721
from fake media sources. Articles are represented
using two sets of textual features and three sets of
image features, one for each of the three image
annotation types. For the textual features we use tf-
idf values computed over the words of article titles
and descriptions. The title feature vector contains
29,745 words and the description feature vector
with 43,861 words. Combining both we obtain a
vocabulary of 49,792 words. Thumbnail images
were represented with 3,526 features: 3,471 object
tags, 42 color and 13 facial. Color features include
accent color, dominant color attributes, and bw
indicator. Facial features include number of faces,
person smiling, gender, brightness, sharpness, and
facial emotions. Facial features were weighted

based on the size of the bounding box area of the
detected face. In Appendix C we provide details
on the weighing approach used. For features that
are indicator variables we use the confidence score
as a feature value.

We evaluated 6 different classification models:
logistic regression (LR), SVM, multilayer percep-
tron (MLP), Bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) (Bi-LSTM), XLNet (Yang
et al., 2019), and RoBERTa (Liu et al., 2019); using
a 90/10 split of our dataset. We used the scikit-learn
(Pedregosa et al., 2011) implementation of LR and
SVM. MLP consists of three fully-connected lay-
ers containing 256 and 8 nodes in the first two
layers with ReLU. The last layer is a 4 nodes with
SoftMax activation. Bi-LSTM consists of a 64 di-
mensional embedding representation layer, a fully
connected layer with ReLU, and an output layer
as in MLP. Both NNs were implemented in Keras
(Gulli and Pal, 2017). We used the simpletrans-
fomers (Thompson, 2022) implementation of XL-
Net and RoBERTa with maximum sequence length
of 256. Table 7 shows performance comparison
results across all models using different feature rep-
resentations and combinations of them. For ease
of interpretability we use accuracy. Thumbnail im-
ages were represented using all image generated
features. RoBERTa with all feature types performs
best. While across most models incorporating im-
age features helps we don’t observe substantial
accuracy improvement over textual features. We
believe that this could be significantly improved
with image feature analysis and exploring feature
selection approaches.
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Feature
Accuracy

LR SVM MLP Bi-LSTM XLNet RoBERTa
Title (T) 0.632 0.608 0.643 0.632 0.731 0.751
Description (D) 0.674 0.631 0.680 0.687 0.760 0.773
T+D 0.694 0.655 0.718 0.691 0.801 0.807
T+D+Tag 0.701 0.661 0.719 0.712 0.793 0.808
T+D+Color 0.701 0.658 0.716 0.688 0.781 0.801
T+D+Facial 0.697 0.655 0.716 0.688 0.794 0.802
All 0.703 0.666 0.714 0.683 0.791 0.810

Table 7: Accuracy results across various baseline models on the example task of article virality prediction.

4 Conclusion

We presented Evons - a collection of news arti-
cles originating from fake and real media sources
where articles are annotated with a Facebook en-
gagement count, thumbnail image and article de-
scription. Thumbnails are automatically annotated
with object tags, color and facial attributes. We
demoed the collection use on an article virality pre-
diction task and established baselines using 6 mod-
els. In the future we plan to use Evons to explore
various approaches for selection of image features
and combination with text that would further help
improve accuracy on this task.

5 Ethics

Creating the Evons collection involved collecting
news articles from various online media sources,
extracting thumbnail images using the webpre-
view package, and obtaining Facebook engagement
counts through the SharedCount API and the Buz-
zSumo platforms. Throughout the creation pro-
cess we made sure that no author metadata or user
identifying information was collected. Therefore
our collection does not contain any information
that names or uniquely identifies individual people.
Both Facebook engagement counts platforms do
not provide any user related information. While
news articles across various online media sources
do provide article author information in our collec-
tion process we ignored this information.

We don’t foresee any potential risks that may
arise from the creation of our collection especially
in terms of identifying potential stakeholders that
may benefit from this collection while harming
others. To the best of our knowledge all of our
collected data is in the public domain and is not
copyrighted.

For our thumbnail image annotations we relied

on two image annotation platforms: Microsoft
Azure and Amazon Rekognition. One limitation
of our work may arise from the fact that we don’t
know whether the models that are part of these plat-
forms contain any type of bias and if so to which
extent bias is present.

References
Hunt Allcott and Matthew Gentzkow. 2017. Social me-

dia and fake news in the 2016 election. Journal of
Economic Perspectives, 31(2):211–36.

Amazon. 2022. Detecting and analyzing faces. http
s://docs.aws.amazon.com/rekognitio
n/latest/dg/faces [Accessed: April, 2022].

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. In EMNLP, pages 3528–3539.

Jonah Berger and Katherine L. Milkman. 2012. What
makes online content viral? Journal of Marketing
Research, 49(2):192–205.

BuzzSumo. 2022. https://buzzsumo.com [Ac-
cessed: April, 2022].

Facebook. 2022. https://developers.fac
ebook.com/tools/debug/ [Accessed: April,
2022].

Gossip Cop. 2021. https://www.gossipcop.
com/about.html [Accessed: October, 2021].

Antonio Gulli and Sujit Pal. 2017. Deep learning with
Keras. Packt Publishing Ltd.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178–206.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

3593



Benjamin D Horne and Sibel Adali. 2017. This just in:
fake news packs a lot in title, uses simpler, repeti-
tive content in text body, more similar to satire than
real news. In AAAI Conference on Web and Social
Media.

Benjamin D Horne, Sara Khedr, and Sibel Adali. 2018.
Sampling the news producers: A large news and fea-
ture data set for the study of the complex media land-
scape. In AAAI Conference on Web and Social Me-
dia.

Kyriakos Kyriakou, Pınar Barlas, Styliani Kleanthous,
and Jahna Otterbacher. 2019. Fairness in proprietary
image tagging algorithms: A cross-platform audit on
people images. In AAAI Conference on Web and So-
cial Media, volume 13, pages 313–322.

Ching Yiu Jessica Liu and Caroline Wilkinson. 2020.
Image conditions for machine-based face recogni-
tion of juvenile faces. Science & Justice, 60(1):43–
52.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ashling Malone and John Burns. 2021. Evaluating the
accuracy of public cloud vendor face detection api’s.
Journal of Image and Graphics, 9(1).

Media Bias/Fact Check. 2019. Media bias/fact check
questionable sources. https://mediabiasf
actcheck.com/fake-news/ [Accessed: De-
cember, 2019].

Microsoft. 2022. What is computer vision? https:
//docs.microsoft.com/en-us/azure/c
ognitive-services/computer-vision/
home [Accessed: April, 2022].

Duc Minh Nguyen, Tien Huu Do, Robert Calderbank,
and Nikos Deligiannis. 2019. Fake news detection
using deep Markov random fields. In NAACL, pages
1391–1400.

Justyna Obiała, Karolina Obiała, Małgorzata Mańczak,
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A Dominant Colors

Shown in Figure 1 are bar plots of the percentage
of colors present as dominant attribute in thumbnail
images.
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Figure 1: Percentage of color present as dominant at-
tribute in thumbnail images.

B Dominant Emotions

Shown in Figure 2 are bar plots of the percentage
of emotion detected as dominant on faces found in
thumbnail images.
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Figure 2: % of emotion detected as dominant in faces.

C Facial Features

Facial features across thumbnail images where
weighted based on the bounding box area of the
detected face. The bounding box area is the prod-
uct of the bounding box width and height. Given
a bounding box area Bij of the jth face in image
i and a set of k features Fjk detected on that face,
the weighted facial features for image i, Wik are
computed as:

Wik =
J∑

j=1

Bi,jFj,k (1)
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Abstract
Pretrained multilingual language models can
help bridge the digital language divide, en-
abling high-quality NLP models for lower-
resourced languages. Studies of multilingual
models have so far focused on performance,
consistency, and cross-lingual generalisation.
However, with their wide-spread application
in the wild and downstream societal impact,
it is important to put multilingual models un-
der the same scrutiny as monolingual mod-
els. This work investigates the group fairness
of multilingual models, asking whether these
models are equally fair across languages. To
this end, we create a new four-way multilin-
gual dataset of parallel cloze test examples
(MozArt), equipped with demographic infor-
mation (balanced with regard to gender and
native tongue) about the test participants. We
evaluate three multilingual models on MozArt
– mBERT, XLM-R, and mT5 – and show that
across the four target languages, the three mod-
els exhibit different levels of group disparity,
e.g., exhibiting near-equal risk for Spanish, but
high levels of disparity for German.

1 Introduction

Fill-in-the-gap cloze tests (Taylor, 1953) ask lan-
guage learners to predict what words were removed
from a text and it is a “procedure for measuring the
effectiveness of communication”. Today, language
models are trained to do the same (Devlin et al.,
2019). This has the advantage that we can now
use fill-in-the-gap cloze tests to directly compare
the linguistic preferences of humans and language
models, e.g., to investigate task-independent soci-
olectal biases (group disparities) in language mod-
els (Zhang et al., 2021). This paper presents a novel
four-way parallel cloze dataset for English, French,
German, and Spanish that enables apples-to-apples
comparison across languages of group disparities
in multilingual language models.1

1The language selection was given to us, because we rely
on an existing word alignment dataset; see §2.

EN ES DE FR
WordPiece (avg. #tokens) 19.7 22.0 23.6 23.1
SentencePiece (avg. #tokens) 22.3 22.9 24.9 25.3
#Sentences 100 100 100 100
#Annotations 600 600 600 600
#Annotators 60 60 60 60

Demographics

id_u, id_s, gender, age, nationality,
first language, fluent languages,
current country of residence,
country of birth, time taken

Table 1: MozArt details. The average number of to-
kens per sentence is reported using WordPiece and Sen-
tecePiece. The bottom row lists the demographic at-
tributes shared; id_u refers to user id (anonymised) and
id_s to sentence id.

Language models induced from historical data
are prone to implicit biases (Zhao et al., 2017;
Chang et al., 2019; Mehrabi et al., 2021), e.g., as a
result of the over-representation of male-dominated
text sources such as Wikipedia and newswire (Hovy
and Søgaard, 2015). This may lead to language
models that are unfair to groups of users in the
sense that they work better for some groups rather
than others (Zhang et al., 2021). Multilingual lan-
guage models can be unfair to their training lan-
guages in similar ways (Choudhury and Deshpande,
2021; Wan, 2022; Wang et al., 2021), but this work
goes beyond previous work in evaluating whether
multilingual language models are equally fair to
demographic groups across languages.

To this end, we create MozArt, a multilingual
dataset of fill-in-the-gap sentences covering four
languages (English, French, German and Spanish).
The sentences reflect diastratic variation within
each language and can be used to compare bi-
ases in pretrained language models (PLMs) across
languages. We study the influence of four demo-
graphic groups, i.e., the cross-product of our anno-
tators’ gender – male (M) or female (F)2 – and first

2None of our annotators identified as non-binary.
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language – native (N) or non-native (NN).3 Table 1
presents a summary of dataset characteristics.

2 Dataset

We introduce MozArt, a four-way multilingual
cloze test dataset with annotator demographics.
We sampled 100 sentence quadruples from each
of the four languages (English, French, German,
Spanish) in the corpus provided for the WMT 2006
Shared Task.4 The data was extracted from the
publicly available Europarl corpus (Koehn, 2005)
and enhanced with word-level bitext alignments
(Koehn and Monz, 2006). The word alignments
are important for what follows. We manually
verify that sentences make sense out of context
and use the data to generate comparable cloze
examples, e.g.:

en [MASK] that deplete the ozone layer
es [MASK] que agotan la capa de ozono
de [MASK], die zum Abbau der Ozonschicht führen
fr [MASK] appauvrissant la couche d’ozone

We only mask words which are (i) aligned by one-
to-one alignments, and which are (ii) either nouns,
verbs, adjectives or adverbs.5 We mask one word
in each sentence and verify that one-to-one align-
ments exist in all languages. Following Kleijn et al.
(2019), we rely on part-of-speech information to
avoid masking words that are too predictable, e.g.,
auxiliary verbs or constituents of multi-word ex-
pressions, or words that are un-predictable, e.g.,
proper names and technical terms.

Annotators were recruited using Prolific.6 We
applied eligibility criteria to balance our annota-
tors across demographics. Participants were asked
to report (on a voluntary basis) their demographic
information regarding gender and languages spo-
ken. Each eligible participant was presented with
10 cloze examples. We collected answers from
240 annotators, 60 per language batch, divided in
four balanced demographic groups (gender × na-
tive language). We made sure that each sentence

3See Schmitz (2016); Faez (2011) for discussion of the
native/non-native speaker dichotomy. Participants were asked
“What is your first language?” and “Which of the following
languages are you fluent in?”. We use native (N) for people
whose first language coincides with the example sentences,
and non-native (NN) otherwise, without any sociocultural im-
plications.

4https://www.statmt.org/wmt06/shared-task/
5We use spaCy’s part-of-speech tagger (Honnibal and Mon-

tani, 2017) to predict the syntactic categories of the input
words.

6prolific.co

had at least six annotations. Annotation guidelines
for each language were given in that language, to
avoid bias and ensure a minimum of language un-
derstanding for non-native speakers. We manually
filtered out spammers to ensure data quality.

The dataset is made publicly available at
github.com/coastalcph/mozart under a
CC-BY-4.0 license. We include all the demo-
graphic attributes of our annotators as per agree-
ment with the annotators. The full list of protected
attributes is found in Table 1. We hope MozArt
will become a useful resource for the community,
also for evaluating the fairness of language mod-
els across other attributes than gender and native
language.

3 Experimental Setup

Models We evaluate three PLMs: mBERT (De-
vlin et al., 2019), XLM-RoBERTa/XLM-R (Con-
neau et al., 2020), and mT5 (Xue et al., 2021).7

All three models were trained with a masked lan-
guage modelling objective. mBERT differs from
XLM-R and mT5 in including a next sentence pre-
diction objective (Devlin et al., 2019). mT5 differs
from mBERT and XLM-R in allowing for consec-
utive spans of input tokens to be masked (Raffel
et al., 2020). We adopt beam search decoding with
early stopping and constrain the generation to sin-
gle words. This enables better correlation of mT5’s
output with our group preferences. t-SNE plots are
included in Appendix B to show how languages
are distributed in the PLM vector spaces.

Metrics We use several metrics to compare how
the PLMs align with group preferences across lan-
guages. These include top-k precision P@k with
k={1, 5}, mean reciprocal rank (MRR), and two
classical univariate rank correlations: Spearman’s ρ
(Spearman, 1987) and Kendall’s τ (Kendall, 1938).

Given a set of |S| cloze sentences and a group
of annotators, for each sentence s, we denote
the list of answers, ranked by their frequency, as
Ws = [w1, w2, ...], and the list of model’s predic-
tions as Cs = [c1, c2, ...], ranked by their model
likelihood. Then, we report P@k = 1[ci ∈ Ws]
with i ∈ [1, k], where 1[·] is the indicator function.
Precision is reported together with its standard de-
viation, to account for the group-wise disparity in

7We use the base models available from https://
huggingface.co/models. We report results using un-
cased mBERT, since it performed better on our data than its
cased sibling.
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both dimensions (social groups and language):

σgd =

√∑G
j=1(P@kj − P@k)2

G
(1)

where P@k is the mean value of all observa-
tions, and G the total number of groups across the
dimension fixed each time i.e., G = 4 across social
groups (MN, FN, MNN, FNN) and G = 4 across
languages (EN, ES, DE, FR). We also compute the
mean-reciprocal rank (MRR) of the elements of
Ws with respect to the top-n (n = 5) elements of
Cs (Cns ):

MRR =
1

|S|

|S|∑

s=1

1

Rank
Cns
i

(2)

Finally, we compute Spearman’s ρ (Spearman,
1987) and Kendall’s τ (Kendall, 1938) betweenWs

and C5
s . These metrics are generally more robust

to outliers.

4 Results

Following previous work on examining fairness of
document classification (Huang et al., 2020; Dixon
et al., 2018; Park et al., 2018; Garg et al., 2019),
we focus on group-level performance differences
(group disparity). We measure the group dispar-
ity as the variance in PLM’s performance (P@k)
across demographics (gender and native language).
Table 2 shows better precision for native speak-
ers in German and French (MN, FN) for P@1. In
terms of group disparity, male non-natives (MNN)
is the demographic exhibiting the highest dispar-
ity across languages in mBERT, while it is female
natives (FN) in XLM-R and male natives (MN) in
mT5. Language-wise, we see the largest group
disparity with German in all three models. Here,
we see 2.5–4.4 between-group differences, com-
pared to, e.g., 0.3–1.8 between-group differences
for English. See Appendix A for results with P@5.

XLM-R consistently exhibits better overall per-
formance on average, but higher between-group
and between-language differences in terms of pre-
cision (σgd).

Figure 1 complements results from Table 2 with
MRR scores. We observe a common trend that
the models often underperform on non-native male
speakers in all languages except for Spanish: Per-
formance is (always) below the average, and they
are the worst-off group (↓) in most of the cases.
At the same time, predictions with mBERT and

mBERT
P@1 EN ES DE FR
MN 13.3 12.7 11.3 10.7 12.0 (1.0)
FN 13.3 12.0 15.3 8.0 12.2 (2.7)
MNN 12.7 12.4 11.4 3.6 10.0 (3.8)
FNN 13.3 10.0 5.6 6.9 9.0 (3.0)

13.2 (0.3) 11.8 (1.1) 10.8 (3.5) 7.3 (2.5) P@1(σgd)

XLM-R
P@1 EN ES DE FR
MN 16.7 13.3 20.7 16.7 16.9 (2.6)
FN 16.0 15.3 24.0 17.3 18.2 (3.5)
MNN 15.3 13.5 15.0 11.4 13.8 (1.5)
FNN 20.0 14.7 13.1 12.7 15.1 (3.0)

17.0 (1.8) 14.2 (0.8) 18.2 (4.4) 14.5 (2.6) P@1(σgd)

mT5
P@1 EN ES DE FR
MN 2.0 4.7 8.7 5.3 5.2 (2.4)
FN 4.0 3.3 6.7 3.3 4.3 (1.4)
MNN 2.0 4.7 6.4 4.3 4.4 (1.6)
FNN 3.3 6.7 1.9 6.2 4.5 (2.0)

2.8 (0.9) 4.8 (1.2) 5.8 (2.5) 4.8 (1.1) P@1(σgd)

Table 2: Results on P@1 score across groups (rows) and
languages (columns), average performance in each lan-
guage (P@1) and standard deviation for group disparity
(σgd). Cells are coloured language-wise. Cells with a
darker background are language-wise above the average.
Worst group performance in terms of group disparity
(highest variance) is highlighted in red.

XLM-R seem to be biased towards native speak-
ers because answers from MN and FN generally
rank highest. Despite none of the models perform
equally across groups, XLM-R shows a lower di-
vergence across languages: Between-group differ-
ences are more than 50% smaller than with mBERT
and mT5 when looking at the average MRR per
language.

Table 3 gathers group level Spearman’s ρ and av-
erage correlation per language. XLM-R predictions
are more uniformly correlated across languages
compared to mBERT, whose lexical preferences are
better aligned in English and Spanish setups, and
mT5, whose predictions correlate poorly with hu-
man cloze test answers. However, in line with pre-
vious results, the model exhibits bias towards male
native speakers and MNN outlines as the worst per-
forming group across languages, with a coefficient
always below the average. Looking into the dimen-
sion of languages, German is the least aligned with
human’s answers in all models. Kendall’s τ yields
similar results. See Appendix A for details.

It is worth mentioning that our study does not
aim to compare models’ performance, but rather to
motivate a discussion about the between-group and
between-language differences within each model.
The general low precision of mT5 outputs com-
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Figure 1: Average MRR (in percentage) per group in
each language. Horizontal lines denote the average per
language. Best-off (↑) and worst-off (↓) subgroups for
each language are marked.

pared to human answers is likely due to the nature
of the task itself. Because mT5 was trained with
a span-mask denoising objective, it tends to com-
plete the masked-out span with more than one to-
ken. When constraining generation to output one
token, we are conditioning its default behaviour.
Better correlation could be achieved by fine-tuning
the model on completing cloze tests.

(Dis)agreement amongst annotators on the same
language gives a measure of the difficulty of the
task. French and German present a higher variabil-
ity in the responses (with a vocabulary of 442 and
443 words respectively), compared to English (374
words), and Spanish (427 words), which reflects in
a lower correlation with models’ predictions.

5 Related Work

Multilingual PLMs have been analyzed in many
ways: Researchers have, for example, looked at per-
formance differences across languages (Singh et al.,
2019; Wu and Dredze, 2020), looked at their organi-
zation of language types (Rama et al., 2020), used
similarity analysis to probe their representations
(Kudugunta et al., 2019), and investigated how
learned self-attention in the Transformer blocks af-
fects different languages (Ravishankar et al., 2021).

Previous work on fairness of multilingual models
has, to the best of our knowledge, focused exclu-
sively on task-specific models, rather than PLMs:
Huang et al. (2020) evaluate the fairness of multilin-
gual hate speech detection models, and several re-
searchers have explored gender bias in multilingual
models (Zhao et al., 2020; González et al., 2020).
Dayanik and Padó (2021) consider the effects of
adversarial debiasing in multilingual models.

mBERT
ρ EN ES DE FR

MN 0.33 (p=0.00) 0.23 (p=0.01) -0.14 (p=0.09) 0.10 (p=0.21)
FN 0.27 (p=0.00) 0.07 (p=0.42) -0.01 (p=0.89) 0.14 (p=0.08)
MNN 0.30 (p=0.00) 0.16 (p=0.03) -0.10 (p=0.23) 0.08 (p=0.32)
FNN 0.37 (p=0.00) 0.16 (p=0.06) 0.03 (p=0.69) 0.08 (p=0.30)
Avg. 0.32 (p=0.00) 0.16 (p=0.00) -0.05 (p=0.21) 0.10 (p=0.01)

XLM-R
ρ EN ES DE FR

MN 0.45 (p=0.00) 0.46 (p=0.00) 0.35 (p=0.00) 0.48 (p=0.00)
FN 0.30 (p=0.00) 0.35 (p=0.00) 0.45 (p=0.00) 0.33 (p=0.00)
MNN 0.30 (p=0.00) 0.38 (p=0.00) 0.22 (p=0.01) 0.32 (p=0.00)
FNN 0.40 (p=0.00) 0.48 (p=0.00) 0.11 (p=0.16) 0.36 (p=0.00)
Avg. 0.36 (p=0.00) 0.41 (p=0.00) 0.28 (p=0.00) 0.37 (p=0.00)

mT5
ρ EN ES DE FR

MN 0.01 (p=0.89) 0.14 (p=0.08) 0.14 (p=0.08) 0.25 (p=0.00)
FN -0.12 (p=0.13) 0.13 (p=0.12) 0.00 (p=0.99) 0.14 (p=0.08)
MNN -0.10 (p=0.22) 0.12 (p=0.11) 0.03 (p=0.74) 0.11 (p=0.18)
FNN -0.07 (p=0.41) 0.28 (p=0.00) 0.04 (p=0.58) 0.11 (p=0.16)
Avg. -0.07 (p=0.07) 0.17 (p=0.00) 0.05 (p=0.23) 0.15 (p=0.00)

Table 3: Correlation between groups of annotators (MN,
FN, MNN, FNN) and models’ predictions, classified
by language. The degree of correlation is measured
with Spearman’s ρ coefficient (ρ ∈ [−1, 1]). Cells are
coloured language-wise. Cells with a darker background
show a stronger correlation compared to the average in
each language. Samples highlighted in red fail to reject
the null hypothesis, meaning that their difference is not
statistically significant (p > 0.05).

Cloze tests were previously used in Zhang et al.
(2021) to evaluate the fairness of English (monolin-
gual) language models. In psycholinguistics, cloze
tests have been performed with different age groups
(Hintz et al., 2020) and native language (Stringer
and Iverson, 2020), but these datasets have, to the
best of our knowledge, not been used to evaluate
language models.

6 Conclusion

In this paper, we present MozArt, a new multilin-
gual dataset of parallel cloze examples with anno-
tations from balanced demographics. This dataset
is, to the best of our knowledge, the first to enable
apples-to-apples comparison of group disparity of
multilingual PLMs across languages. The dataset
includes several demographic attributes, but we
present preliminary experiments with gender and
native language. We show that mBERT, XLM-
R and mT5 are not equally fair across languages.
For example, group disparities are much higher for
German (and French) than for English and Spanish.
This shows the importance of evaluating fairness
across languages instead of stipulating from results
for a single language. We further show that cloze
test answers of female native speakers tend to rank
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highest in both predictive PLMs. We followed best
practices for mitigating the dangers of crowdsourc-
ing (Karpinska et al., 2021; Kleijn et al., 2019)
(see §2) and hope MozArt will be widely adopted
and, over time, generate more results for other lan-
guages, PLMs and demographic attributes.

7 Limitations

As described in the paper, MozArt builds on top
of another dataset, which is only available in four
languages. The original dataset with its manual
word alignments provided a unique opportunity to
build MozArt in a way in which we could account
for context, across languages. This of course limits
our work to the languages provided. We acknowl-
edge how multilingual studies of Indo-European
languages may not generalize to languages outside
this language famility, and hope we or others will
be able to contribute resources for a more diverse
set of languages in the future.

Ethics Statement

The dataset released contains publicly available
content from the proceedings of the European Par-
liament. Our work is based on sensitive informa-
tion provided by the participants that took on our
study in Prolific. The protected attributes collected
are self-reported on a voluntary basis, and partic-
ipants gave their consent to share them. In addi-
tion to the specific attributes analyzed in our study,
which served as prescreening filters, Prolific also
provides baseline data for all studies with the con-
sent of participants to share it with researchers. For
these base attributes, there might be gaps in the
data because it is optional for participants to pro-
vide this information. These attributes are filled
as null in the dataset. We performed a pilot study
to determine the amount of time a task would take
on average. The participants were paid based on
time worked, and were given the option to opt out
at any time of the study. Participants who revoked
consent at any stage are not included in our study
nor in the data released.
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A Additional results

In this section, we provide additional analysis re-
sults of the PLM’s performance on MozArt. We
report precision at 5 (P@5), which corresponds to
the number of relevant answers amongst the top 5
candidates. It provides a more flexible metric for
measuring model alignments with open-ended text
answers, but fails to take into account the exact
position within the top-k. Considering the top-
5, the bias towards native speakers is diminished
especially in English and Spanish, despite being
MNN and FNN the worst groups –in terms of group
disparity– in mBERT and XLM-R respectively. At
the same time, the group disparities are exacerbated
as shown in Table 4.

Table 5 complements results on correlation of the
alignment of group responses. It shows Kendall’s
τ coefficient. Conclusions remain almost the same
as studied with Spearman’s coefficient, albeit non-
native subgroups in Spanish are more correlated in
mBERT.

B t-SNE

To give a brief overview of the semantic multilin-
guality encoded in the pretrained models, we run
several representations with t-SNE. Figure 2 and
Figure 3 represent the top-1000 predictions in a
t-SNE plot for mBERT and XLM-R respectively.
The same sentence is queried to the model in four
languages and, accordingly, to annotators:

en We want to [MASK] innovation .
es Queremos [MASK] la innovación .
de Wir wollen zur Innovation [MASK] .
fr Nous voulons [MASK] l’innovation .

Highest scored predictions are highlighted with
a (⋆). Annotator’s answers that fell into the top-
1000 predictions are denoted with a black edge. In

mBERT
P@5 EN ES DE FR
MN 30.7 26.7 22.0 24.0 25.9 (3.3)
FN 32.0 18.7 24.7 22.0 24.4 (4.9)
MNN 34.0 25.9 12.1 15.0 21.8 (8.7)
FNN 32.7 25.3 16.3 16.3 22.7 (6.9)

32.3 (1.2) 24.2 (3.1) 18.8 (4.9) 19.3 (3.8) P@5(σgd)

XLM-R
P@5 EN ES DE FR
MN 39.3 30.7 34.7 32.7 34.4 (3.2)
FN 30.7 25.3 38.0 35.3 32.3 (4.8)
MNN 30.7 29.4 22.1 25.4 26.9 (3.4)
FNN 36.7 34.0 19.4 26.9 29.3 (6.7)

34.3 (3.8) 29.8 (3.1) 28.5 (7.9) 30.3 (4.1) P@5(σgd)

mT5
P@5 EN ES DE FR
MN 10.0 12.7 16.0 11.3 12.5 (2.2)
FN 11.3 10.0 16.7 18.0 14.0 (3.4)
MNN 6.0 11.8 9.3 10.7 9.5 (2.2)
FNN 13.3 16.0 8.7 15.0 13.3 (2.8)

10.2 (2.7) 12.6 (2.2) 12.7 (3.7) 13.8 (3.0) P@5(σgd)

Table 4: Results on P@5 score across groups and lan-
guages, average performance in each language (P@5)
and standard deviation for group disparity (σgd). Cells
are coloured language-wise. Cells with a darker back-
ground are language-wise above the average. Worst
group performance in terms of group disparity (highest
variance) is highlighted in red.

line with results in (Choenni and Shutova, 2020),
we observe that languages are mostly projected in
separate sub-spaces instead of yielding a neutral
representation, even though they share a common
space (vocabulary).

Similarly, Singh et al. (2019) shown a trend
towards dissimilarity between representations for
semantically similar inputs in different languages,
in deeper layers of an uncased mBERT. Serve
Figure 4 as an example, where the same word
“gases” was answered in different languages but is
represented in different subspaces. Figure 5 shows
a similar behaviour in XLM-R. The sentences
queried are:

en [MASK] that deplete the ozone layer
es [MASK] que agotan la capa de ozono
de [MASK], die zum Abbau der

Ozonschicht führen
fr [MASK] appauvrissant la couche d’ozone
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mBERT
τ EN ES DE FR

MN 0.27 (p=0.00) 0.19 (p=0.00) -0.09 (p=0.15) 0.09 (p=0.16)
FN 0.23 (p=0.00) 0.07 (p=0.24) 0.01 (p=0.89) 0.13 (p=0.04)
MNN 0.25 (p=0.00) 0.15 (p=0.01) -0.06 (p=0.32) 0.07 (p=0.28)
FNN 0.29 (p=0.00) 0.14 (p=0.01) 0.03 (p=0.57) 0.06 (p=0.27)
Avg. 0.26 (p=0.00) 0.14 (p=0.00) -0.03 (p=0.41) 0.09 (p=0.01)

XLM-R
τ EN ES DE FR

MN 0.40 (p=0.00) 0.43 (p=0.00) 0.32 (p=0.00) 0.45 (p=0.00)
FN 0.26 (p=0.00) 0.33 (p=0.00) 0.43 (p=0.00) 0.31 (p=0.00)
MNN 0.26 (p=0.00) 0.35 (p=0.00) 0.20 (p=0.01) 0.29 (p=0.00)
FNN 0.35 (p=0.00) 0.45 (p=0.00) 0.10 (p=0.15) 0.34 (p=0.00)
Avg. 0.32 (p=0.00) 0.39 (p=0.00) 0.25 (p=0.00) 0.34 (p=0.00)

mT5
τ EN ES DE FR

MN 0.02 (p=0.79) 0.13 (p=0.06) 0.13 (p=0.06) 0.21 (p=0.00)
FN -0.09 (p=0.16) 0.11 (p=0.11) 0.00 (p=0.98) 0.12 (p=0.08)
MNN -0.08 (p=0.21) 0.10 (p=0.10) 0.03 (p=0.69) 0.10 (p=0.17)
FNN -0.04 (p=0.51) 0.25 (p=0.00) 0.03 (p=0.61) 0.10 (p=0.15)
Avg. -0.07 (p=0.07) 0.15 (p=0.00) 0.05 (p=0.18) 0.13 (p=0.00)

Table 5: Correlation between groups of annotators (MN,
FN, MNN, FNN) and models’ predictions, classified by
language. The degree of correlation is measured with
Kendall’s τ coefficient (τ ∈ [−1, 1]). Cells are coloured
language-wise. Cells with a darker background show
a stronger correlation compared to the average in each
language. Samples highlighted in red fail to reject the
null hypothesis, meaning that their difference is not
statistically significant (p > 0.05).
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Figure 2: t-SNE representation from the last layer of
mBERT for the top-1000 predictions for the parallel
sentences in the list above (“We want to [MASK] in-
novation .” in English). Highest scored prediction is
starred; annotator’s answers are denoted by a dot with
black edge. Legend shows language-color mapping.
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Figure 3: t-SNE representation from the last layer of
XLM-R for the top-1000 predictions for the parallel
sentences in the list above (“We want to [MASK] in-
novation .” in English). Highest scored prediction is
starred; annotator’s answers are denoted by a dot with
black edge. Legend shows language-color mapping.
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Figure 4: t-SNE representation from the last layer of
mBERT for the top-1000 predictions for the parallel
sentences in the list above (“[MASK] that deplete the
ozone layer” in English). The word “gases” is pointed
out in each language (en: gases, es: gases, fr: gaz),
as it was a recurrent answer from different annotators.
Highest scored prediction in each language is starred;
annotator’s answers are denoted by a dot with black
edge. Legend shows language-color mapping.
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Figure 5: t-SNE representation from the last layer of
XLM-R for the top-1000 predictions for the parallel
sentences in the list above (“[MASK] that deplete the
ozone layer” in English). The word “gases” is pointed
out in each language (en: gases, es: gases, fr: gaz),
as it was a recurrent answer from different annotators.
Highest scored prediction in each language is starred;
annotator’s answers are denoted by a dot with black
edge. Legend shows language-color mapping.
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Abstract

The possible consequences for the same con-
text may vary depending on the situation we
refer to. However, current studies in natural
language processing do not focus on situated
commonsense reasoning under multiple possi-
ble scenarios. This study frames this task by
asking multiple questions with the same set of
possible endings as candidate answers, given a
short story text. Our resulting dataset, Possible
Stories, consists of more than 4.5K questions
over 1.3K story texts in English. We discover
that even current strong pretrained language
models struggle to answer the questions consis-
tently, highlighting that the highest accuracy in
an unsupervised setting (60.2%) is far behind
human accuracy (92.5%). Through a compar-
ison with existing datasets, we observe that
the questions in our dataset contain minimal
annotation artifacts in the answer options. In
addition, our dataset includes examples that re-
quire counterfactual reasoning, as well as those
requiring readers’ reactions and fictional infor-
mation, suggesting that our dataset can serve
as a challenging testbed for future studies on
situated commonsense reasoning.

1 Introduction

Commonsense reasoning, inclusive of counterfac-
tual, abductive, and monotonic reasoning, is a core
element of language understanding. Researchers
are interested in whether these abilities can be
learned in systems, and several benchmarks have
been proposed to investigate machine common-
sense reasoning (Huang et al., 2019; Sap et al.,
2019; Aggarwal et al., 2021; Saha et al., 2021).
Recent pretrained models have shown competitive
results (Khashabi et al., 2020; Lourie et al., 2021).

Commonsense reasoning has often been framed
as a task to infer whether candidate answers are
plausible, such as in the multiple-choice format
(Talmor et al., 2019; Sakaguchi et al., 2020). The

∗Work done while at Tokyo Metropolitan University.

Original Context
Cindy was planning to grow a lot of vegetables this year. 
She planted vegetable seedlings in her garden. Cindy 
knew there were hungry groundhogs in the area. She 
put up a short fence around her garden to protect it.

Alternative Ending Collection
B: All of the ground animals were kept out, but 

something was still eating her vegetables.
C: She put spikes on the fence to avoid groundhogs 

and it worked.
D: No groundhogs climbed over the fence and Cindy 

had a good harvest in the fall.

Question Writing
Q1: Which one of the following is most 

likely to happen after this if there were 
other hungry animals? à Option B

Q2: What would be the most positive 
outcome for Cindy's crops? à Option D

Original Ending
A: The groundhogs climbed over the fence and ate her 

seedlings.

Figure 1: Overview of Possible Stories and its cre-
ation process. We ask crowdworkers to produce al-
ternative endings given a story text, and then write
multiple-choice questions that have a single correct an-
swer among the original and three collected endings.

difference between plausible and implausible an-
swers is expected to be salient enough that it can be
established as a classification task. However, when
making day-to-day decisions, people consider sev-
eral plausible choices, rather than clearly plausible
and implausible ones, depending on one’s situa-
tion and method of thinking. However, the tasks
concerning conditions under multiple plausible sce-
narios are few, and their domains are limited to, for
example, factual information that differs accord-
ing to place and time (Zhang and Choi, 2021) or
human behaviors that are either normative or di-
vergent (Emelin et al., 2021). Another example
is the natural language inference or commonsense
reasoning task that considers variations in human

3606



opinions (Zhang et al., 2017; Chen et al., 2020b),
which allows for the differences in annotations due
to one’s mentality (Pavlick and Kwiatkowski, 2019;
Meissner et al., 2021). Our aim here is to inter-
rogate these types of situated reasoning in more
comprehensive settings, such as in story texts.

To assess the possible extent of situated reason-
ing in machines, we introduce Possible Stories,
a benchmark consisting of 4,533 multiple-choice
questions over 1,313 passages in English, to evalu-
ate commonsense reasoning over multiple possible
alternatives for single passages. Figure 1 shows an
example. Given a story text, we aggregate alter-
native endings and multiple-choice questions that
contain information such that they guide the deter-
mination of the most likely ending. By design, ma-
chines cannot rely only on answer options but also
have to understand the condition implied by each
question to answer correctly because all options
are expected to be possible. This dataset creation
procedure tackles the known issue of annotation
artifacts (Gururangan et al., 2018) in crowdsourced
datasets by using alternative endings, instead of
right and wrong endings, and by compiling the end-
ings and questions from multiple crowdworkers.

We evaluate strong pretrained language models
and heuristic methods on our dataset and observe
that in an unsupervised setting, even the strongest
model (DeBERTa large v3; He et al., 2021) under-
performs compared to humans by approximately
30% accuracy and more than 50% consistency
score (i.e., passage-wise accuracy). Our analysis
using input ablation and statistical significance tests
highlights that the annotation artifacts contained
in the answer options of our dataset questions are
much fewer than those in existing multiple-choice
datasets such as RACE (Lai et al., 2017) and Cos-
mosQA (Huang et al., 2019). Reasoning-type an-
notation shows that more than 60% of our dataset
questions require counterfactual reasoning, as well
as an understanding of characters’ motivations and
reactions, readers’ perceptions, and fictional infor-
mation.

Our contributions are summarized as follows:1

• We propose a situated commonsense reasoning
task and create a multiple-choice question an-
swering (QA) dataset using plausible story end-
ings, together with questions as multiple condi-

1The details of our data collection and final outcome in-
cluding all collected story endings are available at https:
//github.com/nii-cl/possible-stories.

tions where one of the endings becomes the most
plausible.

• We discover that current strong pretrained lan-
guage models struggle to solve our task when
training data are unavailable, indicating that
there is room for future improvement on situ-
ated commonsense reasoning.

• We show that our dataset contains minimal an-
notation artifacts in the answer options and has
many challenging questions that require counter-
factual reasoning and an understanding of char-
acters’ motivations and reactions, readers’ per-
ceptions, and fictional information.

2 Background and Related Works

Our work is motivated by recent efforts to create
evaluation frameworks for commonsense reasoning
situated in extra-linguistic contexts.

Benchmarks for Commonsense Reasoning
Many commonsense reasoning resources have
been proposed that target reading comprehension
(Huang et al., 2019), cloze tests regarding story
endings (Zellers et al., 2019) or in-between events
(Bhagavatula et al., 2020), and inferences on social
interactions (Sap et al., 2019). Mostafazadeh et al.
(2016) propose a task similar to ours, but it differs
in that ours has four possible ending options, rather
than a plausible and implausible completion pair.

Benchmarks for Counterfactual Reasoning
Researchers have coined the term counterfactual
reasoning to refer to the property of reasoning over
hypothetical events and have proposed benchmarks
to evaluate the counterfactual reasoning ability of
machines. Tandon et al. (2019) collect questions
that explicitly ask what if, based on procedural
texts. Qin et al. (2019) propose a task of generat-
ing a counterfactual story ending that is minimally
edited from the original ending, given modified
events in the context. Our data creation process is
similar in terms of using an existing story and mod-
ifying a segment; however, we ask crowdworkers
to change the segment more drastically, yielding
diverse story endings.

Evaluation of Understanding of Situations
Reasoning over multiple possibilities, depending
on the situation, can be regarded as situated reason-
ing. Recent studies have attempted to integrate sit-
uational information into the context used in down-
stream tasks, such as question answering on factual
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information (Zhang and Choi, 2021) and conse-
quence or normative action generation given real-
world social settings (Emelin et al., 2021). Story
Commonsense (Rashkin et al., 2018) provides an
annotated dataset of motivation and emotional reac-
tions. (Forbes et al., 2020) collect general rules of
thumb about actions. The range of situations that
we consider goes beyond facts and normative set-
tings, aiming to consider readers’ beliefs, causality,
and characters’ emotions.

Probing of Language Models The use of con-
trastive examples to probe language models’ knowl-
edge and inductive biases is an active area of re-
search. This line of research typically uses pairs
of sentences with minimum differences (Marvin
and Linzen, 2018; Li et al., 2020; Warstadt et al.,
2020), contrastive sets to identify the model’s deci-
sion boundary (Gardner et al., 2020), or adversarial
examples (Jia and Liang, 2017) to identify the seg-
ments that contribute to changing model behaviors.
By contrast, we use multiple plausible choices for
a single passage to study what causes models to
assign higher probabilities to certain choices.

3 Task Description

Motivation In Story Cloze Test, Mostafazadeh
et al. (2016) use right and wrong endings to evalu-
ate machines’ story understanding, assuming that
the right ending can be regarded as an entailing
hypothesis in a textual entailment framework and
the wrong ending as a contradicting hypothesis.
During data collection, the workers are instructed
to produce endings that are realistic and sensible
for right endings, and wrong endings are chosen
from those that are rated lower than right endings
in terms of meaningfulness and coherence. Con-
sequently, their task is created to have clear right
and wrong endings. However, in reality, there is an
infinite number of possibilities of clearly plausible
endings. By creating informative questions posit-
ing situations rather than questions asking about
relative plausibility without any conditions, we aim
to test machines’ story understanding in multiple
scenarios that provide additional information that
can discriminate one plausible ending from other
possible endings.

Task Formulation We formulate the task as a
multiple-choice question with a passage and an-
swer options, where the answer options depict pos-
sible endings of the passage. Given a story s, the

task is to determine the most plausible story ending
among the four possible endings E = (e1, . . . , e4)
under the condition c that is implied by a question.
To further evaluate the models’ understanding of
situations, we also define the task of predicting
the most plausible outcome for multiple conditions.
Given s, the task is to determine the most plausi-
ble story ending among E for each of the multiple
conditions C = (c1, . . . , c4) that are implied by
multiple questions. When the models capture all
the relationships between conditions and plausible
endings correctly, we assume that the models rea-
son over a finite number of possible consequences
and the relationships among them. We call this con-
sistency, which reports the percentage of a model’s
outputs that are correct for all questions referring
to a unique context. This evaluation is inspired by
the study of contrastive sets (Gardner et al., 2020).

4 The Possible Stories Dataset

Context Passages To collect story texts, we use
ROCStories (Mostafazadeh et al., 2016), a corpus
of five-sentence stories. The first to fourth sen-
tences describe the context, and the final sentence,
the ending, concludes the story. We choose ROC-
Stories because each of its stories has a clear be-
ginning and ending, while being generic enough to
come up with different endings. The details on our
story selection criteria are provided in Appendix A.

The following tasks are carried out by the crowd-
workers in Amazon Mechanical Turk (MTurk) who
perform above certain levels during our worker re-
cruitment phase, which is designed to be fairer than
the conventional qualifications used in MTurk. The
details of the worker recruitment are provided in
Appendix B. The instructions and task interface
presented to the workers are also provided in Ap-
pendix I.

4.1 Writing Tasks
Ending Writing We first ask workers to create
two alternative endings given a story with the orig-
inal ending. The participants are encouraged to be
as creative as possible so that possible yet unreal-
istic story endings can also be elicited. We collect
six to eight alternative endings by asking three or
four workers to produce two endings per passage.

Selection of Ending Options Having collected
six to eight alternative endings, we need to decide
which three options to use in our questions, in ad-
dition to the original ending.
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Depending on how they are chosen, there may be
differences in the difficulty of the generated ques-
tions. For example, if the endings are similar to
each other, it will be difficult to create questions
that have only one correct choice among four end-
ings. Conversely, if the endings are completely
different, the questions may be easier to create, but
machines may rely solely on semantic similarity
between passage and endings, without requiring
commonsense reasoning.

To examine the relationship between question
difficulty and the diversity of the chosen endings,
we run a pilot task using ten randomly selected sto-
ries with six different sets of endings. The six sets
are chosen based on the sum of cosine similarity
calculated based on the embeddings (Reimers and
Gurevych, 2019) of all the possible combinations
of endings, ranging from the set of endings that are
most similar to the most diverse set. Six sets are
chosen such that the distance between the values
of the sum of the cosine similarities of one set and
another set is equal. Through a validation step to
identify which sets of endings enable high-quality
multiple-choice questions, we decide on the set that
contains the second most diverse endings among
the six sets upon consideration.

Question Writing As four distinct endings are
gathered per passage, we ask the workers to write
questions in which only one of the four endings is
the correct answer. Because this task is more com-
plex, we select participants via a qualification task,
targeting those participants who maintain quality
in the ending writing task. It is up to the work-
ers to decide the correct option, considering the
difference in difficulty in writing questions with
certain story endings. Four questions are written
per passage by two workers, two per worker, and
the answers to each set of two questions are differ-
ent to maintain the diversity of the correct answers.
To ensure that the distribution of the dataset is natu-
ral (Bowman and Dahl, 2021; Kaushik et al., 2021)
and that the questions fit the general purpose, we
avoid collecting questions in an adversarial manner
(Bartolo et al., 2020).

4.2 Data Validation

The goal of the validation task is to verify that there
is one correct answer for each question, and that
the questions do not contain any objectionable or
personal content. Questions that do not meet these
criteria are discarded. The detailed validation re-

sults and further quality control over the collection
batches are reported in Appendix C.

Question-Answer Validation In this step, we
ask workers to answer multiple-choice questions.
The workers choose one of the four endings and
four additional options (no answer, more than two
possible answers, ill-formed questions, and others).
Each question is validated by three workers, and
we retain questions in which the majority vote is
identical to the writer’s answer.

Content Validation During the validation task,
we ask workers to indicate negative stereotypes or
biased descriptions of certain social groups. We
discard questions that the workers claim contain un-
fair descriptions. This process prevents the perpet-
uation of unethical opinions in downstream tasks
when this dataset is used for training models. Some
of the workers’ inputs are discussed in Ethical Con-
siderations. We incentivize workers with a bonus
of $0.3 per completion of the free-text form.

4.3 Dataset Statistics
Our dataset, Possible Stories, has 8,885 alterna-
tive endings for 1,313 passages and 4,533 multiple-
choice questions with the original ending and three
alternative endings as answer options. Table 1
presents the basic statistics for the resulting dataset.
Although the passages are shorter than those in
CosmosQA (70.3) and RACE (321.9), the ques-
tions (14.2) and answer options (15.3) are quite
longer than others (CosmosQA is 10.6 and 8.1 and
RACE is 10.0 and 5.3), which could potentially
make questions difficult (Nangia et al., 2021).

In addition, as shown in Table 2, more than 50%
of the contexts have questions with three or four
distinct correct answer choices. This contributes to
the assessment of the models’ comprehension of
multiple situations using the consistency metric.

One of our main goals for constructing a bench-
mark is to test the models’ capacity for situated
commonsense reasoning over multiple scenarios
as an unseen task. Nonetheless, to ensure that it
is feasible to model our task using current strong
pretrained language models (Liu et al., 2019a), we
follow a standard approach to split the collected
examples into training (75%), dev (10%), and test
(15%) sets. To investigate the model generaliz-
ability, the passages do not overlap between each
set. The dev and test sets do not contain questions
produced by workers who have received negative
comments from other workers to ensure quality.
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Split #Question #Passage #Q/P Passage len Question len Option len

Train 3,404 984 3.46 46.1 13.9 15.4
Dev 458 133 3.44 46.2 14.9 15.3
Test 671 196 3.42 47.0 15.0 15.2

Total 4,533 1,313 3.45 46.3 14.2 15.3

Table 1: Statistics of Possible Stories. Q and P indicate question and passage. #Q/P indicates the average number of
questions per passage. Len indicates the average number of tokens.

Distinct # of answers

#Q/P 1 2 3 4 total

1 2.1 2.1
2 1.5 8.4 9.9
3 16.8 12.0 28.8
4 18.1 34.7 6.5 59.3

Total 3.6 43.3 46.7 6.5 100.0

Table 2: Distribution (%) of the number of questions
per passage and the distinct number of correct answers.

5 Experiments

5.1 Models and Settings
For modern pretrained language models, we use
BERT (base and large; Devlin et al., 2019),
RoBERTa (base and large; Liu et al., 2019b), and
DeBERTa (base and large of v3; He et al., 2021).
In our standard setting (i.e., unsupervised), to adapt
these models to the multiple-choice task, we fine-
tune them on the RACE dataset (Lai et al., 2017),
which is a large-scale dataset of middle- and high-
school English exams and has passages and ques-
tions on various topics.2 In the supervised setting,
the models are directly trained on our training set
unless mentioned otherwise. To establish different
baseline methods, we consider simple heuristics us-
ing perplexity, semantic similarity, and entailment
scores. For perplexity heuristics, we use GPT-2
(Radford et al., 2019) and GPT-Neo (Black et al.,
2021) to obtain the perplexity of the inputs and
consider options with the smallest perplexity as a
model’s prediction. Sentence similarity uses repre-
sentations obtained from the sentence transformers
(Reimers and Gurevych, 2019) to compute the co-
sine similarity between the options and the rest of
the input. The candidate with the highest similarity
score is regarded as the model prediction. The en-

2We observe that models fine-tuned on CosmosQA are con-
sistently inferior to those fine-tuned on RACE (Appendix D).

tailment score is calculated using RoBERTa-large
fine-tuned on MNLI (Williams et al., 2018), and
the option with the highest entailment score when
taking the inputs as the premise is chosen.

5.2 Results

Human Performance To measure the human
performance on our test set, we collect three addi-
tional labels for all questions from different crowd-
workers who do not join the validation task. We
ensure that the same set of three workers answer
the questions belonging to a single story. For com-
puting accuracy, we take the majority of the three
labels to determine whether it is equal to the vali-
dated gold label. For computing consistency, we
determine whether the majority vote answers are
correct for all questions in each passage (Table 3).

Model Performance When the training set is un-
available, we observe that DeBERTa-large achieves
the best performance. Although this model is fine-
tuned on RACE, which has a sufficient number of
diverse training examples, the model performance
is far from that of humans, showing large gaps of
29.5% and 53.0% in terms of accuracy and consis-
tency, respectively. Out of the four simple heuris-
tics models, those using perplexity and semantic
similarity perform above the chance rate of 25%,
indicating that those features, while inadequate,
might be useful in finding the correct answers. By
contrast, the entailment score-based model falls
short of 25%. This result highlights the uniqueness
of our dataset, as it shows that relying on mono-
tonic reasoning cannot lead to a correct answer.

Supervised Performance With the training data,
we observe that DeBERTa-large performs better
than the other models, and it achieves the best accu-
racy and consistency when fine-tuned using RACE
(Table 3). These scores are very close to those of
humans, which implies that the task can be feasibly
performed by a strong model, given sufficient train-
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FT Model Acc. Consist.

7

DeBERTa-large∗ 60.2 19.9
DeBERTa-base∗ 45.3 8.2
RoBERTa-large∗ 50.5 13.8
PPL. GPT-2 large 30.4 2.0
PPL. GPT-Neo 2.7B 29.5 2.6
Semantic Sim. 37.3 4.1
Entailment 23.1 2.0

4

DeBERTa-large∗ 92.1 74.7
DeBERTa-large 88.5 67.3
DeBERTa-base 81.5 51.5
RoBERTa-large∗ 83.5 55.6
RoBERTa-large 81.7 49.5
RoBERTa-base 72.0 30.6
BERT-large 62.6 20.4
BERT-base 57.3 16.3

Human 92.5 76.5

Table 3: Model and human performances on our dataset.
Acc. and consist. denote accuracy (%) and consistency
(%). (∗) indicates that the model is fine-tuned on RACE.
FT indicates whether the models are fine-tuned on the
training set. The experimental details are reported in
Appendix E.

ing data. Nonetheless, it is notable that BERT-large
and RoBERTa-large, which were state-of-the-art
models only several years ago, show potential for
improvement (≈ 30% and 10% accuracy, respec-
tively) compared to humans.

Input Ablation Table 4 presents the input ab-
lation analysis. When ablating the passages, we
observe that pretrained language models fine-tuned
on any multiple-choice dataset show lower perfor-
mance than those with the full input. Regarding
the heuristics methods, we find that having the con-
text does not significantly change the ranking of
the endings. When ablating the questions, we ob-
serve that the performance of all models decreases,
which is expected because the same set of answer
options has multiple questions in our dataset.

6 Analysis

6.1 Human–model Performance Gap

To investigate the relative difficulty of our dataset
among multiple-choice QA datasets, we compare
the accuracy gap between humans and models in
an unsupervised setting with existing datasets, in-
cluding CosmosQA (Cosmos; we report the valida-

FT Model Full No pas. No ques.

7

DeBERTa-L∗ 60.2 58.1 21.8
RoBERTa-L∗ 50.5 50.3 21.5
GPT-2 large 30.4 35.2 26.4
Semantic Sim. 37.3 47.1 28.8

4

DeBERTa-L∗ 92.1 87.0 31.8
DeBERTa-L 88.5 86.4 33.4
BERT-L 62.6 51.1 30.4

Table 4: Input ablation results (accuracy; %). No
pas. and no ques. indicate that the context passage and
question are ablated from the input, respectively.

Model Ours Cosmos QuAIL MC-adv

DeBERTa-L 60.2 66.8 76.3 81.2
DeBERTa-B 45.3 56.0 66.2 69.0
RoBERTa-L 50.5 64.2 70.3 69.1

Human 92.5 94.0 100.0 92.0
Acc. gap 40.5 31.7 29.1 18.9

Table 5: Human performance, model performance with-
out fine-tuning (accuracy; %), and the gap between the
human performance and the average model performance
(larger values imply higher difficulty). Model-L and -B
indicate the large and base models respectively.

tion result because the test labels are not available),
QuAIL (Rogers et al., 2020, challenge set), and
the examples provided by Sugawara et al. (2022)
(MC-adv; multiple-choice questions that are writ-
ten by crowdworkers in an adversarial manner).
We use three models (DeBERTa-large and -base
and RoBERTa-large) fine-tuned on RACE. The re-
sults in Table 5 demonstrate that our dataset may
be more challenging than the multiple-choice read-
ing comprehension datasets we analyze, despite the
simplicity of our data collection method.

6.2 Annotation Artifacts in Answer Options

One of our motivations for crowdsourcing multi-
ple questions for the same set of answer options
is to minimize superficial patterns (i.e., annotation
artifacts) in the collected examples, especially in
their answer options. To validate this, we first
compare the supervised performance in three ab-
lation settings (no context passage, no question,
and answer options only). We use DeBERTa-large
and report the test score on our dataset, RACE,
QuAIL, and CosmosQA. Table 6 shows that al-
though the no-context performance on our dataset
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Figure 2: Token-level annotation artifacts in the training examples of our dataset, RACE, QuAIL, and CosmosQA.
All tokens are below α = 0.01 with a conservative Bonferroni correction for 3,990, 15,472, 35,762, and 9,688
vocabulary items, respectively.

Dataset Full No pas. No ques. Opt. only

Ours 88.5 86.4 33.4 29.1
RACE 87.9 60.1 69.8 46.6
QuAIL 81.7 51.8 58.3 39.6
Cosmos 87.8 72.5 59.4 57.2

Table 6: Supervised accuracy (%) by DeBERTa-large
(v3) on the input-ablation settings.

is relatively high, the no-question and option-only
performances are lower than the others. This result
implies that the question and answer options in our
dataset are mutually indispensable for predicting
the correct answer, while in the other datasets, the
options on their own and their relationship with the
context are informative for the prediction.

To visualize the actual tokens that create annota-
tion artifacts, we follow Gardner et al. (2021), who
propose analyzing token-level features in terms of
the empirical probability of labels p̂(y|xi) given a
specific token (vocabulary item) xi appearing in
input X . Here, the label y indicates whether an

answer option is the correct (True) or not (False).
We plot the probability p̂(y|xi) and the number
of occurrences (n) for the tokens of the training
questions in our dataset, RACE, QuAIL, and Cos-
mosQA (Figures 2) for comparison. To see if the
null-hypothesis (i.e., the token does not co-occur
with a specific label) is accepted or rejected, we
compute z-statistics and plot the level of statistical
significance α = 0.01 and its conservative Bonfer-
roni correction (Bonferroni, 1936) for the vocab-
ulary items (α = 0.01/|V |). We find that for the
true label in our dataset, only 12 tokens are above
α = 0.01 and no tokens are above α = 0.01/|V |
where several content words, such as admit, fine,
and great are possibly helpful for predicting the
correct label. By contrast, 421 and 84 tokens in
CosmosQA are found to be statistically significant
at the respective levels, where many content words,
such as enjoy and life, function words, such as
or, and the task-specific phrase (none of the above
choice) are strong indicators. We observe similar
trends for RACE and QuAIL. In Appendix F, we
report the numbers of vocabulary items above the
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Figure 3: Question words and the subsequent words of
the questions in our dataset.
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Figure 4: Reasoning types across our dataset, Cos-
mosQA, and RACE.

levels of statistical significance for the four datasets.
These results show that the answer options in our
dataset contain minimal annotation artifacts com-
pared to those of the other datasets.

6.3 Question and Reasoning Types

The question words and subsequent words in the
test questions are plotted in Figure 3. We find that
more than half the number of questions are what
questions, seemingly asking about the concrete con-
tent of the story. We also observe subsequent words,
such as would, outcome, and if, which lead to a
statement requiring commonsense reasoning.

To investigate the kind of reasoning required
for answering, we annotate the collected questions
with reasoning types. Considering previous studies,
we define nine reasoning types (See Appendices G
and H for the definitions and examples). We an-
notate 70 questions from our test set and the same
number of questions taken from CosmosQA and
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Figure 5: Reasoning types of easy and hard questions
in our dataset.

RACE for comparison (Figure 4). In addition, to
examine the relationship between question diffi-
culty and reasoning types, we split the test exam-
ples into easy and hard subsets and annotate 30
questions for each subset (Figure 5). The easy
questions are those for which the human–model ac-
curacy gap is 0% in terms of accuracy, and the hard
ones are those for which the gap is larger than 60%
(215 and 64 examples). To compute model perfor-
mance, we average the accuracy of the five models
(BERT-base and large, RoBERTa-base and large,
and RoBERTa-large, which is fine-tuned on RACE;
all models are fine-tuned on our training set). Apart
from the reasoning types, we independently check
whether each question requires counterfactual rea-
soning. This includes not only the condition and
fiction types but also other types such as tempo-
ral reasoning in the sense that it can be involved
in reasoning over counterfactual conditions. The
frequency (%) of such questions is as follows: ours
68.6, ours-hard 76.7, ours-easy 66.7, CosmosQA
4.3, and RACE 2.9.

In summary, our major findings are as follows:

• Our dataset includes more questions regarding
conditions and characters’ motivations and reac-
tions than the other datasets. It also has a small
number of fictional and perception questions,
while the others do not.

• We do not observe abstraction and factoid ques-
tions in the annotated examples. However, we
find several abstraction questions in our test set,
one of which is presented in Appendix H.

• Questions regarding characters’ motivations and
reactions are relatively harder, while questions
regarding causality, which do not require coun-
terfactual reasoning in most cases in our annota-
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P: The Smith family loved to go on day trips on their boat in the summer. One day, they decided it would be fun to take the
kids to a new place. They chose to travel north to a beach that wasn’t terribly far away. The children had a wonderful time and
met a new friend to play with.

Q1: Which of these is the most negative ending? Q2: Which of these implies that the trip they took was successful?
Q3: Which ending implies the Smith kids were bad at staying in touch? Q4: Which ending involves the most conflict?

Q1 Q2 Q3 Q4 Options
� 7� � � A: They kept in touch with their friend even after they went home.
4� � � 4� B: At the end of the day the kids got into a fight with each other and were happy to leave.
� 4� � � C: The Smith’s decided they’d visit a new beach every year, and they made tons of new friends.
7� � 4� 7� D: They went home though and the kids never saw their friend again.

Figure 6: Example of questions with a single passage. Check mark (4) indicates the correct option. Cross mark (7)
indicates that DeBERTa-large (v3) makes an incorrect prediction with that option.

tion, are easier. This corresponds with the fact
that we find more counterfactual questions in the
hard questions than in the easy questions.

6.4 Case Study

We present examples in which the strongest model
(DeBERTa-large) makes incorrect predictions (Fig-
ure 6). A single worker writes Q1 and Q2 and
another worker writes Q3 and Q4. Q1 and Q4 are
annotated as perceptions (the most negative end-
ing and the most conflict). It seems that the model
struggles to compare which option is more negative
between options B (got into a fight...were happy)
and D (never saw their friend). Q2 and Q3 are an-
notated as implications ( imply...). For Q2, we must
infer that option C (e.g., made tons of new friends)
implies success, but option B (kept in touch with
their friend) might sound more successful to the
model. More examples of other reasoning types
are provided in Appendix H.

7 Discussion

Circumscribing commonsense reasoning from sim-
ple heuristics has been a long-standing problem in
the field of artificial intelligence (Levesque, 2014).
Although the answer options in our dataset are free
from annotation artifacts, our ablation analysis in
Section 5 also shows that the questions and an-
swer options may still involve some clues that the
models can exploit. Further research is needed
to explain how commonsense reasoning is distin-
guished from a set of simple heuristics in machines’
situational understanding.

In the question-writing task, one of the workers
addresses the difficulty of creating questions that
cannot be answered without reading the passages
and that it is even practically impossible unless ask-
ing the questions to small children. This illustrates

that humans may also use a small amount of in-
formation available to draw inferences. This issue
arises possibly because of our task formulation, an-
swering which option is more plausible than the
others. It can be argued that modifying this task to
a generative task (Chen et al., 2020a) is one way to
directly assess machines’ commonsense reasoning
ability, but it should be noted that this would en-
tail some difficulties in the evaluation of generated
answers.

In addition, exploring what kind of conditions
narrow down the possibilities of consequences is
important to effectively evaluate machines’ situ-
ational understanding. Although several studies
have captured the dynamics of conditions in moral
and immoral settings (Emelin et al., 2021), many
other factors come into play in decision-making in
our daily lives, such as feelings, personal beliefs,
expectations from others, or even unconscious bi-
ases.

8 Conclusion

This paper proposes a new dataset, Possible Sto-
ries, consisting of 4.5K crowdsourced questions
with 1.3K story passages to investigate whether ma-
chines can infer the most plausible ending among
four possible endings under certain situations pos-
tulated by questions. We discover that current
strong pretrained language models struggle to an-
swer questions consistently, showing a large accu-
racy gap compared with humans. A comparison
with existing multiple-choice datasets demonstrates
that our questions contain minimal annotation ar-
tifacts in the answer options and require counter-
factual reasoning as well as an understanding of
characters’ motivations and emotions, suggesting
that our dataset can serve as a challenging bench-
mark for future commonsense reasoning studies.
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Ethical Considerations

This study aims to facilitate the scientific study of
machines’ situated commonsense reasoning. We
use crowdsourcing for our data collection, taking
care to avoid the exploitation of workers and pay
well above the U.S. federal minimum wage. The
details of worker recruitment and the payment pro-
cess are described in Appendix B. We also validate
that the examples in our dataset do not contain un-
fair or harmful content. In this section, we report
our observations regarding the validation task. This
study is approved by our internal review board.

Content Validation for Fair Representation
During content validation (Section 4.2), we find
that the level of content to be flagged is not trivial.
There is a question containing the phrase main-
stream COVID-related propaganda, and one of the
workers told us that the worker was unsure if it
should be flagged. Another case involves a story
ending that describes the cooking skills of a male
character in a bad light. Does this representation
perpetuate the negative stereotype that men are bad
at cooking? To investigate this, we should dive
deeper into the semantic plausibility learned in lan-
guage models (Porada et al., 2021; Pedinotti et al.,
2021). Unless the focus is on the domain of natural
science, there is less agreement on what would lean
in spreading desirable and undesirable content, and
the borderline can change across time and place. It
should also be noted that the degree of sensitivity
towards underspecified biases depends on individ-
uals’ imagination and empathy. Future work can
examine how to effectively moderate the dataset
for fair and unbiased representation.

Limitations One of the limitations of the study
is “limited diversity.” We observe that some sys-
temic biases during data collection. One example
concerns a story in which the protagonist missed
breakfast on a day of work. Many crowdwork-
ers come up with the possibility of the girlfriend
bringing the lunch to the protagonist’s workplace
(referred to as I throughout the context), but no
one assumes that the boyfriend will do the same.
These types of unconscious biases can accumulate
in datasets. In addition, our dataset is limited to
English.
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A Selecting Stories from ROCStories

We choose stories with more than 45 words and
endings with more than 5 words to avoid stories
that are too short or generic. We consult the an-
notation of the GLUCOSE dataset (Mostafazadeh
et al., 2020) and select stories whose ending is
annotated by workers with ratings higher than 1.
Future work could investigate the effect of different
causal relations on creating conditions, as well as
possible endings.

B Crowdworker Recruitment and
Payment

We recruit writers via Amazon Mechanical Turk
(MTurk). The number of workers who participated
in the study is listed in Table 7. Before initiat-
ing the data collection procedure, we first run a
qualification task to identify workers who can par-
ticipate in data collection. This task is a short ver-
sion of a part of the main task and is open to any
crowdworker without any qualifications such as
HIT acceptance rate or number of HIT accepted,
which are commonly used thresholds in the NLP
community’s data collection process via MTurk.
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Ending Ques. Valid.

# of crowdworkers 163 66 65
Ave. # of examples 54.6 79.9 243.3
Max. # of examples 132 170 400

Table 7: Statistics of crowdworkers that participate in
each task, the average and maximum number of gener-
ated examples per crowdworker.

We adapt this qualification following the recom-
mendation of Kummerfeld (2021) to avoid the ex-
ploitation of crowdworkers. He demonstrates that
imposing these prepared criteria is not fair because
crowdworkers need to work on poorly paid tasks to
achieve those qualifications in most cases.

We pay $1.0 USD for an ending writing task,
$1.5 for a question writing task, and $1.0 for a
validation task, estimating the completion time to
be less than 5, 7.5, and 5 mins respectively. This
adds to more than $12, which is well above the U.S.
federal minimum wage. We do not calculate the
wage according to the cost of living in each country
where the workers reside, as we do not ask them
where they live.

C Validation Results and Quality Control

Validation Results During the question-answer
validation, 13.8% of the collected questions are
discarded. Out of the four additional options, ques-
tions with no answer account for 1.8%, those with
more than two possible answers account for 6.8%,
ill-formed questions account for 1.8%, and others
account for 2.1% of the total. The high frequency
of questions with more than two options is under-
stood to be due to the possibility that some answer
options are too similar to each other to create ques-
tions with a single correct answer. Through the
content validation process, 0.2% of the questions
are discarded.

Quality Control During the data collection pro-
cess, we repeat all tasks three times (i.e., three
batches). The first and second batches have no
workers in common, resulting in 52% of the fi-
nal dataset with a total of 66 workers. For the
final batch, we further qualify the workers who par-
ticipated in these batches using three criteria: 1)
writing more than nine questions, 2) mean human
validation accuracy of more than 66%, and 3) cre-
ating more than 90% of questions aswh-questions
to ensure dataset quality. Additionally, we manu-

Model RACE CosmosQA

DeBERTa-large† 92.1 89.7
DeBERTa-large 88.5 51.3
RoBERTa-large† 83.5 83.3
RoBERTa-large 50.5 38.3

Table 8: Accuracy (%) of models on our test set that
are fine-tuned on RACE and CosmosQA respectively.
† indicates that the model is trained on our training set
(i.e., supervised).

Model b lr

DeBERTa-large 24 1e-5
DeBERTa-base 48 3e-5
RoBERTa-large 24 1e-5
RoBERTa-base 48 3e-5
BERT-large 36 1e-5
BERT-base 72 3e-5

Table 9: Hyperparameters used in the experiments. b
and lr indicate the batch size and learning rate, respec-
tively.

ally check the comments given to each worker and
exclude workers who tend to produce yes/no ques-
tions and those containing unethical or politically
sensitive topics. The final batch yields 48% of the
final dataset with 38 workers.

D Comparison of Models Fine-tuned on
RACE and CosmosQA

In our experiments, we use RACE for fine-tuning
our pretrained language models to adapt them to
the multiple-choice task. This is because we ob-
serve that RoBERTa-large and DeBERTa-large fine-
tuned on RACE show higher performance than the
corresponding models fine-tuned on CosmosQA
(Table 8) in both unsupervised and supervised set-
tings.

E Details of Experiments

Table 9 reports the hyperparameters used in our
experiments. We use Huggingface’s Transformers
library (Wolf et al., 2020) for our experiments.

Table 10 reports the detailed results of DeBERTa-
large (fine-tuned on RACE) on our test set in the
unsupervised and supervised settings. Owing to
computational constraints, we conduct five differ-
ent runs only for this model, which is the strongest
among the models we use in our experiments. We
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FT Model Full input No passage No question
Accuracy Consist. Accuracy Consist. Accuracy Consist.

7 DeBERTa-large∗ 60.2±1.7 19.9±2.2 58.1±2.6 19.9±1.7 21.8±1.6 0.5±0.4
4 DeBERTa-large∗ 92.1±0.6 74.7±2.3 87.0±0.7 62.1±1.8 31.8±1.6 1.9±0.7

Table 10: Unsupervised and supervised performance (%) with the standard deviations of DeBERTa-large in five
runs. The five models are fine-tuned on RACE with different random seeds, respectively.

α Ours Cosmos RACE QuAIL

0.01 12/5 421/33 475/163 173/7
0.01/|V | 0/0 84/6 104/19 39/3

|V | 3,990 15,472 35,762 9,688

Table 11: The number of vocabulary items that appear
in correct/incorrect options above the levels of statistical
significance (α = 0.01 and its conservative Bonferroni
correction for the size of vocabulary |V |).

do not observe large deviations across the runs.

F Annotation Artifacts in Answer
Options

We report the number of examples above different
levels of statistical significance across the four an-
alyzed datasets in Table 11. The number for our
dataset above α = 0.01/|V | is zero, whereas those
for the other datasets are significantly larger. This
result shows that our dataset does not suffer from
token-level annotation artifacts in the answer op-
tions, supporting our findings on the option-only
training results in Section 6.1.

G Definitions of Reasoning Types

Annotating reasoning types is not a trivial task, par-
ticularly because the questions are fully written by
humans without templates. Moreover, it is possi-
ble to use many classification methods, and there is
rarely a consensus on reasoning types. For example,
CosmosQA proposes seven reasoning types: pre-
/post-conditions, motivations, reactions, temporal
events, situational facts, counterfactuals, and other
(e.g., cultural norms). In QuAIL, nine types of rea-
soning are proposed spanning three categories: tem-
poral, factoid, character properties for text-based
questions, coreference, causality, belief states, sub-
sequent entity states, event durations for questions
that require world knowledge, and unanswerable.
After categorizing these into five types, we add
three types: abstraction (summarizing what hap-

1. Condition: pre/post counterfactual conditions in-
troduced in the question.

2. Causality: causes and effects of events.
3. Temporal: temporal relations between events.
4. Character: characters’ emotions, motivations,

and reactions.
5. Factoid: extracting entities from the context.
6. Abstraction: lesson, conclusion, and summary of

the context.
7. Implication: paraphrasing and implication about

events.
8. Perception: reader’s perceptual responses.
9. Fictional: fictional situations as counterfactual

condition.

Table 12: Definitions of reasoning types.

pened), implication (paraphrasing), and readers’
(observers’) perceptions. In addition, we differ-
entiate reasoning over fiction from counterfactual
in that it is a more specific type of counterfactual
that is considered implausible for most people in
the real world. This results in the nine reasoning
types listed in Table 12. Appendix H presents some
examples.

H More Examples for Reasoning Types
and Difficulty

The reasoning types and their example questions
taken from our dataset are listed in Table 13. We
also show examples of passage, question, and an-
swer options in our dataset, including easy and hard
questions, in Figure 7. Each question ends with
its reasoning type and easy/hard classification, if
available.

I Annotation Instructions and Interfaces

I.1 Ending Writing

Figures 8 and 9 show the instructions used in the
story ending writing task. Figure 10 shows the
interface used in the story ending writing task.
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Reasoning Example

Condition Jeff is a child with a very vivid
sense of imagination. What is most
likely to have happened next?

Causality Which is the most likely caused the
guests to avoid shards of glass?

Temporal Which is most likely if Chris later
felt sick to his stomach?

Character What outcome would be most up-
setting to Ben?

Factoid Where did people hide the money
they got?

Abstraction What lesson did she learn from the
passage?

Implication Which answer implies Bob was
pleased with his performance?

Perception What is the most moral decision for
Danielle?

Fictional How does Dylan get home?

Table 13: Reasoning types we use in the annotation and
their example questions.

I.2 Question Writing
Figures 11, 12, and 13 show the instructions used in
the question writing task. Figures 14 and 15 show
the interface used in the question writing task.

I.3 Question Validation
Figure 16 shows the instructions used in the ques-
tion validation task.
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P1: Lydia was listening to an old CD her boyfriend had burned for her. Her CD player was old but still working
alright. She had lost track of her thoughts and was enjoying the music. Suddenly, the CD skipped out and stopped
playing.

Q1: Why was the CD player unable to function? (causality, easy)
Q2: Which answer indicates that Lydia would never be able to listen to the CD again? (implication, hard)
Q3: Which of the following is likely to occur if we know Lydia has realized the CD player cannot be fixed?

(condition, hard)
Q1 Q2 Q3 Options
� 4� � A: Lydia tried to fix it but the CD had a huge scratch.
� � � B: Lydia tinkered with the CD player and got it working again.
� � 4� C: Lydia went to bed upset, knowing she had to buy a new one in the morning.
4� 7� 7� D: She realized the batteries in her CD player had died.

P2: Darrel was waiting in the drive through for half an hour. He had about lost his patience. When he finally got
to the window he was about to scream at them. They immediately apologized before he could.

Q1: How did the employees react when they saw Darrel’s face turn red at the drive-through window? (character)
Q2: How did Darrel respond after the employees apologized for the long wait? (character, easy)
Q3: If Darrel’s mind was soon preoccupied with something entirely different, what was most likely to have

happened? (condition, easy)
Q4: In this scenario, what most likely happened if Darrel was pleased soon thereafter? (character, hard)
Q1 Q2 Q3 Q4 Options
� � � 4� A: They had an accident and offered free food to make it up to him.
� 4� � � B: He chose not to accept the apology and asked to speak to the manager.
4� � � 7� C: They quickly gave him his food and informed him that there were very few employees

working that day.
� � 4� � D: Before he could open his mouth, his engine started smoking and he had to call a tow

truck.

P3: Jan checked to make sure no one was around. Her two older brothers had been sneaking around the garden
lately. Being a curious child, Jan wanted to know what they were up to. She carefully opened the door to her
brother’s room.

Q1: If Jan smelled pleasant aromas and felt fresh air in the room, what did she likely discover? (condition)
Q2: What was the likely outcome if Jan was left still feeling clueless about what her brothers had been up to?

(character)
Q3: Which outcome is the most unlikely to occur in reality? (fiction)
Q4: Which would be particularly unpleasant for Jan if she suffers from acute arachnophobia? (character)
Q1 Q2 Q3 Q4 Options
� � � 4� A: Inside the back of their closet, she found several jars with spiders.
� � 4� � B: There was a strange looking alien peeking out of a corner with fearful eyes.
4� 7� � � C: They had taken plants from the garden and moved them to their room.
� 4� � � D: The door slammed shut on her face as the cameras alerted the brothers of an intruder.

P4: Billy liked Christmas songs. But didn’t know what a turtle dove was. He like turtle and knew they were green
and had a shell. He also knew what a dove was, a type of bird.

Q1: What happened if it was the worst Christmas of Billy’s life? (condition, easy)
Q2: What happened if he pictured a turtle with wings? (fictional, easy)
Q3: What outcome would be most tragic? (perception)
Q1 Q2 Q3 Options
� � � A: So he decided that 12 drummers drumming was a better part of the song.
� 4� � B: He decided that a turtle dove was likely a flying turtle.
� � � C: Billy became a famous author after embracing his love for holiday traditions.
4� � 4� D: He went to ask his mother about turtle doves, but when he found her in the bathtub, she

was dead.

Figure 7: Examples in our dataset. Check mark (4) indicates the correct option. Cross mark (7) indicates that
RoBERTa-large fine-tuned on RACE and our training set makes an incorrect prediction with that option.

3622



Figure 8: Instructions (1/2) used in the story ending writing task.
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Figure 9: Instructions (2/2) used in the story ending writing task.
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Figure 10: Interface used in the story ending writing task.
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Figure 11: Instructions (1/3) used in the question writing task.
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Figure 12: Instructions (2/3) used in the question writing task.
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Figure 13: Instructions (3/3) used in the question writing task.
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Figure 14: Interface (1/2) used in the question writing task.

3629



Figure 15: Interface (2/2) used in the question writing task.

Figure 16: Instructions used in the question validation task.
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Abstract
This article presents the specification and eval-
uation of DiaBiz.Kom – the corpus of dialogue
texts in Polish. The corpus contains transcrip-
tions of telephone conversations conducted ac-
cording to a prepared scenario. The transcripts
of conversations have been manually annotated
with a layer of information concerning com-
municative functions. DiaBiz.Kom is the first
corpus of this type prepared for the Polish lan-
guage and will be used to develop a system
of dialogue analysis and modules for creating
advanced chatbots.

1 Introduction

The rationale of the current research was predomi-
nantly connected with the lack of corpora including
dialogue texts in Polish which could be used to train
artificial intelligence for model creation. In order
to bridge this gap, we decided to create a corpus
that satisfies our expectations i.e. the one that con-
tains dialogue samples from several different fields
of business and is annotated for information con-
cerning pragmatic functions. At the first stage of
our work, we analysed the approaches adopted by
other researchers, whose solutions are described in
the "Related Works" section. Further, we describe
the process of data collection and its manual an-
notation. A separate section is dedicated to "Key
assumptions and limitations of the guidelines". The
paper ends with "Corpus overview" and "Conclu-
sions and future works".

2 Related work

While creating the Polish corpus of dialogue acts,
we analyzed some pre-existing corpora. In theo-
retical perspective we refer to the ISO/DIS 24617-
2, standardized annotations and the recommenda-
tions from the mentioned document. The ISO
standard (Bunt et al., 2010, 2012) is based on
particular innovations such as distinguishing be-
tween annotations and representations (according

to ISO Linguistic Annotation Framework (LAF,
ISO 24612:2009) and sets of dialogue participants,
dimensions, communicative functions, functional
segments and qualifiers (inventory of DiAML).
Both manual and automatic annotation of dialogue
segments are possible according to the ISO doc-
ument and both have been tested in practice and
described (Keizer et al., 2011; Petukhova et al.,
2014; Bunt et al., 2016; Chowdhury et al., 2016;
Ngo et al., 2017; Gilmartin et al., 2018). Dialog-
Bank is a language resource containing dialogues
with gold standard annotations corresponding with
the ISO 24617-2 standard (Bunt et al., 2016).

The development of annotation standards for par-
ticular corpora can be vividly exemplified by the
case of the Switchboard Dialogue Act Corpus (the
collection of telephone conversations). Telephone
Speech Corpus (LDC97S62) was originally col-
lected by Texas Instruments in 1990-1 and consists
of approximately 260 hours of speech. The first
release of the corpus was published in 1992-31. Ini-
tially, the utterances in the corpus were annotated
according to the DAMSL scheme for dialogue act
analysis. Subsequently, NXT-format Switchboard
Corpus was created with additional annotations
according to an international standard ISO 64217-
2:2012 (FANG et al., 2012). Conversion of one
annotation system to another required matching of
tags between them: DAMS consists of 59 combine
tags while ISO – of 56 core tags. The re-annotation
shows the significance of both standard scheme im-
provement and combining different standards on
the same linguistic material.

Another work addressing the creation of corpora
of dialogue acts concerns the DBOX corpus, cre-
ated within the DBOX project and aimed at devel-
oping an interactive Question-Answering dialogue
system (Petukhova et al., 2014). A more practi-
cal application of the project was to develop an

1https://catalog.ldc.upenn.edu/
LDC97S62
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interactive system used in computer games in three
European languages. The authors collected 338
dialogues incorporating the continuous data collec-
tion method, i.e. they initially used the so-called
Wizard-of-Oz paradigm with a human Wizard mir-
roring the system’s behavior, and later replaced the
Wizard with a complex dialogue system.

A similar approach was adopted by the authors
of The ADELE Corpus of Dyadic Social Text Con-
versations (Gilmartin et al., 2018) who created a
corpus consisting of 193 dialogues resumed with
the purpose of initiating interactions with other
people. Correspondingly to the DBOX corpus,
the ADELE corpus was predominantly constructed
with the view of training a spoken dialogue system
that could easily engage in a conversation during
a role-playing computer game. Both in the case of
DBOX and ADELE, the obtained dialogues were
manually annotated with dialogue act information
in accordance with the ISO 24617-2 dialogue act
annotation scheme, which was supplemented with
additional dimension (for DBOX) as well as sev-
eral additional dimension-specific functions and
general-purpose functions (for both corpora).

Other related works which are worth mentioning
include the Italian Luna Human-Human Corpus,
which is a collection of 572 dialogues in the hard-
ware/software helpdesk domain. The dialogues are
conversations of the users engaged in problem solv-
ing tasks; a subset of 50 dialogues was annotated
with the use of dialogues acts.

Furthermore, the DiaBiz.Kom corpus corre-
lates with the DialogBank corpus, which is men-
tioned as the current golden annotation standard.
Most dialogues from the DialogBank corpus were
taken from other corpora and re-segmented and re-
annotated. All annotations were double-checked
for inconsistencies, errors and omissions. The data
include samples which may be considered illustra-
tive examples for annotations (Bunt et al., 2016).
What is noteworthy here is the fact that suggestions
and remarks with regard to limitations and exten-
sions of the ISO standard put forth by the authors
of the DialogBank are often subsequently imple-
mented in the updated versions of ISO (Bunt et al.,
2018)).

Another point of reference was the corpus of
Vietnamese data using sources from IARPA Babel
Vietnamese Language Pack (Ngo et al., 2018). The
corpus includes 28 selected conversations whose
transcripts were manually segmented in turns and

then annotated. The agreement scores is 0.84
Fleiss’kappa measure.

In comparison to the previously collected cor-
pora DiaBiz.Kom is much more extended in terms
of the number of dialogues, and it covers differ-
ent fields of communication. All the data were
deliberately created to adhere to the research pur-
poses and practical applications. As a consequence,
DiaBiz.Kom could be considered the only corpus
which is to be used in all main business commu-
nication fields. Also, especially in comparison
to Switchboard Dialogue Act Corpus, the Dia-
Biz.Kom corpus uses much more up-to-date lan-
guage materials. Over the last 30 years the lan-
guages have been vastly influenced by overwhelm-
ing technological development especially by social
networks that have severely modified communi-
cation strategies and behaviours. The innovation
of our approach is based mainly on the detailed
consideration of the mutual influence of dialogue
dimensions and communicative functions, as well
as on the designation of the new functions not in-
cluded in the previously used standards. Finally,
DiaBiz.Kom was not only fully manually anno-
tated, but also verified in the agreement procedure,
which enhances the credibility of the corpus.

3 Data

DiaBiz.Kom corpus development is an annotation
effort performed simultaneously with DiaBiz cor-
pus creation (Pęzik et al., 2022). DiaBiz is a large,
multi-modal corpus of Polish telephone conversa-
tions conducted in varied business settings, com-
prising 3,766 call center interactions from eight
different domains, i.e. banking, energy services,
telecommunication, insurance, medical care, debt
collection, tourism and car rental. The phone-call
interactions were based on 110 distinct customer
service call scripts. They were then transcribed and
enriched with punctuation. The selected dialogues
from DiaBiz corpus are the basis for DiaBiz.Kom
annotation.

4 Annotation Procedure

In the first place, the annotations included com-
municative functions and dimensions. The anno-
tation process was divided into two main stages:
(1) initial phase and (2) the final annotation of Dia-
Biz.Kom corpus. Both stages were performed by
a team of qualified linguists with the use of the
Inforex system (Marcińczuk et al., 2017).
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Initially, the first version of the annotation guide-
lines was developed with an aim of achieving an ap-
propriate level of inter-annotator agreement. In or-
der to ensure high data quality, we have performed
several iterations of manual annotation prior to the
annotations performed on the final corpus. Three
main sources were successively used as a dialogue
base for manual annotation: LUNA corpus, sam-
ples of real-life data, and test sample from DiaBiz
corpus. Moreover, the team of linguists was sys-
tematically expanded, so that we received feedback
from annotators not involved in the early stages
of guideline development. This was done to avoid
a situation in which many of the rules of conduct
were not verbalized, but rather were based on the
annotator’s practical experience. All these efforts
aimed at making the guidelines as complete as
possible. We calculated inter-annotator agreement
by applying Positive Specific Agreement measure
(Hripcsak and Rothschild, 2005). The first stage
was continued until achieving the satisfactory level
of the inter-annotator agreement, which involved 8
iterations of manual annotation.

The second stage (the final annotation of Dia-
Biz.Kom corpus) is currently underway. The inter-
annotator agreement is constantly monitored and
remains high. The figure presents the improvement
of the average level of inter-annotator agreement.
It is currently at the level of 0.78 (for annotation
borders and categories) and 0.86 (for annotation
borders). Every dialogue included in DiaBiz.Kom
corpus is annotated by 3 specialists: 2 indepen-
dently working annotators and a super-annotator
who resolves all annotation inconsistencies (for cur-
rent number of annotations see Appendix A, Table
3).

During the two stages of annotation, we used es-
sentially the same annotation categories (i.e., those
specified in the ISO 24617-2 standard). The main
difference between the two stages was that during
the first annotation stage we annotated a greater
variety of texts, coming from diverse sources but
greatly resembling the target texts which were later
annotated at the second stage. Dividing the pro-
cesses into stages allowed us to test the model in a
variety of domains. Thanks to this solution, we did
not adjust the guidelines to data acquired or pro-
duced in one specific way. Furthermore, during the
first annotation stage the agreement level between
annotators was not particularly high. In order to im-
prove the inter-annotator agreement, we decided to

work on texts coming from other sources than the
target corpus. As a result, the DiaBiz.Kom annota-
tion was quite consistent from the very beginning,
and the need for corrections for the first iterations
was significantly reduced (the second phase con-
sisted of five iterations). Once the annotation was
established (in joint discussions of professional
linguists), the super-annotators returned to the pre-
viously annotated documents. The correctness of
the texts was additionally verified at the dimen-
sion marking stage, and in the future – it will also
be double-checked at the relation marking stage.
Consequently, the material will be verified several
times with a small chance of guidelines misinter-
pretations.

5 Key assumptions and limitations of the
guidelines

Even though the annotation guidelines were con-
stantly developed throughout the project, we de-
cided to follow a set of certain unchanging assump-
tions. The increasing annotator agreement was the
result of new specifications that were successively
added to the guidelines. Importantly, we were per-
sistently mindful of the versatility of the guidelines,
which was primarily aimed at facilitating various
possible applications of the corpus in the future.
This approach, however, also imposed certain lim-
itations on our work. Below we present the main
assumptions as well as some selected issues which
we encountered.

One of the main assumptions involved the choice
of the communication function for a given utter-
ance as primarily influenced by its goal, effect and
the context in which it is set. The form of the an-
notated statement is considered less important –
it may lead to the proper function, but it cannot
fully determine its choice. The above mentioned
situations may be illustrated with the following
examples.

a) Czy w czymś jeszcze mogę pani pomóc? (‘Is there anything else I can

help you with?’) [Interaction Structuring]

b) Agent: Zna Pani swój numer klienta? (‘Do you know what your client

number is?’) [Propositional Question, dimension: Task]

Client: Tak ‘Yes.’ [Answer, dimension: Task]

Formally, the utterance in (a) points to be inter-
preted as Questions, but due to its conventional-
ized form and structuring role in the dialogue, it is
marked as Interaction Structuring. Further, when
there is a discrepancy between the intention and the
effect (reaction), as illustrated in (b), we assign the
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specific function on the basis of the direct reaction.
Expressions that can naturally perform different

functions depending on the context (e.g. lexemes,
such as dobrze ‘well’, tak ‘yes’) have been ap-
proached more thoroughly in our guidelines, which
presently include specific contexts alongside with
the plethora of examples illustrating their use in
a given function. The goal that the sender wants
to achieve is a key criterion here. If the interlocu-
tor’s utterance is aimed at obtaining or transmitting
some information, it is assigned an appropriate
function from the Information-transfer group, even
if the form of this statement may initially indicate a
function belonging to the Action-discussion group
(c) and (d).

c) Proszę powiedzieć, na kogo zarejestrowany jest ten numer. (‘Please tell

me who this number is registered to.’)

d) Proszę w pierwszej kolejności o imię i nazwisko. (‘First of all, please

give me your name and surname.’)

The agent wants to obtain some information
from the client, and the usage of the word proszę
(‘please’) is only meant to make the question more
polite.

What also needs to be emphasized is that due
to the nature of the annotated dialogues, some of
the functions described in the ISO/DIS 24617-2
standard were not used (e.g. functions from the
Turn Management group), although they were in-
cluded in the guidelines. As a result, it will be
possible to apply them also to other types of dia-
logues in the future. The nature of the dialogues
is related to the difficulty of the texts and this is
also expressed by the degree of agreement between
annotators (see Appendix A, Table 2). The an-
notation process showed that particular functions
are performed in different ways depending on the
type or theme of the dialogue. In the process of
working on a given group of dialogues, a situation
regularly occurred when certain detailed solutions
were developed, which seemed to be completely
inappropriate and inapplicable for the next set of
texts. Over time, it has been noticed that this re-
peated situation is dictated by objective reasons.
Below we will discuss two illustrative examples of
such limitations. First, there are different schemes
used for banking dialogues, different – for debt
collection, sales, medicine, etc. A characteristic
example may present the construction of a bank-
ing dialogue, in which the employee is obliged to
verify the customer’s identity at the beginning of
the conversation by asking them a series of ques-

tions, the so-called TestQuestions (name and sur-
name, PESEL number, customer number, mother’s
maiden name, etc.). This element does not occur,
for example, in the debt collection dialogues: the
client’s identity is not strictly verified, as the em-
ployee knows who they are calling: most often they
just ensure the data available to them are valid (e.g.
in the form of PropositionalQuestion: Czy dodz-
woniłem się do pani Anny Nowak? ‘Have I reached
Anna Nowak?’ or CheckQuestion: Rozmawiam z
panią Anną Nowak, tak? ‘I am talking to Ms Anna
Nowak, right?’). Second, the choice of a dialogue
function is often determined by the relationship
between the interlocutors: whether it is based on
reciprocity ("equal with equals"), or rather hierar-
chical, and if hierarchical, who is superior and who
is somewhat subordinate to the interlocutor? The
following utterances can pose a very clear exam-
ple: Bardzo proszę o rozłożenie mojej zaległości
na raty. ‘I would very much like to request that my
arrears be spread out in installments’ (the debtor
is the sender) and Bardzo proszę o natychmias-
towe uregulowanie zaległości na numer podany w
mailu. ‘I strongly request that you pay the arrears
immediately to the number provided in the email.’
(the debt collector is the sender). Despite the fact
that both statements are built on the same syntactic
structure, in the former case we are dealing with
a Request, while in the latter – with an Instruct
(understood as a command).

6 Corpus overview

The aim is to develop a well balanced corpus of
annotated dialogues. Thus, we decided to anno-
tate 10 dialogues for each script. As a result Di-
aBiz.Kom corpus will consist of 1100 annotated
dialogues: 260 for banking domain, 150 for en-
ergy services, 180 for telecommunication, 110 for
insurance, 140 for medical care, 100 for debt col-
lection, 100 for tourism and 60 for car rental. The
annotation process continues. All the dialogues
(for current statistics see the Table 1) are anno-
tated with communicative functions. The Inforex
system enables to export the data using various for-
mats (xml, json, conll or txt). The corpus sample
is available under CC BY-NC-ND 4.0 license at:
http://hdl.handle.net/11321/886.

There are 138.968 annotated functional seg-
ments within DiaBiz.Kom at this stage (see Ap-
pendix A, Table 3). The annotations distribution
results from the nature of the dialogues. Some
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Domain Dialogues Tokens
Banking 264 327.731
Debt collection 100 109.189
Energy services 150 131.698
Insurance 110 116.151
Medical care 140 145.765
Car rental 60 71.265
Telecom-
munications

180 157.701

Tourism 100 218.465
All 1.104 1.277.965

Table 1: Current size of DiaBiz.Kom annotation in 2+1
system. The numbers refer to the dialogues with final
annotation.

communicative functions appear less frequently,
e.g. Turn Management functions. We actually
recorded few such cases where the annotation of
the functions within this group was obligatory. The
limited number of such situations may have re-
sulted from the fact that we annotated only those
segments whose primary function was to manage
dialogue turns. Such an approach was determined
by the implicit nature of Turn Management func-
tions (e.g., according to ISO 24617-2: “every time
someone starts speaking, this can be interpreted as
the performance of a turn-taking act; every time
someone stops speaking, this can be interpreted as
a turn-release act”). Implied functions were not
annotated manually. That is, we did not annotate
Turn Management functions in the situations where
the speaker, for instance, communicated that they
were ready to continue the dialogue (the function
we used in such situations was Contact Indication
as its definition was more extensive), e.g.

Agent: Dzień dobry. (‘Good morning.’) [initGreeting, dimension: Social

Obligations Management]

Client: Tak, słucham.‘Yes, I’m listening.’ [contactIndication, dimension:

Contact Management]

All these decisions were preceded by a number
of joint discussions of professional linguists over
specifically extracted samples from the target cor-
pus (i.e., the examples that had the potential to fall
into the category of Turn Management functions).
Also, it is significant to mention that Turn Manage-
ment functions are more natural to polylogues and
the annotated corpus consisted solely of dialogues.

7 Conclusions and future work

In this paper we have outlined DiaBiz.Kom – the
first corpus, which contains dialogues of various do-
mains with gold standard dialogue act annotations
in the Polish language to satisfy the criteria set by
machine learning applications. A crucial feature
of this resource is the manual layer annotation of
information about communication functions (based
on ISO standard). The achieved inter-annotator
agreement provides a way to use the corpus for
the purpose of machine learning. Further devel-
opment work on DiaBiz.Kom will aim at adding
annotation layers – especially those that specify the
communicative intent of the speaker (using frame
semantics) – and, subsequently, those that deter-
mine parameters congruent with the ISO standard
(communicative dimensions and relations between
annotations). The next step consists in expanding
the existing corpus with supplementary dialogues
using active learning techniques.
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Debt collection Insurance Medical Care Car rental Telcom
Information-seeking
setQuestion 0.73 (68) 0.70 (99) 0.82 (115) 0.64 (47) 0.70 (55)
checkQuestion 0.61 (32) 0.35 (33) 0.74 (47) 0.71 (28) 0.35 (12)
choiceQuestion 0.64 (12) 0.67 (15) 0.87 (52) 0.50 (5) 0.67 (16)
propositionalQuestion 0.73 (76) 0.66 (57) 0.70 (77) 0.83 (101) 0.66 (120)
Information-providing
inform 0.58 (477) 0.57 (489) 0.61 (477) 0.61 (394) 0.57 (367)
answer 0.73 (155) 0.67 (197) 0.75 (239) 0.71 (167) 0.67 (155)
confirm 0.72 (30) 0.44 (27) 0.71 (44) 0.69 (18) 0.44 (11)
Directives
request 0.28 (17) 0.67 (17) 0.65 (49) 0.57 (18) 0.67 (26)
suggest 0.31 (29) 0.58 (18) 0.17 (16) 0.36 (11) 0.58 (25)
acceptOffer 0.67 (1) 1.00 (5) 0.25 (7) 1.00 (1) 1.00 (4)
Commisives
offer 0.12 (8) 0.38 (12) 0.10 (13) 0.50 (1) 0.38 (23)
acceptRequest 0.00 (7) 0.53 (7) 0.59 (16) 0.32 (12) 0.53 (11)
Discourse Structuring
interactionStructuring 0.68 (161) 0.69 (247) 0.62 (253) 0.56 (163) 0.69 (150)
Feedback
autoPositive 0.72 (184) 0.78 (261) 0.71 (305) 0.66 (169) 0.78 (17)
alloPositive 0.57 (9) 0.50 (19) 0.60 (13) 0.86 (3) 0.50 (7)
all categories 0.74 (2827) 0.73 (2909) 0.75 (2999) 0.74 (2480) 0.73 (2107)

Table 2: Inter-annotator agreement (PSA) for selected communicative functions regarding 5 domains. The agreement
is based on annotations of the same two annotators performed on 20 dialogues within each domain. The number in
the brackets corresponds to the number of final annotations submitted by the independent super-annotator.
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Abstract
Recent breakthroughs in NLP research, such as
the advent of Transformer models have indis-
putably contributed to major advancements in
several tasks. However, few works research ro-
bustness and explainability issues of their eval-
uation strategies. In this work, we examine
the behavior of high-performing pre-trained
language models, focusing on the task of se-
mantic similarity for visual vocabularies. First,
we address the need for explainable evaluation
metrics, necessary for understanding the con-
ceptual quality of retrieved instances. Our pro-
posed metrics provide valuable insights in local
and global level, showcasing the inabilities of
widely used approaches. Secondly, adversarial
interventions on salient query semantics expose
vulnerabilities of opaque metrics and highlight
patterns in learned linguistic representations.

1 Introduction

Semantic similarity between pairs of sentences
serves a large variety of applications in the field of
natural language processing, such as document re-
trieval, text classification, question answering and
others. Even though such tasks have risen in pop-
ularity since the introduction of the Transformers
(Vaswani et al., 2017), and despite the attention
given on robustness and transparency of NLP trans-
formers (Hendrycks et al., 2020; Hsieh et al., 2019;
Baan et al., 2019) few efforts have addressed ex-
plainable evaluation (Leiter et al., 2022).

Text-Image retrieval is a real world semantic
similarity application where the task is to feed a
textual input to a system, and receive an image
as a response. Visual details of the retrieved in-
stance need to accurately correspond to the textual
descriptions, often in a fine-grained fashion. Any
mismatch between modalities can be easily per-
ceived by humans, and captured by automated met-
rics. Such evident disagreements can act as starting
points for further investigation, revealing inner pro-
cesses on the semantic matching procedures.

In this work, we aim to unveil the evaluation
strategy of semantic similarity models. Specifi-
cally, we apply pre-trained transformers on visual
vocabularies and obtain results via ranking. First,
we address the shortcomings of traditional ranking
metrics (Manning et al., 2008), which provide ei-
ther a binary answer (item found in top-k items or
not), or position-informed variants (item found in
the k-th position). However, such measures cannot
provide detailed insights regarding the contribu-
tion of the scene constituents to the rank position.
For example, if an instance is ranked in the k-th
position, items in previous k-1 positions may be
highly relevant to the ground truth one or on the
contrary, highly irrelevant. To this end, we propose
novel explainable ranking evaluation metrics that
decompose and quantify the conceptual differences
between ground truth and retrieved instances in lo-
cal and global level. Even then, we observe that
existing metrics lack a way to assess whether the
top-ranked items are actually relevant to the query.
For this reason, we construct adversarial queries
where an attribute is replaced with a conceptually
divergent one, in order to evaluate the response of
a ranking system to distorted inputs. In all cases,
frequently misperceived semantics captured by our
evaluation framework reveal patterns imprinted in
the learned representations of language models.
Our overall approach is applicable regardless of
the chosen language model or ranking system.

2 Related work

A whole new world of possibilities in NLP
has opened since the advent of the Transformer
(Vaswani et al., 2017), with successful milestones
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) serving as backbone models for
many applications. MPNet (Song et al., 2020) com-
bines permuted language modeling with masked
language modeling to overcome the shortcom-
ings of its predecessors. Towards reducing model

3639



sizes, knowledge distillation followed in Distil-
BERT/DistilRoBERTa (Sanh et al., 2020), MiniLM
(Wang et al., 2020) and TinyBERT (Jiao et al.,
2020), as well as parameter reduction techniques
implemented in ALBERT (Lan et al., 2020) achieve
more compact models while maintaining perfor-
mance. The textual semantic similarity task was
greatly benefited by Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019), a siamese-BERT
variant that allows efficient embedding representa-
tions using the aforementioned models accordingly.

Traditional evaluation metrics such as HITS,
Mean Reciprocal Rank (MRR), precision, recall
and F-score (Manning et al., 2008) have dominated
the field of information retrieval. While these met-
rics serve the purpose of assessing the retrieved in-
formation, they do not provide explainable means
of justification. Explainable evaluation metrics
(Leiter et al., 2022) aim to address this challenge.

Lack of trust of neural methods due to biases,
outdated training, and inaccurate assumptions has
led to the need for explainable methods in language
models. Research towards that direction has uti-
lized Concept Attributions (Sai et al., 2021; Yuan
et al., 2021), Chunk Alignments (Magnolini et al.,
2016), Feature Importance (Rubino et al., 2021;
Treviso et al., 2021), or Explanations by Simplifica-
tion (Kaster et al., 2021). Adversarial examples can
also provide insights regarding the inner workings
of obscure models, and are closely related to coun-
terfactual explanations, placing them in the broader
area of explainability (Linardatos et al., 2020). Nu-
merous works address the problem of adversar-
ial examples for natural language models (Zhang
et al., 2020b), with recent methods addressing the
robustness of NLP models such as BERT through
adversarial examples/attacks (Jin et al., 2019; Li
et al., 2020). In this work, we approach adversar-
ial examples from a different perspective, first of
all tackling a different problem than classification
that most works do, and secondly by realizing the
creation of adversarial examples on the semantic
rather than the linguistic level, investigating the
effect of semantic changes on the ranking of text-
image retrieval systems.

3 Overview

Our workflow consists of three stages: Represen-
tation, ranking and explainable evaluation. We
view text-image retrieval as a query-corpus re-
trieval problem, exclusively exploiting linguistic

information for representation and ranking, while
revealing visual information only at the evaluation
stage, where we compare retrieved images with
the ground truth ones. As input, we consider a
dataset of size N that contains complex scene im-
ages Ii ∈ I, accompanied by query-corpus pairs
(qi, ci), qi ∈ Q, ci ∈ C, i = 1, 2, ..., N with each
corpus ci consisting of an arbitrary number of sen-
tences sj , j = 1, 2, ..., lc. In the representation
stage, pre-trained sentence similarity transformers
M ∈ M from SBERT embed Q, C instances in a
common vector space U . Cosine similarity scores
between query-corpus embedding pairs in U are
sorted to provide a rank Ri per query qi in the
ranking stage, with Ri either lead to success, if the
ground truth image Igi with corpus ci is returned
at the top of the rank, or failure otherwise. We
provide a visual demonstration of the ranking pro-
cedure in Figure 2. All failures per model M , i.e.
image pairs (Ig, Ir) for which Ig ̸= Ir are stored in
a set F , which is further passed to the evaluation
stage. We then employ three methods to provide
an understanding and evaluation towards failures:
transparent ranking metrics (section 4), human eval-
uation and adversarial re-ranking (section 5). The
overview of our proposal is presented in Figure 1.

3.1 Visual concepts in language
Visual vocabularies contain descriptions about real
life scenes, including objects, relationships and
attributes. Datasets that connect visual vocabular-
ies paired with images, such as Visual Genome
(Krishna et al., 2016), COCO (Lin et al., 2014)
and Flickr (Young et al., 2014) set our sources
to construct purely textual query-corpus pairs, as-
suming that necessary visual information is con-
tained within the high quality annotations of those
datasets. In particular, the annotation diversity al-
lows either shorter, global descriptions, as in Flickr
and COCO captions, or detailed descriptions in lo-
cal level, as in Visual Genome region descriptions,
concatenated in a corpus ci per image Ii.

3.2 Optimal embedding representation
Obtaining an overall representation of a corpus ci
is not trivial, as existing transformers can handle
up to a certain number of input tokens per sentence.
To resolve this, we can independently embed each
corpus sentence sj ∈ ci, j = 1, 2, ..., lc using a
model M ∈M, and then calculate the average of
all vectors vcj . Therefore, uci = 1

lc

∑lc
j=1 v

c
j ∈ U

serves as the averaged representation for ci. An-
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Figure 1: Overview of our workflow towards explainable evaluation.

Figure 2: A closer look at ranking procedure. Green
lines denote ground truth matchings, while red lines
indicate matchings selected from maximum cosine sim-
ilarity scores between query and corpus embeddings.

other approach is to leverage state-of-the-art ab-
stractive summarizers (Zhang et al., 2020a; Raffel
et al., 2020) to obtain a meaningful shorter ver-
sion of ci while maintaining semantics as much as
possible, and then apply M ∈ M only once per
ci. Query representations uci ∈ U are produced by
inserting each qi ∈ Q in a model M ∈ M, or by
averaging over representations when qi comprises
from more than one sentences.

3.3 Ranking

Given a model M , each query representation
uqi ∈ U is paired with all corpus representations
{uc1, uc2, ..., ucN} ∈ U , and cosine similarity scores
are calculated for each pair. Higher cosine sim-
ilarity scores yield more similar representations,
therefore sorting from higher to lower scores pro-
vides the rankingRi per qi. The process is repeated
for all N images resulting in N2 calculations.

Traditional metrics evaluate the ranking success,
coarsely indicating the representation quality of
each M ∈ M. Recall@k returns the proportion
of ground truth images found in top-k ranked in-
stances for all queries q1, q2, ...qN , given that each
qi has only one ground truth ci. Mean Recipro-
cal Rank (MRR) is the averaged of the inverse of
the ground truth rank position ranki for each ci
given qi, considering the top-k items: MRR@k =
1
N

∑N
i=1

1
ranki

for each ranki ≥ k. We calculate

Recall@k and MRR@k for k=5, 10, N . Also, we
calculate the median rank position for all ci.

4 Explaining failures

We count as failure fi = (Ig, Ir)i ∈ F any instance
of a ground truth image Igi with corpus ci that
was not ranked in the first position (ranki ̸= 1)
given qi; instead another image Iri ̸= Igi with
cr ̸= ci achieved rankr = 1. Following the ’blind’
evaluation strategy of traditional ranking metrics,
we provide a measure of retrieval failures as the
cardinality of the failure set: F = |F| for each M .

However, it is not possible to verify if Iri can
accurately satisfy qi without exploiting visual infor-
mation. To this end, we exploit visual annotations
and human perception to quantify the suitability
of each Iri ∈ fi with respect to qi. By decompos-
ing all semantics that contribute to the suitability
of each Iri we obtain a discrete and transparent
conceptual measure of similarity between (Ig, Ir)i.

4.1 Towards explainable evaluation metrics

We design four evaluation stages for all failures fi,
starting from more influential concepts and mov-
ing towards less prevalent details. Visual concepts
are focused on scene objects. For fair comparison
with traditional ranking metrics, we demonstrate a
query-agnostic evaluation approach: we compare
concepts between retrieved and ground truth im-
ages without considering query semantics. In the
next paragraphs we drop i subscript for simplicity.

Concept agreement - CA Considering V as a
set of visual concepts, concept agreement mea-
sures the percentage of ground truth concepts V(Ig)
contained in the retrieved concept set V(Ir) over
all V(Ig) concepts for each fi. Let V(g,r) =
V(Ig) ∩ V(Ir) the set of common concepts:

CAf =
|V(g,r)|
|V(Ig)| , f = (Ig, Ir)
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Higher CA indicates higher concept similarity.
For example, if V(Ir) = {Dog,Frisbee,Park}
and V(Ig) = {Dog,Ball,Park}, then the CA=2

3 .
On the other hand, if V ′(Ir) = {Cat,Fish}, then
CA=0, as no overlap exists. This way we can con-
fidently conclude that the first retrieved image is
conceptually closer to the ground truth than the sec-
ond, and by extension the model used to retrieve
the first image is better with respect to CA.

Non-common concept similarity - NCS aims
to provide a distance measure between con-
cepts present exclusively in either V(Ig) or
V(Ir). For example, we would expect the
set {Dog,Frisbee,Park} to be more similar to
{Dog,Ball,Park} than {Dog,Cat,Park}, since
the non-common concept Frisbee is conceptually
closer to Ball than Cat. Mathematically, let Dg =
V(g,r)−V(Ir) and Dr = V(g,r)−V(Ig), with both
Dg, Dr ̸= ∅. Other than that, Dg and Dr may con-
tain different number of concepts. Then, a measure
of concept distance can be provided by calculating
the path similarity score ps of corresponding Word-
Net (Fellbaum, 1998) synset pairs, based on the
shortest available path between those two concepts.
Path similarity ps ranges between 0 and 1.

An optimistic NCS metric returns the maximum
possible cumulative ps averaged over the number
of pairs, by appropriately selecting concept pairs
between non-emptyDg andDr. The maximization
of NCS requires a dynamic programming solution,
as naive strategies taking into account all possible
Dg and Dr pairs would yield a factorial amount of
combinations. To trespass this prohibitive complex-
ity, we create a bipartite graph G = (Dg, Dr, E)
from Dg and Dr: all concept nodes from the one
set are matched with all the nodes of the other via
edges ey ∈ E, y = 1, 2, ..., |Dg| × |Dr|, while
no edges are allowed within the same set. Edge
weights wey correspond to WordNet ps scores be-
tween synsets of connected nodes.

Consequently, the maximum weight bipartite
matching on G refers to pairing Dg and Dr con-
cepts so that the cumulative edge weight is max-
imized. An optimized version of the Hungarian
algorithm (Kuhn, 1955; Galil, 1986) implemented
by NetworkX1 reduces the computational complex-
ity of finding the maximum ps to O(|V |3), where
|V | = max(|Dg|, |Dr|).

Therefore, NCS can be written as:

1NetworkX max weight matching

NCSf = avg(max_weight_match(G)),
G = (V(g,r) − V(Ir), V(g,r) − V(Ig), E))

Higher NCS scores reveal more similar concepts.

Concept enumeration - CE Real world
scenes may contain repeated instances of
same-class concepts, forming concept multisets
Vm = {(V1, |V1|), (V2, |V2|), ..., (Vx, |Vx|)},
where V1,V2, ...,Vx denote concept categories,
and |V1|, |V2|, ..., |Vx| cardinalities per category.
The cardinality per concept category is called
concept multiplicity in the multiset. CE penalizes
differences in multiplicities between common
concepts of Ig and Ir for each fi:

CEf =
x∑

j=1

||Vj(Ig)| − |Vj(Ir)||Vj(Ig)=Vj(Ir)

Higher CE scores demonstrate higher enumera-
tion disagreement, deeming lower CE values more
favorable. For example, if Ig contained 10 dogs and
1 frisbee {(Dog, 10), (Frisbee, 1)}, a retrieved Ir
with 1 dog and 1 frisbee would have CE=9, while
an I ′r with 10 dogs and 1 ball would have a CE=0.
Therefore, the first image yields a worse CE score
than the second, even though the second would
have worse CA and NCS scores than the first one.

Size disagreement - SD Even in cases where
there is a high agreement of objects and multiplic-
ities between Ig and Ir, disagreement in object
sizes may correspond to semantically divergent
scenes. For example an image with a dog in the
foreground (large bounding box) is different than
an image of a dog in the background (small bound-
ing box). To capture this difference, we design an
optimistic SD metric which returns the area dif-
ferences of bounding boxes DA = |Ag − Ar| for
all available object matchings. Such matchings oc-
cur by pairing concepts of the same category u be-
tween Ig and Ir up to the point that no more unique
pairs can be constructed. This is equivalent of cre-
ating bipartite graph Gu = (Vu(Ig),Vu(Ir), E),
where Vu(Ig),Vu(Ir) belong in the same u and
edge weights wey , ey ∈ E, y = 1, 2, ..., |V(Ig)| ×
|V(Ir)| denote the area differenceDA between con-
cept nodes. Pairing concepts with similar bound-
ing box areas can be considered as the optimal
choice, therefore node pairs connected by lower
edge weights wey are preferred. Finding the min-
imum weight matching provides the most similar
pairs size-wise, and can be solved in polynomial
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time using the NetworkX2 implementation of Karp
algorithm (Karp, 1978). The matching process is
repeated for all concept categories in the multiset
Vm, resulting in a set of graphs Gm:

SDf =
Vu∈Vm∑

avg(min_weight_match(Gu)),

Gu = (Vu(Ig),Vu(Ir), E), Gu ∈ Gm

A simplified binary version of SD increases a
sum if area differences of paired concepts are above
a predefined threshold TD.

4.2 Human evaluation via crowdsourcing

Query-agnostic evaluation regards all scene seman-
tics, even if in fact they are not present in the query.
On the other hand, incorporating query informa-
tion at evaluation stage conditions concept impor-
tance upon the presence of a concept in the query,
forming a query-informed evaluation strategy. We
conducted query-informed human evaluation exper-
iments considering all failures in F and penalizing
semantic disagreements only if those semantics are
mentioned in qi. Evaluators were primarily asked
to mark which salient semantics were clearly mis-
interpreted in retrieved images with respect to the
given query among the options: object class, ob-
ject color, object enumeration, action, size, details.
Otherwise, if Iri can be considered as conceptually
similar to Igi , it is marked as successful alterna-
tive. Additionally, the overall retrieval quality is
cross checked via qualitative ratings, assessing the
conceptual similarity between Igi , Iri given qi. De-
spite being unfair to compare with the -stricter-
automated metrics, we expect lower values for ob-
ject enumeration and size failure classes comparing
to CE, SD metrics.

The crowdsourcing experiment reveals the most
frequently misinterpreted attributes or combina-
tions of attributes. Loss of conceptual informa-
tion can be either attributed to dataset quality, i.e.
salient query semantics not present in corpus, or on
the capacity of the linguistic representations. Key-
word matching between qi and ci excludes cases
where the ground truth query-corpus pair contains
very few common concepts, enabling the remain-
ing samples to reveal patterns within the learned
representations.

2NetworkX min weight full matching

5 Adversarial re-ranking

We create adversarial queries q → q∗ targeting key
attributes and produce respective representations
in U , upon which adversarial rankings R∗ per q∗

are extracted. Figure 3 provides the causal graph
of adversarial interventions for any qi ∈ Q.

5.1 Substituting salient attributes

We perturb salient semantics in queries qi ∈ Q,
producing q∗i ∈ Q∗, and evaluate the changes oc-
curring in the rank. An appropriate non-minimal
adversarial perturbation must conceptually reverse
salient semantics, be focused on an individual se-
mantic each time, and the resulting query q∗i should
be linguistically correct. With respect to those
requirements and in order to restrict the search
space of adversarials, we target substituting ob-
ject attributes. Initially, generic adversarial queries
include replacing attributes with their antonyms.
More refined subsequent adversarials focus on re-
placing object colors and sizes; such substitutions
are discrete, fast and controllable.

Antonyms are extracted via relevant WordNet
functions for any adjective present in a query. If
more than one antonyms are returned, one is ran-
domly picked to substitute the actual word.

Color substitution refers to changing colors
present in the sentence with another distant color.
Color distance is provided via the RGB values of
Matplotlib colors3. We set a proximity threshold to
ensure perceptually non-negligible color changes.
Two possible substitutions are attempted: either
considering all RGB colors (color-all), or colors
only mentioned in the dataset (color-in).

Size substitution is an antonym substitution spe-
cialized in sizes. Words such as large, big, enor-
mous, huge are substituted with a random choice
among small, little, minor, tiny and vice versa.

5.2 Re-ranking evaluation

Adversarial query representations uq∗i ∈ U of
q∗ ̸= q with uci ∈ U of corpus ci may directly
influence the final ranking R∗ when rank∗i< ranki
or inversely rank∗i>ranki. Intuitively, any non-
negligible perturbation of q should result in worse
position rank∗i >ranki, as the adversarial query rep-
resentation uq∗i would diverge from ci comparing

3Matplotlib colors
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to uqi , due to the substitution of the actual seman-
tic with a conceptually different one. However,
given the relative nature of ranking, some instances
may stay in the same position rank∗i =ranki, or even
go higher. Ascending in the rank does not imply a
better q∗i , ci matching, except if their in between co-
sine similarity increases; instead, the distorted rep-
resentations push lower previously higher-ranked
instances, virtually improving some rank∗i . In any
case, we expect all ranking metrics to perceptibly
drop, as we pull apart ground truth matchings in U .

Figure 3: Conventional causal graph (left) and adversar-
ial intervention causal graph (right) when q → q∗.

6 Experiments

We implement the same experimental strategy on
Flickr8k, Flickr30k and VG∩COCO datasets, ob-
taining query-corpus representations in a common
semantic space U for a variety of models M ∈M.
The code for our experiments is provided in sub-
mitted supplementary material.

6.1 Ranking results

We focus on presenting experiments on
VG∩COCO of N=34k images, which is
the most challenging: the dataset size N itself, as
well as the more detailed region descriptions of Vi-
sual Genome which comprise a larger corpus set C,
require accurate linguistic representations in order
to retrieve more relevant images. Table 1 presents
a subset of ranking results on VG∩COCO.

6.2 Optimal model choice

Selected language models are designed for seman-
tic similarity, and according to the datasets they
have been pre-trained on, they can be divided
in: all- models pretrained and fine-tuned on 1B
sentence pairs from multiple sources; multi-qa-
trained on 215M diverse question-answer pairs,
learning to map queries to passages; stsb- mod-
els trained on the STSbenchmark, which contains
sentence pairs annotated with similarity scores;
paraphrase- models with more than 86M para-
phrase sentence pairs containing more challenging
and uncurated characteristics comparing to STSb;

nq- models trained with 100k real Google search
queries mapped to Wikipedia passages; nli- models
incorporate natural language inference data pairs
(premise/hypothesis), included in AllNLI dataset.

By conducting a large number of experiments to
estimate the performance of such models on visual
vocabularies, we observe certain patterns in ranking
results. In all experiments, most paraphrase mod-
els consistently outperform the rest. Paraphrasers
have been pre-trained on image captions (COCO,
Flickr), which actually serve as paraphrasing data:
during the construction of these datasets, annota-
tors have independently produced varying descrip-
tions for the same concepts. Query-corpus pairs
can be viewed as the one being a paraphrase of the
other, thus paraphrasers have learned a suitable rep-
resentation for this matching, together with their
exposure to visual vocabularies.

6.3 Explainable evaluation
In all following experiments, we consider results
from the best performing model MiniLM-L3 on
VG∩COCO. In total, F=28817 queries failed to
retrieve their corresponding ground truth Ig.

Local evaluation The real power of our proposed
metrics lies in local level. We present an example
from the color and details failure category below.
Given a query qi (caption), Figure 4 shows the
ground truth Igi (left) and the retrieved Iri (right).

Figure 4: A herd of zebras grazing in a lush green field

The set of ground truth object synsets
is {trunk.n.01, hill.n.01, tree.n.01, sky.n.01,
field.n.01, branch.n.01, head.n.01, leg.n.01,
leaf.n.01, zebra.n.01, mane.n.01} of cardinality
11, and the set of retrieved ones is {grassland.n.01,
field.n.01, zebra.n.01, mane.n.01, grass.n.01} of
cardinality 5. Common synsets are {zebra.n.01,
mane.n.01, field.n.01} of cardinality=3, result-
ing in CAi=27.28%. Regarding NCS, the con-
structed bipartite graphG contains |V |=10, |E|=16,
and the best matched synset pairs according
to the maximum weight matching are {hill.n.01,
grassland.n.01} with ps=0.111, and {tree.n.01,
grass.n.01} with ps=0.167. The average ps for all
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 13.31 26.93 34.31 18.18 19.16 20.45 34 86.69
paraphrase MiniLM L12 14.24 29.89 38.34 19.89 21.02 22.37 24 85.76
paraphrase MiniLM L3 15.31 30.92 39.48 20.97 22.11 23.42 23 84.69
paraphrase MiniLM L6 14.39 30.01 38.51 19.96 21.10 22.46 24 85.61
paraphrase TinyBERT L6 14.55 30.38 39.12 20.27 21.43 22.82 22 85.45
paraphrase albert base 13.12 27.83 36.11 18.43 19.54 20.91 28 86.88
paraphrase albert small 14.56 30.25 39.04 20.23 21.40 22.75 23 85.44
paraphrase distilroberta 14.51 30.39 38.91 20.23 21.36 22.74 22 85.49
paraphrase mpnet 13.99 28.99 37.40 19.39 20.50 21.84 26 86.01
stsb distilroberta base 13.41 27.04 34.28 18.32 19.28 20.55 35 86.59
stsb mpnet base 14.05 28.26 35.93 19.23 20.24 21.49 32 85.95
stsb roberta base 13.69 27.38 34.79 18.67 19.65 20.92 34 86.31

Table 1: Rank results on the VG∩COCO dataset for our best 12 models. Full Table (11) in Appendix.

matched pairs leads to NCSi=0.139. Common ob-
ject enumeration provides the following multisets:
Vgm = {zebra.n.01, 5, field.n.01, 1, mane.n.01, 1}
and Vrm ={zebra.n.01, 7, field.n.01, 1, mane.n.01,
5}. Therefore, CEi= 6. As for SD for TD=1,
3 bipartite graphs are created for the 3 common
synsets. The first graph Gmane contains |V |=6 and
|E|=5, resulting in 1 minimum weight matching of
weightDA=2.30≥ TD. Therefore SDmane=1=SDi.
The second graph Gzebra consists of |V |=11 and
|E|=28, resulting in 4 minimum weight matchings,
from which none trespassed the threshold TD, re-
sulting in SDzebra=0, thus maintaining SDi=1. Fi-
nally, theGfield graph of |V |=2 and |E|=1, leads to
1 minimum weight matching of weightDA=1.369≥
TD, resulting in SDfield=1, which increases the to-
tal sum SDi=2. Having in total 6 matches for all
three graphs, the averaged SDi=33.3% for this fi.

Perceptually, a major Igi , Iri disagreement can
be attributed to not satisfying lush, green attributes
rather than semantics addressed by our metrics. In-
deed, human evaluators rated Iri-qi relevance with
6/10 on average and all of them marked details and
color as the failure categories. As for traditional
ranking metrics, Igi was placed in rankgi=294
with reciprocal rank score of 0.0034 and R@k=0,
k=1,5,10. Obviously, we cannot extract much in-
formation in local level about how much Igi and
Iri conceptually deviate and what we should poten-
tially regard and request from retrieved instances
(colors such as green instead of yellow, details
such as lush instead of arid) to ascend in the rank.
To this end, we conclude that traditional ranking
metrics are only helpful in a very abstract level.

Human evaluation Results regarding misper-
ceived semantics classes are presented in Table
2. The 82.52% of evaluated image pairs resulted in
one semantic class disagreement, while the remain-
ing 14.56% and 2.91% contained two and three
semantic class disagreements respectively. The av-
erage rating over all classes was 8.47/10.

First, human evaluation experiments can indicate
the degree of strictness of our automated metrics,
as any query-agnostic metric may over-penalize
semantics present in the Igi and ci but not in qi.
Indeed, query-informed variants of our metrics are
more relaxed. Moreover, patterns in reported fail-
ures also indicate patterns imprinted in the learned
linguistic representations. Traditional ranking met-
rics cannot derive such fine-grained observations.

Altern- Obj. % Action Detail
atives % class color enum. size % %
23.30 5.83 17.48 11.65 6.14 7.77 54.37

Table 2: Semantics disagreement percentage per class

Rules in failures The frequent class of success-
ful alternatives indicates that even when automatic
metrics consider an Iri as failure, it may actually
be a conceptually correct answer to qi. Qualita-
tive analysis over successful alternatives further
demonstrated that almost all (Igi , Iri) pairs of this
class were visually divergent, even though concep-
tually equivalent. Also, details and object color
failure classes appeared often enough, indicating
that those semantics are rather bypassed in order for
others to be preserved. Combinations of semantics
did not present any significant pattern; all seman-
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tics co-occurrences appeared in less than 10% of
the evaluated instances. However, we did observe
some frequent rules, which can be translated as:
if semantic A disagrees, then semantic B will dis-
agree as well. The rule action→details (if action
appears then details will appear) is observed in
54.37% of the instances containing action; object
enumeration→object color covers 17.48% of the
instances containing color; finally, the reverse rule
object color→object enumeration was observed in
11.65% of the instances containing enumeration.

Global evaluation We present global query-
agnostic results for our metrics. Despite our met-
rics being more meaningful in local level, global
evaluation is useful for model benchmarking.

With 134630 common concepts between all
(Ig, Ir)i ∈ F , the average concept agreement (CA)
value is 22.29%, meaning that on average almost
the 1/4th of Ig concepts appear in Ir.

With 903987 non-common concepts between
all (Ig, Ir), and 134630 common ones, we re-
trieve 627833 and 110839 WordNet synsets respec-
tively. The maximum weight matching between
non-common synsets results in 184747 maximum
weight matchings, equivalent to the 29.43% of all
non-common synsets. Averaging over matchings
(WordNet path similarities) for all (Ig, Ir), pro-
vides the average non-common concept similarity
(NCS) score of 0.122.

With 41244 concept sets of same multiplicity
and 69595 of different multiplicities regarding
matched concept categories for all (Ig, Ir), most
common concept enumeration (CE)=1 and aver-
age CE=8.638 instances for concepts of the same
category reveals that in most cases there are not
major enumeration differences.

Focusing on the binary SD, we set the area differ-
ence threshold TD=100%, increasing size disagree-
ment (SD) by 1 iff DA ≥ 1 between two concept
bounding box areas. Thus, average SD=20.35%
for all (Ig, Ir), indicating that around 1/5th of com-
mon objects have non-negligible size differences.

Our metrics in global level reveal some extra ca-
pabilities. Most lower-ranked instances contained
erroneous annotations, allowing a post-hoc dataset
cleaning step that could not have been automati-
cally realized otherwise.

Global results regarding our proposed metrics
for all the models are presented in Table 3. More-
over, we offer some additional insights:

• Object hit: total number of common objects

found between ground truth - wrongly re-
trieved images (Ig, Ir) at top-1 position.

• Object miss: total number of ground truth
objects not found in top-1 retrieved images.

• Matched % synsets: Percentage of ground
truth synsets found in top-1 retrieved images
out of all ground truth synsets.

• Average % object enumeration disagreement:
percentage of objects having the wrong num-
ber of instances between ground truth and top-
1 retrieved over all ground truth objects (both
having right or wrong number of instances).

As observed, the various explainable metrics in-
dicate different models as best/worst performers,
revealing that fine-grained evaluation may disagree
with traditional coarse evaluation, while providing
some useful insights.

6.4 Adversarial re-ranking evaluation

Adjectives were substituted by their antonyms in
the 30.93% of total queries, while color and size
substitutions occurred in the 47.04% and 30.77%
of queries respectively, producing q∗i ̸= qi. Up-
dated query representations resulted in re-ranking
of instances; specifically, on average almost 70% of
instances changed position in R∗ comparing to R
as presented in Table 4. Adv.query column refers to
number of perturbed queries, while Lower, Higher,
Same columns refer to the position change.

By qualitatively assessing adversarial failures,
we observe that adversarially perturbed semantics
are rather bypassed in favor of preserving object
class. Even if this could imply representation ro-
bustness, on the other hand it can be attributed to
language model biases towards object identities. In
any case, existing ranking metrics cannot indicate
potential biases, patterns and rules in the linguistic
representations due to their opaque nature.

6.5 Non-explainable evaluation vulnerabilities

Overall, despite the re-arrangements of individual
instances, R∗ was only marginally altered in global
level for any of the adversarial perturbations ac-
cording to all query-agnostic metrics (Table 5).
Therefore, either by providing meaningful and rel-
evant queries or conceptually divergent ones, the
response of a semantic similarity system is virtually
the same. This invariance over non-minimal inter-
ventions generally questions the trustworthiness of
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Name CA NCS CE SD obj obj matched % avg% enum
↑ ↑ ↓ ↓ hit ↑ miss ↓ synsets ↑ disagr.↓

all distilroberta 21.75 0.12 9.14 20.02 136025 932261 29.43 2.40
all MiniLM L12 21.72 0.12 8.88 19.88 134188 920214 29.23 2.35
all MiniLM L6 21.90 0.12 8.91 19.53 135687 926717 29.27 2.39
all mpnet base 21.74 0.12 9.14 19.24 135278 926724 29.44 2.39

all roberta large 21.85 0.12 9.13 19.60 136720 935614 29.42 2.39
multi qa distilbert cos 21.84 0.13 9.06 16.97 140754 1007800 30.60 2.49

multi qa MiniLM L6 cos 21.93 0.13 8.69 18.86 141399 1008889 30.21 2.45
multi qa mpnet base cos 21.87 0.13 9.24 16.69 140455 1004153 30.54 2.52

nli distilroberta base 22.12 0.12 8.89 19.68 138882 943947 29.75 2.45
nq distilbert base 21.39 0.12 9.03 17.53 139608 1020776 30.27 2.38

paraphrase albert base 22.13 0.12 8.92 19.71 136867 927060 29.52 2.43
paraphrase albert small 22.40 0.12 8.89 19.48 136319 909759 29.69 2.47
paraphrase distilroberta 22.28 0.12 8.63 19.49 135679 911325 29.32 2.39
paraphrase MiniLM L12 22.28 0.12 8.69 20.05 136102 910631 29.23 2.39
paraphrase MiniLM L3 22.29 0.12 8.64 20.35 134630 903987 29.43 2.42
paraphrase MiniLM L6 22.07 0.12 8.61 19.37 134623 914535 29.46 2.37

paraphrase mpnet 22.26 0.12 8.71 19.46 136482 911716 29.08 2.39
paraphrase TinyBERT L6 22.15 0.12 8.55 19.67 134808 916573 29.17 2.36

stsb distilroberta base 22.09 0.12 8.91 19.99 136181 928388 29.81 2.45
stsb mpnet base 21.84 0.12 9.10 19.95 133670 916167 29.58 2.41
stsb roberta base 22.04 0.12 8.90 19.68 135544 925948 29.75 2.44
stsb roberta large 21.10 0.12 8.29 20.11 134706 961836 29.18 2.24

xlm distilroberta paraphrase 22.08 0.12 9.05 19.35 138934 951708 29.60 2.44

Table 3: Results from our proposed metrics plus some additional information occurring from our metrics per model

opaque ranking metrics, highlighting even more the
need for explainable evaluation. Even then, query
semantics are not taken into account, generally ex-
posing query-agnostic evaluation against adversar-
ial attacks: even if the best possible answer to a
query is returned based on similarity measures, how
can we ensure that it is good enough in terms of
actual relevance? The query-corpus relevance can
be easily and explicitly measured via their common
concepts, an approach followed in query-informed
evaluation. To this end, we conclude that explain-
able and, even better, query-informed metrics are
necessary to ensure evaluation robustness.

Adv. Adv. rank∗ %
Change query Lower Higher Same
Antonym 10523 41.30 27.73 30.97
Color-all 16007 48.29 24.04 27.68
Color-in 16007 49.73 22.35 27.92
Size 10471 37.26 28.28 34.46

Table 4: Changes for all adversarial perturbations.

Adv. Recall (%) MRR (%) Fails
Change @1 @10 @10 @all (%)
Original 15.31 39.48 22.11 23.42 84.69
Antonym 15.13 38.82 21.76 23.07 84.87
Color-all 14.52 38.16 21.15 22.48 85.48
Color-in 14.52 38.05 21.12 22.46 85.48
Size 15.19 39.32 21.97 23.29 84.81

Table 5: Rank results on adversarial queries.

7 Conclusion

In this work, we presented an evaluation framework
for text-image retrieval and experimented with pre-
trained transformer-based semantic similarity mod-
els. Our approach achieved in capturing representa-
tion patterns and evaluation shortcomings of widely
used metrics in local and global level. As future
work, we aspire to extend our automated metrics to
include attributes and spatial relationships between
concepts, and produce adversarial re-rankings us-
ing verb antonyms, singular-plural sentence trans-
formations and rare synonyms of salient concepts.
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A Appendix

A.1 Qualitative results of retrieved vs ground
truth pairs

The following Figures 5, 6, 7, 8 demonstrate some
interesting results regarding retrieved images and
their ground truth matchings with respect to a given
query. Images to the left correspond to the retrieved
image Iri , while images to the right denote the
ground truth image Igi with respect to a query qi
appearing in the caption. The caption also mentions
the failure category the images belong, according
to human evaluation results.

A.1.1 Human evaluation details
We present some distributions regarding human
evaluation experiments. Figure 9 regards the rating
distribution according to our evaluators’ perception

Figure 5: Successful alternative.Many people are relax-
ing under their umbrellas on the beach.

Figure 6: Object color.A vase sitting on a table with
white flowers in it.

Figure 7: Object enumeration.A dirt bike rider perform-
ing a stunt while in the air.

Figure 8: Detailed semantics.A cat playing with a shoe
in a grassy field.

of ground truth-retrieved image relevance with re-
spect to the given query. Figure 10 presents the
number of failed semantics categories per image.

A.2 Analyzing adversarial position changes

Antonym-based queries Substituting adjectives
with their antonyms was applicable on 10523
queries which resulted in updated embedding rep-
resentations: the cosine similarity cos(uqi , u

q∗
i ) <

1. By exclusively considering adversarial in-
stances with updated representations uqi ̸= uq∗i ,
we observed that 4346 instances (41.30%) were
ranked lower than the original ones, 2918 instances
(27.73%) were ranked higher, and 3259 instances
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Figure 9: Human evaluation ratings (1-10).

Figure 10: Number of marked disagreeing semantics
per Igi , Iri pair for all evaluated image pairs in F .

(30.97%) remained in the same position.

Size-based queries 10471 queries of the dataset
where perturbed with respect to size-oriented
words. Consequently, 3902 instances (37.26%)
were ranked lower than the original ones, 2961 in-
stances (28.28%) were ranked higher, and 3608
instances (34.46%) remained in the same position.

Color-based queries 16007 queries that contain
colors were adversarially perturbed. Regarding the
color-in) experiment and by considering adversar-
ial instances with updated representations, 7960
instances (49.73%) were ranked lower, 3578 in-
stances (22.35%) were ranked higher, and 4469
instances (27.92%) remained in the same position.
In the color-all experiment, we observe that 7729
instances (48.29%) were ranked lower than the orig-
inal ones, 3848 instances (24.04%) were ranked
higher, and 4430 instances (27.68%) remained in
the same position.

Those results are summarized in Table 4.

A.3 Ranking results
In this section we present all ranking experiments
conducted in this work. Those include all 3 datasets
(Flickr8K, Flickr30K and VG∩COCO) and rep-
resentation choices (summarizing with T5 (Raf-
fel et al., 2020) or pegasus (Zhang et al., 2020a)
abstractive summarizers before using an SBERT
model, or embed corpus sentences intependently
using an SBERT model and then calculate the aver-
aged embedding representation).

Tables 6, 7, 8 refer to Flickr8K experiments;
Tables 9, 10 refer to Flickr30k experiments; finally,
11, 12, 13 refer to VG∩COCO experiments.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.4486 0.6670 0.7477 0.5307 0.5418 0.5504 2 55.14
all MiniLM L6 0.4354 0.6568 0.7392 0.5183 0.5294 0.5380 2 56.46
all distilroberta 0.4699 0.6972 0.7754 0.5557 0.5662 0.5744 2 53.01
all mpnet base 0.4664 0.6872 0.7669 0.5503 0.5610 0.5692 2 53.36
all roberta large 0.4858 0.7081 0.7900 0.5700 0.5811 0.5886 2 51.42
multi qa MiniLM L6 cos 0.3662 0.5687 0.6541 0.4411 0.4526 0.4628 3 63.38
multi qa distilbert cos 0.3797 0.5874 0.6738 0.4583 0.4699 0.4795 3 62.03
multi qa mpnet base cos 0.3990 0.6097 0.6990 0.4784 0.4904 0.4996 3 60.10
nli distilroberta base 0.4011 0.6256 0.7152 0.4864 0.4984 0.5076 2 59.89
nq distilbert base 0.3260 0.5363 0.6187 0.4037 0.4149 0.4255 4 67.40
paraphrase MiniLM L12 0.5289 0.7602 0.8338 0.6173 0.6273 0.6337 1 47.11
paraphrase MiniLM L3 0.5064 0.7337 0.8183 0.5933 0.6047 0.6115 1 49.36
paraphrase MiniLM L6 0.5138 0.7497 0.8259 0.6044 0.6147 0.6212 1 48.62
paraphrase TinyBERT L6 0.5685 0.8060 0.8758 0.6604 0.6700 0.6749 1 43.15
paraphrase albert base 0.4776 0.7167 0.7957 0.5684 0.5789 0.5864 2 52.24
paraphrase distilroberta 0.5296 0.7643 0.8399 0.6197 0.6298 0.6361 1 47.04
paraphrase mpnet 0.4936 0.7318 0.8118 0.5846 0.5953 0.6022 2 50.64
stsb distilroberta base 0.4106 0.6219 0.7044 0.4902 0.5013 0.5109 2 58.94
stsb mpnet base 0.4334 0.6517 0.7359 0.5159 0.5272 0.5356 2 56.66
stsb roberta base 0.4206 0.6354 0.7201 0.5017 0.5131 0.5224 2 57.94
stsb roberta large 0.3678 0.5694 0.6575 0.4426 0.4545 0.4643 3 63.22
xlm distilroberta paraphrase 0.4138 0.6382 0.7255 0.4979 0.5096 0.5187 2 58.62

Table 6: Rank results for Flickr8k. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.3139 0.5285 0.6213 0.3932 0.4056 0.4169 5 68.61
all MiniLM L6 0.3100 0.5193 0.6143 0.3870 0.3996 0.4106 5 69.00
all distilroberta 0.3421 0.5717 0.6600 0.4281 0.4400 0.4508 4 65.79
all mpnet base 0.3242 0.5410 0.6347 0.4051 0.4176 0.4285 4 67.58
all roberta large 0.3548 0.5818 0.6787 0.4391 0.4521 0.4624 3 64.52
multi qa MiniLM L6 cos 0.2262 0.3965 0.4789 0.2887 0.2996 0.3115 12 77.38
multi qa distilbert cos 0.2351 0.4092 0.4928 0.2993 0.3104 0.3220 11 76.49
multi qa mpnet base cos 0.2406 0.4306 0.5197 0.3103 0.3220 0.3337 9 75.94
nli distilroberta base 0.2856 0.4928 0.5852 0.3626 0.3748 0.3864 6 71.44
nq distilbert base 0.1646 0.3058 0.3766 0.2165 0.2258 0.2376 28 83.54
paraphrase MiniLM L12 0.4071 0.6581 0.7492 0.5008 0.5131 0.5222 2 59.29
paraphrase MiniLM L3 0.3864 0.6281 0.7266 0.4772 0.4904 0.4999 3 61.36
paraphrase MiniLM L6 0.3960 0.6470 0.7391 0.4902 0.5024 0.5119 2 60.40
paraphrase TinyBERT L6 0.4390 0.6995 0.7941 0.5376 0.5505 0.5584 2 56.10
paraphrase albert base 0.3618 0.6014 0.6937 0.4517 0.4642 0.4745 3 63.82
paraphrase albert small 0.4110 0.6699 0.7594 0.5083 0.5207 0.5300 2 58.90
paraphrase distilroberta 0.4085 0.6667 0.7613 0.5042 0.5169 0.5253 2 59.15
paraphrase mpnet 0.3856 0.6233 0.7186 0.4752 0.4881 0.4976 3 61.44
stsb distilroberta base 0.2886 0.4881 0.5746 0.3625 0.3741 0.3855 6 71.14
stsb mpnet base 0.3105 0.5185 0.6043 0.3879 0.3995 0.4106 5 68.95
stsb roberta base 0.2971 0.5008 0.5882 0.3725 0.3843 0.3957 5 70.29
stsb roberta large 0.2488 0.4173 0.5044 0.3110 0.3226 0.3346 10 75.12
xlm distilroberta paraphrase 0.2814 0.4899 0.5857 0.3579 0.3708 0.3821 6 71.86

Table 7: Rank results for Flickr8k - T5 (Raffel et al., 2020) summarizer. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.2396 0.4336 0.5203 0.3097 0.3210 0.3328 9 76.04
all MiniLM L6 0.2330 0.4190 0.5135 0.3016 0.3133 0.3267 9 76.70
all distilroberta 0.2605 0.4645 0.5556 0.3359 0.3475 0.3602 7 73.95
all mpnet base 0.2519 0.4479 0.5429 0.3239 0.3369 0.3498 8 74.81
all roberta large 0.2686 0.4789 0.5695 0.3457 0.3576 0.3708 6 73.14
multi qa MiniLM L6 cos 0.1754 0.3163 0.3908 0.2258 0.2362 0.2482 25 82.46
multi qa distilbert cos 0.1856 0.3353 0.4126 0.2402 0.2501 0.2624 21 81.44
multi qa mpnet base cos 0.2008 0.3569 0.4363 0.2572 0.2681 0.2794 18 79.92
nli distilroberta base 0.2221 0.4070 0.4964 0.2888 0.3007 0.3143 11 77.79
nq distilbert base 0.1456 0.2712 0.3359 0.1905 0.1993 0.2110 40 85.44
paraphrase MiniLM L12 0.3061 0.5358 0.6390 0.3909 0.4041 0.4156 4 69.39
paraphrase MiniLM L3 0.2876 0.5024 0.6038 0.3663 0.3800 0.3930 5 71.24
paraphrase MiniLM L6 0.2960 0.5234 0.6233 0.3804 0.3928 0.4055 5 70.40
paraphrase TinyBERT L6 0.3223 0.5667 0.6696 0.4126 0.4262 0.4381 4 67.77
paraphrase albert base 0.2830 0.4909 0.5925 0.3596 0.3731 0.3856 6 71.70
paraphrase albert small 0.3071 0.5387 0.6398 0.3922 0.4058 0.4185 4 69.29
paraphrase distilroberta 0.3082 0.5404 0.6417 0.3938 0.4071 0.4185 4 69.18
paraphrase mpnet 0.2903 0.5055 0.6077 0.3701 0.3840 0.3964 5 70.97
stsb distilroberta base 0.2249 0.4028 0.4875 0.2891 0.3006 0.3132 12 77.51
stsb mpnet base 0.2369 0.4217 0.5086 0.3049 0.3161 0.3279 10 76.31
stsb roberta base 0.2298 0.4101 0.4989 0.2948 0.3063 0.3194 11 77.02
stsb roberta large 0.1884 0.3359 0.4144 0.2420 0.2524 0.2648 20 81.16
xlm distilroberta paraphrase 0.2231 0.4032 0.4967 0.2880 0.3008 0.3142 11 77.69

Table 8: Rank results for Flickr8k - Pegasus (Zhang et al., 2020a) summarizer. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.3076 0.5155 0.6063 0.3848 0.3969 0.4075 5 69.24
all MiniLM L6 0.2961 0.5021 0.5924 0.3727 0.3849 0.3956 5 70.39
all distilroberta 0.3276 0.5439 0.6357 0.4082 0.4204 0.4310 4 67.24
all mpnet base 0.3233 0.5372 0.6304 0.4030 0.4155 0.4259 4 67.67
all roberta large 0.3381 0.5633 0.6527 0.4223 0.4343 0.4445 4 66.19
multi qa MiniLM L6 cos 0.2397 0.4205 0.5042 0.3058 0.3169 0.3281 10 66.19
multi qa distilbert cos 0.2530 0.4379 0.5252 0.3210 0.3327 0.3440 9 74.70
multi qa mpnet base cos 0.2730 0.4683 0.5555 0.3453 0.3570 0.3681 7 72.70
nli distilroberta base 0.2770 0.4780 0.5718 0.3512 0.3638 0.3750 6 72.30
nq distilbert base 0.2131 0.3841 0.4653 0.2760 0.2868 0.2983 14 78.69
paraphrase MiniLM L12 0.3687 0.6148 0.7074 0.4606 0.4731 0.4831 3 63.13
paraphrase MiniLM L3 0.3437 0.5826 0.6764 0.4328 0.4453 0.4559 3 65.63
paraphrase MiniLM L6 0.3526 0.5938 0.6888 0.4425 0.4553 0.4657 3 64.74
paraphrase TinyBERT L6 0.4199 0.6844 0.7850 0.5198 0.5333 0.5421 2 58.01
paraphrase albert base 0.3294 0.5548 0.6482 0.4132 0.4257 0.4365 4 67.06
paraphrase albert small 0.3831 0.6416 0.7432 0.4799 0.4935 0.5032 3 61.69
paraphrase distilroberta 0.3796 0.6224 0.7230 0.4705 0.4840 0.4937 3 62.04
paraphrase mpnet 0.3476 0.5804 0.6730 0.4341 0.4466 0.4570 3 65.24
stsb distilroberta base 0.2765 0.4716 0.5626 0.3487 0.3610 0.3724 7 72.35
stsb mpnet base 0.2935 0.4958 0.5846 0.3680 0.3799 0.3909 6 70.65
stsb roberta base 0.2864 0.4888 0.5757 0.3612 0.3729 0.3840 6 71.36
stsb roberta large 0.2410 0.4207 0.5037 0.3067 0.3178 0.3292 10 75.90
xlm distilroberta paraphrase 0.2816 0.4832 0.5732 0.3559 0.3679 0.3790 6 71.84

Table 9: Rank results Flickr30k. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.2068 0.3845 0.4710 0.2721 0.2836 0.2955 13 79.32
all MiniLM L6 0.2012 0.3739 0.4595 0.2645 0.2758 0.2877 14 79.88
all distilroberta 0.2242 0.4159 0.5083 0.2948 0.3072 0.3193 10 77.58
all mpnet base 0.2138 0.3975 0.4837 0.2812 0.2927 0.3047 12 78.62
all roberta large 0.2373 0.4321 0.5264 0.3091 0.3217 0.3337 9 76.27
multi qa MiniLM L6 cos 0.1380 0.2665 0.3357 0.1847 0.1939 0.2051 42 86.20
multi qa distilbert cos 0.1443 0.2820 0.3552 0.1942 0.2039 0.2152 35 85.57
multi qa mpnet base cos 0.1515 0.2976 0.3733 0.2049 0.2150 0.2267 29 84.85
nli distilroberta base 0.1856 0.3556 0.4401 0.2477 0.2590 0.2712 16 81.44
nq distilbert base 0.0951 0.1963 0.2530 0.1317 0.1392 0.1493 100 90.49
paraphrase MiniLM L12 0.2740 0.4970 0.5988 0.3560 0.3696 0.3817 6 72.60
paraphrase MiniLM L3 0.2493 0.4630 0.5649 0.3274 0.3410 0.3534 7 75.07
paraphrase MiniLM L6 0.2644 0.4810 0.5825 0.3441 0.3577 0.3700 6 73.56
paraphrase TinyBERT L6 0.3032 0.5555 0.6688 0.3958 0.4109 0.4230 4 69.68
paraphrase albert base 0.2400 0.4428 0.5389 0.3142 0.3271 0.3394 8 76.00
paraphrase albert small 0.2759 0.5140 0.6218 0.3627 0.3771 0.3897 5 72.41
paraphrase distilroberta 0.2803 0.5082 0.6119 0.3639 0.3777 0.3897 5 71.97
paraphrase mpnet 0.2584 0.4687 0.5664 0.3351 0.3482 0.3603 7 74.16
stsb distilroberta base 0.1800 0.3424 0.4263 0.2395 0.2507 0.2627 18 82.00
stsb mpnet base 0.1965 0.3724 0.4557 0.2605 0.2717 0.2836 15 80.35
stsb roberta base 0.1904 0.3547 0.4389 0.2503 0.2615 0.2735 17 80.96
stsb roberta large 0.1456 0.2811 0.3543 0.1945 0.2042 0.2159 34 85.44
xlm distilroberta paraphrase 0.1792 0.3467 0.4286 0.2403 0.2513 0.2635 18 82.08

Table 10: Rank results Flickr30k - T5 (Raffel et al., 2020) summarizer. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 13.31 26.93 34.31 18.18 19.16 20.45 34 86.69
all MiniLM L6 13.07 26.80 34.26 18.02 19.02 20.29 35 86.93
all distilroberta 12.20 26.10 33.58 17.22 18.22 19.55 35 87.80
all mpnet base 12.64 26.12 33.82 17.45 18.47 19.78 35 87.36
all roberta large 12.01 25.63 33.42 16.87 17.91 19.24 35 87.99
multi qa MiniLM L6 cos 9.29 20.10 26.77 13.14 14.03 15.29 60 90.71
multi qa distilbert cos 9.22 20.35 27.04 13.16 14.04 15.32 57 90.78
multi qa mpnet base cos 9.53 21.03 27.81 13.63 14.52 15.79 55 90.47
nli distilroberta base 11.73 24.94 32.33 16.48 17.46 18.75 39 88.27
nq distilbert base 8.03 17.95 23.95 11.53 12.32 13.54 76 91.97
paraphrase MiniLM L12 14.24 29.89 38.34 19.89 21.02 22.37 24 85.76
paraphrase MiniLM L3 15.31 30.92 39.48 20.97 22.11 23.42 23 84.69
paraphrase MiniLM L6 14.39 30.01 38.51 19.96 21.10 22.46 24 85.61
paraphrase TinyBERT L6 14.55 30.38 39.12 20.27 21.43 22.82 22 85.45
paraphrase albert base 13.12 27.83 36.11 18.43 19.54 20.91 28 86.88
paraphrase albert small 14.56 30.25 39.04 20.23 21.40 22.75 23 85.44
paraphrase distilroberta 14.51 30.39 38.91 20.23 21.36 22.74 22 85.49
paraphrase mpnet 13.99 28.99 37.40 19.39 20.50 21.84 26 86.01
stsb distilroberta base 13.41 27.04 34.28 18.32 19.28 20.55 35 86.59
stsb mpnet base 14.05 28.26 35.93 19.23 20.24 21.49 32 85.95
stsb roberta base 13.69 27.38 34.79 18.67 19.65 20.92 34 86.31
stsb roberta large 10.32 22.13 28.71 14.60 15.47 16.73 53 89.68
xlm distilroberta paraphrase 11.59 24.62 31.87 16.26 17.23 18.52 40 88.41

Table 11: Rank results for VG∩COCO. Bold entries indicate best results.

3656



Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.0989 0.2072 0.2684 0.1378 0.1459 0.1575 68 90.11
all MiniLM L6 0.0923 0.2004 0.2601 0.1313 0.1393 0.1509 71 90.77
all distilroberta 0.1034 0.2184 0.2834 0.1445 0.1532 0.1654 56 89.66
all mpnet base 0.0906 0.1969 0.2608 0.1286 0.1370 0.1488 69 90.94
all roberta large 0.1125 0.2340 0.2994 0.1563 0.1650 0.1769 52 88.75
multi qa MiniLM L6 cos 0.0496 0.1132 0.1558 0.0719 0.0776 0.0872 189 95.04
multi qa distilbert cos 0.0519 0.1172 0.1580 0.0748 0.0802 0.0901 181 94.81
multi qa mpnet base cos 0.0509 0.1233 0.1718 0.0764 0.0827 0.0931 148 94.91
nli distilroberta base 0.0914 0.1931 0.2502 0.1281 0.1357 0.1470 82 90.86
nq distilbert base 0.0364 0.0914 0.1285 0.0560 0.0609 0.0698 249 96.36
paraphrase MiniLM L12 0.1365 0.2794 0.3579 0.1882 0.1987 0.2113 31 86.35
paraphrase MiniLM L3 0.1165 0.2497 0.3239 0.1645 0.1743 0.1872 38 88.35
paraphrase MiniLM L6 0.1258 0.2643 0.3386 0.1756 0.1855 0.1983 35 87.42
paraphrase TinyBERT L6 0.1272 0.2652 0.3446 0.1767 0.1873 0.2001 33 87.28
paraphrase albert base 0.1215 0.2534 0.3263 0.1687 0.1784 0.1909 40 87.85
paraphrase albert small 0.1233 0.2572 0.3331 0.1715 0.1815 0.1942 37 87.67
paraphrase distilroberta 0.1274 0.2621 0.3355 0.1760 0.1857 0.1984 36 87.26
paraphrase mpnet 0.1362 0.2778 0.3552 0.1873 0.1976 0.2103 31 86.38
stsb distilroberta base 0.0891 0.1900 0.2450 0.1250 0.1323 0.1436 85 91.09
stsb mpnet base 0.0993 0.2094 0.2715 0.1389 0.1471 0.1589 66 90.07
stsb roberta base 0.0962 0.2019 0.2618 0.1339 0.1419 0.1534 72 90.38
stsb roberta large 0.0662 0.1506 0.2035 0.0959 0.1029 0.1141 109 93.38
xlm distilroberta paraphrase 0.0749 0.1735 0.2313 0.1102 0.1178 0.1292 90 92.51

Table 12: Rank results for VG∩COCO - T5 (Raffel et al., 2020) summarizer. Bold entries indicate best results.
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Name Recall(%)↑ MRR(%)↑ Median Fails
@1 @5 @10 @5 @10 @all Rank ↓ (%) ↓

all MiniLM L12 0.0896 0.1898 0.2466 0.1257 0.1332 0.1439 91 91.04
all MiniLM L6 0.0847 0.1829 0.2373 0.1199 0.1271 0.1380 95 91.53
all distilroberta 0.0946 0.2050 0.2660 0.1342 0.1423 0.1537 73 90.54
all mpnet base 0.0903 0.1918 0.2489 0.1267 0.1344 0.1452 86 90.97
all roberta large 0.0997 0.2070 0.2669 0.1383 0.1462 0.1574 74 90.03
multi qa MiniLM L6 cos 0.0490 0.1106 0.1541 0.0706 0.0764 0.0855 211 95.10
multi qa distilbert cos 0.0494 0.1136 0.1555 0.0722 0.0777 0.0869 208 95.06
multi qa mpnet base cos 0.0497 0.1145 0.1573 0.0722 0.0778 0.0874 191 95.03
nli distilroberta base 0.0755 0.1656 0.2194 0.1074 0.1145 0.1250 113 92.45
nq distilbert base 0.0436 0.1000 0.1390 0.0636 0.0688 0.0776 251 95.64
paraphrase MiniLM L12 0.1154 0.2395 0.3076 0.1600 0.1690 0.1808 50 88.46
paraphrase MiniLM L3 0.1030 0.2211 0.2870 0.1453 0.1540 0.1659 58 89.70
paraphrase MiniLM L6 0.1103 0.2278 0.2964 0.1526 0.1617 0.1735 54 88.97
paraphrase TinyBERT L6 0.1141 0.2373 0.3063 0.1583 0.1675 0.1796 48 88.59
paraphrase albert base 0.1003 0.2122 0.2757 0.1405 0.1490 0.1608 62 89.97
paraphrase albert small 0.1086 0.2269 0.2934 0.1512 0.1601 0.1722 53 89.14
paraphrase distilroberta 0.1140 0.2345 0.3026 0.1573 0.1664 0.1785 49 88.60
paraphrase mpnet 0.1099 0.2304 0.2973 0.1536 0.1625 0.1744 53 89.01
stsb distilroberta base 0.0751 0.1612 0.2145 0.1061 0.1131 0.1236 114 92.49
stsb roberta base 0.0783 0.1676 0.2211 0.1104 0.1174 0.1281 110 92.17
stsb roberta large 0.0586 0.1359 0.1844 0.0857 0.0921 0.1022 145 94.14
xlm distilroberta paraphrase 0.0706 0.1563 0.2066 0.1009 0.1075 0.1178 127 92.94

Table 13: Rank results for VG∩COCO - Pegasus (Zhang et al., 2020a) summarizer. Bold entries indicate best
results.
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Abstract
In many linguistic fields requiring annotated
data, multiple interpretations of a single item
are possible. Multi-label annotations more
accurately reflect this possibility. However,
allowing for multi-label annotations also af-
fects the chance that two coders agree with
each other. Calculating inter-coder agreement
for multi-label datasets is therefore not triv-
ial. In the current contribution, we evaluate
different metrics for calculating agreement on
multi-label annotations: agreement on the in-
tersection of annotated labels, an augmented
version of Cohen’s Kappa, and precision, recall
and F1. We propose a bootstrapping method
to obtain chance agreement for each measure,
which allows us to obtain an adjusted agree-
ment coefficient that is more interpretable. We
demonstrate how various measures affect esti-
mates of agreement on simulated datasets and
present a case study of discourse relation an-
notations. We also show how the proportion
of double labels, and the entropy of the label
distribution, influences the measures outlined
above and how a bootstrapped adjusted agree-
ment can make agreement measures more com-
parable across datasets in multi-label scenarios.

1 Introduction

Annotation efforts have long been characterized
by the (implicit or explicit) assumption that there
is a single true interpretation for every item, and
all other interpretations are incorrect. This has
become even more pervasive with the increasing
usage of annotations as input for classifiers and
other downstream computational tasks. However,
the single-truth assumption has been challenged in
recent years (e.g., Aroyo and Welty, 2015; Basile
et al., 2021), based on counterexamples from many
different fields showing that two coders can dis-
agree on an annotation and still both be right, due
to the subjectivity and complexity of many tasks.
We here focus on the field of discourse relation an-
notation as a case study, although the insights could

be applied to different types of linguistic research
(Amidei et al., 2019; Uma et al., 2021).

Establishing inter-annotator agreement in sce-
nario’s where multiple labels are possible is chal-
lenging. In cases where multiple interpretations are
possible but coders are restricted to annotate only
a single label, it is unclear whether disagreement
reflects incorrect interpretations (coder error or is-
sues with the coding scheme or training) or item
ambiguity. Given an instance where two interpreta-
tions are equally likely, assuming that at least one
coder inferred both possible readings but only a
single label can be annotated, the chance that the
coders agree would be only 50%. This does not
reflect that there is actually high agreement on the
labels.

Allowing for multi-label coding can result in
more accurate annotations as well as higher agree-
ment, and with that most likely higher reliability
of a final label. Although two sets of multi-labels
can be compared by calculating the difference be-
tween their distributions (e.g. comparing the proba-
bility distribution of a classifier to the distribution
of crowdsourced labels, Fornaciari et al., 2021), the
distributions and ranks of the labels are not neces-
sarily relevant or accessible (e.g. expert annotations
where multiple labels are allowed).

We here assume a scenario where unranked mul-
tiple labels are allowed, regardless of whether more
labels are possible and aim to properly estimate
agreement. We will therefore focus on estimating
the reliability of a single final label per item, while
also discussing other scenario’s. Traditional agree-
ment statistics, such as Cohen’s Kappa (Cohen,
1960) will not be suitable for evaluating the relia-
bility of data that allow for multi-label annotations –
at least not without adjustments. It should be taken
into account that multi-label coding also inflates
the chance agreement: by providing more labels,
there is a higher chance that at least one of those
labels overlaps with the annotations from another
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coder.
The current paper will analyze several ways to

determine the reliability of multi-label annotations.
We argue that chance agreement should always be
taken into account for any agreement measure to
make it comparable across datasets. The contri-
butions of this paper are: (i) we propose a boot-
strapping method to estimate the expected agree-
ment (see Section 4), and (ii) we compare agree-
ment on various measures for simulated datasets
with different parameters, as well as for a real-life
dataset (Section 5 and 6). We make available a
reproducible script of the implementations of the
measures and the calculations.1

We use the following terminology throughout the
paper. An item (i) is an instance which is annotated.
It can be annotated with one or more labels, which
together make up one annotation. Categories (k)
refer to the options that coders (c) have to assign
an item to.

2 Multiple labels: Ambiguity and
uncertainty

There are several scenarios in which multiple la-
bels are possibly desirable. A first one is a scenario
in which annotators are uncertain which of mul-
tiple categories are correct, caused by a lack of
knowledge or information (Beck et al., 2020). Al-
lowing them to provide multiple labels would then
reflect a probabilistic representation of the target
label. These probabilistic labels also occur often in
crowd-sourced annotations, where workers might
lack the knowledge to select the correct label.

Secondly, multiple labels might reflect true am-
biguity. These are cases where more than one in-
terpretation is possible. To illustrate, consider the
discourse relation in Example (2): both a SPECI-
FICATION relation (which could be expressed by
inserting the cue phrase more specifically between
the two sentences), and a MANNER relation (which
could be expressed by to do so,) interpretation are
valid.

(1) Ryan was decorating the Christmas tree. He
was hanging the baubles.

Ambiguity has been argued to be an "inherent prop-
erty of natural language" and an important source
of disagreement in language annotation (Beck et al.,

1https://osf.io/f5v4p/?view_only=
4962b8ae4398466c88e620c27302e0c5

2020). Plank et al. (2014) show that the vast ma-
jority of disagreements between annotators arise
because multiple labels are valid and recommend
allowing for such disagreements, rather than fo-
cusing on inter-annotator agreement. The present
contribution shows that it is possible to establish
inter-annotator agreement while taking ambiguity
into account by allowing for multiple labels. More
specifically, the focus of the present paper is on
establishing a reliability measure for ambiguous
cases where multiple labels are valid, but we will
also address how reliability measures can reflect
these different multi-label scenarios.

3 Reliability measures

Reliability is the extent to which different coders
arrive at the same interpretations of items. Reliabil-
ity can be measured by calculating the inter-coder
agreement using an agreement coefficient: a nu-
merical index of the extent of agreement between
the coders. However, the goal of obtaining reliable
data is not merely to have data on which two coders
agree (coders might be wrong or biased, after all),
but to have annotated labels that reflect the true
meaning of the items. It is important to note that
this validity, despite being the goal of annotation
efforts, is not captured by agreement coefficients.

Agreement coefficients usually consist of two
components: observed agreement (Ao) and ex-
pected agreement (Ae). Together, these can be
used to calculate an adjusted agreement, i.e. an
agreement coefficient (Ac):

Ac =
Ao −Ae
1−Ae

(1)

Observed agreement is taken to be 1 when two
coders assign an item to the same category and 0
when the item is assigned to different categories.
Observed agreement does not take into account
chance agreement, which occurs when one or both
coders rate an item randomly. In order to get a
reliable index of the extent of agreement between
coders, observed agreement therefore has to be
adjusted for the proportion of agreement that is
expected to occur by chance. The crucial difference
between various inter-coder agreement measures
often lies in the way in which they estimate this
expected agreement (see Artstein and Poesio, 2008
for a detailed overview).

One of the most frequently used inter-coder
agreement measures is Cohen’s Kappa (κ) (Co-
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hen, 1960). When each data point in a corpus is
assigned a single label, calculating chance agree-
ment, and κ, is straightforward. More specifically,
Cohen’s κ calculates the probability of each label
being selected by each coder independently:

Ae =
∑

k∈K
P (k | c1) · P (k | c2) (2)

However, traditional kappa is not applicable to
multi-label scenarios. One of the simplest solu-
tions would be to treat each multiple-label annota-
tion as a distinct label, but this inflates the number
of categories in the coding scheme, which nega-
tively affects κ. The traditional κ measure would
therefore need to be adapted to make it suitable for
multi-label annotations.

3.1 Soft-match agreement

One solution to adapt the traditional kappa measure
is to calculate agreement using the intersection of
agreed-upon labels – that is, the label that occurs
in the annotation of both coders. For example, in
Table 1, this leads to the observed match agreement
being 1 for each item.

Taking the intersection agreement as the final
annotation increases the probability that the ob-
tained label is part of the set of true labels for that
item, because both annotators agree on that label.
Discarding the additional, non-overlapping labels
means that information regarding that item is lost,
but for many tasks, such as analyses for psycho-
linguistic experiments, or training certain classi-
fiers, researchers only use a single label. In such
scenarios, discarding the additional labels does not
negatively impact the results.

To calculate soft-match agreement, multi-
label annotations of the coders are replaced with the
intersecting label (e.g., as done in Crible and De-
gand, 2019). In cases where there is no intersection
or two intersecting labels between two multi-label
annotations, a single label is sampled in order to
be able to estimate expected agreement. For exam-
ple, in item 1 in Table 1, κ will be calculated after
removing label B from c2 in item 1 and sampling
either A or B for both coders for item 3. κ is then
calculated on this adjusted dataset as usual, using
the formulas above. This type of agreement can
also be considered the oracle agreement, as it is the
highest agreement that coders could have reached
if they had selected only the overlapping single
label.

Table 1: Example items with observed agreement for
soft-match (S), augmented kappa (A), recall (R, c1 wrt
c2) precision (P, c1 wrt c2) and F1.

annotations observed agreement
item c1 c2 S A R P F1
1 A A;B 1 .50 1 .50 .67
2 A;B B;C 1 .25 .50 .50 .50
3 A;B A;B 1 .50 1 1 1

However, this method of calculating kappa on
the intersection is problematic because it does not
take into account that chance agreement on an inter-
section is higher when multiple labels are provided,
over-estimating κ. In the most extreme case, where
one coder would assign all categories to a single
item, both observed and expected agreement will
be 1 in reality. However, expected agreement using
this soft-match agreement is much lower, thus
inflating κ. Kappa on the soft-match agree-
ment can therefore be misleading.

3.2 Augmented kappa
Rosenberg and Binkowski (2004) proposed an
augmented version of κ, referred to here as
augmented kappa, to measure corpus reliabil-
ity for multi-labeled instances. In their approach,
multiple labels are considered not as distinct selec-
tions, but as one divided selection, with a proba-
bility distribution over the different labels. Thus,
it reflects a scenario where annotators are uncer-
tain about which label is correct. For augmented
kappa, each label for a specific item receives a
weight which equals 1 divided by the number of
labels annotated to that item.2 For example, in item
1, label A for c1 receives the full weight, as in a sin-
gle label scenario. For c2, label A as well as label
B get a weight of 0.5. The observed agreement of
an item i is then defined by:

Aio =
∑

k′∈k′i

W k′
c1W

k′
c2 (3)

where k′i is the set of intersecting labels of item
i and W k′

c1 and W k′
c2 are the weights of the label

annotated by each coder. The overall observed
agreement (Ao) is the mean value of the observed
agreement per item (Aio). The expected probability
for coder c to annotate the category k for a dataset
with n items is defined as:

2The original approach accommodates assigning different
weights to each label for an item, so a distinction can be made
between primary and secondary labels.
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P (k|c) = 1

n

∑

i∈I
W k
c (4)

and the overall expected agreement is calculated
as in Formula 2. For the items in Table 1, expected
agreement according to this measure would be .39.

Conceptually, this measure equals the κ that
would have been obtained if coders were only al-
lowed to give one label and had randomly selected
one of the multiple labels they provided. To il-
lustrate, in the second item in Table 1, randomly
selecting the labels from the two coders would re-
sult in agreement in 25% of the cases.

However, this augmented measure always pe-
nalizes providing multiple labels, because multiple
labels reflect coder uncertainty. As a result, this
measure does not take into account that there is
possibly true ambiguity, and that both labels pro-
vided by a single coder may be correct. Agreement
can never be higher than when these labels have
been selected by chance. More specifically, if both
coders assign an item to the same multiple cate-
gories, as in item 3 in Table 1, observed agreement
will be 0.5 according to this measure. This is not
suitable for scenarios in which researchers want to
account for the fact that the multiple labels arise
from the fact that there might be more than one true
label.

3.3 Precision, recall and F1

Another possible solution would be to consider
metrics typical for evaluating computational ap-
proaches to annotation: precision, recall
and F1 (see Brants, 2000, for a similar approach).
In annotation, this can be phrased in terms of
the proportion of intersecting labels compared to
the total set of labels provided by the first coder
(precision) and by the second coder (recall).
These measures are particularly useful when one
of the labels serves as the gold, for example when
quality of aggregated crowd labels is compared
with a gold label standard, or when a new annotator
trains with a more experienced annotator.
Precision and recall allow for multiple

identical labels, while correcting for providing
more labels than those that are agreed upon. For
example, if one coder provides more labels than
the other coder, as in item 1 in Table 1, observed
F1 is decreased. However, the traditional ver-
sions of these measures do not take into account
what chance performance would be. Since chance

agreement depends on a variety of factors, such
as the number of available categories, observed
precision, recall and F1 are not compara-
ble across datasets that vary in the amount of labels
per item.

4 Bootstrapping expected agreement

The existing measures are problematic for calcu-
lating multi-label agreement, because they do not
correct for chance agreement for multiple labels
(soft-match and F1) or they penalize multiple
labels even if both annotators agree on the double
labels (augmented kappa). The main contri-
bution of the current paper is therefore to suggest a
bootstrapping method for obtaining chance agree-
ment, that can be used to adjust existing measures.

We propose to sample from the provided distri-
bution per coder, in order to estimate the true ex-
pected agreement needed to calculate the adjusted
agreement. More specifically, for each item we
draw from the distribution of labels provided by
each coder, following Cohen’s κ. This distribution
is obtained by dividing the number of times each
category has been assigned by the total number of
labels provided. The amount of sampled labels is
likewise sampled from the probability distribution
of the amount of labels for each item occurring
in the original data set. In other words, if a coder
provided a single label in 40% of the items and
two labels in 60% of the items, double labels are
also sampled in 60% of the items in the simulated
dataset.

By simulating the sample data, we can bootstrap
the expected agreement of several measures. For
example, we can calculate the average proportion
of intersecting labels across n simulated datasets.
Using the expected agreement obtained by the sim-
ulations, existing agreement measures can be ad-
justed by taking into account chance agreements,
using Equation 1. This allows us to obtain a variety
of new measures. For calculating agreement on
the intersecting labels, similar to soft-match,
we refer to this measure as boot-match. Its ex-
pected agreement is estimated using the bootstrap-
ping method, contrasting it with the soft-match
measure where the expected agreement is calcu-
lated after removing additional labels that are not
an intersecting label (see Section 3.1). Similarly,
bootstrapping the expected agreement allows us to
correct precision, recall and F1 for chance
agreement. The traditional version of these mea-
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Figure 1: Agreement statistics per measure across dif-
ferent datasets. Each panel row displays one of the
measures discussed in Sections 3 and 4. The agreement
statistics on the y-axis are shown for simulated datasets
with various parameters: Each panel column differs in
the percentage of intersection agreement (low = 60%,
medium = 75%, high = 90%) and the percentage of
double labels can be found on the x-axis.

sures will be referred to as the observed compo-
nents and the bootstrapping method allows us to
also obtain the expected and chance-adjusted agree-
ment components for these measures: We will
therefore refer to these measures as boot-F1,
boot-precision and boot-recall.

5 Comparing reliability measures on
multi-label annotations

The previous sections show that there are various
ways to estimate agreement in multi-label anno-
tation tasks. The goal of an agreement measure
is to be able to compare how much coders agree
across different datasets. To evaluate which mea-
sure would be preferred for estimating agreement in
multi-label datasets, a good measure should there-
fore (a) estimate expected agreement proportional
to the amount of multi-labels and (b) provide a
higher agreement score for tasks with more agree-
ment. We will explore how the measures discussed
above behave in different scenarios below.

To illustrate how the proportion of double la-
bels as well as intersection agreement influence the
scores, we simulate datasets with different char-

acteristics for two parameters: the percentage of
double labels provided and the percentage of ob-
served intersection agreement. We thus manipulate
how often a double label is chosen, ranging from
never to always, with 25% intervals. In addition,
the datasets vary in how much coders agree on
the labels, which is manipulated by simulating data
with various degrees of intersection agreement: low
equals 60% intersection agreement, medium 75%
and high 90%. For each of these parameter combi-
nations, we sample 100 datasets. For each of these,
we bootstrapped the expected agreement separately,
using 100 simulations. Each dataset contained 100
items, which were assigned to one (or two) of five
categories with equal probability. We then calcu-
late the average observed, expected and adjusted
(i.e. κ) agreement for each measure across these
datasets.3

The agreement statistics for all the different
datasets in the simulation analysis are provided in
Figure 1. For the scenarios where no double labels
are provided, the statistics are the same across the
different measures: the adjusted agreement is 0.50,
0.69 and 0.87 for the different levels of intersection
agreement. However, when more double-annotated
labels are added, the patterns for the observed, ex-
pected and adjusted agreement diverge for the dif-
ferent measures.

The first row in Figure 1 considers oracle agree-
ment, using the soft-match measure. Need-
less to say, the observed agreement (in red) in-
creases when agreement is higher. Moreover, ob-
served agreement for the soft-match measure
remains constant when the percentage of double la-
bels increases. However, obtaining intersection
agreement is easier when more labels are pro-
vided. Soft-match does not take this into ac-
count, because the expected agreement does not
change when more labels are provided. Across
all simulated datasets, expected agreement is 0.21.
As a result, the adjusted agreement for this mea-
sure is also constant across datasets with varying
amounts of double labels. The adjusted agreement
for soft-match therefore remains very close to
the observed agreement, which is too liberal.
Augmented kappa corrects for multi-label

scenarios. The expected agreement remains con-
stant with this measure, regardless of the number

3Expected agreement for the subset of items where
soft-match does not determine a single label, was cal-
culated using the same method as for the expected agreement
for augmented kappa.
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of double labels. The observed agreement, on the
other hand, decreases significantly. Note that this
is partly due to the fact that the second label was
sampled randomly. However, even if there would
be perfect agreement on a double label for this mea-
sure (i.e. both coders assign an item to category
A and B), the observed agreement is only 0.5 (see
Table 1). In addition, observed agreement (and
thus also the adjusted agreement) drops consider-
ably when only 25% of items contain double labels.
As a result, achieving a reliable adjusted agree-
ment score is almost impossible with this measure:
even when the intersection agreement is 90% and
only a quarter of the items contain double labels,
the adjusted agreement is still only 0.49. Finally,
we point out that the adjusted agreement barely
increases when the agreement is higher.

The observed agreement for the boot-match
is the same as for soft-match, as it
also considers intersection agreement. Like
soft-match, it thus also remains constant when
the dataset contains more double labels. Un-
like the soft-match measure, however, the
boot-match measure takes the percentage of
double labels into account when calculating the
adjusted agreement, as it estimates the expected
agreement by simulating the provided distributions
in the dataset 100 times. Expected agreement there-
fore increases when more labels are added, result-
ing in a lower adjusted agreement. With a fully
double-label annotated dataset, expected agreement
is 70%. In the low agreement scenario, the ad-
justed agreement is therefore even negative when
all labels receive a double annotation. Using this
adjusted agreement, we can compare how agree-
ment on double-label datasets relates to datasets
without double labels. For example, with five cate-
gories, achieving 90% intersection agreement with
all double labels is comparable to achieving 75%
agreement with 0% double labels (adjusted agree-
ment ≈ 0.67). Note that this relationship depends
on several parameters, such as the entropy of the
label distribution and the number of categories. We
will return to this issue below.

For the boot-F1 measure, the observed agree-
ment decreases when the percentage of dou-
ble labels increases4, similarly to augmented

4Boot-recall and boot-precision behave very
similar to boot-F1 here because the data is sampled simi-
larly for the two coders. In the no and fully double-label sce-
narios they are exactly the same as the F1, in the in-between
cases they are often slightly higher than the boot-F1.

kappa. This is partly due to the fact that the
manipulation of agreement was only for the in-
tersection agreement and any additional labels be-
sides the intersecting labels were sampled ran-
domly. As a result, perfect agreement is not al-
ways achieved in the simulations, unlike for the
soft-match and boot-match agreement. In
this scenario, however, a perfect F1 would be ob-
tained if both coders assign an item to the same
two categories. Boot-F1 is slightly higher than
augmented, across the different measures in the
various datasets, because it yields higher agreement
when both coders provide the same two labels (as
in item 3 in Table 1).

More importantly, note that the expected
boot-F1 increases when more double labels are
added to the dataset. Reporting only observed F1 is
therefore misleading, because achieving the same
observed F1 on a dataset with few double labels
compared to one with many double labels is more
difficult. The results are therefore not comparable
across datasets. Calculating the chance-adjusted
boot-F1 solves this problem, because it takes
this chance agreement into account.

5.1 Number of categories

These simulations reflect an annotation task with
five categories. When more categories are added,
however, expected agreement decreases, resulting
in a higher adjusted agreement given the same
observed agreement for all measures. In a zero
double-label scenario, the adjusted agreement in-
creases 5 percentage points when the number of
categories increases from 5 to 10. For the mea-
sures for which expected agreement increases when
more items have double labels, this increase is
weaker with more categories. For example, for five
categories, expected boot-match agreement in-
creases from 0.20 (when no double labels are used)
to 0.70 (when only double labels are used). With
ten categories, this is an increase of 0.11 to 0.38.
As a result, for a fully double-annotated dataset,
obtaining 75% intersection agreement yields an
adjusted agreement of 0.60 when ten categories
are used, rather than Ac = 0.17 in a task with five
categories. To conclude, the number of categories
greatly affects the agreement statistics and should
be kept in mind when evaluating the results of any
annotation effort, e.g. by calculating an adjusted
agreement rather than observed agreement only.
Our proposed method of bootstrapping expected
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agreement takes this into account.

5.2 Entropy
The entropy of the probability distribution of the
labels also changes the results. The entropy reflects
the likelihood that each label is chosen, and as such
also influences the probability of agreement on the
label:

H = −
∑

pk log pk (5)

As the categories in our simulation study are
sampled with equal probability, the present dis-
tribution has a relatively high entropy. This
leads to a relatively low chance agreement. The
probability distribution can also have a lower en-
tropy, if some categories are more prevalent in
the dataset. For example, in the case of dis-
course annotations, reason relations occur more
often in natural data than contrast relations. A
probability distribution with a lower entropy re-
sults in a considerably higher expected agreement
across all measures. Unlike with an equal prob-
ability distribution, the expected agreement for
augmented and soft-match is not constant,
but decreases slightly when more labels are added
in a lower entropy scenario. For soft-match
this means that the adjusted agreement even in-
creases with more labels. Moreover, the expected
agreement for soft-match is now much higher
than that of the augmented kappa, because
soft-match only calculates expected agreement
after removing additional labels from items on
which intersection is reached.

Finally, the decrease in the adjusted agreement
for boot-F1 and boot-match with more dou-
ble labels is reduced. In real-world datasets, labels
likely do not have equal probability, such as in our
simulation analysis. Because the entropy of the
probability distribution influences chance agree-
ment, the adjusted agreement of the measure rather
than the observed agreement should therefore be
reported. This makes annotation agreement more
comparable across datasets.

6 Case study

Real-world datasets often have very different char-
acteristics than the simulated datasets in the pre-
vious section. We therefore explore how the mea-
sures behave in a real-world dataset: a case study
for discourse relation annotation, which is a notori-
ously difficult task. It is often difficult to achieve a

κ> .7 on single-label annotations (Spooren and De-
gand, 2010). This is partly due to the fact that dis-
course relation frameworks often distinguish many
different categories (as can be seen below). In ad-
dition, coherence is not a feature of the text, but of
the mental representations that readers have of the
text (Sanders et al., 1992). Therefore, discourse re-
lation annotations depend on coders’ interpretation
of the text, which may be subjective. Furthermore,
ambiguity plays an important role for discourse
relation annotation, which can partly explain low
agreement with single label annotations. Recent
studies have therefore turned to crowd-sourcing to
source discourse relation annotations (e.g. Yung
et al., 2019; Scholman et al., 2022; Pyatkin et al.,
2020). This allows researchers to capture a larger
variety of interpretations per instance. However,
in some cases, such an approach is not suitable, or
researchers still target a single final label.

The case study was part of a psycho-linguistic
experiment in which participants were asked to
provide a one-sentence continuation to a prompt.
Two expert coders annotated the continuations with
respect to their discourse relation with the prompt.
The coding scheme allowed for maximally two
labels, when coders believed both senses held. In
total, the coders annotated 884 items, using 19
categories. 11 of these categories occurred in the
final intersection label. The first coder had provided
double labels in 11.4% of the cases, the second
coder in 65.5% of the items. As a result, the first
coder has a greater influence on the intersection
item, because only one of the items by the second
coder will be selected when one of them overlaps
with the label provided by the first coder.

As can be seen in Table 2, agreement is mod-
erate. The adjusted agreement of soft-match
reflects the best-case scenario: if both coders only
chose the single intersection label, the κ would
have been .73. Boot-match corrects the ex-
pected agreement based on the proportion of dou-
ble labels, resulting in a lower adjusted agree-
ment.5 Soft-match thus over-estimates agree-
ment. According to augmented kappa, the
adjusted agreement would be highly insufficient,
because many double labels have been provided.
This measure assumes that the multiple labels re-
flect coder uncertainty, but these expert annotators
only provided two labels if they thought that both

5For the boot-strapped estimates presented in this section,
we used 1000 simulations.
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observed expected adjusted
soft-match .79 .23 .73
augmented .51 .21 .38
boot-match .79 .34 .68
boot-rec. .55 .21 .43
boot-prec. .76 .31 .65
boot-F1 .62 .24 .50

Table 2: Agreement statistics per measure for the case
study (rec. = recall, prec. = precision).

labels were true. Boot-precision of c2 with
respect to c1 is lower than boot-recall in this
same direction. This can be attributed to the fact
that the first coder provided fewer double labels
than the second coder. Boot-F1 for this dataset
is relatively low, even though the coders score high
on the boot-match agreement. The reliability
of the single final label is thus quite high, but the
coders diverged on when and what additional labels
should be provided.

Traditional F1 does not always reflect agreement
properly, for two reasons. First, observed F1 will
decrease when expert annotators find additional la-
bels that might also be true. Secondly, observed
F1 does not take into account the chance agree-
ment on this measure. Adjusted boot-F1 and
boot-match display agreement more accurately.
As shown above, each measure provides different
insights into the data quality and which measure(s)
should be reported therefore depends on the goal
of the annotation effort. Finally, the case study
shows that even when annotators are instructed in
the same way, the number of double labels that
they provide still diverges between the two coders.
Recall and precision provide more insight
in this.

7 Related work

Bhowmick et al. (2008) also propose an adjusted κ
measure to account for multi-labeled annotations.
Crucially, their proposed metric considers the non-
inclusion in a category by an annotator pair as an
agreement. Such an approach is not optimal for
annotation scenarios which can be characterized by
a large number of categories in the coding scheme.
This includes certain discourse relation annotation
efforts, for which coding schemes can contain over
40 categories. With such large schemes, coders
likely do not consider every category separately
during annotation of a single item, but rather con-

sider a subset of categories that seem most applica-
ble to the item.

Finally, relating to the issue of ambiguity in an-
notation and selecting a single final label, we note
that this is a debatable issue in itself. In corre-
spondence to the assumption that items can express
more than one meaning, a soft label – consisting
of a probability distribution of all categories per
item – more accurately captures an item’s ambigu-
ity. For example, CrowdTruth (Aroyo and Welty,
2013; Dumitrache et al., 2018) evaluates data qual-
ity by capturing the ambiguity inherent in semantic
annotation through the use of disagreement-aware
metrics. Fornaciari et al. (2021) and Uma et al.
(2021) showed that models trained on soft labels,
such as these, outperform those trained on single-
label data, especially if they are evaluated using soft
labels as well. A larger number of coders would be
needed to more accurately calculate a probability
distribution for an item. This is not the case for
tasks that require (or choose to use) expert annota-
tions only, as is the case in psycho-linguistics, or
when annotating a gold dataset.

8 Discussion and conclusion

Annotating data with multiple labels better reflects
the true meaning of the items, as these items can be
ambiguous or even have multiple interpretations.
After all, the goal of agreement measures is not to
establish how strongly the coders agree, but rather
how reliable the label is. The label on which an-
notators agree is more likely to be a true label,
regardless of whether all the labels are captured.
Obtaining a distribution of labels may be helpful in
some, but not all, tasks (cf. Fornaciari et al., 2021).
In addition, for many tasks such distributions are
not available, either because not enough obser-
vations were obtained, or because computational
models predict a limited number of labels. The
present study therefore explored measures for eval-
uating various agreement measures on scenario’s
with more than one label.

The augmented kappa has been proposed
as a measure of agreement on multi-label annotated
datasets (Rosenberg and Binkowski, 2004), but it
penalizes additional labels heavily and does not
consider items assigned to the same multiple cate-
gories as full agreement. The underlying assump-
tion is thus that there is only one true label, reflect-
ing uncertainty rather than ambiguity. However, it
is not always true that only one true label exists
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(Aroyo and Welty, 2015). Precision, recall
and F1 should also be corrected for chance agree-
ment, as that varies with respect to how many labels
are provided to each item. Observed precision,
recall and F1 are therefore not comparable
across datasets that differ in e.g. the amount of
multiple labels.

When additional labels are potentially correct,
intersection agreement is a good option, but
only when it is corrected for chance agreement.
Rather than taking the intersecting label to cal-
culate adjusted agreement as in a soft-match
measure, the data could be simulated to estimate
the true chance agreement on the intersection (i.e.
boot-match). This measure increases expected
agreement when more labels are provided, result-
ing in a lower adjusted agreement. Coders should
therefore only provide double labels if they are
certain that both labels hold.

One limitation that needs to be taken into ac-
count when selecting the intersection label, is that
the coder who provides fewer labels influences
the final label more than the coder who provides
more labels. Ideally, coders would therefore pro-
vide a similar proportion of double annotations.
Furthermore, in an extreme case where one coder
assigns an item to all categories, there would al-
ways be agreement. This is corrected for slightly
in boot-match, but is more easily detected us-
ing boot-F1 and similar measures. Finally, when
some labels are more frequent than others, achiev-
ing intersection agreement on this label is more
likely. As a result, the intersection agreement will
contain a higher proportion of dominant labels. The
distribution of the intersecting labels thus does not
necessarily reflect the true distribution of labels
in the dataset and researchers should be careful to
draw conclusions about the distributions of aggre-
gated labels.

To conclude, if only one true label is believed to
be possible for each item, augmented kappa
can be used to calculate agreement in cases where
annotators provide more than one label. However,
if items are believed to be ambiguous, with possibly
more than one true label per item, boot-match
best estimates the reliability of a single final label
per item. Boot-F1 and related measures reveal
more about the structure of the data, such as asym-
metries between the coders. Which measure is
reported therefore depends on the goal of the anno-
tation effort. Regardless, for all of these measures,

chance agreement should be taken into account to
make the measure comparable across datasets with
different characteristics. As demonstrated above,
our proposed method of bootstrapping the expected
agreement can be used for this.
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Abstract

We present a new dataset comprising tweets for
the novel task of detecting biographically rele-
vant utterances. Biographically relevant utter-
ances are all those utterances that reveal some
persistent and non-trivial information about the
author of a tweet, e.g. habits, (dis)likes, fam-
ily status, physical appearance, employment
information, health issues etc. Unlike previ-
ous research we do not restrict biographical
relevance to a small fixed set of pre-defined
relations. Next to classification experiments
employing state-of-the-art classifiers to estab-
lish strong baselines for future work, we carry
out a linguistic analysis that compares the pre-
dictiveness of various high-level features. We
also show that the task is different from estab-
lished tasks, such as aspectual classification or
sentiment analysis.

1 Introduction

Since its beginning, the web has been a valuable
data source for natural language processing (NLP)
applications. Particularly social media contain data
complementary to what previous (news) text cor-
pora could offer (Farzindar and Inkpen, 2015), such
as information on ordinary people.

This work focuses on biographical information
on ordinary users of Twitter. The task is to identify
tweets that contain biographically relevant infor-
mation on the author of a tweet. We frame this as
a binary text classification task: We distinguish
between biographically relevant tweets (1)-(5) and
biographically irrelevant tweets (6)-(10).

(1) relevant: I’m a grown man in my mid-30s with no
children

(2) relevant: Today was the first day at Deckers my manager
told me good job lmao.

(3) relevant: one of the reasons i regularly wear @Ameri-
canOutlaws kit is because it makes a political statement

(4) relevant: i’m actually rather shy in real life
(5) relevant: Brenda Fricker will always be my favourite

Irish actress
(6) irrelevant: It’s after 1 a.m. here and I am stupidly awake
(7) irrelevant: @USER i wanna buy your mum a beverage.
(8) irrelevant: I heard they’re changing a dollar for corn at

the Tampa Bay stadium, that’s a buck an ear.
(9) irrelevant: I’m glad I stayed home last night but I’m

sad I was alone lmfaoooooooo
(10) irrelevant: Headache? I’ve had a headache all day xx

Unlike previous work (Sekine and Artiles, 2009;
Ji et al., 2010; Garcia and Gamallo, 2015), we do
not use a pre-specified list of biographical rela-
tions. Instead, we consider everything as a bio-
graphically relevant relation if it reveals some
persistent and non-trivial information on the
user authoring a particular tweet. This may in-
clude simple information on age and family status
(1), (major) life events (2), habits (3), personality
traits (4), (dis)likes (5), etc. Tweets may offer a
plethora of biographical information about their
users and we believe that such unrestricted setting
is faithful to the nature of the data that we consider.

Biographical information on ordinary users
would be valuable for various applications.
Providers of social-media sites could support their
users with effectively building up their social net-
work, for example, by recommending friends based
on shared interests (Xie, 2010). Another obvious
application with a high commercial potential is
product recommendation (Ricci et al., 2011). Per-
sonalized advertisement using biographical infor-
mation about a user (e.g. recommending baby care
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products for parents-to-be) may be much more ef-
fective than undirected general advertisement.

Biographical information may also be used for
applications that are questionable from an ethical
point of view. For instance, potential employers
could do background checks on job seekers. Simi-
larly, insurance companies could screen potential
insurants before offering them a particular insur-
ance. Specific biographic information could well
have a negative impact on the customers. For exam-
ple, a health insurance might decline a customer an
offer if they knew about their unhealthy life style.

We are fully aware of these ethical issues and we
want to make clear that our aim is not to provide
basic research for technologies that could be used
for such questionable purposes to evolve. On the
contrary, we could envisage scenarios that would
help users to protect the above misuse of their
personal data (Malandrino et al., 2013). For in-
stance, the functionality to identify biographically
relevant information in user-generated content may
be incorporated in an application that automatically
anonymizes such sensitive text passages (Medlock,
2006; Lison et al., 2021) or, at least, warns users
prior to posting such content that they are about to
disclose sensitive material.

The question may arise why we aim for a bi-
nary classification task and do not specify the
subtype of biographical information. We con-
sider our task just as the first step in the pipeline of
processing biographically related material. Obvi-
ously, processing all microposts of a social-media
site manually would be a prohibitive task. A great
reduction of work could be achieved by selecting
all biographically-relevant material automatically,
as proposed in this paper. Only a small proportion
of tweets within a user timeline from Twitter – our
estimate based on our data is that this is about 33%
– actually contains such information.

The aim of this research is two-fold. First, we
want to investigate whether biographically relevant
utterances can reliably be identified. Second, we
also want to determine what types of biographically
relevant information one may encounter on Twitter.

Our contributions are the following:

• We introduce the novel task of detecting bio-
graphically relevant utterances.

• We present a new dataset for this task.
• We report on classification performance us-

ing state-of-the-art supervised classifiers es-
tablishing strong baselines for future work.

• By testing classifiers trained on related tasks
on our task, we can show that our novel task
is different from previous tasks.

• We carry out a linguistic analysis on our new
dataset which sheds more light on the nature
of biographically relevant utterances.

All data created as part of this research are made
available for research purposes upon request.1

2 Related Work

A substantial body of previous research on
the extraction of biographical information using
NLP focuses on pre-defined relations, such as
hasBirthDate(<person>,<date>) (Sekine and Ar-
tiles, 2009; Ji et al., 2010; Garcia and Gamallo,
2015). In this paper, we depart from this setting.
Our observation is that in social media there is
plenty of biographically relevant information that
does not easily fit into this finite set of relations:

(11) my parents were complete idiots and I try to do the
opposite of anything they would ever do

As a data source for extracting biographical in-
formation, Wikipedia2 has, so far, been the most
frequently used corpus (Garera and Yarowsky,
2009; Garcia and Gamallo, 2015; Plum et al., 2019).
Consequently, previous research typically focused
on celebrities or people who are notable in some
way since it is this group of people who are pre-
dominantly represented in Wikipedia. By focusing
on social media (i.e. Twitter), we are able to ex-
tract biographical information from ordinary peo-
ple. This also means that we are able to widen the
scope of biographically relevant information.

The task addressed in this paper also bears some
relation to multi-document (biography) summariza-
tion (Zhou et al., 2004; Biadsy et al., 2008) which
is typically framed as a two-step approach: In the
first step, biographically relevant utterances (from
different documents) are identified while in the sec-
ond step, a summary of these extracted utterances
is generated by eliminating redundancies and creat-
ing a plausible order. Our task matches the first step
although in the context of summarization previous
work only dealt with pre-defined relations.

1Due to the sensitivity of the data, access is only
granted if an outline of the intended research is sub-
mitted via email to the authors and that outline is
considered ethically sound. The annotation guidelines
we used for producing our dataset, however, can be
downloaded directly: https://github.com/miwieg/
biographical_relevance_guidelines

2https://en.wikipedia.org
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number of timelines 27
number of tweets 14,483
average number of tweets per timeline 536.4
average number of tokens per tweet 17.7
type-token ratio 8.7%
category: biographically relevant tweets 4,724 (32.6%)
category: biographically irrelevant tweets 9,759 (67.4%)

Table 1: Statistics of the BRT-dataset.

With regard to social media, there have been
related research efforts in the area of author profil-
ing (Rao et al., 2010; Zamal et al., 2012; Rangel
et al., 2013). These works focus on demographic
categories, such as predicting gender, age or per-
sonality traits. Moreover, there has been research
on extracting major life events. Such events are en-
vironmental circumstances that have an identifiable
onset and ending and may carry the potential for
altering an individual’s present state of mental or
physical well-being (Goodyer, 2001). Examples
are getting married or finding a new job (Li et al.,
2014; Li and Cardie, 2014; Dickinson et al., 2015).
As we will provide evidence later, major life events
and demographic categories only form a subset of
the relations we consider as biographical relevance.

In their recent study, Saha et al. (2021) examine
what life events are disclosed on social media. The
authors establish that a significant number of such
events can be found. Unlike our work in which
we address both data analysis and classification
experiments, Saha et al. (2021) present a purely
descriptive study. Moreover, that work is carried
out on data collected from Facebook, while our
work is carried out on data crawled from Twitter.
While all life events represent biographically rele-
vant information, the set of biographically relevant
utterances considered in this paper also includes
relations beyond life events, e.g. likes or habits.

In the area of privacy protection (Malandrino
et al., 2013), there has also been research using
NLP. Mao et al. (2011) present a descriptive study
examining properties of three types of leaks on
Twitter: divulging vacation plans, tweeting under
the influence of alcohol and revealing medical con-
ditions. Cappellari et al. (2017) present a tool for
privacy detection trained on 500 tweets manually
labeled as private or not-private using SVM. Neer-
bek et al. (2017) introduce a system that distin-
guishes between sensitive vs. non-sensitive infor-
mation based on recursive neural networks (Irsoy
and Cardie, 2017). Information about the training
data used are not provided. Canfora et al. (2018)
establish a set of heuristic rules operating on depen-

dency parses for the detection of privacy leaks. The
latter are approximated by mentions of locations
or emotions. The approach is examined on a ran-
dom set of 856 Facebook statuses. Our work differs
from these works in that our focus is not just on sen-
sitive data but all different types of biographical in-
formation. For example, habits, personality traits or
likes and dislikes are biographical information but
they need not be categorized as (highly) sensitive
data. Moreover, our dataset with about 14k tweets
that has been annotated manually is considerably
larger. It has also been constructed in a more prin-
cipled and less biased way. For example, Mao et al.
(2011) create their dataset by sampling for spe-
cific topic keywords while our raw data represent
timelines of users (§3). Finally, our classification
experiments are carried out using state-of-the-art
classifiers which are much more robust than those
in previous work (e.g. SVM). Unfortunately, none
of those previous datasets on privacy protection are
publicly available, so we could not consider them
in our evaluation.

3 Data

We now describe the creation of our novel dataset
to detect biographically relevant tweets, henceforth
referred to as BRT-dataset. We did not sample our
dataset using specific keywords since this results in
topic biases (Wiegand et al., 2019). Neither did we
randomly sample tweets since, as our exploratory
experiments revealed, the tweets would have a bias
towards topics predominant during collection time,
such as COVID-19. Instead, we extracted timelines
of users. Using the Twitter API3, we selected users
from Australia, Canada, Ireland, New Zealand, the
UK and the USA who had recently posted a tweet
containing the first-person singular pronoun. Since
we could only annotate a small number of timelines,
we tried to come up with a subset of very different
users (having different ages, genders, ethnicities,
sexual orientations, political beliefs etc.). Thus, we
hope to appropriately account for the demographic
diversity of our society.

In order to reduce the manual annotation, we got
rid of trivial cases of irrelevant tweets, i.e. tweets
that do not contain any mention of the author of the
tweet itself. That is, we excluded tweets without
a mention of the first-person pronoun.4 Since we

3https://developer.twitter.com/en/
docs/twitter-api

4On a set of about 2,000 tweets that were thus discarded,
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did not want to discard cases of implicit protago-
nists (12) (Regneri et al., 2011), which despite the
absence of such pronoun refer to the author, we
applied some further heuristics (e.g. by including
declarative sentences that begin with a verb).

(12) taking gym selfies#joined a gym today!

Each tweet of those timelines was manually la-
beled. For practical reasons, tweets were annotated
in isolation. As already discussed in §1, we define
a tweet as biographically relevant if it reveals some
persistent and non-trivial information on the user
authoring a particular tweet. Tweets were to be la-
beled as biographically relevant no matter whether
the information was mentioned explicitly (13) or
implicitly (14). In (13) the author explicitly states
their pride to be Americans. However, in (14), we
infer the author’s reading enthusiasm since (s)he
asks for book recommendations. In BRT, 28% of
the biographically relevant utterances are implicit.

We insisted that the biographically relevant infor-
mation should be unambiguous. For instance, (15)
could imply that the author is a regular churchgoer
in which case the tweet would be biographically
relevant. However, since there are also several
other possible explanations (for instance, the au-
thor might just be attending a wedding) we did not
label such cases as biographically relevant.

(13) my dad has always hung an American flag outside our
house, cause we are PROUD TO BE AMERICANS

(14) uhm any book recommendations? i see a day trip to
barnes n noble in my near future for mental health care

(15) #Omw to church. :)

On a random subset of 300 tweets we measured
the agreement between our annotator (a member of
the department of one of the co-authors) and one co-
author of this paper. We obtained a substantial inter-
annotator agreement of Cohen’s κ=0.73 (Landis
and Koch, 1977).

Table 1 provides some summarizing statistics of
our final dataset. The dataset consists of more than
14,000 tweets. Only about one third of them are
considered biographically relevant.

4 High-Level Features

In this paper, we follow a supervised learning ap-
proach. Among the different classifiers we con-
sider, we also implement a feature-based classifier
using high-level features. These features are also

we only identified 4% biographically relevant instances. There-
fore, we can conclude that our filtering heuristic only misses a
negligible proportion of actual biographically relevant tweets.

used for a descriptive analysis on our BRT-dataset.
In the following, we describe the feature set we
devised.

4.1 Aspectual Classification (ASPECT)

By aspect, we understand how an action, state or
event denoted by a verb extends over time.5 We
consider the aspectual categories as proposed by
Friedrich and Pinkal (2015) who distinguish be-
tween static aspect, i.e. clauses expressing states
(16), episodic aspect, i.e. clauses expressing infor-
mation about events (17), and habitual aspect, i.e.
clauses expressing regularities (18).

(16) I like coffee. (invented example)
(17) I bought some coffee right now. (invented example)
(18) I usually drink coffee after lunch. (invented example)

While biographically relevant utterances can co-
occur with all 3 aspectual categories, we assume
that they are not equally distributed across these
categories. For example, most events (=episodic
aspect) should not be life-changing ones and there-
fore be biographically irrelevant. On the other hand,
habitual aspect may often refer to habits or hobbies
that tell us a lot about a person and therefore could
qualify as biographical relevance.

As a tool to determine the aspectual category of
an utterance, we use sitent (Friedrich et al., 2016).

4.2 Sentiment Analysis (SENTI)

Intuitively, there seems to be a relation between sen-
timent (Liu, 2012) and biographical relevance as
people’s likes and dislikes are typically expressed
by positive and negative sentiment (19). However,
not all instances of positive and negative senti-
ment may be biographically relevant. For instance,
(dis)likes that are shared by everyone (20) are con-
sidered irrelevant since they represent trivial infor-
mation. We run TweetEval (Barbieri et al., 2020)
on the tweets of BRT. In addition to a feature that
indicates the predicted sentiment category (i.e. pos-
itive, negative or neutral), we included features that
reflect the range in which the confidence probabil-
ity score of the prediction for a particular tweet
falls. We divide that score into bins of size 0.1.

(19) I honestly hate group assignments.
(20) I really hate doing something that I don’t want to do

5https://en.wikipedia.org/wiki/
Grammatical_aspect
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4.3 Emotion Classification (EMOTION)

We also want to investigate in how far emotion
categories, such as joy, fear or surprise, correlate
with biographical relevance. Intuitively, certain
emotional states may coincide with the author ex-
hibiting some mental condition (21). We consider
the NRC emotion lexicon (Mohammad and Turney,
2013) and associate each tweet with the set of emo-
tion categories that are triggered by the respective
emotion words contained in the tweet.

(21) seasonal desperation and regular depression ready to
fuck me over

4.4 Supersenses (SUPER)

WordNet (Miller et al., 1990) groups each synset
into one of 45 supersenses6 which represent coarse-
grained semantic categories, such as noun.food or
verb.motion. For a linguistic analysis, supersenses
can be informative as they may indicate which se-
mantic concepts correlate with biographical rele-
vance. We represent each tweet by the supersenses
associated with the words that occur in it.7

4.5 Part-of-Speech Information (POS)

We investigate whether biographical relevance dis-
plays a specific distribution of part-of-speech (POS)
tags. Each tweet is associated with the set of POS
tags of the words occurring in it. We use the POS
tagger by Owoputi et al. (2012), which has been
optimized for Twitter.

4.6 Family-Member Wordlist (FAMILY)

A frequently occurring subtype of biographical rel-
evance are family relations, e.g. does the author
have children, are they married, do they have any
siblings etc. Since family members and partners
represent a clear-cut concept, we compiled a list
of 105 lemmas expressing these relations. We im-
plemented a look-up feature that indicates whether
any of these lemmas could be found in a tweet.

4.7 Meta Features (META)

We also want to determine the effectiveness of meta
information for our task. We distinguish between
3 types of meta features described below. All fea-
tures are binary features. This design decision was

6https://wordnet.princeton.edu/
documentation/lexnames5wn

7Due to the lack of robust word-sense disambiguation, we
represent each word as the union of synsets containing it.

made since it substantially facilitates our linguis-
tic analysis in §5.8 Table 2 summarizes all meta
features we examine in this work. Several of these
features represent rankings. They were discretized
by dividing the range of values into bins. Table 2
also indicates how the discretization is conducted.

Tweet-Level Meta Features. These are features
that refer to an individual tweet. Two of them need
to be explained in more detail since they required
a special form of normalization. It concerns the
feature that counts the number of likes assigned to
a tweet (META_TWEET_is_among_top_n_likes)
and the feature that counts the number of
the times a feature has been retweeted
(META_TWEET_is_among_top_n_retweets).
Since different users typically receive quite a
different number of likes (or number of retweets),
we normalized that number by the average number
of likes (or retweets) a particular user obtained.
The resulting ranking therefore reflects whether a
tweet received more or fewer likes (or retweets)
than expected.

Thread-Level Meta Features. These are fea-
tures referring to the thread a tweet is situated in.

User-Level Meta Features. These are features
referring to the user that authored a particular tweet.

5 Linguistic Analysis

Table 3 shows for both classes the 20 high-level fea-
tures (§4) with the highest precision. The strongest
feature to correlate with biographical relevance is
the word list referring to family relations. This re-
sult is quite intuitive. However, since that feature
only fires in 863 of the more than 4,000 cases of bi-
ographical relevance on BRT, we can conclude that
our data also contain many other forms of biograph-
ical relevance. A considerable proportion of fur-
ther predictive features concern supersenses. The
most predictive one concerns pertainyms (adj.pert).
These seem to be relational adjectives that often re-
late to demographic information (e.g. my economic
situation, British nationality). Further nouns ex-
pressing feelings (noun.feeling) may refer to likes,
interests or mental health (e.g. love, anxiety). Tem-
poral nouns (noun.time) may refer to birthday, age
or anniversary etc. In terms of POS-tags, the
possessive pronoun is the strongest. It is often
part of frequently occurring biographically relevant

8It is much more straightforward to rank binary features
according to the predictiveness towards a particular class than
a feature set containing non-binary (continuous) features.
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Abbreviation Explanation Info. about Discretization
META_TWEET_is_answer is tweet an answer
META_TWEET_is_retweet is tweet a retweet
META_TWEET_is_quote is tweet a quote tweet
META_TWEET_is_posted_on_weekend has tweet been posted during weekend
META_TWEET_is_among_top_n_likes is tweet among top n tweets with the most likes n: [200, 500, 1000, 2000]
META_TWEET_is_among_top_n_retweets is tweet among top n tweets with the most retweets n: [200, 500, 1000, 2000]
META_THREAD_is_thread_length_n does thread have n tweets n: [0, 1, 2, 3, 4, 5 or more]
META_THREAD_has_n_contributors does user thread have n contributors n: [0, 1, 2, 3, 4, 5 or more]
META_THREAD_has_n_tweets_from_user did user post n tweets in this thread n: [0, 1, 2, 3, 4, 5 or more]
META_USER_is_country_code_x is country code of user x (e.g. UK, US, CA etc.)
META_USER_has_n_to_m_likes does user have between n and m likes bins (n,m) are log. scaled
META_USER_has_n_to_m_followers does user have between n and m followers bins (n,m) are log. scaled
META_USER_is_following_n_to_m_users is user following between n and m users bins (n,m) are log. scaled
META_USER_posted_n_to_m_tweets did user post between n and m tweets bins (n,m) are log. scaled
META_USER_included_in_n_to_m_lists is user included in n to m lists bins (n,m) are log. scaled
META_USER_has_default_profile does tweet have user default profile

Table 2: Overview of meta features.

phrases, such as my wife, my dog or my car. Fi-
nally, we also find a few predictive meta features:
If a tweet of a user is more often liked or retweeted
than the average tweet (of the user), then it is likely
to be biographically relevant.

With regard to biographical irrelevance, we find
many fewer linguistic features and predominantly
meta features. The most predictive feature is
whether a tweet is a retweet. Given that tweets
are typically retweeted by users other than the au-
thor of the original tweet9, there are (at least) three
possible reasons for the predictiveness of this fea-
ture. First, it is possible that users do not disclose
or forward biographical information of other peo-
ple often. Second, maybe people are more inter-
ested in writing about themselves. Third, as we
only include tweets written in the first person, we
might miss biographical information in the second
or third person.

Most of the other features predictive for bio-
graphical irrelevance are meta features that refer
to the thread of the tweet. These features are also
correlated to each other. If a thread is lengthy or
has many users contributing to it, then this means
that there is some deeper discussion about it. Obvi-
ously biographically relevant content is less likely
to be the centre of such discussions. Apart from the
meta features, sentiment information is the most
predictive linguistic feature for biographical irrele-

9Please note that there is a difference between the feature
META_TWEET_is_among_top_200_retweets which is predic-
tive for biographical relevance and META_TWEET_is_retweet
which is predictive for biographical irrelevance. The latter fea-
ture indicates that a tweet is a retweet itself while the former
is related to the number of times the tweet has been retweeted.
Apparently, a retweet per se is an indication of biographi-
cal irrelevance while if a tweet of a particular user has been
retweeted disproportionally often, then there is a tendency of
the tweet being biographically relevant.

vance. Tweets that have been classified as neutral
with a high confidence are likely to be biographi-
cally irrelevant. This is plausible since likes and
dislikes (which are mostly biographically relevant)
are positive or negative.

Neither aspectual categories (§4.1) nor emotion
categories (§4.3) occur in either of the rankings.
The latter category was observed frequently in both
biographically relevant tweets (22) and biographi-
cally irrelevant tweets (23).

(22) seasonal desperation and regular depression ready to
fuck me over

(23) @SmartRachael It’s a good day. I’m happy. X

As far as aspectual classification is concerned,
we noted heavy noise in the output of sitent, i.e. the
tool that provided us with an aspectual analysis of
our data.

6 Classification Experiments

We now report on our classification experiments.
Baselines. As baselines, we consider a majority-

class classifier that always predicts biographical
irrelevance. Furthermore, we consider a sentiment
classifier which predicts biographical relevance if a
tweet either conveys positive or negative rather than
neutral sentiment. (As in §4.2, we obtain sentiment
information using TweetEval.) Our third baseline is
an aspectual classifier which predicts biographical
relevance if a tweet conveys habitual aspect. (As
in §4.1, we obtain the aspectual classification using
sitent.) Our fourth baseline is a classifier using
meta-information. Motivated by our analysis from
§5, it predicts biographical relevance if a tweet
is neither a retweet, a quote tweet nor represents
the answer to a tweet. The more predictive this
baseline is, the less important we should consider
NLP-based information for this task.
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Biographically Relevant Biographically Irrelevant
Feature Prec Freq Feature Prec Freq
FAMILY 73.8 863 META_TWEET_is_retweet 83.3 216
SUPER_adj.pert 53.1 682 META_THREAD_is_thread_length_4 80.8 318
META_USER_has_5000_to_9999_followers 52.3 285 META_THREAD_has_4_tweets_from_user 80.7 57
SUPER_noun.phenomenon 50.6 1,557 SENTI_neutral_confidence_range_0.9_to_1.0 75.7 66
POS_PRP$ 48.4 4,672 META_TWEET_is_quote 75.2 1,587
META_TWEET_is_among_top_500_likes 47.8 500 META_THREAD_has_2_tweets_from_user 75.1 438
POS_RRB 47.5 383 META_THREAD_has_2_contributors 74.7 2,251
SUPER_noun.Tops 47.4 1,855 META_THREAD_is_thread_length_3 74.6 574
SUPER_noun.feeling 47.2 1,375 META_USER_has_1,000_to_1,999_likes 74.5 2,139
META_USER_posted_20000_to_49999_tweets 46.7 197 META_TWEET_is_answer 73.8 6,325
META_TWEET_is_among_top_200_likes 46.5 200 META_THREAD_is_thread_length_2 73.8 1,581
META_USER_is_following_1000_to_1999_users 46.0 491 META_THREAD_has_1_tweet_from_user 73.7 2,091
META_TWEET_is_among_top_200_retweets 46.0 200 META_USER_posted_1000_to_1999_tweets 73.5 898
SUPER_noun.relation 46.0 774 META_THREAD_is_thread_length_1 73.5 3,248
POS_LRB 45.8 393 META_THREAD_has_1_contributor 73.4 3,581
SUPER_noun.time 45.8 4,306 META_THREAD_has_4_contributors 73.1 130
POS_HT 45.5 1,065 POS_USR 73.0 7,061
POS_RBR 45.4 359 META_USER_is_following_0_to_99_users 72.7 2,532
SUPER_noun.group 45.2 1,629 META_USER_is_country_code_US 71.6 6,365
POS_JJS 44.8 411 META_USER_is_following_200_to_499_users 71.6 2,450
random precision 32.6 random precision 67.4

Table 3: Top 20 features with highest precision for the different classes.

Randomized Folds Unseen Timelines
Classifier Supervised Classifier? Acc Prec Rec F1 (std) Acc Prec Rec F1 (std)
majority-class baseline no 67.4 33.7 50.0 40.3 67.4 33.7 50.0 40.3
sentiment baseline no 45.0 50.5 50.5 50.5 45.0 50.4 50.5 50.4
aspectual baseline no 65.3 55.7 53.1 54.3 65.3 55.7 53.1 54.4
meta baseline no 59.7 57.8 58.7 58.2 59.7 58.4 58.9 58.7
logistic regression w. high-level features yes 73.0 69.5 64.9 67.1 68.4 64.3 60.6 62.4
logistic regression w. bag of words yes 76.7 74.1 70.2 72.1 74.2 71.1 66.9 69.0
RoBERTa yes 85.4 83.4 83.4 83.4 (±0.1) 83.0 80.8 80.6 80.7 (±0.2)
BERTweet yes 85.7 83.7 84.2 83.9 (±0.2) 83.4 81.2 81.3 81.3 (±0.3)

Table 4: Performance of different classifiers on 5-fold cross-validation on BRT-dataset.

Supervised Classifiers. We used logistic re-
gression as a classifier for our high-level features
(§4) and for bag of words. Furthermore, we consid-
ered the two transformers RoBERTa (Liu et al.,
2019) and BERTweet (Nguyen et al., 2020). The
latter is specifically designed for Twitter. Since we
do not want our classifiers to overfit, we did not
tune the hyperparameters on BRT but took the set-
tings from Nguyen et al. (2020) which are generally
considered effective for Twitter.10

Experimental Set-up. The supervised classi-
fiers were evaluated via 5-fold cross-validation. We
created the folds in two different ways: On the
one hand, we randomly split the tweets of BRT into
5 different folds (randomized folds). These folds
may produce training and test splits where tweets
of the same timeline occur both in the training and
the test set. Within a particular timeline, biographi-
cally relevant tweets may co-occur with particular
topics or constructions. These co-occurrences are
idiosyncratic to the user to whom that timeline be-
longs. However, they may not be representative of

10The settings are: batch size=32; no. of epochs=30; learn-
ing rate=1e-05. (We use roberta-large and bertweet-large.)

the classes to be predicted. Supervised classifiers
may produce high classification scores by memo-
rizing these user-specific artefacts.

As a realistic alternative, we consider a different
set-up in which the tweets of a particular timeline
are restricted to the same fold (unseen timelines).
As a consequence, on this set-up classifiers are not
rewarded for learning user-specific artefacts since
the tweets in a test set will always originate from
timelines not observed in the training data.

As far as the transformers are concerned, we fur-
ther report the average result over 5 different runs
(including standard deviation). All other classifiers
produce deterministic output.

Results. The results of our evaluation are dis-
played in Table 4. Next to accuracy, we report
macro-average precision, recall and F-score. The
simple majority-class baseline is outperformed by
every other baseline by a large degree in terms of
F-score. This even includes the aspectual classifier
which suggests that (despite the noise in the auto-
matic analysis we already reported in §5) aspectual
information is not totally uncorrelated to biographi-
cal relevance. The most effective baseline in terms
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best classifier (i.e. BERTweet) on unseen timelines

Figure 1: Learning curve on BRT-dataset.

of F-score is the classifier using meta-information.
The supervised classifiers outperform the baselines.
The most effective classifier is BERTweet, i.e. the
language model that has been designed for Twitter.

Table 4 also contrasts the performance between
randomized folds and unseen timelines. For all
supervised classifiers, the evaluation based on ran-
domized folds produces higher scores.11 This con-
firms our assumption that randomizing folds pro-
duces overly optimistic results and that the classifi-
cation on unseen timelines is a more realistic set-up
and should be used in future evaluations.

Figure 1 shows the learning curve using our best
performing classifier from Table 4 (i.e. BERTweet).
With the full amount of the training data, the classi-
fier seems to have reached a plateau. Therefore, we
expect that additional training data will only result
in marginal classification improvements.

7 Subtypes of Biographical Relevance

We extended our annotated BRT-dataset (§3) by an
additional layer. For each biographically relevant
tweet, we manually annotated the underlying sub-
type. Thus, we want to give an indication of what
type of biographically relevant information can be
found on Twitter. For the inventory of subtypes,
we chose categories that are sufficiently distinctive
and frequent on our data. Table 5 contains the dis-
tribution of the different subtypes as determined by
our second layer of annotation. We also computed
for each type the standard deviation across the dif-
ferent timelines. Only a high proportion with a low

11It may come as a surprise that for the non-supervised
classifiers the results between randomized folds and unseen
timelines differ slightly. As a matter of fact, these classifiers
do not change their prediction per tweet. These differences
are the result of averaging over test folds whose size varies
to a small degree between unseen timelines and randomized
folds.

standard deviation indicates that the particular sub-
type is sufficiently frequent and can be consistently
observed throughout the different timelines.

Table 5 shows that frequent biographically rel-
evant subtypes are those that reveal likes of the
author, other demographic information, family re-
lations and instances that relate to job and educa-
tion. From these subtypes, other demographic in-
formation has the lowest standard deviation, which
means that this subtype can be more regularly ob-
served across the different timelines at the same
high frequency. Ideological views and habits oc-
cur similarly frequent but the standard deviation of
ideological views is almost three times as high as
the one of habits. This means that the latter occurs
more regularly across the timelines.

8 Error Analysis

Despite the strong performance of our best classi-
fier, i.e. BERTweet, we still observed a set of cases
that were systematically classified incorrectly. A
frequent error source stems from diverse forms of
overgeneralization. While according to our anno-
tation guidelines, desires and (dis)likes are con-
sidered biographically relevant, trivial desires (24)
and (dis)likes (25) are not. Our classifier, how-
ever, fails to make this distinction. Similarly, while
long-term health-conditions are biographically rel-
evant (e.g. asthma, diabetes), common temporary
illnesses are not (26). Our classifier also fails to
make this distinction. Moreover, it is not able to
appropriately take aspectual information into con-
sideration. Episodic needs and desires (27) are thus
erroneously considered biographically relevant.

(24) I just want some happiness (irrelevant since everyone
seeks happiness)

(25) I Fuckin hate hiccups (irrelevant since having a hiccup
is generally considered an unpleasant experience)

(26) Damn I have a cold again! (irrelevant since a cold is a
common illness everyone attracts now and then)

(27) I need to get some sleep. (irrelevant since this
need/desire is only episodic)

Finally, an obvious challenge are instances of im-
plicit realizations of biographical relevance where
there are no obvious lexical clues that suggest the
presence of this category (28)-(29).

(28) Look at what arrived, my official Biden-Harris pins!
(inference: author is a Biden-Harris supporter)

(29) He’s fecking fat. Someone is feeding him. One of the
neighbours. (inference: author owns a cat)
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Subtype Prototypical Example Percent (std)
general likes @USER I love Rage Against the Machine 20.6 (±12.4)
other demographic info. I’m 6 foot 3. I stood next to a co worker today and I’m barely up to his neck 19.5 (±6.5)
job and education @USER I’m a health worker There are thousands of us 18.4 (±13.3)
family relations @USER Ooh my dead husband would have loved this 16.9 (±10.2)
general dislikes i don’t really like halloween... 16.5 (±14.1)
ideological views @USER I think the future of humanity is very much in peril already 10.8 (±16.3)
habits I refuse to see anyone before 11 Even though I am up before 9 and usually 8 10.4 (±5.3)
desires and needs Want to move to a beach town in a few years 8.2 (±6.5)
food and drink preferences @USER Ever eaten frogs They are amazing but we eat them too A tad more

sentient than oysters
8.1 (±11.6)

health @USER Omg I have a vasectomy! I’m not a male anymore apparently 5.4 (±4.2)
personality traits @USER Yes I’m a sociable person. I miss conversation and dinner with

someone who just might find me interesting...
3.9 (±2.8)

confidential information Typing my surname earlier and it somehow suggests I’m ‘Sillier’ not Silbiger 2.8 (±3.8)
life events @USER I moved to Georgia 1.6 (±1.5)
other not applicable 6.2 (±4.4)

Table 5: Distribution of subtypes of biographical relevance. (The same tweet may contain more than one subtype.
Therefore, the sum of the percentages adds to more than 100%.)

9 Conclusion

We presented a new dataset comprising tweets for
the novel task of detecting biographically relevant
utterances. Unlike previous research we do not re-
strict biographical relevance to a set of pre-defined
relations. We showed that state-of-the-art classi-
fiers are able to automatically detect such utter-
ances even on tweets of unseen timelines. Our
feature analysis using high-level features revealed
the relatedness between linguistic features and bio-
graphical relevance (e.g. specific supersenses and
POS-tags) while there is also a set of different meta
features predictive for biographical irrelevance.

10 Ethical Considerations

The data we are going to make publicly available
as part of this research will include tweets from
specific timelines of Twitter. In order to protect
the privacy rights of the authors, the usernames of
the respective timelines have been anonymized by
replacing each name by some generic ID. More-
over, we just release the IDs of the tweets contained
in the timelines rather than the tweets themselves.
The public release of such content as in the range
of our dataset is also in accordance with the regula-
tions of Twitter.

The manual annotation for our novel dataset was
produced by a member of the department of one of
the co-authors. The annotation was carried out as
part of their regular work. Therefore, the work has
been duly compensated.

The work presented in this paper addresses the
task of extracting biographically relevant material
published by ordinary people on Twitter. We are
fully aware that research on this topic could be mis-
used for the development of applications that we

consider questionable from an ethical point of view.
For instance, an application could be built that en-
ables potential employers to do background checks
on job seekers. Or, insurance companies could
screen potential insurants before offering them a
particular insurance. In §1, we acknowledged that
potential of such research. However, we also made
it clear that, in no way, this reflects the motiva-
tion of our research. On the contrary, we could
envisage scenarios that would help users to protect
the above misuse of their personal data. For in-
stance, the functionality to identify biographically
relevant information in user-generated content may
be incorporated in an application that automatically
anonymizes such sensitive text passages or, at least,
warns users prior to posting such content that they
are about to disclose sensitive material. Our work
is also intended to raise public awareness of what
contents can be found on Twitter and can be auto-
matically and legally extracted.
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Abstract

Behavioural consistency is a critical condition
for a language model (LM) to become trust-
worthy like humans. Despite its importance,
however, there is little consensus on the defini-
tion of LM consistency, resulting in different
definitions across many studies. In this paper,
we first propose the idea of LM consistency
based on behavioural consistency and establish
a taxonomy that classifies previously studied
consistencies into several sub-categories. Next,
we create a new benchmark that allows us to
evaluate a model on 19 test cases, distinguished
by multiple types of consistency and diverse
downstream tasks. Through extensive experi-
ments on the new benchmark, we ascertain that
none of the modern pre-trained language mod-
els (PLMs) performs well in every test case,
while exhibiting high inconsistency in many
cases. Our experimental results suggest that
a unified benchmark that covers broad aspects
(i.e., multiple consistency types and tasks) is
essential for a more precise evaluation.

1 Introduction

Human-like behaviour is a critical property that in-
creases a user’s trust in an artificial intelligence (AI)
agent (De Visser et al., 2016; Jung et al., 2019)
by improving the certification process that ascer-
tains whether a system behaves correctly (Huang
et al., 2020). 1 Accordingly, despite the outstanding
performance of transformer-based PLMs on nat-
ural language understanding (NLU) benchmarks,
there have been pushbacks in various corners ques-
tioning their trustworthiness based on their non-
human like behaviours, such as a poor memori-
sation effect on infrequent information (Kassner
et al., 2020; Ravichander et al., 2020; Hofmann
et al., 2021), insensitivity to sentence order (Pham
et al., 2021; Gupta et al., 2021; Sinha et al., 2021),

1Trustworthiness = Certification + Explanation (Huang
et al., 2020).

and a miserable understanding of negation expres-
sions (Hossain et al., 2020; Kassner and Schütze,
2020; Ettinger, 2020; Hosseini et al., 2021; Jang
et al., 2022).

In this respect, behavioural consistency, a core
property of humans, is an important characteris-
tic for a model to be deemed as trustworthy LM.
Accordingly, the concept of consistency has been
widely discussed in natural language processing
(NLP). However, despite its prominent importance,
there is little consensus on the precise definition
of consistency. Below are examples of different
consistency definitions:

• Making consistent decisions in semantically
equivalent contexts (Elazar et al., 2021).

• Being consistent on a system’s beliefs across
various inputs (Li et al., 2019).

• Producing logically or factually accurate state-
ments (Li et al., 2020b).

Hence, different studies on consistency focused on
diverging types of consistency but only on certain
tasks, primarily natural language inference (NLI)
and question answering (QA).

To this end, in this paper, we first define the
consistency of an LM based on the concept of be-
havioural consistency and establish a taxonomy by
systematically categorising previous works based
on our definition. Next, we propose a new bench-
mark named benchmark for consistency evaluation
of language models (BECEL), a unified dataset
for evaluating an LM’s consistency, which assesses
multiple types of consistency on six different tasks:
NLI, semantic textual similarity (STS), words-in-
context (WiC), semantic analysis (SA), machine
reading comprehension (MRC), and topic classifi-
cation (TC). Finally, we conduct extensive experi-
ments on our new benchmark to assess the consis-
tent behaviour of widely used PLMs and draw the
following meaningful insights.

1. We observe that none of the PLMs coherently
shows a consistent behaviour in all test cases.
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2. Large-sized models do not necessarily per-
form better than small-sized models, suggest-
ing that increasing the model size is not the
solution to improve consistency.

3. Our experimental results accentuate the ne-
cessity of a unified benchmark that enables
evaluations from multiple aspects (i.e., vari-
ous consistency types and downstream tasks).

4. Artefacts in training data have more influence
than model design, e.g., training objectives
and model structures.

The data of this paper are available at https://github.
com/MJ-Jang/BECEL.

2 Language Model’s Consistency

Behavioural consistency refers to being consistent
in behavioural patterns by adhering to the same
principles.2 Based on this notion, we define the
consistency of an LM as its ability to make a coher-
ent decision not contradictory to its belief.

This definition of consistency consists of two
components. The first one is belief, which refers
to what a model considers to be true. The second
component is principle, the property that decides
what a coherent decision is. Based on these two
components, we classify the various types of con-
sistency in the literature into three large categories:
semantic, logical, and factual consistency.

2.1 Semantic Consistency
It is the nature of meaning-text theory (MTT) to
consider that the correspondence between linguis-
tic expressions (text) and semantic contents (mean-
ing) is many-to-many, implying that the meaning
can be given in different text forms (Mel’čuk and
Žolkovskij, 1970; Milićević, 2006). In this regard,
a model with a high level of NLU ability should
capture the meaning in essence and make the same
decisions in semantically identical texts consider-
ing the definition of “understanding language” 3,
and this is the concept of semantic consistency. The
belief and principle become a model’s predictions
on semantically identical texts and semantic equiv-
alence, respectively. So, we define the semantic
consistency of an LM as its ability to make the same
decisions on semantically equivalent texts.

Semantic consistency is an indispensable prop-
erty of LMs regardless of the tasks and data, since
it originates from the meaning and the universal

2N., Sam M.S., Behavioral Consistency. PsychologyDic-
tionary.org, April 7, 2013, [link].

3To focus on the meaning and not the text (Krashen, 1982).

nature of language. It is probably the most widely
used concept across many studies regarding an
LM’s consistency. Research on text adversarial
attacks showed that several PLMs are susceptible
to adversarial samples that are designed to convey
a similar meaning to their original counterparts (Jin
et al., 2020; Garg and Ramakrishnan, 2020; Li
et al., 2020a; Ivgi and Berant, 2021; Li et al., 2021).
Ribeiro et al. (2019) investigated semantic consis-
tency of QA models by generating implications that
must be true considering the model’s answer on
the original query. Other works observed a discrep-
ancy in the masked language modelling (MLM)
predictions of PLMs for queries where the ob-
ject is replaced with its plural form (Ravichander
et al., 2020) and paraphrased queries (Elazar et al.,
2021). Also, recent studies introduced the semantic
consistency to consistency regularisation for train-
ing LMs with improved inductive bias (Wang and
Henao, 2021; Zheng et al., 2021; Kim et al., 2021).

2.2 Logical Consistency
Several NLP tasks require the fulfilment of a cer-
tain logical property. The predictions that violate
this logical property are considered invalid. There-
fore, the belief and principle become a model’s
predictions regarding instances where the logical
property holds and a logical property. Hence, we
define the logical consistency of an LM as its ability
to make decisions without logical contradiction.

Logical consistency can be subdivided according
to the required logical properties. Here, we outline
four types of logical consistency: negational, sym-
metric, transitive, and additive consistency.
Negational consistency. The core property of
negational consistency is the logical negation prop-
erty (p is true⇔¬p is false; Aina et al. 2018). That
is, an LM’s predictions should be different for texts
having the opposite meaning if the property holds.
Several works observed that PLMs often generate
MLM outputs that violate this property, e.g., gener-
ating the same predictions for queries like “Birds
can [MASK]” and “Birds cannot [MASK]” (Kass-
ner and Schütze, 2020; Ettinger, 2020; Jang et al.,
2022). Asai and Hajishirzi (2020) used negational
consistency for data augmentation to train QA mod-
els.
Symmetric consistency. Provided a function f
takes two variables, a symmetric inference is de-
fined as: f(x, y) = f(y, x). Intuitively, this im-
plies that an LM’s prediction should be invariant
to the input text swap for NLP tasks. Previous

3681



works on symmetric consistency are conducted on
the NLI task. Wang et al. (2019) suggested that
symmetric consistency holds for instances having
contradiction and neutral as a label, and investi-
gated the change in accuracy after switching the
premise and hypothesis. On the contrary, Li et al.
(2019) claimed that the property holds if and only
if the label is a contradiction. They evaluated the
symmetric consistency of NLI models on newly
constructed data from MS-COCO (Lin et al., 2014).
Recently, Kumar and Joshi (2022) expanded the ex-
periments from NLI to STS task and evaluated the
consistency in more conservatively by measuring
the confidence score difference.
Transitive consistency. Given the three predicates
X, Y, and Z, transitive inference is represented as:
X → Y ∧Y → Z thenX → Z (Gazes et al., 2012;
Asai and Hajishirzi, 2020). Li et al. (2019) applied
this property to NLI task. Specifically, for the three
related sentences P , H , and Z, they defined four
transitive inference rules:

E(P,H) ∧ E(H,Z)→ E(P,Z), (1)

E(P,H) ∧ C(H,Z)→ C(P,Z), (2)

N(P,H) ∧ E(H,Z)→ ¬C(P,Z), (3)

N(P,H) ∧ C(H,Z)→ ¬E(P,Z), (4)

where E, N , and C denote entailment, neutral,
and contradiction, respectively. They constructed
a new evaluation set from MS-COCO (Lin et al.,
2014) for assessing the transitive consistency of
NLI models. In QA, Asai and Hajishirzi (2020)
used the transitive property for augmenting train-
ing data by combining two questions (q1, q2) where
the effect of q1 is equal to the cause of q2. (Lin and
Ng, 2022) investigated PLMs’ transitive inference
ability on WordNet word senses and the IS-A re-
lation, i.e., if A is-a B and B is-a C, then A is-a
C. These works ascertained that PLMs do not fully
obey the transitive property.
Additive consistency. We propose a new type of
logical consistency that we call additive consis-
tency. For a function f , additive inference is rep-
resented as: f(x) = f(y) = c → f(x + y) = c,
where c is a predicted label. For NLP tasks, ad-
ditive consistency applies to any single-sentence
classification task (e.g., SA and TC). Intuitively,
this implies that if a model yields the same predic-
tion for different sentences, then the prediction of
the combined sentence should also be the same.
Specificity of logical consistency. It is worth men-
tioning that, unlike semantic consistency, logical

Pretrained 
Language Model

Train Dataset

Eval Set 
(𝓔)

1. Fine-tuning

2. Inference on the original
evaluation set

3. Inference on the new 
evaluation set

New Eval Set 
(𝓔𝑵)

Modification

Downstream Task

𝐏𝐫𝐞𝐝(𝓔) 𝐏𝐫𝐞𝐝(𝓔𝐍)

4. Measure consistency

Figure 1: Overall evaluation framework for assessing
an LM’s consistency.

consistency is a task- and data-specific condition.
It is inapplicable to those where a certain logical
property is invalid. For instance, negational consis-
tency cannot be applied to TC. It is obvious that
negating the sentence below that belongs to the
Sports category does not change its category.

Tottenham forward Son Heung-min has signed a
new four-year contract.

2.3 Factual Consistency
The basic concept of factual consistency is that a
model should generate factually accurate outputs.
Therefore, the belief is the model’s output, and
the principle becomes factual correctness. Hence,
we define the factual consistency of an LM as its
ability to generate outputs not contradictory to the
common facts and given context.

By its nature of generating correct facts, fac-
tual consistency is closely related to knowledge
grounding and reducing hallucinations. So, most
works on factual consistency are on natural lan-
guage generation (NLG), mainly text summarisa-
tion (Kryscinski et al., 2020; Maynez et al., 2020;
Wang et al., 2020; Pagnoni et al., 2021), generative
open-domain QA (Lewis et al., 2020b; Izacard and
Grave, 2021), and dialogue generation (Li et al.,
2020b; Shuster et al., 2021; Komeili et al., 2022).

3 BECEL Dataset
3.1 Overview
Figure 1 illustrates the overall framework for evalu-
ating an LM’s consistency. A PLM is fine-tuned on
a downstream task and generates predictions of its
original evaluation set (E) and a new evaluation set
(EN ), specially designed from E to assess a certain
type of consistency. Next, we compare the PLM’s
prediction on E and EN to measure the consistency.

Our BECEL dataset contains EN of multiple ex-
isting downstream tasks for assessing various con-
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BoolQ SNLI RTE MRPC WiC SST2 AG-news
semantic 1,076 4,406 248 202 140 187 540

negational 401 2,204 153 290 - - -
symmetric - 3,237 1,241 3,668 5,428 - -
transitive - 2,375 - - 3,162 - -
additive - - - - - 53K 53K

Table 1: Number of new test data points for each down-
stream task and consistency type.

sistency types. It includes six downstream tasks:
SNLI (Bowman et al., 2015) and RTE (Candela-
Quinonero et al., 2006) for NLI, MRPC (Dolan
and Brockett, 2005) for STS, BoolQ (Clark et al.,
2019) for MRC, SST-2 (Socher et al., 2013) for
SA, AG-News (Zhang et al., 2015) for TC and
WiC (Pilehvar and Camacho-Collados, 2019), for
evaluating semantic consistency and four types of
logical consistencies.4 Several data examples are
in Figures 5 and 6 in Appendix B. We remove
factual consistency from our evaluation scope, as
benchmarks and evaluation frameworks for fac-
tual consistency are already well-studied across
various tasks, such as summarisation (Kryscinski
et al., 2020; Wang et al., 2020; Pagnoni et al.,
2021), QA (Choi et al., 2018; Rajpurkar et al.,
2018; Reddy et al., 2019), and dialogue genera-
tion (Dinan et al., 2019; Komeili et al., 2022).

Table 1 illustrates the size of the newly created
EN for each task and consistency type. In the case
where a specific consistency cannot be applied to
a particular task, it is excluded from the evalua-
tion. The applicability of each consistency type to
various tasks is described in Appendix A.2. In gen-
eral, we use test sets as E , provided gold labels are
available. If not, development sets are used instead.
However, training sets are used as E , if two condi-
tions are satisfied: (1) the size of the dev/test sets is
small, and (2) new evaluation data can be collected
automatically. Specifically, the RTE, MRPC, and
WiC tasks for evaluating symmetric and transitive
consistency belong to this case.

3.2 Data Collection Schema

Semantic consistency data. EN for semantic con-
sistency is a paraphrased version of E . For all tasks,
we paraphrase only one text input. Table 9 in Ap-
pendix illustrates each task’s fixed and modified
text inputs for creating EN . To collect paraphrase
sentences, we use the publicly available Quilbot
(https://quillbot.com/), as it can generate more nat-
ural paraphrases and cover broader linguistic varia-

4Brief descriptions of each downstream task are provided
in Appendix A.1.

tions compared to model-driven paraphrasing such
as text adversarial attacks. In the WiC data, we
remove a new data point if the target word does
not exist in the paraphrased sentence. We then con-
duct a human evaluation through Amazon MTurk
for the generated paraphrases to improve the data
quality. Three annotators are allocated for each
instance and asked to score the text similarity of
the original and paraphrased sentences from 1 to 5.
The instances where the average similarity score is
not less than 4 are finally added to EN .

Negational consistency data. To collect EN for
negational consistency, we generate the opposite-
meaning sentences of the modified variables listed
in Table 9 by using two methods: negation and
antonym replacement. For the former, we negate
sentences having a single verb by inserting nega-
tion expressions like “not”. For the latter, we ex-
tract adjectives and adverbs and replace only one
word at a time with its antonym by using Concept-
Net (Speer et al., 2017). Next, we perform the same
human evaluation used in semantic consistency but
select examples where the average similarity score
does not exceed 2. Finally, we conduct a manual
review on all instances to remove ambiguous or
grammatically incorrect data points.

As mentioned earlier, negational consistency is
data-specific. In SNLI, the label changes from
“entailment” to “contradiction” if the hypothesis is
switched with its opposite-meaning sentence. How-
ever, the label alteration is not guaranteed for the
other labels, especially for “neutral”. So, we only
consider the “entailment” label to construct EN of
SNLI. For the same reason, we only use data points
having the label “entailment” for RTE, “equivalent”
for MRPC, and “true” for BoolQ to build EN .

Symmetric consistency data. We swap the text
input order of tasks where the symmetric consis-
tency is applicable. For WiC and MRPC, it is valid
for every data point. Conversely, for NLI, it only
applies to instances having “contradiction” as a la-
bel (Li et al., 2019) or “neutral” if the hypothesis is
less specific than the premise (Wang et al., 2019).
For RTE, we ascertain that the premise is always
more specific than the hypothesis, and so data with
“not_entailment” label are used to construct EN .
However, it is not guaranteed in SNLI. So, only the
data points with “contradiction” label are used.

Transitive consistency data. We construct EN
for transitive consistency on two tasks: SNLI and
WiC. For SNLI, two data points must share the
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same hypothesis to apply the transitive inference
rules described in Section 2.2, but only a premise
is shared in the SNLI dataset. Hence, we leverage
the symmetric consistency applicable to instances
with the “contradiction” label, which enables us to
transform the rules 3 and 4 as follows:

E(P,H) ∧ C(P,Z)→ C(H,Z),

N(P,H) ∧ C(P,Z)→ ¬E(H,Z).

By using the modified rules, we collect EN for
SNLI automatically. However, since the hypothesis
is less specific than the premise in most cases in the
SNLI data (Wang et al., 2019), we observe that the
modified rules do not apply to several data points.
Therefore, we conduct a human evaluation through
Amazon MTurk to filter out such instances. Three
annotators are allocated to each instance. We add
examples to EN , provided at least two annotations
comply with the rules.

For the WiC task, given a target wordw and three
predicates A, B, and C, the following transitive
rules are applicable to every data point:

T (A,B|w) ∧ T (B,C|w)→ T (A,C|w),
T (A,B|w) ∧ F (B,C|w)→ F (A,C|w),
F (A,B|w) ∧ T (B,C|w)→ F (A,C|w),

where T /F implies that the meaning of the word
w is used identically/differently in the given two
sentences. We use these rules to collect EN of WiC.
Additive consistency data. The additive consis-
tency is valid for tasks that take a single-text input.
To construct EN for each task, we generate all pos-
sible combinations of two data points that share the
same label and create a new one by merging their
text inputs. Next, we remove a new data point if the
token length of the merged text exceeds the 75%
quantile of that of the training data, because such in-
stances can be considered out-of-distributions that
can overestimate the inconsistency issue.

3.3 Evaluation Metrics
Semantic/Symmetric consistency. Assume that
ei ∈ E , eNi ∈ EN , and eNi is a perturbed version of
ei, and therefore, |E| = |EN |. A model M should
generate the same predictions for ei and eNi . There-
fore, by referencing the robust accuracy (Tsipras
et al., 2019; Ivgi and Berant, 2021), we define the
inconsistency metric (τ ) for semantic and symmet-
ric consistency as follows:

τ = 1− 1/|EN |
∑|EN |

i=1
1(M(ei) =M(eNi )).

ℇ T T T T T T T T F F

F F T T T T T T T Tℇ𝑵
𝒔𝒚𝒎

ℇ𝑵
𝒏𝒆𝒈 F F F F T T F F F F

T T T T T T T T T T

Examples
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𝐴𝑐𝑐: 80% 𝐼𝐶: 40%

Figure 2: Graphical representation of accuracy and sym-
metric/negational consistency for binary classification.
The blue and yellow boxes denote inconsistent cases for
symmetric and negational consistency, respectively.

Negational consistency. Let ei ∈ E , eNi ∈ EN ,
and eNi is a perturbed version of ei (i.e., |E| =
|EN |). Contrary to semantic and symmetric con-
sistency, a model M should produce different pre-
dictions for ei and eNi , where eNi ∈ EN is a new
instance designed for measuring negational con-
sistency. Therefore, we define the inconsistency
metric for negational consistency as follows:

τ = 1− 1/|EN |
∑|EN |

i=1
1(M(ei) ̸=M(eNi )).

Transitive/Additive consistency. For both transi-
tive and additive consistency, a new instance eNi is
generated from two data points of E . Assume that
eNi ∈ EN , and eNi originates from ei,1, ei,2 ∈ E .
Including eNi where the antecedent is not satisfied,
i.e., a model M makes incorrect predictions for ei,1
or ei,2, can overestimate the inconsistency problem.
Therefore, we use a conditional inconsistency as
an evaluation metric:

τ = 1− 1/|C|
∑|C|

i=1
1(M(ci) = li),

where li is the label of ci ∈ C, and C ⊂ EN denotes
the set of ei where the model M makes correct
predictions for both ei,1 and ei,2.

3.4 Importance of Measuring Consistency

Previous benchmarks regarding the opposite mean-
ings (Naik et al., 2018; Hossain et al., 2020) or
symmetry (Wang et al., 2019) only measure accu-
racy on the new test suit. It is true that models with
low accuracy are likely to be inconsistent, but the
high accuracy does not necessarily guarantee high
consistency. Figure 2 well illustrates an example
case. Although the accuracy is 80% in the origi-
nal test set and two types of EN , implying that the
model is quite robust on unseen data, the incon-
sistency is 40%. Therefore, consistency should be
treated as an independent evaluation metric.
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Model BoolQ MRPC RTE SNLI SST2 WiC AG-News
τsem τneg τsem τneg τsym τsem τneg τsym τsem τneg τsym τtrn τsem τadd τsem τsym τtrn τsem τadd

BERT base 20.5 87.2 16.6 90.3 7.6 15.8 76.9 17.8 11.0 15.9 12.1 4.0 5.2 0.2 7.1 8.9 46.8 2.8 1.6
large 16.5 77.3 12.5 90.8 6.8 12.3 75.8 15.8 9.9 11.7 10.2 3.6 3.3 0.1 8.4 7.0 49.3 3.0 1.7

RoBERTa base 13.5 43.5 13.2 83.5 4.7 12.8 56.9 18.6 9.6 9.5 9.3 3.3 4.5 0.1 10.1 6.9 50.8 3.1 3.1
large 10.2 40.8 8.4 84.2 4.3 9.8 24.6 11.6 7.9 5.9 9.7 3.5 2.3 0.1 9.3 7.3 46.6 2.7 1.1

Elelctra base 7.1 63.7 8.8 86.6 7.1 9.4 32.8 9.8 9.2 7.7 9.5 3.3 3.0 0.0 10.1 5.1 48.0 2.8 2.4
large 6.8 42.3 5.5 77.0 5.3 8.9 17.3 6.7 7.9 5.4 6.4 2.5 4.0 0.1 8.9 7.9 46.5 2.6 1.0

ERNIE2.0 base 13.3 62.4 6.3 79.6 6.6 13.2 35.0 13.2 10.1 13.2 9.5 3.3 5.2 0.1 5.1 5.1 51.1 3.2 2.7
large 7.6 66.8 7.3 62.7 6.4 9.8 37.1 22.8 9.0 7.5 7.3 3.0 3.5 0.0 9.0 6.9 46.7 3.5 1.7

GPT2 base 12.8 85.8 18.4 87.2 14.5 18.1 75.3 33.3 16.3 30.0 23.0 10.4 19.6 0.8 14.1 13.1 47.4 2.7 2.2
large 23.3 75.3 14.6 89.5 10.6 13.9 52.3 15.8 11.5 13.9 12.0 4.9 6.2 0.1 13.4 12.5 49.8 3.0 4.3

BART base 13.4 71.2 12.2 84.4 5.6 11.4 70.5 18.3 10.8 10.9 14.4 4.7 4.7 0.1 8.7 7.7 53.0 3.0 3.5
large 7.9 58.2 11.4 82.2 4.6 10.2 29.7 27.2 8.7 6.6 7.5 2.8 3.0 0.1 6.9 5.4 53.1 2.5 3.4

T5 base 12.9 29.4 8.1 39.8 3.7 11.7 18.5 16.8 10.9 7.2 10.6 3.6 4.1 0.2 16.0 7.9 46.3 2.1 0.3
large 10.9 19.7 4.5 25.2 4.2 8.6 15.9 8.0 9.3 5.8 8.3 2.9 3.0 0.1 8.6 6.3 45.3 1.7 0.2

Table 2: The average of semantic (τsem), negational (τneg), symmetric (τsym), transitive, (τtrn), and additive
inconsistency (τadd). All the metrics are lower the better. We repeat each experiments for five times.

4 Experiments and Analysis

4.1 Experimental Design

Model candidates. We evaluated the consistency
of the below widely used PLMs (both base and
large size models) on our new benchmark suit.

• Encoder models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), Electra (Clark
et al., 2020), and ERNIE 2.0 (Sun et al., 2020).

• Decoder models: GPT2 (Radford et al., 2019).
• Encoder-Decoder models: BART (Lewis

et al., 2020a) and T5 (Raffel et al., 2020).

Training details. At fine-tuning, we use AdamW
optimiser (Loshchilov and Hutter, 2017) and a lin-
ear learning rate scheduler decaying from 1e-3. All
models are trained for 10 epochs, and the early
stopping method is used during the training. The
batch size and learning rate are different across
model size and tasks. See Appendix A.3 for more
details. For T5, we apply text-to-text multitask
training by using the free-text input format used by
Raffel et al. (2020). We repeat the experiments for
each model and task for five times and report their
average values. Our best validation performance
is almost close to the reported results in previous
works (see Table 6 in the appendix).

4.2 Semantic Consistency Results

The results are in Table 2. We ascertain that PLMs
show a different consistency across diverse tasks.
Specifically, τsem is extremely low in the SST2 and
AG-News tasks. We conjecture that a leading cause
is that these tasks have a high correlation between
labels and certain words, such as sentiment words
and proper nouns, and therefore, are hardly affected
by paraphrases. Among the other tasks, the PLMs

BoolQ MRPC SST2 RTE
BAE 12.4 (-1.1) 7.9 (-5.3)* 5.9 (+3.6)* 11.7 (-1.1)

TextFooler 11.2 (-2.3)* 8.9* (-6.7)* 6.4 (+4.2)* 11.3 (-1.5)

Table 3: The inconsistency results of the adversarial
training experiments. The value written in parenthesis
is the difference compared to the original RoBERTa-
base model. The difference is statistically significant
with p value < 0.05 (*).

are relatively more consistent in MRPC than the
others but still make many mistakes considering
that the STS task is designed to focus on semantic
equivalence. We also observe that GPT2 and BERT
are highly inconsistent. T5 and Electra show the
lowest τsem, but the difference to the others, apart
from GPT2 and BERT, are marginal. The results
suggest that a model’s training objective somewhat
affects its semantic consistency.

Can adversarial training be a solution? Adver-
sarial training is widely used to improve robustness
by providing models with original and adversarial
samples (Jin et al., 2020). We investigate whether
it is beneficial to improve semantic consistency.
We apply two text attack methods, BAE (Garg and
Ramakrishnan, 2020) and TextFooler (Jin et al.,
2020), to the RoBERTa-base model by using Text-
Attack (Morris et al., 2020). Five adversarial sam-
ples are generated for each data point.

The results are in Table 3. We confirm that ad-
versarial training is not always beneficial. The
improvement is marginal, except for MRPC and
even backfired in SST2. We speculate that a lead-
ing cause is that the attack methods are likely to
generate incorrect paraphrase sentences (see Ap-
pendix 10 for examples). Moreover, adversarial
training is vulnerable to instances that the attack
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method cannot generate. It has been observed
that about 45% of inconsistent predictions con-
tain examples that have different sentence struc-
tures (e.g., changing active to passive), which
synonym-replacement-based methods like BAE
and TextFooler are unable to produce. The results
suggest that adversarial training cannot be an ul-
timate solution to improve semantic consistency.

4.3 Negational Consistency Results
Table 2 presents the results of the negational con-
sistency experiments. It is astonishing that τneg is
very high across all tasks apart from SNLI, sug-
gesting that the fine-tuned PLMs entirely fail to
understand the opposite meaning. For SNLI, we
strongly believe that the leading cause of low τneg
are superficial cues in the training data. It is well
known that there is a strong correlation between
negation expressions and “contradiction” labels in
the SNLI data (Gururangan et al., 2018), and we
confirm that almost 68% of training instances with
negation expressions in the hypothesis have “con-
tradiction” labels. So, achieving high consistency
in SNLI is easy, as our new evaluation set originates
from instances with “entailment” labels, as illus-
trated in Section 3.2. The relatively low τneg of the
T5 models, which can benefit from the SNLI data
through multi-task training, also support our claim.
Model design vs. superficial cues. Similarly to
the semantic consistency experiments, GPT2 and
BERT perform worst in general. To compare the
impact of model designs (e.g., training objectives,
model structure) and superficial cues, we use the
following metric for the model M on the task T :

ρMT = (τMT − τMSNLI)/(τMT − τ∗T ),
where τMT implies the negational inconsistency of
the model M on the task T . τ∗T denotes the best
inconsistency of task T among similar-size models
(e.g., base). Intuitively, the metric implies that the
performance gap with SNLI (i.e., effect of superfi-
cial cues) is ρ times higher than that with the best
PLM (i.e., effect of model designs).

We measure ρ of BERT, GPT2, and BART, be-
cause their performance does not rank at the top
across all tasks (ρ becomes larger if the model’s
inconsistency is close to the best performance).
Single-task trained models are considered for de-
ciding the best performance. The results are in
Table 4. We observe that ρ is greater than 1 in ev-
ery case. RTE has relatively low values, as it shares
the same superficial cues with SNLI, but their total

Model BoolQ MRPC RTE
base large base large base large

BERT 1.63 1.80 6.95 2.81 1.38 1.10
GPT2 1.32 1.78 7.53 2.82 1.07 1.10
BART 2.18 1.99 15.31 3.09 1.58 1.31

Table 4: ρ values of BERT, GPT2, and BART.

Figure 3: Box plot of maximum softmax probability of
RoBERTa-base for negational consistency experiments.

amount is much less. This suggests that superficial
cues have a greater effect than model designs.

Overconfident inconsistent predictions. Nega-
tional inconsistency would be less concerning, if
the predictions are made by change (i.e., high en-
tropy). However, we observe that models are very
confident regarding their inconsistent decisions,
generating similar or higher softmax probabilities
than the consistent predictions in most cases (see,
e.g., Figure 3). The confidence score seems reason-
able only in the SNLI task, which contains superfi-
cial cues. The results suggest that fine-tuned PLMs
are hard to trust, considering their overconfidence
in incorrect and inconsistent predictions.

4.4 Symmetric Consistency Results

Table 2 shows the experimental results of symmet-
ric consistency. In terms of the model, GPT2 again,
performs worst in most cases, implying that deco-
der-only auto-regressive models are not suitable for
achieving high consistency. The inconsistency is
not significantly different for the other models, but
Electra outperforms the others in general.

Compared to the NLI tasks, the inconsistency is
much lower in WiC and MRPC, which are designed
to focus on semantic equivalence, suggesting that
achieving high symmetric consistency might be
possible by making PLMs capturing the latent
meaning of the texts. Although the inconsistency
is fairly low, it should not be overlooked, because
symmetry is an uncomplicated property that re-
quires a simple reasoning ability. For this reason,
humans are likely to show an extremely low incon-
sistency. We conduct a brief human evaluation on
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the MRPC task by asking five human annotators 30
questions each and observe that humans are highly
consistent on symmetry, achieving τsym = 0.7.

4.5 Transitive Consistency Results
The transitive consistency results are in Table 2.
Interestingly, they are entirely different in the two
tasks. In the SNLI task, which is designed to in-
fer the logical relationship between two given sen-
tences, all PLMs show a strong performance. How-
ever, in the WiC task, which focuses on the word’s
meaning, the inconsistency is very low even though
the evaluation data originate from the training set.
The results suggest that the transitive reasoning
ability is highly contingent on the purpose of down-
stream tasks.
Does the training data size matter? SNLI and
WiC have two major differences: (1) task objec-
tive and (2) data size (i.e., approximately 500K and
6K for SNLI and WiC, respectively). To ascertain
whether more training data help achieving a high
consistency, we conduct an additional experiment
by down-sampling the training data size of SNLI
to 6K. The Electra models that record the best τtrn
are used for this experiment. The results are in Ta-
ble 5. The inconsistency increases after the down-
sampling, but is still lower than that of WiC, and
the validation accuracy is impaired, especially in
the base-size model. The results suggest that small
training data can cause high inconsistency, as a
model becomes less accurate, but the task objective
affects much more than the training data size.

4.6 Additive Consistency Results
It is noteworthy that this experiment is a very easy
task, because the input is a combination of two
sentences that belong to the same category, so the
model has more evidence to make the correct de-
cision. The results of the additive consistency ex-
periments are in Table 2. All the PLMs are highly
consistent in SST2 but make some mistakes in AG-
News except for the T5 models. The average τadd
of 2.3 in AG-News is not a low score considering
the task difficulty. To become trustworthy, PLMs
need to be more consistent on the additive property.

5 Discussion
Are large models more consistent? It is well-
known that large-size models consistently outper-
form small-size models in terms of accuracy. Does
the same trend occur from a consistency perspec-
tive? Figure 4 illustrates the portion of the three
cases: the performance of the large models are

Model SNLI SNLI-6K WiC
Aval τtrn Aval τtrn Atr τtrn

Electra base 91.8 3.3 64.8 10.0 81.6 48.0
large 93.5 2.5 85.6 3.3 80.7 46.5

Table 5: Results of the down-sampled SNLI experi-
ments. Aval and Atr denote the validation and training
accuracy, respectively. We report Atr of WiC, because
its EN originates from the training data.

Semantic

Negational

Symmetric

Transitive

Additive

0% 25% 50% 75%

base > large no difference base < large

Figure 4: Portion of experimental cases where the large-
size models are more or less consistent than the base-
size models. A t-test under the significance level of 0.05
confirmed the statistical difference in performance.

better, worse, or show no statistical difference. In-
terestingly, the case where there is no statistical
difference in consistency between the large- and
base-size models accounts for a large portion, and
sometimes base-size models even perform better.
This pattern is hardly seen in accuracy-based evalu-
ation metrics, suggesting that additional evaluation
metrics such as consistency other than the accuracy
should be considered for a precise evaluation.

Necessity of a unified benchmark. Our experi-
mental results highlight the importance of evaluat-
ing models in a wide spectrum. We verify that none
of the PLMs performs coherently well in every ex-
periment, suggesting that focusing on a certain task
or consistency type contains the risk of reaching
a wrong conclusion. For instance, we might con-
clude that PLMs are fairly consistent if we only
consider semantic consistency. If we conduct ex-
periments only in the NLI tasks like extant studies,
the conclusion might be distorted, since the results
of all inconsistency types seem reasonable in the
NLI tasks, especially in SNLI. Our new dataset,
however, prevents us from drawing such a falla-
cious conclusion by allowing us to assess models
across multiple consistency types and tasks, demon-
strating its importance to have a unified benchmark
covering a wide array of topics including different
evaluation criteria and task types.

Uncontrollable AI. Due to the nature of inductive
reasoning, the inductive bias of machine learning
and deep learning models is greatly affected by the
patterns in the training data. Although this is well-
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known and widely accepted (Alzubi et al., 2018;
Katsaros et al., 2019; Anagnostis et al., 2020; Xu
et al., 2020; Thielen et al., 2020; Ma et al., 2021),
our experimental results show that the artefacts in
data are a more influential factor than the model
design in deciding its inductive bias (Section 4.3).
The problem is that we have a control over the
model design but not the artefacts, as it is difficult
to review and manipulate all data points with an
enormous size. This evokes a critical concern: un-
controllable AI. However elaborate the model that
we design with highly advanced training objectives
and model structures, we might not have a full con-
trol over the model, as the ungovernable effect of
the artefacts in data remains. It is thus imperative to
take appropriate actions to address the data-driven
faulty behaviour of the model, such as the genera-
tion of ethically problematic outputs (Nangia et al.,
2020). To overcome such issues and move forward
to developing more trustworthy and safer AI, per-
haps it is time to think beyond inductive reasoning.

6 Summary and Outlook

In this work, we first defined LM consistency based
on the concept of behavioural consistency: a core
property that a sound LM should obey. Next, we
categorised various previous studies regarding con-
sistency into three types: semantic, logical, and
factual consistency. Finally, we designed a bench-
mark suite to assess various types of consistency
on multiple downstream tasks.

Through extensive experiments, we observed
that none of the PLMs shows perfectly consistent
outputs in all test cases. Our experimental results
highlight the essence of evaluation schema in multi-
ple spectrums to avoid reaching a distorted conclu-
sion. We also revealed that the impact of spurious
artefacts presented in training data is greater than
that of model design, such as model size and learn-
ing objective. This finding raises concerns about
uncontrollable AI, as we have no control over the
artefacts in tremendous amounts of data. Our work
suggests that we should probably go beyond neural
models, which only allow inductive reasoning, to
develop trustworthy and safe AI.
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A Appendix

A.1 Task Descriptions

BoolQ (Clark et al., 2019) is a dataset for machine
reading comprehension (MRC) with yes/no ques-
tions. Each data point consists of a triplet such as
question, passage, and answer, requiring a broad
range of inference capacities to solve questions.
SNLI (Bowman et al., 2015) and RTE (recognis-
ing textual entailment) (Candela-Quinonero et al.,
2006) are datasets for natural language inference
(NLI). Each data point is composed of a sentence
pair and a label indicating the relationship between
the pair (i.e., “entailment”, “neural”, and “contra-
diction”). MRPC (Microsoft Research Paraphrase
Corpus) (Dolan and Brockett, 2005) is a dataset
for semantic textual similarity (STS). Each data
point consists of a sentence pair and a label indi-
cating whether the two paraphrased sentences are
semantically equivalent. SST-2 (Stanford Senti-
ment Treebank) (Socher et al., 2013) is a dataset
for sentiment analysis (SA). Each data point is com-
posed of a phrase and a binary sentiment label (i.e.,
positive and negative). AG-News (Zhang et al.,
2015) is a dataset of new articles for topic classi-
fication (TC). Each data point is composed of a
title and a description of an article, and a label re-
lated to one of the four topics of the article (i.e.,
“World”, “Sports”, “Business”, and “Sci/Tech”).
WiC (Word-in-Context) (Pilehvar and Camacho-
Collados, 2019) is a dataset for identifying the in-
tended meaning of words. Each data point consists
of two sentences containing the same specific word
and a label indicating whether the word is used
with the same meaning in different contexts.

A.2 Applicability of Logical Consistencies to
Downstream Tasks

Negational Consistency Applicability. Among
our downstream tasks, negational consistency is
invalid for the TC and WiC tasks. Regarding the
TC task, negated sentences normally belong to the
same category as their original version, as illus-
trated in the example in Section 2.2. Similarly, the
labels are preserved in the WiC task, because the
meaning of the target word does not change in the
perturbed sentence.

Although negational consistency is theoretically
applicable to the SA task, we remove it from our
evaluation scope for a practical reason. We ob-
serve that our method for generating the opposite
meaning sentence does not suit well on the spoken

language (e.g., movie reviews) that constitute the
SST2 dataset.

Symmetric Consistency Applicability. For sym-
metry to hold, the following two conditions are
necessary:
Condition 1. The input should consists of two
sentences.
Condition 2. The hierarchy between the two sen-
tences should be equivalent.

The TC and SA tasks violate the first condition.
Regarding the MRC task (i.e., BoolQ), the ques-
tion is dependent on the passage, and, therefore, it
violates the second condition. As a result, the three
tasks are removed from our scope for evaluating
symmetric consistency.

Transitive Consistency Applicability. Theoreti-
cally, transitive consistency is valid for the down-
stream tasks where symmetric consistency holds.
However, it requires one more condition for practi-
cal reasons: the two data points must have a com-
mon sentence, e.g., the same hypothesis in the NLI
task. Only the SNLI and WiC datasets satisfy this
condition among our candidate tasks. Although it
is possible to construct new data for the MRPC and
RTE datasets, it can cause a distribution shift issue
that could exaggerate the inconsistency problem.
Therefore, we conducted the transitive consistency
evaluation only on the SNLI and WiC datasets.

Additive Consistency Applicability. Additive con-
sistency always holds for tasks that take a single
sentence as an input. However, it is not guaran-
teed if a downstream task requires more than two
sentences as an input. Table 7 shows the example
of the violation in the SNLI task. Thus, we tested
additive consistency only for the SA and TC tasks.

A.3 Training Hyperparameters

Table 8 describes the batch-size per GPU, input
sentence length (i.e., number of tokens), and learn-
ing rates used for training models for each dataset.
Similarly to previous works, we confirm that the
datasets with large training data (e.g., SNLI, SST2,
and AG-news) were insensitive to hyperparameter
values.

A.4 Human Annotation

We used Amazon Mechanical Turk (https://www.
mturk.com/) for annotating our data. We employed
Anglophone annotators with an acceptance rate of
at least 98% and the number of HITs greater than
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Model BoolQ MRPC RTE SNLI SST2 AG-News WiC
Fval Fval Fval Fval Fval Fval Ftr Fval

BERT base 66.6 (1.0) 81.8 (1.9) 62.1 (2.0) 90.1 (0.2) 90.5 (0.3) 93.2 (0.2) 62.5 (13.4) 53.0 (7.4)
large 70.3 (1.4) 82.0 (1.4) 64.4 (3.3) 91.0 (0.2) 92.4 (0.4) 93.9 (0.2) 70.0 (9.0) 57.7 (2.9)

RoBERTa base 75.8 (1.0) 86.4 (0.9) 71.5 (1.8) 91.5 (0.0) 92.9 (0.4) 94.1 (0.1) 78.6 (3.9) 63.8 (1.8)
large 84.9 (0.4) 88.6 (1.0) 81.5 (2.1) 93.0 (0.1) 95.9 (0.3) 94.3 (0.2) 77.0 (6.2) 66.0 (2.0)

Electra base 73.8 (2.6) 88.3 (0.2) 75.3 (2.5) 91.8 (0.1) 93.9 (0.2) 93.2 (0.2) 80.4 (4.3) 66.5 (5.9)
large 87.1 (0.5) 90.1 (0.6) 86.7 (1.2) 93.5 (0.3) 95.4 (2.2) 93.8 (0.4) 80.7 (1.8) 69.0 (1.2)

ERNIE2.0 base 76.2 (1.2) 86.8 (0.9) 73.4 (2.6) 91.1 (0.2) 93.6 (0.2) 93.5 (0.1) 62.8 (13.1) 56.0 (4.6)
large 82.6 (0.7) 86.6 (1.2) 76.7 (1.1) 92.1 (0.0) 95.1 (0.2) 94.0 (0.2) 67.1 (9.5) 55.2 (10.1)

GPT2 base 62.9 (1.7) 77.3 (1.0) 65.3 (2.5) 84.7 (1.1) 90.9 (0.5) 92.9 (0.1) 73.4 (3.8) 63.5 (2.6)
large 75.3 (0.8) 80.4 (1.2) 69.0 (2.8) 90.8 (0.2) 94.1 (0.4) 94.1 (0.2) 87.4 (5.7) 64.5 (2.2)

BART base 64.8 (2.4) 85.6 (1.1) 70.7 (1.0) 90.8 (0.2) 93.0 (0.3) 93.8 (0.3) 78.8 (5.5) 56.0 (1.7)
large 78.4 (3.9) 81.6 (8.3) 74.9 (3.1) 93.1 (0.1) 95.9 (0.2) 94.0 (0.7) 77.3 (3.5) 58.9 (2.9)

T5 base 79.9 (0.2) 86.8 (0.9) 77.6 (0.2) 90.1 (0.1) 94.0 (0.2) 92.1 (0.2) 82.3 (0.3) 64.5 (1.1)
large 83.8 (0.6) 89.3 (0.9) 88.0 (0.6) 92.1 (0.2) 95.8 (0.1) 92.5 (0.4) 84.6 (1.5) 70.3 (0.8)

Table 6: Our validation performance of the PLMs on the seven downstream tasks; Ftr and Fval denote F1 score on
the training and validation set, respectively. We report the training performance of the WiC task, because the gap
between training and validation performance is large compared to the other tasks. We report the average of five
repetitions. The values written in parenthesis imply a standard deviation.

EXAMPLE 1
Premise: Two women are embracing while holding to go
packages.
Hypothesis: Two woman are holding packages.
Label: entailment
EXAMPLE 2
Premise: Two men on bicycles competing in a race.
Hypothesis: People are riding bikes.
Label: entailment

MERGED EXAMPLE
Premise: Two women are embracing while holding to go
packages. Two men on bicycles competing in a race.
Hypothesis: Two woman are holding packages. People
are riding bikes.

Table 7: Example of SNLI data where negational consis-
tency does not hold. The label of the merged example
cannot be “entailment”, because two women are not
riding bikes.

BoolQ SNLI RTE MRPC WiC SST2 AG-news
b-size 8 64 8 8 64 32 32
s-len 512 128 256 128 128 128 256

lr 2e−5 1e−5 1e−5 2e−5 1e−5 1e−5 1e−5

Table 8: Batch-size, sentence length, and learning rates
used for the BECEL benchmark experiments.

Fixed Variable Modified Variable
BoolQ passage question
SNLI premise hypothesis
RTE premise hypothesis

MRPC sentence1 sentence2
WiC word, sentence1 sentence2
SST2 - text

AG-news - text

Table 9: Modified variables of each dataset for collect-
ing EN for semantic and negational consistency.

1,000. The representative snapshot of the UI for
the human annotation is shown in Figure 7.
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B Examples

Test case Predicted Pass?

Testing Semantic Consistency on the TC task.                                                       Labels: World, Sports, Business, Sci/tech

Original UN's Global Fund meets African leaders in Tanzania for talks on fighting the world's deadliest diseases. World

O

New
The United Nations Global Fund meets African leaders in Tanzania to discuss combating the world's 
deadliest diseases.

World

…

Testing Negational Consistency on the NLI task.                                                  Labels: entailment, neutral, contradiction

Original
Premise: The man in the blue shirt is relaxing on the rocks.
Hypothesis: A man is wearing a blue shirt.

entailment

X

New
Premise: The man in the blue shirt is relaxing on the rocks.
Hypothesis: A man is not wearing a blue shirt.

entailment

…

Testing Symmetric Consistency on the STS task.                                                               Labels: equivalent, not_equivalent

Original 
S1: Zuccarini was ordered held without bail Wednesday by a federal judge in Fort Lauderdale, Fla.
S2: A federal magistrate in Fort Lauderdale ordered him held without bail. 

equivalent

O

New
S1: A federal magistrate in Fort Lauderdale ordered him held without bail. 
S2: Zuccarini was ordered held without bail Wednesday by a federal judge in Fort Lauderdale, Fla.

equivalent

…

Figure 5: Data examples of semantic, negational, and symmetric consistency evaluation.

Test case Predicted Pass?

Testing Transitive Consistency on the WiC task.                                                                                                Labels: True, False

Original 1
Word: back
Sentence1: The horse refuses to back.
Sentence2: The wind backed.

True

XOriginal 2
Word: back
Sentence1: The wind backed. 
Sentence2: The train backed into the station.

True

New
Word: back
Sentence1: The horse refuses to back.
Sentence2: The train backed into the station.

False

…

Testing Additive Consistency on the SA task.                                                                                         Labels: negative, positive

Original 1 Unflinchingly bleak and desperate. negative

XOriginal 2 A sometimes tedious flim. negative

New Unflinchingly bleak and desperate. A sometimes tedious flim. positive

…

Figure 6: Data examples of transitive and additive consistency evaluation.
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Figure 7: Snapshot of our human annotation UI for annotating semantic consistency evaluation data.

ORIGINAL SAMPLE
Sentence 1: The stupendous power of the Tevatron made possible the 1995 discovery of the top quark - the last of
six flavors of quarks predicted by the standard model theory of particle physics.
Sentence 2: The top quark is the last of six flavors of quarks predicted by the standard model theory of particle physics.
ADVERSARIAL SAMPLE
Sentence 1: The stupendous power of the Tevatron made possible the 1995 discovery of the top quark - the top of
six flavors of quarks predicted by the standard model theory of particle physics.
Sentence 2: The top quark is the last of six flavors of quarks predicted by the standard model theory of particle physics.

ORIGINAL SAMPLE LABEL ADVERSARIAL SAMPLE LABEL
entailment entailment

ORIGINAL SAMPLE
Sentence 1: Rockweed has been harvested commercially in Nova Scotia since the last 1950’s and is currently the most
important commercial seaweed in Atlantic Canada.
Sentence 2: Marine vegetation is harvested.
ADVERSARIAL SAMPLE
Sentence 1: Rockweed has been introduced commercially in Nova Scotia since the last 1950’s and is currently the most
important commercial seaweed in Atlantic britain.
Sentence 2: Marine vegetation is harvested.

ORIGINAL SAMPLE LABEL ADVERSARIAL SAMPLE LABEL
entailment entailment

Table 10: Examples of degenerated adversarial samples of BAE (Garg and Ramakrishnan, 2020) for the RTE dataset.
The words that changed in the adversarial samples are underlined in both original and adversarial samples. It is hard
to consider that the label of the adversarial samples is the same as the original label.
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Abstract

A well-formulated benchmark plays a critical
role in spurring advancements in the natural
language processing (NLP) field, as it allows
objective and precise evaluation of diverse
models. As modern language models (LMs)
have become more elaborate and sophisti-
cated, more difficult benchmarks that require
linguistic knowledge and reasoning have been
proposed. However, most of these benchmarks
only support English, and great effort is nec-
essary to construct benchmarks for other low
resource languages. To this end, we propose
a new benchmark named Korean balanced
evaluation of significant tasks (KoBEST),
which consists of five Korean-language down-
stream tasks. Professional Korean linguists de-
signed the tasks that require advanced Korean
linguistic knowledge. Moreover, our data is
purely annotated by humans and thoroughly
reviewed to guarantee high data quality. We
also provide baseline models and human per-
formance results. Our dataset is available on
the Huggingface 1.

1 Introduction

The NLP field is now facing unprecedented
rapid development. A major factor propelling the
progress is the existence of unified benchmark
datasets like GLUE (Wang et al., 2018), which are
designed to assess models’ language understand-
ing capabilities. Such benchmark datasets, enabled
modern pre-trained language models (PLMs),
such as BERT (Devlin et al., 2019) and GPT-2
and GPT-3 (Radford et al., 2019; Brown et al.,
2020), to be assessed in objective and multifaceted
manners. The success of GLUE also lead to sim-
ilar benchmark datasets in a variety of other lan-
guages, such as French (Le et al., 2020), Ko-
rean (Park et al., 2021), Chinese (Xu et al., 2020)
and Indonesian (Wilie et al., 2020).

*These authors contributed equally to this work
1https://huggingface.co/datasets/skt/kobest_v1

However, many recent studies reveal that the
outstanding performance of PLMs on such bench-
mark datasets seems plausible but not probable.
These studies have found that datasets may con-
tain many spurious artefacts, and the performance
of PLMs is enhanced by excessive usage of said
artefacts (Habernal et al., 2018; Niven and Kao,
2019; McCoy et al., 2019; Bender and Koller,
2020). Another line of work observed that many
PLMs, which showed promising results in GLUE,
fall short of expectations for more difficult tasks
that require linguistic knowledge (Bhatt et al.,
2021) or logical reasoning (Tian et al., 2021). As
a result, the importance of well-designed evalua-
tion datasets with higher difficulty-level has been
highlighted, and new datasets, such as CHECK-
LIST (Ribeiro et al., 2020), and LOGICNLI (Tian
et al., 2021), have been proposed. Most of them
only support specific languages like English, and
it requires large efforts to build higher difficulty-
level language evaluation suits for other low re-
source languages, however.

When it comes to the Korean language, two
benchmarks are widely used: Korean-NLI &
STS (Ham et al., 2020) and KLUE (Park et al.,
2021). The former is machine- and human-
translated from English natural language infer-
ence (NLI) and semantic textual similarity (STS)
datasets, which hardly reflect the characteristics of
the Korean language. The latter is a Korean ver-
sion of GLUE benchmark which supports eight
tasks, such as NLI, STS, named entity recog-
nition (NER), and relation extraction (RE). Al-
though these tasks are useful for assessing general
language ability, it is difficult to ascertain whether
a model is able to reason based on more compli-
cated knowledge beyond text form (e.g., passage
of time, meaning of text, causality). To this end,
we aim to construct a new benchmark dataset in
Korean named KoBEST, which consists of five
downstream tasks that require advanced knowl-
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Tasks |Train| |Dev| |Test| |Labels| Text Source
KB-BoolQ 3.7K 700 1.4K 2 Wikipedia
KB-COPA 3.1K 1K 1K 2 N.A
KB-WiC 3.3K 1.3K 1.3K 2 Korean Dictionary

KB-HellaSwag 2K 500 500 4 Wikipedia,
YouTube

KB-SentiNeg 3.6K 400 397 2 Product reviews

Table 1: The number of data instances and labels for
each downstream task.

edge of Korean. We carefully constructed the data
based on the following design principles:

• Human-driven data annotation: Our data is
purely annotated by humans to prevent incor-
rect and ambiguous data instances caused by
automatic data annotation approach.

• Leveraging professional linguistic knowl-
edge: As a result of our collaboration with
professional Korean linguists, we re able to
collect grammatically correct data with rich
vocabulary and expressions.

• Availability to public: As a benchmark
dataset, it is important to ensure public ac-
cessibility. We guarantee that our data is free
to use and redistribute.

• High data quality: Our data passed thorough
reviews driven by both models and humans to
deliver high quality data without superficial
cues and heuristic artefacts.

• Avoiding AI ethical issues: Human review
process have been performed to remove toxic
content, social biases, and personal informa-
tion from our data set.

Next, we evaluated widely used Korean PLMs
on the KOBEST dataset. Specifically, we con-
ducted fine-tuning, zero-shot, one-shot, and few-
shot experiments. The experimental results can
serve as a baseline for performance on KOBEST.
Participants also provided human performance
baselines for all of our tasks. Our results suggest
that modern PLMs and a large-size generative lan-
guage model (GLM) are far from reaching human-
level language ability.

2 KoBEST Downstream Tasks

2.1 Overview

The KoBEST benchmark consists of the following
five downstream tasks:

1. KoBEST-BoolQ (KB-BoolQ): identify
whether a given question is true or false
considering a paragraph.

2. KoBEST-COPA (KB-COPA): select an al-

ternative which is a cause/effect of a given
premise.

3. KoBEST-WiC (KB-WiC): identify whether
the meaning of a target word is the same or
different in two given contexts.

4. KoBEST-HellaSwag (KB-HellaSwag): select
a correct sentence among four candidates that
is likely to appear after a given context.

5. KoBEST-SentiNeg (KB-SentiNeg): predict
the polarity of a negated sentence.

The number of training/development/test data
points is illustrated in Table 1.

2.2 KoBEST-BoolQ
Data/Task Description We built the KB-BoolQ
dataset by referencing boolean questions (BoolQ)
task (Clark et al., 2019). A data point consists of
a paragraph, question, and label. The task aims to
evaluate models’ understanding of the paragraph
by asking a true/false question. An example is pre-
sented in Table 2.

We extracted paragraphs from Korean
Wikipedia2. To cover diverse materials, we
first choose topics, such as Science/Technology
and Art/Culture, by referring to previous works
regarding Korea written/spoken language (Seo
and Kim, 2005; Seo, 2007). Then, we defined
keywords for each topic and selected documents
containing enough information regarding the
keyword. Next, we extracted paragraphs for each
document and generated corresponding questions
that could be answered as true/false based on the
paragraph.

Guidelines Annotators were instructed to con-
struct the KB-BoolQ dataset following the guide-
lines described below.

1. Paragraphs should be evenly extracted from
various domains and topics to minimise bias.

2. Questions should be answered only with the
information presented in the paragraph. We
set this guide for two reasons: 1) to ex-
clude the impact of pre-trained commonsense
knowledge for decision making and 2) an-
notators have different viewpoints regarding
the boundary of commonsense knowledge,
which can cause uneven task difficulty.

3. Questions should be written in clear, un-
ambiguous, easy-to-understand language. A
true/false judgement should be obvious from
a human perspective.

2https://ko.wikipedia.org/wiki/
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K
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oo

lQ
Paragraph:구한말,통영안뒤산기슭간창골에김봉제형제가살았다.김봉제는관약국을경영하며부를누렸는데,
선비적성품을지녔던형과반대로막냇동생김봉룡은성질이포악했다.어느날봉룡은아내였던숙정을사모하던
나그네를살해하였고,숙정은누명을벗으려고비상을먹고자살한다. (At the end of the Joseon Dynasty, the
Kim Bong-je brothers lived in Ganchanggol at the foot of Andui Mountain in Tongyeong. Kim Bong-je enjoyed wealth
while running a government office, but his younger brother Kim Bong-ryong had a violent temper, contrary to his brother
who had a scholarly character. One day, Bongryong killed a traveler who adored his wife Sukjeong, and Sukjeong commits
suicide to clear his name.)
Question:봉룡은숙정을죽였는가? (Did Bongryong kill Sukjeong?) Answer: False

K
B

-C
O

PA Premise:전쟁이시작되었다. (The war had begun.) Question:결과 (Effect)
Alternative 1:병사들이집으로돌아왔다. (Soldiers returned home.)
Alternative 2:병사들이전투에파견되었다. (Soldiers were sent to battle.)
Correct Alternative: 2

K
B

-W
iC Context 1:망가진엔진은 수리 가불가능하다. (It is impossible to repair a broken engine.)

Context 2:이배는 수리 에들어간지일주일이됐다. (The ship has been under repair for a week.)
Target Word:수리 (repair) Answer: True

K
B

-H
el

la
Sw

ag

Context:양궁선수들이경기장으로입장한다.관중들이함성을지르고응원한다.선수들이상대팀과악수하고
자리로돌아온다.코치가전략을설명하고화이팅을외친다. (Archery players enter the stadium. The crowd shouts
and cheers. The players shake hands with the opposing team and return to their seats. The coach explains the strategy
and shouts "Go for it.")
Ending 1:활이과녁에적중했다. (The arrow hits the target.)
Ending 2:선수가심호흡을하고활을쏜다. (The player takes a deep breath and shoots an arrow.)
Ending 3:선수가활을들어과녁을조준한다. (The player raises his bow and aims at the target.)
Ending 4:선수들이각자자리에서서활을꺼낸다. (The players stand in their own positions and take out their bows.)
Correct Ending: 4

K
B

-S
en

tiN
eg

Sentence 1:뚜껑이잘열려요! (The lid opens well!) Label 1:긍정 (Positive)
Sentence 2:뚜껑이잘안열려요! (The lid does not open well!) Label 2:부정 (Negative)

Table 2: Examples of development set from the KoBEST tasks. The variables of each task are highlighted in bold.
Text written in parenthesis is the English translated version of the original data points.

2.3 KoBEST-COPA

Data/Task Description We referenced choice
of plausible alternatives (COPA) (Roemmele et al.,
2011) to construct the KB-COPA dataset. The data
has four variables: premise, two alternatives, and a
question that asks a model to decide the cause or
effect of the premise from the two alternatives. An
example is available in Table 2.

Guidelines We provided the following guide-
lines to annotators for generating data instances.

1. The alternatives should belong to a similar
area, e.g., states and actions. This rule is in-
troduced to preclude systems from making
decisions based on situational difference, not
the meaning of alternatives.

2. The alternatives should contain a keyword re-
lated to that of premise. For instance, in the
example presented in Table 2, the keyword
of the premise is “전쟁 (war)”, and both al-
ternatives contain the related same keyword
“병사 (soldier)”. We introduce this guideline
to increase the task’s difficulty by making the
alternatives belong to the same category.

3. All the premises and alternatives should be
written concisely so that the content can

be understood intuitively. Therefore, using
proper noun, slang, and redundant expres-
sions should be avoided.

4. All sentences should be written in the past
tense. In the Korean language, simple present
can cause confusion because it has indication
of tense and sometimes can imply present
progressive. On the other hand, the past tense
is morphologically clear and is able to convey
meaning without confusion.

5. All sentences must include a subject. Al-
though the subject is frequently omitted in
Korean, it is difficult to infer the cause
or effect without a subject because all the
premises and alternatives are quite short.
Therefore, even though such sentences are
slightly unnatural in Korean, we guide anno-
tators to insert a subject.

2.4 KoBEST-WiC

Data/Task Description KB-WiC is a task that
determines whether a word has the same connota-
tion in different contexts. We referenced words in
context (WiC) (Pilehvar and Camacho-Collados,
2019) when building the dataset. An instance is
composed of a target homonym and two different
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contexts that contain the target word. Table 2 pro-
vides an example for the KB-WiC task. Unlike the
original WiC dataset that includes various word
forms, we only used words with the same form, so
as to focus more on recognising a word’s meaning
without the distracton of variouus forms.

Guidelines To construct the KB-WiC dataset,
we instructed annotators to follow these guide-
lines.

1. A target word should be listed in the National
Institute of the Korean Language Basic Ko-
rean Dictionary3 or Korea University Korean
Dictionary (Hong and Kim, 2009). We ex-
clude words not registered in the dictionar-
ies because they can cause ambiguous crite-
ria for determining an answer. This is despite
the fact that they are generally used in daily
life.

2. For generating a data point where an answer
is False, only a homonym should be used as
a target word because a polysemy makes the
task considerably more challenging, even for
native speakers.

3. The part of speech (PoS) tag of a target word
should be a noun, pronoun, numeral, or de-
pendent noun4. We introduce this guideline
because the four PoS tags have a fixed form
and distinct meaning in Korean.

4. The contexts should be extracted from exam-
ple sentences in the dictionaries to make it
possible to clearly understand the sense of a
target word only using the given context.

2.5 KoBEST-HellaSwag

Data/Task Description This task evaluates
whether a system can utilize passage of time
and order to complete the last sentence in a se-
ries of sentences. We referenced the HellaSwag
dataset (Zellers et al., 2019) to build our version
but modified the task to consider specific charac-
teristics of the Korean language.

The original HellaSwag benchmark was de-
signed to ascertain whether a LM can generate a
plausible ending sentence given a relevant subject
and context. In Korean, however, subjects are typi-
cally omitted. As a result, if the ending sentence is
generated from the subject, the sentence becomes
awkward and barely resembles a plausible Korean

3https://stdict.korean.go.kr/main/main.do
4A noun that cannot be used without the help of other

words in Korean.

sentence. Evaluating such unnatural sentences is
not in line with the purpose of KoBEST, so we
modify the task to predict the most plausible final
sentence among four candidates. An example in-
stance is available in Table 2.

Guidelines We instruct annotators to build the
data based on the following guidelines.

1. The annotators should generate or modify
free-text descriptions of YouTube videos and
Wikepedia documents that progress with the
passage of time.

2. At least three sentences should be included in
the context. A system should have as much
context as possible to generate a plausible
ending sentence.

3. All the candidate-ending sentences should be
thematically related to the context. The an-
swer should only be able to be found by
analysing the passage of time among the sen-
tences, not via the topic or keywords. This
guideline is introduced to prevent low task
difficulty by generating alternative endings
that simply contradict the correct ending.

2.6 KoBEST-SentiNeg

Data/Task Description Many studies have re-
vealed that PLMs lack understanding of negation
expressions (Hossain et al., 2020; Ettinger, 2020;
Kassner and Schütze, 2020; Hosseini et al., 2021;
Jang et al., 2022). Inspired by the Negation capa-
bility test of Ribeiro et al. (2020), we designed a
similar but enhanced task by utilizing negation to
create sentences opposite in meaning. Specifically,
we created a two-class sentiment analysis task by
generating product reviews based on real prod-
uct reviews available on e-commerce websites. 5

We then used the training and development sets
to train a sentiment classification model. Next, we
extracted candidates from training data where the
polarity switched when transformed into a sen-
tence with the opposite meaning. Finally, we con-
verted each candidate to a sentence with its oppo-
site meaning and reversed the label. The modified
candidate is then added to the final test set. We
used the following three methods to generate the
sentences with opposite meanings.

1. Adding/removing negation expressions:
We add or remove Korean negation expres-
sions (e.g., “안”, “못”, “지않다”).

5The real product reviews are only used as references and
our data is newly generated by human annotators.
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2. Antonym replacement: A word is replaced
with its antonym.

3. Using both method 1 and 2 or idiom: Both
methods described above are used. If a sen-
tence includes an idiom, we replace it with
its corresponding opposite meaning idiom.

Guidelines We instructed the annotators to com-
ply with the following guidelines to generate data
points for the KB-SentiNeg task.

1. The sentence should not include the name of
specific brands or products. This guideline is
meant to avoid any possible legal issues.

2. To generate a new sentence resembling a real
product review, typos and spacing errors that
frequently occur in Korean spoken language
should be included occasionally.

2.7 Evaluation Metrics

All of our downstream tasks have discrete labels.
Therefore, we use the F1 score as a base criterion
to evaluate models’ performance.

3 Design Principles

In this section, we provide detailed descriptions
about how we attempted to achieve the design
principles illustrated in Section 1.

3.1 Human-driven data annotation

Automatic data generation using meta-
information, such as a review score and news
article category (e.g., Naver Sentiment Movie
Corpus6, is a widely used approach to rapidly
collect a large amount of labelled data. While it
is an efficient approach, there exists a high risk of
the dataset containing incorrect and ambiguous
data points. Such noisy data points are a major
issue for evaluation datasets because they can
lead to spurious performance increases (and or
degradations) in the performance of LMs.

Our data is created purely by human annotations
to produce the highest quality dataset with the low-
est amount of incorrect and ambiguous data points
possible. We hired four annotators who are Ko-
rean native speakers and major in Korean Lan-
guage Education or Korean Language in Litera-
ture. Also, our Korean linguists trained the anno-
tators before the data annotation process to avoid
generating possible grammatical errors and uneth-
ical expressions.

6https://github.com/e9t/nsmc

Example #1
P:날씨가추워졌다. (The weather has become colder.)
Q:원인 (Cause)
A1:겨울이되었다. (Winter has come.)
A2:여름이되었다. (Summer has come.)
Example #2
P:겨울이되었다. (Winter has come.)
Q:결과 (Effect)
A1:날씨가추워졌다. (The weather has become colder.)
A2:날씨가더워졌다. (The weather became hot.)

Table 3: Examples of the KB-COPA data where the
causality is interlocked. P, Q, A1 and A2 denote a
premise, question, and alternatives, respectively. The
two sentences highlighted in red and blue colours are
swapped by changing the question from Cause to Ef-
fect.

3.2 Leveraging linguistic knowledge

Korean benchmark datasets, translated from En-
glish datasets (e.g., Kornli and Korsts (Ham
et al., 2020)), might include incorrect transla-
tions and grammatical errors, particularly if they
are machine-translated. Moreover, since the orig-
inal examples come from English, such bench-
mark datasets are unlikely to assess properly as-
sess Korean-specific knowledge or language intri-
cacies.

Relying on our in-house Linguistic team, al-
lowed us to mitigate and resolve issues with
automatically generated datasets. First, our lin-
guists trained the annotators to generate natural
and grammatical Korean sentences and performed
thorough reviews of the data. Thanks to their ef-
forts, we have created a highly grammatical and
natural. Secondly, the linguists designed tasks and
data generation processes that considered the Ko-
rean language’s characteristics. This is illustrated
in guidelines for each task in Section 2. Such
guidelines and processes enabled us to create an
accurate Korean evaluation dataset with expres-
sive vocabulary and colloquial usage.

3.3 Availability to public

Our data is free from copyright issues. All sen-
tences and answers, except for the paragraphs
in KB-BoolQ task, are generated by our annota-
tors from scratch by referencing publicly avail-
able sources. Also, the paragraphs in KB-BoolQ
were extracted from Wikipedia, which is under
the Creative Commons Attribution-ShareAlike li-
cense. Therefore, researchers are free to use, mod-
ify and redistribute the KoBEST dataset.
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Figure 1: The overall process of model-driven review for removing artefacts in training data.

3.4 High data quality
As a benchmark suite, accomplishing high data
quality is important to accurately evaluate various
LMs. We achieve this purpose through two review
phases: human-driven and model-driven reviews.

Human-driven review After collecting data,
our linguists reviewed all data instances and found
two major issues in the KB-COPA and KB-
HellaSwag datasets.

For the KB-COPA task, we observed many
cases with high correlation between data in-
stances. Examples corresponding to this case are
presented in Table 3. We conjecture this is because
it was easier for the annotators to collect data by
simply swapping the premise and answer along
with changing the question. We removed or mod-
ified such instances because they are near dupli-
cates and harm data diversity.

In the KB-HellaSwag task, we found several
critical cases where predicting a correct final sen-
tence is quite difficult due to the omission of de-
tailed delineations in the context. This issue occurs
because the source that the annotators referenced
for generating contexts lacks detailed information
occasionally. For such ambiguous instances, we
appended additional clues to the context to allow
inferring the meaning between the context and the
final sentence.

Model-driven review Artefacts existing in
training data can lead a model to learn spurious
inductive biases, resulting in distorted evaluation
results (Gururangan et al., 2018; McCoy et al.,
2019; Hossain et al., 2020). Therefore, we conduct
a model-driven review process to find and remove
such unwanted artefacts. The overall process is
illustrated in Figure 1. First, we trained an ad-hoc
model with the initial dataset for each task. Next,
we generated predictions for the development and
test datasets and analysed the results to ascertain
whether specific words/patterns/phrases were
strongly correlated with labels. Finally, our lin-
guists analyzed the issues and updated the datasets
accordingly. We repeated the whole process up

to three times for each dataset. Through this
process, we observed serious artefacts, especially
in the KB-WiC and KB-COPA datasets. More
than 70% of questions containing number-related
representations had False as a label. Also, the
label distributions of data instances containing
specific phrases (e.g., " 덥다/춥다 (hot/cold)"
or 했다/하지 않았다 (did/did not)) were highly
skewed towards the False label. All such artefacts
were successfully removed and modified by our
linguists.

3.5 Avoiding AI ethical issues
Social biases embedded in training data can lead
to unethical behaviour of language models (Nan-
gia et al., 2020). To mitigate such issues, we made
efforts to remove unethical expressions, such as
toxic content (e.g., insults, slang, sexual harass-
ment) and social bias (e.g., gender, race, religion).
Our linguists clearly instructed the annotators to
avoid unethical expressions when generating sen-
tences and extracting paragraphs from Wikipedia
for the KB-BoolQ task. Also, linguists reviewed
the data for potential ethical issues, as described
in Section 3.4

4 Experiments

In this section, we provide model and human per-
formance results.

4.1 Fine-tuning Experiments
4.1.1 Experimental Design
Model Candidates We used the following four
pre-trained Korean language models to benchmark
our KoBEST dataset:

• Encoder models: KoBERT 7, KoElectra 8

• Decoder models: KoGPT3-1.2B
• Encoder-Decoder models: KoBART 9

For KoBART, we applied the text-to-text multi-
task training technique to fine-tune the model. We

7https://huggingface.co/monologg/kobert
8https://huggingface.co/monologg/koelectra-base-v2-

discriminator
9https://huggingface.co/hyunwoongko/kobart
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Model KB-BoolQ KB-COPA KB-WiC KB-HellaSwag KB-SentiNeg Average
KoBERT (FT) 62.9±3.0 74.6±0.8 77.3±0.8 74.4±0.4 86.8±2.0 75.2
KoElectra (FT) 75.1±1.0 81.5±0.4 79.7±1.8 74.7±0.8 91.9±1.1 80.6

KoGPT3-1.2B (FT) 73.5±1.6 79.3±0.6 68.4±2.2 73.8±1.0 89.5±3.3 77.0
KoBART (FT) 60.6±2.9 56.9±3.2 60.4±4.9 51.4±1.3 88.6±1.2 63.6

KoGPT3-39B (k = 0) 33.1 76.8 34.7 59.8 57.7 52.8
KoGPT3-39B (k = 1) 50.2 78.3 51.8 60.2 74.2 66.3

KoGPT3-39B (k = 10) 46.9 80.9 52.2 58.7 91.6 70.6
Human 95.1 98.1 96.6 92.4 99.0 96.2

Table 4: The test F1 scores of Korean LMs on the KoBEST downstream tasks. The first and second blocks are the
experimental results of fine-tuning and zero/few-shot learning, respectively. For the fine-tuning experiments, we
repeat each experiment five times and report the average and standard deviation. The best values for each task are
written in bold. k refers to the number of few-shot samples.

BoolQ COPA WiC HellaSwag SentiNeg
b-size 8 16 16 8 16
s-len 256 128 256 256 128

lr 5e−6 5e−6 1e−5 2e−5 1e−5

Table 5: Batch-size (b-size), maximum input length
(s-len), and learning rates (lr) used for the KoBEST
benchmark experiments.

Model Fval Ftest △
KoBERT 99.1 86.8 12.3
KoElectra 99.4 91.9 7.5

KoGPT3-1B 99.8 89.5 10.3
KoBART 98.7 88.6 10.1

Table 6: The average performance gap between valida-
tion and test sets of KB-SentiNeg task.

transformed inputs of each text to a free-text input
by referencing the transformation formats used in
the T5 model (Raffel et al., 2020).

Training Details We used AdamW opti-
miser (Loshchilov and Hutter, 2017) for training
with a linear learning rate scheduler decaying
from 1e-2. We trained all models for 10 epochs,
and used the early stopping method during the
training. Different batch sizes and learning rates
were used across the tasks, and detailed training
hyperparamters are presented in Table 5.

4.1.2 Results and Discussion
The fine-tuning results can be seen in the first
block of Table 4. Overall, KoElectra showed the
best results, followed by KoGPT-1B, suggesting
that model size is not necessarily a requisite for
better performance.

Do models understand the opposite in mean-
ing? Table 6 shows the validation and test per-
formance of fine-tuned models on the SentiNeg
task. Interestingly, all models show a large perfor-
mance gap between the validation and test perfor-

Model KB-BoolQ KB-WiC KB-SentiNeg
Single-task 66.5±3.1 68.3±3.0 87.7±1.4
Multi-task 60.6±2.9 60.4±4.9 88.6±1.2

Table 7: The performance of KoBART models trained
with single- and multi-task manners.

mance in the SentiNeg task. The results suggest
that PLMs are vulnerable to a simple negation and
antonym-replacement perturbation, even though
the data points all originated from the training
data. Our results are aligned with previous stud-
ies on English data that showed PLMs are inca-
pable of understanding negation expressions (Hos-
sain et al., 2020; Kassner and Schütze, 2020; Et-
tinger, 2020; Hosseini et al., 2021), suggesting that
the issue stems from the PLM, not from language
itself.
Text-to-Text Multi-task training is not always
beneficial Unlike the other three models, Ko-
BART was fine-tuned in a multi-task fashion.
However, contrary to the common belief that
multi-task training is beneficial in improving per-
formance on benchmark suites (e.g., GLUE (Liu
et al., 2019)), in our case, multi-task training pro-
duced the worst performance by a large margin.
We conducted additional single-task classification
experiments on KoBART by introducing a clas-
sifier layer. The multiple-choice tasks (i.e., KB-
COPA and KB-HellaSwag) are not included in this
experiment, as the structure of the BART model is
not suitable for the multiple-choice tasks. The re-
sults are presented in Table 7. The results show
that the single-task model performs better than
multi-task models on the KB-BoolQ and KB-WiC
tasks by a large margin. We also ascertained that
the performance gap was statistically significant
(p < 0.05) on the two tasks, while there was no
significant difference on the KB-SentiNeg task.
We conjecture that a leading cause is a misalign-

3703



ment between tasks. All the downstream tasks in
KoBEST are independent of each other. However,
in the GLUE benchmark, for instance, the sub-
tasks are well aligned, containing multiple datasets
that share a common objective, e.g., NLI and STS,
and it is well studied that the misalignment be-
tween task data can cause poor results (Wu et al.,
2020).

4.2 Zero/Few Shot Experiments

4.2.1 Experimental Design
The advent of extremely large size GLMs like
GPT3 (Brown et al., 2020) has allowed in-context
learning (providing the model with a few or no
samples) to apply the model to downstream tasks.
To this end, we conducted zero-, one- and few-
shot experiments by using a Korean GPT3 model
trained by Language Superintelligence Labs with
39 billion parameters and 132 billion tokens. We
then referenced the work of EleutherAI 10 to de-
sign prompts for our zero, one, and few-shot ex-
periments. Several prompt examples are available
in Table 8 in the appendix. For multiple-choice
problems like KB-COPA and KB-HellaSwag, we
selected the candidate having the lowest perplexity
as the prediction.

4.2.2 Results and Discussion
Fine-tuned models are still best. The results,
presented in the second block of Table 4, re-
veal that the fine-tuned models, apart from Ko-
BART, outperform in-context learning methods.
Our results are aligned with the work of Brown
et al. (2020) that showed GPT3 performance based
on few-shot learning is behind that of fine-tuned
SOTA in many tasks, including all downstream
tasks in SuperGLUE (Wang et al., 2019). Al-
though it is interesting that a large GLM can
achieve decent performance with only a few train-
ing examples, results suggest that we should be
judicious using large GLM in practical applica-
tions; especially when considering performance
compared to excessively high training costs (i.e.,
time and resources).
Increasing k is not always beneficial. Few-
shot learning approaches with more examples in-
crease performance in general, but merely increas-
ing k does not always lead to better performance.
Specifically, in the case of KoBEST, the perfor-
mance is slightly worse on the KB-BoolQ and

10https://github.com/EleutherAI/lm-evaluation-harness

KB-HellaSwag tasks. We believe that the length
of the input document is a leading cause of this
phenomenon. Since the model’s max input length
plays a critical role in deciding the maximum
number of examples (n) in the prompt (Yang et al.,
2021), the available n decreases as the length of
prompts increases. However, as we can see in Ta-
ble 2, the data points of the KB-BoolQ and KB-
HellaSwag tasks have longer inputs than the other
tasks. As a result, the prompts for these tasks be-
come very long and likely to exceed the model’s
maximum input length. This would result in a
sliced prompt that may lack key information the
model needs to make a successful prediction.

4.3 Human performance

We asked volunteers to evaluate the dataset
to provide human-level performance metrics for
KoBEST. Specifically, 10 native Korean evalua-
tors evaluated 100 randomly sampled examples
for each downstream task. The results are sum-
marised in the last row of Table 4. The human
evaluators outperformed all the PLMs by a large
margin, suggesting that modern PLMs need fur-
ther improvements to achieve human-level lan-
guage ability.

5 Conclusion
A well-designed benchmark dataset is crucial for
an objective and precise evaluation of LMs. Fol-
lowing the GLUE benchmark, more challenging
benchmarks have been proposed as modern LMs
become more elaborate and sophisticated. How-
ever, most of these benchmarks only support En-
glish or originate from English (e.g., translation),
which hardly captures important characteristics of
a specific language.

To this end, we propose a new Korean bench-
mark suite named KoBEST, which consists of
five challenging downstream tasks. To overcome
the disadvantages of the previous Korean bench-
marks, we focused on 1) employing Korean-
specific knowledge, 2) achieving high data qual-
ity and 3) removing superficial cues. To achieve
these goals, we worked with professional Korean
linguists and collected data manually and not auto-
matically. We also conducted human- and model-
driven review processes to eliminate superficial
cues from our dataset. Moreover, we were extra
cautious to avoid using unethical expressions.

Finally, we evaluated various PLMs on our new
benchmark and provide baseline model and hu-
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man performance metrics. Our experimental re-
sults show that current LMs need further improve-
ments to attain human-level language ability. We
hope our new benchmark can contribute to ad-
vancements in the Korean NLP field.
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A Appendix
K

B
-B

oo
lQ

Inputs:
Paragraph:구한말,통영안뒤산기슭간창골에김봉제형제가살았다.김봉제는관약국을경영하며부를누렸는데,
선비적성품을지녔던형과반대로막냇동생김봉룡은성질이포악했다.어느날봉룡은아내였던숙정을사모하던
나그네를살해하였고,숙정은누명을벗으려고비상을먹고자살한다.
Question:봉룡은숙정을죽였는가? Answer: False
Prmopt Design:
Answer: “예” if Answer is True else “아니오”
Format: “{Paragraph}질문: {Question}답변: {Answer}.”
Example:
구한말,통영안뒤산기슭간창골에김봉제형제가살았다.김봉제는관약국을경영하며부를누렸는데,
선비적성품을지녔던형과반대로막냇동생김봉룡은성질이포악했다.어느날봉룡은아내였던숙정을사모하던
나그네를살해하였고,숙정은누명을벗으려고비상을먹고자살한다.질문:봉룡은숙정을죽였는가?답변:아니요.

K
B

-C
O

PA

Inputs:
Premise:전쟁이시작되었다. Question:결과
Answer Alternative:병사들이전투에파견되었다.
Prompt Design:
Connector: “왜냐하면” if Question is “원인” else “그래서”
Format: “{Premise} {Connector} {Answer Alternative}”
Example:
전쟁이시작되었다.그래서 (“왜냐하면” if question is원인)병사들이전투에파견되었다.

K
B

-W
iC

Inputs:
Context 1:망가진엔진은수리가불가능하다.
Context 2:이배는수리에들어간지일주일이됐다.
Target Word:수리 Answer: True
Prompt Design:
Answer: “예” if Answer is True else “아니오”
Format: “문장1: {Context1}문장2: {Context2}두문장에서 {Target Word}가같은뜻으로쓰였나? {Answer}”
Example:
문장1:망가진엔진은수리가불가능하다.문장2:이배는수리에들어간지일주일이됐다.두문장에서수리가같은
뜻으로쓰였나?예.

K
B

-H
el

la
Sw

ag

Inputs:
Context:양궁선수들이경기장으로입장한다.관중들이함성을지르고응원한다.선수들이상대팀과악수하고
자리로돌아온다.코치가전략을설명하고화이팅을외친다.
Correct Ending:선수들이각자자리에서서활을꺼낸다.
Prompt Design:
문장: {Context} {Correct Ending}
Example:
문장:양궁선수들이경기장으로입장한다.관중들이함성을지르고응원한다.선수들이상대팀과악수하고
자리로돌아온다.코치가전략을설명하고화이팅을외친다.선수들이각자자리에서서활을꺼낸다.

K
B

-S
en

tiN
eg

Inputs:
Sentence:뚜껑이잘안열려요! Answer:부정
Prompt Design:
Format: “문장: {Sentence}긍부정: {Answer}”
Example:
문장:뚜껑이잘안열려요!긍부정:부정

Table 8: Prompt designs for each task used in in-context learning experiments. Example data points presented in
Table 2 are used.
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Abstract

The process by which sections in a document
are demarcated and labeled is known as section
identification. Such sections are helpful to the
reader when searching for information and con-
textualizing specific topics. The goal of this
work is to segment the sections of clinical med-
ical domain documentation. The primary con-
tribution of this work is MedSecId, a publicly
available set of 2,002 fully annotated medical
notes from the MIMIC-III. We include several
baselines, source code, a pretrained model and
analysis of the data showing a relationship be-
tween medical concepts across sections using
principal component analysis.

1 Introduction

Most unstructured medical text found in electronic
health record systems (EHRs) written by medical
staff have conceptually well defined sections. For
example, discharge summaries are technical med-
ical documents, written by physicians when the pa-
tient is discharged, which describe the patient’s hos-
pital stay and surrounding circumstances of their
illness. As shown by the example in Figure 1, dis-
charge summaries consist of named sections, typ-
ically in a specific sequence, such as the History
of Present Illness; this type of section appears both
in discharge summaries and in physician notes that
describe a chronology of an illness that begins with
the admission of the patient.

Whereas sections often have headers, section
identification (SI) is more challenging than simply
parsing the first several leading header tokens of the
respective section (underlined in Figure 1). While
the first several tokens can be helpful in identifying
a section, their naming often varies. For exam-
ple, the 6th section in Figure 1 starts with header
tokens Preoperative Laboratory Data, but the sec-
tion type is labs-imaging. There are also cases
where the header tokens are missing, as shown in

Admission Date: [**2126-2-7**] Discharge Date:
[**2126-2-20**]
Date of Birth: [**2069-4-1**] Sex: M

history-of-present-illness
HISTORY OF PRESENT ILLNESS: Mr. [**Known last-
name **] is a 56-year-old male who experienced chest. . .

past-medical-history
PAST MEDICAL HISTORY: Hypertension, former
smoker with a 4- pack per day history for which he. . .

social-history
SOCIAL HISTORY: He lives alone, and he works at
[**Hospital3 2576**] as a cargo transporter.

medication-history
MEDICATIONS ON ADMISSION: Aspirin 325 mg p.o.
once a day, Toprol-XL 50 mg p.o. once a day.

allergies
ALLERGIES: He had no known drug allergies.

labs-imaging
PREOPERATIVE LABORATORY DATA: White count
6.0, hematocrit 33.3, platelet count 329,000.. . .

hospital-course
On exam he had a left facial droop, status post his child-
hood polio. Temperature of 97.5, heart rate 65 in sinus. . .

discharge-diagnosis
DISCHARGE DIAGNOSES:
1. Status post coronary artery bypass grafting x 3.. . .

discharge-instructions
DISCHARGE INSTRUCTIONS: He was instructed to
make an appointment. . .

discharge-medications
MEDICATIONS ON DISCHARGE:
1. Aspirin enteric coated 81 mg p.o. once a day.
2. Colace 100 mg p.o. twice a day. . .
He was discharged to home with VNA services in good
condition on [**2126-2-20**]...

Figure 1: A MIMIC-III discharge summary note with
section type in bold, header tokens underlined, and text
not belonging to any section grayed out; omitted text is
indicated with ellipses.

the 7th section (hospital-course) in the same
figure, or where sections have several header text
spans placed throughout the section. Adding to this
challenge is the non-uniformity of the text, lack
of section boundary syntax, and copy-pasted text
from other notes or from structured data such as
patient vital signs.
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While discharge summary sectioning helps a
physician locate specific information, the primary
impetus for the structure and content stems from
the ongoing dispute between providers and health-
care insurance companies in the United States.
Providers are limited by how much they can bill for
relatively simple medical procedures, but increas-
ingly complex procedures garner more revenue
with proper documentation. Specifically, medical
billing staff and insurance companies use relative
value units (RVUs), which is a monetary unit up-
dated annually and currently set at $34.30. The
number of RVUs billed is based on the composi-
tion and number of sections included in the medical
notes per guidelines set by the Centers for Medicare
and Medicaid Services1.

For this reason, providers are encouraged to
write medical notes to maximize RVUs out of ne-
cessity (Barnes et al., 2008) even though physician
training lacks such emphasis. In contrast, medical
residents are evaluated with the objective structured
clinical examination (OSCE), which is a student
examination that evaluates students based on direct
observation (Zayyan, 2011). However, the exam’s
evaluation with respect to medical note authoring
and structure uses a very different criteria and omits
RVUs (Gallagher et al., 2020). The necessity of a
particular structure in medical notes, for the pur-
pose of patient care and arguably more important
insurance billing requirements, highlights the need
for understanding sectioning.

However, the motivation for understanding SI
is not limited to the medical field, it has a bearing
on other medical NLP tasks. Since each section
contains specific information, SI is often the first
step in a medical NLP pipeline and can lead to
downstream propagation errors causing poor task
specific results if not properly executed. Examples
of downstream tasks that benefit from SI include
medical summarization, entity linking and natural
language understanding and extraction.

While academic text segmentation has garnered
interest (Hirohata et al., 2008), no publicly avail-
able medical SI annotated corpora exists (Pomares-
Quimbaya et al., 2019). For this reason, we believe
MedSecId is the first medical section identification
dataset. It was created from 2,002 medical notes
annotated by two attending physicians and one se-
nior resident physician at the University of Illinois
Chicago (UI Health). The annotation dataset is

1https://www.cms.gov/Regulations-and-Guidance

comprehensive with 2,558K annotated tokens or
97.3% of the entire corpus (see Table 1).

Description Count
Documents 2,002
Annotations 22,561
Annotated Sentences 259,286
Total Tokens 2,630,525
Annotated Tokens 2,558,219

Table 1: Annotation dataset statistics.

The contributions of this work include: a) a com-
prehensive publicly available medical section anno-
tation dataset, b) baselines with three models and
several contextual and non-contextual word embed-
dings, c) an ontology of note to section relation-
ships, d) human readable descriptions of medical
notes and all sections annotated (see Appendix A),
e) a pretrained model for each baseline, f) code to
reproduce the results and read the annotations, and
g) a command line tool to predict note annotations
using any of the baseline models.

2 Related Work

Sectioning MedLINE abstracts was explored by
McKnight and Srinivasan (2003) using a support
vector machine (SVM). This classifier was used
to label sentences as Introduction, Method, Result,
or Conclusion and showed promising results us-
ing a bag-of-words approach. Sequence based ap-
proaches (Hirohata et al., 2008) were also used to
section scientific abstracts into Objective, Methods,
Results, and Conclusion labels using a conditional
random field (CRF) model producing a sentence
level accuracy of 95.5%.

While academic abstract segmentation was a
well explored area (Hirohata et al., 2008), Tep-
per et al. (2012) were the first to apply statistical
methods to the medical domain to automatically
classify sections of clinical free text into sections.
Their method used in, out, begin (IOB) annota-
tion (Ramshaw and Marcus, 1995) with labels to
mark named sections. For example, B-HPI indi-
cates a beginning token for the History of Present
Illness section. Their dataset consisted of annotat-
ing the 2010 i2b2 corpus with a section header and
medical ontology label, and obtained an F-measure
of 0.92 for the concept extraction task (Uzuner
et al., 2011; de Bruijn et al., 2010). A Maximum
Entropy (MaxEnt) model (Berger et al., 1996) and
beam search were used for classification to produce
the IOB sequence for token tagging.
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Along with MaxEnt, other non-neural network
methods, such as SVM and CRF models continue
to be popular with few exceptions as detailed in
the comprehensive survey of Pomares-Quimbaya
et al. (2019). One such exception (Sadoughi et al.,
2018) used a long-short term memory (LSTM)
model with word-to-vector (word2vec) embed-
dings (Mikolov et al., 2013a,b) for a binary clas-
sification of section boundaries. Even though the
corpus consists of dictated and transcribed notes,
they show that neural methods work for the section
segmentation task. Other notable neural network
(NN) text segmentation works use convolutional
neural networks (CNNs) over sentence embeddings
with a softmax over the output of a bi-directional
long-short term memory (BiLSTM) layer to demar-
cate sections as a binary classification across both
medical and non-medical datasets (Badjatiya et al.,
2018). Barrow et al. (2020) also used a LSTM
in a network that aggregates features across fast-
Text word embeddings using a concatenated seg-
ment pooling LSTM (S-LSTM) for non-medical
Wikipeda articles (Bojanowski et al., 2017).

The work of Nair et al. (2022) most closely re-
sembles our SI work. However, their model clas-
sifies only the four SOAP (Subjective, Objective,
Assessment and Plan) sections available in the cor-
pus leaving the others as future work. Their meth-
ods also only have been tested against the Flair
framework, which uses concatenated static word
embeddings that are fine tuned locally for the task
on the 2010 i2b2 corpus. Our method includes fine-
tuning the BERT embeddings themselves as an end-
to-end joint learning process. Additionally, they
have provided no annotation pipeline or process to
create a semi-supervised or bootstrapped corpus.
Our work includes medical domain specific experi-
ments with various word embedding combinations
and novel data analysis using the Unified Medical
Language System (UMLS) (Bodenreider, 2004)
and cui2vec (Beam et al., 2020) (see Section 3.3).
It also includes other methods and network experi-
mental configurations the authors have not yet tried
as they used the Flair framework “out of the box”.
Another significant difference is their annotations
are not available2 while we classify 50 sections and
provide our code with annotations publicly.

2The authors did not respond to our request for obtaining
their corpus for baseline comparison.

3 Dataset

MedSecId is a subset of the MIMIC-III version 1.4
corpus (Johnson et al., 2016) that we annotated;
MIMIC-III is publicly available3 and consists of
critical care unit EHR records from the Beth Is-
rael Deaconess Medical Center in Boston, Mass-
achusetts. The dataset contains 58,976 hospital
admissions across 46,520 patients who were ad-
mitted to the intensive care unit (ICU) surgical,
medical, and neonatal departments. It includes
2,083,180 unstructured medical text notes hand-
written by medical professionals across several dis-
ciplines and contains 15 categories, such as dis-
charge summaries and radiology notes.

We created a curated annotation set consisting of
text spans taken from a random sample across five
categories of MIMIC-III medical notes4, including
discharge summaries, Radiology, Consult , Echo,
and Physician progress notes (see Table 2). Each
text span contains the type of the section, such as
History of Present Illness, with zero-index charac-
ter offsets of where the span starts and ends in the
note.

Category Count Proportion
Discharge summary 1,254 62.64%
Physician 288 14.39%
Radiology 205 10.24%
Echo 198 9.89%
Consult 57 2.85%
Total 2,002 100%

Table 2: Annotated medical notes by category and their
distribution in the annotation set.

While each section contains a single type, sec-
tions have zero or more overlapping header text
spans (see Figure 1). In most cases, there is a sin-
gle header span, but vital signs sections can “float”
without a physical exam header. These header
spans consist of text that identify the section such
as History Of Present Illness, an alternate spelling
or abbreviation such as HPI. Even though single
header spans usually appear at the beginning of a
section, additional section headers are found later
in the body indicating subsections in some cases.
Since section type inclusion highly varies based on
the patient’s age, notes were annotated with an age
type (adult, pediatric or neonatal patient), based on
the content of the note by our annotator.

3Access to the MIMIC-III corpus requires creating a Phys-
ioNet account and finishing a training course.

4The unstructured medical note data was taken from the
NOTEEVENTS table.
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Type Tokens Spans Notes
physical-examination 203K (8%) 1,385 (6%) Consult, Physician
history-of-present-illness 239K (9%) 1,348 (6%) Consult, Discharge summary, Physician
allergies 9,221 (0%) 1,205 (5%) Consult, Discharge summary, Physician
hospital-course 692K (26%) 1,165 (5%) Discharge summary
labs-imaging 416K (16%) 1,155 (5%) Consult, Discharge summary, Physician
past-medical-history 60K (2%) 1,141 (5%) Consult, Discharge summary, Physician
discharge-condition 14K (1%) 1,132 (5%) Discharge summary
discharge-instructions 183K (7%) 1,077 (5%) Discharge summary
discharge-diagnosis 34K (1%) 1,040 (5%) Discharge summary
chief-complaint 9,622 (0%) 996 (4%) Consult, Discharge summary, Physician
discharge-medications 196K (7%) 914 (4%) Discharge summary
social-history 28K (1%) 912 (4%) Consult, Discharge summary, Physician
medication-history 49K (2%) 867 (4%) Consult, Discharge summary, Physician
family-history 11K (0%) 802 (4%) Consult, Discharge summary, Physician
discharge-disposition 5,602 (0%) 754 (3%) Discharge summary
major-surgical-or-invasive-procedure 16K (1%) 704 (3%) Discharge summary
facility 2,668 (0%) 502 (2%) Discharge summary
reason 5,588 (0%) 458 (2%) Consult, Radiology
findings 58K (2%) 395 (2%) Echo, Radiology
assessment-and-plan 131K (5%) 381 (2%) Consult, Physician
review-of-systems 7,422 (0%) 329 (1%) Consult, Discharge summary, Physician
image-type 1,820 (0%) 328 (1%) Radiology
last-dose-of-antibiotics 3,689 (0%) 293 (1%) Consult, Physician
24-hour-events 16K (1%) 250 (1%) Physician
code-status 1,879 (0%) 237 (1%) Physician
impression 8,233 (0%) 224 (1%) Echo, Radiology
disposition 1,161 (0%) 210 (1%) Physician
conclusions 28K (1%) 206 (1%) Echo
communication 1,304 (0%) 199 (1%) Physician
patient-test-information 13K (1%) 198 (1%) Echo

Table 3: The top 30 most frequently annotated sections.

3.1 Annotation Process

Our annotation process consisted of several pre-
liminary rounds of annotation, that led to our final
annotation guidelines and final annotation.

Before annotation began, a custom set of regular
expressions were used to pre-annotate, similar to
previous work (Shivade et al., 2015); ours were
medical note specific and captured header tokens
along with the section spans. The application of
the regular expressions was only a means to re-
duce the work of the annotators, who followed
the annotation guide regardless of any rule based
pre-annotations. The initial rule based automatic
annotation process was amended by the work of
Alsentzer and Kim (2018), who generously shared
their History of Present Illness annotations to bet-
ter identify and segment the initial dataset used
by our annotators. These automatic annotations
were edited by the annotators after they were im-
ported into INCEpTION (Klie et al., 2018) and
saved to later compute an inter-coder agreement
between the physicians and rule-based output (see
Section 3.2).

An attending physician (designated as a primary
annotator) co-wrote a preliminary annotation guide

with input from a secondary physician annotator.
These two annotators engaged in a process of an-
notation, discussion and revision of the guidelines:
they annotated a first set of one hundred notes, re-
vised the guidelines, annotated a second set of one
hundred notes, and finalized the guidelines after
this second round.

Here we summarize the issues that the annotators
faced during these preliminary rounds of annota-
tion. This process was useful for the physicians to
reach a consensus on what sections should be anno-
tated and agreed on section types given their expe-
rience writing such notes themselves. A set of sec-
tions and their relation to notes began to coalesce
during this process, which provided the motivation
to create an ontology for the purpose of a meta doc-
umentation about the annotations and the utilitarian
purpose to assist in annotation by importing it as
a “knowledge base” in INCEpTION. The ontology
consisted of a one-to-many mapping from notes
to 50 section types using each section’s header to-
kens captured by the regular expressions by string
massaging. For example, History of Present Ill-
ness became history-of-present-illness.
Among the categories, 29 sections were shared
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across more than one note, such as History of
Present Illness shared between notes Discharge
summary, Consult, and Physician (see Table 3 for
annotated sections and Appendix A for full list-
ings).

A1 A2 A3 R
A1 1.0 0.81 0.87 0.73
A2 1.0 0.84 0.49
A3 1.0 0.53
R 1.0

Table 4: Krippendorff’s α coefficient of interannota-
tor agreement between the annotators and the regular
expressions. A1 is the primary annotator, A2 is the sec-
ondary annotator and A3 is the third annotator, and R
represents the regular expressions.

Each section type was then agreed on by the
physicians with many re-typed and regrouped. For
example, Echo notes contained internal subsections
for each chamber of the heart, and was resolved by
grouping the entire section as Findings to match
section types in Radiology notes. Other subsections
implicitly resulted by physicians copying radiology
findings in discharge summaries. In an effort to
reduce complexity, a flat note-to-section hierarchy
without creating a second section level was kept. In
some cases this was achieved by combining labora-
tory results data with radiology findings/diagnosis
as a single section by simply re-casting Labs to
Labs/Radiology for sections that included imaging
studies. Other sections needed to be combined as
not all notes had a clean separation.

To accommodate for a significant variation in
how physicians labeled sections in these situa-
tions, Labs and Radiology was combined into a
Labs/Radiology section. Labs and Imaging were
also combined into Labs/Imaging. Since discharge
summaries typically incorporate instructions for the
patient and follow up information, we categorized
these together broadly as Discharge instructions.
The MIMIC-III pseudo tokens, such as [**First
Name**] were not annotated unless they were in-
cluded in the body of the section.

The primary and secondary annotators finished
revising the annotation guidelines and then trained
the third annotator. A subset of 80 medical notes,
chosen from the second batch of 100 that the pri-
mary and secondary annotator had annotated and
discussed, was used to train the third annotator. Be-
cause these first two batches were only used for cre-
ating guidelines and training, they were not added
in the final annotation set. During this process, the

well known Krippendorff’s α coefficient (Krippen-
dorff, 2011), was used to compute inter-annotator
agreement (IAA) between this last annotator and
the other two, until α became higher than 0.8.

3.2 Final Annotation and IAA Computation
Once the guidelines were finalized the final annota-
tion process started. A set of 100 notes (different
than the sets discussed in Section 3.1) was held out
to compute the inter-annotator agreement (IAA) on
the final guidelines. The remaining 1,902 notes
were divvied up among the three annotators, as
customary.

Inter-annotator agreement was calculated on the
100 held out notes as exact section character offsets
and section types—both the offsets and the section
type had to match to be considered correct. This
agreement was calculated among the human anno-
tators, and subsequently between each annotator
and the regular expressions that were initially used
to segment the notes.

Among humans, Krippendorff’s α yielded more
than acceptable values of 0.84 to 0.87 on the final
set held out for this IAA calculation (see Table 4).
At this point, these annotations were added to the
final dataset by selecting notes with the fewest is-
sues5 using the primary annotator as the tie-breaker.

While we achieved a high inter-coder agreement
among human annotators, we found troubling data
in terms of the performance of the regular expres-
sion annotation approach. We computed an aggre-
gate Krippendorff’s α=0.54 between the human
physician annotators and our custom regular ex-
pressions (see Section 3.1) on the final annotated
data, which falls more than 14 points shy of the
“lowest conceivable limit” of 0.68 (Krippendorff,
2004). This shows how regular expression’s per-
formance to segment notes falls short of that by
human annotators (see Table 4), yet regular expres-
sions continue to be the most common methods
used for section identification (Pomares-Quimbaya
et al., 2019; Shivade et al., 2015).

In part, the regular expressions often failed to
demarcate the entire section, especially in text with
irregular formatting toward the end. Furthermore,
additional analysis shows the α scores between in-
dividual annotators and the regular expressions are
low as well, albeit with a fairly high variance. Krip-
pendorff suggests that acceptable scores that are

5Issues included placement of header tokens and missing
sections. For example, an annotation with a defined section
would win over another’s annotation with the section type.
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a) b)

Figure 2: Concept unique identifier (CUI) Plots: a) plot of past-medical-history (purple) and
past-surgical-history (blue) reduced to 3D together as one data set with the first principal component
(red line) with data point size as the TF/IDF score, b) plot of the same sections but reduced to 3D as separate data
points with respective first principal components.

“customary to require” have α ą 0.8 (Krippendorff,
2004). On one hand, an α of 0.73 between physi-
cian A1 and the automatic regular expression anno-
tator R clears the minimal limit threshold. However,
this metric falls well below the “aimed” score of
0.8. The larger issue is with physician A2’s and
A3’s scores of 0.49 and 0.53, which fall short of
the minimum limit by a large margin. From these
scores (see Table 4) and the low overall α, we
conclude regular expressions do not sufficiently
segment medical notes, therefore the annotation set
we provide should be considered the gold standard
for medical note identification and segmentation.

3.3 Data Analysis
An interesting discovery concerned projections of
medical conditions across sections in embedded
space. Concept unique identifiers (CUIs) were ex-
tracted using MedCAT (Kraljevic et al., 2021) and
weighted by TF/IDF (Sparck Jones, 1972) across
sections. Each CUI was mapped to a vector from
cui2vec embeddings, and then reduced to three
dimensions using principal component analysis
(PCA), shown in Figure 2. The plot was generated
without normalizing or standardizing the data so
CUI vector magnitudes were retained for analysis.
Figure 2 (a) shows the past-medical-history
section (purple) CUIs on the horizontal axis with
past-surgical-history (blue) CUIs only on

the vertical axis with size proportional to TF/IDF.
The past surgical and medical history sections

in discharge summary notes project many medical
disease CUIs as orthogonal to surgical CUIs. The
medical disease CUIs on the vertical axis are those
that do not have surgery as a treatment option, such
as hypertension. However, a CUI representing coro-
nary artery disease that plots along the surgical his-
tory vertical axis does require surgery. Most of the
data points that share the vertical axis along with
past-medical-history are those that require
both medication and surgery, such as cancer.

Not only does this show cui2vec being used in
practice for the first time, it illustrates an applica-
tion of how groupings of concepts can be visual-
ized and analyzed to gain intuition and insight in
complex medical data. In our data, this includes
not only a semantic relationship between concepts,
but how those concepts represent the treatments
involved based on the section from which they
originate. Given this data relationship, we hypothe-
size that utilization of cui2vec embeddings, such as
concatenating them to word vectors, will increase
performance of task specific models including SI.

3.4 Limitations
MedSecId is limited to notes (with the exception
of the discharge summary) of patients admitted
to an ICU from the MIMIC-III corpus for several
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Figure 3: Baseline models: a) BiLSTM-CRFtok BiLSTM model with non-contextual token input embeddings, b)
BERT-CRFtok BiLSTM model with BERT word piece token fixed input embeddings, c) BERTsent BiLSTM model
with [CLS] sentence embeddings using the per sentence majority label.

note categories with no data included after the pa-
tient leaves to a lower severity department6. Notes
written afterward are an essential source of data
that provides an aspect of the patients’ stay that
is otherwise lacking in the corpus, such as daily
progress Physician notes. However, Radiology and
Echo notes from the MIMIC-III corpus apply to all
hospital departments since they are uniform for all
patients, regardless of their location, outpatient or
inpatient. In addition, discharge summaries entail
the entire hospital visit, including the ICU and the
remainder of the admission.

3.5 Implementation Details

The annotation set was randomly sampled per note
and divided as a stratified dataset into training
(80%), validation (10%) and test (10%) datasets.
The medical note structure ontology (see Sec-
tion 3.1) is distributed as both a RDF Turtle file
and a CSV file along with the annotations. The
publicly available7 code to train, validate, and test
the model also includes additional APIs to access
the annotated data, perform inference with the pre-
trained model or train a new model. This codebase
includes functionality to use the pretrained model
or utilize the annotations for experimentation and is

6Only five note categories are available (see Table 2).
7https://github.com/uic-nlp-lab/medsecid

ready to easily be installed.8 This codebase also ref-
erences a related project useful for parsing MIMIC-
III text, pseudo token replacement, and Postgres
database to Python object relational mapping.

4 Methods

Because the section text spans do not break on to-
kens, we cast our task as a named entity recognition
(NER) using in, out (IO) encoding9 on a 50 way
classification including <none> for text with no
sections (see Table 7). Using this encoding, we
created several baselines across two BiLSTM mod-
els10 for the purpose of future work benchmarking.
These baselines include majority label metrics, a
token BiLSTM-CRF, and a sentinel BERT embed-
ding (Devlin et al., 2019) LSTM model (see Fig-
ure 3). Aside from adjusting the LSTM hidden size,
gradient clipping, and number of epochs, all para-
meters were held constant across all experiments
(see Appendix B for all hyperparameters used).

BiLSTM-CRFtok The token model consists of a
simple non-contextual input word embeddings, a
LSTM layer and fully connected linear layer using
a CRF output with labels assigned by the Viterbi

8All that is required in a pip install. See the GitHub
repo for details.

9IOB encoding was not used as there are no transitions
from one section to another and to reduce the label count.

10No models use a BERT transformer, only BERT token
and sentinel ([CLS]) embeddings.
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Id Name mF1 mP mR MF1 MP MR
1 Majority Label 0.023 0.023 0.023 0.0 0 0.005
2 BERTsent 0.925 0.925 0.925 0.589 0.616 0.6
3 BiLSTM-CRFtok (word2vec) 0.927 0.927 0.927 0.778 0.78 0.801
4 BERT-CRFsent 0.929 0.929 0.929 0.689 0.734 0.7
5 BERTsent BioBERT 0.94 0.94 0.94 0.687 0.73 0.679
6 BERT-CRFsent BioBERT 0.94 0.94 0.94 0.705 0.757 0.704
7 BiLSTM-CRFtok (GloVE 50D) 0.954 0.954 0.954 0.76 0.783 0.765
8 BiLSTM-CRFtok fastText 0.954 0.954 0.954 0.796 0.806 0.806
9 BiLSTM-CRFtok (GloVE 300D) 0.955 0.955 0.955 0.787 0.801 0.788

Table 5: Summarization of performance metrics where mF1 is the micro F1, mP is the micro precision, mR is the
micro recall, MF1 is the macro F1, MP is the macro precision, MR is the macro recall.

algorithm. Several embeddings were used with
this model, including word2vec (Mikolov et al.,
2013a,b), Global Vectors for Word Representation
(GLoVe) (Pennington et al., 2014) and fastText (Bo-
janowski et al., 2017) (Crawl) embeddings.

BERTsent To address the issue of exploding gra-
dients, we created a sentence-based model using
static BERT sentinel embeddings to lower the in-
put length to the LSTM layer. The model assumes
sections rarely break mid-sentence since every sen-
tence is assigned one section. Sentences with more
than one section annotation will lower end-to-end
performance. However, 97.6% of the annotation
set contains sentences with a single section for all
tokens of the respective sentence as shown in Ta-
ble 6. The output of the final layer of the first time
step was used as the input to a LSTM. The LSTM
output forwarded to a dense layer with one output
neuron for each label and an output max over the
label.

Unique Sections Count Proportion
1 253025 97.59%
2 5589 2.16%
3 589 0.23%
4 72 0.03%
5 11 0.00%

Table 6: Distribution of sentences having a single sec-
tion label across all tokens of the respective sentence.

Both the standard small BERT model and
BioBERT embeddings (Lee et al., 2020) are in-
cluded in the baseline results (see Section 5). A
ClinicalBERT baseline model (Alsentzer et al.,
2019) would not provide a fair baseline metric for
comparison with future works since it trained on
the MIMIC-III corpus so it was excluded.

BERT-CRFsent Like BERTsent, but adds a CRF
layer with Viterbi assigned labels.

5 Results

The baseline models described in Section 4 were
each trained until the validation loss converged,
then early stopped. The results are summarized in
Table 5 with label specific results in Table 7. We
report performance metrics by counting correct pre-
dictions when the character span boundaries match
exactly and the sections type match. If either do
not match, it is counted as an incorrect prediction.

From the majority label, it’s clear the models per-
form comparatively well as shown in the summary
results in Table 5. The GLoVe model has the best
micro F1 of 0.96 with the fastText model having
the best macro F1 of 0.8. This 16 point spread is
evident from how performance drops off for the bot-
tom 13 section types. Many of these low perform-
ers are those that were re-casted or re-grouped (see
Section 3.1), and could be regrouped to an umbrella
section type like Labs/Imaging/Radiology if such a
rigorous delineation was not necessary.

The BERTsent does not lag far behind, but its
performance using sentinel embeddings does not
capture sections as well as the token level models
despite long document length. Performance signifi-
cantly improved and models converged faster with
the use of gradient clipping to alleviate issues of
LSTM exploding gradients (Bengio et al., 1994).

6 Conclusions and Future Work

We presented MedSecId, a comprehensive dataset
of 2,002 medical annotations from the MIMIC-III
corpus across five note types and 50 sections. The
dataset contains section types, headers and patient
age annotations. Our dataset shows promising base-
line results from simple models such as BiLSTMs
with diverse inputs, but still leaves room for im-
provement by more sophisticated models.

We expect performance using our models to im-
prove pipelines that use rule based methods for
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Id Label mF1 mP mR MF1 MP MR Acc Count
1 procedure 0 0 0 0 0 0 0 156
2 labs 0 0 0 0 0 0 0 436
3 prenatal-screens 0.276 0.276 0.276 0.216 0.5 0.138 0.276 105
4 imaging 0.357 0.357 0.357 0.263 0.5 0.178 0.357 990
5 comparison 0.414 0.414 0.414 0.195 0.333 0.138 0.414 222
6 code-status 0.513 0.513 0.513 0.226 0.333 0.171 0.513 150
7 wet-read 0.521 0.521 0.521 0.342 0.5 0.26 0.521 121
8 communication 0.556 0.556 0.556 0.179 0.25 0.139 0.556 133
9 impression 0.563 0.563 0.563 0.18 0.25 0.141 0.563 920
10 disposition 0.647 0.647 0.647 0.262 0.333 0.216 0.647 68
11 history 0.688 0.688 0.688 0.272 0.333 0.229 0.688 170
12 past-surgical-history 0.745 0.745 0.745 0.427 0.5 0.372 0.745 145
13 current-medications 0.746 0.746 0.746 0.142 0.167 0.124 0.746 1406
14 contrast 0.8 0.8 0.8 0.444 0.5 0.4 0.8 25
15 <none> 0.816 0.816 0.816 0.03 0.033 0.027 0.816 6378
16 discharge-disposition 0.83 0.83 0.83 0.151 0.167 0.138 0.83 513
17 addendum 0.833 0.833 0.833 0.151 0.167 0.139 0.833 3106
18 last-dose-of-antibiotics 0.872 0.872 0.872 0.466 0.5 0.436 0.872 397
19 indication 0.88 0.88 0.88 0.468 0.5 0.44 0.88 117
20 physical-examination 0.881 0.881 0.881 0.156 0.167 0.147 0.881 22113
21 image-type 0.884 0.884 0.884 0.313 0.333 0.295 0.884 181
22 discharge-condition 0.904 0.904 0.904 0.317 0.333 0.301 0.904 1490
23 infusions 0.909 0.909 0.909 0.476 0.5 0.455 0.909 99
24 history-of-present-illness 0.924 0.924 0.924 0.137 0.143 0.132 0.924 24950
25 discharge-medications 0.925 0.925 0.925 0.192 0.2 0.185 0.925 25088
26 flowsheet-data-vitals 0.932 0.932 0.932 0.482 0.5 0.466 0.932 2128
27 24-hour-events 0.954 0.954 0.954 0.244 0.25 0.238 0.954 1765
28 past-medical-history 0.959 0.959 0.959 0.163 0.167 0.16 0.959 5990
29 discharge-diagnosis 0.959 0.959 0.959 0.196 0.2 0.192 0.959 3578
30 family-history 0.968 0.968 0.968 0.328 0.333 0.323 0.968 1171
31 chief-complaint 0.968 0.968 0.968 0.492 0.5 0.484 0.968 1142
32 medical-condition 0.971 0.971 0.971 0.328 0.333 0.324 0.971 409
33 review-of-systems 0.977 0.977 0.977 0.494 0.5 0.488 0.977 724
34 labs-imaging 0.981 0.981 0.981 0.142 0.143 0.14 0.981 45855
35 discharge-instructions 0.986 0.986 0.986 0.166 0.167 0.164 0.986 23208
36 social-history 0.988 0.988 0.988 0.249 0.25 0.247 0.988 3114
37 allergies 0.989 0.989 0.989 0.331 0.333 0.33 0.989 891
38 assessment-and-plan 0.99 0.99 0.99 0.199 0.2 0.198 0.99 12728
39 reason 0.992 0.992 0.992 0.332 0.333 0.331 0.992 646
40 conclusions 0.994 0.994 0.994 0.498 0.5 0.497 0.994 2814
41 findings 0.998 0.998 0.998 0.333 0.333 0.333 0.998 6053
42 hospital-course 0.998 0.998 0.998 0.2 0.2 0.2 0.998 78321
43 social-and-family-history 1 1 1 1 1 1 1 52
44 technique 1 1 1 1 1 1 1 22
45 clinical-implications 1 1 1 1 1 1 1 36
46 other-medications 1 1 1 1 1 1 1 489
47 major-surgical-or-invasive-procedure 1 1 1 1 1 1 1 1903
48 facility 1 1 1 1 1 1 1 344
49 patient-test-information 1 1 1 1 1 1 1 1349
50 medication-history 1 1 1 0.333 0.333 0.333 1 6082

Table 7: By label BiLSTM-CRFtok performance where mF1 is the micro F1, mP is the micro precision, mR is the
micro recall, MF1 is the macro F1, MP is the macro precision, MR is the macro recall, Acc is the accuracy, count is
the the number of tokens encountered in the test set. The <none> label is for tokens with no section annotated.

SI as mentioned in Section 3.2. These pipelines
include discharge note summarization, and other
downstream tasks that would benefit from having
header and non-section text removed such as train-
ing word embeddings such as ClinicalBERT.

Hyperparameter tuning with the baseline models
is a next logical step for further work. Another
obvious opportunity to improve performance is to
concatenate cui2vec embeddings in the input layer

as described in Section 3.3. Other future work
includes comparing the results using the synthetic
tokens in place of pseudo tokens, which would shed
light on how models learn with more realistic data.
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A Descriptions

Table 8: Note Categories

Name Description
Consult Notes generated when a specialst intervenes in a patient’s care.
Discharge summary A discharge summary describes a patient’s stay at a hospital and the care they received. They can

also include follow up instructions, medications and a schedule for future appointments.
Echo An ultrasound of the heart.
Physician Daily notes taken by the physician on their rounds as a part of a patient check up.
Radiology Diagnosis and other notes taken by a radiologiest based on images such as xrays, MRI, CAT scans.

Table 9: Section Types

Section Type Name Description
24-hour-events 24 Hour Events Description of what happened in the past 24 hours of

the patients stay.
addendum Addendum An addition to the note.
allergies Allergies Patient allergies to medication and food of varying

severity.
assessment-and-plan Assessment And Plan An overview of the problems that are occuring and

the plan to address each problem.
critical-care-attending-addendum Attending Addendum The attending physician’s addition to the note.
chief-complaint Chief Complaint The reason why the patient came to the hospital.
clinical-implications Clinical Implications Why this study is important.
code-status Code Status What should be done in the event of a cardiac or

respiratory arrest, end of goals care.
communication Communication Information about who to contact and the relation to

the patient.
comparison Comparison Comparing the new study to prior studies to determine

interval changes.
conclusions Conclusions Interpretation of the findings in relation to the pa-

tient’s condition.
contrast Contrast Was contrast introduced into the patient.
current-medications Current Medications Medications that the patient are taking at home.
discharge-condition Discharge Condition The stability of the patient upon discharge.
discharge-diagnosis Discharge Diagnosis The diagnosis of the patient after being worked up in

the hospital.
discharge-disposition Discharge Disposition Where the patient is being discharged to.
discharge-instructions Discharge Instructions Post discharge instructions regarding what the patient

can and cannot do.
discharge-medications Discharge Medications Medications that the patient will sent home with and

to continue taking.
disposition Disposition Where the patient will go within the hospital.
family-history Family History Medical history of family members.
findings Findings Specific finidngs during the study.
flowsheet-data-vitals Flowsheet Data/Vitals Information pulled from flowsheets that are discretely

kept within the ehr.
history History Patient’s clinical history warranting exam.
history-of-present-illness History Of Present Illness A description of the events surrounding the reason

why the patient came to the hospital: Symptom onset,
duration, severity and associatating factors.

hospital-course Hospital Course A summary of what happened during the patient’s
time in the hospital.

image-type Image Type The type of study being performed.
imaging Imaging All image related orders placed by the physician in-

cluding: CT, XRAY, ECHO, MRI, Ultrasound.
impression Impression Overall summerization of the study.
indication Indication Why the study was performed.
infusions Infusions Medications classified as a constant infusion.
labs Labs Laboratory values.
labs-imaging Labs / Imaging Lab and radiological results.
last-dose-of-antibiotics Last Dose Of Antibiotics Time of the last dose of antibiotic medications.
major-surgical-or-invasive-procedure Major Surgical Or [...] Any procedures or surgies that occured while the pa-

tient was at the hospital.
medical-condition Medical Condition History of the patient and why the patient needs the

study.
Continued on the next page
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Table 9: Section Types (cont)

Section Type Name Description
medication-history Medication History Medications that the patient are taking at home.
other-medications Other Medications Other medications the patient is receiving.
past-medical-history Past Medical History Medical problems a patient has.
past-surgical-history Past Surgical History All surgeries the patient has had in their past.
patient-test-information Patient/Test Information Basic and standardized information of the patient.
physical-examination Physical Examination Evalutating anatomic finds of a patient through palpa-

tion and auscultation.
prenatal-screens Prenatal Screens Screening of blood type and infections prior to deliv-

ery.
procedure Procedure Procedure name.
reason Reason Why the consulting team was brought in for the pa-

tient’s care.
review-of-systems Review of Systems A generalized review of potential symptoms that the

patient might not have addressed in the chief com-
plaint or history of present illness.

social-history Social History History of occupation, recreational activities, and liv-
ing situation.

social-and-family-history Social and Family History Combination of social and family history.
technique Technique How the procedure was being performed.
wet-read Wet Read Initial read, not the official read of the study.
addendum addendum An addition to the note.
facility facility The location the patient is going after discharge.

B Hyperparameters

The hyperparameters used to train the models described in Section 4. Those hyperparameters which
differed for each model are given in Table 10. Hyperparameters shared across all models are given in
Table 11. The only non-zero drop out was used in the LSTM layer.

Model Epochs Learning Rate CRF
BERT-CRFsent 40 0.003 True
BERT-CRFsent BioBERT 45 0.003 True
BERTsent 35 0.003 False
BERTsent BioBERT 45 0.003 False
BiLSTM-CRFtok (GloVE 300D) 30 0.01 True
BiLSTM-CRFtok (GloVE 50D) 25 0.01 True
BiLSTM-CRFtok (word2vec) 30 0.01 True
BiLSTM-CRFtok fastText 40 0.01 True

Table 10: The hyperparameters of the models given in the results. Epochs is the number of epochs used to train
the model, Learning Rate is the learning rate for the update step size of the loss function and CRF is whether the
BiLSTM used a CRF output layer.

Name Value Description
Batch Size 20 The size of the mini-batches used to train the model.
Hidden Size 250 The hidden size of the LSTM.
Num Layers 2 The number of stacked layers of the LSTM.
Dropout 0.15 The dropout of the LSTM.

Table 11: The shared hyperparameters set for all models.
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Abstract

Named entity recognition has become an in-
creasingly useful tool for digital humanities
research, specially when it comes to histor-
ical texts. However, historical texts pose a
wide range of challenges to both named entity
recognition and natural language processing in
general that are still difficult to address even
with modern neural methods. In this article we
focus in named entity recognition for histor-
ical French, and in particular for Early Mod-
ern French (16th-18th c.), i.e. Ancien Régime
French. However, instead of developing a spe-
cialised architecture to tackle the particularities
of this state of language, we opt for a data-
driven approach by developing a new corpus
with fine-grained entity annotation, covering
three centuries of literature corresponding to
the early modern period; we try to annotate
as much data as possible producing a corpus
that is many times bigger than the most popular
NER evaluation corpora for both Contempo-
rary English and French. We then fine-tune
existing state-of-the-art architectures for Early
Modern and Contemporary French, obtaining
results that are on par with those of the current
state-of-the-art NER systems for Contemporary
English. Both the corpus and the fine-tuned
models are released.

1 Introduction

Named entity recognition (NER) is an extensively
studied task in natural language processing (NLP)
that consists in identifying and classifying named
entities mentions in unstructured text. These named
entities often are real-world objects such as a per-
son, a location, an organisation name or even a
product. NER has been an important task in nat-
ural language processing for some time now. It
was the focus of the MUC conferences and associ-
ated shared tasks (Marsh and Perzanowski, 1998),
and later that of the CoNLL 2003 and the ACE
shared tasks (Tjong Kim Sang and De Meulder,
2003; Doddington et al., 2004).

NER has quickly established itself as a pillar
of the new methods of reading texts promoted by
the digital humanities (DH), based on the analy-
sis of large sets of literary or historical data via
computational methods (Moretti, 2005). These
sources being not only contemporary, the need for
tools dealing with medieval or early modern states
of language is now increasing. NER interests re-
searchers in DH for numerous reasons since the
application can be quite broad, from genealogy
or history studies for which finding mentions of
persons and places in texts is very useful; to appli-
cations in digital literature where researchers can
use NER to highlight the path of different charac-
ters in a book or in a series of publications. Both
the research in NER and DH can benefit from one
another as it has already been suggested particular
properties of literature can help to build better NER
systems (Brooke et al., 2016) and even study how
much diachronic variation influences NER systems
(Ehrmann et al., 2016).

For the present study, we will focus on devel-
oping both an annotated corpus as well as a NER
system for Early Modern French. We loosely de-
fine Early Modern French as a state of language
following Middle French in 1500—adopting here
the terminus ad quem used by the Dictionnaire de
Moyen Français (Martin, 2020)—and ending with
the French Revolution in 1789. In consequence, it
encompasses three centuries (16th, 17th and 18th c.),
or two linguistic periods: the français préclas-
sique or “preclassical French” (1500–1630) and
the français classique or “classical French” (1630–
1689); both periodisations which are currently used
in French linguistics (e.g. by Vachon 2010 and Am-
atuzzi et al. 2019). Early Modern French poses
some particular challenges for NER systems, and
mainly two. First, the spelling was not fixed and
place names could be written differently from one
text to another, but also in the same text. In Early
Modern French, the name of the city of Lyon could
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be written Lyon, but also Lion, creating in this case
a homograph that has today disappeared (the lion
being, like in English, an animal). Second, cities
have changed their names, states have appeared,
empires have disappeared, etc. and it is therefore
impossible to use tools available for Contemporary
French.

In this paper we develop a system that tries to
tackle these specific challenges posed by Early
Modern French, however, instead of developing
a specialised architecture for this, we opt for a
data-driven approach in which we try to annotate
as much text as possible of an heterogeneous cor-
pus covering several centuries and a vast range
of genres and styles. We produce a fine-grained
NER annotated corpus for Early Modern French
that is many times bigger than some of the most
popular NER annotated corpora for Contemporary
English and French (Tjong Kim Sang and De Meul-
der, 2003; Sagot et al., 2012). We then fine-tune ex-
isting state-of-the-art architectures D’AlemBERT
(Gabay et al., 2022) and CamemBERT (Martin
et al., 2020) for Early Modern and Contemporary
French respectively obtaining results that surpass
the current state of the art NER systems for Con-
temporary French (Ortiz Suárez et al., 2020a), and
that are on par with NER systems for Contempo-
rary English (Straková et al., 2019; Yamada et al.,
2020; Wang et al., 2021). We release both the cor-
pus and the fine-tuned model in order to insure
reproducibility of our experiments.1

2 Related work

If many evaluation campaigns for the recognition
of named entities have been carried out since the
end of the nineties 2, most of the corpora produced
have until recently dealt with contemporary doc-
uments, particularly taken in the press (articles,
dispatches. . . ). In recent years, however, research
has begun to focus on “historical” documents, but
the diachronic depth of the language remains im-
perfectly treated, with a very clear concentration
on the most recent textual sources: the 19th c. and
20th c. are by far over-represented (Ehrmann et al.,
2021).

If the older states of language, linguistically
more complex because of the instability of their

1URL retained for anonymity.
2We spare the reader this story, which has already been

perfectly told elsewhere cf. Ehrmann (2008); Nouvel et al.
(2015).

spelling, remain left aside, we do note some at-
tempts to extract entities from texts written be-
fore the 19th c. Previous research concerns 17th c.
English (OCRised versions of the Journals of the
House of Lords, cf. Grover et al. 2008), medieval
latin (charters, cf. Torres Aguilar et al. 2016), Ger-
man and French (legal documents written between
the 14th and the 18th c., cf. Gwerder 2017). With
the emergence of data-driven approaches, new cor-
pora keep emerging for niche languages such as
Middle High German and Old Norse (Besnier and
Mattingly, 2021).

French is a typical case regarding NER, with re-
sources and solutions focusing on documents writ-
ten after the French Revolution. One of the oldest
dataset is the one produced during the ESTER-2
evaluation campaign (Galliano et al., 2009), deal-
ing with of radio broadcast transcripts. For the
older documents, we have the Quaero (Rosset
et al., 2012), Europeana (Neudecker, 2016) and
Impresso (Ehrmann et al., 2020) corpora, going
back the 19th c., but again with an almost unique
focus on the press. Non-journalistic and/or non-
recent French, however, seem to have attracted
researchers in recent years. We have already men-
tioned the study of Gwerder (2017), whose data
has unfortunately not been manually annotated and
is therefore far from being optimal, and is limited
to place and person names. If older rule-based ap-
proach keep being used (for place names, cf. Kogk-
itsidou and Gambette 2020), only one project has
produced a manually annotated corpus, but lim-
ited to toponyms and using normalised versions
(i.e. aligned with Contemporary French) of 17th c.
plays (Gabay and Vitali, 2019).

An ambitious manually annotated corpus for
pre-Revolutionary non-normalised French is still
needed to give the means to researchers in history,
literature or linguistics to offer new interpretation,
relying on quantitative approaches such as “distant
reading” (Moretti, 2013). If possible, this would
corpus would need cover several centuries, and
to offer more entities than just place and person
names, such as quantities or events.

3 Corpus

Rather than designing a new corpus, we have de-
cided to use a subpart of the “core corpus” of the
Presto project (Blumenthal et al., 2017), namely
the text written during the French Ancien Régime
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Person Function
pers.ind pers.coll func.ind func.coll

Location Production
loc.adm.town loc.phys.geo loc.fac prod.art prod.rule prod.object
loc.adm.reg loc.phys.hydro loc.oro
loc.adm.nat
loc.adm.sup

Organization Time Event Quantity
org.adm org.ent time.date.abs event amount

time.date.rel

Table 1: Types (in gray) and subtypes retained from the Quaero typology.
f

(c.15th-18th c., i.e. 34 texts)3. This choice is driven
by our will to limit the number of annotated corpora
for historical French, the same set of documents
having already been abundantly corrected to train a
lemmatizer (Gabay et al., 2020), but also to avoid
a complex selection of works supposed to ensure
a relative representativeness of literary documents
from the Ancien Régime, already perfectly done by
our colleagues.

The number of genres covered is extremely large:
poetry, drama, novel, correspondence, grammar,
philosophy, short stories, encyclopedic literature,
etc. and guarantees, here again, a reasonable repre-
sentativeness of the range of possibilities of Belles-
Lettres4. The corpus is balanced regarding the dis-
tribution per century (c. 10/century) but not regard-
ing the length of the texts, which increases over
time (cf. fig. 1), following a possible trend in litera-
ture.

3.1 Annotation

It seemed logical to follow the Quaero annota-
tion guide (Rosset et al., 2011), that is used by
two important historical corpora presented supra
(Quaero and Impresso). Because our texts and in-
terests diverge from those of the aforementioned
corpora, only some types and subtypes have been
kept (cf. tab. 1) from the Quaero typology. The
details of our choices can be found in a dedicated
annotation manual (Gabay et al., 2022).

The annotated texts are available in multi-
columns tsv files (cf. tab. 1). Each token has a
lemma (manually corrected) and a POS (produced
by the Presto project, non-systematically corrected
but fairly reliable) using the MULTEXT tag set.

3A text has been withdrawn: the Histoire d’un voyage faict
en la terre du Brésil by Jean de Léry, the transcription being
too faulty to be able to correctly annotate the document.

4We do not offer a detailed description of the genres cov-
ered, these overlapping easily: poetry can be theological, po-
litical correspondence. . .

Figure 1: Number of tokens per century.

We propose a coarse-grained annotation for high-
level entity types and fine-grained annotation using
subtypes using the following syntax:

BIO-TYPE.SUBTYPE
For instance: B-loc.adm.town

Subtypes are sometimes simple (B-org.town)
sometimes double (B-loc.phys.geo), depend-
ing of the complexity of the entity to annotate.
Nested entities (i.e. an entity in an entity, such as a
place name in a person name in Henri d’Angleterre,
“Henry of England“) follow exactly the same syn-
tax, and components a similar one, using six trans-
verse elements:

• name to annotate tokens that are names
(Louis, Philippe. . . )

• title to annotate tokens that are titles (sieur,
duc, abbé. . . )

• qualifier to annotate tokens that are ad-
jectives (l’Inde orientale, l’Arabie heureuse,
la mer athlantique, l’ancienne Colchide). . .
but also the generation (Henri IV) or a cardi-
nal position

• kind to annotate tokens that are hyperonyms
(l’Empire de Constantinople, la mer du Japon
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Token Lemma POS COARSE FINE FINE-COMP NESTED Wikidata ID

Les le Da O O O O _
allemands allemand Nc O O O O _
élurent élire Vvc O O O O _
pour pour S O O O O _
empereur empereur Nc B-pers B-pers.ind B-comp.title O Q438435
Rodolphe Rodolphe Np I-pers I-pers.ind B-comp.name O Q438435
duc duc Nc I-pers I-pers.ind B-comp.title O Q438435
de de S I-pers I-pers.ind I-comp.title O Q438435
Suabe Souabe Np I-pers I-pers.ind I-comp.title B-loc.adm.reg Q438435

Table 2: NERC Fine-Grained annotation with EL

• unit to annotate tokens that are units (meters,
league, inches, pounds. . . )

• val to annotate tokens that are values (a num-
ber) that is linked to a unit to annotate an
amount.

We have decided not to annotate metaphorical
uses differently or in a separate column: everything
is annotated in a literal sense. Thus, in France goes
to war, France is labelled loc.adm.nat (i.e. the
country) and not org.adm (i.e. the French gov-
ernment).

We have also started a first phase of semantic an-
notation, using Wikidata (Vrandečić and Krötzsch,
2014) identifiers, which remains imperfect. Due to
the complexity of analysing certain entities, in par-
ticular personal names (e.g. Pope John), it was
decided to annotate them only very marginally,
only in the event of the absence of ambiguity (e.g.
Pope John V). The annotation of place names, on
the other hand, is more advanced and almost func-
tional.

A first layer of annotation was made using reg-
ular expressions, before moving on to a manual
correction phase. Given the size of the corpus, it
is obvious that each token has not been checked,
and that the final result does not claim to be perfect.
Regular and thorough checks, however, concluded
that the annotation was of the best possible quality
and allow to move on to the training phase. All
of the annotation work was carried out by a single
person, in order to ensure the consistency of the
data. The structure of the file and the form of the
tags was controlled by a specific parser, designed
specifically for this corpus.

3.2 A Note on Size

Our final annotated corpus has around 5 million
annotated tokens, this makes it around 18 times big-
ger than the French treebank (Abeillé et al., 2003;

Figure 2: Number of entities (log10 scale) per category
by text.

Sagot et al., 2012; Ortiz Suárez et al., 2020a) and
almost 23 times as big as the CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003) corpus. Fig-
ures 1 and 2 show both the distribution of tokens
by century and by coarse entity type. We can see
that even though our corpus is far from balanced,
even the 16th century portion of the corpus, which
is our smallest, is still slightly larger than both
the ConNLL 2003 and the FT corpora. We there-
fore believe that this annotated corpus gives us
a great opportunity to study how state-of-the-art
NER architectures behave when confronted with
large amounts of annotated heterogeneous text.

Given the size of our corpus, we opt for a 90-
5-5 type split, that is, 90% of the text goes to the
training set, 5% to the development set and 5% to
the test. Otherwise the test and development sets
would have been too big and training would have
taken too long. The split is done at a document level
and the sentences that go into the development and
test sets are chosen at random, ensuring that both
sets contain a representative portion of each of the
documents in our corpus.

4 NER Evaluation

Having produced this annotated corpus, we now
proceed with an evaluation using the coarse level
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of annotation. We only use this level of annotation
and not the other columns depicted on on table 2 as
the training of some of as architectures turned out
to be quite expensive due to the size of the corpus,
with a single run of some of our models taking
more than 24 hours on a machine equipped with
an Nvidia V100 with 32 GB of memory. We also
believe that the development of an architecture able
to predict all levels of annotations at once merits a
study of its own.

4.1 Models

We train three different models, a BiLSTM-CRF
(Lample et al., 2016), CamemBERT (Martin et al.,
2020) and D’AlemBERT (Gabay et al., 2022). All
the training and fine-tuning is conducted using
the flair framework5 for sequence tagging (Ak-
bik et al., 2019). To fine-tune D’AlemBERT and
CamemBERT POS we follow the same approach
as Schweter and Akbik (2020) with some modifi-
cations: we append a linear layer of size 256 that
takes as input the last hidden representation of the
<s> special token and the mean of the last hidden
representation of the subword units of each token,
that is, we use a “mean” subword pooling strategy.
For the BiLSTM-CRF we use the implementation
provided by the flair library, and we couple it
with character embeddings as well as the Common
Crawl-based FastText embeddings (Grave et al.,
2018) originally trained by Facebook. Here is a
small description of each of the models:

BiLSTM-CRF A classical neural architecture
originally proposed by Lample et al. (2016) that
combines a pre-trained fixed word embeddings
with character embeddings, that are then feeded
into a bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) encoder and a CRF (Lafferty et al.,
2001) decoder. This model will serve as our base-
line.

CamemBERT A Contemporary French lan-
guage model originally proposed by Martin et al.
(2020), is a Bidirectional Transformer-based model
(Devlin et al., 2019; Vaswani et al., 2017) more
precisely based on the RoBERTa (Liu et al., 2019)
architecture, but using SentencePiece (Kudo and
Richardson, 2018) instead of the original Byte-Pair
Encoding (BPE) (Sennrich et al., 2016). Camem-
BERT uses a base-type architecture, which con-
sists of 12 layers, 768 hidden dimensions, 12 at-

5https://github.com/flairNLP/flair

tention heads, 110M parameters. CamemBERT
was pre-trained using the French subcorpus of OS-
CAR 2019 (Ortiz Suárez et al., 2019; Ortiz Suárez
et al., 2020b) which is extracted from Common
Crawl snapshots, specifically from the plain text
WET format distributed by Common Crawl which
removes all the HTML tags and converts the text
formatting to UTF-8. It follows the same approach
as Grave et al. (2018) by using a language classifi-
cation model based on the fastText linear classifier
(Joulin et al., 2016; Joulin et al., 2017).

D’AlemBERT An Early Modern French lan-
guage model originally pre-trained by Gabay et al.
(2022) using a 1.2 GB corpus of Early Modern
French called FREEMmax (Gabay et al., 2022).
D’AlemBERT uses the exact same base-type ar-
chitecture as CamemBERT but for the tokenizer
it uses the original BPE (Sennrich et al., 2016) of
RoBERTa’s (Liu et al., 2019) instead of Sentence-
Piece (Kudo and Richardson, 2018). As opposed
to CamemBERT or RoBERTa, D’AlemBERT was
only trained for 31k steps.

4.2 Results and discussion

Model Precision Recall F1-Score

BiLSTM-CRF 0.8640 0.8533 0.8586
CamemBERT 0.9303 0.9309 0.9306
D’AlemBERT 0.9329 0.9323 0.9326

Table 3: Comparison between D’AlemBERT, Camem-
BERT and an LSTM-CRF-based model performance on
the test set of our corpus, results are averaged over 10
runs with different seeds.

Table 3 shows a brief overview of our results, we
can see that our BiLSTM-CRF already produces
quite strong results, attaining an f1-score of 0.8586
which is quite remarkable taking into account how
heterogeneous our corpus is and how different the
data itself is from the pre-training data used in the
FastText word embeddings of the Bi-LSTM model.

On the other hand for both CamemBERT and
D’AlemBERT we obtain quite high results above
the 0.93 in f1-score. These results are quite re-
markable because in spite of how heterogeneous
our corpus is, and despite of the challenges posed
by an historical language previously discussed, we
obtain results that are almost on par with the cur-
rent state of the art architectures for Contemporary
English (Straková et al., 2019; Yamada et al., 2020;
Wang et al., 2021).
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CAMEMBERT

Entity Type Precision Recall F1-Score Support

pers 0.9373 0.9236 0.9304 2734
loc 0.9140 0.9371 0.9254 1384
amount 0.9840 0.9840 0.9840 250
time 0.9447 0.9407 0.9427 236
func 0.9209 0.9143 0.9176 140
org 0.8364 0.9388 0.8846 49
prod 0.7742 0.8889 0.8276 27
event 0.8333 0.8333 0.8333 12

micro avg 0.9303 0.9309 0.9306 4832
macro avg 0.8931 0.9201 0.9057 4832
weighted avg 0.9307 0.9309 0.9307 4832
samples avg 0.8856 0.8856 0.8856 4832

D’ALEMBERT

Entity Type Precision Recall F1-Score Support

pers 0.9355 0.9279 0.9317 2734
loc 0.9242 0.9335 0.9288 1384
amount 0.9800 0.9800 0.9800 250
time 0.9456 0.9576 0.9516 236
func 0.9333 0.9000 0.9164 140
org 0.8148 0.8980 0.8544 49
prod 0.8621 0.9259 0.8929 27
event 0.8333 0.8333 0.8333 12

micro avg 0.9329 0.9323 0.9326 4832
macro avg 0.9036 0.9195 0.9111 4832
weighted avg 0.9331 0.9323 0.9327 4832
samples avg 0.8893 0.8893 0.8893 4832

Table 4: Results of CamemBERT and D’AlemBERT on the test set of our corpus by entity type. Results are
averaged over 10 runs with different seeds.

Strikingly, we do not see the same phenomenon
as Gabay et al. (2022) who fine-tuned both Camem-
BERT and D’AlemBERT in POS tagging for Early
Modern French, and that obtained remarkably good
results with D’AlemBERT but subpar results with
CamemBERT. We believe that this is due to the
striking size of our corpus which has more than 5
million annotated tokens, that is, we believe that
in this case CamemBERT has enough training data
in order to properly fine-tune to this task in Early
Modern French and in particular to potentially over-
come the poor representations given by the Senten-
cePiece (Kudo and Richardson, 2018) trained on
Contemporary French for the out-of-vocabulary
words found in the Early Modern French data. 6

We believe that to a certain extent, given the size of
our corpus, CamemBERT might be “forgetting” its
pre-training contemporary data and “re-learning”
the Early Modern French data in our corpus. In
any case, these high score proves the effectiveness
of our data-driven approach as we didn’t use any
dedicated architecture for NER, yet we obtain state-
of-the art results for a very challenging state of the
French language.

In tables 5 and 4 we see the results of the
BiLSTM-CRF, CamemBERT and D’AlemBERT
models by entity type. All results are averaged over
10 runs using different seeds. For the BiLSTM-
CRF model we see that in general it performs the
best for the most common entity types and the
worst for the least common types. It has partic-
ular trouble with the production category which
might be due to the lack of these entities in the

6We observe that SentencePiece tends to split OOV words
by characters which might not be ideal for sequence-tagging
tasks, specially for NER.

BILSTM-CRF

Entity Type Precision Recall F1-Score Support

pers 0.8808 0.8435 0.8617 2734
loc 0.8109 0.8707 0.8397 1384
amount 0.9040 0.9040 0.9040 250
time 0.9604 0.9237 0.9417 236
func 0.8872 0.8429 0.8645 140
org 0.8824 0.6122 0.7229 49
prod 0.9231 0.4444 0.6000 27
event 0.7273 0.6667 0.6957 12

micro avg 0.8640 0.8533 0.8586 4832
macro avg 0.8720 0.7635 0.8038 4832
weighted avg 0.8659 0.8533 0.8583 4832
samples avg 0.7737 0.7737 0.7737 4832

Table 5: Results of the BiLSTM-CRF model on the test
set of our corpus by entity type. Results are averaged
over 10 runs with different seeds.

web-based pre-training corpus of the FastText fixed
word embeddings. Strikingly, we see very good
results for the amount entity type with our LSTM-
based model, this is actually remarkable as this
has historically been a rather difficult entity type to
annotate for NER systems.

For the CamemBERT and D’AlemBERT results
by entity type, we see almost the exact same re-
sults for both models which actually supports our
hypothesis that due to the size of our corpus, the
Transformer-based models might be “forgetting”
some of their pre-training contemporary data and
“re-learning” the training data of our corpus seen
during fine-tuning. There is a small exception to
this and it again the production entity type, we
can see that D’AlemBERT performs a bit better
for this particular type which might be explained
by the presence of these in D’AlemBERT’s pre-
training data as opposed to the lack of it in Camem-
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BERT’s web-based pre-training corpus, suggesting
that while these models might be “forgetting” while
exposed to corpora of the size of our corpus, they
can still leverage their pre-training data to a certain
extent.

5 Conclusion

In this paper we have produced a significantly big,
fine-grained NER annotated corpus for Early Mod-
ern French, as well as state-of-the-art models for
coarse NER annotation in Early Modern French.
We showed that adopting a data-driven approach
in which one focuses on producing as much an-
notated data as possible as opposed to producing
highly specialised machine learning architectures
for NER, is a quite successful approach as we have
obtained results for Early Modern French that far
surpass the current state of the art for Contemporary
French and that are on par with the current state-of-
the-art specialised architectures for Contemporary
English. The corpus that we have produced also
opens many future perspectives of research, for in-
stance, we hope that in the future we will be able
to study the impact of the size of the fine-tuning
data in the fine-tuning of Transformer-based mod-
els, something that could be easily achieved by
iteratively fine-tuning different Transformer-based
with subsets of our corpus of incremental size. Fur-
thermore, one could also use all the other levels of
annotation of our corpus to develop a specialised
architecture capable of predicting all annotation
layers at once. In the end, we hope that both our
corpus and our fine-tuned models will be useful to
researchers in both Natural Language Processing
and Digital Humanities.
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Abstract

There is a lack of reproducibility in the re-
sults of experiments that apply the APPRAISAL
taxonomy. APPRAISAL is widely used by lin-
guists to study how people judge things or peo-
ple. Automating APPRAISAL could be benefi-
cial for use cases such as moderating online
comments. Past work on APPRAISAL anno-
tation has been descriptive in nature, and the
lack of publicly available data sets hinders the
progress of automation. In this work, we are
interested in two things; first, we are interested
in how well humans can reproduce the anno-
tation of APPRAISAL of the Australasian Lan-
guage Technology Association (ALTA) data
set. We employed four annotators, each with
a similar cultural and linguistics background
to reannotate the data set. Second, we are in-
terested in measuring the performance of the
existing automated approaches to APPRAISAL
classification. Our results show a poor level
of agreement at more detailed APPRAISAL cat-
egories (Fleiss κ = 0.059) and a fair level of
agreement (κ = 0.372) at coarse-level cate-
gories. We find similar results when using
automated approaches that are publicly avail-
able. Our empirical evidence suggests that, at
present, automating APPRAISAL classification
is practical only when considering coarse-level
categories of the taxonomy.

1 Introduction

With the rising popularity of social media plat-
forms, such as Twitter and Facebook, we are ex-
periencing an unprecedented surge of unstructured
textual discourse ready to be analysed (Gundecha
and Liu, 2012). Supervised learning in Natural Lan-
guage Processing (NLP) has helped us extract the
richness of the information found in these texts for
purposes such as sentiment analysis (Zhang et al.,
2018), hate-speech detection (Schmidt and Wie-
gand, 2019), and question answering (Shah et al.,

2019). The training task within supervised learn-
ing requires high-quality annotated data in order to
perform well (Ramas et al., 2021).

Supervised learning can apply theories of evalu-
ative language (Bateman et al., 2019). With high-
quality annotated data, we are confident that the
task of identifying phrases of evaluative language
can be automated. Evaluative language allows us
to analyse how we express our feelings, our assess-
ments of people, situations and objects (Benamara
et al., 2017). As evaluative language is such a large
and intricate discipline, herein we restrict ourselves
to just the APPRAISAL1(Martin and White, 2003)
taxonomy within it.

APPRAISAL gives linguists a systematic ap-
proach to evaluating language such as identifying
and understanding how people make judgements
about things (people and objects). The taxonomy
has been widely used by linguists to analyse the
language choices and attitudes used by writers in
order to express their stances (Chen, 2022) in vari-
ous media such as in news biographies, examiners’
reports and tweets (Starfield et al., 2015; Ross and
Caldwell, 2020; Su and Hunston, 2019).

Looking forward, APPRAISAL could be used
to automate the moderation of online comments
(Cavasso and Taboada, 2021); in spite of automa-
tion, human moderators continue to be required for
the final judgement call on some comments (Ghosh
et al., 2011).

The task of reading a comment (and analysing
the language) is known to have a negative psy-
chological impact on moderator’s mental health
(Steiger et al., 2021). Sullivan (2022) argued that
the impact on human moderators could be lowered
by reducing the number of comments they read.
For example, if a comment is identified as having
legal implications (based on APPRAISAL analysis),

1Small caps are used to distinguish technical, linguistic
terms from their use in common parlance.
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the comment could be automatically rejected, or
flagged for legal review.

To date, much of the research in APPRAISAL

annotation has been descriptive in nature (Fuoli,
2018; Fuoli and Hommerberg, 2015). Fuoli (2018)
proposed a structured approach known as the step-
wise approach, however it stops short of providing
guidelines to future researchers and has not been
quantified. If there are to be robust data sets for
studying APPRAISAL then it is necessary to quan-
tify the quality of the data sets already available, ex-
amine the practices involved in acquiring them, and
strive to improve the techniques in a well grounded,
measurable way.

We focus the scope of this work on just the
JUDGEMENT subbranch of the APPRAISAL tax-
onomy because there is publicly available data
provided by the Australasian Language Technol-
ogy Association (ALTA) for their 2020 Shared
Task Challenge (Mollá, 2020). Figure 1 shows
the part of the APPRAISAL taxonomy that focuses
on JUDGEMENT and where it fits in the hierarchy.
In this paper, we investigate the following research
questions: 1) the reproducibility and the reliabil-
ity of humans annotating JUDGEMENT sentences,
and 2) the effectiveness of automated approaches
to classify JUDGEMENT.

In order to answer our research questions, we
first employed four annotators, each with a linguis-
tics background, to re-annotate the ALTA data set.
Our experiments demonstrate significant levels of
disagreement between the annotators at Level 4 of
the APPRAISAL hierarchical taxonomy (Fleiss κ =
0.089) as opposed to the more consistent results
at Level 2 of the taxonomy (κ = 0.558). We then
compare the performance of three different systems
submitted to the ALTA challenge. We observe a
similar, relative effect: A κ score of 0.031 at Level
4 and 0.206 at Level 2.

Our qualitative analysis of the assessments
shows that categorising the exact type of JUDGE-
MENT can be difficult, as what constitutes morality
(a part of JUDGEMENT) is subjective—foresight
and background context are required.

We aim to encourage further research into the
application of the APPRAISAL taxonomy that is
reproducible. This would collectively support our
goal to build robust automated approaches to aid
SFL practitioners in handling large datasets. To aid
in future research, we have made our annotations

APPRAISAL

AFFECT 
(emotions felt)

ATTITUDE
JUDGEMENT  

(people's
behaviour)

APPRECIATIONS
(reaction to

objects/things)

SOCIAL
ESTEEM

SOCIAL
SANCTION

ENGAGEMENT

GRADUATION

NORMALITY

CAPACITY

TENACITY

PROPRIETY

VERACITY

Level 4Level 3Level 2Level 1Level 0

Figure 1: JUDGEMENT branch of the APPRAISAL hier-
archical taxonomy (in context, and adapted from (Stew-
art, 2015, p. 3).)

and experimental data publicly available.2

2 Related Work

The APPRAISAL taxonomy was originally devel-
oped by Martin and White (2003) and it is used
by linguists to study discourse across a diverse
range of genres (Chen, 2022). APPRAISAL cap-
tures the evaluative meaning (opinion) of the per-
son who wrote a piece of text toward another per-
son or an object. This taxonomy is widely used
for many tasks including analysing biographies (Su
and Hunston, 2019), Donald Trump’s tweets (Ross
and Caldwell, 2020), investigating online reviews
of South Park (Paronen, 2011), advertising messag-
ing (Beangstrom and Adendorff, 2013) and PhD
examiners’ reports (Starfield et al., 2015).

There are five levels in the APPRAISAL taxon-
omy (Figure 1). The levels indicate the granular-
ity of the categories. At Level 1, there are three
categories: ATTITUDE (emotions, ethics and aes-
thetics), GRADUATION (how ATTITUDE is being
used in a sentence) and ENGAGEMENT (writer’s
openness for negotiation). The ATTITUDE branch
can be broken down further into AFFECT (emo-
tions), JUDGEMENT (ethics) and APPRECIATION

(aesthetics). The branch of JUDGEMENT is fur-
ther divided into SOCIAL ESTEEM and SOCIAL

SANCTIONS. SOCIAL ESTEEM deals with admi-
ration and criticism of people, without any legal
implication. This branch is further subdivided into
NORMALITY (how closely one follows the norm
of the society), CAPACITY (how capable the per-
son is) and TENACITY (how dependable the person
is). SOCIAL SANCTIONS on the other hand deals
with the behaviour of a person that has a legal or

2https://github.com/prasys/
appraisal-annotation-coling2022
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Text Classification

I am beyond mad that I lost track of a brown spider in my brown carpet. Where did you go? CAPACITY

Feels like I lost my best friend #lost #fml #missingyou NORMALITY

@alour @jkramon1313 you should force your neighbours to pay that! Those people have some
nerve!!! #Victim

PROPRIETY

I feel like a burden every day that I waste but I don’t know how to get out of this CAPACITY,VERACITY

Instagram seriously sort your sh*t out. I spent ages writing that caption for you to delete it and
not post it!! #fume #instagram

None

I am about to be a coward and I feel terrible. But I can’t even face this VERACITY

Table 1: Example Tweets from the ALTA data set (Mollá, 2020) and their classification under the JUDGEMENT
branch of the APPRAISAL taxonomy.

moral implication. This branch of the taxonomy is
further divided into VERACITY (how truthful one
is) and PROPRIETY (how ethical the person is).
Some examples of tweets and where they fit within
JUDGEMENT are given in Table 1.

There is a substantial amount of work on build-
ing automated approaches to applying JUDGE-
MENT classification to text (Argamon et al., 2007;
Bloom and Argamon, 2010; Whitelaw et al., 2005;
Neviarouskaya et al., 2010; Taboada et al., 2011).
Most of this work focuses on using a combination
of machine learning approaches and a hand-built
lexicon. For instance, Argamon et al. (2007), con-
structed lexicons from the seed words of Martin
and White (2003) and apply Naive Bayes and Sup-
port Vector Machine (SVM) classifiers to the task.
They obtain an F1 score of 0.345. One of the ma-
jor drawbacks of these past approaches is that the
APPRAISAL terms in the lexicons were selected
based on researchers’ intuition, and it is unclear
what these intuitions were. Worse, the lexicons do
not appear to be publicly available, thereby making
it impossible to reproduce the experiments.

The lack of publicly available APPRAISAL data
resulted in a stall in research, but recently the
Australasian Language Technology Association
(ALTA) organised a shared task and encouraged
participants to build an automated system to iden-
tify the subclasses of JUDGEMENT used in tweets
(Mollá, 2020). They made their data publicly avail-
able.3 The results of the shared task were under-
whelming, with the best system obtaining an F1

score of 0.155 (Aroyehun and Gelbukh, 2020). In
reaction, we sought to determine whether humans
found this task equally difficult.

Prior work in this area by Read and Carroll

3https://www.kaggle.com/c/
alta-2020-challenge/

(2012), used two annotators to annotate a book
corpus and obtained an F1 score of 0.434 at Level
4 of the APPRAISAL taxonomy, as opposed to an
F1 score of 0.532 at Level 1 of the APPRAISAL

taxonomy. Their data do not appear to be publicly
available.

Ross and Caldwell (2020) discovered that tweets
contain a higher proportion of JUDGEMENT words
than AFFECT and APPRECIATION words. JUDGE-
MENT in tweets is especially insightful to an or-
ganisation interested in brand reputation, as an in-
creasing number of consumers are using Twitter
to recommend brands to their friends (Vidya et al.,
2015). Knowing how a product is being judged can
bring insights to an organisation on how that prod-
uct might be improved. Collectively, these studies
highlight the importance of evaluating the reliabil-
ity of humans can perform the classification and
compare the performance with existing approaches.

3 Data set and Annotation

3.1 Data set

We consider the data set from the ALTA 2020
Shared Task (Mollá, 2020). The data set was origi-
nally sourced from the SemEval 2018 AIT DISC
data set (Mohammad et al., 2018). The ALTA data
contains 300 tweets that have been annotated by
two linguists, one from the University of Wollon-
gong and the other from the University of New
South Wales, and then verified by two other lin-
guists from the same two universities. The data
is then split into 200 tweets for training and the
remaining 100 tweets for the testing portion. Each
tweet was annotated with one or more categories
of Level 4 of the APPRAISAL taxonomy. Some
examples are given in Table 1.

3733



3.2 Annotation
In order to measure the reproducibility of the anno-
tation process we re-annotated the test portion of
the ALTA data set.

By using the test set it was possible to use the
training set as guidelines for our annotators, and
also to compare the performance of runs submitted
to the shared task on multiple sets of annotations.

Annotation for JUDGEMENT is non-trivial and
requires an understanding of linguistics. Because
of this complexity we employed four human anno-
tators each with a background in linguistics.4 All
annotators are native English speakers and New
Zealanders. The detailed background of the anno-
tators is as follows:

• a—an associate professor with 20 years of
teaching experience in a languages depart-
ment at a university in New Zealand,

• b—a graduate student in linguistics currently
studying for a Master’s in Linguistics at a uni-
versity in New Zealand,

• c—a final year undergraduate student work-
ing towards a degree in applied linguistics at
a university in New Zealand, and

• d—a professional language translator and in-
terpreter in New Zealand with over 10 years
of experience.

In addition to these four, we have the reverse
engineered golden data set denoted (g).5

All annotators were aware of the Systemic Func-
tional Linguistic (SFL) theory, which forms the
basis of the APPRAISAL taxonomy. However, we
also provided the set of guidelines from Martin and
White (2003) and the 200 labelled tweets from the
training set. Following the recommendations of
Fuoli (2018), all annotators worked independently
and were of similar cultural and ideological back-
grounds. The annotators classified each tweet into
one or more of the five categories of Level 4 of the
APPRAISAL taxonomy in Figure 1, or marked the
tweet as None if the tweet was not JUDGEMENT-
bearing. Some tweets contained sensitive content,

4We obtained ethical approval from University of Otago
Ethics Committee (Approval No: D20/334).

5We contacted the organisers of ALTA Task in order to
obtain the test set annotations, however the organisers were
not able to release the data. We then reverse engineered the
annotations by submitting controlled runs to the competition’s
automated scoring platform—something that was done with
the full knowledge of the task organisers.

so we provided a Skip option, but it was not used.
Each annotator was given two hours to complete
the task but all finished in under an hour. We did not
ask the annotators to identify JUDGEMENT-bearing
terms and leave this for future work.

Level Without g With g

0–2 0.558 0.372

3 0.211 0.182

4 0.089 0.059

Table 2: Fleiss κ score between our annotators with and
without g at different levels of the APPRAISAL taxon-
omy.

κ Agreement

<0 Less than chance
0.01–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–0.99 Almost perfect

Table 3: Interpretation of κ scores (adapted from Lan-
dis and Koch (1977)).

4 Human Agreement Level

Annotating JUDGEMENT is difficult as sentences
can contain varying degrees of objectivity and sub-
jectivity. How these subjective sentences are fi-
nally classified can depend on the background of
the annotator (Wiebe et al., 2005; Read and Car-
roll, 2012). To reduce subjectivity, we follow the
recommendations of Read and Carroll (2012) by
annotating and reporting the scores at a tweet level
(sentence level). We calculate the agreement levels
based on the Fleiss κ score and mean F1 score.

Fleiss κ was chosen as it is appropriate when
the given task is subjective (Waseem, 2016; Alm,
2011), but recent work by Delgado and Tibau
(2019) recommends avoiding just κ when com-
paring the performance of automated approaches
due to the kappa paradox (Feinstein and Cicchetti,
1990; Cicchetti and Feinstein, 1990). The kappa
paradox arises because the κ statistic accounts for
agreement by chance—which is low for machine
learning approaches that closely follow the pat-
terns in the training data. It is, thus, important
to consider F1 when comparing the performance
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Level (a,b) (a,c) (a,d) (a,g) (b,c) (b,d) (b,g) (c,d) (c,g) (d,g)

0–2 0.877 0.875 0.870 0.535 0.963 0.958 0.580 0.985 0.559 0.555

3 0.648 0.672 0.628 0.391 0.737 0.690 0.475 0.686 0.476 0.370

4 0.402 0.421 0.380 0.221 0.401 0.397 0.196 0.317 0.245 0.132

Table 4: Mean F1 score between annotators at various levels of the APPRAISAL taxonomy.

of automated approaches. F1 has also been used
in previous work (Mollá, 2020; Read and Carroll,
2012; Argamon et al., 2007).

Table 2 shows the Fleiss κ score of our annota-
tors when we include and do not include the golden
data set6. Note that Levels 0, 1 and 2 of the AP-
PRAISAL taxonomy are collapsed to Levels 0–2
because we have only annotated JUDGEMENT and
below. To interpret the values of κ, we follow the
guidelines by Landis and Koch (1977) that have
been widely adopted in this research area and are
reproduced in Table 3.

In line with the findings of Read and Carroll
(2012), our annotators’ agreement scores drop as
the APPRAISAL classification moves from Level 0
towards Level 4. We explore some of the factors
behind this in Section 7.

At Level 4, if we were to include the golden set,
g, as an annotator, there is a substantial level of
disagreement among the annotators. Similarly, at
Level 3, (SOCIAL ESTEEM versus SOCIAL SANC-
TIONS), we see that our annotators still have a low
agreement. However, at Level 0–2, we see mod-
erate agreement between the annotators when the
golden data set is not included, and a fair agreement
level when the golden data set is included.

Table 4 shows the results when using the mean
F1 score. There we see the scores across annotators
are very high at Level 0–2 (with the exception of
comparing our annotators with g). As with the
κ scores, we see that the scores go down as we
traverse through the APPRAISAL taxonomy.

The difference between F1 and κ scores demon-
strates the importance of reporting both scores.
Reporting F1 alone gives the impression that this
task is easy (has a high level of agreement) but the
F1 score does not take into account classifications
that could have occurred by chance. The κ scores
suggest that the task is difficult (has a low level
of agreement) at Level 4 of the taxonomy. This
sheds light as to why the automated approaches

6We built the collective agreement (intersection) set but
found the scores dropped further.

that were built by the participants of the ALTA task
performed poorly (Mollá, 2020), as we find even
humans disagree at Levels 3 and 4.

5 Classifiers’ Agreement Level

In this section, we discuss our experiments for mea-
suring the effectiveness of automated approaches.
We consider all three systems that were used to sub-
mit runs to the ALTA 2020 Shared Task because
the source code to these is publicly available, and
we were able to gain access to the submissions. We
did not compare to earlier systems as neither they,
nor their word lists, nor the data they trained on are
publicly available.

The systems we used are as follows:

• NLP-CIC (Aroyehun and Gelbukh, 2020):
An ensemble of logistic regression and
ROBERTA classifier.

• OrangutanV2 (Parameswaran et al., 2020):
An ensemble of two ALBERT classifiers.

• NITS (Khilji et al., 2020): An ensemble of
XGBoost and decision tree classifiers that use
pre-trained BERT embeddings.

Mean F1 scores of each tweet against g are re-
ported in Table 5. The performance of these sys-
tems against g is lower than the performance of
our annotators against g (e.g., (a,g) in Table 4).

This is hardly surprising, since the systems were
trained on a limited amount of data, but the anno-
tators were able to draw from years of experience.
Nonetheless, NLP-CIC and OrangutanV2 are able
to distinguish JUDGEMENT from non-JUDGEMENT

fairly accurately at Level 0–2. NITS may be failing
due to the use of XGBoost which is susceptible to
outliers, and certainly produces results that differ
from the transformer-based models of NLP-CIC
and OrangutanV2.
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Level NLP-CIC OrangutanV2 NITS

0–2 0.605 0.558 0.384

3 0.407 0.389 0.258

4 0.157 0.155 0.132

Table 5: Mean F1 scores of the automated approaches
at each level of the APPRAISAL taxonomy.

6 Performance of Humans and
Classifiers

We then proceed to compare the performance of
human annotators with the automated approaches.
We are interested in knowing at which level of
the APPRAISAL taxonomy is there a significant
difference between the performance of a human
and of a machine.

We picked the best performing human annota-
tor who obtained the highest F1 score against the
golden data set at every level to be evaluated (c).

We determined that scores of c for each
tweet are not normally distributed by running the
Shapiro–Wilk test (Royston, 1992) and obtaining a
p-value of 0.0466 (not normally distributed at the
significance level of p < 0.05).

Knowing that the data are not normally dis-
tributed we chose the Wilcoxon signed-rank
test (Woolson, 2007) to test for significant differ-
ences between c and each automated system. We
ran the test after removing ties, which minimises
type one error (McGee, 2018).

Level NLP-CIC OrangutanV2 NITS

0–2 0.198 0.221 0.314

3 0.102 0.113 0.214

4 0.038∗ 0.042∗ 0.095

Table 6: p-values of Wilcoxon signed-rank test. Aster-
isks (∗) denote statistical significance at (p < 0.05).

We present our results in Table 6 which shows
the p-values from each test. Our analysis shows
that there is a statistically significant difference be-
tween c and two of the three systems (NLP-CIC
and OrangutanV2) at Level 4 of the APPRAISAL

taxonomy. However, we find that there are no sta-
tistically significant differences at Levels 0 through
to 3. Our evidence suggests that at levels closer to
0, the performance of machines and humans are
comparable. However, we cannot confidently say

Level Without g With g

0–2 0.120 0.206

3 0.094 0.105

4 0.007 0.031

Table 7: Fleiss κ score between automated approaches
and with g at various levels of the APPRAISAL taxon-
omy.

so, as our effect size (d = 0.15) is very small. We re-
port our Fleiss κ scores in Table 7. The agreement
levels are low, a similar finding to that of Delgado
and Tibau (2019).

This may be because these models are based on
BERT, and thus they share similar characteristics
and produce similar results.

7 Qualitative Analysis

Observing the high level of disagreement among
annotators and g (mean κ at Level 4 being 0.199),
we examined each disagreement in turn. They all
fall into two categories:

• Category 1—our assessors do not agree with
each other, and g chooses None,

• Category 2—our assessors agree with each
other, but not with g. This is only seen at
Level 4 of the taxonomy.

Consider the following Category 1 example:

“Absolutely love @unqualified but can’t
listen to it during my commute on the
subway because I burst out laughing and
people stare! .”

Annotators a, c and d marked this NORMALITY

while a and b marked it CAPACITY (a marked it
twice). The golden assessor, g, marked it None.
When we apply the APPRAISAL taxonomy manu-
ally, we observed that the first part of the sentence

“absolutely love @unqualified but can’t listen to it
during my commute on the subway” being AFFECT,
however in the second part “because I burst out
laughing and people stare” is JUDGEMENT.

We believe this sentence does contain JUDGE-
MENT. In many societies, laughing loudly on a
train is considered rude, as is listening to music
loudly. We agree with the majority of our annota-
tors that this warrants classification as NORMAL-
ITY, and if we follow the methodology of Fuoli
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(2018), this tweet falls into both categories. All of
the automated approaches also predict NORMAL-
ITY. Our analysis shows three instances of Cate-
gory 1. Although, from our visual inspection, these
sentences contain JUDGEMENT, we are not sure
why g chose None (and we have no way to investi-
gate this).

As an example of Category 2:

“So disappointed in myself for spending
£50 on an outfit for meeting a boy #no-
selfcontrol #nervous .”

Annotator g tagged this NORMALITY, disagreeing
with all the other annotators who marked it CA-
PACITY. There are two ways that the sentence can
be interpreted, for our annotators, they view the
person as not being capable of controlling their
impulses to purchase an outfit for their date. As for
g, the annotators plausibly view it as NORMALITY

as it was normal for people to be in their best outfit
and behaviour when they are out on a date, thus it
was normal to spend money on a dress. We believe
that both of these categories are correct, especially
as there are no well-defined criteria to distinguish
between CAPACITY and NORMALITY. To address
this issue, we suggest clarifying annotation guide-
lines given to the assessors, and the criteria used
to distinguish the different JUDGEMENT categories.
All of the automated approaches predicted PRO-
PRIETY. This is likely to be due to the lack of
data—there is only one example in the training
data set that has a sentence similar to the sentence
above: “Incredibly shocked and disappointed with
@united customer service. Really making me re-
think flying with them in the future. #unhappy”.
That sentence is marked as PROPRIETY. Our find-
ings reflect the findings of Tayyar Madabushi et al.
(2019), who have demonstrated that BERT fails to
generalise properly when training and test data are
significantly dissimilar even though these data sets
are very similar in nature. There are four instances
of category 2 disagreement.

Another explanation for discrepancies between
our annotators and g is that annotating tweets is
tricky because the tweeter and the annotator are
subject to different cultural and personal views of
what JUDGEMENT is. The data we use consists
of tweets from different individuals and we have
different individuals assessing them, thus we can
expect high levels of disagreement. By compari-
son, the work of Ross and Caldwell (2020), applies

APPRAISAL theory to tweets from one individual
(Donald Trump), and so the assessors are able to
better understand the message behind the tweet.
This could be the reason why much of the previ-
ous work on APPRAISAL has focused solely on a
particular topic or person and not a generalised sit-
uation. One way to address discrepancy among
annotators is for the annotators to meet and discuss
differences—and to improve the assessment guide-
lines by writing clear-cut criteria for distinguishing
difficult cases. We hope to see more diversified
data sets released in the future so that we can vali-
date the generalisability of automated JUDGEMENT

approaches.

8 Recommendations & Limitations

Our analyses show that: 1) Annotating Level 4
of JUDGEMENT categories is challenging as there
is ambiguity in the interpretation of the text; and
2) The evaluation and the reasoning presented in
the APPRAISAL literature are very rarely complete.
The latter can be addressed by making the data
sets publicly available and also sharing the assump-
tions and annotation guidelines. It is paramount to
have these guidelines as it helps reproduce research
results.

Moreover, sharing these rules would make it
easier to automate approaches that classify AP-
PRAISAL-bearing sentences. By addressing these
gaps, we believe that annotating Level 4 of AP-
PRAISAL would be clearer, although how the rules
differ or are similar from one data set to another is
yet to be seen.

Our work has limitations. Our data set is small
and focuses solely on Twitter and the JUDGEMENT

branch of APPRAISAL. We find that performing
discourse analysis can be challenging especially
when it is related to judging the morality of a person
from a single tweet. This can surface different
perspectives based on different assumptions based
on a tiny piece of text (Lachmar et al., 2017).

We evaluated our automated approaches using
systems built for the ALTA Shared Task. All of
these models were based on BERT and we believe
that these models can be further improved by fine-
tuning, which has been shown to improve perfor-
mance elsewhere (Xin et al., 2021). Another plausi-
ble cause of the poor performance of these models
is that the data set that was trained on and evaluated
on was small, and thus was likely to contain bias.

As a direction for future work, it would be inter-
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esting to revisit some of the techniques from earlier
work mentioned in Section 2. Of course, the lex-
icons would need to be reproduced as closely as
possible, but we hypothesise that the deep learning
models could be further improved by using such
techniques.

9 Conclusions

In this study, we investigated two topics: (1) re-
producibility and the reliability of a popular SFL
taxonomy, APPRAISAL, focusing on JUDGEMENT

annotation, and (2) the effectiveness of automated
approaches to assessing JUDGEMENT. To carry out
our investigation in a systematic manner, we em-
ployed four linguists to carefully re-annotate the
publicly available ALTA 2020 Shared Task data
set and used three publicly available, automated
approaches. We then performed experiments quan-
tifying and evaluating the performance of our an-
notators and automated approaches.

We find a low level of agreement when anno-
tating JUDGEMENT despite using annotators with
linguistics backgrounds. We obtained a Fleiss κ
score of 0.059 when using Level 4 (most detailed
categories) within the APPRAISAL’s hierarchical
taxonomy as opposed to 0.372 when using Level 2
(coarse-grained categories).

We find a similar pattern with the automated ap-
proaches. We obtain a Fleiss κ score of 0.031 at
Level 4 and 0.206 at Level 2 of the taxonomy. Al-
though the low κ score in automated approaches is
attributed to the nature of κ statistical penalising
agreement not occurring by chance, our F1 score
(0.605 at Level 2 and 0.155 at Level 4) supports
our earlier findings that humans find classifying
JUDGEMENT to be difficult. Furthermore, we find
that there is no statistical significance between the
performance of our best performing annotators and
of the best performing system when working with
Level 2 category of the APPRAISAL taxonomy, thus
we argue that automation of JUDGEMENT is possi-
ble at this level as automated systems are already
performing at human levels.

Our analyses sheds light on the challenges in
reproducibility of APPRAISAL annotation. We be-
lieve that the poor scores of human annotators and
automated approaches are due to a multitude of
factors including the lack of publicly available data
sets (examples), the absence of details such as prior
assumptions made by the annotators, and the lack
of generally available clear and concise annotation

guidelines.
We have publicly released our data and analy-

sis to encourage more research into APPRAISAL.
We believe that the application of APPRAISAL to
tweets and other discourse will enable the appli-
cation of APPRAISAL to other domains (such as
eCommerce).
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Abstract

Few-shot table understanding is a critical and
challenging problem in real-world scenario as
annotations over large amount of tables are
usually costly. Pre-trained language models
(PLMs), which have recently flourished on tab-
ular data, have demonstrated their effectiveness
for table understanding tasks. However, few-
shot table understanding is rarely explored due
to the deficiency of public table pre-training
corpus and well-defined downstream bench-
mark tasks, especially in Chinese. In this paper,
we establish a benchmark dataset, FewTUD,
which consists of 5 different tasks with human
annotations to systematically explore the few-
shot table understanding in depth. Since there
is no large number of public Chinese tables,
we also collect a large-scale, multi-domain tab-
ular corpus to facilitate future Chinese table
pre-training, which includes one million tables
and related natural language text with auxil-
iary supervised interaction signals. Finally, we
present FewTPT, a novel table PLM with rich
interactions over tabular data, and evaluate its
performance comprehensively on the bench-
mark. Our dataset and model will be released
to the public soon.

1 Introduction

Relational tables, as a typical form of structured
data on the Web, store a vast amount of knowledge.
Table understanding (Wang et al., 2012) aims to
understand the semantics of tabular data as well as
the associated text jointly, which further improves
the evaluation results of several tasks, including
table question answering (Khalid et al., 2007; Sun
et al., 2016; Bogin et al., 2019), table retrieval
(Zhang and Balog, 2018), and table fact verifica-
tion (Chen et al., 2020; Zhang et al., 2020). Re-
cently, inspired by the huge success of pre-trained
language models (PLMs) in understanding free-
form natural language (NL) sentences, researchers

*Both authors contributed equally to this work.

have attempted to model structured data using pre-
training techniques. Various table pre-training mod-
els (Herzig et al., 2020; Yin et al., 2020; Yu et al.,
2021; Liu et al., 2021; Cheng et al., 2021; Shi et al.,
2022; Dong et al., 2022) have been proposed and
made remarkable progress in learning the struc-
tured schema of tables and the alignment between
the input text and the schema.

In real-world scenario, table understanding usu-
ally faces more challenging situations, in which
tables are from different domains and each table
contains very limited annotations. Despite its im-
portance, few-shot (Lake et al., 2015) table under-
standing is rarely explored in previous works due
to the following three obstacles. First, the defi-
ciency of public well-designed benchmark datasets
for few-shot table understanding makes the model
evaluation inconvenient. Second, the lack of public
large-scale high-quality table pre-training corpora
blocks the exploration of table PLMs. Lastly, a
table pre-training baseline tailored to the few-shot
table understanding is also needed for better perfor-
mance comparison. Especially, the lack of bench-
mark datasets and pre-training corpora in Chinese
hinders the research on table understanding.

To fill the above gaps, in this paper, we focus on
the dataset construction for table-understanding re-
lated tasks in Chinese. We first establish a few-shot
table understanding benchmark dataset, FewTUD,
with five table related tasks, by which research and
exploration can be carried out extensively. Differ-
ent from existing table understanding tasks, which
concentrate on the information inside tables, our
tasks, based on real-world scenarios, lay empha-
sis on the interaction between tables and the cor-
responding NL text (e.g., Table Fact Verification,
Table QA, Table Selection, and Schema Detection),
and focus on the whole content of tables (e.g., Ta-
ble Classification). We collect tables with meta
information and the corresponding NL text from
the Web, then manually annotate the dataset for

3741



Figure 1: Data Construction of TPC-1M with three main procedures: (1) InfoBox processing, (2) table processing
with column identification and cell value splitting, (3) table-text alignment and relevance score estimation.

each task, aiming to provide an evaluation criterion
for few-shot table understanding.

Second, we collect a large-scale Chinese table
pre-training corpus, TPC-1M, with more than 1
million tables and their associated NL text. How
to obtain semantically relevant NL text is critical
for constructing the table pre-training corpus. Pre-
vious works either obtain the associated NL text
by synthesising pseudo NL text on available tables
(Yu et al., 2021; Liu et al., 2021; Qin et al., 2021)
or crawling surrounding NL text of tables simply
based on position information (Yin et al., 2020;
Herzig et al., 2020). Differently, we locate the asso-
ciated NL text via semantic matching approach. We
also provide the relevance score between the NL
text and each row/column of the table as auxiliary
supervised interaction signal, which may further
facilitate the table pre-training.

Lastly, we propose a novel table pre-training
model, FewTPT, to serve as the baseline for the
few-shot table understanding benchmark. Differ-
ent from previous table pre-training models (Yin
et al., 2020; Herzig et al., 2020), we focus on catch-
ing the interactions between tables and NL text.
Specifically, we devise two novel spatial-aware pre-
training tasks, i.e., column relevance prediction
(CRP) and row relevance prediction (RRP), which
predict the relevant column from table schema and
the relevant row from table content respectively
based on the supervised interaction signals. We
also employ variants of Masked Language Model-
ing (MLM) objective to predict the tokens in NL

text, column names and cell values. Finally, we
conduct extensive experiments to show the advan-
tage of FewTPT against several strong baselines.

To summarise, our main contributions are three-
fold. (1) We establish a Chinese benchmark dataset
for few-shot table understanding, which includes
five downstream tasks: Table Fact Verification, Ta-
ble Question Answering (Table QA), Table Selec-
tion, Schema Detection, and Table Classification.
We hope the benchmark can be a testbed for fu-
ture few-shot table understanding research in Chi-
nese. (2) We contribute a large-scale high-quality
table pre-training corpus in Chinese, which cov-
ers 1 million tables across 13 domains and their
semantically-associated NL text. (3) We propose a
novel table pre-training model to serve as the base-
line for the benchmark, and experimental results
show the competitiveness of our model.

2 Construction of TPC-1M and FewTUD

In this section, we introduce the construction of
table pre-training corpus, TPC-1M, and benchmark
dataset for few-shot table understanding, FewTUD.

2.1 TPC-1M Corpus

Corpus Collection. We first crawl huge amount
of table pages from the web (e.g., Baidu Baike1

and E-commerce website2). Web pages with the
same topic field are grouped into one domain. For

1https://baike.baidu.com.
2https://www.jd.com.
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Max Min Mean Median
Row 120 2 11.6 6

Column 80 2 6.5 6

Table 1: Data statistics of TPC-1M.

a Baike page, it contains a special kind of table In-
foBox3 that illustrates the properties of one entity
(i.e., celebrity) and can be regarded as the single-
row table. To enrich information density and ta-
ble variety, we aggregate similar InfoBoxes into
a multi-row table. Figure 1(1) demonstrates the
process of InfoBox pre-processing. We first com-
bine InfoBoxes with similar schemas into one big
table. Then we split it into sub-tables according
to the row values in a specific schema, which is
determined by the lowest entropy with Maximum
Entropy algorithm (Jaynes, 1982) (i.e., Sport in Fig-
ure 1(1)). We further filter some sparse columns
and rows of these sub-tables to reduce complexity.
For other tables in the web page, some are already
corrupted, i.e., “<th>” (table header) is omitted, or
some cells are merged. For the absence of table
header tag, we train a binary classifier4 to identify
whether the first row or first column is the table
header. For the merged cells, we split them into
individual ones based on the position information.
The above process is shown in Figure 1(2).

Finally, we need to pick out the associated NL
text for each table. For previous web-crawled tables
and context from English Wikipedia (Lehmberg
et al., 2016), the context is mainly mined based on
position information and may not be semantically
related to tables. As Figure 1(3) shows, we find the
NL text from the title, caption and text descriptions
around a table. To locate the semantically-relevant
NL text accurately, we calculate the linguistic over-
lap ratio with Jaccard Similarity algorithm (Niwat-
tanakul et al., 2013) between the table and its can-
didate text snippets. The text snippets with the
top-N similarity scores are chosen as the associated
NL text. Furthermore, we assign a relevant score
to each row/column based on the n-gram overlap
between the row/column and the associated NL
text. The relevant scores indicate how likely the
row/column is mentioned in the associated NL text,
which can be regarded as auxiliary supervised in-
teraction signals between tables and the NL text.

3Similar to https://en.wikipedia.org/wiki/Help:Infobox.
4We construct the training set from well-formed tables and

the classification accuracy is 95%.

Figure 2: Domain distribution of TPC-1M.

Statistics Analysis. After pre-processing, we ob-
tain 1,002k tables with 3,014k semantically associ-
ated NL sentences. Figure 2 shows the distribution
of domains. TPC-1M covers 13 different domains,
including culture, character, celebrity, sports, and
e-commerce, and the statistics of row and column
number are illustrated in Table 1.

2.2 FewTUD Dataset

In this sub-section, we introduce the benchmark
dataset of five few-shot table understanding tasks.
For each task, we first invite annotators to manu-
ally annotate the dataset5. To follow the setting of
few-shot learning, we fix the test set as query set,
and sample different numbers of samples (N -shot)
from training set as support set. During experi-
ments, we randomly sample the support set from
training set for 10 times, then report the average
performance as the final result. Table 2 shows the
detailed statistics of our benchmark dataset. Exam-
ples of each benchmark dataset are also illustrated
in Figure 3 for better understanding.
Table Fact Verification. Table Fact Verification is
a fundamental task for NLP and can benefit many
downstream applications, such as misinformation
detection and fake news detection. This task aims
to verify whether a NL hypothesis is entailed or
refuted by the given table as knowledge. Consid-
ering there is no off-the-shelf Chinese table fact
verification dataset, we then construct one based
on the NL text-table pairs we collected. 20 crowd-
sourcing annotators were invited to label the NL
text-table pairs and check the quality. If the NL
text claims the fact from the corresponding table,
the pair is labelled as positive; otherwise, the anno-

5Annotations have been cross-checked and the inter-
annotator agreement score is 90% (Fleiss’ Kappa score (Fleiss
and Cohen, 1973)).
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Task #Table Train Dev Test N -shot
Table Fact Verification 81 4.2k 0.8k 0.8k {2,4,6,8,10,15}
Table QA 108 1.2k 0.5k 0.5k {1,2,3,4,5,10}
Table Selection 266 2k 1.5k 1.5k {1,2,3,4,5,10}
Schema Detection 100 1k 1k 1k {1,2,3,4,5,10}
Table Classification 3k 1k 1k 1k {5,10,15,20,30,50}

Table 2: Dataset statistics of few-shot experiments.

tators need to write a positive statement manually.
Then, the sampled positive statements are rewritten
as negative ones by replacing the key mentions in
the NL texts with other cell values from the corre-
sponding tables. In total, 5,800 fact statements for
81 unique tables were annotated and the ratio for
positive and negative sentences is 1:2. For exam-
ple, suppose a given table is about the milk powder
product, the positive statement is “澳大利亚进口
奶粉12-36月龄幼儿适用 (Milk powder imported
from Australia is suitable for children aged 12-
36 months)”, while the negative statement is “意
大利进口奶粉12-36月龄幼儿适用(Milk powder
imported from Italy is suitable for children aged
12-36 months)”. The model needs to verify which
statement is true based on the table information.

The evaluation metric for this task is F1 score.
Table Question Answering. Given a table and
question, Table QA aims to locate the exact cell in
table that can answer the question. Given a query
about “How tall is Kobe Bryant?” and a table on
athletes information, the task is designed to pick
the cell value 198cm involved in the table to answer
the question. Considering that it is labor-intensive
and time-consuming to collect large-scale, high-
quality question-answer pairs based on tables, we
set up a question generation framework following
Shi et al. (2022) to obtain questions given a table
and answers. Specifically, we leverage the fine-
tuned T5 model (Raffel et al., 2019) to generate
questions automatically, then ask the annotators
to manually check these ⟨question, answer, table⟩

Figure 3: Examples of benchmark dataset FewTUD. The original data is in Chinese, we translate it into English for
illustration.
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triplets and rewrite semantically irrelevant or disflu-
ent questions. Two public Chinese Machine Read-
ing Comprehension datasets (He et al., 2018; Wang
et al., 2020a) are used to train the T5 model.

Table Selection. Table selection or table retrieval
is an important task as table contains valuable in-
formation to explore in various domains. This task
aims to select the most relevant table from a list
of candidates to answer the given query. Here,
we construct the dataset for few-shot table selec-
tion similar to Table QA task. We first generate
5,000 queries for 266 different tables given the
table-related context and its overlapped cell value.
Then annotators are invited to re-check the gener-
ated queries and rewrite those disfluent ones. The
revised query-table pair is noted as positive, while
the one with replaced table (any other table) is neg-
ative. The ratio of positive and negative samples is
1:9 for test set, and 1:1 for training and validation
sets. Given a query “What TV play did Catheriner
Burns appear in?” and a list of tables, the model is
expected to compute the matching score between
each query-table pair and extract the most appro-
priate table to answer this question. R10@1 is the
evaluation metric for this ranking task (Lowe et al.,
2015).

Schema Detection. As an important task for se-
mantic parsing, schema detection bridges the gap
between NL query and database schema. Given a
query and table, schema detection requires to iden-
tify the column names mentioned in the query. For
instance, given a query “What country is Bolt from?”
and a table containing information on athletes, the
model is required to predict the related column
names of Name, Nation involved in the query. It is
a challenging task aiming to explore the model’s
performance on covering semantic and structural
correspondences and extracting general knowledge
from structural data during table-query interaction.
Here, we construct the dataset based on two public
Chinese datasets (Wang et al., 2020b; Sun et al.,
2020). Instead of using the whole sketch for SQL
generation, we only keep the column information
in SELECT, ORDER clauses, and WHERE condi-
tions as the ground truth for schema detection.

Table Classification. Different from the above
mentioned tasks that jointly learn the represen-
tations of table and text, table classification fo-
cuses on table understanding without additional
text-based input. Given the table on movies and
their characters’ information, the task is expected

to predict the multiple domain labels. Here we con-
struct the dataset based on the domain labels we as-
signed to the collected tables in TPC-1M. The task
can be formulated as a multi-label classification,
which is designed to examine the performance of
table pre-training models on structured-information
understanding. For example, suppose a table con-
tains Vivien Leigh’s films, the model is expected to
predict the domain labels Celebrity, Entertainment.

3 Table Pre-training Baseline

3.1 Model Architecture

Figure 4 illustrates the architecture of our proposed
model FewTPT, which is based on the pre-trained
language model BERT (Devlin et al., 2018) to en-
code the table and NL text and learn the structural-
aware representations.
Input Embedding. FewTPT linearizes the input
into a sequence of tokens by concatenating the
query and table meta data by rows. For each cell
in the table input, we adopt row linearization (Yin
et al., 2020) to represent a cell with column name,
column type and cell value together. Moreover, a
[CLS] token is inserted at the beginning of whole
input sequence and each cell is separated by the
[SEP] symbol. Thus, for each token Ti of position
i, the embedding EiT is defined as follows:

EiT = EiW + EiS + EiP + EiR, (1)

where EW , ES , and EP are the token embedding,
segment embedding, and position embedding fol-
lowing Devlin et al. (2018). ER represents row
embedding inspired by Herzig et al. (2020).
Gated Cell Representation. Although row lin-
earization method can accommodate the input of
tabular data, previous methods (Yin et al., 2020)
simply utilize the pooling of the column name, type
and value as representation of a cell. Considering
that the column name and cell value emphasize
different information, it’s necessary to distinguish
the table column/cell separately. Here, we adopt
a gated fusion mechanism to selectively integrate
column name Ejkn , column type Ejkt and cell value
Ejkv to obtain the cell representation Ejkc :

gjk = σ(WgE
jk
n + UgE

jk
t + VgE

jk
v + b),

Ejkc = gjk ⊙ Ejkn + (1− gjk)⊙ Ejkv + Ejkt ,
(2)

where Wg, Ug, Vg are learnable matrices, and jk
represent the jth column and kth row of the table.
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Figure 4: Model Architecture. (1) The model linearizes NL text and table into a sequence of tokens as input, and
the gated fusion and row-aware attention are leveraged to get column representation (row representation can be
obtained in the same way)). (2) The pre-training tasks includes MLM, Column Relevance Prediction (optimised
with KL loss), and Row Relevance Prediction.

Spatial-Aware Representation. Inspired by self-
attention (Vaswani et al., 2017), there are two kinds
of attention mechanism in our framework, column-
aware attention and row-aware attention, which
attend each gated cell representation of a table both
horizontally and vertically, namely spatial-aware
attention. Assume that the number of columns and
rows are C and M in a table, where j ∈ RC , k ∈
RM , the row-aware attention can be defined as:

ejk = (WQE
jk
c )(WKE

jk
c )T /

√
d,

ajk =
exp(ejk)

∑M
k=1 exp(e

jk)
,

Ejc′ =
∑M

k=1
ajkWVE

jk,

(3)

where WQ,WK ,WV are weight matrices for row-
aware attention and d is dimension of WQ. We per-
form row-aware attention here to obtain the column
representation Ejc′ . Similarly, the column-aware at-
tention can be defined in the same way to obtain
the row representation Ekr′ .
Final Output. The output of FewTPT includes
four parts: the representation of [CLS] token (Ecls),
the representations for the tokens of NL text (Eu),
and the interactive representations for row (Er′)

and column (Ec′) respectively.

3.2 Pre-Training Objectives

We implement three pre-training tasks, including
Masked Language Modeling (MLM) and its vari-
ants to learn contextual representations for tokens
in NL and table, Column Relevance Prediction
(CRP) and Row Relevance Prediction (RRP) to
capture the semantic interactions between the col-
umn/row and the give NL text respectively.
Masked Language Modeling. MLM is a widely-
used objective for pre-training, which encourages
the model to capture the contextual information
of given sequence. Previous works also employ
the variants of MLM for table pre-training (Herzig
et al., 2020; Deng et al., 2020). Inspired by this,
we devise three kinds of MLM tasks. Firstly, for
tokens in NL text, we randomly mask 20% of in-
dividual sub-tokens and then recover the masked
ones. Secondly, for columns names in the table,
we randomly select 15% column names of the in-
put table and require the model to predict them
with column type and cell value information sur-
rounded. Thirdly, considering cell values are basic
units to record content in a table, we mask 15% of

3746



cell values as well. Following Wang et al. (2021),
we randomly select out cell strings from the table
as candidates, then at each blanked position, we
encourage the model to retrieve its corresponding
string. We formulate all MLMs as multi-class clas-
sification and use cross entropy for training.
Row Relevance Prediction. The goal for row rele-
vance prediction (RRP) is to predict whether a row
is mentioned in the NL or not. As our table pre-
training corpus provides the relevance scores Xk

between NL text and each row as auxiliary super-
vised signals, we encourage the model to predict
the relevance score for each row. For each row rep-
resentation Ekr′ , we apply a fully connected layer
with sigmoid activation function σ to obtain the
probability of whether the row is mentioned in the
utterance or not. Then Mean Squared Error (MSE)
loss is leveraged as training objective:

pkr′ = σ(Wr′E
k
r′ + Eu),

Lr′ =
∑M

k=1
||pkr′ −Xk||2/M.

(4)

Column Relevance Prediction. Similar to RPP,
given the column representation Ejc′ , the goal of
column relevance prediction (CRP) is to predict
the relevance score between each column and NL
text. Since we also have the auxiliary supervised
relevance score for each column, the predicted rel-
evance score distribution is forced to fit that of
supervised signals between text and columns:

pjc′ = softmax(Wc′E
j
c′ + Eu), (5)

where j represents the index of different column.
Thus, we take the Kullback-Leibler Divergence
(KL) (Kullback and Leibler, 1951) as training ob-
jective to optimize the column relevance prediction:

Lc′ =
∑C

j=1
pjc′ log

pjc′

Y j
, (6)

where Y j is column-utterance relevance score ob-
tained from the training corpus and pjc′ is the pre-
dicted score from our model.

4 Experiments

Here, we first introduce the experimental setup of
pre-training and the comparable baselines, then we
analyze the main results and also conduct ablation
study to show the contribution of different modules.

4.1 Experimental Setup

Pre-Training Configuration. For pre-training
setup, we train FewTPT with TPC-1M for 6
epochs, with the batch size of 4 on 4 Tesla V100
GPUs. Specifically, we set the learning rate as 4e-
5, the number of attention heads as 12, and the
weight decay and dropout are set as 0.01 and 0.1
respectively.
Comparable Models. For few-shot table under-
standing tasks, we adopt three strong baselines
for comparison: (1) BERT (Devlin et al., 2018),
which is the popular general-purpose PLM trained
with free-form text. We linearize the table and
feed the concatenated query and table into the of-
ficial Chinese version6 for fine-tuning and infer-
ence. (2) TaBERT (Yin et al., 2020), which is
a recently proposed table pre-training model de-
signed to jointly learn representations for NL text
and (semi-)structured tables. Since the released
model is in English version, we pre-train the model
with TPC-1M corpus from scratch with the official
source code7. (3) SDCUP (Hui et al., 2021), which
proposes a schema dependency pre-training objec-
tive to impose the desired inductive bias into the
learned representations for table pre-training. We
fine-tune the official released model8 directly for
comparison.

N-shot 1 2 3 4 5 10
Table QA
BERT 14.0 26.4 33.9 41.6 43.4 58.4
TaBERT 14.6 28.6 34.4 44.0 44.6 59.0
FewTPT 15.8 30.6 35.8 45.4 46.2 60.6
Schema Detection
BERT 14.1 34.3 42.5 49.9 55.1 73.3
TaBERT 16.3 36.7 44.5 51.8 55.4 73.9
FewTPT 16.9 37.5 44.7 52.2 56.1 74.2
Table Selection
BERT 83.2 82.4 85.1 87.5 86.2 85.6
SDCUP 81.6 82.4 84.3 84.9 85.5 86.6
TaBERT 83.8 85.6 86.7 87.9 88.6 89.5
FewTPT 86.2 88.3 88.7 89.0 89.5 91.2

Table 3: Few-shot table understanding performance on
the tasks of Table QA, Schema Detection, and Table
Selection.

6https://github.com/google-research/bert
7https://github.com/facebookresearch/TaBERT
8https://github.com/alibaba/AliceMind/tree/main/SDCUP.

Considering SDCUP is tailored for the NL2SQL task, we only
compare with it on two tasks to avoid modifying its model
architecture too much.
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4.2 Main Results

Experimental results are illustrated in Table 3 and
Figure 5. For Table QA, Schema Detection and
Table Selection, we evaluate all the models by rang-
ing training samples N from {1,2,3,4,5,10}. It’s
observed that, (1) with the increase of N , the per-
formance of all the models improves rapidly, indi-
cating the size of training sample plays a vital role
to all tasks. The results also demonstrate how many
training samples are needed at least for each task to
reach an acceptable performance, which is a criti-
cal issue but ignored by previous works. We argue
that our experiments can be a valuable reference for
table understanding applications in real-world sce-
nario. (2) Compared to all baselines, our proposed
model FewTPT yields substantial gains on all three
tasks, and the benefits are more pronounced when
N is small. It demonstrates the advantages of our
proposed table pre-training method and the contri-
bution of TPC-1M corpus. (3) FewTPT surpasses
TaBERT consistently. Considering both models
were pre-trained with the same corpus, it reveals the
gains are from our model structure and pre-training
objectives, which can fuse the information from
NL text and table seamlessly and finally facilitate
the downstream table understanding tasks.

Figure 5 demonstrates the experimental results
on Table Fact Verification and Table Classification
tasks in a more direct way. We observe the similar
trend that FewTPT outperforms all baselines by a
large margin. Especially, FewTPT progressively
outperforms TaBERT by nearly 12.3% (N = 8)
on Table Fact Verification. We conjecture it’s be-
cause this task heavily relies on the deep interac-
tions between NL text and table content to discrimi-
nate whether the statement is correct or not, thus the
proposed spatial-aware attention and row/column
relevance prediction objectives are genuinely re-
quired and can benefit the table understanding. For
Table Classification, the performances of FewTPT
and TaBERT are comparable. Considering there
is no query in the input, we guess the advantage
of deep interactions between text and table in our
model may be weakened.

4.3 Ablation Study

We conduct further experiments to figure out the
contribution of each component, including the im-
proved Masked Language Modeling (MLM) ob-
jective, Column Relevance Prediction (CRP), Row
Relevance Prediction (RRP), and Cell Gated Fu-

Figure 5: Few-shot model performance on the tasks of
Table Fact Verification (a) and Table Classification (b).

sion (CGF) mentioned in Section 3. Due to space
limitation, we perform ablation study on Table QA
and Schema Detection, under 2-shot setting. Figure
6 presents the experimental results by adding each
component in a cumulative way, demonstrating the
necessity of each component in our method.

5 Related Work

Large-Scale Tabular Corpus. Most of the recent
table-text pre-training tasks utilize web-crawled
tables and context from English Wikipedia (Lehm-
berg et al., 2016). Apart from the extreme noise
contained in the tables, the context is mainly mined
based on position information and may not be se-
mantically related to tables. Some table-to-text
generation task (Lewis et al., 2020) are also pro-
posed to provide well-controlled text-table corpus
with either grammar-supported data generation or
powerful generative models (Nan et al., 2021; Liu
et al., 2018; Parikh et al., 2020). However, the lin-
guistic diversity of the generated data is limited.
Besides, most of the current studies focus on En-
glish. Considering the increasing demand of table
understanding tasks in Chinese, the deficiency of
large-scale table-text corpus blocks the pre-training
exploration on Chinese structured data. Therefore,
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Figure 6: Ablation study of our method on Table QA
and Schema Detection.

in this work, we collect a large-scale table pre-
training corpus with more than 1 million tables and
will release to the community soon.

Table Pre-Training. Inspired by the recent success
of leveraging PLMs on tasks with huge amount
of unstructured natural language (Devlin et al.,
2018; Liu et al., 2019), some researches have tried
to apply pre-training approaches into structured
tabular data. TAPAS (Herzig et al., 2020) and
TaBERT (Yin et al., 2020) introduce novel pre-
training methods to learn the joint representations
of table and text with a large-scale web crawled
tables and their contextual natural language de-
scriptions. The vanilla Masked Language Mod-
eling (MLM) is adopted by either masking the to-
kens from input text or tokens from tables. To
cultivate the alignment between utterances and ta-
ble context, some researchers introduce supervised
pre-training objectives by involving the logic lan-
guage interaction such as SQL semantic predic-
tion (Yu et al., 2021), SQL generation (Shi et al.,
2021) and SQL execution (Liu et al., 2021). How-
ever, to ensure the quality of synthesised training
data, they either design complicated generation
templates manually or rely on pre-trained gener-
ative models. Whereas these generated training
data is lack of variety compared with the natural
utterances in real-world scenario of table-text un-
derstanding. Besides, some other researchers fo-
cus on table encoding with relational and complex
structures (Iida et al., 2021; Deng et al., 2021).
However, most of the unsupervised training ob-
jectives involved in above researches neglect en-

hancing the semantic interactions between natural
languages and tables (Shi et al., 2022; Cheng et al.,
2021; Dong et al., 2022). Differently, we propose
a novel table pre-training method equipped by cell
gated fusion, spatial-aware attention, masked lan-
guage modeling, row/column relevance prediction
to catch the deep semantic interactions between NL
text and table.
Few-Shot Learning. Recently, lots of researches
have focused on few-shot learning in NLP and
propose a variety of methods including meta-
learning (Kaiser et al., 2017), embedding learning
(Bertinetto et al., 2016), memory-based learning
(Kaiser et al., 2017). Whereas the recent flour-
ing of PLMs (Brown et al., 2020) achieve remark-
able few-shot performance solely by leveraging a
natural-language prompt and a few task demonstra-
tions as input context (Gao et al., 2021). However,
few of them have paid attention to the challenge
of few-shot table understanding or table-text inter-
actions tasks where only few text-table pairs are
available. Chang et al. (2020); Chen et al. (2021)
explore the zero-shot text-to-sql task, and both of
them illustrate the importance of leveraging the
abundant table cell information and header infor-
mation during training to improve table-text seman-
tic relevance. To the best of our knowledge, there is
no well-designed benchmark dataset and baseline
for the few-shot table understanding. In this work,
we are dedicated to fill the gap to facilitate future
research.

6 Conclusion

In this paper, we focus on the few-shot table un-
derstanding problem and establish a benchmark
dataset with five downstream tasks including Ta-
ble Fact Verification, Table QA, Table Selection,
Schema Detection, and Table Classification. We
also contribute a large-scale Chinese tabular corpus
which covers 1 million tables across 13 domains
and the semantically-associated NL text. Finally,
we provide a table pre-training method and con-
duct extensive experiments on the few-shot table
understanding benchmark to set up the baselines.
Experimental results demonstrate that catching the
interactions between text and tables can improve
the downstream tasks significantly. We hope the
benchmark, tabular corpus, and the baselines can
facilitate the future research on this field. In the fu-
ture, we will explore more table structure friendly
objectives to improve the pre-training.
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Abstract

Various historical languages, which used to
be lingua franca of science and arts, deserve
the attention of current NLP research. In this
work, we take the first data-driven steps to-
wards this research line for Classical Arabic
(CA) by addressing named entity recognition
(NER) and topic modeling (TM) on the ex-
ample of CA literature. We manually anno-
tate the encyclopedic work of Tafsir Al-Tabari
with span-based NEs, sentence-based topics,
and span-based subtopics, thus creating the
Tafsir Dataset with over 51,000 sentences, the
first large-scale multi-task benchmark for CA.
Next, we analyze our newly generated dataset,
which we make open-source available, with
current language models (lightweight BiL-
STM, transformer-based MaChAmP) along
a novel script compression method, thereby
achieving state-of-the-art performance for our
target task CA-NER. We also show that CA-TM
from the perspective of historical topic mod-
els, which are central to Arabic studies, is very
challenging. With this interdisciplinary work,
we lay the foundations for future research on
automatic analysis of CA literature.

1 Introduction

All languages deserve equal technologies. Named
entity recognition (NER) and topic modeling (TM)
are a crucial part of various downstream tasks in
natural language processing (NLP), such as Entity
Linking, Relation Extraction, and ultimately Ques-
tion Answering. For such tasks, many research in-
stitutes and individual scholars put their emphasis
on popular, high-resource languages like English,
where there is already a large amount of previ-
ous work and resources available (Rajpurkar et al.,
2018; Dzendzik et al., 2021; Cambazoglu et al.,
2021). This definitely accelerates the progress of
the ongoing data-driven NLP. However, many his-
torical languages, such as Ancient Egyptian, An-
cient Greek, and especially Classical Arabic (CA),

which used to be the lingua franca of science and
arts, have been mostly neglected by the NLP com-
munity. These languages possess large volumes
of historical literature (CA: e.g. Liber Algebrae et
Almucabola, Canon Medicinae, Tafsir Al-Tabari),
which were and still are to this date relevant for
many communities and societies, lay their foun-
dations and even shape their further development.
In order to perform historical analysis which are
relevant for our modern age, we need to let these
forgotten low-resource languages benefit from the
wave of machine learning (ML) progress, thus mak-
ing historical texts accessible to modern studies and
approaching ethically an egalitarian state of NLP
research.

To this end, within the project Linked Open
Tafsir (Ahmed et al., 2022), firstly, we create the
Tafsir Dataset by annotating the CA encyclope-
dic books of Tafsir Al-Tabari on exegetical studies
of law, ethics and philosophy. This is done with
respect to span-based NEs, sentence-based topics
and span-based subtopics, thereby producing over
51,000 sentences and presenting the first multi-task
benchmark for CA with three independent tasks.

Figure 1: Example for Arabic script-dependent prepro-
cessing layers for the sentence "Ahmed said to Saria in
Mecca: eat and drink with happiness" along NER &
TM output.
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Secondly, we develop a novel script compres-
sion method for Arabic text in order to examine
its influence on the performance of neural mod-
els (see Figure 1). For this, we take the modern
vocalized Arabic script and gradually transform it
to its antique form of skeleton script Rasm from
the 7th century by removing first, the vocalization
marks Tashkil (consisting of dashes and circles),
and second, the diacritic marks I’jam (consisting of
dots), thus lowering the vocabulary size drastically
by reducing the number of distinct letters from
280 (vocalized) over 28 (standard) to 16 (skeleton).
From a historical critical perspective, the usage of
this skeleton script is quite interesting as this was
the first one to be used for documenting the text
of the Quran. Thus, on a side note, by analyzing
this ancient script, we shed light on the historical
critical question of its readability.

Thirdly, we analyze our newly generated dataset,
apply the leightweight BiLSTM (Lample et al.,
2016; Ahmed and Mehler, 2018) and contrast its
usage with MaChAmp (van der Goot et al., 2021), a
toolkit for multi-task learning in NLP. This toolkit
ideally fits to our multi-task benchmark, allowing
us to conduct over 119 many-fold experimental
setups with various Arabic pre-trained language
models (LM), such as AraBERT, AraElectra, Rem-
BERT. With these optimization steps, we produce
the first major results for CA-TM and on top estab-
lish a state-of-the-art performance for CA-NER by
achieving a value of up to 95.58% F1-score.

Our work facilitates an automatic extraction of
theological information so far buried in the bulk of
paper manuscripts and volumes. By creating the
necessary training data for tackling the task of NER
and TM with various ML algorithms, we provide an
open-source gold standard for the NLP community
and hereby lay the foundations for future work
on digitization of historical Arabic juridical and
theological studies.

The remainder of the paper is organized as fol-
lows: Section 2 reviews related work, Section 3
presents the dataset, its historical source and pro-
vides details on the annotation tasks and their guide-
lines, Section 4 presents a sketch of the underlying
methods, Section 5 reports and discusses our re-
sults, and, finally, Section 6 draw the conclusion.

2 Related Work

Not much work has been done in the field of NLP
for CA as this language suffers from resource

poverty in the ML community. For Modern Stan-
dard Arabic (MSA), there are only a handful of
studies and resources open-source available. Note-
worthy work specifically for MSA-NER has been
done so far mainly by Benajiba et al. (2007) on
ANERCorp dataset and by Mohit et al. (2012) on
AQMAR dataset; both datasets along their NER
models will be used as baselines here (see Table 1).
Although these datasets are relatively small com-
pared to those which are used for other languages
in the community, to this date we do not have any
other alternatives. For MSA-TM, again only few
resources are freely available (El Kah and Zeroual,
2021), however, these are all built on modern web
texts mainly from the genre of newspapers and so-
cial media. For the case of CA-TM, no prior work
is known to the authors. Hence with our work,
we lay the foundations for future research in this
interdisciplinary field of historical NLP.

3 Tafsir Dataset: Annotation of Classical
Arabic Literature

In this section, we describe the data source, the
textual conversions performed to prepare the an-
notation task, the annotation guidelines and the
annotation process itself.

3.1 Data Source: Raw Text to TEI Format
Al-Tabari Al-Tabari, in full Abu Ja’far Muham-
mad ibn Jarir al-Tabari, (born c. 839, Amol,
Tabiristan, Iran—died 923, Baghdad, Iraq), is a
religious scholar, author of enormous compendi-
ums of early Islamic history and Quranic exegesis,
who made a distinct contribution to the consolida-
tion of Sunni thought during the 9th century. He
condensed the vast wealth of exegetical and his-
torical erudition of the preceding generations of
Muslim scholars and laid the foundations for both
Quranic and historical sciences. His major works
were the Exegesis of Al-Tabari (Tafsir Al-Tabari)
and the History of Prophets and Kings. In this
study, we are focusing on his former work.

Edition of the book and TEI format Tafsir Al-
Tabari has been published in various editions, the
Turki Edition from 2001 is the most extensive and
complete one, hence, this was chosen for our study.
It is published in 26 volumes consisting of a total
of 18,594 pages. The original text of this edition,
which is vocalized, is freely available from differ-
ent online sources such as the King Saud University,
the Shamela Software, and from the well-known
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Corpus Sent. PER LOC ORG TME OTH

ANERCorp-2007 5,887 3,598 4,429 2,231 n/a 1,115
AQMAR-2012 2,646 1,468 1,443 450 n/a 2,474

Tafsir-2022 51,704 176,105 5,583 22,026 4,160 12,453

Table 1: Major open-source NER Datasets for Arabic along our NER annotations in the Tafsir Dataset.

resource platform Gawami’ al-Kalim1, whose text
is the most refined and accurate one according to a
review of the linguists in our annotation team.

The raw text was transformed to the TEI format
(with an adapted TEI model), which was selected
due to its extensive usage in Digital Humanities
(Maraoui et al., 2017). Furthermore, this format
can be useful for additional data analytical inquiries
(e.g. with XQuery).

Sentence splitting heuristic Sentence split-
ting has been addressed by various approaches
(Schweter and Ahmed, 2019). However, if there
is no punctuation available, it becomes challeng-
ing for many algorithms to find a stable solution.
In the case of CA literature, we rarely find regu-
lar punctuation. In fact in this ancient literature,
there was no concept of sentences in the modern
sense. Therefore, we apply a heuristic, which first
uses all possible punctuation (which are introduced
by modern editing authors), then looks for some
specific sense splitting words, e.g. and (wa), so
(fa), then (thumma). With this, we achieve an aver-
age sentence length of 30 words, which proves to
be useful according to our initial downstream task
evaluations.

3.2 Annotation Tasks

We developed annotation guidelines for generating
the Tafsir Dataset. For NER, we extended the stan-
dard task to the domain of theology. Our guidelines
built on those developed for the NER dataset on
German historical literature (Ahmed et al., 2019).
We took the original German guideline text and ad-
justed it by incorporating domain-specific needs for
CA. For TM, we categorized the number of topics
according to the classical understanding of tafsir
studies and its 15 fields (Al-Suyuti, 1505), and re-
fined them further during our discussion sessions
with the annotation team. The appendix shows
the material which was provided to the annotation
team, including the introductory example of an-

1https://gk.islamweb.net

notations. Overall, the raw text was annotated
chapter-wise by considering each verse as a sin-
gle annotation task. By this scheme, we ensured
that annotators had the contextual information they
needed to make their interpretations.

3.2.1 Named Entities
NEs are entities that are referred to in natural lan-
guage texts by proper nouns (PN) as unique indi-
viduals (e.g. Mecca, Asia, Tabari, Shia). PN are
contrasted by common names (CN) which refer
to classes of entities (e.g. city, continent, person,
organization).

In our task of CA-NER, we focus on PN. How-
ever, it is not easy to differentiate between PN and
CN. In the following, we provide details for each
class of NE which we used to annotate our raw
text (for annotation results see Table 1, for further
examples of NEs see Appendix A).

Person (PER) Naming can be a complex process
in classical Arab society (comparable to ancient He-
braic naming) (Almuhanna and Prunet, 2019). Full
names are made of chains of single names, which
can include the name of the city where the person
was living. Once the full name is mentioned, short
forms are usually used throughout the remainder
of a text (e.g. Al-Tabari). In CA-NER, we consider
all naming conventions found in the raw texts.

Location (LOC) Location names are mostly
straightforward (either classical Arabic names, or
names going back to ancient age of Babylonia).
Sometimes, there is a ambiguity in their semantics,
e.g. the word Medina (city) is not a PN per se,
however, when it is used a short form for Medina
Al Munawwarah ("The Enlightened City"), then it
becomes a PN. Obviously, the word’s meaning is
highly context dependent.

Organization (ORG) We extended the modern
definition of this class to the classical context of re-
ligious organizations (Jews, Christians, Muslims),
their subgroups (Sunni, Shia, Ismailities), theolog-
ical school of thoughts (Hanafi, Maliki, Shafi’i,
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Topic/Subtopic Sent. Span

adyan (non-Islamic relig.) 13,564 1,063
asbab (occas. of revelation) 3,086 997
fiqh (jurisprudence) 9,782 7,707
israiliyat (Judeo-Christian) 3,260 0
kalam (Islamic theology) 17,208 3,066
lugha (linguistics) 14,444 9,543
mushkilat (problem) 61 0
mutashabih (allegorical) 153 0
naskh (abrogation) 544 223
qiraat (recitation style) 1,525 2,519
sirah (prophetic biography) 1,193 215
sufism (mysticism) 7,749 881
takhsis (specification) 146 0
tikrar (repetition) 174 0
ulum (science) 2,520 823
total annotations 75,409 27,037

Table 2: Statistics for sentence-based topic and span-
based subtopic annotation data.

Hanbali), tribes and clans (Hashim, Quraysh), and
ethnic groups (Arabs, Greeks, Persians).

Time (TME) In the early 7th century, the moon
calendar was still in its primary form, hence there
was not a proper usage of numerical format like
in our modern days. Therefore, dates were mostly
written out in words, either only by day name, or
sometimes including the month name, and rarely,
the year. In CA-NER, we consider all possible
variants and annotate them accordingly. Also well-
known temporal entities, such as the Day of Judg-
ment (Yawm Al-Din), are annotated with the tag
TME.

Other (OTH) All NEs which did not fit into the
former class were annotated with the tag OTH, such
as name of languages (Arabic, Greek, Latin), an-
gels (Gabriel, Michael, Raphael), and (polytheistic)
deities (Al Uzza, Al Lat, Manat, Baal).

3.2.2 Topic Modeling
TM is the task of mapping (segments of) texts to a
fixed set of topics according to a multiclass setting
(Blei et al., 2003). This task is important for higher-
level NLP tasks such as Semantic Search, Text
Summarization and Question Answering. There is
no standard number of topics, as this depends on
the application domain, the desired thematic reso-
lution and the specifics of the underlying texts. In
our case of historical-exegetical tafsir studies, we

determined a set of 15 sentence-based topics and
span-based subtopics. Table 2 shows them along
their amount of annotation data. The totals include
multiple counts due to multiple annotations of the
same topic. If there are lines with 0 spans and sev-
eral sentences (e.g. for israiliyat), that means that
only sentences have been annotated according to
the 15 topics. However, no specific spans (inside
the sentences) could be identified by the annota-
tors and marked accordingly. Hence, both tasks,
namely sentence-based TM and span-based TM,
are displayed in Table 2, indicating that they are
independent from each other.

3.3 Annotation Process

Annotation Team The annotation team con-
sisted of 4 domain experts, who were historical
linguists and orientalists by background. For NER,
we let the annotators train on a smaller subset of the
text (i.e., chapter 50, verse 1-22) until they reached
a high inter annotators agreement (IAA) value of
97% (Cohen’s kappa; (Cohen, 1960)). Thus we let
them continue their annotations for the remaining
volumes of text individually. For TM, we did not
compute any IAA value initially, as there were only
2 domain experts available for our topics. However,
we ensured a high quality of topic annotation by
cross-validating and correcting them directly by the
other annotator.

Tool selection & issues Selecting the right tool
for our annotation task was challenging. First,
CA caused many problems: It is not only a low
resource-language per se; even its right-to-left
script is low-resourced to some extent, as there
are not many tools that can handle it. Second, our
intention was to use the TEI standard as the target
data format due to its extensive usage in Digital
Humanities. Third, we required a user friendly
environment as our annotators did not have any
technical background. Reflecting these points, we
preferred the annotation tool Oxygen XML Editor2

over other candidates (such as WebAnno or BRAT).
Figure 2 gives a glimpse into the annotation envi-
ronment.

Data format For our final training data, we use
the CoNLL format (with the BIO/IOB2 tagging
scheme) and extend it for the annotation of topics
and subtopics. In this adjusted 3-column format,
each sentence is written vertically along its Arabic

2https://oxygenxml.com/
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Figure 2: Screenshot of annotation working environ-
ment in Oxygen XML Editor.

token, NE-tag and subtopic-tag. Besides, for topics,
a binary matrix structure is used at the beginning
of each sentence to model all the occurrences of
each 15 topics (e.g. # kalam: 1, see sample
excerpt in Appendix C).

After randomizing the order of the sentences, we
divided the Tafsir Dataset into train, dev, test files
according to the conventional ratio of 80:10:10
percentages. These resulting data files are used
for our empirical evaluations, whose setups are
described in the next section.

4 Methods

4.1 Script Compression
Arabic is a language with rich morphological va-
riety of words. Besides, it has a distinct type of
writing system (Abjad), which contains many lay-
ers of information developed in the course of the
first centuries after the advent of Classical Ara-
bic written tradition in the 7th century CE. The
Arabic writing system is made of a basic skele-
ton script (Rasm), which 1-2 centuries later was
extended to the standard Arabic script with the di-
acritic points (I’jam) to reduce the ambiguity of
over 25 letters. Further 1-2 centuries later, the vo-
calization marks consisting of dashes and circles
(Tashkil) were added which allowed a proper vo-
calized reading of theological literature.

Thus to deal with these variants, we propose the
analytical setup shown in Figure 1. We use three
textual variants, namely skeleton, standard, and vo-
calized, which denote the above mentioned stages
the Arabic script went through during its historical
development. We utilize the Python libraries camel
tools v1.3.1 (Obeid et al., 2020) and rasmipy v0.23,
both applying rule-based preprocessing methods
for generating our respective layers.

We hypothesize that F1(vocalized) <
F1(standard) ≤ F1(skeleton): The vocalization
introduces noise, thus creating many different word
embeddings of one word, which in turn lowers the
overall vocabulary coverage of the LM for the
training data. Hence, the standard/skeleton text

3https://pypi.org/project/rasmipy/

will suite best to transformer-based neural models.
Besides, current contextualized word embeddings
are able to deal better with incoming textual data
which has been the least preprocessed and over-
loaded with details (i.e. low feature engineering),
which is the case for the standard/skeleton scripts.
Moreover, for historical experts of the skeleton
script, the ambiguity of each word decreases
once longer contexts are provided, as they narrow
down the possibilities of proper reading. Thus,
we postulate that depending on the context, the
model will be able to disambiguate the word itself
and deliver an actual proper reading of the Arabic
script. In Section 5, we will see that indeed our
assumption has been right, and we find results
which support this postulation.

4.2 Word Embeddings

We train word embeddings from scratch on large
text corpora. For MSA, we take the LeipzigArabic-
2020 corpus (Goldhahn et al., 2012) with 13.55
Mio. sentences, which is already preprocessed
such that it contains per line a sentence. For CA,
we crawl the platform of OpenITI (Miller et al.,
2018), containing the largest collection of online-
available historical books for CA. Next, we apply
our sentence splitting heuristic and tokenization
from camel tools to produce a final text data file
which again contains per line a sentence. With this,
we get 134.17 Mio. sentences (with 17 GB of raw
text data), the largest amount yet to be used for CA.

We calculate our optimized word embeddings
with the extended version of the Word2vec algo-
rithm (Mikolov et al., 2013), namely Wang2vec
(Ling et al., 2015), with dimension 100, windows
size 8, and min. word count 4. Although since
2019/2020 static word embeddings (which are
context-independent after their training) are being
replaced by their transformer-based generalization
of pre-trained LMs, such as BERT, XLNet, GPT-3
(which consider the context after their training),
we still inspect the former method due to it allow-
ing us to calculate a LM according to our chosen
layer from Figure 1, and thus consider a full an-
alytical setup. Furthermore, this allows us to ex-
amine how improvements can be achieved while
using lightweight neural models, compared to data
and computation intensive transformer-based LMs,
which are on top expensive to train from scratch,
and have a fixed vocabulary of subword units.
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Data Embeddings skeleton cov standard cov vocalized cov

ANERCorp n-gram n/a n/a 55.23 Benajiba (2007) n/a n/a
AQMAR SVM n/a n/a 69.33 Mohit (2012) n/a n/a
ANER LeipzigAr 79.13 0.97 79.14 0.96 68.91 0.16

AQMAR LeipzigAr 68.34 0.97 70.93 0.94 59.51 0.27
Tafsir OpenITI 87.13 0.99 87.41 0.99 82.97 0.52

Table 3: BiLSTM results for NER on Tafsir Dataset for each layer (full setup). Coverage denotes the percentage
of words from the training data that occur in the pre-trained embeddings.

4.3 Neural Models

This section provides details on the neural mod-
els which were used to examine the Tafsir Dataset
along the script compression method.

4.3.1 BiLSTM
We use the neural model of BiLSTM-CRF (Lample
et al., 2016; Ahmed and Mehler, 2018) with default
hyperparameters for the task of CA-NER. In short,
this model consists of stacked LSTM layers which
receive the embedded tokens of an incoming sen-
tence and compute a hidden representation, which
in turn is used by the last CRF layer to predict the
output NE-tags (i.e. PERson, LOCation, ORGani-
zation, OTHers, O). For further details, we refer to
the original papers.

4.3.2 MaChAmp
For our experiments with transformer-based LMs
we use MaChAmp (van der Goot et al., 2021), a
toolkit focused on multitask learning for NLP. We
used v0.3 beta with default hyperparameters and
compare all Arabic LMs we could find on the Hug-
ging Face (Wolf et al., 2020) hub. In MaChAmp,
each task has its own decoder, while the encoder
(i.e. LM) is shared. We empirically saw that adding
a CRF layer was beneficial (see Appendix E, Ta-
ble 10), so we enabled it for NER as well as the
subtopic task layer. Because the sentences can
be annotated with multiple topics, we model each
topic as a separate binary task. For the multi-task
setups, we use an equal loss weight for all tasks,
and process all tasks simultaneously.

5 Results

In this section, we present the results which are
obtained while utilizing the methods and their se-
tups described in the previous section. The evalua-
tion of the NER predictions are performed by run-
ning the official evaluations script from the CoNLL

2003 shared task (Tjong Kim Sang and De Meul-
der, 2003) on the test set of the Tafsir Dataset.

5.1 BiLSTM Evaluation for CA-NER

In the single training setup, the results for our Tafsir
Dataset is given which is preprocessed according
to the layers outlined in Section 4.1. Most impor-
tantly, in contrast to transformer-based networks,
this lightweight model allows us to not only pro-
cess the training data according to our script com-
pression method, but also the underlying LM of
Word2vec (i.e. full setup). Table 3 shows the re-
sults for this setup.

First, we can see that the vocalized layer gives
the lowest performance which confirms our origi-
nal assumption. This performance is clearly linked
to the low vocabulary coverage of this layer in re-
spect to the pre-trained word embeddings on our
selected corpora. Next, we see that the performance
for standard and skeleton is relatively high. We can
see that the skeleton layer continuously approaches
the performance of the standard one. This behavior
is stable across all three datasets and two languages
(namely CA and MSA). This shows, that the skele-
ton layer is actually robust and almost as good as
the standard one.

These results already demonstrate that our ap-
proach of script compression is noteworthy. Re-
ducing the size of specific "redundant" letters does
not lead to any significant reduction of the down-
stream performance. On the LM level, however,
we save a relatively large amount of memory, e.g.
for the Word2vec model calculated on the OpenITI
corpus, we go down from 1.5 GB (standard) to 1.2
GB (skeleton) model size. Thus our first results
on script compression appear to reveal a promising
research direction.
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MLM (standard) skeleton cov standard cov vocalized cov

aubmindlab/bert-base-arabertv02 85.37 0.87 95.58 1.00 80.26 0.85
aubmindlab/bert-large-arabertv2 85.13 0.86 95.24 1.00 80.14 0.84
CAMeL-Lab/bert-base-arabic-camelbert-ca 89.12 0.91 95.43 1.00 80.31 0.85
aubmindlab/araelectra-base-generator 84.94 0.87 94.89 1.00 80.06 0.85
bert-base-multilingual-cased+ 88.85 0.90 95.15 1.00 94.36 1.00
xlm-roberta-large+ 95.00 1.00 95.29 1.00 94.88 1.00
google/rembert+ 95.26 1.00 95.32 1.00 94.73 1.00

Table 4: MaChAmp results for NER on Tafsir Dataset with selected MLMs (all pre-trained on the standard layer),
where for each layer (skeleton, standard, vocalized) its respective coverage (cov) is given.

5.2 MaCHAmp Evaluation

CA-NER In this section, we examine the Tafsir
Dataset with various pre-trained Masked Language
Models (MLM) from Hugging Face in over 119
multi-learning setups in MaChAmP. We start by uti-
lizing all available Arabic MLMs (only pre-trained
on the standard layer) and examining them along
adding an optional CRF layer (see Appendix E, Ta-
ble 10). Next, we cross test the Tafsir Dataset on
the final selected MLMs, giving our major results
in Table 4.

Although in respect to the script-dependent anal-
ysis, this is not the justified full setup, we can still
get an idea what the impact of each script layer
can be while fine-tuning the model. We see that
the standard layer performs the best, confirming
one part of our hypothesis that F1(vocalized) <
F1(standard) holds. Moreover, it is clearly
demonstrated how the different layers influence
the vocabulary coverage, which in turn influences
the downstream performance. We can observe that
in cases where cov(vocalized) < cov(skeleton)
holds, F1(vocalized) < F1(skeleton) holds as
well. In the opposite case, vocalized is outper-
forming skeleton. Besides, we have noteworthy
cases of MLMs marked with +: For all these large
multi-lingual models, their word piece algorithm is
able to handle the vocalization by splitting it from
each character, thus automatically producing the
standard layer for the vocalized input. Last but
not least, we can see that transformer-based mod-
els with an additional CRF layer outperform the
lightweight BiLSTM thoroughly, even on the mis-
matched layers of vocalized and skeleton. With
this, we establish a state-of-the-art performance for
CA-NER with 95.58% F-score. Thus, this com-
prehensive analysis allows researchers to use our
dataset with the described model configurations to

train a NER tagger that can confidently annotate
related CA literature.

CA-TM & Multi-Task Learning In this setup,
we fine-tuned the MLMs on the full Tafsir Dataset,
first for each task separately, then joined within
the setup of multi-task learning. Although the per-
formance for CA-NER has been high, our results
show that it is not beneficial for the task of CA-
TM (see Appendix E, Table 11). However, multi-
task learning is not always beneficial, as the cost
of parameter sharing can become higher than the
benefits of knowledge sharing. Besides, we hypoth-
esize that TM is a very hard task on our unbalanced
data which has many topics with small amount of
training samples (see Table 2). A second reason
that makes CA-TM a very challenging task is the
fact that the topics were chosen mainly on the basis
of normative considerations of a historical author:
They should accompany the interpretation of reli-
gious texts in a normative way, so to speak, and are
therefore of importance for the historical research
of CA. TM has here the special task to reflect that
the topics have been normatively pre-selected in
a historical context that may not be directly avail-
able to contemporary annotators (for the purpose
of generating appropriate training data). Neverthe-
less, these historical topic labels cannot simply be
ignored, since they de facto shape research on CA.

5.2.1 Learning Curve over CA-NER
Annotation Data

In order to evaluate the importance of our large-
scale annotation work, we analyze the influence of
the annotation data size on the final performance
by plotting a learning curve over the annotation
data. For each step of the size 5k sentences, we
calculate the F1-score for CA-NER (on the test set)
with the best observed model bert-base-arabertv02.
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Figure 3 shows the learning curve displaying the
downstream performance according to the progress
of our annotation work.

Interestingly, we can see that the annotators’
work has been worth it. The curve is quite steep,
i.e. with every additional generation of annotation
data we increased the performance steadily for our
target task of CA-NER until 30k sentences. After
that, the gradient starts to decrease at which the
curve begins to slowly approach the max perfor-
mance value of 95.58% F-score. Thus, we conclude
that large amount of gold data is indeed beneficial
for CA-NER, which contrasts previous findings
for other low-resource languages such as Danish
(Plank et al., 2020).

5.3 Error Analysis for CA-NER

Our manual error analysis on the test set has re-
vealed that the following errors exist: A majority
of (1) prediction errors, where the model does not
tag those NEs which are annotated by the annota-
tors, and a minority of (2) annotation errors, where
the model tags those NEs which are falsely not an-
notated by the annotators. However, most of the
annotation errors were found in the false positives.

The Arabic language contains various words
with polysemy (i.e. one word has many mean-
ings). Especially if a word is not vocalized, and the
sentence context is small, it can become difficult
for the common reader to understand the under-
lying meaning. Then, only a domain expert can
provide the precise meaning. For prediction errors,
our manual error analysis has shown that the model
is mistaken exactly in such cases, where there is
a NE in very short sentences (e.g. 2-word nomi-
nal sentences). We hypothesize this is because the
model has only access to one sentence, whereas the
domain expert annotators have more advantages
by knowing the full context via their chapter-wise
view.

6 Conclusion

In this work, we presented the Tafsir Dataset, the
first large-scale multi-task benchmark on NER and
TM in Classical Arabic literature. We demonstrated
how useful resources can be for languages which
have been historically important but now forgot-
ten by the ongoing NLP research. Besides, we
also performed a first evaluation of this newly gen-
erated dataset. While doing so, we empirically
saw that adding a CRF layer was beneficial to

Figure 3: Learning curve over annotation data for NER
(standard layer) in steps of 5k sentences.

the transformer-based models, with which we ulti-
mately established a state-of-the-art performance
for CA-NER. Although TM was not the primary
focus of this paper, we generated first results for
CA-TM, thereby leaving room for future improve-
ments. This refers to a scenario of TM in which
topic labels were originally determined in a his-
torical, normative, exegetical setting, whereas they
need to be learned using modern NLP tools, based
on their relevance to CA research. Such scenarios
are likely to be increasingly encountered as more
historical languages come into NLP focus. We
therefore believe that our benchmark induces a new
challenge for the NLP community that can lead to
progress for our target low-resource language.

The Tafsir Dataset and its accompanying mate-
rial are made open-source available for the research
community. Furthermore, a website4 is published
which offers a comprehensive research tool in En-
glish and Arabic for accessing our dataset in a more
user-friendly environment and performing various
search queries on it. The web-based tool is freely
available and provides over 400 filter options along
the categories of our dataset. Additionally, it pro-
vides the option of graphical visualization (bubble
or pie chart) of the dataset and of the query results
performed on it. This digital tool makes it possible
for scholars from historical and theological fields to
access the dataset without any prior technical skill
sets, thus allowing them to find systematically the
answers to their long-lasting research questions.

On a side note, by analyzing the historical skele-
ton script, we shed light on a centuries-old histori-
cal critical question regarding the readability of the
Rasm text: Whether the first Quranic manuscripts

4https://linkedopentafsir.de/
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(i.e. Uthmanic codex) can provide a precise read-
ing of the canonized oral text, or whether there
is a large amount of ambiguity in it. Our script-
dependent analysis shows that from an informa-
tion retrieval perspective, the usage of the skeleton
script is robust enough to deliver a similar perfor-
mance compared to the usage of the standard script.
We can thus conclude that if the ML model is able
to deal with the skeleton script, then humans will
also not face major difficulties after gaining suffi-
cient training on the same ancient script.

Future work Our work gives indications that
script compression seems to be a promising direc-
tion to reduce the amount of data and tackle the
question of which resource-size actually matters
(Ahmed and Mehler, 2018). In this work, for the
case of Arabic we came down from 28 to 16 letters
while keeping the performance stable. This shows
that we do not need (1) vowels, and (2) different
letters for each phoneme. In fact, just some mini-
mum amount of consonantal distinction is needed.
What is this amount, can we determine it exactly
for each target language? Phonetic algorithms such
as Metaphone (Philips, 1990) pose to be a first
language-independent approach, be that as it may,
only future work can give us the answers.
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A Examples for annotating named
entities in Tafsir Al-Tabari books

Figure 4: Examples for annotating named entities (i.e.
PER, LOC, ORG, TME, OTH) in 7 verses from the raw
text of Tafsir Al-Tabari books.

B Annotation Guidelines (German
version)

Guidelines für die Named Entity Recognition. Sie
bauen auf den arabisierten Guidelines von Ahmed
et al. (2019) auf.

B.1 Einführung: Named Entity Recognition

Unter der Named Entity Recognition (NER) ver-
steht man die Aufgabe, Eigennamen (named en-
tities) in Texten zu erkennen. Technisch gese-
hen sind hierzu zwei Schritte notwendig. Zuerst
müssen in einem laufenden Text die Token gefun-
den werden, die zu einem Eigennamen gehören
(Named Entity Detection: NED), danach können
diese Eigennamen semantischen Kategorien zu-
geordnet werden (Named Entity Classification).
Prototypisch ist dabei der Unterschied zwischen
Eigennamen und Appellativa der, dass letztere eine
Gattung oder eine Klasse beschreiben, während er-
stere einzelne Individuen oder Sammlungen von

Individuen unabhängig von gemeinsamen Eigen-
schaften bezeichnen (Burkhardt, 2004). Die vor-
liegenden Guidelines sollen es Annotatoren er-
möglichen, Eigennamen in Texte aus Standard und
Nichtstandard-Varietäten konsistent zu annotieren.
In diesen Guidelines werden die beiden Aufgaben
der NED und NEC nicht unterschieden, da die
Konzentration auf Beispiele in diesem Dokument,
die Trennung künstlich erzeugen müsste und nicht
zu erwarten ist, dass die Resultate sich dadurch
verbessern würden. In Anlehnung an die oben
genannten Guidelines für Zeitungssprache werden
in NoSta-D-Tafsir fünf semantische Hauptklassen
für klassiche arabische Texte unterschieden (Perso-
nen, Organisationen, Orte, Zeiten und Andere).

B.2 Wie finde ich eine NE?

Schritt 1: Nur volle Nominalphrasen können NEs
sein. Pronomen und alle anderen Phrasen können
ignoriert werden.
Schritt 2: Namen sind im Prinzip Bezeichnungen
für einzigartige Einheiten, die nicht über gemein-
same Eigenschaften beschrieben werden.
Beispiel:
[Der Struppi] folgt [seinem Herrchen].
Hier gibt es zwei Nominalphrasen als Kandidaten
für einen Eigennamen (NE). “Der Struppi”
bezeichnet eine einzige Einheit. Es kann auch
mehrere Struppis geben, aber diese haben an sich
keine gemeinsamen Eigenschaften, bis auf den
gemeinsamen Namen, daher handelt es sich um
einen Eigennamen. "seinem Herrchen" bezeichnet
zwar (typischerweise) auch nur eine einzige
Person allerdings können wir diese nur über die
Eigenschaft identifizieren, dass sie ein Herrchen
ist und dass dies für Struppi zutrifft. Struppi
könnte auch mehrere Herrchen haben, die alle die
Eigenschaften teilen, die ein Struppi-Herrchen
beinhaltet (z.B. darf Struppi streicheln, muss ihn
ausführen und füttern etc.)
Schritt 3: Determinierer sind keine Teile des
Namens.
Beispiel: Der [Struppi]NE folgt seinem Herrchen.
Schritt 4: Eigennamen können mehr als ein Token
beinhalten. Beispiel:
Viele Personennamen (PER für person):
[Abu Jafar Muhammad Ibn Jarir Al Tabari]PER
Buchtitle (OTH für other):
[Jami Al Bayan Al Tawil Ay Al Quran]OTH
Schritt 5: Eigennamen können auch in einander
verschachtelt sein. Beispiel:
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Personennamen in Buchtiteln:
[Sunan [Abi Dawud]PER]OTH
Orte (LOC für location) in Vereinsnamen (ORG
für organisation):
[Hebarium Senckenbergianum [Frank-
furt]LOC]ORG
Schritt 6: Titel, Anreden und Besitzer gehören
NICHT zu einem komplexen Eigennamen. Be-
sitzer können natürlich selber Eigennamen sein.
Beispiel:
Referenz auf Musiktitel:
[Vivaldis]PER [Vier Jahreszeiten]OTH
Referenz auf Personen:
Landesvorsitzende Frau Vorstandsvorsitzende Dr.
[Ute Wedemeier]PER
Schritt 7: Wenn das Gesamttoken einen Eigenna-
men darstellt, dann wird dieser annotiert. Beispiel:
Stiftungen: [[Böll]PER-Stiftung]ORG
Schritt 8: Kann in einem Kontext nicht
entschieden werden, ob eine NP sich als Eigenna-
men oder Appellativ verhält, wird es nicht als NE
markiert. Beispiel:
Ortsnamen vs. -beschreibungen:
...und zogen mit ihren grossen Transparenten
gestern vom [Steintor] über den [Ostertorstein-
weg]LOC zum [Marktplatz].
Schritt 9: Wenn ein Name als Bezeichnung für
bestimmte Gegenstände in die Sprache übergegan-
gen ist und in seiner Nutzung nicht als NE fungiert,
so wird dieser nicht annotiert. Beispiel:
[Teddybär] (NICHT PER)
[Colt] (NICHT PER)
Schritt 10: Bei Aufzählungen mit Hilfe von
Bindestrichen oder Vertragen eines Teils der NE
auf spätere Wörter, wird die NE so annotiert, als
sei sie voll ausgeschrieben.
Beispiel:
[Frühe]OTH und [Späte Bronzezeit]OTH
[Süd-]LOC und [Nordafrika]LOC

B.3 Zu welcher semantischen Klasse gehört
ein Eigenname?

Wenn der Eigenname in eine der Klassen in der
Liste Faustregel zur Unterscheidung einer Klassen-
bezeichnung und eines Namens gehört, dann an-
notiere die zugehörige Klasse. Sollte die gefundene
NE Rechtschreibfehler enthalten, wird sie dennoch
annotiert. In Zweifelsfällen hilft auch die Tabelle
NoSta-D-Tafsir-TagSet und alle Untertabellen, ins-
besondere die Beispiele mit dem weiter.
Jahreszahlen in ORGanisationen werden markiert.

Beispiel:
[COLING]ORG [2022]TIME
[Fussball-WM]ORG [2014]TIME
Wenn der Eigennamen in KEINE der vorhande-
nen Klassen passt, markiere diesen mit ***UN-
CLEAR***, notiere dir bitte das Beispiel und
schicke uns eine E-Mail an: X.Y@email.com.
So können wir die Guidelines sukzessiv verbessern.

B.4 Faustregel zur Unterscheidung einer
Klassenbezeichnung und eines Namens:

• Elemente der fraglichen Einheit verbinden die
gleichen Eigenschaften → Klasse → keine
NE

• Die Elemente der fraglichen Einheit verbindet
nur der Name oder Element ist Einheit beze-
ichnet ein spezifisches Individuum→ Name
→ NE

• "Paleocene" bezeichnet spezifische Epoche
→ NE (TME)

NoSta-D-Tafsir-Tagset

Table 5: Kategorie ’PER-Person’

Subkategorie Beispiele

Person Ibn Ahmed, Saria, Al
Tabari

Künstlernamen Abu Nuwas
Charaktere Ali Baba
Superhelden Aladin, Sindbad
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Table 6: Kategorie ’LOC-Ort’

Subkategorie Beispiele

Bezirke Makkah Aziziyah,
Schöneberg

Sehenswürdigkeiten,
Moscheen

Mada’in Saleh, Al Masjid
Al Haram

Planeten Erde, Mars
Landschafts-
bezeichnungen

Al Nefud, Königsheide

Straßen, Plätze Al Tariq Al Maliki Al Farsi
Einkaufszentren Suq Ukadh, Nordwestzen-

trum
Berge, Seen, Flüsse Jabal Arafat, Al Bahr Al

Ahmar, Wadi Hanifa
Kontinente Asien, Europa
Länder, Staaten Saudi-Arabien, Hessen,

Iran
Städte Mekka, Babylon
Regionen Al Hijaz
Qiraat-Orte Al Amsar

Table 7: Kategorie ’ORG-Organisation’

Subkategorie Beispiele

Organisationen Ahl Al Hadith, Sunni, Shia,
Ismailiten, GEFIS, EU,
Landgericht Frankfurt

Religionsgruppen Juden, Christen, Muslime
Unternehmen Karimis, Microsoft
Sammelbezeichung Umran
Madhahib Kufiyun
Qabilah Quraish
Volksgruppen Araber, Perser, Römer
Universitäten Al-Azhar University
Bibliotheken Bayt Al Hikmah

Table 8: Kategorie ’TIME’

Subkategorie Beispiele

Tag Freitag
Monat Rabi’ Al Awwal
Jahr 570
dd.mm.yyyy 12.03.0570
Jahrhundert 5. Jahrhundert
Epochen Jahiliyyah, Paleocene

Table 9: Kategorie ’OTH-Andere’

Subkategorie Beispiele

Buch-, Filmtitel
etc.

Sahih Al Bukhari, Faust

Währungen Dinar, Dirham, Euro
Sprachen Arabisch, Deutsch, Latein
Buchtitel mittels
Autor

Helbig et al., ([[Hel-
big]PER et al.]OTH)

Gottheiten Al Uzza, Al Lat, Manat,
Ba’al, Nasr, Suwa’, Wadd,
Yaghuth

Engel Jibril, Mikail, Israfil
Dschinn Iblis
Mythol. Tiere Hudhud

3765



C Sample Excerpt from Tafsir Dataset

Figure 5: Tafsir Dataset in CoNLL format, showing
the binary topic matrix before the sentence start, after-
wards the Arabic tokens along their NER tag (1st col-
umn) and subtopic tag (2st column).

D Data Statement

In accordance with (Bender and Friedman, 2018),
the following outlines the data statement for the
Tafsir Dataset:

A. CURATION RATIONALE Manual annota-
tion of literature in Classical Arabic, which is to
date a low-resource language, for identification of
named entities in different historical text domains,
complemented with topic modeling annotation.
The generation of such training data enables ma-
chine learning applications for the research fields
of historical NLP and digital humanities.

B. LANGUAGE VARIETY The canonical text
data of Tafsir Al-Tabari was collected from the on-
line resource platform Gawami’ al-Kalim (https:
//gk.islamweb.net).

C. SPEAKER DEMOGRAPHIC For various
text samples in the historical collections of nar-
rations, it is Classical Arabic speakers. Gender,
age, race-ethnicity, socioeconomic status can be
inferred from the extensive classical literature of
biographical evaluation (’Ilm Al-Rijal) on narra-
tors and their biographies (books such as Al-Tarikh
Al-Kabir ("The Great History") by Imam Bukhari,
Kitab Al-Tabaqat Al-Kabir ("The Book of the Ma-
jor Classes") by Ibn Sa’d, or Ikhtiyar Ma Rifat
Al-Rijal ("The Selection of the Knowledge of the
Men") by Shaykh Tusi).

D. ANNOTATOR DEMOGRAPHIC Four sci-
entific staff members and two students (age range:
25-60), gender: male and female. European with
Middle Eastern background. Native language:
German, Modern Standard Arabic, Classical Ara-
bic. Socioeconomic status: university faculty and
higher-education student in Classical Arabic stud-
ies.

E. SPEECH SITUATION Sopken Classical
Arabic, which was later edited by the collector
(here: Al-Tabari). Time frame of data between 7th
century and 923 CE. Place: Middle East.

F. TEXT CHARACTERISTICS Exegetical lit-
erature: Sentences made of chain of narrators (Is-
nad) and the actual content of narrations (Matn)
along exegetical prose elaborations for each verse
of the Quran.

PROVENANCE APPENDIX N/A

E Extended Results
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MLM SEQ CRF Coverage

aubmindlab/bert-base-arabert 79.34 79.91 0.74
aubmindlab/bert-base-arabertv01 79.49 80.07 0.65
aubmindlab/bert-base-arabertv02 79.81 80.26 0.85
aubmindlab/bert-base-arabertv2 79.43 80.14 0.84
aubmindlab/bert-large-arabertv2 79.18 80.29 0.84
asafaya/bert-base-arabic 94.99 95.31 1.00
asafaya/bert-mini-arabic 94.02 94.50 1.00
asafaya/bert-large-arabic 94.90 94.92 1.00
asafaya/bert-medium-arabic 94.93 94.87 1.00
CAMeL-Lab/bert-base-arabic-camelbert-ca 79.56 80.31 0.85
CAMeL-Lab/bert-base-arabic-camelbert-mix 79.61 80.19 0.85
CAMeL-Lab/bert-base-arabic-camelbert-msa 79.40 80.23 0.85
UBC-NLP/ARBERT 95.04 95.29 0.88
UBC-NLP/MARBERT 94.83 94.92 0.88
aubmindlab/araelectra-base-generator 79.37 80.06 0.85
bert-base-multilingual-cased 93.89 94.36 1.00
xlm-roberta-base 94.13 94.49 1.00
xlm-roberta-large 94.36 94.88 1.00
google/rembert 94.43 94.73 1.00

Table 10: Results for CA-NER w/ and w/o CRF

MLM NER Topic Subtopic

st mt st mt st mt

aubmindlab/bert-base-arabertv02 95.99 95.87 26.11 13.73 21.18 20.47
aubmindlab/bert-large-arabertv2 95.53 95.26 18.94 14.43 18.28 19.44
asafaya/bert-base-arabic 95.61 94.94 20.63 11.84 19.23 18.36
asafaya/bert-large-arabic 95.65 95.80 22.15 20.46 21.68 20.58
asafaya/bert-medium-arabic 95.13 95.17 20.15 9.46 18.67 17.45
CAMeL-Lab/bert-base-arabic-camelbert-ca 96.06 95.99 24.75 15.81 19.68 17.42
UBC-NLP/ARBERT 95.46 95.45 22.16 20.37 22.05 20.56
aubmindlab/araelectra-base-generator 95.08 94.95 18.92 6.86 14.85 14.65
bert-base-multilingual-cased 95.04 94.79 23.11 11.58 18.54 16.72
xlm-roberta-large 95.54 95.22 16.97 13.80 21.18 20.46

Table 11: Multi-task learning results for each task. st=single task, mt=multitask
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Topic Macro-F1

adyan (non-Islamic religion) 27.93
asbab (occasions of revelation) 22.74
fiqh (jurisprudence) 16.66
israliyat (Judeo-Christian) 23.17
kalam (Islamic theology) 26.61
lugha (linguistics) 30.06
mushkilat (problem) 19.97
mutashabih (allegorical) 20.00
naskh (abrogation) 19.76
qiraat (recitation style) 41.45
sirah (biography) 21.96
sufism (mysticism) 14.87
takhsis (specification) 19.99
tikrar (repetition) 19.98
ulum (science) 18.41

Table 12: Fine-grained TM results obtained with the measure of Macro-F1 from MaChAmp on Tafsir Dataset
(arabertv02).

NE category Precision Recall F1

PER 97.12 97.60 97.36
LOC 72.53 66.93 69.62
ORG 82.00 89.31 85.50
TME 78.00 79.90 78.94
OTH 79.59 76.38 77.95

Table 13: Fine-grained NER results obtained by running the official CoNLL-2003 script on Tafsir Dataset
(arabertv02).
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Abstract 

This paper describes a resource of 
Wikipedias in 31 languages categorized 
into Extended Named Entity (ENE), which 
has 219 fine-grained NE categories. We 
first categorized 920K Japanese Wikipedia 
pages according to the ENE scheme using 
machine learning, followed by manual 
validation. We then organized a shared task 
of Wikipedia categorization into 30 
languages. The training data were provided 
by Japanese categorization and the 
language links, and the task was to 
categorize the Wikipedia pages into 30 
languages, with no language links from 
Japanese Wikipedia (20M pages in total). 
Thirteen groups with 24 systems 
participated in the 2020 and 2021 tasks, 
sharing their outputs for resource-building. 
The Japanese categorization accuracy was 
98.5%, and the best performance among the 
30 languages ranges from 80 to 93 in F-
measure. Using ensemble learning, we 
created outputs with an average F-measure 
of 86.8, which is 1.7 better than the best 
single systems. The total size of the 
resource is 32.5M pages, including the 
training data. We call this resource creation 
scheme “Resource by Collaborative 
Contribution (RbCC)”. We also constructed 
structuring tasks (attribute extraction and 
link prediction) using RbCC under our 
ongoing project, “SHINRA”. 

1 Introduction 

Wikipedia consists of a large volume of entities 
that are significant resources for the knowledge 
base (KB) used in many Natural Language 
Processing (NLP) applications, including Question 
Answering, Information Extraction, and so on. To 
maximize the use of such a KB, the information in 
Wikipedia has to be categorized and structured in a 
consistent manner for machines to perform 

inference, reasoning, and many other purposes. The 
current categorization and structure of Wikipedia 
and other KB derived from it, such as DBpedia, 
YAGO, and Wikidata, are extremely noisy for NLP 
applications. This noise is inherent to Wikipedia 
categories and structures because they are created 
by multiple independent crowd workers using a 
bottom-up approach. There are no consistent rules 
exists for most parts of Wikipedia. As a result, 
instead of the cumbersome Wikipedia categories 
and structures, we must rely on a well-defined 
ontology. Extended Named Entity (ENE) (ENE 
homepage) is one such ontology for named entities 
(NEs). ENE version 8 has 219 hierarchical 
categories, and a set of attributes is defined for each 
category. Our final goal is to transform Wikipedia 
information into the structure of ENE so that 
machines can use the rich information in Wikipedia. 

 This study reports a resource of Wikipedias in 
31 languages categorized into fine-grained named 
entity (ENE) categories. Categorization is the first 
task in creating a structured KB. After developing 
the techniques of automatic categorization are 
developed, we can structure the contents of 
Wikipedia pages in each category. We worked on 
31 languages, rather than a few major languages. 
We created resources for practical NLP 
applications in various languages, instead of 
platforming a few major languages. 

2 Extended Named Entity 

To construct a useful KB for NLP applications, a 
well-structured ontology is essential and must be 
designed in a top-down manner. The structures of 
the KBs in DBpedia, Freebase, and Wikidata were 
created by crowds in a bottom-up manner, all with 
similar characteristics, including inconsistent 
categories, imbalanced ontologies, and ad hoc 
attributes. This is because of the bottom-up nature 
of their KB designs. We need a top-down strategy 
to consistently design the ontology and attributes. 

Resource of Wikipedias in 31 Languages  
Categorized into Fine-Grained Named Entities  
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For a top-down designed ontology for named 
entities, we employed the Extended Named Entity, 
ENE (ENE-Homepage). ENE is a cleanly-designed 
named entity classification hierarchy that includes 
the attribute definition for each category (Sekine et 
al., 2002; Sekine and Nobata, 2004; Sekine, 2008). 
It includes 219 fine-grained categories of named 
entities in a hierarchy of up to four layers. 
It contains not only the fine-grained categories of 
the typical NE categories, such as “city” and “lake” 
for “location”, and “company” and “political party” 
for “organization”, but also new named entity types 
such as “products”, “event”, and “natural object”. 
These categories cover various entities that are 
often mentioned in encyclopedias and many other 
resources. Figure 1 shows ENE version 8.0. The 
category “Concept” is used for anything that 
doesn’t fit into ENE categories; typically common 
nouns. “IGNORE” is for Wikipedia-specific titles 
such as “redirect”, “disambiguation”, and “meta 
information”. Attributes were also designed for 
each category based on the investigation of the 
sample entities. For example, the attributes for the 
“airport” category include the following: 
“Reading”, “IATA code”, “ICAO code”, 
“nickname”, “name origin”, “number of users per 
year”, “number of runaways”, and so on. Please 
refer to the ENE homepage for the complete 
definitions. 

 

3 Categorized Japanese Wikipedia 

We categorized 920K Japanese Wikipedia pages 
into one or more of 219 ENE categories. For the 
categorization process, we excluded less popular 
entities, that is, those having fewer than five 
incoming links (approximately 151K entities) and 
nonentity pages (approximately 53K pages), such 
as common nouns and simple numbers 
(CONCEPT), and Wikipeida’s meta-information 
pages and forward pages (IGNORED). This 
categorization was done using the machine 
learning method with a training data manually 
created (Suzuki et al., 2018) followed by manual 
validation. The accuracy of the categorization was 
confirmed as 98.5% by senior annotators on 1,000 
sample data. The remaining 1.5% covered 
ambiguous and difficult ones, even for human 
annotators. Table 1 shows the number of entities in 
each category on Japanese Wikipedia pages. Note 
that a Wikipedia page can have more than one 
category. For example, a novel adapted into a 
movie can have both categories if mentioned in the 
major paragraphs on the page. The detailed 
definition can be found on the SHINRA homepage 
(SHINRA HP). 

 
 
 

Figure 1. Extended named entity hierarchy version 8 
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4 Shared Tasks 

We conducted Wikipedia page categorization in 
30 languages shared-tasks in 2020 and 2021. We 
refer to them as SHINRA2020-ML and 
SHINRA2021-ML, respectively. We tackled the 
problem of categorizing Wikipedia entities in 30 
languages in fine-grained categories of 219 
categories, as defined in ENE (ver. 8.0). We 
selected 30 languages based on the number of 
active users from Wikipedia statistics. The 
languages are listed in Table 2. The Wikipedias are 
based on dumps in January 2019. The participants 
can select one or more target languages, and for 
each language, their automatic categorization 
system must categorize all Wikipedia pages in the 
target language(s), as the evaluation data are hidden. 
We provided training data for 30 languages, created 
by (i) the categorized Japanese Wikipedia of 920 K 
pages, and (ii) Wikipedia language links for 30 
languages from the Japanese Wikipedia. For 
example, out of 2,263K German Wikipedia pages, 
275K pages had language links from Japanese 
Wikipedia, which served as silver (i.e., a bit noisy) 
training data for German. Thus, the task is “to 
categorize the remaining 1,988K pages into 219 
categories, based on the training data” (the 
participants are requested to categorize the training 
data with their system as well, for the purpose of 
ensemble learning). The same holds for the other 
29 languages, as shown in Table 2. 

4.1 Participants 

Ten groups from seven countries participated in 
SHINRA2020-ML and three groups participated in 
SHINRA2021-ML. The list of participant groups 
and tasks in which they participated are listed in 
Table 3. Most of the systems in SHINA2020-ML 
have been described at the NTCIR-15 conference 
(Bui and Le-Hong, 2020; Cardoso et al., 2020; 
Abhishek et al., 2020; Nakayama and Sekine, 
2020; Yoshioka and Koitabashi, 2020; Nishikawa 
and Yamada, 2020; Yoshikawa et al., 2020). The 
reports on SHINRA2021-ML are on the SHINRA 
homepage (SHINRA HP). 

4.2 Evaluation Results 

For each target language, a group can submit up 
to three runs using different methods. The system 
categorizes each page into one or more ENE (ver. 
8.0) categories. The evaluation pages were selected 
from those without a link to the Japanese Wikipedia 

pages. The evaluation data are not disclosed 
because we want the systems to categorize all 
pages, and we can compare future results using the 
same data. If an estimated category is not an exact 
match, the system receives no score for the output. 
We evaluated the performance of the systems on a 
multi-label categorization using the micro average 
F1 measure, that is, the harmonic mean of precision 
and micro-averaged recall. Note that the 
distribution of the category in the test data may 
have differed from that of the training data because 
of the different characteristics of the links from the 
Japanese Wikipedia. 
Table 4 shows statistical results. It includes 1) the 
F-measure of the best participating systems for 
each language, 2) the F-measure of the ensemble 
learning system., and 3) the upper bound recall by 
the system outputs, i.e., the percentage of entities to 
which the correct answer is proposed by at least one 
of the systems. For most languages, the ensemble 
system outperforms the best single system in the 
language (in red). The upper bound exceeds 90% in 
almost all languages, with an average of 96.75%. 

5 Resource  

This section describes the ensemble learning 
method, presents the sample data, and describes 
some statistics of the resource.  
The ensemble learning method we employ is a 
simple voting method with minor adjustments 
because a participant can submit up to three 
systems. The systems submitted by the same 
participants were extremely similar; we assigned 
weights to the outputs, that is, one over the number 
of systems submitted by the participants. Then, the 
category with the most votes was taken as the 
ensemble system output. 
The sample data for the resources are shown in 
Figure 2. “Page id” and “title” are information on 
the Wikipedia page. “ENE” constitutes the 
categorized Extended Named Entity information, 
which includes both the ID and name of ENE in 
JSON format. 
The total number of entities we categorized is 
32.5M pages in 30 languages. Table 6 shows the 
number of entities in each category for 30 
languages (other than Japanese). In the table, the 
categories are specified at Level 2 for the categories 
of “Names” and Level 1 for the other categories. 
The two biggest categories are “Location” 
(24.33%) and “Person” (23.00%), followed by 
“Natural object” (13.85%) and “Product” (13.27%), 
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“Facility” (5.93%) and “Organization” (5.51%). 
The distribution is similar to that in the Japanese 
Wikipedia, which was manually validated, as 
shown in Table 1. We categorized a total of 920K 
Japanese Wikipedia entities. 
Table 4 shows the average F-measure obtained 
using the ensemble learning system. The F-
measure for the resources proposed is 86.76. We 
attempted to identify the error types in Table 7, 
which shows the confusion matrix of the system 
outputs and the correct answer. Most of the errors 
are related to the “Concept” and “IGNORED” 
categories (85% of the total errors). The systems 
often output the “Concept” even if the correct 
category is one of the named entities or 
“IGNORED”. In addition, for the entities whose 
correct category is “IGNORED”, the systems 
output some other categories. In addition to errors 
related to these two categories, the systems seem to 
confuse “Organization”, “Location”, and “Facility”. 
One explanation is that facilities (such as schools, 
parks, airports, and roads) often have the properties 
of organization and location. Thus, the systems are 
robust except when identifying the “Concept” and 
“IGNORED” categories. 

6 Related Work  

Ontologies and structured KBs have been 
considered among the most important knowledge 
resources in NLP. Previously, several major 
projects intended to construct KBs have been 
undertaken. Cyc was one of the earliest projects, 
followed by more recent Wikipedia-based projects, 
such as DBpedia, YAGO, Freebase, and Wikidata. 
Moreover, there are shared tasks aimed at building 
techniques for knowledge base structuring, such as 
KBP and CoNLL. Here, we introduce these 
resources and projects and describe the points 
considered as issues to be solved in these projects. 

Cyc ontology is a large KB constructed of 
commonsense knowledge (Lenat, 1995). It was one 
of the largest AI projects between 1980 and 1990, 
which mainly used human labor to construct a KB. 
Constructing and maintaining handmade KBs for 
the general domain is extremely costly. The KB 
suffered from a “knowledge acquisition 
bottleneck”, which included coverage and 
consistency problems. 

DBpedia is a more recent project that constructs 
structured information from semi-structured data 
on Wikipedia, such as infoboxes and categories 

(Lehmann et al., 2015). However, DBpedia is 
challenged by inaccuracy, low coverage, and lack 
of coherence. Like Cyc, infobox and categories in 
Wikipedia are also created by humans; however, 
they are non-experts in the ontology. The categories 
are extremely noisy. For example, in the Japanese 
Wikipedia, “Shinjuku Station which is a railway 
station, has a category, “Odakyu Electric Railway", 
which is a major railway company using the station. 
However, a station is not an instance of a railway 
company; therefore, this is not an appropriate 
category. This type of category definition (i.e., a 
topic rather than a hypernym relation) is allowed in 
Wikipedia. There are multiple instances of this in 
DBpedia, which heavily relies on Wikipedia. 
Additionally, several inconsistencies were 
observed in the category structure. It is not even a 
hierarchy and there is a loop in the category 
structure. 

YAGO is an ontology constructed by mapping 
Wikipedia articles to WordNet synsets 
(Mahdisoltani et al., 2015). Similar to DBpedia, 
YAGO adopts attribute information extracted from 
infoboxes because no attribute is defined in the 
WordNet synsets. 

Freebase is a project that constructs a structured 
knowledge base using crowdsourcing, similar to 
Wikipedia (Bollacker et al., 2008). However, when 
using the crowdsourcing approach, Freebase lacks 
a well-organized ontology. The resource is noisy 
and lacks coherence because it is created using 
unorganized crowds. The Freebase project was 
terminated and integrated into Wikidata. 

Wikidata aims to be a structured knowledge base 
based on a crowdsourcing scheme (Vrandečić and 
Krötzsch 2014). It has noise and lacks coherence 
because it was constructed using a bottom-up 
approach, similar to Wikipedia. 

Fine Grained Entity Recognition (FIGER) is a 
project that identifies 112 finely defined named 
entity classes, similar to ENE (Ling and Weld, 
2012). The category in FIGER is biased and does 
not have attribute definitions for each category. 

7 Conclusion  

We reported a resource of Wikipedias in 31 
languages categorized as ENEs. Japanese 
Wikipedia pages (920K pages) were categorized 
with an accuracy of 98.5% and 30 languages 
Wikipedia pages (32.5M pages) categorized with 
87 F-measure. It was created through a shared-task 
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of Wikipedia categorization in 30 languages. We 
call this resource creation scheme RbCC”. We have 
also been conducting structuring tasks (attribute 
extraction and link prediction) using RbCC under 
our ongoing project, “SHINRA”. 
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Table 1. The number of entities for each category in the Japanese Wikipedia 

 

0:Concept 51039 1.6.4.4:Public_Institution 5331 1.7.19.3:Movie 19381 1.10.5.1:Animal_Part 1944

1.0:Name_Other 5 1.6.4.5:Accommodation 892 1.7.19.4:Show 3131 1.10.5.2:Flora_Part 201

1.1:Person 269688 1.6.4.6:Medical_Institution 1615 1.7.19.5:Music 46889 1.11.0:Disease_Other 29

1.2:God 1278 1.6.4.7:School 25579 1.7.19.6:Book 21093 1.11.1:Animal_Disease 2229

1.3.0:Individual_Animal_Other 69 1.6.4.8:Research_Institute 1036 1.7.20.0:Printing_Other 753 1.12.0:Color_Other 200

1.3.1:Racehorse 3450 1.6.4.9:Market 107 1.7.20.1:Newspaper 794 1.12.1:Nature_Color 13

1.4.0:Organization_Other 3631 1.6.4.10:Power_Plant 446 1.7.20.2:Magazine 2495 2.0:Timex_Other 1

1.4.1:International_Organization 512 1.6.4.11:Park 2606 1.7.21.0:Doctrine_Method_Other 14767 2.1.0:Timeex_Other 0

1.4.2:Show_Organization 11758 1.6.4.12:Shopping_Complex 3341 1.7.21.1:Culture 303 2.1.1:Time 12

1.4.3:Family 2075 1.6.4.13:Sports_Facility 3783 1.7.21.2:Religion 936 2.1.2:Date 3964

1.4.4.0:Ethnic_Group_Other 1144 1.6.4.14:Museum 2901 1.7.21.3:Academic 1800 2.1.3:Day_Of_Week 10

1.4.4.1:Nationality 227 1.6.4.15:Zoo 445 1.7.21.4:Sport 955 2.1.4:Era 2067

1.4.5.0:Sports_Organization_Other 89 1.6.4.16:Amusement_Park 450 1.7.21.5:Style 586 2.2.0:Periodx_Other 5

1.4.5.1:Sports_Federation 865 1.6.4.17:Theater 1614 1.7.21.6:Movement 474 2.2.1:Period_Time 0

1.4.5.2:Sports_League 846 1.6.4.18:Worship_Place 9276 1.7.21.7:Theory 1808 2.2.2:Period_Day 1

1.4.5.3:Sports_Team 9107 1.6.5.0:Transport_Facility_Other 946 1.7.21.8:Plan 1818 2.2.3:Period_Week 1

1.4.6.0:Juridical_Person_Other 3 1.6.5.1:Car_Stop 5605 1.7.22.0:Rule_Other 327 2.2.4:Period_Month 1

1.4.6.1:Nonprofit_Organization 5122 1.6.5.2:Station 18296 1.7.22.1:Treaty 915 2.2.5:Period_Year 25

1.4.6.2:Company 30120 1.6.5.3:Airport 1559 1.7.22.2:Law 2289 3.0:Numex_Other 0

1.4.6.3:Company_Group 386 1.6.5.4:Port 575 1.7.23.0:Title_Other 16 3.1:Money 0

1.4.7.0:Political_Organization_Other 1256 1.6.6.0:Line_Other 1528 1.7.23.1:Position_Vocation 6317 3.2:Stock_Index 0

1.4.7.1:Government 3516 1.6.6.1:Railroad 3615 1.7.24.0:Language_Other 1544 3.3:Point 0

1.4.7.2:Political_Party 1719 1.6.6.2:Road 15550 1.7.24.1:National_Language 251 3.4:Percent 7

1.4.7.3:Cabinet 225 1.6.6.3:Canal 333 1.7.25.0:Unit_Other 496 3.5:Multiplication 0

1.4.7.4:Military 3744 1.6.6.4:Water_Route 455 1.7.25.1:Currency 319 3.6:Frequency 0

1.5.0:Location_Other 2671 1.6.6.5:Tunnel 379 1.8.0:Virtual_Address_Other 291 3.7:Age 5

1.5.1.0:GPE_Other 435 1.6.6.6:Bridge 1887 1.8.1:Channel 3348 3.8:School_Age 7

1.5.1.1:City 49028 1.7.0:Product_Other 14619 1.8.2:Phone_Number 4 3.9:Ordinal_Number 0

1.5.1.2:Province 12490 1.7.1:Video_Work 2621 1.8.3:Email 0 3.10:Rank 1

1.5.1.3:Country 1407 1.7.2:Musical_Instrument 684 1.8.4:URL 2 3.11:Latitude_Longitude 304

1.5.2.0:Region_Other 30 1.7.3:Clothing 936 1.9.0:Event_Other 1991 3.12.0:Measurement_Other 3

1.5.2.1:Continental_Region 275 1.7.4:Money_Form 273 1.9.1.0:Occasion_Other 2697 3.12.1:Physical_Extent 5

1.5.2.2:Domestic_Region 2219 1.7.5:Drug 689 1.9.1.1:Election 908 3.12.2:Space 1

1.5.3.0:Geological_Region_Other 2446 1.7.6:Weapon 11167 1.9.1.2:Religious_Festival 983 3.12.3:Volume 0

1.5.3.1:Spa 1132 1.7.7:Stock 0 1.9.1.3:Competition 17471 3.12.4:Weight 0

1.5.3.2:Mountain 4013 1.7.8:Award 3031 1.9.1.4:Conference 585 3.12.5:Speed 1

1.5.3.3:Island 2517 1.7.9:Decoration 247 1.9.2.0:Incident_Other 3465 3.12.6:Intensity 0

1.5.3.4:River 2900 1.7.10:Offense 176 1.9.2.1:War 3093 3.12.7:Temperature 0

1.5.3.5:Lake 858 1.7.11:Service 3 1.9.3.0:Natural_Phenomenon_Other 249 3.12.8:Calorie 0

1.5.3.6:Sea 302 1.7.12:Class 45 1.9.3.1:Natural_Disaster 355 3.12.9:Seismic_Intensity 1

1.5.3.7:Bay 362 1.7.13:Character 6354 1.9.3.2:Earthquake 355 3.12.10:Seismic_Magnitude 0

1.5.4.0:Astronomical_Object_Other 1516 1.7.14:ID_Number 5 1.10.0:Natural_Object_Other 1493 3.13.0:Countx_Other 4

1.5.4.1:Star 1130 1.7.15.0:Game_Other 350 1.10.1:Element 153 3.13.1:N_Person 5

1.5.4.2:Planet 3186 1.7.15.1:Degital_Game 11213 1.10.2:Compound 4493 3.13.2:N_Organization 2

1.5.4.3:Constellation 167 1.7.16:Software 4658 1.10.3:Mineral 556 3.13.3.0:N_Location_Other 0

1.5.5.0:Address_Other 0 1.7.17.0:Vehicle_Other 771 1.10.4.0:Living_Thing_Other 1410 3.13.3.1:N_Country 0

1.5.5.1:Postal_Address 1 1.7.17.1:Car 5187 1.10.4.1:Fungus 275 3.13.4:N_Facility 1

1.6.0:Facility_Other 5035 1.7.17.2:Train 4632 1.10.4.2:Mollusk_Arthropod 577 3.13.5:N_Product 0

1.6.1:Facility_Part 67 1.7.17.3:Aircraft 2619 1.10.4.3:Insect 858 3.13.6:N_Event 0

1.6.2:Dam 741 1.7.17.4:Spaceship 1531 1.10.4.4:Fish 966 3.13.7.0:N_Natural_Object_Other 0

1.6.3.0:Archaeological_Place_Other 2968 1.7.17.5:Ship 7887 1.10.4.5:Amphibia 132 3.13.7.1:N_Animal 0

1.6.3.1:Tomb 1093 1.7.18.0:Food_Other 2725 1.10.4.6:Reptile 1012 3.13.7.2:N_Flora 0

1.6.4.0:FOE_Other 2465 1.7.18.1:Dish 2888 1.10.4.7:Bird 1901 9:IGNORED 13360

1.6.4.1:Military_Base 462 1.7.19.0:Art_Other 945 1.10.4.8:Mammal 1868

1.6.4.2:Castle 2014 1.7.19.1:Painting 408 1.10.4.9:Flora 4164

1.6.4.3:Palace 237 1.7.19.2:Broadcast_Program 33747 1.10.5.0:Living_Thing_Part_Other 309
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Figure 2. Sample data 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Wikipedia statistics in 31 languages 
 
 
 
 

{"pageid": "59706565", "title": "1978 Giro d'Italia, Prologue to Stage 10", "ENEs": [{"ENE_id": "1.9.1.3", 
"ENE_name": "Competition"}]} 
{"pageid": "22059861", "title": "Tarlach Rua Mac Dónaill", "ENEs": [{"ENE_id": "1.1", "ENE_name": "Person"}]} 
{"pageid": "53177250", "title": "90th Scripps National Spelling Bee", "ENEs": [{"ENE_id": "1.9.1.3", 
"ENE_name": "Competition"}]} 
{"pageid": "13820024", "title": "The Early History of God", "ENEs": [{"ENE_id": "1.7.19.6", "ENE_name": 
"Book"}]} 
{"pageid": "17870536", "title": "Pure type system", "ENEs": [{"ENE_id": "1.7.21.0", "ENE_name": 
"Doctrine_Method_Other"}]} 
{"pageid": "13918760", "title": "Nyandeni Local Municipality", "ENEs": [{"ENE_id": "1.5.1.1", "ENE_name": 
"City"}]} 
{"pageid": "14874071", "title": "BICD2", "ENEs": [{"ENE_id": "1.10.5.0", "ENE_name": 
"Living_Thing_Part_Other"}]} 
{"pageid": "40760418", "title": "Meydan-e Sofla", "ENEs": [{"ENE_id": "1.5.1.1", "ENE_name": "City"}]} 
{"pageid": "31722196", "title": "Princes' Concordat", "ENEs": [{"ENE_id": "1.7.22.1", "ENE_name": "Treaty"}]} 
{"pageid": "5724950", "title": "Hatley, Quebec (township)", "ENEs": [{"ENE_id": "1.5.1.1", "ENE_name": 
"City"}]} 
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Year Group ID Country Participated Language(s) 

2020 

CMVS Finland 1 (ar) 
FPTAI Vietnam 30 (all) 
HUKB Japan 30 (all) 
PribL Portugal 15 (ar, cs, de, en, es, fr, it, ko, nl, no, pl, pt, ru, tr, zh) 

RH312 India 6 (bg, fr, hi, id, th, tr) 
TKUIM Taiwan 30 (all) 
Ousia Japan 9 (ar, de, es, fr, hi, it, pt, th, zh) 
Uomfj Australia/Japan 28 (all except el, sv) 

Vlp Vietnam 1 (vi) 
LIAT Japan 30 (all) 

2021 
HUKB Japan 30 (all) 
KANJU Japan 30 (all) 

junps Japan 1 (en) 
Table 3. SHINRA-ML task participants 

 
 

 

Language Best 
system F 

Ensemble 
system F 

Upper 
bound 
Recall 

Arabic 90.06 92.18 97.71 
Bulgarian 86.94 88.32 92.77 
Catalan 89.25 86.62 95.42 
Czech 81.70 83.72 94.34 
Danish 82.34 81.53 92.15 
German 79.68 80.93 89.68 
Greek 84.85 79.72 90.04 
English 86.49 87.65 93.49 
Spanish 85.54 86.51 94.69 
Persian 89.63 90.87 94.63 
Finish 85.95 86.36 95.47 
French 83.77 87.20 92.83 
Hebrew 81.80 81.74 90.74 
Hindi 87.81 90.76 94.79 
Hungarian 89.93 91.41 96.19 
Indonesian 90.71 92.22 97.28 
Italian 84.08 85.51 91.85 
Korean 80.08 82.57 90.68 
Dutch 85.88 85.88 91.51 
Norwegian 85.89 86.10 93.53 
Polish 84.44 85.06 94.00 
Portuguese 88.96 89.83 96.11 
Romanian 93.43 93.43 98.07 
Russian 81.62 84.06 90.91 
Swedish 84.28 86.28 91.85 
Thai 84.72 85.48 95.31 
Turkish 87.85 88.13 94.18 
Ukrainian 85.14 84.53 91.20 
Vietnamese 90.28 89.58 95.14 
Chinese 88.00 88.72 95.10 

Average 86.04 86.76 96.75 
Table 4. Performance of the system and other statistics 
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Name Task Language Target categories 
SHINRA2018 Attribute value extraction Japanese 5 categories 
SHINRA2019 Attribute value extraction Japanese 35 categories 
SHINRA2020-JP Attribute value extraction Japanese 78 categories 
SHINRA2020-ML Categorization 30-language  
SHINRA2021-LinkJP Link Prediction Japanese 7 categories 
SHINRA2021-ML Categorization 30-language  
SHINRA2022 All three tasks Japanese all categories 

Table 5. SHINRA tasks 
 
 

 
Table 6. Number of entities in each category and language (for languages other than Japanese) 

 
Note that the statistics are based on second level categories. All sub-categories are summed together for 

second level categories. For example, the number of entities under Organization (1.4), such as international 
organizations (1.4.1), companies (1.4.6.2), political parties (1.4.7.2), and other categories under 1.4, are 
combined in the statistics for Organization (1.4). The total number of entities for each language might not 
be equal to the number of entities in Table 2 because there could be over one category for each entity. 
 
 

 
Table 7. Confusion matrix of system outputs (horizontal) and correct answers (vertical) for all languages 
 
 

 

ID 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1 1.11 1.12 2 3 9

Category Concept Name Other Person God
Individual 

Animal Organization Location Facility Product
Virtual 

Address Event
Natural 
Object Disease Color Timex Numex IGNORED

Arabic 52972 0 204207 513 3 26264 198716 21437 66559 2093 20277 38404 4937 97 7733 480 16849
Bulgarian 17533 0 73267 588 7 13016 53001 11304 32931 746 6704 31913 679 20 3651 51 4358
Catalan 51271 0 149258 946 7 30121 155361 41240 67885 1316 20958 64479 1652 84 4156 540 12471
Czech 50169 0 116294 796 34 28476 74478 32128 68588 1515 18266 17454 1396 37 4982 1 15654
Danish 27238 1 73171 481 12 19399 33795 16822 45794 989 8853 7121 758 31 3764 786 3577
German 196031 0 768225 2837 279 192658 396296 192032 270062 4767 82408 64601 6401 84 10350 0 76738
Greek 74786 0 67372 1342 2 28297 48940 5861 53778 1339 13157 5978 1070 85 8462 1 25595
English 315531 0 1728797 4423 5822 432236 875918 472005 1005969 43520 279123 403739 11813 334 8829 811 204327
Spanish 105543 2 376710 2265 89 90700 317901 92715 246103 4363 72964 153631 4378 187 8479 226 38106
Persian 48311 0 138148 763 16 19230 241298 46761 100016 1354 9146 36456 2171 79 8104 711 8759
Finish 42147 0 147556 784 48 34477 48877 21505 99635 1400 15659 23084 1599 31 4022 1 10071
French 129098 0 595708 2393 573 135080 416779 149286 355881 6334 87986 119710 4722 254 11182 630 60099
Hebrew 31475 1 78479 484 15 16658 20233 10751 47355 859 8045 8761 1467 39 5501 0 7122
Hindi 14388 0 22242 406 2 5113 46309 6144 20433 848 3150 3508 643 47 5728 522 2693
Hungarian 30551 1 110023 650 12 20570 137258 25902 60441 1266 18818 22436 688 18 4670 0 9952
Indonesian 26194 0 72630 669 22 21450 115722 20662 69492 1818 11991 98328 1050 32 3734 190 9556
Italian 98522 0 378736 1962 93 92536 313896 79661 325760 2873 109402 48390 4017 247 9276 7 32724
Korean 52713 0 111535 761 26 32660 46817 54853 88858 2155 15243 14963 1325 70 6036 381 11935
Dutch 120574 0 217528 1349 30 68301 342682 88123 148271 2128 47810 874290 2611 68 5067 88 36880
Norwegian 43235 0 158039 696 16 39756 73512 45573 71868 1645 25076 23477 1084 33 3988 21 13680
Polish 84346 0 354727 1805 55 79672 386271 93985 173646 2469 52842 51219 4422 49 4921 3 26274
Portuguese 80353 1 224466 1520 52 65736 240881 43866 181481 4039 48010 90099 3473 94 5829 536 24859
Romanian 22821 0 57913 582 6 13518 201132 11420 33084 1020 5905 30486 657 20 3640 1 9209
Russian 102057 1 463956 2005 57 98493 409426 76356 207009 2795 57119 53424 3288 96 7241 388 40425
Swedish 206567 0 231159 1301 288 53538 1729196 88261 119368 1459 23894 1281506 2160 74 4332 4 16006
Thai 14726 0 28041 378 2 11195 10381 8738 25335 905 6139 6944 833 32 3843 615 11570
Turkish 26188 0 83506 859 112 18642 83704 12515 59418 1755 15271 7721 1149 88 5139 237 9344
Ukranian 67899 0 178244 1381 8 39675 348825 45919 101043 1759 21852 47983 1734 67 5596 2 20769
Vietnamese 46134 0 55154 430 20 9533 245542 10573 38259 882 8636 773560 966 56 4495 5 6613
Chinese 61095 0 217583 1633 267 56013 301227 103105 133350 3371 28580 100343 1985 114 7484 249 25499

Total 2179373 7 7265091 35369 7708 1737000 7613147 1826398 4184322 100411 1114704 4403665 73143 2453 172750 7238 766215
% 6.89% 0.00% 23.00% 0.11% 0.02% 5.51% 24.33% 5.93% 13.27% 0.32% 3.51% 13.85% 0.23% 0.01% 0.55% 0.02% 2.43%

ID 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1 1.11 2 3 9

Category Concept Person God
Individual 

Animal

Organizat

ion
Location Facility Product

Virtual 

Address
Event

Natural 

Object
Disease Timex Numex

IGNORE

D

0:Concept 587 - - - 1 2 - 24 - 2 65 1 - - 1

1.1:Person 9 3675 - - 4 - - 5 - - - - - - 3

1.2:God - - 14 - - - - - - - - - - - -

1.3:Individual_Animal - 1 - - - - - 1 - - 1 - - - -

1.4:Organization 15 6 - - 760 20 12 5 - 3 - - - - 3

1.5:Location 11 - - - 4 3371 20 1 - - 1 - - - 2

1.6:Facility 12 3 - - 11 26 906 6 - 1 1 - - - 3

1.7:Product 103 12 1 - 13 1 10 1824 - 9 3 - 1 - 4

1.8:Virtual_Address 1 - - - 5 - - 1 28 - - - - - -

1.9:Event 5 1 - - 7 - 1 11 - 416 - - 2 - 8

1.10:Natural_Object 2 - - - - - - 1 - - 91 - - - -

1.11:Disease - - - - - - - - - - - 23 - - -

2:Timex - - - - - - - 1 - 3 - - 46 - -

3:Numex - - - - - - - - - - - - - 1 1

9:IGNORED 287 171 2 - 73 181 33 138 1 45 9 - 18 2 398
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Abstract 

News recommender systems face certain 
challenges. These challenges arise due to 
evolving users’ preferences over 
dynamically created news articles.  
Diversity is necessary for a news 
recommender system to expose users to a 
variety of information. We propose a deep 
neural network based on a two-tower 
architecture that learns news representation 
through a news item tower and users’ 
representations through a query tower. We 
introduce diversity in the proposed 
architecture by considering a category loss 
function that aligns items’ representation of 
uneven news categories. Experimental 
results on two news datasets reveal that our 
proposed architecture is more effective 
compared to the state-of-the-art methods 
and achieves a balance between accuracy 
and diversity.  

1 Introduction 

Reading the news has never been more common in 
people’s daily lives than it is now. Big names like 
Yahoo!, Google, and CNN have launched online 
news portals that users can access from anywhere 
to browse various news categories and find up-to-
date information. However, finding the right 
content is a challenge. With so much information 
available online, selecting relevant news has 
become a time-consuming and challenging task. A 
news recommender system (NRS) offers solutions 
to the information overload problem and provides 
relevant and interesting news recommendations to 
users (Raza and Ding, 2021b). 

In the state-of-the-art of NRS, the news stories 
that users have read in the past are used to infer 
their interests and preferences. However, there is 
usually frequent content updating in a news 
domain. We show the news reading behaviour of a 
typical user in Figure 1 as an example. 

  
Figure 1: A user’s behaviour during news reading 

We see in Figure 1 that this user reads about the 
‘COVID-19 cases in Ontario’ during time t1, and 
then read about ‘Canadian children 5 to 11 could 
become eligible for COVID-19 vaccine…” during 
t2, and then his following action (read/click) is 
reading the news ‘COVID-19 travel ban on 
tourists’ during t3. We also observe that there is a 
transition in user preferences to other topics, for 
example, the elections, and politics in the later 
time. This shows that a user in an NRS generally 
changes his/her interests over time. Some of the 
user interests are long-term which shows a habit or 
personality, while some of the user interests are 
short-term, which may erupt due to some trending 
news, a sudden interest in an event and so. It is 
important to consider the accuracy as well as the 
diversity of news items while providing 
recommendations to users in an NRS (Raza and 
Ding, 2021a). This is a motivation for this research.   

A common practice in the recommender systems 
is to design a two-tower architecture (Wang et al., 
2019), where, first, a retrieval model retrieves a 
subset of related items from a large corpus in 
response to a user’s query, and, then a ranking 
model ranks the retrieved items based on users’ 
actions (clicks or ratings). The quality of retrieved 
items plays a critical role in the retrieval stage. The 
retrieval and ranking mechanism is also used in 
two-tower architectures (Yang et al., 2020).   

In a typical two-tower architecture (Yi et al., 
2019; Yang et al., 2020; Wang et al., 2019), there is 
usually no mechanism for the information 
interaction between the two towers. Usually, the 

Accuracy meets Diversity in a News Recommender System 
 

Shaina Raza1*, Syed Raza Bashir2, Usman Naseem3 
1 University of Toronto, Toronto, ON, Canada 

2 Toronto Metropolitan University, Toronto, ON, Canada 
3 The University of Sydney, Sydney, Australia 

shaina.raza@utoronto.ca,  razabashir55@hotmail.com,  usman.naseem@sydney.edu.au 
 
 
 

3778



 
 
 

items or users are represented by their IDs or titles 
(for example, movie ID, news ID, user ID) to 
represent each tower. By missing the chance to 
include rich information related to news items (e.g., 
news body, categories, etc.) or user contexts (e.g., 
a situation when the user interacts with the news, 
such as time, and place) in the two-tower 
architecture, we are providing recommendations 
that are not quite relevant to users’ preferences. 

An issue with a typical recommender system is 
that they only focus on the relevancy of users’ 
preferences and there is usually no consideration of 
diversity aspects while making recommendations 
(Raza and Ding, 2021a). For example, if we 
consider a real-time news recommendation 
scenario, we find that there are different categories 
of news (for example, sports, entertainment, 
politics, weather, and such), and the number of 
news items in each category varies (i.e., are 
imbalanced). As a result, the items in a single news 
category may account for most news 
recommendations. Consequently, the news 
recommendations that are produced may be too 
narrow and users’ diversified interests are not 
addressed. 

To address the above issues (incorporating rich 
user-item interactions and diversity of 
recommendations), we present a novel two-tower 
architecture for an NRS. We summarize our 
contributions as:  

 We present a two-tower architecture for NRS 
and supplement the item tower with rich side 
information (meta-data) related to news 
items. We also consider the user context(s) in 
the query tower.  We represent each user 
query by an augmented vector, which consists 
of the user’s query and the news item features. 
The augmented vector is then updated based 
on the output representation vector of the 
other tower for a positive sample. In this way, 
the augmented vector implicitly models the 
information interaction between the two 
towers. 

 To introduce diversity in the two-tower 
architecture, we include a category loss 
function during the training phase that aligns 
the representation of news items from a 
variety of news categories.  

Extensive experiments on two news datasets 
show that our proposed approach has two major 

advantages: (i) it provides deeper insights into the 
information interaction of two-tower models in an 
NRS, and (ii) it provides diversified news 
recommendations (along with relevant 
recommendations) from a variety of news 
categories. Our goal is to provide news 
recommendations that are relevant to users’ past 
preferences (interests) and are diversified at the 
same time 

2 Related Work 

Deep learning has demonstrated great success in 
recommender systems, such as in movie 
recommendations (WeAreNetflix, 2018), social 
networks (Ojagh et al., 2020) and many other 
application domains. Recommending news is 
particularly challenging (Raza and Ding, 2021b). 
This is because of the dynamic nature of the news 
domain and changing users’ preferences. The state-
of-the-art NRSs (Wang et al., 2018; An et al., 2019; 
Zhu et al., 2019) has shown tremendous 
performance in both academia and industry, 
however, a few challenges need to be addressed. 
First, these models do not extract enough news data 
from a reader’s history. There are many pieces of 
information, other than news ID or title, that may 
be more descriptive (e.g., the news story) or better 
reflect a reader’s interests (e.g., topics, categories) 
than titles or IDs. Second, the focus in these 
methods is usually on the relevancy and not on the 
diversity aspect. 

Some works consider the two-tower deep neural 
networks to learn representation from content 
features in language models (Chidambaram et al., 
2018; Logeswaran and Lee, 2018). These two-
tower models are also used in recommender 
systems to leverage content features on the item 
side (Yi et al., 2019). Nevertheless, these models 
are usually focused on the relevancy of retrieved 
items, which is appreciated, however, they are not 
used to address the diversity aspect. In this work, 
we use a two-tower architecture for an NRS and try 
to incorporate both accuracy (relevancy) and 
diversity of news items while making 
recommendations to the users.  

Maximal marginal relevance (MMR) is a 
classical technique to increase the diversity of 
documents retrieved against a query in an 
information retrieval system. MRR is also used in 
recommender systems to include diversity during 
the re-ranking phase of recommended items 
(Ziegler et al., 2005).  
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Figure 2:  Network architecture for our proposed two-tower NRS    

 
Some work (Raza and Ding, 2020; Qin and Zhu, 

2013) considers diversity in the recommendation 
process by using the regularization terms on items’ 
feature space. Dueling Bandit Gradient Descent 
(DBGD) (Afsar et al., 2021) is an online learning-
to-rank algorithm based on multi-arm bandit 
algorithms and is used to model the exploration-
versus-exploitation trade-off for relative feedback. 
DBGD is recently used in a state-of-the-art NRS 
(Zheng et al., 2018) to improve recommendation 
diversity. However, the learning efficiency of this 
model is limited in high-dimensional parameter 
space. Second, this method assumes only binary 
feedback because there is no way of directly 
observing the reward of users’ actions. In this work, 
we also consider diversity during the model 
training time, but we use a category loss function 
for this purpose. Our intuition is that news items 
under different news categories are highly 
imbalanced and the recommendations are usually 
produced considering one such major category. We 
try to provide recommendations by considering 
news items from a diverse set of news categories. 

3 Methodology  

3.1 Problem Formulation 

Considering the news item set {𝑣 }  and a query 
set as {𝑢 } , where N represents the number of 

news items, and M is the number of users, we refer 
to the news recommendation problem R, as 
selecting the candidate news items from the entire 
news corpus given a certain query.  
        We refer to a query as the feedback given by 
the user. We present the query-item feedback as a 
matrix 𝑅 ∈  ℝ × .  If the query j gives positive 
feedback on a news item i, then we consider it as 
𝑅 = 1  (positive feedback), otherwise 𝑅 = 0 . 
We represent each news item by the news content 
features, including news ID and side information, 
such as news title, body, and category. We also 
represent a user query with contextual factors, such 
as the time, and place when the user interacts with 
the item. By providing more information related to 
the query and the item, we can model rich 
interactions between two towers in a two-tower 
architecture.  
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3.2 Proposed two-tower architecture  

We show our proposed framework for the two-
tower architecture in Figure 2 and explain its work 
next: 

Embedding Layer: The first layer is the 
embedding layer in the two-tower architecture. We 
define an embedding matrix E ∈  ℝ × , where E 
is the embedding matrix, 𝐾 is the embedding 
dimension and D refers to the number of unique 
features. Each piece of information or feature in 𝑢  
and 𝑣   goes through the embedding layer and is 
mapped to a low-dimensional dense vector, 𝑒 ∈

 ℝ , where 𝑒  is the 𝑗  column of E.  
Augmented Layer: First, we create two input 

feature vectors 𝕫   and 𝕫   that contains the 
information about the current query vector u and 
the news item vector v. Then, we create two 
augmented vectors 𝑎   and 𝑎   by the IDs, 
corresponding to 𝑢  and 𝑣 respectively. These 
vectors 𝑎   and 𝑎   are then concatenated with 𝕫  
and 𝕫  vectors to obtain the information from the 
feature vectors. We show 𝕫   and 𝕫   as shown in 
Equations (1) and (2) respectively: 

𝕫 = [𝑒   ||𝑒 ||𝑒 || … ||𝑎 ]   (1) 

𝕫 = [𝑒   ||𝑒 ||𝑒 || … ||𝑎 ]   (2) 

Where 𝑒  , f is a feature that is related to u (e.g., 
place when the user interacts with the item) or v 
(e.g., news category sports or source NYTimes 
related to a news item), and the notation || refers to 
the vector concatenation operation. 

The concatenated vectors 𝕫  and 𝕫  are fed into 
two towers (query and news item), which consist 
of the fully connected layers with the ReLU 
activation function. These layers receive the 
information between two towers through the 
augmented vectors 𝑎  and 𝑎  (𝑎  and 𝑎  provides 
information about users’ positive interactions). The 
output from the fully connected layers goes 
through ℓ  normalization layer that gives the 
augmented representations of query 𝑞   and news 
item 𝑝 . We define these steps formally as shown 
in Equation (3): 

      𝑝 = ℓ 𝑛𝑜𝑟𝑚(ℎ )           (3) 

ℎ = RELU(𝑊 ℎ + 𝑏 ) 

                  ℎ = RELU(𝑊 𝑧 + 𝑏 ) 

 where notation ℓ  refers to loss, ℓ 𝑛𝑜𝑟𝑚  is 

ℓ −normalization, subscript L in h refers to layer, 
h is the intermediate representation, 𝑧 denotes 𝑧  

and 𝑧  , 𝑝  refers to 𝑝  and 𝑝  ; 𝑊  denotes the 
weight matrix in lth layer, 𝑏  refers to the bias 
vector. The representation 𝑝, is the output vector 
of the ℓ  normalization layer. 

Loss function: We define the loss function as the 
mean square error between the augmented vector 
and query/item embedding for each sample of 
which label equals 1. The goal of the loss function 
is to use the augmented vector to fit all positive 
interactions in the tower belonging to the 
corresponding query/ news item. Formally, the loss 
functions are defined in Equations (4) and (5). 

ℓ = ∑  [𝑦𝑎( , , )∈ + (1 − 𝑦) 𝑝 − 𝑝 ] (4) 

ℓ = ∑  [𝑦𝑎( , , )∈ + (1 − 𝑦)𝑝 − 𝑝 ]   (5) 

where ℓ   refers to the loss function with query 
vector and ℓ  is a loss function associated with a 
news item vector.  𝑇𝑟 is a training dataset, 𝑇 refers 
to query-item pairs 𝑇𝑟, 𝑦 ∈ {0,1} is the label. If the 
label 𝑦 = 1, it means the augmented vectors 𝑎  and 
𝑎  approach the query embedding 𝑝  and the news 
item embedding 𝑝 , otherwise 𝑦 = 0. We apply the 
stop gradient strategy to stop the gradient of ℓ  and 
ℓ  from flowing back into 𝑝  and 𝑝  respectively.  

Once the augmented vectors 𝑎   and 𝑎   are 
obtained, they can model the information 
interaction between the two towers, and these 
vectors are considered as the input feature of the 
two towers. Finally, the output of the model is the 
inner product of the query embedding and news 
item embeddings, as shown in Equation (6): 

𝑠(𝑢, 𝑣) =< 𝑝 , 𝑝 >   (6) 

where 𝑠(𝑢, 𝑣)  refers to the score provided by the 
proposed model. 

News categories and diversity:  In real-time 
news recommendation scenarios, the categories of 
news items are usually diverse (e.g., sports, 
politics, entertainment and so) and the number of 
news items under each new category is usually 
uneven. To incorporate diversity, we need to 
consider the recommendations from diverse news 
categories. To accomplish this, we propose another 
loss function related to the news category during 
the training phase that transfers the knowledge 
learned in one news category to the other news 
categories.  

In particular, the news item representation 𝑝  of 
a major news category 𝐶𝑎𝑡𝑒 = {𝑝 } 
(having the largest amount of data) is taken and 
transferred to other category sets 

3781



 
 
 

𝐶𝑎𝑡𝑒 , 𝐶𝑎𝑡𝑒 , 𝐶𝑎𝑡𝑒 , ..  and so. We define a loss 
function as the distance between the second-order 
statistics (covariances) of the major category and 
other news categories' features (Bello et al., 2008), 
shown in Equation (7): 

ℓ = ∑ ||ℂ (𝐶𝑎𝑡𝑒𝑚𝑎𝑗𝑜𝑟 − ℂ(𝐶𝑎𝑡𝑒𝑖)||
𝐹
2𝑛

𝑖=2 ) (7) 

where ℂ  (·) denotes the covariance matrix, ||. ||  
refers to the square matrix Frobenius norm and 𝑛 is 
the number of news categories. 

3.3 Model Training  

We treat the news recommendation problem as a 
binary classification problem and use a random 
negative sampling technique, following the 
standard practice (Wu et al., 2020; Wu et al., 2021a; 
An et al., 2019) in most NRS. In particular, for each 
query in the positive query-item pair (the label = 1), 
we randomly sample N news items from the news 
corpus to create 𝕊 negative query-item pairs (label 
= 0) with this query and add these 𝕊 + 1 pairs to 
the training dataset. In the training process, we use 
binary cross-entropy to calculate the loss for the 
pairs, as shown in equation (8): 

ℓ = ∑  [𝑦𝑙𝑜𝑔𝜎(≺ 𝑝 , 𝑝 ≻) +( , , )∈

(1 − 𝑦) log(1 − 𝜎 (≺ 𝑝 , 𝑝 ≻))]  (8) 

𝑇𝑟 = 𝐷 × (𝕊 + 1) 

where 𝜎 (·) refers to the sigmoid function, 𝐷 
denotes the number of positive feedback query-
item pairs and 𝑇𝑟  refers to the total number of 
training pairs.  
Final loss function: The final loss function is 
calculated as shown in Equation (9): 

ℓ = ℓ + 𝛾 ℓ +𝛾 ℓ + 𝛾 ℓ  (9) 

where 𝛾 , 𝛾 , 𝛾  refers to the tunable parameters. 

4 Experiment 

4.1 Datasets 

MIcrosoft News Dataset (MIND): MIND (Wu et 
al., 2020) is a benchmark dataset consisting of 
anonymized behaviour logs from Microsoft News. 
New York Times (NYTimes): we collected the news 
articles and the anonymized readers’ interactions 
using NYTimes API. A sample of the dataset can 
be accessed here1. Both datasets consist of English 

 
1 https://github.com/deeplearningnrs/D2NN 

news articles. We generated the training samples 
from the click histories and impression logs 
according to the format given in the MIND paper 
(Wu et al., 2020). The basic details for both datasets 
are shown in Table 1.   

Dataset MIND -small NYTimes 

Duration 
6 weeks (12th 
Oct.  2019 - 22nd 
Nov. 2019) 

2 years (1st Jan. 
2017 - 31st Dec. 
2018) 

Readers 50,000 240,000 
News 161,013 15,000 
Clicks 156,925 2,000,000 

News 
information 

ID, headline, snippet (abstract), 
category, subcategory, publication 
timestamp 

Reader 
information 

ID, interaction timestamp, click 
history, impressions 

Table 1:  Dataset details 

4.2 Evaluation methodology and metrics 

Following the standard evaluation methodology 
and metrics in NRS (Wu et al., 2020; Wang et al., 
2018), we conduct a time-based splitting and use 
the following evaluation metrics. 

Accuracy metrics: Normalized Discounted 
Cumulative Gain (NDCG) and F1-score (harmonic 
mean of precision and recall). 

Diversity metric: we use GiniIndex (GINI) (Sun 
et al., 2019b) for diversity, as it is a commonly used 
diversity metric in this kind of problem like 
diversity and fairness (Wu et al., 2021b). 

tradeoff (Raza and Ding, 2020; Raza and Ding, 
2021a): We consider the trade-off between the 
mean F1-score (accuracy) and mean GINI index 
(diversity) scores. Our trade-off metric is defined 
in Equation 10: 

𝑡𝑟𝑎𝑑𝑒𝑜𝑓𝑓 = 2 ∗
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦)

(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦)
(10) 

Both the F1 and GINI scores are in the range [0,1]. 
We take the mean of top @ 10, 20 and 50 for 
calculating means of accuracy and diversity. We 
show the results in percentages.  

4.3    Baselines Methods 

We use the following baseline methods: 
BERT4Rec (Sun et al., 2019a) with bidirectional 

self-attention to model user behaviour sequences. 
We use Bayesian Personalized Ranking (BPR) 
(Rendle et al., 2012) as the loss function.  
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  MIND NYTimes 
Model k NDCG F1 Gini NDCG F1 Gini 

Our approach  10 43.80% 36.90% 87.40% 51.00% 38.00% 78.30% 
 20 50.10% 44.60% 82.70% 53.50% 45.00% 73.90% 
 50 63.50% 62.10% 77.40% 66.70% 65.50% 73.30% 
 trade-off 68.91% 69.18% 

BERT4Rec 10 41.80% 24.50% 74.30% 43.00% 25.00% 74.00% 
 20 56.60% 42.20% 72.40% 58.00% 42.50% 71.80% 
 50 60.10% 57.90% 70.60% 62.00% 60.10% 69.00% 
 trade-off 63.62% 64.24% 

Two-tower 10 37.20% 44.50% 60.00% 37.80% 45.20% 56.00% 
 20 38.10% 48.50% 57.90% 39.60% 49.50% 52.50% 
 50 39.10% 49.70% 54.50% 42.00% 51.20% 51.30% 
 trade-off 51.99% 51.25% 

Youtube-DNN 10 31.40% 35.30% 69.40% 33.00% 36.10% 65.00% 
 20 34.50% 39.40% 58.90% 35.20% 40.40% 55.70% 
 50 41.40% 46.40% 57.90% 42.00% 47.00% 54.20% 
 trade-off 51.52% 50.34% 

LSTUR 10 39.70% 30.70% 81.20% 35.80% 22.10% 76.40% 
 20 44.90% 32.60% 79.70% 42.00% 28.90% 75.90% 
 50 55.10% 49.30% 72.50% 52.40% 34.20% 69.90% 
 trade-off 58.69% 45.93% 

MultiVAE 10 32.90% 32.00% 58.90% 38.90% 34.20% 53.40% 
 20 42.30% 39.00% 58.50% 44.00% 40.20% 51.10% 
 50 43.40% 42.60% 57.60% 45.70% 44.50% 50.00% 
 trade-off 48.98% 47.09% 

RepeatNet 10 37.80% 22.00% 74.70% 38.00% 25.00% 74.30% 
 20 39.90% 24.10% 69.20% 41.00% 24.50% 65.80% 
 50 43.20% 40.80% 65.30% 44.50% 41.00% 62.50% 
 trade-off 50.22% 49.52% 

SASRecF 10 31.70% 24.00% 77.50% 32.00% 24.40% 74.00% 
 20 32.70% 31.80% 75.80% 33.50% 32.00% 70.00% 
 50 35.40% 32.10% 72.20% 36.80% 33.40% 68.80% 
 trade-off 44.44% 44.97% 

ENMF 10 27.20% 14.50% 64.60% 28.90% 18.30% 63.70% 
 20 28.10% 23.50% 57.90% 31.20% 25.00% 55.00% 
 50 31.40% 29.70% 54.50% 33.40% 32.40% 52.40% 

 trade-off 38.45% 40.04% 

Table 2:  Performance of all models (Bold means best result, italic is second best, and underline is third-best)

MultiVAE (Liang et al., 2018), a collaborative 
filtering method with variational autoencoders. We 
use the cross-entropy as the loss function type. 

ENMF (Chen et al., 2020) is an efficient matrix 
factorization method without sampling. We use the 
cross-entropy as the loss function for this model. 

SASRecF (Zhang et al., 2019) is a feature-level 
self-attention model. We choose the BPR as the 
loss function. 

RepeatNet (Ren et al., 2019) is a session-based 
recommender. We choose the BPR as loss function. 

LSTUR (An et al., 2019) is an NRS that 
addresses long-short term users’ preferences. We 
minimize the summation of negative log-
likelihood of all positive samples during training,  

Two-tower Model (Huang et al., 2013), is a 
standard two-tower model in retrieval tasks to 
leverage rich content features. 

YouTubeDNN (Covington et al., 2016)  is also a 
two-tower approach that feeds vectors into a multi-
layer feed-forward neural network. 

4.4 Hyperparameters 

We implemented these models in TensorFlow. The 
embedding dimension and batch size were fixed to 
32 and 256. We use the Adam optimizer. Other 
hyperparameters of all models were individually 
tuned to achieve optimal results to ensure a fair 
comparison. The dimensions of augmented vectors 
𝑎   and 𝑎  were both set to 𝑑 = 32, the tuning 
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parameter 𝛾 , 𝛾  were set to 0.5 and 𝛾  to 1. We set 
top@ k to 10, 20 and 50, as it is normally good 
practice to retrieve a relatively large number of 
candidate news items to rank. 

5 Results and Analysis 

5.1 Overall results 

The comparison between our model and baselines 
is shown in Table 2. These scores are calculated 
using top@ 10, 20 and 50. We expect a good 
tradeoff score to be above 50% as it is a harmonic 
mean score. 
     Overall, we see in Table 2 that our proposed 
model has the highest accuracy, diversity and trade-
off values on both datasets (MIND and NYTimes). 
This is shown by the highest F1-score, NDCG, 
Gini index and trade-off values of our approach 
among all the baseline methods. The superiority of 
our model is attributed to its design which has the 
following properties: 1) it considers the rich side 
information from the news content, 2) it considers 
the contexts in users’ queries to better capture the 
sequential patterns of users’ clicks, and 3) it 
considers news item representation of uneven 
categories and provide diversified 
recommendations. 
     Among baselines, the general performance of 
BERT4Rec is better than other baselines. 
BERT4Rec has also shown good performance in 
the general recommendation tasks through bi-
directional contexts. The accuracy and tradeoff 
scores of BERT4Rec are also quite high. 

Next, comes the performance of two-tower and 
Youtube-DNN methods in terms of tradeoff scores, 
both of which are based on two-tower architecture. 
The two-tower model performs better than 
Youtube-DNN in most scores. These methods 
provide the advantage of feature interactions, so a 
higher accuracy from these models was also 
expected. However, the diversity scores of these 
models are around 50-60%, which is not too high, 
probably because, they do not consider the 
diversity from uneven categories as we are 
incorporating into our approach.  

The performance of LSTUR, in terms of tradeoff 
score, comes next. This model is constructed from 
the start to model news and user-specific 
information in their default configuration. In other 
models, incorporating news and user-modelling 
information may be mandated. LSTUR performs 
better in the MIND dataset, which is the default 

dataset (An et al., 2019) in the original paper. 
Compared to the accuracy scores of LSTUR, we 
see good diversity scores from this model (after our 
proposed model). The MIND dataset considers 
session-based information, so some diversity 
scores from LSTUR is expected on this dataset. 
LSTUR also shows good diversity in NYTimes. 
LSTUR also performs better than Youtube-DNN 
on MIND dataset. 

MultiVAE is a collaborative filtering system and 
a non-linear probabilistic model. In terms of 
accuracy, the MultiVAE performs average in our 
experiments, and the model’s diversity scores are 
not quite high. This is most likely because CF 
models (such as MultiVAE) mainly focus on the 
personalized recommendation strategy (Su and 
Khoshgoftaar, 2009), which identifies similarities 
between users/items to serve relevant product 
recommendations. As a result, we can expect the 
model to provide some accurate recommendations, 
but not too high diversity.  

According to our results, the session-based 
recommenders i.e., SASRecF, and RepeatNet all 
have low-to-moderate accuracy. however, we see 
that these models show some higher diversity 
(above 50%). When it comes to providing diverse 
recommendations, usually the session-based 
recommender systems perform well (Karatzoglou 
and Hidasi, 2017). This is probably because of the 
ability of these models to recommend new and less 
similar items that users interacted within a session.  

ENMF, a collaborative filtering method, has 
low-to-average accuracy and diversity scores 
resulting in average trade-off scores in our 
experiments. This suggests that we should 
probably extend a typical model to include more 
contexts, sequential information, or other 
recommendation models in order to provide better 
recommendations to users.  

Overall, we see better results with the MIND 
dataset compared to NYTimes dataset. Due to 
brevity concerns and better overall results with the 
MIND dataset, we present the results of the 
subsequent experiments using the MIND dataset.  

In the later experiments, we are only reporting 
the results on MIND dataset based on better results 
of all models on this dataset. 

5.2 Accuracy-diversity trade-off 

In this section, we showcase the accuracy-diversity 
trade-off achieved by our model. Figure 3 shows 
that as accuracy (mean F1-score) increases, 
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diversity (GINI) decreases, indicating an inherent 
relationship between these two evaluation aspects, 
which has also been validated in previous research 
(Adomavicius and Kwon, 2008; Raza and Ding, 
2020; Raza and Ding, 2021a; Isufi et al., 2021). 

 
Figure 3: Accuracy and diversity trade-off of our model 

As shown in Table 2, our model has the highest 
overall accuracy and diversity among all baselines, 
which is supported by a balanced trade-off score. 
Figure 3 also shows that as we increase the length 
of the recommendation list (top@ k), the accuracy 
of our model increases, whereas the diversity 
decreases. This increase in accuracy is due to the 
recall, which increases as the recommended items 
increase.  

We also test the effectiveness of using different 
evaluation modes, which are discussed next:  

 

Figure 4:  Model performance using different modes 

random X (rand-X): randomly sample X negative 
items for each positive item in the testing set. 
popularity X (pop-X): sample X negative items for 
each positive item in the testing set based on item 
popularity. full ranking: evaluating the model on 
item sets.  Rand-100 and pop-100 are negative 
sampling techniques. We report the results with 
X=100 based on best results, on the average of top 
@k (10, 20 and 50) and show scores in Figure 4. 

Figure 4 shows that the rand-100 has the highest 
accuracy (F1, NDCG) score. We also see that the 

rand-100 mode gives us the highest diversity score 
(GINI-index). The pop-100 evaluation mode 
considers the 100 negative items for each positive 
item in the testing set based on item popularity and 
shows good results too, this is much like a 
collaborative filtering scenario, where some 
diversity is often compromised (Boim et al., 2011). 
The model variant with full evaluation mode shows 
good accuracy after the rand-100 variant. Overall, 
we find that the random negative sampling 
technique is a useful evaluation technique to 
achieve a balance between accuracy and diversity. 

5.3 Effectiveness of side information 

We also test the effectiveness of our model with 
and without the news side information (news body, 
news category, title). we consider the news body as 
a piece of side information in this experiment. The 
results are shown below in Table 3: 

Metric All features Without news body 
F1@10  36.90% 25.90% 
F1@20  44.60% 21.40% 
F1@50  62.10% 15.20% 

Gini@10 87.40% 77.40% 
Gini@20 82.70% 72.70% 
Gini@50 77.40% 69.20% 
tradeoff 60.50% 32.40% 

Table 3. Model performance for side information. 

As can be seen in Table 3, more content features 
improve the model performance compared to when 
we do not consider the news body. This signifies 
the importance of including more content-based 
features in the item tower that will interact with the 
query tower. Similarly, including more contextual 
features also improves model performance, we 
could not show this result due to limited space. 

6 Conclusion  

This paper proposes a two-tower architecture to 
model the information interaction between the two 
towers (query and news items). Extensive 
experiments on two datasets show the better 
performance of the proposed approach in achieving 
a balance between accuracy and diversity. In 
future, we like to conduct experiments on more 
real-world news data and make a deeper neural 
network.  We like to evaluate our approach using 
more diversity metrics, such as normalized topic 
coverage and novelty. We also like to include more 
users’ feedback like click-through rate. 
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Abstract

Data augmentation with mixup has shown to
be effective on the NLP tasks. Although its
great success, the mixup still has shortcomings.
First, vanilla mixup randomly selects one sam-
ple to generate the mixup sample for a given
sample. It remains unclear how to best choose
the input samples for the mixup. Second, lin-
ear interpolation limits the space of synthetic
data and its regularization effect. In this pa-
per, we propose the dynamic nonlinear mixup
with distance-based sample selection, which
not only generates multiple sample pairs based
on the distance between each sample but also
enlarges the space of synthetic samples. Specif-
ically, we compute the distance between each
input data by cosine similarity and select multi-
ple samples for a given sample. Then we use
the dynamic nonlinear mixup to fuse sample
pairs. It does not use a linear, scalar mixing
strategy, but a nonlinear interpolation strategy,
where the mixing strategy is adaptively updated
for the input and label pairs. Experiments on
the multiple public datasets demonstrate that
dynamic nonlinear mixup outperforms state-of-
the-art methods.

1 Introduction

Deep neural networks have achieved great success
in NLP tasks, such as text classification (Zhang
et al., 2015), machine translation (Sutskever et al.,
2014), and dialogue tasks (Serban et al., 2016).
These models usually require a large amount of la-
beled data, but labeling data is time-consuming and
expensive. Data augmentation is a common tech-
nology to solve the data scarcity problem. Some of
them are based on rules (Wei and Zou, 2019) and
models (Edunov et al., 2018) to generate similar
text. Augmented data are trained by advanced train-
ing methods (Park et al., 2021). On the other hand,
mixup (Zhang et al., 2017b) trains the classifier on

∗Corresponding author

the synthetic data which are generated by the linear
interpolation of the input and label pairs.

Recently, many variants of mixup are proposed
and successfully applied to NLP tasks. It mainly
includes two categories: input-level mixup (Yoon
et al., 2021) and hidden-level mixup (Sun et al.,
2020; Guo, 2020). Hidden-level mixup is more
popular because of the discrete nature of text data
and variable sequence lengths. It usually fuses the
hidden vectors like embeddings or intermediate
representations. While the hidden-level mixup is
effective, it still has some issues. First, mixup
produces the sample pairs by randomly choosing
a sample for a given sample. How to select the
optimal input and label pairs is unclear. Second, the
space of synthetic data is limited due to its linear
nature. Although nonlinear mixup (Guo, 2020)
is proposed and utilizes the matrix mixing policy
for the sample pairs, the matrix is fixed during
the training process and it is difficult to get the
appropriate parameters.

In this paper, we propose a dynamic nonlin-
ear mixup with distance-based sample selection
method to address the above problems. First, we
compute the distance between each input sample
by cosine similarity. Then we pick the Top-K sam-
ples with the largest distance and the Top-K sam-
ples with the smallest distance for a given sample.
Second, we obtain mixed inputs by performing a
dynamic mixing strategy on these sample pairs.
Unlike nonlinear mixup (Guo, 2020), where the
fixed matrix fusion method is applied to the sample
pairs, our method uses the vector mixing policy
and dynamically updates its parameters. The fea-
ture space of the generated data is further enlarged
by this way. Since the dimensions of the one-hot
label and vector mixing policy are different, we
learn the label embedding instead of the original
label. The mixing policy of labels is adaptively
learned based on the mixed input. In summary, the
main contributions of our work are summarized as
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follows:
• We propose the dynamic nonlinear mixup,

which expands the space of the generated data by
the dynamic vector mixing policy. Besides, we
introduce distance-based sample selection to gen-
erate more mixup samples, which improves the
generalization ability of the model.
• We conducted comparative experiments on

four datasets. The experimental results demonstrate
that our method outperforms other state-of-the-art
methods, especially in low-resource scenarios.

2 Related work

Traditional data augmentation methods are catego-
rized into adding noise and back-translation. Easy
Data Augmentation (EDA) (Wei and Zou, 2019)
proposes four methods to add noise: synonym
replacement, random insertion, random deletion,
and random swap. It can create a large number
of augmented training samples but may lose se-
mantic information due to random deletion. Back-
translation (BT) (Zhang and Zong, 2016; Edunov
et al., 2018) trains target-to-source system to gener-
ate the source language. BT keeps the semantics of
the original text, but the augmentation data depends
on the quality of the translation model.

Another class of methods is based on the tech-
nique of interpolation. A data augmentation
method mixup (Zhang et al., 2017b) is proposed
and has shown good performance in the image
classification. Mixup trains the classifier on the
synthetic data which are generated by the linear
interpolation of the input and label pairs. In NLP
tasks, it usually uses hidden-level mixup. Word-
Mixup and senMixup (Guo et al., 2019) are two
linear interpolation methods that are implemented
on the word embeddings and sentence embeddings.
Sun et al. (2020) incorporate mixup to transformer-
based pre-trained architecture to boost the perfor-
mance of NLU tasks. Park and Caragea (2022)
propose a novel mixup strategy for pre-trained lan-
guage models by both the Area Under the Mar-
gin (AUM) statistic and the saliency map of each
sample. Chen et al. (2020) propose a data aug-
mentation method called Tmix for semi-supervised
learning, which interpolates labeled and unlabeled
samples in the hidden space to improve the per-
formance of text classification. BatchMixup (Yin
et al., 2021) utilizes interpolation strategy in a mini-
batch to improve model performance on the pre-
trained language model RoBERTa (Liu et al., 2019).

Yoon et al. (2021) propose the Saliency-Based Span
Mixup (SSMix), which generates a sentence while
reserving the locality of two original texts by span-
based mixing and keeping more tokens related to
the prediction relying on saliency information.

The above methods just randomly select one
sample for a given sample. The number of gen-
erated samples is insufficient. We choose Top-K
largest distance samples and Top-K smallest dis-
tance samples according to the distance between
each sample. It can generate more sample pairs for
mixup. Besides, mixup uses linear interpolation
which limits the space of generated data. We utilize
dynamic nonlinear mixup which expands the space
of the generated data. Similar to us, the nonlinear
mixup (Guo, 2020) uses the fixed matrix mixing
strategy. Finding an appropriate hyperparameter is
difficult. In contrast, our method utilizes a vector
mixing strategy that can be dynamically updated
throughout the training process.

3 Approach

In this section, we first present the mixup, followed
by distance-based sample selection, and the de-
tails of the dynamic nonlinear mixup. Finally, the
training strategy is introduced. Figure 1 gives an
overview of our method.

3.1 Mixup
Mixup is first introduced for image classification,
which uses the linear interpolation to generate the
synthetic data based on the input and label pairs.
Specifically, a sample pair (xi, yi) and (xj , yj),
where x and y denote the input samples and corre-
sponding labels, respectively. The synthetic sample
is generated as follows:

xij = λxi + (1− λ)xj
yij = λyi + (1− λ)yj

(1)

where λ is the mixing-ratio and sampled from a
Beta(α,α) distribution with the hyper-parameter
α ∈ (0,∞). Inspired by its great success in the
image domain, this method is introduced into text
classification. Unlike the image data, the text is
composed of discrete and variable-length tokens.
Generally, we extract the sentence embedding of
the sample pairs by CNN, LSTM, or Transformer.
Then, the sample pairs are linearly interpolated.

3.2 Distance-based Sample Selection
For sample (xi, yi), mixup randomly selects an-
other sample (xj , yj) to generate the new sample
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Figure 1: The architecture of the dynamic nonlinear mixup with distance-based sample selection, where m̃ is the
predicted value and m̂ is the ground truth. Ldnm is loss. For easy explanation, we select Top-1 largest distance
samples and Top-1 smallest distance samples.

(xij , yij). The number of generated samples is lim-
ited because only one sample is picked. Intuitively,
if the distance between a given sample and another
sample is larger, the potential generation space of
generated sample is larger. If only the samples
with the largest distance are selected, the distribu-
tion of synthetic samples may not cover the middle
area, which will reduce the performance of the
model. In this paper, We propose the distance-
based sample selection method which combines
Top-K largest distance samples and Top-K smallest
distance samples. We assume that there is training
data X = {xi, yi}Ni=1, where N is the number of
training data. The text representation H = {hi}Ni=1

is obtained through the feature encoder. We com-
pute the distance L ∈ RN×N between each sam-
ple embedding representations by cosine similar-
ity as the basis for selecting samples. For sample
(xi, yi), we find Top-K largest distance samples
XLi = {xLij , yLij }Kj=1 and Top-K smallest distance
samples XSi = {xSij , ySij }Kj=1. We generate 2K
mixed samples for a given sample (xi, yi) by inter-
polating the Top-K largest distance samples XLi

and Top-K smallest distance samples XSi .

3.3 Dynamic Nonlinear Mixup

To expand the space of generated samples, we pro-
pose the dynamic nonlinear mixup method. First,
we use dynamic vector mixing policy to obtain the
mixed input, where the parameters of the vector are
learnable. Second, The mixing policy is a vector
instead of a scalar, which cannot be applied to the
label pairs because of dimension difference. We
use the label embeddings to encode the one-hot
labels. The label weights are updated based on the
mixed input samples. In the following, we describe
the details of this method successively.

3.3.1 Mixed Input
Although nonlinear mixup (Guo, 2020) expands
the space of generated samples, the parameters of
matrix mixing policy are constant. In this paper,
we propose the dynamic nonlinear mixup which up-
dates the mixing policy during the training process.
We assume that v1, v2 ∈ R1×d denote the weight
vectors, where d is the dimension. In order to make
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the probability between 0 and 1, we normalize the
vectors v1 and v2 in each dimension to get v̂1 and
v̂2 by softmax. The input of dynamic nonlinear
mixup is computed as follows:

hij = v̂1 ◦ hi + v̂2 ◦ hj (2)

where hij is the input representation of the syn-
thetic sample. ◦ denotes the element-wise product.
The parameters of the vector are updated through-
out the training process. Compared with the matrix
mixing method, the space of the synthetic samples
is wider and the model has better generalization
ability. Note that our method mixes samples at the
[CLS] hidden state representations level of the top
layer of the pre-trained language model.

3.3.2 Mixed Label
Since our mixing strategy is a vector instead of a
scalar, it cannot be applied to one-hot label because
the vector and label have different dimensions. To
overcome this problem, we use label embedding
(Zhang et al., 2017a) which adopts different vec-
tors to encode each category. M ∈ Rc×d is the
label embedding matrix, where c is the number of
categories. The mixed label m̂ij is computed as
follows:

Φi = (v̂1 ◦ hi)W
Φj = (v̂2 ◦ hj)W
m̂ij = Φ̂i ◦mi + Φ̂j ◦mj

(3)

where W ∈ Rd×d is the weight matrix. Similarly,
we also normalize the weight vector Φi,Φj in each
dimension to get Φ̂i, Φ̂j . mi is the label embedding
of the i-th sample. In this way, the target weight
vector is generated based on the mixed input sam-
ple, which makes the model automatically obtain
the appropriate synthetic sample target. Finally,
the input and label of the generated samples are
(hij , m̂ij).

3.4 Training strategy
We obtain the predicted d-dimensional class vector
m̃ij by feeding the mixing input into fully con-
nected layer:

m̃ij = fc(hij) (4)

We use cosine similarity to measure the corre-
lation between the predicted vector m̃ij and true
vector m̂ij . Since the cosine value is closer to 1,
the similarity of the two vectors is higher. We use

the mean squared error (MSE) to compute the loss:

Lij =MSE(Cos(m̃ij , m̂ij), 1) (5)

We add up the losses of all synthetic samples to
get Ldnm. Finally, the loss is as follows:

Ldnm =
1

N × 2K

N∑

i=1

2K∑

j=1

Lij (6)

In testing phase, the cosine value is calculated be-
tween the predicted class vector m̃ij and the set
of label embedding matrix M , and the class corre-
sponding to the maximum value is regarded as the
predicted label. Algorithm 1 describes the training
procedure of our method.

Algorithm 1 Training procedure of our method
Input: Labeled data D, label embedding
matrix M , weight vector v1, v2, weight ma-
trix W , F is feature encoder, N is the
batch size, iters is the total number of itera-
tions.

1: Let t = 0.
2: while t <iters do
3: t = t+1
4: Total_Loss = 0
5: Loss = 0
6: Tb = RandomSelect(D,N)
7: Obtain the hidden layer representation

HTb = F (Tb)
8: Compute the distance L according to HTb

9: for i = 1 to N do
10: Select Top-K largest distance samples

XLi

11: Select Top-K smallest distance samples
XSi

12: Generate 2K mixed inputs using Eq. (2)
13: Generate 2K mixed labels using Eq. (3)
14: Compute the predicted value of each

mixed input using Eq. (4)
15: Compute the dynamic nonlinear mixup

loss of each mixed sample using Eq. (5)
16: Loss = Loss+ LossLi + LossSi

17: end for
18: Total_Loss = Total_Loss+ Loss
19: Update the model parameters by minimizing

Total_Loss
20: end while
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4 EXPERIMENT

4.1 Dataset Preparation
We use four datasets to evaluate our method. They
are single-sentence classification tasks. Subj is
a subjective dataset and the label is subjective or
objective (Pang and Lee, 2004). MR is a movie
review dataset with positive or negative (Pang and
Lee, 2005). SST-1 is the Stanford Sentiment Tree-
bank with five categories of very positive, positive,
neural, negative, and very negative (Socher et al.,
2013). SST-2 removes the neural label of SST-1
and is a binary classification task. Table 1 summa-
rizes the all datasets.

Data c l Train Test Val
Subj 2 23 8000 1000 1000
MR 2 20 8528 1068 1066

SST-2 2 19 6920 1821 872
SST-1 5 18 8544 2210 1101

Table 1: Statistics of the experimental datasets. c: num-
ber of labels. l: average sentence length.

4.2 Implementation Details
We utilize the WordPiece to split the sentences
into tokens. In our experiment, we adopt the
BERTbase(uncased) to obtain the sentence embed-
ding. The maximum sequence length, batch size,
step, and dropout is 128, 20, 4000, and 0.1, respec-
tively. The learning rate is 2e-5. The dimension
of the label embedding is 768. For each dataset,
the average and standard error of the accuracy
are calculated over 5 runs with different random
seeds. Besides, we explore the effectiveness of
our method under low-resource scenarios, and we
select 50, 200, 500, 1000, and 2000 training data.
For the hyper-parameter K, we select the optimal
parameters on the three datasets (Table6 and Ta-
ble7). Finally, We set K=5 in all our experiments.
Additionally, all parameters are optimized by the
adaptive momentum algorithm.

4.3 Baselines
We consider the following approaches for compar-
isons:

WordMixup: it applies linear interpolation at
word embedding level (Guo et al., 2019).

SenMixup: it applies linear interpolation at sen-
tence embedding level, namely the layer before the
softmax layer (Guo et al., 2019).

NonlinearMixup: it uses the matrix mixing
method to obtain the synthetic data (Guo, 2020).

BERT: it fine-tunes vanilla BERT on training
data.

BERT+WordMixup: it fuses the the BERT-
based word embeddings by the mixup.

BERT+SenMixup: it uses mixup to fuse the
BERT-based sentence embeddings.

BERT+NonlinearMixup: it utilizes the BERT-
based word embeddings and NonlinearMixup to
train model.

We compare our method with other state-of-the-
art methods on the four datasets and the experi-
mental results are shown in Table 2, Table 3, Ta-
ble 4, and Table 5. As can be seen, our method
has achieved the best performance on most tasks.
Besides, the results reveal several interesting ob-
servations. (1) The first is that the training data
is sufficient. WordMixup, SenMixup, and Nonlin-
earMixup use CNN or LSTM to obtain the embed-
ding representation and achieve good performance.
The classification accuracy of vanilla BERT all
surpasses WordMixup, SenMixup, and Nonlin-
earMixup. It shows that BERT model can pro-
duce better word embedding vectors. Comparing
with BERT, BERT+WordMixup outperforms 0.7%
on Subj dataset, 0.4% on MR dataset, 0.3% on
SST-2 dataset and 0.3% on SST-1 dataset, respec-
tively. BERT+SenMixup also outperforms BERT.
Mixup is beneficial to improve the performance
of large pre-trained language models. Comparing
with BERT+NonlinearMixup, our method exceeds
0.7% on Subj dataset, 0.4% on MR dataset, 0.9%
on SST-2 dataset and 1.0% on SST-1 dataset, re-
spectively. The distance-based sample selection
method can generate multiple sample pairs, and
the dynamic nonlinear mixup expands the space
of generated samples. Therefore, the generaliza-
tion ability of the model is improved. (2) The
second is that the training data is scarce. The
classification accuracy of WordMixup, SenMixup,
and NonlinearMixup dropped sharply. BERT
can achieve better performance due to the pre-
training on the large-scale unlabeled corpus. The
classification accuracy of BERT+WordMixup and
BERT+SenMixup also outperforms BERT. Com-
pared with BERT+NonlinearMixup, our method
exceeds 1.0% on Subj dataset, 2.3% on MR dataset,
1.8% on SST-2 dataset, and 2.4% on SST-1 dataset
for 50 training data, respectively. The performance
improvement with less data is higher than using
full training data. It shows that our method is more
effective in low-resource settings.
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Training Data 50 200 500 1000 2000 all
WordMixup 72.4±0.6 80.6±0.7 84.1±0.6 87.4±0.5 91.6±0.4 94.3±0.6
SenMixup 73.1±0.7 81.4±0.5 84.8±0.4 88.1±0.3 92.4±0.2 95.0±0.3

NonlinearMixup 74.5±0.2 82.2±0.3 86.1±0.2 89.7±0.3 93.2±0.2 94.1±0.1
BERT 89.5±0.4 93.1±0.6 93.5±0.4 94.3±0.5 94.9±0.2 96.0±0.3

BERT+WordMixup 91.8±0.3 93.9±0.2 94.7±0.4 94.9±0.2 96.0±0.5 96.7±0.3
BERT+SenMixup 92.1±0.4 93.8±0.3 94.2±0.3 94.8±0.4 95.6±0.4 96.6±0.5

BERT+NonlinearMixup 92.4±0.5 94.3±0.4 94.9±0.4 94.6±0.2 95.9±0.3 97.3±0.4
Ours 93.4±0.2 95.2±0.5 95.6±0.4 95.8±0.3 96.9±0.4 98.0±0.3

Table 2: Classification accuracy (%) on the Subj dataset.

Training Data 50 200 500 1000 2000 all
WordMixup 65.7±0.6 68.7±0.6 70.5±0.4 72.2±0.7 76.5±0.3 79.7±0.5
SenMixup 66.3±0.4 67.9±0.5 69.4±0.3 73.1±0.5 77.1±0.5 80.3±0.6

NonlinearMixup 67.4±0.2 69.5±0.3 71.1±0.1 74.6±0.3 78.2±0.5 83.4±0.4
BERT 76.6±0.5 81.0±0.5 82.2±0.6 82.9±0.5 84.7±0.4 87.8±0.3

BERT+WordMixup 77.2±0.5 81.3±0.4 82.3±0.4 83.9±0.3 85.0±0.5 88.2±0.4
BERT+SenMixup 77.0±0.4 81.4±0.3 82.6±0.3 83.7±0.5 85.4±0.5 88.1±0.3

BERT+NonlinearMixup 77.3±0.5 81.7±0.6 83.0±0.4 84.3±0.4 85.6±0.3 88.8±0.5
Ours 79.6±0.3 82.6±0.4 83.9±0.4 85.2±0.4 86.4±0.3 89.2±0.4

Table 3: Classification accuracy (%) on the MR dataset.

Training Data 50 200 500 1000 2000 all
WordMixup 66.3±0.6 73.2±0.7 79.4±0.4 78.7±0.5 83.2±0.6 87.1±0.3
SenMixup 67.2±0.7 74.0±0.5 78.7±0.3 77.9±0.6 83.4±0.3 87.2±0.4

NonlinearMixup 68.1±0.3 75.2±0.4 80.2±0.5 79.3±0.5 84.3±0.5 88.6±0.3
BERT 82.6±0.5 85.8±0.3 86.6±0.2 87.9±0.3 89.7±0.4 90.7±0.3

BERT+WordMixup 83.1±0.4 86.4±0.5 87.6±0.3 88.6±0.4 89.6±0.4 91.0±0.3
BERT+SenMixup 83.0±0.5 86.1±0.4 87.8±0.3 88.4±0.2 89.9±0.3 91.1±0.2

BERT+NonlinearMixup 83.3±0.5 86.7±0.6 88.4±0.4 88.9±0.5 90.9±0.3 91.6±0.6
Ours 85.1±0.3 87.7±0.4 88.1±0.3 89.5±0.2 91.4±0.3 92.5±0.2

Table 4: Classification accuracy (%) on the SST-2 dataset.

Training Data 50 200 500 1000 2000 all
WordMixup 26.3±0.6 32.4±0.7 35.4±0.5 38.3±0.6 42.5±0.8 48.2±1.0
SenMixup 27.1±0.7 33.0±0.4 36.2±0.5 37.8±0.5 41.7±0.3 48.6±0.2

NonlinearMixup 27.8±0.3 33.8±0.3 36.7±0.5 38.9±0.4 43.5±0.2 49.3±0.4
BERT 33.3±0.5 39.7±0.4 45.6±0.3 46.1±0.4 48.8±0.2 52.6±0.3

BERT+WordMixup 33.7±0.4 39.3±0.5 45.1±0.3 48.0±0.6 49.4±0.4 52.9±0.2
BERT+SenMixup 33.8±0.4 38.8±0.3 44.8±0.4 47.4±0.2 49.3±0.3 53.0±0.2

BERT+NonlinearMixup 34.9±0.3 40.6±0.4 46.6±0.5 47.5±0.4 50.3±0.4 53.4±0.3
Ours 37.3±0.3 41.8±0.2 47.7±0.5 48.6±0.2 51.4±0.3 54.4±0.2

Table 5: Classification accuracy (%) on the SST-1 dataset.

4.4 Regularization Effect

We plot the training set loss and testing set accuracy
using all training data on Subj and SST-1 datasets in
Figure 2. Compared with BERT+NonlinearMixup,

our method can reduce the training loss faster
and have higher classification accuracy. Besides,
the classification accuracy has not dropped even
through a long training time. It shows that our
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Figure 2: Training set loss and testing set accuracy on Subj dataset (a) (b) and SST-1 dataset (c) (d) when using all
training data.

method can effectively prevent overfitting because
of more training samples and larger generated sam-
ple space.

4.5 Selection of Top-K

We investigate the effects of the K value on Subj,
MR, and SST-1 datasets using 50 and all training
data in Table 6 and Table 7. We vary the K value
with 1, 3, 5, 7, 9, respectively. We find that the
classification accuracy increases first and then de-
creases as K value increases. The best performance
is achieved when K = 5 on most tasks. Compared
with all training data, the improvement of model
performance is more obvious in 50 training data.
Moreover, as K value increases, the generated sam-
ples cannot improve the performance of the model
due to overfitting. It is necessary to find an appro-
priate parameter K.

Top-K Subj MR SST-1
1 92.5±0.4 77.2±0.3 35.2±0.3
3 91.7±0.3 78.3±0.2 36.1±0.4
5 93.4±0.2 79.6±0.3 37.3±0.3
7 93.1±0.3 78.8±0.3 36.9±0.5
9 92.9±0.2 79.2±0.4 36.6±0.4

Table 6: Classification accuracy under different K values
on Subj, MR, and SST-1 datasets when using 50 training
data.

Top-K Subj MR SST-1
1 97.2±0.4 88.7±0.4 53.3±0.3
3 97.6±0.3 88.5±0.5 53.8±0.4
5 98.0±0.3 89.2±0.4 54.4±0.2
7 97.9±0.5 89.4±0.2 54.0±0.3
9 97.4±0.4 89.1±0.5 53.5±0.4

Table 7: Classification accuracy under different K values
on Subj, MR, and SST-1 datasets when using all training
data.

4.6 Effects of Input Weights and Output
Weights

We construct four different ways to observe the
effects of weights on Subj, MR, and SST-1 datasets
using 50 and all training data in Table 8 and Table
9: tuned input weights (TIW), tuned output weights
(TOW), fixed input weights (FIW), and fixed output
weights (FOW). The input weights are shown in Eq.
(2), and the output weights are shown in Eq. (3).
The experimental results show that when the input
weights or output weight is fixed, the prediction
accuracy of our method is reduced. Compared
with FIW+FOW, TIW+TOW exceeds 2.3% on Subj
dataset, 2.8% on MR dataset, and 3.1% on SST-1
dataset for 50 training data, respectively. Compared
with FIW+FOW, TIW+TOW exceeds 1.5% on Subj
dataset, 1.4% on MR dataset, and 2.1% on SST-1
dataset for all training data, respectively. It shows
that our method is more suitable for low resource
situations.

Method Subj MR SST-1
TIW+TOW 93.4±0.2 79.6±0.3 37.3±0.3
TIW+FOW 91.7±0.3 77.9±0.2 35.1±0.2
FIW+TOW 92.1±0.2 78.2±0.4 34.9±0.3
FIW+FOW 91.1±0.1 76.8±0.3 34.2±0.2

Table 8: Effects of input weights and output weights on
Subj, MR, and SST-1 datasets when using 50 training
data.

Method Subj MR SST-1
TIW+TOW 98.0±0.3 89.2±0.4 54.4±0.2
TIW+FOW 96.7±0.3 88.4±0.3 53.1±0.3
FIW+TOW 96.5±0.4 88.1±0.2 53.0±0.4
FIW+FOW 96.2±0.2 87.8±0.3 52.3±0.3

Table 9: Effects of input weights and output weights on
Subj, MR, and SST-1 datasets when using all training
data.
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Figure 3: The t-SNE visualization of original samples and generated samples. The red, green and blue points denote
original samples, the generated samples with the Top-k largest distance and the generated samples with the Top-k
smallest distance.
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Figure 4: The t-SNE visualization of the Subj task (a) (b) and SST-2 task (c) (d). The red and blue points denote
different labels.

4.7 Ablation Studies

To analyze the effect of distance-based sample se-
lection (DSS), largest distance samples (LDS), and
smallest distance samples (SDS), and dynamic non-
linear mixup (DNM), we conduct the ablation ex-
periments using 50 and all training data in Table 10
and Table 11. The w/o DSS randomly selects a sam-
ple for a given sample. Our method can improve
the classification accuracy of the model by generat-
ing more sample pairs. Furthermore, we study the
contributions of the largest distance samples and
smallest distance samples. We can find the samples
with the largest distance has a greater impact than
samples with the smallest distance. The w/o DNM
follows the original mixing strategy to fuse the sen-
tence embeddings. When we interpolate sample
pairs by mixup, the classification accuracy of w/o
DNM degrades on Subj, MR, and SST-1 datasets.
It shows that dynamic nonlinear mixing strategy
can expand the space of generated samples.

4.8 Feature Visualization

To prove the idea in Section 3.2, we visualize the
original samples and generated samples by the t-
SNE (Van der Maaten and Hinton, 2008) in Figure
3. The distribution of the generated samples with

Method Subj MR SST-1
Ours 93.4±0.2 79.6±0.3 37.3±0.3

w/o DSS 91.3±0.5 78.3±0.3 36.1±0.3
w/o LDS 90.5±0.3 76.4±0.4 32.4±0.3
w/o SDS 91.6±0.4 77.9±0.3 35.2±0.4
w/o DNM 92.4±0.4 78.5±0.2 35.9±0.5

Table 10: Results of ablation on Subj, MR, and SST-1
datasets when using 50 training data.

Method Subj MR SST-1
Ours 98.0±0.3 89.2±0.4 54.4±0.2

w/o DSS 97.4±0.4 88.7±0.2 53.5±0.4
w/o LDS 93.9±0.2 86.5±0.4 50.5±0.5
w/o SDS 97.1±0.3 88.2±0.3 53.1±0.3
w/o DNM 97.3±0.3 88.3±0.2 53.6±0.4

Table 11: Results of ablation on Subj, MR, and SST-1
datasets when using all training data.

the Top-k largest distance is similar to the origi-
nal samples, and the generated samples with the
Top-k smallest distance are mainly distributed in
the middle area of the original samples. Besides,
we also select test samples and visualize the fea-
ture of the last layer in Figure 4. We perform the
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visualization on Subj and SST-2 datasets using all
training data. The vanilla BERT mixes samples
with different labels (Figure 4a and Figure 4c). Our
method can better separate samples with different
labels (Figure 4b and Figure 4d). The boundary of
text classification is clear. It proves that our method
can improve the performance of the model.

5 Conclusion

In this paper, we propose the dynamic nonlin-
ear mixup with distance-based sample selection
method to enhance the performance of pre-trained
language models. First, we introduce distance-
based sample selection to choose the Top-K largest
distance samples and Top-K smallest distance sam-
ples for a given sample. More generated samples
improve the generalization ability of the model.
Second, we utilize the dynamic nonlinear mixing
policy on the input sample pairs to enlarge the
space of the synthetic samples. The mixed labels
are constructed through the learned label embed-
dings and mixed input so that the mixed labels are
updated adaptively. Experiments on the Subj, MR,
SST-2, and SST-1 datasets demonstrate that our
method outperforms the state-of-the-art methods.
For future work, we plan to further enhance perfor-
mance by exploring different weighting schemes
for origin samples and augmented samples.
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Abstract

We present MULTICONER, a large multilin-
gual dataset for Named Entity Recognition
that covers 3 domains (Wiki sentences, ques-
tions, and search queries) across 11 languages,
as well as multilingual and code-mixing sub-
sets. This dataset is designed to represent
contemporary challenges in NER, including
low-context scenarios (short and uncased text),
syntactically complex entities like movie titles,
and long-tail entity distributions. The 26M to-
ken dataset is compiled from public resources
using techniques such as heuristic-based sen-
tence sampling, template extraction and slot-
ting, and machine translation. We applied
two NER models on our dataset: a baseline
XLM-RoBERTa model, and a state-of-the-
art GEMNET model that leverages gazetteers.
The baseline achieves moderate performance
(macro-F1=54%), highlighting the difficulty
of our data. GEMNET, which uses gazetteers,
improvement significantly (average improve-
ment of macro-F1=+30%). MULTICONER
poses challenges even for large pre-trained
language models, and we believe that it can
help further research in building robust NER
systems.

MULTICONER is publicly available,1 and we
hope that this resource will help advance re-
search in various aspects of NER.

1 Introduction

Named Entity Recognition (NER) is a core task
in Natural Language Processing which involves
identifying entities in text, and recognizing their
types (e.g., classifying entities as a person or loca-
tion). Recently, the development of Transformer-
based NER approach have results in new state-
of-the-art (SOTA) results on well-known bench-
mark datasets like CoNLL03 and OntoNotes (De-
vlin et al., 2019). Despite these strong results,

∗These authors contributed equally in this work.
1
https://registry.opendata.aws/multiconer/

Figure 1: Some examples for all the languages incor-
porated in MULTICONER.

there remain a number of practical challenges that
may not be represented by these existing datasets.

As noted by Augenstein et al. (2017), increas-
ingly higher scores on these datasets are driven by
several factors:

• Well-formed data, with punctuation and capital-
ized nouns, makes the NER task easier, provid-
ing the model with additional contextual cues.

• Texts from articles and the news domain contain
long sentences with rich context around entities,
providing valuable signals about the boundaries
and types of entities.

• Data from the news domain2 contains “easy” en-
tities such as country, city, and person names, al-
lowing pre-trained models to perform well due
to their existing knowledge of such tokens.

• Memorization effects, due to large overlap of
entities between the train and test sets also in-
creases performance.

Accordingly, models trained on existing bench-
mark datasets such as CoNLL03 tend to perform
significantly worse on unseen entities or noisy
text (Meng et al., 2021).

2e.g. CoNLL03 (Sang and De Meulder, 2003)
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1.1 Contemporary Challenges in NER
There are many challenging scenarios for NER
outside of the news domain. We categorize
the challenges typically encountered in NER ac-
cording to several dimensions: (i) available con-
text around entities, (ii) named entity surface
form complexity, (iii) frequency distribution of
named entity types, (iv) dealing with multilingual
and code-mixed textual snippets, and (v) out-of-
domain adaptability.

Context News domain text often features long
sentences that reference multiple entities. In other
applications, such as voice input to digital assis-
tants or search queries issued by users, the input
length is constrained and the context is less infor-
mative. Datasets featuring such low context set-
tings are needed to assess model performance.

Additionally, capitalization and punctuation
features are large drivers of success in NER (May-
hew et al., 2019). However, inputs such as
search queries from users, or voice commands
transcribed using ASR, lack these surface features.
To understand model performance in such cases,
an uncased dataset is needed.

Entity Complexity Datasets in existing NER
benchmarks are often dominated by entities rep-
resenting persons, locations, and organizations.
Such entities are often composed of proper nouns,
or have names with simple syntactic structures.
However, not all entities are so simple in struc-
ture: some entity types (e.g., creative works)
can be linguistically complex. They can be
complex noun phrases (Eternal Sunshine of

the Spotless Mind), gerunds (Saving Private

Ryan), infinitives (To Kill a Mockingbird), or
full clauses (Mr. Smith Goes to Washington).
Syntactic parsing of such nouns is hard, and most
current parsers and NER systems fail to recognize
them. The top system from WNUT 2017 achieved
8% recall for creative work entities (Aguilar et al.,
2017). Corpora including such challenging en-
tities are needed for evaluation of model perfor-
mance in such cases.

Entity Distributions In many domains, entities
have a large long-tail distribution, with millions of
possible values (e.g., location names). This makes
it hard to build representative training data, as a
small dataset can only cover a portion of the po-
tentially infinite entity space. A very large test set
is required for comprehensive evaluation.

Furthermore, some domains have entity spaces
that are continuously growing. While all entity
types are open classes (i.e., new ones are added),
some groups have a faster growth rate, e.g., new
books, songs, and movies are released weekly. As-
sessing true model generalization requires test sets
with many entities that are unseen in the training
set, in order to mimic an open-world setting.

Multilinguality and Code-Mixing The recent
success of multilingual models have greatly
boosted task performance in languages with fewer
resources, by leveraging transfer learning from
high resource languages. However, there are limits
to what can be achieved with cross-lingual trans-
fer, and training data in additional languages is
necessary to make progress in this field. The avail-
ability of a NER dataset that addresses all the
above challenges across many languages will en-
able new research directions in multilingual model
evaluation, as well as for few- and zero-shot cross-
lingual transfer scenarios.

Code-mixing, where entities and the main text
may be in different languages, is another related
research area in multilingual NER where addi-
tional resources can help. Code-mixed data is in-
creasing online, especially in social media plat-
form where multiple languages are used in a single
post. Such a dataset is needed to study this area
and evaluate truly multilingual NER systems.

Domain Adaptation A robust NER model is ex-
pected to perform effectively in several domains,
such as well written sentences, questions, web
search queries, etc. While well written sentences
can be easy for NER, shorter questions and queries
can be challenging. It is important to study how to
adapt existing NER into newly emerging domains.
However, most of the existing NER benchmarks
only focus on data in a single domain limiting its
usage for studying domain adaptation.

MULTICONER We address the aforemen-
tioned challenges by presenting MULTICONER,
a multilingual dataset that features a large number
of entities (including complex ones) in three dis-
tinct domains that represent different challenges.
Some key facts about MULTICONER:

• Textual snippets in MULTICONER are low in
context, allowing to assess NER model’s capa-
bility in detecting ambiguous named entities;
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Source Gold Sentence

English – Wiki [heat vision and jack]CW , a 1999 television pilot
Spanish – Wiki reina consorte de [escocia]LOC como esposa de

[jacobo v]PER.
English – QA when was the [nokia 2.2]PROD released
English – Search Query cast of [dr. devil and mr. hare]CW
Russian – QA gde bylo [korolevy krika]CW sn�to
Code-Mixed (KO/EN) [symphony no. 7 in e major]CW 란무엇입니까?

Table 1: Examples from MULTICONER: entities are in
brackets, followed by their type.

• Named entities contain a highly diverse distri-
bution from simple Location (LOC) to highly
complex entities Creative Work (CW);

• Using open knowledge bases such as Wikipedia
and Wikidata, we generate textual snippets that
contain highly diverse named entities;

• Through a combination of localized versions of
Wikipedia and Wikidata, and as well as auto-
mated text translation approaches, we generate
NER data for 11 languages and 3 domains that
can be used to test cross-lingual and cross do-
main NER performance. Some examples are
presented in Figure 1.

2 MULTICONER Dataset Overview

The MULTICONER dataset was designed in or-
der to address the NER challenges described in
§1.1. It represents 3 domains (wiki sentences,
questions, and search queries) and includes 11
languages, including multilingual and code-mixed
subsets. MULTICONER was collected and re-
leased as part of the SemEval 2022 Task#11, serv-
ing more than 236 participants across all the dif-
ferent languages (Malmasi et al., 2022).

2.1 NER Taxonomy
MULTICONER leverages the WNUT 2017 (Der-
czynski et al., 2017) taxonomy entity types, which
defines the following NER tag-set with 6 classes:

• PERSON (PER for short, names of people)

• LOCATION (LOC, locations/physical facilities)

• CORPORATION (CORP, corporations/businesses)

• GROUPS (GRP, all other groups)

• PRODUCT (PROD, consumer products)

• CREATIVE-WORK (CW, movie/song/book titles)

This taxonomy allows us to capture a wide ar-
ray of entities, including those with more complex
entity structure, such as creative works.

2.2 Languages and Subsets

Bangla (BN) Hindi (HI) German (DE)
Chinese (ZH) Korean (KO) Turkish (TR)
Dutch (NL) Russian (RU) Farsi (FA)
English (EN) Spanish (ES)

Table 2: The languages included in MULTICONER, along
with their 2-letter codes.

There are 11 languages included in MULTI-
CONER (cf. Table 2). These languages were cho-
sen to include a diverse typology of languages and
writing systems, and range from well-resourced
(e.g., EN) to low-resourced ones (e.g., FA).

MULTICONER contains 13 different subsets:
11 monolingual subsets for the above languages,
a multilingual subset (denoted as MULTI), and a
code-mixed one (MIX).

Monolingual Subsets Each of the 11 languages
has their own subset with data from all domains.

Multilingual Subset This contains randomly
sampled data from all the languages mixed into a
single subset. This subset is designed for evalu-
ating multilingual models, and should ideally be
used under the assumption that the language for
each sentence is unknown. A more detailed de-
scription of the multilingual train/dev/test set con-
struction is provided in §3.

Code-mixing Subset This subset contains code-
mixed instances, where the entity is from one lan-
guage and the rest of the text is written in another
language. Like the multilingual subset, this subset
should also be used under the assumption that the
languages present in an instance are unknown.

2.3 Domains and Data Sources

The three domains3 of MULTICONER are listed
below. Details on the construction of the different
subsets are provided in §3.

Wikipedia Sentences (LOWNER) This subset
of MULTICONER, which we call Low-context
Wikipedia NER (LOWNER) set, is built by sam-
pling sentences from Wikipedia and using heuris-
tics to identify ones that represent the NER chal-
lenges we target. More details on how we select
sentence from Wikipedia are provided in §3.2.

3Domain can have ambiguous interpretations (van der
Wees et al., 2015), in our case it reflects a combination of
provenance and text genre.
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Questions (MSQ-NER) The MSQ-NER subset
of MULTICONER represents NER in the QA do-
main. It is composed of a set of natural language
questions, based on the MS-MARCO QnA corpus
(V2.1) (Bajaj et al., 2016).

Search Queries (ORCAS-NER) The ORCAS-
NER subset of MULTICONER represents the
search query domain. To build this data, we uti-
lize 10 million Bing user queries from the ORCAS
dataset (Craswell et al., 2020).

2.4 Data Splits

To ensure that obtained NER results on this dataset
are reproducible, we create three predefined sets
for training, development and testing. The en-
tity classes within each set are approximately uni-
formly distributed. Table 3 shows detailed statis-
tics for each of the 13 subtasks and data splits.

Training Data For the training data split, we
limit the size to be 15, 300 sentences. The number
of instances was chosen to be comparable to well-
known NER datasets such as CoNLL03 (Sang and
De Meulder, 2003). Majority of the instances
come from the LOWNER domain, with a small
sample of 100 instances from the MSQ-NER and
ORCAS-NER domains. These instances represent
out-of-domain adaptation. The out-of-domain in-
stances are limited in order to be able to realis-
tically assess the out-of-domain performance of
models trained on the MULTICONER dataset.

Note that in the case of the Multilingual subset,
the training split contains all the instances from the
individual language splits. For Code-Mixed on the
other hand, we constructed only a small training
split, in this way we allow for NER models to bet-
ter model this task, rather than having abundance
of code-mixed instances. The Code-Mixed in-
stances are constructed by first sampling instances
from the language specific training splits, and then
at random replacing the original entity surface
forms into their corresponding surface forms in
another language present in our dataset.

Development Data We randomly sample 800
instances per subset from the LOWNER domain
(5% of the training set size), a reasonable amount
of data for assessing model generalizability.

The only difference in the development data is
for the Multilingual and Code-Mixed subtastks,
where the development splits are constructed sim-
ilar as for the training splits (see above).

Test Data Finally, the testing set represents the
remaining instances that are not part of the training
or development set. To avoid exceedingly large
test sets, we limit the number of instances in the
test set to be around 215k sentences at most (cf.
Table 3). The only exception is for the Multilin-
gual and Code-Mixed subsets. The Multilingual
test split was generated from the language specific
test splits, and was downsampled to contain only
471k instances. On the other hand, for the Code-
Mixed subset, we sample test sentences from the
language specific test splits, and replace the orig-
inal entity surface forms with the surface form of
the entity in another language, picked at random.

The larger size of test sets are done for two rea-
sons: (1) to assess the generalizability of mod-
els on unseen and complex entities; and (2) as-
sess cross-domain adaptation performance. Ta-
ble 4 provides a breakdown of the number of in-
stances for the different domains across the differ-
ent subtasks.

Finally, the overlap of NEs between the test and
train set is fairly small, with an overlap of 5.6%
across all NE classes and languages. Such a small
NE overlap ensures that the test dataset is suitable
for measuring NER model generalization.

2.5 License, Availability, and File Format

The dataset is released under a CC BY-SA 4.0 li-
cense, which allows adapting the data. Details
about the license are available on the Creative
Commons website.4 The data is distributed us-
ing the commonly used BIO tagging scheme in
CoNLL03 format (Sang and De Meulder, 2003).
The complete dataset is available for download.5

3 Dataset Construction

In this section, we provide a detailed description
of the methods used to generate our dataset.

3.1 Entity Gazetteer Data

We require a large, multilingual, and reliable
source of known entities for generating our
dataset. To this end we leverage the Wikidata to
obtain entity information. Instead of using all en-
tities in the KB, or collecting entities from web
sources (Khashabi et al., 2018), we instead focus
on entities that map to our taxonomy.

4
https://creativecommons.org/licenses/by-sa/4.0

5
https://registry.opendata.aws/multiconer/

3801



class split EN DE ES RU NL KO FA ZH HI TR BN MULTI MIX

PER
train 5,397 5,288 4,706 3,683 4,408 4,536 4,270 2,225 2,418 4,414 2,606 43,951 296
dev 290 296 247 192 212 267 201 129 133 231 144 2,342 96
test 55,682 55,757 51,497 44,687 49,042 39,237 35,140 26,382 25,351 26,876 24,601 111,346 19,313

LOC
train 4,799 4,778 4,968 4,219 5,529 6,299 5,683 6,986 2,614 5,804 2,351 54,030 325
dev 234 296 274 221 299 323 324 378 131 351 101 2,932 108
test 59,082 59,231 58,742 54,945 63,317 52,573 45,043 43,289 31,546 34,609 29,628 141,013 23,111

GRP
train 3,571 3,509 3,226 2,976 3,306 3,530 3,199 713 2,843 3,568 2,405 32,846 248
dev 190 160 168 151 163 183 164 26 148 167 118 1,638 75
test 41,156 40,689 38,395 37,621 39,255 31,423 27,487 18,983 22,136 21,951 19,177 77,328 16,357

CORP
train 3,111 3,083 2,898 2,817 2,813 3,313 2,991 3,805 2,700 2,761 2,598 32,890 294
dev 193 165 141 159 163 156 160 192 134 148 127 1,738 112
test 37,435 37,686 36,769 35,725 35,998 30,417 27,091 25,758 21,713 21,137 20,066 75,764 18,478

CW
train 3,752 3,507 3,690 3,224 3,340 3,883 3,693 5,248 2,304 3,574 2,157 38,372 298
dev 176 189 192 168 182 196 207 282 113 190 120 2,015 102
test 42,781 42,133 43,563 39,947 41,366 33,880 30,822 30,713 21,781 23,408 21,280 89,273 20,313

PROD
train 2,923 2,961 3,040 2,921 2,935 3,082 2,955 4,854 3,077 3,184 3,188 35,120 316
dev 147 133 154 151 138 177 157 274 169 158 190 1,848 117
test 36,786 36,483 36,782 36,533 36,964 29,751 26,590 28,058 22,393 21,388 20,878 75,871 20,255

#instances
train 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 168,300 1,500
dev 800 800 800 800 800 800 800 800 800 800 800 8,800 500
test 217,818 217,824 217,887 217,501 217,337 178,249 165,702 151,661 141,565 136,935 133,119 471,911 100,000

Table 3: MULTICONER dataset statistics for the different languages for the train/dev/test splits. For each NER class we show
the total number of entity instances per class on the different data splits. The bottom three rows show the total number of
sentences for each language.

lang LOWNER ORCAS-NER MSQ-NER Total

EN 100,000 100,000 17,818 217,818
DE 100,000 100,000 17,824 217,824
ES 100,000 100,000 17,887 217,887
RU 100,000 100,000 17,501 217,501
NL 100,000 100,000 17,337 217,337
KO 60,425 100,000 17,824 178,249
FA 48,792 100,000 16,910 165,702
ZH 33,776 100,000 17,885 151,661
HI 24,807 100,000 16,758 141,565
TR 19,581 100,000 17,354 136,935
BN 15,698 100,000 17,421 133,119
MULTI 200,000 200,000 71,911 471,911
MIX 42,168 15,667 42,165 100,000

Table 4: Test data statistics per domain.

We map Wikidata entities to our NER taxon-
omy (§2.1). This is done by traversing Wikidata’s
class and instance relations, and manually map-
ping them to our NER classes, e.g., Wikidata’s
human class maps to PER in our taxonomy, song
to CW, and so on. Alternative names (aliases) for
entities are included. The distribution of these en-
tities is shown in Table 9 in §A.1.

3.2 Wiki Sentences

LOWNER, the Wiki sentences component of MUL-
TICONER is obtained by parsing Wikipedia arti-
cles into sentences, and selecting suitable candi-
dates. Figure 2 shows a diagram of the basic data
processing steps, which are described below.

This process is performed for the following lan-

guages: NL, EN, FA, KO, RU, ES, TR. For the other
languages (BN, ZH, DE, HI), we apply Machine
Translation to obtain the data, as described in §3.4.

Wikipedia Parsing (A) We start by download-
ing the complete Wikipedia dumps for our target
languages.6 The files are parsed to first extract
individual articles, which are then each parsed to
remove markup and extract individual sentences.
This process yields a set of sentences7 with the in-
terlinks intact, along with the IDs of the original
article they were extracted from.

Interlink Parsing (B) In the next step, we parse
the sentences to identify interlinks (links to other
Wikipedia articles). We then map the interlinks
in each sentence to an entity in the Wikidata KB.
This mapping is provided in the KB, which links
entities to their Wikipedia page names, which can
be used to map linked pages to an entity ID. The
identified entities are finally resolved to our NER
taxonomy (using the same approach that was de-
scribed in §3.1). Some interlinks point to inexist-
ing Wikipedia articles, or the linked Wikipedia ar-
ticle cannot be joined to a corresponding Wikidata
entry. We mark such cases as unresolvable.

Sentence Filtering (C) Next, we filtered sen-
tences using several strategies and heuristics.

6Dumps are available here: https://dumps.
wikimedia.org/backup-index.html

7e.g., > 180 million sentences for English.
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Figure 2: An overview of the different steps involved in extracting the MULTICONER data from Wikipedia dumps.

• Length filtering: short sentences (< 28 charac-
ters) and long ones (> 180 characters) are re-
moved.

• Interlink filtering: sentences without interlinks,
or with unresolvable links, are dropped. Sen-
tences with interlinks that did not map to our
taxonomy are dropped.

• Capitalization heuristic filtering: for languages
that capitalize proper nouns or entities, a heuris-
tic is used to filter out sentences that contain
capitalized tokens that are not part of an inter-
link. This removes sentences containing poten-
tial nouns that cannot be tagged as entities by
our method since they are not linked to a known
entity whose type can be determined.

This filtering process removes long and high-
context sentences that contain references to many
entities. This step discards over 90% of the sen-
tences retrieved in the prior steps, e.g., resulting in
approx. 14 million candidate sentences for EN. Fi-
nally, to assess the NER label quality, for a small
random sample of 400 sentences, we assessed the
accuracy of NER gold labels, which was was mea-
sured at 94% accuracy for EN-LOWNER.

This process is very effective at yielding short,
low-context sentences. Example English sen-
tences are shown in Table 5. The sentences con-
tain some context, but they are much shorter than
the average Wikipedia sentence, and usually only
contain a single entity, making them more aligned
with the challenges listed in Section 1.1.

The design is considered a forerunner to the modern
[food processor].
The regional capital is [Oranjestad, Sint
Eustatius].
The most frequently claimed loss was an [iPad].
An [HP TouchPad] was prominently displayed in an
episode of the sixth season.
The incumbent island governor is [Jonathan G. A.
Johnson].
A revised edition of the book was released in 2017
as an [Amazon Kindle] book.

Table 5: Sample sentences extracted from Wikipedia.
Resolved entities are in brackets.

MSQ-NER ORCAS-NER

average retail price of <PROD> <CW> imdb

where was <CW> filmed best hotels <LOC>

how many miles from <LOC> to <LOC> <PER> parents

how many kids does <PER> have <PROD> price

when did <GRP> start <GRP> website

when will <CORP> report earnings <CORP> customer service

Table 6: Sample templates used to generate data for
the MSQ-NER and ORCAS-NER domain. Slots are in
angle brackets.

Data Sampling (D) We downsample the col-
lected data to construct a smaller subset. Given
that some of the NE classes are more prevalent
(e.g. PER and LOC, account for more than 60% of
named entities) , similar to stratified sampling, we
sample at NE class level, with the only difference,
that the number of instances per class is fixed. In
this way, we create a dataset that has more uniform
representation of the different NE classes. Further-
more, retaining all sentences is impractical, given
the total amount of data.

Finally, we lowercase all the selected sentences
to increase the difficulty of the NER task. The final
stats per subset and split are shown in Table 3.

3.3 Questions and Search Queries

We apply a template-based process to generate
data in the Questions and Search Query domains.
This involves two broad steps: template extrac-
tion, and template slotting.

The same steps are applied to two data sources
to generate the NER datasets. This process is vi-
sualized in Figure 3, and the individual steps are
detailed below.

Running Named Entity Recognition (A) Sim-
ilar to the work of Wu et al. (2020), we aim to
templatize the input questions and search queries
by first applying NER to extract entities, which are
then mapped to our taxonomy.

Specifically, we apply the spaCy NER pipeline8

8We use the en_core_we_lg pre-trained pipeline in
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Figure 3: An overview of the data processing steps in our template-based approach to generating the NER data for the MSQ-
NER and ORCAS-NER domains.

to identify entities. While this pre-trained NER
system cannot correctly identify all the entities in
the data, it does identify many correct ones. This
process yields a sufficient amount of data for us to
extract common patterns from the original input.
Recognized entities are then mapped to entries in
our gazetteer via string matching. Input texts that
have entities that could not be mapped, or have
no recognized entities are then filtered out. This
process yields a set of sentences, with recognized
entities that exist in our gazetteer.

Template Extraction (B) Next, we replace
identified entities with their types to create tem-
plates, e.g., “when did [iphone] come out” is
transformed to “when did <PROD> come out”.
The templates are then grouped together in order
to merge all inputs having the same template, and
sorted by frequency.

To minimize noise in the data, we apply
frequency-based filtering, and only templates ap-
pearing >= 5 times are included. This process
results in 3, 445 unique question templates, and
97, 324 unique search query templates. There are
a wide range of question shapes and entity types.
Examples are listed in Table 6.

Since these templates are all in English, we ap-
ply Machine Translation to translate them into the
other 10 languages of our dataset.

Template Slotting (C) In the last step we
generate the NER data by slotting the tem-
plates with random entities from the Wikipedia
KB with the same class. For example,
“when did <PROD> come out” can be slotted
as “when did [xbox 360] come out” or “when
did [Sony Alpha DSLR-A77 II] come out”.

To maintain the same relative distribution as the
original data, each template is slotted the same
number of times it appeared (i.e., the template fre-
quency) using different entities. Templates are

spaCy where the NER model is trained using OntoNotes 5.

EN: average cost of living in <p translate=no> <LOC> </p>
ZH: <p translate=no> <LOC> </p>的平均生活成本
DE: durchschnittliche Lebenshaltungskosten in <p
translate=no> <LOC> </p>
HI: rhne ki aust laa <p translate=no> <LOC> </p>

Table 7: Examples of template translations.

slotted with entities from the same language, i.e., a
DE template is slotted with DE entities. The slotted
texts are lowercased to simulate the low-context
challenges outlined in §1.1, which increases the
difficulty of the task. This yields two domains of
MULTICONER: MSQ-NER and ORCAS-NER.

3.4 Dataset Translation
We apply automatic translation to generate two
portions of our data. LOWNER sentences for four
languages (Bangla, Chinese, German, Hindi) are
translated from English Wiki sentences. The NER
templates used for MSQ-NER and ORCAS-NER

are also translated from the English templates. We
do not translate any of our gazetteer entities.

We use the Google Translation API9 to per-
form our translations. The input texts may con-
tain known entity spans or slots. To prevent these
spans from being translated, we leveraged the
notranslate attribute to mark these spans and
prevent them from being translated. Table 7 shows
examples of template translations.

The translation quality of LOWNER, ORCAS-
NER and MSQ-NER in the different languages
such as German, Chinese, Bangla, and Hindi is
very high, with over 90% translation accuracy
(i.e., accuracy as measured by human annotators
in terms of the translated sentence retaining the se-
mantic meaning and as well have a correct syntac-
tic structure in the target language).

3.5 Code-mixed Data Generation
We generate code-mixed data by sampling in-
stances from the respective languages, and replac-
ing the NE surface forms from the source language

9https://cloud.google.com/translate

3804



to a target language, chosen at random from any of
the languages in Table 2. This results in a dataset,
where the instances contain up to two languages,
where the non-NE tokens are in a language that is
different from the NE tokens. Note that, in some
cases, some of the NE surface forms may remain
in the source language if we do not possess the
NE’s surface form in one of the other languages
from Table 2.10

4 NER Model Performance

To evaluate whether our new dataset poses real-
world challenges (cf. §1.1), we train and test two
existing NER systems: (1) XLM-RoBERTa (Con-
neau et al., 2020), a large multilingual Trans-
former model; and (2) GEMNET (Meng et al.,
2021; Fetahu et al., 2021, 2022), a state of the
art model that integrates gazetteers into XLM-
RoBERTa.

4.1 Evaluation Metrics

We evaluate the different NER models using stan-
dard performance metrics, such as P/R/F1. We
measure the performance at the class level, where
we distinguish between micro/macro averages.
The difference between micro and macro average
P/R/F1, is that for unbalanced distribution micro
performance is skewed towards the more promi-
nent NE classes. Additionally, we consider Men-
tion Detection (MD), which corresponds to the
ability of models to detect NE boundaries, without
taking into consideration their actual NER class.

4.2 Results

Table 8 shows the results obtained for both XLM-
RoBERTa (baseline, denoted as B), and a state of
the art model, GEMNET (denoted as GM). The re-
sults are shown only for the F1 score achieved on
the individual NER classes, and finally the micro,
macro F1 and MD scores are shown. Table 10 in
§A.2 shows a detailed performance for each sub-
task and domain.

Baseline. For the baseline approach, we simply
fine-tune XLM-RoBERTa on the language spe-
cific training data, and test on the corresponding
test splits. We note that overall, across all sub-
sets, the baseline achieves the highest performance
of micro-F1=0.646 for DE, and lowest of micro-
F1=0.397 for BN. This result is expected, given
that the test data contains highly complex entities

10For ZH, the tokenization is done at the character level.

that are out-of-domain, and additionally are not
seen in the training data.

GEMNET. The state of the art approach, GEM-
NET, makes use of external gazetteers, con-
structed from Wikidata for the task of NER. For
each token GEMNET computes two representa-
tions: (i) textual representation based on XLM-
RoBERTa, and (ii) gazetteer encoding, which uses
a gazetteer to map to tokens to gazetteer entries,
which correspondingly maps them to their NER
tags. The two representations are combined us-
ing a Mixture-of-Experts (MoE) gating mecha-
nism (Shazeer et al., 2017), which allows the
model depending on the context to either assign
higher weight to its textual representation or the
gazetteer computed representation.

GEMNET provides a highly significant im-
provement over the baseline, with an average im-
provement of micro-F1=30%. The highest im-
provement is shown for languages that are consid-
ered to be low-resource, such as TR with micro-
F1=+41.5%, and KO with micro-F1=+33%.

The obtained results in Table 8 show that GEM-
NET is highly flexible in detecting unseen enti-
ties during the training phase. Depending on its
gazetteer coverage, if a named entity is matched
by its gazetteers, this will allow GEMNET to cor-
rectly identify the named entity. In more detail, in-
ternally, GEMNET dynamically weighs both rep-
resentation of a token (i.e., textual and gazetteer
representations), to correctly determine the correct
tag for a token. Note that, the gazetteers may con-
tain noisy labels for a named entity (e.g. “Bank of

America” can match to CORP and LOC), hence,
GEMNET needs to additionally leverage the token
context to determine the correct tag.

5 Conclusions and Future Work

We presented MULTICONER, a new large-scale
dataset that represents a number of current chal-
lenges in NER. Results obtained on our data
showed that our dataset is challenging. A XLMR
based model achieves only approx. 50% F1 in av-
erage while GEMNET improves F1 performance
by more than 30% using gazetteers.

These results demonstrate that MULTICONER
represents challenging scenarios where even large
pre-trained language models fail to achieve good
performance without external resources. It is our
hope that this resource will help further research
for building better NER systems. This dataset can
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PER LOC GRP CORP CW PROD Micro F1 Macro F1 MD

B GM B GM B GM B GM B GM B GM B GM B GM B GM

EN 0.807 0.939 0.664 0.848 0.599 0.876 0.567 0.889 0.474 0.806 0.563 0.873 0.627 0.873 0.612 0.872 0.731 0.892
DE 0.797 0.968 0.679 0.921 0.591 0.940 0.588 0.951 0.516 0.897 0.633 0.940 0.646 0.936 0.634 0.936 0.767 0.951
ES 0.750 0.941 0.589 0.854 0.531 0.884 0.564 0.893 0.496 0.811 0.515 0.840 0.587 0.872 0.574 0.870 0.689 0.888
RU 0.666 0.839 0.632 0.780 0.539 0.818 0.600 0.870 0.534 0.803 0.576 0.805 0.597 0.817 0.591 0.819 0.699 0.834
NL 0.766 0.949 0.658 0.889 0.586 0.893 0.599 0.905 0.514 0.854 0.574 0.871 0.626 0.895 0.616 0.894 0.731 0.911
KO 0.595 0.900 0.650 0.865 0.513 0.910 0.560 0.923 0.439 0.846 0.517 0.905 0.558 0.888 0.546 0.891 0.666 0.896
FA 0.634 0.870 0.588 0.792 0.573 0.867 0.473 0.805 0.362 0.688 0.480 0.797 0.523 0.801 0.518 0.803 0.638 0.823
TR 0.549 0.894 0.497 0.860 0.404 0.896 0.480 0.897 0.374 0.849 0.441 0.914 0.468 0.883 0.457 0.885 0.614 0.893
ZH 0.532 0.884 0.627 0.889 0.371 0.866 0.552 0.902 0.434 0.818 0.552 0.861 0.531 0.870 0.511 0.870 0.664 0.895
HI 0.578 0.883 0.536 0.846 0.485 0.869 0.502 0.851 0.298 0.760 0.418 0.839 0.478 0.843 0.469 0.841 0.640 0.877
BN 0.529 0.895 0.420 0.850 0.322 0.883 0.428 0.889 0.243 0.747 0.406 0.865 0.397 0.856 0.391 0.855 0.570 0.888
MULTI 0.679 0.810 0.556 0.743 0.496 0.721 0.563 0.746 0.428 0.644 0.523 0.697 0.550 0.732 0.541 0.727 0.674 0.810
MIX 0.709 0.835 0.621 0.765 0.532 0.714 0.581 0.748 0.481 0.604 0.560 0.735 0.585 0.731 0.581 0.733 0.752 0.847

Avg. 0.661 0.893 0.594 0.839 0.503 0.857 0.543 0.867 0.430 0.779 0.520 0.842 0.552 0.846 0.542 0.846 0.680 0.877

Table 8: XLM-RoBERTa (B) baseline and GEMNET (GM) results as measured by the F1 score for the different
NER tags. In the last three columns are shown the micro, macro, and mention detection – MD F1 performance.

serve as a good benchmark for evaluating differ-
ent methods of infusing external entity knowledge
into language models.

The extension of MULTICONER to additional
languages is the most straightforward direction for
future work. The addition of completely new do-
mains is something we will also consider, along
with the the expansion of the existing domains to
include additional topics and templates.
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A Appendix

A.1 Gazetteer Statistics
Table 9 shows the number of entries for NE class
and language. The entries are extracted from
Wikidata.

lang PER LOC CORP GRP PROD CW

BN 42,970 31,336 1,072 8,691 990 12,152
ZH 388,910 346,879 30,323 64,031 15,919 120,831
NL 1,321,741 738,609 27,589 79,566 21,105 204,130
EN 1,797,558 1,117,951 72,105 227,822 67,113 490,523
FA 224,265 233,962 8,641 14,346 11,802 60,857
DE 1,308,532 533,551 42,321 99,468 38,735 219,801
HI 22,279 18,480 1,160 2,382 1,044 7,826
KO 148,367 72,153 9,625 23,209 8,385 55,624
RU 984,093 495,059 21,609 68,834 21,571 148,003
ES 1,389,698 480,310 29,465 113,197 25,658 228,369
TR 171,133 141,225 6,099 19,388 6,718 43,029

Table 9: Gazetteer entity statistics per class for our target
languages.

A.2 Cross-Domain Evaluation Results
Table 10 shows for the different subtasks, the
cross-domain evaluation results for the baseline
and GEMNET approaches. We note that in all
cases the GEMNET approach shows strong gains
in terms of macro-F1 score across all subtasks.
This is especially the case for the domains MSQ-
NER and ORCAS-NER, where the models con-
tain very little knowledge about these domains11,
hence, showing the generalizability of models in
out-of-domain scenarios.

Finally, we note that in the case of the LOWNER

domain, which is an in-domain evaluation sce-
nario12, in terms of MD, the gap between the
baseline and GEMNET approach shrinks. For the
Multi, the gap is only 4.1%. This shows that the
baseline models for in-domain scenarios is able to
correctly identify entity boundaries, even though
its NER accuracy may not be optimal. For in-
stance, for Multi the gap in terms of macro-F1 is
12.7%. showing, that models that leverage exter-
nal knowledge like GEMNET, are more accurate
in terms of NER accuracy and as well have higher
coverage in spotting entity boundaries.

11The MultiCoNER training set for each of the subtasks,
contains 50 instances from the MSQ-NER and ORCAS-NER
domains

12The MultiCoNER training set consists nearly of only
LOWNER instances.
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PER LOC GRP CORP CW PROD Micro F1 Macro F1 MD

Domain – LOWNER

B GM B GM B GM B GM B GM B GM B GM B GM B GM

EN 0.921 0.971 0.855 0.938 0.766 0.925 0.756 0.939 0.681 0.862 0.656 0.849 0.789 0.920 0.773 0.914 0.851 0.932
DE 0.913 0.978 0.871 0.957 0.781 0.948 0.776 0.952 0.706 0.913 0.772 0.921 0.816 0.949 0.803 0.945 0.903 0.965
ES 0.897 0.944 0.797 0.866 0.725 0.871 0.792 0.910 0.667 0.802 0.627 0.761 0.759 0.864 0.751 0.859 0.821 0.883
RU 0.734 0.794 0.702 0.757 0.695 0.794 0.745 0.855 0.687 0.793 0.647 0.753 0.702 0.788 0.702 0.791 0.752 0.809
NL 0.904 0.949 0.878 0.926 0.797 0.900 0.801 0.898 0.732 0.840 0.715 0.810 0.816 0.894 0.805 0.887 0.871 0.913
KO 0.774 0.896 0.817 0.885 0.734 0.882 0.760 0.910 0.710 0.850 0.714 0.852 0.761 0.880 0.751 0.879 0.810 0.890
TR 0.813 0.897 0.825 0.875 0.807 0.906 0.798 0.906 0.684 0.831 0.640 0.805 0.768 0.871 0.761 0.870 0.818 0.884
ZH 0.869 0.917 0.855 0.924 0.534 0.795 0.740 0.859 0.659 0.816 0.655 0.834 0.743 0.868 0.719 0.858 0.811 0.901
HI 0.792 0.837 0.732 0.813 0.710 0.757 0.651 0.713 0.487 0.578 0.524 0.634 0.649 0.722 0.649 0.722 0.765 0.813
BN 0.822 0.853 0.769 0.823 0.701 0.780 0.666 0.725 0.569 0.663 0.576 0.679 0.680 0.752 0.684 0.754 0.814 0.859
MULTI 0.855 0.916 0.808 0.882 0.717 0.868 0.733 0.884 0.664 0.825 0.648 0.808 0.741 0.868 0.737 0.864 0.852 0.893
MIX 0.855 0.862 0.808 0.809 0.717 0.737 0.733 0.757 0.664 0.616 0.648 0.719 0.741 0.749 0.737 0.750 0.852 0.850

Domain – MSQ-NER

EN 0.781 0.921 0.613 0.823 0.366 0.788 0.408 0.801 0.348 0.795 0.355 0.852 0.598 0.842 0.479 0.830 0.733 0.860
DE 0.758 0.984 0.708 0.958 0.317 0.939 0.397 0.964 0.415 0.909 0.346 0.948 0.643 0.959 0.490 0.950 0.783 0.970
ES 0.700 0.979 0.526 0.879 0.216 0.857 0.403 0.924 0.388 0.856 0.335 0.885 0.529 0.901 0.428 0.897 0.643 0.912
RU 0.692 0.961 0.652 0.864 0.317 0.904 0.436 0.842 0.435 0.915 0.280 0.806 0.601 0.891 0.469 0.882 0.726 0.904
NL 0.745 0.980 0.511 0.895 0.273 0.831 0.450 0.947 0.436 0.922 0.342 0.937 0.546 0.919 0.460 0.919 0.680 0.932
KO 0.547 0.864 0.644 0.917 0.255 0.903 0.370 0.947 0.288 0.907 0.235 0.924 0.531 0.904 0.390 0.910 0.669 0.908
FA 0.674 0.914 0.512 0.789 0.533 0.829 0.413 0.805 0.236 0.740 0.331 0.762 0.499 0.814 0.450 0.807 0.615 0.840
TR 0.597 0.881 0.568 0.905 0.246 0.875 0.389 0.956 0.357 0.890 0.211 0.873 0.517 0.897 0.395 0.897 0.647 0.908
ZH 0.534 0.947 0.709 0.957 0.401 0.907 0.432 0.941 0.390 0.920 0.283 0.843 0.588 0.945 0.458 0.919 0.743 0.961
HI 0.725 0.955 0.715 0.925 0.464 0.925 0.572 0.929 0.360 0.899 0.280 0.827 0.656 0.928 0.519 0.910 0.802 0.952
BN 0.589 0.950 0.468 0.879 0.000 0.000 0.433 0.942 0.298 0.821 0.239 0.793 0.465 0.891 0.338 0.731 0.643 0.915
MULTI 0.628 0.775 0.571 0.751 0.271 0.503 0.401 0.602 0.323 0.539 0.306 0.463 0.531 0.712 0.417 0.605 0.688 0.817
MIX 0.629 0.857 0.477 0.764 0.445 0.733 0.521 0.786 0.349 0.666 0.532 0.777 0.496 0.763 0.492 0.764 0.738 0.891

Domain – ORCAS-NER

EN 0.588 0.886 0.340 0.719 0.313 0.811 0.342 0.834 0.191 0.736 0.430 0.902 0.365 0.813 0.367 0.815 0.530 0.841
DE 0.581 0.943 0.355 0.839 0.313 0.929 0.388 0.949 0.266 0.868 0.454 0.959 0.392 0.913 0.393 0.914 0.564 0.926
ES 0.524 0.927 0.296 0.815 0.260 0.902 0.323 0.875 0.229 0.811 0.333 0.929 0.331 0.876 0.327 0.876 0.490 0.888
RU 0.535 0.871 0.470 0.770 0.327 0.845 0.417 0.887 0.313 0.791 0.472 0.864 0.428 0.838 0.422 0.838 0.597 0.850
NL 0.543 0.939 0.292 0.815 0.274 0.887 0.366 0.912 0.265 0.865 0.409 0.943 0.360 0.892 0.358 0.893 0.536 0.905
KO 0.445 0.916 0.401 0.812 0.321 0.938 0.403 0.935 0.220 0.835 0.362 0.945 0.359 0.896 0.359 0.897 0.529 0.900
FA 0.498 0.870 0.386 0.759 0.450 0.884 0.327 0.788 0.202 0.641 0.399 0.822 0.361 0.790 0.377 0.794 0.535 0.816
TR 0.459 0.900 0.338 0.823 0.295 0.898 0.403 0.892 0.274 0.849 0.376 0.944 0.361 0.884 0.358 0.884 0.538 0.893
ZH 0.396 0.854 0.398 0.821 0.368 0.872 0.468 0.920 0.291 0.816 0.473 0.878 0.397 0.860 0.399 0.860 0.555 0.880
HI 0.492 0.875 0.390 0.810 0.410 0.905 0.460 0.886 0.266 0.791 0.387 0.902 0.401 0.861 0.401 0.861 0.578 0.882
BN 0.459 0.886 0.334 0.838 0.265 0.898 0.372 0.913 0.192 0.752 0.365 0.906 0.331 0.867 0.331 0.866 0.506 0.888
MULTI 0.479 0.645 0.322 0.516 0.305 0.533 0.401 0.589 0.240 0.443 0.411 0.567 0.356 0.545 0.360 0.549 0.543 0.689
MIX 0.517 0.792 0.308 0.685 0.324 0.687 0.387 0.722 0.235 0.563 0.421 0.739 0.364 0.695 0.365 0.698 0.577 0.828

Table 10: XLM-RoBERTa (B) baseline and GEMNET (G) domain results as measured by the F1 score for the
different NER tags. The last three columns show the micro, macro, and mention detection – MD F1 performance.
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Abstract

We present a manually annotated corpus of
10,000 tweets containing public reports of five
COVID-19 events, including positive and neg-
ative tests, deaths, denied access to testing,
claimed cures and preventions. We designed
slot-filling questions for each event type and an-
notated a total of 28 fine-grained slots, such as
the location of events, recent travel, and close
contacts. We show that our corpus can support
fine-tuning BERT-based classifiers to automat-
ically extract publicly reported events, which
can be further collected for building a knowl-
edge base. Our knowledge base is constructed
over Twitter data covering two years and cur-
rently covers over 4.2M events. It can answer
complex queries with high precision, such as

“Which organizations have employees that tested
positive in Philadelphia?” We believe our pro-
posed methodology could be quickly applied
to develop knowledge bases for new domains
in response to an emerging crisis, including
natural disasters or future disease outbreaks.1

1 Introduction

Since December 2019, the novel coronavirus
rapidly spread across the world, and consequently,
a flood of COVID-19 related information has ap-
peared on social media. This includes reports on
public figures who have tested positive/negative for
the virus, which often break first on Twitter, such
as Bill Gates’s announcement as shown in Figure 1.
Besides public figures, individual users and orga-
nizations on Twitter also report COVID-19 events
around the world. For example in January 2021,
many sources in different countries reported an in-
creasing number of new cases exported from the
UK (Figure 2). Being able to gather this informa-
tion can potentially help experts and the general

1Our corpus (with user-information removed), automatic
extraction models, and the corresponding knowledge base are
publicly available at https://github.com/viczong
/extract_COVID19_events_from_Twitter.

Figure 1: Example tweet that contains a self-reported
TESTED POSITIVE event.

public to quickly identify issues and assess the
situation near real-time, complementing officially
reported data which may take longer to obtain, and
does not include information at the same level of
granularity as that reported in natural language on
news and social media.

In this paper, we present an empirical study
on the extraction of large quantities of structured
knowledge related to an ongoing pandemic from
Twitter. To achieve this, we construct a corpus of
10,000 tweets with rich linguistic annotations, cov-
ering five event types: positive tests, negative tests,
denied access to testing, deaths, claimed methods
of cure and prevention. More specifically, we an-
notate fine-grained semantic information for each
event type by designing slot-filling questions and
asking annotators to highlight text spans as an-
swers. We show that our corpus can support train-
ing BERT-based classifiers to extract structured
information automatically from Twitter. While slot
F1 scores vary from 0.3 to 0.9 in individual tweets
(most F1 scores are greater than 0.5), we show it
is possible to achieve very high accuracy by aggre-
gating extractions over a large corpus, exploiting
redundancy of information that arises when events
are widely discussed on Twitter. Although many
Twitter datasets have emerged after the COVID-19
outbreak, to the best of our knowledge, our work is
the first to provide complex linguistic annotations
to support structured information extraction.

To demonstrate the utility of our dataset, we
built COVIDKB, a knowledge base that supports
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                                        “Tested Positive” events
Date Who Where Employer Contact Travel

2021/01/04 four passengers Jamaica — — UK

2020/12/31 a member of the team Atlanta Falcons — —

… … … … … …

Extracted Information

                        Where did travelers from the UK test positive?Query

- Jamaica (4 passengers, 2021/01/04)

- Kolkata (3 more, 2021/01/02)

- Mumbai (11 of 738 passengers, 2020/12/27)

- Maldives (an individual, 2020/12/28)

- Hong Kong (two students, 2020/12/23)

- etc.               

Answer

Tweets

Figure 2: Overview of our COVID-19 event extraction system, which continuously extracts and indexes structured
information about publicly reported events from Twitter. Users can enter structured queries to retrieve relevant
tweets, such as {location:?, travel:UK} to find test positive cases that are exported from the UK.

structured queries over COVID-19 events, by in-
dexing events extracted by our model over millions
of tweets. Our system allows users to execute struc-
tured search queries over the extracted events, an-
swering questions such as “Which organizations
in Houston have reports of employees who tested
positive?” or “Who tested positive that had close
contact with Boris Johnson?” (see Figure 2). We
envision COVIDKB could help address the issue
of information overload for professionals (Zhang
et al., 2020) who need to stay on top of recent
developments related to COVID-19, including jour-
nalists (Karmakharm et al., 2019), epidemiologists
and public policymakers. Our extractor can also de-
tect claims about methods of cures and prevention
of the disease, which could be useful in helping to
track online misinformation (Thorne et al., 2018;
Stefanov et al., 2020; Hossain et al., 2020).

2 Related Work

Event Extraction from Twitter. There has been
much interest in extracting events from Twitter.
For example, Ritter et al. (2012) built a system for
open domain event extraction. Recent work also
explored extraction of cybersecurity events (Rit-
ter et al., 2015; Chang et al., 2016), including de-
nial of service attacks (Chambers et al., 2018) and
software vulnerabilities (Zong et al., 2019). Zhou
et al. (2017) use a nonparametric Bayesian mixture
model for event extraction. In this work, we de-
sign event types and attributes that are specific for
COVID-19 and develop automatic NLP tools for
extracting structured information from tweets.

Existing COVID-19 Datasets. There have been
many datasets that collect tweets related to COVID-
19 (Chen et al., 2020; Banda et al., 2020). However,

most are either unlabeled or provided with general-
purpose NLP model predictions, rather than struc-
tured linguistic annotations of COVID-specific in-
formation, as in this work. For example, Twitter
officially releases a stream with predicted entities
(such as person and place) and topic labels (such
as sports and movies). Qazi et al. (2020) released
a COVID-19 collection of geo-located tweets that
contain COVID relevant keywords and hashtags.
Dimitrov et al. (2020) put together 8 million tweets
with automatically generated entity linking and
sentiment scores. Hu et al. (2020) presented a
large-scale dataset of 40 million raw posts from
Weibo with no annotations. There also exist a few
datasets that contain human annotations at the time
of writing. For example, Hossain et al. (2020)
annotated 5,000 tweets for studying COVID-19
misconceptions. Nguyen et al. (2020) classified
10,000 tweets as informative and uninformative.
Amini et al. (2021) annotated a dataset of mecha-
nism relations from COVID-19 related scientific
papers. Compared to prior work, we provide more
fine-grained human annotations on text spans with
predefined slots for COVID-19 events. Our an-
notations can support training supervised learning
models that are capable of extracting structured
information (Adrian Bejan and Harabagiu, 2014;
Venugopal et al., 2014), similar to other influential
datasets in information extraction and question an-
swering, such as KBP (Ji et al., 2011) and SQuAD
(Rajpurkar et al., 2016).

Social Media Monitoring for Public Health. An-
alyzing social media and other user-generated web
data for monitoring public health has been an ac-
tive research area. For example, Google Flu Trends
(GFT) uses search engine query data to detect in-
fluenza epidemics (Ginsberg et al., 2009). Paul
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et al. (2014) use the Twitter message content to
forecast influenza rates. GFT has been found to
over-estimate influenza-like illness (Lazer et al.,
2014). In contrast to GFT, our main focus is to
develop methods that process large quantities of
raw tweets into a structured format to help people
find specific information, rather than forecasting or
nowcasting official statistics.

3 An Annotated Corpus for COVID-19
Event Extraction

To extract structured knowledge from tweets, we
formulate the problem as a supervised slot filling
task (Jurafsky and Martin, 2000; Benson et al.,
2011; Ji et al., 2011). Specifically, given a tweet,
annotators are asked to first identify whether it con-
tains a relevant event, then highlight the text spans
of answers that correspond to a list of pre-defined
questions for each event type (detailed questions
are in Table A2).

3.1 Data Collection

We consider five event types related to COVID:
TESTED POSITIVE, TESTED NEGATIVE, CAN

NOT TEST, DEATH, and CURE & PREVENTION.
The design of these event types is inspired by the
statistics reported in Johns Hopkins COVID-19
dashboard, which are of interest to the public and
epidemiologists.2 The first four types aim to ex-
tract structured information about events related
to COVID-19, many of which are news stories
about public figures. We have been continuously
collecting Twitter data related to COVID-19 since
2020/01/15 by tracking relevant keywords using
the Twitter API, such as tested positive for TESTED

POSITIVE events (see Table A1 for a full list of our
carefully selected keywords). As we will shown
in Section 6.1, our fixed set of keywords are able
to track the evolution of pandemic even over a pe-
riod of two years, although a dynamic selection of
keywords is promising to explore in future work.
Preprocessing. In this work, we mainly focus on
English tweets, identified by using langid.py
(Lui and Baldwin, 2012). We remove retweets
and other duplicates, keeping the tweet that was
posted earliest. Before de-duplication process, all
URLs and user mentions are removed. We also use
Jaccard similarity with a threshold of 0.7 to remove
near-identical tweets that are posted same-day.

2https://coronavirus.jhu.edu/map.html

Event Type # Anno. Total # Event Specific # Slots

TESTED POSITIVE 3,000 2,146 9
TESTED NEGATIVE 1,700 893 8

CAN NOT TEST 1,700 680 5
DEATH 1,800 626 6

CURE & PREV. 1,800 832 3

Total 10,000 5,177 31

Table 1: Statistics of COVID-19 Twitter Event Corpus.

3.2 Annotation Process

We randomly sample 10,000 tweets from five event
types to annotate. The train and dev sets consist
of 7,500 annotated tweets, that were published be-
tween 2020/01/15 and 2020/04/26. To construct
the test set, we annotated 2,500 tweets, 500 for
each event type, that were published from a later
time period between 2020/04/27 and 2020/06/27.
This simulates a real-world scenario that a model
is trained on historical records and then applied to
future data. Table 1 shows the overall statistics of
our labeled corpus.

3.2.1 Two-phase Annotation

Given a tweet, annotators are asked to first identify
whether it contains a relevant event, then highlight
the text spans of answers that correspond to a list of
pre-defined questions for each event type in Table
A2. We hire crowd workers on Amazon’s Mechan-
ical Turk to annotate our full dataset. Each of the
10,000 tweets is annotated by 7 crowd workers
in two steps. We paid crowd workers $0.4-0.5 per
HIT and gave extra bonuses to annotators with high
annotation quality. The hourly pay was approxi-
mately $8.55. The main portion of our annotation
interface is shown in Figure A1.

Part 1: Event Specificity. Although tweets have
been filtered by keywords for each event type, many
of them are generic news reports, such as, “37%
of those tested under 17 for Coronavirus in Cal-
ifornia tested positive”. Since we are interested
in capturing tweets with detailed information, we
first ask the annotators to judge whether a tweet
refers to a specific event. For example, for tweets
about positive tests, we ask the annotators whether
a tweet is about an individual or a small group of
people testing positive. Annotators proceed to the
next step only if they answer yes to this question.

Part 2: Slot Filling. In the second step, we ask a
set of pre-defined questions specifically designed
for each event type, as listed in Table A2. The
annotators are provided with candidate answers,
which include all noun phrases and named entities
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extracted by a Twitter-specific NLP tool (Ritter
et al., 2011),3 in a drop-down list. We also combine
noun phrases if they are adjacent or separated by
a preposition.4 We include author of the tweet as
an additional option for the WHO questions.5 For
each tweet, annotators have an average of 10 to 11
possible answers to choose from, and are allowed
to choose more than one answer for WH-questions.

3.2.2 Inter-annotator Agreement
During annotation, we track crowd workers’ per-
formance by comparing their annotations with the
majority vote of other workers and remove workers’
qualifications if their F1 scores fall below 0.65.6

For the first step of annotation on specificity, the
inter-annotator agreement between crowdsourcing
workers is 0.68, measured by Fleiss κ (Artstein
and Poesio, 2008). We observe a 0.62 F1 score for
selected text spans between annotators in our slot
filling task, by using each Turker’s annotation in
turn as the prediction, and then compare it against
answers from all other workers. Same method to
calculate inter-annotator agreement for text spans
has been used in Yang et al. (2018) and Lee and
Sun (2019).

To further validate the quality of slot-filling anno-
tations from the crowdsourcing workers, we hired
an experienced in-house annotator to carefully re-
annotate the test set (2,500 tweets total, with 500
from each event; see Section 3.1 for details). The
in-house annotator is paid $15 per hour. By compar-
ing crowdsourcing workers with our in-house anno-
tator, we find individual annotators do miss some
examples, which is similar to previous reports on
linguistic annotations on relations and events, such
as ACE 2005 (Min and Grishman, 2012). However,
by aggregating annotations from multiple crowd-
sourcing workers,7 we observe high agreement (an
average of 0.72 F1 score) with our in-house annota-
tor. We also ask the in-house annotator to examine
a sample of tweets to find answer spans that are

3github.com/aritter/twitter_nlp
4We notice in some cases these noun phrases are not per-

fect and may include extra words. Annotators are instructed
that a candidate answer should only be chosen when it contains
no more than three extra words.

5These annotations are used to develop classifiers that
can detect and remove instances where users publicly report
information about themselves.

6For more discussions on managing workers on Amazon
Mechanical Turk, we recommend reading: https://ho
mes.cs.washington.edu/~msap/notes/turkin
g-tips.html.

7We consider to include a span annotation for slot-filling
task if 3 out of 7 MTurk annotators agree.

not identified as candidates by the automatic NLP
tool. We find this scenario occurs in less than 2%
of tweets in our dataset.

3.3 Corpus Analysis

Basic Statistics. Our annotated tweets have an
average length of 34.6 tokens with a standard devi-
ation of 15.6 tokens. We note 41.42% of the tweets
have external links and 29.64% include hashtags.
Examples of our annotated tweets are in Table A3.
Bots and Organizational Accounts. Among all
the 9,656 unique users, 2.4% are potentially bots,
as identified by the Botometer API (Varol et al.,
2017). We also note that 4.1% of tweets about
CURE & PREVENTION are potentially posted by
bots. Estimated by the Humanizr (McCorriston
et al., 2015), 18.5% of user accounts in our data
belong to organizations, rather than individuals.

4 Automatic Event Extraction

We now use our annotated corpus to train and eval-
uate supervised learning methods for automatic
COVID-19 event extraction. Each slot filling ques-
tion is treated as a binary classification task: given
a tweet t and the candidate span c, the classification
model fe,s(t, c) → {0, 1} predicts whether c cor-
rectly answers the question for the slot s of event
type e.

4.1 Experimental Settings

Baselines. We conduct experiments with two meth-
ods for automatic COVID-19 event extraction:

(1) Logistic Regression. We implemented a basic
logistic regression classifier using bag-of-ngram
features (n = 1, 2, 3). The target chunk c is replaced
with a special token before computing n-grams.

(2) Fine-tuning BERT. We also fine-tune a BERT
based classifier (Devlin et al., 2019) that takes a
tweet t as input and encloses the candidate phrase
c in the tweet with a pair of special entity start
<E> and end </E> markers. The BERT hidden
representation of token <E> is then fed as input
to a linear layer to produce the binary prediction.
Since our dataset consists of COVID-19 related
tweets, we use COVID-Twitter-BERT (CT-BERT;
Müller et al., 2020), an uncased BERTlarge model
pre-trained on 22.5M in-domain tweets, related to
COVID-19 (0.6B tokens).
Implementation Details. By design, many slots
within an event are semantically related. For exam-
ple, the age slot is directly related to the who slot.
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During development, we found it beneficial to train
the final linear layers of all slots for a given event
using the shared CT-BERT parameters. All shared
CT-BERT models are fine-tuned with a 2e-5 learn-
ing rate using Adam (Kingma and Ba, 2015) for 4
epochs. This model has about 345M parameters.

4.2 Results
We evaluate our model performance for event type
identification and slot filling on the test data, which
consists of 2,500 tweets. Event types can be di-
rectly derived from the slot-filling predictions: an
event is identified if text spans are extracted for any
of the pre-defined slots associated with the event
types by our models. Table 2 presents F1 scores
on classifying event specific tweets on the test set.
Table 3 presents slot filling results of the Logistic
Regression, BERTlarge and CT-BERT models, as
measured by precision, recall and F1 metrics.8

We observe that CT-BERT gives the best over-
all performance, which outperforms the bag-of-
ngrams baseline. CT-BERT has F1 scores ranging
from 0.3 to 0.9, depending on the slot for extract-
ing events from individual tweets. The F1 score for
most slots is greater than 0.5 and the final micro
average F1 achieved by CT-BERT is 0.67. While
we do notice some slots have low F1 scores, these
slots are normally associated with few annotations
in the train set. Besides, we will show in Section 5
that the performance of our CT-BERT model is
sufficient to support the development of a knowl-
edge base, which achieves much higher accuracy
for COVID-19 event extraction from Twitter by ag-
gregating extractions over a large volume of tweets.

Event Type BERT CT-BERT

TESTED POSITIVE 0.90 0.89
TESTED NEGATIVE 0.72 0.77

CAN NOT TEST 0.72 0.73
DEATH 0.73 0.79

CURE & PREVENTION 0.64 0.70

Table 2: F1 scores for classifying event specific tweets.

5 COVIDKB Knowledge Base

We have built models that can extract structured
information related to COVID-19 from individual
tweets. To demonstrate the utility of our anno-
tated dataset and models, we create a knowledge

8We omit reporting results for a few slots with less than
20 annotations in test set, such as the duration slot for
TESTED NEGATIVE and the when slot for CAN NOT TEST.

TESTED POSITIVE Logistic BERT CT-BERT
Slot # F1 F1 P R F1

who 375 .48 .82 .86 .82 .84
close contact 61 .02 .44 .65 .61 .63
relation 21 0.0 .51 .83 .48 .61
employer 121 .15 .44 .65 .54 .59
recent travel 27 0.0 .36 .44 .26 .33
when 22 .05 .38 .47 .36 .41
where 176 .27 .60 .91 .49 .64

TESTED NEGATIVE Logistic BERT CT-BERT
Slot # F1 F1 P R F1

who 274 .23 .67 .78 .68 .73
close contact 27 0.0 0.0 .24 .48 .32
relation 56 0.0 .55 .77 .41 .53
where 49 0.0 .44 .36 .55 .44
when 27 0.0 0.0 .35 .41 .38

CAN NOT TEST Logistic BERT CT-BERT
Slot # F1 F1 P R F1

who 153 .16 .57 .77 .58 .66
relation 70 .08 .37 .69 .34 .46
symptoms 52 .06 .43 .55 .62 .58
where 30 .20 .44 .55 .40 .46

DEATH Logistic BERT CT-BERT
Slot # F1 F1 P R F1

who 139 .29 .68 .83 .76 .79
relation 37 0.0 .59 .96 .65 .77
when 33 .26 .75 .66 .82 .73
where 65 .22 .54 .70 .60 .64
age 33 .18 .78 .89 .94 .91

CURE & PREVENTION Logistic BERT CT-BERT
Slot # F1 F1 P R F1

opinion 152 .08 .66 .85 .59 .69
what 261 .22 .66 .83 .64 .72
who 235 .08 .51 .87 .37 .51

Micro Average F1 .25 .62 .67

Table 3: Slot-filling results on the test set for logistic
regression, BERTlarge and CT-BERT based classifiers. #
is the count of gold annotations in the test data for each
slot type. F1 in bold are highest in their row.

base (Figure 2) that enables structured search over
COVID-19 events that are automatically extracted
from Twitter.

5.1 COVIDKB Overview

COVIDKB Statistics. Until 2022/04/01 (start dates
are in Table 1), our COVIDKB knowledge base
has contained around 4.2M extracted events from
over 20M raw tweets and is continuously growing
by processing tweets daily. Events are extracted
from deduplicated tweets, which follow the same
pre-processing steps in Section 3.1. Breakdowns
of our extracted events are listed in Table A4.
Interacting with COVIDKB. COVIDKB supports
a simple structured query interface where a user
specifies one or more text-filters as a query (see
Figure A2). This includes two SQL operators,
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Simple Queries P@10 P@20 P@50 P@100

(S-1) Who tested positive on 2021/06/15? 100 100 100 99
(S-2) Who is promoting cures or preventions? 90 90 96 91
(S-3) Where were people not able to access testing? 100 100 100 100
(S-4) How long did people wait for negative test results? 100 85 82 82
(S-5) Which organizations have employees who tested positive? 90 90 90 94

Advanced Queries P@5 P@10 P@20 P@50

(A-1) Who tested positive that had close contact with Boris Johnson? 80 70 60 58
(A-2) Who tested positive that has a recent travel to Japan? 100 100 100 96
(A-3) What methods of cure and prevention do people think are effective? 80 90 85 88
(A-4) Where did people test positive who traveled from the UK? 100 100 100 100
(A-5) Which organizations have employees that tested positive in San Francisco? 100 100 90 92

Table 4: Queries used to evaluate results returned by our knowledge base, reported using Precision@K. The
queries are presented here in natural language for improved readability. Simple queries can be realized as a single
GroupBy operation; advanced queries contain both GroupBy and Select. For example, the structured query for
A-1 is {who:?, contact:‘Boris Johnson’}. All queries use the default time range (from 2020/01/15 to
2022/03/01) unless explicitly specified.

Select and GroupBy. For the event slot queried
by the user, using a special token “?”, our system
returns a list of all unique answers, which were
extracted from tweets that match the search crite-
ria and sorted by mention frequency. For exam-
ple, a user might enter the query {employer:?,
location:‘San Francisco’}, and the sys-
tem will return a list of organizations located in
San Francisco where one or more employees tested
positive. This simple interface enables a rich set of
informative queries over events that were automati-
cally extracted by our classification models.

Table 4 shows a list of example queries sup-
ported by COVIDKB. Queries are randomly gener-
ated by the authors of this paper. Note that through-
out this paper we present queries to our system
using natural language questions for the sake of
readability. In each case, translation to a structured
query is straightforward. The user specifies zero
or more fields to filter on (Select) and a single
field to group the results by (GroupBy). As our
knowledge base is continuously updating, users
can further combine above structured queries with
different time ranges (e.g., query S-1 in Table 4 sets
the start and end dates as 2021/06/15). We do not
address the problem of automatically mapping nat-
ural language questions to structured queries (Suhr
et al., 2018) in this work, though there is significant
prior work on this topic (Artzi and Zettlemoyer,
2011; Berant et al., 2013).

5.2 COVIDKB Evaluation

Precision of Top Extractions. We evaluate the
accuracy of answers returned by our knowledge

base using 10 sample queries and manually inspect
the correctness of the top K extractions, sorted
by frequency (tweets have been deduplicated as
mentioned in Section 5.1). As reported in Table 4,
our knowledge base has high precision for nearly
all queries, including queries involving slots with
few annotations. For example, the duration slot
is excluded in Table 3, because there are fewer than
20 instances in the test set, whereas COVIDKB still
achieves good performance on queries involving
this slot, thanks to the redundancy of information
in Twitter. Table 5 present outputs returned by our
knowledge base.

Extracted Answer Types. In Table 6, we also
show a manual analysis of the types of answers,
which are correctly extracted by our system for
queries that target the who slot. We define two
answer types: (1) Specific entities, which are clear
referents to people (mostly public figures), such
as Boris Johnson and Dominic Cummings; (2)
Generic entities, which are typically nominal ref-
erences, such as a woman. We observe that the
percentage of generic answers varies heavily de-
pending on the query. For example, query A-1
about people who had close contact with Boris
Johnson consists almost entirely of references to
specific public figures, whereas A-2, about peo-
ple who tested positive after traveling from Japan
yields only generic references.

5.3 Error Analysis

We perform an error analysis to understand the
types of errors our knowledge base contains. Two
authors of this paper carefully conducted manual in-
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(S-1) Who tested positive on 2021/06/15?
Teofimo Lopez tests positive for COVID-19, entire Triller PPV card pushed back to August (by @mookiealexander) https://t.co/DoaHNb9Z4T

Vaccinated Hawaiian resident tests positive for Delta coronavirus variant https://t.co/0IJ8QfpYS9

Royal Caribbean cruise ship launch, sailings postponed after crew members test positive for COVID-19. . . https://t.co/VVrOdS6uEX

(A-1) Who tested positive that had close contact with Boris Johnson?

#news PM Boris Johnson in self-isolation after coming into contact with a lawmaker who tested positive for COVID-19 https://t.co/Kcy2X3M6vJ

Jair Bolsanaro has tested positive for Covid-19. Noval Djokovic and Boris Johnson had it. Life sometimes comes a full circle very fast.

WH says Trump spoke with Boris Johnson and "wished him a speedy recovery" after the British PM tested positive for coronavirus.

Boris Johnson’s senior adviser, Dominic Cummings, is self-isolating at home after developing #coronavirus symptoms. http://bbc.in/2WQhbsZ Last
week, the PM and Health Secretary Matt Hancock both tested positive for #Covid19. WATCH: https://bbc.in/2Jv55xj #Newsnight

(A-3) What methods of cure and prevention do people think are effective?

Very good indeed but you need also to remind them keeping social distancing, another basic protective measure to prevent the spread of #covid19.

Just like washing your hands is necessary to prevent from Coronavirus, inspecting your personal protective equipment https://t.co/xjY7FRgsV1

Two men in Georgia drank disinfectants in efforts to prevent COVID-19, officials say http://a.msn.com/01/en-us/BB13kJMw?ocid=st. . .

Table 5: Examples of correct extractions and errors returned by our knowledge base for sample queries. We use
different colors for marking the types of extracted text spans (see Section 5.3 for more details for the error types):
correct extraction, classification errors, segmentation errors, and ambiguous cases.

Query ID # Corr / # All Specific Generic

S-1 99 / 100 63.6% 36.4%
S-2 91 / 100 75.8% 24.2%

A-1 29 / 50 100.0% 0.0%
A-2 48 / 50 6.2% 93.8%

Table 6: Analysis of answer types in response to the
queries (where applicable) in Table 4. The percentage
of generic answers varies significantly.

spections for all the returned results of our sample
queries in Table 4. 67 incorrect extractions were
identified in 750 extractions, which can be grouped
into four major categories: classification errors
(58.2%), segmentation errors (37.3%), ambiguous
cases (13.9%) and others (4.5%). We present some
examples of these errors in Table 5.

Classification Errors. We notice our BERT based
model struggles with slots that may involve subtle
inferences, such as relation or close contact, al-
though the limited number of annotations for these
slots might also be a factor in this type of error. For
example, in the second tweet of query A-1 in Ta-
ble 5, the tweet does not imply that Jair Bolsanaro
was in close contact with Boris Johnson; in the
third tweet of query A-1, the model fails to identify
that Boris Johnson and the British PM refer to the
same person.

Segmentation Errors. In some cases the extracted
items contain extra tokens because of chunker er-
rors, for example georgia drank disinfectants was
extracted as a cure method. We also notice our
choice of only extracting noun phrase chunks does

not capture verb phrases for the CURE & PREVEN-
TION category. For example, instead of extracting
washing your hands and don’t touch your face as
prevention methods, our system only extracts your
hands and your face (see query A-3 in Table 5).
Ambiguous Cases. In some cases, it is debatable
whether an extraction is correct without additional
context. For instance in the last tweet of query A-1
in Table 5, we do not know if Dominic Cummings
tested positive, although the tweet seems to indicate
that he might have been infected. We consider the
extraction to be an error in this case, since the tweet
did not specifically mention that he tested positive.

6 Case Studies

6.1 Correlation with Official Data Sources
To investigate whether statistics of events in
COVIDKB correlate with official data sources, we
plot the reported global positive cases and the num-
ber of extracted tested positive events from our
knowledge base over time in Figure 3. Global
reported positive numbers are from Center for Sys-
tems Science and Engineering at Johns Hopkins
University.9 We use 7-days moving average when
drawing two time series curves. We observe that
for both two waves in 2021 and current Omicron
wave (highlighted in grey in Figure 3), our ex-
tracted events follow similar trend as actual re-
ported cases globally and also show peaks. This
analysis provides evidence to support quality of the

9https://github.com/CSSEGISandData/CO
VID-19
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extracted information in COVIDKB, and suggests
our knowledge base may contain information that
could be used to analyze emerging dynamics of the
pandemic. However as mentioned previously, the
main use-case for COVIDKB is to enable semantic
search to help journalists, epidemiologists or other
professionals quickly analyze information posted
on social media.
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Figure 3: Number of extracted positive events and the ac-
tual global reported positive cases (log) show the similar
trends in three waves (in grey). Data from 2021/01/21
to 2021/02/26 is missing due to technical issues.

6.2 Analyzing Claimed Cures and Preventions

Public’s Attention Shifts over Time. Our knowl-
edge base could also be helpful in monitoring pub-
lic attention shifts regarding potential treatments
and preventative measures over time. To demon-
strate this, we analyze the top frequently mentioned
potential cure and prevention methods that people
believe are effective within different time ranges (a
visualization of top 15 results are in Table A5).
Time ranges are roughly divided to follow the
global trends of the pandemic shown in Figure 3.

We observe people’s opinions regarding certain
cure and prevention methods remain unchanged
throughout the whole pandemic, including social
distancing, hydroxychloroquine, (wash) your hands
and masks. As time proceeds, there is more focus
on medical treatments. For example, vaccine and
vaccination are more frequently discussed. Drugs
also draw attention, especially in the last time range
(from 2021/10/16 until now): we notice a variety
of drugs appear in our knowledge base, including
fluvoxamine, monoclonal antibodies, AstraZeneca
antibody drug and Israeli drug.

We note not all above methods are actually ef-
fective for coronavirus. Researchers hold a mixed
view for treatments such as hydroxychloroquine
and ivermectin.10 This type of automatically ex-

10For example, Ivermectin has been used in clinical trials:

tracted information in COVIDKB could be helpful
to track the spread of misinformation online.
Who is promoting cures? We also analyze the
returned results from query S-2 to understand who
is promoting cures. A variety of people and orga-
nizations are observed, most frequent 10 of which
are Donald Trump, China, scientists, CDC, White
House, Jim Bakker, Pfizer, Madagascar, Dr. Fauci,
and Bill Gates.

7 Conclusion

In this paper, we presented a corpus of 10,000
tweets annotated with 5 types of events and 28
slots. We showed that our corpus supports auto-
matic extraction of COVID-19 events using super-
vised learning. By aggregating extractions over
millions of tweets, our approach can accurately
answer a range of structured queries about events
that are publicly reported in real-time on Twitter.
Our knowledge base could be a useful tool for epi-
demiologists, journalists and policymakers to more
efficiently track the spread of this new disease. This
work also presents a case-study on how an infor-
mation extraction system can be rapidly developed
for a new domain in response to an emerging crisis.
For example, our methodology could be applied
to develop knowledge bases for natural disasters
(Spiliopoulou et al., 2020) or future disease out-
breaks.

Ethical Considerations

This study was conducted under the approval of
the Institutional Review Board (IRB) of our univer-
sity and complies with Twitter’s terms of service.
Following Twitter’s policy for content redistribu-
tion, we will only release our annotated corpus that
contains Tweet IDs (not Tweet Objects) and a list
of character offsets corresponding to the annotated
mentions. We will not release any user information
or demographic data. Our event extractors produce
structured representations of information that was
explicitly and publicly stated. We do not derive
or infer any potentially sensitive characteristics or
health information that may violate users’ privacy.
Almost all events that are currently indexed by our
knowledge base come from public news reports.

https://www.covid19treatmentguidelines.n
ih.gov/therapies/antiviral-therapy/iverm
ectin/. However, it is not approved or authorized by FDA:
https://www.fda.gov/consumers/consumer-u
pdates/why-you-should-not-use-ivermectin
-treat-or-prevent-covid-19.
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To further protect users’ privacy, we specifically de-
signed two slot-filling questions during annotation
in order to detect and remove cases where users
publicly report information about themselves, or a
person with whom they have a close relationship.

Our knowledge base should be used with cau-
tion, as we note the Twitter users are not represen-
tative samples of the total population; posts from
Twitter users are also not necessarily representative
samples of public opinions (Wojcik and Hughes,
2019). As Twitter Stream API provides only 1%
of all public tweets, our knowledge base naturally
is not able to index all reported cases online. Our
extractors may contain other unknown biases due
to data collection process, for example they might
perform worse on African American English. All
these limitations should be taken into consideration
in any application that makes use of our data.
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A Dataset

A.1 Keywords for Data Collection

We provide the keywords used for collecting data along with starting date in Table A1. Keywords in
our experiments are carefully chosen to both have a wide coverage of tweets with different linguistic
phenomena and have a good precision of collecting tweets that are relevant to our tasks.

Event Type Start From Keywords

TESTED POSITIVE 2020/01/15 (test OR tests OR tested) positive AND VIRUS

TESTED NEGATIVE 2020/02/15 (test OR tests OR tested) negative AND VIRUS

CAN NOT TEST 2020/01/15

(can’t OR can not) get (tested OR test OR tests)
(can’t OR can not) be tested
(couldn’t OR could not) get (tested OR test OR tests)
(couldn’t OR could not) be tested

DEATH 2020/02/15 (died OR pass away OR passed away) AND VIRUS

CURE & PREVENTION 2020/03/01 (cure OR prevent) AND VIRUS

Table A1: Keywords used for each event type. We consider the following variants for VIRUS: VIRUS = (COVID19
OR COVID-19 OR corona OR coronavirus).

A.2 Data Annotation

The complete slot filling questions used for annotating COVID-19 events are listed in Table A2. We also
provide the annotation interface shown to Mechanical Turk workers in Figure A1.

Event Type Slot Name Slot Filling Questions

who Who tested positive (negative)?
close contact Who was in close contact with the person who tested positive (negative)?

TESTED relation Does the affected person have a relationship with the author of the tweet?
POSITIVE employer Who is the employer of the person who tested positive?

—— recent travel Where did the people who tested positive recently visit?
TESTED when When were positive (negative) cases reported?

NEGATIVE where Where were positive (negative) cases reported?
age What is the age of the people who tested positive (negative)?

duration How long did it take to know the result of the test?

who Who can not get a test?

CAN NOT
relation Does the untested person have a relationship with the author of the tweet?

TEST
when When was the person unable to obtain a test?
where Where was the person unable to obtain a test?

symptoms Is the affected person currently experiencing any COVID-19 related symptoms?

DEATH

who Who died from COVID-19?
relation Does the deceased person have a personal relationship with the author of the tweet?
when When was the death reported?
where Where was the death reported?

age What is the age of the person who died?

CURE & opinion Does the author of the tweet believe cure/prevention is effective?

PREVENTION
what Which method of cure/prevention is mentioned?
who Who is promoting the cure or prevention?

Table A2: Slot filling questions used for annotating COVID-19 events.
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Figure A1: Main portion of the annotation interface shown to Mechanical Turk workers for annotating TESTED
POSITIVE events.

A.3 Annotated Samples
Examples of our annotated tweets are presented in Table A3.

Event Type Tweet Annotations

POSITIVE #Karnataka | A 26-year-old man returning from #Greece tested positive for #COVID19, be-

coming the fifth positive case in the state, a health official said on Thursday. #CoronavirusPandemic
#COVID #COVID19india [URL]

WHO AGE
WHERE
RECENT V.

NEGATIVE Live updates: Boris Johnson tested negative for Covid-19 on leaving hospital, says Downing Street
#coronavirus

WHO

DEATH ‘#TopChef Masters’ winner Floyd #Cardoz dies after #coronavirus diagnosis’ “World-renowned
chef Floyd Cardoz died Wednesday in New Jersey at age 59 .” “Cardoz admitted himself to
the hospital on March 17 after feeling feverish.”

WHO AGE
WHERE WHEN

CAN NOT TEST Nurse working in ITU couldn’t get tested, & was told that the test was “very expensive”, so he
couldn’t have a test. [URL] . . .

WHO

Table A3: Examples of our annotated tweets.

B COVIDKB Knowledge Base

B.1 Statistics of Our Knowledge Base
We report the number of extracted events along with the breakdown statistics for each slot in Table A4.

Event Types # Extracted Number of Events per Slot

who relation when where age close contact employer recent travel duration symptoms opinion what

TESTED POS 2,354,363 2,098,964 164,126 81,053 602,552 32,361 122,952 264,275 84,157 – – – –

TESTED NEG 411,071 387,354 47,325 17,044 28,447 851 7,733 – – 9,049 – – –

CAN NOT TEST 30,552 26,468 17,432 94 7,637 – – – – – 14,881 – –

DEATH 779,074 629,323 91,121 164,282 230,672 143,270 – – – – – – –

CURE & PREV. 665,422 319,077 – – – – – – – – – 270,493 461,290

Total 4,240,482 3,461,186 320,004 262,473 869,308 176,482 130,685 264,275 84,157 9,049 14,881 270,493 461,290

Table A4: Number of extracted events, with a breakdown for each slot in our knowledge base. Slot filling questions
that are not applied to specific event types are marked with “–”.
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B.2 Interface of Our Knowledge Base
Our structured query interface of the knowledge base is presented in Figure A2.

Figure A2: Structured query interface of our knowledge base.

B.3 Public Attention Shifts for Cure and Prevention Methods over Time
We present the top 15 frequently mentioned potential cure and prevention methods that people believe are
effective within different time ranges in Table A5. Larger fonts indicate more frequent terms.

(A-3) What methods of cure and prevention do people think are effective?

Before 2021/01/01 From 2021/02/15 to 2021/06/15 (First Wave in 2021)

From 2021/06/16 to 2021/10/15 (Second Wave in 2021) From 2021/10/16 to 2022/04/01

Table A5: Top 15 most frequent potential cure and prevention methods that people think are effective over different
time ranges.

3823



Proceedings of the 29th International Conference on Computational Linguistics, pages 3824–3834
October 12–17, 2022.

Accounting for Language Effect
in the Evaluation of Cross-lingual AMR Parsers

Shira Wein
Georgetown University
sw1158@georgetown.edu

Nathan Schneider
Georgetown University

nathan.schneider@georgetown.edu

Abstract
Cross-lingual Abstract Meaning Representa-
tion (AMR) parsers are currently evaluated in
comparison to gold English AMRs, despite
parsing a language other than English, due to
the lack of multilingual AMR evaluation met-
rics. This evaluation practice is problematic
because of the established effect of source lan-
guage on AMR structure. In this work, we
present three multilingual adaptations of mono-
lingual AMR evaluation metrics and compare
the performance of these metrics to sentence-
level human judgments. We then use our
most highly correlated metric to evaluate the
output of state-of-the-art cross-lingual AMR
parsers, finding that Smatch may still be a use-
ful metric in comparison to gold English AMRs,
while our multilingual adaptation of S2match
(XS2match) is best for comparison with gold
in-language AMRs.

1 Introduction

The Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) formalism captures the mean-
ing of a sentence or phrase as a rooted, directed
acyclic graph. Nodes correspond to concepts and
the labeled edges reflect the relations between con-
cepts. For example, the annotation in Figure 1
features the AMR annotation of the sentence “we
will try not to make a mistake” in both PENMAN
(text-based) and graph form. The edge labels can
be arguments (core roles, denoted as :argN), or one
of a number of non-core roles such as :location
or :manner.

Cross-lingual AMR parsers convert non-English
text to (English-focused) AMR graphs. As there are
no existing multilingual AMR evaluation metrics
and due to the limited availability of non-English
gold AMR annotations, these cross-lingual AMR
parsers have only ever been evaluated in compar-
ison to gold English AMRs. This established ap-
proach of comparison to English AMRs using the
monolingual Smatch metric needs to be considered

(v2 / try-01

:ARG0 (v1 / we)

:ARG1 (v3 / mistake-02

:polarity -

:ARG0 v1))

Figure 1: An AMR annotation for the sentence “We
will try not to make a mistake,” in PENMAN text-based
notation and as a rooted graph. The diagram was made
on the AMREager website (Damonte et al., 2017).

more carefully because previous work has estab-
lished that the source language has a dramatic effect
on the cross-lingual AMRs (Damonte, 2019; Wein
and Schneider, 2021, 2022).

We argue that cross-lingual AMR parsing should
represent the semantics, beyond the lexicon, faith-
fully to the source language. Enabled by work
developing sizable Spanish (Wein et al., 2022) and
Chinese (Li et al., 2016) gold AMR corpora, we
propose that cross-lingual AMR parsers should
be evaluated on gold AMRs that match the lan-
guage being parsed. In this work, we adapt three
monolingual AMR evaluation metrics to a mul-
tilingual setting, and evaluate the performance of
these metrics in comparison to human judgments of
cross-lingual sentence similarity. We show that our
adaptation of S2match (Opitz et al., 2020) which
leverages LaBSE (Feng et al., 2022) embeddings
is highly correlated with, and most correlated to,
human judgment of similarity.
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Additionally, using our new cross-lingual evalu-
ation metric, we evaluate the performance of cross-
lingual AMR parsers and compare that with eval-
uations using the previously-used Smatch metric.
This provides a new, informative ranking of exist-
ing cross-lingual AMR parsers and offers insight
into the applicability of the monolingual Smatch
metric for cross-lingual evaluation.

Ours is the first work to address the evaluation
of cross-lingual AMR parsers with respect to the
language being parsed. Our contributions include:

• Three multilingual adaptations of monolin-
gual AMR evaluation metrics.

• Human judgments on Spanish-English and
Chinese-English sentence pairs, correspond-
ing to gold AMR pairs.

• An assessment of the effectiveness of exist-
ing monolingual and proposed multilingual
metrics to evaluate similarity between cross-
lingual AMR pairs, and correlations with hu-
man judgments for these metrics.

• An evaluation of state-of-the-art cross-lingual
AMR parsers using both our new XS2match
metric and Smatch, in comparison to gold En-
glish and gold Spanish AMRs.

Our code is available online at https://github.
com/shirawein/Crossling-AMR-Eval to promote
ease of cross-lingual AMR evaluation using our
metrics.

2 Background

Abstract Meaning Representation parsers produce
AMR annotations from natural text. “Cross-lingual
AMR parsing” refers to parsing a non-English sen-
tence into a standard English AMR (Damonte,
2019). Damonte and Cohen (2018) introduced
the task of cross-lingual AMR parsing and de-
veloped non-English parsers by projecting from
English annotations to their non-English counter-
parts through the use of parallel corpora. Current
approaches to cross-lingual AMR parsing evalu-
ate AMRs produced from text in four languages:
Mandarin Chinese, Spanish, Italian, and German
(§5.1). Language-specific AMR parsers have also
been developed to parse from Mandarin Chinese
(Wang et al., 2018), Portuguese (Anchiêta and
Pardo, 2018), and Indonesian (Roaffa Ilmy and
Leylia Khodra, 2021).

AMR parsers have traditionally been evaluated
using the Smatch metric (Cai and Knight, 2013). In
order to compare a pair of semantic graphs (system

and gold), Smatch aligns their nodes, searching for
a maximal alignment via hill climbing. With these
alignments, triples representing edges of the two
graphs are compared to compute an F-score.

Cross-lingual AMR parsers have been evaluated
on gold English AMR graphs created from English
sentences, paired with sentences that were manu-
ally translated from those English sentences into
other languages. The English AMRs come from
the AMR 2.0 dataset (Knight et al., 2017), and the
non-English sentence translations from the AMR
2.0 - Four Translations dataset (Damonte and Co-
hen, 2020) with translations into Mandarin Chinese,
Italian, Spanish, and German. Thus, cross-lingual
AMR parsers have been evaluated by comparing
the system-produced AMR parsed from the non-
English sentence to the gold English AMR corre-
sponding to the translated sentence—which does
not take into account any effect the source language
might have on AMR structure. We discuss this con-
cern in §3.

In addition to the resources noted above, recent
work has produced gold Spanish AMRs for AMR
2.0 - Four Translations Spanish sentences (Wein
et al., 2022). As a result, we can compare the
system output to in-language (Spanish) gold AMRs,
and develop metrics to enable this comparison.

3 Developing Cross-lingual AMR
Evaluation Metrics

When comparing English and non-English AMRs,
the concepts themselves are in different languages
and the structure of the AMR will also differ, as
it is affected by the syntax and semantics of the
language being parsed from (Damonte, 2019; Wein
and Schneider, 2021; Blloshmi et al., 2020). There-
fore, to be able to evaluate the similarity of AMRs
in two different languages, there are likely changes
that need to be made to the monolingual metric.

A naive assumption is that AMR should be struc-
turally the same for parallel sentences regardless
of language, because AMR encodes meaning and
translation preserves meaning. However, previous
work has demonstrated that this is not the case, and
that even when lexical items are made to be mono-
lingual, the source language has a marked effect
on the AMR structure itself (for at least English
and Chinese): Wein and Schneider (2022) reported
Smatch scores consistently below 50% between
English and Chinese parallel gold AMR graphs,
even when all Chinese tokens are replaced by their

3825



Original gold English AMR:

(s / surge-01
:ARG1 (a / and

:op1 (s2 / speed-01)
:op2 (a2 / accident))

:mod (a3 / as-well))

Original gold Spanish AMR:

(c0 / aumentar-01
:manner (c1 / también)
:ARG1 (c2 / y

:op1 (c3 / exceder-01
:ARG1 (c4 / velocidad))

:op2 (c5 / accidente)))

Our translated version of the gold Spanish AMR:

(c0 / increase
:manner (c1 / also)
:ARG1 (c2 / and

:op1 (c3 / exceed
:ARG1 (c4 / speed))

:op2 (c5 / accident)))

Figure 2: Parallel gold English and Spanish AMRs for
the sentence “Speeding and accidents have surged as
well” from Knight et al. (2017) and Wein et al. (2022)
respectively, followed by our translated version of the
gold Spanish AMR per the cross-lingual Smatch (XS-
match) method.

corresponding English AMRs. Therefore, we alter
existing metrics to be able to compare (English)
AMRs parsed from non-English sentences to gold
in-language AMRs.

We consider the applicability of existing AMR
metrics in cross-lingual parser evaluation and adapt
them to function multilingually. Cross-lingual
AMR parsers are currently evaluated via Smatch.
Here we consider three metrics: Smatch, SemBleu,
and S2match.

As mentioned in §2, Smatch aligns the semantic
graphs via hill climbing. S2match (Opitz et al.,
2020) incorporates word embeddings into Smatch
to account for similarity of concept nodes without
the same token being used. SemBleu (Song and
Gildea, 2019) is based on the machine translation
metric BLEU (Papineni et al., 2002). SemBleu
does not involve variable alignment and instead
converts the graph to a bag of k-grams.

Broadly, our approach to adapting these mono-
lingual metrics is that we alter Smatch (§3.1) and
SemBleu (§3.2) by translating the lexical mate-
rial in the AMR graphs into English, and S2match
(§3.3) by using cross-lingual embeddings.

3.1 XSmatch

In order to make Smatch (Cai and Knight, 2013)
multilingual, we translate individual tokens within
the non-English AMR to English. We use the
EasyNMT package1 for translation, which was also
the translation package used in the cross-lingual
parser of Uhrig et al. (2021). Specifically, we
employ the Opus-MT model. Recall that Smatch
(like the other evaluation metrics) compares AMR
graphs rather than strings. Therefore, we are trans-
lating individual elements of the AMR and not the
sentence itself. The elements of the AMR which
we translate are the words in the instance and at-
tribute triples. We also remove the word senses
(numeric affixes to the concepts) for ease of trans-
lation and comparison. An example parallel gold
English and gold Spanish AMR, plus our corre-
sponding translated version of the gold Spanish
AMR, can be seen in Figure 2.

We also developed a version of Smatch that
aligns concepts across AMRs in different languages
via fast_align (Dyer et al., 2013), and found that
using machine translation was more reliable.

3.2 XSemBleu

To adapt SemBleu to function cross-lingually, we
again translate the tokens in one of the AMRs,
and additionally truncate the tokens (truncate af-
ter translation for the non-English AMR, and also
truncate for the English AMR). SemBleu does not
break the AMR into triples, so we instead translate
the entire non-English AMR to an English AMR
by iterating token by token over the AMR and de-
termining whether the current token needs to be
translated. For example, parentheses, digits, and
roles starting with a colon do not need to be trans-
lated. This approach to translation is more intensive
than the translation required for individual tokens
in XSmatch. Therefore, we aim to account for
translation discrepancies and errors (e.g. part-of-
speech discrepancies) by truncating the translations
to the first n tokens. In this case we use n=5. We
use the default weights and smoothing function.

We suspected that SemBleu may be a better fit
for cross-lingual AMR comparison because Sem-
Bleu prioritizes content over graph structure. One
potential issue with SemBleu is that the nodes
with higher connectivity are disproportionately
weighted (Opitz et al., 2020).

1https://github.com/UKPLab/EasyNMT
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3.3 XS2match

The current implementation of S2match relies on
an external text file of embeddings, with the token
being paired to an embedding in the file, and the
embedding being retrieved from the text file for
each token. To transport S2match to a multilingual
format, we make use of the LaBSE (Feng et al.,
2022) preprocesser and encoder. Where the ex-
isting S2match approach retrieved the embedding
for a token from a text file, we elicit a constant
tensor of the word, preprocess it, and encode it to
a LaBSE embedding. Finally, we normalize the
embedding and convert it to a numpy vector.

Consequently, we adjust the similarity compu-
tation when comparing the individual units of the
two AMRs to matrix multiplication of two vectors,
with one vector transposed.

We also trialed our approach with multilingual
BERT (Devlin et al., 2018) and found that LaBSE
was a more effective solution, though it takes longer
to run than using multilingual BERT.

A benefit of XS2match is that, unlike XSmatch
and XSemBleu, it does not rely on neural machine
translation practices that could unduly benefit a
parser using the same translation tool (e.g. Uhrig
et al. (2021)) through exact lexical matching. When
using XSmatch or XSemBleu to evaluate cross-
lingual parser performance, it is worth verifying
whether the translation approach is the same for
the metric and the parser.

4 Analysis of Metrics

To compare cross-lingual AMR metrics, we need
a source of ground truth about how the sentences
in a translation pair relate to one another. For this
we utilize human judgments of cross-lingual simi-
larity. Because AMR is a meaning representation,
the similarity scores of cross-lingual AMR pairs
ideally should correlate with the similarity scores
of their associated sentence pair. In line with pre-
vious work (Opitz et al., 2020), we determine the
accuracy of our AMR metrics by calculating Pear-
son’s correlation between system output and hu-
man judgments of cross-lingual sentence similarity.
Specifically, we use gold AMRs as input to the met-
rics and calculate how correlated the metric-based
similarity scores are to the human similarity ratings
for the corresponding sentence pair. We normalize
the AMRs by removing all wikification (links to
the associated Wikipedia pages for entities in the
AMR).

4.1 Collection of Human Judgments

We collect human judgments for 100 Spanish-
English sentence pairs and 150 Mandarin Chinese-
English sentence pairs which have associated gold
AMRs. Both sets of data are doubly annotated
by speakers fluent in both English and Chinese /
Spanish.

We use both language pairs because Spanish
and Chinese are notably syntactically distinct lan-
guages, and vary noticeably in cross-lingual AMR
performance (§5.1). We also only use sentences
which have associated gold AMRs, as opposed to
existing sentence similarity metrics (Agirre et al.,
2016), because we want to avoid introducing noise
by relying on automatic parsers when comparing
the AMR similarity with sentence similarity, or bi-
asing our later assessment of cross-lingual parsers
towards the parsers being used.

The sentences used come from the Chinese an-
notations of The Little Prince (Li et al., 2016)
and the Spanish annotations (Wein et al., 2022)
of AMR 2.0 - Four Translations (Damonte and Co-
hen, 2020). The parallel English sentences for both
the Chinese and Spanish sentences are very related
in meaning to the non-English sentences, so it was
necessary to construct a dataset with varying de-
grees of sentence similarity (with all sentences still
having associated gold AMRs).

In order to construct a Spanish-English dataset
of varying similarities, 100 Spanish sentences from
different genres in Damonte and Cohen (2020)
were chosen. Then, a portion (25%) of the sen-
tences were paired with English (from Knight et al.,
2017) sentences with minimal to no similarity. Half
of the sentences were paired with English sentences
having a moderate amount of similarity / some di-
vergence, as determined by being from the same
relative part of a text and discussing the same topic
without being a parallel sentence. The remaining
25% of the sentences were then paired with their
parallel English sentences.

A similar approach was used when construct-

Annotator 0 1 2 3 4 5
Zh-Eng Anno. 1 35 15 5 17 41 37
Zh-Eng Anno. 2 40 9 3 10 25 63
Es-Eng Anno. 1 41 17 7 7 1 27
Es-Eng Anno. 2 34 15 14 8 6 23

Table 1: Distribution of human judgments of sentence
similarity from 0-5 for each annotator. Zh-Eng anno-
tators provided 150 judgments and Es-Eng annotators
provided 100 judgments.
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Smatch XSmatch SemBleu XSemBleu XS2match BERTscore
Zh-Eng Anno. 1 0.43 0.40 0.20 0.42 0.51 0.76
Zh-Eng Anno. 2 0.38 0.40 0.21 0.40 0.50 0.72

Zh-Eng Anno. Sum 0.41 0.41 0.21 0.42 0.51 0.75
Zh-Eng BERTscore 0.46 0.39 0.25 0.38 0.52 1.00

Es-Eng Anno. 1 0.69 0.79 0.37 0.60 0.77 0.87
Es-Eng Anno. 2 0.72 0.82 0.39 0.63 0.81 0.86

Es-Eng Anno Sum 0.72 0.82 0.38 0.63 0.80 0.88
Es-Eng BERTscore 0.74 0.82 0.41 0.62 0.79 1.00

Table 2: Pearson’s correlation scores between the evaluation metrics (in the columns, along with BERTscores)
and the human judgments of similarity (in the rows, with BERTscore, again). For each language pair, being
Chinese-English and Spanish-English, we get the correlation with each of the two annotators as well as the sum of
the similarity judgments.

ing the Chinese-English dataset, with 66% of the
dataset being mostly parallel and 33% of the dataset
being mostly divergent.

We asked human annotators to provide a score
from 0 to 5 of how similar the content of a Spanish-
English or Chinese-English sentence pair is. We
use the task instructions from Agirre et al. (2016) as
the basis for our instructions, “where 0 represents
two sentences that are unrelated in meaning, and
5 indicates that the two sentences are perfect para-
phrases of each other”. We also added in degrees
of similarity to the instructions to add clarity:

• (0) Completely unrelated
• (1) Not equivalent but share few subjects
• (2) Not equivalent but share some details
• (3) Roughly equivalent
• (4) Equivalent except for some details
• (5) Completely equivalent
We find that agreement for our sentence sim-

ilarity protocol is high, with the correlation be-
tween annotator judgments being 0.93 for both
the Spanish-English annotations and the Chinese-
English annotations.2 The distribution of the sen-
tence similarity scores is not uniform (table 1).3

4.2 Results of Correlation Analysis

In order to assess the applicability of our metrics for
cross-lingual AMR evaluation, we calculate Pear-
son’s correlation for the human sentence similarity
judgments and the AMR metrics. We also com-
pare with the sentence-based metric BERTscore as
a point of reference. These results can be seen in
table 2.

2Annotator agreement for the SemEval task (Agirre et al.,
2016) is not reported.

3For the Chinese-English sentences, we initially collected
judgments from a third annotator, but that annotator’s inter-
pretation of similarity was skewed towards saying most of the
valid translations were completely equivalent, so the data was
not informative for studying degrees of similarity. As a result
we used the data from two other annotators.

First, note that the use of translation is bene-
ficial in SemBleu for both language pairs and in
Smatch for Spanish-English. Applying translation
to Chinese-English data has little effect on Smatch,
for reasons discussed later in this section.

Comparing the three cross-lingual metrics, the
two with the highest correlation to human judgment
of sentence similarity are XSmatch and XS2match.
While the correlation for Spanish-English is similar
for those two multilingual metrics, though slightly
higher via XSmatch, the correlation for Chinese-
English is substantially higher using XS2match.
As a result, we recommend that XS2match is likely
the best metric to use for cross-lingual AMR parser
evaluation.

Notably, though perhaps unsurprisingly, correla-
tion with the Chinese-English human annotations
is lower for all metrics than correlation with the
Spanish-English human annotations. This is likely
not due to any issues with the human annotation
itself, because the annotations still correlate well
with BERTscore judgment of similarity, as seen
in the final column of table 2. Nonetheless, the
Chinese-English human annotations are less cor-
related with BERTscore than the Spanish-English
human annotations. Instead, the lower correlation
with the Chinese-English annotations is likely due
to lower performance on Chinese for the automatic
machine translation systems and embeddings, as
well as a greater degree of dissimilarity between the
Chinese and English parallel AMRs than between
the Spanish and English parallel AMRs. This
greater degree of dissimilarity for certain AMR
pairs has been studied previously (Xue et al., 2014)
and is also evidenced here by the difference in the
Smatch column in table 2. The baseline Smatch
similarity, with no multilingual component, is al-
ready much more correlated with human judgments
for Spanish-English than for Chinese-English.
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The monolingual Smatch score is already highly
correlated with sentence similarity (for English-
Spanish in particular, but for both language pairs)
because of structural similarity between the AMRs
and matching between a subset of non-lexical
nodes. For example, the Smatch scores aren’t re-
lying on lexical items as much as they are relying
on the entities, e.g. shared name entities. This
presence of names and named entities may also
affect these correlation scores across languages be-
cause the Spanish-English text is from the news
domain, which includes many country and person
names, whereas the Chinese-English text is The
Little Prince, which includes fewer of these named
entities. This finding is a benefit of our approach to
consider two different languages and text domains
in our correlation analysis; as a result our recom-
mendation to use XS2match for cross-lingual AMR
evaluation is a more robust one.

Even with the translation and truncation prac-
tices, XSemBleu correlation does not exceed
XS2match correlation for either language pair. We
hoped that SemBleu might be able to overcome
structural differences between cross-lingual AMR
pairs, but the undesirable presence of bias in the
metric, which cannot be overcome without intro-
ducing a different bias (Opitz et al., 2020), likely
led to the consequence of correlating less with the
human annotations than the other metrics. Still,
XSemBleu correlates fairly well with both lan-
guage pairs.

We also measure correlation with scores from
the BERTscore metric (Zhang et al., 2020),
which uses the sentences directly and not the
AMR graphs. BERTscore uses BERT-based
models to compare embeddings of the words
in the candidate and reference sentence via co-
sine similarity. We use BERTscore with the
bert-base-multilingual-cased model as is the
default for multilingual pairs. The last column of
table 2 shows that BERTscore achieves very strong
correlations with human judgments, which can be
interpreted as validating those judgments. Recall
that our ultimate goal is to arrive at a cross-lingual
AMR metric to compare AMR parsers, not to com-
pare the raw sentences, so we use BERTscore here
to validate the human judgments. Reassuringly, the
AMR metrics are not too far behind BERTscore.4

Rows 4 and 8 compare the AMR metrics with
4This is unsurprisingly especially true for XS2match,

which uses LaBSE embeddings (BERT-based cross-lingual
sentence embeddings).

BERTscore, showing that they are about as well
correlated with each other as the metrics are with
human judgments.

We also verify that sentence length is not a con-
founding variable in these judgments, with the cor-
relation between average sentence length and hu-
man similarity score being only 0.07.

5 Evaluating Cross-lingual AMR Parsers

Now that we have assessed the metrics discussed
in §4 on gold AMRs in comparison to human judg-
ments, we are interested in seeing how existing
cross-lingual AMR parsers perform on our recom-
mended cross-lingual metric versus on monolin-
gual Smatch.

5.1 Approach to Parser Evaluation
We compare the performances of four state-of-
the-art cross-lingual AMR parsers: SGL (Proco-
pio et al., 2021), Bilingual Information for Cross-
lingual AMR Parsing (“BI”) (Cai et al., 2021),
XLPT-AMR (Xu et al., 2021), and Translate then
Parse (“TP”) (Uhrig et al., 2021).

The SGL semantic parser (Procopio et al., 2021)
is a seq2seq architecture trained for neural machine
translation. SGL as a cross-lingual AMR parser
works well in a zero-shot setting (without seeing
any non-English AMR examples in training). Us-
ing their mBART + AP (where AP stands for an-
notation projection) model, SGL reports Smatch
scores of 73.3, 73.9, 73.4, and 64.9 for German,
Spanish, Italian, and Mandarin Chinese respec-
tively on machine translations of the test set.

Cai et al.’s (2021) AMR parser (which here
we call “BI” because of its use of bilingual in-
formation) introduces translated and non-English
texts into the training of a seq2seq parser, to better
predict non-English concepts. BI reports Smatch
scores of 64.0, 65.4, 67.3, and 56.5 for German,
Spanish, Italian, and Chinese respectively.

XLPT-AMR (Xu et al., 2021) approaches zero-
shot AMR parsing via multi-task learning. XLPT-
AMR reports Smatch scores of 70.5, 71.8, and
70.8 for German, Spanish, and Italian respectively;
XLPT-AMR was not evaluated on Chinese data.

Translate then Parse (Uhrig et al., 2021) takes
a simple approach to cross-lingual AMR parsing:
translating the non-English sentence to English
and then parsing with an English AMR parser
(amrlib).5 Translate then Parse (“TP”) claims Ger-

5https://github.com/bjascob/amrlib
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BI XLPT-AMR SGL TP
Consensus 0.737 0.733 0.655 0.756

DFA 0.703 0.685 0.652 0.722
Bolt 0.671 0.676 0.608 0.708

Proxy 0.776 0.785 0.737 0.808
Xinhua 0.651 0.682 0.685 0.724
Average 0.708 0.712 0.669 0.744

Table 3: XS2match scores in comparison to gold Span-
ish AMRs for each parser on every subset of data in
the evaluation. The column labels are automatic AMR
parsers and the row labels are the five genres of data in
the Spanish AMR corpus.

man, Spanish, Italian, and Chinese Smatch scores
of 67.6, 72.3, 70.7, and 59.1, respectively.

While these cross-lingual parsers have previ-
ously only been evaluated in comparison to gold
English AMRs via Smatch, we now perform
three comparisons on a substantial subset of the
AMR 2.0 (Knight et al., 2017) (and AMR 2.0 -
Four Translations (Damonte and Cohen, 2020))
dataset: (1) Smatch evaluation in comparison to
gold English AMRs, as was used for evaluation of
these parsers in previous work, (2) Smatch evalu-
ation in comparison to gold Spanish AMRs, and
(3) XS2match evaluation in comparison to gold
Spanish AMRs.

In this section, we consider the subset (486 sen-
tences) of AMR 2.0 - Four Translations that is an-
notated in the Spanish AMR corpus (Wein et al.,
2022). We then retrieve the parser data, either by
contacting the authors of the work or by running the
parser ourselves, for all of those Spanish sentences.
Though it is the traditional form of cross-lingual
AMR parser evaluation, we compare the system
output to the English gold AMRs via Smatch, so
that we have a direct comparison on this subset of
data with our two completely novel sets of eval-
uation for these parsers: in comparison to gold
Spanish AMRs, via Smatch as well as XS2match.6

5.2 Analysis of Results

English AMRs have been viewed as a proxy for
evaluating parser output for Spanish sentences,
but Spanish AMRs should be the true gold stan-
dard as they are not corrupted by translation diver-
gences. In this subsection, we empirically assess
how much this difference makes for comparing and

6We perform this comparison exclusively with Spanish
gold AMRs because we want to focus on the sentences that
have been used by previous work in the evaluation of cross-
lingual AMR parsing, namely, the AMR 2.0 - Four Transla-
tions dataset. Only the Spanish sentences in this dataset have
gold AMRs.

Metric BI XLPT-AMR SGL TP
Eng. Smatch 0.682 0.680 0.582 0.696
Span. Smatch 0.378 0.378 0.382 0.408

Span. XS2match 0.708 0.712 0.669 0.744

Table 4: Average evaluation scores for each of the three
metrics considered for the cross-lingual parsers.

ranking parser performance. To do this, we com-
pare cross-lingual parser performance via the tradi-
tional method of comparing output to gold English
AMRs, as well as using the existing monolingual
method of Smatch and our proposed multilingual
method of XS2match (S2match with multilingual
embeddings) in comparison to the gold Spanish
AMRs.

Since we are comparing the system parse of
a Spanish sentence to a parallel gold AMR, the
higher the score (regardless of metric), the more
similar the output is to the gold Spanish AMR, and
thus the better the system output. We calculate
the average scores for each AMR parser by retriev-
ing the score for each of the five texts included in
the evaluation dataset and averaging them with the
same weight. We opt for a macro-average by text
because of comparable text sizes.

Table 4 shows the average score by metric for
each of the four parsers. Monolingual Smatch puts
the comparison to gold Spanish AMRs at a disad-
vantage because the system output is parsed into an
English AMR. Therefore the lexical similarity is
not considered between the two AMRs, and mono-
lingual Smatch is not an effective tool for compar-
ing cross-lingual AMR parser output to gold AMRs
of the same language as the source sentence.

With the intent to find a method to compare to
gold AMRs in the source sentence, we have already
found that XS2match is a good choice for this type
of evaluation in §4.2. We find that the Spanish
XS2match scores are slightly higher for all parsers
than the English Smatch scores, which indicates
that it is actually not only a more justified compar-
ison than a comparison against English AMRs as
it accounts for source language, but also a fairer
and more accurate comparison because the parallel
AMRs are indeed being judged as more parallel.

Ultimately we find that Smatch, when comparing
to English gold AMRs, provides a similar ranking
and scores for the cross-lingual AMR parsers as
XS2match does when comparing to Spanish AMR.
Note that in table 4, the system-level comparison
by average English Smatch and average Spanish
XS2match is very comparable. When considering
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a ranking of parser performance, our empirical re-
sults suggest that monolingual Smatch serves as a
reasonable proxy of parser ranking in the absence
of in-language gold AMRs. However, it is still im-
portant to note that absolute scores from monolin-
gual Smatch are artificially depressed in the cross-
lingual scenario, meaning that faithfulness to the
original Spanish sentence is being rewarded. There-
fore, this monolingual evaluation does not provide
a sufficient substitute for the in-language compari-
son via XS2match due to the fact that monolingual
Smatch against English AMRs does not account
for the dramatic effect and importance of language
on AMR structure (Wein and Schneider, 2021).

Figures 3 and 4 show scatterplots of the aver-
age performance of the four parsers. Notably, the
SGL parser, which is zero-shot, performs the worst
of the four parsers when using XS2match in com-
parison to Spanish gold AMRs (and in compari-
son to English gold AMRs via Smatch). XLPT-
AMR is also zero-shot but performs slightly bet-
ter than SGL on the English Smatch and Spanish
XS2match comparisons. BI, which incorporates
additional bilingual informations, performs simi-
larly to XLPT-AMR, achieving only slightly lower
scores.

Translate then Parse (“TP”) performs best on all
three evaluations. The XS2match scores for each
parser on every text can be seen in table 3. While
the four metrics achieve similarly high scores, the
output from the Translate then Parse system con-
sistently produces the highest similarity score via
XS2match across all five texts. This suggests that
using the highly accurate machine translation via
EasyNMT as a pre-processing step, before involv-
ing any AMR parsing, is an effective way of cap-
turing the linguistic information of the source sen-
tence. This is perhaps surprising because the sen-
tence is immediately translated, but less surprising
due to the challenging nature of cross-lingual AMR
parsing, given that none of the cross-lingual parsers
are trained on gold non-English AMRs. The ability
of the machine translation system to account for
cross-linguistic divergence, as noted by Uhrig et al.
(2021), enables an effective monolingual English
AMR parser to work well in this setting.

6 Background on Other Evaluation
Metrics

Other metrics which we did not adapt in this paper
have been proposed for AMR evaluation.

$YH�6SDQLVK�6�PDWFK

$
YH
�6
SD
QL
VK
�6
P
DW
FK

�����

�����

�����

�����

����� ����� ����� ����� �����

$YH�6SDQLVK�6PDWFK�YV��$YH�6SDQLVK�6�PDWFK

SGL

BI XLPT-AMR

TP

XS2match

XS2match

Figure 3: Average Spanish Smatch vs Average Spanish
XS2match

$YH�6SDQLVK�6�PDWFK

$
YH
�(
QJ
OLV
K�
6
P
DW
FK

����

����

����

����

����� ����� ����� ����� �����

$YH�(QJOLVK�6PDWFK�YV��$YH�6SDQLVK�6�PDWFK

SGL

BI XLPT-AMR
TP

XS2match

XS2match

Figure 4: Average English Smatch vs Average Spanish
XS2match

A document-level version of Smatch (Naseem
et al., 2022) (as opposed to sentence-level) aligns
the roots of its sentence-level AMR subgraphs.
Similarly, Cai and Lam (2019) produces a version
of Smatch designed to specifically consider core
semantics, called Smatch-weighted.

SEMA (Anchiêta et al., 2019) extends Smatch by
taking a breadth-first search approach to computing
the maximum score; Smatch relies on one-to-one
variable matching. The evaluation is limited and
the metric is only shown to be stricter than Smatch.

Another existing monolingual AMR metric we
did not consider in this work is MFβ . MFβ (Opitz
and Frank, 2021) measures how easily an AMR can
be reconstructed by AMR parsers and measures the
grammaticality of the produced text. MFβ eval-
uation is more suited to AMR-to-text generation
evaluation than to text-to-AMR parsing.

Goodman (2019) presents four AMR normaliza-
tion techniques to ensure that isomorphic AMRs
are evaluated as equivalent.

The BAMBOO suite (Opitz et al., 2021) houses
various AMR similarity metrics to be able to assess
the strengths and weaknesses of each metric.
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7 Conclusion and Future Work

Our analysis of evaluation of cross-lingual AMR
parsers indicates the usefulness of XS2match as a
multilingual evaluation method. We recommend
this approach as a way to compare AMRs parsed
from non-English sentences to their gold non-
English equivalents, while exploring additional al-
ternatives in our work. We also find that using
Smatch in comparison to gold English AMRs may
be a useful tool for ranking cross-lingual AMR
parser performance in the absence of in-language
gold AMRs. With the future production of non-
English gold AMRs, the evaluation of cross-lingual
AMR parsers using our proposed metric will be
more robust, accounting for the effect of source
language on AMR.
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Abstract
While question generation (QG) has received
significant focus in conversation modeling and
text generation research, the problems of com-
paring questions and evaluation of QG models
have remained inadequately addressed. Indeed,
QG models continue to be evaluated using tradi-
tional measures such as BLEU, METEOR, and
ROUGE scores which were designed for other
text generation problems. We propose QSTS, a
novel Question-Sensitive Text Similarity mea-
sure for questions that characterizes their target
intent based on question class, named-entity,
and semantic similarity information.
We show that QSTS addresses several short-
comings of existing measures that depend on
n-gram overlap scores and obtains superior
results compared to traditional measures on
publicly-available QG datasets. We also collect
a novel dataset SimQG for enabling question
similarity research in QG contexts. SimQG
contains questions generated by state-of-the-art
QG models along with human judgements on
their relevance with respect to passage contexts
as well as the given reference questions. Using
SimQG, we showcase the key aspect of QSTS
that differentiates it from all existing measures.
QSTS is not only able to characterize similar-
ity between two questions, but is also able to
score questions with respect to passage con-
texts. Thus QSTS is, to our knowledge, the
first metric that enables the measurement of
QG performance in a reference-free manner.

1 Introduction

Automatic Question Generation (QG), the task of
generating natural language questions for a given
input text passage continues to garner significant
research focus in the NLP community (Wang et al.,
2020b; Huang et al., 2021) due its potential applica-
tion in education (Srivastava and Goodman, 2021),
tutoring (Lindberg et al., 2013) and interactive dia-
log systems (Wang et al., 2020a).

In current research, in lieu of human evalua-
tion, the standard practice for evaluating the perfor-

mance of QG models involves the use of Question
Answering (QA) datasets containing pairs of (ref-
erence question, passage context) elements. For
evaluating QG, the machine-generated question
for a given passage context is compared with the
given reference question by applying metrics such
as BLEU (Papineni et al., 2002), METEOR Lavie
and Agarwal (2007), and ROUGE (Lin, 2004).

The above widely-used measures were originally
developed for evaluating tasks such as summariza-
tion and translation and are based on overlap of
n-grams between a given reference text and the
model-generated text. Though studies have indi-
cated that these measures do not correlate well with
human judgements of fluency, relevance, and co-
herence (Callison-Burch et al., 2006; Liu et al.,
2016; Nema and Khapra, 2018) these measures
are easy to compute and continue to be used for
various natural language generation (NLG) tasks.
Recently though, research studies are addressing
metrics learning for NLG using transformers and
these learnt metrics were shown to obtain state-
of-the-art performance in evaluation (Zhang et al.,
2020; Sellam et al., 2020).

We posit that the existing metrics for measuring
text generation tasks are inadequate for comparing
questions due to their inability to incorporate vari-
ous features that characterize questions. The first
among these features is the question class (alter-
natively referred to as answer type) which places
constraints on the answer to a given question.1 For
example, for the question, “Who was Lincoln?", in
context of a passage on the former US president, a
correct answer is most likely looking for a descrip-
tion referring to his job/role/occupation whereas
the answer to the question “What is humidity?" is a
definition. We argue that question class as well as
named entities, when present in a question, directly
affect the intent of the question and need to be

1https://cogcomp.seas.upenn.edu/Data/
QA/QC/definition.html
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Question Pairs QBLEU BLEURT QSTS
(What was the title of Bob Dylan’s first album?;

0.744 0.816 0.928
What was Bob Dylan’s first album called?)
(What was the name of Vincent’s brother;

0.473 0.667 0.874
Who was Vincent’s brother?)
(Where in Germany was the composer Beethoven born?;

0.278 0.709 0.548
Which city in Germany is the place of birth of Beethoven?)

B1:0.457, B4:0.000, Meteor: 0.344, Rouge: 0.485
(Who was Columbus?;

0.508 0.671 0.0
Where is Columbus?)
(What was the name of Vincent’s brother?;

0.832 0.519 0.0
What was the name of Vincent’s painting?)
(When did Freddie Mercury die?;

0.779 0.799 0.0
How did Freddie Mercury die?)

B1: 0.733, B4: 0.683, Meteor: 0.456, Rouge: 0.663

Table 1: Illustrative question pairs are shown with system-level scores for BLEU-1 (B1) and BLEU-4 (B4),
METEOR, and ROUGE and as pair-level scores for QBLEU (Nema and Khapra, 2018), BLEURT (Sellam et al.,
2020), and QSTS

handled differently from other words in a question.
The metrics currently in use are based on word

overlap and do not capture the semantics of ques-
tions as can be seen in the representative exam-
ples of similar and dissimilar questions in Table 1.
The system-level scores of the traditional metrics
(BLEU, METEOR, ROUGE), are shown in this
table along with QBLEU values (the extension of
BLEU scores for questions proposed by Nema, et
al (2018)), as well as BLEURT scores that mea-
sure semantic similarity between two texts using
BERT (Sellam et al., 2020; Devlin et al., 2019).

In Table 1, we note that none of the existing
metrics are able to accurately assess the similar-
ity or difference between the given question pairs
and instead tend to assign high scores to dissimilar
questions and low scores to simple rewritings of
the questions with the same intent. In the right-
most column of Table 1, we show the values of
our proposed Question-Sensitive Text Similarity
(QSTS ) scores assigned to these question pairs that
are more representative. We discuss the design of
QSTS in the rest of this paper. Our contributions
are as follows:

1. We propose QSTS, a Question-Sensitive Text
Similarity measure for comparing questions.
Unlike existing measures, QSTS explicitly
represents the question class and named enti-
ties present in a given question pair and com-
bines them with dependency tree information
and word embeddings to provide a more repre-
sentative and interpretable measure of the se-

mantic similarity between the two questions.

2. We evaluate QSTS on publicly-available
datasets of similar questions available for
QG/QA research. Our experiments indicate
that our proposed measure provides a more
accurate representation of question similarity
compared to traditional measures employed
for characterizing QG model performance.

3. We present the potential use of QSTS in
reference-free evaluation for QG. The QSTS
metric is able to reasonably characterize ques-
tion quality of model-generated questions us-
ing passages that were used for generating
them. This capability is representative of the
human ability to judge whether a given ques-
tion is fluent and relevant in the context of a
given passage unlike existing measures that
need reference questions for evaluation.

We demonstrate reference-free evaluation
for QG using QSTS on a novel dataset,
SimQG. SimQG contains human judgements
for machine-generated questions from lat-
est QG models for a selection of about
500 (reference question, passage) pairs from
SQuAD (Rajpurkar et al., 2016). SimQG and
an implementation of QSTS in Python have
been made available for academic research.2

Organization: We present the details of comput-
2 https://github.com/NUS-IDS/coling22_

QSTS
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ing QSTS in Section 2. Our novel dataset SimQG
is described in Section 3. Experiments and results
are described in Section 4 while closely-related
work is summarized in Section 5. Finally, we con-
clude the paper with a summary and remarks on
future directions in Section 6.

2 Question-Sensitive Text Similarity

A necessary aspect to capture while comparing
two questions is a measure of whether the target
intent behind the two questions is the same. As
highlighted in the examples from Table 1, measur-
ing simple lexical overlap between n-grams of two
questions is insufficient for this purpose. In com-
parison, word and sentence representations (Pen-
nington et al., 2014; Peters et al., 2018) are known
to capture similarity between words despite the
lexical mismatch. Extending this idea further, met-
rics based on contextual representations were de-
veloped for measuring similarity for text genera-
tion tasks such as translation and image caption-
ing (Zhang et al., 2020; Sellam et al., 2020).

However, note that simple changes to words has
significant changes in question meanings (“Who
was Columbus" vs. “Where was Columbus?")
and embedding spaces learnt purely from word
co-occurrence and contextual information from
large corpora suffer from the drawback of overesti-
mating scores to word pairs representing entities
as well as question cues.3 Consequently, these
measures tend to overestimate similarity in case
of non-similar questions as shown in the last three
examples in Table 1. We address the above issues
by modeling three different question-specific
aspects in QSTS :

Question Class (QC) or Answer-Type for a
question refers to the constraints the question
imposes on the “sought after answer" (Li and Roth,
2002). Li and Roth (2002) designed a two-level
question class taxonomy (Footnote 1) for represent-
ing questions in TREC question answering tasks4

where the answers to questions can be assigned one
of six coarse classes namely, Abbreviation, Entity,
Description, Human, Location, and Numeric value.
These six classes are further organized into 50
fine classes for a more specific classification of
the answer type. For example, the coarse class

3For instance, based on GLoVe embeddings (Pennington
et al., 2014), (“Lincoln", “Columbus"), and (“who", “when")
have cosine similarity values of 0.659 and 0.608, respectively.

4https://trec.nist.gov/data/qa.html

“Human" includes fine classes for an individual, a
group of individuals, a description of an individual,
as well as the title assigned to an individual.
Question class information has also been used
to improve question answering and question
generation performance (Tayyar Madabushi et al.,
2018; Zhou et al., 2019).

We use question class information in QSTS to
characterize if the two questions under consider-
ation are seeking the same answer type. With an
accurate question-class classifier, both questions
in the first row of Table 1 are assigned the same
question class in the QC taxonomy (referring to
“creative pieces and inventions") whereas the two
questions in the fourth row are assigned classes
corresponding to “description of an individual" ver-
sus “location" automatically capturing their differ-
ent semantics. We can directly measure the ques-
tion class similarity (qcsim) using the δ function,
where δij = 1, if qc(qi) = qc(qj) and 0 otherwise
where qci stands for the question class for question
qi. To incorporate the hierarchical nature of the QC
taxonomy, we modify this function to assign partial
score of 0.5 if the coarse class matches for the two
questions and 0.75 if one of question fine classes
involves the catch-all “other" class. For example,
the question classes assigned to the two questions
in the third row correspond to “Location:Other"
and “Location:city", respectively.

Named-Entities when present in a question con-
strain the question with reference to the mentioned
entity. For instance, if “Columbus" in the question
“When was Columbus born?" is replaced by another
name, it will become a completely different ques-
tion. Therefore, similar to question classes, named
entities require a hard measurement. To account for
multi-word names and partial matches, we isolate
the tokens in a given reference question referring
to named entities and look for their presence in the
generated question.5

The named-entity similarity (nesim) is mea-
sured as the fraction of named-entity tokens in the
reference question that are present in the generated
question. That is, for a given reference question,
“Who was Abraham Lincoln?" and the question
“Who was Lincoln?", the named-entity similarity
score is computed as 1

2 .
Semantic Similarity forms the third component

of QSTS. We use the dependency parse of ques-

5We use proper nouns in parts-of-speech tags and named-
entity tags to identify name tokens.
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tions to compute the semantic similarity between
them. Dependency trees of sentences capture syn-
tactic dependencies among the words in a sentence
such as subject-object, modifier, and clausal links.
Dependency-tree based kernels are widely-used in
measuring sentence similarity (Croce et al., 2011;
Özateş et al., 2016).

Let e=(h, rel, t) represent a directed edge in the
dependency tree of a given question where the
typed relation rel exists between two tokens, h
and t. Given the dependency edges of two ques-
tions (reference and generated), we match the de-
pendency edges of the reference question (E(qr))
with those of the generated question (E(qg)) and
pick the best matching or the most similar edge
∀e ∈ E(qr). The edge similarity esim(emr , eng)
is computed as

δ(relmr , relng)
[sim(hmr , hng) + sim(tmr , tng)

2

]

In the above formulation, δ(relmr , relng) refers to
the Kronecker δ function that assigns a value of
1 if the two relation types are the same and zero
otherwise and sim(a, b) is computed using cosine
similarity of the word embeddings if a, b are non-
name tokens. However, if either the head or tail
of the edge is a name token, we use exact match
on that side of the edge. That is, for the two edges
emr=(hmr , relmr , tmr) and enj=(hng , relng , tng),
if hmr is a name token, esim(emr , eng) =

δ(relmr , relng)δ(hmr , hng)sim(tmr , tng)

The same principle applies if tmg is a name token.
The above formulation ensures that name tokens
are not treated like regular tokens and a hard match
is enforced while at the same time the edge similar-
ity values stay in the range [0, 1].

The final semantic similarity (semsim) of the
two questions is the average similarity of the edges
in the reference question that match best with the
edges in the generated question. Since named en-
tity tokens and question cue words are handled
separately, only edges involving content words are
considered in this computation. Additionally, we
ignore edges representing less informative depen-
dency relations such as “punctuation", “possessive
modifier" and seven others in line with previous
works (Özateş et al., 2016).

QSTS : Note that each of the similarity func-
tions, qcsim,nesim,semsim assign normal-
ized scores between [0, 1] for an independent as-
pect of matching the two questions. These three

scores can be summarized using the geometric
mean (Fleming and Wallace, 1986) to obtain a
single score between [0, 1] for Question-Sensitive
Text Similarity as

QSTS(r, g) = (qcsimrg ∗ nesimrg ∗ semsimrg)
1/3

(1)
The QSTS score is directional, the nesim and

semsim computations are with respect to a given
reference question. That is, for nesim, we com-
pute how many of the name tokens in a reference
question are seen in the given/generated question
and in semsim, we compute the best matching
edges from E(qg), ∀e ∈ E(qr). Note that this di-
rectional nature enables the computation of these
two scores for (question, passage) pairs as well. To
estimate if a question is valid for a passage, we can
check if the named entities (when present) in the
question can be found in the passage and if the de-
pendency edges of the question are also supported
in the passage. In this manner, QSTS provides for
a reference-free evaluation of a question, given a
passage context.

3 The SimQG dataset

Current models for QG are evaluated using QA
datasets containing (passage, reference-question)
pairs. Model-generated questions are compared
against these reference questions using traditional
metrics. It is our contention that given a passage
context and questions generated by QG models
against that context, several valid questions may
be possible and it may not be representative to
only compare generated questions against a spe-
cific given reference. To demonstrate this claim, we
collected a novel dataset containing human judge-
ments of machine-generated questions against their
associated passage contexts and the reference ques-
tions available for these contexts.

Our novel dataset is based on SQuAD (Rajpurkar
et al., 2016), a widely-used dataset in both QA
and QG studies. About 500 (question, passage)
pairs were randomly sampled from the test por-
tion of the SQuAD dataset (used in (Zhou et al.,
2018)). Recent QG models from ProphetNet (Qi
et al., 2020), T5 (Raffel et al., 2020), and one of the
early neural models based on Gated Self-Attention
(GSA) networks (Zhao et al., 2018) were used for
obtaining machine-generated questions. By choos-
ing machine-generated questions from models with
QG performance ranging from high (ProphetNet)
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to significantly low (GSA), we seek to include ques-
tions in our dataset with varying degrees of answer-
ability, fluency and relevance (Pan et al., 2020;
Wang et al., 2020a).

Our annotation task on the crowdsourcing plat-
form Amazon Mechanical Turk (AMT) was set up
along the lines of previous QG works (Pan et al.,
2020; Wang et al., 2020a). Each passage along with
the machine generated question was examined by
three independent crowdworkers to characterize if
the question is (1) Fluent: Is the question grammat-
ically correct, natural sounding, and semantically
valid for the given passage context (yes=1.0, ac-
ceptable=0.5, no=0.0)?; (2) Answerable: Is the
answer to the generated question present in the
passage (yes=1.0, no=1.0)?; (3) Relevant: is the
question relevant to the passage and only based on
the content in the passage (yes=1.0, no=0.0)?

The workers were also asked to compare the
machine-generated question with the reference
question provided in SQuAD and to identify
whether the question is similar to the reference
question (score=1.0), similar but has less/more
information compared to the reference question
(score=0.5), different but has the same answer as
the reference question (score=0), or related but dif-
ferent (score=0) and finally very different from the
reference question (score=0).

By averaging worker scores for each question,
we obtain relevance/fluency/answerability scores
for each (machine-generated question, passage)
pair as well as a similarity score for pairs of
(machine-generated, reference) question pairs all
in the range [0, 1] and by suitably thresholding at
0.5, we can obtain pairs of similar and dissimilar
questions for our study as well as questions that are
not fluent, answerable, or relevant. We refer to the
dataset collected above as the SimQG dataset.

A summary of SimQG is provided in Table 2.
As seen in this table, all three QG models generate
reasonably fluent questions. In accordance with
the published QG performance numbers of these
models on SQuAD dataset, the number of non-
fluent and non-answerable questions is the highest
for GSA, lowest for ProphetNet (PrptNet) and in-
between for the T5-based model (Qi et al., 2020;
Zhao et al., 2018).6 In all three models, the num-
ber of non-relevant machine-generated questions
is very low (2-6%) whereas the machine-generated

6https://github.com/patil-suraj/
question_generation

question was considered not similar to the refer-
ence question in 40-50% of the cases. We posit that
this high disparity is indicative of why QG models
need evaluation measures that are not based only
on reference questions.

QGModel !Flu !Rel !Ans !Sim
PrptNet (300) 0.66% 2% 4.66% 45%
GSA (100) 7% 4% 19% 47%
T5 (100) 4% 6% 12% 38%
All(500) 2.6% 3.2% 9% 44%

Table 2: Summary of SimQG dataset. #Qs is the number
of questions whereas !Flu, !Rel, !Ans, !Sim columns
refer to the percentages of questions that are not fluent,
not relevant, not answerable, and not similar to the given
reference question.

Additional notes on data collection: On the
AMT platform, we required the crowdworkers to
have greater than 95% HIT approval rate, a mini-
mum of 10,000 HITs, and be located in the United
States and clear a qualification test to be able to
work on our task. Each worker was paid $0.30
per HIT. We met the ethics, quality, and reliability
considerations for our collected dataset as follows:
As part of the AMT data collection process, the
anonymity and privacy of the crowdworkers is al-
ready ensured. Furthermore, the settings for the
HIT approval rates, and location of the worker,
described previously are set similar to previous
QA/QG data collection efforts to ensure the En-
glish language skills of the data annotators and
thus the quality of the collected dataset. A total of
7 workers helped in creating our dataset. About
47% of the workers who attempted the qualification
test were able to obtain a score of 80% or more and
gained the eligibility to work on our task. Their an-
notations can, therefore, be considered reasonably
reliable on average.

4 Experiments

Baseline Measures: We demonstrate the perfor-
mance of our proposed QSTS measure by compar-
ing with several existing measures. The first set
of measures are traditionally employed in various
text generation tasks including QG and comprise of
BLEU, METEOR, and ROUGE scores (Papineni
et al., 2002; Lavie and Agarwal, 2007; Lin, 2004).
All these measures are based on n-gram overlap
between the generated text and the reference text
(of the same “type", for example, two summaries,
or two sentences).
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The QBLEU metric was designed specifically
for QG systems and includes the notion of answer-
ability, that is, does the question include enough
information to enable answer retrieval for the given
question (Nema and Khapra, 2018)? To this end,
various weights are estimated and incorporated for
question cue words, content words, named enti-
ties and combined linearly to assign answerability
score for a question. Answerability is further com-
bined with the traditional BLEU score to obtain a
QBLEU score.7

A recent research direction involves the use of
transformers for learning metrics for text genera-
tion tasks (Zhang et al., 2020; Sellam et al., 2020).
Based on its state-of-the-art performance on var-
ious NLG tasks compared to other variants such
as BERTscore, we include BLEURT as one of our
baselines for comparing questions. To the best of
our knowledge, BLEURT has not been specifically
evaluated for matching questions and we seek to
bridge this gap as part of our experiments.8

Datasets: We used two existing QA/QG datasets
with paraphrase information for evaluation. The
first is the ComQA dataset that includes about
3.3K paraphrase pairs (Abujabal et al., 2019) while
the second is the recently-compiled FIRS dataset,
containing approximately 5K question pairs (De-
schamps et al., 2021). The FIRS dataset includes
rewrites of a given question which also include
an extra fact from a knowledge base. That is, the
rewritten question has the same intent as the orig-
inal question but includes additional facts of rele-
vant named entities. We randomly selected one of
questions from each paraphrase clusters in ComQA
as the reference question whereas in FIRS, the orig-
inal question forms the reference question.

In addition, we evaluate on questions from the
Quora Question Pairs (QQP) dataset.9 QQP is
a large dataset of about 400k question pairs ob-
tained from Quora and includes duplicate and non-
duplicate labels indicative of whether the intent of
the two questions is the same. Note that this dataset
is not used for QG since passage contexts and an-
swers are unavailable. Moreover, the labels are
known to be noisy in this dataset, and the questions
on community forums are stylistically different

7https://github.com/PrekshaNema25/
Answerability-Metric

8https://github.com/google-research/
bleurt

9https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

from standard QG (António Rodrigues et al., 2017).
Despite these differences, we study a randomly se-
lected 5% sample of the QQP dataset separated
into duplicate pairs (QQP-Dup) and non-duplicate
pairs (QQP-ND). Finally, we provide evaluation on
SimQG, the dataset specifically collected by us to
model QG contexts (Section 3).

Question Class Identification: We trained our
question class classifier on the widely-used TREC
dataset (Li and Roth, 2002). A T5-large model10

fine-tuned for this task obtains a test performance
on par with state-of-the-art results with a classifica-
tion accuracy of 92% on the fine-level classes (50
classes) and an accuracy of 97% on the six coarse
classes (Reimers and Gurevych, 2019). When
computing QSTS scores for question pairs where
the question classes cannot be assumed to be the
same (such as QQP-ND and SimQG ), predictions
with this model were used.

Other Settings: For computing QSTS scores,
we need the dependency parse, parts-of-speech
and named-entity tags for questions. We used the
Stanza library for this purpose.11 Since the name-
tokens and question class information are treated
separately, we avoid contextual and sentence-level
embeddings that are time-consuming to esti-
mate (Peters et al., 2018; Reimers and Gurevych,
2019) and instead directly use word embeddings
from GloVe that only involves lookup (Pennington
et al., 2014). All QG and QC experiments, and
metrics that involve deep learning models were
performed on a single GPU of an Nvidia Tesla
cluster and take time between 1-12 hours based
on the experiment setting and dataset size. The
code for QSTS and the SimQG dataset have been
released for academic research.

4.1 Results and Observations

Comparison of Measures: We compare QSTS
against existing baseline measures on similar ques-
tions from ComQA and FIRS, as well as dupli-
cate and non-duplicate question datasets QQP-Dup
and QQP-ND, respectively. An ideal measure
should assign high scores (close to 1) to similar
questions and low scores (close to 0) to dissimilar
ones. We show the system-level BLEU, METEOR,
and ROUGE score as well as average and standard
deviation of QBLEU, BLEURT, and QSTS scores

10https://huggingface.co/t5-large
11https://stanfordnlp.github.io/stanza/
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Dataset B1 B4 METEOR ROUGE QBLEU BLEURT QSTS
ComQA 0.602 0.287 0.373 0.566 0.594±0.151 0.696±0.110 0.692±0.298
FIRS 0.557 0.430 0.485 0.695 0.554±0.187 0.728±0.110 0.866±0.231
QQP-Dup 0.561 0.277 0.334 0.545 0.449±0.231 0.711±0.112 0.754±0.283
QQP-ND 0.342 0.158 0.204 0.344 0.289±0.252 0.491±0.169 0.388±0.391

Table 3: Question Similarity Metrics Evaluated on Existing Datasets

in Table 3.
Performance on Paraphrase datasets: We

see in Table 3 that QSTS is significantly bet-
ter than other measures on FIRS and QQP-Dup
datasets, and is on par with the BLEURT measure
on ComQA. We analyzed ComQA further to gain
insight into where QSTS breaks down. From Equa-
tion 1, the QSTS score is zero when any of the
component scores, qcsim, nesim, and semsim,
is zero. That is, when the question classes, named-
entities, or the content words of the two questions
do not match. In ComQA, the QSTS score was
zero for 16.9% question pairs with the qcsim,
nesim, and semsim scores being independently
zero in 5%, 8.6%, and 4.6% of the question pairs,
respectively.

Since question paraphrases should, ideally, have
the same question class but qcsim is zero for 5%
of the cases, we can attribute these mismatches
to the errors made by the question class predictor.
However, we also note that this could be caused
by erroneous pairs present in ComQA such as (
“when did Judy Garland first marry?"; “who was
Judy Garlands first married to?") where the ques-
tion classes are indeed different and were predicted
correctly as “NUM:date" and “HUM:ind" by our
question class predictor.

Furthermore, ComQA also has instances where
mentions of the same named-entity have typos
and other differences. For example, pairs such
as (“what is muhamad alis real name?"; “what is
mahummad ali birth name?") and (“ who was the
german fascist leader during world war 2?"; “what
man was the leader of germany during ww2?").

Finally, about 8% of the questions in ComQA
appear to be in search-engine style (“the first amer-
ican in outer space?") and do not have any of the
question cue words.12 Noisy inputs affect the type
of dependency edges between content words and
may result in zero semsim scores. Overall, QSTS
is not fully-equipped to handle noisy paraphrases
since errors in the component scores are penalized
severely (Equation 1).

12why/who/where/how/which/when/where

Performance on Non-Paraphrases: On the
QQP-ND dataset containing non-duplicate ques-
tion pairs, simple n-gram based measures seem
to do better than embedding-based BLEURT and
QSTS measures which overestimate the similar-
ity scores. As mentioned in Section 2, the QSTS
scores are directional and also depend on the pre-
dictions from the question class classifier. There-
fore, in the given non-duplicate pair from QQP-ND,
(“How does one become an angel investor?"; “How
do I get a job at Goldman Sachs?"), the QSTS
scores change from 0 to 0.718 depending on which
question forms the “reference". Moreover, QC pre-
dictions may not always be accurate considering
the stylistic differences in QQP questions when
compared to those from TREC. Questions in QQP
include conjunctions such as “How do you bake
pork chops in an oven and how long should you
bake them?" and multi-sentence questions such as
“I have completed my MBA with . . . in PSU. I want
to work abroad, how do I start?".

We note that accurate measurement of dissimilar
questions is not a big concern in QG contexts. For a
given passage context, a good QG model is unlikely
to generate a question comprising of completely
arbitrary words in contrast with some pairs in QQP-
ND such as (“How can I get perfect idea about best
golf carts?"; “Is it hard to get a job in US after MIS
without prior work experience?")

Reference-free Evaluation on SimQG : Us-
ing the human-assigned scores for similarity be-
tween machine-generated and reference question
pairs in SimQG, we threshold at 0.5 to obtain
pairs of questions considered similar and for these
questions, we compute QSTS scores between the
machine-generated questions and the correspond-
ing passages. In other words, how many machine-
generated questions can we correctly assign a score
value ≥0.5 when the passage is used instead of
comparing with the reference?

Similarly, for the set of machine-generated ques-
tions judged as non-fluent, non-relevant, and non-
answerable by humans, how many questions are
correctly assigned scores <0.5 based on the pas-
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sage. The results of these computations are illus-
trated in Table 4.

Setting #Qs NoQC withQC
Similar 280 66.1% 56.4%
Non-Fluent 13 30.7% 76.9%
Non-Relevant 16 56.3% 81.3%
Non-Answerable 45 40.0% 66.6%

Table 4: Percentages of similar, non-fluent, non-relevant
and non-answerable questions correctly identified in
SimQG by QSTS in the reference-free setting. #Qs
refers to the number of questions whereas NoQC and
withQC refer to with and without the question class
information, respectively.

The percentage of questions correctly scored
using reference-free QSTS is about 56% when
question class information obtained from reference
questions is incorporated (“withQC" column in Ta-
ble 4). The percentage is, however, significantly
higher (66%) when question class information is
not considered (“NoQC"). This difference suggests
that valid questions are being generated for a given
passage context despite having different question
classes. However, when question class informa-
tion is incorporated into QSTS computation, we
are able to determine non-fluent, non-relevant, and
non-answerable questions with significantly higher
accuracy as observed in Table 4.

In practice, it may not be unreasonable to as-
sume that the expected question class is known a
priori, considering the current state-of-the-art QG
performance is obtained in the answer-aware (as op-
posed to answer agnostic) setting when the answer
span is assumed to be known and used as a signal
while learning QG (Pan et al., 2019). Even without
explicit question class information, QSTS can cor-
rectly identify relevant and non-relevant questions
with reasonable accuracies. Given that this is the
first method to do so without a known reference
question, this is an exciting result.

In contrast, the traditional measures as well as
QBLEU and BLEURT expect similar types of texts
for their computation. In our experiments, when
QBLEU and BLEURT measures are computed us-
ing generated questions and passages as inputs,
both measures were unable to correctly assign
scores>= 0.5 to any of the similar questions. That
is, the percentage correct values in the top row of
Table 4 are zeros for both these measures. Anec-
dotal examples of question, passage pairs scored
with our QSTS measure are provided in Table 5 for
illustration. QSTS correctly assigns high scores

(indicating relevant) to the top-two (question, pas-
sage) pairs and lower scores (less than 0.5 indicat-
ing non-relevant) to the bottom two pairs.

Finally, the average QSTS scores for the
test split of SQuAD (Zhou et al., 2018) with
ProphetNet (Qi et al., 2020), T5 (Footnote 6), and
GSA (Zhao et al., 2018) models are shown below.

Model QSTS BLEU-4
ProphetNet 0.506 (± 0.386) 25.80
T5 0.407 (± 0.376) 21.32
GSA 0.344 (± 0.370) 16.38

The BLEU-4 scores published for these models are
shown in the rightmost column of the table and
though these published numbers use different data
splits for SQuAD compared to ours, we would like
to highlight that the overall performance trend of
these models as seen by their BLEU-4 scores is
also captured by QSTS.

In summary, QSTS presents as a viable alterna-
tive to traditional measures for evaluating QG in
terms of its interpretable score components. More-
over, QSTS enables a reference-free evaluation for
real-world QG scenarios where precompiled lists
of reference questions are unavailable.

Limitations: Although QSTS addresses several
problems with existing QG metrics (Table 1), we
note the following caveats that need further work.

1. The QSTS function is sensitive to the com-
ponent scores. Though geometric mean
is suggested for summarizing normalized
scores (Fleming and Wallace, 1986), and
yields higher performance compared to other
mean functions in our experiments, other com-
bining functions can be investigated in future.

2. New question-type ontologies are being de-
veloped to cover contexts different from ex-
tractive QA such as questions within dia-
log (Cao and Wang, 2021; Svikhnushina et al.,
2022; Malhotra et al., 2022). High-accuracy
question-class predictors need to be trained
for using QSTS in these contexts.

3. None of the existing metrics as well as our
proposed measure directly incorporate notions
such as fluency, interesting-ness, and answer-
ability that humans are able to assess naturally.
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Question: What was the title of Bob Dylan’s first album? 0.679
Passage: After the eponymous first album, Bob Dylan went on
to become the breakthrough songwriter of ’The Freewheelin’
Question: What was the name of Vincent’s brother? 0.889
Passage: Vincent’s brother, Theo disagreed vehemently with the placement of Irises.
Question: Where in Germany was the composer Beethoven born? 0.488
Passage: The composer ludwig van beethoven went deaf in his final years.
Question: Where is Columbus? 0.0
Passage: Lincoln the 16th president of the United States was born in Kentucky.

Table 5: QSTS scores are shown for anecdotal question-passage pairs

5 Related Work

Models for question generation are being rapidly
developed in current NLP research. We refer our
readers to a survey article by Pan, et al (2019) for
an overview on challenges, existing approaches,
and applications for this task. Similar to the
standard practice in NLG tasks, question gener-
ation has been evaluated using n-gram overlap
based metrics such as BLEU (Papineni et al.,
2002), METEOR Lavie and Agarwal (2007) and
ROUGE (Lin, 2004). While previous studies have
found these metrics inadequate for tasks such as
summarization, paraphrase generation, and transla-
tion (Callison-Burch et al., 2006; Shen et al., 2022),
Nema, at al. (2018) specifically study their draw-
backs in context of question generation models.
Indeed, similar to our approach, they isolate vari-
ous types of tokens in questions and assign tuned
weights to question cue-words, content words, func-
tion words, and named entities to compute “answer-
ability" for a question.

In parallel studies, the notion of unsupervised
evaluation metrics were studied for dialog sys-
tems and machine translation (Liu et al., 2016;
Fomicheva et al., 2020) while metric learning was
explored for several NLG tasks using transform-
ers in BERTscore, BBScore, and BLEURT (Zhang
et al., 2020; Sellam et al., 2020; Shen et al., 2022).

We have highlighted cases where these exist-
ing metrics fall short for question comparison and
specifically propose reference-free evaluation pos-
sibilities for question generation. Reference-free
evaluation was previously studied for NLG tasks
such as machine translation (Agrawal et al., 2021)
and essay grading (Fomicheva et al., 2020).

6 Conclusions and Future Work

We discussed existing metrics for question gen-
eration evaluation and highlighted cases where a

deeper understanding of question semantics need
to be modeled by metrics for a more representa-
tive evaluation. As an alternative, we designed the
question-sensitive text similarity metric (QSTS )
that comprises of interpretable scoring components.
We also underscored the need for reference-free
evaluation in QG systems. The potential of QSTS
in serving this purpose was demonstrated on a
novel dataset SimQG, compiled from human judge-
ments on (machine-generated question, passage)
pairs. QSTS provides, to our knowledge, the first
approach to characterizing QG system performance
in practical deployments where reference questions
may not always be available.

As can be seen in experiments, there is still a
large room for improvement for question similarity
computation as well as QG evaluation. In future,
we hope to pursue these directions further as well
as study metric learning approaches for a reference-
free evaluation.
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Abstract

We introduce a new type of problems for math
word problem (MWP) solvers, named Noun-
MWPs, whose answer is a non-numerical string
containing a noun from the problem text. We
present a novel method to empower existing
MWP solvers to handle Noun-MWPs, and ap-
ply the method on Expression-Pointer Trans-
former (EPT). Our model, N-EPT, solves Noun-
MWPs significantly better than other mod-
els, and at the same time, solves conventional
MWPs as well. Solving Noun-MWPs may
lead to bridging MWP solvers and traditional
question-answering NLP models.

1 Introduction

Question-answering (QA) (Woods, 1968) and QA
problems involving mathematics (Bobrow, 1964)
are one of the classic NLP problems in com-
puter science. Later, mathematics education com-
munity investigated a class of problems coined as
Math Word Problems (MWPs) (Nesher and Ka-
triel, 1977; Caldwell and Goldin, 1979; Ballew and
Cunningham, 1982). Research in solving MWPs
with computers started from purely rule-based ap-
proaches (Hosseini et al., 2014) and statistics-based
approaches (Kushman et al., 2014), through hy-
brids (Roy and Roth, 2015), and more recently
deep-learning-based approaches (Wang et al., 2017,
2018; Li et al., 2019).

Proportionally, the number of publicly available
dataset for MWPs increased; for example, Alg514
(Kushman et al., 2014), DRAW (Upadhyay and
Chang, 2015), MAWPS (Koncel-Kedziorski et al.,
2016), Math23K (Wang et al., 2017), AllArith
(Roy and Roth, 2017), Dolphin18K (Huang
et al., 2016), and ASDiv-A (Miao et al., 2020).
The mathematical depth of the problems in MWP
datasets vary, yet the majority of datasets require
only numerical answers. On the other hand, math

∗equal contribution

MWP
Chloe was organizing her bookcase making sure
each of the shelves had exactly 6 books on it. If
she had 5 shelves of mystery books and 4 shelves
of picture books, how many books did she have in
total?
→ (6× 5) + (6× 4)

Extractive QA
In 1517, the seventeen-year-old King sailed to
Castile. There, his Flemish court . . . . In May 1518,
Charles traveled to Barcelona in Aragon. Where
did Charles travel to first, Castile or Barcelona?
→ arg min{Castile : 1517, Barcelona : 1518}
Noun-MWP
Sihyeon collected 64 stamps, and Soma collected
1 fewer stamps than Sihyeon. Junwoo collected 7
bundles of 10 stamps each. Who among the three
has collected the fewest stamps?
→ arg min{Sihyeon : 64, Soma : 64− 1,
Junwoo : 7× 10}

Table 1: Highlighted examples comparing MWP, Noun-
MWP, and Extractive QA problems. Relevant numbers,
nouns, and a novel element in Noun-MWP are marked
in red, blue, and green, respectively.

problems whose answer is a non-numeric substring
of the inputs are frequently seen in real-world math
problems in mathematics education.

Our Contribution
• We bring attention to Noun-MWP, a class of

MWPs whose answer is a noun-substring of
the input string.

• We propose a systematic approach to em-
power existing MWP solvers to solve Noun-
MWPs as well.

• We implement and empirically validate our
approach using a Korean Noun-MWP dataset.
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2 Related Works

Our work emphasizes the need for a new class of
MWPs to complement the MWPs represented by
existing datasets. From a similar stance, ASDiv-A
dataset (Miao et al., 2020) emphasizes the need to
have greater lexical diversity in MWP datasets, and
S-VAMP dataset (Patel et al., 2021) emphasizes
the underrepresented adversarial variations of the
MWPs. Noun-MWP may be considered as a next-
level adversarial variations of pre-existing MWPs,
since as of now, adversarial generation methods of
MWPs (Kumar et al., 2021) do not exceed the cur-
rent implicit limit of MWPs focused on problems
with numerical answers.

Noun-MWPs can also be seen as extractive QA
problems that need mathematics-based reasoning
to reach the correct solution. DROP dataset (Dua
et al., 2019), as shown in the middle panel of Ta-
ble 1, introduces basic mathematical reasoning in
QA tasks. The direct approach to populate math-
ematical operations with arguments (Andor et al.,
2019) faces limitation due to combinatorial explo-
sion of search space in possible mathematical ex-
pressions, and injecting custom math operations
and their templates (Geva et al., 2020) alleviate this
drawback somewhat. To circumvent this, we start
from MWP perspective and use Noun-MWPs as
a gateway to solve extractive QA problems whose
solutions contain more complicated mathematical
expressions.

3 Methodology

3.1 Problem Definition

We consider Noun-MWP as a special type of math
word problems whose correct answer is a string
containing a noun from the problem context. In
particular, we consider problems requiring alge-
braic operations +,×,−,÷ and comparison be-
tween numbers. The difficulty of these problems
roughly corresponds to the problems taught in ele-
mentary school level mathematics classes. Table 1
and Table 2 contain two examples.

To infer a correct solution from the problem in
Table 2, a well-constructed series of mathemati-
cal inference and language processing is needed.
First of all, how much milk Eunhye drank must be
inferred from ‘3/7’ and ‘rest.’ Then, the inferred
number ‘4/7’ must be assigned to the corresponding
noun ‘Eunhye.’ Finally, based on the query, the cor-
rect noun answer must be determined. For an NLP

Problem(KR)
아린이는우유한병전체의 3/7을마시고,나머지
는은혜가마셨습니다.둘중우유를더적게마신
사람은누구일까요?

Problem(EN)
Arin drank 3/7 of the whole bottle of milk, and
Eunhye drank the rest. Which of the two drank less
milk?

Candidates : Arin, Eunhye
Expressions : {Arin : 3/7, Eunhye : 1− 3/7}
Query : Which of the two drank less milk?

Table 2: A Noun-MWP example question presented in
original Korean language and its translation to English,
and the sample solution comprised of candidates (in
blue), mathematical expressions, and query.

model to solve a collection of noun-MWPs, both
MWP and extractive QA capabilities are needed,
especially in handling multi-step computation com-
prised of multiple mathematical operations cor-
rectly.

3.2 Solving Noun-MWP
In this section, we sketch the key idea of solving
Noun-MWPs starting with a MWP solver. We de-
compose the process of solving Noun-MWP into
three conceptual steps:
Candidate selection: Extract the candidate nouns
from the context and generate the list of candidates,
as shown in Table 2.
Expression assignment: Generate mathematical
expressions that produce numbers. These numbers
may be assigned to the candidates.
Query interpretation: Interpret the query into a
representation compatible to the underlying MWP
solver. Resulting representation allows the MWP
solver to find the most suitable candidate to answer.

By implementing the three-step process on a
multi-equation MWP solver, it is possible to em-
power the solver with necessary information to
solve Noun-MWPs while preserving its original
capacity to solve MWPs.

3.3 N-EPT: Noun problem solving EPT
To demonstrate the validity of our approach, we
use EPT (Kim et al., 2020) as the baseline multi-
equation MWP solver and empower it to solve
Noun-MWPs. The original EPT solves the MWPs
with the binary tree-based expression tokens, which
consist of an operation and operands. They used
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TAR(target)
Contrast to special token VAR(variable) of original
EPT, we treat it as an unary operator paired with
target noun entity appeared in the problem. This
allows the model to infer the candidates and equa-
tions to assign values to the noun entities.

arg
Special command to generate list of pairs (noun,
value) after the expression assignment. This works
to separate classic MWPs, which don’t require
noun information, from our problem.

find and ord(order)
Binary list operators extracting answer from the
list(resp. sorted list) satisfying query. For example,
(ord,Ri, n) means the n-th smallest element of the
list stored at Ri. Similarly the (find,Ri, n) works
on Ri and choose element indexed by n.

Table 3: Details on new operations of N-EPT, in con-
strast to EPT.

+,−,×,÷ as operations, and applied an attention
block to extract operands from the problem text.
Maintaining the backbone structure of the EPT, our
resulting MWP solver, named N-EPT1, contains
the following key changes:

• Additional Operation Tokens: We introduce
four more operations, TAR, arg, find, ord to
extend the expressive power of EPT to cover
Noun-MWPs. Tokens and their operations are
detailed in Table 3.

• Noun attention: An attention module is
added to predict candidate nouns from the
question text.

• Pretrained word embedding: N-EPT uses
pretrained T5 embedding. For example, a pre-
trained embedding of a word subtract is used
to represent subtracting operation.

• T5 encoder-decoder: In contrast to EPT,
which uses ALBERT encoder and transformer
decoder, N-EPT uses pretrained T5 encoder
and decoder (KETI AIRC, 2021). This al-
lows utilizing pretrained word embeddings
and language-specific pretrained models.

1The code is available on https://github.com/invigorator96/
NounMWP

Additional procedures were added to handle ag-
glutinative characteristic of Korean language – for
example, postpositions included in predicted nouns
are omitted to facilitate exact answer matching. An
implementation example is in Appendix A.

4 Experimental Study

4.1 Dataset

We construct a novel dataset comprised of Noun-
MWPs for empirical validation. We collect Noun-
MWP problems and their answers from elementary
school level mathematics textbooks (최순미, 2020;
한헌조, 2018;김은영, 2018) in South Korea, and
label their mathematical expression manually. In
addition, problems from a Korean MWP dataset
curated by TUNiB (Keum et al., 2022) are also
selected and relabeled. We validated the annotated
solution labels against the answers from the source
textbooks, by checking whether a rule based solver
provided with the solution label can produce the
same answer as the answers from the source text-
books. The resulting dataset contains 604 question-
expression-answer triplets,whose basic statistics
are in Table 4.

Ratio of Problems by Required Operations

+ − × ÷ Simple
Assignment

20.9% 8.4% 18.4% 9.3% 55.8%

Ratio of Problems by Expression Length

≤ 8 9 ∼ 10 11 ∼ 12 13 ∼ 14 ≥ 15

46.5% 39.4% 9.6% 4.1% 0.3%

Table 4: Statistics of our Noun-MWP dataset

Simple Assignment cases in Table 4 correspond
to the problems solved with only simple compar-
ison or sorting, without any arithmetic operation.
Our dataset includes problems requiring more than
two operations to solve, so the percentages do not
sum up to 100. The expression length of a problem
represents the complexity of mathematical reason-
ing to deduce the correct answer, and is an intuitive
gauge of problem difficulty.

4.2 Noun-MWP Performance

Using the Korean Noun-MWP dataset, we vali-
date the performance of N-EPT implementation
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via 5-fold cross validation. As shown in Table 5, N-
EPT achieves over 80% in cross validated accuracy
measured via exact match score, regardless of the
choice of T5 encoder-decoder size – small, base, or
large. Detailed methods used in training N-EPT and
in-depth performance results are in Appendix B.

N-EPT KE-T5 KLUE-RoBERTa

Small 81.67% −% 45.67%
(Std.Err) (2.11%) (-%) (4.52%)

Base 84.33% 6.80% 46.17%
(Std.Err) (2.44%) (9.58%) (5.21%)

Large 82.50% 28.17% 47.67%
(Std.Err) (0.75%) (2.44%) (3.22%)

Table 5: 5-fold CV accuracy in Noun-MWPs, by N-EPT
and two SOTA QA models.

Conventional MWP solvers cannot handle Noun-
MWPs, as those solvers generate numerical an-
swers. As an alternative, we use state-of-the-art
(SOTA) QA models as benchmark algorithms,
since QA models are capable of produce non-
numerical answers based on the given question.

The first benchmark QA model is KE-T5, a
SOTA Korean-pretrained version of T5 (Raffel
et al., 2020) that achieves 86.27% accuracy on Ko-
rQuAD 1.1 dataset (Korean extractive QA bench-
mark) (KETI AIRC, 2021). KE-T5 fails to answer
a great majority of Noun-MWP questions; whereas
N-EPT with the same model specification consis-
tently performs much better. As our N-EPT imple-
mentation contains KE-T5, the difference in perfor-
mance between the two suggests that the expressive
power added to KE-T5 by changes in Section 3.3
is very effective in solving Noun-MWPs.

We also use KLUE-RoBERTa (Park et al., 2021),
a SOTA Korean-pretrained variant of RoBERTa
(Liu et al., 2019) that achieves 75.58% accuracy on
KLUE-MRC (Korean machine reading comprehen-
sion) benchmark as another benchmark QA model.
KLUE-RoBERTa may be handling a smaller sub-
set of problems in our Noun-MWP dataset than
N-EPT, as it shows consistent performance that
peaks at 47.67%, much less than 81.67%, the worst
performance of N-EPT. Significant empirical ad-
vantage of N-EPT over both QA models suggest
that empowering a conventional MWP solver is an
effective approach to solve Noun-MWPs.

4.3 Sanity Check with Conventional MWPs

We backtest N-EPT on MAWPS dataset to verify that
our approach retains the capacity of the original
MWP solver (EPT) to handle conventional MWPs.
Since MAWPS dataset is in English, we modify N-
EPT structure by substituting KE-T5 with Google
T5. Meanwhile, as the original implementation of
EPT uses ALBERT, we also use our own imple-
mentation of EPT with T5 as another benchmark.
We report the mean and the standard deviation of
5-fold cross-validated accuracy in Table 6.

ALBERT model size
base large xlarge

EPT(orig.) 83.41% 84.51% −%
(Std.Err) (0.32%) (1.37%) (-%)

T5 model size
small base large

EPT(T5) 83.35% 84.03% 85.12%
(Std.Err) (1.70%) (1.80%) (1.92%)

N-EPT 83.27% 84.49% 85.50%
(Std.Err) (1.85%) (1.59%) (1.53%)

Table 6: 5-fold CV accuracy in MAWPS dataset.
EPT(orig.) values are from the original source (Kim
et al., 2020).

Similar performance between EPT with AL-
BERT and EPT with T5 suggests that the choice
of the encoder-decoder model has negligible effect
on performance. Meanwhile, unlike ALBERT that
shows instabilities in a larger model specification,
T5 is stable throughout all specifications.

We implement EPT with T5 by ablating N-EPT,
such that it does not have the other changes shown
in Section 3.3 to empower EPT for Noun-MWPs
besides adding T5. Therefore, the similar perfor-
mance of the two suggests that N-EPT successfully
retains the expressive power of EPT in handling
conventional MWPs.

5 Discussion and Future Work

N-EPT demonstrates how to empower a conven-
tional MWP solver to handle Noun-MWPs. Con-
sidering Noun-MWPs are a staple of basic math
education, they deserve to be included in the bench-
mark for a novel MWP solver to gauge its ability
to understand both the mathematics and the natural
language in the problems.

Despite the ability to handle both conventional
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MWPs and Noun-MWPs, N-EPT leaves much to
be improved against harder questions. For exam-
ple, problems whose expression length is longer
or whose question string contains more candidates
are often incorrectly answered by N-EPT. Detailed
plots are placed in Appendix C, and select exam-
ples where N-EPT incorrectly answers are given in
Appendix D.

6 Conclusion

We introduce Noun-MWP, a class of problems that
are frequently used in mathematics education, and
yet to be handled by MWP solvers. We present
a three-step method, Candidate Selection, Expres-
sion Assignment, and Query Interpretation, to em-
power existing MWP solvers to handle Noun-MWP
as well as the conventional MWPs. As a proof-
of-concept implementation, we construct N-EPT
using EPT as its baseline MWP solver, and the
new Noun-MWP dataset consists of 604 questions-
expression-answer pairs to validate the model’s
performance. By modifying the original EPT to
handle noun information and additional operations,
our N-EPT significantly outperforms benchmark
models in Noun-MWPs and retains the capacity of
the original MWP solver. Noun-MWPs may serve
as a novel testbed for MWP solvers to gauge their
understanding of mathematical logic and natural
language.
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Appendix

A Implementation Example

The sequence of expressions in Table A1 shows
how N-EPT uses its operations to solve the sample
Noun-MWP question shown in Table 2. Note that

Label Expression

R0 [TAR,Arin]

R1 [TAR,Eunhye]

}
Candidate selection

R2 [=, R0, 3/7]

R3 [−, 1, R0]

R4 [=, R1, R3]





Expression assignment

R5 [arg]

R6 [ord,R5, 1]

R7 [END]





Query interpretation

Table A1: N-EPT expression sequence to solve the
Noun-MWP in Table 2.

Rn stands for the n-th token. The solver first select
candidates with R0 and R1, and assign proper ex-
pressions to each candidates with R2 ∼ R4. Then
a special command R5 construct a list of (candi-
date, expression) pairs, and finally, R6 determine
the query.

B Experiment Details

Five A6000 GPUs are utilized to run all folds par-
allelly, and we checked accuracy score on test set
for every 20 training epochs. We used all differ-
ent batch sizes for each model but used gradient
accumulation technique to update gradients of 64
problems uniformly. After hyperparameter tuning
with learning rate from [3e-4, 5e-5, 1e-5] with an
ADAMW optimizer and dropout probability from
[0.0, 0.1], 3e-4 and 0.1 were optimal for each. We
also used label smoothing, gradient clipping and
warm up technique as an original EPT did.

As a result, N-EPT achieved following results.
500epoch column presents final accuracy of all

folds while max column shows the best accuracy
on each fold. Though the Base model achieved the
best performance among others, the Large model
presented the smallest standard deviation on both
columns. It can be an evidence of robustness of the
Large model.
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N-EPT

500epoch max

Small 79.67 ±2.33% 81.67 ±2.11%
Base 84.00 ±2.44% 84.33 ±2.44%
Large 81.00 ±0.97% 82.50 ±0.75%

Table B2: 5-fold cross validated performance of new
algorithm on Noun-MWPs.

C Impact of question complexity

We checked the impact of expression length by vi-
sualizing error rate and error count for each length.
We used base model and gathered test sets in all
five folds. It is natural to assume that error rate
grows proportionally to expression length, because
a question with longer expression is harder to solve.
Figure C1 below shows consistent result with our
assumption(Orange bar shows error rates for each
category).

Figure C1: Impact of expression length to error rate.

There are two reasons to explain this result. The
first is the relationship between expression length
and question complexity. It is consistent with the re-
port on (Wu et al., 2020), which showed decreasing
performance of various models with respect to the
equation length on Math23K dataset. The second
is the sparsity of data with long expression in our
dataset. Recall the Table 4 showing that problems
in each category is highly skewed to short problems.
Similar phenomena is observed when we visualize
the error rate with the number of targets, candidates
for answer.

Error rate is low with five targets because easy
question requiring a ‘find’ operator consists most

Figure C2: Impact of the number of TAR to error rate.

of the category. When there’s too many targets to
catch, model tends to miss some of them. Examples
are presented in Appendix D. Since the distribution
of the number of target is also highly skewed, same
explanations mentioned above can be applied here,
too.

To check the absolute count of error case and the
number of problems of each category, see Figure
C3 and C4.

Figure C3: Impact of expression length to the number
of error cases.

D Error Analysis

In this section, we make qualitative analysis on er-
ror cases. We implemented same procedure from
Appendix C. Our model showed worse perfor-
mance on complicated question requiring longer
expressions. The Table D3 shows an example.

Though our model succeeded to find candidate
nouns (Sujin, Cheolmin and Youngsoo), catch the
intention of the query(the most) and compute the
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Figure C4: Impact of the number of TAR to the number
of error cases.

Problem(EN)
Sujin drank 300mL of milk for two days, and Che-
olmin drank 1,000mL more than three times the
milk Sujin drank. Young-soo drank 1,000mL of
milk every day for 12 days. Who drank the most
milk?

Predicted expression
X0: (TAR, Sujin), X1: (TAR, Cheolmin),
X2: (TAR, Youngsoo)
300× 2, X0 = X2, X0 × 12, X1 × 12
(arg), (ord, Ri, -1)

Table D3: Error case of our model

X0 value(300× 2), it failed to assign it to X0 and
successively failed to generate proper expressions.
This shows the difficulty of generating long se-
quences, which generative models usually goes
through.

count percent

Candidate Selection 55 58.5%
Expression Assignment 22 23.4%

Query Interpretation 17 18.1%

Total 94 100.0%

Table D4: Counts and percentage of error cases for each
step. We added the number of error cases for all five
folds.

In addition to the length issue, various reasons
made error cases. As shown in Table D4, more than
half of the error cases came from the Candidate
Selection step. To improve the model, it would be
necessary to enhance the Candidate Selection step,
which is left to future research. We conclude the

section with sample problems that our model failed
to give a correct answer. The selected problems
are sampled from various test folds in 5-fold cross
validation experiment.
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Problem(KR)
국제어린이학교에중국학생이 53명,미국학생은 60명있습니다.한모둠에 10명씩모았을때일본
학생은 5모둠에 5명이남고,한국학생은 4모둠에 9명이남습니다.학생이두번째로많은나라는어
디인지써보세요.

Problem(EN)
There are 53 Chinese students and 60 American students in international children’s schools. When 10
students are gathered in a group, 5 Japanese students are left in 5 groups, and 9 Korean students are left in
4 groups. Write down which country has the second largest number of students.

True expressions
Candidate selection: X0:Chinese, X1: American, X2: Japanese, X3: Korean
expression assignment: X0 = 53, X1 = 60, X2 = 5× 10 + 5, X3 = 4× 10 + 9
Query interpretation: (arg),(ord,Ri,-2)
Answer: Japanese

Predicted expressions
Candidate selection: X0:Chinese, X1: American, X2: Korean
expression assignment: X0 = 53, X1 = 60, X2 = 9
Query interpretation: (arg),(ord,Ri,2)
Answer: Chinese

Table D5: Incorrect sample problem. The model failed to find candidate Japanese, successively the expressions and
query. Note that this is the problem with longest expression with expression length 15.

Problem(KR)
학교에서국어,수학,영어,과학,사회의순서로시험을봤습니다.두번째로시험을본과목은무엇입
니까?

Problem(EN)
At school, I took the test in the order of Korean, math, English, science, and social studies. What subject
did I take the exam for the second time?

True expressions
Candidate selection: X0:Korean, X1: math, X2: English, X3: Science, X4:Social studies
expression assignment: X0 = 1, X1 = 2, X2 = 3,X3 = 4,X4 = 5
Query interpretation: (arg),(find,Ri,2)
Answer: math

Predicted expressions
Candidate selection: X0:Korean, X1: math, X2: English, X3: Science, X4:Social studies
expression assignment: X0 = 1, X1 = 2, X2 = 3,X3 = 4,X4 = 5
Query interpretation: (arg),(find,Ri,3)
Answer: English

Table D6: Incorrect sample problem. The model successfully found candidates and intended expressions, but failed
to find index operand of find operator.
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Problem(KR)
선희는 30분에 10/3km를걷고,진혜는 30분에 2와 2/3km를걷습니다.더천천히걷는사람은누구일
까요?

Problem(EN)
Sun-hee walks 10/3 kilometers in 30 minutes, and Jin-hye walks 2 and 2/3 kilometers in 30 minutes. Who
walks more slowly?

True expressions
Candidate selection: X0:Sun-hee, X1: Jin-hye
expression assignment: X0 = (10/3),X1 = (2 + (2/3))
Query interpretation: (arg),(ord,Ri,1)
Answer: Jin-hye

Predicted expressions
Candidate selection: X0:Sun-hee, X1: Jin-hye
expression assignment: X0 = (10/3)÷ 30, X1 = 2 + (2/3)
Query interpretation: (arg),(ord,Ri,1)
Answer: Sun-hee

Table D7: Incorrect sample problem. The model successfully found candidates and question token, but not correct
expressions. The model tried to find the velocity of Sun-hee but not for Jin-hye.

Problem(KR)
A는한변의길이가 5cm인정사각형, B는가로가 5cm,세로가 8cm인직사각형, C는한변의길이가
3cm인정칠각형입니다.이중에서 ,둘레가가장긴도형을찾으세요.

Problem(EN)
A is a square with a side length of 5 cm, B is a rectangle with a width of 5 cm and a height of 8 cm, and C
is a regular heptagon with a side length of 3 cm. Find the shape with the longest circumference.

True expressions
Candidate selection: X0: A, X1: B, X2: C
expression assignment: X0 = 5× 4, X1 = 2× (5 + 8), X2 = 3× 7
Query interpretation: (arg),(ord,Ri, -1)
Answer: B

Predicted expressions
Candidate selection: X0: A, X1: B, X2: C
expression assignment: X0 = 5× 10, X1 = 2× (5 + 8), X2 = 3× 5
Query interpretation: (arg),(ord,Ri, -1)
Answer: A

Table D8: Incorrect sample problem. The prior knowledge of square,rectangle and regular heptagon is required to
solve this problem, but our model did not learn it. As a consequence, the expression assignment is not correct. Note
that the model succeeded to get circumference of rectangle.
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Abstract

Over a decade, the research field of computa-
tional linguistics has witnessed the growth of
corpora and models for natural language infer-
ence (NLI) for rich-resource languages such
as English and Chinese. A large-scale and
high-quality corpus is necessary for studies on
NLI for Vietnamese, which can be considered
a low-resource language. In this paper, we in-
troduce ViNLI (Vietnamese Natural Language
Inference), an open-domain and high-quality
corpus for evaluating Vietnamese NLI models,
which is created and evaluated with a strict pro-
cess of quality control. ViNLI comprises over
30,000 human-annotated premise-hypothesis
sentence pairs extracted from more than 800
online news articles on 13 distinct topics. In
this paper, we introduce the guidelines for cor-
pus creation which take the specific character-
istics of the Vietnamese language in expressing
entailment and contradiction into account. To
evaluate the challenging level of our corpus, we
conduct experiments with state-of-the-art deep
neural networks and pre-trained models on our
dataset. The best system performance is still
far from human performance (a 14.20% gap in
accuracy). The ViNLI corpus is a challenging
corpus to accelerate progress in Vietnamese
computational linguistics. Our corpus is avail-
able publicly for research purposes1.

1 Introduction

Although over 98 million people speak Vietnamese
globally2, Vietnamese is considered a low-resource
language for natural language processing (NLP)
research because of the lack of human-annotated
corpora. To help accelerate NLP progress, Nguyen
et al. (2020b, 2022) and Doan et al. (2021) col-
lected a large number of human-annotated data to
benchmark Vietnamese NLP tasks. We built the

1UIT@NLP Group: https://nlp.uit.edu.vn/
2https://www.worldometers.info/

world-population/vietnam-population/

ViNLI corpus for evaluating natural language infer-
ence (NLI) models. NLI is an emerging and impor-
tant task in natural language understanding which
is to predict the semantic relation between two sen-
tences. Several English corpora were released for
the NLI task (Bowman et al., 2015; Williams et al.,
2018). Recently, NLI has also witnessed corpus-
creation efforts in other languages such as OCNLI
(Hu et al., 2020), KorNLI (Ham et al., 2020), and
IndoNLI (Mahendra et al., 2021). Quyen et al.
(2022) proposed the Vietnamese-English NLI task3

with three labels: agree, disagree, and neutral.
To contribute to the progress of NLP research

for Vietnamese, we introduce a high-quality, open-
domain corpus for Vietnamese NLI. Inspired by
the success of NLI corpora (Bowman et al., 2015;
Hu et al., 2020; Mahendra et al., 2021), we follow a
strict annotation process and design the guidelines
specific to Vietnamese characteristics to make the
corpus realistic and high-quality. However, SNLI
(Bowman et al., 2015) uses image captions as the
main data resource, which are often short, simple
texts and limited in linguistic phenomena. There-
fore, we use a practical resource with various top-
ics to capture diverse inferences of the Vietnamese
NLI task. The premises in our corpus are sentences
extracted from 800 news articles on 13 different
topics.

In addition, most of the previous corpora require
annotators to create only one hypothesis sentence
for each premise, for example, SNLI (Bowman
et al., 2015), MultiNLI (Williams et al., 2018), and
XNLI (Conneau et al., 2018). However, in reality,
human reasoning is very diverse in many semantic
ways from a given sentence. Hence, we asked an-
notators to generate two hypothesis sentences for a
premise sentence to capture many layers of seman-
tic inference in our corpus. A Similar approach has
been implemented in the OCNLI (Hu et al., 2020)
and IndoNLI (Mahendra et al., 2021) corpora.

3https://vlsp.org.vn/vlsp2021/eval/nli
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ViNLI not only has three inference labels as in
most previous corpora but also has one more label.
The OTHER label is added to separate the infer-
ence types, which is different from the meaning
of the NEUTRAL label because its purpose is to
distinguish pairs of sentences that are unrelated in
terms of semantic information, such as events, sub-
jects, and objects. Table 1 shows several samples
of Vietnamese NLI.

ViNLI is created and annotated by Vietnamese
native speakers with solid linguistic backgrounds.
Annotators are trained carefully to familiarize
themselves with the corpus creation guidelines fol-
lowing a strict training process.

To evaluate the challenge of the corpus to
models, we employ three deep neural networks,
including CBoW (Mikolov et al., 2013), BiL-
STM (Hochreiter and Schmidhuber, 1997), and
ESIM (Chen et al., 2017). We also evaluate the
SOTA pre-trained language models: BERT (De-
vlin et al., 2019), XLM-R (Conneau et al., 2020),
and PhoBERT (Nguyen and Nguyen, 2020), which
have achieved impressive performances on differ-
ent NLP tasks.

Contributions of this study are as follows: (1) We
introduce the ViNLI corpus, an open-domain, high-
quality corpus consisting of over 30,376 human-
annotated sentence pairs for evaluating the NLI
task. (2) We conduct experiments on NLI mod-
els including neural network-based and pre-trained
transformer-based models. (3) We analyze the
corpus and the experimental results in different
linguistic aspects to gain more insights into Viet-
namese NLI.

2 Related Work

In this section, we review existing corpora and
SOTA models for natural language inference.

2.1 Related Corpora

Early NLI corpora were created mainly for the task
of Recognizing Textual Entailment (RTE) (Dagan
et al., 2005; Toledo et al., 2012). These human-
annotated corpora have contributed to evaluating
statistical and logical NLI models. However, the
main limitation of these corpora is the small size
(less than a few thousand samples), which limits
the ability to assess neural network-based mod-
els. For example, the SICK (Sentences Involving
Compositional Knowledge) corpus (Marelli et al.,
2014a) was used for the SemEval 2014 task with

only 4,500 training samples. To overcome this lim-
itation, the SICK corpus (Marelli et al., 2014b) was
increased in scale to 10K samples.

Since 2015, many NLI benchmark corpora have
been created to evaluate the effectiveness of ma-
chine learning models. In particular, Bowman
et al. (2015) introduced SNLI, a first, large-scale,
human-annotated corpus containing 570K English
samples for evaluating NLI models. Then, a series
of other large-scale NLI corpora appeared: STS-B
(Cer et al., 2017) and QQP (Chen et al., 2018) for
English with sizes of 8.5K and 404K samples, re-
spectively. 2018 witnessed the release of two large-
scale corpora, MultiNLI (Williams et al., 2018)
comprising 433K samples, and XNLI (Conneau
et al., 2018) with more than 112K samples. While
the MultiNLI corpus was built for English, the
XNLI was translated into 15 different languages.
Besides, with the rapid growth of NLI research for
English, NLP research communities witnessed the
emergence of corpora for other languages, such
as OCNLI (Hu et al., 2020) for Chinese, SICK-
NL (Wijnholds and Moortgat, 2021) for Dutch,
KorNLI (Ham et al., 2020) for Korean, IndoNLI
(Mahendra et al., 2021) for Indonesian, NLI En-
Hi (Khanuja et al., 2020) for Hindi-English, and
FarsTail (Amirkhani et al., 2020) for Persian. Re-
cently, the Adversarial NLI corpus was introduced
by Nie et al. (2020), a data collection via human-
and-model-in-the-loop training, which has brought
new challenges to SOTA NLI models.

Quyen et al. (2022) introduced the bilingual
(Vietnamese-English) NLI corpus4 annotated with
three labels: agree, disagree, and neutral, includ-
ing approximately 16,200 sentence pairs in the
medical domain. An open-domain, large-scale,
high-quality corpus similar to SNLI or MultiNLI is
necessary for Vietnamese NLI. Following corpus-
development efforts, we create the ViNLI corpus,
a high quality resource, for developing Vietnamese
NLI models, which can improve other NLP tasks:
machine translation, question answering, and text
summarization.

2.2 Related Models

NLP has witnessed a rapid growth of large-scale
corpora and deep learning models for NLI. Besides
traditional machine learning models such as Skip-
gram, CBOW (Mikolov et al., 2013), deep learn-
ing models such as RNN (Elman, 1990), Bi-RNN

4https://vlsp.org.vn/vlsp2021/eval/nli
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Premise Majority label
All Labels
Topic

Hypothesis

Hai cặp nam nữ bị cảnh sát bắt quả tang phê ma
tuý nhảy múa trong tiếng nhạc công suất lớn ở
căn hộ chung cư. (Two male and female cou-
ples were caught by the police with narcotics
and dancing to loud music in the apartment.)

Entailment
E E E E E
Law

Có tổng cộng bốn người bị công an bắt giữ vì
có hành vi sử dụng chất kích thích trái phép.
(A total of four people were arrested by the
police for using illegal drugs.)

Theo kế hoạch, Proace City Electric sẽ bán
ra ở châu Âu từ cuối năm 2021. (As planned,
Proace City Electric will be sold in Europe
from the end of 2021.)

Neutral
N N N N N
Vehicles

Thị trường châu Âu vô cùng ưa chuộng dòng
xe Proace City Electric. (The European market
extremely favors the Proace City Electric car.)

Tương tự, đa số nhà đầu tư cá nhân cũng dự
đoán giá vàng tăng. (Similarly, the majority
of individual investors are also predicting an
increase in the price of gold.)

Contradiction
C C C C C
Business

Giá vàng ngày càng giảm là điều đáng lo ngại
được dự đoán bởi các nhà đầu tư cá nhân. (The
falling gold price is worrisome, which is pre-
dicted by individual investors.)

Cổ phiếu UPS tăng hơn 10% khi lợi nhuận
vượt dự báo của Wall Street. (UPS shares rose
more than 10% as earnings beat Wall Street
forecasts.)

Other
O O O O O
Business

NFT là một đơn vị dữ liệu trên sổ cái kỹ thuật
số được gọi là blockchain. (NFT is a data unit
on a digital ledger called the blockchain.)

Table 1: Several examples extracted from ViNLI with topic labels, gold inference labels and the four validation
inference labels (E: Entailment, C: Contradiction, N: Neutral, and O: Other).

(Schuster and Paliwal, 1997), BiLSTM (Hochreiter
and Schmidhuber, 1997), Dr-BiLSTM (Ghaeini
et al., 2018), ESIM (Chen et al., 2017) have
achieved positive results on NLI corpora. Recently,
transformer-based models like BERT (Devlin et al.,
2019) achieved significant progress in performance
on various NLP tasks, including NLI on many well-
known corpora, SNLI (Bowman et al., 2015) and
MultiNLI (Liu et al., 2019a). Besides, the variants
of BERT such as RoBERTa (Liu et al., 2019b),
XLNet (Yang et al., 2019), and XLM-R (Conneau
et al., 2020) also obtained outstanding results on
the following corpora: MultiNLI (Williams et al.,
2018), XNLI (Conneau et al., 2018), QQP (Chen
et al., 2018), STS-B (Cer et al., 2017). However,
the models have not been explored for Vietnamese
NLI.

3 Corpus Creation
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Figure 1: The process of corpus creation.

We build the ViNLI corpus following a strict

process for quality control (see Figure 1). This pro-
cess includes four primary phases: (3.1) annotator
recruitment and training, (3.2) premise selection,
(3.3) hypothesis generation, and (3.4) data valida-
tion. To obtain in-depth insights into the character-
istics of the corpus, we analyze the corpus in terms
of different linguistic aspects (see Section 3.5).

3.1 Annotator Recruitment and Training

Twenty-nine annotators with strong linguistic back-
grounds contributed to the creation of premise-
hypothesis pairs for the corpus. Figure 2 depicts
our process of annotator training. The annota-
tors must undergo this strict training phase be-
fore taking part in the official annotation process.
First, the annotators are trained to familiarize them-
selves with the corpus-creation guidelines (see Sec-
tion 3.3). Next, each annotator is required to cre-
ate hypothesis sentences for the annotator-training
set that contains 100 premise sentences. The la-
bels (ENTAILMENT, CONTRADICTION, NEU-
TRAL, and OTHER) of their premise-hypothesis
pairs on the set are masked. Two of the Twenty-
eight other annotators are asked to give the labels
for the same sentences. If the proportion of the
labels agreed upon by the three annotators is over
0.95, the annotator is selected to participate in the
official annotation process. Otherwise, that anno-
tator needs to learn from their annotation mistakes
and goes through the training phase again with
another annotator-training set. Besides, we also
discuss the annotation disagreements and identify
complicated examples to refine the corpus-creation
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Figure 2: The strict process of training the annotators before creating our corpus.

guidelines.

3.2 Premise Selection
To capture the natural linguistic phenomena of
Vietnamese NLI for news texts, the premises in
our corpus ViNLI were extracted from 800 public
articles on the reputable Vietnamese online news-
paper VnExpress5 with thirteen topics, shown in
Table 9 in Appendix A. We selected articles with
lengths of 3 to 5 paragraphs and chose the topic
sentences of each paragraph as premise sentences.
The reason we choose the topic sentence is because
it clearly describes the main content of the whole
paragraph and thus, is the most crucial sentence in
a paragraph. As a result, each news article provides
us with 3 to 5 premises.

3.3 Hypothesis Generation
We design four labels (ENTAILMENT, CONTRA-
DICTION, NEUTRAL, and OTHER) instead of
three (ENTAILMENT, CONTRADICTION, and
NEUTRAL) as in SNLI, MultiNLI, or OCNLI
datasets (Bowman et al., 2015; Williams et al.,
2018; Hu et al., 2020). Because people also en-
counter pairs of sentences unrelated to each other
in reality, and with only three labels is not possible
to distinguish such cases. We ask annotators to
create hypothesis sentences for the four following
labels.

• ENTAILMENT: Create a hypothesis sen-
tence that is definitely true to the content or
situation of the premise sentence.

• CONTRADICTION: Create a hypothesis
sentence that is definitely false with the con-
tent or situation of the premise sentence.

5https://vnexpress.net/

• NEUTRAL: Create a hypothesis sentence
that might be true with the content or situ-
ation of the premise sentence.

• OTHER: Create a hypothesis sentence that is
entirely unrelated to the content or situation
of the premise sentence.

The OTHER hypothesis type is different from
the NEUTRAL one. To create a NEUTRAL hy-
pothesis, the annotators must rely on events, sub-
jects, and objects in the premises. Along with this,
annotators make the hypothesis that might be true
with the content or situation of the premise. How-
ever, the OTHER hypothesis refers to an entirely
different situation in the premise. Particularly, there
is no connection of events, subjects, and objects
between the premise and hypothesis.

Double Hypothesis: For each premise, an-
notators are required to create eight hypothe-
sis sentences, two for each inference label (EN-
TAILMENT, CONTRADICTION, NEUTRAL,
and OTHER). This strategy is similar to the multi-
hypothesis strategy approached in the OCNLI and
IndoNLI data creation protocol6. This data collec-
tion strategy requires annotators to mine the infor-
mation in the premise sentence in many different
semantic ways. In other words, the hypothesis sen-
tence of each label has diverse content when the
annotators are interested in many semantic aspects
of the premises.

Besides, annotators were paid roughly 0.022
USD per premise-hypothesis pair. They must gen-
erate hypotheses based on the following guidelines:

6In OCNLI, three hypothesis sentences per label are cre-
ated for each premise, resulting in a total of nine hypotheses.
In IndoNLI, two hypothesis sentences per label are created for
each premise, resulting in a total of six hypotheses
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(1) Each premise has eight hypotheses (two hy-
potheses for each label). (2) Annotators are encour-
aged to write hypotheses in their own words with-
out copying words or phrases from the premise. (3)
Annotators may apply our general data-generation
rules to create hypotheses. This rule set includes
eight rules to generate CONTRADICTION sen-
tences and eleven rules to create ENTAILMENT
sentences, which are shown in Table 2 and Table
3 (see examples in Table 10 and Table 11 in Ap-
pendix D), respectively.

No. Rule Ratio

1
Use negative words
(no, not, never, nothing, hardly, etc.)

22%

2 Replace words with antonyms 37%
3 Opposite of quantity 6%
4 Opposite of time 11%

5
Create a sentence that has the
opposite meaning of a presupposition

11%

6
Wrong reasoning about an object
(House, car, river, sea, person, etc.)

18%

7 Wrong reasoning about an event 27%
8 Others 4%

Table 2: Data-generation rules for creating CONTRA-
DICTION hypothesis sentences.

No. Rule Ratio

1
Change active sentences into
passive sentences and vice versa.

47%

2 Replace words with synonyms. 75%

3
Add or remove modifiers that do not
radically alter the meaning of the sentence.

73%

4
Replace Named Entities with a word that
stands for the class.

12%

5 Turn nouns into relative clauses 6%
6 Turn the object into relative clauses 7%
7 Turn adjectives into relative clauses 2%

8
Replace quantifiers with others that
have a similar meaning.

13%

9 Create a presupposition sentence 8%
10 Create conditional sentences 2%
11 Others 2%

Table 3: Data-generation rules for creating ENTAIL-
MENT hypothesis sentences.

3.4 Data Validation
To ensure the quality of annotating inference labels
for premise-hypothesis pairs, we performed a round
of data validation for the ViNLI corpus (see Table
9 in Appendix A). Each premise-hypothesis pair
in the development and test dataset is annotated
with inference labels by five different annotators.

Annotators participating in the validation phase
are those who joined in the hypothesis generation
phase. The annotators who give inference labels
must be different from the person who generate hy-
pothesis in the hypothesis generation phase. Each
premise-hypothesis pair is paid 0.013 USD.

We choose the final gold label for each premise-
hypothesis pair by majority vote. Similar to the
previous corpora (SNLI, MultiNLI, and OCNLI),
if not at least three of five labels are the same for
a pair, the gold labels are marked as ’-’. And then,
those pairs are either removed from the corpus or
not used during model training and evaluation. The
results of the validation phase are shown in Table
4. The statistics show 99.4% of sentence pairs
receiving three or more identical labels, higher than
the validation results of the well-known corpora
such as SNLI, MultiNLI, and OCNLI, illustrating
that the ViNLI has high quality and reliability.

3.5 Corpus Analysis

Before conducting corpus analysis, we divided
ViNLI randomly into three sets: 80% for a training
set (Train), 10% for a development set (Dev), and
10% for a test set (Test). Our corpus statistics are
presented in Table 9 (in Appendix A).

The distribution of premise-hypothesis pairs and
the average length of premise and hypothesis sen-
tences (words) are illustrated in Table 9 (in Ap-
pendix A). We intentionally distribute the premise-
hypothesis pairs of each topic evenly distributed
on the Dev and Test sets. This division makes it
possible to evaluate models fairly without bias to-
ward any topic. In addition, the average length
distribution of premise and hypothesis sentences in
the Train, Dev, and Test sets is similar, with 24.5
words and 18.1 words for premise and hypothesis,
respectively.

Length Distribution: The distribution of the
premise and hypothesis sentences according to their
length is shown in Figure 3 (in Appendix B). This
Figure shows the same distribution as in Table 9.
Most hypothesis sentences are shorter than premise
sentences, which is similar to SNLI (Bowman et al.,
2015). However, this indicates that the length of
hypothesis sentences is shorter, but they still guar-
antee clear representations of their semantic rea-
soning from the sentence premises. The shortest
and longest lengths to generate a hypothesis are 4
and 68 words, respectively. The number of hypoth-
esis sentences with 10-23 word lengths occupies
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Statistic SNLI* MultiNLI* XNLI* OCNLI† IndoNLI§ ViNLI
Language English English 15 languages Chinese Indonesian Vietnamese
Text genre Image captions Multi genre Multi genre Multi genre Multi genre Newswire
#pairs in total 570,152 432,702 7,500 56,525 17,736 30,376
#pairs relabeled 56,951 40,000 7,500 9,913 7,497 6,000
% relabeled 10.0% 9.2% 100% 17.5% 42.3% 19.8%
Pair w/unanimous gold label 58.3% 58.2% nan 60.1% nan 77.9%
4+ labels agree nan nan nan 82.5 nan 91.5%
3+ labels agree 98.0% 98.2% 93.0% 98.6% 98.6% 99.4%
Individual label = gold label 89.0% 88.7% nan 87.5% 90.0% 94.1%
Individual label = author’s label 85.8% 85.2% nan 80.8% 87.6% 91.1%
Gold label = author’s label 91.2% 92.6% nan 89.3% 92.3 96.4%
Gold label ̸= author’s label 6.8% 5.6% nan 9.3% 6.3 3.6%
No gold label (no 3 labels match) 2.0% 1.8% nan 1.4% 1.4% 0.6%

Table 4: Agreement result of the validation phase in ViNLI compared with other corpora. *The numbers of SNLI,
MultiNLI, XNLI corpora are extracted from the scientific papers (Bowman et al., 2015; Williams et al., 2018;
Conneau et al., 2018). For XNLI, the number is calculated on a subset of Dev and Test in English. †For OCNLI, the
number was calculated from Hu et al. (2020) by averaging 4 different protocols. §For IndoNLI, the agreement is
calculated from Mahendra et al. (2021) by averaging 2 different protocols.

the largest proportion in our corpus.

Word Overlap: Taking the motivation from In-
doNLI (Mahendra et al., 2021), we calculated the
word overlap between the premise and hypothesis
sentences in ViNLI. Higher word overlap rates can
help predict the inference labels more correctly,
which has been illustrated in the study of McCoy
et al. (2019). Particularly, we use the Jaccard to cal-
culate the unordered word overlap rate of premise-
hypothesis pairs and the LCS index (the Longest
Common Sub-sequence) to observe the level of
word overlap in order. Before calculating the Jac-
card and LCS, we used the VnCoreNLP toolkit
(Vu et al., 2018) to perform word segmentation for
Vietnamese, as shown in Table 5. With the Jac-
card, the label ENTAILMENT has the highest rate
of word overlap compared to the other labels, while
this ratio is very low for the OTHER label. This is
understandable because the hypothesis sentences
of the OTHER label in ViNLI are created with con-
tent unrelated to its premise sentence. The word
overlap rate in the order of premise and hypothe-
sis in the ENTAILMENT label is also the highest,
and the OTHER label is the lowest when compared
with the CONTRADICTION and NEUTRAL la-
bels. Compared with the IndoNLI corpus created
by the lay annotators (Mahendra et al., 2021), the
Jaccard and LCS are significantly lower, which can
make ViNLI more interesting and challenging for
evaluating NLI models.

New Word Rate: To evaluate word diversity
in the hypothesis, we measure the new word rate,
which is the proportion of hypothesis words not

present in the premise. To detect Vietnamese
words, we use the word segmentation tool Vn-
CoreNLP (Vu et al., 2018). In Table 5, the new
word rate in the ENTAILMENT hypotheses is the
lowest at 46.59%. The word diversities of the CON-
TRADICTION (53.96%), NEUTRAL (61.79%),
and OTHER (85.93%) labels are higher than that of
the ENTAILMENT label. Compared with the In-
doNLI corpus (Mahendra et al., 2021), the new
word rate is remarkably higher, making ViNLI
more diverse words to challenge NLI models.

In addition, we further analyze the tendency
of using part-of-speech (POS) of the new words
which annotators used to write hypotheses based on
premises. Table 5 shows that annotators use nouns
and verbs the most to create hypotheses. Before
performing this statistic, we used PhoNLP (Nguyen
and Nguyen, 2021) to identify the POS of words.

Data-Generation Rules Analysis: To under-
stand the linguistic behaviors of annotators in
creating ViNLI, we analyze the data-generation
rules which annotators use to generate hypothe-
ses. We randomly selected 100 ENTAILMENT
premise-hypothesis pairs and 100 CONTRADIC-
TION premise-hypothesis pairs in the corpus for
analysis. For the CONTRADICTION label (see Ta-
ble 2), the annotators use the "replace words with
antonyms" rule with 37%, whereas the "opposite
of quantity" rule is the lowest with 6%. For the
ENTAILMENT label (see Table 3), "replace words
with synonyms" and "add or remove modifiers that
do not radically alter the meaning of the sentence"
are the two most common rules used to generate
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Label Jaccard (%) LCS New word
rate (%)

Part-Of-Speech (%)
Noun Verb Adjective Preposition Adjunct Other

Entailment 29.88 52.90 46.59 31.45 24.97 6.67 8.39 8.71 19.81
Contradiction 23.30 48.90 53.96 30.79 23.53 7.40 7.61 11.27 19.40
Neutral 20.19 50.34 61.79 33.42 22.89 8.02 8.59 8.62 18.46
Other 6.18 45.53 85.93 42.16 21.91 7.73 8.02 4.87 15.31

Table 5: Word overlap between premise and hypothesis sentences.

hypotheses with 75% and 73%, respectively. While
"create conditional sentences" rule is the least com-
mon to create hypotheses sentences, with only 2%.
"Others" only accounts for a small part of our data.

During data generation, annotators may use one
rule or more to generate a hypothesis. Our analysis
on using rules for hypothesis creation (see Figure
5 in Appendix E) found that approximately two-
thirds (66%) of the hypothesis sentences of the
CONTRADICTION label are created by one rule,
while data generation with two rules is about a third
(32%). Surprisingly, very few annotators use more
than two rules (only 2%) to generate hypotheses
for the label CONTRADICTION. Unlike the CON-
TRADICTION label, the hypothesis sentences of
the ENTAILMENT label (see Figure 6 in Appendix
E) are usually created by combining two to three
rules with 86%. Meanwhile, generating hypothe-
ses using one rule or more than three rules for the
ENTAILMENT label is only 14%.

4 Empirical Evaluation

4.1 Baseline Models and Settings

To evaluate the difficulty of ViNLI, we experiment
with simple models (Random Guess and CBoW
(Mikolov et al., 2013)) and more complex models
(ESIM (Chen et al., 2017), BiLSTM (Hochreiter
and Schmidhuber, 1997), PhoBERT (Nguyen and
Nguyen, 2020), mBERT (Devlin et al., 2019), and
XLM-R (Conneau et al., 2020)) as baseline models.

mBERT and XLM-R are multilingual language
models pre-trained on multilingual documents, in-
cluding Vietnamese. PhoBERT is a Pre-trained
language model for Vietnamese that uses RoBERTa
architecture with 135M parameters for the base ver-
sion and 370M for the large version.

All baseline models are trained using Adam op-
timal function (Kingma and Ba, 2015) and on Tesla
P100-PCIE-16GB of Google Colab7. In addition
to identifying word boundaries, white space is also
used to separate syllables that constitute words

7https://colab.research.google.com/

in Vietnamese texts. Models have different in-
puts, which can be word-based or syllable-based
representations. Particularly, we implement the
CBoW, ESIM, and BiLSTM models with the pre-
trained embedding PhoW2V (Nguyen et al., 2020a)
for Vietnamese. We experiment with two 300-
dimensional versions of PhoW2V, including the
syllable and word levels. When using PhoW2V
with word-level, we use the VnCoreNLP toolkit
(Vu et al., 2018) for word segmentation in Viet-
namese.

The hyper-parameters of CBoW, ESIM, BiL-
STM models are set up as follows: learning_rate
= 0.001, batch_size = 16, sequence_lenght = 80,
epochs = 10. To train transformer models like
BERT, XLM-R, and PhoBERT, we used Hugging
Face’s Transformers library8. Besides, we set the
hyper-parameters as follows learning_rate = 1e-5,
epochs = 10, batch_size = 16.

We conduct experiments on two label sets: a
three-label set (ENTAILMENT, CONTRADIC-
TION, and NEUTRAL) and a four-label set (EN-
TAILMENT, CONTRADICTION, NEUTRAL,
and OTHER).

4.2 Evaluation Metrics

Following SNLI (Bowman et al., 2015), we use
accuracy as the primary evaluation metric. We also
calculate F1-score (macro average) as the second
evaluation metric to obtain more insights.

4.3 Human Performance

Following Hu et al. (2020), we hired five native
Vietnamese speakers to annotate a subset of 300
samples (Test300) extracted randomly from the Test
set. These people did not know anything about
the NLI task before, and we trained them on task
definition and the meaning of inference labels to
choose a label for each premise-hypothesis pair.
The majority voting of five labels chooses the
final label for each pair. Human performances
are achieved with accuracy-based performances of

8https://huggingface.co/docs/transformers/index
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95.34% (for 03 labels: ENTAILMENT, CONTRA-
DICTION, NEUTRAL) and 95.78% (for 04 labels:
ENTAILMENT, CONTRADICTION, NEUTRAL,
OTHER).

4.4 Experimental Results

Table 6 presents the performances of the base-
line models on the Dev and Test sets. Over-
all, transformer-based models (mBERT, PhoBERT,
and XLM-R) outperform others (Random Guess,
CBOW, ESIM, and BiLSTM). XLM-RLarge
achieves the best results in both experiments with
different label sets: three labels (ENTAILMENT,
CONTRADICTION, NEUTRAL) and four la-
bels (ENTAILMENT, CONTRADICTION, NEU-
TRAL, OTHER). On the three-label corpus, XLM-
RLarge achieved the highest accuracy-based per-
formances on Dev and Test sets, with 83.02% and
81.36%, respectively. Besides, PhoBERTLarge also
achieves impressive results with 75.93% accuracy
on the Test set.

On the corpus with four labels, the perfor-
mances of the models tend to be quite similar to
the three labels experiments. The performance
of the XLM-RLarge model also has the high-
est accuracy, with 86.77% on the Dev set and
85.99% on the Test set. The best performance of
the syllable-level model (XLM-R) is significantly
higher than the best performance of the word-level
model (PhoBERT), similar to the Vietnamese MRC
shared task (Nguyen et al., 2022). The accuracy
and F1 achieve roughly the same results due to the
experiments on the balanced corpus. Furthermore,
most of the model performances on the four-label
experiments are higher than those on the three-label
experiments because the OTHER label is easier to
recognize than other labels (see Table 7).

XLM-RLarge also achieves the best accuracy on
the Test300 set. However, when compared with
human performance, this model is still significantly
lower, by 14.20% on Test300 on three labels and
6.93% on Test300 on four labels.

5 Result Analysis

To gain more insights, we analyze the two best-
performance models, including XLM-RLarge and
PhoBERTLarge on different linguistic aspects. In
this section, XLM-R and PhoBERT stand for
XLM-RLarge and PhoBERTLarge, respectively.

How do inference labels affect the perfor-
mance?

Table 7 shows the analysis of accuracy on each
label in the Dev set on three labels and the Dev set
on four labels of the two best-performance mod-
els (XLM-R and PhoBERT). Both XLM-R and
PhoBERT perform very well on the OTHER label
with more than 97% accuracy. When adding the
OTHER label, the accuracy-based performances of
XLM-R on CONTRADICTION and NEUTRAL
are improved; however, the accuracy of ENTAIL-
MENT is decreased from 89.31% to 86.33%.

Labels Three-label Dev Four-label Dev
PhoBERT XLM-R PhoBERT XLM-R

Entailment 77.94 89.31 76.45 86.33
Contradiction 76.57 80.76 71.46 82.98
Neutral 77.53 79.12 77.66 80.45
Other - - 97.35 97.34

Table 7: Model performance per label in ViNLI.

How do new words affect the performance?
We aim to analyze the effect of the new words in
hypothesis sentences on the model accuracy. Figure
4 (in Appendix C) shows the accuracy of PhoBERT
and XLM-R models according to the new word rate
in the three-labels and four-labels dev set. Figure
4a shows that the accuracy of the PhoBERT model
significantly decreases from around 84% to about
67% as the new word rate in hypothesis sentences
increases from less than 20% to more than 80%.
In contrast, the accuracy of the XLM-R model is
relatively stable.

With the results of the four-label Dev set in Fig-
ure 4b, the accuracy of the models is quite similar
to the trend of the three-label dev set when the new
word rate is less than or equal to 60%. However,
the performance of the models with the new word
rate of more than 60% on the four-label Dev set
is higher than that of the three-label Dev set since
all pairs of OTHER labels have the highest new
word rate (see Table 5). Moreover, the model per-
formances on OTHER achieve the most (see Table
7) compared to other labels.

How do data-generation rules affect the per-
formance? Table 8 analyzes the influence of using
data-generation rules that the annotators generate
the hypotheses on the model performance. We an-
alyze our experimental results of PhoBERT and
XLM-R on data-generation rules (as described in
Subsection 3.5). Our experiments show that the
ENTAILMENT hypotheses with more than two
rules cause the performance of the models to be
lower when these hypotheses are generated with
only one rule. With the CONTRADICTION hy-
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Model Three Labels Four Labels
Dev Test Test300 Dev Test Test300

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Random Guess 33.36 32.49 32.51 33.01 34.28 34.27 25.47 24.27 24.51 24.85 25.19 25.17
Syllable CBoW 45.54 45.13 44.96 44.62 43.86 43.43 46.29 45.73 45.97 45.46 43.58 43.88

ESIM 48.55 48.24 47.43 46.76 46.92 46.41 48.58 48.45 47.44 47.17 43.58 42.99
BiLSTM 48.07 48.10 46.42 46.35 46.92 46.84 48.89 48.36 48.55 48.06 48.31 48.07
mBERT 67.41 67.46 64.84 64.83 64.91 64.85 73.91 73.83 73.45 73.62 75.34 75.78
XLM-RBase 72.02 71.99 71.59 71.51 71.93 71.55 76.97 76.93 76.83 77.01 77.71 78.31
XLM-RLarge 83.02 82.98 81.36 81.31 81.14 81.12 86.77 86.76 85.99 86.10 88.85 89.13

Word CBoW 49.05 48.64 45.80 45.41 42.11 41.37 54.63 54.48 53.12 52.87 51.01 50.60
ESIM 49.84 49.75 48.18 48.12 40.79 40.25 48.68 47.99 48.37 47.83 46.95 46.14
BiLSTM 48.91 48.71 46.77 46.59 43.42 42.52 50.48 49.89 49.78 49.22 49.32 48.31
PhoBERTBase 75.07 75.08 72.87 72.79 71.05 70.31 79.79 79.75 78.00 78.05 77.70 77.98
PhoBERTLarge 77.33 77.34 75.93 75.87 77.19 77.19 80.72 80.72 80.67 80.69 80.74 81.11

Human performance - - - - 95.34 95.33 - - - - 95.78 95.79

Table 6: Human and machine performances on the Dev and Test sets of our corpus ViNLI.

potheses, the models have more difficulty than
those generated by the annotator with only one rule,
whereas PhoBERT and XLM-R achieve higher ac-
curacy if the hypotheses are generated from two or
more rules.

Label #Rule PhoBERT XLM-R

Entailment
1-2 81.82 89.09

more than 2 77.78 84.44

Contradiction
1 71.21 81.81

more than 1 76.47 91.18

Table 8: Effects of data-generation rules on the models.

How do multiple topics affect the perfor-
mance? To observe the impact of multiple topics
(open-domain) in ViNLI, we calculate the accuracy
of the two highest-performance models (PhoBERT
and XLM-R models) in terms of 13 different topics.
Table 12 (in Appendix F) shows that XLM-R con-
sistently outperformed PhoBERT on all topics. The
models achieve different results on various topics.
While the models reach the best performances in
Tourism and Entertainment, Business and World
are the most challenging for the models.

6 Conclusion and Future Work

In this paper, we introduced ViNLI, an open-
domain, high-quality corpus for evaluating Viet-
namese NLI models. By a strict annotation scheme
with high annotator agreements, 30,376 premise-
hypothesis pairs of the corpus were annotated by
humans with solid linguistic backgrounds, which
is the largest Vietnamese NLI corpus to date. The
performances of the two powerful models (XLM-R
and PhoBERT) illustrate that our corpus is chal-

lenging for the pre-trained language models in Viet-
namese, the best of which underperforms humans
by over 14% (on three labels). ViNLI is available
freely for research purposes in developing Viet-
namese NLU models.

Taking advantages of state-of-the-art models
on large-scale, high-quality NLI corpora (SNLI,
MultiNLI, XNLI, OCNLI, KorNLI, and IndoNLI),
we hope that our corpus will accelerate progress
on Vietnamese NLI and other NLP tasks. Based
on the findings of our work, we continue to en-
hance the quality and quantity of the corpus with
different data sources and expand our corpus with
adversarial samples (Kang et al., 2018; Nie et al.,
2020). Moreover, future studies will concentrate
on exploiting Vietnamese models using BERTol-
ogy (Rogers et al., 2020) (e.g., SBERT (Reimers
and Gurevych, 2019)) and improving NLP appli-
cations such as Vietnamese machine reading com-
prehension models and retriever-reader question
answering systems.
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A Topic Statistics

Table 9 presents statistics in terms of 13 topics,
mean premise length (words)9 and mean hypothesis
length (words)10.

Topic/Label Train Dev Test Total
Technology 1,912 232 232 2,376
Tourism 1,896 232 228 2,356
Education 1,936 232 231 2,399
Entertainment 1,640 231 231 2,102
Science 1,792 232 228 2,252
Business 1,616 231 228 2,075
Law 1,680 231 231 2,142
Health 2,048 231 232 2,511
World 2,040 232 229 2,501
Sports 2,088 230 231 2,549
News 1,576 231 231 2,038
Vehicles 2,288 232 228 2,748
Life 1,864 232 231 2,327
Entailment 6,094 739 750 7,583
Contradiction 6,094 764 737 7,595
Neural 6,094 752 777 7,623
Other 6,094 754 727 7,575
Total (pairs) 24,376 3,009 2,991 30,376
MPL (words) 24.5 24.6 24.3 24.5
MHL (words) 18.3 17.9 18.1 18.1

Table 9: ViNLI statistics in terms of different topics,
Mean Premise Length (MPL) and Mean Hypothesis
Length (MHL).

B Length Distribution

The distribution of the premise and hypothesis sen-
tences according to their length is shown in Figure
3. The length of premise and hypothesis sentences
is counted by the number of words (A Vietnamese
word consists of one or more syllables). We use
the VnCoreNLP toolkit (Vu et al., 2018) for Viet-
namese word segmentation.

9Mean premise length is the mean average of word-based
lengths of premise sentences in Train/Dev/Test sets or ViNLI
(total).

10Mean hypothesis length is the mean average of word-
based lengths of hypothesis sentences in Train/Dev/Test sets
or ViNLI (total).
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Figure 3: The distribution of sentence length.

C Effect of New Words

To observe the influence of the new word rate on
the performance of models, we analyze the accu-
racy of PhoBERTLarge and XLM-RLarge models
according to the new word rate. The analysis of
the three-label and four-label Dev sets is shown in
Figure 4.
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(a) Dev set with three labels.
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(b) Dev set with four labels.

Figure 4: Model accuracy on the Dev set according to
new word rate.

D Data-Generation Rules

To understand the linguistic behaviors of annota-
tors in creating ViNLI, we analyze data-generation
rules which annotators use to generate hypothe-

3869



ses. We randomly selected 100 ENTAILMENT
premise-hypothesis pairs and 100 CONTRADIC-
TION premise-hypothesis pairs in the corpus for
analysis. For the CONTRADICTION label (see Ta-
ble 2), the annotators use the "replace words with
antonyms" rule with 37%, whereas the "opposite
of quantity" rule is the lowest with 6%. For the
ENTAILMENT label (see Table 3), "replace words
with synonyms" and "add or remove modifiers that
do not radically alter the meaning of the sentence"
are the two most common rules used to generate
hypotheses with 75% and 73%, respectively. While
"create conditional sentences" rule is the least com-
mon to create hypotheses, with only 2%. "Others"
only accounts for a small part of our data.

E Rules Combination for Creating
Hypotheses

To create more diverse and challenging data, an-
notators may use one rule or more to generate a
hypothesis. Figure 5 and Figure 6 show the propor-
tion of using data-generation rules to create sen-
tences for contradiction and entailment, respec-
tively. Whereas most contradiction hypothesis sen-
tences use one rule, entailment hypothesis sen-
tences are created mainly based on two and three
rules. Table 10 and Table 11 present several sam-
ples of contradiction and entailment rules for creat-
ing premise (P) - hypothesis (H) pairs, respectively.

66%

32%
2%

1 rules
2 rules
More than 2 rules

Figure 5: The ratio of combining different rules to create
contradiction sentences in ViNLI.

6%

49%

37%
8%

1 rules
2 rules
3 rules
More than 3 rules

Figure 6: The ratio of combining different rules to create
entailment sentences in ViNLI.

F Effects of Multiple Topics

To observe the impact of multiple topics (open-
domain) in the ViNLI corpus, we calculate the
accuracy of the two highest-performance models
(PhoBERTLarge and XLM-RLarge models) on 13
different topics of ViNLI. The results are shown in
Table 12.

Topic Three-label Dev Four-label Dev
PhoBERT XLM-R PhoBERT XLM-R

Technology 76.88 83.24 77.59 86.64
Tourism 84.88 89.53 81.47 91.81
Education 79.43 81.14 82.76 83.62
Entertainment 81.14 88.57 83.12 90.91
Science 73.10 79.53 78.88 85.34
Business 72.09 80.23 75.32 80.95
Law 77.71 81.14 82.25 85.28
Health 80.92 83.82 82.68 88.74
World 72.99 79.31 79.31 87.93
Sports 75.86 85.63 83.04 83.91
News 76.30 81.50 82.68 88.31
Vehicles 78.16 83.33 81.90 87.93
Life 75.86 82.18 78.45 86.64

Table 12: Analyzing the model performances on differ-
ent topics.
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Rule Example Per.
Use negative words
(no, not, never,
nothing, hardly,
etc.)

P: Cơ quan chức năng đã lập biên bản vụ việc. (Authorities recorded the minutes
of the incident.)
H: Cơ quan chức năng không tiến hành xử lí vụ việc. (Authorities did not
process the case.)

22%

Replace words with
antonyms

P: AAPP cho biết thêm chính quyền quân sự Myanmar đang giam 4.120 người,
trong đó có 20 người bị kết án tử hình. (The AAPP added that Myanmar’s
military junta is holding 4,120 people, of which 20 are sentenced to death.)
H: Đã có 4.120 người được chính quyền quân sự quân sự Myanmar trả tự do.
(There have been 4,120 people released by the military junta of Myanmar.)

37%

Opposite of quan-
tity

P: Suốt cuộc diễu hành kéo dài khoảng một tiếng, Tổng thống Bolsonaro và
đa số người ủng hộ ông đều không đeo khẩu trang. (During the parade, which
lasted about an hour, President Bolsonaro and most of his supporters were not
wearing masks.)
H: Cuộc diễu hành kéo dài khoảng 10 tiếng, người tham gia và cả Tổng thống
Bolsonaro đều không đeo khẩu trang. (The parade lasted about 10 hours;
participants and President Bolsonaro were not wearing masks.)

6%

Opposite of time

P: Miss Universe 2020 kéo dài khoảng 12 ngày, chung kết diễn ra tối 16/5 tại
Hollywood, bang Florida. (Miss Universe 2020 lasts about 12 days, and the
final will take place on the evening of May 16 in Hollywood, Florida.)
H: Miss Universe 2020 sẽ được tổ chức trong khoảng thời gian từ 20-25/5 tại
Mỹ. (Miss Universe 2020 will be held between May 20 and 25 in the US.)

11%

Create a sentence
that has the oppo-
site meaning of a
presupposition

P: Giám đốc điều hành Apple, Lisa Jackson, cho biết khó khăn của việc sử
dụng năng lượng sạch. (Apple CEO Lisa Jackson said the difficulty of using
clean energy.)
H: Apple chưa thể bổ nhiệm ai cho chức vụ giám đốc điều hành. (Apple
has not been able to appoint anyone for the position of CEO.)

11%

Wrong reasoning
about an object
(House, car, river,
sea, person, etc.)

P: Trong thông báo hôm 24/5, Honda Việt Nam công bố chiến dịch thu hồi mẫu
xe ga nhập khẩu. (In an announcement on May 24, Honda Vietnam announced
a campaign to recall imported scooter models.)
H: Honda Hàn Quốc thông báo triệu hồi các mẫu xe ga nhập khẩu. (Honda
Korea announced the recall of imported scooter models.)

18%

Wrong reasoning
about an event

P: Trong lần gặp lại này, Zverev vượt trội đối thủ ở giao bóng. (In this meeting,
Zverev outperformed his opponent in serving.)
H: Đối thủ có kỹ năng giao bóng vượt xa Zverev. (The opponent’s serving
skill far exceeded Zverev.)

27%

Others

P: Phía Tập đoàn Trung Nam cho biết, với 64,9% cổ phần còn lại họ vẫn giữ
vai trò quyết định trong điều hành, định hướng phát triển của dự án điện gió
Trung Nam. (Trung Nam Group said that with the remaining 64.9% stake, they
still play a decisive role in the management and development orientation of the
Trung Nam wind power project.)
H: Do nắm giữ ít cổ phần nên Trung Nam Group mất quyền quyết định đối với
các dự án quan trọng. (Because of holding fewer shares, Trung Nam Group lost
decision-making power on important projects.)
Explanation: Causal, Although clauses, etc., clauses can be used to create the
contradiction hypothesis sentence with the premise sentence. This is a case of
Others.

4%

Table 10: Examples of contradiction rules for creating premise (P) - hypothesis (H) pairs. Simply, we only mention
one rule to be applied in each example.
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Rule Example Per.
Change active sen-
tences into passive
sentences and vice
versa.

P: Giá các mặt hàng dầu đều tăng. (Prices of oil commodities have increased.)
H: Giá xăng dầu được tất cả các cửa hàng xăng dầu trên toàn quốc điều chỉnh tăng
lên. (Oil prices are adjusted to increase by all petrol stations nationwide.)

47%

Replace words with
synonyms.

P: Nadal tốn 130 phút để vượt qua Sinner 7-5, 6-4. (Nadal took 130 minutes to beat
Sinner 7-5, 6-4.)
H: Sau hơn hai tiếng, Nadal chiến thắng trước Sinner với tỷ số 2-0. (After more than
two hours, Nadal won against Sinner with a score of 2-0.)

75%

Add or remove
modifiers that do
not radically alter
the meaning of the
sentence.

P: Châu Nhuận Phát sinh ngày 18/5/1955 trong gia đình nghèo. (Chau Nhuan Phat
was born on May 18, 1955 in a poor family.)
H: Châu Nhuận Phát là con của một gia đình có hoàn cảnh khó khăn. (Chau Nhuan
Phat is the son of a family with difficult circumstances.)

73%

Replace Named En-
tities with a word
that stands for the
class.

P: Hacker rao bán dữ liệu của hơn 533 triệu tài khoản Facebook, bao gồm số điện
thoại và một số thông tin cá nhân. (Hacker sells data of more than 533 million
Facebook accounts, including phone numbers and some personal information.)
H: Thông tin cá nhân của hơn 533 triệu tài khoản mạng xã hội đã bị Hacker rao bán.
(Personal information of more than 533 million social network accounts is sold by
Hackers.)

12%

Turn nouns into rel-
ative clauses

P: Tháng 8-9 là thời điểm ốc béo nhất. (August-September is the fattest time of
snails.)
H: Tháng 8-9 là mùa mà những người đầu bếp sẽ dễ dàng lựa chọn những con ốc
béo và thơm nhất. (August-September is the season when chefs will easily choose the
fattest and most fragrant snails.)

6%

Turn the object into
relative clauses

P: Wernery cho biết lạc đà được tiêm xác của nCoV để sản sinh kháng thể. (Wernery
said camels are injected with the carcass of nCoV to produce antibodies.)
H: Lạc đà được tiêm xác của nCoV, là dung dịch có khả năng tạo ra khoáng thể
chống lại virus. (Camels are injected with the carcass of nCoV, which is a solution
capable of creating antibodies against the virus.)

7%

Turn adjectives into
relative clauses

P: Quần đảo Lofoten của Na Uy là một trong những địa điểm đẹp nhất trên trái đất.
(Norway’s Lofoten Islands are some of the most beautiful places on earth.)
H: Quần đảo Lofoten của Na Uy là địa điểm du lịch, nơi được mệnh danh là đẹp
nhất trên trái đất. (Norway’s Lofoten Islands are tourist destinations that have been
dubbed the most beautiful place on earth.)

2%

Replace quantifiers
with others that
have a similar
meaning.

P: Công an xác minh, giờ ra chơi sáng 13/5, một nam sinh và một nữ sinh lớp 9B
trong lúc đùa nghịch đã cắn tay nhau. (Police verified that at recess on the morning of
May 13, a male student and a female student in class 9B bit each other’s hands while
frolicking.)
H: Hai học sinh của lớp 9B đã cắn nhau vào giờ ra chơi. (Two students from class 9B
were biting each other during break time.)

13%

Create a presuppo-
sition sentence

P: Cũng theo Goal, Marcelo không phải là cầu thủ duy nhất của Real bất bình với
Zidane. (According to Goal, Marcelo is not the only player of Real to be angry with
Zidane.)
H: Marcelo đá cho đội tuyển Real Madrid. (Marcelo plays for the Real Madrid
team.)

8%

Create conditional
sentences

P: Do ảnh hưởng của Covid-19, doanh nghiệp không xuất khẩu được nên khoảng
50.000 tấn hành tím tới kỳ thu hoạch của nông dân xã Vĩnh Châu không có nơi tiêu
thụ. (Due to the impact of Covid-19, businesses could not export, so about 50,000
tons of purple onions until the harvest period of Vinh Chau commune farmers have no
place to consume.)
H: Nếu không bị ảnh hưởng bởi Covid-19, doanh nghiệp sẽ xuất khẩu được khoảng
50.000 tấn hành tím. (If not affected by Covid-19, the enterprise will be able to export
about 50,000 tons of purple onions.)

2%

Others

P: Nạn nhân không bị nguy hiểm đến tính mạng nhưng chưa thể làm việc với cơ quan
điều tra. (The victim’s life is not in danger, but the victim has not been able to work
with the investigative agency.)
H: Mặc dù không bị nguy hiểm đến tính mạng nhưng nạn nhân vẫn chưa thể làm việc
với cơ quan điều tra. (Although the victim’s life is not in danger, the victim is still
unable to work with the investigative agency.)
Explanation: Causal, Although clauses, etc., can be used to create the entailment
hypothesis sentence with the premise sentence. This is a case of Others.

2%

Table 11: Examples of entailment rules for creating premise (P) - hypothesis (H) pairs. Simply, we only mention
one rule to be applied in each example.
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Abstract
In this paper, we present INFERES - an orig-
inal corpus for Natural Language Inference
(NLI) in European Spanish. We propose, imple-
ment, and analyze a variety of corpus-creating
strategies utilizing expert linguists and crowd
workers. The objectives behind INFERES are
to provide high-quality data, and, at the same
time to facilitate the systematic evaluation of
automated systems. Specifically, we focus on
measuring and improving the performance of
machine learning systems on negation-based
adversarial examples and their ability to gener-
alize across out-of-distribution topics.

We train two transformer models on IN-
FERES (8,055 gold examples) in a variety of
scenarios. Our best model obtains 72.8% ac-
curacy, leaving a lot of room for improvement.
The “hypothesis-only” baseline performs only
2%-5% higher than majority, indicating much
fewer annotation artifacts than prior work. We
find that models trained on INFERES general-
ize very well across topics (both in- and out-of-
distribution) and perform moderately well on
negation-based adversarial examples.

1 Introduction

In the task of Natural Language Inference (NLI),
an automated system has to determine the meaning
relation that holds between two texts. The model
has to make a three-way choice between entailment:
a hypothesis (h) is true given a premise (p) (e.g.
1.); contradiction: a hypothesis (h) is false given
a premise (p) (e.g. 2.); or neutral: the truth value
of the hypothesis (h) cannot be determined solely
based on the premise (p) (e.g.: 3.).

1. p) John goes to work every day with a car.
h) John has a job.

2. p) John goes to work every day with a car.
h) John takes the bus to go to work.

3. p) John goes to work every day with a car.
h) John has a Porsche.

NLI (formerly known as Recognizing Textual
Entailment (RTE)) is one of the core tasks in the
popular benchmarks for Natural Language Under-
standing GLUE (Wang et al., 2018) and Super
GLUE (Wang et al., 2019). Hundreds of machine
learning systems compete on these benchmarks,
improving the state of NLU.

One key limitation of NLI research is that most
of the existing corpora are only for English. Lim-
ited research has been done on multilingual and
non-English corpora (Peñas et al., 2006; Conneau
et al., 2018; Amirkhani et al., 2020; Ham et al.,
2020; Hu et al., 2020; Mahendra et al., 2021).

Another well-known issue with NLI is the qual-
ity of the existing datasets and the limitations of
the models trained on them. On most NLI cor-
pora, state-of-the-art transformer based models can
obtain quantitative results (Accuracy and F1) that
equal or exceed human performance. Despite this
high performance, researchers have identified nu-
merous limitations and potential problems. Poliak
et al. (2018) found that annotation artifacts in the
datasets enable the models to predict the label by
only looking at the hypothesis. NLI models are
often prone to adversarial attacks (Williams et al.,
2018) and may fail on instances that require spe-
cific linguistic capabilities (Hossain et al., 2020;
Saha et al., 2020).

In this paper we address both of these shortcom-
ings in NLI research. We present INFERES - to the
best of our knowledge, the first original NLI corpus
for Spanish, not adapted from another language
or task. We study prior work for strategies that
can reduce annotation artifacts and increase the lin-
guistic variety of the corpus, resulting in a dataset
that is more challenging for automated systems to
solve. We also design the corpus in a way that
facilitates systematic evaluation of automated sys-
tems on: 1) negation-based adversarial examples;
2) out-of-distribution examples.

We propose, implement, and analyze three dif-
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ferent strategies for the generation and annotation
of text pairs. In the generation strategy, expert lin-
guists write original hypotheses given a premise.
In the rewrite strategy, expert linguists create con-
trastive and adversarial examples by rewriting and
re-annotating “generated” pairs. In the annota-
tion strategy, we first generate text pairs in a semi-
automated manner and then use crowd annota-
tors to determine the meaning relation. The fi-
nal INFERES corpus contains 8,055 gold standard
premise-hypothesis pairs. The core part of the cor-
pus is expert-generated and we make an additional
effort to ensure the quality of the data and the lin-
guistic diversity of the examples.

We provide two baseline for INFERES by fine-
tuning multilingual BERT and BETO (Spanish
BERT) transformer models. On the full dataset,
BETO obtains 72.8% accuracy, indicating that the
classification task is non-trivial. Both mBERT
and BETO perform poorly in the “hypothesis-only”
condition, indicating fewer annotation artifacts in
the corpus compared to prior work. Both sys-
tems generalize well across the different topics
in INFERES both “in-distribution” and “out-of-
distribution”. We notice a substantial drop in per-
formance when evaluating negation-based adversar-
ial examples, however the systems still outperform
majority and “hypothesis-only”.

INFERES expands the scope of the NLI research
in Spanish, provides new set of naturally occurring
contrastive and adversarial examples, and facili-
tates the study of negation and coreference in the
context of NLI. As part of the corpus creation, we
also present and analyze three unique strategies
for creating examples. All our data and baseline
models are being released to the community1.

The rest of this article is organized as follows.
Section 2 discusses the related work. Section 3
formulates our objectives and introduces the differ-
ent corpus-creation strategies. Section 4 describes
the final corpus and basic statistical data regarding
it. Section 5 presents the machine learning exper-
imental setup and results. Section 6 is devoted to
a discussion of the results and their implications.
Finally, Section 7 concludes the article.

2 Related Work

The task of Recognizing Textual Entailment (RTE)
was proposed in Dagan et al. (2006) as a binary clas-

1At https://github.com/venelink/inferes
InferES is also added as a HuggingFace dataset

sification (“entailment” / “non-entailment”). The
RTE competition ran for seven editions (Bar Haim
et al., 2006; Giampiccolo et al., 2007, 2008; Ben-
tivogli et al., 2009, 2010, 2011). RTE was later re-
formulated as a three-way decision and ultimately
renamed Natural Language Inference in the SNLI
(Bowman et al., 2015) and the MNLI (Williams
et al., 2018) corpora. Both the RTE and the NLI
tasks form part of the Natural Language Under-
standing benchmarks GLUE (Wang et al., 2018)
and Super-GLUE (Wang et al., 2019). The NLU
benchmarks attracted a lot of attention from the
community and by 2020 the state-of-the-art sys-
tems reported human level performance. Parrish
et al. (2021) proposed a “linguist-in-the-loop” cor-
pus creation to improve the quality of the data.

The “super-human” performance of NLI systems
has been questioned by a number of researchers.
Poliak et al. (2018) found that annotation artifacts
in the datasets enable the models to predict the
label by only looking at the hypothesis. McCoy
et al. (2019) and Gururangan et al. (2018) demon-
strate that state-of-the-art NLI systems often rely
on heuristics and annotation artifacts.

Systematic approaches to evaluation propose dif-
ferent sets of stress-tests for NLI and NLU systems
(Kovatchev et al., 2018a; Naik et al., 2018; Wallace
et al., 2019; Kovatchev et al., 2019; Ribeiro et al.,
2020; Kovatchev et al., 2020). The attacks can be
inspired by linguistic phenomena or empirical use
cases. Systematic evaluations show that NLI and
other NLU systems often underperform on complex
linguistic phenomena such as conjunction (Saha
et al., 2020), negation (Hossain et al., 2020), and
coreference (Kovatchev et al., 2022). Researchers
also experimented with creating contrastive exam-
ples that differ only slightly from training examples,
but have a different label (Glockner et al., 2018;
Kaushik et al., 2020; Gardner et al., 2020). Adver-
sarially created datasets such as Adversarial NLI
(Nie et al., 2020) and Dynabench NLI (Kiela et al.,
2021) demonstrate that there is a lot of room for
improvement regarding NLI datasets and models.

Most of the available resources for NLI research
are in English. Conneau et al. (2018) present XNLI,
a multilingual dataset created by translating En-
glish NLI examples into other languages. The inter-
est in multilingual NLI has resulted in the creation
of some novel non-English resources such as the
Korean NLI corpus (Ham et al., 2020), Chinese
NLI corpus (Hu et al., 2020), Persian NLI corpus
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(Amirkhani et al., 2020), Indonesian NLI corpus
(Mahendra et al., 2021), and indigenous languages
of the Americas NLI corpus (Ebrahimi et al., 2022).
For Spanish, the only available resources are the
Spanish portion of XNLI and the SPARTE corpus
for RTE (Peñas et al., 2006) which was adapted
from Question Answering data.

3 Objectives and Corpus Creation

When creating INFERES we experimented with
different strategies for obtaining gold examples. To
the best of our knowledge, this is the first time var-
ious annotation strategies are combined and com-
pared in a single NLI corpus. We adopt three differ-
ent approaches, used in prior work: our generation
strategy is similar to the original RTE and NLI cor-
pus creation; our rewrite strategy is inspired from
work in generating adversarial and contrastive ex-
amples; our annotation strategy scales well with
data and allows us to compare expert- and crowd-
crated datasets. Our aim was to provide interesting
and diverse examples that cover a large range of
use cases and linguistic phenomena. We hope that
INFERES can be used not only to train automated
systems, but also to better understand the nature of
inference. We formulated three main objectives:

O1 To create a native NLI dataset for the Spanish
language. The existing resources are either an
adaptation from a different task or a transla-
tion from English.

O2 To promote better data quality and corpus cre-
ation practices. We aim to create a more chal-
lenging dataset and simultaneously reduce the
number of annotation artifacts.

O3 To facilitate the research on negation and
coreference in the context of NLI. More
specifically, we focus on contrastive and ad-
versarial examples.

3.1 Premise Extraction

In the first step of the process, we extracted a set of
candidate premises. We decided to use a single sen-
tence premise, similar to SNLI and MNLI datasets.
We defined two requirements for our premise sen-
tences: 1) that they cover a range of different top-
ics; and 2) that they be complex enough to entail
or contradict multiple possible hypotheses.

Choice of topics As a source for premises we
used the Spanish version of Wikipedia from Oc-
tober 2019. We chose six topics, covering five
different domains: history, art, sports, technology,
and politics. We also selected the topics in pairs
hypothesizing that this selection might facilitate
the creation of contrastive examples, specifically in
the context of coreference.

• famous historical figures:
Pablo Picasso (ES: Pablo Picasso)
Christopher Columbus (ES: Cristobal Colón)

• types of “games”:
Olympic games (ES: Juegos Olímpicos)
Video games (ES: videojuegos)

• types of multinational “unions”:
The European Union (ES: Unión Europeo)
The Union of Soviet Socialist Republics
(ES: Unión Sovética)

Extraction process We extracted the main
Wikipedia article for each topic and preprocessed
it (sentence segmentation and tokenization) using
Spacy (Honnibal and Montani, 2017). We split the
text by paragraphs and discarded paragraphs that
contained only one sentence or more than five sen-
tences. Then, from each paragraph, we selected
a single sentence, prioritizing sentences contain-
ing negation2 where possible, otherwise selecting a
sentence at random. We ensured that each selected
sentence had a length between 15 and 45 tokens.

Post-processing At the end of the extraction pro-
cess, we had 471 candidate-premise sentences as
follows: 82 for Picasso, 60 for Columbus, 68 for
the Olympic games, 73 for video games, 107 for
the EU, and 81 for the USSR. For each sentence,
we also kept the corresponding paragraph to enable
experimental setup where we provide an additional
context to the machine learning models at train and
test time. We also used the “context paragraphs”
when generating “neutral” pairs. One of the authors
manually inspected all 471 candidate-premise sen-
tences. They manually resolved problems with
sentence segmentation, removed URLs and inter-
nal wikipedia document references, and explicitly
resolved any coreferential and anaphorical ambi-
guities (i.e.: replaced pronouns and coreferential
entities with an unambiguous referent).

2To check for negation, we used a simple keyword based
search, using a list of the most common negative particles,
adverbs, and verbs in Spanish. The list is available at https:
//github.com/venelink/inferes
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3.2 Expert “Generation” Strategy
Task formulation We formulated two separate
generation tasks: the generation of entailment pairs
and generation of contradiction pairs. We defined
the tasks as follows:

Entailment: Given a premise, write two differ-
ent sentences that are true.

Contradiction: Given a premise, write two dif-
ferent sentences that are false.
Our guidelines enforced a strict definition of con-
tradiction and required our generators to write sen-
tences that explicitly contradict the premise, rather
than implicitly rely on event and actor coreference3.
We asked the generators to provide multiple exam-
ples, requiring the use of different strategies. We
further instructed the corpus generators to: 1) gen-
erate hypotheses that have a low lexical overlap
with the premise; 2) generate one affirmative and
one negated sentence for each relation; 3) where
possible, replace named entities with pronouns or
other instances of coreference. Our instructions
aim to encourage generators to come up with diffi-
cult and diverse examples. We also ensure a high
frequency of entailment pairs containing negation
and of affirmative contradiction pairs. For a refer-
ence, the readers can see an example of generated
entailment and contradiction hypotheses in 4.

4. (PREMISE) En la década de 1980 el soporte
habitual para el software era el cartucho en las
videoconsolas, y el disco magnético o la cinta
de casete en los ordenadores.4

(ENTAILMENT) Es poco probable que en los
1980s las videoconsolas y los ordenadores uti-
lizaran el mismo soporte.5

(CONTRACITION) Aunque el cartucho se
había utilizado en el pasado, en los 80 ya se
consideraba desfasado.6

Sentence “generators” Four graduate students
of linguistics were trained for this task by the au-
thors of the paper. They received detailed instruc-
tions, examples, and a two-hour interactive training
session prior to the start of the corpus creation. The

3For a discussion of the definition of contradiction in the
context of NLI, we refer the reader to Gold et al. (2019).

4EN: “In the 1980s, the usual medium for software was the
cartridge in video consoles, and the magnetic disk or cassette
tape in computers.”

5EN: “It is unlikely that in the 1980s video game consoles
and computers used the same medium.”

6EN: “Although the cartridge had been used in the past, by
the 1980s it was already considered outdated.”

students met with the authors of the paper on a
weekly basis to discuss challenging or interesting
examples. To further increase the diversity of the
corpus, we recruited 24 undergraduate students for
a two-hour hypothesis generation session preceded
by a one-hour interactive training session. All gen-
erators were native speakers of European Spanish.

“Generated” portion of the corpus We dis-
tributed the premises extracted in Section 3.1 be-
tween the four graduate students balancing the num-
ber of entailment and contradiction pairs per topic
and per premise. For any given premise, a single
expert would generate only one of the relations,
never both. Some premises were used more than
once. Our selection strategy aimed to create maxi-
mum diversity in the data and reduce the potential
bias from a relatively small number of data gen-
erators. The four graduate students created 2,284
pairs from the original 471 premises. The 24 under-
graduate students generated further 872 pairs. The
final corpus from the generation strategy contains
3,156 pairs, split equally between entailment and
contradiction. We describe the process of obtaining
“neutral” text pairs in Section 3.5.

3.3 Expert “Rewrite” Strategy

Task formulation The rewrite strategy is based
on the pairs from the generation strategy. We de-
fined the task as follows:

Given an existing premise–hypothesis pair, mod-
ify both the premise and the hypothesis so that:

1. the resulting sentence has a substantial differ-
ence in meaning from original

2. where possible, change the negation status of
a sentence. That is, an affirmative sentence would
become negated, while a negated sentence would
become affirmative

3. where possible, replace some words in the
original sentences with synonyms and/or corefer-
ential entities

We further instructed the “rewriters” not to re-
sort only to simple negation. An example of
the rewrite strategy can be seen in 5. and 6.:
when rewriting the premise, our expert replaced
“descartaba” (EN:“ruled out”) with “aceptaba” (EN:
“accepted”); when rewriting the hypothesis, they
changed “inaceptable” (EN: “unacceptable”) for
“viable” (EN: “feasible”). The resulting adversarial
examples include lexical and morphological nega-
tion and are more complex than the “simple nega-
tion” benchmark of Hossain et al. (2020).
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Figure 1: Pipeline for the annotation corpus creation strategy.

5. (PR) La reina llamó entonces a Colón, dicién-
dole que no descartaba totalmente su plan.7

(HYP) La reina le hizo saber a Colón que su
plan no era del todo inaceptable.8

6. (PR_RW) La reina llamó entonces a Colón, di-
ciéndole que no aceptaba totalmente su plan.9

(HYP_RW) La reina le hizo saber a Colón que
su plan no era del todo viable.10

“Rewritten” portion of the corpus The rewrite
process was carried out by two graduate students
of linguistics. After rewriting both the premise
and the hypothesis, we create three new com-
binations involving an original or rewritten hy-
pothesis. In the provided example, those are the
pairs 5.(Pr)–6.(Hyp_rw), 6.(Pr_rw)–5.(Hyp) and
5.(Hyp)–6.(Hyp_rw).11 Our “rewriters” then anno-
tated the relations between the new pairs (in the
example, the relations are “contradiction”, “neu-
tral”, and “entailment” respectively). As a souorce,
we selected 20 entailment and 20 contradiction per
topic, a total of 240 “generated” pairs. We ensured
equal distribution of the original “generators” and
created 720 new adversarial “rewrite” pairs.

3.4 Crowd “Annotation” Strategy

Task formulation For the crowd annotation strat-
egy we adopted the three-step approach proposed

7EN: The queen then called Columbus, telling him that
she did not fully rule out his plan.

8EN: The queen let Columbus know that his plan was not
entirely unacceptable.

9EN: The queen then called Columbus, telling him that
she did not fully accept his plan.

10EN: The queen let Columbus know that his plan was not
entirely feasible.

11We do not to use 5.(Pr)–6(Pr_rw) due to sentence length.

by Gold et al. (2019). The authors first semi-
automatically generated a large pool of premise-
hypothesis pairs. Then, they applied stratified sub-
sampling. Finally, they recruited crowd workers to
annotate the meaning relations between the texts.
Figure 1 illustrates the annotation strategy. We
choose this approach since it’s compatible with
our generation and rewrite strategies. We were in-
terested in comparing and combining expert- and
crowd-created corpora, which, to the best of our
knowledge has not been done before for NLI.

Creating a sentence pool The first step of the
process was identical to the generation strategy. We
chose 20 of the original premises, five from Picasso,
Columbus, Olympic games, and video games. We
chose premises that contain multiple predicates and
would allow for creativity in generating entailment
and contradiction pairs. In Figure 1, these premises
are called “source sentences”. 12

We recruited 26 undergraduate students of lin-
guistics and provided them with one-hour interac-
tive training for the task of generating entailment
and contradiction pairs. Each student generated
20 entailment and 20 contradiction pairs from the
same 20 “source sentences”. In Figure 1, these hy-
potheses are called “true/false sentences”. 1314 At
this step, the students generated a “sentence pool”
of of 1,040 “true/false sentences”.

Pair generation In the second step we combined
the sentences from the “sentence pool” in pairs
using three different selection strategies. The “true-

12EN: “The PC or personal computer is also a video game
platform, but since its function is not only to play video games,
it is not considered a video game console.”

13EN: (true) “The PC can be used for non-gaming.”
14EN: (false) “The computer only runs video games and is

therefore a game console.”
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true” strategy combines two “true” sentences de-
rived from the same premise. The “false-false”
strategy combines two “false” sentences from the
same premise. The “true-false” strategy combines
one true and one false sentence derived from the
same premise. Unlike Gold et al. (2019), we do
not include a random pairing and do not downsam-
ple “false-false” and “true-false” strategies. We
randomly selected 2,000 of the pairs for annotation,
ensuring equal distribution of strategies.

Pair annotation In the third step, we asked
crowd workers to annotate the textual relation be-
tween pairs. We used the WARP-Text (Kovatchev
et al., 2018b) annotation interface for the annota-
tion. Following Gold et al. (2019), we created two
separate binary annotation tasks - one for entail-
ment and one for contradiction. For entailment, we
included each pair twice, changing the order of P
and H to reflect the directional nature of the rela-
tion. If a sentence was annotated as not-entailment
and not-contradiction, we marked it as “neutral”.

We use three annotators for each example. Fol-
lowing prior work (Marelli et al., 2014; Gold et al.,
2019), we calculated the agreement as the average
% of annotators that voted for the majority label.
We obtained 86.9% agreement for the “entailment”
relation and 85.6% agreement for the “contradic-
tion” relation. We also calculated the Fleiss’ kappa
score, obtaining a “moderate agreement” of 55.15

Our agreement and label distribution of labels are
consistent with the results reported by Gold et al.
(2019) for 10 annotators. Since 56% of the pairs
were labeled “neutral”, we kept all “entailment”
and “contradiction” pairs and randomly downsam-
pled the “neutral” to obtain a balance between the
classes. The annotate portion contains 1,290 pairs.

3.5 Generating Neutral Pairs

Using our generation strategy, we created “entail-
ment” and “contradiction” pairs. Using our rewrite
strategy, we created pairs with all three relations.
However the “neutral” class was underrepresented
compared to the other two. To create a balanced
dataset for training automated systems, we needed
a separate strategy to introduce more pairs with
the “neutral” label. In this subsection, we describe
four different rule-based strategies that we used to
generate “neutral” pairs in an automated manner.

15The lower kappa is likely due to the label imbalance in
the corpus: only about 22% of the pairs contain entailment
and 20% contain contradiction.

Shuffling existing P and H (same topic) We
matched each premise to two random hypotheses,
generated for different premises on the same topic.

Matching existing P with random contexts
(same topic) In Section 3.1, we kept a “context”
paragraph for each premise that we extracted. We
matched each premise to two random “contexts”
on the same topic. We then randomly selected a
sentence from each of those contexts.

Matching existing H with random contexts
(same topic) Similar to the previous strategy, we
randomly matched each hypothesis to a sentence
from a “context” paragraph on the same topic.

Shuffling existing P and H (different topics)
Typically, the premise and the hypothesis have at
least some degree of semantic similarity. We ar-
gue that an automated NLI solution should be able
to label unrelated pairs. We created a small fixed
number of unrelated pairs by matching texts and
hypotheses from different topics.

Validating neutral pairs We selected 240 pairs,
60 from each of the four strategies, to manually val-
idate the quality of the “neutral” pairs. One of our
“sentence generators” performed a two-stage anno-
tation on each pair. At the first stage they annotated

“whether the premise and hypothesis are semanti-
cally releated”. At the second stage they annotated

“whether the meaning relation is neutral, despite a
potential semantic relatedness”. 55% of the “neu-
tral” pairs had some semantic relation (e.g., shared
topic or named entities), and 26% had a strong re-
lation. 237 out of the 240 examples (98.75%) were
annotated as “neutral”. Two pairs were found to be
“entailment” and one - “contradiction”.

The “neutral” portion of the corpus Through
generation and downsampling, we obtain a total of
1,291 “neutral” sentences for INFERES . We use
298 of them to re-balance the rewrite portion of
the corpus and the remaining 1,893 to complete the
generation portion of the corpus.

4 INFERES

We combined the examples from all corpus cre-
ation strategies to create INFERES - a corpus of
NLI for Spanish containing 8,055 text pairs. Table
1 shows the distribution of pairs and labels based
on the creation strategy. Note that for generation
and rewrite strategies, the “neutral” examples were
at least in part generated automatically to ensure
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label balance. For “annotate” the “neutral” pairs
are naturally occurring. More than half of the cor-
pus, 5,029 text pairs, was created using the gen-
erate strategy. This is the core part of the corpus,
in which we have incorporated multiple strategies
for ensuring the quality and the linguistic diversity
of the examples. 1,716 pairs were created using
the rewrite strategy and 1,290 pairs were gener-
ated using the annotate strategy. All six topics are
represented roughly equally. In the generate and
rewrite portions, we aimed to ensure that each orig-
inal premise has the same number of hypotheses,
distributed equally across relations.

Strategy Pairs Ent Cnt Neu
Full 8,055 2,399 2,687 2,969
Generate 5,029* 1,574 1,582 1,893*
Rewrite 1,716* 398 712 606*
Annotate 1,290 427 393 470

Table 1: Distribution of labels INFERES by strategy

We measured the vocabulary size and the lex-
ical overlap between the premise and hypothesis.
The full INFERES has a vocabulary size of 12,877
unique types. On average, 22.6% of the tokens
from the premise also appear in the hypothesis.
33.4% of the tokens from the hypothesis also ap-
pear in the premise. The two numbers differ since
we count the number of non-unique tokens, includ-
ing repetition, and we normalize them using a dif-
ferent denominator (length of premise/hypothesis).
The overlap is comparable with prior work for En-
glish (20% and 38% for MNLI and 18% and 34%
for linguist-in-the-loop NLI).

5 Machine Learning Experiments

To demonstrate the utility of INFERES , we carried
out a set of machine learning experiments. The
design of INFERES allows us to test NLI models
under a variety of conditions: standard train/test
split, hypothesis-only condition, performance on
negation-based adversarial examples, and perfor-
mance by topic in- and out-of-distribution.

Machine learning models We used two trans-
former based models, pretrained for Spanish: the
multilingual version of BERT (Devlin et al., 2019)
and the Spanish version of BERT, BETO (Cañete
et al., 2020). We used the version of the models
available on HuggingFace (Wolf et al., 2020) as of
May 2022 and finetuned them on INFERES . After

experimenting with different hyperparameter set-
tings, we empirically found the best performance
using a PolinomialDecay learning rate scheduler
and training the model for five epochs. We kept the
rest of the hyperparameters at their default values
and used ADAM optimizer16. All reported results
are the average of five different random initializa-
tions.

Condition MB mBERT BETO
Full Dataset 36.8 69.6 72.8
Hyp. Only 36.8 38.8 42.3
Adv. Negation 41.5 52 51.2

Table 2: Performance of multilingual-BERT and Span-
ish BERT (BETO) on INFERES across different con-
ditions. MB: “majority baseline”. ‘Full”: standard
train/test split.“Hyp. Only”: hypothesis-only. “Adv.
Negation”: negation-based adversarial examples.

Full corpus performance In a standard “full cor-
pus” condition, we used 80% of INFERES for train-
ing, 10% for validation, and 10% for testing. We
use the examples generated by all three strategies
for both training and testing. As shown in Table 2,
BETO obtained 72.8% accuracy and outperformed
mBERT (69.6%). While both models reached a
fair performance on the test set, the results were
much lower than the “super-human” performance
that state-of-the-art transformer models obtain on
popular benchmarks for English. For a reference,
the official performance for the Spanish portion
of XNLI is 82% for BETO-cased, and 78.5% for
mBERT17.

Hypothesis-only performance In the
“hypothesis-only” condition, the models do
not have access to the “premise” during training
or testing. NLI explores the meaning relation
between the two texts - the premise and the
hypothesis. If a model is exposed only to one of
the texts, its performance should not exceed that of
a random guess, roughly equal to predicting the
most common class.

Prior work has shown that existing datasets for
English contain a large number of “annotation arti-
facts” and models are able to obtain much higher
performance than chance. Poliak et al. (2018) re-
port 55% accuracy for the “hypothesis-only” condi-

16The code for the experiments and all hyperparame-
ters are available at https://github.com/venelink/
inferes

17See https://github.com/dccuchile/beto
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tion on the MNLI corpus using non-transformer
models, an increase of 20% over the majority
baseline. Parrish et al. (2021) show that their
“linguist-in-the-loop” approach is less biased in
the hypothesis-only condition, but they also re-
port accuracy over 50% on the full dataset using a
ROBERTA transformer.

In the “hypothesis-only” condition on INFERES ,
BETO obtained 42.3%, and mBERT – 38.8%,
which is respectively 5.5% and 2% higher than the
majority baseline. The relatively small improve-
ment over the majority baseline indicates that the
hypothesis-only artifacts in INFERES are substan-
tially fewer than in previous work.

Performance on negation-based adversarial ex-
amples For this experiment, we trained the mod-
els on the generation and annotation portion of the
corpus and evaluated them on rewrite. The setup
is similar to the one from Hossain et al. (2020).
The performance of mBERT and BETO drops sig-
nificantly when facing adversarial examples (See
Table 2). The models obtain 52% and 51.1% ac-
curacy, about 10% higher than the majority base-
line. Hossain et al. (2020) report that on two of the
three datasets they use, BERT performs worse than
the majority baseline. Our experimental setup is
arguably more difficult, since INFERES contains
multiple negation strategies rather than just negat-
ing the main verb. The rewrite portion of the corpus
can provide further insight into the use of negation
in NLI and we hope it would facilitate further re-
search and improvement in the area.

In- and Out-of-distribution generalization by
topic We also carried out a set of experiments to
determine the ability of models to generalize across
the six different topics. We evaluated the models
in two different conditions.

The in-distribution (ID) condition is an extension
of the “full corpus” condition. We split the full cor-
pus containing all six topics in an 80/10/10 ratio.
Then, when evaluating the performance of the mod-
els, we split the test set in six sub-sets, based on
their topic and we measured the model accuracy
on each sub-set. To ensure that the variation of the
model performance is not due to a sampling bias,
we re-trained each model five times, using a differ-
ent 80/10/10 random split each time. In Table 3,
we report the average accuracy across the five dif-
ferent splits. Both models obtained the highest ID
performance on the topics of “Picasso” and “The

Top mBERT BETO
IND OOD ID OOD

All 69.6 72.8
1 73.1±4 67.9±2 78.5±4 73.8±.6
2 68.1±4 69.9±1 74.6±3 72.0±.7
3 70.8±3 70.9±1 74.2±3 73.3±.7
4 71.6±2 68.9±.7 69.4±5 69.7±.7
5 77.1±3 76.1±.5 78.3±4 77.2±.9
6 65.3±4 69.8±.9 68.6±5 69.6±.9

Table 3: In-distribution (ID) and Out-of-distribution
(OOD) performance of mBERT and BETO on different
topics within INFERES . ID: model trained on data cov-
ering all 6 topics. OOD: model trained on 5 topics and
evaluated on the unseen 6th. 1 (Picasso), 2 (Columbus),
3 (Olympics), 4 (Videogames), 5 (EU), 6 (USSR).

European Union” and the lowest ID performance
on “The USSR”.

For the out-of-distribution (OOD) condition, we
designed a transfer learning experiment, in which
we trained mBERT and BETO on five of the topics
and evaluate on the sixth. The results presented
in Table 3 demonstrate that the models are able to
generalize well across the topics, even in a transfer
learning setup. For both models, the OOD perfor-
mance on most topics drops between 1% and 5%
compared to ID. The performance on “Olympics”
for mBERT and on “videogames” for BETO was
almost identical between conditions. For “The
USSR”, both models obtained higher performance
for OOD. We inspected the matter further and no-
ticed that due to the corpus size, the ID random
split is not very stable (the ID test set only contains
between 100 and 120 instances of each topic) and
the average can be affected by outliers. The OOD
results are much more stable due to the test set
having over 1,000 examples per topic. This can
be seen in the difference in standard deviation: be-
tween 2% and 5% for ID, and below 1% for OOD.
Our experiments demonstrate that the models are
able to generalize well even to topics they have
never seen during training, a promising finding for
the overall generalizability of NLI models.

6 Discussion

In Section 3, we formulated three main objectives
behind INFERES . In this section, we want to revisit
those objectives and briefly discuss the importance
of our work for the NLP and NLI communities.

Our first objective was “To create a native NLI
dataset for the Spanish language”. To the best of
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our knowledge, INFERES is the first native NLI
dataset for Spanish which is not adapted or trans-
lated. We described the creation process and vali-
dated that it can be used to train different machine
learning models. We have successfully contributed
a new resource to the Spanish NLP community and
we hope that INFERES can facilitate the further
creation of tools and resources for that language.

Our second objective was “To promote bet-
ter data quality and corpus creation practices.”.
We proposed, implemented, analyzed, and com-
pared several different strategies for creating text
pairs. The resulting dataset proves non-trivial to
state-of-the-art NLP models with an overall accu-
racy in the low 70s. This leaves a lot of room
for improvement and future research. The results
using a “hypothesis-only” baseline indicate that
INFERES contains fewer annotation artifacts than
prior work. At the same time, models trained on the
dataset are able to generalize well across different
topics, even in our “out-of-distribution“ condition.
Overall, we can conclude that INFERES is of high
quality and achieves the objective of promoting
better data by design.

Our third objective was “To facilitate the re-
search on negation and coreference in the context
of NLI.”. Our rewrite strategy was focused on creat-
ing naturally occurring contrastive and adversarial
examples based on negation and coreference. We
followed prior work on evaluating systems’ perfor-
mance and demonstrated that those examples are
non-trivial to solve. However, the two models are
still able to outperform the majority baseline by
over 10%. These findings indicate that the prob-
lem is not unsolvable and the models are learning
something about complex negation from the data.
INFERES can facilitate the resaerch of negation in
Spanish both in the context of NLI and in isolation.
We leave quantifying the importance of coreference
in the rewrite section for future work.

Overall, we have achieved all our objectives: 1)
we created a novel dataset for Spanish; 2) we used
different generation and annotation strategies to
obtain a challenging corpus with fewerr annotation
artifacts; 3) we created a set of high-quality con-
trastive and adversarial examples based on negation
and coreference. We believe that INFERES is an
important contribution to Spanish NLP, and also to
researchers interested in NLI, negation, and coref-
erence. We hope that this dataset can be used to
train and evaluate more accurate automated sys-

tems, but also to better understand the nature of
those linguistic phenomena.

7 Conclusions

We presented INFERES - a new corpus of Natural
Language Inference for Spanish. To the best of our
knowledge, this is the first original Spanish NLI
corpus that is not a translation or an adaptation of
an existing dataset. We explored several different
strategies for corpus creation and put the emphasis
on creating diverse and non-trivial examples, that
are also linguistically interesting. More specifically,
we created contrastive and adversarial examples
involving complex negation and coreference.

We provided two baseline transformer-based sys-
tems finetuned on the dataset. We demonstrated
that INFERES is challenging and contains fewer an-
otation artifacts than prior work. We also evaluated
the performance of automated systems on adver-
sarial examples and the ability of the models to
generalize across topics in- and out-of-distribution.
The results validated the quality and the difficulty
of the corpus. INFERES leaves a room for analysis
and improvement.

Our work opens several directions for future
work: studying and improving the performance of
NLI models for Spanish; expanding the research on
negation in Spanish, and specifically the complex
and lexical negation; evaluating the importance of
coreference in the context of NLI. We believe that
INFERES will be useful both to Spanish researchers
and to the general NLP community.
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Abstract

Paraphrasing, i.e., restating the same meaning
in different ways, is an important data augmen-
tation approach for natural language process-
ing (NLP). Zhang et al. (2019b) propose to
extract sentence-level paraphrases from mul-
tiple Chinese translations of the same source
texts, and construct the PKU Paraphrase Bank
of 0.5M sentence pairs. However, despite being
the largest Chinese parabank to date, the size
of PKU parabank is limited by the availability
of one-to-many sentence translation data, and
cannot well support the training of large Chi-
nese paraphrasers. In this paper, we relieve the
restriction with one-to-many sentence transla-
tion data, and construct ParaZh-22M, a larger
Chinese parabank that is composed of 22M
sentence pairs, based on one-to-one bilingual
sentence translation data and machine trans-
lation (MT). In our data augmentation exper-
iments, we show that paraphrasing based on
ParaZh-22M can bring about consistent and sig-
nificant improvements over several strong base-
lines on a wide range of Chinese NLP tasks, in-
cluding a number of Chinese natural language
understanding benchmarks (CLUE) and low-
resource machine translation. 1

1 Introduction

A paraphrase is a restatement of meaning with dif-
ferent expressions (Bhagat and Hovy, 2013). Para-
phrasing has been proven to be an effective data
augmentation approach for many NLP tasks, rang-
ing from linguistically controlled paraphrase gener-
ation (Iyyer et al., 2018; Chen et al., 2019; Li et al.,
2019; Sun et al., 2021), style transfer (Krishna et al.,
2020), to applications like low-resource machine
translation (Khayrallah et al., 2020) and automatic
MT evaluation (Thompson and Post, 2020; Bawden
et al., 2020).

∗ Corresponding author.
1We opensource our dataset at https://github.

com/haowj9977/parazh-22M.

Zhang et al. (2019b) extract sentence-level para-
phrases from multiple Chinese translations of the
same source texts, and create the largest Chinese
paraphrase bank (PKU Parabank) to date, which
contains 509,832 pairs of paraphrased sentences.
However, the amount of one-to-many sentence
translation data constrains the size of PKU para-
bank, and it cannot meet the requirement to train
large Chinese paraphrasers.

Inspired by Wieting and Gimpel (2018) and Hu
et al. (2019a,b), we propose to relax the restric-
tion that requires one-to-many translation data on
the construction of large-scale Chinese parabanks,
by utilizing bilingual one-to-one translation data
of larger scales and MT, and construct ParaZh-
22M. Specifically, we leverage the huge Chinese-
English machine translation data from WMT 2021
(Akhbardeh et al., 2021) of 30.4M sentence pairs,
apply strict rules to ensure the data quality, and
translate the English side of the parallel corpus to
Chinese with the cutting-edge deep Transformers
and several approaches to ensure the translation
quality. We pick the machine translated Chinese
sentences considering both diversity and semantic
consistency, and pair with the corresponding orig-
inal Chinese references to form paraphrase pairs.
Compared to the PKU parabank, ParaZh-22M is
∼40 times as large, involves a broader range of
paraphrase phenomena and domains, and can sup-
port the training of large Chinese paraphrasers.

Our main contributions are as follows:

• We propose to relieve the need of one-to-many
translation data for the construction of Chi-
nese parabank, and construct a Chinese para-
bank of 22M sentence pairs based on one-to-
one sentence translation data and advanced
MT models, which involves many domains
and is ∼40 times as large as the previous
largest PKU Chinese parabank;

• We test the effects of data augmentation via
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paraphrasing based on our parabank on a
wide range of Chinese NLP tasks, includ-
ing short/long text classification, natural lan-
guage inference, keyword recognition, and
low-resource machine translation, and show
that paraphrasing based on our parabank is
able to achieve consistent and significant im-
provements over several baselines.

2 Construction of ParaZh-22M

Zhang et al. (2019b) extract sentence-level para-
phrases from multiple Chinese translations of the
same source texts. Their approach requires one-
to-many translation data, which is hard to collect.
Instead, we try to relieve this restriction in Chi-
nese parabank construction, and build the parabank
based on one-to-one sentence-level translation data.
Specifically, we translate the translation of Chi-
nese sentences in the parallel data back to Chinese
with the cutting-edge Neural Machine Translation
(NMT) technology, and construct the parabank by
pairing the machine translated Chinese sentences
with the corresponding original Chinese sentences.

We suggest that the semantic consistency and
quality of the parallel bank is ensured by the
cutting-edge NMT algorithm, as the translation
quality of advanced NMT methods is already close
to that of translation agencies in high resource sce-
narios (Akhbardeh et al., 2021).

The construction of ParaZh-22M can be divided
into 4 steps: 1) data collection, 2) data processing
and cleaning, 3) training of NMT models, and 4)
paraphrase generation.

2.1 Data Collection
We leverage bilingual parallel sentence data for
the construction of the Chinese parabank and the
training of NMT models, and monolingual data to
further boost the performance of NMT via back-
translation (Sennrich et al., 2016a). We select sev-
eral datasets from WMT 2021 Chinese-English
news translation task (Akhbardeh et al., 2021), and
statistics are shown in Table 1. Even though the
data is collected for the news translation task in
WMT, they indeed involve many domains, e.g., the
ParaCrawl corpus is the extraction of parallel sen-
tences from the web regardless of their domains.

Bilingual parallel corpus To ensure the quality
of the training NMT models and the parabank, we
manually check the quality of each dataset pro-
vided by WMT 2021 for the Chinese-English news

Dataset Size

bilingual

United Nations Parallel Corpus 15.9M
ParaCrawl 14.2M
News Commentary v16 0.3M
total 30.4M

monolingual News Crawl 10.6M

Table 1: Statistics of the bilingual and monolingual data.
Size: the number of sentence pairs (for bilingual data)
/ sentences (for monolingual data). The monolingual
data contain 10.6M sentences per language.

translation task, and take three datasets into consid-
eration: the United Nations Parallel Corpus v1.0
(Ziemski et al., 2016), News Commentary v16, and
ParaCrawl dataset (Bañón et al., 2020).

The United Nations Parallel Corpus (Ziemski
et al., 2016) contains over 15.9M English-Chinese
sentence pairs, which is composed of official
records and other parliamentary documents of the
United Nations that are in the public domain. The
current version of the corpus contains content that
was produced and manually translated between
1990 and 2014.

The News Commentary dataset is a collection
of news about general politics, economics and sci-
ence. Its English-Chinese section has about 0.3M
sentence pairs.

The ParaCrawl dataset (Bañón et al., 2020) con-
tains about 14.2M English-Chinese parallel sen-
tences, constructed through web crawling software.
Although its quality is slightly worse than the
other two datasets in our manual evaluation, the
ParaCrawl dataset involves many domains and pro-
vides a large number of training samples. In our
experiments on the Zh→En task with base Trans-
formers, using ParaCrawl dataset can bring about
+5.4 and +3.8 BLEU improvements on the new-
stest 2020 and newstest 2021 test sets respectively.

Monolingual corpus Back translation is a sim-
ple and effective approach to improve the perfor-
mance of MT with monolingual data (Sennrich
et al., 2016a; Fadaee and Monz, 2018; Edunov
et al., 2018; Wang et al., 2019b; Dou et al., 2020;
Wei et al., 2020a; Marie et al., 2020). To further
boost the performance of our NMT models (§ 2.3),
and to obtain more accurate probability estimation
in dual scoring (§ 2.4), we collect monolingual data
of both languages, and augment the parallel data
with the back translated monolingual data for the
training of NMT models. Using back-translation
data for NMT models’ training also helps improve
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the translation diversity and alleviate the overfitting
issue on the parallel data. The back translated data
are not used for the construction of the parabank,
to avoid introducing back-translation noise into the
parabank and to ensure the quality of the parabank.

Specially, we extract∼10.6M sentences for both
English and Chinese from the monolingual News
Crawl dataset, which provides article texts from
various online news.

2.2 Data Processing and Cleaning

The quality of the dataset affects the performance
of NMT and decides the quality of the parabank.

As many data are crawled from the web, we first
standardize the texts with the following pipeline:

1. removing sentences with encoding errors;

2. replacing full-width characters with their cor-
responding half-width characters;

3. normalizing punctuation;

4. converting all named and numeric character
HTML references (e.g., &gt;, &#62;, &#x3e)
to their corresponding Unicode characters;

5. converting Traditional Chinese to Simplified
Chinese through OpenCC. 2

For the training of NMT models, we tokenize
and truecase the English part with Moses (Koehn
et al., 2007), and segment Chinese sentences into
words using jieba. 3

To clean the English-Chinese parallel corpus: 1)
we only retain the most frequent instance when
the source sentence has multiple translations in the
data, 2) we remove the training instances where
low frequency tokens take a large part of the sen-
tence pairs, and 3) we remove sentence pairs with
abnormally large source-vs-target length ratios. Af-
ter the data cleaning, around 26.4M sentence pairs
are left for the training of NMT models and the
construction of the parabank.

We perform independent Byte Pair Encoding
(BPE) (Sennrich et al., 2016b) for English and Chi-
nese corpus with 32k merge operations to address
the unknown word issue.

2https://github.com/BYVoid/OpenCC
3https://github.com/fxsjy/jieba

2.3 Training of NMT models

To construct the parabank, we only need to translate
the English sentences into Chinese with NMT, but
we have trained two NMT models for the forward
and reverse translation directions for back trans-
lation (Sennrich et al., 2016a) and dual scoring
(§ 2.4).

We employ the Transformer translation model
(Vaswani et al., 2017) for NMT, as it has achieved
the state-of-the-art performance in MT evaluations
(Akhbardeh et al., 2021). We first use the parallel
data to train 2 NMT models. Then we use greedy
decoding to construct synthetic parallel data by
back-translating the monolingual data (Sennrich
et al., 2016a; Edunov et al., 2018). The back-
translation data is then mixed with the original
parallel data (the monolingual sentences at the tar-
get side and the greedy decoding texts at the source
side). We fine-tune the NMT models trained in the
first step on the mixed data for another 300k steps
for improved performance.

To obtain good translation quality, we adopted
the Transformer Big setting with 1024 and 4096
as the embedding dimension and the number of
hidden units of the feed-forward layer respectively,
together with a 12-layer deep encoder (Bapna et al.,
2018; Wang et al., 2019a; Wu et al., 2019; Wei
et al., 2020b; Zhang et al., 2019a; Xu et al., 2020a;
Li et al., 2020; Huang et al., 2020; Xiong et al.,
2020; Mehta et al., 2021; Li et al., 2021; Xu et al.,
2021b). Parameters were initialized under the Lip-
schitz constraint (Xu et al., 2020a) to ensure the
convergence of deep encoders. Since these NMT
models are used to translate tens of millions of
sentences (monolingual data for back-translation
and the MT training set for the construction of the
parabank), we used a 6-layer decoder instead of
a deeper one to preserve the decoding efficiency
(Kasai et al., 2021; Xu et al., 2021a). The number
of warm-up steps was set to 8k. We used a batch
size of around 25k target tokens achieved by gra-
dient accumulation (Xu et al., 2020b), and trained
the models for 300k steps, which takes about 50
hours to train a model on 4 Nvidia A100 GPUs.
We averaged the last 20 checkpoints saved with an
interval of 1, 500 training steps.

The newstest 2019 was used as the development
set, and newstest 2020 and newstest 2021 as the test
set. The beam size of the decoder was set to 4, and
translation quality was evaluated by case-sensitive
BLEU (Papineni et al., 2002) with the SacreBLEU
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Model
Zh→En En→Zh

newstest20 newstest21 newstest20 newstest21

NMT 30.53 24.74 42.38 32.85
BT-NMT 30.97 25.18 52.42 42.99

Table 2: BLEU scores of our NMT models on the WMT 20 and WMT 21 news translation test sets.

toolkit (Post, 2018; Bawden et al., 2020). Results
are shown in Table 2.

Table 2 shows that our BT-NMT models can
obtain comparably strong translation performance.

2.4 Paraphrase Generation

Language filtering We find that there are some
English words in the Chinese part of the paral-
lel data, which may affect the quality of the con-
structed parabank. To address this issue, we remove
sentence pairs where a large percentage of English
words appear in its Chinese sentence. Specifi-
cally, we check the percentage of English char-
acters in Chinese sentences, and sentence pairs will
be dropped if the proportion is larger than 60%.

Generating paraphrase candidates The En-
glish sentences are semantically consistent with
the corresponding Chinese sentences in the parallel
data. So we can obtain paraphrases of the origi-
nal Chinese sentences by translating the English
sentences into Chinese with MT.

We use the En→Zh BT-NMT model for the trans-
lation. For each English sentence, we use a beam
size of 15 and collect all Chinese beam search can-
didates. Then, we pair each MT candidate with the
corresponding original Chinese sentence to get a
candidate Chinese paraphrase pair.

We find that En→Zh translation is more chal-
lenging than that for the construction of English
parabanks although the NMT model obtains a
high BLEU score for character-level evaluation
(used for Chinese translations), and approaches
like sampling/constrained-decoding (Post and Vi-
lar, 2018) further drop the performance (by ∼5
BLEU), causing semantic changes. Hence, we put
a higher priority on translation quality to ensure
the semantic consistency without using diversity-
oriented approaches, such as sampling and con-
strained decoding. We suggest that our work pro-
vides a valuable reference for the construction of
many other languages’ parabanks with MT when
ensuring MT quality is a problem.

Edit-distance ratio filtering To effectively en-
sure the diversity of the parabank, we compute the
edit-distance ratio (the edit distance divided by the
length) between the beam search candidate and the
corresponding original Chinese sentence, and use
a minimum edit-distance ratio of 12% to filter the
paraphrase pairs. We note that, as the parallel data
are large, it is easy to further filter out a large subset
with an edit-distance threshold larger than ours.

Dual scoring filtering The En→Zh model may
leave some source tokens untranslated, leading to
the under-translation issue (Tu et al., 2016). Mea-
suring the round-trip translation consistency has
been proven to be an effective way to address this
and to improve the translation quality (Goto and
Tanaka, 2017). Instead of selecting the beam search
candidate with the highest decoding probability
(pforward), we also take the force decoding proba-
bility of the reverse model (Zh→En) preverse into
consideration. We re-rank the beam search candi-
dates by summing the forward and reverse proba-
bilities.

pdual = pforward + preverse (1)

During filtering, we first select the candidate
with the highest pdual from beam search results
for each remaining Chinese sentence. Then we
derive the per-token probability of all instances of
the dataset based on pdual, and only retain ∼22M
sentence pairs with the highest per-token probabil-
ity to further ensure the quality, obtaining the final
Chinese parabank, ParaZh-22M.

3 Evaluation of ParaZh-22M

We compare the constructed ParaZh-22M with two
existing Chinese paraphrase datasets: PKU Para-
phrase Bank (Zhang et al., 2019b) and Chinese
Paraphrase from Quora (Wang et al., 2021).

PKU Paraphrase Bank Zhang et al. (2019b)
construct the PKU parabank by extracting multiple
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Corpus Source materials Size (pairs) Length (words) Domain

PKU Paraphrase Bank One-to-many translation 509K 23.05 Literature
Chinese Paraphrase from Quora English Quora 263K 9.80 Question

ParaZh-22M (ours) One-to-one translation 22M 22.16 General

Table 3: Information and statistics of Chinese parabanks.

Chinese translations of the same source texts (writ-
ten in English as well as other European languages).
The sentence pairs are from literary work.

Chinese Paraphrase from Quora Wang et al.
(2021) transfer English retelling corpus, Quora, to
Chinese with machine translation engines.

3.1 Statistics

We provide the basic information of Chinese para-
banks on source materials, domain, size (the num-
ber of sentence pairs), and the average sentence
length (the number of Chinese words segmented
by jieba) in Table 3.

Table 3 shows that: 1) ParaZh-22M is two orders
of magnitude larger than the others, in terms of the
number of paraphrases, it is 84 times as large as the
Chinese Paraphrase from Quora (Wang et al., 2021)
and 43 times as large as PKU Paraphrase Bank
(Zhang et al., 2019b). 2) the average number of
words of ParaZh-22M is similar to that of the PKU
Paraphrase Bank, and ParaZh-22M has more words
than the Chinese Paraphrase from Quora on aver-
age. And 3) as ParaZh-22M is constructed upon
bilingual data which involve many domains and
rich styles (for the use of 14.2M ParaCrawl data), it
is more general than the other two paraphrase cor-
pora (PKU Paraphrase Bank is constructed based
on literature work while Chinese Paraphrase from
Quora are translations of English Quora), and can
be easily adapted to different domains.

We suggest that: 1) the large size of ParaZh-22M
is crucial to support the training of large neural
paraphraser models, 2) it is easy to filter out a large
subset for the use of a special task given an edit-
distance threshold, and 3) covering a wide range
of domains makes the application of ParaZh-22M
domain-agnostic, leading to robust performance.

3.2 Manual Evaluation

There lacks an ideal evaluation metric that takes
both semantic consistency and diversity into ac-
count for paraphrasing. Semantic consistency, flu-
ency and diversity are all important, while the diver-
sity evaluation is normally against the consistency

evaluation, e.g., a lower BLEU indicating higher
diversity but lower semantic consistency (in MT).
So we manually evaluate ParaZh-22M and PKU
Paraphrase Bank (Zhang et al., 2019b) in terms of
semantic consistency, literal fluency, and sentential
diversity to measure their quality. We design our
evaluation criteria following Wieting and Gimpel
(2018); Wang et al. (2021), and specifics are shown
in Table 4. For each evaluation criterion, we design
5 levels to distinguish the quality of sentence pairs.

We randomly sampled 800 sentence pairs from
each dataset, and employed 8 native Chinese lin-
guistic experts to rate them. Each sample is rated
by 2 experts, and the final score is the average of
their ratings. Results are shown in Table 5.

For the evaluation of ParaZh-22M, Table 5
shows that: 1) 93.9% of ParaZh-22M samples are
strongly semantically consistent (with a score no
less than 4, indicating that the semantic meaning of
the sentence pair is nearly equivalent, or only may
differ in some unimportant details). 2) 97.9% of
ParaZh-22M samples are fluent (with at most one
grammatical error), and 3) 97.9% of ParaZh-22M
samples have at least one lexical variation.

Compared to the PKU Paraphrase Bank, ParaZh-
22M achieves much higher scores in semantic con-
sistency and literal fluency evaluation, while ob-
taining a slightly lower score in sentential diversity.
We conjecture this might be because: 1) we pay
more attention to optimizing the translation quality
when constructing the parabank (§ 2), which gives
the correctness (semantic consistency and fluency)
a higher priority than the diversity, and 2) Zhang
et al. (2019b) use one-to-many parallel data for the
construction of the parabank, while we only use
one-to-one translation data.

We evaluated the inter-annotator agreement with
kappa (Artstein and Poesio, 2008), and obtained a
kappa value of 0.87, suggesting that a high agree-
ment is achieved with our evaluation criteria and
our evaluation is reliable.
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Score Semantic Consistency Literal Fluency Sentential Diversity

5 Sentences have exactly the
same meaning with all the
same details.

The sentence pair has no
grammatical error.

The sentences have more
than one grammatical varia-
tion or more than two lexi-
cal variations.

4 Sentences are mostly equiv-
alent, but some unimportant
details can differ.

The sentence pair has one
grammatical error.

The sentences have gram-
matical variation slightly.

3 Sentences are roughly
equivalent, with some im-
portant information missing
or that differs slightly.

The sentence pair has two
grammatical errors.

The sentences have un-
changed grammatical struc-
ture but two lexical varia-
tions.

2 Sentences are not equiv-
alent, even if they share
slight details.

The sentence pair has three
grammatical errors.

The sentences have un-
changed grammatical struc-
ture but one lexical varia-
tion.

1 The sentences are totally dif-
ferent.

The sentence pair has more
than three grammatical er-
rors.

The sentence pair has basi-
cally unchanged grammat-
ical structure and lexical
variation.

Table 4: Manual evaluation criteria of semantic consistency, literal fluency, and sentential diversity.

Score Semantic Consistency Literal Fluency Sentential Diversity
Ours PKU Ours PKU Ours PKU

= 5.0 69.1 34.3 82.4 72.0 56.9 65.3
≥ 4.0 93.9 66.5 97.9 97.3 70.8 74.9
≥ 3.0 98.4 87.8 99.9 99.5 84.0 87.3
≥ 2.0 99.6 94.8 100.0 100.0 97.9 98.5

AVG score 4.64±0.64 3.89±1.11 4.82±0.41 4.72±0.50 4.11±1.19 4.28±1.10

Table 5: Manual evaluation results of our corpus and PKU Paraphrase Bank on semantic consistency, literal fluency,
and sentential diversity. Medium: the cumulative percentages of samples with the scores. Bottom: the average
score and the standard deviation of each criterion.

4 Using ParaZh-22M in Chinese NLP

We examine the effectiveness of data augmenta-
tion based on ParaZh-22M on a number of Chinese
NLP tasks, including long/short text classification,
natural language inference, keyword recognition
from CLUE (a Chinese Language Understanding
Evaluation benchmark) (Xu et al., 2020c) and the
CCMT 2022 low-resource Chinese→Thai machine
translation task, by paraphrasing the original train-
ing set.

4.1 Chinese Paraphraser

ParaZh-22M contains a large number of Chinese
paraphrase examples, but cannot be directly used
to augment the training sets of NLP tasks. To para-
phrase arbitrary Chinese sentences, we train a Chi-

nese paraphrase model, i.e., a Chinese paraphraser,
on ParaZh-22M.

Like back translation, we use the machine trans-
lated Chinese sentences as the source input of the
model, and the original Chinese sentences from
the parallel data as the target when training the
paraphraser on ParaZh-22M.

We used the same vocabulary and BPE as the
Chinese part of NMT data (§ 2.2). We employed a
base Transformer as the paraphraser. Specifically,
we used 6 encoder and decoder layers, an embed-
ding size of 512, 8 attention heads, a feed-forward
layer of 2048 hidden units, and shared the encoder-
decoder embeddings. The model was trained for
100k steps. The average of the last 5 checkpoints
saved with an interval of 1, 500 training steps is
served as the paraphraser.
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TNEWS IFLYTEK

Model Baseline PKU ∆ Ours ∆ Baseline PKU ∆ Ours ∆
ALBERT-tiny 53.55 53.52 -0.03 53.74 +0.19 48.76 52.59 +3.83 54.52 +5.76
BERT-base 56.09 57.11 +1.02 57.19 +1.10 60.37 60.52 +0.15 61.52 +1.15
BERT-wwm-ext-base 56.77 57.55 +0.78 57.69 +0.92 59.88 59.75 -0.13 61.79 +1.91

avg / / +0.59 / +0.74 / / +1.28 / +2.94

Table 6: Results (accuracy) on the validation sets of TNEWS and IFLYTEK tasks. "∆" indicates the improvements
over the baseline. "avg" is the average improvement of data augmentation over three baselines.

For fair comparison, we also trained a para-
phraser under the same setting on the PKU para-
bank.

4.2 Text Classification

We conducted experiments on two text classifi-
cation tasks of the CLUE benchmark (Xu et al.,
2020c): TNEWS for short texts, and IFLYTEK for
long texts.

The TNEWS task has 15 categories (finance,
technology, sports, etc.), including 53.3k training
instances and 10k validation data. The IFLYTEK
task has 119 classes (food, car rental, education,
etc.), with 12.1k training samples and 2.6k valida-
tion data.

We augmented the training data of these 2 tasks
by paraphrasing the input sentences with our para-
phraser, and constructed the synthetic data Dp by
pairing paraphrases with the tag of the correspond-
ing original sentence. We concatenated Dp with
the original training set Do as the augmented train-
ing set Daug, and trained the same baseline model
on the augmented training set.

We used ALBERT-tiny, BERT-base, BERT-
wwm-ext-base as our baselines. ALBERT-tiny is a
tiny version of ALBERT with only 4 layers and a
hidden size of 312. BERT-base has 12 layers and
uses a hidden size of 768. BERT-wwm-ext-base
has the same configuration as BERT-base, but is
pre-trained with whole word masking. We evalu-
ated these models on the validation sets (as the test
sets are not publicly available). Results are shown
in Table 6.

Table 6 shows that: 1) paraphrasing based on
both the PKU parabank and ParaZh-22M can lead
to improvements on average, and 2) data augmenta-
tion based on ParaZh-22M leads to consistent and
significant improvements over all baselines on both
datasets, and brings about more accuracy improve-
ments than based on the PKU parabank, showing
the advantages of ParaZh-22M for both short and
long text classification.

4.3 Natural Language Inference

We also examined the effects of paraphrasing based
on ParaZh-22M on the natural language inference
(NLI) task, and conducted experiments on CMNLI
dataset. NLI aims to predict the relation (neutral,
entailment, and contradiction) between sentence
pairs. The CMNLI contains 391k training samples,
and 12k validation instances.

We used the same baseline models described in
§ 4.2. For data augmentation, as each CMNLI train-
ing instance has a sentence pair, we investigate 4
cases: 1) augmentation by paraphrasing the first
sentence (S1), 2) augmentation by paraphrasing
the second sentence (S2), 3) augmentation by para-
phrasing both sentences (S12), and 4) the combi-
nation of case 1 and case 2 (S1+S2). We concate-
nated the paraphrased training set with the original
training set. Results are shown in Table 7.

Table 7 shows that: even though paraphrasing
based on the PKU parabank brings about more
improvements in the S1+S2 and S2 settings with
the ALBERT-tiny model than based on ParaZh-
22M, data augmentation with ParaZh-22M leads
to consistent and significant improvements over all
baselines, and works better with larger models and
stronger baselines (BERT-base and BERT-wwm-
ext-base) than with the PKU parabank.

4.4 Keyword Recognition

The keyword recognition task requires the model to
distinguish real keywords of paper abstracts from
fake keywords. Chinese Scientific Literature (CSL)
dataset (Xu et al., 2020c) contains Chinese paper
abstracts and their real keywords from core jour-
nals of China, covering multiple fields of natural
sciences and social sciences, with fake keywords
generated through TF-IDF. CSL datasets provide
20k samples for training and 3k samples for valida-
tion.

We used the same baselines as in § 4.2. When
paraphrasing the abstract, we performed beam de-
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Model Baseline Daug S1+S2 ∆ S12 ∆ S1/S2 ∆

ALBERT-tiny 70.26 PKU 73.67 +3.41 72.01 +1.75 71.88/73.27 +1.62/+3.01
Ours 73.07 +2.81 72.88 +2.62 72.56/72.45 +2.30/+2.19

BERT-base 79.47 PKU 79.55 +0.08 79.95 +0.48 79.90/79.81 +0.43/+0.34
Ours 80.27 +0.80 80.80 +1.33 80.57/80.30 +1.10/+0.83

BERT-wwm-ext-base 80.92 PKU 79.98 -0.94 80.50 -0.42 80.04/80.08 -0.88/-0.84
Ours 81.23 +0.31 81.21 +0.29 81.28/81.16 +0.36/+0.24

Table 7: Results (accuracy) on the validation set of CMNLI task.

Model Baseline PKU ∆ Ours ∆

ALBERT-tiny 74.34 76.66 +2.32 77.20 +2.86
BERT-base 79.63 79.03 -0.60 80.90 +1.27
BERT-wwm-ext-base 80.60 79.30 -1.30 81.00 +0.40

avg / / +0.14 / +1.51

Table 8: Results (accuracy) on the validation set of CSL task.

coding with a beam size of 15 with the paraphraser,
and selected the beam search candidate that con-
tains all corresponding keywords and has the high-
est decoding probability. We did not augment train-
ing instances when no beam search candidate con-
tains the keywords. The synthetic training set Dp

was then combined with the original training set
Do. Results are shown in Table 8.

Table 8 shows that: 1) data augmentation based
on both the PKU parabank and ParaZh-22M can
bring about improvements on average, 2) the ac-
curacy improvements with ParaZh-22M are con-
sistent and significant with all baselines, includ-
ing in challenging cases (with BERT-base and
BERT-wwm-ext-base), and are larger than with
the PKU parabank, demonstrating the effectiveness
of ParaZh-22M in challenging settings.

4.5 Low-Resource Machine Translation

We conducted experiments on the CCMT 2022
Chinese→Thai low-resource translation task. Its
training set has 200k sentence pairs. As the evalua-
tion does not release both the development set and
the test set, we held out the last 2000 sentence pairs
of the training set, and equally divided them into 2
parts for validation and test respectively. We para-
phrased the Chinese sentences of the training data
and paired with the corresponding Thai sentences.

We employed a 6-layer and a 12-layer Trans-
former as our baselines. Following Sennrich and
Zhang (2019), we used an embedding dimension of
256, 4 attention heads, 1024 as the hidden dimen-
sion of the feed-forward layer, a dropout probabil-
ity of 0.1, and applied 16k BPE operations enforced

Model Baseline PKU ∆ Ours ∆

6-layer 7.15 6.35 -0.80 7.75 +0.60
12-layer 10.65 7.31 -3.34 14.74 +4.09

Table 9: Results (BLEU) on CCMT 2022 Zh→Th trans-
lation task.

by sentence piece (Kudo and Richardson, 2018).
We set the a beam size to 4, and evaluated trans-

lation quality via BLEU with the average of the last
5 checkpoints saved in an interval of 1,500 training
steps. Results are shown in Table 9.

Table 9 shows that: 1) paraphrasing based on
ParaZh-22M can lead to consistent and significant
improvements in the low-resource translation task
with both settings, and 2) the improvements with
the 12-layer model (+4.09 BLEU) in the MT task
without using pre-trained models are much larger
than in CLUE tasks with pre-trained models and
than with the 6-layer model with fewer parameters.

5 Related Work

Data augmentation via paraphrasing is beneficial
for many NLP tasks, such as question answering
(Dong et al., 2017), semantic parsing (Berant and
Liang, 2014; Su and Yan, 2017) and machine trans-
lation (Cho et al., 2014; Khayrallah et al., 2020),
especially in low-resource scenarios. Paraphrasing
relies heavily on large scale paraphrase datasets.

Construction of English paraphrase data Most
paraphrase corpus construction studies are for En-
glish (Suzuki et al., 2017; Mallinson et al., 2017).
Given the development of NMT, Wieting and Gim-
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pel (2018) leverage large amounts of bilingual par-
allel data to generate paraphrases via MT. Hu et al.
(2019a) add lexical constraints during NMT decod-
ing to enrich the diversity. Hu et al. (2019b) cluster
over constrained sampling decoding candidates to
generate diverse paraphrases. Compared to Wiet-
ing and Gimpel (2018) and Hu et al. (2019a,b), we
assign a higher priority to the quality of machine
translation than the diversity to ensure the trans-
lation correctness and the semantic consistency,
without using constrained decoding or sampling
that hampers the translation quality.

Chinese paraphrase corpus To our knowledge,
existing Chinese parabanks are much smaller than
large scale English parabanks. Zhang et al. (2019b)
extract sentence-level paraphrases from multiple
Chinese translations of the same source text, ob-
taining the PKU Paraphrase Bank of 509,832 para-
phrase pairs. Wang et al. (2021) translate the ques-
tion retelling Quora corpus into Chinese with multi-
ple MT engines, and construct a Chinese parabank
of 263,729 sentence pairs. Compared to their work,
ParaZh-22M is much larger and involves many do-
mains.

6 Conclusion

In this paper, we relieve the requirement of one-to-
many translation data for the construction of Chi-
nese parabank, and construct a Chinese parabank of
22M sentence pairs, ParaZh-22M, utilizing one-to-
one sentence-level parallel data and MT technology.
ParaZh-22M involves many domains and is over 40
times as large as the previous largest PKU Chinese
Paraphrase Bank. Human evaluation on semantic
consistency, fluency and sentential diversity shows
the good quality of ParaZh-22M.

We test the effects of data augmentation via para-
phrasing based on ParaZh-22M on a wide range
of Chinese NLP tasks, including short/long text
classification, natural language inference, keyword
recognition, and low-resource machine translation.
Our experiment results show that paraphrasing
based on ParaZh-22M is able to achieve consistent
and significant improvements over several base-
lines in all evaluations, demonstrating the contribu-
tion of ParaZh-22M to Chinese NLP tasks.
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Abstract

SimCSE 1 adopts dropout as data augmentation
and encodes an input sentence twice into two
corresponding embeddings to build a positive
pair. Since SimCSE is a Transformer-based
encoder that directly encodes the length infor-
mation of sentences through positional embed-
dings, the two embeddings in a positive pair
contain the same length information. Thus, a
model trained with these positive pairs is bi-
ased, tending to consider that sentences of the
same or similar length are more similar in se-
mantics. To alleviate it, we apply a simple
but effective repetition operation to modify the
input sentence. Then we pass the input sen-
tence and its modified counterpart to the pre-
trained Transformer encoder, respectively, to
get the positive pair. Additionally, we draw
inspiration from the computer vision commu-
nity and introduce momentum contrast to en-
large the number of negative pairs without ad-
ditional calculations. The proposed modifica-
tions are applied to positive and negative pairs
separately, and build a new sentence embed-
ding method, termed Enhanced SimCSE (ES-
imCSE). We evaluate the proposed ESimCSE
on several benchmark datasets w.r.t the seman-
tic text similarity (STS) task. Experimental
results show that ESimCSE outperforms Sim-
CSE by an average Spearman correlation of
2.02% on BERT-base. Our code are available
at https://github.com/caskcsg/ESimCSE.

1 Introduction

Recently, researchers have proposed using con-
trastive learning to learn better unsupervised sen-
tence embeddings (Wu et al.; Zhang et al., b; Liu
et al., 2021; Gao et al., 2021; Yan et al., 2021).
Contrastive learning aims to learn effective sen-
tence embeddings based on the assumption that

∗The first two authors contribute equally.
†Corresponding author.

1We focus on unsupervised sentence embedding, so Sim-
CSE in this article refers to unsupervised SimCSE.

Length Diff Avg. Similarity Diff

> 3 16.34
≤ 3 18.18 (+1.84)

Table 1: The average similarity difference between the
model (SimCSE-BERT) predictions and the normalized
ground truths.

effective sentence embeddings should bring simi-
lar sentences closer while pushing away dissimilar
ones. It generally uses various data augmentation
methods (Shleifer, 2019; Wei and Zou, 2019; Wu
et al., 2019) to generate different views for each sen-
tence randomly, and assumes a sentence is seman-
tically more similar to its augmented counterpart
than any other sentence. Among these methods,
the most representative one is SimCSE (Gao et al.,
2021), which performs on par with previously su-
pervised counterparts. SimCSE implicitly hypothe-
sizes dropout acts as a minimal data augmentation
method. Specifically, SimCSE composes N sen-
tences in a batch and feeds each sentence to the
pre-trained BERT twice with two independently
sampled dropout masks. Then the embeddings de-
rived from the same sentence constitute a “positive
pair”, while those derived from two different sen-
tences constitute a “negative pair”.

Using dropout as a minimal data augmentation
method is simple and effective, but there is a weak
point. SimCSE models are built on Transformer
blocks, which will encode a sentence’s length in-
formation through positional embeddings. In a
positive pair, two embeddings are derived from the
same sentence to contain the same length informa-
tion. In contrast, in a negative pair, two embeddings
in a negative pair are derived from two different
sentences and generally contain different length
information. Therefore, positive and negative pairs
are different in their length information, acting as
a feature to distinguish them. The semantic simi-
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Method Text Similarity
original sentence I like this apple because it looks so fresh and it should be delicious. 1.0
random insertion I don’t like this apple because but it looks so not fresh and it

should be dog delicious.
0.69

random deletion I like this apple because it looks so fresh and it should be delicious. 0.32
word repetition I like like this apple because it looks so so fresh and and it should

be delicious.
0.99

word repetition I I like this apple apple because it looks looks so fresh fresh and
it should be delicious delicious.

0.98

Table 2: An example of semantic similarity after different methods change a sentence’s length.

larity model trained with these pairs can be biased,
which probably considers that two sentences of
the same or similar lengths are more similar in
semantics. To confirm it, we evaluate on seven
standard semantic textual similarity datasets with
the SimCSE-BERTbase model published by (Gao
et al., 2021). We partition each STS test set into
two groups based on whether the sentence pairs’
length difference is ≤ 3. We calculate the simi-
larity differences between the model predictions
and the normalized ground truths for each group.
As shown in Table 1, the average similarity differ-
ence of seven datasets is higher when the length
difference is ≤ 3, which verifies our assumption.
Comparison details on each dataset can refer to
Table 7.

To alleviate this problem, we propose a simple
but effective enhancement method to SimCSE. For
each positive pair, we expect to change the length of
a sentence without changing its semantic meaning.
Existing methods to change the length of a sen-
tence generally use random insertion and random
deletion. However, inserting randomly selected
words into a sentence may introduce extra noise,
which will probably distort the meaning of the sen-
tence; deleting keywords from a sentence will also
change its semantics substantially. Such opera-
tions are detrimental to SimCSE learning, which is
also discussed in a contemporaneous work (Chuang
et al., 2022). Therefore, we propose a safer method,
termed “word repetition”, which randomly dupli-
cates some words in a sentence. For example, as
shown in Table 2, either random insertion or ran-
dom deletion may generate a sentence that deviates
far from the meaning of the original sentence. On
the contrary, the method of “word repetition” main-
tains the meaning of the original sentence quite
well.

Apart from the optimization above for positive

pairs construction, we further explore how to op-
timize the construction of negative pairs. Since
contrastive learning is carried out between positive
pairs and negative pairs, theoretically, more nega-
tive pairs can lead to a better comparison between
the pairs (Chen et al.). And thus, a potential op-
timization direction is to leverage more negative
pairs, encouraging the model towards more refined
learning. However, according to (Gao et al., 2021),
larger batch size is not always a better choice. For
example, for the SimCSE-BERTbase model, the
optimal batch size is 64, and other settings of the
batch size will lower the performance. Therefore,
we tend to figure out how to expand the negative
pairs more effectively. In the community of com-
puter vision, to alleviate the GPU memory limi-
tation when expanding the batch size, a feasible
way is to introduce the momentum contrast (He
et al.), which is also applied to natural language
understanding (Fang et al.). Momentum contrast
allows us to reuse the encoded embeddings from
the immediate preceding mini-batches to expand
the negative pairs by maintaining a queue. It al-
ways enqueues the sentence embeddings of the
current mini-batches and meanwhile dequeues the
“oldest” ones. As the enqueued sentence embed-
dings come from the preceding mini-batches, we
keep a momentum updated encoder by taking the
moving average of its parameters and use the mo-
mentum encoder to generate enqueued sentence
embeddings. Note that, we turn off dropout when
using the momentum encoder, which can narrow
the gap between training and prediction.

The above two optimizations are proposed sep-
arately for building positive and negative pairs.
We finally combine both with SimCSE, termed
Enhanced SimCSE (ESimCSE). We illustrate the
schematic diagram of ESimCSE in Figure 1. The
proposed ESimCSE is evaluated on the semantic
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Figure 1: The schematic diagram of the ESimCSE method.

text similarity (STS) task with 7 STS-B test sets.
Experimental results show that ESimCSE can im-
prove the similarity measuring performance in dif-
ferent model settings over the previous state-of-
the-art SimCSE. Specifically, ESimCSE gains an
average increase of Spearman’s correlation over
SimCSE by +2.02% on BERTbase.

Our contributions can be summarized as follows:

• We observe that SimCSE constructs each pos-
itive pair with two sentences of the same
length, which can bias the learning process.
We propose a simple but effective “word repe-
tition” method to alleviate the problem.

• We propose to use the momentum contrast
method to increase the number of negative
pairs involved in the loss calculation, which
encourages the model towards more refined
learning.

• We conduct extensive experiments on several
benchmark datasets w.r.t semantic text sim-
ilarity task. The experimental results well
demonstrate that both proposed optimizations
bring improvements to SimCSE.

2 Background: SimCSE

Given a set of paired sentences
{
xi, x

+
i

}m
i=1

, where

xi and x+i are semantically related and will be re-
ferred to positive pairs. The core idea of SimCSE is
to use identical sentences to build the positive pairs,
i.e., x+i = xi. Note that in Transformer, there is

a dropout mask placed on fully-connected layers
and attention probabilities. And thus, the key in-
gredient is to feed the same input xi to the encoder
twice by applying different dropout masks zi and
z+i and output two separate sentence embeddings
to build a positive pair as follows:

hi = fθ (xi, zi) ,h
+
i = fθ

(
xi, z

+
i

)
(1)

With hi and h+i for each sentence in a mini-batch
with batch size N , the contrastive learning objec-
tive w.r.t xi is formulated as follows,

ℓi = − log
esim(hi,h

+
i )/τ

∑N
j=1 e

sim(hi,h+
j )/τ

(2)

where τ is a temperature hyperparameter and
sim (hi,h

′
i) is the similarity metric, which is typi-

cally the cosine similarity function.

3 Proposed Enhanced SimCSE

In this section, we first introduce the word repeti-
tion method to construct better positive pairs. Then
we introduce the momentum contrast method to
expand negative pairs.

3.1 Word Repetition

The word repetition mechanism randomly dupli-
cates some words/sub-words in a sentence. Here
we take sub-word repetition as an example. Given
a sentence s, after processing by a sub-word
tokenizer, we get a sub-word sequence x =
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{x1, x2, ..., xN}, N being the length of sequence.
We define the number of repeated tokens as

dup_len ∈ [0,max(2, int(dup_rate ∗N))] (3)

where dup_rate is the maximal repetition rate,
which is a hyperparameter. Then dup_len is a
randomly sampled number in the set defined above,
which will introduce more diversity when extend-
ing the sequence length. After dup_len is deter-
mined, we use uniform distribution to randomly
select dup_len sub-words that need to be repeated
from the sequence, which composes the dup_set
as follows,

dup_set = uniform([1, N ], num = dup_len)
(4)

For example, if the 1st sub-word is
in dup_set, then sequence x becomes
x+ = {x1, x1, x2, ..., xN}. And different
from SimCSE which passes x to the pre-trained
BERT twice, E-SimCSE passes x and x+

independently.

3.2 Momentum Contrast

The momentum contrast allows us to reuse the en-
coded sentence embeddings from the immediate
preceding mini-batches by maintaining a queue of
a fixed size. Specifically, the embeddings in the
queue are progressively replaced. When the out-
put sentence embeddings of the current mini-batch
is enqueued, the “oldest” ones in the queue are
removed if the queue is full. Note that we use
a momentum-updated encoder to encode the en-
queued sentence embeddings. Formally, denoting
the parameters of the encoder as θe and those of
the momentum-updated encoder as θm, we update
θm in the following way,

θm ← λθm + (1− λ)θe (5)

where λ ∈ [0, 1) is a momentum coefficient param-
eter. Note that only the parameters θe are updated
by back-propagation. And here we introduce θm
to generate sentence embeddings for the queue, be-
cause the momentum update can make θm evolve
more smoothly than θe. As a result, though the
embeddings in the queue are encoded by differ-
ent encoders (in different “steps” during training),
the difference among these encoders can be made
small.

With sentence embeddings in the queue, the loss
function of ESimCSE is further modifed as follows,

ℓi = − log
esim(hi,h

+
i )/τ

∑N
j=1 e

sim(hi,h+
j )/τ +

∑M
m=1 e

sim(hi,h+
m)/τ

(6)
where h+m is denotes a sentence embedding in the
momentum-updated queue, and M is the size of
the queue.

4 Experiment

4.1 Experiment Setup

Our experimental language is English. For a fair
comparison, our experimental setup mainly follows
SimCSE. We use 1-million sentences randomly
drawn from English Wikipedia for training2. The
semantic textual similarity task measures the ca-
pability of sentence embeddings, and we conduct
our experiments on seven standard semantic textual
similarity (STS) datasets. STS12-STS16 datasets
(Agirre et al., d,e,b,a,c) do not have train or de-
velopment sets, and thus we evaluate the models
on the development set of STS-B (Cer et al.) to
search for better settings of the hyper-parameters.
The SentEval toolkit3 is used for evaluation, and
Spearman correlation coefficient 4 is used to report
the model performance. All the experiments are
conducted on Nvidia 3090 GPUs.

4.2 Training Details

We start from pre-trained checkpoints of
BERT(uncased) or RoBERTa(cased) using both
the base and the large versions, and we add an
MLP layer on top of the [CLS] representation
to get the sentence embedding. We implement
ESimCSE based on Huggingface’s transformers
package5. We train our models for one epoch
using the Adam optimizer with the batch size = 64
and the temperature τ = 0.05 in Eq. (3). The
learning rate is set as 3e-5 for ESimCSE-BERTbase
model and 1e-5 for other models. The dropout
rate is p = 0.1 for base models, p = 0.15 for
large models. For the momentum contrast, we
empirically choose a relatively large momentum λ

2https://huggingface.co/datasets/princeton-nlp/datasets-
for-simcse/resolve/main/wiki1m_for_simcse.txt

3https://github.com/facebookresearch/SentEval
4https://en.wikipedia.org/wiki/

Spearman%27s_rank_correlation_
coefficient

5https://github.com/huggingface/transformers,version
4.2.1.
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Model STS12 STS13 STS14 SICK15 STS16 STS-B SICK-R Avg.

IS-BERTbase △ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERTbase △ 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
ConSERTbase ♡ 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
BERTbase-flow♢ 63.48 72.14 68.42 73.77 75.37 70.72 63.11 69.57
SG-OPT-BERTbase ♠ 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
Mirror-BERTbase ♯ 69.10 81.10 73.00 81.90 75.70 78.00 69.10 75.40
SimCSE-BERTbase ♣ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
ESimCSE-BERTbase 73.40 83.27 77.25 82.66 78.81 80.17 72.30 78.27

ConSERTlarge ♡ 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45
BERTlarge-flow♢ 65.20 73.39 69.42 74.92 77.63 72.26 62.50 70.76
SG-OPT-BERTlarge ♠ 67.02 79.42 70.38 81.72 76.35 76.16 70.20 74.46
SimCSE-BERTlarge ♣ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
ESimCSE-BERTlarge 73.21 85.37 77.73 84.30 78.92 80.73 74.89 79.31

Mirror-RoBERTabase ♯ 66.60 82.70 74.00 82.40 79.70 79.60 69.70 76.40
SimCSE-RoBERTabase ♣ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
ESimCSE-RoBERTabase 69.90 82.50 74.68 83.19 80.30 80.99 70.54 77.44

SimCSE-RoBERTalarge ♣ 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
ESimCSE-RoBERTalarge 73.20 84.93 76.88 84.86 81.21 82.79 72.27 79.45

Table 3: Sentence embedding performance on 7 semantic textual similarity (STS) test sets. ♣ : results from official
published model by (Gao et al., 2021).♡ : results from (Yan et al., 2021). ♠ : results from (Kim et al., 2021). ♢ :
results from (Li et al., 2020). △ : results are reproduced and reevaluated by (Gao et al., 2021). ♯ : results from
(Liu et al., 2021)

.

= 0.995. In addition, following SimCSE’s code,
we evaluate the model every 125 training steps on
the development set of STS-B and keep the best
checkpoint for the final evaluation on test sets. We
use sub-word repetition instead of word repetition,
further discussed in the ablation study section.

4.3 Main Results

Table 3 shows the models’ performance on seven
semantic textual similarity (STS) test sets. We
mainly select SimCSE for comparison, since it is
the current state-of-the-art and shares the same set-
ting as our approach. In addition, we also use
IS-BERT (Zhang et al., a), CT-BERT (Carlsson
et al., 2021), ConSERT (Yan et al., 2021), SG-OPT
(Kim et al., 2021), BERT-flow (Li et al., 2020),
Mirror-BERT (Liu et al., 2021) as baselines. It
can be seen that ESimCSE improves the measure-
ment of semantic textual similarity in different set-
tings over SimCSE. Specifically, ESimCSE outper-
forms SimCSE by +2.02% on BERTbase, +0.90%
on BERTlarge , +0.87% on RoBERTabase , +0.55%
on RoBERTalarge, respectively.

Model STS-B

SimCSE ♣ 82.45
+ word repetition 84.09 (+1.64)
+ momentum contrast 83.98 (+1.53)
ESimCSE 84.85 (+2.40)

Table 4: Improvement on STS-B development sets that
word repetition or momentum contrast brings to Sim-
CSE.♣ : results from official published model by (Gao
et al., 2021).

5 Ablation Study

This section investigates how different settings af-
fect ESimCSE’s performance. All results are com-
pared on BERTbase scale models and are evaluated
on the development set of STS-B unless otherwise
specified.

5.1 The Importance of Word Repetition and
Momentum Contrast

We explore how much improvement it can bring to
SimCSE when only using word repetition or mo-
mentum contrast. As shown in Table 4, either word
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Length-extension Method STS-B

+Inserting Stop-words 81.72
+Inserting [MASK] 83.08
+Inserting Masked Prediction 84.18
+Word Repetition 84.40
+Sub-word Repetition 84.85

Table 5: Effects of sentence-length-extension method.

repetition or momentum contrast can bring substan-
tial improvements to SimCSE. It means that both
proposed methods to enhance the positive pairs and
negative pairs are effective. Better yet, these two
modifications can be superimposed (ESimCSE) to
get further improvements.

5.2 Effect of Sentence-Length-Extension
Method

In addition to sub-word repetition, we also explore
three other methods to increase sentence length:

• Word Repetition is similar to sub-word repe-
tition, except that the repetition operation oc-
curs before tokenization. For example, given
a word “microbiology”, word repetition will
produce “microbiology microbiology”, while
sub-word repetition will produce “micro mi-
cro ##biology” or “micro ##biology ##biol-
ogy”.

• Inserting Stop-words inserts a random stop-
word after the selected word instead of repeat-
ing the selected word.

• Inserting [MASK] inserts a [MASK] to-
ken after the selected word. We can regard
[MASK] as a dynamic context-compatible
word placeholder.

• Inserting Masked Prediction inserts a
[MASK] token after the selected word and
uses the masked language model to predict the
top-1 substitution. The substitution is used to
replace the inserted [MASK] token.

As shown in Table 5, sub-word repetition
achieves the best performance, and word repetition
can also bring a good improvement, which shows
that more fine-grained repetition can better alleviate
the bias brought by the length difference of positive
pairs. Inserting [MASK] can also improve slightly,
but inserting stop words will decrease the effect.

Inserting masked prediction also brings a good im-
provement, but this method requires a pre-trained
masked language model to predict replacements,
bringing high additional computational overhead.

5.3 Batching Sentences of Similar Length in
Training

Apart from sentence-length-extension methods,
we explore whether batching sentences of simi-
lar length in training will alleviate the bias towards
identical sequence length in inference. We divide
training sentences into buckets by length and batch
them within each bucket. We explore two different
settings:

• We divide the training set into two coarse-
grained buckets based on whether the sen-
tence length is greater than buc_len, where
buc_len ∈ [3, 8];

• We divide the training set by sentence length
into 6 fine-grained buckets: {≤ 3, 4, 5, 6, 7,≥
8}, which we use buc_len = 3 ∼ 8 for short.

We list the experimental results in Table 6. Di-
viding the training set into buckets does not bring
significant improvements and even decreases in
some settings. We believe that after being divided
into buckets, shuffle can only be performed within
a bucket, leading to an insufficient comparison in
contrastive learning. In contrast, the effect of word
repetition is much better.

5.4 The Relationship between The Similarity
and Length Difference

We further explore the relationship between the
similarity and length difference of sentence pairs
on ESimcSE, compared with that of SimCSE in
the Introduction. As STS12-STS16 datasets do not
have train or development sets, and thus we evalu-
ate the models on the test set of each dataset. We
partition each STS test set into two groups based

buc_len wr 3 4 5
STS-B 84.09 81.92 82.00 82.66

buc_len 6 7 8 3 ∼ 8
STS-B 82.00 82.13 83.00 82.18

Table 6: Effects of different bucket lengths buc_len.
“wr” means using word repetition method instead of
bucketing sentences. “3 ∼ 8” means fine-grained buck-
ets setting: {≤ 3, 4, 5, 6, 7,≥ 8}.
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Model LD STS12 STS13 STS14 SICK15 STS16 STS-B SICK-R Avg.

SimCSE
> 3 8.93 15.74 11.90 19.68 28.91 21.33 7.86 16.34
≤ 3 9.29 22.81 19.53 19.92 24.08 22.12 9.53 18.18

ESimCSE
> 3 13.48 23.73 17.14 25.98 34.71 26.22 10.44 21.67
≤ 3 12.52 28.56 24.13 24.17 29.32 25.63 12.35 22.38

Table 7: The difference between the model predicted cosine similarity and the true label on each dataset’s test set.
“LD” is short for length difference.

Model Sim <q,s1 > Sim <q,s2 >

SimCSE 26.39 27.07(+0.68)
ESimCSE 36.82 36.87(+0.05)

Table 8: Effect of repeated words on the average simi-
larity of two sets

on whether the sentence pairs’ length difference is
≤ 3. Then we calculate the similarity differences
between the model predictions and the normalized
ground truths for each group. As listed in Table 7,
ESimCSE significantly reduces the average similar-
ity difference gap between > 3 and ≤ 3, from 1.84
to 0.71, alleviating the learning bias we mentioned
in the Introduction.

5.5 Will Word Repetition Bring New Bias ?
We further explore whether word repetition will
mislead the model to be more inclined to consider
sentences with repeated overlaps are more similar.
We conduct a detection experiment on wiki data
with the following settings:

1. We randomly select a sentence as a query,
such as q = “I like this apple because it looks
very fresh”

2. We use the query to randomly recall a candi-
date sentence with 13%-17% overlap tokens,
such as s1 = “This is a very tall tree and it
looks like a giant”

3. We apply the word-repetition operation on the
overlap tokens in the candidate sentence and
produce a word-repeated sentence, such as s2
= “This this is a very very tall tree and it
looks looks like a giant.”

4. We calculate the similarity of <q, s1 >and <q,
s2 >and compare them.

We experiment on 100 different query sentences
and calculate their average similarity. As shown

dup_rate 0.08 0.12 0.16 0.2
STS-B 83.5 83.62 82.01 83.01

dup_rate 0.24 0.28 0.32 0.36
STS-B 84.24 82.96 84.85 83.84

Table 9: Effects of repetition rate dup_rate.

in Table 8, compared to the 0.68 increase of the
SimCSE, ESimCSE-BERT only increased by 0.05.
Therefore, word repetition does not bring a new
bias to the learning process.

5.6 Effect of Hyperparameters

Repetition Rate To quantitatively study the ef-
fect of repetition rate on the model performance,
we slowly increase the repetition rate parameter
dup_rate from 0.08 to 0.36, with each increase by
0.04. As shown in Table 9, when dup_rate = 0.32,
ESimCSE achieves the best performance, a larger
or smaller dup_rate will cause performance degra-
dation, which is consistent with our intuition.

Momentum Queue Size The size of the momen-
tum contrast queue determines the number of neg-
ative pairs involved in the loss calculation. We
experiment with the queue size equals to differ-
ent multiples of the batch size. The experimental
results are listed in Table 10. The optimal result
is reached when the queue size was 2.5 times the
batch size. A smaller queue size will reduce the
effect. This is intuitive because more negative pairs
participate in the loss calculation to compare pos-
itive pairs more fully. But a too large queue size
also reduces the effect. We guess that is because
the negative pairs in the momentum contrast are
generated by the past “steps” during training, and a
larger queue will use the outputs of more outdated
encoder models which are quite different from the
current one. And thus that will reduce the reliability
of the loss calculation.
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Queue Size STS-B

1× batch_size 83.83
1.5× batch_size 83.81
2× batch_size 83.03
2.5× batch_size 84.85
3× batch_size 82.66

Table 10: Effects of queue size of momentum contrast.

5.7 Performance on Transfer Tasks
Following (Gao et al., 2021), we further evaluate
ESimCSE on transfer tasks, to see the transferabil-
ity of the sentence embeddings from ESimCSE.
The transfer tasks include: MR (movie review)
(Pang and Lee, 2005), CR (product review) (Hu
and Liu, 2004), SUBJ (subjectivity status) (Pang
and Lee, 2004) , MPQA (opinion-polarity) (Wiebe
et al., 2005), SST-2 (binary sentiment analysis)
(Socher et al., 2013), TREC (question-type clas-
sification) (Voorhees and Tice, 2000) and MRPC
(paraphrase detection) (Dolan and Brockett, 2005).
For more details, one can refer to SentEval6. As
shown in Table 11, compared with the performance
of SimCSE, ESimCSE slightly increases the trans-
ferability of embedding. As our optimizations are
focused on semantic textual similarity tasks, the
ability of ESimcse on transfer tasks remains stable
relative to SimCSE.

6 Related Work

Unsupervised sentence representation learning has
been widely studied. (Socher et al.; Hill et al.; Le
and Mikolov) propose to learn sentence represen-
tation according to the internal structure of each
sentence. (Kiros et al.; Logeswaran and Lee) pre-
dict the surrounding sentences of a given sentence
based on the distribution hypothesis. (Pagliardini
et al.) propose Sent2Vec, a simple unsupervised
model allowing to compose sentence embeddings
using word vectors along with n-gram embeddings.
Recently, contrastive learning has been explored
in unsupervised sentence representation learning
and has become a promising trend (Zhang et al., b;
Wu et al.; Meng et al.; Liu et al., 2021; Gao et al.,
2021; Yan et al., 2021; Chuang et al., 2022). Those
contrastive learning based methods for sentence
embeddings are generally based on the assump-
tion that a good semantic representation should be

6https://github.com/facebookresearch/
SentEval

able to bring similar sentences closer while pushing
away dissimilar ones. Therefore, those methods use
various data augmentation methods to randomly
generate two different views for each sentence and
design an effective loss function to make them
closer in the semantic representation space. Among
these contrastive methods, the most related ones to
our work are unsup-ConSERT (Yan et al., 2021)
and unsup-SimSCE (Gao et al., 2021). ConSERT
explores various effective data augmentation strate-
gies(e.g., adversarial attack, token shuffling, Cutoff,
dropout) to generate different views for contrastive
learning and analyze their effects on unsupervised
sentence representation transfer. Unsup-SimSCE,
the current state-of-the-art unsupervised method
uses only standard dropout as minimal data aug-
mentation, and feed an identical sentence to a pre-
trained model twice with independently sampled
dropout masks to generate two distinct sentence em-
beddings as a positive pair. Unsup-SimSCE is very
simple but works surprisingly well, performing on
par with previously supervised counterparts. How-
ever, we find that SimCSE constructs each positive
pair with two sentences of the same length, which
can mislead the learning of sentence embeddings.
So we propose a simple but effective method temed
“word repetition” to alleviate it. We also propose
to use the momentum contrast method to increase
the number of negative pairs involved in the loss
calculation, which encourages the model towards
more refined learning.

7 Conclusion and Future Work

In this paper, we propose optimizations to construct
positive and negative pairs for SimCSE and com-
bine them with SimCSE, which is termed ESim-
CSE. Through extensive experiments, the proposed
ESimCSE achieves considerable improvements on
standard semantic text similarity tasks over Sim-
CSE.

In the future, we will focus on designing a more
refined objective function to improve the discrim-
ination between different negative pairs. Also we
will make attempt to optimize the performance on
both semantic textual similarity tasks and transfer
tasks.
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Abstract

The quality of Natural Language Processing
(NLP) models is typically measured by the ac-
curacy or error rate of a predefined test set. Be-
cause the evaluation and optimization of these
measures are narrowed down to a specific do-
main like news and cannot be generalized to
other domains like Twitter, we often observe
that a system reported with human parity results
generates surprising errors in real-life use sce-
narios. We address this weakness with a new
approach that uses an NLP quality measure
based on robustness. Unlike previous work that
has defined robustness using Minimax to bound
worst cases, we measure robustness based on
the consistency of cross-domain accuracy and
introduce the coefficient of variation and (ϵ, γ)-
Robustness. Our measures demonstrate higher
agreements with human evaluation than accu-
racy scores like BLEU on ranking Machine
Translation (MT) systems.

1 Introduction

Evaluation criteria serve as learning objectives and
model assessment standards and are crucial for
NLP research. Conventional evaluation methods
compute the accuracy or errors compared to the
reference on a predefined test set, such as BLEU or
TER. Since the evaluation results highly depend on
the test set, they may not apply to real-world test in-
puts that come from an unknown distribution. For
example, one may query a legal document while
the system is trained on the news. Therefore, it
is necessary to define a measure that can give an
idea of how robust system performance will be on
unseen test data so that we can predict whether our
model is generalizable to new domains.

There has been influential investigation into
defining robustness instead of accuracy alone (Bas-
tani et al., 2016; Hein and Andriushchenko, 2017;
Weng et al., 2018). Robustness of a machine learn-
ing model can be described as the characteristic

of how accurate the model is in making its predic-
tions when tested on a new (but similar) dataset.
For example, one definition of robustness claims
“If a testing sample is similar to a training sam-
ple, then the testing error is close to the training
error” (Xu and Mannor, 2012). Such testing sam-
ples, which are samples dissimilar from training
samples are known as adversarial examples. Many
studies on robustness measures (Heinze-Deml and
Meinshausen, 2017; Araujo et al., 2019; Carlini and
Wagner, 2017) focus on the worst-case scenarios
with adversarial inputs.

However, because the worst-case appears very
infrequently, in particular, if artificially simu-
lated (Wang et al., 2020; Jin et al., 2020; Alzantot
et al., 2018), a worst-case analysis has the inher-
ent problem that if the worst case is far from the
typical, then the quantification assigns a numeri-
cal value to cases that occur rarely, like outliers.
For instance, if a system accuracy has a very small
variance in a million test cases but fails dramati-
cally in one, then Minimax will label this system
less robust than a system with a high accuracy vari-
ance. While focusing on the worst-case can be
important for some areas of computer science and
engineering like astronautics, but in our view, it is
usually not desirable in the NLP context. In our
view, robustness is a notion that should address typ-
ical behavior, not atypical and rare behavior. Note
that if the worst-case differs a lot from the typical, a
statistical notion of robustness should make this ap-
parent. Additionally, a useful formalization should
ignore atypical behavior of our system - because
only focusing on a worst-case is not practical.

In this paper, we introduce novel definitions of
robustness for NLP systems. Instead of defining
robustness in terms of worst-case performance, we
define it in terms of the typical behavior of the sys-
tem and the consistency in their performance of the
system. Under this definition, the more inconsis-
tent the model predictions are, the less robust the

3908



model is. Specifically, we simulate unknown test
domains using leaving-one-out cross-validation to
measure the variance of model accuracy on a set
of test domains. More precisely, we introduce the
coefficient of variation to quantify the variants of
accuracy that is non-linear.

We further expand this notion to a probabilis-
tic definition, called (ϵ, γ)-Robustness, where the
higher probability of consistent behavior, the more
robust the system. We provide statistical guaran-
tees on the performance of an NLP model through
the following assertion:

“I certify that, with high probability, my NLP
model’s performance will not change too much,
given test sets from different domains and/or with
various types of noise."

Both variation of coefficient and (ϵ, γ)-
Robustness takes a new direction away from the
worst-case result to a general consistency of the
model quality. They are meta-evaluation methods
that measure the consistency of user-defined qual-
ity metrics. Thus, any standard evaluation metrics
can be applied to our paradigm. Our robustness
measures are evaluated by comparing with human
rankings on system outputs and by simulating
unknown test domains using cross-validation. Our
experimental results show that our robustness
measures have higher agreements with human
rankings on machine translation (MT) system
submissions than BLEU scores.

In summary, the main contributions of this work
include:

1. introducing a definition of robustness which
is different from the typical notion of perfor-
mance in worst-case scenarios;

2. developing a probabilistic definition of robust-
ness based on Chebyshev’s inequality;

3. experimenting on four different NMT models
using cross-validation techniques to simulate
the scenarios of unknown test data;

4. evaluating using human assessment on WMT
submission systems;

5. carrying out human annotation experiments
as a comparison with our measure;

The rest of the paper is as follows: In Section 2,
we describe the three definitions of robustness. In
Section 2.4, we connect the coefficient of variation
with (ϵ, γ)-Robustness and show their relationship.
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Figure 1: Left: Shortage of Variance; Right: Shortage
of coefficient of variation.

Section 3 describes the six algorithms to compute
robustness metrics we used during our experimen-
tation. Section 4 describes our evaluation methods
including cross-validation and manual comparison.
Section 5 describes the experiments that evaluate
our robustness measures. In Section 6, we discuss
the previous literature on robustness in machine
learning. Section 7 concludes the paper.

2 Definition of robustness

We define robustness as the consistency in the be-
havior of a machine-learned system. We think of
it as the standard or typical behavior of the system.
The more this behavior deviates from the typical,
the less robust the system is defined to be. No-
tice that this definition does not give a notion of
whether the performance of the system is good or
bad. A system with consistent terrible performance
is still a robust system under this definition. For
example, in terms of MT, this definition becomes
the consistency in translation performance for a
trained MT system.

2.1 Variance

We take the NLP model accuracy (e.g, BLEU score)
as a random variable. We introduce measuring
the variance of, for instance, the BLEU score to
indicate the consistency of the translation quality
over the combination of various test sets. This
random variable will give us a value that quantifies
how stable is a translation system over different
test sets.

2.2 Coefficient of Variation

However, the same variance value measured on the
datasets with different means will carry a different
meaning. For example, as left of Figure 1 shows,
the variance measured on a dataset which has the
mean of 10% in the BLEU score indicates a much
higher inconsistency than that with the mean of
70%. Therefore, we can scale the variance by the
mean, and finally, use the coefficient of the varia-
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tion to measure the consistency over the accuracy
scores across test sets in the dataset pool. The coef-
ficient of variation is a scaled variance. Nonethe-
less, the variance or the coefficient of variation is
not sufficient to express the consistency of the ac-
curacy. For example, as right of Figure 1 shows,
the accuracy can only have two values: 0 and 1
but have the same variance as values following the
normal distribution. Thus looking at the distribu-
tion itself is crucial to decide on the robustness of
a model.

2.3 (ϵ, γ)-Robustness

We follow the direction of the probabilistic robust-
ness (Xu and Mannor, 2012) and introduce the
notion of (ϵ, γ)-robust to consider all cases.

Briefly speaking, we want to measure the proba-
bility of upper bounding the NLP model accuracy
gap between any test set and their average.

We call an NLP system (ϵ, γ)-robust, if for every
test set drawn from a distribution D, its prediction
error (or accuracy) X is centered around the mean
error (or accuracy) µ, which is bounded through a
parameter ϵ with a probability of 1− σ2

ϵ2
· γ.

Pr[|X − µ| < ϵ] = 1− σ2

ϵ2
· γ (1)

This definition is a relaxation of Chebyshev’s in-
equality by adding γ ∈ [0, 1]. In the above formu-
lation, the lower the value of γ, the more robust is
the system. 1− γ value indicates how much tighter
we can bound the prediction accuracy around its
mean than the Chebyshev’s bound. A robust sys-
tem can be provided with a tighter bound, while the
Chebyshev in Equation 2 bounds a fragile system.
Below is the inference.

Pr[|X − µ| ≥ ϵ] ≤ σ2

ϵ2
(2)

⇔ 1− Pr[|X − µ| ≥ ϵ] ≥ 1− σ2

ϵ2
(3)

⇔ Pr[|X − µ| < ϵ] ≥ 1− σ2

ϵ2
(4)

Chebyshev’s inequality in Equation 2 provides
an upper bound to the probability that the differ-
ence between X and the mean will exceed a given
threshold. If we put “1−" in front of both sides, we
have Equation 3, thus Equation 4, which shows a
lower bound of the difference between X and µ.

X

Pr(X) system 1 (         ）
system 2 (           )

- Robustness 1 > - Robustness 2 

- Robustness

Figure 2: Illustration of the (ϵ, γ)-Robustness

Algorithm 1 Plot (ϵ, γ)-Robustness
Input: translation accuracy (e.g. BLEU or human
eval) of each sentence of a test set on a given
translation model
Output: 100 (ϵ, γ) values

1: for ϵ in 1 to 100 do
2: output γ := (1− Pr[|X − µ| = ϵ]) · ϵ2

σ2

3: end for
4: return

In robustness measure, we are interested in com-
ing up with a bound tighter than the Chebyshev’s
bound. To make it scalable and interpretable, we
can add γ ∈ [0, 1] to express how much tighter
bound we can provide than Chebyshev’s. If γ = 1
then we have the worst case, the system is not ro-
bust at all; if γ is approaching to 0, then it is getting
very tightly bounded.

Therefore, we introduce γ to be an indicator of
how robust a system is. ϵ is a parameter that we
can explore. Algorithm 1 shows the algorithm of
plotting the ϵ, γ-Robustness. γ relates to the proba-
bility that accuracy X is within a given threshold,
and ϵ controls the width of such threshold, as illus-
trated in the example of Figure 2.

2.4 Relating the (ϵ, γ)-Robustnes to the
coefficient of variation

ϵ is a hyper-parameter related to our robustness
metrics. We show the (ϵ, γ)-Robustnes can be con-
nected with the coefficient of variatioin by simply
tuning ϵ.

Replace ϵ by ϵ′, ϵ = ϵ′ · σµ to Chebyshev’s in-
equality:

Pr[|X − µ| ≥ ϵ] ≤ σ2

ϵ2
Eq. 2

⇒ Pr[|X − µ| ≥ ϵ′ · σ
µ
] ≤ σ2

ϵ′2 · σµ
2 (5)

⇒ Pr[|X − µ| ≥ ϵ′ · σ
µ
] ≤ µ2

ϵ′2
(6)
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Replace ϵ by ϵ′, ϵ = ϵ′ · σµ to the ϵ − γ robust
definition

Pr[|X − µ| < ϵ′ · σ
µ
] = 1− µ2

ϵ′2
· γ (7)

3 Robustness metrics

Using our definition of robustness (see Section 2),
we create three different robustness metrics. The
first metric (Algorithm 2) computes the variance for
all the samples in the test pool. The second metric
(Algorithm 3) scales variance by the mean of all
samples. The third metric (Algorithm 4) computes
the (ϵ, γ)-Robustness given a pre-defined parameter
ϵ.

Algorithm 2 Robustness Metrics I: Variance

Require: Error function ϵ(·); a test set pool T con-
taining N samples (ts).
V (T ) = 1

I

∑
i {ϵ(ti; s,A)− 1

I

∑
j ϵ(tj ; s,A)}

2

Algorithm 3 Robustness Metrics II: Coefficient of
Variation
Require: Error function ϵ(·); a test set pool T con-

taining N samples (ts).

COV (T ) =
1
I

∑
i {ϵ(ti;s,A)− 1

I

∑
j ϵ(tj ;s,A)}

2

1
I

∑
j ϵ(tj ;s,A)

Algorithm 4 Robustness Metrics III: (ϵ, γ)-
Robustness
Require: Error function ϵ(·); a test set pool T con-

taining N samples (ts), hyper-parameter ϵ.
µ = 1

I

∑
i ϵ(ti; s,A)

σ =
√∑

(ti−µ)2
I−1

Pr[|ti − µ| < ϵ] =
|{tj |tj−µ<ϵ}|

I
(ϵ, γ)−Robustness(T ) = (1− Pr[|ti − µ| =
ϵ]) · ϵ2

σ2

We have a collection of test samples, where each
test sample is ti, and there are I many test sam-
ples in the test pool. An error function ϵ(t; s,A)
indicates the translation error (1-accuracy) on a test
sample ti on s according to evaluation criterion
A. The variance measures the “consistency” of the
translation accuracy among all the test samples.

Bootstrapping Considering the test scores on
one test sample can be unstable and inaccurate, we

create a more robust method to compute robustness
by bootstrapping subsamples from the entire test
pool. We randomly subsample the test pool into
M bootstraps and then compute the average robust-
ness score (variance/coefficient of variation/(ϵ, γ)-
Robustness) across bootstraps.

Algorithm 5 Robustness Metrics by Bagging

Require: Error function ϵ(·); a test set pool T con-
taining I samples: t1 · · · tI ; block size b, each
block B1 · · ·BM with number of blocks M , uni-
verse size N .
Initialize m empty blocks.
for b_ = 1 to b ·M do

choose L at random from the set of blocks
with current min number of elements
S : set of elements in the universe not in L
L = L ∪ t, where t ∈ S chosen uniformly at
random

end for
for m ∈M do

Compute R(Bm) according to Algorithm 2/
Algorithm 3/Algorithm 4:
R(Bm) = V (Bm)/COV (Bm)/(ϵ, γ) −
Robustness(Bm)

end for
AV (T ) = 1

M

∑
mR(Bm)

In practice, random sampling requires the times
of bootstrapping to be relatively large to achieve a
thorough coverage of the test pool. To complement,
we create two bootstrapping methods to selectively
design the subsampled bootstraps. First, for each
bootstrap, we randomly sample from the elements
not present in the current bootstrap, which is de-
scribed in Algorithm 5. Second, we subsample
from the set of elements with least sampled fre-
quency (Papakonstantinou et al., 2014), which is
described in Algorithm 6.

4 Evaluation of the robustness measures

4.1 Cross-validation
We use the leave-one-out error stability to show
that the robustness measure can be generalized if
we exclude a left-out test set from all four datasets
where we measure the robustness. More precisely,
for a given translation model, we randomly select
one leaving-one-out test set and then combine all
other tests to compute the variance, the mean, and
the coefficient of variation on the left-out datasets,
as shown in Figure 3.
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Algorithm 6 Robustness Metrics by Design Bag-
ging

Require: Error function ϵ(·); a test set pool T con-
taining I samples: t1 · · · tI ; block size b, each
block B1 · · ·BM with number of blocks M , uni-
verse size N .
Initialize m empty blocks.
for b_ = 1 to b ·M do

choose L at random from the set of blocks
with current min number of elements
S : set of elements in the universe not in L
that appear least frequently
L = L ∪ t, where t ∈ S chosen uniformly at
random

end for
for m ∈M do

Compute R(Bm) according to Algorithm 2/
Algorithm 3/Algorithm 4:
R(Bm) = V (Bm)/COV (Bm)/(ϵ, γ) −
Robustness(Bm)

end for
AV (T ) = 1

M

∑
mR(Bm)
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Figure 3: Leaving-one-out to verify robustness metrics.

4.2 Correlation with manual evaluation:
pair-wise system comparison

Human evaluation is another way to evaluate the
robustness measure. More precisely, we have hu-
man linguists come up with translation test sen-
tences and evaluate the consistency of the transla-
tion model 1 (θ) and translation model 2 (θ′). The
human evaluators can ask as many as translation
sentences until she/he decides on the ranking of the
performance between model 1 and model 2. A per-
fect robustness estimator ρ would satisfy that the
human ranking of the robustness of two NLP sys-
tems is the same as the ranking by our robustness
measures:

ρhuman(θ) < ρhuman(θ
′)⇐⇒ ρ(θ) < ρ(θ′) (8)

In other words, we do not necessarily need the
actual value of ρ to verify that it gives us enough

information to compare the two models. There
are some problems with this approach, though, not
least because we need to evaluate this on multiple
models.

5 Experiments

Data & Tools We evaluate our robustness met-
rics in machine translation and sentiment classifica-
tion. For machine translation, we use four different
English-French NMT models trained on WMT’14,
Biomedical’18, ISLWT’17, and MTNT’18 datasets.
The models are trained using 35M, 2M, 200K, and
40K sentences, respectively. The WMT’14 model
is the pre-trained model provided by Facebook re-
search (Ott et al., 2019) and the remaining were
trained in house using ConvS2S Toolkit (Gehring
et al., 2017) till convergence. The development
data used for the in house trained models include
Khresmoi for Biomedical, test2014 and test2015
for IWSLT, and MTNT’18 development for MTNT.
The four different test data were also from the same
domains, including WMT (newstest14), Biomed-
ical (EDP2018), IWSLT (test2017), and MTNT
(MTNT2018).

For sentiment classification, we use Amazon
product review dataset (Blitzer et al., 2007). Specif-
ically, we train four models using pre-processed
balanced reviews from DVD, kitchen, electronics
and books domains where each review is labeled
with 0 or 1. We randomly split 15% of the sen-
tences as validation set and the rest as training
set. We evaluate the classification model on unpro-
cessed reviews from 21 domains different from the
training domain, and compute the mean, var and co-
efficient of variance of these 21 test accuracy scores.
Then we leave the apparel, baby, beauty, grocery
and music domain out to compute the mean, vari-
ance, and the coefficient of variation on other 20
domains. Different from machine translation that
uses sentence level performance score (i.e. BLEU)
to compute robustness, we use domain/document
level performance score (i.e. accuracy) to compute
robustness metrics in sentiment classification.

Results As addressed in Section 3, We carry out
three different robustness experiments correspond-
ing to robustness metrics with no sampling method,
robustness by bagging, and robustness by design
bagging, respectively. For every experiment, we
use each of the training models and translated all
the four test sets. We calculate the sentence level
BLEU scores and use one of the robustness metrics
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to compute the change in the BLEU scores. We
use a combined test data from all the four domains.
We want our model of robustness measure to work
on any test domain. In order to simulate a blind
test domain, we apply leave-one-out testing, where
we leave out one domain from the four domains.
Therefore we calculate the mean, variance, and the
coefficient of variation on the five testing environ-
ments.

Results in Table 1 and Table 2 use all training
samples to measure. The rest four tables experi-
ment with bagging techniques on sub-sampled test
data where we create 30 bootstraps each containing
60% of the data. We calculate the mean and vari-
ance of each of the bootstrap and finally average
values of these measures to calculate the coeffi-
cient of variation. For machine translation, we
can observe that for models, including WMT, the
change in the coefficient of variation when test-
ing on different leave-one-out scenarios, does not
change a lot compared to IWSLT. For sentiment
classification, the model trained on kitchen domain
has the lowest coefficient of variation compared to
all other three models, and the coefficient of vari-
ation of the model trained on electronics domain
varies largely when testing on different leave-one-
out scenarios. Table 3 and table 4 use the bagging
algorithm (Breiman, 1996) to make the intersec-
tion between bootstraps as less as possible. The
mean, variance, and coefficient of variation were
calculated the same way as in traditional bagging
experiment.

Results using design bagging are mentioned in
Table 5 and Table 6. A similar trend is observed
where the difference in coefficient of variation
across different leave-one-out experiments is the
smallest for WMT and is much higher for MTNT.

To compute our definition of (ϵ, γ)-Robustness,
we used the same setup of four different trained
models and four different test domains. For each
possible value of ϵ (between 0 and 100), we try
to find the value of γ, which satisfies the Equa-
tion 2. Figure 4 shows the normalized γ values
for each corresponding epsilon value for the four
models. We can observe the γ values for WMT are
much smaller than the values for other models, and
the values for MTNT are the highest. This shows
that the WMT model is the most robust among
all models, and MTNT is the least robust. Sim-
ilarly, our (ϵ, γ)-Robustness can be applied with
human evaluation scores, as shown in Figure 5.

Figure 4: Normalized (ϵ, γ)-Robustness plot on our
models.

Based on these four NMT systems in Figure 5, we
rank them using (ϵ, γ)-Robustness and find the rank
100% agrees with the rank given by human, while
the rank given by the BLEU score 75% agrees to
human, as shown in Table 7. This suggests that
(ϵ, γ)-Robustness evaluates robustness of systems
better than accuracy-based metrics (i.e. BLEU).

Finally, as in Section 4.2, to better compare our
method, we conduct a human evaluation for pair-
wise comparison of the models. We create a small
web-based application where the human annotator
is assigned two NMT models selected at random.
The human annotators do not know any details
about the model or the training data used for each
model. She/He can only use these models to get
two translation outputs for a given input sentence.
This step can be repeated as many times as possible
until the human annotator decides which model is
more "consistent" in its translations. Table 8 men-
tions the pair-wise results for the four models using
the human annotators. For comparison, we have
also mentioned the coefficient of variation and the
(ϵ, γ)-Robustness results. We observe that only one
out of the six scenarios is different (16.66% error
rate) for the human annotators and our robustness
metrics.

6 Related Work

There have been substantial amount of work trying
to improve the robustness of NLP models. Among
those, a majority of focus lies on the vulnerability
of NLP models to input perturbations, such as gen-
erating adversarial examples. For instance, Wang
et al. (2020) uses controllable attributes irrelevant
to task labels to generate diverse adversarial texts.
Li et al. (2020) uses pre-trained masked language
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Model
Leave-One-Out Test Set

None WMT’15 IWSLT’17 MTNT’19 BIO’18 MTNT’18
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

WMT’14 32.52 723.56 0.83 31.33 684.75 0.84 32.35 735.06 0.84 33.86 714.98 0.79 32.51 747.96 0.84 32.52 723.56 0.83
IWSLT’17 10.35 206.43 1.39 10.55 211.85 1.38 8.71 171.72 1.50 11.44 219.58 1.30 10.6 215.8 1.39 10.35 206.43 1.39
MTNT’19 6.97 173.38 1.89 7.19 179.26 1.86 6.2 156.24 2.02 6.73 166.43 1.92 7.61 186.79 1.80 6.97 173.38 1.89
BIO’18 15.36 330.83 1.18 15.7 328.59 1.15 15.37 339.74 1.20 15.89 327.4 1.14 14.66 327.51 1.23 15.36 330.83 1.18
APPERTIUM 1.83 49.20 3.83 1.68 44.11 3.95 1.77 48.53 3.94 2.04 52.74 3.56 1.72 46.72 3.98 1.95 53.79 3.76

Table 1: Robustness Metrics I & II in machine translation. Sentence level BLEU scores when a single test set is left
out. Var is variance of BLEU scores and COR is the coefficient of variance.

Model
Leave-One-Out Test Set

None apparel baby beauty grocery music
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

dvd 64.33 2.04 3.18 65.02 2.05 3.16 64.91 2.08 3.21 64.13 2.16 3.37 63.76 2.07 3.25 65.09 2.08 3.19
books 64.33 2.07 3.23 65.10 2.06 3.17 64.95 2.11 3.25 64.04 2.09 3.26 63.70 2.03 3.19 65.03 2.04 3.14
kitchen 58.94 0.60 1.02 59.28 0.59 1.0 59.25 0.62 1.05 59.06 0.64 1.08 58.44 0.60 1.02 59.34 0.63 1.06
electronics 64.45 2.10 3.26 64.94 2.01 3.10 64.91 2.10 3.23 64.17 2.15 3.36 63.77 2.10 3.30 65.03 2.06 3.17

Table 2: Robustness Metrics I & II in sentiment classification. Domain level accuracy scores when a single test set
is left out. Var is variance of accuracy scores and COR is the coefficient of variance.

Model
Leave-One-Out (Bagging)

None WMT’15 IWSLT’17 MTNT’19 BIO’18 MTNT’18
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

WMT’14 32.09 706.49 0.83 30.72 667.16 0.84 31.56 701.76 0.84 32.79 694.34 0.80 31.95 725.51 0.84 32.48 723.32 0.83
IWSLT’17 8.56 185.86 1.59 8.08 182.21 1.67 6.70 146.26 1.80 8.86 194.29 1.57 8.60 192.21 1.61 10.33 205.54 1.39
MTNT’19 5.76 150.79 2.13 5.52 147.63 2.20 4.72 124.94 2.37 5.21 136.62 2.24 6.19 159.87 2.04 7.00 173.80 1.88
BIO’18 12.67 306.96 1.38 12.03 295.04 1.43 11.79 301.49 1.47 12.27 297.29 1.41 11.86 298.77 1.46 15.32 329.75 1.19
APPERTIUM 2.83 81.19 3.19 2.70 74.86 3.20 2.80 80.72 3.21 3.01 82.15 3.01 2.78 80.18 3.22 2.91 85.65 3.18

Table 3: Robustness Metrics by Bagging in machine translation. Sentence level BLEU scores of bagging of test
with a single test set is left out. Var is variance of BLEU scores and COR is the coefficient of variance.

Model
Leave-One-Out (Bagging)

None apparel baby beauty grocery music
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

dvd 58.95 0.012 0.02 59.27 0.026 0.043 59.15 0.014 0.025 58.73 0.018 0.03 58.53 0.018 0.032 59.65 0.021 0.036
books 50.21 0.035 0.069 50.87 0.02 0.04 50.61 0.021 0.042 50.43 0.023 0.047 49.92 0.037 0.075 50.72 0.027 0.053
kitchen 50.88 0.013 0.026 51.25 0.015 0.03 51.15 0.019 0.038 50.39 0.025 0.049 50.22 0.024 0.047 51.06 0.022 0.043
electronics 42.38 0.015 0.037 42.02 0.028 0.068 42.13 0.017 0.041 42.58 0.022 0.053 42.68 0.016 0.038 41.79 0.016 0.039

Table 4: Robustness Metrics by Bagging in sentiment classification. Domain level accuracy scores when a single
test set is left out. Var is variance of accuracy scores and COR is the coefficient of variance.

Model
Leave-One-Out (Design Bagging)

None WMT’15 IWSLT’17 MTNT’19 BIO’18 MTNT’18
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

WMT’14 31.94 703.93 0.83 30.85 667.02 0.84 31.61 707.62 0.84 32.80 693.68 0.80 31.87 722.14 0.84 32.51 723.56 0.83
IWSLT’17 8.55 185.95 1.59 8.10 182.49 1.67 6.70 145.45 1.80 8.82 192.42 1.57 8.59 192.10 1.61 10.35 206.56 1.39
MTNT’19 5.76 150.24 2.13 5.51 146.54 2.20 4.76 126.83 2.37 5.19 136.47 2.25 6.16 160.23 2.05 6.97 173.48 1.89
BIO’18 12.69 307.07 1.38 12.03 295.87 1.43 11.82 303.21 1.47 12.27 297.13 1.41 11.88 298.30 1.45 15.35 330.40 1.18
APERTIUM 2.84 80.88 3.17 2.69 74.30 3.20 2.82 82.10 3.22 3.00 81.75 3.01 2.77 80.18 3.24 2.92 85.08 3.16

Table 5: Robustness Metrics by Design Bagging in machine translation. Sentence level BLEU scores of design
bagging of test with a single test set is left out. Var is variance of BLEU scores and COR is the coefficient of
variance.

Model
Leave-One-Out (Design Bagging)

None apparel baby beauty grocery music
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

dvd 57.80 0.02 0.035 59.27 0.028 0.047 59.03 0.021 0.035 57.93 0.019 0.032 57.58 0.018 0.031 59.29 0.027 0.046
books 59.54 0.025 0.042 61.20 0.033 0.055 60.92 0.024 0.04 59.78 0.022 0.037 59.34 0.021 0.035 61.15 0.032 0.053
kitchen 54.61 0.008 0.015 55.40 0.009 0.016 55.42 0.008 0.016 54.88 0.008 0.016 53.99 0.007 0.014 55.17 0.011 0.021
electronics 57.40 0.008 0.014 57.99 0.007 0.012 59.37 0.019 0.032 56.97 0.005 0.009 56.84 0.005 0.009 58.00 0.008 0.014

Table 6: Robustness Metrics by Design Bagging in sentiment classification. Domain level accuracy scores when a
single test set is left out. Var is variance of accuracy scores and COR is the coefficient of variance.

model to generate contextualized adversarial exam-
ples. Niu et al. (2020) evaluates robustness to input

perturbations for neural machine translation. While
many NLP models achieve better performance af-
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Figure 5: WMT’18 submission systems, human evalua-
tion, (ϵ, γ)-Robustness measured on human evaluation
scores.

Model BLEU rankBLEU rankγ rankHuman
System A 0.379 4 4 4
System B 0.322 2 1 1
System C 0.362 3 3 3
System D 0.320 1 2 2

Table 7: (ϵ, γ)-Robustness 100% agrees with human
ranking, while BLEU 75% agrees with human.

Model 1 Model 2 CV γ Human Agree?
WMT BIO WMT WMT WMT YES
BIO IWSLT BIO BIO IWSLT NO

WMT MTNT WMT WMT WMT YES
WMT IWSLT WMT WMT WMT YES
BIO MTNT BIO BIO BIO YES

IWSLT MTNT IWSLT IWSLT IWSLT YES

Table 8: Robustness Metrics pair-wise comparison on
each two models.

ter retraining with adversarial examples, the lack
of an attack-agnostic evaluation metric leaves the
evaluation of model’s intrinsic robustness difficult
especially when seeing new adversarial attacks.

Another line of work examines the robustness of
NLP models among various domains/distributions.
Hendrycks et al. (2020) compared the robustness
of pretrained Transformers and found that pretrain-
ing models on diverse data helps to improve out-
of-distribution generalization. Müller et al. (2019)
tests several techniques such as subword regulariza-
tion, defensive model distillation to improve gen-
eralization of machine translation models. These
work detect the model performance drop under do-
main shifts but did not give notion of robustness as
consistent performance among domains or distri-
butions. In contrast, we propose three robustness
metrics that are easy to measure quantitatively us-
ing bagging or design bagging.

Some literature propose evaluation metrics for
robustness from the perspectives of statistics or
input perturbations (Weng et al., 2018; Niu et al.,
2020; Mangal et al., 2019), however, they either
focus on the worst-scenario of adversarial inputs
or disregard the full distribution of performance
scores.

7 Conclusion

We introduce variance, coefficient of variation and
(ϵ, γ)-Robustness to measure the robustness of an
NLP model’s typical behavior. Our robustness met-
rics outperform BLEU in MT system performance
rankings and highly agree with human robustness
assessment. Our work demonstrates a successful
step towards general robustness evaluation and op-
timization goals.
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Abstract

Scientific literature serves as a high-quality
corpus, supporting a lot of Natural Language
Processing (NLP) research. However, existing
datasets are centered around the English lan-
guage, which restricts the development of Chi-
nese scientific NLP. In this work, we present
CSL, a large-scale Chinese Scientific Literature
dataset, which contains the titles, abstracts,
keywords and academic fields of 396k papers.
To our knowledge, CSL is the first scientific
document dataset in Chinese. The CSL can
serve as a Chinese corpus. Also, this semi-
structured data is a natural annotation that can
constitute many supervised NLP tasks. Based
on CSL, we present a benchmark to evalu-
ate the performance of models across scien-
tific domain tasks, i.e., summarization, key-
word generation and text classification. We
analyze the behavior of existing text-to-text
models on the evaluation tasks and reveal the
challenges for Chinese scientific NLP tasks,
which provides a valuable reference for fu-
ture research. Data and code are available at
https://github.com/ydli-ai/CSL .

1 Introduction

With the increase in the publication of papers, Nat-
ural Language Processing (NLP) tools that assist
users in writing, searching, and archiving scien-
tific literature have grown increasingly important.
For instance, paper/citation recommendation (Beel
et al., 2016; Cohan et al., 2020), topic classification
(Beltagy et al., 2019) and summarization (Cohan
and Goharian, 2018) systems have been developed.
The construction of these automatic systems pri-
marily relies on academic resources such as large-
scale corpus (Lo et al., 2020; Saier and Färber,
2020), citation graphs (Sinha et al., 2015; Tang
et al., 2008; Zhang et al., 2019) and supervised
scientific datasets (Li et al., 2016; Jurgens et al.,
2018). These resources, however, are mostly cen-
tered around the English language, which restricts

Title
Analysis on the Subjective Well-being of Farmers in Weihai City

Abstract
To investigate the subjective well-being of farmers in Weihai City and its 
influencing factors, this paper randomly sampled 4550 farmers by their 
gender, age, marriage, educational level, occupation, poverty or not. We 
use a Multivariate Logistic Regression model to evaluate their subjective 
well-being ...

Keywords
Farmers; Subjective Well-Being; Multivariate Logistic Regression
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(a) CSL Example

(b) NLP Tasks
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Figure 1: (a) An example of paper meta-information
(translated into English). (b) Examples of NLP tasks
constructed from CSL. The arrow indicates the input
and output of the task, for example, “A→ T” represents
the task feeding abstract to produce title. A: abstract; T:
title; K: keywords; c: category; d: discipline.

the development of techniques for addressing non-
English scientific NLP tasks. Until recently, pro-
gresses in the NLP research for Chinese resources
and models has lagged behind their English coun-
terparts.

To fill the gap of non-English scientific resources
and spur the Chinese scientific NLP research, in
this paper, we introduce CSL: a large-scale Chinese
Scientific Literature dataset. CSL contains 396,209
Chinese papers’ meta-information, including title,
abstract, keywords, academic category and disci-
pline. Papers are collected from comprehensive
Chinese academic journals covering a wide range
of distribution. In particular, we divide them into
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Category #d len(T) len(A) num(K) #Samples Discipline Examples

Engineering 27 19.1 210.9 4.4 177,600 Mechanics, Architecture, Electrical Science
Science 9 20.7 254.4 4.3 35,766 Mathematics, Physics, Astronomy, Geography
Agriculture 7 17.1 177.1 7.1 39,560 Crop Science, Horticulture, Forestry
Medicine 5 20.7 269.5 4.7 36,783 Clinical Medicine, Dental Medicine, Pharmacy
Management 4 18.7 157.7 6.2 23,630 Business Management, Public Administration
Jurisprudence 4 18.9 174.4 6.1 21,554 Legal Science, Political Science, Sociology
Pedagogy 3 17.7 179.4 4.3 16,720 Pedagogy, Psychology, Physical Education
Economics 2 19.5 177.2 4.5 11,558 Theoretical Economics, Applied Economics
Literature 2 18.8 158.2 8.3 10,501 Chinese Literature, Journalism
Art 1 17.8 170.8 5.4 5,201 Art
History 1 17.6 181.0 6.0 6,270 History
Strategics 1 17.5 169.3 4.0 3,555 Military Science
Philosophy 1 18.0 176.5 8.0 7,511 Philosophy

All 67 396,209

Table 1: Detailed statistics of the CSL dataset. #d: The number of disciplines in the category. len(T): Average
length of each title; len(A): Average length of each abstract; num(K): Average number of keywords.

13 first-level categories and 67 second-level disci-
plines. In addition to the difference in language, it
provides broader and more fine-grained research
fields than existing academic resources (Lo et al.,
2020; Saier and Färber, 2019).

Scientific literature metadata contains abundant
semantic information, making it a natural annotated
data source with the potential to provide many NLP
tasks. For example, predicting the title with ab-
stract constitutes a summarization task. As the data
and task examples shown in Figure 1, such combi-
nations can constitute abundant tasks. These tasks
can drive models in real-world applications and are
essential for a lot of academic NLP research. To
better understand the challenges posed by Chinese
scientific NLP, we build a benchmark consisting of
a series of CSL-derived tasks, i.e., summarization,
keyword generation and category/discipline classi-
fication. We also provide a toolkit that allows users
to design evaluation tasks according to their needs.

We implement some state-of-the-art Chinese
text-to-text models and evaluate on the proposed
benchmark. We also demonstrate the effectiveness
of the CSL dataset as pre-training corpus. Specifi-
cally, we pre-train T5 with paper abstracts, namely
CSL-T5. It outperforms the model trained on the
general-domain corpus, which can be used as a
strong baseline for the proposed benchmark. The
experiment results show that though existing mod-
els can achieve acceptable performance on scien-
tific NLP tasks, it still needs future efforts to reach
a practical level.

The main contributions of this paper are summa-
rized as follows:

• We release the first large-scale Chinese Sci-

entific Literature dataset (CSL), which can be
used for many different purposes, e.g., pre-
training corpus and scientific-related tasks.

• Based on the CSL, we build a benchmark that
represents real-world scenarios of automatic
analyzing scientific literature.

• We implement text-to-text models to provide
baselines. The experimental results highlight
the model’s difficulties in Chinese scientific
NLP tasks.

2 The CSL Dataset

2.1 Data Collection

We obtain the paper’s meta-information from the
National Engineering Research Center for Sci-
ence and Technology Resources Sharing Service
(NSTR) 1 dated from 2010 to 2020. Then, we
filter data by the Catalogue of Chinese Core Jour-
nals, which is an academic journal evaluation stan-
dard published by Peking University Library. It
selects 1,980 core journals from the Chinese jour-
nals, widely recognized by the Chinese academic
community.

According to the Catalogue and collected data,
we divide academic fields into 13 first-level cate-
gories (e.g., Engineering, Science) and 67 second-
level disciplines (e.g., Mechanics, Mathematics).
We use the journal’s instructions to assign journals
to categories and disciplines, and only journals that
focus on a single academic field are kept. For the
guideline of human annotation, we follow the Dis-
ciplines of Conferring Academic Degrees (GB/T
13745-2009). We ask volunteers to read the intro-

1https://nstr.escience.net.cn
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Dataset Instances Language Peer Review Source Academic Disciplines

S2ORC (2020) 8.1M English not all MAG, arXiv, PubMed 20 (multi)
PubMed Central OAS 2.3M English not all PubMed 2 (bio, LS)
unarXive (2020) 1.0M English not all MAG, arXiv 4 (physics, math, CS, other)
Saier and Färber, 2019 1.0M English not all arXiv 3 (physics, math, CS)
arXiv CS (2018) 90k English not all arXiv 1 (CS)
AAN (2013) 25k English all ACL Anthology 1 (comp ling)

CSL (ours) 396k Chinese all Chinese Core Journals 67 (multi)

Table 2: A comparison of CSL with other publicly-available scientific literature datasets. Note that we provide
the first dataset in Chinese, which also has the more fine-grained discipline annotation. bio: biomedicine; LS: life
science; CS: computer science; comp ling: computational linguistics.

duction of the journal and find the closest discipline
from the guideline. As a result, papers can be la-
beled with categories and disciplines based on the
journal in which they were published. For example,
papers from the “Chinese Journal of Computers”
are categorized into the category “Engineering” and
the discipline “Computer Science”.

In total, we collect 396,209 instances for the CSL
dataset, represented as tuples < T,A,K, c, d >,
where T is the title, A is the abstract, K is a list
of keywords, c is the category label and d is the
discipline label. Due to the ethical concern, we only
use the paper’s publicly available meta-information
and do not access the full text.

2.2 Data Analysis

The paper distribution over categories and the ex-
amples of disciplines are shown in Table 1. A total
of 67 disciplines are collected by CSL, covering
almost all research fields. Each discipline contains
3000-10000 samples.

Table 2 presents an overview of existing aca-
demic datasets. In comparison, the CSL dataset
has the following features: (1) Wider discipline
coverage. Existing datasets mainly focus on spe-
cific domains, while CSL covers almost all research
domains. Also, CSL has more fine-grained dis-
cipline labels. (2) New data source. It can be
seen that existing datasets are largely built on digi-
tal libraries like arXiv 2, PubMed 3, ACL Anthol-
ogy 4 and MAG (Sinha et al., 2015), resulting in
some overlap. CSL presents a new data source in
Chinese that complements existing resources. (3)
Higher quality and accuracy. Digital libraries
contain pre-print platforms, and therefore some
papers are not peer-reviewed. CSL is collected

2https://arxiv.org
3http://www.pubmed.gov
4https://aclanthology.org

from published journal papers and is potentially of
higher quality. In addition, CSL directly accesses
the database without PDF/LaTeX parsing, which
has near-perfect accuracy.

2.3 Evaluation Benchmark

The CSL contains meta-information provided by
authors when submitting their papers, and the con-
nections between them can constitute many NLP
tasks. In this section, we build a benchmark to
facilitate the development of Chinese scientific lit-
erature NLP. It contains diverse tasks, ranging from
classification to text generation, representing many
practical scenarios. We randomly select 10,000
samples and split the datasets into training set, vali-
dation set and test set according to the ratio, 0.8 :
0.1 : 0.1. This split is shared across different tasks,
which allows multi-task training and evaluation.
From CSL, many possible combinations can also
constitute tasks. We provide a toolkit for users to
design tasks by their needs.

Text Summarization (TS) The paper title can
be seen as a summary of the paper abstract. We
build a summarization task predicting the paper
title from the abstract. Existing Chinese text sum-
marization resources are mainly concentrated in
the news domain (Hu et al., 2015; Liu et al., 2020),
and we provide the first text summarization task in
the academic domain.

Keyword Generation (KG) In this task, the
model is asked to predict a list of keywords from
a given paper title and abstract. This task is simi-
lar to the Paper Topic Classification (Cohan et al.,
2020), but instead of predicting topics in a set of
candidates, the goal is to generate keywords that
correspond to the paper. We construct a dataset of
paper’s keywords, title and abstract. In English,
there are related datasets such as SemEval (Kim
et al., 2013) and KP20k (Meng et al., 2017). To
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the best of our knowledge, CSL provides the first
Chinese keyword generation task.

Text Classification This task is predicting the
category and discipline based on other information
about the paper. We build a dataset for category
classification (CTGcls), which predicts the cate-
gory with the paper title. Besides, we build a dis-
cipline classification (DCPcls) task that predicts
the discipline with the paper abstract.

3 Experiments

3.1 Baseline Models

For baselines, we evaluate multi-task learning mod-
els trained on CSL tasks. We use the text-to-text
(i.e., feed text to produce text) method to unify
downstream tasks in different formats. Specifically,
these tasks are represented as the language gener-
ation task guided by a textual prompt. We adopt
several widely used text-to-text models, including
T5 (Raffel et al., 2020), PEGASUS (Zhang et al.,
2020), and BART (Lewis et al., 2019). Since there
are few publicly available versions of them, we
conduct pre-training on the Chinese corpus from
scratch. In addition, we train a T5 using CSL paper
abstracts as the corpus, namely CSL-T5, to provide
a pre-training model that adapts to the Chinese sci-
entific domain.

3.2 Settings

For pre-training Chinese text-to-text models, we
follow the architecture, optimization, and hyperpa-
rameter choices described in the papers. Follow-
ing Google’s Chinese BERT (Devlin et al., 2019),
we use the tokenizer with a vocabulary of 21,128
Chinese characters. Models are pre-trained on the
CLUE Corpus Small (Xu et al., 2020) for 1M steps
with the batch size of 512. We progressively train
CSL-T5 basis on pre-trained T5, using the paper
abstract as the corpus for 20k steps with the same
hyperparameters.

Experiments are conducted on UER-py frame-
work (Zhao et al., 2019) 5.The learning rate is set
to 3e−4 for T5; 1e−5 for BART and PEGASUS.
The batch size is 32. For multi-task training, we
combine the training sets of each task for train-
ing 5 epochs. We use a prompt to specify which
task the model should perform, e.g., “to category”
for category classification. Then, we fine-tune the
models on the task to be evaluated for 3 epochs

5https://github.com/dbiir/UER-py

with early stopping. All results are reported with
greedy decoding.

Models CTGcls DCPcls TS KG

Acc. Acc. R-L Bpref.

T5 83.6 67.1 49.8 54.2
PEGASUS 81.7 69.4 49.4 55.2
BART 79.2 65.7 47.8 49.9
T5 (single) 82.3 63.2 49.2 54.1

CSL-T5 82.9 70.8 52.1 55.9

Table 3: The test performances of baseline models on
CSL downstream tasks. T5 (single) is the result of fine-
tuning T5 on each task separately, and the remaining
columns are the results of multi-task learning.

Prompt: to title
Input Text: 通过对美国职业排球运动员进行非结构
性访谈研究美国职业排球运动员对赞助商和赞助行

为的态度... 赞助商应尊重运动员的情感和观点,从而
使双方都能获得长远利益.
Through interviews, research was conducted on the at-
titudes of American professional volleyball players re-
garding sponsors and sponsorship activities ... Sponsors
should respect athletes’ feelings and opinions in order for
both sides to profit in the long run.
Prediction: 美国职业排球运动员对赞助商和赞助行
为的态度研究

Research on American Professional Volleyball Players’
Attitudes Towards Sponsors and Sponsorship Behaviors
Ground Truth: 美国排球运动员对赞助的态度分析
Analysis of American Volleyball Players’ Attitudes to-
wards Sponsorship
Prompt: to keywords
Input Text: 通过对祁连山自然保护区周边农牧民经
济状况的调查发现阻碍经济发展的问题... 提出了发
展生态旅游等适合本地区经济发展的模式.
Problems with economic development were discovered
during an investigation of the economic conditions of
farmers and herders in the Qilian Mountain Nature Re-
serve ... Ecotourism and other models for local economic
development were proposed.
Prediction: 祁连山自然保护区;农牧民;经济发展模
式

Qilian Mountain Nature Reserve; Peasants and herdsmen;
Economic development model
Ground Truth: 祁连山自然保护区; 周边经济;发展
模式

Qilian Mountain Nature Reserve; Peripheral economy;
Development model

Table 4: Samples of text summarization and keyword
generation of CSL-T5.
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3.3 Overall Performance

The experimental results are shown in Table 3. Out-
put samples of text summarization and keyword
generation tasks are shown in Table 4. For text
classification, we report accuracy. We use ROUGE-
L (Lin and Hovy, 2003) for the summarization
task, which is commonly used for language gen-
eration tasks. For keyword generation, we use
Bpref. (Buckley and Voorhees, 2004), which eval-
uates both the accuracy and order of generated key-
words. We can observe that baseline models can
achieve acceptable results, where T5 outperforms
other models. However, it is still not satisfactory
for real-world applications, and future efforts are
needed. We also find that domain-adaptive train-
ing can further improve T5’s performance. Similar
experiments are also done by Beltagy et al. (2019)
and Gururangan et al. (2020), it partially demon-
strates the value of CSL corpus for pre-training.
The model and corpus will be publicly available.

To discover the effect of multi-task training, we
fine-tune T5 with each task individually. From
the comparison between T5 and T5-single, multi-
task learning slightly outperforms individually fine-
tuned models. We speculate that since the CSL
tasks are homogeneous (derived from the same
dataset), it is easier for models to share knowledge
across different tasks.

CSL can create a large number of tasks by dif-
ferent combinations of tasks’ input and output. It
provides a natural playground for observing which
tasks are mutually reinforcing when learned to-
gether. CSL could also be useful for cross-task
research (Ye et al., 2021; Bragg et al., 2021). For
example, exploring which tasks the model learns
can help it quickly adapt to new tasks. We leave
that for future exploration.

4 Conclusion

This paper presents the first Chinese scientific lit-
erature dataset, CSL, which can serve as a pre-
training corpus and can derive abundant NLP tasks.
Based on CSL, we build an evaluation benchmark
to explore the challenges posed by automatic anal-
ysis of Chinese scientific documents. Experimental
results find difficulties in existing models in the
Chinese scientific domain and point out the future
directions.

Limitations and future work. In the cur-
rent version of CSL, to provide accurate cate-
gory/discipline labels, we only use journals focused

on one domain, which resulted in some data loss.
In future work, we will provide multi-label datasets
to cover cross domain papers, and annotate CSL
with more attributes like Chinese-English parallel
data for academic machine translation. Also, the
versatile NLP task derived from CSL constitutes a
naturally cross-task scenario. In the future, we will
explore the role of CSL in cross-task and few-shot
research.

Ethical Considerations
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government aimed at sharing academic resources,
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We are licensed to use some of paper’s metadata
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Abstract

Within the natural language processing com-
munity, English is by far the most resource-
rich language. There is emerging interest in
conducting translation via computational ap-
proaches to conform its dialects or creole lan-
guages back to standard English. This com-
putational approach paves the way to leverage
generic English language backbones, which are
beneficial for various downstream tasks. How-
ever, in practical online communication sce-
narios, the use of language varieties is often
accompanied by noisy user-generated content,
making this translation task more challenging.
In this work, we introduce a joint paraphrasing
task of creole translation and text normaliza-
tion of Singlish messages, which can shed light
on how to process other language varieties and
dialects. We formulate the task in three differ-
ent linguistic dimensions: lexical level normal-
ization, syntactic level editing, and semantic
level rewriting. We build an annotated dataset
of Singlish-to-Standard English messages, and
report performance on a perturbation-resilient
sequence-to-sequence model. Experimental re-
sults show that the model produces reasonable
generation results, and can improve the perfor-
mance of downstream tasks like stance detec-
tion.

1 Introduction

While the development of natural language process-
ing (NLP) has been focused on major languages
such as English, Chinese, and French, there is
emerging research interest in similar languages,
varieties, and dialects (Zampieri et al., 2020). The
distinction of language variations generally comes
from geographical, historic, communicative set-
tings, and social group dimensions (Coseriu, 1981).
In particular, creole languages are formed in condi-
tions when major languages (e.g., English, French)

∗ The contribution of Shikang Ni is conducted during
his student internship in Institute for Infocomm Research,
A*STAR, Singapore.

are adopted in another culture or region, and they
often mix with existing languages and evolve into
other varieties in their own right. Such examples
include the French-based Haitian (Degraff, 1992),
English-based Australian Kriol (Harris et al., 1993),
and Colloquial Singaporean English (Singlish) (Ho
et al., 1993). To adopt computational NLP solu-
tions on dialects or creoles, applying existing mod-
els trained with major language resources will re-
sult in degraded performance, and collecting and
annotating sufficient data for task-specified domain
adaptation is time-consuming and labor-intensive.
Similar to studies on multilingual scenarios (Bal-
ahur and Turchi, 2012; Eriguchi et al., 2018), one
straightforward and effective approach is to con-
form the varieties to their base languages by ma-
chine translation (Zbib et al., 2012), then other
NLP systems (e.g., sentiment analysis, information
retrieval, reading comprehension) that take base
languages as input could be applied. However, it
would be challenging to apply this approach to di-
alects or creoles that include certain deviated gram-
mar and local vocabularies with systems trained on
the corresponding standard languages, especially to
the under-resourced language varieties where ma-
chine translation performance is subpar (Nguyen
and Chiang, 2017; Honnet et al., 2018).

Singlish, namely the colloquial Singapore En-
glish, is used in the daily lives of Singaporeans
(Ho et al., 1993). Despite the obvious attribute of
inheriting a large vocabulary base and foundational
grammatical rules from English, Singlish imports
terms and features from regional dialects including
Mandarin, Malay, Hokkien, Teochew, Cantonese,
and Tamil (Deterding, 2007), making its lexicon,
syntax, and semantics deviate significantly from
English (Wee, 2008; Wang et al., 2017). Thus,
Singlish is an expressive language studded with
colorful multicultural slangs yet manifested in an
extremely condensed form (Leimgruber, 2011). As
a result, a person only familiar with American or
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Singlish Sentence
Hhh. I kaypoh meh. I thought both of us also e kaypoh
type. Like dat i dun ask lor...

Converted English Sentence
Haha. Am I a busybody? I thought both of us are also the
busybody type. Like that then I don’t ask...

Singlish Sentence
I thk boh bian one. What other topics you want them to
talk to u abt ? metaverse meh ?

Converted English Sentence
I think it is unavoidable. What other topics do you want
them to talk to you about? like Metaverse?

Table 1: Two examples of the Singlish-to-English para-
phrasing. Text in blue and red are involved with lexical
normalization and creole translation, respectively.

British English, might have a difficult time under-
standing Singlish (see examples shown in Table 1).
This also holds true for computational approaches,
where mainstream and popular language models
cannot be directly applied to Singlish.

Moreover, in practical use cases (e.g., social plat-
form communication, SMS messages), the chal-
lenge is further complicated caused by various
noise types in user-generated content, such as ty-
pos, spelling variations, phonetic substitutions, and
ad hoc abbreviations (Sproat et al., 2001) (see ex-
amples shown in Table 1). This would further com-
plicate the dialect or creole translation tasks. While
various statistical and neural-based models are pro-
posed for content de-noising in the form of text
normalization (Supranovich and Patsepnia, 2015;
Muller et al., 2019), much prior work only conduct
word-level correction (Baldwin et al., 2015; van der
Goot et al., 2021), and non-canonical English vari-
eties are less studied.

Therefore, in this paper, we introduce a joint
task of creole language translation and text normal-
ization of Singlish messages. Since the deviations
of Singlish from English come from both the lexi-
cal and the grammatical levels (Leimgruber, 2011),
the task is conducted in a sentence paraphrasing
manner. Based on the linguistic characteristics
of Singlish, and user behavior of online commu-
nication, we further categorize the paraphrasing
into three sub-tasks: lexical level normalization,
syntactic level editing, and semantic level rewrit-
ing. Guided by this linguistic hierarchy, we build
a dataset of Singlish-to-English paired messages
annotated by human linguistic experts. We then
evaluate a neural sequence-to-sequence approach
on the paraphrasing task by fine-tuning state-of-
the-art language backbones, and further optimize

it with linguistic-featured input perturbation. We
empirically show that the model can produce rea-
sonable results, and downstream tasks can benefit
from such text paraphrasing.1 While our work fo-
cuses on Singlish, a special variant of English, the
paraphrasing task formulation, linguistic analysis,
and annotation protocol are general and can be
extended to studying and processing other creole
languages and dialects.

2 Related Work

NLP for Similar Languages Language variation
(e.g., different dialects or national varieties of the
same language) poses challenges for NLP appli-
cations, such as machine comprehension and dia-
logue systems. As a result, there is much of recent
interest in computational processing of creoles and
dialects (Zampieri et al., 2020). Related research
areas include language and dialect identification
(Suzuki et al., 2002; Lui et al., 2014; Zampieri
et al., 2019) and machine translation (Altintas
and Cicekli, 2002; Wang et al., 2016). Examples
of machine translation between different dialects
of the same language include British-American
English (Zhao et al., 2000), Cantonese-Mandarin
Chinese (Zhang, 1998), and European–Brazilian
Portuguese (Costa-jussà et al., 2018). For closely
related languages and dialects, many differences
occur at the morphological level, thus word-for-
word mapping, manual language-specific rules,
and phrase-based statistical systems were proposed
and applied (Hajič et al., 2000; Nakov and Tiede-
mann, 2012; Aharoni et al., 2019). Recently, data-
driven neural approaches yield further improve-
ment (Costa-jussà et al., 2018), and show the po-
tential of transfer learning from one language pair
to another (Nguyen and Chiang, 2017).

Text Normalization Online user-generated con-
tent is a valuable NLP resource, but it is often noisy
and non-canonical. Most existing models are de-
veloped on canonical languages. Such models do
not cope well with the disfluencies and informal
phenomena (Karpukhin et al., 2019). Text nor-
malization converts such noisy input to a ‘normal’
format (Sproat et al., 2001), while preserving the
original meaning. Eisenstein (2013) studied several
underlying factors that cause non-standard text like
illiteracy and pragmatics. Since noise often comes

1Interested readers can contact corresponding authors for
the data and code.
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Level 1: Lexical Level Normalization

Lexical Variations in User-Generated Content
Tackling the common user-generated lexical variations, including lower-case and upper-case (E.g., ‘mrt’→ ‘MRT’,
‘TOdAy’→ ‘TODAY’), spelling typo (e.g., ‘domian’→ ‘domain’, ‘r0bust’→ ‘robust’), single-word abbreviations
(e.g., ‘pple’→ ‘people’, ‘coz’→ ‘because’), phonetic substitutions (e.g., ‘tym’→ ‘time’, ‘4U’→ ‘for you’), and
other non-standard spellings (e.g., ‘goooood’→ ‘good’).
Lexical Variations in Singlish
Tackling the Singlish lexical variations, such as special short forms (e.g., ‘yck’→ ‘YCK (Yio Chu Kang)’), and
colloquial words (e.g.,‘cheapo’→ ‘cheapskate’, ‘gahmen’→ ‘government’).
Non-English Word Borrowing
Replacing the non-English words borrowed from other languages that have a word-to-word mapping. E.g., ‘mei mei’
→ ‘sister’ (Mandarin), ‘pa tuo’→ ‘dating’ (Cantonese), ‘ta pau’→ ‘take-away’ (Cantonese), ‘huat’→ ‘to prosper’
(Hokkien), and ‘makan’→ ‘food’ (Malay).

Level 2: Syntactic Level Editing

Missing Pronoun & Copula
Recovering the appropriate pronouns, and the necessary verbs (e.g. “m typing a sms”→ “I am typing a SMS”, “oh
cat so cute”→ “oh the cat is so cute”).
Non-Standard Syntax & Grammar
Fixing the non-standard grammar in colloquial Singlish sentences, such as the topic prominence phenomenon (e.g.,
“A bit late lah, I came there.” → “I came there a bit late.”).
Missing Punctuation
Inserting the punctuation to where it is necessary (e.g., “Is that your book”→ “Is that your book?”).

Level 3: Semantic Level Rewriting

Colloquial Wording
Some wording is different from colloquial Singlish and English, thus it needs to paraphrase the sentence while
retaining the same semantic meaning (e.g. “Call aint going.” → “The call is not coming through.”)
Discourse Particles
Some clausal-final discourse particles indicate much semantic information (e.g., ‘leh’ marks a tentative request, ‘lah’
is a mood marker, and appeals for accommodation). For instance, “U leh, i going back liao.” → “What about you? I
am going back.”
Non-English Spans & Code-Switching
Some non-English spans and the code-switching require clause or sentence level translation (e.g. “You sian? Let’s
go shopping!” → “Are you feeling bored? Let’s go shopping!”, “makan where?” → “where should we eat?”).

Table 2: Three sub-tasks of the Singlish message paraphrasing.

from character/token level manipulation, early stud-
ies utilized lexical-based methods like dictionary
lookup, word similarity, and N-gram probabilities
(Han and Baldwin, 2011; Supranovich and Pat-
sepnia, 2015). MoNoise (van der Goot and van
Noord, 2017) built a pipeline that is similar to a
ranking-retrieval approach. Recently, Muller et al.
(2019) enhanced the BERT (Devlin et al., 2019)
architecture so that the language model is able to
add/remove tokens for word correction, and Bucur
et al. (2021) applied a pre-trained language model
for multilingual lexical normalization.

3 Singlish Message Paraphrasing Corpus

While unsupervised models show impressive re-
sults on tasks like semantic similarity matching by
leveraging feature-rich pre-trained backbones (De-
vlin et al., 2019), their performance on language
generation is still subpar. To foster data-driven
approaches via supervised learning, we construct

a human-annotated corpus for the Singlish mes-
sage paraphrasing. The raw Singlish messages are
extracted from the NUS Short Message Service
(SMS) Corpus (Chen and Kan, 2013), which con-
tains a total of 56K message samples from real-
world mobile chats. We choose this resource since
their data collection process employs Singaporean
participants, and the SMS conversations cover a
wide range of topics.2 The annotation target is to
convert the messages from colloquial Singapore En-
glish to standard American English, and the human-
annotated references are expected to be understand-
able to non-Singaporean high school students.

3.1 Paraphrasing Sub-task Definition
Online communication between creole users is of-
ten a mix of language-specific usage and noisy con-
tent generation. The paraphrasing task of Singlish

2All samples we use are from the published anonymized
dataset, and do not contain any personal information.
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messages thus requires text editing from multi-
ple aspects. Combining our analysis of real-word
Singlish messages, and previous linguistics and
lexical normalization studies (Wee, 2008; van der
Goot and van Noord, 2017), we categorize this
paraphrasing task into three sub-tasks: lexical level
normalization, syntactic level editing, and semantic
level rewriting.3

Lexical Level Normalization Lexical normal-
ization is to uniform the non-standard tokens and
borrowed words via infilling and replacement. We
first tackle the common English lexical variations
like typos, abbreviations, phonetic substitutions,
and misspellings which are ubiquitous in online
communication platforms (Sproat et al., 2001;
Supranovich and Patsepnia, 2015). Moreover, in
Singlish messages and conversations, there are spe-
cial short forms, discourse particles, and words
borrowed from other languages (e.g., Mandarin,
Malay) (Leimgruber, 2011). In addition to an ex-
isting localized vocabulary,4 the annotators were
asked to collect a list of such special words, and
some examples are shown in Table 2.

While standard word recovering often can be
done independently without sentence understand-
ing, in some cases, the context is necessary for
disambiguation. For instance, the word ‘goooood’
in “U r so goooood.” and “really? oh my goooood!”
should be converted to ‘good’ and ‘god’, respec-
tively. Another case is converting some phonetic
substitutions, for example: “This is a gift 4U!”
→ “This is a gift for you!”. In addition, it is dif-
ficult to obtain a complete collection of all non-
standard tokens and borrowed words. Therefore,
non-computational vocabulary-based methods are
not sufficient for lexical normalization (Muller
et al., 2019; Bucur et al., 2021), and in our setting, it
becomes one sub-task of the sequence-to-sequence
modeling.

Syntactic Level Editing The grammar of Sin-
gapore English differs from the standard English
markedly. For example, some pronouns and BE
verbs are often omitted (e.g., “the weather hot
lah”). Another language-specific phenomenon is
the feature ‘topic prominence’, where the topic

3While colloquial Singapore English presents various lexi-
cal and grammar features, here we focus more on those which
significantly affect language understanding. Features like
tense agreement (Leimgruber, 2011) are not considered if the
context is insufficient, to reduce annotation variance.

4http://www.singlishdictionary.com/

Discourse Particle: ‘leh’ marks a tentative suggestion or
request.

Original Text: Still eating. Got free mcflurry. U (leh),
going back liao..
Paraphrased Text: I am still eating. I got a free McFlurry.
What about you? I am going back.

Discourse Particle: ‘hor’ attempts to garner support for a
proposition.
Original Text: I go can (hor)..
Paraphrased Text: Is it alright for me to go?

Table 3: Two examples of clause-final discourse parti-
cles in colloquial Singlish.

span (e.g., noun phrases) is re-ordered to the be-
ginning of the sentence (e.g., “this book last year
i read” → “I read this book last year.”). This
construction in colloquial Singlish is adapted from
Chinese and Malay (Leimgruber, 2011), and the
topic prominence can be further highlighted by the
insertion of a break or a discourse particle between
the topic and the clause (e.g “Too slow (lah), I find
that building”). Moreover, in online communica-
tions, users tend to omit punctuation, especially at
the end of sentences (e.g., question marks). Thus,
we also take punctuation into consideration in the
annotation protocol.

For the sub-task syntactic level editing, sen-
tences are converted to a standard American En-
glish grammar, which often requires changes of
more than one word or span.

Semantic Level Rewriting As the narrative and
wording of the same meaning are different from
Singlish and English, sometimes it needs rewrit-
ing the sentence while retaining the same semantic
meaning. Particularly, the usage of clausal-final
discourse particles (e.g., ‘leh’, ‘hor’), which origi-
nates from Hokkien and Cantonese, is one of the
most well-known features of Singlish, and some
fillers indicate much semantic information (Leim-
gruber, 2011). For instance, as shown in Table
3, the discourse particle ‘hor’ conveys inquiring
meaning, thus the sentence “I can go (hor)” should
be converted to “Is it alright for me to go?”. More
discourse particles and their examples are shown
in Appendix Table 10.

Moreover, in real-world online communication
and inter-language scenarios, some non-English
spans (involving Singlish and cross-language usage
where the syntax is mostly on one language) and
the code-switching phenomenon require clause or
sentence level translation and rephrasing instead of
word level replacement. For instance, the sentence
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“makan where?” (the word ‘makan’ in Malay means
‘eat’) should be converted to “where should we
eat?”. This is also included in the semantic level
rewriting sub-task.

3.2 Corpus Construction

3.2.1 Sample Pre-processing

We draw our source material from the texts of the
NUS Short Message Service (SMS) Corpus (Chen
and Kan, 2013), which consists of 56K messages
originating from Singaporeans and university stu-
dents. In our data pre-processing, we first filtered
out raw samples that are shorter than 20 characters,
as well as duplicated items, resulting in a 45K data
size. We then sampled the representative Singlish
messages, to refine the subset for annotation. Here
the sentence-level perplexity value calculated with
a language model GPT-2 (Radford et al., 2019) is
used as the criteria, where a high perplexity score
indicates the text is more distinct than the canonical
English.5 We then ranked all samples accordingly,
and kept those above average.

3.2.2 Data Annotation

The annotation of paraphrasing task is conducted
with a group of 6 linguistic experts from a local
university, who are proficient in both Singlish and
English. To facilitate the process and reduce the an-
notation variance across different annotators, they
are asked to complete the three sub-tasks hierarchi-
cally from the low level (lexical normalization) to
the high level (semantic rewriting) with minimum
changes. Moreover, as the SMS corpus retains the
original order of messages in a conversation, we
did not shuffle them, thus annotators can refer to
the context for better paraphrasing.

Since it is challenging to perfectly paraphrase
all Singlish messages, we allow participants to as-
sign confidence scores to their annotations, which
indicate the level of agreement between two of any
annotators on the same sample, according to the
sus-tasks defined in Section 3.1. Confidence scores
are from low (0) to high (5) agreement level, and
the score of 0 is labeled when the necessary con-
text for rephrasing is missing or the whole source
sentence is written in a non-English language (e.g.,
Tamil, Malay), and such samples are excluded in
the training set.

5https://huggingface.co/docs/transformers/perplexity

Figure 1: Distribution of confidence scores on the anno-
tated samples. Samples with score 0 are considered as
invalid annotation, and excluded from the dataset.

3.2.3 Annotation Analysis
The confidence score distribution of our annotated
set is shown in Figure 1. We observed that the
scores under average usually result from the se-
mantic level rewriting, especially for non-English
span translation. Moreover, to assess the text level
variance among annotators, 1500 samples across
all confidence levels are randomly selected and
annotated by two annotators. Following the com-
mon automatic evaluation in machine translation
(Aharoni et al., 2019), we use BLEU (Papineni
et al., 2002) as the metric, and the average score
calculated on those samples is 69.7, which shows a
reasonable human annotation agreement.

4 Automatic Paraphrasing via
Sequence-to-Sequence Modeling

4.1 Base Neural Architecture

Unlike previous lexical normalization work (Aw
et al., 2006; Baldwin et al., 2015), the syntactic
and semantic level sub-tasks in our setting require
a higher capability of contextual understanding
and sentence generation. Therefore, we introduce
sequence-to-sequence modeling for Singlish mes-
sage paraphrasing. Define x as the input text, and
y as the target output. A neural encoding-decoding
model G is used. The goal is formulated to max-
imize P (y|x; θG), where θG are the learnable pa-
rameters. In our settings, the base architecture is a
Transformer-based auto-regressive language model,
since the Transformer (Vaswani et al., 2017) shows
strong capabilities of contextual modeling and gen-
eration, and is widely adopted in various natural
language processing tasks (Radford et al., 2019;
Lewis et al., 2020). The encoder consists of a stack
of Transformer layers. Each layer has two sub-
components: a multi-head layer with self-attention
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mechanism, and a position-wise feed-forward layer.
A residual connection is employed between each
pair of the two sub-components, followed by layer
normalization. The decoder also consists of a stack
of Transformer layers. In addition to the two sub-
components in the encoding layers, the decoder in-
serts another component that performs multi-head
attention over hidden representations from the last
encoding layer. Then, the decoder generates tokens
from left to right in an auto-regressive manner. The
architecture and formula details are described in
(Vaswani et al., 2017).

With the parallel message pairs, we conduct su-
pervised learning with token-level maximum like-
lihood estimation. At the training stage, the cross-
entropy loss is calculated between the decoder’s
output and the reference sentence:

l(θ) = −Σilog(p(yi|y1:i−1, x; θG)) (1)

4.2 Linguistic-featured Input Perturbation

While fine-tuning language backbones bring about
impressive performance on cross-language transla-
tion (Liu et al., 2020), they are vulnerable to noisy
input. Moreover, data-driven approaches may over-
fit to superficial lexical features rather than learn
how to paraphrase from a semantic aspect, espe-
cially when the training data are limited.

To tackle these two challenges, we adopt a sim-
ple yet effective model enhancement via input per-
turbation, inspired by the linguistic characteris-
tics of the Singlish messages, and the denoising
sequence-to-sequence pre-training scheme (Lewis
et al., 2020). There are two operations: (1) Word
Perturbation: To simulate lexical variations in real-
world online user-generated content, we randomly
remove or replace one character of each word (with
a 10% probability). Here the word perturbation is
only conducted on words from a common English
word vocabulary,6 excluding terminology words,
named entities, fillers, and special short forms.
Moreover, recent studies show that character-level
noise makes models more robust towards spelling
variations (Aepli and Sennrich, 2022). (2) Sen-
tence Perturbation: To simulate the grammatical
features like topic prominence, and enhance con-
textual modeling of the language backbone, we
randomly inject noise by exchanging a bi-gram
pair in each sentence with a 10% probability.

6https://github.com/first20hours/google-10000-english

Corpus Size Task Type

English Tweets (Baldwin et al., 2015) 3K Lexical
English Message (Aw et al., 2006) 5K Lexical
Our Singlish SMS Corpus 20K All levels

Table 4: Statistics of the corpora used in our setting. The
English tweets and message corpora are only for lexical
normalization, and are used at the warm-up training
stage. See corpus combination results in Table 9.

5 Experiments

5.1 Training Datasets

The Singlish message corpus built in Section 3 is
used for model training and evaluation. The train-
ing, validation, and test set size are 20000, 1000,
and 1000, respectively. In addition to the Singlish
dataset, we include two English lexical normaliza-
tion corpora (Aw et al., 2006; Baldwin et al., 2015)
in the warm-up training stage. Data statistics are
shown in Table 4. For samples we annotated, the
average sentence number per message is 2.13, and
the average word number is 18.85.7 While these
two datasets are much smaller and only focus on
lexical normalization, in our pilot experiments, we
empirically observed that warm-up training with
the additional data brings 2-3% relative improve-
ment consistently (see Table 9).

5.2 Experiment Setup

In our experimental setting, we first trained and
evaluated the base model: a Vanilla Transformer
(Vaswani et al., 2017) (6 encoder and 6 decoder
layers, with 768 hidden size and a fixed token em-
bedding layer). We then incorporated prior lan-
guage knowledge to the base model by loading the
BART-base, BART-large, and mBART (Lewis et al.,
2020; Liu et al., 2020), and fine-tuned the back-
bones with parallel pairs. For automatic evaluation
metrics, we adopted the common methods used
for language generation based on n-gram overlap:
BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005), ROUGE (Lin, 2004), and the
semantic-based metric BERTScore (Zhang et al.,
2020) upon similarity of contextualized sentence
representations.

All models were implemented with PyTorch and
Hugging Face Transformers 8. AdamW optimizer
(Kingma and Ba, 2015) was used. The batch size
and learning rates were set at 16 and 2e-5, respec-

7https://www.nltk.org/api/nltk.tokenize.html
8https://github.com/huggingface/transformers
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Model Type BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L BERTScore

Unaltered Singlish Messages (Lower bound) 35.6 61.1 63.7 42.5 68.7 72.2
Vanilla Transformer (Vaswani et al., 2017) 47.7 72.3 75.4 65.3 74.1 78.5
BART-base w/ Fine Tuning 55.0 79.7 83.5 70.2 85.7 84.1
BART-base w/ Fine Tuning + Input Perturbation 57.8 81.1 84.6 72.3 86.1 86.5
BART-large w/ Fine Tuning 58.4 81.0 85.0 73.5 86.3 86.4
BART-large w/ Fine Tuning + Input Perturbation 61.5 81.6 85.8 75.8 87.0 87.9

mBART-large-50 w/ Fine Tuning 57.2 80.3 84.6 72.3 85.3 86.0
mBART-large-50 w/ Fine Tuning + Input Perturbation 60.2 81.1 85.2 74.9 85.9 86.7

Table 5: Automatic evaluation scores on the Singlish message paraphrasing task. The proposed text perturbation is
conducted on all input samples at the training stage. ROUGE and BERTScore reported here are F1 scores.

tively. We added label smoothing (weight λ =
0.1) on the cross-entropy loss (Müller et al., 2019).
Warm-up training step number was 2000. We used
early stopping (patience = 5) if validation perfor-
mance did not improve. Test results were reported
with the best validation checkpoints. Beam search
size was set at 5. Other information such as envi-
ronment details and trainable parameter sizes are
shown in Appendix Table 12.

5.3 Automatic Evaluation Results
We first calculate the evaluation metrics between
Unaltered Singlish Messages and annotated text.
This serves as a lower bound performance, as no
paraphrasing is conducted (see Table 5), which also
demonstrates Singlish bears unique usages from
standard English. Compared to the Vanilla Trans-
former, leveraging pre-trained language backbones
significantly improves the performance, and the
BART-large outperforms the BART-base. Adopt-
ing the input perturbation further yields certain
improvements. To evaluate the effectiveness of
leveraging a multilingual backbone, we also ap-
plied multilingual BART (mBART) (Liu et al.,
2020). However, it did not show any additional
performance gains. Presumably, this is because
borrowing features and non-English words/spans
in Singlish are not well represented in the mul-
tilingual pre-training process and data resources.
For example, Hokkien and Malay are not in the
supported language list of mBART. Moreover, in
Singlish messages, the Mandarin words are not ex-
pressed in Chinese characters but in Pinyin, which
are currently not included in the pre-training of
most multilingual backbones.

5.4 Human Evaluation Results
Aside from automatic evaluation, we conducted a
human evaluation to complement objective metrics.
Following prior work (Wieting and Gimpel, 2018),
each text candidate is scored on a five-grade scale

Model Type Avg. Rating Score

Human Reference 3.87
BART-large w/ Fine Tuning 3.12
+ additional Input Perturbation 3.41

Table 6: Human evaluation results. 100 samples were
randomly selected from the test set and assessed by 6
linguistic experts. All rating scores are averaged.

of [1, 5], where 1 means the paraphrasing is unac-
ceptable, and 5 means it can be taken as a ground
truth. We randomly selected 100 test samples, and
asked the linguistic experts to score the correspond-
ing human-written and model-generated outputs.
Details of the assessment interface are shown in
Appendix Figure 3. Six raters conducted the human
evaluation independently, and the average scores
are summarized and shown in Table 6. While input
perturbation brings significant improvement, there
is still space for models to reach human reference
performance.

To gain further insights into the limitations of
automatic paraphrasing, we conduct text-level anal-
ysis on some samples. As shown in Table 7, neu-
ral generators produce reasonable changes in the
lexical normalization and syntactic editing, while
semantic rewriting is still relatively challenging, es-
pecially for code-switching and some non-English
spans (see more examples in Appendix Table 11).
Considering the insufficient language modeling of
borrowing words and special abbreviations and the
limited corpus with human annotation, we specu-
late an augmented unsupervised pre-training pro-
cess is beneficial for tackling this challenge, and it
can be one of the future work.

5.5 Experiment on Different Sample Groups

The confidence scores described in Section 3.2.2
are labeled during the annotation process. They can
present the inter-annotator agreement level, and par-
tially reflect the sample difficulty of paraphrasing.

3930



Model Type Text Content

Source Input Yup... Okay. Cya tmr.. So long nvr write already... Dunno whether tmr can come
up with 500 words

Human Reference Yes... Okay. See you tomorrow... It has been so long since I have written... I do
not know whether tomorrow I can come up with 500 words.

BART-large w/ Fine Tuning Yes... Okay. See you tomorrow... So long never write already... Do not know
whether tomorrow I can come up with 500 words.

BART-large w/ Input Perturbation Yes... Okay. See you tomorrow... I have not written in so long already... I do not
know whether tomorrow I can come up with 500 words.

Table 7: One Singlish message example and the generated text from human annotation and neural models. Text
spans colored in blue are appropriate changes, and in purple are sub-optimal changes.

Figure 2: BLEU scores calculated on test sample groups
with different confidence scores (range from 1 to 5).
Samples with score 0 are considered as invalid annota-
tion, and excluded from the test set.

Therefore, we calculate BLEU scores on test sam-
ple groups with different confidence scores. As
shown in Figure 2, the BLEU scores of level 4 and
5 are larger than those of level 1 and 2, and this
demonstrates that samples with lower confidence
scores are generally more challenging for both hu-
man and automatic paraphrasing.

5.6 Experiment on Corpus Combination

To assess the effectiveness of joint training of lex-
ical normalization and sentence paraphrasing as
well as their difference, we further conduct an ex-
periment upon the single and mixed training data
combination, as shown in Table 9. From the re-
sult, we observed that: (1) models only trained on
lexical normalization corpora could not provide
strong baseline performance on our Singlish para-
phrasing task. (2) compared with single training on
our Singlish corpus, training on the merged dataset
yields 2-3% relative improvement at all fronts.

5.7 Experiment on Downstream Task

When applied to online communication, the para-
phrasing model is able to reduce text noise such as
non-canonical wording and misspelling, and it is
potentially beneficial for various downstream tasks
where noisy samples are ubiquitous. In this article,
we choose stance detection of English tweets (Mo-

Model Type Precision Recall F1 Score

Training and Evaluation on Original Samples
BERTweet-base 68.6 72.1 70.0
RoBERTa-base 70.8 71.7 71.1

Training and Evaluation on Processed Samples
BERTweet-base 70.4 72.5 71.2 [1.7% ↑]
RoBERTa-base 71.3 74.3 72.7 [2.3% ↑]

Table 8: Results on the stance detection task. We pro-
cessed the corpus with our message paraphrasing model
for comparison to raw samples. Values in bracket de-
note the relative performance increase.

hammad et al., 2016) for experimentation, which is
generally formulated as a classification problem of
3 types (i.e. Favor, Against, and None). The corpus
consists English samples with non-standard lexi-
cal and syntactic features. We ran the paraphras-
ing model (BART-large w/ Fine Tuning + Input
Perturbation) on both training and test tweet sam-
ples. Then following previous work, two strong
and representative baselines BERTweet (Nguyen
et al., 2020) and RoBERTa (Liu et al., 2019) are
trained on the processed corpus (more configura-
tion details are shown in Appendix Table 12), and
we reported F1, precision and recall scores on the
test set. As shown in Table 8, while the two mod-
els perform slightly differently, their classification
performance obtained improvement on all fronts
after the de-noising transformation (especially a
2.3% relative F1 score increase). This suggests that
while our paraphrasing model is trained on Singlish
messages, it is still useful for tasks that are not in
Singlish since it learned re-writing from context
and can reduce the input noise significantly.

6 Conclusions

In this paper, we analyzed the representative lin-
guistic features of colloquial Singapore English,
and proposed a joint task of creole language trans-
lation and text normalization. We formulated the
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Model Type BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L BERTScore

Unaltered Singlish Messages (Lower bound) 35.6 61.1 63.7 42.5 68.7 72.2

Training on two English lexical normalization corpora
BART-base w/ Fine Tuning 45.9 65.7 77.7 63.1 80.2 77.1
BART-base w/ Fine Tuning + Input Perturbation 47.0 67.3 79.1 64.8 82.2 78.8

Training on our Singlish message corpus
BART-base w/ Fine Tuning 53.3 78.9 81.8 69.2 83.9 80.3
BART-base w/ Fine Tuning + Input Perturbation 56.3 80.1 83.0 71.4 84.5 84.8

Training on the merged dataset
BART-base w/ Fine Tuning 55.0 79.7 83.5 70.2 85.7 84.1
BART-base w/ Fine Tuning + Input Perturbation 57.8 81.1 84.6 72.3 86.1 86.5

Table 9: Corpus combination experiment with automatic evaluation scores. Models are trained separately on
English lexical normalization and our Singlish message data. The proposed text perturbation is conducted on all
input samples at the training stage. ROUGE and BERTScore reported here are F1 scores.

paraphrasing task of Singlish-to-standard English
into three sub-tasks: lexical level normalization,
syntactic level editing, and semantic level rewrit-
ing. Based on this linguistic hierarchy, we con-
structed an annotated dataset and reported base-
line performance via fine-tuning language back-
bones, and further robustified the neural models
with linguistically-inspired input perturbation. Ex-
periment on a downstream stance detection task
showed better performance when the input (collo-
quial English or Singlish) is de-noised by our para-
phrasing model, suggesting that models developed
using the data we build could help normalize noisy
user-generated text. Our task definition, annotation
protocol, constructed corpus, and reported base re-
sults pave the way for future studies on creole and
colloquial language processing.
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chine translation of very close languages. In Pro-
ceedings of the sixth conference on Applied natural
language processing, pages 7–12.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a# twitter.
In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human
language technologies, pages 368–378.

John Harris et al. 1993. Losing and gaining a language:
the story of kriol in the northern territory. Language
and culture in Aboriginal Australia, page 145.

Mian Lian Ho, John Talbot Platt, et al. 1993. Dynam-
ics of a contact continuum: Singaporean English.
Clarendon Press.

Pierre-Edouard Honnet, Andrei Popescu-Belis, Claudiu
Musat, and Michael Baeriswyl. 2018. Machine trans-
lation of low-resource spoken dialects: Strategies
for normalizing swiss german. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, and
Marjan Ghazvininejad. 2019. Training on synthetic
noise improves robustness to natural noise in machine
translation. W-NUT 2019, page 42.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference for Learning Rep-
resentations.

Jakob RE Leimgruber. 2011. Singapore english. Lan-
guage and Linguistics Compass, 5(1):47–62.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In Proceedings of the ACL 2020, pages
7871–7880.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Marco Lui, Jey Han Lau, and Timothy Baldwin. 2014.
Automatic detection and language identification of
multilingual documents. Transactions of the Associ-
ation for Computational Linguistics, 2:27–40.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016. A
dataset for detecting stance in tweets. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3945–
3952.

Benjamin Muller, Benoît Sagot, and Djamé Seddah.
2019. Enhancing bert for lexical normalization. In
The 5th Workshop on Noisy User-generated Text (W-
NUT).

Rafael Müller, Simon Kornblith, and Geoffrey Hinton.
2019. When does label smoothing help? arXiv
preprint arXiv:1906.02629.

Preslav Nakov and Jörg Tiedemann. 2012. Combining
word-level and character-level models for machine
translation between closely-related languages. In
Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 301–305.

3933



Dat Quoc Nguyen, Thanh Vu, and Anh-Tuan Nguyen.
2020. Bertweet: A pre-trained language model for
english tweets. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 9–14.

Toan Q Nguyen and David Chiang. 2017. Transfer
learning across low-resource, related languages for
neural machine translation. IJCNLP 2017, page 296.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Richard Sproat, Alan W Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of non-standard words. Com-
puter speech & language, 15(3):287–333.

Dmitry Supranovich and Viachaslau Patsepnia. 2015.
Ihs_rd: Lexical normalization for english tweets.
In Proceedings of the Workshop on Noisy User-
generated Text, pages 78–81.

Izumi Suzuki, Yoshiki Mikami, Ario Ohsato, and Yoshi-
hide Chubachi. 2002. A language and character
set determination method based on n-gram statistics.
ACM Transactions on Asian Language Information
Processing (TALIP), 1(3):269–278.

Rob van der Goot, Alan Ramponi, Arkaitz Zubiaga, Bar-
bara Plank, Benjamin Muller, Iñaki San Vicente Ron-
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Discourse Particle Original Text Paraphrased Text

‘leh’ marks a tentative sugges-
tion or request.

Still eating. Got free mcflurry. U
(leh), going back liao..

I am still eating. I got a free
McFlurry. What about you? I am
going back.

‘hor’ attempts to garner sup-
port for a proposition.

I go can (hor).. Is it alright for me to go?

‘wot’ marks obviousness and
contradiction.

Datz (wot) i tld u 2 go 4 sleep... That is why I told you to go to
sleep...

‘lor’ indicates obviousness or
resignation.

Yar (lor)... How u noe? U used dat
route too?

Yes... How do you know? you used
that route too?

‘mah’ marks information as
obvious.

Lol that is my lunch timing (mah)
wat time u want?

Lol that is my lunch time. What time
do you want?

‘meh’ indicates skepticism. s quite 4 me... U dun find it accurate
(meh)...

It is quite for me... Don’t you find it
accurate?

‘liao’ present past tense. They have done the test (liao) They have already done the test.

‘lah’ is a mood marker, and
appeals for accommodation.

She should be quite safe (lah) She should be quite safe.

‘one’ indicates topic promi-
nence (a syntax to emphasize
the topic–comment structure).

This country weather very hot (one). The weather is very warm in this
country.

Table 10: Selected clause-final discourse particles of colloquial Singlish. In our annotation protocol, the particles
that only convey (weak) emphasis will not trigger the semantic rewriting, such as ‘ya’ and ‘mah’.

Model Type Text Content

Source Input Hehe cumi dnt mind much for litle quarels in ua lyf.. J0y n sadnes b0th are a part of lyf.. Try to
smile in pain N atlast i’m wid u f0reva as a frnd..

Human Reference Hehe Cumi did not mind much for the little quarrels in your life... Joy and sadness are part of
life... Try to smile in pain and at least I am with you forever as your friend.

BART-large w/ Fine Tuning Hehe cumi don’t mind much for little quarels in your life.. Jokes and sadnes are a part of life..
Try to smile in pain and at last i’m with you f0reva as a friend.

BART-large w/ Input Perturbation Hehe Cumi do not mind much for little quarels in your life.. Joy and sadness both are a part of
life.. Try to smile in pain and at last I am with you forever as a friend..

Source Input Woot.wan ask u ST de interview how de ah. will ask simi kind of thing.
Human Reference Woot. I want to ask you how is the ST interview like. What kind of thing will they ask?
BART-large w/ Fine Tuning Woot. Want to ask you ST the interview. Will ask simi kind of thing.
BART-large w/ Input Perturbation Woot. I want to ask you ST how the interview. I will ask some kind of thing.

Source Input Ahh I know lol. Like that if im the nominated one, walk pass also paiseh la
Human Reference Ah, I know lol. If I am nominated, it will be embarrassing to walk past.
BART-large w/ Fine Tuning I know lol. Like that if I am the nominated one, walk pass also sorry.
BART-large w/ Input Perturbation Ahh, I know lol. Like that if I am the nominated one, walk pass also sorry.

Source Input Haha. I was kidding lah. Yaloh. Yaloh. I’ll try dessert also. Tml uintro their zao pai cai ar. Haha.
Human Reference Haha. I was kidding. Yes. Yes. I will try dessert also. Tomorrow you will introduce their most

famous dish. Haha.
BART-large w/ Fine Tuning Haha. I was kidding. Yaloh. I will try dessert also. Tomorrow uintro their zao pai cai. Haha.
BART-large w/ Input Perturbation Haha. I was kidding. Yes. I will try dessert also. Tomorrow I will sample their zao pai cai. Haha.

Source Input baobei still syncing... dropbox so slow.. dar wait awhile morr
Human Reference Baby, I am still syncing it... Dropbox is so slow... Dear, wait for a while.
BART-large w/ Fine Tuning Baobei, it is still syncing...Dropbox is so low... Darling wait awhile more..
BART-large w/ Input Perturbation Baby it is still syncing... Dropbox is so slow... darling, wait a while..

Table 11: Examples of Singlish message paraphrasing, and the generated text from human annotation and models.
To improve the readability, here we only color the spans with sub-optimal changes in purple.
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Figure 3: The rating form template for the human evaluation described in Section 5.4. Text candidates are shuffled
for each sample to reduce the order bias, and we average the scores from all raters.

Environment Details

GPU Model Single Tesla V100 with 16 GB memory; CUDA version 10.1.
Library Version Pytorch==1.7.1; Transformers==4.8.2.
Computational Cost Average 1.5 hours training time for one round. Average 3 rounds for each

reported result (calculating mean of the result scores).

Hyper-parameter Setting Detail

Paraphrasing Task
Neural Generator Vanilla Transformer (12-layer, 768-hidden, 16-heads, 135M parameters).

BART-base (12-layer, 768-hidden, 16-heads, 139M parameters).
BART-large 24-layer, 1024-hidden, 16-heads, 406M parameters.
mBART-large-50 (24-layer, 1024-hidden, 16-heads, 610M parameters).

Learning Rate and Batch Size We set the learning rate (2e-5) and batch size (16) according to regular language
model fine-tuning strategy (Lewis et al., 2020).

Beam Search Size We evaluated beam search sizes from 3 to 10, and 5 provided the best balance of
performance and inference speed.

Label Smoothing Weight We set the label smoothing weight λ at 0.1 for fine-tuning on language generation
work (Lewis et al., 2020).

BERTScore Metrics We use the RoBERTa-base version of BERTScore (Zhang et al., 2020).

Stance Classification Task
Corpus The corpus we used for stance detection is from a published work (Mohammad

et al., 2016), where all data are anonymized, and only for research use.
Bertweet-base (12-layer, 768-hidden, 12-heads, 130M parameters).

Neural Classifier RoBERTa-base (12-layer, 768-hidden, 12-heads, 125M parameters).
Bertweet-base (12-layer, 768-hidden, 12-heads, 130M parameters).

Learning Rate and Batch Size We set the learning rate (2e-5) and batch size (32) according to regular language
model fine-tuning strategy (Devlin et al., 2019).

Table 12: Details of the experimental environment and the hyper-parameter setting.
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Abstract

Multilingual pre-trained language models have
shown impressive performance on cross-
lingual tasks. It greatly facilitates the ap-
plications of natural language processing on
low-resource languages. However, there are
still some languages that the current multi-
lingual models do not perform well on. In
this paper, we propose CINO (Chinese Mi-
nority Pre-trained Language Model), a mul-
tilingual pre-trained language model for Chi-
nese minority languages. It covers Standard
Chinese, Yue Chinese, and six other ethnic
minority languages. To evaluate the cross-
lingual ability of the multilingual model on
ethnic minority languages, we collect doc-
uments from Wikipedia and news websites,
and construct two text classification datasets,
WCM (Wiki-Chinese-Minority) and CMNews
(Chinese-Minority-News). We show that CINO
notably outperforms the baselines on various
classification tasks. The CINO model and
the datasets are publicly available at http:
//cino.hfl-rc.com.

1 Introduction

The multilingual pre-trained language model
(MPLM) is known for its ability to understand
multiple languages, and its surprising zero-shot
cross-lingual ability (Wu and Dredze, 2019). The
zero-shot cross-lingual transfer ability enables the
MPLM to be applied on the target languages with
limited or even no annotated data by fine-tuning the
MPLM on the source language with rich annotated
data. MPLMs greatly facilitate transferring the cur-
rent NLP technologies to low-resource languages
and reduce the cost of developing NLP applications
for low-resource languages.

The existing public MPLMs such as mBERT
(Devlin et al., 2019), XLM (Conneau and Lam-
ple, 2019) and XLM-R (Conneau et al., 2020) can

∗Email corresponding.

handle 100 languages, but there are still some chal-
lenges on low-resource languages understanding:

• The size of pre-training corpora of some low-
resource languages is small compared to the
high-resource languages. This bias towards high-
resource languages may harm the performance
on low-resource languages.

• There are thousands of living languages in the
world, but many languages have not been covered
in the existing MPLMs, especially indigenous or
ethnic minority languages. For example, Tibetan,
a language spoken mainly by Tibetans around
Tibetan Plateau, is absent from the CC-100 cor-
pus. Therefore, the XLM-R tokenizer can not
tokenize Tibetan scripts correctly, and XLM-R is
not good at understanding Tibetan texts.

Recently, more advanced MPLMs have been pro-
posed, such as ERNIE-M (Ouyang et al., 2021),
VECO (Luo et al., 2021) and Unicoder (Huang
et al., 2019). These models focus on multilingual
training objectives, such as leveraging parallel sen-
tences to improve the alignment between different
languages, and have improved notably over XLM-
R. However, these models have not paid attention
to the low-resource languages, so the problem re-
mains unsolved.

For the above reasons, it is necessary to develop
multilingual pre-trained language models for low-
resource and ethnic minority languages. In this
paper, we focus on Chinese minority languages. In
China, Standard Chinese (Mandarin Chinese) is
the predominant language. Besides Standard Chi-
nese, we consider several most spoken minority
languages. These languages are in different lan-
guage families with varying writing systems, as
summarized in Table 1.

Although each of the listed minority languages
is spoken by at least millions of people, their digital
corpus resources are quite limited. For example, in
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ISO Code Language Name Language Family Writing System

zh Standard Chinese (Mandarin) Sino-Tibetan Chinese characters
yue Yue Chinese (Cantonese) Sino-Tibetan Chinese characters
bo Tibetan Sino-Tibetan Tibetan script
mn Mongolian Mongolic Traditional Mongolian script
ug Uyghur Turkic Uyghur Arabic alphabet
kk Kazakh Turkic Kazakh Arabic alphabet
za Zhuang Kra-Dai Latin alphabet
ko Korean Isolate Hangul

Table 1: Families and writing systems of the languages covered by CINO.

the CC-100 corpus used by XLM-R, the size of the
Uyghur (ug) corpus is 0.4 GB, which is about 1%
of the Chinese (Simplified) corpus (46.9 GB); also,
there are no Tibetan (bo) or (traditional) Mongolian
(mn) corpora in the CC-100.

We propose a multilingual pre-trained language
model named CINO (Chinese Minority Pre-trained
Language Model), which covers Standard Chinese,
Yue Chinese (Cantonese) and six ethnic minority
languages. As far as we know, this is the first multi-
lingual pre-trained language model for the Chinese
minority languages. CINO largely has the same
structure as XLM-R and has been adapted for mi-
nority languages by resizing its vocabulary and
adopting a fast masked language modeling objec-
tive for the pre-training.

The reason for training a multilingual pre-trained
model rather than multiple monolingual pre-trained
models is threefold. First, a multilingual model is
more convenient than multiple monolingual mod-
els. Second, for low-resource languages, multilin-
gual pre-training leads to better performance than
monolingual pre-training (Conneau et al., 2020;
Wu and Dredze, 2020). Third, a multilingual pre-
trained model provides cross-lingual transfer abil-
ity, which reduces the data annotation cost for
low-resource languages. Studies have also shown
that pre-training with more languages leads to bet-
ter cross-lingual performance on low-resource lan-
guages (Conneau et al., 2020).

The public natural language understanding tasks
in Chinese minority languages are extremely lim-
ited. In this work, we construct two multilingual
datasets from two data sources to support evaluat-
ing the zero-shot cross-lingual ability of MPLMs
on the Chinese minority languages: (1) The WCM
(Wiki-Chinese-Minority) dataset is a multilingual
text classification dataset built from Wikipedia cor-

pora, with 10 classes, consisting of 63k examples.
(2) CMNews (Chinese Minority News) dataset is
a multilingual news classification dataset with 8
classes, built from the crawled news and the pre-
existing news datasets, consisting of 57k examples.

To evaluate CINO from different perspectives,
we run experiments on Tibetan News Classification
Corpus (TNCC), Korean news topic classification
(YNAT), WCM, and CMNews. Results show that
CINO has acquired the ability of minority language
understanding and outperforms the existing base-
lines on the Chinese minority languages.

To summarize, our contributions are:
• We introduce CINO, the first multilingual pre-

trained language model for Chinese minority
languages. Besides Standard Chinese, CINO
covers Yue Chinese and six ethnic minority
languages.

• We construct two multilingual text classifica-
tion datasets for Chinese minority languages.
They are used for evaluating the cross-lingual
and multilingual abilities of the ethnic minor-
ity language model.

• Experiments show that CINO achieves no-
table improvements over the baselines. Fur-
thermore, by making the model public, CINO
will be a useful resource on Chinese minority
languages and facilitate related research.

2 Related Work

2.1 Pre-trained Language Models

Multilingual Pre-trained Language Models. De-
vlin et al. (2019) introduced the first multilin-
gual pre-trained language model mBERT trained
with Masked Language Modeling (MLM). Con-
neau and Lample (2019) proposed Translation
Language Modeling (TLM) to train the multilin-
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gual model with cross-lingual supervision. Since
then, various kinds of multilingual pre-training ob-
jectives have been proposed. Unicoder (Huang
et al., 2019) trains the model with the objec-
tives including cross-lingual word recovery, cross-
lingual paraphrase classification and cross-lingual
MLM. InfoXLM (Chi et al., 2021) proposed a pre-
training task based on contrastive learning from an
information-theoretic perspective. Pan et al. (2021)
also introduced an alignment method based on con-
trastive learning. Cao et al. (2020) proposed an
explicit word-level alignment procedure. ERNIE-
M (Ouyang et al., 2021) integrates back-translation
into the pre-training process. VECO (Luo et al.,
2021) uses a cross-attention module to build the
interdependence between languages explicitly. In
this work, we only use non-parallel data and an
objective similar to MLM for pre-training CINO.

Non-English Pre-trained Language Models
and Benchmarks. Many pre-trained models have
been trained on English corpora, or corpora that
are heavily biased toward English. To make NLP
techniques accessible to people from different cul-
tures, researchers have developed pre-trained mod-
els and benchmarks targeting different languages:
FlauBERT and the FLUE benchmark for French
(Le et al., 2020), KLUE-BERT and the KLUE
benchmark for Korean (Park et al., 2021), In-
doBERT and the IndoLEM benchmark for Indone-
sian (Koto et al., 2020), and there are Chinese-
BERT-wwm (Cui et al., 2021) and Arabic BERT
AraBERT (Antoun et al., 2020). However, there are
no pre-trained language models targeting Chinese
ethnic minority languages.

2.2 Language Diversity in China

There are 56 ethnic groups and more than 80 lan-
guages in China. Standard Chinese (Mandarin) is
the official language, spoken mainly by ethnic Han
Chinese, which accounts for more than 90% of
the total population. Ethnic minorities have their
own languages. According to the study in Moseley
(2010), the ethnic minority languages Mongolian,
Uyghur, Kazakh, Tibetan,Yi, and Korean are safe
(five of them are covered by CINO), which are spo-
ken by about 25 million people, while the rest are
in unsafe or endangered status.

Besides the ethnic minority languages, there are
dialects and varieties of Chinese across the country.
In this work, we consider Yue Chinese (also known
as Cantonese), a widely used group of varieties of

Chinese in Southern China and have been carried
by immigrants to Southeast Asia and many other
parts of the world.

Some languages in Table 1 are spoken and
widely used in more than one country, such as Ko-
rean, Mongolian and Kazakh. In this work, we
named them as minority languages based on their
status in China.

3 CINO Model

In this section, we present the CINO model struc-
ture and the pre-training methodology. We de-
note by N the number of pre-training languages,
Ci the monolingual corpus of the ith language
(i = 1, . . . , N ). Let ni be the number of sentences
and li be the mean sequence length in Ci. Let ci
represent the total number of tokens of Ci.

3.1 Model Structure

CINO is a multilingual transformer-based model
with the same architecture as XLM-R. For the
CINO-base, it has 12 layers, 768 hidden states, and
12 attention heads; for the CINO-large, it has 24
layers, 1024 hidden states, and 16 attention heads.
The main differences between CINO and XLM-R
are the word embeddings and the tokenizer. We
start from the word embeddings and the tokenizer
of XLM-R and adapt them for the minority lan-
guages by vocabulary extension and vocabulary
pruning, as depicted in Figure 1.

Vocabulary Extension. The original XLM-R
tokenizer does not recognize Tibetan scripts and
Traditional Mongolian scripts, so we extend the
XLM-R tokenizer and XLM-R word embeddings
matrix with additional tokens.

We train sentence-piece tokenizers for Tibetan
and Mongolian on their monolingual pre-training
corpora respectively. Each of the tokenizers has
a vocabulary size of 16,000. Then we merge the
vocabularies from the Tibetan and Mongolian to-
kenizers into the original XLM-R tokenizer. The
merged tokenizer has a vocabulary size of 274,701.

To extend the word embeddings, we resize the
original word embeddings matrix of shape V ×D
to V ′ ×D by appending new rows, where D is the
hidden size, V is the original vocabulary size, V ′ is
the new vocabulary size. The new rows represent
the word vectors of the new tokens from the merged
tokenizer. They are initialized with a Gaussian
distribution of mean 0.0 and variance 0.02.

Vocabulary Pruning. Next, we prune the word
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Figure 1: We extend the XLM-R tokenizer with a Ti-
betan tokenizer and a Mongolian tokenizer, then remove
the redundant tokens to obtain the CINO tokenizer.

embeddings matrix to reduce the model size. We to-
kenize the pre-training corpora with the merged to-
kenizer, and remove all the tokens that have not ap-
peared in the corpora from the merged tokenizer’s
vocabulary and the word embeddings matrix. The
above process discards 139,342 tokens.

Finally, we obtain the CINO model structure
with a vocabulary size of 135,359, a model size of
728 MB for the base model, 1.7 GB for the large
model, 68% and 79% size of XLM-R-base and
XLM-R-large, respectively. A smaller vocabulary
size leads to not only a memory-friendly model
but also a faster model by reducing the cost of
computing the log-softmax in the MLM task. The
time cost of each iteration in pre-training is reduced
by approximately 35% by reducing the vocabulary
size from 270k to 140k.

3.2 Pre-training
We adopt the MLM objective for pre-training. In
addition, we apply the following strategies for bal-
ancing training data and faster pre-training.

3.2.1 Resampling Strategy
To balance the data size between high-resource
and low-resource languages, Conneau and Lample
(2019) and Chi et al. (2021) have applied a multi-
nomial sampling strategy. An example in the ith
language is sampled with the probability

pi =
nαi∑N
k n

α
k

, (1)

where α ∈ (0, 1] is a hyperparameter.
However, if the mean sequence lengths of differ-

ent corpora are different, it may lead to an unde-
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Figure 2: The vocabulary size counted from the corpus
of each language. We merge the vocabularies of the
languages that have similar writing systems.

sired data bias.1 To see this, we use c̃i to denote the
number of tokens seen during training. We have
c̃i ∝ pili and c̃i = Kci for all i = 1 . . . N if α = 1.
K is a constant that only depends on the number of
training steps. If two languages i and j that have
the same number of tokens, i.e., ci = cj , but with
ni > nj and li < lj . With the sampling ratio in
(1), we get c̃i < c̃j if α < 1 although the original
corpora are of the same size. To remedy this, we
introduce the dependence on the mean sequence
length li. The sampling probability is

pi =
nαi /l

β
i∑N

k n
α
k/l

β
k

, (2)

where β ∈ [0, 1]. Setting β = 1 − α, the number
of training tokens in the ith language is

c̃i ∝ pili ∝ nαi l1−βi = (nili)
α = cαi . (3)

Therefore, corpora of equal size will be trained
with an equal number of tokens.

3.2.2 Fast Masking Language Modeling
Table 1 shows that the languages we consider have
distinguished writing systems, which implies that
the vocabulary of each language only takes up a
fraction of the whole vocabulary, as shown in Fig-
ure 2. By taking advantage of this fact, the com-
putational costs can be reduced if the model only
makes MLM predictions over the vocabulary of the
specific language of the input examples rather than
the whole vocabulary.

1In most cases, we could join short sequences to form long
sequences of a uniform length. But some corpora we use
consist of short sentences. Joining them as a long sequence
leads to semantically incoherence.
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Suppose the example is in the ith language. We
denote by V the full vocabulary, and Vi ⊂ V the vo-
cabulary of the ith language, which is obtained by
tokenizing the ith language’s monolingual corpus.
Let (c, x) denote the input text sequence, where
x is the masked token, and c is the context. By
limiting the prediction of the masked token to Vi,
the MLM loss of the masked token x is

L(i)MLM = − log
exp(g(c) · E(x))∑

x′∈Vi exp (g(c) · E(x′))
, (4)

where g(·) is the transformer encoder and E(·) is
the look-up operation that returns the embeddings.

In order to calculate the loss (4) efficiently, dur-
ing training, we group examples by language so
that each batch contains examples in a single lan-
guage.

With the objective (4) for pre-training, we have
observed 10% time reduction and no significant
performance drop compared to the original MLM
objective, which predicts over the whole vocabu-
lary. Combined with the speedup by vocabulary
pruning, the pre-training time cost is reduced by
about 40% in total.

4 Text Classification Datasets for
Minority Languages

Multilingual tasks have been used widely to eval-
uate the cross-lingual transferability of multilin-
gual models (Hu et al., 2020). Nevertheless, the
pre-existing multilingual datasets hardly cover the
Chinese ethnic minority languages. For exam-
ple, Tibetan, Mongolian and Uyghur have never
appeared in any task in the XTREME bench-
mark. To evaluate the cross-lingual transferabil-
ity of CINO, we construct two text classification
datasets WCM (Wikipedia-Chinese-Minority) and
CMNews (Chinese-Minority-News).

4.1 WCM Dataset
Data Collection and Annotation. WCM is based
on the data from Wikipedia. It covers seven lan-
guages: Mongolian, Tibetan, Uyghur, Kazakh, Ko-
rean, Cantonese, and Standard Chinese. We build
the dataset from the Wikipedia page dumps and
the Wikipedia category dumps2 of the languages in
question.

To annotate the data, we first generate a category
graph for each language. Each node represents a
category, and each edge stands for the affiliation

2https://dumps.wikimedia.org/other

between a pair of categories. By referring to the
category system of Chinese Wikipedia, we choose
ten categories for the classification task: Art, Geog-
raphy, History, Nature, Science, Personage, Tech-
nology, Education, Economy, and Health. Then,
we start from the categories of each page and back-
track along the routes in the category graph until
reaching one of the ten target categories, and we
set this category as the label of that page. Owing
to some affiliation conflicts, like one subcategory
belonging to two categories simultaneously, we re-
constructed the graph by removing certain edges
between the 10 target categories and their subcate-
gories which are assessed as unreasonable by our
human evaluation team.

Data Cleaning. After getting the labeled data,
we apply several strategies to improve the quality of
the datasets. We remove dirty data like large blocks
of URLs and file paths. Then, the examples are
filtered by their lengths (after being tokenized by
the CINO tokenizer) by removing those examples
shorter than 20 or longer than 1024 tokens.3

Subsampling. Since there are both high-
resource languages like Korean and low-resource
languages like Uyghur, we down-sample the data in
the high-resource languages and the high-resource
categories to balance the numbers of examples
among different languages and different categories.
We fix the size of the training set (Chinese articles)
to 32K and downsample the datasets of the lan-
guages with abundant articles to about 5% ∼ 20%
size of the training set. Similarly, we also down-
sampled some categories if they dominate in some
languages. We did not apply the above process to
Uyghur due to its extreme scarcity.

Finally, we obtain 63,137 examples. WCM con-
tains the train/dev/test set for Standard Chinese and
only test sets for other languages. The detailed
distribution is listed in Appendix C.

4.2 CMNews Dataset
Data Collection and Annotation. To collect the
minority language examples, we crawl the news
from the news websites in ethnic minority lan-
guages and record the category to which each
news item belongs. To collect the Chinese news,
we reuse the pre-existing dataset SogouCS News
(Wang et al., 2008) and CAIL 2018 (Xiao et al.,
2018). We select the appropriate categories and

3We discard examples that are too long because long ex-
amples likely cover multiple topics while we assign a single
label to each example.
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Dataset mn bo ug kk ko yue zh Total

WCM
# Samples 27 5 4 52 43 49 20 200
# Correctly Labeled 24 4 4 49 34 43 19 177
Matching Acc 88.9% 80% 100% 94.2% 79.1% 87.8% 95.0% 88.5%

CMNews
# Samples 11 34 24 14 10 23 84 200
# Correctly Labeled 8 31 24 14 10 20 80 187
Matching Acc 72.7% 91.2% 100% 100% 100% 87.0% 95.2% 93.5%

Table 2: Results of human evaluation of the sampled examples from WCM and CMNews.

down-sample the two datasets to make the whole
dataset more balanced.

After gathering the raw data from all the lan-
guages, we first merge the categories that have
similar meanings (for example, we merge the cat-
egories Finance and Economy). Since the defini-
tion of news category may vary from website to
website and language to language, we remove the
categories that are not consistent in different lan-
guages by manually checking a sampled subset.
We also remove the categories that do not appear
in more than two languages. Finally, we obtain
a dataset containing eight categories: Education,
Sports, Health, Tourism, Legal, Economy, Culture,
and Society.

Data Cleaning. The crawled news is much
cleaner than the Wikipedia pages, and each docu-
ment naturally belongs to only one category. There-
fore we only perform length filtering by keeping
the documents that contain more than 30 tokens
after tokenization.

The dataset contains 56,764 examples in total.
We split the dataset into a training set and a devel-
opment set. The detailed distribution is listed in
Appendix C.

4.3 Human Evaluation
To assess the quality of the datasets, we randomly
sample 200 examples from WCM and 200 exam-
ples from CMNews and manually check whether
the contents of the examples match their labels.
The results are shown in Table 2. Matching Acc
denotes how many examples match their labels
under human evaluation. We find that 88.5% of
the sampled examples from WCM and 93.5% of
the sampled examples from CMNews are correctly
labeled, which shows CMNews has less noise.

5 Experiments

5.1 Pre-training Setup
Pre-training Data. We randomly sample a subset
dataset from the public base version of WuDao-

Corpora (Yuan et al., 2021) as the Standard Chi-
nese corpus; the corpora of the minority languages
are in-house data, consisting of short monolingual
sentences. The total corpora size is 28 GB. The
statistics of the pre-training corpora are listed in
Appendix A.

Experiment Settings. CINO is trained with the
fast MLM objective (4) with the masking probabil-
ity is 0.2 and the max sequence length 256. We
initialize the parameters of CINO with XLM-R. We
use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with the peak learning rate of 2e-4 for
the base model and 1e-4 for the large model. The
learning rate is scheduled with 10k and 5k warmup
steps followed by a linear decay for the base and
the large model respectively. The sampling hyper-
parameter α is set to 0.7. We train the model with
the batch size of 4,096 for 150k steps for the base
model, and the batch size of 8,192 for 75k steps
for the large model. The pre-training is performed
on 16 NVIDIA A100 GPUs. The full pre-training
hyperparameters are summarized in Appendix B.1.

5.2 Downstream Evaluation

How does CINO perform on the newly introduced
languages? How does CINO perform on the lan-
guages pre-existing in XLM-R? Does CINO show
multilingual and cross-lingual abilities? To an-
swer these questions, we evaluate CINO on (1)
Tibetan News Classification Corpus (Qun et al.,
2017) (TNCC); (2) Korean news topic classifica-
tion (Park et al., 2021) (YNAT); (3) WCM and
CMNews. On TNCC and YNAT,4 we evaluate
the in-language model performance, i.e., we train
and evaluate the model on the same language. On
WCM and CMNews, we evaluate the cross-lingual
ability. We describe the details in Section 5.4.

For each task and each model, we run the exper-
iment five times with different seeds and report the
mean metrics. The fine-tuning hyperparameters of

4The splitting sizes of TNCC and YNAT are listed in Ap-
pendix C.
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each experiment are listed in Appendix B.2.

5.3 Baselines

Besides the common multilingual pre-trained mod-
els mBERT and XLM-R, we compare CINO mod-
els with the following baselines on some tasks.
XLM-R-Ext. We extend and prune the vocabulary
of XLM-R as described in Section 3.1. This model
is the un-pretrained CINO. The embeddings of Ti-
betan and Mongolian are randomly initialized, and
the other parameters are the same as XLM-R.
KLUE-BERT-base. This is a Korean pre-trained
model proposed in Park et al. (2021). Although
KLUE-BERT-base is a base-sized model, it outper-
forms other large models on the YNAT task except
for XLM-R-large.
TextCNN is a simple and light-weight model for
text classification tasks (Kim, 2014). The word
embedding dimension is set to 300. After the em-
bedding layer, we apply three convolution layers
in parallel with the number of out-channels 100,
kernel size 3,4, and 5, respectively. Finally, we con-
catenate the outputs from the convolution layers
and apply a two-layer fully-connected network with
ReLU activation to perform the classification. We
train the TextCNN from scratch with randomly ini-
tialized model parameters and word embeddings.
Word2vec (Tibetan). We first train the word em-
beddings using word2vec (Mikolov et al., 2013a,b)
on the TNCC training set. The embedding dimen-
sion is set to 300. To perform the classification task,
we average the word embeddings of each sample,
then feed the results to a trainable linear layer that
outputs the logits.

5.4 Results and Discussions

5.4.1 TNCC
How does CINO perform on the newly intro-
duced language? We evaluate CINO on TNCC, a
Tibetan classification dataset with 12 classes. The
original work (Qun et al., 2017) proposes a news
title classification and a news document classifica-
tion. Here we conduct the news document classi-
fication only. The task is to predict the topic of
each document. Because there are no official splits
available, we split the dataset into a training set,
a development set and a test set with a ratio of
8:1:1. Since the texts in the dataset have been pre-
tokenized (spaces have been added between words),
we remove the spaces between words and tokenize
the texts with the pre-trained tokenizer unless other-

Model TNCC Dev TNCC Test

Acc Macro-F1 Acc Macro-F1

TextCNN 69.4 65.7 62.8 66.6
Word2vec (Tibetan) 70.1 67.7 70.2 68.0

base models
mBERT 22.9 4.8 22.8 5.5
mBERT (p.t.) 63.9 56.2 61.8 56.4
XLM-R-base 35.1 20.2 31.1 21.1
XLM-R-base (p.t.) 34.2 21.5 31.4 19.9
XLM-R-Ext-base 55.7 43.2 55.0 42.1
CINO-base 74.8 71.4 73.1 70.0

large models
XLM-R-large 35.7 26.4 32.8 27.3
XLM-R-Ext-large 31.6 13.0 29.2 12.2
CINO-large 76.3 73.7 75.4 72.9

Table 3: Model performance on the Dev and Test sets of
Tibetan text classification task TNCC. p.t. is short for
pre-tokenized.

Model YNAT Dev

Acc Macro-F1

mBERT (Park et al., 2021) - 82.6†

XLM-R-base (Park et al., 2021) - 84.5†

XLM-R-large (Park et al., 2021) - 87.3†

KLUE-RoBERTa-large (Park et al., 2021) - 85.9†

KLUE-BERT-base (Park et al., 2021) - 87.0†

base models
mBERT 82.9 82.8
XLM-R-base 85.1 85.0
KLUE-BERT-base 87.0 87.1
CINO-base 86.1 85.9

large models
XLM-R-large 87.0 86.8
CINO-large 87.3 87.0

Table 4: Model performance on the Dev set of Korean
text classification task YNAT. The results marked with †

are taken from the KLUE paper (Park et al., 2021). The
rest results are from our experiments.

wise specified. We select the best checkpoint based
on its macro-F1 score. We also report the accuracy
score for reference.

The results are listed in Table 3. Compared
among the pre-trained models, XLM-R series have
low scores since the vocabulary is not adapted for
the Tibetan language and has not been pre-trained
on the Tibetan corpus. While XLM-R-Ext-base has
an extended vocabulary and significantly outper-
forms XLM-R-base even without being pre-trained
on the target language. Finally, by pre-training on
the minority languages corpora, CINO is adapted
to the new language and outperforms XLM-R and
XLM-R-Ext notably.

mBERT achieves better results when fine-tuned
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WCM

zh→ min.

Model bo kk ko mn ug yue zh Avg (Minorities) Avg (All)

base models
XLM-R-base 19.0 16.7 43.2 15.2 23.3 58.3 78.1 29.3 36.2
CINO-base 36.2 43.2 44.9 39.1 33.4 59.7 78.0 42.6 47.6

large models
XLM-R-large 18.4 32.9 43.8 22.2 27.8 60.0 77.3 34.2 40.3
CINO-large 40.6 44.8 44.8 41.6 28.8 59.8 79.2 43.3 48.4

CMNews

min. → zh

Model bo kk ko mn ug yue zh Avg (Minorities) Avg (All)

base models
XLM-R-base 38.1 69.6 88.3 35.1 77.5 (67.7/88.6) 87.8 58.6 66.1 65.0
CINO-base 85.5 79.2 89.0 77.3 77.4 (77.0/78.0) 86.9 68.8 82.6 80.6

large models
XLM-R-large 30.1 80.8 88.9 30.8 85.1 (76.4/91.0) 87.5 63.6 67.2 66.7
CINO-large 86.8 83.0 90.3 79.4 78.8 (68.4/91.3) 87.9 71.2 84.4 82.5

Table 5: Model performance on the WCM and CMNews. The metric on each language is macro-F1. Avg
(Minorities) is the mean score over languages other than zh; Avg (All) is the mean score over all languages. We
bold any score within 0.1 of the best on each language. The results in the parentheses are the min and the max
values of five runs.

on the pre-tokenized data (but there are still many
tokens being mapped to [UNK]). Due to the dif-
ference in the tokenization algorithms used by
mBERT and XLM-R, XLM-R does not benefit
from using pre-tokenized data.

TextCNN and Word2vec (Tibetan) surprisingly
achieve competitive scores and outperforms XLM-
R-Ext-base. It is possibly due to the difficulty in the
optimization of large models such as XLM-R with
limited training data. As we continue increasing
the model size, the performance gets worse, as can
be seen from comparing the scores of XLM-R-base-
Ext and XLM-R-large-Ext.

5.4.2 YNAT

How does CINO perform on the minority lan-
guages pre-existing in XLM-R? We evaluate
CINO on YNAT, a Korean text classification
dataset with 7 classes. We select the best check-
point based on its macro-F1 score. The results are
listed in Table 4. CINO-base outperforms XLM-R-
base, while CINO-large is better than XLM-R-large
by our reimplementation but lower than the score
reported in Park et al. (2021). CINO-large is also
comparable to KLUE-BERT-base.

Notice that Korean is not a low-resource lan-
guage in XLM-R (the size of the Korean corpus
is 54 GB in the CC-100), thus XLM-R may have
learned Korean well. To significantly outperform
XLM-R and KLUE-BERT-base, we expect that
longer training time and more data are required.

5.4.3 WCM and CMNews

Does CINO show multilingual and cross-lingual
abilities? We use these two datasets to evaluate the
cross-lingual and multilingual abilities. We take
macro-F1 as the metric on each language, and the
Avg is the arithmetic mean of the macro-F1 scores.

On the WCM dataset, we train models on the
Chinese training set and test it on all the languages,
so the results show how well the model transfers the
knowledge from Chinese to the minority languages;
the best checkpoint of each run is selected based
on its score on Chinese; On the CMNews dataset,
we train models on the minority languages and the
Chinese data is zero-shot; the best checkpoint is
selected based on its score on minority languages.
The results are listed in Table 5.

On WCM, Avg (Minorities) score shows that
CINO has superior zero-shot performance over
XLM-R. By inspecting the detailed performance on
each language, we see that CINO most significantly
outperforms XLM-R on Tibetan, Kazakh, Mongo-
lian and Uyghur, which have been insufficiently
pre-trained in XLM-R.

On CMNews, because CINO has been adapted
to minority languages, it learns more effectively
than XLM-R by leveraging the examples in all the
languages. zh score shows that CINO transfers
better than XLM-R. CINO also outperforms XLM-
R on almost all the minority languages except for
ug, where there is a large gap. To find out the
reason, we list the min and the max ug scores of
five runs. We see that there is a large variance.
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CINO-large achieves the highest score among all
runs, but its average score is lower than XLM-R-
large. The unstable performance may be the main
reason that explains the gap.

6 Discussion on Limitations

Coverage of ethnic minority languages. Due to
the scarcity of minority language corpora, CINO
only covers Standard Chinese and some of the most
popular minority languages and dialects. While
being spoken by millions of people, some lan-
guages, such as the Yi language, are omitted in
this study since we can not find sufficient data for
pre-training.

Pre-training objectives. In our early trials of
multilingual pre-training, we leveraged both mono-
lingual and bilingual parallel data, and combined
the MLM objective with a cross-lingual alignment
objective, similar to the TLM objective used in Chi
et al. (2021) and Conneau and Lample (2019). In-
tuitively, parallel data contain more information
than monolingual data. However, we have not ob-
served significant improvements over pre-training
with only monolingual data and the MLM objec-
tive. The performance of CINO may be improved
if parallel data can be effectively used.

Languages from different cultures. Among
the languages in Table 1, some are cross-border
languages. The cross-border languages are spoken
in more than one country and are influenced by
local cultures. How well does the model that has
been trained on the corpus collected in one country
transfer to the corpus collected in another country?
If the writing systems of the language are different
(for example, Mongolian is written in Cyrillic in
Mongolia, while it is written in traditional Mon-
golian script in China), to what extent do writing
systems influence the model performance? We ex-
pect future work to address these questions.

7 Conclusion

In this paper, we introduce CINO, a multilingual
pre-trained language model for Chinese minority
languages. It takes the same structure as XLM-R
but with a different vocabulary and is pre-trained
with an adapted MLM objective to reduce compu-
tational costs. We build multilingual text classifica-
tion datasets WCM from Wikipedia and CMNews
from ethnic minority news for zero-shot ability
evaluation on the Chinese minority languages. We
evaluate CINO on several text classification tasks.

The results show that CINO achieves notable im-
provements over the existing baselines.
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A Statistics of the Pre-training Corpora

The corpus size and mean sequence length for pre-
training are listed in Table 6. The sequence lengths
are obtained by counting the tokens after tokeniza-
tion. For Standard Chinese (zh), we concatenate or
truncate each example to the max sequence length,
while for other languages, we do not concatenate
the examples but keep them unchanged.

Language # Tokens Mean Sequence Length

bo 130M 13.4
kk 238M 60.7
ko 170M 20.0
mn 337M 25.7
ug 1B 23.1
yue 276M 12.6
za 23M 58.1
zh 1.2B 254

Table 6: Corpus size and mean sequence length of each
language in the pre-training data.

B Hyperparameters

B.1 Pre-training Hyperparameters

Hyperparameter Base Model Large Model

Batch Size 4,096 8,192
Warmup Steps 10k 5k
Training Steps 150k 75k
Peak Learning Rate 2e-4 1e-4
Max Length 256 256
MLM probability 0.2 0.2
Adam ε 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Gradient Clipping 1.0 1.0
Weight Decay 0 0
Sampling α 0.7 0.7

Table 7: Hyperparameters used for pretraining CINO
models.

Table 7 presents the full set of the hyperparame-
ters used for pre-training CINO models.

B.2 Fine-tuning Hyperparameters

The hyperparameters for fine-tuning on the down-
stream tasks is listed in Table 9. The batch size is
32 for all experiments except Word2vec (Tibetan),

Dataset # Train # Dev # Test # Classes

TNCC 7,359 191 923 12
YNAT 45,678 9,106 - 7

Table 8: Number of examples in TNCC and YNAT.

of which batch size is 16. The learning rate is
scheduled with 10% warmup steps followed by a
linear decay.

We use Gensim (Řehůřek and Sojka, 2010)
to train the Word2vec embeddings, and set
min_count = 1, vector_size = 300. Other
parameters take the default values.

C Statistics of the Datasets

The sizes of TNCC and YNAT are shown in Table
8. Detailed data distribution of WCM is listed in
Table 10. Detailed data distribution of CMNews is
listed in Table 11.
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Model TNCC YNAT WCM CMNews

LR Epochs LR Epochs LR Epochs LR Epochs

Word2vec (Tibetan) 3e-2 20 - - - - - -
TextCNN 1e-4 40 - - - - - -
mBERT 3e-5 40 2e-5 5 - - - -
KLUE-BERT-base - - 3e-5 3 - - - -
XLM-R-base 5e-5 40 3e-5 3 1e-5 20 3e-5 5
CINO-base 5e-5 40 3e-5 3 1e-5 20 3e-5 5
XLM-R-large 3e-5 40 2e-5 3 1e-5 20 3e-5 5
CINO-large 3e-5 40 2e-5 3 1e-5 20 3e-5 5

Table 9: Hyperparameters used for downstream fine-tuning.

Category mn bo ug kk ko yue zh-train zh-test zh-dev

Arts 135 141 3 348 806 387 2657 335 331
Geography 76 339 256 572 1197 1550 12854 1644 1589
History 66 111 0 491 776 499 1771 248 227
Nature 7 0 7 361 442 606 1105 110 134
Natural Science 779 133 20 880 532 336 2314 287 317
Personage 1402 111 0 169 684 1230 7706 924 953
Technology 191 163 8 515 808 329 1184 152 134
Education 6 1 0 1392 439 289 936 118 130
Economy 205 0 0 637 575 445 922 109 113
Health 106 111 6 893 299 272 551 73 67

Total 2973 1110 300 6258 6558 5943 32000 4000 3995

Table 10: Number of examples in each category and language in WCM.

Split Category bo kk ko mn ug yue zh

Train

Education 626 364 378 187 423 880 1979
Sports 66 133 321 556 1216 70 1978
Health 1309 153 40 31 240 1358 2000
Tourism 1128 12 43 102 1078 0 1998
Legal 433 283 283 294 19 22 2000
Economy 399 107 192 510 0 1080 1877
Culture 1834 231 228 118 0 0 1995
Society 898 149 147 543 1132 169 1935

Total 6693 1432 1632 2341 4108 3579 15762

Dev

Education 418 243 253 125 282 587 1000
Sports 44 89 215 371 811 48 1000
Health 874 103 28 21 160 906 1000
Tourism 752 8 30 68 719 0 1000
Legal 289 190 189 196 14 15 1000
Economy 266 72 129 341 0 721 1000
Culture 1223 155 152 80 0 0 1000
Society 600 100 99 362 756 113 1000

Total 4466 960 1095 1564 2742 2390 8000

Table 11: Number of examples in each category and language in CMNews.
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Abstract

The way we use words is influenced by our
opinion. We investigate whether this is re-
flected in contextualized word embeddings.
For example, is the representation of “animal”
different between people who would abolish
zoos and those who would not? We explore
this question from a Lexical Semantic Change
standpoint. Our experiments with BERT em-
beddings derived from datasets with stance
annotations reveal small but significant differ-
ences in word representations between oppos-
ing stances.

1 Introduction

Our opinions are reflected in the way we talk. Peo-
ple with opposing stances on a particular topic may
use different words when talking about it. For ex-
ample, only people against the use of face masks
during the COVID-19 pandemic would sometimes
refer to them as “muzzles”. In this paper, however,
we do not investigate what words are used by each
side. Instead, we compare how speakers who dis-
agree on a subject use the same words. Specifically,
we want to know whether contextual models cap-
ture a difference between the representation of a
word (e.g., “mask”) when it is used by people who
are in favor vs. against a certain target (e.g., the
compulsory use of face masks).

We address this question from the perspective of
Lexical Semantic Change (LSC). Work on LSC
typically tries to detect word meaning changes
across two or more periods of time (Tahmasebi
et al., 2021), but its techniques have also been em-
ployed to identify synchronic differences in word
usage, for instance across different ages, genders,
professions (Gonen et al., 2020), domains (Yin
et al., 2018; Schlechtweg et al., 2019), or cultures
(Garimella et al., 2016). As opposed to related
studies that investigate LSC between different view-
points (Azarbonyad et al., 2017; Rodriguez et al.,

Figure 1: Example instances of “mask” from the
Covid19 stance dataset (Glandt et al., 2021). We com-
pare the within- and the between-stance usage similarity.

2021), our goal is not to explore the usage of spe-
cific words, and we do not evaluate our method
based on the ranking of words by meaning stability.
We rather want to determine whether vector repre-
sentations reflect a higher similarity in word usage
within a stance than between different stances (see
example in Figure 1). We explore this question
relying on datasets annotated with stance informa-
tion. Before that, we test different context-sensitive
embedding models on a simulated scarce-data set-
ting. This allows us to select a robust representation
type that can identify the words that are used most
differently between stances.

Our long-term goal is to detect differences in
word usage between speakers in a conversation,
which could point to their level of conceptual align-
ment (Stolk et al., 2016); that is, the extent to which
dialog participants “mean the same things when us-
ing the same words” (Schober, 2005). In this study
we present a first step in this direction. Representa-
tions that are sensitive to opinion differences could
be useful to identify disagreements and misalign-
ment in dialog.

2 Methodology

In this section we introduce the data and the models
used in our experiments. We also describe our
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similarity measure and the criteria for evaluation.1

2.1 Data

The datasets we use are in English and contain
stance information in the form of sentences that are
labeled as being in FAVOR or AGAINST a specific
target. We exclude sentences with no (clear) stance
(NONE), when present. SemEval2016 (Moham-
mad et al., 2016b,a) contains tweets on six varied
targets. We use 3,253 sentences.2 Covid19 (Glandt
et al., 2021) is another dataset with 3,918 tweets
centered on four targets related to the COVID-19
pandemic. P-stance (Li et al., 2021) is a large
dataset containing 21,574 tweets about three US
politicians. Finally, IBM-ArgQ-Rank-30kArgs
(Gretz et al., 2020), hereafter ArgQ, is a collection
of arguments on 71 targets which are annotated for
stance, stance clarity and argument quality. We use
29,972 arguments that have a clear stance (with a
confidence score3 above 0.6, following Bar-Haim
et al. (2020)).

We want to organize the data in a way that allows
us to investigate whether instances of the same
word have a higher similarity within a stance than
between stances. To this end, we preprocess and
organize the data as follows.

Preprocessing The ArgQ dataset was originally
intended for argument quality detection, and sev-
eral arguments mention their stance explicitly. To
mitigate the potential biases that this could cause,
we apply a strategy that we call sentence trimming
which automatically omits this part of a sentence.
We describe it in detail in Appendix A. Then we
tokenize, postag and lemmatize sentences in all
datasets. 4

Sentence Sets For a given target, we randomly
split the sentences of each stance (f or a) into two
equally-sized sets P and Q. With these sets, we
run four comparisons, two within-stance: WITHIN-
FAVOR (Pf vs Qf ) and WITHIN-AGAINST (Pa vs
Qa); and two between-stance: BETWEEN-1 (Pf vs
Qa) and BETWEEN-2 (Pa vs Qf ).

1Our code and data are available at https://github.
com/ainagari/1word2sides.

2We omit the target “Climate Change is a Real Concern”
because it only has 26 AGAINST tweets.

3This score reflects the extent to which annotators agreed
on the stance of an argument. It is calculated as a weighted
average of the annotators’ decisions and it ranges from 0 to 1.

4We use the default nltk functions, except for tweets,
which we tokenize with nltk’s TweetTokenizer. Lemmatiza-
tion is done with nltk’s WordNet Lemmatizer.

2.2 Vector Representations

We want to generate vector representations for sets
of word instances within a stance (e.g., in Pf ). For
example, we want to obtain one representation of
the word “woman” from sentences in favor of the
“Feminist Movement” (SemEval2016) and compare
it to the representation of “woman” in sentences
expressing a stance against this target.

In LSC detection, static embeddings tend to per-
form better than contextualized ones (Schlechtweg
et al., 2020). A typical approach is to learn static
embeddings separately for each time period, cor-
pus or viewpoint, and then compare them either
by aligning them (Hamilton et al., 2016) or with
a nearest-neighbors-based approach (Gonen et al.,
2020). In these studies, even in those dealing with
short-term change detection (Stewart et al., 2017;
Del Tredici et al., 2019), it is common to have a
fairly large amount of instances of a given word
available. However, the number of available sen-
tences per word within a stance in our data is lim-
ited.5 We therefore experiment with three different
types of contextualized embeddings:

À la carte embeddings (ALC) (Khodak et al.,
2018) have been used to detect differences in word
usage across viewpoints (Rodriguez et al., 2021).
The model consists in applying a linear transforma-
tion to the averaged pre-trained embeddings of the
context words surrounding the target word. We use
an ALC model relying on 300d GloVe embeddings
(Pennington et al., 2014) trained on 840B tokens
from Common Crawl.

Context2vec (c2v) (Melamud et al., 2016) is a
biLSTM model that generates embeddings for the
context surrounding a word. It is optimized so that
the representation of a context is similar to that of
potential filler words. We use a 600d model trained
on the ukWaC corpus (Baroni et al., 2009).

BERT (Devlin et al., 2019). We use contex-
tualized representations generated with the 768d
bert-base-uncased model. We explain how
we choose the best layer in Section 2.3.

We denote the vocabulary of a sentence set (e.g.
P ) as VP . We include in the vocabulary all nouns
and verbs appearing in at least three different sen-

5As an example, Schlechtweg et al. (2020) have an average
of 788 instances per lemma and time period; and Gonen et al.
(2020) study words that appear at least 200 times in their
corpus. In our data, the average amount of instances of a word
in one side of a comparison is 14.
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tences in P . In tweets, mentions and hashtags are
treated as nouns. Stopwords are excluded. We
treat all instances of a lemma with a specific part
of speech (PoS) as the same word. We extract a
vector representation wP for every word w in VP .
For c2v and BERT, this is done by averaging the
representations of all w instances in P .

2.3 Testing Representations

Before our experiments on stance, we first identify
the vector representations that are best suited to
reflect lexical semantic similarity between small
sets of sentences. Following Schlechtweg and
Schulte im Walde (2020), we use SemCor (Miller
et al., 1993), a sense-annotated corpus, to create a
dataset that simulates lexical semantic change. We
additionally control for the amount of sentences
available for each lemma. The process of creation
of this dataset is explained in more detail in Ap-
pendix B.

The dataset consists of 576 lemmas: 245 nouns,
241 verbs, 69 adjectives and 21 adverbs. For
every lemma we have two sets of 25 instances
each, P and Q. To simulate situations of scarce
data, we create X-sized subsets of P and Q (PX ,
QX ). We experiment with different values of X
(X ∈ {3, 5, 10, 20, 25}). As in Schlechtweg and
Schulte im Walde (2020), we determine the “true”
semantic distance between two groups PX and
QX by calculating the Jensen-Shannon divergence
(JSD) between their sense distributions.

Similarity predictions for a word w are obtained
by simply calculating the cosine similarity between
the representations of that lemma in each sentence
set, cos(wPX ,wQX ). We report the Kendall’s tau-b
correlation coefficient between JSD and the similar-
ities predicted by each representation type. Results
of this experiment are presented in Section 3.1.

2.4 Similarity Calculation

To calculate the global similarity in word usage
for a comparison between two sets of sentences P
and Q, we first identify the words that are common
in both sets, VP ∩ VQ. VP ∩ VQ contains words
that are not necessarily central to the target that is
being discussed. We therefore calculate a similarity
based only on a subset of VP ∩ VQ, which we call
VPQ. The similarity score is the average cosine
similarity of all words in VPQ:

sim(P,Q) =

∑

w∈VPQ
cos(wP ,wQ)

|VPQ|
(1)

This similarity measure is intended to reflect the
extent to which words are used in the same way
and in the same senses in two sentence sets. We
experiment with three definitions of VPQ. In all
of them, we take care of using the same amount
of words for all four comparisons within a target.
In all, we include the top k most frequent words
in VP ∩ VQ, where k corresponds to the smallest
size of VP ∩VQ available for that target. Frequency
is determined from the union of sentences in P
and Q. We also use the top 10 words in VP ∩
VQ with highest tf-idf scores in that target (tf-idf ).
Tf-idf scores are calculated on the ensemble of
stance datasets, treating all sentences about the
same target as one document. Finally, we also
use the 10 words in VP ∩ VQ with lowest tf-idf
(rev-tf-idf ). This subset contains words that are
less relevant to the target, and therefore we expect
BETWEEN- and WITHIN-stance similarities to have
closer values in this setting. Note that 25% of
comparisons (in SemEval2016 and ArgQ) have less
than 20 words in common. In these cases, tf-idf
and rev-tf-idf are partially calculated with the same
words.

2.5 Evaluation
We expect WITHIN-stance comparisons to exhibit
a higher average similarity than BETWEEN-stance
comparisons. To measure the extent to which this
holds, we use pairwise accuracy: we check for how
many (WITHIN, BETWEEN) comparison pairs the
BETWEEN comparison has a lower similarity. With
4 comparisons per target, our experiments involve
a total of 332 (WITHIN, BETWEEN) pairs. Results
on stance data are presented in Section 3.2.

3 Results

3.1 Selecting a Representation Type
Results on SemCor are shown in Figure 2. In plots
a and b, we see the correlations obtained by the
different representation types on various amounts
of data (X). Naturally, performance is worse with
lower values of X . This is especially the case of
ALC embeddings, which at X=25 continue to im-
prove. In the case of c2v and BERT, however, we
do not observe big improvements after X=10. In
this scarce-data setting, the performance of ALC
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Figure 2: a and b: Kendall’s tau obtained by different
vector representations on SemCor. We only include
even layers for BERT for better readability. c and d:
Performance of c2v and BERT (10th layer) by PoS.

embeddings is much lower than that of c2v and
BERT. Overall, BERT representations from the
10th layer work best. We therefore use embeddings
from this layer for our experiments on stance data.
We also look at the performance of the best two
models (c2v and the 10th layer in BERT) by PoS
(plots c and d): we find that nouns and verbs, the
PoS included in our stance experiments, are gener-
ally better represented. We also make interesting
observations regarding the other PoS. Despite the
lower performance, adjective representations seem
to be less affected by a smaller number of sentences.
When it comes to BERT adverb representations,
similarity estimations are more reliable at lower
values of X . These differences in PoS should be
taken into account when deriving type-level vectors
from BERT representations.

3.2 Results on Stance

Pairwise accuracy obtained with the 10th BERT
layer with different definitions of VPQ is found
in Table 1. We see that, especially for all and tf-
idf, pairwise accuracy is remarkably high in all
datasets. This shows that contextualized word rep-
resentations from BERT reflect differences in the
way words are used between two opposing stances.

When using the 10 words with lowest tf-idf (rev-
tf-idf ) performance decreases, but is still high in
P-stance and ArgQ. We run chi-square goodness-
of-fit tests on rev-tf-idf predictions to determine
their likelihood under the null hypothesis (H0 : acc

Dataset all tf-idf rev-tf-idf
SemEval2016 0.90 0.85 0.60
Covid19 0.88 0.81 0.50
P-stance 1.00 1.00 0.83
ArgQ 1.00 0.98 0.95
Global 0.99 0.96 0.90

Table 1: Pairwise accuracy by dataset and with different
VPQ. Global corresponds to all datasets put together.

all tf-idf rev-tf-idf
a) W vs W 0.013 0.010 0.023
b) B vs B 0.013 0.010 0.023
c) W vs B 0.047 0.027 0.041

Table 2: Differences in similarity between comparisons.

= 0.5). P-values are significant for all datasets
together (p < 0.001) but not for the set of Twitter
datasets (p = 0.08, α = 0.05).6 It seems BERT
representations do, to some extent, encode differ-
ences in words that are less relevant to the target.
However, if for some reason not all words can be
used (if there are too many), then it is preferable to
select a subset carefully (e.g. with tf-idf).

We also examine the words that have the highest
and the lowest similarities in BETWEEN compar-
isons; we provide this information in Appendix C.
The words that are used most differently between
stances tend to be nouns that are central to the topic
(e.g. “religion” in “Atheism”), while the most simi-
lar words are often non-topical (“man” or “take”).
In the middle of the distribution, in targets with a
small common vocabulary (<30) we find words
that are relevant to the topic, but in a less obvious
way (e.g. “world” and “community” for the tar-
get “Missionary work”). In targets with a larger
vocabulary we find a combination of relevant and
non-relevant words.

We investigate how large the differences in simi-
larity are between WITHIN (W) and BETWEEN (B)
comparisons. We investigate this by looking at
the differences in similarity (in absolute value)
across comparison pairs: a) between WITHIN-
FAVOR and WITHIN-AGAINST (W vs W), b) be-
tween BETWEEN-1 and BETWEEN-2 (B vs B), and
c) the average difference found in the four WITHIN

vs BETWEEN pairings (W vs B). We expect the
latter to have a larger difference in similarity than

6This could be due to particularities of the language used
in Twitter. We leave the use of models specialized on tweets
(e.g. BERTweet (Nguyen et al., 2020)) for future work.
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a) and b), where comparisons are of the same type.
Results are shown in Table 2. We report the average
of these values on all the data. Differences in simi-
larity are quite low overall, indicating that the con-
trast (i.e., the extent to which WITHIN comparisons
display a higher similarity than BETWEEN compar-
isons) is subtle. Values are, however, between 1.8
and 3.6 times larger for the W vs B comparison
pairs. For all VPQ definitions, the difference values
in these comparison pairs are significantly different
from those in a) and b) (p < 0.001).7

4 Conclusion and Future Work

We have shown that BERT word representations
are sensitive to the opinion expressed in the sen-
tences they are derived from. Differences in sim-
ilarity found between concurring and conflicting
stances are small, but significant; and words with
the highest differences tend to be central to the
topic. Our approach can serve to identify points
of discrepancy with regard to a target, and it can
be useful for stance detection and debate analysis.
Our experiments on SemCor provide valuable in-
sight on the sufficient amount of word instances
needed to obtain quality representations. This is
relevant for low-resource LSC and, more generally,
for inferring word vectors from little data.

In future work, we plan to apply this methodol-
ogy to dialog. Sets P andQwould each correspond
to the utterances of one speaker in a conversation.
The similarity measure would act as an approxima-
tion of the conceptual or stance alignment between
the two participants, indicating whether speakers
share opinions and use words in a similar way.
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A Sentence Trimming

Sentence trimming is intended to omit a part of
a sentence in the ArgQ dataset where stance is
expressed explicitly. These sentences often start
with the same words as the target. For example, for
the target “Homeschooling should be banned”, we
find the sentence “’Homeschooling should not be
banned because it is a right for parents to educate
their children in their comfort of home”. If the
beginning of a sentence contains the same words
as the target (with the optional addition of not and
n’t) and is followed by the token because (of), as,
since, a comma or a stop, we omit the first part of
the sentence up to and including that token. In the
example above, this results in the sentence “it is a
right for parents to educate their children in their
comfort of home”. This procedure modifies 3,223
sentences. Some sentences with an explicit stance
remain, but their number is importantly reduced.
These include sentences starting with the target
followed by connectors expressing effect (e.g., so
that, so as to), which cannot be easily trimmed into
a correct sentence or NP.

B Dataset for Testing Representations

In this section we describe in detail how we collect
the data from SemCor (see Section 2.3). We ran-
domly select 50 instances for every lemma that ap-
pears at least 50 times in SemCor. These instances
are randomly split into two sets of 25 sentences
each, P and Q. The X-sized subset of P , PX , con-
sists of the X first sentences in P . This approach
results in a dataset with rather low JSD, especially
for larger values of X . For example, for X = 25,
the mean JSD is 0.22 and only 2% of lemmas have
JSD > 0.5. To have a stronger representation of
high JSD values, we maximize JSD for certain lem-
mas. We do this for a subset of the lemmas for
which it is possible to find a P -Q split with zero
sense overlap, such that JSD = 1. Enforcing these
splits for ∼17% of all lemmas, the mean JSD for
X = 25 goes up to 0.33.

C Highest- and Lowest-Similarity Words

Table 3 contains, for every target in our study, the
words that differed the most and the least between
FAVOR and AGAINST statements. Interestingly,
among the top five most different words across all
targets, we find a majority of nouns (85.9% nouns
and 14.1% verbs). In the bottom five, instead, verbs
are more common (38.1% nouns and 61.9% verbs).
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Data Target Sentences Most different words Least different words
Se

m
E

va
l2

01
6

Feminist Movement 779
woman, men, equality come, leave, believe
woman, men, gender go, take, tell

Hillary Clinton 728
@hillaryclinton, #hillaryclinton, woman keep, world, go
@ hillaryclinton, #hillaryclinton, campaign make, take, come

Donald Trump 447
@realdonaldtrump, trump, #makeamericagreatagain want, give, take
@realdonaldtrump, trump, donald want, one, time

Atheism 588
religion, #god, believe man, think, go
#freethinker, religion, god take, make, come

Legalization of Abortion 711
abortion, woman, right think, know, say
abortion, woman, right take, carry, effect

C
ov

id
19

Face masks 1,361
mask, wear, people love, look, shut
wear, mask, people care, find, care

Stay at home orders 590
#covid19, #coronavirus, virus day, order, thing
#covid19, #coronavirus, virus let, must, see

Fauci 1,102
#drfauci, #coronavirus, #covid19 force, work, right
#drfauci, #covid19, #coronavirus leave, history, work

School closures 865
@imbhupendrasinh, @vijayrupanibjp, school time, do, need
school, kid, @realdonaldtrump come, way, show

P-
st

an
ce

Donald Trump 7,953
@realdonaldtrump, #donaldtrump, country color, head, pay
@realdonaldtrump, #trump, say arm, apply, wish

Bernie Sanders 6,325
@berniesanders, bernie, #democraticdebate check, note, ill
@berniesanders, bernie, sander assume, knock, sick

Joe Biden 7,296
#democraticdebate, @joebiden, #demdebate name, sign, like
#democraticdebate, @joebiden, biden dirt, tear, air

A
rg

Q

Marriage 413
marriage, people, couple union, make, need
marriage, couple, people create, become, thing

Vow of celibacy 418
celibacy, vow, church need, take, way
celibacy, vow, people nothing, way, time

Stay-at-home dads 392
home, dad, raise make, provide, life
home, dad, men time, allow, make

Assisted suicide 392
suicide, assist, people help, take, make
suicide, assist, people death, take, make

Fast food 416
food, eat, ban health, make, issue
food, people, ban world, make, time

Urbanization 404
area, urbanization, city space, create, grow
urbanization, people, area population, make, create

Missionary work 434
people, missionary, work make, take, way
work, people, missionary make, want, need

Libertarianism 381
libertarianism, government, people lead, give, provide
libertarianism, government, people take, one, work

Human cloning 416
clone, cloning, human life, need, way
cloning, clone, human make, thing, life

Blockade of the Gaza
Strip

506
strip, gaza, blockade stop, right, state
strip, gaza, blockade state, get, give

Gender-neutral language 368
language, gender, people offend, way, time
language, gender, people make, feel, way

Compulsory voting 405
voting, compulsory, vote make, way, want
vote, compulsory, people take, mean, could

Zero-tolerance policy
in schools

454
school, tolerance, student lead, way, time
school, student, policy way, make, time

Payday loans 442
loan, people, need situation, take, need
loan, money, people take, make, give

Whaling 423
whale (N), whaling, whale (V) help, way, need
whale (N), whale (V), whaling part, need, world

Capital punishment 467
punishment, capital, death justice, make, serve
capital, punishment, crime way, give, time

Cosmetic surgery
for minors

494
minor, surgery, child thing, involve, give
surgery, minor, decision need, adult, cause
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School uniform 474
school, student, uniform stop, take, allow
school, uniform, student make, give, feel

Foster care 529
child, kid, care may, service, find
child, parent, care become, make, put

Polygamy 493
polygamy, legalize, marriage make, take, one
polygamy, marriage, woman way, make, time

Prostitution 499
prostitution, legalize, prostitute give, allow, want
prostitution, legalize, woman choice, involve, want

Zoos 395
animal, zoo, live life, allow, make
animal, zoo, habitat provide, keep, take

The right to keep
and bear arms

407
keep, bear, arm law, take, remove
bear, keep, weapon person, must, take

Social media 330
medium, people, allow create, make, lose
medium, people, allow see, world, time

Multi-party system 390
system, people, multiparty bring, need, allow
party, system, government choose, population, thing

Nuclear weapons 542
weapon, country, use maintain, keep, life
weapon, country, war mean, make, world

Homeschooling 395
child, homeschooling, school give, time, keep
child, homeschooling, education help, teacher, way

Telemarketing 437
telemarketing (N), telemarketing (V), telemarketers allow, need, take
telemarketing (V), telemarketing (N), telemarketers money, work, time

Entrampment 400
law, crime, entrapment get, make, allow
crime, entrapment, commit place, time, know

Homeopathy 352
medicine, homeopathy, remedy harm, condition, placebo
homeopathy, medicine, people treat, cause, allow

Intelligence tests 462
intelligence, people, person way, base, focus
person, test, child show, type, know

Austerity regime 412
regime, austerity, economy spend, time, make
regime, austerity, debt reduce, pay, allow

Child actors 435
actor, child, use take, show, play
actor, child, use take, make, lead

Mandatory retirement 475
retirement, work, worker make, position, force
retirement, workforce, worker keep, provide, give

Sex selection 400
selection, child, parent allow, could, decide
selection, baby, sex bear, right, way

Economic sanctions 389
sanction, country, nation leader, make, take
sanction, country, people make, punish, help

Intellectual property rights 415
property, right, product come, make, time
property, right, people time, take, think

Use of public defenders 415
lawyer, defender, use get, require, way
defender, lawyer, defend person, mean, allow

Guantanamo Bay
detention camp

444
guantanamo, bay, detection serve, way, use
guantanamo, detection, camp law, make, usa

Women in combat 370
combat, woman, men prohibit, could, make
combat, woman, men war, may, make

Naturopathy 536
medicine, naturopathy, treatment lead, take, life
naturopathy, medicine, treatment seek, allow, make

Church of Scientology 401
scientology, church, ban member, believe, practice
scientology, church, ban need, allow, practice

Embryonic stem cell
research

396
stem, cell (N), cell (V) help, need, use
cell, stem, research people, need, life

Affirmative action 438
action, people, job way, get, make
action, people, discrimination school, way, work

Cannabis 543
cannabis, marijuana, legalize take, time, way
cannabis, marijuana, drug may, allow, take
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Vocational education 418
education, school, subsidize lead, make, way
education, subsidize, people work, go, give

Racial profiling 412
profiling, criminal, people make, person, life
profiling, people, crime stop, time, way

Private military companies 392
company, ban, government could, make, time
company, government, military security, need, might

Flag burning 426
burning, flag, burn protect, freedom, make
flag, burning, burn lead, protect, state

Surrogacy 431
surrogacy, baby, woman right, become, term
surrogacy, woman, surrogate give, make, could

Student loans 369
student, loan, education everyone, put, make
loan, student, subsidize afford, work, make

Safe spaces 388
space, people, student life, may, thing
space, people, others make, allow, nothing

Algorithmic trading 387
trading, people, market access, allow, base
trading, computer, market field, risk, lead

Olympic games 409
olympic, game, olympics money, world, time
olympic, game, athlete give, time, take

Journalism 357
journalism, news, subsidize medium, need, could
journalism, subsidize, news could, need, support

Cosmetic surgery 425
surgery, people, appearance make, take, lead
surgery, people, ban feel, need, way

Targeted killing 409
target, people, kill use, state, take
target, killing, people enemy, take, put

Organ trade 408
trade, organ, sell give, death, way
trade, organ, legalize need, create, help

Space exploration 381
space, exploration, subsidize thing, support, country
space, exploration, planet thing, find, use

Factory farming 410
farm, factory, food space, allow, keep
factory, food, farming produce, keep, allow

Pride parades 394
parade, pride, gay right, allow, make
parade, pride, lgbt way, want, bring

Collectivism 440
collectivism, group, people need, one, way
collectivism, people, society take, lead, way

Television 387
television, people, watch way, thing, keep
television, news, entertainment could, way, make

School prayer 424
school, prayer, religion allow, take, person
prayer, school, religion part, time, place

Autonomous cars 445
car, road, drive cause, way, need
car, road, drive take, use, time

Holocaust denial 456
holocaust, denial, deny speech, allow, go
holocaust, denial, deny allow, world, say

Executive compensation 375
executive, compensation, company give, deserve, lead
executive, company, compensation level, work, allow

Three-strikes laws 490
law, strike, crime take, make, need
law, strike, people give, put, allow

Atheism 360
atheism, god, religion base, allow, make
atheism, religion, people way, provide, lead

Wikipedia 395
wikipedia, subsidize, information could, need, take
wikipedia, wikipedia, subsidize provide, way, give

Judicial activism 385
judge, law, activism use, need, way
judge, activism, law allow, rule, could

Table 3: Words with the highest and lowest differences for every target with representations from the 10th layer
of BERT. The two rows for each target correspond to BETWEEN-1 and BETWEEN-2, respectively. Target names
in ArgQ have been abbreviated for convenience. For example, the target “Marriage” was originally “We should
abandon marriage”.
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Abstract
Although it is widely agreed that world knowl-
edge plays a significant role in quantifier scope
disambiguation (QSD), there has been only
very limited work on how to integrate this
knowledge into a QSD model. This paper
contributes to this scarce line of research by
incorporating into a machine learning model
our knowledge about relations, as conveyed
by a manageable closed class of function
words: prepositions. For data, we use a scope-
disambiguated corpus created by AnderBois,
Brasoveanu and Henderson, which is addition-
ally annotated with prepositional senses using
Schneider et al’s Semantic Network of Adpo-
sition and Case Supersenses (SNACS) scheme.
By applying Manshadi and Allen’s method to
the corpus, we were able to inspect the informa-
tion gain provided by prepositions for the QSD
task. Statistical analysis of the performance
of the classifiers, trained in scenarios with and
without preposition information, supports the
claim that prepositional senses have a strong
positive impact on the learnability of automatic
QSD systems.

1 Introduction

QSD is a problem in natural language processing
that arises in connection with sentences that contain
multiple quantified NPs:

(1) Every kid climbed a tree.

Sentence (1) can be understood to mean that ev-
ery kid climbed a possibly different tree. This is
the so-called surface scope reading where the first
quantified NP has wider scope than the second,

corresponding to the surface ordering of the two
NPs in the sentence: every kid > a tree. The other,
and usually less preferred, reading is the one in
which there is a single tree that all the kids climbed.
This is the inverse scope reading where the second
quantified NP has wider scope than the first, re-
versing the order of the two NPs in the sentence:
a tree > every kid. Many studies on quantifier
scope have dealt with the issue of generating the
set of possible scope readings for a sentence like
(1), both from a theoretical perspective (May, 1978;
Cooper, 1983; May, 1985; Hendriks, 1993; Steed-
man, 2012; Barker and Shan, 2014) and computa-
tionally (Woods, 1987; Hobbs and Shieber, 1987;
Bos, 1996; Copestake et al., 2001; Egg et al., 2001;
Bos et al., 2004; Koller et al., 2008; Evang and
Bos, 2013; Sayeed, 2016). A much smaller num-
ber of studies have focused on statistical and au-
tomatic QSD and the problem of identifying the
set of factors relevant to scope preferences (Hig-
gins and Sadock, 2003; AnderBois et al., 2012;
Manshadi and Allen, 2011; Manshadi et al., 2013).
These studies have shown, mostly in line with what
was proposed in the semantics literature and borne
out in psycholinguist work (Ioup, 1975; Micham
et al., 1980; Gillen, 1991; Kurtzman and MacDon-
ald, 1993; Tunstall, 1998; Anderson, 2004; Radó
and Bott, 2011; Dotlačil and Brasoveanu, 2015;
Capelier-Mourguy et al., 2015), that the grammati-
cal role (i.e., subject and object) and lexical realiza-
tion of a quantifier have an effect on scope-taking;
linear precedence in a sentence has an effect as
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well.1

The above factors are certainly not sufficient to
predict quantifier scope. It has been repeatedly
stressed in previous work that world knowledge
also plays a significant part in real world QSD,
and any successful model for the QSD task should
make use of it (Saba and Corriveau, 2001; Srini-
vasan and Yates, 2009; Manshadi and Allen, 2011;
AnderBois et al., 2012; Tsiolis, 2020). To the best
of our knowledge, however, Srinivasan and Yates
(2009) have been unique in using a model explic-
itly geared towards world knowledge (in particular,
numerical typicality) in the QSD task. Drawing on
Saba and Corriveau (2001), they decided on the pre-
ferred scoping by comparing the size of two classes,
e.g., Person and City, standing in a relation such
as the living-in relation. For example, the surface
scope reading is dispreferred in a sentence such as
A person lives in every city because it would require
a person to live in an atypically large number of
cities. The present study seeks to contribute to this
scarce line of research through incorporating into
a QSD model our knowledge about relations, as
conveyed by a manageable closed class of function
words: prepositions.

Relations between objects (but also times,
events) are often signaled with prepositions (Puste-
jovsky, 1991; Srikumar and Roth, 2013; Abzian-
idze and Bos, 2017; Schneider et al., 2018). Prepo-
sitions serve, among other things, to convey place
and time (There is a restaurant at every cor-
ner, John taught on each Monday), to express
configurational relationships like possession or
part/whole (someone with every key, a day of every
month), and to indicate semantic roles in predi-
cate–argument structure like agent or instrument (a
study sponsored by a consumer group, a store filled
with lots of food). Recent work argues that certain
prepositional senses are special in that they encode
dependencies that have an effect on scope-taking
(Grudzińska and Zawadowski, 2019, 2020). For
example, the preposition of expressing ‘part-whole
sense’ — as in a day of every month — introduces
a dependency between each whole (month) and
its respective parts (days). By quantifying over
this dependency, we obtain the inverse scope read-

1The effect of linear precedence has been debated in previ-
ous works, with some authors arguing against it (Ioup, 1975;
Micham et al., 1980; Kurtzman and MacDonald, 1993), and
it needs to be further explored, especially in freer word order
languages with case marking (as is the case, e.g., in Sayeed
et al. (2019)).

ing for the example in question: for every month,
there is a different day that belongs to it (every
month > a day). The surface scope reading (a
day > every month) is excluded because of what
we know about parts and wholes, namely that we
can have many parts (days) belonging to the same
whole (month), but a single part (day) cannot be-
long to more than one whole (month). Conversely,
the ‘whole-containing-part sense’ of the preposi-
tion of — as in a group of four homeowners —
encodes a dependency between a group and its re-
spective members, thus only allowing surface scope
(a group > four homeowners). Furthermore, uni-
versal quantification in locative and temporal prepo-
sitional phrases tends to support inverse scope. For
example, the locative preposition at — as in a
restaurant at every corner — implies ‘disjointness’
(objects do not occupy more than one place at a
time), and hence can be interpreted as a dependency
between each corner and the respective restaurants
located at that corner. Quantifying over this depen-
dency yields the inverse scope reading: for every
corner, there is a different restaurant located at it.
The surface scope reading is excluded because one
restaurant cannot occupy more than one place (ev-
ery corner) simultaneously.

Our study takes its theoretical inspiration from
the above work and contributes to research on au-
tomatic QSD by examining the previously unex-
plored predictors of quantifier scope: prepositions
and their senses. For the experiments undertaken
in this study, we use a scope-disambiguated cor-
pus created by AnderBois et al. (2012), addition-
ally annotated with prepositional senses using the
Semantic Network of Adposition and Case Super-
senses (SNACS) scheme proposed in Schneider
et al. (2018). Our results indicate that preposi-
tional senses have a strong role in the QSD task
and encourage further research and deeper analy-
sis in this area. The structure of the paper is as
follows. Section (2) introduces our corpus and dis-
cusses its annotation process. Section (3) explains
the methodology of our study. In (4), we introduce
our experimental setup and discuss the features we
have used in our models. Section (5) presents our
results and (6) concludes with a summary and some
directions for future work.

2 Corpus

The present study uses a scope-disambiguated cor-
pus which was created for the purposes of the 2012
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study by AnderBois, Brasoveanu and Henderson
(2012). It consists of 680 sentences with multiple
quantified NPs from the reasoning section of the
Law School Admission Test — the so-called logic
puzzles. Logic puzzles provide a good corpus for
QSD for they use quantifiers frequently, provid-
ing a fair number of sentences containing scopally
interacting quantifiers.

Every sentence of AnderBois et al.’s corpus is la-
beled with the relative scope of the quantified NPs
involved. Scope is coded numerically, with 1 cor-
responding to widest scope and smaller numbers
indicating narrower scope; cases with no relative
scope like logical equivalence (e.g., two universals
or two existentials) are co-tagged with the same
number. The scope predictors incorporated into
the annotation in the corpus include sentence order
(it is not explicitly tagged, since it can be recov-
ered from the linear order of the tags themselves),
grammatical function (Subject, Object, Adjunct,
etc.) and lexical realization of quantifiers. The be-
ginning of the tag is marked by & and the end is
marked by ♯:

(2) Hannah visits at least one&3_O_
at.least.one♯ city in each&2_in_each♯ of
the three&1_of_the.three♯ countries.

Since the sentences in the corpus were chosen
for quantified NPs, they would be expected to pro-
vide no bias with respect to prepositions. The
most common prepositions in English identified
by Litkowski and Hargraves (2007) do indeed over-
lap in eight cases with those in the corpus, although
in some cases the frequency distribution is differ-
ent: of, in, on, at, to, for, with, and from. While
individual prepositions in prepositional phrases are
tagged separately in the corpus (as illustrated by
example (2)), the prepositional senses are not. It is,
however, prepositional senses (rather than preposi-
tions) that induce or block inverse scope. For ex-
ample, as discussed above, the ‘part-whole sense’
of the preposition of induces inverse scope, while
its inverse ‘whole-containing-part sense’ blocks
it. For our study, we additionally annotated the
corpus with prepositional senses, using the Se-
mantic Network of Adposition and Case Super-
senses (SNACS) scheme proposed in Schneider et
al. (2018; 2020).

2.1 Preposition-sense annotation

The SNACS scheme provides a hierarchy of 50
supersenses, divided into three main subhierarchies
that loosely correspond to adverbial adjuncts, event
arguments, and adnominal complements:

• CIRCUMSTANCE: TIME, LOCUS, MEANS,
MANNER, PATH, . . .

• PARTICIPANT: AGENT, THEME, RECIPIENT,
BENEFICIARY, INSTRUMENT . . .

• CONFIGURATION: WHOLE, ORG, QUANTI-
TYITEM, POSSESSION, STUFF . . .

Furthermore, the scheme deploys the construal
analysis proposed in Hwang et al. (2017), i.e., it
introduces a distinction between a SCENE ROLE

(marked by SS), which expresses the preposition’s
meaning in context, and a FUNCTION (marked by
SS2), which denotes the preposition’s lexical mean-
ing. Both SCENE ROLE and FUNCTION are drawn
from the supersense hierarchy and are often iden-
tical. The SNACS scheme was applied to prepo-
sitions in the STREUSLE corpus, a collection of
online consumer reviews taken from the English
Web Treebank (Bies et al., 2012). Each preposition
token in the STREUSLE corpus is annotated with
SS and SS2 (SS;SS2):

(3) Dan arrived at 10 am. TIME;TIME

(4) The team at Max’s is great. ORG;LOCUS

In example (3), the preposition at is unambiguously
temporal — SS and SS2 are congruent. In example
(4), there is an overlap between organizational be-
longing meaning (marked by ORG) and locational
meaning (marked by LOCUS) — SS and SS2 dif-
fer. The construal analysis helps with cases where
multiple supersenses seem to fit and contributes to
reducing disagreement among annotators, who are
not forced to pick a single label in cases of meaning
overlap.

Our scope-disambiguated corpus has been anno-
tated with prepositional senses by three annotators,
all non-native speakers with linguistic training. The
annotators were familiar with the annotation man-
ual — guidelines for English including description
of the 50 supersenses, with examples and crite-
ria for borderline cases (Schneider et al., 2020).
Across all targets, there was good agreement on SS

between the three annotators, k = .68, p = .000,
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and there was very good agreement on SS2 be-
tween the three annotators, k = .79, p = .000.
Agreement was higher on the function slot than on
the scene role slot. This is expected considering
the fact that the function of a preposition reflects
its prototypical and more stable meaning, whereas
the scene role depends on context and can vary
more from person to person. Our results are only
slightly lower than the SNACS IAA numbers found
in Schneider et al. (2018) (k = .73 and k = .80).
Our agreement is so strong most likely due to the
simple literal language of the logic puzzles. The re-
maining differences were adjudicated in meetings
involving all of the three annotators.

2.2 Scope annotation

The number of tagged quantified NPs in a sentence
ranges from two to eight in AnderBois et al.’s cor-
pus. Manshadi and Allen (2011, 2013) developed
a method that can deal with an arbitrary number
of quantifiers per sentence in the QSD task. They
define the task as learning to build a partial or-
der over the set of quantifiers in the sentence. In
adapting the scope coding in AnderBois et al.’s
corpus to Manshadi and Allen’s method, we thus
consider three relations between each pair of quan-
tifiers {q1, q2}, with q1 occurring before q2 in a
given sentence: wide scope (q1 > q2), narrow
scope (q2 > q1) and incomparability (q1, q2). The
three relations are used in order to determine the
quantifier scoping of each sentence from the cor-
pus, based on the relative scopings provided. De-
termining the scopes of the tagged quantifiers in
example (2) is straightforward. The third quantifier
outscopes the second (q3 > q2); the second one
outscopes the first one (q2 > q1). Moreover, since
outscoping is a transitive relation, the third one
also outscopes the first one (q3 > q1). Hence, the
formula describing the sentence’s scoping looks as
follows: q3 > q2 > q1. Each of the 680 sentences
in the corpus is annotated following that method.
According to the formula

∑
i ni∗(ni−1)/2, where

ni denotes the number of quantified NPs in a sen-
tence, there are 1451 relations between quantifiers
in the corpus.

3 Method

As mentioned above, Manshadi and Allen build
their method on the fact that quantifier scopings
(QS) form partial orders. Hence, they define QSD
as a task of creating partial orders and show that

q1

q4

q2 q3

Figure 1: TDAG representing quantifier scopings in
example (5): q1 > q4 > q2, q3.

it is equivalent to a pairwise comparison problem
(see Manshadi (2014) for definitions and proofs).

3.1 Manshadi and Allen’s approach

Partial orders can be represented as Directed
Acyclic Graphs (DAGs). In fact, since outscoping
is a transitive relation, Transitive Directed Acyclic
Graphs (TDAGs) have a one-to-one correspon-
dence with quantifier scopings — each has exactly
one TDAG representing it. Hence, every sentence’s
QS is analysed in its transitive closure form and
TDAGs are used for visualisation purposes.

Figure 1 depicts a TDAG which is a represen-
tation of a typical, for the examples in the corpus,
quantifier scoping: q1 > q4 > q2, q3.2 A sentence
from the corpus which is defined by this order is
provided in example (5).

(5) Each&1_S_each♯ member of the Kim
family sits in a&3_in_a_Locus_Locus♯
seat adjacent to, and in the same
row&3_in_the.same_Locus_Locus♯ as, at
least one other&2_as_at.least.one.other_
ComparisonRef_ComparisonRef♯ mem-
ber of the family.

Since the QSD task is reduced to a problem
of pairwise comparisons, a sentence containing n
quantifiers results in n ∗ (n− 1)/2 samples. There
are four quantified NPs in example (5) which re-
sults in six different observations for the classifier.
For each pair of quantifiers (an observation), a clas-
sifier has to predict one of three relations: wide
scope, narrow scope or incomparability. From the
perspective of a TDAG (G), those relations are de-
fined as follows for every pair {q1, q2}, where q1
precedes q2 in a given sentence:

2This notation is equivalent to q1 > q4 > q2 and q1 >
q4 > q3.
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Figure 2: Example of a preference graph (Manshadi,
2014, p. 136).

1. wide scope (+) if (q1, q2) ∈ G

2. narrow scope (−) if (q2, q1) ∈ G

3. incomparability (ϵ) otherwise

That is, if two quantifiers q1 and q2 are char-
acterised by wide scope, there is a directed edge
from q1 to q2. In the case of narrow scope, a di-
rected edge goes from q2 to q1. Incomparability
is represented by the lack of an edge between two
nodes.

A ternary soft classifier 3 predicts probabilities
for each observation, for each of the three possible
classes. Once those probabilities are predicted, a
preference graph for each sentence’s scoping can
be built, as in Figure 2.

The goal at this point is to find a subgraph of
that preference graph which satisfies the following
condition: that it maximizes the sum of weights
with the constraint that the resulting subgraph is a
TDAG. The algorithm that performs this task is pre-
sented in the following section, and it is based on
finding an approximately optimal ordering (Cohen
et al. 1999).

3.2 Approximation algorithm
Let (u, v)+, (u, v)− and (u, v)ϵ be the probabili-
ties that the nodes u and v are in a wide scope,
narrow scope, and incomparability relation, respec-
tively. The algorithm takes a preference graph Γp
and stores its vertices in a set V . The difference
between outgoing and incoming edges for each
vertice is computed (lines 3 and 4) and the high-
est value is selected (i.e., the node with the widest
scope) to store it as t (line 5). From lines 6 to 8, a

3Note that a hard classifier cannot be used here as then
there is no guarantee that the resulting predicted graph will be
either acyclic or transitive.

Algorithm 1 Creates a TDAG
Input: a preference graph Γp
Output: a transitive directed acyclic graph G
1: V ← get_vertices(Γp), r ← 0, G← ∅
2: while V is non-empty do
3: for each u ∈ V do
4: π(u)←

∑
v∈V (u, v)

+ −
∑

v∈V (u, v)
−

5: t← argmaxu∈V π(u)
6: if ∃v ∈ G : ρ(v) = r and (v, t)+ > (v, t)ϵ then
7: r ← r + 1
8: ρ(t)← r
9: for each v ∈ G do

10: if ρ(v) < r and (v, t)+ > (v, t)ϵ then
11: G← G ∪ {(v, t)}
12: V ← V − {t}
13: G← G ∪ {t}
14: end while

rank (starting from 0) is assigned to t, the algorithm
checks before if there is a node with the current
rank that outscopes t, in which case the rank is in-
cremented by one. From lines 9 to 11, edges (v, t)
are added to the final graph G by checking all v
nodes from previous ranks that have a wide scope
relation with t. Finally, t is removed from V and
added to G. The process repeats until V is empty.

4 Experimental setup

A Support Vector Machines (SVM) classifier,
Python’s scikit-learn implementation (Pedregosa
et al., 2011), was fitted to the data (n = 1451) in
order to predict probabilities of three different rela-
tions between each pair of quantifiers: wide scope,
narrow scope or incomparability. Once the prob-
abilities were predicted by the classifier, in order
to restore a full sentence’s quantifier scoping, a
predicted TDAG was built.4

4.1 Features
A small set of features was selected for the purpose
of the experiment: only those that were manually
annotated in the corpus or could be computed in
a simple manner. Listed below are the extracted
features, each with a brief explanation:

• Quantifier lexicalization — quantifier lexical-
izations are combined into groups in order to
limit the dimensionality of this feature. For
instance, all bare numerals are grouped to-
gether, all exactly-modified numerals (e.g., ex-
actly one) are combined together, superlative

4Therefore, the breakdown of data was made at the sen-
tence level and not at the observation level. Otherwise, this
could result in observations from the same sentence being
placed in both the training and test set, which would not allow
restoring sentence’s quantifier scoping.
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and comparative modified numerals (e.g., at
least/most three and more/less than three) are
assigned to one group, and so on.

• Complex — a binary feature that denotes
whether a quantifier lexicalization consists of
one token (e.g., one) or more than one token
(e.g., more than one).

• Grammatical function — whether a tagged
NP plays the role of, for instance, a subject or
an object.

• Appositive — a binary feature which denotes
whether a tagged NP is followed by an appos-
itive (e.g., four people - Grace, Heather, Josh,
and Maria).

• Prepositions — preposition lexicalizations or
preposition supersenses depending on the sys-
tem (see Section 4.4 for an explanation). We
focus on SUPER SS2 and SUPER SS;SS2
combinations only, i.e., we drop the less stable
and more idiomatic SUPER SS.

→ Distance — a gap between a pair of quanti-
fiers in a given observation. For instance, if
a sentence has three tagged quantificational
expressions q1, q2 and q3, occurring in that or-
der in the sentence, then the distance between
q1 and q2 equals 1 and the distance between
q1 and q3 equals 2.

Since an observation is a pair of quantifiers, each
feature5 was defined twice for a given observation.

Linear precedence, a much-discussed predictor
of quantifier scope, is not provided here as a sep-
arate feature. It is inherently encoded due to the
manner in which the task is formulated, as each
observation is a pair of quantifiers {q1, q2}, where
q1 occurs before q2 in a given sentence.

Feature selection was performed using the Mu-
tual Information (MI) measure. First, all of the
features with MI equal to zero were deleted. In
fact, this led only to the removal of features that
were duplicated as a result of defining an obser-
vation as a pair. For instance, supersense (SS2)
ENDTIME occurs only once in the data and only as
a property of the first quantifier in an observation
— denoted as ENDTIME_1; hence, feature END-
TIME_2 was deleted. Second, features occurring

5Except for the feature distance which is a property of
the relation between quantifiers, not a property of a quantifier
itself.

only once in the corpus were deleted as well; as a
result, ENDTIME_1 was also removed.

There are 27 different prepositions, 26 different
SS2 supersenses and 67 different SS;SS2 combi-
nations in the corpus. Since each observation is
a combination of two quantifiers, these numbers
correspond to 54, 52 and 134 different columns in
the feature vector. After the feature selection, we
get 39, 41 and 82, respectively.

4.2 Training and optimization

Training and optimisation were performed using
nested cross–validation. Hyperparameter selection
was executed in the inner loop using the 5-fold
technique. Kernel, among other SVM’s hyperpa-
rameters, was considered in the optimization pro-
cess and selected from linear, polynomial, rbf and
sigmoid. The outer loop was repeated 30 times
with different random data splits — Monte Carlo
cross-validation. This way a standard 20 percent of
the data was used in both inner and outer loops for
the purpose of the validation of the models and the
final results are an average of 30 independent runs.

4.3 Evaluation

Three different evaluation metrics, adapted to the
QSD task by Manshadi and Allen (2011), were
used in order to assess the performance of the mod-
els and all three of them, similarity, precision and
recall, are based on the notion of the similarity of
two graphs which represent goldGg = (V,Eg) and
predicted Gp = (V,Ep) sentence’s quantifier scop-
ings. Let G+ = (V,E+) be the transitive closure
of the graph andG = (V,E) be the complement of
the undirected version of G, where V denotes the
set of nodes and E corresponds to the set of edges.
The most general one of the three, the similarity
metric (Equation 1), was used for hyperparameter
selection during the optimization process as well
as for the purpose of statistical testing.

σ+ =
|E+

p ∩ E+
g | ∪ |E

+
p ∩ E

+
g |

|V |(|V | − 1)/2
(1)

The similarity measure treats outscoping and in-
comparability relations equally. In practice, it is the
outscoping relation that should be most important
in classification. That is because if the outscop-
ing relation is mislabeled, it leads to a different
interpretation of the sentence. Hence, Manshadi
and Allen also adapt to the task a form of preci-
sion (Equation 2) and recall (Equation 3) which
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are based on the number of outscoping relations
identified correctly.

P+ =
|E+

p ∩ E+
g |

|E+
p |

(2)

R+ =
|E+

p ∩ E+
g |

|E+
g |

(3)

One might point out that precision or recall
should be the metric selected to assess the model’s
performance during optimisation and to report final
results. Note, however, that there are a number of
sentences in our corpus where the incomparability
relation is the dominant or only relation present.
Sentences defined by QS that only consist of in-
comparability relations are not considered in the
computation of precision and recall. Hence, even
though informative, those metrics do not result in a
comprehensive evaluation.

4.4 Models
Four different training scenarios are conducted
in order to assess the impact of prepositions and
preposition supersenses on the learnability of the
QSD system:

• BASELINE — models trained using all of the
features defined, except information about
prepositions.

• PREP — models trained using all of the fea-
tures defined, including preposition lexicaliza-
tions, but not preposition supersenses.

• SUPER SS2 — models trained using all of
the features defined, including preposition su-
persenses (SS2 only), but except preposition
lexicalizations.

• SUPER SS;SS2 — models trained using all
of the features defined, including preposition
supersenses (SS;SS2 combinations), but ex-
cept preposition lexicalizations.

The performance of these four systems allows us,
first, to study the effect of preposition information
on the ability of a system to learn a QSD task and,
second, to assess whether this impact is better cap-
tured when provided with the SNACS supersense
hierarchy.

An additional baseline pseudo-model — WIDE

— is presented as a reference. It always predicts the
most frequent label in the training set.6

6In total, out of 1451 observations, 307 represent narrow
scope, 828 wide scope and 316 incomparability.

Figure 3: Most significant features according to the
Mutual Information analysis.

5 Results 7

5.1 Feature Importance

Figure 3 presents the 18 most informative features.
Both the grammatical roles of subject and object
and certain lexical realizations of quantifiers (each,
a, bare numerals and exactly-modified numerals)
rank high in the results, in line with previous find-
ings. One other feature related to lexical realization,
complex, also ranks high. The feature appositive
signals the referential function of the NP to which
it is related. Its high ranking is in line with the
well-known fact that referentially used NPs tend to
take the widest scope possible. Notably, the prepo-
sition of (when present in the second tagged NP in
a given observation) ranks third. As expected, the
‘part-whole sense’ of the preposition of, marked
by WHOLE and the corresponding role-function
combination QUANTITYITEM;WHOLE, appears
to be even more informative, ranking the highest.

Based on previous findings, one might expect
the features of subject and object to rank higher
in the analysis. However, previous studies (e.g.,
AnderBois et al. (2012)) that reported grammatical
function to have a strong impact on scope-taking
only focused on sentences with two quantified NPs
and did not consider the incomparability relation
between quantifiers. Thus, experimental setups
previously employed might have inflated the role

7The information and code necessary to replicate the re-
sults reported in this section are available at the GitHub
link: https://github.com/ALeczkowski/prep_
matter_in_qsd
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of subject and object in the QSD task.

5.2 Experiments

The results of the experiments are presented in
Table 1. The first observation is that standard devi-
ation is substantial in the case of each model and
each metric. This is a result of the diverse data set
(e.g., sentences with 2 vs. 8 quantified NPs) and
shows the importance of reporting final results as a
mean over a significant number of runs (in this case,
30). Second, the WIDE pseudo-model that classifies
each observation as wide scope8 achieves signif-
icant results, e.g., the similarity measure equals
64.82, which is a result of the domination of that
relation in the data. Third, in the case of each
model, precision and recall are higher than the sim-
ilarity metric. This contradicts expectations and is
also different than in Manshadi and Allen’s exper-
iments, where the opposite is the case. It appears
that models perform classification better with re-
spect to outscoping relations than when it comes
to incomparability.9 Last but not least, by look-
ing at raw numbers, it may be noticed that adding
prepositions to the feature vector which is fed to the
classifier improves the performance of that classi-
fier on all metrics. Adding preposition supersenses,
instead of preposition lexicalizations, results in fur-
ther improvement, both in the case of SS2 and SS

; SS2 combinations. However, tests need to be
performed in order to determine whether those dif-
ferences are statistically significant. Since SUPER

SS2 is characterised by both better performance and
lower standard deviation than SUPER SS;SS2,10

only the former is selected for statistical testing.
Since, when it comes to the similarity metric,

homogeneity of variance is present in the three
compared groups (Bartlett test; p = 0.31) and each
group’s results are normally distributed (Shapiro-
Wilk test; p = 0.82, 0.29 and 0.32 for BASE-
LINE, PREP and SUPER SS2, respectively), one-way
ANOVA is performed to determine whether there
are any statistically significant differences between
compared systems. The test is statistically signif-

8In each of 30 different data splits, wide scope was the
most frequent relation in the training set.

9One possible explanation of that fact might be that no
dependency parser was used in the experiment. Hence, no
information was extracted about, for instance, conjuncts oc-
curring between quantifiers, which is a strong predictor of the
incomparability relation.

10One possible explanation for the lower performance of
SUPER SS;SS2 is that the SS;SS2 combinations are too
fine-grained for the size of the data.

Model Similarity Precision Recall
Mean SD Mean SD Mean SD

WIDE 64.82 3.46 73.73 3.29 69.00 3.39
BASE 80.53 3.13 84.96 2.91 86.24 2.78
PREP 81.99 2.45 86.42 2.43 88.05 2.14
SS2 83.57 2.45 88.50 1.88 89.88 1.76
SS;SS2 83.45 2.69 88.23 2.15 89.48 1.92

Table 1: Mean results and standard deviation of each of
the four systems — BASELINE, PREP, SUPER SS2 and
SUPER SS;ss2 — and the WIDE measure.

icant with F (2, 87) = 9.21 and p = 0.000. Table
2 presents the p-values of the post hoc t-tests per-
formed in order to inspect particular differences.

Model BASELINE PREP

PREP 0.056 -
SUPER SS2 0.000 0.056

Table 2: P-values for pairwise t-tests with Holm correc-
tion for multiple comparisons; similarity metric.

It is not the case that providing information about
prepositions to the models significantly improves
the performance of those models — the p-value for
the comparison between BASELINE and PREP is
bigger than 0.05. However, as predicted, provid-
ing the model with information about preposition
supersenses, only the SS2 part, significantly im-
proves the performance with respect to BASELINE

— p-value < 0.05 but not with respect to PREP —
p-value > 0.05.11

6 Summary and Future Work

This study dealt with the QSD task following the
methodology established by Manshadi and Allen
(Manshadi and Allen, 2011; Manshadi et al., 2013;
Manshadi, 2014) which allows to consider any sen-
tence, with no restriction on the number of quanti-
fiers involved, in a ternary classification task. Ap-
plying this method to the scope-disambiguated cor-
pus (AnderBois et al., 2012), additionally tagged

11We also experimented with a model that includes both
preposition lexicalizations and preposition supersenses (just
the SS2 part). Performance of this system is as follows (mean,
SD): (83.01, 2.29), (87.52, 2.17), (89.12, 1.88) for similarity,
precision and recall, respectively. Statistical analysis of this
system’s results led to exactly the same conclusions as when
the model including only supersenses was used. That is, it
performed significantly better with respect to the BASELINE
but not with respect to the system involving only preposi-
tion lexicalizations. Thus, there is no theoretical reason to
believe that preposition lexicalizations would encode any rele-
vant information that is not already captured by preposition
supersenses.
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with the SNACS scheme (Schneider et al., 2020),
allowed us to investigate the question of whether
information encoded by prepositions, or preposi-
tion senses to be exact, proves useful in the QSD
task, as inspected with SVM.

Our results confirm the formulated hypothesis
— preposition senses, but not preposition lexical-
izations, positively impact the learnability of the
models and, hence, it may be inferred that they do
convey world knowledge in a manner beneficial for
the algorithm. Note that, out of 1679 tagged quanti-
fied NPs in the corpus, only around a third (581 to
be exact) are nested in prepositional phrases; this
fact further strengthens our conclusions.

The fact that the methodology followed in this
paper reduces the QSD problem to a pairwise com-
parisons task has its benefits. For instance, it signif-
icantly expands our sample from 680 sentences into
1451 pairwise comparisons. However, it comes at
the price of a simplification, which might lead to in-
formation loss since each pair of quantified NPs in
a sentence is treated independently of other NPs in
that sentence, which in reality is not the case. An-
other way to approach the QSD problem would be
to treat it on a sentence level, making use of mod-
ern deep learning techniques such as pre-trained
transformer neural networks. However, that might
require larger quantifier scope-disambiguated cor-
pora which do not yet exist.12

Acknowledgements

First of all, we would like to thank Scott Ander-
Bois, Adrian Brasoveanu and Robert Henderson
for sharing their scope-disambiguated corpus with
us. We would also like to express our great thanks
to the Law School Admission Council for allowing
us to use the materials in the corpus for our research
purposes. We are also grateful to the three anony-
mous reviewers for helpful comments and sugges-
tions. The research of the first two authors and the
fifth one is funded by the National Science Center,
Poland (Grant No. DEC-2019/35/B/HS1/01541).

12We tested a solution based on the Universal Sentence
Encoder (Cer et al., 2018). For each quantifier, we concate-
nated vectors: embedding of the quantifier expression and
embedding of the entire sentence (2 x 512). The vectors were
then classified using the SVM classifier with a radial kernel.
This solution achieved an accuracy of 0.45 (the most frequent
baseline was at 0.47) when predicting relative quantifier scope.
The results are averages in a 10-fold cross-validation.

References
Lasha Abzianidze and Johan Bos. 2017. Towards uni-

versal semantic tagging. In Proceedings of IWCS.

Scott AnderBois, Adrian Brasoveanu, and Robert Hen-
derson. 2012. The pragmatics of quantifier scope: A
corpus study. In Proceedings of Sinn und Bedeutung,
pages 15–28.

Catherine Anderson. 2004. The Structure and Real-time
Comprehension of Quantifier Scope Ambiguity. Ph.D.
thesis, Northwestern University.

Chris Barker and Chung-chieh Shan. 2014. Continu-
ations and natural language, volume 53. Oxford
Studies in Theoretical Linguistics.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English Web Treebank, volume 53. Technical
Report LDC2012T13, Linguistic Data Consortium,
Philadelphia, PA.

Johan Bos. 1996. Predicate logic unplugged. In Pro-
ceedings of the 10th Amsterdam Colloquium, pages
133–143.

Johan Bos, Stephen Clark, Mark Steedman, James R.
Curran, and Julia Hockenmaier. 2004. Wide-
coverage semantic representations from a CCG
parser. In Proceedings of COLING 2004, pages 1240–
1246.

Arthur Capelier-Mourguy, Philippe Blache, Christian
Retoré, and Laurent Prévot. 2015. Quantifier scope:
A formal and experimental study. In CJC-SC: Col-
loque des Jeunes Chercheurs en Sciences Cognitives,
pages 67–69.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
Brussels, Belgium. Association for Computational
Linguistics.

W. W. Cohen, R. E. Schapire, and Y. Singer. 1999.
Learning to order things. Journal of Artificial In-
telligence Research, 10:243–270.

Robin Cooper. 1983. Quantification and semantic the-
ory. Dordrecht: Reidel.

Ann Copestake, Alex Lascarides, and Dan Flickinger.
2001. An algebra for semantic construction in
constraint-based grammars. In Proceedings of the
39th annual meeting of the Association for Computa-
tional Linguistics, pages 140–147.
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Abstract

Grasping the commonsense properties of ev-
eryday concepts is an important prerequisite
to language understanding. While contextu-
alised language models are reportedly capa-
ble of predicting such commonsense properties
with human-level accuracy, we argue that such
results have been inflated because of the high
similarity between training and test concepts.
This means that models which capture concept
similarity can perform well, even if they do not
capture any knowledge of the commonsense
properties themselves. In settings where there
is no overlap between the properties that are
considered during training and testing, we find
that the empirical performance of standard lan-
guage models drops dramatically. To address
this, we study the possibility of fine-tuning lan-
guage models to explicitly model concepts and
their properties. In particular, we train separate
concept and property encoders on two types
of readily available data: extracted hyponym-
hypernym pairs and generic sentences. Our
experimental1 results show that the resulting en-
coders allow us to predict commonsense proper-
ties with much higher accuracy than is possible
by directly fine-tuning language models. We
also present experimental results for the related
task of unsupervised hypernym discovery.

1 Introduction

Pre-trained language models (Devlin et al., 2019)
have been found to capture a surprisingly rich
amount of knowledge about the world (Petroni
et al., 2019). Focusing on commonsense knowl-
edge, Forbes et al. (2019) used BERT to predict
whether a given concept (e.g. teddy bear) satisfies
a given commonsense property (e.g. is dangerous).
To this end, they convert the input into a simple
sentence (e.g. “A teddy bear is dangerous”) and
treat the task as a standard sentence classification

1Code and datasets are available at https:
//github.com/amitgajbhiye/biencoder_
concept_property

task. Remarkably, they found this approach to sur-
pass human performance. Shwartz and Choi (2020)
moreover found that language models can, to some
extent, capture commonsense properties that are
rarely expressed in text, thus mitigating the issue
of reporting bias that has traditionally plagued ini-
tiatives for learning commonsense knowledge from
text (Gordon and Durme, 2013).

Despite these encouraging signs, however, mod-
elling commonsense properties remains highly
challenging. A key concern is that language mod-
els are typically fine-tuned on a training set that
contains the same properties as those in the test
set. For instance, the test data from Forbes et al.
(2019) includes the question whether peach has
the property eaten in summer, while the training
data asserts that apple, banana, orange and pear
all have this property. To do well on this task,
the model does not actually need to capture the
knowledge that peaches are eaten in summer; it is
sufficient to capture that peach is similar to apple,
banana, orange and pear. For this reason, we pro-
pose new training-test splits, which ensure that the
properties occurring in the test data do not occur
in the training data. Our experiments show that the
ability of language models to predict commonsense
properties drops dramatically in this setting.

Our aim is to develop a strategy for modelling
the commonsense properties of concepts. Given
the limitations that arise when language models
are used directly, a natural approach is to pre-train
a language model on some kind of auxiliary data.
Unfortunately, resources encoding the common-
sense properties of concepts tend to be prohibitively
noisy. To illustrate this point, Table 1 lists the prop-
erties of some everyday concepts according to three
well-known resources: ConceptNet (Speer et al.,
2017), which is a large commonsense knowledge
graph, COMET-20202 (Hwang et al., 2021), which

2We used the demo at https://mosaickg.apps.
allenai.org/model_comet2020_entities.
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ConceptNet COMET-2020 Ascent++
ba

na
na yellow, good to eat one of the main ingredients, eaten

as a snack, one of many fruits,
found in garden, black

rich, ripe, yellow, green, brown,
sweet, great, black, useful, safe,
delicious, healthy, nutricious, ...

lio
n a feline found in jungle, one of many an-

imals, one of many species, two
legs, very large

free, extinct, hungry, close,
unique, active, nocturnal, old, dan-
gerous, great, happy, right, ...

ai
rp

la
ne good for quickly travelling long distances flying, air travel, flying machine,

very small, flight
heavy, new, important, white, safe,
unique, full, larger, clean, slow,
low, unstable, electric, ...

Table 1: Properties of some example concepts, according to three commonsense knowledge resources.

predicts triples using a generative language model
that was trained on several commonsense knowl-
edge graphs, and Ascent++ (Nguyen et al., 2021),
which is a commonsense knowledge base that was
extracted from web text. Given the noisy nature of
such resources, we rely on a database with hyper-
nyms instead. The underlying intuition is that hy-
pernyms can be extracted from text relatively easily,
while fine-grained hypernyms often implicitly de-
scribe commonsense properties. For instance, Mi-
crosoft Concept Graph (Ji et al., 2019) lists potas-
sium rich food as a hypernym of banana and large
and dangerous carnivore as a hypernym of lion.
We also experiment with GenericsKB (Bhakthavat-
salam et al., 2020), a large collection of generic
sentences (e.g. “Coffee contains minerals and an-
tioxidants which help prevent diabetes”), to ob-
tain concept-property pairs for pre-training. Given
such pre-training data, we then train a concept en-
coder Φcon and a property encoder Φprop such that
σ(Φcon(c) ·Φprop(p)) indicates the probability that
concept c has property p.

In summary, our main contributions are as fol-
lows: (i) we propose a new evaluation setting which
is more realistic than the standard benchmarks for
predicting commonsense properties; (ii) we anal-
yse the potential of hypernymy datasets and generic
sentences to act as pre-training data; and (iii) we de-
velop a simple but effective bi-encoder architecture
for modelling commonsense properties.

2 Related Work

Several authors have analysed the extent to which
language models such as BERT capture common-
sense knowledge. As already mentioned, Forbes
et al. (2019) evaluated the ability of BERT to
predict commonsense properties from the McRae
dataset (McRae et al., 2005), which we also use
in our experiments. The same dataset was used by

Weir et al. (2020) to analyse whether BERT-based
language models could generate concept names
from their associated properties; e.g. given the
input “A ⟨mask⟩ has fur, is big, and has claws”,
the model is expected to predict that ⟨mask⟩ cor-
responds to the word bear. Conversely, Apidi-
anaki and Garí Soler (2021) considered the problem
of generating adjectival properties from prompts
such as “mittens are generally ⟨mask⟩”. Note that
the latter two works evaluated pre-trained models
directly, without fine-tuning, whereas the experi-
ments Forbes et al. (2019) involved fine-tuning the
language model on a task-specific training set first.
When the main motivation is to probe the abilities
of language models, avoiding fine-tuning has the
advantage that any observed abilities reflect what is
captured by the pre-trained language model itself,
rather than learned during the fine-tuning phase.
However, Li et al. (2021) argue that the extent to
which pre-trained language models capture com-
monsense knowledge is limited, suggesting that
some form of fine-tuning is essential in practice.
Interestingly, this remains the case for large lan-
guage models. For instance, their model had 7 bil-
lion parameters, while West et al. (2021) report that
the predictions from GPT-3 (Brown et al., 2020)
had to be filtered by a so-called critic model when
distilling a commonsense knowledge graph.

The strategy taken by COMET (Bosselut et al.,
2019) is to fine-tune a GPT model (Radford et al.)
on triples from commonsense knowledge graphs.
Being based on an autoregressive language model,
COMET can be used to predict concepts that take
the form of short phrases, which is often needed
when reasoning about events (e.g. to express moti-
vations or effects). However, as illustrated in Table
1, COMET is less suitable for modelling the com-
monsense properties of concepts. Other approaches
have focused on improving the commonsense rea-
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soning abilities of general purpose language mod-
els. For instance, Zhou et al. (2021) introduce a
self-supervised pre-training tasks to encourage lan-
guage models to better capture the commonsense
relations between everyday concepts.

A final line of related work concerns the mod-
elling of hypernymy. Several authors have pro-
posed specialised embedding models for this task
(Dasgupta et al., 2021; Le et al., 2019). Most rele-
vant to our work, Takeoka et al. (2021) fine-tune a
BERT-based language model to predict the validity
of a concept–hypernym pair. Inspired by the ef-
fectiveness of Hearst patterns (Hearst, 1992), they
use prompts of the form “[HYPERNYM] such as
[CONCEPT]” (and similar for other Hearst pat-
terns). The extent to which the pre-trained BERT
model captures hypnernymy has also been stud-
ied. For instance, Hanna and Mareček (2021) use
prompts where the prediction of the ⟨mask⟩ token
can be interpreted as the prediction of a hypernym,
to avoid the need for fine-tuning the model.

3 Methodology

Let a set of concept–property pairs K be given,
where (c, p) ∈ K means that concept c is asserted
to have the property p. We write C and P for the
sets of concepts and properties in K, i.e. C = {c |
(c, p) ∈ K} and P = {p | (c, p) ∈ K}. We use
the term “property” in a broad sense, covering both
semantic attributes, as in the pair (banana, sweet),
and hypernyms, as in the pair (banana, fruit). This
is motivated by the fact that hypernyms often en-
code knowledge about semantic attributes, as in
the pair (banana, sweet fruit). In particular, our
hypothesis is that, by treating hypernyms and se-
mantic attributes in a unified way, we can pre-train
a model on readily available hypernym datasets and
use it to predict semantic attributes.

We want to train a model that can predict for a
given pair (c, p) whether c has property p. Two
general strategies can be pursued when develop-
ing such models. The first strategy is to use a so-
called cross-encoder, which amounts to fine-tuning
a single language model to predict whether a given
input (c, p) represents a valid pair or not. The sec-
ond strategy is to use a so-called bi-encoder, which
amounts to the idea that c and p are separately en-
coded, with the resulting vectors then being used
to predict whether (c, p) is a valid pair. In this pa-
per, we pursue the latter strategy. This is primarily
motivated by the fact that the concept and property

encoders enable a wider range of applications. A
cross-encoder can only be used to predict whether
a given pair (c, p) is valid or not. In contrast, a bi-
encoder model can also be used to efficiently find
the properties p of a given concept c. Moreover, the
resulting concept and property embeddings may
themselves be useful as static representations of
word meaning, e.g. as label embeddings for zero-
shot or few-shot learning (Socher et al., 2013; Ma
et al.; Xing et al., 2019; Li et al., 2020; Yan et al.,
2021). Finally, bi-encoders can be trained more
efficiently than cross-encoders.

Datasets To train our model, we need a large
set of concept–property pairs K. Unfortunately,
high-quality knowledge of this kind is not read-
ily available. Part of the underlying issue is that
properties of concepts are rarely explicitly stated
in text, which is why directly using information
extraction techniques is not straightforward. How-
ever, initiatives for extracting hypernyms from text
have been much more successful, starting with the
seminal work of Hearst (1992). A key observation
is that fine-grained hypernyms often express com-
monsense properties, typically as a mechanism for
refining hypernyms that would otherwise be too
broad. For instance, Microsoft Concept Graph (Ji
et al., 2019) lists vitamin C rich food as a hyper-
nym of strawberry, as a refinement of the more
general hypernym food. By pre-training our model
on concept–hypernym pairs, we may thus expect
it to learn about commonsense properties as well.
To directly test this hypothesis, we use a set of
such concept–hypernym pairs as our pre-training
set K. Specifically, we collect the 100K concept–
hypernym pairs from Microsoft Concept Graph3

with the highest confidence score4 We will refer to
this dataset as MSCG.

As a second strategy, we attempt to convert the
MSCG dataset into a set of concept–property pairs.
To this end, we look for pairs (c, h1) and (c, h2)
where h2 is a suffix of h1. Specifically, if h1 =
mh2 andm is an adjectival phrase, then we assume
that m describes a property of c. For instance,
MSCG contains the pairs (strawberry, vitamin C
rich food) and (strawberry, food). Based on this,
we would include the pair (strawberry, vitamin C
rich) inK. Clearly this is a heuristic strategy, which

3https://concept.research.microsoft.
com/Home/Download

4Specifically, we used those pairs maximising the Rela-
tions frequency.
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may produce non-sensical or misleading pairs. For
instance, according to MSCG, strawberry is a low-
sugar berry, but this does not entail that strawberry
has the property low-sugar in general. However,
we may expect most of the pairs that are generated
with this strategy to be meaningful. A total of 8186
concept–property pairs were obtained in this way.
We refer to the resulting dataset as PREFIX.

Finally, going beyond concept-hypernym pairs,
we derive a dataset from GenericsKB (Bhaktha-
vatsalam et al., 2020), which contains generic sen-
tences such as “Bananas are an important food
staple in the tropics”. Due to the regular structure
of such sentences, we can easily convert them into
concept–property pairs; e.g. the aforementioned
sentence would become (banana, important food
staple in the tropics). We collect a set of 100K such
pairs, by processing the sentences with the high-
est confidence (i.e. the ones which are most likely
to be generic sentences) whose length is at most
7. The reason why we focus on shorter sentences
is because they are more likely to capture salient
information. We refer to this dataset as GKB.

Training Objective Given the pairs inK, we pre-
train two encoders, Φcon and Φprop, using binary
cross-entropy. In particular, the loss function for a
given mini-batch is defined as follows:

L=−
∑

(c,p)∈Kbatch

log σ
(
Φcon(c) · Φprop(p)

)

−
∑

(c,p)∈Nbatch

log
(
1− σ

(
Φcon(c) · Φprop(p)

))

Here Kbatch represents the subset of K that is in
the current mini-batch. For efficiency reasons, we
sample these mini-batches as follows. First, we
sample a subset Cbatch ofK concepts from C. Then,
for each concept c in Cbatch we sample one property
p ∈ P such that (c, p) ∈ K. Let Pbatch be the set
of properties that are thus obtained. The sets of
positive examples Kbatch and negative examples
Nbatch are then defined as follows:

Kbatch = (Cbatch × Pbatch) ∩ K
Nbatch = (Cbatch × Pbatch) \ K

In other words, the positive examples are the pairs
from K that involve a concept from Cbatch and a
property from Pbatch. The negative examples are
all the other pairs that we can form by taking a con-
cept from Cbatch and a property from Pbatch. This
in-batch negative sampling strategy ensures that

after encoding |Cbatch| concepts and |Pbatch| prop-
erties, we can take |Cbatch|×|Pbatch| training exam-
ples into account. Given that the encoders Φcon and
Φprop correspond to fine-tuned language models,
and the encoding steps are thus time-consuming,
in-batch negative sampling enables a significant
speed-up compared to naive strategies in which
positive and negative examples are sampled inde-
pendently. Similar strategies are commonly used in
neural information retrieval (Gillick et al., 2019).

Concept and Property Encoders The encoders
Φcon and Φprop correspond to fine-tuned encoder-
only language models, such as BERT (Devlin et al.,
2019). An important design decision is how the in-
put to these language models is presented. For the
concept encoder, the input corresponds to a string
of the form “[prefix] c [suffix]”, which is usually re-
ferred to as the prompt. How this prompt is chosen
often has a substantial impact on the performance
of a model. For instance, language models have
been reported to under-perform if the input is too
short (Bouraoui et al., 2020; Jiang et al., 2020).
Given the importance of the choice of prompt, sev-
eral strategies for automatically learning a suitable
prompt have been proposed (Shin et al., 2020; Liu
et al., 2021). In practice, however, carefully cho-
sen manually designed prompts often outperform
such automatically learned prompts (Ushio et al.,
2021; Logan et al., 2021). For this reason, we have
manually generated a number of templates and eval-
uated their performance on a held-out portion of
the MSCG dataset. Based on this analysis5, we
use the following prompt:

⟨cls⟩ [CONCEPT] means ⟨mask⟩⟨sep⟩

where ⟨cls⟩, ⟨mask⟩ and ⟨sep⟩ are special tokens
from the BERT vocabulary, while [CONCEPT] rep-
resents the concept to be modelled. The embedding
of the concept is taken to be the contextualised vec-
tor of the ⟨mask⟩ token, i.e. the representation of
this token in the final layer of the language model.
We use the same prompt for concepts and prop-
erties. However, note that concepts and proper-
ties are encoded using different encoders. Intu-
itively, we think of Φcon(c) as a representation of a
prototypical instance of concept c, while we view
Φprop(p) as a representation of the property p itself.
This is why, even when p = c, we would expect
Φcon(c) and Φprop(c) to be different. Under this

5Details can be found in Appendix A.
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view, σ(Φcon(c) · Φprop(p)) captures the probabil-
ity that a prototypical instance of c would have the
property p. In other words, by using different en-
coders for concepts and properties, we can capture
the default nature of the pairs in K in a natural way.

4 Experiments

In our experiments, we primarily focus on com-
monsense property classification, i.e. predicting
whether some concept has a given property. We
also demonstrate the usefulness of the concept and
property encoders on the task of hypernym discov-
ery. Finally, we also present a qualitative analysis.

Training Details We pre-train the concept and
property encoders on the datasets introduced
in Section 3. We also consider variants in
which these datasets are combined; e.g. we write
MSCG+PREFIX for the dataset combining the
pairs from MSCG and PREFIX. To pre-train our
model, we construct separate validation data in the
same way. In particular, for MSCG, we select
the validation split by taking the next 10K most
confident pairs from Microsoft Concept Graph (i.e.
after removing the pairs from the MSCG dataset
itself), and similar for the other datasets. We train
the model for 100 epochs, using early stopping
with a patience of 20. We use the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 2e−6 and set the batch size to 8. We use
BERT-base-uncased as our default language model
(Devlin et al., 2019), although we have also experi-
mented with BERT-large-uncased, RoBERTa-base
and RoBERTa-large (Liu et al., 2019).

4.1 Commonsense Property Classification
Datasets For commonsense property classifica-
tion, we use the extended version of the McRae
dataset (McRae et al., 2005) that was introduced
by Forbes et al. (2019). This dataset involves a set
C of 514 concepts and a set P of 50 properties. For
each concept c and property p, the dataset specifies
whether c has property p. The set C is split into a
training set Ctrain and a test set Ctest6. During train-
ing, the models have access to the ground truth of
every pair in Ctrain×P . The models are then tested
on all pairs in Ctest × P . We report the results in
terms of the F1 score of the positive label.

As argued in the introduction, by training and
testing on the same set of properties, we may not

6The split is available at https://github.com/
mbforbes/physical-commonsense.

be able to faithfully test a model’s ability to pre-
dict commonsense properties. For this reason, we
consider an alternative setting where the set of prop-
erties is instead split into a training set Ptrain and
a test set Ptest. During training, the model then
gets access to the ground truth for the pairs in
C × Ptrain, while the model is evaluated on the
pairs in C × Ptest. We use 5-fold cross-validation
for this setting. Our hypothesis is that this set-
ting will be more difficult, as it would be harder
to find properties in the training data that are sim-
ilar to those from the test set. However, there are
nonetheless some similarities between these proper-
ties. We therefore also consider a setting in which
both the concepts and properties are split into train
and test fragments. The model is then trained on
the pairs in Ctrain × Ptrain and evaluated on the
pairs in Ctest×Ptest. We again use a form of cross-
validation. In particular, we split C into three folds:
C1, C2 and C3. We similarly split P into three folds:
P1, P2 and P3. In the first iteration, we train on the
pairs in (C1 ∪C2)× (P1 ∪P2) and test on the pairs
in C3 × P3. This process is repeated nine times (as
we have three ways to choose the concept test split
and three ways to choose the property test split).

We have also used the CSLB Concept Property
Norms7, as a second benchmark for commonsense
property classification. This dataset covers 638 con-
cepts and 3350 properties. Similar as for McRae,
the dataset indicates which concepts have which
properties, but there are no standard splits. More-
over, the dataset does not explicitly contain nega-
tive examples. For this reason, for each positive
example (c, p), we introduce 20 negative examples
by replacing p with another property p′ (such that
(c, p′) is not a positive example). This strategy is
imperfect, as there will inevitably be some false
negatives, but it should still allow us to compare
the relative performance of different models. Mir-
roring the settings from the McRae dataset, we
consider a concept-based training-test split (Con),
a property-based split (Prop), and a setting where
both concepts and properties are split into train-
ing and test sets (Con+Prop). For consistency, we
use the same cross-validation strategies as for the
McRae dataset. In particular, for Con we use a
fixed split (with 90% of the concepts used for train-
ing and 10% for testing). For Prop, we use 5-fold
cross-validation, while for Con+Prop we used the

7https://cslb.psychol.cam.ac.uk/
propnorms
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Language Model Pre-training dataset McRae CSLB

Con Prop C+P Con Prop C+P

Random baseline 26.0 26.5 26.0 8.6 8.4 8.6
Always true 30.3 30.0 30.0 9.1 9.1 9.1
BERT-large sentence classifier (Forbes et al., 2019) 74 - - - - -
Human performance (Forbes et al., 2019) 67 - - - - -

BERT-base No pre-training 77.7 30.7 25.2 51.8 34.1 22.4

BERT-base MSCG 79.9 46.6 41.6 54.0 36.8 28.9
BERT-base PREFIX 78.3 44.8 41.0 52.2 33.2 24.3
BERT-base GKB 79.3 50.7 46.0 52.1 37.2 30.2
BERT-base MSCG+PREFIX 80.2 47.8 43.2 53.6 37.3 29.7
BERT-base MSCG+GKB 80.4 50.3 43.6 54.8 37.1 28.9
BERT-base MSCG+PREFIX+GKB 79.8 49.6 44.5 54.5 39.1 32.6

BERT-large No pre-training 75.3 36.6 25.5 54.3 36.4 17.7
RoBERTa-base No pre-training 41.0 9.4 0.0 38.1 28.7 9.6
RoBERTa-large No pre-training 73.7 26.9 9.4 55.3 37.8 24.8

BERT-large MSCG+PREFIX+GKB 80.5 49.3 45.5 57.7 41.8 36.4
RoBERTa-base MSCG+PREFIX+GKB 75.6 42.4 38.1 49.9 36.4 24.3
RoBERTa-large MSCG+PREFIX+GKB 80.1 46.5 42.5 59.0 42.5 36.0

Table 2: Results in terms of F1 score (percentage) for commonsense property prediction.

3× 3 fold cross-validation strategy.

Results The results for commonsense property
classification are summarised in Table 2. We
include the following baselines. First, the Ran-
dom baseline predicts the positive label with 50%
chance. Similarly, Always true predicts the positive
label in all cases. Next, for the concept-split of
the McRae dataset, we compare with the method
from Forbes et al. (2019), where each pair (c, p)
was converted into a natural language sentence. For
instance, (apple, is electrical) is converted to the
sentence “An apple requires electricity”, which is
then fed to a BERT classifier. Due to its manual
nature, this method cannot be applied to new prop-
erties. We also include the estimate of human per-
formance that was reported by Forbes et al. (2019).
Finally, we consider a variant of our model which
is directly trained on the McRae and CSLB training
data, without the pre-training step.

The next set of results compare the performance
of the different pre-training datasets. For these re-
sults, all models were initialised with BERT-base.
We can clearly see that the pre-trained bi-encoder
models outperform the variant without pre-training
in nearly all settings (with the results for PREFIX

on the CSLB property-split the only exception).
This confirms our hypothesis that Microsoft Con-
cept Graph and GenericsKB capture useful infor-
mation about commonsense properties. Comparing
the different corpora, PREFIX achieves the weak-
est results, which can be explained by the much

smaller size of this dataset. However, combining
PREFIX+MSCG outperforms MSCG in all but
one case. Furthermore, as expected, the property-
split (Prop) is considerably harder than the stan-
dard concept-split (Con), with the C+P setting be-
ing even harder. In fact, for the latter setting, the
BERT-base model without pre-training cannot out-
perform the random classifier for McRae. Note
that for CSLB, outperforming the random classifier
is easier, given that more training data is available
for that dataset. Crucially, while the best baselines
only slightly underperform the pre-trained models
for the concept-split, much larger differences are
seen for the other splits. Overall, these findings con-
firm our hypothesis that predicting commonsense
properties remains a highly challenging problem.

Finally, the table also shows results for some
other language models. While the large models
generally outperform their base counterparts, the
differences are relatively small, and the improve-
ments are not consistent. This finding is in accor-
dance with the conclusion from Li et al. (2021)
that even large language models are limited in
the amount of commonsense knowledge they cap-
ture, and in particular that finding the right pre-
training task is crucial. The RoBERTa results
without pre-training are particularly disappointing,
with learning failing completely in some cases.
Even with the pre-training datasets, BERT-base
outperforms RoBERTa base, and BERT-large out-
performs RoBERTa-large.
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Con Prop C+P

Skip-gram (k = 1) 70.8 25.0 17.5
Skip-gram (k = 3) 53.4 9.5 5.7
GloVe (k = 1) 68.8 20.3 21.7
GloVe (k = 3) 51.4 6.8 4.9
BERT-base (k = 1) 72.0 28.2 27.0
BERT-base (k = 3) 55.6 14.6 19.1

Table 3: Evaluation of a nearest neighbour strategy for
the McRae dataset (F1 score percentage).

Analysis As we have argued, models can per-
form well on the Con setting by simply transfer-
ring knowledge about similar concepts from the
training data. This is analysed in more detail in
Table 3, which shows the performance of a nearest
neighbour classifier. To classify a test pair (c, p)
we find the k concepts c1, ..., ck from the training
split that are most similar to c in terms of cosine
similarity. Then we predict the positive label for
(c, p) if the majority of (c1, p), ..., (ck, p) are as-
signed the positive label. We test this approach
for k = 1 and k = 3, using embeddings from
GloVe (Pennington et al., 2014) and Skip-gram8

(Mikolov et al., 2013), and using the embeddings
predicted by our BERT-base encoder pre-trained
on MSCG+PREFIX+GKB. For the Prop setting,
we similarly predict the label of (c, p) based on
the labels of the training pairs (c, p1), ..., (c, pk),
with p1, ..., pk the k properties from the training
data that are most similar to p. Finally, for C+P,
we predict the majority label among the training
pairs (ci, pj) with i, j ∈ {1, ..., k}, where c1, ..., ck
are the training concepts most similar to c and
p1, ..., pk are the training concepts most similar
to p. The results in Table 3 clearly support our
hypothesis about the concept-split. In particular,
the nearest neighbour classifier is highly effective
for the concept-split (for k = 1), outperforming the
estimate of human performance from Forbes et al.
(2019) for all embedding types, and approaching
the performance of the language models without
our pre-training task. In contrast, for the Prop and
C+P settings, the nearest neighbour classifier per-
forms, at best, similarly to the random classifier.

4.2 Hypernym Discovery

Given an input word (e.g. cat), the aim of the hy-
pernym discovery task is to retrieve a set of valid

8We used the 300 dimensional Skip-gram vectors trained
on Google News and GloVe vectors trained on Common
Crawl, available from https://radimrehurek.com/
gensim/models/word2vec.html.

MAP MRR P@5

G
en

er
al

APSyn 1.7 3.7 1.7
balAPInc 1.7 3.9 1.7
SLQS 0.7 1.7 0.7
Apollo 2.7 6.1 2.8
Ours 3.8 7.0 3.1

M
us

ic

APSyn 1.1 2.6 1.3
balAPInc 1.4 3.6 1.6
SLQS 0.6 1.3 0.7
ADAPT 1.9 5.3 1.9
Ours 2.3 5.1 2.6

M
ed

ic
al

APSyn 0.7 1.4 0.7
balAPInc 0.9 2.1 1.1
SLQS 0.3 0.7 0.3
ADAPT 8.1 20.6 8.3
Ours 4.0 9.0 3.9

Table 4: Result of the hypernym discovery experiment.

hypernyms (e.g. animal, mammal, feline, etc.). We
use this task to analyse the quality of the pre-trained
concept and property encoders when used without
any fine-tuning on task-specific training data. We
use the data from the SemEval 2018 Hypernym
Discovery task (Camacho-Collados et al., 2018),
focusing on the concept-only split (i.e. without con-
sidering named entities). There are three variants
of this task: an open-domain setting (referred to
as general) and two domain-specific settings, fo-
cusing on the music and medical domains. Each
variant is associated with a large vocabulary of
candidate terms, consisting of 218,753 terms for
general, 69,118 terms for music and 93,888 terms
for medicine. To solve this task, each word from
the vocabulary is encoded using Φprop. We then use
maximum inner product search to efficiently find
those words w from the vocabulary that maximise
Φcon(t) · Φprop(w) for a given target word t. From
the retrieved list of words, we remove those that
contain the term t itself and those that end with an
adjective. For this experiment, we use BERT-large
encoders pre-trained on MSCG+PREFIX+GKB.
We compare our method with the following base-
lines for this task: APSyn (Santus et al., 2016),
balAPInc (Kotlerman et al., 2010), SLQS (Santus
et al., 2014), ADAPT (Maldonado and Klubička,
2018) and Apollo (Onofrei et al., 2018). We re-
port the published results from the SemEval task
Camacho-Collados et al. (2018) (where ADAPT
only participated in the general setting and Apollo
only participated in the music and medical set-
tings). The latter systems achieved the best per-
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formance among the unsupervised methods9. Fol-
lowing Camacho-Collados et al. (2018), we report
Mean Average Precision (MAP), Mean Reciprocal
Rank (MRR), and Precision at 5 (P@5), in percent-
age terms. Table 4 shows that our method outper-
forms all baselines for General, performs similar
to ADAPT for Music and worse than ADAPT for
Medical. This is remarkable, given that our method
was not designed or tuned for this task. The under-
performance on Medical can be explained by the
lack of training examples from this domain in the
pre-training data. As can be observed, the results
for all models are low. An error analysis, presented
below, revealed that this is largely due to the fact
that many correct hypernyms are not included in
the ground truth.

Error Analysis Table 5 shows some of the pre-
dictions of our model for the General setting of
the hypernym discovery task. The first set of re-
sults shows examples where many of the predicted
hypernyms are intuitively correct. However, only
few of these hypernyms are covered by the ground
truth; ground truth predictions are shown in bold.
This illustrates the rather noisy nature of the dataset,
and serves as an explanation for the low overall F1
score of the different unsupervised models. The
second set of results in Table 5 covers cases where
most of the predictions are incorrect. In some cases,
e.g. for children, the model predicts semantic prop-
erties rather than hypernyms, which shows that
simply filtering predictions that end with an adjec-
tive is not always sufficient. The case of broiler
chicken shows that the model sometimes predicts
terms that are semantically related, but which are
clearly not hypernyms (nor semantic attributes).
As a variant of this observation, the case of sigma
shows that the model sometimes tends to predict
co-hyponyms.

4.3 Qualitative Analysis

As a qualitative analysis, we use our pre-trained
models to predict which properties are associated
with a given concept. We consider the set of all
properties that appear at least 10 times in an ex-
tended version of the PREFIX+GKB dataset10, lead-

9The hypernym discovery datasets are strongly biased in
which hypernyms were preferred by the annotators. Such
biases can only be learned from the task-specific training data,
which is why we do not compare with supervised methods.

10This extended dataset involves 500K pairs from Microsoft
Concept Graph and 500K sentences from GenericsKB; analy-
sis about this extended dataset is provided in Appendix B.

ing to a set of 5223 candidate properties. We again
use maximum inner product search to efficiently
identify the properties whose embeddings are clos-
est to the concept embedding ϕcon(c). Table 6
shows the seven nearest properties for a number of
selected concepts, where we used BERT-base pre-
trained on MSCG+PREFIX+GKB. Specifically,
the table first revisits the examples from Table 1.
Subsequently, the table lists physical concepts, for
which we expected predicting properties to be eas-
ier, and abstract concepts, for which we expected
the task to be harder. Finally, we included adjec-
tives to explore whether our model can be used for
learning property entailment.

The results contain a mixture of hypernyms and
semantic attributes, which is a reflection of how
the model was trained. For physical concepts, the
results are generally meaningful, with a few excep-
tions. For instance, military vehicle is incorrectly
listed as a hypernym of airplane. Regarding the
abstract concepts, the top predictions are mostly
meaningful, but we can also see terms that are se-
mantically related but are neither hypernyms nor
semantic attributes; e.g. we see parties as a prop-
erty of celebration. Finally, for the adjectives, we
see several instances where the entailment direction
is reversed, for instance when dessert is mentioned
as a property of sugary.

5 Conclusions

We studied the problem of modelling the common-
sense properties of concepts. We argued that the
standard evaluation setting does not faithfully as-
sess the extent to which models capture knowledge
about commonsense properties, and proposed two
new evaluation settings. These new settings were
found to be highly challenging for language mod-
els, with performance being close to random. We
furthermore found that pre-training a bi-encoder
model on hypernymy data or generic sentences can
lead to substantial performance gains. However,
there remains a lot of room for further improve-
ments, which will likely require novel insights.
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Hyponym Top-5 Predicted Hypernyms

liberty principle, notion, ideal, universal value, humanitas
longbow hunting weapon, weapon, bow and arrow, wieldy, choptank
wine drink, beverage, liquidity, alcoholic beverage, drinking alcohol
manslaughter culpable homicide, murder charge, offence, justifiable homicide, first-degree murder
shopping chore, specific activity, everyday, simple interest, pursuit
running aerobic, cardio, endurance training, aerobic exercise, sport
computer industry sector, sunrise industry, growth industry, field of operation, game industry
learner understander, student, realizer, know-all, nonjoinder
snow weather condition, weather, cold weather, bad weather, wet-weather
bounty hunter vigilante, hired gun, bandit, bondman, trail boss
metre unit of length, unit of measure, measuring unit, quantity unit, derived unit
hero protagonist, archetype, archetypic, personage, literaty character
website resource, e-resource, information source, medium, source
violin string instrument, musical instrument, second fiddle, bowed instrument, stringed instrument

arms head and shoulders, legs, straighten, stiffen, bare bones
cooking ingredient composition, culinary, adjunct, importune, condiment
children learn, memorize, make fun, come to life, lose track
broiler chicken chicken cordon bleu, chicken stock, hot chicken, kung pao chicken, chicken broth
observation qualitative, empirical research, qualitative analysis, data collection, qualitative research
sigma lambda, upsilon, fraternity, epsilon, alpha and omega
apartment tenantless, adjacent, low-rent, homeplace, residential building
wetsuit drysuit, nonsuit, life-jacket, diving equipment, diving suit
yesterday thisday, tomorrow, timea, timeless, evermore
taxi off-license, car rental, bus service, bike rental, cab fare

Table 5: Error analysis for hypernym discovery on the general dataset. Correctly predicted hypernyms are shown in
bold.

Concept Predicted properties

banana food, fruit, fresh, plant, edible, tropical, commercially important
lion animal, mammal, wildcat, carnivore, species, very territorial, mammalian
airplane vehicle, aircraft, stationary, application, object, military vehicle, automotive

straw material, combustible, porous, stuff, fibrous, located in wood, has sections
ice cold, has temperature, has surfaces, located in freezers, has density, authorization, albums
yacht boat, vehicle, vessel, recreational, ship, expensive, aircraft
coffee beverages, drinks, beverage, drink, liquid, liquids, located in supermarkets
steel material, non-ferrous, non ferrous, rigid, product, industrial, heavy
fire causes burns, creates heat, produces heat, causes damage, can have effects, generates heat, produce crops
beer beverage, drink, alcoholic, liquor, liquid, beverages, drinks

democracy principle, idea, democratic, ideology, concept, morality, value, moral
disappointment negative, feeling, emotion, emotional, feelings, positive, depression
promotion marketing, achievement, activity, corporate, factor, acts, activities
celebration event, festivity, occasion, social events, parties, events, activities
forgiveness moral, value, love, virtue, emotion, benign, principle
lawyer professional, adult, allied, profession, consultant, closely related, expert

stressful situation, factor, emotional, difficult, unexpected, uncomfortable, traumatic
poisonous poison, harmless, harmful, dangerous, toxin, aggressive, sharp
sugary dessert, taste, food, delicious, chocolate, frozen dessert, candy
rewarding activities, clocks, happiness, treatments, approval, actions, human activities
modern style, genre, contemporary, fashion, broad, musical style, english
alcoholic alcoholic, liquor, drink, beverage, mixed, alcohol, addictive, aggressive

Table 6: Qualitative analysis, showing the top neighbours of the embeddings of selected concepts.
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A Prompt Analysis

Previous work has found that the prompt which is
used can have a material impact on the performance
of BERT-based encoders (Bouraoui et al., 2020;
Jiang et al., 2020; Shin et al., 2020; Liu et al., 2021;
Ushio et al., 2021; Logan et al., 2021). To analyse
the impact of the prompt in our setting, and make
a suitable choice, we experimented with a number
of different, manually chosen prompts. For these
experiments, we used the most confident 11,000
concept-property pairs of the MSCG dataset for
training, and the next 1200 concept-property pairs
for tuning. The batch size is set to 8. We used the
AdamW optimizer and learning rate 2e−6, using
early stopping with a patience of 20. The results
in Table 7 are reported in terms of the F1 score
(percentage) of the positive label. For the first two
results in the table, a different prompt was used for
the concept and property encoders. The property
prompts corresponding to these two configurations
are (not shown in the table):

• ⟨cls⟩ Property: [CONCEPT] ⟨sep⟩

• ⟨cls⟩ Yesterday, I saw a thing which is [PROP-
ERTY] ⟨sep⟩

For the first six configurations in the table, we use
the average of the embeddings of all tokens, in the

final layer of the BERT-base model, as the embed-
ding of the concept and property. For the remain-
ing seven configurations, we use the embedding
of the ⟨mask⟩ token in the final layer instead. The
results show that many of the prompts lead to a rel-
atively similar performance, as long as the prompt
is sensible. The example with the nine mask to-
kens (Prompt 5) show that without a semantically
informative prompt the performance drops some-
what. A similar observation can be made for the
prompt about the spaceship (Prompt 10). Earlier
work has suggested that longer prompts tend to per-
form better. To some extent this is confirmed by
our results. For instance, Prompt 12 outperforms
the similar but shorter Prompts 9 and 11, although
Prompt 13, which is an even longer variant, per-
forms worse. Moreover, we can see that some of
the shortest prompts nonetheless perform well. All
things being equal, having a shorter prompt is desir-
able, as it means we can use larger batch sizes and
faster training. For this reason, we have decided,
based on these results, to use Prompt 7, whose per-
formance is close to that of the best-performing
prompt, despite also being one of the shortest ones.

B Size of the Pre-Training Corpus

The MSCG corpus was obtained by taking the
100K pairs from Microsoft Concept Graph (Ji et al.,
2019) with the highest confidence. Similarly, GKB
was obtained by taking the 100K sentences with
the highest confidence in GenericsKB (Bhakthavat-
salam et al., 2020). This choice represents a trade-
off: choosing more pairs would increase the overall
amount of training data, which could improve the
performance of the encoders. However, this would
also mean including less reliable pairs, which might
have a negative effect. In particular, both Microsoft
Concept Graph and GenericsKB have been ex-
tracted from text corpora. In both cases, it can
be clearly observed that the pairs/sentences with
the lowest confidence are often rather noisy. To
analyse this trade-off, Table 8 shows the results
of an experiment where we used the top 500K
pairs in MSCG and the 500K most confidence
sentences in GenericsKB. Similarly, PREFIX was
derived from the larger MSCG dataset for these
experiments. The results show a small improve-
ment for MSCG. However, for the Prop and C+P
settings, the GKB results are actually worse for the
500K setting. These results suggest that the opti-
mal setting might use more than 100K pairs from
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Prompt F1

1. ⟨cls⟩ Concept: [CONCEPT] ⟨sep⟩ 85.6
2. ⟨cls⟩ Yesterday, I saw another [CONCEPT] ⟨sep⟩ 86.1

3. ⟨cls⟩ The notion we are modelling is [CONCEPT] ⟨sep⟩ 86.7
4. ⟨cls⟩ The notion we are modelling: [CONCEPT] ⟨sep⟩ 87.3
5. ⟨cls⟩ ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ [CONCEPT] ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ ⟨mask⟩ ⟨sep⟩ 84.8
6. ⟨cls⟩ The notion we are modelling is called CONCEPT ⟨sep⟩ 86.0

7. ⟨cls⟩ CONCEPT means ⟨mask⟩ ⟨sep⟩ 87.1
8. ⟨cls⟩ CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 86.6
9. ⟨cls⟩ The notion we are modelling is CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 86.8
10. ⟨cls⟩ The spaceship we are modelling is CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 85.8
11. ⟨cls⟩We are modelling CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 86.4
12. ⟨cls⟩ The notion we are modelling this morning is CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 87.0
13. ⟨cls⟩ As I have mentioned earlier, the notion we are modelling this morning is CONCEPT ⟨sep⟩ ⟨mask⟩ ⟨sep⟩ 86.3

Table 7: Performance of different prompts on a held-out portion of the MSCG dataset, in terms of F1-score
percentage. BERT-base was used as the language model in these experiments.

Con Prop C+P

50
0K

MSCG 80.1 48.6 42.8
PREFIX 78.1 45.0 41.7
GKB 80.6 48.8 43.7
MSCG+PREFIX 79.8 49.1 43.4
MSCG+GKB 80.7 48.8 41.5
MSCG+PREFIX+GKB 80.3 47.5 41.0

10
0K

MSCG 79.9 46.6 41.6
PREFIX 78.3 44.8 41.0
GKB 79.3 50.7 46.0
MSCG+PREFIX 80.2 47.8 43.2
MSCG+GKB 80.4 50.3 43.6
MSCG+PREFIX+GKB 79.8 49.6 44.5

Table 8: Evaluation on the McRae dataset of a variant in
which 500K pairs from Microsoft Concept Graph and
GenericsKB were used. Results are reported in terms
of F1 score percentage. BERT-base was used as the
language model in these experiments.

Microsoft Concept Graph, but fewer than 500K
sentences from GenericsKB. However, the results
also show that any performance gains arising from
optimising the selection of the pre-training data are
likely to be small.
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Abstract

Predicting word embeddings for out of vocabu-
lary words remains an important challenge for
NLP tools. Word embedding models only in-
clude terms that occur a sufficient number of
times in their training corpora. Word embed-
ding vector models attempt to approximate in-
formation about a word not in their vocabu-
laries. We propose a fast method for predict-
ing vectors for out of vocabulary terms that
makes use of the surrounding terms of the un-
known term and the hidden context layer of the
word2vec model. We propose this method as
a strong baseline in the sense that 1) while it
does not surpass all state-of-the-art methods,
it surpasses several techniques for vector pre-
diction on benchmark tasks, 2) even when it
underperforms, the margin is small retaining
competitive performance in downstream tasks,
and 3) it is inexpensive to compute, requiring
no additional training stage. We also show that
our technique can be incorporated into exist-
ing methods to achieve a new state-of-the-art
on the word vector prediction problem.

1 Introduction

In recent years, distributive models of lexical se-
mantics, i.e., word embedding models, have proven
to be a very useful tool for representing natural lan-
guage terms (i.e., words and common phrases such
as ‘New York’) as real numbered vectors. These
models, such as word2vec (Mikolov et al., 2013a,b),
GloVe (Pennington et al., 2014), and FastText (Bo-
janowski et al., 2017), use a large corpus of docu-
ments to learn an embedded vector representation
of lexical units based on their co-occurrence within
sentences. Word embedding vectors capture seman-
tic features of the terms, for example synonymous
terms will be nearby in the embedded vector space.
This makes word embeddings more powerful than
other lexical representations such as one-hot vector
encodings. Furthermore, distributive models are
derived using unsupervised algorithms, which are

efficient to run on large corpora. A major limitation,
however, is that to derive a high quality word em-
bedding vector for a term, it must occur more than
a certain times in the training corpus (Bahdanau
et al., 2018). Terms that do not meet this threshold
are not included in the model’s vocabulary.

When using a word embedding model, a user
may encounter a large number of Out of Vocabu-
lary (OOV) terms for various reasons. When we
encounter OOV terms in a document, a common
strategy is to simply ignore the unknown term. Al-
ternately we can represent the term by a zero vector,
or by the average of all known word vectors, but
these strategies clearly do not extract any meaning-
ful information from the OOV item.

A number of recent efforts propose techniques
for predicting high quality word embedding vectors
for OOV terms from the information available on
the term in situ (Lazaridou et al., 2017; Herbelot
and Baroni, 2017; Khodak et al., 2018; Li et al.,
2017; Luong et al., 2013; Lazaridou et al., 2013;
Schick and Schütze, 2019b). An important down-
side of these methods in practice is that they take
an unpredictable amount of time to develop and
deploy. A question arise in this context for deploy-
ment in an NLP pipeline: Can one employ (and
deploy) a simpler solution (with minimal accuracy
loss) until one creates a more advanced solution?
The goal of this work is to seek answers to this
question in the context of OOV terms.

In this work, we present a context-based method
to predict the word embedding vectors for OOV
terms. Our method makes use of context informa-
tion that is learned internally in the course of train-
ing a word embedding model such as word2vec.
We call this the COIN (Context Information)
method. We advocate COIN as a competitive base-
line in the following sense:

Accurate (compared to state-of-the-art models).
The performance of COIN is close, both in direct
comparison and downstream tasks, to state-of-the-

3984



art models. We compare COIN with four such
models (ADD, N2V, ALC, and FCM) on the bench-
mark tasks DefNonce and CRW; COIN vectors
meet or exceed the accuracy of all except for FCM.

Inexpensive. Generating a COIN vector predic-
tion requires only a pretrained word2vec model and
runs on a regular personal laptop (without the re-
quirement of GPU). The only computational cost of
COIN is the equivalent of a few look-ups of word–
vector mappings. It is able to generate high quality
predicted word vectors for OOV terms from as few
as one observed occurrence without any additional
training. While the state-of-the-art method FCM
requires to train a set of word vectors and then in a
second step trains a model for OOV predictions.

Fast. COIN is much faster than other state-of-
the-art models. It gives users immediate feedback
(in seconds). While most supervised techniques for
word embedding for OOV terms require hours of
computation before a user can analyze it. In our
experiments, the COIN method takes 131 seconds
to generate the vectors of OOV terms for evaluation
on the DefNonce task, and it only takes 21 seconds
to run all of the 2, 4, and 6 sentence evaluations on
the Chim task. In comparison, FCM takes nearly 7
hours of training time on the DefNonce task.

Balancing gains with cost. OOV words are im-
portant in downstream tasks (Chen et al., 2019;
Conneau and Kiela, 2018; Garneau et al., 2019;
Lourentzou et al., 2019; Serrà et al., 2017) and not
as a standalone exercise. We report a study on 7
SentEval tasks, getting a .002 prediction difference
between COIN at 73.9% and FCM at 74.1%. With
the compute and energy demands of many modern
NLP methods growing exponentially, one needs
to consider weighing energy costs with the perfor-
mance gains of a new model before deploying it
(Henderson et al., 2020). In our setting, the gain
of energy hungry methods is marginal compared
to COIN. However, many of the alternative ap-
proaches require a second step than training the
initial word embedding model. All of the training
required for COIN is accomplished with the origi-
nal word embedding step as a holistic model min-
imizing total parameters, improved performance
and a better model design.

We can draw a parallel from daily life. Toyota
Corolla is an excellent means of transportation for
millions of people. Ferrari is another excellent
means of transportation, but only available to the
few who can afford it. One may view COIN (and

methods in its class) as the “Corolla” among the
methods of predicting embeddings for OOVs and
accept that its performance may fall short of the
“Ferrari’s” (e.g., fastText, ELMo and Bert), one also
needs to accept that the “Ferrari’s” requires more
resources: fuel (i.e., energy) and maintenance (i.e.,
hardware). Often scientists and engineers need a
“Corolla” to deliver a proof of concept. There are
times when their hardware infrastructures are ill-
suited to run the “Ferrari’s,” e.g., lacking tens of
GPUs. Our goal in this paper is to argue that there
is a place for “Corolla’s,” even though we all seek
shiny “Ferrari’s.”

COIN vectors are suitable on their own for word
vector prediction: They can be used to initialize
a trained method. We show that using COIN vec-
tors as the first step in existing vector predicting
systems can set a new state-of-the-art on bench-
mark tasks. We also notice that COIN vectors may
reduce the training cost for those methods, improv-
ing the accuracy of the component techniques. We
show these on FCM in Section 5.5.

In summary, the contributions of this paper are:
• propose COIN, a fast and inexpensive method

for predicting a word vector for OOV terms
based on context information.
• show that COIN is effective and efficient on

word vector prediction tasks, working as a
strong baseline and occasionally beating other
state-of-the-art models.
• show that with COIN vectors as an initial-

ization for existing techniques improves their
accuracy.

2 Word Embeddings

Word embeddings are a technique for learning a
vector representation of terms from a corpus based
on their distributional features, that is, the contexts
within which a term is observed (Bengio et al.,
2003; Mikolov et al., 2013a,b; Pennington et al.,
2014; Bojanowski et al., 2017). Word embedding
techniques belong among a class of machine learn-
ing algorithms where the model is trained to mini-
mize error on a dummy task and the true purpose of
training is to extract an intermediate, internal repre-
sentation of the input data. In the word embedding
case, the dummy task is that of predicting the sur-
rounding terms of a target term (or vice versa) and
the true desired output is the internal representation
of the input terms, i.e., the word embedding vectors.
The various methods for learning word embeddings
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Figure 1: A t-SNE visualization of the relative loca-
tions of word and context vectors for a sample vocab-
ulary. The word and context spaces are aligned using
absolute orientation with translation and scaling (Dev
et al., 2021). For most terms the word and context vec-
tors are respectively well separated.

present variations on a core idea: each term is rep-
resented by two latent vectors: a word vector and
a context vector. In training, the word embedding
algorithm maximizes the conditional probability of
the word vector given the set of context vectors of
the terms found in its context window.

Word2vec is one of the most popular technique
to learn word embeddings (Mikolov et al., 2013a).
In word2vec model, the word vectors are not al-
ways close to the context vectors. In Figure 1 we
show a visualization of the word and context vec-
tors for some terms from the vocabulary. We find
that the context and word vectors are quite far from
each other for most terms. This general difference
between vectors demonstrates that summing the
context vectors will lead to a very different result
from summing over the word vectors. This sug-
gests that context vectors encapsulate information
that is not captured by the word vectors, which may
be useful to predict embeddding vectors for OOV
terms. We aim to show this in this work. We note
here that Figure 1 was generated after the word and
context vector were aligned. We align the word
and context vectors using absolute orientation with
translation and scaling (Dev et al., 2021). Other ori-
entation algorithms are available, but this gave the
best average Cosine similarity between the vectors
in our experiments. We also note that the context
and word vectors as plotted in Figure 1 are even
farther apart before alignment was performed.

Following our study of word embeddings, we ob-
serve that the word embedding vector wi of a word
is trained to be similar to the context vectors of the
words in its context window, cj∈Ci , rather than the

word vectors, which have previously been used in
the prediction task. Intuition suggests that by using
the context vectors of the context words we can
improve the accuracy of our predicted vectors.

3 Related Work

Previous techniques to predict embedding vectors
for OOV terms usually follow two theoretical lines:
1) Using morphological or form features of the
OOV term, and 2) Extracting information from the
surrounding context terms.

Form based methods in category 1) use some
characteristics of the representation of the term,
such as letter combinations. (Luong et al., 2013;
Lazaridou et al., 2013) use morphological features.
(Bojanowski et al., 2017) develops the FastText
model, which is similar to word2vec in design,
which operates on character n-grams rather than
whole words. In some tasks, however, an OOV
term may not have any character representation, or
it may have an arbitrary representation, for exam-
ple, the OOV term may be represented by under-
scores: “___” (Herbelot and Baroni, 2017) or by a
made-up word form (Lazaridou et al., 2017). In the
downstream task there may be no available form
for the term, such as “filling in the missing word.”

For the context based works in category 2),
(Lazaridou et al., 2017) develop the additive
method, which takes the sum of the word vectors of
the surrounding terms. The approach of (Herbelot
and Baroni, 2017) initializes each OOV term as
the sum of the word vectors of the known terms
in the context sentences, downsampling frequent
words, and then runs a modified word2vec training
procedure on the OOV terms only, with a highly
accelerated learning rate. (Khodak et al., 2018)
finds a linear transformation A and uses it to trans-
form the sum of the context word vectors to the
word vector of OOV terms. Recently (Schick and
Schütze, 2019a) propose a hybrid approach using
both form and context. It learns a neural network
model, which encodes information about the form
(n-grams) and likelihood the form will contribute
to an understanding of the meaning of the term, as
well as a linear transformation similar to (Khodak
et al., 2018). (Schick and Schütze, 2019a) further
proposes a method to identify high quality contexts
for inferring the OOV term vector.

COIN vectors squarely fall into 2), context based
methods. Our key observation is that there exists an
additional set of vectors, one for each in-vocabulary
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item, which are trained internally by the word2vec
model. In word2vec, each term is represented by
two latent vectors: a word vector and a context vec-
tor. These vectors are better suited, by design, for
deducing OOV term vectors from the surrounding
context words. When the model is being trained,
these additional context vectors are used to repre-
sent the terms when they are found in the context
window of the target term. These vectors can be
easily extracted from a word2vec model.

Recently contextualized word vectors (CWV)
methods such as ELMo and BERT have received
much attention in the NLP community (Horn, 2017;
Peters et al., 2018; Devlin et al., 2018). CWV pre-
diction shares some similarity with OOV vector
prediction, but they are intrinsically distinct prob-
lems. CWVs derive a vector representation for a
term based on the surrounding context in each us-
age, thus there is not a generalized concept of a
word vector for a lexical item as is the case with
traditional word vectors. While in traditional word
vector models (like word2vec), each term gets one
vector, which is used regardless of the surrounding
terms. We include them in our empirical study on
the OOV benchmark tasks.

4 Methodology

Based on our observation discussed previously, we
suggest that the context vectors of the context words
can be used to predict the word embedding vectors
for OOV terms. We introduce our method, COIN,
which uses context vectors only to solve the predic-
tion problem for OOV terms.

4.1 Problem Definition

For some word embedding model M , let V be
the vocabulary of terms for which we have a
trained word vector. Then there exists a mapping
w : V → Rn where n is the dimension of the em-
bedded vectors. For a term t /∈ V , let ŵ(t) ∈ Rn
be the optimal word vector for t based on its seman-
tic properties and the properties of the embedding
space. Assuming ŵ(t) is known in our problem.
We define the problem as follows:

Given a set of terms U , where V ∩ U = ∅, find a
function f such that ∀t ∈ U , f(t) ≈ ŵ(t).

4.2 Proposed Approach

To find a COIN vector for an OOV term, we take
the sum of the context vectors of the words in its
contexts. Let c : V → Rk be the mapping of terms

to context vectors in M . For the n-th occurrence of
term ti, its context window Cni is the set of 2× kw
terms that are found up to kw places before and
after ti, excluding ti itself, for context window size
kw. Then for term ti we define the COIN vector
prediction f̂COIN (ti) as:

f̂COIN (ti) =
∑

j

∑

t′∈Cji

c(t′)

where each Cji is one observed context window.
There are some small modifications to the basic

COIN pattern that are easily introduced. These
include: stop word removal, word weighting, and
principal component removal. Stop word removal
(denoted nsw) ignores stop words in the vector sum-
mation, and generally gives some improvement in
accuracy. We apply the stop words provided in
python NLTK in our experiments. Word weighting
multiplies each vector by a function of its term, so
that certain words have more importance in the fi-
nal sum. Here we consider SIF (Arora et al., 2017)
which weights each term by the inverse of its fre-
quency. Principal component removal (Mu and
Viswanath, 2018) removes the top principal com-
ponent from each vector, which has been shown
to improve the performance of word vectors on
similarity tasks. On the CRW task we show that a
combination of all three yields good results.

Additionally, we consider separately how the
various setting for learning word embeddings via
word2vec and the resulting context vectors are
suited for estimating OOV word vectors. We con-
sider the skip-gram and CBOW architectures, using
both HS and NS respectively for updating. Section
5.6 discusses the difference among these models.

5 Evaluation

In this section, we compare our method COIN to a
number of state-of-the-art models to show the ef-
ficiency and effectiveness of COIN. We also show
that COIN vectors can be used in conjunction with
an existing, trained method to yield improved re-
sults over either method alone

5.1 Models in Comparison
We compare COIN against recent OOV prediction
models and CWV methods in the literature:
ADD (Lazaridou et al., 2017) produces an OOV
prediction as the sum of the word vectors of all the
neighboring terms. We also consider ADD-nsw, a
same model with stop words removed.
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N2V (Herbelot and Baroni, 2017) updates a set of
OOV terms initialized by an additive method, by
running an accelerated skip-gram training.

ALC (Khodak et al., 2018) learns a linear transfor-
mation on the set of ADD vectors that minimizes
the `2 distance to the known word embedding vec-
tor for a set of training terms.

FastText (Bojanowski et al., 2017) is a morpholog-
ical embedding algorithm that extends word2vec.
It represents each word as an n-gram of characters
instead of learning vectors for words directly. We
use its implementation in gensim1.

FCM is the Form Context Model of (Schick and
Schütze, 2019b); it is a two part model that learns
both a form and context component.

HiCE. HiCE (Hu et al., 2019) is an attention-based
hierarchical context encoder that uses both the con-
texts and morphological features of an OOV word.

BERT. We take the embedding output from the last
hidden layer of BERT (Devlin et al., 2018) as the
vector representation for a word in our experiment.

ELMo (Peters et al., 2018) is a deep contextualized
word representation; the representation for a word
depends on the entire context in which it is used.

Model Parameter Settings. For all the methods
(e.g., COIN, ADD, N2V, ALC, and FCM) that de-
pend on a pre-trained word2vec model, we use the
one provided by (Herbelot and Baroni, 2017). We
run the experiments using the source codes and
settings published in the corresponding referenced
paper. For the method FastText, we set embed-
ding size to 400 (same as the embedding size in
the word2vec model), parameter window is set to
5, the minimum count is set to 1, and the model
is trained for 5 epochs. We quote the HiCE exper-
iment results from (Hu et al., 2019). BERT and
ELMO are context dependent CWV methods that
generate different word embeddings for the same
word in different sentences. We use the pre-trained
BERT base model from Hugging Face2 which con-
tains 12 hidden layers, and the pre-trained ELMo
model from AllenNLP3. The BERT and ELMo em-
beddings for the OOV words are averaged by their
context words’ embeddings.

1https://radimrehurek.com/gensim/
2Facehttps://huggingface.co/

bert-base-uncased
3http://docs.allennlp.org/v0.9.0/api/

allennlp.modules.elmo.html

name DefNonce enwiki WWC
dimension 400 400 300
vocab size 259,376 560,881 230,130
min count 50 50 50
source Wikipedia Wikipedia WWC
model
type

skip-gram
CBOW
skip-gram

CBOW
skip-gram

updating
method

NS
NS
HS

NS
HS

window size 5 5 5

Table 1: Specifications of training word2vec embed-
dings in three datasets. The sample number in negative
sampling (NS) is 5. The value of alpha is set to 0.025
in skip-gram, 0.05 in CBOW.

5.2 Benchmark Tasks

We evaluate the quality of our COIN embeddings
on the common OOV benchmark tasks: Defini-
tional Nonce (DefNonce), Contextual Rare Words
(CRW), and Chimeras (Chim).

5.2.1 DefNonce Task

DefNonce (Herbelot and Baroni, 2017) is a set of
sentences harvested from Wikipedia articles which
are designed to be maximally informative. The
first sentence of articles describing one word topics
are extracted. The target term is the article title.
Sentences that contain at least 10 words are ran-
domly sampled creating 700 training and 300 test
instances. The FastText model is trained on these
training instances. The goal for this evaluation task
is to learn a word vector for the target term that
is close to the known word vector for that term.
(Herbelot and Baroni, 2017) provide a set of pre-
trained word2vec vectors trained on a 1.6B word
Wikipedia snapshot using the skip-gram architec-
ture, with negative sampling. The word2vec model
parameters are shown in Table 1 (See DefNonce).

Experimental Results on DefNonce. Table 2
gives the results of this evaluation. Accuracy on
this task is measured by two values: Mean Re-
ciprocal Rank (MRR), where higher is better, and
Median Rank, where lower is better. We show the
form and context components of FCM, denoted
FCM-form and FCM-ctxt respectively, along with
the full FCM model. Of all the models FCM per-
forms the best on this task. However if we limit our
focus to methods which only use context informa-
tion (see Part 2), COIN is more accurate than either
ALC or FCM-ctxt, and COIN-nsw is the leader in
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both measures. With COIN-nsw, for all the terms
in the test set, half are among the 90 closest terms,
out of a vocabulary size of 259,376.

Comparing FCM with FCM-ctxt and FCM-form,
it seems that much of the improvement for FCM
comes from the form information, which is sug-
gested by the relative performance of FCM-ctxt and
FCM-form. We also observe that while the MRR
for FCM-form is high, so is the Median Rank, sug-
gesting that this model performs very well on some
terms, presumably morphologically rich examples,
but poorly on a good number of other terms.

Between the two CWV methods, ELMo per-
forms better. It gives a competitive Median Rank,
the second lowest, better than COIN’s, but not as
good as FCM’s. Its MRR is not as competitive.
Our explanation is that ELMo performs well when
sentences have informative context for OOV words.
But its predicted vector representation of an OOV
term is far from the “true” representation when
sentences contain less informative context.

Comparison of Runtime. We repeat the exper-
iments of each method 10 times and report their
averaged runtimes together with the standard devi-
ations (STD) in the last column of Table 2. We ran
the experiments on a PC with an Intel i7-8700K
CPU @ 3.70GHz, 64GB RAM @ 2133 MHz, and
a NVDIA GeForce GTX 1080 GPU. We find that
COIN and its variant COIN-nsw have a good bal-
ance between accuracy and runtime. For example,
FCM achieves the best performance with 0.1754
MRR and 49 Median Rank, but it requires over
5 hours, which is orders of magnitude larger than
that of COIN (415 seconds) and COIN-nsw (423
seconds). FastText runs the fastest (30 seconds) but
with a dramatic sacrifice in accuracy (0.0095 MRR
and 2202 Median Rank). Put together, the running
time and accuracy reported in Table 2, support our
claim that COIN is a strong, inexpensive baseline
for predicting OOV word embeddings.

5.2.2 CRW Task
CRW (Khodak et al., 2018) is a subset of 562 pairs
of words from the Rare Word dataset (Luong et al.,
2013) combined with 255 sentences for each rare
word sampled from the Westbury Wikipedia Cor-
pus (WWC) (Shaoul and Westbury, 2010). Each
pair of words has been manually annotated with
a similarity score. The 255 context sentences are
partitioned into eight disjoint subsets of sizes 1, 2,
4, . . . , 64, 128. The goal is to match the human sim-
ilarity scores between pairs of words in the CRW,

method
MRR.

(×10−2)
Med.
Rank

Time in sec
avg (STD)

Part 1

FastText 0.95 2202 30 (0.39)
FCM-ctxt* 6.56 184 /
FCM-form* 12.98 404 /

FCM* 17.54 49 19,236 (682)

Part 2

N2V* 4.91 623 1,166 (12.99)
ALC* 7.06 165 842 (12.83)
ADD 0.95 3881 414 (1.72)

ADD-nsw 3.62 876 429 (9.83)
COIN 9.43 100 415 (1.38)

COIN-nsw 9.46 90 423 (4.85)

Part 3 BERT 2.34 242 518 (9.74)
ELMo 4.25 62 1,090 (12.81)

*Performance of these methods are quoted from the referenced
paper. Our re-runs may differ slightly.

Table 2: Results on the DefNonce task. Methods are
divided in into three groups. Methods in Part 1 make
use of context and other information, the ones in Part 2
only use context information, Part 3 is CWV methods.

measured using Spearman correlation. The authors
provide a set of word2vec word embeddings trained
on a subset of the WWC from which all sentences
containing a rare word have been removed. How-
ever they only include the trained word embed-
dings, without the context vectors needed for our
technique. Therefore we train our own set of em-
beddings using their original training data, trying to
follow their parameters as closely as possible (See
column WWC in Table 1). We also train FastText
embeddings on this training data.

Experimental Results on CRW. Figure 2 gives
the Spearman correlation values across the sam-
ple sizes, for various model designs. The basic
COIN vectors perform better than ADD on this
task. Following (Khodak et al., 2018) we explore
SIF-weighted vectors, with stop words removed
and top principal component removal. The result-
ing COIN vectors, COIN-nsf, perform about as
well as ALC on this task across context sizes. FCM
performs the best for all context sizes. (Schick
and Schütze, 2019b) points out that the Rare Word
dataset was designed to contain many morphologi-
cally analyzable words. Form based methods, such
as FCM, likely benefit from this design.

5.2.3 Chim Task

Chim (Lazaridou et al., 2017) constructs novel con-
cepts by combining the contexts of pairs of existing
terms to derive a “chimera” of their attributes, for
example “alligator” and “rattlesnake.” Human an-
notators rank the similarity of the chimeric concept
to a set of six probe words (see the example in
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input terms: probes:
alligator rattlesnake crocodile iguana gorilla banner buzzard shovel

2.29 3.29 3.43 2.0 3.71 2.14
sentences:
1. animals such as capybara jaguars jacare ___ and hyacinth macaws are particularly vulnerable
2. nadirpur stared at it as though it were a ___ his face quite drained

Table 3: Chimera example for input pairs and probes. Similarities have been determined by human judges.

Figure 2: Spearman correlation results for CRW task.

Table 3). Context sentences are provided for each
concept in sizes 2, 4, and 6 (half for each of the
existing terms). The goal of this trial is to match
the similarities of the probes to the chimeras as
given by the human judges, measured by Spear-
man correlation. The word2vec model used on this
task is the same as the one on task DefNonce. The
FastText model is trained on WikiText-103 (Merity
et al., 2016), following the way in (Hu et al., 2019).

Experimental Results on Chim. Table 4 gives
the results. CWV methods cannot be used in this
task as there is no sentence for the probe words
to learn their embeddings. A big challenge of this
task is that the randomly selected sentences are not
necessarily informative about the concepts. For
the relatively larger sample size of six sentences
a selective model such as FCM-AM-ctx (Schick
and Schütze, 2019a) is able to focus on the contexts
that will be most helpful. Among the context-based
methods, ADD-nsw performs the best. But the
performance of our method, COIN-nsw, is very
close to that of ADD-nsw.

We observe that COIN is much better in the
DefNonce task but not in Chim task. A possible ex-
planation is that the sentences for the OOV words
in Chim task are randomly selected and thus, are
not necessarily informative about the nature of the
OOV words. In COIN, we get the vectors of OOV
words based on the context words in the sentences
and use these vectors to calculate the similarity

method 2 sent. 4 sent. 6 sent.

Part 1

FastText 0.178 0.174 0.129
FCM-ctx 0.337 0.359 0.422
FCM-AM-ctx 0.342 0.376 0.436
HiCE 0.378 0.405 0.431

Part 2

N2V 0.332 0.367 0.389
ALC 0.363 0.384 0.394
ADD 0.303 0.340 0.337
ADD-nsw 0.354 0.379 0.416
COIN 0.299 0.290 0.359
COIN-nsw 0.336 0.323 0.395

Table 4: Results on the Chim task reported as Spear-
man correlation. All methods are grouped into two
parts: Part 1 and 2, as in Table 2. Neither ELMo nor
BERT can be used in this task as there is no sentence
for the probe words to learn their embeddings.

between words. In contrast, the gold standard simi-
larity between words is from human rankings. We
hypothesize that the intrinsic less information of
COIN vectors (from these sentences) may be the
reason for COIN not performing that well in Chim.

5.3 Downstream Tasks

Following (Schick and Schütze, 2019b), we con-
duct an experimental study using the SentEval eval-
uation toolkit (Conneau and Kiela, 2018) which
contains various types of sentence classification
tasks, including sentiment analysis (MR, SST2,
and SST5) (Socher, 2013; Hosseinia et al., 2019;
Schneider and Dragut, 2015), product reviews (CR)
(Hu and Liu, 2004; Hosseinia et al., 2020), sub-
jectivity/objectivity (SUBJ) (Pang and Lee, 2004),
opinion polarity (MPQA) (Hosseinia et al., 2021;
Tumarada et al., 2021; Wiebe et al., 2005; Yang
et al., 2020), and paraphrase detection (MRPC)
(Dolan et al., 2004; Aljebreen et al., 2021). We
replace the OOV terms with their COIN and FCM
predictions, and our results mirror those reported
in (Schick and Schütze, 2019b), showing no signif-
icant change among the OOV prediction methods
on the results (COIN 73.9% to FCM 74.1%).
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method MRR. Median Rank
FCM 0.1724 (0.1726) 53.8 (50)
COIN+FCM 0.1731 (0.1735) 52.7 (46)
p-value 0.0003 0.0008

Table 5: Results on the DefNonce task. FCM initialized
with COIN vectors improves both MRR. and Median
Rank. We give the average and best (in parenthesis)
outcomes for both MMR. and Median Rank.

5.4 Efficiency and Effectiveness of COIN

According to the comparison between COIN and
other models, our method COIN is very competi-
tive, typically outperforming all but FCM in many
of the tasks. However a significant advantage to
our technique is that it requires no training be-
yond learning the initial word embedding model,
while FCM requires a significant amount of train-
ing time and computing resources. In our exper-
iments, training the FCM model took 5.34 hours
on average. We stress that COIN requires no such
additional training time. The only computational
cost of COIN is the equivalent of a few look-ups of
word–vector mappings (in seconds). Specifically
on the 300 test words of the DefNonce task, the
COIN method takes 131 seconds from loading the
word2vec model, generating the COIN vectors to
evaluation. The COIN method takes 21 seconds
to run all of the 2, 4, and 6 sentence evaluations
on the Chim task. This makes our technique sub-
stantially more practical to use, particularly in de-
velopment stages, giving the user a strong starting
point. In a real world situation when we encounter
an OOV term without having previously trained
a model for one of the trained methods on a cor-
pus of similar documents, COIN can quickly give
a predicted word vector based on the context at
hand, with accuracy close to the cutting edge tech-
niques. In a scenario where it is unknown if a more
complicated model may make a difference on the
downstream result, a user can use COIN to provide
a first look while training another OOV prediction
model, whereby the COIN model provides a good
basis to extend and build upon.

5.5 Initialization with COIN Vectors

The process of deriving COIN vectors is very quick
and efficient, therefore they provide a good model
for initializing other prediction methods. Typi-
cally these methods begin with an additive model
for OOV terms, then further refine the embed-
dings through some training strategy (Herbelot and

Baroni, 2017; Khodak et al., 2018; Schick and
Schütze, 2019b). COIN vectors can be used in
place of the additive vectors as the first level ap-
proximation. In this study our goal is to show that
COIN vectors can be used in conjunction with an
existing, trained method to yield improved results
over either method alone. We focus here on the
FCM method and investigate a modified design
which uses COIN vectors to initialize the model.

On the DefNonce task, COIN achieves better
results than the FCM-context piece alone as shown
in Table 2. We train the models as described in
(Schick and Schütze, 2019b) using the vectors pro-
vided by (Herbelot and Baroni, 2017). We train
the standard FCM model and our combined model,
COIN+FCM, on the same training data used in their
paper, for 10 epochs. Selecting the best performing
epoch for each algorithm on the training set, we
then run this model on the test data. We repeat the
experiments of FCM and COIN+FCM 10 times,
and report their average and best performance in
Table 5. We notice that using COIN vectors to ini-
tialize the model improves the performance in both
MRR and Median Rank. The improvement is slight
but consistent in every randomized run. Thus, we
calculate the p-value to verify that the performance
differences are significant. With a p-value = 0.0003
for the MRR. and p-value = 0.0008 for the Meidan
Rank, the results are significant at the 0.05 level.

We note that while the training data is the same
as used in (Schick and Schütze, 2019b), the FCM
performances here differ slightly with that in Ta-
ble 2, this is because the results here are aver-
aged over 10 repeats, and the outcome of each
run varies due to inherent randomness in the model.
We also run the CRW task comparing the FCM
model and COIN+FCM model. The results show
that COIN+FCM achieves a slight improvement at
most context sizes. The largest difference comes
when the number of contexts is very small. This
makes sense under the assumption that the COIN
vectors are closer to the desired target than ADD
vectors, and therefore fewer training examples are
required to fit the model.

In summary, FCM can be initialized by COIN
without additional cost and this combination yields
more accurate results on the benchmark tasks.

5.6 Embedding Model Selection

There are various hyperparameters and model
choices in training word embeddings which may
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dataset type update MRR. Median Rank

enwiki

CBOW NS 0.0614 157
CBOW HS 0.1148 102

S-G NS 0.0802 173
S-G HS 0.0711 270

WWC

CBOW NS 0.1037 72
CBOW HS 0.1075 109

S-G NS 0.0727 104
S-G HS 0.0759 133

Table 6: Results of different choices from model types
(CBOW or S-G) and updating methods (HS or NS) for
COIN on task DefNonce. S-G is short for skip-gram.

play a role in how the context vectors relate to the
word vectors in OOV prediction. In this section
we consider different settings for word2vec models
to compare their performance. Specifically we ex-
plore the model types (CBOW or skip-gram) and
updating methods (HS or NS). We train these vec-
tors on two corpora: a snapshot of Wikipedia from
January 2019 and the subset of the WWC used by
(Khodak et al., 2018) in their CRW study. The
model parameters are described in Table 1 (See
enwiki and WWC). We repeat the DefNonce evalu-
ation for comparison between model selection. The
results here are not directly comparable to those
given in the previous sections.

Results are shown in Table 6. One observation
is that CBOW generally yields better vectors for
COIN than skip-gram. CBOW with HS on enwiki
gives the highest MRR of all COIN models. For
this model in particular, the much larger vocabulary
of enwiki does not present a liability on this task.
The Median Rank is also competitive among all
the vector predictions. The lowest Median Rank is
achieved on the WWC data with CBOW and NS.

6 Conclusion

In this work we present the COIN method for pre-
dicting word embedding vectors for OOV terms
using the context vectors of context words. We
advertise COIN as an inexpensive and strong base-
line. We show that COIN performs close to the
existing state-of-the-art techniques, while being
much faster as it requires no additional training.
We also show how COIN can be used along with
existing techniques to give a new state-of-the-art on
vector prediction tasks, and how it can be used to
help downstream tasks such as sentiment analysis.
Besides, we explore different model settings for
learning the word vectors. The results of COIN are
robust across model choices, with generally better

performance from CBOW trained embeddings.
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Abstract

A recent success in semantic dependency pars-
ing shows that graph neural networks can make
significant accuracy improvements, owing to
its powerful ability in learning expressive graph
representations. However, this work learns
graph representations based on a static graph
constructed by an existing parser, suffering
from two drawbacks: (1) the static graph might
be error-prone (e.g., noisy or incomplete), and
(2) graph construction stage and graph represen-
tation learning stage are disjoint, the errors in-
troduced in the graph construction stage cannot
be corrected and might be accumulated to later
stages. To address these two drawbacks, we
propose a dynamic graph learning framework
and apply it to semantic dependency parsing,
for jointly learning graph structure and graph
representations. Experimental results show that
our parser outperforms the previous parsers on
the SemEval-2015 Task 18 dataset in three lan-
guages (English, Chinese, and Czech).

1 Introduction

Semantic dependency parsing (SDP) represents a
sentence as a directed acyclic graph (DAG), also
called semantic dependency graph (SDG), to cap-
ture between-word semantic relationships that are
more closely related to the meaning of the sentence.
SDP has been widely applied in many downstream
tasks of natural language processing (NLP), includ-
ing sentiment analysis (Lin et al., 2019), abstractive
summarization (Jin et al., 2020a), natural language
understanding (Wu et al., 2021), etc.

Several semantic dependency parsers are pre-
sented in recent years. Their parsing mecha-
nisms are either transition-based or graph-based.
A transition-based parser generates a sequence
of transition actions to incrementally build an
SDG (Wang et al., 2018; Kurita and Søgaard,
2019; Lindemann et al., 2020; Fernández-González
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Figure 1: Static graph-based SDP and dynamic graph-
based SDP for example sentence "Mary wants to buy
a book". The edge and dependency colored red are
erroneous.

and Gómez-Rodríguez, 2020). Transition-based
parsers can parse a sentence efficiently. However,
they are more prone to suffer from error propa-
gation since the transition prediction stage is se-
quential and greedy. Graph-based parsers over-
come the shortcomings of transition-based parsers.
They score each edge (or combination of them) of
a possible SDG and globally search for the highest-
scoring SDG (Peng et al., 2017; Dozat and Man-
ning, 2018; Wang et al., 2019; Jia et al., 2020; He
and Choi, 2020; Wang et al., 2021; Li et al., 2022).
A recent success in SDP is the model of Li et al.
(2022), which is a graph-based model relying on
graph neural networks (GNNs). Their model uti-
lizes an existing parser to construct an initial static
graph, and then use GNNs to learn node embed-
dings based on the static graph to predict depen-
dency relationships between words, as shown in
Figure 1(a). This model achieves state-of-the-art
performance in three languages (English, Chinese,
and Czech), owing to the powerful ability of GNNs
in learning expressive graph representations.

Despite the promising performance of Li et al.
(2022), there are still two drawbacks in their model:
(1) the initial graph constructed by the existing
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parser is static and might be error-prone (e.g., noisy
or incomplete), the learned node embeddings based
on the static graph may lead to performance degra-
dation to some extent; (2) graph construction stage
and graph representation learning stage are dis-
joint, the errors introduced in the graph construc-
tion stage cannot be corrected and might be accu-
mulated to later stages.

To address these two drawbacks mentioned
above, we propose a dynamic graph learning frame-
work and apply it to SDP, as shown in Figure
1(b), for jointly learning graph structure and graph
representations in this paper. Two GNNs vari-
ants, Graph Convolutional Network (GCN) (Kipf
and Welling, 2016) and Graph Attention Network
(GAT) (Veličković et al., 2018) have been investi-
gated in DynGL-SDP. Experiments are conducted
on the SemEval-2015 Task 18 dataset in three lan-
guages (English, Chinese, and Czech). Exper-
imental results demonstrate the effectiveness of
DynGL-SDP, which outperforms previous studies
and achieves a new state-of-the-art performance.
In addition, DynGL-SDP shows more advantages
with respect to parsing speed.

Contributions The major contributions of this
paper are summarized as follows: (1) we propose
a dynamic graph learning framework for jointly
learning graph structure and graph representations;
(2) we apply the framework in SDP to propose
a graph-based semantic dependency parser; (3)
we conduct sufficient experiments and show that
our parser achieves a new state-of-the-art result
in three languages. Our code is publicly avail-
able at https://github.com/LiBinNLP/
DynGL-SDP.

2 Related Work

In this section, the studies of SDP and dynamic
graph learning will be summarized as follows.

2.1 Semantic Dependency Parsing

Several SDP models are presented in recent years.
Their parsing mechanisms are either transition-
based or graph-based.

A transition-based parser predicts a sequence of
transition actions to incrementally build an SDG.
Wang et al. (2018) presented a neural transition-
based parser using Bi-LSTM Subtraction and In-
cremental Tree-LSTM to represent the key compo-
nents of the transition system, using a variant of

list-based arc-eager transition algorithm for depen-
dency graph parsingto better capture the seman-
tics of segments and internal sub-graph structures.
Kurita and Søgaard (2019) presented a transition-
based parser, using reinforcement learning algo-
rithm to iteratively apply the syntactic dependency
parser to build a DAG structure sequentially. Lin-
demann et al. (2020) developed a transition-based
parser for Apply-Modify dependency parsing. They
introduced the stack-pointer model to predict transi-
tions. Fernández-González and Gómez-Rodríguez
(2020) presented a transition-based parser, using
pointer network to choose a transition among
ROOT, Attach-p, and Shift.

Transition-based parsers can parse a sentence
efficiently using a linear or quadratic number of
transitions. However, they are more prone to suffer
from error propagation since the transition predic-
tion stage is sequential and greedy, an erroneous
action can affect future predictions.

Graph-based parsers overcome the shortcomings
of transition-based parsers, therefore they draw
more attention. A graph-based parser scores each
edge (or combination of them) of a possible SDG
and searches for the highest-scoring SDG. Peng
et al. (2017) developed a graph-based parser which
explored two multitask learning approaches with
a parameterization and factorization that implic-
itly to model the relationship between multiple for-
malisms. Dozat and Manning (2018) presented
a biaffine attention-based parser, which extended
the syntactic parser of Dozat et al. (2017) to train
on and generate an SDG. Wang et al. (2019) ex-
tended the parser of Dozat and Manning (2018)
and added the second-order information for scor-
ing each dependency edge. Either mean-field varia-
tional inference or loopy belief propagation is uti-
lized for approximate decoding. Jia et al. (2020)
presented a semi-supervised model based on con-
ditional random field autoencoder to learn a de-
pendency graph. He and Choi (2020) significantly
improved the performance by introducing contex-
tual string embeddings (called Flair) in the basis
of Dozat and Manning (2018). Wang et al. (2021)
utilized reinforcement learning algorithm to find
better concatenations of embeddings, and then fed
it into the parser of Dozat and Manning (2018).

Recently, Li et al. (2022) presented a GNN-
based parser. They used an existing parser to con-
struct an initial SDG, and then utilized GNNs to
learn node embeddings to predict dependencies,
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achieving state-of-the-art performance. However,
the initial SDG constructed by the existing parser
is static and might be error-prone (e.g., noisy or
incomplete), this may leads to error accumulation
and performance degradation.

2.2 Dynamic Graph Learning

Graph learning is the process of learning the rep-
resentations of a graph, GNNs are the most promi-
nent approaches for graph learning. GNNs take
in the original feature and adjacency matrix, and
output node embeddings as graph representations
(Hamilton et al., 2017; Kipf and Welling, 2016;
Veličković et al., 2018). Due to the powerful abil-
ity in learning graph representations, GNNs have
been applied to various downstream tasks, includ-
ing node prediction (Hamilton et al., 2017), link
prediction (Teru et al., 2020), and graph classifica-
tion (Ying et al., 2018).

Despite GNNs’ powerful ability in graph learn-
ing, unfortunately, they can only be used when
graph-structured data is available. Many NLP
tasks may only have sequential data, there is no
graph structure available. To address this limita-
tion, several dynamic graph learning frameworks
are presented, for jointly learning graph structure
and graph representations (Chen et al., 2020; Jin
et al., 2020b; Fu and He, 2021).

Inspired by the ideas of these frameworks, we
propose a dynamic graph learning framework, and
then apply it to SDP, to generate an SDG from word
sequence rather than an initial static graph.

3 DynGL-SDP

DynGL-SDP is a graph-based parser using the dy-
namic graph learning framework. An overview of
DynGL-SDP is shown as Figure 2. Given sentence
s with n words [w1, w2, . . . , wn], there are four
stages to parse it as an SDG: (1) contextualized
representation learning—a bidirectional long short-
term memory network (BiLSTM) is used to learn
the contextualized representation of each word; (2)
graph structure learning—a graph structure learn-
ing module is used to learn the adjacency matrix of
a potential SDG; (3) graph representation learning—
the contextualized representations and the learned
adjacency matrix will be fed into the GNNs, to
learn expressive node embeddings; (4) dependency
relationship learning—the concatenation of node
embeddings and contextualized representations are
fed into biaffine attention-based parser, to learn

dependency relationships between words.

3.1 Contextualized Representation Learning

We concatenate word and feature embeddings, and
feed them into a BiLSTM to obtain contextualized
representations.

xi = e
(word)
i ⊕ e(feat)i (1)

ci = BiLSTM(xi) (2)

where xi is the concatenation (⊕) of the word and
feature embeddings of word wi, ci is the contextu-
alized representation of wi.

Word Embedding 100-dimensional word em-
beddings from GloVe (Pennington et al., 2014) are
used for English; 300-dimensional word embed-
dings from fasttext (Grave et al., 2018) are used for
Chinese and Czech.

Feature Embedding Four types of feature em-
beddings are used, their dimensions (denoted as d)
are equal: (1) Part-of-speech (POS) tag: POS tag
embeddingE(pos) is randomly generated, E(pos) ∈
Rn×d, where n is the number of POS tags; (2)
Lemma: lemma embedding E(lemma) is also ran-
domly generated. E(lemma) ∈ Rl×d, where l is
the number of lemmas; (3) Character: character
embedding is generated using Char-LSTM (Kim
et al., 2016) that convolved over three-character
embeddings at each time step; (4) BERT: BERT
embedding (Kenton and Toutanova, 2019) is ex-
tracted from the pretrained BERTbase model.

3.2 Graph Structure Learning

The purpose of the graph structure learning module
is to learn the adjacency matrix A of a potential
SDG. Two multi-layer perceptrons (MLP) are used
to capture head and dependent representations of
each word, as Equation 3 and 4:

h
(adj−head)
i =MLP (adj−head)(ci) (3)

h
(adj−dep)
i =MLP (adj−dep)(ci) (4)

We can then use biaffine classifier (as Equation
5), to compute the score of a possible edge between
wi and wj , as Equation 6:

Biaff(x1, x2) = xT1 Ux2+W (x1⊕x2)+ b (5)
3996



Edge Prediction 

Label Prediction 

Graph Structure  Learning 

MLP 

Edge Prediction MLP 

Mary  wants  to  buy  a   book 

BiLSTM 

Contextualized Representation  Learning  

GNNs 

Graph Representation  Learning  Dependency Relation  Learning  

ARG2 

ARG1 ARG1 

BV ARG1 

        Mary      wants  to  buy  a     book

root 

Semantic Dependency Graph 

Figure 2: Overall architecture of the proposed DynGL-SDP.

s
(adj)
i,j = Biaff (adj)(h

(adj−dep)
i , h

(adj−head)
j )

(6)
A directed edge from wi to wj exists when Aij

is 1. Aij in A is computed as Equation 7:

Âi,j =

{
1, s

(adj)
i,j > 0

0, s
(adj)
i,j ≤ 0

(7)

3.3 Graph Representation Learning
The graph representation learning module utilizes
GNNs to learn the each word’s representation (i.e.
node embedding) that contains graph structure in-
formation. K-layer GNNs are employed, which
take in the contextualized representations and the
learned adjacency matrix A and output the embed-
ding matrix of final layer as node embeddings R.
R(k) in kth-layer is computed as Equation 8:

R(k) = GNNLayer(k−1)(R(k−1), Â) (8)

When GNNLayer is implemented in GCN, the
representation of node i in kth layer r(k)i is com-
puted as Equation 9:

r
(k)
i = σ


W

∑

j∈N(i)

r
(k−1)
j +Br

(k−1)
i


 (9)

where W and B are parameter matrices; N(i) are
neighbors of node i; σ is active function; r(0)i = ci.

When GNNLayer is implemented in GAT, r(k)i

is computed as Equation 10:

r
(k)
i = σ


W

∑

j∈N(i)

a
(k−1)
ij r

(k−1)
j +Br

(k−1)
i




(10)

where a(k−1)ij is attention coefficient of node i to its
neighbour j at (k − 1)th layer.

3.4 Dependency Relationship Learning
The dependency relationship learning module fol-
lows the biaffine attention-based parser (Dozat and
Manning, 2018), which has two components: edge
prediction and label prediction. For each word wi,
the node embedding ri and the contextualized rep-
resentation ci are concatenated to represent it, as
shown in Equation 11. For each of the two compo-
nents, we use MLP to split the final word represen-
tation zi into two parts—a head representation, and
a dependent representation, as shown in Equation
12 – 15:

zi = ri ⊕ ci (11)

h
(edge−head)
i =MLP (edge−head)(zi) (12)

h
(label−head)
i =MLP (label−head)(zi) (13)

h
(edge−dep)
i =MLP (edge−dep)(zi) (14)

h
(label−dep)
i =MLP (label−dep)(zi) (15)

Two biaffine classifiers are used to predict edges
and labels, as Equation 16 and 17 :

s
(edge)
i,j = Biaff (edge)(h

(edge−dep)
i , h

(edge−head)
j )

(16)
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s
(label)
i,j = Biaff (label)(h

(label−dep)
i , h

(label−head)
j )

(17)
where s(edge)i,j and s(label)i,j are scores of the edge and
label between the word wi and wj . U , W , and b
are learned parameters.

For edge prediction component, U will be (d×
1× d)-dimensional, so that s(edge)i,j will be a scalar.
An edge between wi and wj exists where si,j is
positive. For label prediction component, U will
be (d× c× d)-dimensional, where c is the number
of labels, so that s(label)i,j is a vector that represents
the probability distribution of each label. The most
probable label will be assigned to the edge between
wi and wj .

ŷ
(edge)
i,j = {s(edge)i,j > 0} (18)

ŷ
(label)
i,j = argmax s

(label)
i,j (19)

3.5 Learning
We can train the system by summing the losses
from the three modules, back propagating error to
the parser. Cross entropy function is used as the
loss function, which is computed as Equation 20:

CE(p, q) = −
∑

x

p(x) log q(x) (20)

We define the loss function of graph structure
learning module (as Equation 21), edge prediction
module (as Equation 22) and label prediction mod-
ule (as Equation 23):

L(adj)(θ1) = CE(Âi,j , Ai,j) (21)

L(edge)(θ2) = CE(ŷ
(edge)
i,j , y

(edge)
i,j ) (22)

L(label)(θ3) = CE(ŷ
(label)
i,j , y

(label)
i,j ) (23)

where θ1, θ2, and θ3 are the parameters of three
modules.

Then the Adaptive Moment Estimation (Adam)
(Kingma and Ba, 2015) method is used to optimize
the summed loss function L:

L = αL(adj)+βL(edge)+(1−α−β)L(label) (24)

where α and β are two tunable interpolation con-
stants, where (α+ β) ∈ (0, 1).

4 Experiments

4.1 Dataset and Evaluation Metrics

We conduct experiments on the SemEval-2015
Task 18 dataset, which covers three languages
(English, Chinese, and Czech) and contains three
different formalisms (DELPH-IN MRS (DM)
(Flickinger et al., 2012), Predicate-Argument Struc-
ture (PAS) (Miyao and Tsujii, 2004), and Prague
Semantic Dependencies (PSD) (Hajic et al., 2012)).
Three formalisms (DM, PAS, and PSD) are all
available for English; only PAS formalism is avail-
able for Chinese; only PSD formalism is available
for Czech.

Dataset Split The dataset split for three lan-
guages is the same as Li et al. (2022), which is
shown in Appendix A.1.

Evaluation Metric Labeled F-measure score
(LF1) (including ROOT edges) is used as the met-
ric to evaluate our parser’s performance on the ID
and OOD test sets for each formalism as well as
the macro-average over the three of them.

4.2 Hyperparameters

The hyperparameter configuration for our final sys-
tem is given in Appendix A.2. Following Wang
et al. (2019), Adam method is used for optimizing
our model, annealing the learning rate by 0.5 for
every 10,000 steps, and switched the optimizer to
AMSGrad (Reddi et al., 2019) after 5,000 steps
without improvement. We train the model for
100,000 iterations with batch sizes of 6,000 tokens
and terminated training early after 10,000 iterations
with no improvement on the development set.

4.3 Baseline Approaches

We compare DynGL-SDP with previous state-of-
the-art approaches. We group them into three
groups: transition-based models, graph-based mod-
els, and hybrid models.

Transition-based models Turku is from Kanerva
et al. (2015). WCGL (Wang et al., 2018) is a neural
transition-based model. SemPointer (Fernández-
González and Gómez-Rodríguez, 2020) is a
transition-based model using Pointer Network. Lin-
demann et al. (2019) and Lindemann et al. (2020)
are compositional semantic parser for SDP and ab-
stract meaning representation.
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English
Models DM PAS PSD Avg

ID OOD ID OOD ID OOD ID OOD

Peking (2015) 89.1 81.8 91.3 87.2 75.7 73.3 85.3 80.8
Lisbon (2015) 88.2 81.8 90.9 86.9 76.4 74.8 85.2 81.2
PTS17 (2017): Basic 89.4 84.5 92.2 88.3 77.6 75.3 86.4 82.7
PTS17 (2017): Basic 90.4 85.3 92.7 89.0 78.5 76.4 87.2 83.6
WCGL (2017): Basic 90.3 84.9 91.7 87.6 78.6 75.9 86.9 82.8
D&M (2018): Basic 91.4 86.9 93.9 90.8 79.1 77.5 88.1 85.0
MF (2019): Basic 93.0 88.4 94.3 91.5 80.9 78.9 89.4 86.3
LBP (2019): Basic 92.9 88.4 94.3 91.5 81.0 78.8 89.4 86.2
Lindemann et al. (2019): Basic 91.2 85.7 92.2 88.0 78.9 76.2 87.4 83.3
SemPointer (2020): Basic 92.5 87.7 94.2 91.0 81.0 78.7 89.2 85.8
GNNSDP(GCN) (2022): Basic 93.3 88.0 94.8 91.1 85.6 83.6 91.2 87.6
GNNSDP(GAT) (2022): Basic 93.0 87.9 94.8 91.6 85.4 83.3 91.1 87.6
DynGL-SDP(GCN) Basic 93.7 89.3 94.9 91.7 85.9 84.1 91.5 88.5
DynGL-SDP(GAT) Basic 93.8 89.2 95.1 92.0 85.9 83.8 91.6 88.3

D&M (2018): +Char+Lemma 93.7 88.9 93.9 90.6 81.0 79.4 89.5 86.3
MF (2019): +Char+Lemma 94.0 89.7 94.1 91.3 81.4 79.6 89.8 86.9
LBP (2019): +Char+Lemma 93.9 89.5 94.2 91.3 81.4 79.5 89.8 86.8
Jia et al. (2020): +Lemma 93.6 89.1 - - - - - -
SemPointer (2020): +Char+Lemma 93.9 89.6 94.2 91.2 81.8 79.8 90.0 86.9
GNNSDP(GCN) (2022): +Char+Lemma 94.2 90.1 94.9 91.4 86.4 84.9 91.8 88.8
GNNSDP(GAT) (2022): +Char+Lemma 94.4 89.9 95.0 91.8 86.2 84.6 91.9 88.8
DynGL-SDP(GCN) +Char+Lemma 95.0 90.1 95.0 92.0 86.6 85.0 92.2 89.0
DynGL-SDP(GAT) +Char+Lemma 94.9 90.5 95.3 92.1 86.7 85.0 92.3 89.2

Lindemann et al. (2019): +BERTlarge 94.1 90.5 94.7 92.8 82.1 81.6 90.3 88.3
Lindemann et al. (2020): +BERTlarge 93.9 90.4 94.7 92.7 81.9 81.6 90.2 88.2
SemPointer (2020): +Char+Lemma+BERTbase 94.4 91.0 95.1 93.4 82.6 82.0 90.7 88.8
He et al. (2020): +Char+Lemma+BERTbase+Flair 94.6 90.8 96.1 94.4 86.8 79.5 92.5 88.2
ACE-Fine-tune (2021) +AutoConcat 95.6 92.6 95.8 94.6 83.8 83.4 91.7 90.2
GNNSDP(GCN) (2022): +Char+Lemma+BERTbase 95.1 91.1 95.7 93.2 87.7 87.3 92.8 90.5
GNNSDP(GAT) (2022): +Char+Lemma+BERTbase 95.3 91.9 96.0 94.3 87.0 86.7 92.8 91.0
DynGL-SDP(GCN) +Char+Lemma+BERTbase 95.8 92.7 96.2 94.2 87.8 87.0 93.3 91.3
DynGL-SDP(GAT) +Char+Lemma+BERTbase 95.9 92.7 96.2 94.3 87.7 87.2 93.3 91.4

Table 1: Comparison of labeled F1 scores achieved by our model and previous parsers on English dataset. Jia
et al. (2020) only reports the full-supervised result on DM formalism. The F1 scores of Baseline and our model
are averaged over 5 runs. ID denotes the in-domain (Wall Street Journal Corpus) test set and OOD denotes the
out-of-domain (Brown Corpus) test set. +Char, +Lemma, +BERT, +Flair, and +AutoConcat mean augmenting the
token embeddings with character-level, lemma embeddings, BERT embeddings, Flair embeddings, and automated
concatenation of 11 types of pretrained embeddings.

Graph-based models Lisbon is from Almeida
and Martins (2015). PTS17 (Peng et al., 2017) is
a multitask learning based parser across three for-
malisms. D&M (Dozat and Manning, 2018) is a
biaffine attention-based parser. MF and LBP (Wang
et al., 2019) are a second-order model using mean
field variational inference or loopy belief propaga-
tion. Jia et al. (2020) is a semi-supervised parser,
only the full-supervised result on DM formalism is
reported in their paper. He and Choi (2020) uses
not only BERT but also contextual string embed-
dings (called Flair). ACE-Fine-tune (Wang et al.,
2021) adds automated concatenation of 11 types
of pretrained embeddings to the biaffine attention-
based parser. GNNSDP (Li et al., 2022) is a GNN-
based parser, which is the previous state-of-the-art

parser.

Hybrid models Peking is a hybrid model from
Du et al. (2015). Riga is from Barzdins et al.
(2015).

4.4 Main Results

To perform a fair comparison, we group SDP
models in three blocks according to the embed-
dings provided to the models: (1) just basic pre-
trained word embeddings and POS tag embed-
dings (Basic), (2) character and pre-trained lemma
embeddings augmentation (+Char+Lemma) and
(3) pretrained BERT embeddings augmentation
(+Char+Lemma+BERT).
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4.4.1 Results on English
Table 1 shows the comparison of DynGL-SDP and
previous studies on the SemEval-2015 Task 18 En-
glish dataset. From the result, we have the follow-
ing observations:

• DynGL-SDP implemented with two GNN
variants outperforms all existing parsers on
three formalisms of English dataset in three
embedding settings.

• Compared to the previous best one (GNNSDP
(2022)) in each embedding setting, the best
performing DynGL-SDP makes 0.4%, 0.4%,
and 0.5% averaged LF1 improvements on in-
domain test sets, 0.9%, 0.4%, and 0.4% av-
eraged LF1 improvements on out-of-domain
test sets.

• The performances of most parsers have been
generally improved when the token embed-
dings are augmented with more feature em-
beddings.

• The performances of two DynGL-SDP vari-
ants implemented with GCN and GAT are
relatively close.

• We note that ACE-Fine-tune (2021) performs
better than DynGL-SDP in out-of-domain test
set of PAS formalism. A reasonable explana-
tion is that 11 types of pretrained embeddings
are used in their model, improving the model’s
generalization ability.

4.4.2 Results on Chinese and Czech
Table 2 shows the comparison of DynGL-SDP and
previous studies on SemEval-2015 Task 18 Chi-
nese and Czech test sets. From the result, we have
observed that:

• DynGL-SDP outperforms the previous parsers
on Chinese and Czech. The best perform-
ing DynGL-SDP makes 0.33% averaged LF1
improvement on Chinese in-domain test set
in three embedding settings, 0.28% averaged
LF1 improvement on Czech in-domain and
out-of-domain test sets in three embedding
settings.

• The LF1 scores of two DynGL-SDP variants
implemented with GCN and GAT are rela-
tively close on Chinese and Czech.

Chinese Czech
Models PAS PSD

ID ID OOD

Turku(2015) 79.6 75.3 63.7
Riga(2015) 82.5 75.3 61.3
Peking(2015) 83.4 78.5 64.4
Lisbon(2015) 82.0 79.3 63.5
D&M(2018): Basic 87.4 86.9 77.8
GNNSDP(GCN)(2022): Basic 88.3 88.2 79.1
GNNSDP(GAT)(2022): Basic 88.0 87.8 78.9
DynGL-SDP(GCN): Basic 88.8 88.7 78.9
DynGL-SDP(GAT): Basic 88.9 88.9 79.0

D&M (2018): +Char+Lemma 87.8 87.6 78.9
GNNSDP(GCN) (2022): +Char+Lemma 88.5 88.8 80.2
GNNSDP(GAT) (2022): +Char+Lemma 88.3 88.9 80.2
DynGL-SDP(GCN): +Char+Lemma 88.5 89.7 80.3
DynGL-SDP(GAT): +Char+Lemma 88.3 90.0 80.0

GNNSDP(GCN) (2022): +Char+Lemma+BERT 90.1 89.6 80.7
GNNSDP(GAT) (2022): +Char+Lemma+BERT 90.4 89.3 80.4
DynGL-SDP(GCN): +Char+Lemma+BERT 90.8 90.1 80.4
DynGL-SDP(GAT): +Char+Lemma+BERT 90.8 90.1 80.4

Table 2: Comparison of labeled F1 scores achieved
by DynGL-SDP and previous studies on Chinese and
Czech datasets. Only the PAS formalism and in-domain
(ID) test set are available for Chinese, the PSD formal-
ism, in-domain and out-of-domain (OOD) test sets are
available for Czech.

• On the Chinese dataset, the LF1 score of
DynGL-SDP has degraded on the contrary
when the token embeddings are augmented
with character-level and lemma embeddings.
The reason is that the character and lemma are
not available for Chinese.

In summary, DynGL-SDP outperforms the pre-
vious parsers in three languages and three seman-
tic dependency formalisms. Outstanding perfor-
mances of DynGL-SDP demonstrate that the pro-
posed dynamic graph learning framework is able to
learn the expressive graph representations without
depending on an initial static graph.

5 Analysis

5.1 Performance on Different Sentence
Lengths

Here we want to investigate the performances of
DynGL-SDP (ours) and GNNSDP (the previous
best one) on different sentence lengths. We split the
ID and OOD test sets of DM formalism into 6 and
7 groups (one group with 10 tokens) and evaluate
DynGL-SDP and GNNSDP on them. The GNN
module in these two parsers is implemented with
GAT. The results in different groups are shown in
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Figure 3: LF1 scores of different sentence lengths in
DM formalism on English dataset. *_T represents that
only the POS tag embedding is used. *_TCLB rep-
resents that the POS tag, character-level, lemma, and
BERT embeddings are used.

Figure 3.
From the result, we can see that DynGL-SDP

outperforms GNNSDP in different groups and
two embedding settings. Furthermore, the perfor-
mances of both parsers degrade as sentence length
gets longer, highly suggesting that parsing longer
sentences is still a challenge.

5.2 Parsing Speed
Not only accuracy but also parsing speed deter-
mine whether a parser can be applied to down-
stream tasks. Therefore we compare DynGL-SDP
and GNNSDP with respect to parsing speed on an
Nvidia GeForce RTX2080Ti server.

To avoid the influence of preprocessing stage,
the annotated tokens, POS tags, and lemmas in
the dataset are directly used without preprocessing.
The result is shown in table 3.

From the result, we can see that:

• DynGL-SDP performs better than GNNSDP
with respect to parsing speed in three embed-
ding settings.

• The parsing speed of two parsers slows down
when more features are added.

Models EN CHS CZ
DM PAS PSD

GNNSDP(GCN):Basic 1153 1032 997
DynGL-SDP(GCN):Basic 1974 1922 1828
GNNSDP(GCN):+Char+Lemma 821 819 775
DynGL-SDP(GCN):+Char+Lemma 1551 1543 1411
GNNSDP(GCN):+Char+Lemma+BERT 346 297 276
DynGL-SDP(GCN):+Char+Lemma+BERT 677 559 554

Table 3: Parsing speed (sentences/second) of DynGL-
SDP (ours) and GNNSDP (the previous best one) on
English (EN), Chinese (CHS) and Czech (CZ). Parsing
speed of each parser is averaged over 5 runs.
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(c) Semantic dependency graph parsed by GNNSDP
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Figure 4: 4(a) and 4(b) are two adjacency matrices
(Adj) fed into two parsers. The words in the left are
head words, words in the bottom are dependent words.
4(c) and 4(d) are parsing results of two parsers.

5.3 Case Study

We provide a parsing example to show why DynGL-
SDP can outperform GNNSDP using dynamic
graph learning. Figure 4(a) and Figure 4(b) rep-
resent the adjacency matrices fed into GNNSDP
and DynGL-SDP. Figure 4(c) and Figure 4(d) are
parsing results of GNNSDP and DynGL-SDP for
the English sentence "They serve cracked wheat,
oats or cornmeal." (sent_id = 40504062, in OOD
test set of PSD formalism). The two parsers are
implemented with GCN and trained in the basic
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embedding setting.
From Figure 4(a), we can see that there are two

erroneous values (red square) in this adjacency ma-
trix, indicating that the graph structure input into
GNNSDP is noisy. Using learned node embeddings
based on the noisy graph leads to two erroneous
dependent edges in SDG parsed by GNNSDP (red
edge labeled RSTR).

Benefiting from the dynamic graph learning
framework, the learned graph structure input into
DynGL-SDP is correct. Therefore DynGL-SDP
produces a correct SDG.

6 Conclusions

In this paper, we propose a dynamic graph learning
framework and apply it in semantic dependency
parsing. Experimental results show that our model
achieves a new state-of-the-art performance on the
SemEval-2015 Task 18 dataset in three languages
(English, Chinese, and Czech). The outstanding
performance of our model demonstrates that the
proposed dynamic graph learning framework is
able to learn the expressive graph representations
without depending on an initial static graph.
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A Appendix

A.1 Dataset Split

The dataset split is shown in Table 4.

Language Train Dev Test
ID OOD

English 33,964 1,692 1,410 1,849
Chinese 25,336 3,000 8,976 -
Czech 39,057 3,000 1,670 316

Table 4: The number of sentences contained in each
divided dataset of three languages. Only the in-domain
test set is available for Chinese; the in-domain and out-
of-domain test sets are available for English and Czech.

• For English, 33,964 sentences from Sections
00-19 of the Wall Street Journal corpus as
training data, 1,692 sentences from Section
20 as development data, 1,410 sentences from
Section 21 as in-domain (ID) test data, and
1,849 sentences sampled from the Brown Cor-
pus as the out-of-domain (OOD) test data.

• For Chinese, the top 3,000 sentences as the
development data, the remaining 25,336 sen-
tences as the training data, and 8,976 sen-
tences as ID test data.

• For Czech, the top 3,000 sentences as the de-
velopment data, the remaining 39,057 sen-
tences as the training data, 1,670 sentences
as the ID test data, and 316 sentences as the
OOD test data.

A.2 Hyperparameter Values

The hyperparameter configuration for our final sys-
tem is given in Table 5. 100-dimensional pretrained
GloVe embeddings are used for English, in which
the token "unk" represents the out-of-vocabulary
tokens. 300-dimensional pretrained fasttext embed-
dings are used for Chinese and Czech, in which
the token "UNK" represents the out-of-vocabulary
tokens. Word embeddings of each language will be
linearly transformed to be 125-dimensional. Only
words or lemmas that occurred 7 times or more
will be included in the word and lemma embedding
matrix.

Layer Hyper-parameter Value

Word Embedding
English 100

Chinese/Czech 300

Feature Embedding
POS/Lemma 100
Char/BERT 100

LSTM
layers 3

hidden size 400
dropout 0.33

GNN
GCN/GAT layers 3
GCN/GAT hidden 600
GCN/GAT dropout 0.33

MLP
adj-head/dep hidden 600

edge-head/dep hidden 600
label-head/dep hidden 600

Trainer

optimizer Adam
learning rate 1e−2

Adam (β1, β2) 0.95
decay rate 0.75

decay step length 5000
Loss(α, β) 0.2, 0.2

Table 5: Final hyperparameter configuration.
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Abstract

Knowledge Graph Completion (KGC) has been
recently extended to multiple knowledge graph
(KG) structures, initiating new research direc-
tions, e.g. static KGC, temporal KGC and few-
shot KGC (Ji et al., 2022). Previous works
often design KGC models closely coupled with
specific graph structures, which inevitably re-
sults in two drawbacks: 1) structure-specific
KGC models are mutually incompatible; 2) ex-
isting KGC methods are not adaptable to emerg-
ing KGs. In this paper, we propose KG-S2S,
a Seq2Seq generative framework that could
tackle different verbalizable graph structures
by unifying the representation of KG facts into
“flat” text, regardless of their original form. To
remedy the KG structure information loss from
the “flat” text, we further improve the input rep-
resentations of entities and relations, and the
inference algorithm in KG-S2S. Experiments
on five benchmarks show that KG-S2S outper-
forms many competitive baselines, setting new
state-of-the-art performance. Finally, we ana-
lyze KG-S2S’s ability on the different relations
and the Non-entity Generations 1.

1 Introduction

Knowledge graph completion (KGC) has been a
fundamental task to discover unobserved facts from
various knowledge graph (KG) structures, includ-
ing static KGC (SKGC), temporal KGC (TKGC)
and few-shot KGC (FKGC) (Ji et al., 2022). As
shown in Figure 1, TKGC (in orange) contains
temporal facts with timestamps, while FKGC (in
green) predicts the facts with relations that only
have limited or zero training instances.

Typically, the solutions for KGC are graph-
based, i.e., treating entities and relations as nodes
and linkages. The training and inference of SKGC

∗First two authors contribute equally.
†Corresponding author

1Our source code is available at https://github.
com/chenchens190009/KG-S2S

Figure 1: Running examples of Static (SKGC), Tempo-
ral (TKGC) and Few-shot (FKGC) Knowledge Graph
Completion tasks. Our proposed KG-S2S is an unified
Seq2Seq framework adaptable to all of these tasks.

models rely on various transitional relations over
graph paths (Trouillon et al., 2016; Dettmers et al.,
2018; Vashishth et al., 2020). TKGC and FKGC
methods are further integrated with non-trivial com-
ponents or learning paradigms to handle the ex-
tra temporal information or training requirements.
Concretely, TKGC models (Dasgupta et al., 2018;
Goel et al., 2020; Lacroix et al., 2020) either con-
struct temporal-specific sub-KG or add additional
temporal embeddings into existing SKGC meth-
ods. FKGC models apply the additional training
scheme (e.g., meta-learning) between the frequent
relations and the infrequent ones to the SKGC mod-
els (Xiong et al., 2018; Niu et al., 2021). Such a
methodological discrepancy leads to a great main-
tenance cost and being inadaptable to emerging
knowledge queries, ingestion, and presents. Nat-
urally, a research question has been raised: Can
we adapt the different forms of KG facts and solve
these KGC tasks in a unified framework?
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Recently, Seq2Seq Pre-trained Language Mod-
els (PLM) have shown state-of-the-art perfor-
mances and high technical homogeneity when deal-
ing with different NLP tasks. Albeit having het-
erogeneous input and output, the Seq2Seq PLMs
covert those tasks into “text-to-text” format, taking
the text as inputs and producing another text as
outputs (Raffel et al., 2020; Xie et al., 2022a). In
addition, PLMs have embedded massive real-world
knowledge from the pre-training (Petroni et al.,
2019), which is potentially beneficial for the KGC
tasks, especially in the data-sparsity scenarios.

Inspired by this, we propose KG-S2S, a simple
yet effective Seq2Seq PLM framework adaptable to
various KG structures. Given a KG query, KG-S2S
directly generates the target entity text using the
common PLM fine-tuning practices. Firstly, to rem-
edy the KG structure information loss caused by the
naïve “text-to-text” format, we improve KG-S2S
via 1) the input representations of entities and re-
lations using Entity Description, Soft Prompt and
Seq2Seq Dropout; 2) the constrained inference al-
gorithm empowered by the Prefix Constraints; Sec-
ondly, we treat all the KG elements (i.e., entity, rela-
tion and timestamp) as “flat” text (Figure 1) which
enables KG-S2S to i) handle various verbalizable
knowledge graph structures; ii) generate non-entity
text and find novel entities for KGs. We make sev-
eral improvements on the preliminary attempts of
concurrent works (Saxena et al., 2022; Xie et al.,
2022b) using Seq2Seq for KGC. Our model adds
special treatments to input entity/relation textual
representation. This helps to better capture subtle
yet key tokens and facilitate the ability to ingest
other graph structures.

We conduct experiments on WN18RR,
FB15K-237 and FB15K-237N for SKGC,
ICEWS14 for TKGC and NELL-One for FKGC.
KG-S2S outperforms several competitive baseline
models, including graph-based and PLM-based
models, and sets new state-of-the-art performance
on all three settings. We conduct ablation studies to
show the effectiveness of the proposed components,
compare KG-S2S with graph-based KGC models
at the relation level and finally showcase the
Non-entity Generation from KG-S2S to present
its potential in producing novel knowledge triples.

2 Related work

KGC has been studied in the Static, Temporal and
Few-shot settings. Previous works often focus on a

single setting, while KG-S2S fits all three settings
without any architecture modifications.

Static KGC Early SKGC models assign train-
able embeddings to each entity and relations (Bor-
des et al., 2013; Sun et al., 2019). A score function
is proposed to evaluate the scores of triples with
these embedding. These models learn structural
information of a knowledge graph, regardless of
the textual information of the entities and relations.
Recently, Yao et al. (2019); Wang et al. (2021a);
Xie et al. (2022b); Saxena et al. (2022) proposed to
encode entity and relation textual knowledge into
the model by using PLMs. Instead of calculating
scores from embeddings, they train PLMs to pro-
duce plausibility scores for KG text representation.

Temporal KGC Many TKGC models incorpo-
rate additional time-specific parameters upon ex-
isting KGC methods. Leblay and Chekol (2018),
based on Bordes et al. (2013), represents each
timestamp with independent embeddings. Das-
gupta et al. (2018) resembles Wang et al. (2014),
regarding timestamps as hyperplanes for entities to
project. Lacroix et al. (2020) considers the score
of each triple as canonical decomposition of order
4 tensors in complex domain. Goel et al. (2020)
suggests learning dynamic embeddings for entity
and relations, transforming part of the embedding
with sinusoidal activation of learned frequencies.
Han et al. (2021) proposes a systematic framework
to improve existing temporal embedding models.

Few-shot KGC For one-shot learning on rela-
tions, Xiong et al. (2018) attempts to seek a match-
ing metric that can be used to discover similar
triples given one reference triple. Chen et al.
(2019) discovers two kinds of relation-specific
meta-information: relation meta, and gradient meta.
It uses meta-learning methods to transfer meta-
information to low-resource relations. With the
help of textual information and PLMs, Wang et al.
(2021a) outperforms other few-shot baseline mod-
els on the zero-shot relations.

3 Proposed Method

This section first formulates Knowledge Graph
Completion tasks in Sec. 3.1, then discusses our
proposed KG-S2S method in Sec. 3.2, 3.3 and 3.4.
Figure 2 shows the overview of KG-S2S.
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Figure 2: The overview of KG-S2S. Given the query (LeBron James, is the winner of, ?, ∗), we represent “LeBron
James” by joining entity name and description. Soft Prompt distinguishes similar relation name and disentangles
relation-specific information. Seq2Seq Dropout randomly masks input words to avoid over-fitting. In the inference,
Prefix Constraints (Pre. Con.) forces the decoding algorithms to only generate valid entity text in the decoder.

3.1 Knowledge Graph Completion
A Knowledge Graph (KG) (E , R, T ) includes an
entity set E , a relation set R and a tuple list T =
[(h, r, t,m)1, · · · , (h, r, t,m)n] where h, t ∈ E is
head and tail entity, r ∈ R is the tuple relation and
m is the KG meta-information. Knowledge Graph
Completion (KGC) predicts the missing entities for
the queries (?, r, t,m) or (h, r, ?,m).

The meta-information m denotes different form
of contents in different KG settings. As shown in
Figure 2, m is represented as null in SKGC, times-
tamps (e.g., “Jun-19-2014”) in TKGC and typing
(e.g., Player-Championship) in the KGs providing
typing information. Using text representation, KGs
with different structures can be converted into an
unified format.

3.2 A Seq2Seq Framework for KGC
A Seq2Seq Framework, including an encoder and
a decoder, can be viewed as:

P (Y |X) =
m∏

t=1

P (yt|X,Y<t) (1)

where X is the input sequence to the Seq2Seq en-
coder, Y is the auto-regressively generated out-
put sequence (i.e., from left to right) and y0
is the special Begin-of-Sequence Symbol. To
apply this Seq2Seq Framework to KGC, given
query (?, r, t,m) or (h, r, ?,m) and correspond-
ing ground-truth answer gt, we first encode r, t
and m into text. We represent “?” with “<mask>”
at the corresponding position to distinguish be-
tween (?, r, t,m) and (h, r, ?,m). We then con-
catenate the text together intoX and train KG-S2S
to generate gt as output sequence Y . The KG-S2S
training is straightforward: unlike StAR (Wang
et al., 2021a) which applied composite objective
over the encoder-only PLM, we follow the com-
mon practices in fine-tuning Seq2Seq PLMs (i.e.,

Cross-Entropy Loss), directly training KG-S2S
with positive examples (negative sampling trick
is unnecessary to KG-S2S). However, this archi-
tecture remains two main challenges: i) How to
effectively represent the query in the KG-S2S en-
coder? ii) How to accurately generate entity text
as the answer to the query? Sec. 3.3 and Sec 3.4
answer the above two questions, respectively.

3.3 Entity & Relation Representation

Encoding query (?, r, t,m) and (h, r, ?,m) into
“flat” text allows KG-S2S to handle various KGs.
However, the “flat” text could introduce KG struc-
ture loss. To remedy this issue, we further improve
KG-S2S using the following components.

Entity Description Intuitively, one could rep-
resent an entity using its name text (e.g., An-
thony Davis) in either compositional or non-
compositional form (Li et al., 2018a). However,
as KG-S2S is initialized from the PLM weights,
some specific types of entities (e.g., person, loca-
tions) may refer to multiple real-world entities in
the large-scale PLM training corpus, introducing
noisy ambiguity to KG-S2S. To avoid this risk, we
additionally introduce entity descriptions to enrich
the context information of entities. For example,
the textual description about “Lebron James” could
be “is an American NBA star”. Previous research
(Zuo et al., 2018; Lovelace et al., 2021) have shown
the utility of the descriptions when integrated with
traditional graph-based KGC models. Likewise, we
add entity descriptions for both queries and ground-
truth answers. At the encoder side, we concatenate
entity names and descriptions as the entity repre-
sentation. At the decoder side, we train KG-S2S to
jointly predict entity names and entity descriptions
under the cross-entropy loss. We find using entity
descriptions on both sides of KG-S2S is beneficial.
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KG Soft Prompt In traditional graph-based
KGC models (e.g., TransE), KG entities and re-
lations are represented with separated embeddings,
while KG-S2S represents entities and relations us-
ing the shared Seq2Seq PLM parameters. As a
consequence, the KG knowledge/patterns regard-
ing similar surface relations or entities (e.g., “film
costume design by” and “film production design
by”) could be mixed together. To tackle this issue
and inspired by the recent Soft Prompt (Lester et al.,
2021), which is a set of trainable embeddings di-
rectly fed into the Seq2Seq PLM input, we propose
to add additional trainable prompt embeddings for
specific entities and relations intoX . The separated
parameter space could potentially disentangle the
general KG and element-specific knowledge for
KG-S2S. However, as entities are equipped with
descriptions and Entity Soft Prompt introduces a
large number of parameters, we only apply the
Soft Prompt to relations. Specifically, as shown
in Figure 2, similar to a recent BERT-based KGC
model (Lv et al., 2022), we insert the Relation Soft
Prompt embeddings Pe1, Pe2, Pr1, Pr2 ∈ R|R|×d,
where d is the KG-S2S hidden size, before and
after the textual entity and relation name.

Seq2Seq Dropout In our preliminary experi-
ments, we find that KG-S2S often learns fast (mea-
sured by validation MRR) in the early stage of
the model training. We hypothesize that, unlike
other NLG tasks where different instances have
little textual overlapping, the entity descriptions
remain unchanged in different training queries in
KGC, which could easily lead to over-fitting. We
attempt to increase the original encoder dropout
for KG-S2S training, however, it has little impact
on the final performance. Therefore, we impose a
more strict Seq2Seq Dropout where we randomly
select and mask p% of the input tokens in X when
calculating the encoder self-attention module and
decoder cross-attention module. Note that the Re-
lation Soft Prompt and the “<mask>” token are ex-
cluded from this selection process. Compared with
the original encoder dropout, Seq2Seq dropout
takes effect at both encoder and decoder sides. This
introduces more diversity to the input query text,
thus, better capability of preventing over-fitting.

3.4 KGC Inference

The traditional KGC models g answer a query
(?, r, t,m) by first finding the score g(x, r, t,m)
∀x ∈ E and then ranking all entities based on

Algorithm 1 Next Candidates (NC): Given Entity
Prefix Trie T , Query-GT Prefix Trie Mapping D,
query q and the generated tokens Gen; return can-
didate tokens.

1: procedure NC(T ,D, q, Gen)
2: Tq ← D.get(q)
3: cand← T .next(pre = Gen)
4: rm← Tq.next(pre = Gen)
5: cand← cand.remove(rm)
6: return cand

g(x, r, t,m). Naturally, at the inference stage,
KG-S2S could compute a score for every x ∈ E .
However, this could be computationally expensive
because |E| could be very large (e.g., |E| is 68,544
in NELL-One). Instead, in KG-S2S, its encoder
takes X as input and then the KG-S2S decoder
generates the text of entity predictions that are
mapped into specific entity ids. These generated
entities are further ranked based on their corre-
sponding log cross-entropy loss. We assign -∞ for
all entities not generated in the decoding stage.

Decoding Methods Different from general text
generation tasks where only one optimal output
sequence is required, in KGC, given a query
(?, r, t,m) or (h, r, ?,m), there could be multiple
valid entities. To generate K valid entity candi-
dates, we deploy the standard beam search algo-
rithm with beam width K because it naturally pro-
duces different entity text in each beam with high
likelihood. In contrast, random sampling often pro-
vides low-quality answers due to its randomness in
decoding and the outputs of diverse beam search
are distorted due to its diversity encouragement
term.

Prefix Constraints The flexible auto-regressive
generation may produce entities that do not ex-
ist in E , which could reduce the number of valid
entity candidates in the decoding. To avoid this
scenario, we propose Prefix Constraints to con-
trol the KG-S2S decoder to generate valid tokens
given prefix sequences p. For example, given E =
{“Grammy Award for Best Rock Song”, “Grammy
Award for Best Music Video”} and p = [Grammy,
Award, for, Best], the Prefix Constraints only allow
“Rock” and “Music” to be generated in the next step.
To enable effective decoding, we propose to use
Trie (Cormen et al., 2009) to extract appropriate
next tokens. As suggested in Algorithm 1, given
the generated prefix, we first extract all possible
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tokens using the Entity Prefix Trie T and then re-
move the entities that are the ground-truth to the
query q in the training data using the Query-GT
Prefix Trie Tq.

4 Experiment

In this section, we evaluate KG-S2S against
competitive baselines in the following KGC
datasets: WN18RR (Dettmers et al., 2018) (SKGC),
FB15K-237 (Toutanova and Chen, 2015) (SKGC)
FB15K-237N (Lv et al., 2022) (SKGC) and
ICEWS14 (García-Durán et al., 2018) (TKGC) and
NELL-One (Xiong et al., 2018) (FKGC).

4.1 Experimental Settings

Dataset WN18RR and FB15K-237 are im-
proved version of WN18 and FB15k (Bordes et al.,
2013) respectively, where all inverse relations are
removed to avoid data leakage. FB15K-237N
further removes FB15K-237’s concatenated rela-
tions caused by Freebase mediator nodes (Akrami
et al., 2020) to avoid Cartesian production rela-
tion issue. ICEWS14 refers to 2014 political facts
from the Integrated Crisis Early Warning System
database (Boschee et al., 2015). NELL-One is a
few-shot KGC dataset derived from NELL (Carl-
son et al., 2010). Following Wang et al. (2021a),
we reformat NELL-One so that the dev/test rela-
tions never appear in the train set. More details can
be found in Appendix A.

Implementation details We initialize KG-S2S
using the T5-base model (Raffel et al., 2020), and
optimize KG-S2S with Adam (Kingma and Ba,
2015). We use T5 default settings in our experi-
ments for all benchmarks and follow the filtered
setting proposed in Bordes et al. (2013) to evaluate
our model. More implementation details and opti-
mal hyperparameters can be found in Appendix B.

Evaluation Protocol We remove the duplicated
entities from the output. In the non-constrained de-
coding method, we further remove non-entity gen-
erations. The performance of our model is reported
on the standard KGC metrics: Mean Reciprocal
Rank (MRR), and Hits@1,3,10 (Hits@1,5,10 in
NELL-One to follow previous works). For each
test triple (h, r, t,m), we rank all entities for the
query (h, r, ?,m) and (?, r, t,m). We then aggre-
gate the ranking for ground-truth entity and report
the mean reciprocal rank (MRR) and the proportion
of ground-truth entities ranked in the top n (H@n).

To handle the equal score scenarios, we use the
RANDOM mode proposed in Sun et al. (2020) to
determine the rank of entities. Model is selected by
MRR value on valid set.

4.2 Experimental results

Static KGC We compare our results with vari-
ous graph-based and PLM-based methods on the
SKGC settings. Experimental results are summa-
rized in Table 1. On WN18RR and FB15K-237,
KG-S2S achieves state-of-the-art or competitive
performance. In the comparison of PLM-based
methods, KG-S2S outperforms previous work by
a substantial margin. Specifically, we see 13%
(from 0.508 to 0.574) relative MRR improvement
on WN18RR, and 16% (from 0.296 to 0.336) on
FB15K-237. Compared with graph-based meth-
ods, KG-S2S consistently obtains performance
gain on WN18RR, though maintaining a modest
result on FB15K-237.

According to Akrami et al. (2020); Lv
et al. (2022), FB15K-237 contains many over-
simplified unrealistic cartesian product relations
(CPR), which improperly improves the model ac-
curacy. For instance, the multiary fact “average
low temperature in Tokyo is 34 degrees Fahrenheit
in January” has been decomposed into multiple
CPR facts (Tokyo, climate./month, January) and
(Tokyo, climate./average_min_temp, 34), which
are obviously unrealistic and semantically mean-
ingless. We note that RotatE achieves higher over-
all performance than KG-S2S on FB15K-237.

However, after breaking down the performance
on CPRs and non-CPRs in Table 2, we surpris-
ingly find that our proposed KG-S2S has distinct
advantages on non-CPR (MRR 0.363 vs. 0.338).
That is, leading performance of RotatE is due to
the facts with CPR, while KG-S2S has demon-
strated its advantages in realistic relations (i.e.,
non-CPRs). Methodologically, RotatE is a typical
graph-based model, while KG-S2S regards KGs as
plain text with structure-aware components. Graph-
based models are good at predicting simple struc-
ture yet inferior in absorbing KGs text. This ex-
plains why RotatE performs better on FB15k-237
dataset which is rich in cartesian product relations
(CPRs, simple synthesized yet less textually mean-
ingful relations), while worse on non-CPR datasets
like FB15K-237N. This further motivates us to
compare KG-S2S with other KGC methods on
FB15K-237Nwhich only has facts with non-CPR.
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WN18RR FB15K-237 FB15K-237N

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Graph-Based Methods
TransE (Bordes et al., 2013) .243 .043 .441 .532 .279 .198 .376 .441 .255 .152 .301 .459
DistMult (Yang et al., 2015) .444 .412 .470 .504 .281 .199 .301 .446 .209 .143 .234 .330
ComplEx (Trouillon et al., 2016) .449 .409 .469 .530 .278 .194 .297 .450 .249 .180 .276 .380
ConvE (Dettmers et al., 2018) .456 .419 .470 .531 .312 .225 .341 .497 .273 .192 .305 .429
RotatE (Sun et al., 2019) .476 .428 .492 .571 .338 .241 .375 .533 .279 .177 .320 .481
CompGCN (Vashishth et al., 2020) .479 .443 .494 .546 .355 .264 .390 .535 .316 .231 .349 .480

PLM-Based Methods
KG-BERT (Yao et al., 2019) .216 .041 .302 .524 - - - .420 .203 .139 .201 .403
MTL-KGC (Kim et al., 2020) .331 .203 .383 .597 .267 .172 .298 .458 .241 .160 .284 .430
StAR (Wang et al., 2021a) .401 .243 .491 .709 .296 .205 .322 .482 - - - -
PKGC (Lv et al., 2022) - - - - - - - - .307 .232 .328 .471
GenKGC (Xie et al., 2022b) - .287 .403 .535 - .192 .355 .439 - - - -
KGT5 (Saxena et al., 2022) .508 .487 - .544 .276 .210 - .414 - - - -

KG-S2S (Ours) .574 .531 .595 .661 .336 .257 .373 .498 .353 .282 .385 .495

Table 1: Results of static KGC. WN18RR and FB15K-237 results are taken from Wang et al. (2021a).
FB15K-237N results are taken from (Lv et al., 2022). The uncovered results of graph-based methods are
obtained through hyperparameter tuning with LibKGE (Broscheit et al., 2020) and PLM-based methods through
official implementations. The best PLM-based method results are in bold and the second best results are in underline.

relations MRR H@1 H@3 H@10

RotatE CPR .337 .232 .374 .552
non-CPR .340 .254 .376 .504
all .338 .241 .375 .533

KG-S2S CPR .318 .234 .355 .493
non-CPR .363 .292 .398 .504
all .336 .257 .373 .498

Table 2: Evaluation of cartesian product relations
(CPRs) and non-cartesian product relations (non-CPRs)
on FB15K-237

As shown in Table 1, KG-S2S obtains the best re-
sults compared with graph-based and PLM-based
baselines at all metrics. In particular, KG-S2S
achieves an absolute Hit@1 increase of 5.0% over
second best method Wang et al. (2021a).

The overall SKGC results confirms that, by tak-
ing advantage of entity and relation textual repre-
sentation, KG-S2S is capable of capturing more
accurate semantics of KG facts, and employ them
for inference.

Temporal KGC To evaluate KG-S2S’s ability
of handling additional meta-information in KG,
we conduct the experiment on the TKGC bench-
mark ICEWS14. The results are shown in Table 3.
Our proposed KG-S2S obtains a new state-of-the-
art result on MRR and Hit@1,3 while achieving
comparative performance on Hit@10. This result
confirms that KG-S2S can learn additional tempo-
ral meta-information from pure textual form. We
observe that our result on Hit@10 is lower than
several existing methods. This could be explained
by the low quality of entities in ICEWS14, which

MRR H@1 H@3 H@10

Graph-Based Methods
TTransE (Leblay and Chekol, 2018) .255 .074 - .601
HyTE (Dasgupta et al., 2018) .297 .108 .416 .655
ATiSE (Xu et al., 2019) .550 .436 .629 .750
DE-SimplE (Goel et al., 2020) .526 .418 .592 .725
Tero (Xu et al., 2020) .562 .468 .621 .732
TComplEx (Lacroix et al., 2020) .560 .470 .610 .730
TNTComplEx (Lacroix et al., 2020) .560 .460 .610 .740
T+TransE (Han et al., 2021) .553 .437 .627 .765
T+SimplE (Han et al., 2021) .539 .439 .594 .730

PLM-Based Methods
KG-S2S (Ours) .595 .516 .642 .737

Table 3: Results of temporal KGC on ICEWS14. All
the results are from original papers.

only includes the “sector” and “country” of the
entities. These entity descriptions are much less
informative than the ones in the SKGC benchmark.
We believe that the performance of KG-S2S could
be further improved when more informative entity
descriptions are available.

Few-shot KGC Finally, we verify KG-S2S’s
ability in few-shot learning in the NELL-One
benchmark, as shown in Table 4. Following Wang
et al. (2021a), we conduct the evaluation under
zero-shot setting (i.e, evaluation relations never ap-
pear in the training set). Surprisingly, KG-S2S is
able to achieve superior performance than all the
variations of previous graph-based models, which
transfer knowledge from the training data to the
evaluation relations (i.e., one-shot and five-shot
meta learning). In addition, compared with the
PLM-based StAR model, KG-S2S also obtains
higher performance with considerable margins in
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N-Shot MRR H@1 H@5 H@10

Graph-Based Methods
GMatchingComplEx

♣ Five .20 .14 .26 .31
MetaR♡ Five .26 .17 .35 .44
GMatchingTransE

♣ One .17 .12 .21 .26
GMatchingDistMult

♣ One .17 .11 .22 .30
GMatchingComplEx

♣ One .19 .12 .26 .31
MetaR♡ One .25 .17 .34 .40
MTransH△ One .31 .21 .41 .48
PLM-Based Methods
StAR♠ Zero .26 .17 .35 .45
KG-S2S (Ours) Zero .31 .22 .41 .49

Table 4: Results of few-shot KGC on NELL-One.
△ (Niu et al., 2021). ♣ (Xiong et al., 2018), ♡ (Chen
et al., 2019) and ♠ (Wang et al., 2021a).

terms of all the metrics. In particular, Hit@1 per-
formance is boosted from 0.17 to 0.22, around
29% relative improvement. This remarkable per-
formance gain could own to the following as-
pects: 1) the prior knowledge contained in PLM;
2) KG-S2S’s capability to transfer the knowledge
from the training relations to the unseen ones.

PW
Description Soft Prompt

S2S. Drop MRR H@10
SRC TGT REL ENT

Baseline ✓ - - - - - .280 .416
✓ ✓ - - - - .326 .453
✓ ✓ ✓ - - - .350 .478
✓ ✓ ✓ ✓ - - .350 .486
✓ ✓ ✓ - ✓ - .338 .468

KGT5 - ✓ ✓ - - - .226 .335
- ✓ ✓ ✓ - ✓ .233 .341

KG-S2S ✓ ✓ ✓ ✓ - ✓ .353 .495

Table 5: Ablation for the KG-S2S Input Components
on FB15K-237N. PW denotes pretrained weight. SRC
and TGT denote source and target description. REL and
ENT denote relation-specific and entity-specific soft
prompts. S2S.Drop denotes Seq2Seq dropout.

4.3 Ablation Study

In this section, we conduct ablation studies to show
the contributions of each of our proposed compo-
nents. Table 5 shows the impact of input com-
ponents and Figure 3 shows the ablation study of
decoding components in KG-S2S.

Source and target description The descriptions
of entities enrich their context information and re-
solve the ambiguity issue. As shown in Table 5,
adding source and target description can separately
improve MRR (i.e., from 0.280 to 0.350) and
Hit@10 (i.e., from 0.416 to 0.478). This suggests
that to achieve optimal performance, it is important
to inject entity descriptions at KG-S2S’s encoder

and decoder, simultaneously.

Soft Prompt Soft prompt allows KG-S2S to rec-
ognize entities and relations as atomic concepts.
Adding relation Soft Prompt successfully boosts
Hit@10 from 0.478 to 0.486. However, the En-
tity Soft Prompt has a negative effect for KG-S2S,
degrading MRR and Hit@10 by 0.12 (from 0.350
to 0.338) and 0.1 (0.478 to 0.468), respectively.
We argue this phenomenon occurs for at least two
reasons: 1) The entity descriptions have already
enriched the entity context information and con-
sequently made entities distinguishable; 2) Entity
Soft Prompt introduces massive amounts of em-
beddings, which may weaken KG-S2S’s ability to
learn from natural language.

Seq2Seq Dropout Seq2Seq dropout applies a
random masking mechanism on the encoder input
mask. It is observed that Seq2Seq dropout is able
to deliver consistent improvement on both MRR
and Hit@10. This result practically justifies the
effectiveness of this implementation. We believe
the advance is derived from the diversified input
data generated by Seq2Seq dropout, which helps
KG-S2S to avoid potential over-fitting risk.

Campared with KGT5 KGT5 is trained on a
random initialized Seq2Seq structure to fully adapt
KG training data. However, learnt from large pre-
training corpus, pretrained weights contains rich
linguistic knowledge and simply dropping them
may weaken the model’s ability of ingesting na-
ture language. The large performance gap between
KGT5 and KG-S2S indicates pretrained weights is
critical for KGC models with Seq2Seq backbones .

random sample diverse beam search beam search beam search
(constrained)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.3997 0.3853

0.4762 0.4945

H@1
H@3
H@10

Figure 3: Comparison for decoding methods on
FB15K-237N.

Impact of Decoding Methods In Figure 3, we
investigate the impact of decoding methods, includ-
ing random sampling, diverse beam search, beam
search and Prefix Constraints beam search (de-
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scribed in Sec. 3.4) in KG-S2S. The performances
of random sampling and diverse beam search are
much worse than the standard beam search algo-
rithm. This is mostly because random selection
in sampling and diversity encouragement terms in
diverse beam search negatively affect the quality of
generated entity text. Whilst standard beam search
always keeps and derives the candidates with the
highest beam score from KG-S2S. We find that
applying our Prefix Constraints to the beam search
algorithm further improves the KG-S2S perfor-
mance (i.e., 0.02 Hit@10 improvement). Prefix
Constraints control KG-S2S to only generate valid
entity text with little computation overhead.

4.4 Discussion

Comparison with previous SOTA PLM-based
methods From Table 1 and Table 4, KG-S2S
outperforms previous SOTA encoder-only StAR
methods on MRR and Hit@1,3. We argue two
advantages contribute to this result: 1) Pretrain-
ing / finetuning consistency. StAR employs com-
posite training objectives at the entity level, while
its backbones (i.e. BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019)) are trained with
token-level cross-entropy loss. This mismatch may
weaken the representation ability of PLM. In con-
trast, KG-S2S follows the common PLM fine-
tuning practices, allowing better knowledge trans-
fer from PLM. 2) Information interaction. StAR
uses a two-branch Siamese architecture (Chopra
et al., 2005) to encode the query text and answer
text as two separated vectors, and calculates their
dot-production as the score for ranking. Instead of
compressing the them separately, KG-S2S inter-
acts query and answer in the cross-attention module
of KG-S2S decoder, auto-regressively. With more
textual exposure and interaction, KG-S2S decoder
trends to predict more accurate entities.

Relations Analysis Figure 4 shows the top-3 and
bottom-3 relations regarding the MRR difference
between KG-S2S and RotatE. The top-3 relations
are (sports team) location, (location) contains and
(Netflix) genre, which refer to the real-world knowl-
edge. The possible reason is such knowledge has
already been obtained from the pre-training corpus
by the Seq2Seq PLM. In contrast, the bottom-3
relations are (film) production company, (film) ex-
ecutive produced by and (film) produced by, which,
surprisingly, are all relevant to the film industry.
This could be because these relations are all linked

(sports team) lo
cation

(location) contains

(netflix
) genre

(film
) production company

(film
) executive produced by

(film
) produced by

0.0

0.2

0.4

0.6

0.8

...

...

RotatE
KG-S2S

Figure 4: The top-3 (left) / bottom-3 (right) relations
regarding the MRR difference between KG-S2S and
RotatE on the FB15K-237N benchmark. To maintain
stable results, we select the relations with at least 0.5%
facts, and sort them by the MRR difference.

to the person and company names that may have
multiple references (i.e., different people and com-
panies could share the same names) in the PLM
pre-training corpus. In addition, we find that some
of the relations are semantically overlapping. For
example, the FB15K-237N includes both relation
(film) executive produced by and (film) produced by.
After being trained with the fact (Hulk, (film) exec-
utive produced by, Stan Lee), KG-S2S generates
Stan Lee as the top-1 candidate for the query (Hulk,
(film) produced by, ?). However, the ground-truth
entity set doesn’t include Stan Lee. This scenario
has no effect on the traditional graph-based KGC
models because they do not access the text at all.
Similar cases also occur between (film) written by
and (film) story by, (people) profession and (people)
specialization of. This issue is caused by the fact
that previous KGC benchmarks i) are not fully ver-
ified by experts; ii) are based on the closed-world
assumption (CWA) (Keet, 2013). We leave KGC
benchmarks improvement as future work.

Queries Prediction GT

(RoboCop, (film) genre, ? ) Superhero film Thriller
(Amber Riley, profession, ?) Vocalist Actor-GB
(? (location) contains, Israel) Greater Middle East Eurasia

(?, ethnicity, M. Night Shyamalan) Malayalam people Indian American

Table 6: Case study for Non-entity generations. GT
stands for ground-truth answer.

Non-entity Generation Without Prefix Con-
straints module, KG-S2S can generate non-entity
text. As shown in Table 6, some of the non-entity
generations are also meaningful answers to the
query. In the first example, Superhero film and
Thriller are both semantically correct answer. In
the second one, Amber Riley is actually considered
as an actor and a vocalist by the public. In addition,
the third and fourth examples show that KG-S2S
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can derive more fine-grained answers. For example,
Israel is specifically located in the Greater Middle
East and M. Night Shyamalan is an Indian Amer-
ican, born in a Malayalam-speaking Indian city.
These newly generated entities could be potentially
applied to improve the KGC model performance
via a data augmentation procedure (Wang et al.,
2022). The expert knowledge to determine the
plausibility of non-entity generations is given by
the corresponding entries from Wikipedia, e.g. the
Wikipedia profile for Amber Riley 2.

The Effect of Beam Width Beam width deter-
mines the number of generations for each query,
thus it has potentially significant impact on the
KG-S2S performance. In Figure 5, we study how
beam width affects the final performance by evalu-
ating KG-S2S under different beam width. In gen-
eral, KG-S2S achieves higher MRR as the beam
width increases, whilst the performance gain be-
comes flat after 40 beams (red bar). As inference
time goes linearly with beam width, we choose
beam size 40 in KG-S2S to trade-off between
model performance and inference cost.

10 20 30 40 50 60 70
0.335

0.340

0.345

0.350

0.355

0.360

0.3391

0.3471

0.3502

0.3526
0.3534

0.3544 0.3548

MRR

Figure 5: The effect of beam width to KS-S2S

Parameter Size Table 7 compares the model per-
formance and parameter size between KG-S2S
and StAR. Compared with StAR (354M trainable
parameters), KG-S2S is based on a smaller T5-
base backbone (220M trainable parameters, 1.6x
less), while it achieves better performance with a
relatively large margin (MRR 0.274 vs. 0.353).
We further run KG-S2S using T5-small backbone
(60M trainable parameters, 5.9x less). This vari-
ant of KG-S2S obtain slightly lower result (0.351
on MRR), but still outperforms StAR with sub-
stantial margin. The results suggest i) KG-S2S is
not sensitive to the size of PLM; ii) KG-S2S is
parameter-efficient.

2https://en.wikipedia.org/wiki/Amber_
Riley

Model Size MRR H@10

StAR 354M .274 .455
KG-S2S (small) 60M .351 .485
KG-S2S (base) 220M .353 .495

Table 7: Comparison of model performance and parame-
ter size between KG-S2S and StAR on FB15K-237N.

Parameter Growth Since KG-S2S represents
KG elements (e.g. entities, relations and times-
tamps) as simple textual sequences, all KG tuples
share the same vocabulary and language model pa-
rameters. As the training KG grows, the parameters
of KG-S2S only increase due to the relations Soft
Prompt with the complexity of O(|R| · d) where d
is the hidden size of Seq2Seq Pre-trained language
model. On the contrary, traditional graph-based
models represent entities, relations and other meta-
information with distinct embeddings and the pa-
rameter growth of these models is O((|E|+ |R|)d).
As |R| ≪ |E|, the growth could be negligible and
the parameter size of KG-S2S remains nearly con-
stant given KGs with any size.

5 Conclusion and Future Work

In this paper, we present KG-S2S for various
knowledge graph completion tasks. By convert-
ing different kinds of KG structures into “text-to-
text” format, KG-S2S can directly produce the text
of target predicted entities. Experimental results
demonstrate that KG-S2S outperforms competi-
tive baseline models in various KGC settings. In
the future, we would explore extending KG-S2S
to other Seq2Seq PLMs, such as BART (Lewis
et al., 2020) and MASS (Song et al., 2019). In
addition, it is interesting to combine KG-S2S with
other knowledge-intensive NLP tasks, such as con-
versation recommendation (Li et al., 2018b) and
commonsense generation (Wang et al., 2021b) in
the Seq2Seq framework, and see if the KG knowl-
edge could benefit these downstream tasks.
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A Dataset

ICEWS14 This dataset doesn’t include any entity
descriptions. As a result, we find the original data
source3 and create the description by combining
‘sector’ and ‘country’ entries for each entity.

NELL-One To conduct zero-shot learning for
this dataset, we follow Wang et al. (2021a) to re-
format the raw dataset so that the relations in the
dev/test sets do not appear in the train set. Addi-
tionally, we observe that textual representations of
entities and relations are written in lower letters. To
avoid pretrain-finetune data format mismatch, we
further capitalize the surface words for each entity
name. Dataset statistics are shown in Table 8.

Dataset Setting |E| |R| |Train| |Valid| |Test|

WN18RR SKGC 40,943 11 86,835 3,034 3,134
FB15K-237 SKGC 14,541 237 272,115 17,535 20,466
FB15K-237N SKGC 14,541 93 87,282 7,041 8,226
ICEWS14 TKGC 6,869 230 72,826 8,941 8,963
NELL-One FKGC 68,544 358 189,635 1,004 2,158

Table 8: Statistics of the Datasets.

All of these datasets are open-source English-
written sources without any offensive content. They
are introduced only for research use.

B Inplementation details

We implement our KG-S2S using PyTorch (Paszke
et al., 2019) and HuggingFace (Wolf et al., 2020),
and assess it on a single GPU (Tesla V100).

Model Input and Output We follow the T5 stan-
dard unsupervised training paradigm. We form
the query texts by masking the target entities with
T5 default special tokens. Answer texts are also
wrapped by the T5 special tokens. We use square
brackets around descriptions to distinguish them
from entity names. A special separation token “|”
is inserted to separate entity, relation and meta-
information. During the inference stage, our model
generates the raw text, and we remove the wrapping

3https://dataverse.harvard.edu/
dataverse/icews

special tokens and corresponding entity descrip-
tions with regular expression, remaining the entity
names as model predictions. Practical results sug-
gest that the predicted entities can be determined
by the entity names, so it is unnecessary to gener-
ate all the descriptions. Consequently, we perform
an early stopping generation strategy, that is, the
generation process will be stopped if the model
outputs reach maximum entity name length.

Seq2Seq Dropout Seq2Seq dropout is applied
on the encoder input mask, randomly flipping the
values from 1 to 0. Note that Seq2Seq dropout ex-
cludes the positions carrying special meanings, i.e.
separation tokens, mask tokens and soft prompt.

Hyperparameters In terms of hyperparameters,
we select the batch size from {32, 64, 128}, learn-
ing rate from {5e-3, 1e-3, 5e-4}, description length
from {10, 40, 80}, Seq2Seq dropout from {0.0, 0.1,
0.2, 0.3}. The optimal configurations are displayed
in Table 9

batch size learning rate SRC/TGT desc. S2S.Drop.

WN18RR 64 1e-3 40/40 0.1
FB15K-237 32 1e-3 80/80 0.2
FB15K-237N 32 1e-3 80/80 0.2
ICEWS14 32 5e-4 40/40 0.1
NELL-One 128 5e-4 0/0 0.0

Table 9: Hyperparameters for KG-S2S. SRC/TGT desc.
denotes source and target description length. S2S.Drop
denotes Seq2Seq dropout.
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Abstract

OntoLex-Lemon has become a de facto stan-
dard for lexical resources in the web of data.
This paper provides the first overall descrip-
tion of the emerging OntoLex module for Fre-
quency, Attestations, and Corpus-Based Infor-
mation (OntoLex-FrAC) that is intended to
complement OntoLex-Lemon with the neces-
sary vocabulary to represent major types of
information found in or automatically derived
from corpora, for applications in both language
technology and the language sciences.

1 Background

The OntoLex-Lemon vocabulary has become
the dominant vocabulary for modelling machine-
readable dictionaries on the web of data, i.e., by
means of RDF. And indeed, publishing lexical re-
sources in RDF has a number of advantages, includ-
ing the ease of integration of dictionary information
not only with ontologies and knowledge graphs
(this was the original domain of application), but
also with other lexical data.

Figure 1 illustrates the OntoLex-Lemon core
vocabulary. Primary data structures are ontolex:
LexicalEntry (lexeme), ontolex:Form
(word form), ontolex:LexicalSense (word

Figure 1: OntoLex-Lemon core module

sense), and ontolex:LexicalConcept
(lexicalization-independent concept), so that lexi-
cal entries can be described, but also fine-grained
differences in meaning and surface form.

While these aspects are advanced, stable and
widely used, there is no complete module described
in the current literature that enables interoperabil-
ity and integration between lexical and textual re-
sources and the distributional semantics of words,
lexical senses and concepts, and collocation prop-
erties. By employing the usage of L(L)OD (Linked
Linguistic Open Data) technologies, we describe
the consolidation of OntoLex-FrAC (Frequency,
Attestation, and Corpus Information), an OntoLex-
Lemon model that (1) addresses the requirements
of corpus-based lexicography (frequency and col-
location information) and digital philology (link-
ing lexical resources with corpus data), and (2)
provides a standard for encoding, storing, and ex-
changing vector representations of words along
with their lexical concepts, senses, and lemmas.

2 Core Concepts

So far, the development of FrAC has been con-
ducted in a bottom-up fashion, where uses cases
were analyzed and sub-vocabularies for different
phenomena have been proposed. This includes fre-
quency and attestations (Chiarcos et al., 2020), em-
beddings and similarity (Chiarcos et al., 2021) and
collocations (Chiarcos et al., 2022). We comple-
ment these efforts with a top-down perspective, and
we suggest three top-level classes to structure the
model as a whole. In addition to that, we provide
an OWL2/DL ontology to formalize the vocabu-
lary. Restructuring the module entails a number
of minor revisions regarding naming and scope of
properties and classes, however, we aimed to stay
faithful to the original definitions while integrating
them into a more coherent overall picture.
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The FrAC vocabulary is about information from
or derived from corpora that can be included in
machine-readable dictionaries and other forms of
lexical or ontological resources, i.e., information
about lexical forms (which can be counted), lex-
ical entries (which can be illustrated with attesta-
tions or corpus examples), lexical senses or lexi-
cal concepts (which can be found as annotations
in corpora). For these, FrAC introduced a gen-
eralization over the OntoLex core elements (and
any other entity FrAC-related information is to
be expressed about), and introduced the notion of
frac:Observable, i.e., a lexical unit that can
be observed in natural language, e.g., in a corpus.
The corpus class was a another vocabulary element
introduced with FrAC, and it is understood here in
the more general sense of structured (collections
of) primary data.1 In addition to representing the
primary data itself, it can also provide the total
number of tokens in the corpus frac:total.

The different FrAC sub-vocabularies then de-
fined different concepts that define the relation be-
tween observables and the corpus (or anyURI) ob-
ject. A novel contribution of our paper is that we
introduce a generalization over these FrAC-specific
classes. In analogy with frac:Observable,
we refer to this as frac:Observation. An ob-
servation in this understanding is any information
found in, based on or created from a corpus, and
the observations supported by the FrAC vocabu-
lary are corpus frequency, attestation, collocation,
similarity and embeddings. We consider aggregate
observations (frequency, collocations, embeddings,
similarity clusters) to be observations in their own
right, as long as their characteristics are solely de-
fined by the underlying data. FrAC observations
have a number of common properties:
(1) rdf:value: value of an observation, with
characteristics depending on the specific observa-
tion class.
(2) dc:description: human-readable charac-
terization of the methods involved in the obser-
vation. FrAC does not provide a vocabulary for
provenance – if such information is to be provided,
we recommended to use Prov-O (Lebo et al., 2013)

1In this more general sense, ‘corpus’ is also used in neigh-
boring fields such as law (e.g., for Justinian’s Corpus Juris
Civilis) or archeology (e.g., for the Corpus Vasorum Antiquo-
rum, a database of Greek vases). FrAC corpus thus comprises,
but is not restricted to the sense of ‘text corpus’ (or speech
corpus), i.e., a structured and/or electronically available and/or
linguistically annotated collection of texts (or multimedia con-
tent).

(3) frac:corpus link from the observation to
the structured data from which the observation was
created.

3 FrAC Observations

We propose four main classes as subclasses of
frac:Observation, i.e., frequency, attesta-
tion, collocations, embeddings, and similarity as
summarized in Fig. 2.

Figure 2: Revised FrAC vocabulary with the
top-level classes frac:Observable, frac:
Observation and frac:Corpus

3.1 Attestation
For attestation, the linking of lexical resources
with corpus evidence, we distinguish three primary
fields of application, i.e., lexicography (the use of
references to corpora by a lexicographer to furnish
evidence with reference to examples for the exis-
tence of a given lexical phenomena at a certain
time period), language technology (linking a lex-
icon with the corpus from which information is
derived), and corpus linguistics (linking a corpus
[excerpt] with the lexical units or semantic annota-
tions it provides). FrAC attestations are designed to
support the different requirements in a unified way.
FrAC defines frac:Attestation as an exact
or normalized quotation or excerpt from a source
document that exhibits a particular lexical entry,
form, sense, lexeme or features such as spelling
variation, morphology, syntax, collocation, regis-
ter. An attestation should have a quotation or an
attestation gloss and must define a locus object to
identify the source of this material.

In the revised FrAC model, the attestation gloss
– originally an independent property – is mod-
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elled as rdf:value. In its usage in lexicogra-
phy, the attestation gloss differs from the quota-
tion (frac:quotation) as it may include ad-
ditional (human-readable) metadata about siglia,
lines or versions that the actual primary data it
refers to (the quotation) might not display. Sim-
ilarly, the locus object (originally any URI as an
object of frac:locus) is modelled as a corpus
(frac:Corpus object of the frac:corpus
property). This is in line with the fact that
FrAC is underspecified as to the exact nature of
frac:corpus objects, i.e., whether they repre-
sent the URI that resolves to the corpus that con-
tains the lexical unit attested, or whether they rep-
resent the relevant excerpt of a corpus that contains
the lexical unit, or whether they represent a meta-
data entry that stands in for a corpus which might
not even exist in electronic form.

Any observable can be linked with its attestation
by means of frac:attestation, defined as a
subproperty of a more general frac:citation
property – which posits no constraints on its
range and which has been introduced to accom-
modate the needs of lexicographers who want
to include attestations from secondary sources
(Khan and Boschetti, 2018). The object of
frac:citation is thus any URI, but for objects
other than attestations, FrAC users are encouraged
to follow any of the existing vocabularies for bib-
liographic data in RDF (Saur, 1998; Peroni and
Shotton, 2012).

Figure 3: Attestations in the American Heritage Dictio-
nary (accessed 2022-05-17)

Figure 3 shows a sample entry from the (online)
American Heritage Dictionary (AHDictionary) of
the English Language, and the attestation for its
second sense can be modelled as follows:
:le_falter_vi

a ontolex:LexicalEntry ;
ontolex:sense :ls_falter_vi_2 .

:ls_falter_vi_2
a ontolex:LexicalSense ;
rdfs:comment "To speak hesitatingly,

..." ;
frac:attestation [

a frac:Attestation ;
rdf:value "faltered in reciting the

poem" ] .

While this attestation does not point to a corpus,

the original 1969 edition of the dictionary uses the
Brown corpus as a basis for its attestations, and for
an example that would have come from the Brown
corpus, we could give the link to the relevant sub-
sections of the corpus in its online edition provided
by SketchEngine.

... a frac:Attestation ;
frac:corpus <https://app.

sketchengine.eu/#concordance?
corpname=preloaded%2Fbrown_1&
keyword=falter&showresults=1> ;

rdf:value "faltered in reciting the
poem"

3.2 Frequency

The frequency distribution of linguistic elements is
one of the most fundamental corpus-based statistics.
In general, frequency information is critical to cor-
pus studies, linguistic analysis, and NLP. We can
distinguish between absolute and relative frequen-
cies. Relative frequencies are generally normalized
and computed as frequencies per a pre-defined num-
ber of linguistic elements. The FrAC module con-
siders both absolute and relative frequency in order
to facilitate different necessities. However, in terms
of modelling, the focus is on absolute frequencies
that are defined in relation to a particular corpus.
The frac:CorpusFrequency class gives the
absolute number of attestations, i.e., rdf:value,
of a single frac:Observable considering a
specific language resource, i.e., frac:corpus.
Auxiliary filter conditions can be added to extend
the frac:CorpusFrequency class with views
of different sub-corpora.

An example is to restrict the subcorpus
to a particular period. By means of OWL
restrictions, a corpus-specific subclass of
frac:CorpusFrequency can be created, say,
my:XYZCorpusFrequency for which values
for dc:description, frac:corpus and
other parameters are defined as fixed. If then,
the object of frac:frequency is defined as a
my:XYZCorpusFrequency, these values do
not have to be repeated, but are, instead, inherited
from the class definition. As an example for
frequency, we again, resort to the Brown corpus as
provided by SketchEngine:

:BrownCorpusFreq
rdfs:subClassOf
frac:CorpusFrequency ,
[ a owl:Restriction ;
owl:onProperty frac:corpus ;
owl:hasValue <https://app.

sketchengine.eu/#concordance?
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corpname=preloaded%252Fbrown_1>
] .

For falter, the number of hits returned by
querying SketchEngine can be modelled as a
:BrownCorpusFreq in FrAC, then:
:le_falter_vi

frac:frequency
[ a :BrownCorpusFreq ;
rdf:value "6" ] .

When re-defining corpus frequency as a
frac:Observation, no semantic changes
are necessary, except that rdf:value and
frac:corpus are inherited now rather than de-
fined for corpus frequency.

3.3 Collocation
A collocation is an expression containing two or
more juxtaposition words that statistically appear
together more frequently than by chance. The in-
dividual words of a collocation are characterized
by the property of limited compositionality with
each other, since they are predictable and, when
they occur together, e.g. in the case of multi-word
expressions, compound nouns, etc., they can have
meanings that are different from their meanings
when they occur alone or in other word combina-
tions. Thus, some words can be freely combined
with each other, others tend to combine only with
certain words. They are word combinations that
lie in a range between free and fixed. Collocation
analysis is used in natural language processing, es-
pecially in automatic machine translation, in text
generation, e.g. to make the output text as natural
as possible, and to avoid untypical word combina-
tions (Manning and Schütze, 1999; Evert, 2008).

In FrAC, collocations are modeled as an
aggegate (rdfs:Container) of frac:
Observables. Fixed word order collocations
are defined using rdf:Seq) as a sequence, while
variable word order collocations are defined using
rdf:Bag as an ordered set. Collocations obtained
by quantitative methods are characterized by
their method of creation (dc:description),
first word (frac:head), collocation strength
(rdf:value), and the corpus used to create
them (frac:corpus). Furthermore, collo-
cations share these characteristics with other
types of contextual relations. In previous FrAC
proposals, these were thus inherited from the
abstract class frac:ContextualRelation
for the relation between two or more lexical
elements. In our revised FrAC vocabulary,

Figure 4: Collocation analysis for the head word large
and the collocation (a) large amount of data over the
Brown corpus according to Kjellmer (1994) as given by
Johansson (1998, p.339)

frac:ContextualRelation has been
superseded by frac:Observation. A FrAC
collocation is thus an aggregate (bag or sequence)
of observables based on their co-occurrence within
the same context window and characterized the
head word of the collocation (frac:head)
and the collocation score (frac:cscore) in a
particular source corpus (frac:corpus).

Collocations are frac:Observables, they
can also be given an frac:attestation,
frac:embedding or frac:frequency. Us-
ing the embeddings, we can determine nested
collocation by computing a similarity met-
ric (e.g., cosine similarity). The collocation
score (frac:cscore) is a subproperty of
rdf:value that provides a specific corpus de-
pendent collocation score. In FrAC we de-
fine multiple symmetric and asymmetric colloca-
tion metrics as sub-properties of frac:cscore,
e.g., frac:rel_freq for the relative frequency
(asymmetric), frac:pmi for the pointwise mu-
tual information (symmetric), frac:chi2 for
Person’s Chi-square test (asymmetric), etc. For
asymmetric collocations scores the frac:head
property is used to identify the elements’ order.

As an example for collocation analysis over the
Brown corpus, we refer to the classical work by
Kjellmer (1994), who provides (candidate) colloca-
tions along with different scores in a tabular format
(Fig. 4). Kjellmer’s work differs from more recent
works in collocation analysis in that he focuses on
absolute frequencies rather than designated collo-
cation scores. For this kind of data, it is sufficient
to resort to frac:CorpusFrequency (resp.,
designated subclasses such as :Inclusive-
BrownFrequency, with fixed values for
frac:corpus and dc:description), and as
collocations are both observations and observables,
this is possible in FrAC:
:coll_laod

a frac:Collocation, rdf:Seq ;
rdf:_1 :le_large ; # lexical
rdf:_2 :le_amount ; # entries
rdf:_3 :le_of ;
rdf:_4 :le_data ;
frac:head :le_large ; # head
frac:frequency # frequencies
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[ a :InclusiveBrownFrequency ; rdf:
value "2" ] .

More conventional scores can be expressed with
the designated subproperties of frac:cscore
(or, if this is unambiguous, rdf:value).

3.4 Embeddings Subclasses

In the context of FrAC, the notion of embedding
has been understood in a sense established in math-
ematics. An embedding is a structure-preserving
projection (mapping) from a given domain into a
numerical representation. The most popular ex-
ample of embeddings in language technology is a
more restricted form of embeddings in that sense,
i.e., the topological space of the resulting embed-
dings is represented by fixed-size vectors (resp.,
tensors as aggregates of such vectors), but as there
are other forms of numerical representations that
serve similar or identical functions, FrAC intro-
duces a more general class of frac:Embedding
along with a specific sub-class of embeddings
frac: FixedSizeVector to for embed-
dings as typically found in NLP. Other embed-
ding subclasses are frac:BagOfWords (for
unweighted or weighted bags of words), and
frac:TimeSeries (for sequences of fixed-size
vectors). Both representations are similar to em-
beddings in the NLP sense in that they represent a
projection into a numerical feature space and that
the primary function of this projection is to provide
distance measurements. For bags of words, these
are represented by confidence scores for weighted
bag of words models (or booleans for unweighted
bags of words) for every word in the vocabulary (at
least, this would be a possible mathematical inter-
pretation; in practice, such data is not represented
as a vector, but as a hashtable – or, for unweighted
bags of words, a set –, so that only words with
positive scores are listed). Mathematically, bags
of words could also be described as infinite-size
embeddings (if the vocabulary is not completely
known in advance), and indeed, earlier methods for
dimensionality reduction motivated embeddings as
a compact form of bags of words (Schütze, 1992,
with slightly different wording).

Time series data is another form of infinite-size
embeddings, but here, it is an infinite-size series
of finite-size vectors. In language technnology, a
stream of text, mapped to word embeddings, is
such a structure – but normally not stored. A lex-
icographically more relevant use case is in sensor

data, e.g., for the recording of gestures for sign
languages. Such recordings can then be compared
with each other using techniques such as dynamic
time warping (Gold and Sharir, 2018), and then be
the basis for automated clustering, etc.

3.5 Word and Concept Embeddings

In FrAC, any observable can be assigned an embed-
ding. This includes lexical form, lemmas (lexical
entries), word senses (lexical senses), lexical con-
cepts and other entities, multi-word expressions (as
lexical entries) and groups of observables (FrAC
collocations). This also partially answers the ques-
tion on why embeddings (esp., fixed-size vectors
for NLP embeddings) are a necessary data struc-
ture for FrAC. In many use cases, word embeddings
are created on the fly and not shared across differ-
ent applications – but as their creation involves a
non-deterministic element, they cannot be easily
compared across languages or corpora. For this
reason (and because, historically, the creation of
embeddings from large-scale corpora was a matter
of weeks or months of processing), applications
often use precompiled embeddings for either sub-
sequent fine-tuning or directly. As far as word
embeddings are concerned, it does – again – not
seem to be necessary to represent these in RDF.
The typical structure of an embedding file is a table,
with the first column representing the token, the fol-
lowing columns representing the embedding with
one value per cell. As long as applications refer to
the same embedding file with the same parameters
(same length, same tokenization, same normaliza-
tion for strings [e.g., lowercasing], same vector
normalization function – e.g., to the spans of either
[0, ..., 1] or [−1, ..., 1] –, same underlying corpus
data), they will operate in the same embedding
space, and with libraries such as TextTorch (Torch-
Text, 2022) or repositories like HuggingFace (Wolf
et al., 2020), there is an established infrastructure to
retrieve identical word embeddings using standard
identifiers. However, this can nevertheless be prob-
lematic, especially if different applications retrieve
their embeddings from different sources. While
the retrieval of, say, GloVe embeddings (Penning-
ton et al., 2014) via TextTorch or via the original
provider should lead to the same result, this cannot
be automatically validated as neither source pro-
vides machine-readable metadata – nor is there any
transparent relation between both methods of ac-
cess unless TextTorch code is manually inspected.
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RDF metadata can help here to resolve ambigui-
ties. And ambiguities exist, and will intensify with
the adoption of current techniques and data in new
programming languages and future ecosystems. A
classical example are the infamous ‘Collobert &
Weston embeddings’ which is a term applied to
two different and unrelated sets of embeddings also
known as ‘SENNA embeddings’ on the one hand
and ‘Turian embeddings’ on the other (Collobert,
2011).

Another objective to provide embeddings in
RDF is that the basic table format in which em-
beddings are shared is insufficient if these embed-
dings are detached from the definition of the ele-
ments they are assigned to. An important category
here are embeddings of lexical concepts and lexi-
cal senses as derived, for example, from underlying
word embeddings, and thus residing in the same
feature space, e.g., the classical AutoExtend em-
beddings (Rothe and Schütze, 2017) whose synset
identifiers are ambiguous as to which WordNet
version they refer to. While this can be solved
with using persistent URIs as synset identifiers, for
lexical resources for which no publicly accessible,
resolvable or persistent URIs can be provided, an
alternative solution is to bundle embeddings and
the underlying knowledge graph into a data struc-
ture from which both the graph and the embeddings
can be accessed, and FrAC provides the vocabulary
to provide that from the RDF perspective.

3.6 Contextualized Embeddings

Another aspect in which static word embeddings
have been superseded by more recent developments
is the rise of transformer architectures operating
with subsymbolic embeddings and the processing
of text spans rather than static lexemes. Contex-
tualized embeddings for a phrase, a lexical unit
or another observable can be represented in FrAC
as (a property of the) attestation of the observable
in a corpus: frac:attestationEmbedding
assigns an attestation an embedding. For encod-
ing multiple contextual embeddings for a particular
lexical entry, say, tree, it is necessary to create one
attestation with one attestation embedding prop-
erty. If possible, the attestation object should be
linked to the respective passage in the corpus, but
in the spirit of the open world assumption in RDF
semantics, this information is optional, so that a
minimal encoding of contextual embeddings in a
lexical resource can use the following template:

:le_tree a ontolex:LexicalEntry ,
frac:Observable ;

frac:embedding [
a frac:FizedSizeVector;
dc:extent "50";
rdf:value "[ 0.0001, ... ]" ];

frac:attestation [
frac:attestationEmbedding [

a frac:FixedSizeVector;
dc:extent "50";
rdf:value "[ 0.5352, ... ]" ] ].

From the perspective of a corpus, both contex-
tualized and context-free embeddings can be en-
coded correspondingly. If we use the CoNLL-
RDF vocabulary for identifying tokens in a corpus
(FrAC can be used with any vocabulary for this pur-
pose, e.g., Web Annotation or NIF), and the token
doc:s1_5 has already been defined, then, it can
just be linked with the attestation:
... frac:attestation [

frac:corpus doc:s1_5;
frac:attestationEmbedding

[ ... ] ] .

For the token doc:s1_5, we can now easily
retrieve various kinds of embeddings:
doc:s1_5 ^frac:corpus ?att.
?att frac:attestationEmbedding

?contextualEmbedding .
?att ^frac:attestation

[ a ontolex:LexicalEntry;
frac:embedding ?entryEmbedding ].

doc:s1_5
^frac:corpus/^frac:attestation
[ a ontolex:LexicalForm;
frac:embedding ?formEmbedding ].

doc:s1_5
^frac:corpus/^frac:attestation
[ a ontolex:LexicalSense;
frac:embedding ?senseEmbedding ].

doc:s1_5
^frac:corpus/^frac:attestation
[ a ontolex:LexicalConcept;
frac:embedding ?conceptEmbedding ].

These partial queries operate on separate attes-
tations for every kind of observables. However,
the model is generic enough to also follow indirect
links: Using OntoLex core data structures, a sense
attestation can server as an anchor to retrieve em-
beddings for lexical sense, but also lexical concept
or lexical entry: For the Brown corpus, a concrete
application can be seen in the SemCor corpus (Fell-
baum et al., 1997), a layer of semantic annotation
(WordNet senses), and with the following query we
can retrieve AutoExtend synset embeddings and
contextualized sense embeddings:
SELECT ?contextualEmbedding

?synsetEmbedding
WHERE {
?att frac:attestationEmbedding [
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rdf:value ?contextualEmbedding ] .
?att ^frac:attestation ?sense.
?sense

a ontolex:LexicalSense;
ontolex:isLexicalizedSenseOf
?synset.

?synset a ontolex:LexicalConcept;
frac:embedding/rdf:value

?synsetEmbedding .

Such data can then be used, for example, to train
a mapping from contextual embeddings to synset
embeddings.

In their earlier formulation of the FrAC vocab-
ulary, frac:Embedding had the following at-
tributes: (1) dc:extent dimensionality of em-
beddings (for fixed-size vectors), or the num-
ber of data points per observation (in time se-
ries data) (2) rdf:value value of the embed-
dings, according to the examples, this should be
a JSON literal, e.g., an array (of floats) or a
hashtable of keys (e.g., context words) and nu-
merical weights. (3) dc:description human-
readable description of embedding type and param-
eters (4) frac:corpus URI of the underlying
corpus data

With the revised upper model, embedding
inherits rdf:value, dc:description and
frac:corpus from frac:Observation.
As part of the generalization, the restriction of
rdf:value to JSON literals is abandoned – and
this may, indeed, conincide with external require-
ments to the FrAC vocabulary, as it seems easier
at times to encode embeddings (fixed size vectors
or bags of words) just as plain strings, as such data
can be more easily created from existing resources.

3.7 Similarity

Similarity relates to computing the strength of the
semantic relationships between different elements,
e.g., forms, lexemes, and phrases. There are vari-
ous similarity metrics, but in the FrAC context, sim-
ilarity is obtained through a numerical description
of the contexts for each of the analysed elements,
i.e., their embeddings (Sect. 3.4).

In FrAC, similarity is represented using
the frac:Similarity class, an aggre-
gate (set, or bag) of FrAC observables, that
represents a relation between two or more
embeddings (frac:Embeddings). In
the revised FrAC model, the earlier frac:
ContextualRelation superclass of frac:
Similarity from which its properties
were inherited has been replaced by frac:

Observation, no further renaming necessary.
FrAC similarity can be applied to both similarity
relations (sets of two observables) and similar-
ity clusters (sets of two or more observables)
characterized by a single value.

The value of a similarity is an rdf:value
calculated according to the employed Embedding
model, e.g., the number of shared dimensions – in
a bag-of-word model. This value is published to-
gether with its corresponding metadata, (2) one
or more source corpora, i.e., frac:corpus, (2)
the description of the comparison method, i.e.,
dc:description.

We can use frac:Similarity for different
scenarios, two being exemplified in FrAC, i.e., the
similarity between two words, and similarity clus-
ters. Similarity clusters are useful in computational
linguistics for tasks that rely on cognate recogni-
tion and language similarity. When applied to a
particular corpus, similarity cluster offers a gener-
alization score over all the pairs of similes. This
generalization method can use different approaches,
e.g., the minimal similarity between all members
in the cluster, or a score given by the clustering
algorithm. The used approach must be explained
in dc:description.

A very simple example for Similarity is cosine
similarity, as can be calculated between fixed size
vectors. Using the AutoExtend embeddings, the
cosine similarity between any two lexical concepts
can be modelled as follows:

:ls_abc a ontolex:LexicalSense ;
frac:embedding :ls_abc_embedding .

:ls_xyz a ontolex:LexicalSense ;
frac:embedding :ls_xyz_embedding .

[ dc:description
"cosine similarity" ]
a frac:Similarity, rdfs:Bag ;
rdfs:member :ls_abc_embedding ,

:ls_xyz_embedding ;
rdf:value "0.0036" .

4 Consolidation and Outlook

The revised FrAC vocabulary proposed in
this paper introduces the novel class frac:
Observation as a generalization over different
kinds of phenomena that can be observed from
or derived from corpus data and that are relevant
for lexical resources. With small changes to previ-
ously proposed vocabulary elements, this revised
top-level structure can be seamlessly applied to use
cases and sample data featured in previous publica-
tions on FrAC.
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The following changes have been proposed:
(1) merge the frac:locus property of
frac:Attestation into frac:corpus; (2)
extend the understanding of frac:Corpus /
range of frac:corpus to cover any piece of
structured (collections of) primary data, including
parts thereof; (3) merge frac:quotation and
rdf:value; (4) abandon previous restrictions
on the range of rdf:value; and (5) merge
frac:ContextualRelation with the newly
created class frac:Observation

Aside from inheriting common characteristics
from a newly created generalization, we claim that
this model is equivalent in expressivity to the cur-
rent formulation of FrAC as available from the
public draft of the vocabulary. but that it features
a more systematic structure in that the common
pattern exhibited for modelling the different types
of observations and corpus-derived information is
now explicitly encoded in the model, making the
overall model both easier to describe, more com-
pact and easier to formalize in RDFS semantics.

We illustrate the applicability of this model to a
number of examples, mostly with reference to the
Brown corpus. We argue that with this in formation,
it becomes possible for the first time to encode both
the majority of lexical information derived from the
Brown corpus in a unified way, and to thus integrate
those resources on a technical level. With FrAC,
all these different aspects can be encoded in RDF
and this representation can be the basis to define
interoperable APIs for different web services, APIs
or applications to produce, consume or integrate
such data. At the moment, the state of the art in this
area is probably best represented by the proprietary
SketchEngine APIs, whose responses are, however,
do not come with any guarantees for long-term sta-
bility or reproducibility. Furthermore, a number of
aspects are not well-supported by SketchEngine:
This includes, for example, the online reference
to individual attestations (SketchEngine only pro-
vides resolvable URIs for query responses, but not
for the individual matches), or the retrieval of em-
beddings (provided by SketchEngine but only as
data dumps, not integrated in the API). Another
possible application is to provide dumps of corpus-
derived information (of attestations, embeddings,
collocations, similarity clusters or frequency lists)
along with the associated lexical graph.

As it provides uniform data structures on the
basis of web standards, FrAC represents the fun-

dament to develop consistent access protocols for
the unified access, public exposure, exchange and
integration of heterogeneous data as currently pro-
vided, for example, via the Linguistic Linked Open
Data cloud (Chiarcos et al., 2011; Declerck et al.,
2020), libraries such as NLTK (Bird, 2006) or via
portals such as HuggingFace (Lhoest et al., 2021).
At the same time, FrAC accomodates the needs
of digital lexicography and the language sciences,
and has partially been motivated by applicability to
philological data (Chiarcos et al., 2020) and multi-
media content (Chiarcos et al., 2011). As a result of
applying OntoLex and FrAC, resources developed
in lexicography become accessible and re-usable in
the context of language technology, and resources
and solutions developed in language technology
become applicable to lexicographic and linguistic
data and research challenges.

The second novel contribution of this paper
is that we provide an OWL2/DL ontology as
formalization of the revised FrAC vocabulary.
This allows to automatically validate FrAC data,
to detect inconsistencies and to perform reason-
ing (inferences) over FrAC data. In particular,
types (classes) of observations and observables
can be automatically (RDFS-)inferred from do-
main and range constraints of properties such
as frac:frequency, frac:attestation,
frac:embedding, etc., so that this infor-
mation is in fact optional in data exchange.
Likewise, formal OWL2/DL axioms allow
users to define application-specific subclasses of
frac:CorpusFrequency, etc., so that these
can be used as a short hand for specific bundles of
observations with frac:corpus, rdf:value,
dc:description and other properties that con-
strain the corpus under consideration or that define
hyperparameters used in the extraction process.

It is important to note that – to the best of our
knowledge – no RDF vocabulary of similar scope
was in existence prior to FrAC, and that the inte-
gration with OntoLex facilitates a relatively wide
application across different disciplines and research
networks. It is less certain whether there are com-
parable pre-RDF vocabularies in existence. We
mentioned the SketchEngine API and exchange
formats, but as far as open (community) standards
are concerned, we are not aware of any related work
of similar scope. Nevertheless, aspects of corpus-
driven lexicography have been addressed in the
Lexical Markup Framework (Romary et al., 2019,
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for attestation) and the TEI guidelines (Burnard,
2013, for collocation), but we are not aware of
any formal standard for embeddings or machine-
readable similarity scores. By extending OntoLex
with a designated module for frequency, attestation
and corpus-based information in lexical resources,
we are thus breaking novel ground.
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Abstract
For the task of classifying verbs in context as
dynamic or stative, current models approach
human performance, but only for particular
data sets. To better understand the performance
of such models, and how well they are able
to generalize beyond particular test sets, we
apply the contrast set (Gardner et al., 2020)
methodology to stativity classification. We cre-
ate nearly 300 contrastive pairs by perturbing
test set instances just enough to change their
labels from one class to the other, while preserv-
ing coherence, meaning, and well-formedness.
Contrastive evaluation shows that a model with
near-human performance on an in-distribution
test set degrades substantially when applied to
transformed examples, showing that the stative
vs. dynamic classification task is more complex
than the model performance might otherwise
suggest. Code and data are freely available.1

1 Introducing stativity

Aspectual properties of verbs, and the clauses they
inhabit, have the potential to support a range of
natural language processing tasks, such as event
ordering (Modi and Titov, 2014) and temporal re-
lation classification (Costa and Branco, 2012), as
well as contributing to speaker choices around situ-
ational construal (Trott et al., 2020). At the same
time, verb and situational aspect are a complex
set of interacting properties, in which the meaning
of the verb, the nature of its arguments, adverbial
modifiers, and grammatical features such as verb
tense and nominal definiteness can all play a role
in determining the aspectual make-up of a clause.

This sensitivity of aspectual categorization to
small shifts in linguistic form is one reason that
automatic prediction of aspectual classes is an espe-
cially challenging computational problem. In this
paper we explore the stability of automatic classifi-
cation for one particular facet of aspect: stativity of

1https://github.com/dchensta/se_
contrast

English verbs. Stativity reflects the degree to which
a verb represents a static situation versus a situation
that reflects some degree of dynamicity. Dynamic
verbs typically involve some change of state. (1-3)
below show examples of the three classes relevant
for our study: DYNAMIC verbs, STATIVE verbs, and
verbs for which annotators CANNOT_DECIDE.

(1) Table 7 shows results from the latest experi-
ments. STATIVE

(2) Dr. Smith showed her students how to work
with the new GPUs. DYNAMIC

(3) The earlier paper shows the effectiveness of in-
corporating linguistic features. CANNOT_DECIDE

In (1), the table is static, and the results exist
in the table; no change of state is indicated. (2)
highlights the dynamic sense of show, in which the
Agent is giving a demonstration. (3) allows two
readings. In the STATIVE reading, the result about
linguistic features is a static property of the paper;
it simply exists in the paper. In the DYNAMIC read-
ing, the paper demonstrates the effectiveness of
linguistic features through an argument that devel-
ops and progresses over the course of the paper.

Most verbs in English have a strong predomi-
nant category (stative or dynamic), yet allow for
variable interpretation, depending on context. A
smaller number of verbs (e.g. show), are highly
flexible, with no strong statistical tendency in ei-
ther direction (Friedrich and Palmer, 2014a; Falk
and Martin, 2016). Because of this variability, auto-
matic classification of aspectual properties requires
contextual input and instance-level classification.

To better understand the ability of systems to
automatically determine stativity, we produce con-
trast sets (section 2) for English verb stativity with
298 transformed instances. The contrast set in-
stances and their ground-truth labels are extracted
from the SitEnt corpus (section 2.2), and the trans-
formed instances are produced using a range of
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linguistically-motivated transformation strategies,
detailed in section 3.

Using a standard modeling configuration (sec-
tion 4), we show that classification performance on
the transformed instances is substantially lower
than on the original instances. According to
Friedrich (2017), observed annotator agreement
for this task ranges from 79% to 82%. On the orig-
inal instances, the model achieves micro-averaged
accuracy of nearly 80%, approaching human agree-
ment for this task.2 On the transformed instances,
micro-averaged accuracy is well below 60%.

2 Building contrast sets for stativity

For many NLP tasks, neural models, especially
those built on large language models, have been
shown to be sensitive to annotation artifacts in the
data on which they are trained and evaluated. High
performance of classifiers often hinges on preserv-
ing these properties at evaluation time, and testing
on out-of-distribution data can result in such dra-
matic performance decreases that the models no
longer reliably perform the task they have been
trained to do (Gururangan et al., 2018; Poliak et al.,
2018; Geva et al., 2019, among others). These
findings have given rise to methodologies for more
careful evaluation of classification capability. Sev-
eral different methods for improved evaluation have
been proposed (Ribeiro et al., 2020; Gardner et al.,
2020, among others).

2.1 Contrast sets

In this work, we follow the contrast set method-
ology (Gardner et al., 2020). The core idea is to
create contrastive evaluation data sets by having
experts make small perturbations to instances in the
original test sets. In our case, we vary the lexical
aspect of the main verb so that the preferred label
changes from DYNAMIC (4) to STATIVE (5):
(4) Mary ran the Buenos Aires Marathon.
(5) Mary was a participant in the Buenos Aires

Marathon.
These perturbations need to strike a delicate

balance. The changes should be large enough to
change the gold label for the instance, yet small
enough to retain meaning, coherence, and validity.
We also aim to use a variety of strategies, so as not
to introduce new unintended annotation artifacts.

2Note that cross-validation accuracy on the much larger
training set ranges from 77-80%.

DYN STAT CD

Training 18,357 15,507 8,445
Test 376 217 57
Contrast:
Test_Orig

172 120 0

Contrast:
Test_Trans

120 172 0

Table 1: Distribution of DYNAMIC (DYN), STATIVE
(STAT), and CANNOT_DECIDE (CD) labels.

Once contrast sets have been built, we compare
the performance of the model in question on the
transformed test instances (with their new labels) to
the performance of the same model on the original
version of those same instances. Significant per-
formance degradation on the transformed test data
calls into question whether the model has learned
to classify the phenomena modeled in the anno-
tated training data. The contrast set consists of the
paired original and transformed test instances.

2.2 Data

We use data from the SitEnt (situation entities) cor-
pus (Friedrich and Palmer, 2014b; Friedrich, 2017).
The corpus3 combines data from MASC (Ide et al.,
2008) with Wikipedia texts, creating a collection
of documents from 13 different genres. Texts are
segmented into clauses, and each clause is triply-
annotated for stativity of the main verb, genericity
of the main referent, habituality of the situation
described, and finally, a clause-level situation type
label (following Smith (2003), these labels distin-
guish between events, states, generics, generalizing
sentences, facts, propositions, reports, questions,
imperatives, and undecided). Gold labels come
from a majority vote across the three annotators.

For model training, we use Friedrich et al.
(2016)’s original training split, which consists of
324 documents, with 42,309 clauses. As a ba-
sis for building contrast sets, we select four docu-
ments from the original test set, each from a dif-
ferent genre: news, essay, journal, and Wikipedia.
For each sentence, we create one contrast set by
transforming the first clause in the sentence.4 No
contrast sets are created for clauses labeled CAN-

3https://github.com/annefried/sitent/
tree/master/annotated_corpus

4To test the viability of using first clauses only, we created
contrast sets for all clauses in the Wikipedia document and
compared classifier performance for the full document vs.
only initial clauses. There was no significant difference.
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NOT_DECIDE. We produce 292 contrast sets.5

Table 1 shows the distribution of the three labels
for our data set. Test refers to the four selected doc-
uments; Contrast: Test_Orig refers to the original
versions for the 292 contrast sets; and Contrast:
Test_Trans refers to the transformed counterparts
of the original instances, with flipped labels. Note
that DYNAMIC to STATIVE transformations outnum-
ber STATIVE to DYNAMIC transformations.

3 Transformation strategies

After building the contrast sets, we perform an
analysis of the linguistic properties of the various
strategies used. Most transformations hinge on
the main verb, either replacing the lexical item or
changing the role of the verb so that it moves to a
different structural and semantic configuration.

3.1 DYNAMIC –> STATIVE

Example sentences showing the DYNAMIC to STA-
TIVE transformations can be found in Table 2.

1. THOUGHT VERB - Demote a dynamic verb
from main to secondary verb by moving it
into the subordinate THEME role for verbs of
thinking, believing, or feeling.

2. COPULA - Replace main verb with a simple
predication headed by a copular verb.

3. DESCRIPTIVE VERB - Replace the dynamic
action with a descriptive verb, effectively re-
configuring the dynamic action as stative prop-
erties of the subject noun.

4. LIGHT VERB - Use the possessive 6 light verb
construction with have to make have the new
main verb.

5. SEMI-MODAL - Use a semi-modal verb (e.g.
need to, ought to) marking deontic modality,
which concerns the speaker’s requirements
and desires, as a “thought" or “emotion" from
the speaker, who can be an unspecified author-
ity with no referent.

6. DOWNGRADE TO PPL - Remove main verb
from the clause by transforming it into a per-
fect passive participle that favors a descriptive,
adjectival reading over a verbal reading.

7. ORDER - Switch the order of the clauses and
insert a descriptive verb as the new main verb.

5This number is on par with the data sets described in
Gardner et al. (2020), which range from 70 to 1000 contrast
sets per task.

6verbs of possession have a STATIVE reading

3.2 STATIVE –> DYNAMIC

Example sentences showing each of the STATIVE to
DYNAMIC transformations can be found in Table 3.

1. NEW PARTICIPANT - Choose a synonymous
verb that introduces an agent who participates
in a dynamic synonym of the original verb.

2. INSERT VERB - Replace a stative verb (typi-
cally the copula) with a dynamic verb or in-
sert a dynamic verb as the new main verb, of
which the original stative verb is a dependent.

3. BECOMING - Replace standard copula with
an inflected form of the verbs to become or to
get, and their synonyms. This preserves the
copula’s predicating structure while reformu-
lating the event as dynamic.

4. UPGRADE - Upgrade a perfect passive partici-
ple or subordinate STATIVE verb to the main
verb of the clause by adding a helping verb or
deleting the main STATIVE verb.

5. HEAVY VERB - Replace a light verb construc-
tion like have with a heavy, dynamic verb.

4 Model, results, and discussion

Having built contrast sets, we now evaluate perfor-
mance compared to the original instances.

4.1 Model
Our straightforward classification model first learns
a contextualized representation for each clause us-
ing BERT (Devlin et al., 2019), followed by a re-
gression layer to classify the clause representations
as DYNAMIC, STATIVE, or CD. The logistic regres-
sion model is trained using the liblinear solver and
L2 regularization. Running 5-fold cross-validation
over the full training set, using the trained logistic
regression model, yielded accuracy scores ranging
from 77.7% to 80.13%, only slightly below ob-
served human agreement, which Friedrich (2017)
reports as ranging from 79% to 82%.

4.2 Results: Classifying contrast sets
Table 4 shows the model’s performance on the orig-
inal test set instances and the transformed instances.
These figures include all clauses for the Wikipedia
text and only initial clauses for the other three texts,
and only clauses whose original labels are either
STATIVE or DYNAMIC. On the original instances,
the model achieves micro-averaged accuracy of
nearly 80%, approaching human agreement for this
task. On the transformed instances, micro-averaged
accuracy is well below 60%.
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Strategy Original Instance (DYN) Transformed Instance (ST) #
THOUGHT VERB During that time, the panel said, During that time, the panel believed that 55
COPULA Although it affected Youngstown and the

surrounding area more than it affected other
regions,

Although it was in Youngstown and the sur-
rounding area more than in other regions,

48

DESCRIPTIVE
VERB

“Your actions and failure to act led to vio-
lations of Senate rules

“Your actions and failure to act constituted
direct violations of Senate rules

47

LIGHT VERB Scoring higher than 21 Having a score higher than 21 14
SEMI-MODAL The players’ initial cards may be dealt face

up
The players’ initial cards need to consistently
be dealt either face up

5

DOWNGRADE TO
PPL

When examining the areas history, culture,
and economic situation

Based on the area’s history, culture, and eco-
nomic situation

2

ORDER the player or the dealer wins by having a
score of 21 or by having the highest score

having a score of 21 means the player or the
dealer wins

1

Table 2: Examples of DYNAMIC –> STATIVE transformations, along with the number of times each transformation
strategy was used in the contrast sets.

Strategy Original Instance (ST) Transformed Instance (DYN) #
NEW PARTICIPANT 11 plus the value of any other card will al-

ways be less than or equal to 21.
Players add 11 plus the value of any other
card to get less than or equal to 21.

81

INSERT VERB Since the 1960s, blackjack has been a high-
profile target of advantage players, particu-
larly card counters,

Since the 1960s, blackjack has functioned
as a high-profile target of advantage players,
particularly card counters,

19

BECOMING One such bonus was a ten-to-one payout One such bonus became a ten-to-one payout 13
UPGRADE PPL Other casino games inspired by blackjack

include Spanish 21 and pontoon.
Other casino games were inspired by black-
jack, including Spanish 21 and pontoon.

5

HEAVY VERB After receiving their initial two cards, play-
ers have the option of getting a “hit",

After receiving their initial two cards, play-
ers may pursue the option of getting a “hit",

2

Table 3: Examples of STATIVE –> DYNAMIC transformations, along with the number of times each transformation
strategy was used in the contrast sets.

4.3 Results: Transformation strategies

Finally, we look at contrast set classification accu-
racy across different transformation strategies. In
the STATIVE to DYNAMIC direction, the strategy
most often classified correctly (56%) is NEW PAR-
TICIPANT. In the reverse direction, the strategy of
replacing the DYNAMIC main verb with a COPULA

has the highest accuracy (52%). Notably, even the
highly stative nature of the copula doesn’t always
result in the model recognizing the transformed
clause as stative. (Detailed results in Appendix A.)

Both THOUGHT VERB and DESCRIPTIVE VERB

for converting DYNAMIC clauses to STATIVE per-
form poorly. This indicates that verbs of feeling,
thinking, and wanting (THOUGHT VERB) and cer-
tain verbs like signify, constitute, and include, are
not uniformly treated as STATIVE by the classifier.
Other descriptive verbs, like contain and resemble
do get accurately classified. Some verbs like ap-
pear sometimes get classified correctly as STATIVE,
as in “All other cards appear as the numeric value",
other times as DYNAMIC, as in “Cards appear either
from one or two handheld decks, from a dealer’s
shoe, or from a shuffling machine."

The frequency of transformation strategy in the
contrast sets does not correspond to high classifi-
cation accuracy. In future, we will look at how
frequent such constructions are in the training data,
and whether their association with stativity labels
matches linguistic expectations. We suspect that
the different types of stativity may also play a role.
For example, the stativity commonly associated
with descriptions of mental processes is different
from the attributional or predicational stativity of-
ten seen with copular constructions.

5 Related work on lexical aspect and verb
stativity

Aspectual structure is complex and well-studied in
the linguistics literature (Vendler, 1967; Comrie,
1976; Moens and Steedman, 1988; Smith, 1991,
among many others). Classically, aspectual anal-
ysis involves the semantic properties of stativity,
telicity, durativity, and iterativity. Croft et al. (2016)
expand on this set of properties in their discussion
of aspectual annotations within the Rich Event De-
scription framework. Donatelli et al. (2018) pro-
pose methods for expanding the Abstract Meaning
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Document # Clauses
Full Text

# Con-
trast Sets

Test
Orig:
Correct

Test
Trans:
Correct

Test
Orig:
Acc

Test
Trans:
Acc

Diff by #
Clauses

Prop Diff

Wikipedia 114 102 70 60 67.39 58.82 -10 -9.8%
News 149 47 42 16 89.36 34.04 -26 -55.32%
Journal 67 19 11 11 57.89 57.89 -0 -0%
Essay 316 130 114 70 87.68 53.85 -44 -33.85%
Total or Mi-
croavg.

646 298 237 157 79.53 52.68

Table 4: Accuracy on Contrast: Test_Orig and Contrast: Test_Trans, by document. “Diff by Clause” shows the
# of clauses misclassified after transformation, and “Prop Diff” shows the percentage of misclassified contrast sets.

Representation framework with aspectual features,
and such aspectual information is a key feature of
the Uniform Meaning Representation framework
(Van Gysel et al., 2021). In addition, aspectual
properties are relevant at both the clause level and
the level of individual verbs.

Our current focus is the verb-level property of
stativity, sometimes referred to as inherent lexical
aspect.7 Stativity reflects the degree to which a
verb represents a static situation versus a situation
that reflects some degree of dynamicity. Dynamic
verbs typically involve some change of state.

Computational approaches to stativity. Early
approaches to computational analysis of verb stativ-
ity employ rule-based approaches based on known
linguistic tests for stativity, such as the progressive
test.8 Klavans and Chodorow (1992) produce a
type-level stativity rating for English verbs, based
on the frequency with which verbs occur in various
tenses in the Brown and Reader’s Digest corpora.
Dorr and Olsen (1997) treat stativity as one of sev-
eral aspectual properties derivable from logical rep-
resentations of verb meaning in the Lexical Concep-
tual Structure (LCS) framework (Jackendoff, 1983,
1990). Siegel and McKeown (Siegel, 1999; Siegel
and McKeown, 2000) use a wide range of linguis-
tic indicators to derive type-level stativity values
for English verbs. Friedrich and Palmer (2014a)
extend Siegel and McKeown’s work to incorporate
distributional features and perform classification in
context. Kober et al. (2020) use distributional se-
mantics to classify both stativity and telicity across
genres. Falk and Martin (2016) take a more fine-
grained approach to lexical aspect classification for

7Aktionsart (Vendler, 1957) also models lexical aspect.
Both Aktionsart and stativity are subject to coercion at the
clause-level, as described in the introduction.

8Generally, static verbs in English cannot occur in progres-
sive form: e.g. *I am knowing Thai. This is one of the most
robust of the linguistic tests, but it too is subject to exceptions:
e.g. I am liking this song!

French verbs in context, categorizing verbs across
a set of 13 different verbal readings. Hermes et al.
(2018) take a distributional approach to classifying
German verbs for Aktionsart, and (Egg et al., 2019)
provide a new annotated corpus and classification
experiments for multiple components of aspect for
German verbs.

Another important line of research (Govindara-
jan et al., 2019; Gantt et al., 2022) takes a broader
view of event meaning, treating stativity as one of a
number of aspectual features which together com-
pose the meaning of an event. Similarly, work on
clause-level semantic aspect classification (aka sit-
uation entity classification) (Friedrich et al., 2016;
Becker et al., 2017; Dai and Huang, 2018) con-
siders stativity as a key semantic property for de-
termining clause-level aspect. Finally, Chen et al.
(2021) use a sequence of rules to assign tense and
aspect values to both verbal events and event nom-
inals, making use of co-occurrence cues of part-
of-speech tags, special lexical items, and seman-
tic configurations that help the classifier select the
right shade of aspect for a given situation.

6 Conclusions

We apply the contrast set methodology to the task
of classifying English verbs in context as stative or
dynamic. We see a serious performance degrada-
tion on the transformed examples, suggesting the
model has not learned a clean decision boundary
for stativity. This first analysis suggests a need to
more clearly define features that may bias clauses
toward stative or dynamic readings.

The study would benefit from more data, across
a wider range of text types. We would also like to
investigate the effectiveness of contrastive evalua-
tion for other semantic properties, using recently-
developed methods for partially-automatic contrast
set creation (Li et al., 2020; Bitton et al., 2021;
Ross et al., 2021, among others).
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Jan Hajič, James H. Martin, Stephan Oepen, Martha
Palmer, James Pustejovsky, Rosa Vallejos, and Ni-
anwen Xue. 2021. Designing a Uniform Meaning
Representation for Natural Language Processing. KI
- Künstliche Intelligenz, 35(3):343–360.

Zeno Vendler. 1957. Verbs and times. The Philosophi-
cal Review, 66(2):143–160.

Zeno Vendler. 1967. Facts and events. Linguistics in
philosophy, pages 122–146.

4035



A Classification results by transformation
strategy

Table 5 shows the distribution of correct labels
assigned to transformed clauses using DYNAMIC

to STATIVE strategies. Table 6 shows the same for
STATIVE to DYNAMIC transformations.

Strategy Test
Trans:
Size

Test
Trans:
Cor-
rect

Acc

THOUGHT

VERB

55 10 18.18%

COPULA 48 25 52.08%
DESCRIPTIVE

VERB

47 17 36.17%

LIGHT VERB 14 4 28.57%
SEMI-
MODAL

5 0 0%

DOWNGRADE

TO PPL

2 1 50%

ORDER 1 0 0%
Totals 172 57 33.14%

Table 5: Successful DYNAMIC > STATIVE transforma-
tion strategies, evaluated by accuracy of correctly iden-
tifying the contrast label.

Strategy Test
Trans:
Size

Test
Trans:
Cor-
rect

Acc

NEW PAR-
TICIPANT

81 45 55.55%

INSERT

VERB

19 9 47.37%

BECOMING 13 9 69.23%
UPGRADE

PPL

5 2 40%

HEAVY

VERB

2 1 50%

Totals 120 66 55%

Table 6: Successful STATIVE > DYNAMIC transforma-
tion strategies, evaluated by accuracy of correctly iden-
tifying the contrast label.
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Abstract

This paper presents M3L-Contrast—a novel
multimodal multilingual (M3L) neural topic
model for comparable data that maps texts from
multiple languages and images into a shared
topic space. Our model is trained jointly on
texts and images and takes advantage of pre-
trained document and image embeddings to
abstract the complexities between different lan-
guages and modalities. As a multilingual topic
model, it produces aligned language-specific
topics and as multimodal model, it infers tex-
tual representations of semantic concepts in im-
ages. We demonstrate that our model is compet-
itive with a zero-shot topic model in predicting
topic distributions for comparable multilingual
data and significantly outperforms a zero-shot
model in predicting topic distributions for com-
parable texts and images. We also show that our
model performs almost as well on unaligned
embeddings as it does on aligned embeddings.

1 Introduction

Topic modelling is an unsupervised method initially
designed for text data that extracts latent themes
in documents through the co-occurrence statistics
of the words in the documents. In most probabilis-
tic topic models, a topic is a distribution over a
vocabulary and a document is a distribution over
topics (Blei et al., 2003). Multilingual topic mod-
els extend basic topic models for multilingual data
by jointly training on multiple languages (Mimno
et al., 2009; Hao and Paul, 2018). These mod-
els learn aligned language-specific topics and have
been used in different cross-lingual applications
such as multilingual news clustering (De Smet and
Moens, 2009) and comparing discourses from dif-
ferent cultures in news and social media (Shi et al.,
2016; Gutiérrez et al., 2016).

Most topic models are designed for textual data
but there is also a rich body of work on applying
topic modelling to images resulting in multimodal

topic models (Barnard et al., 2003; Feng and Lap-
ata, 2010; Roller and Im Walde, 2013). These mod-
els use natural language supervision to improve the
semantic representation of images. Augmenting
topical information from text with topic informa-
tion from visual inputs also produces better seman-
tic representations of words.

Neural topic models have been proposed to im-
prove on classical topic models and have resulted in
models that are more computationally efficient and
produces more coherent topics (Srivastava and Sut-
ton, 2017). Moreover, the neural topic modelling
framework has given rise to models that take advan-
tage of information from external sources such as
word embeddings (Dieng et al., 2020) and contex-
tualised language models (Bianchi et al., 2021a,b;
Hoyle et al., 2020; Mueller and Dredze, 2021).

In this work, we present a novel neural multilin-
gual and multimodal topic model that takes advan-
tage of pretrained document and image embeddings
to abstract the complexities between languages and
modalities. Our work is based on the contextual-
ized topic model (CTM, Bianchi et al., 2021a,b),
a family of topic models that uses contextualized
document embeddings as input.

We show that while ZeroshotTM (Bianchi et al.,
2021b), a cross-lingual variant of CTM, can pre-
dict relevant topic distributions of documents in
languages it has not seen during training, this abil-
ity does not transfer well to unseen modalities (e.g.
images). Moreover, since ZeroshotTM only sees
monolingual data, it produces monolingual topics
that are inferred from documents in a single lan-
guage. This approach does not take into account
possible biases in worldviews that are hidden in
different languages.

Our approach, which we refer to as M3L-
Contrast, trains jointly on multilingual texts and
images with a contrastive objective. We show
that our model produces better topic distributions
for comparable texts and images compared to Ze-
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roshotTM even with unaligned embeddings and
our model also improves on a classical multilin-
gual topic model for comparable multilingual data.
The main contributions of this work are:

1. We present a neural multimodal and multi-
lingual topic model for comparable data that
maps images and texts into a shared topic
space;

2. we show that contrastive learning is effective
in mapping embeddings from unaligned en-
coders into a shared topic space and improves
on the alignment of aligned embeddings;

3. we present a multilingual topic model for com-
parable multilingual data that uses pretrained
embeddings and improves on a classical topic
model for comparable data.1

2 Related Work

2.1 Neural topic models

Neural topic models (NTMs) refer to a class of
topic models that use neural networks to estimate
the parameters of the topic-word and document-
topic distributions. Using a variational autoencoder
(VAE) to map documents into latent topic spaces
was proposed by Srivastava and Sutton (2017) and
demonstrated in the ProdLDA model that exhib-
ited better topic coherences and faster training
than classical models. This has led to other VAE-
based topic models that can incorporate informa-
tion from external sources such as the Embedded
Topic Model (Dieng et al., 2020) which uses pre-
trained word embeddings, the Contextualised Topic
Model (Bianchi et al., 2021a) which uses contex-
tualised embeddings and the BERT-based Autoen-
coder as Teacher (Hoyle et al., 2020) model that
distills large language models to improve topic co-
herence.

2.2 Multilingual topic models

Multilingual topic models infer aligned language-
specific topics from a multilingual dataset. To align
topics across languages, some degree of supervi-
sion is required to establish the link between the
languages. In most cases, the languages are linked
either at a word level or at a document level (Hao
and Paul, 2020). Models that use word-level su-
pervision require a translation dictionary to link
words from different languages (Jagarlamudi and
Daumé, 2010; Hao and Paul, 2018; Yang et al.,

1Our code is available at https://github.com/
ezosa/M3L-topic-model

2019). Document-level supervision requires a com-
parable dataset where a document in one language
is linked to a thematically similar document in an-
other language (Mimno et al., 2009; De Smet and
Moens, 2009).

The Polylingual Topic Model (PLTM, Mimno
et al., 2009) is widely-used classical multilingual
topic model for comparable data. To our knowl-
edge, the Neural Multilingual Topic Model (Wu
et al., 2020), a model that uses word-level super-
vision, is the only neural multilingual topic model
so far. ZeroshotTM (Bianchi et al., 2021b), while
not a multilingual model, is capable of zero-shot
cross-lingual topic inference: it can predict topic
distributions for documents in unseen languages if
the model is trained on embeddings from a multi-
lingual encoder. However, ZeroshotTM requires
aligned embeddings for zero-shot topic modelling.

2.3 Multimodal topic models
Multimodal topic models use data from different
modalities to infer topics. The most popular pair-
ing is texts and images. Some text-and-image topic
models use labelled image datasets to learn natu-
ral language representations of images using a su-
pervised topic modelling approach (Barnard et al.,
2003; Zheng et al., 2014). Other models extract
‘visual words’ from images using image feature ex-
tractors such as SIFT and images are represented
as a bag of ‘visual words’ in the same manner
that documents are represented as a bag of tex-
tual words (Feng and Lapata, 2010; Virtanen et al.,
2012; Roller and Im Walde, 2013). (An et al., 2020)
trained visual and textual topic models from neural
network representations for multimodal depression
detection but does not map text and images into the
same topic space.

2.4 Contrastive learning
Contrastive learning is a self-supervised technique
that uses different views of the same data to learn
better data representations (Jaiswal et al., 2021; Liu
et al., 2021). In contrastive training the goal is to
minimize the distance between positive samples
while separating them from negative samples. Con-
trastive training is popular in multimodal settings
such as web-scale text-image alignment (Radford
et al., 2021; Jia et al., 2021), audio-visual align-
ment (Khorrami and Räsänen, 2021) and biomedi-
cal imaging (Zhang et al., 2020).

In neural topic modelling, contrastive learning
has recently been used to improve on the Adversar-

4038



Figure 1: Proposed M3L-Contrast topic model. (a) Mul-
tilingual topic model with language-specific encoders
and inference networks; (b) Extension to the multimodal
setting. The loss function is detailed in Equation 1.

ial Topic Model (Wang et al., 2019) by adding a
contrastive objective to the training loss and taking
a more principled approach to sampling positive
and negative samples (Nguyen and Luu, 2021).

3 Multilingual and Multimodal Model

3.1 Neural multilingual topic model
We first propose a neural multilingual topic model
for comparable multilingual data that uses pre-
trained document embeddings. Our multilingual
model is based on ZeroshotTM (Bianchi et al.,
2021b), a zero-shot cross-lingual topic model.
However, we are not aiming for a zero-shot model.
Instead, our model infers aligned language-specific
topics for each language present in the dataset.
Moreover, our approach does not require the pre-
trained document embeddings to be aligned be-
forehand. This property makes it advantageous in
settings where a multilingual encoder that includes
our desired language might not exist such as in
low-resource settings.

Figure 1(a) shows the multilingual model archi-
tecture. The model uses independent inference
networks for each language. To align language-
specific topics, the model minimizes the Kullback-
Leibler (KL) divergence between the topic distri-
butions of comparable documents from different
languages and, in addition, uses a contrastive loss
to map similar instances close to each other in the

topic space and keep non-related instances apart.
For each tuple of aligned documents in the com-

parable multilingual dataset, we encode the docu-
ments from each language using their own separate
encoders (whether aligned or non-aligned) and then
the embeddings are passed to language-specific in-
ference networks that infers the mean, µ, and vari-
ance, σ2, of the Gaussian distribution from which
we sample latent document-topic distributions. At
this point, the languages are independent of each
other and have not yet shared any information.

After sampling topic distributions for each doc-
ument, we induce a shared topic space by mini-
mizing the pairwise KL divergence between the
language-specific distributions whose parameters
are estimated from their own inference network.
We also add a contrastive objective so that aligned
examples are kept away from other examples in the
topic space. We use InfoNCE (Van den Oord et al.,
2018) as our contrastive loss. The positive pairs
are all possible combinations of document pairs
from the same tuple and negative pairs are all other
pairs of documents from different tuples within a
batch. For instance, for a comparable dataset with
two languages and batch size N , we would have N
positive pairs and N2−N negative pairs per batch.
For three languages, that would be 3N positive
pairs and 3(N2 −N) negative pairs, etc.

Thus, the loss consists of the three components:
the reconstruction loss; the KL divergence between
topic distributions; and the contrastive loss. For-
mally, the loss function is written as:

L =

L∑

l=0

Eq[w⊤ log(softmax(βlθd))]−

n∑

a,b=0
a̸=b

KL(p(θai |xai )||q(θbi |xbi))−

s

n∑

a,b=0
a̸=b

log
exp((θai · θbi )/τ)∑N

j=0

∑n
c,d=0 exp((θ

c
i · θdj )/τ)

(1)

The first term is the sum of the bag-of-words
(BoW) reconstruction losses of each language in
the corpus. We refer the reader to (Srivastava and
Sutton, 2017) for further details on the reconstruc-
tion loss.

The second term is the sum of the KL diver-
gences between the language-specific document
distributions, p() and q(), whose mean and vari-
ance are estimated from language-specific infer-
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ence networks; θ refers to the sampled topic rep-
resentation of a document in a tuple where i is the
tuple index, a and b are the indices of the docu-
ments inside the tuple and n is the size of the tuple.
Lastly, x refers to a document embedding.

The third term is the InfoNCE loss where (θai ·θbi )
are positive pairs (they belong to the same tuple)
and (θci ·θdj ) are negative pairs (they are from differ-
ent tuples). N is the batch size, τ is the temperature
and s is a constant to give additional weight to the
contrastive loss.

3.2 Extension to multimodal setting

We now extend the proposed multilingual topic
model to the multimodal setting. Figure 1(b) shows
the architecture of the proposed multilingual and
multimodal topic model.

We can think of the multimodal case as a general-
ization of the multilingual model. The loss function
in Equation 1 remains essentially the same. Since a
BoW representation is not available for images, the
reconstruction loss is computed only on texts and
the first loss term is unchanged. In the second term
of the loss function, x can be a document or image
embedding and θ is the sampled topic distribution
for that embedding.

Since the document or image embeddings ab-
stract the modality of the data, the topic distribu-
tions are now modality-agnostic. Thus, the third
term is also unchanged, except for the tuple size n.
A multimodal dataset with one language and one
image view would have N positive and N2 − N
negative pairs, the same as in the bilingual case.
For two languages and one image, we would have
3N positive pairs and 3(N2 − N) negative pairs,
as in the trilingual case.

We refer to our proposed topic model as M3L-
Contrast for multimodal multilingual (M3L) topic
model with contrastive learning.

4 Experimental Setup

4.1 Dataset

We run experiments on our proposed model on a
dataset of aligned English and German Wikipedia
articles and images. We take aligned articles from
the Wikipedia Comparable Corpora2 and align
them with images from the Wikipedia-based Im-

2https://linguatools.org/tools/
corpora/wikipedia-comparable-corpora/

age Text dataset (WIT) (Srinivasan et al., 2021) 3.
We use articles instead of the image descriptions
in WIT because topic models are designed for full
documents, rather than snippets of text.

We randomly select 20,000 tuples for training.
Since articles can be associated with more than
one image and we want fixed-size tuples during
training, we randomly select one image per article
pair. For testing, we randomly select 1,000 article
pairs. We consider all images aligned with the
paired articles, which results in 3,278 unique tuples
in the test set.

4.2 Evaluation

We evaluate M3L-Contrast in the multilingual set-
ting and the multimodal setting, separately. In the
multilingual case we train M3L-Contrast on mul-
tilingual articles without images and for the multi-
modal case on the multilingual articles and images.

We want document-topic distributions for mul-
tilingual articles and images from the same tuple
to be similar to each other and distinct from other
examples. Thus, we evaluate the alignment of topic
distributions using retrieval tasks.4

Texts and images are fed one at a time to their
own language-specific and modality-specific infer-
ence networks to obtain topic distributions. For the
multilingual setting, we match an English article
to the most similar German article in terms of the
Jensen-Shannon divergence (JSD) between their
respective document-topic distributions. For the
multimodal setting, we match English articles to
images and German articles to images, separately.
We use mean reciprocal rank (MRR) to measure
text retrieval performance and uninterpolated aver-
age precision (UAP, Manning and Schütze, 1999)
to measure text-image retrieval performance be-
cause multiple images can be associated with an
article.

We also report the averaged JSD between the
topic distributions for all data pairs from the same
tuple. Lastly, we compute language-specific topic
coherences with respect to the training data using
normalised pointwise mutual information (NPMI,
Röder et al., 2015)5.

3https://github.com/
google-research-datasets/wit

4We are aware that topic distributions do not outperform
raw embeddings in retrieval tasks but the point of this evalua-
tion is not to improve cross-lingual or cross-modal retrieval
but to evaluate the alignment of the topic distributions.

5Computed using the Gensim library (Rehurek and Sojka,
2010).
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Coherence↑ EN-DE text
Model EN DE MRR↑ JSD↓
PLTM 0.064 0.044 0.333 0.067
ZeroshotTM 0.113 0.096 0.997 0.012
ZeroshotTM-KD 0.109 0.092 0.390 0.081
M3L-Contrast 0.119 0.097 0.684 0.036

Table 1: Language-specific topic coherences (NPMI)
and cross-lingual retrieval peformance (MRR and JSD).

4.3 Baselines

PLTM (Mimno et al., 2009) We implement
PLTM with Gibbs sampling.

ZeroshotTM (Bianchi et al., 2021b) We train
separate models on the English and German articles
using the authors’ original implementation.6

ZeroshotTM-KD (Pivovarova and Zosa, 2021)
We adapt ZeroshotTM for multilingual or multi-
modal settings using knowledge distillation (Hin-
ton et al., 2015). This method uses the parame-
ters learned by the teacher model as priors for the
student. We train four separate teacher-student
pairs: (1) Model trained on English articles as
teacher, German as student; (2) German articles
as teacher, English as student; (3) English articles
as teacher, images as student; and (4) German arti-
cles as teacher, images as student.

4.4 Configurations

We report the performance of the neural topic mod-
els using CLIP (Radford et al., 2021) as our multi-
modal multilingual encoder for a fair comparison.7

CLIP is a pretrained vision-language model trained
on web-scale data that encodes text and images into
a common embedding space. We train all models
with 100 topics for 100 epochs. Other hyperpa-
rameters are discussed in the Appendix. We use
batch size 32 for M3L-Contrast. In Section 6 we
show the performance of M3L-Contrast for differ-
ent encoder combinations (aligned and unaligned),
different batch sizes and topic numbers.

5 Results and Discussion

5.1 Multilingual setting

Table 1 shows the cross-lingual retrieval perfor-
mance and averaged JSD of aligned articles. Ze-
roshotTM is the clear winner with an MRR of

6https://github.com/MilaNLProc/
contextualized-topic-models

7clip-ViT-B-32 for images and clip-ViT-B-32-multilingual-
v1 for texts.

0.997 and the lowest JSD. M3L-Contrast, while
it does not outperform ZeroshotTM, shows encour-
aging results given that it has to infer twice as
many topics as ZeroshotTM (bilingual case). It also
outperforms PLTM, a classical multilingual topic
model and the only other model, aside from M3L-
Contrast, trained on multilingual articles. More-
over, M3L-Contrast also has the best topic coher-
ences.

5.2 Multimodal setting

Table 2 shows the results for text-image match-
ing. M3L-Contrast performs the best with UAP
of 0.125 and 0.102 for matching English and Ger-
man articles to images, respectively, and has the
lowest JSDs. In a reversal of the results for cross-
lingual retrieval, ZeroshotTM performs the worst
with the lowest UAP scores and highest JSDs.
ZeroshotTM-KD only slightly outperforms Ze-
roshotTM, indicating that the success of M3L-
Contrast can be attributed to joint training and can-
not be achieved with the teacher-student sequential
training scheme.

These results indicate that ZeroshotTM without
any modifications is not suitable for multimodal
settings. One likely reason is that multimodal en-
coders like CLIP suffer from the so-called ‘modal-
ity gap’ where embeddings for different modalities
are mapped to separate regions in the embedding
space (Liang et al., 2022).

Our results also indicate that for a joint multi-
modal and multilingual neural topic model, it could
be beneficial to use a hybrid model that uses sep-
arate inference networks for different modalities
and a shared network for the same modality. We
leave this for future work.

5.3 Error analysis

To further investigate differences between the mod-
els we checked some examples from the test set.
We show two article-image tuples and their pre-
dicted topics in Table 3. The table contains the top
topic for the aligned English and German articles
(titles shown) and an image associated with them.

The first example article is about pepper8. Ze-
roshotTM predicts relevant topics for the English
and German articles but off-topic for the image.
ZeroshotTM-KD (a teacher model trained on En-
glish articles and a student on images) predicts a

8https://en.wikipedia.org/wiki/
Capsicum_pubescens
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Coherence↑ EN-images DE-images
Model EN DE UAP↑ JSD↓ UAP↑ JSD↓
ZeroshotTM 0.113 0.096 0.034 0.445 0.039 0.435
ZeroshotTM-KD 0.109 0.092 0.082 0.128 0.093 0.146
M3L-Contrast 0.122 0.097 0.125 0.130 0.102 0.147

Table 2: Language-specific topic coherences (NPMI) and text-image retrieval performance (UAP). JSD is the
averaged JS divergence between topic distributions of aligned articles and images. Only M3L-Contrast is jointly
trained on multilingual articles and images.

EN article DE article Image
Article title: Capsicum pubescens

ZeroshotTM 21: plant,
leaves, flow-
ers, tall

31: bird,
south, america,
species

67: university,
library, mu-
seum, research

ZeroshotTM-KD
(EN teacher)

44: plant,
leaves, flow-
ers, plants,
genus

- 44: plant,
leaves, flowers,
plants, genus

M3L-Contrast 65: plant,
plants, leaves,
flowers

65: beschrei-
bung (descrip-
tion), pflanzen
(plant), selten
(rare), stehen
(stand)

65: plant,
plants, leaves,
flowers

Article title: Microexpression/Mikroexpression
ZeroshotTM 13: include,

cause, may,
cases, occur

13: include,
cause, may,
cases, occur

9: bishop,
catholic, pope,
church, roman

ZeroshotTM-KD
(EN teacher)

32: blood,
symptoms,
disease, cell,
bone

- 69: album,
released, song,
single, group

M3L-Contrast 84: theory,
term, example,
social, defined

84: begriff
(concept),
definition
(definition),
beispiel (exam-
ple), theorie
(theory), zahl
(number)

5: film, award,
series, actress,
born

Table 3: Top topics of Wikipedia article pairs and a related image. The numbers indicate the topic indices.

relevant topic for the English article and the im-
age but it has not been trained on German. M3L-
Contrast predicts relevant topics for the English
and German articles and the image. Though the
table shows English topic labels for the image, it is
equally possible to produce German image labels.

In the second example, the article about microex-

pressions9 is illustrated with an image of a woman
presenting basic emotions. ZeroshotTM predicts
slightly relevant topics for the English and German
articles but off-topic for the image. ZeroshotTM-
KD also predicts a relevant topic for the English

9https://en.wikipedia.org/wiki/
Microexpression
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article. Although the image topic is different from
the topic of the article, it is still somewhat relevant
in that the model may have associated images of
women with pop stars. M3L-Contrast predicts rel-
evant topics for the English and German articles.
For the image, it predicts a topic about actresses
likely because the image depicts a woman.

We found similar behaviour in other cases: En-
glish and German articles are usually assigned with
the same topic while the image often has a dif-
ferent topic. In many cases M3L-Contrast finds
an aligned topic for an image while the other two
models fail.

5.4 Visualizing the topic space

To investigate the structure of the multimodal mul-
tilingual topic space, we use 2D visualizations pre-
sented in Figures 2a and 2b, for ZeroshotTM and
M3L-Contrast, respectively. These figures show
the proximities of multilingual texts and images,
represented by their predicted topic distributions, in
the topic spaces induced by the respective models
and mapped into two dimensions with tSNE.10

In Figure 2a—the ZeroshotTM topic space—the
topic distributions of the aligned articles are very
similar to their counterparts (most of the points
representing English articles are hidden under the
German articles). The images, however, tend to be
isolated instead of being close to their textual coun-
terparts. This supports the modality gap hypothesis
and explains why ZeroshotTM performs poorly in
the text-image retrieval task.

In Figure 2b, the topic space induced by M3L-
Contrast, articles and images tend to group together
in terms of themes—exactly the behaviour we want
from a topic model. No single modality or lan-
guage is isolated by itself. This explains why M3L-
Contrast performs better than ZeroshotTM in text-
image retrieval. On the other hand, the English
and German articles are not as close to each other
as in ZeroshotTM. This supports our claim that
joint training takes into account data from all lan-
guages and adjusts for possible discrepancies be-
tween worldviews across languages, even though
this property results in worse performance in cross-
lingual text retrieval.

6 Ablation Study

6.1 Topic numbers

In Figure 3 we show the models’ performance on
cross-lingual text retrieval (MRR) for [25, 50, 100]
topics. ZeroshotTM performs best for all topic
numbers followed by M3L-Contrast. Figure 4
shows the results for text-image retrieval (UAP).
M3L-Contrast performs best for all topic numbers
while ZeroshotTM performs worst. In general, per-
formance improves as the topic number increases.

6.2 Batch sizes for M3L-Contrast

We check batch sizes [16, 32, 64, 128]. Figure 5
shows the effect of increasing batch sizes for M3L-
Contrast trained only on multilingual articles. We
find that batch size 32 is the best for the multilin-
gual setting. We also run similar experiments with
multilingual text and images (Figure 6). In the
multimodal setting, size 32 performs the best when
English articles are matched to images while 64 is
best for German. This is why we used batch size
32 for our experiments with M3L-Contrast.

6.3 Encoder combinations for M3L-Contrast

To show how unaligned encoders perform with
M3L-Contrast, we experiment with two encoder
combinations: (1) a multilingual text encoder and
an unaligned image encoder; and (2) unaligned
monolingual text encoders and an unaligned im-
age encoder. For this experiment, we train M3L-
Contrast with multilingual articles and images and
evaluate the models on cross-lingual retrieval and
text-image retrieval. Encoder details are in the Ap-
pendix. Results are shown in Table 4.

For cross-lingual text retrieval, using a multi-
lingual encoder performs best since this model is
trained specifically on multilingual texts and has a
larger embedding dimension than CLIP (768 and
512, respectively). For English text-image retrieval,
it is expected that CLIP is the best since the text
and image embeddings are already aligned (first
row). CLIP image embeddings performed better
than ResNet on all measures.

It is encouraging that M3L-Contrast with un-
aligned text and image embeddings still outperform
ZeroshotTM and ZeroshotTM-KD (compare with
Table 2, top part) even though those models use
aligned embeddings. This shows that contrastive

10These figures are available as interactive plots in the code
repository of this paper.
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(a) ZeroshotTM

(b) M3L-Contrast

Figure 2: tSNE visualizations of topic distributions of multilingual texts and images inferred by ZeroshotTM and
M3L-Contrast, respectively. Annotations are added manually. Best viewed in color.

learning is effective in mapping unanligned embed-
dings into a shared topic space and that it is not
necessary to use aligned embeddings in multimodal
topic modelling.

7 Conclusion

We presented M3L-Contrast, a multimodal and
multilingual neural topic model based on Ze-
roshotTM that uses pretrained document and image

embeddings. M3L-Contrast is trained jointly on
multilingual texts and images and does not require
aligned embeddings. Since it is a multilingual topic
model it produces aligned language-specific top-
ics. As a multimodal topic model, it maps texts
and images into a shared topic space and infers
textual representations, through the topic words, of
the semantic concepts present in the images.

We show that in the multilingual setting, M3L-
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Encoders EN-DE text EN-images DE-images
Text Image MRR↑ JSD↓ UAP↑ JSD↓ UAP↑ JSD↓
CLIP CLIP 0.613 0.035 0.125 0.130 0.102 0.147
multilingual SBERT CLIP 0.716 0.029 0.119 0.137 0.114 0.147
monolingual SBERTs CLIP 0.407 0.052 0.118 0.129 0.102 0.141
multilingual SBERT ResNet 0.659 0.028 0.053 0.160 0.047 0.167
monolingual SBERTs ResNet 0.347 0.050 0.053 0.145 0.052 0.157

Table 4: Effect of different encoder combinations for M3L-Contrast trained on multilingual text and images
compared to CLIP with 100 topics.

Figure 3: Effect of increasing topic numbers on cross-
lingual retrieval performance (MRR).

Figure 4: Effect of increasing topic numbers on text-
image retrieval performance (UAP).

Contrast improves on PLTM, a classical multilin-
gual topic model, and that it is competitive with
ZeroshotTM in the alignment of topic distributions
for comparable documents in different languages.
In the multimodal setting, our model significantly
improves on ZeroshotTM in aligning comparable
texts and images in the topic space. Moreover, with
unaligned text and image embeddings our model
still performs better than ZeroshotTM that uses

Figure 5: Effect of different batch sizes on M3L-
Contrast trained on multilingual text data.

Figure 6: Effect of different batch sizes for M3L-
Contrast trained on multilingual text and images.

aligned embeddings.
Our proposed architecture can easily be extended

to include other modalities beyond image and text.
We also believe that M3L-Contrast will be useful in
a low-resource setting, where aligned embeddings
can be difficult to obtain.
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Appendix

Data preprocessing

We follow the training data preprocessing of
Bianchi et al. (2021b) for the BoW input: remov-
ing stopwords and retaining the 2000 most frequent
words of each language as our vocabularies. We
use the English and German stopword lists from
NLTK11.

Hyperparameters

The neural topic models are trained on a single
Nvidia V100 GPU (35 minutes) while PLTM is
trained on a single Intel Xeon CPU (3 hours). Dur-
ing testing, we averaged the inferred topic distribu-
tions for each article/image from 20 samples. For
all the neural models we used Adam optimizer with
a learning rate of 2−3. We use a batch size of 64
except for M3L-Contrast. For M3L-Contrast, we
set the temperature τ to 0.07 following (Guo et al.,
2022). We set the contrastive weight s to 50 based
on initial experiments. Tuning τ and s are saved
for future work.

Inference network

We use the same inference network structure as
ZeroshotTM (Bianchi et al., 2021b): one fully-
connected hidden layer followed by softplus layer
with 100 dimensions. We save the investigation of
other inference network structures for future work.

Encoder Details

We use SentenceBERT to encode all our
data (Reimers and Gurevych, 2020) 12. For a fairer
comparison, we set the maximum sequence length
of all text encoders to 128 tokens. The multilingual
text encoder is paraphrase-multilingual-mpnet-
base-v2. For the monolingual encoders, the
English encoder is all-mpnet-base-v2 and the
German encoder is T-Systems-onsite/erman-
roberta-sentence-transformer-v2. ResNet
embeddings are provided in this Kaggle challenge:
https://www.kaggle.com/competitions/

wikipedia-image-caption.

Potential impact and risks

Our models are currently for research purposes
only. We do not advise that it be used in production
settings. Our models might associate images of

11https://www.nltk.org/
12https://www.sbert.net/docs/

pretrained_models.html

people and objects with negative and insensitive
stereotypes if the training data has these associ-
ations. Since we use CLIP to encode texts and
images in our experiments, our models might also
perpetuate the harmful stereotypes found in the
CLIP training data discussed in (Birhane et al.,
2021). The same issue applies to the other pre-
trained encoders we use in our experiments.
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Abstract

Script knowledge (Schank and Abelson, 1977)
is useful for a variety of NLP tasks. However,
existing resources only cover a small number
of activities, limiting its practical usefulness.
In this work, we propose a zero-shot learn-
ing approach to script parsing, the task of
tagging texts with scenario-specific event and
participant types, which enables us to acquire
script knowledge without domain-specific an-
notations. We (1) learn representations of po-
tential event and participant mentions by pro-
moting class consistency according to the anno-
tated data; (2) perform clustering on the event /
participant candidates from unannotated texts
that belongs to an unseen scenario. The model
achieves 68.1/74.4 average F1 for event / par-
ticipant parsing, respectively, outperforming a
previous CRF model that, in contrast, has ac-
cess to scenario-specific supervision. We also
evaluate the model by testing on a different cor-
pus, where it achieved 55.5/54.0 average F1
for event / participant parsing.

1 Introduction

Script knowledge is a type of commonsense
knowledge that captures how people conduct ev-
eryday activities (Schank and Abelson, 1977). It
expresses that in a certain scenario, participants
tend to act out events in a certain order; an ex-
ample from the scenario FIXING A FLAT TIRE is
shown in Fig. 1. Humans use script knowledge to
fill in events that are not explicitly mentioned in a
text, and script knowledge is useful for many down-
stream NLP applications, including referent pre-
diction (Ahrendt and Demberg, 2016; Modi et al.,
2017), discourse classification (Lee et al., 2020),
and story generation (Zhai et al., 2019, 2020).

A key challenge in dealing with script knowl-
edge is coverage: it is costly and time-consuming
to spell out the prototypical events and participants
of a scenario and how they can be expressed in
language. Existing resources are mostly crowd-

Figure 1: A story about FIXING A FLAT TIRE from InScript.
Script parsing identifies events and participants from texts.
The picture is taken from Zhai et al. (2021).

Figure 2: A part of the temporal script graph for TAKING A
BATH inferred from our parsing result. Each node illustrates 3
random verbalizations from the cluster. The gold classes are
shown on the side. Further edges that could be inferred by
transitivity are omitted. We see one could either undress first
or add scent (to the bath tub) first before sink into water.

sourced (Regneri et al., 2010; Modi et al., 2016);
they annotate stories from a limited number of sce-
narios with script events and participants (cf. figure
1). Script parsers, which predict these event and
participant labels given a text, can achieve high ac-
curacies on scenarios that were seen in training (Os-
termann et al., 2017; Zhai et al., 2021). Nonethe-
less, these parsers only operate on known scenarios:
they could only predict event types on the same sce-
nario as they were trained. The limited coverage
restricts the practical usefulness of script parsers
and thus the practical usefulness of script knowl-
edge for downstream tasks in general.

In this paper, we acquire script knowledge by
tackling the task of zero-shot script parsing: we
present the first system which accurately performs
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script parsing on scenarios that were not seen at
training time. For instance, given training data
that talks about TAKING A BATH and GOING TO A

RESTAURANT, the parser labels events and partici-
pants in the FIXING A FLAT TIRE story of Fig. 1, al-
lowing us to arrange script knowledge into a graphi-
cal form as Fig. 2. This offers a way of overcoming
the coverage limitations of script knowledge, by
generalizing from the training scenarios to arbitrary
other ones.

Our method learns to extract script-specific rep-
resentations from general-purpose pretrained word
embeddings, and then uses agglomerative cluster-
ing at inference time to group together natural-
language phrases that refer to the same event or
participant of the unseen script. Finally, we evalu-
ate our model on MCScript, a different corpus than
the training data.

Our model achieves a micro-F1 score on zero-
shot event labeling of up to 68.1 and on participant
labeling of up to 74.4, on par with the supervised
model of Ostermann et al. (2017) that assumes
training data for the same scenario. We find that our
method yields script graphs with reasonable event
clusters that are temporally ordered in a reasonable
way; the majority of errors on event labeling are
due to issues with the granularity of events. We
also find in probing tasks that our model learns to
amplify information about sentence ordering from
the pretrained embeddings, while suppressing low-
level information about morphology and syntax,
which are less relevant for the script parsing task.
In order to investigate its potential for practical use,
we also evaluated the model on a different, unanno-
tated corpus, where the model achieved 55.5/54.0
average F1 for event / participant parsing.

2 Related work

Scripts were introduced as an approach to captur-
ing commonsense knowledge in AI by Schank and
Abelson (1977); see also Barr and Feigenbaum
(1981). Much research in NLP has simplified
the acquisition of script knowledge to identifying
“event chains” in narrative text (Chambers and Ju-
rafsky, 2008, 2009). Event chains represent typi-
cal sequences of events, each represented by one
predicate, and can be learned from large corpora.
Other work has followed in this tradition (Jans et al.,
2012; Modi and Titov, 2014; Pichotta and Mooney,
2014; Rudinger et al., 2015).

In this paper, we instead build upon work by

Regneri et al. (2010, 2011), who explicitly cap-
ture script knowledge about a given scenario in a
temporal script graph (see Fig. 2). A TSG speci-
fies the abstract events and participants that make
up a script with their temporal ordering; each of
these events and participants can be expressed in
language in many different ways. A TSG is also
more expressive than mere event sequences, be-
cause it encodes different manners how a scenario
play out in real life. Regneri et al. learned script
graphs by crowdsourcing. We instead rely on man-
ually script-annotated corpora (Modi et al., 2016;
Wanzare et al., 2016).

Trained with scenario-specific supervision,
script parsing can be performed accurately. Oster-
mann et al. (2017) developed a linear CRF model
to perform script parsing as a sequence labelling
task. Zhai et al. (2021) developed a hierarchical
model for supervised script parsing, making use of
pre-trained contextualized word embeddings. The
model learns patterns at the word level, as well as
the narrative level with respective sequence models.
These existing approaches are limited to scenarios
for which training data is available, whereas our
work focuses on unseen scenarios.

Zero-shot learning is a family of methods that
establish a classifier for unseen classes, based on
labelled data from seen classes. One common ap-
proach is to learn a latent representation space that
all instances embed into, thus the knowledge of
the source domain, encoded in the labelled training
instances, could be transferred to the target domain.
It tackles data scarcity in various situations, such
as machine translation for low-resource languages
(e.g. Pham et al., 2019; Zhang et al., 2020; Johnson
et al., 2017), generation (Duan et al., 2019; Philip
et al., 2020), text classification (see, e.g. Yin et al.,
2019) and question answering (e.g. Banerjee and
Baral, 2020).

3 Data

We work with InScript (Modi et al., 2016) and
MCScript (Ostermann et al., 2018, 2019).

3.1 InScript

InScript is a crowdsourced corpus of around 100
stories about each of 10 scenarios (see Fig. 1 for
an example). The authors were asked to write a
story about a given scenario (such as GOING GRO-
CERY SHOPPING) “as if to a child”, step by step.
InScript was then hand-annotated with event and
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participant classes; it also contains coreference and
dependency annotations.

3.2 Preprocessing

Following Ostermann et al. (2017), we distinguish
between (1) events that are ‘related to the scenario’,
or commonly seen in a typical instantiation of the
scenario, which we call regular events, and (2)
the ones that take place in the course of a specific
story, but are not directly related to the scenario,
which we call irregular events. For example, in
Figure 1, I found my bike pump describes the regu-
lar event ‘get tools’, whereas the weather was nice
is irregular. We collapse all the subclasses of irreg-
ular events1 into a single irregular event class for
each scenario. 12,902 (33.5%) event instances in
InScript are regular. We also distinguish regular
participants from irregular participants in a sim-
ilar manner: participants like ‘rain’ in Fig. 1 are
considered irregular to the FIXING A FLAT TIRE

scenario, as they are not directly relevant to the
scenario per se. Irregular participant instances take
a smaller proportion of 19.6%.

3.3 MCScript

MCScript is a question answering dataset that fo-
cuses on script knowledge. Here we use its back-
ground text (not the questions), which comprises
around 20 stories on each of 200 scenarios. These
stories are not annotated with script events and par-
ticipants; they are stylistically similar to those in
InScript, as they also consist of relatively simple
language and focus on explaining the scenario in
detail.

We use MCScript to evaluate our model trained
on InScript. To this end, we annotate 20 random
scenarios from MCScript to specify script events
and participants: 10 as validation set and 10 as test
set. The set of labels we used is consistent with
that of InScript, in that we adopt the same set of
special labels (for example label Unrel for events
and participants not relevant to the scenario). The
annotation was performed by two experts. Similar
preprocessing is performed to MCScript.

1These labels are UNREL (unrelated to the scenario),
RELNSCR (related to the scenario but not a script event /
participant), OTHER and UNKNOWN.

4 Zero-shot Script Parsing

4.1 Task Description
Our parser is tasked to predict event and participant
annotations for a scenario that was not seen in train-
ing. Thus, our model must learn to group verbs and
noun phrases from an unseen scenario into abstract
events and participants, without knowing what the
gold label set of events and participants are.

The basic idea of our zero-shot script parser is
as follows. We will learn a transformation φ which
maps pretrained general-purpose word embeddings
into a representation space that is suitable for script
parsing. Identifying verb tokens as candidates for
event descriptions and noun and pronoun tokens
as candidates for participant descriptions, we will
train φ such that candidates that describe the same
event or participant are close together in the repre-
sentation space, whereas candidates for different
events and participants are distant. To parse a text
from an unseen scenario, we will apply φ to the
word embeddings of all candidates and perform
clustering to group them into events and partici-
pants.

We train and evaluate the model under a few dif-
ferent settings. (1) InScript. We split InScript into
eight training, one validation, and one test scenario.
During inference, the model takes the unannotated
stories of the test scenario as input and labels them
with events and participants that are consistent with
the gold annotations. We rotate the validation / test
scenario to perform a ten-fold cross-validation. (2)
MCScript. We use all 10 scenarios in InScript
as the training set, whereas validation and test are
performed on the newly annotated MCScript vali-
dation set and test set.

4.2 Regular candidate identification
Throughout the paper, we will focus on regular
candidates, because irregular candidates are not
our primary goal, as the target of script acquisition
is identifying candidates that describe the scenario,
i.e. the regular candidates; furthermore, irregular
candidates make a diverse group of instances with-
out much semantic similarity to each other. Thus
they would not cluster easily in the representation
space. Therefore, we ignore irregular candidates in
training. During inference, we evaluate against the
original gold standard.

We train a classifier to distinguish regular and
irregular candidates so the latter could be excluded
from training. The classifier is also used in the test
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Figure 3: The overall framework. We learn a representation from annotated corpus and apply it to unannotated texts. The
coreference and dependency terms are not visualized.

phase to exclude irregular candidates from cluster-
ing. We use the supervised script parser proposed
in Zhai et al. (2021), but train it only to distinguish
regular candidates from irregular candidates. We
obtain training data for this task by grouping the
original labels into one of REGULAR_EVENT, IR-
REGULAR_EVENT, REGULAR_PARTICIPANT and
IRREGULAR_PARTICIPANT. The train / validation
set of this model is constructed from the respec-
tive training set specified for each settings in §4.1.
These classifiers achieve on average 85 points F1-
score.

4.3 Training

We now describe how to learn φ. For any given
text that we want to parse, we run XLNet (Yang
et al., 2019) to obtain contextualized word embed-
dings f(c) for each event and participant candidate
c. We also considered using BERT (Kenton and
Toutanova, 2019) / ROBERTA (Liu et al., 2019),
but our input length exceeds the 512 word-piece
limit hardwired in the pre-trained versions of these
models.

Afterwards, we train φ to minimize distances
within the same event and participant class and
maximize them between different ones (§4.3.1);
the general framework is illustrated in Fig. 3. We
will then describe several extensions to the loss
function (§4.3.2–§4.3.3) and then discuss replacing
XLNet embeddings with more specialized word
embeddings (§4.3.4)2.

4.3.1 Learning script-neutral representations
Let C be the set of all event candidates or the set
of all participant candidates in a text, and let π(C)
be a partition of C which clusters candidates into

2Our code and data are available at https://github.
com/coli-saar/A3_USSP_coling22

equivalence classes; at training time, each class
contains the candidates that are labeled with the
same event or participants. We define π(c) as the
element of the partition to which the candidate c
belongs. Given a pre-trained embedding function
f and the transformation φθ that we want to learn,
we consider the average distance between instances
belonging to different clusters:

dext(π(C); θ) = mean
c, c′ ∈ C :

π(c) ̸= π(c′)

d(φθ(f(c), φθ(f(c
′)))

The transformation φ is implemented by fine-
tuning the last layer of the encoder.

We would like to push the embeddings of two
candidates from different classes apart if they are
too close to each other. We do so by maximizing
the external consistency of the partition π:

γext(π(C); θ) = mean
c, c′ : π(c) ̸= π(c′),

d(φθ(f(c), φθ(f(c
′)))

< σ1dext(π(C); θ)

d(φθ(f(c), φθ(f(c
′)))

σ1 ∈ (0, 1) is a threshold that quantifies being ‘too
close’. This definition captures the intuition that
φ should map candidates from different classes to
dissimilar vectors.

Likewise, consider the average distances be-
tween embeddings of candidates from same
classes:

dint(π(C); θ) = mean
c,c′:π(c)=π(c′)

d(φθ(f(c), φθ(f(c
′)))

We would like to pull the embeddings of two candi-
dates from the same class towards each other if they
are too far away. In a similar spirit, we maximize
the internal consistency of π:
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(a) There is a bus stop down the street from my house . If
you take it going south , it leads to the city...

(b) ...Ipassenger fed my coinsmoney into the slot where you
put your money...
...Ipassenger boarded the bus and paid for my ride with
my changemoney ...

(c) ...the bus arrivedbus_stops at the bus stop closest to the
beach...
...I would need the bus to stopbus_stops next to the hos-
pital...

Figure 4: Examples.(a) coreference chain. (b) events
sharing similar participants. (c) participants that have
similar event dependents.

γint(π(C); θ) = 1− mean
c, c′ : π(c) = π(c′),

d(φθ(f(c), φθ(f(c
′)))

> σ2dint(π; θ)

d(φθ(f(c), φθ(f(c
′)))

(1)

We write d(·, ·) for the distance function in the
representation space. Empirically, the following
variant of cosine distance worked well:

√
1− cos(∠(v, w))

Here ∠(v, w) denotes the angle between v and w.
We obtain an overall consistency measure γ,

which we maximize in training; λi is a hyper-
parameter that balances the terms. 3

γ(π(C); θ) = γext(π(C); θ) + λiγint(π(C); θ)

4.3.2 Coreference
We can now further refine this baseline consistency
model with script-specific knowledge. First, within
a text, noun phrases that refer to the same entity
form a coreference chain: for example, all men-
tions of the bus in the scenario TAKING A BUS

(Fig. 4a). Therefore, these noun phrases should
belong to the same participant cluster and have
similar representations.

We capture this intuition as follows. Let η(Cc)
be the set of all coreference chains that consists
of participant candidates Cc. Like π above, η(Cc)
also specifies an equivalence relation, in that two
candidates are in the same class iff they are in the

3This function could be seen as a variant of triplet loss
introduced by (Dong and Shen, 2018), but relaxed with the
thresholds and uses a different distance metric. Empirically,
these measures improve the stability of training and result in a
moderate performance improvement.

same coreference chain. We can thus formulate a
coreference-based consistency measure as

β(θ) := γint(η(Cc); θ)

Note that minimizing this quantity imposes only
a soft constraint; coreferent entities are rewarded
for being in the same class, not forced into them.
This increases robustness against noise in the coref-
erence annotations.

4.3.3 Event-participant dependencies
Second, events and participants in a script are
tightly linked: if two verbs have arguments from
the same participant class, they tend to describe the
same event (Fig. 4b); and if two noun phrases are
arguments of the same event, they tend to describe
the same participant (Fig. 4c).

Let cp be the set of event candidates that have
participant p as an argument; we encourage φ to
map the elements of cp to similar representations.
Let ξ(Cde ) be the set of all cp, namely a partition
of event candidates based on dependencies. Analo-
gously, let ξ(Cdp) be the set of participant candidate
sets that depend on the same events. We can for-
mulate a dependency-based consistency measure
as

α(θ) = γint(ξ(Cde ); θ) + γint(ξ(Cdp); θ)

The final training objective, with hyper-
parameters λc, λd and cluster assignment π∗(Ce)
of event candidates and π∗(Cp) of participant can-
didates specified by the annotations in InScript, is
4

θ∗ = argmax
θ

[γ(π∗(Cde ); θ) + λpγ(π
∗(Cdp); θ)

+ λcβ(θ) + λdα(θ)] (2)

4.3.4 Specialized word embeddings
We further investigated whether our zero-shot ap-
proach can benefit by using more specialized word
embeddings as input instead of the general-purpose
XLNet embeddings. We thus replaced f with the
representations from the pre-final layer of the su-
pervised script parser of Zhai et al. (2021) trained
and validated on our training data. These represen-
tations are also based on XLNet, but then trained to

4As was correctly pointed out by one of our reviewers,
untyped dependencies can be noisy for our purpose. We do not
use typed dependencies as typing the links amplifies the data
sparsity, making it difficult to generalize. Empirically, using
untyped dependencies still granted a moderate performance
improvement.
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predict InScript events and participants on known
scenarios.

4.4 Inference

4.4.1 Clustering
At inference time, we first determine the event and
participant candidates by taking the nouns, pro-
nouns and verbs, and classify them for regular-
ity. We then acquire a representation φθ∗(f(c)) for
each candidate c and group them into classes by
clustering (cf. Fig. 3).

We use agglomerative clustering, a bottom-up
hierarchical clustering algorithm that iteratively
merges the most similar pair of clusters. It ter-
minates when either the number of clusters de-
creases to a pre-defined quantity or the minimum
dis-similarity between the current clusters goes be-
yond a predefined threshold. As the number of
event and participant classes vary across scenarios,
we do not fix the number of cluster, but instead
define a dissimilarity threshold estimated from the
training scenarios.

4.4.2 Protagonists
We give special treatment to the protagonist of
each scenario – for example, the passenger in TAK-
ING A TRAIN or the customer in GROCERY SHOP-
PING. The protagonist is the most frequent partici-
pant in all scenarios and always makes the largest
class of participant candidates. We thus identify it
by following the longest coreference chain, instead
of feeding these referents to the neural pipeline.
Therefore, the identification of protagonists is ex-
cluded from training and performed symbolically
in the reference phase. This simple heuristic yields
an F-score of 98 at inference time for the protago-
nist class.

4.4.3 Coreference Chains at Inference Time
During the training phase we encourage the em-
bedding vectors associated with candidates from
the same coreference chain to be more similar to
each other. But during the inference phase, we
could also directly perform coreference resolution
on the text. We take into account this information
by refining the distance in §4.3 to

√
1− cos(∠(v, w))− λIc(v, w)

here Ic(v, w) = 1 ⇔ the candidates associated
with vectors v, w are in the same coreference chain.
λ is a hyper-parameter.

5 Evaluation

On InScript, we evaluate our method with 10-fold
cross-validation where each fold is the data asso-
ciated with a scenario. Note that the texts in the
validation and test data are always from scenarios
that were unseen in training. On MCScript, the
model is evaluated on the MCScript test set.

5.1 Metric

Given a cluster assignment, what we are interested
in is how well the predicted clusters align with gold
classes. However, the gold classes are unknown to
us; the outcome of clustering includes a number
of indexed clusters, like cluster1, cluster2, and
we do not know which gold cluster should these
clusters be compared to. To tackle this issue, we
need a ‘best’ assignment of the clusters to the gold
classes, with which we can evaluate the ‘accuracy’
of the clustering results as if it were a classification
task. One approach is to find the assignment that
maximizes this accuracy. This is a linear assign-
ment problem, which is solved in cubic time by the
Hungarian algorithm (see, e.g. Kuhn, 1955), thus
tractable given the scale of our problem. We call
the F1 score evaluated according to this optimal
assignment Hungarian F1, and use it as our main
evaluation metric. This metric allows us to com-
pare the results of the clustering-based parsers to
that of the classification-based parsers.

5.2 Baselines

We compare the results of our zero-shot parser to a
number of baselines. First, we compare against the
supervised script parsers of Zhai et al. (2021) and
Ostermann et al. (2017). For the former, we take
the performance report from the original paper; for
the latter, we retrain the model to evaluate on the
train-test split of Zhai et al. This data split defines
a supervised task, thus the performance of these
parsers are not directly comparable to ours.

Second, we compare against a baseline where
we cluster event and participant candidates at infer-
ence time based on the bare XLNet embeddings,
rather than the ones that were transformed by our
learned φθ∗ . Finally, in addition to our full model,
as specified by equation 2 with the specialized
embeddings of §4.3.4, we also present results for
ablated versions without the extensions regarding
event-participant dependencies (dep), coreference
(coref ), and specialized embeddings (specialized).
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model gold regularity task events participants

macro F1 micro F1 macro F1 micro F1

Ostermann et al. (2017) ✓ supervised 58.1 66.0 n/a n/a
Zhai et al. (2021) X supervised 75.1 85.7 80.3 90.3
Bare XLNet X zero-shot 40.2 53.2 39.3 60.5
w/o dep, coref, specialized X zero-shot 46.0±2.8 58.4±2.7 47.5±2.6 75.7±1.8

w/o dep, coref X zero-shot 48.6±5.2 62.7±3.7 44.5±3.3 71.8±2.1

w/o dep X zero-shot 51.0±3.7 66.8±4.3 52.0±3.7 74.8±2.9

Full model X zero-shot 53.4±1.8 68.1±2.3 51.7±1.6 74.4±1.4

Bare XLNet ✓ zero-shot 43.1 51.6 43.9 61.0
w/o dep, coref, specialized ✓ zero-shot 46.1±1.9 55.4±2.2 51.1±2.7 75.3±1.3

w/o dep, coref ✓ zero-shot 55.3±2.8 65.8±2.8 52.5±3.1 73.6±2.1

w/o dep ✓ zero-shot 56.7±3.3 67.4±3.7 53.6±2.9 74.2±2.0

Full model ✓ zero-shot 57.6±1.3 68.1±1.3 52.8±1.4 73.7±1.4

Table 1: Results on InScript. We show the average over ten-fold cross validation and five training runs when feasible.
These quantities are the Hungarian versions of F1 defined in §5.1. Some models train and inference according to the
regularity annotations in InScript, instead of the predictions of our regular candidate identifier. Ostermann et al. and
Zhai et al. use a data split where the models see the test scenario during training; the other variants use the zero-shot
split described in §3.

model gold regularity events participants

macro F1 micro F1 macro F1 micro F1

Bare XLNet X 24.1 25.0 17.8 19.5
w/o dep, coref, specialized X 44.2±0.57 51.2±0.83 37.0±1.4 39.0±0.72

w/o dep, coref X 45.7±0.63 50.2±0.63 37.9±1.1 41.9±1.0

w/o dep X 48.2±1.4 53.3±1.3 40.8±1.8 45.4±1.7

Full model X 49.6±1.3 55.5±1.6 42.6±1.6 54.0±2.0

Table 2: Results on MCScript averaged from five parallel training runs. All models train and inference based on the
regularity predictions of our regular candidate identifier.

For each of the clustering-based methods, we re-
port two results: one where we assume gold infor-
mation about whether an event or participant candi-
date is regular, and one where this is predicted by
the classifier from §4.2. All variants use the same
number of trials for hyperparameter tuning. After-
wards, we do 5 parallel training sessions to test the
models’ robustness against random initializations,
and report mean and std.

6 Results

6.1 Evaluation on InScript

The results on InScript are shown in Table 1. All
variants of our model outperform clustering based
on raw XLNet embeddings by a considerable mar-
gin. Our model also performs on par with Oster-
mann’s, although we do not have access to scenario-
specific supervision whereas Ostermann’s does,
and our model additionally performs participant
parsing. In general, we obtain a higher micro-F1
for participants than for events. This is due to the
more skewed distribution of the sizes of the partici-

pant class sizes than those of the event classes.

The model extensions boost parsing accuracy
significantly. Access to coreference information
improves participant parsing performance. De-
pendency information grants a performance boost
in event parsing. A closer inspection shows that
with dependency information, the parser is better at
grouping together event candidates with different
verbs but same arguments. For example, event sink
into water in TAKING A BATH could be evoked
by slide into water, sink into water, slip into the
tub, lower into the tub, etc. The verbs in these
event candidates all share arguments I and wa-
ter or tub, which our parser correctly clusters to-
gether. Without dependency information, the parser
mostly groups together candidates whose predicate
is ‘sink’, the most frequent verbalization of the
event.

The performance of our script parser differs from
fold to fold: we get 70.1 micro-F1 for participant
parsing on TAKING A BATH, but only 43.8 on BOR-
ROWING A BOOK FROM LIBRARY. These differ-
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ences result from two factors. (1) Similarities be-
tween the training scenarios and the test scenario.
(2) Differences in the qualities of the original anno-
tation among different scenarios.

6.2 Evaluation on MCScript

The results on MCScript is given in table 2. Note
that the test scenarios only have around 20 sto-
ries each, as opposed to the 100 stories available
for each InScript scenario. Shifting to a differ-
ent domain and having fewer stories per scenario
available incurred a considerable performance drop
(on average over 10 points F1 score). The perfor-
mance drop is especially noticeable for participant
parsing, which was unexpected. A closer look indi-
cates that participants in MCScript scenarios follow
much more skewed distributions than in InScript:
instances from the less frequent half of the partici-
pant classes in MCScript take a proportion of only
8% whereas this quantity is 18% for InScript. As
a result, there are more classes that only have a
handful of instances than InScript, worsening the
already low-resource setting.

All our model variants still outperform the
XLNet baseline by a large margin, with the
full model achieving the best performance, at
49.6/55.5 macro/micro F1 for events, and 42.6/54.0
macro/micro F1 for participants. Each model com-
ponent contributes to this performance according
to the ablation study.

7 Further analysis

7.1 Temporal script graphs

Given the clustering results, we can induce tempo-
ral script graphs for unseen scenarios. We establish
temporal order as follows: we say event e1 pre-
cedes event e2 if, and only if, in stories where they
both occur, the proportion where e1 occurs before
e2 is beyond a threshold ζ. If neither e1 precedes
e2 nor e2 precedes e1, we decide they could follow
arbitrary order.

If we view the construction of temporal script
graphs as a task of retrieving temporally ordered
event pairs, and evaluate our results against that in-
ferred from annotations in InScript, our clustering
results yields 75 points F1 score. Observe that the
model has learned that each event can be expressed
in many different ways that are semantically similar
only in the context of the scenario (Fig. 2).

7.2 Probing Script-specific Embeddings

We conjectured that the transformation φ was
needed to distill the relevant information for script
parsing out of the pretrained XLNet embeddings.
We investigate whether this is true by freezing the
embeddings φ(f(c)) (zero-shot) and the pretrained
embeddings f(c) (XLNet) and training models for
a variety of NLP tasks that take these embeddings
as input.

We probe with the following tasks. (1) POS tag-
ging and (2) named entity recognition; these mostly
depend on the token itself and its local context.
(3) Noun phrase chunking, which is determined
by sentence-level syntax. (4) Sentence ordering,
where we randomly shuffle the order of the sen-
tences in a story and train a binary classifier to de-
tect whether the story is shuffled. The task would
need information across the entire story to conduct.
(1)-(3) are formulated as sequence labelling tasks;
(4) is a binary classification. The experiments are
conducted on InScript, with the same data split as is
used to train our representation. InScript includes
POS annotations; for NER and chunking, the labels
are generated with Spacy (Honnibal and Montani,
2017, model en_core_web_trf ).

In each of these probing tasks, both representa-
tions use the same amount of GPU budget. See
Fig. 5 for the results. The transformed representa-

Figure 5: Performance on probing tasks. Our representation
clearly favours the sentence ordering task. The error bars show
one standard deviation. All differences between these pairs
are significant at α = 0.05 according to independent T-test.

tion φ(f(c)) incurs performance drops on most
tasks, compared to the general-purpose embed-
dings f(c). However, the performance on sentence
ordering sees a noticable improvement. This sup-
ports our hypothesis that φ amplifies higher level
features, which are more important to script parsing
than to generic language modelling. In compari-
son, lower-level information about morphology and
syntax are deemphasized.
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7.3 Error analysis

We now have a look at the errors made by our parser.
The errors fall into the following categories.

Granularity

Many events could be divided into multiple sub-
events, forming a hierarchy of events. For example,
in the TAKING A BATH scenario, we have prepare
for bath, undress and grab a towel. A similar phe-
nomenon is observed for the participants. This
fact manifested itself into various types of errors.
For example, the set of event labels in InScript
often consists of events of different granularities,
frequently rendering multiple cluster assignments
feasible (e.g. ... I took a clean towel with me ... in
either prepare for bath or grab a towel). As a re-
sult, the parser sometimes confuses one event clus-
ter with another that includes it, or group together
different events that actually fit together (turn on
water and fill tub with water). Granularity accounts
for two thirds the event errors and one sixth partici-
pant errors.

Shared predicate or argument

Some wrongly clustered events share the verb
or some arguments with another class, especially
when light verbs are involved, which makes the dis-
tinction harder. For example, in TAKING A TRAIN,
a few get ticket events (e.g. “I took the ticket from
him”) are predicted as conductor checks ticket (e.g.
“I gave the ticket to him”).

8 Conclusion

We have presented the first approach to script pars-
ing without scenario-specific knowledge. We do
this by clustering specialized word representations
which are trained by optimizing cluster consistency;
the model is further improved by the use of coref-
erence and event-participant dependency informa-
tion. The model greatly outperforms a baseline
with general-purpose word embeddings, and per-
forms on par with an earlier supervised model.

Our model thus makes it possible, for the first
time, to label large quantities of unannotated data
with script information. In future work, we plan to
experiment also with corpora that contain a larger
variety of naturally occurring texts than MCScript,
in which the sentences are relatively simple, per-
tinent to the scenario and are often in the correct
temporal order.
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A Implementation and Optimization

The model was implemented with AllenNLP 1.2
Gardner et al. (2017). The pre-trained XLNet
model we used was xlnet-base-cased (https://
github.com/zihangdai/xlnet/). The training is
further regularized with weight decay. The opti-
mization is performed with adam (Kingma and Ba,
2015) in conjunction with early-stopping which
monitors validation loss; the hyper-parameter tun-
ing is performed with random hyper-parameter
search (Bergstra and Bengio, 2012). Optimization
takes on average 5 hours on a singe Tesla v100.

The implementations of agglomerative cluster-
ing and Hungarian algorithm are from the scipy
library. Table 3 shows the hyper-parameters for the
best performing single run on each fold (full model,
predicted regularity).

B Examples

Table 4 illustrates a couple of sample clusters. The
candidates vary in their surface forms.
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fold lr weight decay λei λpi λp σ1 σ2 λc λd
0 1.10E-05 0.000155 1.03 0.0147 0.343 0.887 0.263 0.00372 0.00795
1 2.06E-05 0.00677 0.457 0.882 0.125 0.392 0.391 0.0101 0.0485
2 0.000126 0.000896 0.0105 0.0148 0.0144 0.903 0.728 0.00533 0.0118
3 2.91E-05 0.000166 0.0237 0.0649 0.256 0.373 0.544 0.0619 0.00867
4 7.08E-05 0.00051 0.15 0.0711 0.745 0.681 0.562 0.0121 0.0216
5 0.000353 0.00121 1.51 0.0371 0.00211 0.171 0.692 0.0872 0.016
6 0.000423 1.07E-05 0.204 0.018 0.177 0.113 0.632 0.242 0.00517
7 7.88E-05 0.00303 0.734 0.0136 0.517 0.189 0.948 0.0047 0.111
8 2.72E-05 7.32E-05 0.568 0.00151 0.0589 0.676 0.566 0.00424 0.0475
9 2.09E-05 5.19E-05 0.0327 0.555 0.243 0.788 0.95 0.0866 0.0119

Table 3: Hyper-parameters. Note that these are the hyper-parameter combinations that yielded the best performance
in a round of random hyper-parameter search. Thus the quantities in this table do not represent the best choices of
each single hyper-parameter.

ground truth text
turn water on bath ... I might drain the tub and put in more water ...
sink into water ... I turn off the faucet and sink into bliss ...
sink into water ... Then I slid into the water and enjoyed the relaxing warmth for twenty or more minutes...
sink into water ... I gingerly lowered myself into the nice warm water and immediately began to relax...
sink into water ... I eased my way into the tub and let myself sink into the water ...
sink into water ... I slowly sunk the rest of my body , and closed my eyes...
sink into water ... the tub was full and ready . I slipped into the tub and soaked in the bliss...
washing tools ...then I lather up with either soap or shower gel ...
water ...After I scrub really good and finish singing , I pour water continuously on my body...
washing tools ...I pour water continuously on my body until all the soap was he s off...
washing tools ...I cleaned my hair with some shampoo and washed my body with a wash cloth and rinsed...
washing tools ...shampooed my hair and applied some conditioner then washed my body...
washing tools ...applied some condition er then washed my body using some liquid body wash...
washing tools ...After I have washed everything , I rinse the soap from my body with the water in the tub...
washing tools ...on the corner of the bathtub . I lather ed it up and washed my arms , my legs...
washing tools ...take a wash cloth and soap or body wash to give yourself a good scrub down...
washing tools ...You can put the shampoo in your hair...
washing tools ...place your head under the faucet to rinse out the soap . Enjoy your bath !
washing tools ...washed myself with a wash cloth and soap . Then I leaned my head against...
washing tools ...stepped into the bath tub . I used soap and a wash cloth to clean myself...

Table 4: Example output clusters. Top: event; bottom: participant. The table presents a random selection of
instances from these clusters as the original output could contain hundreds of instances.
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Abstract

Word sense disambiguation (WSD), identify-
ing the most suitable meaning of ambiguous
words in the given contexts according to a pre-
defined sense inventory, is one of the most
classical and challenging tasks in natural lan-
guage processing. Reformulating WSD as a
text span extraction task is an effective ap-
proach, which accepts a sentence context of an
ambiguous word together with all definitions
of its candidate senses simultaneously, and re-
quires to extract the text span corresponding
with the right sense. However, the approach
merely depends on a short definition to learn
sense representation, which neglects abundant
semantic knowledge from related senses and
leads to data-inefficient learning and subopti-
mal WSD performance. To address the limita-
tions, we propose a novel WSD method with
Knowledge-Enhanced and Local self-attention-
based Extractive Sense Comprehension (KE-
LESC). Specifically, a knowledge-enhanced
method is proposed to enrich semantic repre-
sentation by incorporating additional examples
and definitions of the related senses in Word-
Net. Then, in order to avoid the huge comput-
ing complexity induced by the additional in-
formation, a local self-attention mechanism is
utilized to constrain attention to be local, which
allows longer input texts without large-scale
computing burdens. Extensive experimental re-
sults demonstrate that KELESC achieves better
performance than baseline models on public
benchmark datasets.1

1 Introduction

Word sense disambiguation (WSD) is to identify a
proper sense with an ambiguous word in a given
context according to a predefined sense inventory,
which is one of the most typical and challenging
tasks in natural language processing (NLP) and

∗Corresponding author
1The source code of this paper can be obtained from

https://github.com/Stubborn-z/KELESC

play a critical role for human language understand-
ing (Conia and Navigli, 2021). For instance, the
noun word plant conveys different senses in indus-
trial plant and plant seeds. WSD has been able to
determine accurate meanings of ambiguous words,
which is beneficial to a variety of downstream NLP
applications, such as machine translation, infor-
mation extraction and retrieval (Song et al., 2021;
Pasini and Navigli, 2020).

In recent years, with the rapid development of
deep learning, the performance of WSD with neural
networks-based methods has great improvement.
The early neural networks-based models have cast
WSD as a multi-label classification task, which
disambiguated all polysemous words with a uni-
fied classier (Kågebäck and Salomonsson, 2016;
Raganato et al., 2017a). However, these models
have focused on modeling contexts containing am-
biguous words from sense-labeled training data,
which ignored the rich semantic knowledge in lexi-
cal resources, such as WordNet and BabelNet (Nav-
igli et al., 2021), and resulted in their inability to
outperform the traditional word expert supervised
methods (Song et al., 2021).

Due to the semantic knowledge in a lexical dic-
tionary including sense definitions (glosses), ex-
amples, relations, etc., defined by professional lex-
icographers, which is essential and valuable for
WSD, some works (Banerjee and Pedersen, 2002;
Basile et al., 2014) have attempted to integrate
gloss information into neural WSD models in order
to leverage the lexical knowledge. GAS (Luo et al.,
2018) has incorporated glosses into WSD, which
jointly encoded glosses and contexts, and captured
their relations with a memory network. Gloss-
BERT (Huang et al., 2019) has utilized glosses
in WordNet together with the annotated data to
construct context-gloss pairs, reformulated WSD
as a text matching task. BEM (Blevins and Zettle-
moyer, 2020) has been a bi-encoder method that
encodes the target word and candidate glosses inde-
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pendently and optimizes the encoders in the same
representation space. Although these works con-
sidered the gloss information in WordNet, they
neglected to explore the knowledge contained in
semantic relations such as hypernyms. Therefore,
EWISER (Bevilacqua and Navigli, 2020) has been
proposed to enhance WSD by integrated synset em-
beddings and semantic relations including hyper-
nyms and hyponyms. ESR (Song et al., 2021) has
further enhanced sense representations by incor-
porating synonyms, example sentences and sense
glosses of hypernyms.

Although the methods mentioned above have
achieved great successes, they have treated WSD
as multi-label classification or text matching tasks,
which focused on modeling the relations between
a context and each specified candidate sense. None
of them considers all candidate senses of an am-
biguous word simultaneously, which is not con-
sistent with human behaviors, as humans always
justify the right sense by comparing all possible
senses with the context. In order to simulate the
cognitive process of human, ESC (Barba et al.,
2021) has reformulated WSD as a text span extrac-
tion task, called extractive sense comprehension,
which accepted a context of an ambiguous word
together with all definitions of its candidate senses.
Although ESC demonstrated the superiority over
the competitive methods, it merely relied on a short
definition (gloss) to represent a sense, which was
insufficient to learn an ideal sense representation
and inevitably hinder the improvement of WSD
performance.

To address the above-mentioned limitations, we
propose a novel WSD method with Knowledge-
Enhanced and Local self-attention-based
Extractive Sense Comprehension (KELESC),
inspired by ESR (Song et al., 2021). Specifically,
a knowledge-enhanced method is proposed to
enrich semantic representation by incorporating
additional examples and definitions of the related
senses in WordNet. Then, in order to avoid
the huge computing complexity induced by the
additional information, a local self-attention
mechanism is utilized to constrain attentions to
be local, which allows longer input texts without
large-scale computing burdens (Beltagy et al.,
2020; Manakul and Gales, 2021). Extensive
experiments have been conducted to verify the
effectiveness of the proposed model on public
benchmark datasets. In summary, this paper makes

the following contributions:

• We propose a novel end-to-end WSD model
with Knowledge-Enhanced and Local self-
attention-based Extractive Sense Comprehen-
sion (KELESC). The model reformulates
WSD as a text extraction task, fully utilizes
lexical knowledge to enhance sense represen-
tation, and considers all candidate senses si-
multaneously instead of one by one to identify
the right sense.

• We devise a knowledge enhancement method
to enrich semantic representation by incorpo-
rating additional sense information of related
senses in WordNet. Besides, we exploit a
local self-attention mechanism to reduce the
computing burden of training the model.

• Extensive experiments are conducted on pub-
lic datasets to demonstrate the superiority
of our proposed model on all-words English
WSD tasks by making comparisons with the
baseline models.

2 Related Work

The existing works on WSD can be categorized
into three groups: knowledge-based, supervised
and neural-based methods.

2.1 Knowledge-based WSD methods

These methods focus on leveraging semantic
knowledge contained in lexical resources to iden-
tify the right sense (Luo et al., 2018). They mainly
exploit two kinds of knowledge: sense definitions
and structure of semantic network. For sense defi-
nitions’ knowledge, Lesk algorithm and its variants
are the typical works, which select the right sense
according to the overlap of contexts and sense defi-
nitions (Lesk, 1986). For structure knowledge of
semantic network, Personalized PageRank (Agirre
et al., 2014; Scozzafava et al., 2020), BabelNet
(Navigli and Ponzetto, 2012) and structural seman-
tic interconnections (Navigli and Velardi, 2005)
are the representative methods, which construct se-
mantic graphs with senses and their relations, and
utilize graph-based algorithms to choose the most
important sense as the right one. With the support
of lexical knowledge, knowledge-based methods
achieve satisfied WSD coverage while their accu-
racy usually is worse than the others.
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2.2 Traditional supervised WSD methods

These methods utilize manually feature engineer-
ing to train a special classifier for each polyse-
mous word, i.e., word expert. IMS system first
proposes instance and feature extractors to extract
instances and their features, then trains an inde-
pendent classifier for each word type on sense-
annotated SemCor corpus (Zhong and Ng, 2010).
Iacobacci et al. (2016) investigate how word embed-
dings has been utilized in WSD, which combines
word embeddings and traditional manual features
to enhance the original IMS system. Although
these traditional supervised methods show better
performance on WSD, they are confused by the
manually engineered features and sense-annotated
training dataset. Besides, they train a dedicated
classifier for each word, which are hard to be ap-
plied on all-word WSD tasks.

2.3 Neural-based WSD methods

These approaches usually train a unified classifier
based on neural networks to disambiguate all of the
polysemous words. The early neural-based mod-
els mainly focus on modeling the relations of sen-
tence context and sense labels contained in training
datasets. For example, (Kågebäck and Salomon-
sson, 2016) and (Raganato et al., 2017a) employ
bidirectional LSTM and encoder-decoder architec-
ture to train unified models for all-word WSD tasks.
However, they neglect to utilize the valuable se-
mantic knowledge contained in lexical resources
such as WordNet. Thus, The GAS model attempts
to incorporate gloss information into an end-to-
end WSD model (Luo et al., 2018). GlossBERT
(Huang et al., 2019) also leverages glosses in Word-
Net to construct context-gloss pairs, reformulates
WSD as a text matching task to model the match-
ing relations of sense glosses and the contexts of
ambiguous words. BEM (Blevins and Zettlemoyer,
2020) proposes a jointly optimized bi-encoder (the
context encoder and the gloss encoder), which en-
code the context and sense glosses, and choose the
nearest sense with the context according to gloss
and context embeddings. However, these methods
merely utilize the gloss information in WordNet,
which still ignore the semantic relation knowledge
such as hypernyms. Therefore, EWISER (Bevilac-
qua and Navigli, 2020) is proposed to integrate
sense embeddings together with hypernyms and
hyponyms relations to enhance WSD performance.
And, ESR (Song et al., 2021) further incorporates

synonyms, example sentences and sense glosses of
hypernyms to enhance sense representations. All
methods mentioned above focus on modeling rela-
tions between a context and each specified candi-
date sense individually, while human usually deter-
mines the sense by comparing all possible senses
with a context simultaneously. This means that
there are still some room to improve the neural-
based WSD methods. In order to simulate the cog-
nitive progress of human, that is, to comparing all
candidate senses simultaneously, ESC (Barba et al.,
2021) reformulates WSD as a text span extraction
task, which accepts a context of an ambiguous word
together with the definitions of all possible senses,
and choose the text span of the right sense by com-
paring all sense definitions at once. ESC has shown
the superiority on WSD task, however, it merely
utilizes a short definition to learn a sense, which is
insufficient.

3 Methodology

In this section, we first give the task defini-
tion. Then, we detail our proposed model,
Knowledge-Enhanced and Local self-attention-
based Extractive Sense Comprehension (KELESC)
for WSD.

3.1 Task Definition

Given the context with target word with glosses,
example sentences and hypernym glosses of all
candidate senses, the task of the paper is to identify
the text span that indicates the right sense. Specif-
ically, we represent the context of target word ŵ
as C = {wc1, · · · , wcm}, where m is the number
of words in the context. For the k-th candidate
sense of the target word ŵ, its gloss, example sen-
tence and hypernym gloss are represented as Gk =
{wgk1 , · · · , wgk|gk|}, ESk = {wek1 , · · · , wek|ek|}, and

HGk = {whk1 , · · · , whk|hk|}. |gk|, |ek| and |hk| in-
dicate their lengths. Given the concatenation of
the context C and the information G,ES,HG of
all candidate senses, our model will identify the
interval [icor, jcor], which indicates the start and
end positions of the text span corresponding with
the gloss, example sentence and hypernym gloss of
the right sense of ŵ.

3.2 Model Architecture

The overall structure of KELESC model is shown
in Figure 1. KELESC model consists of three core
modules: (1) a knowledge enhancement module,
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Figure 1: Overview structure of KELESC model. Concatenate the context of target word together with the gloss,
example sentence, hypernym gloss of each candidate sense as the input of our model. Start and End represent the
logits for each word, which indicates whether it is the start or end of the text span of the right sense of the target
word, respectively. icor and jcor is the start and end indices of the correct sense, respectively.

Context Sentence You can buy your train tickets from large travel agents.

Sense#1
Gloss public transport provided by a line of railway cars coupled together and drawn by a

locomotive.
Example sentence express trains don’t stop at Princeton Junction.
Hypernym gloss conveyance for passengers or mail or freight.

Sense#2
Gloss a sequentially ordered set of things or events or ideas in which each successive mem-

ber is related to the preceding.
Example sentence train of mourners.
Hypernym gloss similar things placed in order or happening one after another.

Context and enhanced knowledge

You can buy your train tickets from large travel agents. public transport provided by a
line of railway cars coupled together and drawn by a locomotive. express trains don’t
stop at Princeton Junction. a sequentially ordered set of things or events or ideas in
which each successive member is related to the preceding. a string of islands. similar
things placed in order or happening one after another.

Table 1: An example of knowledge enhancement of the target word train.

which utilizes gloss, example sentence and hyper-
nym gloss to enhance the representation of each
candidate sense, (2) a local self-attention trans-
former, which encodes the entire input texts with
local self-attention transformer, (3) a span predic-
tion module, which extracts the text span with the
highest probability of expressing the correct sense
of the target word.

3.2.1 Knowledge Enhancement
Recent studies have shown that lexical knowledge
in WordNet is essential and valuable for accurate
sense representation learning (Song et al., 2021).
To this end, KELESC model devises a knowledge
enhancement module to explore and integrate the

richer lexical knowledge. As shown in Table 1, for
each candidate sense of a target word, the mod-
ule collects its gloss, example sentence and hyper-
nym glosses together to enrich sense representation.
Specifically, the gloss is a short definition of the
current sense in WordNet. The example sentence is
a sentence instance that conveys the corresponding
sense. The hypernym gloss refers to the sense defi-
nition of the hypernym synsets of the current sense,
which describes high-level semantic information.
The original context and all candidate senses of the
the target word with its glosses, example sentences
and hypernym glosses are concatenated together,
which is fed into our model.
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3.2.2 Local Self-Attention Transformer

In order to effectively encode the input text, we
adopt the pre-trained transformer-based model, i.e.,
BARTlarge, as it works well on long sequence
modeling and comprehension tasks (Lewis et al.,
2020; Beltagy et al., 2020). As shown in Fig-
ure 1 and Table 1, we concatenate the gloss, ex-
ample sentence and hypernym gloss of each can-
didate sense together for a target word, marked
as A = {G1, ES1, HG1, · · · , G|s|, ES|s|, HG|s|},
where |s| is the number of candidate senses of the
target word. The context sentence and enhanced
knowledge are fed into the transformer as the input.
There could be some exceptions: if there is no ex-
ample sentence in WordNet, we ignore it; if there
are multiple example sentences, we only select the
first one.

Specifically, we use the tags < s > and < /s >
to surround the entire input sequence. The context
sentence C and the enhanced lexical knowledge
A are segmented by the special symbol < /d >
and the target word ŵ is surrounded by < t > and
< /t >. The entire input of the transformer is as
follows:

input =< s > wc1 · · · < t > ŵ < /t > · · ·wcm
< /d > wg11 · · ·wg1|g1|w

e1
1 · · ·we1|e1|wh11 · · ·wh1|h1| · · ·

wgn1 · · ·wgn|gn|w
en
1 · · ·wen|en|whn1 · · ·whn|hn| < /s >

where input is tokenized as T = {t1, t2, · · · , tn},
and n denotes the length of input token sequence.

The sense representation is enriched by our pro-
posed knowledge enhancement module. However,
it inevitably results in the longer sequence of in-
put text, which the memory requirement and com-
puting complexity of the transformer-based model
could be quadratic with the length of input se-
quence. It increases the huge burden during the
model training. To alleviate this problem, we intro-
duce a local self-attention mechanism proposed by
(Manakul and Gales, 2021). It is noteworthy that
the mechanism in KELESC focuses on the encoder
part. Our local self-attention transformer-based
module adopts a fixed window ⌢

w around each to-
ken which only focuses on the ones lying in the
window on each side. As shown in Figure 2, we set
a window size to 1 as a toy example to show the lo-
cal self-attention mechanism in an encoding layer.
The outputs of encoding layer in local self-attention
transformer are calculated as bellow:
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Figure 2: Local self-attention with a window size ⌢
w of

1, wl−1
i represents the embedding of the i-th token wi

generated by the previous encoding layer (l − 1). kl−1
i ,

vl−1i and ql−1
i represent the vector of key, value and

query, respectively. wl
i is the embedding of wi obtained

with local self-attention mechanism in the current layer
(l).

wl
i = sum

(
softmax

(
Ql−1i Kl−1i

⊤
√

dk

)
Vl−1i

)

where Ql−1
i =[ql−1

i ]
2∗⌢w+1

is the local query matrix,
Kl−1
i =[kl−1

i−⌢w
,··· ,kl−1

i−1,k
l−1
i ,kl−1

i+1,··· ,k
l−1

i+
⌢
w
] is the local key

matrix, and Vl−1
i =[vl−1

i−⌢w
,··· ,vl−1

i−1,v
l−1
i ,vl−1

i+1,··· ,v
l−1

i+
⌢
w
] is

the local value matrix. dk is the dimension of the
embedding vector. By stacking multiple layers
of this local self-attention transformer, a large re-
ceptive range will be obtained, in which the top
layer can access all input positions and has the abil-
ity to build a representation containing the whole
input information. In this way, the memory require-
ment and computational complexity of the model
increases linearly with the length of the input se-
quence. This reduce the training burden greatly.

After passing through the last layer of the local
self-attention transformer, we obtain the hidden
states representation of the final layer:

h1,h2, · · · ,hn = Transformer(T ),

where h ∈ Rd, d represents the dimension of
each hidden state. All these representations of
hidden units form the final matrix H, i.e., H =
[h1,h2, · · · ,hn] ∈ Rd×n, which is further trans-
ferred to a liner layer:

Z = W⊤H + b,

where W ∈ Rd×2 and b ∈ R2 are trainable param-
eters.

3.2.3 Loss Function
For the target word ŵ, the correct start and end
positions are represented as:

Start = [Z11 · · · Z1n] ,

End = [Z21 · · · Z2n] ,
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where Start and End indicate the logits for each
token, denoting whether it is the start or the end of
the text span corresponding with the correct sense
of the target word ŵ, respectively.

We add the two cross-entropy loss functions for
the start and end positions to train the model:

Ls = −Starticor + log
l∑

v=1

exp(Startv),

Le = −Endjcor + log

l∑

v=1

exp(Endv),

L = Ls + Le.

where Starticor and Endjcor are the scores corre-
spond to the correct start and end positions.

3.2.4 Prediction
Following the work of Barba et al. (2021), our
model outputs a pair of (icor, jcor), which indicate
the start and end positions of the right sense in the
input text. To assure the pair is exactly matched
with the text span of any sense, the model selects
its output by comparing their probability. First, the
logits Start and End are fed into softmax to obtain
the probability distribution. Then, we perform a
product operation on the probability distributions
of the start and end positions to generate the proba-
bility of pair (icor, jcor) that starts at i and ends at
j :

P(icor) = softmax(Start),

P(jcor) = softmax(End),

P(icor, jcor) = P(icor)× P(jcor),

where P(icor) and P(jcor) indicates the probability
that icor is the correct start position or the jcor is
the correct end position, respectively. P(icor, jcor)
represents the probability of span that starts at icor
and ends at jcor across all the other spans in the
input T .

Finally, the model outputs the pair with max
probability, as follows:

output = argmax P(icor, jcor).

4 Experiment

4.1 Datasets
Following the existing works, we evaluate our
proposed model on English all-words WSD task

through a public unified evaluation framework (Ra-
ganato et al., 2017b). SemCor is selected as our
training corpus (Miller et al., 1994), the small-
est SemEval-2007 dataset (SE07) (Pradhan et al.,
2007) is chosen as development set, and the rest are
used as test datasets, including Senseval-2 (SE2)
(Edmonds and Cotton, 2001), Senseval-3 (SE3)
(Snyder and Palmer, 2004), SemEval-2013 (SE13)
(Navigli et al., 2013), SemEval-2015 (SE15) (Moro
and Navigli, 2015). The four test datasets are con-
catenated together marked as ALL. F1 score is
used as the evaluation measure to report the perfor-
mance.

4.2 Baselines

According to the exploitation of lexical knowledge,
we categorize the baselines into three groups.

The first group includes the methods without
any lexical knowledge, which merely rely on the
training data and don’t utilize any lexical knowl-
edge, such as glosses and hypernyms. In this group,
we first consider the MFS baseline, which simply
adopts the most frequent sense in training datasets
as the right sense of each word. Then, BiLSTM
(Kågebäck and Salomonsson, 2016) is adopted,
which is a early neural-based method and trains
bidirectional LSTM to obtain a unified model for
all-word WSD task. Besides, we select BERTbase
(Devlin et al., 2019) as another baseline, which
learns a linear classifier based on frozen BERT
representations .

The second group involves the neural-based
methods which exploit glosses of candidate senses,
i.e., GAS (Luo et al., 2018), LMMS (Loureiro
and Jorge, 2019), GlossBERT (Huang et al., 2019),
ARES (Scarlini et al., 2020), BEM (Blevins and
Zettlemoyer, 2020), ESCHER (Barba et al., 2021).
These models utilize glosses to represent the cor-
responding senses. GAS is the first model to in-
corporate glosses into neural-based WSD, which
jointly optimizes the representations of contexts
and glosses of ambiguous words. Both LMMS
and ARES are the nearest neighbors methods (k-
NN), which identify the right sense according to
the similarity between context and sense represen-
tation. LMMS generates sense representation from
sense-annotated data, which is further enhanced
with sense glosses in WordNet. ARES generates
sense representation by leveraging the contexts
in SemCor and the glosses in WordNet, which is
further enriched with synset embeddings. Gloss-
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Model Dev Set Test Sets Concatenation of all Datasets
SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

Baselines without any lexical knowledge
MFS baseline 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
BiLSTM - 71.1 68.4 64.8 68.3 69.5 55.9 76.2 82.4 68.4
BERTbase 68.6 75.9 74.4 70.6 75.2 75.7 63.7 78.0 85.8 73.7
Baselines with gloss information
GAS∗ - 72.0 70.0 66.7 71.6 71.7 57.4 76.5 83.5 70.1
LMMS∗ 68.1 76.3 75.6 75.1 77.0 - - - - 76.8
GlossBERT∗ 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0
ARES∗ 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9
BEM∗ 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
ESCHER∗ 76.3 81.7 77.8 82.2 83.2 83.9 69.3 83.8 86.7 80.7
Baselines with gloss and other knowledge
EWISER† 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3
ESR†base 75.4 80.6 78.2 79.8 82.8 82.5 69.5 82.5 87.3 79.8
KELESC† 76.7 82.2 78.1 82.2 83.0 84.3 69.4 84.0 86.7 81.2

Table 2: Comparison of F1 scores (%) on the English all-words WSD task. ∗ indicates that the model exploit glosses
of candidate sense, † indicates that the model utilizes sense glosses as well as other knowledge in WordNet. We
bold the best score for each column.

BERT reformulates WSD as a text matching task,
which evaluates the matching degree between sense
glosses and the contexts of ambiguous words to
identify the right sense. BEM utilizes two encoders
to represent contexts and candidate senses indepen-
dently, and identify the right sense by finding the
nearest sense embedding for the context embed-
ding. ESCHER reformulates WSD as a text span
extraction task, which is optimized to extract the
text span of the gloss expressing the right sense
when the model is fed with a sentence contain-
ing an ambiguous word and all its candidate sense
glosses.

The third group consist of the methods which ex-
ploit more lexical knowledge, such as hypernyms,
example sentence and gloss information. EWISER
(Bevilacqua and Navigli, 2020) learns sense in-
formation from WordNet, which considers seman-
tic relations between senses, such as hypernyms
and hyponyms. ESRbase (Song et al., 2021) fur-
ther enhance sense representations by incorporat-
ing synonyms, example phrases or sentence and
sense gloss of hypernyms.

4.3 Parameter Settings

We select BARTlarge (Lewis et al., 2020) as our
based model, whose encoder and decoder have 12
layers, respectively. In the encoder, the original

self-attention is replaced by the local self-attention
with a window size of 512 to avoid the huge com-
puting complexity induced by the additional in-
formation. The optimizer is RAdam (Liu et al.,
2020). Besides, we set batch size to 900 tokens,
learning rate to 2e-6, and weight decay to 0.01. F1
score is calculated on validation dataset every 2000
steps, and stop training is applied if the model does
not improve in 15 successive times. Our model is
trained on one A100 GPU, which takes about 10
hours.

4.4 Overall Results

We evaluate the performance of our method by
comparing it with the baselines. The overall results
on English all-words WSD task are summarized in
Table 2. According to the table, we have several
observations.

First, the methods exploiting gloss information
(i.e., the second group) usually outperform the
methods without any lexical knowledge (i.e., the
first group), except for BERTbase and GAS. This
demonstrates that gloss information is critical and
essential for WSD, which is beneficial for learning
better sense representations. Besides, the exception
of BERTbase and GAS may be caused that GAS
is realized with BiLSTM whose learning ability is
much weaker than BERT.
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Second, the methods exploiting gloss and other
lexical knowledge (i.e., the third group) outper-
form most of the methods in second group and all
methods in first group. This is because that the
methods in third group incorporate more lexical
knowledge, such as hypernyms and example sen-
tence, to enhance neural-based models, and the
enhanced knowledge is useful for sense representa-
tion, which can further improve WSD performance.

Third, our model consistently outperform all
competitive baseline methods on ALL. Our model
also achieves the best performance on SE07, SE2,
SE13, Nouns and Adj.. The reason for the su-
periority of our model is two-fold. One is that
our model reformulates WSD as a text extraction
task, which can accept and perceive all candidate
sense, simultaneously. The other is that our model
enhances sense representation with more lexical
knowledge including hypernyms and examples.
Among the baselines, ESCHER is the most similar
to our model. Both models reformulate WSD as
a text span extraction task. However, our model
is better than ESCHER and increases F1 score by
0.5% on ALL. This is because that our model uti-
lize more lexical knowledge than ESCHER.

4.5 Ablation Study

To evaluate the effectiveness of different lexical
knowledge in our model, i.e., example sentence
and hypernym gloss, we conduct ablation studies
by removing them one by one to observe the change
of overall performance.

Reserved Lexical Knowledge ALL (%)
Example sentence + hypernym gloss 81.2
Example sentence 81.0
Hypernym gloss 80.8

Table 3: Comparison of ablated models on ALL.

As shown in Table 3, if we remove the gloss
of hypernyms from our model, this leads to 0.2%
drop from 81.2% to 81.0%. And, if we remove the
example sentence, there is 0.4% drop from 81.2%
to 80.8%. The above results indicate that the role
of example sentence is more important than the
gloss of hypernyms in our model. One explanation
is that the example sentence is more semantically
representative for the target sense.

4.6 Window Size in Local Self-Attention

In order to evaluate model training complexity and
effectiveness, we employ different configurations
of local self-attention. At the same time, we com-
pare local self-attention with self-attention. The
results are shown in Table 4:

Model Window GiB ALL (%)
Self-attention Full 31.2 80.8
Local self-attention 128 18.0 80.3
Local self-attention 256 20.8 80.8
Local self-attention 512 23.4 81.2

Table 4: Comparison of memory requirement and per-
formance with different window sizes.

In Table 4, we observe that local self-attention
mechanism can significantly reduce the memory
usage, which is beneficial for accelerating training
speed and reducing the training burden. Moreover,
we find that the performance with window size of
128 is 80.3, which is 0.5% lower than the original
self-attention, which is due to the fact that the win-
dow is too small and the model cannot effectively
model the sense representation.

5 Conclusion and Future Work

In this paper, we proposed a novel WSD method
with knowledge-enhanced and local self-attention-
based extractive sense comprehension. Specifically,
a knowledge-enhanced method was devised to en-
rich semantic representation by incorporating addi-
tional examples and definitions of the related senses
in WordNet. Then, in order to avoid the huge com-
puting complexity induced by the additional in-
formation, a local self-attention mechanism was
utilized to constrain attentions to be local, which
allowed longer input texts without large-scale com-
puting burdens. Extensive experimental results
had demonstrated the effectiveness of the proposed
model on public benchmark datasets.

Although our model achieved better perfor-
mance, it still could be improved. Currently, we uti-
lized example sentence and hypernym gloss. There
are many other unexplored semantic relations in
WordNet and BabelNet. We leave it as future
work to explore more semantic relations in more
lexical resources to further enhance WSD perfor-
mance. Besides, a detailed qualitative analysis on
rare senses and frequent ones should be considered.
We will attempt to evaluate the performance on
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different situations to further enhance our model.
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Abstract

The phenomenon of compounding is ubiqui-
tous in Sanskrit. It serves for achieving brevity
in expressing thoughts, while simultaneously
enriching the lexical and structural formation of
the language. In this work, we focus on the San-
skrit Compound Type Identification (SaCTI)
task, where we consider the problem of iden-
tifying semantic relations between the compo-
nents of a compound word. Earlier approaches
solely rely on the lexical information obtained
from the components and ignore the most cru-
cial contextual and syntactic information useful
for SaCTI. However, the SaCTI task is chal-
lenging primarily due to the implicitly encoded
context-sensitive semantic relation between the
compound components.

Thus, we propose a novel multi-task learning
architecture which incorporates the contextual
information and enriches the complementary
syntactic information using morphological tag-
ging and dependency parsing as two auxiliary
tasks. Experiments on the benchmark datasets
for SaCTI show 6.1 points (Accuracy) and 7.7
points (F1-score) absolute gain compared to
the state-of-the-art system. Further, our multi-
lingual experiments demonstrate the efficacy
of the proposed architecture in English and
Marathi languages.1

1 Introduction

A compound is defined as a collection of one or
more entities that act as a single meaningful entity.
The process of decoding an implicit semantic re-
lation between the components of a compound in
Sanskrit is called Sanskrit Compound Type Iden-
tification (SaCTI). Alternatively, it is also termed
as Noun Compound Interpretation (NCI) (Ponkiya
et al., 2021, 2020). In the literature, the NCI prob-
lem has been formulated in two related but different
ways. Let’s take mango juice as an example. In the

1The code and datasets are publicly available at: https:
//github.com/ashishgupta2598/SaCTI

first formulation, the relation between the two com-
ponents is labeled from a set of semantic relations
(MADEOF) (Dima and Hinrichs, 2015; Fares et al.,
2018; Ponkiya et al., 2021). The second formu-
lation uses paraphrasing to illustrate the semantic
relations (a juice made from mango) (Lapata and
Keller, 2004; Ponkiya et al., 2018a, 2020).

In this work, we use the first formulation that
frames the task as a multi-class classification prob-
lem. The task is challenging and often depends
upon the context or world knowledge about the en-
tities involved (Krishna et al., 2016). For instance,
the semantic type of the compound rāma-ı̄śvarah.
can be classified into one of the following semantic
types depending on the context: Karmadhāraya2,
Bahuvrı̄hi and Tatpurus.a. Although the compound
has the same components as well as the final form,
the implicit relationship between the components
can be decoded only with the help of available con-
textual information (Kulkarni and Kumar, 2013;
Krishna et al., 2016). Due to such instances, the
downstream Natural Language Processing (NLP)
applications for Sanskrit such as question answer-
ing (Terdalkar and Bhattacharya, 2019) and ma-
chine translation (Aralikatte et al., 2021), etc. show
sub-optimal performance when they stumble on
compounds. For example, while translating rāma-
ı̄śvarah. into English, depending on the semantic
type, there are three possible meanings: (1) Lord
who is pleasing (in Karmadhāraya) (2) the one
whose God is Rama (in Bahuvrı̄hi) (3) Lord of
Rama (in Tatpurus.a). Therefore, the SaCTI task
can be seen as a preliminary pre-requisite to build-
ing a robust NLP technology for Sanskrit. Further,
this dependency on contextual information rules
out the possibility of storing and doing a lookup to
identify a compound’s semantic types.

2There are 4 broad semantic types of compounds:
Avyayı̄bhāva, Bahuvrı̄hi, Dvandva, and Tatpurus. a. Kar-
madhāraya is considered as sub-type of Tatpurus. a. We en-
courage readers to refer Krishna et al. (2016) for more details
on these semantic types.
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With the advent of recent contextual models (Pe-
ters et al., 2018; Devlin et al., 2019; Conneau et al.,
2020), there has been upsurge in performance of
various downstream NLP applications (Kondratyuk
and Straka, 2019; Liu et al., 2019; Yang et al.,
2019). Nevertheless, there have been no efforts
to build context-dependent models in SaCTI.3 This
may be attributed to the fact that while most of the
natural language technology is built for resource-
rich languages such as English (Joshi et al., 2020),
compounding is not a predominant phenomenon in
them (Krishna et al., 2016). There is also lack of
task-specific context-sensitive labeled data.

Earlier approaches (Kulkarni and Kumar, 2013;
Krishna et al., 2016; Sandhan et al., 2019) for
SaCTI solely rely on lexical information obtained
from the components and are blind to potentially
useful contextual and syntactic information. The
context is the most feasible, cheaply available in-
formation. As per Pan. ini’s grammar (Pan. ini, 500
BCE; Kulkarni and Kumar, 2013), the morpholog-
ical features have direct correlation with the se-
mantic types. Sometimes, the dependency informa-
tion also helps is disambiguation and can provide a
medium to enrich contextual information. Thus, we
propose a novel multi-task learning approach which
(1) incorporates the contextual information, and (2)
enriches the complementary syntactic information
using morphological tagging and dependency pars-
ing auxiliary tasks without any additional manual
labeling. Summarily, our key contributions are:

• We propose a novel context-sensitive multi-
task learning architecture for SaCTI (§ 2).

• We illustrate that morphological tagging and
dependency parsing auxiliary tasks are help-
ful and serve as a proxy for explainability of
system predictions (§ 4) for the SaCTI task.

• We report results with 7.71 points (F1) abso-
lute gains compared to the current state-of-the-
art system by Krishna et al. (2016) (§ 3.2).

• We show the efficacy of the proposed ap-
proach in English and Marathi (§ 4).

• We release our codebase and pre-processed
datasets (including newly annotated Marathi
dataset (§ 3.1)) and web-based tool (§ 4) for
using our pretrained models.

3Refer to related work section (§ 5) for more details.

2 The proposed system

aham pīta-ambaram namāmi pīta-ambaram

Nom.sg.* Dat.sg.m. Pr.ac.sg.1 

subject
object

haham hpīta-ambaram hnamāmi hpīta-ambaram

Dat.sg.m.

Bahuvrīhi
Bahuvrīhi

Bahuvrīhi

SaCTI
Morphological tagging

Dependency parsing

XLM-R

wordpieces

average

Max Vote Bahuvrīhi

Figure 1: Illustration of the proposed multi-task learn-
ing architecture with an example “aham pı̄ta-ambaram
namāmi” (Translation: “I pray to Pı̄tāmbara (Lord
Vishnu).”) where ‘pı̄ta-ambaram’ is a compound word
belonging to the Bahuvrı̄hi semantic type as per the
given context. We feed this context and the compound
word at the end as an input to the system. Each token
is split into wordpieces using a multi-lingual tokenizer
(Kudo and Richardson, 2018). This sequence of word-
pieces is passed to multi-lingual pretrained XLM-R en-
coder (Conneau et al., 2020). The hidden representation
of each token is the average of its wordpieces’ represen-
tations obtained from the encoder. We apply our multi-
task learning architecture which consists of three tasks,
namely, Sanskrit compound type identification (SaCTI),
morphological tagging and dependency parsing over the
hidden representations. We formulate SaCTI as a pair-
wise (a context word and the compound) classification
task where the objective is to predict the semantic type
of the target compound word (Bahuvrı̄hi). At test time,
we apply the maximum voting policy to select a single
prediction from the set of semantic relations predicted
by such n pairs.

Figure 1 illustrates the proposed multi-task learn-
ing architecture with an example context, “aham
pı̄ta-ambaram namāmi” (Translation: “I pray to
Pı̄tāmbara (Lord Vishnu).”) where ‘pı̄ta-ambaram’
is a compound belonging to the Bahuvrı̄hi semantic
type as per the given context. As shown in Figure 1,
we feed this context along with the compound word
concatenated at the end, as an input to the system,
and obtain hidden representations from the multi-
lingual encoder as described below. On top of the
hidden representations as obtained via the encoder
module, we apply our multi-task learning architec-
ture consisting of three tasks: SaCTI, morpholog-
ical tagging, and dependency parsing. We formu-
late the SaCTI task as a pair-wise (a context word
paired with the compound word) classification task
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where the objective is to predict the semantic type
of the target compound word (Bahuvrı̄hi for pı̄ta-
ambaram compound word in this example) for all
the pairs as shown in Figure 1. At test time, we
apply the maximum voting policy to select a single
prediction from the set of semantic types predicted
by these pairs. We formally discuss the details of
each component below.

Multilingual Encoder: Sanskrit is a morpholog-
ically rich and low-resource language. In order to
build powerful contextual representations for San-
skrit words, morphological richness poses the out-
of-vocabulary problem and low-resource nature
poses an unlabelled data scarcity problem. Thus,
we opt for a multi-lingual encoder (Conneau et al.,
2020, XLM-R) to mitigate these issues.

Given a compound cp and its context C =
[c1, c2, ..., cn] such that pth position (1 ≤ p ≤ n)
in the context is the compound word, we ap-
pend the compound word to the context such
that C = [c1, c2, ..., cn, cn+1] where cn+1 = cp.
Each token (ci) is further split into wordpieces
(ci = [c1i , c

2
i , ..., c

mi
i ]) using a multi-lingual sub-

word tokenizer (Kudo and Richardson, 2018; Kudo,
2018, Sentencepiece). Next, we pass the over-
all sequence (C = [c11, c

2
1, ..., c

mn
n , c1n+1..., c

mn+1

n+1 ])
of wordpieces corresponding to the context C
into the pretrained transformer. Finally, we ob-
tain the contextual representation of all tokens as
h = (h1, h2, h3, ..., hn, hn+1) where

hi =
1

mi

mi∑

k=1

Transformer(cki ) (1)

SaCTI: Our context-sensitive classifier uses Bi-
Affine attention, henceforth referred to as BiAFF.
Given the hidden representations of ith, jth context
words as hi, hj from the multi-lingual encoder, the
scoring function si,j indicates the system’s belief
that the latter (jth) (Eqn. 2) should be related to
the former (ith) in identifying the semantic type of
the latter, where qTi zi indicates bias to capture the
prior of contextual information in the ith word.

si,j = zTi Uzj + qTi zi (2)

where zi = MLP (hi), U and qi are learnable
parameters, MLP denotes a multi-layered percep-
tron. Similarly, a score for kth possible semantic
type relation between every pair of ith context word
(∀i ∈ [1, n]) and the compound is computed by:

ri,k = z
′T
i U

′
kz

′
n+1 + q

′T
k [z

′
i; z

′
n+1] + b

′
k (3)

where z
′
i = MLP

′
(hi), U

′
, b

′
k and q

′
k are learn-

able parameters. Finally, model maximizes the
following objective function during training.

n∑

i=1

p(yn+1|ci, θ) + p(yln+1|ci, yn+1, θ) (4)

where yn+1 is the target compound ap-
pended in context C, yln+1 is the semantic
type of (yn+1/ci, θ), θ denotes system’s
parameters, p(yn+1|ci, θ) ∝ exp(si,n+1),
p(yln+1|ci, yn+1, θ) ∝ exp(ri,l). At test time, we
apply maximum voting policy to select a single
prediction from the set of semantic relations
predicted for n pairs (ci, cn+1), ∀i ∈ [1, n].

Morphological tagging: The primary motivation
behind using morphological tagging as an auxil-
iary task aligns well with grammatical rules from
Pan. ini’s grammar (Pan. ini, 500 BCE; Kulkarni and
Kumar, 2013). For instance, Avyayı̄bhāva com-
pounds are in neuter gender. Tatpurus.a is a func-
tion of ‘case’ attribute of morphological features.
The number attribute of a compound depends on
the semantic type of the compound. Also, there are
constraints based on inflection/derivational suffix.
Summarily, these morphological features have di-
rect correlation with the semantic classes. In our
proposed system, the morphological tagging task
leverages hidden representations from the multi-
lingual encoder and decodes the pseudo-labels4 us-
ing a fully connected layer followed by a softmax
layer.5 In this process, morphological information
useful for the SaCTI task is enriched in the hidden
representations. This can be seen as an implicit
way to encode the grammatical rules in the system.

Dependency parsing: Lowe (2015) argues that
compounding is mostly a syntactic phenomenon.
Bahuvrı̄hi compounds are “exocentric” in nature,
which attribute a property to an entity external
to the compound with the adjective relationship.
Sometimes, syntactic information can provide a
complementary signal useful for compound type
disambiguation. For instance, consider the fol-
lowing example: aham nı̄la-utpalah. sarah. paśyāmi
(Translation: I watch the pond having a blue-lotus.)
Here, nı̄la-utpalam qualifies to be Bahuvrı̄hi due to

4The benchmark datasets do not have a gold standard mor-
phological information. We use predicted morphological in-
formation as pseudo-labels (§ 3.1).

5Note that all the parameters present in the multi-lingual
encoder are trainable during the task-specific training.
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presence of its referent sarah. with an adjective re-
lationship. However, in the absence of sarah. in the
context, ambiguity pops up in between Bahuvrı̄hi
and Tatpurus.a.6 This motivates us to investigate the
usefulness of syntactic information for the SaCTI
task. The benchmark datasets do not have a gold
standard dependency information. We use pre-
dicted dependency trees as pseudo-labels (§ 3.1).
Our dependency parsing component leverages Bi-
Affine parser (Dozat and Manning, 2017) over hid-
den representations from multi-lingual encoder.

3 Experiments

3.1 Dataset and metrics

Table 1 reports the unique number of compounds,
data statistics and the number of semantic types
for the respective datasets used in this work. We
restrict to binary compounds (compounds with two
components) in all the datasets. These datasets
consist of components, context and semantic type
of a compound. The SaCTI datasets for Sanskrit
are available with two levels of annotations: coarse
(4 broad types) and fine-grained (15 sub-types).

Datasets #Unique #Train #Dev #Test #Types
SaCTI-base 8,594 9,356 2,339 2,994 4 (15)
SaCTI-large 48,132 59,133 6,571 7,301 4 (15)

English 4,676 4,163 1,041 1,301 7
Marathi 368 659 99 114 4

Table 1: Data statistics for all the datasets

Sanskrit: We evaluate on two available context-
sensitive benchmark datasets: SaCTI-base and
SaCTI-large. We follow the same experimental
settings as Krishna et al. (2016) in SaCTI-base to
keep our results comparable with their state-of-the-
art results. SaCTI-base is a subset of SaCTI-large
dataset. In due course of time, more annotated data
resulted in SaCTI-large dataset.

English: We use instance-based (context-
dependent) noun-noun compound dataset released
by Fares (2016). The compounds used in this
dataset are extracted from the Wall Street Journal
(WSJ) portion in the Penn Treebank (PTB).

Marathi: We create an annotated context-
sensitive compound data for Marathi due to its
unavailability. We extract compound words from

6The ambiguity is whether I am seeing the blue lotus or
the pond having a blue lotus.

Marathi grammar textbooks. For Marathi, we re-
strict to the same 4 semantic types as in Sanskrit
(coarse setting). In our dataset, the context cor-
responding to 75% data points is automatically
leveraged from Wikipedia. In order to increase
the difficulty level of the task, we ask one of the
annotators to create the remaining 25% data points
in such a way that the same compound with a dif-
ferent context leads to a different semantic type.
Next, we provide these compound words and con-
text information to 3 annotators (A,B,C)7 using
a web-based platform. Refer to Appendix B for
annotation interface. All annotators have their min-
imum academic qualification as Master in Arts in
Marathi. These annotators have to choose the cor-
rect label from the multiple-choice options.8 Fi-
nally, we use the maximum voting policy amongst
annotators to get the label for each data point. Ini-
tially, we start with 1,000 data points for annota-
tion. Out of 1,000, we drop 128 data points where
none of the 2 annotators have an agreement. The
pair-wise inter-annotator agreement between anno-
tators in terms of Cohen Kappa (κ) is as follows:
A − B : 0.40, B − C : 0.20 and A − C : 0.35.
The κ ∈ [0.2, 0.4] is considered as fair agreement
(McHugh, 2012).

Psuedo-labels for auxiliary tasks: The bench-
mark datasets do not have a gold standard depen-
dency and morphological information. We use pre-
dicted labels as pseudo-labels. For Sanskrit, we ob-
tain pseudo-labels from the Trankit model (Nguyen
et al., 2021) trained on STBC dataset (Krishna et al.,
2020) and morphological pseudo-labels from the
LemmaTag model (Kondratyuk et al., 2018) trained
on Hackathon dataset (Krishnan et al., 2020). For
English, we use pseudo-labels from English XLM-
R model9 for morphological and dependency pars-
ing task. For Marathi, we do not find any such data
or pretrained model to obtain pseudo-labels. There-
fore, we do not activate morphological tagging and
dependency parsing components in the proposed
system while training on Marathi data.

Hyper-parameter settings: For the implementa-
tion of the proposed system, we modify on top of
codebase by Nguyen et al. (2021). We use the fol-
lowing hyper-parameter settings for the best config-

7Note that the annotator who created the context for 25%
data points is different from these 3 annotators.

8In case of confusion, we gave additional option to mark
as “Not sure”.

9https://spacy.io/models/en
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Sanskrit (coarse) Sanskrit (fine-grained)

w/o context w/ context w/o context w/ context

Datasets System A P R F1 A P R F1 A P R F1 A P R F1

ISCLS19 77.68 76.00 71.00 73.00 77.68 76.00 71.00 73.00 70.64 67.53 63.18 64.58 70.64 67.53 63.18 64.58
COLING16 77.39 78.00 72.00 74.00 77.39 78.00 72.00 74.00 - - - - - - - -

SanALBERT 72.01 72.10 70.00 71.40 77.40 77.31 73.00 74.20 69.39 62.58 58.13 58.22 75.40 70.14 61.22 62.04
SaCTI-base IndicALBERT 71.87 51.60 53.90 52.00 78.63 77.47 75.83 76.47 68.06 53.05 53.19 52.30 71.93 57.29 56.49 55.25

mBERT 76.12 77.43 71.68 73.10 81.42 83.12 73.54 78.09 75.00 67.65 72.69 68.56 78.36 77.41 69.59 69.37
XLM-R 78.19 73.54 73.10 73.31 81.00 82.01 77.00 79.10 73.75 66.38 63.96 65.16 77.94 71.72 70.18 70.94

Ours 80.21 72.31 74.50 73.38 83.45 79.65 83.87 81.71 78.25 72.94 73.81 72.68 82.47 76.87 79.08 77.20

ISCLS19 90.69 75.66 72.09 73.76 90.69 75.66 72.09 73.76 76.66 71.62 65.40 68.09 76.66 71.62 65.40 68.09
SanALBERT 88.17 66.65 61.31 62.85 87.84 64.15 65.44 63.63 79.38 69.90 75.34 67.57 80.73 71.62 74.60 72.69

SaCTI-large IndicALBERT 87.77 68.82 49.58 56.05 92.95 84.98 74.90 79.32 79.03 68.00 64.14 63.67 83.13 74.23 79.77 76.11
mBERT 92.29 78.51 77.45 77.41 93.52 83.13 80.82 81.83 81.56 70.82 76.91 72.74 80.98 70.00 79.13 72.80
XLM-R 92.61 79.91 79.00 79.42 93.85 86.64 79.67 82.78 81.84 74.46 77.93 75.68 83.12 73.97 81.07 76.20

Ours 93.54 81.30 81.65 81.47 94.78 83.89 87.61 85.64 82.85 74.94 78.12 76.49 84.73 78.53 80.30 77.13

Table 2: Evaluation on Sanskrit datasets in two levels of annotations (coarse and fine-grained) and two settings (w/o
context and w/ context). The best results are bold. Results are averaged over 4 runs. The significance test between
the best baseline XLM-R and the proposed system in terms of Recall/Accuracy metrics: p < 0.01 (as per t-test).
We could not perform significance test with COLING16 (SaCTI-base-coarse-w/o) and report its results on all the
datasets due to unavailability of its predictions and codebase. ISCLS19 and COLING16 baselines cannot utilize the
context information; therefore, we report the same numbers in w/context as w/o context.

uration of the proposed system: number of epochs
as 70, batch size 50 and a embedding dropout
rate of 0.3 with a learning rate of 0.001. In our
multi-task loss function, we penalize dependency
component’s loss function by 0.01 to prioritize the
performance on SaCTI. This penalty is identified
based on hyper-parameter tuning. The rest of the
hyper-parameters are kept the same as Nguyen
et al. (2021). For multi-lingual baselines, we used
Huggingface’s transformers repository (Wolf et al.,
2020). We release our codebase and datasets pub-
licly under the licence CC-BY 4.0. All the artifacts
used in this work are publicly available for the re-
search purpose.

Computing infrastructure used: We use a sin-
gle GPU with Tesla P100-PCIE, 16 GB GPU mem-
ory, 3584 GPU Cores computing infrastructure for
our experiments. Our proposed system takes ap-
proximately 1 hour for training SaCTI-base coarse
w/o context setting dataset.

Evaluation metrics: Following Krishna et al.
(2016); Sandhan et al. (2019), we report macro
averaged Precision, Recall and F1-score for all
our experiments. We also report micro-averaged
Accuracy. We use Scikit-learn software (Pedregosa
et al., 2011) to compute these metrics.

Baselines: We consider two context agnostic sys-
tems where Sandhan et al. (2019, ISCLS19) for-
mulate SaCTI as a purely neural-based multi-class
classification approach using static word embed-
dings of components of a compound and Krishna

et al. (2016, COLING16) deploy a hybrid sys-
tem which leverages linguistically involved hand-
crafted feature engineering with distributional in-
formation from Adaptor Grammar (Johnson et al.,
2006). The COLING16 system is the current state-
of-the-art system for the SaCTI task. Next, we
opt for multi-lingual contextual language models
due to the lack of sufficiently large unlabelled
data available for Sanskrit. We consider three
multi-lingual pretrained language models, namely,
Kakwani et al. (2020, IndicALBERT) which is
ALBERT model trained on 12 Indic languages
excluding Sanskrit, BERT (Devlin et al., 2019,
mBERT) trained on 104 languages having largest
Wikipedia’s excluding Sanskrit and Conneau et al.
(2020, XLM-R) trained on 100 languages includ-
ing Sanskrit. Finally, we consider a mono-lingual
ALBERT model (Sandhan et al., 2022, SanAL-
BERT) trained on Sanskrit corpus (Hellwig, 2010)
from scratch. In all the contextual baselines, we
pass the classification token [CLS] representation
of a sentence pair (compound word and its context
separated by [SEP] token) to the classification head.
Ours: This is our proposed system from § 2.

3.2 Results

Table 2 shows the performance for the best perform-
ing configurations of all the baselines on the test
set of benchmark datasets for SaCTI. We report
results on two levels of annotations (coarse and
fine-grained) and two settings (w/o context and w/
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context).10 Except for ISCLS19 and COLING16
systems, all systems utilize available context along
with components of a compound.11 XLM-R re-
ports the best performance among all the baselines
while using the context information.

Our proposed system outperforms all the com-
peting systems in terms of all the evaluation met-
rics and reports 6.1 points (A) and 7.7 points (F1)
absolute gain with respect to the current state-of-
the-art system COLING16 (on SaCTI-base coarse
w/context dataset). COLING16 outperforms the
proposed system on SaCTI-base coarse w/o con-
text. Notably, our proposed system outperforms
the strong baseline XLM-R with large margins in
fine-grained setting on SaCTI-base dataset (low-
resourced setting). This confirms the usefulness of
the proposed system in low-resourced settings with
fine-grain labels. The large performance gap be-
tween the proposed system with context and COL-
ING16/ISCLS19 baselines illustrates the efficacy
of using contextual information and syntactic in-
formation. Summarily, we mark new state-of-the-
art results with the help of the novel architecture,
where the contextual component is integrated with
syntax-based auxiliary tasks such as morphological
tagging and dependency parsing. We find a similar
trend in performance for the SaCTI-large dataset.

4 Analysis

In this section, we dive deep into the proposed sys-
tem architecture for a detailed analysis as well as
generalizability. We use SaCTI-base coarse dataset
in the w/ context setting for the analysis.

(1) Ablation analysis: Here, we investigate the
contribution of various components towards the
overall improvements of the proposed system. Ta-
ble 3 reports ablations in terms of all the evaluation
metrics when a particular component is inactivated
from the proposed system. For example, “-DP”
denotes the system where the dependency parsing
component is removed from the proposed system.
We see that elimination of any of the components
deteriorates the performance. Table 3 illustrates
that ‘context’ component is the most critical to-
wards improvements. Also, the deletion of the
‘BiAFF’ component has the second largest impact

10For the systems that require context, we feed the com-
pound word only as the context.

11These baselines cannot utilize the context; therefore, we
report the same numbers in w/context as w/o context.

on the final performance.12

System A P R F1
Ours 83.45 79.65 83.87 81.71

-context 80.21 72.31 74.50 73.38
-BiAFF 81.00 82.01 77.00 79.10
-morph 82.87 80.00 81.21 80.60

-DP 81.89 79.35 81.62 80.26
-morph -DP 81.50 82.34 77.67 79.93

Table 3: Ablations of the proposed system in terms of all
the metrics. Each ablation deletes a single component
from the proposed system. For example, “-DP” deletes
the dependency parsing task from the proposed system.

(2) How effective is the proposed system in re-
ducing confusion between conflicting classes?
Figure 2 illustrates the confusion matrices in w/
context and w/o context scenarios. We observe a
similar trend in both the scenarios. (1) Both sys-
tems mis-classify the predictions into the most pop-
ulated type (Tatpurus. a). This can be attributed to
the imbalanced nature of the dataset.13 (2) The con-
fusion between Avyayı̄bhāva and Tatpurus. a is due
to these compounds having their first component as
an indeclinable word. Notably, the system with con-
text is able to reduce confusion by 15%. (3) One
of the reasons for conflict between Tatpurus. a and
Bahuvrı̄hi is due to the specific subcategory of both
the classes where the first component is a negation.
With the help of enriched information, a system
with context can reduce this miss-classification by
7%. Summarily, the system with contextual in-
formation always performs superior to one with
no context. This substantiates the importance of
contextual information in the proposed system.

(3) How well can we generalize the proposed
system for other languages? The primary moti-
vation is to illustrate the efficacy of our language
agnostic approach. The semantic type of com-
pounds of the language of interest need not be
similar to that of Sanskrit for the model to work.
It is purely language agnostic model. To study
the generalization ability of the proposed system,
we consider 2 additional languages, namely, En-
glish (en) and Marathi (ma). We choose English
due to its availability of context-sensitive annotated

12In the absence of the proposed ‘BiAFF’ component, we
use [CLS] token for the sentence-level prediction, where this
system is similar to XLM-R + DP + morph.

13In this work, we do not consider any strategy to tackle
imbalanced classification. We plan to address this in future.
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English Marathi

w/o context w/ context w/o context w/ context

System A P R F1 A P R F1 A P R F1 A P R F1

ISCLS19 67.43 71.81 64.38 66.26 67.43 71.81 64.38 66.26 68.62 70.78 52.89 56.85 68.62 70.78 52.89 56.85
IndicALBERT 68.23 57.25 59.70 57.96 70.22 68.01 69.31 68.65 67.65 33.33 45.15 38.08 60.00 45.17 40.62 40.95

mBERT 70.98 70.00 69.87 69.97 72.48 76.08 73.47 74.30 77.45 58.70 61.28 59.48 71.05 51.45 53.34 52.18
BERT 74.19 72.79 71.12 71.62 74.71 75.83 74.48 75.12 78.43 71.21 68.04 69.20 75.43 67.07 66.07 66.43

XLM-R 72.21 71.53 68.88 69.20 74.33 77.12 76.86 76.57 76.47 67.36 62.90 63.33 74.56 65.50 62.07 62.75
Ours 74.69 74.79 75.19 75.19 77.81 79.17 79.19 79.12 78.12 71.98 70.00 70.57 80.43 66.54 77.00 69.12

Table 4: Evaluation on English and Marathi languages. The best results are bold. The significance test between the
best baseline XLM-R and our system in terms of Recall/Accuracy metrics: p < 0.01 (as per t-test). ISCLS19 do not
have power to utilize the context information; therefore, we report the same numbers in w/context as w/o context.

(a) (b)

Figure 2: The confusion matrix for the proposed system
trained (a) w/o context (b) w/ context. Semantic types:
Avyayı̄bhāva, Bahuvrı̄hi, Dvandva, and Tatpurus. a

data and Marathi due to its closeness to Sanskrit.
We freshly created annotated task-specific context-
sensitive data for Marathi (§ 3.1) as no such dataset
was previously available. Table 4 reports the results
for these two languages. For English, all the base-
lines (with context) improve over their counterpart
(without context). However, we do not find similar
trend in Marathi possibly due to (1) lack of suffi-
cient task-specific data, and (2) lack of both the
auxiliary task 14. For both languages, our system
consistently outperforms all the competing systems.
Across both the languages, it shows the average ab-
solute gain of 4.7 points (A) and 4.4 points (F1)
compared to the strong baseline XLM-R. Summar-
ily, these empirical results prove the proposed ap-
proach’s efficacy in languages other than Sanskrit.

(4) Multi-lingual training and zero-shot cross-
lingual transfer experiments for Marathi:
Here, we investigate the transferability of the
SaCTI task for low-resourced languages. We ex-
periment with the Marathi language (w/ context).
Since the label space of Marathi is the same as that
of the SaCTI coarse dataset, this makes it possible
to experiment with cross-lingual zero-shot transfer

14We could not activate auxiliary tasks due to lack of
datasets for Marathi.

and multi-lingual training. There is an isomorphic
semantic type system with 4 types for Marathi as
is the case for most of the Indian languages, due to
a close connection with / inheritance from Sanskrit.
In Table 5, we consider the mono-lingual (training
on Marathi) results as a baseline. In multi-lingual
training, we train the proposed system with mix of
Marathi and SaCTI-base coarse dataset and evalu-
ate on test set of Marathi.15 In the zero-shot trans-
fer, we leverage the model trained on the SaCTI-
base coarse dataset to get predictions on the test
set of Marathi. In multi-lingual training experi-
ment, we observe substantial improvements (3.4
points F1) over mono-lingual training. However,
zero-shot cross-lingual transfer does not show en-
couraging results, where system predicts Tatpurus. a
type for majority test samples (80% predictions).

Tasks A P R F1
ours (Marathi) 80.43 66.54 77.00 69.12

zero-shot transfer 48.09 33.85 48.36 31.08
multi-lingual training 83.10 71.00 80.48 73.70

Table 5: Performance of the multilingual training and
cross-lingual zero-shot transfer on Marathi.

(5) Probing analysis: Here, we probe the at-
tention modules of the proposed system to inves-
tigate (1) How do different context words con-
tribute towards final prediction? (2) Do these at-
tentions serve as a proxy for explainability of cor-
rect/incorrect predictions? Figure 3 illustrates at-
tention heatmaps for the SaCTI (Blue) and depen-
dency parsing (Purple) tasks. The SaCTI heatmap
shows how different context words contribute to-
wards final prediction (Blue) and dependency pars-
ing heatmap (Purple) serves as proxy for interpre-
tation. We notice in the SaCTI attentions that all

15Here, we use pretrained models of Sanskrit for both the
auxiliary tasks to obtain psuedo-labels for Marathi.
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Figure 3: Attention heatmaps for the SaCTI (Blue) and dependency parsing (Purple) tasks. The SaCTI heatmap
shows how different context words contribute towards final prediction (Blue) and dependency parsing heatmap
(Purple) serve as proxy for interpretation. We illustrates how the same compound (pı̄ta-ambaram) in two different
contexts [(a-b) aham pı̄ta-ambaram vastram dharāmi (I wear a yellow cloth) and (c-d) aham pı̄ta-ambarām
namāmi (I pray to the Lord Vis.nu)] leads to different semantic type predictions (Tatpurus. a: yellow cloth and
Bahuvrı̄hi: Lord Vis.nu). In the dependency heatmap of the first case, pı̄ta-ambaram focuses on vastram (cloth) and
in latter case it focuses on namāmi (the action of praying).

words mostly focus on the target compound word.
Figure 3 illustrate how the same compound (pı̄ta-
ambaram) in two different contexts [(a-b) aham
pı̄ta-ambaram vastram dharāmi (I wear a yel-
low cloth) and (c-d) aham pı̄ta-ambarām namāmi
(I pray to the Lord Vis.nu)] leads to different se-
mantic type predictions (Tatpurus. a: yellow cloth
and Bahuvrı̄hi: Lord Vis.nu). In the dependency
heatmap of the first case, pı̄ta-ambaram focuses
on vastram (cloth) and in latter case, it focuses
on namāmi (the action of praying). As per the
grammatical rules, the morphological tagging task
correctly predicts the gender information as neuter
and masculine in these cases, respectively. Thus,
this probing analysis suggests that auxiliary tasks
not only help add complementary signals to the
system but also serve as a proxy for explainability.

(6) Additional auxiliary tasks: With our pro-
posed multi-task learning approach, we experiment
with a few more additional sequence labeling aux-
iliary tasks (on SaCTI-base w/ context dev set),
namely, the prediction of the case grammatical cat-
egory (C), lemma prediction (L) and prediction of
a relation (R) between modifier and its headword.
The results in Table 6 show that except for the re-
lation prediction task, all the remaining auxiliary
tasks report improvements over the base system
(with no auxiliary task). However, none of the com-
binations of these auxiliary tasks could outperform
the proposed combination of morphological pars-
ing and dependency parsing tasks. Therefore, we
do not consider these additional auxiliary tasks in
our final system.

Tasks A P R F1
BiAFF 87.99 85.48 87.90 86.64

+case (C) 87.64 85.65 88.90 87.19
+morph (M) 88.01 88.90 85.75 87.26
+relation (R) 86.61 85.53 84.99 85.22
+lemma (L) 87.43 88.27 86.21 87.18

+Dep. parse (DP) 89.14 86.49 90.10 88.01

M+C 87.55 88.30 85.28 86.72
M+C+L 87.08 87.74 84.98 86.30
M+C+R 86.10 86.04 83.28 84.55
M+DP 88.11 86.12 89.23 88.43

Table 6: The comparison (on SaCTI-base w/ context
dev set) in between auxiliary tasks. ‘+’ denotes a system
where the corresponding task is integrated with BiAFF.

(7) Web-based tool: We deploy our pretrained
models as a web-based tool which facilitates the fol-
lowing advantages: (1) A naive user with no prior
deep-learning expertise can use it for pedagogical
purposes. (2) It can serve as a semi-supervised an-
notation tool keeping a human in the loop for the
error corrections. (3) Our tool helps the user inter-
pret the model prediction using model confidence
on each semantic type and the probing analysis.
Refer to Appendix A for our web-based tool’s in-
terface. (4) It can be used for any general purpose
classification task.

5 Related work

English Noun Compound Interpretation Prior
to the deep learning era, various machine learning-
based approaches have been proposed for Noun
Compound Identification (Kim and Baldwin, 2005;
Ó Séaghdha and Copestake, 2009; Tratz and Hovy,
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2010). With the advent of deep-learning based
approaches, Dima and Hinrichs (2015) and Fares
et al. (2018) proposed a neural-based architecture
where concatenated representations of a compound
were fed to a feed-forward network to predict a
semantic relation between the compound’s compo-
nents. Shwartz and Waterson (2018) proposed an
approach that combines labeling with paraphrasing.
Recently, Ponkiya et al. (2021) proposed a novel
approach using semantic label repository (Ponkiya
et al., 2018b, FrameNet) where continuous label
space embeddings are used to predict unseen la-
bels. To the best of our knowledge, a context
has never been used for the classification task for
NCI. In paraphrasing line of modeling, Ponkiya
et al. (2020) formulates paraphrasing as “fill-in-the-
blank” problem to predict the “missing” predicate
or preposition using pretrained language models.

Sanskrit Compound Type Identification task
has garnered considerable attention of the re-
searchers in the last decade. In order to decode
the meaning of a Sanskrit compound, it is essential
to figure out its constituents (Gérard, 2010; Mittal,
2010; Hellwig and Nehrdich, 2018), how the con-
stituents are grouped (Kulkarni and Kumar, 2011),
identify the semantic relation between them (Ku-
mar, 2012) and finally generate the paraphrase of
the compound (Kumar et al., 2009). Satuluri and
Kulkarni (2013) and Kulkarni and Kumar (2013)
proposed a rule-based approach where around 400
rules mentioned in Pān. ini’s grammar (Pan. ini, 500
BCE) were analysed from the perspective of com-
pound generation and type identification, respec-
tively. Recently, Sandhan et al. (2019) investigated
whether a purely engineering data-driven approach
competes with the performance of a linguistically
motivated hybrid approach by Krishna et al. (2016).
Summarily, no attention has been given to incor-
porating contextual information, which is crucial
and cheaply available. We address this research
gap and mark the new state-of-the-art results with
substantial improvements.

6 Conclusion and Discussion

This work focused on Sanskrit compound type iden-
tification, where the task is to decode the semantic
information hidden in the compound, which can
be context-sensitive. This poses a limitation to the
existing context agnostic approaches, thus we pro-
pose a novel multi-task learning architecture which
incorporates the contextual information and also

enriches it with complementary syntactic informa-
tion using morphological tagging and dependency
parsing auxiliary tasks. Our probing analysis show-
cased that these auxiliary tasks also serve as a proxy
for model prediction explainability. To the best of
our knowledge, this is the first time that the impor-
tance of these auxiliary tasks has been showcased
for SaCTI. Our experiments on benchmark datasets
showed that the proposed system provides stunning
improvements with 6.1 points (A) and 7.7 points
(F1) absolute gain compared with the current state-
of-the-art system. Our fine-grained analysis show-
cased some light on the inner engineering of the
proposed system. Our multi-lingual experiments
on English and Marathi languages proved the effi-
cacy of the proposed system in other languages.

We limit our study to the purely engineering
data-driven settings. We plan to extend the current
work by augmenting logical rules (Li and Sriku-
mar, 2019; Nandwani et al., 2019) derived from
Pān. inian grammar in the proposed approach.

Ethics Statement: We do not foresee any eth-
ical concerns with the work presented in this
manuscript.
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82.

Vipul Mittal. 2010. Automatic Sanskrit segmentizer
using finite state transducers. In Proceedings of the
ACL 2010 Student Research Workshop, pages 85–
90, Uppsala, Sweden. Association for Computational
Linguistics.

Yatin Nandwani, Abhishek Pathak, Parag Singla, et al.
2019. A primal dual formulation for deep learning
with constraints. In Advances in Neural Information
Processing Systems, pages 12157–12168.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben
Veyseh, and Thien Huu Nguyen. 2021. Trankit: A
light-weight transformer-based toolkit for multilin-
gual natural language processing. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations.

Diarmuid Ó Séaghdha and Ann Copestake. 2009. Us-
ing lexical and relational similarity to classify se-
mantic relations. In Proceedings of the 12th Con-
ference of the European Chapter of the ACL (EACL
2009), pages 621–629, Athens, Greece. Association
for Computational Linguistics.

Pan. ini. 500 BCE. Ashtādhyāyī.
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A Web-based tool

We deploy our pretrained models as a web-based
tool. Figure 4 illustrates the web-based tool in-
tegrated with our best performing system. In-
put: “aham pı̄ta-ambaram namāmi” (Translation:
“I pray to Pı̄tāmbara (Lord Vishnu).”) where ‘pı̄ta-
ambaram’ is a compound word. Our interface
shows predicted morphological tags (color-coded
with violet boxes), type-wise system confidence
(bar plot), attention heatmaps. Our tool helps the
user interpret the model prediction using model
confidence on each semantic type.

B Marathi annotation details

We have built a user-friendly annotation tool for
general-purpose classification tasks. The tool is
a Flask-based (Ronacher) user-friendly web ap-
plication styled by Bootstrap 5 (boo, 2022), and
sports a simple administrative interface that lets the
administrators easily control the class labels and
classification context as well as export annotations.
Figure 5 shows our web-based mobile friendly an-
notation interface, where the task is to select the
correct option from multiple-choices for the given
compound with the context. There are 4 broad
categories of semantic types in Marathi. In case
of confusion, we gave additional option to mark
as “Not sure”. We also provide an option to add a
comment to convey additional information about
ambiguity or the concern for the corresponding
example.
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aham pīta-ambaram namāmi

aham pīta-ambaram namāmi pīta-ambaram

Nom.sg.* Dat.sg.m. Pr.ac.sg.1 Dat.sg.m.

Submit

Type-wise system confidence SaCTI attention heatmap DP attention heatmap

Input

Morph. Predictions

Figure 4: Illustration of web-based tool integrated with our best performing pretrained system. Input: “aham pı̄ta-
ambaram namāmi” (Translation: “I pray to Pı̄tāmbara (Lord Vishnu).”) where ‘pı̄ta-ambaram’ is a compound word.
Our interface shows predicted morphological tags (color-coded with violet boxes), type-wise system confidence
(bar plot), attention heatmaps.

(a) (b)

Figure 5: Illustration of our web-based mobile friendly (a) annotation interface, where the task is to select the
correct option from multiple-choices for the given compound with the context. (b) Administrative interface, where
the administrators can easily control the class labels and classification context as well as export annotations.
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Abstract

Previous work has demonstrated that pre-
trained large language models (LLM) acquire
knowledge during pre-training which enables
reasoning over relationships between words
(e.g, hyponymy) and more complex inferences
over larger units of meaning such as sentences.
Here, we investigate whether lexical entailment
(LE, i.e. hyponymy or the is a relation between
words) can be generalised in a compositional
manner. Accordingly, we introduce PLANE
(Phrase-Level Adjective-Noun Entailment), a
new benchmark to test models on fine-grained
compositional entailment using adjective-noun
phrases. Our experiments show that knowledge
extracted via In–Context and transfer learning
is not enough to solve PLANE. However, a
LLM trained on PLANE can generalise well
to out–of–distribution sets, since the required
knowledge can be stored in the representations
of subwords (SW) tokens.

1 Introduction

Composition and entailment are crucial features
of human language and reasoning. The first refers
to the ability to combine units of meaning, like
words or phrases, into larger constructs, such as
sentences or paragraphs. Entailment, on the other
hand, refers to the notion of inference. A linguistic
element A (e.g. a word or phrase) is said to en-
tail an element B if, assuming A is true, so is B.
Word-level entailment is often referred to as lexical
entailment (LE), hypernym detection, or the is a re-
lation (Weeds et al., 2014; Vulić and Mrkšić, 2018;
Kober et al., 2021), and refers to examples such as
dog entails (|=) animal and gun |= weapon. Yet
entailment does not occur just between two words,
and has been a long standing problem in NLP (Da-
gan et al., 2005; MacCartney and Manning, 2008;
Marelli et al., 2014; Nie et al., 2020). When occur-
ring between two sentences, it is usually referred
to as natural language inference (NLI).

Although arguments have been made in favour of
a more probabilistic interpretation of the task (see
Pavlick and Callison-Burch (2016); Pavlick and
Kwiatkowski (2019), inter alia), NLI benchmarks
generally abandoned the rigid binary classification
for a three way classification, usually involving a
neutral or UNK label1. With a few exceptions,
e.g., Baroni et al. (2012); Kartsaklis and Sadrzadeh
(2016); Kober et al. (2021), NLI is still the main
method adopted by the NLP community to jointly
study the compositional and inferential abilities of
a model. However, commonly used benchmarks
frequently contain spurious statistical associations
that a model can use to solve the task (Poliak et al.,
2018; Dasgupta et al., 2018; McCoy et al., 2019).
These cues might be as simple as the presence of
negation or lexical overlap (Dasgupta et al., 2018),
but can be more complex, and exploit similar syn-
tactic substructures between premise and hypothe-
sis (McCoy et al., 2019).

Popular alternatives to training and testing mod-
els on datasets containing significant biases are
prompting (Petroni et al., 2019; Do and Pavlick,
2021; Hanna and Mareček, 2021) and In–Context
learning (Brown et al., 2020). The success of these
paradigms has grown in parallel with the popularity
of large language models (LLMs) based on Trans-
formers (Vaswani et al., 2017). LLMs architectures
are usually pre-trained with mask or next-sentence
prediction tasks, and later fine-tuned on other down-
stream tasks. Pre-trained LLMs have been success-
fully used with a prompt-based framework to ex-
tract factual information (Petroni et al., 2019) (e.g.
Dante, born_in, Italy), LE relations (Bouraoui
et al., 2020; Hanna and Mareček, 2021) (e.g. car,
is a, vehicle) and study the more complex entail-
ment in Winograd-style schemata (Do and Pavlick,
2021). Here, we study the impact that pre-training,
NLI tuning and supervised learning have on the

1Usually matched with entailment and
non-entailment/contradiction.
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performance of a LLMs tested on compositional
entailment, using adjective–noun phrases. That is,
we investigate at which stage a LLMs might learn
that red car |= vehicle, as well as red car |= red
vehicle; whilst fake gun ̸|= weapon, even though
fake gun |= fake weapon.

Our main contributions are as follow. First, in
Section 3, we introduce PLANE (Phrase–Level
Adjective–Noun Entailment), a large and automat-
ically annotated resource to evaluate models on
phrase–level compositional entailment for the En-
glish language. We then provide consistent evi-
dence that knowledge acquired by LLMs during the
pre-training phase (Section 4), and during finetun-
ing on NLI tasks (Section 5) is weak, yielding poor
and unstable performances on PLANE. In contrast,
we show in Section 6 how, in a supervised setting,
a model like BERT can effectively generalise to
out-of-distribution test sets, and how crucial the
role of subword (SW) tokens is to this ability. Fi-
nally, our work underlines how the different logical
functions associated with the three macro classes
of adjectives, frequently ignored or oversimplified,
can pose notably different challenges to these mod-
els.

2 Related Work

Prompting Among the vast literature on prompt-
ing LLMs, the work from Hanna and Mareček
(2021) is closely related to ours, and provides
evidence that BERT retains information on the
hyponym-hypernym relation occurring between
two words. The work also shows how crucial the
structure of the prompt can be. Garí Soler and
Apidianaki (2020) provide evidence on the rich rep-
resentations that BERT has about scalar adjectives
and their intensity. Do and Pavlick (2021) propose
a set of detailed entailment-based experiments, us-
ing both prompting and finetuning paradigm. Here,
Winograd-like scenarios are used to carefully con-
struct sentences that challenge LLM’s internal as-
sociation between two entities. Results strongly
suggest that, once a model is not able to rely on
those learned associations, the task becomes chal-
lenging even after finetuning.

Phrase entailment Compared to NLI, phrase-
level entailment (PLE) has received significantly
less attention. Baroni et al. (2012) present a set of
experiments on compositional entailment consid-
ering adjective (e.g., BIG dog |= dog) and quanti-
fier modifications (e.g., ALL dogs |= SOME dogs).

However, instances were strictly limited to AN |=
N, and the class of the modifying adjectives was
not discussed or differentiated in the results. Kart-
saklis and Sadrzadeh (2016) introduced a manually
annotated dataset for PLE, using subject-verb, verb-
object, and subject-verb-object phrases. Negative
samples were built by reversing each entailment
item. In contrast, in our dataset, the label of an
item can not be inferred by directional clues (i.e.
hyponym-hypernym vs hypernym-hyponym) or by
the absence of the hypernym relation between con-
stituent words (e.g. big cat ̸|= dog because cat ̸|=
dog). Kober et al. (2021) showed how automati-
cally constructed compound-noun and AN compo-
sitional items can be used as a data augmentation
method to enhance LE. However, this work filtered
out intensional adjectives and assumed that for all
other adjectives, N |= h(N) =⇒ AN |= h(N).
AN phrases were also studied within the con-
text of fully formed sentences. The main exam-
ple is the work from Pavlick and Callison-Burch
(2016), that introduced the AddOne dataset. Over-
all, AddOne resemble the standard NLI bench-
mark, with sentence as premise and hypothesis,
used to formulate a three way (entailment,
non-entailment, UNK) classification task.
However, in this case premise and hypothesis differ
only by the presence or absence of a single ad-
jective. Apidianaki and Garí Soler (2021) probed
BERT with AddOne to study how it encodes the
property of a noun. In contrast, we study the differ-
ent entailment relations which are valid for differ-
ent classes of adjectives.

3 PLANE

In this section, we describe the PLANE benchmark.
We first outline how each of the three classes of
adjectives, intersective (I), subsective (S) and inten-
sional (O), affects the relation between a noun and
its hypernym, as well as the noun itself. We then de-
scribe the sources used to gather adjectives, nouns,
AN phrases, and hypernyms, and the procedure
used to generate entailment items.

3.1 Adjective Classes

Adjectives can be divided into three macro classes:
intersective (I), subsective (S) and intensional (O).
From an entailment perspective, the distinction is
based on how they modify a noun, N , with re-
spect to itself as well as with respect to it’s hy-
pernyms (hyps(N)) (McCrae et al., 2014; Lalisse
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Inference Type (IT) Intersective (I) Subsective (S) Intensional (O)
1 AN |= N ✓ ✓ ✗

2 AN |= h(N) ✓ ✓ ✗

3 AN |= Ah(N) ✓ ✗ ✓

Table 1: PLANE annotation rules. Schema of how the interaction between each adjective class and inference type
shapes the truth value – positive (✓) or negative (✗) – of a true noun (N) – hypernym (h(N))) entailment (|=) pair.

and Asudeh, 2015). We focus on three inference
types, summarised in Table 1, all starting from an
adjective-noun (AN) phrase.

AN phrases containing intersective (I) adjec-
tives (e.g., red, dead and Finnish) describe a subset
of entities subsumed by the noun itself and also a
subset of entities which all have that adjective as a
property. For example, a red car is both a car and
a red thing. Thus, AN phrases containing intersec-
tive adjectives satisfy all of the forms of inference
types (IT) shown in Table 1. Continuing our exam-
ple, red car |= car (IT 1), red car |= vehicle (IT 2)
and red car |= red vehicle (IT 3).

Phrases with subsective (S) adjectives (e.g.,
small, intelligent and strong), describe a subset
of entities subsumed by the noun but not a subset
of entities which have that adjective as a property.
For example, a small elephant is an elephant but it
is not necessarily a small thing. Thus, AN phrases
containing subsective adjectives satisfy IT 1 and 2
inferences but not IT 3 inferences listed in Table 1.
In our example, whilst a small elephant |= elephant
and small elephant |= animal; small elephant ̸|=
small animal.

Intensional (O) adjectives (e.g. fake, former,
possible) have the exact opposite behaviour of sub-
sective. When an intensional adjective modifies a
noun, it negates some of its core properties (e.g.
fake gun ̸|= gun) and thus IT 1 inferences do not
hold. Inferences with IT 2 also do not hold for
intensional adjectives since the modification also
directly applies to the hypernym of the noun (e.g.,
fake gun ̸|= weapon). However, since the adjective
modification describes a subset of entities fully dis-
joint from the noun itself, this new set is usually
contained within the subset of entities described us-
ing the hypernym of the noun modified by the adjec-
tive (e.g., fake Glock |= fake gun |= fake weapon)
and thus IT 3 holds.

As in LE, we consider PLE as a binary clas-
sification task. We note that an argument on
the probabilistic nature of PLE as in Pavlick and
Kwiatkowski (2019) could be made. In our mod-

elling scheme, former president |= politician, and
small mouse |= small animal are formally false
(McCrae et al., 2014); but, in the real world, might
be judged to be unknown or true. We take the posi-
tion that these cases require additional knowledge
in order to judge them to be true. A small mouse
|= small animal because our knowledge suggests
that mouse |= small animal, and the modification
of mouse by small does not change this. In this
work, we assume that only LEs between unigrams
are known a priori. We then consider whether
LLMs contain the knowledge which will enable
us to reason over necessary entailment between
AN phrases. Therefore, in our binary classification
task, the negative label covers all cases which
might be judged in the real world to be false, un-
known or dependent on additional knowledge.

We now present how the evaluation dataset has
been constructed, starting from the source of adjec-
tives (A), adjective-noun (AN) phrases and hyper-
nyms (hyps(N)).

3.2 Sources

Adjectives Our main source is the list provided
by Lalisse and Asudeh (2015), consisting of 300
items in English. Each adjective is tagged with its
class, whether it is weakly or strongly polysemous,
and/or context dependent2. Further intensional ad-
jectives were added from the dictionary in Ken-
nard et al. (2014). After filtering out all adjectives
tagged as context-dependent, wee remained with a
total of 312 unique items.

Adjective-Noun phrases To collect composi-
tional and realistic AN phrases3 we parsed a clean
Wikipedia dump (Wilson, 2015) via Spacy4 (Hon-
nibal and Johnson, 2015). We then filtered out all
phrases where the identified adjective was not in
the adjective list previously described.

2The class of an adjective can vary according to the context
or the noun it modifies. Deep, for example, can be intersective,
as in deep lake, or subsective, like in deep thinker)

3See Appendix A for further analysis.
4We used the en_core_web_lg model.
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Hypernyms We used Wordnet (Fellbaum, 1998)
via the NLTK API to collect nouns’ hypernyms.
We first filtered out AN phrases that were poten-
tially mislabelled by Spacy as containing a noun,
by searching for noun synsets. We then queried
Wordnet for hypernyms of the noun (hyps(N)), up
to a maximum path distance of 3 and always fol-
lowing the first synset. For AN phrases contain-
ing an intensional (O) adjective, this procedure
was limited to direct hypernyms (i.e. hypernyms
with path distance 1 from the noun). This is to
mitigate the fact that IT 2 and 3 inferences might
not be always false/true for this class of adjectives.
As an example, consider the phrase alleged thief.
In line with our previous discussion, alleged thief
is_not_a thief and alleged thief is_a alleged
criminal. However, as we move up the hypernym
hierarchy, we find alleged thief is_a person, and
alleged thief is_not_a alleged person.

We then filtered out any hypernyms that were al-
ready in bigram or multi-word-expressions (MWE)
form. Although they present an interesting resource
for future investigation, here we focus on the set of
unigram hypernyms, to control more precisely the
automatic construction of items and mitigate the
possibility of including idiomatic phrases. Lastly,
test items were further restricted to instances con-
taining nouns occurring at least once within each
adjective class. This was done to control for re-
sults determined solely by possible strong/weak
noun–adjective associations.

Inference Types Once the hypernyms (hyps(N))
for each AN were collected, we automatically con-
structed all possible positive (✓) and negative (✗)
items following the rules presented in Table 1. This
converts triplets of the IT <A, N, h(N)> where
h(N) ∈ hyps(N) into triplets of the IT < c1, c2,
label> where c1 is the AN phrase, c2 is one of
N, h(N) or Ah(N) and label indicates whether an
entailment holds between c1 and c2.

The final PLANE dataset contains 312 unique
adjective, ∼7800 unique nouns and approximately
1.9M unique inference items. The complete bench-
mark and code for the experiments are openly avail-
able5

4 In–Context Learning

In this section we investigate the ability of multi-
ple LLMs to solve compositional entailment with-

5https://github.com/lorenzoscottb/
PLANE

out any target training. To do so, we adopt an In-
Context learning paradigm. With a similarly aim,
Hanna and Mareček (2021) evaluated a model’s
performance on LE by testing if it was able to un-
mask a prompt P such as “A x is a [MASK]" with a
correct hypernym of x. Given the phrasal nature of
our investigation, we structure our prompts to ask
the model whether a particular instance is a positive
(✓) or negative (✗) example of an entailment pair.

Results from Hanna and Mareček (2021) and
preliminary Zero-Shot experiments (See Appendix
B.1) suggest the performance of a model may be
largely affected by its lack of understanding of
the task, or particular words in the prompt. Thus,
we experiment with a Two-Shot NLI-like format,
providing models with some solved examples and
background knowledge about entailment, involving
the lexical items in the hypothesis. More specifi-
cally, we adopt a prompt P consisting of two ‘la-
belled’ premises and one ‘unlabelled’ hypothesis,
e.g.,:

p1 : A big car is a good example of a car.

p2 : A big car is a poor example of a big vehicle.

h : A big car is a [MASK] example of a vehicle.

As in the example, each of the three components
of P (i.e. the two premises and the hypothesis)
has a unique inference type (IT). We structure the
prompts in this way for two reasons: i) to indepen-
dently study each <A, N, h(N) > triplets generat-
ing every < c1, c2,label >; ii) investigate if a
context that facilitate the identification of an adjec-
tive’s class, also yields better performances. In the
example above, even if a model has no knowledge
on the adjective big, but knows how subsective
(S) adjectives work, it can directly infer from the
premises the class of big, and, hence, the correct
label for the hypothesis. However, if p2 and h
were inverted, the only way a model could solve
the instance would be knowing how subsective ad-
jectives work and that big is subsective. Lastly,
to investigate potential recency effects of the two
premises, we query each model with the presented
prompt and one with inverted p1 and p2. For exam-
ple, given a hypothesis with IT 3, we consider both
premises with IT 1,2 and premises with IT 2,1.

Since P contains labelled examples, models can
observe the expected label within the given sam-
ple. We hence define a set of label’s verbalisers
for positive (✓), and one for the negative (✗) labels.
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Internal External
p1,2 A {c1} is a {verbaliser} example of a {c2}. A {c1} is a type of {c2}:{verbaliser}.
h A {c1} is a [MASK] example of a {c2}. A {c1} is a type of {c2}:[MASK].

Table 2: Prompt templates (PT). The two premises (p∗) – hypothesis (h) structures used in the Two–Shot experiment.
c1,2 refer to the head and tail components of a given inference type (IT) (see Table 1 for reference).

We experiment with two prompt templates, and
three label verbalisers, presented in Table 2 and
3 respectively. Given a prompt P, its label l, we
define the task as the ability of an LLM to generate,
as first prediction for the [MASK], the token t that
corresponds to the correct verbaliser for l. Perfor-
mance is computed via F1 score, since it is possible
that t will be different from either of the correct
verbalisers.

✓ ✗

GP good poor
TF true false
PN positive negative

Table 3: Labels’ verbalisers. Tokens used to verbalise
positive (✓) and negative (✗) labels in the Two–Shot
experiment.

Selected Models We focus on three families of
Transformer networks: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and Distillation based
(Sanh et al., 2019) (i.e. DistillBERT and Distill-
RoBERTa). For RoBERTa and BERT, we consid-
ered both base and large models (cased for BERT).
Models for this and later experiments were all im-
plemented via Hugging Face (Wolf et al., 2020).
All experiments were run on a NVIDIA GeForce
RTX 3090.

Results Results from individual models are pre-
sented in Table 4, divided by adjective classes.
Overall, the performance is fairly poor, with all
models presenting low average scores, and remark-
able variances across classes. As discussed below,
part of this is surely generated by the different ver-
balisers and prompt templates adopted in the ex-
periment. However, a non-irrelevant part of this
variance seems to be directly explained by the ad-
jective class itself. As we can see, all models fol-
low the trend in results associated with each class,
finding intersective (I) adjective examples easiest,
followed by intensional (O) and then subsective (S).
Indeed, the first might not come as a surprise, es-
pecially as I adjectives are always associated with
a positive label. Yet the fact that rare and anoma-

lously–behaving adjectives such as the intensional
(O) ones seem to be easier to deal with than subsec-
tive (S), the predominant class in human language,
is more unexpected.

PT and verbaliser analysis Across models,
prompt templates (PT) and verbalisers have re-
markably differed effects on each class and IT (see
Figure 6 in Appendix B.2 for summary). Most
PT–verbaliser combinations yield almost flawless
performances on intersective (I) adjectives, suggest-
ing LLMs are generally keen to choose the same
label appearing in both premises. In this class, the
variance derives almost entirely from the PN ver-
baliser. As intersective adjectives are associated
just with positive (✓) labels, this evidence suggest a
possible association of PN with negative solutions.

Results from subsective (S) items point to simi-
lar conclusions. First of, almost all PT–verbaliser
combinations struggle to solve instances where the
hypothesis has IT 3. That is, when the hypoth-
esis presents the opposite label to both premises.
Moreover, PN seems to be again associated with
a tendency towards negative labels, especially if
combined with the External PT. Such combina-
tion is the only one improving the performance on
IT 3, but severely damages all other inferences.

In intensional (O) adjectives, where most IT have
negative (✗) labels, this association partially affects
the TF verbaliser too. However, most models still
fail where the hypothesis has opposite label to both
premises (IT 3). Overall, this suggests that, when-
ever presented with premises sharing the same la-
bel, regardless of which, models tend to overcome
possible internal associations, and opt to repeat the
presented label.

Concluding, we note conflicting observations
on the recency effect, expected to emerge when
p2 and h share the same label (see Figure 7 in
Appendix B.2). The effect has a mostly positive
impact on the GP verbaliser (in S and O classes),
but contradictory effects on the others, especially
PN.
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Adj. Class BERT-base BERT-large DistillBERT DistillRoBERTa RoBERTa-base RoBERTa-large
I 69.9 ± 38 78.2 ± 34 70.9 ± 36 83.79 ± 32 97.6 ± 5 99.4 ± 1
S 40.1 ± 36 48 ± 36 34.4 ± 40 19.6 ± 27 38.3 ± 32 41.4 ± 42
O 59.3 ± 40 54. 4 ± 37 52.6 ± 46 61.6 ± 40 48.1 ± 34 44.8 ± 38
Average 56.5 ± 40 60.2 ± 43 52.6 ± 43 55 ± 42 61.3 ± 37 61.9 ± 42

Table 4: Two–Shot learning results. Mean F1 scores (± standard deviation, obtained collapsing prompts’ and
verbalisers’ results) of individual models on the Two–Shot learning experiment, divided by adjective class.

5 Transfer Learning

Evidence from Section 4 suggest In–Context learn-
ing is too susceptible to internal correlations and
biases to be reliable. Since models trained to clas-
sify text for entailment are very popular, we next in-
vestigate whether tuning a LLM for sentence level
entailment can provide enough information to reli-
ably solve phrase-level entailments from PLANE.
For comparison, we re-use the same test from the
Two–Shot experiment, re-framing the task as a
standard NLI text classification. We replace the
standard premises-hypothesis input sentences with
a < c1,c2 > pair, and evaluate a model’s perfor-
mance in classifying each scenario as presenting
an entailment or not. We adopt F1 scores, since, in
contrast to PLANE’s binary classification, NLI also
has a third label (2). This label, often referred to as
neutral or UNK, usually denotes instances where an-
notators could not agree on the presence or absence
of entailment (1).

Selected Models In the experiment, we use Liu
et al. (2019) and Nie et al. (2020) RoBERTa mod-
els, both fine-tuned to run NLI-like tasks, and
a RoBERTa-base model we tuned on the Ad-
dOne benchmark from Pavlick and Callison-Burch
(2016). As mentioned, AddOne was designed to
study AN composition in the context of full sen-
tences, using premises and hypothesis that differ
by a single adjective.

Results Table 5 summarises the results, which
appear contrasting. Nie et al. (2020)’s performance
is fairly in line with average results of RoBERTa
models in the Two–Shot setting (see Table 4). How-
ever, in this setting, subsective (S) items seem to
obtain a far better performance, especially with re-
spect to intensional (O), suggesting a strong shift
towards positive solutions. On the other hand, it
appears NLI tuning had a negative impact on Liu
et al. (2019)’ model. The very high performance
observed for intensional adjective strongly suggest
a strong preference for contradiction label, as sug-

gested by the error analysis (see Figure 9 in C.1
for visual summary. As for the model tuned on
AddOne, the same analysis confirmed that the poor
performance across the board depends on a strong
preference for neutral labelling. Interestingly, we
found that all models share a pattern of predictions
for neutral (2) labels (see Figure 9 in C.1 for visual
summary). When presented with subsective (S)
adjectives, neutral mislabelling is more frequent
with positive items, whilst the opposite is true for
intensional (O) ones.

Adj. Class Liu et al. 19 Nie et al. 20 AddOne
I 17.1 90.3 35.9
S 24.1 58.8 32.2
O 57.4 31.1 25.5
Average 32.8 60 31.2

Table 5: Testing NLI models results. F1 scores, di-
vided by adjective class, of RoBERTa models tuned on
different NLI benchmarks, and tested on phrase-level
entailment. The test set consists of PLANE items used
in the Two–Shot experiment.

Variance analysis As mentioned in the introduc-
tion, multiple work (e.g. Dasgupta et al. (2018);
McCoy et al. (2019)) have shown how biases can
arise from syntactic structures. To investigate if
the structure of an instance (i.e., the IT) has an im-
pact on each model’s performance, we investigate
the results divided by adjective class and ITs. The
results are summarised in Figure 1.

First off, the image clearly shows the preference
of Liu et al. (2019) for negative labels and Nie
et al. (2020) for positive ones. Interestingly, we
can also see how, at least for these two models,
these preferences are strongly accentuated under
inference type 1. This effect could be related to
the lexical overlap heuristic described in McCoy
et al. (2019). This heuristic refers to those instances
where the hypothesis (h) contains multiple words
from the premise (p), especially within its first to-
kens. Inference type 1 (i.e. AN |= N) could elicit
this bias since h is simply a partial repetition of p.
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Figure 1: Transfer–Learning variance analysis. Visualisation of the variance observed in different models tuned on
NLI-based datasts (column), with respect to each adjective class (hue) and inference type (x axis).

However, McCoy et al. (2019) found that in MNLI
(Williams et al., 2018) – Liu et al. (2019)’s training
data – such heuristic was mainly associated with
a positive label, which is in contrast with our re-
sults. It would however partially explain why this
behaviour is not expressed by the model trained
on AddOne, where the lexical overlap is close to
100% by design, so that a model can not use the
heuristic at all. Lastly, it is worth noting how in the
model trained on AddOne, subsective (S) adjective
display an almost specular pattern to intersective (I)
and intensional (O). Observing opposite patterns
between S and O is not surprising, as they have op-
posed labels with respect to each IT (see Table 1).
What is unexpected is that I adjectives, always asso-
ciated with positive labels, produce results almost
identical to those of O, where only IT 3 presents a
positive label.

6 Supervised Learning

As suggested in McCoy et al. (2019), and sup-
ported by preliminary experiments (see Appendix
D), drawing the test set from the same distribu-
tion of the train set likely over–simplifies the task
for LLMs. Hence, to study the performance of
a model in a supervised setting, we focus on it’s
ability to generalise out of distribution (GOoD).
Furthermore, we conducted an experiment using
a setting where structural cues as the inference
types (IT) have been removed (One–IT). As LLMs’
vocabularies contain a significant amount of sub-
words (SW) tokens, together with word tokens,
we provide an analysis on the impact of SWs on
the model’s performance. Following the work of
Hanna and Mareček (2021), Do and Pavlick (2021),
Apidianaki and Garí Soler (2021), we focus the su-

pervised experiments on a BERT-base model.

6.1 Generalise Out of Distribution (GOoD)
We use PLANE to generate splits where the vocab-
ularies (i.e. adjective, noun, and hypernyms) used
in the training and test set do not overlap. That is,
each adjective, noun, and hypernym is unique to
either the train or the test set. We frame the task
as a sequence classification. Following preliminary
experiment (see Appendix D), input length is set
to 12. We collect 5 different (and openly available)
train–test splits, and train the model for 1 epoch.
Results are displayed in the left column of Table 6.

Compared to previous results, the performance is
strong, remarkably more stable, and is well above
chance. The training regime still contains potential
structural biases (the ITs), that can facilitate the
solution. Yet those cues are useless if not correctly
combined with the class of an adjective. Given that
single word memorisation is excluded by design,
one could assume an effect of pre-training. How-
ever, this seems unlikely, given earlier results. An-
other possibility is that inferences are being made
which rely in some way on the constituent subword
(SW) tokens of otherwise unseen lexical items.

Training Setting GOoD One–IT
Accuracy .85 ± .05 .86 ± .01

Table 6: Fientuning results. Accuracy (mean ± stan-
dard deviations) obtained by BERT, when finetuned on
different PLANE–generated splits, in the full generalise
out of distribution (GOoD) and One–IT GOoD setting.

Subwords analysis To study the impact of sub-
words, we compute the accuracies obtained in each
test split by BERT, divided by adjective class, and
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compare them against the percentage of test in-
stances containing SWs. The results are displayed
in Figure 2.

Figure 2: Subword (SW) analysis in GOoD training
setting. Analysis of the relation between the amount of
sequences containing WP and the accuracy obtained by
BERT in each of the five GOoD test splits, divided by
adjective class.

We begin noticing that each class seems to clus-
ter around fairly specific SW ratios, which might al-
ready facilitate the correct classification of a given
input. In sequences with subsective (S) adjectives,
SWs are actually all related to nouns and/or hy-
pernyms. This seems to create strong biases that,
in the absence of SWs in the adjective position,
would suggest to the model that the adjective is
subsective, and, hence, the solution. The negative
impact that subwords have on S instances might be
further explained by the fact that up to 60% of the
N/h(N) SWs set overlaps with SWs used in I and 0
adjectives.

A similar overlap also affects intensional (O) ad-
jectives. Up to 65% of adjective subwords overlap
with the subwords (SW) used by nouns and hyper-
nyms, and circa 28% also overlap with SWs used
for I adjectives. This suggests that, although mini-
mal, an increase in subwords could help the model
to identify the correct class of an instance.

Intersective (I) adjectives present the highest ra-
tio of subwrds. Despite the set of adjectives and
nouns/hypernyms SWs have similar length, the
overlap is very low – between 10 and 7%. This
would allow the model to directly exploit SWs to
deduct the correct class of an adjective.

6.2 One–IT

The test sets from previous experiment still con-
tained structural cues (ITs) that could assist the
model. To study the impact of those cues, we col-
lect new training and test sets, using solely IT 3.
We focus on IT 3 as it is the only subset of PLANE
where intersective and subsective adjectives, the
two largest classes, present opposite labels. Simi-
larly to previous experiment, we balance the num-
ber of positive and negative labels, and assure that
nouns and hypernyms do not act as cues. We sam-
ple five train-test splits, and train with same settings
of previous experiment. Results are presented in
the right column of Table 6.

The absence of structural cues yields very sim-
ilar results to the ones from previous experiment,
with lower standard deviation and seemingly more
stable. Results divided by single split and classes
are displayed in Figure 3. SW analysis is also car-
ried out for this training regime, adopting the same
setting as in Section 6.1.

Subwords analysis In this setting, Intersective
(I) adjectives reached a lower performance, and
present a weaker correlation between accuracy and
SW ratio. A possible explanation involves the large
overlap – circa 50% – in the set of SWs used for
adjectives and nouns/hypernyms. Furthermore, the
number of instances with and without SWs are
remarkably similar, making it potentially difficult
to use subwords’ presence as cue.

Figure 3: Subword (SW) analysis in One–IT training
setting. Analysis of the relation between the amount
of sequences containing WP and the accuracy obtained
by BERT in each of the five One–IT GOoD test splits,
divided by adjective class.

In this experiment, we did found a set of subsec-
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tive (S) adjectives containing subwords. However,
this set is very small, so the absence of SWs in the
adjective position could bias the decision towards
negative (✗) labels. Such minimal increase could
however act as distractor, explaining the steeper
slope of the regression (orange) line.

Once again, O class has the most marked inter-
action between accuracy and SW ratio. However,
in this case, instances with a SW ratio similar to S
items do not seem affected. A possible explanation
is the very restricted set of SWs (33) used for these
adjectives. This smalls set could facilitate an ad-
jective’s classification, hence producing a correct
solution.

7 Discussion and Conclusion

Adjectives can be grouped in three macro classes.
From a logical and linguistic perspective, these
classes shape the truth value of a lexical entail-
ment (LE) pair as dog |= animal in multiple ways,
depending on the class and the structure of said
inference, as presented in Table 1. This versatility
provides a valuable resource to study composition
and inference with great detail and control, but was
often oversimplified. As previous evidence suggest
large language models (LLM) are able to retain
word-level entailment information (Petroni et al.,
2019; Hanna and Mareček, 2021), we designed a
resource to study if LLMs can tackle fine–grained
compositional inference, with AN entailment.

Results based on In–Context learning suggest
that LLMs’ performance is too unstable, and fre-
quently relying on pre-existing word associations
or labelling patterns. Conclusions are not so dif-
ferent with models tuned to classify text for en-
tailment. As Section 5 strongly suggests, after
tuning a model for sentence–level inference, the
knowledge is hardly transferable to the same task
at phrase level. These evidence are likely con-
nected to how AN phrases behave within the context
of fully formed sentences (Pavlick and Callison-
Burch, 2016). From a logical stand, Japanese
economy |= economy. Yet, given a sentence as
“Bush travels Monday to Michigan to make remarks
on the Japanese economy."6, potential annotators
might say it does not entail “Bush travels Monday
to Michigan to make remarks on the economy.".
Of course this and similar scenarios are influenced
by complex commonsense and pragmatical knowl-
edge. Yet this opens interesting questions on how

6Example from Pavlick and Callison-Burch (2016)

AN phrases in and out of context are related to each
other, whether a model should be able to correctly
reason over both, and, most importantly, what can
we do to make that happen.

Experiments with supervised learning and
out–of–distribution test sets suggest that a LLM
such as BERT can become robustly efficient, even
in absence of structural cues. Our results strongly
suggest that the solution is aided by subwords (SW)
tokens. Aside from leaking some information to
the test set, SW might create biases related to how
they distribute in different adjective classes. This
solution is computationally efficient and effective,
but might pose some limits. This solution is sim-
ple, computationally efficient and effective. How-
ever, it is unlikely that it provides a theoretically
sound model of natural language from the per-
spective of composition, especially since SW are
rarely morphologically grounded (Hofmann et al.,
2021, 2022). From a practical perspective, it also
poses questions as to how we should define out-of-
distribution sets when working with LLMs.

To conclude, we introduced PLANE, an exten-
sive annotated resource to train and test models
on compositional phrase-level entailment, using
adjective-noun phrases. We provided evidence that
knowledge learnt via pre-training or NLI tuning is
insufficient to solve the task, and showed how, in a
supervised setting, a model like BERT can learn to
generalise out of distribution examples, adopting
strategies connected to SW tokens. Future work
will focus on extending In–Context learning to au-
toregressive LLMs, using PLANE to evaluate LE
models on composition, and investigate a three-way
or probabilistic labelling system.

Ethical and Broader Impact Statement

As the work has a mainly theoretical focus, authors
do not foresee a significant ethical issue related to
the set of experiment. However, we note that a num-
ber of intersective (I) adjectives refer to nationality
(e.g. English, Italian, Japanese) and religious faith
(e.g. Christian, Jewish). It is possible that phrases
containing biases and/or stereotypes contained in
the WikiDump we adopted might have accidentally
ended up in the final version of PLANE. As for the
broader impact, we believe our work makes two
key contributions: i) offers a tool to investigate in
grater detail adjective-noun phrases with respect
to inference; ii) provides analyses and evidences
in support of the need of taking into account the
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distinction between adjective classes, as they pose
clearly different challenges to the tested models.
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BERT’s knowledge of hypernymy via prompting. In
Proceedings of the Fourth BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 275–282, Punta Cana, Dominican Repub-
lic. Association for Computational Linguistics.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich
Schütze. 2021. Superbizarre is not superb: Deriva-
tional morphology improves BERT’s interpretation
of complex words. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3594–3608, Online. Association for
Computational Linguistics.

Valentin Hofmann, Hinrich Schuetze, and Janet Pierre-
humbert. 2022. An embarrassingly simple method
to mitigate undesirable properties of pretrained lan-
guage model tokenizers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 385–393,
Dublin, Ireland. Association for Computational Lin-
guistics.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1373–1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

4093



Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2016. A
compositional distributional inclusion hypothesis. In
Proceedings of the 9th International Conference on
Logical Aspects of Computational Linguistics. Cel-
ebrating 20 Years of LACL 1996—2016 - Volume
10054, LACL 2016, page 116–133, Berlin, Heidel-
berg. Springer-Verlag.

Neha Nayak Kennard, Mark Kowarsky, Gabor Angeli,
and Christopher D. Manning. 2014. A dictionary of
nonsubsective adjectives.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations.

Thomas Kober, Julie Weeds, Lorenzo Bertolini, and
David Weir. 2021. Data augmentation for hypernymy
detection. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 1034–1048,
Online. Association for Computational Linguistics.

Mathias Lalisse and ash Asudeh. 2015. Distinguishing
intersective and non-intersective adjectives in com-
positional distributional semantics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Bill MacCartney and Christopher D. Manning. 2008.
Modeling semantic containment and exclusion in nat-
ural language inference. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics (Coling 2008), pages 521–528, Manchester, UK.
Coling 2008 Organizing Committee.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 216–223, Reykjavik, Iceland. European Lan-
guage Resources Association (ELRA).

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

John P. McCrae, Francesca Quattri, Christina Unger, and
Philipp Cimiano. 2014. Modelling the semantics of
adjectives in the ontology-lexicon interface. In Pro-
ceedings of the 4th Workshop on Cognitive Aspects

of the Lexicon (CogALex), pages 198–209, Dublin,
Ireland. Association for Computational Linguistics
and Dublin City University.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Ellie Pavlick and Chris Callison-Burch. 2016. Most
“babies” are “little” and most “problems” are “huge”:
Compositional entailment in adjective-nouns. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2164–2173, Berlin, Germany. Associ-
ation for Computational Linguistics.

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent
disagreements in human textual inferences. Transac-
tions of the Association for Computational Linguis-
tics, 7:677–694.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. In Proceedings of the Seventh Joint Confer-
ence on Lexical and Computational Semantics, pages
180–191, New Orleans, Louisiana. Association for
Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Yulia Tsvetkov and Shuly Wintner. 2011. Identification
of multi-word expressions by combining multiple lin-
guistic information sources. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 836–845, Edinburgh,
Scotland, UK. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Aline Villavicencio, Valia Kordoni, Yi Zhang, Marco
Idiart, and Carlos Ramisch. 2007. Validation and
evaluation of automatically acquired multiword ex-
pressions for grammar engineering. In Proceedings

4094



of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages
1034–1043, Prague, Czech Republic. Association for
Computational Linguistics.
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A PLANE: PMI analysis

To further control for non—compositional items,
we performed a PMI analysis on PLANE’s phrases.
Tsvetkov and Wintner (2011) showed how higher
values of PMI can indicate the presence of a
multi–word–expression (MWE), whilst values be-
low zero tend to refer to words that should not
really co-occur. Villavicencio et al. (2007) com-
pared the probability distributions of PMI scores
from a set of MWE and non—MWE n—grams.
The results showed how the distribution of MWE
was significantly more skewed towards the upper
bound, whilst non—MWE would distribute more
normally across observed scores. The distributions
of PMI scores of PLANE’s phrases, divided by
adjective class, are presented in Figure 4.

Figure 4: PMI scores by adjective class. Distribution
of the PMI scores for each adjective–noun phrase in
PLANE.

The median values of all three classes are no-
tably distant from 0 and upper–bound outliers.
Phrases containing intersective (I), and subsective
(S) adjectives have a strikingly similar distribu-
tions, skewed towards higher values. On the con-
trary, phrases built with intensional (O) adjectives
present a slightly lower average PMI score, and ap-
pear more evenly distributed. A manual inspection
of a subset from phrases with a PMI equal to or
higher than 15 didn’t identify any idioms or MWE.
The same observation holds for the circa 0.1% of
phrases with a score equal to, or lower than, 0.

B In–Context Learning

B.1 Zero-Shot Preliminary experiment
As in Section 4, our preliminary Zero–Shot ex-
periment focused on an unmasking problem. We
adopted the same prompt templates of Table 2.

However, in this case no contextual examples were
included within each prompt, so models were not
expose to either of the possible labels’ verbalis-
ers. We hence built a conversion table V by manu-
ally collecting sensible tokens from the set of com-
monly retrieved ones. Table 7, present the collected
conversion table V, mapping potential verbalisers
to the positive (✓) and negative (✗) labels.

✓ ✗

good poor
true false

positive negative
great bad

possible impossible
plausible implausible

acceptable unacceptable
strong weak

Table 7: Verbalisers adopted for positive (✓) and nega-
tive (✗) samples in the Zero–Shot experiment.

Results Results divided by adjective class and
model are presented in Table 8. RoBERTa models
appear to perform the best, showing also the least
amount of variance between the base and large vari-
ation of the model. BERT models are the second
best performing family. Interestingly, BERT-base
seems to outperform its large counterpart. Distilla-
tion based models clearly produce the worse results
across the all board. Ignoring DistilBERT, results
appear to follow the same pattern: performance is
the highest on the intersective (I) class, followed
by subsective (S) and then intentional (O).

Prompt template analysis Results in Figure 5
provide the mean F1 performance divided by ad-
jective class (coloured lines), forms (x axis), and
prompt template (PT, column). Error bars refers
to standard deviations, and illustrate the variance
produced by collapsing each model’s performance.

As it can be clearly appreciated by the Figure,
the vast majority of the variance can be attributed
to the prompt template (PT). Whilst under the
Internal PT models where partially able to in-
terpret the given task, the External PT made
it almost impossible to produce a correct predic-
tion. Lastly, the fact that, regardless of PT and
adjective class, ITs associated with negative labels
shows a performance close to zero strongly suggest
that, without contextual information, most models
strongly prefer positive solutions.
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Adj. Class BERT-base BERT-large DistilBERT DistilRoBERTa RoBERTa-base RoBERTa-large
I 35.8 ± 25.2 24.1 ± 16.9 7.8 ± 5.4 5.3 ± 3.7 42.5 ± 29.9 42.2 ± 29.8
S 21.9 ± 14.8 13.9 ± 9.2 8.3 ± 5.6 5.0 ± 3.5 23.1 ± 16.2 23.1 ± 16.3
O 5.9 ± 2.2 6.4 ± 1.5 3.3 ± 1.3 1.8 ± 0.3 8.6 ± 4.9 7.9 ± 5.2
Average 21.2 ± 14.1 14.8 ± 9.2 6.5 ± 4.1 4.0 ± 2.5 24.7 ± 17.0 24.4 ± 17.1

Table 8: Zero–Shot learning results. Individual model’s performances (mean F1 ± standard deviation from prompt
template (PT)), divided by adjective class.

Figure 5: Variance analysis of the Zero–Shot experiment. The graph displays the mean F1 and standard deviation
(bars, obtained by collapsing models’ performance) obtained on different adjective classes. X-axis refers to the
inference type (IT) of the test-items.

B.2 Two-Shot: visualising variance and
recency effect

The analysis on the variance generated by prompt
templates (PT) and verbalisers is presented in Fig-
ure 6. Mean F1 performance is provided, collapsed
by models’ and premises’ permutations 7. Each
column represent an adjective class (I, S and O,
respectively), whilst the rows identify the two PT:
Internal and External, respectively (see Ta-
ble 2).

Figure 7 present the results in further detail,
divided by single permutations of a sequence’s
premises to visualise possible recency effect.

C Transfer Learning

C.1 visualisation of error analysis

The section provides a visual summary of the error
analysis in Section 5 via Figure 9.

D In–Distribution Compositional
Generalisation

The In–Distribution generalisation experiment
presents the same setting as Section 6, with fun-
damental difference that test set do not contain

7That is, when testing items with hypothesis of IT 3, we
combine results for premise with IT sequences 1,2 2,1.

out–of–distribution items. Following Keysers et al.
(2020)’s notation, given a dataset, we identify a
set of atoms, single words (i.e., adjectives, nouns,
hypernyms) and inference types (IT), and a set of
compounds, which are combination of these three
elements. Hence, for this experiment, we generated
training and test splits with overlapping atoms, and
disjoint compound distributions. Results in term
of accuracy against maximum sequence length are
presented in Figure 8.

First, cutting the maximum length of the input
sequence to 6 tokens produces chance–level perfor-
mance. As two–third of test items are composed
of only 6 words, this suggested that: i) a consistent
portion of the input sequences gets split into Word-
Pieces (WP); ii) our splitting algorithm successfully
generated sets without biases or c1–label asso-
ciation the model could use to solve the task. As
soon as input sequence length reaches 12, the task
becomes, as predictable, trivial. WP might still
play a minor role – accuracy is still not 1 with se-
quence length of 8). However, since the atoms, and
the adjectives especially, are shared between train
and test, the model technically has all the informa-
tion need to infer the correct label: combining the
adjective with inference type (IT)
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Figure 6: Variance analysis of the Two–Shot experiment. Each graph displays the mean F1 and standard deviation
(shown via error bars, generate by collapsing models’ performance) obtained by different verbalisers, on a specific
combination of prompt template (rows) and adjective class (columns). X-axis refers to the inference type (IT)
presented in the hypothesis of the test-items.

Figure 7: Variance and recency effect analysis of the Two–Shot experiment. Each graph displays the mean F1
and standard deviation (shown via error bars, generate by collapsing models’ performance) obtained by different
verbalisers, on a specific combination of prompt template (rows) and adjective class (columns). X-axis refers to the
inference type (IT) sequence presented in the test-items.
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Figure 8: In–Distribution generalisation results. Impact
of the input sequence length on accuracy in the compo-
sitional generalisation experiment.
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(a) Liu et al. (2019)

(b) Nie et al. (2020)

(c) AddOne

Figure 9: Testing NLI models error analysis’. Confusion matrices of the three RoBERTa models tuned on different
NLI benchmarks, and tested on PLANE instances from the Two-Shot experiment.
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Abstract

Contextual embeddings build multidimensional
representations of word tokens based on their
context of occurrence. Such models have been
shown to achieve a state-of-the-art performance
on a wide variety of tasks. Yet, the commu-
nity struggles in understanding what kind of
semantic knowledge these representations en-
code. We report a series of experiments aimed
at investigating to what extent one of such mod-
els, BERT, is able to infer the semantic relations
that, according to Dowty’s Proto-Roles theory,
a verbal argument receives by virtue of its role
in the event described by the verb.

This hypothesis were put to test by learning
a linear mapping from the BERT’s verb em-
beddings to an interpretable space of seman-
tic properties built from the linguistic dataset
by White et al. (2016). In a first experiment
we tested whether the semantic properties in-
ferred from a typed version of the BERT em-
beddings would be more linguistically plausi-
ble than those produced by relying on static
embeddings. We then move to evaluate the se-
mantic properties inferred from the contextual
embeddings both against those available in the
original dataset, as well as by assessing their
ability to model the semantic properties pos-
sessed by the agent of the verbs participating
in the so-called causative alternation.

1 Introduction

In the last two decades, word embeddings have
become one of the most widely used tools for the
encoding of lexical meaning in computational mod-
els of language. Different flavours of such models
have been proposed, all of which have in common
the idea of representing lexical elements as multi-
dimensional vectors inferred from their context of
occurrence (for a review, see Lenci, 2018).

The last wave of word embeddings followed the
transformer-based models breakthrough (Vaswani
et al., 2017), that resulted in the development of the
so-called contextual embeddings. These represen-
tations are generated by models like BERT (Devlin
et al., 2019) or GPTs (Radford and Narasimhan,
2018; Radford et al., 2019) and derive their name
by their ability to keep track of the different con-
texts in which a word occurs, giving different vec-
tor representations for the same word appearing
with different surrounding neighbours (for review,
see Liu et al., 2020; Ethayarajh, 2019). This has
been a major improvement over static embeddings
obtained from models such as LSA (Landauer and
Dumais, 1997), GloVe (Pennington et al., 2014)
and Word2Vec (Mikolov et al., 2013), allowing
this kind of representation to reach state-of-the-art
performance in a great variety of Natural Language
Processing (NLP) tasks.

Notwithstanding their wide usage, mainly due
to their great empirical successes, the community
still struggles to understand what kind of informa-
tion word embeddings are actually able to encode
about language structure, and how they do it. The
problem has been even sharpened with contextual
embeddings, which are considered to be more en-
tangled representations, usually bigger in dimen-
sions than previous versions, and are obtained from
deeper neural models, whose inner working is more
complex. Due to this fact, to better understand and
explain what kind of structure these models are
able to represent is becoming more and more desir-
able and several research lines started to spring out
with this purpose. To the present days the encoding
of syntactic knowledge in these model has been
more studied than their ability to deal with seman-
tic facets of language (Rogers et al., 2020), but the
number of studies in that direction, usually carried
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out by means of probing tasks developed on top of
pre-trained architectures (Vulić et al., 2020), is also
growing (Chersoni et al., 2021; Ettinger, 2020).

In the present paper we focus on the modelling
of the semantic content of what Dowty (Dowty,
1989, 1991) labelled as Thematic Proto-Roles,
that are clusters of entailment properties that an
arguments derives solely by virtue of its role in the
event described by a predicate. Following previous
work by Lebani and Lenci (2021) we use a linear
transformation mapping between embeddings of
verbs represented in BERT’s space and a set of in-
terpretable vectors derived from the Universal De-
compositional Semantics Dataset on Proto-Roles
properties (White et al., 2016), in which human
ratings about argument properties have been an-
notated and collected. However, the present work
differs from Lebani and Lenci (2021) under several
respects: i.) we deal with contextual embeddings,
focusing on those yielded by BERT, ii.) we exper-
iment with representations at the token-level, iii.)
we successfully apply sPCA as a de-noising tech-
nique, iv.) and we qualitatively address the phe-
nomenon of the causative-inchoative alternation,
for which the notion of Semantic (Proto-) Role is
crucially relevant.

The goal of this paper is twofold: i.) to test
whether the BERT contextual embeddings of a verb
encode semantic information concerning the Proto-
Role properties held by its arguments, and ii.) to
test whether this knowledge can be distilled by
means of a linear mapping, thus leading the way
to the development of full-scale systems able to
extract this knowledge for a wide range of verbs.

The following pages are organized as follows: in
Section 2, we quickly review the literature inves-
tigating the semantic content of vector representa-
tions, before discussing the notion of thematic role
and its empirical foundations. We describe and test
our method in Sections 4 and 5, respectively, while
Section 6 is devoted to a general discussion of the
merits and limitations of the use of the BERT’s
embeddings to model Proto-Role information.

2 The Semantics of Word Embeddings

Notwithstanding the wide usage of word embed-
dings in NLP and related fields, the literature trying
to characterize the semantic properties of these rep-
resentation is quite scarce. Concerning the efforts
in trying to understand whether and to what extent
thematic roles information is encoded in contex-

tual embeddings, Tenney et al. (2019b), (building
on works by Teichert et al., 2017 and Rudinger
et al., 2018) proposed a suite of classification tasks
aimed at investigating how these representation en-
code sentence structure across a range of syntactic,
semantic, local, and long-range phenomena. Cru-
cially, these authors report a very small improve-
ment over non-contextual baselines. Thematic role
information seems to be recoverable with this strat-
egy, but to an extent which is not that notable.

Ettinger (2020) tested BERT on a suite of diag-
nostics drawn from human language experiments,
among which the most relevant to our scopes is
the semantic role sensitivity and event knowledge
task, that tests the model ability to discern between
good and bad sentence fillers on the basis on the
required semantic role. Results showed that the
model is not that accurate at matching human pre-
dictions, even if some of the information appear
to be encoded. Klafka and Ettinger (2020) devel-
oped a suite of probing tasks with the aim of as-
sessing what kind of semantic information about
the surrounding words is encoded in a contextual
embedding. For instance, a task of this suite can
implement the question “What does the embedding
of the verb tell us about the animacy of the sub-
ject noun?” as a binary task for a MLP classifier
trained and tested on the embeddings of a single
word (Klafka and Ettinger, 2020, p. 4802). Rel-
evant for our purposes, these scholars report that
much information about subject’s animacy can be
recovered by inspecting the embedding of the verb.

However, our work is more strongly related, both
in goals and methods, to those by Fagarasan et al.
(2015), Utsumi (2020), Chersoni et al. (2021) and
above all to Lebani and Lenci (2021). All these
authors have used a linear transformation to learn a
mapping between an embedding space and a space
derived from human judgements. Fagarasan et al.
(2015) learned a mapping towards the short nor-
malized descriptions (feature norm) collected by
McRae et al. (2005) in order to learn to predict
perceptual features for novel words. Both Utsumi
(2020) and Chersoni et al. (2021) applied that strat-
egy to decode word vectors in terms of the brain
based semantic features collected in Binder et al.
(2016). Finally, Lebani and Lenci (2021) focused
on finding fine-grained Proto-Role information by
learning the mapping between several static embed-
dings and an entailment space based on the same
ratings we use in this experiment, i.e. the White
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et al. (2016) dataset that is introduced in the next
section. All in all, these works show that both con-
textual and static embeddings encode a wide range
of (psycho)linguistic relevant information that can
be inferred by means of a simple linear mapping.

3 Thematic Proto-Roles

Theories about the role played by the arguments
of the verb at the syntax-semantics interface have
come in many flavours. One of the most debated
and controversial matter in theoretical linguistics
concerns the definition of the notion of semantic
role and the development of a reliable method for
the identification of such categories.

In contrast with the traditional view of seman-
tic roles as discrete primitive semantic categories,
David Dowty proposed to reduce the total num-
ber of roles to two prototypical notions, which
he called Proto-Agent and Proto-Patient (Dowty,
1989, 1991). In Dowty’s view, roles are defined
by a set of entailments determined by the meaning
of the verb. Some properties contribute to charac-
terize an argument as Proto-Agent, while others as
Proto-Patient, but they can be present in different
degrees and in mixed configurations. These config-
urations correspond to classical intermediate roles
such as experiencer, theme, and so on.

This approach has some important advantages
over classical views of semantic roles, which have
always been in tension between the choice of the
right number of roles and the right mapping be-
tween grammatical and semantic role. Dowty’s
theory does not discard completely the possibility
of identifying a different role for each different
peculiar argument, placing a distinction between
specific roles and linguistic roles. While the former
are specific for each verb (e.g., to build has two
main arguments: the builder and the buildee), the
latter are generalizations aimed at capturing com-
mon traits about different specific roles. For exam-
ple builder, killer, worker, seller are all instances of
Proto-Agent, but all at a different degree.

Furthermore, concerning the selection of the ar-
gument, Dowty sets a straightforward rule in his
Argument Selection Principle stating that: "In
predicates with grammatical subject and object,
the argument for which the predicate entails the
greatest number of Proto-Agent properties will be
lexicalized as subject of the predicate; the argu-
ment having the greatest number of Proto-Patient
entailments will be lexicalized as the direct object."

(Dowty, 1991, p. 576). This claim received empiri-
cal validation on a cognitive perspective by Kako
(2006), among others. This scholar proved, through
a series of experiments, not only that the hypothesis
has psychological validity, but also that "speakers
can make inferences about these properties from
grammatical roles alone [...]" (Kako, 2006, p. 34).
Inspired by these findings Reisinger et al. (2015)
built a crowd-sourcing experiment to test the the-
ory against a large amount of data and substantially
confirmed the results by Kako (2006). The latter
approach has been the precursor of the dataset by
White et al. (2016) that we adopt here to build a
semantic space based on human judgments.

3.1 Human Judgements about Proto-Roles

As will be explained in more detail in Section 4, in
order to infer whether the BERT contextual embed-
dings are able to encode some information about
semantic roles, we studied the output of a map-
ping from the contextual embeddings of a group
of selected verbs and the ratings produced by a
group of speakers. In our experiment we rely on
the judgments collected by White et al. (2016).
This dataset was built by asking a group of native
speakers to read a series of sentences with a high-
lighted argument and to answer, on a five points
Likert scale, to a group of Dowty-inspired ques-
tions on the target argument. For example, to know
how plausible is for an argument to have a property
like awareness, the subjects were asked: "ARG
was/were aware of being involved in PRED?".

The paradigm used by White et al. (2016) was
developed from that described by Reisinger et al.
(2015). In the latter work the authors annotated sen-
tences from PropBank (Palmer et al., 2005) while
White et al. (2016) used the English Web Tree-
bank (Silveira et al., 2014), which is annotated
following the Universal Dependencies guidelines
(de Marneffe et al., 2021) and covers a greater va-
riety of genres. Furthermore, White et al. (2016)
revised the inventory of questions and the method
to present them and used redundant annotations.
The semantic decomposition principle behind the
whole paradigm is well suited to Dowty’s theory of
Proto-Roles, and vice-versa, due to their common
target of reducing semantics categories to smaller
dimensions of meaning. This reduction allows not
only linguists to better describe the categories, but
also naive speakers to understand the questions to
characterize the semantic roles.
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to affect 0 0.625 0 0.688 0.75 0.187

to amaze 0.25 0.25 0.25 1 0.708 0.792

to bring 0.922 0.422 0.828 0.562 0.472 0.319

to fill 0.875 0.25 0.875 0.5 0.875 0.562

to give 0.899 0.352 0.887 0.062 0.312 0.081

to ignore 1 0.875 1 0.75 0.5 0.125

to include 0.458 0.51 0.433 0.451 0.461 0.446

to kill 0.925 0.65 0.875 0.575 0.937 0.042

to put 0.833 0.492 0.84 0.275 0.75 0.11

to tell 0.99 0.357 0.959 0.968 0.561 0.714

Table 1: Portion of the entailment-based vector space (adapted from Lebani and Lenci (2021)).

4 General Methodology

Our ultimate goal is to probe the kind of distri-
butional knowledge encoded in contextual embed-
dings in order to assess whether BERT (and ar-
guable other models of the same family) is able to
encode Proto-Role semantic information. As such,
we opted for a methodology that has been tested
and proven in our reference literature (Fagarasan
et al., 2015; Utsumi, 2020; Chersoni et al., 2021;
Lebani and Lenci, 2021). Similarly to what has
been done by Lebani and Lenci (2021), indeed, we
created a linear mapping between a semantic space
composed of BERT embeddings and a vector space
derived from the ratings collected in the White et al.
(2016)’s Proto-Roles dataset.

Model We tested BERT (Devlin et al., 2019) in
its bert-large-cased version as released in
the Hugging Face python library (Wolf et al., 2019).
This deep encoder architecture has 24 layers, 1,024
hidden units per layer, 16 attention heads and a
total of 336M of parameters. It is pre-trained with
masked language modeling and next sentence pre-
diction tasks. As we want to know the semantic
properties that BERT encodes in its native repre-
sentations, we did not fine-tune the model.

Corpus The sentences annotated by White et al.
(2016) were extracted from the English Web Tree-
bank (Silveira et al., 2014) corpus, which is avail-
able in the Universal Dependencies repository.1

1https://universaldependencies.org/

From the training set of this corpus we extracted
a list of 2226 pre-tokenized sentences that were
later processed with BERT. From these sentences
we extracted only the verb embeddings either at
type or token level. For the type-level experiment,
verb vectors were averaged across different con-
texts (Bommasani et al., 2020)2.

Ratings-based semantic spaces We built differ-
ent rating-based semantic spaces for the type-level
and for the token-level analyses. For the type-level
analysis we followed Lebani and Lenci (2021) and
built a unique semantic space for both arguments,
as shown in Table 1. For the evaluation of the
token-level embeddings, on the other side, we built
different spaces for the nsubj and for dobj syn-
tactic roles, choosing to ignore the passive subjects
in order to remove excessive sparsity. The latter
procedure left us with 1972 token instances for
the nsubj space and 797 token instances for the
dobj space. The dimensions of these spaces corre-
spond to the 14 properties tested by the authors, as
ranked by annotators for each token. We indexed
each token with the id of its sentence, in order to
retrieve it and compare different occurrences of the
same verb type.

Learning Algorithm As a mapping strategy, in
the wake of previous works (Chersoni et al., 2021;
Fagarasan et al., 2015; Lebani and Lenci, 2021)

2We did not need to average between word pieces, as also
suggested in Bommasani et al. (2020), since we used sentences
that were pre-tokenized at the word level.
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we used the Partial Least Squares (PLS) regres-
sion implementation in the Scikit-learn Python li-
brary (Pedregosa et al., 2011), with the number of
components set to 10 and within a ten-fold cross-
validation. We evaluated the predicted vectors by
calculating its Spearman’s rank correlation with the
original ones, both row-wise and column-wise.

To check the quality of our model, we generated
a matrix for each experiment with values randomly
sampled from the interval [0, 1], shaping it like the
corresponding BERT space dimensions. We treated
the performance of the mapping learned from these
randomly generated spaces as a baseline.

5 Experiments

5.1 Experiment 1: Type-level

For the type-level analysis, we reproduced on
the BERT vectors the experimental settings as in
Lebani and Lenci (2021), mainly in order to obtain
a set of comparable results. The application of the
same filtering strategy resulted in a vector space
composed of 155 rows, one for each verb lemma,
and 41 columns, corresponding to features made
of <grammatical_function,property> pairs, which
were first aggregated by averaging between differ-
ent annotators judgments and instances of the same
lemma and than scaled to fit the range [0,1].

After constructing the BERT type embeddings
as described in Section 4, we moved on to learning
the mapping and, as we wanted to have a grasp of
the differences in performance across the whole
BERT model, we tested each of the layers averag-
ing between them in groups of four (e.g., layers 1-4,
layers 5-8, etc). Even if we weren’t able to identify
significant differences across groups, we found a
peak around the group of layers 13-16. We believe
that these results are consistent with the findings in
Tenney et al. (2019a), where it is shown that syntac-
tic and grammatical information (e.g., word order,
POS) is better encoded at lower layers, while se-
mantics features (e.g., semantic roles, coreference)
are better represented at higher layers, although
the latter seems to be more equally distributed than
the former across the whole model. Correlation
results for our best performing group of layers –
comprising layers 13-16 – are reported below in
Table 2, while scores for other groups can be found
in Table 3 in Appendix A. We obtained average
values directly comparable to the best performing
model found in Lebani and Lenci (2021), which
is a Skip-Gram model with negative sampling and

Model Row-wise Column-wise
BERT13_16 0.74 0.39

baseline_BERT 0.64 -0.07
SGNS.syn 0.71 0.31

baseline_SGNS 0.62 0.035

Table 2: Average Spearman’s scores for BERT, group
of layers 13-16, and SGNS.syn (the best performing
static model in Lebani and Lenci, 2021), with relative
baselines.

syntactic typing (SGNS.syn). All the groups of
layers we tested performed equally or slightly bet-
ter in absolute terms than the SGNS.syn used in
Lebani and Lenci (2021). In particular, our best
performing group of layers reaches average correla-
tion values of ρ = 0.74 row-wise (i.e., correlations
by verb) and ρ = 0.39 column-wise (i.e., correla-
tions by property), against the respective values
of SGNS.syn of ρ = 0.71 and ρ = 0.31. However,
we encountered the same problem of Lebani and
Lenci (2021) when evaluating the mapping row-
wise, that is an unexpected high baseline, which
in our case set itself at ρ = 0.643. We tried to
overcome this limit in the second experiment made
at the token-level. Overall, the interpretation sug-
gested by those results seems to be that, when re-
duced to static embeddings, BERT contextual vec-
tors perform only slightly better, if at all, than those
of a classic non-contextual Distributional Seman-
tic Model with proper hyper-parameters settings,
when it comes to retrieve fine-grained information
about thematic Proto-Roles.

Regarding correlations obtained by property at
the type-level, which are shown in detail in Fig-
ure 1, we found that the dobj argument seems
to be the one easier to model but, interestingly
enough, it shows higher values for Proto-Agent
properties, reaching the highest in awareness
with a ρ = 0.62. There are three properties specifi-
cally related to the Proto-Patient that are scored rel-
atively high for the dobj argument: change of
possession (ρ = 0.59), change of state
(ρ = 0.52) and was used (ρ = 0.49). As for
the nsubj argument, the best modeled proper-
ties seem to be those that characterize a Proto-
Agent role, that is to say sentient (ρ = 0.53),
volition (ρ = 0.49), awareness (ρ = 0.47)

3The baseline scores attested in our trials belonged to the
[0.62, 0.66] interval, coherently with the baseline score ρ =
0.62 reported by Lebani and Lenci (2021).
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and was for benefit (ρ = 0.43). Overall,
these results are consistent with those found in
Lebani and Lenci (2021) but partially deviate from
those we obtained at the token-level, as it will be
shown in the next sections.

Figure 1: Detailed properties correlation values at the
type-level for nsubj and dobj.

5.2 Experiment 2: Token-level

As already mentioned, we created two different
mappings at the token-level, one for nsubj argu-
ment and one for the dobj argument. Differently
from the type-level experiment, in which every
data point was an abstract representation of a de-
contextualised verb lemma described by the 41 fea-
tures made of the union of grammatical function
and Proto-Role property, here we deal with words
tokens in context. Since not every verb occurrence
received annotations both for nsubj and dobj in
White et al. (2016), we created the two sub-spaces,
in which each instance is described by the set of
fourteen properties elicited with the questions of
the SPR2 protocol found in White et al. (2016).
In this case we ran the experiment on single lay-
ers chosen among those of the best performing
group in the previous experiment, which was that
of layers 13-16, and we report here the results for
layer 16. Simply reproducing the mapping on those
spaces with the same settings as the type-level gave
us results really similar to the first experiment.

Concerning the high baseline problem, we took
into account the hypothesis put forward by Lebani
and Lenci (2021). They considered a possible justi-
fication of these results the fact that “Subjects tend
to have proto-agent properties, while object tend to
have proto-patient properties. From this associa-
tion[...] follows the fact that the vectors of our tar-
get entailment-based space are, to a certain extent,
bound to share a similar structure in which some di-
mensions tend to be consistently scored higher than
others.” (Lebani and Lenci, 2021). This proposal
is confirmed by measuring the cosine similarity
among the vectors of the entailment-based spaces.

In fact, a look at the average cosine similarity in the
semantic spaces gave us values of cos = 0.85 and
cos = 0.77, respectively for the nsubj and dobj,
showing that indeed there is a high similarity score
among the vectors, which can introduce noise and
alter the learning process of our model, thereby
allowing the baseline to reach high correlations.
Thus, we tried to use a dimensionality reduction
technique such as Sparse Principal Components
Analysis (sPCA) in its Scikit-learn implementation,
which is based on Mairal et al. (2009). The goal
was to introduce sparsity in our data and reduce
the noise, without reducing the number of dimen-
sions and losing interpretability. This technique is
mostly used for de-noising purposes in the field of
computer vision, but rarely employed in NLP (Drik-
vandi and Lawal, 2020). Differently from classic
PCA, sPCA does not yield orthogonal dimensions
in the space where it is applied, but seems to suc-
ceed in reducing similarity among the instances of
our ratings-based spaces. As a matter of fact, the
average cosine value, for both nsubj and dobj
space, resulted in cos ≈ 0 after the application of
this technique. Furthermore, the sparsity of the
loadings generated with this method allowed us to
have a better grasp of which principal component
represented which variable.

As shown in Figure 2, we obtained average cor-
relations of ρ = 0.50 for nsubj and ρ = 0.40 for
dobj at the row-level, with the baseline keeping
itself at ρ ≈ 0 in both cases4 . It should be noted
that the reported manipulations with sPCA affect
only the row-wise analysis, which was indeed the
only one suffering from the high baseline problem.
The average values obtained column-wise remain
the same, and the same has to be said for the fine
grained analysis of single properties. In fact, the
correlation values obtained by the new components
yielded by sPCA overlap perfectly with the original
variables. At the column level we got ρ = 0.43 for
the nsubj space and ρ = 0.38 for the dobj space.
Despite the fact that these correlations do not reach
outstanding values, they are significantly higher
than the baseline both row-wise and column-wise,
and the ones obtained with BERT and SGNS type

4We also experimented with standard PCA. We searched
for a number of components capable of accounting for the
85% of the variance, thus obtaining a different number of
components for our spaces: 6 for nsubj and 8 for dobj. The
correlations with this strategy are lower than those obtained
by using sPCA: ρ = 0.42 (by row) and ρ = 0.33 (by columns)
for the nsubj; of ρ = 0.38 (by row) and ρ = 0.34 (by column)
for the dobj.
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vectors.

Figure 2: Average correlations at the token-level.

5.3 Experiment 3: Modeling the
causative-inchoative alternation

As a third experiment, we decided to make a
more qualitative analysis focusing on the so called
causative alternation. This linguistic phenomenon
is directly tied with theories of semantic/thematic
roles and Dowty’s theory is no exception. Our
hypothesis here is that verbs participating to the
causative alternation, occurring both in transitive
and intransitive frames, should entail a set of prop-
erties more skewed toward the Proto-Agent role
when appearing in transitive contexts and should in-
cline toward those entailments typical of the Proto-
Patient in their intransitive occurrences. For ex-
ample, the verb to break can appear in transitive
sentences like John broke the window or in intransi-
tive ones as The window broke, entailing different
properties about the respective subjects. In fact,
the two subjects are supposed to be realizations of
different underlying Proto-Roles, a Proto-Agent in
the former case, a Proto-Patient in the latter.

Our aim was to test BERT embeddings to know
whether they are able to encode some information
about that alternation. We focused again on the
token level, using the nsubj space previously
created to train a PLS regression model on tran-
sitive verbs. We selected 100 sentences containing
50 alternating verb types, thus having 50 pairs of
causative alternation examples. Target verbs for
this experiment have been selected following the
Levin (1993)’s classification as coded in VerbNet
(Schuler, 2006). Sentences containing these target
verbs have been extracted manually from a variety
of sources, comprising VerbNet frames examples,
FrameNet (Baker et al., 1998) examples, and en-

TenTen corpus through Sketch Engine (Kilgarriff
et al., 2014). We found that causative alternation is
indeed well modeled in the majority of cases (35
out of 50 pairs of sentences, 70%), as can be seen
from Figure 3, which shows a visual representation
of a portion of our predicted vector space.

Figure 3: Visualization of the first 30 alternating verbs
in our predicted space. Even ids are for transitive frames,
odd for intransitive ones.

The alternation is clearly visible in the dif-
ference of intensity in those slots of the
heatmap corresponding to the Proto-Agent prop-
erties, mostly in awareness, sentient,
volition, instigation and, to a lesser ex-
tent, to those corresponding to the Proto-Patient,
mostly in change of state, change of
state continuous, was used. It should
be noted that our model fails to catch the alterna-
tion in some pairs of verbs (awaken, flex and roll in
the portion showed in Figure 3)5. However, these
failures, which represent the 30% of the predicted
outcomes (15/35), pave the way to further consid-
erations that we discuss in the next section.

6 General Discussion

6.1 Ability to recover fine-grained Proto-Role
information in BERT’s embeddings

All the three reported experiments show that it
is indeed possible to recover Proto-Role informa-
tion about the arguments from verb embeddings,
as demonstrated by the average correlation values

5Due to an error, ids for the verb inflate are switched. Thus
it seems that the intransitive has higher scores in Proto-Agent
properties than the transitive, which is the contrary.
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obtained both row-wise and column-wise, which
are significantly higher than those of the base-
line, mostly in the token-level experiment in which
a preliminary sPCA transformation has been ap-
plied. An even more fine-grained analysis can be
conducted taking into account single properties.
Although not directly comparable, the results at
the token-level partially contradict the trend ob-
tained at the type-level, such that in the former the
nsubj argument shows higher correlation values
than the dobj, while for the latter the contrary
happens. However, what they have in common
is the fact that in general Proto-Agent properties
seem to be better modeled in both experiments and
for both arguments. As a matter of fact, at the
token-level this happen not only, for the nsubj, as
expected, but also for the dobj even if, in this sec-
ond experiment, we obtained higher correlations
for the nsubj argument, as can be seen in Fig-
ure 4. In particular, three properties seem to be
pretty well modeled: awareness, sentient
and volition, which are the core entailments
of the Proto-Agent role, and are strongly related to
the animacy of typical subject arguments.

On the contrary, our model struggles to cope
with Proto-Patient properties at the token-level in
both spaces. Whether this evidence means that
Proto-Agent properties are better represented in
BERT or in just the rating-based space it is not
easy to say. But, from a theoretical point of view it
should be considered that the individuation of good
examples of properties for the Proto-Patient has
been an issue ever since the statement of Dowty’s
theory. In fact, Dowty himself claimed that “Proto-
Patient properties are harder to isolate entirely”
(Dowty, 1991, p. 576) than those of the Proto-
Agent.

Moreover, both Reisinger et al. (2015) and Kako
(2006) found out in their experiments that “Proto-
Agent properties have a greater effect than Proto-
Patient properties”(Reisinger et al., 2015, p. 481).
All these cues might suggest that the individuation
and the modeling of Proto-Patient properties might
be a more difficult matter than Proto-Agent ones
and that the latter have a more solid stand from sev-
eral point of views: theoretical analysis, cognitive
and corpus-level testing, and probably even in the
knowledge encoding operated by BERT. Also, it
should be taken into consideration that some fur-
ther developments of Dowty’s theory dispensed
with Proto-Patient properties at all, building only

on those of the Proto-Agent and characterizing its
opposite role in negative terms (see, for example,
the theory elaborated by Grimm, 2011).

Figure 4: Detailed single properties correlations for
nsubj and dobj.

6.2 Modeling the causative-inchoative
alternation

As it has been shown, we have been able through
our strategy to model the causative-inchoative
alternation in terms of Proto-Role properties
prediction. In fact in 70% of the pairs we predicted,
the transitive version of the verb scored higher val-
ues in Proto-Agent properties. In particular, those
cases representing prototypical instances of such
phenomenon are almost perfectly predicted. Con-
sider as an example, the pair of sentences regarding
the verb to break (break.0 and break.1 in Figure 3).
The corresponding sentences are taken directly
from VerbNet example frames and are: Tony broke
the window and The window broke, respectively
for the transitive and the intransitive frame. The
properties seem to be well predicted not only for
those concerning proto-agency, but also for those
entailments of the Proto-Patient. That is to say,
while the first verb, break.0, which is transitive,
shows a greater intensity (i.e., higher predicted
values) than break.1 in the slots corresponding to
awareness, instigation, volition,
sentient, existed after, existed
before and was for benefit, the reverse
is true if we consider Proto-Patient entail-
ments. In fact, the intransitive break.1 has
greater values in change of possession,
change of state, change of state
continuous, partitive. This is a re-
current pattern among all the predicted space.
Moreover, Figure 5 shows how on average Proto-
Agent properties are scored higher in the predicted
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subspace formed by only the transitive use of the
verbs. Vice-versa almost all the Proto-Patient
properties have higher mean scores among the
intransitive use, even if with a much smaller
difference. This is consistent with the assumption
that subjects of inaccusative verbs are less agentive
than those of their transitive counterpart. However,
there are a few notable exceptions to this trend.
Three properties in particular seem to contradict
the assumptions of the theory: change of
location, partitive and was used. The
first is assumed to be typical of Proto-Agent and,
instead, shows a higher average score for the
transitive use. The second and the third, supposed
to be Proto-Patient properties, reach the same
values in both sub-spaces. Among the 15/50
pairs (30%) which our model failed to predict,
there are 6 instances in which the subject of the
intransitive verb is more animate than that of the
transitive verb. We regard this fact as a possible
influence in the prediction, due to the fact that
animacy and agency, and consequently their
characterizing properties, are two strictly related
concepts and they might even overlap in some
circumstances, for example in the determination
of subjecthood. Given the contextual nature of
the BERT embeddings, it is no surprise that verb
representations are adjusted in relation to the
other elements of the sentence, incorporating
at each occurrence particular information about
surrounding words. In particular, the fact that
animacy information about the subject is projected
into the verb embedding and is recoverable from it
has been shown by Klafka and Ettinger (2020).

Figure 5: Average predicted properties for transitive and
intransitive use.

7 Conclusions

Although our strategy has been proven to be good
at modeling the Proto-Roles phenomenon in BERT
embeddings to a certain extent, some intrinsic limi-
tations of our work have to be taken into account.
Firstly, we used a linear regression (PLS) model as

a strategy to build the mapping, but, due to the com-
plexity of the type of information enquired and that
of the BERT space, more complex, non-linear trans-
formations, like a Multi Layer Perceptron, might
be a better choice for the task. Secondly, the data
we used are the best at our disposal, but they are
not necessarily the best possible in absolute and
might be further improved, by both revising the
questions and the set of properties. Thirdly, we
obtained mixed results between the token and the
type levels concerning which is the best modeled
Proto-Role.
Notwithstanding these limitations, we have shown
that fine-grained information about Proto-Roles
properties of the arguments is recoverable inspect-
ing the embeddings of the verbs yielded by BERT.
Also, our results suggest that there might be a dis-
crepancy between the properties of the two Proto-
Roles and that Proto-Agent properties are better
modeled and predicted. We have also been able
to show how different Proto-Roles entailments can
be predicted in verbs participating to the causative-
inchoative alternation. Additionally, we success-
fully employed sPCA to reduce the noise in our
data, which might be a promising cue about future
usages of this technique in the field of NLP.
It is worth emphasizing that the main goal of this
research is to test BERT’s ability to capture some
crucial aspects of the verbal argument structure.
Even if there can be practical applications of our
method (e.g., it can be used as a starting point
for Semantic Role labeling or, crucially, Semantic
Proto-role labeling; Reisinger et al. 2015; Teichert
et al. 2017), our main interest is more theoretical
and methodological. Many of the probing tasks that
are used today, indeed, do not focus on the proto-
typical nature of semantic roles, which is precisely
a fundamental pillar and the major innovation of
Dowty’s theory and of the present work. Moreover,
our analysis of the causative/inchoative alternation
is just a first example of a series of tasks that we
plan to develop to characterize the knowledge ac-
quired by these models to explore key aspects of the
syntax-semantic interface and of verb argument re-
alization. Finally, we will also extend our approach
to other contextual embeddings models, like GPT
(Radford and Narasimhan, 2018; Radford et al.,
2019) and XLNet (Yang et al., 2019).
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A Appendix

Here we report the results obtained computing the
average Spearman’s Rho between predicted vectors
and original ones at the type-level, both by row
and by column. We indicate each group with the
formula BERTx_y in which x is the first layer of
the group and y is the last one.

Model By Row By column
BERT1_4 0.71 0.31
BERT5_8 0.73 0.36
BERT9_12 0.72 0.34
BERT13_16 0.74 0.39
BERT17_20 0.73 0.36
BERT21_24 0.72 0.34
baseline_BERT 0.64 -0.07
SGNS.syn 0.71 0.31
baseline_SGNS 0.62 0.035

Table 3: Average correlation values obtained for each
group of BERT layers and for the best performing model
in Lebani and Lenci (2021), a SGNS.syn, with relative
baselines. Analysis at the type-level.
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Abstract

Previous works have demonstrated the effec-
tiveness of utilising pre-trained sentence en-
coders based on their sentence representations
for meaning comparison tasks. Though such
representations are shown to capture hidden
syntax structures, the direct similarity compari-
son between them exhibits weak sensitivity to
word order and structural differences in given
sentences. A single similarity score further
makes the comparison process hard to inter-
pret. Therefore, we here propose to combine
sentence encoders with an alignment compo-
nent by representing each sentence as a list
of predicate-argument spans (where their span
representations are derived from sentence en-
coders), and decomposing the sentence-level
meaning comparison into the alignment be-
tween their spans for paraphrase identification
tasks. Empirical results show that the align-
ment component brings in both improved per-
formance and interpretability for various sen-
tence encoders. After closer investigation, the
proposed approach indicates increased sensitiv-
ity to structural difference and enhanced ability
to distinguish non-paraphrases with high lexi-
cal overlap.

1 Introduction

Sentence meaning comparison measures the seman-
tic similarity of two sentences. Specifically, the
task of paraphrase identification binarises the simi-
larity as paraphrase or non-paraphrase depending
on whether they express similar meanings (Bhagat
and Hovy, 2013). This task benefits many natural
language understanding applications, like plagia-
rism identification (Chitra and Rajkumar, 2016)
and fact checking (Jiang et al., 2020), where it is
important to detect same things said in different
ways.

The difference in sentence structures is impor-
tant for distinguishing their meanings. However, as
shown in Table 1 and 3, many existing paraphrase

identification datasets exhibit high correlation be-
tween positive pairs and the degree of their lexi-
cal overlap, such as the Microsoft Research Para-
phrase Corpus (MSRP) (Dolan and Brockett, 2005).
Models trained on them tend to mark sentence
pairs with high word overlap as paraphrases despite
clear clashes in meaning. In light of this, Zhang
et al. (2019b) utilised word scrambling and back
translation to create the Paraphrase Adversaries
from Word Scrambling (PAWS) datasets which are
mainly concerned with word order and structure by
creating paraphrase and non-paraphrase pairs with
high lexical overlap. As also shown in these two
tables, sentence pairs in the PAWS datasets demon-
strate much higher lexical overlap and lower corre-
lation, which requires models to pay more attention
to word order and sentence structure to successfully
distinguish non-paraphrases from paraphrases.

Recently, various pre-trained sentence encoders
have been proposed to produce high-quality sen-
tence embeddings for downstream usages (Reimers
and Gurevych, 2019; Thakur et al., 2021; Gao et al.,
2021). Such embeddings are compared to derive a
similarity score for different meaning comparison
tasks, including paraphrase identification. Though
widely used, sentence encoders still face challenges
from different aspects in case of meaning compar-
ison. Pre-trained models are observed to capture
structural information to some extent (Clark et al.,
2019; Hewitt and Manning, 2019; Jawahar et al.,
2019). However, as we will demonstrate in this
work, their direct comparison of two sentence vec-
tors performs poorly on PAWS datasets indicating
weak sensitivity to structural difference, though
they achieve good performance on other general
paraphrase identification datasets like MSRP. In ad-
dition, the single similarity score derived from the
comparison of two vectors is difficult to interpret.
This thus motivates us to find a better way of utilis-
ing sentence encoders for meaning comparison.

Elsewhere, researchers have worked on decom-
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Dataset Sentence A Sentence B Label

MSRP
The Toronto Stock Exchange opened on time and

slightly lower.

The Toronto Stock Exchange said it will be business

as usual on Friday morning.
N

More than half of the songs were purchased as

albums, Apple said.

Apple noted that half the songs were purchased

as part of albums.
Y

PAWS
What factors cause a good person to become bad? What factors cause a bad person to become good? N

The team also toured in Australia in 1953. In 1953, the team also toured in Australia. Y

Table 1: Example sentence pairs taken from both MSRP and PAWS datasets. Y stands for paraphrases while N
stands for non-paraphrases.

posing sentence-level meaning comparison into
comparisons at a lower level, such as word and
phrase-level, which largely increased the inter-
pretability (He and Lin, 2016; Chen et al., 2017;
Zhang et al., 2019a). Alignment is the core com-
ponent in these proposed systems, where sentence
units at different levels are aligned through either
training signals or external linguistic clues, after
which a matching score is derived for sentence-
level comparison. Here, we argue that, instead of
comparing sentence meaning by using sentence em-
beddings, it would be better to combine sentence
encoders with alignment components in a structure-
aware way to strengthen the sensitivity to structural
difference and to gain interpretability.

An important aspect of sentence meaning is
its predicate-argument structure, which has been
utilised in machine translation (Xiong et al., 2012)
and paraphrase generation (Ganitkevitch et al.,
2013; Kozlowski et al., 2003). Given the impor-
tance of detecting structural differences in para-
phrase identification tasks, we propose to represent
each sentence as a list of predicate-argument spans
where span representations are derived from sen-
tence encoders, and to decompose sentence-level
meaning comparison into the direct comparison
between their aligned predicate-argument spans
by taking advantage of the Hungarian algorithm
(Kuhn, 1956; Crouse, 2016). The sentence-level
score is then derived by aggregation over their
aligned spans. Without re-training, the proposed
alignment-based sentence encoder can be used with
enhanced structure-awareness and interpretability.

As pre-trained sentence encoders produce con-
textualised representations, two phrases of different
meaning might be aligned together due to their sim-
ilar syntactic structure and contexts. For example:

a) Harris announced on twitter that he will quit.

b) James announced on twitter that he will quit.

Unsurprisingly, the span Harris announced will be
aligned to the span James announced with a high
similarity score given that they share exactly the
same context and syntactic structure. However, it
might be problematic to consider this high simi-
larity score when we calculate the overall score
given clear clashes in the meaning at sentence-
level. In this regard, we further explore how the
contextualisation affects paraphrase identification
by comparing aligned phrases based on their de-
contextualised representations.

Empirical results show that the inclusion of the
alignment component leads to improvements on
four paraphrase identification tasks and demon-
strates increased ability to detect non-paraphrases
with high lexical overlap, plus an enhanced sensi-
tivity to structural difference. Upon closer investi-
gation, we find that applying de-contextualisation
to aligned phrases could further help to recognise
such non-paraphrases.

In summary, our contributions are as follows:
1) We propose an approach that combines sen-

tence encoders with an alignment component
by representing sentences as lists of predicate-
argument spans and decomposing sentence-
level meaning comparison into predicate-
argument span comparison.

2) We provide an evaluation on four different
paraphrase identification tasks, which demon-
strates both the improved sensitivity to struc-
tures and the interpretability at inference time.

3) We further introduce a de-contextualisation
step which can benefit tasks that aim to iden-
tify non-paraphrases of extremely high lexical
overlap.

2 Related Work

2.1 Sentence Encoders
Sentence encoders have been studied extensively in
years. Kiros et al. (2015) abstracted the skip-gram
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model (Mikolov et al., 2013) to the sentence level
and proposed Skip-Thoughts by using a sentence
to predict its surrounding sentences in an unsuper-
vised manner. InferSent (Conneau et al., 2017), on
the other hand, leveraged supervised learning to
train a general-purpose sentence encoder with BiL-
STM by taking advantage of natural language infer-
ence (NLI) datasets. Pre-trained language models
like BERT (Devlin et al., 2019) are widely used to
provide a single-vector representation for the given
sentence and demonstrate promising results across
a variety of NLP tasks. Inspired by InferSent,
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) produces general-purpose sentence embed-
dings by fine-tuning BERT on NLI datasets. How-
ever, as investigated by Li et al. (2020), sentence
embeddings produced by pre-trained models suffer
from anisotropy, which severely limits their expres-
siveness. They then proposed a post-processing
step to map sentence embeddings to an isotropic
distribution which largely improves the situation.
Similarly, Su et al. (2021) proposed a whitening
operation for post-process, which aims to alleviate
the anisotropy problem. Gao et al. (2021), on the
other hand, proposed the SimCSE model by fine-
tuning pre-trained sentence encoders with a con-
trastive learning objective (Chen et al., 2020) along
in-batch negatives (Henderson et al., 2017; Chen
et al., 2017) on NLI datasets, improving both the
performance and the anisotropy problem. Though
sentence encoders have achieved promising per-
formance, the current way of utilising them for
meaning comparison tasks has known drawbacks
and could benefit from the fruitful developments of
the alignment component, which have been widely
used in modelling sentence pair relations.

2.2 Alignment in Sentence Pair Tasks

Researchers have been investigating sentence
meaning comparison for years. One widely used
method involves decomposing the sentence-level
comparison into comparisons at a lower level. Mac-
Cartney et al. (2008) aligned phrases based on their
edit distance and applied the alignment to NLI tasks
by taking average of aligned scores. Shan et al.
(2009) decomposed sentence-level similarity score
into the direct comparison between events and con-
tent words based on WordNet (Miller, 1995). Sul-
tan et al. (2014) proposed a complex alignment
pipeline based on various linguistic features, and
predicted the sentence-level semantic similarity by

taking the proportion of their aligned content words.
The alignment between two syntactic trees are used
along with other lexical and syntactic features to
determine whether two sentences are paraphrases
with SVM (Liang et al., 2016).

Similar ideas are combined with neural mod-
els to construct alignments based on the attention
mechanism (Bahdanau et al., 2015). They can be
seen as learning soft alignments between words
or phrases in two sentences. Pang et al. (2016)
proposed MatchPyramid where a word-level align-
ment matrix was learned, and convolutional net-
works were used to extract features for sentence-
level classification. More fine-grained comparisons
between words are introduced by PMWI (He and
Lin, 2016) to better dissect the meaning difference.
Wang et al. (2016) put focus on both similar and
dissimilar alignments by decomposing and compos-
ing lexical semantics over sentences. ESIM (Chen
et al., 2017) further allowed richer interactions be-
tween tokens. These models are further improved
by incorporating context and structure information
(Liu et al., 2019), as well as character-level infor-
mation (Lan and Xu, 2018). Recently, Pre-trained
models are exploited to provide contextualised rep-
resentations for the PMWI (Zhang et al., 2019a).
Instead of relying on soft alignments, some other
models tried to take the phrase alignment task as an
auxiliary task for sentence semantic assessments
(Arase and Tsujii, 2019, 2021), and to embed the
Hungarian algorithm into trainable end-to-end neu-
ral networks to provide better aligned parts (Xiao,
2020). Considering pre-trained sentence encoders
are often directly used to provide fixed embeddings
for meaning comparison, in this work, we propose
to combine them with the alignment component at
inference time so that it can be used with enhanced
structure-awareness without re-training.

3 Our Approach

Instead of generating a single-vector representa-
tion for meaning comparison based on sentence
encoders, we propose to represent each sentence as
a list of predicate-argument spans and use sentence
encoders to provide its span representations. The
comparison between two sentences is then based
on the alignment between their predicate-argument
spans. As depicted in Figure 1, the approach can be
considered as a post-processing step and consists
of the following main components:
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Figure 1: The proposed approach for paraphrase identification that combines sentence encoders with the phrase
alignment at inference time. Predicate-argument spans are first extracted from sentences. Span representations are
then derived from contextualised token representations. We perform Hungarian algorithm to align extracted phrase
spans and obtain the sentence-level similarity score by aggregation over aligned spans. The alignment matrix is
useful for interpretation.

Sentence Encoders: The input sentences are first
fed into sentence encoders to produce contextu-
alised token representations that will later be used
to create context-aware phrase representations from
the last hidden layer. The phrase representation
will be the basic unit of our meaning comparison
method.

Predicate Argument Spans (PAS): For each
sentence, we first apply a BERT-based semantic
role labelling (SRL) tagger provided by AllenNLP
(Gardner et al., 2018) to obtain both predicates and
relevant arguments for each sentence. To generate
predicate argument spans, we group the predicate
and its arguments together and order them accord-
ing to their original position in the sentence. Fol-
lowing is an example of predicate-argument spans
from a sentence:

James ate some cheese whilst thinking
about the play.

Two predicates, ate and thinking, are extracted
by the tagger. As shown in Figure 2, a number
of arguments with different relations are discov-
ered for each predicate. We further group them
into predicate-argument spans. For the given sen-
tence, we will have three spans for the predicate

ate: (James, ate), (ate, some, cheese), (ate, whilst,
thinking, about, the, play) and two spans for the
predicate thinking: (James, thinking), (thinking,
about, the, play). If no predicate or associated ar-
gument is found, we take the whole sentence itself
as a long span.

Figure 2: The extracted predicates and relevant semantic
arguments for the given example sentence. Outputs are
produced by the AllenNLP SRL tagger.

Phrase Alignment: After obtaining all predicate-
argument spans, we derive their span represen-
tations based on the used encoder. As previous
works have shown, aligning with contextual infor-
mation could achieve better performance and help
with disambiguation (Arase and Tsujii, 2020; Dou
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Figure 3: The predicate-argument span alignment be-
tween the example pair taken from PAWS_QQP, sen-
tence A: do Chinese people think they look like
Japanese people? and sentence B: do Japanese people
think they look like Chinese people?

and Neubig, 2021). We take the mean-pooling
over all tokens in the span to produce a contex-
tualised span representation for later alignment.
The tokenization strategy in BERT generates sub-
tokens, whereas in the produced spans, we have
word tokens. To align them properly, we use the
same tokenizer to break the original word into sub-
tokens and represent it as a list of sub-tokens in
the span if a sub-token exists. Given two collec-
tions of predicate-argument span representations,
p = {p1, p2, ..., pM} and q = {q1, q2, ..., qN}, we
are trying to find the best alignments between them.
This can be viewed as a standard assignment prob-
lem that has been extensively handled by Hungar-
ian algorithm (Kuhn, 1956). A similarity matrix,
C, is constructed for each pair of sentences where
the row has one collection of spans and the column
has another. The value for each entry cell, Cmn, is
the cosine similarity score between the two span,
pm and qn. The task of finding the best alignment
is to find alignments among two collections that
give the maximum score:

max
∑

m

∑

n

CmnXmn (1)

X is a boolean matrix where X[m,n] = 1 if span
m is assigned to span n. We apply the modified
Jonker-Volgenant algorithm1 (Crouse, 2016) to find

1We use its Scipy implementation: https:
//docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.linear_sum_
assignment.html

the best alignments that maximise the overall score.
After discovering the optimalX , we obtain a collec-
tion of aligned span pairs associated with their co-
sine similarity scores, A = {A1, A2, ..., Al}. One
alignment example taken from PAWS is given in
Figure 3.

Score Aggregation: To produce a sentence-level
similarity score for the given pair, we simply take
the mean-pooling over scores of all aligned parts:

Scoreij =MeanPooling(A1, .., Al) (2)

The similarity score between sentence i and sen-
tence j is the average score of their aligned spans,
and will be used for determining whether the sen-
tence pair is paraphrase or non-paraphrase. The
alignment matrix, as shown in Figure 3, is useful to
explain how the overall score is derived and why.

4 Experiments

We follow the same two-step procedure in previ-
ous work for evaluation (Li et al., 2020; Thakur
et al., 2021). For vanilla sentence encoders, we
first generate fixed sentence embeddings, and then
derive sentence-level similarity scores by calculat-
ing the cosine similarity between two embeddings.
For sentence encoders combined with the align-
ment component, we derive sentence-level sim-
ilarity scores by aggregation over cosine scores
of all aligned spans where span representations
are derived from sentence encoders. Otherwise
specifically stated, the alignment is performed be-
tween predicate-argument spans (PAS). Their per-
formances under these two scenarios are evaluated
and compared. We here experiment with three
widely used sentence encoders, BERT-base (Devlin
et al., 2019), Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019) and SimCSE (Gao et al.,
2021).

Datasets Train Dev Test

PAWS_QQP 11,986 - 677

PAWS_Wiki 49,401 8,000 8,000

MSRP 3,668 408 1,725

TwitterURL 37,976 4,224 9,334

Table 2: Statistics of all four datasets used in this work.

4.1 Datasets
In this work, we evaluate the proposed approach
on four different paraphrase identification tasks.
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The statistics of these datasets are listed in Table 2.
Below we give some basic descriptions:

• PAWS_QQP: In order to assess the sensitivity
to word order and syntactic structure, Zhang
et al. (2019b) proposed a paraphrase identifica-
tion dataset which has extremely high lexical
overlap by applying back translation and word
scrambling to sentences taken from the Quora
Question Pairs (Wang et al., 2017).

• PAWS_Wiki: Similar to PAWS_QQP, the
same technique is applied to sentences ob-
tained from Wikipedia articles to construct
sentence pairs (Zhang et al., 2019b). Both
PAWS datasets aim to measure sensitivity of
models on word order and sentence structure.

• Microsoft Research Paraphrase Corpus
(MSRP): This corpus constructs sentence
pairs by clustering news articles with an SVM
classifier and human annotations (Dolan and
Brockett, 2005). It has 4,076 train data and
1,725 test data. In this paper, we adopt the
same split strategy as stated in GLUE (Wang
et al., 2019).

• TwitterURL: Lan et al. (2017) proposed the
TwitterURL corpus where sentence pairs in
the dataset are collected by linking tweets that
share the same URL of news articles. The cor-
pus contains multiple references of both for-
mal well-edited and informal user-generated
texts.

Datasets
Lexical Overlap

Positive Negative Overall

PAWS_QQP 95.24% 96.79% 96.35%

PAWS_Wiki 84.50% 84.99% 84.77%

MSRP 55.95% 42.60% 51.48%

TwitterURL 29.28% 7.73% 11.94%

Table 3: The lexical overlap between sentence pairs
across different datasets. We report both the overall fig-
ure and the figures for each class. We calculate the lexi-
cal overlap in terms of Jaccard Similarity with ngram=1.

The percentage of lexical overlap between sen-
tence pairs in terms of their labels are summarised
in Table 3. It shows that sentence pairs taken from
the PAWS datasets generally have higher lexical
overlap. Compared to datasets like MSRP and Twit-
terURL, where negative examples have lower lexi-
cal overlap than positive examples, the two PAWS

datasets exhibit similar degrees of lexical overlap
regardless of their labels. In light of this, we expect
that models that are sensitive to word order and
sentence structure would demonstrate greater im-
provements on the PAWS datasets in comparison
to models without such sensitivity. Specifically,
we put our focus on the PAWS datasets and ex-
plore whether different models capture structural
differences.

4.2 Implementation Details

For sentence encoders used in this work, we gener-
ate sentence embeddings according to their default
strategies. For BERT-base2 and SBERT3, we use
the mean-pooling over the last hidden layer as its
sentence representation, and for SimCSE4, we use
the CLS token after the trained MLP layer. For
all experiments in this work, no training process
is involved. In order to calculate evaluation met-
rics like accuracy and F1 score, we find optimal
thresholds for different metrics on the development
set, and apply them on test sets to binary the cosine
similarity as paraphrase or non-paraphrase. Given
PAWS_QQP does not have development set, we
randomly sample 20% of its training data as the
development set following the same class distribu-
tion. All experiments are conducted on RTX 3090
GPUs.

4.3 Evaluation

The main results are summarised in Table 4, and
we report the F1 score of the positive class as well
as the overall accuracy. It shows that, with our
proposed approach, the performance of different
sentence encoders can generally be improved. In
addition, significant improvements are observed on
PAWS datasets after we introduce the alignment
component. This demonstrates the effectiveness
of our proposed alignment-based sentence encoder
and validates the improved sensitivity to word or-
der and sentence structure. Furthermore, we find
that the performance of different models, regard-
less of combining with the alignment component,
is similar or competitive on MSRP and TwitterURL
datasets. It suggests that both datasets are inade-
quate when used to detect the model’s structure-

2We use its huggingface implementation: https://
huggingface.co/bert-base-uncased

3https://github.com/UKPLab/
sentence-transformers

4https://github.com/princeton-nlp/
SimCSE
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PAWS_QQP
(F1/ACC)

PAWS_Wiki
(F1/ACC)

TwitterURL
(F1/ACC)

MSRP
(F1/ACC)

AVG
(F1/ACC)

BERT 37.13/72.97 61.28/56.75 63.24/85.65 80.50/70.38 60.54/71.44
+ Alignment 47.46/75.18 63.08/62.58 65.26/86.52 80.96/70.61 64.19/73.72

SBERT 33.95/74.74 61.83/60.63 65.61/87.04 81.68/73.39 60.61/73.95
+ Alignment 52.75/77.70 62.52/64.51 66.60/87.33 82.10/73.80 65.99/75.84

SimCSE 36.16/75.48 61.32/62.58 69.20/87.74 82.80/74.61 62.37/75.10
+ Alignment 57.49/79.17 65.00/65.99 67.83/87.27 81.70/73.68 68.01/76.53

Table 4: Results on four paraphrase identification tasks, we report both the F1 score of the positive class and the
overall accuracy. Cells marked bold have the best performance in each column.

Models
PAWS_QQP

(F1/ACC)
PAWS_Wiki

(F1/ACC)
BERT-TokenLevel 40.13/73.41 62.33/62.36
BERT-RandomSpan 19.91/73.71 61.30/57.19
BERT-ContinuousRandom 39.86/74.74 61.25/57.66
BERT-PAS 47.46/75.18 63.08/62.58
SBERT-TokenLevel 47.51/75.04 61.65/64.15
SBERT-RandomSpan 38.89/73.12 61.07/59.08
SBERT-ContinuousRandom 46.56/74.74 61.28/58.49
SBERT-PAS 52.75/77.70 62.52/64.51
SimCSE-TokenLevel 50.74/74.00 62.03/63.28
SimCSE-RandomSpan 34.31/73.56 61.24/57.70
SimCSE-ContinuousRandom 40.74/77.25 61.30/57.24
SimCSE-PAS 57.49/79.17 65.00/65.99

Table 5: Evaluation using different span types for align-
ment. We report the F1 score of the positive class and
the overall accuracy.

awareness for the structural information is not re-
quired to achieve high scores on them. Accordingly,
compared to its alignment version, the lack of sensi-
tivity to structural differences translates the slightly
better performance on TwitterURL and MSRP ob-
tained by SimCSE into much worse performance
on the PAWS datasets. This further supports our
previous arguments and demonstrates the advan-
tages of introducing the alignment component to
enhance structure-awareness.

5 Analysis

To better understand the improvements, we have
conducted several experiments to investigate differ-
ent aspects of the proposed approach. Given we
are mostly interested in the performance on the two
PAWS datasets, we only experiment and report the
results on the PAWS_QQP and PAWS_Wiki in the
following experiments.

5.1 Comparison to Other Span Strategies

In this experiment, we consider three more scenar-
ios with different span types, and investigate the im-
pact of the predicate-argument span. The alignment
between different tokens are widely used in previ-
ous works, so here, instead of aligning predicate-
argument spans, we directly conduct alignment at
token-level. Two further strategies are explored
regarding phrase-level alignment. Firstly, we ran-
domly sample words from the sentence to make
a span, where the words in each span might not
necessarily be sequential. In the RandomSpan strat-
egy, no linguistically-meaningful structures are pre-
served. Secondly, we randomly sample continuous
word sequences to build a span, where the span
must contain sequential texts. In this Continuous-
Random strategy, only sequential relations are pre-
served. The length of the sampled spans is arbitrary.
To make a fair comparison, the number of sampled
spans is the same as that of the predicate-argument
spans in the sentence. As demonstrated in Table 5,
the alignment between predicate-argument spans
outperforms all the others. In other words, the
model’s sensitivity to word order and structural dif-
ferences can be greatly improved by comparing
two sentences’ predicate-argument structures.

5.2 Large Improvements in Recall

We have observed significant improvements on
PAWS datasets by introducing the alignment be-
tween predicate-argument spans in previous exper-
iments. It is crucially important to understand how
the improvement is obtained. In this experiment,
we look into the recall of positive and negative pairs.
In PAWS_Wiki, we find that almost all sentence
pairs are classified as positive by vanilla models
given the near-zero recall for the negative class as
shown in Table 6. Despite utterly incorrect pre-
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PAWS_QQP
(recall of +)

PAWS_Wiki
(recall of -)

BERT 32.46 0.09
+ Alignment 36.65 25.96

SBERT 24.08 9.14
+ Alignment 47.64 29.53

SimCSE 25.65 0.27
+ Alignment 50.26 52.28

Table 6: Results on PAWS_QQP and PAWS_Wiki. For
PAWS_QQP, we report the recall of positive class and
for PAWS_Wiki, we report the recall of negative class.

Models
PAWS_QQP
(F1/recall of + )

PAWS_Wiki
(F1/recall of - )

BERT-Alignment 47.46/36.65 63.08/25.96
+ decontext 52.50/43.98 63.39/45.09
SBERT-Alignment 52.75/47.64 62.52/29.53
+ decontext 65.43/64.40 66.63/64.38
SimCSE-Alignment 57.49/50.26 65.00/52.28
+ decontext 65.16/68.06 67.32/54.14

Table 7: The results on PAWS datasets after applying
de-contextualisation. We report the F1 score of the
positive class on both datasets, the recall of positive
class on PAWS_QQP, and the recall of negative class on
PAWS_Wiki.

dictions, it spuriously lowers the performance gap
(on PAWS_Wiki) in terms of the F1 score of the
positive class as shown in Table 4. After apply-
ing the alignment process to sentence encoders,
we notice significant improvements in the recall
of negative class. About 70% of sentence pairs in
the PAWS_QQP have negative labels, which makes
vanilla models difficult to distinguish paraphrases
from non-paraphrases and mark most of sentence
pairs as negative, as evidenced by the low recall
for positives in the table. Similarly, we observe
significant improvements in recall after introduc-
ing the alignment component. The large improve-
ments in recall demonstrate the enhanced ability
to distinguish non-paraphrases from paraphrases.
Moreover, as shown in Table 4, the improvements
in recall are not at the expense of their general per-
formance, since we are still improving on F1 scores
and the overall accuracy.

5.3 De-contextualisation

As pre-trained sentence encoders produce contex-
tualised representations, two phrases of different
meaning might be aligned for similar syntactic
structure and contexts with a high similarity score.
In the example shown in Section 1, Harris an-

nounced will be aligned with James announced
with a high similarity score given their identical
syntactic structure and contexts. However, does
such high similarity score make sense when it
comes to the task of paraphrase identification?
Comparing the meaning of two phrases in the con-
text of their use often helps disambiguate. In this
case, the highly similar context instead downplays
the difference, while it is the minor difference that
changes the whole sentence meaning. This prob-
lem is exacerbated in the PAWS datasets given that
both PAWS_QQP and PAWS_Wiki have extremely
high lexical overlap, with 96.35% and 84.77% re-
spectively, as shown in Table 3. Such high lexi-
cal overlap indicates a similar context, and thus
a high similarity score between aligned phrases.
In this experiment, we align phrases based on
their contextualised representations as before but
de-contextualise them by sending these phrases,
without context, through sentence encoders to pro-
duce context-agnostic representations. A similarity
score at sentence-level is then derived from cosine
similarities between context-agnostic representa-
tions.

We show the results in Table 7. It clearly shows
that, in spite of losing contextual information, the
model with de-contextualisation process appears
to improve the performance significantly. Addi-
tionally, it suggests that contextualisation might
be harmful in situations where we focus on small
differences that might change the meaning of the
whole.

6 Conclusion

In this work, we propose an approach that com-
bines sentence encoders with an alignment compo-
nent by representing sentences as lists of predicate-
argument spans and decomposing sentence-level
meaning comparison into predicate-argument span
comparison. Experiments with three widely used
sentence encoders show that such method leads to
improvements on various paraphrase identification
tasks and increases the sensitivity to word order
and structural differences between two sentences.
The alignment matrix can further be utilised for
interpretation. We then demonstrate that applying
de-contextualisation to aligned phrases could help
to recognise non-paraphrases of extremely high lex-
ical overlap. Our future work includes exploring
other alignment algorithms and more application
scenarios for alignment-based sentence encoders.
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Abstract

Lexical substitution, which aims to generate
substitutes for a target word given a context,
is an important natural language processing
task useful in many applications. Due to the
paucity of annotated data, existing methods
for lexical substitution tend to rely on man-
ually curated lexical resources and contextual
word embedding models. Methods based on
lexical resources are likely to miss relevant
substitutes whereas relying only on contextual
word embedding models fails to provide ad-
equate information on the impact of a substi-
tute in the entire context and the overall mean-
ing of the input. We proposed CILex, which
uses contextual sentence embeddings along
with methods that capture additional Context
Information complimenting contextual word
embeddings for Lexical substitution. This en-
sured the semantic consistency of a substi-
tute with the target word while maintaining
the overall meaning of the sentence. Our ex-
perimental comparisons with previously pro-
posed methods indicated that our solution is
now the state-of-the-art on both the widely used
LS07 and CoInCo datasets with P@1 scores
of 55.96% and 57.25% for lexical substitution.
The implementation of the proposed approach
is available at https://github.com/
sandaruSen/CILex under the MIT li-
cense.

1 Introduction

Lexical substitution is an important Natural Lan-
guage Processing (NLP) task, which aims to gener-
ate and rank suitable candidate words to replace a
given target word, while maintaining the meaning
of the given sentence. Lexical substitution is used
in a wide range of NLP tasks like data augmenta-
tion, paraphrase generation, word sense induction,
or text simplification (Shardlow, 2014; Amrami
and Goldberg, 2018).

Through the years, different approaches have
been introduced for lexical substitution but, due to

the paucity of annotated data, most of the lexical
substitution systems rely on unsupervised methods
based on lexical resources or pre-trained language
models (Lacerra et al., 2021). Earlier, methods
typically relied entirely on manually curated lex-
ical resources like WordNet (Miller, 1995). The
synonyms obtained from such resources were then
ranked based on their suitability evaluated by a
similarity metric and predefined rules. Some ap-
proaches used vector-based modelling and distri-
butional vectors based on syntactic context to ob-
tain the most suitable synonyms (Melamud et al.,
2015b). Recent advances in contextual language
models like Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019),
Embeddings from Language Models (ELMo) (Pe-
ters et al., 2018), and XLNet (Yang et al., 2019)
have resulted in major breakthroughs in NLP. Be-
cause these models carry contextual information
and have the ability of context-sensitive modelling
of word probabilities, they have achieved the state-
of-the-art (SOTA) results in lexical substitution as
well. Some recent research efforts have improved
lexical substitution by modifying the architecture
of contextual embedding models (Zhou et al., 2019)
whereas others integrated lexical resources to con-
textual embeddings to obtain the most suitable set
of substitutes (Michalopoulos et al., 2022).

Methods based on lexical resources may fail to
obtain the most relevant substitutes given that they
predominantly focus on synonyms, hypernyms, and
hyponyms. Moreover, they fail to consider the in-
fluence of the substitute on the global context of the
given sentence (Zhou et al., 2019). Even though the
contextual word embedding models consider the
given context, they are unable to provide sufficient
knowledge about the effect of the substitute on the
overall meaning of a sentence.

To address these issues, the aim of this paper was
to investigate the effect of introducing contextual
sentence embeddings alongside contextual word
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embeddings in the lexical substitution task. We first
analysed the impact of the addition of contextual
sentence information and then, investigated other
methods to improve lexical substitution (Zhou et al.,
2019; Michalopoulos et al., 2022). The proposed
solution achieved the SOTA results on the LS07
and CoInCo datasets.

The main contributions of the paper were as fol-
lows:

• Analysis of the impact of adding sentence con-
text for lexical substitution.

• Analysis of methods, which incorporate lexi-
cal resources and additional context informa-
tion to improve lexical substitution.

• A lexical substitution solution, which out-
performed previous SOTA methods, and
its release at https://github.com/
sandaruSen/CILex under the MIT li-
cense.

2 Related Work

Researchers have identified different subtasks un-
der lexical substitution, namely substitution gener-
ation, substitution selection, and substitution rank-
ing (Shardlow, 2014). Out of these, substitution
generation and substitution ranking are considered
as the two main subtasks, where the former focuses
on generating possible substitutes for a target word
given the context, and the latter aims to rank the
substitutes (Giuliano et al., 2007; Martinez et al.,
2007). Ranking of the substitutes may include
ranking of the generated substitutes by the lexi-
cal substitution method or a much simpler ranking
problem with ranking of the set of substitutes ob-
tained from the human-annotated data given in the
dataset (Erk and Padó, 2010; Thater et al., 2011).

Early efforts on lexical substitution relied mainly
on manually curated lexical resources like Word-
Net (Miller, 1995) which evolved to the use of
unsupervised methods and models based on dis-
tributional similarity. Word embeddings, such as
word2vec (Mikolov et al., 2013) were used to ob-
tain substitutes by selecting words with embed-
dings residing near the target word. The embedding
similarity obtained from these models was used to
rank the substitutes (Melamud et al., 2015b). The
model context2vec, introduced by Melamud et al.
(2016), produced the contextual embeddings for a
given target word by combining the output of two

bidirectional Long Short-Term Memory Networks
(LSTMs) using a feedforward neural network. This
model was successfully applied for the ranking of
given substitutes in the lexical substitution task.
ELMo used a similar approach with bidirectional
LSTMs where the embedding of a given word was
created based on the meaning of the context it ap-
peared (Peters et al., 2018). ELMo was used in
the lexical substitution task to rank the candidates
by calculating the cosine similarity between the
contextual embeddings from the ELMo for the tar-
get word and all the substitutes for the target word
(Garí Soler et al., 2019).

The introduction of transformers resulted in ma-
jor advances in a wide range of NLP tasks (Vaswani
et al., 2017). Transformer-based language mod-
els trained on extra large corpora like BERT (De-
vlin et al., 2019) and a robustly optimised BERT
(RoBERTa) (Liu et al., 2019) used a masked lan-
guage modelling objective where tokens were re-
placed by a special token [MASK] in the train-
ing process. Further improving on the BERT-
based language models, XLNet was introduced;
it used an autoregressive pre-training method with
a permutation-based language modelling objective
without corrupting the input with masks (Yang
et al., 2019). These contextual embedding mod-
els were extensively used for lexical substitution.

The authors in Zhou et al. (2019) relied on
contextual word embeddings for lexical substitu-
tion. They modified the BERT architecture with a
dropout embedding policy where the target word
was partially masked with the aim of providing
some information of the target word in the predic-
tion. To evaluate the fitness of possible candidates,
the authors introduced a validation score which
was computed using representations in the top four
layer’s of BERT. The proposed method achieved
the SOTA results for lexical substitution. Arefyev
et al. (2020a) presented an extensive analysis on
different contextual embedding models for lexical
substitution. The authors, in addition to the model
probability predictions for the target word, com-
puted the word embedding similarity of the target
with all the words in the model’s vocabulary for fi-
nal predictions. Their experimental comparisons in-
dicated that XLNet had superior performance com-
pared to other contextual word embedding models
like ELMo, BERT, and RoBERTa at providing sub-
stitutes given no changes in the basic architecture
of the models.
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Figure 1: A flowchart of the proposed solution.

Michalopoulos et al. (2022) presented a frame-
work, which integrated external knowledge from
WordNet to BERT for lexical substitution. The au-
thors computed a proposal score based on BERT
and WordNet, a gloss sentence similarity score
based on WordNet definitions, a sentence similar-
ity score using a contextual sentence embedding
model, and the validation score introduced by Zhou
et al. (2019) to obtain the final set of substitutes.
Compared to Zhou et al. (2019) and Arefyev et al.
(2020a), additionally their approach integrated both
WordNet and contextual sentence embeddings for
lexical substitution. These authors’ most recent
methods on lexical substitution relied mostly on
contextual word embedding models (Zhou et al.,
2019; Arefyev et al., 2020a) and the use of a vari-
ety of methods that provide contextual information
(Michalopoulos et al., 2022).

In our study, we specifically focused on the
added value of sentence context for lexical sub-
stitution based on contextual sentence embeddings.
We based our experiments on Arefyev et al. (2020a)
which gave evidence of XLNet outperforming other
contextual embedding models for lexical substitu-
tion, and analysed the impact of adding sentence
context information. Additionally, we introduced a
WordNet-based metric and investigated the meth-
ods proposed by Zhou et al. (2019); Michalopoulos
et al. (2022) for lexical substitution.

3 The CILex Solution

In this study, we investigated the impact of sentence
context and the methods that capture context infor-
mation, and proposed a lexical substitution solution
called CILex (Figure 1). We followed Arefyev et al.
(2020a) and Michalopoulos et al. (2022) as the ba-
sis of our work.

3.1 Preprocessing Methods

To address the performance degradation of XLNet
model for short contexts (Arefyev et al., 2020a),
we explored two main preprocessing steps, namely,
converting to title case and prepending strings to
the input. Following Arefyev et al. (2020a), we
tested out prepending two types of strings (a ran-
dom set of strings followed by a meaningful string)
to increase the input length and assessed the impact
in the performance of our models. We observed
a slight improvement in the results when only a
meaningful string was prepended. When prepend-
ing with XLNet, to ensure the separation of the
input and the string and to define the beginning
of a sentence, use of a special end-of-document
(<eod>) token (Arefyev et al., 2020b) and conver-
sion of the first word in a sentence to title case were
performed.

3.2 Contextual Word Embedding-based
Scores

Model Prediction Score. Given a target word x
and its context c, we obtained the probability pro-
vided by the XLNet model P (w|c) as the model
prediction (w is any word from the XLNet vocabu-
lary). We used the XLNet model following Arefyev
et al. (2020a) which gave evidence of XLNet out-
performing other contextual word embedding mod-
els like BERT, ELMo, and RoBERTa without fine-
tuning.

Proximity Similarity Score. In addition to the
model prediction, we obtained the probability of
possible substitutes based on their proximity to the
target word P (w|x) through embedding similarity
which was computed using the inner product of the
embedding of the target word and the embedding of
the respective word (embeddingx · embedding⊤w )
(Arefyev et al., 2020a).
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These probability scores were linearly combined
for each word in the vocabulary to obtain SXLNet
which is a representation of the model prediction
and the embedding similarity (Eq. (1)).

SXLNet = αP (w|c) + βP (w|x) (1)

where α is the weight for model prediction score
and β is the weight for embedding similarity score.
The values for parameters α and β can be fine-
tuned.

Based on SXLNet score, the words were ranked
to obtain the top 20 possible substitutes.

3.3 Contextual Sentence Embedding-based
Scores

To evaluate the suitability of the possible candi-
dates and their influence in the global context of
the given sentence, we used contextual sentence
embeddings with the assumption that contextual
sentence embeddings are capable of ensuring that
the possible substitutes do not change the overall
meaning of the sentence.

Given a sentence s with a target word xi, we
obtained an updated sentence (s′) by replacing the
target word with a possible substitute. An updated
sentence can be denoted as s′ = (x1, . . . , x

′
i, . . . ).

For each possible substitute, a sentence similarity
score was then calculated using cosine similarity
using the sentence embeddings for the original sen-
tence s and the updated sentence s′:

Ssent = cos(s, s′). (2)

To obtain sentence embeddings, we experi-
mented with a general sentence embedding model
based on RoBERTa (stsb-roberta-large) (Reimers
et al., 2019), unlike Michalopoulos et al. (2022)
who used a fine-tuned RoBERTa sentence embed-
ding model.

To investigate the added value of sentence con-
text, the scores from the XLNet model and the
sentence similarity model were linearly combined
to obtain the candidate score S for the possible sub-
stitutes with γ and δ as the weights for SXLNet and
Ssent scores respectively. The model which relied
only on SXLNet and Ssent was defined as CILex1.

S = γSXLNet + δSsent. (3)

3.4 Additional Context Information-based
Scores

Gloss Sentence Similarity Score. As introduced
by Michalopoulos et al. (2022), we computed a

gloss sentence similarity score Sgloss based on
WordNet and BERT (bert-large-uncased) which
captured additional context information of the tar-
get word. For target words and possible substitutes,
lists of potential definitions were obtained from
WordNet. By computing the similarity score be-
tween the given sentence and the definitions, the
most suitable definitions for each target word and
substitute was obtained. For each substitute, a gloss
similarity score was obtained by computing the
cosine similarity between the best definition em-
bedding of the target word dt and best definition
embedding of the substitute dw.

Sgloss = cos(dt, dw). (4)

WordNet Similarity Score. Similar to the
Sgloss score, we introduced a new score Swordnet
based on WordNet and BERT (bert-large-uncased).
Unlike Sgloss score, we obtained lists of potential
definitions only for the target words, from which
the most suitable definition for the target word
was obtained computing cosine similarity score
between the given sentence and the definitions. By
replacing the target word in the given sentence by
possible substitutes, a list of updated sentences
were obtained. For each substitute, wordnet based
similarity score was obtained by computing the co-
sine similarity between the best definition of the
target word dt and the updated sentence s′.

Swordnet = cos(dt, s
′). (5)

Validation Score. We also used the validation
score Sval in Zhou et al. (2019) by computing the
cosine similarities between the BERT-based con-
textual embeddings (bert-large-uncased) of the top
four layers of every token in the original sentence
and the modified sentence.

For each word filtered based on SXLNet score,
Ssent, Sgloss, Swordnet, and Sval scores were
calculated. The scores were then linearly interpo-
lated to obtain the candidate score S for the possi-
ble substitutes with γ, δ, θ, and ω as the weights for
SXLNet, Ssent, Swordnet, and Sval scores respec-
tively for CILex2 (Eq. (6)). For CILex3, Swordnet
score was replaced using Sgloss (Eq. (7)) 1.

S = γSXLNet+δSsent+θSwordnet+ωSval. (6)

S = γSXLNet+ δSsent+ θSgloss+ωSval. (7)
1Both Swordnet and Sgloss are based on WordNet and

BERT models, and therefore not considered together.
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Sentence Candidate Substitutes with Weights
If we take the factual context in which the term is used
into consideration ...

consider 2; accept 1; include 1; think
about 1

It shouldn’t take that long . last 2; be 1; engage for 1
If you don’t take the risk of dying by driving to the
store ...

tolerate 1; run 1; undergo 1; accept 1;
risk 1

Table 1: Three example instances for the target word take from LS07 dataset.

4 Experiments

This section gives an overview of the datasets used
in the experiments, evaluation metrics, the exper-
imental setup, and the results from performance
evaluations.

4.1 Datasets in Experiments

We evaluated CILex1, CILex2, and CILex3 on
the two most widely used English datasets for
lexical substitution task: the SemEval 2007 task
dataset (LS07) (McCarthy and Navigli, 2007) and
the Concepts in Context (CoInCo) (Kremer et al.,
2014) dataset.

LS07 dataset is from the English Internet Cor-
pus and consists of 2, 010 sentences for 201 target
words with 10 sentences per target word. The an-
notators were asked to provide up to 3 candidate
words for each target word.

CoInCo dataset is from the “Manually Annotated
Sub-Corpus” and it consists of 15, 415 sentences
with 3, 874 target words. For each target word, 6
candidate substitutes were provided by the annota-
tors.

Each candidate substitute in the datasets was
assigned a weight, which corresponds to the fre-
quency it was chosen by the annotators. Table 1
provides an example of three instances of the target
word take with the candidate substitutes provided
by the annotators in LS07 dataset.

4.2 Experimental Setup

We evaluated CILex on the two subtasks of lexical
substitution: substitution generation and substitu-
tion ranking.

In the substitution generation task, possible sub-
stitutes for the target word were obtained from our
proposed approach. We based our evaluation on the
metrics proposed in the SemEval 2007 task (Mc-
Carthy and Navigli, 2007), in particular, we used
best and best-m to evaluate the quality of the best
predictions of the system and out of ten (oot) and
oot-m to assess the coverage of the gold substitutes

in the top ten best predictions respectively.2 We
also used precision@1 (P@1) and precision@3
(P@3) as evaluation metrics to have a thorough
comparison with Zhou et al. (2019); Arefyev et al.
(2020a); Michalopoulos et al. (2022). We com-
puted the P@k, k = {1, 3} as follows:

P@k =
acceptable substitutes in the system top-k

substitutes in the system top-k
.

To evaluate the statistical significance of the P@1
score of CILex methods, we used Wilcoxon Signed-
Rank Test (Wilcoxon, 1992) and Pearson correla-
tion (Benesty et al., 2009).

The substitution ranking task was performed
based on the substitutes provided in the dataset.
Following the previous works, we pooled all the
candidate substitutes for the target word in the
given instance across the dataset based on the target
lemma and Part Of Speech (POS) tag and removed
multi-words from the list (Melamud et al., 2015b;
Arefyev et al., 2020a; Michalopoulos et al., 2022).
The filtered out list was the input to the system
as candidates to be ranked. As the gold standard,
we used the given candidate substitutes. The pro-
posed approach was then used to rank the possible
candidates. CILex was evaluated for the candidate
ranking task using the Generalised Average Preci-
sion (GAP) score (Kishida, 2005) where candidates
are ranked based on their weights; candidates with
higher weights should be ranked higher.

We experimented with weights when combining
the scores together. Scores from the XLNet model
(Eq. (1)) were computed by setting the α parame-
ter to 1 and β parameter to 10 following (Arefyev
et al., 2020a). When integrating the XLNet score
SXLNet with sentence similarity score Ssent, em-
pirically, we changed the γ parameter to 1, 0.5, and
0.05 keeping δ at 1. We obtained the best results
when γ was 0.05. For θ and ω, we used 0.05 and

2For brevity, details of all the evaluation metrics are not
described. More information can be found at McCarthy and
Navigli (2007).
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Method best best-m oot oot-m P@1 P@3

LS07 dataset
Substitute Vector (Melamud et al., 2015a) 12.7 21.7 36.37 52.03 - -
PIC (Roller and Erk, 2016) - - - - 19.7 14.8
Transfer Learning (Hintz and Biemann, 2016) 17.2 - 48.8 - 40.8 -
BERT-based substitution (Zhou et al., 2019) 20.3 34.2 55.4 68.4 51.1 -
BERT-based substitution∗ 12.8 22.1 43.9 59.7 31.7 -
XLNet+embs (Arefyev et al., 2020a) 21.32 37.80 55.04 73.90 50.56 36.29
LexSubCon (Michalopoulos et al., 2022) 21.1 35.5 51.3 68.6 51.7 -
CILex1 22.15 39.02 54.98 74.15 53.38 37.58
CILex2 23.17 40.98 55.51 73.90 55.43 38.15
CILex3 23.31 40.98 56.32 74.88 55.96 38.5

CoInCo dataset
Substitute Vector 8.1 17.4 26.7 46.2 - -
BERT-based substitution 14.5 33.9 45.9 69.9 56.3 -
BERT-based substitution∗ 11.8 24.2 36.0 56.8 43.5 -
XLNet+embs 15.09 33.02 45.06 71.85 52.57 39.67
LexSubCon 14.0 29.7 38.0 59.2 50.5 -
CILex1 15.96 35.04 45.84 72.12 55.73 41.34
CILex2 16.30 35.73 46.55 72.84 56.77 42.3
CILex3 16.39 35.80 46.87 72.98 57.25 42.49

Table 2: Results of the best implementations of our approach and previous state-of-the-art models for LS07 and
CoInCo datasets (Higher the value, better the performance). We reproduced the results of Arefyev et al. (2020a)
and included reproduced results of the BERT-based substitution method (Zhou et al., 2019) by Michalopoulos et al.
(2022) which is shown in *. Best values are bolded. (Results for the entire dataset can be found at Appendix A.)

0.5. The linear model parameters for LS07 dataset
were fine-tuned against CoInCo dataset and vice
versa (Arefyev et al., 2020a). We conducted our
experiments on a RTX 3090 graphics card with 24
GB memory and CUDA 11.4.

4.3 Experimental Results from Performance
Evaluations

Substitution Generation. Our proposed ap-
proaches outperformed all the previous SOTA lex-
ical substitution methods for both datasets (Ta-
ble 2). We compared our best performing ap-
proaches (Eq. (3), Eq. (6), Eq. (7)) with the
previous best results from substitute vector-based
method (Melamud et al., 2015a), PIC (Roller and
Erk, 2016), transfer learning-based method (Hintz
and Biemann, 2016), BERT for lexical substitu-
tion (Zhou et al., 2019), XLNet+embs method
(Arefyev et al., 2020a), and LexSubCon method
(Michalopoulos et al., 2022). CILex3 outperformed
the most recent method by Michalopoulos et al.
(2022) on both datasets by a ∼4% improvement
on LS07 dataset and ∼6.75% improvement on Co-
InCo dataset. CILex3 also showed an improvement
of ∼5% and ∼4.5% on LS07 and CoInCo respec-

tively compared to (Arefyev et al., 2020a).

Method LS07 CoInCo
Transfer Learning 51.9 -
Vector Space Modelling 52.5 47.8
PIC 52.4 48.3
Supervised Learning 55.0 -
Substitute Vector 55.1 50.2
context2vec 56.0 47.9
CILex1 56.81 51.68
CILex3 57.83 53.57
CILex2 58.25 53.92
BERT-based 58.6 55.2
XLNet+embs 60.5 55.64
LexSubCon 60.6 58.0

Table 3: Comparison of GAP scores (%) for the candi-
date ranking task. The results from the transfer learning
(Hintz and Biemann, 2016), vector space modelling
(Kremer et al., 2014), PIC (Roller and Erk, 2016), super-
vised learning (Szarvas et al., 2013), substitute vector
(Melamud et al., 2015a), context2vec (Melamud et al.,
2016), XLNet+embs (Arefyev et al., 2020a), BERT-
based lexical substitution (Zhou et al., 2019), and Lex-
SubCon (Michalopoulos et al., 2022) are presented.
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Method best best-m oot oot-m P@1 P@3 R@10 Runtime

LS07 dataset
SXLNet and Ssent 22.15 39.02 54.98 74.15 53.38 37.58 48.67 32 min 27 sec
SXLNet and Ssent* 21.76 38.70 55.27 73.90 52.38 37.6 48.79 32 min 29 sec
SXLNet and Swordnet 21.53 38.37 54.59 72.76 50.85 35.39 48.22 25 min 57 sec
SXLNet and Sgloss 20.97 36.59 50.72 69.35 50.5 30.4 44.0 45 min 11 sec
SXLNet and Sval 21.98 38.46 54.39 72.93 52.73 36.78 48.15 59 min 37 sec

CoInCo dataset
SXLNet and Ssent 15.96 35.04 45.84 72.12 55.73 41.34 37.21 4 hrs 54 min
SXLNet and Ssent* 15.71 34.39 46.07 72.80 54.63 41.88 37.31 4 hrs 59 min
SXLNet and Swordnet 15.23 33.39 44.48 70.84 53.07 38.14 35.77 3 hrs 18 min
SXLNet and Sgloss 14.95 32.35 41.46 66.22 52.37 34.54 33.27 6 hrs 28 min
SXLNet and Sval 15.63 34.39 44.76 70.57 54.64 39.97 36.26 8 hrs 47 min

Table 4: Ablation study of the proposed approach with SXLNet as the basis and different methods to obtain additional
context information. In *, we used the fine-tuned RoBERTa model to compute sentence similarity scores.

All the proposed CILex solutions gave statisti-
cally significant improvement of P@1 score com-
pared to (Arefyev et al., 2020a) for both datasets
(P<0.05). Both CILex2 and CILex3 were statisti-
cally significantly better than CILex1. However,
based on Pearson’s correlation results for CILex2
and CILex3, we could observe a high level of cor-
relation between the two methods.

Candidate Ranking. Our proposed approaches
provided competitive results on both LS07 and Co-
InCo datasets for candidate ranking task (Table
3). We could observe that CILex approaches out-
performed the transfer learning (Hintz and Bie-
mann, 2016), vector space modelling (Kremer
et al., 2014), PIC (Roller and Erk, 2016), super-
vised learning (Szarvas et al., 2013), substitute
vector (Melamud et al., 2015a), and context2vec
(Melamud et al., 2016) methods. However, BERT-
based lexical substitution (Zhou et al., 2019), XL-
Net+embs (Arefyev et al., 2020a), and LexSubCon
(Michalopoulos et al., 2022) reported better results
than the proposed approach for candidate ranking.

Ablation Study on Substitution Generation.
We conducted an ablation study to evaluate the
effect of contextual sentence embeddings and dif-
ferent methods that capture context information
introduced in (Zhou et al., 2019; Michalopoulos
et al., 2022) (Table 4). We have presented results
for the recall of the top 10 predictions (R@10) and
run time for each experiment as additional metrics.

The results from our analysis of the contribution
of fine-tuned contextual sentence embeddings and
general contextual embeddings indicated that fine-
tuned sentence embedding model on the dataset

does not necessarily perform well for lexical sub-
stitution. We used SXLNet as the basis and ex-
perimented with two contextual sentence embed-
ding models based on RoBERTa and the fine-tuned
sentence embedding model based on RoBERTa
(Michalopoulos et al., 2022). Based on our experi-
ments, we observed that both models gave similar
results for LS07 and CoInCo datasets.

We further performed experiments to analyse
the relative contribution of additional context in-
formation obtained by Swordnet, Sgloss, and Sval
with respect to the output from SXLNet. Our results
implied that the model achieves the worst perfor-
mance when gloss sentence similarity score was
used as additional context information. Based on
our results, we also observed an increase in the fi-
nal results when sentence similarity score was used
to obtain additional context information.

To identify the efficient methods of integrating
contextual information for lexical substitution, we
reported the runtimes for our experiments (Table
4). The runtimes indicated that use of Swordnet is
comparatively efficient. However, considering the
computational vs performance trade-off, desired
scores can be used for lexical substitution.

Number of successful predictions
Dataset 0 1 2 3
LS07 23.19 43.27 28.36 5.16
CoInCo 22.00 37.98 30.53 9.47

Table 5: The percentage of no. of samples in each
dataset based on the number of successful predictions
in the top three predictions.
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Sentence Gold Substitutes Top Three Predictions
Nevertheless she gave me what i
can only describe as as apprais-
ing glance

call, see, recount, imagine, detail,
assess as

description, explain, de-
fine

Just another wild and crazy guy. uninhibited, turbulent, rowdy,
restless, peculiar, intense, insane,
impassioned, fierce, adventurous

crazy, reckless, random

The federal complaint offers
many details of the alleged con-
spiracy ...

specific, point, fact, tidbit, snip-
pet, item, issue, facet, count, ac-
count

information, description,
outline

He said. state, remark, declare, comment,
cite, ask, answer

speak, tell, reply

Table 6: Four example instances from CoInCo dataset whose top three model predictions were not in the gold
substitutes and the extracted possible substitutes from WordNet. The target words are bolded.

4.4 Analysis of the Substitution Generation
Results

We conducted experiments to further analyse the
performance of the CILex architecture. For each
dataset, we calculated the percentage of successful
predictions as the samples for which the model re-
turned at least one prediction that was included in
the gold substitutes, considering the top three pre-
dictions (Table 5). We observed that for 76.8% of
the LS07 dataset and 77.99% of the CoInCo dataset
CILex provided at least one successful prediction.
We further analysed the 23.19% and 22% of LS07
and CoInCo datasets for which our method did not
yield a successful prediction.

For the target words in the samples which did
not yield at least one successful prediction, we ex-
tracted synonyms, hypernyms, and hyponyms from
WordNet as possible substitutes and checked if at
least one of the model predictions was in the ex-
tracted WordNet substitutes. Results from CILex
indicated that 51.64% of LS07 and 25.69% of Co-
InCo which did not yield a successful prediction,
contained predictions that were included in the ex-
tracted WordNet substitutes. This implied that,
even though for certain samples there were no suc-
cessful predictions based on the gold substitutes,
they included predictions with a certain relevance
to the target word. We manually checked the re-
maining samples, for which our method did not
yield a successful prediction and which were not
included in the WordNet substitutes, as illustrated
in Table 6. In the analysed instances, we observed
predictions which could be considered as possible
substitutes for the given target word.

5 Discussion

In this paper, we analysed the impact of introduc-
ing contextual sentence embeddings and methods
which provide additional context information for
lexical substitution, thereby ensuring that the substi-
tutes are semantically consistent while preserving
the overall meaning of the sentences. The results
from the proposed CILex solution outperformed
previous SOTA methods for lexical substitution on
LS07 and CoInCo datasets. Our results indicated
that accounting for sentence context information
has improved the performance on the substitution
generation task. This is demonstrated by our ap-
proach (i.e., CILex) outperforming (Arefyev et al.,
2020a) SOTA contextual word embedding-based
method on two datasets. However, interestingly
based on our results, the performance did not im-
prove in the candidate ranking task, which requires
further investigation.

The results from our ablation study on the meth-
ods, which provide additional context information,
indicated that they improve the lexical substitu-
tion task. Analogously with Michalopoulos et al.
(2022), our results implied that the model achieves
the worst performance when gloss sentence simi-
larity score was used as additional context infor-
mation. This could be mainly due to WordNet be-
ing manually curated and definitions for words ob-
tained from WordNet might not reflect the meaning
of the words in the given context. Furthermore, for
certain words, definitions may not be available on
WordNet. Based on our results, we also observed
an increase in the final results when sentence simi-
larity score was used to obtain additional context
information as opposed to wordnet score, gloss sen-
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tence similarity score, and validation score. This
is likely because the sentence similarity can ap-
propriately identify if a substitute fits the context
and ensures that the overall meaning of the sen-
tence is unchanged. However, when compared
with Michalopoulos et al. (2022), their approach
yielded an improvement in results when the vali-
dation score introduced by (Zhou et al., 2019) was
used. These observations hindered us to come to
a conclusion as to which of the components con-
tributes most to lexical substitution and illustrated
that different components contributed differently.

Our experiments gave evidence of the impor-
tance of the initial model/method used to obtain the
first set of substitutes. The proposed CILex solu-
tion, which relied on an XLNet-based method to ob-
tain the initial set of substitutes, outperformed Lex-
subcon (Michalopoulos et al., 2022) which used a
BERT-based method to obtain the initial set of sub-
stitutes. CILex showed an improvement of ∼4%
on LS07 dataset and ∼6.75% on CoInCo dataset.
These insights guided us to conclude that the initial
model used to obtain the possible candidates also
had a direct impact to the lexical substitution which
requires a thorough investigation.

The proposed CILex solutions are based on pre-
trained language models and therefore are general-
isable. For domain specific applications, the pro-
posed approach can be easily transferable by replac-
ing the pre-trained language models with respective
domain specific models.

Further analysis of the substitution generation
results indicated that samples which did not have
successful predictions may contain potential substi-
tutes based on WordNet. This illustrated the impact
of the annotation subjectivity in the interpretation
of the performance of the lexical substitution task.

As future work, we intend to extend our experi-
ments and analyse methods that can provide con-
text information to improve lexical substitution.
Moreover, the impact on the candidate ranking task
will be explored further as future work. We also
plan to look into the applicability of the proposed
approach for other tasks like word sense induction
(Amrami and Goldberg, 2018) and word sense dis-
ambiguation.

6 Conclusion

We have presented and released a solution for lexi-
cal substitution investigating the impact of sentence
context obtained from contextual sentence embed-

dings. We have introduced and further integrated
methods which capture additional context informa-
tion as proposed by Zhou et al. (2019); Michalopou-
los et al. (2022). The unified solution has achieved
the SOTA results on two benchmark datasets; LS07
and CoInCo.

We have also analysed and evaluated effects of
different methods that provide contextual informa-
tion and their contribution for lexical substitution.
The results have demonstrated the importance of
sentence context information obtained using con-
textual sentence embeddings in lexical substitution.

7 Ethical Considerations

We proposed a solution for lexical substitution and
analysed the impact of adding sentence context
using contextual sentence embeddings. Addition-
ally, we also incorporated scores proposed in (Zhou
et al., 2019; Michalopoulos et al., 2022) for lexi-
cal substitution to evaluate the significance of each
of them.

The proposed approach was tested and validated
on two benchmark datasets: LS07 dataset and Co-
InCo dataset. According to the National Statement
on Ethical Conduct in Human Research (2007) —
Updated 2018 (National Health and Medical Re-
search Council, 2018), a new ethics approval was
not required for our experiments and, to the best
of our knowledge, both datasets were created ethi-
cally. No new data or annotations were collected
as part of our study.
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A Results of the Entire Dataset

The CILex solutions are based on pre-trained con-
textual embedding models and therefore no training
is performed. Hence, we have also provided the
results of the proposed approaches for the entire
dataset (Tables 7, 8, and 9).
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Method best best-m oot oot-m P@1 P@3

LS07 dataset
XLNet+embs (Arefyev et al., 2020a) 20.88 36.92 53.60 71.74 49.53 34.9
CILex1 21.50 37.68 53.53 72.02 51.92 36.25
CILex2 22.47 39.43 53.96 71.81 53.77 36.76
CILex3 22.59 39.22 54.65 72.37 54.22 37.33

CoInCo dataset
XLNet+embs 14.11 31.70 44.03 71.62 51.5 39.5
CILex1 15.37 34.71 45.09 72.25 56.12 42.24
CILex2 15.67 35.20 45.73 72.88 57.09 43.12
CILex3 15.67 34.97 46.03 73.07 57.35 43.27

Table 7: Results of the best implementations of our approach for the whole dataset (trial and test) and the reproduced
results of XLNet+embs method (Arefyev et al., 2020a).

Method best best-m oot oot-m P@1 P@3 R@10 Runtime

LS07 dataset
SXLNet and Ssent 21.50 37.68 53.53 72.02 51.92 36.25 47.6 37 min 5 sec
SXLNet and Swordnet 20.83 36.99 53.08 70.41 49.23 34.18 47.1 27 min 55 sec
SXLNet and Sgloss 20.26 35.24 49.27 66.99 48.63 29.21 43.04 55 min 46 sec
SXLNet and Sval 21.29 37.19 52.78 70.41 50.97 35.1 46.95 1 hr 7 min

CoInCo dataset
SXLNet and Ssent 15.37 34.71 45.09 72.25 56.12 42.24 36.33 7 hr 58 min
SXLNet and Swordnet 14.53 32.78 43.40 70.72 52.77 38.58 34.62 4 hr 52 min
SXLNet and Sgloss 14.32 31.82 40.74 66.50 52.41 35.41 32.42 10 hr 6 min
SXLNet and Sval 15.02 33.91 43.85 70.51 54.59 40.61 35.29 13 hr 58 min

Table 8: Ablation study of the proposed approach for the complete dataset (trial and test).

Method LS07 CoInCo
CILex3 56.91 53.55
CILex2 57.42 53.93
BERT-based 57.9 55.5
XLNet+embs 59.61 55.64
CILex1 59.9 55.6
LexSubCon 60.3 58.0

Table 9: Comparison of GAP scores (%) for the candidate ranking task on the entire dataset (trial and test). The
results of CILex methods, reproduced results of XLNet+embs (Arefyev et al., 2020a), reported results of BERT-
based lexical substitution (Zhou et al., 2019), and LexSubCon by Michalopoulos et al. (2022) are presented.
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Abstract

Word embeddings learned using the distribu-
tional hypothesis (e.g., GloVe, Word2vec) are
good at encoding various lexical-semantic re-
lations. However, they do not capture the emo-
tion aspects of words. We present a novel
retrofitting method for updating the vectors of
emotion bearing words like fun, offence, an-
gry, etc. The retrofitted embeddings achieve
better inter-cluster and intra-cluster distance
for words having the same emotions, e.g., the
joy cluster containing words like fun, happi-
ness, etc., and the anger cluster with words
like offence, rage, etc., as evaluated through
different cluster quality metrics. For the down-
stream tasks on sentiment analysis and sar-
casm detection, simple classification models,
such as SVM and Attention Net, learned using
our retrofitted embeddings perform better than
their pre-trained counterparts (about 1.5% im-
provement in F1-score) as well as other bench-
marks. Furthermore, the difference in perfor-
mance is more pronounced in the limited data
setting.

1 Introduction

Word embedding models inspired from the distri-
butional hypothesis (Harris, 1954) have one major
limitation: they mix semantic similarity with other
types of semantic relatedness (Hill et al., 2015). For
instance, consider cheap and expensive. Though
opposite in meaning, the distributional vectors of
these words are similar since they occur in nearly
identical contexts. This is problematic for many
applications such as text simplification, dialogue
state tracking, etc. To address this, researchers have
proposed various models that leverage knowledge
resources to improve word embeddings. At a high
level, these models are categorized into two types:
Joint specialization models (Yu and Dredze, 2014;
Liu et al., 2015); and Retrofitting (post-processing)
models (Faruqui et al., 2015; Mrkšić et al., 2016).
Joint specialization models typically modify the

word pair GloVe RETripletGBal
(angry, offence) 0.2339 0.3924
(angry, enjoy) 0.3400 0.2950
(fun, closeness) 0.2232 0.3688
(fun, miserable) 0.3105 0.2812

Table 1: Cosine similarity between words from same
and different emotion categories: pre-trained GloVe vs.
embeddings retrofitted by our method RETripletGBal

optimization objective of distributional models by
integrating external knowledge into the objective
function. In contrast, retrofitting models first gener-
ate training data from knowledge resources in the
form of constraints and then modify the pre-trained
embeddings in a post-processing step so that they
respect the constraints. These approaches focus
mainly on constraints from relations such as syn-
onymy, antonymy, hypernymy, etc., that are present
in WordNet, Paraphrase database, etc.

While pre-trained embeddings and their
retrofitted versions are good at encoding various
lexico-semantic relations, they do not consider the
emotion content of words. For example, consider
words such as angry and offence that evoke
anger emotion and words such as fun and enjoy

eliciting joy. Table 1 shows cosine similarity as
computed using pre-trained GloVe embeddings.
Even though angry and offence evoke the same
emotion (anger), their cosine similarity is lower
than that between angry and enjoy, a pair of
words eliciting different emotions, pointing to
the shortcomings of existing embedding models.
Recently, a few attempts have used affective
lexicons (Khosla et al., 2018; Seyeditabari et al.,
2019) or task-dependent distant supervision (Tang
et al., 2016; Agrawal et al., 2018) to induce
emotion embeddings. While they work well for
some tasks, they do not generalize well across
tasks and have not been tested extensively for
intrinsic quality.
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Emotion anger joy sadness fear anticipation surprise trust disgust
#words 543 651 1153 772 623 318 1197 1024

Table 2: EmoLex statistics: number of words annotated with Plutchik’s eight basic emotion categories

In this work, we present a novel retrofitting
method to learn emotion enriched embeddings.
For knowledge, it relies on word-level emotion
annotations available in the NRC word-emotion
association lexicon (known as EmoLex). The cen-
tral idea is: if words wa and wp are associated
with the same emotion category t and word wn
is not associated with t, then wa is semantically
closer to wp than wn in the context of the emo-
tion category t. This can be stated as an inequality
constraint: simt(wa, wp) > simt(wa, wn). Such
emotion inequality constraints containing word
triplets (wa, wp, wn) are generated for all emotion
categories present in EmoLex. We use these con-
straints as training data to learn a non-linear trans-
formation function that maps original word vectors
to a vector space respecting these constraints. The
transformation function is learned in a similarity
metric learning setting using a multi-layer feed-
forward network.

The embeddings retrofitted using our method
achieve better clustering for emotion bearing words.
For the downstream tasks on sentiment analysis and
sarcasm detection, they perform better than their
pre-trained counterparts and other benchmarks,
with significant gains in limited data setting. The
main contributions of this work are:

1. A novel retrofitting method to learn emotion
enriched embeddings in a similarity metric
learning setting (Section 3).

2. A detailed evaluation of word embeddings for
their emotion content using clustering experi-
ments (Section 4.1).

3. A detailed evaluation on sentiment analysis
and sarcasm detection showing the efficacy of
our retrofitting method (Section 4.2).

2 Constraints from NRC EmoLex

A large body of work has focussed on under-
standing and modelling human emotions. For in-
stance, Plutchik’s wheel of emotions (Plutchik,
1980), Ekman’s model (Ekman, 1992), Parrot’s
tree-structured emotions (Parrott, 2001), etc. The
model proposed by Plutchik arranges emotions in

circles with the length of radius indicating the inten-
sity of emotions. It proposes eight basic or primary
emotions: joy, trust, fear, surprise, sadness, disgust,
anger, and anticipation.

Various lexical resources have been proposed
in the literature to capture the emotion aspect of
words, e.g. (Mohammad, 2018a,b). In this work,
we focus on NRC EmoLex (Mohammad and Tur-
ney, 2013). It contains a list of English words and
their associations with Plutchik’s eight basic emo-
tions (Plutchik, 1980). Since words are ambiguous
in their meaning and may evoke multiple emotions,
each word in EmoLex has been associated with a
set of emotions. For example, playful is associ-
ated with three emotion categories: trust, surprise
and joy. Table 2 shows the total number of words
annotated with each emotion category1.

We obtain a set of inequality constraints from
EmoLex in the form of triplets. Each triplet con-
tains three words (wa, wp, wn) in which we refer to
wa, wp and wn as the anchor, positive and negative
words, respectively. The corresponding inequality
constraint is: similarity between wa and wp shall
be greater than the similarity between wa and wn,
by at least a margin m. The margin m is set in the
range [0, 2] corresponding to a minimum versus
maximum separation on cosine distance. For ex-
ample, consider the following word-emotion pairs
in EmoLex: (lonely, sadness), (playful, joy),
and (sorrow, sadness). With lonely as the anchor
word, sorrow can be considered the positive word
since both these words belong to the same emo-
tion category sadness. The word playful is then
considered as a negative word since it is annotated
with a different emotion category joy. This gives
rise to the following constraint in the context of
sadness category: simsadness(lonely, sorrow) >
simsadness(lonely, playful) + msadness. Such
constraints are obtained in the context of all the
eight emotion categories by considering each word
from the corresponding emotion category as the
potential anchor and then generating the positive
and negative words.

1EmoLex contains emotion and sentiment annotations for
14,182 words. Out of these, it has a total of 4,463 emotion
bearing words i.e. words that are marked with at least one
emotion category.
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3 Retrofitting Method

Our goal is to learn a transformation function that
maps pre-trained word embeddings to a vector
space that respects the emotion inequality con-
straints. As explained earlier, an inequality con-
straint is created using a word triplet (wa, wp, wn)
and the corresponding emotion category-specific
margin m. Thus, a natural way to create training
data for this task is to generate a set of four tu-
ples (wa, wp, wn,m) using all possible inequality
constraints. However, training data generation us-
ing all inequality constraints has a drawback. We
first explain this drawback and ways to mitigate
it, followed by our retrofitting model to learn the
transformation function.

3.1 Training: Batch of triplets To Batch of
words

Let’s define the set of triplets that satisfy inequality
constraints (hence zero loss) as easy triplets, and
conversely, the set of triplets that do not satisfy
the constraints (hence leading to non-zero loss) as
active triplets. The constraint generation method
described in Section 2 produces O(n3) triplets (n
= #words in EmoLex), which by construction leads
to training data explosion. Moreover, many of
these triplets may trivially satisfy the inequality
constraint (i.e., easy triplets) in pre-trained input
vector space. In fact, the set of active triplets keeps
on changing as the training progress, and just after
a few batch updates in stochastic gradient descent,
a majority (> 99%) of the triplets become easy
triplets resulting in zero loss. The gradients from
these inactive triplets start vanishing at this point,
leading to considerably slow training.

The stagnant-training problem described above
is well studied in the computer vision community,
where triplet loss has been successfully applied in
metric learning settings for applications such as
face verification (Schroff et al., 2015), person re-
identification (Hermans et al., 2017), etc. Various
approaches for selecting the right set of triplets (re-
ferred as triplet mining or sampling) are broadly
categorized into offline (Gordo et al., 2016) and
online mining (Hermans et al., 2017). In this work,
we focus only on online mining as it generally
leads to better training convergence than the offline
approach. In online mining, we first sample a mini-
batch consisting only of raw images (words in our
case). The set of active triplets is then generated
on-the-fly from the mini-batch. Various policies to

sample active triplets from a given batch include
BatchHard, BatchHardNegative, and BatchAll. For
a given anchor image a from class X , the Batch-
Hard (BH) policy selects the hardest positive image
p (farthest from a in terms of distance metric) from
among the rest of the images of X in the batch. It
then selects the hardest negative image n (closest
to a in terms of distance metric) from the set of
images belonging to classes other than X . The
BatchHardNegative (BHN) policy relaxes positive
image mining by considering all possible in-batch
positive images p and then selects the hardest neg-
ative n. The BatchAll (BA) policy considers all
possible in-batch positive images and in-batch neg-
ative images for the given anchor a and then selects
active triplets from the complete set.

In a nutshell, to mitigate the stagnant-training
problem, instead of sampling a mini-batch of
triplets from a huge set created offline, we first
sample mini-batch of individual words and then
generate triplets from the mini-batch on-the-fly us-
ing online triplet mining policies.

3.2 Retrofitting model

Our retrofitting model takes pre-trained word em-
beddings as input and updates them using a non-
linear transformation function T(xw) such that
the emotion aspects of words, as induced by the
inequality constraints, are respected. The transfor-
mation function is learned in a similarity metric
learning setting. Figure 1 shows the architecture
for learning our retrofitting model.
1. Training data generation: A training instance
for our model consists of a word and its emotion
category. The data generation component samples
words from EmoLex to create a mini-batch b of
size n for training. We experiment with two vari-
ants: (1) Uniform variant samples an equal number
of words from all the eight emotion categories;
(2) Weighted variant, on the other hand, samples
words from a category proportional to the number
of words annotated with that category in Emolex.
2. Transformation function: We take the d-
dimensional pre-trained embeddings of words
present in the mini-batch b as input and pass
them through the transformation function to com-
pute retrofitted embeddings, i.e., xtw = T(xw).
This function is realized using a multi-layer feed-
forward neural network with a corresponding set
of network weights WT .
3. Triplet mining: The retrofitted embeddings
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Figure 1: Architecture for our retrofitting model

computed by T(xw) are passed to the triplet mining
component, which samples the set of active triplets
A from batch b according to the selected online
triplet mining policy.
4. Loss function: Active triplets obtained from
the triplet mining component are used to compute
triplet loss from the mini-batch b. It is defined in
terms of a margin based hinge loss function,

Lh =
∑
A

(
dist(Mcwax

t
wa ,Mcwax

t
wp)

−dist(Mcwax
t
wa ,Mcwax

t
wn) +margin

)
+

(1)
Here, dist is a cosine-distance function; (x)+ =
max(0, x); and margin is a hyper-parameter,
set in [0, 2]. In Emolex, a word may be
tagged with multiple emotion categories e.g.
lonely is tagged with both sadness and anger.
Thus, while generating sadness related constraints
from the word lonely (e.g. the constraint in
(lonely, sorrow, playful)), we need a way to ex-
tract the sadness aspect. Similarly, when generating
anger related constraints, we need to consider the
anger aspect. To account for this, we first project
the retrofitted embeddings to an emotion category-
specific vector space using a linear transformation
matrix Mcwa ∈ Rd×d; cwa ∈ {1, 2, .., 8} (learned
jointly with T). The dist function in Eq. 1 is then
applied to the projected retrofitted embeddings.
Vector Space Preservation: Pre-trained embed-
dings contain useful semantic relations between
words as captured by the distributional hypothe-
sis. The transformation function learned by our
model should preserve these relations while also
respecting the emotion inequality constraints. To
address this, we use a regularization term which pe-
nalizes vector space transformations that drastically
change the topology of input vector space, similar
to (Mrkšić et al., 2016; Glavaš and Vulić, 2018). It
measures the Euclidean distance between the pre-

trained vector xi and its transformed version T(xi)
for all words present in batch b,

Lv =
∑

w∈b
‖xw − T(xw)‖2 (2)

The final loss function used by our model is then:
L = Lh+λvLv, where λv is a hyper-parameter that
determines how strictly the topology of original
vector space is preserved. The loss function also
includes weight decay for parameters WT and M .

Since the retrofitting function T(xw) is formu-
lated as a representation learning problem (similar-
ity metric learning setting), it can be used to trans-
form pre-trained embeddings of all words present
in a given vocabulary post training.

4 Experimental Results

To evaluate our retrofitting method, we experi-
mented with 300-dimensional pre-trained embed-
dings in GloVe2 (Pennington et al., 2014) and
Word2vec3 (Mikolov et al., 2013). Due to space
constraints, we discuss only GloVe results here
(Word2vec results are present in Appendix B). As
explained earlier, we used triplet constraints ex-
tracted from EmoLex to learn retrofitted embed-
dings. We refer to our method as RETriplet here-
after. Although we report the complete hyper-
parameter grid search details in Appendix A, the
hyper-parameter λv for the vector space preserva-
tion loss in Eq. 2 needs special attention. Setting
the right value for λv is extremely important to
learn a meaningful retrofitting model. If we set
it very high, RETriplet may not focus on the in-
equality constraints in triplet loss, thereby learning
retrofitted embeddings nearly identical to their pre-
trained version. Conversely, a low value of λv may
produce embeddings that largely satisfy emotion

2https://nlp.stanford.edu/data/glove.42B.300d.zip
3https://code.google.com/archive/p/word2vec/
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constraints but may not preserve the topology of
input vector space, possibly leading to degraded
performance on downstream tasks. To account
for this trade-off, we devise the following scheme
and select two configurations: (1) We use adjusted
rand index (ARI, a clustering evaluation metric,
described in Section 4.1) to measure the quality
of retrofitted embeddings and select the configura-
tion that gives the highest value for ARI (referred
as RETripletG); (2) we compute the average co-
sine distance between pre-trained and retrofitted
embeddings for words in EmoLex and filter config-
urations having distance < 0.15. We then choose
the configuration with the highest ARI from the
filtered list (referred as RETripletGBal).

Retrofitting approaches proposed in the literature
use attract and repel constraints, extracted from
WordNet, Paraphrase database, etc., to update pre-
trained embeddings. The attract constraints pull
similar (e.g., synonyms, hypernyms, etc.) word
pairs close together. While the repel constraints
push non-similar (e.g., antonyms) word pairs away
from each other. We compare RETriplet with the
following,
Counterfit (Mrkšić et al., 2016): It defines the loss
function as a weighted sum of terms that brings at-
tract word pairs closer and pushes repel word pairs
apart. It also includes a vector space regularization
term.
Attract-Repel (AR) (Mrkšić et al., 2017): The
counterfit method updates embeddings of attract
and repel words without considering their relations
to other words. AR addresses this problem by per-
forming context-sensitive vector updates. For each
word in attract pairs, it finds the closest (in terms of
cosine distance) in-batch word to generate negative
examples (conversely farthest for repel words). It
then uses these negative examples to form a hinge
loss function for context-sensitive updates.
Post-specialization: The methods described
above locally update vectors of only those words
that are present in constraints (i.e., seen words),
whereas vectors for all other words remain intact.
To address this, post-specialization methods use
retrofitted embeddings of seen words to learn a
global specialization function which then updates
vectors of unseen words. We use the generative
adversarial network architecture proposed by Ponti
et al. (2018) for post specialization with AR as the
local method (referred to as AR+PS).

We also learn emotion enriched embeddings us-

ing the methods described above by extracting at-
tract and repel constraints from EmoLex. Two
words annotated with the same emotion category
in EmoLex are added to the attract set, e.g. (angry,
offence) since both angry and offence are marked
with the anger category. In contrast, two words,
when annotated with different emotion categories,
are added to the repel set, e.g. (fun, miserable)
since fun is marked with joy and miserable with
sadness. The generated attract and repel sets are
then used to learn retrofitted embeddings. They
are referred by appending +EL to the retrofitting
method, e.g., AR+EL for embeddings retrofitted
using AR with EmoLex constraints.

We also compare our method with the following
emotion enriched embeddings: (1) EWE (Agrawal
et al., 2018): It first creates noisy emotion labelled
data using distant supervision and then applies re-
current neural network to learn emotion embed-
dings; (2) Aff2vec (Khosla et al., 2018): It appends
valence (V), arousal (A) and dominance (D) val-
ues of words as present in Warriner’s VAD lexicon
(Warriner et al., 2013) to the counterfitted GloVe
embeddings, resulting in 303-dimensional affec-
tive embeddings; (3) EEArmin (Seyeditabari et al.,
2019): It applies counterfit method directly on the
(word, emotion) pairs in EmoLex; (4) SentiEmbs
(Yu et al., 2017): embeddings refined for sentiment
using valence values present in Warriner’s lexicon.

4.1 Clustering Experiments

Since our main objective is to investigate word em-
beddings for their emotion content, it is natural to
ask, do words that evoke the same emotion have
similar embeddings? In other words, are words
with similar emotion content clustered together in
the vector space? To study this, we extract all
words present in EmoLex and their emotion labels
to create a dataset for clustering. The embeddings
of words are then used as features to perform K-
means clustering with the number of means (k)
set to 8. Since the true labels are available, we
apply various external cluster validity indices to
measure clustering quality. In particular, we use
adjusted rand index (ARI), Fowlkes Mallows score
(FMS), adjusted mutual information score (Adjust-
edMIS), V-measure, and entropy (refer Scikit-learn
user guide). In addition to good cluster quality,
retrofitted embeddings shall also preserve the topol-
ogy of pre-trained vector space. To quantify this,
we compute the average cosine distance between
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Embeddings ARI↑ FMS↑ AdjustedMIS↑ V-measure↑ Entropy↓ VDist↓
GloVe 0.0456 0.1542 0.0863 0.0888 1.8092 0
counterfit 0.0897 0.1969 0.1634 0.1657 1.6404 0.1740
AR 0.0749 0.1802 0.1479 0.1502 1.6717 0.0977
AR+PS 0.0853 0.1911 0.1607 0.1630 1.6444 0.1257
counterfit+EL 0.1530 0.2532 0.1953 0.1976 1.5680 0.0308
AR+EL 0.2071 0.3126 0.3966 0.3984 1.1594 0.3068
AR+PS+EL 0.1567 0.2689 0.2579 0.2600 1.4495 0.2029
EWE 0.0556 0.1630 0.1083 0.1108 1.7605 0.0085
Aff2vec 0.0824 0.1877 0.1574 0.1598 1.6517 NA
EEArmin 0.3764 0.4566 0.5501 0.5514 0.7856 1.0152
SentiEmbs 0.0009 0.2974 0.0135 0.0176 1.9817 0.4329
RETripletGBal 0.0951 0.2000 0.1639 0.1662 1.6373 0.0946
RETripletG 0.1616 0.2602 0.3031 0.3050 1.3271 0.4445

Table 3: External cluster validity indices (with k=8) for pre-trained GloVe and its retrofitted versions (↓: lower val-
ues are better; ↑: higher values are better) - Overall, RETripletGBal and counterfit+EL provide substantially good
clustering while preserving the topology of pre-trained vector space. The embeddings in red are not desirable as
they drastically change the pre-trained vector space (high VDist) and may not perform well on affective end-tasks.

pre-trained and retrofitted embeddings for words
in EmoLex. It is referred to as VDist (lower values
are better).

As shown in Table 3, the scores for the pre-
trained GloVe baseline are lowest across all clus-
tering indices. This indicates that there is a
scope of improvement for injecting emotion con-
tent into pre-trained embeddings. The embed-
dings from pair-wise retrofitting methods with syn-
onymy and antonymy constraints (i.e., counterfit,
AR, AR+PS) reasonably improve clustering qual-
ity while maintaining a fairly good VDist (< 0.18).
When used with the attract and repel constraints
from EmoLex (+EL setting), both AR+EL and
AR+PS+EL embeddings achieved extremely good
clustering. However, their VDist is very high,
pointing to the fact that they did not maintain
semantic relations present in GloVe. The EWE
embeddings perform poorly on clustering indices
as they are identical to their pre-trained version
(VDist=0.0085). The SentiEmbs embeddings do
not provide good clustering since they are opti-
mized only for coarse-grained sentiments. On the
other hand, the EEArmin embeddings have com-
pletely overfitted for clustering, with extremely
poor VDist. Though Aff2vec embeddings achieve
reasonably good clustering, we could not compute
VDist due to the three extra dimensions appended
for VAD. The embeddings in counterfit+EL and
RETripletGBal provide the right balance overall
with substantially good cluster quality along with

low values for VDist. The counterfit+EL embed-
dings, however, do not perform well on down-
stream tasks, as reported later in Table 5.

Figure 2 shows t-SNE plots for EmoLex words
using pre-trained GloVe, RETripletGBal, and RE-
TripletG, marking the median point for each emo-
tion category. These points are very close to each
other for pre-trained GloVe as it only uses the distri-
butional hypothesis to learn embeddings, not con-
sidering the emotion content of words. On the other
hand, RETripletG (selected based only on cluster-
ing quality) provides extremely good separation but
at the expense of losing semantic relations present
in GloVe. RETripletGBal embeddings not only pro-
vide reasonably good separation but also preserve
the topology of the input vector space. The cosine
similarity values computed using RETripletGBal
are well-calibrated for emotion content, as evident
for the exemplar pairs in Table 1.

4.2 Evaluation on Downstream tasks
We evaluate emotion enriched embeddings on two
affective end-tasks: (1) Sentiment analysis using bi-
nary (SST2) and graded (SST5) Stanford sentiment
treebank, and tweet messages from SemEval 2017
(task 4A); (2) Sarcasm detection using sit-com ut-
terances in Mustard++. Table 4 reports statistics
for these datasets. Similar to EWE (Agrawal et al.,
2018), we use a probing framework (Conneau et al.,
2018; Eichler et al., 2019) to evaluate embeddings
for their performance on the downstream tasks. In
particular, we apply two classification models: sup-
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Task Dataset #class size #token Type Vocab Source

Sentiment
analysis

SST2 2 9613 162783 sentence 176301 (Socher et al., 2013)
SST5 5 11855 199120 sentence 196311 (Socher et al., 2013)
SemEval 3 61854 1174626 tweet 230052 (Rosenthal et al., 2017)

Sarcasm
detection

Mustard++ 2 1202 14219 utterance 26321 (Ray et al., 2022)

Table 4: Dataset statistics for downstream tasks (subscript in Vocab indicate minimum frequency threshold)

(a) Pre-trained GloVe

(b) RETripletGBal embeddings

(c) RETripletG embeddings

Figure 2: t-SNE plots for emotion bearing words

port vector machine (SVM), and attention network
(AttnNet). The embeddings of tokens present in
a given sentence/utterance/tweet are averaged to
compute input features for SVM. Whereas the to-
ken embeddings as a sequence are passed as input
to an attention layer followed by softmax to com-
pute cross-entropy loss for AttnNet.

Table 5 reports the micro F1-scores for SVM
and AttnNet. The pre-trained GloVe embeddings
seems to be a hard baseline to beat on the senti-

ment analysis task. While the pair-wise retrofitting
methods (counterfit, AR, AR+PS) have been shown
to improve tasks such as dialogue state tracking,
text simplification, etc., they have not been ex-
tensively tested for sentiment analysis. Surpris-
ingly, embeddings from these methods could not
beat the baseline even though they are updated to
respect the synonymy and antonymy constraints.
When retrofitted using attract and repel constraints
from EmoLex, their (+EL variants) performance
degraded even further. This degradation is partly
attributable to the in-batch sampling of negative
examples. Unlike synonym constraints where dis-
tinct word pairs are not interrelated, word pairs in
Emolex attract constraints are interrelated due to
their emotion labels. For example, consider in-
batch attract pairs such as (enjoy, fun), (happy,
thankful), and (loving, delightful), having the com-
mon emotion label joy. While generating negative
examples for enjoy, pairs such as (enjoy, happy)
and (enjoy, delightful) may be inappropriately con-
sidered as candidates, leading to spurious training
data. The EWE embeddings trained using distant
supervision are nearly identical to their pre-trained
version (VDist=0.009), leading to no improvement
in end-task. Though retrofitted for emotions, both
Aff2vec and EEArmin embeddings could not beat
the pre-trained baseline, possibly due to drastic
changes to the topology of input vector space (high
VDist). SentiEmbs, though optimized for senti-
ments, unexpectedly could not perform well on any
datasets. RETripletGBal embeddings learned us-
ing our method achieved the highest F1-score for
both SVM and AttnNet on the sentiment analysis
task. For the sarcasm detection task (Mus++ in
Table 5), the embeddings learned using our method
performed better than their pre-trained counter-
parts (about 1.5% improvement in F1-score) and
achieved the highest F1-score with SVM.

4.2.1 Limited data experiments
To evaluate embeddings in a low resource setting,
we sample datasets of various sizes, such as 10%,
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Embeddings SVM AttnNet
SST2 SST5††† SemEval††† Mus++ SST2 SST5††† SemEval††† Mus++

GloVe 0.8034 0.4122 0.6131 0.5333 0.7705 0.4072 0.6375 0.5125
counterfit 0.7996 0.4181 0.6236 0.5105 0.7419 0.4005 0.6274 0.5375
AR 0.8029 0.3846 0.5782 0.5063 0.721 0.3937 0.635 0.4833
AR+PS 0.8018 0.4041 0.6031 0.4979 0.7853 0.4204 0.6306 0.5417
counterfit+EL 0.7985 0.4032 0.6112 0.5021 0.7326 0.3842 0.6391 0.5125
AR+EL 0.7902 0.405 0.607 0.4979 0.7348 0.3923 0.6365 0.5042
AR+PS+EL 0.7628 0.3842 0.5711 0.4979 0.7721 0.3624 0.6171 0.4875
EWE 0.7974 0.402 0.6049 0.5523 0.7738 0.4068 0.6237 0.5292
Aff2vec 0.7831 0.3893 0.5725 0.523 0.7381 0.4023 0.6241 0.5457
EEArmin 0.7644 0.3805 0.5604 0.5397 0.76 0.3928 0.6226 0.5458
SentiEmbs 0.7397 0.3633 0.5511 0.5356 0.6985 0.3543 0.5409 0.5125
RETripletGBal 0.816 0.4339 0.6305 0.5542 0.7946 0.4267 0.6405 0.5292
RETripletG 0.7705 0.3946 0.6101 0.5667 0.7787 0.3973 0.6288 0.4792

Table 5: Micro F1-scores for SVM and AttnNet with various embeddings as input (Bold+Underline: highest;
Bold: next highest); †††: Wilcoxon’s signed rank test with α = 0.5 indicates RETripletGBal is better than GloVe

Figure 3: Data size vs. micro F1-score for Pre-trained
GloVe and RETripletGBal in limited data setting

30%, etc., from the original sentiment analysis
datasets. We then compare pre-trained GloVe with
RETripletGBal in terms of micro F1-score across
the data sizes. As we can see in Figure 3, RE-
TripletGBal performs significantly better than pre-
trained GloVe in a low data regime (< 60% data).
The difference in performance reduces nearly af-
ter 80% data size. This points to the fact that the
external knowledge from EmoLex as captured by
our retrofitting method helps improve the end-task,
especially in the limited data scenario.

5 Related Work

Large language models with contextualized word
embeddings (e.g., BERT and its variants) have
lately received a lot of attention in the NLP commu-
nity. Nonetheless, their static counterparts are still

actively explored, e.g., combining static and contex-
tualized embeddings to improve end-tasks (Alharbi
and Lee, 2021; Alghanmi et al., 2020), inducing
knowledge bases (Dufter et al., 2021), bilingual
lexicon induction (Zhang et al., 2021), etc. In this
work, we focus on static word embeddings that are
learned primarily using the distributional hypoth-
esis. A major limitation with these embeddings is
that they do not differentiate semantic similarity
from other types of relatedness (Hill et al., 2015).
This problem is addressed by borrowing semantic
relations from resources such as WordNet, Para-
phrase Database, etc., in the form of constraints.
These constraints are then used by joint special-
ization (Yu and Dredze, 2014; Liu et al., 2015) or
retrofitting models (Faruqui et al., 2015; Mrkšić
et al., 2016; Shah et al., 2020) to improve word
embeddings. These models, however, focus mainly
on synonymy, antonymy, and hypernymy relations.
Recently, a few attempts, such as Aff2vec from
Khosla et al. (2018) and emotion embeddings from
Seyeditabari et al. (2019), incorporate knowledge
present in affective lexicons to learn emotion en-
riched embeddings.

The contrastive learning approach similar to our
work has recently been applied to learn transformer
based sentence embeddings in SBERT (Reimers
and Gurevych, 2019) and zero-shot image classi-
fication in CLIP (Radford et al., 2021). However,
these methods are not specialized to learning emo-
tion enriched embeddings.

There is a large body of work that focuses on
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learning task-specific affective embeddings. These
methods first use distant supervision to create a
noisy labelled dataset and then use it to update
word embeddings or learn them from scratch. For
instance, sentiment-aware embeddings using tweet
data (Tang et al., 2014, 2016); affective embed-
dings using tweet emojis (Felbo et al., 2017); emo-
tion enriched embeddings using product reviews
data (Agrawal et al., 2018). Since embeddings
learned from these methods are tied to the dataset
used for distant supervision, they may not work
well for other related affective end-tasks. Moreover,
they are not very accurate due to noisy labelling.

The emotion-enriched embeddings learned by
our method are not only accurate compared to the
methods described above, as evident from the clus-
tering experiments, they also work well on the re-
lated affective end-tasks.

6 Summary and Future work

We present a novel retrofitting method to learn emo-
tion enriched embeddings using triplet constraints
from EmoLex. These constraints are used as train-
ing data to learn a retrofitting function in a sim-
ilarity metric learning setting. The embeddings
learned by our method perform better than their
pre-trained counterparts and other benchmarks in
both intrinsic clustering evaluation and the extrin-
sic downstream tasks in sentiment analysis and
sarcasm detection. As future work, we plan to ex-
tend our triplet constraint-based approach to other
resources such as VAD lexicon (Warriner et al.,
2013; Mohammad, 2018a). We also plan to de-
velop a similar approach for contextualized word
embeddings.
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A Training details

This section details the hyper-parameters in our
retrofitting method and the best combinations
selected thereof. The transformation function
T(xw) in RETriplet is implemented using a multi-
layer feed-forward neural network. The hyper-
parameters are:- number of hidden layers: {2, 3, 4},
size of hidden layer: {300, 400, 500}, activations:
{tanh,ReLU}, dropout: 0.2 and L2 regulariza-
tion: 0.0005. We use Adam (Kingma and Ba,
2014) optimization algorithm with, learning rate:
{0.001, 0.0005} and batch size: {64, 128, 256}.
We experiment with two data generation schemes
described earlier: Uniform and Weighted. For
the hinge loss function in Eq. 1, we use co-
sine as the distance metric with two margin
values, i.e. {0.2, 0.6}. The margin is set to
the same value for all emotion categories. For
triplet mining, during initial experiments, we ob-
served that both the BatchHard and BatchAll
mining policies performed equally well, with
BatchAll having better convergence during initial
epochs. Hence, we primarily experimented with
the BatchAll mining policy. The hyper-parameter
for vector space preservation loss λv is varied
as {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5}.
We set aside 10% words in EmoLex for validation
and use early stopping with patience 10. For ex-
perimentation, we used CPU machines with 64GB
RAM and 20 core CPUs. Each configuration on an
average took 80 minutes to run.

For both GloVe and Word2vec, we select two
configurations to generate retrofitted embeddings.
One configuration is selected only on the basis of
clustering quality metric (ARI). Whereas, the sec-
ond configuration takes vector space preservation
into account in addition to the clustering quality.
Table 6 reports these configurations.
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GloVe Word2vec
hyperparameter RETripletGBal RETripletG RETripletWBal RETripletW
#layers 2 3 2 3
#hidden units 300 300 300 200
activation ReLU ReLU ReLU ReLU
dropout 0.2 0.2 0.2 0.2
L2-regularization 0.0005 0.0005 0.0005 0.0005
batch-size 128 128 128 128
learning rate 0.0005 0.0005 0.0005 0.0005
data generation Weighted Uniform Weighted Weighted
triple mining BatchAll BatchAll BatchAll BatchAll
λv 0.5 0.1 0.7 0.4

Table 6: Selected hyper-parameter configurations for retrofitted embeddings (1) GloVe:- RETripletG has the best
ARI; RETripletGBal has the best ARI with VDist < 0.15 (2) Word2vec:- RETripletW has the best ARI; RE-
TripletWBal has the best ARI with VDist < 0.15

B Experimental results for Word2vec

Table 7 reports clustering experiments for
Word2vec pre-trained baseline and their retrofitted
versions. Table 8 reports results for sentiment anal-
ysis and sarcasm detection tasks for SVM and At-
tention network with Word2vec as the base embed-
dings.
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Embeddings ARI↑ FMS↑ AdjustedMIS↑ V-measure↑ Entropy↓ VDist↓
Word2vec 0.0553 0.1641 0.1019 0.1044 1.7753 0.0
counterfit 0.0762 0.1814 0.1495 0.1518 1.6682 0.1803
AR 0.0794 0.186 0.1538 0.1561 1.6601 0.2556
AR+PS 0.0913 0.2051 0.159 0.1613 1.6559 0.1326
counterfit+EL 0.1628 0.2618 0.2029 0.2051 1.5507 0.0232
AR+EL 0.2008 0.3066 0.39 0.3917 1.1729 0.37
AR+PS+EL 0.1228 0.2527 0.3349 0.3369 1.3078 0.1931
EWE - - - - - -
Aff2vec 0.0914 0.1978 0.1567 0.1591 1.6548 NA
EEArmin 0.3655 0.4468 0.5495 0.5507 0.7964 0.9986
SentiEmbs 0.0007 0.3000 0.0085 0.0126 1.9896 0.4382
RETripletWBal 0.1493 0.2545 0.2086 0.2109 1.5448 0.1371
RETripletW 0.1768 0.2764 0.2784 0.2804 1.3885 0.3633

Table 7: External cluster validity indices for pre-trained Word2vec and its retrofitted versions (↓: lower values
are better; ↑: higher values are better) - Overall, RETripletWBal and counterfit+EL provide substantially good
clustering while preserving the topology of pre-trained vector space. The embeddings in red are not desirable as
they drastically change the pre-trained vector space (high VDist) and may not perform well on affective end-tasks.
*EWE embeddings not available for Word2vec.

Embeddings SVM AttnNet
SST2 SST5 SemEval Mus++ SST2 SST5 SemEval Mus++

Word2vec 0.8144 0.4262 0.6209 0.5481 0.7985 0.4136 0.6342 0.525
counterfit 0.8127 0.4281 0.6298 0.5063 0.7408 0.4023 0.6277 0.5125
AR 0.8018 0.409 0.5995 0.5105 0.7842 0.3787 0.6307 0.5083
AR+PS 0.8023 0.4176 0.5995 0.5397 0.7924 0.4249 0.6281 0.5667
counterfit+EL 0.816 0.4262 0.6245 0.5272 0.7567 0.3778 0.6385 0.5458
AR+EL 0.8127 0.4208 0.6243 0.5314 0.7776 0.3697 0.6306 0.5375
AR+EL+PS 0.7968 0.3959 0.6012 0.523 0.7452 0.4072 0.6186 0.5125
EWE - - - - - - - -
Aff2vec 0.8166 0.407 0.6119 0.5146 0.7414 0.3692 0.6299 0.575
EEArmin 0.771 0.3887 0.5964 0.5523 0.7479 0.3566 0.6197 0.5542
SentiEmbs 0.7567 0.3656 0.5716 0.5649 0.7205 0.3661 0.5462 0.4958
RETripletWBal 0.8221 0.438 0.6323 0.5523 0.8051 0.419 0.6323 0.5792
RETripletW 0.7979 0.4145 0.6153 0.5105 0.7979 0.3982 0.6307 0.5

Table 8: Micro F1-scores for SVM and AttnNet with various embeddings as input: Experiments with Word2vec
as baseline (Bold+Underline: highest; Bold: next highest) *EWE embeddings not available for Word2vec
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Abstract

In this paper we present MisNet, a novel model
for word level metaphor detection. MisNet con-
verts two linguistic rules, i.e., Metaphor Identi-
fication Procedure (MIP) and Selectional Pref-
erence Violation (SPV) into semantic matching
tasks. MIP module computes the similarity be-
tween the contextual meaning and the basic
meaning of a target word. SPV module per-
ceives the incongruity between target words
and their contexts. To better represent basic
meanings, MisNet utilizes dictionary resources.
Empirical results indicate that MisNet achieves
competitive performance on several datasets.

1 Introduction

Metaphor is an omnipresent figurative language in
daily communication. Conceptual Metaphor The-
ory proposes that metaphor is a mapping mech-
anism between the source domain and the target
domain (Lakoff and Johnson, 2008).

e.g. 1 The scream pierced the night.
In e.g. 1, the literal meaning of the verb pierce is

"some sharp object goes into or on through some-
thing" . However, the contextual meaning is "break
silence". Here, the source domain is a highly ab-
stract action, while the target domain can present
the corresponding meaning in a more concrete way.
In general, there exists two types of metaphors, i.e.,
novel metaphors and conventional metaphors.

e.g. 2 He attacked the government’s defence
policy.

Semantic Shift Theory shows that new lexical
senses can derive from metaphors (Blank, 2013).
Once a metaphorical usage of a word is accepted
by most people, the metaphorical lexical sense is
fixed. Thus a polysemant may have metaphorical
marginal meanings (Bloomfield, 1994). In e.g. 2,
the metaphorical target word attack means criticize,
which is also a sense of it. It is a conventional
metaphor for the metaphorical meaning has been

fixed. While e.g. 1 is a novel metaphor, for the
metaphorical usage is temporary.

Linguistic rules instruct us how to identify
metaphors. According to Metaphor Identification
Procedure (MIP) (Crisp et al., 2007; Steen, 2010),
a metaphor is identified if the contextual meaning
of the target word contrasts with one of its more
basic meaning. More basic meanings are: 1) More
concrete; what they evoke is easier to imagine, see,
hear, feel, smell, and taste; 2) related to bodily ac-
tion; 3) more precise (as opposed to vague); 4) his-
torically older(Group, 2007; Do Dinh et al., 2018).
The basic meaning of pierce in e.g. 1 contrasts
with its contextual meaning so it is a metaphor.

Researchers are divided on how to represent ba-
sic meanings. Gao et al. (2018) and Mao et al.
(2019) used dynamic ELMo embeddings and static
GloVe embeddings to encode contextual target
meanings and basic target meanings respectively.
Choi et al. (2021) proposed that a target used alone
is literal. Su et al. (2021) and Wan et al. (2021)
used the gloss (brief definition) of a target to rep-
resent its literal meaning. All the methods are not
linguistically intuitive, because we do not know
whether the basic meaning is accurately encoded
through embedding and a basic meaning is not sim-
ply the average of its gloss. Since basic meanings
are not properly represented, MIP may be invalid.
Consequently, conventional metaphors are ignored
by previous studies as well(Tong et al., 2021).

Another linguistic rule is Selectional Preference
Violation (SPV) (Wilks, 1975, 1978), which sug-
gests that a metaphor is identified by noticing se-
mantic incongruity between a target word and its
context. In e.g. 1, pierce rarely occurs in the con-
text consisting of scream and night. There comes
a contextual contrast in such a collocation. No-
tice that SPV becomes invalid when faced with a
conventional metaphor, because the context is also
usual for the metaphor word like attack in e.g. 2.

To better use linguistic rules, we propose to use
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the sentence where the target adopts its basic mean-
ing for a better representation. This idea is in line
with mainstream language models: you shall know
a word by the company it keeps (Firth, 1957).

In this paper, we propose a novel metaphor
detection model named Metaphor Identification
from Siamese Network (MisNet). MisNet adopts
a siamese framework, consisting of two separate
encoders . We regard MIP as a representation based
semantic matching task between target in the given
sentence and target in the basic usage. MIP is ac-
complished across two encoders. We model SPV
as an interaction based semantic matching task be-
tween the target word and its context to measure
semantic incongruity. SPV is implemented within
a single encoder. Based on the fusion of MIP and
SPV modules, MisNet makes a final prediction.

The contributions of this paper can be summa-
rized as follows:

• We model two linguistic rules, i.e., MIP and
SPV as two semantic matching tasks. Our
model is linguistically intuitive and also ex-
tensible.

• We use basic usage to better encode the basic
meaning for a target word, thus our model
can avoid the invalidation of MIP and SPV.
It is also proficient in tackling conventional
metaphors.

• Experimental results show that our method
achieves competitive performance on several
datasets over existing approaches.

• Our code is available on GitHub1.

2 Related Work

Recently, metaphor detection has attracted lots of
attention. With the development of NLP technolo-
gies, various methods have been applied. In gen-
eral, these approaches can be categorized into three
types: feature engineering based, RNN based and
transformer based methods.

Feature engineering based methods use linguis-
tic features such as word concreteness, word ab-
stractness (Turney et al., 2011), and word class
etc., as input of a certain machine learning model
like Logistic Regression and SVM (Shutova and
Sun, 2013; Assaf et al., 2013; Tsvetkov et al., 2014;
Wan et al., 2020). RNN based models use RNN as

1https://github.com/SilasTHU/MisNet

a feature extractor to form contextual representa-
tions to identify metaphors(Wu et al., 2018; Gao
et al., 2018; Mao et al., 2019; Le et al., 2020).
Though great improvements have been made, RNN
based models mostly use static word representa-
tions like Word2Vec and GloVe, so they are not
adept at metaphors which convey complex contex-
tual senses. Also, due to the nature of RNN, these
models cannot be paralleled.

Transformer based methods use a Pretrained
Language Model (PLM) like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), as the back-
bone of the model, yielding promising results in
metaphor detection. Su et al. (2020) converted
metaphor detection into a machine reading com-
prehension task with various linguistic features in-
corporated, achieving best reported results in ACL
2020 metaphor detection shared task. Choi et al.
(2021) used a late-interaction mechanism to en-
code the contextual meaning and the literal mean-
ing of a target word. Song et al. (2021) focused on
verb metaphor detection. They used dependency
parsing to extract the objects and subjects of the
given verbs to use syntactic relations. Lin et al.
(2021) utilized contrastive learning to distinguish
metaphors from literal usages. They also used self-
training strategy to generate pseudo-labels, which
largely expanded existing public datasets. Also,
some recent researches noticed that external dictio-
nary resources could greatly help metaphor detec-
tion. Wan et al. (2021) and Su et al. (2021) used
glosses to interpret target words. They took the
average embeddings of a gloss as the correspond-
ing target representation. However, the meaning of
a word is not simply the average of its definition.
There still leaves much space to better represent
literal meanings.

3 Proposed Model

Some researchers use sequence labeling to detect
metaphors, i.e., label all n words in a sentence in
one go (Gao et al., 2018; Mao et al., 2019). In
this paper, we use word classification paradigm to
detect metaphors. We regard each word in the given
sentence as target in order, then take a target along
with its given sentence to predict the metaphoricity
of the target for n times.

3.1 SPV & MIP : Semantic Matching

Semantic matching intends to measure the similar-
ity between two given texts, of which Interaction-
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based Models and Representation-based Models
are two main paradigms. In this paper, we use
the mentioned two semantic matching models to
implement SPV and MIP.
Interaction-based Model for SPV: for an
Interaction-based Model (IM), two texts are con-
catenated as input, where each token within the
input can fully interact with the others (Yang et al.,
2019; Rao et al., 2019). Vanilla BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) take
two texts as model input to compute a similarity
score, so they are also IMs. SPV suggests to notice
the incongruity between the target word and its con-
text, which can be measured through the semantic
similarity between them. As Fig. 1 (a) shows, we
adopt an IM to implement SPV, because the target
and its context are from a same sequence, such that
they are naturally concatenated. In our model, they
are two texts to be matched. Hence they can in-
teract thoroughly through multi-head self-attention
(Vaswani et al., 2017) in BERT. Finally, we manage
to retrieve the contextual target embedding ht and
context embedding hc to calculate the similarity.

Target in Sentence

BERT

𝒉"

Similarity

Sentence

BERT

Target in Basic Usage

𝒉#

Basic Usage

(b) Representation-based Model

Concat

Target Context

BERT

𝒉" 𝒉$

(a) Interaction-based Model

Similarity

Figure 1: Interaction-based Model and Representation-
based Model in semantic matching task.

Representation-based Model for MIP: for a
Representation-based Model (RM), two texts are
input into different encoders to get their repre-
sentations, so the two texts do not interact with
each other during encoding (Conneau et al., 2017;
Reimers and Gurevych, 2019). MIP prompts us
to determine whether the target has a more basic
usage. Thus we calculate the semantic similarity
between target in the given sentence and that in the
basic usage. As Fig. 1 (b) shows, we model MIP as
an RM because using two separate encoders for the
given sentence and the basic usage can avoid unnec-
essary interactions. Hence the contextual meaning
and the basic meaning of a target can be better
captured. We then obtain the contextual target em-
bedding ht and the basic embedding hb, based on

which the similarity is computed.

NOUN
1. An aggressive and violent act.
eg. He was killed in an arson attack.
2. Public criticism or opposition.
eg. The Opposition Leader intensified his attack on 

the Prime Minister.

VERB
1. Take aggressive military action.
eg. In February the Germans attacked Verdun.
2. Criticize or oppose publicly.
eg. He attacked her opinion.

Attack👈 Step 0

👈 Step 1
👈 Step 2

Figure 2: Basic Usage Retrieving Strategy for attack
(verb). Step 0. Find the term of the target word. Step 1.
Locate at the same POS tag. Step 2. Take the example
sentence under the first gloss as a basic usage since
dictionary editors tend to place more basic meanings in
the front.

3.2 MisNet Architecture

Combine MIP and SPV: Using SPV to detect a
metaphor depends on the incongruity of the target
and its context. However, a conventional metaphor-
ical target does not own a paradoxical context
(the context is usually common for the target), so
SPV may be invalid (Haagsma and Bjerva, 2016;
Do Dinh et al., 2018). MIP is utilized based on the
basic meaning and the contextualized meaning of a
target. Since we use basic usages to encode basic
meanings, our MIP module is suitable for both con-
ventional and novel metaphors. We leverage the
combination of MIP and SPV for better metaphor
detection, which is proved to be a better method by
experimental results.

Fig. 3 shows the architecture of MisNet. Mis-
Net adopts a siamese framework to combine MIP
and SPV. The left part encodes the given sentence,
while the right uses the target, the POS tag, and the
basic usage. MIP is implemented across the left
and the right encoders, while SPV functions within
the left one.
Left Encoder Input: the left encoder input is the
given sentence in the dataset:

L = ([CLS], given_sentence, [SEP]) , (1)

where [CLS] and [SEP] are the two special tokens
of BERT.
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[SEP]
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[SEP]
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Figure 3: MisNet architecture. The two BERT encoders share weights. hc, ht, hb are context embedding, contextual
target meaning, and basic meaning respectively. GF, LF, POS, TAR denote global feature, local feature, POS feature
and target word.

Right Encoder Input: we concatenate the target
word, target POS tag and the basic usage as the
right encoder input. The basic direct usage (or a
more basic usage, which is still in line with MIP
rule.) for the target word is retrieved via Basic
Usage Retrieving Strategy as Fig. 2 shows. The
right input is:

R = ([CLS], target_word, [SEP],POS, [SEP],

basic_usage, [SEP]). (2)

If we fail to retrieve the basic usage, we just use
the target word and its POS tag.

Different parts of the input have different im-
pacts on metaphor detection. Self-Attention mech-
anism in BERT can benefit semantic representa-
tions for input tokens(Vaswani et al., 2017), but
it may not be sufficient to notice the differences
among various input parts. To treat them differ-
ently, for both the left and the right input, we add
input type feature embeddings to the BERT input
layer. We design four features and embed them
into fixed-length vectors:

• POS Feature: the POS tag of the target word.
It only exists in the right input.

• Target Feature: the target word. The left and
the right input have a same target word.

• Local Feature: following Su et al. (2020) and
Choi et al. (2021), we set the clause where

the target word lies as local context. For sim-
plicity, a clause is separated by commas, dots,
exclamation marks, and question marks etc.
Since a basic usage is usually short2, we re-
gard the whole basic usage as local feature.

• Global Feature: other tokens except the POS
tag, the target word, and its local feature.

After tokenization via Byte-Pair Encoding (BPE)
algorithm (Radford et al., 2019), L is cut into n
tokens, while R has m tokens. The final input for
BERT is token embeddings, positional embeddings,
plus feature embeddings. Then we use BERT to
get contextualized representations:

HL = BERT(L) = (hl1 ,hl2 , · · · ,hln), (3)

HR = BERT(R) = (hr1 ,hr2 , · · · ,hrm), (4)

where HL ∈ Rn×d and HR ∈ Rm×d are the
embedding matrices of L and R respectively. d is
the hidden dimension in BERT.

Based on HL, we can get the contextual meaning
of the target word, which is denoted by ht. If the
target word is cut into k tokens by BPE, we just
take the average:

ht =
1

k

∑u+k−1
i=u

hli , (5)

2It is difficult to get the exact position for a target word in
its basic usage, because it may not be rendered in the original
form and lemmatization is not always accurate.
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where u is the start location for target in the left
input. Similarly, based on HR, we get the basic
meaning of the target word, which is denoted by
hb. Notice that we do not need to know the exact
position of the target word in the basic usage, be-
cause transformer encoder will apply self-attention
mechanism to make the target word in R focus
on the relevant parts automatically (Vaswani et al.,
2017).

For the left input, we take the average of the em-
bedding matrix HL to get the context embedding:

hc = Mean(HL). (6)

MIP layer compares the basic meaning vector hb
and the contextual target meaning vector ht. We
use a linear transformation to implement MIP:

hMIP =W⊤MIP[ht;hb; |ht − hb|;ht ∗ hb] + bMIP,
(7)

where [·] is a readout method. | · |means absolute
value. ; is concatenation, and ∗ denotes hadamard
product. We combine these methods to readout dif-
ferent representations. WMIP and bMIP are weight
and bias of MIP layer respectively. Similarly, we
conduct SPV on context vector hc and contextual
target meaning vector ht:

hSPV =W⊤SPV[hc;ht; |hc − ht|;hc ∗ ht] + bSPV,
(8)

where WSPV and bSPV are weight and bias of
SPV layer respectively. POS information plays an
important role in metaphor detection, so we extract
POS vector hPOS from the right encoder. Finally,
we combine MIP, SPV, and POS information to
decide whether the target word is metaphorical:

y = σ
(
W⊤[hMIP;hSPV;hPOS] + b

)
, (9)

where W and b are weight and bias. σ is a soft-
max function. y ∈ R2 indicates the predicted label
distribution.

3.3 Training Objective
For a classification task, we use cross entropy loss
as our optimization criterion:

L = − 1

N

∑N

i=1
wyiyi log(ŷi), (10)

where N is the count of training samples. yi and
ŷi denote the ground truth label and the predicted
score for the i-th sample respectively. wyi is class
weight to alleviate data unbalance problem.

4 Experiments

4.1 Datasets
Following most metaphor identification works, we
use four widely-used public datasets. The statistic
information is shown in Table 1.
VUA All (Steen, 2010): The largest metaphor
dataset drawn from VU Amsterdam Metaphor Cor-
pus (VUA). VUA collects sentences from the BNC-
Baby Corpus, including four genres: academic,
conversation, fiction, and news. VUA All dataset
labels each word in each POS for each sentence.
VUA Verb (Steen, 2010): VUA Verb is a subset of
VUA All. VUA Verb dataset only has verb targets.
MOH-X (Mohammad et al., 2016): MOH-X
dataset focuses on the verb track. MOH-X col-
lects metaphorical and literal usages for verbs from
WordNet. Each verb in MOH-X has multiple
senses, of which at least one is metaphorical.
TroFi (Birke and Sarkar, 2006, 2007): TroFi
dataset only includes verb targets. The literal and
metaphorical usages for 50 English verbs are drawn
from The 1987-89 Wall Street Journal Corpus.

Dataset #Sent. #Target %Met. Avg. Len

VUA Alltr 6,323 116,622 11.19 18.4
VUA Allval 1,550 38,628 11.62 24.9
VUA Allte 2,694 50,175 12.44 18.6

VUA Verbtr 7,479 15,516 27.90 20.2
VUA Verbval 1,541 1,724 26.91 25.0
VUA Verbte 2,694 5,873 29.98 18.6

MOH-X 647 647 48.69 8.0

TroFi 3,737 3,737 43.54 28.3

Table 1: Datasets information. #Sent.: Number of sen-
tences. #Target: Number of target words. %Met.:
Percentage of metaphors. Avg. Len: Average sentence
length.

4.2 Baselines
RNN_ELMo (Gao et al., 2018) and RNN_BERT
(Mao et al., 2019): two RNN based sequence la-
beling models. They concatenate embeddings of
ELMo (or BERT) and GloVe to represent a word.
RNN_HG and RNN_MHCA (Mao et al., 2019):
RNN_HG uses MIP to compare literal target mean-
ings and contextual target meanings, which are
represented by GloVe and ELMo embeddings re-
spectively. RNN_MHCA is based on SPV, with
multi-head contextual attention utilized.
MUL_GCN (Le et al., 2020): MUL_GCN adopts
a multi-task learning framework to tackle metaphor
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Model VUA All VUA Verb MOH-X (10 fold)
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

RNN_ELMo 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 79.1 73.5 75.6 77.2
RNN_BERT 71.5 71.9 71.7 92.9 66.7 71.5 69.0 80.7 75.1 81.8 78.2 78.1
RNN_HG 71.8 76.3 74.0 93.6 69.3 72.3 70.8 82.1 79.7 79.8 79.8 79.7
RNN_MHCA 73.0 75.7 74.3 93.8 66.3 75.2 70.5 81.8 77.5 83.1 80.0 79.8
MUL_GCN 74.8 75.5 75.1 93.8 72.5 70.9 71.7 83.2 79.7 80.5 79.6 79.9

RoBERTa_SEQ† 80.4 74.9 77.5 - 79.2 69.8 74.2 - - - - -
DeepMet† 82.0 71.3 76.3 - 79.5 70.8 74.9 - - - - -
MelBERT 80.1 76.9 78.5 - 78.7 72.9 75.7 - - - - -
MrBERT 82.7 72.5 77.2 94.7 80.8 71.5 75.9 86.4 80.0 85.1 82.1 81.9

MisNet 80.4 78.4 79.4 94.9 78.3 73.6 75.9 86.0 84.2 84.0 83.4 83.6

Table 2: Results on VUA All, VUA Verb, and MOH-X. Best in bold and second best in italic underlined. The
top block exhibits RNN based methods, while the middle block includes the transformer based. The † results are
reproduced by Choi et al. (2021).3

detection and word sense disambiguation simulta-
neously. It also uses Graph Convolution Network
with Bi-LSTM to encode dependency relations.
RoBERTa_SEQ (Leong et al., 2020): a sequence
labeling baseline model provided by ACL 2020
metaphor detection shared task. RoBERTa_SEQ
takes a sentence as input, and uses a softmax clas-
sifier to predict the metaphoricity for each token.
DeepMet (Su et al., 2020): the winning model in
ACL 2020 metaphor detection shared task. It mod-
els metaphor identification as a reading comprehen-
sion task, with query features, fine-grained POS
features, and context features etc. incorporated.
MelBERT (Choi et al., 2021): a model based on
RoBERTa. It utilizes siamese network as well.
However, MelBERT assumes that the target word
used alone is literal.
MrBERT (Song et al., 2021): MrBERT regards
metaphor detection as a relation classification task.
It extracts dependency relations among verbs and
subjects or objects, and embeds relations into
BERT input.

4.3 Implementation Details

Gao et al. (2018) expanded VUA All dataset with
POS tags. We retrieve basic usages from a digi-
tal Oxford dictionary4 following Su et al. (2021).
Since MOH-X does not have a training, validation,
and test split, we perform 10-fold cross validation
on it. Also, following previous studies (Choi et al.,
2021; Song et al., 2021), we conduct zero-shot
transfer on TroFi dataset to examine the general-

3In ACL 2020 shared task, participants can manipulate
training dataset or perform ensemble learning, making the
original results incomparable.

4https://www.lexico.com/

ization ability of MisNet. We use the RoBERTa
(Liu et al., 2019) implementation for BERT, pro-
vided by HuggingFace5. It has stacked 12-layer
transformer encoders, each with 12 attention heads.
The hidden dimension in each layer is 768. Both
hidden dimensions in MIP and SPV layer are 768.

VUA All: for VUA All dataset the learning rate
is 3e-5. The epoch number is 15 and the training
batch size is 64. Since VUA All suffers from data
unbalance, we use different class weights in cross
entropy loss function, 1 for literal samples and 5
for metaphors. VUA Verb: for VUA Verb, we
remove POS tag from the input since it provides
few information when only training on verbs. The
training batch size is 64 with a 3e-5 learning rate.
The class weights are 1 for literal samples and 4
for metaphors. We train for 15 epochs. MOH-X:
MOH-X is a balanced dataset, such that we do not
apply different class weights. The batch size is
16 with a 3e-5 learning rate, and we train for 15
epochs. All the experiments adopt AdamW (Peters
et al., 2019) optimizer. For VUA All and VUA
Verb, we take the best model on validation set to
do testing. For MOH-X, we take the best score in
each fold, and calculate the average over total 10
folds. All experiments are done in PyTorch 1.10
and cuda 11.2, on a single NVIDIA RTX 3090
GPU. Our code, saved model weights, and datasets
are available for more details.

5 Results and Analysis

5.1 Overall Results
Following Mao et al. (2019), we mainly focus on
F1 score. As shown in Table 2, MisNet obtains

5https://huggingface.co/roberta-base
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Model Academic Conversation Fiction News
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

RNN_ELMo 78.2 80.2 79.2 92.8 64.9 63.1 64.0 94.6 61.4 69.1 65.1 93.1 72.7 71.2 71.9 91.6
RNN_BERT 76.7 76.0 76.4 91.9 64.7 64.2 64.4 94.6 66.5 68.6 67.5 93.9 71.2 72.5 71.8 91.4
RNN_HG 76.5 83.0 79.6 92.7 63.6 72.5 67.8 94.8 61.8 74.5 67.5 93.4 71.6 76.8 74.1 91.9
RNN_MHCA 79.6 80.0 79.8 93.0 64.0 71.1 67.4 94.8 64.8 70.9 67.7 93.8 74.8 75.3 75.0 92.4

RoBERTa_SEQ† 86.0 77.3 81.4 - 70.5 69.8 70.1 - 73.9 72.7 73.3 - 82.2 74.1 77.9 -
DeepMet† 88.4 74.7 81.0 - 71.6 71.1 71.4 - 76.1 70.1 73.0 - 84.1 67.6 75.0 -
MelBERT 85.3 82.5 83.9 - 70.1 71.7 70.9 - 74.0 76.8 75.4 - 81.0 73.7 77.2 -

MisNet 85.1 82.5 83.8 94.5 71.8 72.0 71.9 95.7 74.5 77.5 76.0 95.5 82.6 77.0 79.7 94.1

Model Verb Adjective Adverb Noun
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

RNN_ELMo 68.1 71.9 69.9 - 56.1 60.6 58.3 - 67.2 53.7 59.7 94.8 59.9 60.8 60.4 -
RNN_BERT 67.1 72.1 69.5 87.9 58.1 51.6 54.7 88.3 64.8 61.1 62.9 94.8 63.3 56.8 59.9 88.6
RNN_HG 66.4 75.5 70.7 88.0 59.2 65.6 62.2 89.1 61.0 66.8 63.8 94.5 60.3 66.8 63.4 88.4
RNN_MHCA 66.0 76.0 70.7 87.9 61.4 61.7 61.6 89.5 66.1 60.7 63.2 94.9 69.1 58.2 63.2 89.8

RoBERTa_SEQ† 74.4 75.1 74.8 - 72.0 57.1 63.7 - 77.6 63.9 70.1 - 76.5 59.0 66.6 -
DeepMet† 78.8 68.5 73.3 - 79.0 52.9 63.3 - 79.4 66.4 72.3 - 76.5 57.1 65.4 -
MelBERT 74.2 75.9 75.1 - 69.4 60.1 64.4 - 80.2 69.7 74.6 - 75.4 66.5 70.7 -

MisNet 77.5 77.7 77.6 91.4 68.8 65.2 67.0 91.2 76.4 70.5 73.3 96.3 74.4 67.2 70.6 91.6

Table 3: Breakdown results for genre and POS on VUA All. Best in bold and second best in italic underlined.

competitive results. In VUA All dataset, MisNet
gains as most as 7.7 and 3.1 F1 score improvements
compared with RNN based models and transformer
based models respectively. Also, MisNet gains
nearly 1.0 F1 score over the strongest baseline Mel-
BERT, and achieves highest recall and accuracy
scores. MisNet can fully utilize POS information,
such that it has a strong ability to distinguish the im-
possible cases, like conjunctions and exclamations,
from the potential ones.

In VUA Verb dataset, we remove POS tag in
input because it provides little information when
there is only one word class, i.e., we only make
judgements via MIP and SPV layers. We get im-
provements by as most as 6.9 and 1.7 F1 scores
compared with RNN based methods and trans-
former based methods respectively. It is worth
mentioning that the strongest baseline MrBERT
uses dependency parsing to extract subjects and ob-
jects for verbs, but MisNet still obtains promising
results only via semantic matching methods, which
shows the importance to properly utilize linguistic
rules.

We attain improvements by 1.3 F1 scores against
the strongest baseline MrBERT in MOH-X dataset,
and achieve best precision and accuracy scores.
Compared with RNN based methods, the perfor-
mance is improved by as most as 7.8 F1 scores as
well. We notice that MisNet performs better on
MOH-X than VUA Verb: MOH-X is built upon

WordNet via extracting metaphorical and literal us-
ages of certain verbs, which means most metaphors
in MOH-X are conventional metaphors. MisNet
can get benefits from basic usages while the other
baselines may fail to capture the basic meanings.
However, verbs in VUA Verb dataset are much
more complex, including auxiliary verbs, link verbs
and etc. Predictions for VUA Verb are much harder.

5.2 VUA All Breakdown Results

Table 3 shows two breakdown analysis on VUA
All dataset. In the genre track, MisNet outperforms
the previous baselines in conversation, fiction, and
news. We achieve a promising result on academic
as well. All the methods perform better on aca-
demic and news, which have formal language us-
ages so the patterns beneath are easy to perceive.

In the POS track, we find that MisNet achieves
largest improvements on verb and adjective, with
2.5 and 2.6 F1 scores gained respectively. Verbs
and adjectives are often used metaphorically, so
there are more positive samples in VUA All dataset.
Also, verb samples take the biggest portion in VUA
All dataset, which makes the training on verbs more
thorough. The performance on adverb is mediocre,
because adverbs are very different internally. For
instance, adverbs of time, place, and degree etc.,
can rarely be metaphors. Such complexity makes
adverbs more difficult to judge.
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5.3 Zero-shot Transfer on TroFi

We conduct zero-shot transfer on TroFi dataset, i.e.,
using TroFi only for testing. As Table 4 shows,
MisNet outperforms all the baselines. Notably, the
baselines with ♠ are trained on an expanded ver-
sion of VUA All (Choi et al., 2021), so they have
more training data. MrBERT explicitly utilizes
dependency relations to benefit verb metaphor de-
tection. However, we still attain best results in all
metrics, which indicates that MisNet has strong
generalization ability.

Model TroFi (Zero-shot)
Pre. Rec. F1 Acc.

RoBERTa_SEQ♠ 53.6 70.1 60.7 -
DeepMet♠ 53.7 72.9 61.7 -
MelBERT♠ 53.4 74.1 62.0 -
MrBERT 53.8 75.0 62.7 61.1

MisNet 53.8 76.2 63.1 61.2

Table 4: Zero-shot transfer results on TroFi dataset. We
use MisNet trained on VUA All dataset.

5.4 Effectiveness Study

We conduct ablation experiments to test the effec-
tiveness of different modules and features in Mis-
Net, as Table 5 illustrates. In each ablation setting,
the performance drops, which demonstrates the
capability of each part. MIP module is more im-
portant than SPV as is observed. A conventional
metaphor may be normal for its frequent context,
so SPV becomes invalid. But MIP can notice the
discrepancy between the contextual target meaning
and its basic meaning. POS provides useful infor-
mation for MisNet to filter out the impossible cases,
without which the model performs worse. When
basic usages are aborted, MisNet may fail to rep-
resent basic meanings, such that some metaphors
cannot be detected. When feature embeddings are
removed, MisNet works quite badly. Our designed
feature embeddings can help model to treat differ-
ent parts differently to better utilize features.

We also evaluate the impacts from different read-
out methods. We replace the readout method in
Eq. 7 and Eq. 8 with candidates from Table 5.
We find that |u − v| and (u;v) are two crucial
components, without which the performance drops
significantly. |u − v| can directly reveal the dif-
ference between two representations, while (u;v)
can preserve all the original information. However,
the default setting (u;v; |u− v|;u ∗ v) is the best

since all components work as an ensemble.

Ablation Pre. Rec. F1 Acc.

-MIP 83.1 72.8 77.6 94.8
-SPV 81.2 76.0 78.5 94.8
-POS 79.1 77.4 78.2 94.6

-Basic Usage 81.2 75.4 78.2 94.8
-Feature Embedding 78.4 77.7 78.0 94.6

MisNet♣ 80.4 78.4 79.4 94.9

Readout Method Pre. Rec. F1 Acc.

(u;v) 81.5 76.1 78.7 94.9
(|u− v|) 82.5 74.5 78.3 94.9
(|u ∗ v|) 73.9 80.4 77.1 94.0

(|u− v|;u ∗ v) 75.5 81.2 78.3 94.4
(u;v;u ∗ v) 82.4 74.2 78.1 94.8
(u;v; |u− v|) 79.5 77.4 78.5 94.7

(u;v; |u− v|;u ∗ v)♣ 80.4 78.4 79.4 94.9

Table 5: Effectiveness study on VUA All dataset. ♣ are
the default MisNet settings.

Table 6 shows the quality analysis results. The
top block indicates that MisNet can better detect
conventional metaphors by using basic usages,
which confirms our assumptions at the beginning.
The middle block includes indirect metaphors, of
which the metaphoricity is predicted upon preced-
ing words. Metaphors in the bottom block can be
very confusing. If we do not use a wider context,
we can’t distinguish accurately. However, MisNet
only takes sentence-level inputs, thus we cannot
properly handle these situations. We leave it as a
future work.

M
is

N
et

-B
as

ic
U

.

L
ab

el

Sentence

✓ ✗ M The ban on emergency work was tightened.
✓ ✗ M A new minister would operate inside the DoE.
✓ ✗ M A financial crash of global proportions.
✓ ✗ M Raising the federal debt ceiling.

✗ ✗ M Er, just maybe the size of this.
✗ ✗ M I’m gonna play with that and see what.

✗ ✗ M She bought it.
✗ ✗ M Thought you might want a lift.

Table 6: Quality analysis on VUA All dataset. Target
words in red italic. M means Metaphor.

6 Conclusion

In this paper, we propose a novel metaphor de-
tection model named MisNet, which uses MIP to
compare the discrepancy between contextual target
word meaning and its basic meaning, and utilizes
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SPV to measure the incongruity between the target
and its context. MisNet takes basic usages to en-
code basic target meanings, which can prevent the
invalidation of MIP and SPV when dealing with
conventional metaphors. Empirical results show
that our method achieves competitive performance
on several datasets.
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Abstract

This paper proposes to cast end-to-end span-
based SRL as a word-based graph parsing
task. The major challenge is how to repre-
sent spans at the word level. Borrowing ideas
from research on Chinese word segmentation
and named entity recognition, we propose and
compare four different schemata of graph repre-
sentation, i.e., BES, BE, BIES, and BII, among
which we find that the BES schema performs
the best. We further gain interesting insights
through detailed analysis. Moreover, we pro-
pose a simple constrained Viterbi procedure
to ensure the legality of the output graph ac-
cording to the constraints of the SRL struc-
ture. We conduct experiments on two widely
used benchmark datasets, i.e., CoNLL05 and
CoNLL12. Results show that our word-based
graph parsing approach achieves consistently
better performance than previous results, under
all settings of end-to-end and predicate-given,
without and with pre-trained language mod-
els (PLMs). More importantly, our model can
parse 669/252 sentences per second, without
and with PLMs respectively.

1 Introduction

As a fundamental natural language processing
(NLP) task, semantic role labeling (SRL) uses
predicate-argument structure to represent the shal-
low semantic meaning of sentences. SRL structure
is shown to be helpful for many downstream NLP
tasks, such as machine translation (Liu and Gildea,
2010; Marcheggiani et al., 2018) and question an-
swering (Wang et al., 2015).

There exist two forms of concrete SRL for-
malism in the community, i.e., word-based (also
known as dependency-based SRL) and span-based,
depending on whether an argument consists of
a single word or a word span. Compared with
word-based SRL, span-based SRL is more com-
plex due to difficulties in determining argument

∗ Corresponding author

They want to do more .

They want to do more .

A0 A1

A0 A1

Figure 1: An example of span-based SRL, where “want”
and “do” are two predicates.

boundaries. Figure 1 shows the span-based SRL
structure for two predicates. Semantic roles of ar-
guments are distinguished with edge labels, such as
“A0” (agent) and “A1” (patient). This work focuses
on the end-to-end span-based SRL task, and pro-
poses a unified model to simultaneously recognize
predicates and arguments in the input sentence.

In recent years, span-based SRL has achieved
substantial performance boost due to the tremen-
dous progress made by deep neural network mod-
els, especially by pre-trained language models
(PLMs). Currently, there are mainly two main-
stream approaches, i.e., BIO-based (Zhou and Xu,
2015) sequence labeling and span-based graph pars-
ing (He et al., 2018).

The BIO-based sequence labeling approach first
identifies the predicates and then finds arguments
for each predicate independently by labeling every
word with BIO tags, like “B-A0” or “I-A0”. Its
major weakness is that a sentence has to be encoded
and decoded for multiple times, each time for one
predicate (Zhou and Xu, 2015; Shi and Lin, 2019),
thus proportionally reducing the training and infer-
ence efficiency.1 Zhou and Xu (2015) concatenate
an indicator embedding to each input token, where
the focused predicate corresponds to 1, and others
to 0. Shi and Lin (2019) append the focused predi-
cate word to the end of the sentence before getting
into BERT (Devlin et al., 2019).

1Some BIO-based approaches, for example Strubell et al.
(2018), only encode the input sentence once without using
predicate indicators, but this leads to inferior performance.
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The span-based graph parsing approach directly
considers all word spans as candidate argument
nodes and links them to predicate nodes (He et al.,
2018; Li et al., 2019). However, this approach also
suffers from a severe inefficiency problem, since
there areO(n) candidate predicates andO(n2) can-
didate arguments, leading to a big search space of
O(n3). Previous works usually employ heuristic
pruning techniques to improve efficiency.

Inspired by recent works on semantic depen-
dency graph parsing (SDGP) (Oepen et al., 2014;
Dozat and Manning, 2018; Wang et al., 2019), this
work for the first time proposes a word-based graph
parsing approach for end-to-end span-based SRL.
End-to-end means that all predicates and arguments
in a sentence are inferred simultaneously and by a
single model. The key challenge is how to repre-
sent span-based arguments in word-based graphs in
which nodes correspond to single words. Once this
is solved, we can build our parser on the shoulder
of existing word-based graph parsing models. This
work employs the second-order model of Wang
et al. (2019). In summary, our work makes the
following contributions:

• We propose a new word-based graph parsing ap-
proach for end-to-end span-based SRL. Via a
straightforward simplification, our approach can
be applied to the predicate-given setting.

• Borrowing ideas from research on Chinese word
segmentation (CWS) and named entity recogni-
tion (NER), we propose and investigate several
graph schemata. We find the BES schema is
steadily superior to others and obtain interesting
insights via detailed analysis.

• Inevitably, graph parsing models may output il-
legal graph that cannot be properly transformed
into SRL structure. To deal with this, we pro-
pose a simple constrained Viterbi procedure for
post-processing illegal graphs.

• We conduct experiments on the CoNLL05 and
CoNLL12 benchmark datasets. Our proposed ap-
proach achieves consistently better performance
than previous results, under all settings of end-to-
end and predicate-given, with and without PLMs.
More importantly, our parser is much more faster
than previous parsers and can analyze 669/252
sentences per second, without and with PLMs.

We release our code, configuration files,
and models at https://github.com/
zsLin177/SRL-as-GP.

2 Related Works

Span-based SRL. As two mainstream neural
models, the BIO-based and span-based graph pars-
ing approaches handle SRL in different ways.

The BIO-based approach usually predicts predi-
cates first and then recognizes arguments for each
predicate via sequence labeling. For each predi-
cate, Zhou and Xu (2015) indicates the position
of the predicate via indicator embedding, and then
encode the sentence using multi-layer BiLSTMs,
and finally apply a CRF layer to find the best label
sequence. Shi and Lin (2019) append the focused
predicate word to the original sentence, and then
feed the sentence into BERT, and then apply BiL-
STM for further encoding.

The span-based graph parsing approach is pro-
posed by He et al. (2018). The idea is directly
predicting relations between candidate predicates
(single words) and arguments (word spans) in a
graph. Li et al. (2019) apply the approach to the
word-based SRL task.

Besides the two mainstream approaches, re-
searchers have explored other interesting directions.
Zhang et al. (2021) propose a two-step span recog-
nition approach, i.e., first identifying a head word
and then extending the word into a span. Blloshmi
et al. (2021) cast the SRL task under the predicate-
given setting as a sequence-to-sequence task like
machine translation. Given a predicate, its SRL
structure is converted into a token sequence. Their
approach achieves competitive performance by us-
ing BART (Lewis et al., 2020).

Concurrently, Zhang et al. (2022) cast span-
based SRL as a tree parsing approach. Given a
predicate, the word span corresponding to an argu-
ment is represented as latent trees. The sentence is
encoded once without using predicate indicators,
but each predicate require an independent decoding
process.

Syntax-enhanced SRL. Due to the close con-
nection between syntax parsing and SRL, there
has been a lot of works on syntax-enhanced SRL.
Strubell et al. (2018) and Zhou et al. (2020) jointly
handle syntactic parsing and SRL under the multi-
task learning framework. Xia et al. (2019) inject
auto-parsed syntactic trees into SRL as extra fea-
tures . In contrast, our work is a pure modeling
study, and does not use external syntactic knowl-
edge.
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Root They want to do more

PRD

S-A0/B-A0 B-A1

E-A1

PRD

S-A0/B-A0 S-A1/B-A1

(a) BES and BE

Root They want to do more

PRD

S-A0/B-A0 B-A1

I-A1

E-A1/I-A1

PRD

S-A0/B-A0 S-A1/B-A1

(b) BIES and BII

Figure 2: Proposed four different schemata. Labels in
black are the shared part. Red and blue labels belong to
BES, BIES and BE, BII respectively.

SDGP. In contrast to predicate-argument struc-
ture, SDGP belongs to another category of seman-
tic representation formalism, using word-based
graphs to represent semantics of sentences (Oepen
et al., 2014, 2015). The specific forms include DM
(Ivanova et al., 2012), PSD (Hajič et al., 2012),
PAS (Miyao and Tsujii, 2004), etc.

Straightforwardly, graph parsing is a mainstream
approach for SDGP. Dozat and Manning (2018)
propose an efficient first-order graph parser to find
an optimal graph from a fully connected graph.
Wang et al. (2019) extend the model of Dozat and
Manning (2018) by introducing second-order infor-
mation. They compare two approximate high-order
inference methods, i.e., mean filed variational in-
ference and loopy belief propagation.

Word-based graph parsing for word-based SRL.
As far as we know, Li et al. (2020) for the first
time propose to treat word-based SRL as a SGDP
task. Since arguments correspond to single words
in word-based SRL, the two tasks are very simi-
lar. They employ the SGDP model of Wang et al.
(2019) straightforwardly. Moreover, their study
focuses on the predicate-given setting. First, they
use a separate sequence labeling model to predict
predicates. The SDGP model is then applied to
recognize arguments.

3 Proposed Graph Schemata

This work proposes to cast end-to-end span-based
SRL as a word-based graph parsing task. The key
challenge is to design a suitable graphical schema
so that all predicates and their span-based argu-
ments can be represented simultaneously in one
graph without ambiguity. And the graph can be
transformed to its corresponding SRL structure
without performance loss.

3.1 SRL-to-Graph Transformation

We design four different schemata for transforming
span-based SRL structures into word-based graphs.
The basic idea is linking words in an argument to
the corresponding predicate, and labeling the edges
according to both semantic role labels and word
positions in the argument.

Specifically, we add a pseudo “Root” node at the
beginning of the sentence and link all the predicates
to it with “PRD” as the edge label. This allows
our model to simultaneously predict predicates and
arguments in an end-to-end manner.

Borrowing ideas from research on CWS and
NER, we propose and investigate two strategies for
attaching argument words to corresponding pred-
icates, i.e., boundary-attach and all-attach. The
boundary-attach strategy connects only the start
and end words of an argument to its predicate word,
while the all-attach strategy connects all words of
an argument to the predicate word. For each strat-
egy, we design two concrete schemata, as follows.

Boundary-attach: BES and BE. Figure 2(a)
shows the two schemata. When an argument con-
tains multiple words, we attach only the start and
end words to its corresponding predicates, using
“B-r” and “E-r” as the edge labels, where r is the
original semantic role label. As shown in Figure
2(a), the two schemata handle the argument “to do
more” in the same way.

When an argument corresponds to a single word,
for example, the argument “They”, the BE schema
simply uses “B-r” as the label, while the BES
schema uses “S-r” to make a distinction. Our
experiments show that such distinction consistently
improves performance.

All-attach: BIES and BII. Figure 2(b) shows
the two schemata. Each word in an argument is
attached to its corresponding predicate. In the BII
schema, the first word is labeled as “B-r”, and
the following words, if any, are labeled as “I-r”,
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where the prefix “I-” means being inside an argu-
ment.

Analogous to BES, BIES further distinguishes
the end word in an argument using “E-r”, and
single-word arguments using “S-r”.

In fact, there is another variant schema that be-
longs to the all-attach category, which is BIS. Due
to space limitation, we do not introduce it in detail
since our preliminary experiments show its per-
formance lags behind the best schema by a large
margin.

3.2 Graph-to-SRL Recovery

In the evaluation stage, given an input sentence,
our graph parsing model outputs an optimal graph
according to the underlying schema. Then, the job
is to recover SRL structure. If the output graph is
legal (i.e., without label conflicts), the recovery is
quite straightforward. Taking the BES schema for
example, all children nodes (words) of the pseudo
“Root” are treated as predicates. Then, for each
predicate, we recover all its arguments based on
the edge labels. An argument corresponds to either
a paired labels, such as “B-A0” and “E-A0”, or a
single label such as “S-A0”.

Unfortunately, it is quite complex to guarantee
legality of output graphs. To handle this issue,
we propose a simple yet effective post-processing
recipe based on constrained Viterbi decoding in
Section 5.

4 Model

Based on our designed graphical schema, we can
address span-based SRL as a word-based graph
parsing task. Following Dozat and Manning (2018)
and Wang et al. (2019), the framework of our model
consists of two stages: 1) predicting all edges and
2) assigning labels for edges.

4.1 Encoder

BiLSTM. Under the setting without PLMs, we
use BiLSTM as our encoder. The input of the i-th
word wi is the concatenation of word embedding
ewordi , lemma embedding elemmai , and charLSTM
representation vector:

xi = ewordi ⊕ elemmai ⊕ echari (1)

where echari is the output vector of a one-layer BiL-
STM that encodes the character sequence (Lample
et al., 2016). Then, a three-layer BiLSTM encoder

. . . wi . . . wk . . . wj . . .

BiLSTM× 3 or PLM

MLPh MLPm

Biaffine

MLPh′′
MLPg MLPm′′

Triaffines

hi hk hj

rhi rmj rh
′′
i rgk rm

′′
j

s(i, j) s∗(i, k, j)

MFVI layers

QTi,j

Figure 3: Illustration of our model. s∗(i, k, j) cor-
responds to the second-order scores, where ∗ ∈
{sib, cop, grd}.

produces a context-aware vector representation for
each word.

hi = fi ⊕ bi (2)

where fi and bi respectively denote the output vec-
tors of top-layer forward and backward LSTMs for
wi.

PLM. Under the setting with PLMs, we adopt
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) to get contextual word representation
to boost the performance of our model.

hi = PLM(wi) (3)

Concretely, we use the outputs of all three layers
in ELMO, and of the top four layers in BERT, and
then apply weighted sum to obtain the final output
vector for each token.

4.2 Edge prediction
In SDGP, the prediction of edge is treated as a
binary 0/1 classification task, where 1 means that
there exists an edge between the given word pair
and 0 otherwise. Here, for each edge i→ j 2 , we
need to compute the logit score logitij . Then we
can get the probability of existence of each edge
Qij by applying the Sigmoid function. During
inference, the edges that have Qij > 0.5 will be
retained.

To facilitate computation and modeling, the first-
order model of Dozat and Manning (2018) makes
a strong assumption that edges are mutually inde-
pendent and thus it only considers the information

2For convenience, we abbreviate the edge i→ j as (i, j)
in the remaining part of the paper.
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i j k

(a) sibling

i j k

(b) co-parent

i j k

(c) grandchild

Figure 4: Three types of second-order sub-trees.

between the current two words when computing
logits. However, in our case, the edges in the re-
sulting graph usually have a strong correlation. For
example, in our BE schema, a “B-∗” edge usually
calls for a “E-∗” edge, and vice-versa, to form a
complete argument. So, in this work, we extend
first-order to second-order by adding three types
of sub-trees, as shown in Figure 4. And we com-
pute the logit by mean field variational inference
(MFVI) following Wang et al. (2019).

The logit comes from two parts. The first part is
the first-order score s(i, j). We use two MLPs to
get representation vectors of a word as a head or
a modifier respectively, and then use a BiAffine to
compute edges’ first-order scores as follows:

rhi ; r
m
i = MLPh (hi) ;MLPm (hi)

s(i, j) =

[
rmj
1

]⊤
Wrhi

(4)

where W ∈ R(d+1)×d.
The other part comes from second-order sub-

trees. First, we use three new MLPs to get repre-
sentations of each word for playing different roles
in second-order sub-trees as follows:

rh
′′
i ; rm

′′
i ; rgi = MLPh′′/m′′/g (hi) (5)

where rh
′′
i , rm

′′
i , and rgi denote the representation

vectors of wi as head, modifier, and grandchild
respectively. Then, a TriAffine scorer (Zhang et al.,
2020) taking the three vectors as input is applied
to compute the score of the corresponding second-
order structure:

TriAFF(v1,v2,v3) =

[
v3

1

]⊤
v1
⊤W′

[
v2

1

]

(6)
where W′ ∈ R(d′+1)×d′×(d′+1) and v1,2,3 ∈ Rd′ .
Finally, scores of the three types of sub-trees can
be computed as follows respectively:

ssib(i, j, k) = TriAFFsib(r
h′′
i , r

m′′
j , rm

′′
k ) (7)

scop(i, j, k) = TriAFFcop(r
h′′
i , r

m′′
j , rh

′′
k ) (8)

sgrd(i, j, k) = TriAFFgrd(r
h′′
i , r

m′′
j , rgk) (9)

It should be noted that for symmetrical sibling sub-
trees and co-parent sub-trees, we compute their
corresponding scores only once, i.e., ssib(i, j, k) =
ssib(i, k, j) and scop(i, j, k) = scop(k, j, i).

For a given edge (i, j), MFVI aggregates the
final logitTij and QTij from the corresponding first-
order score and second-order scores iteratively as
follows:

Mt−1
ij =

∑

k ̸=i,j
Qt−1ik ssib(i, j, k)

+Qt−1kj scop(i, j, k)

+Qt−1jk sgrd(i, j, k)

logittij = s(i, j) +Mt−1
ij

Qtij = σ(logittij)

(10)

where t ∈ [1, T ] is the iteration number. Mij is
an intermediate variable that stores message from
second-order sub-tree scores. Q0

ij is initialized by
applying Sigmoid on s(i, j). Through T times of
update, we get the final logitTij and probability QTij .

4.3 Label prediction

Similar to edge scoring, we use two extra MLPs
and a set of Biaffines to compute the label scores:

rh’i ; rm’i = MLPh′ (hi) ;MLPm′
(hi)

s(i, j, ℓ) =

[
rm

′
j

1

]⊤
Wlabel

ℓ

[
rh

′
i

1

]

p(ℓ|i, j) = exp (s(i, j, ℓ))∑
ℓ′∈L exp (s(i, j, ℓ

′))

(11)

where s(i, j, ℓ) is the score of the label ℓ for the
edge (i, j). p(ℓ|i, j) is the probability after softmax
over all labels. Each label has its own Biaffine
parameters Wlabel

ℓ ∈ R(d+1)×(d+1).

4.4 Training

The loss of our system comes from both edge and
label prediction modules. Given one sentence X
and its gold graph G, the fully connected graph of
X is denoted as C.

Le(θ) = −
∑

(i,j)∈G
logQTij −

∑

(i,j)∈C\G
log (1−QTij)

Ll(θ) = −
∑

(i,j)∈G
log p(ℓ̂|i, j)

(12)

where θ denotes model parameters; C\G is the set
of incorrect edges; ℓ̂ is the gold label of edge. The
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loss of the final model is the weighted sum of the
two parts:

L(θ) = λLl(θ) + (1− λ)Le(θ) (13)

where λ = 0.06 in our model.

5 Conflict resolution

During inference, we first use the edge prediction
module to build the graph skeleton, and then use
the label prediction module to assign labels to pre-
dicted edges. After that, we use a simple procedure
to check whether the generated graph is legal. Con-
cretely, for each predicate, we scan the edges of
the predicate from left to right. For example, in
the BES schema, a “B-∗” edge must be followed
by a “E-∗” edge; “S-∗” edge and “E-∗” can be
followed by a “B-∗” edge or “S-∗” edge. If the
generated graph is legal, we can directly recover
the corresponding SRL structure through Graph-to-
SRL procedure described in 3.2.

However, since the label prediction module han-
dles each edge independently, the resulting graph
may contain conflicts, as shown in the upper part
of Figure 5(a) 3. First, if two consecutive edges
are both labeled as “E-∗”, such as the two “E-A0”
edge, then it is impossible to recover the corre-
sponding arguments. Another conflicting scene is
when there exists a single outlier edge labeled as
“B-∗” or “E-∗”, such as “E-A1” edge in the figure.

Constrained Viterbi. We propose to employ con-
strained decoding to handle conflicts. Concretely,
when conflicts occur during recovering arguments
for a predicate in the output graph, we re-label all
words in the sentence for the predicate. However,
it is non-trivial to apply constrained Viterbi to our
SDGP framework as a post-processing step.

Here we use the BES schema as an example,
and the process for other schemata is similar. In
the first stage, QTij means the probability that the
edge appears in the final graph; while in the second
stage, p(ℓ|i, j) means the probability that the edge
should be labeled as ℓ ∈ L = {B-*,E-*,S-*}.
We can see that L does not include “I” and “O”,
meaning that the word is inside an argument or out-
side any arguments respectively. The two labels are
indispensable for the sequence labeling procedure.

To solve this issue, we add two pseudo labels
“O/I” into the label set, and redistribute the label

3Here we only take the BES schema as a representative for
discussion, and others can be viewed in § A.

Root Some students want to do more .

Viterbi: B-A0 E-A0 O B-A1 I E-A1 O

PRD
E-A0

E-A0
E-A1

(a) A conflicting example in BES. Edges in red cause
conflicts, and the sequence below is the corrected sequence
via our constrained Viterbi.

B-∗

E-∗

S-∗

I

O

B-∗ E-∗ S-∗ I O

(b) The transition matrix of BES.

Figure 5: A conflicting example and the transition ma-
trix in BES schema. The rows indicate the beginning of
the transition and the columns indicate the ending. Cells
with fence denote the prohibited transitions. I and O
are two pseudo labels.

probability distribution as follows.

p′(ℓ|i, j) = QTij · p(ℓ|i, j)
p′(O|i, j) = p′(I|i, j) = 1−QTij

(14)

where p′(ℓ|i, j) is the probability for the normal la-
bel such as “B-A0”. p′(O|i, j) and p′(I|i, j) share
the same probability because they both mean that
there is no edge pointing to the word, but “I” has
an extra indication that there is an unpaired “B-∗”
in the left side. Thus, we can solve the conflicts by
controlling the transition matrix.

For example, as shown in Figure 5(b), we dis-
allow transitions from “E-∗” to “E-∗”. So, the
“Some” and “students” are re-labeled as “B-A0”
and “E-A0”. And finally we get the correct ar-
gument span “Some students” with semantic role
“A0”.

6 Experiments

Data and evaluation. Experiments are con-
ducted on CoNLL05 (Palmer et al., 2005) and
larger-scale CoNLL12 (Pradhan et al., 2012),
which are two widely used span-based SRL
datasets. Following previous works on span-based
SRL, we omit predicate sense prediction (Zhou
and Xu, 2015; He et al., 2017). We use the official
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Schema WSJ Brown

P R F1 P R F1

BES 85.28 83.66 84.46 74.10 70.76 72.39
BE 83.97 83.56 83.76 71.82 70.19 70.99
BIES 82.63 83.92 83.27 70.22 72.03 71.11
BII 81.65 83.44 82.54 67.72 70.74 69.20
+BERT
BES 87.15 88.44 87.79 79.44 80.85 80.14
BE 86.37 87.93 87.14 78.18 79.91 79.04
BIES 85.91 88.17 87.03 77.59 81.76 79.62
BII 85.31 87.57 86.43 76.90 81.03 78.91

Table 1: Results on CoNLL05 datasets with respect to
proposed four schemata. The variation between the 3
runs on WSJ and Brown is about 0.1 and 0.2, respec-
tively. And it varies little between different schemata.

evaluation scripts4. We choose seeds randomly to
run our model for 3 times and report the average
results.

Hyper-parameter settings. We employ 300-
dimension English word embeddings from GloVe
(Pennington et al., 2014) for our experiments. We
adopt most hyper-parameters of the SDGP work
of Wang et al. (2019), except that we reduce the
dimension of Char-LSTM from 400 to 100 to save
the memory, which only slightly influence perfor-
mance. For experiments with PLMs, we adopt
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) as our encoder. Following most of previous
works (He et al., 2018; Xia et al., 2019), for ELMo,
we froze its parameters during training. For BERT,
we fine-tune its parameters for 10 epochs. The
initial learning rate for models with and without
BERT are 5e-5 and 1e-3 respectively. The hyper-
parameter λ in the loss function (Eq. 13) is set
to 0.06 in all experiments, based on preliminary
experiment results.

6.1 Schema Comparison

Overall results. First, to compare the proposed
four schemata and find which one is better, we con-
duct experiments on CoNLL05 datasets under the
end-to-end setting. Table 1 shows results of differ-
ent schemata. First, by comparing the two different
attaching strategy, i.e., all-attach (BII, BIES) and
boundary-attach (BE, BES), we can find that the
schemata resulted from boundary-attach have bet-
ter P and F1 results. We think this may be because
BII and BIES connect all words in arguments to
predicates. So the final graph contains much more

4http://www.cs.upc.edu/~srlconll/st05/
st05.html

Figure 6: Analysis of the arguments with different width.
The horizontal axis denotes the width of arguments and
the proportion of arguments of the same width in the
data set. The vertical axis denotes the F1 value.

edges than that generated by BE and BES. There-
fore, given two words, the corresponding model
tends to build an edge between them, compared
with not building an edge, resulting in a higher R
but a lower P. Second, by comparing schemata that
with and without “S-r”, i.e., BII vs. BIES and
BE vs. BES, we find that it is always better to use
a separate “S-r” to label the edge corresponding
to the single-word argument. Therefore, from the
overall point of view, we can get the conclusion
that BES > BE > BIES > BII.

Performance regarding argument width. Here
we define an argument’s width as the number of
words included. As we know, different schemata
have different attaching and labeling methods to
represent arguments of the same width. Therefore,
analyzing the performance of different schemata
on the same width argument will help us to
deeply explore the advantages and disadvantages
of schemata.

As shown in Figure 6, we divide arguments into
four categories according to their width, and re-
port F1 values for each category. The proportion
of each category in the gold-standard data is also
reported. First, we can see that BES and BIES per-
form much better on 1-width arguments. This fur-
ther shows that it is necessary to use “S-r” alone
to represent arguments of width 1. Then, we can
clearly find that BE and BES perform better than
BII and BIES on arguments containing multiple
words. And we know that BE and BES are resulted
from the boundary-attach strategy which pays more
attention to boundary information. So, we may con-
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Model Type Sents/sec
He et al. (2018) SGP 44
Strubell et al. (2018) BIO-based 45
Zhang et al. (2022) TP 214
Zhang et al. (2022)BERT 113
Ours WGP 669
OursBERT 252

Table 2: Speed comparison on CoNLL05. “SGP” and
“WGP”denote the span-based graph parsing and word-
based graph parsing approach respectively; “TP” means
the tree parsing approach.

clude that boundary information is more helpful to
the recognition of multi-word arguments.

Through analyzing the performance of different
schemata, we find that BES is more suitable for
converting span-based SRL into word-based graphs
than other schemata. So, the rest of the experiments
are conducted in BES schema.

6.2 Efficiency

Table 2 compares different models in terms of de-
coding speed. For fair comparison, we re-run all
previous models on the same GPU environment
(Nvidia GeForce 1080 Ti 11G). The results are av-
eraged over 3 runs. In terms of batch size during
evaluation, our model and Strubell et al. (2018) use
5000 tokens (about 134 sentences), while He et al.
(2018) and Li et al. (2019) use 40 sentences by
default.

We can see that our model improves the effi-
ciency of previous span-based SRL models by large
margin. Compared with the span-based graph pars-
ing approach (He et al., 2018; Li et al., 2019),
our graph-based parser only has a O(n2) search
space. As for the BIO-based model of Strubell
et al. (2018), the encoder contains 12 self-attention
layers, and they adopts a pipeline framework by
first predicting all predicates via sequence labeling
and then recognizing arguments, leading to its low
parsing speed. And when augmented with BERT,
our methods can still parse about 250 sentences per
second.

As discussed in Section 2, Zhang et al. (2022)
reduce the SRL to a tree parsing task and get good
results. However, they have to build a dependency
tree for each predicate, which greatly reduces the
efficiency of their approach. Specifically, the speed
of our model is respectively three and twice times
as fast as theirs under the setting without and with
BERT.

6.3 Comparison with previous results
End-to-end. Our work mainly focuses on the
end-to-end setting, i.e, requiring predicting pred-
icates and arguments simultaneously. So we first
go into this scenario. The first part of the Table 3
shows the comparison with previous works under
the end-to-end setting.

First, when compared with models without
PLMs, our model surpasses previous approaches
with the large gap, getting comparable results with
recently released work (Zhang et al., 2022). Then,
most previous works usually use ELMo to improve
the performance. In order to make a fair compari-
son, we also report the results with ELMo. We can
find that our model also reaches better results, with
+0.25 F1 on WSJ, +0.77 F1 on Brown, and +0.44 F1

on CoNLL12-test when using ELMo. And when
augmented with the more powerful PLM BERT,
the performance of our model can be further im-
proved. It shows that our method not only has high
efficiency, but also performs better than previous
works.

As discussed in Section 2, please kindly notice
that Strubell et al. (2018) and Zhou et al. (2020)
use extra syntactic knowledge to boost SRL perfor-
mance. We only list their syntax-agnostic results
here for fair comparison. It is worth noting that
Strubell et al. (2018) incidentally wrongly used the
official script in the end-to-end setting, leading to
much higher precision scores. We reported this
issue to their github repository and they confirmed
this mistake. In this work, we report their results by
evaluating their released models with the correct
evaluation process.

Predicate-given. Recent works (Jindal et al.,
2020; Zhang et al., 2021; Blloshmi et al., 2021)
usually assume that predicates have been given,
thus they only need to recognize the arguments and
semantic roles. To compare with these works, we
also report the results under the predicate-given
setting. In our work, following Cai et al. (2018),
during training procedure, the model is informed
which word is the predicate using a predicate em-
bedding. The embedding is added to the input
vector.

Finally, from the second part of the Table 3, we
can see that our model reaches the best results on
most test datasets when compared with models
without PLMs. When it comes to models with
PLMs, we can see that the BIO-based Shi and Lin
(2019) is a strong baseline. Our model lags behind
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Model CoNLL05-WSJ CoNLL05-Brown CoNLL12

Dev.F1 P R F1 P R F1 Dev.F1 P R F1

The end-to-end setting
He et al. (2017)† 80.30 80.20 82.30 81.20 67.60 69.60 68.50 75.50 78.60 75.10 76.80
Strubell et al. (2018)† ∗ 81.72 81.77 83.28 82.51 68.58 70.10 69.33 - - - -
He et al. (2018)‡ 81.60 81.20 83.90 82.50 69.70 71.90 70.80 79.40 79.40 80.10 79.80
Li et al. (2019)‡ - - - 83.00 - - - - - - -
Zhou et al. (2020) 82.27 - - - - - - - - - -
Zhang et al. (2022) 83.91 83.26 86.20 84.71 70.70 74.16 72.39 81.16 79.27 83.24 81.21
Ours 83.17 85.28 83.66 84.46 74.10 70.76 72.39 80.79 82.10 79.76 80.91
Strubell et al. (2018)† ∗ + ELMo 84.73 83.86 85.98 84.91 73.01 75.61 74.31 - - - -
He et al. (2018)‡ + ELMo 85.30 84.80 87.20 86.00 73.90 78.40 76.10 83.00 81.90 84.00 82.90
Li et al. (2019)‡ + ELMo - 85.20 87.50 86.30 74.70 78.10 76.40 - 84.90 81.40 83.10
Ours + ELMo 85.72 86.19 86.91 86.55 76.57 77.77 77.17 83.72 83.53 83.56 83.54
Zhang et al. (2022) + BERT 87.03 87.00 88.76 87.87 79.08 81.50 80.27 85.53 84.53 86.41 85.45
Ours + BERT 86.79 87.15 88.44 87.79 79.44 80.85 80.14 84.74 83.91 85.61 84.75

The predicate-given setting
He et al. (2017)† 81.60 83.10 83.00 83.10 72.90 71.40 72.10 81.50 81.70 81.60 81.70
Strubell et al. (2018)† - 84.70 84.24 84.47 73.89 72.39 73.13 - - - -
He et al. (2018)‡ - - - 83.90 - - 73.70 - - - 82.10
Tan et al. (2018)† 83.10 84.50 85.20 84.80 73.50 74.60 74.10 82.90 81.90 83.60 82.70
Zhou et al. (2020) 83.16 - - - - - - - - - -
Zhang et al. (2021) 84.45 85.30 85.17 85.23 74.98 73.85 74.41 82.83 83.09 83.71 83.40
Zhang et al. (2022) 84.65 85.47 86.40 85.93 74.92 75.00 74.96 83.39 83.02 84.31 83.66
Ours 84.39 87.01 84.36 85.66 77.86 72.53 75.10 83.83 85.74 82.95 84.32
Li et al. (2019)‡ + ELMo - 87.90 87.50 87.70 80.60 80.40 80.50 - 85.70 86.30 86.00
Shi and Lin (2019)† + BERT - 88.60 89.00 88.80 81.90 82.10 82.00 - 85.90 87.00 86.50
Jindal et al. (2020)† + BERT 87.10 87.70 88.00 87.90 80.30 80.10 80.20 86.60 86.30 86.80 86.60
Zhang et al. (2021) + BERT 87.38 87.70 88.15 87.93 81.52 81.36 81.44 86.27 86.00 86.84 86.42
Blloshmi et al. (2021) + BART - - - - - - - - 87.80 86.80 87.30
Zhang et al. (2022) + BERT 88.05 89.00 89.03 89.02 82.81 82.35 82.58 87.52 87.52 87.79 87.66
Ours + BERT 87.54 89.03 88.53 88.78 83.22 81.81 82.51 86.97 87.26 87.05 87.15

Table 3: Results on CoNLL05 and CoNLL12 datasets. We mark BIO-based models by † and span-based graph
ones by ‡. For Strubell et al. (2018) and Zhou et al. (2020), we list their syntax-agnostic results to compare fairly.
Moreover, we mark the results of Strubell et al. (2018) by ∗ to indicate that we report corrected evaluation results
after re-testing their released models.

them slightly on WSJ, but is much higher than them
on other datasets. And even compared with recent
seq-to-seq model (Blloshmi et al., 2021), which
uses more powerful BART (Lewis et al., 2020), our
model still has strong competitiveness.

Comparison with Zhang et al. (2022). As dis-
cussed in Section 2, Zhang et al. (2022) propose a
tree parsing approach to span-based SRL, which
also appears in COLING-2022. We can see that per-
formance of our model is slightly inferior to theirs,
possibly due to more careful hyper-parameter tun-
ing according to personal discussion between the
two first authors. For example, Zhang confirms that
fine-tuning BERT for 20 iterations leads to higher
performance, while we only did 10 iterations.

7 Conclusions

This paper proposes four new graph representation
schemata for transforming raw span-based SRL
structures to word-based graphs. Based on the

schema, we cast the span-based SRL as a word-
based graph parsing task and present a fast and ac-
curate parser. Moreover, we propose a simple post-
processing method based on constrained Viterbi
to handle conflicts in the output graphs. Experi-
ments show that our parser 1) is much more effi-
cient than previous parsers, and can parse over 600
sentences per second; 2) reaches consistently better
performance than previous results on CoNLL05,
CoNLL12 datasets. The in-depth comparison be-
tween four schemata shows that the boundary infor-
mation counts a lot when recognizing arguments.
In addition, distinguishing single-word arguments
from multi-words arguments can also improve the
final performance. These clear findings may help
researchers think about SRL from a new perspec-
tive in the future.
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Appendices

A More examples of other schemata

In order to save space, we only show the transi-
tion matrix of BES in the main body. Here, we
present the transition matrix of others in Figure
7. In addition, we provide more examples to im-
prove the comprehensibility of our schemata and
the constrained viterbi. Figure 8, 9, and 10 show

the outputs of models using different schemata re-
spectively. For example, in Figure 8, there is miss-
ing an edge from “pilling” to “falling” in the raw
output. After the viterbi procedure, an I-AM-ADV
edge will be added since we disallow the transition
from O to I-∗. Thus we can get the legal SRL
structure.

Figure 7: Transition matrices of BII, BE, and BIES.

Root pilling ... while falling sharply

PRD B-AM-ADV

I-AM-ADV
I-AM-ADV

(a) w/o Constrained Viterbi

Root pilling ... while falling sharply

PRD B-AM-ADV

I-AM-ADV
I-AM-ADV

(b) w/ Constrained Viterbi

Figure 8: BII schema.

4170



Root “ take another ... two ”

PRD B-A1

E-A1
E-A1

(a) w/o Constrained Viterbi

Root “ take another ... two ”

PRD B-A1

E-A1

(b) w/ Constrained Viterbi

Figure 9: BE schema.

Root fix ... later ... when ... home

PRD B-AM-TMP

I-AM-TMP

B-AM-TMP

I-AM-TMP

E-AM-TMP

(a) w/o Constrained Viterbi

Root fix ... later ... when ... home

PRD B-AM-TMP

I-AM-TMP

I-AM-TMP

I-AM-TMP

E-AM-TMP

(b) w/ Constrained Viterbi

Figure 10: BIES schema.
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Abstract
We propose a new unsupervised method for
lexical substitution using pre-trained language
models. Compared to previous approaches that
use the generative capability of language mod-
els to predict substitutes, our method retrieves
substitutes based on the similarity of contextu-
alised and decontextualised word embeddings,
i.e. the average contextual representation of a
word in multiple contexts. We conduct exper-
iments in English and Italian, and show that
our method substantially outperforms strong
baselines and establishes a new state-of-the-art
without any explicit supervision or fine-tuning.
We further show that our method performs par-
ticularly well at predicting low-frequency sub-
stitutes, and also generates a diverse list of sub-
stitute candidates, reducing morphophonetic
or morphosyntactic biases induced by article–
noun agreement.1

1 Introduction

There has been growing interest in developing auto-
matic writing support systems to assist humans to
write documents. One relevant task to this research
goal is lexical substitution, where given a target
word and its surrounding context, a system sug-
gests a list of word substitutions that can replace
the target word without changing its core meaning.
For instance, given the target word great and the
context He is a great artist, the model might sug-
gest alternative words such as outstanding, terrific,
or distinguished. Writers can use such suggestions
to improve the fluency of their writing, reduce lexi-
cal repetition, or search for better expressions that
represent their ideas more creatively.

As with other NLP tasks, recent studies have
shown that masked language models such as BERT
(Devlin et al., 2019) perform very well on lexical
substitution, even without any task-specific super-
vision. A common approach is to employ language

1Code is available at: https://github.com/
twadada/lexsub_decontextualised.

models as generative models and predict substitutes
based on their generative capability. However, this
approach has some limitations. First, it is extremely
difficult for language models to predict rare words
— especially those that are segmented into multi-
ple subword tokens — since the models inevitably
assign them very low probabilities. Second, word
prediction is highly affected by morphosyntactic
constraints from the surrounding context, which
overshadows the (arguably more important) ques-
tion of semantic fit. For instance, if the target word
is increase in the context ... with an increase in ...,
language models tend to suggest words that also
start with a vowel sound due to the presence of
an before the target word, missing other possible
substitutes such as hike or boost. In fact, this prob-
lem is even more pronounced in languages where
words have grammatical gender (e.g. Italian nouns)
or a high degree of inflection (e.g. Japanese verbs).

In this paper, we propose a new approach that
explicitly deals with these limitations. Instead of
generating words based on language model predic-
tion, we propose to find synonymous words based
on the similarity of contextualised and decontextu-
alised word embeddings, where the latter refers to
the “average” contextual representation of a word
in multiple contexts. Experiments on English and
Italian lexical substitution show that our fully un-
supervised method outperforms previous models
by a large margin. Furthermore, we show that
our model performs particularly well at predicting
low-frequency words, and also generates more di-
verse substitutes with less morphophonetic or mor-
phosyntactic bias, e.g. as a result of article–noun
agreement in English and Italian.

2 Method

2.1 Our Approach

Given a sentence that contains a target word x and
its surrounding context c, we first feed the sentence
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into a pre-trained transformer model (Vaswani
et al., 2017) such as BERT and generate the con-
textualised representations of x: f ℓ(x, c) ∈ Rd,
where ℓ (≤ L) denotes the layer of the model. We
propose to predict substitutes of x by retrieving
words that have similar representations to f ℓ(x, c).
To this end, we calculate S(y|x, c): the score of y
being a substitute of x in context c, as follows:

S(y|x, c) = cos(f(y), f(x, c)), (1)

f(x, c) =
∑

ℓ∈Z
f ℓ(x, c),

f(y) =
1

N

N∑

i

∑

ℓ∈Z
f ℓ(y, c′i),

where f(y) ∈ Rd denotes the decontextualised
word embedding of y; Z is a set of selected lay-
ers; and cos(a, b) denotes the cosine similarity
between a and b. To obtain f(y), we randomly
sample N sentences (c′1, c

′
2..., c

′
N ) that contain y

from a monolingual corpus, and take the average
of the contextualised representations of y given c′i:
f ℓ(y, c′i). We pre-compute f(y) for each word y
in our pre-defined vocabulary Ṽ , which consists of
lexical items (i.e. no subwords) and contains dif-
ferent words from the pretrained model’s original
vocabulary V . If y is segmented into multiple sub-
words (using the pretrained model’s tokeniser), we
average its subword representations — this way we
can include low-frequency words in Ṽ and gener-
ate diverse substitutes. We obtain f(x, c) and f(y)
by summing representations across different layers
ℓ ∈ Z to capture various lexical information.2

2.2 Multi-Sense Embeddings
Representing f(y) in Eqn. (1) as a simple average
of the contextualised representations of y is clearly
limited when y has multiple meanings, since the
representations will likely vary depending on its
usage. For instance, Wiedemann et al. (2019) show
that BERT representations of polysemous words
such as bank create distinguishable clusters based
on their usages. To address this issue, we first
group theN sentences intoK clusters based on the
usages of y, and for each cluster k, we obtain the
decontextualised embedding fk(y) by averaging
the contextualised representations, i.e.,

fk(y) =
1

|Ck|
∑

c′∈Ck

∑

ℓ∈Z
f ℓ(y, c′),

2We also tried taking the weighted sum of the different-
layer embeddings, but we did not see noticeable improvement.

where Ck denotes the set of the sentences that be-
long to the cluster k. To obtain clusters, we apply
K-means (Lloyd, 1982; Arthur and Vassilvitskii,
2007) to the L2-normalised representations of y
in N sentences.3 We expect that if y has multi-
ple senses, fk(y) will to some degree capture the
different meanings.4 This methodology has been
shown to be effective by Chronis and Erk (2020)
on context-independent word similarity tasks. With
fk(y), we can refine the similarity score S(y|x, c)
in Eqn. (1) as follows:

S(y|x, c) = max
k

cos(fk(y), f(x, c)).

In this way, we can compare x with y based on the
sense that is most relevant to x. Furthermore, we
capture global similarity between x and y as:

S(y|x, c) = max
k

λcos(fk(y), f(x, c))

+ (1− λ)cos(fk(y), f jc(x)),
(2)

jc = argmax
j

cos(f j(x), f(x, c)), (3)

where the second term in Eqn. (2) corresponds
to the global similarity, which compares x and y
outside of context c.5 However, it still considers c
in Eqn. (3) to retrieve the cluster that best represents
the meaning of x given c.

While Eqn. (2) generally generates high-quality
substitutes, we found that it sometimes retrieves
words that share the same root word as x and yet
do not make good substitutes (e.g. pay and payer).
This is mainly due to the fact that the vocabulary Ṽ
contains a large number of derivationally-related
words, some of which are out-of-vocabulary (OOV)
in the original vocabulary V (e.g. pay ##er). To ad-
dress this problem, we add a simple heuristic where
y is discarded if the normalised edit distance6 be-
tween x and y is less than a threshold (0.5 for our
English and Italian experiments).7

2.3 Reranking
In Eqn. (2), the context c affects the representation
of x but not y. Ideally, however, we want to con-

3We concatenate f ℓ(y, c) across multiple layers ℓ ∈ Z.
4Note that the number of clusters K is fixed across all

words, forcing the model to “split” and “lump” senses (Hanks,
2012) to varying degrees.

5To obtain f j(x), we compute the decontextualised em-
bedding of x and apply K-means, as we do to compute fk(y).
When x is not included in our pre-defined vocabulary Ṽ , we
set λ to 1 and ignore the second term in Eqn. (2).

6The distance normalised by the maximum string length.
7We tuned this threshold based on English development

data (i.e. the development split of SWORDS).
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sider the context c on both sides to find the words
that best fit the context. Therefore, we first gener-
ate top-M candidates based on Eqn. (2), and rerank
them using the following score:

S(y|x, c) = 1

|Z|
∑

ℓ∈Z
cos(f ℓ(y, c), f ℓ(x, c)), (4)

where f ℓ(y, c) denotes the contextualised repre-
sentation of y given c, which can be obtained by
replacing x in cwith y and feeding it into the model.
In Eqn. (4), we calculate the similarity at each layer
ℓ ∈ Z and take the average, which yields small yet
consistent improvements over averaging the em-
beddings first and then calculating the similarity.8

We limit the use of this scoring method to the M
candidates only, since it is computationally expen-
sive to calculate f ℓ(y, c) for every single word y in
Ṽ . Previously, a similar method was employed by
Lee et al. (2021) but they used the last layer only
(i.e. Z = {L}). We show that using multiple layers
substantially improves the performance. Following
Lee et al. (2021), we set M to 50.

2.4 Comparison to Previous Approaches

Our approach contrasts with previous approaches
(Zhou et al., 2019; Lee et al., 2021; Yang et al.,
2022) that employ BERT as a generative model and
predict lexical substitutes based on the generation
probability P (y|x, c):

P (y|x, c) = exp(Eyf
L̂(x, c) + by)∑

ý∈V exp(Eýf L̂(x, c) + bý)
, (5)

where Ey ∈ Rd denotes the output embedding of
y, which is usually tied with the input word em-
bedding; f L̂(x, c) is the representation at the very
last layer of the model;9,10 and by is a scalar bias.
While this approach is straightforward and well
motivated, its predictions are highly influenced by
morphosyntax, as discussed in Section 1. More-
over, Eqn. (5) shows three additional limitations
compared to our approach: (1) the prediction is
conditioned on the last layer only, despite previous

8In Eqn. (1), we obtained similar results by averaging the
embeddings or cosine similarities across layers.

9Note that this does not always correspond to the last layer
of transformer: fL(x, c). E.g., BERT calculates f L̂(x, c) by
applying a feed forward network and layer normalisation to
fL(x, c), whereas for XLNET, f L̂(x, c) = fL(x, c).

10When x consists of multiple subwords, the representa-
tion of the first or longest token is usually used.

studies showing that different layers capture dif-
ferent information, with the last layer usually con-
taining less semantic information than the lower
or middle layers (Bommasani et al., 2020; Tenney
et al., 2019); (2) y is represented by the single vec-
tor Ey, which may not work well when y has multi-
ple meanings — we alleviate this by clustering the
embeddings (Section 2.2); and (3) the model is not
capable of generating OOV words, unless we force
the model to decode multiple subwords, e.g. by
using multiple mask tokens or duplicating x. Our
approach, in contrast, can include rare words in
the pre-defined vocabulary Ṽ and generate diverse
substitutes (Section 4.4).

3 Experiments

3.1 Data and Evaluation
We conduct experiments in two evaluation settings:
generation and ranking. In the generation setting,
systems produce lexical substitutes given target
words and sentences, while in the ranking setting,
they are also given substitute candidates and rank
them based on their appropriateness.

For the generation task, we base our experiments
on SWORDS (Lee et al., 2021), the largest En-
glish lexical substitution dataset, which extends
and improves CoInCo (Kremer et al., 2014) by in-
troducing a new annotation scheme: in CoInCo,
the annotators were asked to come up with sub-
stitutes by themselves, whereas in SWORDS, the
annotators were given substitute candidates pre-
retrieved from a thesaurus, and only had to made
binary judgements (“good” or “bad”).11 A word is
regarded as acceptable if it is judged to be good
by more than five out of ten annotators, and con-
ceivable if selected by at least one annotator. In
this way, SWORDS provides more comprehensive
lists of substitutes, including many low-frequency
words that are good substitutes and yet difficult for
humans to suggest — these words are of particular
interest to us. For the evaluation metrics, the au-
thors use the harmonic mean of the precision and
recall given the gold and top-10 system-generated
substitutes.12 As gold substitutes, they use either
the acceptable or conceivable words, and calculate
the corresponding scores Fa and Fc, respectively.

11The annotators were asked if they would consider using
the substitute candidate to replace the target word as the author
of the context.

12More precisely, their evaluation script lemmatises the
top-50 substitutes first and then extracts the top-10 distinct
words.
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They also propose to measure those scores in both
strict and lenient settings, which differ in that in the
lenient setting, candidate words that are not scored
under SWORDS are filtered out and discarded.

In the ranking task, we evaluate models on the
traditional SemEval-2007 Task 10 (“SemEval-07”)
data set (trial+test) (McCarthy and Navigli, 2007),
as well as SWORDS. For the evaluation metric, we
follow previous work in using Generalized Average
Precision (GAP; Kishida (2005)):

GAP =

∑N
i=1 I(αi)pi∑R
i=1 I(βi)β̄i

, pi =

∑i
k=1 αk
i

, (6)

where αi and βi denote the gold weight of the
i-th item in the predicted and gold ranked lists
respectively, with N and R indicating their sizes;
I(αi) is a binary function that returns 1 if αi > 0,
and 0 otherwise; and β̄i is the average weight of
the gold ranked list from the 1st to the i-th items.
In our task, the weight corresponds to the aptness
of the substitute, which is set to zero if it is not
in the gold substitutes. Following previous work
(Melamud et al., 2015; Arefyev et al., 2020), we
ignore multiword expressions in SemEval-07.13

3.2 Models
As shown in Eqn. (2), our approach requires only
the vector representations of words and hence
is applicable to any text encoder model. There-
fore, we test our method with various pre-trained
models, including five masked language models:
BERT (Devlin et al., 2019), mBERT, SpanBERT
(Joshi et al., 2020), XLNET (Yang et al., 2019),
and MPNet (Song et al., 2020); one encoder-
decoder model: BART (Lewis et al., 2020); and
two discriminative models: ELECTRA (Clark
et al., 2020) and DeBERTa-V3 (He et al., 2021).14

We also evaluate two sentence-embedding models:
MPNet-based sentence transformer (Reimers and
Gurevych, 2019) and SimCSE (Gao et al., 2021),
both of which are fine-tuned on semantic down-
stream tasks such as MNLI and achieve good per-
formance on sentence-level tasks. Finally, we also
evaluate the encoder of the fine-tuned mBART on
English-to-Many translation (Tang et al., 2021).
Note that the discriminative models and embed-
ding models (e.g. NMT-encoder, SimCSE) cannot
generate words and hence are incompatible with
the previous approach described in Section 2.4.

13We run the evaluation code at https://github.
com/orenmel/lexsub with the no-mwe option.

14See Appendix A for the details of all models.

Models
Lenient Strict

Fa Fc Fa Fc

HUMANS 48.8 77.9 – –
CoInCo 34.1 63.6 – –

GPT-3 34.6 49.0 22.7 36.3
BERT-K15 32.4 55.4 19.2 30.4

(w/o rerank)15 31.8 54.9 15.7 24.4
BERT-M 30.9 48.3 16.2 25.4

(w/o rerank) 30.9 48.1 10.7 16.5
Zhou et al. (2019)15 32.0 55.4 17.4 27.5
Yang et al. (2022)16 31.9 54.9 16.7 28.4

OURS

BERT 33.2 64.1 21.1 34.9
(w/o rerank) 33.0 63.8 20.7 34.4

(w/o rerank, heuristic) 33.6 64.0 20.2 32.4

mBERT 27.0 52.7 12.4 22.6
SpanBERT 32.6 61.4 20.9 34.0

MPNet 33.8 63.8 22.0 34.1
XLNet 34.4 65.3 23.3 37.4

ELECTRA 33.5 64.2 23.2 36.7
DeBERTa-V3 33.6 65.8 24.5 39.9
BART (Enc) 33.6 62.8 21.9 34.8
BART (Dec) 33.5 60.5 21.4 34.0

BART (Enc-Dec) 33.7 64.9 23.5 37.2
SBERT (MPNet) 34.6 64.0 21.8 33.5
SimCSE (BERT) 33.4 64.3 21.6 35.7
NMT (mBART) 28.7 55.6 13.4 22.2

OURS (Rank Candidates)

XLNet 35.2 72.9 – –
BART 34.8 72.4 – –

DeBERTa-V3 35.1 72.2 – –

Table 1: The results for the generation task in the lenient
and strict settings. The best scores are boldfaced.

We use the same vocabulary Ṽ for all models,
which consists of the 30,000 most common words17

in the OSCAR corpus (Ortiz Suárez et al., 2020).
We set the number of sentences we sample from
OSCAR to calculate the decontextualised embed-
dings, i.e.N , to 300; the clustering sizeK to 4; and
λ in Eqn. (2) to 0.7. For the set of transformer lay-
ers, Z, we employ all layers except for the first and

15These results differ slightly from the reported scores in
Lee et al. (2021), due to a bug in their code.

16Updated from the original scores by the authors after
they fixed some critical issues in their evaluation setup.

17We discard tokens that contain numerals, punctuation, or
capital letters. As such, Ṽ includes more lexical items (with
less noise and no subwords) than the original vocabulary V .
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last two, i.e. {3, 4, ..., L− 2}. We tune all hyper-
parameters on the development split of SWORDS.

3.3 Results

Table 1 shows the results on SWORDS, along with
baseline scores from previous work (with some bug
fixes, as noted). The first row, HUMANS, indicates
the agreement of two independent sets of annota-
tors on (a subset of) SWORDS, and approximates
the upper bound for this task. The second row,
CoInCo, shows the accuracy of the gold standard
substitutes in CoInCo, which are suggested by hu-
man annotators without access to substitution can-
didates18 — this approximates how well humans
perform when asked to elicit candidates themselves.
The remainder of the rows above OURS denote
baseline systems, all of which employ generative
approaches. The first baseline uses GPT-3 (Brown
et al., 2020), and achieves the state-of-the-art in
the strict setting. It generates substitutes based on
“in-context learning”, where the model first reads
several triplets of target sentences, queries, and
gold-standard substitutes retrieved from the devel-
opment set, and then performs on-the-fly inference
on the test set. As such, it is not exactly comparable
to the other fully unsupervised models. BERT-K
generates substitutes based on Eqn. (5) by feed-
ing the target sentence into BERT, and BERT-M
works the same except that the target word is re-
placed by [MASK]. Both models further rerank the
candidates based on Eqn. (4), using the last layer
only; we show the performance without reranking
as “w/o rerank” in Table 1. Yang et al. (2022) and
Zhou et al. (2019) also use BERT to generate sub-
stitutes, and rerank them using their own method.

The rows below OURS indicate the performance
of our approach using various off-the-shelf models.
Our method with BERT substantially outperforms
all the BERT-based baselines, even without the
edit-distance heuristic (Section 2.2) or reranking
method (Eqn. (4)). The best performing models are
DeBERTa-V3, XLNet, and BART (Enc-Dec), all
of which outperform the weakly-supervised GPT-3
model by a large margin in the strict setting; and
XLNet even outperforms CoInCo in the lenient set-
ting. The last three rows show the performance of
the top-3 models when they are given the candidate
words and rank them based on Eqn. (4), which
emulates how the SWORDS annotators judged

18Since all of these words are in the substitute candidates
of SWORDS, it cannot be evaluated under the strict setting.

Models S-07 SW

HUMANS — 66.2

Arefyev et al. (2020) (XLNet) 61.319 —
Michalopoulos et al. (2022) (LMs+WN) 60.3 —

Lacerra et al. (2021a) (BERT) 58.2 —
Lacerra et al. (2021a) (BERT, sup) 60.5 —

Zhou et al. (2019) (BERT) 60.520 53.515

Lee et al. (2021) (BERT) 56.6 56.9

OURS (Eqn. (4))

BERT 58.6 60.7
mBERT 45.4 52.0

SpanBERT 59.3 60.8
MPNet 61.5 59.5
XLNet 63.8 62.9

ELECTRA 64.4 62.3
DeBERTa-V3 65.0 62.9
BART (Enc) 62.9 61.9
BART (Dec) 62.6 60.8

BART (Enc-Dec) 64.1 62.7
SBERT (MPNet) 61.0 62.5
SimCSE (BERT) 58.4 60.9

NMT (mBART, Enc) 46.0 51.5

Table 2: GAP scores on SemEval-07 and SWORDS.
“LMs+WN” employs multiple language models and
WordNet, and “BERT, sup” is a supervised model.

the words. The result shows that all the models
still lag behind HUMANS, suggesting there is still
substantial room for improvement. Interestingly,
BART performs best when we average the scores
obtained by its encoder and decoder, suggesting
each layer captures complementary information.
It is also intriguing to see that the discriminative
models (DeBERTa-V3 and ELECTRA) perform
much better than BERT, albeit they are not trained
to generate words and not compatible with the pre-
vious generative approach. The sentence embed-
ding models (SBERT, SimCSE) perform no better
than the original models, which contrasts with their
strong performance in sentence-level tasks. The
multilingual models (mBERT, NMT) perform very
poorly, even though the NMT model was fine-tuned
on large English-X parallel corpora.

Table 2 shows the results for the ranking task on
SemEval-07 and SWORDS. Michalopoulos et al.
(2022) harness WordNet (Fellbaum, 1998) to obtain
synsets of the target word and also their glosses,
and employ BERT and RoBERTa (Liu et al., 2019)

19The original score reported by Arefyev et al. (2020) is
59.6, but we found we could improve this result by appending
unscored OOV words to the ranked list in random order.

20Similar to Lacerra et al. (2021a) and Arefyev et al.
(2020), we were unable to reproduce this score.
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to rank candidates. The models proposed by Lac-
erra et al. (2021a) are different from the others
in that they fine-tune BERT on lexical substitu-
tion data sets. They propose unsupervised (BERT)
and supervised (BERT, sup) models, which are
fine-tuned on automatically-generated or manually-
annotated data. Table 2 shows that our method
with BERT performs comparably with the unsu-
pervised model of Lacerra et al. (2021a) without
any fine-tuning, and outperforms Zhou et al. (2019)
and Lee et al. (2021) (except for the score of Zhou
et al. (2019) on SemEval-07, which couldn’t be
reproduced in previous work). Just like the gen-
eration task, DeBERTa-V3 achieves the best per-
formance on both data sets and establishes a new
state-of-the-art. Other models also follow a sim-
ilar trend to the generation results, e.g. BART
performs best by combining its encoder and de-
coder, and the multilingual models perform very
poorly. We hypothesise that their poor performance
is mainly caused by suboptimal segmentation of
English words. This hypothesis is also supported
by the fact that DeBERTa-V3 has by far the largest
vocabulary V of all models.21

3.4 Results on Italian Lexical Substitution
We further conduct an additional experiment on
Italian, based on the data set from the EVALITA
2009 workshop (Toral, 2009). We report F scores
given top-10 predictions as in the English genera-
tion task, plus two traditional metrics used in the
workshop, namely oot and best, which compare the
top-10 and top-1 predictions against the gold sub-
stitutes.22 We lemmatise all the generated words to
make them match the gold substitutes, following
the SWORDS evaluation script.23 We use the same
hyper-parameters as for the English experiments,
and Table 3 shows the results. Hintz and Biemann
(2016) is a strong baseline that retrieves substi-
tute candidates from MultiWordNet (Pianta et al.,
2002) and ranks them using a supervised ranker
model. We also implement BERT-K using an Ital-
ian BERT model (Schweter, 2020), with and with-
out the reranking method. The results show that our
approach substantially outperforms the baselines,
confirming its effectiveness. However, our rerank-

21Note that V differs from Ṽ , the pre-defined vocabulary
we used for all models. Appendix A compares the size of the
model’s original vocabulary V across different models.

22We report precision only, as it is the same as recall under
those metrics when predictions are made for every sentence.

23We used the Italian lemmatiser (it_core_news_sm 3.2.0)
in spaCy (ver. 3.2.2) (Honnibal et al., 2020).

F best-P oot-P

Hintz and Biemann (2016) — 16.2 41.3
BERT-K 14.3 14.4 39.1

(w/o rerank) 15.6 17.4 43.3

OURS (BERT) 17.3 19.9 47.5
(w/o rerank) 17.5 19.1 48.4

(w/o rerank, heuristic) 17.5 17.4 48.7

OURS (ELECTRA) 19.0 21.0 51.2
(w/o rerank) 18.9 21.3 51.0

(w/o rerank, heuristic) 19.2 20.2 52.1

Table 3: The result of Italian lexical substitution.

BERT BART XLNet DeBERTa

λ = 1 34.1 26.2 32.9 35.8
λ = 0 32.8 34.1 34.1 35.6
K = 1 32.9 32.0 33.7 35.7

k is random 30.6 29.2 30.3 32.0
w/o heuristic 32.4 32.0 33.4 35.7

λ = 0.7 34.4 34.0 35.0 36.9
+ rerank 34.9 37.2 37.4 39.9

Table 4: Ablation studies of our method. The scores
denote Fc in the strict setting on SWORDS.

ing method is not as effective as in English, which
we attribute to the influence of grammatical gender
in Italian (which we return to in Section 4.2). The
heuristic improves best-P but harms F and oot-P,
meaning it removes good candidates as well as bad
ones, possibly because we used the threshold tuned
on English.

4 Analysis

4.1 Ablation Studies

We perform ablation studies on SWORDS to see
the effect of λ and the K-clustered embeddings,
and also the heuristic based on edit distance. Ta-
ble 4 shows the results. Overall, our method with
λ = 0.7 performs better than λ = 1 or λ = 0, con-
firming the benefit of considering both in-context
and out-of-context similarities. One interesting
observation is that while BERT and DeBERTa per-
form better with λ = 1 than with λ = 0, the op-
posite trend is observed for XLNet and especially
BART (and hence the optimal value for λ is smaller
than 0.7). This suggests that BART representations
are highly influenced by context, containing much
information that is not relevant to the semantics
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a an un una la/le il/i

BERT-K 94.2 56.0 93.3 92.5 93.8 92.0
(w/o r) 91.1 54.0 90.0 87.5 90.3 87.4

OURS (BERT) 88.4 24.0 81.9 89.2 92.6 85.2
(w/o r) 86.8 18.0 70.5 66.7 69.7 64.6

(w/o r, h) 86.8 44.0 62.4 65.0 69.4 60.7

Gold 86.8 26.9 55.6 63.3 69.0 67.0

Table 5: The percentage of generated and gold substi-
tutes whose initial sound or grammatical gender agrees
with the corresponding English or Italian articles. “r”
and “h” denote rerank and heuristic, respectively. The
closest numbers to Gold are underlined.

of the target word; we further confirm this in the
next section. When we set the cluster size K to 1,
the performance of all the models drops sharply,
indicating the effectiveness of the clustered em-
beddings. When we retrieve the cluster of y at
random instead of the closest one to x in Eqn. (2),
the performance decreases substantially, suggest-
ing each cluster captures different semantics. The
heuristic consistently improves the performance,
filtering out derivationally-related yet semantically-
dissimilar words to the target word. Lastly, our
reranking method substantially improves the per-
formance of all the models, demonstrating that it
is important to incorporate the target context c into
both the target and candidate word representations.

4.2 Effects of Morphosyntactic Agreement

Compared to previous generative approaches, our
method does not depend on the generation proba-
bilities of language models, and hence we expect it
to be less sensitive to morphosyntactic agreement
effects. To investigate this, we analyse the perfor-
mance on noun target words which immediately
follow one of the following articles: a or an in En-
glish, and una, la, le, un, il or i in Italian. The first
three Italian articles are used with feminine nouns,
and the rest with masculine ones. Our hypothesis
is that generative methods will be highly biased
by these articles, despite the gold standard being
semantically annotated, and thus largely oblivious
to local morphosyntactic agreement effects.

Table 5 shows the percentage of top-10 predicted
candidates that agree with the article.24 It demon-

24We retrieve Italian gender information us-
ing a dictionary API (https://github.com/
sphoneix22/italian_dictionary), and En-
glish phonetic information using CMUdict (https:
//github.com/cmusphinx/cmudict) accessed via

Models a an

BERT-K 94.2 56.0
BERT-M 99.5 88.0

BERT 88.4 24.0
SpanBERT 97.9 46.0

MPNet 91.6 52.0
XLNet 83.2 38.0

BART (Enc) 89.5 62.0
BART (Dec) 91.1 46.0

BART (Enc-Dec) 89.5 58.0
DeBERTa-V3 86.8 32.0

ELECTRA 88.4 36.0

Table 6: The percentage of substitutes whose initial
sound agrees with the corresponding English articles.

strates that the prediction of BERT-K is highly af-
fected by the proceeding article as expected, result-
ing in substitutes which don’t satisfy this constraint
being assigned low probabilities. In contrast, the
results of our method are more balanced and close
to the gold standard.25 Conversely, our reranking
method actually increases the bias greatly, sug-
gesting that the contextualised embeddings f ℓ(x, c)
and f ℓ(y, c) in Eqn. (4) become similar when x and
y collocate similarly with the words in the context
c — overall, this leads to better results, but actually
hurts in cases of local agreement effects biasing the
results. This is one reason why reranking was not
as effective in Italian as in English, as agreement
effects are stronger in Italian.

Table 6 shows the result when we use differ-
ent pre-trained models in English. First, it shows
that BERT-M is more sensitive to the articles than
BERT-K, indicating the strong morphophonetic
agreement effect on the masked word prediction.
Among the pre-trained language models used by
our method, SpanBERT and BART are the most
sensitive to the article a and an, respectively. This
suggests that the embeddings f(x, c) obtained from
these models are highly sensitive to the context c,
partly explaining why BART performs very poorly
with λ = 1, as shown in Section 4.1. Lastly, Table 7
shows examples of predicted substitutes when the
article an comes before the target word. It shows
that BERT-K and OURS with BART tend to re-
trieve words that start with a vowel sound, as quan-

NLTK (Steven et al., 2009).
25Note that the big jump in results for an is based on a

small number of instances (5 sentences).
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Context
The loan may be extended by the McAlpine group for an additional year with an
increase in the conversion price to $2.50 a share.

Gold (Conceivable)
boost, gain, raise, hike, rise, swell, surge, upsurge, enlargement, growth, addition,
escalation, expansion, upgrade, cumulation, swelling, exaggeration, step-up

BERT-K increased, rise, enhancement, increasing, addition

OURS (BERT) rise, raise, change, reduce, reduction
OURS (BART) rise, uptick, hike, improvement, upping
OURS (DeBERTa-V3) boost, rise, raise, hike, reduction

Context
Under an accord signed yesterday, the government and Union Bank of Finland
would become major shareholders in the new company, each injecting 100 million
Finnish markkaa ($23.5 million).

Gold (Conceivable) arrangement, agreement, pact, contract, deal, treaty

BERT-K understanding, agreement, pact, arrangement, agreeing

OURS (BERT) agreement, pact, treaty, understanding, deal
OURS (BART) agreement, deal, pact, arrangement, treaty
OURS (DeBERTa-V3) pact, agreement, deal, arrangement, treaty

Table 7: Top-5 predictions when the article an comes before the target word (increase or accord). Gold shows a list
of “conceivable” words sorted by their annotated scores (with “acceptable” words shown in italic, and multiword
expressions omitted from the table). Words included in Gold are boldfaced.

Figure 1: Layer-wise performance (Fc) on SWORDS.

titatively described in Table 6.

4.3 Layer-Wise Performance

We analyse the performance on SWORDS using
different layers in Figure 1 (w/o rerank).26 First,
we clearly see that middle layers perform better
than the first or last ones, for all models.27 The
performance of BERT peaks at layer 16, in con-
trast with previous findings that the first quarter of
layers perform best on context-independent word
similarity tasks (Bommasani et al., 2020), likely

26We perform qualitative analysis in Appendix D.
27We see a similar trend in the ranking task (Appendix B).

because lexical substitution critically relies on con-
text.28 Our method using multiple layers performs
mostly as well as using the best layer without the
need to perform model-wise layer selection (see
Table 11 in Appendix C). The last layer performs
very poorly for all models, highlighting the limita-
tion of the previous approach which uses the last
layer only (Eqn. (5)). The downward trend is partic-
ularly evident for MPNet, BART (dec), and Span-
BERT; for BART and SpanBERT, we attribute this
to the fact that their last-layer representations of the
word at position t are used to predict the next word
wt+1, or u neighbouring words {wt−u..,wt−1} or
{wt+1..,wt+u}.29 This training objective may also
lead to their sensitivity to articles before the tar-
get word, as shown in Section 4.2. Interestingly,
the sentence-embedding models (SBERT and Sim-
CSE) are no exception to the downward trend,
which is somewhat counter-intuitive given that their
last layer representations are fine-tuned (and used
during inference) to perform semantic downstream
tasks. Importantly, they do not perform better than
the original models (MPNet and BERT), although
in the ranking task, both models benefit moderately
from fine-tuning (see Appendix B).

28In fact, Tenney et al. (2019) show that high-level seman-
tic information is encoded in higher layers.

29SpanBERT does this for Span Boundary Objective.
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# Matched Words
Fc

low med high

BERT-K 121 144 2002 30.4

BERT (5k) 31 52 2017 28.1
BERT (10k) 72 111 2249 32.6
BERT (20k) 164 220 2194 34.5
BERT (30k) 241 267 2095 34.9

BART (30k) 380 274 2123 37.2
XLNet (30k) 395 292 2106 37.4

DeBERTa (30k) 429 287 2262 39.9

Table 8: The number of correctly predicted substitutes,
grouped by their frequency in monolingual data. The
number in brackets shows the size of the vocabulary Ṽ .

K 1 2 4 8 16

Fa 22.8 23.1 23.2 23.3 23.4
Fc 36.0 36.7 36.7 36.9 36.7

Table 9: Results with different numbers of clusters.

4.4 Analysis of Word Frequency

One of the strengths of our approach is that it can
generate low-frequency substitutes that are OOV
words in the original vocabulary. To confirm this,
we analyse how well our method can generate low-
frequency words from different vocabulary sizes Ṽ .
Table 8 shows the results, in which we experiment
with our BERT-based model with the vocabulary
sizes of 5k, 10k, 20k, and 30k. The columns under
“# Matched Words” show the numbers of correctly-
predicted words, grouped by frequency range: low,
med, and high denote words with frequency <50k,
50k–100k, and >100k in a large web corpus. The
table shows that our method with 30k words gen-
erates nearly twice as many low-frequency substi-
tutes as the baseline. Our method with 10k words
still outperforms BERT-K in Fc, demonstrating its
effectiveness. The last three rows show the perfor-
mance of our method using other models, further
demonstrating its ability to predict low-frequency
words.

4.5 Effects of Cluster Size

Finally, we analyse the effect of the cluster size
K for ELECTRA, as shown in Table 9. While a
larger cluster size yields better performance, the
improvement is marginal. Rather than using a fixed

K, in future work we are interested in dynamically
selecting the number of clusters per word.

5 Related Work

In the pre-BERT era, most lexical substitution
methods employed linguistic resources such as
WordNet (Fellbaum, 1998) to obtain substitute can-
didates (Szarvas et al., 2013; Hintz and Biemann,
2016). However, recent studies have shown that
pre-trained language models such as BERT out-
perform these models without any external lexi-
cal resources. For instance, Zhou et al. (2019)
feed a target sentence into BERT while partially
masking the target word using dropout (Srivastava
et al., 2014), and generate substitutes based on the
probability distribution at the target word position.
The masking strategy was shown to be effective
on SemEval-07 but not on SWORDS. Similarly,
Yang et al. (2022) feed two sentences into BERT,
concatenating the target sentence with itself but
with the target word replaced by [MASK], and pre-
dict words based on the mask-filling probability.
Michalopoulos et al. (2022) augment pre-trained
language models with WordNet and outperform
Zhou et al. (2019). Lacerra et al. (2021a) fine-
tune BERT on lexical substitution data sets that are
automatically generated using BERT. They show
that this approach is effective at ranking, and that
adding manually-annotated data further boosts per-
formance. Lacerra et al. (2021b) fine-tune BART
on human-annotated data, and make it generate
a list of substitutes given a target sentence in an
end-to-end manner. They show that this generative
approach rivals Zhou et al. (2019). Note that all of
these recent models are evaluated on English only.

6 Conclusion

We present a new unsupervised approach to lexical
substitution using pre-trained language models. We
showed that our method substantially outperforms
previous methods on English and Italian data sets,
establishing a new state-of-the-art. By comparing
performance on lexical substitution using differ-
ent layers, we found that middle layers perform
better than first or last layers. We also compared
the substitutes predicted by the previous genera-
tive approach and our method, and showed that our
approach works better at predicting low-frequency
substitutes and reduces morphophonetic or mor-
phosyntactic biases induced by article–noun agree-
ment in English and Italian.
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A Details of Pre-trained Models

Table 10 describe the details of the pre-trained mod-
els used in our experiments. We sourced these mod-
els from the Transformers library (Wolf et al., 2020)
except for SpanBERT, which we obtained from the
original GitHub repository (https://github.
com/facebookresearch/SpanBERT).

B Layer-Wise Ranking Performance

Figure 2 shows the layer-wise performance in the
ranking task. Similar to the generation results (Fig-
ure 1), middle layers perform better than the first or
last layers. It also shows that sentence-embedding
models (SimCSE/SBERT) outperform their origi-
nal models (BERT/MPNet) for several layers, dif-
ferent from the generation results where they per-
form similarly. This suggests that fine-tuning on
semantic downstream tasks improves the capacity
of the model to differentiate subtle semantic dif-
ferences between synonymous words, but not their
ability to retrieve relevant words from a large pool
of words; it also suggests that optimal representa-
tions for these objectives might differ.

Figure 2: Layer-wise performance (GAP) on SWORDS.

C Effectiveness of Using Multiple Layers

Table 11 shows the generation and ranking perfor-
mance of our model on SWORDS using different
layers. It shows that our method using multiple
layers ℓ ∈ Z performs comparably or even better
than selecting the best layer tuned on the test set for
each model. It also shows that the best-performing
layer differs across models, suggesting they capture
lexical information in a different manner.

D Examples of Generated Substitutes

Table 12 shows examples of substitutes gener-
ated by our method using different layers (without
reranking). It shows that the words retrieved by
each layer are very different, indicating that each
layer encodes very different information about the
input word. For instance, given the target word
care, the first layer of BERT and BART-Enc/Dec
retrieves a large number of words that contain the
target word as a sub-morpheme (e.g. aftercare,
carefree).30 This is presumably because the first-
layer representations are highly affected by the in-
put word embedding, and hence result in retriev-
ing words that share the same subword token (e.g.
care ##free) regardless of the semantic similarity.
The last layer also performs poorly (as previously
shown in Figure 1), e.g. BART-DEC (L12) retrieves
participation as the closest word to the target word
interest. This is because the last-layer representa-
tions of BART-decoder are used to directly predict
the next word in after interest in the target sentence,
and in fact, most of the retrieved words (e.g. uptick,
faith, surge) are those that often collocate with in.

30Since the edit distances between these words and the
target word care are not greater than the threshold (0.5), they
weren’t filtered out by our heuristic.
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Models # Layer Emb Size |V | Model Path

BERT 24 1024 30522 bert-large-uncased
mBERT 12 768 105879* bert-base-multilingual-uncased

SpanBERT 24 1024 30522 spanbert-large-cased
MPNet 12 768 30527 microsoft/mpnet-base
XLNet 24 1024 32000 xlnet-large-cased

ELECTRA 24 1024 30522 google/electra-large-discriminator
DeBERTa-V3 24 1024 128000 microsoft/deberta-v3-large

BART (Enc/Dec) 12 1024 50265 facebook/bart-large
SBERT (MPNet) 12 768 30527 sentence-transformers/all-mpnet-base-v2
SimCSE (BERT) 24 1024 30522 princeton-nlp/sup-simcse-bert-large-uncased

NMT (mBART, Enc) 12 1024 250054* facebook/mbart-large-50-one-to-many-mmt

BERT (Italian) 12 768 31102 dbmdz/bert-base-italian-xxl-uncased
ELECTRA (Italian) 12 768 31102 dbmdz/electra-base-italian-xxl-cased-discriminator

Table 10: Details of the pre-trained models used in this paper. |V | denotes the original vocabulary size of each
model. *The vocabularies of mBERT and mBART contain a great number of non-English words.

Generation Performance (Fc) Ranking Performance (GAP)

Layer First Middle Last Best ℓ ∈ Z First Middle Last Best ℓ ∈ Z
BERT 24.4 32.2 27.8 34.6 (16) 34.4 50.8 59.1 56.4 60.6 (15) 60.7

SpanBERT 24.9 33.1 8.8 33.2 (13) 31.1 51.8 60.8 51.0 60.9 (13) 60.8
MPNet 28.9 33.1 16.0 33.7 (4) 33.8 55.6 58.1 49.7 59.4 (3) 59.5
XLNet 28.6 33.0 28.4 34.3 (6) 35.0 53.5 61.9 56.8 62.7 (8) 62.9

DeBERTa-V3 33.3 36.8 25.2 37.2 (11) 36.9 51.6 62.4 53.2 62.4 (12) 62.9
BART (Enc) 14.6 30.8 22.6 30.8 (6) 30.0 54.0 61.2 58.7 61.5 (7) 61.9
BART (Dec) 21.9 28.0 18.9 30.8 (3) 29.0 57.8 60.5 56.1 61.3 (4) 60.8

Table 11: Generation and ranking performance of our approach on SWORDS using the first, middle (L2 th), last
(Lth), or best layer tuned on the test set (the corresponding layer denoted in brackets); or using multiple layers
ℓ ∈ Z: {3, 4, ..., L− 2} (L = 12 for MPNet and BART, and 24 otherwise). Generation and ranking performance
across all layers is illustrated in Figure 1 and Figure 2.

Oddly, BART-Enc predicts a large number of sub-
stitutes that consist of multiple words (segmented
by the tokeniser), none of which are relevant to the
target word, e.g. aswell, todo, and inbetween as
substitutes for interest. In fact, the number of such
words increases (and the performance decreases)
as the hyper-parameter λ gets bigger (which in-
creases the influence of f(x, c) on the predictions).
One possible interpretation is that the last layer
representations of the BART encoder may contain
vague contextual information rather than the lexi-
cal information of the input word, since they are
used by the decoder to predict various words (esp.
masked words) during pre-training. Lastly, another
interesting observation is that, for the target word
interest, the last layer representations of BERT and
BART-enc retrieve a lot of words that start from

a vowel sound, despite the absence of the article
an before interest, suggesting that the embeddings
contain some morphophonetic information.
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Context I say I do not care about law, I care about service and she should care about money.

Gold (Conceivable) worry, think, mind, desire, love, tend, cherish, consider, stress, concern, bother, watch

BERT (L3-22) matter, caregiving, carefree, worry, concern, know, pay, caregivers, love, like

BART (L3-10)
concern, matter, carelessness, caretaker, carelessly, carefree, caretakers, worry, bother,
mind

BERT (L1)
caregiving, carefree, caregiver, caregivers, aftercare, childcare, healthcare, skincare,
custody, affections

BERT (L12) matter, caregiving, worry, carefree, fret, love, despise, loathe, resent, pay
BERT (L24) matter, worry, pay, concern, know, look, give, take, bother, think

BART-Enc (L1)
aftercare, caregiving, caretaker, carefree, carelessly, carelessness, caretakers, healthcare,
caregivers, medicare

BART-Enc (L6)
concern, todo, caretaker, interest, carelessness, careless, disinterested, disdain, pay,
carelessly

BART-Enc (L12) todo, aswell, beleive, inbetween, zealand, pay, concern, usefull, noone, ofcourse

BART-Dec (L1)
caregiving, carelessness, caretaker, carelessly, carefree, aftercare, caretakers, concern,
healthcare, worry

BART-Dec (L6) concern, bother, worry, commit, reckon, dispose, shit, grieve, pay, strive
BART-Dec (L12) worry, damn, concern, inquire, complain, passionate, shit, think, talk, whine

Context
“I’m starting to see more business transactions,” says Andrea West of American
Telephone & Telegraph Co., noting growing interest in use of 900 service for stock
sales, software tutorials and even service contracts.

Gold (Conceivable)
interestedness, enthusiasm, demand, attraction, popularity, excitement, curiosity, ac-
tivity, importance, notice, significance, involvement, relevance, note, gain, passion,
influence, accrual, concernment

BERT (L3-22)
curiosity, enthusiasm, intrigued, desire, concern, fascination, passion, attention,
excitement, fondness

BART (L3-10)
fascination, enthusiasm, appetite, curiosity, excitement, concern, inclination, eager-
ness, desire, involvement

BERT (L1)
concern, importance, curiosity, investment, involvement, attention, focussed, fascina-
tion, focus, significance

BERT (L12)
curiosity, enthusiasm, concern, fascination, confidence, unease, belief, excitement,
desire, passion

BERT (L24)
appetite, attracting, attractiveness, actively, demand, attention, intrigued, popularity,
enthusiasm, flocking

BART-Enc (L1)
fascination, concern, intrigue, involvement, relevance, investment, stake, curiosity,
enthusiasm, trustworthiness

BART-Enc (L6)
enthusiasm, fascination, appetite, curiosity, intrigued, excitement, intrigue, inclina-
tion, eagerness, enjoyment

BART-Enc (L12)
todo, aswell, inbetween, enthusiasm, fascination, eagerness, appetite, intrigued, atten-
tion, inclination

BART-Dec (L1)
fascination, involvement, intrigue, concern, participation, curiosity, investment, ex-
citement, intrigued, importance

BART-Dec (L6)
fascination, appetite, involvement, engagement, affinity, uptake, demand, inclination,
participation, appreciation

BART-Dec (L12) participation, uptick, delight, decline, increase, spike, faith, decrease, grounding, surge

Table 12: Examples of substitutes predicted by our method (w/o rerank) using different layers. Gold shows a list
of “conceivable” words sorted by their annotated scores (with “acceptable” words shown in italic, and multiword
expressions omitted from the table). Words included in Gold are boldfaced.
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Abstract

Even though many recent semantic parsers are
based on deep learning methods, we should not
forget that rule-based alternatives might offer
advantages over neural approaches with respect
to transparency, portability, and explainabil-
ity. Taking advantage of existing off-the-shelf
Universal Dependency parsers, we present a
method that maps a syntactic dependency tree
to a formal meaning representation based on
Discourse Representation Theory. Rather than
using lambda calculus to manage variable bind-
ings, our approach is novel in that it consists of
using a series of graph transformations. The re-
sulting UD semantic parser shows good perfor-
mance for English, German, Italian and Dutch,
with F-scores over 75%, outperforming a neu-
ral semantic parser for the lower-resourced lan-
guages. Unlike neural semantic parsers, our
UD semantic parser does not hallucinate out-
put, is relatively easy to port to other languages,
and is completely transparent.

1 Introduction

Semantic parsing is the task of mapping natural
language sentences to a formal meaning represen-
tation such as Abstract Meaning Representations
(Banarescu et al., 2013) or Discourse Representa-
tion Structures (Bos et al., 2017). The current trend
in this area is strongly geared towards using meth-
ods based on deep learning. The best performing
parsers use pre-trained language models (van No-
ord et al., 2020; Zhou et al., 2021; Bevilacqua et al.,
2021; Bai et al., 2022). But a good performance
is perhaps not the only thing that matters. A draw-
back of neural semantic parsers is that their output
lacks explainability: why are the meaning represen-
tations composed in the way they are? Moreover,
they require vast amounts of training data, and are
usually specific for a particular language. In addi-
tion, their performance usually decreases for longer
input sentences.

In other words, it may look like we have made a
lot of progress, but viewed from a different perspec-
tive, we might actually have made a step back. This
is especially so with regards to transparency and in-
terpretability of semantic parsers. In this paper we
describe a semantic parsing system for Discourse
Representation Structures — the formal meaning
representations proposed by Discourse Representa-
tion Theory (Kamp and Reyle, 1993; Abzianidze
et al., 2017) — that is based on Universal Depen-
dencies (UD, de Marneffe et al., 2021). The first
advantage of the UD framework is that it has been
developed for numerous languages (using a cross-
linguistically consistent annotation scheme) and
that several high-performing parsers have been de-
veloped for UD. This will make it easier, as we will
show, to develop semantic parsers for languages
other than English, in our case German, Italian and
Dutch. The second advantage of using UD as input
describing the syntactic structure of the sentence,
is that it provides us with explainable support of
the output of the meaning representation, based on
the derivation provided by the UD parser.

The innovative contribution of the system, UD-
boxer, that we describe here is in the way the mean-
ing representations are computed. Even though the
original Discourse Representation Structure (DRS)
is formally an ordered pair of a set of discourse ref-
erents and a set of conditions, we recast the DRS
as a directed acyclic graph. Through graph trans-
formation rules our system changes the input UD
syntactic representation step-by-step into a fully
fledged formal meaning representation.

2 Related Work

Our aims are similar to those of Reddy et al. (2016)
and Reddy et al. (2017), who map UD to logical
forms in three steps: (1) enriching the UD tree with
missing syntactic information and long-distance
dependencies, turning it into a graph, (2) binariza-
tion of the dependency graph, (3) substituting the
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Figure 1: Graph transformations for Tracy lost her glasses, from left to right: initial UD graph, connecting the User
role, expanding the proper name, and adding and connecting tense information. The token attribute refers to the
semantic label or concept for a given node or edge.

words and using typed lambda expressions that en-
code the lexical semantics and dependency labels
for λ-expressions that either copy, invert or merge
lambda-expression to compose predicate-argument
structures, and (4) applying β-conversion to get a
reduced, normalized logical form.

The main difference of our work with that of
Reddy et al. (2017) is that we do not require com-
plicated operations involving logical variables. By
making the target meaning representations free of
variables in the form of a graph, the mapping from
UD to meaning representation is solely based on
a sequence of graph transformations (Zhizhkun,
2006). This allows us to apply our method on lan-
guages other than English.

Similar in spirit to our work, but different in exe-
cution, is recent work by Shen and Evang (2022),
who present a DRS parser that is competitive in
accuracy with recent sequence-to-sequence models
and at the same time compositional. This latter
property makes their system transparent and more
explainable. Shen and Evang (2022) recast DRS
parsing as a sequence labeling task, and achieve
a good performance with F-scores of 84.4 for En-
glish, 78.3 for German, 80.4 for Italian, and 72.1
for Dutch on PMB 3.0.0 data (and therefore not
directly comparabable with our results, working
with a more recent version of the PMB).

3 Method
3.1 Overall Idea

Our semantic parsing method is based on the in-
sight provided by Bos (2021) that Discourse Rep-
resentation Structures can be represented as rela-
tively simple directed acyclic graphs without re-
sorting to variables. In a Discourse Representa-

tion Graph (DRG) the nodes denote entities (repre-
sented by a WordNet synset) and constants (names,
numbers, dates, etc.), the edges denote thematic
roles, comparison operators, and discourse rela-
tions. Our semantic mapping comprises a series
of transformations from UD to DRG, exempli-
fied by Figure 1 and Figure 2. Our full system
is publicly available: https://github.com/
WPoelman/ud-boxer

We use semantically annotated data from the Par-
allel Meaning Bank (Abzianidze et al., 2017). The
PMB provides a large set of English, German, Ital-
ian and Dutch sentences paired with Discourse Rep-
resentation Structures (DRSs). Since release 4.0.01

the PMB also provides DRSs in a variable-free
variant, using relative indices instead of variables,
following the procedure outlined in Bos (2021).
This notation corresponds directly to a DRG. There
is a straightforward mapping from DRG to DRS of
formulas of first-order logic (see Figure 2). We use
this format in developing our system. The PMB
has gold, silver (partially annotated) and bronze
(no manual annotations) standard data available.
We only use gold for UD-boxer, while for Neural
Boxer, a strong neural parser based on van Noord
et al. (2020), we use all available data for German,
Italian and Dutch. However, for training Neural
Boxer on English data we only use the gold and
silver data (van Noord et al., 2018). The data splits
are shown in Table 1. Note that English also has
an extra evaluation set of 830 instances. This was
the hidden test set in the shared task of Abzianidze
et al. (2019) and now serves as an extra test set.

1The data of the Parallel Meanng Bank is available here:
https://pmb.let.rug.nl/data.php.
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Figure 2: Removing redundant nodes followed by substitution semantic symbols for syntactic relations, and
corresponding DRS in box format for Tracy lost her glasses.

Gold Silver Bronze
Train Dev Test Train Train

English 7,668 1,169 1,048 127,303 151,493
German 1,738 559 547 6,355 156,286
Italian 685 540 461 4,088 100,963
Dutch 539 491 437 1,440 28,265

Table 1: Number of documents for the four languages
for PMB release 4.0.0.

3.2 System Overview

The overall system expects a sentence as input and
consists of three main steps: (1) creating a UD
parse; (2) applying the graph transformation rules;
and (3) substituting syntactic labels for semantic
entities. The final output is a DRG and can be
exported to various formats.

The first step is implemented by using existing
off-the-shelf UD parsers. This is a modular part
of the system — any UD parser can be plugged
in. In the context of this paper we used two state-
of-the-art UD parsers: Stanza (Qi et al., 2020) and
Trankit (Nguyen et al., 2021), both of which go
head to head in their performance for English and
also achieve good results for the other languages
of our study.

The second step, the graph transformation, is car-
ried out by using GREW, a graph rewriting frame-
work specifically designed for linguistic graphs and
trees (Bonfante et al., 2018; Guillaume, 2021). The
focus of this step is to apply structural changes to
the graph: adding, removing or combining nodes
and edges. Some node and edge label substitution

might be carried out already during graph transfor-
mation, but most of that is left to the final step. Fig-
ure 3 shows a language-neutral transformation rule
that connects a thematic role to an entity, whereas
Figure 4 is an example of a language-specific rule.

rule connect_user {
pattern {

USER [upos=PROPN|NOUN];
* -[1=nsubj]-> USER;
REL: TARGET -[1=nmod, 2=poss]->

INDICATOR;
}
without {

TARGET -[token=User]-> USER;
}
commands {

add_edge TARGET -[token=User]->
USER;

del_edge REL;
del_node INDICATOR;

}
}

Figure 3: Example of language-neutral rule (in GREW
syntax) to connect the User role to an entity.

The final step, substitution, involves labeling
nodes and edges that do not have valid DRS labels
yet, as well as connecting box nodes (the only struc-
tural part of this step). Currently, this step is com-
prised of applying simple mappings extracted from
the training data and leveraging syntactic and mor-
phological information from the UD parse. This
is also a modular component and additional ap-
proaches can be added. Existing systems that go
beyond syntax are a good candidate to be added
here, e.g., named entity recognition systems.
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rule box_negation_det {
pattern {

N [lemma=no|not|never];
* -[1=advmod|det]-> N;

}
without {

P [token=NEGATION];
}
commands {

del_node N;

add_node NEGATION_BOX;
NEGATION_BOX.token = NEGATION;

}
}

Figure 4: Example of English specific rule to introduce a
negation box. The box gets connected in the substitution
and labeling step.

The transformation rules as well as the mappings
for the substitution are developed using the training
data and tested on the development set. Currently
there are 19 language independent rules and four
specific rules per language. These specific rules
deal with either negation or quantifiers (e.g. all,
every, none). Rules were developed by analyzing
the UD graph and gold SBN graph side-by-side for
a given example sentence. We then aimed to cre-
ate the most general and simple rule(s) that (struc-
turally) transformed the UD graph into the SBN
graph.

The node and edge mappings are extracted when
the graph transformations are applied and result
in a graph isomorphic to the gold-standard graph.
The UD information is then extracted and stored
per triple (from node, edge, to node) if the mapping
was correct. This creates a positive feedback loop,
as the rules improve, the labeling improves as well.
This process was bootstrapped by creating a tiny
set of initial mappings from dependency relations
to DRS roles and operators. Our approach here
serves as a baseline of sorts, since word sense dis-
ambiguation and edge labeling are only done with
the most frequent occurrences in the training data.

3.3 Evaluating DR Graphs

Counter is the standard evaluation tool for DRSs
(van Noord et al., 2018). However, it is specifically
designed for the clausal notation of DRS. This
notation does not use a graph-like structure directly,
but works with clauses that can have three or four
components. It is therefore not suitable for the
(simpler) DRGs that our system produces.

SMATCH (Cai and Knight, 2013) was cre-

ated for evaluating Abstract Meaning Represen-
tations, which are directed acyclic graphs, like
DRGs. SMATCH supports the Penman notation
(Kasper, 1989), converts a graph into a set of
triples, while automatically performing role inver-
sion when needed. By converting a DRG into
Penman format, we can simply use SMATCH to
compare system output with the gold standard, for
which SMATCH computes an F-score based on
matching triples. A DRG in Penman format is
shown in Figure 5.

(b0 / box
:member (e1 / entity

:lemma female :pos n :sense 02
:Name "Tracy")

:member (e2 / entity
:lemma lose :pos v :sense 02
:Agent e1 :Theme e3 :Time e4)

:member (e3 / entity
:lemma glasses :pos n :sense 01
:User e1)

:member (e4 / entity
:lemma time :pos n :sense 08
:TPR now))

Figure 5: Penman format for a Discourse Representation
Graph for Tracy lost her glasses.

As Figure 5 shows, we split up WordNet synsets
components to support a more fine-grained evalua-
tion. This also gives us flexibility in the evaluation
process, where we can toggle between evaluating
word sense disambiguation (strict) or not (lenient).
In this paper, we use only strict evaluation.

3.4 Comparison System

For comparison with our system we train
a neural DRG parser based on BERT (De-
vlin et al., 2019), following van Noord et al.
(2020).2 This is a bi-LSTM sequence-to-
sequence model, which uses (frozen) BERT em-
beddings to initialize the encoder. Specifically,
we use bert-base-cased for English and
bert-base-multilingual-cased for the
other languages. The word-level decoder is trained
from scratch. We do not apply any preprocessing
nor postprocessing, simply taking the input sen-
tence and output DRS in sequential box notation
as is. We follow the procedure described in van
Noord et al. (2020) by first pretraining on gold +
non-gold data, after which we fine-tune on just the
gold data.

2Detailed instructions can be found here:
https://github.com/RikVN/Neural_DRS/
blob/master/AllenNLP.md#sbn-experiments.
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English German Italian Dutch
Dev Test Dev Test Dev Test Dev Test

UD-Boxer (Stanza) 82.1 (0.3) 82.0 (0.0) 78.4 (0.0) 77.3 (0.0) 76.2 (1.9) 78.4 (0.9) 75.5 (0.0) 75.8 (0.0)
UD-Boxer (Trankit) 81.9 (0.3) 81.8 (0.0) 78.4 (0.0) 77.5 (0.0) 77.8 (0.0) 79.1 (0.0) 75.8 (0.0) 75.8 (0.0)
Neural Boxer (gold) 82.8 (4.6) 84.0 (3.7) 64.2 (0.4) 63.8 (0.2) 55.5 (1.5) 55.7 (1.5) 51.2 (0.2) 51.1 (0.4)
Neural Boxer (best) 92.5 (2.0) 92.5 (2.3) 74.6 (0.4) 74.7 (0.5) 75.6 (0.0) 75.4 (0.0) 71.9 (0.9) 71.6 (1.0)

Table 2: Average macro F1-scores on the dev and test set of the four languages in PMB 4.0.0. The number in
parentheses indicates the percentage of ill-formed DRSs in the output. For Neural Boxer, best indicates that it
was trained on gold, silver and bronze data (German, Italian, and Dutch) or only on gold and silver data (English).
UD-Boxer (Stanza) and UD-Boxer (Trankit) obtain an F-score of 81.3 and 81.5 on the English evaluation set.

4 Results

Table 2 shows the main results for UD-boxer. We
show the results of using two syntactic parsers
(Stanza and Trankit) and compare to the perfor-
mance of the neural system, trained on just the gold
PMB data and on gold and non-gold data. Our sys-
tem is not competitive with the best Neural Boxer
for English, but clearly outperforms this model for
German, Italian and Dutch. However, when only
using gold data, the performance of our model is
quite close to Neural Boxer for English, while pro-
ducing considerably fewer ill-formed DRSs.

In a manual analysis, we found that the few er-
rors made by UD-Boxer were all caused by un-
expected sentence roots in the UD output of the
Stanza parser. A case in point is the input All of
my friends like computer games where Stanza de-
cides that it is a noun phrase with All as the root,
whereas Trankit assigns like as the root. Currently
no transformation rules deal with such cases. The
graph gets malformed because the root is cut away
at some point since it is a determiner and those can
generally be left out of DRSs.

But the majority of ill-formed output is produced
by the neural parsers. An example, which also ex-

female.n.02

die.v.01

time.n.08geological_formation.n.01

heart_attack.n.01

Patient TimeCauser

now

TPRName

Figure 6: Erroneously (wrong type of disease, incorrect
named entity) and ill-formed output (node missing) of
Neural Boxer for She died of tuberculosis.

hibits hallucination of semantic information, is the
output DRG for She died of tuberculosis (Figure 6),
where the disease changed into a heart attack and is
recognized as an anonymous geological formation
(there is a role Name without a constant). This
strange phenomenon occurs often in output from
both neural parsers. The problem with detecting
these anomalies is that often these graphs score
well, even though they are semantically ill-formed.

5 Conclusion
Our results show competitive performance between
UD-Boxer and Neural Boxer for English, when a
limited amount of training data is available for the
neural approach. In addition, it shows strong cross-
lingual performance using a few simple language-
specific rules and only gold training data to extract
the mappings. Adding more transformation rules
and creating a label substitution component based
on machine learning will likely push the perfor-
mance of UD-Boxer even higher. The phenomena
we have in mind are named entities, numeral ex-
pressions, time and date expressions, and discourse
relations, for which only simple rules have been de-
fined so far. Since UD-Boxer is a modular system,
it is rather straightforward to add such rules.

An important difference between the two seman-
tic parsers is that UD-Boxer is guaranteed to output
a well-formed meaning representation, provided
that the input UD is accurate. Because Neural
Boxer is following a seq2seq transformer approach,
the output does not always correspond to a graph
and therefore requires ad-hoc postprocessing rules
to make such output interpretable. Another serious
deficiency of neural parsers is that it sometimes
hallucinates semantic material without warning. A
transparent semantic parser, even with a slightly
lower performance in some cases, might be a good
alternative for certain applications, in particular
when lower-resourced languages are involved.
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Abstract

As a key natural language processing (NLP)
task, word sense disambiguation (WSD) eval-
uates how well NLP models can understand
the lexical semantics of words under specific
contexts. Benefited from the large-scale an-
notation, current WSD systems have achieved
impressive performances in English by com-
bining supervised learning with lexical knowl-
edge. However, such success is hard to
be replicated in other languages, where we
only have limited annotations. In this pa-
per, based on the multilingual lexicon Ba-
belNet describing the same set of concepts
across languages, we propose building knowl-
edge and supervised-based Multilingual Word
Sense Disambiguation (MWSD) systems. We
build unified sense representations for multiple
languages and address the annotation scarcity
problem for MWSD by transferring annota-
tions from rich-sourced languages to poorer
ones. With the unified sense representations,
annotations from multiple languages can be
jointly trained to benefit the MWSD tasks.
Evaluations of SemEval-13 and SemEval-15
datasets demonstrate the effectiveness of our
methodology.

1 Introduction

As a critical natural language understanding task,
word sense disambiguation (WSD) aims at classi-
fying words into pre-defined senses. With such a
disambiguation process, machines can understand
the precise meanings of words. Previous researches
have demonstrated that a sound WSD system could
benefit many downstream NLP tasks, such as ma-
chine translation (Pu et al., 2018; Liu et al., 2018)
and information extraction (Bovi et al., 2015).

Existing researches on word sense disambigua-
tion mostly focus on English only. By leverag-
ing lexical knowledge such as gloss (Iacobacci
et al., 2016; Luo et al., 2018; Huang et al., 2019;
Blevins and Zettlemoyer, 2020) or graph structure

WSD Example.  Language: English
Context: Detailed studies of the plan were well 
underway.
plan#NOUN: plan%1:09:00:: plan%1:09:01::

plan%1:06:00::

MWSD Example.  Language: French
Context: Le groupe des Nations_Unies a des 
projets de plans pour la réduction des émissions.
plan#NOUN: bn:00062759n   bn:00062766n

bn:00005439n

Figure 1: Examples of WSD and Multilingual WSD
(MWSD) task. The target words are indicated with the
bold font in contexts. Candidate sense keys are listed
below each context, and the one in blue is the correct
sense.

(Banerjee et al., 2003; Kumar et al., 2019; Bevilac-
qua and Navigli, 2020) and supervised training
over large-scale annotations, these models have
achieved impressive performance on the standard
English WSD task. However, though the English
WSD task (Raganato et al., 2017) and multilingual
WSD (MWSD) task (Navigli et al., 2013; Moro
and Navigli, 2015) are of the same form as shown
in Figure 1, this progress can not be easily applied
across languages as the paucity of annotated train-
ing data and immense labor in handling diverse lex-
ical knowledge of multiple languages separately.

BabelNet (Navigli and Ponzetto, 2012) is a mul-
tilingual semantic lexicon and contains a set of
multilingually lexicalized concepts. Similar to
WordNet (Miller, 1998), a Babel synset defines
a concept shared by a group of words across lan-
guages with the same meaning. Based on the mul-
tilingual lexicon source BabelNet, we propose to
build multilingual word sense disambiguation sys-
tems by inducing lexical knowledge and annota-
tions from rich sourced language (e.g., English)
to scarce sourced ones. First, as defined in Ba-
belNet, words in each synset have the same sense,
and the sense is described by lexical knowledge
gloss despite the language forms. An example is
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Language: French(FR)
Inventory:

Lemma: plan 
Pos_tag: noun
Sense keys: [bn:00062759n,

bn:00005439n,
bn:00062766n,…]

Sense key         Source                               Gloss (sense definitions)   

bn:00062759n   WordNet   A series of steps to be carried out or goals to be accomplished
bn:00062759n   Wikipedia   Outline of a strategy for achievement of an objective
bn:00026536n   WordNet   An arrangement scheme

…                    

Language: English(EN)
Inventory:

Lemma: plan
Pos_tag: noun
Sense keys: [bn:00062759n,

bn:00005439n, 
bn:00026536n,…] 

BabelNet

Figure 2: BabelNet contains inventories for multiple
languages. Each word in a language has several senses,
and different words across languages may share the
same senses. For each sense across languages, glosses
from various sources such as WordNet and Wikipedia
are collected to describe its meaning.

shown in Figure 2. The knowledge can be injected
into supervised MWSD systems. Second, the an-
notations acquired from rich sourced languages
through machine translation and alignment tools,
can be used as weak supervision. By utilizing the
lexical knowledge and weak annotations, we can
build a decent MWSD system for scarce sourced
languages without further human effort.

To summarize, the contributions of this paper are
two-fold: (1) We propose to build an MWSD sys-
tem mBERT-UNI for multiple languages with trans-
ferred annotations from rich sourced languages and
unified synsets with lexical knowledge, addressing
the data paucity problem on the MWSD task; (2)
Our system can be easily combined with other data
generation efforts such as MuLaN (Barba et al.,
2020), further boosting the system performance.
Experiments results on benchmark SemEval-13
(Navigli et al., 2013) and SemEval-15 (Moro and
Navigli, 2015) demonstrate the effectiveness of our
methodology. Our code is open-resourced1.

2 Related Work

This section introduces previous efforts on multi-
lingual word sense disambiguation, which can be
categorized into two streams: data-driven systems
and knowledge-based systems.

2.1 Data-driven Systems

In the last decades, many efforts in the field of mul-
tilingual word sense disambiguation have been de-
voted to mitigating the knowledge acquisition bot-

1https://github.com/suytingwan/multilingual-WSD

tleneck problem (Gale et al., 1992; Pasini, 2020),
which is hard to acquire sense-annotated corpora
for multiple languages. To mitigate the paucity of
annotations, many researchers have focused on au-
tomatically creating high-quality, sense-annotated
training corpora (Pasini and Navigli, 2020). OM-
SIT (Taghipour and Ng, 2015) proposed a semi-
automatic approach to acquire one million training
instances from MultiUN dataset (Eisele and Chen,
2010). OneSec (Scarlini et al., 2019) proposed to
generate multilingual sense-annotated datasets on
a large scale by mapping Wikipedia categories to
word senses. MuLaN (Barba et al., 2020) utilized
contextualized word embeddings to transfer sense
annotations from labeled datasets SemCor (Miller
et al., 1993) and WNG (Langone et al., 2004)
to the unlabeled corpus from Wikipedia across
languages. Hauer et al. (2021) proposed a label
propagation approach for constructing multilingual
sense-annotated corpora by machine translation.
XL-WSD (Pasini et al., 2021) further enriches the
annotations across 18 languages from six different
linguistic families. Similar to Hauer et al. (2021),
our automatic corpora generation method takes ad-
vantage of machine translation and alignment tools,
while it is easy and feasible to use without addi-
tional resources. Moreover, we also induce lexical
knowledge in building sense representations.

2.2 Knowledge-based Systems

Besides annotated corpora, lexical knowledge such
as sense inventories is another key component
in word sense disambiguation systems. Lexical
knowledge sources such as WordNet and Babel-
Net provide rich lexical knowledge, e.g., gloss
or graph structure. Such knowledge has been ex-
ploited and shows decent performance in many
supervised systems (Kumar et al., 2019; Loureiro
and Jorge, 2019; Scarlini et al., 2020; Blevins and
Zettlemoyer, 2020). Readers can refer to (Bevilac-
qua et al., 2021) for more details.

In this paper, we aim to induce lexical knowl-
edge into MWSD systems. Based on the synsets
and lexical knowledge in multilingual lexicon Ba-
belNet, we propose to build unified sense represen-
tations that can be shared across languages. The
sense representations can be incorporated into su-
pervised systems to improve the performance of
MWSD tasks.
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Gloss:

𝒑𝒍𝒂𝒏𝟏: A series of steps 
to be   carried out or goals 
to be accomplished . 

𝒑𝒍𝒂𝒏𝟐: An arrangement 
scheme .

𝒑𝒍𝒂𝒏𝟑: Scale drawing of a 
structure.

…

…

Unified sense 
representations… a plan they … 

… un plan auquel … 

Language: English

Language: French

… an einen Plan … 
Language: German

… a un piano … 
Language: Italian

… en un plan al … 
Language: Spanish

Translation Multilingual
context
encoder

Unified
gloss
encoder

𝑝𝑙𝑎𝑛! 𝑝𝑙𝑎𝑛" 𝑝𝑙𝑎𝑛#

Figure 3: Architecture Overview of the mBERT-UNI model. We apply multilingual BERT for the encoders. The
context encoder takes the multilingual context as input and generates representations for the target words. The
gloss encoder takes the glosses as input and generates unified sense representations. The similarity scores between
target word embedding and representation of candidate senses are calculated for each language. The sense with
the highest score is the predicted sense by the model.

3 Approach

In this section, we first present the formal definition
of the multilingual WSD task and used notations.
After that, we present the details of the proposed
system mBERT-UNI, a supervised framework in-
corporating lexical unified representation space for
the MWSD task. From the overview in Figure 3,
we can see that mBERT-UNI can be decomposed
into four parts: (1) To address the data paucity is-
sue, we first translate the annotated English corpus
SemCor into other languages and use alignment
tool to generate sense annotations; (2) A context
encoder encodes the target words in multilingual
context; (3) A gloss encoder encodes the glosses
to produce unified sense representations; (4) The
annotated corpus in several languages and unified
sense representations are bound with a joint train-
ing setting.

3.1 Task Description and Notations

In the multilingual setting, the WSD task is
to disambiguate the senses for a sequence of
words {w1, · · · , wm} in a sentence S. The
sentences come from various languages L ∈
{L1, L2, ..., Ln}. For each word w, the goal is to
map it to a pre-defined sense s ∈ Sm, where Sm =
{s1, s2, ..., sk} is the set of pre-defined candidate
senses for w. The meaning of each sense is defined
by the gloss. The candidate senses have a corre-
sponding gloss set defined as G = {g1, g2, ..., gk}.
For the MWSD task, multiple languages have dif-
ferent inventories but share the same set of synsets
and glosses as defined in BabelNet (Navigli and
Ponzetto, 2012).

3.2 Multilingual Corpora Preparation

We use machine translation and alignment tools
to acquire annotated training data for multiple lan-
guages. Machine translation has been developed
for decades and has achieved remarkable progress
(Wu et al., 2016; Tiedemann et al., 2020). Follow-
ing (Luan et al., 2020), we use google translation
to acquire parallel training corpora from English to
other languages. Specifically, we translate SemCor
(Miller et al., 1993) into the target languages with
the Google translation tool2 (Wu et al., 2016).

There are many research alignment methods to
acquire aligned words across languages based on
parallel corpora (Dyer et al., 2013; Östling and
Tiedemann, 2016; Luan et al., 2020; Dou and Neu-
big, 2021). We use the early FastAlign tool3 (Dyer
et al., 2013) to align the words across languages
for simplicity. Through the process, we propagate
the annotations from English to multiple languages.
The weak supervision signal in the transferred an-
notations can be further utilized in supervised sys-
tems.

An example of the context translation alignment
and sense mapping between English and French
is shown in Figure 4. Note that our method is
language-independent and thus can be applied to
many languages. For evaluating the MWSD sys-
tem on SemEval-13 and SemEval-15, we apply the
method to four languages, German (DE), French
(FR), Spanish (ES), and Italian (IT).

3.3 Model Overview

The MWSD system mainly consists of an mBERT-
UNI model, which is built upon the biencoder

2https://translate.google.com
3https://github.com/clab/fast_align
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Context in English:  Workers usually think more of a plan they contribute to .

Aligning target words: 

Context in French: Les travailleurs pensent généralement davantage à un plan auquel ils contribuent .

Figure 4: Example of training corpora preparation. The training corpora are first translated into multiple languages
by the google translation tool. Then FastAlign tool is applied to find the alignment of labeled target words in
English context to other languages. The matched aligned words in different languages are shown in the same color.

model for the English WSD task (Blevins and
Zettlemoyer, 2020), where one encoder for en-
coding multilingual context and the other encoder
for encoding unified gloss knowledge. The dif-
ference is that we apply the model to construct
unified representations which can be used across
languages. Both encoders apply the multilingual
BERT (mBERT) transformer. mBERT (Kenton
and Toutanova, 2019) is trained on 104 languages
and is commonly used for cross-lingual semantic
representation.

The model first extracts representations of con-
text word and candidate sense representations. For
a target word w in the language L, the context
encoder generates its representation as eLw. Specifi-
cally, it is the average pooling of target word tokens
in the output.

For sense representations, the gloss set of the
corresponding target word is fed as input to the
gloss encoder. Though different languages vary in
the form of contexts, they share the synsets which
can be described by gloss knowledge in a single
language, e.g., English. The hidden state of [CLS]
token in the gloss encoder output is the vector rep-
resentation of the gloss. The representation of the
candidate gloss set is {eg1 , · · · , egk}.

The similarity scores between embedding of tar-
get word and embeddings of its candidate sense set
are calculated by the dot product:

scoreL(w, gi) = eLw · egi , i ∈ [1, k].

The candidate sense with the highest score is the
predicted sense produced by the system.

The system is trained with cross-entropy loss
over the scores after a softmax activation under a
supervised paradigm:

pi =
exp(scoreL(w, gi))∑k
i=1 exp(score

L(w, gi))
,

lossL(w) = −
k∑

i=1

[yi log (pi)] ,

where yi is 1 if the ith sense is the correct sense
otherwise yi is 0.

Joint Training Setting. As annotations are
scarce for low-resourced languages, we further de-
sign the joint language setting to see if the uni-
fied sense representation can connect annotations
across languages to benefit the MWSD task. Under
the joint language training setting, the inputs to
the context encoder can be from different sources
and languages. In contrast, the gloss encoder still
generates representation for the Babel synsets.

4 Experiment Setup

In this section, we introduce the experiment de-
tails including the evaluation dataset, the evalua-
tion metric, training corpora, baseline methods, and
implementation details.

4.1 Dataset and Evaluation Metric

Following the previous work (Barba et al., 2020),
we evaluated the systems with the updated ver-
sion of SemEval-13 and SemEval-15 4(WordNet
split). Specifically, SemEval-13 contains four low-
resourced languages: Italian (IT), Spanish (ES),
French (FR), and German (DE), and SemEval-15
contains Italian and Spanish. As no development
dataset is provided, we randomly sample a small
amount of the test instances as a development set
for model selection. The instance number and the
distribution of word sense number(#sense) on the
test dataset are shown in Table 1. The word #sense
distribution is calculated separately on word level
and instance level. The test instance with the higher
word sense is more difficult than those with lower
word sense because there are more senses to be
disambiguated. The F1 score(%) is used as the
evaluation metric.

4https://github.com/SapienzaNLP/mwsd-datasets
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Dataset Inst num Word avg Inst avg
SemEval-13-IT 1,490 3.80 5.51
SemEval-13-ES 1,260 4.20 5.52
SemEval-13-FR 1,449 2.36 3.03
SemEval-13-DE 1,076 1.60 2.17
SemEval-15-IT 1,007 4.38 5.27
SemEval-15-ES 1,043 6.17 6.19

Table 1: Distribution of instance numbers, average
word #sense on word level, and average word #sense
on instance level for SemEval-13 and SemEval-15 test
datasets.

4.2 Training Corpora

We utilize two types of automatically generated
training datasets in our experiments, the dataset
generated by our proposed translation-based
method, and the dataset generated by a label
propagation method MuLaN (Barba et al., 2020).
Details of the dataset are shown in Table 2.

Translated Corpora: SemCor (Miller et al.,
1993) is one of the largest annotated English
WSD datasets, which contains 226,036 training
instances covering 33,362 senses. We use SemCor
3.0 as the translation source. Due to differences
in morphology between languages and inaccuracy
brought by the alignment tool, a small amount
of the annotated senses in English cannot be
transferred to other languages. As a result, we get
a comparable number of training instances.

MuLaN: MuLaN is one of the most representative
works in automatically constructing the training
corpus for the MWSD task. MuLaN has a broader
coverage of sense keys as it utilizes the BabelNet
inventory than SemCor which utilizes the WordNet
inventory. Since we utilize the WordNet split of
inventories and evaluation datasets, some of the
words in the original MuLaN dataset are not in the
used inventories. For fair comparison on mBERT-
UNI model by inducing lexical gloss knowledge,
we keep the instances with target words existing
in the provided inventory, resulting in a filtered
dataset MuLaN*.

4.3 Baselines

We compare the proposed mBERT-UNI model with
the following baseline methods:

1. BabelNet S1: This baseline tags the target
word with its most common sense. Following
the ranking in BabelNet inventory, the top one

Language EN DE FR IT ES

Translated 226k 169k 181k 181k 179k
MuLaN – 245k 311k 416k 452k
MuLaN* – 221k 270k 343k 394k

Table 2: Number of training instances for our transla-
tion based dataset, original MuLaN dataset, and filtered
MuLaN* dataset.

ranked sense is the most common sense (MCS).
The left senses are least common sense (LCS).
We denote this frequency-based baseline as “Ba-
belNet S1.”

2. mBERT-CLS: The model is built on
mBERT (Kenton and Toutanova, 2019).
The pre-trained language model first extracts
feature representation for target words in
context sentences. On top of the frozen mBERT
representation, a linear classifier is trained to
classify the senses of target words. The model
cannot be used to disambiguate unseen senses
from the training dataset. Therefore, the model
always predicts the most common sense for
unseen senses as a back-off strategy.

4.4 Implementation Details

Both encoders in mBERT-CLS and mBERT-UNI
models are initialized with a pre-trained Bert-base-
multilingual-uncased model, which has 110M pa-
rameters. For both models, we use the Cross-
Entropy loss as the training loss, and Adam
(Kingma and Ba, 2015) as the optimization algo-
rithm.

For mBERT-CLS, we fed the concatenation of
the last four layers’ output from mBERT encoder
to a linear classifier. As discussed in (Blevins
and Zettlemoyer, 2020), finetuning the mBERT-
CLS does not improve the performance on the En-
glish WSD classification task. Therefore, we keep
mBERT frozen and only train the linear classifier
during training. The model is trained with a fixed
learning rate 2 · 10−5 for 50 epochs. The training
batch size is 128.

For mBERT-UNI, the unified representation are
generated from gloss knowledge in English, collect-
ing from BabelNet and WordNet. For each sense
key, BabelNet may have several gloss definitions
and we select the source from WordNet for simplic-
ity. The whole model is trained with the learning
rate 10−5 for 20 epochs. We set the batch size at
40. The experiments are run on RTX 2080 and
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Model SemEval-13 SemEval-15

IT ES FR DE IT ES

BabelNet S1 53.22 60.32 60.04 76.58 45.38 39.31

mBERT-CLS (Trans) 69.53 70.32 67.43 67.57 61.67 57.62

mBERT-UNI (SemCor) 65.70 67.14 78.61 79.74 67.23 64.91
mBERT-UNI (Trans) 70.94 69.68 77.29 80.48 71.00 67.11

Table 3: Results of mBERT-UNI on SemEval-13 and SemEval-15 test datasets. The training corpora generated
from translation are briefly denoted as Trans.

the average running time for each experiment is 40
hours. For collecting glosses of word senses, we
use BabelNet API 5.

5 Result Analysis

In this section, we analyze the performances of our
proposed mBERT-UNI model in two parts. We first
introduce the effects of mBERT-UNI on MWSD
task with our generated translated corpora. After
that, we present further experiment results on the
MWSD task under various settings.

5.1 Results of mBERT-UNI

We present the performance of mBERT-UNI and
other baseline methods in Table 3. From the results,
we can make the following observations:

1. Compared with BabelNet S1, knowledge and
learning-based methods (i.e., mBERT-CLS and
mBERT-UNI) can perform better in most lan-
guages. Such results show that even though we
do not have any annotations for these languages,
the corpus we translate from English can serve
as a strong weak-supervision signal.

2. The only exception is German, in which Babel-
Net S1 outperforms mBERT-CLS with transla-
tion. As shown in Table 1, this is potentially
because words in German typically have much
fewer candidate senses than in other languages.
As a result, in most instances, simply predicting
the most common sense will lead to the correct
answer. In this case, the effect of learning is not
as significant as in other languages. Even so, by
carefully modeling the unified sense representa-
tions, the proposed model can still outperform
the BabelNet S1 method by a 3.9 % F1 score.

3. Compared with the mBERT-CLS system, the
proposed mBERT-UNI model outperforms on

5https://babelnet.org/guide

five out of six datasets because of additional lex-
ical knowledge from sense representations with
the same translated corpora. Though mBERT-
CLS has captured the transferred supervised sig-
nal from translated corpora, it is still not enough
to disambiguate the senses well. By utilizing
lexical knowledge from the unified sense defini-
tions, mBERT-UNI can better disambiguate the
word senses under a supervised setting.

4. The translated corpora benefit the MWSD sys-
tem with external multilingual data. Compared
to the mBERT-UNI system trained on original
English SemCor and trained on the translated
corpora, we can find that the system achieves
performance gain on five out of six test datasets.
This shows that though the machine translation
and alignment tools may induce noise in the cor-
pora preparation process, the resulting multilin-
gual corpora still benefits the system on MWSD
tasks. Future work may exploit in the direc-
tion of acquiring multilingual corpora of higher
quality through automatic methods that can still
benefit the system.

5.2 Further Analysis on mBERT-UNI
In this section, we conduct further analysis to show
the effects of leveraging an additional corpus Mu-
laN (Barba et al., 2020) on mBERT-UNI, the effects
of joint learning, and the performance on Least
Common Sense (LCS). Details are as follows.

5.2.1 Effect of Adding MuLaN Corpora
To see if the knowledge brought by the unified
sense representations can be helpful under a su-
pervised paradigm with extra training corpora, we
conduct experiments on MuLaN. The results are
shown in Table 4.

By incorporating the unified sense representa-
tion, previous data generation methods such as Mu-
LaN can further boost the performance of MWSD
tasks. From the results, we can see even with the

4198



Model SemEval-13 SemEval-15

IT ES FR DE IT ES

BabelNet S1 53.22 60.32 60.04 76.58 45.38 39.31

SensEmBERT (Scarlini et al., 2020) 69.80 73.40 77.80 79.20 - -
OneSeC (Scarlini et al., 2019) 63.45 61.59 65.10 75.84 - -
MuLaN (Barba et al., 2020) 77.45 77.70 80.12 82.09 70.31 68.73
mBERT-CLS (MuLaN*) 69.73 75.87 78.54 82.62 68.82 67.50

mBERT-UNI (MuLaN*) 75.64 80.24 81.64 83.27 72.99 70.47
mBERT-UNI (Trans+MuLaN*) 76.98 79.44 82.68 83.83 74.58 68.94

Table 4: Results of mBERT-UNI with extra data corpora MuLaN on SemEval-13 and SemEval-15 test dataset.
mBERT-CLS (MuLaN*) is the performance on filtered dataset MuLaN*. mBERT-CLS (MuLaN*) is the perfor-
mance of our implementation with filtered MuLaN as training data. MuLaN is the performance from original
paper.

filtered training corpora of smaller size, mBERT-
UNI still achieves performance gain over five out of
six test datasets compared to MuLaN (Barba et al.,
2020). Though the unified sense representations
are built based on glosses from the English lan-
guage only, it can still benefit multiple languages
since words share a set of synsets. Future research
may continue to find if enriching the sense repre-
sentations with resources from different languages
would still benefit the system.

Moreover, the unified sense representations en-
coded with the gloss knowledge from BabelNet,
are of high quality. SensEmBERT (Scarlini et al.,
2020) produced BERT-based sense embeddings by
exploiting mostly the semantic relations in Babel-
Net and Wikipedia for multiple languages sepa-
rately. Compared with SensEmBERT, our unified
sense representation can be simply acquired from
the single lexical knowledge source WordNet and
even achieves higher performance on the MWSD
task.

The mBERT-UNI also supports merging multi-
ple sources of data generation efforts. Combining
MuLaN* with our generated dataset, mBERT-UNI
can boost the performance on four out of six test
datasets. The only exception is Spanish (ES). As
shown in Table 1, the test instances in ES are more
challenging than in other languages, and thus they
are potentially more vulnerable to the noise in the
automatically generated training corpora.

5.2.2 Effect of Joint Training
In this section, we conduct experiments to study the
effect of the proposed joint learning setting. We are
interested in two questions: (1) Whether the joint
learning setting can help models solve the MWSD
problem or not? (2) Whether the joint learning set-
ting will have a negative effect on English WSD
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Figure 5: Results of joint learning on the MWSD task.
For joint training setting of each language, training data
contains SemCor (English) and MuLaN* with the cor-
responding language part, e.g., SemCor and MuLaN*
(Italian) for Italian (IT13 and IT15).

or not. To answer the question, we conduct exper-
iments on training with monolingual datasets and
multilingual datasets.

To answer the first question, we present the per-
formances on the MWSD task in Figure 5. We
can see that joint learning can achieve better perfor-
mance on four out of the six datasets and compa-
rable performance on the other two (ES13, ES15).
For each language, we combine the MuLaN* with
English SemCor as a new training dataset. This
result shows that with the unified sense representa-
tion, jointly training instances from different lan-
guages can improve the annotation usage efficiency
across languages. For language ES, the higher
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Model SemEval-13 SemEval-15

IT ES FR DE IT ES

mBERT-CLS (Trans) 60.02 63.11 57.16 45.58 49.26 53.21
mBERT-UNI (Trans) 62.59 61.92 67.38 59.83 63.90 64.15

mBERT-CLS (MuLaN*) 61.45 68.74 68.36 64.38 59.02 63.61
mBERT-UNI (MuLaN*) 68.24 75.81 72.77 66.38 66.83 63.47

Table 5: Results of Least Common Senses (LCS) on SemEval-13 and SemEval-15 test dataset.

Dataset SemCor +IT +ES +FR +DE

ALL 75.70 75.94 75.82 75.76 75.31
∆ - +0.24 +0.12 +0.06 -0.39

Table 6: Results of joint learning on the ALL test
dataset of English WSD task. +IT means that training
dataset contains the SemCor (English) and MuLaN*
(Italian).

word #sense of the test instances may account for
the performance drop under a joint training setting
than using MuLaN* alone.

To answer the second question, we report the per-
formance of the mBERT-UNI model trained with
English SemCor as well as another joint trained
setting on the all-words English WSD datasets
proposed by (Raganato et al., 2017). The test
dataset “ALL” covers all five datasets, including
semeval 2007 (Pradhan et al., 2007), senseval-
2 (Palmer et al., 2001), senseval-3 (Snyder and
Palmer, 2004), semeval2012 (Navigli et al., 2013),
and semeval2015 (Moro and Navigli, 2015). We
show the results in Table 6. We can see that the
overall performance in English is comparable in
different settings. Since the MuLaN dataset is spe-
cially designed for other languages and the propa-
gated annotations mainly come from SemCor, the
joint training does not benefit the English WSD
task much. However, joint training enables a sin-
gle mBERT-UNI to generate unified sense repre-
sentations, which can be used in disambiguating
word senses in multiple languages. In future work,
the unified sense representation may be applied in
cross-lingual representation learning.

5.2.3 LCS Analysis
In this section, we analyze the influence of uni-
fied sense representation on the performance of the
least common senses (LCS). We split the test in-
stances into two parts, one part with annotation of
BabelNet S1 and one part with annotations except
BabelNet S1 as least common senses. Compared
with most common senses, less common ones are
more difficult to disambiguate for MWSD systems

because of fewer training instances on average.
We show the performances on the two groups of

different systems are shown in Table 5. Comparing
mBERT-CLS and mBERT-UNI, adding the sense
representations can help improve models’ perfor-
mance significantly on the least common senses.
The improvement is consistent on different training
corpora for both the translated corpora and MuLaN.
It can be concluded that unified sense representa-
tion with lexical knowledge improves the ability
of deep models to disambiguate the least common
senses. This is because mBERT-UNI can still gen-
erate and learn unique sense representations for
the least common senses even with no or very few
training instances. However, while the systems
achieve decent performance on the overall perfor-
mance, disambiguating the lease common senses
is still a challenging problem.

6 Conclusion and Future Work

In this paper, to build feasible knowledge and super-
vised based systems for multilingual word sense
disambiguation, we propose to construct unified
sense representation by utilizing Babel synsets, and
transferred annotations from rich source languages
by machine translation and alignment tools. With
the unified representations, previous data genera-
tion efforts can be combined and further boost the
performance. Moreover, annotations from differ-
ent languages can be jointly trained and benefit the
multilingual word sense disambiguation task. Ex-
periments on standard evaluation multilingual word
sense disambiguation benchmarks demonstrate the
effectiveness of the proposed method.

Future work can be extended on how to induce
more lexical knowledge from various languages
to improve the representation learning. Moreover,
based on the fact that multiple languages share a
set of concepts described by Babel synsets, the
generated representations may benefit cross lingual
representation for other natural language under-
standing tasks.
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Abstract

Complex Question Understanding (CQU)
parses complex questions to Question De-
composition Meaning Representation (QDMR)
which is a sequence of atomic operators. Ex-
isting works are based on end-to-end neural
models which do not explicitly model the inter-
mediate states and lack interpretability for the
parsing process. Besides, they predict QDMR
in a mismatched granularity and do not model
the step-wise information which is an essential
characteristic of QDMR. To alleviate the issues,
we treat QDMR as a computational graph and
propose a transition-based method where a de-
cider predicts a sequence of actions to build the
graph node-by-node. In this way, the partial
graph at each step enables better representa-
tion of the intermediate states and better inter-
pretability. At each step, the decider encodes
the intermediate state with specially designed
encoders and predicts several candidates of the
next action and its confidence. For inference, a
searcher seeks the optimal graph based on the
predictions of the decider to alleviate the error
propagation. Experimental results demonstrate
the parsing accuracy of our method against sev-
eral strong baselines. Moreover, our method
has transparent and human-readable intermedi-
ate results, showing improved interpretability.

1 Introduction

The task of complex question understanding (CQU)
aims at converting complex questions which re-
quire multi-hop reasoning into consecutive trivial
sub-questions. An example of CQU is shown in
Figure 1. To answer the question "return me the
author in the University of Michigan whose papers
have more than 5000 total citations", CQU models
decompose it into several trivial sub-questions (e.g.
"return authors"), and the final answer is obtained
by consecutively answering the sub-questions. To

∗ This work was done during internship at Baidu Inc.
† Corresponding author.

Sentence
return authors [SEP] return #1 in the University of 
Michigan [SEP] return papers of #2 [SEP] return 
citations of #3 [SEP] return the number of #4 for each 
#2 [SEP] return #2 where #5 is more than 5000

1

Dependency Graph2
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return #1 in the University of Michigan
return papers of #2
return citations of #3
return the number of #4 for each #2
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3
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Question: Return me the author in the University of Michigan
whose papers have more than 5000 total citations

Figure 1: An example of CQU consists of a complex
question and different modeling of QDMR.

capture the meaning of questions over unstruc-
tured sources such as text and images, Question
Decomposition Meaning Representation (QDMR)
(Wolfson et al., 2020) is proposed where questions
are represented through a sequence of atomic ex-
ecutable operators, and the final answer can be
obtained by answering the operator sequences in or-
der. QDMR has been shown to improve the perfor-
mance and interpretability for multi-hop question
answering (Hasson and Berant, 2021; Subramanian
et al., 2020; Talmor et al., 2021).

Existing works for CQU can be roughly di-
vided into two categories: the seq2seq-based au-
toregressive parser (Wolfson et al., 2020) and the
dependency-based non-autoregressive parser (Has-
son and Berant, 2021). However, these approaches
are based on end-to-end models which do not ex-
plicitly model the intermediate states and lack in-
terpretability for the parsing process. Besides, they
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Figure 2: An overview of our transition-based framework.

predict QDMR in a mismatched granularity. The
former category generates QDMR as a sentence (as
shown in Figure 1 ➊) and adopts the seq2seq model
to decode the QDMR token-by-token. This token-
level modeling is sub-optimal since it ignores the in-
herent operator-level structure of QDMR and thus
performs worse when the QDMR has longer oper-
ators and when the question is informative. The
latter category maps QDMR to a dependency graph
over the question tokens (as shown in Figure 1 ➋)
and adopts a non-autoregressive parser to decode
the entire dependency graph in a single step. It
predicts all operators in the QDMR simultaneously
and ignores the interaction between operators, trad-
ing off performance for computational efficiency.
(Hasson and Berant, 2021) also tries combining the
two approaches by exploiting the graph supervision
to train the encoder in the seq2seq model. To sum
up, these methods have drawbacks in modeling the
intermediate states and the step-wise information
which is a distinct characteristic of QDMR.

To alleviate the shortcomings of the above meth-
ods while preserving their advantages, we treat
QDMR as a computational graph and propose a
transition-based method where a decider predicts
a sequence of actions to build the graph node-by-
node. At each transition step, one new node and its
referencing edges are decided given the question
and the previously generated partial graph. In this
way, the partial graph at each step enables better
representation of the intermediate states and better
interpretability. We illustrate the proposed method
in Fig. 2. The generated graph starts from empty
and expands incrementally in a node-by-node man-
ner. At each step, given the question and the current

state, the step-wise decider encodes them with spe-
cially designed encoders and predicts several candi-
dates for the next action which includes a node, its
connecting edges, and its confidence. After each
step, the partial graph is either expanded according
to the action or finalized as a QDMR. For infer-
ence, a searcher seeks the optimal graph based on
the predictions of the decider to alleviate the error
propagation.

To verify the effectiveness of our proposed
method, abundant experiments are conducted on
the BREAK dataset, which contains 83,978 exam-
ples from ten QA datasets across three modalities.
Experimental results show that our method outper-
forms strong baselines and achieves the state-of-
the-art on the BREAK dataset. We further analyze
the interpretability of our method. Overall, our
work makes the following major contributions:

1. To the best of our knowledge, we are the
first to investigate the transition-based method
for CQU by modeling the intermediate states
which facilitate better encoding and better in-
terpretability.

2. Experiments on BREAK demonstrate the pars-
ing accuracy of our method against strong
baselines. Moreover, further analysis and vi-
sualization verify the interpretability.

2 Method

2.1 Problem Definition
Given a question with n tokens, q =
(q1, q2, . . . , qn), the goal of CQU is to parse
it to its QDMR. In this work, we treat QDMR
as a computational graph G = ⟨V,E⟩ where V
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and E are the node set and edge set. A node
vi ∈ V is a sequence of |vi| tokens vi = vi1...v

i
|vi|,

where token vij is either a question token ∈ Vq
(or some inflection of it), a word from a constant
predefined lexicon ∈ Vconst, or a reference token
∈ V iref = {#1, ...,#(i − 1)} referring to a
previous step. A directed edge eij ∈ E pointing
from vi to vj is the reference token #j in vi.

2.2 Overview
To address the aforementioned challenges in this
task, we propose a neural transition-based model
for CQU which decides a new node along with
its connections to existing nodes at each step to
incrementally build a computational graph. The
construction process is briefly illustrated in Fig. 2.
At each step i, given the question q and the cur-
rent state si = {Gi} where Gi =

〈
V i, Ei

〉
de-

notes the generated partial graph, the stepwise de-
cider predicts several candidates of the next ac-
tion ai+1 =

〈
vi+1,∆Ei, pi+1

〉
, where vi+1 de-

notes the next node, ∆Ei denotes the edges start
from vi+1 and pi+1 denotes the confidence of the
action. Then, we expand the graph from Gi to
Gi+1 =

〈
V i + vi+1, Ei +∆Ei

〉
and update the

current state according to the predicted action. We
repeat the above iteration until the end action is
predicted. In inference, we adopt a searcher to
maintain and seek the optimal graphs based on the
node confidence at each step.

2.3 State Representation
At each step i, given the question q and the cur-
rent state si = {Gi} where q denotes the question
and Gi =

〈
V i, Ei

〉
denotes the partial graph, we

firstly use two encoders to obtain their representa-
tion respectively. Then, we feed them into a dual
interaction layer to update them dynamically.

2.3.1 Question Encoder
We feed the input question q = (q1, q2, . . . , qn)
into the Transformer encoder of a pretrained
seq2seq model (e.g. BART) to get the contextual
representation matrix Hq ∈ Rn×dh , where dh is
the dimension of the hidden states in BART and
n is the length of question. In this way, question
q can be represented as Hq = {hq1,hq2, . . . ,hqn},
where hqi is the contextual representation of the
i-th token of q. We call Hq static question rep-
resentation to distinguish it with the dynamically
updated question representation Hqi introduced in
section 2.3.3.

2.3.2 Graph Encoder
We treat the incrementally expanding graph as a
sequence of actions in the chronological order of
when they are added in. We adopt the order given
in the dataset. We utilize the Transformer decoder
to serve as the graph encoder . Concretely, we use
the masked self-attention mechanism to ensure that
the representation of the node and edges at step
i takes all previous nodes and edges in Gi−1 into
consideration.

Formally, given the graph Gi, we get the input
tokens of the linearized graph by seperating actions
with special tokens to indicate their boundaries:
([A1], v

1
1, . . . , v

1
|v1|, [A2], . . . , [Ai], v

i
1, . . . , v

i
|vi|).

If vi is the last action in the graph, we append a
special token [END] to indicate the termination
of the parsing process. We feed the input tokens
into the graph encoder to get the contextual
representation matrix Hg ∈ Rp×dh , where p is the
length of the input tokens. In this way, Gi can
be represented as HGi = {hGi1 ,hG

i

2 , . . . ,hG
i

p },
where hG

i

i is the contextual representation of the
i-th token of the input tokens. We repeat the above
encoding every time a new token in the next action
i.e. vi+1

j is generated to integrate the partial action
semantic.

2.3.3 Interaction Layer
We observe that different nodes tend to use differ-
ent parts of the question, and that question tokens
already present in the partial graph are less likely to
be chosen in the later nodes. To model this obser-
vation, we apply the scaled dot-product attention
proposed in (Vaswani et al., 2017) to dynamically
update the question representation according to the
generated partial graph.

αi1 = softmax(
WK

1 H
q(WQ

1 H
Gi)T√

dk
),

Hqi = αi1W
V
1 H

q

(1)

where {WQ
1 ,W

K
1 } ∈ Rdh×dh denote learnable ma-

trices that transform the graph and question repre-
sentation into the query and key subspace respec-
tively. The attention weights over all question to-
kens αi ∈ R|q| softly indicate whether a token is
already present in the partial graph. W V

1 ∈ Rdh×dh
denotes the learnable matrix that projects the ques-
tion representation into the value subspace, and the
projected value vectors are averaged according to
αi to get the updated question tokens representa-
tion H i. Similarly, to make the representation of
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Gi attends to all question tokens in q, we apply the
source-attention mechanism which takes the output
of the question encoder as the key:

αi2 = softmax(
WK

2 H
Gi(WQ

2 H
q)T√

dk
),

ĤGi = αi2W
V
2 H

Gi
(2)

Finally, we apply MaxPooling over all question
tokens representation and node tokens representa-
tion to obtain the final representation for action
prediction:

hfinal = MaxPooling(Hqi , ĤGi) (3)

where the MaxPooling is performed on the first
dimension and hfinal ∈ Rdh .

2.4 Action Prediction

At each step i, given the representation of the
current state hfinal, we use the action predictor
to predict several candidates of the next action
ai+1 =

〈
vi+1,∆Ei, pi+1

〉
, where vi+1 denotes

the next node, ∆Ei denotes the edges start from
vi+1 and pi+1 denotes the confidence of the action.

2.4.1 Node Prediction
Note that as mentioned in 2.1 , a node vi+1 is a se-
quence of |vi+1| tokens vi+1 = (vi+1

1 , . . . , vi+1
|vi+1|),

where token vi+1
j is either a question token ∈ Vq

(or some inflection of it), a word from a constant
predefined lexicon ∈ Vconst, or a reference token
∈ V i+1

ref = {#1, . . . ,#i} referring to a previous
step. Among them, the reference token #j also
belongs to the edge tokens eij . Therefore, we de-
compose the prediction of the reference tokens into
two stages. In the node prediction stage, we pre-
dict #R indicating a placeholder for the edge to-
ken. Then, in the edge prediction stage, we predict
the exact number of the reference token to replace
R and get #j. The probability over vocabulary
V = Vq

⋃Vconst
⋃{#R} can be obtained by:

P (vi+1
z |vi+1

<z , q, G
i, θ) = softmax(WPhfinal+b

P )
(4)

where WP ∈ Rdk×|V|, bP ∈ R|V| are learnable
parameters that transform the final representation
into the probability over V . The model is pa-
rameterized by θ. vi+1

<z denotes the partial action
{vi+1

0 , . . . , vi+1
j−1}.

2.4.2 Edge Prediction
Instead of treating the reference tokens as static
tokens in the vocabulary as the previous works,
which shares the embeddings among different ex-
amples and thus ignores their semantics. We obtain
their representation dynamically according to the
constructed partial graph. Specifically, we average
the representation of vi1 . . . v

i
|vi| to obtain the rep-

resentation of #i which is denoted as h#i. Then,
we adopt a bilinear function to compute the simi-
larity between each reference representation h#i
and the final representation hfinal. The probability
over V i+1

ref can be obtained by:

P (vi+1
z |vi+1

<z , q, G
i, θ) = softmax(ErefW refhfinal)

j = argmaxj∈Vi+1
ref
P (j|vi+1

<z , q, G
i, θ)

(5)
where Eref ∈ Ri×dh denotes the embedding ma-
trix of the reference tokens. W ref ∈ Rdh×dh is a
learnable matrix. We use the predicted reference
number j to replace R for vi+1

z if it is a #R.

2.4.3 Action Confidence
We apply beam search with beam sizeK1 sampling
on P (vi+1

z |vi+1
<z , q, G

i, θ) to get top K1 candidate
actions. The confidence of each candidate action
ai+1 is defined as the probability of the predicted
sequence i.e. the product of the probabilities of the
predicted tokens vi+1

1 . . . vi+1
|vi+1|:

P (ai+1|q,Gi, θ) =
|vi+1|∏

z=1

P (vi+1
z |vi+1

<z , q, G
i, θ)

(6)

2.5 Training

We train our transition-based model with the stan-
dard maximum likelihood estimate using teacher
forcing. In other words, we maximize the sum of
the stepwise action confidence. The loss w.r.t an
example is defined as follows:

P (G|q, θ) =
|G|∏

i=1

P (ai+1|q,Gi, θ)

L(G|q, θ) = − 1

m

m∑

i=1

logP (ai+1|q,Gi, θ)
(7)

where G = (a1, . . . , am) =
([A1], v

1
1, . . . , v

1
|v1|, [A2], . . . , [Am], . . . , v

m
|vm|, [END])

and m denotes the number of the action in G.
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2.6 Inference

The whole inference procedure is shown in Algo-
rithm 1. At line 1 ∼ 3, we first obtain the ques-
tion representation and initialize the output with an
empty graph. In the loop from line 5, we predict
an action at each transition step until the [END] is
generated. At each transition step, we first initialize
the predicted action vi+1

0 with [Ai]. Then, in the
loop from line 9, we generate a token at each step
until the [Ai+1] or [END] indicating the termina-
tion of an action is predicted. At line 10 ∼ 15, we
obtain the partial graph representation and the final
representation. At line 18 ∼ 21, we first predict
vi+1
z by sampling on Eq. 4. Then, we decide the ex-

act number by Eq. 5 if vi+1
z is a #R token. At line

24, we obtain topK2 a
i+1 by sampling on Eq. 7.

Finally, we add the action predictions to Gi and get
the new graph Gi+1.

Note that in the above inference procedure, we
adopt a searcher which seeks for high-probability
output graphs to relieve the error propagation and
guide the direction of the graph expansion. Inspired
by the traditional beam search which decodes a
single token at each search step, we replace the
original generation probability with the action con-
fidence defined in Eq. 6. At step i, we maintain
K2 candidate actions sampling on the probability
P (ai+1|q,Gi, θ) where K2 denotes the beam size.

3 Experiment

3.1 Experimental Setup

Datasets and Metrics Our evaluation is con-
ducted on the dataset BREAK. The question-
QDMR pairs are crowd-sourced based on ques-
tions sampled from ten widely-used QA datasets.
It consists of 83,978 examples including 60,150
examples with QDMR and 23,828 examples with
high-level QDMR. We do not include examples
with high-level QDMR for the sake of a fair com-
parison with the previous work.The QA datasets
included in BREAK and the statistics are listed in
Table 1. The train/dev/test sets are partitioned fol-
lowing the original datasets. The distribution over
QDMR sequence length is listed in Table 4. Note
that the gold answers of the test set are not pub-
licly available, so we report performance on the
development set.

Metrics Following the previous work (Hasson
and Berant, 2021), we use Normalized Exact Match
(NormEM) and Logical Form Exact Match (LF-

Algorithm 1 Inference procedure of our framework

Require: a question with n tokens q =
(q1, q2, ..., qn).

Ensure: topK2 computational graphs.
1: Hq ←Question-Encoder(q);
2: G0 ← (V 0, E0), V 0 ← ∅, E0 ← ∅;
3: i← 1;
4: // Generating topK2 Action Sequence
5: while the last action ai+1 is not [END] do
6: vi+1

0 ← [Ai];
7: z ← 1;
8: // Generating topK1 Action Candidates
9: while the last token vi+1

z−1 is not in
{[Ai+1], [END]} do

10: Gi ← Gi + {vi+1};
11: // Partial Graph Encoding
12: HGi ←Graph-Encoder(Gi, q);
13: // Interaction
14: Hqi ←Attention(Hq, HGi)Hq;
15: ĤGi ←Attention(HGi , Hq)HGi;
16: hfinal ← MaxPooling(Hqi , ĤGi);
17: // Node & Edge Prediction
18: get topK1 v

i+1
z by a search step on

Eq. 4;
19: if vi+1

z =#R then
20: get the number of #R by Eq. 5.
21: end if
22: z ← z + 1;
23: end while
24: get topK2 a

i+1 by a search step on Eq. 7;
25: Gi+1 ← Gi + {ai+1};
26: i← i+ 1;
27: end while

EM) as the evaluation metrics. Normalized Ex-
act Match (NormEM): The predicted and gold
QDMRs are first normalized by a rule-based pro-
cedure, and then exact string match is computed
between the two normalized QDMRs. The value
for each sample is either 0 or 1. Logical Form
Exact Match (LF-EM): The predicted and gold
QDMRs are first converted to the logical form by a
rule-based procedure, and then exact string match
is computed between the two logical form QDMRs.
The value for each sample is either 0 or 1.

Implementation Details We follow the previous
work (Hasson and Berant, 2021) for implementa-
tion. We use BART-base (Lewis et al., 2019) as our
backbone. The models are implemented in Pytorch
(Paszke et al., 2019) and are trained on a single

4207



BREAK

ACADEMIC ATIS CLEVR COMQA GEO CWQ DROP NLVR2 SPIDER Total

Train 195 4042 9453 3546 547 1985 7683 9915 6955 44321
Dev - 457 2215 988 50 475 1268 1805 502 7760
Test - 407 2267 986 280 528 1279 1797 525 8069

Table 1: The question distribution of each QD dataset in BREAK.

Figure 3: The average LF-EM of our method and baselines for different lengths of QDMR on the dev set.

Model NormEM LF-EM

CopyNet+BERT 37.3 47.4
BiaffineGP - 45.3
Latent-RAT 35.6 46.9

BART 38.1 47.7
Ours w/o Beam Search 38.9 48.1
Ours w/ Beam Search 41.2 49.7

Table 2: NormEM and LF-EM on the dev set.

GeForce RTX 3090 GPU. We set the batch size
as 32, and the max training epoch number as 20
with early stopping (patience=5). We utilize Adam
optimizer (Kingma and Ba, 2014) with a dynamic
learning rate according to the slanted triangular
schema. The beam size of both inner and outer
beam search is set to 5.

Baselines We compare our framework with var-
ious previous works in terms of parsing accuracy
and interpretability.
CopyNet+BERT is a seq2seq model consisting
of a BERT encoder and an LSTM decoder with
a copy mechanism. BiaffineGP is based on the
biaffine dependency parser of (Dozat and Manning,

2018) except that it predicts a DAG and not a tree.
Besides, it applies an Integer Linear Programming
layer on top of it to eliminate constraint violations
in the output graph. Latent-RAT is based on RAT
transformer layers (Shaw et al., 2018; Wang et al.,
2019) to predict the graph structure using the en-
coder and predict the QDMR sequence using the
decoder. BART is based on the pretrained seq2seq
model BART.

3.2 Results

3.2.1 Main Results

Table 2 shows the overall performance of our
method and all the baselines on the development
set of BREAK. Our method achieves the best results
among the recently available methods. Specifically,
our method without beam search achieves compa-
rable performance to BART with advantages of 0.8
NormEM and 0.4 LF-EM and outperforms Copy-
Net+BERT by 1.6 NormEM and 0.7 LF-EM. We
attribute the performance gain to the better model-
ing of the question and the current state. Enhanced
by beam search, our method exceeds BART by 3.1
NormEM and 2.0 LF-EM which demonstrates the
potential of increasing the search space.
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Question Wrong Prediction Ours

How many was the differ-
ence between Sobieski’s
force and the Turks and
Tatars?

Latent-RAT:
1.select(sub=Sobieski)
2.project(projection=force of #REF;sub=#1)
3.select(sub=Turks)
4.select(sub=the Tatars)
5.arithmetic[difference](left=#2;right=#3)
6.arithmetic[difference](left=#4;right=#5)

1.select(sub=Sobieski)
2.project(projection=force of #REF;sub=#1)
3.project(projection=size of #REF; sub=#2)
4.select(sub=the Turks and Tatars)
5.project(projection=the force of #REF; sub=#4)
6.project(projection=size of #REF;sub=#5)
5.arithmetic[difference](left=#6; right=#3)

How many year after
Knopf was founded was
it officially incorporated?

BiaffineGP:
1.project(projection=Knopf was founded years;
sub=#1)
2.select(sub=was it officially incorporated)
3.project(projection=years;sub=#2);
4.arithmetic[difference](left=#3;right=#1)

1.select(sub=Knopf was founded)
2.select(sub=Knopf was officially incorporated)
3.project(projection=year of #REF; sub=#1)
4.project(projection=year of #REF; sub=#2)
5.arithmetic[difference](left=#4; right=#3)

Table 3: Two cases from the dev set. The outputs are converted to Logical Form for comparison with BiaffineGP.
One can refer to (Hasson and Berant, 2021) for the conversion details.

Length 1-2 3-4 5-6 7-8 9+

Percentage(%) 10.7 44.9 27.0 10.1 7.4

Table 4: The distribution over the length of QDMR
actions.

Token Action

Train 11.59 4.75
Dev 11.35 4.90

Table 5: The average length of token sequences and
action sequences in QDMR.

3.2.2 Length Analysis

In order to explore how much does our transition-
based framework contribute to examples with
longer steps, we plot and compare the average LF-
EM of different methods for each possible num-
ber of steps in QDMR. From Figure 3 we can see
that, as the number of steps increases, our method
exceeds the baselines greater. It verifies that our
method handles complex decompositions better.

Table 5 shows the average length of token se-
quences used in seq2seq models and of action se-
quences used in our method. As shown in the table,
the action sequence is much shorter than the to-
ken sequence i.e. reduced from 11 to 5 in length.
In other words, representing QDMR as an action
sequence has the advantage of more compact en-
coding which makes the modeling of long-distance
dependency easier. Therefore, it is more appropri-
ate for QDMR generation.

3.2.3 Interpretability Analysis
In order to verify the interpretability of our method,
we print the beam search process together with
the log probabilities of different action sequences.
From Figure 4 we can see that, the sequence with
the highest log probability (-2.44) matches the gold
decomposition. We note that although the last three
sequences do not match with the gold decomposi-
tion, they are logically equivalent to the provided
gold one which can also get the correct answer to
the question.

3.2.4 Case Study
We show two examples from the development set
to illustrate the effectiveness of our model by com-
paring the results of different models in Table 3.
The first example shows that beam search helps
for searching the optimal graph. Latent-RAT fails
to predict the correct structure and starts to devi-
ate from step 3. In contrast, our method seeks
the optimal graph in a larger search space and pre-
dicts the correct structure. The second example
shows that our modeling of the question and the
current state helps the model decide a step more
accurately. In the example, BiaffineGP predicts the
whole graph in an end-to-end manner. Our method
predicts more accurately with the help of the better
representation.

4 Related Work

Complex Question Understanding Complex
question understanding is proposed by (Wolfson
et al., 2020) as a standalone language understand-
ing task. They introduce a formalism named
QDMR to represent the meaning of questions that
relies on question decomposition and is agnostic to
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[A0]

return shiny 
object

return 
smallest 
object

return object 

…

…

return #1 
that is 

smallest
return color 

of #2

return #1 
that is shiny

return color 
of #2

return #1 
that is shiny

return #1 
that are shiny

return #2 
that is 

smallest
return color 

of #3

return the 
smallest of 

#2
return color 

of #3

return size of 
#2

return #2 
where #3 is 
the lowest

return color 
of #4

-2.44

-2.46

-2.98

-3.03

-3.93

Figure 4: The beam search process of our method corresponds to the question "What color is the smallest, shiny
object?". For simplicity, we do not draw the unselected nodes. The log probability of the final graph is listed at the
end of the sequence.

the information modality. Existing approaches can
be divided into two categories: the seq2seq-based
method and the dependency-based method. The
seq2seq-based method (Hasson and Berant, 2021)
treats QDMR as a sentence and adopts a seq2seq
model to decode the textual QDMR one token at
each step. This token-wise modeling seems sub-
optimal for generating QDMR which ignores its
inherent structure. The dependency-based method
(Hasson and Berant, 2021) maps QDMR to a de-
pendency graph over question tokens and adopts
a non-autoregressive graph parser to predict the
entire graph in a single step. It predicts all steps
of QDMR simultaneously which does not model
the interaction between different predictions, trad-
ing off performance for efficiency. There is also
work combining the two categories by exploiting
the graph supervision to train a seq2seq model.
It adds an auxiliary loss term where the graph is
decoded from the encoder representations. How-
ever, the above methods do not explicitly model
the step-wise information which is an essential and
distinct characteristic of QDMR. Before CQU was
proposed, some work has explored decomposing
questions to facilitate answering complex questions
that require discrete reasoning (Talmor and Be-
rant, 2018). IBM Watson (Ferrucci et al., 2010)
decomposes questions into sub-questions in mul-
tiple ways or not at all. DECOMPRC (Min et al.,
2019) recasts sub-question generation as a span
prediction problem which requires only 400 de-
composition examples to train a competitive model.
(Iyyer et al., 2017; Talmor and Berant, 2018) have
also decomposed questions to create a sequential
question answering task. Despite the initial success,
their decomposition methods remain preliminary

and they conduct experiments on a much more lim-
ited set of questions than in BREAK.

Semantic Parsing Semantic parsing is a larger
area of work that aims at parsing natural language
utterances into logical forms(Zelle and Mooney,
1996; Zettlemoyer and Collins, 2012; Liang et al.,
2013). They are usually executed over structured
knowledge bases such as relational databases(Yu
et al., 2018) and graph KBs(Yih et al., 2016). Our
work is inspired by the idea of transition-based
systems from semantic parsing(Chen et al., 2018).
CQU differs from semantic parsing in that it pro-
duces meaning representation expressed in natural
language which is easy to annotate at scale and can
be potentially converted to other meaning represen-
tations based on the task at hand. Besides, CQU
focuses on representing the semantics of complex
questions which is important for QA systems and
for probing models for reasoning.

5 Conclusion

In this paper, to model the intermediate states and
the step/operator-wise semantic, we view QDMR
as a computational graph and propose a transition-
based method where a decider wrapped with a
searcher incrementally constructs the graph. Ex-
perimental results show that our framework out-
performs the state-of-the-art CQU model by 3.1
NormEM and 2.0 LF-EM. Further visualization
also demonstrates the interpretability of our method
by giving transparent and human-readable interme-
diate results.
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Abstract

Semantic role labeling (SRL) is a fundamen-
tal yet challenging task in the NLP community.
Recent works of SRL mainly fall into two lines:
1) BIO-based; 2) span-based. Despite ubiq-
uity, they share some intrinsic drawbacks of not
considering internal argument structures, po-
tentially hindering the model’s expressiveness.
The key challenge is arguments are flat struc-
tures, and there are no determined subtree real-
izations for words inside arguments. To remedy
this, in this paper, we propose to regard flat ar-
gument spans as latent subtrees, accordingly re-
ducing SRL to a tree parsing task. In particular,
we equip our formulation with a novel span-
constrained TreeCRF to make tree structures
span-aware and further extend it to the second-
order case. We conduct extensive experiments
on CoNLL05 and CoNLL12 benchmarks. Re-
sults reveal that our methods perform favorably
better than all previous syntax-agnostic works,
achieving new state-of-the-art under both end-
to-end and w/ gold predicates settings.

1 Introduction

Semantic role labeling (SRL) is a fundamental yet
challenging task in the NLP community, involving
predicate and argument identification, as well as
semantic role classification. As SRL can provide
informative linguistic representations, it has been
widely adopted in downstream tasks like question
answering (Berant et al., 2013; Yih et al., 2016),
information extraction (Christensen et al., 2010;
Lin et al., 2017), and machine translation (Liu and
Gildea, 2010; Bazrafshan and Gildea, 2013), etc.

Recent works of SRL mainly fall into two lines:
1) BIO-based; 2) span-based. The former views
SRL as a sequence labeling task (Zhou and Xu,
2015; Strubell et al., 2018; Shi and Lin, 2019).
For each predicate, each token is tagged with a
label starting with BIO prefixes indicating if it is at
the Beginning, Inside, or Outside of an argument.

˚Corresponding author

... in other European markets ... closed ...

NULL

NULL
NULL

NULL

AM-LOC

Figure 1: An argument example (below) and its related
subtree structure (above) for the predicate “closed”.

The latter (He et al., 2018a; Ouchi et al., 2018; Li
et al., 2019), in contrast, opts to jointly predict all
predicate and argument span pairs using a span-
graph formulation.

Despite ubiquity, there are some drawbacks that
limit the expressiveness of the two methods. First,
framing predicate-argument structures as a BIO-
tagging scheme is less effective as it lacks explicit
modeling of span-level representations, so that long
adjacencies of argument phrases can be ignored
(Cohn and Blunsom, 2005; Jie and Lu, 2019; Zhou
et al., 2020d; Xu et al., 2021). Second, span-based
method seeks to pick very few (typically ă10%)
positive examples from Opn3q candidate predicate-
argument pairs, thus suffering from severe class
imbalance problem (Li et al., 2021). To alleviate
this issue, span-based method relies on heavy prun-
ing (He et al., 2018a) to reduce the searching space,
potentially impairing the performance.

Meanwhile, both formulations share some com-
mon flaws in terms of lacking explicit modeling of
internal argument structures, which appear to be
beneficial to SRL. Taking Fig. 1 as an example, in-
ternal dependencies of words (“in other European
markets”) inside the span provide strong clues for
recognizing it as a locative modifier (“AM-LOC”)
of the predicate “closed”. Besides, the predicate-
argument relation can be naturally reflected by the
dependency from the predicate to the span head-
word (“closed AM-LOCÝÝÝÝÝÑ in”), and we can properly
recognize the argument span boundaries by retriev-
ing all descendants of the subtree. Such observa-
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tions have motivated many attempts on utilizing
relations inside arguments (Gildea and Hocken-
maier, 2003; Johansson and Nugues, 2008a,c; Xia
et al., 2019; Li et al., 2019, inter alia). However,
stuck on the fact that span-style SRL has no de-
termined internal structure realizations, existing
works have to resort to making use of external
human-annotated syntax knowledge to bridge the
gap (Shi et al., 2020; Li et al., 2021).

Our main goal in this work is to explicitly take
internal argument structures into account mean-
while keeping our framework end-to-end. To this
end, we propose to model flat arguments as latent
subtrees, thus paving the way for reducing SRL to
dependency parsing seamlessly: we view predicate-
argument structures as partially-observed trees
where exact subtrees for each argument are not
realized yet. In this way, we reframe span-style
SRL as parsing word-to-word relations by encod-
ing all predicate-argument relations into a unified
dependency graph. Unlike span-based methods (He
et al., 2018a), a dependency graph contains no more
thanOpn2q possible dependencies, so that the class
imbalance issue can be side-stepped effortlessly.
Specifically, we make use of TreeCRF (Eisner,
2000; Zhang et al., 2020), which provides a viable
way for probabilistic modeling of tree structures, to
learn the partially-observed trees and marginalize
the latent structures out during training. Unlike
canonical TreeCRF, which enumerates all possible
trees, in our setting, we have to impose many span
constraints to reflect the argument boundaries on
subtrees correctly. To accommodate this, we fur-
ther design a novel span-constrained TreeCRF to
adapt it to our learning procedure, which explicitly
prohibits invalid edges across different arguments
as well as multi-head subtrees (Nivre et al., 2014;
Zhang et al., 2021a).

There are further advantages to our reduction.
Conversion to tree structures enables us to easily
conduct global optimization (Eisner, 1996; McDon-
ald et al., 2005) in polynomial time, which has al-
ready been shown to often lead to improved results
and more meaningful predictions (Toutanova et al.,
2008; Täckström et al., 2015; FitzGerald et al.,
2015; Li et al., 2020) compared to local uncon-
strained methods. On the other hand, by drawing
on the experience in the parsing literature, we can
further extend our method to some well-studied
high-order methods (McDonald and Pereira, 2006)
without any obstacle. We experiment with sibling

factors in this work and find significant gains, in
line with many parsing works (Zhang et al., 2020;
Fonseca and Martins, 2020). Our contributions can
be summarized as follows:1

• Aware of the benefits of internal argument struc-
tures, we propose to model flat argument spans
as latent subtrees, thereby reducing SRL to de-
pendency parsing seamlessly.

• We propose a novel span-constrained TreeCRF
to learn the converted trees and further extend it
to the second-order case.

• Experiments on CoNLL05 and CoNLL12 bench-
marks reveal that our proposed methods outper-
form existing works significantly, achieving new
state-of-the-art results under the syntax-agnostic
setting.

2 Overview

In span-style SRL, an argument of a predicate cor-
responds to one word or multiple continuous words.
In the latter case, each word in the argument span
is treated as equal, and the internal structure of a
multi-word argument, i.e., the relationship between
words inside the argument, is usually overlooked
due to the lack of corresponding annotations.

In this work, we propose to explicitly model in-
ternal structures of multi-word arguments and treat
arguments as latent subtrees. Our approach deals
with each predicate separately, and assumes each
corresponds to a single-root tree. Consequently,
each argument subtree is attached to the predicate.
During the training process, all possible structures
are enumerated and accumulated to compose the
argument representation. While decoding, we seek
to find a 1-best tree and recover arguments from the
subtrees belonging to the resulting structure. We
highlight four key points.

i Our approach is syntax-agnostic. The tree struc-
tures are modeled and predicted solely to serve
the SRL task without referring to any linguistic
syntax knowledge.

ii The predicate identification subtask is handled
as a simple classification procedure.

iii For argument identification, argument bound-
aries are decided by subtrees attached to the
predicate, and edge labels are used for role dis-
ambiguation.

iv We adopt a consistent scoring architecture for
the two subtasks and train them jointly.

1Our code is publicly available at https://github.
com/yzhangcs/crfsrl.
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They1 want2 to3 do4 more5 .6

A0 A1

(a) Original structure: arguments of the predicate are located
in the upper half-plane of the sentence and do not overlap
with each other.

They1 want2 to3 do4 more5 .6

PRD

A0 A1
∅

(b) Training: convert the predicate-argument structure to a de-
pendency tree with (dotted) latent annotations; non-argument
spans are assigned “∅” for distinction.

They1 want2 to3 do4 more5 .6

PRD

A0 A1
∅

(c) Decoding: realize a tree rooted at the predicate with the arc
labeled as “PRD”; (dashed) arcs labeled as “∅” are discarded.

They1 want2 to3 do4 more5 .6

PRD

A0 A1

(d) Recovery: collapse all (dashed) subtrees governed by the
predicate into flat argument spans.

Figure 2: Illustration of our SRLÑTree conversion (Fig. 2a and Fig. 2b), and its inverse TreeÑSRL process (Fig. 2c
and Fig. 2d). We emphasize the predicate “want” in the figures for clarity. The two arguments with roles “A0” and
“A1” are framed by red and blue rectangles, respectively.

2.1 SRL Ñ Tree Conversion

Formally, given an input sentence x “ x1, . . . , xn,
we first seek to obtain tree structures for each predi-
cate p P x, which are taken as materials of training
a parser. We define a directed acyclic dependency
tree t by assigning a head h P tx0, x1, . . . , xnu to-
gether with a relation label r P R to each modifier
m P x, where a dummy word x0 is attached before
x as the pseudo root node.2

For predicate p, the first step is to link x0 to p.
To facilitate predicate identification, we assign a
special label PRD (resp. ∅ for non-predicate) to
the dependency x0 Ñ p. Then, we make all corre-
sponding latent argument subtrees descendants of
p. As we showcase in Fig. 2a, this takes advantage
of the non-overlapping constraint for arguments
belonging to the same predicate (Punyakanok et al.,
2004; Li et al., 2019). For an argument with a
consecutive word span xi, . . . , xj and a semantic
role r P R, we restrict all possible subtrees are
single-rooted at a potential headword h within the
span, which is also not realized yet. The semantic
role r is assigned as the label of the dependency
pointing from p to the headword. We adopt a sim-
ilar strategy for non-argument spans, except that
we set the label to ∅ for distinction and remove the
single-root restriction.

By enumerating all possible subtrees and comb-

2In this work, we assume all dependency trees are projec-
tive, i.e., without any crossing arcs. This property allows us to
associate the subtree with its continuous argument span (Kong
et al., 2015).

ing them together, the resulting tree set Tp is ex-
ponential in size. During training, we develop a
span-constrained Inside algorithm to perform the
enumeration (§ 3.2). Fig. 2b gives a brief example
of the conversion process.

2.2 Tree Ñ SRL Recovery

Supposing we have trained a parsing model, during
the decoding phase, what we need is to recover
predicate-argument structures from the outputs of
the parser.

We first find all predicates via simple local label
classification: a word p is recognized as a predi-
cate if the dependency x0 Ñ p is labeled as PRD.
Subsequently, we obtain the highest-scoring tree
t˚ (Fig. 2c) for p using Eisner algorithm (Eisner,
2000) with complexity Opn3q:

t˚ “ arg max
t:x0

PRDÝÝÑpPt
spx, tq (1)

where spx, tq is the tree score, and the tree is re-
stricted to be rooted at p. Arguments for the pred-
icate are then recovered by collapsing subtrees
headed by p into flat spans.

Concretely, we take each modifier h of p as the
headword of a potential argument. If the label r of
p Ñ h is not “∅”, i.e., non-argument, then an entire
argument span comprises h and its descendants
and takes r as the semantic role. The resulting
SRL output is the collection of all predicates and
corresponding recovered arguments. A recovery
example is demonstrated in Fig. 2d.
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3 Methodology

Now we elaborate the architecture of our proposed
model for training the parser. Following Dozat and
Manning (2017); Zhang et al. (2020), our model
consists of a contextualized encoder and a (second-
order) scoring module. We further propose a span-
aware TreeCRF to compute the probabilities of the
converted partially-observed trees.

3.1 Neural Parameterization
Given the sentence x “ x0, x1, . . . , xn, we first
obtain the hidden representation of each token xi
via a deep contextualized encoder.

h0,h1, . . . ,hn “ Encoderpx0, x1, . . . , xnq (2)

In this work, we experiment with two alternative en-
coders, i.e., BiLSTMs (Gal and Ghahramani, 2016)
and pretrained language models (PLMs) (Devlin
et al., 2019). More setting details are available in
§ A.

(Second-order) Tree parameterization Follow-
ing Dozat and Manning (2017), we decompose a
tree t into two separate y and r, where y is a skele-
tal tree, and r is the related strictly-ordered label
sequence. For each head-modifier pair h Ñ m P y,
we score them using two MLPs followed by a Bi-
affine layer (Cai et al., 2018):

r
head{mod
i “ MLPhead{modphiq

sph Ñ mq “ BiAF
´
rheadh , rmod

m

¯ (3)

The score of the dependency h Ñ m with label
r P R is calculated analogously. We use two extra
MLPs and |R| Biaffine layers to obtain all label
scores.

We also make use of adjacent-sibling informa-
tion (McDonald and Pereira, 2006) to enhance the
first-order biaffine parser further. Following Wang
et al. (2019); Zhang et al. (2020), we employ three
extra MLPs as well as a Triaffine layer for second-
order subtree scoring,

r
head{mod{sib
i “ MLPhead{mod{sibphiq
sph Ñ s,mq “ TriAF

´
rheadh , rmod

m , rsibs

¯ (4)

where s andm are two adjacent modifiers of h, and
s populates between h and m.

Under the first-order factorization (McDonald
et al., 2005), the score of y becomes

spx,yq “
ÿ

hÑmPy
sph Ñ mq (5)

For the second-order case (McDonald and Pereira,
2006), we further incorporate adjacent-sibling sub-
tree scores into tree scoring:

spx,yq “
ÿ

hÑm

sph Ñ mq `
ÿ

hÑs,m

sph Ñ s,mq
(6)

The probabilities of skeletal tree y and its label
sequence r are parameterized as

P py | xq “ exp pspx,yqq
Zpxq ” ř

y1PY pxq exp pspx,y1qq
P pr | x,yq “

ź

h
rÝÑmPt

P pr | x, h Ñ mq

(7)
Y pxq is the set of all possible legal unlabeled trees,
and Zpxq is known as the partition function. Each
label r is independent of tree y and other labels,
thus P pr | x, h Ñ mq is locally normalized over
all r1 P R.

Finally, we define the probability of the labeled
tree t as the product of the probabilities of its two
sub-components.

P pt | xq “ P py | xq ¨ P pr | x,yq (8)

3.2 Span-constrained TreeCRF
Training objective During training, we seek to
maximize the probability of converted trees Tp for
each predicate p. Accordingly, we define the fol-
lowing loss function:

L “ ´
ÿ

p

logP pTp | xq (9)

in which P pTp | xq can be further expanded as

P pTp | xq “
ÿ

tPTp
P py | xq ¨ P pr | x,yqloooooooooooomoooooooooooon

P pt|xq

“ 1

Zpxq
ÿ

tPTp
exppspx,yqq ¨ P pr | x,yqlooooooooooooooomooooooooooooooon

exppspx,tqq
(10)

The proposed Inside The calculation of the de-
nominator Zpxq in Eq. 10 can be accomplished by
the canonical Inside algorithm. As for the numer-
ator, we make a slight change of the formula and
define the labeled tree score as:

spx, tq “ spx,yq ` logP pr | x,yq (11)

In this way, the numerator is exactly the summa-
tion of exponential scores of all legal labeled trees.3

3It is noteworthy that we do not assign any label to h Ñ
m P y while h R tx0, pu, i.e., any dependency inside an
argument span, thus its logarithmic label probability is set to
0 and does not contribute to tree scoring.
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R-COMB : COMB :
h ă m ď i

Dy, h Ñ m P y,

Drh˚,i if x0 Ñ h P y

s ď i ă m

h m

Ih,m

m i

Cm,i

h i

Ch,i

s i

Cs,i

i` 1 m

Cm,i`1

s m

Ss,m

R-LINK : R-LINK2 :
h ă m

Dy, h Ñ m P y

h ă s ă m

Dy, h Ñ m P y,

h Ñ s,m Ę y if x0 Ñ h P y

h h

Ch,h

h` 1 m

Cm,h`1

h m

Ih,m

h s

Ih,s

s m

Ss,m

h m

Ih,m

Figure 3: Deduction rules for our span-constrained In-
side algorithm (R-COMB and R-LINK) and its second-
order extension (COMB and R-LINK2). Our modified
rule constraints are highlighted in green color. The con-
dition x0 Ñ h P y means h is a predicate with x0 as
the parent. rh˚,i denotes an argument span that takes h
as the predicate and ends with i. We show only R-rules,
omitting the symmetric L-rules as well as initial condi-
tions for brevity.

This differs from the traditional case of partial tree
learning (Li et al., 2016) from two perspectives
where the common Inside algorithm is not ade-
quate to: 1) we impose span constraints to force
the converted latent subtrees to reflect argument
spans, and 2) we require the subtree ought to be
single-rooted at one potential headword in the span.

To resolve this, in this work, we propose a
span-constrained Inside algorithm to accommodate
these constraints. We illustrate the deduction rules
(Pereira and Warren, 1983) of our tailored algo-
rithm and its second-order extension in Fig. 3.4

Basically, we avoid the arc h Ñ m crossing dif-
ferent argument spans by prohibiting merging to
the relevant incomplete span Ih,m (R-LINK). To
prevent multiple headwords in the same argument,
inspired by Zhang et al. (2021a), for predicate h,
we only allow merging to the complete span Ch,i
if i is at the endpoint of an argument (R-COMB).

4We refer interested readers to § B for more details on the
exact meaning of the operations in the Inside algorithm.

#Train #Dev #Test #OOD #roles
CONLL05 39,832 1,346 2,416 2,399 54
CONLL12 75,187 9,603 9,479 - 63

Table 1: Data statistics for CoNLL05 and CoNLL12
datasets.

For the second-order case, we further prohibit the
subtree h Ñ s,m once s and m are located in the
same argument (R-LINK2), since this case implies
that the argument can be split into two more smaller
headed spans with respect to s and m, which is not
what we expect.

Time complexity analysis The proposed span-
constrained Inside shares the same asymptotic time
complexity of Opn3q as its canonical counterpart
(Eisner, 2000). Besides, we draw on the recent
development of parallelization techniques (Eisner,
2016; Zhang et al., 2020; Rush, 2020) and fur-
ther reduce the complexity of the parallelized al-
gorithm to Opn2q on GPUs. In practice, we find
that our models are efficient enough compared to
BIO-based and Span-based models. We make com-
prehensive speed comparisons in § 4.3.

4 Experiments

We measure our proposed first-order CRF and
second-order CRF2O models on two SRL bench-
marks: CoNLL05 and CoNLL12. Full implemen-
tation details are given in § A.

Data Table 1 lists the statistics of the datasets.
For CoNLL05, we follow standard splits of Car-
reras and Màrquez (2005): sections 02-21 of WSJ
corpus as Train data, section 24/23 as Dev/Test data,
and three sections (CK01-03) of the Brown corpus
as out-of-domain (OOD) data. For CoNLL12, fol-
lowing He et al. (2018a), we extract data from
OntoNotes (Pradhan et al., 2013) and follow the
data splits of the CoNLL12 shared task (Pradhan
et al., 2012).5 We adopt the same splits for both
end-to-end and w/ gold predicates settings. We use
the official scripts provided by CoNLL05 shared
task6 for evaluation.

4.1 Main results

Table 2 gives our main results. By default, our mod-
els work in an end-to-end fashion, i.e., predicting

5The list of file IDs for Train/Dev/Test data is available on
the task webpage.

6https://www.cs.upc.edu/~srlconll
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CoNLL05 CoNLL12
Dev WSJ Brown Dev Test
F1 P R F1 P R F1 F1 P R F1

He et al. (2017) 80.30 80.20 82.30 81.20 67.60 69.60 68.50 75.50 78.60 75.10 76.80
He et al. (2018a) 81.60 81.20 83.90 82.50 69.70 71.90 70.80 79.40 79.40 80.10 79.80
Li et al. (2019) - - - 83.00 - - - - - - -
Zhou et al. (2020a) 82.27 - - - - - - - - - -
CRF 83.70 83.18 85.38 84.27 70.40 72.97 71.66 81.03 79.47 82.80 81.10
CRF2O 83.91 83.26 86.20 84.71 70.70 74.16 72.39 81.16 79.27 83.24 81.21
Li et al. (2019)ELMo - 85.20 87.50 86.30 74.70 78.10 76.40 - 84.90 81.40 83.10
Zhou et al. (2022)BERT 86.79 87.15 88.44 87.79 79.44 80.85 80.14 84.74 83.91 85.61 84.75
CRFBERT 86.82 86.98 88.28 87.63 79.19 80.92 80.05 85.35 84.47 86.24 85.35
CRF2OBERT 87.03 87.00 88.76 87.87 79.08 81.50 80.27 85.53 84.53 86.41 85.45
CRFRoBERTa 87.31 87.20 88.67 87.93 79.29 81.48 80.38 86.08 84.98 86.86 85.91
CRF2ORoBERTa 87.46 87.35 89.34 88.33 79.95 82.32 81.12 86.34 85.30 87.02 86.15

w/ gold predicates
He et al. (2017) 81.60 83.10 83.00 83.10 72.90 71.40 72.10 81.50 81.70 81.60 81.70
Ouchi et al. (2018) 82.50 84.70 82.30 83.50 76.00 70.40 73.10 82.90 84.40 81.70 83.00
Tan et al. (2018) 83.10 84.50 85.20 84.80 73.50 74.60 74.10 82.90 81.90 83.60 82.70
Strubell et al. (2018) - 84.70 84.24 84.47 73.89 72.39 73.13 - - - -
Zhou et al. (2020a) 83.16 - - - - - - - - - -
Zhang et al. (2021b) 84.45 85.30 85.17 85.23 74.98 73.85 74.41 82.83 83.09 83.71 83.40
CRF 84.42 85.38 85.56 85.47 75.05 74.05 74.55 83.22 83.21 83.85 83.53
CRF2O 84.65 85.47 86.40 85.93 74.92 75.00 74.96 83.39 83.02 84.31 83.66
Strubell et al. (2018)ELMo 85.26 86.21 85.98 86.09 77.10 75.61 76.35 83.23 84.39 82.21 83.28
Shi and Lin (2019)BERT - 88.60 89.00 88.80 81.90 82.10 82.00 - 85.90 87.00 86.50
Jindal et al. (2020)BERT - 88.70 88.00 87.90 80.30 80.10 80.20 - 86.30 86.80 86.60
Zhang et al. (2021b)BERT 87.38 87.70 88.15 87.93 81.52 81.36 81.44 86.27 86.00 86.84 86.42
Zhou et al. (2022)BERT 87.54 89.03 88.53 88.78 83.22 81.81 82.51 86.97 87.26 87.05 87.15
Conia and Navigli (2020)BERT - - - - - - - - 86.90 87.70 87.30
Blloshmi et al. (2021)BART - - - - - - - - 87.80 86.80 87.30
CRFBERT 87.76 88.93 88.58 88.76 82.87 81.67 82.27 87.33 87.45 87.56 87.51
CRF2OBERT 88.05 89.00 89.03 89.02 82.81 82.35 82.58 87.52 87.52 87.79 87.66
CRFRoBERTa 88.21 89.29 88.99 89.15 83.22 82.42 82.82 87.97 87.99 88.22 88.11
CRF2ORoBERTa 88.49 89.45 89.63 89.54 83.89 83.39 83.64 88.29 88.11 88.53 88.32

Table 2: Results on CoNLL05 and CoNLL12 data. All results are averaged over 4 runs with different random seeds.

all predicates and their associated arguments simul-
taneously. However, we note that reporting the
results of using gold predicates is a more prevalent
practice in the SRL community (He et al., 2018a;
Shi and Lin, 2019). Therefore, for comprehensive
comparisons, in addition to listing most end-to-end
results of previous works we are aware of, we also
conduct experiments with gold predicates, which
is achieved by only parsing trees rooted at the pre-
specified predicates.7

The two major rows show the results of end-
to-end and w/ gold predicates settings, indicating
very consistent trends. We can clearly see that un-
der the end-to-end setting, our LSTM-based CRF

models outperform previous works by a large mar-
gin on all datasets. The second-order CRF2O fur-
ther improves over CRF by 0.2, 0.4 and 0.7 F1

7We eliminate the invalid x0 Ñ p simply via setting the
dependency score to ´8.

scores on three CoNLL05 datasets, respectively.
On CoNLL12, CRF2O shows smaller but steady
gains. As revealed in § 4.2, we attribute the im-
provements brought by CRF and CRF2O to better
performing at global consistency and long-range
dependencies.

The results under the w/ gold predicates setting
are presented in the second major row. Many PLM-
based results comparable to ours are available in
this setting. Among them, the BIO-based parser of
Shi and Lin (2019) achieves 88.8, 82.0 and 86.5 F1

scores on CoNLL05 WSJ, Brown and CoNLL12
Test data. The dependency (word)-based parser
of Zhou et al. (2022) achieves 88.78, 82.51 and
87.15 F1 scores. Meanwhile, the results of our
first-order CRF model with BERT is 88.76˘0.18,
82.27˘0.26 and 87.51˘0.11. The performance gap
between CRF and recent state-of-the-art parsers
are negligibly small. We note that we do not uti-
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Dev Test
P R F1 CM F1 CM

BIO 86.80 86.38 86.59 69.24 88.22 71.95
SPAN 87.68 86.75 87.21 68.43 88.44 70.22
CRF 87.89 87.62 87.76 71.59 88.76 73.01

FIRST 87.44 86.60 87.02 70.35 87.81 71.14
LAST 86.99 87.00 86.99 70.29 87.67 71.08
FLAT 85.63 82.26 83.91 63.41 83.32 62.22

CRF2O 88.02 88.09 88.05 72.57 89.02 73.74

Table 3: Finetuning results on CoNLL05 Dev and Test
data under the setting of w/ gold predicates.

lize any word/predicate embeddings as well as
LSTM layers for simplicity, which may potentially
hinder the results. Despite this fact, our second-
order CRF2O achieves 89.02˘0.17, 82.58˘0.47, and
87.66˘0.05, which outperforms the systems of Shi
and Lin (2019) by 0.2, 0.6 and 1.2 F1 scores and
achieves new state-of-the-art on both CoNLL05
and CoNLL12 datasets. This implies that imposing
stronger structure constraints can still bring remark-
able improvements for span-style SRL even when
empowered with very expressive encoders. In the
bottom lines, we provide the results of utilizing
RoBERTa, we can see that CRF and CRF2O aug-
mented with RoBERTa can obtain further gains on
top of BERT.

We highlight that we do not include any syntax-
aware work (Xia et al., 2019; Zhou et al., 2020a)
in Table 2, which has shown to deliver substantial
gains for SRL (see further discussions in § C). It
is still an open question to be investigated whether
the benefits brought by our methods are orthogonal
to linguistic syntax knowledge. We focus on pure
syntax-agnostic models in this paper. So we do not
list the results of this line of works in order to make
fair comparisons.

4.2 Analysis

To better understand which empowers our proposed
CRF and CRF2O and in what aspects they are help-
ful, we conduct detailed analyses on CoNLL05 Dev
data. Considering that there exist many differences
in model/training settings, we re-implemented the
following two methods based on two widely used
libraries HanLP8 (He and Choi, 2021) and SuPar9

for fair comparisons:
• BIO: BIO-based method of Zhou and Xu (2015).

Following Zhang et al. (2021b), we employ
linear-chain CRF (Lafferty et al., 2001) to con-
8https://github.com/hankcs/HanLP
9https://github.com/yzhangcs/parser

duct global inference during training.
• SPAN: span-based method of He et al. (2018a).

We borrow the settings of Strubell et al. (2018)
and make use of Biaffine layers for span scoring.

We adopt the same experimental setups for all im-
plementations, i.e., finetuning on BERT and assum-
ing all predicates are given. Results are shown in
Table 3. It is clear that under the same settings, our
CRF expands the advantages over BIO and SPAN,
and CRF2O further improves the performance.

Impact of latent subtrees First of all, we con-
sider three variants of our first-order CRF to verify
the necessity of modeling arguments as latent trees:
1) FIRST, similar to CRF but always takes the first
word as argument headword; 2) LAST, denoting the
last word accordingly; 3) FLAT, similar to FIRST

but directly attach other argument words to the first
word. The first two variants fix the position of argu-
ment headwords. In Table 3, we observe that FIRST

and LAST perform quite similarly and steadily infe-
rior to CRF. This agrees with Zhang et al. (2021b),
highlighting the importance of headwords in rec-
ognizing arguments. In contrast to CRF, FLAT

completely excludes latent representations during
training and restricts the height of the converted
trees to 2. We can see that FLAT achieves 83.91 F1

on Dev, a dramatic performance drop against CRF

(87.76). Overall, as we expect, it seems that totally
latent argument representations empower CRF a
lot, performing best compared to other variants.

Structural consistency To quantify the benefits
of our methods in making global decisions for SRL
structures, we report the percentage of completely
correct predicates (CM) (He et al., 2018a) in Ta-
ble 3. We show that BIO with linear-chain CRF
significantly outperforms SPAN, but still falls short
of our CRF by 1.5. By explicitly modeling sibling
information, CRF2O provides stronger structure
constraints and goes further beyond CRF by 0.9.
In terms of the performance broken down by argu-
ment length, as shown in Fig. 4a, SPAN lags largely
behind BIO over lengthě8. We guess this is mainly
because of their aggressive argument pruning strat-
egy. And as expected, CRF and CRF2O demon-
strate steady improvements over BIO and SPAN.
We owe this to the superiority of our formulations
in modeling subtree structures, thus providing more
powerful argument representations and rich inter-
and intra-argument dependency interactions.
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Figure 4: F1 scores breakdown by argument length
(Fig. 4a) and predicate-argument distance (Fig. 4b).

Long-range dependencies Fig. 4b shows the re-
sults broken down by predicate-argument distance.
It is clear that the gaps between BIO and other meth-
ods become larger as the distance increases. This
is reasonable since BIO lacks explicit connections
for non-adjacent predicate-argument pairs, whereas
ours provides direct word-to-word bilexical map-
pings. SPAN shows competitive results but is still
inferior to ours. we speculate this is due to their
inferiority in ultra-long arguments, as illustrated in
Fig. 4a.

4.3 Efficiency

Table 4 compares different models in terms of pars-
ing speed. We obtain the speed of previous works
by rerunning their released code. For fair compar-
isons, all models are run on Intel Xeon E5-2650 v4
CPU and Nvidia GeForce GTX 1080 Ti GPU, and
do not use any PLM layers.

We can clearly see that our CRF and CRF2O can
parse about 242 and 214 sentences per second re-
spectively, much faster than all previous works. In
line with Strubell et al. (2018), our CRF and CRF2O

consume 5,000 tokens (roughly 200 sentences) per
mini-batch. However, Strubell et al. (2018) use up
to 12 Transformer layers, much deeper than our
3-layer BiLSTM encoder. This explains their less
efficiency from the side, as encoder layers might
take up a major part of the running time, while
the relative more efficient Viterbi decoding does
not dominate the time-consuming. Moreover, our
models are based on highly parallelized implemen-
tations (Zhang et al., 2020). We speculate that the
model speed of Strubell et al. (2018) can be further
improved with dedicated optimization. As for He
et al. (2018a); Li et al. (2019), we adopt their de-
fault setting of 40 sentences per batch. They need
to obtain the representations of all candidate argu-
ment spans, leading to high GPU memory usage.
This limits us to enlarge the batch size further and

Sents/s
Strubell et al. (2018) BIO 50
He et al. (2018a) SPAN 49
Li et al. (2019) SPAN 20

Ours

CRF 242
CRF2O 214
CRFBERT 136
CRF2OBERT 113

Table 4: Speed comparison on CoNLL05 Test data. We
also list the speed of our TreeCRF models using BERT
(CRFBERT and CRF2OBERT).

significantly slows down the parsing speed. In the
bottom lines of Table 4, we can see that our CRF

and CRF2O enhanced with BERT achieve speeds
of 136 and 113 sentences per second respectively.
Overall, we can conclude that our proposed CRF

and CRF2O are efficient enough and readily appli-
cable to real-life systems.

5 Related Works

Span-style SRL Pioneered by Gildea and Juraf-
sky (2000), syntax has long been considered indis-
pensable for span-style SRL (Punyakanok et al.,
2008). With the advent of the neural network era,
syntax-agnostic models make remarkable progress
(Zhou and Xu, 2015; Tan et al., 2018; Cai et al.,
2018), mainly owing to powerful model architec-
tures like BiLSTM (Gal and Ghahramani, 2016)
or Transformer (Vaswani et al., 2017). Meanwhile,
other researchers also pay attention to the utiliza-
tion of syntax trees, including serving as guidance
for argument pruning (He et al., 2018b), as input
features (Marcheggiani and Titov, 2017; Xia et al.,
2019; Mohammadshahi and Henderson, 2021), or
as supervisions for joint learning (Swayamdipta
et al., 2018). However, to our best knowledge, very
few works have been devoted to mining internal
structures of shallow SRL representations. As ex-
ceptions, He et al. (2018a); Zhang et al. (2021b)
take into account headwords while recognizing ar-
guments. Beyond this, this work proposes to model
full argument subtree structures rather than merely
headwords and find more competitive results.

Parsing with latent variables Henderson et al.
(2008, 2013) design a latent variable model to de-
liver syntactic and semantic interactions under the
setting of joint learning. In more common situa-
tions where gold treebanks may lack, Naradowsky
et al. (2012); Gormley et al. (2014) use LBP for
the inference of semantic graphs and treat latent
trees as global factors (Smith and Eisner, 2008)
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to provide soft beliefs for reasonable predicate-
arguments structures. This work differs in that
we make hard constraints on syntax tree structures
to conform to the SRL structures, and take only
subtrees attached to predicates as latent variables.
The intuition behind latent tree models (Meila and
Jordan, 2000; Chu et al., 2017; Kim et al., 2017) is
to utilize tree structures to provide rich structural in-
teractions for problems with prohibitive high com-
plexity. This idea is also common in many other
NLP tasks like text summarization (Liu and Lapata,
2018), sequence labeling (Zhou et al., 2020d), and
AMR parsing (Zhou et al., 2020c).

Reduction to tree parsing Researchers have in-
vestigated several ways to recover SRL structures
from tree structures, due to their high coupling na-
ture (Palmer et al., 2005). Early efforts of Cohn
and Blunsom (2005) derive predicate-arguments
from pruned phrase structures by using a CKY-
style TreeCRF to learn parameters. Johansson and
Nugues (2008a) and Choi and Palmer (2010) in-
vestigate retrieving semantic boundaries from de-
pendency outputs. Their devised heuristics rely
heavily on the quality of output trees, leading to
inferior results. Our reduction is also inspired by
works on other NLP tasks, including named entity
recognition (NER) (Yu et al., 2020), nested NER
(Fu et al., 2021; Lou et al., 2022), semantic pars-
ing (Sun et al., 2017; Jiang et al., 2019), and EUD
parsing (Anderson and Gómez-Rodríguez, 2021).
As the most relevant work, Shi et al. (2020) also
propose to reduce SRL to syntactic dependency
parsing by integrating syntactic-semantic relations
into a single dependency tree by means of joint la-
bels. However, their approach shows non-improved
results, possibly due to the label sparsity problem
and high back-and-forth conversion loss. Also, they
use gold treebank supervisions, while ours does not
rely on any hand-annotated syntax data.

6 Discussions and Future Works

The basic idea of this work is to mimic SRL struc-
tures with a combination of multiple latent trees.
This new perspective sheds light on some natu-
ral extensions of our work to other tightly related
semantic parsing tasks, e.g., AMR (Zhang et al.,
2019a) and UCCA (Jiang et al., 2019).10 Tasks
fall into this type exhibit very flexible graph rep-
resentation schemes (e.g., reentrancy and disconti-

10We thank an anonymous reviewer for pointing out the
connection.

nuity) (Zhang et al., 2019b), which are intractable
by principled decoding algorithms like dynamic
programming. We believe that employing struc-
tured inference in spirit of our approaches can
provide considerable help in getting rid of greedy
span/dependency selections and finding globally
optimal structures.

We prefer to reduce SRL to dependency-based
tree parsing rather than another paradigm, i.e.,
constituency parsing, partly because dependen-
cies provide a more transparent bilexical governor-
dependent encoding of predicate-argument rela-
tions (Hacioglu, 2004). We also do not pursue the
way of jointly modeling dependencies and phrasal
structures with lexicalized trees (Eisner and Satta,
1999; Yang and Tu, 2022; Lou et al., 2022) as our
approach enjoys a lower time complexity of Opn3q.
Nonetheless, we admit potential advantages of this
kind of modeling (Liu et al., 2022) and leave this
as our future work.

There are other interesting perspectives deserve
further explorations: given that span-style SRL sub-
stantially benefits from our formulation of recover-
ing SRL structures from trees, can the induced de-
pendency trees learn plausible syntactic structures?
Or in other words, can they agree with linguistic-
motivated annotations (Marcus et al., 1993)? We
conduct thorough analyses in spirit of Gormley
et al. (2014); Li et al. (2021) and give affirmative
answers. Due to space limitations, we refer readers
to § D and § E for details.

7 Conclusions

In this paper, we propose to reduce span-style SRL
to dependency parsing by viewing flat phrasal argu-
ments as latent subtrees, and design a novel span-
constrained TreeCRF to accommodate the span
structures. Taking inspirations from the parsing lit-
erature, we also build a second-order extension and
find further gains. Our models are syntax-agnostic
and do not rely on any external linguistic syntax
knowledge. Experimental results show that, our
proposed methods outperform all previous compa-
rable works, achieving new state-of-the-art on both
CoNLL05 and CoNLL12 benchmarks. Extensive
analyses confirm that our approach enjoys some
merits of global structural constraints, meanwhile
maintaining acceptable time complexity. Further-
more, we find our modeling of latent subtrees pro-
vides effective assistance in terms of long-range
dependencies and global consistency.
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Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martí, Lluís
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
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A Implementation Details

In this work, we set up two alternative model ar-
chitectures, i.e, LSTM-based and PLM-based. For
the LSTM-based model, we directly adopt most
settings of Dozat and Manning (2017) with some
adaptions. The input vector of each token xi P x
is the concatenation of three parts,

ei “
”
ewordi ; elemma

i ; echari

ı

where ewordi and elemma
i are word and lemma em-

beddings, and echari is the outputs of a CharLSTM
layer (Lample et al., 2016). We set the dimension
of lemma and CharLSTM representations to 100 in
our setting. We next feed the input embeddings into
3-layer BiLSTMs (Gal and Ghahramani, 2016) to
get contextualized representations with dimension
800.

h0,h1, . . . ,hn “ BiLSTMspe0, e1, . . . , enq
Other dimension settings are kept the same as bi-
affine parser (Dozat and Manning, 2017). Follow-
ing Zhang et al. (2020), we set the hidden size of
Triaffine layer to 100 for CRF2O additionally. The
training process continues at most 1,000 epochs
and is early stopped if the performance on Dev
data does not increase in 100 consecutive epochs.
In practice, we observe that the training procedure
is often stopped within 300 epochs („12 hours),
which is efficient enough.

For PLM-based models, we opt to directly fine-
tune the PLM layers without cascading word em-
bedding and LSTM layers for the sake of simplicity.
We use “bert-large-cased” for BERT, and
“roberta-large” for RoBERTa respectively.
We train the model for 20 epochs with roughly
1,000 tokens per batch and use AdamW (Kingma
and Ba, 2015; Loshchilov and Hutter, 2019) with
β1 “ 0.9, β2 “ 0.9 and λ “ 0 for parameter opti-
mization . The learning rate is 5 ˆ 10´5 for PLMs,

Algorithm 1 The Second-order Inside Algorithm.
1: Define: I, S, C P Rnˆnˆb
2: � b is batch size
3: Initialize: Ci,i “ 0, 0 ď i ď n
4: for w “ 1 to n do � span width
5: Parallelization on 0 ď i; j “ i` w ď n

6:

Ii,j Ð logpexppCi,i ` Cj,i`1q
`

ÿ

iărăj
exppIi,r ` Sr,j ` spi, r, jqqq

` spi, jq

7:

Ij,i Ð logpexppCj,j ` Ci,j´1q
`

ÿ

iărăj
exppIj,r ` Sr,i ` spi, r, jqqq

` spj, iq
8: Si,j Ð log

ř
iďrăj exppCi,r ` Cj,r`1q

9: Ci,j Ð log
ř
iărďj exppIi,r ` Cr,jq

10: Cj,i Ð log
ř
iďrăj exppIj,r ` Cr,iq

11: end for
12: return C0,n

and 10´3 for the rest components. We adopt the
warmup strategy in the first 10% of the training
steps, and then apply a linear decay to the learning
rate in the remaining steps.

B The Inside Algorithm

We give the pseudocode of the common second-
order Inside algorithm (McDonald and Pereira,
2006) in Alg. 1 as additional explanations to
Fig. 3. The difference between the common second-
order Inside algorithm and our proposed span-
constrained one lies in the rule constraints green
highlighted in Fig. 3.

In Line 3, Ci,i corresponds to the axiom items

i i
with initial score 0. Line 6 corresponds to

two merge operations in Fig. 3. The incomplete

span Ii,j (
i j ) is obtained by summing over ei-

ther all pairs of complete span Ci,i and Cj,i`1 (R-
LINK) or pairs of the incomplete span Ii,r and
the sibling span Sj,r (R-LINK2). In Line 8, the

sibling span Si,j (
i j

) is obtained by summing

over all pairs of complete span Ci,r and Cj,r`1

(COMB). Line 9 describes the similar merging op-
eration on all pairs of the incomplete span Ii,r and
the complete span Cr,j , resulting a complete span
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WSJ Brown
P R F1 P R F1

SA♢ 84.17 83.28 83.72 72.98 70.10 71.51
SA♢

ELMo 86.21 85.98 86.09 77.10 75.61 76.35
G2G♣

BERT 86.40 87.79 87.08 78.76 80.06 79.40
LIMIT♣

BERT 86.62 89.12 87.85 79.58 83.05 81.28
ParsingAll♣BERT 86.77 88.49 87.62 79.06 81.67 80.34
ParsingAll♣XLNet 87.65 89.66 88.64 80.77 83.92 82.31
CRFBERT 86.98 88.28 87.63 79.19 80.92 80.05
CRF2OBERT 87.00 88.76 87.87 79.08 81.50 80.27
CRFRoBERTa 87.20 88.67 87.93 79.29 81.48 80.38
CRF2ORoBERTa 87.35 89.34 88.33 79.95 82.32 81.12

w/ gold predicates
ParsingAll♣BERT 89.04 88.79 88.91 81.89 80.98 81.43
ParsingAll♣XLNet 89.89 89.74 89.81 85.35 84.57 84.96
TANL♢

T5 - - 89.30 - - 82.00
CRFBERT 88.93 88.58 88.76 82.87 81.67 82.27
CRF2OBERT 89.00 89.03 89.02 82.81 82.35 82.58
CRFRoBERTa 89.29 88.99 89.15 83.22 82.42 82.82
CRF2ORoBERTa 89.45 89.63 89.54 83.89 83.39 83.64

Table 5: Comparisons with other less comparable works
on CoNLL05 WSJ and Brown data. ♣ means using lin-
guistic syntax knowledge; ♢ means different evaluation
methods. SA: Strubell et al. (2018); ParsingAll: Zhou
et al. (2020a); LIMIT: Zhou et al. (2020b); G2G: Mo-
hammadshahi and Henderson (2021); TANL: Paolini
et al. (2021).

Ci,j (
i j

) (R-COMB). Line 7 and Line 10 is

the symmetric L-rules, which are omitted in Fig. 3.

C More Comparisons

In Table 5, for reference, we list the results of some
works with different experimental settings and
therefore less comparable. For example, Paolini
et al. (2021) and Strubell et al. (2018)11 adopt
different evaluation metrics, resulting in slightly
higher F1 values than official tools. Nonetheless,
we find that our CRF2O with RoBERTa achieves
89.54 F1 on WSJ data under the w/ gold pred-
icates setting, showing very competitive results
when compared with T5-based model of Paolini
et al. (2021). Zhou et al. (2020a) propose a
joint-learning framework, integrating both (de-
pendency/constituency) syntactic parse trees and
dependency-based SRL resources to enhance their
models. Their ablation studies show that using syn-
tax trees brought an overall improvement of 1.6
F1 score on CoNLL05 Dev data. We believe that

11Under the end-to-end setting, different from the standard
pratice (He et al., 2018a), Strubell et al. (2018) only ran the
evaluation tool once, resulting in slightly higher precision
values. See discussions in their code issue.

P R F1

CRF 75.28 75.24 75.26
CRFBERT 84.70 84.39 84.54

w/ gold syntax
Johansson and Nugues (2008c) - - 84.32
Li et al. (2019)ELMo - - 89.20
CRFBERT 93.56 93.22 93.39

Table 6: Results for dependency-based evaluation on
CoNLL09 Test data under w/o. and w/ gold syntax
settings.

we could achieve similar or even higher results
than their syntax-aware XLNet-based models by
incorporating human-annotated syntax knowledge.
However, exploring different ways of injecting syn-
tax is not the core of this paper. We take this as our
future work.

D Dependency-based evaluation

Observing that our CRF model can conveniently
determine dependencies from predicates to span
headwords as by-products of constructing argu-
ments, we therefore conduct dependency-based
evaluation on CoNLL09 Test data (Hajič et al.,
2009) to measure the quality of induced depen-
dencies. As CoNLL09 data shares the same text
content with CoNLL05, we directly make use of
the model trained on CoNLL05 to obtain the re-
sults of CoNLL09 Test. Following Johansson and
Nugues (2008b); Li et al. (2019), we also compare
our CRF outputs with the upper bound of utilizing
gold syntax tree to determine the headwords of pre-
dicted arguments. Since CoNLL05 contains only
verbal predicates, we discard all nominal predicate-
argument structures under the guidance of POS
tags starting with N*. Word senses and self-loops
are removed as well.

Results are listed in Table 6, from which we
can draw some observations: 1) after using BERT,
CRF outperforms LSTM-based model (75.26) by
a large margin, implying BERT provides fruitful
prior knowledge for dependency induction; 2) our
CRF with BERT achieves 84.54 F1 on CoNLL09
Test, exhibiting very promising performance even
when compared to models using gold syntax (Jo-
hansson and Nugues, 2008b; Li et al., 2019). This
indicates that the dependencies induced by CRF are
highly in line with gold dependency-based annota-
tions, illuminating potential extensions of our work
on supervised dependency-based SRL.
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Rules Models WSJ

Stanford

NL-PCFGs (Zhu et al., 2020) 40.5
NBL-PCFGs (Yang et al., 2021) 39.1
StructFormer (Shen et al., 2021) 46.2
CRF 48.0
CRFBERT 65.4

w/ gold POS tags (for reference)

Collins

DMV (Klein and Manning, 2004) 39.4
MaxEnc (Le and Zuidema, 2015) 65.8
NDMV (Jiang et al., 2016) 57.6
CRFAE (Cai et al., 2017) 55.7
L-NDMV (Han et al., 2017) 59.5
NDMV2o (Yang et al., 2020) 67.5

Table 7: Grammar induction results of our CRF model
under different head-finding rules.

E Grammar Induction

To gain further insights, we make use of the scores
defined in Eq. 5 to extract full dependency tree
structures. Surprisingly, we find they are highly in
agreement with expert-designed grammars (Mar-
cus et al., 1993) when examined on the grammar
induction task (Klein and Manning, 2004).

We show precise grammar induction results in
Table 7. The results are not comparable to typical
methods like DMV (Klein and Manning, 2004)
or CRFAE (Cai et al., 2017), as they use gold
POS tags as guidance, and we use Stanford Depen-
dencies rather than Collins rules (Collins, 2003).
Under similar settings, however, our learned task-
specific trees perform significantly better than re-
cent works.

Another interesting observation is that the gap
between the BERT-based model and the LSTM-
based model is much larger than that on SRL re-
sults. This implies LSTMs tend to be more fitted
to SRL structures, while BERT is able to provide a
strong inductive bias for syntax induction.
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Abstract

Training with noisy labelled data is known to be
detrimental to model performance, especially
for high-capacity neural network models in low-
resource domains. Our experiments suggest
that standard regularisation strategies, such as
weight decay and dropout, are ineffective in
the face of noisy labels. We propose a simple
noisy label detection method that prevents error
propagation from the input layer. The approach
is based on the observation that the projection
of noisy labels is learned through memorisa-
tion at advanced stages of learning, and that
the Pearson correlation is sensitive to outliers.
Extensive experiments over real-world human-
disagreement annotations as well as randomly-
corrupted and data-augmented labels, across
various tasks and domains, demonstrate that our
method is effective, regularising noisy labels
and improving generalisation performance.

1 Introduction

Modern deep neural networks (DNNs) have mil-
lions or billions of trainable parameters, far more
than the number of examples they are trained on.
To avoid over-fitting, they are heavily reliant on
large-scale training, including data derived through
methods such as self supervision, data augmenta-
tion, and self labelling (Devlin et al., 2019; Wei
and Zou, 2019; Wang et al., 2020c). However, such
methods inevitably introduce noise, through biased
data, unnatural inputs, or incorrect labels.

Weak perturbations applied to inputs can im-
prove model performance by forcing DNNs to
learn noise-invariant latent representations (Tang
and Eliasmith, 2010; Goodfellow et al., 2016). But
training with noisy labels has been shown to be
detrimental to generalisation performance across
tasks including image classification (Tanaka et al.,
2018), dialogue generation (Akama et al., 2020),
and entity–relation extraction (Chen et al., 2020).
DNNs fit noisy labels by “memorising” each ex-

ample — over-fitting corrupted training sets, and
yielding poor generalisation (Arpit et al., 2017).

Given this background, our focus in this paper
is on how to alleviate memorisation and improve
generalisation when training with noisy labels. Pre-
vious related work has proposed three directions:
(1) regularisation techniques (Arpit et al., 2017); (2)
augmenting the loss function with an explicit rep-
resentation of the distribution of noise (Sukhbaatar
et al., 2015; Patrini et al., 2017); and (3) explicit de-
tection of noisy labels (Tanaka et al., 2018; Nguyen
et al., 2020; Lee and Chung, 2020; Desmond et al.,
2020). However, the vast majority of this work has
focused on classification tasks, and there has been
very little work in the context of regression tasks
and low-resource domains. In this work, we fill the
gap by targeting noisy label regularisation for text
regression, in the form of semantic text similarity
(STS), sentiment analysis, and machine translation
quality assessment.

Our work makes three contributions: (1) em-
pirical clarification of the role of explicit regu-
larisation in noisy label training in a regression
setting; (2) proposal of an effective noisy la-
bel detection method for continuous labels; and
(3) extensive experiments across various regres-
sion tasks under both real-world and synthetic
noisy labels, including state-of-the-art results on
MedSTS. The code associated with this paper
is available at: https://github.com/yuxiaw/

Regularise-Regression-Noisy-Labels.

2 Related Work

2.1 Regularisation of Noisy Labels in
Classification Settings

Regularisation: Explicit regularisation techniques
such as dropout, weight decay, or data augmenta-
tion can help to alleviate over-fitting, improving
model generalisation (Arpit et al., 2017; Tanaka
et al., 2018). They do not, however, prevent classi-
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fier degradation caused by noisy labels (Harutyun-
yan et al., 2020). Gradient descent with early stop-
ping and its variants are provably robust to noisy
labels (Li et al., 2020; Hu et al., 2020). While
empirically verified to be effective for image clas-
sification, their performance in textual regression
tasks is unknown.

Noise Distribution Matrix: An alternative ap-
proach is to correct the loss function with a noise
distribution transition matrix (Sukhbaatar et al.,
2015; Patrini et al., 2017; Yao et al., 2019; Tanno
et al., 2019). Formally, let l and lGT be the noisy
and ground-truth labels. The noise transition matrix
T is defined as tij = p(l = j|lGT = i), where the
element of the i-th row and the j-th column tij repre-
sents the probability of mis-annotating golden class
i to incorrect label j. The cross entropy loss is mod-
ified to L(θ, X, Y ) = 1

n

∑n
n=1 log(y

⊺
i s(θ,xi)),

where s(θ, ·) is the classifier. In classification tasks,
the probability of misclassification between classes
p(l = j|lGT = i) is well-defined. However, it is
not clear how to define the matrix T for continuous
output variables in a regression setting.

Noisy Label Detection has been explored ex-
tensively in classification settings, especially for
images, but has received very little attention for tex-
tual regression problems. Noisy instances are typi-
cally identified based on model prediction (Zheng
et al., 2020; Ye et al., 2021), such as comparing
predicted labels (pseudo-labels) lP with annotated
labels lA during training (Tanaka et al., 2018; Berth-
elot et al., 2019; Nguyen et al., 2020; Lee and
Chung, 2020; Desmond et al., 2020), and the label
distribution confidence (Liu et al., 2020). How-
ever, exact label match (lA = lP ) is too strict a
requirement for regression tasks. We relax the cri-
terion to a range controllable by a threshold τ , i.e.
|lA − lP | < τ . This makes it identical to the loss-
based criterion (lA − lP )2 < τ in regression using
mean-squared error loss (MSE). Specifically, in-
stances that result in small loss can be considered
to be clean (Shen and Sanghavi, 2019).

2.2 Detect Noisy Labels in Regression

To our knowledge, the only research addressing
noisy labels in a textual regression setting is: (1)
Wang et al. (2022), who select high-disagreement
labels using the predictive variance of uncertainty
models; and (2) Takamoto et al. (2020), who iden-
tify outliers based on the absolute difference be-
tween teacher model predictions and target labels.

Noise filtering also relates to data sampling in
active learning. It aims to select the most infor-
mative/useful data points from an unlabelled pool,
leveraging the least labelling effort to reach the best
performance.

Sampling in Active learning: Regression tasks
are also under-researched in the active learning lit-
erature (Elreedy et al., 2019; Zhang et al., 2020).
Cai et al. (2013) sample data associated with the
maximum gradient of the loss function, typically
based on squared error, and Sugiyama (2006) aims
to minimise the conditional expectation of the gen-
eralisation error. These are akin to the loss criteria
in noisy label identification.

Separately, Wu (2019) considers representative-
ness and diversity in initial data collection and
sequential query selection, and Wu and Huang
(2022) select the most beneficial samples to label
based on three emotion primitives: valence, arousal,
and dominance for affect estimation. However,
these methods are too domain-specific to adapt to
general-purpose regression tasks.

3 Task and Datasets

In this paper, we investigate text regression across
three separate tasks, and a total of 10 datasets.

3.1 Tasks
The three tasks we target in this research are STS,
sentiment analysis, and machine translation quality
estimation, which we outline below.

Semantic textual similarity (STS) assesses the
degree of semantic equivalence between two (short)
texts (Corley and Mihalcea, 2005). The aim is
to predict a similarity score for a sentence pair
(S1, S2), generally in the range [0, 5], where 0
indicates complete dissimilarity and 5 indicates
equivalence in meaning. As an example:

S1: Total minutes spent in timed codes: 10 mins.
S2: Total minutes spent in timed codes: 33 mins.

is labelled 4, as the two texts differ only in very
specific content (underlined).

Sentiment analysis (SA) rating involves predict-
ing a sentiment score for a review S, in the range 1
(extremely negative) to 5 (extremely positive).

Machine translation quality estimation, based
on the direct assessment (DA) approach (Graham
et al., 2017), aims to predict a normalised quality
score for text pair (S1, S2), where S2 is machine
translated from S1. As such, it is similar to STS,
but differs in that it is cross-lingual.
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3.2 Datasets

We evaluate on different-sized datasets across vari-
ous domains for STS and SA, and two identically-
sized datasets for DA, as summarised in Table 1.

For STS, we use: three large-scale general
datasets — STS-B (Cer et al., 2017), SICK-R
(Marelli et al., 2014), and STS-G (Wang et al.,
2020c); and two small clinical data sets — Med-
STS (Wang et al., 2018) and N2C2-STS (Wang
et al., 2020a).

For SA, we use: a large-scale product review
dataset — Yelp (Sabnis, 2018); and two small
datasets of movie and paper reviews — 10Movie
(Benlahbib, 2019) and PeerRead (Kang et al.,
2018). We augment 10Movie with 700 examples
from IMDB movie reviews (Maas et al., 2011) (see
Appendix A.1 for details of the label conversion
process), and also augment PeerRead with 399
Spanish paper reviews (Keith et al., 2017) which
we automatically translate into English.

For DA, we employ two language pairs from
WMT2020 (Specia et al., 2020), namely ru-en and
ro-en, which are low- and medium-resource lan-
guage pairs, respectively.

As evaluation metrics, we use Pearson’s corre-
lation (r) and Spearman’s correlation (ρ) between
the predicted and gold standard scores.

3.3 Notation and Loss Function

Throughout this paper, raw examples, column vec-
tors, and matrices are denoted in lower-case italics,
bold, and upper-case italics, respectively (e.g. x,
x and X). θencoder and θreg represent parame-
ters of the transformer encoder and task-specific
regression layers, and f(θ, ·) refers to the whole
model. Assuming a dataset with N instances
D = {(x1, y1), · · · , (xi, yi), · · · , (xN , yN )},
where (xi, yi) is the ith instance of D, yi ∈
[0, 5], xi = s(θencoder, xi) is the embedding
of xi. The loss function is the empirical
risk of the mean square error (MSE): L =
1
N

∑N
i=1 (f(θ, xi)− yi)2.

4 Case Study

We first examine the susceptibility of DNNs to over-
fit random labels (Zhang et al., 2017), based on the
clinical N2C2-STS data set using BERT (Devlin
et al., 2019). Then we conduct ablation experi-
ments using various regularisation techniques, to
observe whether they can reduce the degradation
caused by noisy labels.

Dataset Size (Train, Test, Dev) Range Domain

SICK-R (2014) 4500, 4927, 500 [1, 5] general
STS-B (2017) 5749, 1379, 1500 [0, 5] general
STS-G (2020) 28518, —, — [0, 5] general
MedSTS (2018) 750, 318, — [0, 5] clinical
N2C2-STS (2019) 1642, 412, — [0, 5] clinical

Yelp (2018) 5000, —, — [1,5] product
10Movie+IMDB (2019) 1400, 300, — [1,5] movie
PeerRead+Spanish (2018) 1638, 290, — [1,5] paper

WMT ru-en (2020) 7000, 1000, 1000 [0, 100] low-resource
WMT ro-en (2020) 7000, 1000, 1000 [0, 100] med-resource

Table 1: STS/SA rating/DA datasets. “Train”, “Test”,
“Dev” = number of text pairs; “Range” = label range. In
practice, DA is normalised by z-scoring.

Hypothesis Arpit et al. (2017) empirically
showed that explicit regularisation, especially
dropout coupled with adversarial training, can re-
duce memorisation of noise without reducing a
model’s ability to learn. Zhang et al. (2017), on
the other hand, argued that it is neither necessary
nor sufficient for controlling generalisation error in
deep learning. Overall, explicit regularisation may
improve generalisation performance, but does not
explicitly deal with noisy labels.

4.1 Experiment

Regression Model Structure: The regression
model used here and in Section 6 takes the hid-
den state of the [CLS] token output for the single
sentence or sentence pair from BERT, h ∈ Rd.
This is fed through a two-layer MLP, structured as:

h′ = tanh(Wh+ b) (1)

ŷ = w⊺h′ + b (2)

where ŷ is the predicted score, and W ∈ Rd×d,
b,w ∈ Rd, and b ∈ R are trainable parameters of
task-specific layers, denoted as “CLS-BERT”.

Corrupted Training Set: To generate partially-
noisy training data, we corrupt training set D by
randomly selecting M instances and replacing
their labels with s ∈ [0, 5] sampled from a uni-
form distribution, forming noisy subset Dnoisy,
leaving the clean partition Dclean. Thus the cor-
rupted training set is D′ = Dnoisy ∪Dclean (where
|D| = |D′| = N ).

Experimental Setup: We randomly split the
1,642 instances in the N2C2-STS training set into
1,242 and 400 instances, as training set D and a
validation set. M = α · N is decided by noise
ratio α ∈ {0.2, 0.4, 1.0} to generate three cor-
rupted training sets, denoted corrupt2, corrupt4,
and corrupt10, respectively, with corresponding
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Figure 1: The loss (left) and r (right) on N2C2 train and validation sets over four different degrees of corrupted
training set: clean (D), corrupt2, corrupt4 and corrupt10.

clean partitions denoted as clean2, clean4 and ⊘
below. Note that the same validation set is used for
all experiments in this section and Section 6.1.

The model is trained on bert-base-uncased, op-
timising with a linear scheduler with warmup pro-
portion = 0.1, train batch size = 16, learning rate =
2e-5, and training epochs = 20.

4.1.1 Results
BERT is structured with layer normalisation and
residual connections (He et al., 2016), noting that
pre-training has been shown to be beneficial for
generalisation by alleviating exposure bias. We are
thus interested in whether using pre-trained BERT
is robust to the effects of random noisy labels.

Using the baseline regression model, we fine-
tune over the varyingly-corrupted training sets,
each for 20 epochs. As per Figure 1, training with
noisy labelled data is detrimental to generalisation
performance, and more training exacerbates the
effect, especially for noisier data.

As we increase the amount of noise, the training
loss decreases and the model takes longer to con-
verge. Particularly on fully-corrupted training set
corrupt10, the training loss rises first and then starts
to fit random labels, taking eight epochs to reach
the same training accuracy as the clean set D in
the first epoch. This shows that pre-trained BERT
can reduce fitting to random labels early in training,
and in general slows down convergence. However,
since the random labels are fixed across epochs,
iterating over the training set multiple times leads
to (over)fitting the random labels perfectly.

4.2 Explicit Regularisation

We use the following regularisation techniques:

• Early stop (“ES”): return the trained model
where the lowest validation error is obtained
(based on Pearson’s correlation).

• Weight decay (“WD”): update parameters
by θt = (1 − β)θt−1 − αgt, where β ∈
{0.01, 0.05, 0.1} is a weight decay coefficient,
α is the learning rate, and gt is the gradient at
update step t.

• Dropout (“DP”): replace Eq (1) with h′ =
dropout(tanh(Wh+ b)).

• Data augmentation: perform data augmen-
tation via back translation (“BT”) or segment
reordering (“SR” = randomly permute the or-
der of segments separated by commas or semi-
colons) following Wang et al. (2020b).

• Cross Domain Pre-fine-tuning: fine-tune the
model with general-purpose STS-B (“STSB”)
training set for 3 epochs before fine-tuning on
the clinical STS data.

4.2.1 Results
We present the results in Table 2. Comparing
rows 1 and 2 (no regularisation vs. early stopping),
early stopping improves performance over both
clean and corrupted training data, especially on
corrupt4. Therefore we combine it with the other
strategies. Weight decay (WD) (rows 3–5) has neg-
ligible impact, but markedly improves corrupt2
through dropout and data augmentation (rows 6–8
and 11–13), and corrupt4 through back-translation
(rows 7 and 12). Pre-fine-tuning provides large
gains in accuracy on both clean and corrupted data
sets (row 9), especially coupled with early stopping,
weight decay and dropout (rows 10 and 14).

In sum, explicit regularisation improves gener-
alisation performance, not just on corrupted data
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ID Train set D corrupt2 corrupt4 clean2 clean4
setting r ρ loss r ρ loss r ρ loss r ρ loss r ρ loss

1 baseline .835 .830 0.603 .754 .740 0.858 .639 .636 1.212 .845 .835 0.570 .836 .818 0.598
2 ES .859 .837 0.614 .809 .797 0.710 .762 .724 0.953 .858 .835 0.529 .851 .822 0.592
3 ES + WD (0.01) .857 .835 0.518 .810 .799 0.677 .762 .724 0.953 .854 .835 0.535 .852 .816 0.532
4 ES + WD (0.05) .857 .835 0.613 .818 .805 0.670 .760 .722 0.955 .852 .831 0.559 .853 .818 0.544
5 ES + WD (0.1) .857 .837 0.603 .808 .803 0.680 .769 .731 0.952 .852 .830 0.561 .854 .825 0.569
6 ES + DP .858 .839 0.570 .831 .799 0.717 .758 .726 0.849 .857 .828 0.519 .840 .818 0.626
7 ES + BT .858 .838 0.526 .833 .810 0.673 .775 .734 1.124 .850 .825 0.551 .847 .823 0.650
8 ES + SR .855 .836 0.526 .832 .796 0.615 .761 .749 0.999 .858 .838 0.541 .849 .823 0.630
9 ES + STSB .867 .842 0.491 .846 .817 0.745 .783 .778 0.890 .857 .823 0.533 .852 .822 0.571
10 ES + WD (0.1) + STSB .867 .843 0.488 .850 .822 0.724 .783 .778 0.890 .857 .823 0.531 .852 .822 0.571
11 ES + DP + WD (0.1) .853 .835 0.588 .837 .801 0.679 .756 .737 1.167 .855 .823 0.517 .842 .820 0.622
12 ES + DP + WD (0.1) + BT .859 .833 0.508 .833 .802 0.631 .796 .763 0.949 .843 .830 0.587 .839 .817 0.643
13 ES + DP + WD (0.1) + SR .853 .826 0.538 .833 .787 0.589 .790 .763 1.080 .856 .835 0.524 .834 .812 0.627
14 ES + DP + WD (0.1) + STSB .864 .841 0.520 .848 .823 0.731 .779 .780 0.943 .853 .822 0.561 .845 .813 0.589

Table 2: Averaged loss, r and ρ on N2C2 validation set with various combinations of regularisation techniques (“ES”
= early stopping, “WD” = weight decay, “DP” = dropout, “BT” = data augmentation with back translation, “SR” =
data augmentation with segment reordering, “STSB” = fine-tuning over STS-B), over five different training sets (“D”
= all clean, “corrupt2” = 0.2 corrupted, “corrupt4” = 0.4 corrupted, “clean2” = clean complementary set of corrupt2,
“clean4” = clean complementary set of corrupt4). The best result in each column is bolded.

but on clean data as well. The fact that the best
accuracy is still much worse than training on fully
clean D, and also worse than on their clean compo-
nents, clean2 and clean4, also confirms that explicit
regularisation can’t control the generalisation error
caused by noisy labels. It additionally suggests that
removing noisy examples could lead to improve-
ments, which we verify in Section 5.

5 Noisy Label Detection

We propose a two-step method to identify noisy
labels from training data based on iterative pre-
dictions, followed by three different strategies for
training with noisy examples, namely: (1) DIS:
discard noisy examples; (2) REP: repair noisy la-
bels with pseudo labels; and (3) RES: resample the
same number of instances from the “clean” set, to
make up for discarded noisy examples.

5.1 Prediction criterion

We relax the requirement of exact match between
the pseudo label p̂ and the annotated label y by
measuring the absolute difference, and them to
match if the difference is within a predefined range
|y − p̂| ≤ τ , which is a tuneable hyper-parameter.
The pseudo label is obtained by averaging predic-
tions over multiple training iterations (see line 9 of
Algorithm 1).

If τ is small, precision will be low and recall
of noisy instances will be high, whereas if τ is
large, recall will be low, but precision will be high,
negatively affecting training quality. To achieve
a balance between precision and recall, we use

Algorithm 1 Train on Noisy Labelled Data

1: Input: Training and validation set Dtrain, Dval
2: Dclean ← Dtrain
3: for i in range(1, epochs) do
4: Mi ← train(Dclean)
5: if acc(Mi,Dval) ≥ acc(Mbest,Dval) then
6: Mbest ←Mi

7: end if
8: ŷi ←Mbest(x)

9: obtain pseudo labels p̂i ← 1
i

∑i
j=0 ŷj

10: get noisy candidate set by Prediction Criterion f1
11: Cclean, Cnoise = f1(Dtrain, p̂i, τ)
12: determine noisy set by Pearson Criterion f2
13: Dclean,Dnoise = f2(Cclean, Cnoise,m,K, ε)
14: Dclean by Repairing
15: Dclean ← repair(Dnoise, p̂i) ∪ Dclean
16: Dclean by Resampling
17: Dclean ← sample(Dclean, size(Dnoise)) ∪ Dclean
18: end for
19: Output: Mbest

Pearson’s correlation to assess the “noisiness” of
each noisy candidate, where a relatively small τ
ensures high recall.

5.2 Pearson correlation criterion

In Table 2, we found that the smallest loss did
not always mean the best performance r. The for-
mer is measured for an individual example, while
the latter considers correlation of the combined
set of instances. We therefore propose to use a
summary evaluation metric for selection of noisy
instances, adopting Pearson’s correlation (r) due
to its sensitivity to outliers (Wilcox, 2004; Chok,
2010; Mathur et al., 2020). That is, Pearson corre-
lation is strongly sensitive to linear relationships:
r is maximised when two variables are linearly
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related to each other, whereas Spearman correla-
tion is maximised when two variables are mono-
tonically related, whether the relationship is linear
or not. A single outlier influences the results of
r (Rousselet and Pernet, 2012).

Under this criterion, for each noisy candidate
(x, y) identified by the prediction criterion (line
13), we randomly select m clean examples from
the clean subset Cclean (the training set with noisy
candidates filtered out) and calculate the correlation
r, then add (x, y) to this set and calculate the new
correlation as r′. If a large perturbation is observed
— i.e., |r − r′| > ε, e.g. > 0.01 — x is considered
to be noisy; otherwise it is considered to be clean.

However, when most of the sampled labels are
clustered together with no obvious relationship, r
tends to be unjustified, and when points are dis-
tributed uniformly, the score is fair (see Figure 1
in Rousselet and Pernet (2012)). This is attributed
to the ordinary least square solution: one badly
positioned point can have a dramatic influence on
the results (Hubert et al., 2008). This instability
leads to a less powerful statistical test. To smooth
the number (denote as A), we project A of the
lower-order into higher-order AK by repeating this
process K times. This can mitigate the large vari-
ance and inconsistency in the correlation (Song
et al., 2021). We make the final decision by voting:
only if all K votes agree that the given training
instance is noisy is it removed.

Though the first training epoch is trained on
the whole corrupted training set, it does not im-
pact generalisation significantly, because memo-
rised features are not learned in the early stages
of training. It also benefits domains with limited
training data. That is, even when initialising with
pre-trained weights, the STS model is not accurate
enough to filter noisy labels accurately in the first
iteration, leading to a high percentage of instances
being filtered out and exacerbating data sparsity.

5.3 Time Complexity

In terms of computational efficiency on large-scale
datasets, despite the two-step detection process and
repeatedly calculating Pearson’s correlation crite-
rion K times, time complexity varies linearly —
O(N) × K. This is negligible when compared
with the training time.

6 Experiments

We first evaluate the noise detection method on
two synthetically-corrupted versions of N2C2-STS
(“N2C2”) (corrupt2 and corrupt4), where we have
perfect knowledge of the noisy and clean subset,
and then apply our methods to real-world STS, SA,
and DA datasets, where noisy labels are unknown.

6.1 Train on Randomly Corrupted Data

Setup We employ the optimal combination of
regularisation methods from Section 4 as a strong
baseline, namely row 14 of Table 2 (early stopping
+ dropout + weight decay + pre-fine-tuning), and
set wd = 0.01, tolerance = 0.75, thresholdr =
0.01,K = 5, andm = 8 for noise detection. Other
hyper-parameters are as per Section 4. Experimen-
tal results are averaged over ten runs based on ten
random seeds to account for variance for small test
sets.1

Result We highlight three findings from Table 3:
(1) on randomly corrupted labelled data, noise filter-
ing improves validation performance, particularly
for high-degree corruption, decreasing the gener-
alisation error by a large margin; (2) the strate-
gies of DIS and RES perform largely the same,
better than REP, so we use DIS in most cases in
our following experiments; and (3) precision and
recall at noise detection impact on the end-task
performance, while the second step of Pearson
correlation-based filtering critically improves preci-
sion. For example, after the first training epoch on
corrupt4 with “discard”, precision is 53.82% and
recall is 68.15%, and with the Pearson correlation
filtering the precision improves to 65.98%, leading
to the improvement in row 3.2

Discarding automatically-detected noisy la-
bels can maintain improved performance after
fast convergence. Considering corrupt4 in Fig-
ure 2, we observe that training with noisy labels
for more iterations reduces the validation perfor-
mance, and the loss also peaks. Through discarding
noisy examples by our method during training, the
performance can be improved and maintained, and
the loss correspondingly drops. This finding is es-
pecially vital in the absence of a clean validation
set. In such cases, early stopping becomes invalid,

1For reproduction purposes, we use seeds = [30 32 40 42
43 45 90 101 3405 3407] for all small test sets.

2Precision and recall can be obtained only in the unrealistic
scenario of the noisy subset being explicitly known, and are
unavailable for real-world data.
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criterion corrupt2 corrupt4

r ρ loss r ρ loss

BASE NA 0.841 ± 0.005 0.815 ± 0.006 0.661 ± 0.048 0.797 ± 0.019 0.785 ± 0.009 0.911 ± 0.102
DIS prediction 0.844 ± 0.004 0.820 ± 0.006 0.628 ± 0.068 0.808 ± 0.012 0.791 ± 0.011 0.818 ± 0.121
DIS two-step 0.847 ± 0.004 0.824 ± 0.006 0.586 ± 0.038 0.822 ± 0.006 0.803 ± 0.006 0.687 ± 0.095
REP two-step 0.842 ± 0.005 0.816 ± 0.006 0.655 ± 0.053 0.799 ± 0.018 0.782 ± 0.013 0.861 ± 0.092
RES two-step 0.843 ± 0.006 0.822 ± 0.007 0.593 ± 0.044 0.822 ± 0.016 0.798 ± 0.013 0.653 ± 0.043

Table 3: Results on N2C2 validation set trained on partially corrupted N2C2 train sets: corrupt2 and corrupt4 under
three noisy label training strategies; “prediction” means we only use the first-step criterion; BASE = baseline.

ro-en dev ro-en test ru-en dev ru-en test

r ρ loss r ρ loss r ρ loss r ρ loss

BASE 0.834 0.791 0.309 0.832 0.778 0.290 0.629 0.612 0.512 0.645 0.612 0.531
DIS 0.841 0.807 0.319 0.838 0.793 0.292 0.640 0.617 0.576 0.653 0.627 0.599
RES 0.838 0.801 0.328 0.837 0.789 0.299 0.644 0.612 0.538 0.660 0.630 0.554

Table 4: Results for DA-style quality estimation over the two WMT language pairs.
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Figure 2: Averaged loss, r, and ρ on N2C2 validation
set with (solid line) and without (dotted line) discarding
noisy labels using corrupt4 over the first five epochs.

and we generally train for a constant number of
iterations. Identifying and filtering noisy labels can
prevent the continuous decline.

6.2 Training on Real-world Noisy Labels

Real-world label noise is a natural outcome of the
dataset collection process, and emanates from three
primary sources (Algan and Ulusoy, 2021): (1)
conflicting opinions of multiple annotators due to
diverse interpretations and varying level of exper-
tise, e.g. machine translation quality assessment;
(2) inherent uncertainty due to domain complexity
such as in the clinical domain; and (3) to collect
large amounts of data, textual regression tasks tend
to resort to various data augmentation strategies,
which is known to result in noisy labels.

6.2.1 Human Disagreement Labels
DA datasets contain examples with highly ambigu-
ous labels due to its subjectivity and the nature of

language ambiguity (Wang et al., 2022). Disagree-
ments among annotators very often persist even
if more ratings are collected and more context is
provided to the raters (Pavlick and Kwiatkowski,
2019). To evaluate the effectiveness of identifying
high-disagreement labels, we perform our noise
detection method on two DA language pairs: ru-en
and ro-en.

Setup: We fine-tune BERT based on bert-base-
multilingual-cased with maximum sequence length
of 128 for five epochs. Hyper-parameter tolerance
is set as 1.0 in DIS for both, and 0.75 for ru-en in
RES based on the validation set. Other settings are
the same as Section 6.1.

Results: In Table 4, over both ru-en and ro-
en, employing either discarding or resampling can
improve the correlation r/ρ by more than one point
on average, indicating that the approach can filter
high-ambiguity labels that confuse the model, thus
boosting accuracy. It also shows that the lowest
loss does not always result in the best performance
in terms of r/ρ.

6.2.2 Complicated Domain Labels
In clinical STS, some examples are complicated for
clinicians to reach consensus, leading to low inter-
annotator agreement, such as Cohen’s κ = 0.6 for
N2C2 training labels. In contrast to the disagree-
ments mentioned above, the issue is more varying
levels of domain knowledge and the inherent com-
plexity of mapping textual similarity onto a single
scalar. Additionally, the N2C2 ground-truth lacks
an adjudication process, and gold scores are de-
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ID Train Data PreF DIS r ρ loss

1 N2C2 train NA NA 0.860 ± 0.008 0.805 ± 0.009 0.759 ± 0.038
2 N2C2 train stsg No 0.860 ± 0.003 0.816 ± 0.005 0.746 ± 0.017
3 N2C2 train stsg Yes 0.878 ± 0.010 0.810 ± 0.007 0.585 ± 0.077
4 SR train stsg No 0.868 ± 0.005 0.816 ± 0.009 0.825 ± 0.035
5 SR train stsg Yes 0.885 ± 0.010 0.824 ± 0.014 0.595 ± 0.082

Table 5: Averaged loss, r/ρ on the N2C2 test set w/o
noise-filtering using N2C2 train and segment-reordered
N2C2 train based on CLS-BERT pre-fine-tuned (PreF)
on large-scale general STS corpus STS-G.

rived by simple averaging of scores from two anno-
tators (Mahajan et al., 2020). We aim to recognise
strong-disagreement labels from the original N2C2
training data and the segment reordered version
(see Section 4.2), to improve generalisation.

Setup: We employ a larger-scale general-
purpose STS labelled dataset STS-G (Wang et al.,
2020c) to learn a general-domain STS model.
Other settings are the same as Section 6.1, except
for training epoch=3.

Results: Comparing rows 1 and 2 in Table 5,
pre-fine-tuning on STS-G doesn’t improve perfor-
mance, and just diminishes the standard deviation.
By applying noise-filtering, the loss decreases and
correlation improves appreciably (row 3). We spec-
ulate that STS-G is large enough to capture general
STS task properties, so multiple iterations of train-
ing on the N2C2-STS training set don’t lead to
any gains, but stabilise at a local minimum. Noisy
label training helps escape the local minimum by
filtering suspected examples, bringing about the
large drop in loss, and boosting performance. Fine-
tuning over segment-reordered training data aug-
ments corruption, making noisy labels more notice-
able and easier to detect, thus resulting in the best
r/ρ (row 5).

Analysis: Can our method recognise high-
disagreement labels? Is detection more accurate
with segment-reordered text? As noisy labels are
unknown, and individual labels from different an-
notators are not available either, we manually anal-
ysed the first 400 instances in the training set,
finding 44 labels that we don’t agree with, 16 of
which overlap with the detected noisy labels with
N2C2 original training data after the first epoch
(prec.=0.43, recall=0.36). In the setting of SR, we
observed the overlap with our annotations increases
to 24 (prec.=0.43, recall=0.55), so the final result
improves with an increase in detection accuracy.

6.2.3 Data-Augmented Labels
We apply our method to denoising instances gener-
ated through data augmentation, either through syn-
thetic generation based on annotation guidelines,
or through rule-based conversion.

Clinical STS with Synthetic Labels Wang et al.
(2020b) show that a hierarchical convolutional net-
work based on BERT (“HConvBERT”), in which
the BERT-base bottom eight encoder layers are
frozen and only parameters of the top four lay-
ers are updated, is beneficial to training over a
small-scale data set. Since the size of clinical STS
datasets is small, we experiment with HConvBERT
(hconv) in addition to CLS-BERT (cls).

Synthetic Data Generation: To generate clin-
ical sentences, following Wang et al. (2020c),
we sample discharge summaries from MIMIC-
III (Johnson et al., 2016) and segment them into 27
parts based on section subtitles (topics). We select
the topics of medications, illnesses, diagnoses, and
follow-up instructions at which the clinical proxy is
not expert, and split into sentences. As medication-
related examples emphasise specific medication
names, different rules are applied than for other
topics. All medication sentences are grouped by
medication name; this is always their first word. If
S1 and S2 are sampled from the same name group,
a similarity score of 3 is assigned, with +0.5 for
every increase of 0.2 in l/L1 and l/L2, where l is
the number of shared tokens between S1 in length
of L1 and S2 in L2. Otherwise, it is labelled as 1.

For other topics, when sampling sentences from
two different topics, the label is set to the range
[0, 1]. Sentences sampled from the same topic are
theoretically in the range [1, 5], but in practice are
generally in the range [1, 2] because high similar-
ity under random pairing is unlikely. To obtain
pairs in the range [2, 4.5], we randomly sample two
sentences from the same topic, and use one as a
“template” (S1). We then randomly replace a se-
quence of d words in the template with the same
position (word index) sequence of the second sen-
tence, forming S2. This pair (S1,S2) is labelled
as 4.5 if only 10% words are replaced in S1, i.e.
d/L1=0.1, and 4, 3.5, 3 and 2 with more words
replaced, d/L1=0.2, 0.3, 0.4 and 0.5, respectively.

In total, we generate 1534 cases (“syn1534”),
including 416 medication cases (200 in range [1, 2]
and 416 in range [3, 5]) and 1118 cases of other
topics (200 in range [0, 1], 200 in range [1, 2] and
718 in range [2, 5]).
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Train Data Model PreF DIS r ρ loss

N2C2 train cls NA NA 0.860 ± 0.008 0.805 ± 0.009 0.759 ± 0.038
N2C2 train cls stsb NA 0.852 ± 0.006 0.813 ± 0.007 0.792 ± 0.054
+ syn1534 cls stsb No 0.854 ± 0.004 0.799 ± 0.004 0.788 ± 0.039
+ syn1534 cls stsb Yes 0.868 ± 0.003 0.785 ± 0.005 0.669 ± 0.040
N2C2 train hconv stsb NA 0.872 ± 0.003 0.828 ± 0.003 0.717 ± 0.026
+ syn1534 hconv stsb No 0.867 ± 0.002 0.817 ± 0.005 0.760 ± 0.018
+ syn1534 hconv stsb Yes 0.882 ± 0.003 0.805 ± 0.007 0.669 ± 0.076

MedSTS train cls NA NA 0.833 ± 0.004 0.764 ± 0.006 0.411 ± 0.024
MedSTS train hconv stsb NA 0.850 ± 0.001 0.784 ± 0.004 0.372 ± 0.012
+ syn700 hconv stsb No 0.856 ± 0.002 0.789 ± 0.002 0.360 ± 0.019
+ syn700 hconv stsb Yes 0.858 ± 0.003 0.801 ± 0.006 0.357 ± 0.026

Table 6: Averaged loss, r and ρ on the N2C2 test set
(upper half) and MedSTS test set (bottom half) w/o
noise-filtering trained w/o synthetic data.

r ρ loss

Paper
BASE 0.664 ± 0.007 0.664 ± 0.006 1.203 ± 0.036
FT 0.674 ± 0.003 0.679 ± 0.003 1.223 ± 0.035
FT+DIS 0.681 ± 0.006 0.686 ± 0.005 1.192 ± 0.025

Movie
BASE 0.791 ± 0.010 0.760 ± 0.006 0.533 ± 0.024
FT 0.810 ± 0.006 0.774 ± 0.005 0.510 ± 0.018
FT+DIS 0.815 ± 0.005 0.777 ± 0.006 0.526 ± 0.032

Table 7: r/ρ on PeerRead (top) and 10Movie (bottom)
test set w/o noise-filtering using PeerRead+Spanish and
10Movie+IMDB for paper and movie domains based on
HConvBERT fine-tuned on Yelp (BASE), FT=fine-tune.

The STS model is first fine-tuned on STS-B to
capture general-domain effects, then on the N2C2
training set combined with syn1534, and the Med-
STS training set combined with a random sub-set
of syn1534 of size 700 (“syn700”), to match the
size of the MedSTS training set (750).

Results: Table 6 shows that combining
synthetically-generated sentence pairs with gold-
standard training data can improve performance,
and discarding noisy labels results in further gains
in accuracy on both N2C2-STS (upper half) and
MedSTS (bottom half). We exceed previous state-
of-the-art results on MedSTS r = 0.848 (Peng
et al., 2019) → r = 0.858. Further, pre-trained
HConvBERT performs better than CLS-BERT.

Domain SA rating with Converted Labels Ad-
ditionally, we evaluate denoising on SA rating.
Two small-scale SA datasets in the academic pa-
per and movie domains are augmented through
rule-based conversion and machine translation (see
Section 3), which inevitably introduce noise into
the training sets.

Following the experimental setting of clini-
cal STS with corrupted labels, we first fine-tune
the regressor using the large-scale Yelp dataset
(5,000 instances) based on HConvBERT, referred

to as “HConvYelp”, then adapt it to the respective
datasets by continuous fine-tuning combined with
noise filtering. The results in Table 7 show that em-
ploying noise-filtering consistently improves per-
formance for both datasets, particularly for the pa-
per reviews, which are most domain-removed from
the product reviews.

6.3 Overall Take-away

Through extensive experiments over randomly-
corrupted and real-world noisy labels, we have
demonstrated that our denoising method is effec-
tive at preventing memorisation, regularising noisy
labels and improving generalisation performance
on various regression tasks. The limitation of our
method is that, while it is effective at detecting ex-
treme outliers, it struggles to detect instances with
weak disagreement, due to the fact that Pearson’s
correlation is stable over distributions with mod-
erate skewness (Chok, 2010). As such, it shows
more impressive improvement in knowledge-rich
domains like clinical notes and academic papers
than general-purpose domains (see Section A.2).

7 Conclusion

Regularisation strategies improve model generali-
sation performance in a range of contexts, but are
not able to effectively address generalisation degra-
dation caused by training with noisy labels. In
this paper, we have proposed a noisy label training
method for text regression tasks, based on identify-
ing noise through iterative prediction and targeted
evaluation criteria, followed by discarding or re-
pairing of noisy labels. Extensive experiments on
three rating tasks demonstrate the effectiveness of
our approach.
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A Appendix

A.1 Collecting Labels for Regression
Unlike computer vision tasks, which can make use
of messy user tags or search engines and social me-
dia, it’s hard to obtain usable continuous labels for
semantic understanding tasks. Textual regression
tasks tend to resort to data augmentation strategies
or synthetic generation approaches to obtain labels.

IMDB Label Conversion: IMDB binary-class
labels are converted to a rating score by label as-
signment rules — a negative label corresponds to
random selection from [1, 1, 5, 2, 2, 5] and a posi-
tive label from [3, 3.5, 4, 4.5].

PeerRead Label: In the PeerRead training set,
the ultimate score for rejection or acceptance of a
paper is based on more than ten individual aspects
such as originality and clarity, but often fewer than
5 aspect scores are available. Scores from other an-
notated aspects are averaged to fill in these missing
aspects, introducing bias.

A.2 General STS with Heterogeneous Labels
We investigate the performance of our method in
combining two heterogeneously-labelled datasets
(SICK-R and STS-B), expanding the training set
size but introducing noise.

STS-B is labelled in the range [0, 5] in accor-
dance with the standard STS formulation, while
SICK-R is annotated in the range [1, 5] with an
emphasis on semantic relatedness rather than se-
mantic similarity, leading to label misalignment in
both label semantics and range between the two
datasets. For example, completely irrelevant cases
are scored 1.0 in SICK-R but 0 in STS-B, and for:

S1: A brown dog is attacking another
animal in front of the man in pants.
S2: Two dogs are fighting.

the gold score is 3.5 in SICK-R, but for STS-B the
score would be in [1, 2].

Two alternatives exist to incorporate SICK-R
into STS-B training: (1) fine-tuning jointly over
combined training sets; and (2) fine-tuning first on
STS-B, then on SICK-R. We investigate both. Con-
sistent with the findings of Section 4, we pre-fine-
tune over “STS-B”, with training epochs=3, lr=2e-
5, and without early stopping. We experiment with
the full SICK-R training set (“SICK-R-full”) and a
subsample of 3000 instances (“SICK-R-3000”).

As presented in Table 8, using noise detection
and discarding noisy instances can improve the per-

Train Data Manner Discard r ρ loss

STS-B NA NA 0.900 0.896 0.444
STS-B + SICK-R-3000 joint No 0.900 0.896 0.440
STS-B + SICK-R-3000 joint Yes 0.901 0.896 0.438
STS-B + SICK-R-3000 separate No 0.874 0.881 1.515
STS-B + SICK-R-3000 separate Yes 0.888 0.890 1.241

STS-B + SICK-R-full joint No 0.901 0.897 0.445
STS-B + SICK-R-full joint Yes 0.903 0.898 0.430
STS-B + SICK-R-full separate No 0.886 0.882 1.402
STS-B + SICK-R-full separate Yes 0.889 0.889 1.167

Table 8: Averaged loss, r and ρ on STS-B validation set
w/o noise discarding combining SICK-R-3000 (sampled
3000 instances from SICK-R train set) or SICK-R-full
(full train set) by joint and separate fine-tuning.

formance under both joint and separate fine-tuning.
Overall, in this scenario, from a strong baseline,
the improvement is modest even though the train-
ing data volume is doubled in the case of the full
SICK-R training set. This is largely because the
“clean” data from SICK-R for STS-B purposes is
mostly distributed in the range of [4, 5], i.e., highly
related pairs are also highly similar in the meaning,
but this is generally the range where STS predic-
tions are reliable, based on STS-B training. Put
differently, even though the noise filtering method
was able to discard noisy labels, it was ineffectual
due to a lack of clean instances in the critical range
[2, 4] where STS-B models perform poorly (Maha-
jan et al., 2020).

This provides a valuable insight: it is vital to
integrate examples in label ranges where the model
is deficient. Further, given our findings, only joint
fine-tuning is used in Section 6.
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Abstract

With the increased awareness of situations of
mental crisis and their societal impact, online
services providing emergency support are be-
coming commonplace in many countries. Com-
putational models, trained on discussions be-
tween help-seekers and providers, can support
suicide prevention by identifying at-risk indi-
viduals. However, the lack of domain-specific
models, especially in low-resource languages,
poses a significant challenge for the automatic
detection of suicide risk. We propose a model
that combines pre-trained language models
(PLM) with a fixed set of manually crafted
(and clinically approved) set of suicidal cues,
followed by a two-stage fine-tuning process.
Our model achieves 0.91 ROC-AUC and an
F2-score of 0.55, significantly outperforming
an array of strong baselines even early on in
the conversation, which is critical for real-time
detection in the field. Moreover, the model
performs well across genders and age groups.

1 Introduction

The World Health Organization (WHO) lists sui-
cide as one of the most salient causes of death
world-wide, causing more deaths than breast can-
cer or war (WHO, 2019). With close to 1 million
lives taken directly by suicide every year, and over
25 million suicide attempts, suicide incurs a lasting
impact on families and communities. Identifying
individuals at risk ahead of time and providing
them with psychological and medical support is a
key step in suicide prevention (Joiner et al., 2018).

In this paper, we tackle the task of detecting Sui-
cide Ideation (SI). Specifically, we aim at the detec-
tion of SI of individuals contacting online counsel-
ing hot-lines in low-resource and morphologically-
rich languages. We focus on anonymous data from
online, text-based (chat), support services. Such
services are available in many countries, allowing
for confidential and immediate help to those in

distress, and play a critical role in suicide preven-
tion (Bantilan et al., 2021; Jashinsky et al., 2014;
Joiner et al., 2007). Empirical evidence suggests
that at-risk individuals seek help in close proximity
to actual suicide attempts (Zalsman et al., 2021),
thus it is critical to identify suicide risks as early as
possible during the session.

There is a growing body of work on assessing
suicide risk from English texts (whether in social
media posts or from counseling sessions), but there
is an acute lack of NLP resources that could be
used for detection of suicide risk in other languages
(Lee et al., 2020). We directly address this gap by
focusing on suicide risk detection from online coun-
seling services in Hebrew, which is a low-resource
and morphologically-rich language that challenges
traditional NLP tasks (Seker et al., 2021).

Our proposed approach for the SI detection
task, called SI-BERT, extends a generic pretrained
model with a small set of Out of Vocabulary
(OOV) tokens, pretraining the language model on
a masked LM task and fine tuning for the SI clas-
sification task. We further train a logistic regres-
sion model, based on a manually crafted lexicon of
suicide ideation terms (vetted by domain experts).
We then create an Ensemble model by training SI-
BERT together with the lexicon. Both SI-BERT
and the Ensemble model outperform alternative
approaches ranging from W2V (Word2Vec) em-
beddings and feed-forward networks to Hebrew
psychological lexicon. Additionally, the Ensemble
model achieves 82% ROC-AUC even when pro-
cessing only the first few utterances (20%) of the
help-seeker, suggesting it can be used to enhance
early detection of suicide risk when deployed in
the field. We analyze the approach with respect to
different demographics, speaker focus and text trun-
cation, and provide a few examples, qualitatively
illustrating the benefits of our model. Our work
goes the first step in helping counselors identify
and treat at-risk individuals in real time.
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Paper Embedding+Model Language Setting

(Cheng et al., 2017) LIWC+SVM Chinese social media (Weibo)
(Allen et al., 2019) LIWC+CNN English social media (Reddit)

(Matero et al., 2019) BERT without Pretraining English social media (Reddit)
(Ophir et al., 2020) ELMO+Questionnaires+ANN English social media (Facebook)
(Lee et al., 2020) W2V+LSTM+Lexicons Korean social media (Naver Cafe)

(Bantilan et al., 2021) TF-IDF+XGBoost English phone counseling
(Xu et al., 2021) Knowledge Graph+W2V+LSTM Chinese online counseling

Table 1: Sample of relevant approaches used for suicide risk classification from text.

2 Related Work

Our work extends past approaches to suicide risk
detection in texts as well as NLP classification tasks
in low-resource languages. For a systematic review
of the use of machine learning for suicide risk detec-
tion from text we refer the reader to Ji et al. (2020)
and to (Bernert et al., 2020). For a comprehensive
survey of the application of the BERT architecture
in different scenarios we refer the reader to (Rogers
et al., 2020). In the remainder of this section we
briefly survey recent works in each of these fields.

Detection of suicide risk There are limited
works in suicide detection in conversations between
help-seekers and counselors. Xu et al. (2021) used
a classifier based on a knowledge graph of logical
relationships of events related to suicide ideation.
They combined this graph with Word2Vec embed-
dings to detect suicide risk in an online counsel-
ing service in Hong Kong. Their model achieved
81.5% ROC-AUC for suicide risk detection. Ban-
tilan et al. (2021) combined TF-IDF embeddings
with an XGBoost model in transcribed phone calls
from a counseling service in English. Their ap-
proach achieved a 73% ROC-AUC performance
in the phone call based counseling. None of these
approaches addressed early detection, and are out-
performed by our own approach in terms of ROC-
AUC.

There is a body of work on suicide risk detection
for English text from social media posts (Guntuku
et al., 2017; De Choudhury et al., 2013; Zirikly
et al., 2019). Online counseling chats are quite
different from such settings in that they often in-
clude complete conversations between help-seekers
and counselors, rather than single utterances, and
exhibit temporal and mental-state dynamics.

Ophir et al. (2020), used ANNs to predict at-risk
individuals from Facebook posts and psychologi-
cal questionnaires. Matero et al. (2019) achieved
top results in a suicide ideation detection task in

social media (Zirikly et al., 2019) by adapting a
BERT model to process input from Twitter and
Reddit posts. They found that at-risk individuals
use a distinct vocabulary in comparison to the rest
of the population. Lee et al. (2020) tackled suicide
ideation detection in social media posts in Korean
which they describe as a low resource language. In
their work they claim domain lexicons are highly
beneficial for the task when available. Their clas-
sifying model is based on word embeddings, lexi-
cons, attention, and LSTM. These works inspired
our approach to combine expert based lexicons
with the language model.

For convenience, the main approaches and the
settings on which they were developed are summa-
rized in Table 1.

Using Transformers for low-resource and mor-
phologically rich languages Deep neural archi-
tectures, especially the Transformer, require mas-
sive corpora for adequate training. These pre-
trained models are then fine-tuned for specific clas-
sification tasks, e.g., (Devlin et al., 2018; Sun
et al., 2019; Pierse and Lu, 2020; Gururangan
et al., 2020). However, fine tuning is suboptimal
in the cases where the domain of the classifica-
tion task is unique, especially in low resource and
morphologically-rich languages (Klein and Tsar-
faty, 2020; Seker et al., 2021; Nzeyimana and
Rubungo, 2022). Our approach tackles those is-
sues.

Hebrew NLP There is an increasing number of
Hebrew tools available for modeling NLP tasks.
Shapira et al. (2021) released a Hebrew Psycho-
logical Lexicons (HPL) that contains 30% of the
terms that exist in LIWC, while also containing
unique psychological terms that can help detect psy-
chological aspects such as emotional state. Other
tools include generic Hebrew BERT models such
as HeBERT (Chriqui and Yahav, 2021) and Aleph-
BERT (Seker et al., 2021). AlephBERT was trained
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on a larger dataset and achieved better results than
HeBERT, making it our PLM of choice.

3 The Dataset

Sahar (https://sahar.org.il), Hebrew
acronym for “Aid and Attention Online”, is the
leading chatline in Israel, focusing on suicide pre-
vention, and emotional distress relief. Relieving the
emotional distress of help-seekers is a crucial step
in the process of suicide prevention (Overholser
et al., 1997; Surís et al., 1996). The organization
handles more than 10, 000 chat sessions a year, and
these numbers have increased significantly during
the COVID-19 pandemic (Zalsman et al., 2021).

Sahar’s counselors are volunteers over 24 years
old that completed a special training program by
licensed clinicians. They are trained to use a special
support language that is based on the conversation
dynamics. During shifts, there are also therapists
on duty who monitor the conversations and provide
professional support if needed to the counselors. At
the end of each session, the counselor is asked to
summarize the conversation and to complete a short
survey. A conversation is defined as exhibiting SI if
the counselor answered “Yes” to the question “Did
the subject of suicide come up in the conversation?”

The Sahar corpus The Sahar corpus contains
44,506 chat sessions which took place in the span
of five years (2017-January 2022). Of these,
17,564 are labeled with a True/False to designate
whether the chat exhibited SI. Seventeen percent
(3097/17564) of the labeled sessions are flagged
with a positive SI label. For the remainder of
this paper, the term Sahar dataset will refer to the
17,564 labeled sessions in the corpus. A session in-
cludes the utterances generated by the help-seekers
and the counselor, delimited by a separating to-
ken. Table 2 shows general statistics related to our
dataset.

Dataset statistics
Total Num. Sessions 44, 506

Num. Labeled Sessions 17, 564
SI positive label ratio 17%

Mean(Median) number of tokens in a chat 617(566)

Table 2: General statistics for Sahar Corpus

Beyond the SI label, counselors are requested
to select the prominent topics in each conversation
(one to three topics chosen from a predefined list).

Figure 1: Conversation topics distribution in Sahar corpus

Figure 1 shows the discussed topics distribution
in the data. As shown in the figure, loneliness
and depression are the most common topics dis-
cussed in Sahar platform and a large share of those
conversation exhibits positive SI. These findings
coincide with psychology literature which depicts
depression (Gijzen et al., 2021; Moitra et al., 2021)
and loneliness (McClelland et al., 2020) as power-
ful predictors for suicide ideation. An interesting
observation from Figure 1 is, that SI is prevalent
across all of the reported topics, and is not exclu-
sive to a certain topic.

Unfortunately, we are not able to share the Sahar
corpus due to its sensitive and private content. Nor
are we able to share the trained language model,
since it was shown language models can be ma-
nipulated to reveal training data (e.g (Carlini et al.,
2021)). We do provide however a repository with
the experiments’ code and lexicons used in this
paper to support transparency and reproducibility.

4 Computational Approach

Our approach is based on an Ensemble method
that extends a generic PLM to the SI domain, and
leverages it with a fixed set of manually crafted
(and clinically approved) set of suicidal cues. We
expand on each component of the Ensemble model
in turn.

4.1 The SI-BERT Classifier

SI-BERT is a model designed and configured for
SI detection in online Hebrew chats. It utilizes
AlephBERT (Seker et al., 2021), which is the best
performing Hebrew BERT model to date and is pub-
licly available. SI-BERT augments the generic Ale-
phBERT model by (a) adding domain-specific to-
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Figure 2: SI-BERT Architecture

kens to the vocabulary; (b) pretraining on a masked
language model (MLM) task over the Sahar cor-
pus; and (c) fine-tuning for the SI classification
task. The SI-BERT architecture is illustrated in
Figure 2. The term ‘SI-BERT’ at each step refers
to the model obtained by the previous step. In the
remainder of this section we expand on each of
these steps.

Adding Domain Specific Tokens It is well estab-
lished that enriching the vocabulary of pretrained
models with Domain Specific Tokens (DST) im-
proves performance for domain specific tasks (Tai
et al., 2020; Beltagy et al., 2019; Honda et al.,
2021).

We consider words which are OOV to be domain
specific tokens, since by definition they exist in the
domain corpus and not in the language model’s
vocabulary. The language model’s vocabulary was
constructed by taking the most common tokens
from it’s training corpus. Manual examination of
the most frequent DST finds that many of these
tokens are highly related to suicide and mental
distress e.g, “suicidal”, “desperate”, “depressed”,
“abandoned” (translated from Hebrew). We hy-
pothesize that adding a relatively small number of
domain specific tokens will improve performance
for suicide ideation classification task.

Therefore, the DST list we used is the δ most
frequently appearing words in the Sahar corpus
that were not in the vocabulary of the pretrained
model. We added this list to SI-BERT’s vocabulary,
changing it’s size from |V | to |V | + δ. We set
δ = 1000 based on performance on a held-out
validation set. Analyzing the number of OOV token
in Sahar corpus, we find 5% of the words to be
OOV (before the addition of the DST list). After
adding the DST to the vocabulary we observed a
decrease of 20% in the number of OOV words in
Sahar corpus.

Pretraining with MLM task In this step, we
pretrain SI-BERT with a Masked Language Model
(MLM) task. MLM is an unsupervised task in
which a share of the tokens in each utterance is
masked, and SI-BERT is trained to predict the
masked words. This task has been shown to im-
prove the performance of BERT and other language
models performance for downstream tasks (Guru-
rangan et al., 2020; Pierse and Lu, 2020). The
training for the MLM task was conducted for 200
epochs on the complete Sahar corpus. An addi-
tional advantage of the MLM task is that it retrains
the weights of the SI-BERT following the additions
of tokens in the previous step (Tai et al., 2020).

Fine-Tuning In this step we fine-tune SI-BERT
for the SI classification task. We add a binary clas-
sification head to SI-BERT. The classification head
is a neural network layer which consists of two
neurons with a softmax activation (binary classi-
fication). We compile the model with a cross en-
tropy loss. We fine tune our model with the labeled
dataset described in section 3. The BERT model is
designed to process 512 tokens. We fine tune the
model with the help-seeker’s text and used the first
512 tokens of each session as input to the model.
For a discussion and justification of these decisions,
see subsection 6.4. In practice, 21% of the sessions
were truncated when inputted to the model.

4.2 Suicide Ideation Lexicon

We extracted 200 randomly selected positive SI ses-
sions from the Sahar dataset and constructed a list
of phrases that explicitly mention suicide ideation.
The list contains 67 phrases such as: “suicide”, “cut
wrists”, “want to die” and other variations.

This list was vetted by psychologists with ex-
pertise in suicide ideation. The set of 200 positive
sessions was removed from the test sets used in the
evaluation. Each session is mapped to a vector of
length 67, where the ith element in the vector is

4244



the number of occurrences of phrase i in a given
session. The vectors are scaled to [0,1] range and
fed into a logistic regression model. We publicly
share the lexicons in the article’s repository.

4.3 Ensemble Model

The Ensemble model combines SI-BERT and the
lexicon by feeding their predictions to a fully con-
nected layer activated with a sigmoid function.

5 Evaluation

We compared the Ensemble model to the baseline
models described below. The input to all models
is a pre-processed chat that concatenates the utter-
ances of the help-seeker and removes non-Hebrew
characters and URLs. (See subsection 6.4 for a
comparison with the case of also including the ut-
terances of the counselor). For each bag of words
based model (W2V, TF-IDF, HPL), the embeddings
were scaled to [0,1] range and fed into a logistic
regression model.

Fine-tuned AlephBERT (FT-BERT) We used
the publicly available model of AlephBERT for
text classification and fine tuned it on the labels in
the Sahar dataset.

SI-BERT The SI-BERT PLM described in sub-
section 4.1.

Expert-based SI Lexicon (SI-Lexicon) The
expert-based SI lexicon that is described in sub-
section 4.2.

W2V embeddings + Logistic Regression (W2V-
LR) Word To Vector (W2V) is an algorithm
which uses a neural network to map each word
to a vector with a fixed size (Mikolov et al., 2013).
We trained a W2V model on our corpus (embed-
ding dimension=300, as used in the original paper
(Mikolov et al., 2013)). The model was used to
generate an embedding of all words in the session.

TF-IDF + Logistic Regression (TF-IDF-LR)
Term Frequency–Inverse Document Frequency
(TF-IDF) is a term weighting scheme commonly
used to represent textual documents as vectors
(Sammut and Webb, 2010). Each session is vector-
ized in this manner.

Hebrew Psychological Lexicon + Logistic Re-
gression (HPL-LR) Each session is mapped to a
vector of length 276 (number of lexicons in HPL).

The ith element in the vector, is the number of oc-
currences of phrases in lexicon i in a given session.

We focus on two metrics to evaluate a model’s
performance: (a) ROC-AUC is the most commonly
used metric in suicide detection tasks (Bernert et al.,
2020). Its main advantage is that it doesn’t depend
on class distribution in the dataset. (b) The F2
metric computes a weighted harmonic average be-
tween the precision and recall scores. It assigns
more than twice the weight (compared to the stan-
dard F1 metric) to the recall score which is sensitive
to false-negative classifications. False negatives are
critical in the SI detection task since missing people
at risk has life-threatening consequences.

6 Results

In this section we report and discuss results from
four perspectives: (i) Entire sessions results, (ii)
Early detection, (iii) Results on different demo-
graphic groups, and (iv) Using the turn-taking struc-
ture vs. focusing on the utterances of the help-
seeker. All results are reported using 5-fold cross
validation. We keep the label imbalance unchanged
in order to increase the potential use of the mod-
els for real time SI detection, discussing the False
Positive-False Negative trade-off. The input to all
models used in subsection 6.1 - subsection 6.3
consists of the concatenated utterances of the help-
seeker in each session, while in subsection 6.4 we
also provide results for a turn-taking scenario.

6.1 Entire Sessions Results

Table 3 compares the different models using several
metrics, including ROC-AUC, and F2, which are
commonly used for settings that suffer from high
class imbalance (Forman and Scholz, 2010).

As shown in the table, the Ensemble model sig-
nificantly outperforms the other models in terms
of F1, F2 and ROC-AUC metrics. SI-BERT out-
performs FT-BERT, and the other baselines. The
SI-Lexicon achieves the highest precision, slightly
better that the Ensemble, and does very well com-
pared to the non-PLM approaches in the F1 and F2
metrics. However, it achieves only modest recall.
This reflects the fact that the lexicon model was
manually crafted by mental clinicians and tailored
to detect explicit use of suicide ideation. However,
there still exist SI positive sessions that cannot be
captured by a static list of phrases.

The Ensemble model achieves a significant im-
provement in recall compared to the models it is
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Model ROC-AUC[%] F1[%] F2[%] Precision[%] Recall[%]

W2V-LR 86(0.25) 42(1.35) 33(1.50) 75(1.86) 29(1.50)
TF-IDF-LR 82(0.44) 43(0.30) 34(0.45) 75(1.50) 30(0.50)

HPL-LR 78(0.51) 28(0.94) 21(0.87) 66(2.53) 18(0.81)
SI-Lexicon 82(0.67) 51(0.58) 42(0.59) 78(1.54) 38(0.60)

FT-BERT 84(0.47) 47(1.35) 39(1.63) 70(1.61) 42(1.74)
SI-BERT 87(0.37) 55(1.21) 49(1.54) 71(1.52) 45(1.69)
Ensemble 91(0.45)∗ 61(0.89)∗ 55(1.32)∗ 76(2.21) 51(1.59)∗

Table 3: SI classification results listing average performance with standard error in parenthesis. Bold highlights
highest value, ∗ marks a model is significantly better than the rest with p < 0.05 under Wilcoxon signed rank test.

comprised of, with only a slight decrease in pre-
cision performance. We wish to stress that this
trade-off is of major significance in this specific
domain. To further illustrate this point, Figure 3
presents false-negative ratios (out of test-set size)
for the top performing models. As shown in the fig-
ure, the Ensemble model achieves the lowest false-
negative (8.6%) given that the positive SI samples
account for 17% of the test data. Most importantly,
the Ensemble model reduces the false negatives
ratio from 10.96% to 8.60% (11% decrease). In
the field, such an improvement provides a meaning-
ful contribution to suicide prevention, especially
in early stages of the session, as we show in the
following subsection.

Figure 3: False-negative ratio (out of test-set size) for
top-performing SI detection approaches.

6.2 Early Detection
Detecting at-risk individuals as early as possible
during the session contributes to suicide prevention
and reduces the load on the volunteers. To this
end, Figure 4 shows the ROC-AUC performance of
the top-performing SI-detection approaches when
analyzing the first {5, 10, 20, 40, 60, 80, 100} per-

cent of the session (using 5-fold cross validation).
As expected, all of the approaches improve as
they process more information, with the Ensem-
ble model constantly outperforming all of the other
approaches.

Two key findings that stand out from Figure 4
are: (a) There is a consistent gap in performance be-
tween SI-BERT and FT-BERT, especially at early
stages of the conversation. (b) SI-Lexicon performs
poorly at an early stage of the conversation. We
hypothesize that help seekers tend to be implicit,
before allowing themselves to express their suici-
dal tendency explicitly1. Specifically, we found
that while 73% of SI positive sessions contained
an explicit SI phrase from the lexicon, only 38%
of the SI positive sessions contained an explicit
SI phrase in the early 20% of the session. This
strengthens our conclusion that the lexicon model
is insufficient for early detection of suicide risk.

Figure 4: Classification results for early detection of
top-performing SI detection approaches.

6.3 Demographic Analysis

Suicide risk, technological proficiency and linguis-
tic norms vary across demographics. Therefore,
we evaluate the performance of our model over
different demographics.

1Furthermore, the explicit expressions could be a response
to the counselor sensing implicit cues before directing the
conversation a certain way.
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Age/Gender Samples + Label ROC-AUC F2 Tokens Types OOV Tokens OOV Types

10-17 4, 179(23%) 15% 90 52 1.1M 54K 6% 6%
18-30 9, 066(52%) 19% 90 55 2.8M 141K 8% 7%
31-64 4, 164(24%) 17% 91 56 1.2M 107K 9% 6%
65+ 145(< 1%) 12% 93 58 29K 8K 12% 4%

Female 12, 074 18 90 55 3.6M 120K 8% 8%
Male 5, 343 17 91 55 1.6M 83K 8% 7%

Table 4: Ensemble model performance evaluation for subgroups of different age and gender.

10-17 18-30 31-64 65+

10-17 − 0.28 0.39 0.86
18-30 0.60 − 0.55 0.91
31-64 0.54 0.37 − 0.89
65+ 0.21 0.14 0.16 −

Table 5: Percentage of the number of unique tokens of
each age group with respect to other age groups.

Age The Ensemble model consistently outper-
forms all other models across all age groups. Re-
sults of the Ensemble for different age groups are
presented in Table 4 (Top), along with descriptive
statistics, highlighting the differences between the
sub-corpora in terms of size, types, tokens and
OOV types and tokens.

The different linguistic norms each age group
exhibits is captured in Table 5 through the relative
size of each group’s unique vocabulary. For exam-
ple, while the sub-corpora 10-17 and 31-64 are a
similar share of the data (23% & 24%, see Table 4)
and a similar label break down (15% & 17%), 39%
of the tokens used by the the 10-17 help-seekers
are not used by help-seekers 31-64 years of age.
Similarly, 54% of the tokens used by the 31-64
group are not used by the individuals on the 10-17
group. These trends are even more pronounced if
one considers only OOV types.

Given the large variance in vocabularies be-
tween groups, the consistency of our results further
demonstrates the robustness of our model.

Gender Examining the two main gender cate-
gories2 we verify that the model achieves similar
performance for both genders (see Table 4, Bot-
tom). This result is far from trivial for two reasons:
(a) Hebrew is a heavily gendered language (e.g.,

2The gender the help-seeker identifies with is implicitly
self disclosed since Hebrew is a gendered language and first-
person verbs often takes different suffix according to the
speaker gender (see examples in footnote 3).

(Vainapel et al., 2015)). This means most (non-
past tense) verbs and adjectives have different mor-
phological inflection depending on the speaker’s
gender3, and (b) The number of samples for each
gender varies greatly, with female individuals mak-
ing a vast majority of help seekers.

6.4 Speaker and Text Truncation

One major limitation of the BERT architecture is
the constraint it enforces on length of the input.
Consequently, most of the sessions cannot be pro-
cessed fully. A straight forward way to tackle this
constraint is to feed the model only part of the ses-
sion – exhausting the 512-tokens buffer size. We
considered three alternative protocols: (i) using ut-
terances of both help-seekers and the counselor, (ii)
using only utterances made by the help-seeker, and
(iii) using only utterances made by the counselor.
The latter protocol is used for comparative reason
(also assuming that the responses of the counselor
bear relevant signal). In each of these three settings,
we considered two options (a) using the first 512
tokens (“keep head”), and (b) using the 512 trailing
tokens (“keep tail”).

Results of the Ensemble for each of the six set-
tings are presented in Figure 5. The best perfor-
mance is obtained using the head of the the utter-
ances made by the help-seeker. This result, together
with the ability to perform relatively well in early
stages (subsection 6.2) are encouraging, given the
high stakes of the task and the limited resources
(personnel) available to the emergency services.

7 Discussion

The results in the previous section demonstrate the
need for adequate adaptation of PLMs into a spe-
cific domain with obvious challenges in processing

3For example, consider the Hebrew inflections of the ad-
jective ‘lonely’: ‘boded’ (M) vs. ‘bodeda’ (F), or the verb
‘going (to)’: ‘holex’ (M) vs. ‘holexet’ (F).
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Figure 5: SI-BERT F2 performance for different text
truncation methods and speaker text. Error bars mark
standard error.

low-resource languages. Domain-tailored lexicons
serve as strong baselines, with high precision and
competitive F1 and F2 scores but they fall short in
terms of recall and AUC. As PLMs tend to capture
more nuanced expressions of SI – combining both
approaches and careful fine-tuning improved the
ability to detect SI early on in the chat.

We conclude this work discussing three illustra-
tive examples (see Table 6) and reflecting on a few
limitations of our approach.

I I don’t want to die
II I feel like life is too much for me

III
I had a spare time and bad thoughts, I de-
cided to take a couple of sleeping pills and
take a nap. I slept all day and now I’m dizzy.

Table 6: Three illustrative utterances (translated from
Hebrew). Note that these utterance are presented with-
out a conversational context.

In utterance I (Table 6), the speaker explicitly
rejects a suicidal intent, however, both the lexicon
and SI-BERT (and the Ensemble, of course) clas-
sify this utterance as positive ideation. While the
lexical approach matches the token die and wrong-
fully ignores the negation, our collaborators – clin-
ical psychologists with suicide detection as their
research focus – approve the classification, citing
psychological studies on the distinction between
suicide ideation and intent (Bagley, 1975; Beck
et al., 1979; McAuliffe, 2002).

While it does not match any of the lexical items
in the predefined lexicons, the second utterance
(Table 6, II) is a classic example of SI. SI-BERT
and the Ensemble (as well as the online counselor)

correctly label it a positive SI, demonstrating the
benefits of the domain-specific contextual model.

The third utterance is not considered by experts
to exhibit SI. Indeed, SI-BERT (and the Ensemble)
correctly classifies it as a negative example. On
the other hand, FT-BERT assigns it a positive la-
bel. We hypothesize that the combination of “bad
thoughts” and “(a couple of) sleeping pills” trig-
gered the naive FT-BERT, while SI-BERT better
captures the nuanced context. This example fur-
ther demonstrates the benefits of fine-tuning the
vanilla AlephBERT not only for the classification
task but also fine-tuning the language model on the
domain-specific data through a masked LM task.

We end this section briefly mentioning some lim-
itations of the approach. First, our approach does
not explicitly account for the discourse structure
of the sessions. It may be that encoding the full
conversational context may improve performance.
Second, the Ensemble approach relies on a hand-
crafted lexicon requiring considerable human effort.
Many psychological lexicons already exist in other
languages and have played a considerable role in
prior SI research, see (Lee et al., 2020). Investing
further effort in lexicon creation may have further
reduced the false negative rate. Third, the lack
of a benchmark dataset for the SI detection task
makes it difficult to compare with prior work and
approaches.

8 Conclusion and Future Work

Accurate and early detection of users’ suicide risk
in text-based counseling services is essential to en-
sure that at-risk individuals are given timely and
proper treatment. This paper provides an automatic
approach to risk detection from chats in Hebrew,
a low-resource and morpholigically rich language.
Our approach adapted a generic Hebrew language
model by (i) adding out-of-vocabulary tokens, and
(ii) performing additional pre-training of the LM
on a masked language modeling task over the spe-
cific domain. Finally, we fine-tuned the model
for the suicide risk detection task. We combined
this model with a lexicon of hand crafted suicide
ideation phrases that were vetted by experts. Our
Ensemble model outperformed several competitive
approaches, including a generic language model
and the stand-alone lexicon. Our model performed
consistently well for different demographics (age,
gender). These encouraging results suggest the
model can be deployed successfully, providing the
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much needed support to volunteers and health-care
professionals in their mission of reducing suicide
rates.

In future work, we wish to integrate the discur-
sive structure into the model, and include latent
information about the cognitive state of the help-
seeker.
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Abstract

Few-shot Question Generation (QG) is an im-
portant and challenging problem in the Natural
Language Generation (NLG) domain. Multi-
lingual BERT (mBERT) has been successfully
used in various Natural Language Understand-
ing (NLU) applications. However, the ques-
tion of how to utilize mBERT for few-shot QG,
possibly with cross-lingual transfer, remains.
In this paper, we try to explore how mBERT
performs in few-shot QG (cross-lingual trans-
fer) and also whether applying meta-learning
on mBERT further improves the results. In
our setting, we consider mBERT as the base
model and fine-tune it using a seq-to-seq lan-
guage modeling framework in a cross-lingual
setting. Further, we apply the model agnostic
meta-learning approach to our base model. We
evaluate our model for two low-resource In-
dian languages, Bengali and Telugu, using the
TyDi QA dataset. The proposed approach con-
sistently improves the performance of the base
model in few-shot settings and even works bet-
ter than some heavily parameterized models
in some settings. Human evaluation also con-
firms the effectiveness of our approach.

1 Introduction

QG can be defined as the task of generating an ap-
propriate question based on the answer tokens and
the context. The previous state-of-the-art QG mod-
els are built using neural networks (Du et al., 2017;
Zhou et al., 2017; Zhao et al., 2018; Nema et al.,
2019), and are trained on high-resource languages
with availability of vast amount of manually an-
notated data for training. Collecting and anno-
tating such vast data for training on low-resource
languages can be challenging and costly. Cross-
lingual transfer learning has shown its effective-
ness in many NLP applications (Kumar et al.,
2019; Chi et al., 2019; Asai et al., 2021; Xie et al.,

∗The author contributed to the paper when he was a stu-
dent of IIT Kharagpur

2018) for addressing data scarcity, because it al-
lows us to transmit domain knowledge from a high
resource annotated source language to domain of
desired target language by fine-tuning with data
from a target domain with low resource availabil-
ity. mBERT (Devlin et al., 2018) has been success-
fully used in various NLU tasks (Wu and Dredze,
2019; Hu et al., 2020). However, utilizing mBERT
for generation tasks with cross-lingual transfer re-
mains unexplored, specifically for QG.

In this paper, we examine the application
of mBERT for QG with cross-lingual transfer.
Specifically, we ask: 1) Despite the successful
usage of various multilingual auto-regressive lan-
guage models (Xue et al., 2020; Liu et al., 2020;
Maurya et al., 2021), can mBERT, an encoder-
based model with fewer parameters than these
auto-regressive models, be used for QG with cross-
lingual transfer? 2) In few-shot cross-lingual trans-
fer settings, fine-tuning may cause colossal distri-
bution gap and severe forgetting (French, 1999),
along with an overfitting problem. Can applying
meta-learning further improve the results? Meta-
learning has shown its effectiveness in various
NLP applications such as Dialogue Generation
(Qian and Yu, 2019), Machine Translation (Park
et al., 2021; Gu et al., 2018), and Natural Lan-
guage Understanding (Nooralahzadeh et al., 2020;
Roy et al., 2022) as it has the capacity to swiftly
adapt to unseen training instances while leverag-
ing limited resources, thus it may be helpful in this
case as well.

To address these two questions, we use mBERT
as the base model, and following (Dong et al.,
2019), we fine-tune it as a sequence-to-sequence
LM (unidirectional decoding conditioned on bidi-
rectional encoding). We then apply the model ag-
nostic meta-learning approach (Finn et al., 2017)
to our base model, and we call our approach meta-
QG. The goal of our proposed approach is to de-
termine the best initialization of the model param-
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eters for the QG task, which can help the model
to easily adapt to target languages which are low-
resource. In our method, there are two phases, i.e.,
meta-train phase and adaptation phase. The ob-
jective of the meta-train phase is to learn an op-
timal parameter initialization, so we create pseudo
QG tasks on the source language. To minimize
the language distribution gap between the meta-
train and adaption phase, we mix English with an
Indian language and consider both as the source
languages. During the adaptation phase, we ap-
ply the model obtained using meta-train phase on
the target language in zero-shot or few-shot set-
tings. For evaluation, we apply our model on two
low-resource Indian languages- Telugu and Ben-
gali. We show that our approach gives consistent
gains over the base model for Meteor, BLEU-4,
and Rouge-L scores. Additionally, we also com-
pare our approach with the heavily parameterized
models mt5-base (Xue et al., 2020) (580M) and
mBART-50 (Liu et al., 2020) (680M), and the re-
sults obtained demonstrate that our approach out-
performs mt5-base for both the languages, and per-
forms better than mBART-50 for Bengali in few-
shot (n ≤ 16) settings. Human evaluation also
indicates that the proposed approach is very effec-
tive.

2 Methodology

QG task is defined as to generate a (syntactically
and semantically correct) question based on a para-
graph and the relevant sequence of answer tokens
present in it. In our cross-lingual transfer setting,
we denote the source language labelled training
data as DS

train and the target language test data
as DT

test. The aim of our QG meta-learning algo-
rithm is to train a model with DS

train using mini-
mum or zero resource of target language labelled
data, such that it performs well on DT

test. Our base
model in detail, as well as our proposed approach,
is described below.

2.1 Base model

For the base model, we make use of multilingual
BERT (mBERT ) and fine-tune it (Dong et al.,
2019) as a sequence-to-sequence LM for our QG
task. In our work, we consider passage and an-
swer as source segment and question as target seg-
ment, and we join these two segment with spe-
cial tokens [SEP ]. We randomly mask some to-
kens in the target sequence and fine-tune the model

to recover the masked tokens in a sequence-to-
sequence manner. Basically, the model considers
partial sentence y1 : yt−1 from the ground truth
(bidirectional encoding) to generate the t-th token
yt, which was masked (unidirectional decoding).
We use beam search during decoding, taking beam
size as 3.

2.2 Applying Meta-learning

Next, we discuss how we apply model-agnostic
meta learning (Finn et al., 2017, MAML) for the
proposed task. First we take the source languages
and, using them, create a set of tasks which we re-
fer to as pseudo-meta-QG tasks. Then, we train
the base model on these using pseudo-meta-QG
training. Lastly, we adapt the meta-trained model
to the test examples of the target language (in zero-
shot and few-shot settings). We discuss this in de-
tail below.
Pseudo-meta-QG Tasks creation: We create
pseudo-meta-QG tasks (Wu et al., 2020) from the
source languages’ labeled data. Let us assume that
source language’s training data, DS

train has P ex-
amples denoted as {x(i)}Pi=1. For each example
x(i), a pseudo-meta-QG task τi is created in the
form of a pseudo train set Dτi

train and a test set
Dτi

test. Here, Dτi
test = x(i), and Dτi

train is obtained
by retrieving k examples from DS

train which most
closely resemble the selected test example. We
use the input representation from the base model
(mBERT) to calculate (cosine) similarity between
any two examples. The pseudo-meta-QG tasks τi

are defined as follows per training example:

τi = (Dτi
train, Dτi

test), i ϵ 1, 2, ..., P. (1)

Pseudo-meta-QG training setup: Given the
base model Mθ (mBERT) with parameters θ and
pseudo-meta-QG tasks {τi}Pi=1, we obtain θ′

i (one
set of parameters per pseudo-meta-QG task τi) by
doing an inner-update on each τi. Specifically, it
performs few (n = 2) gradient steps on Dτi

train

(pseudo train set), and helps to obtain new model
parameters from the base model parameters θ. Our
equation for inner-update is as follows:

θ′
i = θ − lrinner∇θLτi

Dtrain
(θ) (2)

Here, θ denotes parameters of the base model Mθ,
lrinner is inner learning rate, and Lτi

Dtrain
is the loss

of pseudo training set Dτi
train of task τi. After the

inner-update, a meta-update is performed on the
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pseudo test set Dτi
test of τi . This step first calcu-

lates the pseudo test loss L
D

Ti
test

by evaluation of

the modified parameters (θ′
i) on Dτi

test. After that,
we update the model by optimization of the loss on
Dτi

test in terms of θ. There are multiple iterations
involved in this step and the meta-update equation
is defined as:

θ ← θ − lrmeta

∑

i

∇θLτi
Dtest

(θ′
i)

= θ − lrmeta

∑

i

gradi

(3)

Here lrmeta is the learning rate of meta-update
and gradi is the meta-gradient on task τi. We can
expand it as:

gradi = ∇θLτi
Dtest

(
θ′
i

)
= ∇θ′

i
LD

τi
test

(
θ′
i

)
∇θ

(
θ′
i

)

(4)
In Equation 4, ∇θ (θ′

i) refers to the Jacobian
matrix and it will introduce higher order gradient.
Following (Finn et al., 2017; Wu et al., 2020), to
reduce the computational cost, we use identity ma-
trix in place of Jacobian matrix. Therefore, gradi

can be computed as:

gradi = ∇θ′
i
LD

τi
test

(
θ′
i

)
(5)

Finally, we obtain the base model’s updated pa-
rameters as θ∗.
Adaptation: In the adaptation phase, we apply
the source trained model (parameters θ∗) to the tar-
get language’s test samples in a zero-shot or few-
shot setting. We follow Wu et al. (2020)’s adap-
tation approach for our zero-shot setting. In few-
shot setting, we fine-tune the source-trained model
on few-shot examples from the training data of tar-
get language. Specifically, we subsample the tar-
get language training dataset to obtain the small
few-shot datasets of size [2,4,8,16]. We randomly
sample five datasets for each shot.

3 Experiments

We evaluate our meta-learning based QG model
in zero-shot and few-shot settings. This section
covers details about the dataset used in our experi-
ments followed by the implementation details with
evaluation metrics. Dataset: We conduct exper-
iments on low resource Indian languages having
minimum amount of annotated data for QG. We
use TyDi QA1 (Clark et al., 2020) Gold passage

1https://github.com/google-research-datasets/tydiqa

dataset for our experiments. The dataset contains
triplets of passage, question and answer for 9 lan-
guages. We evaluate our method on Bengali and
Telugu dataset. The sizes of the Bengali and Tel-
ugu dataset (train, dev), in terms of number of
examples, are (2390, 113), and (5563, 669), re-
spectively. For cross-lingual knowledge transfer,
we additionally use English triplets from the same
dataset (train = 3696; dev = 440). One should note
that since the aforementioned dataset contains no
test data, we consider development set as test data
for all our experiments. For evaluating Bengali,
we consider English and Telugu as the source lan-
guages, while we use English and Bengali as the
source languages for Telugu. The purpose of mix-
ing one Indian languages is to learn different lan-
guage distributions rather than single-source distri-
bution. Please note that we follow the same zero-
shot and few-shot approach to our base models for
fair comparison.
Experiment Setup: We implement our algo-
rithm using PyTorch 1.1.0. Our base model uses
BERT base multilingual cased with 12 Trans-
former blocks, 12 self-attention heads and 768 hid-
den dimension, GELU activation, and dropout is
0.1. The maximum sequence length is set to 512
for the input. For the creation of pseudo-meta-
QG task, we take only two k = 2 similar ex-
amples during meta training and zero-shot adap-
tation phase. Each meta-training step performs
two inner-update and a meta-update on a batch of
16 tasks. We train our model up to 6,000 meta-
training steps. As described in Wu and Dredze
(2019), we freeze the embedding and the first
three layers of the base transformer model, while
the other layers are further fine-tuned for each
task. Other hyper-parameter settings are same as
in Devlin et al. (2018). We use Adam (Kingma
and Ba, 2015) optimizer with learning rates of
lrinner, lrmeta = 3e−5 for both inner-update and
meta-update steps. We set learning rate of lradapt

= 1e−5 for gradient updates during adaptation
phase. For few-shot experiment, we fine-tune the
meta-trained model up to 60 steps.

We evaluate the systems using BLEU (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014), and ROUGE-L (Lin, 2004) scores 2. Dur-
ing the training phase, we train our model using
the source language’s training data and save the
model based on the accuracy of the source lan-

2We use (Du et al., 2017)’s script for evaluating our model
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Model Setting Bengali Telugu

BLEU-4 Meteor Rouge-L BLEU-4 Meteor Rouge-L

mt5-base

0-shot

1.38 9.62 7.15 0.00 15.80 11.21
mBART-50 4.31 20.92 15.87 3.52 27.15 17.56
mBERT 3.24 16.37 27.88 2.27 17.82 15.03
meta-QG (Ours) 3.99 18.35 29.45 1.92 20.19 20.19

mt5-base

2-shot

1.73 13.80 9.97 1.15 21.96 12.56
mBART-50 5.01 27.98 21.00 10.02 33.52 39.21
mBERT 3.24 16.37 27.88 2.27 17.82 15.03
meta-QG (Ours) 5.22 25.45 33.51 4.86 31.77 31.83

mt5-base

4-shot

1.71 15.31 10.80 1.59 25.65 14.11
mBART-50 4.71 23.84 19.14 10.38 36.04 37.12
mBERT 3.24 16.37 27.88 2.27 17.82 15.03
meta-QG (Ours) 5.38 26.23 34.48 5.19 34.13 28.54

mt5-base

8-shot

2.95 19.52 13.81 3.88 29.25 19.25
mBART-50 5.01 27.73 20.91 21.02 38.88 43.74
mBERT 4.58 22.47 30.74 10.49 32.31 33.05
meta-QG (Ours) 5.54 27.40 32.80 10.19 36.58 34.57

mt5-base

16-shot

4.85 24.84 17.56 6.23 33.15 26.22
mBART-50 5.67 27.91 22.54 26.46 39.44 50.72
mBERT 6.35 23.39 33.99 12.05 32.75 34.94
meta-QG (Ours) 8.45 26.77 37.17 12.83 35.93 37.78

Table 1: Performance for zero-shot and few-shot cross-lingual question generation for Bengali and Telugu. We
consider English and Telugu as source language and evaluate Bengali as target language, while for evaluation of
target language Telugu we use English and Bengali as source language. The improvements in BLEU-4 by meta-
QG were statistically significant (p < 0.05 as per t−test) for all settings wrt mt5-base and mBERT and for Bengali
16-shot setting wrt mBART-50.

guage’s dev dataset. We carry out the training pro-
cedure for four random seeds. For few-shot set-
ting, we randomly sample 5 datasets, and average
over 4 training random seeds.

Results: In Table 1, we compare our model to
the various base models in zero-shot and few-shot
settings to verify the effectiveness of cross-lingual
knowledge transfer from source languages to tar-
get languages. We see that meta-QG outperforms
the base mBERT model for all the settings except
Telugu 0-shot BLEU-4 and Telugu 8-shot BLEU-
4. Interestingly, it also outperforms the heavily
parameterized mt5-base model for all the settings.
mBART-50, however, shows its superior quality
and outperforms all the other methods for Telugu,
except zero-shot Rouge-L, where meta-QG gives
better scores. For Bengali, meta-QG still holds
an edge over mBART-50, which was quite encour-
aging. The improvements in BLEU-4 by meta-
QG were statistically significant (p < 0.05 as per
t−test) for all settings wrt mt5-base and mBERT
and for Bengali 16-shot setting wrt mBART-50 .

A detailed error analysis is presented in the Ap-
pendix.

Human Evaluation: We also perform human
evaluation using a similar procedure as used by
(Chi et al., 2019; Maurya et al., 2021). We ran-
domly sample 35 test data-points in both Telugu
and Bengali languages and employ three metrics:
fluency, relatedness, and correctness. Fluency
measure is self-explanatory. The degree to which
the generated questions are related to the input
context is measured by relatedness, correctness as-
sesses the meaning and semantics of the generated
output. While fluency and correctness mainly deal
with the generation quality, relatedness is the most
critical among these for the task. We present the
generated questions by all the competing models
(after random shuffling) to three language experts
and ask them to rate the questions on a 5-point Lik-
ert scale (1: very bad and 5: very good) for all the
metrics. The results show that our approach con-
sistently outperforms mBERT and mt5-base for all
the metrics. mBART-50 achieves better scores in
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Fluency and Correctness due to its superior gen-
eration capability. However, meta-QG performs
better in relatedness for Bengali, the most critical
metric. The final numbers are in Table 2 in the
Appendix. These were calculated by averaging all
the experts’ responses for each parameter.

4 Conclusion

In this work, we make use of mBERT for QG task
in few-shot cross-lingual transfer setting, and in-
terestingly, we find that it actually performs bet-
ter than mt5-base for all the settings, and better
than mBART-50 for 16-shot setting in Bengali.
We then explore the use of meta-learning with
mBERT as the base model (meta-QG) and find
that it achieves significant performance improve-
ments compared to the mBERT as well as mt5-
base, and surprisingly also outperforms mBART-
50 for Bengali. In the future, we plan to extend
this framework to other Natural Language Genera-
tion tasks, and also plan to study the effectiveness
of data augmentation approaches.

Acknowledgement

We thank NLTM, BHASHINI, under the Ministry
of Electronics and Information Technology, Govt
of India, for their funding and support. We want to
thank the human annotators who volunteered to be
part of the human evaluation. We also thank Sovan
Kumar Sahoo, Souvic Chakraborty, Anurag Roy,
Santanu Pal, Ankit Bagde, Kousshik Raj, Nithish
Kannen, and Nikhil Reddy, who helped in various
aspects to complete the project.

References
Akari Asai, Jungo Kasai, Jonathan Clark, Kenton Lee,

Eunsol Choi, and Hannaneh Hajishirzi. 2021. XOR
QA: Cross-lingual open-retrieval question answer-
ing. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 547–564, Online. Association for Com-
putational Linguistics.

Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-
Ling Mao, and Heyan Huang. 2019. Cross-lingual
natural language generation via pre-training.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, volume 1:, page 13421352.

C. ; Abbeel Finn, P. ;, and S. Levine. 2017. Model-
agnostic meta-learning for fast adaptation of deep
networks. In ICML, 11261135.

Robert French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,
3:128–135.

Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho,
and Victor O. K. Li. 2018. Meta-learning for low-
resource neural machine translation.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine
Learning, pages 4411–4421. PMLR.

D. P. Kingma and J. Ba. 2015. Adam: A method for
stochastic optimization. In ICLR.

Vishwajeet Kumar, Nitish Joshi, Arijit Mukherjee,
Ganesh Ramakrishnan, and Preethi Jyothi. 2019.
Cross-lingual training for automatic question gen-
eration. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4863–4872, Florence, Italy. Association
for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

4255



Kaushal Kumar Maurya, Maunendra Sankar Desarkar,
Yoshinobu Kano, and Kumari Deepshikha. 2021.
Zmbart: An unsupervised cross-lingual transfer
framework for language generation.

Preksha Nema, Akash Kumar Mohankumar, Mitesh M.
Khapra, Balaji Vasan Srinivasan, and Balaraman
Ravindran. 2019. Let’s ask again: Refine network
for automatic question generation.

Farhad Nooralahzadeh, Giannis Bekoulis, Johannes
Bjerva, and Isabelle Augenstein. 2020. Zero-shot
cross-lingual transfer with meta learning.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Cheonbok Park, Yunwon Tae, Taehee Kim, Soyoung
Yang, Mohammad Azam Khan, Eunjeong Park,
and Jaegul Choo. 2021. Unsupervised neural ma-
chine translation for low-resource domains via meta-
learning.

Kun Qian and Zhou Yu. 2019. Domain adaptive dia-
log generation via meta learning. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2639–2649, Florence,
Italy. Association for Computational Linguistics.

Aniruddha Roy, Isha Sharma, Sudeshna Sarkar, and
Pawan Goyal. 2022. Meta-ed: Cross-lingual event
detection using meta-learning for indian languages.
ACM Trans. Asian Low-Resour. Lang. Inf. Process.

Qianhui Wu, Zijia Lin, Guoxin Wang, Hui Chen,
Börje F. Karlsson, Biqing Huang, and Chin-Yew Lin.
2020. Enhanced meta-learning for cross-lingual
named entity recognition with minimal resources.

S. Wu and M. Dredze. 2019. Beto, bentz, becas:
The surprising cross-lingual effectiveness of BERT.
CoRRabs/1904.09077.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A.
Smith, and Jaime Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A mas-
sively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3901–3910, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study.

A Appendix

A.1 Human Evaluation Results: Complete
Table

Model Flu. Rel. Cor.

bn te bn te bn te

mt5-base 3.17 2.76 2.35 2.80 3.28 2.65
mBART-50 4.42 4.32 2.69 3.23 4.29 3.91
mBERT 3.01 3.40 2.17 2.49 2.74 3.08
meta-QG 3.49 3.49 2.96 2.85 3.79 3.51

Table 2: Human evaluation results of 16-shot cross-
lingual question generation for Bengali and Telugu.
The three metrics are Fluency (Flu.), Relatedness
(Rel.), and Correctness (Cor.) respectively.

A.2 Case Study
Table 3 shows few example sentences with the
corresponding questions generated by the base
mBERT model as well as the proposed meta-QG
approach. For the examples 3a and 3d, we find
that mBERT does not generate a question where
entity names are getting repeated, possibly due to
some bias towards generating entity names from
the reference context. However, meta-QG over-
comes this issue and generates better questions.
The questions generated by mBERT in 3b and 3c
are better than the other two examples, but there
are minor issues, such as ‘Surya Sen’ instead of
‘Surya Sen’s’ (3b: missing morphological marker
in Bengali) and only the surname (3c).
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Reference 3a (Bengali): িচতৰ্া বেন্দয্াপাধয্ােয়র সব্ামীর
নাম কী ?

Translation: What is the name of Chitra
Bandyopadhyay’s husband?
meta-QG output: িচতৰ্া বেন্দয্াপাধয্ােয়র সব্ামীর নাম কী ?
Translation: What is the name of Chitra
Bandyopadhyay’s husband?
mBERT output: িচতৰ্া বা িচতৰ্া বা িচতৰ্া িছেলন ?
Translation: Was it Chitra or Chitra or Chitra?

Reference 3b (Bengali): মাস্টারদা সূযর্কুমার েসেনর
বাবার নাম কী িছল ?

Translation: What was the name of Masterda
Suryakumar Sen’s father?
meta-QG output: সূযর্ েসেনর বাবার নাম কী ?
Translation: What is the name of Surya Sen’s
father?
mBERT output: সূযর্ েসন বাবার নাম কী ?
Translation: What is the name of Surya Sen
father?

Reference 3c (Bengali): িবখয্াত েজয্ািতিবর্জ্ঞানী
িনেকালাউস েকােপিনর্কুেসর জন্ম কেব হয় ?

Translation:When was the famous astronomer
Nicolaus Copernicus born?
meta-QG output: িনেকালাস েকাপারিনকাস জন্ম কেব ?
Translation: When was Nicholas Copernicus
born?
mBERT output : েকাপারিনকােসর জন্ম কেব ?
Translation: When was Copernicus born?

Reference 3d (Bengali): িবখয্াত বাংলােদশী চলিচ্চতৰ্
পিরচালক েমারেশদুল ইসলােমর পৰ্থম পিরচািলত
চলিচ্চেতৰ্র নাম কী ?
Translation: What is the name of the first film
directed by famous Bangladeshi film director
Morshedul Islam?
meta-QG output: েমারেশদুল ইসলােমর পৰ্থম চলিচ্চেতৰ্র
নাম কী ?

Translation: What is the name of the first film
of Morshedul Islam?
mBERT output : েমারেশদুল ইসলাম বা েমারেশদুল
ইসলাম বা েমারেশদ েক িছেলন ?
Translation: Who was Morshedul Islam or
Morshedul Islam or Morshed?

Table 3: Some example outputs by the base mBERT
model as well as the proposed meta-QG approach 4257
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Abstract
Language modelling and machine translation
tasks mostly use subword or character inputs,
but syllables are seldom used. Syllables pro-
vide shorter sequences than characters, re-
quire less-specialised extracting rules than mor-
phemes, and their segmentation is not impacted
by the corpus size. In this study, we first
explore the potential of syllables for open-
vocabulary language modelling in 21 languages.
We use rule-based syllabification methods for
six languages and address the rest with hyphen-
ation, which works as a syllabification proxy.
With a comparable perplexity, we show that
syllables outperform characters and other sub-
words. Moreover, we study the importance
of syllables on neural machine translation for
a non-related and low-resource language-pair
(Spanish–Shipibo-Konibo). In pairwise and
multilingual systems, syllables outperform un-
supervised subwords, and further morpholog-
ical segmentation methods, when translating
into a highly synthetic language with a trans-
parent orthography (Shipibo-Konibo). Finally,
we perform some human evaluation, and dis-
cuss limitations and opportunities.

1 Introduction

In language modelling (LM), we learn distributions
over sequences of words, subwords or characters,
and the last two can allow an open-vocabulary gen-
eration (Sutskever et al., 2011). We rely on sub-
word segmentation as a widespread approach to
generate rare subword units (Sennrich et al., 2016).
However, the lack of a representative corpus, in
terms of the word vocabulary, can constrain the
unsupervised segmentation (e.g. with scarce mono-
lingual texts (Joshi et al., 2020)). As an alternative,
we could use character-level modelling, since it
also has access to subword information (Kim et al.,
2016), but we face long-term dependency issues
and require longer training time to converge. Sim-
ilar issues are extended to other generation tasks,
such as machine translation (MT).

In this context, we focus on syllables, which are
speech units: “A syl-la-ble con-tains a sin-gle vow-
el u-nit”. syllables can be defined as a group of
segments that is pronounced as a single articulatory
movement. Syllables are fundamental phonologi-
cal units since they participate in important word
prosodic patterns, such as stress assignment. In
this sense, syllables are more linguistically relevant
units than characters, and behave as a mapping
function to reduce the length of the sequence with
a larger “alphabet” or syllabary. Their extraction
can be rule-based and corpus-independent, but data-
driven methods or hyphenation using dictionaries
can approximate them as well.

We assess whether syllables are useful for en-
coding and/or decoding a diverse set of languages
on two generation tasks. First, for LM, we study
21 languages, to cover different levels of ortho-
graphic depth, which is the degree of grapheme-
phoneme correspondence (Borgwaldt et al., 2005)
and a factor that can increase complexity to syl-
labification (Marjou, 2021).1 Whereas for MT, we
focus on the distant and low-resource language-pair
of Spanish–Shipibo-Konibo. We choose Shipibo-
Konibo2 because it is an endangered language with
scarce textual corpora, which limits unsupervised
segmentation methods, and has a transparent or-
thography, which could be beneficial to syllabifica-
tion. Also, we consider multilingual MT systems,
as they outperformed pairwise systems for the cho-
sen language pair (Mager et al., 2021).

2 Related work

The closest LM study to ours is from Mikolov et al.
(2012) for subword-grained prediction in English,
where they used syllables as a proxy to split words
with low frequency, reduce the vocabulary and com-
press the model size. Besides, syllable-aware LM

1E.g., English has a deep orthography (weak correspon-
dence), whereas Finnish is transparent (Ziegler et al., 2010).

2See Appendix A for more details about the language.
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was addressed by Assylbekov et al. (2017) for En-
glish, German, French, Czech, Spanish and Rus-
sian, and by Yu et al. (2017) for Korean. How-
ever, in both cases, the syllables were composed
with convolutional filters into word-level represen-
tations for closed-vocabulary generation. Besides,
for subword-aware open-vocabulary LM, Blevins
and Zettlemoyer (2019) incorporated morphologi-
cal supervision with a multi-task objective.

For syllable-based MT, there are mostly stud-
ies for related paired languages, such as Indic
languages (in statistical MT without subword-
based baselines: Kunchukuttan and Bhattacharyya
(2016)), Tibetan–Chinese (Lai et al., 2018), and
Myanmar–Rakhine (Myint Oo et al., 2019). In-
stead, Spanish–Shipibo-Konibo is a non-related
language-pair. The only distant pair was English–
Myanmar (ShweSin et al., 2019), but they did not
compare it with unsupervised subwords. Neither
of these studies analysed multilingual settings.

3 Open-vocabulary language modelling
with a comparable perplexity

Open-vocabulary output We generate the same
input unit (e.g. characters, syllables or other sub-
words) as an open-vocabulary LM task, where
there is no prediction of an “unknown” or out-
of-vocabulary word-level token (Sutskever et al.,
2011). We thereby differ from previous works, and
refrain from composing the syllable representations
into words to evaluate only word-level perplexity.

Character-level perplexity For a fair compari-
son across all granularities, we evaluate all results
with character-level perplexity:

pplc = exp (LLM(s) · |s
seg|+ 1

|sc|+ 1
) (1)

where LLM(s) is the cross entropy of a string s
computed by the neural LM, and |sseg| and |sc| re-
fer to the length of s in the chosen segmentation and
character-level units, respectively (Mielke, 2019).
The extra unit considers the end of the sequence.

3.1 Experimental setup
Languages and datasets Corpora are listed
in Table 4 in Appendix B. We first choose
WikiText-2-raw (enw; Merity et al., 2016), which
contains around two million word-level tokens ex-
tracted from Wikipedia articles in English. Further-
more, we employ 20 Universal Dependencies (UD;
Nivre et al., 2020) treebanks, similarly to Blevins

and Zettlemoyer (2019).3 Finally, we include the
Shipibo-Konibo (shp) side of the parallel corpora
provided by the AmericasNLP shared task on MT
(Mager et al., 2021), which is also used in §4.

Syllable segmentation (SYL) For splitting syl-
lables in different languages, we used rule-based
syllabification tools for English, Spanish, Rus-
sian, Finnish, Turkish and Shipibo-Konibo, and
dictionary-based hyphenation tools for all lan-
guages except the ones mentioned above. We list
the tools in Appendix C.

Segmentation baselines Besides characters
(CHAR) and the annotated morphemes in the
UD treebanks (MORPH), we consider Polyglot
(POLY)4, which includes models for unsupervised
morpheme segmentation trained with Morfessor
(Virpioja et al., 2013). Moreover, we employ
an unsupervised subword segmentation baseline
of Byte Pair Encoding (BPE; Sennrich et al.,
2016)5 with different vocabulary sizes from 2,500
to 10,000 tokens, with 2,500 steps. We also fix
the parameter to the syllabary size. Appendix C
includes details about the segmentation format.

Model and training Following other open-
vocabulary LM studies (Mielke and Eisner, 2019;
Mielke et al., 2019), we use a low-compute ver-
sion of an LSTM neural network, named Average
SGD Weight-Dropped (Merity et al., 2018). See
the hyperparameter details in Appendix E.

3.2 Results and discussion

Table 1 shows the pplc values for the different lev-
els of segmentation we considered in the study,
where we did not tune the neural LM model for
a specific segmentation. We observe that sylla-
bles always result in better perplexities than other
granularities, even for deep orthography languages
such as English or French. The results obtained
by the BPE baselines are relatively poor as well,
and they could not beat characters in any dataset,
even though we searched for an optimal vocabu-
lary size for the BPE algorithm. The advantage
of using syllables is that we do not need to tune a

3The languages are chosen given the availability of an
open-source syllabification or hyphenation tool. We prefer to
use the UD treebanks, instead of other well-known datasets
for language modelling (e.g. Multilingual Wikipedia Corpus
(Kawakami et al., 2017)), because they provide morphological
annotations, which are fundamental for this study.

4polyglot-nlp.com
5We use: https://github.com/huggingface/tokenizers
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CHAR MORPH POLY SYL BPEbest

enw* 2.48 ±0.0 - 2.8 ±0.0 1.96 ±0.0 2.91 ±0.0

bg 3.56 ±0.03 4.09 ±0.05 4.69 ±0.01 2.87 ±0.0 5.19 ±0.01

ca 2.84 ±0.0 3.11 ±0.02 3.26 ±0.01 2.21 ±0.0 3.31 ±0.0

cs 3.32 ±0.0 3.11 ±0.01 4.18 ±0.01 2.66 ±0.0 4.24 ±0.0

da 4.25 ±0.01 4.42 ±0.04 5.6 ±0.0 3.1 ±0.01 6.21 ±0.03

de 3.5 ±0.04 3.36 ±0.08 3.79 ±0.0 2.48 ±0.0 3.86 ±0.02

en* 4.11 ±0.01 4.39 ±0.08 5.67 ±0.01 2.82 ±0.07 5.65 ±0.04

es* 3.16 ±0.01 3.71 ±0.04 3.95 ±0.01 2.51 ±0.0 3.98 ±0.0

fi* 3.77 ±0.01 4.05 ±0.12 4.76 ±0.01 3.1 ±0.0 5.27 ±0.01

fr 3.09 ±0.01 3.67 ±0.02 3.82 ±0.01 2.3 ±0.01 3.87 ±0.01

hr 3.52 ±0.02 3.92 ±0.01 4.34 ±0.0 2.8 ±0.0 4.52 ±0.02

it 2.8 ±0.0 3.19 ±0.0 3.43 ±0.01 2.27 ±0.01 3.61 ±0.0

lv 4.55 ±0.02 5.31 ±0.0 6.82 ±0.02 3.59 ±0.0 7.19 ±0.0

nl 3.83 ±0.05 3.69 ±0.1 4.44 ±0.01 2.76 ±0.01 4.83 ±0.01

pl 4.03 ±0.01 4.77 ±0.22 5.96 ±0.04 3.19 ±0.0 5.99 ±0.0

pt 3.31 ±0.01 3.46 ±0.03 4.03 ±0.01 2.56 ±0.0 4.24 ±0.01

ro 3.4 ±0.02 3.89 ±0.04 4.25 ±0.01 2.72 ±0.0 4.71 ±0.01

ru* 3.28 ±0.0 2.93 ±0.01 4.05 ±0.0 2.69 ±0.01 4.04 ±0.0

sk 6.16 ±0.05 5.1 ±0.07 7.61 ±0.08 4.62 ±0.01 10.51 ±0.03

tr* 4.16 ±0.05 4.86 ±0.05 6.41 ±0.07 3.66 ±0.03 6.98 ±0.1

uk 4.92 ±0.02 6.45 ±0.11 8.11 ±0.03 4.24 ±0.02 9.23 ±0.02

shp* 4.48±0.01 - - 2.15±0.02 3.50±0.03

Table 1: Character-level perplexity (↓) in test. We show
the mean and standard deviation for three runs with
different seeds. BPE shows the best result from mod-
els with different vocabulary sizes. SYL presents the
syllabification-based result if it is available (*), or the
hyphenation otherwise.

hyper-parameter to extract a different set of sub-
word pieces.

As a significant outcome, we note that syllables
did not fail to beat characters, at least in an open-
vocabulary LM task, which extends the findings
of Assylbekov et al. (2017). One potential reason
is that character-level modelling requires a larger
model capacity due to the longer sequences, how-
ever, that is also an advantage towards syllables.
Besides, other subword pieces with a closer se-
quence length to syllables (BPE, MORPH or POLY)
were still outperformed.

Finally, in Appendix D, we further discuss the
relationship between the syllable type/token ratio
with the word vocabulary growth and perplexity.

4 Low-resource Machine Translation

After observing the positive impact on LM, we fo-
cus on syllables for MT, which adds complexity to
the process, as there is at least one extra language
involved. In contrast to prior work, we (i) study
syllable-based MT for a distant and low-resource
language-pair, Spanish–Shipibo-Konibo; (ii) com-
pare syllables against the most widespread unsu-
pervised segmentation method (BPE) with auto-
matic metrics and human evaluation; and (iii) anal-

yse the applicability of syllables on multilingual
translation systems. The last element is significant,
as a multilingual setting is the state-of-the-art ap-
proach for leveraging low-resource language-pairs
performance (Siddhant et al., 2022). Moreover, we
decided to apply syllabification only on Shipibo-
Konibo, a highly synthetic6 language with scarce
textual data and with a transparent orthography7.

For this reason, we focus in three settings. First,
MONO, a pairwise system where each source and
target is segmented with a different method. Sec-
ond, JOINT, another pairwise system where the
BPE baseline is jointly trained with the source and
target data. Third, O2M, a multilingual one-to-
many8 system, where the BPE baseline is jointly
trained with all the languages (we added Spanish–
English in our experiments).

4.1 Experimental setup

Data For Spanish–Shipibo-Konibo (es–shp), we
use the dataset provided by the AmericasNLP work-
shop (Mager et al. (2021); Galarreta et al. (2017);
Gómez Montoya et al. (2019)), and perform the
same split as Mager et al. (2022) for the dev and
test subsets, to make the results comparable to
their morphological segmentation experiments. For
the multilingual case, we use the Spanish–English
(es–en) train set from EuroParl (Koehn, 2005) and
newscommentary-v8, and the NEWSTEST2013.ES-
EN (Bojar et al., 2013) evaluation sets.

Segmentation (i) BPE (Sennrich et al., 2016)
is our baseline segmentation method, and we use
the implementation of SentencePiece (Kudo and
Richardson, 2018). Similar to Mager et al. (2022),
we fix the best vocabulary size at 5000 pieces for
the MONO setting, after trying different values from
1k to 10k. JOINT and O2M use 5000 and 16000
pieces, respectively.

(ii) Syllabification (SYL) for Shipibo-Konibo
is adapted from Alva and Oncevay (2017). The
original method uses syllables to verify whether a
word is composed by consistent syllables for spell-
checking. In our experiments, when a word can not
be syllabify-ed, we split it into characters for the

6With a high ratio of number of morphemes per word.
7We attempted to use syllables on Spanish and English as

well, but with negative results. With large data, unsupervised
segmentation methods like BPE can obtain more significant
and overlapping subwords from source and target.

8We do not consider the many-to-one direction due to re-
source constraints, and because we observed that the improve-
ments by syllables are noted when decoding Shipibo-Konibo.
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MONO setting, and we use the joint-BPE segmenta-
tion model for the JOINT and O2M settings.

Model and training We reproduce Mager et al.
(2022)’s settings, by using the fairseq toolkit (Ott
et al., 2019), and a Transfomer model (Vaswani
et al., 2017) with smaller dimensions (Guzmán
et al., 2019). For the multilingual O2M setting,
we use a sampling approach with 5 of temperature
(Aharoni et al., 2019). See details in Appendix E.

Evaluation We use chrF (Popović, 2015) from
SACREBLEU (Post, 2018)9 and also perform a hu-
man evaluation of 100 samples per system (BPE
and Syl), following the annotation protocol used in
the AmericasNLP shared task (Mager et al., 2021).

4.2 Results and discussion

Table 2 shows the translation performance in all
settings, and we observe that syllables are statisti-
cally better than the BPE baseline when translating
from Spanish into Shipibo-Konibo, but not in the
other direction. This fact indicates that syllables
support the decoding more than the encoding step
of a language with a transparent orthography. Also,
the JOINT setting reduces the gap between BPE
and SYL, probably due to the shared roots between
the two languages (i.e., loanwords from Spanish
into Shipibo-Konibo). Furthermore, we note that
the impact of syllables is not minimised in a multi-
lingual system (O2M), where the performance for
es→shp has drastically improved, and the other
language-pair (es→en) retains a comparable result.

Moreover, our MONO experiments are compara-
ble with the study of Mager et al. (2022), where
they tested several unsupervised and supervised
morphological segmentation methods against BPE
for MT in four polysynthetic languages (includ-
ing Shipibo-Konibo). Our result with syllables in
es→shp outperforms all other approaches, such as
LMVR (Ataman et al., 2017), with a 38.99 chrF
score. This indicates that syllables are a robust al-
ternative to morphologically-aware methods when
we are dealing with limited data and translating
into a polysynthetic language.

4.3 Human evaluation

We also conducted a small human evaluation of
system outputs using a 5-points scale for the ade-
quacy and fluency of the Spanish→Shipibo-Konibo
translation, which is the translation direction that

9chrF2+numchars.6+space.false+v.1.5.0.

BPE SYL BPE SYL

es→shp es→en
MONO 37.62±1.87 41.27*±0.54

JOINT 40.41±0.82 41.74*±0.95

O2M 48.30 51.25* 53.99 53.85

shp→es
MONO 33.37±0.79 32.85*±1.22

JOINT 34.55±0.56 33.13*±0.75

Table 2: chrF scores in the test subsets. MONO: sin-
gle BPE model (5k pieces) for each source and target.
JOINT: joint BPE model (5k) for both source and tar-
get. O2M: joint BPE model (16k) for ES, EN and SHP.
For the first two settings, we run three experiments and
present the mean and standard deviation. The latter only
has one run due to resource constraints, and we report
es–en scores as a reference. Syllabification (SYL) is
only applied on the Shipibo-Konibo side, and (*) indi-
cates a p-value ≤ 0.05 against the BPE baseline.
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Figure 1: Adequacy and fluency scores (1-5) for 200
outputs of two approaches: BPE (dashed blue) and SYL
(solid orange), from the best es→shp O2M system.

benefited from the syllable segmentation. The an-
notation protocol and annotator’s information is
provided in Appendix F.

Figure 1 shows the scores annotated for ade-
quacy and fluency, where we compare BPE and
SYL in the O2M setting, which obtained the best
performance for both segmentation methods. We
observe that the adequacy is very poor for both
systems (1-2), but there is an advantage for SYL in
the smaller batch of highest adequacy (5), with 3%
more of the total samples. Regarding fluency, both
systems mostly obtain a low score (2), but there
is a consistent advantage for SYL over BPE in the
highest value (5), with 6.5% more of the total sam-
ples. The differences are very small to determine
whether a segmentation works better than the other
from human judgement, but they are consistent
with the automatic evaluation provided previously.
A larger sample, an extra annotator, or more robust
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systems could aid to clarify other potential benefits.

5 Limitations and opportunities

Syllables only cannot offer a universal solution
to the subword segmentation problem for all lan-
guages, as the syllabification tools are language-
dependent. Besides, the analysis should be ex-
tended to more scripts and morphological types.
Furthermore, we do not encode any semantics in
the syllable-vector space, with a few exceptions
like in Korean (Choi et al., 2017). Nevertheless,
our results confirm that syllables are reliable for
LM and MT, and building a syllable splitter might
require less effort than annotating morphemes to
train a robust supervised tool10.

Specifically for MT, syllables could be use-
ful when: (i) we are dealing with extremely low-
resource data, which affects unsupervised word seg-
mentation, (ii) we are translating into a language
with a high synthesis, which has been observed as
a factor that impacts on MT performance (Once-
vay et al., 2022), and (iii) we are working with a
language with a transparent orthography. This is
the scenario for several languages from the Ameri-
cas, where their writing systems have been recently
standardised for documentation and revitalisation
purposes (Mager et al., 2018), and some resources
for MT have been compiled (Mager et al., 2021).

6 Conclusion

We have proved that syllables are valuable for gen-
eration tasks such as: (i) Open-vocabulary LM,
where they behave positively even for languages
with deep orthography, and overcome character and
subword baselines. (ii) Low-resource and multi-
lingual MT, outperforming BPE pieces when we
translate into a language with a transparent orthog-
raphy and complex morphology (high synthesis),
even when the language-pair is not related.

Acknowledgements

The first author acknowledges the support of
NVIDIA Corporation with the donation of a Titan
Xp GPU used for the study. The last author ac-
knowledges the Max Planck Institute for Evolution-
ary Anthropology, Department of Linguistic and

10For instance, the syllabification tool that we used for
English is based on five general rules from: https://www.
howmanysyllables.com/divideintosyllables. Their implemen-
tation should take less effort than annotating a UD treebank or
building a Finite-State-Transducer for morphological analysis.

Cultural Evolution, for its support to the develop-
ment of the Chana Field Station in the Amazonian
region of Peru, and the support of CONCYTEC-
ProCiencia, Peru, under the contract 183-2018-
FONDECYT-BM-IADT-MU from the funding call
E041-2018-01-BM.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3874–3884,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Carlo Alva and Arturo Oncevay. 2017. Spell-checking
based on syllabification and character-level graphs
for a Peruvian agglutinative language. In Proceed-
ings of the First Workshop on Subword and Character
Level Models in NLP, pages 109–116, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Zhenisbek Assylbekov, Rustem Takhanov, Bagdat
Myrzakhmetov, and Jonathan N. Washington. 2017.
Syllable-aware neural language models: A failure
to beat character-aware ones. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1866–1872, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Duygu Ataman, Matteo Negri, Marco Turchi, and Mar-
cello Federico. 2017. Linguistically motivated vocab-
ulary reduction for neural machine translation from
turkish to english. arXiv preprint arXiv:1707.09879.

Terra Blevins and Luke Zettlemoyer. 2019. Better char-
acter language modeling through morphology. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1606–
1613, Florence, Italy. Association for Computational
Linguistics.
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A The Shipibo-Konibo language

Shipibo-Konibo (shp) is the largest and most vital
language within the Pano language family. With
more than 30,000 speakers, the Shipibo-Konibo
are among the largest indigenous groups in Peru.
Shipibo-Konibo people mainly live in the Peru-
vian Amazonia (in the regions of Ucayali, Loreto,
Huánuco and Madre de Dios), but there are also
large groups of Shipibo-Konibo people living in
the Peruvian coast (particularly in Lima and Ica).

Shipibo-Konibo is a well-documented language,
although the publicly available data on this lan-
guage is rather small (Zariquiey et al., 2019). It
has a complex morphology due to its high synthe-
sis (high ratio of morphemes per word, mostly by
suffixation) and it agglutinative nature. Its orthog-
raphy can be considered transparent, because its
alphabet was recently standardised by the Peru-
vian Government (Alva and Oncevay, 2017), and
the datasets we are using in all experiments are
provided with the most recent writing standard
(Mager et al., 2021). Machine translation research
on Shipibo-Konibo has focused on the develop-
ment of new parallel corpora (Galarreta et al., 2017;
Gómez Montoya et al., 2019), the application of
multilingual models (Oncevay, 2021), or the impact
of morphological segmentation methods (Mager
et al., 2022). However, neither of them has focused
on syllables as a unit for segmentation. For this
study, we adapt the syllabification function pro-
posed by Alva and Oncevay (2017), which was
used for spell-checking.

B Dataset details

Table 4 shows the size of the training, validation
and test splits for all the datasets used in the LM
task, while Table 3 shows details of the Spanish–
Shipibo-Konibo and Spanish–English parallel cor-
pora used in the MT task.

train dev test
es–shp 13,102 587 1,030
es–en 2,140,175 5,003 3,000

Table 3: Total number of sentences in train, dev and
test splits for the language-pairs used in the MT experi-
ments.

C Segmentation details

Tools We list the tools for rule-based syllabifica-
tion and dictionary-based hyphenation:
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Train Valid Test
Word Syl Char Word Syl Char Word Syl Char

enw 2,089 4,894 10,902 218 505 1,157 246 568 1,304
bg 125 386 710 16 50 92 16 49 90
ca 436 1,123 2,341 59 152 317 61 157 327
cs 1,158 3,546 6,868 157 482 933 172 524 1,012
da 81 215 442 10 28 57 10 27 56
de 260 735 1,637 12 34 75 16 45 102
en 210 488 1,061 26 61 133 26 61 132
es 376 1,060 2,043 37 103 198 12 33 64
fi 165 595 1,224 19 67 137 21 76 155
fr 360 837 1,959 36 84 197 10 23 54
hr 154 484 930 20 62 119 23 75 145
it 263 762 1,504 11 32 64 10 28 57
lv 113 349 690 19 58 115 20 59 116
nl 187 488 1,074 12 30 66 11 31 68
pl 102 293 589 13 37 73 13 37 74
pt 192 551 1,040 10 29 54 9 27 51
ro 183 549 1,056 17 51 98 16 48 94
ru 867 2,707 5,411 118 364 722 117 360 717
sk 80 232 437 12 39 76 13 41 80
tk 38 126 242 10 33 63 10 33 64
uk 88 289 501 12 41 71 16 56 99
shp 43 141 398

Table 4: Total number of tokens (in thousands) at word, syllable and character-level for all the splits.
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Figure 2: Left (a): Vocabulary growth rate of syllables (x-axis) versus words (y-axis). Right (b): Vocabulary growth
rate of syllables (x-axis) versus the difference of pplc obtained by characters and syllables (y-axis).

• English syllabification: Extracted from https:
//www.howmanysyllables.com/

• Spanish syllabification: https://pypi.org/
project/pylabeador/

• Russian syllabification: https://github.com/
Koziev/rusyllab

• Finnish syllabification: https://github.com/
tsnaomi/finnsyll

• Turkish syllabification: https://github.com/
MeteHanC/turkishnlp

• Shipibo-Konibo syllabification: Alva and On-
cevay (2017)

• Hyphenation: PyPhen (https://pyphen.org/),
which is based on Hunspell dictionaries.

Format For syllables in the LM task, we separate
the subwords as: “A @ syl la ble @ con tains @ a @
sin gle @ vow el @ u nit", where “@” is a special
token that indicates the word boundary. We also
evaluated syllables with a segmentation format like
in Sennrich et al. (2016): “A syl@ la@ ble con@
tains a ...”, but we obtained lower performance in
general. Whereas in the MT task, we adopt the
segmentation format used by SentencePiece (Kudo
and Richardson, 2018) for syllables: “_A _syl la
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ble _con tains _a _sin gle _vow el _u nit”.

D Type/token ratio of syllables in LM

In Figure 2a, we show a scatter plot of the to-
ken/type growth rate of syllables versus words for
all languages and corpora. In other words, the ratio
of syllable-types (syllabary or Vsyl) per total num-
ber of syllable-tokens (Nsyl) versus the type/token
ratio of words (Vword/Nword) in the train set. The
figure suggests at least a weak relationship, which
agrees with the notion that a low word-vocabulary
richness only requires a low syllabary richness for
expressivity. Also, a richer vocabulary can use a
richer syllabary or just longer words, so the distri-
bution of the vocabulary richness could be larger.

We expected that the syllabary growth rate
(Vsyl/Nsyl) for a low phonemic language like En-
glish would be relatively high, but wikitext-2 (en-
wt2) is located in the bottom-left corner of the
plot, probably caused by its large amount of word-
tokens. However, we observed a large Vsyl/Nsyl
for the English (en-UD) and French (fr) treebanks,
despite their low Vword/Nword ratio, which is an
expected pattern for deep orthographies.

We also observe that languages with a more
transparent orthography, like Czech (cs) or Finnish
(fi), are located in the left side of the figure, whereas
Turkish (tr) is around the middle section. Nev-
ertheless, our study does not aim to analyse the
relationship between the level of phonemic orthog-
raphy with the Vsyl/Nsyl ratio. For that purpose, we
might need an instrument to measure how deep or
shallow a language orthography is (Marjou, 2021;
Borgwaldt et al., 2005; Borleffs et al., 2017), and a
multi-parallel corpus for a more fair comparison.

Finally, in Figure 2b we observe a stronger re-
lationship of the syllable type/token ratio with the
difference of CHAR’s pplc minus SYL’s pplc. In
other words, if our dataset possesses a rich syl-
labary, we are fairly approximating the amount of
word-level tokens, which reduces the pplc gain.

E Model and Training

LM In contrast with the default settings, we use a
smaller embedding size of 500 units for faster train-
ing. Additionally, we have 3 layers of depth, 1152
of hidden layer size and a dropout of 0.15. We train
for 25 epochs with a batch size of 64, a learning
rate of 0.002 and Adam optimiser (Kingma and Ba,
2015) with default parameters. We fit the model
using the one cycle policy and an early stopping of

4. We run our experiments in a NVIDIA Titan Xp.

MT Similar to Mager et al. (2022), we use a
small Transformer model for our low-resource MT
settings, following Guzmán et al. (2019): “with 5
encoder and 5 decoder layers, where the number of
attention heads, embedding dimension and inner-
layer dimension are 2, 512 and 2048, respectively”.
For the pairwise systems, we train up to 100 epochs
with an early stopping policy of 5 (validating every
5 epochs), whereas for the multilingual systems we
train up to 30 epochs. For all the experiments, we
use 4 NVIDIA GeForce GTX 1080 Ti GPUs.

F Human evaluation

F.1 Annotation protocol
Adapted and summarised from the AmericasNLP
shared task (Mager et al., 2021): The expert re-
ceived the source sentence in Spanish, the reference
in Shipibo-Konibo, and an anonymized system out-
put, which includes the baseline (BPE) and our
syllable-based system (SYL). The expert received
only 200 samples (per system, same entries) that
were randomly selected and shuffled. They were
asked to annotate Adequacy (Does the output sen-
tence express the meaning of the reference?) from 1
to 5 (extremely bad, bad, neutral, sufficiently good,
excellent), and Fluency (Is the output sentence eas-
ily readable and looks like a human-produced text?)
from 1 to 5 as well.

F.2 About the annotator
The annotator is a native speaker of Shipibo-
Konibo, a certified and professional translator, and
a bilingual teacher in Peru. The annotator has ex-
perience in translating corpus for MT research,
and performing human evaluation for Spanish–
Shipibo-Konibo. This expertise is almost unique
for Shipibo-Konibo, and we could not identify a
second annotator with the same expertise to obtain
inter-annotation agreement.
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Abstract

Multilingual pretrained models, while effec-
tive on monolingual data, need additional train-
ing to work well with code-switched text. In
this work, we present a novel idea of train-
ing multilingual models with alignment objec-
tives using parallel text so as to explicitly align
word representations with the same underlying
semantics across languages. Such an explicit
alignment step has a positive downstream ef-
fect and improves performance on multiple
code-switched NLP tasks. We explore two
alignment strategies and report improvements
of up to 7.32%, 0.76% and 1.9% on Hindi-
English Sentiment Analysis, Named Entity
Recognition and Question Answering tasks
compared to a competitive baseline model.

1 Introduction

Large pretrained multilingual models have enabled
cross-lingual transfer on a number of downstream
natural language understanding (NLU) tasks. Apart
from serving as a good starting point to train mod-
els for tasks in low-resource languages, multilin-
gual models (Devlin et al., 2018) (Conneau et al.,
2019) have also been used to achieve zero-shot
cross-lingual transfer on target languages with no
task-specific labeled data. However, compared to
monolingual inputs, the effectiveness of multilin-
gual models on code-switched inputs—i.e., inputs
with two or more languages appearing within or
across sentences in a conversation—has not been
explored enough.

In this work, we aim at explicitly modifying rep-
resentations from pretrained multilingual models
to be more amenable to code-switched inputs. We
do this with the help of parallel text in the two com-
ponent languages and alignment objectives that
explicitly encourage representations to be better
aligned across the two languages. We conjecture
that modifying multilingual embeddings to be bet-
ter aligned across the two languages will help the

model deal better with tokens switching languages
within a code-switched sentence. We start with a
pretrained multilingual BERT (mBERT) baseline
model (Devlin et al., 2018) and design two align-
ment objectives to be used with parallel text to
align the multilingual embeddings. This “aligned"
mBERT model is then further fine-tuned with small
amounts of code-switched labeled data in the target
task. We find such an aligned model to be more
accurate on multiple downstream tasks involving
code-switched inputs.

The two main highlights of this work can be
summarized as follows:

• We propose two alignment-based objectives to
be used with mBERT and parallel text in En-
glish and Hindi. The aligned models are fine-
tuned and further evaluated on code-switched
Hindi-English NER, SA and QA tasks. Com-
pared to the baseline mBERT, we obtain clear
improvements on all three downstream tasks.

• We investigate how our model behaves in the
following two settings: 1) Using a bilingual
lexicon instead of parallel text 2) Using Ro-
manized Hindi instead of the native Devana-
gari script for Hindi.

We also present visualizations that clearly show
that the alignment objective helps bring representa-
tions for aligned words in Hindi and English closer
together.

2 Methodology

We explore two different objectives to encourage
cross-lingual contextual alignment in the mBERT
model. For this, we need access to parallel text
in the component languages corresponding to the
code-switched language of interest. We propose
both a sequence-level alignment objective that is
contrastive in nature, and a word-level alignment
objective that is based on minimizing distances
between aligned word embeddings.
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2.1 Contrastive Loss for Sentence-level
Alignments

Contrastive learning has been widely used in com-
puter vision as a self-supervised technique to learn
visual representations (Chen et al., 2020). Such
contrastive objectives are becoming more popu-
lar for text-based tasks as well (Gao et al., 2021).
We use a contrastive alignment objective with par-
allel text to improve cross-lingual alignment and
potentially yield improved representations for code-
switched text.

Consider a batch consisting of N pairs of par-
allel sentences {(x1, y1), . . . , (xN , yN )} extracted
from a parallel corpus C, where xi and yi denote
sequences of words in two different languages. Our
aim is to improve the alignment of a multilingual
model f with respect to C. Let f(xi) denote the
contextual embedding of the word xi due to the
multilingual model f . The contrastive alignment
objective is given by:

Lc =
1

2N

N∑

i=1

− log
e(S(f(xi),f(yi))/τ)

N∑

k=1
k 6=i

e(S(f(xi),f(yk))/τ)

+
1

2N

N∑

i=1

− log
e(S(f(xi),f(yi))/τ)

N∑

k=1
k 6=i

e(S(f(xk),f(yi))/τ)

+ η

N∑

i=1

Ri(f) (1)

where S is a similarity function, τ is a temperature
hyperparameter and Ri(f) is a regularization term
with a scaling factor of η that is defined as:

Ri(f) = 2 − S(f(xi), f0(xi)) − S(f(yi), f0(yi))
(2)

Here, f0 denotes the initial pretrained model prior
to alignment.

The contrastive objective in Equation (1) forces
positive pairs ((xi, yi)) to be closer to each other
and negative pairs ((xi, yk), ∀k 6= i) to be pushed
further apart. The regularization term ensures that
the aligned embeddings do not deviate too much
from their initialization. The alignment algorithm
using the contrastive objective is further elaborated
in the following steps:

1. f(xi) is the embedding of the [CLS] token
in mBERT after passing the entire sequence

xi as its input. For a given batch of N paral-
lel pairs, the loss in Equation 1 is computed
over all positive pairs, (xi, yi). There are two
loss terms associated with each positive pair
(xi, yi), each consisting of similarity scores
between (xi, yk) (excluding yi) and (xk, yi)
(excluding xi), respectively.

2. The similarity function between embeddings,
denoted as S, is a cosine similarity function.
The similarity scores are further scaled by a
positive temperature hyperparameter.

3. The regularization term is composed of one
loss term per (xi, yi) instance and explicitly
penalizes divergences in embeddings from the
initial pretrained model f0.

4. The composite loss per batch is finally nor-
malized by the number of positive instances
considered per batch i.e. 2N pairs.

2.2 Multilingual Loss for Word-level
Alignments

While the contrastive loss operates at the level
of sentences, we also consider an alignment ob-
jective that operates at the level of individual
words. This could be considered a more ag-
gressive alignment technique since it encourages
every aligned word in parallel sentences to be
close together. For every parallel sentence pair
(xi, yi), we first use an off-the-shelf alignment
tool called awesome-align (Dou and Neu-
big, 2021)1 to extract word alignments. We fur-
ther filter the aligned pairs based on an align-
ment prediction probability (set to 0.9 in our
experiments) to ensure that we only use high-
quality word alignments. If there are N paral-
lel sentences {(x1, y1), . . . , (xN , yN )} in a batch
and a(xi, yi) represents a list of index tuples
{(1, j), . . . , (m, n)} denoting the aligned word in-
dices in the parallel sentence pair (xi, yi), the align-
ment objective can be written as:

Lm =
1

B

N∑

i=1

∑

(m,n)∈
{a(xi,yi)}

S(f(xi,m), f(yi,n)) + Ri(f)

where xi,m, yi,n denotes the mth and nth word in xi

and yi, respectively, and B denotes the total num-
ber of successfully aligned word-pairs in the batch.

1https://github.com/neulab/
awesome-align
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Ri(f) is the regularization term defined in Equa-
tion (2). Note that f(xi,m) in Lm refers to a con-
textual embedding, while f(xi) in the contrastive
loss Lc is the embedding of the [CLS] token.2

3 Experiments and Results

3.1 Experimental Setup

3.1.1 Dataset Details

We evaluated our aligned models on three down-
stream tasks in code-switched Hindi-English — SA
(Sentiment Analysis), NER (Named Entity Recog-
nition) and QA (Question Answering) — from
the GLUECoS (Khanuja et al., 2020) benchmark.
Tasks in the GLUECoS benchmark can be grouped
into two categories, sequence labeling tasks (NER,
etc.) and tasks requiring deeper semantic under-
standing (sentiment analysis, etc.). We evaluated
our techniques on three tasks, NER, SA and QA,
spanning both categories.3

NER and QA datasets contain Hindi in the Ro-
manized form, while the SA evaluation sets use the
native Devanagari script for Hindi. As an evalua-
tion metric, we use F1 scores for all three tasks. For
the cross-lingual alignment training phase, we used
parallel text in English-Hindi from the IIT Bom-
bay English-Hindi Corpus (Kunchukuttan et al.,
2017). Alternatively, we also experimented with
using a bilingual lexicon, MUSE (Lample et al.,
2018), instead of parallel text.

GLUECoS NER is sourced from a Twitter NER
corpus (Singh et al., 2018) with 2467/308/307
train/dev/test instances. The sentiment anal-
ysis dataset is taken from the ICON 2017
shared task; Sentiment Analysis for Indian Lan-
guages (SAIL) (Patra et al., 2018) and has
10080/1260/1260 instances in the train/dev/test
splits. The QA dataset (Chandu et al., 2018) in-
cludes 259/54 instances in the train/dev sets, re-
spectively.

3.1.2 Model Implementation

We use Multilingal BERT (Devlin et al., 2018)
(base) as our baseline pretrained multilingual
model, that is also the baseline of choice for the

2Code and data supporting our work is avail-
able at: https://github.com/BarahFazili/
AlignmentForCS.

3We did not consider the remaining two sequence labeling
tasks of GLUECoS — LID-tagging and POS-tagging — since
they already yielded fairly high baseline mBERT scores (>95
and >87 for LID and POS, respectively).

SA (Devanagari) dev test
Baseline 60.3±0.00 64.2±0.03

Lc (|| Devanagari) 59.4±0.01 66.3±0.04

Lm (|| Devanagari) 61.0±0.01 68.9±0.03

Lc (MUSE Devanagari) 60.7±0.00 67.8±0.04

Lm (MUSE Devanagari) 59.6±0.01 65.9±0.02

Table 3.1: F-scores after intermediate pretraining of
standard mBERT using various alignment schemes on
the GLUECoS SA task. || refers to the use of parallel
text, and MUSE is the bilingual lexicon. Lc,Lm refer
to the contrastive and multilingual alignment schemes.

GLUECoS benchmark. Subsequent works report-
ing results on GLUECoS (e.g., Santy et al. (2021))
also used mBERT as their base model. This moti-
vated us to stick to mBERT so that we could repro-
duce the baseline numbers and contextualize our
improvements better compared to prior work.

We train mBERT with the alignment objectives
in two different ways: 1) Train all 12 mBERT lay-
ers with the alignment objective and 2) Only train
a newly-introduced linear layer on top of mBERT
and freezing the remaining mBERT layers. The
new linear layer will have the same number of
input and output dimensions as the last layer in
mBERT (i.e., 768 in mBERT base). For training
the linear layer, we use the AdamW optimizer at a
learning rate of 0.001 with early stopping (and pa-
tience set to 10). For training all the mBERT layers,
we choose a smaller learning rate of 5e−5. For the
contrastive objective Lc, we used a validation set to
tune the scaling factor for the regularization term
η and the temperature values. For the multilingual
alignment Lm, we only tuned the scaling factor η
for the regularization term.

3.2 Results on Downstream Tasks

Table 3.1 lists the F scores on the GLUECoS SA
task. The alignment training was done either us-
ing parallel text from the IITB Parallel Corpus or
the bilingual lexicon from MUSE. This alignment
training phase was followed by finetuning on the
code-switched Hindi-English SA training data. We
see significant improvements in F1 scores for all
alignment training schemes. The best F1 score
on SA Devanagari is achieved with multilingual
alignment over the IITB parallel corpus.

Table 3.2 shows results on both NER and QA.
The alignment training is different from SA (in Ta-
ble 3.1) with only training a newly-added linear
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(a) Baseline mBERT (b) Aligned mBERT

Figure 3.1: t-SNE plots using 48 instances of words in each language before and after aligning mBERT using Lm.

layer on top of frozen mBERT layers.4 Baseline
(rand) refers to adding a randomly initialized linear
layer on top of the baseline, that is subject to no
alignment training and only task-specific finetun-
ing. We observe clear performance improvements
on both NER and QA.

Visualizing the alignments. Fig 3.1 visualizes the
change in embeddings after the alignment train-
ing. We selected 6 pairs of parallel Hindi-English
words and created a set of 48 parallel sentences
in monolingual Hindi and English; each of the six
pairs appear in eight sentences each (in their cor-
responding scripts). Embeddings for these words
across all 96 sentences were extracted from both
the baseline mBERT and our multilingual aligned
mBERT and plotted in 2D using t-SNE. As seen
in Fig 3.1, the parallel words are now closer to
each other in the aligned plot irrespective of the
underlying language.

4Backpropagating through all mBERT layers significantly
degrades performance for QA. Conversely, training only a
linear layer for SA while freezing mBERT layers did not help.

System NER QA
dev dev

Baseline 78.7±0.01 73.5±2.75

Baseline (rand) 78.5±0.01 71.8±1.67

Lm (|| Roman) 79.3±0.00 74.0±2.20

Lc (|| Roman) 79.0±0.01 74.3±2.99

Lm (|| Devanagari) 79.2±0.00 72.3±0.69

Lc (|| Devanagari) 78.8±0.01 74.0±1.36

Lc (MUSE Roman) - 74.9±1.44

Lm (MUSE Roman) - 72.6±1.91

Table 3.2: F scores after intermediate pretraining of lin-
ear layer added on top of frozen standard mBERT using
various alignment schemes on the GLUECoS NER,QA
and SA tasks

4 Related Work

Large pretrained multilingual models, such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) have achieved state-of-the-art re-
sults on monolingual and cross-lingual benchmark
tasks. However, their efficacy on code-switched
tasks have not been sufficiently explored. (Winata
et al., 2021) observed that pretrained multilingual
models do not necessarily guarantee effective rep-
resentations for code-switched text.

Prior work has explored different ways of adapt-
ing multilingual pretrained models to be effective
for code-switched data. Prasad et al. explore bilin-
gual intermediate pretraining to derive large and
consistent performance gains on three different
NLP tasks on code-switched text. Santy et al. fine-
tune mBERT with synthetic code switched data
generated using random lexical substitution and
code-switching constraints based on linguistic the-
ories. Chakravarthy et al. (2020) also pretrain
mBERT on code-switched text and adopt other data
augmentation techniques to derive performance
gains. Aguilar et al. (2021) focus on the role of
tokenization and propose a hybrid technique that
processes in-vocabulary and out-of-vocabulary to-
kens differently and observe improvements on three
different code-switched NLP tasks. Gupta et al.
(2021) use unsupervised self-training to predict
pseudolabels on the target task and retain high-
confidence predictions as labeled samples that are
further used to finetune the model. This leads to a
boost in performance on the task of code-switched
sentiment analysis.

We note that the L2 alignment technique in Wu
and Dredze (2020) is the same as our word-level
multilingual alignment objective except for regular-
izing model parameters rather than the model out-
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put embeddings (before and after alignment). Wu
and Dredze (2020) show two variants of contrastive
alignment termed “weak” and “strong”. The weak
variant strictly uses negative pairs from the other
language, while the strong variant uses negative
pairs from both within and outside the language.
We used the weak variant in our work to avoid
overfitting since we did not have a lot of data for
alignment training.

Our work departs from prior work on improving
NLU for code-switched inputs in that it is the first
to explore the use of alignment objectives with par-
allel text to modify the multilingual representations
and make them more suitable for code-switched
tasks. Recent work from Deshpande et al. (2021)
corroborates our findings and establishes a strong
correlation between embedding alignments and
downstream performance on cross-lingual transfer.
While they present a post-hoc empirical analysis of
what factors benefit cross-lingual transfer the most,
we explicitly use an alignment-based training for
better alignment between languages and improve
downstream task performance.

5 Conclusion

In this work, we propose aligning multilingual
embeddings using sentence-level (contrastive) and
word-level (non-contrastive) objectives. Such an
explicit alignment leads to improved performance
on three code-switched Hindi-English NLP tasks:
SA, NER and QA. Future work will explore the use
of alignment objectives in a multi-task framework
with the target tasks.
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Abstract

An increasing number of papers have been
addressing issues related to low-resource
languages and the transcription bottleneck
paradigm. After several years spent in North-
ern Australia, where some of the strongest
Aboriginal languages are spoken, we could ob-
serve a gap between the motivations depicted
in research contributions in this space and the
Northern Australian context. In this paper, we
address this gap in research by exploring the
potential of speech recognition in an Aborig-
inal community. We describe our work from
training a spoken term detection system to its
implementation in an activity with Aboriginal
participants. We report here on one side how
speech recognition technologies can find their
place in an Aboriginal context and, on the other,
methodological paths that allowed us to reach
better comprehension and engagement from
Aboriginal participants.

1 Introduction

A consistent theme in recent NLP research has
been doing more with less (Wiesner et al., 2022;
Gao et al., 2021; Baevski et al., 2021; Schneider
et al., 2019; Menon et al., 2019). It is popular to
describe new pipelines to solve a wide range of
tasks for under-resourced languages (Godard et al.,
2018; Anastasopoulos et al., 2018; Settle et al.,
2017; Mitra et al., 2016; Lane and Bird, 2019).
However, the motivations behind the design of a
computational method are not systematically well
justified according to the needs of the target speech
communities.

The category of under-resourced languages en-
compasses a wide range of contexts, not simply in
terms of the quantity of data available but also in
terms of local speech communities’ sociolinguistic
and political situation (Bird, 2022). Often, the fo-
cus has been to generalise a given method across
languages, where the proposed system is at the
core of the argument instead of the benefits that it

could have for the speakers. We could ask whether
the same language technology would be equally
applicable to Marathi, spoken by millions in a ma-
jor metropolis, and Miriwoong, with only a few
elderly speakers in a remote Australian Aboriginal
community (cf. Kuhn, 2022).

Universal solutions dominate NLP: research and
results are often provided without taking into ac-
count the global situation of the languages involved
or the views of the speech communities about the
preservation of their language. Instead, it is com-
mon to assert that an improvement in Word Error
Rate yielded by a given speech recognition sys-
tem is the answer to the transcription bottleneck
and, therefore, the problem of scaling up language
documentation (van Esch et al., 2019; Foley et al.,
2018).

Most of the world’s languages are primarily oral
(Ong, 1982; Walsh and Yallop, 1993). Writing is
often not a priority, and very few people are skilled
in transcribing their language. Written resources of-
ten only exist in limited spaces where there is a col-
laboration between westerners and local communi-
ties, such as schools, ranger programs, tourism, and
academia. In such cases, writing would seem to pri-
marily serve institutional agendas (cf. Dobrin et al.,
2009; Perley, 2012; Nevins, 2013). Accordingly,
we must ask ourselves to what extent automatic
transcription technologies have a place in research
that respects local self-determination. Bird (2022)
calls for a local turn, for the need to work with local
speech communities from the ground up. In other
words, outsiders who enter communities with their
expertise need to begin with local concerns and
local knowledge practices, and only later begin to
explore ways in which language technologies can
be added into the mix. For example, a local person
might want non-indigenous colleagues to learn and
use the local language, rather than assuming that
all work is conducted in English. We have found
that such an approach enlarges the opportunities
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for collaboration, while simultaneously generating
language resources.

This paper extends our previous work on collabo-
rative transcription (Le Ferrand et al., 2022), where
the language documentation pipeline we designed
failed. We were confronted with different ways of
knowing and different expectations in terms of lan-
guage work. In this work, learning from our past
failure, we describe our approach, from the training
of a transcription system to the design of collabo-
rative transcription activities with Aboriginal par-
ticipants. We first describe our speech recognition
method based on syllable spotting. We then present
the design of the app used that bridges the output
of the syllable spotting system to the people, taking
into account existing practices. We also explain our
method to engage with participants to address their
interests in terms of language work. Finally, we
detail the application of the proposed transcription
activities and discuss the success and flaws of this
work.

2 Background

2.1 Decolonising practices
Research contributions around speech processing
for low-resource languages have often followed
the work of documentary linguistics, where some
automation is added to support manual annota-
tions (Adams et al., 2018; Godard et al., 2018;
Foley et al., 2018). The 7000+ world languages
are often mentioned and language technologies ap-
pear as a way to prevent their loss (Adda et al.,
2016; Duong, 2017; Jimerson and Prud’hommeaux,
2018). Special workshops like the zero resource
challenge1 and the introduction of a surprise lan-
guage have pushed in this direction allowing the
creation of computational solutions that bypass the
need of the speech communities of language ex-
perts. Recent studies have also shown that the
languages (Schwartz, 2022) or the speech commu-
nities (Caselli et al., 2021) are rarely ate the core of
the argument in the ACL anthology’s publications.

Documentary linguistics is often the preliminary
step of language description and analysis (Hanke,
2017). Documentation and description commu-
nicate with each other to allow western scholars
to have a better comprehension of Indigenous lan-
guages. There are no clear benefits for the speech
community, and extra work needs to be provided
to share the benefits of a research project (Chelliah

1https://www.zerospeech.com/

and De Reuse, 2010). The NHMRC Guidelines2

for Ethical Conduct in research with Aboriginal and
Torres Strait Islander Peoples and Communities set
out principles of equity and reciprocity, where the
outcome of the research should benefit both parties.
Recent research practices, including documentary
linguistics, started to fully commit to these stan-
dards by adopting a community-based approach
(e.g. Rodríguez Louro and Collard, 2021; Ryder
et al., 2021; Taylor et al., 2020). Community-based
research has the community at its core and is meant
to be conducted for and with the participation of
community members (Rice, 2011).

2.2 Community-based projects

Community-based research around software de-
sign is a small but growing area. Projects have
been based on research Human-Computer Inter-
action (HCI) or NLP from a language learning
perspective. On the HCI side, research has con-
tributed to responding to local issues by designing
tools in collaboration with the community (Soro
et al., 2017; Hardy et al., 2016; Leong et al., 2019).
Cross-cultural collaboration is challenging. From
this kind of project have also emerged engagement
methods to facilitate the conversation with Indige-
nous communities about technology design (Za-
man et al., 2016; Taylor et al., 2020). On the NLP
side, the research contributions have been language-
specific or bounded to a specific context. For in-
stance, Pine et al. (2022) have described speech
synthesis systems in several Indigenous Canadian
languages responding to a call from the language
learners. Projects that did not initially have a
community-based component sometimes ended
up serving community-based projects. Uí Dhonn-
chadha and Van Genabith (2006) for instance, cre-
ated a POS tagger for gaellig Irish. The system
has been then incorporated into an Irish learning
game (Xu et al., 2022). In either case, the majority
of the work done in this area is based on writing
(e.g. Lane and Bird, 2019; Schwartz et al., 2019;
Finn et al., 2022). The only speech-based projects
are around speech synthesis (Harrigan et al., 2019;
Pine et al., 2022). Speech recognition seems to be
rarely involved in community-based projects.

2https://www.nhmrc.gov.au/about-us/re
sources/ethical-conduct-research-aborigi
nal-and-torres-strait-islander-peoples-a
nd-communities#block-views-block-file-at
tachments-content-block-1
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2.3 Context

Our work is grounded in Bininj country in West
Arnhem, Northern Territory in the Australian Top
End. Bininj country is part of the Indigenous Pro-
tected Area of Arnhem Land where the land and sea
are managed by Aboriginal groups.3 The main lan-
guage of communication is Kunwinjku (ISO gup)
which is spoken by approximately 2500 people
(Marley, 2021). There is a standard orthography
that has been introduced by linguists but it is not
widely used by the members of the community.

The first and second authors have several years
of experience with the Bininj community, have
some expertise in Kunwinjku, the local language,
and have both been adopted by Traditional owners
of the land. In this case, adoption means the attri-
bution of a skin name that connects an individual to
the rest of the community (cf. Christie, 2008, p.35).

2.4 Learning from failure

This work is the continuation of Le Ferrand et al.
(2022). We previously designed a spoken term de-
tection prototype to detect whole words in untran-
scribed speech collections in Kunwinjku. We then
used an app to bridge the output of our prototype
to the people to allow local communities to verify
the guesses of our system and therefore be part of
transcription works. We faced many challenges
that we tried to build on in this work.

This previous work focused on the collection of
data to enhance the performance of the system. The
design ended up being irrelevant and redundant for
the participants. From here we realised the need
for further discussion with the community to set up
activities that are relevant to their agenda, interests
and practices.

The app presented displayed only four buttons:
one to play the query, one to play the utterance
and two to give a feedback on whether the query
has been spotted in the utterance or not. While
testing the app, we realised how the audio files ex-
tracted from their contexts were confusing for the
participants. Besides, the fact of validating system
guesses in random utterances was disconnected
from the idea of transcription which led most par-
ticipants to overthink the task.

In projects around cross-cultural technology de-
sign, shallow information is provided about the
extent of the collaboration and the challenges en-

3https://www.awe.gov.au/agriculture-l
and/land/indigenous-protected-areas

countered. Yet, studies have described ways of
knowing in Indigenous communities that differs
from the western approach to knowledge (Descola,
2005; Foley, 2003). Such differences appear as the
main reason behind the failed attempt of app design
where the proposed task lose all meaning in Bininj
context.

From our first failed attempt, the challenges were
two-fold. We first needed to figure out a way
to solve the comprehension issues we have faced.
Then, we needed to improve the relevance of this
work for Bininj participants. The key was to find
out how to design transcription technologies based
on existing practices. From the language learning
sessions we had with some of our Aboriginal col-
laborators, we noticed, for instance, how they teach
us breaking down words into syllables to decom-
pose the pronunciation of a given item. This led
us to think about replacing word spotting with syl-
lable spotting, allowing participants to reproduce
their word decomposition strategy to build up the
transcription from the syllables spotted. From here,
the focus needed to be given on incorporating this
transcription strategy into an activity that matters
to the people.

3 Transcription by syllables

3.1 Data

To build the system, we are using a corpus in Kun-
winjku built from several sources. The training
and validation sets consist of 35.45 min and 7.39
min respectively of spontaneous speech made of
guided tours of Aboriginal towns and utterances
for language description purposes. Two different
sets are used for testing: one set of 19.43 min of
spontaneous utterances and one set of 4.43 min of
elicited words recorded in isolation.

To build our list of valid syllables, we used a
word list built from the Bible in Kunwinjku. We
then applied on each word syllable segmentation
rules resulting in a set of 584 unique syllables with
relative frequency values associated.

3.2 Experimental setup

Le Ferrand et al. (2021) introduced a method of spo-
ken term detection for very low-resource languages
based on phone recognition. Their method is based
on Allosaurus (Li et al., 2020), a universal phone
recognizer. We preferred this method in this work
due to its flexibility in terms of query selection
and its speed compared to Dynamic Time Warp-
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ing, which is usually used for very low-resource
languages.

We first trained the phone recognizer using our
train set and generated confusion matrix from the
validation and test sets. A confusion matrix con-
sists of a phone transcription and the top k (we
use k=5) most likely alternatives per phone with
a likelihood score associated. To spot syllables,
we expressed the syllables extracted from the bible
as a finite state automaton after conversion from
graphs to phones and explored every possible path
in the phone matrix that corresponded to a valid
transition in the lexicon. Ultimately we extracted
the resulting syllables with the mean of the phones’
scores that are used as a likelihood measure to filter
the syllables spotted based on a threshold T.

To increase the accuracy of the method of Le Fer-
rand et al. (2021) which only relies on the like-
lihood scores output by allosaurus, we used the
frequency information in our syllable list to more
precisely select our candidates. To do so, we aver-
age the likelihood score Ls of a detected syllable
with its unigram probability Ps weighted with a
constant α as:

Ls + αPs (1)

We then optimised, on the validation set, α vary-
ing a range of values between 0 and 10 with a 0.1
step and a syllable detection threshold T between
0 and 10 with a step at 0.01. We then spotted syl-
lables on the test set with the parameters which
provided the best F-score on validation. We also
report results without the frequency where only the
threshold T is optimized on the validation set.

3.3 Experimental results

Our best results on the validation set have been
obtained with T = 0.39 when unigram probability
is added. For our baseline without unigram prob-
ability, the best threshold has been obtained with
T = 0.35 We report the results in Table 1.

We can see here that the frequency information
has an impact on the overall performances in both
scenarios with an F-score nearly 4 points higher in
the results with frequency. Better performances are
obtained on the test set made of utterances. Two
elements can explain it. First, the phone recogni-
tion model has been trained on similar data to the
utterance test set which leads to better phone recog-
nition performances. Then, the chance of a given
syllable being pronounced several times is higher

Results with likelihood score alone
Sets Recall Precision F-score
Words 41.71% 24.40% 30.79%
Utterances 47.21% 36.26% 41.02%
+ unigram probability
Sets Recall Precision F-score
Words 43.08% 28.09% 34.23%
Utterances 46.56% 41.50% 43.88%

Table 1: Experimental results (syllable spotting) on the
two test sets

in longer utterances which means that it has higher
chance to be spotted.

4 App design

4.1 Prototype

We designed a simple interface to display the syl-
lables from our spoken term detection systems to
our participants (see Figure 1). Our goal here was
not to design a final product but to present a sim-
ple interface that works well enough to see if the
proposed syllable concatenation mechanism makes
sense from a Bininj perspective. We bridged the
output of the system to a transcription interface
by creating one button per syllable spotted for a
given audio recording. The buttons display the or-
thography of the syllables spotted. They play the
corresponding pronunciation when clicked. There
is one play button to play the audio to transcribe
and one text area with an associated play button to
look for syllables that have not been spotted. The
user needs to use the keyboard to make guesses on
missing syllables and needs to click on the play
button to check the pronunciation of their guesses.

Figure 1: Preliminary version of the app

We organised a testing session with one partici-
pant in Gunbalanya: IG, a 25 year old local artist
and tour guide. We spotted syllables in a 3.35min
recording made of elicited speech of Bible stories.
Because of the quality of the audio, most of the
syllables were correctly spotted. We explained to
IG that we wanted to write down Kunwinjku and
we needed his help to spell the words.

IG rapidly understood the task and started point-
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ing syllables on the screen while we were writing
with pen and paper IG’s feedback. He clicked sev-
eral times on the different syllables displayed and
progressively gave feedback. When a syllable was
not spotted, he could with some hesitancy, write
with the keyboard syllables guesses in the text area.

The main observations made during the pilot
study were IG’s quick comprehension of the task,
his hesitancy while using the keyboard and his con-
fidence while reporting the orthography. At the end
of the activity, he told us that he was expecting the
text area to produce a new syllable button he could
use.

4.2 Design and features
The quick comprehension of IG showed the poten-
tial of the proposed transcription mechanism which
made us pursue this direction. Based on the first
trial, we designed a proper transcription interface
based on syllable spotting (see Figure 2). The core
of the interface was the same that our first trial: we
have a play button on the top of the screen playing
the target audio to transcribe. We have one button
per detected syllable associated with a wav file con-
taining their pronunciation. The syllables can be
dragged and dropped to the black box at the bot-
tom of the screen. The user can listen to the final
concatenation of the syllables with the associated
play button and validate the transcription created
with a thumb up button.

We needed to find a way to allow the user to
add undetected syllables manually. To do so, we
initially added a side menu accessible through a
plus button on the side of the screen. The menu
consisted of a scrolling list that contained the 584
syllables. We added a text area at the top of the list
that allowed the user to retrieve a syllable from its
first letters (see Figure 3). Following the principle
of the regular syllable button, the user could click
on the syllable to hear the pronunciation and click
on the associated plus button once their choice was
made. The syllable was then added as a regular
syllable button. To avoid the use of the keyboard,
we changed this syllable search mechanism by re-
moving the text area and by replacing the list of
syllables with expandable sub-lists labelled with
the first graph4 of the syllables it contains (see Fig-
ure 4). The user can then search for a syllable by
expanding the lists and select a syllable by listening

4We are not talking in terms of individual letter but graph
or group of graphs that correspond to a single phone in Kun-
winjku

to it and clicking on the associated plus button. The
app and databases were stored in a laptop accessed
remotely by a tablet with wifi.

Figure 2: Final version of the app

Figure 3: Initial syllable search mechanism

Figure 4: Updated syllable search mechanism

5 User testing

Due to Covid-19 restrictions, no trips to remote
communities were possible. However, we have
been able to work individually with Kunwinjku
speakers in transit in Darwin at the university. We
incorporated our syllable spotting based transcrip-
tion task in a more global resource creation work-
flow. We could test it with two participants from
Bininj country. In order to engage with the par-
ticipants, we organised the testing phase in two
sections. In the first one, we discussed and elicited
knowledge about topics of interest based on previ-
ous conversations, in the second, we used the inter-
face to transcribe the knowledge recorded. There-
fore, besides the focus given to the design of the
app and spoken term detection system, time of this
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project has been dedicated to the study of cultural
elements to enable more efficient collaboration.

5.1 Activity description
Elicitation of knowledge

Ngabenbekken nahni wurdwurd nawu
kabirrihre minj Kundebi kabirrikarrme.
Burrkyak. Kabirridjalngeybun. Minj
kabirridebikarren, burrkyak.

“I hear these children going about – they
don’t have Kundebi. No. They just use
people’s names. They don’t use Kundebi
with each other, no.” (Etherington, 2006)

Language shift is not a new phenomenon. Lan-
guage variation in Kunwinjku has been the subject
of recent research (Marley, 2021) and has been
one of the concerns raised by Bininj Elders. Kun-
debi specifically has been described as a language
feature that the community is proud of and that is
being progressively lost by the young generation
(Garde, 2013; Etherington, 2006). It has also been
mentioned in the same terms by some Elders during
some of our fieldtrips. Kundebi refers to the way a
speaker A refers to an individual C while talking to
an addressee B. For example, a speaker A is talking
to their elder sister’s child B about their elder sister
C. A is usually referring to B using the term djedje
“nephew” and to C using the term yabok “sister”.
Listener B however usually refers to C using the
term morlah “mother’s elder sister”. The kundebi
term berlunghkowarre is then used to summarize
these three relationships and could be translated as
“my sister, your mother’s elder sister, you are my
sister’s child” (Garde, 2013).

In order to respond to people’s priority in terms
of language work, we have decided to first focus
the activity on the creation of written resources
around Kundebi. To do so, while working with a
Kunwinjku speaker, we would talk about common
acquaintances, identify the way we both would
refer to them and then identify and record the cor-
responding Kundebi terms. We used an activity
sheet (see Figure 5) to draw the relationships we
wanted to elicit (for instance, E for first author,
G for the participant and J for the person we are
talking about). The recording is directly stored on
our laptop. The speed of the pipeline, described
in Section 3.2, also allowed us to directly spot the
syllables in the audio. Some of our participants
expressed the fact that they were not confident with

Figure 5: activity sheet filled

Kundebi and would feel more comfortable talking
about Kunbalak. Kunbalak is a sub-language used
for forbidden relationships to show respect. It is
identical to regular Kunwinjku syntactically but
would use different lexical items. For instance Bir-
riwam “they went” becomes birridokang in Kun-
balak (Manakgu, 1996). To elicit Kunbalak we
would just ask for the conversion of regular Kun-
winjku terms.

Use of the app
After recording a few terms with a speaker, we

presented the transcription interface to them. The
terms previously recorded and the syllables spot-
ted have been automatically loaded into the app
database. After showing the interface’s different
features to the participants, we asked them to drag
and drop the syllables to build the transcription of
the previously recorded terms. After actively work-
ing around Kunwinjku and building expertise about
the proper way to write the language through the
years, we let the participants use their own exper-
tise on what they think is the orthography without
questioning their authority.

5.2 Fieldwork

We tested our pipeline with two participants. JB
(30s) and GB (30s).

We could present our activity to JB on three dif-
ferent occasions. We could identify and record
some kundebi terms during the first trial. The activ-
ity has then been interrupted by upset child. Dur-
ing this first trial, she briefly started to point sylla-
bles on the screen without properly using the app.
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She told us afterwards that the kundebi terms we
recorded should be double-checked by an Elder,
and she would feel more confident talking about
Kunbalak instead. During the second and third
trials, we could easily identify and record some
Kunbalak terms. While using the app, we faced mi-
nor technical difficulties with the manual syllable
addition feature. However, JB could take control of
the tablet to transcribe some of the terms recorded.
One of the issues we faced was the playback of
syllables that include a glottal stop which was hard
to identify in syllables in isolation (the difference
between ma and mah, for instance). The activity
was trialled with the first version of the syllable
search (see Figure 3). The keyboard generated by
the text area would take most of the space on the
screen. JB needed to ask for our support to know
how to proceed. At the end of the second trial,
while no instruction had been explicitly given, she
started to drag and drop the syllables available on
the screen to explore the different words that are
possible with them. We asked about her thoughts
about the activity, and she responded that she liked
it and would like to get more confident in writing
in Kunwok and download the app later.

We could test the activity with GB, the second
participant. We first recorded a few Kundebi terms.
We wrote on paper the relationship to elicit, which
made him understand the activity was about con-
structing a word list. After recording a few terms,
we gave GB the tablet and asked him to transcribe
the words. For each term, he listened to the au-
dio first and pressed the syllable displayed on the
screen. He was able to add new syllables manu-
ally without too much difficulty. For one particular
term: nayaw, we discussed rather the term should
be written nayaw or nayawu. While listening for
a given syllable, he sometimes asked for confir-
mation about what he heard (for instance, “Is this
ka?”). We discussed his thought about the task
at the end of the activity. He showed enthusiasm
about the incremental construction of the transcrip-
tion. During the activity, he rephrased the syllable
concatenation process by “putting pieces of lan-
guage together”.

No more participants were available for the time
for this project. However, to sustain this work in
the future, we deployed it in a laptop to be brought
to the community by future scholars or language
workers, as soon as COVID-19 restrictions are
eased.

Figure 6: Picture of a participant using the app

6 Discussion and Limitations

The design and testing of the activity have shown
promising results among a few participants, which
gave us a glance at the potential of syllable spot-
ting for the design of language related activity for
Aboriginal people.

Syllable Spotting: It has been shown in the lit-
erature that traditional ASR is hardly applicable to
Aboriginal languages due to the lack of resources
available to train robust systems. Sub-word de-
tection has been seen as a way to avoid out-of-
vocabulary (Szoke et al., 2008; Parlak and Saraclar,
2008; Van Heerden et al., 2017) and, in our case,
to allow a denser transcription than word spotting
specifically for a polysynthetic language like Kun-
winjku. Adding information on frequency, not sur-
prisingly, allowed us to boost our performance (F-
score) from 40% to nearly 44% for the syllables
displayed on the screen for a given utterance.

Enabling mutual comprehension: Our main
objective, starting from our previous work, was to
enable a better comprehension in our cross-cultural
setting. Part of this process consisted of getting
familiar with cultural components that have been
raised by the community (namely, Kundebi and
Kunbalak). This also consisted of finding methods
to trigger a conversation about these topics. For
the rest, strategies have been found to help the
participants to understand our contribution is this
work. For instance, the support of the activity sheet
made clear that the ultimate goal of the activity was
to build a word list. Then the syllable concatenation
mechanism allowed the participants to leverage
existing language patterns from the aural space
into writing.

Aligning agendas: Asking the participants
about traditional knowledge allowed them to di-

4280



rectly use their expertise and navigate in familiar
territory. Talking about Kundebi and Kunbalak
gave a sense of clarity regarding our function in
Aboriginal land because of the continuation be-
tween previous conversations and the current activ-
ity. Yet the extent of our contribution being seen
as beneficial for Bininj people from a language
preservation perspective is still unclear. Writing in
language is not a traditional practice in this com-
munity. People are often literate in English but
not in their language. We then needed to find a
space where the orthography made sense (Lewis
and Simons, 2016). Documents written in Kun-
winjku exist in Bininj country through the ranger
program, the schools or in facilities where exists
an interaction between Bininj and westerners (art
centres, clinics, etc.). While we thought that the
proposed activity could enable the continuation of
the creation of these resources by Aboriginal partic-
ipants, the proposed app has probably mainly been
seen as a way to enhance writing skills.

App design: There were two main challenges
related to the design of the app. The first one was
enabling syllable concatenation, prioritising infor-
mation from the oral space. Then we needed to effi-
ciently retrieve syllables that had not been spotted.
The first challenge was easily solved by the syllable
playback features possible with the progressive col-
lection of syllables throughout this project. Then
we designed a basic search mechanism. The first
search mechanism to add new syllables relied on
the keyboard, which we knew was problematic (cf.
Section 4.1). We believe that the new design would
lead to better efficiency, but it could not be properly
tested.

Activity flaws: The lack of good quality data
available in Kunwinjku did not allow us to build
a robust speech synthesis system that would have
been relevant to the interface. Instead, we recorded
in isolation syllables which sometimes lacked clar-
ity. While ultimately, some of the most common
syllables have been recorded by a native speaker,
many were still pronounced by the first author,
whose pronunciation might not be accurate. For
instance, in the pilot study, while writing the word
djurra (IPA djura) “paper”, first author’s pronuncia-
tion of the syllable rra has not been accepted by IG
and selected instead “da” which was closer to the
pronunciation of the word according to him. The
case of the glottal stop has also been mentioned as
a challenge in the literature (Wigglesworth et al.,

2021). The glottal stops included in some syllables
were not clearly audible out of context, which made
them hard to differentiate from similar syllables
without glottal stops (ma and mah, for instance).

Limitations: There is a limited number of Kun-
winjku speakers, and recruiting a large number of
participants for such work was not easy. The cur-
rent pandemic did not facilitate our work, and we
know that it is hard to draw final conclusions with
activities conducted with only three participants.
Further research needs to be done, including proper
testing in Bininj country to consolidate our obser-
vations. The activity setup was also grounded for
JB and GB in an academic environment with ac-
cess to facilities that we do not necessarily have
access to in remote locations (access to the internet,
workplaces etc...). Besides, we can ask ourselves
about the sustainability of such a work grounded in
an interaction between Aboriginal participants and
scholars in a very controlled environment. To be
sure that our methods can be used in the long term,
we imagine setting up a remote server to enable
remote access on tablets so that people can keep in-
teracting with the app without outside intervention.

7 Conclusion

Generic speech recognition methods for under-
resourced languages offer the potential to support
small speech communities. Yet the translation of
such methods into community-based projects is
rare. We have presented a study on the creation and
testing of a syllable spotting-based transcription
interface to enable the creation of written resources
by the members of an Aboriginal community in
the Australian Top End. Based on the challenges
encountered in previous work, we went from word
spotting to syllable spotting to reach a denser tran-
scription and enabled a transcription method closer
to existing practices. With the help of collabo-
rators, we designed a transcription interface that
allowed the users to build the transcription of given
audio using the syllable spotted by our system. We
reported the testing of the app with three partici-
pants at different stages of development, including
lessons learnt from their interaction with the tran-
scription activity and the app design.

Research guidelines push scholars to decolonise
their practices and to go towards self-determination.
Yet the translation of guidelines to real-life appli-
cations is unclear, specifically in cross-cultural col-
laborations with different ways of knowing. This
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work allowed us to highlight methodological paths
that improved the engagement and comprehension
of the participants. The activity sheet, for instance,
made clear that the activity was about creating a
wordlist which was not necessarily clear based on
our explanation. Dividing the activity between an
elicitation part and a transcription part allowed us
to hook the interest of the participants with a task
they were familiar with and allowed us to clarify
the context of our work in contrast to the sparse
transcription of random sentences explored previ-
ously (Le Ferrand et al., 2022). All participants
frequently used the playback of the syllables in
isolation and their concatenation, confirming its
engaging aspect.

Documentary linguistics has often been under-
taken by non-indigenous linguists where the col-
laboration with the community did not go fur-
ther than the collection of spoken data (First Lan-
guages Australia, 2014). In this work, we initially
wanted to counterbalance these practices by en-
abling community-based language documentation.
Yet keeping a language strong does not need to
be about language documentation, and Bininj peo-
ple who took part in this work did not seem to
buy into documentary linguistics practices. In-
stead, they seemed to see the interface as a literacy
learning tool. Keeping language strong is seen as
building capabilities instead of creating and stor-
ing language material. Community-based implies
an active role of the community in the work we
conducted, and following their view in terms of
language work is then crucial. The cross-cultural
challenges we encountered required extra work
to enable a common ground we could build on.
Now that comprehension issues are solved, that we
have a better comprehension of people agenda and
COVID-19 restrictions start to be eased, more iter-
ation can happen to allow the community to take
control of the design of the proposed tool to better
fit their agenda and practices.
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Abstract

The surging demand for multilingual dialogue
systems often requires a costly labeling process
for each language addition. For low resource
languages, human annotators are continuously
tasked with the adaptation of resource-rich lan-
guage utterances for each new domain. How-
ever, this prohibitive and impractical process
can often be a bottleneck for low resource lan-
guages that are still without proper translation
systems nor parallel corpus.

In particular, it is difficult to obtain task-
specific low resource language annotations for
the English-derived creoles (e.g. Nigerian and
Cameroonian Pidgin). To address this issue,
we utilize the pretrained language models i.e.
BART which has shown great potential in lan-
guage generation/understanding – we propose
to finetune the BART model to generate utter-
ances in Pidgin by leveraging the proximity
of the source and target languages, and uti-
lizing positive and negative examples in con-
strastive training objectives. We collected and
released the first parallel Pidgin-English con-
versation corpus in two dialogue domains and
showed that this simple and effective technique
is suffice to yield impressive results for English-
to-Pidgin generation, which are two closely-
related languages.

1 Introduction

Task-oriented dialog systems are becoming preva-
lent in various daily activities such as ticket book-
ing and restaurant reservations (Peng et al., 2020).
In a typical task-oriented dialog system, the natural
language generation (NLG) module plays a crucial
role by converting semantic representations into re-
sponses in natural language (Langkilde and Knight,
1998). As such, NLG plays a significant impact on
the users’ experience.

Unfortunately, these dialogue systems are mostly
built for high resource languages such as English,
which makes it less user-friendly in regions where

English is not widely-spoken or is spoken differ-
ently (Khalil, 2020; Yusupujiang and Ginzburg,
2021). This includes African countries such as
Nigeria and Cameroon where the demand for these
technologies are growing at a rapid rate (Khalil,
2020). There is then a need to adapt1/translate these
existing well-developed dialogue systems in high
resource languages into its target language counter-
parts. However, techniques in machine translation
are still under-developed as some language pairs
are completely devoid of parallel corpus (Adelani
et al., 2021; Chang et al., 2020). This situation
is further exacerbated by the fact that the targeted
NLG requires a domain-specific translation and
annotation.

To this end, we present a preliminary study on
the domain-specific adaptation of high resource
English language model into the English-related
Pidgin languages consisting of the Nigerian (Naija)
and Cameroonian Pidgin (Yaounde). In particu-
lar, we explore on a low resource scenario where
the goal is to translate the English utterance into
conversation (dialogue) Pidgin sentences. This sce-
nario consists of a few parallel data and a larger
quantity of monolingual text in both languages. To
facilitate the research, we collected the first paral-
lel English-Pidgin dialogue corpus and release it
along with the public Nigerian (Naija) (Ogueji and
Ahia, 2019) and Cameroonian Pidgin spoken cor-
pus (Green et al., 2016). We further propose a sim-
ple technique that allows to finetune a pretrained
English language model into generating Pidgin that
can be used to collect dialogue text in dialogue
systems. To do so, we employ the technique of con-
trastive learning where the off-the-shelf English
language model adjusts its useful prior knowledge
into producing Pidgin, which is a closely-related
language (Ayafor, 2008; Faraclas, 2008). This pro-
cess is enhanced by having the model to discern

1We use the word “adapt” here since the translation process
can slightly change the content for the regional end users.
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between positive/negative examples as defined by
(1) the in/out-domain English utterances, and (2)
the English and Pidgin texts. Overall, we made the
following contributions:

1. We release the first parallel data consisting
of ∽ 200 Nigerian/Cameroonian Pidgin and
English pairs in multiple dialogue domains
including the restaurant and drone simulation.

2. We showed the efficacy of the proposed con-
strastive finetuning technique as being both
simple and effective in creating natural Pidgin
text with high-fidelity.

2 Related Work

Contrastive learning has been widely used in vari-
ous tasks – language modeling (Huang et al., 2018),
unsupervised word alignment (Liu and Sun, 2015),
caption generation (Mao et al., 2016; Vedantam
et al., 2017), and machine translation (Yang et al.,
2019). Representations are learned with contrast-
ing positive pairs and negative pairs: Chopra et al.
(2005); Weinberger and Saul (2009); Schroff et al.
(2015) leverage a triplet loss to separate positive ex-
amples from negative examples in metric learning.
Chen et al. (2020) shows that contrastive learning
can boost the performance of self/semi-supervised
learning in computer vision tasks.

In natural language processing, contrastive learn-
ing has been widely used. (Mikolov et al., 2013)
predicts neighbouring words from context with
noise-contrastive estimation (Gutmann and Hyväri-
nen, 2012) while (Logeswaran and Lee, 2018) sam-
ples two contiguous sentences for positive pairs
and the sentences from other document as negative
pairs. Our work is in the same vein where pos-
itive/negative examples are provided to enhance
cross-lingual sentence representations.

3 Relations of Pidgin to English

Variations of Nigerian Pidgin are spoken across
West and Central Africa in countries such as Benin,
Ghana, and Cameroon (Faraclas, 2013) as a re-
sult of contacts between Africans and English-
speaking sailors and traders (Gilman, 1980)2. Al-
together, these languages evolved into a closely
related group of languages whose vocabulary is pre-
dominantly English, spoken by Africans in West

2It is also possible that the English of the sailors was itself
pidginized before contact with the Africans, as a result of the
multilingual nature of the ships’ crews.

Africa and by their descendants in the Western
Hemisphere (Gilman, 1980).

Importantly, we postulate that the relatedness
of the Pidgin language to English can be utilized
to formulate an effective contrastive learning setup
such that an English language model can be readily
adapted into its Pidgin variant. This assumption is
not unfounded as English is the lexifier language
of Pidgin language (Gilman, 1980), thereby con-
sisting of a large amount of loaned English vocabu-
lary. This motivates our use of an English language
model as a strong prior to generate Pidgin text.

4 Methodology

In order to adapt the English language model to
generate Pidgin dialogue texts, we propose a con-
trastive learning framework to expose the model
to various valid or incorrect output sequences for
a given input sentence. Specifically, we train the
model in a two-stage process where for each stage
its contrastive loss goes below the threshold 0.1:

(1) Stage 1 is the domain-targeting phase where
the language model is finetuned to generate in-
domain dialogue utterances. As such, the primary
source of positive samples are the English dialogue
utterances. Further, we include a general-domain,
non-conversation English texts. Non-conversation
English texts are closer in the embedding space
to the dialogue English texts, so they serve as a
meaningful source of negative examples that help
to pull the embedding projections to separate in/out
domain texts.

(2) On the other hand, stage 2 is the language-
converting phase that primarily aims to ensure that
the model learns to distinguish Pidgin from English
sentences. In this phase, all monolingual Pidgin
texts are defined to be the positive samples. In or-
der to induce the language model to generate the
corresponding Pidgin texts in stage 2, one source
of negative samples are thus the randomly sam-
pled English sentences that exclude the dialogue
English texts. We obtained these monolingual En-
glish sentences from a general domain and force
the model to predict them to be negative. Lastly,
when available for the setting, we consider the few-
shot Pidgin dialogue utterances obtained from the
dialogue system can be used as positive samples.
We display some examples in Figure 1.

Both stages follow the contrastive learning
framework (Chen et al., 2020), where we train the
model to learn the representations of the ground
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Stage 1:
+ (Dialogue English): There is a pub Blue Spice
in the riverside area.
− (English): Mauritius was voted Vice President.
Stage 2:
+ (Pidgin): Na for di main general hospital for di
regional capital, Mekelle dem dey treat sick pipo.
+ (Dialogue Pidgin): One pub Blue Soice dey
for riversde area.
− (English): We treat our youth differently be-
cause they are just coming up.

Figure 1: Positive (+) and negative (−) examples.

truth sentence by contrasting the positive pairs with
the negative pairs. We project the source and target
text sequences onto the latent embedding space.
Then we maximize the similarity between the pair
of source and target sequence; while minimizing
the similarity between the negative pairs as follows:

Lcont(θ) =
N∑

i=1

log
exp(sim(z

(i)
x , z

(i)
y )/τ)

∑
z
(j)
y ∈S

exp(sim(z
(i)
x , z

(j)

y )/τ)

(1)
z(i) = [h

(i)
1 · · ·h

(i)
T ] ∈ Rd×T is a concatena-

tion of the decoder hidden states h(i)
t of the target

sentence y(i) across the sequence of length T for
sequence S. Sim(·, ·) is a cosine similarity function
and τ is the temperature factor set to 0.5.
Sequence-to-sequence Finetuning. To fine-tune
the pretrained BART (Lewis et al., 2020) models
for generation, we assume a dataset where each
example (x, y) is an (English, Pidgin) pair. We
train the student model using the standard cross
entropy loss:

Lseq = −
T∑

t=1

log p(yt+1|y1:t, x) (2)

where T in the target sequence length p is the
model’s predicted probability for the correct word.
As such, the total objective for each batch update
is given as Ltotal = Lseq + Lcont.

5 Pidgin Dialogue Corpus

To create the Pidgin dialogue corpus, we consider
two publicly available English dialogue datasets
(i.e. E2E (Novikova et al., 2017) of restaurant do-
main and DroneParrot3 ) ) and translate the English
utterances into Pidgin. We show the statistics for

3Dialogue corpus for drone-human communication.

each datasets in Table 1 and observe that the Pidgin
language generally has less characters (e.g. “kon-
tri” as opposed to “country”) – owing to the evo-
lution of its make-shift morphology where words
are spelled in a reduced way based on its spoken,
colloquial form (Gramley and Pätzold, 2004).

Domain Split Naija Yaounde

Pa
ra

E2E Train 40 -
Dev 30 -
Test 30 10

Drone Train 40 -
Dev 30 -
Test 30 -

M
on

o General Pd 57, 549 3, 108
En 57, 549

Table 1: Statistics of the dataset. For each part of the dataset,
the number of sentences for both monolingual (Mono) and
parallel (Para) data in two dialogue domains.

While the language tend to have a smaller vo-
cabulary set than its lexifier (i.e. English)4, Pidgin
diverges profusely in terms of syntax. Thus, the dif-
ference in word-ordering is where the anticipated
challenges come from in terms of utterance adapta-
tion.

6 Experiments

Training Details. We fine-tune the large
BART (Lewis et al., 2020) model for 200 steps
using an Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.999, 0.1 weight decay,
0.1 dropout, 0.1 attention dropout, 0.1 label
smoothing, 6% warmup steps and a learning rate
of 3e-5. The final outputs are generated using
beam search with a beam size of 3.

Compared Approaches. We compare the pro-
posed technique with contrastive learning setup
with various methods including simply using the
source as target (COPY):

NMT: It is a semi/un-supervised technique that
takes sentences from bilingual/monolingual cor-
pora in two different languages and maps them
into the same latent space via iterative back-
translation (Lample et al., 2018). In addition, we
include the supervised bidirectional training objec-
tives.

XLM-R: This approach finetunes the pretrained
multilingual language model in Conneau et al.
(2020) on parallel data following the proposed ob-
jectives as in Ours as we now discussed.

4English is the lexifier language of Pidgin where a large
set of vocabulary are loaned.
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Do. Method Un-Naija Naija Yaounde N+Y
E

2E
COPY 16.84 16.84 0.00 -
NMT 0.00 28.26 0.00 0.00
XLM-R 3.57 33.69 2.51 2.65
BART 2.12 49.86 3.76 3.38
+Stage-1 7.42 52.42 4.29 3.56
+Stage-2 (Ours) 8.46 56.35 5.73 4.41

D
ro

ne

COPY 0.28 0.28 0.00 -
NMT 0.00 9.18 0.00 0.00
XLM-R 1.39 20.71 1.37 1.39
Ours 3.28 34.62 2.63 2.55

Table 2: English to Pidgin translation performance in BLEU-
4 with Naija (N) and Yaounde (Y) in both domains (Do.).

Ours: As our proposed approach, the pretrained
language model BART (Lewis et al., 2020) is fine-
tuned as in §4 where BART simply uses the objec-
tive Lseq, and Stage-1 and Stage-2 are incremen-
tally added.

Experimental Scenarios. To validate our ap-
proach, we finetune BART with both Naija and
Yaounde utterances. In Table 2, Un-Naija means
that only the monolingual English and Naija texts
are provided. Naija and Yaounde means training
on parallel/monolingual data and testing on their re-
spective languages; while N+Y means training on
both Naija/Yaounde data and testing on Yaounde.

7 Results and Analysis

In Table 2, we display the results for experiments in
both unsupervised and few-shot scenarios. We ob-
serve that even with an extremely small amount
of annotations, the proposed technique (Ours)
consisting of both training stages outperforms all
benchmarks (NMT and XLM-R) by as much as
28.09 BLEU – which also goes to show that hav-
ing multilingual representation (XLM-R) is not
more beneficial. Next, we show the effectiveness
of the contrastive learning setup where BART with-
out contrastive losses is substantially lower than
BART+Stage-1 by 2.56 BLEU points, and 6.49
points lower than Ours. This shows that provid-
ing the positive/negative examples can help project
the embedding space into more accurate represen-
tations for each examples. Further, we observe a
consistent lower scores for the Yaounde Pidgin –
which corroborates with past findings that indicates
its influence from other sources of European lan-
guages such as the Portuguese and French (Gilman,
1980). However, when both Naija and Yaounde
corpus are combined, we observe a drop in per-
formance, which suggests that the morphological
differences between the two languages (i.e. Naija

and Yaounde) are interfering with the latent repre-
sentations, causing it to performing sub-par.

Model E2E Drone
Naturalness Wrong Naturalness Wrong

Reference 4.19 0 4.21 0
NMT 4.31 14 4.26 13
XLM-R 4.06 18 4.19 22
Ours 4.66 13 4.35 9

Table 4: Human evaluation on the generated Pidgin texts (100
instances) for all models in the few-shot scenario. Annotators
were asked to evaluate the naturalness (0-5) and wrong (i.e. #
hallucinated slots w.r.t. the slot-value pairs) of the texts.

Human Evaluations. We also perform human
evaluation with two experts who are well-versed
in both English and Pidgin and show the results
on naturalness and wrong in Table 4. We display
some examples of generation in Figure 3. Wrong is
a content selection metric that measures how accu-
rate the generated Pidgin texts are adhering to the
dialogue semantic frames. We observe that results
on both metrics are consistent with the BLEU-4
scores where our proposed approach consistently
generate more natural text with fewer mistakes on
both Naija and Yaounde.

Figure 2: t-SNE projection before and after contrastive train-
ing for dialogue English (0), Naija (1) and general Naija (2).

Embedding Space Separation. To get a clear
picture of the sentence representations, we visu-
alize the respective embedding projections in Fig-
ure 2. We show the before and after projections of
English and Pidgin utterances, which shows that
the clusters of dialogue English and Pidgin, and
general Pidgin sentences are more separated.

8 Limitations

While there are substantial improvements over the
translation model baseline, we also observe the lim-
itation of the approach in overcoming extreme low
resource conditions as in Yaounde, which does not
share much similarities with English. Yaounde is
mostly spoken in Cameroon, and therefore evolved
differently from Naija Pidgin. This influences how
effective the contrastive objectives are in regulating
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Reference
If na pub wey get rating of 5 over 5 you wan pick Bue Spice.
Blue Spice be pub for riverside near Rainbow Vegetarian Café.
Ours
Giraffe be pub wey dey riverside near Rainbow Vegetarian Café .
Blue Spice be family friendly pub wey dey riverside near Rainbow Vegetarian Café .
NMT
Blue Spice be family friendly pub wey dey serve Chinese for riverside near Rainbow
One pub near Rainbow Vegetarian Café wey dem dey call Blue Spice.
XLM-R
Blue Spice wey dey serve English food.
One pub wey dem dey call Giraffe wey dey family friendly de

Table 3: Samples of Naija outputs and references in the restaurant domain.

the latent space of the models, which in turn limit
the applications of the approach. Moreover, we
also notice some discrepancies between the con-
tents of reference and generated outputs, meaning
that the models tend to hallucinate fluent, unrelated
sentences. This is therefore one other aspect that
the approach is unable to address.

9 Conclusion

In this paper, we show that the proposed two-stage
training approach can help to adapt the high re-
source English conversation texts into natural, high-
fidelity Pidgin sentences in low resource scenar-
ios. Moreover, we conclude that while Naija and
Yaounde are two similar languages, augmenting
with either languages provide no further improve-
ments, while separating the representations with
contrastive objectives is hugely beneficial.
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Abstract

This paper explores a special case in multi-
lingual machine translation: so called multi-
parallel translation, where the target data for
all language pairs are identical. While multi-
parallelism offers benefits which are not avail-
able in a standard translation setting, transla-
tion models can easily overfit when training
data are limited. We introduce a regularizer,
the divergence penalty, which penalizes the
translation model when it represents source
sentences with identical target translations in
divergent ways. Experiments on very low-
resourced Indigenous North American lan-
guages show that an initially deficient multi-
lingual translator can improve by 4.9 BLEU
through mBART pre-training, and 5.5 BLEU
points with the strategic addition of mono-
lingual data, and that a divergence penalty
leads to further increases of 0.4 BLEU. Further
experiments on Germanic languages demon-
strate a improvement of 0.5 BLEU when apply-
ing the divergence penalty. An investigation
of the neural encoder representations learned
by our translation models shows that the di-
vergence penalty encourages models to learn
a unified neural interlingua.

1 Introduction

Bilingual neural translation models typically re-
quire millions of parallel sentences to achieve ad-
equate quality. A vast majority of the world’s lan-
guages lack sufficient parallel corpora, and transla-
tion efforts for low-resource languages have turned
to multilingual methods, leveraging linguistic sim-
ilarity to augment a deficient signal with plenti-
ful, albeit sometimes noisy, data from related lan-
guages (Aharoni et al., 2019; Goyal et al., 2020).
In this paper, we explore a very specific multilin-
gual translation setting: multi-parallel translation.
Here, models are trained on documents, such as
the proceedings of the European Parliament, col-
lections of subtitles, and the Bible. Each sentence

has translations in many languages, providing not
just a bilingual signal, but one that is bilingual in
many directions.

We explore a massively multi-parallel docu-
ment: the Bible, which has hundreds of translations.
While it represents a very restricted domain, the
Bible is the only parallel document available for
many languages and multi-parallel translation is,
therefore, of key importance for low-resource NLP.

Earlier work shows that multi-parallel translation
systems can in practice deliver poor results when
available training data for individual languages are
very small (Mueller et al., 2020). In this setting,
the performance of the translation models degrades
when the number of source languages is increased.
Adapting pre-trained multilingual models such as
mBART has also not led to significant progress
(Lee et al., 2022). For languages that are not
closely-related to the languages in the model, high-
quality translation remains an unsatisfied goal.

We hypothesize that this drop in performance is
a consequence of an inability of the model to learn
a neural interlingua (Johnson et al., 2017), that is,
a shared semantic representation for source lan-
guages. This prevents knowledge transfer between
languages, degrading translation performance. To
counteract this tendency, we present the divergence
penalty—a modification to the standard loss of a
multilingual translation system, which encourages
identical encoder and decoder representations for
parallel source sentences.

Our experiments on Indigenous North Ameri-
can languages show several avenues for improving
the quality of the embedding space. We are able
to stabilize the embeddings through mBART pre-
training1 and the addition of monolingual corpora,
with gains of up to 5.5 BLEU in the super-low set-
ting. It can be supplemented, however, with our di-

1In contrast to Lee et al. We hypothesize that the multi-
parallel setting may be responsible, but it is beyond the scope
of this paper.
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vergence penalty, which further coerces the embed-
dings to adopt interlingual representations. Both vi-
sual inspection of t-SNE plots (Hinton and Roweis,
2002) and quantitative examination of learned rep-
resentations show that the divergence penalty en-
courages the encoder and decoder representations
to cluster according to semantics of the source sen-
tence, regardless of source language.

This is not the first work to explore approaches
to strengthening the embedding space of a mul-
tilingual translation model. Mullov et al. (2021)
use cross-lingual word embeddings. Others have
used explicit neural interlinguas (Zhu et al., 2020),
and multiple encoders with tied attention (Vázquez
et al., 2019). More closely related to our work,
Yang et al. (2021) apply an agreement objective
which encourages similar representations for ar-
tificially code-switched sentence variants and the
original sentences. Pan et al. (2021) use contrastive
learning to encourage shared representations for
semantically similar sentences which resembles
our divergence penalty. Finally, Arivazhagan et al.
(2019) introduce an auxiliary loss which enforces
multilingual similarity to improve zero-shot trans-
lation results. All of the aforementioned works,
however, investigate translation in a substantially
higher-resourced setting and none of them investi-
gate multi-parallel translation.

A second class of related research falls into
the broad category of data augmentation for low-
resource translation. Sennrich and Zhang (2019)
demonstrate that neural translation can learn in
low-resource settings without significant modifica-
tions, but that these systems can be very sensitive
to hyper-parameter tuning. Currey et al. (2017)
demonstrate that the expedient method of copying
source data to the target can improve low-resource
translation quality, while Madaan and Sadat (2020)
further leverage back-translations to boost the sig-
nal of low-resource translations. Likewise, Rubino
et al. (2020) extol the virtues of monolingual data
and back-translations in low-resource settings.

2 Methods

In a multi-parallel translation setting, each sentence
in the training data has been translated into several
languages. A standard multilingual transformer
model learns from sentences in isolation, and does
not leverage co-dependencies between source sen-
tences in a multi-parallel scenario. We introduce
the divergence penalty as an auxiliary loss which

penalizes models which do not learn similar en-
coder and decoder representations for parallel sen-
tences. Within each training batch, we identify
sentences that are parallel with each other (via their
targets), and compute a pairwise cosine compari-
son of their representation vectors at each position
in the sentence. In a true interlingua, these repre-
sentations would be identical.

The transformer modifies the embedding space
at several points, and we compare three variants
that utilize a snapshot of the embeddings at a spe-
cific point. First, we calculate the cosine distance
after context-attention has been applied to the final
layer of the encoder (EP). Secondly, we calculate
the distance on the output distributions (DP). Fi-
nally, we sum the two together (BOTH). Given
a sequence r = r1, ..., rn of encoder, decoder or
joint encoder and decoder representations, the di-
vergence penalty takes the form:

LDIV (r) =
∑n

i=1

∑n
j=1(1− r>i rj)

n2

We then weight this distance (via a tunable hyper-
parameter αDIV ∈ [0, 1]), and add it to the batch
loss. Batches with parallel sources propagate
higher loss if the model has learned divergent rep-
resentations. Batches that have no multi-parallel
sentences see no modification. During training, all
parallel translations of the same target sentence are
added into the same batch.

Training is performed using the Fairseq (Ott
et al., 2019) implementation of transformers, with
3 layers and 4 attentional heads. Embedding dimen-
sions are set at 512, while the feed-forward size
is 1024. The model optimizes a label-smoothed
cross entropy using Adam(0.9, 0.98), and an in-
verse square-root learning rate schedule (5e-4 - 1e-
9). The model is run for 50 epochs, with the best
model chosen via validation loss. These settings
closely follow Nicolai et al. (2021). αDIV is tuned
for each model, with values in [0, 0.3] typically
leading to the best results.

3 Data and Architectures

Our experiments are conducted on Bible data (Nico-
lai et al., 2021) for three Indigenous language fam-
ilies of North America: Algic, Athabaskan, and
Inuit-Aleut. The target language in most of our ex-
periments is English although we also train many-
to-many translation systems. Family data sets are
constructed by concatenating individual language
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Family Language Train Test

Algic

Algonquin 7133 -
Arapaho 1024 -
Cree 30269 394
Mikmaq 7133 394
Ojibwa 9795 -
Potawatomi 1870 -
Siksika 965 -

Algic

Apache 7131 -
Carrier 8667 -
Dane-zaa 616 -
Gwich’in 7132 -
Navajo 30276 394
Tlicho 8667 394
Tsilhqot’in 602 -

Inuit-Aleut

Inuinnaqtun 4289 -
Inuktitut 30275 394
Inupiatum 7132 394
Yupik 30276 394

Germanic

Afrikaans 30249 394
Bokmål 6719 365
Danish 30276 394
Dutch 30216 394
German 30107 394
Icelandic 7000 390
Low German 7116 394
Nynorsk 6719 365
Swedish 29870 394
Swiss German 7120 393

Table 1: The number of Bible verses used for training
and testing for different languages. The New Testa-
ment consists of approximately 7130 verses, while a
full translation is approximately 30275 verses. Num-
bers are approximate due to verse-splitting techniques.

Bibles, and prepending a language tag. We addi-
tionally perform experiments on Germanic Bibles
(McCarthy et al., 2020).

Some languages have a full Bible translation
available, while most only have a subset. See Ta-
ble 1 for details. Evaluation is performed on lan-
guages with full Bible translations, as well as one
ultra low-resource language for each family: Inu-
piatum (Inuit-Aleut), Mikmaq (Algic), and Tlicho
(Athabaskan). For the sake of this paper, we con-
sider “low-resource” to represent languages that
have complete Bible translations of 30,000 sen-
tences. “Ultra low-resource” languages are those
that have only 7,000 sentences in the New Testa-
ment.

For development and testing, we sample each
book of the New Testament at a rate of 1% for test,

and a further 1% for development. All datasets
are segmented using a joint source-target Byte Pair
Encoding with a vocabulary size of 16,000. Explo-
rations varying the vocabulary size suggested that
this was a reasonable, stable choice for these data
sets.2

Models are learned using a modified version of
the Fairseq (Ott et al., 2019) implementation of
transformers. Each model is trained with 3 layers
and 4 attentional heads, with an embedding size
of 512, and a feed-forward size of 1024. Models
are optimized using Adam(0.9, 0.98), and an in-
verse square root learning schedule starting at 1e-7.
Models are trained for a maximum of 50 epochs,
with a batch size of 2000 tokens. Dropout is 50%,
while attentional dropout is 30%.

4 Experiments

In our experiments, we investigate the performance
of different multi-parallel configurations on our In-
digenous and Germanic data. We start by training
baseline bilingual X-to-English (2L) and multilin-
gual F-to-English systems (M2E), where X is an
Indigenous or Germanic language and F is one of
the Indigenous language families or the Germanic
family. We also continue training on mBART (Liu
et al., 2020) for a maximum of 50 epochs.3

Indigenous languages Table 2 shows that apart
from Mikmaq, Indigenous M2E translators see a
sharp decrease in performance from their bilingual
analogues–even for ultra low-resource languages.
The average BLEU score drops from 10.5 points
for bilingual translations models to 6.1 for multilin-
gual models. For Indigenous languages, mBART
shows the importance of the language model in
multilingual translation. A strong target language
model, even in another domain, is enough to learn
a model that improves notably over the bilingual
one.

Turning to the second sub-table (Raw) in Table 2,
we observe that instituting a divergence penalty on
the encoder (EP) restores almost all of the quality of
the higher-resource languages, and improves ultra
low-resource translation performance by 1 BLEU.
The decoder penalty (DP) results in a slight 0.2

2Our code and datasets are available at anonymized/
for/review.

3Since mBART does not contain any of our Indigenous lan-
guages, we tokenize them with the English tokenizer, and use
a language identifier to guide the source-to-English translation.
Inuktitut is written in its own script, which likely explains its
underperformance.
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Baselines Raw +E2E
Lang 2L M2E M2M mBART EP DP BOTH M2E +EP +DP +BOTH
Cree 17.7 13.7 3.4 19.4 13.7 13.7 13.8 16.1 16.1 17.1 16.3
Navajo 12.1 4.1 2.7 12.0 10.0 4.6 10.8 12.6 12.6 12.9 12.6
Yupik 12.7 4.1 2.4 16.8 13.6 4.1 13.7 14.8 14.3 14.3 14.7
Inuktitut 13.0 3.7 2.6 1.6 14.0 3.7 13.3 14.7 14.7 15.0 14.9
Average Full 13.9 6.4 2.8 12.5 12.8 6.5 12.9 14.6 14.4 14.8 14.6
Mikmaq 4.2 9.8 3.0 7.9 8.4 9.8 8.4 9.8 9.8 9.6 10.4
Tlicho 7.6 3.7 2.5 9.4 9.1 4.2 9.8 11.3 11.3 12.1 11.3
Inupiatum 5.9 3.5 2.3 14.4 11.5 4.1 11.8 12.4 12.2 13.0 12.3
Average NT 5.9 5.7 2.6 10.6 9.7 6.0 10.0 11.2 11.1 11.6 11.3
Average All 10.5 6.1 2.7 11.6 11.5 6.3 11.7 13.1 13.0 13.4 13.2

Table 2: Translation results. The baselines compare other data augmentation strategies - 2L is a bilingual model;
M2E is plain many-to-English translation; M2M is many-to-many translation, and mBART is the 25 language
mBART model. The Raw columns apply the divergence penalties to the encoder (EP), decoder (DP) and a combi-
nation of both (BOTH) of the baseline M2E model. +E2E adds in a source-target copy of the English Bible.

BLEU improvement over the initial multilingual
model. This makes sense, as the decoder requires
a strong encoder representation to learn success-
ful translations. Combining encoder and decoder
penalties (BOTH) gives a 5.6 BLEU improvement
over the M2E model and a 1.2 BLEU improve-
ment over bilingual models. The improvement
over bilingual models for ultra low-resource lan-
guages is substantial at 4.1 BLEU. Furthermore,
for two of our ultra low-resource languages, BOTH
also outperforms mBART, suggesting that while
a strong target language model is important, fo-
cused embedding space modification can also lead
to improvements.

Rather than augment the mBART architecture
with our penalty, we instead mimic the language
model through the addition of monolingual English-
to-English (E2E) examples: from each English tar-
get sentence in our training data, we generate a new
translation example with identical source and target
sentence, and append the example to our multilin-
gual training set.4 When applying the divergence
penalty, English is treated as an additional source
language in the training set.

Adding monolingual data mimics mBART, push-
ing both low and higher-resource languages beyond
the divergence penalty alone. Adding the encoder
penalty on top of E2E does not improve results.
However, the decoder penalty leads to a further
average improvement of 0.3 BLEU, while the com-
bination BOTH fares slightly worse. We hypothe-
size that monolingual data and the encoder penalty
behave similarly, anchoring multilingual represen-

4We also experimented with back-translation, but the qual-
ity of the back-translated training data were very poor, and
hurt model quality, overall. We hypothesize that this is a result
of the small size of our training sets, which do not allow us to
learn a back-translation model of sufficient quality.

Lang. 2L M2E +EP +DP +BOTH
Afrikaans 27.4 25.7 25.7 25.9 25.7
Danish 26.5 26.5 26.5 25.9 26.5
German 25.5 25.9 25.9 25.8 25.9
Dutch 26.4 25.9 25.9 26.2 25.9
Swedish 23.7 23.9 23.9 24.7 23.9
Ave. Full 25.9 25.6 25.6 25.7 25.6
Swiss German 12.5 21.4 21.4 21.3 21.4
Low German 12.0 19.2 19.2 19.7 19.2
Nynorsk 12.6 22.3 22.3 22.9 22.3
Bokmål 12.2 22.4 22.4 23.2 22.4
Icelandic 11.3 18.9 18.9 19.2 18.9
Ave. NT 12.1 20.8 20.8 21.3 20.8
Ave. All 19.0 23.2 23.2 23.5 23.2

Table 3: Germanic results.

tations in encoder space and allowing translations
to cluster around the English representations. We
explore this further in Section 5.

Germanic languages For our Germanic lan-
guage experiments, all models are trained with
E2E data because this strategy was found to be
universally beneficial for Indigenous languages.
In contrast to Indigenous languages, none of the
Germanic languages see a drop in performance
from bilingual to multilingual translation models
as demonstrated in Table 3. Multilingual models
substantially improve performance for the ultra
low-resource Germanic languages where average
performance improves by 8.7 points BLEU. For
Germanic languages, EP does not result in improve-
ments but DP improves performance for ultra low-
resource languages by an average 0.5 points BLEU.
A combination of EP and DP does not provide fur-
ther gains in BLEU.

5 Analysis

To understand how the encoder and decoder penal-
ties affect multi-parallel translation models, we use
t-SNE to plot the encoder representations of source
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Encoder PenaltyBaseline M2E NAV: júdah bikéyahgi béthlehem nílíinii, 
júdahgi naat'áanii danilíinii bitahdóó doo 
akéédę́ę́' ánít'ée da, [...]

TLI: ‘judea nèk'e, kòt̨a bethlehem gòyeh 
sìı ekǫ kòt̨a gòlaa hazǫò ̨nahk'e 
wet'àaɂà hǫt'e. [...]

ENG: » bethlehem in the land of judah , 
you are not the least of the leading cities 
of judah . [...]

Figure 1: Example t-SNE plots of multilingual encoder representations for baseline M2E models and models with
encoder penalty. The square plot represents encoder representations for 4 different sentences - each point represents
a single encoder representation, and each sentence is represented by a different color. When we zoom in on the red
cluster (representing the sentence shown on the right), we show Navajo representations in light blue and Tlicho in
green.

sentences for our baseline multilingual Athabaskan
model and a model trained with the encoder penalty
in Figure 2.5 Sentences are color-coded. For ex-
ample, red dots include representations for one
Tlicho and one Navajo source sentence with iden-
tical English translations. When we Zoom into
the red cluster, showing Navajo representations in
light blue and Tlicho in green, we can see that rep-
resentations for the baseline multilingual system
(Baseline M2E) form very tight clusters. However,
in many cases, these cluster according to source
language. This indicates that the model has failed
to learn truly multilingual representations, which
would instead cluster according to semantics of the
source sentence, rather than source language.

When we add in the encoder penalty (Encoder
Penalty), we see a significant correction. Tlicho
and Navajo representations for equivalent source
sentences now intermingle in a joint red cluster.
Models supplemented by monolingual data also
seem to cluster representations by meaning (in-
cluded in Appendix A), demonstrating a similar
tendency which supports our conclusion that both
monolingual data augmentation and the encoder
penalty strengthen learning of shared multilingual
representations. The decoder penalty does not seem
to have a similar effect (see appendix A).

The visual interpretation of t-SNE plots is con-
firmed via mathematical analysis. We calculate the
centroid of each cluster (formed by representations
for a particular source language and sentence ID),
and determine the average cosine distance between
centroids for clusters having the same sentence ID
across languages. Formally, let R(i, l) be the set
of representations for language l and sentence ID

5We first use PCA to project into R10, and then use t-SNE
to further project the results to R2. t-SNE plots ran for a
maximum of 150,000 iterations, with perplexity of 30.

i, and let µ(i, l) be the centroid of R(i, l). We then
compute: d =

∑n
i=0 dist(µ(i, l1), µ(i, l2))/n,

where dist is cosine distance and n is our num-
ber of sentences. We compute these numbers over
the entire test set for language l1 and l2. Comparing
Navajo and Tlicho for the Athabaskan languages
family, the baseline M2E model has an average dis-
tance of 0.1950, while the EP decreases the value
dramatically, to 0.0018.

6 Conclusion

Multi-parallel translation has the ability to leverage
cross-lingual information to supplement a weak
low-resource translation signal, but not all lan-
guages can benefit. We have introduced a diver-
gence penalty that forces multi-parallel models to
learn shared embedding spaces that improve the
quality of the translation. On its own, the penalty
improves the quality of ultra low-resource Indige-
nous translation by 4.1 BLEU over a bilingual
model, and by more than 4.3 BLEU over a deficient
multilingual alternative. Furthermore, monolingual
data provides a strong target for multilingual em-
beddings, but is complemented by our penalty for
a further increase of 0.4 BLEU. This trend contin-
ues even when the the number of large translation
corpora is increased.
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A Encoder Space Plots

Decoder Penalty E2E

NAV: júdah bikéyahgi béthlehem nílíinii, 
júdahgi naat'áanii danilíinii bitahdóó doo 
akéédę́ę́' ánít'ée da, [...]

TLI: ‘judea nèk'e, kòt̨a bethlehem gòyeh 
sìı ekǫ kòt̨a gòlaa hazǫò ̨nahk'e 
wet'àaɂà hǫt'e. [...]

ENG: » bethlehem in the land of judah , 
you are not the least of the leading cities 
of judah . [...]

Figure 2: Example t-SNE plots of multilingual encoder representations for M2E models with decoder penalty (on
the left) and augmented with English monolingual data (on the right). Each color in the original plot encodes
representations for parallel source sentences both in Tlicho and Navajo. When we zoom in on the red cluster, we
show Navajo representations in light blue and Tlicho in green. We can see that the decoder penalty does not help
the model to learn shared encoder representations. Instead the representations of the Tlicho and Navajo sentences
form distinct clusters. When we instead apply mononlingual data augmentation, the representations for the Tlicho
and Navajo sentences cluster by meaning and we get shared multilingual representations. For a reason unknown
to us, function words, punctuation and language tags form a tight cluster in the lower right corner of the plot when
using monolingual data augmentation.
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Abstract

The users of endangered languages struggle to
thrive in a digitally-mediated world. We have
developed an automated method for assessing
how well every language recognized by ISO
639 is faring in terms of digital language sup-
port. The assessment is based on scraping the
names of supported languages from the web-
sites of 143 digital tools selected to represent a
full range of ways that digital technology can
support languages. The method uses Mokken
scale analysis to produce an explainable model
for quantifying digital language support and
monitoring it on a global scale.

1 Introduction

The users of endangered languages struggle to
thrive in a digitally-mediated world. The opportuni-
ties afforded by digital technology differ drastically
depending on the language being used. This has
been dubbed the “digital language divide” (Mikami,
2008; Young, 2015; Soria, 2016; Matsakis, 2019).
As digital modes of communicating and accessing
information become increasingly necessary in daily
life, lack of digital language support (DLS) for a
language means that its speakers must use other
languages to participate in the global information
society or be left out.

Linguists have been writing for decades about
the role digital technology could play in lan-
guage revitalization (Warschauer, 1998; Buszard-
Welcher, 2001; Eisenlohr, 2004; Galla, 2009;
Holton, 2011; Cru, 2016). Language technologists
are recognizing the inequities facing the vast ma-
jority of the world’s languages (Bird, 2020; Blasi
et al., 2022) and are embracing the challenges of
bringing greater equity in DLS (Joshi et al., 2019;
Bapna et al., 2022; Edunov et al., 2022).

However, in a world where most people are mul-
tilingual and each language fits into its functional
niche within an ecology of languages (Lewis and Si-
mons, 2016), full digital support for every language

is not a realistic goal nor what those multilingual
individuals are necessarily looking for (Bird, 2022).
The goal of our research is to develop a method for
measuring DLS in every language, so that it will be
possible to provide an empirical view of the digital
state of the world’s languages and to observe the
progress as so-called low-resource languages move
toward crossing the digital language divide.

2 Related Work

Our primary inspiration has been the seminal work
by Kornai (2013) on developing a method for as-
sessing the digital vitality of any language. He pro-
poses a four-way classification of languages as dig-
itally Thriving, Vital, Heritage, or Still, “roughly
corresponding to the amount of digital communica-
tion that takes place in the language.” His method
harvests data from the Web, then uses supervised
classification to automatically label all known lan-
guages. In practice, he adds a fifth level, Borderline,
to represent languages that show signs of crossing
the gap from Still to Vital. He and his colleagues
have applied this method to the languages of India
(Kornai and Bhattacharyya, 2014), the former So-
viet Union (Kornai, 2015), and the Uralic family
(Acs et al., 2017).

In reviewing Kornai’s method, Gibson (2015,
2016) focused on the huge gap between Still and Vi-
tal. He argues that two additional levels are needed
to fill this gap: one for when the needed elements
(like a keyboarding solution) are in place for po-
tential digital language use, and another for when
digital language use is indeed taking off. We follow
Gibson’s lead in adding two levels, but use names
that achieve better congruence with the geometry
of the S-curve model that emerges from our method
(see Figure 3).

3 Requirements

Following Kornai’s (2013) lead, we seek to de-
velop an automated method for assessing digital
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language vitality that is based on feature data har-
vested from the Web. In this way, it can be run
periodically to monitor changes in digital vitality
for every language. We were motivated to develop
an alternative to Kornai’s method of analysis in
order to meet three requirements:

Digital vitality should be orthogonal to non-
digital vitality. We exclude features like population
and language vitality from the feature data. Kornai
notes that the EGIDS level as reported in Ethno-
logue (Lewis and Simons, 2010; Eberhard et al.,
2022) is “the best predictor of digital status.” But
digital vitality is distinct from non-digital vital-
ity. For instance, our method reports the “dead”
language Latin to be the 80th most digitally vital
language in the world. By contrast, Aimaq with
nearly two million speakers is found to be digitally
Still.

The assessments should be explainable. A stan-
dard critique of machine learning models based on
black-box methods is that the models cannot ex-
plain why they produce the answers they do (Arri-
eta et al., 2020; Miller, 2019). Kornai (2013) bases
his results on the majority outcome from 100 runs
of a black-box model that yields a slightly different
result each time. Users will be more likely to trust
results if they are deterministic and explainable.

The assessment scale should measure a single
underlying trait. The data features used by Kornai
(2013) covered a variety of digital uses. Some had
to do with quantifying the extent to which the lan-
guage has been documented in digital archives by
researchers. Others, like the sizes of Wikipedias,
had to do with quantifying the extent of digital
language use by the language community itself.
Still others looked at specific software products
and recorded which languages they support. These
strike us as three distinct traits, each of which
should be assessed in its own right: digital language
preservation, digital language use (DLU), and dig-
ital language support (DLS). Of these, the latter
two are what speak to monitoring the digital vital-
ity of a language as it moves toward crossing the
digital language divide. DLU and DLS are distinct
traits that should be assessed separately—speakers
of unsupported languages may nevertheless use it
digitally (for instance, making do in texting; see
Eberhard and Mangulamas (2022)), while speakers
of supported languages may choose to use digital
resources in another language they know.

We have chosen to focus on DLS since the

data for monitoring that phenomenon are openly
accessible—the developers of digital tools are usu-
ally keen to advertise all of the languages they sup-
port. By contrast, data on actual digital use is typi-
cally not shared on a language-by-language basis
by the vendors concerned. A comparable effort
to assess DLU on a global scale is much needed,
though we anticipate that it will be significantly
harder to acquire the needed data.

4 Methodology

The method we have adopted for building an ex-
plainable model of DLS is Mokken scale anal-
ysis (Mokken, 1971; Schuur, 2003). Mokken’s
method is a generalization of the more widely
known Guttman scaling (Guttman, 1950). In the
latter, the items in a scale form a strict hierarchy. If
a subject has an item on the scale, then all lower
items also apply. A subject’s score on the scale is
thus the highest item that is true for the subject.

Intuitively, DLS has these properties. If a
language has a good virtual assistant (like Siri),
then we can infer that it also has good machine
translation—but having good machine translation
does not imply having a good virtual assistant. Sim-
ilarly, if a language has good machine translation,
we can guess that it must also have good spell
checking, though we cannot assume that the re-
verse would hold. In a Guttman scale, an exception
to the hierarchical ordering is considered an error,
but in an arena like DLS we can expect there to
be exceptions. Mokken scaling is a method for
placing the items of a supposed hierarchical scale
into their optimal order, while providing metrics
that allow one to evaluate how well the hierarchical
model fits.

4.1 Categories of Digital Language Support

The method uses the following seven categories
of DLS. They are listed below from easiest (most
commonly supported) to hardest (least commonly
supported) as determined by the results of our anal-
ysis:1

• Content — A service offering content in many
languages (like Wikipedia, news sites, or
Bible sites)2

1This aspect of the analysis is explained in subsection 5.2
and illustrated in Figure 2.

2Having digital content in a language could also be viewed
as an evidence of digital language use. We treat the fact that a
service offers content in a language as a Boolean indicator of
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• Encoding — A system component for repre-
senting languages (like keyboards and fonts)

• Surface — A tool with surface-level process-
ing (like spell checking or stemming)

• Localized — A tool with a localized user inter-
face (like operating system, browser, or mes-
saging)

• Meaning — A tool with meaning-level pro-
cessing (like machine translation)

• Speech — A tool for speech processing (like
speech-to-text or text-to-speech)

• Assistant — An intelligent virtual assistant
(like Siri or Alexa)

For each category, we sought to identify the top
ten tools of its kind globally. In order to ensure
that we included the major tools in use outside
the English-speaking world, we also included the
top five tools in each of the ten most populous
countries of the world.3 The reference authority for
these rankings was the similarweb service.4 Then
we added any tools found from other sources that
supported more than 10% of the median number of
languages supported by the top tools in the category.
In order for a tool to be used in our analysis, we
required there to be a URL from which the names
or ISO 639 codes of supported languages could be
scraped.

The full sample consists of URLs for 143 digital
tools across the seven categories of DLS.5 The num-
ber of tools in each category is shown in Table 1 as
the maximum number in the range for level 4.

4.2 Harvesting the feature data

The method works by scraping each URL in the
sample to discover what languages each tool sup-
ports. The harvested language names are mapped to
their corresponding ISO 639-3 code6 by means of
a manually maintained table of name-to-code map-
pings. After the mapping of the harvested language
names, the resulting feature data is a logical matrix
with rows for 7,829 ISO 639-3 codes, columns for
the 143 digital tools, and a Boolean value at the

support for the language. To measure digital language use, we
would quantify the amount of digital content in each language.

3This sampling method allows us to discover widely-used
tools that support just one large language, but it admittedly
misses tools that have been custom-built for a single smaller
language.

4https://similarweb.com
5A complete list of the 143 digital tools is provided at

https://github.com/sil-ai/dls-results.
6https://iso639-3.sil.org/code_tables

intersection indicating whether the given language
is supported by the given tool.

4.3 Scoring the DLS categories as subscales
When a language is not supported by any tools in a
given DLS category it is scored as 0; otherwise, the
number of tools supporting that language is con-
verted to a level score on a four-level subscale. The
correspondence between the number of tools sup-
porting the language and the level on the subscale
is shown in Table 1. The score corresponds to the
quartile in the distribution of the number of tools
supporting each language; only the languages that
are supported by at least one tool in the category
are included in that distribution.7

Category Levels
1 2 3 4

Assistant 1 2 3–4 5–11
Speech 1 2–3 4–8 9–23
Meaning 1 2 3–6 7–14
Localized 1 2 3–12 13–47
Surface 1 2 3 4–15
Encoding 1 2 3 4–10
Content 1 2 3 4–23

Table 1: Number of tools supporting a language in each
level of the subscales for the DLS categories

4.4 From category levels to scale items
In constructing the Mokken scale, the levels of the
categories become items in the scale. These items
are named Content1, Content2, and so on. Within
each subscale, the items form a strict hierarchy, in
which being scored at a higher level on the subscale
implies also having at least as much support as the
lower levels of the same subscale. Thus the count
of languages for item Content3 also includes the
languages for Content4, and so on going down. The
bar graph in Figure 1 shows the items listed from
top to bottom in ascending order of the number of
languages with at least that level of support in the
named category.

5 Results

5.1 Evaluating fit of the model
Mokken scale analysis allows us to evaluate the de-
gree to which the scale depicted in Figure 1 forms

7The quartile boundaries are extended upward to accom-
modate ties; thus in every case, Level 1 contains more than
25% of the languages with that kind of support.
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Figure 1: Number of languages supported at each cate-
gory and level of digital language support

a hierarchical scale. This is done using Loevinger’s
(1948) coefficient of homogeneity, H.8 H compares
the actual Guttman errors to the expected number
of errors if the items were not related in a scale. A
value of 1.0 indicates no errors; any value above 0.5
is indicative of a strong scale (Sijtsma and Mole-
naar, 2002).

Item H
Assistant 0.987
Speech 0.942
Meaning 0.920
Localized 0.924
Surface 0.885
Encoding 0.707
Content 0.685
Full scale 0.825

Table 2: Coefficient of homogeneity, H, for DLS scale

The results in Table 2 show that the proposed
DLS scale is a very strong scale, especially among
the categories of support that are hardest to achieve.
Thus the total score on all 7 categories (i.e., 0 to 28)
serves to quantify the DLS for a given language.

5.2 Relative difficulty of DLS items
Mokken analysis is based on Item Response Theory
(IRT)—a methodology developed for educational
and psychological testing (Lord, 1980). In IRT, lo-
gistic regression is used to derive an Item Response
Function (IRF) for each test item; it returns the
probability that a subject would produce a positive
(or correct) response on that item, given their total

8We have performed these calculations using the “mokken”
package (van der Ark, 2007, 2012) in R (R Core Team, 2022).

score on the rest of the test items. The difficulty
of an item is defined as the score (on the rest of
the test) at which the subject has a 50% chance of
giving a positive response for the item. Figure 2
plots the difficulty for each of the scale items listed
in Figure 1. For instance, a language has a 50%
chance of getting its first spell-checker (Surface1)
if it has 3.6 other DLS items, but the first virtual
assistant (Assistant1) cannot be expected until it
has 23.4 other DLS items.

Figure 2: Difficulty of the DLS categories and levels

5.3 DLS as a growth curve
Figure 3 plots the DLS score for 7,829 ISO 639
languages. The vertical axis is the measure of DLS
as a proportion: the DLS score achieved divided
by the maximum possible score.9 The horizontal
axis is the rank of the language by DLS score, but
converted to a log scale and flipped so that lowest
DLS is on the left and highest is on the right.

The pattern that emerges is an S-curve as is typi-
cal in studies of growth in innovation. We follow
the geometry of the fitted curve to assign each lan-
guage to one of the five summary levels:

• Still — a score of 0
• Emerging — at the bottom where the slope is

more horizontal than vertical
• Ascending — below the midpoint where the

slope is more vertical than horizontal
• Vital — above the midpoint where the slope

is more vertical than horizontal
9The DLS scores are also adjusted by scoring each item

as the probability returned by its IRF. In educational testing,
scoring each positive response as a probability is a way of
controlling for random guessing on questions that are too hard
for the subject. In the application to DLS it can control for
"random" developments that do not have the underpinnings of
the expected lower categories of support, such as when there
is a one-time philanthropic gesture by a large company or the
potentially unsustainable efforts of a solitary developer.
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Figure 3: The growth of DLS as a logistic function.

• Thriving — at the top where the slope is more
horizontal than vertical

By comparing Figures 2 and 3 one sees what com-
ponents of DLS correspond to the summary levels.

Table 3 reports the number of languages at each
summary level along with the names of example
languages, the first being from the upper end of the
range and the second from the lower.10

Level Languages Examples
Thriving 33 English, Hungarian
Vital 95 Nepali, Tongan
Ascending 401 Greenlandic, Hunsrik
Emerging 3304 Dogri, Michif
Still 3996 Aimaq, Yurok

Table 3: Number of languages per DLS level

6 Conclusion

We have presented a method that produces an ex-
plainable model for quantifying DLS. We are cur-
rently working with Ethnologue to add reporting
on DLS in its description of languages, beginning
with the next edition. Regularly updating the as-
sessments should serve to document the digital tra-
jectory of every known language.

10A sampling of the detailed results produced by the
system is provided at https://github.com/sil-ai/
dls-results.
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Abstract

Incorporating information from other lan-
guages can improve the results of tasks in low-
resource languages. A powerful method of
building functional natural language processing
systems for low-resource languages is to com-
bine multilingual pre-trained representations
with cross-lingual transfer learning. In general,
however, shared representations are learned
separately, either across tasks or across lan-
guages. This paper proposes a meta-learning
approach for inferring natural language in Per-
sian. Alternately, meta-learning uses different
task information (such as QA in Persian) or
other language information (such as natural
language inference in English). Also, we in-
vestigate the role of task augmentation strat-
egy in forming additional high-quality tasks.
We evaluate the proposed method using four
languages and an auxiliary task. Compared
to the baseline approach, the proposed model
consistently outperforms it, improving accu-
racy by roughly six percent. We also exam-
ine the effect of finding appropriate initial pa-
rameters using zero-shot evaluation and CCA
similarity. Our code is publicly available at
https://github.com/HassanMojab/MetaNLI.

1 Introduction

In natural language processing (NLP), the goal is
to improve models for the processing and produc-
tion of human languages. As part of NLP, several
tasks are defined, each covering a different level
of natural language understanding. Meanwhile,
natural language inference (NLI) is considered an
appropriate and rigorous measure of language com-
prehension. This task requires recognizing the con-
sequences of natural language sentences, which in-
dicates how well it understands the language (Mac-
Cartney, 2009).

NLI aims to determine the inferential relation-
ship between a premise p and a hypothesis h. The

∗Equal contribution

problem involves a three-class classification in
which every pair (p, h) falls into one of three cat-
egories: entailment, contradiction, and neutral. If
the hypothesis can be inferred from the premise,
pair (p, h) will be assigned to the entailment class.
For a hypothesis that contradicts the premise, pair
(p, h) will be assigned to the contradiction and neu-
tral otherwise (Amirkhani et al., 2020).

The Persian language lacks sufficient linguistic
resources when it comes to natural language un-
derstanding. The lack of data can be addressed by
collecting annotated data, but this process is both
time-consuming and expensive (Nooralahzadeh
et al., 2020). FarsTail (Amirkhani et al., 2020)
is currently available for Persian, which is cre-
ated using the same method as SciTail (Khot
et al., 2018). It contains 10,367 samples. Also,
ParsiNLU (Khashabi et al., 2021) is created for
high-level tasks in Persian, and for NLI, it con-
sists of 2700 samples. As it turns out, this amount
of data is too small compared with resource-
rich languages (such as English, which has only
550,000 samples in the SNLI (Bowman et al., 2015)
dataset).

Researchers have tried to solve the data scarcity
problem by using cross-language methods. Recent
work on cross-lingual learning has mainly focused
on transfer between languages already covered
by pre-trained representations (Wu and Dredze,
2019). Nonetheless, these techniques do not read-
ily transfer to low-resource languages in which (1)
large monolingual corpora are unavailable for pre-
training, and (2) sufficient labeled data is lacking
for fine-tuning downstream tasks (Xia et al., 2021).

The results of experimental studies for Per-
sian using different embedding methods includ-
ing word2vec (Mikolov et al., 2013), fastText (Bo-
janowski et al., 2017), ELMo (Peters et al., 2018),
and BERT (Devlin et al., 2019) and various mod-
els, such as, DecompAtt (Parikh et al., 2016),
ESIM (Chen et al., 2016), HBMP (Talman et al.,
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2019), and ULMFiT (Howard and Ruder, 2018) is
reported in FarsTail (Amirkhani et al., 2020). Al-
though this cross-lingual information sharing has
enabled success in various natural language pro-
cessing tasks, it raises the question of how we can
achieve more effective collaborative learning be-
tween languages or even between different tasks.

Recently, meta-learning has shown to be effec-
tive for a variety of machine learning tasks, includ-
ing NLP (Koch et al., 2015; Ravi and Larochelle,
2016; Qian and Yu, 2019). This paper uses a meta-
learning-based method for learning parameters in
the joint space of tasks and languages. Auxiliary
languages include English, Spanish, French, and
German, while QA is the auxiliary task.

Alternatively, an essential prerequisite for the
successful application of meta-learning is a task
distribution from which a large number of tasks
can be sampled to train the meta-learner. How-
ever, in NLP, datasets are usually considered as
tasks (Nooralahzadeh et al., 2020; Qi and Du,
2020). There are two main problems with treat-
ing entire datasets as tasks. The first problem is
overfitting, in which a meta-learner is overfitted
to a small number of training tasks since there is
only a small number of supervised datasets for each
NLP problem. A second concern is that the het-
erogeneity of NLP datasets may result in learn-
ing episodes that lead to memorization overfitting,
where a meta-learner ignores the support set and
fails to adapt (Murty et al., 2021). To improve the
quality and quantity of tasks, we use the DReCa
(Murty et al., 2021) approach as our data augmen-
tation strategy.

In this paper, we employ meta-learning algo-
rithms to enhance the Persian NLI task. Our models
are evaluated on the FarsTail dataset. Experimental
results show that we push Persian NLI accuracy
forward by more than 6% and zero-shot accuracy
by about 4%, setting a new state-of-the-art result
for this task. In summary, the main contributions
of our research are:

• We have enabled effective parameter sharing
across multiple languages and tasks by provid-
ing a meta-learning approach. To the best of
the authors’ knowledge, this is the first study
of the interaction between several languages
and tasks at different levels of abstraction to
solve a high-level problem in the Persian lan-
guage. The evaluation results are based on
the FarsTail dataset as a reference dataset in

the Persian language. The datasets available
in the XTREME benchmark (Hu et al., 2020)
have also been used for auxiliary languages
and tasks.

• We examine a metadata augmentation strategy
named DReCa (Murty et al., 2021) that takes
as input a set of tasks (entire datasets). We
then decompose them to approximate some
of the latent reasoning categories underlying
these datasets, such as various syntactic con-
structs within a dataset or semantic categories
such as quantifiers and negation.

• We also evaluate the trained model in zero-
shot mode, which means that the target lan-
guage (Persian) data is never used during the
training process. This test indicates the gener-
ality of the model.

The rest of the paper is arranged as follows: Sec-
tion 2 briefly describes related work. Section 3
introduces our method, and in section 4, we ex-
plain the details of the experimental setup. Section
5 presents practical results. The results analysis
and some justification are described in section 6.
We conclude the paper and summarize future direc-
tions in section 7.

2 Related Work

In this section, we briefly outline related work in
three areas. The first area is models based on cross-
lingual algorithms. In the second area, we highlight
methods based on meta-learning. Finally, we sum-
marize existing data augmentation strategies.

2.1 Models based on Cross-lingual

Cross-lingual learning is a method for transfer-
ring knowledge from one natural language to an-
other (Pikuliak et al., 2021). Pre-trained models
are one of the most widely used examples of cross-
lingual learning. Since these models have achieved
good results, so Wu and Dredze (2019) explored
the broader cross-lingual potential of mBERT (mul-
tilingual BERT) as a zero-shot language transfer
model with five NLP tasks, including NLI, cover-
ing a total of 39 languages. Also, Wang et al. (2019)
provides a comprehensive study of the contribution
of different components in mBERT to its cross-
lingual ability. In addition, it examines the impact
of the linguistic properties of the languages, the ar-
chitecture of the model, and the learning objectives.
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Conneau and Lample (2019) proposed two meth-
ods for learning cross-lingual language models, one
using monolingual data and the other using parallel
data and a new cross-lingual language model objec-
tive. Singh et al. (2019) introduced a cross-lingual
data augmentation method that substitutes part of
the input text with its translation into another lan-
guage.

Huertas-Tato et al. (2021) designed a new archi-
tecture called Siamese Inter-Lingual Transformer
(SILT) to align multilingual embeddings for NLI
efficiently. The paper points out that transformer
models are unable to generalize to other domains
and have problems with multilingual and inter-
linguistic scenarios. A new network has been de-
veloped to overcome these weaknesses by combin-
ing three parts: a multilingual transformer as pre-
trained embedding, an alignment matrix to com-
pute the similarity between two sentences, and a
multi-head self-attention block to interpret input
strings.

Despite the advances that Cross-lingual methods
have made, building NLP systems in these settings
are challenging for several reasons. First, the tar-
get language does not contain sufficient annotated
data for effective fine-tuning. Secondly, pre-trained
multilingual representations are not directly trans-
ferable due to language disparities (Xia et al., 2021).
In contrast to these methods, we consider setting
up training models simultaneously on multiple lan-
guages and tasks.

2.2 Meta-learning

Meta-learning addresses the problem of learning
to learn. By examining many learning problems,
a meta-learner learns a model (Liu et al., 2020).
Specifically, the meta-learner uses a meta training
set MS = {(Ssi ,Tsi )}N

s

i=1 , where (Ssi ,Tsi ) are the
training (support) and test (query) set of the ith

learning problem and N s is the number of learn-
ing problems used for training; and a meta test set
MT =

{(
Sti,Tti

)}Nt

i=1
, where

(
Sti,Tti

)
are the sup-

port and query set of the ith test learning problem,
while N t is the number of learning problems used
for the test. Given MS, the meta-learner learns
how to map a pair (S,T) into an algorithm that
leverages S to optimally solve T.

Due to the lack of well-defined task distribution,
meta-learning has not yet succeeded in NLP, lead-
ing to attempts that treat datasets as tasks. An ad
hoc task distribution causes problems with quantity

and quality. Murty et al. (2021) provide a way to
break down heterogeneous tasks such as datasets
into a set of appropriate subtasks. With this method,
data is transferred to the feature space using a pre-
trained model. They use k-means to decompose
data into k clusters and create tasks by combining
these clusters.

Recently, however, the combination of cross-
lingual techniques in meta-learning frameworks
has also been extensively studied. To train a model
for low-resource languages on NLI and QA tasks,
Nooralahzadeh et al. (2020) uses the MAML al-
gorithm and auxiliary languages. van der Heij-
den et al. (2021) study the text documents classi-
fication problem in monolingual and multilingual
modes, using different algorithms such as, Pro-
totypical Networks (Snell et al., 2017), MAML
(Finn et al., 2017), Reptile (Nichol et al., 2018),
and ProtoMAML (Triantafillou et al., 2019). Also,
Tarunesh et al. (2021) examine the interaction be-
tween different languages and tasks to learn an
appropriate common feature space.

Additionally, transfer-learning can be helpful for
low-resource languages. Xia et al. (2021) introduce
a meta-learning-based framework called MetaXL
for extremely low-resource languages. MetaXL
learns an intelligent representational conversion
from several auxiliary languages to the target lan-
guage, bringing the feature space of these lan-
guages closer together for more efficient conver-
sion. The main idea is to use a Representation
Transformation network between the main model
layers which are trained only with the target lan-
guage.

To the best of our knowledge, this paper is the
first attempt to study meta-learning for solving the
NLI problem in the Persian language. Also, we
are pioneers in using task-language pairs as meta-
learning tasks in the Persian language.

2.3 Task Augmentation

Machine learning algorithms usually assume that
the train and test data have the same distribution. In
contrast, the meta-learning framework treats tasks
as training examples and trains a model to adapt to
all of them. Meta-learning also assumes that the
training and new tasks are drawn from the same
distribution of tasks p(τ). In NLP, datasets are
typically treated as tasks, and meta-learners are
then overfitting their adaptation mechanisms. NLP
datasets are highly heterogeneous, which causes
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many learning episodes to have a poor transfer be-
tween their support and query sets, which dissuades
meta-learners from adapting (Murty et al., 2021).

To deal with overfitting challenges, Yin et al.
(2019) propose a meta-regularizer to mitigate mem-
orization overfitting, but don’t study learner over-
fitting. Rajendran et al. (2020) study task augmen-
tation for mitigating meta-learners overfitting in
the context of few-shot label adaptation. SMLMT
method (Bansal et al., 2020) creates new self-
supervised tasks that improve meta-overfitting, but
this does not directly address the dataset-as-tasks
problem. In contrast, the DReCa method (Murty
et al., 2021) addresses the dataset-as-tasks prob-
lem and focuses on using clustering as a way to
subdivide and fix tasks that already exist. In this pa-
per, we use DReCa as a task augmentation strategy
for our method since it mitigates meta-overfitting
without any additional unlabeled data.

NLI QA
FA FarsTail (10.3K) PersianQA (9K)
EN XNLI (392k) —
ES tr. XNLI (392k) —
DE tr. XNLI (392k) —
FR tr. XNLI (392k) —

Table 1: Overview of datasets from a variety of sources.
For the NLI task, we use the XNLI dataset for English,
and its translated versions (tr.) for Spanish(ES), Ger-
man(DE), and French(FR) provided in XTREME. For
each dataset, the number of training instances is also
mentioned.

3 The Proposed Methodology

In our setting, firstly, we prepare a set of task-
language pairs to provide meta-learning tasks. Af-
terward, we sample some tasks in each episode and
feed them to the meta-learner. In the rest of this
section, we describe the proposed task sampling
strategy, the proposed meta-learning algorithm, and
the proposed task augmentation strategy.

3.1 The Proposed Task Sampling Strategy

In meta-learning, task selection has a profound im-
pact on model performance. For this reason, we cre-
ate a queue of tasks first. We can create this queue
using different scenarios such as selecting lan-
guages for a target task (Gu et al., 2018), selecting
tasks for a target language (Dou et al., 2019), and
picking from various auxiliary languages and auxil-
iary tasks. In the meta-training section, we sample

some tasks from the queue. Formally, the queue’s
tasks are represented by D. We need to sample
tasks fromM, which is a Multinomial distribution
over PD(i)s. Thus, we investigate temperature-
based heuristic sampling (Aharoni et al., 2019),
which defines the probability of any dataset as a
function of its size as,

PD(i) = q
1/τ
i /

(
n∑

k=1

q
1/τ
k

)
(1)

where PD(i) is the probability of sampling the ith
task, qi is the size of ith task, and τ is the temper-
ature parameter. With τ = 1, tasks are randomly
sampled proportionately to their dataset sizes, and
with τ →∞, they follow a uniform distribution.

3.2 The Proposed Meta-learning Algorithms
Meta-learning is the process of building a model
that can solve a new task with only a few labeled
examples by training on a variety of tasks with rich
annotations. The key idea is to train the model’s
initial parameters such that the model has maximal
performance on a new task after the parameters
have been updated through zero or a couple of gra-
dient steps (Yin, 2020). MAML (model-agnostic
meta-learning) (Finn et al., 2017) is one of the most
significant algorithms. We describe one episode of
the MAML algorithm in Appendix A.1. MAML is
quite challenging to train since there are two levels
of training. Therefore, we use the following two
optimization-based and metric-based meta-learning
algorithms in this work.

Reptile (Nichol et al., 2018) is a first-order
optimization-based algorithm that moves weights
toward a manifold of the weighted averages of
task-specific parameters θ(m)

i . It samples training
tasks from p(T ) : τ1, · · · , τi, · · · , τn. For each
training task, it generates an episode that just con-
tains the support set data. For training task τi,
let’s assume the original parameters θ have gone
through m steps of updating and become θ(m)

i (i.e.,
θ
(m)
i = AdamW(Lτi , θ,m) (2)), then Reptile up-

dates θ as follows (Yin, 2020):

θ ← θ + β
1

|{T }|
∑

τi∼M

(
θ
(m)
i − θ

)
(3)

Prototypical Networks (Snell et al., 2017) is a
metric-based meta-learning algorithm. Prototypi-
cal networks learn a metric space in which classifi-
cation can be performed by computing distances to
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prototype representations of each class. In general,
they are composed of an embedding network fθ and
a distance function d (x1, x2). Using the following
equation, the embedding network encodes the sup-
port set samples Sc and computes prototypes µc
per class based on the mean sample encodings for
that class.

µc =
1

|Sc|
∑

(xi,yi)∈Sc
fθ (xi) . (4)

A Prototypical network classifies a new sample
according to the following rule.

p(y = c | x) = exp (−d (fθ(x), µc))∑
c′∈C exp (−d (fθ(x), µc′))

(5)
Thus, we define the distance-based cross entropy

(DCE) loss as follows:

Loss(DCE) = − logP (y = c | x) (6)

To ensure that the feature space is robust to noise,
we also use the Cross Entropy (CE) loss (more
details can be found in Appendix A.3.1).

3.3 The Task Augmentation Strategy
First, we use the dataset-as-tasks strategy, which
is the most common method for selecting tasks
for meta-learning in NLP applications. Next, we
employ DReCa to form additional high-quality
tasks. The goal of DReCa is to take a hetero-
geneous task (such as a dataset) and produce a
decomposed set of tasks. Given a training task
T tri , DReCa first groups examples by their labels
and then embeds examples within each group with
an embedding function EMBED(.). Concretely,
for each N -way classification task T tri , it forms
groups gil = {(EMBED(xi) , yi) | yi = l}. Then,
it proceeds to refine each label group into K clus-
ters via k-means clustering to break down T tri into
groups

{
Cj
(
gil
)}K

j=1
for l = 1, 2, . . . , N. These

cluster groups can be used to produceKN potential
DReCa tasks. Each task is obtained by choosing
one of theK clusters for each of theN label groups
and taking their union.

4 Experimental Setup

4.1 Datasets
We use FarsTail (Amirkhani et al., 2020) for the tar-
get dataset. FarsTail is the only large-scale Persian
corpus for the NLI task, with 10,367 samples. The

samples are generated from 3,539 multiple-choice
questions with the least amount of annotators’ in-
terventions or selected from natural sentences that
already exist independently in the wild, similarly
to the SciTail dataset (Khot et al., 2018).

We also use XTREME (Hu et al., 2020) as an
auxiliary dataset. XTREME is a multilingual multi-
task benchmark consisting of classification, struc-
tured prediction, QA, and retrieval tasks. We use
this benchmark to prepare NLI data for auxiliary
languages. Note that large-scale datasets for NLI
were only available in English. However, the au-
thors of XTREME developed a custom-built trans-
lation system to get translated datasets for NLI.
Furthermore, we consider the QA as an auxiliary
task. Therefore, we use PersianQA (Ayoubi and
Davoodeh, 2021), which is a Persian reading com-
prehension dataset for QA containing over 9000
entries. Table 1 summarizes the employed dataset
specifications.

4.2 Baselines

On the FarsTail dataset, Amirkhani et al. (2020)
presents results of various traditional and deep
learning-based methods. According to the re-
sults of this paper, the highest test accuracy is
obtained by using a translation-based approach,
i.e., Translate-Source with fastText embeddings. In
Translate-Source, the Persian-translated MultiNLI
training set is combined with FarsTail training
data for training an ESIM model. Furthermore,
FarsTail’s authors reported mBERT fine-tuning re-
sults in FarsTail webpage1. Therefore, we use these
results as baselines.

4.3 Implementation Details

In this study, we aim to compare the effects of meta-
learning algorithms on classification accuracy with
those of fine-tuning and non-episodic algorithms.
To make a fair comparison, we first fine-tune our
pre-trained models using training data of the aux-
iliary task in a non-episodic approach. Afterward,
we fine-tune the obtained model using the training
data of the target task. In this approach, we use
mBERT (Devlin et al., 2019), and XLM-R (Con-
neau et al., 2020), which are known as the state-of-
the-art multilingual pre-trained models, and Pars-
BERT (Farahani et al., 2021) as a monolingual
transformer-based model for the Persian language.

1https://github.com/dml-qom/FarsTail

4310



In the meta-learning approach, we use the XLM-
R model with output layers tailored for each task
and train it with Reptile and Prototypical algo-
rithms. To select the hyperparameters of the Rep-
tile algorithm, we utilize the experiments done in
Tarunesh et al. (2021). Appendix A.2 provides fur-
ther details. The Prototypical algorithm is used
only in cross-lingual experiments, and we use Eu-
clidean distance as its distance function. The auxil-
iary languages are arranged in two scenarios. In the
first scenario, support and query set data are gener-
ated from auxiliary languages, while in the second
scenario, the query set is drawn from both auxil-
iary and target languages. Detailed information is
provided in Appendix A.3.2.

Furthermore, we fine-tune the obtained models
on Persian training data using the following two
methods. The first method is non-episodic, which
involves fine-tuning models in batches. The second
method is episodic, in which episodes are con-
structed first, and then the models are fine-tuned
according to the algorithm used.

5 Results

The meta-learning model is tested on different com-
binations and configurations of the auxiliary tasks.
The accuracy results of the Reptile algorithm are
presented in Table 2. In addition to the zero-shot
and fine-tuning results, we report the accuracy of
another scenario. In this scenario, training data of
the target language is placed in the meta-training
stage along with other auxiliary tasks and cooperate
in a training process. Consequently, this scenario
does not involve fine-tuning phase. The results
of the mentioned scenario are shown in the last
column of Table 2.

Table 3 shows the accuracy scores using the Pro-
totypical Network. In the first section of this table,
we generate both support and query sets from Per-
sian language data, without using auxiliary tasks.
In the second section of this table, the results of the
first multi-lingual scenario (where both the support
and query sets are generated from auxiliary lan-
guages data) are reported in rows 5 to 12. In rows
13 to 16, we show the results of the second multi-
lingual scenario (where the support set is drawn
from auxiliary language data and the query set is
drawn from both auxiliary and Persian language
data). Lastly, we added the DReCa strategy and
presented the results in rows 17 to 20.

Additionally, we conducted zero-shot evalua-

tions of both algorithms. Zero-shot results are pre-
sented in the first accuracy column of Tables 2 and
3. The confusion matrices of the best-performing
models for both Reptile and Prototypical algo-
rithms are also depicted in Appendix A.4.

6 Discussion and Analysis

Table 2 shows that the multi-lingual models are
always better than the multi-task models due to
the fact that tasks like NLI (which require deeper
semantic representations) are more likely to benefit
from combining data from different languages. We
found that our meta-learned models perform bet-
ter than baselines and non-episodic models. The
reason is that the goal of standard meta-learning
is to find a model that generalizes well to a new
target task. In addition, we compared two different
meta-learning algorithms to evaluate their superi-
ority in this paper. From Tables 2 and 3, we can
see that Prototypical performed better than Rep-
tile. It is because Prototypical networks use class
representations instead of example representations.
Therefore, it finds a suitable representation for each
class during the meta-train stage.

As part of another experiment, we combined
data from the target language with data from other
auxiliary tasks for meta-training. Based on the re-
sults of these experiments (last column of Table 2
for Reptile and rows 13 to 16 of Table 3 for Proto-
typical), the model’s accuracy has decreased. This
is due to the fact that target language data is small
when compared with auxiliary language data. So,
unbalanced training data confuses the training pro-
cess and decreases the model’s accuracy. In any
case, the cooperation of the target language during
the training process is a excellent idea for future
work.

As indicated in the last two columns of Table 3,
episodic fine-tuning is significantly superior to non-
episodic fine-tuning. It demonstrates that episodic
training is effective even on single language data
and creates a generality in the level of training and
test data.

We examined the proximity between the fea-
ture spaces of the auxiliary languages and the tar-
get language quantitatively and qualitatively. At
first, we collect representations of the auxiliary and
target languages from non-episodic, Reptile, and
Prototypical models. In Fig. 1, we present a 2-
component PCA visualization for comparison. We
also evaluated the models using a distance metric
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Row Model Shot Aux. Tasks Zero-shot Non-episodic f.t. Add NLI-fa in m.t.
Baselines

1 Translate-Source∗ — — — 78.13 —
2 mBERT∗ — — — 83.38 —

Non-episodic approach
3 ParsBERT — — — 74.64 —
4

mBERT
— — — 81.95 —

5 — NLI-en 56.53 81.38 —
6 — NLI-(en, es, de, fr) 67.88 82.34 —
7

XLM-R
— — — 81.97 —

8 — NLI-en 69.49 86.55 —
9 — NLI-(en, es, de, fr) 69.09 84.69 —

Meta-learning approach
10

XLM-R

1

NLI-en

64.19 84.31 83.37
11 4 70.96 87.17 86.00
12 8 70.70 87.11 86.65
13 16 71.03 87.43 86.52
14 1

NLI-(en, es, de, fr)

65.17 85.21 83.91
15 4 72.27 87.57 85.74
16 8 71.61 88.35 88.22
17 16 71.22 88.02 87.76
18 1

QA-fa

34.18 81.48 81.58
19 4 34.18 81.38 84.96
20 8 33.79 82.14 83.59
21 16 34.18 82.23 84.70
22 1

NLI-en, QA-fa

46.42 83.53 85.16
23 4 66.02 86.52 86.26
24 8 64.26 86.98 86.46
25 16 46.88 86.52 86.13

Table 2: Average test accuracy of the Reptile algorithm with baselines and non-episodic approach results on the
Persian NLI task. The first accuracy column shows results before fine-tuning on the Persian NLI train-set (called
zero-shot). In the second accuracy column, we provided results after fine-tuning (f.t.) on the Persian NLI train-sets.
The last accuracy column reports results of using the Persian NLI train-set in the meta-training phase (m.t.). The
data with ∗ comes from FarsTail’s paper and webpage.

Row Model Shot Support Query Zero-shot Non-episodic f.t. Episodic f.t.
Without auxiliary tasks

1

XLM-R

1

NLI-fa NLI-fa

— 70.38 79.30
2 4 — 81.97 85.22
3 8 — 83.98 84.64
4 16 — 85.29 85.74

With auxiliary tasks
5

XLM-R

1

NLI-en NLI-en

68.10 84.83 86.07
6 4 70.57 86.72 87.50
7 8 70.77 86.72 87.37
8 16 73.18 87.76 88.54
9 1

NLI-(en, es, de, fr) NLI-(en, es, de, fr)

69.15 85.01 85.97
10 4 70.25 86.78 87.63
11 8 71.09 88.48 89.39
12 16 72.20 88.15 88.28
13 1

NLI-(en, es, de, fr) NLI-(en, es, de, fr, fa)

— 84.15 85.12
14 4 — 86.33 86.78
15 8 — 86.33 86.46
16 16 — 86.78 87.24
17

XLM-R+
DReCa

8 NLI-en NLI-en 70.44 87.96 88.87
18 16 71.94 87.24 88.74
19 8 NLI-(en, es, de, fr) NLI-(en, es, de, fr) 71.16 87.74 88.48
20 16 71.61 87.30 88.22

Table 3: Average test accuracy on the Persian NLI task using Prototypical algorithm with and without auxiliary
tasks. The last accuracy column reports results after episodic fine-tuning (f.t.) on the Persian NLI train-set.
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Figure 1: PCA visualization of non-episodic, Reptile and Prototypical models to examine the closeness of the
auxiliary and target languages feature spaces.

commonly used in vision and NLP tasks (Hutten-
locher et al., 1993; Dubuisson and Jain, 1994; Pa-
tra et al., 2019; Xia et al., 2021). Informally, the
Hausdorff distance measures the distance between
data representations of auxiliary languages and the
target language. Given a set of representations
of the auxiliary language S = {s1, s2, . . . , sm}
and a set of representations of the target language
T = {t1, t2, . . . , tm} we compute the Hausdorff
distance as follows:

max

{
max
s∈S

min
t∈T

d(s, t),max
t∈T

min
s∈S

d(s, t)

}
(7)

where cosine distance is used as the inner distance,
i.e.,

d(s, t) ≜ 1− cos(s, t) (8)

Compared to the non-episodic method, we ob-
serve a drastic drop of Hausdorff distance from
0.18 to 0.05 for Prototypical, and also we see a
minor decline of Hausdorff distance from 0.18 to
0.13 for the Reptile. Both qualitative visualization
and quantitative metrics confirm that meta-learning
approaches bring the distributions of auxiliary and
target language data closer together, thus increasing
the accuracy on the target language.

The advantage of meta-learning methods is that
they obtain the appropriate initial parameters for
the target language, as mentioned. The zero-shot
test is used as a criterion to evaluate this point,
and it shows that meta-learning-based models are
more accurate than other methods. The generality
of the initial parameters can also be assessed via
canonical correlation analysis (CCA) (Raghu et al.,
2017; Morcos et al., 2018). Using this criterion,
we compare the output of each layer before and
after fine-tuning, and the results are presented in
Fig. 2. The meta-learning models have a higher
CCA similarity, which indicates the model obtained
more general parameters before fine-tuning.
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Figure 2: CCA similarity for each transformer layer. We
calculate the similarity before and after fine-tuning on
the FarsTail training data.

In the next experiment, we apply the DReCa
strategy and train the model with the Prototypical
algorithm. DReCa is a task augmentation strategy
used when a small number of auxiliary tasks are
available. The identification of clusters requires a
more detailed examination of the method. However,
in this paper, we are not interested in obtaining
meaningful clusters but in generating more auxil-
iary tasks. So we used the DReCa strategy for the
best results obtained with the Prototypical method,
hoping to get more improvements. According to
Table 3, there is a slight improvement when we di-
vided a single English NLI auxiliary task into eight
auxiliary tasks. Whereas DReCa did not help the
model when we used several auxiliary tasks. It il-
lustrates that task augmentation in meta-algorithms
affects the model’s accuracy. However, defining the
appropriate task augmentation strategy still needs
research.
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7 Conclusion

We present effective use of meta-learning to ben-
efit from other tasks or languages. We advanta-
geously leverage this approach to improve NLI in
Persian as a low-resource language. We found that
our meta-learning model outperformed competi-
tive baseline models. In response to the concept of
treating entire datasets as tasks, we use DReCa as
a general-purpose task augmenting approach. Fi-
nally, zero-shot evaluations illustrate the generality
of the results obtained by meta-learning. This work
will be extended to other cross-lingual NLP tasks
in Persian in the future. Furthermore, we would
like to use a self-supervised approach to provide a
useful starting point for parameters.
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A Appendix

A.1 MAML Description
MAML is one of the most popular meta-learning
algorithms and has proven its effectiveness in vari-
ous fields (e.g., computer vision). MAML is able
to find good initialization parameter values and
adapt to new tasks quickly. This algorithm can be
performed in one episode by following these steps:

• Make a copy of the model with its initial pa-
rameters θ.

• Use the training set Dtrain
i to train the model

as
θ̂ = θ − α∇θLi

(
θ,Dtraini

)
(9)

• Apply the model with the updated parameters
θ̂ to the validation set Dval

i .

• Use the loss on the validation set to update the
initial parameters θ

θ = θ − β∇θ
∑

i

Li
(
θ̂,Dvali

)
(10)

A.2 Hyperparameters
Models are implemented using the PyTorch2 frame-
work. ParsBERT, mBERT, and XLM-R implemen-
tations are taken from the HuggingFace library 3.

In our experiments, we used the AdamW opti-
mizer (Loshchilov and Hutter, 2018) with learning
rate 1e-5 to perform the inner loop of the Reptile
algorithm (2), which is known as meta-step. The
hyperparameters for the Reptile algorithm are listed
in Table 4.

The hyperparameters for the Prototypical algo-
rithm are also shown in Table 5. Some parame-
ters are calculated based on a grid search, such as
Distance Cross-Entropy (DCE) and Cross-Entropy
(CE) coefficients, and others are chosen similarly
to the Reptile algorithm.

The number of iterations parameter varies ac-
cording to the value of the shot and is chosen to
ensure that all instances in the dataset appear at
least once in each epoch.

A.3 Prototypical Networks
A.3.1 Loss Function
As we mentioned in section 2.2, the primary loss
function of the Prototypical algorithm is DCE.

2https://pytorch.org/
3https://huggingface.co/
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Hyperparameter Value
epochs 2
number of iterations 20000
sequence length (for NLI) 128
sequence length (for QA) 384
dropout 0.1
optimizer AdamW
learning rate 1e-5
update steps (m) 3
number of class per episode (way) 2
queue length 4
temperature parameter (τ ) 1

Table 4: Hyperparameters for the Reptile algorithm

Hyperparameter Value
epochs 2
number of iterations 20000
sequence length (for NLI) 128
dropout 0.1
optimizer AdamW
learning rate 1e-5
number of class per episode (way) 3
DCE coefficient (λ1) 1.0
CE coefficient (λ2) 1.0

Table 5: Hyperparameters for the Prototypical algorithm

Since a prototype consists of distribution informa-
tion from instances associated with it, the choice of
these instances may introduce noise in the learned
representation if the neural network is trained only
by using the DCE loss. We use CE loss in addition
to the DCE loss to make the feature space robust
to noise. As a whole, we train the model with a
combination of DCE loss and CE loss given by the
following equation.

Loss(overall) = λ1 Loss(DCE) + λ2 Loss(CE)
(11)

A.3.2 Scenarios
We considered two scenarios for making the
episodes. In the first scenario, the model is trained
only on auxiliary languages, then fine-tuned using
the target language. Therefore, only auxiliary lan-
guages are used to generate support and query sets.
An episode of the first scenario is shown in Table 6.

In the second scenario, in addition to auxiliary
languages, we also used the target language for
training. So, the support set is constructed from

auxiliary language data, and the query set is gener-
ated from both auxiliary and Persian language data.
Table 7 shows an episode of the second scenario.

A.4 Confusion Matrices
The confusion matrices for the top-performing
models (8-shot with four auxiliary languages) are
depicted in Fig. 3, showing the success of this
method in improving the accuracy in all classes,
especially the neutral class.
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Example Category

Support set (or Query set)
In the midst of this amazing amalgam of cultures is a passion for continuity
⇒ A passion for continuity is not the most important of these cultures

neutral

The river plays a central role in all visits to Paris.
⇒ The river is central to all vacations to Paris

entailment

For the moment, he sought refuge in retreat, and left the room precipitately.
⇒ He stayed put and sat on the floor.

contradiction

Table 6: Example for a 3-way 1-shot episode in the first scenario. In this example we select support set and query
set samples from English dataset. As support and query sets are generated similarly, only one set is shown in this
table.

Example Category

Support set
Recuerda que una vez mencionó que su padre era médico?
⇒ Ella mencionó que su padre era médico hace mucho tiempo

neutral

Dies ist etwas anderes als eine Cantina-Leuchte
⇒ Dies ist sicherlich keine Cantina-Leuchte

entailment

Ensuite, il enfonce un tube respiratoire dans la gorge du patient mort.
⇒ Le patient vit toujours.

contradiction

English Translation
You remember her once mentioning that her father was a doctor?

⇒ She mentioned her father being a doctor a long time ago.
neutral

This is something other than a cantina fixture.

⇒ This is certainly not a cantina fixture.
entailment

Next he shoves a breathing tube down the dead patient ’s throat .

⇒ The patient is still alive.
contradiction

Query set
Une pièce qualifie Frank Lloyd Wright de terrible ingénieur.
⇒ Piece a également déclaré que Wright était un bien meilleur concepteur.

neutral

Sus rápidos oídos captaron el sonido del tren que se acercaba.
⇒Escuchó que el tren se acercaba rápidamente.

entailment

یافت. کاربرد ایتالیا در بار نخستین برای عربی ارقام بعد به دوازدهم قرن از
کرد.⇒ استفاده عربی ارقام از که بود کشوری اولین فرانسه contradiction

English Translation
A piece calls Frank Lloyd Wright an awful engineer.

⇒Piece also stated Wright was a much better designer.
neutral

Her quick ears caught the sound of the approaching train.

⇒She heard the train approaching fast.
entailment

From the twelfth century onwards, Arabic numerals were first used in Italy.

⇒France was the first country to use Arabic numerals.
contradiction

Table 7: Example for a 3-way 1-shot episode in the second scenario. In this example, the support set samples are
selected from French, Spanish, and German datasets, respectively, and the query set samples are selected from
French, Spanish, and Persian datasets, respectively.

4318



contradiction entailment neutral

co
nt

ra
di

ct
io

n
en

ta
ilm

en
t

ne
ut

ra
l

229 146 56

34 454 22

133 45 347

Tr
ue

la
be

l

Before f.t. (Zero-shot test)

contradiction entailment neutral

co
nt

ra
di

ct
io

n
en

ta
ilm

en
t

ne
ut

ra
l

426 51 24

45 451 14

32 13 480

After f.t.

contradiction entailment neutral
co

nt
ra

di
ct

io
n

en
ta

ilm
en

t
ne

ut
ra

l

415 53 33

39 458 13

29 14 482

Using NLI-Fa in m.t.

contradiction entailment neutral

co
nt

ra
di

ct
io

n
en

ta
ilm

en
t

ne
ut

ra
l

324 126 51

45 445 20

155 47 323

Before f.t. (Zero-shot test)

contradiction entailment neutral

co
nt

ra
di

ct
io

n
en

ta
ilm

en
t

ne
ut

ra
l

426 52 23

46 455 9

35 12 478

Predicted label

After non-episodic f.t.

contradiction entailment neutral

co
nt

ra
di

ct
io

n
en

ta
ilm

en
t

ne
ut

ra
l

428 45 28

48 452 10

22 10 493

After episodic f.t.

0

100

200

300

400

500

Figure 3: Confusion matrices of the best-obtained model (8-shot with four auxiliary languages) in both meta-learning
algorithms on the FarsTail test set. (Top): Reptile algorithm results. (Bottom): Prototypical algorithm results.
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Abstract

The COVID-19 pandemic has brought out both
the best and worst of language technology (LT).
On one hand, conversational agents for infor-
mation dissemination and basic diagnosis have
seen widespread use, and arguably, had an im-
portant role in fighting against the pandemic.
On the other hand, it has also become clear that
such technologies are readily available for a
handful of languages, and the vast majority of
the global south is completely bereft of these
benefits. What is the state of LT, especially
conversational agents, for healthcare across the
world’s languages? And, what would it take to
ensure global readiness of LT before the next
pandemic? In this paper, we try to answer these
questions through survey of existing literature
and resources, as well as through a rapid chat-
bot building exercise for 15 Asian and African
languages with varying amount of resource-
availability. The study confirms the pitiful state
of LT even for languages with large speaker
bases, such as Sinhala and Hausa, and identifies
the gaps that could help us prioritize research
and investment strategies in LT for healthcare.

1 Introduction

The world witnessed one of the worst pandemics in
early 2020, COVID-19, infecting over 250 million
people globally. Scientists and technologists from
various fields joined hands, lending support to deal
with this global crisis. Language Technology (LT),
particularly the conversational agents (aka chat-
bots), played a crucial role during the pandemic by
facilitating correct information dissemination (Li
et al., 2020; Maniou and Veglis, 2020) and early
disease screening (Judson et al., 2020a; Martin
et al., 2020b). Nevertheless, today practically use-
ful chatbots and other benefits of LT are available
only in a handful of languages (Joshi et al., 2020).
Despite impressive gains made by the Massively
Multilingual Transformer based Language Models

∗Equal contribution

(MMLM) (Devlin et al., 2019; Lample and Con-
neau, 2019; Aharoni et al., 2019; Conneau et al.,
2020; Xue et al., 2021) on standard NLP bench-
mark tasks (Pan et al., 2017; Conneau et al., 2018;
Yang et al., 2019; Ruder et al., 2021), the real-
world implications of such advancements remain
largely unexplored. Joshi et al. (2020) has high-
lighted such a disparity and proposed a language
hierarchy that comprises of the languages of world
classified into six classes based on their resource-
availability. In this hierarchy, Class 5 represents the
most resource-rich languages for whom benefits of
LT are readily available; and class 0 denotes the
most under-resourced languages.

In this paper, we ask the following two questions:
(1) Today, in which languages can we build practi-
cally useful LT systems, especially chatbots, that
could serve as beneficial assistants during the pan-
demic? (2) How should we prioritize research and
resource building investments so that LT is globally
ready before the next pandemic?

In order to answer these questions, we review
the existing literature and resources on COVID-
19 chatbots, and classify them based on the lan-
guages they support and the solutions they provide.
Quite unsurprisingly, the survey reveals a strong
disparity in LT solutions between resource-rich and
resource-poor languages. In order to quantify this
gap and measure the pandemic-readiness of various
languages today, we select 15 Asian and African
languages (except English) with various degrees of
resource-availability, and attempt to build COVID-
19 FAQ bots for them. Since building an end-to-end
chatbot is a substantial engineering effort, we scope
the problem down to building an intent classifier for
these languages, which forms the core of the Natu-
ral Language Understanding (NLU) unit. We also
experiment with entity recognition for a subset of
these languages. Our code and datasets have been
made publicly available to foster future research.1

1https://github.com/kabirahuja2431/
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Our study shows that despite using the best avail-
able commercial multilingual chatbot frameworks
(e.g., Google Dialogflow2, Microsoft Bot Frame-
work (MS Bot)3), advanced Machine Translation
(MT) systems4, and state-of-the-art massively mul-
tilingual language models (mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020)), there
is a 20-30% drop in performance for class 0 - 2
languages as compared to English. The drop is
large for all the African languages (e.g., Hausa and
Somali) and some of the Asian languages (e.g.,
Marathi and Sinhala). Note that our experiments
were limited to languages which are supported by
at least one of the chatbot frameworks, MT sys-
tems or MMLMs. There are thousands of other
languages which are supported by none. We have
experimented with one such language (Kikuyu) and
observed near random performance. Therefore, we
hypothesize that such languages are not at all ready
for the next pandemic.

We extrapolate our findings at global scale and
construct a global LT readiness map for pandemic-
response and healthcare. Based on this map as
well as error analysis of the chatbot experiments,
we identify a set of research problems as well as
resource-prioritization strategies which we believe
are key to ensure global LT readiness before the
next pandemic. More specifically, the purpose
of our work is about comparing the systematic
inequalities that exist across different languages
while deploying chatbots for emergency situations,
as well as showing that certain geographical re-
gions are in a disadvantaged position because even
the languages that are spoken by a large portion
of their population are ill-supported by current LT.
Finally, we provide recommendations on how this
gap can be bridged by suggesting investment strate-
gies for building LT systems which is otherwise a
tough ethical question.

The rest of the paper is organized as follows:
Sec 2 presents the literature survey on LT response
to COVID-19, specifically focusing on chatbots
built for the pandemic. Sec 3 describes the chatbot
building experiments, where in 3.1 we motivate
the choice of languages for the experiment, in 3.2
and 3.5 we discuss the intent and entity detection
experiments respectively. In Sec 4 we present the

Covid19HealthBots
2https://cloud.google.com/dialogflow
3https://dev.botframework.com/
4https://translate.google.co.in/

,https://www.bing.com/translator

global LT readiness map and in Sec 5, we conclude
with our recommendations.

2 Literature Survey
In the recent years, NLP for Healthcare has wit-
nessed a major uptake and an impressive volume
of work has significantly pushed the research for-
ward by developing sophisticated domain-specific
language models (Alsentzer et al., 2019; Lee et al.,
2020; Ji et al., 2021). These models have been
adopted to serve different axes of healthcare such as
patient provider communication (Min et al., 2020;
Si et al., 2020), information dissemination (Maniou
and Veglis, 2020), and self-care management and
therapy (Morris et al., 2018; Kadariya et al., 2019;
Park et al., 2019; Kamita et al., 2019). The role of
healthcare chatbots becomes crucial along all these
axes because of the recent adoption of telehealth
technology services (Bhat et al., 2021).

Chatbots have received a considerable interest
during the recent COVID-19 pandemic. Due to
the worldwide spread and severity of the virus and
subsequent global response, we believe that the
study of COVID-19 chatbots can provide us an
accurate picture of the global-readiness of LT. We
surveyed COVID-19 chatbots that are mentioned
in the literature and/or deployed in the real-world5.

2.1 Use-Cases and Technological Support

From the survey, two primary use-cases of COVID-
19 chatbots emerge – (1) information dissemina-
tion: answering pandemic-related questions asked
by the users (Li et al., 2020; Desai, 2021; Prasan-
nan et al., 2020; Mehfooz et al., 2020; Trang and
Shcherbakov, 2021), and (2) symptom-screening:
assessing risk factors associated with the symptoms
provided by the user for quick diagnosis (Ferreira
et al., 2020; Martin et al., 2020a; Judson et al.,
2020b; Quy Tran et al., 2021). Existing commercial
frameworks such as DialogFlow, Watson Assistant
and MS Bot have been used primarily for building
a majority of these chatbots (Li et al., 2020; Sophia
and Jacob, 2021). However, open-source bot frame-
works like Rasa (Quy Tran et al., 2021; Nguyen
and Shcherbakov, 2021) have also been gaining

5Besides healthcare, NLP has also proved beneficial in
providing aid during natural disasters like earthquakes and
floods (Lewis, 2010; Rudra et al., 2015; Ghosh et al., 2019;
Tsai et al., 2019; Basu et al., 2019). Strassel and Tracey
(2016) leveraged existing LT for resource-poor languages to
fight against the natural disasters. Though this study is limited
to pandemic readiness, we believe the state of LT for disaster-
readiness across the globe would be very similar.
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(a) Percentage of papers covering the development of COVID-
19 chatbots per language class
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(b) Percentage of languages of each class for which at-least
one paper addressed the development of a chatbot.
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(c) Percentage of bots deployed by governmental agencies ,
provider organizations etc. per language class, to serve people
during the pandemic.
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(d) Coverage of languages across different classes in the bots
deployed by governmental agencies , provider organizations
etc.

Figure 1: Bots developed (for both research and public deployment) for different language classes and their coverage.

traction in the community. The inbuilt NLU en-
gines supported by these frameworks makes chat-
bot development easy, hence there is a significant
uptake in utilizing these to develop new chatbots.
Pre-trained LMs were also leveraged for COVID
symptom identification (Oniani and Wang, 2020)
and question answering (Park et al., 2020).

2.2 Language Diversity

Which languages are supported by these COVID
bots? Of the 20 COVID-related bots mentioned
in the existing literature and 34 others deployed
by different countries to combat the pandemic, 26
(≈ 50%) are exclusively for English, followed by
German having 10 deployed bots. In Figure 1, we
show the distribution of the chatbots by the lan-
guage classes defined in (Joshi et al., 2020). As
expected, for all the cases, we observe that chatbots
were available primarily and almost exclusively for
languages in class 5. We observe a slightly higher
presence of class 4 and 3 languages in research
papers on COVID chatbots (Fig. 1a). For instance,
there are three research papers each for Hindi and
Vietnamese, both class 4 languages. (Mabrouk
et al., 2021) has been recently introduced to help in
information dissemmination about covid in African
languages. To the best of our knowledge, we could
not find any publication or deployed bot for class
0 languages. This skew is more prominent when
we consider the coverage of languages of different
classes, i.e., the fraction of languages in each class
for which at least one COVID-19 conversation sys-
tem was developed (Figure 1b and 1d). This lack

of attention to a large number of languages has also
been highlighted by Anastasopoulos et al. (2020)
who strongly advocated for the development of lan-
guage resources for improving access to COVID-
19 related information in 26 lesser-resourced lan-
guages, particularly from Africa and South and
South-East Asia.

3 Rapid Chatbot Building Exercise
How quickly can one build a pandemic response
chatbot in a language based on the best publicly
available systems? In order to answer this ques-
tion we have to understand the pandemic-readiness
of various languages. To do this, we made an at-
tempt to build chatbots for answering frequently
asked questions about COVID-19 using Google Di-
alogflow, Microsoft Bot Framework (MS Bot), as
well as two of the most popular Massively Multi-
lingual Language Models (MMLM) – mBERT and
XLM-R. Since building an end-to-end chatbot is
complex, we chose to conduct rapid prototyping
experiments for intent recognition in 16 languages,
and entity recognition in 3 languages.

3.1 Language Selection Criteria

For our experiments, we chose a few languages
from each language class (Joshi et al. (2020)) such
that at least one language per class is supported by
either of the two commercial chatbot frameworks,
leading to the set: English, Chinese from Class 5,
Hindi, Korean from Class 4, Bengali, Malay from
Class 3, Swahili, Hausa, Marathi, Amharic, Zulu
from Class 2, Assamese, Gujarati, Kikuyu, Somali
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from Class 1, and Sinhala from Class 0.

3.2 Intent Recognition

Intent Recognition is an essential component of
conversational systems. Given a user query, the
task is to classify it into one of the pre-defined
intent categories (Braun et al., 2017).

3.2.1 Dataset Creation and Characteristics
For training and evaluation, we curate a set of
147 queries categorized into one of the 14 intents:
1) Airborne (how COVID spreads by air), 2)
ClarifyCovid (difference between COVID and
other diseases), 3) Country (country-wise in-
fection statistics), 4) CovidTwice (possibility
of reinfection), 5) ExplainSymptom (COVID
symptoms) 6) Incubation (how many days
of incubation required), 7) Length (longevity
of infection), 8) Mask (ways of wearing mask),
9) Protection (ways to protect against in-
fection), 10) Quarantine (quarantine require-
ment of US), 11) Spread (how COVID spreads),
12) Testing (available COVID tests), 13)
Medication (about drugs to protect from
COVID), and 14) Treatment (about treatments
or therapies related to COVID). Examples and defi-
nitions of each intent are present in Table 3.3.

We refer to the FAQs provided by the UN (De-
partment of Operational Support, 2020) and user
queries in the dataset released by Anastasopoulos
et al. (2020), to identify the 14 types of questions
that a user may ask. We manually paraphrase the
questions to generate queries (Mean = 10.5, S.D.
= 4.36 queries per intent) for each intent in En-
glish. Two annotators with native English profi-
ciency independently classified these queries; the
inter-annotator agreement (κ) was 0.89. We asked
a few native speakers of each of the selected lan-
guages to translate these 147 queries manually. The
dataset is split into train and test sets, using a strati-
fied split over the intents, giving a total of 76 and
71 queries in train and test set respectively.

3.2.2 Strategies of Developing Chatbots
We consider three training and inference strategies,
emulating the possible scenarios for developing
such chatbots in practical settings (Table 3.4).

Train on English Data: In this strategy, we
develop our bots by training them on the English
queries, and evaluate the intent detection perfor-
mance in different languages by automatically
translating the test queries into English (e.g.,
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Figure 2: Relative drops (relative to English) in intent
wise F1 scores for different languages in the Train on
Manual Translations setup (in LUIS). Negative values
indicate increase in the scores relative to English.

similar to Gupta et al. (2021)).

Train on MT Translations: Here we build target
language intent classifier models from training
data in different languages, which is obtained
by automatically translating the English training
data. The classifier is then tested on the manually
translated test data in the corresponding target
language. A similar method was adopted by
Balahur and Turchi (2012) for sentiment analysis.

Train on Manual Translations: In this setup, we
use the manual translations of the English training
dataset to train our bots in different languages. Like
the previous setups, here again we use the manu-
ally translated data to evaluate the intent detection
performance of the developed chatbots. Jennifer
Bot (Li et al., 2020) used a similar setup to extend
their English bot to Spanish. Note that this is the
most expensive setup in terms of data creation cost.

3.3 Intent Definitions and Descriptions

The different intents used for our experiments are
described in table 5. We provide definitions and
examples for each of the different intents used.

3.4 Bot Building Strategies

3.4.1 Experimental Setup

Commercial Frameworks: We use Google
Dialogflow and MS Bot Framework to train and
evaluate the FAQ bots in different languages. For
Dialogflow we use the ES Console, and for MS
Bot, we use Microsoft’s Language Understanding
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Intent Type Example in English Definition
Airborne Can the virus that causes COVID-19 be

transmitted through the air?
Queries related to how much COVID is carried by air

ClarifyCovid How do I know if it is COVID-19 or just
the flu?

Queries related to difference betwen COVID and other
diseases

Incubation Can someone in incubation infect other peo-
ple?

Queries related to situations where a person is infected
with COVID and is going through incubation phase

Length How long does the illness make you poorly
for?

Queries regarding longevity of COVID infection

Mask Should I wear a mask while exercising? Queries about wearing mask
Protection Ways to keep safe from COVID-19 Queries about the ways of protection from COVID
Quarantine Will I avoid coronavirus, if I self-isolate? Queries about the effect of quarantining after getting

infected with COVID
Spread Aside from inhalation, are there other ways

coronavirus can spread?
Queries about the spreading process of COVID

Testing Where can I get my test done? Queries about the testing process of COVID
CovidTwice If you get COVID-19, can you get it again? Queries about whether COVID can infect someone

more than once
ExplainSymptom I have a sharp pain here in the chest User explaining COVID related symptoms
Country How many people in Italy have COVID-19? Querying about the statistics of infection in different

countries
Medication Do any of the drugs reduce mortality? Querying about the medication to survive from COVID
Treatment Which vaccines are good to protect against

the virus?
Querying about the treatment strategies associated with
COVID

Table 1: Different intents with definitions and examples present in our dataset.

Bot Building Setup Training Strategy Testing Strategy
Train on
English Data

Train set comprises of the English queries Test set comprises of English queries where the manu-
ally written queries in target language are translated to
English using MT system

Train on MT
Translations

Train set comprises of the English queries
translated to target language using MT Sys-
tem

Test set comprises of manually written queries in target
language

Train on
Manual
Translations

Train set comprises of manually written
queries in target language

Test set comprises of manually written queries in target
language

Table 2: Different strategies for building the chatbots.

Service (LUIS)7 framework. Dialogflow and LUIS
supports 7 and 6 out of our 16 selected languages,
respectively. For the unsupported languages, we
could only experiment with Train on English Data.

Pre-trained MMLMs: We evaluate two popular
MMLMs, namely mBERT (bert-base-multilingual-
cased) and XLMR (xlm-roberta-base), for our
intent detection experiments. XLM-R supports
all but Kikuyu, Somali and Zulu, while mBERT
supports all but Amharic, Assamese, Hausa,
Kikuyu and Zulu. For these models, we only
evaluate the Train on Manual Translations setup.
We experiment with two different approaches for
building intent classifiers with these models: i)
Using k-Nearest Neighbors on the sentence embed-
dings obtained through the MMLM to classify the
intents as done in Caron et al. (2021), ii) Training

7https://www.luis.ai/

an end-to-end classifier by fine-tuning the pre-
trained MMLM. We report the best scores out of
these two setups for both MMLMs (details in A.3).

Evaluation: We report the relative accuracy drop
δl for each target language l from English (en),
defined as (Aen − Al)/(Aen) × 100, where Al
is the accuracy of intent classification for l on the
held-out test set8. Thus, lower the value of δl, better
is the state-of-the-art of LT for the language l.

3.4.2 Results and Analysis
Table 3 presents the intent classification results
which reports the relative drop of the model’s ac-
curacy with respect to English. While the relative
drop δl is reported, we also mark the values with
a † wherein the absolute accuracy, Al falls below
67%. We use this as a minimum viable threshold of

8Absolute accuracies are not reported since we do not in-
tend to compare the performances of commercial frameworks.
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Train on English Data Train on MT Translations Train on Manual Translations

Class Languages DF LUIS DF LUIS DF LUIS mBERT XLM-R

5 Chinese 0.60 5.00 17.50
†

18.40
†

0.04 (5.20) (5.63) (8.50)
4 Hindi 12.50 0.05 16.25

†
25.01

†
13.02 10.50 12.72

†
19.15

†

Korean 6.50 13.71
†

31.20
† 11.55 23.75

†
10.00 5.63

†
10.88

†

3 Bengali 20.50
†

13.15
†

26.25
† × 11.80 × 7.04

†
2.13

†

Malay 21.24
† 11.87 19.53

† × 12.50 × 4.77 14.89
†

2
Swahili 28.08

†
18.00

† × × × × 32.39
†

19.15
†

Hausa 40.97
†

34.00
† × × × × × 29.79

†

Marathi 21.23
†

14.00
†

28.08
†

28.7
†

16.25
†

17.76
†

16.90
†

29.79
†

Amharic 43.06
†

34.82
† × × × × × 12.39

†

Zulu 30.56
† 11.28 × × × × × ×

1 Assamese 19.52
†

18.00
† × × × × × 29.79

†

Gujarati 15.55 10.03 × 22.88
† × 22.88

† 4.77 19.15
†

Kikuyu* 97.60
†

76.87
† × × × × × ×

Somali 40.56
†

27.58
† × × × × 25.35

† ×

0 Sinhala 35.00
†

19.00
†

34.93
† × 15.65 × 61.97

†
19.15

†

Table 3: δl for each language for the Intent Recognition task using the three different strategies. × indicates that
the framework does not support end-to-end chatbot development for that language. Drops that lead to accuracy
below 67% are marked by †, indicating the case where the bot mis-recognizes 1 out of every 3 queries. *Owing to
non-availability of standard MT for Kikuyu, we used Safarini6 app from Android playstore for translation. Note:
The values mentioned in the parantheses indicate that we observe relative gain instead of drop.

Lang Issue Actual Example Misclassified Translated Example

Si Terminology Mismatch I have hay fever though too. I also have gonorrhea.
Bn Fluency Is SARS-CoV-2 airborne? Does SARS-CoV-2 sit in the air?
Hu Relevance I got the virus. How long does it go on for? I Nasami Cutar. How long will it take?
Hu Fluency, Terminology

Mismatch
How long should I wear a mask? How long will I impose sanctions?

Hu Terminology Mismatch Is it healthy to wear a mask during swim-
ming?

Is it safe, can I wear fascist sanctions
when I swim?

Table 4: Excerpts of test instances showing bottlenecks of MT systems in the Train on English Data setup.

the performance, as below this the model will mis-
classify more than 1 out of every 3 queries which
might not be useful for real world deployments. As
expected, we observe high δl for languages belong-
ing to class 3 or lower, with most of the accuracies
below the acceptable limit.
Comparison across the three setups: We ob-
serve that for classes 4 and 5, Translate on English
Data performs at par or even better than the most
expensive Train on Manual Translations setup.
This may be because the MT translations from
these languages to English is highly accurate.
On the other hand, for languages belonging to
class 3 or lower, Train on Manual Translations
led to better performance, arguably due to poorer
performance of the MT system. Unfortunately,
the Train on Manual Translations method is the
most expensive in terms of data curation cost,

hence may be the hardest to implement in the
midst of a pandemic. The problem becomes worse
because a majority of class 3 and lower languages
are not supported by current chatbot frameworks.
Even when supported, their performance is below
the acceptable limit (e.g., Marathi, Gujarati).
One of the reasons is the difficulty in correctly
identifying technical intents like Airborne and
Incubation in such low-resource languages
(Figure 2). Since a few of these low-resource
languages are present in the pre-training dataset
of mBERT and XLM-R, we can evaluate them
for Train on Manual Translations. There is a
similar pattern in accuracy drop for MMLMs,
however the accuracy begin to fall below the
acceptable limit (67%) from class 4 languages
onward. There is a remarkable drop in mBERT’s
accuracy for Sinhala (class 0). In general, we
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find mBERT to outperform XLM-R, except for
Swahili and Sinhala. This may be due to the
better representation of these languages in the
pre-training corpus of XLM-R (CommonCrawl
Corpus). This strongly indicates the importance
of the pre-training dataset size for developing LT,
both in terms of absolute size as well as relative
size to other languages (Wu and Dredze, 2020).
As expected, the performance in Train on MT
Translations setup is the worst among the three;
except for Korean in LUIS, all values lie below the
acceptable limit, which could be a compounded
effect of poor translation quality and inferior NLU
solutions. To conclude, all languages in class 3-5
had at least one solution yielding an acceptable
accuracy, while all languages in class 0-2, except
Gujarati, Sinhala and Zulu, had no acceptable
solution.

Lost in Translation: Table 4 shows the intent
misclassification errors due to the errors in MT
translations. The manual translation in the target
language correspond to the ‘Actual Example’ in
English, and the phrase translated back to English
for the Train on English Data setup is reported
under the ‘Misclassified Translated Example.’ We
categorize the translation errors as Terminology
Mismatch, Fluency and Relevance (Li et al.,
2020). We find that domain-specific terms often
get translated incorrectly into English (4). In a
few cases, the translations result in unnatural
queries resulting in loss of fluency, such as Does
SARS-CoV-2 sit in the air?. All these factors lead
to poor performance of Train on English Data
setup for low-resource languages. We find that
Terminology Mismatch is the most common issue
affecting the performance9. Interestingly, technical
terms like incubation does not exist in a few of
our target languages, hence the manually written
test queries in these languages just had the English
term written in that language’s script. In such cases,
we found lesser performance drop compared to
languages when equivalent vocabulary exists in the

9While investigating the correlation between the transla-
tion quality (BLEU (Papineni et al., 2002)) between the refer-
ence original English query and the back-translated English
string from each manually written query in target language)
and the intent classification results, we did obtain a positive
spearman correlation coefficient with the value of 0.36. and a
p-value 0.21. With a p-value of 0.21 the correlation is not sta-
tistically significant which we suspect might be due to BLEU
not being a great measure of translation quality (Sulem et al.,
2018) to measure the subtleties discussed above.

target language. E.g., high drops in F1-score for
intents like “Quarantine" and “Incubation"
in Hausa (76%, 100% respectively) and Amharic
(56%, 100%) justify this, whereas for Zulu, where
the human translator used English terms in their
queries resulted in much lower drop in F1 scores
(20%, 0%). See appendix for the intent-wise F1
scores for different languages.

Implications: Based on our experimental results,
we wish to explore how to prioritize the resource-
investment strategies to push the state of current LT
forward. Resource-poor languages mostly under-
perform across all the three set-ups, so then should
we invest more towards developing better transla-
tion systems or focus more on improving the cur-
rent NLU solutions for different languages? We
observe that a good quality translation system can
support building bots from scratch in a new lan-
guage, and often performs on-par with the Train on
Manual Translations setup for high-resource lan-
guages (e.g., Korean, Hindi) and sometimes even
for low-resource languages (e.g., Gujarati). Build-
ing bots from scratch in a new language is resource-
intensive, requiring rapid prototyping, which may
be infeasible during a crisis since massive data
collection efforts need to be made. Therefore, a
generic way to ensure pandemic-readiness in a lan-
guage is by ensuring reasonably accurate MT sys-
tems similar to that for class 4 languages. Improv-
ing representation of low-resource languages in
the pre-training datasets of existing multilingual
models (specifically on domain-specific corpora as
done by (Gu et al., 2021; Zhang et al., 2020)) is yet
another way to ensure preparedness, as it can lead
to improved performance of the MMLMs on these
languages (Wu and Dredze, 2020). Unlabelled lan-
guage data for low resource languages can also be
leveraged to build Machine Translation systems in
these languages when used in conjunction with the
parallel data in high resource languages for train-
ing massively multilingual models. (Siddhant et al.,
2022; Bapna et al., 2022).

3.5 Entity Recognition

We also evaluate the developed chatbots on another
core task of NLU, i.e. entity recognition (Ali, 2020)
on English, Hindi and Bengali. To train and evalu-
ate different COVID bots on this task, we use a set
of 200 user related queries (obtained by augment-
ing existing dataset of 147 queries). Entity types
were identified from a subset of labels from the
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Figure 3: World map showing the Readiness of each country in terms of fighting the next pandemic using LT.

CORD-19 NER dataset (Lu Wang et al., 2020), and
the queries were accordingly tagged by two native
speakers of Bengali and Hindi. Overall, our dataset
had a mix of medical and non-medical entities. The
final set of medical entity types consists of: Covid
(COVID-related entities), PhysicalScience
(technical terms related to bio-molecular mech-
anism of the disease), and Disease (any form
of illness or symptoms). The non-medical en-
tity types are: BodyPart (name of the body
part), Country (country name), Duration
(length in days), Protection (ways to protect
against COVID, such as ‘mask’, ‘gloves’), and
InfoSource (source of information). Country
(country name). For generating the equivalent trans-
lations, we manually aligned the entity tags in two
languages: Hindi (supported by DialogFlow and
LUIS) and Bengali (supported by DialogFlow). In
majority of the cases, we observe that domain-
specific entities such as incubation, ACE-2
Cells, biochemical assays are hard to
predict by these models on languages other than En-
glish. For instance, for Covid entity, we observe
significant F1-score drop of 24.6% for Hindi and
42.9% for Bengali. However, for non-medical enti-
ties, these models were found to perform compar-
atively better, e.g., drop in F1-score on Country
tag was 5.2% for Hindi and 8.9% for Bengali.

4 Measuring Global Readiness
Although our current work focuses on analyzing
pandemic-preparedness of only 16 languages, here
we try to generalize our findings to other lan-
guages by introducing a Readiness Score for ev-
ery language which empirically measures the pre-

paredness of current LT to serve its speakers in
a pandemic-like emergency situation. The def-
inition of readiness is based on the assumption
that one has access to the best available LT by
considering the highest intent detection accuracy
of A∗

l for a language across different frameworks
and training setups. We then define the readiness
of a language l as its relative accuracy with re-
spect to English as rl = A

∗
l −Arandom

A∗
en−Arandom

, where A∗
en

denotes the best case accuracy on English, and
Arandom is the accuracy of a random classifier:
Arandom = 100/numberOfIntents.

We would like to interpolate rl for all the lan-
guages of the world, and hence would need more
training examples than the 16 languages that we
currently have. We select a set of 11 proxy lan-
guages (details in Appendix A.5). This has been
done in order to ensure the coverage of the fea-
tures of major language families in the world10

while training the model. For these languages, we
compute proxy accuracies Ã∗

l by building and eval-
uating chatbots on MT translated data. We then
train a Gaussian Process Regression model for pre-
dicting readiness scores with the rl values for the
27 languages as our training set. We use geograph-
ical and genetic features from the URIEL database
(Littell et al., 2017) to represent the languages. The
predictive model, which has an average absolute
prediction error of 5%, is then used to estimate
the readiness scores of 116 new languages sup-
ported by major MMLMs (mBERT and XLM-R)
and/or translators (Google and Microsoft). For all

10Ethnologue 24 (2021): https://en.wikipedia.
org/wiki/List_of_language_families
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other languages, we set rl = 0, as one can expect
near random performance without any LT, as we
did see for Kikuyu (Table 3). The estimated fi-
nal rl scores for all the languages were used to
extrapolate the pandemic-readiness of each coun-
try c, as follows. We use the country-wise lan-
guage and speaker demographic data11 to calculate
the country-wise readiness (similar to Blasi et al.
(2021)), rc = ∑l∈Lc sc,lrl, where Lc is the set of
languages spoken in country c, and sc,l is the frac-
tion of c’s population forming native speakers of
the language l. The rc values were clustered to gen-
erate five classes (Extremely ill-prepared: 0-0.33,
Ill-prepared: 0.33-0.74, Moderately prepared: 0.74-
0.83, Well prepared: 0.83-0.92, Fully prepared:
0.92-1) using Jenks’ natural breaks optimization
(Jenks, 1967). These classes were used to generate
a readiness heatmap of the world (Fig 3).
Observations: From Figure 3, one can observe
that South and East African countries are Ex-
tremely ill-prepared, due to the high dominance
of low-resource languages. For instance, people
in Zambia’s speak Bemba, Chewa and Luzi, all of
which are severely under-resourced. As pointed
out in Anastasopoulos et al. (2020), these regions
might also be worse-hit in a pandemic situation,
and therefore, require immediate attention. For
Ill-prepared regions such as Bolivia in South Amer-
ica, and Guatemala in Latin America, rl values
are slightly better due to the abundance of Span-
ish speakers, however there is a sizeable popu-
lation speaking under-served languages such as
Q’eqchi and Guarani. Countries that fall within
fully to moderately prepared categories typically
have large native speaker population of one or more
of the class 5 languages (English, French, Chinese,
Arabic) and/or well-supported languages (e.g., Ko-
rean, Bengali, Malay). It is important to note that
while approximating readiness of a language, we
assumed same value for all its diverse linguistic
variants and dialects, which in certain cases results
in overestimation of rc. High rc for north and
central African countries (e.g., Libya, Egypt and
Sudan) might be due to sizeable population of a
resource-rich language Arabic. However, Arabic
has several dialects, which vary from the Modern
Standard Arabic at various linguistic levels, and
consequently the performance of LT systems for
such dialects also vary considerably (Zbib et al.,

11Infoplease Languages Spoken in Each Country of the
World: https://bit.ly/3HoAs9K

2012; Alsharhan and Ramsay, 2020). It holds true
for Spanish and Portuguese spoken in Latin Amer-
ica (Lipski, 2014) and French dialects of Western
Africa.

5 Conclusion and Recommendation

From our chatbot development experiences, we un-
cover a set of interesting insights to arrive at the
following recommendations which can improve the
state of preparedness of languages to develop use-
ful technologies during the next pandemic.
— Our experiments showed that low-resource In-
dian languages (such as Marathi, Bengali) were
benefited due to the presence of a geographically
and/or linguistically closely related well-resourced
language (Hindi). This notion of such “bridge" lan-
guages has been explored before in the context of
MT (Paul et al., 2013) and zero/few-shot transfer in
MMLMs (Lauscher et al., 2020). We recommend
the community to target bridge languages for the
regions that are currently poorly prepared from an
LT perspective.
— Drawing insights from the brittleness of MT for
domain-specific terms (airborne, incubation) or
newly-coined terms (COVID), we believe that com-
mercial and open-source bot frameworks can ben-
efit from domain adaptation techniques (Chu and
Wang, 2018), or techniques to inject new terms to
existing solutions.

Our study confirms that except English, only
a few European and Asian languages push for-
ward the state-of-the-art research in LT for health-
care. Our preliminary investigation suggests that
instead of demographic demand, it is the economic
prowess of the users of a language that drives the
investment towards developing sophisticated LT so-
lutions for a given language. For instance, Swahili,
even though considered as the lingua franca of
Africa, is still under-served by commercial chat-
bot frameworks. Similar trends were observed for
Hausa which has a considerably large speaker base
compared to Dutch (resource-rich)12.

We believe that these findings will play a cru-
cial role in making the community aware of the
disparity that needs to be addressed before the next
pandemic hits.

12https://en.wikipedia.org/wiki/List_
of_languages_by_number_of_native_
speakers
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Figure 4: Relative drops (relative to English) in intent
wise F1 scores for different languages in the Train on
English setup (in LUIS). Negative values indicate in-
crease in the scores relative to English.
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A Example Appendix

A.1 Intent Definitions and Descriptions
The different intents used for our experiments are
described in table 5. We provide definitions and
examples for each of the different intents used.

A.2 Bot Building Strategies
A.3 MMLM Training Setup
For our experiments with Multilingual Pre-trained
Transformers we consider mBERT (bert-base-
multilingual-cased) and XLMR (xlm-roberta-base)
for training intent classifiers. As mentioned in the
main text we explore two methodologies to train
and evaluate these MMLMs, a detailed description
with hyperparameters is given below:

1. KNN using Pre-trained Embeddings:
Since the scale of our data is on the lower side,
training an end-to-end classifier might be prone to
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Intent Type Example in English Definition
Airborne Can the virus that causes COVID-19 be

transmitted through the air?
Queries related to how much COVID is carried by air

ClarifyCovid How do I know if it is COVID-19 or just
the flu?

Queries related to difference betwen COVID and other
diseases

Incubation Can someone in incubation infect other peo-
ple?

Queries related to situations where a person is infected
with COVID and is going through incubation phase

Length How long does the illness make you poorly
for?

Queries regarding longevity of COVID infection

Mask Should I wear a mask while exercising? Queries about wearing mask
Protection Ways to keep safe from COVID-19 Queries about the ways of protection from COVID
Quarantine Will I avoid coronavirus, if I self-isolate? Queries about the effect of quarantining after getting

infected with COVID
Spread Aside from inhalation, are there other ways

coronavirus can spread?
Queries about the spreading process of COVID

Testing Where can I get my test done? Queries about the testing process of COVID
CovidTwice If you get COVID-19, can you get it again? Queries about whether COVID can infect someone

more than once
ExplainSymptom I have a sharp pain here in the chest User explaining COVID related symptoms
Country How many people in Italy have COVID-19? Querying about the statistics of infection in different

countries
Medication Do any of the drugs reduce mortality? Querying about the medication to survive from COVID
Treatment Which vaccines are good to protect against

the virus?
Querying about the treatment strategies associated with
COVID

Table 5: Different intents with definitions and examples present in our dataset.

Bot Building Setup Training Strategy Testing Strategy
Train on
English Data

Train set comprises of the English queries Test set comprises of English queries where the manu-
ally written queries in target language are translated to
English using MT system

Train on MT
Translations

Train set comprises of the English queries
translated to target language using MT Sys-
tem

Test set comprises of manually written queries in target
language

Train on
Manual
Translations

Train set comprises of manually written
queries in target language

Test set comprises of manually written queries in target
language

Table 6: Different strategies for building the chatbots.

over-fitting. We fit a k-Nearest Neighbors (KNN)
classifier on the sentence embeddings obtained us-
ing the pre-trained model for the queries in training
data. At test time, we similarly obtain the rep-
resentation of the user query and find its nearest
neighbors among the training queries to predict its
intent. The optimal value for k was empirically
found to be 1 and for sentence embeddings, we
take the average of the representation of each token
of the sentence in the last layer of MMLM.

We also tried fine-tuning the pre-trained model
with the training queries using a Masked Language
Modelling (MLM) objective. Additionally, we also
fine-tuning on a much larger COVID-19 queries
dataset in english : COQB (Li et al., 2020) along
with our training queries, as has been pointed
by Lauscher et al. (2020) can be an effective
strategy for few shot transfer. We use 3 epochs to
fine-tune the models with a learning rate of 5e-5

and Adam-W optimizer (Loshchilov and Hutter,
2019). A masking probability of 15% was used
during the MLM training and maximum sequence
length was taken to be 32.

2. Fine-tuning an End to End Classifier :
We also try fine-tuning the MMLMs end-to-end
by adding a classification head on top of the pre-
trained network to classify the input query into one
of the 14 intents. We adapt the sequence classifi-
cation scripts for GLUE benchmark (Wang et al.,
2018) provided by hugging face13 on our dataset.
We fine-tune the classifier for 20 epochs, with the
same learning rate and optimizer as the MLM fine-
tuning in the first point with a batch size of 8.

For every language we use the best accuracies

13https://huggingface.co/transformers/
v2.9.1/examples.html
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Medical Non-Medical

Lang Bot Covid PhysicalScience Disease BodyPart Country Duration Protection InfoSource

Hi DF 24.6 50.1 +3 32 7.52 5.2 11.3 +30.1
LUIS 24.56 +41 94 21 5.31 +4 12.06 +72.72

Bn DF 42.9 43.1 52 34 6.3 8.9 20.4 8.34

Table 7: Relative drop in entity-type wise F1-score in Entity Recognition task using DialogFlow (DF) and LUIS.

obtain from either of these two strategies 14. All the
experiments were run on 4 NVIDIA V-100 GPUs
with 32 GB memory.

A.4 Language Readiness Analysis

Results and Analysis
Initially, we have plotted the readiness measures
of each language used in our training data on the
scatter plot in Figure 5 with the language class on
X-axis and readiness measure in Y-Axis. It clearly
shows that the African languages such as Somali,
Amharic, Hausa, Zulu are below the trend-
line in terms of readiness. In fact, some of
the European languages such as Icelandic,
Hungarian, Estonic, Finnish also re-
quire some attention. Primarily, we observe that
the readiness measure is not a direct function of the
language class from this plot. As we can see that
even though majority of the class 4 and 5 are near
the trend line, the observation is similar for Class 1
as well.

Therefore, we also resort to understanding how
much does the trend hold true for the language
families of these corresponding languages? So, we
approximate each of the language family by taking
the average scores of each language falling into that
class and plot those in Figure 6. It was interesting
to observe that the English-major language fam-
ilies such as Austroasiatic, Koreanic
and Sino-Tibetan are well-served, and con-
sequently lie above the trend line. Overall,
Indo-European language families are well near
the trend line and then the resource-poor language
families are Afroasiatic, Niger-Congo
and Uralic, the worst being the Afroasiatic
language family.

A.5 Details on Language Readiness Prediction

In section 4, we discussed the estimation of
readiness values of different languages. We first

14technically 4, as in the KNN case we consider no fine-
tuning, fine-tuning on Train Queries, and fine-tuning on Train
and COQB queries

extended our 16 languages that we considered
for intent recognition experiments with proxy
scores for an additional 11 languages, namely,
French (fr) , Arabic (ar), German
(de), Spanish (es), Portuguese
(pr), Vietnamese (vi), Hungarian (hu),
Finnish (fi), Czech (cs), Estonian
(et), and Icelandic (is). Finally, it covers
six primary language families in the world, such
as: 1) Indo-European, 2) Sino-Tibetan,
3) Afroasiatic, 4) Niger-Congo, 5)
Koreanic and 6) Austroasiatic. To
estimate the readiness values of the remaining 116
languages supported by the Translators (Google
and Bing) and MMLMs (mBERT and XLMR), we
used the available readiness data for the 27 to build
a regression model. We used Gaussian Processes
to model the readiness prediction problem, due
its efficiency on the small sized datasets. Radial
Basis Function (RBF) with added noise level
for each instance (White Kernel), was used, and
the length scale of RBF and noise level were
tuned using L-BFGS algorithm with 5 restarts
for the optimizer. The model selection was done
using a Leave One Out strategy, where we move
one language to validation set and train on the
remaining, repeating this for all the languages and
measuring average accuracy. Besides Gaussian
Process Regression (GPR), we also experimented
with Linear Regression, Lasso Regression and
XGBoost (Chen and Guestrin, 2016), but observed
inferior validation accuracies.

A.6 Global Pandemic Readiness
Measurement

In section 4 of the paper, we have talked about
how to actually take the speaker-base values into
account while calculating the readiness scores for
each country in the world and the final rl scores
obtained on all the languages are used to extrapo-
late the readiness of each country c in the world.
We had also experimented in a way such that all
the languages spoken in the country are weighted
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Extremely ill-prepared

Ill-prepared

Moderately prepared

Well prepared

Fully prepared

Figure 5: World Map showing the Readiness of each country in terms of combating the next pandemic using LT.
Their Levels of Preparedness are shown as legends in the bottom left corner. This map was generated by providing
uniform weightage to all the languages spoken in a country, i.e. excluding the percentage of speaker-base for a
particular language in a country (Readiness measure calculated using Equation 2).

Figure 6: shows the readiness scores of the languages
which are used in our training data for readiness mea-
surement using GPR

Figure 7: shows the readiness scores of the language
families of the corresponding languages which are used
in our training data for readiness measurement using
GPR

equally while calculating the readiness of a country.
This is similar to the linguistic utility defined by
Blasi et al. (2021) in their work for a country c we
calculate linguistic readiness rlingc as:

r
ling
c = 1∣Lc∣ ∑

l∈Lc
rl (1)

The rlingc values have been plotted in Figure 5.
Based on our observations on these values we make
the following observations highlighting the differ-
ence between demographic and linguistic readiness
of different countries.
Observations: The map shown in 5 provides us
an idea of how each country in the world would
be able to effectively combat the pandemic by
leveraging LT solutions. However, this is when
we are actually considering uniform speaker-base
for each language in a country. Overall, it can
be observed that some of the Asian countries like
India falls in the moderately prepared zone now
which was initially treated as well prepared. This
is due to the presence of class 4 language Hindi
(having a readiness score of 0.9536) with a consid-
erably high speaker-base (46.19%). Also, similar
trend is observed in Canada (home to the speakers
of various languages like English, French,
Punjabi, Italian, Spanish, German,
Cantonese, Arabic, Tagalog).
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Abstract

Multilingual pre-trained language models
(PLMs) have demonstrated impressive per-
formance on several downstream tasks for
both high-resourced and low-resourced lan-
guages. However, there is still a large perfor-
mance drop for languages unseen during pre-
training, especially African languages. One
of the most effective approaches to adapt to a
new language is language adaptive fine-tuning
(LAFT) — fine-tuning a multilingual PLM
on monolingual texts of a language using the
pre-training objective. However, adapting to
a target language individually takes a large
disk space and limits the cross-lingual transfer
abilities of the resulting models because they
have been specialized for a single language.
In this paper, we perform multilingual adap-
tive fine-tuning on 17 most-resourced African
languages and three other high-resource lan-
guages widely spoken on the African conti-
nent to encourage cross-lingual transfer learn-
ing. To further specialize the multilingual
PLM, we removed vocabulary tokens from
the embedding layer that corresponds to non-
African writing scripts before MAFT, thus re-
ducing the model size by around 50%. Our
evaluation on two multilingual PLMs (AfriB-
ERTa and XLM-R) and three NLP tasks (NER,
news topic classification, and sentiment clas-
sification) shows that our approach is com-
petitive to applying LAFT on individual lan-
guages while requiring significantly less disk
space. Additionally, we show that our adapted
PLM also improves the zero-shot cross-lingual
transfer abilities of parameter efficient fine-
tuning methods.

1 Introduction
Recent advances in the development of multilingual
pre-trained language models (PLMs) like mBERT (De-
vlin et al., 2019), XLM-R (Conneau et al., 2020), and
RemBERT (Chung et al., 2021) have led to significant
performance gains on a wide range of cross-lingual

∗* Equal contribution.

transfer tasks. Due to the curse of multilinguality (Con-
neau et al., 2020) — a trade-off between language cov-
erage and model capacity — and non-availability of
pre-training corpora for many low-resource languages,
multilingual PLMs are often trained on about 100 lan-
guages. Despite the limitations of language cover-
age, multilingual PLMs have been shown to transfer
to several low-resource languages unseen during pre-
training. Although, there is still a large performance
gap compared to languages seen during pre-training.

One of the most effective approaches to adapt to a
new language is language adaptive fine-tuning (LAFT)
— fine-tuning a multilingual PLM on monolingual
texts in the target language using the same pre-training
objective. This has been shown to lead to big gains on
many cross-lingual transfer tasks (Pfeiffer et al., 2020),
and low-resource languages (Muller et al., 2021; Chau
& Smith, 2021), including African languages (Alabi
et al., 2020; Adelani et al., 2021). Nevertheless, adapt-
ing a model to each target language individually takes
large disk space, and limits the cross-lingual transfer
abilities of the resulting models because they have been
specialized to individual languages (Beukman, 2021).

An orthogonal approach to improve the coverage of
low-resource languages is to include them in the pre-
training data. An example for this approach is AfriB-
ERTa (Ogueji et al., 2021), which was trained from
scratch on 11 African languages. A downside of this
approach is that it is resource intensive in terms of data
and compute.

Another alternative approach is parameter efficient
fine-tuning like Adapters (Pfeiffer et al., 2020) and
sparse fine-tuning (Ansell et al., 2021), where the
model is adapted to new languages by using a sparse
network trained on a small monolingual corpus. Simi-
lar to LAFT, it requires adaptation for every new target
language. Although it takes little disk space, all target
language-specific parameters need to be stored.

In this paper, we propose multilingual adaptive fine-
tuning (MAFT), a language adaptation to multiple lan-
guages at once. We perform language adaptation on
the 17 most-resourced African languages (Afrikaans,
Amharic, Hausa, Igbo, Malagasy, Chichewa, Oromo,
Naija, Kinyarwanda, Kirundi, Shona, Somali, Sesotho,
Swahili, isiXhosa, Yorùbá, isiZulu) and three other
high-resource language widely spoken on the continent
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(English, French, and Arabic) simultaneously to pro-
vide a single model for cross-lingual transfer learning
for African languages. To further specialize the multi-
lingual PLM, we follow the approach of Abdaoui et al.
(2020) and remove vocabulary tokens from the embed-
ding layer that correspond to non-Latin and non-Ge’ez
(used by Amharic) scripts before MAFT, thus effec-
tively reducing the model size by 50%.

Our evaluation on two multilingual PLMs (AfriB-
ERTa and XLM-R) and three NLP tasks (NER, news
topic classification and sentiment classification) shows
that our approach is competitive to performing LAFT
on the individual languages, with the benefit of having
a single model instead of a separate model for each of
the target languages. Also, we show that our adapted
PLM improves the zero-shot cross-lingual transfer
abilities of parameter efficient fine-tuning methods
like Adapters (Pfeiffer et al., 2020) and sparse fine-
tuning (Ansell et al., 2021).

As an additional contribution, and in order to cover
more diverse African languages in our evaluation, we
create a new evaluation corpus, ANTC – African News
Topic Classification – for Lingala, Somali, Naija,
Malagasy, and isiZulu from pre-defined news cate-
gories of VOA, BBC, Global Voices, and Isolezwe
newspapers. To further the research on NLP for
African languages, we make our code and data pub-
licly available.1 Additionally, our models are available
via HuggingFace.2

2 Related Work

Multilingual PLMs for African languages The suc-
cess of multilingual PLMs such as mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020) for
cross-lingual transfer in many natural language under-
standing tasks has encouraged the continuous devel-
opment of multilingual models (Luo et al., 2021; Chi
et al., 2021; Ouyang et al., 2021; Chung et al., 2021;
He et al., 2021). Most of these models cover 50 to
110 languages and only few African languages are rep-
resented due to lack of large monolingual corpora on
the web. To address this under-representation, regional
multilingual PLMs have been trained from scratch such
as AfriBERTa (Ogueji et al., 2021) or adapted from ex-
isting multilingual PLM through LAFT (Alabi et al.,
2020; Pfeiffer et al., 2020; Muller et al., 2021; Ade-
lani et al., 2021). AfriBERTa is a relatively small
multilingual PLM (126M parameters) trained using the
RoBERTa architecture and pre-training objective on 11
African languages. However, it lacks coverage of lan-
guages from the southern region of the African conti-
nent, specifically the southern-Bantu languages. In our
work, we extend to those languages since only a few
of them have large (>100MB size) monolingual cor-
pus. We also do not specialize to a single language

1https://github.com/uds-lsv/afro-maft
2https://huggingface.co/Davlan

but apply MAFT which allows multilingual adaptation
and preserves downstream performance on both high-
resource and low-resource languages.

Adaptation of multilingual PLMs It is not unusual
for a new multilingual PLM to be initialized from an
existing model. For example, Chi et al. (2021) trained
InfoXLM by initializing the weights from XLM-R be-
fore training the model on a joint monolingual and
translation corpus. Although they make use of a
new training objective during adaptation. Similarly,
Tang et al. (2020) extended the languages covered by
mBART (Liu et al., 2020b) from 25 to 50 by first
modifying the vocabulary and initializing the model
weights of the original mBART before fine-tuning it
on a combination of monolingual texts from the origi-
nal 25 languages in addition to 25 new languages. De-
spite increasing the number of languages covered by
their model, they did not observe a significant perfor-
mance drop on downstream tasks. We take inspiration
from these works for applying MAFT on African lan-
guages, but we do not modify the training objective
during adaptation nor increase the vocabulary.

Compressing PLMs One of the most effective meth-
ods for creating smaller PLMs is distillation where a
small student model is trained to reproduce the be-
haviour of a larger teacher model. This has been ap-
plied to many English PLMs (Sanh et al., 2019; Jiao
et al., 2020; Sun et al., 2020; Liu et al., 2020a) and
a few multilingual PLMs (Wang et al., 2020, 2021).
However, it often leads to a drop in performance com-
pared to the teacher PLM. An alternative approach that
does not lead to a drop in performance has been pro-
posed by Abdaoui et al. (2020) for multilingual PLM.
They removed unused vocabulary tokens from the em-
bedding layer. This simple method significantly re-
duces the number of embedding parameters thus re-
ducing the overall model size since the embedding
layer contributes the most to the total number of model
parameters. In our paper, we combine MAFT with
the method proposed by Abdaoui et al. (2020) to re-
duce the overall size of the resulting multilingual PLM
for African languages. This is crucial especially be-
cause people from under-represented communities in
Africa may not have access to powerful GPUs in order
to fine-tune large PLMs. Also, Google Colab3 (free-
version), which is widely used by individuals from
under-represented communities without access to other
compute resources, cannot run large models like e.g.
XLM-R. Hence, it is important to provide smaller mod-
els that still achieve competitive downstream perfor-
mance to these communities.

Evaluation datasets for African languages One of
the challenges of developing (multilingual) PLMs for
African languages is the lack of evaluation corpora.
There have been many efforts by communities like

3https://colab.research.google.com/
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Domain Number of sentences Classes Number of classes
Train Dev Test

Newly created datasets
Lingala (lin) 1,536 220 440 Rdc, Politiki/Politique, Bokengi/Securite, Jus-

tice, Bokolongono/Santé/Medecine
5

Naija (pcm) 1,165 167 333 Entertainment, Africa, Sport, Nigeria, World 5
Malagasy (mlg) 4544 650 1299 Politika (Politics), Kolontsaina (Cul-

ture), Zon’olombelona (Human Rights),
Siansa sy Teknolojia (Science and Technol-
ogy) ,Tontolo iainana (Environment)

5

Somali (som) 10,072 1,440 2879 Soomaaliya (Somalia), Wararka (News),
Caalamka (World), Maraykanka (United
States), Afrika (Africa)

6

isiZulu (zul) 2,961 424 847 Ezemidlalo (Sports), Ezokungcebeleka (Recre-
ation), Imibono (Ideas), Ezezimoto (Automo-
tive), Intandokazi (Favorites)

5

Existing datasets
Amharic (amh) 36,029 5,147 10,294 Local News, Sport, Politics, International

News, Business, Entertainment
6

English (eng) 114,000 6,000 7,600 World, Sports, Business, Sci/Tech 4
Hausa (hau) 2,045 290 582 Africa, World, Health, Nigeria, Politics 5
Kinyarwanda (kin) 16,163 851 4,254 Politics, Sport, Economy, Health, Entertain-

ment, History, Technology, Tourism, Culture,
Fashion, Religion, Environment, Education,
Relationship

14

Kiswahili (swa) 21,096 1,111 7,338 Uchumi (Economic), Kitaifa (National),
Michezo (Sports), Kimataifa (International),
Burudani (Recreation), Afya (Health)

6

Yorùbá (yor) 1,340 189 379 Nigeria, Africa, World, Entertainment, Health,
Sport, Politics

7

Table 1: Number of sentences in training, development and test splits. We provide automatic translation of some
of the African language words to English (in Parenthesis) using Google Translate.

Masakhane to address this issue (∀ et al., 2020; Adelani
et al., 2021). We only find two major evaluation bench-
mark datasets that cover a wide range of African lan-
guages: one for named entity recognition (NER) (Ade-
lani et al., 2021) and one for sentiment classifica-
tion (Muhammad et al., 2022). In addition, there are
also several news topic classification datasets (Hed-
derich et al., 2020; Niyongabo et al., 2020; Azime &
Mohammed, 2021) but they are only available for a
few African languages. Our work contributes novel
news topic classification datasets (i.e. ANTC) for addi-
tional five African languages: Lingala, Naija, Somali,
isiZulu, and Malagasy.

3 Data

3.1 Adaptation corpora

We perform MAFT on 17 African languages Afrikaans,
Amharic, Hausa, Igbo, Malagasy, Chichewa, Oromo,
Naija, Kinyarwanda, Kirundi, Shona, Somali, Sesotho,
Swahili, isiXhosa, Yorùbá, isiZulu) covering the ma-
jor African language families and 3 high resource lan-
guages (Arabic, French, and English) widely spoken
in Africa. We selected the African languages based
on the availability of a (relatively) large amount of
monolingual texts. We obtain the monolingual texts
from three major sources: the mT5 pre-training corpus
which is based on Common Crawl Corpus4 (Xue et al.,
2021), the British Broadcasting Corporation (BBC)

4https://commoncrawl.org/

News, Voice of America News5 (Palen-Michel et al.,
2022), and some other news websites based in Africa.
Table 9 in the Appendix provides a summary of the
monolingual data, including their sizes and sources.
We pre-processed the data by removing lines that con-
sist of numbers or punctuation only, and lines with less
than six tokens.

3.2 Evaluation tasks

We run our experiments on two sentence level classi-
fication tasks: news topic classification and sentiment
classification, and one token level classification task:
NER. We evaluate our models on English as well as di-
verse African languages with different linguistic char-
acteristics.

3.2.1 Existing datasets
NER For the NER task we evaluate on the
MasakhaNER dataset (Adelani et al., 2021), a manu-
ally annotated dataset covering 10 African languages
(Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Luo,
Naija, Kiswahili, Wolof, and Yorùbá) with texts from
the news domain. For English, we use data from the
CoNLL 2003 NER task (Tjong Kim Sang & De Meul-
der, 2003) also containing texts from the news domain.
For isiXhosa, we use the data from Eiselen (2016).
Lastly, to evaluate on Arabic we make use of the AN-
ERCorp dataset (Benajiba et al., 2007; Obeid et al.,
2020).

5https://www.voanews.com
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News topic classification We use existing news topic
datasets for Amharic (Azime & Mohammed, 2021),
English – AG News corpus – (Zhang et al., 2015),
Kinyarwanda – KINNEWS – (Niyongabo et al., 2020),
Kiswahili – new classification dataset– (David, 2020),
and both Yorùbá and Hausa (Hedderich et al., 2020).
For dataset without a development set, we randomly
sample 5% of their training instances and use them as
a development set.

Sentiment classification We use the NaijaSenti mul-
tilingual Twitter sentiment analysis corpus (Muham-
mad et al., 2022). This is a large code-mixed and
monolingual sentiment analysis dataset, manually an-
notated for 4 Nigerian languages: Hausa, Igbo, Yorùbá
and Pidgin. Additionally, we evaluate on the Amharic,
and English Twitter sentiment datasets by Yimam et al.
(2020) and Rosenthal et al. (2017), respectively. For all
datasets above, we only make use of tweets with posi-
tive, negative and neutral sentiments.

3.2.2 Newly created dataset: ANTC corpus
We created a novel dataset, ANTC — African News
Topic Classification for five African languages. We
obtained data from three different news sources: VOA,
BBC6, Global Voices7, and isolezwe8. From the VOA
data we created datasets for Lingala and Somali. We
obtained the topics from data released by Palen-Michel
et al. (2022) and used the provided URLs to get the
news category from the websites. For Naija, Mala-
gasy and isiZulu, we scrapped news topic from the
respective news website (BBC Pidgin, Global Voices,
and isolezwe respectively) directly base on their cate-
gory. We noticed that some news topics are not mutu-
ally exclusive to their categories, therefore, we filtered
such topics with multiple labels. Also, we ensured that
each category has at least 200 samples. The categories
include but are not limited to: Africa, Entertainment,
Health, and Politics. The pre-processed datasets were
divided into training, development, and test sets using
stratified sampling with a ratio of 70:10:20. Table 1
provides details about the dataset size and news topic
information.

4 Pre-trained Language Models
For our experiments, we make use of different multi-
lingual PLMs that have been trained using a masked
language model objective on large collections of mono-
lingual texts from several languages. Table 2 shows the
number of parameters as well as the African languages
covered by each of the models we consider.

1. XLM-R (Conneau et al., 2020) has been pre-
trained on 100 languages including eight African
languages. We make use of both XLM-R-base and
XLM-R-large for MAFT with 270M and 550M

6https://www.bbc.com/pidgin
7https://mg.globalvoices.org/
8https://www.isolezwe.co.za

PLM # Lang. African languages covered

XLM-R-base
(270M)

100 afr, amh, hau, mlg, orm, som,
swa, xho

AfriBERTa-large
(126M)

11 amh, hau, ibo, kin, run, orm,
pcm, som, swa, tir, yor

XLM-R-miniLM
(117M)

100 afr, amh, hau, mlg, orm, som,
swa, xho

XLM-R-large
(550M)

100 afr, amh, hau, mlg, orm, som,
swa, xho

AfroXLMR*
(117M-270M)

20 afr, amh, hau, ibo, kin, run
mlg, nya, orm, pcm, sna, som,
sot, swa, xho, yor, zul

Table 2: Language coverage and size for pre-trained
language models. Languages in bold have evaluation
datasets for either NER, news topic classification or
sentiment analysis.

parameter sizes respectively. Although, for our
main experiments, we make use of XLM-R-base.

2. AfriBERTa (Ogueji et al., 2021) has been pre-
trained only on African languages. Despite its
smaller parameter size (126M), it has been shown
to reach competitive performance to XLM-R-base
on African language datasets (Adelani et al., 2021;
Hedderich et al., 2020).

3. XLM-R-miniLM (Wang et al., 2020) is a distilled
version of XLM-R-large with only 117M parame-
ters.

Hyper-parameters for baseline models We fine-
tune the baseline models for NER, news topic classi-
fication and sentiment classification for 50, 25, and 20
epochs respectively. We use a learning rate of 5e-5 for
all the task, except for sentiment classification where
we use 2e-5 for XLM-R-base and XLM-R-large. The
maximum sequence length is 164 for NER, 500 for
news topic classification, and 128 for sentiment classi-
fication. The adapted models also make use of similar
hyper-parameters.

5 Multilingual Adaptive Fine-tuning
We introduce MAFT as an approach to adapt a multi-
lingual PLM to a new set of languages. Adapting PLMs
has been shown to be effective when adapting to a new
domain (Gururangan et al., 2020) or language (Pfeif-
fer et al., 2020; Alabi et al., 2020; Muller et al., 2021;
Adelani et al., 2021). While previous work on multilin-
gual adaptation has mostly focused on autoregressive
sequence-to-sequence models such as mBART (Tang
et al., 2020), in this work, we adapt non-autoregressive
masked PLMs on monolingual corpora covering 20
languages. Crucially, during adaptation we use the
same objective that was also used during pre-training.
The models resulting from MAFT can then be fine-
tuned on supervised NLP downstream tasks. We name
the model resulting after applying MAFT to XLM-
R-base and XLM-R-miniLM as AfroXLMR-base and
AfroXLMR-mini, respectively. For adaptation, we train
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Model Size amh ara eng hau ibo kin lug luo pcm swa wol xho yor avg

Finetune
XLM-R-miniLM 117M 69.5 76.1 91.5 74.5 81.9 68.6 64.7 11.7 83.2 86.3 51.7 69.3 72.0 69.3
AfriBERTa 126M 73.8 51.3 89.0 90.2 87.4 73.8 78.9 70.2 85.7 88.0 61.8 67.2 81.3 76.8
XLM-R-base 270M 70.6 77.9 92.3 89.5 84.8 73.3 79.7 74.9 87.3 87.4 63.9 69.9 78.3 79.2
XLM-R-large 550M 76.2 79.7 93.1 90.5 84.1 73.8 81.6 73.6 89.0 89.4 67.9 72.4 78.9 80.8

MAFT + Finetune
XLM-R-miniLM 117M 69.7 76.5 91.7 87.7 83.5 74.1 77.4 17.5 85.5 86.0 59.0 72.3 75.1 73.5
AfriBERTa 126M 72.5 40.9 90.1 89.7 87.6 75.2 80.1 69.6 86.5 87.6 62.3 71.8 77.0 76.2
XLM-R-base 270M 76.1 79.7 92.8 91.2 87.4 78.0 82.9 75.1 89.6 88.6 67.4 71.9 82.1 81.8
XLM-R-base-v70k 140M 70.1 76.4 91.0 91.4 86.6 77.5 83.2 75.4 89.0 88.7 65.9 72.4 81.3 80.7

XLM-R-base+LAFT 270M x 13 78.0 79.1 91.3 91.5 87.7 77.8 84.7 75.3 90.0 89.5 68.3 73.2 83.7 82.3

Table 3: NER model comparison, showing F1-score on the test sets after 50 epochs averaged over 5 runs. Results
are for all 4 tags in the dataset: PER, ORG, LOC, DATE/MISC. For LAFT, we multiplied the size of XLM-R-base
by the number of languages as LAFT results in a single model per language.

on a combination of the monolingual corpora used for
AfriMT5 adaptation by Adelani et al. (2022). Details
for each of the monolingual corpora and languages are
provided in Appendix A.1.

Hyper-parameters for MAFT The PLMs were
trained for 3 epochs with a learning rate of 5e-5 using
huggingface transformers (Wolf et al., 2020). We use
of a batch size of 32 for AfriBERTa and a batch size 10
for the other PLMs.

5.1 Vocabulary reduction
Multilingual PLMs come with various parameter sizes,
the larger ones having more than hundred million pa-
rameters, which makes fine-tuning and deploying such
models a challenge due to resource constraints. One
of the major factors that contributes to the parameter
size of these models is the embedding matrix whose
size is a function of the vocabulary size of the model.
While a large vocabulary size is essential for a multi-
lingual PLM trained on hundreds of languages, some of
the tokens in the vocabulary can be removed when they
are irrelevant to the domain or language considered in
the downstream task, thus reducing the vocabulary size
of the model. Inspired by Abdaoui et al. (2020), we
experiment with reducing the vocabulary size of the
XLM-R-base model before adapting via MAFT. There
are two possible vocabulary reductions in our setting:
(1) removal of tokens before MAFT or (2) removal of
tokens after MAFT. From our preliminary experiments,
we find approach (1) to work better. We call the result-
ing model, AfroXLMR-small.

To remove non-African vocabulary sub-tokens from
the pretrained XLM-base model, we concatenated the
monolingual texts from 19 out of the 20 African lan-
guages together. Then, we apply sentencepiece to
the Amharic monolingual texts, and concatenated texts
separately using the original XLM-R-base tokenizer.
The frequency of all the sub-tokens in the two separate
monolingual corpora is computed, and we select the
top-k most frequent tokens from the separate corpora.
We used this separate sampling to ensure that a con-
siderable number of Amharic sub-tokens are captured

in the new vocabulary, we justify the choice of this ap-
proach in Section 5.3. We assume that the top-k most
frequent tokens should be representative of the vocabu-
lary of the whole 20 languages. We chose k = 52.000
from the Amharic sub-tokens which covers 99.8% of
the Amharic monolingual texts, and k = 60.000 which
covers 99.6% of the other 19 languages, and merged
them. In addition, we include the top 1000 tokens from
the original XLM-R-base tokenizer in the new vocab-
ulary to include frequent tokens that were not present
in the new top-k tokens.9 We note that our assumption
above may not hold in the case of some very distant
and low-resourced languages as well as when there are
domain differences between the corpora used during
adaptation and fine-tuning. We leave the investigation
of alternative approaches for vocabulary compression
for future work.

5.2 Results and discussion

5.2.1 Baseline results
For the baseline models (top rows in Tables 3, 4, and 5),
we directly fine-tune on each of the downstream tasks
in the target language: NER, news topic classification
and sentiment analysis.

Performance on languages seen during pre-training
For NER and sentiment analysis we find XLM-R-large
to give the best overall performance. We attribute this
to the fact that it has a larger model capacity compared
to the other PLMs. Similarly, we find AfriBERTa and
XLM-R-base to give better results on languages they
have been pre-trained on (see Table 2), and in most
cases AfriBERTa tends to perform better than XLM-
R-base on languages they are both pre-trained on, for
example amh, hau, and swa. However, when the lan-
guages are unseen by AfriBERTa (e.g. ara, eng, wol,
lin, lug, luo, xho, zul), it performs much worse
than XLM-R-base and in some cases even worse than
the XLM-R-miniLM. This shows that it may be better

9This introduced just a few new tokens which are mostly
English tokens to the new vocabulary. We end up with 70.609
distinct sub-tokens after combining all of them.

4340



Model Size amh eng hau kin lin mlg pcm som swa yor zul avg

Finetune
XLM-R-miniLM 117M 70.4 94.1 77.6 64.2 41.2 42.9 67.6 74.2 86.7 68.8 56.9 67.7
AfriBERTa 126M 70.7 93.6 90.1 75.8 55.4 56.4 81.5 79.9 87.7 82.6 71.4 76.8
XLM-R-base 270M 71.1 94.1 85.9 73.3 56.8 54.2 77.3 78.8 87.1 71.1 70.0 74.6
XLM-R-large 550M 72.7 94.5 86.2 75.1 52.2 63.6 79.4 79.2 87.5 74.8 78.7 76.7

MAFT + Finetune
XLM-R-miniLM 117M 69.5 94.1 86.7 72.0 51.7 55.3 78.1 77.7 87.2 74.0 60.3 73.3
AfriBERTa 126M 68.8 93.7 89.5 76.5 54.9 59.7 82.2 79.9 87.7 80.8 76.4 77.3
XLM-R-base 270M 71.9 94.6 88.3 76.8 58.6 64.7 78.9 79.1 87.8 80.2 79.6 78.2
XLM-R-base-v70k 140M 70.4 94.2 87.7 76.1 56.8 64.4 76.1 79.4 87.4 76.9 77.4 76.9

XLM-R-base+LAFT 270M x 11 73.0 94.3 91.2 76.0 56.9 67.3 77.4 79.4 88.0 79.2 79.5 78.4

Table 4: News topic classification model comparison, showing F1-score on the test sets after 25 epochs averaged
over 5 runs. For LAFT, we multiplied the size of XLM-R-base by the number of languages.

Model Size amh eng hau ibo pcm yor avg

Finetune
XLM-R-miniLM 117M 51.0 62.8 75.0 78.0 72.9 73.4 68.9
AfriBERTa-large 126M 51.7 61.8 81.0 81.2 75.0 80.2 71.8
XLM-R-base 270M 51.4 66.2 78.4 79.9 76.3 76.9 71.5
XLM-R-large 550M 52.4 67.5 79.3 80.8 77.6 78.1 72.6

MAFT+Finetune
XLM-R-miniLM 117M 51.3 63.3 77.7 78.0 73.6 74.3 69.7
AfriBERTa 126M 53.6 63.2 81.0 80.6 74.7 80.4 72.3
XLM-R-base 270M 53.0 65.6 80.7 80.5 77.5 79.4 72.8
XLM-R-base-v70k 140M 52.2 65.3 80.6 81.0 77.4 78.6 72.5

XLM-R-base+LAFT 270M x 6 55.0 65.6 81.5 80.8 74.7 80.9 73.1

Table 5: Sentiment classification model comparison, showing F1 evaluation on test sets after 20 epochs, averaged
over 5 runs. We obtained the results for the baseline model results of “hau”, “ibo”, “pcm”, and “yor” from
Muhammad et al. (2022). For LAFT, we multiplied the size of XLM-R-base by the number of languages as LAFT
results in a single model per language.

to adapt to a new African language from a PLM that has
seen numerous languages than one trained on a subset
of African languages from scratch.

LAFT is a strong baseline The results of applying
LAFT to the XLM-R-base model are shown in the last
row of Tables 3, 4, and 5. We find that applying LAFT
on each language individually provides a significant
improvement in performance across all languages and
tasks we evaluated on. Sometimes, the improvement
is very large, for example, +7.4 F1 on Amharic NER
and +9.5 F1 for Zulu news-topic classification. The
only exception is for English since XLM-R has already
seen large amounts of English text during pre-training.
Additionally, LAFT models tend to give slightly worse
result when adaptation is performed on a smaller cor-
pus.10

5.2.2 Multilingual adaptive fine-tuning results
While LAFT provides an upper bound on downstream
performance for most languages, our new approach
is often competitive to LAFT. On average, the differ-
ence on NER, news topic and sentiment classification
is −0.5, −0.2, and −0.3 F1, respectively. Crucially,

10We performed LAFT on eng using VOA news corpus
with about 906.6MB, much smaller than the CC-100 eng
corpus (300GB)

compared to LAFT, MAFT results in a single adapted
model which can be applied to many languages while
LAFT results in a new model for each language. Be-
low, we discuss our results in more detail.

PLMs pre-trained on many languages benefit the
most from MAFT We found all the PLMs to im-
prove after we applied MAFT. The improvement is
the largest for the XLM-R-miniLM, where the perfor-
mance improved by +4.2 F1 for NER, and +5.6 F1 for
news topic classification. Although, the improvement
was lower for sentiment classification (+0.8). Apply-
ing MAFT on XLM-R-base gave the overall best result.
On average, there is an improvement of +2.6, +3.6,
and +1.5 F1 on NER, news topic and sentiment classi-
fication, respectively. The main advantage of MAFT
is that it allows us to use the same model for many
African languagesinstead of many models specialized
to individual languages. This significantly reduces the
required disk space to store the models, without sac-
rificing performance. Interestingly, there is no strong
benefit of applying MAFT to AfriBERTa. In most cases
the improvement is < 0.6 F1. We speculate that this is
probably due to AfriBERTa’s tokenizer having a lim-
ited coverage. We leave a more detailed investigation
of this for future work.
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Model amh ara eng yor

#UNK F1 #UNK F1 #UNK F1 #UNK F1

AfroXLMR-base 0 76.1 0 79.7 0 92.8 24 82.1
Afro-XLM-R70k (i) 3704 67.8 1403 76.3 44 90.6 5547 81.2
Afro-XLM-R70k (ii) 3395 70.1 669 76.4 54 91.0 6438 81.3

Table 6: Numbers of UNKs when the model tokenizers are applied on the NER test sets.

More efficient models using vocabulary reduction
Applying vocabulary reduction helps to reduce the
model size by more than 50% before applying MAFT.
We find a slight reduction in performance as we re-
move more vocabulary tokens. Average performance
of XLM-R-base-v70k reduces by −1.6, −1.5 and
−0.6 F1 for NER, news topic, and sentiment clas-
sification compared to the XLM-R-base+LAFT base-
line. Despite the reduction in performance compared
to XLM-R-base+LAFT, they are still better than XLM-
R-miniLM, which has a similar model size, with or
without MAFT. We also find that their performance is
better than that of the PLMs that have not undergone
any adaptation. We find the largest reduction in perfor-
mance on languages that make use of non-Latin scripts
i.e. amh and ara — they make use of the Ge’ez script
and Arabic script respectively. We attribute this to the
vocabulary reduction impacting the number of amh and
ara subwords covered by our tokenizer.

In summary, we recommend XLM-R-base+MAFT
(i.e. AfroXLMR-base) for all languages on which
we evaluated, including high-resource languages like
English, French and Arabic. If there are GPU re-
source constraints, we recommend using XLM-R-base-
v70k+MAFT (i.e. AfroXLMR-small).

5.3 Ablation experiments on vocabulary
reduction

Our results showed that applying vocabulary reduction
reduced the model size, but we also observed a drop in
performance for different languages across the down-
stream tasks, especially for Amharic, because it uses a
non-Latin script. Hence, we compared different sam-
pling strategies for selecting the top-k vocabulary sub-
tokens. These include: (i) concatenating the monolin-
gual texts, and selecting the top-70k sub-tokens (ii) the
exact approach described in Section 5.1. The result-
ing tokenizers from the two approaches are used to to-
kenize the sentences in the NER test sets for Amharic,
Arabic, English, and Yorùbá. Table 6 shows the num-
ber of UNKs in the respective test set after tokeniza-
tion and the F1 scores obtained on the NER task for the
languages. The table shows that the original AfroX-
LMR tokenizer obtained the least number of UNKs for
all languages, with the highest F1 scores. Note that
Yorùbá has 24 UNKs, which is explained by the fact
that Yorùbá was not seen during pre-training. Fur-
thermore, using approach (i), gave 3704 UNKs for
Amharic, but with approach (ii) there was a significant
drop in the number of UNKs and an improvement in F1

score. We noticed a drop in the vocabulary coverage
for the other languages as we increased the Amharic
sub-tokens. Therefore, we concluded that there is no
sweet spot in terms of the way to pick the vocabulary
that covers all languages and we believe that this is an
exciting area for future work.

5.4 Scaling MAFT to larger models
To demonstrate the applicability of MAFT to larger
models, we applied MAFT to XLM-R-large using the
same training setup as XLM-R-base. We refer to the
new PLM as AfroXLMR-large. For comparison, we
also trained individual LAFT models using the mono-
lingual data11 from Adelani et al. (2021). Table 7 shows
the evaluation result on NER. Averaging over all 13
languages, AfroXLMR-large improved over XLM-R-
large by +2.8 F1, which is very comparable to the
improvement we obtained between AfroXLMR-base
(81.8 F1) and XLM-R-base (79.2 F1). Surprisingly,
the improvement is quite large (+3.5 to +6.3 F1)
for seven out of ten African languages: yor, luo,
lug, kin, ibo, and amh. The most interesting ob-
servation is that AfroXLMR-large, on average, is ei-
ther competitive or better than the individual language
LAFT models, including languages not seen during the
MAFT training stage like lug, luo and wol. This
implies that AfroXLMR-large (a single model) pro-
vides a better alternative to XLM-R-large+LAFT (for
each language) in terms of performance on downstream
tasks and disk space. AfroXLMR-large is currently the
largest masked language model for African languages,
and achieves the state-of-the-art compared to all other
multilingual PLM on the NER task. This shows that
our MAFT approach is very effective and scales to
larger PLMs.

6 Cross-lingual Transfer Learning
The previous section demonstrates the applicability of
MAFT in the fully-supervised transfer learning setting.
Here, we demonstrate that our MAFT approach is also
very effective in the zero-shot cross-lingual transfer
setting using parameter-efficient fine-tuning methods.

Parameter-efficient fine-tuning methods like
adapters (Houlsby et al., 2019) are appealing because
of their modularity, portability, and composability
across languages and tasks. Often times, language
adapters are trained on a general domain corpus

11For languages not in MasakhaNER, we use the same
monolingual data in Table 9.
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Model Size amh ara eng hau ibo kin lug luo pcm swa wol xho yor avg

XLM-R-large 550M 76.2 79.7 93.1 90.5 84.1 73.8 81.6 73.6 89.0 89.4 67.9 72.4 78.9 80.8
XLM-R-large+LAFT 550M x 13 79.9 81.3 92.2 91.7 87.7 78.4 86.2 78.2 91.1 90.3 68.8 72.7 82.9 83.2
AfroXLMR-large 550M 79.7 80.9 92.2 91.2 87.7 79.1 86.7 78.1 91.0 90.4 69.6 72.9 85.2 83.4

Table 7: NER model comparison on XLM-R-large, XLM-R-large+LAFT and XLM-R-large+MAFT (i.e
AfroXLMR-large), showing F1-score on the test sets after 50 epochs averaged over 5 runs. Results are for all
4 tags in the dataset: PER, ORG, LOC, DATE/MISC.

Model amh hau ibo kin lug luo pcm swa wol yor avg

XLM-R-base (fully-supervised) 69.7 91.0 86.2 73.8 80.5 75.8 86.9 88.7 69.6 78.1 81.2

mBERT (MAD-X) (Ansell et al., 2021) - 83.4 71.7 65.3 67.0 52.2 72.1 77.6 65.6 74.0 69.9
mBERT (MAD-X on news domain) - 86.0 77.6 69.9 73.3 56.9 78.5 80.2 68.8 75.6 74.1
XLM-R-base (MAD-X on news domain) 47.5 85.5 83.2 72.0 75.7 57.8 76.8 84.0 68.2 72.2 75.0
AfroXLMR-base (MAD-X on news domain) 47.7 88.1 80.9 73.0 80.1 59.2 79.9 86.9 69.1 75.6 77.0

mBERT (LT-SFT) (Ansell et al., 2021) - 83.5 76.7 67.4 67.9 54.7 74.6 79.4 66.3 74.8 71.7
mBERT (LT-SFT on news domain) - 86.4 80.6 69.2 76.8 55.1 80.4 82.3 71.6 76.7 75.4
XLM-R-base (LT-SFT on news domain) 54.1 87.6 81.4 72.7 79.5 60.7 81.2 85.5 73.6 73.7 77.3
AfroXLMR-base (LT-SFT on news domain) 54.0 88.6 83.5 73.8 81.0 60.7 81.7 86.4 74.5 78.7 78.8

Table 8: Cross-lingual transfer using LT-SFT (Ansell et al., 2021) and evaluation on MasakhaNER. The full-
supervised baselines are obtained from Adelani et al. (2021) to measure performance gap when annotated datasets
are available. Experiments are performed on 3 tags: PER, ORG, LOC. Average (avg) excludes amh. The best
zero-shot transfer F1-scores are underlined.

like Wikipedia. However, when there is a mismatch
between the target domain of the task and the domain
of the language adapter, it could also impact the
cross-lingual performance.

Here, we investigate how we can improve the
cross-lingual transfer abilities of our adapted PLM –
AfroXLMR-base by training language adapters on the
same domain as the target task. For our experiments,
we use the MasakhaNER dataset, which is based on
the news domain. We compare the performance of
language adapters trained on Wikipedia and news do-
mains. In addition to adapters, we experiment with
another parameter-efficient method based on Lottery-
Ticket Hypothesis (Frankle & Carbin, 2019) i.e. LT-
SFT (Ansell et al., 2021).

For the adapter approach, we make use of the MAD-
X approach (Pfeiffer et al., 2020) – an adapter-based
framework that enables cross-lingual transfer to arbi-
trary languages by learning modular language and task
representations. However, the evaluation data in the
target languages should have the same task and label
configuration as the source language. Specifically, we
make use of MAD-X 2.0 (Pfeiffer et al., 2021) where
the last adapter layers are dropped, which has been
shown to improve performance. The setup is as fol-
lows: (1) We train language adapters via masked lan-
guage modelling (MLM) individually on source and
target languages, the corpora used are described in
Appendix A.2; (2) We train a task adapter by fine-
tuning on the target task using labelled data in a source
language. (3) During inference, task and language
adapters are stacked together by substituting the source
language adapter with a target language adapter.

We also make use of the Lottery Ticket Sparse

Fine-tuning (LT-SFT) approach (Ansell et al., 2021), a
parameter-efficient fine-tuning approach that has been
shown to give competitive or better performance than
the MAD-X 2.0 approach. The LT-SFT approach is
based on the Lottery Ticket Hypothesis (LTH) that
states that each neural model contains a sub-network
(a “winning ticket”) that, if trained again in isolation,
can reach or even surpass the performance of the orig-
inal model. The LTH is originally a compression ap-
proach, the authors of LT-SFT re-purposed the ap-
proach for cross-lingual adaptation by finding sparse
sub-networks for tasks and languages, that will later be
composed together for zero-shot adaptation, similar to
Adapters. For additonal details we refer to Ansell et al.
(2021).

6.1 Experimental setup
For our experiments, we followed the same setting as
Ansell et al. (2021) that adapted mBERT from English
CoNLL03 (Tjong Kim Sang & De Meulder, 2003) to
African languages (using MasakhaNER dataset) for the
NER task.12 Furthermore, we extend the experiments
to XLMR-base and AfroXLMR-base. For the train-
ing of MAD-X 2.0 and sparse fine-tunings (SFT) for
African languages, we make use of the monolingual
texts from the news domain since it matches the domain
of the evaluation data. Unlike, Ansell et al. (2021) that
trained adapters and SFT on monolingual data from
Wikipedia domain except for luo and pcm where the
dataset is absent, we show that the domain used for
training language SFT is also very important. For a

12We excluded the MISC and DATE from CoNLL03 and
MasakhaNER respectively to ensure same label configura-
tion.
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fair comparison, we reproduced the result of Ansell
et al. (2021) by training MAD-X 2.0 and LT-SFT on
mBERT, XLM-R-base and AfroXLMR-base on target
languages with the news domain corpus. But, we still
make use of the pre-trained English language adapter13

and SFT14 for mBERT and XLM-R-base trained on the
Wikipedia domain. For the AfroXLMR-base, we make
use of the same English adapter and SFT as XLM-R-
base because the PLM is already good for English lan-
guage. We make use of the same hyper-parameters re-
ported in the LT-SFT paper.

Hyper-parameters for adapters We train the task
adapter using the following hyper-parameters: batch
size of 8, 10 epochs, “pfeiffer” adapter config, adapter
reduction factor of 8, and learning rate of 5e-5. For the
language adapters, we make use of 100 epochs or max-
imum steps of 100K, minimum number of steps is 30K,
batch size of 8, “pfeiffer+inv” adapter config, adapter
reduction factor of 2, learning rate of 5e-5, and max-
imum sequence length of 256. For a fair comparison
with adapter models trained on Wikipedia domain, we
used the same hyper-parameter settings (Ansell et al.,
2021) for the news domain.

6.2 Results and discussion
Table 8 shows the results of MAD-X 2.0 and LT-SFT,
we compare their performance to fully supervised set-
ting, where we fine-tune XLM-R-base on the training
dataset of each of the languages, and evaluate on the
test-set. We find that both MAD-X 2.0 and LT-SFT
using news domain for African languages produce bet-
ter performance (+4.2 on MAD-X and +3.7 on LT-
SFT) than the ones trained largely on the wikipedia
domain. This shows that the domain of the data mat-
ters. Also, we find that training LT-SFT on XLM-
R-base gives better performance than mBERT on all
languages. For MAD-X, there are a few exceptions
like hau, pcm, and yor. Overall, the best perfor-
mance is obtained by training LT-SFT on AfroXLMR-
base, and sometimes it give better performance than
the fully-supervised setting (e.g. as observed in kin
and lug, wol yor languages). On both MAD-X and
LT-SFT, AfroXLMR-base gives the best result since it
has been firstly adapted on several African languages
and secondly on the target domain of the target task.
This shows that the MAFT approach is effective since
the technique provides a better PLM that parameter-
efficient methods can benefit from.

7 Conclusion
In this work, we proposed and studied MAFT as an
approach to adapt multilingual PLMs to many African
languages with a single model. We evaluated our
approach on 3 different NLP downstream tasks and
additionally contribute novel news topic classification

13https://adapterhub.ml/
14https://huggingface.co/cambridgeltl

dataset for 4 African languages. Our results show that
MAFT is competitive to LAFT while providing a sin-
gle model compared to many models specialized for
individual languages. We went further to show that
combining vocabulary reduction and MAFT leads to
a 50% reduction in the parameter size of a XLM-R
while still being competitive to applying LAFT on indi-
vidual languages. We hope that future work improves
vocabulary reduction to provide even smaller models
with strong performance on distant and low-resource
languages. To further research on NLP for African
languages and reproducibility, we have uploaded our
language adapters, language SFTs, AfroXLMR-base,
AfroXLMR-small, and AfroXLMR-mini models to the
HuggingFace Model Hub15.
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the case of Yorùbá and Twi. In Proceedings
of the 12th Language Resources and Evaluation
Conference, pp. 2754–2762, Marseille, France,
May 2020. European Language Resources Associ-
ation. ISBN 979-10-95546-34-4. URL https:
//aclanthology.org/2020.lrec-1.335.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen,
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A Appendix
A.1 Monolingual corpora for LAFT and MAFT
For training the MAFT models, we make use of the
aggregation of monolingual data from Table 9.

For the LAFT models, we make use of existing
XLMR-base+LAFT models from the MasakhaNER
paper (Adelani et al., 2021). However, for other lan-
guages not present in MasakhaNER (ara, mlg,orm,
sna, som, xho), we make use of the mC4 corpus ex-
cept for eng — we use the VOA corpus. For a fair
comparison across models, when training the XLM-
R-large+LAFT models, we use the same monolingual
corpus used to train XLM-R-base+LAFT models.

A.2 News corpora for language adapters and
SFTs

Table 10 provides the news corpus we used to train lan-
guage adapters and SFTs for the cross-lingual settings.
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Language Source Size (MB) No. of sentences

Afrikaans (afr) mC4 (subset) (Xue et al., 2021) 752.2MB 3,697,430
Amharic (amh) mC4 (subset), and VOA 1,300MB 2,913,801
Arabic (ara) mC4 (subset) 1,300MB 3,939,375
English (eng) mC4 (subset), and VOA 2,200MB 8,626,571
French (fra) mC4 (subset), and VOA 960MB 4,731,196
Hausa (hau) mC4 (all), and VOA 594.1MB 3,290,382
Igbo (ibo) mC4 (all), and AfriBERTa Corpus (Ogueji et al., 2021) 287.5MB 1,534,825
Malagasy (mlg) mC4 (all) 639.6MB 3,304,459
Chichewa (nya) mC4 (all), Chichewa News Corpus (Siminyu et al., 2021) 373.8MB 2,203,040
Oromo (orm) AfriBERTa Corpus, and VOA 67.3MB 490,399
Naija (pcm) AfriBERTa Corpus 54.8MB 166,842
Rwanda-Rundi (kin/run) AfriBERTa Corpus, KINNEWS & KIRNEWS (Niyongabo et al., 2020), and VOA 84MB 303,838
chiShona (sna) mC4 (all), and VOA 545.2MB 2,693,028
Somali (som) mC4 (all), and VOA 1,000MB 3,480,960
Sesotho (sot) mC4 (all) 234MB 1,107,565
Kiswahili (swa) mC4 (all) 823.5MB 4,220,346
isiXhosa (xho) mC4 (all), and Isolezwe Newspaper 178.4MB 832,954
Yorùbá (yor) mC4 (all), Alaroye News, Asejere News, Awikonko News, BBC, and VON 179.3MB 897,299
isiZulu (zul) mC4 (all), and Isolezwe Newspaper 700.7MB 3,252,035

Table 9: Monolingual Corpora (after pre-processing – we followed AfriBERTa (Ogueji et al., 2021) approach) ,
their sources and size (MB), and number of sentences.

Language Source Size (MB) No. of sentences

Amharic (amh) VOA (Palen-Michel et al., 2022) 19.9MB 72,125
Hausa (hau) VOA (Palen-Michel et al., 2022) 46.1MB 235,614
Igbo (ibo) BBC Igbo (Ogueji et al., 2021) 16.6MB 62,654
Kinyarwanda (kin) KINNEWS (Niyongabo et al., 2020) 35.8MB 61,910
Luganda (lug) Bukedde 7.9MB 67,716
Luo (luo) Ramogi FM news and MAFAND-MT (Adelani et al., 2022) 1.4MB 8,684
Naija (pcm) BBC 50.2MB 161,843
Kiswahili (swa) VOA (Palen-Michel et al., 2022) 17.1MB 88,314
Wolof (wol) Lu Defu Waxu, Saabal, Wolof Online, and MAFAND-MT (Adelani et al., 2022) 2.3MB 13,868
Yorùbá (yor) BBC Yorùbá 15.0MB 117,124

Table 10: Monolingual News Corpora used for language adapter and SFT training, their sources and size (MB),
and number of sentences.
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Abstract

Bantu languages are spoken by communities
in more than half of the countries on the
African continent by an estimated third of a
billion people. Despite this populous and
the amount of high quality linguistic research
done over the years, Bantu languages are
still computationally under-resourced. The
biggest limitation to the development of com-
putational methods for processing Bantu lan-
guage text is their complex grammatical struc-
ture, chiefly in the system of noun classes.
We investigated the use of a combined syn-
tactic and semantic method to disambiguate
among singular nouns with the same class pre-
fix but belonging to different noun classes.
This combination uses the semantic general-
izations of the types of nouns in each class to
overcome the limitations of relying only on the
prefixes they take. We used the nearest neigh-
bors of a query word as semantic generaliza-
tions, and developed a tool to determine the
noun class based on resources in Runyankore,
a Bantu language indigenous to Uganda. We
also investigated whether, with the same Run-
yankore resources, our method had utility in
other Bantu languages, Luganda, indigenous
to Uganda, and Kinyarwanda, indigenous to
Rwanda. For all three languages, the com-
bined approach resulted in an improvement in
accuracy, as compared to using only the syn-
tactic or the semantic approach.

1 Introduction

Over the last three decades, there has been an
increase in the development of computational re-
sources for Bantu languages. Much of this work
applies the knowledge gained on Bantu language
linguistics to digitize textual resources and develop
software tools for text processing for a single lan-
guage or for a group of languages. Among the
textual resources created are the SAWA English-
Kiswahili parallel corpus for machine learning (De
Pauw et al., 2011) and the labelled and unlabelled

Runyankore datasets (Byamugisha, 2020). The text
processing resources include morphological tools,
such as morphological analyzers for isiZulu (Bosch
and Pretorius, 2003, 2004), isiXhosa, seSwati, and
isiNdebele (Bosch et al., 2008); text generation
tools, such as a morphological generator for isiZulu
(Bosch and Pretorius, 2003) and surface realizers
for isiZulu (Keet et al., 2017) and Runyankore
(Byamugisha et al., 2017a,b); part-of-speech tag-
gers for Kiswahili, Ciluba, Northern Sotho, and
isiZulu (De Pauw et al., 2012); and noun pluraliza-
tion tools for isiZulu and Runyankore (Byamugisha
et al., 2016), chiShona, isiXhosa, Kikuyu, Kin-
yarwanda, and Luganda (Byamugisha et al., 2018).

Despite these efforts, Bantu languages are still
among the most computationally under-resourced
languages in the world. This is due to their com-
plex grammatical structure, mainly the noun class
system, verb morphology, and agglutinative mor-
phology. In this paper, we focus on the noun class
system only, the hallmark of Bantu nominal mor-
phology (Katamba, 2003). This system places ev-
ery noun in a language into a class, based on the
semantics of a noun first (such as whether the noun
is of a human or non-human entity), then the mor-
phology of a noun next (which is based on the pre-
fix of a noun) (Katamba, 2003). The importance
of the noun class to computational text processing
goes beyond classifying nouns, and also determines
the formulation of other parts of speech, such as
adjectives, verbs, possessives, determinants, gram-
matical number, etc. because a noun class is central
to an extensive system of concordial agreement that
determines morphological composition (Katamba,
2003).

Given that there exists in some noun class sys-
tems class prefixes that are not unique among dif-
ferent noun classes, a problem of ambiguity exists
when determining a noun class using a class prefix
only, as is the case with morphological approaches.
We refer to the process of determining the correct
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noun class under these circumstances as noun class
disambiguation, which, to the best of our knowl-
edge, has not yet been solved. Katamba (2003)
state that using a noun’s semantics and extending
beyond morphology to syntax by considering con-
cords, can overcome the limitations of morpho-
logical approaches, but it requires large resources
that capture the context in which a noun is used.
We therefore investigated whether it is possible
to extend morphological approaches to syntactic
approaches by including the syntax of an entire sen-
tence, and further combine this with the semantics
of a noun in order to undertake noun class disam-
biguation. We used the following questions:

1. To what extent can a noun’s semantic gener-
alizations, in the form of nearest neighbors,
work to disambiguate among noun classes to
identify its noun class correctly?

2. Can the presence of sub-word information
in word vectors in one language contribute
enough semantic information to improve noun
class disambiguation in another Bantu lan-
guage?

We investigated the applicability of a combined
syntactic and semantic approach as a means of
noun class disambiguation among singular nouns,
using word vectors pre-trained using FastText (Bo-
janowski et al., 2016; Joulin et al., 2016) on two
one million sentence datasets in Runyankore, one
dataset unlabelled and the other labelled with mor-
phological information including the noun class
(Byamugisha, 2020). The syntactic method relies
both on the morphology of a noun based on its pre-
fix and on the syntax of other grammatical units in
a sentence which are determined by a noun class.
The semantic method uses the noun class labels
of the nearest neighbors of a query word. Only
singular nouns were used in this investigation be-
cause there is ground-truth data from the singular
wordlists used in the noun pluralization tools with
which to evaluate the results, and these same tools
apply the knowledge on the singular/plural pairings
to solve the problem of plurals computationally.
We started with two datasets in Runyankore, the
same language as the word vectors used, and ob-
tained accuracies of 80.54% and 85.23% on two
test sets. We then investigated whether, using a
combined approach with the same Runyankore
word vectors, a correct noun class determination
can be made for another Bantu language. Using

Luganda and Kinyarwanda, we obtained accuracies
of 73.97% and 63.64%, respectively. To the best
of our knowledge, this is the first computational
attempt to use both the syntactic and semantic char-
acteristics of a noun to disambiguate among noun
classes with the same class prefix.

The rest of this paper is arranged as follows: Sec-
tion 2 provides information on Bantu languages,
with a focus on the noun class system; Section 3
details the materials, methods, and results from us-
ing a combined syntactic and semantic approach
to determine a noun class; Section 4 discusses the
implications of this work; and we conclude in Sec-
tion 5.

2 Bantu Language Noun Class System

Bantu languages are a group of languages indige-
nous to Africa (Nurse and Philippson, 2003). They
extend from the south, below Nigeria, to most of
central, east, and southern Africa, as shown in Fig-
ure 1 (Nurse and Philippson, 2003). There are
Bantu-speaking communities in 27 of the conti-
nent’s 54 countries, with about 240 million speak-
ers (Nurse and Philippson, 2003). The exact num-
ber of languages classified as Bantu ranges from
300 to 680, based on different criteria by different
authors (Nurse and Philippson, 2003).

Figure 1: The spread of Bantu languages across Africa
(Nurse and Philippson, 2003)

Bantu languages assign all nouns to a class re-
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ferred to as a noun class (NC); and there are over
20 noun classes, though some NCs have fallen into
disuse in most languages (Nurse and Philippson,
2003; Mohlala, 2003; Maho, 1999). The semantic
generalizations of the types of nouns in each class
are shown in Table 1 (Keet and Khumalo, 2014;
Baertlein and Ssekitto, 2014; Kimenyi, 2004; Jeon
et al., 2015; Zentz, 2016; Taraldsen, 2010; Mohlala,
2003; Katamba, 2003; Maho, 1999).

Noun Class Description of Associated Nouns
1 and 2 People and kinship
3 and 4 Plants, nature, and some parts of the

body
5 and 6 Fruits, liquids, some parts of the body,

and paired things
7 and 8 Inanimate objects

9 and 10 Tools and animals
11 Long thin stringy objects, languages,

and inanimate objects
12 and 13 Diminutives

14 Abstract concepts
15 Infinitives and parts of the body

16, 17, and 18 Locative classes
19 Diminutives

20, 21, and 22 Augmentatives
23 Locative class

Table 1: Classification of Bantu nouns into noun
classes (the ‘and’ indicates that the two classes are a
singular/plural pairing)

The simple noun comprises a prefix and a stem
(Katamba, 2003); for example, omuntu ‘person’ in
Runyankore, which can be analyzed as the prefix
o-mu- and stem -ntu. Therefore, in addition to the
semantic categorization of nouns shown in Table 1,
nouns are categorized morphologically also, ac-
cording to the prefixes they take (Katamba, 2003).
In many Bantu languages, the class prefix may be
preceded by a formative referred to as the augment,
pre-prefix, or initial vowel (Katamba, 2003; Maho,
1999). In the above example of omuntu, the class
prefix o-mu- possesses the augment o. The aug-
ment is not found in all Bantu languages (Katamba,
2003; Maho, 1999).

Noun classes do not only classify nouns, but
are at the heart of an extensive system of concor-
dial agreement (Katamba, 2003), where each class
determines the agreement with: concord patterns;
nominal prefix in nouns, locatives, and adjectives;
numeral prefix; pronominal prefix for substitutives,
connectives, possessives, demonstratives, and de-
terminatives; initial prefix in absolutive verb forms;
and the verbal infix (Katamba, 2003; Maho, 1999;
Zentz, 2016; Nurse and Philippson, 2003; Tayebwa,
2014). Given how central the noun class system is

to Bantu language computational linguistics, it is
important to identify a means of determining the
noun class of a noun.

3 Noun Class Disambiguation Using
Syntax and Semantics

In this research, we aimed to find out to what ex-
tent determining the semantics of a noun is ben-
eficial to disambiguating among noun classes, in
order to determine its noun class correctly. In Bya-
mugisha (2020), it was shown that from word vec-
tors trained on one million Runyankore sentences
in an unsupervised manner, the nearest neighbors
(co-occurrence vectors) obtained for a query word
reflect the semantic generalizations of noun classes
shown in Table 1. We, therefore, used a noun’s
nearest neighbors as a representation of its semantic
generalizations. We investigated further whether,
with the pre-trained word vectors in one Bantu lan-
guage, the nearest neighbors of a query word in a
different Bantu language improve the disambigua-
tion, and, consequently, determination of a noun
class in this other Bantu language. Four criteria are
relied upon when selecting languages for this re-
search: (1) the availability of linguistic information
about its noun class; (2) the presence of an augment
in a class prefix of a noun, as is the case with Run-
yankore; (3) the placement of people and kinship
nouns in the same noun class (instead of two dif-
ferent classes), as is the case in Runyankore’s noun
class system; and (4) the availability of ground-
truth data with which to evaluate the output. Based
on this, Luganda and Kinyarwanda were selected
from the existing computational resources for seven
Bantu languages in Byamugisha et al. (2018).

Our approach to disambiguating among noun
classes of a noun also extends beyond the morphol-
ogy of a noun and considers the presence of the
concords in a sentence that are indicative of a noun
class. We combine this method with a noun’s se-
mantics as defined by its nearest neighbors. The
details on each of these two methods are explained
in the following sections.

3.1 Syntactic Approach

As explained by Katamba (2003), the assignment
of nouns to a class is partially morphological, us-
ing rules based on class prefixes (which may or
may not be unique) according to the noun class sys-
tem of a particular language. A syntactic approach
to disambiguating among noun classes involves
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analyzing the syntax of an entire sentence to con-
firm whether other grammatical units such as the
possessive, subject, or object concords (which are
always unique in a noun class system) are indica-
tive of a particular noun class. Runyankore, Lu-
ganda, and Kinyarwanda have different noun class
systems, and, therefore, require different morpho-
logical rules for each language. The class prefixes
for the noun class systems of these languages are
shown in Table 2.

Noun Class Runyankore Luganda Kinyarwanda
1 o-mu- o-mu- u-mu-
2 a-ba- a-ba- a-ba-
3 o-mu- o-mu- u-mu-
4 e-mi- e-mi- i-mi-
5 e-ri-/ei- e-li-/e- i-ri-/i-
6 a-ma- a-ma- a-ma-
7 e-ki- e-ki- i-ki-/i-cy-/i-gi-
8 e-bi- e-bi- i-bi-
9 em-/em- e-n- i-/i-n-/i-nz-

10 em-/em- e-n- i-/i-n-/i-nz-
11 o-ru- o-lu- u-ru-
12 a-ka- a-ka- a-ka-/a-ga-
13 o-tu- o-tu- u-tu-/u-du-
14 o-bu- o-bu- u-bu-
15 o-ku- o-ku- u-ku-/u-gu-
16 a-ha- wa- a-ha-
17 o-ku- ku- N/A
18 o-mu- mu- N/A
19 N/A N/A N/A
20 o-gu- o-gu- N/A
21 a-ga- a-ga- N/A
22 N/A N/A N/A
23 N/A e- N/A

Table 2: The noun classes for Runyankore (Asiimwe,
2014), Luganda (Baertlein and Ssekitto, 2014), and
Kinyarwanda (Kimenyi, 2004), showing the class pre-
fixes. The dashes between the letters in the prefix illus-
trate separation between the augment and prefix; and
‘N/A’, the NC is not present in that language.

Table 2 shows the noun classes and the class pre-
fixes for Runyankore, Luganda, and Kinyarwanda.
They have different numbers of noun classes–20
in Runyankore, 21 in Luganda, and 16 in Kin-
yarwanda–because some noun classes have fallen
into disuse in most languages (Nurse and Philipp-
son, 2003; Mohlala, 2003; Maho, 1999). None of
these languages has classes 19 and 22.

Morphological rules, based on a class prefix, are
used first to attempt to determine a noun’s noun
class. However, there are some prefixes that are
the same for different noun classes. In Table 2,
these are classes 1, 3, and 18 with prefix o-mu- and
classes 15 and 17 with prefix o-ku- in Runyankore;
classes 1 and 3 with prefix o-mu- and classes 5, 9,
and 23 with prefix e- in Luganda; and classes 1 and

3 with prefix u-mu- and classes 5 and 9 with prefix
i- in Kinyarwanda. This results in ambiguity during
noun class determination, which cannot be resolved
by a morphological approach only. On the other
hand, concords can be used to disambiguate be-
tween nouns belonging to different classes but with
the same class prefix because their concords dif-
fer (Katamba, 2003; Maho, 1999). Table 3 shows
the subject concords in Runyankore’s noun class
system.

Noun Class Class Prefix Subject Concord
1 o-mu- -a-
2 a-ba- -ba-
3 o-mu- -gu-
4 e-mi- -gi-
5 ei-/e-ri- -ri-
6 a-ma- -ga-
7 e-ki- -ki-
8 e-bi- -bi-
9 e-n-/e-m- -e-

10 e-n-/e-m- -zi
11 o-ru- -ru-
12 a-ka- -ka-
13 o-tu- -tu-
14 o-bu- -bu-
15 o-ku- -ku
16 a-ha- -ha
17 o-ku- -ha-
18 o-mu- -ha-
20 o-gu- -gu-
21 a-ga- -ga-

Table 3: The Subject concords of the Runyankore noun
class system, showing that concords are unique across
classes with the same prefix

Table 3 shows that for classes 1, 3, and 18 with
prefix o-mu- and classes 15 and 17 with prefix o-
ku-, the subject concords are unique among them,
and can thus be used to disambiguate among these
classes. We, therefore, extended beyond morphol-
ogy, to syntax, by including an entire sentence in
our approach.

3.2 Semantic Approach
According to Katamba (2003), the assignment of
nouns to a class is also partially based on seman-
tic generalizations of the types of nouns in each
class, as shown in Table 1. In Byamugisha (2020),
the nearest neighbors obtained from word vectors
trained on one million Runyankore sentences were
found to have a high level of semantic relatedness.
Table 4 from Byamugisha (2020) shows the nearest
neighbors for query words with the prefix o-mu-
but belonging to different noun classes.

The examples in Table 4 present a case of noun
class ambiguity using three query words (omuntu,
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Query Word Nearest Neighbors
omuntu (person) omugyesi (reaper), omutaahi (com-

panion), omukoreesa (overseer),
omushomesa (teacher), omukuru
(elder)

omuti (tree) omutumba (banana tree), omwani
(coffee tree), omuzaabibu (grape
or grapevine), omucungwa (orange),
omugusha (sorghum)

omukono (arm) omunwa (mouth), omutwe (head),
eriino (tooth), enkokora (elbow),
okuguru (leg)

Table 4: Nearest Neighbors for query words with the
prefix o-mu- (Byamugisha, 2020)

omuti, and omukono) which all have the same noun
prefix, o-mu-. However, they belong to different
noun classes, with omuntu in class 1, semantically
for people according to Table 1, and omuti and
omukono in class 3. The nearest neighbors of
these query words reflect a semantic distinction
among them, which cannot be determined syntacti-
cally. On the other hand, the nearest neighbors of
omukono in Table 4 belong to different noun classes
morphologically: omunwa and omutwe in class 3,
eriino in class 5, enkokora in class 9, and okuguru
in class 15 according to Table 2. Therefore, whilst
the nearest neighbors help to exclude class 1 for
omukono, the disambiguation is made syntactically,
by going beyond a noun’s prefix and extending
to the concords in a sentence. Our approach thus
combines syntax and semantics in order to leverage
the benefits of both to disambiguate among noun
classes.

3.3 Materials
The materials used to develop and evaluate a com-
bined syntactic and semantic approach to noun
class disambiguation were obtained from exist-
ing computational resources. These included: (1)
pre-trained word vectors in Runyankore from Bya-
mugisha (2020); (2) a classifier trained on one mil-
lion sentences, in Runyankore labelled for parts-of-
speech and morphology (including the noun class
assignment of nouns, subject and object concords,
and adjective prefixes) from Byamugisha (2020);
(3) a dataset of singular nouns and their correct
noun classes in Runyankore to act as ground-truth
during development, obtained from Set1r and Set2r
in Byamugisha et al. (2016); and (4) a dataset of
singular nouns and their correct noun classes in
Runyankore, Luganda, and Kinyarwanda, to act
as ground-truth during evaluation, obtained from
SetI and SetC in Byamugisha et al. (2018). Table 5

shows the language and number of nouns in each
of these datasets.

Dataset Language Number of Nouns
Set1r Runyankore 92
Set2r Runyankore 2542
SetI Runyankore 81
SetC Runyankore 88
SetI Luganda 75
SetC Luganda 78
SetI Kinyarwanda 70
SetC Kinyarwanda -

Table 5: Details on datasets used

The datasets1 in Table 5 contain a noun and its
noun class. These ground-truth datasets contain
singular nouns only (with the exception of mass
nouns), thus, we consider only singular nouns so
far. The need for noun class disambiguation is
evident in the statistical characteristics of these
datasets: 25.0% of nouns in Set1R have the prefix
om- and 51.09% have the prefix e-; 39.89% of
nouns in Set2r have the prefix om-, while 34.97%
have the prefix e-. For Runyankore, 17.05% of
nouns in SetI have the prefix om- and 40.91% have
the prefix e-; while 28.4% of nouns in SetC have
the prefix om- while 58.02% have the prefix e-. For
Luganda, 23.07% of nouns in SetI have prefix om-
and 38.46% have prefix e-; while 16.0% of nouns
in SetC have prefix om- and 45.33% have prefix e-.
For Kinyarwanda, with SetI only, 18.57% of nouns
have prefix um- and 44.29% have prefix e-.

3.4 Methods

We used an iterative approach to develop a tool
that uses a noun’s syntax and semantics to disam-
biguate first, and then determine its noun class.
This involved testing different versions of the tool
for Runyankore using Set1r and Set2r, adding new
functionality, and then testing again. The tool was
developed as a Python module using the Gensim
library2 to load the pre-trained word-vectors of a
language model for Runyankore from Byamugisha
(2020). The FastText library3 was used to train a
classifier on a one million sentence labeled dataset
also from Byamugisha (2020). The dataset was

1Set1r and Set2r can be obtained from
https://github.com/ThesisResources/
RunyankorePluralizer, while SetI and SetC can
be found at https://github.com/runyankorenlg/
Generic-Pluralizer.

2For more details on the Gensim Python library, see
https://pypi.org/project/gensim/.

3For more details on the FastText Python library, see
https://pypi.org/project/fasttext/.
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split into 70% for training, 20% for validation, and
10% for testing. We used the default values for
the training parameters of the FastText library. Fig-
ure 2 shows the architecture of the method used for
noun class disambiguation.

Figure 2: Method taken for noun class disambiguation

Figure 2 shows how a noun class of a noun is
determined, as well as where disambiguation is
required. Given a noun, a morphological step is
performed first, but this results in a noun class
only if the class prefix of the noun is unique (see
tables 2 and 3 for the class prefixes). On the other
hand, if the class prefix is not unique, then the
noun is regarded as a query word and undergoes
the semantic method, during which the following
happens:

• Extracting a vocabulary from the pre-trained
language model, and including all the sub-
word information in the model as part of the
vocabulary;

• Finding the noun’s nearest neighbors from
the pre-trained language model, which should

include the sub-word results in the vocabulary;
and

• Predicting, from the top-n nearest neighbors
obtained, a label for each nearest neighbor
using the classifier.

The results from the semantic method go through
the syntactic method, where concords in an entire
sentence can be used to determine the final label
because concords are unique among noun classes
(Katamba, 2003; Maho, 1999) (see Table 3 for sub-
ject concords in Runyankore). This involves:

• Excluding items from the list of nearest neigh-
bors if the label predicted for their concord
(sub-word) is not consistent with the same
noun class; and

• Predicting the final noun class based on the
final list of nearest neighbors

Table 6 shows the improvement in accuracy on
the two test sets as different versions of the tool
were implemented.

Version Set1r Set2r
Classical nearest neighbors 52.22 41.13
Annoy nearest neighbors 54.22 41.26
Top 10 Annoy nearest neighbors + no
verbs

63.33 54.67

Top 110 Annoy nearest neighbors + no
verbs

73.86 65.72

Top 110 Annoy nearest neighbors + no
verbs + retrofitted

76.14 68.45

Morphological and top 110 Annoy near-
est neighbors + no verbs + retrofitted +
syntactic

85.23 80.54

Table 6: Improvements in accuracy of the different ver-
sions developed to disambiguate among noun classes
on two Runyankore test sets

The first version of the tool was based only on
the semantics, and used the classical method to ob-
tain the nearest neighbors. There was an improve-
ment in performance when Annoy4 nearest neigh-
bors were used instead of the classical method, as
shown in Table 6. Next, we used a set of ten Annoy
nearest neighbors, omitting any verbs from this set
because the verb root does not contain any noun
class information, and this also improved the ac-
curacy. We investigated the optimum number of
nearest neighbors that result in the highest accuracy,
starting from 10 up to 1000. We found 110 to be

4For details on the Annoy algorithm, see https://
pypi.org/project/annoy/1.0.3/.
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the optimum number that results in the accuracies
shown in Table 6. This number is also large enough
to include the concords required for the syntactic
approach.

The next version of the tool added on to the pre-
vious one by using the retrofit algorithm by Faruqui
et al. (2015) in an attempt to enable words to be
related semantically in a better manner by having
similar vector representations. We extracted a lexi-
con of nouns from a Runyankore dictionary (Tay-
lor, 2009), arranged according to their noun classes,
and used it to retrofit the pre-trained word vectors.
We then calculated the accuracy at this point and ob-
tained the results shown in Table 6. This represents
the current combination of methods associated with
the semantic and syntactic approaches. The final
version starts with a morphological method to han-
dle nouns with unique class prefixes in the input
datasets, followed by the semantic and syntactic
methods when disambiguation is required, in or-
der to obtain the final accuracies of 85.23% and
80.54% on Set1r and Set2r, respectively.

Next, we report on the results from evaluating
this combined approach on Runyankore, Luganda,
and Kinyarwanda.

3.5 Results on Evaluation

We carried out an evaluation of the tool developed
to disambiguate and determine a noun’s class along
two lines of enquiry: (1) whether a combined ap-
proach achieves better results than a morphological
or semantic method alone; and (2) whether, without
changing the underlying resources that are the ba-
sis of the semantic approach, a combined approach
can still achieve better results than the individual
approaches when applied to languages other than
Runyankore. Table 7 shows the results of the evalu-
ation for Runyankore, Luganda, and Kinyarwanda
(“NCS” refers to “Noun Class System”). The met-
ric for evaluation is accuracy, determined as the
percentage of correct noun classes determined over
the test sets.

The results in Table 7 show clearly that a com-
bined syntactic and semantic approach achieves bet-
ter results than the individual approaches. Though
not shown in Table 7, accuracies of 84.88% and
70.67% were obtain on SectC for Runyankore
and Luganda, respectively (there was no dataset
for SetC in Kinyarwanda). Additionally, the re-
sults show that an improvement in performance
is achieved in Luganda and Kinyarwanda despite

Approach Runyankore Luganda Kinyarwanda
Morphological
only

69.23 57.53 43.94

Semantic
only

66.67 47.95 40.91

Combination,
with Run-
yankore
NCS

87.18 67.12 31.82

Combination,
with lan-
guage
NCS

87.18 73.97 63.64

Table 7: Results of the evaluation on the morphologi-
cal only, semantic only, and combined syntactic and se-
mantic approaches on Runyankore, Luganda, and Kin-
yarwanda datasets

the underlying semantic resources belonging to
Runyankore. This is an important result given the
under-resourced state of Bantu languages, where
the reuse of resources during text processing will
always be advantageous, because developing the
same resources in Runyankore for another Bantu
language requires significant time and effort (Bya-
mugisha, 2020).

While it is not surprising that the best results
are achieved when the syntactic approach is based
on the concords of a test language’s noun class
system, it is nonetheless interesting that there is a
10% improvement in accuracy for Luganda even
when the syntactic approach uses Runyankore’s
noun class system. This can be explained by how
similar their noun class systems are (see Table 2),
suggesting, possibly, a potential for direct reuse of
the tool among closely related languages.

4 Discussion

We developed an approach to disambiguate among
noun classes in order to determine a noun’s class
that combines a noun’s syntax and semantics in
order to achieve the best results. Our approach is in
line with literature on the Bantu noun class system
that states that the assignment of nouns to a class is
based on semantic generalizations of the types of
nouns in each class, as well as morphologically, ac-
cording to their class prefixes, and syntactically, ac-
cording to the concords they take (Katamba, 2003).
While our work is focused on Bantu languages, it
is important to note that noun class systems are a
strong areal feature in Africa, with an estimated
two-thirds of the languages on the continent hav-
ing noun classes (Katamba, 2003). The theory on
which our approach is based might be applicable
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to another family of languages in Africa.

That a combined syntactic and semantic ap-
proach is necessary during text processing for
Bantu languages is not novel, as this is the basis
of the tools on noun pluralization for Runyankore
and isiZulu (Byamugisha et al., 2016) and chiS-
hona, isiXhosa, Kikuyu, Kinyarwanda, and Lu-
ganda (Byamugisha et al., 2018). What is empha-
sized by our results, however, is that, for the se-
mantics, a little goes a long way. Only 385 singu-
lar nouns were used in the generation of the Run-
yankore datasets (Byamugisha, 2020) on which the
word vectors were trained; yet, as seen in the results
in Table 6, an accuracy of over 80% was achieved
on Set2r that comprises over 2000 nouns.

The main reason for needing a semantic ap-
proach is to overcome noun class ambiguity, a sit-
uation where nouns belonging to different noun
classes have the same class prefix. Therefore,
though useful, the reuse of the resources in one
language to determine the semantics of another lan-
guage is limited if the source language does not ac-
count for the nouns affected in the target language.
For example, in addition to classes 1 and 3 hav-
ing the same prefix in Luganda and Kinyarwanda,
classes 5, 9, and 23 in Luganda also have the same
prefix, e-, and classes 5 and 9 in Kinyarwanda also
have the same prefix, i-; yet their semantic dis-
tinctions are not all captured in the Runyankore
resources. Having language-specific resources is
the desired outcome, though the ability to reuse
resources provides a benefit.

The increase in accuracy on test sets in languages
that are different from the resources on which the
semantics are determined is also a notable finding.
Though the selection of Luganda and Kinyarwanda
was purposively based on the availability of re-
sources, their results cannot be removed entirely
from their grouping in Guthrie zones as compared
to Runyankore. Guthrie zones are a referential
classification of Bantu languages which groups to-
gether languages with similar linguistic features
(such as phonetic, semantic, and syntactic) that
are geographically colocated, without presuppos-
ing their historical relatedness (Schadeberg, 2003).
Guthrie zones categorize Bantu languages into 16
geographic zones, which are labeled using the let-
ters A, B, C, D, E, F, G, H, J, K, L, M, N, P, R, and
S; and these are further subdivided into decades
(zone J.10, where Runyankore belongs, contains in-
dividual languages labeled from J.11 to J.19, while

J.20, J.30, etc. represent different zones) (Nurse
and Philippson, 2003; Schadeberg, 2003; Maho,
2009). Figure 3 shows how this classification cov-
ers the Bantu languages throughout the African
continent.

Figure 3: The spread and classification of Bantu lan-
guages into Guthrie zones (Maho, 2009)

Runyankore and Luganda are in zone J.10, while
Kinyarwanda is in zone J.60 (Maho, 2009). When
considered from the perspective of Guthrie zone
classification, the results in Table 7 provide evi-
dence, though limited, for the reuse of language
resources both within and across Guthrie zones,
with the best results obtained for the former. How-
ever, this needs to be investigated further before
any conclusions can be made.

5 Conclusion

In this paper, we have presented the use of a com-
bined syntactic and semantic approach to address
noun class ambiguity when determining a singu-
lar noun’s class. The semantic approach, which is
based on the type of the noun, is necessary to per-
form noun class disambiguation, which addresses
the main limitation of the morphological approach,
that is, the presence of nouns with the same pre-
fix but belonging to different noun classes. We
used a noun’s nearest neighbors in word vectors
as representations of a noun’s semantic general-
izations, and a noun’s concords, together with its
morphology, as representations of a noun’s syntac-
tic association. We developed a tool based on our
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combined approach using pre-trained word vectors
in Runyankore, and evaluated the accuracy of the
tool with two Runyankore datasets, achieving up to
87.18% accuracy. We also evaluated the reusability
of our approach to other Bantu languages, Luganda
and Kinyarwanda, whilst relying on Runyankore
resources for the semantic approach. We achieved
accuracies of 73.97% in Luganda and 63.64% in
Kinyarwanda. Additionally, for all three languages,
the combined approach performed better than indi-
vidual morphological and semantic approaches.
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Abstract

This paper considers the task of parsing low-
resource languages in a scenario where parallel
English data and also a limited seed of anno-
tated sentences in the target language are avail-
able, as for example in bootstrapping parallel
treebanks. We focus on constituency parsing
using Role and Reference Grammar (RRG),
a theory that has so far been understudied in
computational linguistics but that is widely
used in typological research, i.e., in particu-
lar in the context of low-resource languages.
Starting from an existing RRG parser, we pro-
pose two strategies for low-resource parsing:
first, we extend the parsing model into a cross-
lingual parser, exploiting the parallel data in the
high-resource language and unsupervised word
alignments by providing internal states of the
source-language parser to the target-language
parser. Second, we adopt self-training, thereby
iteratively expanding the training data, starting
from the seed, by including the most confident
new parses in each round. Both in simulated
scenarios and with a real low-resource language
(Daakaka), we find substantial and complemen-
tary improvements from both self-training and
cross-lingual parsing. Moreover, we also ex-
perimented with using gloss embeddings in ad-
dition to token embeddings in the target lan-
guage, and this also improves results. Finally,
starting from what we have for Daakaka, we
also consider parsing a related language (Dal-
kalaen) where glosses and English translations
are available but no annotated trees at all, i.e., a
no-resource scenario wrt. syntactic annotations.
We start with cross-lingual parser trained on
Daakaka with glosses and use self-training to
adapt it to Dalkalaen. The results are surpris-
ingly good.1

1 Introduction

Treebanks play an increasingly important role in
typological research, where linguists are oftentimes

1Our experimental code is available at https://
gitlab.com/treegrasp/rrgproj2.
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“We revered, revered him.”

Figure 1: RRG annotation of a Daakaka sentence with
glosses, parts of speech, and translation. Glosses: 1p.in–
first person plural inclusive; DIST–distal TAM marker
(for past and counterfactual contexts); 3s: third person
singular

faced with (primarily) oral low-resource languages
and where grammatical frameworks such as Role
and Reference Grammar (RRG; Van Valin and
Foley, 1980; Van Valin, 2005) are a common choice
(Toratani and González Vergara, 2020). RRG is
a non-transformational linguistic theory strongly
inspired by typological concerns. Its development
was guided by the question of what a linguistic
theory would “look like if it were based on the
analysis of languages with diverse structures such
as Lakhota, Tagalog and Dyirbal [...]?” (Van Valin,
2005, p. 1). RRG assumes constituency structures
to be organized in layers, viz. nucleus (containing
the predicate), core (containing the nucleus and the
arguments of the predicate) and clause (the core and
extracted arguments). Furthermore, each layer can
have modifiers (termed periphery elements) and
operators. An example from Daakaka (an Oceanic
language, von Prince, 2015) is given in Fig. 1,
using the annotation scheme from Bladier et al.
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(2022).

With respect to complex constructions, i.e., com-
binations of more than one CLAUSE, CORE or
NUC, RRG distinguishes not just coordination and
subordination but, in addition, cosubordination.
The latter has the general form [[ ]X [ ]X]X, an
example is the combination of the two CLAUSEs
in Figure 1 into a larger CLAUSE. In such a con-
struction, an operator that applies to categories X
takes scope over both X daughters while being real-
ized only once. The TAM marker in Figure 1 for in-
stance assigns tense to both CLAUSEs. The various
ways of combining two NUC, CORE or CLAUSE
constituents differ with respect to whether one of
the two depends on the other, how tight the two
units are concerning time and location of the two
events, and to what extent the two units share op-
erators such as tense, aspect, modality etc., all of
which can be explained by the respective combina-
tion of layer level (NUC, CORE or CLAUSE) and
construction type (coordination, subordination or
cosubordination).

In this paper, we show a way to train RRG
parsers on only a little amount of annotated data
in the target language or, in the case of Dalkalaen,
even no annotated data, yielding parse trees that can
presumably reduce annotation effort considerably
when used as a starting point for treebanking. Fur-
thermore, the resulting parse trees might be suffi-
ciently good to be the basis for (semi-)automatic in-
vestigations of syntactic properties of low-resource
languages.

The scenario underlying our work is that we
have a limited amount of data (translated to En-
glish and possibly glossed), and that a small subset
of it (a few hundred or at most a few thousand
sentences) is annotated with RRG trees. This is
a realistic scenario for the result from typological
fieldwork and grammar description. Consequently,
and in contrast to most other proposals for parsing
low-resource languages, (i) we are not aiming at de-
pendency parsing but, instead, using a constituency
scheme often used in typological research, and (ii)
we cannot use a large language model trained on
the target language, but (iii) we can make use of ad-
ditional data typically included in fieldwork output,
namely glosses and translations.

We propose to improve parsing in this scenario
by cross-lingually injecting information from En-
glish translations (and glosses, if available) into the
target-language parser, combined with self-training.

The main research question we address in this pa-
per is to what extent this method improves perfor-
mance, and in what situations, i.e., at how many
annotated trees a language stops being “low re-
source enough” to be helped by this method. To
answer this, we test our methods on various sim-
ulated degrees of “low resource-ness”, from 100
training trees to over 4 000. To get more robust
data, we test our method not only on a real low-
resource language (Daakaka), but also on four other
languages for which parallel RRG treebanks are
available (German, French, Russian, and Farsi). In
all cases, we use English as the source language.
Finally, we conduct experiments on a language re-
lated to Daakaka, namely Dalkalaen, where we
have glosses and English translations but no syn-
tactic annotations (except for test data). The aim
is to test whether extending a cross-lingual parser
(with English as source language) to a related lan-
guage while keeping the source language leads to
useful results. The hypothesis is that parsing a
no-resource language (with glosses and English
translations, i.e., no-resource concerning syntactic
annotations) benefits from knowledge about the En-
glish translation and from knowledge learned from
a related language.

In the remainder of the paper, we will first dis-
cuss related work (Sec. 2), then explain our parsing
architecture, including grammar extraction, RRG
parsing, cross-lingual transfer, and self-training
(Sec. 3). Then, in Sec. 4, we will describe our
experimental setup, and Sec. 5 will discuss the re-
sults of the experiments. We conclude in Sec. 6.

2 Related Work

The problem of parsing low-resource languages has
been addressed both for dependency and for con-
stituency parsing for different scenarios concern-
ing available data on the target side and available
high resource parallel data (Zeman and Resnik,
2008; Vania et al., 2019). Many approaches as-
sume that there is enough unlabeled data for the
target language to train a language model (i.e., the
term ‘low resource’ refers only to syntactically an-
notated data). Schuster et al. (2019) for instance
use monolingual language models for both source
and target language and use a mapping between
decontextualized variants of these vectors to guide
the cross-lingual transfer. Mulcaire et al. (2019);
Kitaev et al. (2019) use polyglot language mod-
els trained on source and target data as input to
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crosslingual parsing. In contrast to this, we assume
a scenario where there is not enough target data to
train a language model.

There is also variation concerning the way the in-
formation from the source parse is injected into the
target parsing process. Many approaches project
the source parse onto the target sentence via align-
ments, sometimes even using multiple source lan-
guages (Agić et al., 2016). Instead of projecting
a parse of a source sentence to a target sentence,
McDonald et al. (2011) use parallel English data to
select among the k best parses of a target language
sentence by comparing to the parallel English parse.
In our case, we use only English parallel source
data, and we project supertag information along
word alignments.

Some approaches use delexicalized parsers (Mc-
Donald et al., 2011; Das et al., 2017), but it has also
been shown that lexicalization, in particular when
covering aspects shared between source and target
language helps (Falenska and Çetinoğlu, 2017). In
this vein, we experiment with including glosses in
the target language, which means that the target
language tokens contain information that is similar
to the information captured in the aligned English
tokens.

Self-training as a means of training data aug-
mentation for parsing has been proposed in a num-
ber of papers (McClosky et al., 2006; Reichart
and Rappoport, 2007; Rehbein, 2011; Rotman and
Reichart, 2019), though not in the context of the
above-mentioned approaches to cross-lingual trans-
fer in low resource parsing.

3 Method

RRG Parsing Following earlier work on RRG
parsing (Bladier et al., 2020b), we adopt a for-
malization of RRG as a Tree Wrapping Grammar
(TWG; Kallmeyer et al., 2013), a tree rewriting
grammar formalism in the spirit of Tree-Adjoining
Grammar (TAG; Joshi and Schabes, 1997). In their
parsing architecture, training trees are first decom-
posed by a rule-based algorithm into TWG elemen-
tary trees (supertags) and bilexical dependencies.2

A neural model is then trained to predict supertag
and dependency head probability distributions for
each word in a sentence. At test time, an A* pars-

2Note that the term ‘dependencies’ is used in a formal
sense here, i.e., denoting directed edges between tokens.
These edges mark combinations of the respective supertags
via (wrapping) substitution or adjunction. They correspond
only to a certain extent to dependencies in the linguistic sense.

ing algorithm takes these distributions as input and
computes the optimal TWG derivation and derived
tree. Because RRG trees contain crossing branches,
a decrossing step before supertag extraction and
a recrossing step between parsing and evaluation
on the gold data is required. Figure 2 shows an
example.

Note that decrossing is rather local, since cross-
ing branches usually occur within a single group
of layers CLAUSE – CORE – NUC (resp. XP –
CORE_X – NUC_X), as in Fig. 1 and 2. The de-
crossing algorithm of Bladier et al. (2020b), which
we use, differs from the graph decrossing method
proposed by Boyd (2007) in that the tree structures
undergo only minimal changes to largely preserve
the original tree structure and that it follows hand-
written rules to decross the nodes uniformly, e.g.
the discontinuous OPtns node under the CLAUSE
is always re-attached to the closest lower CORE
node. The co-anchoring for PPs without a clear
meaning contribution (e.g. made for the stairs)
and particle verbs (e.g. pick up) is simulated by
including the corresponding internal structure of
the dependent supertag into the head supertag (see
Fig. 2). The supertags are extracted with features
that indicate the original parent node, which facili-
tates the rule-based recrossing step after parsing.

For the steps of decrossing, supertag extraction,
A* parsing, and recrossing, we use the system de-
veloped by (Bladier et al., 2020a,b). Our cross-
lingual extension is in the neural supertag and arc
scoring module. The idea is illustrated in Figure 3:
we train a monolingual system for the source lan-
guage and then use its internal representations as
an additional input to a system for the target lan-
guage. The representations are fed through a cross-
lingual attention mechanism to take into account
word alignment information. The resulting cross-
lingual system takes a source-language sentence
and an aligned target-language sentence as input
(both are available in the parallel treebanking sce-
nario) and produces a parse for the latter. We now
describe the monolingual scoring module and our
cross-lingual extension in detail.

Monolingual Scoring Module The scoring mod-
ule of Bladier et al. (2020b) takes a sequence of
word embeddings (xi)

N
i=1 as input, to which a 2-

layer BiLSTM transducer is applied to provide con-
textualized word representations (hi)Ni=1. To these,
two additional 2-layer BiLSTMs are applied to
obtain supertag-specific (h(sp)) and dependency-
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Figure 2: Example for decrossing and subsequent supertag extraction. [PS=CL] indicates that the OPtns node was
originally immediately below CLAUSE. ⋄ indicates the position of the lexical anchor.
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Figure 3: Architecture overview

specific (h(dp)) word representations, respectively:

(h
(sp)
1 , . . . , h

(sp)
N ) = BiLSTMs(h1, . . . , hN ) (1)

(h
(dp)
1 , . . . , h

(dp)
N ) = BiLSTMd(h1, . . . , hN ) (2)

(h
(sp)
1 , . . . , h

(sp)
n ) are used to predict supertags:

Pr(sup(i)) = softmax(Linears(h
(sp)
i )) (3)

Finally, the dependency parsing component is
based on biaffine scoring (Dozat and Manning,
2017), in which the head and dependent represen-
tations are obtained by applying two feed-forward
networks to (h

(dp)
1 , . . . , h

(dp)
N ), hdi = FFhd(h

(dp)
i )

and dpi = FFdp(h
(dp)
i ). The score of word j be-

coming the head of word i is then defined as fol-
lows (M is a matrix and b is a bias vector):

ϕ(i, j) = dpTi M hdj + bThdj (4)

Cross-lingual Embeddings via Soft Alignment
Our cross-lingual system requires on input (i) a

target sentence (yi)
M
i=1 of length M , (ii) a cor-

responding source sentence (xi)
N
i=1 of length N ,

and (iii) a soft word alignment function a(j, i),
obtained using standard unsupervised word align-
ment. a(j, i) provides the probability of aligning
the j-th target word with the i-th source word (0
in the source sentence is used for unaligned tar-
get words), and it holds that for each j ∈ 1..M
the sum of all a(j, i) (i ∈ 0..N ) is 1. The align-
ment enables an attention mechanism that projects
the source supertag/dependency representations via
the word alignments onto the corresponding target
words. The source-side representations are pro-
vided by a monolingual parser trained on a large
dataset available for the source language. Formally,
let (h(src_sp)i )Ni=1 and (h

(src_dp)
i )Ni=1 be the source

supertag and dependency representations (calcu-
lated as in Eq. 1 and Eq. 2). They are projected
along the alignment function to obtain the target
supertag/dependency projections:

h
(prj_sp)
j =

∑
i
a(j, i)h

(src_sp)
i (5)

h
(prj_dp)
j =

∑
i
a(j, i)h

(src_dp)
i (6)

These projections are then concatenated with the
target language supertag and dependency represen-
tations (h(trg_sp)

j and h(trg_dp)
j , resp.), calculated as

in Eq. 1, 2 but without pre-trained embeddings:

h
(hbr_sp)
j = [h

(prj_sp)
j ;h

(trg_sp)
j ] (7)

h
(hbr_dp)
j = [h

(prj_dp)
j ;h

(trg_dp)
j ] (8)

where for two given vectors v and w, [v;w] de-
notes their concatenation. The resulting “hybrid”
representations, h(hbr_sp)

j and h(hbr_dp)
j , are from
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this point on used as in the monolingual model in
order to determine the supertag distribution (Eq. 3)
and dependency head scores (Eq. 4).

Gloss Embeddings Language documentation
data seldom comes in parsed form, but often in
glossed form. For example, in the Daakaka and Dal-
kalaen data we use (cf. Section 4), each word is an-
notated with parts of speech as well as morpheme-
by-morpheme glosses, where content morphemes
are represented by English translations, and func-
tion morphemes by acronyms indicating their func-
tion (see bottom of Figure 1 for an example). These
glosses contain valuable information for parsing,
as they put words into morphosyntactic classes
and contain specific lexical information as well.
We experiment with making this information avail-
able to the parser by concatenating the character-
based word embeddings with character-based part-
of-speech and morpheme-by-morpheme gloss em-
beddings.

Self-training Self-training is a technique used to
improve learning on limited amounts of training
data. Applied to parsing, the idea is to train on what
little data is available first and use the resulting
model to parse unannotated data. Some of the
resulting parses are then selected and added to the
training data. The expanded training data is used to
train a new model. This process can be repeated for
multiple “rounds” of self-training (McClosky et al.,
2006; Reichart and Rappoport, 2007; Huang and
Harper, 2009; Kurniawan et al., 2021). Selection
of the added data is crucial; generally the idea is to
add those instances where the parser is especially
confident and that are thus likely to be correct.

4 Experimental Setup

Data Our choice of data is mainly driven by the
availability of RRG-annotated resources. RRG-
bank (Bladier et al., 2018) contains a subset of the
English Wall Street Journal Corpus (Marcus et al.,
1993) annotated with RRG trees. RRGparbank
(Evang et al., 2021; Bladier et al., 2022) contains
George Orwell’s novel 1984 in the original English
as well as translations to French, German, Russian,
and Farsi, along with sentence alignments between
English and every other language. The English data
as well as parts in other languages are annotated.
In addition, we use 6 499 sentences in Daakaka,
first published as von Prince (2013a) and described
in von Prince (2015), which come with glosses,

part-of-speech tags, and English translations, and
1 871 of which have been annotated with RRG trees
following the RRGparbank annotation guidelines.
Furthermore, we use 3 393 sentences in Dalkalaen,
first published as von Prince (2013b), also includ-
ing glosses and English translations, of which 102
sentences have been annotated with RRG trees.

We use all English trees in RRGbank and RRG-
parbank to train the English source model. For
German, French, Russian, Farsi, Daakaka, and Dal-
kalaen, we focus on sentences with 25 tokens or
less that are 1:1-aligned with an English sentence
(for Daakaka and Dalkalaen, this is almost all sen-
tences). Of these, we use 80% for training, 10%
for development, and 10% for testing. Note that
low resource language corpora are often oral cor-
pora, and they therefore tend to contain shorter sen-
tences. This is the reason why only very few of the
Daakaka and Dalkalaen sentences are longer than
25, and this is also why a sentence length limit of
25 simulates this low resource scenario adequately.
For Dalkalaen, we use the unannotated sentences
for self-training, while the 101 annotated sentences
are used for testing. In the case of Daakaka, we ran
experiments with and without gloss embeddings
(in addition to the token embeddings), while for
Dalkalaen we always used gloss and token embed-
dings.

We randomly downsample the training data ac-
cording to the degree of “low resource-ness” we
are simulating in each experiment.

English Source Model The English source
model uses FastText word embeddings (Bo-
janowski et al., 2017). We tuned its hyperparame-
ters using 80% of the data for training and 10% for
validation. We then trained it on the entire English
dataset.

Word Alignments For all sentence pairs (a sen-
tence in the target language and the aligned English
sentence), we computed a soft word alignment ma-
trix using efmaral (Östling, 2015) with default
settings (code modified to output matrices). For the
experiments using gloss embeddings, we align to
the glosses instead of the target-language words.

Target Models After a phase of hyperparameter
tuning on the development data (cf. Appendix A),
we trained 1) monolingual models and 2) cross-
lingual models on the (decrossed and decomposed)
training data for all target languages, except for
Dalkalaen.
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Total ≤ 25 tokens, 1:1-aligned
Source Language # Sentences # Trees # Sentences ∅ Length # Trees # Supertags
RRGbank English 49 208 3 765 n/a n/a n/a n/a
RRGparbank English 6 737 6 737 n/a n/a n/a n/a

German 6 661 5 822 5 026 13.0 4 482 3 128
French 7 261 3 243 4 550 12.9 2 339 1 815
Russian 6 669 6 001 5 638 11.2 5 315 3 293
Farsi 6 604 1 253 4 726 12.3 1 040 946

von Prince (2013a) Daakaka 6 499 1 871 6 279 10.3 1 845 1 170
von Prince (2013b) Dalkalaen 3 393 102 3 272 10.2 101 229

Table 1: Data overview. The versions of RRGbank and RRGparbank used are the 2022-03-17 snapshots.

Self-training We experiment with up to 5 rounds
of self-training. In each round, we use the current
parsing model to parse all sentences that are not
yet part of the training data. We then add the 500
output trees with the lowest weights as reported
by the A* parser to the training data. With poorly
performing initial models, it sometimes happens
that many parse failures occur and less than 500
parses are found in total. In these cases, we add all
parses.

For Daakaka and for the RRGparbank languages,
self-training starts from a parser trained on a set
of annotated trees, as described in the previous
section. For Dalkalaen, the starting point was the
parser trained on all annotated Daakaka data (train,
dev, and test), with glosses.

Evaluation We applied the neural scoring model
to the annotated part of the development/test data,
then computed RRG trees using the A* parser.
Failed parses were replaced by dummy trees con-
sisting of a SENTENCE root that directly dom-
inates POS tags taken from the highest-scoring
supertags. The resulting trees were recrossed and
compared to the manually annotated dev/test trees
using the EVALB metric (Collins, 1997), ignoring
function tags such as -PERI or -TNS. We report the
F1 score.

5 Results and Discussion

Impact of Training Data Size We are inter-
ested in low-resource scenarios, so we first look at
how the number of available training trees impacts
parser accuracy for different languages. This pro-
vides the baseline against which we will later eval-
uate our cross-lingual embedding and self-training
methods. We look at various degrees of “low
resource-ness”, simulated by randomly downsam-
pling the training set: 100 training sentences, 500,
1000, 2000, 3000, 4000, and finally the scenario
where we use as many training trees as possible

(varies by language). The blue dots in Fig. 4 show
the results. In all cases, we see a considerable
improvement in each step up to 2000 training sen-
tences, and after that (for those languages where
we have data), results improve only slightly. Note
that the f-scores in general are rather low (the best
ones around 80%) compared to state of the art con-
stituency parsing. This is due to the fact that, since
we are simulating a low resource scenario, we do
not use any pretrained word embeddings, even for
the languages where these would be available.

Impact of Cross-lingual Embeddings Fig. 4 (or-
ange crosses) also shows the effect of including
cross-lingual embeddings in the model. In general,
the less training data we have in the target language,
the more the cross-lingual information from the
aligned English sentences is helpful. Furthermore,
in none of the cases, the f-score of the cross-lingual
model is below the one of the monolingual model,
except for one slight outlier for German at training
data size 500. (Note however that on the test data,
cross-lingual transfer, with 500 or 1 000 training
sentences, is helpful for German, see Table 2.) The
only language where cross-lingual embeddings im-
prove parsing performance only very little, even
when using only 100 sentences of training data, is
Daakaka when using glosses. We think that the
reason for this is that the helpful information com-
ing from English words, in particular the implicit
information on English supertags, is already to a
certain extent provided by the glosses, therefore
the cross-lingual model does not contribute a lot of
useful additional features.

It is striking that monolingual parsing for Ger-
man with only little training data (500 or more
sentences) is better than for instance for French,
even though German has more syntactic variation
and therefore more supertags. We suspect that the
reason is that French has more ambiguities in high
frequency lexical items, in particular ambiguities
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Figure 4: Parser accuracies on the development sets at 100, 500, 1000, 2000, 3000, 4000, and all available training
sentences. Dots represent monolingual models, X’s represent cross-lingual ones.

that come with different syntactic constructions,
for instance the use of de and à as prepositions (‘of’
and ‘to’ respectively in English, ‘von’ and ‘an’ in
German) or as clause linkage markers preceding an
infinitive (‘to’ in English, ‘zu’ in German). With
more training data and pretrained embeddings as in-
put, this difference is reversed; Bladier et al. (2022)
report better parsing results on the RRGparbank
data for French and Russian than for German.

Impact of Self-training Now let us look at
whether self-training improves the parsing perfor-
mance, again for monolingual as well as cross-
lingual parsing. Figure 5 plots the f-scores for the
different languages and for different sizes of train-
ing data. Overall, we oftentimes see a positive
effect of self-training, and this effect is stronger in
the extremely low and very low resource scenarios
(100 and 500 training sentences resp.). The effect
is less visible with Daakaka with glosses, but the
experiments on the test data (see below) will show
that also for this scenario, self-training is actually
helpful. It is surprising that, even when starting
with only 100 sentences, which means that many
constructions in the target language are not present
in the training data, self-training improves results,
at least for approximately the first two rounds.

In the cases where we start with 1000 training
sentences or even with all available training data

(note that these have different sizes), the effect of
self training is less clear. In some cases, parsing per-
formance even decreases slightly. This means that
the trees added during self-training do not contain
new knowledge about possible supertag combina-
tions while containing probably errors that decrease
parsing performance when used in training. Note
however that these numbers are from just one run
on the dev data. On the test data, when averaging
over several runs, self-training helps for all lan-
guages when starting with 1000 training sentences
(see below).

Zero-shot parsing with self-training We now
investigate the scenario where we want to parse
language data that has glosses and translations, but
no syntactic annotations at all, not even a seed. We
focus on the scenario where we do have access to
a seed training set for a related language that also
has translations, and glosses following a similar
schema. This is also a realistic scenario in lin-
guistic fieldwork, where linguists often investigate
multiple related languages within a region. We
take the example of Daakaka, for which we have
a moderately sized training set, and the closely re-
lated language Dalkalaen, for which we have only
created a small annotated test set (102 sentences).
We apply our cross-lingual model to this scenario
by first training our model on all Daakaka data

4366



40

60

80
German French Russian

0 1 2 3 4 5
40

60

80
Farsi

0 1 2 3 4 5

Daakaka

0 1 2 3 4 5

Daakaka+glosses

rounds of self-training

f-s
co

re

moderately low low very low extremely low

Figure 5: Effect of self-training in the extremely low (100 annotated sentences), very low (500), low (1 000; 851 for
Farsi), and moderately low (3 594 for German, 1 875 for French, 4 259 for Russian, 1 455 for Daakaka) resource
scenarios after 0, 1, 2, 3, 4, and 5 rounds of self-training, adding up to 500 sentences in each round (it can be less
due to parse failures). Solid curves represent monolingual and dashed curves cross-lingual models.

(train, dev, and test), and then using the unanno-
tated Dalkalaen data for self-training. The results
are shown at the bottom of Table 2. It can be seen
that even in this “no-resource” scenario, a perfor-
mance comparable with the low-resource scenario
can be reached.

Test Results After developing our models on the
development data, we tested them on the test data.
Here, we focus on the very low resource (500 an-
notated training sentences) and low resource (1000
sentences; 851 for Farsi) scenarios. We run each
experiment five times with different random seeds
(these affect the initial model parameters and the
downsampling of the training data) and give the av-
erage f-scores in Table 2; the numbers in bold are
the best results for a specific size of training data.
The results confirm even more clearly that both
cross-lingual transfer as well as self-training im-
prove parsing results. In both cases (500 and 1 000
resp. 851 training sentences) the cross-lingual
model systematically outperforms the monolingual
model, sometimes by a large margin (see the col-
umn with 0 rounds of self-training). Furthermore,
for all languages, self-training leads to further im-

provement, though not always with the same num-
ber of self-training rounds. For French in the
case of 500 training sentences, after the first three
rounds, the maximum score is already reached, and
for Farsi and Daakaka with glosses in the very
low resource scenario, the scores decrease after 4
rounds of self-training. For the other languages and
training data sizes, continuing to 5 rounds brings
further slight improvement. In most cases, the best
score is reached with the combination of cross-
lingual parsing and self-training, except for Farsi,
where mono-lingual parsing benefits substantially
from self-training while cross-lingual parsing im-
proves only very little.

6 Conclusions

In this paper, we investigated constituency parsing,
more precisely RRG parsing, for low-resource lan-
guages in a scenario where English translations,
a limited set of annotated sentences in the target
language and possibly also glosses are available.
RRG is a theory that is widely used in typologi-
cal research. We extended an existing RRG parser
into a cross-lingual parser, exploiting the parallel
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language German French
self-training 0 1 2 3 4 5 0 1 2 3 4 5
very low, mono 68.9 70.1∗ 70.9∗ 71.5∗ 71.9∗ 72.2 62.6 64.9∗ 65.0 66.3∗ 66.3 66.4
very low, cross 69.0 70.2∗

† 72.0∗
† 73.3∗

† 73.5∗
† 74.0† 69.9† 70.4† 71.6∗

† 71.9† 72.1† 72.2†
low, mono 74.3 74.7∗ 75.1 75.8∗ 75.8 76.0 69.4 70.6∗ 71.4∗ 71.5 72.0∗ 72.0
low, cross 74.7† 76.1∗

† 77.5∗
† 77.7† 78.2∗

† 78.3† 74.1† 74.4† 75.3† 75.9∗
† 75.7† 75.4†

language Russian Farsi
self-training 0 1 2 3 4 5 0 1 2 3 4 5
very low, mono 65.8 67.3∗ 68.0∗ 68.6 69.2∗ 69.2 66.7 69.7∗ 70.2 71.1 71.8 71.0
very low, cross 69.9† 70.4∗

† 71.4∗
† 71.9† 72.0∗

† 72.2† 69.2† 70.4 70.9 71.2 70.5 70.0
low, mono 71.7 73.1∗ 73.4 73.9∗ 74.3 74.4 71.3 74.1∗ 75.1∗ 74.8 74.9 75.7
low, cross 74.3† 75.1∗

† 75.3† 75.9∗
† 75.9† 76.0† 73.0† 73.2 73.4 74.2 73.9 73.9

language Daakaka Daakaka+glosses
self-training 0 1 2 3 4 5 0 1 2 3 4 5
very low, mono 63.0 62.8 64.7∗ 64.9 65.1 65.1 67.9 69.5∗ 70.1∗ 70.7∗ 70.9 70.5
very low, cross 66.0† 67.0∗

† 67.7† 68.3† 68.4† 68.8† 70.2† 70.7† 71.7∗
† 72.2∗

† 72.4† 72.2†
low, mono 67.6 68.1∗ 68.7 68.7 69.2 69.5 71.9 71.5 72.4∗ 72.9 73.4∗ 73.3
low, cross 70.4† 70.8† 70.8† 71.2∗

† 71.1† 71.3† 73.1† 73.7∗
† 74.3† 74.2† 74.5† 74.7†

language Dalkalaen+glosses
self-training 0 1 2 3 4 5
zero, cross 69.0 71.8∗ 72.4 73.0∗ 73.6 73.2

Table 2: Test results for the very low and low resource scenarios for German, French, Russian, Farsi, and Daakaka,
as well as the zero resource scenario for Dalkalaen. All f-scores are averaged over 5 runs with different random
initializations. ∗indicates that the result is significantly better (p ≤ .05) than the corresponding result with one less
round of self-training according to a permutation test (cf. Dror et al., 2018). †indicates the same for cross-lingual
results compared to the corresponding monolingual model.

English data and unsupervised word alignments.
Furthermore, we also adopted self-training, i.e., it-
eratively expanding the training data by adding the
most confident new parses in each round. Our
experiments showed that both self-training and
cross-lingual parsing yield substantial and in al-
most all cases complementary improvements. Fur-
ther experiments showed that even when only trans-
lations and glosses but no annotated sentences are
available, self-training starting from a cross-lingual
parser for a related language, based also on tokens
and glosses, leads to considerable improvements
and surprisingly good results.
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A Hyperparamters

The hyperparameters of our models are given in
Table 3.
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mono cross

character-level LSTM embedding layers
character size 25 25
depth 1 1
output size for words 300 300
output size: glosses 100 (0) 100 (0)
output size: POS 100 (0) 100 (0)
output dropout 0.1 0.1

common contextualization layer
input size 500 (300) 500 (300)
output size 200 200
depth 2 2
dropout 0.1 0.1
output dropout 0.1 0.1

contextualization layer for taggers
input size 400 800
output size 200 200
depth 2 2
dropout 0.1 0.1
output dropout 0.1 0.1

contextualization layer for biaffine layer
input size 400 800
output size 200 200
depth 2 2
dropout 0.1 0.1
output dropout 0.1 0.1

auxiliary POS tagging layer
input size 400 400

supertagging layer
input size 400 400

biaffine dependency parsing layer
input size 400 400
hidden size 100 100
output size 100 100
dropout 0.1 0.1

A* decoder (partage-twg)
top-n tags given 15 15
top-n dep. heads 15 15
β probability cutoff factor (Clark and Curran, 2007) 0.01 0.01

Table 3: Hyperparameters in monolingual and cross-lingual models. Numbers in parentheses apply to models with
no gloss embeddings. Contextualization layers for the cross-lingual model have twice as big inputs because they
concatenate source-language and target-language representations.
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Abstract

Existing zero-shot cross-lingual transfer meth-
ods rely on parallel corpora or bilingual dic-
tionaries, which are expensive and impractical
for low-resource languages. To disengage from
these dependencies, researchers have explored
training multilingual models on English-only
resources and transferring them to low-resource
languages. However, its effect is limited by the
gap between embedding clusters of different
languages. To address this issue, we propose
Embedding-Push, Attention-Pull, and Robust
targets to transfer English embeddings to vir-
tual multilingual embeddings without semantic
loss, thereby improving cross-lingual transfer-
ability. Experimental results on mBERT and
XLM-R demonstrate that our method signifi-
cantly outperforms previous works on the zero-
shot cross-lingual text classification task and
can obtain a better multilingual alignment.

1 Introduction

In recent years, advances in multilingual models
such as mBERT (Devlin et al., 2019), XLM (Con-
neau and Lample, 2019), XLM-R (Conneau et al.,
2020), etc., after being fine-tuned with annotated
data, have enabled significant improvements in
many cross-lingual tasks. However, due to the
lack of annotated data, some tasks in low-resource
languages have not enjoyed this technological ad-
vancement. To solve this issue, the academic
and industrial community began to focus on zero-
shot cross-lingual transfer learning (Huang et al.,
2019; Artetxe et al., 2020), which aims to fine-tune
multilingual models with annotated data in high-
resource languages and obtain a nice performance
in low-resource language tasks.

Some works aligned word embeddings between
high- and low-resource languages through addi-
tional parallel sentence pairs (Artetxe and Schwenk,

∗∗ Contribution during internship at Tencent Inc.
†† Corresponding author: Weijie Liu.
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Figure 1: (a) Different languages clusters in mBERT.
(b) The relative positions of "nature", "language" and
"processing" are similar in English, Chinese and Irish
(Cao et al., 2020). (c) Using synonym augmentation to
train a robust region covering words in other languages.
(d) We align different languages and construct a suitable
robust region by pushing the embeddings away and
pulling the relative distance among words.

2019; Wei et al., 2021; Chi et al., 2021; Pan et al.,
2021) or bilingual dictionaries (Cao et al., 2020;
Qin et al., 2020; Liu et al., 2020), so that high-
resource fine-tuned models can be transferred to
low-resource languages. Although this approach
has achieved excellent results in many languages,
parallel corpora and bilingual dictionaries are still
prohibitively expensive, rendering it impracticable
in some minority languages.

To disengage from the dependence on parallel
corpora or bilingual dictionaries (Wu and Dredze,
2019; Hu et al., 2020), some studies have found
that syntactic features in high-resource languages
can improve zero-shot cross-lingual transfer learn-
ing (Meng et al., 2019; Subburathinam et al., 2019;
Ahmad et al., 2021a,b). Libovický et al. (2020)
found that the embeddings of different languages
are clustered according to their language families,
as shown in Figure 1a and 1b, which demonstrated
that different languages are not aligned perfectly
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in mBERT (Deshpande et al., 2021). Huang et al.
(2021) tried adversarial training and randomized
smoothing with English synonym augmentation to
build robust regions for embeddings in the mul-
tilingual models, as illustrated in Figure 1c. In
this way, models can output similar predictions for
different language embeddings in the same robust
region even they are not well aligned. However, the
transferability of English synonym augmentation
is limited because its robust region remains close
to the English cluster, as shown in Figure 1c.

In this work, we select English as a high-
resource language and follow the studies that do not
require additional parallel corpora or bilingual dic-
tionaries to improve cross-lingual transfer learning
performance with minimal cost. For this purpose,
three strategies are proposed to enlarge the robust
region of English embeddings. The first strategy
is called Embedding-Push, which pushes the em-
bedding of English to other language clusters. The
second is Attention-Pull, which constrains the rela-
tive position of the word embeddings to prevent the
meaning from straying. The last strategy, named
Robust target, introduces a Virtual Multilingual
Embedding (VME) to help the model build a suit-
able robust region, as shown in Figure 1d.

Experimental results on mBERT and XLM-R
demonstrate that our method effectively improves
the zero-shot cross-lingual transfer on classification
tasks and outperforms a series of previous works.
In addition, case studies show that our method im-
proves the model through multilingual word align-
ment. Compared with existing works, our method
has the following advantages. First, our method
only needs English resources, which is suitable for
low-resource languages. Second, our method can
induce alignments in many languages without spec-
ifying the target language. Finally, our method is
simple to implement and achieves effective experi-
mental results. Our code is publicly available1.

2 Method

Given an English training batch B, for a specific
x ∈ B consisting of words (x1, x2, x3), we first fol-
low Huang et al. (2021) to generate an augmented
example xa = (xa1, x

a
2, x

a
3) by randomly replacing

xi with xai from the pre-defined English synonym
set (Alzantot et al., 2018). Then, we introduce three
objective functions to get the Virtual Multilingual
Embedding (VME) that provides a suitable robust

1https://github.com/KB-Ding/EAR

Embedding-push

Attention-pull 

classify

Transformer

Embedding

Transformer

!"# $!, $", …

…

…

classify

!"# $!# , $"# , …

Transformer

Embedding

Transformer

…

…

processinglanguage 处理语言natural自然
are Virtual Multilingual Embeddings, ,

Figure 2: The two networks have tied weights. VMEs
expand robust regions (orange circle) by aligning
semantic-similar words in other languages. Note that
VMEs do not specify the target language but improve
multilingual performance, as shown in section 3.3.

region for zero-shot cross-lingual classification task
as shown in Figure 2. We describe the details in
the following subsections.

2.1 Embedding-push target
The Embedding-Push target aims to make English
embeddings leave their original cluster and robust
region by pushing away (x,xa) in the embedding
space. The pushed embedding can be viewed as
the VME. The loss function is (1).

ℓEPT = − 1

|B|
∑

x∈B
(M(Ex)−M(Exa))2 (1)

where Ex, Exa denote the embedding output of x
and xa, M is the mean-pooling method.

2.2 Attention-pull target
The self-attention matrices contain rich linguistic
information (Clark et al., 2019) and can be regarded
as a 1-hop graph attention between the hidden
states of words (Vaswani et al., 2017; Veličković
et al., 2018). The attention matrix represents the
information transfer score between each pair of
words, we regard it as the pulling force, so the
attention matrix determines the relative linguistic
positions of words in a sentence. We introduce the
Attention-Pull target to encourage the relative lin-
guistic position among (xa1, x

a
2, x

a
3) to be similar to

(x1, x2, x3) by fitting the middle layer multi-head
attention matrices, as (2).

ℓAPT =
1

|B|H
∑

x∈B

H∑

i

(
Aix −Aixa

)2
(2)
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Model en ar bg de el es fr hi ru sw th tr ur vi zh avg.

mBERT† 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
+ADV† 81.9 64.9 68.3 71.7 66.5 74.4 74.5 59.6 68.8 48.8 50.6 61.7 59.2 70.0 69.4 66.0
+RS-RP† 82.6 65.4 68.7 70.5 67.2 75.0 74.1 59.8 69.5 48.4 50.5 59.7 57.9 70.5 69.7 66.0
+RS-DA† 81.0 66.4 69.9 71.8 68.0 74.7 74.2 62.7 70.6 51.1 55.7 62.9 60.9 71.8 71.4 67.6
+Syntax‡ 81.6 65.4 69.3 70.7 66.5 74.1 73.2 60.5 68.8 - - 62.4 58.7 69.9 69.3 -
+ Ours 83.2 67.4 71.0 72.9 68.3 75.7 75.2 64.0 71.6 51.3 56.7 63.6 61.4 72.4 71.5 68.4

XLM-R∗ 84.0 72.6 78.9 77.0 76.5 78.6 78.2 70.3 76.4 65.0 72.4 73.4 67.6 75.5 75.0 74.8
+RS-DA∗ 83.5 73.2 78.2 77.1 76.9 79.2 79.0 72.3 76.9 66.5 73.2 73.1 68.2 76.4 75.1 75.3
+ Ours 84.6 74.5 78.8 77.5 77.0 79.4 79.5 72.6 76.8 66.7 73.9 74.7 68.7 76.4 75.8 75.8

Table 1: Zero-shot cross-lingual transfer results on the XNLI. We bold the highest accuracy scores (%). "†" and "‡"
are taken from (Huang et al., 2021) and (Ahmad et al., 2021a), respectively. "∗" is the result of our reimplementation.

Model en de es fr ja ko zh avg.

mBERT† 94.0 85.7 87.4 87.0 73.0 69.6 77.0 82.0
+ADV† 93.7 86.5 88.5 87.8 76.1 75.3 80.4 84.0
+RS-RP† 94.5 87.4 90.0 89.5 77.9 77.5 82.0 85.5
+RS-DA† 93.5 87.8 88.8 88.8 79.3 78.3 81.5 85.4
+Syntax‡ 94.0 85.9 89.1 88.2 75.8 76.3 80.7 84.3
+Ours 94.2 87.9 90.3 89.7 79.9 79.2 82.4 86.2

XLM-R∗ 94.4 88.9 89.8 89.2 78.2 78.4 81.4 85.7
+RS-DA∗ 94.7 88.8 89.7 90.0 78.7 80.2 82.3 86.3
+Ours 95.1 89.0 90.3 90.1 80.5 81.7 83.1 87.1

Table 2: Experimental results on the PAWS-X across
7 languages. "†" and "‡" are taken from (Huang et al.,
2021) and (Ahmad et al., 2021a), respectively. "∗" is
the result of our reimplementation.

where H is the number of attention head. Let L
denote the sequence length, Ai ∈ RL×L is the at-
tention matrix corresponding to the i-th head. ℓAPT
alleviates the semantic loss of the VME.

2.3 Robust target
The robust target aims to build a robust region with
the VME for the classification task. The hidden
state of [CLS] in the last layer is taken to classify,
as (3). The model is trained by (4).

Pn = softmax(Wh[CLS]
n + b) (3)

ℓCE = − 1

|B|
∑

x∈B
(y logPx + y logPxa) (4)

whereW and b are trainable parameters. Pn is the
prediction for n. y denotes the gold label for each
x ∈ B. The final training objective is to minimize
three targets as (5):

ℓ = ℓCE + αℓEPT + βℓAPT (5)

where α and β are hyperparameters.

3 Experiment

3.1 Dataset and setup
We use mBERTbase and XLM-Rbase to evaluate our
method on XNLI (Conneau et al., 2018) and PAWS-

X (Yang et al., 2019) tasks, covering 17 languages.
We consider English as the source language and
other languages in test sets as low-resource target
languages. More training details are in Appendix
A. We set α=1, β=0.1 and apply the Attention-Pull
target at the 6-th layer. The analysis of hyperparam-
eters is in Appendix B. We measure results with
accuracy.

3.2 Baseline methods

For XLM-R, we consider RS-DA as a strong base-
line because it achieves the best performance. For
mBERT, we consider all the following baselines.

Adv: Huang et al. (2021) uses adversarial train-
ing to build a robust region for cross-lingual trans-
fer. They consider the most effective perturbation
in each iteration.

RS-RP: Huang et al. (2021) perturbs sentence
embeddings with randomly sampled δ to smooth
the classifier and build robust regions.

RS-DA: Huang et al. (2021) augments training
data with English synonym replacement to train a
smooth classifier and build robust regions.

Syntax: Ahmad et al. (2021a) provides syntax
features to mBERT by graph attention networks,
which helps cross-lingual transfer.

3.3 Main results

As illustrated in Table 1 and Table 2. We can ob-
serve that: 1) Our method achieves up to 4.2%
and 1.4% improvement on mBERT and XLM-
R, respectively, outperforming existing works and
demonstrating the effectiveness of our method. 2)
Multiple low-resource languages benefit from our
method. Based on mBERT, our method improves
not only English-like languages such as es and de
but also English-dissimilar (Littell et al., 2017) lan-
guages such as tr and ko. This result indicates
that the VME we proposed helps align different
languages in semantic space. 3) We avoid training
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Model en ar bg de el es fr hi

Ours 83.2 67.4 71.0 72.9 68.3 75.7 75.2 64.0
w/o EPT 82.8 67.0 71.2 72.7 67.6 75.5 75.1 63.4
w/o APT 82.4 66.5 70.8 72.8 68.5 76.0 75.1 63.4
w/o both 82.1 66.4 70.0 72.3 67.7 75.1 74.9 62.8

Model ru sw th tr ur vi zh avg.

Ours 71.6 51.3 56.7 63.6 61.4 72.4 71.5 68.4
w/o EPT 71.2 51.1 56.0 63.4 60.7 72.5 71.4 68.1
w/o APT 70.9 50.0 57.0 62.8 61.9 72.0 72.3 68.2
w/o both 70.8 48.3 54.6 61.0 61.0 71.5 71.5 67.4

Table 3: Ablation experimental results of our method
on the XNLI task. Experiments are based on mBERT.

each target language separately and achieves the
best results in one epoch using the English-trained
VME.

3.4 Ablation study

As shown in Table 3, we perform ablation studies
on Embedding-Push Target (EPT) and Attention-
Pull Target (APT). We find that both EPT and APT
are effective, but they can not perform well alone.
Besides, removing the APT causes improvement
in some languages, such as zh and ur. We attribute
this to the fact that the EPT-guided VME is unstable
without the APT, which improves performance in
some languages but drops in more languages such
as en, ar, ru, etc., resulting in poor average perfor-
mance. Thus EPT and APT need to be combined
for better performance.

4 Analysis

4.1 Case study

To study the effects of VME, we do the T-SNE
visualization for the word embeddings of paral-
lel sentences, as shown in Figure 3. Compared
with the RS-DA, our fine-tuned model aligns bet-
ter across languages, and words are closer to their
translations, leading to correct predictions. This
observation shows that the VME can effectively
help cross-lingual word alignment and improve the
performance of the model. We choose Arabic for
the case study because it can represent a class of
languages far apart from English.

4.2 Effect of EPT

To study the impact of EPT, we do the T-SNE visu-
alization using the embedding layer of mBERT. As
shown in Figure 4, some synonyms such as "cou-
pled / pair" and "energy / electricity" are pushed
away in the embedding layer trained with EPT,
and some synonyms are still close to their origi-
nal words. It indicates that the EPT push away

Case 4095

“ ریبك ”“high”

Case 1525

“ لضفأ ”“better”

PP (A) Predict: contradiction(A) Predict: neutral

✘(B) Predict: contradiction (B) Predict: entailment✘

Figure 3: T-SNE visualization for word embeddings
of English and Arabic translated sentences in XNLI
test sets. Blue dots are Arabic words. Red dots are
English words. (A) mBERT trained with our method.
(B) mBERT trained with RS-DA.

(A) (B)

energy

electricity retain

maintain

should

would coupled

pair

Figure 4: Visualization for English synonyms in the
XNLI dataset using the embedding layer of mBERT.
(A) Untrained. (B) Trained with our method.

Model en es de fr bg ru el th

EPT + APT 83.2 75.7 72.9 75.2 71.0 71.6 68.3 56.7
NT + APT 82.7 75.6 72.5 75.2 70.6 71.0 67.9 55.9
EPT + SRPT 83.1 76.0 73.2 74.9 70.7 71.4 68.9 56.5

Model sw vi ar zh hi ur tr avg.

EPT + APT 51.3 72.4 67.4 71.5 64.0 61.4 63.6 68.4
NT + APT 50.6 72.3 66.9 71.8 63.4 61.0 62.9 68.0
EPT + SRPT 50.5 72.3 67.0 71.8 63.3 60.9 63.1 68.2

Table 4: Results on the XNLI task when replacing some
targets, based on the mBERT. We sort languages ac-
cording to their differences from English (Littell et al.,
2017), from top left (small) to bottom right (big).

synonyms selectively. We also try to replace the
EPT in (5) with the Noise Target (NT), which per-
turbs word embeddings with Gaussian noise (Co-
hen et al., 2019). As shown in Table 4, we find
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Source Language en ar bg de el es fr hi ru sw th tr ur vi zh avg.

en 83.2 67.4 71.0 72.9 68.3 75.7 75.2 64.0 71.6 51.3 56.7 63.6 61.4 72.4 71.5 68.4
de 79.6 68.7 71.9 77.7 68.8 76.2 74.9 64.2 72.4 50.1 55.2 64.0 62.8 73.0 72.6 68.8
ru 78.5 68.2 73.3 73.1 68.8 74.8 73.9 65.8 75.7 49.3 57.2 64.0 62.4 73.4 73.7 68.8

Table 5: Results of our method on the XNLI task when training mBERT with three source languages.

logic(al) reason(able)

power

ratesrate

electricity

“logical power rate”

(original example)

𝒙 :

“reasonable electricity rates”

(augmented example)

𝒙𝒂 :

Figure 5: T-SNE visualization on the outputs of the
mBERT trained with our method. The original words
(x) and synonyms (xa) are from the XNLI training sets.

that the EPT setting outperforms NT. One possible
explanation could be that the noise in NT affects
all English tokens and thus may hurt performance.

4.3 Effect of APT
To investigate the effects of APT, we replace
the APT in (5) with the Sentence Representa-
tion Pull Target (SRPT). SRPT uses the mean
squared error between sentence embeddings of
x and xa as the objective. Formally, ℓSRPT =
1
|B|
∑|B|

i (Sent(x) − Sent(xa))2, where Sent(x)
represents the mean-pooled sentence embeddings
(Reimers and Gurevych, 2019) obtained by the mid-
dle layer of the model. Results in Table 4 show
that: 1) The average performance of SPRT is lower
than that of APT. 2) The SRPT mainly improves
performance on English-like languages, such as
es, de, and el, while drops that of most English-
dissimilar languages, such as tr, hi, sw, ur, etc.
This phenomenon shows that SRPT suffers heavily
from English training resources, biasing the VME
towards English-like languages, which hurts the
overall zero-shot cross-lingual transferability.

We perform T-SNE visualization on the outputs
of the mBERT trained with our method. As shown
in Figure 5, the synonym is still in the same relative
position as the original word, which proves the
effectiveness of APT.

4.4 Effect of source language
In addition to en, both de and ru show preference
as source languages in cross-lingual learning (Turc
et al., 2021). We translate the training set into de
and ru using OPUS-MT (Tiedemann and Thottin-

scale size of dictionary XNLI result

1.0 49975 68.424
0.75 37481 68.392
0.5 24987 68.218
0.25 12493 68.080

Table 6: Results on the XNLI task when using the scaled
English synonym dictionaries for data augmentation.

ur

0.5

0.6

tr
0.632
0.634
0.636

de

0.72

0.73

en

0.82

0.83

Scale
0.2 0.4 0.6 0.8 1.0

Figure 6: Results on XNLI test sets of four languages
when using scaled synonym dictionaries in our method.

gal, 2020) models, as shown in Table 5, the perfor-
mance of our method can be further improved.

4.5 Effect of dictionary size

The data augmentation in our method relies on
the size of pre-defined synonym dictionary. As
shown in Table 6 and Figure 6, we can observe
that: 1) The overall performance decreases as the
dictionary size decreases. 2) Some languages are
not sensitive to the dictionary size, such as tr and
ur. 3) The performance of en, de, and tr degrades
significantly when the dictionary size is scaled from
0.5 to 0.25. This phenomenon may be related to
some important synonyms in the dictionary, which
are effective for cross-lingual transfer learning.

5 Conclusion

To get rid of the dependence on parallel corpora,
enable cross-lingual transfer to low-resource lan-
guages, we propose Embedding-Push, Attention-
Pull, and Robust targets to combat the influence of
language clusters in multilingual models. Experi-
mental results demonstrate that our method outper-
forms previous works and obtains better-aligned
embeddings when trained with only English.
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A Implementation details

Dataset XNLI is the cross-lingual natural lan-
guage inference task. PAWS-X is used to determine
whether two sentences paraphrase each other. The
augmentation datasets are obtained from Huang
et al. (2021). They augmented 3 and 10 examples
for each sentence in XNLI and PAWS-X by syn-
onym replacement, respectively. The pre-defined
English synonym set is from Alzantot et al. (2018).
The scripts for splitting training, test, and validation
sets are provided by XTREME (Hu et al., 2020).
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Layer en ar bg de el es fr hi ru sw th tr ur vi zh avg.

3 83.23 67.17 71.44 73.33 68.06 75.99 74.89 63.27 70.94 51.00 56.61 63.23 61.04 72.30 71.66 68.28
6 83.05 67.01 70.88 72.63 67.98 76.05 74.91 62.99 71.82 51.28 56.81 63.53 61.44 72.48 71.48 68.29
9 82.87 67.56 71.22 73.05 68.36 75.81 74.63 63.65 71.14 50.96 56.75 62.97 61.00 72.55 71.68 68.28
12 83.05 67.05 70.56 72.81 68.22 75.55 75.35 63.35 71.48 50.82 56.71 63.11 60.30 72.48 71.68 68.17

Table A.1: Results of the XNLI task when we apply the Attention-Pull target at different layers of mBERT.

β en ar bg de el es fr hi ru sw th tr ur vi zh avg.

0.1 83.23 67.41 71.04 72.93 68.28 75.75 75.19 63.99 71.64 51.28 56.73 63.59 61.38 72.44 71.50 68.42
0.2 83.15 67.05 71.38 73.79 68.34 75.99 75.01 63.53 71.58 50 56.41 63.21 60.52 72.40 71.88 68.32
0.3 83.09 67.47 71.52 72.99 68.44 75.65 75.03 63.57 71.42 50.76 55.87 63.29 61.26 72.63 71.58 68.30
0.5 83.01 67.15 70.58 72.95 68.10 75.87 74.99 62.99 71.64 50.34 56.37 63.61 60.82 72.57 72.18 68.21
0.7 82.69 66.83 71.08 72.87 68.14 75.89 74.43 63.15 71.00 51.60 56.57 63.15 60.88 72.16 71.82 68.15
0.9 82.51 66.83 71.00 72.87 68.50 75.65 75.01 62.99 71.30 50.68 55.77 63.29 61.38 72.42 71.54 68.12

Table A.2: The experimental results of the XNLI task based on mBERT when β takes different values, where α=1.

α en ar bg de el es fr hi ru sw th tr ur vi zh avg.

0.6 82.85 67.35 71.64 73.03 68.32 75.65 74.57 63.37 71.56 50.56 56.39 63.67 61.16 72.44 72.02 68.30
0.8 82.87 67.23 70.96 73.17 68.68 75.23 74.87 63.53 71.26 50.86 56.45 63.21 61.30 72.55 72.02 68.28
1 83.23 67.41 71.04 72.93 68.28 75.75 75.19 63.99 71.64 51.28 56.73 63.59 61.38 72.44 71.50 68.42
1.2 83.19 67.03 71.08 72.97 67.86 75.87 74.75 63.49 71.50 51.60 56.37 63.21 60.88 72.59 71.28 68.24
1.4 83.09 67.03 71.44 73.35 68.78 75.79 74.51 63.23 71.50 51.14 56.35 63.45 60.72 72.75 71.60 68.32
1.6 83.19 67.05 71.50 73.23 68.18 76.25 74.77 63.43 71.06 51.10 56.43 62.95 60.52 72.38 71.98 68.27
1.8 83.29 67.09 71.44 73.51 68.54 75.85 74.79 63.83 71.36 50.78 56.47 63.23 60.86 72.59 71.98 68.37

Table A.3: The experimental results of the XNLI task based on mBERT when α takes different values, where β=0.1.

Setup The mBERTbase and XLM-Rbase are ob-
tained from Huggingface’s transformers package
(Wolf et al., 2020). The maximum sequence length
is set as 128. The learning rate is set as 2e-5. Our
method is trained for one epoch with the batch size
of 32. other models are trained following Hu et al.
(2020) and Huang et al. (2021).

Input construction Both XNLI and PAWS-
X are sentence pair classification tasks. Tak-
ing mBERT as an example, for each s1, s2
and augmented sa

1, sa
2 in the training data,

we set x as [CLS]s1[SEP]s2[SEP], xa as
[CLS]sa

1[SEP]sa
2[SEP]. Then, we take x and xa

as the input of our method in Figure 2, [CLS] token
is used for classification.

B Hyperparameter analysis

There are three main hyperparameters in our
method that need to be adjusted. 1) We need to
determine which layer is most effective for apply-
ing Attention-Pull target. 2) We need to determine
the weight of β in the final loss. 3) We need to
determine the weight of α in the final loss. We con-
duct experiments on XNLI task based on mBERT.

For 1), we first set α=1 and β=1, then apply the
Attention-Pull target on the {3, 6, 9, 12} layers

respectively, and the results are shown in Table A.1.
We find that applying the Attention-Pull target to all
layers works well. The most significant improve-
ment is achieved at the 6-th layer and the minimal
improvement is achieved at the last layer, which
may be related to the quality of sentence represen-
tation at different layers of the model (Carlsson
et al., 2021; Merchant et al., 2020).

For 2), we apply the Attention-Pull target at the
6-th layer and set α=1, then select β from {0.1, 0.2,
0.3, 0.5, 0.7, 0.9}. The experimental results are
shown in Table A.2. First, we find that model per-
formance improved when using any of the above β
values. Second, we also find that the improvement
becomes significant as β decreases, we attribute
this phenomenon to the fact that the Attention-Pull
target should not over-focus on features of the En-
glish corpus but should help the VME capture fea-
tures in other language clusters. Note that this
result does not mean that the Attention-Pull target
is unnecessary, as ablation experiments in section
3.4 show that the Attention-Pull target can improve
the model. Finally, the best experimental result is
obtained when β=0.1.

For 3), we apply the Attention-Pull target at the
6-th layer and set β=0.1, then select α from {0.6,
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Model en es de fr bg ru el th

EPT + APT 84.6 79.4 77.5 79.5 78.8 76.8 77.0 73.9
NT + APT 84.4 79.4 77.2 79.0 78.8 76.7 76.4 73.4
EPT + SRPT 84.4 80.0 77.8 79.2 78.5 76.8 77.1 74.2

Model sw vi ar zh hi ur tr avg.

EPT + APT 66.7 76.4 74.5 75.8 72.6 68.7 74.7 75.8
NT + APT 67.3 76.3 73.6 75.2 72.2 67.7 74.1 75.5
EPT + SRPT 65.2 76.6 73.5 75.8 72.5 68.7 74.4 75.6

Table A.4: Results on the XNLI task when replacing
some targets, based on the XLM-R.

0.8, 1.0, 1.2, 1.4, 1.6, 1.8}. Results are shown
as Table A.3. We find that the best performance
is achieved when α is 1.0. The performance is
also improved when using other α values, which
shows that the Embedding-Push target can robustly
improve the cross-lingual transferability of models.
Therefore, in our main experiments, we set α=1.0,
β=0.1 and apply the Attention-Pull target at the
6-th layer.

C Analysis on XLM-R

We perform analysis based on XLM-R, the results
are shown in Table A.4.
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Abstract

Cross-lingual word embeddings (CLWE) have
been proven useful in many cross-lingual tasks.
However, most existing approaches to learn
CLWE including the ones with contextual em-
beddings are sense agnostic. In this work, we
propose a novel framework to align contextual
embeddings at the sense level by leveraging
cross-lingual signal from bilingual dictionar-
ies only. We operationalize our framework
by first proposing a novel sense-aware cross
entropy loss to model word senses explicitly.
The monolingual ELMo and BERT models pre-
trained with our sense-aware cross entropy loss
demonstrate significant performance improve-
ment for word sense disambiguation tasks. We
then propose a sense alignment objective on top
of the sense-aware cross entropy loss for cross-
lingual model pretraining, and pretrain cross-
lingual models for several language pairs (En-
glish to German/Spanish/Japanese/Chinese).
Compared with the best baseline results, our
cross-lingual models achieve 0.52%, 2.09%
and 1.29% average performance improvements
on zero-shot cross-lingual NER, sentiment clas-
sification and XNLI tasks, respectively. 1

1 Introduction

Cross-lingual word embeddings (CLWE) provide a
shared representation space for knowledge transfer
between languages, yielding state-of-the-art perfor-
mance in many cross-lingual natural language pro-
cessing (NLP) tasks. Most of the previous works
have focused on aligning static embeddings. To
utilize the richer information captured by the pre-
trained language model, more recent approaches
attempt to extend previous methods to align con-
textual representations.

∗ Linlin Liu is under the Joint PhD Program between
Alibaba and Nanyang Technological University.

†Corresponding author.
1Our code is available at https://github.com/

ntunlp/multisense_embedding_alignment.
git.

Aligning the dynamic and complex contextual
spaces poses significant challenges, so most of the
existing approaches only perform coarse-grained
alignment. Schuster et al. (2019) compute the aver-
age of contextual embeddings for each word as an
anchor, and then learn to align the static anchors
using a bilingual dictionary. In another work, Al-
darmaki and Diab (2019) use parallel sentences
in their approach, where they compute sentence
representations by taking the average of contextual
word embeddings, and then they learn a projection
matrix to align sentence representations. They find
that the learned projection matrix also works well
for word-level NLP tasks. Besides, unsupervised
multilingual language models (Devlin et al., 2018;
Artetxe and Schwenk, 2019; Conneau et al., 2019;
Liu et al., 2020) pretrained on multilingual cor-
pora have also demonstrated strong cross-lingual
transfer performance. However, studies (Wang
et al., 2020; Cao et al., 2020; Efimov et al., 2022;
Tien and Steinert-Threlkeld, 2022) have shown that
adjusting the unsupervised multilingual language
model with parallel sentences can help further im-
prove cross-lingual performance.

Though contextual word embeddings are in-
tended to provide different representations of the
same word in distinct contexts, Schuster et al.
(2019) find that the contextual embeddings of dif-
ferent senses of one word are much closer com-
pared with that of different words. This contributes
to the anisomorphic embedding distribution of dif-
ferent languages and causes problems for cross-
lingual alignment. For example, it will be difficult
to align the English word bank and its Japanese
translations銀行 and岸 that correspond to its two
different senses, since the contextual embeddings
of different senses of bank are close to each other
while those of 銀行 and 岸 are far. Zhang et al.
(2019) propose two solutions to handle multi-sense
words: 1) remove multi-sense words and then align
anchors in the same way as Schuster et al. (2019);
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2) generate cluster level average anchor for con-
textual embeddings of multi-sense words and then
learn a projection matrix in an unsupervised way
with MUSE (Conneau et al., 2017). They do not
make good use of the bilingual dictionaries, which
are usually easy to obtain, even in low-resource sce-
narios. Moreover, their projection-based approach
still cannot handle the anisomorphic embedding
distribution problem.

In this work, we propose a novel sense-aware
cross entropy loss to model multiple word senses
explicitly, and then leverage a sense level transla-
tion task on top of it for cross-lingual model pre-
training. The proposed sense level translation task
enables our models to provide more isomorphic
and better aligned cross-lingual embeddings. We
only use the cross-lingual signal from bilingual dic-
tionaries for supervision. Our pretrained models
demonstrate consistent performance improvements
on zero-shot cross-lingual NER, sentiment classifi-
cation and XNLI tasks. Though pretrained on less
data, our model achieves the state-of-the-art result
on zero-shot cross-lingual German NER task. To
the best of our knowledge, we are the first to per-
form sense-level contextual embedding alignment
with only bilingual dictionaries.

2 Background: prediction tasks of
language models

Next token prediction and masked token prediction
are two common tasks in neural language model
pretraining. We take two well-known language
models, ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2018), as examples to illustrate these
two tasks (architectures are shown in §A).

Next token prediction ELMo uses next token
prediction tasks in a bidirectional language model.
Given a sequence of N tokens (t1, t2, . . . , tN ), it
first prepares a context independent representation
for each token by using a convolutional neural net-
work over the characters or by word embedding
lookup (a.k.a. input embeddings). These repre-
sentations are then fed into L layers of LSTMs to
generate the contextual representations: hi,j for
token ti at layer j. The model assigns a learnable
output embedding w for each token in the vocabu-
lary, which has the same dimension as hi,L. Then,
the forward language model predicts the token at

position k with:

p(tk|t1, t2, . . . , tk−1)
= softmax(hT

k−1,Lwk′)

=
exp(hT

k−1,Lwk′)∑V
i=1 exp(h

T
k−1,Lwi)

(1)

where k′ is the index of token tk in the vocabulary,
V is the size of the vocabulary, and (w1, . . . ,wV )
are the output embeddings for the tokens in the vo-
cabulary. The backward language model is similar
to the forward one, except that tokens are predicted
in the reverse order. Since the forward and back-
ward language models are very similar, we will
only describe our proposed approach in the context
of the forward language model in the subsequent
sections.

Masked token prediction The Masked Lan-
guage Model (MLM) in BERT is a typical exam-
ple of masked token prediction. Given a sequence
(t1, t2, . . . , tN ), this approach randomly masks a
certain percentage (15%) of the tokens and gener-
ates a masked sequence (m1,m2, . . . ,mN ), where
mk = [mask] if the token at position k is masked,
otherwise mk = tk. BERT first prepares the con-
text independent representations (x1,x2, . . . ,xN )
of the masked sequence via token embeddings. It
is then fed into L layers of transformer encoder
(Vaswani et al., 2017) to generate “bidirectional”
contextual token representations. The final layer
representations are then used to predict the masked
token at position k as follows:

p(mk = tk|m1, . . . ,mN )

= softmax(hT
k,Lwk′)

=
exp(hT

k,Lwk′)∑V
i=1 exp(h

T
k,Lwi)

(2)

where k′, V , h and w are similarly defined as in
Eq. 1. Unlike ELMo, BERT ties the input and
output embeddings.

3 Proposed framework

We first describe our proposed sense-aware cross
entropy loss to model multiple word senses ex-
plicitly in language model pretraining. Then, we
present our joint training approach with sense align-
ment objective for cross-lingual mapping of contex-
tual word embeddings. The proposed framework
can be applied to most of the recent neural language
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models, such as ELMo, BERT and their variants.
See Table 1 for a summary of the main notations
used in this paper.

Notation Description

tk k-th token in sentence
tk,s s-th sense of tk
k′ index of token tk in vocabulary
L number of LSTM/Transformer layers
V size of vocabulary
S maximum number of senses per token
hk,j contextual representation of token tk in layer j
hk∗,L contextual representation used in softmax

function for predicting tk
vi i-th word in vocabulary
vi,s s-th sense of vi
wi output embedding of vi
wi,s context-dependent output embedding

(i.e. sense vector) of vi,s
ci,s sense cluster center of vi,s
Ci sense cluster centers of vi
d dimension of contextual representations
P projection matrix for dimension reduction

Table 1: Summary of the main notations.

3.1 Sense-aware cross entropy loss

Limitations of original training objectives The
training tasks with Eq. 1 and 2 maximize the nor-
malized dot product of contextual representations
(hk−1,L or hk,L) with a weight vector wk′ . The
only difference is that hk−1,L in Eq. 1 encodes
the information of previous tokens in the sequence,
while hk,L in Eq. 2 encodes the information of
the masked sequence. Therefore, without loss of
generality, we use hk∗,L to denote the contextual
representation for predicting the next or masked
token tk.

Even though contextual language models like
ELMo and BERT provide a different token rep-
resentation for each distinct context, the learned
representations are not guaranteed to be sense sep-
arated. For example, Schuster et al. (2019) com-
puted the average of ELMo embeddings for each
word as an anchor, and found that the average co-
sine distance between contextual embeddings of
multi-sense words and their corresponding anchors
are much smaller than the average distance between
anchors, which mean that the embeddings of differ-
ent senses of one word are relatively near to each
other comparing to that of different words. We also
observed the same with BERT embeddings. This
finding suggests that sense clusters of a multi-sense
word’s appearances are not well separated in the
embedding space, and the current contextual lan-
guage models still have room for improvement by

considering finer-grained word sense disambigua-
tion.

Notice that there is only one weight vector wk′

for predicting the token tk in the original training
tasks. Ideally, we should treat the appearances of a
multi-sense word in different contexts as different
tokens, and train the language models to predict
different senses of the word. In the following, we
propose a novel sense-aware cross entropy loss
to explicitly model different senses of a word in
different contexts.

Sense-aware cross entropy loss Given a se-
quence (t1, t2, . . . , tN ), our proposed framework
generates contextual representations (hk,j for to-
ken tk in layer j ∈ {1, . . . , L}) in the same way
as the standard LMs. Different from existing
methods, our approach maintains multiple context-
dependent output embeddings (henceforth, sense
vectors) for each token. Specifically, let S be the
maximum number of senses per token. Each word
vi in the vocabulary contains S separate sense vec-
tors (wi,1,wi,2, . . . ,wi,S), where each wi,s cor-
responds to a different sense (see Appendix for
some interesting visualization examples). Follow-
ing the notation in §2, we use k′ to denote the index
of the output token tk in the vocabulary. There-
fore, the sense vectors of tk can be represented by
(wk′,1,wk′,2, . . . ,wk′,S), which are randomly ini-
tialized and of the same dimension as hk∗,L. Note
that we untie the input and output embeddings in
our framework.

We propose a word sense selection method
shown in Algorithm 1 to select the most likely
sense vector when training with sense-level cross
entropy loss. Figure 1 shows the architecture of our
proposed models. Assuming sense s′ is selected for
token tk (which means sense vector wk′,s′ should
be used), we have the following new prediction
task:

p(tk,s′ |context)
= softmax(hT

k∗,Lwk′,s′)

=
exp(hT

k∗,Lwk′,s′)∑V
i=1

∑S
s=1 exp(h

T
k∗,Lwi,s)

(3)

The sense-aware cross entropy loss for word sense
prediction is defined as follows:

LSENSE = − log(p(tk,s′ |context)) (4)

Word sense selection algorithm Word sense se-
lection when training the language model can be
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(a) Sense-aware next token prediction. (b) Sense-aware masked token prediction. (c) Word sense selection.

Figure 1: Our proposed framework for sense-aware next token and masked token prediction tasks. Since the
backward language model for next token prediction is similar to the forward, we only show the forward one in (a)
for simplicity. Figure (c) shows an example of word sense selection, where the two sense clusters of tk (assume its
vocabulary index is k′) are shifting in space. Center vectors ck′,1 and ck′,2 are used to locate cluster centers. Given
hk,L, the algorithm performs dimension reduction on both hk,L and center vectors, and then finds the most close
cluster center ck′,2, so we know the output embedding corresponding to sense 2 (wk′,2) should be used in the loss
function. ck′,2 also makes a small step towards hk,L.

handled as a non-stationary data stream cluster-
ing problem (Aggarwal et al., 2004; Khalilian and
Mustapha, 2010; Abdullatif et al., 2018). The most
intuitive way to select the corresponding sense vec-
tor for hk∗,L is to select the vector wk′,s with the
maximum dot product value hT

k∗,Lwk′,s, or cosine
similarity value cossim(hk∗,L,wk′,s). However,
our experiments show that these methods do not
work well due to curse of dimensionality, subop-
timal learning rate and noisy hk∗,L. We apply an
online k-means algorithm to cluster different senses
of a word in Algorithm 1. For each sense vector
wi,s, we maintain a cluster center ci,s which is of
the same dimension as wi,s. Therefore, each token
vi in the vocabulary has S such cluster center vec-
tors, denoted by Ci = (ci,1, ci,2, . . . , ci,S). When
predicting token tk in a given sequence, we apply
Algorithm 1 to select the best sense vector based on
hk,L (see Figure 1). Notice that hk,L is different
from hk∗,L for next token prediction (Figure 1a)
for which hk∗,L = hk−1,L. The cluster centers Ci
are not neural network parameters; instead, they
are randomly initialized using a normal distribu-
tion N (0, σ2) and updated through Algorithm 1.
In addition, we also maintain a projection matrix
P for dimension reduction to facilitate effective
sense clustering. P ∈ Rd×d′ projects hk,L and ci,s
from dimension d to d′, and is shared by all tokens
in vocabulary. Similar to C, P is also randomly
initialized with normal distribution N (0, 1), and
then updated through Algorithm 2. Both Algorithm

Algorithm 1 Word sense selection
1: Hyper-parameters: number of senses S, sense learning

rate α
2: Initialize the set of all sense cluster centers C
3: repeat
4: input: hk,L, vocabulary index k′ of the token to pre-

dict
5: Lookup sense cluster centers for k′: Ck′ =

{ck′,1, ck′,2, . . . , ck′,S}
6: P = updated projection matrix from Alg. 2
7: if cosine similarity between ck′,s′P and h′

kP is the
largest among the vectors in Ck′ then

8: ck′,s′ = (1− α)ck′,s′ + αhk,L
9: output: s′(wk′,s′ should be selected)

10: end if
11: until interrupted

1 and 2 run in parallel, and are interrupted when
the language model stops training.

Some rationales behind our algorithm design are
the following:

• Directly computing cosine similarity between
ck′,s and hk,L suffers from the curse of dimen-
sionality. We maintain P for dimension reduc-
tion. Although many algorithms use random pro-
jection for dimension reduction, we find using
PCA components can help improve clustering
accuracy.

• Since the neural model parameters keep being up-
dated during training, the sense clusters become
non-stationary, i.e., their locations keep chang-
ing. Experiments shows that when using P for
dimension reduction, a slightly larger projection
dimension d′ will make the clustering algorithm
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Algorithm 2 Projection matrix P update
1: Hyper-parameters: projection dimension d′, update in-

terval M , queue size Q
2: Initialize P withN (0, 1), queue H = ∅, m = 0
3: repeat
4: input: hk,L
5: m = m+ 1
6: Add hk,L to queue H
7: if size(H) > Q then
8: Pop the oldest element from queue H .
9: end if

10: if m >=M then
11: P = the first d′ PCA components of H
12: m = 0
13: end if
14: output: P
15: until interrupted

less sensitive to cluster location change. We use
d′ = 16 for ELMo, and d′ = 14 for BERT. We
also notice that the sense clustering works well
even if P is updated sporadically. We can set a
relatively large update interval in Algorithm 2 to
reduce computation cost.

• A separate sense learning rate α should be set
for the clustering algorithm. A large α makes the
algorithm less robust to noise, while a small α
leads to slow convergence.

• It is essential to use the current token’s contex-
tual representation hk,L for sense selection even
though we use hk∗,L = hk−1,L in the next token
prediction task. If we use hk−1,L for sense selec-
tion, experiments show that most of the variance
comes from input embedding xk−1. This intro-
duces too much noise for word sense clustering.

Dynamic pruning of redundant word senses
To make the training more efficient, we keep track
of relative sense selection frequency for each to-
ken in the vocabulary. Assume token vi has ini-
tial senses (vi,1, vi,2, . . . , vi,S), for which we com-
pute the relative frequency ρ(vi,s) such that 0 ≤
ρ(vi,s) ≤ 1 and

∑
s ρ(vi,s) = 1. A lower ρ(vi,s)

means the sense is less frequently selected com-
pared with others. We check the relative frequen-
cies after every E training steps, and if ρ(vi,s) < β
(a threshold hyper-parameter), vi,s is removed from
the list of senses of vi.

Remark on model size and parameters The
sense cluster centers C and the projection matrix
P are only used to facilitate sense selection during
model pretraining, which are not neural model pa-
rameters. The sense vectors wi,s will no longer be
used after pretraining, which can also be discarded.

Therefore, our models and the original models have
exactly the same number of parameters when trans-
ferred to downstream tasks.

Remark on model complexity The computa-
tional complexity of our algorithm is linear with
respect to the size of data, so our method is scalable
to train on very large datasets.

3.2 Joint training with sense level translation
Training language model with sense-aware cross
entropy loss helps to learn contextual token repre-
sentations that are sufficiently distinct for different
senses (§4.1). In this subsection, we extend it to
cross-lingual settings and present a novel approach
to learn cross-lingual contextual word embeddings
at the sense level. Our approach uses a bilingual
seed dictionary,2 and can be applied to both next
and masked token prediction tasks.

For training the cross-lingual LM, we concate-
nate the (non-parallel) corpora of two languages,
L1 and L2, and construct a joint vocabulary O =
OL1 ∪ OL2 , where OL1 and OL2 are the vocab-
ularies of L1 and L2, respectively. Algorithm 1
is used to model the senses of tokens in the joint
vocabulary. In addition to predicting the correct
monolingual sense p(tk,s′ |context) in Eq. 3, we
also train the model to predict its sense level trans-
lation. Let vj be the translation of tk and sense
vj,s∗ of vj be the best sense level translation under
the given context, we add the following sense-level
translation prediction task to maximize probability
of vj,s∗ .

p(vj,s∗ |context)
= softmax(hT

k∗,Lwj,s∗)

=
exp(hT

k∗,Lwj,s∗)
∑V

i=1

∑S
s=1 exp(h

T
k∗,Lwi,s)

(5)

where wj,s∗ is the corresponding sense vector of
vj,s∗ .

Similar to the previous subsection, we maintain
sense cluster centers Ci for each token vi ∈ O
and the shared projection matrix P to select the
best translation sense. Assume tk has T trans-
lations in dictionary, and each translation has S
senses, then there are T × S possible sense level
translations for tk in the given context. If the
cossim(hk,LP , cj,s∗P ) value is the largest among
the T ×S sense cluster centers, then we select vj,s∗

2If not provided, it can be learned in an unsupervised way,
e.g., MUSE (Conneau et al., 2017).
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Figure 2: An example of English-Japanese sense-level
joint training, which shows two possible Japanese trans-
lations (銀行 and岸) of the English word bank. hk,L is
a contextual representation of bank in finance context
and ck′,2 is the cluster center for this sense. ca,1, ca,2,
cb,1, cb,2 are different sense cluster centers of the two
Japanese translations, among which cb,2 is the closest
to hk,L after dimension reduction through PCA. Our
sense level objective (Eq. 6) moves sense clusters for
bank (organization) and銀行(organization) closer to
each other.

as the closest translation. An example is shown in
Figure 2. If token tk has at least one translation
in the dictionary, the translation cross entropy loss
can be computed as:

LTRAN = − log(p(vj,s∗ |context)) (6)

If token tk has no translation in the seed dic-
tionary, we use Eq. 4 as the only loss. The joint
training loss is defined as follows:

LJOINT =

{
LSENSE+LTRAN

2 , if tk has translations

LSENSE, otherwise
(7)

Further alignment (optional) Our sense-aware
pretraining tries to move similar senses of two
different languages close to each other as illus-
trated in Figure 2. This process makes the sense
distributions of the two languages more isomor-
phic (some sense vector visualization examples are
shown in §D). Applying the linear projection ap-
proach proposed by Schuster et al. (2019) on top of
the language model pretrained with our framework
can further improve cross-lingual transfer on some
tasks. See §B for more details of our implementa-
tion.

4 Experiments

4.1 Experiments using monolingual models
To verify the effectiveness of our proposed sense-
aware cross entropy loss, we implement the mono-
lingual models on top of ELMo and BERT with

Model SE2 SE3 SE07 SE13 SE15

ELMo 0.555 0.576 0.446 0.544 0.538
SaELMo (ours) 0.575 0.586 0.470 0.560 0.583

BERT-Tiny 0.596 0.539 0.466 0.536 0.572
SaBERT-Tiny (ours) 0.611 0.546 0.446 0.550 0.579

Table 2: Word sense disambiguation (F1 scores).

the changes described in §3.1, which are named
SaELMo (Sense-aware ELMo) and SaBERT
(Sense-aware BERT) respectively. The algorithm
for dynamic pruning of redundant word senses is
optional, which is implemented on SaELMo only.

Pretraining settings We use the one billion word
language modeling benchmark data (Chelba et al.,
2013) to pretrain all the monolingual models. The
corpus is preprocessed with the provided scripts,
and then converted to lowercase. We do not apply
any subword tokenization. We use similar hyper-
parameters as Peters et al. (2018) to train the ELMo
and SaELMo models, and similar hyper-parameters
as Devlin et al. (2018) to train 4-layer BERT-Tiny
and SaBERT-Tiny. Next sentence prediction task
is disabled in BERT-Tiny and SaBERT-Tiny, since
this task is irrelevant to our proposed changes. See
§C.1 for a complete list of hyper-parameters.

Word sense disambiguation (WSD) Since our
context-aware cross entropy loss is designed to
learn word senses better in the context, we first
conduct experiments to compare our monolingual
model with the original models on the WSD task
(Raganato et al., 2017), which is a task to associate
words in context with the most suitable entry in a
pre-defined sense inventory. We use SemCor 3.0
(Miller et al., 1993) as training data, and Sense-
val/SemEval series (Edmonds and Cotton, 2001;
Moro and Navigli, 2015; Navigli et al., 2013; Prad-
han et al., 2007; Snyder and Palmer, 2004) as test
data. We use the pretrained models to compute
the average of contextual representations for each
sense in training data, and then classify the senses
of the target words in test sentences by finding
the nearest neighbour from all senses entries with-
out pre-filtering senses by lemma.3 WSD results
are presented in Table 2. SaELMo shows signifi-
cant performance improvements over the baseline
ELMo model in all of the five test sets. SaBERT-
Tiny also outperforms BERT-Tiny except on SE07,

3We use the evaluation code from https://github.
com/drgriffis/ELMo-WSD-reimplementation.
git.
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which is the smallest among the five test sets.

4.2 Experiments using bilingual models

As discussed in §3.1, our cross-lingual frame-
work is designed to address the same problem
identified in the training objectives of ELMo and
Transformer-based language models. To verify its
effectiveness, we implement the bilingual mod-
els on top of ELMo, named Bi-SaELMo that
does not use linear projection for further align-
ment and Bi-SaELMo+Proj that uses the linear
projection. Sense vectors and cluster center vec-
tors are not shared between the forward and back-
ward language models. We use ELMo+Proj and
Joint-ELMo+Proj as our baseline models, where
ELMo+Proj is proposed by Schuster et al. (2019)
and Joint-ELMo+Proj is implemented following
the framework recently proposed by Wang et al.
(2020). Wang et al. (2020) combine joint train-
ing and projection, and claim their framework is
applicable to any projection method, so we imple-
ment the same projection method as Schuster et al.
(2019) did for Joint-ELMo+Proj. We also report
results of ELMo and Joint-ELMo, which are the
counterparts of ELMo+Proj and Joint-ELMo+Proj
without using linear projection.

Pretraining settings To pretrain language mod-
els, we sample a 500-million-token corpus for
each language from the English, German, Spanish,
Japanese and Chinese Wikipedia dump. The dic-
tionaries used for pretraining models and learning
the projection matrix were downloaded from the
MUSE (Conneau et al., 2017) GitHub page4. We
also add JMDict (Breen, 2004) to the en-jp MUSE
dictionary. Bilingual models were pretrained on
en-de, en-es, en-jp and en-zh concatenated data
with similar parameters as the monolingual mod-
els. ELMo and ELMo+Proj were pretrained on
monolingual data, while the projection matrix of
ELMo+Proj was learned using bilingual data. See
§C.2 for a complete list of hyper-parameters.

Zero-shot cross-lingual NER A Bi-LSTM-CRF
model implemented with the Flair framework (Ak-
bik et al., 2018) is used for this task. For the
CoNLL-2002 (Tjong Kim Sang, 2002) and CoNLL-
2003 (Sang and De Meulder, 2003) datasets, the
NER model was trained on English data, and eval-
uated on Spanish and German test data. For the

4https://github.com/facebookresearch/
MUSE

Model de es zh

ELMo 16.30 16.14 0.28
Joint-ELMo 56.49 58.91 53.47
ELMo+Proj (Schuster et al., 2019) 69.57 60.02 63.15
Joint-ELMo+Proj (Wang et al., 2020) 71.59 65.19 59.08

Bi-SaELMo (ours) 63.83 60.65 55.83
Bi-SaELMo+Proj (ours) 72.19 65.86 63.44

For references, but not our baselines, since they are trained on much
larger datasets and/or parallel sentences.
XLM Finetune (Conneau and Lample, 2019) 67.55 63.18 -
mBERT Finetune (Pires et al., 2019) 69.74 73.59 -
XLM-Rbase Finetune (Liang et al., 2020) 70.40 75.20 -
mBERT Feature+Proj (Wang et al., 2020) 70.54 75.77 -
mBERT Align (Kulshreshtha et al., 2020) 71.23 75.93 -

Table 3: Zero-shot cross-lingual NER (F1).

OntoNotes 5.0 (Weischedel et al., 2013) dataset,
the NER model was trained on all English data
and evaluated on all Chinese data. We report the
average F1 of 5 runs in Table 3. The results show
that all of the models using linear projection out-
perform their counterparts (not using linear pro-
jection), since minimizing token level distance
is more important for cross-lingual NER tasks.
Our sense-aware pretraining makes sense distribu-
tions of two languages more isomorphic, which
further improves linear projection performance.
Our model Bi-SaELMo+Proj demonstrates con-
sistent performance improvement in all the three
languages. Moreover, our model outperforms fine-
tuned XLM/XLM-R and Multilingual BERT on
German data even though it is pretrained on less
data.

Zero-shot cross-lingual sentiment classification
We use the multi-lingual multi-domain Amazon re-
view data (Prettenhofer and Stein, 2010) for evalu-
ation on cross-lingual sentiment classification. The
ratings in review data are converted into binary
labels. The average of contextual word representa-
tions is used as the document/sentence representa-
tion for each review text/summary, which is then
fed into a two-dense-layer model for sentiment clas-
sification. All the models are trained on English,
and evaluated on German and Japanese test data in
the same domain. We report the average accuracy
of 5 runs in Table 4. Different from the NER task,
the linear projection approach for cross-lingual
alignment does not work for this task, since it may
add noise to embedding features. Our model Bi-
SaELMo demonstrates consistent improvements
in all of the 6 evaluation tasks. The performance
of Bi-SaELMo is significantly better than Joint-
ELMo, which shows that our sense-level transla-
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Model de jp

books music dvd books music dvd

ELMo 52.94 63.61 57.78 50.37 51.59 54.32
Joint-ELMo 71.72 75.22 64.25 66.64 68.50 58.54
ELMo+Proj (Schuster et al., 2019) 49.92 50.29 49.94 50.57 49.59 50.65
Joint-ELMo+Proj (Wang et al., 2020) 75.74 72.25 72.25 62.50 59.77 57.65

Bi-SaELMo (ours) 77.46 75.32 74.97 68.16 69.48 64.04
Bi-SaELMo+Proj (ours) 70.84 66.25 68.99 62.17 55.91 61.57

Table 4: Zero-shot sentiment classification accuracy.

Model de es zh

ELMo 34.07 33.41 35.77
Joint-ELMo 60.12 63.73 57.82
ELMo+Proj (Schuster et al., 2019) 55.51 58.92 53.17
Joint-ELMo+Proj (Wang et al., 2020) 63.33 64.71 58.34
PROC-B+SpecNorm (Aboagye et al., 2022) 62.40 - -

Bi-SaELMo (ours) 60.98 62.75 60.40
Bi-SaELMo+Proj (ours) 64.77 65.05 60.44

Table 5: Zero-shot XNLI accuracy.

tion pretraining objective improves cross-lingual
embedding alignment.
Zero-shot cross-lingual natural language infer-
ence (XNLI) We use XNLI (Conneau et al.,
2018) and MultiNLI (Williams et al., 2018) data
for evaluation on this task. The Bi-LSTM baseline
model5 was trained on MultiNLI English training
data, and then evaluated on XNLI German, Spanish,
Chinese test data. We report the average zero-shot
XNLI accuracy of 2 runs in Table 5. Our models
show consistent improvements over the baselines
on all of the three data sets. For zero-shot trans-
fer to Chinese, both of our models outperform the
best baseline by more than 2 points, which again
demonstrates the effectiveness of our framework
on distant language pairs.

5 Related work

Cross-lingual word embedding demonstrates
strong performance in many cross-lingual trans-
fer tasks(Wu and Dredze, 2019; Li et al., 2020b,a;
Zhang et al., 2021). The projection-based approach
has a long line of research on aligning static em-
beddings (Mikolov et al., 2013; Xing et al., 2015;
Smith et al., 2017; Joulin et al., 2018; Aboagye
et al., 2022). It assumes that the embedding spaces
of different languages have an isomorphic structure,
and fit an orthogonal matrix to project multiple
monolingual embedding spaces to a shared space.
Many studies (Schuster et al., 2019; Aldarmaki and
Diab, 2019) have extended the projection-based
approach to contextual representation alignment.
Besides, there are many discussions on the limita-
tions of the projection-based approach, arguing that

5https://github.com/NYU-MLL/multiNLI

the isomorphic assumption is not true in general
(Nakashole and Flauger, 2018; Patra et al., 2018;
Søgaard et al., 2018; Ormazabal et al., 2019), so
non-linear mapping methods are also explored in re-
cent work (Mohiuddin et al., 2020; Ganesan et al.,
2021). Joint training is another line of research
and early methods (Gouws et al., 2015; Luong
et al., 2015; Ammar et al., 2016) learn static word
embeddings of multiple languages simultaneously.
Extending joint training to cross- or multi-lingual
language model pretraining has gained more atten-
tion recently. As discussed above, unsupervised
multilingual language models (Devlin et al., 2018;
Artetxe and Schwenk, 2019; Conneau and Lample,
2019; Conneau et al., 2019; Liu et al., 2020, 2021)
also demonstrate strong cross-lingual transfer per-
formance.

There has been some work on sense-aware lan-
guage models/embeddings (Rothe and Schütze,
2015; Pilehvar and Collier, 2016; Hedderich et al.,
2019), and most of them require WordNet (Miller,
1998) or other additional resource for supervision.
Šuster et al. (2016) utilize both monolingual and
bilingual information from parallel corpora to learn
multi-sense word embeddings. Peters et al. (2019)
embed WordNet knowledge into BERT with at-
tention mechanism. Levine et al. (2019) pretrain
SenseBERT to predict both the masked words and
their WordNet supersenses. Similar to our frame-
work, there are also some unsupervised approaches,
but most of them are used to learn static embed-
dings. Huang et al. (2012) learn word represen-
tations with both local and global context, and
then apply a clustering algorithm to learn multi-
prototype vectors. Neelakantan et al. (2014) pro-
pose an extension to the Skip-gram model that
leverage k-means clustering algorithm learns mul-
tiple embeddings per word type. Lee and Chen
(2017) leverage reinforcement learning for modu-
larized unsupervised sense level embedding learn-
ing. Boyd-Graber et al. (2020) use Gumbel soft-
max for sense disambiguation when learning sense
embeddings.

6 Conclusions

In this paper, we have introduced a novel sense-
aware cross entropy loss to model word senses
explicitly, then we have further proposed a sense-
level alignment objective for cross-lingual model
pretraining using only bilingual dictionaries. The
results of the experiments show the effectiveness
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of our monolingual and bilingual models on WSD,
zero-shot cross-lingual NER, sentiment classifica-
tion and XNLI tasks. In future work, we will study
how to extend our method to multilingual models.

Broader Impact

NLP has achieved significant success for many
popular languages, such as English and German.
However, most of the low-resource languages in
the world do not receive enough attention from
the NLP community. Cross-lingual word embed-
ding is an efficient tool to help overcome the re-
source barrier and enable the advances in NLP to
benefit a wider range of population. This makes
NLP more inclusive of low-resource languages
(and their speakers), and can also help prevent-
ing online bullying, detecting fake news, etc. in
multiple languages. In this work, we proposed a
novel framework for cross-lingual contextual word
embedding alignment, which further improves the
performance of cross-lingual transfer learning. Our
findings and proposed techniques are potentially
useful for future research on both monolingual and
cross-lingual language model pretraining.
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A Prediction tasks of language models

Next token prediction and masked token prediction
are two common tasks in neural language model
(LM) pretraining. We take two well-known lan-
guage models, ELMo and BERT, as examples to
illustrate these two tasks, which are shown in Fig-
ure 3.

(a) Next token prediction.

(b) Masked token prediction.

Figure 3: Next token and masked token prediction tasks
of language models. For simplicity, we only show the
forward language model in next token prediction.

B Further alignment (optional)

Applying the linear projection approach proposed
by Schuster et al. (2019) on top of our framework
can further improve cross-lingual transfer on some
tasks. After our cross-lingual model is finished
training on the concatenated corpora of two lan-
guages, L1 and L2, it is used to generate contextual
token embeddings for the word pairs in the seed dic-
tionary D = {(tL1

i , tL2
i )}|D|i=1

6. Then, we compute
the average of all contextual embeddings for each
token tLji , denoted by aLji . Finally, a linear pro-
jection matrix W ∈ Rd×d is learned to minimize
cross-lingual embedding distance:

W = argmin
W

|D|∑

i=1

||WaL1
i − aL2

i ||2 (8)

6If any token tk appears in both languages, we add that as
an entry (tk, tk) to the dictionary as well.
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C Pretraining details

C.1 Monolingual model

All the monolingual models were trained for one
million steps. For better sense clustering perfor-
mance, the maximum number of senses (S in word
sense selection algorithm) was set to 1 for the first
20,000 steps to quickly get a reasonable initial
model, and then increased to 5 afterwards when
pretraining SaELMo and SaBERT-Tiny, which is
controlled by hyperparameter n_context in our im-
plementation. For SaELMo, we set n_context to
6, so that the model initialize 6 senses for each to-
ken, but only use the first sense in the 20,000 steps,
and then use the other 5 senses (the first sense will
be disabled) afterwards. We implement this for
SaBERT-Tiny in a slightly different way, where
n_context can be set to 5 directly to achieve the
same effect. We use two NVIDIA V100 GPUs
to pretrain SaELMo, which takes about 15 days
to complete training. We use one NVIDIA V100
GPU to pretrain SaBERT-Tiny, which takes about
5 days. See Tables 6 and 7 for the hyperparame-
ters used to pretrain SaELMo and SaBERT-Tiny
respectively.

Hyperparameter Value

max_word_length 50
batch_size 256
n_gpus 2
bidirectional True
char_cnn:embedding:dim 16
char_cnn:max_characters_per_token 50
char_cnn:n_characters 261
char_cnn:n_highway 2
dropout 0.1
lstm:cell_clip 3
lstm:dim 4096
lstm:n_layers 2
lstm:proj_clip 3
lstm:projection_dim 512
lstm:use_skip_connections True
all_clip_norm_val 10.0
n_epochs 10
unroll_steps 16
n_negative_samples_batch 8192
n_context 6
cluster_proj_dim 16
pca_sample 20,000
remove_less_freqent_contexts 0.1
learning_rate 0.2
sense_learning_rate 0.01

Table 6: Monolingual model hyperparameters:
SaELMo.

Hyperparameter Value

attention_probs_dropout_prob 50
directionality bidi
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 512
initializer_range 0.02
intermediate_size 2048
max_position_embeddings 512
num_attention_heads 8
num_hidden_layers 4
pooler_fc_size 512
pooler_num_attention_heads 8
pooler_num_fc_layers 3
pooler_size_per_head 128
pooler_type first_token_transform
type_vocab_size 2
vocab_size 27654
n_context 5
context_rep_lr 0.01
pca_dim 14
contextual_warmup 20,000

Table 7: Monolingual model hyperparameters: SaBERT-
Tiny.

C.2 Bilingual model

As metioned in the paper, we use Wikipedia dump
to pretrain the bilingual models. The Stanford
CoreNLP tokenizer (Manning et al., 2014) is used
to tokenize English, German, Spanish and Chinese
data. And the spaCy tokenizer is used to tokenize
Japanese data. All data are converted to lowercase.
We convert Chinese data to simplified font to make
it consistent with evaluation task datasets.

All the language models used in cross-lingual ex-
periments were pretrained for 600,000 steps from
scratch. Similar to our monolingual models, maxi-
mum number of senses (S in word sense selection
algorithm) was set to 1 for the first 20,000 steps,
and the increased to 3 afterwards when pretraining
Bi-SaELMo and Bi-SaELMo+Proj.7 We use two
NVIDIA V100 GPUs to pretrain each Bi-SaELMo
model, which takes about 10 days to complete the
training. See Table 8 for the hyperparameters used
to pretrain Bi-SaELMo/Bi-SaELMo+Proj.

D Visualization of sense vectors

We visualize8 the sense vectors of each model in a
two dimensional PCA, and show some examples in
Figures 4 to 7. For our English monolingual model

7Theoretically, in a reasonable range, it is expected that
a larger S would be more helpful to capture the fine-grained
senses. However, due to limited computation power, we use
only 3 here, and 5 for the monolingual models.

8We use the tensorflow embedding projector (https://
projector.tensorflow.org/) for visualization.
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Hyperparameter Value

max_word_length 50
batch_size 256
n_gpus 2
bidirectional True
char_cnn:embedding:dim 16
char_cnn:max_characters_per_token 50
char_cnn:n_characters 261
char_cnn:n_highway 2
dropout 0.1
lstm:cell_clip 3
lstm:dim 4096
lstm:n_layers 2
lstm:proj_clip 3
lstm:projection_dim 512
lstm:use_skip_connections True
all_clip_norm_val 10.0
n_epochs 6
unroll_steps 12
n_negative_samples_batch 8192
n_context 4
cluster_proj_dim 16
pca_sample 20,000
remove_less_freqent_contexts 0.1
learning_rate 0.2
sense_learning_rate 0.01

Table 8: Bilingual model hyperparameters: Bi-
SaELMo/Bi-SaELMo+Proj.

(SaELMo), the vectors close to two different sense
vectors of the word may are shown in (a) and (b)
of Figure 4, respectively. We observe that senses
are well clustered in these two subfigures, where
cluster (a) corresponds to “month”, and cluster (b)
corresponds to “auxiliary verb”.

We do the same for the English-Japanese bilin-
gual model (Bi-SaELMo, without projection), and
show the vectors close to two different sense vec-
tors of the English word bank in (c) and (d) of
Figure 5. We can see both English and Japanese
sense vectors (trade,銀行,証券, etc.) in (c), most
of which correspond to the sense “organization”,
though there are some noises. Similarly, most of
the sense vectors in (d) correspond to sense “river
bank”.

Another two examples are shown in Figures 6
and 7. Our framework exhibits good sense clus-
tering and sense level cross-lingual alignment be-
haviour in these examples. All sense vectors are
dumped at training step 200,000, which is before
pretraining complete.

(a) “may” for month

(b) “may” as auxiliary verb

Figure 4: We visualize sense vectors of English monolin-
gual model (SaELMo) in a two dimensional PCA, and
show the vectors close to two different sense vectors of
word may in (a) and (b).
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(a) “bank” for organization

(b) “bank” for river bank

Figure 5: We visualize all sense vectors of en-jp bilin-
gual model (Bi-SaELMo) in a two dimensional PCA,
and show the vectors close to two different sense vectors
of word bank.

(a) “us” for country

(b) “us” as pronoun

Figure 6: We visualize sense vectors of English monolin-
gual model (SaELMo) in a two dimensional PCA, and
show the vectors close to two different sense vectors of
word us in (a) and (b).
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(a) “may” as auxiliary verb

(b) “may” for month

Figure 7: We visualize all sense vectors of en-de bilin-
gual model (Bi-SaELMo) in a two dimensional PCA,
and show the vectors close to two different sense vectors
of word may.
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Abstract

We investigate methods to develop a parser for
Martinican Creole, a highly under-resourced
language, using a French treebank. We com-
pare transfer learning and multi-task learning
models and examine different input features
and strategies to handle the massive size imbal-
ance between the treebanks. Surprisingly, we
find that a simple concatenated (French + Mar-
tinican Creole) baseline yields optimal results
even though it has access to only 80 Martinican
Creole sentences. POS embeddings work better
than lexical ones, but they suffer from negative
transfer.

1 Introduction

Syntactic analysis is an essential task for language
documentation and language revitalization, as it al-
lows a deeper understanding of languages. Under-
resourced languages often suffer from the lack
of annotated gold standard data available to de-
velop and offer NLP solutions for the communi-
ties speaking the language. Moreover, there is a
low number of researchers trained in formal lin-
guistics and/or linguistic annotations which causes
additional challenges in the creation of language
resources for such languages. In recent years, re-
search on parsing has developed a focus on under-
resourced languages (Agić et al., 2016; Vania et al.,
2019; Meechan-Maddon and Nivre, 2019), but cre-
oles have received less attention.

In this study, we develop a dependency parsing
model for Martinican Creole (MC), a French-based
Creole, mostly spoken in Martinique, a French is-
land in the Caribbean. Being a French territory,
French and MC coexist in an unbalanced manner.
The diglossic situation makes French the domi-
nant language in many contexts, although in the
past decades Martinican Creole has seen an ex-
pansion of its communicative contexts (Bernabé,
2004; Véronique, 2020). This is due to the codifi-
cation and standardization processes the language

underwent, especially by the GEREC (1982), and
to the linguistic policies developed in an effort to
safeguard and revitalize this language. However,
one aspect of this revitalization process that is cur-
rently missing is the expansion of NLP tools and re-
sources for MC (and other creole languages). Cre-
ole languages based on the same lexifier language
(in our case French) are extremely similar and in
many cases, mutually intelligible. Thus, develop-
ing NLP solutions for one creole language provides
a basis to transfer knowledge to other related Cre-
ole languages.

The goal of this project is to investigate the best
methods for developing a parser for an extremely
low resource language when this language is a cre-
ole language. In our case, the creole is Martinican
Creole. The main question here is whether the lex-
ifier language, i.e., French, is similar enough to
serve as basis for training a parser without further
modification.

2 Research Questions

Our overarching research question is the following:
Can we leverage a French treebank using transfer
learning or multi-task learning approaches to create
a parser model for Martinican Creole given that we
only have a very small treebank ? Can we leverage
the similarity between the creole and its lexifier
language, French?

To answer this question, we need to answer the
following questions:

1. Which types of embeddings can be used?
Given the differences in spelling, are character
embeddings, POS embeddings, or BERT em-
beddings the best representation of the input
sentence? (We will not consider multilingual
BERT models since the closest language is
French, and we have access to large French
embeddings models.)

2. In a transfer learning setting, how do we best
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use the very limited Martinican Creole data?
Is it worth the effort to annotate data for op-
timizing the parser, or can we optimize it on
French? Is there enough structural and lexical
similarity between French and the creole to
make this possible?

3. In a transfer learning setting, how do we deal
with the extreme imbalance between the large
French Treebank and the small Martinican
Creole Treebank? Can we prevent the parser
from overfitting?

4. Can we leverage a multi-task learning model
to handle the imbalance between French and
the creole? More specifically, will loss weight-
ing be able to counterbalance the treebank
sizes?

5. Can we determine the linguistic characteris-
tics of Martinican Creole that provide chal-
lenges to parsers based on standard transfer
learning and on multi-task learning?

3 Related Work

Creoles are still under-researched in NLP. Notice-
able work includes language model comparisons
by Lent et al. (2021) between Haitian Creole, Nige-
rian Pidgin English, and Singaporean Colloquial
English, trained with empirical risk minimization,
against language models with distributionally ro-
bust ones, finding that the former performed better
for Creoles. One reason postulated may be the ab-
sence of drift due to the relative stability of creoles.

Regarding French-based creoles, Haitian Creole
was the subject of an extensive collaboration in
Machine Translation led by Microsoft Research
(Lewis, 2010) following the 2010 earthquake. Mil-
lour and Fort (2018) led a project of crowdsourcing
of POS tags for Guadelupean Creole in which they
describe the necessary steps and methodology to
crowdsource a language for POS tagging. They
were able to collect a corpus of nearly 2,500 tokens
POS tagged and create a POS tagger reaching 84%
accuracy.

The lack of available creole treebanks, with
Nigerian Pidgin English (Caron et al., 2019) the
only publicly available Universal Dependency tree-
bank, means that best parsing strategies for Cre-
oles are still being developed. Given the lack of
available data, parsing creoles can be viewed as
similar to the need to leverage related treebanks

to try and increase performance on the target tree-
bank. A common approach is to concatenate avail-
able treebanks and optimize towards the target tree-
bank. This has demonstrated gains in both monolin-
gual (Björkelund et al., 2017; Velldal et al., 2017)
and cross-lingual (Das et al., 2017) experiments.
Another successful technique is to instead train a
model on a source treebank and then fine-tune on
the target treebank (Shi et al., 2017; Che et al.,
2017).

The most directly related works to ours are Wang
et al. (2017, 2019) since they parse Singlish, an
English-based Creole, by leveraging its lexifier lan-
guage, English, to boost performance. Wang et al.
(2017) propose a neural stacking architecture which
yielded promising results which were further inves-
tigated by Wang et al. (2019). They tripled the size
of their original Singlish treebank by web scraping
and annotating more data and performed additional
multi-task experiments for integrating English syn-
tactic knowledge. While multi-task models showed
some success, neural stacking methods were still
better, as was simply concatenating English and
Singlish treebanks in some experiments. Such neu-
ral stacking architectures with additional POS in-
formation also have helped in the related task of
parsing Hindi-English Code-switching data (Bhat
et al., 2018). As far as we know, we are the first to
approach the task of dependency parsing a French-
based Creole.

4 Properties of Martinican Creole

Martinican Creole (MC) is a French-based creole
and part of the Atlantic Creoles language fam-
ily. Syntactically, MC is an SVO language and
is closely related to French, other creoles such as
Guadeloupean, Marie Galante, St. Barth, Saint Lu-
cian Creoles, and Haitian Creole, and to a lesser
degree to African languages. The differences be-
tween MC and the closely related Antillean creoles
are mostly lexical, they share very similar syntactic
structures.

While MC originates from French, both lan-
guages show noticeable syntactic differences, espe-
cially wrt. the word order in noun phrases.

(1) Zanmi-mwen
friends-my

enmen
like

liv-la
book-the

(MC)

Mes amis aiment le livre (French)
"My friends like the book"

Example (1) shows a sentence in Martinican Cre-
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ole. It demonstrates that determiners like -la and
modifying pronouns like -mwen are post-posed,
compared to their French and English counterparts
mes (my) and le (the).

Despite these differences in morpheme order, it
is still relatively easy to see the direct parallels be-
tween both languages. This makes French a good
candidate for a transfer learning approach to pars-
ing MC.

MC is considered a morphologically reduced
language (Hazaël-Massieux, 2002): Tense, mood
and aspect features are expressed as separate mor-
phemes/markers instead of inflections on the ver-
bal element. There is also no morphological gen-
der/number marking on nouns and adjective.

(2) Asiparé
Apparently

yo
3PL

té ké
PST.FUT

vann
sell

prop
own

frè-yo
brothers-3PL

épi
and

sè-yo.
sisters-3PL

A ce qu’il parait, ils vendraient leurs pro-
pres frères et leurs soeurs.
"Apparently, they would sell their own sib-
lings"

In example (2), we see that the conditional is ex-
pressed in MC by a morpheme combination of the
Past/Perfective marker té and the Future/Irrealis
marker ké whereas in French, the conditional is ex-
pressed synthetically by the affix -raient attached
to the end of the verb vendre. We also see that
general plural nouns like frè-yo and sè-yo are not
morphologically marked in MC, and neither is their
accompanying adjective prop, whereas in French
frères and soeurs and propres are all morphologi-
cally marked for gender and number.

Finally, while MC uses a different spelling sys-
tem from French, the MC pronunciation is much
closer to its spelling than in French. MC acquired
most of its lexicon from French. Lexical transfer
was either phonetically transparent or underwent re-
analysis via several phono-lexical processes (such
as agglutination (see example (3)), apheresis (see
example (4)), syncope (see example (5)), etc.).

(3) Agglutination
diri [di.Ki] (MC)
du riz [dy.Ki] (French)
(some) rice

(4) Apheresis
limen [li.mẼ] (MC)
allumer [a.ly.me] (French)
to turn on

(5) Syncope
dòmi [dO.mi] (MC)
dormir [dO.Kmi] (French)
To sleep

In both cases, while the lexical transfer can eas-
ily be identified at the phonetic level, it is a more
difficult to identify at the orthographic level, since
there are significant differences in the respective
spelling systems. Because of the amount of differ-
ences, it is possible that French embeddings may
not be useful, since there may not be enough lexi-
cal overlap between French and MC, even on the
subword level.

5 Methodology

5.1 Treebanks
French Treebank For our source treebank, we
use the French GSD treebank (Guillaume et al.,
2019)1 as it is sufficiently large in size and pre-
dominantly consists of news articles, which aligns
better with the newly created MC treebank.

MC Treebank The MC treebank consists of
news and blog articles written in Martinican Creole
by native speakers. Texts range from 2004 to 2021
and consist of two primary sources: 1) Kréyolad2

collections which gather all the article contribu-
tions of Jude Duranty to the newspaper Antilla3

from 2004 to 2018 and 2) the collective blog Mon-
tray Kréyol4 which contains columns from numer-
ous authors, written in French and various (mostly
French-based) creoles. Selected text were anno-
tated by the first author. The fully annotated tree-
bank of MC consists of 240 sentences and a total
of 4809 tokens.5

Annotation of MC Treebank We tokenized the
texts using NLTK Tokenizer6 and then annotated
for POS information using INCePTION (Klie et al.,
2018). INCePTION proposes an automatic POS
tagger training on the annotations one makes syn-
chronously and retrains itself whenever a new word
receives a tag. We then used UD Annotatrix (Tyers

1Experiments training with all French treebanks were com-
putationally more expensive and yielded poorer results.

2https://www.potomitan.info/duranty/
kreyolad.php

3https://antilla-martinique.com/
4https://www.montraykreyol.org/
5The treebank will be released in the next UD cycle.
6https://www.nltk.org/api/nltk.

tokenize.html We used the default model (English)
since we did not expect any differences in punctuation.
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Treebank Train Dev Test
FR-GSD 13 072 1 634 1 634
MC 80 80 80

Table 1: Distribution in Train/Dev/Test sets of FR-GSD
and Martinican Creole (MC) treebanks.

et al., 2017) for the dependency annotations. The
treebank is not annotated for lemmas or morpho-
logical information.

5.2 Experimental Setup

Data Splits Due to the small size of the MC cor-
pus, we split the treebank into equal size folds
for train, dev, and test of 80 sentences. For more
generalized results, we generate three different ran-
domized splits and report results averaged over the
three runs. For the French GSD treebank, we use
the standard train/dev/test split, unless otherwise
noted. Table 1 shows the sizes of the different data
sets.

Parser We use the Deep Biaffine parser (Dozat
and Manning, 2017) implemented in the SuPar
parsing library.7 The parser is a neural graph-based
dependency parser which uses biaffine attention
and biaffine classifier in combination with dimen-
sion reducing MLP layers to reduce non-relevant
information.

We experiment with different input embed-
dings: character, POS tag, and BERT embeddings.
Note that SuPar always includes word embed-
dings, so that we can only use (word+)POS and
(word+)BERT. For all POS embeddings, we use
gold POS tags. For the BERT embeddings, we use
the French camemBERT (Martin et al., 2020)8.

In addition, we also use a multi-task learning
parser where each treebank is treated as a sepa-
rate task (Sayyed and Dakota, 2021). Both input
embeddings into the BiLSTM and the subsequent
MLP layers are shared, which allows for informa-
tion transfer during joint optimization between the
treebanks. We also experiment with weighting tree-
banks with respect to their joint loss contribution,
which has shown to be beneficial when data imbal-
ances exist between treebanks (Dakota et al., 2021),
as in our case. Results reported are using the scorer
from CoNLL2018 shared task (Zeman et al., 2018).

7https://github.com/yzhangcs/parser
8We also experimented with the other large French LM,

FlauBERT (Le et al., 2020), but this yielded worse perfor-
mance

Train Embed. UAS LAS
French char 25.05 11.73

POS 65.08 51.95
BERT 38.23 21.63

MC char 62.89 48.36
POS 71.71 62.86
BERT 63.36 49.83

FR+MC char 72.95 60.57
POS 80.75 71.77
BERT 72.17 58.57

Table 2: Baselines for training on French, Martinican
(MC), and concatenated French+Martinican (FR+MC).

6 Results

6.1 Baselines

We first need to establish the baselines, i.e., training
on the French training set, training on the Martini-
can Creole training set, and concatenating these
two. Here, we optimize and test on the MC dev set.

Table 2 shows the results for these baseline mod-
els. These results show that the French training
data gives us the lowest results. The best model,
using POS embeddings, results in an LAS of 51.95.
Using character and BERT embeddings results in
considerable losses (LAS: 11.73 and 21.63); this
can be attributed to the significant differences in
spelling between French and MC (see section 4).
Training on 80 MC sentences is surprisingly suc-
cessful. Again, using the POS embeddings shows
the best results (LAS: 62.86). It is worth noting
how beneficial the use of POS embeddings is for
MC compared to subword information. One reason
is simply the small data size of the MC treebank;
another reason may be that some of the linguistic
properties of MC are disambiguated via POS tags
but not via characters. However, the concatenation
of both training sets results in the highest scores
overall, with an LAS of 71.77 for POS embeddings.
This is particularly interesting given that the French
training size is about 136 times the size of the MC
training but this small amount is enough to direct
the French-trained model in a beneficial direction.

6.2 Optimization

Since we operate in a very low-resource setting, the
next question is whether it is worth annotating sen-
tences to use for optimizing the parser or whether
the neural architecture does not require target lan-
guage specific optimization. Thus, we compare a
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Dev Embed. UAS LAS
French char 20.03 9.16

POS 58.17 45.54
BERT 33.07 18.38

MC char 25.05 11.73
POS 65.08 51.95
BERT 38.23 21.63

Table 3: MC test performance when optimizing on
French and MC.

Dev. Embed. Finet. UAS LAS
French char no 20.03 9.16

yes 20.03 9.16
POS no 58.17 45.54

yes 58.17 45.54
BERT no 33.07 18.38

yes 33.07 18.38
MC char no 25.05 11.73

yes 64.71 46.83
POS no 65.08 51.95

yes 72.87 60.83
BERT no 38.23 21.63

yes 67.10 49.41

Table 4: Performance with and without fine-tuning on
MC.

setting trained and optimized on French with a set-
ting where we train on French and optimize on 80
MC sentences. The results are shown in Table 3.9.

Our results show increases when the source
French model has been optimized on MC as com-
pared to French. This is true for all types of embed-
dings. The POS model shows a sizable improve-
ment of more than 6 percent points for LAS while
the improvements for the character and BERT mod-
els are more modest, around 2-3 percent points.
However, we do not reach the MC baseline in any
setting.

6.3 Fine-tuning

We next experiment with transfer learning in order
to see if we can improve on the French baseline
by fine-tuning on the MC training set. Given the
difference in size, the MC data should not have a
noticeable effect, but since the concatenation base-
line proved so successful, we need to determine
whether fine-tuning on the MC training has the

9Note that the results of the French model optimized on
MC are repeated from Table 2.

same effect. When training on French, we have
two settings: We either optimize on French or on
MC. When fine-tuning on MC, we optimize on
MC.

Table 4 shows the results of these experiments.
Note that the results without fine-tuning are re-
peated from Table 3. The results show very clearly
that fine-tuning is only successful when the first
stage is optimized on MC. If we optimize that stage
on French, fine-tuning does not result in any im-
provement. This is likely due to the fact that train-
ing a fully optimized French model results in over-
fitting, which in turns does not allow the little MC
data to effectively update the parameters.

When optimizing on MC, we note that all models
show a drastic improvement in performance, espe-
cially for the BERT and character embeddings. Out
of the three types of embeddings, the model using
character embeddings benefits the most from fine-
tuning, improving from 25.05 to 64.71 for UAS
and from 11.73 to 46.83 for LAS, followed by
the BERT embeddings model going from 38.23
to 67.10 for UAS and 21.63 to 49.41 for LAS. The
most successful model, using POS embeddings,
reaches an LAS of 60.83. While this is still be-
low the concatenation model, it shows again the
usefulness of POS embeddings.

6.4 Overfitting

One reason for the lack of improvement of the
model optimized on French in Table 4 may be that
training a fully optimized French model results in
overfitting, which in turn does not allow the little
MC data to effectively update the parameters. To
investigate the issue of overfitting, we perform ex-
periments where we stop the training early. Since it
is unclear how to determine good stopping points,
we stopped the training at epoch 1 as well as at the
1/4, 1/2, and 3/4 of the optimal number of epochs
when using the French model (trained and opti-
mized on French) and perform fine-tuning exper-
iments in two settings, fine-tuning the model on
MC, and on the concatenated FR+MC treebank.
In both cases, we optimize on MC. The results of
these experiments are shown in Table 5.

When comparing between the two fine-tuning
settings, we note that none of the 1/4, 1/2, 3/4 or
the fully optimized models improve from the MC
or MC+FR data during fine-tuning, as results are
not substantially different from the ones without
fine-tuning. This indicates that the more a model
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FT Emb. Epoch 1 1/4 1/2 3/4 Full
MC char 41.59 9.41 9.38 9.32 9.16
MC POS 36.82 49.81 48.79 47.23 45.54
MC BERT 11.55 20.30 19.25 18.03 18.38
FR+MC char 54.17 9.41 9.38 9.32 9.16
FR+MC POS 65.33 49.81 48.79 47.23 45.54
FR+MC BERT 11.55 20.30 19.25 18.03 18.38

Table 5: LAS when training on 1/4, 1/2, 3/4 of the best epoch of the French model, fine-tuned on MC or FR+MC.

Embed. No weight Weight
UAS LAS UAS LAS

char 70.23 56.58 71.44 58.26
POS 64.67 50.46 64.99 50.12
BERT 69.39 56.33 70.76 56.78

Table 6: Results for MTL with non-weighted and
weighted losses on the MC task. All weighted experi-
ments use 0.9 for French and 0.1 for MC.

is trained and optimized on French, the less it is
able to profit from having access to MC data. The
only models showing noticeable benefit from fine-
tuning are the epoch 1 character model fine-tuned
on MC and the epoch 1 character and POS models
fine-tuned on FR+MC, but both are still below their
respective baselines.

When we look at the experiments with fewer
epochs, we see a deterioration of the results from
fewer epochs to the full number of epochs, showing
clear signs of overfitting. This trend holds across all
conditions but is strongest for the highest perform-
ing model using POS embeddings. Here the LAS
decreases from 49.81 to 45.54. However, even the
results at 1/4 epochs are far below the MC baseline.

6.5 Multi-task Learning

Another approach for information sharing is to
use multi-task learning (MTL). By treating each
treebank as a task, it allows them to be optimized
jointly but does so by combining information with
the other treebank in the process rather than sequen-
tially as in a typical transfer learning setup. For
this experiment, we have two settings, one without
weighting losses, and one with loss weighting. Re-
ducing the weights for the smaller treebank may
help reduce the negative transfer that can occur.
Given the small size of the MC training set, its con-
tribution to the overall loss may be too high, leading
the parser in a sub-optimal direction. This assump-
tion has been shown to hold for a domain adapta-

tion setting (Dakota et al., 2021), where assigning
higher weights to the larger and lower weights to
the smaller treebank yielded the best performance.
Consequently, we assign a loss of 0.9 to the French
treebank and 0.1 to the MC treebank.

The results of this experiment are shown in Ta-
ble 6. Results are generally better than for the
fine-tuning setting. However, the best result so far
is still the baseline trained on only 80 sentences of
MC and using POS (see Table 2), as none of the
MTL settings reach this result. When we compare
the weighted and non-weighted settings, we see
an improvement of about 1.5 points (LAS: from
56.58 to 58.26) for the character model and a min-
imal gain for the BERT model (LAS: from 56.33
to 56.78), but a small decrease for the POS model.
It is noticeable that using POS information leads
to substantially worse results in comparison to the
other models, thus contradicting the trends of pre-
vious experiments. This further re-enforces the
notion of negative transfer when sharing POS in-
formation.

We next look at a setup where we use the
FR+MC concatenated treebank as one of our tasks
and the MC treebank as the other, with both op-
timizing on the same development set, but using
different weights.f

Table 7 shows the results of this experiment (the
FR/MC setting is repeated from Table 6). We see
that using the combined FR+MC training set gives
us a moderate boost of 2-3 percent points over the
FR/MC setting. Here, the UAS improves over the
best MC-only baseline, the LAS does not. Ad-
ditionally, we can see that even further reducing
the MC weights tends to yield better performance
for LAS, suggesting that as the data imbalance be-
comes extreme, so does the need to downweight
the smaller treebank.
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Embeddings Weights UAS LAS
FR MC

char 0.90 0.10 71.44 58.26
POS 0.90 0.10 64.99 50.12
BERT 0.90 0.10 70.76 56.78

FR+MC MC
char 0.90 0.10 73.13 59.84
POS 0.90 0.10 69.56 55.81
BERT 0.90 0.10 73.37 60.08
char 0.95 0.05 74.08 61.26
char 1.0 0.01 73.54 61.47
POS 0.95 0.05 70.77 57.66
POS 1.0 0.01 70.71 57.53
BERT 0.95 0.05 72.97 59.82
BERT 1.0 0.01 73.15 60.04

Table 7: Results for the MC task using varying weights
for the MTL parser, training on either FR and MC or on
FR+MC and MC and testing on MC.

7 Analysis

All the experiments described above tell us that
the best method to parse Martinican Creole given a
very small treebank is to concatenate the two tree-
banks. It is unclear why first training on French and
then fine-tuning on MC does not result in a simi-
lar performance. And it is equally unclear why the
POS embeddings are successful in transfer learning
but not in a multi-task learning setting. We assume
that the two are related and will analyze the data to
shed light on these questions.

7.1 Correlation of POS Tags and Parser
Errors

We first look into the correlation between specific
part of speech tags and parser errors. More specif-
ically we look at label accuracy of incoming arcs
per POS tag, with a primary focus on the experi-
ments that include the concatenated FR+MC data
during training.

Table 8 presents the results10 for the FR+MC em-
beddings baselines and their best respective MTL
settings from Table 7. We see the same trends
across most open and closed class POS tags within
one setting. Since the lexical models (char and
BERT) show significantly lower results than the
POS model, this points to a disconnect on the lexi-
cal level (caused by the different spelling systems)
that can only be overcome by adding POS infor-

10All numbers are averaged over the three folds.

mation. However, in this case, we would expect a
better performance of the POS model in our MTL
task in comparison to the MC baseline. Since this
does not happen, we assume that there are signifi-
cant differences on the POS level between the two
languages, causing negative transfer for the MTL
model (one facet of this will be investigated in more
detail in the next section.)

One notable trend is related to the accuracies for
adjectives and adverbs: While the baseline POS
model can parse those POS very successfully, the
MTL POS model reaches accuracies that are below
the MTL character and BERT models for adjectives
and comparable for adverbs (again, see below for
an explanation).

7.2 POS Distribution

We now have a closer look at the POS distributions
between French and MC, to determine whether
these ambiguity rates can give us insights into the
differences between French and MC on the POS
level. However, a direct comparison does not seem
to be feasible since the MC treebank is too small
to give us a stable picture, especially compared
to the large French treebank. For this reason, we
decided to use the full 240 sentences of the MC
treebank and to randomly sample 240 sentences
from the French treebank (averaged over 10 rep-
etitions). While the small number will introduce
some variability, the results will be more compara-
ble across the languages.

When looking at the percentage of ambiguous
words, 2.2% of the word types (in the POS lexi-
con) for French and 7.0% for MC are ambiguous,
showing that about 3 times more MC words are
ambiguous. Additionally, the percentage of am-
biguous word types amounts to 13.0% when we
concatenate the French and MC treebanks.

Table 9 shows the rates of ambiguous word types
per POS tag. A comparison of French and MC
shows that for all POS tags, the MC words are
ambiguous about 3 times more often. And while
French subordinating conjunctions (SConJ) and
prepositions (Adp) tend to be frequently ambigu-
ous, this ratio increases to more than 50% for MC.
Additionally, the percentages for the combined tree-
bank shows that the ambiguities are mostly additive,
i.e., there is not much overlap between the ambigu-
ous words in French and MC. This at least partly
explains the difficulties of the POS models. The
most extreme cases are subordinating conjunctions
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Noun Verb Adj Propn Adv CConj SConj Adp LAS
baseline char 56.76 63.67 50.36 60.82 57.38 66.80 60.27 68.49 60.57
baseline POS 70.52 72.03 84.45 66.78 87.21 88.12 91.34 89.23 71.77
baseline BERT 54.92 58.47 53.05 58.15 51.66 62.57 55.92 65.44 58.57
MTL char 58.03 64.45 50.90 58.53 62.64 71.08 65.38 66.55 61.47
MTL POS 53.00 58.61 45.35 56.93 59.72 68.49 65.01 68.56 57.66
MTL BERT 55.67 60.96 55.68 60.82 58.45 69.48 58.19 65.20 60.08

Table 8: Accuracy of dependency labels per POS tag for FR+MC baseline and best MTL experiments.

Noun Verb Adj Propn Adv CConj SConj Adp Total
French 2.2% 3.5% 5% 0.5% 8.9% 8.4% 48.8% 18.6% 2.2%
MC 5.7% 9.5% 17.9% 1.7% 24.5% 37.5% 61.8% 51.8% 7.0%
FR+MC 14.5% 15.3% 34.6% 17.3% 35.8% 51.7% 70.6% 62.9% 13.0%

Table 9: Average of ambiguous word types per POS tag.

and prepositions, for which more than 50% are am-
biguous in MC and more than 60% in the combined
treebank. For the open class POS tags, adjectives
and adverbs are the most affected. In the case of ad-
jectives, the combined treebank shows a doubling
of the ambiguity rate from MC to the combined
treebank, thus indicating not only an increase in
ambiguity in MC, but also a high number of words
that are only considered adjectives in one of the
languages but not both. This partly explains the
low results for adjectives in the MTL POS setting
in Table 8.

7.3 Example

Martinican creole shows a systematic ambiguity
between nouns and adjectives. The word politik is
one example, as shown in examples (6) and (7). In
example (6) the word is misidentified as a noun,
which leads the character model to interpret it as an
nmod of désizion instead of its amod (see Figure 1).
Having access to the gold POS tags in the POS
model helps this model disambiguate it correctly.

(6) zot
2PL

wè
see

ni
there-is

an
a

désizion
decision

politik
political

“You saw that there is a political decision.”

(7) fanm
women

an
in

politik
politics

8 Conclusion and Future Work

In this study, we built a first parser of Martinican
Creole using French as the supporting language to
address the extremely low-resource setting of the
creole.

Our main finding is that, surprisingly, we obtain

the best parsing results with our baseline model
trained on a concatenation of the French and MC
training sets. The success of the concatenated base-
line model shows that even with as little as 80 MC
sentences in the training set, the POS model is able
to direct itself in the right direction.

Even the baseline POS model trained on 80 MC
sentences outperforms all transfer and MTL mod-
els, the single exception being the UAS of the
MTL character and BERT models. Partial expla-
nations for these results can be found in the differ-
ent spelling systems used for French and MC (see
Section 4) and in the high level of ambiguity of
MC, and specifically MC adjectives and adverbs.
Whether POS tags are needed in neural dependency
parsing is still an open question (Anderson and
Gómez-Rodríguez, 2020; Zhou et al., 2020), and
our findings further complicate this picture. In our
case, they can reduce ambiguity in our baselines,
but increase ambiguity across the two languages.
Since we use gold POS tags, there remains the open
question whether the same effects will occur with
automatically annotated POS tags.

Our results partially contradict findings by Wang
et al. (2019) for Singlish. They also found that in
the low resource setting (using 900 Singlish sen-
tences), treebank concatenation outperforms MTL.
However in their work, MTL outperformed the
baselines for both individual treebanks while we
did not see this increase in performance across
experiments. Our findings thus confirm that to
improve our performances on parsing MC using
French, we will need to reduce the imbalance be-
tween the two languages, by augmenting the MC
data. For the future, we are planning to investi-
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zot wè ni an désizion politik
PRON VERB VERB DET NOUN ADJ

nsubj ccomp
obj

det amod

nsubj ccomp
obj

det nmod

Figure 1: zot wè ni an désizion politik parses for POS and char predictions.

gate whether a larger MC training set will have a
positive effect in the MTL setup.

However, the fact that as little as 240 annotated
sentences, provided that we concatenate them with
French data, can yield an LAS in the low 70es indi-
cates that it is possible to develop parsing models
for French-based creoles without extensive annota-
tion projects.
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Abstract

Multilingual neural machine translation
(MNMT) jointly trains a shared model
for translation with multiple language
pairs. However, traditional subword-based
MNMT approaches suffer from out-of-
vocabulary (OOV) issues and representation
bottleneck, which often degrades translation
performance on certain language pairs. While
byte tokenization is used to tackle the OOV
problems in neural machine translation (NMT),
until now its capability has not been validated
in MNMT. Additionally, existing work has
not studied how byte encoding can benefit
endangered language translation to our knowl-
edge. We propose a byte-based multilingual
neural machine translation system (BMNMT)
to alleviate the representation bottleneck and
improve translation performance in endangered
languages. Furthermore, we design a random
byte mapping method with an ensemble
prediction to enhance our model robustness.
Experimental results show that our BMNMT
consistently and significantly outperforms
subword/word-based baselines on twelve
language pairs up to +18.5 BLEU points, an
840% relative improvement.

1 Introduction

Neural Machine Translation (NMT) has achieved
great success and dominates recent research on
translation tasks in both academic and industry
studies (Wu et al., 2016; Stahlberg, 2020; Chen
et al., 2018). In particular, multilingual neural ma-
chine translation (MNMT) has been shown to ben-
efit low-resource language translation by jointly
training MNMT models with high-resource lan-
guages (Johnson et al., 2017). However, most ex-
isting NMT/MNMT models are based on word
or subword tokenization, which has three main
problems. First, language-specific tokenizers,
such as BPE (Shaham and Levy, 2021), may in-
troduce inaccurate segmentations (Banerjee and

Bhattacharya, 2018). Second, out-of-vocabulary
(OOV) words/subwords are still unavoidable and
hurt translation performance. Third, some lan-
guages show a decrease in translation quality with
multilingual training due to specific characteristics
of the language variety, a problem known as the
representation bottleneck (Dabre et al., 2020; Zoph
and Knight, 2016). It essentially limits the im-
provement of transfer learning from high-resource
NMT, like Chinese-English (Gu et al., 2018) to the
low-resource NMT, like Aymara-Spanish.

Recently, byte-based NMT models show com-
parable performance to word/subword-based mod-
els (Shaham and Levy, 2021; Wang et al., 2020).
Because modern byte encoding systems such as
UTF-8 have only 256-byte entries in total, i.e.,
0x00 to 0xff, the unified byte tokenization in
all languages obviates the traditional preprocess-
ing of language-specific subword tokenization and
restricts the vocabulary to a fixed and small one.
Therefore, the 256-byte-sized UTF-8 vocabulary
avoids the OOV issues.

Despite the advantages of byte tokenization, the
byte encoding has not been investigated in mul-
tilingual NMT yet, to the best of our knowledge.
In this paper, we show that byte tokenization can
be naturally applied to MNMT systems with great
advantages. Given the unified encoding of byte
tokenization in all languages, byte encoding is able
to address the representation bottleneck problem in
MNMT systems effectively. For example, Figure 1
shows the overlaps of subword and byte vocabular-
ies among multiple languages. We notice with the
growth of the language number, there is almost no
overlap of word vocabularies, while the byte vocab-
ulary still has a large overlap. This large overlap
of byte vocabulary enables enhanced knowledge
sharing among different languages and can help
the model learn more generalized representations
for these languages. Taking the low resource as a
common property for most endangered languages,
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Figure 1: The vocabulary overlap ratio of byte and sub-
word tokens. The area upper/lower bound denotes the
highest/lowest ratio among all language combinations,
given a language number.

we think byte-based MNMT is particularly helpful
for endangered language translation. Therefore, we
aim to incorporate byte tokenization in MNMT to
alleviate the representation bottleneck problem in
multilingual translation.

Besides incorporating byte encoding into
MNMT, we aim to further investigate the gener-
alizability of byte encoding. We observed that byte
mapping can be arbitrary. For example, the char-
acters “a”-“z” are represented with bytes 97-122
using UTF-8. However, we conjecture “a”-“z” can
be any byte from 0 to 255. The byte representation
does not need to be determined as a single encod-
ing mapping. However, existing byte-based NMT
systems do not consider such randomness of byte
encoding. Moreover, we think language models
should provide similar performance given different
byte encoding methods to improve the generaliz-
ability and robustness. Therefore, we design a new
encoding method that we call Random Byte Encod-
ing by incorporating the random representation of
bytes and reduce the variance of model outputs.

In this work, to address these challenges, we pro-
pose a Byte-based Multilingual Neural Machine
Translation framework (BMNMT). It simultane-
ously considers the byte randomness and the en-
dangered languages in multilingual translation and
works as follows. First, we design a novel MNMT
framework that can take the byte encoding of sen-
tences as inputs. Then, we incorporate the ran-
domness of the byte encoding as discussed above
by generating random byte mapping to replace the
original byte ordering. We finally propose an en-
semble prediction method by combining different
encodings for reliable outputs.

Our BMNMT achieves amazing results in im-
proving the low-resource and the endangered lan-

guage translation that often does not have satis-
factory results due to scarce resources and other
linguistic characteristics (Levow et al., 2021; Ens
et al., 2019; Liu et al., 2022). We demonstrate
that our BMNMT consistently and significantly
enhances the translation performance on all lan-
guages, including five high-resource languages,
German, Arabic, Chinese, Farsi, Turkish to English,
one low-resource language, Slovenian to English,
and ten endangered languages, Asháninka, Aymara,
Bribri, Guarani, Nahuatl, Otomí, Quechua, Rará-
muri, Shipibo-Konibo, and Wixarika to Spanish.
For example, the translation BLEU score [%] in-
creases from 0 to 3.9 for the endangered language
Shipibo-Konibo, and from 2.2 to 20.7 for the low-
resource language Slovenian to English, i.e., +18
BLEU points. The contributions of this work are
summarized as follows:

• We propose an effective byte-based MNMT
framework to alleviate the representation bot-
tleneck problem in word/subword-based mul-
tilingual translation, especially for endangered
languages.

• We design a novel method of random byte
encoding with ensemble prediction to enhance
the generalizability and robustness of our byte-
based MNMT model.

• We evaluate BMNMT on various training
strategies. Extensive experiments validate the
effectiveness, generalizability, and robustness
of our model.

In the following context, we first outline the pre-
vious work in Section 2, then describe our method
in Section 3, finally show our experimental results
in Section 4 and conclude this work in Section 6.

2 Related Work

Multilingual Neural Machine Translation
Word and subword-level tokenizations are widely
used in natural language processing, including
NMT/MNMT. Morishita et al. (Morishita et al.,
2018) propose to incorporate hierarchical subword
features to improve neural machine translation.
Massively multilingual NMT models are proposed
by Aharoni et al. (Aharoni et al., 2019) and
Arivazhagan et al. (Arivazhagan et al., 2019). They
are trained on massive language pairs and show
a strong and positive impact on low-resource
languages. However, these models tend to have
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representation bottlenecks (Dabre et al., 2020),
due to large vocabulary size and large diversity of
training languages. Two MNMT systems (Tan
et al., 2019; Pan et al., 2021) are proposed to solve
this problem by modifying the model architectures,
adding special constraints on training, or designing
more complicated preprocessing methods. Pan
et al. (Pan et al., 2021) adopt the contrastive
learning scheme in many-to-many MNMT. Tan et
al. (Tan et al., 2019) propose a distillation based
approach to boost the accuracy of MNMT systems.
However, these word/subword-based models still
need complex preprocessing steps such as data
augmentation or special model architecture design.

Byte tokenizaiton Recently, byte tokenization
methods are proposed to address the OOV prob-
lems in word/subword-based models. Ruiz et
al. (Ruiz Costa-Jussà et al., 2017) compare
character-based and byte-based NMT systems and
show that byte-based systems converge faster.
Wang et al. (Wang et al., 2020) combine subwords
tokenization with byte encoding and propose a byte-
level BPE (BBPE). Shaham and Levy (Shaham and
Levy, 2021) propose embeddingless byte-to-byte
machine translation by replacing the token embed-
ding layer in subword-based models with one-hot
encoding for bytes. However, among these mod-
els, byte-level MNMT is still not studied, and the
randomness of byte tokenization as we discussed
above is not investigated.

Therefore, different from the previous work, we
mainly focus on byte-based MNMT, while simulta-
neously considering the randomness of bytes and
endangered languages.

3 Methods

3.1 Preliminary of Byte Representation

Any writing system can be encoded with a byte
sequence (Needleman, 2000; Shaham and Levy,
2021), using pre-defined byte encoding methods,
such as UTF-8 for almost all languages, GBK for
simplified Chinese, and eucJP for Japanese.

Formally, we use a mapping function f : C →
Bn to denote the mapping from characters in a raw
sentence to bytes. Here, C is the character domain
for all languages, B = (0, 1, . . . , 255) is the byte
domain, and n is the maximum byte number that a
character maps into. Also, we define f−1 on a byte
sequence to convert it back to the text. In this paper,
we use UTF-8 as the mapping function, because it

og o d

103 111 111 100

(a) en

229

好

165 189

(b) zh

103  117  116

ug t

(c) de

105  121  105

yi i

(d) tr

Figure 2: Byte representation of four languages.

is a general encoding method and contains almost
all characters in existing languages. Figure 2 shows
four different languages represented in bytes, in-
cluding English (en), Chinese (zh), German (de),
and Turkish (tr). A character in each language
is mapped into bytes. Particularly, characters of
some languages such as Chinese are mapped into
multiple bytes.

3.2 Problem Definition

Here, we first describe the input and output of the
multilingual translation task.

Definition 1 (Multilingual Domain). We use S =
{S1,S2, . . . ,SN} to denote the source language
domain and use T = {T1, T2, . . . , TM} to denote
the target language domain. Si or Tj represents
a type of language. Note that S and T can have
intersection.

Definition 2 (Multilingual Sentence Pair). Given
the source domain S and the target domain T ,
we define the multilingual sentence pair set L =
{(si, sj) | si ∈ Si and sj ∈ Tj and Si ̸= Tj}.
Here, the si and sj denote two parallel sentences
from different languages.

Based on the above description, we formally
define the multilingual translation task as follow:

Definition 3 (Multilingual Translation). Given the
multilingual sentence pair L as the training set
and a translation modelM with parameters θ, we
aim to find the optimized parameters θ̂ of M to
minimize the following objective function:

θ̂ = argmin
θ

∑

(si,sj)∈L
−p(sj) log p(ŝj |si;θ). (1)

Here, ŝj is the predicted sentence of the target
sentence sj . To generate each token x̂tj in ŝj ,
we use si and the previous tokens s<tj of sj to
calculate a probability p(x̂tj) = M(si, s

<t
j ;θ).

Assume sj consists of m tokens (byte or sub-
word): (x1j , x

2
j , . . . , x

m
j ), the conditional probabil-
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Byte Encoding

Model Forward

Byte Decoding

Figure 3: The overview of the proposed byte-based
multilingual translation model BMNMT.

ity p(ŝj |si;θ) is defined as:

p(ŝj |si;θ) =
m∏

t=1

p(x̂tj) =
m∏

t=1

M(si, s
<t
j ;θ).

(2)

3.3 Multilingual translation with byte-level
tokenization

Suppose we are given a sentence pair (si, sj) ∈ L
and si = (c1i , . . . , c

k
i ), sj = (c1j , . . . , c

w
j ), respec-

tively. c is a character of si or sj . k and w denote
the character number of the raw source sentence
si and target sentence sj , respectively. Our pro-
posed multilingual translation framework BMNMT
contains three main parts: byte encoding, model
forward, and byte decoding. The model overview
of BMNMT is shown in Figure 3.

Byte encoding We first use the byte mapping
function f to encode the raw sentence pairs into
byte sequences. Take sj in Figure 3 as an example.
We first mapw characters in each raw sentence into
a new sequence rj of m byte tokens:

rj = (f(c1j ), f(c
2
j ), . . . , f(c

w
j ))

= (x1j , x
2
j , . . . , x

m
j ). (3)

It is worth noting that we also consider the punc-
tuation and the space symbol in the raw text as
characters and encode them into bytes.

Model forward Our byte-level multilingual
translation model is based on the state-of-the-art
Transformer architecture (Vaswani et al., 2017),
which includes an encoder Enc and a decoder Dec.
After getting the byte tokens of sentence pairs, we
convert ri and rj to one-hot vectors ri and rj . Then,
the encoder encodes the source sequence into hid-
den representations, and the decoder outputs logits

htj ∈ Rd for each generated token x̂tj of the target
sentence. Here, d is the dimension of the decoder
output. Finally,M calculates a probability p(x̂tj)
with a fully-connected (FC) layer with Softmax:

htj = Dec(Enc(ri), r
<t
j ) ∈ Rd, (4)

p(x̂tj) = Softmax(Whtj) ∈ R256. (5)

Here, W ∈ R256×d is the weight in the FC layer
to project the output space of the decoder into the
byte space.

Byte decoding After getting the probability dis-
tribution p(x̂tj) of the current output token x̂tj , we
then use Beam Search (BS) to sample the target
byte token x̂tj . Finally, after generating the entire
byte sequence, we use the inverse mapping f−1 to
retrieve the real generated text sentence ŝj :

x̂tj = BS(p(x̂tj)) (6)

ŝj = f−1(x̂1j , x̂
2
j , . . . , x̂

m
j ) (7)

Note that, in the inference process, we auto-
regressivelly output the target tokens using the
previous generated tokens ŝ<tj instead of s<tj , i.e.,
p(x̂tj) =M(si, ŝ

<t
j ;θ).

3.4 Random byte encoding and ensemble
prediction

As discussed in the previous section, we use a one-
hot vector to represent a byte token. For example,
in Figure 3, the byte representation of character
“h” is 104 under UTF-8 encoding. In the one-hot
vector, the entry in 104 is one and the others are
0. However, we conjecture UTF-8 is just one of
the mapping functions for bytes. The language
model should not be limited by a single byte encod-
ing method, because a single encoding method can
bring possible bias in model representation. Rare
resources of data and other characteristics make it
harder for endangered languages on translation task.
Therefore, we propose an additional random byte
encoding method besides the basic byte tokeniza-
tion by generating multiple random byte mappings.
Then we design an ensemble prediction by training
multiple modelsMs with different byte mappings
and output an average probability among allMs
to enhance the robustness of the translation model.

Random byte mapping To generate multiple
random mappings, we define z permutation func-
tions g1, . . . , gz by shuffling the original bytes
B = (0, 1, . . . , 255) to P1, . . . ,Pz . Here, gl is
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Random 
mapping

(a) Random byte mapping

... ...... ...... ...

... ...

(b) Ensemble prediction

Figure 4: Random byte mapping and ensemble predic-
tion. (a) Random byte mapping with z different byte
permutations of UTF-8. (b) Ensemble prediction by
producing z BMNMT for each byte permutation.

a one-to-one mapping from B to Pl. Figure 4(a)
shows one example of the random byte mapping.
g1(0) = 4 maps byte 0 in B to byte 4 in P1.

Ensemble prediction In the previous section, we
directly use byte encoding from UTF-8. By in-
troducing random byte encoding, we first update
Equation (3) using the byte mapping gl:

rlj =
(
gl
(
x1j
)
, gl
(
x2j
)
. . . , gl

(
xmj
))

(8)

Then, we have z byte-level input sentence pairs
(r1i , r

1
j ), (r

2
i , r

2
j ), . . . , (r

z
i , r

z
j ) for each (si, sj). For

l-th random byte encoding, we adopt an individ-
ual multiliangual TransformerMl to take the l-th
byte-level language pair under mapping gl(·) as
the the input. As a result, we calculate z probabil-
ity distributions p1(x̂tj), p2(x̂

t
j), . . . , pz(x̂

t
j) from

Equation (5). Next, we ensemble these z distribu-
tions. pl(x̂tj) is a vector of 256 entries. For each
entry v ∈ B, we find the corresponding entry gl(v)
in probability distributions pl(x̂tj) of Pl and calcu-
late an average probability from P1 to Pz:

p̄v(x̂tj) =
1

z

z∑

l=1

p
gl(v)
l (x̂tj). (9)

We still take Figure 4(a) as an example. When cal-
culating the probability of byte 0 in B, we find byte
4 in P1, byte 53 in P2, . . . , and byte 18 in Pz . Fi-
nally, we use p̄(x̂tj) to execute beam search instead
of p(x̂tj) in Equation (6). The ensemble prediction
modules are demonstrated in Figure 4(b).

4 Experimental Settings

4.1 Dataset
In our experiments, we use the English-centric
IWSLT14 dataset (Cettolo et al., 2014) and the
IndCorpus dataset (Chen et al., 2021).

Specifically, in IWSLT14, we select five high-
resource language pairs, i.e., Chinese, Arabic,
German, Farsi, Turkish to English, and one low-
resource language pair, i.e., Slovenian to English.
When preprocessing IWSLT14, we remove sen-
tences longer than 800 bytes in the training set,
following the settings in (Shaham and Levy, 2021).
In total, about 5% samples are removed.

The IndCorpus contains ten endangered lan-
guages. We translate each language to Spanish.
Because the entire test set of IndCorpus is not pub-
licly available, we adopt the Dev set as the test
data. The statistics of IWSLT14 and IndCorpus
can be found in Appendix A. Note that, although
some endangered languages in IndCorpus have a
large number of training samples, we still regard
them as endangered languages because they have
the characteristics of endangered languages.

4.2 Baselines and Model Settings

To study the representation bottleneck when up-
grading from monolingual translation to multi-
lingual translation, we first include a byte-based
monolingual model. Next, to validate the effec-
tiveness of byte-based MNMT, we also incorporate
two subword-based monolingual and multilingual
models. Specifically, we select the following model
schemes as baselines with different model architec-
tures on two datasets:

• B-N (Shaham and Levy, 2021). To valid the
ability of our byte-based MNMT model BM-
NMT in alleviating the representation bottle-
neck, we select a byte-based NMT model (B-
N) for monolingual translation.

• W-N (Mager et al., 2021). To compare
the translation performance between our
model and subword-based model, we select a
subword-based NMT model (W-N) for mono-
lingual translation.

• W-M. We implement a subword-based MNMT
model (W-M) for multilingual translation
based on W-N to further evaluate the effective-
ness of our byte-based model on multilingual.

The framework of all models including our model
are Transformers with the same architecture on
each dataset. For the model scheme in IWSLT14,
we follow the architecture in (Shaham and Levy,
2021). For IndCorpus, we follow the architecture
in (Mager et al., 2021). For both tokenizations,
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all language pairs share the same model and
the same dictionary. For the subword-based
models, the embedding layers are shared among
source and target languages. For byte-based
models, we remove the embedding layers follow-
ing (Shaham and Levy, 2021). The detailed model
settings on two datasets including architecture
and environment are listed in Appendix B. The
source code is available at the Github repo:
https://github.com/MengjiaoZhang/
Byte-based-multilingual-NMT.

4.3 Hyper-parameters
Following (Shaham and Levy, 2021) and (Mager
et al., 2021), for subword tokenization with BPE,
we use 10,000 merging steps. The dropout rates
of models in IWSLT14 and IndCorpus are 0.2 and
0.4, respectively. Due to the limited training data
in IndCorpus 2021, we also set attention dropout as
0.2 and ReLU dropout as 0.2 to avoid over-fitting
in IndCorpus. The optimizer is Adam (Kingma and
Ba, 2015) with the inverse square root learning rate
scheduler. We set the warm-up steps as 4,000 and
the minimum learning rate is 10−7. The training
epoch for IWSLT14 is 200 with early stop when
observing no decrease of validation loss within 5
consecutive epochs. The epoch number for IndCor-
pus is 50 without early stop because we use the dev
set in IndCorpus as the test data.

4.4 Evaluation Metrics
To evaluate the translation results of all mod-
els, we use the commonly adopted BLEU scores
on both datasets and use an additional metric
ChrF (Popović, 2015) to evaluate endangered lan-
guages in IndCorpus. Here, ChrF denotes the char-
acter n-gram F-score. We adopt ChrF because not
all endangered languages in IndCorpus have a tok-
enization standard (Mager et al., 2021).

4.5 Training strategies
To analyze the causes of the representation bot-
tleneck and explore model generalizability while
studying the effectiveness of the basic BMNMT
framework and ensemble prediction, we consider
multiple scenarios related to languages resource.

Case 1. Jointly Train BMNMT with both High-
and Low-resource language pairs without finetun-
ing and ensemble prediction (T-HL).

Case 2. Jointly Train BMNMT only with the
High resource language pairs without finetuning

Byte (BLEU) Subword (BLEU)

B-N BMNMT (Ours) W-N W-M

ar-en 30.8 30.4 (-0.4) 30.5 28.8 (-1.7)
de-en 34.4 34.2 (-0.2) 34.1 33.1 (-1.0)
fa-en 22.7 24.2 (+1.5) 21.6 23.0 (+1.4)
tr-en 22.8 22.5 (-0.3) 22.2 21.9 (-0.3)
zh-en 15.8 15.8 (+0.0) 15.9 15.8 (-0.1)

sl-en 2.2 20.7 (+18.5) 8.9 20.2 (+11.3)

Avg. 21.4 24.6 (+3.2) 22.2 23.8 (+1.6)

Table 1: Representation bottleneck analysis on Case 1
(T-HL) using the IWSLT14 dataset. Values in “()” repre-
sents the BLEU score difference between multilingual
and monolingual models. Here, Slovenian (sl) is a rela-
tively low-resource language.

and ensemble prediction (T-H).

Case 3. Jointly Train BMNMT on the
Endangered language pairs without finetuning and
ensemble prediction (T-E).

Case 4. Finetune BMNMT with Endangered lan-
guages on pretrained BMNMT in Case 2 (F-E2).

Case 5. Jointly Train BMNMT on Endangered
languages without finetuning but with ensemble
prediction (T-E+P).

For the first four cases without ensemble, we use
the original UTF-8 encoding. For the last case, we
adopt the proposed random byte encoding method.

5 Experimental Results

In the main paper, we report the BLEU scores of
all cases. The ChrF for endangered languages in
Cases 3-5 can be found in Appendix C.

5.1 Representation Bottleneck Analysis on
Cases 1 (T-HL) and 2 (T-H)

To validate the effectiveness of our model in ad-
dressing the representation bottleneck in multilin-
gual translation with both high and low resource
languages, we adopt the training strategies of Cases
1 (T-HL) and 2 (T-H). First, we run the subword-
based translation baselines on monolingual (W-N)
and multilingual (W-M) languages and calculate
the difference of BLEU scores between them. Then,
we also calculate such difference between BMNMT
and B-N to evaluate whether BMNMT can alleviate
the representation bottleneck in MNMT.

Table 1 shows the results of Case 1 (T-HL) on
IWSLT14 dataset. In this experiment, the high-
resource language pairs are Arabic (ar), German
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Byte (BLEU) Subword (BLEU)

B-N BMNMT (Ours) W-N W-M

ar-en 30.8 31.5 (+0.7) 30.5 29.6 (-0.9)
de-en 34.4 35.2 (+0.8) 34.1 33.6 (-0.5)
fa-en 22.7 24.9 (+2.2) 21.6 23.7 (+2.1)
tr-en 22.8 23.8 (+1.0) 22.2 22.4 (+0.5)
zh-en 15.8 16.9 (+1.1) 15.9 16.2 (+0.4)

Avg. 25.3 26.5 (+1.2) 24.9 25.1 (+0.2)

Table 2: Representation bottleneck analysis on Case 2
(T-H) with all high-resource languages in IWSLT14.

(de), Farsi (fa), Turkish (tr), and Chinese (zh) to
English (en), while the low-resource language pair
is Slovenian (sl) to English. We first notice byte-
level models achieve the best performance on al-
most all language pairs. It proves the capability of
byte tokenization in the translation task. Further-
more, as a low-resource language, the translation
from Slovenian to English gains the largest benefit
from BMNMT, and BMNMT has the best average
BLEU score. Therefore, we can conclude that the
application of byte tokenization to MNMT is able
to enhance the knowledge sharing among multiple
languages.

In addition, we notice that subword-based mul-
tilingual translation (W-M) suffers from repre-
sentation bottleneck, because the performance of
some high-resource language pairs ar-en, de-en,
tr-en, and zh-en decrease compared with mono-
lingual translation (W-N). However, our proposed
byte-based multilingual translation shows a much
smaller decrease than word-based models. It fur-
ther proves the ability of BMNMT to alleviate the
representation bottleneck problem in MNMT.

Table 2 shows the results of Case 2 (T-H). Here,
to further study the influence of language resource
on the representation bottleneck, we remove the
low-resource language Slovenian (sl) in Case 1 (T-
HL) and re-train BMNMT and other baselines. We
notice that after removing the language Slovenian,
all MNMT models based on byte and subword gain
a higher performance in the average BLEU score.
However, subword-based W-M still cannot avoid
the representation bottleneck, while our BMNMT
achieves improvement on all pairs against the B-N
model. More importantly, BMNMT has the best
performance on all language pairs.

In summary, when training MNMT with both
high and low-resource languages, the low-resource
languages are a main reason for the representation
bottleneck. Moreover, compared to subword-based

Byte (BLEU) Subword (BLEU)

B-N BMNMT (Ours) W-N W-M

quy-es 2.4 3.5 (+0.9) 3.3 2.7 (-0.6)

gn-es 3.6 4.4 (+0.8) 2.1 3.0 (+0.9)
nah-es 0.2 2.6 (+2.4) 0.8 2.1 (+1.3)
shp-es 0.0 3.9 (+3.9) 0.3 2.8 (+2.5)

Avg. 1.6 3.6 (+2.0) 1.6 2.7 (+1.1)

Table 3: Representation bottleneck analysis on Case
3 (T-E) with endangered languages in IndCorpus.
Quechua (quy) is a relatively high-resource endangered
language.

models, our proposed BMNMT can effectively al-
leviate this problem.

5.2 Representation Bottleneck Analysis on
Endangered Languages: Case 3 (T-E)

To evaluate the ability of BMNMT to address the
representation bottleneck in endangered languages,
we adopt the training strategy of Case 3 (T-E). Here,
we still report the BLUE score differences between
monolingual and multilingual models.

Table 3 demonstrates the results of Case 3. Fol-
lowing the setting in Case 1, we select four lan-
guage pairs Quechua (quy), Guarani (gn), Nahu-
atl (nah), and Shipibo-Konibo (shp) to Spanish (es)
that have relatively large training sizes in IndCor-
pus to avoid the bias in languages of extremely low
resource. Among these pairs, quy has the most
training data that are comparable to high-resource
languages in IWSLT14, while the others can be
regarded as low-resource languages. We notice
the BLEU score of quy is much lower than lan-
guages in IWSLT14. We infer it is because of the
characteristics in endangered languages. However,
different to the results in Case 1, the BLEU score of
byte-based BMNMT on quy-es does not decrease
even with multilingual training. To summarize, we
think our BMNMT can help overcome the repre-
sentation bottleneck of rare resource in endangered
languages and bring enhancement in translation.

5.3 Generalizability Analysis: Case 4 (F-E2)
Another property we want to analyze for multi-
lingual translation is the model generalizability.
Therefore, we adopt Case 4 (F-E2) to generalize
the pretrained model on high-resource languages
to endangered languages. As the case indicates, we
use the pretrained BMNMT and W-M in Case 2,
which are trained on all high-resource languages
and individually finetuned on all endangered lan-
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Figure 5: Robustness analysis on Case 5 (T-E+P): Average BLEU scores of ensemble prediction with different
ensemble number z.

Byte (BLEU) Subword (BLEU)

B-N BMNMT (Ours) W-N W-M

gn-es 4.5 5.9 (+1.4) 3.6 4.0 (+0.4)
nah-es 3.4 4.5 (+1.1) 2.8 2.0 (-0.8)
quy-es 7.0 7.9 (+0.9) 5.4 5.9 (+0.4)
shp-es 0.6 2.7 (+2.1) 1.0 1.1 (+0.1)
aym-es 3.8 5.1 (+1.3) 2.8 2.7 (-0.1)
cni-es 0.3 1.8 (+1.5) 0.6 0.6 (+0.0)
bzd-es 0.7 2.5 (+1.7) 0.9 0.9 (+0.0)
oto-es 0.4 1.4 (+1.0) 0.4 0.4 (+0.0)
tar-es 0.2 0.7 (+0.5) 0.2 0.3 (+0.1)
hch-es 1.7 2.6 (+0.9) 1.1 0.9 (-0.2)

Avg. 2.3 3.5 (+1.2) 1.9 1.9 (+0.0)

Table 4: Generalizability analysis on Case 4 (F-E2) by
finetuning with all endangered languages in IndCorpus
based on pretrained models in Case 2.

guages. As monolingual models, B-N and W-N are
pretrained on German to English and finetuned on
endangered languages. It is worth noting that all
endangered languages in finetuning do not occur in
pretraining to validate the models’ generalizability.

Table 4 shows the finetuning results on IndCor-
pus. We first notice that the models pretrained on
multilingual languages perform better than mono-
lingual models. It indicates that multilingual mod-
els have a stronger generalizability to endangered
languages. Additionally, although the byte-based
monolingual model B-N has worse performance
than W-N on some language pairs, the BLEU
scores of these pairs are largely increased by our
BMNMT compared to W-M. It further validates
the generalizability of BMNMT.

5.4 Robustness Analysis: Case 5 (T-E+P)

To evaluate the translation effectiveness and ro-
bustness of our proposed BMNMT on endangered
languages, we generate multiple random byte map-
pings and adopt Case 5 (T-E+P) in the ensemble
prediction experiment. Specifically, we first choose
the number z of random byte mappings, i.e., en-

semble number from {1, 2, 4, 6, 8}. For each z, we
train BMNMT 5 times on IndCorpus with different
permutations of bytes in UTF-8. The average and
standard deviation of BLEU scores in 5 runs for
each z are reported in Figure 5.

With the growth of z, the BLUE score shows
an increasing trend. It proves that appropriate en-
semble can improve the translation performance.
Moreover, BMNMT without ensemble (z = 1)
has the highest standard deviation. We infer byte-
based translation with only one encoding method
can brings noise to token representations. However,
with multiple byte mapping and ensemble predic-
tion, the translation becomes more stable. There-
fore, we think that the random byte mapping and
ensemble prediction can improve the robustness of
byte-based translation.

In summary, based on all analysis for the repre-
sentation bottleneck, generalizability, and robust-
ness, the effectiveness of our proposed BMNMT
is validated. We conclude that with the introduce
of byte in MNMT and the ensemble prediction for
byte mappings, the representation bottleneck can
be alleviated, especially on endangered language.

6 Conclusion

Multilingual neural machine translation has been
successful in enhancing low-resource languages
because of knowledge sharing. To address the rep-
resentation bottleneck in existing subword-based
multilingual translation systems, we propose a byte-
based MNMT model, BMNMT with the Trans-
former architecture. To improve the model gen-
eralizability and robustness, we further design an
ensemble prediction method with random byte en-
coding. Our experimental results show that BM-
NMT can alleviate the representation bottleneck
and has a stronger generalization ability compared
with subword-based MNMT. Meanwhile, BMNMT
with ensemble prediction improves the transla-
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tion performance and robustness on endangered
language translation tasks. Extending our byte-
based method to large scale models and datasets
is promising and can improve model performance,
which will be our future work.
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A Dataset Statistics

Tables 5 and 6 show the data statistics of IWSLT14
and endangered language dataset IndCorpus, re-
spectively. IWSLT datasets contains English scripts
of TED talks translated into other languages. All
training samples in IWSLT are collected in 2014.
The test samples are from TED talks from 2010
to 2012. For IndCorpus, there are ten indigenous
languages from multiple countries of America.

B Model Architecture and Environment

In every Transformer model used in IWSLT14, we
adopt 6 attention layers for both encoder for de-
coder. The number of attention heads is 4. For the
subword-based models, they contain an embedding
layer for tokens. The embedding dimension is 512,
which is the same as the hidden dimension. The

ISO Language Train Dev Test

zh Chinese 166,046 7,547 5,099
ar Arabic 165,591 7,526 5,357
de German 158,516 7,205 5,585
fa Farsi 99,792 4,536 4,244
tr Turkish 142,619 6,482 5,433
sl Slovenian 15,859 720 2,555

Table 5: Languages from the IWSLT14 dataset with the
ISO codes. The Train, Dev, and Test columns denote the
number of sentence pairs of each language with English
in the training, validation, and test set.

ISO Language Train Dev

cni Asháninka 3,883 883
aym Aymara 6,531 996
bzd Bribri 7,508 996
gn Guarani 26,032 995
nah Nahuatl 16,145 672
oto Otomí 4,889 599
quy Quechua 125,008 996
tar Rarámuri 14,721 995
shp Shipibo-Konibo 14,592 996
hch Wixarika 8,966 994

Table 6: The languages featured in the IndCorpus, their
ISO codes, and dataset statistics.

feed-forward layer is built upon the hidden layer
to calculate the output digits. The dimension of
feed-forward layers in the encoder and decoder is
1024. For byte-based models, they do not have the
embedding layer.

For the Transformer model in IndCorpus, we
shrink the model size to avoid overfitting because
the languages in IndCorpus only contain limited
training samples. The encoder and decoder both
have 5 attention layers with 2 heads. The remaining
parts keep the same as the model architecture used
in IWSLT14.

We use the transformer model implemented by
faiseq1. All the program used in this work is im-
plemented using Python 3.8, PyTorch 1.10.0, and
CUDA 11.3. For the hardware environment, we run
our program on a machine with Intel i9-10900KF
CPU, 128G memory, and an NVIDIA GeForce
RTX 3090 GPU.

C Additional Experimental Results on
Endangered Languages using ChrF

Table 3 and Table 9 show the translation perfor-
mance of endangered languages with ChrF in Cases
3 (T-E) and 4 (F-E2). Similar to the results in Ta-

1https://github.com/facebookresearch/
fairseq
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IWSLT14 IndCorpus

Encoder layers 6 5
Decoder layers 6 5
Attention heads 4 2
Hidden dim d 512 512
Feed-forward dim 1024 1024

Table 7: Model architectures on the IWSLT14 and Ind-
Corpus datasets.

Byte (ChrF) Subword (ChrF)

B-N BMNMT (Ours) W-N W-M

quy-es 22.5 25.2 (+2.7) 21.5 20.3 (-0.8)

gn-es 21.8 23.4 (+1.6) 18.3 22.7 (+4.4)
nah-es 13.0 19.7 (+6.7) 15.0 19.6 (+4.6)
shp-es 12.0 27.0 (+15.0) 10.5 21.6 (+10.9)

Avg. 17.3 23.8 (+5.5) 16.7 21.2 (+4.5)

Table 8: Representation bottleneck analysis on Case 3
(T-E) with endangered languages. The evaluation metric
in this table is ChrF.

ble 3 and Table 4 with BLEU scores, our proposed
BMNMT has the best performance, and it can im-
prove ChrF on all languages. Evaluation with these
two metrics proves that the byte tokenization can
alleviate the representation bottleneck even in en-
dangered languages.

In Figure 6, we plot the ChrF scores of ensemble
prediction. With the number of ensemble mod-
els increasing, the average translation performance
shows the same trend while the standard deviation
decrease. Both the evaluation on BLEU scores
and ChrF show that the ensemble prediction with
random byte mapping improve the translation per-
formance and robustness in MNMT.

Byte (ChrF) Subword (ChrF)

B-N BMNMT (Ours) W-N W-M

gn-es 25.7 27.1 (+1.4) 22.1 21.6 (-0.5)
nah-es 23.2 25.3 (+2.1) 18.1 17.7 (-0.4)
quy-es 32.1 32.9 (+0.8) 26.3 27.2 (+0.9)
shp-es 20.3 27.3 (+7.0) 16.2 17.0 (+0.8)
aym-es 22.9 25.8 (+2.9) 18.2 18.7 (+0.5)
cni-es 17.0 21.2 (+4.2) 14.1 13.7 (-0.4)
bzd-es 19.7 24.4 (+4.7) 14.3 15.0 (+0.7)
oto-es 17.9 19.4 (+1.5) 12.1 13.2 (+0.0)
tar-es 16.2 19.4 (+3.2) 15.1 14.7 (-0.4)
hch-es 20.3 23.6 (+3.3) 13.6 14.8 (+1.2)

Avg. 21.5 24.6 (+3.1) 17.0 17.4 (+0.4)

Table 9: Translation performance (ChrF) on IndCorpus.
The results are finetune on the model trained in case 2.
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Figure 6: Robustness analysis on Case 5 (T-E+P): Aver-
age ChrF of ensemble prediction with different ensem-
ble number z.
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Abstract

Code-mixing refers to the mixed use of multi-
ple languages. It is prevalent in multilingual
societies and is also one of the most challeng-
ing natural language processing tasks. In this
paper, we study Bahasa Rojak, a dialect popu-
lar in Malaysia that consists of English, Malay,
and Chinese. Aiming to establish a model to
deal with the code-mixing phenomena of Ba-
hasa Rojak, we use data augmentation to auto-
matically construct the first Bahasa Rojak cor-
pus for pre-training language models, which
we name the Bahasa Rojak Crawled Corpus
(BRCC). We also develop a new pre-trained
model called "Mixed XLM". The model can
tag the language of the input token automati-
cally to process code-mixing input. Finally, to
test the effectiveness of the Mixed XLM model
pre-trained on BRCC for social media scenar-
ios where code-mixing is found frequently, we
compile a new Bahasa Rojak sentiment analy-
sis dataset, SentiBahasaRojak1, with a Kappa
value of 0.77.

1 Introduction

Code-mixing is common in multilingual societies
(Bukhari et al., 2015). People tend to use one
primary language for grammar and scripting (Lal
et al., 2019), and other languages as auxiliary.
Code-mixing is commonly found on social media,
such as Facebook, Twitter, or any other microblog
services.

Malaysia reflects a multilingual society that
considers Malay to be the national language but
uses mixed languages in daily life. Bahasa Rojak
(Bukhari et al., 2015) is one of the code-mixing
examples that combines Malay and English into

∗Corresponding author.
1Both BRCC and SentiBahasaRojak are available at

https://data.depositar.io/dataset/brcc_
and_sentibahasarojak

a certain level of language structure. Bahasa Ro-
jak or Malaysian English (Vollmann and Wooi,
2019) is often mixed with Chinese because the
ethnic Chinese population in Malaysia is quite
large. Bakar and Mazzalan (2018) show that many
users in Malaysia use Bahasa Rojak on Facebook.
We can find many code-mixing combinations like
Malay-English, Hindi-English, Spanish-English,
and others on social media. People not only ex-
press their feelings on social media, but also ex-
change information such as the latest news from
their hometowns or countries, and financial topics
are also popular. Therefore, natural language pro-
cessing (NLP) studies are increasingly focused on
code-mixing (Thara and Poornachandran, 2018).

One of the most advanced trends in natural lan-
guage processing is to prepare a large unlabeled
corpus to pre-train a language model for represent-
ing the input text. The source of this unlabeled cor-
pus is usually Wikipedia (Qiu et al., 2020). How-
ever, Wikipedia does not have any Bahasa Rojak
pages, which hinders the training of a pre-trained
model that can represent Bahasa Rojak input texts.

As a result, in this study, we employ data aug-
mentation to automatically construct a new Bahasa
Rojak code-mixing corpus, called BRCC, for pre-
training language models. To find the best way
of exploiting the corpus, we not only pre-train
language models including BERT and XLM on
BRCC, but also revise the original XLM model to
make it able to handle code-mixing input text. The
revised model is called Mixed XLM. As we men-
tioned, Bahasa Rojak is most frequently used in
social media texts. Hence, we compile the first Ba-
hasa Rojak sentiment analysis dataset, called Sen-
tiBahasaRojak, to evaluate each language model’s
performance and reflect its ability to represent Ba-
hasa Rojak input texts.
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2 Related Work

2.1 Code-Mixing

Code-mixing is a term in mixed language research,
representing a common phenomenon in a multi-
lingual society. Code-mixing means that a single
sentence or a single utterance contains different
languages (Ho et al., 2007).

Pratapa et al. (2018b) compares three existing
bilingual word embeddings and a novel method
based on the skip-gram language model. They
found that bilingual word embeddings obtained
from a mixture of two languages rather than from
multilingual monolingual texts are more suitable
for code-mixing tasks. Lal et al. (2019) proved that
the traditional method, which only takes surface
and semantic features into account, is not effec-
tive for code-mixing sentiment analysis, so they
proposed a new method called "demixing". Choos-
ing English-Hindi as the target of code-mixing re-
search, they used a convolutional neural network to
generate sub-words and constructed a dual encoder
network composed of two parallel BiLSTMs.

A recent code-mixing paper related to this paper
is Qin et al. (2020), in which the authors use a code-
mixing corpus to fine-tune mBERT. They also in-
crease the size of the code-mixing corpus through
data augmentation. Their method aligns the rep-
resentations of the source language and multiple
target languages by using contextual information.
Even though there are multiple target languages,
the model only needs to be pre-trained once.

2.2 Code-Mixing and Sentiment Analysis of
Social Media in Malaysia

Malay is the official language of Malaysia. In the
19th century, under British colonial rule, English
had a profound influence on Malay. English re-
placed the original writing system completely with
Latin script, and many words of economic, po-
litical and technical fields in modern Malay are
borrowed from English. Due to the large popula-
tion of Chinese people in Malaysia, there are many
Chinese schools and companies leading the spread
of Chinese.

Because of cultural blending, Malaysian citizens
often use code-mixing language. The phenomena
have led to the emergence of "Bahasa Rojak", a
new language in Malaysia that combines English,

Malay, and Chinese words and structures, and of-
ten appears on social media such as Facebook and
Twitter. Some Chinese users (Shafiee et al., 2019)
introduce Chinese words in text-based communi-
cation. For example, Table 1 shows comments in
three financial forums. These comments are pre-
sented in the form of English or code-mixing.

So far, research on sentiment analysis on social
media used by Malaysians is still quite limited. Al-
Saffar et al. (2018) use an emotional dictionary
construction method to obtain a set of predefined
features (emotional words). These features are
used to build a machine-learning classifier model to
determine the sentiment polarity of the given input
social media text. There are also a few labeled
pure Malay sentiment analysis datasets (Husein,
2018), but to the best of our knowledge, there is no
labeled Bahasa Rojak dataset.

2.3 Pre-trained Language Models

BERT (Devlin et al., 2019) is a pre-trained en-
coder model based on the Transformer architecture.
Since it is bidirectional, context semantics can be
considered. Usually, we use a huge corpus, such
as Wikipedia, to pre-train BERT. Since its launch
in 2018, BERT has achieved leading performance
on many sentence-level and token-level natural lan-
guage processing tasks, such as question answering
(Rajpurkar et al., 2016; Joshi et al., 2017), machine
translation (McCann et al., 2017), and sentiment
analysis (Socher et al., 2013).

RoBERTa (Liu et al., 2019) was made with
some modifications based on the BERT model.
RoBERTa removes the pre-training task of next
sentence prediction, uses dynamic masking in pre-
training, and adopts a larger byte-level BPE as its
text encoding method. RoBERTa has more pa-
rameters than BERT and uses a larger corpus for
pre-training to obtain better performance.

XLM-R (Conneau et al., 2020) is a transformer-
based cross-lingual model, which combines XLM
(Conneau and Lample, 2019) and RoBERTa. The
difference with the monolingual XLM is that
XLM-R is pre-trained on corpus containing mul-
tiple languages, so it can represent sentences con-
taining multiple languages. The basic XLM-R
uses Masked Language Model (MLM) as the pre-
training task. When a bilingual parallel corpus is
available, additional pre-training with the Transla-
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Sentence Translate Language

dont surprise..Armada will touch below 40sen.. No need to be surprised, Armada will touch un-
der 40 cents. Manglish

The bad news is finished and the good things
have come...charting showing good sign物极必
反

The bad news is finished and the good things
have come...charting showing good sign things
must be reversed.

Manglish + Chinese

Bukan ex Umno saja, tapi x der integrity, penipu,
senyum kambing yang bodoh!

Not just ex Umno, but not integrity, liar, stupid
goat smile! Bahasa Rojak

Table 1: Sample comments on a financial forum in Malaysia

Short form Original word
a.n. atas nama
awk awak
bsh bodoh
bkn bukan
bln bulan

Table 2: Malay short form words and corresponding
original words

tion Language Model (TLM) task can be used to
improve performance.

2.4 Transfer Learning

Recently, transfer learning methods have become
popular in natural language processing, especially
for low-resource tasks. Transfer learning improves
failed steps by transferring the resources of re-
lated tasks, languages, or domains of high-resource
source settings to low-resource target settings.

Transfer learning is not a new method to solve
NLP tasks, since it has long been applied on many
NLP tasks, such as latent semantic analysis (Deer-
wester et al., 1990), Brown clusters (Brown et al.,
1992), and pre-trained word embeddings (Mikolov
et al., 2013). Ruder et al. (2019) have created a
taxonomy that makes it easier for researchers to
design solutions based on transfer learning meth-
ods. For example, if the target task is the same as
the source task and there is only annotated data of
the source task, the domain adaptation method can
be applied. For low-resource language tasks, the
usual practice is to train on the annotated data of
high-resource source language and apply to low-
resource target languages, such as Farra (2019).

Note that the main purpose of adopting trans-
fer learning methods in cross-language tasks is to
transfer lexical knowledge across languages, that
is, to establish a cross-language word embedding
model.

Language Passages Tokens
Code-mixing 2M 62,703,287

Malay 2M 60,519,134
English 2M 75,032,902

Table 3: Statistics on the corpora used for pre-training,
including the total number of subwords in each lan-
guage based on BPE Tokenizer segmentation.

3 Corpus Compilation

In this study, we mainly deal with three languages:
English, Malay, and Bahasa Rojak. For each lan-
guage, we construct a corpus to pre-train each lan-
guage model and a sentiment analysis dataset to
evaluate each language model’s performance. The
reason for choosing sentiment analysis is that the
frequency of code-mixing on social media texts is
relatively high (Thara and Poornachandran, 2018).
We will continue to discuss more details about the
reason for choosing sentiment analysis in 3.4.

3.1 Data Preprocessing
We use common rules to pre-process our English
microblogging corpora, including removing noise
or unnecessary characters, tags, URLs, certain sym-
bols, etc. The same rules are also used to pre-
process Malay microblogging corpora.

However, there are still differences between En-
glish and Malay microblog corpora. In Malay,
words or sentences are more often abbreviated into
shorter forms, such as dialects, word abbreviations,
grammatical neglect, and many more. For exam-
ple, it is common that the word because is written
as bcz, which causes high noise and a distinct text
structure. The short form manner in Malay be-
comes a serious issue in Malay’s NLP research
(Ariffin and Tiun, 2020). Also, we have the con-
cern that if the short-form text in Malay is not
regularized, the vocabulary size will be too large to
train the model and increases the cost of training.
Past studies show that normalizing such short-form
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Algorithm 1: Bahasa Rojak’s Data Augmentation
Input :

Source languages : sl← {en,ms};
Target languages : tl← {en : [ms, zh],ms : [en, zh]};
Set of source language sentences : Ssl = {sn}Nn=1;
Replace ratio : [α, β, γ], Type of replaced word : rw_list = [V,N,Adj];

Output :
Set of Code-Mixing sentences : T = {tn}Nn=1;

for i in 1...N do
count = 0;
ti ← si; // Initialize code-mixed Sentence
if random() ≤ α then

// phrase extraction and syntax analysis, return list

phrases← get_phrase(rw_list, si);
while count ≤ β ∗ len(phrases) do

rid = random_int(0, len(phrases));
rw = random(phrases[rid]);
trans_phrase← Translate(rw, random(tl{sl});
ti ← Replace_and_Aligment(phrases, trans_phrase, rid);
count← count+ 1;

else
if random() ≤ γ then

ti ← Translate(si, random(tl{sl}) // Translate complete sentences

Phrase Name Pattern
Noun Phrase {<DET|ADJ|NOUN.*>+ <DET|ADJ|NOUN.*>+}

Prepositional Phrase {<ADP> <NP>}{<ADP> <PROPN>}
Verb Phrase {<VERB.*> <NP|PP|CLAUSE|ADP>+$} {<VERB*> <NOUN*>} {<PART> <VERB>}

Table 4: For the regular expression patterns, we use the NLTK parser to identify noun, prepositional and verb
phrases.

text increases data quality and has a positive effect
on NLP research (Samsudin et al., 2013; Saloot
et al., 2014; Kassim et al., 2020). Chekima and
Alfred (2017) collected some Malay SMS rules to
normalize short form words, and we continue to
add some rules. For more examples, please refer
to Table 2.

3.2 Bahasa Rojak Crawled Corpus (BRCC)
In order to pre-train a model that works in both
monolingual and code-mixing environments, we
first construct monolingual corpora and then de-
rive a code-mixing corpus from them. For English
and Malay corpora, we crawl English and Malay
pages from Wikipedia. We mainly use our data aug-
mentation method to generate the Bahasa Rojak
code-mixing corpus, which is called BRCC (Ba-
hasa Rojak Crawled Corpus). Each of these three
corpora has 2 million passages. Table 3 shows the
detailed information of the three corpora.

To generate BRCC through data augmentation,
we first scrape 93,584 Bahasa Rojak passages from

the Malaysia Bursa forum. In order to expand the
Bahasa Rojak corpus, we modify the CoSDA-ML
method to generate 2 million Bahasa Rojak pas-
sages from our English and Malay corpora. The
main difference is that CoSDA-ML randomly se-
lects words and translates them into a specific tar-
get language, while our method parses the sentence
to identify phrases and then randomly selects the
phrases to be translated. Algorithm 1 explains the
details of our data augmentation method. For a
detailed description, please refer to A.1.

Take the phrase "the book in your schoolbag" for
example. Suppose we randomly choose a word to
translate into another language; if "the" is selected,
because of the lack of context, "the" is not suitable
to be translated by itself. To alleviate this problem,
our method first analyzes sentences with part-of-
speech (POS) tags, and identifies noun phrases,
prepositional phrases, and verb phrases through
patterns composed of POS tags. Table 4 shows the
regular expression patterns used with the NLTK
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Original Sentence Augmentation Sentence
Di sepanjang pesisirnya terdapat teluk dan tanjung yang
berpontensi dimajukan sebagai kawasan pelancongan

Along the coast terdapat teluk dan tanjung yang berpontensi
dimajukan sebagai tourist areas

He was previously offered X Men membership but he de-
clined opting instead to work at the Muir Island research
center Polaris Havok s long time lover and also a former X
Man who can control magnetism

He was previously offered X Men membership but he de-
clined opting instead to work at pusat penyelidikan Pulau
Muir Polaris Havok s長期戀人 and also bekas X Man who
can控制磁

Table 5: Samples of data augmentation results

(Bird and Loper, 2004) parser to identify the three
types of phrases mentioned above. These patterns
have been confirmed by native Malay speakers.
All-caps words denote POS tags, angle brackets
denote sub-patterns, and the rest of the symbols
are used the same way as they are in regular ex-
pressions. Taking a simplified noun phrase pattern
{<ADJ>+ <NOUN>+} as an example, this means
that if the parser finds at least one adjective (ADJ)
followed by at least one noun (NOUN), it finds a
noun phrase.

Lastly, we randomly select a phrase to translate
into the target language. The purpose of the modi-
fication is to choose "the book" instead of "the" or
"book". Table 5 shows the sentences generated by
our data augmentation method.

3.3 BRCC Quality

To evaluate the quality of BRCC, we conduct a test
inspired by the Turing Test on two native Malay
speakers. We randomly sample 500 sentences each
from the BRCC corpus (using our data augmenta-
tion method to synthesize Bahasa Rojak sentences)
and the KLSE forum (klse.i3investor.com), where
Bahasa Rojak frequently appears. After mixing the
two, we ask two native speakers to judge whether
it is Bahasa Rojak, sentence by sentence, and if so,
the sentence is labeled as positive, otherwise nega-
tive. As shown in Table 6, we get similar positive
ratios in BRCC and KLSE, which indicates that
most of the synthesized Bahasa Rojak sentences in
BRCC are considered to be real Bahasa Rojak.

3.4 Sentiment Analysis Datasets

To verify that the Bahasa Rojak code-mixing cor-
pus generated by our data augmentation method
can be used to pre-train a code-mixing language
model, we choose a natural language processing
task for testing. According to Thara and Poor-
nachandran (2018), people tend to using social me-
dia to share their opinions and thoughts, making

code-mixing texts common on all kinds of social
platforms in a multilingual society. We choose
sentiment analysis of social media texts as our
natural language processing task. We construct
the first Bahasa Rojak sentiment analysis dataset,
named SentiBahasaRojak, to evaluate the code-
mixing model’s performance on Bahasa Rojak sen-
timent analysis. This dataset contains three do-
mains: product review, movie review, and stock
review. To determine whether this code-mixing
model can perform well on Bahasa Rojak and re-
main accurate in English or Malay, we have also
compiled English and Malay datasets containing
the same three domains.

3.4.1 English Sentiment Analysis Dataset
For English, we crawl product reviews from Kag-
gle2 and use the IMDB dataset (Maas et al., 2011)
as movie review data. As for stock reviews, we
choose SemEval 2017 task 5 subtask 1 (Kar et al.,
2017) and StockTwits3. The former is composed
of financial microblogging data. Each post has
been labeled with a value of -1 to 1, which corre-
sponds to the most bearish (negative) to the most
bullish (positive). To match other datasets, we con-
vert the values into binary labels. StockTwits is a
microblogging platform focusing on stock market
discussions and supported by Twitter. According
to StockTwits restrictions, users must label their
posts as bullish or bearish. We collected all the
posts of ten companies on StockTwits from 2016
to 2020.

3.4.2 Malay Sentiment Analysis Dataset
For Malay, we use the product review dataset and
the movie review dataset from the Malay dataset
(Husein, 2018). As for the stock review dataset,
we hired experts to manually translate the dataset

2https://www.kaggle.com/bittlingmayer/
amazonreviews

3https://stocktwits.com/
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BRCC Positive BRCC Negative KLSE Positive KLSE Negative
Participant 1 408 (81.6%) 92 (18.4%) 438 (87.6%) 62 (12.4%)
Participant 2 442 (88.4%) 58 (11.6%) 377 (75.4%) 123 (24.6%)

Table 6: BRCC and KLSE each with 500 sentences assessed by native speakers (Participants 1 and 2). Positive
means that the native speaker thinks the sentence is fluent and conforms to Bahasa Rojak’s grammar, otherwise it is
negative.

Dataset
# of post

Product Movie Stock
Review Review Forum

English 2600 2600 1106
Malay 893 699 1106

sentiBahasaRojak 893 699 693

Table 7: The statistics of sentiment analysis datasets

from task 5 subtask 1 of SemEval 2017 to Malay.

3.4.3 Bahasa Rojak Sentiment Analysis
Dataset (SentiBahasaRojak)

To the best of our knowledge, there is no public
Bahasa Rojak sentiment analysis dataset. In this
research, we employ different methods to construct
three datasets of product reviews, movie reviews,
and stock reviews, which collectively are called the
SentiBahasaRojak sentiment analysis dataset. For
product and movie reviews, since there are already
publicly available Malay datasets, we use the data
augmentation method mentioned in Algorithm 1 to
generate Bahasa Rojak code-mixing datasets based
on the Malay datasets.

For stock reviews, we intend to test the effec-
tiveness of our Mixed XLM method on real data,
so we crawl posts from Malaysia’s financial and
stock market websites, such as I3investor4, and
hired five native Malaysian experts who can read
and write in Bahasa Rojak to manually annotate
these posts. Experts must be able to distinguish the
difference between bullish (positive) and bearish
(negative). These five experts first annotated all the
posts, and then majority voting was carried out to
determine the final label of each post. The kappa
value of the Bahasa Rojak stock review dataset is
0.77, which means that the annotations of these
five experts have substantial agreement (Kasmuri
and Basiron, 2019). Table 7 shows the number of
posts in English, Malay, and Bahasa Rojak in the
three domains.

4https://klse.i3investor.com/jsp/scl/
community.jsp

Language # of tokens
Malay (ms) 60,628,280
English (en) 1,867,773
Chinese (zh) 1,553,360

Undefined (other) 438,937

Table 8: BRCC’s language auto-tagging statistics

4 Experiments and Results

In this section, we will explain our proposed
method for dealing with code-mixing data. BERT
and XLM are chosen as the baseline language mod-
els for comparison, and use a variety of sentiment
analysis task datasets to evaluate each model.

We use the movie reviews, product reviews, and
stock market comments described in the previous
section as the experimental datasets. We will also
report the accuracy and F1 score of each model for
each dataset.

4.1 Baseline Model
We use the code-mixing data constructed in the
previous section to pre-train the BERT and XLM
models from scratch. Based on the results obtained
from preliminary experiments, we remove the next
sentence prediction (NSP) task when pre-training
the BERT model.

We use the Masked Language Model (MLM)
task to pre-train our baseline models. Due to the
limitation of computing resources, our configu-
ration is six layers, eight heads, 512 embedding
dimensions, and the learning rate fixed at 2e-5. We
use the Adam optimizer and adopt the early stop-
ping method to terminate the training process.

4.2 Mixed XLM
In this work, we propose a new model called Mixed
XLM. The main difference from vanilla XLM is
that Mixed XLM automatically recognizes the lan-
guage of each input token and handles code-mixing
input, as shown in the Figure 1. In the Mixed XLM
for Bahasa Rojak, we develop a language tagging
algorithm to label the language of each word, as
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Figure 1: Input representation of Mixed XLM

shown in Algorithm 2. For each token t, the algo-
rithm searches which language dictionary it is in.
Suppose t is found in the dictionary of language
l, then t is labeled as language l. Some words can
be found in both Malay and English dictionaries,
and language tagging labels them as Malay be-
cause these words are loanwords from English. We
evaluated the language tagging module as having
an accuracy of 0.973. The number of tokens for
each language in our BRCC corpus after language
tagging is shown in Table 8.

Algorithm 2: Language Tagging
Input :

Vocabulary of Malay words : Vms;
Vocabulary of Chinese words : Vzh;
Vocabulary of English words : Ven;
Input sentence : Scm;
Words in sentence : Scm = {w(n)}Nn=1;

Output :
Language tagging : langTag[N ];

for w(n) in Scm do
if w(n) in Vms then

langTag[n] = ms
else if w(n) in Vzh then

langTag[n] = zh
else if w(n) in Ven then

langTag[n] = en
else

langTag[n] = other
end

end

Finally, in the setting of our Mixed XLM, which

is the same as BERT and XLM, we use six trans-
formation layers, eight head layers, and 512 em-
bedding dimensions, and use the masked language
model as the pre-training task.

4.3 Evaluation of Pre-trained Language
Models

We use the sentiment analysis task to evaluate our
pre-trained language models. We also use 10-fold
cross-validation to strengthen the credibility of the
results. Table 9 shows the performance of our
proposed models and baseline models, fine-tuned
on SentiBahasaRojak. Remember that there are
three domains in our SentiBahasaRojak, including
product reviews, movie reviews, and stock market
forums.

In Table 9, the best performing baseline model
is XLM (EN-MS), which achieves 0.698 and 0.637
in accuracy ACC and F1 score, respectively. As
for our proposed model Mixed XLM, it scores
0.718 and 0.666 when using only the Code-Mixing
dataset (CM) for training. If the entire dataset (EN-
MS-CM) is used for training Mixed XLM, 0.745
and 0.705 can be achieved, meaning it outperforms
the best baseline model XLM (EN-MS) by 0.047
and 0.068. As shown in Table 9, we can observe
that in the code-mixing sentiment analysis task,
our proposed Mixed XLM achieves the best perfor-
mance in all three datasets.

In addition, experiments are conducted on En-
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Model Product Review Movie Review Stock Market Avg.
acc f1 acc f1 acc f1 acc f1

mBERT (CM) 0.652 0.603 0.661 0.653 0.563 0.496 0.625 0.584
mBERT (EN-MS-CM) 0.653 0.651 0.631 0.576 0.571 0.562 0.618 0.596
XLM (EN-MS) 0.658 0.592 0.764 0.751 0.672 0.568 0.698 0.637
Mixed XLM (CM) 0.703 0.671 0.761 0.746 0.690 0.581 0.718 0.666
Mixed XLM (EN-MS-CM) 0.718 0.696 0.812 0.803 0.706 0.615 0.745 0.705

Table 9: Results of different models on SentiBahasaRojak

Model Product Review Movie Review Stock Market Avg.
acc f1 acc f1 acc f1 acc f1

mBERT (CM) 0.801 0.793 0.691 0.663 0.717 0.773 0.736 0.743
mBERT (EN-MS-CM) 0.803 0.794 0.755 0.745 0.702 0.771 0.753 0.770
XLM (EN-MS) 0.813 0.812 0.701 0.689 0.675 0.746 0.730 0.749
Mixed XLM (CM) 0.807 0.804 0.792 0.771 0.643 0.712 0.747 0.762
Mixed XLM (EN-MS-CM) 0.823 0.826 0.813 0.787 0.677 0.743 0.771 0.785

Table 10: Results of different models on English

Model Product Review Movie Review Stock Market Avg.
acc f1 acc f1 acc f1 acc f1

mBERT (CM) 0.813 0.802 0.782 0.756 0.690 0.756 0.762 0.771
mBERT (EN-MS-CM) 0.815 0.743 0.780 0.782 0.683 0.765 0.759 0.763
XLM (EN-MS) 0.823 0.802 0.751 0.744 0.683 0.742 0.752 0.763
Mixed XLM (CM) 0.824 0.805 0.783 0.764 0.661 0.736 0.756 0.768
Mixed XLM (EN-MS-CM) 0.828 0.818 0.805 0.785 0.696 0.769 0.776 0.791

Table 11: Results of different models on Malay

glish and Malay monolingual datasets. We fine-
tune all language models on monolingual datasets.
Tables 10 and 11 show that our Mixed XLM
model pre-trained on all corpora including BRCC
achieves the highest average score on each lan-
guage, which demonstrates the robustness of our
approach.

5 Conclusion

In this paper, for Bahasa Rojak, we build a cor-
pus called BRCC to pre-train Bahasa Rojak’s lan-
guage model, and compile a sentiment analysis
dataset called SentiBahasaRojak. BRCC and Sen-
tiBahasaRojak are the first resources available for
Bahasa Rojak in this area. We also propose a new
pretrained model, Mixed XLM, which not only
achieves the best performance on code-mixing data,
but also maintains performance on monolingual
data.

Our new Bahasa Rojak corpus is generated by
our new data augmentation algorithm that recog-
nizes three types of phrases in sentences and ran-
domly selects some of those three phrases for trans-
lation to generate Bahasa Rojak sentences.

Our proposed Mixed XLM model is able to la-

bel input tokens to deal with code-mixing phenom-
ena. As long as the Mixed XLM model is pre-
trained on a code-mixing corpus, it can be used
in downstream tasks containing code-mixing sen-
tences, just as in this study, the Mixed XLM model
was used in Bahasa Rojak’s Sentiment Analysis.

Finally, we evaluate the Mixed XLM model pre-
trained on BRCC through the sentiment analysis
task on three different language settings (English,
Malay, Bahasa Rojak). The sentiment analysis
task includes three domains. The results show
our Mixed XLM model achieves the best perfor-
mance in all domains. In the monolingual setting
experiment, Mixed XLM also achieves comparable
performance, which proves the robustness of the
model and the effectiveness of BRCC.
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A Appendix

A.1 Detail of Algorithm 1

Having three different languages (Malay, English
and Chinese) in a sentence is one of the features
of Bahasa Rojak. In general, the matrix language
in Bahasa Rojak is either English or Malay, while
the other of that pair and Chinese serve as inserted
language independently or jointly. Considering the
characteristics of Bahasa Rojak, we collect both
English and Malay data in our source language,
and then translate them to our target sentences in
Bahasa Rojak that consist of at least one matrix
and inserted language.

In Algorithm 1, we represent the source lan-
guage as sl, and sl ← {en,ms} to denote which
language is the source language. The same con-
cept applies to target language, tl represents the
target language, and tl ← {en : [ms, zh],ms :
[en, zh]} means that in the source language en,
we hope to translate to a target language, ms or
zh. Next, we set the substitution ratio manually,
in which α represents the probability of translat-
ing a source sentence to a code-mixed sentence.
β means how many phrases need to be translated
during the process. Finally, γ means the proba-
bility of translating a source sentence to a target
sentence completely. Note that the target language
is randomly selected in our algorithm.

In our augmentation algorithm, there are
two important functions: get_phrase()
and Replace_and_Alignment(). In the
get_phrase() function, we first use the NLTK for
syntax analysis, parse each input sentence, and
then use POS tagging to label the phrases. In this
way, we rephrase the sentence from a word-based
to phrase-based tokenization structure. After
building the sentence structure, we use the regular
expression patterns defined in Table 4 to extract
specific phrases to translate.

As we reconstruct our Bahasa Rojak sentences
in the phrase-based tokenization manner, we have
to implement two kinds of phase alignment meth-
ods to perfect our code-mixing sentences. There-
fore, through aligning the sentence index and re-
placing the translated phrase in the source lan-
guage, we successfully generate our Bahasa Rojak
sentences.

A.2 Code-Mixing Complexity
Due to time constraints, we only sample 1% of the
data from our BRCC dataset and evaluate it with
the following metrics.

Switch-Point Fraction (SPF) The switch point
refers the point in a sentence where two adjacent
tokens are in different languages. We follow the
definition proposed by Pratapa et al. (2018a), but
make slight adjustments to fit our BRCC corpus.
We calculate the number of switch points in a sen-
tence, and divide it by the total number of phrase
boundaries.

Code-Mixing Index (CMI) CMI is used to
measure the amount of code-mixing in a corpus
to account for the language distribution (Gupta
et al., 2020), which was proposed by Ghosh et al.
(2017); Gambäck and Das (2016). In our BRCC
dataset, we use the CMI formula from Pratapa et al.
(2018a), as follows:

Cu(x) =
(N(x)−maxLi∈L{tLi}(x)) + P (x)

N(x)
,

where N denotes the number of language tokens,
x is an utterance; tLi represents the tokens in
language Li, P is the number of code-switching
points in utterance x. Then, we compute our data
at the sentence level by averaging all sentences
sampled from the BRCC dataset.

Our SPF and CMI values are 0.158 and 0.384
respectively.
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Abstract

In the effort to minimize the risk of extinction
of a language, linguistic resources are funda-
mental. Quechua, a low-resource language
from South America, is a language spoken
by millions but, despite several efforts in the
past, still lacks the resources necessary to build
high-performance computational systems. In
this article, we present WordNet-QU which
signifies the inclusion of Quechua in a well-
known lexical database called wordnet. We
propose WordNet-QU to be included as an
extension to wordnet after demonstrating a
manually-curated collection of multiple digi-
tal resources for lexical use in Quechua. Our
work uses the synset alignment algorithm to
compare Quechua to its geographically nearest
high-resource language, Spanish. Altogether,
we propose a total of 28,582 unique synset IDs
divided according to region like so: 20510 for
Southern Quechua, 5993 for Central Quechua,
1121 for Northern Quechua, and 958 for Ama-
zonian Quechua.

1 Introduction and related work

Lexical databases and resources have been used
in the past for various natural language process-
ing (NLP) tasks ranging from information retrieval
(IR) to machine translation (MT). While many re-
cent NLP approaches rely on deep learning tech-
niques like transformers, namely BERT (Devlin
et al., 2018), where attention (Vaswani et al., 2017)
is used to create a semantic representation of text,
more traditional approaches relied on purely lin-
guistic and syntactic features. More often than not,
recent deep-learning approaches require a large
amount of data to perform better than traditional
ones (e.g. on the order of millions of words for ma-
chine translation (Koehn and Knowles, 2017; Bah-
danau et al., 2014)). This makes NLP approaches
with low-resource languages, languages that are
measured in the thousands typically, much more
difficult to solve with recent approaches thus forc-

ing the use of traditional approaches to solve prob-
lems.

One low-resource language from South Amer-
ica, called Quechua, is spoken by nearly 8 million
people1 yet still does not have enough resources
to effectively compete with other high-resource
languages as has been shown in previous research
(Ebrahimi et al., 2021; Ortega et al., 2021, 2020).
Oftentimes, due to insufficient resources, scores
such as BLEU (Papineni et al., 2002) and accu-
racy are more than three times lower. This lack
of resources thus drives the need for traditional
techniques such as the use of lexical databases,
grammars, and other linguistic cues such as tree
banks and more. One such resource that has been
commonly used for traditional approaches is called
wordnet (Fellbaum, 1998) which was originally cre-
ated in the 1990s yet is still used today, especially
for low-resource languages like Quechua.

The need to build digital resources is greater
for endangered languages like Quechua and others
since there is a clear desire to save the language
from extinction. However, the desire is typically
not supported by those agencies that are responsible
for its survival. Berment (Berment, 2002) and oth-
ers have expressed the need for further analysis and
research stating that the current effort “may be in-
sufficient to aid preservation efforts”. In this work,
we provide several lexical resources for Quechua to
increase its inclusion in wordnet (Fellbaum, 1998).
We call the collection of resources WordNet-QU
which corresponds to its commonly-used language-
pair symbol (QU) found in most corpora for NLP
in Quechua. To elaborate on its inclusion, in Sec-
tion 2 we provide details on how the corpus was
compiled and the annotations done. Then, in Sec-
tion 3, we cover the wordnet implementation of the
corpus. Finally, in Section 4 we provide insight
into our future downstream tasks.

1https://en.wikipedia.org/wiki/
Quechuan_languages
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Figure 1: Example of the structure of the some dictio-
naries.

2 Corpus details

The corpus presented here made available pub-
licly2 has been created using a manually curated
collection of dictionaries. The dictionaries were
mostly gotten from Ministry of Education in Peru
(MINEDU in Table 4, see Appendix) and consist
of five regional varieties of Quechua (Southern
Quechua (Collao), Southern Quechua (Chanka),
Central Quechua, Northern Quechua, and Amazo-
nian Quechua) ranging from 1976 to 2005 in the
years they were collected.

In order to organize the dictionaries into a format
that can be used by wordnet (Fellbaum, 1998), the
corpus is structured in a format that consists of the
following labels: (i) branch, (ii) variety, (iii) region,
(iv) author, (v) dictionary, (vi) year, (vii) lexical
entry, (viii) grammatical category, (ix) glossary en-
try, (x) Quechua definition, (xi) Quechua synonym,
(xii) Spanish synonym and (xiii) notes or clarifi-
cations. An example of the original dictionary as
found from the Ministry of Education is seen in
Figure 1.

Since there are several dialects of Quechua spo-
ken in Peru (Cerrón-Palomino, 2021), it was im-
portant to compile the corpus by variety or region.
In order to better illustrate the differences in parts
of speech for dialects, we break each region’s di-
alect into the following categories: noun, adjective,
adverb and verb as shown in Table 1. The vari-
ety with the highest lexical entries are Southern
Quechua (South) followed by Central, Northern
(North), and Amazonian (Amaz). For each of the
parts of speech and varieties of Quechua, there is
a corresponding Spanish glossary entry. Addition-
ally, for the southern and central varieties, apart
from the part of speech and glossary, there is a
definition in Quechua and translation in Spanish.
In some cases the translation is gotten from MI-
NEEDU and in other cases native speakers trans-
lated for us.

2https://github.com/Llamacha/
wordnet-qu

POS Quechua variety
South Central North Amaz

Noun 16 717 3 241 579 537
Verb 8 000 3 145 506 423
Adjective 4 116 904 157 160
Adverb 985 384 126 48
Total 29818 7677 1368 1204

Table 1: Number of words per part of speech (POS) for
each Peruvian region.

3 Methodology

In order to use and distribute WordNet-QU we
had to make it compatible with wordnet (Fellbaum,
1998). Constructing a wordnet, whether from
scratch or by expanding a previous one, is a labor
intensive process that requires several steps and ex-
tensive use of both human labor and automated sys-
tems. Since the creation of the first wordnet (Prince-
ton WordNet (PWN)) in 1995 (Miller, 1995), many
other wordnets have been created for several lan-
guages. For example EuroWordNet (EWN) is a
multilingual wordnet project that links wordnets
of multiple European languages (English, Dutch,
Italian, Spanish, German, French, Czech and Esto-
nian) (Vossen, 1997). In EWN, wordnets were cre-
ated for each language separately and then linked
through an index based on PWN. In the same way,
BalkaNet is a multilingual wordnet project con-
sisting of six Balkan languages (Bulgarian, Czech,
Greek, Romanian, Serbian, and Turkish). (Tufis
et al., 2004)

Two of the most-commonly used approaches for
creating a wordnet are based on what are known
as the expand and merge approaches. Both ap-
proaches use synsets – groups of synonyms that ex-
press the same concept in wordnet. One synset can
have multiple words and one word can have multi-
ple synsets. In the expand approach, a set of synsets
from PWN, including their semantic database, are
first translated into the target language and then
relations are transferred from English and checked
in a manual fashion as is done for Scottish Gaelic
(Bella et al., 2020) and the French (Sagot and Fišer,
2008). The merge approach builds bilingual rela-
tions from scratch, without any links to English,
the main language for wordnet. Both the Polish
wordnet (Derwojedowa et al., 2008) and Norwe-
gian wordnet (Fjeld and Nygaard, 2009) use the
merge approach.
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Model Size Spearman
Pre-trained Model
(Wiki)

29k 0.35

WordNet-QU
(Wiki + WordNet Corpus)

31k 0.61

Table 2: A comparison of Spearman correlation coeffi-
cients (Wissler, 1905) between human judgement and
similarity scores for pre-trained model on tokens of
Wikipedia alone and Wikipedia with the WordNet-QU
corpus.

Our implementation is based on a few steps. The
first step is to construct a wordnet for Spanish be-
cause translations for Quechua are more available
in the high-resource language (Spanish) in Peru.
Using the main wordnet in English, we create a
Spanish wordnet using the expansion technique de-
scribed above based on similarity alone. The abun-
dance of on-line Spanish glossaries and other rela-
tionships helped when creating the Spanish word-
net. Once translated, the Spanish wordnet became
what is known as our multi-lingual central reposi-
tory (MCR) for Quechua. This, in turn, facilitates
the next steps which are to create and align synsets
to with their corresponding concept which is vali-
dated manually by a human.

3.1 Synset alignment

The most important part of creating a wordnet is the
alignment of synsets to their main concept. Our al-
gorithm focuses on a straightforward process. First,
the algorithm iterates through the entire wordnet
MCR in Spanish for each word from the Quechua
corpus.3 When an exact Quechua–Spanish match
is found and verified (manually), all of the related
words from the Quechua vocabulary are mapped to
their corresponding Spanish concept. This process
constitutes the creation of a Quechua synset for
one or more words that exist in their Spanish coun-
terpart. After the synset creation, part-of-speech
tags are created according to their grammatical cat-
egory.

3.2 Wordnet validation

In order to validate the feasibility of WordNet-
QU, we measure the cosine similarity distance be-
tween two FastText (Grave et al., 2018) models:

3Translations from Quechua to Spanish are performed be-
forehand.

(1) a baseline model4 based on Wikipedia5 which
contains Quechua text and (2) a model based on
Wikipedia with the addition of the WordNet-QU
corpus. Our FastText (Grave et al., 2018) model
is trained using 31 thousand tokens and identical
hyper-parameters and algorithm as the baseline
(skipgram algorithm, an embedding size of 300
dimensions, a context window size of 5, and n-
grams ranging from 3 to 6 characters). The cosine
similarity is measured for a 1000 randomly col-
lected synsets. The distance results are then com-
pared to the annotator’s yes/no decision of whether
or not each synset corresponds to the words from
WordNet-QU. Human judgement is found to cor-
respond much higher with the WordNet-QU model
than the pre-trained model as shown in Table 2. We
leave further improvement for future work.

4 Results and future work

Variety Synsets Def. Sent.
Southern 20 510 1 873 1 827
Central 5 993 1 191 1 191
Northern 1 121 - -
Amazonian 958 - -
Total 28 582 3 064 3 018

Table 3: A count of synsets, definitions, and sentences
per variety.

We have presented the process and resources used
to create a wordnet-based resource for Quechua
called WordNet-QU. We use fastText embeddings
as a manner of measuring the similarity between
Quechua words and Spanish concepts which pro-
vides nearly the 29k synsets illustrated in Table 3.
We make the synsets and various lexicons created
available publicly. For more details on specific
dialects and other information related to our pro-
cessing, please consult the Appendix.

This research was focused on the development
of a Quechua wordnet using synonyms between
different varieties of Quechua. The dictionaries
used from different sources had to be identified for
there region and dialect which became an after-the-
fact asset to our work.

Future lines of investigations are based on work
that is planed with several renown authors in

4https://fasttext.cc/docs/en/
crawl-vectors.html

5https://www.wikipedia.org/
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the field of NLP processing of Quechua to use
WordNet-QU in downstream tasks. Some of the
NLP approaches that are currently in discussion
are WordNet-QU for Quechua–Spanish translation
and WordNet-QU for POS tagging in treebanks.
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Variety of Quechua Dictionary Author Year

Southern (Collao)
Yachakuqkunapa Simi Qullqa

MINEDU
2005

Diccionario quechua: Cuzco– Collao. 2005

Southern (Chanka)
Yachakuqkunapa Simi Qullqa

MINEDU
2005

Diccionario quechua: Cuzco– Chanka 2005

Central
Chawpi Qichwapa Chimi Qullqan

MINEDU
2017

Yachachinapaq shimikunachawpin qichwa 2005
Northern Diccionario quechua: Cajamarca – Cañaris MINEDU 1976
Amazonian Shimikunata asirtachik killka Inka Castellanu Inst. ling. de verano 2002

Table 4: Dictionaries used for the construction of the corpus.

N° Grammatical category
Noun Verb Adjective Adverb

1 9 190 4 682 2 924 474
2 1 186 578 382 32
3 374 211 112 11
4 134 88 26 8
5 37 32 9 2
6 10 3 4 1

Total 10 931 5 594 3 457 528

Table 5: Number of words per sense for each grammati-
cal category of Southern Quechua wordnet.

N° Grammatical category
Noun Verb Adjective Adverb

1 1 702 1 974 603 210
2 362 292 136 30
3 95 67 33 15
4 19 14 8 3
5 4 2 1 3

Total 2 182 2 349 781 261

Table 6: Number of words per sense for each grammati-
cal category of Central Quechua wordnet.

N° Grammatical category
Noun Verb Adjective Adverb

1 382 372 123 31
2 38 12 26 16

Total 424 384 149 47

Table 7: Number of words per sense for each grammati-
cal category of Amazonian Quechua wordnet.

N° Grammatical category
Noun Verb Adjective Adverb

1 439 392 141 71
2 21 40 5 10

Total 460 433 146 82

Table 8: Number of words per sense for each grammati-
cal category of Northern Quechua wordnet.
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Abstract

In this research, we present pilot experiments
to distil monolingual models from a jointly
trained model for 102 languages (mBERT). We
demonstrate that it is possible for the target lan-
guage to outperform the original model, even
with a basic distillation setup. We evaluate
our methodology for 6 languages with varying
amounts of resources and belonging to different
language families.

1 Introduction

The introduction of the Transformer architecture,
which aims to solve sequence-to-sequence tasks
while also handling long-range dependencies re-
lying on self-attention (Vaswani et al., 2017), has
caused a huge improvement on the state-of-the-
art for a wide range of natural language process-
ing tasks. Despite the clear gain in performance,
these pre-trained language models are extremely
data- and computation-hungry and their sizes keep
growing at an incredible speed. For example,
RoBERTa (Liu et al., 2019) is trained on a text
corpus of 160 GB, and the recent collaboration of
Microsoft and Nvidia resulted in a language model
containing 530 billion parameters that was trained
on 270 billion tokens (Smith et al., 2022). Besides
the ethical questions on sustainability raised by
the NLP community, these huge language models
also pose a lot of operational challenges, as they
require massive amounts of training data, com-
putation power and storage capacity. More im-
portantly, the limits on training data also intro-
duce limits on the languages these models can
work with. Consequently, English has been the
default language newer transformers have been
trained on. More recently, much attention has
been devoted to multilingual aspects, especially
with the advent of joint models like mBERT (De-
vlin et al., 2019) and XLM (Conneau and Lam-
ple, 2019). However, the percentage of data used

to train joint models for low-resourced languages
when compared to English is orders of magni-
tudes lesser and results in poorer representations
for lower-resourced languages (Wu and Dredze,
2020). Moreover, when language representations
for a specific low-resourced language are needed,
there are no available monolingual models for a
lot of these languages, and the entire large jointly-
trained model needs to be loaded. More recently,
a lot of attention is paid to sustainability for trans-
formers, resulting in various approaches like prun-
ing, weight sharing and distillation to reduce the
size of large models. Previous research has shown
good results for task-specific distillation, distilla-
tion from larger English BERT models and dis-
tillation from mBERT into a smaller multilingual
model (see Section 2). In this paper, we attempt
to combine these two research directions and distil
smaller monolingual transformers from mBERT.
Our hypothesis was that distilling would help to
improve the representations for a target language,
as the model can focus its prediction power on the
target language, instead of attempting to accommo-
date 101 other languages. To the best of our knowl-
edge, this is the first research presenting results
for distilling monolingual student models from
mBERT. Not only are we able to successfully distil
smaller monolingual models from mBERT, we also
demonstrate that these smaller models outperform
mBERT for the distilled language. We experiment
with student models for well-resourced (Dutch,
French), middle-resourced (Hindi, Hebrew) and
low-resourced (Swahili, Slovenian) languages from
very diverse language families and attempt to un-
derstand how a student model can outperform a
teacher model in a distillation setup.

2 Related Research

While models that generate Deep Contextualized
Representations like ELMo (Peters et al., 2018),
BERT (Devlin et al., 2019) and GPT (Brown
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et al., 2020) have pushed the state-of-the-art for
downstream tasks in English, the improvements
for medium- and low-resourced languages have
not been as significant. Trained models on large
monolingual corpora are abundant for English and
other Western European languages, but they are
extremely scarce for under-resourced languages
(having small Wikipedias to train language models
on). Although joint models trained for multiple
languages like mBERT (Devlin et al., 2019) and
XLM (Conneau and Lample, 2019) have been an
excellent alternative to monolingual models, and
even perform better than monolingual models due
to additional supervision, these large joint models
also come with drawbacks. Wu et al. (2020) show
that a majority of languages in mBERT are under-
represented and have poor performance on down-
stream tasks. This can be attributed to multiple rea-
sons, like minimal monolingual data compared to
English and other Western European languages, a
small percentage share when it comes to mBERT’s
shared vocabulary and the sub-word tokenization
not being suitable for all scripts. However, mBERT
still performs better than monolingual models for
these languages, since the monolingual models are
trained on very limited pre-training data compared
to mBERT. Therefore, with monolingual transform-
ers either not existing or performing worse than
mBERT, one is forced to use mBERT for mono-
lingual tasks for a particular low-resourced lan-
guage, and thus deploying representations for 101
other languages. Abdaoui et al. (2020) propose
a simple alternative by loading specific sections
of mBERT’s vocabulary for particular languages,
causing no loss in performance while decreasing
the size of the deployed model considerably.

Various methodologies have been proposed to
improve the sustainability of transformers. Distilla-
tion methods have shown to be very successful, but
also low-rank approximation (Chen et al., 2021),
weight sharing (Reid et al., 2021), pruning (La-
gunas et al., 2021) and quantization (Bondarenko
et al., 2021) propose excellent alternatives. While
the central idea behind distillation is to reduce the
model size as much as feasible while keeping the
performance as close to the original model as pos-
sible, task-specific distillation (Tang et al., 2019) is
a variant which focuses on a certain subset of the
model’s capabilities. The broader concept behind
both methodologies is similar: a student model is
initialised with significantly lesser parameters than

the original teacher model. The student is trained
with the loss for the objective at hand (masked
language modeling (MLM) for generic distillation
and specific tasks for task-based distillation), while
also forcing the predictions to be identical to the
teacher model. The underlying hypothesis being
that once a larger model has learned the nuances of
the data, a much smaller model can simply mimic
the predictions with significantly lesser parameters.
Hinton et al. (2015) further introduced the softmax
temperature to emphasize learning from the entire
distribution. A seminal work in the distilation of
BERT-like transformers was performed by Sanh et
al. (2019), who report a considerable model size
reduction (40%) while retaining 97% performance
on downstream tasks.

In this paper, we present pilot experiments for
a new type of knowledge distillation that aims to
extract representations for a particular language
from a multilingual model. While there have been
more advanced distillation approaches proposed,
such as Patient Knowledge Distillation (Sun et al.,
2019), this research is a first attempt at language-
based distillation, where the basic distillation setup
is validated as a proof of concept. We demonstrate
that even when using basic distillation, it is possible
to obtain monolingual models 3 times smaller than
mBERT, while also performing consistently better
on the distilled language. In addition, we show
promising results for languages with a large variety
in terms of available resources and belonging to
different language families.

3 Distillation Methodology and
Experimental Setup

We use the basic, proven distillation technique by
Sanh et al. (2019), which uses mBERT as a teacher
for all setups, and a 6-layer BERT architecture with-
out the pooler and token-type embeddings as the
student. We also use the 3 loss functions proposed,
which are formally represented in the equations
below. The distillation loss (1) ensures the sim-
ilarity between the teacher output distribution ti
and the student output distribution si using neg-
ative log-likelihood. The cosine embedding loss
(2) ensures the distributions not only have simi-
lar magnitudes but a similar directional alignment
as well by penalising cosine distance. The final
loss (3) is the standard cross-entropy used for most
modern MLM systems, where si is once again the

1https://github.com/NirantK/hindi2vec
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Wikipedia Downstream Task 1 Downstream Task 2 Monolingual Model
French 12M Sentiment (Le et al., 2019) UD POS (GSD) CamemBERT-base
Dutch 4.4M Sentiment (van der UD POS BERTje

Burgh (2019)) (Lassy-small)
Hindi 1.1M News (hindi2vec: github UD POS (HDTB) indicBERT

NirantK/hindi2vec)
Hebrew 1.3M Sentiment UD POS (HTB) AlephBERT

(Amram et al., 2018)
Swahili 0.1M News (SNCD: huggingface NER SwahBERT

datasets/swahili_news) (Adelani et al., 2021)
Slovene 0.4M NER (Rahimi et al., 2019) UD POS (SSJ) SloBERTa

Table 1: Overview of the used resources for each of the 6 languages, including the monolingual Wikipedia
(in million pages) used for the distillation process, as well as the two tasks used to evaluate the distilled
model. For all PoS-tagging tasks (UD POS), datasets were retrieved from the Universal Dependencies dataset
(https://universaldependencies.org). The last column lists the monolingual model that was used to present an
upperbound score for the given task and language.

student’s output distribution while yi is the ground
truth output distribution. The three losses are then
aggregated with a weighted sum (4). An impor-
tant factor here is the unlabelled monolingual data
used for distillation. While it is often the case for
distillation systems to pre-train the student model
on the entire corpus to ensure optimal transfer, we
want to focus on the capabilities of a single target
language, and therefore only distil for iϵL where L
is the target language in question.

Ldistillation =
∑

iϵL

ti ∗ log(si) (1)

Lcosine =
∑

iϵL

1− cos(ti, si) (2)

Lmlm =
∑

iϵL

yi ∗ log(si) (3)

L = α1Ldistillation + α2Lmlm + α3Lcosine (4)

A vital thing to note here is that Lmlm and
Ldistillation can be slightly contradictory. While
both enforce the same obejctive, Lmlm uses the
ground truth while Ldistillation uses the teacher’s
predictions. Therefore, if the teacher predictions
are often dissimilar to the ground-truth, the two
losses might interfere with each other’s progress.
We explore this further in Section 4.

We also follow in the footsteps of the previous
work for the student initialisation. It was noted
by Sun et al. (2019) that initialising the student
model from the teacher model by skipping alter-
nate layers greatly speeds up the learning process
and improves the student model considerably. Our

final step was to reduce the vocabulary of the stu-
dent model to only the target language L. Since the
student vocabulary was initialized from the teacher
mBERT, which contains sub-words from over a
100 languages, this majorly contributes to the large
vocabulary, and therefore directly to the model size
and inference speed. We use the approach sug-
gested by Abdaoui et al. (2020), which selects a
subset of the vocabulary of a large model and elim-
inates the unnecessary parameters from the embed-
ding layer and tokenizer, thus significantly bringing
down model parameters.

We replicate the distillation experiments for a set
of 6 languages, using the entire available Wikipedia
for each language. Since the data size varies con-
siderably (ranging between 0.1 million pages for
Swahili to 12 million pages for French), we train
for 20,000 steps to ensure all models are trained
to a similar extent. The student models for Dutch
and French might therefore be improved by further
training since they have more available data, but
our objective here was to focus on the viability of
the approach for low-resourced languages. Experi-
ments with the high-resourced languages (Dutch,
French) are only added for the sake of compari-
son. We use the values of 5.0 for α1, 2.0 for α2

and 1.0 for α3, respectively. A starting learning
rate of 5e − 4 was used, with a batch size of 8
per device, for 4 Tesla A100 GPUs, and the dis-
tillation takes approximately 48 hrs per language.
Post-distillation, we reduce the model’s vocabulary
as described above. Next, we test the monolingual
student models on two different downstream tasks
for each language. For the fine-tuning, we add a
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classification layer to the distilled model and train
with an LR of 5e− 5 for 5 epochs with 500 warm
up steps before a linear LR decay. We include tasks
requiring both semantic understanding (sentiment
analysis, news classification) as well as syntactic
knowledge (PoS-tagging, NER).

An overview of the evaluated tasks and datasets
per language is presented in Table 1. The last col-
umn refers to the models used for the upper-bound
scores in Table 2. While for some languages we
could use the standard monolingual BERT models
as the upper bound (BERTje1, AlephBERT2, Swah-
BERT3), for other languages we had to use more
advanced architectures like RoBERTa (Camem-
BERT4, SloBERTa5), while for Hindi we used In-
dicBERT6, which is an ALBERT model for 12
Indic Languages.

4 Results and Discussion

The results for all experiments are summarized in
Table 2. The distilled language models (Eliquare)
almost consistently outperform mBERT, even when
mBERT has 3 times as many parameters. A more
fair comparison is made with distilmBERT (Sanh
et al., 2019), which has fewer parameters than
mBERT and a similar model structure to the Eli-
quare models, but uses the entire Wikipedia for
all languages for the distillation process (i.e. 237
million pages). In addition, we notice that Dis-
tilmBERT is also consistently outperformed by Eli-
quare. This outcome may seem counter-intuitive
and unusual at first, since a student model should
in principle not be outperforming a teacher model
based on evidence from a number of distillation
methodologies presented over the years. It can be
explained, however, by the loss setup discussed
in Section 3. If mBERT consistently makes mis-
takes for MLM, Ldistillation and Lmlm continue to
contradict each other. While the MLM loss will
encourage the model to improve, since the distilla-
tion loss is weighted (α1) so heavily, it ensures the
model cannot be very different from the teacher. As
a result, each Eliquare model, even though better,
is only marginally improved due to the distillation
loss halting the progress. This is illustrated by Fig-
ure 1, which shows the progress of the two losses

1https://huggingface.co/GroNLP/bert-base-dutch-cased
2https://huggingface.co/onlplab/alephbert-base
3https://github.com/gatimartin/SwahBERT
4https://huggingface.co/camembert-base
5https://huggingface.co/EMBEDDIA/sloberta
6https://huggingface.co/ai4bharat/indic-bert

Task 1 Task 2
French

Upper-bound ∗ 0.9338 0.9818
mBERT 0.8923 0.9795
distilmBERT 0.8773 0.9790
Eliquare 0.8952 0.9792

Dutch
Upper-bound 0.9300 0.9630
mBERT 0.9033 0.9623
distilmBERT 0.8812 0.9607
Eliquare 0.8970 0.9625

Hindi
Upper-bound ⋆ ∗ 0.2553 0.9208
mBERT 0.4744 0.9666
distilmBERT 0.4555 0.9597
Eliquare 0.5066 0.9683

Hebrew
Upper-bound 0.8871 0.9620
mBERT 0.8512 0.9681
distilmBERT 0.8391 0.9597
Eliquare 0.8567 0.9705

Swahili
Upper-bound 0.9090 0.8850
mBERT 0.8689 0.8490
distilmBERT 0.8666 0.8452
Eliquare 0.8701 0.8632

Slovene
Upper-bound ∗ 0.9410 0.9902
mBERT 0.9326 0.9791
distilmBERT 0.9268 0.9790
Eliquare 0.9365 0.9822

Table 2: Experimental results (macro-F1) for multi-
lingual BERT (mBERT), distilled mBert (distil) and
our language-specific distillation approach (Eliquare)
for various end-tasks for 2 high-resourced (French,
Dutch), 2 middle-resourced (Hindi, Hebrew) and 2 low-
resourced languages (Swahili, Slovene). ⋆ Refers to
non-monolingual models trained with additional similar
languages, while ∗ refers to more advanced architec-
tures (like RoBERTa) expected to perform better than
BERT-based models.

.

for Dutch distillation. While Ldistillation converges
much faster, and maintains a much lower absolute
value, Lmlm encounters a lot of fluctuation and
has an almost four times higher mean value, even
though both loss functions are near identical (cross-
entropy). The distillation and MLM loss plots for
the other 5 languages are provided in appendix A.
The results for the upper-bound models are only
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Figure 1: Distillation loss (left) and MLM loss (right) for the Dutch language distillation.

Model # of Parameters Inference Speed Inference Memory
mBERT 167M 0.384s 10880 MB

distilmBERT 134M 0.165s 8798 MB
Eliquare 66M 0.066s 2944 MB

Table 3: Sustainability comparisons of Eliquare with standard mBERT and distilled mBERT versions. All numbers
were computed on a Tesla V100 with a Batch Size of 32 and Sequence Length of 512 for inference.

provided for reference and do not serve as a fair
comparison since these are specialized models for
the language trained on significantly more mono-
lingual data compared to mBERT.

While the performances of all the models maybe
very close together, where the Eliquare set of mod-
els really shine is in a practical deployment setting.
As shown in Table 3, Eliquare models are about
6 times faster than mBERT for inference (for a
Batch Size of 32 and Sequence Length of 512 on
a single Tesla V100), while being approximately
2.5 times faster than the distilled mBERT model.
Moreover, they occupy around 1/3rd of the memory
of mBERT with the same inference setting.

To conclude, we demonstrate that it is possible to
distil better, smaller and faster monolingual models
from mBERT, using a very basic distillation setup.
The results show that the Eliquare monolingual
models consistently outperform mBERT which has
3 times more parameters, and distilmBERT which
has almost 2 times more parameters and uses orders
of magnitude more data for the distillation process.
While the Eliquare models may not be useful for
the high-resourced languages due to the availability
of large monolingual models, they present a major
step towards having small monolingual models for
a number of low-resourced languages.

In future research, we will investigate how to
further improve the student from the teacher by di-
minishing the impact of the distillation loss. In ad-
dition, we will run the same set of experiments with
XLM-R to investigate whether the same distillation

approach can be applied to other joint multilingual
models as well. Finally, we will also explore the
impact of distilling multiple typologically similar
languages from mBERT in parallel.
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A Loss Variation

In this appendix, we further illustrate with Figure
2 the differences in convergence for the MLM loss
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and the distillation loss for the other 5 languages,
and consistently observe the findings presented in
Section 4. The MLM loss continues to have a much
larger mean value than the distillation loss, while
also having issues converging with various spikes
in the loss, while the training for the distillation
loss is much more stable. This is line with our
hypothesis that the large α1 values prioritize the
distillation over the language modelling objective,
thus not allowing the model to further improve
from the teacher.
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Figure 2: Distillation loss (left) and MLM loss (right) for the other 5 languages: French, Hindi, Hebrew, Swahili
and Slovene.
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Abstract

Disfluencies that appear in the transcriptions
from automatic speech recognition systems
tend to impair the performance of downstream
NLP tasks. Disfluency correction models can
help alleviate this problem. However, the un-
availability of labeled data in low-resource lan-
guages impairs progress. We propose using a
pretrained multilingual model, finetuned only
on English disfluencies, for zero-shot disflu-
ency detection in Indian languages. We present
a detailed pipeline to synthetically generate dis-
fluent text and create evaluation datasets for
four Indian languages: Bengali, Hindi, Malay-
alam, and Marathi. Even in the zero-shot set-
ting, we obtain F1 scores of 75 and higher on
five disfluency types across all four languages.
We also show the utility of synthetically gener-
ated disfluencies by evaluating on real disflu-
ent text in Bengali, Hindi, and Marathi. Fine-
tuning the multilingual model on additional
synthetic Hindi disfluent text nearly doubles
the number of exact matches and yields a 20-
point boost in F1 scores when evaluated on real
Hindi disfluent text, compared to training with
only English disfluent text.

1 Introduction

Disfluencies (e.g., filled pauses, repetitions, dis-
course markers) are artefacts that are inherent to
spontaneous or conversational speech. Disfluen-
cies typically obey the following surface structure
comprising: a reparandum, an interruption point
(+) that marks the end of the reparandum, an in-
terregnum, and finally the repair (Shriberg, 1994).
The reparandum consists of one or more words
that are not intended by the speaker and will be re-
placed or ignored. The interregnum consists of an
editing term indicating that the reparandumwill be
edited, or it may be empty, or it can contain fillers,
discourse markers, etc. The repair section reflects
the fluent part of the utterance. Words from the
reparandum are repeated or corrected in the repair

section, or a new chain of thought is started in case
of a false start.
Consider the following example that illustrates

two disfluency types:

{well} [i think+ {you know} i think] the idea will
work

The words highlighted in red and green refer to dis-
course marker and repetition disfluency types, re-
spectively. The part in blue is the fluent version
of the original sentence. The example also follows
the standard annotation scheme:

[reparandum + {interregnum} repair]

Disfluencies in automatically transcribed text pose
a major challenge for downstream NLP tasks such
as machine translation, summarization, etc. (Rao
et al., 2007; Wang et al., 2010). Disfluency de-
tection/correction is often used as a preprocessing
step for NLP, where the goal is to identify/remove
the disfluent words (Shriberg et al., 1992). While
disfluency correction has been extensively studied
for English (Honal and Schultz, 2003; Zayats et al.,
2014), it has received far less attention in other lan-
guages. This is largely due to the lack of labeled
data for other languages.
In this work, our main objective is to build dis-

fluency detectionmodels for four Indian languages
— Bengali, Hindi, Malayalam, and Marathi — in
the zero-shot setting with no access to labeled dis-
fluent data in these languages. To the best of our
knowledge, this is the very first study of disflu-
ency detection across multiple Indian languages
and also the very first to investigate the ability of
large pretrained models to do zero-shot disfluency
detection.
We specify a rule-based procedure to generate

disfluencies starting from fluent sentences. It is
worth noting that the synthetically generated dis-
fluent data might not completely reflect real world
disfluencies. Nevertheless, we find the synthetic
data to be useful in improving disfluency detection
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for low-resource Indian languages. Also, we can
create near-real disfluent data by manually edit-
ing the synthetic data, which will take significantly
less time than annotating from scratch. Our rule-
based pipeline is targeted at Indian languages, and
the same set of rules is applied to sentences in four
Indian languages — Bengali, Hindi, Malayalam,
and Marathi. From within these synthetic datasets,
native speakers of the respective languages manu-
ally identified disfluent sentences that seemed nat-
ural. This resulted in manually-verified evalua-
tion datasets for all the four languages. We also
constructed evaluation datasets for Bengali, Hindi,
and Marathi with real1 disfluent sentences, tran-
scribed and extracted from conversational speech
in interviews. Using these datasets as evaluation
benchmarks and inspired by prior work on cross-
lingual zero-shot transfer using large pretrained
multilingual models (Pires et al., 2019; Hu et al.,
2020; Khanuja et al., 2021), we investigated the
effectiveness of a large pretrained multilingual
model MuRIL (Khanuja et al., 2021) on the task of
zero-shot disfluency detection. MuRIL is a multi-
lingual transformer-based model that is pretrained
on large amounts of text in a number of different
Indian languages. We finetuned MuRIL using la-
beled disfluent sentences in English (Godfrey et al.,
1992) (and synthetic disfluent text) and evaluated
disfluency correction for all four Indian languages
in the zero-shot setting.2
Four MuRIL-based disfluency detection models

were trained, viz. those using (1) only real English
disfluent data, (2) both real English and synthet-
ically generated Bengali disfluent data, (3) both
real English and synthetically generated Hindi dis-
fluent data, and (4) both real English and syntheti-
cally generated Marathi disfluent data. Model (2)
significantly improves disfluency detection on the
real Bengali disfluent data compared to model (1).
We also observe similar results for the other two
languages. This validates our claim that our syn-
thetically generated data is effective in capturing
(some subset of) the kinds of disfluencies that are
encountered in real conversational data.
The main ideas in this work can be summarized

as follows:

• We outline a common rule-based procedure
1We use the term real throughout the paper to contrast

the manually-edited synthetic datasets with the (real) datasets
containing disfluencies annotated from conversations.

2Our code and datasets can be found at https://github.
com/RKKUNDU/zero-shot-disfluency-detection.

that allows us to synthesize disfluencies
for four Indian languages: Bengali, Hindi,
Malayalam, and Marathi.

• We construct manually-verified evaluation
datasets for all four Indian languages, starting
from synthetically generated data. The Ben-
gali, Hindi, Malayalam, and Marathi test sets
contain 500, 575, 575, and 420 sentences, re-
spectively.

• We also annotate real labeled disfluent
datasets in Bengali, Hindi, and Marathi, con-
taining 300, 150, and 250 sentences, respec-
tively. These sentences were transcribed and
extracted from real conversational speech.
We note that this annotation process is sub-
stantially more tedious than identifying nat-
ural disfluencies starting from our synthetic
data.

• We finetune a pretrained multilingual model,
MuRIL, on labeled disfluent data in English
and show its effectiveness at zero-shot disflu-
ency detection for all four Indian language
datasets.

• We show the utility of our synthetic disflu-
ency generation pipeline by comparing per-
formance of a model finetuned only on real
English disfluent data versus a model fine-
tuned on both real English and synthetically
generated disfluent data of one Indian lan-
guage.

• We present a detailed breakdown of perfor-
mance across various disfluency types, show
qualitative analyses of our model predictions
and highlight some interesting aspects related
to disfluencies in Indian languages (e.g., redu-
plication).

2 Related Work

There are three main categories of approaches for
disfluency detection. They are based on (1) se-
quence tagging, (2) parsing, and (3) a noisy chan-
nel model (Kundu et al., 2022).
Sequence tagging based approaches use classi-

fication techniques to label individual words (Liu
et al., 2006; Ostendorf and Hahn, 2013; Zayats
et al., 2014; Ferguson et al., 2015; Hough and
Schlangen, 2015; Zayats et al., 2016; Wang et al.,
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2018). Parsing-based approaches detect disflu-
encies along with identifying the syntactic struc-
ture of the sentence (Rasooli and Tetreault, 2013;
Honnibal and Johnson, 2014; Wu et al., 2015;
Yoshikawa et al., 2016; Jamshid Lou and John-
son, 2020). The main idea behind a noisy chan-
nel model of disfluency is that we assume there is
a fluent source sentence X to which some noise
has been added, resulting in a disfluent sentence Y .
The goal is to find the most likely fluent sentence
given Y (Johnson and Charniak, 2004; Zwarts and
Johnson, 2011; Jamshid Lou and Johnson, 2017).
Prior works (Hu et al., 2020; Khanuja et al.,

2021) have used pretrained multilingual models
for many zero-shot NLP tasks such as Named En-
tity Recognition (NER), Part of Speech (POS) tag-
ging, Question Answering (QA), etc. However,
this is the first work to attempt disfluency detec-
tion in a zero-shot setting and the very first work
to study disfluency detection for multiple Indian
languages.
Our work on synthetic disfluency data genera-

tion has parallels to the recent work of Passali et al.
(2022) where they focus on an artificial disfluency
generation algorithm. They focus broadly onRepe-
titions, Replacements, and Restarts and only focus
on English. Saini et al. (2020) is another prior work
that has looked into inducing disfluencies in En-
glish fluent text. Our disfluencies are much more
fine-grained in construction (e.g., pronoun correc-
tions, missing syllables, etc.) compared to prior
work and apply to Indian languages.

3 Generating Synthetic Disfluencies

We focus on four major disfluency types as listed
in Honal and Schultz (2003), i.e., Fillers, Repeti-
tions3, Corrections, and False Starts. We specify a
total of nine rules across the four disfluency types
to introduce disfluencies in fluent sentences. We
show examples of Bengali disfluent sentences in
Appendix A for all the disfluency types. Apart
from what we describe in this section, there are
somemore fine-grained details governing how and
where various disfluencies are introduced in a flu-
ent sentence; these details are specified in our re-
leased codebase.

3In the literature, Repetitions and Corrections disfluency
categories are considered as a single category

3.1 Fillers

We loosely use the term Fillers to denote editing
terms, discourse markers, filled pauses and inter-
jections. Editing terms are used to explicitly indi-
cate that the previously uttered word(s) were not
intended. Discourse markers help in beginning or
keeping a turn (e.g., well) or merely serve as a form
of acknowledgment (e.g., yeah). Filled pauses are
non-lexicalized sounds without any semantic con-
tent. Interjections are defined as non-lexicalized
sounds indicating affirmation or negation.
We simply introduce frequent filler phrases at

randomly chosen positions. We choose frequent
filler phrases after carefully observing conversa-
tions. We assume that there will be at most 3 fillers
in a sentence and uniformly choose a number be-
tween 1 and 3. Thereafter, with uniform probabil-
ity, we pick the location in the sentence at which
the next filler will be inserted and also choose the
filler phrase to be inserted with uniform probabil-
ity from a pool of filler phrases.4

Speakers might tend to use fillers before long
words. For words with 12 or more characters, we
first choose a filler phrase with uniform probability
and then place it before the long word.

3.2 Repetitions

Repetition is defined as the phenomenon of speak-
ers repeating a word or phrase.
Word Repetition. For this rule, we pick a word
uniformly at random and repeat it.
Phrase Repetition. In this rule, we repeat a
phrase5 containing 2 to 5 words. We first randomly
pick a length from [2, 3, 4, 5] using a weighted dis-
tribution of [0.4, 0.3, 0.2, 0.1].6 Then, we pick a
phrase of the chosen length uniformly at random
and repeat it.
PronounRepetition. We find pronouns to be com-
monly repeated in Indian languages. First, we ac-
cumulate a list of pronouns for each language. If
any word in the fluent sentence appears in the pro-
noun list, then we repeat the pronoun with a prede-
termined probability.7

4These filler phrases are separately listed for all four In-
dian languages after consulting native speakers.

5Here, we mean an n-gram of consecutive words regard-
less of their real phrasal structure.

6This distribution was chosen only to signify that phrases
of shorter length are more frequent than phrases of longer
length.

7More details about the probability with which a pronoun
is chosen to be repeated is specified in our code.
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3.3 Corrections

Corrections involve substitutions, deletions, or in-
sertions of words from the reparandum section.
Corrections may include the interregnum.
Partial Word. For this rule, we introduce partial
words before long words with 12 or more char-
acters. Firstly, we find the orthographic sylla-
bles8 of a long word using the Indic NLP Library9
(Kunchukuttan, 2020). Thereafter, we create the
partial word by joining the first n syllables where
n comes from a weighted distribution in which
probability P (n) is proportional to 1

n .
Missing Syllables. For this rule, preceding a
long word of 12 or more characters, we insert the
same word but with one or more syllables miss-
ing. We first find the orthographic syllables of the
long word. Then, we remove n contiguous sylla-
bles from the word (where n is sampled from a
weighted distribution similar to what we used for
phrase repetition) and add this reduced form of the
word prior to the original long word.
Pronoun Correction. In this rule, a pronoun gets
explicitly corrected. From the pronoun lists men-
tioned in Section 3.2, we create groups of similar
types of pronouns (e.g., all first person pronouns
are in one group). For each pronoun in the fluent
sentence, we find its group and pick a different pro-
noun from the group to serve as its correction. We
also (optionally) insert a frequent filler phrase be-
fore using the correct pronoun.
Synonym Correction. In this rule, we introduce
a synonym of the word before the actual word,
obtained using IndoWordNet10 (Bhattacharyya,
2010).

3.4 False Start

For the False Start disfluency, a sentence is
aborted before it is completed, and a new idea or
line of thought is introduced. To create false starts,
we first randomly pick two different fluent sen-
tences. Then, we split the first fluent sentence from
a random position and we concatenate the first part
of the split with the second fluent sentence.

8Orthographic syllable is a sequence of one or more con-
sonants followed by a vowel.

9https://github.com/anoopkunchukuttan/indic_
nlp_library

10https://www.cfilt.iitb.ac.in/indowordnet/

4 Dataset Details

4.1 Disfluency Datasets for Indian Languages
Real Disfluent Data. We create real disfluent
datasets in Bengali, Hindi, and Marathi by tran-
scribing and annotating real disfluencies from con-
versations in the respective languages. For this pur-
pose, we used publicly available Interviews in Ben-
gali11, Hindi12, and Marathi13 from YouTube14.
From these videos, we constructed three datasets
containing 300, 150, and 250 disfluent and fluent
parallel sentences in Bengali, Hindi, and Marathi,
respectively.

Synthetic Disfluent Data. We also induce dis-
fluencies in fluent text using our rule-based al-
gorithm and create evaluation datasets for disflu-
ency detection in Bengali, Hindi, Malayalam and
Marathi. We start with fluent monolingual text
from the PMIndia corpus15 (Haddow and Kirefu,
2020). We synthesize disfluent sentences using
the rules outlined in Section 3. We ask language
specialists in each of the four languages to manu-
ally pick sentences from the synthetic dataset that
appear like natural disfluencies (and edit the dis-
fluent sentences if needed). We picked utterances
such that there is uniform coverage across disflu-
ency types and there is no label imbalance. We
used IndicNLP (Kunchukuttan, 2020) for normal-
ization and tokenization, and we removed all punc-
tuation marks. Table 1 shows detailed disfluency
type counts for all four datasets. The test sets for
Bengali, Hindi, Malayalam, and Marathi contain
500, 575, 575, and 420 sentences, respectively.
Each of the test sets is grouped into five cate-

gories: fillers, repetitions, corrections, false starts
and fluent sentences. Fluent sentences are in-
cluded as a control set to check whether the model
is incorrectly detecting disfluencies in fluent sen-
tences. We also include fluent sentences with redu-
plications which are a special category in Indian
languages as mentioned below.

Reduplication. Reduplication is the act of re-
peating all or part of a word for emphasis or to

11https://www.youtube.com/c/WBCSMadeEasyTM
12https://www.youtube.com/

NeeleshMisraChannel
13https://www.youtube.com/c/GopalDarji
14We obtained explicit permission from the Bengali and

Marathi content creators to use the data for research. The
Hindi content creator allows fair use of specific videos for
research.

15https://data.statmt.org/pmindia/
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Type Bn Hi Ml Mr
Filler (3.1) 50 100 100 70

Word Repetition (3.2) 42 50 50 35
Phrase Repetition (3.2) 42 50 50 35
Pronoun Repetition (3.2) 41 50 50 35

Partial Word (3.3) 66 50 50 35
Missing Syllables (3.3) 34 50 50 35
Pronoun Correction (3.3) 66 50 50 35
Synonym Correction (3.3) 34 50 50 35

False Start (3.4) 50 50 50 35
Fluent Sentences with Redpl 25 25 25 20
Normal Fluent Sentences 50 50 50 50

Total 500 575 575 420

Table 1: Synthetic Dataset Statistics: Number of sen-
tences of each disfluency type. Redpl: Reduplication,
Bn: Bengali, Hi: Hindi, Ml: Malayalam, Mr: Marathi.

convey a meaning. It is widely used in Indian lan-
guages; a few examples of reduplication in Hindi
are shown in Table 2 (Montaut, 2009). In the
context of disfluencies, we note that reduplica-
tions could be mistaken for a repetition disfluency
type. Reduplications are intentional repetitions
which are grammatically correct and should not
be flagged as disfluencies. To check for this, we
include fluent sentences with reduplication in our
test set.

4.2 English Disfluency Data
We also present results for English to check how
well MuRIL performs when compared with previ-
ously published results. Switchboard16 (Godfrey
et al., 1992) in English is the most commonly used
dataset for disfluency detection. Following the ex-
perimental settings in Wang et al. (2021), we split
the Switchboard corpus such that the dev set con-
sists of all sw_04[5-9]*.utt files, the test set con-
sists of all sw_04[0-1]*.utt files, and the training
set consists of all the remaining files. We do not
include sentences without disfluencies in the train-
ing data, but do so in the dev, test set. Following
Honnibal and Johnson (2014), we lowercase the
text and remove all punctuation marks.

5 Experimental Setup

In this work, we use MuRIL (Khanuja et al., 2021)
which is a BERT model (Devlin et al., 2019)
pretrained on 16 Indian languages (including the
four we consider) and English. MuRIL is pre-
trained using two language modeling objectives:
Masked Language Modeling and Translation Lan-
guage Modeling.

16https://catalog.ldc.upenn.edu/LDC97S62
17Orange color denotes reduplication

Evaluation Metrics. We test the model on Ben-
gali, Hindi, Malayalam, Marathi and English dis-
fluency detection tasks. Similar to prior work on
detecting English disfluencies (Wang et al., 2021),
we compute precision, recall, and F1 scores us-
ing word-level labels. We also use a more ambi-
tious metric, the exact match percentage, where
the predicted fluent sentence is compared to the
reference fluent sentence and checked for an ex-
act match. We also show BLEU scores between
the fluent text predictions and the reference fluent
sentences, which are calculated using sacreBLEU
(Post, 2018).

5.1 Using only English Disfluency Data

We finetune the pretrained MuRIL checkpoint on
the English disfluency detection task where the
goal is to correctly label each of the tokens as fluent
or disfluent. We use the muril-base-cased check-
point (having 236M parameters) from Hugging-
Face18 for all our experiments. For each of the
subword tokens identified by theMuRIL tokenizer,
the model predicts its label as being 0 (fluent) or 1
(disfluent).
For disfluency correction, once we have disflu-

ency labels for each subword, we use majority vot-
ing to determine whether a word is omitted or not.
For a word, if the number of its subwords tagged
as disfluent is greater than the number of subwords
tagged as fluent, the word is deleted; else, it is re-
tained.

5.2 Using Synthetically Generated Indian
Language Data along with English
Disfluency Data

We would like to check whether our synthetically
generated data in one Indian language (say, Ben-
gali) helps improve performance on real disfluen-
cies in Bengali, Hindi, and Marathi languages.
We generate disfluent sentences having n disflu-

encies where n ∈ {1, 2, 3, 4, 5}. Ignoring false
starts, we pick one of the eight disfluency types
(listed in Table 1) at random and inject disfluen-
cies in fluent Bengali sentences from the PMIndia
corpus. We generated 42500 disfluent Bengali sen-
tences in this way, which is roughly half the num-
ber of sentences in the Switchboard corpus.19 Sim-

18https://huggingface.co/google/
muril-base-cased

19We want to augment the Switchboard data with the syn-
thetic Bengali data, but do not want the synthetic data to dom-
inate the corpus.
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Sentence Transliteration Gloss Translation Comment

तुम कहा कहा17 गए tuma kahaa kahaa gae you where where
went

where did you go Reduplication of inter-
rogative pronoun. Here
the questioner expects
a list of places in re-
sponse.

खाते खाते मत बोलो khaate khaate mata
bolo

eating eating do_not
speak

do not speak while
eating

Reduplication of verb

यह लो तुम्हारी चाय.
गरम गरम ह,ै िपयो

yaha lo tumhaarii
caaya. garama
garama hai, piyo

this take your tea. hot
hot is drink

Take your tea. It is
nicely hot, drink it

Reduplication of adjec-
tive

बच्चो को एक एक टॉफ़ दो bacco ko eka eka
taffii do

children to one one
toffee give

give a toffee to each
child

Reduplication of num-
ber.

Table 2: Examples of Reduplication in Hindi. Gloss: word-to-word English translation. “_” in the gloss suggests
fertility which refers to one word mapping to multiple words in the other language.

ilarly, we construct synthetic data for the other two
languages as well.
Next, we finetune the pretrained MuRIL check-

point on the combined synthetic Bengali data and
Switchboard data. The other experimental details
are the same as described in Section 5.1. We eval-
uate this model on real disfluency detection data
in Bengali, Hindi, and Marathi. We hypothesize
that the performance of this model on the real Ben-
gali disfluency detection dataset will be better than
that of the model finetuned only on English data.
This would indicate that our synthetically gener-
ated data contains disfluencies that mimic the ones
seen in real speech.

5.3 Using Only Synthetically Generated
Indian Language Data

We also finetune the pretrainedMuRIL checkpoint
only on the synthetic Bengali/Hindi/Marathi data.
We apply the same synthetic data and experimental
setup as discussed in Section 5.2.

6 Results & Analysis

This section presents the evaluation results and
analyses the quantitative and qualitative perfor-
mance of our models.

6.1 Performance on Real Disfluent Data

Table 3 shows a comparison of our model fine-
tuned on only English data, and models finetuned
on synthetic Bengali/Hindi/Marathi disfluent data
(optionally) along with real English disfluent data.
We can see that MuRIL - En & Syn Bn (model

finetuned using both synthetically generated Ben-
gali data and the Switchboard corpus) outperforms
MuRIL - En (finetuned only using the Switchboard

corpus) by a significant margin of 19% in terms of
exact matches, when evaluated on real Bengali dis-
fluencies. Also, MuRIL - En & Syn Bn has high
precision which leads to an increase of 4.67 F1
scores. Similarly,MuRIL - En & Syn Himodel out-
performsMuRIL - En by a largemargin of 19.92 F1
scores, when evaluated on real Hindi disfluencies.
Both MuRIL - En & Syn Bn and MuRIL - En &
Syn Mr also outperformMuRIL - En by 15.51 and
18.14 F1 scores, respectively. We observe similar
trends on the real Marathi evaluation set as well.
All the models that were finetuned with addi-

tional synthetic data (irrespective of the language)
nearly double the number of exact matches when
evaluated on real Hindi/Marathi disfluencies, com-
pared to the model trained with only English dis-
fluent data. Our models trained only on synthetic
disfluent data outperform the MuRIL - En model.
We observe 1.17, 12.33, 17.48 F1 scores improve-
ment over MuRIL - En model, when evaluated on
real Bengali, Hindi andMarathi evaluation sets, re-
spectively.
These results suggest that using synthetically

generated disfluent sentences does enable transfer
to real disfluent data and helps validate our syn-
thetic data generation pipeline.

6.2 Disfluency Detection in Indian Languages
Table 4 presents a detailed account of the perfor-
mance of MuRIL on the four manually-edited syn-
thetic disfluency evaluation sets in Bengali, Hindi,
Malayalam, and Marathi. It also provides a break-
down of performance across disfluency types. We
report the exact match percentages, the BLEU
scores and the F1 scores.
The overall F1 scores for Bengali, Hindi, Malay-

alam and Marathi are 73.14, 63.82, 67.12 and
4447



Language Model Precision Recall F1 score Exact Match % BLEU

Bengali

MuRIL - En 81.13 65.60 72.54 28.33 80.2
MuRIL - Syn Bn 91.79 61.58 73.71 43.00 81.2

MuRIL - En & Syn Bn 92.90 66.06 77.21 47.33 82.6
MuRIL - En & Syn Hi 89.90 51.03 65.11 35.67 77.4
MuRIL - En & Syn Mr 92.72 51.15 65.93 35.33 76.7

Hindi

MuRIL - En 67.81 62.20 64.89 36.67 85.5
MuRIL - Syn Hi 83.18 72.05 77.22 54.00 89.5

MuRIL - En & Syn Bn 82.57 78.35 80.40 64.00 91.3
MuRIL - En & Syn Hi 84.98 84.65 84.81 66.00 93.7
MuRIL - En & Syn Mr 86.38 79.92 83.03 66.00 91.7

Marathi

MuRIL - En 57.78 54.93 56.32 26.40 83.8
MuRIL - Syn Mr 92.25 61.50 73.80 55.60 88.2

MuRIL - En & Syn Bn 82.77 68.78 75.13 56.80 88.9
MuRIL - En & Syn Hi 83.14 68.31 75.00 55.60 89.5
MuRIL - En & Syn Mr 87.54 69.25 77.33 60.80 90.0

Table 3: Performance on real Bengali, Hindi, and Marathi disfluent data. MuRIL - En: Finetuning MuRIL only on
Switchboard data,MuRIL - En & Syn X (whereX ∈ {Bn,Hi,Mr}): Finetuning MuRIL on Switchboard data and
synthetic disfluency detection data in language X [Bn: Bengali, Hi: Hindi, Mr: Marathi] , MuRIL - Syn X (where
X ∈ {Bn,Hi,Mr}): Finetuning MuRIL only on synthetic disfluent data in language X . We note that the BLEU
scores between the original disfluent text and the fluent reference text for Bengali, Hindi, and Marathi are 62.0,
71.9 and 73.2, respectively.

70.22, respectively. Interestingly, the model is
able to do a reasonable job of disfluency detection
even in the zero-shot setting with no access to la-
beled disfluent data in the target languages. The
BLEU scores between the original disfluent text
and the fluent reference for Bengali, Hindi, Malay-
alam andMarathi are 83.2, 83.4, 78.3, 81.1, respec-
tively. Comparing these scores to the BLEU scores
obtained using the finetuned MuRIL (92.5, 90.9,
88.4 and 91.3) clearly shows that the model is ef-
fective in removing disfluencies.

6.3 Performance across Disfluency Types
Table 4 shows that our model is doing exception-
ally well at detecting Repetitions in all the lan-
guages and our model shows the best performance
in detectingPhrase Repetitions. In 64%of the Ben-
gali sentences, our model did not tag a reduplica-
tion as disfluency, which is correct. This suggests
that the model is learning the difference between
word repetition and reduplication. Also, most of
the fluent sentences are kept unchanged.
Even without any explicit supervision of the

filler words specific to each language, we find that
our model is sometimes able to accurately detect
the fillers based on the context in which they ap-
pear. The high F1 score in Marathi for fillers
(compared to the other three languages) can be at-
tributed to the fact that the fillers exhibited a posi-
tional bias and mostly appeared at the start of the
Marathi test sentences.
Our model performs fairly on detecting partial

words. In comparison, the model does very well
on detecting missing syllables and achieves more
than 75 F1 scores in all four languages. Despite
the complexity of the pronoun correction task,
which could also involve optional editing terms,
our model performs admirably and gets F1 scores
of greater than 75 across all languages.
Detecting synonym correction correctly is a

complex task and our model does not perform too
well on this disfluency type. Our model yields
the lowest F1 scores across all disfluency types on
false starts. This is not very surprising because
false starts are the hardest of disfluency types to de-
tect (Shriberg, 1994). Sometimes there are ambigu-
ities even in the gold standard utterances contain-
ing false starts. (Example 7 in Table 8 shows such
an ambiguity.) Another reason could be that the
Switchboard dataset does not contain many false
start disfluencies.

6.4 Performance across Languages
From Table 4, we compare the performance of our
model across languages for different disfluency
types.
Filler detection is done best for Marathi. We ob-

serve that the model does not perform well in de-
tecting Hindi fillers. Hindi differs from the other
languages in that it uses fairly long phrases as
fillers. For example, “क्या कहते ह”ै means “what
to say”. Thus, our model might find it challeng-
ing to catch these long filler phrases. We also ob-
serve that the model’s capability to detect a filler
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Type Bengali Hindi Malayalam Marathi
M B F1 M B F1 M B F1 M B F1

Filler (3.1) 34.00 86.74 53.66 23.00 82.05 28.45 19.00 78.63 37.24 61.43 90.13 77.24
Word Repetition
(3.2)

78.57 98.12 90.53 66.00 96.39 79.67 82.00 98.40 92.91 82.86 97.61 92.50

Phrase Repetition
(3.2)

80.95 98.49 96.42 70.00 96.91 93.84 86.00 98.46 96.75 62.86 95.52 91.57

Pronoun Repeti-
tion (3.2)

73.17 97.27 86.04 74.00 95.32 84.75 86.00 98.10 92.31 74.29 97.58 88.61

PartialWord (3.3) 45.45 90.31 66.10 38.00 91.00 54.55 52.00 88.59 70.00 42.86 89.88 60.71
Missing Syllables
(3.3)

70.59 96.20 83.08 82.00 98.39 89.80 62.00 92.16 76.77 62.86 95.46 82.19

Pronoun Correc-
tion (3.3)

59.09 89.49 82.11 54.00 90.00 78.54 60.00 90.08 85.71 40.00 87.11 75.74

Synonym Correc-
tion (3.3)

29.41 86.76 48.98 18.00 77.66 54.13 18.00 73.17 45.84 14.29 67.18 41.38

False Start (3.4) 20.00 75.50 37.64 8.00 80.29 27.23 2.00 70.51 15.56 17.14 79.04 35.39
Fluent Sentences
with Reduplica-
tion

64.00 96.01 64.00 97.31 60.00 94.59 35.00 89.45

Normal Fluent
Sentences

90.00 98.46 98.00 99.89 96.00 99.35 94.00 99.45

Overall 57.60 92.52 73.14 50.96 90.87 63.82 53.22 88.39 67.12 56.19 91.31 70.22

Table 4: Performance on manually-edited synthetic Bengali, Hindi, Malayalam, and Marathi disfluency datasets.
We use MuRIL - En model for the evaluation. M: Exact Match Percentage, B: BLEU Score, F1: F1 Score. We
note here that the BLEU scores between the original disfluent text and the fluent reference text for Bengali, Hindi,
Malayalam and Marathi are 83.2, 83.4, 78.3, 81.1, respectively.

word varies depending on the position of the filler.
When hesitations like “अ”ं, “आं” are present at
the beginning of the sentence, our model always
detects them, but not necessarily when they are
present in the middle.
Our model performs the best on Hindi when it

comes to detecting missing syllables. F1 scores
when detecting repetitions and corrections are
comparable across languages. However, we see
a huge gap across languages in the case of false
starts. For false starts, the difference in perfor-
mance between the Bengali and Malayalam test
sets is 22.08 (in terms of F1 scores). This large dif-
ference in performance could be attributed to the
following reasons:
• The number of words present in false starts

follows different distributions for Bengali and
Malayalam. In Bengali, there are fewer occur-
rences of false starts containing many words,
while there are more long false start occurrences
in Malayalam.
• The model detects Bengali conjunctions like

“কারণ” (meaning “because”), “িকন্তু” (meaning
“but”), “আর” (meaning “and”) etc. as disfluencies
which are part of the false start.
• At times, the model detects part of the false

start as being part of some other disfluency type,
such as a repetition or a correction.

6.5 Ablation Study

Table 3 shows that combining synthetic Marathi
disfluent data with English disfluent data increases
F1 scores by 21 points on real Marathi disfluent
data compared to a model trained solely on English
data. Via an ablation study, we aim to check which
subset of disfluency types in the synthetic dataset
is most helpful. We consider seven combinations
of disfluency types (including MuRIL - En20 and
MuRIL - En & Syn Mr21) that we think are repre-
sentative. We generate the same amount of syn-
thetic data for all the combinations using the steps
discussed in Section 5.2.
We present the results in Table 5. It is encourag-

ing to see that all the models achieve a precision of
nearly 90 when trained on synthetic data whereas
Disf-onlyEng achieves a precision of only 57.78.
In comparison to Disf-onlyEng, Disf-1 (synthetic
data containing only fillers) has a lower F1 score,
which can be attributed to the very low recall value.
Disf-1234 improves F1 score by 8.40, which sug-
gests that repetitions help. It is interesting to see
that Disf-15678 improves F1 score by 20.09. This
implies that corrections by themselves are of sig-

20MuRIL - En and Disf-onlyEng are the same. This model
is only trained on English disfluent data

21MuRIL - En & Syn Mr and Disf-all are the same. This
model is trained on English data, and synthetic Marathi data
comprising all the disfluency types
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Model Name Precision Recall F1 score Exact Match % BLEU
Disf-onlyEng 57.78 54.93 56.32 26.40 83.8

Disf-1 90.97 30.75 45.96 23.60 79.9
Disf-1234 93.36 49.53 64.72 45.60 84.8
Disf-15678 89.06 66.90 76.41 56.80 89.4
Disf-137 89.78 47.42 62.06 38.80 83.6
Disf-1357 89.56 62.44 73.58 54.00 88.2
Disf-all 87.54 69.25 77.33 60.80 90.0

Table 5: Performance of models trained on English and additional synthetic Marathi disfluent data containing
a subset of disfluency types (except Disf-onlyEng which is trained only on English data). The numbers in the
model name indicate which disfluency types were present in the synthetic data during finetuning (e.g., Disf-137
was trained on synthetic Marathi disfluent data containing only filler, phrase repetition, and pronoun correction).
Mapping of number to disfluency types — 1: filler, 2:word repetition, 3: phrase repetition, 4: pronoun repetition,
5: partial word, 6:missing syllables, 7: pronoun correction, 8: synonym correction. We note here that MuRIL - En
is the same as Disf-onlyEng andMuRIL - En & Syn Mr is the same as Disf-all.

nificant help. We also observe that only phrase rep-
etition and pronoun correction do not help much as
Disf-137 achieves an F1 score of only 62.06. How-
ever, when we also add partial words, Disf-1357
overshoots Disf-137 by a margin of 11.52 F1.

6.6 English Disfluency Detection
In Table 6, we present the performance of our
multilingual model MuRIL on the test set of the
Switchboard corpus as a sanity check of our model.
We achieved an F1 score of 93.62 on the sequence
labeling task, whereas the state-of-the-art model
in Wang et al. (2021) reported an F1 score of
91.7. (We note that Wang et al. (2021) prepro-
cesses “uh”, “um”, “I mean”, etc. tokens differ-
ently; hence, our F1 scores are not directly compa-
rable.)

Precision Recall F1 Score Accuracy
95.22 92.08 93.62 98.00

Table 6: Performance on Switchboard disfluency detec-
tion test set.

7 Conclusion

We propose the use of a pretrained multilingual
model MuRIL for zero-shot disfluency detection
in Indian languages. We evaluate our model on
Bengali, English, Hindi, Malayalam, and Marathi
disfluency detection tasks. We also show that
synthetically generated Bengali/Hindi/Marathi dis-
fluency detection data using simple rules, when
combined with real English disfluency data dur-
ing finetuning, helps improve F1 scores on real
Bengali/Hindi/Marathi disfluencies. Our overall
results support the claim that it is possible to do
cross-lingual transfer of disfluency detection with-

out any labeled data in the target languages. For
future work, we intend to evaluate the model on
more diverse disfluencies.
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A Examples: Synthetic Disfluency
Generation Rules

Table 7 presents a brief overview and example of
each type of disfluencies covered in Section 3.

22Purple color denotes disfluencies

B Analysis: Inconsistency in Predicted
Tags of the Subwords of a Word

Since our model works at the subword level, it
could be possible that the subwords of a particu-
lar word get different tags (disfluent/fluent) as the
prediction. We call this inconsistency in tagging.
According to our findings, only 0.02 % of sub-

words in the Switchboard test set were marked in-
consistently. In our Bengali, Hindi, Malayalam,
and Marathi test sets, we found inconsistency in
just 0.21 %, 0.06 %, 0.38 %, and 0.03 % sub-
words. These findings indicate that our model is
quite likely to consistently predict the tags across
the subwords for any word.

C Qualitative Analysis

We analyze the performance of our base model
(trained only on English data) on relatively diffi-
cult disfluencies, namely, false starts and correc-
tions. We also analyse one example of a fluent sen-
tence and we present these examples of potential
interest in Table 8.

23Cyan color denotes that it is unclear whether the words
are intended in the sentence
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Type Description Example Transliteration Gloss Translation
Filler (3.1) Insert frequent

filler phrases in a
sentence

সমীক্ষায় েদখা যায়,
এই মােন22 তৃতীয়
এবং চতুথর্ েশৰ্ণী েথ-
েকই অিধকাংশ ছাতৰ্ী
সু্কলছুট হয়।

samIkShAYa� dekhA
YAYa�, ei mAne tRRi-
tIYa� evaM chaturtha
shreNI thekei ad-
hikAMsha ChAtrI
skulaChuTa haYa�

in_survey see
can this means
third and fourth
grade since
most girl_student
drop_out_of_school
is

According to the
survey, this means
most girl students
drop out of school
from third and
fourth grade.

Word Repetition
(3.2)

Repeat a word un-
necessarily

এখনও এখনও হয়েতা
অেনকেক বাইের েথ-
েক জল আনেত েযেত
হয়।

ekhanao ekhanao
haYa�to anekake
vAire theke jala
Anate Yete haYa

still still maybe
many outside from
water to_bring
to_go is

Manymay still still
have to fetch water
from outside.

Phrase Repetition
(3.2)

Repeat a phrase un-
necessarily

অথর্াৎ, হতাশার আব-
েহও বাঁচার আশা জা-
গােনার সামথর্য্ এই
সমােজর এই সমােজর
রেয়েছ।

arthAt, hatAshAra
Avaheo vA.NchAra
AshA jAgAnora
sAmarthYa ei samA-
jera ei samAjera
raYa�eChe

in_other_words,
despair
in_condition
to_live hope
to_awaken ability
this of_society
this of_society
there_are

In other words, this
society this society
has the ability to in-
spire hope to sur-
vive in the face of
despair.

Pronoun Repeti-
tion (3.2)

Repeat a pronoun
unnecessarily

আমরা আমরা েরায়া-
ন্ডাবাসীেক এেক্ষেতৰ্ না-
নাভােব সাহাযয্ করেত
পাির।

AmarA AmarA
roYa�An.DAvAsIke
ekShetre nAnAb-
hAve sAhAYYa
karate pAri

We we
to_Rwandans
in_this_case
many_ways help
to_do can

We we can help
Rwandans in many
ways.

Partial Word (3.3) Use part of word
before the actual
word

এর ফেল, নয়ডা অঞ্চ-
েল আগামী বছরগুিল-
েত জনসংখয্াও উেল্লখ
উেল্লখেযাগয্ভােব বৃিদ্ধ
পােব।

era phale, naYa�.DA
anchale AgAmI
vaCharagulite
janasaMkhYAo
ullekha ullekhaYo-
gYabhAve vRRiddhi
pAve

for_this
as_a_result Noida
in_region next
over_the_years
popula-
tion_too PAR-
TIAL_WORD
significantly in-
crease will_get

As a result, the
population of the
Noida region will
also increase signi
significantly in the
coming years.

Missing Syllables
(3.3)

Missed a few
syllables from the
middle of a word;
therefore, it is
followed by the
entire word.

আিটর্িফিশয়াল ইেন্টিল-
েন্সর ইেন্টিলেজেন্সর সূ-
তৰ্ ধেরই বহু সমসয্ারই
সমাধান আমরা করেত
পাির

ArTiphishiYa�Ala
inTelinsera in-
Telijensera sU-
tra dharei vahu
samasYArai samAd-
hAna AmarA karate
pAri

Artificial
of_intellince
of_intelligence
formula taking
many problems
solution we to_do
can

We can solve many
problems with
the help of Arti-
ficial Intellince
Intelligence.

Pronoun Correc-
tion (3.3)

Use an incorrect
pronoun, then
an optional edit
phrase, then the
proper pronoun.

কেচ্ছ এেদরেক না মা-
েন এেক ভুঙ্গা বেল।

kachChe ederake nA
mAne eke bhu NgA
vale

in_Kachchh
to_them no mean
to_this bhunga
called

They no I mean it
is called bhunga in
Kachchh.

Synonym Correc-
tion (3.3)

Use of imprecise
synonym before
the actual word

েকান্ পৰ্কল্প কেব
েশষ হেব, েসই সময়
িনেদর্িশত িনিদর্ষ্ট
কের_েদওয়া_হেয়েছ।

kon prakalpa kave
sheSha have, sei
samaYa� nird-
eshita nirdiShTa
kare_deoYa�A_haYa�eChe

which project
when complete
will_be, that time
directed specified
has_been_done

When the project
will be completed,
the time has been
directed specified.

False Start (3.4) Begin a sentence,
then abruptly end
it and begin a new
sentence.

ইিতমেধয্ই রােজয্ আজ
েদশ উন্নয়েনর নতুন
উচ্চতা অিতকৰ্ম কর-
েছ।

itimadhYei rAjYe
Aja desha unnaYa�n-
era natuna uchchatA
atikrama karaChe

already
in_the_state
today country
of_development
new height exceed
doing

Already in the state
Today, the country
is exceeding new
heights of develop-
ment.

Table 7: Different types of disfluencies in our synthetic dataset
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Disfluent Sentence Transliteration Gloss Translation Model Output Comment
েতােক এটা ভাবেল তুই এটা
ভাবিব েয চার বছর ধের অল্প
অল্প কের কাজ করব

BT: toke eTA bhAvale
tui eTA bhAvavi Ye
chAra vaChara dhare
alpa alpa kare kAja
karava

BG: to_you it if_think
you it should_think that
four year for little little
by work will_do

E: If you think about it
you would think that I
wouldwork little by little
for four years

তুই এটা ভাবিব েয চার বছর
ধের অল্প কের কাজ করব

Our model is able to detect the correction
but considers reduplication (“অল্প অল্প”) as
a disfluency. Thus the model removes one
“অল্প”.

তুই েযটা পড়িছস তুই েযটা
পড়িল েসিদেন েসটােক সুন্দর
কের েলখার েচষ্টা করিব

BT: tui YeTA parChisa
tui YeTA parli sedine
seTAke sundara kare
lekhAra cheShTA karavi

BG: you what read-
ing you what read
on_that_day that beau-
tiful by writing try
you_should

E: Try to write beauti-
fully what you are read-
ing you read on that day

তুই েযটা পড়িল েসিদেন েস-
টােক সুন্দর কের েলখার েচষ্টা
করিব

Our model is able to detect the correction.

তুিম িক তাহেল ওই কাজটা
েশষও হেয় েগল

BT: tumi ki tAhale oi kA-
jaTA sheShao haye gela

BG: you what then that
work end become gone

E: Are you then that
work is over

ওই কাজটা েশষও হেয় েগল The sentence starts with a thought (“তুিম
িক তাহেল” means “Are you then”) and sud-
denly a new chain of thought is initiated
(“ওই কাজটা েশষও হেয় েগল” means “that
work is over”). Our model is able to de-
tect the false start.

আসেল আিম না আিম এক-
দমই বুেঝ পািচ্ছ না কী করা
উিচত

BT: Asale Ami nA
Ami ekadamai vujhe
pAchChi nA kI karA
uchita

BG: Actually I no I abso-
lutely understand getting
no what do should

E: Actually I no I have
no idea what to do

আসেল আিম একদমই বুেঝ
পািচ্ছ না কী করা উিচত

The disfluent sentence contains pronoun
repetition along with an interregnum. Our
model is able to detect both.

मेरा नहीं मतलब हमारा
अतीत अदंरूनी_तौर_पर
हमेशा संयमपूवर्क बुना_गया
है

HT: merA nahIM mata-
laba hamArA atIta
aMdarUnI_taura_para
hameshA saMyama-
pUrvaka bunA_gayA
hai

HG: my no mean our
past internally always ab-
stemiously woven is

E: My no I mean our
past has always been
abstemiously woven in-
ward

हमारा अतीत अदंरूनी तौर
पर हमेशा संयमपूवर्क बुना
गया है

Our model detects the wrong pronoun
along with the edit term.

देशातील प्रत्येक शहरात प्र-
त्येक गावात ही स्वच्छता मो-
हीम सुरू आहे

MrT: deshAtIla pratyeka
shaharAta pratyeka gA-
vAta hI svachChatA mo-
hIma surU Ahe

MrG: of_the_country
each in_city each
in_village this cleanli-
ness campaign going_on
is

E: This cleaning cam-
paign is going on in ev-
ery city and every village
of the country

देशातील प्रत्येक गावात ही
स्वच्छता मोहीम सुरू आहे

We test our model on a fluent sentence.
The fluent sentence contains the phrase
“प्रत्येक शहरात प्रत्येक गावात” which has
two components: “प्रत्येक शहरात” means
“in each city” and “प्रत्येक गावात” means
“in each village”. Our model wrongly
assumes that the first component is cor-
rected by the second component and
hence themodel labels the first component
as a disfluency.

ওঁরা ছয় মাস ধের েকানও
েকাম্পািনেত23 অয্ােপল-এর
িসইও িটম কুক বেলেছন এই
িসদ্ধােন্তর পিরণাম সুদূরপৰ্সা-
রী হেব

BT: o.NrA Chaya mAsa
dhare kono kompAnite
aYApela-era siio Tima
kuka valeChena ei
siddhAntera pariNAma
sudUraprasArI have

BG: they six months
for any in_company
Apple’s CEO Tim Cook
said this of_decision con-
sequences far-reaching
will_be

E: They for six months at
a company Apple’s CEO
Tim Cook said the de-
cision would have far-
reaching consequences

ছয় মাস ধের েকােনা েকাম্পা-
িনেত অয্ােপল-এর িসইও িটম
কুক বেলেছন এই িসদ্ধােন্তর
পিরণাম সুদূরপৰ্সারী হেব

The disfluent sentence contains a false
start “ওঁরা ছয় মাস ধের েকােনা েকাম্পািন-
েত”, which makes it ambiguous to find
the intended meaning of the utterance.
There could be at least three interpreta-
tions, which makes the task challenging:

• “At a companyApple’s CEO Tim
Cook has said for six months
that the decision would have far-
reaching consequences”

• “At a companyApple’s CEO Tim
Cook said the decision would
have far-reaching consequences”

• “Apple’s CEO Tim Cook said
the decision would have far-
reaching consequences”

Our model picks up the first interpretation.

মােন পৰ্পারিল যিদ ইমপয্াক্টটা
আনেত হয় তাহেল এখন েথ-
েক যিদ ইমপয্াক্ট আনেত হয়
তাহেল আমােক িসিভল সািভর্-
েস েযেত হেব

BT: maane prapaarali
yadi imapyaak.ta.taa
aanate haya� taahale
ekhana theke yadi
imapyaak.ta aanate haya�
taahale aamaake sibhila
saarbhise yete have

BG: mean properly if
the_impact to_bring is
then now from if impact
to_bring is then me civil
to_service to_go will_be

E: I mean, if I have to get
the impact properly, if I
have to get impact from
now on, I have to go to
the civil service.

পৰ্পারিল এখন েথেক যিদ
ইমপয্াক্ট আনেত হয় তাহেল
আমােক িসিভল সািভর্েস েয-
েত হেব

The disfluent sentence has code-mixing.
English words “properly”, “impact”,
“civil”, “service” are present in the Ben-
gali sentence. This disfluent sentence
contains correction disfluency type. Our
model is able to detect all the disfluencies
correctly.

Table 8: Qualitative analysis of our model predictions. BT: Bengali Transliteration, BG: Bengali Gloss, HT: Hindi
Transliteration, HG: Hindi Gloss, MrT: Marathi Transliteration, MrG: Marathi Gloss, E: English Translation.
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Abstract

Word embeddings are critical for numerous
NLP tasks but their evaluation in actual under-
resourced settings needs further examination.
This paper presents a case study in Bribri, a
Chibchan language from Costa Rica. Four ex-
periments were adapted from English: Word
similarities, WordSim353 correlations, odd-
one-out tasks and analogies. Here we discuss
their adaptation to an under-resourced Indige-
nous language and we use them to measure se-
mantic and morphological learning. We trained
96 word2vec models with different hyperpa-
rameter combinations. The best models for
this under-resourced scenario were Skip-grams
with an intermediate size (100 dimensions) and
large window sizes (10). These had an aver-
age correlation of r=0.28 with WordSim353,
a 76% accuracy in semantic odd-one-out and
70% accuracy in structural/morphological odd-
one-out. The performance was lower for the
analogies: The best models could find the ap-
propriate semantic target amongst the first 25
results approximately 60% of the times, but
could only find the morphological/structural
target 11% of the times. Future research needs
to further explore the patterns of morphologi-
cal/structural learning, to examine the behavior
of deep learning embeddings, and to establish a
human baseline. This project seeks to improve
Bribri NLP and ultimately help in its mainte-
nance and revitalization.

1 Introduction

Word embeddings are dense vectors that describe
the semantics of words (Landauer et al., 1997).
They are calculated by collecting the words around
a specific word and using them to create a numer-
ical vector that can determine semantic similarity.
For example, the words spinach and kale share
neighboring words like garlic and cooked, which
would make them similar to each other and differ-
ent from words with other neighbors, such as ham-
mer. Embeddings can vary in size, or dimensional-

ity: Word embeddings from systems like Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) can range from size 10 to 300, while the em-
beddings from GPT-3 (Brown et al., 2020) can have
up to 12288 dimensions.

Embeddings are an integral part of a number of
NLP tasks. Because these vectors can be used to
calculate cosine distance, one could calculate the
distance between words like king and queen, and
examine if this is similar to the distance between
man and woman. Learning these patterns entails
that the system is learning the gender distinctions
in the words and that it is generalizing patterns
across words. This would make an embedding a
type of language model which could be enlisted to
solve tasks like finding the “odd” word in a triad of
words. For example, it could determine that tiger is
the odd word in the set {man, woman, tiger} given
its greater cosine distance from the other two. This
is known as the odd-one-out task. Embeddings can
also solve analogies by using vector algebra. The
embedding vectors can be used for the operation
king+woman-man, and the word closest to this re-
sult should be queen. These two tasks, odd-one-out
and analogies, are some of the main tasks used
to evaluate the training of embeddings (Schnabel
et al., 2015).

The evaluation of embeddings is relevant not
just for these specific semantic tasks, but because
contemporary deep learning systems like Trans-
formers (Vaswani et al., 2017), which use embed-
dings for their learning. Embeddings are used as
semantically rich input in the training of sequence-
to-sequence tasks such as question answering and
machine translation. Because embeddings are so
widely used it is necessary to understand their be-
havior in low-resource environments. This would
allow researchers to better describe the lexical
structures of Indigenous and other minority lan-
guages, and it would also help optimize the train-
ing of deep learning algorithms for these languages.
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Making NLP for Indigenous languages is a com-
plex task because of the chronic lack of data to train
models, so determining the optimal configurations
to train embeddings for them can help move these
efforts forward. There is relatively little research
in this regard (Adams et al., 2017; Stringham and
Izbicki, 2020), so this paper seeks to add a case
study for how to perform these evaluations in an
Indigenous language of the Americas.

2 Methodology

This paper will examine the evaluation of word em-
beddings in extremely under-resourced languages
by using a realistic example from an Indigenous
language in Central America. The Bribri lan-
guage (Glottolog brib1243) is spoken by ap-
proximately 7000 people in Southern Costa Rica
(INEC, 2011). It is a Chibchan language and it
is vulnerable (Sánchez Avendaño, 2013), which
means that some children no longer speak the lan-
guage. There are efforts to generate NLP tools
for Bribri to aid with language maintenance and
revitalization efforts, including the construction
of digital dictionaries and corpora (Krohn, 2020,
2021; Flores Solórzano, 2017), tools for phonetic
analysis (Coto-Solano and Flores-Solórzano, 2016,
2017), machine translation (Feldman and Coto-
Solano, 2020; Mager et al., 2021), speech recog-
nition (Coto-Solano, 2021), natural language un-
derstanding (Ebrahimi et al., 2021), parsing (Coto-
Solano et al., 2021) and morphological analysis
(Flores-Solórzano, 2019), as well as tools for the
input of the language into digital media (Flores-
Solórzano, 2010). The motivation for this paper
is to contribute information to analyze the training
process of deep learning tools for the language.

2.1 Data preparation
It is regularly the case that, when models are trained
in low-resource conditions, what is actually pre-
sented is a truncated version of a training set from
a high-resource language like English as an attempt
to simulate low-resource conditions. (Baevski et al.,
2020; Sennrich and Zhang, 2019). However this
is not realistic because actual under-resourced en-
vironments1 include obstacles in the creation of

1The standard terminology is to call these languages low-
resource. However, they are actually under-resourced, as are
their communities of speakers. The languages are as fully-
fledged as a high-resource language, and contain ample knowl-
edge about the world. They also tend to have speakers and
experts willing to compile data. What these languages usually
lack are economic resources for the datasets to be created.

the training datasets. Not only is data scarce, but
it might lack standardization, making the dataset
more sparse than it would be for languages with
standardized orthographies and numerous speak-
ers. Here we will review the challenges found in
creating a dataset to train embeddings for Bribri.

The data collected contains 90,128 words of
monolingual Bribri text. It contains 10,328 unique
words, 6,071 of which appear as hapax legomena.
It has 10,962 sentences, with an average length of
8.2 ± 7.6 tokens. It includes text from two text-
books (Constenla et al., 2004; Jara Murillo and Gar-
cía Segura, 2013), a dictionary (Margery, 2005), a
grammar book (Jara Murillo, 2018), several educa-
tional books (Sánchez Avendaño et al., 2021b,a),
an oral corpus (Flores Solórzano, 2017) and other
sources (Ebrahimi et al., 2021). There are numer-
ous challenges in preparing the data, given that the
writing has four main sources of variation: (i) Au-
thors use different orthographic conventions, (ii)
there are linguistic phenomena that cause variation,
(iii) there is dialectal variation, and (iv) there is
idiosyncratic variation across authors.

First, there are multiple orthographies in current
use. For example, the word ‘tiger’ can be writ-
ten in at least three different ways: namù, nãm`̃u
and nąmų̀. The vowels in this word are nasal, but
the nasal mark changes depending on the author.
This problem is compounded by the fact that differ-
ent authors might use different Unicode characters
for the diacritics. For example, the line under the
vowel can be variously represented as the com-
binatorial low line (U+0332), the combinatorial
minus sign below (U+0320) or the combinatorial
macron (U+0331). These variations were standard-
ized in the dataset so that the three orthographic
representations of ‘tiger’ could all contribute to the
embedding for the word.

Second, because the orthography is not standard-
ized, there is much phonological variation that finds
its way into the writing. For example, the word amì
‘mother’ can be pronounced as mì in rapid speech,
and it frequently appears this way in text. This
means that half of the information for the ‘mother’
embedding would be contained in the word amì
and half would be contained in mì, diluting the
embedding for both forms.

Third, there is considerable dialectal variation
in the dataset. This is present in every human lan-
guage, but it is magnified in this small dataset. For
example, the word ‘road’ is ñalà in the Amubri
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dialect and ñol`̃o in the Coroma dialect. The corpus
includes 41 occurrences of ñalà and 18 occurences
of ñol`̃o, a 69%-31% distribution. This means that
a significant portion of the information for ‘road’
will not be included in the embedding of either
alternative.

Finally, there are numerous idiosyncratic differ-
ences in spelling. Lack of standardization is no
obstacle for communication and should not slow
down the development of written materials, but it
does impact NLP. There are numerous words that
have different spellings in the same document. For
example, the corpus contains 5 spellings for taî
‘much’, and other documents include 9 additional
variants such as tái and táìn. This variation made
it so that some monolingual documents with major
internal variation could not be included.

In addition to these sources of variation, Bribri
has a different typology of English, which doesn’t
lend itself well to the word embedding architecture.
Bribri is morphologically fusional. Its words regu-
larly take suffixes, and as a result, each Bribri verb
can have 23 different conjugations and can also
appear with numerous clitics attached to it (Flo-
res Solórzano, 2017). This makes the data itself
more sparse than it would be for an English text
with the same word count.

2.2 Embedding Evaluation

Once the corpus is in a standardized form, the next
challenge is to adapt embedding evaluation tech-
niques to work on Bribri data. There are numerous
obstacles to this, including: (i) the paucity of data
in the monolingual corpus and (ii) the mismatches
between the English and Bribri vocabulary. This
subsection will propose four experiments to evalu-
ate Bribri embeddings taking these challenges into
account.

2.2.1 Technical Aspects of Training
In order to perform the experiment a total of 96
types of models were trained using the Word2Vec
algorithm (Mikolov et al., 2013) implemented in
Gensim (Rehurek and Sojka, 2011). This paper
performs a systematic examination of different hy-
perparameters. The models could vary in their type
of training (Skip-Gram and CBOW), the size of the
embedding (10, 25, 50, 100, 150, 200, 250, 300 di-
mensions), the window of words used to calculate
the embedding (2, 5, 10 words) and the minimum
frequency of the tokens considered when construct-
ing the embeddings (n=1 or n=2). Each model was

trained 60 times to account for potential variations
in the training phase. Therefore, the calculations
in the results section use a total of 5760 trained
models. The models were trained using a CPU-
based Google Colab environment, with a runtime
of approximately 8.5 hours.

Four evaluations were performed: (i) A basic
similarities test, (ii) a correlation between the Bribri
similarities and the similarities in the WordSim353
set (Finkelstein et al., 2001), (iii) a series of odd-
one-out tests with both semantically and struc-
turally “odd” words, and (iv) a series of semantic
and structural analogies.

2.2.2 Basic similarities
The first test served as a kind of sanity test in order
to verify that the system was producing meaningful
results. For each model, four similarities were cal-
culated: two semantic and two structural. For the
semantic case, the word aláköl ‘woman’ was com-
pared to the hypothetically similar word w`̈em ‘man’
and the hypothetically less similar word namù ‘fe-
line, tiger’. The woman-man pair should be more
similar than the woman-tiger pair.

For the structural case, two pairs of verbs were
selected. The system compared the perfective ac-
tive form of the verb (e.g. yö’ ‘made’, ña’ ‘ate
soft food’) with the perfective middle voice form
of the same verb (e.g. y`̈one ‘was made’, ñàne ‘was
eaten’).

The similarities were calculated for each of the
96 model types, and then the average and standard
deviation for each of the four pairs was calculated.

2.2.3 WordSim353 Correlations
The second experiment explores the similarities in
the Bribri set and examines if they have the same
patterns as other well understood datasets. This
experiment will use the word pairs in the Word-
Sim353 dataset (Finkelstein et al., 2001), a set
that contains 353 pairs of English words and a
measure of their similarity. The experiment cal-
culates the correlation between the WordSim353
pair (e.g. tiger-cat, similarity=7.35) and its corre-
sponding Bribri translation (e.g. namù-pûs, simi-
larity=0.87)2.

Converting the WordSim353 dataset to be usable
in Bribri involved several challenges. First, many

2The similarities in WordSimPair353 go from 0 to 10,
while the similarities in the Gensim Bribri data go from 0 to 1.
A WordSimPair353 score of 5 would be roughly equivalent to
a Gensim score of 0.5.
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of the pairs had words that were not a part of Bribri
culture and did not appear in the corpus (e.g. Har-
vard-Yale). Second, many of the words did not have
translations into Bribri (e.g. vodka-gin). There are
some words from foreign languages that have in-
deed been borrowed into Bribri (e.g. banco ‘bank’),
but this particular word appeared only once in the
corpus so it couldn’t be used for the experiment. In
the end only 19 pairs could be translated; these are
included in Appendix A. We calculated the Pearson
correlation between the 19 English-Bribri pairs for
the 96 model types. This was done 60 times for
each model type, and then the correlations from the
60 runs were averaged for each model type.

2.2.4 Odd-One-Out Testing
The third experiment implements two types of odd-
one-out testing: semantic and structural. First,
20 triads were constructed where the odd word
would be different from the other two because
of its semantic properties (e.g. {aláköl, w`̈em,
NAMÙ} ‘woman, man, TIGER’). Second, 20 tri-
ads of structurally related words were constructed,
where the odd word was different because it had
a different part of speech, had a different ver-
bal conjugation, or belonged to a different word
paradigm. One example of different verbal forms
is the triad {yö’, ña’, KÙNE} ‘made, ate, WAS

FOUND’, where the third verb is in the middle
voice. One example of words that belong to differ-
ent paradigms is {e’töm, b`̈otöm, MAÑÁL} ‘one.flat,
two.flat, THREE.HUMAN’. The first two words are
counters for nouns in the flat word class, whereas
the third word is a counter for human nouns, and
therefore should be more salient. All the semantic
and structural triads can be found in Appendix A.

The percentage of correct responses for the odd-
one-out task was recorded for each of the 60 runs
of each of the 96 model types, and the average
for each of the model types was calculated. Two
separate averages were considered: Semantic and
structural averages.

2.2.5 Analogies
The final experiment is the evaluation of analogies.
The first step was to use the BATS dataset (Glad-
kova et al., 2016) to examine which analogies in
English could be translated into Bribri. Some of
the semantic relationships could be translated. For
example, the words for man:woman :: boy:GIRL

were present in the corpus. There were numer-
ous pairs that couldn’t be used because Bribri ex-

presses different English concepts with the same
word (e.g. ‘sir/madam’ = ak`̈ekë), or because the
English words are underspecified for their transla-
tion. For example, Bribri has words for maternal
and paternal uncles, but it doesn’t have a single
word for ‘uncle’. Similarly, there were many En-
glish language pairs that were not present in the
corpus, such as euler/mathematician. A total of
20 analogies (40 pairs) were constructed based on
the model from BATS; they can be found in Ap-
pendix A. These quartets include 4 hypernymic
relationships (e.g. ‘quetzal:bird :: corn:PLANT’),
3 “place to live” relationships (e.g. ‘fish:water
:: man:HOUSE’), 4 antonym relationships (e.g.
‘small:big :: white:BLACK’), 3 object/action
analogies (e.g. ‘ball:play :: book:READ’), one
holonymic set (‘beam:house :: eye:HEAD’) and
5 family relationships. The family relationships are
particularly important because they had to be ad-
justed to the Iroquois family system used in Bribri
(Constenla et al., 2004). The language has differ-
ent words for maternal and paternal relatives, but
also for different relationships with siblings (e.g.
´̈el ‘sibling of the same sex; cousin from the same
sex as the parent’, kutà ‘sister of man’, ak`̈e ‘brother
of a woman’). Therefore, it would be important to
calculate if the models can learn these culturally
relevant relationships.

Finding morphological/structural pairs was more
complex because of the differences between En-
glish and Bribri. The two languages share some
morphological phenomena such a plurals (e.g.
‘child:children :: he.she:THEY’), but the rest of the
pairs had to be constructed using the morphology
of the language. Some analogies paired a noun with
its numeral class (e.g. aláköl:w`̈em :: chìchi:E’TÖM

‘woman:one.human :: dog:ONE.FLAT’), while oth-
ers used verbal conjugations (e.g. kat`̈ok:katèke ::
yaw`̈ok:YÈKE ‘toEat:eating :: toMake:MAKING’).
This method of using grammatical phenomena un-
available in English has been used in other adapta-
tions of BATS (Kang and Yang, 2018).

A total of 20 semantic and 20 structural analo-
gies were constructed; the complete list is in Ap-
pendix A. These analogies were tested on 60 trial
runs for each of the 96 model types. Three results
were calculated: (i) The percentage of times that
the expected result was the first result of the anal-
ogy, (ii) the percentage of times that the expected
result was within the first 10 results of the analogy,
and (iii) the percentage of times that the expected
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Pair Translation Similarity
aláköl - w`̈em woman - man 0.92 ± 0.04
aláköl - namù woman - tiger 0.77 ± 0.10
yö’ - y`̈one made - was made 0.93 ± 0.07
ña’ - ñàne ate - was eaten 0.95 ± 0.03

Table 1: Semantic and structural similarities across all
trained models

result was within the first 25 results of the analogy.
These numbers were averaged for each model type.

3 Results

3.1 Basic Similarities
The first set of results confirms that the model con-
tains some knowledge of the Bribri grammar and
lexicon. Table 1 shows the similarity between
two semantically related pairs (‘woman - man’,
‘woman - tiger’) and two structural pairs (‘made -
was made’, ‘ate - was eaten’), averaged over the
60 runs and the 96 models. These initial results
show that the word for ‘woman’ is more similar to
‘man’ (similarity = 0.92) than it is to ‘tiger’ (0.77).
The structural pair shows that the system might be
learning the morphological relationships between
verbal tokens. Here the middle voice verbs show
similar distances to their corresponding perfec-
tive active voice verbs (similarity‘made−wasMade′ =
0.93, similarity‘ate−wasEaten′ = 0.95).

3.2 WordSim353 Correlations
After having performed a basic check for learning,
the next step is to confirm this with more similari-
ties and check that those resemble the similarities
in equivalent English models. Figure 1 shows the
average correlation between the Bribri pairs and
the WordSim353 pairs for each of the 96 model
types. Table 2 shows the average correlation for
the top performing model types.

The first visible pattern is that Skip-grams have
higher performance than CBOW models. The aver-
age correlation for CBOW is r=-0.04±0.09, lower
than the r=0.17±0.09 obtained for Skip-grams.
The best performing models had correlations rang-
ing between r=0.28 and r=0.33 and all of them were
trained as Skip-grams3. The second pattern is that

3Table 5 shows the 19 pairs that were considered in the
correlations. One of them is the trivial case ‘tiger-tiger’. This
was included because it also appears in WordSim353. If this
trivial pair is removed the correlations drop by about half. For
example, the model with an average of r=0.33 becomes r=0.17.
The better-performing models still have higher correlations.

Type Size Window MinFreq r
SG 25 10 2 0.33
SG 50 10 2 0.31
SG 25 10 1 0.30
SG 50 10 1 0.30
SG 100 10 2 0.28
SG 100 10 1 0.28

Table 2: Average Pearson correlation (r) between Bribri
and WordSim353 similarities for top performing mod-
els (SG: Skip-gram, MinFreq: Minimum frequency of
words included in the model)

the best results were obtained with the largest pos-
sible window. It might be the case that the corpus is
so small that it needs a large window to be able to
learn the relationships between words. A third ob-
servable pattern is that small to medium embedding
sizes have better performance. The best results oc-
cur with embeddings that range between 25 and
100 dimensions; smaller and larger embeddings
have relatively lower performance. Finally, for this
particular test the minimum frequency of the words
does not appear to affect the performance of the
models: Models have relatively higher correlations
regardless of whether the minimum word frequency
is one or two. In general, this experiment shows
that the models are learning some Bribri seman-
tics. As an example, figure 2 shows the correlation
for one of the top performing models: Skip-gram,
100 dimensions, window=10, minimum word fre-
quency=1. As can be seen in the figure, words with
higher similarities in English also have relatively
higher similarities in Bribri.

3.3 Odd-One-Out

In this next step, the performance of the system
will be examined for both semantics and structural
relationships by calculating the performance of the
odd-one-out task. Figure 3 shows the percentage of
correct responses for semantic and structural triads
for the 96 model types studied. Table 3 shows the
average percentages for the top performing models.

The main pattern in the odd-one-out experiment
is that the semantic and structural triads had similar
performance. For example, the highest performing
model has an average of 76% of correct responses
for semantics, and a slightly lower 70% for struc-
ture. This is an encouraging result, as it seems that
the system is learning not just the meaning of Bribri
words, but also some concepts about the grammar
of the Bribri language.
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Figure 1: Pearson correlation between WordSim353 similarities and Bribri similarities
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Figure 2: Correlation between WordSim353 similarities
and Bribri similarities for a high performing model

Some of the patterns observed in the similari-
ties experiment were also visible here. Skip-grams
with a large window of 10 words were the best
performing models. In the odd-one-out experiment
the dimensionality doesn’t seem to determine the
performance. On the other hand, it does seem that
models that take all the words into account have bet-
ter performance; almost all high performing mod-
els take all the words in the corpus into account
(minimum word frequency = 1). Notably, the high-
est performing model {Skip-gram, 100 dimensions,
window=10, minFreq=1} is also amongst the high-
performing models for similarities in table 2.

3.4 Analogies

The final experiment takes 20 semantic and 20
structural word quartets (e.g. w´̈em:aláköl ::
kab`̈e:BÙSI ‘man:woman :: boy:GIRL’) and tries
to calculate the fourth word by performing vector

Type Size Window MinFreq Sem Str
SG 100 10 1 76 70
SG 200 10 1 75 71
SG 50 10 1 75 68
SG 25 10 2 75 68
SG 300 10 1 75 72
SG 150 10 1 74 71

Table 3: Average of correct responses to the Odd-One-
Out task for semantic and structural triads (SG: Skip-
gram; Sem: % Correct Semantic; Str: % Correct Struc-
tural)

algebra with the first three, in effect performing an
analogy. Figure 4 shows the average results for the
96 model types trained. The results indicate how
often the target word was found as the first result
of the vector algebra operation. They also indicate
how often the word was found in the top 10 results
and in the top 25 results.

Skip-grams performed best, but even in the best
models the results for the structural analogies were
very low. For semantic analogies in Skip-gram
models the target word appeared 14%±6% of the
time as the first result, 40%±9% of the time in
the top 10 results, and 53%±8% of the time in the
top 25 results. Structural analogies for Skip-grams
had a much lower performance: The target word
appeared only 0.3%±1% of the time as the top
result, 4%±4% in the top 10 results, and 7%±5%
of the time in the top 25 results. This indicates that
there are limits to how much grammatical structure
these systems are learning from such a small corpus.
Table 4 confirms this pattern. It shows the results
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Figure 3: Percentage of correct answers to the Odd-One-Out task for semantic and structural triads
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Type Size Window MinFreq Sem Str
SG 100 5 1 63 9
SG 25 5 1 62 12
SG 50 5 1 60 12
SG 100 10 1 57 11
SG 150 5 2 56 11
SG 100 5 2 55 9

Table 4: Percent of analogies that contained the target
word in the first 25 results; top-performing models (SG:
Skip-gram; Sem: Semantic; Str: Structural)

for whether the target word was contained in the
first 25 words. In semantic analogies the target
word appears in the top 25 results between 55%
and 63% of the time, but in the structural analogies
the target never appears more than 12% of the time.

All of the best results were again Skip-grams.
Like in the correlation experiment, medium dimen-
sionality (i.e. around 100 dimensions) seems to be
optimal for the analogies. Better-performing win-
dows tend to be shorter than for the odd-one-out
task (with more results of window=5), and most
high-performing models include all the words in
the corpus (mininum frequency=1). Table 4 also
contains the model {Skip-gram, 100 dimensions,
window=10, minFreq=1}. This model is the only
one that appears amongst the top performing mod-
els for all of the tests, so it could be considered as
the best amongst the examined models. It appears
to have an adequate balance for learning all of the
tasks presented in this section.

4 Discussion

The results indicate that there are certain combina-
tions of hyperparameters that could provide better
performance for extremely under-resourced lan-
guages. Embeddings with larger windows and low
to mid-sized dimensionality (size=100) appear to
learn better. Word2Vec also appears to need every
word it can get, and its best performance comes
when all words in the corpus are included in the
training. Skip-grams might be a better alternative
for this task because they avoid overfitting for very
frequent words, thereby absorbing more of the in-
formation from the relatively sparse dataset at hand
(Shobana and Murali, 2021). CBOW has been
reported to be better at learning morphological rela-
tions, but this was not the case in the Bribri dataset,
where the CBOW showed very low rates of struc-
tural learning.

Indeed, an open question in this paper is the
extent to which the model is learning Bribri gram-
mar. The results from the basic similarities and the
odd-one-out experiments seem to indicate that the
model learned grammar at roughly the same rate
as it did lexical relationships. However, this is con-
tradicted by the analogies experiment, where there
was almost no evidence of structural knowledge
in the language model. It might be the case that
large windows are interfering with local structural
learning (e.g. learning which counter words go
with which nouns) in favor of semantic knowledge
(Levy and Goldberg, 2014), and that the good per-
formance in the odd-one-out structural tests might
actually have to do with the semantics of the cho-
sen pairs. More research and a larger test set is
necessary to fully understand this effect.

Importantly, the corpus provided here appears to
be enough for the system to learn general seman-
tic patterns. Future experiments need to expand
on this by providing more pairs, including pairs
with more culturally specific words. Another fu-
ture experiment will be to use the data to train other
embeddings such as GloVe, fasttext (Bojanowski
et al., 2017), BERT-type dynamic embeddings and
multilingual embeddings. In the case of BERT,
we need to study the effect of their high dimen-
sionality on low-resource semantic learning. The
preliminary hypothesis would be that this increase
in dimensionality would have a negative impact in
semantic learning. This needs to be verified be-
cause those larger embeddings are necessary for
numerous deep learning techniques.

One important addition to this experiment would
be a human baseline. One of the obstacles in work-
ing with Indigenous languages is that there are few
people who read and write these languages. More-
over, there are few speakers of Bribri that are famil-
iar with tasks like analogies, which are an unusual
type of exercise mostly reserved for academic con-
texts. Therefore, carrying out such an experiment
is relatively complex. This is the next step in this
project, a necessary one so that the Skip-gram’s
performance can be placed in context.

The main ethical concern in the project has to do
with data sovereignty. The results will be used to
train deep learning systems in collaboration with
Bribri partners, but there is currently no overar-
ching community organization which controls the
access to Bribri data. This paper has restricted it-
self to data that is publicly available or licensed
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through Creative Commons, so no private or new
data was included. However, an effort needs to be
made so that the results of this project benefit the
Bribri partners in particular and the Bribri commu-
nity in general, by using them to produce useful
NLP tools.

5 Conclusions

This paper presents an evaluation of a word em-
bedding in a truly under-resourced environment.
It presents a methodology for embedding evalua-
tion that could be adapted to other Indigenous lan-
guages. It provides evidence that some embedding
configurations have better performance when deal-
ing with under-resourced scenarios (i.e. Skip-gram
trained embeddings, with around 100-dimensions,
where the skip-gram attempts to predict words in a
window of size 10 and use every word in the cor-
pus to calculate their predictions). The results also
confirm the intuition that semantics might be easier
to learn than morphology, particularly in morpho-
logically complex languages with little (and sparse)
data. Finally, the results here will be used to con-
tinue NLP work in the Bribri language with the
objective of training deep learning models and un-
derstanding their performance and errors, with the
ultimate goal of using these to contribute to efforts
of language revitalization.
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Bribri Translation Equivalent English English Similarity
01. namù - pûs big feline - cat tiger - cat 7.35
02. namù - namù big feline - big feline tiger - tiger 10
03. ya’ - kuku`̈o drank - ear drink - ear 1.31
04. ya’ - k`̈o drank - mouth drink - mouth 5.96
05. ya’ - ña’ drank - ate soft things drink - eat 6.87
06. aláala - amì baby - mother baby - mother 7.85
07. ya’ - amì drank - mother drink - mother 2.65
08. chak`̈o - kàlwö food - fruit food - fruit 7.52
09. dù - dakarò bird - chicken bird - cock 7.1
10. chak`̈o - dakarò food - chicken food - rooster 4.42
11. day`̈e - kañík sea - jungle coast - forest 3.15
12. namù - íyiwak big feline - animal tiger - animal 7
13. ajku`̈o - w`̈obala skin - eye skin - eye 6.22
14. dalì - inúköl merchandise - money grocery - money 5.94
15. ñalà - ala’r road - children street - children 4.94
16. skél - si’ five.flat - month five - month 3.38
17. ñíwe - shkèna during the day - to dawn day - dawn 7.53
18. w´̈em - aláköl man - woman man - woman 8.3
19. ñalà - ká road - time, space, place street - place 6.44

Table 5: WordSim353 Correlations and translated Bribri pairs. WordSim353 English similarities go from 0 to 10. A
Bribri/Gensim score of 0.5 is roughly equivalent to a WordSim353 score of 5.

Bribri Translation
01. aláköl - w´̈em - NAMÙ woman - man - TIGER

02. y´̈e - amì - Ù father - mother - POT

03. amíla - amì - ALÀ maternal aunt - mother - CHILD

04. wìm - sàl - DÙ howler monkey - spider monkey - BIRD

05. chamù - iku`̈o - DAKARÒ banana - corn - CHICKEN

06. íyiwak - kàlwak - KUÁ animal - bug - PLANT

07. sku`̈e - kano’ - KAL´̈oM mouse - lowland paca - PLANTAIN

08. tkab`̈e - só - DIKÓ snake - cockroach - PEJIBAYE DATE

09. átu - ali’ - TABÈ beans - yucca - KNIFE

10. dalôlô - sarûrû - BITSÎ black - white - LONG

11. tsuru’ - balo’ - ÀRROS cocoa - chicha drink - RICE

12. chk´̈ok - kat´̈ok - Y´̈oK to eat - to eat hard foods - TO DRINK

13. kat´̈ok - ñúk - CHK´̈oK to eat hard food - to eat soft food - TO EAT (GENERIC)
14. ulà - kal`̈o - Ù hand - foot - HOUSE

15. kàsir - k`̈ochi - NIMÀ peccary - pig - FISH

16. w`̈obla - yík - KAL`̈o eye - nose - FOOT

17. datsi’ - apàio - SI’ clothes - shirt - MOON

18. chkì - îñe - DI’ yesterday - today - RIVER, WATER

19. dë’ - mík - YÖ’ arrived - went - TO MAKE

20. Amùbali - Kua’rö - TALÌRI Town of Amubri - Town of Buenos Aires - SALITRE RIVER

Table 6: Semantic groups of Odd-One-Out Triads. Words in small caps are the “odd” word.
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Bribri Translation
01. kàl - íyök - SHK´̈oK tree - soil - TO GO

02. kuá- íyiwak - SÈRKE plant - animal - (SOMEONE) LIVES

03. ta - tö - DI’ with - ergative marker - WATER, RIVER

04. ska - ki - AK´̈eKËPA towards - at - OLD PERSON

05. ye’ - be’ - DÙ I - you - BIRD

06. sa’ - se’ - ÑALÀ we (exclusive) - we (inclusive) - ROAD

07. tsîr - tsikirîrî - CHKÌ small - yellow - YESTERDAY

08. bˆ̈erie - buáala - MÌK big - beautiful - WHEN

09. yö’ - ña’ - KÙNE made - ate - WAS FOUND (middle voice)
10. kít - ya’ - SÙNE wrote - drank - WAS SEEN (middle voice)
11. y´̈ok - inúk - YA’ to drink - to play - DRANK (perfective)
12. shk´̈ok - sauk - DË’ to walk - to see - WENT (perfective)
13. ché - yawé - SÚ saying - drinking - SAW (perfective)
14. mi’ke - yawèke - DË’ going - drinking - WENT (perfective)
15. tkër - tulur - DUR sitting - sitting.plural - STANDING

16. a’r - tkë’nik - TÉN hanging - hanging.plural - STICKING IN

17. awí - awì - E’ there (near) - there (far) - THIS ONE

18. di´̈o - dià - NE’ there (below, near) - there (below, far) - THIS ONE (ONLY HEARD)
19. e’töm - b`̈otöm - MAÑÁL one.long - two.long - THREE.HUMAN

20. e’köl - b´̈ol - MAÑÀTÖM one.human - two.human - THREE.LONG

Table 7: Structural groups of Odd-One-Out Triads. Words in small caps are the “odd” word.

Bribri Translation Type
01. w´̈em:aláköl :: y´̈e:AMÌ man : woman :: father : MOTHER Family relation
02. kab`̈e:bùsi :: w´̈em:ALÁKÖL boy : girl :: man : WOMAN Family relation
03. amíla:naù :: aláköl:W´̈eM maternal aunt : maternal uncle :: woman:MAN Family relation
04. ak`̈e:kutà :: w´̈em:ALÁKÖL brother of woman : sister of man :: man:WOMAN Family relation

05. talà:y´̈e :: wìke:AMÌ
paternal grandfather : father ::
maternal grandmother : MOTHER

Family relation

06. balo’:yàne :: ali’:ÑÀNE chicha drink : was drunk :: yucca : WAS EATEN Object/Action
07. w´̈em:dur :: dù:TKËR man : stands :: bird : RESTS ON A SURFACE Object/Action
08. bola:inùk :: uy`̈ejkuö:ÀRITSÖK ball : to play :: book : TO READ Object/Action
09. nimà:di’ :: w´̈em:Ù fish : water :: man : HOUSE Place to live
10. nimà:di’ :: buà:ÚK fish : water :: iguana : BURROW Place to live
11. aláköl:ù :: dù:KÀL woman : house :: bird : TREE Place to live
12. pulí:kàl :: pú:DÙ ceiba tree : tree :: eagle : BIRD Hypernym
13. kabék:dù :: iku`̈o:KUÁ quetzal bird : bird :: corn : PLANT Hypernym
14. ka`̈e:dù :: átu:KUÁ pava negra bird : bird :: beans : PLANT Hypernym
15. dakarò:dù :: chìchi:ÍYIWAK chicken : bird :: dog : ANIMAL Hypernym
16. s´̈e:ù :: w`̈obla:W´̈oKIR beam : house :: eyes : FACE Holonym
17. tóttô:darˆ̈erˆ̈e :: bua’:SULÛ easy : hard :: good : BAD Antonym
18. kéwe:uk`̈oki :: wéshke:ÛRIKI before : after :: inside : OUTSIDE Antonym
19. kájke:dikì :: w´̈onik:TSÌ above : below :: in front : BEHIND Antonym
20. tsîr:bˆ̈erie :: sarûrû:DALÔLÔ small : big :: white : BLACK Antonym

Table 8: Quartets for the semantic analogies. Words in small caps are the target words.
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Bribri Translation
01. aláköl:e’köl :: chìchi:E’TÖM woman : one.human :: dog : ONE.LONG

02. chamù:e’töm :: dawás:E’K banana : one.long :: year : ONE.ROUND

03. dur:ië’ten :: tkër:TULUR stand.sg : stand.pl :: sit.sg : SIT:PL

04. a’r:tkë’nik :: tén:TULUR hanging.sg : hanging.pl :: stuck.sg : STUCK:PL

05. alà:ala’r :: ie’:IE’PA child : children :: 3sg : THEY

06. awá:awápa :: y´̈eria:Y´̈eRIAPA healer : healers :: hunter : HUNTERS

07. tsîr:tsítsi :: buáala:buàmbuáala small.sg : small.pl :: beautiful.sg : BEAUTIFUL.PL

08. bˆ̈erie:wîwî :: wáwán:WÂNWÂN big.sg : big.pl :: few.sg : FEW.PL

09. e’köl:e’töm :: b´̈ol:B`̈oTÖM one.human : one.flat :: two.human : TWO.FLAT

10. e’k:e’tökicha :: b`̈ok:B`̈oTÖKICHA one.round : one.time :: two.round : TWO.TIMES

11. ma’tk:máshmash :: siê:SIÉLSIEL red : reddish :: blue : BLUEISH

12. dalôlô:dalóshdalosh :: sarûrû:SARÚLSARUL black : blackish :: white : WHITEISH

13. yö’:y`̈one :: sú:SÙNE made : was made :: saw : WAS SEEN

14. shka’:shkàne :: stsë’:STS`̈eNE walk : [someone] walked [there] :: heard : WAS HEARD

15. awí:awì :: aí:AÌ
that (near) : that (far) ::
that (above, near) : THAT (ABOVE, FAR)

16. awì:aì :: awí:AÍ
that (far) : that (above, far) ::
that (near) : THAT (ABOVE, NEAR)

17. awí:awì :: di´̈o:DIÀ
that (near) : that (far) ::
that (below, near) : THAT (BELOW, FAR)

18. sú:saú :: yö’:YAW´̈o saw : see! :: made : MAKE!
19. të’:tèke :: yö’:YAWÈKE hit : hitting :: made : MAKING

20. kat`̈ok:katèke :: yaw`̈ok:YÈKE
to eat (hard things) : eating (hard things) ::
to make : MAKING

Table 9: Quartets for the structural analogies. Words in small caps are the target words.
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Abstract
Current practices in building new NLP mod-
els for low-resourced languages rely either on
Machine Translation of training sets from bet-
ter resourced languages or on cross-lingual
transfer from them. Still we can see a con-
siderable performance gap between the mod-
els originally trained within better resourced
languages and the models transferred from
them. In this study we test the possibility
of (1) using natural annotation to build syn-
thetic training sets from resources not initially
designed for the target downstream task and
(2) employing curriculum learning methods to
select the most suitable examples from syn-
thetic training sets. We test this hypothesis
across seven Slavic languages and across three
curriculum learning strategies on Named En-
tity Recognition as the downstream task. We
also test the possibility of fine-tuning the syn-
thetic resources to reflect linguistic proper-
ties, such as the grammatical case and gender,
both of which are important for the Slavic
languages. We demonstrate the possibility
to achieve the mean F1 score of 0.78 across
the three basic entities types for Belarus-
ian starting from zero resources in compar-
ison to the baseline of 0.63 using the zero-
shot transfer from English. For comparison,
the English model trained on the original set
achieves the mean F1-score of 0.75. The
experimental results are available from ht-
tps://github.com/ValeraLobov/SlavNER

1 Introduction

The use of pre-trained language models (PLMs),
such as BERT (Devlin et al., 2018), has signi-
ficantly improved accuracy of many NLP tasks,
such as POS tagging and Named Entity Recog-
nition (Tenney et al., 2019). It is also possible
to achieve good quality transfer of the classifi-
ers across the languages using multilingual PLMs
(Conneau et al., 2020; Hu et al., 2020). How-
ever, lesser resourced languages still present a con-
siderable problem. First, the amount of raw text

data available for their pretraining is on the order
of magnitudes smaller than what is available for
bigger languages, such as English. Second, zero-
or few-shot multilingual transfer comes with the
price of a performance gap, when a model tested
on lesser resourced recipient languages is less ac-
curate than the original donor language model.
This comes partly because of the linguistic differ-
ences between the donor and recipient languages
and partly because of the lower quality of pre-
trained embeddings obtained on smaller corpora
for lesser resourced recipient languages (Vulić
et al., 2020).

We propose a method to improve the accuracy
of models for lesser resourced languages by what
we call “natural" annotation, i.e., when some de-
sired linguistic properties are derived from annota-
tions arising as a by-product of a natural activ-
ity which is not directly related to the task of the
model. Parallel corpora provide an example of
natural annotation arising from human translations
which are not produced by the their translators
for the purpose of Machine Translation or Word
Sense Disambiguation. Similarly, in our study we
use natural annotation from Wikipedia categories,
which provide a sufficient number of Named En-
tity (NE) examples even for lesser resourced lan-
guages. This allows production of synthetic cor-
pora for such languages as Belarusian, which has
no native NER resources. As an example, the Be-
larusian Wikipedia contains more than 130 thou-
sand entries with more than four thousand entries
about people (as of April 2022), sufficient for cre-
ating synthetic training sets.

Instead of the initial problem with the availab-
ility of training data, the use of synthetic corpora
leads to the problem with having potentially mil-
lions of noisy annotated sentences per language.
Therefore, we need to estimate their usefulness for
training a model in the recipient languages. In this
study we experiment with applying Curriculum
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Learning methods (Bengio et al., 2009; Zhu et al.,
2021) to synthetic corpora with natural annotation.

The contributions of this study are as follows:

• how to build a corpus with natural annotation
from the available resources in Wikipedias;

• how to improve it by adjusting its linguistic
properties;

• how to choose the curriculum learning
strategy for corpora of this kind.

2 Methodology

2.1 Synthetic dataset
In this study we concentrate on building synthetic
corpora for seven Slavic languages with three NE
categories – PERsons, LOCations and ORGaniza-
tions. The main idea behind our experiment is:

1. to select annotated sentences in a better re-
sourced donor language (we use the English
WikiNER (Pan et al., 2017) for all experi-
ments),

2. to produce synthetic corpora by Machine
Translation of relevant annotated sentences
in the recipient languages (we use Google
Translate), and

3. to replace their annotations with the relev-
ant Wikipedia entries from the recipient lan-
guages.

At the same time, Machine Translation is espe-
cially unreliable for NEs. For example, Google
Translate renders Chain was declared the winner
as a result into Slovene as Veriga je bil zaradi
tega razglašen za zmagovalca with a literal trans-
lation of Chain as ‘a series of connected links or
things’.

Therefore, in Step 1 we select annotated
WikiNER sentences with a single known NE (PER
in this sentence), replace it with a pronoun place-
holder into He succeeded in purifying penicillin
and replace the placeholder to a range of known
NEs from Wikipedia, for example, for this con-
text Einstein/Romanova/Arhit je bil zaradi tega
razglašen za zmagovalca, see Table 2. This way,
each sentence in our synthetic datasets contains at
least one NE (and no more than two of them for
PER). This makes it quite different from natural
datasets: the entity distribution is much more uni-
form in synthetic data.

The known NEs are determined as those with
matching categories in the respective Wikipedias,

see Table 1. For example, the English PER NEs
are from categories like 1791 BIRTHS → James
Buchanan→Джэймс Б’юкенен (in Belarusian).

We produced three versions of the synthetic
datasets:

S1 Replacements of the parallel set of named en-
tities;

S2 Replacements of the parallel set of named en-
tities, while taking into account the grammat-
ical case, number and gender;

S3 Replacements of a maximum available num-
ber of entities from the respective categories

For S1 and S2 we ensured that the NEs are avail-
able in all languages, so that the synthetic datasets
can be completely parallel. We also used rules
to normalize the names of the entries, e.g., Ло-
моносов, Михаил Васильевич (‘Lomonosov,
Mikhail Vasilyevich’ in Russian) was normalized
to Михаил Ломоносов ‘Mikhail Lomonosov’,
which is the form used in texts.

S1 does not take into account the grammat-
ical properties, such as the case, gender and num-
ber. Besides, it contains quite a lot of duples or
quasi-duples (e.g., ‘A.Lukashenko’ and ‘Alexan-
der Lukashenko’) which were deleted during S2
creation: this is the reason why PER number de-
creased for S2. Thus, S2 is generated by con-
straining the respective contexts for the respective
categories. For example, Romanova is a female
name, while je bil razglašen is a form requiring
the male name, so in S2 we only generate synthetic
sentences respecting these constraints:

en Albert Einstein was declared the winner as a result.
sl.m.sg → Albert Einstein je bil zaradi tega razglašen za

zmagovalca
en Anastasia Romanova warned that the syndicalists aims

were in perpetuating syndicalism itself.
sl.f.sg → Anastazija Romanova opozorila je, da so

sindikalistični cilji ohranjanje samega sindikalizma.

The number and gender for the ORG type was
detected from the syntactic properties of the head
of each ORG name using udpipe (Straka et al.,
2016).

Finally, S3 drops the constraint of having par-
allel NEs by using all of the NEs detected for a
given language through the categories in Table 1
(the contexts remain parallel, though). The num-
ber of PER NEs becomes unreasonable, so we
constrained it to 20,000 PER NEs per language.
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Table 1: Labels of NER-related categories in Wikipedias.

Language Wiki entries PER Categories LOC Categories ORG Categories
en 6,489,550 Born Cities|Countries Organizations
be 217,410 Нарадзiлiся Краiны|Гарады Арганiзацыi
bg 281,108 Родени Градове|Държави Организации
cs 502,428 Narozen Měst|Země Organizace
pl 1,519,696 Urodzeni Miasta|Kraje Organizacje
ru 1,814,092 Родились Города|Страны Организации
sl 176,025 Rojeni Mesta|Države Organizacije
uk 1,151,062 Народились Мiста|Країни Органiзацiї
#Parallel 4,492 1,709 239
#Total 140,000 22,709 34,329

Table 2: Synthetic dataset contents.

PER LOC ORG
S1
Entities 7,889 1,709 239
Contexts 7,694 1,535 348
S2
Entities 4,492 3,178 239
Contexts 7,439 1,535 348
S3
Entities 20,000 6,178 9,828
Contexts 7,439 1,535 1,087

We compare training on our synthetic corpora
against two commonly used baselines with ran-
dom training dataset ordering:

B1 Zero-shot transfer of a multilingual PLM with
training on the original English dataset;

B2 Training on the target language dataset pro-
duced by Machine Translation of the original
English dataset (The original entities were
marked in the text by special symbols like
‘|0|’ so that the labels would not be lost dur-
ing MT).

Each training dataset consists of 12000 ran-
domly generated examples from the available set
of entities and contexts for particular language.
The test dataset was produced by manual clean-
ing of approximately 10,000 tokens taken from
WikiNER for each of the eight languages includ-
ing English. The NE counts for this dataset are
listed in Table 3.

2.2 NER setup

To test the contribution of our synthetic corpora
with curriculum learning mechanisms, we rely
on a competitive NER approach, which is based
on XLM-R (Conneau et al., 2019). In the start-
ing stage, we compared the multilingual BERT
(Devlin et al., 2018) and XLM-R on our datasets.
Subsequently, the XML-R model was used for all
predictions as it showed slightly better results in

all of our experiments (as also shown in other
downstream applications). In addition, XLM-R
offered better zero-shot transfer results, which is
relevant for our B1 baseline.

2.3 Curriculum learning methods
The main purpose of using curriculum learning
(CL) in the proposed method is to ensure better
ordering of potentially noisy examples. Since the
training dataset may contain samples from incom-
patible semantic categories within the same NE
type (e.g., Greek philosophers doing research on
penicillin), the CL model must reduce the negative
effect of noisy examples and thereby make learn-
ing process more stable.

In total, we implemented three models to de-
termine the order of significance for the examples:

C1 order data by sample size, i.e. sentence length

C2 order data by average confidence in predicted
named entities

C3 order data by perplexity value

These models cover our hypotheses regarding
aspects of data complexity for the named entity re-
cognition task. C1 reflects the amount of inform-
ation that the model is gradually learning. Long
sentences carry significantly more information and
therefore may be more difficult to mark up entit-
ies in them. Another complexity measure for NER
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Table 3: Counts of NER-related categories in the test dataset.

Entities en be bg cs pl ru sl uk
PER 340 479 321 377 414 373 360 298
LOC 336 821 974 530 716 552 690 948
ORG 358 125 87 195 195 292 104 138

task samples is the average confidence of the CL
model in predicted named entities (model C2). In-
spired by the article (Zhu et al., 2021) we also cal-
culate the probability that the entity word has a
label from the gold-label markup. By sorting the
training dataset in descending order of such prob-
ability, we thereby place incorrect examples at the
end and give priority to high-confidence data.

The model needs to be based on a different ar-
chitecture, for which we used Bi-LSTM-CRF. It
calculates the optimal tag probability as:

p∗(x) = max
y′∈y

[
CRFF (x, y

′
) + CRFB(x, y

′
)
]

(1)
where y means the original set of labels, x - input
word, CRFF and CRFB represent the calculated
probabilities from the CRF model for forward and
backward pass of the Bi-LSTM network. Then
the average probability among the entities words
is computed as:

C2score(S) =
1

|w|

|w|∑

i=1

(p∗(wi)) (2)

where w,w ⊂ S mean subset of words from the
sentence S which are named entities.

Finally C3 is perplexity of CL model for a given
sentence. Perplexity is a measurement of how well
a probability model p predicts a sample. This met-
ric is calculated below:

PP (p) = 2−
∑
x p(x) log2 p(x) (3)

So, we are curious if this metric is suitable for sort-
ing training samples and improving the learning
process in our task. As follows from the defini-
tion, the training dataset needs to be sorted in the
ascending order of this metric.

Several studies in curriculum learning (Wang
et al., 2019a,b; Castells et al., 2020) suggest dis-
carding the top-N% of the most complex samples
from the dataset. Therefore, in our study, we con-
ducted several experiments to understand whether
the model should use all samples or a certain per-
centage during training.

3 Results

Because of space constraints, here we compare
the performance of CL models and of synthetic
datasets for two languages – Polish and Belarus-
ian. Belarusian is the most under-resourced lan-
guage out of those tested in our study, in terms
of the amount of (1) pre-trained data, (2) Wiki-
pedia entries and (3) available training resources.
Polish is a better resourced language from a dif-
ferent Slavic branch (West vs East for Belarus-
ian), and also it is written in a mix of Latin
and Polish-specific characters, which creates non-
trivial tokenization problems, as its tokenizer is in-
fluenced by major European languages. The res-
ults for Polish reported below are similar to those
for Belarusian, which emphasizes the universality
of the methods for Slavic languages presented in
this paper. The applicability of these methods to
other language groups is beyond the scope of this
article, but nevertheless this is an interesting topic
for further research.

Table 4 reports summary F1 metrics on
WikiNER evaluation dataset for all models and
training datasets for Belarusian. Table 5 - a sim-
ilar table for Polish. The main overall measure
is the mean F1 scores for the three main NE cat-
egories (omitting the Other category, which does
not indicate the source of errors). The best mean
score for Belarusian is 0.78, for Polish 0.79. For
comparison, the same English model trained on
the same set achieves the mean F1-score of 0.75,
while the best zero-shot transfer achieves 0.63 for
Belarusian and 0.68 for Polish. The full set of res-
ults for 7 Slavic languages is presented in Figure 6
in the Appendix.

3.1 Synthetic datasets

There is considerable variation between the NE
types. PER is easy to detect by using any training
set, this is followed by LOC, while ORG is more
difficult. There is a very considerable improve-
ment from using more linguistic information when
moving from S1 to S2. S1 is mostly not better
than either of the two baselines, i.e. B1 – zero-shot
transfer or B2 – direct MT of the English training
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Table 4: Belarusian: F1 scores for all entities, models and datasets. The scores in bold mean the best results for
a CL model within a dataset. The underlined scores are the best scores for each NE type across all models and
datasets. Last row, mean score, represents mean F1 score for three entity types.

Entity Model B1 B2 S1 S2 S3

PER
C1 0.89 0.90 0.85 0.91 0.92
C2 0.88 0.91 0.89 0.93 0.91
C3 0.88 0.89 0.88 0.92 0.91

LOC
C1 0.60 0.64 0.59 0.78 0.76
C2 0.55 0.58 0.51 0.81 0.60
C3 0.64 0.66 0.70 0.79 0.57

ORG
C1 0.40 0.43 0.30 0.56 0.62
C2 0.42 0.44 0.33 0.61 0.58
C3 0.38 0.45 0.37 0.62 0.57

Mean score
C1 0.63 0.66 0.58 0.75 0.77
C2 0.62 0.64 0.57 0.78 0.70
C3 0.63 0.67 0.65 0.77 0.68

Table 5: Polish: F1 scores for all entities, models and datasets. The scores in bold mean the best results for a CL
model within a dataset. The underlined scores are the best scores for each NE type across all models and datasets.
Last row, mean score, represents mean F1 score for three entity types.

Entity Model B1 B2 S1 S2 S3

PER
C1 0.88 0.89 0.86 0.92 0.93
C2 0.88 0.90 0.82 0.93 0.94
C3 0.87 0.89 0.87 0.92 0.92

LOC
C1 0.64 0.67 0.54 0.76 0.81
C2 0.66 0.68 0.55 0.75 0.68
C3 0.68 0.70 0.64 0.80 0.63

ORG
C1 0.54 0.56 0.50 0.61 0.57
C2 0.51 0.55 0.48 0.60 0.59
C3 0.43 0.48 0.55 0.66 0.54

Mean score
C1 0.68 0.70 0.63 0.76 0.77
C2 0.68 0.71 0.62 0.76 0.74
C3 0.66 0.69 0.68 0.79 0.70

set. Also, surprisingly, the very simple B2 setup is
often better than the popular zero-shot transfer of
B1.

S2 is the best dataset overall, so the expected
improvements by using larger training sets in S3
did not materialise. The most likely reason is that
most frequent location entities in the test data-
set are country names, which are well covered
by S2, as most of them are translated across the
Wikipedias; thus, adding even a much bigger set
of examples with rare place names could not im-
prove the scores (though we suppose that S3 could
show better results on a test dataset with rare place
names). The effect of gender disambiguation used
in S2 and S3 (opposite to S1) clearly show the be-

nefits for PER recognition, even though this is an
easier task for all of the models and datasets. The
most difficult category is ORG. Some organiza-
tion names are rendered without translation, i.e.,
General Motors, so they are easier to recognize.
,On the other hand, many ORG names are linguist-
ically diverse with a complicated structure, for
example, Międzynarodowe Centrum Badań nad
Ochroną i Konserwacją Dziedzictwa Kulturowego
‘International Centre for the Study of the Preser-
vation and Restoration of Cultural Property’, with
the problem in their detection persisting across any
available NER model.
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Figure 1: F1 score on evaluation dataset after each
training step on belarusian S2 dataset.

Figure 2: Evaluation loss after each training step on
Belarusian S2 dataset.

3.2 CL Models

In our experiments with models, we wanted to
evaluate the impact of curriculum learning on the
synthetic dataset. First of all, ordering of the
training samples improves target metrics com-
pared to baseline, basic XLM models with ran-
dom sampling. For locations and organizations
the difference is substantial: 0.15 and 0.17 of the
F1-score points respectively. For persons, the dif-
ference is not so big, because initially there are
enough entities and context examples for persons,
so it is easier to recognize PER entities irrespect-
ively of the order of training.

One of the key goals of using curriculum learn-
ing in this study is to reduce the impact of noisy
synthetic examples. For example, using the Be-
larusian dataset S2 and model C2 (average probab-
ility of predicting gold-label entity tags), these ex-
amples are listed as the highest difficulty for pre-
dicting LOC:

1. Шпаер таксама ў спiсе з двума. ‘Speyer is
also in the list with the two’

2. Рэвалюцыя 1897-1898 гадоў адкрыла
дзверы для больш шырокiх ведаў, i па-
чалося шмат даследаванняў, пра якiя
гл. Валета ‘The 1987-1898 revolution
opened the doors for wider knowledge, and
many researches were started, about which
see Valeta’

The C2 model reasonably placed these ex-
amples at the end of the training dataset. In the
first example, the location Шпаер (‘Speyer’) is
similar to the surname, so the model is not confid-
ent between deciding it is a location and a person.
In the second example, the structure is not correct
since the end of the sentence contains an artifact
from Wikipedia "about which see [entity]". This
sentence tells about the revolution, not about the
location, so the context of the entity is incomplete.
In the examples shown above, the model correctly
identified the entities, but was not sure about them,
so the curruculum learning method assigned them
the higher scores.

Comparing the methods of curriculum learn-
ing, we wanted to determine which method makes
learning more robust and efficient. For this ex-
periment, we took the S2 dataset, as it provides
the best performance among all other datasets. As
for the experiment setup, we trained three models
C1, C2, C3 on the Belarusian S2 dataset with fol-
lowing configuration: 1 epoch, Adam optimizer,
learning rate equals 1e-5, weight decay equals
0.01. The choice of a single epoch and a low
learning rate is primarily due to the fact that the
NER model trained on synthetic datasets quickly
overfits. For example, for Belarusian and Polish
S2, the validation loss increases after 12.5% of
the training dataset of the second epoch. On the
charts 1 and 2 the key evaluation metrics of three
CL models are shown. Since we found out that
one epoch is enough for training, on the figures
each training step is 12.5% of the training data-
set. In particular, Figure 2 shows that the rank-
ing of training examples based on the metric of
the average probability of predicting named entit-
ies (model C2) demonstrates more stable training.
Moreover, this model is the fastest gaining more
than 90% of the F1 metric and has the minimum
evaluation loss among all models.

Also, in the same experiment we found out that
throwing out 10% of most complicated data leads
to mean decrease in F1 measure by around 3%
with all CL models. This means that the model
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should rather see the most complex examples in
order to demonstrate the best quality.

3.3 Errors analysis

We manually analyzed and compared the predic-
tions of models finetuned on S2 and S3 datasets
for Polish and Belarusian. The quality for Be-
larusian is comparable to the other languages in
the set. There were no problems found caused by
tokenization, though sometimes the models tend to
misjudge the boundaries of the entities, including
spaces, brackets or commas.

Most errors for S2 are predictably caused by
cases: so PER entities which are not in nominat-
ive case often do not get a correct label, or case
endings may not be labelled (our model labels
every BPE-token), e.g., Polish Artura Rubinsteina
‘Arthur Rubinstein’ loses its PER label for end-
ings -a in both name and surname and the markup
looks like ‘Artur, PER’ and ‘#a, O’. The same
goes for other entities, for example, Polish Kanady
‘Canada’ (genitive) may not get annotated in cer-
tain contexts at all, and ORG entity Partią Repub-
likańską ‘Republican Party’ (instrumental) has an
unlabelled case ending ą.

Some of other easily explainable errors are
caused by entity type: seas, rivers, and mountains
were not present in the synthetic datasets, so the
models may only partially recognize entities like
Belarusian Галiлейскага мора ‘Sea of Galilee’.

Another quite common, but not so obvious er-
ror concerns unlabelled country names: although
the models must have seen them, country names
are often lost. It is worth mentioning that coun-
try names are often unlabelled in real data, such as
WikiNER and SlavicNER (Piskorski et al., 2021),
as well.

When the models are finetuned on the S3 data-
set, the error types generally remain the same,
though their quantity is slightly smaller. We
noticed that sometimes the context obviously
provides a false label, i.e., in Belarusian sentence
which contains пад нацiскам Рима пазбавиў
‘under the pressure of Rome [he] deprived’ Rome
in genitive case gets the PER label, because it is
followed by a verb common for PER entities.

4 Related work

4.1 NER and synthetic corpora

The idea of using synthetic data for augmenta-
tion was a natural consequence of the develop-

ment of ML models which need a lot of annot-
ated data in order to learn. Mentions of synthetic
data in NLP can be found as early as in 2000s
(i.e., (Talbot, 2003)); an obvious solution was to
generate training data for ML models using rule-
based tools, as it was done to improve machine
translation in (Hu et al., 2007). Starting from late
2000s, the idea of using synthetic corpora grew
more popular and was applied in various areas of
research, for example, for generation of anima-
tions for sign languages (Schnepp et al., 2010), or
for Implicit Discourse Relation Recognition (Lan
et al., 2013). Nowadays, there are plenty of works
using synthetic data for improvement, and gener-
ating synthetic datasets is considered a common
technique. For example, (Kvapilíková et al., 2020)
article used unsupervised machine translation to
build a synthetic dataset and improve quality on
parallel corpus mining task in low-resource lan-
guages, which is especially relevant for our re-
search. Some recent works using this approach
are, for example, (Li et al., 2021), (Hosseini et al.,
2021) or (Whitfield, 2021), the latter introducing
GPT-2 model for data generation. Also, method
proposed in (Sellam et al., 2020) uses synthetic
sentences for BERT pre-training, which contain a
wide variety of lexical, syntactic, and semantic di-
versity. The key goal for synthetic datasets is to
provide the maximum variation of text data in or-
der to make the target model more robust.

NER typically involves one of three gold stand-
ards: MUC, CoNLL, or BBN, all created by
costly manual annotation. One of the first data-
sets for NER in the CoNLL standard was cre-
ated in 2003 (Sang and De Meulder, 2003) and
covered two languages (English and German); the
NER-related categories consisted of PER, LOC,
ORG and MISC labels. There were also sev-
eral datasets in CoNLL standard created around
2010, one of them being WikiGold (Balasuriya
et al., 2009) – 40K tokens of Wikipedia articles,
manual annotation; the other, Web (Ratinov and
Roth, 2009), contained 8K tokens taken from the
Web, and the third dataset used Twitter as a re-
source and contained approximately 34K tokens
(Ritter et al., 2011). Later additions are repres-
ented by Broad Twitter Corpus (Derczynski et al.,
2016) and WiNER (Ghaddar and Langlais, 2017),
although the list of NER-annotated corpora isn’t
exhausted by those.

There are also attempts to create synthetic
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corpora with NER-annotation, mostly for low-
resource languages, i.e., (Jónsson et al., 2021)
for Icelandic. Cross-lingual transfer is a viable
method as well and it was used for creation of a
synthetic Chinese NER corpus in 2014, for ex-
ample (Fu et al., 2014). There has also been a
recent set of experiments on cross-lingual annota-
tion, for example, for African languages (Adelani
et al., 2021). There is also an approach to use a
small number of examples via triggers (Lin et al.,
2020).

4.2 Curriculum learning

Curriculum Learning (CL) is a learning tech-
nique where the order of training samples depends
on their complexity for the target model. This
paradigm resembles human learning: a gradual
increase in the complexity of training examples
makes learning process more qualitative. The ori-
ginal technique was proposed by (Bengio et al.,
2009). But for supervised learning and NLP in
particular, (Elman, 1993) article is one of the first
where an idea similar to curriculum learning is ap-
plied. The author emphasized that the order of
training data is important, where the "small" data
comes first.

More recently, the curriculum learning ap-
proach was used quite extensively in NLP. Differ-
ent measures of complexity have been proposed,
depending on the task. For instance, (Tay et al.,
2019) article addresses the problem of reading
comprehension of long texts. Curriculum learn-
ing based on the answerability and understand-
ability of texts effectively improves training pro-
cess. In addition, (Platanios et al., 2019) apply
curriculum learning to neutral machine translation
to learn better and converge faster. The framework
presented in the paper shows certain samples to the
model at certain times according to their complex-
ity and model competence at that moment.

NER task requires a comprehensive metric to
use for curriculum learning. The study closest to
our work (Zhu et al., 2021) uses several strategies
to organize their training data. All of them use
probability of entities from the gold label dataset
calculated by the CL model. In one case, the aver-
age confidence of the model is calculated from all
entities from the input sentence. In another, the av-
eraged confidence of the model is considered only
for named entities. This approach is relevant due
to the fact that goal is to recognize named entit-

ies correctly, other tokens in the sentence are not
so important. Furthermore, there are other tech-
niques for filtering and ordering samples for the
NER task, especially suitable for generated data-
sets. (Liu et al., 2021) filter data samples with
specific entity based on complex criteria: for ex-
ample, if this entity is too frequent in the training
dataset.

4.3 Cross-lingual transfer

Cross-lingual transfer is relevant when there is suf-
ficient data for training a model for one language
and no such data for another language. A model
which is trained on the data for one language and
applied on the data of the other (zero-shot trans-
fer), usually shows worse results than on donor
language material; thus leading to a transfer gap,
which can be measured as the difference between
the performance of the same model on donor and
recipient languages (Hu et al., 2020). In order to
use cross-lingual transfer, language spaces must
be aligned, and the models which provide higher
quality vector spaces perform better. This idea
has become popular since 2014, when embedding
methods produced high quality spaces which are
almost isomorphic across languages and which
can be aligned by using small seed dictionaries
(Mikolov et al., 2013).

Modern models, such as multilingual BERT or
XLM-RoBERTa, are even more efficient at build-
ing cross-lingual vector spaces (Conneau et al.,
2020). Some recent studies in this area showed
that the transfer gap if the donor language is Eng-
lish normally is not bigger than 0.25 (0.14 on av-
erage) for a set of recipient languages (Hu et al.,
2020; Ruder et al., 2021). For example, the Nat-
ural Language Inference (NLI) task for Slavic lan-
guages has a transfer gap of 0.07. As for the NER
task with the use of cross-lingual transfer, there
was a recent analysis of zero-shot transfer between
English and Korean (Kim et al., 2021). More spe-
cifically on the topic of this paper, cross-lingual
transfer for NER on Slavic languages has been dis-
cussed in (Sharoff, 2020), and shared tasks such as
SlavicNER (Piskorski et al., 2021) are specifically
aimed at NER for Slavic languages.

5 Conclusions

In this work we demonstrated how to achieve
prediction quality for lesser resourced languages
without any performance gap introduced by zero-
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shot transfer or Machine Translation. A synthetic
corpus of about 10,000 sentences produced from
a combination of naturally annotated data and ma-
chine translation from a better resourced language
can produce better results than training on the
source dataset for the better resourced language.
However, the key to this success is an accurate
model of important linguistic phenomena (case,
number and gender, as in our S2 and S3 data-
sets), as without this the synthetic corpus (our ver-
sion S1) is worse than the zero-shot baseline (B1).
The second major contribution is the importance
of the curriculum learning strategy. Any strategy
for choosing the examples helps, but the average
probability (from a different model) and perplex-
ity usually help more than simple ordering by the
sentence length. Also discarding the most difficult
items does not help, as the models improve when
seeing more data.

The negative result of this study is that a big-
ger collection NEs (S3) did not improve over the
smaller set (S2). More research is needed into un-
derstanding the reasons for this. Better NE selec-
tion can help in matching the test dataset, while
this might cause problems in applying the models
beyond the test dataset. The study is also limited
to a specific set of languages as well as to a single
downstream task. In our future research we want
to explore Wikipedias and similar resources with
natural annotation for building synthetic training
sets for more languages and for other downstream
tasks, such as NE linking or ontology building.
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A Appendix

A.1 Results for 7 Slavic languages
In this section we provide Figure 6 with compre-
hensive results of our experiments in seven Slavic
languages.
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Table 6: Mean F1 scores per 3 entities types for all languages, models and datasets. The scores in bold mean the
best results for a CL model within a dataset. The underlined scores are the best scores for each NE type across all
models and datasets.

Language Model B1 B2 S1 S2 S3

Belarussian
C1 0.63 0.66 0.58 0.75 0.77
C2 0.62 0.64 0.57 0.78 0.70
C3 0.63 0.67 0.65 0.77 0.68

Ukrainian
C1 0.63 0.67 0.61 0.71 0.69
C2 0.64 0.68 0.67 0.75 0.70
C3 0.65 0.67 0.68 0.73 0.72

Russian
C1 0.61 0.63 0.60 0.73 0.70
C2 0.63 0.62 0.63 0.77 0.73
C3 0.62 0.63 0.61 0.75 0.72

Slovenian
C1 0.67 0.69 0.60 0.70 0.69
C2 0.68 0.71 0.64 0.78 0.75
C3 0.68 0.70 0.65 0.73 0.71

Polish
C1 0.68 0.70 0.63 0.76 0.77
C2 0.68 0.71 0.62 0.76 0.74
C3 0.66 0.69 0.68 0.79 0.70

Bulgarian
C1 0.62 0.64 0.61 0.74 0.70
C2 0.65 0.66 0.64 0.76 0.74
C3 0.66 0.67 0.63 0.78 0.71

Czech
C1 0.64 0.67 0.65 0.72 0.71
C2 0.65 0.68 0.68 0.76 0.75
C3 0.65 0.69 0.66 0.74 0.74
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Abstract

Training Neural Machine Translation (NMT)
models suffers from sparse parallel data, in the
infrequent translation scenarios towards low-
resource source languages. The existing solu-
tions primarily concentrate on the utilization of
Parent-Child (PC) transfer learning. It transfers
well-trained NMT models on high-resource lan-
guages (namely Parent NMT) to low-resource
languages, so as to produce Child NMT models
by fine-tuning. It has been carefully demon-
strated that a variety of PC variants yield sig-
nificant improvements for low-resource NMT.
In this paper, we intend to enhance PC-based
NMT by a bidirectionally-adaptive learning
strategy. Specifically, we divide inner con-
stituents (6 transformers) of Parent encoder
into two “teams”, i.e., T1 and T2. During
representation learning, T1 learns to encode
low-resource languages conditioned on bilin-
gual shareable latent space. Generative adver-
sarial network and masked language modeling
are used for space-shareable encoding. On the
other hand, T2 is straightforwardly transferred
to low-resource languages, and fine-tuned to-
gether with T1 for low-resource translation.
Briefly, T1 and T2 take actions separately for
different goals. The former aims to adapt to
characteristics of low-resource languages dur-
ing encoding, while the latter adapts to trans-
lation experiences learned from high-resource
languages. We experiment on benchmark cor-
pora SETIMES, conducting low-resource NMT
for Albanian (Sq), Macedonian (Mk), Croat-
ian (Hr) and Romanian (Ro). Experimental
results show that our method yields substan-
tial improvements, which allows the NMT per-
formance to reach BLEU4-scores of 62.24%,
56.93%, 50.53% and 54.65% for Sq, Mk, Hr
and Ro, respectively.

1 Introduction

NMT has achieved significant improvements (Bah-
danau et al., 2015; Vaswani et al., 2017) in recent

∗Corresponding author.

years. Nevertheless, It heavily relies on large-scale
observable parallel corpora. As a result, NMT gen-
erally fails to perform perfectly in an infrequent
translation scenario, where the available parallel
data for training is sparse. For example, the size of
training data for NMT between English (En) and
Macedonian (Mk) is about 200K, which is signifi-
cantly smaller than that (582M) between English
(En) and German (De). The issue has been widely
known as low-resource NMT.

The existing studies attempt to overcome the
issue primarily by 1) producing cross-language em-
beddings, 2) constructing bilingual shareable latent
space for encoding, and 3) transferring well-trained
models to low-resource languages. We overview
the studies in Section 2. Within the aforementioned
arts, nowadays, Parent-Child (PC) transfer learn-
ing (Zoph et al., 2016) represents a considerable
advance in our knowledge. It allows a Parent NMT
model to be fully trained and developed over high-
resource languages (e.g., that for De→En), and
transfers it to low-resource languages (e.g., that for
Mk→En) for fine-tuning. This contributes to the
construction of a Child NMT model that inherits
the translation experiences of Parent model.

The recent experimental results suggest that PC
transfer learning suffers from the weak perception
of semantics in low-resource languages, at the very
beginning of encoding. In other words, fine-tuning
Parent NMT model over low-resource languages is
unavoidably started from scratch. This results in
less effective and inefficient representation learn-
ing. Though, it is proven that duplicating embed-
dings (Aji et al., 2020; Xu and Hong, 2022) of
cross-language shareable tokens, synonyms and
mutually-aligned tokens helps to alleviate the cold-
start fine-tuning problem. This also implies that
conventional methods of constructing shareable la-
tent space (Artetxe et al., 2018; Lample et al., 2018)
may produce similar but general effects.

In this paper, we intend to strengthen PC trans-
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fer learning by coupling it with space-shareable
encoding. Different from the previous work, we
neither use an unabridged Parent encoder for space-
shareable encoding, nor directly transfer it towards
low-resource translation. Instead, we divide the
unabridged Parent encoder into two parts. One
part engages in space-shareable encoding for alle-
viating cold-start fine-tuning problems. The other
is straight transferred without being “brainwashed”
for the pre-existing translation experiences (i.e., the
ones learned during high-resource NMT). The goal
is to fulfill bidirectional adaptation, i.e., 1) estab-
lishing the encoding mode that adapts to linguistic
characteristics of low-resource languages, condi-
tioned on the shareable latent space; and 2) pre-
serving the encoding mode that adapts to original
translation experiences of the Parent NMT model.

In our experiments, we follow Vaswani et al.
(2017) to build a transformer-based NMT model
within the encoder-decoder architecture, where
both encoder and decoder comprise 6 transformer
layers. We intensively train it on large-scale high-
resource language pairs to produce a knowledge-
able Parent NMT model. On the basis, we take Par-
ent’s encoder, and divide it into two teams: T1 (1st

transformer layer) and T2 (2nd-6th transformer lay-
ers). We train T1 to perform space-shareable encod-
ing for low-resource languages. And we carry out
monolingual unsupervised learning when training
T1, where the generative adversarial network and
masked language model are used. When mould-
ing the Child NMT model, we transfer Parent to
low-resource languages as usual. The difference
lies in that T2 in Parent performs hot-start encod-
ing by absorbing “home-made” hidden states from
T1, i.e., the ones fabricated by T1 in terms of both
monolingual features of low-resource languages
and distributions in shareable latent space.

We conduct experiments on corpora SETIMES,
where the low-resource MT scenarios of Sq-En,
Mk-En, Hr-En and Ro-En are considered. Exper-
imental results show that our method yields sub-
stantial improvements, and achieves competitive
performance compared to the state of the art.

2 Related Work

There are a variety of advanced methodologies pro-
posed for tackling low-resource NMT. Due to page
limitation, we merely overview the closely-related
arts reported in recent five years.
• Shareable Latent Space

Recently, the impressive hypothesis is that em-
beddings of both high-resource and low-resource
source languages can be produced conditioned on
the distributions in the same latent space. This un-
doubtedly contributes to the construction of versa-
tile NMT models towards different language pairs,
frankly, including those in the low-resource NMT
scenarios. The key issue, in this case, is to establish
a shareable latent space.

Artetxe et al. (2018) and Lample et al. (2018) de-
sign unsupervised learning approaches to construct
shareable latent space. The approaches actually
enable an encoder to properly project low-resource
languages into the latent space of high-resource lan-
guages. Iterative back translation (Sennrich et al.,
2016) and denoising auto-encoder (Vincent et al.,
2008) are used to fulfill space-shareable encoding.
The studies demonstrate the versatility of space-
shareable encoding for multilingual translation in
simulated experiments, where high-resource lan-
guage pairs (e.g., En-De) are used though the size
of training data is reduced. Soon after, Guzmán
et al. (2019) prove that space-shareable encoding
fails to obtain promising performance for authentic
low-resource scenarios (e.g., En-Nepali and En-
Sinhala). Marchisio et al. (2020) suggest that weak
isomorphism between non-family languages results
in the performance degradation. To strengthen
space-shareable encoding, recently, multilingual
BART (Liu et al., 2020a) is used in the unsuper-
vised NMT framework, together with denoising au-
toencoder (Üstün et al., 2021) and multitask learn-
ing (Ko et al., 2021).

• Constructing Shareable Vocabulary
The first study for alleviating weak isomorphism

most probably derives from Lakew et al. (2019)’s
effort, where perplexity-based similarity computa-
tion is utilized to automatically select most relevant
high-resource languages for space-shareable encod-
ing. The obtained improvements in this study im-
ply that common linguistic units (isomorphic con-
stituents) between high-resource and low-resource
languages serve as informative seeds for harvest-
ing embeddings of heterogeneous constituents. It
raises the interest in building shareable vocabulary.

Kim et al. (2018) construct a synthetic dictio-
nary by iteratively updating linear mapping rela-
tionships between bilingual embeddings. Aji et al.
(2020) build a joint vocabulary where the matched
tokens are assigned with the same embeddings,
while the mismatched the randomly-initialized em-
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Figure 1: Architecture of bidirectionally-adaptive transfer learning for PC-based NMT, which conducts bilingual
translation from high-resource language pairs (A→B) to low-resource language pairs (C→B).

beddings. Chronopoulou et al. (2021) retrain Byte-
Pair-Encoding (BPE) over bilingual hybrid corpus,
and use the segmented tokens by BPE to build the
shareable vocabulary. Xu and Hong (2022) carry
out word alignment between low-resource and high-
resource languages, and share embeddings among
aligned sub-tokens. This effectively expands the
existing shareable vocabularies.
• Transfer Learning for NMT
Transfer learning approaches for NMT are pri-

marily developed within Parent-Child (PC) frame-
work (Zoph et al., 2016; Zhang et al., 2021). PC
allows an NMT model to be trained on large-scale
high-resource parallel data, and fine-tunes it on a
small quantity of low-resource parallel data. It is
proven that PC produces significant and increasing
improvement with less warming-up time. Nowa-
days, PC has been successfully coupled with the
aforementioned shareable vocabulary construction
(Aji et al., 2020; Chronopoulou et al., 2021; Xu
and Hong, 2022).
• Pretrained Langauge Models for NMT
Pretrained langauge models, such as ELMo (Pe-

ters et al., 2018) and BERT (Devlin et al., 2019),
have been demonstrated to be effective for natural
language processing. They enable the deep per-
ception and encoding of semantics by learning that
from large-scale monolingual data. Recently, Liu
et al. (2020b) develop a multilingual BART, whose
encoder significantly contributes to the enhance-

ment of low-resource NMT.

3 Approach

We show the architecture of our low-resource NMT
model in Figure 1. The 12-layer transformer-based
encoder-decoder network (at the left side in Figure
1) serves as Parent NMT model, which contains
six layers of transformer encoder and six layers of
transformer decoder. From here on, we refer them
as encoder and decoer layers respectively. The
Parent NMT model has been intensively trained
to perform translation for high-resource language
pairs A and B (i.e., NMT for A→B).

We divide Parent encoder layers into two teams
T1 and T2, where T1 is constituted merely with
the 1st encoder layer, while T2 the rest five en-
coder layers. On the basis, T1 is pushed into the
bidirectionally-adaptive learning channel (which is
marked by the dotted rectangular box with a purple
background in Figure 1). During the adaptation pro-
cess, T1 engages in the bilingual encoding program
launched by the generative adversarial network,
so as to learn space-shareable encoding mode for
both high-resource language A and low-resource
language C. Besides, T1 engages in the masked
language modeling program for low-resource lan-
guage C, with the aim to learn language-specific
encoding mode in terms of distinct characteristics
of C. T1 will be trained iteratively and alternately
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in the two programs. This results in a refined T1.
We construct Child NMT model by transferring

Parent decoder and T2 to low-resource language
pairs C and B (NMT for C→B), and connect T2
with the refined T1. On the basis, we fine-tune
Child NMT model using small-scale low-resource
parallel data. The Child model is deployed at the
right side in Figure 1. Instead, the T1 and T2 we
used come from the decoder of the Parent model
(A→B) if the child translation direction is A→C. In
the rest of this section, we detail all the components
of our model.

3.1 Baseline Low-resource NMT
We follow Xu and Hong (2022)’s work to con-
struct the baseline transferable NMT model for
low-resource language pairs, where Parent-Child
(PC) transfer mechanism (Zoph et al., 2016) is used,
and Xu and Hong (2022)’s expanded version of Aji
et al. (2020)’s joint vocabulary is adopted.
• NMT Framework We performance sentence-

level NMT. Given a source language sentence s,
we convert each token in it into the real-valued em-
bedding vis ∈ R512. This results in the distributed
representations Vs of s (Vs={v1s ...vls}), where “l”
denotes the maximum length of input sequence.
A trainable embedding layer is used for obtain-
ing token-level embeddings, which possesses a dy-
namic source-language vocabulary mapping from
tokens to embeddings.

We feed Vs into the 1st encoder layer, the one de-
ployed ahead of other five sequentially-connected
encoder layers. We use the encoder layers to obtain
deep representations Hs of Vs as follows:
{
H

(i)
s = f

(i)
e

(
H

(i−1)
s

)
, 1 < i ≤ 6

H
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where, f (i)e is the i-th encoder layer of vanilla trans-
former (Vaswani et al., 2017; Al-Rfou et al., 2019).

Conditioned on the representations H(6)
s output

by the encoder stack, we conduct decoding using
six successively-connected decoder layers:
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where, f (i)d denotes the i-th decoder layer of vanilla
transformer, h(i)t is the hidden state output by f (i)d
at a certain decoding time step t, and vt−1 is the
embedding of the (t-1)-th token predicted at the

earlier time step. Note that we obtain vt−1 using the
trainable target-language embedding layer. Each
target-language token is predicted by a linear layer
with Softmax normalization, conditioned on h(6)t .
• PC Transfer Learning We train the afore-

mentioned encoder-decoder network for NMT on
high-resource language pairs A and B, i.e., learn-
ing to encode H(6)

A and decode H(6)
B . This allows

Parent NMT model to be formed. We transfer this
well-trained Parent NMT model to low-resource
language pairs C and B, and fine-tune it over the
parallel data between C and B. By parametric in-
heritance and adaptive training (i.e., fine-tuning),
transfer learning enables the generation of Child
NMT model. Ideally, it learns to encode H(6)

C and
decode H(6)

B to some extent.
• Joint Vocabulary During the transfer learn-

ing towards C→B NMT, the embedding layer of
source language C is enhanced using the expanded
joint vocabulary. In terms of the vocabulary, both
morphologically-identical sub-tokens (Aji et al.,
2020) and aligned sub-tokens (Xu and Hong, 2022)
(between source language C and target language B)
share the same embeddings, i.e., the ones learned
from the process of training Parent NMT. When
conducting bilingual embedding sharing between
aligned sub-tokens, Xu and Hong (2022)’s element-
wise mean aggregation (namely Mean-PC) is used
for N -to-1 alignment cases.

3.2 Bidirectionally-adaptive Transfer
Learning

We strengthen the baseline NMT model using a
Bidirectionally-Adaptive Transfer Learning strat-
egy (BATL for short). BATL adopts T1 (i.e., 1st en-
coder layer) of Parent NMT model, and exclusively
trains it for activating its bidirectional adaptability,
including the adaptation to Parent’s encoding mode
towards high-resource NMT (A→B), as well as
that to monolingual linguistic characteristics of the
low-resource language C. Generative Adversarial
Network (GAN) and Masked Language Modeling
(MLM) are utilized for BATL.
• GAN-based Backward Adaptation We con-

struct a discriminator, and couple it with T1 for
adversarial training. T1 encodes a source-language
sentence, which may derive from high-resource
language pairs or low-resource. Conditioned on
the representation (of a sentence) output by T1, the
discriminator determines whether the sentence is
of high-resource language or low-resource, within
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a binary classification task.

More importantly, T1 plays the role of a “coun-
terfeiter”. It produces the representation according
as closely as possible to distributions in the seman-
tic space of high-resource language, i.e., the one
learned during the training for Parent NMT. Briefly,
T1 counterfeits the high-resource sentence repre-
sentation even if the sentence is actually of low-
resource language. By contrast, the discriminator
is trained to perform for anti-counterfeiting, deter-
mining the provenance of a sentence as precisely
as possible. Repeatedly training T1 and the dis-
criminator within the adversarial framework (coun-
terfeiting versus anti-counterfeiting) will enhance
both themselves. In particular, T1 learns to encode
the low-resource language in the way of encod-
ing the high-resource language, conditioned on a
shareable semantic space. Coupling such a T1 into
Child NMT model, frankly, contributes to the en-
hancement of its adaptation to Parent’s translation
experience, during the process of tackling the low-
resource language.

• MLM-based Forward Adaptation T1 ap-
pears as a junior encoder when dealing with sen-
tences of low-resource language at the very be-
ginning, due to a lack of pragmatic and semantic
knowledge in it. Consequently, the aforementioned
adversarial training that directly utilizes such a ju-
nior T1, most probably, fails to form a reliable
bilingual semantic space. In other words, although
T1 learns to encode low-resource language in the
mode of high-resource language (by GAN), it is
grounded on a shallow or even inexact understand-
ing of the former’s pragmatics and semantics.

To address the issue, we construct a Masked Lan-
guage Modeling channel (MLM) to enhance the
capacity of T1 in encoding low-resource languages.
It enables the forward adaptation of T1 to inherent
linguistic characteristics of low-resource language.

MLM is conducted with the task of predicting
masked tokens. Given a sentence of low-resource
language, we mask about 10% tokens in it. The
Masking strategy is implemented by substituting
the randomly selected tokens with the special token
“UNK”, and initializing them with the unified em-
beddings. We feed the partially-masked sentence
into T1 to encode each token in it, where the pa-
rameters of T1 are learnable during training. T2
is used for further encoding over the output of T1,
where the parameters of T2 are frozen. Freezing
T2 prompts T1 to learn low-resource languages as

actively as possible.
• Collaborative Training We train T1 by GAN

and MLM, alternatively and iteratively. First, T1
is trained by GAN, where 781 batches of hy-
brid monolingual data are used (i.e., 781 batches
of monolingual sentences selected from the low-
resource dataset, as well as 781 batches of high-
resource cases). Secondly, T1 is further trained by
MLM, where 1,562 batches of monolingual low-
resource instances are used. This alternative train-
ing is carried out iteratively for 100 times within
25 epochs.

3.3 Shaping Low-resource NMT by BATL

We utilize the aforementioned BATL as a midway
stage of transfer learning. In order to shape a con-
crete Child NMT, we still need to transfer T1 and
the accompanying networks to low-resource lan-
guage pairs, and fine-tune them on the parallel data.
• Components of Child comprises T1, T2 and

the decoder of Parent NMT model. During assem-
bling the components, T2 is connected behind T1,
and both act as an encoder. The decoder of Parent
with an embedding layer is coupled with the en-
coder. Briefly, Child inherits Parent’s architecture.
• Transfer Learning includes the stages of

BATL and transfer to low-resource language pairs.
Within Child’s components, only T1 is considered
during BATL. All the components are fine-tuned on
the parallel data of low-resource language pairs. It
is noteworthy that although T2 is used for MLM in
BATL, its parameters are frozen at the stage. Dur-
ing fine-tuning towards low-resource languages, all
the components are trainable.
• Loss of NMT is calculated as follows, where

the cross-entropy estimation is used:

LMT = Exi∈S [−log p(yi|xi)] (3)

where, p(yi|xi) denotes the conditional probability
that the ground-truth target-language sentence yi is
predicted given the source-language sentence xi.

4 Experimentation

4.1 Datasets and Evaluation Metric

We experiment on SETIMES (Tiedemann, 2012)1.
To facilitate the comparison with the previous work,
we concentrate on the low resource translation tasks
of Sq↔En, Mk↔En, Hr↔En and Ro↔En, where

1http://opus.nlpl.eu/SETIMES.php
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#HighR Fr-En Es-En De-En Ru-En
Train. 747M 952M 582M 217M

Table 1: Statistics in high-resource (#HighR) parallel
datasets. Note that we won’t report the development
and test results of Parent NMT models, and therefore
the statistics for high-resource validation and test sets
are omitted in this study. The high-resource NMT per-
formance has been discussed in Tiedemann’s work3.

#Languages Datasets Train.
De, Sq, Mk, Hr, Ro SETIMES 200k
Fr, Es, Ru Europarl 200k

Table 2: Statistics in monolingual datasets.

Sq, Mk, Hr, Ro and En refer to Albanian, Mace-
donian, Croatian, Romanian and English, respec-
tively. We utilize 200K sentences for training, 1K
sentences for validation, and 3K sentences for test-
ing for each language. We take into consideration
various Parent NMT models for shaping Child in a
series of separate experiments, where four classes
of high-resource language pairs are used, includ-
ing Es→En, Fr→En, De→En and Ru→En (Span-
ish: Es, French: Fr, German: De, Russian: Ru).
All the high-resource parallel data is derived from
Tatoeba2. Table 1 shows the scales of high-resource
parallel training data.

In addition, we introduce different monolingual
datasets into our experiments, which are used for
GAN and MLM during the stage of BATL. The
monolingual data of De, Sq, Mk, Hr and Ro is
taken from the parallel data in SETIMES, while
that of Fr, Es and Ru is selected from Europarl
(Koehn, 2005)4. Table 2 shows the statistics in
monolingual datasets.

We follow the previous work to evaluate all NMT
models with SacreBLEU (Post, 2018).

4.2 Hyperparameter Settings

We directly use the off-the-shelf transformer-base
NMT models (Tiedemann, 2020) as Parents, and
the newly-developed Child NMT models inherit all
the configurations and hyperparameters of Parent.

First of all, all the sentences are tokenized using
SentencePiece (Kudo and Richardson, 2018) with
a 100k vocabulary size.

Secondly, we use monolingual datasets to train

2https://opus.nlpl.eu/Tatoeba.php
3https://huggingface.co/Helsinki-NLP
4https://statmt.org/europarl/

T1. We train T1 by GAN and MLM in 25 epochs,
using NVIDIA RTX 2080Ti 11GB GPU. The opti-
mizer is set to Adam (Kingma and Ba, 2015), and
the learning rate is set to 10−4.

Finally, we shape a Child NMT model using the
well-trained T1 as well as Parent’s T2 and decoder.
Fine-tuning Child NMT is conducted on the low-
resource parallel data. During fine-tuning, Hug-
gingFace Transformers library (Wolf et al., 2020)
and AdamW (Loshchilov and Hutter, 2019) opti-
mizer are used. The latter runs with a weight decay
rate of 0.1. We carry out grid search in the learn-
ing rates of {10−4, 5× 10−5} for each translation
task, and adopt the best model occurred during the
development process. All fine-tuning is conducted
on NVIDIA RTX 3090 24GB GPU.

4.3 Models for Comparison
We compare with two baseline models, which are
denoted as Baseline1 and Baseline2. Baseline1 acts
as a 12-layer transformer-based encoder-decoder
NMT. It is randomly initialized and trained on low-
resource parallel data. Baseline2 is a variant of
Baseline1 since it is enhanced by transfer learning
within the Parent-Child (PC) framework.

Besides, we compare our model to different state-
of-the-art NMT models, including:
• XLM (Conneau and Lample, 2019) is a trans-

ferable language model. It is obtained by cross-
language pretraining, where parallel sentences are
concatenated for joint encoding, within a masked
language modeling process.
• RE-LM (Chronopoulou et al., 2020) learns to

reuse language models across different monolin-
gual datasets. An extended bilingual vocabulary is
constructed to enhance cross-language pretraining.
The obtained language models are transferred to
low-resource NMT.

In addition, we involve Xu and Hong (2022)’s
Mean-PC into the discussion, which recently im-
proves low-resource NMT using shareable embed-
dings of aligned sub-tokens. Nevertheless, we fail
to directly compare with it because its performance,
as reported, is obtained on different corpora and
source languages. We discuss Mean-PC in a sep-
arate ablation experiment, where it is reproduced
and equipped with our BATL.

4.4 Main Result
We show the primary test results in Table 3. It can
be observed that BATL produces substantial im-
provements compared to both baselines. It is note-
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Sq-En Mk-En Hr-En Ro-En
Model → ← → ← → ← → ←
Baseline1 32.50 52.03 30.13 50.62 25.90 38.90 28.92 46.39
Baseline2 (Zoph et al., 2016) 38.15 54.50 33.32 54.57 29.93 41.34 32.92 48.71
XLM (Conneau and Lample, 2019) 60.90 55.10 55.00 55.50 - - - -
RE-LM (Chronopoulou et al., 2020) 61.10 54.80 55.20 55.30 - - - -
BATL (Ours) 62.24 56.82 56.93 56.15 50.53 45.21 54.65 52.19

Table 3: Low-resource NMT performance. BLEU scores (%) are reported in both translation directions (← and→)
for each low-resource language pairs. The performance of previous work is quoted from the published literature
(instead of reproduction) due to the use of the same test sets.

Model Sq→En Mk→En
Unabridged. 62.24 56.93
−GAN 61.95 56.45
−MLM 60.61 52.81
−Mean-PC 62.06 56.34
−BATL 61.45 56.42
−All 38.15 33.09

Table 4: Verifying the effectiveness of different compo-
nents of our NMT model in ablation experiments.

worthy that we conduct transfer learning within
the same framework with Baseline2, i.e., PC trans-
fer. The additional components we use include
Mean-PC (for embedding sharing among matched
or aligned sub-tokens), as well as GAN and MLM
(for bidirectional adaptation to low-resource and
high-resource languages). This demonstrates that
the considerable performance gains benefit from
the collaboration between bilingual commonality
perception and bidirectionally-adaptive encoding.

Compared to the state-of-the-art low-resource
NMT models, our BATL-based models achieve
better performance. The possible reasons behind
the advantages may include the following aspects:
• The commonly-used cross-language pretrain-

ing in the previous work (XLM, RE-LM and the
variant) is proceeded with a task-irrelevant sce-
nario, where a knowledgeable multilingual pre-
trained model may be used for initialization, though
it fails to learn the experience in MT. By contrast,
we take out part of encoder of the well-trained Par-
ent NMT, and train it to adapt different source lan-
guages during encoding. This allows the resultant
representations of new languages to be compatible
with the pre-existing translation mode, i.e., ensur-
ing the task-specific cross-language training.
•MLM is used alone for cross-language pretrain-

ing in the previous work, where bilingual source

sentences are concatenated, masked and encoded
thereafter. This contributes to the encoding within
a shareable latent space, though the exclusive lin-
guistic characteristics of a specific source language
are neglected to some extent. By contrast, we si-
multaneously pursue commonality and exclusive
characteristics using MLM and GAN, where MLM
intently encodes low-resource source languages in
terms of their natures, while GAN is utilized to
explore shareable encoding mode.

4.5 Ablation study
In a series of ablation experiments, we verify the
effectiveness of different individual components
of BATL, including GAN and MLM. Consider-
ing that we expand PC-based NMT using both
Mean-PC (Xu and Hong, 2022) and BATL, we
also ablate them alternatively to examine their in-
fluences. Table 4 shows the experimental results.
Note that, hereafter, we merely report the forward
NMT performance (i.e., that of “→” NMT), where
low-resource languages (Sq and Mk) are consid-
ered as source languages.

It can be found that ablating MLM results in
more significant performance degradation, com-
pared to GAN. This implies that MLM plays a
dominant role in BATL, or in other words, the
adaptation to low-resource languages during the
“preheated” transfer process is crucial. Note that we
merely push part of encoder (i.e., T1) into MLM-
based cross-language transfer learning. It is differ-
ent from the previous work which uses the whole
encoder. In fact, by comparing the performance of
XLM and RE-LM to our model that ablates GAN
(i.e., mere use of MLM) across Table 3 and 4, we
can find that our local transfer strategy produces
the positive effects (better performance is obtained
even if GAN is disabled).

Compare to Mean-PC, ablating BATL (i.e., ablat-
ing both GAN and MLM) causes more substantial
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Parent Model Sq→En Mk→En
De→En 61.34 55.28
Fr→En 62.18 56.24
Es→En 62.24 56.93
Ru→En 61.03 55.86

Table 5: BLEU scores (%) of Child NMT models trans-
ferred from different Parent models.

performance reduction for the translation scenario
of Sq→En, while relatively comparable reduction
for Mk→En. This illustrates that learning-centered
strategy of BATL has an advantage over the knowl-
edge sharing mechanism of Mean-PC. Frankly,
both are non-negligible. It is proven by the severe
performance degradation caused by disabling both
BATL and Mean-PC (see the performance obtained
when “ALL” is ablated in Table 4).

4.6 Discussion and Analysis

• Effects of Different Parent Models
We construct four Parent NMT models using

different source languages, including De, Fr, Es
and Ru. On the basis, we verify the effects of such
Parents on Child NMT models. The low-resource
NMT performance resulted from different Parents
is shown in Table 5. It can be observed that the
Parents of Fr→En and Es→En are more beneficial
to transfer, helping to produce higher BLEU scores.

Ideally, the PC-based transfer learning ought to
benefit from high-resource languages that derive
from the consistent or similar language family, such
as the relatively closer relationship between Ru and
Mk. However, the experimental results fail to sup-
port this hypothesis. Our findings show that the
size of high-resource training data plays a more
crucial role in improving the performance of PC
transfer. As shown in Table 1, the most knowledge-
able Parent, i.e., that of Es→En, is obtained on
952M training data. The scale of training data is
much larger than that used for Parent of Ru→En.
The latter fails to obtain an equivalently strong
Child model. These findings are consistent with
the conclusion of Kocmi and Bojar (2018).
• Is it Necessary to Construct Multi-layer T1

Our BATL is performed merely using T1, i.e., a
single encoder layer, while the considered encoder
is actually constituted with 6 transformer layers. It
may be questioned whether BATL induces varying
effects when T1 is expanded with more layers. The
following experiment demonstrates that a larger T1

62.24 62.05 61.94 61.47
60.53 59.89

56.93 56.65 56.3 55.89 55.36 54.7

52

54

56

58

60

62

64

66

1 2 3 4 5 6

Sq->En Mk->En

B
LE

U
(%

)

Number of transformer layers

Figure 2: BLEU scores of our approach with respect to
the number of self-attention layers in T1.

negatively influences NMT performance.
In a separate experiment, we split different num-

bers of transformer layers from Parent’s encoder,
and use them to form different depths of T1s. There
are six T1s constructed in total using 1 to 6 encoder
layers respectively. We conduct BATL for each of
them separately, and reform Child NMT models
accordingly. Figure 3 shows performance curves
of such models in the MT scenarios of Sq↔En and
Mk↔En, where the horizontal axis indicates the
number of encoder layers in T1. It can be observed
that performance degrades gradually when T1 is
enlarged using more encoder layers.

The experimental results imply that overly shuf-
fling and remodeling Parent’s encoder for adapta-
tion enhancement is risky. Most of well-trained
parameters (translation experience) of Parent need
to be directly inherited by Child.
• Compatibility with DAE and BT
Both denoising autoencoder (DAE) and back-

translation (BT) have been proven effective in low-
resource NMT. They were known as data augmen-
tation methods that build synthetic corpora using
monolingual data (Artetxe et al., 2018; Lample
et al., 2018). We attempt to combine DAE and BT
with our BATL, and rerun all the experiments to
verify whether compatibility can be achieved.

For verifying the compatibility with DAE, we
combine it with BATL from behind. During train-
ing, BATL is first used to optimize T1 and then
DAE runs. Within the process, there are 3M5 mono-
lingual sentences (of low-resource language) used
for DAE, where the model is additionally trained
to assist revivification of all the falsified sentences,
with the role of autoencoder. The effect of combin-
ing BATL and DAE is negative, as shown in Table
6, where the low-resource NMT performance is
reduced severely. Our analysis suggests that, worse
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Model Sq→En Mk→En
Ours. 62.24 56.93
+DAE 60.97 55.76
+BT 62.75 57.32

Table 6: BLEU scores obtained in the study of compati-
bility, where our BATL is respectively combined with
DAE and BT.

than incompatibility and redundancy, the additional
utilization of DAE leads to catastrophic forgetting
of translation experience. In fact, DAE nearly plays
the same role as the MLM module of our BATL,
and thus, the posteriori-prompted DAE breaks the
compromise effects reached by MLM and GAN.

For verifying the compatibility with BT, we ex-
pand the training data of low-resource language
pairs using parallel instances. As usual, such
pseudo instances are obtained by translating En
to a certain low-resource language (e.g., Sq or Mk)
forwardly and backwardly, where an off-the-shelf
NMT model6 is used. In our experiments, there
are 2M pseudo instances created by BT for ex-
pansion. We use the expanded low-source data to
fine-tune the Child NMT model. The rest configura-
tion remains unchanged. Combining BATL and BT
yields additional performance gains, as shown in
Table 6, where BLEU scores are up to 62.75% and
57.32% for Sq→En and Mk→En. It demonstrates
that BATL can be jointly used with BT safely.

5 Conclusion

We propose a Bidirectionally-Adaptive Trans-
fer Learning (BATL) approach to enhance low-
resource NMT models. Experimental results show
that our approach yields substantial improvements,
compared to the state of the art. In addition, it is
demonstrated that BATL is compatible with BT-
based data augmentation. Combining BATL and
BT obtains additional performance gains. In a se-
ries of auxiliary experiments, we analyze the ef-
fects of various Parent NMT models and multi-
layer BATL on low-resource NMT, some of which
are negative and therefore noteworthy for risks in
real applications.

The Commonality of linguistics stands for the
fundamental principle in prompting Parent-Child
transfer for low-resource NMT. Different family

5We follow the previous work to adopt a similar number
of instance for running DAE (Chronopoulou et al., 2020).

6https://huggingface.co/Helsinki-NLP

languages hold inconsistent commonalities with a
specific low-resource language. Considering this
phenomenon, in the future, we will study on a mul-
tilingual Parent-Child transfer learning. A selec-
tive transfer will be developed, in terms of case-
specific adhesion to different high-resource fam-
ily languages. The adhesion will be perceived by
modeling the relevance of topics, provenances and
domains, as well as document-level structure infor-
mation (e.g., monolingual discourse relationships
and rhetorics).
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Abstract

Recently, many task-oriented dialogue systems
need to serve users in different languages. How-
ever, it is time-consuming to collect enough
data of each language for training. Thus, zero-
shot adaptation of cross-lingual task-oriented
dialog systems has been studied. Most of ex-
isting methods consider the word-level align-
ments to conduct two main tasks for task-
oriented dialogue system, i.e., intent detection
and slot filling, and they rarely explore the de-
pendency relations among these two tasks. In
this paper, we propose a hierarchical frame-
work to classify the pre-defined intents in the
high-level and fulfill slot filling under the guid-
ance of intent in the low-level. Particularly, we
incorporate sentence-level alignment among
different languages to enhance the performance
of intent detection. The extensive experiments
report that our proposed method achieves the
SOTA performance on the public task-oriented
dialog dataset.

1 Introduction

Natural language understanding (NLU) plays a
significant role in task-oriented dialogue systems,
which is aimed to parse dialog utterances by iden-
tifying user’s intent and the arguments of the in-
tent (Hou et al., 2021; van der Goot et al., 2021).
These two tasks are known as intent detection and
slot filling respectively. For instance, in the utter-
ance “Next week’s forecast” as shown in Table 1,
the user intent is to query about the weather cir-
cumstances and the time argument of the query is
“next week”. Recently, many neural models have
been proposed to jointly train these two tasks by
considering the intent detection and the slot filling
as sentence classification and sequence labeling
task (Krishnan et al., 2021; Cao et al., 2020).

However, most works focus on monolingual
datasets which are expensive to build. Furthermore,

∗ Corresponding author.

Sentence Next week’s forecast
Slots B-datetime I-datetime B-weather/noun

Intents weather/find

Table 1: An example of a sentence with slots and intents
annotations from the zero-shot NLU dataset.

some dialogue systems, e.g., Google Home and
Apple Siri, need to serve numerous users around
the world in different languages and might be faced
with the scarcity of dialogue data in certain lan-
guages. Thus, it’s motivated to build cross-lingual
dialogue systems that enable zero-shot adaptation
from a high-resource language to a low-resource
language without any training data in the target
language. Specifically, some models (Upadhyay
et al., 2018; Chen et al., 2018; Schuster et al., 2019)
used cross-lingual pretrained embeddings to bridge
different languages. Some approaches like Liu
et al. (2019) adopted a small vocabulary of trans-
lated word-pairs to align cross-lingual embeddings
by bilingual projection and alleviate the inherent
discrepancies among different languages. Many
existing methods (Liu et al., 2020; Qin et al., 2020)
utilized pretrained cross-lingual language model
(PXLM), e.g., XLM (Conneau and Lample, 2019),
mBERT (Pires et al., 2019) and XLM-R (Conneau
et al., 2020), to derive contextual embeddings of
words in different languages.

Nevertheless, most of existing methods consider
embedding alignments among source and target
languages at the word-level to fulfill the cross-
lingual adaptation, but they ignore that intent detec-
tion is a sentence classification task (Liu and Lane,
2016; Liu et al., 2021), which requires higher level
alignments among different languages. Further-
more, these two tasks are closely related and the
slots highly depend on the intent (Goo et al., 2018;
Qin et al., 2019), but their deep relations are not
fully discovered by existing works.

In light of these observations, we propose a
model named HCLD (A Hierarchical Framework
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for Zero-shot Cross-lingual Dialogue System) to
alleviate these defects. Our approach is built upon
a hierarchical framework to jointly accomplish in-
tent detection and slot filling. It learns to classify
pre-defined intents in the high-level of our model
and fill the semantic slots under the guidance of the
predicted intent in the low-level, which can help
to find more related arguments of the intent to en-
hance the performance of slot filling. Particularly,
we also adopt a pretrained language agnostic BiL-
STM encoder LASER (Artetxe and Schwenk, 2019)
to derive the sentence embeddings and directly use
them for later classification task of intent detection,
where the embeddings of sentences in different
languages are aligned in the sentence-level. We
conduct experiments on a public task-oriented di-
alogue dataset (Schuster et al., 2019). The results
show that our proposed method achieves state-of-
the-art performance on zero-shot adaptation.

2 Related Work

Zero-shot Cross-lingual Transfer The main-
stream methods of zero-shot focus to learning cross-
lingual embeddings. Recently, some contextual
approaches (Pires et al., 2019; Conneau and Lam-
ple, 2019) built upon masked language model en-
courage to narrow the distance of representation
in source and target language space. Apart from
word-level alignments, another work (Artetxe and
Schwenk, 2019) focuses on learning cross-lingual
sentence embeddings to align sentences representa-
tions in different languages. MTOP (Li et al., 2021)
further expend it with distant supervision in zero-
shot setting for flat representations with the masked
source utterance and the translated utterance as the
concatenated input.

Code-switching is used as data augmentation
in an alternative data alignment method known as
CoSDA (Qin et al., 2020). To make model train-
ing highly multilingual, random words in the in-
put are translated and substituted, leading to in-
creased cross-lingual transfer ability. There were
additional attempts to learn how to code-switch
automatically (Liu et al., 2020).

Our work combines the cross-lingual sentence
embedding and word embedding to handle intent
detection and slot filling respectively.

Intent detection and slot filling Intent detection
and slot filling are key tasks in the natural language
understanding (NLU) of task-oriented dialogue sys-
tems. Recently, some models (Qin et al., 2021b;

M’hamdi et al., 2021) consider to implement in-
tent detection and slot filling jointly. The recent
work (Zhang and Wang, 2016) first proposed a joint
model to learn the correlation between intent and
slots by RNN. Co-gat (Qin et al., 2021a) investi-
gated a non-autoregressive model for joint multiple
intent detection and slot filling.

Recently, information of intent has been incor-
porated for slot filling. The prior work (Goo et al.,
2018) utilizes a slot-gated mechanism to model the
relationship between two tasks. Some approaches
like Wang et al. (2018) propose the bi-model to con-
sider the cross-impact between the intent and slots
based on ATIS datasets (Goo et al., 2018). Some
models (Qin et al., 2019; Louvan and Magnini,
2020) predict the intent based on each word and
then feed into slot filling as input.

Compared with previous works, our approach
firstly predicts the intent given by multi-lingual
sentence representation, and directly incorporates
the intent information of sentence for slot filling.
Furthermore, our model is handling simultaneously
intent detection and slot filling at the cross-lingual
setting.

3 Our Approach

3.1 Problem Formulation

Intent detection and slot filling are two key tasks
of NLU. Given a utterance of L words u =
[w1, w2, . . . , wL] and a set of pre-defined intent
types I and slots types S, the intent detection
is aimed to predict the intent oI ∈ I based
on the utterance u. While the slot filling is a
sequence tagging problem, mapping the word
sequence [w1, w2, . . . , wL] into semantic slots
[s1, s2, . . . , sL] where s ∈ S.

3.2 HCLD

As shown in Fig. 1, our proposed hierarchical
model HCLD firstly classifies pre-defined intent
in the high-level architecture and then fulfill the
semantic slots under the guidance of intent in the
low-level. For intent detection, multi-lingual sen-
tence embedding feeds Sentence U into a sentence
representation Hu. Then a linear layer would pre-
dict an intent i based on Hu. For slot filling, word
sequence 1 of U , u = w1, w2, . . . , wL are passed

1https://huggingface.co/docs/transformers/v4.21.3/
en/model_doc/xlm#transformers.XLMTokenizer
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Figure 1: The framework of HCLD.

into multi-lingual language model 2 3 and obtain
contextual embeddings e1, e2, . . . , eL−1, eL. Next,
Hj
s , i ∈ {1, . . . , L} would computed by average

the representations of ej and Hi. Where Hi is ob-
tained by intent i looking up the trainable intent
embedding. Finally, the Hj

s would be used to pre-
dict the corresponding slot sj .

In the high level, we first adopt LASER (Artetxe
and Schwenk, 2019) 4 to derive sentence repre-
sentations hu. Based on multilingual neural ma-
chine translation tasks, LASER can produce sen-
tence embeddings for multiple languages where
embeddings of sentences with close meanings but
in different languages can be aligned in a similar
semantic space. Such sentence-level alignments
can better boost the intent detection, which is a
sentence classification task (Liu and Lane, 2016).
Then the intent oI is predicted by

yI = Softmax(W I
hh

u + bIh), (1)

oI = Argmax(yI), (2)

where yI is the intent distribution and W I
h , b

I
h

are trainable parameters. In the low-level, we uti-
lize mBERT (Pires et al., 2019), the pre-trained
multilingual language model (PXLM), to pro-
duce contextual word embeddings in different lan-
guages [e1, e2, . . . , eL] where word embeddings
are aligned in the same semantic space.

However, PXLM suffers inconsistent contextu-
alized representations of subwords across differ-
ent languages (Qin et al., 2020). Thus, we follow

2https://huggingface.co/bert-base-multilingual-cased
3https://github.com/facebookresearch/XLM/
4https://github.com/facebookresearch/LASER

CoSDA-ML (Qin et al., 2020) 5 to better align
subword representations with data augmentation
during the fine-tuning process of mBERT.

Furthermore, we adopt the intent information
to guide the slot filling task by averaging each
word embedding ej with the corresponding in-
tent embedding hI as new word representations
hSj = Average(ej , hI), and help to fill the seman-
tic slot [s1, s2, . . . , sL]. Here hSj is a combined
representation with a word embedding and the in-
tent embedding, and the slot would be predicted
based on the hSj . Thus, the slot distribution for
each word can be predicted as ySj . Recall that our
proposed approach would guide the slot filling task
with the information of the intent, we add a train-
able intent embedding initialized with randomly
parameters. A predicted intent oI would look up
the intent embedding and then receive an intent
representation HI . Next, HI would influence the
process of slot filling. The process of intent detec-
tion in the high-level can be formulated as follows,

Hu = LASER(U) (3)

Iu = Softmax(Linear(Hu)) (4)

Where Iu is a vector that tries to project the
sentences in any language into a high-dimensional
space with the goal that the same statement in any
language will end up in the same neighborhood.

ySj = Softmax(WS
h h

S
j + bSh), j ∈ {1, . . . , L}

(5)
To jointly learn both tasks, the objective function

5https://github.com/kodenii/CoSDA-ML
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L is formulated as:

L = LI+LS = −
nI∑

i=1

ŷIi log(y
I
i )−

L∑

j=1

nS∑

i=1

ŷSj,ilog(y
S
j,i)

(6)
where LI , LS stand for the loss function of in-

tent detection and slot filling respectively. nI is
the number of intent types and yIi is the gold intent
label. While in LS , L is the sequence length of
a sentence, nS means the number of slot types as
well as ySj is the gold slot label. To avoid error
prorogation, we adopt the gold intent to replace the
predicted intent oI during the training period.

3.3 Dataset

We conduct our experiments on the cross-lingual
task-oriented dialogue dataset (Schuster et al.,
2019) which contains English, Spanish and Thai.
We train and validate our model on the English
dialog data with 30, 521 and 4, 181 sentences re-
spectively, and test on 3, 043 and 1, 692 sentences
in Spanish and Thai for zero-shot adaptation fol-
lowing Liu et al. (2019).

3.4 Implementable Details

We introduce several competitive baselines, in-
cluding: Zero-shot SLU (Upadhyay et al., 2018),
BiLSTEM with CRF (Liu et al., 2019) 6 (LVM),
XLM (Conneau and Lample, 2019), mBERT (Pires
et al., 2019), Attention-Informed Mixed-Language
Training (MLT) (Liu et al., 2020) 7 and CoSDA-
ML (Qin et al., 2020). We adopt classification
accuracy (Acc.) to evaluate the performance of
intent detection while using F1 score to measure
the performance of slot fillings.

In our experiments, we use WordPiece embed-
dings with a vocabulary containing 110k tokens
following Devlin et al. (2019). We adopt LASER
to generate sentence embeddings whose dimension
is 1024 while taking the base case mBERT to de-
rive word embeddings with dimension of 768.

Notice that we take the first subword embedding
as word-level representation following Qin et al.
(2020) while incorporating mBERT for slot filling.
We also set the size of intent embedding to 768,
then train our model for 10 epochs with a batch
size of 32 and a learning rate 0.001. We adopt
AdamW (Loshchilov and Hutter, 2018) to optimize
our HCLD and select the hyper-parameters by grid

6https://github.com/zliucr/Crosslingual-NLU
7https://github.com/zliucr/mixed-language-training

search. Besides, we adopt the gold intent instead
of the predicted intent oI in equation 2 to guide the
slot filling during the early stages of training period
to avoid error prorogation.

4 Experiments

4.1 Overall Performance

We can make several observations from the results
demonstrated in Table 2. Firstly, these methods
with CoSDA-ML (mBERT+COSDA-ML) achieve
the best performance among all the baselines,
which indicates that pre-trained language mod-
els (e.g., mBERT) with data augmentation can
produce better contextual word embeddings for
different languages than those without data aug-
mentation or only with simple word alignments
techniques (e.g., BiLSTM with CRF/LVM).

Specifically, HCLD outperforms the second-best
model on intent detection by 3.4 on Spanish, 1.5
on Thai. We conjecture that the alignments on
sentence embeddings can enhance the adaption on
different languages, leading to the significant im-
provements on intent detection. In addition, the
performance of our model on slot filling also ex-
ceeds all the compared methods. We think that it
can be attributed to the hierarchical architecture
that fulfill the slots under the guidance of intent
information.

4.2 Ablation Study

To investigate the effects of individual component,
we conduct an ablation study and report the results
in Table 2. Firstly, we remove the data augmenta-
tion method CoSDA-ML from our model to testify
its effectiveness, it drops 11.2 and 16.3 on Spanish
and Thai on slot filling respectively. Secondly, we
remove the hierarchical architecture from HCLD
and find that it would perform worse without the
guidance from intent information. It is probably
because intent can provide related information and
help to find more accurate semantic slots. Thirdly,
we investigate the importance of sentence align-
ments by replacing LASER with two pre-trained
language models, i.e., mBERT or XLM, to derive
the sentence embeddings. It validates the effective-
ness of LASER that the performance of models
with either mBERT or XLM is inferior to that with
LASER which can produce aligned sentence repre-
sentations in different languages. In addition, we
also find that mBERT can produce better token-
level embeddings for slot filling than XLM, thus
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Spanish Thai
Methods Intent Acc. Slot F1 Intent Acc. Slot F1

Zero-shot SLU (Upadhyay et al., 2018) 46.6 15.4 35.6 12.1
XLM (Conneau and Lample, 2019) 69.4 40.0 49.3 13.3
mBERT (Pires et al., 2019) 73.7 51.7 28.2 10.6
BiLSTM with CRF (Liu et al., 2019) 88.8 44.0 64.5 17.5
BiLSTM with LVM 89.2 64.0 70.8 29.5
XLM + MLT (Liu et al., 2020) 87.5 68.6 72.6 28.0
mBERT + MLT 87.9 74.9 73.5 27.1
XLM + CoSDA-ML (Qin et al., 2020) 90.3 69.0 86.7 34.9
mBERT +CoSDA-ML 94.8 80.4 76.8 37.3
HCLD 98.2 83.2 88.2 38.0
w/o CoSDA-ML 96.8 72.0 84.2 21.7
w/o Hierarchical 97.8 77.9 87.9 31.8
w/o LASER, w/ mBERT 84.7 79.5 81.0 32.2
w/o LASER, w/ XLM 93.0 69.4 86.3 34.4
w/o mBERT, w/ XLM 96.6 72.7 88.1 36.5

Table 2: Results of zero-shot test set are compared with different baselines as well as the result of ablation study.
The most competitive results from baselines are annotated with underline.

Laser

XLM

Amplify

mBERT
th: ตอน เ%น & อากาศ จะ เ,น อ-างไร
es: Cómo será el clima esta noche�
en: What will the weather be like this evening.

Figure 2: The visualization of sentence representations generated by LASER, XLM and mBERT. In the visulation,
we select three utterances with the same meaning but in different languages, including Thai (th), Spanish (es) and
English (en). In order to clearly demonstrate the points of LASER, we magnify these nodes with 10 times.

we derive word-embedding with mBERT in HCLD.

4.3 Visualization
To provide a more straightforward viewpoint to ex-
amine the sentence-level alignments, we visualize
the sentence representations generated by LASER,
mBERT and XLM by projecting them into a 2-
dimension space. We select three sentences in
English, Spanish and Thai with close meanings,
which is an example from Liu et al. (2019). Ac-
cording to Fig. 2, we can find the three points from
LASER are concentrated and even look like a point
and while points from mBERT and XLM are more
sparse. It validates that we can use LASER to
derive aligned sentence embeddings and it has posi-
tive correlations with the results of intent detection
as shown in Table 2.

5 Conclusion
In this paper, we propose a hierarchical framework
to classify the pre-defined intents in the high-level

and fulfill slot filling under the guidance of intent in
the low-level. Particularly, we adopt sentence-level
alignments to improve the performance of intent
detection, and further enhance the performance
of slot filling. The experiments conducted on the
public dataset demonstrate the effectiveness of our
proposed method and our model achieves state-of-
the-art performance in the zero-shot cross-lingual
scenario.
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Abstract

Recent advances in commonsense reasoning
have been fueled by the availability of large-
scale human annotated datasets. Manual an-
notation of such datasets, many of which are
based on existing knowledge bases, is expen-
sive and not scalable. Moreover, it is challeng-
ing to build augmentation data for common-
sense reasoning because the synthetic questions
need to adhere to real-world scenarios. Hence,
we present GRADA, a graph-generative data
augmentation framework to synthesize factual
data samples from knowledge graphs for com-
monsense reasoning datasets. First, we train
a graph-to-text model for conditional genera-
tion of questions from graph entities and rela-
tions. Then, we train a generator with GAN
loss to generate distractors for synthetic ques-
tions. Our approach improves performance for
SocialIQA, CODAH, HellaSwag and Common-
senseQA, and works well for generative tasks
like ProtoQA. We show improvement in robust-
ness to semantic adversaries after training with
GRADA and provide human evaluation of the
quality of synthetic datasets in terms of fac-
tuality and answerability. Our work provides
evidence and encourages future research into
graph-based generative data augmentation. 1

1 Introduction

Recent work has seen the emergence of several
datasets for improving commonsense reasoning of
language models through tasks like question an-
swering (QA) (Sap et al., 2019b; Talmor et al.,
2019; Bisk et al., 2020) and natural language infer-
ence (Bhagavatula et al., 2020; Zellers et al., 2019;
Sakaguchi et al., 2020). Some of these datasets
are based on existing knowledge graphs that rep-
resent different aspects of commonsense through
entities and relations. For example, annotators for
SocialIQA (Sap et al., 2019b) were shown an event

1Code and synthetic data files are available at https:
//github.com/adymaharana/GraDA.

Original 
Dataset

Question
Generator

Adversarial Choice
Generator

Discriminator

Questions Choices
Synthetic
Dataset

Knowledge
Graph

Filtering

Learner
Model

OptionGANGraphGPT2

Figure 1: GRADA framework: The original dataset
is used to train GraphGPT2, a graph-to-text question
generator and OptionGAN, a distractor generator. The
synthetic dataset is subjected to filtering and used to
train the model in combniation with the original dataset.

from the inferential knowledge graph ATOMIC
(Sap et al., 2019a) and instructed to turn it into
a sentence by adding names, filling placeholders
and adding context, etc. For multiple-choice QA
datasets, annotators are also instructed to write dis-
tractor choices for each question. These useful
datasets are collected through a time-taking and
money-intensive crowdsourcing process which is
hard to scale. Large pretrained models like GPT2
(Radford et al., 2018) can be finetuned to generate
sentences from narrow data distributions, and it
has recently been leveraged to augment datasets
for text classification (Anaby-Tavor et al., 2020)
and question answering (Puri et al., 2020; Yang
et al., 2020). However, it is challenging to gener-
ate augmentation data for commonsense reasoning
because the generated questions and answers (re-
ferred to as “synthetic” in rest of the paper) need
to depict plausible real-world scenarios accurately.
Hence, we develop GRADA, a graph-based gen-
erative data augmentation framework to generate
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synthetic samples from existing knowledge graphs
that encode information about the real world. We
focus on generating synthetic samples for models
that perform discriminative and generative com-
monsense question answering.

Each sample in commonsense reasoning datasets
comprises a question which describes a real-world
scenario and can be mapped to a set of predefined
entities and relations from knowledge bases like
ConceptNet and ATOMIC. For instance, the ques-
tion “Besides a mattress, name something people
sleep on.” from the ProtoQA dataset (Boratko et al.,
2020) can be mapped to the single-hop path (mat-
tress, RelatedTo, people) using ConceptNet. If
a pretrained language model is trained to condi-
tionally generate questions from such input paths,
we can expect it to generate sensible questions
when it is provided new paths with similar relations.
The model will likely generalize to unseen entity
nodes and generate questions containing unique
commonsense knowledge. Following this intu-
ition, we finetune GPT2 (Radford et al., 2019) to
generate questions which explicitly depict the en-
tities and relations in input path. When trained
on the aforementioned example (alongside other
similar examples) and provided with the new path
(mattress, RelatedTo, soft), our model generates
“Besides a mattress, name something that’s soft.”,
which is a valid question for probing real-world
commonsense. Usually, these paths contain multi-
ple nodes with several hops and hence are referred
to as graphs in rest of the paper. In order to rep-
resent the graph, we explore both (a) encoding of
linearized graph and (b) augmentation of linear en-
codings with structure-aware encoding of graph,
and find that the latter improves the transfer of
semantic knowledge from graph to text.

Synthetic questions need to be accompanied
by synthetic answers and distractor choices (for
multiple-choice datasets), which are similarly gen-
erated by finetuning GPT2 for conditional genera-
tion of answers/distractors from the question. How-
ever, Yang et al. (2020) report that human anno-
tators find it hard to pick a unique/unambiguous
answer in more than 50% of the synthetic dataset
generated in this manner. Therefore, we explore
an alternative where we finetune the generative
model within a GAN framework (Nie et al., 2019a)
where it is continuously challenged by a discrimi-
nator model to generate unique distractors that can
fool the discriminator (see OptionGAN, Figure 1).

The synthetic questions and answers thus gener-
ated are assembled into synthetic samples which
are then used in a two-stage training pipeline (Mi-
tra et al., 2019). Additionally, since the generative
pipeline is only an approximate imitation of the
human annotation process, we are left with several
ambiguous and inaccurate samples in the synthetic
pool. Hence, we retain the most informative data
samples from the synthetic pool by using Question
Answering Probability (Zhang and Bansal, 2019)
to measure accuracy by answerability. Our contri-
butions can be summarized as follows:

• We present a generative framework consisting of
(i) a graph-to-text model to convert knowledge
graphs to questions, (ii) a model finetuned with
GAN loss to generate distractors for common-
sense reasoning QA datasets, and (iii) combined
with a filter for selecting the most informative
samples from synthetic datasets.

• We improve performance on commonsense rea-
soning datasets, and perform ablation analysis to
show the impact of various modules in our frame-
work as well as human evaluation of synthetic
dataset quality.

2 Related Work

Explicit reasoning over knowledge graphs has been
a popular approach for improving commonsense
understanding of QA models. Bauer et al. (2018);
Lin et al. (2019); De Cao et al. (2019); Feng
et al. (2020) and Lv et al. (2020) extract relevant
multi-hop relational commonsense from knowl-
edge graphs and show significant improvements
over models that operate solely on text. Devlin et al.
(2019); Yang et al. (2019); Ye et al. (2019) expand
the rich latent knowledge of large pretrained mod-
els by finetuning on similar corpora (Havasi et al.,
2010) before finetuning on the target dataset. Mitra
et al. (2019) convert external resources (Koupaee
and Wang, 2018) to QA samples for data augmen-
tation. Yang et al. (2020) generate randomly initial-
ized samples from finetuned GPT2 as augmentation
data for target datasets. We ground the generated
samples to real-world facts by providing knowl-
edge graphs as input to the model.

There has been a surge of efforts in neural graph-
to-text modeling in the recent years. Marcheggiani
and Perez-Beltrachini (2018) encode input graphs
using a graph convolutional encoder (Kipf and
Welling, 2017). Koncel-Kedziorski et al. (2019)
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propose the model GraphWriter which improves on
the graph attention networks presented in Velick-
ovic et al. (2018) by replacing self-attention en-
coder with Transformer blocks (Vaswani et al.,
2017). Several recent works have shown that pre-
trained generative models can be finetuned with
or without structure-aware graph encoding to im-
prove graph-to-text generation (Mager et al., 2020;
Ribeiro et al., 2020; Hoyle et al., 2020; He et al.,
2020; Ke et al., 2021). Query or question genera-
tion has also been shown to benefit from knowledge
graphs in Shen et al. (2022); Bi et al. (2020). We
combine the structure-aware encoding capabilities
of graph-to-text models with the rich contextual
knowledge of pretrained models in GraphGPT2
and generate rich real-world scenarios from sparse
sub-graphs (Shen et al., 2022; Chen et al., 2020;
Kumar et al., 2019).

Good distractors are necessary for a task model
to learn the right reasoning towards answering
multiple-choice datasets. To this end, Liang et al.
(2018) rank distractors using feature-based en-
semble methods. Offerijns et al. (2020); Yang
et al. (2020) finetune GPT2 to generate distractors.
Chung et al. (2020) approach distractor genera-
tion as a coverage problem and select distractors
for maximizing sample difficulty. Cai and Wang
(2018) use adversarial training to sample high qual-
ity negative training examples for knowledge graph
embeddings. In a similar line of work, we use gen-
erative adversarial networks (GANs) (Goodfellow
et al., 2014) with the Gumbel-Softmax relaxation
(Kusner and Hernández-Lobato, 2016; Nie et al.,
2019b) and train a generator with GAN loss to
imitate the creation of human-authored tricky, in-
correct answer options. Most NLP applications use
REINFORCE (Sutton et al., 2000) algorithm and
its variants (Yu et al., 2017; Cai and Wang, 2018;
Qin et al., 2018; Zhang et al., 2018) to circumvent
the discrete sampling issue for text-based GANs.

3 Methods

In this section, we describe the various modules in
the GRADA framework.

3.1 Graph-to-Text Generation

In the first module of our pipeline, we generate
synthetic questions by using knowledge graphs as
input. Given a dataset of input graphs (gi), we fine-
tune GPT2 with cross-entropy loss for conditional
generation of questions (qi) from the graphs i.e.,

Lq =
∑N

i=1 log p(qi|f(gi)), where f(.) is the func-
tion for encoding the graph and p(.) represents the
probabilities. We explore linearized graph encod-
ing as well as structure-aware encoding of graph.

Linearized Graph Input. Graph linearization
is a simple way to use graphs like text when
finetuning GPT2. We adopt depth-first-search
to linearize the input graphs and preserve edge
information to some extent by augmenting GPT2
vocabulary with special tokens for edges. GPT2
is finetuned for conditional generation of target
question from this linearized graph input.

Using linearized graphs with pretrained lan-
guage models (PTLMs) surpasses graph-based ar-
chitectures at data-to-text generation by a large mar-
gin (Ribeiro et al., 2020). However, Mager et al.
(2020) show that omitting the edge information
from linearized graphs notably degrades perfor-
mance, implying that graph structure is beneficial
for generation. Hence, we propose GraphGPT2.

GraphGPT2 for Structure-aware Graph Input.
Instead of linearizing the input graph, we encode
the graph using a Transformer-based graph
encoder fs(.) which preserves the graph structure
by performing masked self-attention over edges
and nodes. We use the Transformer-based graph
encoder from Graph Writer (Koncel-Kedziorski
et al., 2019) for structure-preserving encoding
of graphs. First, we convert the input graphs
gi into unlabeled connected bipartite graphs
Gi = (vi, ei), where vi is the list of entities,
relations and global vertex, and ei is the adjacency
matrix describing the directed edges (Beck et al.,
2018). The global vertex is connected to all entity
vertices and promotes global context modelling
by allowing information flow between all parts
of the graph. Next, vi is projected to a dense,
continuous embedding space Vi and is sent as input
to the graph encoder (see Figure 2). The encoder
is composed of L stacked Transformer blocks;
each Transformer block consists of a N -headed
self-attention layer followed by normalization and
a two-layer feed-forward network. The resulting
encodings i.e. fs(gi), are referred to as graph
contextualized vertex encodings. These encodings
are prepended to the embedded representation
of linearized graph in the form of past key
values, and sent as input to the decoder. The
decoder i.e., pretrained GPT2, is finetuned to
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Figure 2: GraphGPT2: The Graph Encoder is composed
of L Transformer blocks and its output is concatenated
with GPT2 embeddings for input to GPT2.

generate a coherent question from the combined
embeddings. The graph encoder is initialized with
GPT2 embeddings to force continuity in word
representation across modules. Figure 2 shows the
integration of graph contextualized encodings with
GPT2 in GraphGPT2. The combined generative
model is finetuned end-to-end for maximizing the
conditional log-likelihood of target question qi i.e.
Lq =

∑N
i=1 log p(qi | [fl(gi); fs(gi)]), where fl(.)

represents the linearized graph embeddings.

During inference, both of the above models are
provided with graphs that do not appear in training
dataset to generate synthetic questions containing
new knowledge. See Sec. 4.1 for details on creation
of training and inference datasets.

3.2 Answer & Distractor Generation

We finetune a GPT2 model for conditional gen-
eration of answers from questions i.e., La =∑N

i=1 log p(ai|qi). However, as we discussed in
Sec. 1, a similar method for conditional generation
of distractors does not guarantee good distractors.
Hence, we finetune GPT2 within a GAN frame-
work to generate maximally adversarial distractors,
in a bid to imitate the best human annotator.

OptionGAN for Adversarial Choices. We train
a model to generate distractors (in the multiple-
choice QA task) for the synthetic questions ob-
tained from GraphGPT2 (see Figure 1) using
a generator-discriminator adversarial framework.
The discriminator D is a sequential classification
model that takes the question qi, concatenated with
the ground truth correct answer ai i.e., [qi; ai] or
the distractor d̂i generated by generator G i.e.,
[qi; d̂i] as input and classifies the pair as correct
or otherwise. While training, the generator runs

Context

How would Casey feel as a result?

Casey owed money for college and
Remy paid her bill so she wouldn't owe

Answer

indebted

Adversarial Choices

- generous and kind
- like a good friend

Adversarial Choice
Generator Discriminator

Softmax

Gradients

like a good friend like a good friend
indebted

Gumbel

Figure 3: Training process for OptionGAN.

the risk of learning to generate correct answers in-
stead of distractors, since it’s goal is to be able to
fool the discriminator into classifying the question-
distractor pair [qi; d̂i] as correct. To prevent this,
we heavily bias the model by first pretraining it
to generate only distractors using the conditional
cross-entropy loss and then continue with adver-
sarial training from the saved weights. Mathemat-
ically, we pretrain the generator G with the loss
Lg =

∑N
i=1 log p(di|qi), where qi, di are ques-

tion and distractor, respectively. We use the ques-
tion as input instead of the knowledge sub-graph,
since most generated questions contain additional
semantics from the latent knowledge of the pre-
trained generative model which is not present in
the original sub-graph. Then, the pretrained gener-
ator is finetuned within an adversarial framework
to produce distractors that successfully fool the dis-
criminator, so that we get adversarial options that
are as tricky as human-annotated options (see Fig-
ure 3). We use the Gumbel-Softmax relaxation
(Nie et al., 2019a) while sampling from gener-
ator to allow flow of gradients through the dis-
criminator model i.e. z = softmax( 1τ (h + g)),
where h, g and τ are the logits generated from G,
Gumbel distribution sample and temperature re-
spectively. The temperature is annealed using an
exponential function during training. Following
RelGAN (Nie et al., 2019a), we use the Relativistic
standard GAN loss for the adversarial training i.e.
min
G

max
D

log sigmoid(D([qi; ai]) − D([qi; d̂i])).

Generator G is trained to minimize the loss while
discriminator D is trained to maximize the loss. In
practice, we use GPT2 for both roles i.e., generator
as well as discriminator.

3.3 Filtering and Selection of Samples

Inspite of the careful construction of synthetic sam-
ples using knowledge graphs, the pool of synthetic
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Figure 4: Example of synthetic context generated from
GraphGPT2 for the CODAH dataset.

samples can be noisy and may consist of incoher-
ent text, incorrect question-answer pairs or out-
of-distribution samples. Hence, we use Question
Answering Probability (QAP) (Zhang and Bansal,
2019) to measure accuracy of synthetic samples.
The QAP score (µ) is the prediction probability
of the true class by a model with parameters θ
which has been trained on the original dataset i.e.
µi = pθ(ai|xi). Samples with low prediction prob-
abilities for the correct choices are either annotated
incorrectly or are especially difficult instances for
the model. We define a low and high threshold for
the QAP filter and samples lying within this range
are retained in the dataset.

See supplementary for a comparison of QAP
with two other methods for filtering i.e. Energy
(Liu et al., 2020) and Model Confidence & Vari-
ability (Swayamdipta et al., 2020).

4 Experimental Setup

4.1 Datasets
SocialIQA (Sap et al., 2019b) and Common-
senseQA (Talmor et al., 2019) are annotated using
knowledge graphs, making them a suitable choice
for testing our approach. SocialIQA is a question
answering dataset based on ATOMIC (Sap et al.,
2019a), containing 33,410/1954/2224 samples in
training, development and test set, resp. Com-
monsenseQA (CQA) is a similarly crowd-sourced
dataset based on ConceptNet (Speer et al., 2017)
containing an official split of 9741/1221/1241 sam-
ples. Following Yang et al. (2020), we also test
our method on HellaSwag-2K (Zellers et al., 2019)
and CODAH (Chen et al., 2019) for low-resource
scenario. HellaSwag-2K is created by sampling
2000/1000/1000 examples from HellaSWAG train-
ing and validation sets. We test our approach on
the CoDAH folds (2.8k samples) released by Yang
et al. (2020) for comparison. Apart from these
four MCQ datasets, we also experiment with the
generative QA dataset ProtoQA (9762/52/102) (Bo-
ratko et al., 2020) and find that our approach works
especially well with it. See Appendix for details.

Data Preparation. To prepare graph-to-text
datasets for training GraphGPT2, we map the ques-

tions to multi-hop paths in ConceptNet (Bauer
et al., 2018). We use Spacy2 to tag the questions
with part-of-speech and extract verbs and nouns as
concepts, retaining those that appear in Concept-
Net as entities and the connecting relations (see
example in Fig. 4).3 We remove inverse relations
from the set of triples. The graphs extracted in
this manner are acyclic and can be linearized with
a depth-first search. For SocialIQA, we map the
questions to a combination of ATOMIC and Con-
ceptNet. ATOMIC events contain nouns and verbs
which are representative of the social scenario be-
ing described in the event and are further extended
in the context by SocialIQA annotators. We tok-
enize and stem the events and contexts to extract
these representative words, and compute the per-
centage of overlapping words in the context with
respect to each event. The event with maximum
overlap with context is selected as the correspond-
ing ATOMIC subject. The ATOMIC relation is
selected from the predefined map of ATOMIC rela-
tions to SocialIQA questions. This way, we recover
the ATOMIC alignments of nearly 20,000 samples
from training set of SocialIQA (88% acc.).

Generation of Synthetic Data. In order to pre-
pare synthetic datasets, we create a dataset of un-
seen input graphs by mutating the graphs from
training sets of graph-to-text datasets. One or two
entities are replaced by a randomly selected en-
tity (or relation-entity pair) with similar adjacency
to other entities in the input graph, to create a
mutated graph. The maximum sequence length
of graph contextualized embeddings is set to 64,
while that of GPT2 is set to 128. The synthetic
dataset size (pre-filtering) is 100k/50k/10k/10k/50k
for SocialIQA, CQA, HellaSwag-2K, Codah, and
ProtoQA respectively. For generation of synthetic
data for SocialIQA, we use the set of tuples from
ATOMIC that do not appear in the original dataset.
To prepare the synthetic dataset for Common-
senseQA, we select two adversarial choices from
ConceptNet and two choices generated by Option-
GAN. For ProtoQA, we find accurate answers by
generating 30 sets of answers for each synthetic
question, ranking the answer choices by frequency
and retaining the ones that appear at least 5 times
in the 30 sets. See example of synthetic context
generation in Fig. 4.

2https://spacy.io/
3We use the question concept present in CQA annotations

as additional concept for the questions.

4503



Evaluation. To evaluate graph-to-text generation,
we define an ORACLE score which measures the
semantic relevance of synthetic question when
paired with the original answer options. We re-
place the original question in validation set samples
with the synthetic question and re-evaluate mod-
els on this modified dataset. In addition, we adopt
the following NLG metrics: BLEU-4 (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
CIDEr4 (Vedantam et al., 2015) and BERTScore
(F1 score) (Zhang et al., 2020). Models trained
on the synthetic and original commmonsense rea-
soning datasets are evaluated using their respective
task-specific accuracies (see Appendix). For Pro-
toQA, we report the accuracy in top-k answers
where k = 1, 3, 5. We also perform human evalu-
ation of the samples generated using GraphGPT2
and OptionGAN.

5 Results & Analysis

First, we present results from the complete GRADA
framework followed by results from ablation ex-
periments. Then, we discuss evaluation of the
various generative models in GRADA using au-
tomated metrics as well as human annotators. Fi-
nally, we evaluate the robustness of models trained
with and without GRADA to semantic adversaries
and discuss upper bounds of our data augmentation
pipeline. See Appendix for visualization of the
quality of the synthetic datasets.

5.1 Data Augmentation Results
Results from the best GRADA model are presented
in Table 1.5 The baseline row represents results
from the same task models used for GRADA but
trained without any data augmentation i.e. T5-3B
for ProtoQA and RoBERTa for all other datasets.
We see 1-2% improvements over baseline across
all multiple-choice datasets using GRADA. For the
best GRADA models (selected using validation re-
sults), synthetic samples are generated from struc-
tured GraphGPT2 and OptionGAN, and filtered us-
ing QAP.6 GRADA results in large improvements
for ProtoQA i.e. 4-6% higher values on the Max
Answers 1/3/5 metrics (see Appendix), suggesting
the effectiveness of our approach for similar gener-
ative tasks. We see 0.3%, 0.3% and 0.26% improve-

4https://github.com/Maluuba/nlg-eval
5It should be noted that the state-of-the-art UnifiedQA has

30x parameters in RoBERTaLARGE
6ProtoQA is not a multiple-choice dataset, so OptionGAN

is not used and we use sample perplexity as the only filter.

ment with GRADA over G-DAUG for CQA, Co-
dah and HellaSwag-2K respectively. Our approach
also performs similar to the Option Comparison
Network in HyKAS (Ma et al., 2019) for CQA
(row 3 in Table 1). Our approach is orthogonal
to HyKAS, KG-Fusion as their instance-level ap-
proach retrieves information for each sample while
GRADA augments knowledge on a global level.

Ablation results from the GRADA framework
on validation sets are presented in Table 2. The
first row of Table 2 presents results from baseline
task models i.e., trained without data augmenta-
tion. Next, we compare results from two-stage
training and see upto 1.7% (p<0.05 for all datasets)
improvements (row 1 vs. 4 in Table 2) with the
addition of synthetic data without filtering.7 Using
structured GraphGPT2 leads to 0.47% (p=0.043),
0.39% (p=0.078), 1.46% (p=0.12)8 improvements
over linearized GraphGPT2 for SocialIQA, CQA,
ProtoQA and diminishing improvements for the
smaller datasets. We see consistent but modest
improvements which are not significant, from ad-
dition of distractors generated from OptionGAN.
Even though improvements with OptionGAN are
marginal, it is necessary for the completeness of
the pipeline for synthetic generation. Next, adding
filter to denoise the synthetic pool unequivocally
improves results by large margins for all datasets
except CQA. Filtering by QAP (row 5 in Table 2)
provides additional benefit (p=0.069 and p=0.093
for SocialIQA and CQA, p<0.05 for other datasets)
to downstream task models over unfiltered syn-
thetic data augmentation (row 4).9 See examples of
high and low quality synthetic data samples filtered
using QAP in Table 7. Smaller datasets benefit the
most from GRADA.

Single-hop vs. Multi-hop Paths. Additionally,
we finetune GraphGPT2 with sub-graphs made
of single-hop paths only to generate the context.
We perform data augmentation using the synthetic
questions generated through this approach and com-
pare to the GRADA results on validation sets. See
results in Table 4. We observe 0.92%, 0.08%,
1.48% and 1.05% drops in performance for val-
idation sets of SocialIQA, CQA, CODAH and Hel-

7Statistical significance is computed with 100K samples
using bootstrap (Noreen, 1989; Tibshirani and Efron, 1993).

8p-values are larger for improvements on ProtoQA valida-
tion set which has only 52 samples.

9We also ran experiments with MLM pretraining
(ATOMIC for SocialIQA and OMCS corpus for the rest) be-
fore finetuning on target dataset and saw <1% improvements.
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Method SocialIQA CQA Codah HellaSwag-2K ProtoQA
UnifiedQA-11B (Khashabi et al., 2020) 81.45 79.1 - - 41.49 / 24.95 / 21.77
RoBERTa + KG Fusion (Mitra et al., 2019) 78.00 - - - -
RoBERTa + HyKAS (Ma et al., 2019) - 73.2
BACKTRANSLATION (Yang et al., 2020) 70.2 81.8 -
G-DAUG (Yang et al., 2020) - 72.6 84.3 75.70 -
Baseline* (No Augmentation) 76.74 72.1 82.3 73.40 35.77 / 43.81 / 49.88
GRADA 77.85 72.9 84.7 75.96 42.02 / 48.90 / 54.23

Table 1: Results on test sets of commonsense datasets and comparative results from other approaches taken from
leaderboards. *We use T5-3B for ProtoQA baseline and GRADA results and RoBERTa for all other datasets.

Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1

Synthetic Data Augmentation
Linearized 78.21 77.55 86.07 76.40 45.63
+ Structured 78.68 77.94 86.13 76.70 46.09
+ OptionGAN 78.82 78.02 86.19 76.70 -

Filtering
QAP* 79.12 78.06 86.81 77.60 50.34

Table 2: Ablation results on validation set of common-
sense reasoning datasets. *We use sample perplexity for
filtering ProtoQA samples.

Dataset Original GraphGPT2
Linearized Structured

SocialIQA 75.92 55.18 57.34
CQA 77.23 57.63 58.71
CODAH 82.19 46.23 46.78
HellaSWAG-2K 76.58 41.35 41.74
ProtoQA 41.10 28.21 23.47

Table 3: ORACLE scores for question generation. Origi-
nal represents the performance of baseline task models
on original dataset. The columns GPT2 and GraphGPT2
represent similar evaluation with synthetic questions
generated from linearized graphs and structure-aware
graph encoder respectively.

laSwag respectively. The larger drops for smaller
datasets suggest that multi-hop paths are effective
in low-resource scenarios.

Generalization to Unseen Concepts. We looked
for %overlap of entity nodes and single-hop paths
(subject– relation– object) between the multi-hop
KGs spanning the questions of correctly answered
samples after GraDA training and the questions of
synthetic data, and observed 5-60% entity overlap
and <20% path overlap. This suggests GRADA
also promotes reasoning capabilities of the down-
stream models for unseen concepts.

5.2 Generative Model Evaluation Results

ORACLE scores for the two variations of
GraphGPT2 are presented in Table 3. The scores in
first column refer to the validation set performance
of baseline models on original datasets. These
models are re-evaluated on the questions generated

Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1
GraDA (single-hop) 78.70 77.31 85.96 76.05 45.67
GraDA (multi-hop) 79.12 78.06 86.81 77.60 50.34

Table 4: Results on validation set of commonsense rea-
soning datasets using single-hop vs. multi-hop graphs
for GRADA pipeline.

Dataset Question Answer Distractors
SocialIQA 96.1% 86.0% 50.0%
CommonsenseQA 100.0% 97.2% 25.0%
HellaSwag-2K 92.0% 88.1% 25.8%
CODAH 90.3 83.4% 30.6%
ProtoQA 97.2% 75.0% -

Table 5: Results from human evaluation of generated
questions, answers and distractors.

by GraphGPT2 (as described in Sec. 4.1). The
largest improvement i.e. 2.16% (p=0.068) is ob-
served for SocialIQA, which may be attributed to
its large dataset size. We see diminishing improve-
ments for low-resource scenarios i.e. Codah and
HellaSwag-2K. We observe a similar trend when
the synthetic questions are evaluated using NLG
metrics (see Appendix). More importantly, since
phrase-matching metrics are not ideal for NLG
evaluation (Novikova et al., 2017), we also per-
form human evaluation to judge the quality of gen-
eration for SocialIQA and CQA as we see signif-
icant improvements from structured GraphGPT2
vs. linearized GraphGPT2. We ask annotators
on Amazon Mechanical Turk10 (AMT) to select
the sentence which is more representative of the
information encoded in input graph, for 100 sam-
ples from validation set. Questions generated from
GraphGPT2 are preferred 46% and 53% of the
times for SocialIQA and CQA resp., compared to
those from linearized inputs only, showing that the
addition of graph encoder improves integration of
knowledge in generated text.

We perform human evaluation (AMT)

10Located in United States, HIT Approval Rate>98%,
Number of HITs Approved>10K, $15 per hour (approx.).
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G-Daug (Yang et al., 2020)
GRADA

Knowledge-Graph Generated Data
Tuple

A human enjoys putting rubber on furniture.
They should do this before .. front of the mirror.

S: PersonX provides __
for PersonY’s children

Taylor provided meals for Kendall’s children and they
all enjoyed it greatly.

There was a large, cold bite of ice on my where? R: xIntent Why did Taylor do this?
He hated flying, the controls were what? O: To be helpful [A] to be a bad friend [B] to be helpful [C] to be rude
What is a square leg made of made out of? S: weasel R: AtLocation The man was a weasel, he was part of a powerful what?
What country does a cow go to make a milk run? O: mafia organization [A] out of doors [b] terrarium [c] mafia organization [D]

farmyard [E] backyard

Table 6: Comparison of randomly generated synthetic data from G-Daug (Yang et al., 2020) (left) and knowledge-
grounded synthetic data generated using GRADA (right). (S=Subject, R=Relation, O=Object)

High-quality synthetic samples

SI
Q

A

Riley provided help to the community through
his many charity events over the years. How
would Others feel as a result? [A] selfish [B]
appreciative [C] bored

C
Q

A

When a child is upset by something, what may
they do? [A] fall down [B] wish to fly [C] start
crying [D] play tag [E] boy or girl

PQ
A

Name something you worry you’re still doing
when you’re not supposed to. drinking, smoking,
sleeping, working, using cell phone

Low-quality synthetic samples

SI
Q

A

Tracy raised her arm to her face to cover her eyes
during the scary movie. What does Tracy need
to dobefore this? [A] scared [B] be scared of the
movie [C] to have a fundraiser

C
Q

A

What will you do if you want to go public? [A]
prepare for worst [B] tell family first [C] own
private company [D] telegram [E] charming

PQ
A

Name a family tradition that has deep roots in
the dialect of suzh. cooking, caroling, knitting,
hunting, fishing

Table 7: High and low quality synthetic samples gener-
ated through GRADA for SIQA, CQA, ProtoQA (PQA)
and ranked using QAP scores (and perplexity for PQA).
Labels are marked in green.

of answerability of the generated ques-
tions/answers/distractors on 50 randomly
selected samples from the filtered augmentation
data (see Table 5). Annotators were provided with
the question, answer and distractors, and asked
to evaluate a) if the question can be answered in
a few words (b) if the question can be answered
by the given answer and (c) if the distractors
are wrong answers for the question. More than
90% of the questions were judged as answerable,
75-90% of the answers were judged as correct
answers for the respective questions. The quality
of distractors ranged from 50% for SocialIQA
to 20-30% for smaller datasets. However, the
overall quality of distractors is high enough to
benefit data augmentation. See examples in
Table 7. We also perform human evaluation for

Figure 5: % improvement in accuracy over baseline with
different % of original dataset. Baseline is RoBERTa
finetuned on the same % of original dataset.

the factuality of samples generated using our
method GraDA and GDaug (Yang et al., 2020). We
picked a randomly sampled set of 100 synthetic
QA pairs from G-Daug for the datasets CQA,
Codah and HellaSWAG-2K. For a fair comparison,
we collected 100 synthetic pairs from GraDA
for the same datasets. We asked an annotator to
evaluate if each of the synthetic QA pair adheres
to a plausible real-world scenario, and found that
56% G-Daug samples were judged as factual as
compared to 68% of the GraDA samples (see
examples in Table 6).

5.3 Upper Bounds

We ran experiments for augmentation with 20%,
40%, 60%, 80% and 100% training data from the
original set (see Fig. 5). The improvement margins
from the augmentation dataset is upto 4% at 20%
of the original SocialIQA dataset. We see simi-
lar trends for CODAH, HellaSwag and ProtoQA,
while the improvements for CQA were <1.5%.

5.4 Robustness Evaluation

We expect that data augmentation exposes the task
model to diverse language and improves its robust-
ness to semantic adversaries in addition to boosting
its performance on the target task. To evaluate
this, we use the TextFooler system (Jin et al., 2020;
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OptionGAN Adversarial Choice Examples
A. Question: Skylar kept their grades up by study-

ing a lot in the weeks before finals. How would
Skylar feel afterwards?
Answer: [A] content
Adversarial Choices:
(GPT2) [B] accomplished [C] tired
(OptionGAN) [B] like they don’t need to study
[C] afraid of studying

B. Question: A group of skiers and snowboarders
attend an ice event. the skiers
Answer: [A] are doing tricks and riding around
on the ice
Adversarial Choices:
(GPT2) [B] bike to the finish line [C] and snow-
boarders attend the event [D] are shovelling
snow from the driveway
(OptionGAN) [B] get on skis and ride back to
the station after the race [C] walk in an ice tight
formation [D] flip the snow over their heads onto
the ice and back

Table 8: Examples of two scenarios were OptionGAN
adversarial choices improve the synthetic question. An-
swers are marked in green. OptionGAN adversarial
choices are marked in blue.

Yang et al., 2020; Wei and Zou, 2019) to gener-
ate adversarial text by computing word importance
ranking and replacing the most influential words
with their synonym in the vector space. Overall,
GRADA benefits the robustness of task models and
improves their failure rate by 1-3% (see Table 9).

5.5 Semantic Analysis of OptionGAN
As outlined in Sec. 1, we use OptionGAN to pro-
vide better adversarial choices for the synthetic
questions generated using GraphGPT2. In this sec-
tion, we perform qualitative analysis of the adver-
sarial choices generated with and without Option-
GAN in order to define the scenarios where Op-
tionGAN provides more effective choices. First,
from the analysis of a few examples, we find that
OptionGAN improves the synthetic QA examples
in two main ways:

• It provides wrong choices rather than the
equally-correct choices (false negatives) pro-
vided by the non-adversarial choice genera-
tion (see example A in Table 8).

• It provides wrong choices that require more
complex reasoning (i.e. harder true negatives)
than the ones provided by the non-adversarial
choice generator. (see example B in Table 8).

We conducted a larger human evaluation study
of randomly picked 50 synthetic samples from the

Method SIQA CQA CDH H2K PQA
Baseline 21.7/10.3 14.9/12.5 31.3/16.1 19.4/10.6 5.1/16.2
GRADA 22.4/10.8 15.8/12.9 34.8/18.2 20.5/11.5 6.3/16.8

Table 9: Robustness Evaluation. Failure rate / perturba-
tion ratio (higher is better) from TextFooler experiments
are shown on development sets.

four synthetic QA datasets (SocialIQA, H2K, CQA,
CODAH) and compared the synthetic adversarial
choices generated with and without OptionGAN.
We observe that, in 30.7% of the cases, Option-
GAN choices were more adversarial than the ones
generated without OptionGAN. Within those exam-
ples, nearly 60% samples were categorized into the
first category and 30% were categorized into the
second category, as described above. However, the
improvements from OptionGAN are limited in the
downstream task, suggesting that ‘harder negatives’
are required for effective training.

6 Conclusion

We present GRADA, a graph-based data augmen-
tation framework for commonsense reasoning QA
datasets. We train a graph-to-text question genera-
tor and GAN-based adversarial choice generator for
creating synthetic data samples, which are used to
augment the original datasets. GRADA promotes
factuality in synthetic samples and improves results
on five downstream datasets.

7 Ethical Considerations

The usage of pretrained generative models in any
downstream application requires careful consider-
ation of the real-world impact of generated text.
In our approach, we provide concrete inputs for
grounding the generated text to specific entities and
relations which encode real-world facts, thereby re-
ducing the possibility of propagating unintended
stereotypical and social biases embedded within the
pretrained models. However, since these entities
and relations are derived from existing knowledge
bases like ConceptNet (Speer et al., 2017), there
is potential for transfer of bias present in these re-
sources to the generated texts. Additionally, the
graph-to-text generative models in GRADA pose
the same risk as other data-to-text generative mod-
els (Ribeiro et al., 2020; Hoyle et al., 2020; Mager
et al., 2020) i.e. the models can be made to gen-
erate incorrect facts by providing incorrect data as
input. Therefore, we recommend restricting the use
of GRADA to low-risk, unbiased graphs inputs.
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A Experiment Setup

Datasets: Social IQA (Sap et al., 2019b) and
CommonsenseQA (Talmor et al., 2019) are pop-
ular datasets based on knowledge graphs, making
them a suitable choice for testing our approach. So-
cial IQA is a multiple-choice question answering
dataset. Each sample consists of a context, ques-
tion and three multiple choices. CommonsenseQA
is also a multiple-choice QA dataset, wherein each
sample consists of a context and five multiple
choices. Of those 5 choices, three are taken from
ConceptNet and the other two are authored by anno-
tators. We only use the human-authored incorrect
choices to train our adversarial choice generator
OptionGAN. The ATOMIC knowledge graph con-
tains 24K base events and 877K tuples describing
a variety of social scenarios. We use the 710K
training split introduced in Bosselut et al. (2019)
to randomly sample 100K tuples as the seed sub-
graphs for generation of synthetic data dataset for
Social IQA. For CommonsenseQA, we use the en-
tire ConceptNet knowledge graph, subject to prun-
ing as outlined in Talmor et al. (2019), to sample
seed tuples for synthetic dataset generation. For
SocialIQA, CQA, Codah and HellaSwag-2K, we
use simple accuracy for model evaluation.

ProtoQA (Boratko et al., 2020) is a generative
QA dataset which is evaluated by 7 different met-
rics11. We report the first 3 metrics i.e. Max An-
swers 1/3/5. For tables showing only one number
for ProtoQA, such as the ablation table in main
text, we report the Max Answer 1 metric. In order
to train T5-3B for ProtoQA, we concatenate the
ranked choices for each question and finetune the
model for conditional generation of this concate-
nated string from the input question.

All of the above datasets are being for their in-
tended purposes i.e. research only, in our work. All
of these datasets are in the English language.

Data Preparation: To prepare graph-to-text
datasets for training GraphGPT2, we map the ques-
tions to multi-hop paths in ConceptNet (Bauer
et al., 2018). We use Spacy12 to tag the ques-
tions with part-of-speech and extract verbs and
nouns as concepts, retaining those that appear in
ConceptNet as entities13. For SocialIQA, we map
the questions to a combination of ATOMIC and

11https://github.com/iesl/
protoqa-evaluator

12https://spacy.io/
13We use the question concept present in CQA annotations

as additional concept for the questions.
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ConceptNet. ATOMIC events contain nouns and
verbs which are representative of the social sce-
nario being described in the event and are further
extended in the context by Social IQA annotators
(see Table 6). We tokenize and stem the events and
contexts to extract these representative words, and
compute the percentage of overlapping words in
the context with respect to each event. The event
with maximum overlap with context is selected as
the corresponding ATOMIC subject. The ATOMIC
relation is selected from the predefined map of
ATOMIC relations to Social IQA questions. This
way, we recover the ATOMIC alignments of 20,000
samples from training set of SocialIQA with 88%
accuracy. We introduce additional tokens to the
vocabulary of GPT2, in order to represent the set
of relations present in the knowledge graph. Multi-
word entities are embedded using an average of
embeddings across individual tokens.

Synthetic Data Generation. In order to prepare
synthetic datasets, we create a dataset of unseen
input graphs by mutating the graphs from train-
ing sets of graph-to-text datasets. One or two
entities are replaced by a randomly selected en-
tity (or relation-entity pair) with similar adjacency
to other entities in the input graph, to create a
mutated graph. The synthetic dataset size (pre-
fitering) is 100k/50k/10k/10k/50k for SocialIQA,
CQA, HellaSwag-2K, Codah, and ProtoQA respec-
tively. For generation of synthetic data, we use the
set of tuples from ATOMIC and ConceptNet that
do not appear in SocialIQA and CommonsenseQA
datasets respectively. To prepare the synthetic
dataset for CommonsenseQA, we select two ad-
versarial choices from ConceptNet and two choices
generated by OptionGAN. For ProtoQA, we find
accurate answers by generating 30 samples of an-
swers for each synthetic question, ranking the an-
swer choices by frequency and retaining the ones
that appear atleast 5 times in the 30 samples. After
this, the synthetic question and answer (concatena-
tion of high-frequency answer choices) is subjected
to filtering. Due to lack of option for supplemen-
tary in this submission, we have included a sample
of the generated synthetic examples in Table 10.

A.1 Filtering and Selection of Samples

Inspite of the careful construction of synthetic sam-
ples using knowledge graphs, the pool of synthetic
samples can be noisy and may consist of incoher-
ent text, incorrect question-answer pairs or out-

of-distribution samples. Hence, we compare the
effect of three different methods to filter samples
on downstream task performance.

Question Answering Probability (QAP). The
QAP score (µ) (Zhang and Bansal, 2019) is the
prediction probability of the true class by a model
with parameters θ which has been trained on the
original dataset i.e. µi = pθ(y

∗
i |xi). Samples with

low prediction probabilities for the correct choices
are either annotated incorrectly or are especially
difficult instances for the model. We define a low
and high threshold for the QAP filter and samples
lying within this range are retained in the dataset.

Model Confidence and Variability.
Swayamdipta et al. (2020) propose the model confi-
dence (µ̂i) and variability (σ̂i) measures to identify
the effect of data samples on the model’s general-
ization error. Specifically, µ̂i = 1

E

∑E
e=1 pθ(y

∗
i |xi)

and σ̂i =

√∑E
e=1 (pθ(y

∗
i |xi)−µ̂i)2
E , where E is

training epochs. They find that ambiguous samples
i.e., high variability and mid-range confidence,
contribute the most to test performance on down-
stream task. Following this, we define low and
high thresholds for both confidence and variability
in order to find the most informative samples.

Energy. Liu et al. (2020) show that the energy
score can be reliably used for distinguishing be-
tween in- and out-of-distribution (OOD) samples,
as compared to the traditional approach of using the
softmax scores. We introduce an energy threshold
to select samples which are out-of-distribution i.e.
Ei = −log

∑C
j e

pθ(y
j
i |x) where C is the number of

choices in the QA sample, and measure the effect
of using OOD samples as augmentation data.

A.2 Training Details

Baselines: We use pretrained RoBERTaLARGE (Liu
et al., 2019) for multiple-choice datasets and T5-
3B (Raffel et al., 2020) for ProtoQA as the task
models. The baseline task model is finetuned on
original datasets with no data augmentation, and
is used as scoring model for filtering. We use
GPT2MEDIUM for GraphGPT2, GPT2SMALL as the
pretrained generator and discriminator for Option-
GAN. For GRADA, the model is first finetuned on
synthetic samples using label smoothing (Szegedy
et al., 2016) and then on original dataset. We refer
the reader to Koncel-Kedziorski et al. (2019) for
full implementation details of the Graph Encoder
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HellaSWAG-2K

Question Answer

A close up of a gymnast is shown. a gymnast
balances on beam as she sweeps __

(a) over obstacles. (b) around with other gymnast. (c) performs a front squat and
a flip, and crosses her arms. (d) performing multiple back and forth moves.

"We then search for a car by its model and make.
Once we get the car model __

(a) we determine what the tires are for. (b) we either buy a new or recycle it. If
we want to recycle the car, we simply (c) click the b̈uy now b̈utton. The seller
will then provide a description of the car and (d) we’ll add it to the computer so
we can make a list of the different models we’ll

A man in black robes is walking into a bar. He
__

(a) is telling several anecdotes about how he has been following other people
around and talking to them. (b) speaks to a group of workers and they all rise
and raise their arms in the air. (c) starts singing into the microphone. (D) begins
a beat down on a man standing behind him.

CODAH

Question Answer

I am feeling very hungry. I think that __ (a) I will have dinner. (b) I will drink some milk. (c) I will sleep a lot. (d) I will
play catch with my grandpa.

A man with no body hair was peacefully wallow-
ing in the sea of ocean. The man then __

(a) was surrounded by a flock of birds. (b) hung from the ceiling and sang (c)
began to carpet the beach. (d) watched a movie with his headphones on.

A man excitedly planned a surprise party for his
friend. He __

(a) got a shotgun. (b) put up a giant neon sign with his own hand painted on it.
(c) decided to end his life in front of his friend. (d) planned to brew a cup of
coffee and play chess.

ProtoQA

Question Answer

Name something you worry you’re still doing
when you’re not supposed to.

drinking, smoking, sleeping, working, using cell phone

Besides milk, name a popular product in the
dairy market.

cheese, ice cream, yogurt, butter

Name something you can disagree about. religion, politics, parenting, weight, money

If you sent a postcard from china what would be
pictured on the front?

great wall, temple, dragon

Name something a knight needs for a good day’s
work.

horse, armour, sword, lance, shield

Table 10: Examples of synthetic samples generated for HellaSWAG-2K, CODAH and ProtoQA datasets from the
GRADA pipeline. Correct answers for multiple-choice questions are marked in green.

in GraphGPT2.

OptionGAN: It is tricky to train GAN models,
especially with discrete data like text. We follow
the training method in Nie et al. (2019a) to fine-
tune the adversarial choice generator in a minimax
game with discriminator. In addition to the training
parameters mentioned in Table 18, we restrict the
number of training iterations to 5000, and perform
one gradient descent step on generator for every 5
gradient descent steps on discriminator.

Training & Hyperparameter Tuning. After
generation of synthetic examples, we perform two-
stage training of the task models. In the first phase,
the model is finetuned on synthetic data only, In
the second phase, the model is finetuned on the
original dataset. The model trained in first phase
is subject to bayesian optimization (Snoek et al.,
2012) of filter parameters.

Parameter Bounds
Filter Parameters

QAP/Model Confidence Lower Threshold [0.0, 0.49]
QAP/Model Confidence Higher Threshold [0.51, 1.0]
Energy Lower Threhsold [0.0, 1.0]
Energy Higher Threshold [0.0, 1.0]
Model Variability Lower Threshold [0.0, 0.5]
Model Variability Higher Threshold [0.0, 0.5]

Training Parameters
Learning Rate [1, 10]*1e-6
Batch Size (inc) [4, 8, 16]
Total Train Epochs [3, 5]

Table 11: Optimization bounds for grid-search based
tuning of training hyperparameters.

A.3 Human Evaluation

Generative source of the sentences are omitted
when presented to annotators. The input graphs
are seed tuples from ATOMIC and ConceptNet for
samples from the development sets of Social IQA
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Method BLEU4 METEOR CIDEr BERTScore
Social IQA

GPT2 14.58 26.41 132.84 89.12
GraphGPT2 15.37 26.95 135.91 91.83

CommonsenseQA
GPT2 1.71 12.78 30.89 85.76
GraphGPT2 1.90 13.64 33.76 87.34

Table 12: Comparison of performance for GPT2 and
GraphGPT2 on development sets.

Dataset Wins Loses Tie
SocialIQA 46% 37% 17%
CommonsenseQA 53% 31% 16%

Table 13: Results from comparative human evaluation
of generated questions. Wins and Loses refer to the
%times synthetic question generated from structured
graph input was chosen over linearized graph.

and CommonsenseQA respectively. The annotators
can pick both the sentences if either of them are
equally relevant in their subjective opinion. We al-
low for a single hit for each assignment in Amazon
Mechanical Turk.

B Results

B.1 Generative Model Evaluation

As shown in Table 12, we see small improvements
for BLEU-4 and METEOR, but larger improve-
ments in other metrics from GraphGPT2 i.e., 3.07%
(p=0.027), 2.87% (p=0.035) in CIDEr, and 2.71%
(p=0.042), 1.58% (p=0.056) in BERTScore for So-
cial IQA and CQA, resp. The phrase-matching
metric scores are low for CQA, which may be
attributed to its small sample size. However,
BERTScore for CQA lies between 85-88%, show-
ing that the model manages to convey similar mean-
ing as human-annotated context albeit with differ-
ent words.

More importantly, since phrase-matching met-
rics are not ideal for NLG evaluation (Novikova
et al., 2017), we also perform human evaluation
to judge the quality of generation for SocialIQA
and CommonsenseQA as we see significant im-
provements from structured GraphGPT2 vs. lin-
earized GraphGPT2. We ask annotators on Ama-
zon Mechanical Turk14 to select the sentence which
is more representative of the information encoded
in input graph, for 100 samples from validation
set. Results are shown in Table 13. Samples gener-
ated from structured input are selected significantly

14Located in United States, HIT Approval Rate>98%,
Number of HITs Approved>10K.

Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1

Filtering
QAP* 79.12 78.06 86.81 77.60 50.34
Confidence 79.05 77.83 86.59 77.40 -
Energy 78.76 77.79 86.38 77.10 -

Table 14: Ablation results on validation set of common-
sense reasoning datasets using various filtering methods.
*We use sample perplexity for filtering ProtoQA sam-
ples.

more times than those from linearized inputs, for
both SocialIQA and CQA, showing that addition of
a graph encoder improves representation of knowl-
edge in generated sample.

Additionally, we perform human evaluation of
the samples generated using GraphGPT2 and Op-
tionGAN. We randomly select 50 samples from the
filtered augmentation datasets for each of the five
datasets, and ask 2 annotators to answer 3 yes/no
questions about the quality of the question, answer
and distractors respectively. We present results
from the survey in Table 5. More than 90% of
the questions in each dataset were judged as an-
swerable, showing the effectiveness of GraphGPT2
as well as the QAP-based filtering method. Simi-
larly, 75-90% of the answers were judged as correct
answers for the respective questions. The quality
of distractors were relatively lower, ranging from
50% for larger datasets like SocialIQA to 20-30%
for rest of the datasets. The inter-annotator agree-
ment was also low (<0.6) for distractor judgements,
suggesting the general difficulty of both tasks: dis-
tractor generation and measurement of distractor
quality. However, the overall quality of distrac-
tors in our datasets is high enough to benefit data
augmentation.

For both human evaluation annotation tasks, it
was made clear in the instructions that the data is
being collected for research purposes only.

B.2 Comparison of Filtering Methods

Table 14 demonstrates the effect of using vari-
ous methods of filtering i.e. QAP, Energy and
Model Confidence/Variability. Results are shown
on the validation sets the commonsense reasoning
datasets. We see largest improvements with using
QAP as the filter. Similar improvements are seen
with the confidence/variability scores; however, it
requires scores from multiple finetuned models
from various training checkpoints.
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Figure 6: Plot of Confidence vs. Variability for GRADA
synthetic samples for CQA (left) and H2K (right).

B.3 Robustness Evaluation

We expect that data augmentation exposes the task
model to diverse language and improves its robust-
ness to semantic adversaries in addition to boosting
its performance on the target task. To evaluate this,
we use the TextFooler system (Jin et al., 2020; Yang
et al., 2020; Wei and Zou, 2019) to generate adver-
sarial text by computing word importance ranking
and replacing the most influential words with their
synonym in the vector space. Failure rate is the
%examples for which TextFooler fails to change
the original model prediction, and average perturba-
tion ratio is the average % of words replaced when
TextFooler succeeds at changing the prediction. We
use our best GRADA models in comparison with
baseline models (Table 9). Overall, GRADA pos-
itively impacts the robustness of task models to
TextFooler and improves the failure rate by >3%
for Codah and upto 1% for all other datasets. We
observe similar trends for the perturbation ratios
too. This shows that GRADA improves semantic
robustness of the models. It is also worthwhile
noting that generative task models like T5-3B for
ProtoQA are especially prone to adversarial attacks
like TextFooler with a mere 5-6% failure rate and
there needs to be more research towards improving
their robustness.

B.4 Cartography Quality Evaluation

We use dataset cartography Swayamdipta et al.
(2020) to visualize the quality of our synthetic
datasets. Samples in top left of figure are easy,
while samples towards bottom and right of the
figure are difficult and ambiguous respectively.
We can observe from the figure that the synthetic
dataset for CQA (left) has a higher % of easy sam-
ples than HellaSwag-2K, suggesting that the qual-
ity of synthetic samples generated by GRADA
improves with original dataset size. Moreover,
when applying QAP filtering, using the entire syn-
thetic dataset yields largest improvements for CQA
whereas for HellaSwag-2K (right), the lower cutoff
for QAP is 0.3 which filters out most of the samples

present in bottom part of the plot. This suggests
that in low-resource scenarios, it is important to
remove inaccurate samples, while larger datasets
benefit from ambiguous and inaccurate samples.
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Best Parameters Social IQA CQA Codah HellaSwag-2K ProtoQA
QAP Lower Threshold 0.49 0.32 0.43 0.49 0.27
QAP Higher Threshold 1.0 1.0 1.0 1.0 1.0

Table 15: Best Filter Hyperparameters.

Social IQA CommonsenseQA
Hyperparameter Baseline GRADA Phase 1 GRADA Phase 2 Baseline GRADA Phase 1 GRADA Phase 2
Learning Rate 5e-6 4e-6 3e-6 1e-5 5e-6 1e-5
Epochs 3 1 3 5 1 5
Max Gradient Norm 1.0 1.0 1.0 None None None
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 8 8 8 16 16 16
Max Length 128 128 128 70 70 70
Warmup Ratio 0.0 0.0 0.0 0.06 0.06 0.0
LR Decay Linear Linear Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Hardware RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti
Single GPU Hours 5 hrs 1.5 hrs 5 hrs 2 hrs 0.5 hrs 2 hrs

Table 16: Training hyperparameters for baseline and two-stage GRADA training of SocialIQA and CQA

CODAH HellaSwag-2K
Hyperparameter Baseline GRADA Phase 1 GRADA Phase 2 Baseline GRADA Phase 1 GRADA Phase 2
Learning Rate 1e-5 4e-6 3e-6 5e-5 5e-6 1e-5
Epochs 5 1 5 5 1 5
Max Gradient Norm 1.0 1.0 1.0 None None None
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 16 8 16 8 8 8
Max Length 90 90 90 128 128 128
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06
LR Decay Linear Linear Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Hardware RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti
Single GPU Hours 2 hrs* 1 hr* hrs 2 hrs* 0.5 hr 0.2 hr 0.5 hr

Table 17: Training hyperparameters for baseline and two-stage GraDA training of RoBERTa models for HellaSwag-
2K and CODAH. *values reported for five-fold training

OptionGAN
Hyperparameter GraphGPT2 Generator Discriminator GAN
Learning Rate 4e-5 1e-5 1e-5 1e-6
Epochs 5 5 3 -
Max Gradient Norm 1.0 1.0 1.0 None
Weight Decay 0.0 0.01 0.01 0.01
Batch Size 8 8 8 4
Max Length 128 128 128 128
Warmup Ratio 0.0 0.0 0.0 0.06
LR Decay Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW

Table 18: Training hyperparameters for GraphGPT2, Generator, Discriminator and OptionGAN
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Abstract

The human recognition system has presented
the remarkable ability to effortlessly learn
novel knowledge from only a few trigger
events based on prior knowledge, which is
called insight learning. Mimicking such
behavior on Knowledge Graph Reasoning
(KGR) is an interesting and challenging re-
search problem with many practical applica-
tions. Simultaneously, existing works, such as
knowledge embedding and few-shot learning
models, have been limited to conducting KGR
in either “seen-to-seen” or “unseen-to-unseen”
scenarios. To this end, we propose a neural
insight learning framework named Eureka to
bridge the “seen” to “unseen” gap. Eureka is
empowered to learn the seen relations with suf-
ficient training triples while providing the flex-
ibility of learning unseen relations given only
one trigger without sacrificing its performance
on seen relations. Eureka meets our expecta-
tion of the model to acquire seen and unseen re-
lations at no extra cost, and eliminate the need
to retrain when encountering emerging unseen
relations. Experimental results on two real-
world datasets demonstrate that the proposed
framework also outperforms various state-of-
the-art baselines on datasets of both seen and
unseen relations.

1 Introduction

Human knowledge provides a formal understand-
ing of the world. Knowledge graphs (KGs) that
represent structural relations between entities in
the form of (head entity, relation, tail entity) have
become an increasingly popular research direction
towards cognition and human-level intelligence.
These triples of KGs are abbreviated using (h, r, t)
in this paper. Over the last few years, the works
(Bordes et al., 2013; Sun et al., 2019) on knowl-
edge embedding have achieved impressive results
in the knowledge graph reasoning (KGR) task. To

∗Corresponding author

successfully learn a set of relations, these methods
usually require a large number of training triples
and cannot infer missing facts of unseen relations
due to the sparse interactions, which are essentially
transductive learning processes in terms of the rela-
tions. Thus, we categorize this line of knowledge
embedding research as “seen-to-seen” methods;
i.e., reasoning from seen relations to seen rela-
tions. Moreover, the representations of the rela-
tions in KGs produced by knowledge embedding
models always remain fixed after training. They
may be sub-optimal since the real-world large-scale
KGs dynamically evolve quickly with new relations
emerging every day, rather than staying static.

Suppose that we would like to expand the set
of relations that the knowledge embedding models
can recognize. We need to collect training triples
for the emerging (unseen) relations; i.e., those not
in the initial training set, and then restart the afore-
mentioned computationally costly training proce-
dure on the enhanced training set. Not to mention
the fact that the model may not perform well when
only few training examples are available for the
unseen relations (Xiong et al., 2018).

To alleviate the above challenge, some few-shot
learning methods (Xiong et al., 2018; Zhang et al.,
2020) have been proposed, which can be seen as
inductive learning approaches. Their basic ideas
are to predict new facts in a meta-learning frame-
work in a setting where only few training triples
for each unseen relation are available. We term
them as “unseen-to-unseen” methods; i.e., reason-
ing from unseen relations to unseen relations. This
is possible since the meta-learning framework can
simulate the unseen relations during meta-training,
while they are unobservable in conventional learn-
ing schemes. However, their performance will
reach a plateau as the number of training exam-
ples increases, as illustrated in Figure 1. Moreover,
they cannot perform as well as knowledge embed-
ding models on the initial seen relations with suffi-
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Figure 1: Impact of the size of training triples on NELL
dataset. K is the number of training triples per relation.
TransE and RotatE are typical knowledge embedding models;
GMatching, FSRL, and FAAN are few-shot learning methods;
Eureka is our model.

cient training triples, as the few-shot learners are
adapted to the common parts of the different meta-
tasks and forget the relation-specific information.
In other words, the dramatic performance of few-
shot learning methods on unseen relations comes
at the cost of dysfunction on seen relations with
sufficient training examples available. It is also dif-
ferent from the human learning system, where new
concepts can be learned from very few examples at
no extra cost.

Meanwhile, the human learning system exhibits
the remarkable ability to effortlessly discover novel
concepts during the “Eureka moment”, with only
one or few examples as the trigger. For example,
a child, having accumulated enough knowledge
(seen relations) like “CEO”, “President” and so on,
can easily learn and generalize the unseen concept
of “Leader”from only a single knowledge set like
(Gandhi, Leader_of, India) by analogy. Mimicking
this behavior in artificial reasoning systems is an
interesting and very challenging research problem
with many practical advantages, such as developing
real-time knowledge reasoning systems for down-
stream applications, such as language models.

Motivated by the limitations of knowledge em-
bedding methods and few-shot KGR models, we
mimic human insight learning modes in machine
learning and propose a neural insight learning
framework termed Eureka for KGR tasks. The
whole structure of Eureka is illustrated in Figure
2. Eureka aims to tackle the problem knowledge
embedding methods and few-shot KGR models en-
countered, under a more realistic setting, where
a large set of training triples are assumed to exist
for seen relations; and using these data as the sole

input, we want to develop a KGR model that, is not
only capable of recognizing these seen relations,
but also learning unseen relations from only one
training example (provided only at the testing time)
without sacrificing the performance on seen rela-
tions or requiring to be retrained). We also devise
a cross-domain attention (CDA) network to model
the semantic interactions and bridge the gap be-
tween unseen and seen relations; for example, the
unseen relation “Leaderof” has semantic similarity
with the seen relations “Presidentof” and “CEOof”
and modeling such similarity will help to make
up for the lack of training information of unseen
relations and represent the unseen relation more
accurately to some extent.

Compared to prior approaches, we believe that
Eureka resembles more closely the human learning
behavior (w.r.t. how it learns novel concepts). Eu-
reka is also more suitable in the real-world scenario
where unseen relations do not emerge one by one
but may emerge simultaneously as a set, with only
few triples available for each new unseen relation.

To summarize, the contributions are as follows:
• To the best of our knowledge, Eureka is the

first neural insight learning framework for
KGR by mimicking human learning behav-
iors, which can efficiently learn new unseen
relations based on one given trigger and the
learned seen relations at no extra cost.

• In contrast to the previous works, Eureka
bridges the “seen” to “unseen” gap with the
CDA networks and provides the flexibility of
inferring missing facts for both seen and un-
seen relations in a unified protocol.

• The extensive experimental results on two
real-world datasets show the superiority of Eu-
reka compared with the state-of-the-art base-
lines on both seen and unseen relations.

2 Related Work

The neural insight learning framework draws on
the previous research in knowledge embedding and
meta-learning.

2.1 Knowledge Embedding

Knowledge embedding aims to model multi-
relational data and automatically inferring missing
facts in knowledge graphs. Many of them encode
both entities and relations into a continuous low
dimensional vector space. TransE (Bordes et al.,
2013) is a classic work that encodes both entities
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and relations into a 1-D vector space. DistMult
(Yang et al., 2015) and ComplEx (Trouillon et al.,
2016) attempt to mine latent semantics to benefit
their KG embeddings. CoKE (Wang et al., 2019)
presents a novel paradigm that takes into account
KGs’ contextual nature and learns contextualized
knowledge graph embedding based on the trans-
former. There are also other effective models like
ConvE (Dettmers et al., 2018a), Rotate (Sun et al.,
2019) and UniKER (Cheng et al., 2021). These
embedding-based models rely heavily on extensive
collections of training instances, and they are not
able to deal with sparse triples, as presented in
(Xiong et al., 2018).

2.2 Meta-Learning

Meta-learning, commonly known as learning to
learn (Lake et al., 2015), refers to the process of
improving the learning algorithm itself over mul-
tiple learning episodes. Contrary to conventional
machine learning approaches where tasks are han-
dled from scratch using a fixed learning algorithm,
meta-learning provides an opportunity to dynami-
cally adapt to new tasks with the learned algorithm.

One line of meta-learning research, which is
closely related to our work, is few-shot learning.
Few-shot learning methods seek to learn novel con-
cepts with only a small number of labeled examples.
Recent deep learning based few-shot learning al-
gorithms can be classified into three groups. The
first group is model-based approaches, which de-
pend on a specially designed part, like memory,
to quickly optimize the model parameters given
few-shot training instances. MetaNet (Munkhdalai
and Yu, 2017), a typical model-based approach,
learns meta knowledge across tasks and gener-
alizes rapidly via its fast parameterization. The
second group is metric-based approaches, which
try to learn a generalizable metric and the cor-
responding matching functions among a set of
training instances. For example, prototypical net-
works (Snell et al., 2017) classify each instance
by calculating its similarity to the prototype rep-
resentation of each class, whose idea is similar
to some nearest neighbor algorithms. GMatching
(Xiong et al., 2018), FSRL (Zhang et al., 2020),
and FAAN (Sheng et al., 2020) can also be consid-
ered as metric-based approaches. The third group
is optimization-based approaches, which aim to
learn faster by changing the optimization methods
on few-shot reference instances. One example is

the model-agnostic meta-learning (MAML) (Finn
et al., 2017), which first proposed a framework of
parameter updating for a task-specific learner and
performing meta-optimization across tasks by us-
ing the above updated parameters. MetaR (Chen
et al., 2019), MetaP (Jiang et al., 2021) and GANA
(Niu et al., 2021) can be regarded as optimization-
based approaches for few-shot KGR.

3 Preliminaries

In this section, we formally describe neural insight
learning in the KGR scenario and leave technical
details to the next section. According to the Gestalt
theory of learning, insight learning occurs spon-
taneously when people discover new knowledge
within their prior knowledge as a result of reason-
ing or problem-solving processes that reorganize
or restructure that knowledge (Ash et al., 2012). In
other words, there are two key points about ma-
chine insight learning in the KGR scenario. One
is that the model could learn new unseen relations
with a trigger based on the prior seen relations it
learned, the other is that the model should achieve
good performance on both seen and unseen rela-
tions as human beings do.

We first present the definition of KGR, then
formalize neural insight learning in the KGR sce-
nario. The difference between Eureka and previous
relevant learning theories such as meta-learning
(Hospedales et al., 2021), transfer learning (Pan
and Yang, 2010), one-shot learning (Wang et al.,
2020), and one-pass learning (Zhou et al., 2016)
are also discussed.

Definition 1. Given an incomplete knowledge
graph G presented as {(h, r, t)} ⊆ E × R × E ,
where E and R denote the entity set and relation
set, the KG reasoning task aims at finding a set of
missing triples; i.e., predicting relations r between
two existing entities: (h, ?, t), or predicting the
tail entity t given the head entity and the relation:
(h, r, ?), or predicting the head entity h given the
relation and the tail entity: (?, r, t).

In practical experimental settings, it is reason-
able to predict the tail entity to test a KGR model.
Usually, we aim to rank the triples with the true tail
entity higher than those with the false tail entities.

Eureka consists of two stages: prior knowledge
learning and trigger learning. The former mim-
ics where the human beings acquire basic prior
knowledge. The latter aims at learning new knowl-
edge given only one trigger as the training example,
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based on the prior knowledge they gained. Taking
the KGR task as an example, the objective of prior
knowledge learning can be presented as follows:

min
θ

E

⎡
⎣ ∑

(h,r,t)∈Ga∪Ḡa

�θ

(
h, r, t | Ga, Ḡa

)
⎤
⎦ , (1)

where Ga is a KG full of triples containing seen
relations and Ḡa is a set of invalid triples gener-
ated by polluting the tail entities of valid triples
in Ga; �θ

(
h, r, t | Ga, Ḡa

)
is an arbitrary ranking

loss function, and θ is the parameter of Eureka
including the embeddings of entities and seen re-
lations. This stage is very similar to conventional
knowledge embedding models.

Trigger learning imitates the human ability of
fast learning new knowledge based on their prior
knowledge after being stimulated by a new phe-
nomenon. We sample one new training triple
episodically as a trigger for the model to acquire the
unseen relation. The objective of trigger learning
is defined as:

min
ϕ

EDr′

⎡
⎢⎣

∑

(hi,r′,ti)∈T test
r′ ∪Ḡb

�ϕ

(
hi, r

′, ti | θ∗, Ḡb, T
train
r′

)
∣∣T test

r′
∣∣

⎤
⎥⎦ ,

(2)

where r′ is a unseen relation and Dr′ =
{T train

r′ , T test
r′ } is sampled from Gb ∪ Ḡb; Gb is a

KG of unseen relations and Ḡb is a set of invalid
triples generated by polluting tail entities of triples
in Gb. The relations in Gb and Ga are disjointed;
i.e., the relations in Gb are the unseen relations
for the model trained on Ga. Each T train

r′ contains
only one training triple (h0, r

′, t0) as a trigger. The
T test

r′ = {(hi, r
′, ti)} is comprised of the testing

triples of r′ with ground-truth tail entity and the
invalid tail entities for each query (hi, r

′). θ∗ is
the learned optimal parameter of prior knowledge
learning stage. �ϕ

(
hi, r

′, ti | θ∗, Ḡb, T
train
r′

)
is the

loss function of trigger learning stage and ϕ is the
parameter to learn.

There are also some learning theories that neural
insight learning looks a bit similar to. We list them
as follows:

1) Meta-Learning (Hospedales et al., 2021):
Meta-learning, also termed as learning to learn,
refers to the paradigm of improving a learning al-
gorithm given the experience of multiple learning
episodes.

2) Transfer Learning (Pan and Yang, 2010):
Transfer learning focuses on storing knowledge
gained from a source domain and applying it to a
different but related target domain.
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Figure 2: The structure of Eureka. We train Eureka in prior
knowledge learning and trigger learning stages. Specifically,
Eureka acquires the embeddings of entities and seen rela-
tions in the prior knowledge learning stage through a bidirec-
tional transformer encoder and CNN-based decoder. With the
learned representations of seen relations, Eureka then learns
the unseen relations efficiently through a cross-domain atten-
tion network. Note that Eureka shares the same encoder and
decoder in the two stages.

3) One-Shot Learning/Few-Shot Learning
(Wang et al., 2020): Whereas most machine learn-
ing algorithms require training on hundreds or
thousands of samples and very large datasets, one-
shot/few-shot learning aims to learn information
about object categories from only one/few training
samples.

4) One-Pass Learning (Zhou et al., 2016; Hou
and Zhou, 2018): One-pass learning is proposed
to predict new coming samples’ label and update
the model based on the prediction, where coming
samples are used only once and never stored.

It is obvious that we adopt a meta-learning frame-
work to formalize and implement Eureka. However,
we use a more strict setting where only one train-
ing example can be seen and the trained model is
capable of performing well on the unseen relations
without sacrificing its performance on the seen rela-
tions. Our neural insight learning can be termed as
trigger to learn as the meta-learning is also known
as learning to learn. Eureka can be also seen as a
subset of transfer learning with more restrictions
since it could learn unseen relation representations
in the target domain based on the prior knowledge
acquired from the source domain. Although one-
shot learning and Eureka both use one training
instance as input, the goal of one-shot learning is to
learn the common knowledge across the tasks and
forget the relation-specific prior knowledge while
Eureka wants to remember prior knowledge. One
pass learning basically refers to learning by seeing
the data once. So if we learn by taking data as a
single instance, mini-batch, or large batches as long
as we go over them once (epoch=1), they qualify
as one pass learning. However, our neural insight
learning only takes one training example as input
and could also satisfy the evolving streaming data
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nature in the real world.

4 Neural Insight Learning

4.1 Overall Architecture

To fully mimic human insight learning behaviors,
Eureka is built on a two-stage learning framework.
Figure 2 shows an overview of Eureka. In the prior
knowledge learning stage, Eureka takes triples sam-
pled from the Ga as input, similar to the knowl-
edge embedding models (Wang et al., 2019) based
on deep neural networks. We use a bidirectional
transformer encoder and a CNN-based decoder to
learn the dynamic embeddings of entities and re-
lations of Ga and the parameters of the encoder-
decoder model. The second stage, termed trigger
learning, is designed to learn new knowledge with
only one training example as a trigger based on the
prior knowledge Eureka gained. Thus, we adopt
a meta-learning framework to implement trigger
learning. During meta-training step, the trigger
sampled from Gb only contains one training triple
(h0, r

′, t0) for each unseen relation r′. The rep-
resentations of r′ can be produced by the trained
encoder-decoder model. However, only a single
training example cannot guarantee the accurate rep-
resentations of r′ as the previous research on knowl-
edge embedding (Xiong et al., 2018) claimed. We
use a CDA network to make up for the lack of
training information of unseen relations. The CDA
mechanism incorporates the embeddings of the rel-
evant seen relations with the calibrated embeddings
of r′ to acquire accurate representations of unseen
relations. The same CNN-based decoder is then
applied to judge whether the query is true or not
with the given trigger during the meta-testing step.

4.2 Prior Knowledge Learning

We expect that Eureka to learn new relations with
only one trigger and preserves good performance
on seen relations; i.e. the embeddings of entities
and relations should ideally evolve with the newly
added triggers. Thus, we need an encoder to pro-
duce dynamic embeddings for every component
given its graph contexts. The pre-trained language
models such as BERT (Devlin et al., 2019), GPT-2
(Radford et al., 2019), have recently made great
progress in learning contextualized word embed-
dings with transformers (Vaswani et al., 2017). In-
spired by these techniques, we employ a bidirec-
tional transformer encoder to model graph con-
texts and produce the dynamic contextual embed-

dings of entities and seen relations. In contrast to
previous sequential left-to-right or right-to-left en-
coding strategies for the elements in a triple (Guo
et al., 2019), our model applies a multi-head self-
attention mechanism to model context information,
which allows each element to pay attention to all
elements in the sequence. Given a triple (h, r, t),
we obtain a sequence X = (x1, x2, x3), where x1,
x2, x3 represent the head entity, relation, and tail
entity, respectively. Since we aim to acquire the
well-learned embeddings among triples, we follow
the settings of most knowledge embedding mod-
els; i.e., modeling the semantic knowledge among
triples instead of paths and walks outstretching
from the entity and relation like CoKE (Wang et al.,
2019). For each element xi in X , the input of our
transformer encoder is constructed as:

m0
i = xele

i + x
pos
i , (3)

where xele
i and x

pos
i denote the element embedding

and the position embedding, respectively. The for-
mer is used to identify the current element, and the
latter represents its position in the sequence. We
feed the input vectors into a stack of L transformer
blocks to encode X:

ml
i = Transformer

(
ml−1

i

)
, l = 1, 2, · · · , L,

(4)
where ml

i is the hidden state of xi after l-th layer.
Then we are allowed to obtain a sequence of

three encoded vectors (mL
1 ,mL

2 ,mL
3 ) for the triple

(h, r, t). (Fan et al., 2020) indicates that a given
layer of transformers can only access low-level rep-
resentations and it restricts the model from fully
exploiting the sequential nature of the input. Trans-
formers also have challenges in modeling hierarchi-
cal structures (Hahn, 2020). Thus we adopt CNN
as the decoder in Eureka since CNN can explore the
high-level representations and model the hierarchi-
cal structures of the interactions between entities
and relations by nonlinear feature learning. The
score function for the triple is designed as

f(h, r, t) = pooling(σ([mL
1 ,mL

2 ,mL
3 ] ∗ ω))�u,

(5)
where pooling is a max-pooling operator and σ
denotes an activation function. [mL

1 ,mL
2 ,mL

3 ] ∈
Rd×3 is a matrix generated by stacking mL

1 , mL
2

and mL
3 , and d is the embedding size; ∗ denotes a

convolution operator; ω ∈ Rs×3 is a set of filters
with s being the number of filters; and u ∈ Rd

denotes a weight vector. Unlike ConvE (Dettmers
et al., 2018b), the decoder of Eureka stacks ele-
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ments of the triple instead of concatenating the
relation and entities in the triple. The stack oper-
ation for feature maps, which is fed to a Conv2D
network, increases the learning ability of latent
features. The pooling operator is empowered to
capture the most important semantic feature from
each feature map and reduces the number of weight
parameters.

Depending on the scoring function f(h, r, t),
we adopt a binary cross-entropy (BCE) loss as
(Nguyen et al., 2018). It applies a softplus (Glorot
et al., 2011) to the score of each (positive or nega-
tive) triple and uses the cross-entropy between the
resulting likelihood and the triple’s label as loss:

L =
∑

(h,r,t)∈G∗
a

log
(
1 + exp

(
−l(h,r,t) · f(h, r, t)

))
,

(6)
in which, l(h,r,t) =

{
1 for (h, r, t) ∈ Ga

−1 for (h, r, t) ∈ Ḡa
where

Ga and Ḡa are collections of valid and invalid
triples; G∗

a =
{
Ga ∪ Ḡa

}
; Ḡa is generated by cor-

rupting tail entities of valid triples in Ga.

4.3 Trigger Learning
In this stage, we explore how to learn an unseen
relation representation with only one trigger. Since
we aim to predict new facts on both seen and un-
seen relations, Eureka shares the same encoder and
decoder across the two training stages. In other
words, the representation vectors (m′

1,m
′
2,m

′
3)

for a trigger (h0, r
′, t0) is output through Equation

3 and 4. Note that Eureka cannot see r′ in the prior
knowledge learning stage. Thus, r′ is randomly
initialized before being fed to the transformer en-
coder. In the dynamic scenario, the representations
of new relations cannot be sufficiently trained on
knowledge embedding models given limited train-
ing triples and thus the embeddings of r′ output by
the transformer encoder can be not accurate. To em-
power Eureka to adapt well to unseen relations and
learn from prior knowledge, we borrow the idea
of transfer learning and design a CDA to model
the semantic interactions between unseen and seen
relations and bridge the “seen-to-unseen” gap.

In the “seen-to-unseen” reasoning scenario,
we adopt a meta-learning framework to imple-
ment trigger learning. For a specific trigger
(h0, r

′, t0), the CDA network can be presented
as CDA(m′

1,m
′
2,m

′
3,Wa), where m′

1,m
′
2,m

′
3 is

the output embeddings by the transformer encoder
and Wa is a set of all seen relations’ embeddings
generated in the prior knowledge learning stage.

The semantic interactions between seen relations
and r′ is modeled as follows:

w′
i =

K∑

t=1

ATTENTION
(

m′
2

‖m′
2‖

, kt

)
· wt

a

‖wt
a‖

,

(7)
where

{
kt ∈ Rd

}K

1
is a set of learnable keys (one

per seen relation) used for indexing the memory.
wt

a is the t-th row vector of the prior knowledge
matrix Wa, which represents the embedding of
the seen relation rt. Then the final representation
vector of unseen relation r′ can be computed as:

w∗
i = λ1 � m′

2 + λ2 � w′
i, (8)

where λ1 and λ2 ∈ Rd are weight matrices to learn;
� is the Hadamard product. Through the above
process, our model is able to explicitly leverage
the acquired semantic knowledge from the seen
relations. Note that we only consider a closed set of
entities and an open set of relations in this scenario.
To be more specific, the testing triples share the
same entities with the training triples while the
relations of testing triples are disjointed from the
relations of training triples.

Since we aim to predict the missing links in a
unified protocol for both seen and unseen relations,
we adopt the same decoder and loss function as
the prior knowledge learning does. To be more
specific, we replace [mL

1 ,mL
2 ,mL

3 ] in Equation 5
with [m′

1,w
∗
i ,m

′
3] to constructed trigger learning’s

score function and adopt the same loss function as
Equation 6 implemented in Gb.

5 Experiments

We investigate three issues with Eureka: (1) Could
Eureka improve the performance of KGR on un-
seen relations at no extra cost? (2) Is each compo-
nent in Eureka necessary? (3) How CDA works?
To answer these questions, we conduct experiments
on two KG datasets and systematically analyze the
corresponding results.

5.1 Datasets
We use two public datasets for experiments, NELL
and Wiki, which are released by (Xiong et al.,
2018). NELL is derived from a system that can
continuously acquire diverse structured knowledge
(Mitchell et al., 2015). Wiki is constructed based
on Wikidata (Vrandečić and Krötzsch, 2014). The
dataset statistics are shown in Table 1. We ran-
domly select a number of relations with more
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Table 1: Statistics of the Datasets. # Entities, # Relations and
# Triples denote the number of unique entities, relations and
triples in the datasets, respectively.

Dataset #Entities # Relations # Triples

NELL 68,545 358 181,109
Wiki 4,838,244 822 5,859,240

. . .

0.352

0.095

. . .

0.185

0.137

0.062

. . .

0.243

0.108

0.077

. . .

0.346

0.133

0.121

0.119

Figure 3: The most contributive seen relations in different
tasks for unseen relations in NELL. Here we present top 3
seen relations and their attention weights.

than 1000 triples as seen relations, and the rela-
tions less than 500 but more than 50 triples as
unseen relations. There are 67 and 183 unseen
relations in NELL and Wiki data, respectively. Be-
sides, we use 51/5/11 unseen relations for train-
ing/validation/testing in NELL and the division is
set to 133/16/34 in Wiki during the few-shot learn-
ing stage. The datasets used in the prior knowledge
learning stage are constructed by assigning triples
of each seen relation in the ratio of 7:1:2 to the
training/validation/testing set.

5.2 Baseline Methods

We select two kinds of baseline methods including
knowledge embedding models and few-shot learn-
ing models: 1) Knowledge Embedding Models.
This line of research models multi-relational struc-
ture in KGs and encodes both entities and relations
into a continuous low dimensional vector space.
We consider four widely used baselines as follows:
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), RotatE
(Sun et al., 2019) and UniKER(Cheng et al., 2021).
For fair comparison, we consider the transformer-
based model termed CoKE (Wang et al., 2019) as
the baseline method. All training triples of the seen
relations, as well as the trigger triples of unseen
relations, are used during training. 2) Few-Shot
Learning Models. These models concentrate on
predicting new facts in KGs with only few-shot
reference triples. We select four typical models;
i.e., GMatching (Xiong et al., 2018), MetaR (Chen
et al., 2019), FSRL (Zhang et al., 2020), FAAN
(Sheng et al., 2020) and GANA (Niu et al., 2021).
Note that we adopt one-shot setting for these meth-
ods for fair comparison since Eureka only gets one
available trigger.

5.3 Implementation Details

At the prior knowledge learning stage, Eureka
is trained, evaluated, and tested solely on the
triples of seen relations. We vary the number
of transformer layers in {2, 3, 4}, the number
of transformer heads in {2, 3, 4, 5, 6}, the head
size in {128, 256, 512, 1024}, the number of fil-
ters in {128, 256, 512, 1024}. We also apply
dropout to the transformer layers with the rate in
{0.1, 0.2, 0.3, 0.4, 0.5} to avoid over-fitting. For
parameter updates, we use Adam (Kingma and Ba,
2015) with the initial learning rate of 0.005 and we
have the learning rate decay 5 times for each 50k
training step. At the trigger learning stage, Eureka
is trained, evaluated, and tested solely on the triples
of unseen relations with one training data available.
We also use Adam (Kingma and Ba, 2015) with the
initial learning rate of 0.001 to optimize our model.
Then we have the learning rate decay 5 times for
each 10k training step. We evaluate all methods for
every 10k training steps, and select the best models
leading to the highest Hits@10 on the validation set
within 500k steps as (Xiong et al., 2018); and then
we get the optimal hyper-parameters, and report
the final results on the testing set.

5.4 Evaluation Metrics

Following the widely used evaluation metrics in
KGR tasks (Bordes et al., 2013), we adopt Hits@k,
i.e., the proportion of correct entities ranked in the
top k, and MRR, i.e., the mean reciprocal rank, to
evaluate the overall performance of Eureka. Gen-
erally, the higher MRR and Hits@k indicate the
better performance. k is set to 1, 5, and 10.

5.5 Results

We first evaluate our model on unseen relations,
which predicts new facts on a query set where no
seen relations are included. As shown in Table 2,
Eureka shows a significant improvement margin
over both knowledge embedding models and few-
shot learning models. Taking the best performing
few-shot learning model on NELL (FAAN) as an
example, the improvement (%) of Eureka on testing
MRR and Hits@10 are 23.9% and 14.5%, respec-
tively. It, to some extent, confirms the effectiveness
of the idea that the unseen relation representation
can benefit from semantic interactions of seen rela-
tions and even be composed as a linear combination
of the similar seen relation embeddings.

We also perform a KGR experiment on the seen
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Table 2: The overall results of seen and unseen relations on testing datasets. We present the best baseline results by underline
and highlight the best results of all methods in bold. For coping with the space limitation, we shortened the names of some
evaluation metrics, e.g., Hits@10 is shortened as H@10. The notations are the same in all tables.

NELL Wiki
Seen relations Unseen relations Seen relations Unseen relations

Model MRR H@10 H@5 H@1 MRR H@10 H@5 H@1 MRR H@10 H@5 H@1 MRR H@10 H@5 H@1

TransE .254 .475 .284 .158 .101 .195 .141 .043 305 .464 .378 .267 .033 .052 .041 .022
DistMult .235 .426 .256 .147 .095 .177 .125 .065 .285 424 .357 .221 .050 .102 .069 .019
ComplEx .289 .453 .285 .215 .131 .223 .156 .086 .324 .468 .381 .295 .069 .122 .089 .036
RotatE .314 .482 .392 .226 .103 .235 .188 .089 .337 .481 .408 .299 .055 .083 .055 .033
UniKER .299 .463 .390 .232 .107 .230 .176 .075 .321 .480 .373 .290 .051 .101 .053 .039
CoKE .289 .466 .384 .235 .082 .155 .092 .037 .322 .477 .395 .280 .042 .051 .032 .024

GMatching .181 .295 .261 .131 .175 .293 .250 .114 .269 .388 .341 .205 .201 .335 .272 .123
MetaR .231 .384 .291 .175 .172 295 .236 .096 .324 .420 .390 .281 .193 .291 .237 .155
FSRL .181 .322 .219 .103 .152 .321 .227 .109 .161 .298 .212 .103 .197 .318 .255 .119
FAAN .268 .421 .357 .202 .176 .310 .244 .110 .321 .466 .395 .281 .239 .380 .309 .170
GANA .242 .389 .299 .193 .176 .317 .247 .112 .320 .435 .388 .270 .223 .370 .262 .155

Eureka (Ours) .332 .482 .407 .267 .188 .340 .261 .122 .339 .498 .412 .305 .257 .397 .323 .192

Table 3: Results of model variants on unseen relations of
NELL. The best results are highlighted in bold.

Model MRR H@10 H@5 H@1

AS_1.1.1 .103 .201 .147 .055
AS_1.1.2 .114 .228 .162 .061
AS_1.2.1 .108 .249 .151 .058
AS_1.2.2 .135 .261 .197 .105

AS_2 .179 .330 .250 .118

AS_3.1 .157 .295 .231 .112
AS_3.2 .160 .304 .227 .115

Eureka .188 .340 .261 .122

relation dataset. The experimental results show that
Eureka surpasses the prior state-of-the-art few-shot
learning approaches, which demonstrates that Eu-
reka is able to remember the original knowledge
learned from seen relations when having acquired
unseen relations. Moreover, Eureka is still com-
petitive compared with best-performed knowledge
embedding models on both NELL and Wiki. It is
also worth noting that the performance of the few-
shot learning model does not improve significantly
with sufficient training examples as other models
do. It indicates that the learning capacity of the few-
shot learning approaches is limited even though the
number of their training examples increases.

Thus, we have so far answered the first question;
i.e., Eureka can be well adapted into the KGR task
of unseen relations and outperform both embedding
models and few-shot learning models by incorpo-
rating the knowledge learned from the seen rela-
tion embeddings without sacrificing performance
on seen relations.

5.6 Ablation Study

In this section, we inspect effectiveness of the
model components. Experimental results of model
variants is shown in Table 3 :

1) We verify the significance of the transformer
encoder. We remove the transformer encoder and
replace it with TransE and RotatE, respectively.
We conduct two group of experiments with TransE
as an alternative of the transformer encoder; i.e.,
AS_1.1.1 and AS_1.1.2. In AS_1.1.1, the entity
and relation embeddings produced in the prior
knowledge learning stage remain static when used
in the trigger learning stage. In AS_1.1.2, these
entity and relation embeddings are fine-tuned in
the trigger learning stage. AS_1.2.1 and AS_1.2.2
share the same settings with RotatE as an alter-
native of the transformer encoder. Experimental
results demonstrate that the transformer encoder
is an essential component of our model due to its
ability to model the semantic interactions between
entities and relations and produce the dynamic em-
beddings. By comparing the results of AS_1.1.1
with AS_1.1.2, we can find that it is better to allow
dynamic embeddings rather than static embeddings
for the encoder of Eureka since Eureka absorbs new
knowledge (unseen relation triples) in the trigger
learning stage and could adjust embeddings of seen
relation triples to adapt the unseen domain. The
comparison between AS_1.2.1 and AS_1.2.2 also
leads to the same conclusion.

2) We analyze the contribution of the CNN de-
coder. We remove the CNN decoder and this makes
Eureka in the prior training stage degenerate into a
solely transformer-based model similar to CoKE.
Experimental results indicate that the model per-
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formance can slightly benefit from the CNN-based
decoder through modeling the high-level represen-
tations and the hierarchical structures of the KGs.

3) (AS_3) We evaluate the effectiveness of CDA.
We conduct two experiments denoted as AS_3.1,
AS_3.2. In AS_3.1, we simply remove CDA to in-
spect the contribution of seen relations; in AS_3.2,
we replace CDA with an average pooling operation
on seen relations to evaluate the effectiveness of the
attention mechanism. Experimental results show
that both unseen relations and attention mechanism
are important and contribute consistent improve-
ments to Eureka.

5.7 Case Study for CDA
We investigate how CDA works. Since CDA adopts
an attention mechanism to model the interactions
between seen and unseen relations and represents
unseen relations with the acquired knowledge from
seen relations. We randomly select four unseen
relations and present their most relevant seen rela-
tions according to the attention score in CDA as
shown in Figure 3. We could find that the rele-
vant seen relations have semantic similarity with
their corresponding unseen relations. For example,
for the unseen relation AnimalSuchAsInvertebrate,
the top 3 of the selected seen relations are Animal-
SuchAsMollusk, AnimalTypeHasAnimal, Animal-
PreySon. Obviously, most mollusks belong to inver-
tebrate animals, which confirms the effectiveness
of CDA and our assumption that unseen relations
can benefit from relevant semantic interactions.

5.8 Discussions
We summarize the answers to our three research
issues: (1) Eureka surpasses both embedding mod-
els and few-shot learning models on seen and un-
seen relations. Eureka achieves better performance
on unseen relations without sacrificing its perfor-
mance on seen relations. Note that as the number
of triggers increases, Eureka still outperforms other
baselines, which is shown in Figure 1. (2) The
ablation study demonstrates the effectiveness of
each model variant of Eureka, i.e., the transformer
encoder for allowing dynamic embeddings; CNN
decoder for modeling the high-level representations
and the hierarchical structures of the KGs; CDA
for modeling semantic interactions between seen
and unseen relations. (3) The case study shows
why CDA brings a dramatic rise for experimental
results, i.e., CDA assigns varying attention weights
to different seen relations and selects the most rele-

vant seen relations to represent each unseen relation
more accurately.

6 Conclusion

In this work, we present a neural insight learning
framework (Eureka), which mimics human insight
learning modes to bridge the “seen” to “unseen”
gap in the KGR tasks. We train Eureka in prior
knowledge learning and trigger learning stages.
Specifically, Eureka acquires the representations
of entities and seen relations in the prior knowl-
edge learning stage, and then learns the unseen
relations efficiently through a CDA network with
the incorporation of the embeddings of seen rela-
tions. Eureka meets our expectation of the model
to not only have good performance on both rela-
tion types but also eliminate the need to retrain
the original training datasets. The experimental
results demonstrate that our model outperforms the
state-of-the-art baselines on datasets of both seen
and unseen relations. The case studies confirm the
CDA network is empowered to select relevant seen
relations to better represent unseen relations. We
plan to investigate enhancing CDA with relations’
text descriptions as future directions of this work.
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Abstract

The paper aims to identify cited text spans in
the reference paper related to the given citance
in the citing paper. We refer to it as cited text
span retrieval (CTSR). Most current methods
attempt this task by relying on pre-trained off-
the-shelf deep learning models like SciBERT.
Though these models are pre-trained on large
datasets, they underperform in out-of-domain
settings. We introduce CitRet, a novel hybrid
model for CTSR that leverages unique seman-
tic and syntactic structural characteristics of
scientific documents. This enables us to use sig-
nificantly less data for finetuning. We use only
1040 documents for finetuning. Our model aug-
ments mildly-trained SBERT-based contextual
embeddings with pre-trained non-contextual
Word2Vec embeddings to calculate semantic
textual similarity. We demonstrate the perfor-
mance of our model on the CLSciSumm shared
tasks. It improves the state-of-the-art results by
over 15% on the F1 score evaluation.

1 Introduction

Citations are an integral part of scientific litera-
ture as they help better understand the relationships
between scientific documents. Authors cite other
papers to acknowledge their contributions, com-
pare to their work, criticize, and improve upon
their work. Citances often focus on the most impor-
tant components of a scientific document. More-
over, citance-based summarization is also a widely
studied field because it covers some insights that
might not be present in abstract-based summariza-
tion (Elkiss et al., 2008).

However, a citance depends on the intention and
opinion of the citing author and can be affected by
epistemic value drift1 (Cohan et al., 2015). Also, a
citance in itself lacks sufficient details to capture
the exact content of the referenced paper. Hence,

*Equal contribution
1An example of epistemic value drift is citing a claim as a

fact.

identifying the correct context of the cited text can
enable us to verify the biases (Zerva et al., 2020),
overcome epistemic value drift, build dense knowl-
edge graphs, and generate better summaries (Jaidka
et al., 2019; Chandrasekaran et al., 2020). Further-
more, it also helps in qualitative analysis of the
citations (Teufel et al., 2006). Motivated by these,
research tasks and tracks such as BiomedSumm2

and CLSciSumm lay significant emphasis on this
fundamental and challenging problem of finding
the exact cited text span. We refer to this task as
cited text span retrieval (CTSR).

Most of the current methods targeting this prob-
lem are centered around fine-tuning deep neural
networks. In this regard, transformer (Vaswani
et al., 2017) based encoders such as BERT (Devlin
et al., 2018) and SciBERT (Beltagy et al., 2019)
have proven to be very effective and have outper-
formed standard baselines like LDA and TF-IDF.
However, a major drawback of these methods is
that they require large domain-specific datasets, of-
ten exceeding 1 million documents, to fine-tune.

This paper proposes CitRet, a hybrid CTSR
model that performs well even in low-resourced
domain-specific settings. We model the problem as
a semantic textual similarity (STS) task. We exploit
the distinctive semantic and syntactic structural
characteristics of scientific literature, i.e., when
a paper is cited, the cited text of the reference
paper is often paraphrased in such a way that it
still expresses the same central idea while also pre-
serving certain keywords. Hence, we use these
keywords, which are common to both the citance
and the cited sentence, to find weighted contex-
tual embeddings for the sentences. To find these
weighted contextual embeddings, we use Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019)
fine-tuned to minimize cosine similarity loss on
training data. However, when the training data is
scarce, these contextual embeddings fail to cap-

2http://www.nist.gov/tac/2014/BiomedSumm/
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ture out-of-domain knowledge. To overcome this,
we further leverage pre-trained non-contextual em-
beddings like Word2Vec (Mikolov et al., 2013) to
capture the general domain knowledge. We use
Word Mover’s Distance (WMD) (Kusner et al.,
2015) to find (dis)similarity scores based on these
non-contextual embeddings. This hybrid approach
of utilizing contextual and non-contextual embed-
dings enables CitRet to generalize well over unseen
datasets. Definitions of the terms used throughout
the paper are:
Reference paper (RP): A scientific document of
which one or more sentences have been cited by
another paper(s). Citing paper (CP): A document
that contains one or multiple citations to an RP.
Citance: A sentence in CP that contains the refer-
ence to the RP. Cited sentence: The exact piece of
the text belonging to the RP that a citance refers
to. Cited text span: Span of the cited sentence(s)
belonging to the RP corresponding to a citance.

The major contributions of this work are: 1)
Proposing a simple yet effective CTSR model that
requires less data for fine-tuning and is computa-
tionally inexpensive. We train only on the CL-
SciSumm training dataset that consists of 40 manu-
ally annotated articles and 1000 automatically an-
notated articles. 2) Advancing the state-of-the-art
(SOTA) to identify cited text span by over 15%. 3)
Empirically validating the advantage of using the
semantic and syntactic structure for CTSR.

2 Related Work

The task of CTSR requires modeling the relation-
ship (similarity) between a citing and a candidate
cited sentence. Early systems proposed using fea-
tures based on TF–IDF (Yeh et al., 2017; Cao
et al., 2016; Prasad, 2017) and n-grams or sen-
tence graph overlap (Aggarwal and Sharma, 2016;
Klampfl et al., 2016) in order to calculate similarity
scores between the citing sentence and candidate
sentences. Similarity measures such as Jaccard
similarity and cosine similarity were commonly
used to solve this task. (Bravo et al., 2018; Deb-
nath et al., 2018; Kim and Ou, 2019; Pitarch et al.,
2019). The problem has also been posed as a binary
classification problem in Davoodi et al. (2018); Yeh
et al. (2017); Zerva et al. (2020). In addition to
traditional features such as TF-IDF and n-grams,
prior methods have also proposed using learned dis-
tributed vector space representation (word embed-
dings) based features since they contain the seman-

tic similarity information at the word level. Mod-
els using both non-contextual embeddings such
as Word2Vec and contextual embedding methods
like BERT have been utilized to find these word
embeddings. These extracted features are further
used as an input to machine learning algorithms
like SVM (Ma et al., 2018), random forests (Wang
et al., 2018), Word Mover’s Distance (Li et al.,
2018), CNN (Li et al., 2019; AbuRa’ed et al., 2018)
or XGBoost (Syed et al., 2019; Pitarch et al., 2019).
Furthermore, many approaches even adopted vot-
ing mechanisms and ensemble techniques on top of
their models to improve their metrics (Chai et al.,
2020; Wang et al., 2018; Ma et al., 2018, 2019;
Quatra et al., 2019). The current best perform-
ing models exploit transformers fine-tuned on very
large datasets (Chai et al., 2020; Zerva et al., 2019).
Chai et al. (2020) also experimented with adding
document level features to the model using special
tokens. Other noteworthy approaches, like Au-
miller et al. (2020) formulated the task as a search
problem and used a two-step approach for retriev-
ing relevant sentences for a given citation. They
first find candidate sentences using Apache Solr
and BM25 and then re-rank the retrieved sentences
using a computationally expensive BERT-based re-
ranker.

CTSR as Semantic Textual Similarity: We
model the problem as a semantic textual similar-
ity (STS) task. To this end, learning sentence
embeddings, instead of word embeddings, has
shown promise and improvement in performance
(Reimers and Gurevych, 2019). Using pooling
strategies such as mean or max pooling of word
embeddings has proven to be an efficient way of
obtaining sentence embeddings. SBERT (Reimers
and Gurevych, 2019) by default uses mean pool-
ing. Chen et al. (2018) further explored general-
ized pooling strategies to enhance sentence embed-
dings. CNN-based models have also been used to
encode sentences into fixed length vectors (Jiao
et al., 2018). To improve performance on sentence
matching tasks, Liu et al. (2020) proposed syntax-
and semantics-aware BERT(SS-BERT), which im-
plicitly integrates syntactic and semantic informa-
tion of sentences. Unnam et al. (2022) showed that
sentence embeddings could be further improved
by employing principal component removal based
denoising as a post-processing step.
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Figure 1: Illustration of the CitRet model. WMD and weighted contextual embeddings (WCEs) are calculated for an input pair.
The WCEs are then denoised using the common component removal technique. These denoised WCEs are used to find cosine
similarity between the sentences of the input pair. Finally, WMD and cosine scores are added, and top k similar sentences in an
RP for a citance are retrieved.

3 Methodology

We formulate this task of CTSR as finding seman-
tic textual similarity between a citance and all the
sentences of an RP, i.e., to find the cited text span
for a given citance, we pick the top k similar sen-
tences in the RP. We refer to a <citance, a sentence
in the RP> pair as an input pair. As shown in
Figure 1, an input pair is first pre-processed by low-
ercasing the tokens, removing the stop words, and
removing the special characters. Then to find the
final similarity scores, CitRet employs a mix of co-
sine scores using weighted contextual embeddings
(contextual distance) and Word Mover’s Distance
scores (non-contextual distance) using pre-trained
non-contextual embeddings. Now, we explain each
component of the pipeline in detail.

3.1 Contextual Distance
Contextual distance between the sentences is calcu-
lated using contextual sentence embeddings. The
proposed model uses finetuned SBERT to learn
these contextual embeddings for an input pair.
SBERT returns a fixed-length dense vector for an
input sentence (sentence embedding), irrespective
of the length of the input sentence3. To yield the
final sentence embeddings, CitRet follows three
steps: 1) Finetuning the SBERT, 2) Finding the
weighted contextual embeddings for each sentence
pair, and 3) Denoising the embeddings.

3.1.1 Finetuning the SBERT
To finetune SBERT siamese networks, we use co-
sine similarity loss. As training examples, we
pass sentence pairs annotated with cosine similarity
scores on a scale of 0 to 1. For each citance, we
pass 5 sentence pairs of 3 different types, i.e., one
pair with the actual cited text having a similarity

3Please refer to Appendix (A.1) for more details.

score of 1, two pairs with randomly selected sen-
tences from other RP having a similarity score of
0, and two pairs with randomly selected sentences
belonging to the same RP having similarity score
of 0.3. This helps us model relations between the
sentences of the same documents and sentences of
different documents.

3.1.2 Weighted contextual embeddings
When an RP is cited, the information that can be
extracted from a citance about the RP depends
upon the intention, and the opinion of the citing
author(s) (Zerva et al., 2020). However, when the
cited sentences are referred to, some key ideas and
keywords are preserved, as depicted in Figure 2.
CitRet exploits this characteristic of the scientific
documents to find weighted contextual embeddings
for the input pair.

Figure 2: n-gram intersection of two sentences

SBERT takes the mean of all the word embed-
dings to calculate the sentence embedding. After
fine-tuning SBERT on domain-specific data, it is
able to learn contextual embedding for a sentence.
To leverage this contextual learning capability of
SBERT and to find weighted contextual embed-
dings (WCEs) for the sentences, we use a very
simple and intuitive strategy of concatenating the
common keywords to the input pair before passing
it to the SBERT (we concatenate the keyword to
both the sentences of the pair). These keywords are
extracted by finding common n-gram intersections
between the sentences of the input pair. In the ex-
ample shown in Figure 2, maximum entropy is the
common keyword (bigram). Concatenating these
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n-grams results in the common keywords having
more weight in the sentence embeddings due to the
mean pooling operation. Therefore, the sentence
embedding vectors of the pair come closer in the
dense vector space if they share some keywords.
Here, number n can be optimized empirically, and
in our tests, we get the best results for bigrams.

3.1.3 Denoising

We further modify the WCEs that we get from
the previous step by using a denoising technique
adapted from piecewise common component re-
moval method proposed in Ethayarajh (2018).
Here, the common components refer to the com-
mon topics (discourse themes) that exist through-
out the document (RP and CP) and can be con-
sidered as noise. Thus, removing these common
components can be understood as downgrading the
unimportant components (common discourse) and
focusing on the components that have more dis-
criminatory power. This helps in denoising the
embeddings (Arora et al., 2017). Since cosine-
similarity treats all dimensions equally (Reimers
and Gurevych, 2019), denoising becomes critical in
making it more focused. Consequently, the cosine
similarity scores calculated using denoised embed-
dings become more relevant (Arora et al., 2017).

ṽ = v −
m∑

i

λi projpci v , where λi =
σ2i∑m
j=1 σ

2
j

These common discourse vectors are estimated as
the principal components for a set of WCEs. These
principal components are calculated by singular
value decomposition of Al×d matrix, where l is
the number of sentences in the document (RP and
CP), and d is the dimension of the WCEs. To get
the final denoised sentence vector ṽ, we subtract
from the original sentence vector v, the weighted
sum of the projections of the vector v on the first
m(= 3) principal components pci..m. The projec-
tions projpci v are weighted by λi, where λi is the
proportion of variance σi (singular value) captured
by the principal component pci.

3.2 Non-contextual Distance

CitRet uses both the supervised and unsupervised
techniques to calculate the final similarity scores to
generalize well over unseen datasets. It augments
contextual distance calculated using mildly-trained
SBERT with non-contextual distance calculated us-

ing unsupervised WMD technique4. Arora et al.
(2017) and Reimers and Gurevych (2019) note that
even simple techniques such as computing the av-
erage of pre-trained embeddings can outperform
sophisticated techniques such as BERT in unsuper-
vised textual similarity tasks. As discussed, a cited
text is usually paraphrased around a keyword in
such a way that it still expresses the same central
idea. Since WMD uses the high-quality Word2Vec
model embeddings having a vocabulary size of 3
million, it can capture knowledge related to these
general domain words that fine-tuning a deep learn-
ing model with low training data might not be able
to extract (Kusner et al., 2015). Figure 3 demon-

Figure 3: Flow between 2 sentences S0 and S1 using WMD

strates WMD’s ability to capture relations in the
general domain setting. The arrows represent the
flow between two words of an input pair. It may
be observed how models flows to frameworks and
popular to favoured. It can be noted that the words
popular and favoured are general domain words
(non-scientific terms) and might not appear very fre-
quently in a scarce domain-specific dataset. Hence,
the semantic relationships between these general
domain words are better captured by WMD.

4 Experiments and Results

We demonstrate the performance of the proposed
method on CL-SciSumm shared task (Jaidka et al.,
2019; Chandrasekaran et al., 2019, 2020) task 1(a),
where for each citance, we need to identify the
spans of text (cited text spans) in the RP that most
accurately reflect the citance. These cited text
spans range from the granularity of a sentence frag-
ment to several consecutive sentences. We pick top
k = 3 similar candidate cited sentences for a given
citance. CitRet is trained only on the CL-SciSumm
training dataset that consists of 40 manually an-
notated articles and 1000 low quality document
sets that were automatically annotated using neu-
ral networks. We do not use any external corpora
to fine-tune our model. We evaluate our model’s
performance against gold label annotations for the
CL-SciSumm test set of 20 documents.

4Please refer to Appendix A.2 for a detailed explanation
of WMD.
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Method Recall Precision F1
ACL 2018 - - 0.126
BERT 2018/19 OV+2018FT - - 0.120
SciBERT 2018 - - 0.078
SciBERT-SemBERT 0.2459 0.1318 0.1716
SciBer-ACLBERT 0.2265 0.1244 0.1606
SBERT† 0.1879 0.1023 0.1325
SBERT + WCE† 0.1815 0.1647 0.1727
Denoising (SBERT+WCE+D)† 0.1901 0.1724 0.1808
CitRet (SBERT+WCE+D+WMD)† 0.2080 0.1888 0.1979

Table 1: Performance comparison of our model with the base-
line models. The last 4 rows show the ablation study of our
model marked with †. D denotes denoising step.

We consider the SOTA models of 2019 and 2020
CL-SciSumm tasks as baselines. Table 1 shows that
CitRet performs the best in quantitative metrics (F1
and Precision) and outperforms 2019 SOTA (ACL
2018 ) by over 57% and 2020 SOTA (SciBERT-
SemBERT) by over 15% on F1 score evaluation.
It can be noted that using just the SBERT + WCE
component outperformed all the baseline SOTA
models that use much larger datasets (exceeding
1 million) for finetuning5. This empirically vali-
dates that using the semantic and syntactic structure
for CTSR can significantly improve the results. It
should be noted that Denoising and WMD further
improve the performance.

5 Discussion

As can be observed from Table 1, the pro-
posed method significantly improves the F1 score
(+15%) and Precision(+43%) with some loss in
Recall(15%). Our approach focuses on Precision
(a measure of the quality of retrieval) over Recall
(a measure of quantity) because, for the given task,
the probability of getting false positives is very
high. Hence a higher precision results in a more
concise and accurate summarization.

The proposed approach is in line with the recom-
mendation made by the task organisers to exploit
the structural and semantic characteristics that are
unique to scientific documents to enrich the em-
beddings. The paper proposes a simple and com-
putationally inexpensive alternative to the current
state-of-art model in the form of CitRet. It lever-
ages both contextual and non-contextual embed-
dings. CitRet also combines a supervised model
and an unsupervised model. This hybrid architec-
ture provides performance and robustness against
noisy training samples. The components of the

5Please refer to Appendix B for details of the experimental
setup of the baseline models and ablation study analysis.

model are lightweight (do not require extensive
fine-tuning), faster, explainable, and intuitive. This
highlights how other statistical machine learning
techniques can be leveraged along with modern
deep neural network architectures to compensate
for the lack of quality training data and outperform
computationally expensive architectures.

It may also be noted that while our method beats
the baselines by large margins and achieves a new
SOTA, the absolute values are still rather low be-
cause of the non-triviality of the task. The task
becomes particularly challenging because of the
low-quality training data and subjectivity of the
annotators. Hence, we believe that there is a scope
for further improvement, and the problem demands
greater exploration.

6 Conclusion

In this paper, we propose CitRet, a novel model for
cited text span retrieval. CitRet outperforms the
current SOTA models by significant margins (15%
F1). The proposed model is quite simple, com-
putationally inexpensive, improves generalization,
and does not require any large external datasets to
fine-tune. However, considering the non-triviality
of the task, this paper proposes a new approach for
further exploration of the task.
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A Background

A.1 SBERT
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) , is a modification of the pre-trained BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2018) model. BERT is
a popular attention mechanism-based model that
takes a sentence (an arbitrary sequence of tokens)
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as an input and learns contextual embeddings for
each token in the sentence. Though BERT has
achieved state-of-the-art performance in a wide va-
riety of NLP tasks, its design renders it inappropri-
ate for semantic similarity search and unsupervised
tasks because BERT doesn’t compute independent
sentence embeddings and instead learns embed-
dings for each token of the sentence.

To overcome this problem, SBERT builds over
the BERT’s innovation of using a bidirectional en-
coder. SBERT leverages BERT-based siamese net-
work architecture to embed sentences into a fixed-
length vector by adding a pooling layer on top of
the BERT layer. The SBERT siamese network ar-
chitecture can be fined tuned using different losses
such as triplet loss, contrastive loss, and cosine
similarity loss. Moreover, SBERT is computation-
ally inexpensive compared to BERT (Reimers and
Gurevych, 2019).

A.2 Word Mover’s Distance
Given pre-trained embeddings for the words, Word
Mover’s Distance (WMD) (Kusner et al., 2015)
measures the distance between a pair of sentences
(sequence of words). It exploits the underlying
geometry of the word embeddings to represent a
sentence as a weighted point cloud in the word em-
bedding space. It formulates the problem of finding
distance between two sentences as a transportation
problem based on Earth Mover’s Distance. It de-
fines the dissimilarity between two sentences as
the minimum amount of work (distance traveled)
required to transport words from one sentence to
the words of another sentence in the word embed-
ding space. This minimum cumulative travel cost
between words of two sentences is calculated by
solving the following linear optimization problem.

min
T≥0

n∑

i,j=1

Tijc(i, j)

subject to:
n∑

j=1

Tij = si ∀i ∈ {1, ..., n}

n∑

i=1

Tij = s′j ∀j ∈ {1, ..., n}

Here, s and s′ are the normalized bag-of-words
representation of two sentences. T is a flow ma-
trix, where the Tij ≥ 0 entry indicates how much
of word i in sentence s travels to word j in sen-
tence s′. The total outgoing flow from a word

i in sentence s to all the words j in sentence s′

equals to the normalised frequency of word i, i.e (∑
ij Tij = si ). The distance between two words

in the embedding space is given by c(i, j) and cal-
culated using euclidean distance between the word
embeddings. The final distance between two sen-
tences is

∑
ij Tijc(i, j).

B Detailed Experimental Setup and
Analysis

We demonstrate the performance of the proposed
method on CL-SciSumm shared task (Jaidka et al.,
2019; Chandrasekaran et al., 2019, 2020) task 1(a),
where for each citance, we need to identify the
spans of text (cited text spans) in the RP that most
accurately reflect the citance. These cited text spans
are of the granularity of a sentence fragment, a full
sentence, or several consecutive sentences (no more
than 5). For this, we pick top k (we picked k = 3)
semantically similar candidate cited sentences for
a given citance by sorting their similarity scores.
We evaluate the predictions against gold label an-
notations using F1 score.

We compare the performance of the proposed
model CitRet, with the best 3 systems (of each cat-
egory) submitted by NaCTeM-UoM (Zerva et al.,
2019) and the best 2 systems submitted by team
NLP-PINGAN-TECH (Chai et al., 2020), over CL-
SciSumm test set.

The systems submitted by NaCTeM-UoM are
based on BERT. Along with BERT 2018/19 OV
+ 2018 FT (a BERT model fine-tuned on the
CL-SciSumm 2018-2019 dataset), they submit-
ted models ACL 2018 and SciBERT 2018. Both
these models are first trained on significantly large
domain-specific corpora and then fine-tuned on
CL-SciSumm dataset. ACL 2018 is trained ACL-
ARC (Radev et al., 2013) whereas SciBERT 2018
is based on SciBERT model (Beltagy et al., 2019),
which is pre-trained on collection of 1.14M docu-
ments from Semantic Scholar (Ammar et al., 2018).

NLP-PINGAN-TECH team also centered their
approach around fine-tuning BERT-based mod-
els using larger domain-specific datasets. Their
best performing system SciBERT-SemBERT is
an ensemble of SciBERT, SemBERT (Zhang
et al., 2020) based on SciBERT, Sci-BERT-fake-
token (tokens for position and section details
like [method][sid=xx][ssid=xx] are added as
prefixes to the sentences) and SciBERT-special-
token (tokens for position and section details like
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[method],[sid=1], etc. are added to the SciBERT
dictionary to avoid split during tokenization). The
other method SciBer-ACLBERT, submitted by the
NLP-PINGAN-TECH team that achieved a high
score, also leverages SciBERT and ACL corpora.

In comparison, the proposed model is trained
only on the CL-SciSumm training dataset that con-
sists of 40 manually annotated articles, which were
used in the 2018 CL-SciSumm challenge as well,
and 1000 document sets that were automatically
annotated using neural networks. These 1000 doc-
ument sets were introduced in 2019 and are of
lower quality compared to the manually annotated
dataset. Also, we do not use any external corpora
to fine-tune our model.

Table 1 shows the performance comparison of
our model with the SOTA models. The last 4 rows
show the ablation study of our pipeline marked with
†. It can be observed that fine-tuning SBERT using
our strategy resulted in better scores than BERT
2018/19 OV + 2018 FT, ACL 2018 and SciBERT
2018. All three models are based on BERT and
SciBERT and trained on much larger datasets. This
shows that learning sentence embeddings instead
of token embeddings performs better for textual
similarity tasks (Reimers and Gurevych, 2019).

Moreover, as evident from the ablation study,
individual components of our pipeline also help
in increased performance. The most significant
improvement, of 30% over fine-tuned SBERT,
was achieved by weighted contextual embeddings
(SBERT + WCE). It can be noted from Table 1
that using just SBERT + WCE component of our
pipeline outperformed all the SOTA models. This
empirically validates that utilizing the unique struc-
tural characteristics of the scientific documents can
significantly improve the results. Further denois-
ing the weighted contextual embeddings (SBERT +
WCE + D) form = 3 improved the performance by
around 5%. Moreover, augmenting the contextual
embeddings-based similarity scores with WMD
achieved a new SOTA by advancing the results of
SBERT + WCE + D by over 9%.

We also performed experiments to check how
the performance of the model varies with train
and test sets’ size. The proposed method showed
improvement when we used 1000 document sets
that were automatically annotated using neural net-
works along with the 40 manually annotated doc-
uments. We obtained 0.17790 F1 (0.1869 Recall
and 0.1697 Precision) when we trained with just

the manually annotated dataset that contained only
40 documents. We also experimented with the 1000
noisy training samples by randomly splitting them
into the train (80%) and test (20%) sets and ob-
tained 0.2779 F1 (0.4836 Recall and 0.195 Preci-
sion).

C Implementation details

We preprocess the sentences by lowercasing the
words, removing the stopwords, removing the
special characters and errors due to OCR using
NLTK library and regex functions. For SBERT
we use the implementation provided by Reimers
and Gurevych (2019). We train the model for 3
epcohs with a batch size of 16 on Nvidia GeForce
GTX 1080 Ti GPU. The total training time is
around 7 minutes. We use AdamW optimizer
with a learning rate of 2e−05 and weight decay
of = 0.01. For WMD we use Gensim’s imple-
mentation (Kusner et al., 2015; Pele and Werman,
2008, 2009). The code is available at https:
//github.com/AmitPandey-Research/
CitRet_Public.git.
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Abstract
Predicting difficulty of questions is crucial for
technical interviews. However, such questions
are long-form and more open-ended than fac-
toid and multiple choice questions explored so
far for question difficulty prediction. Existing
models also require large volumes of candidate
response data for training. We study weak-
supervision and use unsupervised algorithms
for both question generation and difficulty pre-
diction. We create a dataset of interview ques-
tions with difficulty scores for Deep Learning
and use it to evaluate SOTA models for ques-
tion difficulty prediction trained using weak
supervision. Our analysis brings out the task’s
difficulty as well as the promise of weak super-
vision for it.

1 Introduction

For effective technical interviewing, it is important
to know the question difficulty — the probability of
a student from a cohort, e.g. senior undergraduate
CS students, correctly answering the question. We
address the problem of predicting the difficulty of
interview questions for candidate cohorts.

Predicting difficulty from the question statement,
answer choices and related documents has been
studied for multiple choice or factoid questions for
reading comprehension and exams (Wang et al.,
2014; Huang et al., 2017; Pado´, 2017; Qiu et al.,
2019; Benedetto et al., 2020; Yaneva et al., 2020;
Benedetto et al., 2021; Cheng et al., 2021; Byrd and
Srivastava, 2022). All publicly available datasets
(Benedetto et al., 2021; Cheng et al., 2021; Yaneva
et al., 2020; Qiu et al., 2019) also contain mul-
tiple choice or factoid questions. The nature of
technical assessment questions in interviews is dif-
ferent. These look to assess knowledge and under-
standing rather than memorization of facts and are
more open-ended. Answers are long-form, typi-
cally spanning 2-5 sentences.

Existing approaches, particularly recent deep
models (Xue et al., 2020; Qiu et al., 2019;

Benedetto et al., 2021), require large volumes of
candidate response data to train the models. This
is a challenge when creating a question bank for a
new domain or a subject, since field tests need to
be performed with real students. In contrast, we ex-
plore training question difficulty prediction models
using weak supervision based on subject textbooks
and Bloom’s Taxonomy. This removes dependence
on candidate responses and answer assessment.

We explore various strategies of creating weakly-
supervised training data. Weak supervision has
been explored extensively for many NLP tasks (Li-
son et al., 2020; Ratner et al., 2020; Ren et al., 2020;
Awasthi et al., 2020). For question difficulty, the
training data requires not just difficulty scores but
interview questions as well. We explore pre-trained
large language models (GPT3) and template-based
algorithms for generating training questions. We
then assign difficulty to these questions using an
unsupervised algorithm that uses subject textbooks
and Bloom’s Taxonomy (Bloom, 1956; Anderson
and Krathwohl, 2014). While Bloom’s Taxonomy
has been used extensively in computer educational
testing (Masapanta-Carrión and Ángel Velázquez-
Iturbide, 2018; Duran et al., 2018) and for analy-
sis of difficulty for short answer questions (Pado´,
2017), but not in predictive models.

For evaluation, we create a dataset of interview
questions with difficulty scores from an authorita-
tive textbook on Deep Learning. We use this to eval-
uate the performance of state-of-the-art QDE mod-
els (Benedetto et al., 2020, 2021) when trained us-
ing weak-supervision. Our analysis highlights both
the challenges of the task as well as the promise of
weak-supervision for it.

Our contributions in this paper are as follows.
(a) We motivate and introduce the task of difficulty
prediction for technical interview questions and
curate a dataset for this task. (b) We explore var-
ious forms of weak-supervision for this task and
analyze the performance of state-of-the-art mod-
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els. (c) We propose an unsupervised algorithm for
question difficulty prediction based on text-book
structure and Bloom’s Taxonomy. Aside from use
in weak supervision, we show that this performs
competitively on its own.

2 Dataset

We created a dataset for evaluating interview ques-
tion difficulty prediction. We made this dataset
publicly available1. We focus on Deep Learning
and use the book “Deep Learning” by Courville et.
al. available freely online. First, annotators familiar
with technical interviewing and Deep Learning gen-
erate interview questions from different chapters
of this book. A chapter was given to 2 annotators
who reached agreement over validity of generated
questions for use in interviews.

Next, we needed to annotate these questions for
difficulty on a scale of 1-10. We define higher
(lower) difficulty as indicating lower (higher) prob-
ability of getting the correct answer from a candi-
date who has studied this book, and does not have
any other exposure to this subject. Attempts to di-
rectly annotate difficulty of individual questions led
to very low inter-annotator agreement. Instead, we
annotated relative difficulty for a pair of questions
with 3 possible labels: (a) Q1 MORE DIFFICULT,
(b) Q2 MORE DIFFICULT and (c) EQUALLY DIFFI-
CULT/EASY. We introduced a difficulty explanation
label for individual questions in a pair. Possible
values were (i) lot of pre-req, (ii) little pre-req, (iii)
lot of mathematics, (iv) little mathematics, (v) well-
highlighted answer, (vi) hard-to-find answer, (vii)
about fundamental concept(s), (viii) about niche
concept(s), and (ix) other. Annotators were ad-
vised to decide the pair-wise label considering the
explanations for the two questions.

The final dataset has 150 unique questions from
16/20 chapters of the book. The questions are well
distributed over cognitive tasks (Sec.3.2) and tem-
plates (Sec.3.1). 360 question pairs were selected
for annotation after running our unsupervised diffi-
culty prediction algorithm (Sec.3.2) to ensure non-
triviality of the pair-wise decision. There were 30
unique annotators and each pair was annotated by
5 annotators. After the first round, inter-annotator
agreement was 0.23 Fleiss Kappa (fair), and 60/360
questions had a tie. These were broken by 2 addi-

1Dataset and Customized definition of BT are
publicly available at https://github.com/
kunduarpita2012/Technical_question_
difficulty_prediction.git

tional annotators. The final distribution over labels
is 100 Q1, 130 Q2 and 130 EQUAL.

3 Weak Supervision

In this section, we address weak supervision (WS)
approaches for question difficulty prediction. WS
has been extensively explored for various NLP
tasks. One specific challenge is that the training
dataset needs not only difficulty scores for ques-
tions, but also the questions. Generation of ques-
tions is also expertise intensive and gold-standard
questions are small in volume. Therefore, WS
needs to generate both questions and difficulty
scores.

3.1 Question Generation

To generate questions, we explore two different
unsupervised approaches: (a) a pre-trained LLM
(GPT3), and (b) a template-based algorithm.

GPT3 Questions: Recently, GPT3 (Brown et al.,
2020) has been used for weak supervision for many
NLP tasks, including question generation from con-
text and answers (Wang et al., 2021). We use
prompting with the GPT3 Interview Question pre-
set to generate interview questions from book con-
texts. In the GPT3 prompt, we provide a context
(part of a section) from the book, followed by a
new line and an instruction — “Generate a list
of questions from the above passage”. This was
arrived at via experimentation. This process gener-
ates diverse questions, but questions are sometimes
imprecise in different ways, such as the context not
containing the answer, and incompleteness.

Template Questions: To generate more pre-
cise questions of types commonly seen in in-
terviews, we use template-based question gen-
eration (Puzikov and Gurevych, 2018; Fabbri
et al., 2020; Yu and Jiang, 2021). We use
the following templates: WHAT IS X?, DE-
FINE X., EXPLAIN X., WHAT ARE BEN-
EFITS/ADVANTAGES/DISADVANTAGES OF X?,
COMPARE X AND Y. For each template, we use
precise regular expressions with dictionaries to
check its applicability for a sentence. We use a
concept dictionary constructed using the book in-
dex to detect occurrences of X in sentences.

3.2 Unsupervised Q. Difficulty Prediction

We now describe our unsupervised algorithm for
assigning difficulty d(q) to a question q. It as-
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signs context difficulty dc(q) considering the spe-
cific part of the book from which the question is
generated. It also assigns (cognitive) task difficulty
dt(q) involved in answering the question consid-
ering Bloom’s Taxonomy. The overall difficulty
of the question is obtained by combining the two:
d(q) = wdc(q) + (1− w)dt(q).

Context Difficulty: Intuitively, questions from
later parts of the book, and similarly later parts
of a chapter / section / subsection, are likely to
have more dependencies on earlier parts, and are
therefore more difficult. We use the chapter no.
n0, section no. n1 and subsection no. n2 of
a context c to assign a context difficulty score:
d(c) =

∑2
l=0w(l)d(n

l; l). w(l) is the weight of
level l, and we use weights 1, 0.1 and 0.01 for chap-
ters, sections and subsections respectively. The
intuition behind the level weights is that two ques-
tions generated from two different chapters which
are farther apart, are likely to have a greater gap
between their difficulty scores than two questions
generated from two different sections within a chap-
ter. This intuition similarly extends to subsections
within sections. d(nl; l) is the difficulty associated
with level number nl for level l. So that numbers
closer to the end have higher difficulty, we define
d(nl; l) = nl/nlmax, where nlmax is the maximum
nl for a level l.

Task Difficulty: Bloom’s Taxonomy (BT) is a
well-known resource for determining complexity
of educational and assessment tasks. The Cogni-
tive Process dimension of BT has levels of cogni-
tive ability, namely REMEMBER, UNDERSTAND,
(e.g., explain, classify), APPLY, ANALYZE, EVAL-
UATE and CREATE, and has action verb dictio-
naries for each level. We first manually assign
difficulty scores d(l) to BT levels l. Then the
task difficulty dt(q) of a question q is scored as
dt(q) =

∑
l sim(q, l)d(l).

To customize BT for interviews, we enrich the
taxonomy levels. To each level, we add a list of WH

words, and a list of question templates (Sec.3.2).
We made this resource public as well1.

For sim(q, l), we embed the question q and the
BT level l appropriately and compute their cosine
similarity. We perform POS tagging and depen-
dency parsing on the question using Spacy. For
verb similarity, we embed question verbs and level
verbs using word2vec (Mikolov et al., 2013) and
take the max pair-wise similarity. For template

similarity, we templatize the question by masking
verbs and objects, embed the question template and
level templates using pre-trained sBert (Reimers
and Gurevych, 2019), and take the max similarity.
For wh similarity, we check for existence of the
question wh word in the level. These three are
weighted equally to get sim(q, l).

Weakly Supervised Training: While there are
various weak-supervision frameworks for NLP
tasks (Lison et al., 2020; Ratner et al., 2020; Ren
et al., 2020; Awasthi et al., 2020), we explore a sim-
ple mechanism where we fine-tune a deep model
over a weakly labeled training set generated using
an unsupervised model. Recent papers have shown
that deep models trained using such weak super-
vision are able to outperform the unsupervised al-
gorithm on the test set (Dehghani et al., 2017; Yu
et al., 2021). We plan to explore more sophisticated
weak supervision frameworks in future work.

4 Experiments and Analysis

In this section, we report our experiments on
the interview question difficulty dataset. We test
the usefulness of the following aspects for weak-
supervision (WS): (a) difficulty scores predicted
by our unsupervised algorithm, (b) algorithm-
generated questions, and (c) questions from a re-
lated subject.

Model Q.Subj. Micro F1
R2DE DL 0.50
TrQDE[-] DL 0.51
TrQDE[DL] DL 0.54
TrQDE[DL] DL+ML 0.53
TrQDE[DL+ML] DL+ML 0.525
UQDP - 0.51

Table 1: Comparison of WS types. Q.Subj. indicates
subject of questions in training data: deep learning
(DL), machine learning (ML). Test questions are on
DL. TrQDE[X] indicates TrQDE with MLM fine-tuned
on book for subject X. UQDP is unsupervised algorithm
for difficulty prediction. Micro-avg F1 is the maximum
over threshold θ

Ftr All C T Tt Tv Tw
M. F1 0.51 0.50 0.43 0.43 0.37 0.37

Table 2: Ablation for unsupervised difficulty prediction
algo. UQDP on test data. C: w/ only context difficulty,
T: w/ only all aspects of task difficulty. Tt, Tv, Tw
indicate template, verb, wh similarity for task difficulty.
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Figure 1: Performance vs threshold θ for best models

Figure 2: Performance vs threshold θ for question gen-
eration algorithms for TrQDE[DL]

All experiments were run on an A100 20GB
server. We used Adam with batch-size 16, learning
rate 1E-5, dropout rate 0.5 and 50 epochs.

We evaluated two state-of-the-art models for
difficulty prediction for factoid / MCQ ques-
tions. R2DE (Benedetto et al., 2020) regresses
on questions to predict difficulty. We consider the
ques_only version, since we do not use answers.
It uses tf-idf representation of the questions. We re-
port performance for linear regression as the regres-
sion model, which was the best. TrQDE (Benedetto
et al., 2021) uses transformers to represent the ques-
tion, with a final regression layer. It fine-tunes
the transformer MLM layer using the question cor-
pus, and then further fine-tunes it for the regres-
sion task. We report performance for DistilBERT,
which worked better than BERT. Here too, we used
the q only setting. For the unsupervised difficulty
prediction algorithm UQDP, we use w = 0.8 for
combining context and task difficulty.

The primary WS training data covered all 20
chapters of the Deep Learning book, and had
2536 questions (GPT3:1647, Template:889). The
secondary WS training data covered 20 chapters
from “Pattern Recognition and Machine Learning”
(Bishop), also available online. This had 2218 ques-
tions (GPT3:1268, Template: 950).

Since the test set has relative difficulty labels,
EQUAL is predicted when the difference between

a model’s predicted difficulty scores for the two
questions in a pair is less than or equal to a thresh-
old θ.

The main results are shown in Tab.1. First, WS
using UQDP generated difficulty scores for algo-
rithm generated questions improves performance
beyond that achieved by using UQDP alone for
MLM-fine-tuned versions of TrQDE. This shows
the usefulness of both aspects (a) and (b). However,
R2DE and the TrQDE with just regression-layer
fine-tuning cannot beat UQDP. Next, we analyze
aspect (c). Note that UQDP scores difficulty of the
DL questions in the training data using the DL book
and those of the ML questions using the ML book.
Still, including ML questions to train the regression
layer does not help, even after including the ML
book to fine-tune the MLM layer. The most likely
explanation is that the test questions and difficul-
ties are from DL. Including ML questions changes
the train distribution, even though the subjects are
quite related. Fine-tuning the MLM-layer fits the
altered training distribution more closely, leading
to poorer results in test.

In Fig.1, we show how micro F1 varies across
threshold θ for the 3 best models. This reveals a
more nuanced picture. While peak performance of
DL-only training is higher, including ML questions
in training results has more stable gains across θ
values. However, including the ML book for MLM
fine-tuning results in worse performance than both.

We investigate aspect (b) further in Fig.2 by plot-
ting performance vs θ when training using different
question generation algorithms. We see that per-
formance is the best when using both template and
GPT3 generated questions. But, interestingly, tem-
plates have better performance individually than
GPT3 across θ values. This is very likely because
template questions, though smaller in volume and
lacking diversity, better mimic the human interview
questions seen in test.

Tab.1 showed that UQDP itself has competitive
performance on the test set, outperforming R2DE
and TrQDE w/o MLM fine-tuning. We investigate
aspect (a) further in Tab.2 by performing ablation
over different UQDP features. We see that context
similarity makes the most significant contribution
but adding task similarity improves performance
slightly. The contributions of verb and wh similar-
ity are limited compared to template similarity.
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5 Error analysis

We now report results of error analysis for our best
performing model TrQDE[DL](DL).

The question pairs in the data belong to 3 groups.
(A) Same-task-different-context: the questions be-
long to the same BT level, but are from different
book contexts and are about unrelated concepts. (B)
Same-context-different task: the questions are from
the same context or about related concepts, but be-
long to different BT levels. (C) Different-context-
different-task: the questions are about unrelated
concepts / different context and belong to different
BT levels. In our labeled data, 36%, 18% and 46%
are from groups A, B and C respectively. The third
group is the most challenging for relative difficulty
labeling. This is so even for human annotators. The
Fleiss Kappa scores for inter-annotator agreement
are 0.23, 0.27 and 0.21 respectively. Note that
while the tasks (question templates) are labeled by
annotators when annotating question, while con-
cepts of a question are obtained by eliminating stop-
words, wh-words and prepositions using NLTK li-
braries.

We analyze difficulty prediction errors for each
group separately. The errors are of two types. OL-1
(Ordinal Loss 1) errors occur when the predicted
and true relative difficulty differ by 1, i.e. the pre-
dicted (or true) label is EQUALLY DIFFICULT/EASY

and the true (or predicted) label is Q1 MORE DIF-
FICULT or Q2 MORE DIFFICULT. OL-2 (Ordinal
Loss 2) errors occur when the predicted and true
labels are the two extremes, i.e. the predicted (or
true) label is Q1 MORE DIFFICULT and the true (or
predicted) label is Q2 MORE DIFFICULT.

Overall, ∼ 32.5% of the predictions of
TrQDE[DL](DL) correspond to OL-1 errors and
∼ 13% to OL-2. Fig.3 shows a group-wise drill-
down. First, we observe that the total error is
highest for group C, as expected, as is OL-2 error,
demonstrating that it is the hardest group. Between
groups A and B, total error is slightly higher for B,
indicating that predicting task-difficulty is a bigger
challenge than context difficulty.

Deeper analysis provided further insights into
the prediction errors of TrQDE. One of these stems
from an underlying assumption for UQDE that con-
text difficulty is higher for later parts of a book.
However, concepts introduced earlier are often re-
visited in later chapters in the context of related con-
cepts. UQDE assigns context difficulty incorrectly
in such cases and corrupts training data for TrQDE.

Figure 3: Prediction error of TrQDE[DL](DL) for differ-
ent groups of question pairs where ST-DC, DT-SC and
DT-DC represent Same-task-different-context, Same-
context-different task and Different-context- different-
task groups respectively.

For example, graphical models and their types are
first introduced when Structured Probability Mod-
els are introduced in 3.14 under Probability and
Information Theory, and discussed again when dis-
cussing Graphs for Model Structure in 16.2 Struc-
tured Probabilistic Models for Deep Learning. As
a result, the question ‘What are the different cate-
gories of graphical models?’ from 16.2 incorrectly
gets assigned a higher difficulty level. Other than
this, we observe that while TrQDE learns from
UQDE-assigned levels in general, sometimes it
makes an incorrect prediction for test question pairs
where UQDE makes the correct prediction.

6 Conclusions

In summary, we have motivated the task of dif-
ficulty prediction for technical interview ques-
tions and curated a dataset for evaluation. We
have shown that weak-supervision using algorithm-
generated questions and an unsupervised difficulty
scoring algorithm is a promising direction for fine-
tuning related state-of-the-art models for this task.
The simple unsupervised algorithm itself shows
competitive performance and hints at aspects that
new models for this challenging problem will need
to consider.
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Abstract
Applying Reinforcement learning (RL) follow-
ing maximum likelihood estimation (MLE)
pre-training is a versatile method for enhanc-
ing neural machine translation (NMT) perfor-
mance. However, recent work has argued that
the gains produced by RL for NMT are mostly
due to promoting tokens that have already re-
ceived a fairly high probability in pre-training.
We hypothesize that the large action space is
a main obstacle to RL’s effectiveness in MT,
and conduct two sets of experiments that lend
support to our hypothesis. First, we find that
reducing the size of the vocabulary improves
RL’s effectiveness. Second, we find that ef-
fectively reducing the dimension of the action
space without changing the vocabulary also
yields notable improvement as evaluated by
BLEU, semantic similarity, and human evalua-
tion. Indeed, by initializing the network’s final
fully connected layer (that maps the network’s
internal dimension to the vocabulary dimen-
sion), with a layer that generalizes over similar
actions, we obtain a substantial improvement
in RL performance: 1.5 BLEU points on aver-
age.1

1 Introduction

The standard training method for sequence-to-
sequence tasks, specifically for NMT is to maxi-
mize the likelihood of a token in the target sentence,
given a gold standard prefix (henceforth, maximum
likelihood estimation or MLE). However, despite
the strong performance displayed by MLE-trained
models, this token-level objective function is lim-
ited in its ability to penalize sequence-level er-
rors and is at odds with the sequence-level eval-
uation metrics it aims to improve. One appealing
method for addressing this gap is applying pol-
icy gradient methods that allow incorporating non-
differentiable reward functions, such as the ones

1https://github.com/AsafYehudai/Reinforcement-
Learning-with-Large-Action-Spaces-for-Neural-Machine-
Translation

often used for MT evaluation (Shen et al., 2016,
see §2). For brevity, we will refer to these methods
simply as RL.

The RL training procedure consists of several
steps: (1) generating a translation with the pre-
trained MLE model, (2) computing some sequence-
level reward function, usually, one that assesses
the similarity of the generated translation and a
reference, and (3) updating the model so that its fu-
ture outputs receive higher rewards. The method’s
flexibility, as well as its ability to address the expo-
sure bias (Ranzato et al., 2016; Wang and Sennrich,
2020), makes RL an appealing avenue for improv-
ing NMT performance. However, a recent study
(C19; Choshen et al., 2019) suggests that current
RL practices are likely to improve the prediction
of target tokens only where the MLE model has al-
ready assigned that token a fairly high probability.

In this work, we observe that one main differ-
ence between NMT and other tasks in which RL
methods excel is the size of the action space. Typi-
cally, the size of the action space in NMT includes
all tokens in the vocabulary, usually tens of thou-
sands. By contrast, common RL settings have ei-
ther small discrete action spaces (e.g., Atari games
(Mnih et al., 2013)), or continuous action spaces
of low dimension (e.g., MuJoCo (Todorov et al.,
2012) and similar control problems). Intuitively,
RL takes (samples) actions and assesses their out-
come, unlike supervised learning (MLE) which
directly receives a score for all actions. Therefore,
a large action space will make RL less efficient, as
individual actions have to be sampled in order to
assess their quality. Accordingly, we experiment
with two methods for decreasing the size of the
action space and evaluate their impact on RL’s ef-
fectiveness.

We begin by decreasing the vocabulary size (or
equivalently, the number of actions), conducting
experiments in low-resource settings on translating
four languages into English, using BLEU both as
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the reward function and the evaluation metric. Our
results show that RL yields a considerably larger
performance increase (about 1 BLEU point on av-
erage) over MLE training than is achieved by RL
with the standard vocabulary size. Moreover, our
findings indicate that reducing the size of the vo-
cabulary can improve upon the MLE model even in
cases where it was not close to being correct. See
§4.

However, in some cases, it may be undesirable
or unfeasible to change the vocabulary. We there-
fore experiment with two methods that effectively,
reduce the dimensionality of the action space with-
out changing the vocabulary. We note that gener-
ally in NMT architectures, the dimensionality of
the decoder’s internal layers (henceforth, d) is sig-
nificantly smaller than the target vocabulary size
(henceforth, |VT |), which is the size of the action
space. A fully connected layer is generally used to
map the internal representation to suitable outputs.
We may therefore refer to the rows of the matrix
(parameters) of this layer, as target embeddings,
mapping the network’s internal low-dimensional
representation back to the vocabulary size, the ac-
tions. We use this term to underscore the analogy
between the network’s first embedding layer, map-
ping vectors of dimension |VT | to vectors of di-
mension d, and target embeddings that work in an
inverse fashion. Indeed, it is often the case (e.g.,
in BERT, Devlin et al., 2019) that the weights of
the source and target embeddings are shared during
training, emphasizing the relation between the two.

Using this terminology, we show in simulations
(§5.1) that when similar actions share target em-
beddings, RL is more effective. Moreover, when
target embeddings are initialized based on high-
quality embeddings (BERT’s in our case), freezing
them during RL yields further improvement still.
We obtain similar results when experimenting on
NMT. Indeed, using BERT’s embeddings for target
embeddings improves performance on the four lan-
guage pairs, and freezing them yields an additional
improvement on both MLE and RL as reported
by both automatic metrics and human evaluation.
Both initialization and freezing are novel in the con-
text of RL training for NMT. Moreover, when using
BERT’s embeddings, RL’s ability to improve per-
formance on target tokens to which the pre-trained
MLE model did not assign a high probability, is
enhanced (§5.2).

2 Background

2.1 RL in Machine Translation
RL is used in text generation (TG) for its ability
to incorporate non-differentiable signals, to tackle
the exposure bias, and to introduce sequence-level
constraints. The latter two are persistent challenges
in the development of TG systems, and have also
been addressed by non-RL methods (e.g., Zhang
et al., 2019; Ren et al., 2019). In addition, RL is
grounded within a broad theoretical and empirical
literature, which adds to its appeal.

These properties have led to much interest in
RL for TG in general (Shah et al., 2018) and NMT
in particular (Wu et al., 2018a). Numerous policy
gradient methods are commonly used, notably RE-
INFORCE (Williams, 1992), and Minimum Risk
Training (MRT; e.g., Och, 2003; Shen et al., 2016).
However, despite increasing interest and strong re-
sults, only a handful of works studied the source
of observed performance gains by RL in NLP and
its training dynamics, and some of these have sug-
gested that RL’s gains are partly due to artifacts
(Caccia et al., 2018; Choshen et al., 2019).

In a recent paper, C19 showed that existing RL
training protocols for MT (REINFORCE and MRT)
take a prohibitively long time to converge. Their
results suggest that RL practices in MT are likely
to improve performance only where the MLE pa-
rameters are already close to yielding the correct
translation. They further suggest that observed
gains may be due to effects unrelated to the train-
ing signal, but rather from changes in the shape of
the distribution curve. These results may suggest
that one of the drawbacks of RL is the uncommonly
large action space, which in TG includes all tokens
in the vocabulary, typically tens of thousands of
actions or more.

To the best of our knowledge, no previous work
considered the challenge of large action spaces in
TG, and relatively few studies considered it in dif-
ferent contexts. One line of work assumed prior
domain knowledge about the problem, and par-
titioned actions into sub-groups (Sharma et al.,
2017), or similar to our approach, embedding ac-
tions in a continuous space where some metric
over this space allows generalization over similar
actions (Dulac-Arnold et al., 2016). More recent
work proposed to learn target embeddings when
the underlying structure of the action space is apri-
ori unknown using expert demonstrations (Tennen-
holtz and Mannor, 2019; Chandak et al., 2019).
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This paper establishes that the large action
spaces are a limiting factor in the application of
RL for NMT, and propose methods to tackle this
challenge. Our techniques restrict the size of the
embedding space, either explicitly or implicitly by
using an underlying continuous representation.

2.2 Technical Background and Notation

Notation. We denote the source sentence with
X = (x1, ..., xS) and the reference sentence with
Y = (y1, ..., yT ). Given X , the network generates
a sentence in the target language Y ′ = (y′1, ..., y

′
M ).

Target tokens are taken from a vocabulary VT . Dur-
ing inference, at each step i, the probability of gen-
erating a token y′i ∈ VT is conditioned on the sen-
tence and the predicted tokens, i.e., Pθ(y′i|X, y′<i),
where θ is the model parameters. We assume there
is exactly one valid target token, the reference to-
ken, as in practice, training is done against a single
reference (Schulz et al., 2018).

NMT with RL. In RL terminology, one can
think of an NMT model as an agent, which interacts
with the environment. In this case, the environment
state consists of the previous words y′<i and the
source sentence X . At each step, the agent selects
an action according to its policy, where actions
are tokens. The policy is defined by the param-
eters of the model, i.e., the conditional probabil-
ity Pθ(y′i|y′<i, X). Reward is given only once the
agent generates a complete sequence Y ′. The stan-
dard reward for MT is the sentence level BLEU
metric (Papineni et al., 2002), matching the evalua-
tion metric. Our goal is to find the parameters that
will maximize the expected reward.

In this work, we use MRT (Och, 2003; Shen
et al., 2015), a policy gradient method adapted to
MT. The key idea of this method is to optimize at
each step a re-normalized risk, defined only over
the sampled batch. Concretely, the expected risk is
defined as:

Lrisk =
∑

u∈U(X)

R(Y, u)
P (u|X)β∑

u′∈U(X) P (u′|X)β

(1)
where u is a candidate hypothesis sentence, U(x)

is the sample of k candidate hypotheses, Y is the
reference, P is the conditional probability that
the model assigns a candidate hypothesis u given
source sentence X , β a smoothness parameter and
R is BLEU.

3 Methodology

Architecture. We use a similar setup as used by
Wieting et al. (2019), adapting their fairSeq-based
(Ott et al., 2019) codebase to our purposes.2 Simi-
lar to their Transformer architecture we use gated
convolutional encoders and decoders (Gehring
et al., 2017). We use 4 layers for the encoder and
3 for the decoder, the size of the hidden state is
768 for all layers, and the filter width of the ker-
nels is 3. Additionally, the dimension of the BPE
embeddings is set to 768.

Data Prepossessing. We use BPE (Sennrich
et al., 2016) for tokenization. The vocabulary size
is set to 40K for the combined source and target vo-
cabulary as done by Wieting et al. (2019). For the
small target vocabulary experiments, we change the
target vocabulary size to 1K and keep the source
vocabulary unchanged.

Objective Functions. Following Edunov et al.
(2018), we train models with MLE with label-
smoothing (Szegedy et al., 2016; Pereyra et al.,
2017) of size 0.1. For RL, we fine-tune the model
with a weighted average of the MRT Lrisk and the
token level loss Lmle.

Our fine-tuning objective thus becomes:

LAverage = α · Lmle + (1− α) · Lrisk (2)

We set α to be 0.3 shown to work best by
Wu et al. (2018b). We set β to 1. We generate
eight hypotheses for each MRT step (k=8) with
beam search. We train with smoothed BLEU (Lin
and Och, 2004) from the Moses implementation.3

Moreover, we use this metric to report results and
verify they match sacrebleu (Post, 2018).4

Optimization. We train the MLE objective over
200 epochs and the combined RL objective over 15.
We perform early stopping by selecting the model
with the lowest validation loss. We optimize with
Nesterov’s accelerated gradient method (Sutskever
et al., 2013) with a learning rate of 0.25, a momen-
tum of 0.99, and re-normalize gradients to a 0.1
norm (Pascanu et al., 2012).

2https://github.com/jwieting/
beyond-bleu

3https://github.com/jwieting/
beyond-bleu/blob/master/multi-bleu.perl

4https://github.com/mjpost/sacrebleu
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Data. We experiment with four languages: Ger-
man (De), Czech (Cs), Russian (Ru), and Turkish
(Tr), translating each of them to English (En). For
training data for cs-en, de-en, and ru-en, we use
the WMT News Commentary v135 (Bojar et al.,
2017). For tr-en training data, we use WMT 2018
parallel data, which consists of the SETIMES2 cor-
pus (Tiedemann, 2012). The validation set is a
concatenation of newsdev 2016 and 2017 released
for WMT18. Test sets are the official WMT18 test
sets. Those experiments focus on a low-resource
setting. We choose this setting as RL experiments
are computationally demanding and this setting is
common in the literature for RL experiments like
ours Wieting et al. (2019). (see data statistics in
Supp. §A)

4 Reducing the Vocabulary Size

We begin by directly testing our hypothesis that
the size of the action space is a cause for the long
convergence time of RL for NMT. To do so, we
train a model with target-side BPE taken from a
much smaller vocabulary than is typically used.

We begin by training two MLE models, one with
a large (17K-31K) target vocabulary (LTV) and
another with a target vocabulary of size 1K (STV).
The source vocabulary remains unchanged. We
start with the MLE pretraining and then train each
of the two models with RL.

Results (Table 1) show that the RL training with
STV achieves about 1 BLEU point more than the
RL training with LTV.6 For a comparison of the
models’ entropy see Supp. §B. In order to ver-
ify that the improvement does not stem from the
choice of α mixing RL and MLE (see Eq. 2), we
repeat the training for De-En with α ∈ {0, 1}, we
find that α = 0.3 is superior to both. Moreover,
RL improves STV more than LTV when training
with only the RL objective (α = 1). This indi-
cates that RL training contributes to the observed
improvement.

We next turn to analyze what tokens are respon-
sible for the observed performance gain. Specif-
ically, we examine whether reducing the vocab-
ulary size resulted in RL being able to promote
target tokens that received a low rank by the pre-
trained MLE model. For each model, for 700K
trials, we compute what rank the model assigns

5http://data.statmt.org/wmt18/
translation-task

6Preliminary experiments showed that altering the random
seed changes the BLEU score by ±0.01 points.

Model DE-EN CS-EN RU-EN TR-EN

LTV 25.07 15.16 16.67 12.76
LTV+RL 25.67 15.33 16.9 12.98
Diff. 0.6 0.17 0.23 0.22

STV 21.83 13.79 14.63 10.37
STV+RL 23.23 14.62 15.73 11.96
Diff. 1.4 0.83 1.1 1.59

Table 1: BLEU scores for translating four languages
to English using MLE pretraining followed by RL, and
comparing a model with a large vocabulary (LTV) to a
small one (STV). The top (bottom) block presents re-
sults for LTV (STV) with and without RL, and the dif-
ference between them (Diff.). RL with STV gains more
than 1 point more (on average) over the pre-trained
MLE model, than RL with LTV.

to the gold token yi for a context y′<i and source
sentence X . Formally, ∀r ∈ |VT |, P rmodel =
#{gold token assigns to the r rank}

#{all trials} . We then com-
pare the rank distribution of the MLE model to
that of the RL model by subtracting those two
distributions. In our notation, for each rank r,
∆P r = P rRL − P rMLE . This subtraction represents
how RL influences the model’s ability to assign
the correct token yi for each rank. The greater the
positive effect of RL is, the more probable it is that
the probability will be positive for the first rank,
and negative for lower ranks (due to the probability
shift to first place).

Figure 1 presents the probability difference per
rank for LTV and STV. We can see that for the
first rank the probability shift due to RL training
with STV is more than twice the shift caused by
RL training with LTV. Consequently, the probabil-
ity shift for the following ranks is usually more
negative for small vocabulary settings. The figure
indicates that indeed the shift of probability mass
to higher positions occurs substantially more when
we apply RL using a smaller action space. More-
over, the STV training was able to shift probability
mass from lower ranks upwards compared to LTV.
An indication for that is that, within the first one
hundred ranks, STV reduces the probability of 83
of them, whereas LTV of only 2.

5 Reducing the Effective Dimensionality
of the Action Space

Finding that reducing the number of actions im-
proves RL’s performance, we propose a method
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Figure 1: Comparison of probability shift due to RL
training of assign ybest for ten first words for both LTV
and STV. in blue, you can see the results with BPE of
size 1,000, STV. in red are the results with BPE of size
30,000, LTV. a clear improvement of assigning ybest in
first place for STV.

for reducing the effective number of actions, with-
out changing the actual output. The vocabulary
size might be static, as in pre-trained models (De-
vlin et al., 2019), and reducing it might help RL
but be sup-optimal for MLE (Gowda and May,
2020), or introduce out-of-domain words (Koehn
and Knowles, 2017). We propose to do so by using
target embeddings that generalize over tokens that
appear in similar contexts. We explore two imple-
mentations of this idea, one where we initialize the
target embeddings with high-quality embeddings,
and another where we freeze the learned target
embeddings during RL. We also explore a combi-
nation of the two approaches. Freezing the target
embeddings (decoder’s last layer) can be construed
as training the network to output the activations of
the penultimate layer, where a fixed function then
maps it to the dimension of the vocabulary.

We note that although freezing is a common pro-
cedure (Zoph et al., 2016; Thompson et al., 2018;
Lee et al., 2019; Coster et al., 2021), as far as we
know, it has never been applied in the use of RL
for sequence to sequence models.

Denote the function that the network computes
with fθ. fθ can be written as hθ2 ◦ gθ1 , where
θ = (θ1, θ2), g maps the input – source sentence
X and model translation prefix y′<i – into Rd, and
h maps g’s output into R|VT |.

Using this notation, we can formulate the method
as loading pre-trained MLE target embeddings to
hθ2 or freezing it (or both). As for many encoder-
decoder architectures (including the Transformer),

it holds that d � |VT |, this can be thought of as
constraining the agent to select a d-dimensional
continuous action, where hθ2 is a known transfor-
mation performed by the environment.

The importance of target embedding is that they
allow for better generalization over actions. The
intuition is as follows. Assume two tokens have the
same embedding, and similar semantics, i.e., they
are applicable in the same contexts (synonyms).
Since they have the same target embeddings, dur-
ing training the network will perform the same
gradient updates when encountering either of them,
except for in the last layer (since they are still con-
sidered different outputs). If the target embeddings
are not frozen, encountering either of them during
training will lead to very similar updates (since they
have the same target embeddings), but their target
embeddings may drift slightly apart, which will
cause a subsequent drift in the lower layers. If the
target embeddings are frozen, the gradient updates
they will yield will remain the same and expedite
learning. We hypothesize a similar effect during
training, where tokens that have similar (but not
identical) embeddings, and a similar (but not iden-
tical) distribution would benefit in training from
each other. This motivates us to explore a combi-
nation of informative initialization and parameter
freezing. (see formal proof in Supp. §E).

5.1 Motivating Simulation through Policy
Parameterization in Large Action Spaces

In order to examine the intuition outlined above
in a controlled setting, we consider a synthetic RL
problem in which the action space is superficially
enlarged. The task is a (contextual) multi-armed-
bandit, with K actions. At each step, an input
state is sampled from the environment (the "con-
text"; a random vector sampled from a multivari-
ate Gaussian distribution). A random, fixed, non-
linear binary classifier determines whether action
#1 or action #2 is rewarding based on the given
context (actions 3-K are never rewarding), and the
reward for each action is r + z where r = 1 for
the rewarding action and 0 for all other actions,
and z ∼ N (0, 0.1). Crucially, we duplicate each
action a times, resulting in a total of K × a actions
at the policy level – whereas for the environment
all ‘copies’ of a given action are equivalent.

The problem structure, including the classifier it-
self, is unknown to the RL agent, which directly op-
timizes a policy parameterized as a fully-connected
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feed-forward neural network. We control two as-
pects of the last layer of the policy network, re-
sulting in a total of four variants of agents. First,
the last layer can be frozen to its initial value, or
learned (by RL). Second, the last layer can be ini-
tialized at random, or induce a prior regarding the
duplicated actions (such that weight vectors pro-
jecting to different copies of a given action are
initialized identically). We call the latter the infor-
mative initialization.

We stress that the informative initialization car-
ries no information about the underlying reward
structure of the problem (i.e., the classifier, and
the identity of the rewarding actions), but only as
to which actions are duplicated. Nevertheless, as
shown in Figure 2, a prior regarding the structure
of the action space is helpful on its own, leading to
faster learning (compare Informative to Full net).

Results fit the intuition presented. With infor-
mative last layer initialization, learning in previous
layers generalizes over the duplicated actions and
boosts early stages of learning, leading to faster
convergence. We note that in this setting faster
learning is not only the result of learning fewer
parameters. Notably, freezing the last layer with
random initialization, prohibits the network from
learning the task. This is due to the regime of a
very large action space (output layer; width 4000)
compared to the dimensionality of the hidden rep-
resentations (width 300). Freezing an informative
initialization, on the other hand, sets the network
in a rather different regime, in which the effective
size of the output layer is (much) smaller than the
hidden representation (i.e #‘real’ actions; 10). In
this regime, the network is generally expressive
enough so that it can quickly learn the task even
with a fixed, random readout layer (Hoffer et al.,
2018).

To conclude, this example provides evidence
that initializing and possibly freezing the last layer
in the policy network in a way that respects the
structure of the action space is helpful for learning
in vast action spaces, as it supports generalization
over similar or related actions. Importantly, this
helps even when the (frozen) initialization does
not contain task-specific information. In a more
realistic scenario, actions are not simply a complete
duplicate of each other, but rather are organized in
some complex structure. Informative initialization,
then, accounts not for duplicating weights, but for
initializing them in such a way that a-priori reflects,

Figure 2: Simulating learning in large action spaces.
Figures show a moving average over 20 steps of the
underlying binary reward. Solid curves denote mean,
shaded area denote ±0.5 s.d. (N = 50 trials per agent,
K = 10, a = 400, network architecture: 10-300-300-
4000). Informative initialization is effective on its own,
and more so when freezing is applied.

or is congruent, with this structure. This motivates
our approach – in the realistic, complicated task of
MT – to freeze a learned output layer for the policy
network, from a model whose embeddings have
been shown to be effective across a wide range of
tasks (in our case, BERT).

5.2 NMT Experiments

The motivating analysis and simulations indicate
that it is desirable to use target embeddings that
assign similar values to similar actions. Doing so
can be viewed as an effective reduction in the di-
mensionality of the action space. We turn to exper-
iment with this approach on NMT. We explore two
approaches: (1) freezing h during RL; (2) informa-
tively initializing h, as well as their combination.
Our main results are presented in Table 2.

As a baseline, we experiment with freezing un-
informative target embeddings: target embeddings
are randomly initialized and frozen during both
MLE and RL. Unsurprisingly, doing so does not
help training, and in fact, greatly degrades it (in
about 2 BLEU points in En-De).

Next, we examine whether the target embed-
dings of the MLE pretraining are informative
enough, namely whether freezing them during RL
leads to improved effectiveness. Results show a
slight improvement in BLEU when doing so, which
is encouraging given that the frozen embeddings’
weights consist of more than half of the network’s
trainable parameters. Indeed, freezing the embed-
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ding layers has a dramatic impact on the volume of
trainable parameters, decreasing their size by more
than 60%. In Supp. §D we present the number of
trainable parameters in each setting.

We therefore hypothesize that, as in the simula-
tions (§5.1), the quality of the frozen embedding
space is critical for the success of this approach.
As using frozen MLE embeddings improves per-
formance, but only somewhat, we further consider
target embeddings that were trained on much larger
datasets, specifically BERT’s embedding layer.7

For this set of experiments, we adjust the tar-
get vocabulary to be BERT’s vocabulary of size
|VT | = 30526. We train RL models with and with-
out freezing the embedding layers and with and
without loading BERT embedding. We report re-
sults of MLE training with BERT’s embedding
when the embedding is kept frozen as it reaches
superior results (see Supp. §C).

The results (Table 2) directly parallels our find-
ings in the simulations: Initializing from BERT
(+BERT +RL) improves performance across all
language pairs, and freezing (+RL+ FREEZE)
yields an additional improvement in most settings,
albeit a more modest one. Combining both meth-
ods provides additional improvement. Indicating
that FREEZE and BERT are helpful both inde-
pendently and in conjunction. In total, our model
(+BERT+RL+FREEZE) achieves 1.5 BLEU
points improvements over regular RL. We also re-
port semantic similarity scores in Supp. §F.

Notably, our method surpasses the LTV+RL re-
sults (Table 1) across all languages except German,
overall about 1.5 BLEU points more on average.
We hypothesize that the reason for this degrada-
tion is the lower results of the MLE with BERT’s
vocabulary compared to the joint BPE vocabulary
which is known to be superior to BPE on each lan-
guage individually, especially when the source and
target languages are close (Sennrich et al., 2016).
These considerations are peripheral to our discus-
sion, which specifically targets the effectiveness of
the RL approach.

Finally, initializing from BERT increases RL’s
ability to promote tokens that were not ranked high
according to the MLE model (Fig. 3).

6 Human Evaluation

We perform human evaluation, comparing the base-
lineRL with our proposed model. We selected 100

7HuggingFace implementation

MODEL De-En Cs-En Ru-En Rr-En

MLE 22.38 15.81 17.31 12.60
+RL 23.19 15.81 17.31 12.66

+RL+FREEZE 23.14 16.04 17.78 13.18
+BERT 23.46 16.59 18.14 14.15
+BERT+RL 24.44 17.04 18.68 14.37
+BERT+RL+FREEZE 24.71 17.37 18.30 14.55

Table 2: BLEU scores on translating four languages to
English. The upper block shows the baseline scores
of training only with MLE, and with MLE followed
by RL. RL presents modest improvement (if any) over
only using MLE. +RL+FREEZE shows some improve-
ment due to freezing the target embeddings. The lower
three rows show results when using BERT’s target em-
beddings (informative initialization). Additional bene-
fit is seen from freezing (+RL+BERT+FREEZE).

Figure 3: Comparison of the change in the rank distri-
bution of the target token following RL in two settings,
one where RL training with frozen BERT embeddings
is used (blue) and the second when we used basic RL
training (red). The gain in probability in the first rank
indicates that the model is more probable to be correct
(which is reflected in its superior performance over the
pre-trained MLE model). The negative values in the
following places demonstrate how RL with frozen high-
quality target embeddings can improve not only when
the MLE model is initially close to being correct.

translations from the respective test sets of each
language. The annotation was performed by two
professional annotators (contractors of the project),
who work in the field of translation. Both are na-
tive English speakers. The annotators assigned a
score from 0 to 100, judging how well the trans-
lation conveyed the information contained in the
reference (see annotation guidelines in Supp. §G).
From Fig. 4, we see that our proposed model scores
the highest across all language pairs. To test statisti-
cal significance, we use the Wilcoxon rank sum test
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Figure 4: Average human ratings on 200 sentences
from the test set for each of the respective languages.
RL is the baseline RL model and RL+ + is our model
(+BERT + RL + FREEZE). The performance of
our model is consistently better than the baseline.

to standardize score distributions fit for our setting
(Graham et al., 2015). Comparing the two models’
distributions, we got a p-value of 8.5e−5 indicat-
ing the improvement is significant. We emphasize
that our main goal is showing that our method can
improve the optimized metric (e.g., BLEU), and
hence the improvement over the semantic similar-
ity score and the human evaluation is an additional
indication of our method’s robustness.

7 Comparing Target Embedding Spaces

The previous section discussed how BERT’s target
embeddings improve RL performance, compared
to target embeddings learned by MLE. We now
turn to directly analyze the generalization ability of
the two embeddings. We do so by comparing the
embeddings of semantically related words.

We use WordNet (Miller, 1998) and spaCy8 to
compile three lists of word pairs: inflections (e.g.,
’documentaries’ / ’documentary’, ’boxes’ / ’box’,
’stemming’ / ’stem’), synonyms (e.g., ’luckily’ /
’fortunately’, ’amazement’ / ’astonishment’, ’pur-
posely’ / ’intentionally’), and random pairs, and
compare the embeddings assigned to these pairs us-
ing BERT and MLE embeddings. Figure 5 presents
the distributions of the cosine similarity of the pairs
in the three lists for both embedding spaces. Re-
sults show that MLE embeddings for the different
lists have almost identical distributions, demon-
strating the limited informativeness of these target
embeddings. In contrast, BERT embeddings only
display a small overlap between the similarity dis-

8https://spacy.io/

(a) MLE embeddings

(b) BERT embeddings

Figure 5: Comparison of the distribution of the cosine
similarity between word pairs from three groups: ran-
dom word pairs (in green), synonym pairs that do not
share a stem (in orange), and pairs of synonyms that
share a stem (in blue). The top figure refers to the tar-
get embeddings learned by MLE, and the bottom one to
BERT embeddings. The ability of the embeddings to
distinguish between these three groups is informative
of their ability to map semantically related words to
similar embeddings. The better discrimination ability
of BERT embeddings is thus likely related to their su-
periority as target embeddings over MLE embeddings.

tributions of inflections and random pairs. How-
ever, synonyms’ distribution remains quite similar
to that of random pairs. In conclusion, BERT em-
beddings better discern semantics overall compared
to MLE embeddings, which may partly account for
their superior performance. Results also indicate
BERT’s embeddings could be further improved.

8 Conclusion

In this paper, we addressed the limited effective-
ness of RL for NMT, seeking to understand its
origins and offer means for tackling it. We hypoth-
esized that this limitation arises from the size of
the action spaces used in NMT and examined two
ways of reducing their effective dimension. In the
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first method, we experiment with smaller vocabu-
laries, showing improved RL effectiveness. While
this method constrains the size of the vocabulary,
which may be limiting in some settings (Ding et al.,
2019; Gowda and May, 2020), it motivates further
research along these lines.

The second approach introduces a new method
of using informative target embeddings and poten-
tially freezing them during RL. We find that this
method may be beneficial as well, but its effec-
tiveness crucially depends on the quality of the
employed embeddings. Indeed, we find using both
simulations and NMT experiments that freezing in
itself results in some improvement in RL perfor-
mance, but that combined with target embeddings
that generalize over words with a similar distri-
bution, it may yield substantial gains as shown
by BLEU, semantic similarity, and human evalua-
tion. We compare the target embeddings produced
by MLE and those by BERT, finding the latter to
be considerably stronger. Those results in low re-
sources settings, encourage further research aiming
to address the problem of large action space for TG
in richer data settings by adapting and extending
our methods.

Future work will increase the exploration abil-
ity of RL training in NMT. A promising line of
research towards this goal is using off-policy meth-
ods. Off-policy methods, in which observations are
sampled from a different policy than the one we cur-
rently optimize, are prominent in RL (Watkins and
Dayan, 1992; Sutton et al., 1998), and were also
studied in the context of policy gradient methods
(Degris et al., 2012; Silver et al., 2014). We be-
lieve that the adoption of such methods to enhance
exploration, combined with our proposed method
for using target embeddings, can be a promising
path forward for the application of RL in NMT, and
more generally in TG.

A different line of future work will focus on
changing the network’s architecture to predict a d
dimension continuous action, instead of discrete
actions. Such an approach may directly reduce the
size of the action space without limiting the number
of words that can be predicted.
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A Methodology

Table 3 present the train, validation and test sizes
in all four languages pairs. We note that our use
of the data is aligned with the license and intended
use of the data.

Lang. Train Valid Test

de-en 284,246 6,003 2,998
cs-en 218,384 6,004 2,983
ru-em 235,159 5,999 3,000
tr-en 207,678 6,007 3,000

Table 3: Number of sentence pairs in the train-
ing/validation/test sets for all four languages.

B Entropy of STV and LTV

As C19 suggested we can compare the peakiness
of the two models by calculating their distributions
entropy. Lower entropy indicates a more peaky dis-
tribution. We used KL divergence with respect to
the uniform distribution in order to normalize the
entropy and compare the peakiness of the two mod-
els. The STV model starts RL training with mean
entropy of 0.300 and finishes with 0.269 while the
LTV begins with 0.258 and finishes with 0.264.
This indicates that before RL training the LTV
model was slightly more peaky than the STV, but
after RL training they have similar peakiness.

C Loading Bert embedding

We consider two options for initializing Bert em-
beddings for the MLE training, with and without
freezing the embedding layer. The results were
unequivocal, freezing the embedding layers has a
very constructive effect on the results (table 4). We
estimate that freezing the embedding layers causes
such a vast improvement in performance because
it enables us to avoid the catastrophic forgetting
of BERT parameters. Therefore, although using
BERT embedding is helpful as initialization, by
freezing the parameters we allow the model to bet-
ter utilize BERT’s embeddings.

D Number of parameters

In Table 5 we provide a comparison of the number
of trainable parameters with and without freezing
the embedding layer.
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Model De-
En

Cs-
En

Ru-
En

Tr-En

MLE 22.38 15.81 17.31 12.60
MLE+Bert W/o
freeze

22.99 15.32 17.57 12.65

MLE+Bert
with freeze

23.46 16.59 18.14 14.15

diff. 0.47 1.27 0.57 1.50

Table 4: Comparison of MLE models with BERT em-
bedding with and without freezing.

# parameters De-En Cs-En Ru-En Tr-En

Freeze 30.2M 29.3M 27.9M 29.4M
W/o Freeze 77.2M 76.2M 74.8M 76.4M
Ratio 0.39 0.38 0.37 0.38

Table 5: Comparison if trainable parameters.

E Formalizing the intuition behind
freezing the embedding layer

Here we want to formalize the intuition behind
freezing the embedding layer. We explicitly calcu-
late the gradients of the cross-entropy (CE) loss of
the one-hot vector, y, and the distribution vector,
ŷ of the model fθ = hθ2 ◦ gθ1 output (henceforth,
we will discard the parameters notation from f, g
and h). We will discuss two cases, one when we
freeze θ2 and the second when we are not. We note
that θ2 ∈ Rd×|VT | is the embedding layer where
each row, ρi, is the representation of the k’s word
in the vocabulary. Moreover, h : Rd → R|VT |
is the function defined by multiplying the out-
put of g, denoted by v ∈ Rd, by θ2, and then
taking the soft-max of the output vector, hence
∀k ∈ |VT |;hk(v) = exp(ρk·v)∑

l exp(ρl·v)
. Therefore assign-

ing to each word some probability, ŷk, to be the
next one in the sentence.

Now, we want to investigate the update defined
by the gradients of the CE loss in the setting when
two words, w1 and w2 have the same representa-
tion, ρ1 = ρ2. We consider the case where one of
them is the gold token, w.l.g. w1. We note this case

by
∣∣∣
1
.

We turn to examine the gradient in this setting
for both cases. We start by realizing that if all the
partial derivatives of the CE loss, L, exist then the
gradient is the vector of all the partial derivatives

meaning, ∇θL =

(
∇θ1L
∇θ2L

)
and we can separate

the calculation into two parts, one with respect to
θ1 and the second with respect to θ2.

By definition, in the case where we freeze θ2 we
will keep ρ1 and ρ2 the same. We will now show
that in the case when we don’t freeze θ2 the update
will be different.

Lemma E.1. If θ2 is not frozen then: Updates are
differe: ∆ρ1! = ∆ρ2.

Proof. We start by noticing that multiplying v by
θ2 is a linear transformation so for points p1 and
p2 we will get the same derivative as ρ1 = ρ2,
moreover by taking the soft-max of those identical
outputs we will get the same outputs. Hence, we
get that ∀i ∈ [d]; ∂ŷ1∂vi

= ∂ŷ2
∂vi

, similarly ∂ŷ1
∂ρ1i

= ∂ŷ2
∂ρ2i

.
We continue by calculating the derivative of the

CE. The CE loss is defined by:

L(y, ŷ) =
∑

i

yilog(ŷi) (3)

The derivative is: ∂L
∂ŷi

=
∑

i yi
1
ŷi

we notice that
y is a one hot vector i.e., y1 = 1 and ∀i ∈
[2, |VT |]; yi = 0. Therefore, the derivative will
be different from i = 1 to all other i’s. Specifically,
∀i ∈ [d]; ∂L

∂ρ1i
6= ∂L

∂ρ2i
. Putting it all together we

get:

∂L

∂ρ1i
=
∂L

∂ŷ1
· ∂ŷ1
∂ρ1i

6= ∂L

∂ŷ2
· ∂ŷ2
∂ρ2i

=
∂L

∂ρ2i
(4)

Proving that ρ1 and ρ2 updates are different.

Lemma E.2. For both cases, the update of θ1 is

symmetric to the gold being w1 or w2. ∇θ2L
∣∣∣
1

=

∇θ2L
∣∣∣
2
.

Proof. Given a parameter λ ∈ θ1, we inspect the
derivative of L with respect to λ. We use here
Einstein summation notation.

∂L

∂λ

∣∣∣
1

=
∂L

∂vi
· ∂vi
∂λ

∣∣∣
1

=
∂L

∂vi
· ∂vi
∂λ

∣∣∣
2

=
∂L

∂λ

∣∣∣
2

(5)

We deduce ∂vi
∂λ

∣∣∣
1

= ∂vi
∂λ

∣∣∣
2
, as the derivative of vi is

independent of the question which word is the gold.
In order to justify the second equality we used, we
will write the derivative of L with respect to vi.

∂L

∂vi

∣∣∣
1

=
∂L

∂ŷk
· ∂ŷk
∂vi

(6)
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Clearly, we only need to check the elements that
change by switching the gold from being w1 to w2

or vice versa. Therefor all the second terms that
multiply by ∂L

∂ŷk
for k ∈ [3, |VT |] didn’t change.

We already proved that ∀i ∈ [d]; ∂ŷ1∂vi
= ∂ŷ2

∂vi
Finally,

because we switch the gold, ∂L
∂ŷ1

and ∂L
∂ŷ2

indeed
switch there values but both of them are multiply
by the same values as ∂ŷ1

∂vi
= ∂ŷ2

∂vi
. Overall, the

derivative is unchanged.

To conclude, in the motivational setting we dis-
cussed, when we freeze θ2 we keep semantically
close vectors unchanged while if we don’t freeze
θ2 we enable them to change. As consequence, in
further steps, this change will affect on θ1 also. In
a similar manner, as long as the representation is
similar, all layers but the penultimate would update
both words similarly.

F Semantic scores for the second method

Our method of freezing informative initialization
of the embedding layer aims to generalize across
different but semantically close actions. In order to
test the ability of our model to generalize we used
SIM. SIM is a measure of semantic similarity that
assigns partial credit to semantically correct but lex-
ically different translations (Wieting et al., 2019).
Table 6 shows our model results and exhibits simi-
lar trends to the BLEU scours. Here we see even
greater gains for cs-en and ru-en languages pairs.
Those results may indicate that the model was able
to predict tokens that are semantically close to the
gold token.

MODEL De-En Cs-En Ru-En Tr-En

MLE 70.03 63.29 66.17 59.68
+RL 71.17 63.29 66.17 59.99

+RL+FREEZE 71.03 64.29 66.66 60.52
+BERT 71.56 64.26 66.70 61.75
+BERT+RL 72.44 65.80 67.94 63.59
+BERT+RL+FREEZE 72.81 66.44 67.66 63.59

Table 6: SIM scores on translating four languages to
English.

G Human Evaluation Information

We recruited the service of two professional trans-
lators via translations providers.

G.1 Human Evaluation Instructions

You will be shown:

1. An English segment of text;

2. Corresponding translation into English.

There are three parts to each annotation:

1. Read the English segment;

2. Read the translation and compare its meaning
to the meaning of the original English seg-
ment;

3. Give a score between 0-100 describing how
close the meaning of the translation is to the
meaning of the original English segment.
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Abstract

Noise Learning is important in the task of text
classification which depends on massive la-
beled data that could be error-prone. However,
we find that noise learning in text classifica-
tion is relatively underdeveloped: 1. many
methods that have been proven effective in the
image domain are not explored in text clas-
sification, 2. it is difficult to conduct a fair
comparison between previous studies as they
do experiments in different noise settings. In
this work, we adapt four state-of-the-art meth-
ods of noise learning from the image domain
to text classification. Moreover, we conduct
comprehensive experiments on our benchmark
of noise learning with seven commonly-used
methods, four datasets, and five noise modes.
Additionally, most previous works are based
on an implicit hypothesis that the commonly-
used datasets such as TREC, Ag-News and
Chnsenticorp contain no errors. However, these
datasets indeed contain 0.61% to 15.77% noise
labels which we define as intrinsic noise that
can cause inaccurate evaluation. Therefore,
we build a new dataset Golden-Chnsenticorp
(G-Chnsenticorp) without intrinsic noise to
more accurately compare the effects of differ-
ent noise learning methods. To the best of our
knowledge, this is the first benchmark of noise
learning for text classification.

∗† Corresponding author.

1 Introduction
The fast development of text classification cannot be
achieved without massive labeled data resources, espe-
cially for supervised embedding-based methods. How-
ever, not all training data are correctly labeled in practice
(Wang et al., 2018; Zlateski et al., 2018). These incor-
rectly labeled data are called noisy labels. To alleviate
the interference caused by noisy labels, many noise
learning methods have been proposed (Rolnick et al.,
2017; Veit et al., 2017; Jiang et al., 2018; Yang Liu,
2019; Li et al., 2020; Curtis G. Northcutt, 2020; Garg
et al., 2021). Although both CV and NLP domains have
serious label noise problems, these work are mainly fo-
cused on the CV domain, only (Garg et al., 2021) is
dedicated to NLP domain. So in order to support the
development of noise learning in NLP, we would like to
propose a noise learning benchmark in the field of text
classification.

We find that the previous studies in noise learning
for text classification tasks have two weaknesses. 1.
The implicit hypothesis is unreasonable. 2. They lack
horizontal comparison.

Unreasonable implicit hypothesis. The previous
research uses a four-step approach to evaluate a new
method. First, they split a dataset into training data and
test data, and then add manufactured noise data to the
training data following a predefined noise mode. Third,
they apply the noise learning method to the training data.
In the end, they evaluate the noise learning method on
the test data. This approach makes an implicit assump-
tion that the dataset is completely reliable. Based on this
assumption, the noise data in the experiment is equal to
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Dataset Intrinsic Noise TotalFatal Inexact Ambiguous
TREC 1.94% 2.58% 3.16% 7.68%

Ag-News 0.00% 0.12% 0.49% 0.61%
Chn. 2.19% 4.63% 8.95% 15.77%

Table 1: The ratio of intrinsic noise in several widely
used datasets. Chn. denotes Chnsenticorp.

the manufactured noise data and the evaluation given
the test data is accurate. But we find that the dataset is
not completely noise-free and the ratio of noise data in
the dataset (i.e. intrinsic noise, which can be divided
into three parts according to the ambiguity level: fatal
noise, inexact noise, and ambiguous noise) is not negli-
gible for noise learning task (Han et al., 2020), as shown
in Table 1. Thus, the noise data in the experiment is
actually equal to the superposition of the intrinsic noise
data and the manufactured noise. Hence, the evaluation
in previous studies is not robust and accurate.

Lacking horizontal comparison. The previous stud-
ies lack horizontal comparison between them as they
usually use different datasets, different noise modes,
different noise ratios, etc. This is not conducive to the
development of noise learning for text classification.

In order to overcome these two weaknesses, we build
a new dataset without intrinsic noise and present a
benchmark of noise learning for text classification. The
main contributions of this paper can be summarized as
follows:

• We divide the intrinsic noise into three parts ac-
cording to the ambiguity level. To the best of our
knowledge, this is the first time intrinsic noise to
be defined and analyzed in the noise learning task
of text classification.

• We propose a new dataset without intrinsic noise,
named G-Chnsenticorp. Experiments on this
dataset would have more accurate results.

• This is the first time that a benchmark of noise
learning for text classification has been established.
First, we summarize the noise modes mentioned in
previous works. Second, we reproduce/transform
seven commonly used noise learning methods in/to
the text classification task.

• We have several interesting observations and con-
clusions: Intrinsic Noise is more difficult to be
learned than other noise modes; many methods do
not work well when the noise ratio is higher than
30%; a small amount of white noise can benefit
classification methods, etc.

2 Related Work

Plenty of previous studies have examined the factors
that impact label noise learning models. Zhang et al.
(2016) prove that a model of sufficient complexity can

over-fit any noise. Jacot et al. (2018) analyze conver-
gence and generalization in neural networks from the
perspective of Gaussian processes in the infinite-width
limit. Rolnick et al. (2017) propose a model that is ex-
tremely adaptive to specific patterns of artificial noise.
Li et al. (2020) prove that gradient descent with early
stopping is robust to label noise for overparameterized
neural networks. From the perspective of noise mode,
Algan and Ulusoy (2020) conduct a detailed analysis of
the influence of label noise on model training and pro-
pose a generic framework to generate feature-dependent
label noise. Hataya and Nakayama (2018) investigate
the behavior of Convolutional Neural Networks (CNNs)
under class-dependently simulated label noise. Flatow
and Penner (2017) test the robustness of the model by
randomly permuting the labels of the training set with
increasing frequency.Jiang et al. (2020) establish the
first benchmark of controlled real-world label noise in
the CV field.

Following the work of Han et al. (2020) which
divides noise learning methods into three categories
optimization-based method, objective-based method,
and data-based method for a more comprehensive com-
parative analysis, we select several commonly-used
noise learning methods from each category to conduct
comparison experiments.

There exist a few benchmarks (Xu et al., 2018; Jiang
et al., 2020) in the field of image classification, but
there is no benchmark in the field of text classification.
Therefore, many works in text classification task (Jindal
et al., 2019; Garg et al., 2021) only do comparative
experiments with their own baseline. Moreover, very
few studies consider different noise settings. A robust
benchmark is much needed in the development of the
field of text classification.

3 G-Chnsenticorp database
Ambiguity level. We then define three categories of
intrinsic noise based on the aforementioned annotator
agreement thresholds: fatal noise [90%, 100%], inexact
noise [60%, 90%), and ambiguous noise [0%, 60%).
Specifically, when more than 90% of the annotators
agree upon a label different from the original one, we
consider the sample as fatal noise. When 60% to 90%
of annotators agree on a label different the original,
we consider the sample as inexact noise. When less
than 60% of annotators agree on the label, no matter
what label it is we consider it as ambiguous. Ratios
of the three intrinsic noises in TREC, Ag-News and
Chnsenticorp are summarized in Table 1. We adopted
two annotator agreement thresholds 90% and 60% as our
guidance. (Please refer to Appendix B for the selection
of threshold.) Note that annotator agreement threshold
here means the ratio of agreement on labeling among
the annotators.

We investigate three common datasets for text classi-
fication illustrated as follows:

• TREC (Voorhees and Tice., 1999): An question
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classification dataset consisting of fact-based ques-
tions divided into broad semantic categories. There
are six classes. It contains 5k+ training samples.

• Ag-News (Xiang Zhang, 2015): A large-scale,
four-class topic classification dataset. It contains
approximately 110K training samples.

• Chnsenticorp (Tan and Zhang, 2008): A hotel re-
view classification dataset. It contains 5K+ positive
reviews and 2K+ negative reviews.

With regard to the Chnsenticorp dataset, we recruited
a team of 10 experts in hotel management as annota-
tors to label samples from Chnsenticorp and found that
there existed four categories in the dataset: positive,
negative, irrelevant, and neutral. We remove irrelevant
and neutral samples to construct a new binary dataset
Golden-Chnsenticorp (G-Chnsenticorp) since we be-
lieve those samples are ambiguous in the task of text
classification.

Based on the three types of intrinsic noise, we recon-
struct the G-Chnsenticorp dataset as follows: we correct
samples of fatal noise with the annotator majority la-
bel and remove samples of inexact or ambiguous noise.
Note that since G-Chnsenticorp is a simple binary text
sentiment classification dataset, we are confident to cor-
rect the fatal noise labels with our expert majority label
and remove the other two types of noise. Ambiguous
noise samples such as "Good breakfast but bad bed"
are indeed noise to the binary classification dataset and
challenging samples such as sarcastic reviews are not
classified as ambiguous or inexact noise during anno-
tating. The new dataset can ensure the robustness of
the models trained on it. Through our annotating and
modification as mentioned above, we obtain the final
G-Chnsenticorp dataset which contains around 4,000
training samples.

4 Noise Generation Methods
In single-label text classification tasks, we assign a
corresponding label to each sentence. For all n sam-
ples with k different types of classes, we let D =
{(x1, y1), (x2, y2), . . . , (xn, yn)} as noise-free dataset,
where xi denotes the ith sentence in the dataset, yi ∈
{1, . . . , k} denotes the class of the ith sentence. How-
ever, it is hard for us to find truly noise-free data
in the dataset except for manual verification. There-
fore, we first assume all pre-given data are true. Then,
we use noise transfer matrix to automatically generate
the corresponding noise-labeled dataset. Here, we set
D

′
= {(x1, y

′
1), (x2, y

′
2), . . . , (xn, y

′
n)} as the noisy

dataset, where y
′
i denotes the corresponding noise label

of sentence xi. The noise transfer matrix Φ(y, y
′
) rep-

resents the transfer distribution of the true label y and
the noise label y

′
, which is a k × k matrix.

Under the same assumption in other studies (Ari-
tra Ghosh, 2017; Patrini et al., 2017; Jindal et al., 2019),
the noise label y

′
i only depends on the corresponding

Noise Mode Noise Generation Formula

Symmetric Noise Φ = (1 − p)I + p
k
A

Pairflip Noise Φ = (1 − p)I + pB

Uniform Noise Φ = (1 − p)I + p
k
C

Random Noise Φ = (1 − p)I + pD

White Noise other unrelated field text

Table 2: Different generation formala of noise mode.
Here, I represents the identity matrix. A denotes an all-
ones matrix with zeros along the diagonal. B represents
the identity matrix where the last column is transferred
to the first column. C represents the matrix with zeros
along the diagonal, and except for the diagonal, the
values are uniformly and independently distributed. D
is a matrix independent of the k − 1 dimensional unit
simplex with zeros along the diagonal.

true label yi, but not the input xi or the other labels
yj or y

′
j . In our experiment, we use the noise transfer

matrix Φ to generate the corresponding noise labels for
the training set, but labels in the test set are not changed.
Meanwhile, we use p to denote the noise rate, which is
the overall probability of label errors, where 0 ≤ p ≤ 1.

Generally speaking, noise labels can be categorized
into four types according to different noise transfer ma-
trices. As shown in Table 2 and Figure 1: (1) Symmetric
Noise (Van Rooyen et al., 2015); (2) Pairflip Noise (Han
et al., 2018); (3) Random Noise (Garg et al., 2021);
(4)Uniform Noise (Garg et al., 2021). Here, if i means
the original category and j means the convered category,
Φ[i][j] represents the probability of class i becoming
to class j. Additionally, we define a new type of noise
named White Noise. Referring to the practice in the im-
age field (Rolnick et al., 2017), we first collect different
fields of text data and generate white noise by randomly
labeling the labels.
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Figure 1: Transition matrices of different noise types
(using 4 classes and noise rate p=0.2 as an example).

5 Method
Common noise learning methods can be divided into
three categories: optimization-based method, objective-
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based method and data-based method (Han et al., 2020).

5.1 Optimization-based Method
Optimization-based methods use two networks to make
predictions on the same mini-batch data and calculate
a joint loss with Co-Regularization for each training
example. For the optimization policy, the key is to
explore the dynamic process of optimization, which
relates to memorization. (Han et al., 2020)

Here, we modify the Co-teaching (Han et al., 2018),
Co-teaching+ (Yu et al., 2019) and JoCoR (Wei et al.,
2020) frameworks to make the data and models compat-
ible with natural language processing tasks. All of them
are originally used in the field of computer vision.

• Co-teaching: it trains two networks simultaneously.
In each batch data, both networks select their small-
loss samples to cross-update parameters of the
other network.

• Co-teaching+: it trains two networks simultane-
ously, too. Different from selecting all small-loss
data in Co-teaching, Co-teaching+ only keeps pre-
diction discrepancy data in the two networks.

• JoCoR: it also trains two networks, but updates
parameters with a joint loss. To reduce divergence
between two networks, JoCoR uses the joint loss
and sampling discrepancy data to backward propa-
gate in a whole.

For feature representation layers, we use three types
of networks to extract features, which are FNN, CNN,
and BERT.

• Co-teachingFNN : based on the Co-teaching
method, we use three-layer feedforward neural net-
works to extract features.

• Co-teachingCNN : based on the Co-teaching
method, we use CNN for feature representation.

• Co-teachingBERT : based on the Co-teaching
method, we use BERT for feature extraction.

5.2 Objective-based Method
The objective-based methods learn from noisy data by
modifying the objective function. Specifically, the key
is to design a suitably modified loss, which is noise-
tolerant and guarantees statistical consistency compared
to the original loss (Han et al., 2020).

Here we select LSTMDN−H (Garg et al., 2021),
LSTMDN−S (Garg et al., 2021) and Peer (Yang Liu,
2019) to modify the loss function. In these three ap-
proaches, only Peer is originally used in the field of
natural language processing.

• LSTMDN−H : the network first assigns a probabil-
ity score to each training data by a beta mixture
model clustering the losses at an early epoch of
training. Then the network is trained with these
scores using the joint loss lDN−H .

lDN−H = lCE(ŷ
(n), y) + β ·B(x) · lCE(ŷ

(c), y)

where ŷ(n) denotes the noisy label prediction, ŷ(c) de-
notes the clean label prediction, y denotes the input in
training dataset, lCE denotes the cross entropy loss, B(x)
denotes the posterior probability that x has a clean label,
and β is a weighting parameter between the two terms.

• LSTMDN−S: similar to the LSTMDN−H . The only
difference is that the network uses an alternative
formulation by replacing the Bernoulli R.V. B(x)
with the indicator 1[B(x) > 0.5]. The lDN−S loss
function is as follows:

lDN−S = lCE(ŷ
(n), y) + β · χ · lCE(ŷ

(c), y)

where χ denotes the indicator 1[B(x) > 0.5]. In the
experiments of LSTMDN−H and LSTMDN−S model,we
use pretrained word2vec embeddings and lstm neural
network layer to extract features.

• Peer: introduces a new family of loss functions
called peer loss functions.This method enables
training a classifier over noisy labels without using
explicit knowledge of the noise rates of labels. The
lpeer loss function is as follows:

lpeer(f(xj), yj) = l1(f(xj), yj)− αl2(f(xj1), yj2)
where alpha is non-zero real number hyper-

parameter. For each sample (xj , yj), randomly draw
other two samples (xj1 , yj1), (xj2 , yj2) such that j1 ̸=
j2. These two samples are called the peer sample. f
represents the bayes optimal classifier. l1 and l2 can
be any standard classification-calibrated loss function,
such as cross entropy loss and mean square error loss.
In our experiments, we use BERT (Devlin et al., 2019)
as the feature extraction layer.

5.3 Data-based Method
For data-based methods, we aim to discover the under-
lying noise transition pattern. The noise transfer matrix
allows us to find the relationship between the clean la-
bel and the noisy label. Therefore, the key point here is
to design an accurate estimator of the noise transition
matrix. In this method, we select the Confident learning
approach that is originally used in computer vision to
solve this problem.

Confident learning (CL) is an alternative approach
that instead focuses on the label quality by character-
izing and identifying label errors in datasets. Based
on the principles of pruning noisy data, we count with
probabilistic thresholds to estimate noise and rank ex-
amples to train with confidence (Curtis G. Northcutt,
2019). The CL model inferred which samples are noisy
by obtaining the predicted probabilities of the samples
on different classifications. In other words, the predicted
probabilities are the feature of the CL model to discrimi-
nate noisy labels. In our experiments,we use three-layer
feedforward neural networks to extract predicted proba-
bilities of the samples.
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E
C

Symmetric Noise Pairflip Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 88.40% 85.00% 82.20% 80.80% 73.80% 66.80% 64.00% 85.00% 79.60% 74.40% 53.60% 33.00% 15.80%

Co-teaching+ 84.60% 84.00% 82.40% 81.20% 78.80% 74.20% 68.40% 83.80% 84.00% 77.40% 72.40% 46.60% 29.40%

JoCoR 84.80% 83.20% 80.20% 80.80% 77.60% 67.20% 63.80% 84.40% 78.40% 75.80% 48.20% 31.00% 28.60%

LSTMDN−H 94.20% 92.20% 89.20% 85.80% 83.30% 82.40% 81.10% 91.90% 88.80% 85.60% 84.50% 83.00% 81.50%

LSTMDN−S 94.40% 92.20% 90.70% 87.80% 84.80% 83.20% 82.00% 92.10% 90.20% 88.30% 86.30% 83.40% 81.50%

Peer 78.44% 77.52% 75.03% 73.84% 73.11% 71.33% 64.89% 76.99% 75.38% 75.14% 73.03% 66.80% 27.41%

CL 82.63% 83.57% 84.57% 81.69% 77.35% 70.74% 61.32% 83.17% 77.56% 72.34% 54.11% 30.26% 22.04%

White Noise Random Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 88.40% 85.80% 86.40% 87.40% 85.40% 83.00% 81.40% 83.80% 81.80% 75.80% 70.40% 67.60% 47.80%

Co-teaching+ 84.60% 83.00% 84.20% 84.40% 82.60% 82.20% 83.40% 83.20% 82.80% 80.80% 72.40% 69.80% 60.60%

JoCoR 84.80% 85.40% 85.60% 82.60% 82.60% 82.00% 82.80% 84.40% 82.60% 75.60% 72.80% 69.20% 63.00%

LSTMDN−H 94.20% 94.30% 94.40% 94.30% 94.00% 93.50% 93.80% 92.00% 89.60% 86.50% 83.40% 82.00% 81.40%

LSTMDN−S 94.40% 94.40% 94.20% 94.20% 93.80% 93.80% 93.60% 92.20% 91.10% 88.80% 83.50% 81.80% 81.40%

Peer 78.44% 77.15% 77.35% 76.93% 75.21% 76.60% 76.73% 74.74% 71.23% 70.05% 68.02% 65.31% 58.98%

CL 82.63% 83.15% 83.17% 81.74% 74.80% 71.18% 65.36% 83.37% 80.56% 78.76% 70.34% 61.72% 36.87%

50% Symmetric Noise + 50% Pairflip Noise 50% Random Noise + 50% Pairflip Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 88.40% 82.40% 81.20% 77.20% 74.20% 65.40% 47.00% 86.80% 80.20% 76.60% 70.40% 61.00% 36.20%

Co-teaching+ 84.60% 82.80% 81.40% 80.20% 72.40% 70.20% 60.60% 85.00% 78.40% 77.80% 75.40% 68.40% 30.80%

JoCoR 84.80% 85.00% 81.20% 78.80% 75.00% 67.80% 44.00% 84.80% 80.40% 78.60% 68.60% 62.60% 34.40%

LSTMDN−H 94.20% 91.10% 88.70% 85.30% 83.10% 82.00% 81.00% 91.80% 88.50% 86.30% 84.30% 83.60% 81.00%

LSTMDN−S 94.40% 91.60% 88.90% 86.70% 84.40% 82.80% 81.30% 91.40% 89.70% 88.20% 84.10% 82.80% 81.10%

Peer 78.44% 78.07% 77.65% 75.11% 73.34% 68.92% 45.20% 76.23% 74.88% 73.26% 65.06% 53.73% 28.19%

CL 82.63% 83.20% 80.76% 77.59% 72.20% 62.31% 48.24% 84.19% 81.47% 74.33% 71.22% 60.09% 33.35%

A
g-

N
ew

s

Symmetric Noise Pairflip Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 78.43% 76.95% 75.55% 74.86% 72.99% 69.33% 63.54% 77.51% 76.01% 69.59% 65.51% 47.80% 15.64%

Co-teaching+ 76.88% 76.59% 75.84% 75.53% 74.62% 71.82% 67.46% 76.83% 75.46% 74.26% 69.53% 47.08% 15.66%

JoCoR 77.92% 77.00% 76.17% 74.45% 72.96% 70.12% 62.95% 76.99% 75.12% 70.22% 62.39% 38.14% 15.51%

LSTMDN−H 93.31% 91.54% 91.24% 91.01% 88.53% 87.92% 87.66% 91.56% 90.94% 90.55% 88.03% 87.68% 87.45%

LSTMDN−S 93.31% 91.77% 91.48% 91.07% 89.42% 88.79% 88.52% 91.75% 91.30% 90.87% 89.52% 88.90% 88.37%

Peer 74.03% 73.77% 72.68% 72.60% 71.00% 70.59% 65.39% 73.35% 72.16% 71.63% 67.08% 36.11% 17.52%

CL 80.30% 78.58% 69.97% 63.21% 55.19% 46.86% 37.43% 77.23% 69.32% 61.56% 54.33% 46.12% 36.28%

White Noise Uniform Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 78.43% 78.46% 78.41% 78.18% 78.05% 77.25% 76.05% 77.07% 76.34% 74.54% 72.61% 63.42% 62.75%

Co-teaching+ 76.88% 77.02% 76.66% 77.07% 76.45% 76.33% 76.86% 76.59 % 76.16% 75.80% 74.11% 71.79% 64.99%

JoCoR 77.92% 77.88% 77.87% 77.68% 77.39% 76.17% 74.55% 77.09% 75.80% 73.79% 71.42% 67.59% 60.58%

LSTMDN−H 93.31% 93.34% 93.25% 93.24% 93.20% 92.89% 93.12% 91.59% 91.20% 90.83% 90.05% 89.74% 88.51%

LSTMDN−S 93.31% 93.34% 93.18% 93.11% 93.15% 93.04% 93.07% 91.86% 91.44% 91.01% 90.23% 89.88% 88.63%

Peer 74.03% 74.25% 74.11% 73.68% 73.02% 72.43% 72.16% 73.87% 73.68% 72.10% 71.78% 70.31% 63.80%

CL 80.30% 80.46% 78.73% 77.75% 74.27% 72.68% 67.35% 78.51% 69.72% 62.82% 54.06% 46.72% 37.18%

50% Symmetric Noise + 50% Pairflip Noise 50% Uniform Noise + 50% Pairflip Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 78.43% 76.45% 75.30% 73.63% 71.24% 63.91% 40.82% 78.43% 77.09% 75.94% 73.53% 63.34% 46.24%

Co-teaching+ 76.88% 76.96% 75.79% 74.89% 73.41% 67.49% 38.71% 76.74% 75.99% 74.25% 74.00% 66.46% 43.21%

JoCoR 77.92% 76.92% 75.17% 74.39% 75.64% 63.03% 75.95% 76.39% 75.64% 72.95% 70.00% 62.72% 47.63%

LSTMDN−H 93.31% 91.43% 90.87% 90.16% 87.95% 87.66% 87.12% 91.86% 91.47% 91.09% 90.03% 89.85% 89.37%

LSTMDN−S 93.31% 91.59% 91.25% 90.63% 89.04% 88.20% 87.64% 92.31% 91.85% 91.20% 90.86% 89.57% 89.30%

Peer 74.03% 73.77% 73.50% 72.37% 70.74% 62.59% 46.49% 73.01% 73.16% 72.20% 71.29% 63.63% 44.93%

CL 80.30% 77.63% 68.42% 60.30% 54.89% 45.21% 36.85% 78.69% 71.37% 64.49% 56.74% 47.55% 39.64%

C
hn

se
nt

ic
or

p

Symmetric Noise / Pairflip Noise White Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 72.05% 66.88% 69.98% 64.39% 63.35% 55.28% 38.3% 70.18% 71.22% 68.12% 69.98% 68.94% 67.08%

Co-teaching+ 71.42% 69.98% 69.98% 63.35% 67.49% 52.17% 38.92% 71.84% 66.87% 71.64% 69.98% 69.77% 68.32%

JoCoR 73.5% 68.94% 70.39% 65.01% 61.49% 55.90% 37.06% 69.77% 72.67% 70.6% 70.39% 69.36% 69.15%

LSTMDN−H 59.42% 58.59% 57.26% 56.17% 54.29% 53.46% 52.23% 59.42% 59.36% 59.21% 59.14% 59.07% 59.10%

LSTMDN−S 59.62% 59.00% 57.83% 56.33% 64.60% 53.55% 52.13% 59.62% 59.62% 59.61% 59.59% 59.57% 59.53%

Peer 75.63% 73.23% 71.17% 65.31% 60.69% 42.35% 31.02% 76.11% 76.82% 73.25% 72.07% 71.53% 71.83%

CL 88.17% 87.55% 85.47% 74.27% 73.03% 47.51% 28.22% 88.59% 88.38% 88.80% 86.10% 89.00% 87.55%

G
-C

hn
se

nt
ic

or
p

Symmetric Noise / Pairflip Noise White Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 75.98% 72.05% 71.01% 69.57% 66.05% 48.45% 32.20% 76.81% 75.16% 74.12% 75.36% 75.78% 75.36%

Co-teaching+ 76.19% 73.08% 71.01% 69.77% 64.80% 54.04% 35.40% 74.95% 74.95% 74.21% 76.81% 75.16% 75.57%

JoCoR 75.78% 76.19% 70.60% 69.15% 63.56% 56.11% 38.92% 78.05% 74.32% 73.71% 75.57% 73.08% 72.26%

LSTMDN−H 62.11% 61.90% 59.61% 57.43% 55.15% 53.40% 52.10% 62.11% 62.06% 62.01% 61.98% 61.83% 61.78%

LSTMDN−S 62.31% 62.05% 59.16% 57.42% 54.84% 52.96% 51.89% 62.11% 62.07% 61.90% 61.75% 61.90% 61.85%

Peer 79.15% 77.83% 74.26% 70.89% 68.35% 60.32% 37.11% 79.83% 79.02% 78.83% 78.49% 77.10% 76.60%

CL 95.44% 91.49% 85.06% 79.25% 70.95% 50.83% 28.63% 95.85% 94.81% 94.19% 95.43% 93.98% 95.02%

Table 3: The accuracy of seven different models trained on the four datasets with different noise ratios and noise
modes respectively
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6 Results and Discussion

In our experiments, we evaluate the performance of
the models in Table 3 on accuracy which is a widely-
used metric in noise learning. We consider five dif-
ferent noise modes (random, symmetric, pairflip, uni-
form, and white) and some of their combinations on
four datasets. We compare the performance of seven
widely-used methods and five of them are originally
used in the field of computer vision. Hence, we trans-
form them to adapt to the task of text classification. To
examine the robustness of the proposed approaches,
we set the noise ratio from 0% to 60%. In detail,
p ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

6.1 Effects of Noise Mode

For single mode of noise We find that when white
noise is included, the results are comparable with those
of the clean dataset. Even if the ratio of noise reaches
the maximum, the results are still comparable. We be-
lieve that this is because neural networks learn features
from text contents. Since the white-noise texts are not
related to the original datasets, the results are not greatly
affected.

For multi-class classification problems We find that
in most cases when the noise ratio increases to 30%, the
accuracy of models with pairflip noise is significantly
lower than others. We argue that the main reason here is
the transfer matrix. When the number of classes exceeds
two, the labels with pairflip noise can only transfer to a
fixed category or remain unchanged. But for symmetric,
uniform, and random transfer matrices, there is a cer-
tain possibility of transferring to each category. When
the number of classes is two, pairflip transfer matrix is
the same as other transfer matrices. Therefore, models
involving pairflip noise may have worse accuracy.

For different combinations of noise modes We se-
lect symmetric, uniform, pairflip, and random noises
to do combinations. We set the total noise ratio from
10% to 60% and assign an equal portion to each noise of
the combinations. For most combinations, we find that
when combining two noise modes which generally have
high classification accuracy, the accuracy of the com-
bination is usually lower than that of the single noise
mode. Interestingly, when two noise modes with low
accuracy in each single mode are combined, the accu-
racy may be higher than their single mode’s results. For
example, in Ag-News we find that choosing the com-
bination of 50% uniform and 50% pairflip noise can
achieve better results than their single mode of noise.

6.2 Effects of Noise Rate

For all four datasets, we find that as the noise ratio in-
creases, the performance gradually decreases in most
cases. Especially when the noise ratio exceeds 30%, the
accuracy drops significantly. However, there are a few
exceptions. For instance, including less than 20% of

Noise Mode
Noise Ratio %

5 10 15 20 25

symmetric 75.97% 73.24% 72.05% 71.52% 71.01%
white 76.03% 76.32% 76.81% 75.23% 75.17%

intrinsic noise 75.83% 70.18% 68.42% 65.97% 63.09%

Table 4: Accuracy of Co-teaching with different noise
modes and ratios on G-chnsenticorp

symmetric or white noises would lead to higher accu-
racy than the clean dataset. We think this may be due to
the network’s robustness as suggested in (Rolnick et al.,
2017) . For symmetric noise, different from other noise
transfer matrices, its matrix is an equal division of prob-
abilities except for the diagonal. Then, labels flip with
a small equal probability. Due to the fault-tolerance of
neural networks, the accuracy can be high. For white
noise, when adding a small number of irrelevant texts,
the model is consistent and better in its predicted results.

6.3 Effects of Method

For all three categories methods mentioned in Section
5, we find that the data-based method achieves high ac-
curacy in Chnsenticorp and G-Chnsenticorp. The goal
of CL is to discover the underlying noise transition pat-
tern which is closer to our noise generation approaches.
Therefore, CL can get more accurate results. Compared
to Chnsenticorp and G-Chnsenticorp, TREC and Ag-
News have more categories than them. This may be
the reason for the decreasing results on TREC and Ag-
News.

For TREC and Ag-News, the objective-based method,
especially LSTMDN−H and LSTMDN−S , performs
better than other methods. We think that the model can
identify the wrong labels by the sample loss value of the
training process via modifying the loss function. Hence,
based on a suitably constructed loss, it can train a robust
deep classifier from the noisy training data and thus can
assign correct labels on clean test data.

Among Co-teaching, Co-teaching+, and JoCoR ap-
proaches, Co-teaching+ achieves the best result. We
argue that this noise learning approach can capture an
arbitrary noise function so it can predict a more precise
result.

6.4 Effects of Dataset

Compared with Chnsenticorp and G-Chnsenticorp, we
find the results on G-Chnsenticorp are significantly bet-
ter than those on Chnsenticorp. There may be two rea-
sons for this. First, the imbalance of label distribution
in Chnsenticorp may affect the results. Second, intrin-
sic noise is an important influencing factor. Interest-
ingly, for results on symmetric or pairflip noise, we find
Chnsenticorp has worse results than G-Chnsenticorp at
first. But as the noise ratio exceeds 40%, the accuracy
on G-Chnsenticorp drops even faster than Chnsenticorp.
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Models
Noise Ratio %

10 20 30 40 50

Co-teachingFNN 83.80% 81.80% 75.80% 70.40% 67.60%
Co-teachingCNN 83.34% 80.07% 74.56% 65.44% 62.03%

Co-teachingBERT 87.27% 83.77% 77.92% 74.35.67% 70.03%

Table 5: Accuracy of models with different complexities
and ratios of random noise on G-chnsenticorp

6.5 Effects of Intrinsic Noise

Because we completely check and relabel the Chnsen-
ticorp dataset, we can analyze the impact of intrinsic
noise and artificial noise (e.g. symmetric) on the model.
We gradually add noise samples to G-chnsenticorp to
examine the effects of different intrinsic noise ratios on
the performance of Co-teaching model.

According to Table 4, we can see that the accuracy
with intrinsic noise is higher than that of artificial noise.
This is because intrinsic noise contains more uncer-
tainty than artificial noise which has a definite pattern.
There can be a number of reasons for incorrect anno-
tating of data: ambiguity of the correct label (Zhan
et al., 2019), annotation speed, human errors, inexpe-
rience of annotator, etc. The noise labels generated by
these behaviors have no patterns. It is more difficult for
the model to capture and counteract these noise labels.
Thus, the accuracy of the model with intrinsic noise is
negatively affected.

6.6 Effects of Model Complexity

We also examine the influence of model complexity
on its performance using different feature extraction
layers. We experiment on G-chnsenticorp with random
noise. Intuitively, models with different complexities
should have different tolerances for noise data. Results
in Table 5 also illustrate this: the accuracy of CNN and
FNN drops faster than that of BERT as the noise ratio
increases. Since the BERT model is pre-trained on a
large-scale corpus, it has better generalization ability
and can better combat the interference from noise data.

7 Conclusion

In conclusion, we firstly construct a text classification
dataset without intrinsic noise, then do experiments
on these datasets using some sota noise learining meth-
ods, and finally draw some useful conclusions about
noise learning: Intrinsic Noise is more difficult to be
learned than other noise modes; many methods do not
work well when the noise ratio is higher than 30%; a
small amount of white noise can benefit classification
methods. This is the first time a benchmark of noise
learning for text classification has been established. We
construct a dataset without intrinsic noise for more ac-
curate evaluations in the noise learning. We present this
benchmark to summarize and compare the contributions
and weaknesses of previous work in noise learing, to
make up for their lack in intrinsic noise analysis, and

hopefully to provide a reference for future research in
the field of noise learning.

In future work, we will build more data without in-
trinsic noise and conduct more in-depth analysis of
intrinsic noise in other settings. Of course, we will
also research a better noise learing method based on the
experimental findings of this paper.
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Appendices
A Cases of Intrinsic Noise
Table 6 shows some cases of Intrinsic Noise.

B Selection of Threshold
During human annotation, we analyze the annotation
results of our 10 annotators. Based on the annotation
accuracy on the annotators’ emotional inclination (the
majority agree on one label), we choose 90% and 60%
as the annotator agreement thresholds using the 3σ prin-
ciple of Normal Distribution.

First, we calculate the rate of annotators’ agreement
on the annotated labels. We find that the accuracy of an-
notators getting the labels with significantly emotional
inclination correct is 92.08%. With regard to those la-
bels without significantly emotional inclination, we as-
sume that the probability of annotating the label positive
or negative is 50%. The rate of annotators’ agreement
on the annotated labels is illustrated as Table 7. The
details results are summarized in Table 8.

Based on the annotator agreement rates on emotion-
ally inclined or not inclined samples, we can compute
the accuracy of getting those samples correct as follows:

accuracy(ai) =
ai

ai + bi

accuracy(bi) =
bi

ai + bi

(1)

where ai and bi denote the annotator agreement rate
on emotionally inclined or not inclined samples respec-
tively.

The accuracy is summarized in Table 9.
We choose the 95% Confidence interval for our re-

sults and have the following definitions on intrinsic
noise:

As more than 90% of annotations are the same among
the annotators, the original sample is significantly emo-
tionally inclined (accuracy > 95%). If the majority an-
notation is different from the original label, we consider
the sample as Fatal noise.

As less than 60% of annotations are the same among
the annotators, the original sample is not significantly
emotionally inclined (accuracy > 95%). Not matter what
the original label is, we consider it as Ambiguous noise.

As 60% to 90% of annotations are the same among
the annotators, the original sample is inexact in terms
of emotional inclination. If the majority annotation is
different from the original label, we consider the sample
as Inexact noise.

C Effects of Hyperparameter Settings
To explore other different settings, we conduct experi-
ments using the following uniform setup: Co-teaching
model trained the fixed TREC dataset with different
ratios of random noise. Here, we explore the effects of

learning rates, number of training epochs, and optimiz-
ers. Table 10 shows the accuracy on different settings.

For learning rates, we observe that the optimal learn-
ing rate increases as the noise ratio increases as expected.
We think this is because an appropriately large learning
rate can help the model escape from local optimum and
increases the model robustness to noise labels. Small
learning rates tend to make the model trapped in a lo-
cally optimum or overfit the model. It also takes a longer
time to train.

For training epochs, we set the same learning rate
1e-3. We find model can gradually fit all data as training
epochs increase. But after 50 epochs, the model is
over-fit. We have two interesting observations on fitting
labels with random mode: a) we do not need to change
the learning rate schedule; b) once the fitting starts, it
converges quickly.

For optimizers, as the noise ratio increases, the results
with RMSprop and Adam optimizers are significantly
better than the simple SGD optimizer. The RMSprop
and Adam optimizers have the following advantages:
first, the gradient of the current batch is used for fine-
tuning the final update. Second, the learning rate is
adaptive for each parameter. These advantages help to
be able to get rid of the local optima.
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Case Source Label Checked Label Sample source

What company is being bought by Yahoo and how much is the
deal worth ? HUM HUM and NUM TREC

What is the best college in the country ? HUM LOC TREC

Mars water tops science honours.The discovery that salty, acidic
water once flowed across the surface of Mars has topped a list of
the 10 key scientific advances of 2004.

World Sci/Tech Ag-News

Pharma Groups Work on EPC Issues.Sept. 30, 2004 Reacting
to calls from pharmaceutical retailers, distributors and manufac-
turers, EPCglobal has added a new action group to specifically
study the pharmaceutical industry.

Sci/Tech Sci/Tech and Business Ag-News

比较实惠，旁边有易初莲花，买东西比较方便，还有麦
当劳。 (This hotel is not only affordable, but also close to
Etsu Lotus, which is convenient for shopping.There’s also a
McDonald’s which is convenient for dining.)

negative positive Chnsenticorp

购物较方便，上外滩也近，但房间太小。没有早餐不方
便，较为嘈杂，装修较老。 (This hotel is convenient for
shopping and close to the Bund. But the disadvantages are small
room, no breakfast, noisy environment and old decoration.)

negative positive and negative Chnsenticorp

作为酒店的老客户，恐怕以后要做另外的选择了——服务
水平在下降，价格却一升再升，再这样下去，下次不会再
入住了。(As a regular customer of the hotel, I’m afraid I’ll
have to make another choice in the future - the service level is
declining, but the price is rising. if this continues, I won’t stay
there again next time.)

positive negative Chnsenticorp

Table 6: Examples of intrinsic noise in different datasets

Conditions Rate generation formula

n mod 2 = 1 and ⌈n/2⌉ ≤ i ≤ n rate = Cinp
i(1− p)n−i + Cn−in pn−i(1− p)i

n mod 2 = 0 and i = ⌈n/2⌉ rate = Cinp
i(1− p)n−i

n mod 2 = 0 and ⌈n/2⌉ < i ≤ n rate = Cinp
i(1− p)n−i + Cn−in pn−i(1− p)i

Table 7: The conditions and the rate generation formulas of annotators’ agreement. Here, n is the number of
annotators, i denotes the number of annotators who get the same annotation, p denotes the accuracy of annotators
getting the labels correct.

Sample type\The rate of same annotation (n=10) 100% 90% 80% 70% 60% 50%

Emotionally inclined 43.82% 37.69% 14.59% 3.35% 0.51% 0.05%

Not Emotionally inclined 0.20% 1.95% 8.79% 23.44% 41.02% 24.61%

Table 8: The rate of annotators agreement on emotionally inclined or not inclined samples. Note that this table only
lists annotator agreement rate from 100% to 50% as the dataset is binary. The rates are complementary such as
r90% = r10%. All percentages are rounded up.

Accuracy\ The rate of same annotation (n=10) 100% 90% 80% 70% 60% 50%

Emotionally inclined 99.56% 95.07% 62.40% 12.49% 1.22% 0.21%

Not Emotionally inclined 0.44% 4.93% 37.60% 87.51% 98.78% 99.79%

Table 9: The accuracy of getting emotionally inclined or not inclined samples correct.
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Hyperparameters Noise Ratio %
10 20 30 40 50

learing rates

1e-2 83.79% 82.10% 75.92% 70.97% 68.60%
1e-3 83.80% 81.80% 75.80% 70.40% 67.60%
1e-4 82.56% 81.44% 75.59% 70.11% 66.36%
1e-5 82.43% 81.32% 75.24% 69.89% 66.12%
1e-7 82.13% 80.76% 74.68% 69.43% 65.68%

training epochs

10 83.24% 79.74% 73.96% 69.36% 65.07%
20 83.80% 81.80% 75.80% 70.40% 67.60%
30 86.55% 81.54% 76.05% 70.94% 67.80%
50 86.55% 81.66% 76.23% 70.93% 67.81%

100 86.56% 81.67% 76.23% 71.04% 67.81%

optimizers

SGD 82.43% 78.37% 72.68% 67.60% 65.03%
Adagrad 82.57% 78.45% 72.97% 67.83% 65.48%

Momentum 83.64% 79.86% 73.52% 68.25% 66.23%
RMSprop 85.24% 81.22% 74.26% 69.22% 67.01%

Adam 83.80% 81.80% 75.80% 70.40% 67.60%

Table 10: Accuracy of Co-teaching model trained fixed TREC dataset with different noise ratios of random noise
and hyperparameter settings
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Abstract

Elastic weight consolidation (EWC, Kirk-
patrick et al. 2017) is a promising approach
to addressing catastrophic forgetting in sequen-
tial training. We find that the effect of EWC
can diminish when fine-tuning large-scale pre-
trained language models on different datasets.
We present two simple objective functions to
mitigate this problem by rescaling the com-
ponents of EWC. Experiments on natural lan-
guage inference and fact-checking tasks indi-
cate that our methods require much smaller
values for the trade-off parameters to achieve
results comparable to EWC.1

1 Introduction

New training data may arrive after we have spent
considerable time training our model on the data
at hand. A simple method for exploiting both new
and old training data is to mix them and retrain the
model from scratch. However, this mix-and-retrain
method is neither always practical nor economi-
cal, especially in academic environments where
computational resources are limited.

Sequential training is a potential alternative ap-
proach but faces a difficult challenge called catas-
trophic forgetting in which the performance on old
data drastically drops when we train a model on
new data. There exists a line of work that has ad-
dressed this challenge (Rusu et al., 2016; Li and
Hoiem, 2018; Kirkpatrick et al., 2017; Mallya et al.,
2018; He and Jaeger, 2018; Zhang et al., 2020). In
this paper, we are particularly interested in elas-
tic weight consolidation (EWC, Kirkpatrick et al.
2017), which has been shown to be helpful for do-
main adaptation (Saunders et al., 2019; Thompson
et al., 2019).

EWC adds a regularization term to the objec-
tive function to ensure that the model works well
on both new and old data. We empirically find

1Our code is available at https://github.com/
nii-yamagishilab/ewc.
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Figure 1: Accuracy vs. trade-off parameter λ. We se-
quentially fine-tune BERT (Bidirectional Encoder Rep-
resentations from Transformers, Devlin et al. 2019) on
MNLI (Williams et al., 2018) and FEVER (Thorne
et al., 2018) and evaluate performance on the balanced
dev sets. EWC starts to increase the accuracy of the
prior dataset (MNLI) when increasing λ to 105 and
yields the highest average accuracy at 107.

that EWC requires unexpectedly large values for
the trade-off parameter (λ) between the regular-
izer and the loss to be effective when applying
to pre-trained language models. Figure 1 shows
such a phenomenon in which EWC has no effect
in preventing catastrophic forgetting of the prior
dataset (MNLI) with λ in the range of [100, 104].
We have to scale λ up to [105, 107], which is an un-
usual range of hyperparameters. To the best of our
knowledge, this phenomenon has not been reported
in the literature.

We propose two simple objective functions for
mitigating the diminishing effect of EWC. Our ob-
jective functions rely on rescaling the components
of EWC. Specifically, the first objective function
involves taking the square root of the regularization
term, while the second one involves using the ab-
solute value of the gradient instead of the squared
gradient. Both of our objective functions can re-
duce the values of the trade-off parameter λ by
three to seven orders of magnitude while producing
results similar to those of the original EWC.
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2 Background

2.1 Problem formulation
We consider a supervised learning problem in
which the task is to map an input x ∈ X to a label
y ∈ Y . We need to train a model hθ : X → Y
with parameters θ ∈ Rd. Given a dataset D =
{(xi, yi)}Mi=1, we typically estimate θ on the ba-
sis of empirical risk minimization (ERM, Vapnik
1992):

JERM(θ) =
1

M

∑

(x,y)∈D
L(hθ(x), y), (1)

where L is the negative log likelihood loss:

L(hθ(x), y) = −
∑

y∈Y
1{ŷ = y} log pθ(ŷ|x).

Our base model hθ is a neural network containing
a multilayer perceptron (MLP) on top of a pre-
trained language model (e.g., BERT). Thus, we
define pθ(ŷ|x) = softmax(hθ(x)), where hθ =
MLP(BERT(x)). The model parameters θ include
those in the MLP and BERT.

2.2 Elastic weight consolidation
Elastic weight consolidation (EWC, Kirkpatrick
et al. 2017) is based on a Bayesian framework that
seeks to approximate the posterior distribution of θ
conditional on two datasets. Let D and D0 denote
the current and prior datasets, respectively. We
express the posterior distribution as:

p(θ|D,D0) =
p(θ,D,D0)

p(D,D0)
,

=
p(D|θ,D0)p(θ,D0)

p(D,D0)
,

=
p(D|θ)p(θ|D0)p(D0)

p(D)p(D0)

∝ p(D|θ)p(θ|D0), (2)

where we assume that D and D0 are conditionally
independent in the third line and ignore the constant
in the last line. Taking the log on both sizes of
Eq. (2), we have:

log p(θ|D,D0) = log p(D|θ)+log p(θ|D0). (3)

The first term on the right-hand side corresponds
to the log likelihood of D, which can be computed
using Eq. (1). The second term is intractable but
can be approximated using a second-order Taylor

expansion of the KL-divergence around the param-
eters of the previously trained model, θ0:

log p(θ|D0) ≈ 1

2
∆θ>H∆θ, (4)

where ∆θ = θ−θ0 and H is the expected negative
Hessian of the posterior distribution (Pascanu and
Bengio, 2014). Computing H is impractical. Kirk-
patrick et al. (2017) proposed approximating H
using the diagonal of the Fisher information matrix.
Let diag(f) be the diagonal matrix with diagonal
f. We estimate f with the average of the squared
gradient across some N subsamples S0:

f =
1

N

∑

(x,y)∈S0

(
∇θ0L(hθ(x), y)

)2
. (5)

Replacing H with diag(f), we can simplify Eq. (4)
as:

log p(θ|D0) ≈ 1

2

d∑

j=1

fj(θj − θ0j )2. (6)

Applying Eqs. (1) and (6) to Eq. (3), we obtain the
EWC objective:

JEWC(θ) = JERM(θ) +
λ

2

d∑

j=1

fj(θj − θ0j )2, (7)

where λ is the trade-off parameter.

3 Proposed method

As shown in Figure 1, EWC requires extremely
large values of λ to be effective. We analyze the
components of EWC and find that this problem
arises from the Fisher approximation in Eq. (5).
The diagonal element fj corresponds to the jth

element of the squared gradient with respect to
θ0. Since its training had already converged, the
values of the gradient are typically small. When
we square such a small decimal and combine it
with the squared difference between the current and
prior parameters, the final value can be vanishingly
small.2 We find that this issue is neither affected
by datasets nor pre-trained language models. In
Appendix A, we further investigate this issue on
another pre-trained language model.

We propose scaling up the Fisher approximation
by taking the square root to resolve the issue above.
We define the square root of EWC (REWC) as:

JREWC(θ) = JERM(θ) + λ
√
A+ ε, (8)

2For example, in the MNLI⇒FEVER experiment, we
find that 85.9% of non-zero fj are less than 1e-10.
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(b) AEWC

Figure 2: Accuracy vs. trade-off parameter λ of our
REWC and AEWC. Both methods begin to affect accu-
racy with much lower λ (i.e., 102 and 10−1 for REWC
and AEWC, respectively) while maintaining average
accuracies similar to EWC.

where A =
∑d

j=1 fj(θj − θ0j )2, and ε is a small
value (e.g., 10−8) for preventing the derivative of
the square root at 0.

Another solution is to use the absolute value of
the gradient instead of the squared gradient. We
define:

g =
1

N

∑

(x,y)∈S0

∣∣∇θ0L(hθ(x), y)
∣∣. (9)

Note that diag(g) is positive semi-definite (like
diag(f)) because all of its eigenvalues are greater
than or equal to 0. Replacing the squared difference
with the absolute difference yields our absolute
EWC (AEWC):

JAEWC(θ) = JERM(θ) + λ

d∑

j=1

gj |θj − θ0j |. (10)

Figure 2 shows the results of REWC and AEWC
based on the same setting as in Figure 1.

4 Experiments

4.1 Datasets

We evaluated the objective functions described in
§2 and §3 on natural language inference and fact-
checking tasks. We used six datasets pre-processed
by Schuster et al. (2021) as follows:

MNLI (Williams et al., 2018) is a multi-genre
natural language inference dataset. The task is to
determine the inference relation between two sen-
tences. Schuster et al. (2021) converted the origi-
nal labels {“entailment”, “contradiction”,“neutral”}
into {“supported”, “refuted”, “not enough info”}.

FEVER (Thorne et al., 2018) (Fact Extraction
and VERification) verifies whether a claim is sup-
ported or refuted by an evidence sentence, or de-
cides whether there is insufficient information to
make a decision.

VITC (Schuster et al., 2021) introduces the notion
of contrastive evidence to FEVER. Given a claim,
two evidence sentences that are nearly identical but
with different labels are created. Thus, the task be-
comes more challenging than that of FEVER. The
dataset contains both real and synthetic examples.
We used only the real ones in our experiments.

ADVERSARIAL (Thorne et al., 2019) is derived
from the FEVER 2.0 shared task, containing adver-
sarially created claims that aim to induce erroneous
predictions to the FEVER-trained models.

SYMMETRIC (Schuster et al., 2019) is another
dataset that challenges the FEVER-trained models.
It contains synthetically created claim-evidence
pairs designed to break models that often make
predictions using claims only without taking evi-
dence sentences into account.

TRIGGERS (Atanasova et al., 2020) contains ad-
versarial claims generated by using GPT-2 (Rad-
ford et al., 2019) given the original claims and
triggers, which are words that cause the model to
flip its prediction.

We selected λ that yields the highest average
accuracy on the development (dev) sets. To avoid a
bias towards more populated datasets (e.g., VITC),
we created our balanced dev sets by randomly se-
lecting 9,000 examples from each of the original
dev sets. Since the dev and test sets of MNLI are
identical, we split 9,000 examples from the train-
ing set to form the dev set and used the test set
for the final evaluation. Table 1 shows our dataset
statistics.
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Dataset |Train| |Dev| |Test|
MNLI 383,702 9,000 9,832
FEVER 178,059 9,000 11,710
VITC 248,953 9,000 34,481

ADVERSARIAL – – 766
SYMMETRIC – – 712
TRIGGERS – – 186

Table 1: Dataset statistics in our experiments. Bottom
three datasets contain only test sets adversarially cre-
ated for testing robustness of fact-checking models.

4.2 Training details
We implemented our base model described in §2.1
using Hugging Face’s Transformers library (Wolf
et al., 2020). Specifically, the model consists of
a two-layer MLP and BERT-base. Let x be the
input sequence (i.e., a pair of sentences in our
datasets). BERT-base encodes x into a sequence of
hidden state vectors. Following common practice,
we used the first hidden state vector of the special
classification token (i.e., [CLS]) to represent x and
fed it to the MLP followed by a softmax function.

For all experiments, we used Adafactor opti-
mizer (Shazeer and Stern, 2018) with a gradient
clipping of 1.0. Our effective batch size is 256.3

For standard training, we randomly initialized the
model parameters with N (0, 0.02)4, except for
those of BERT-base. We trained each model for
three epochs with a learning rate of 2e-5.

For sequential training, we randomly selected
1% of examples from D0 to represent S0 in Eq. (5).
We also varied the subsample size from 0.1% to
10% but did not observe significant changes in per-
formance. We initialized the current model param-
eters using the prior ones (i.e., θ0→θ). Determin-
ing a learning rate can be challenging. We used a
method analogous to the learning rate decay tech-
nique (Ng, 2017). Let α0 be the initial learning rate
and r be the number of prior training runs. We com-
puted the learning rate α for the current training
run as:

α =
1

1 + (decay_rate× r)α0. (11)

For example, consider the case of further training
the MNLI-trained model on the FEVER dataset,
where α0 = 2e-5 and r = 1. We set decay_rate
to 1e-2 for all sequential training experiments. Us-
ing Eq. (11), the learning rate α for the current

3We used gradient accumulation with 8 batches of 32.
4This is the default setting in Transformers.
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(b) AEWC w/o gj

Figure 3: Accuracy vs. trade-off parameter λ of EWC
and AEWC without fj and gj , respectively.

run decreases to 1.98e-5. We conducted all the
experiments on NVIDIA Tesla A100 GPUs.

4.3 Results

Table 2 shows the results of various settings on the
test sets. For sequential training, conducting exper-
iments on all combinations takes time and consid-
erable resources. Thus, we chose only a representa-
tive order for the datasets in accordance with their
publication times. Since the MNLI and FEVER
datasets were published at the same time, we de-
cided to start with MNLI due to its generality.

We considered the mix-and-retrain method (∪)
with ERM as the topline setting. Unsurprisingly,
this method yields the best performance on the
prior datasets. The sequential training method (⇒)
with ERM (i.e., vanilla fine-tuning) encounters se-
vere catastrophic forgetting on the prior datasets.
Our REWC and AEWC effectively reduce the val-
ues of λ. AEWC requires the lowest λ among the
three objective functions. The performances of all
the methods seem comparable on average, but each
yields a different trade-off in accuracy between the
prior and current datasets. Regarding the training
time, AEWC is faster than REWC/EWC (though
not significant) because its computation is simpler.

4571



Training set Obj. λ MNLI FEVER VITC ADVER. SYM. TRIG.

MNLI ERM – 83.9±0.1 67.7±0.7 47.8±0.7 51.0±0.8 74.8±0.3 68.3±1.4
FEVER ERM – 58.8±0.2 87.4±0.1 59.7±0.1 51.4±0.7 75.3±0.2 65.4±1.4
VITC ERM – 62.5±1.0 65.1±0.5 78.2±1.2 28.9±0.5 65.8±1.2 69.1±2.8

MNLI ∪ FEVER ERM – 83.9±0.2 87.8±0.1 61.0±0.3 53.8±0.2 82.6±0.4 73.8±0.4
MNLI⇒FEVER ERM – 74.9±0.2 88.2±0.2 62.7±0.1 55.0±0.3 82.6±0.2 71.2±0.4

EWC 107 79.3±0.2 86.3±0.1 61.0±0.4 53.7±0.4 80.3±0.6 67.7±1.4

REWC 103 78.7±0.2 86.8±0.1 61.5±0.3 53.6±0.5 81.1±0.6 69.2±0.6

AEWC 100 78.7±0.2 87.2±0.1 61.9±0.3 53.9±0.4 81.3±0.4 70.5±0.4

FEVER ∪ VITC ERM – 69.0±0.4 87.5±0.1 83.3±0.3 51.0±0.2 79.0±0.7 71.5±0.8
FEVER⇒VITC ERM – 66.2±0.4 75.8±0.4 84.4±0.1 39.6±0.8 71.3±0.8 70.9±0.9

EWC 106 65.8±0.3 78.2±0.2 83.6±0.1 40.5±1.4 71.3±0.5 70.0±0.6

REWC 102 66.2±0.3 76.7±0.2 84.2±0.1 39.7±1.5 71.4±0.3 70.5±0.6

AEWC 10−1 66.3±0.4 76.3±0.2 84.3±0.1 39.5±1.4 71.4±0.4 70.6±0.6

MNLI ∪ VITC ERM – 84.0±0.1 76.8±0.2 84.3±0.1 43.8±0.6 75.5±0.6 74.6±1.9
MNLI⇒VITC ERM – 76.0±0.2 72.4±0.2 85.5±0.2 40.2±0.8 73.0±0.3 71.7±1.0

EWC 105 76.5±0.3 72.7±0.4 85.3±0.1 41.0±1.0 73.3±0.5 72.4±1.8

REWC 102 76.7±0.3 72.9±0.3 85.1±0.1 41.1±0.9 73.5±0.3 72.8±1.9

AEWC 10−1 76.4±0.2 72.7±0.4 85.3±0.1 40.7±1.1 73.3±0.4 72.8±1.9

MNLI ∪ FEVER ∪ VITC ERM – 83.8±0.2 88.1±0.1 84.6±0.1 53.5±0.6 82.6±0.4 73.2±1.0
MNLI⇒FEVER⇒VITC ERM – 75.1±0.3 79.1±0.3 85.7±0.0 44.4±0.5 75.4±0.7 74.9±0.7

EWC 106 77.5±0.3 79.1±0.2 84.0±0.2 44.2±0.4 75.1±0.5 73.3±1.6

REWC 102 76.4±0.4 77.7±0.2 85.2±0.1 42.9±0.4 74.4±0.5 73.5±0.9

AEWC 100 78.6±0.2 82.8±0.1 80.0±1.0 46.8±0.6 76.9±0.5 74.1±1.5

Table 2: Symbol ∪ denotes mixing training sets, while arrow ⇒ denotes using training sets sequentially. Gray
color highlights the effect of catastrophic forgetting on the prior dataset. Blue color emphasizes the performance
on the current dataset. Green color indicates the topline performance of the mix-and-retrain method. We ran each
experiment five times using different random seeds and report mean and standard deviation.

Obj. λ MNLI FEVER VITC

EWC 107 79.3±0.2 86.3±0.1 61.0±0.4

w/o fj 10−2 75.9±0.1 88.0±0.1 62.4±0.2

AEWC 100 78.7±0.2 87.2±0.1 61.9±0.3

w/o gj 10−5 76.1±0.2 87.6±0.1 62.1±0.2

Table 3: Ablation studies on EWC and AEWC for
MNLI⇒ FEVER. “w/o fj (or gj)” denotes omitting
the gradient component from the regularization term.

4.4 Discussion

We can interpret the EWC family as a weighted
sum of the squared (or absolute) differences be-
tween the current and prior parameters. The gra-
dient component helps suggest which parameter is
important. To examine the benefit of gradient in-
formation, we conducted ablation studies on EWC
and AEWC in the MNLI⇒ FEVER experiment.
We omitted fj and gj from Eqs. (7) and (10), re-
spectively. The remaining regularization terms re-
semble the squared `2-norm and the `1-norm that
take the prior parameters into account.

As seen in Figure 3, without the gradient com-
ponent, both methods need lower λ to affect the
accuracy of the prior dataset (MNLI). However,

improvements on the prior dataset are marginal
(∼1%) before reaching the optimal average accu-
racy compared to the original EWC and AEWC
(∼4%). Table 3 shows the ablation results on the
test sets, indicating that omitting the gradient com-
ponent yields lower accuracies on the prior dataset.
These results confirm that the gradient component
is indeed helpful.

5 Conclusion

Without realizing the diminishing effect of EWC,
we may fine-tune a pre-trained language model
with a conventional range of hyperparameters and
find no effect in combating catastrophic forgetting.
We identified a possible cause of this issue and sug-
gested two alternative objective functions, REWC
and AEWC, that yield results comparable to the
original EWC. Exploring more efficient ways for
choosing an optimal λ is part of our future work.

Acknowledgments

This work is supported by JST CREST Grants (JP-
MJCR18A6 and JPMJCR20D3) and MEXT KAK-
ENHI Grants (21H04906), Japan.

4572



References

Pepa Atanasova, Dustin Wright, and Isabelle Augen-
stein. 2020. Generating label cohesive and well-
formed adversarial claims. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3168–3177,
Online. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xu He and Herbert Jaeger. 2018. Overcoming catas-
trophic interference using conceptor-aided back-
propagation. In 6th International Conference on
Learning Representations (ICLR).

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ra-
malho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia
Hadsell. 2017. Overcoming catastrophic forgetting
in neural networks. Proceeding of the National
Academy of Science, 114(13):3521–3526.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite bert for self-supervised learn-
ing of language representations. In International
Conference on Learning Representations.

Zhizhong Li and Derek Hoiem. 2018. Learning with-
out forgetting. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 40(12):2935–2947.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
2018. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In Proceed-
ings of the European Conference on Computer Vi-
sion (ECCV).

Andrew Ng. 2017. Learning rate de-
cay. https://www.coursera.org/
lecture/deep-neural-network/
learning-rate-decay-hjgIA.

Razvan Pascanu and Yoshua Bengio. 2014. Revisiting
natural gradient for deep networks. In 2nd Inter-
national Conference on Learning Representations
(ICLR).

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume
Desjardins, Hubert Soyer, James Kirkpatrick, Ko-
ray Kavukcuoglu, Razvan Pascanu, and Raia Had-
sell. 2016. Progressive neural networks. CoRR,
abs/1606.04671.

Danielle Saunders, Felix Stahlberg, Adrià de Gispert,
and Bill Byrne. 2019. Domain adaptive inference
for neural machine translation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 222–228, Florence,
Italy. Association for Computational Linguistics.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin C! robust fact verification with con-
trastive evidence. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 624–643, Online. Asso-
ciation for Computational Linguistics.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel
Roberto Filizzola Ortiz, Enrico Santus, and Regina
Barzilay. 2019. Towards debiasing fact verification
models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3419–3425, Hong Kong, China. Association for
Computational Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596–4604.
PMLR.

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah,
Kevin Duh, and Philipp Koehn. 2019. Overcoming
catastrophic forgetting during domain adaptation of
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2062–2068, Minneapolis, Min-
nesota. Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2019.
The FEVER2.0 shared task. In Proceedings of the
Second Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 1–6, Hong Kong, China. Asso-
ciation for Computational Linguistics.

4573



Vladimir Vapnik. 1992. Principles of risk minimiza-
tion for learning theory. In Advances in Neural In-
formation Processing Systems, volume 4. Morgan-
Kaufmann.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Jeffrey O. Zhang, Alexander Sax, Amir Zamir,
Leonidas Guibas, and Jitendra Malik. 2020. Side-
tuning: A baseline for network adaptation via ad-
ditive side networks. In Computer Vision – ECCV
2020, pages 698–714, Cham. Springer International
Publishing.

A Additional results

We verified the diminishing effect of EWC on an-
other pre-trained language model, A Lite BERT
(ALBERT, Lan et al. 2020). Figure 4 shows the
results of sequential training: MNLI⇒ FEVER.
We can still see the diminishing effect of the origi-
nal EWC, while our REWC and AEWC reduce the
value of λ by three and six orders of magnitude and
produced similar results.
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Figure 4: Accuracy vs. trade-off parameter λ on
the balanced dev sets of MNLI and FEVER using
ALBERT-base (Lan et al., 2020). EWC, REWC, and
AEWC achieve highest average accuracies with λ =
106, 103, and 100, respectively.
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Abstract

While pre-trained language models like
BERT (Devlin et al., 2019) have achieved im-
pressive results on various natural language
processing tasks, deploying them on resource-
restricted devices is challenging due to their
intensive computational cost and memory foot-
print. Previous approaches mainly focused on
training smaller versions of a BERT model
with competitive accuracy under limited com-
putational resources. In this paper, we extend
Length Adaptive Transformer (Kim and Cho,
2021) and propose to design Token and Head
Adaptive Transformer, which can compress and
accelerate various BERT-based models via sim-
ple fine-tuning. We train a transformer with
a progressive token and head pruning scheme,
eliminating a large number of redundant tokens
and attention heads in the later layers. Then, we
conduct a multi-objective evolutionary search
with the overall number of floating point oper-
ations (FLOPs) as its efficiency constraint to
find joint token and head pruning strategies that
maximize accuracy and efficiency under vari-
ous computational budgets. Empirical studies
show that a large portion of tokens and atten-
tion heads could be pruned while achieving
superior performance compared to the base-
line BERT-based models and Length Adaptive
Transformers in various downstream NLP tasks.
MobileBERT(Sun et al., 2020) trained with our
joint token and head pruning scheme achieves
a GLUE score of 83.0, which is 1.4 higher than
Length Adaptive Transformer and 2.9 higher
than the original model.

1 Introduction

The Transformer (Vaswani et al., 2017) has be-
come the dominant neural architecture used in
natural language processing. Especially, pre-
trained models using the Transformer architecture
as their backbone, e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and GPT-3 (Brown
et al., 2020), have shown significant accuracy im-

provement across various natural language process-
ing tasks. However, the amount of computation
required for these large neural networks is enor-
mous, which leads to a substantial increase in en-
ergy consumption and carbon footprint. For ex-
ample, an article points out that in order to train a
GPT-3 networks using standard NVIDIA gpus, it
would roughly take 190,000 KWh of energy which
is equivalent to producing around 85,000 Kg CO2

considering America’s average carbon emission
intensity (Katyanna Quach, 2020). Despite their
remarkable performance, these power hungry mod-
els pose a great hindrance along the pathway to
sustainable systems. Hence, it is crucial to make
the large-scale networks efficient and sustainable
to be deployed on various hardware with different
computational budgets and adopted for real-world
applications.

There have been efforts to improve the efficiency
of the large language models (see section 6 for a dis-
cussion in detail.) One of the effective approaches
has focused on removing redundant model parame-
ters. Recent works (Voita et al., 2019; Michel et al.,
2019) show that only a small subset of heads are
important and mainly attributed to the final deci-
sion making and some heads could even be pruned
at test time to improve efficiency. Other works
successfully improve the efficiency of BERT-based
models by pruning out word token vectors. Length
Adaptive Transformer (Kim and Cho, 2021) based
on PoWER-BERT (Goyal et al., 2020) demon-
strates that training an adaptive transformer with
progressive word token pruning improves accuracy-
efficiency trade-off that can satisfy any target com-
putational budget. In this paper, we focus on de-
veloping a framework capable of training an adap-
tive Transformer that jointly eliminates redundant
attention heads and word tokens to maximize ac-
curacy and minimize required computational re-
sources. We perform a multi-objective evolutionary
search to find a full Pareto frontier of joint token
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and attention-head pruning schemes that provides
optimal accuracy-efficiency trade-offs given any
computational budget.

We applied our framework to BERT-based mod-
els with different sizes. Our progressive head prun-
ing scheme combined with word token pruning al-
lows heavy head pruning in the last layers of BERT,
MobileBERT, and DistilBERT(Sanh et al., 2019)
without any accuracy loss. Furthermore, the final
models trained with our framework are robust to
prune even more tokens along with attention heads.
This results in superior accuracy and latency trade-
off than simply pruning word tokens. Empirical
evaluations show that MobileBERT trained with
our joint token and head pruning scheme achieves
a GLUE score of 83.0, which is 1.4 higher than
Length Adaptive Transformer and 2.9 higher than
the original model. Our adaptive BERT and Dis-
tilBERT also achieve higher accuracy with less
computational cost compared to Length Adaptive
Transformers. On SQuADv1.1 (Rajpurkar et al.,
2016) question answering task, Token and Head
Adaptive Transformers (THAT) obtain higher dev
F1 scores with less computational resources com-
pared to Length Adaptive Transformers and the
original BERT-based models.

2 Background

In this section, we present the main building blocks
of our framework. We review multi-head atten-
tion, the essential mechanism in the Transformer
architecture. Our framework uses multi-head self-
attention to decide which tokens and heads to prune
in each layer. Then, we review PoWER-BERT and
Length-Adaptive Transformer, which are recent
works that eliminate tokens to improve efficiency
in BERT-based models.

2.1 Multi-head Attention

The multi-head attention mechanism decomposes
the scaled dot-product attention to extract indepen-
dent features from the same input sequence in par-
allel. Let x = (x1, x2, . . . , xT ) be a sequence of T
word token vectors where xt ∈ Rd, and q ∈ Rd be
a query vector. An attention mechanism is defined
as

Attention(x, q) =Wo

T∑

t=1

αt(q)Wvxt (1)

where

αt(q) = softmax

(
q⊤W⊤q Wkxt√

d

)
(2)

Wo,Wv,Wq,Wk ∈ Rd×d are trainable weight ma-
trices and query q comes from the same sequence
x in self-attention. Then multi-head attention is
defined as

MHAttention(x, q) =
H∑

h=1

Attentionh(x, q)

(3)
where H is a set of attention heads h and
Attentionh is a decomposed low-rank attention
from the head h. All the representation outputs
from Attentionh are created from the same in-
put and merged together to produce a single output.
Studies from (Voita et al., 2019; Michel et al., 2019)
have shown possible efficiency improvement from
pruning some features extracted from the heads.

2.2 PoWER-BERT

PoWER-BERT prunes out redundant word token
vectors xt ∈ x at each layer of BERT model based
on the attention significance score αt (Goyal et al.,
2020). While having the same number of parame-
ters as BERT model, PoWER-BERT significantly
reduces the computational cost. PoWER-BERT
requires sequence length configuration search and
re-training steps. In the sequence length configu-
ration search step, auxiliary retention parameters
and a regularizer parameter are briefly introduced
in the model and the loss function, respectively,
to approximate the number of retained token vec-
tors across layers under the desired accuracy and
efficiency trade-off. Then the model is re-trained
based on the searched sequence length configu-
ration z = (z1, z2, . . . , zN ) where N is the total
number of the encoder layers and zn is the number
of tokens to keep at layer n.

PoWER-BERT significantly improves the effi-
ciency and achieves a better accuracy-efficiency
trade-off than DistilBERT and other models with
different compression techniques. However, the se-
quence length configuration search and re-training
steps need to be repeated for each computational
budget. Furthermore, PoWER-BERT’s token prun-
ing is limited to sequence-level classification tasks
since it progressively prunes out hidden token vec-
tors on each layer.
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Figure 1: Overview of joint token and head pruning. The encoder blocks on the left show pruned token features as
they pass to the next layer and restored at the last layer. On the right, only a subset of attention heads are aggregated
to update the retained tokens to further reduce computational cost while achieving higher accuracy with better
generalization.

2.3 Length Adaptive Transformer
Based on PoWER-BERT, (Kim and Cho, 2021)
proposed a framework to train Length-Adaptive
Transformers to reduce expensive computational
cost caused by the repetitive search and re-training
phases from PoWER-BERT. They train the model
once with random sequence length configurations
to make the model robust to various token drop dur-
ing inference. Then, multi-objective evolutionary
search on the adaptive model provides sequence
length configurations that result in optimal trade-
offs between accuracy and efficiency for any given
computational budget. They also introduced drop-
and-restore process to separately store the dropped
token features and restore them in the final hid-
den layer, which makes the model applicable to
token-level applications such as span-based ques-
tion answering.

Our work combines findings of (Voita et al.,
2019; Michel et al., 2019) and Length Adaptive
Transformer to design joint token and attention
head adaptive transformers which maximizes the
accuracy-efficiency trade-offs.

3 Token and Head Adaptive Transformer

In this section, we describe the pruning strategy
based on attention importance and head sensitivity
score to remove tokens and attention heads respec-
tively. We train Token and Head Adaptive Trans-
formers with the pruning strategy to make the final
models robust to arbitrary attention head and token

drops at inference time. Fig. 1 illustrates how to-
kens and heads are jointly pruned in Transformer
models. Then we conduct a multi-objective evo-
lutionary search on the trained model to find the
optimal pruning configuration that meets the target
computational budget.

3.1 Attention score for token pruning

The importance scoring function for a sequence of
tokens is based on the self-attention score.

It(x) = αt(x) = softmax

(
x⊤W⊤q Wkxt√

d

)

(4)
The function measures the attention imposed by xt
on the other words x ∈ x. Intuitively, if the atten-
tion score for a token x has a high value then it is
likely to influence the final model decision. The
significance score of x is the overall attention score
aggregated over the heads. Our adaptive model dy-
namically prunes tokens based on the self-attention
scores online.

3.2 Sensitivity score for head pruning

Following the first order method from (Michel
et al., 2019; Molchanov et al., 2016), the sensitivity
score is based on an unlearned gradient measure of
attention heads.

Ih = Ex∼X
∣∣∣∣Attentionh(x)T

∂L(x)
∂Attentionh(x)

∣∣∣∣
(5)
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whereX is the data distribution andL(x) is the loss
on sample x. In our framework, we estimate the
sensitivity score of each head on a training dataset
and use the score as a proxy for determining which
heads to prune in each layer. Without additional
training cost, smaller models with a fewer num-
ber of attention heads could be efficiently sampled
from our trained model using weight sharing.

3.3 Training Token and Head Adaptive
Transformer

First, we measure the sensitivity score of all the
attention heads by running a single forward pass
of training dataset on a baseline transformer model
fine-tuned for a downstream task. Then, we ran-
domly generate a sequence length and the head
configuration at each iteration.

For the head configuration, we sequentially sam-
ple the number of headsmi+1 at the (i+1)-th layer
within the range [m′i+1,mi]. m′i+1 is the minimum
number of retained heads in (i+1)-th layer set from
the lower bound head pruning configuration which
is progressively reducing the number of heads at
a constant rate to retain only one attention head in
the last layer. We set the lower bound configuration
to retain a single head in the last layer based on
the empirical results from (Michel et al., 2019) that
found ablating all heads except one within a single
layer does not significantly impact the performance.
mi is the number of retained heads in the previous
layer.

For the token configuration, we followed (Kim
and Cho, 2021) and sequentially sample the num-
ber of retained token ni+1 at the (i + 1)-th layer
within the range[(1−p)ni, ni] where ni is the num-
ber of retained tokens in the previous layer and p is
the token drop probability. Additionally, we apply
LayerDrop (Fan et al., 2019) and randomly dropout
encoder layers during training to make the model
robust to the random token drop.

We applied the sandwich rule training technique
(Yu and Huang, 2019) to avoid difficulty in conver-
gence as discussed in (Kim and Cho, 2021). First,
we optimize the model with the upper bound con-
figuration where none of the tokens and heads are
eliminated. Then we apply in-place distillation to
update the model with the lower bound with the
maximum pruning configuration and with other
randomly sampled intermediate pruning configura-
tions to transfer the knowledge from the full model
to the sparse models with various pruning schemes.

In each iteration, the full model and the sparse
model are optimized simultaneously. In practice,
Token and Head Adaptive Transformer only needs
to be trained for the same steps as Length Adaptive
Transformer model. After training we get the su-
perior accuracy-latency trade-off of sampled token
and head pruning compared to Length Adaptive
Transformer models.

3.4 Evolutionary Search of head and token
pruning configurations

After training a Token and Head Adaptive Trans-
former, we apply evolutionary search to find the op-
timal token and head configurations for the model
that satisfy the target computational budgets. Com-
pared to training models specialized for every sce-
nario, evolutionary search is computationally effi-
cient. It only requires inference on small validation
set for each pruning configuration.

We first initialize the population of joint token
and head pruning configurations with constant drop
ratios. The joint configurations are generated with
evenly spaced token and head drop rates to have
the initial population uniformly distributed between
the upper bound and the lower bound pruning con-
figurations. At each iteration, we evolve the pop-
ulation to consist only of configurations with the
optimal accuracy-efficiency trade-offs that lie on a
new Pareto frontier by mutation and crossover. A
mutation alters an original pruning configuration
(j1, · · · , jL) to (j′1, · · · , j′L). It involves a probabil-
ity that an arbitrary element ji for i-th layer in a
pruning configuration (j1, · · · , jL) will be altered
to a new value j′i sampled from the uniform dis-
tribution

(
j′i−1, ji+1

)
. A crossover takes two joint

configurations and averages the pruning values at
each layer. In each evolution iteration, we maintain
nm joint configurations from mutation and nc joint
configurations from the crossover. The final itera-
tion will generate the furthest Pareto frontier that
consists of the joint configurations with the optimal
accuracy-efficiency trade-offs.

4 Experiments

We conduct extensive experiments to evaluate our
framework and compare to the baseline models and
Length-Adaptive Transformers.

4.1 Model and Data
We investigate three Transformer-based models:
BERT, DistilBERT, and MobileBERT. BERT is
a language model with a Transformer encoder as
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Figure 2: Pareto frontier curves of F1 score (for SQuAD v1.1 and MRPC) and Pearson/Spearman correlation score
(for STS-B) to GFLOPs. We apply the proposed method to BERT, DistilBERT, and MobileBERT and compare
them to the Length-Adaptive Transformers.

its base building block. The model consists of
12 encoder layers and 12 self-attention heads in
each layer (144 heads in total). DistilBERT is
a compact Transformer model based on BERT.
Knowledge distillation is performed during pre-
training to transfer knowledge from BERT teacher
model to DistilBERT. DistilBERT has 6 encoder
layers and 12 self-attention heads in each layer (72
heads in total). MobileBERT is a thin version of
BERTLarge that has bottleneck structures to sig-
nificantly compress the model size. The model
consists of 24 encoder layers and 4 self-attention
heads in each layer (96 heads in total). We use
the Hugging Face implementation and focus on
base-uncased models. We use Stanford Ques-
tion Answering Dataset (SQuAD v1.1) and GLUE
benchmarks (Wang et al., 2018) including CoLA,
STS-B, MRPC, SST-2, QNLI, QQP, and MNLI-
mm to evaluate the proposed approach.

4.2 Baseline methods and evaluation metrics

We compare our approach to standard Transformer
models fine-tuned on downstream tasks and Length-
Adaptive Transformers that are further trained on
downstream tasks with token drops. We focus on
comparing the inference efficiency with three dif-
ferent metrics: the number of trainable parameters,
CPU wall clock time, and the number of floating
operations (FLOPs), which is independent of hard-
ware and validated to have linear correlations with
CPU latency on (Kim and Cho, 2021). We mea-
sured the average CPU latency across the validation

SQuAD v1.1
Model F1 FLOPs
BERT 88.39 1.00x
BERTLAT † 89.12 0.86x
BERTLAT ⋆ 87.39 0.41s
BERTTHAT † 89.23 0.68x
BERTTHAT ⋆ 87.53 0.34x
DistilBERT 85.69 1.00x
DistilBERTLAT † 85.46 0.80x
DistilBERTLAT ⋆ 84.69 0.55x
DistilBERTTHA† 85.87 0.92x
DistilBERTTHA⋆ 84.70 0.50x
MobileBERT 89.31 1.00x
MobileBERTLAT † 89.63 0.93x
MobileBERTLAT ⋆ 88.69 0.56x
MobileBERTTHA† 89.99 0.84x
MobileBERTTHA⋆ 89.13 0.51x

Table 1: Comparison of Length Adaptive Transformers
and Token and Head Adaptive Transformers on SQuAD
v1.1. † denotes the most efficient model while having
the highest accuracy among the Pareto frontier. ⋆ de-
notes the most efficient model with accuracy within 1
percent of the standard model accuracy.

dataset with Intel i9-9980XE using 18 threads.

4.3 Hyperparameters

We fine-tune pre-trained BERT models for down-
stream tasks for 3 epochs without any pruning ac-
cording to (Goyal et al., 2020). Then we further
fine-tune BERT and DistilBERT on our token and
head adaptive framework with sequence drop rate
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and layer drop rate set to 0.2, which is the same rate
used for training a Length Adaptive Transformer.
For MobileBERT, we train with a sequence drop
rate set to 0.05 and a layer drop rate set to 0.15
to avoid an excessive amount of tokens pruned
across 24 encoder layers. The head drop rate is
set to a constant rate based on the number of lay-
ers of the models to have a single head remaining
in the last layer. We fine-tuned with 2 randomly
sampled intermediate pruning configurations in ad-
dition to upper and lower bound configurations to
apply the sandwich training technique. We fine-
tuned for 5 epochs on all the benchmarks. We use
the batch size of 16 for BERT and 32 for Distil-
BERT and MobileBERT. The learning rate is set to
5e-5 for SQuAD and 2e-5 for GLUE benchmarks.
For MobileBERT, the learning rate is set to 5e-5 for
both SQuAD and GLUE benchmarks. The maxi-
mum sequence length is set to 384 for SQuAD v1.1
and 128 for SST-2, QQP, MNLI-mm, STS-B, and
QNLI, and 64 for CoLA.

For evolutionary search, we run 30 iterations of
evolutionary search with 30 mutation pruning con-
figurations with a mutation probability of 0.5 and
30 crossover pruning configurations on each itera-
tion to find the accuracy-efficiency Pareto frontier.

5 Results and Analysis

In this section, we evaluate the experiments and
analyze the pruning results in terms of the accuracy-
efficiency trade-offs and head distribution.

5.1 Pareto frontier
We compare the accuracy-efficiency Pareto fron-
tier of Token and Head Adaptive Transformers and
Length Adaptive Transformers on the SQuAD and
GLUE benchmarks. As shown in Fig. 2, the Pareto
curve of the Token and Head Adaptive Transform-
ers have a larger area-under-curve (AUC) compared
to those of the Length Adaptive Transformers. The
Pareto frontier for the SQuAD benchmark shows
that all the BERT models fine-tuned with the pro-
posed framework generate joint pruning schemes
with superior accuracy-latency trade-offs. It is no-
ticeable in the MRPC Pareto curve that the sparse
models with certain pruning configurations have
even higher accuracy with significantly less num-
ber of floating point operations compared to the
full model (rightmost point on Pareto curve) for
both Length Adaptive Transformers and Token
and Head Adaptive Transformers. Furthermore,

the full model fine-tuned with the proposed frame-
work achieves higher accuracy compared to those
of Length Adaptive Transformers under the same
fine-tuning setup with equal number of training it-
erations and learning rate. This shows that the mod-
els trained with the proposed framework generalize
better compared to the standard fine-tuned models
and the Length Adaptive Transformers. As we try
to reduce the computational effort and reduce the
GFLOPs, our models trained with the joint prun-
ing policy remove unnecessary distractors both in
terms of tokens and heads leading to boosting the
accuracy. Beyond a certain point of pruning drops
essential information as well showing the trend
towards lowering accuracy consequently. This de-
scribes a general behavior that depends on the ac-
tual pruning that happens, and it is very data sensi-
tive. This trend is also shown for the STS-B Pareto
curve for BERT and DistilBERT.

Additionally, we find that BERT model fine-
tuned with the joint pruning framework generates
significantly better accuracy-efficiency trade-offs
compared to the standard DistilBERT model when
enough computational budget is allowed. For exam-
ple, with the computational budget of 25 GFLOPs,
BERT model outperforms DistilBERT by achiev-
ing 5 percent higher accuracy while requiring the
same number of GFLOPs. Similar trends can be
found in the other two benchmarks as well.

5.2 Maximizing efficiency gain

We also measure how much efficiency could be
gained with less than 1 percent accuracy loss from
the standard fine-tuned models. Table. 1 shows
the accuracy and the efficiency gain of the stan-
dard Transformers, Length Adaptive Transform-
ers, and Token and Head Adaptive Transformers
on the SQuAD benchmark. To validate our pro-
posed framework could find joint pruning configu-
rations that maximize both accuracy and efficiency,
we searched two pruning configurations for each
model that maximize accuracy and efficiency gain
respectively. † denotes the most efficient model
while having the highest accuracy. ⋆ denotes the
model with the highest efficiency gain that has an
accuracy within 1 percent of the standard model
accuracy. For all cases, Token and Head Adaptive
Transformers achieves higher accuracy and higher
efficiency gain. Fig. 2 provides further insights
and shows the Pareto frontier curves of our models
are shifted upper-left compared to the curves from
Length-Adaptive Transformers. This shows that
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Accuracy/FLOPs
Model CoLA STS-B MRPC SST-2 QNLI MNLI-mm QQP GLUE

BERT 55.3/1.00x 87.3/1.00x 89.3/1.00x 92.6/1.00x 90.8/1.00x 83.0/1.00x 88.4/1.00x 83.8/1.00x
BERTLAT † 57.7/0.38x 88.4/0.55x 89.0/0.39x 92.7/0.36x 91.1/0.55x 84.1/0.53x 89.6/0.60x 84.6/0.48x
BERTLAT ⋆ 56.2/0.34x 86.6/0.36x 89.0/0.39x 92.4/0.35x 89.8/0.35x 83.2/0.34x 89.4/0.35x 83.8/0.35x
BERTTHAT † 58.1/0.31x 88.6/0.49x 89.0/0.32x 92.5/0.31x 91.1/0.46x 83.9/0.48x 89.5/0.41x 84.7/0.40x
BERTTHAT ⋆ 56.8/0.30x 86.9/0.30x 89.0/0.32x 91.6/0.30x 89.8/0.31x 83.3/0.31x 89.4/0.30x 83.8/0.31x
DistilBERT 40.2/1.00x 83.4/1.00x 83.2/1.00x 90.2/1.00x 87.1/1.00x 80.0/1.00x 87.1/1.00x 78.7/1.00x
DistilBERTLAT † 44.1/0.54x 84.6/0.55x 82.4/0.54x 90.7/0.54x 88.1/0.63x 81.2/0.56x 88.6/0.59x 80.0/0.56x
DistilBERTLAT ⋆ 44.1/0.54x 84.5/0.54x 82.4/0.54x 90.7/0.54x 87.8/0.54x 81.2/0.56x 88.5/0.54x 79.9/0.54x
DistilBERTTHAT † 45.9/0.46x 84.9/0.48x 83.3/0.52x 91.2/0.46x 88.0/0.59x 81.2/0.46x 88.6/0.46x 80.4/0.49x
DistilBERTTHAT ⋆ 45.9/0.46x 84.0/0.45x 82.4/0.45x 91.2/0.46x 86.6/0.45x 81.2/0.46x 88.6/0.46x 80.0/0.45x
MobileBERT 46.0/1.00x 84.0/1.00x 85.1/1.00x 91.3/1.00x 87.0/1.00x 81.1/1.00x 86.0/1.00x 80.1/1.00x
MobileBERTLAT † 49.6/0.20x 86.9/0.39x 83.1/0.22x 92.4/0.25x 89.6/0.46x 83.0/0.71x 88.3/0.39x 81.6/0.37x
MobileBERTLAT ⋆ 49.6/0.20x 83.1/0.20x - 90.9/0.20x 86.2/0.23x 80.3/0.26x 85.7/0.20x 79.3/0.21x
MobileBERTTHAT † 53.6/0.25x 87.9/0.92x 85.6/0.33x 92.3/0.80x 90.2/0.65x 83.2/0.94x 88.3/0.35x 83.0/0.60x
MobileBERTTHAT ⋆ 50.1/0.21x 83.3/0.20x 84.3/0.22x 91.9/0.19x 86.1/0.22x 80.2/0.25x 86.3/0.19x 80.3/0.21x

Table 2: Results are evaluated on the test set of GLUE benchmark. † and ⋆ denote the same optimal models as
described in Table 1.

our model trained with the joint pruning scheme
produce models with less computational cost and
higher accuracy. Our token and head adaptive
BERT model achieves higher accuracy and only
requires 34% of the number of floating point opera-
tions from the baseline model, which is 7% smaller
than Length-Adaptive Transformer.

Table. 3 also shows the number of learnable pa-
rameters and CPU latency of the models with max-
imum efficiency gains. Our adaptive BERT model
achieves higher accuracy while it is 15% faster and
20% smaller. Our adaptive DistilBERT and Mobile-
BERT are 12% and 9% faster than Length-Adaptive
Transformer models while achieving better accu-
racy.

The overall GLUE scores for the two pruning
configurations with the highest accuracy and the
maximum latency gain also validate the token and
head adaptive model with joint pruning configu-
rations achieves better efficiency gain and higher
accuracy. MobileBERT trained with our joint to-
ken and head pruning scheme achieves a GLUE
score of 83.0, which is 1.9 higher than the standard
MobileBERT and 1.4 higher than Length-Adaptive
Transformers.

5.3 Head distribution
We further analyze the joint pruning configurations
and compare with length pruning schemes from
Length-Adaptive Transformers. Fig. 3 shows the
best pruning configurations of Length Adaptive
and Token and Head Adaptive Transformers that
maximize efficiency within 1 percent of the stan-
dard model accuracy. For SST-2 benchmark, the 3
token and head adaptive BERT-based models only

Model Param(MB) Lat(ms) heads tokens
BERTLAT ⋆ 415.4 385.7 144 1846
BERTTHAT ⋆ 333.3 333.4 77 1782
DistilBERTLAT ⋆ 253.2 251.4 72 1194
DistilBERTTHAT ⋆ 240.3 223.1 55 1174
MobileBERTLAT ⋆ 93.8 360.4 96 5266
MobileBERTTHAT ⋆ 91.1 331.0 55 4891

Table 3: The number of parameters, CPU latency, the
number of attention heads, and the number of tokens
for BERT-based models that maximize efficiency on
SQuAD benchmark.

retain a single head in the last layer. Table. 3 shows
that 48%, 24%, and 43% of the attention heads are
pruned from BERT, DistilBERT and MobileBERT
respectively and still performs superior to the stan-
dard fine-tuned models and Length-Adaptive Trans-
formers. On SQuAD benchmark, the token and
head adaptive models progressively reduce the at-
tention heads where more than 50% of the attention
heads are pruned in the last layer.

The token and head adaptive MobileBERT tends
to retain slightly more tokens in the center layers
compared to Length Adaptive Transformer and re-
duce more tokens in the later layers. Our adaptive
model have higher token drop rate. This shows the
final models trained with our framework are robust
to prune even more tokens along with attention
heads.

6 Related Work

Transformers and BERT have outperformed exist-
ing language based models and achieved state-of-
the-art results but at the cost of high computational
power requirements. In order to make these models
efficient in terms of memory and power footprint,
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Figure 3: Comparison of the Sequence length configurations of the ⋆ models with the maximum efficiency gains on
SQuAD and SST-2 benchmarks. LAT Sequence represents the token length configuration from Length-Adaptive
Transformer while THA for Token and Head Adaptive Transformers. THA Head shows the retaining head
distribution of Token and Head Adaptive models.

several strategies have been proposed. Here we
discuss a few key studies.

While large networks are essential for the best
performance, the model size becomes an obstacle
when it comes to scaling and also leads to worse
training time. ALBERT (Lan et al., 2020) targets
this limitation and proposed parameter reduction
training by factoring the embedding matrices and
sharing the parameters across layers which resulted
in a smoother up-scaling up of the base model as
well as significantly less training time. However,
in terms of inference latency, there is not much
improvement. PoWER-BERT (Goyal et al., 2020)
points out this fact and proposes an orthogonal
approach of progressive fine-grained word-vector
elimination that can reduce the inference time up
to 4.5x without harming the accuracy much. How-
ever, PoWER-BERT requires repetitive training for
each different constraint and is limited to sequence-
level classification only. Length adaptive trans-
former or LAT (Kim and Cho, 2021) alleviates
these shortcomings by introducing a LengthDrop
method that automatically derives multiple sub-
models using evolutionary search without requiring
any re-training. They also proposed a Drop-and-
Restore process to set aside the word-vectors so
that they can be restored at the final layers extend-
ing the PoWER-BERT beyond classification tasks

to a broader range of NLP tasks.

Parallel to these studies that deal with token prun-
ing, another line of work investigates whether we
need so many attention heads. (Voita et al., 2019)
identifies the most important attention heads us-
ing layer-wise relevance propagation or LRP (Ding
et al., 2017) and gradually prunes the head accord-
ingly. In a complementary approach, (Michel et al.,
2019) finds the most relevant heads by masking or
ablating one or more heads and looking at their
impact on performance. In this way, they calculate
a proxy importance score and iteratively prune the
heads according to that without degrading the per-
formance significantly. Another group of studies
concentrates on model architecture and parameter
size. Where DistilBERT (Sanh et al., 2019) uses a
teacher-student setting to transfer knowledge from
a large model to its small student version to reduce
the model parameters, MobileBERT (Sun et al.,
2020) reduces it by leveraging the bottleneck struc-
ture.

While both token and head pruning improves the
model’s efficiency i.e. less inference time, lower
memory, and power footprint, to the best of our
knowledge, no study has tried to optimize both of
them simultaneously which precisely lays down
the basis of our work.
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7 Conclusion and Future Work

In this work, we propose a joint token and head
pruning framework to train robust Transformer
models adaptive to token and head dropouts. Our
idea is to calculate head importance from the self-
attention operation and eliminate redundant heads
from the retained tokens to further reduce the com-
putational cost and train the model adaptive and
perform better generalization. The final models
trained with the proposed framework show better
generalization and greater efficiency gains. To-
ken and Head Adaptive Transformers are robust
to prune out more tokens than Length-Adaptive
Transformers along with the attention heads. This
leads to superior accuracy-latency trade-offs and
larger area-under-curve of the Pareto frontier found
with an evolutionary search. We would also like
to explore further in the direction of reducing the
computational cost of large-scale models by elimi-
nating redundant operations and applying efficient
optimization techniques to search for efficient mod-
els with minimum resources.
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Abstract

Recent pre-trained language models (PLMs)
achieved great success on many natural lan-
guage processing tasks through learning lin-
guistic features and contextualized sentence
representation. Since attributes captured in
stacked layers of PLMs are not clearly iden-
tified, straightforward approaches such as em-
bedding the last layer are commonly preferred
to derive sentence representations from PLMs.
This paper introduces the attention-based pool-
ing strategy, which enables the model to pre-
serve layer-wise signals captured in each layer
and learn digested linguistic features for down-
stream tasks. The contrastive learning objec-
tive can adapt the layer-wise attention pooling
to both unsupervised and supervised manners.
It results in regularizing the anisotropic space
of pre-trained embeddings and being more uni-
form. We evaluate our model on standard se-
mantic textual similarity (STS) and seman-
tic search tasks. As a result, our method im-
proved the performance of the base contrastive
learned BERTbase and variants.

1 Introduction

Pre-trained language models (PLMs) (Kenton and
Toutanova, 2019; Liu et al., 2019; Radford et al.,
2019; Raffel et al., 2019) have shown competi-
tive performance on many natural language pro-
cessing (NLP) tasks. Also, contrastive learning us-
ing the PLMs shows the highest performance in
sentence representation. Contrastive learning is to
learn effective representations by staying semanti-
cally close sample pairs together while dissimilar
ones are far apart(Hadsell et al., 2006).

In general, PLMs use either [CLS] tokens in the
last layer, AV G which is the average representa-
tion of tokens in the last layer(Reimers et al., 2019;
Li et al., 2020), or AV GFL which is the average

* These authors contributed equally.
† These authors are corresponding authors.

Figure 1: Spearsman’s correlation score of each layer
evaluated on STS-B test set

Figure 2: Spearsman’s correlation score depending on
the pooling methods of PLMs for each domain

representation of tokens in the first and last lay-
ers(Gao et al., 2021), to pool out sentence represen-
tation from word representations. However, since
language models show performance gaps by do-
main when trained on different objectives, the fixed
pooling strategy has limitations in performance im-
provement.

Figure 1 and 2 show the Spearman’s correlation
score of each layer or pooling method in PLMs.
We evaluated the test set of the standard semantic
textual similarity (STS) dataset(Cer et al., 2017;
Agirre et al., 2012, 2013, 2014, 2015, 2016; Marelli
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et al., 2014).
The comparison of performance when pooling

each layer shown in Figure 1 indicates that using
only a specific layer for pooling is insufficient.
Other layers other than the last layer may con-
tain substantial information for sentence represen-
tation. For example, for the STS benchmark (STS-
B) task(Cer et al., 2017), BERTbase with [CLS]
embedding scored the highest at the fourth layer
(48.66%), which is about 20% higher than the last
layer.

Figure 2 shows that simply pooling from more
layers impedes the performance by comparing mod-
els pooled from the first and last layer and the last
layer. In addition, there is no consistent tendency
to compare effectiveness for a given layer between
[CLS] pooling and average pooling.

Motivated by this point, we designed the atten-
tion networks and task-agnostic pooling methods
to assign more weights to spots that need more fo-
cus in the layer and lead to representation vector
optimization. Our proposed method outperforms
previously fixed pooling strategies in contrastive
learning. In addition, contrastive learning models
with layer-wise attention pooling show a higher
semantic search performance with the same param-
eters.

In summary, the contributions of this paper are
as follows:

• We proposed layer-wise attention pooling* to
assign weights to each layer and learn sen-
tence representation fitted to a given task.

• To our knowledge, our pooling strategy shows
the best performance out of all InfoNCE-
based loss functions for the sentence embed-
ding tasks.

• For the semantic search evaluation, we ex-
cluded the proposed pooling method in the
inference phase and obtained better perfor-
mance.

2 Method

In this section, we present a layer-wise pooling
strategy based on attention mechanisms to improve
the quality of sentence representations from lan-
guage models. In addition, we describe the process
of applying the proposed pooling strategy to be
leveraged on three contrastive learning schemes.

*https://github.com/nlpods/LayerAttPooler

2.1 Layer-Wise Attention Pooling

This paper proposes a new layer-wise pooling
based on a multiplicative attention mechanism (Lu-
ong et al., 2015). As shown in Figure 1, the per-
formance with [CLS] pooling varied dramatically
according to which layer to pool from. There is no
significant performance gap between layers when
using AV G pooling. It can be explained that each
layer can contain different information for sentence
representation, while average pooling can mitigate
the information gap between layers.

In Equation 1, ha is the AV G representation,
which is the mean vector of tokens in the sentence,
and hc is the input representation [CLS] of each
layer. αi is the importance of the i-th layer. In Equa-
tion 2, hl is the representation with the importance
score per layer. In Equation 3, hL is the mean vec-
tor of hl and is the representation that contains the
relevance of all layers (N is the number of layers).
Wk,Wq and Wv are learnable parameters.

αi =
Wqh

c
iWkh

a
i∑

j∈N WqhciWkh
a
j

(1)

hli =
∑

j∈N
αiWvh

a
j (2)

hL =
1

N

N∑

i

hli (3)

We add a Multi-Layer Perceptron (MLP) layer
randomly initialized after pooling, following the
method in the Gao et al. (2021), and keep it with
random initialization. As for Equation 4, hclast is
the input representation [CLS] of the last layer.
We concatenate the input representation hclast with
the layer representation hL as the input of an MLP.
Finally, h is represented in the same dimension
as the sentence representation dimension of the
original language model through the MLP layer.

hCL = [hclast;h
L] (4)

h =MLP (hCL) (5)

2.2 Contrastive Learning with Layer-wise
Attention Pooling

We prove that the proposed pooling strategy is ef-
fective with three training objectives li.
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Basic Supervised Contrastive Learning We
use the basic supervised contrastive learning
model proposed by Chen et al. (2020). This
model learns the premise(xi) and entailment(x+i )
of the NLI(SNLI(Bowman et al., 2015) +
MNLI(Williams et al., 2018)) datasets. When D =
(xi, x

+
i )

m

i=1 is a set of paired samples, where xi and
x+i are semantically related. And, it takes the cross-
entropy objective with an in-batch negative(Chen
et al., 2017; Henderson et al., 2017). hi and h+i
are representations of xi and x+i through proposed
pooling strategy. the training objective li is :

li = −log
esim(hi,h

+
i )/τ

∑M
j=1 e

sim(hi,h
+
j )/τ

(6)

M is the mini-batch, and τ is the temperature
hyperparameter and sim(·, ·) is the cosine similar-
ity.

Unsupervised Contrastive Learning Unsuper-
vised contrastive learning uses x+i = xi in the
collection of sentences {xi}mi=1. The idea is to
use an independently sampled dropout mask for
xi and x+i which gets this to work as identical
positive pairs during training. And, unsupervised
contrastive learning denotes hzi = f(xi, z) using
h obtained in Equation 5. z is a random mask
for dropout. It gets two embeddings with differ-
ent dropout masks z, z

′
from the encoder with the

same input twice, and the training objective li is
represented:

li = −log
esim(h

zi
i ,h

z
′
i
i )/τ

∑M
j=1 e

sim(h
zi
i ,h

z
′
j
j )/τ

(7)

In Equation 7, z is the standard dropout of the
transformer.

Supervised Contrastive Learning with Hard
Negative Supervised contrastive learning with
hard negative trains natural language inference
(NLI) datasets. The NLI datasets are labeled, given
one premise, as true(entailment), neutral, and def-
initely false (contradiction). The model predicts
whether the relationship between two sentences is
entailment, neutral, or contradiction. The positive
pairs (xi, x+i ) use the entailment of the NLI(SNLI +
MNLI) datasets. Next, contradiction pairs (xi, x−i )
from the NLI datasets are used as hard negatives.
Thus, it expands from (xi, x

+
i ) to (xi, x

+
i , x

−
i ).

And, (xi, x+i , x
−
i ) is represented as (hi, h

+
i , h

−
i )

through Equation 5. As a result, in Equation 8, the
training objective li is :

−log esim(hi,h
+
i )/τ

∑M
j=1(e

sim(hi,h
+
j )/τ + esim(hi,h

−
j )/τ )

(8)

3 Experiments

3.1 Experimental Setup

Our main experiments uses the STS(Cer et al.,
2017; Agirre et al., 2012, 2013, 2014, 2015, 2016;
Marelli et al., 2014) dataset. This data set consists
of sentence pairs labeled with a similarity score
between 0 and 5. The evaluation is done by the Sen-
tEval toolkit. The parameter setting of the model
used in the experiment is written in Table 4 of
the Appendix. Additionally, to measure the search
effect and efficiency of the proposed model, it is
evaluated on the same parameters as the original
language model. We evaluate the performance of
the semantic search† with FAISS‡ using the Quora
Duplicate Questions Dataset(Shankar et al., 2021)
containing more than 400,000 pairs of questions.

3.2 Main Results

In Table 1, we investigate whether the proposed
layer-wise attention pooling of language models
performs better in contrastive learning. The exper-
iment compares performance by training on lan-
guage models with three training objectives. All
results evaluate sentence embeddings on all STS
tasks. Equation 6 is basic supervised learning pro-
posed by (Chen et al., 2020). And, Equations 7 and
8 are unsupervised, supervised learning proposed
by Gao et al. (2021). However, in this paper, we
could not experiment with the same parameters due
to hardware. Therefore, as specified in Table 4 of
the Appendix, there is a difference from the orig-
inal performance because it learns by choosing a
low mini-batch size. † is the original performance,
and ‡ is our reimplementations. As a result, the pro-
posed pooling strategy shows higher performance
in different language models and in all domains.

3.3 Ablation Studies

We investigate performance differences according
to different pooling strategies in supervised con-
trastive learning. All results are reported in this

†https://github.com/autoliuweijie/BERT-whitening-
pytorch

‡https://github.com/facebookresearch/faiss
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Unsupervised Models

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg
BERTbase(CLSLast)(Equation 7)† 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
RoBERTabase(CLSLast)(Equation 7)† 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
RoBERTalarge(CLSLast)(Equation 7)† 72.86 83.99 75.62 84.77 81.80 81.98 71.23 78.89

Our Reimplementations
BERTbase(CLSLast)(Equation 7)‡ 69.53 78.98 75.50 80.07 79.01 78.28 71.35 76.10
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 70.27 80.22 75.65 80.71 79.74 79.51 72.18 76.90
RoBERTabase(CLSLast)(Equation 7)‡ 68.72 78.29 74.35 80.40 80.83 80.14 68.71 75.92
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 68.96 78.83 75.37 81.05 81.53 80.99 69.03 76.54
RoBERTalarge(CLSLast)(Equation 7)‡ 70.82 79.66 76.26 83.25 81.86 81.25 71.09 77.74
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 71.52 79.86 76.86 83.50 82.38 84.56 71.46 78.59

Supervised Models

BERTbase(CLSLast)(Equation 8)† 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
RoBERTabase(CLSLast)(Equation 8)† 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
RoBERTalarge(CLSLast)(Equation 8)† 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76

Our Reimplementations
BERTbase(CLSLast)(Equation 8)‡ 70.50 80.77 79.52 83.82 81.17 84.34 79.04 79.88
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 71.34 80.84 79.76 83.86 81.42 86.76 79.80 80.54
RoBERTabase(CLSLast)(Equation 8)‡ 70.80 81.31 79.60 83.48 82.86 85.71 79.77 80.50
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 71.35 81.44 79.82 83.79 83.89 87.42 80.11 81.12
RoBERTalarge(CLSLast)(Equation 8)‡ 72.36 83.06 81.99 85.39 85.51 87.11 80.46 82.27
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 72.65 84.41 82.31 86.38 85.54 87.58 81.56 82.92

BERTbase(CLSLast)(Equation 6) 69.29 78.69 76.45 80.87 79.82 79.41 76.41 77.28
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 69.58 78.84 76.70 81.13 80.11 87.23 76.45 78.58
RoBERTabase(CLSLast)(Equation 6) 68.85 77.28 74.67 80.11 80.80 87.42 76.51 77.95
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 69.51 78.72 75.97 81.32 81.47 89.58 76.83 79.06
RoBERTalarge(CLSLast)(Equation 6) 70.82 80.33 77.79 82.03 83.04 85.38 76.84 79.46
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 71.15 81.45 78.04 83.03 83.09 88.88 77.39 80.43

Table 1: Performance of sentence embedding on all STS tasks (Spearman’s correlation). †: published in Gao et al.
(2021); and ‡: models from our reimplementations. We are shown in bold the highest performance among models
from our reimplementation.

section using the STS-B test set. All models ex-
tract sentence embeddings by adding an MLP layer
as suggested in Gao et al. (2021). Table 2 shows
the performance difference between the fixed pool-
ing method and the layer-wise attention pooling.
Additionally, we compare the representation con-
catenated between fixed pooling because we con-
struct the h representation by concatenating hclast
and hL. The layer-wise attention pooling shows the
results of ablation studies with [CLS] and AV G.
For [CLS]All and AV GAll, hl computes the im-
portance between each layer and the others. In ad-
dition, [CLS]All + AV GAll represent hl by calcu-
lating the importance between [CLS] and AV G
of all layers. All of these methods show higher
performance than the fixed pooling strategy. How-
ever, as described in Section 2, the pooling strategy
concatenated with [CLS]Last shows the highest
performance.

3.4 Semantic Search Results

In Table 3, we compare semantic search speed and
performance on the same parameters. This experi-
ment proves that the proposed pooling strategy is
effective for training the language models and also

Model STS-B
BERTbase(Equation 8)
w/ (CLSLast) 84.34
w/ (AVGLast) 84.84
w/ (AVGFL) 84.76
w/ (AVGLast+AVGFL concat) 84.93
w/ (CLSLast+AVGLast concat) 85.11
w/ LayerAttPooler(CLSAll attention) 85.45
w/ LayerAttPooler(AVGAll attention) 85.72
w/ LayerAttPooler(CLSAll + AVGAll attention) 86.57
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 86.76

Table 2: Ablation studies of different pooling methods
in supervised model on STS-B task (Spearman’s corre-
lation)

for semantic search performance with the same pa-
rameters during inference. Sentence embeddings
for all supervised learning models use [CLS]Last.
MRR@10 is used to measure the performance of
semantic search, and Average Retrieval Time (ms)
measures retrieval efficiency. Memory Usage (GB)
shows memory usage. FAISS experiments in CPU
mode. nlist = 1024 and the CPU is Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz. Result shows that
the performance of semantic search is higher when
the proposed pooling strategy is used during train-
ing.
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Model MRR@10 Average Retrieval Time Memory Usage
(ms) (GB)

BERTbase(Equation 8)
w/ (CLSLast) 63.48 1.46 0.25
w/ LayerAttPooler (train) 64.32 1.45 0.25
RoBERTabase(Equation 8)
w/ (CLSLast) 63.89 1.56 0.25
w/ LayerAttPooler (train) 65.05 1.48 0.25
RoBERTalarge(Equation 8)
w/ (CLSLast) 65.85 2.22 0.33
w/ LayerAttPooler (train) 66.32 2.21 0.33

Table 3: Performance of semantic search evaluation us-
ing the Quora Duplicate Questions Dataset with FAISS.
w/ LayerAttPooler (train) : remove layer-wise attention
pooling after training

4 Conclusion

In this work, we propose layer-wise attention pool-
ing to capture the importance of the weight in each
layer for the pre-trained language models (PLMs).
Training layer-wise attention layer with contrastive
learning objectives outperforms BERT and vari-
ants of PLMs. No matter what pooling method is
used, our model achieved higher scores than prior
state-of-the-art models. In addition, this layer-wise
attention technique also can be exploited in seman-
tic search tasks, in which more cost-efficient com-
putation (i.e. less latency and memory usage) is
required. The model trained with our method ob-
tained higher performance with the same or less
time and memory usage, even if the added attention
layer is detached in the inference stage.
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A Training Details

Unsupervised Models

Models Batch Size Learning Rate
BERTbase(Equation 7) 64 3e-5
w/ LayerAttPooler 64 3e-5
RoBERTabase(Equation 7) 256 1e-5
w/ LayerAttPooler 256 1e-5
RoBERTalarge(Equation 7) 256 3e-5
w/ LayerAttPooler 256 3e-5
BERTbase(DiffCSE) 64 7e-6
w/ LayerAttPooler 64 3e-5

Supervised Models

BERTbase(Equation 6) 256 5e-5
w/ LayerAttPooler 256 1e-5
RoBERTabase(Equation 6) 256 5e-5
w/ LayerAttPooler 256 3e-5
RoBERTalarge(Equation 6) 256 1e-5
w/ LayerAttPooler 256 5e-5

BERTbase(Equation 8) 256 5e-5
w/ LayerAttPooler 256 2e-5
RoBERTabase(Equation 8) 256 5e-5
w/ LayerAttPooler 256 3e-5
RoBERTalarge(Equation 8) 256 1e-5
w/ LayerAttPooler 256 5e-5

Table 4: Batch sizes and learning rate for each models

Due to hardware problems, Equations 7 and 8
train at a smaller batch size than the Gao et al.
(2021) paper. The GPU used in the experiment is
RTX 8000, and the the hyperparameters are speci-
fied in the Table 4.

B Experiments on Different Model

DiffCSE model

Model STS-B
BERTbase(CLSLast) (w/o BatchNorm)† 83.23
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 83.87

Table 5: Development set results of STS-B. †: pub-
lished in Chuang et al. (2022); Bold shows the high-
est performance among models from our reimplemen-
tation.

We experiment with whether the proposed pool-
ing strategy is effective for a contrastive learning
model with a different structure. DiffCSE model
(Chuang et al., 2022) improves the performance of
sentence representation by adding generator and
discriminator structures of ELECTRA (Clark et al.,
2020). While training, DiffCSE freezes the genera-
tor’s weight and updates the sentence encoder and
discriminator for sentence embedding with the con-
trastive learning objective. However, the discrimi-

nator is not used for inference since only represen-
tations from the sentence encoder and generator are
needed. We applied our proposed pooling strategy
to the sentence encoder with a contrastive learning
objective. As a result, layer-wise attention pooling
improves the performance of the DiffCSE model
(Table 5). We use the one linear layer with the
tanh activation function following SimCSE as in
Equation 5, while DiffCSE uses a two-layer pooler
with Batch Normalization (BatchNorm) (Ioffe and
Szegedy, 2015). However, BatchNorm is not used
for a fair comparison of results.
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(a) Attention scores of LayerAttPooler(CLSAll + AVGAll
attention) + (CLSLast concat)
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Figure 3: Attention scores of layer-wise pooling only
(b) and concatenating the [CLS]Last representation of
the last layer (a) on a sentence "You should do it."
(short) and "People on motorcycles wearing racing gear
ride around a racetrack." (long) sentences. These scores
are implemented on BERTbase.
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We also analyze the layer-wise attention scores de-
pending on the length of sentences. Figure 3 (a)
case explains that the last layer relatively contains
more information than other layers by the [CLS]
token of the last layer. However, the attention score
of the last layer is calculated differently for the long
and short sentences. Figure 3 (b) case indicates that
other layers than the last layer have substantial in-
formation for the same sentence, and the balanced
attention weight per layer supports it.
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Abstract

Model explanations are crucial for the transpar-
ent, safe, and trustworthy deployment of ma-
chine learning models. The SHapley Additive
exPlanations (SHAP) framework is considered
by many to be a gold standard for local explana-
tions thanks to its solid theoretical background
and general applicability. In the years following
its publication, several variants appeared in the
literature—presenting adaptations in the core
assumptions and target applications. In this
work, we review all relevant SHAP-based inter-
pretability approaches available to date and pro-
vide instructive examples as well as recommen-
dations regarding their applicability to NLP use
cases.

1 Introduction

Several methods have been proposed to address
the issue of opacity in modern machine learning
models. Most notoriously, explanations are funda-
mental for Deep Neural Networks (DNNs) (Devlin
et al., 2019; Madsen et al., 2021; Mosca et al.,
2021) as these automatically learn millions of pa-
rameters and behave like black-boxes. Lundberg
and Lee (2017) proposes SHapley Additive exPla-
nations (SHAP), a unified local-interpretability
framework with a rigorous theoretical foundation
on the game-theoretic concept of Shapley values
(Shapley, 1953).

SHAP is nowadays considered a core contri-
bution to the field of eXplainable Artificial Intel-
ligence (XAI). Following its publication, a vari-
ety of explainability approaches based on SHAP’s
methodology has populated the literature and this

Shapley
Values (1953)

Different 
Inputs

SHAP 
Framework (2017)

Improved 
Efficiency

Different 
Assumptions

Different 
Models

Different 
Scope SAGE

L-Shapley

Surrogate
SHAP

SealSHAP

ConceptSHAP

ASV

Shapr Shapley 
Flow

TreeSHAP

SubgraphX

DASP

HEDGE

TimeSHAP

h-SHAP

Figure 1: This work identifies five research directions
pursued by Shapley- and SHAP-based approaches in
XAI. Each direction, together with a few notable meth-
ods as examples, has been indicated by a different color.

trend continues to grow. Some present a new ver-
sion of SHAP tailored to a certain type of input
data—e.g. graphs (Yuan et al., 2021) and text
(Chen et al., 2020)—or to specific models such
as random forests (Lundberg et al., 2018). Others,
instead, modify SHAP’s underlying assumptions—
e.g. features independence—to increase the origi-
nal framework’s flexibility for cases in which they
are too strict or overly simplistic (Frye et al., 2019).

In this work, we (1) identify five broad research
directions inspired by SHAP, (2) review available
SHAP-based (or Shapley-value-based) approaches
as members of such categories, and (3) investigate
their applicability in the domain of Natural Lan-
guage Processing (NLP).

Our work reviews 41 methods with a particu-
lar focus on their core assumptions, input require-
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ments, explanation form, and available implemen-
tations. Furthermore, we provide NLP researchers
with use-case-based recommendations and instruc-
tive examples.

2 Background

For the sake of clarity, we provide a gentle intro-
duction to Shapley values and the methods for their
estimation, most notably SHAP. All concepts will
be explained informally, resorting to formalities
when necessary.

2.1 Shapley Values
Shapley Values are a concept from game theory,
originally developed as a measure to fairly dis-
tribute a reward among a set of players contribut-
ing to a certain outcome (Shapley, 1953). In the
context of machine learning models, the players in-
volved are the input features and the outcome is the
model’s decision, Shapley values attribute an im-
portance score to each part of the input (Lundberg
and Lee, 2017).

Given the set of input features F =
{1, 2, . . . , p}, all features in a certain coalition
S ⊆ F cooperate towards the outcome val(S)—
with the default val(∅) = 0. Shapley values re-
distribute the total outcome value val(F) among
all features based on their average marginal con-
tribution across all possible coalitions S. More
specifically, feature i’s marginal contribution w.r.t.
a coalition S:

∆val(i, S) = val(S ∪ {i})− val(S)

is averaged across all S ⊆ F \ {i}. Hence, the
corresponding Shapley values ϕval(i) measures its
contribution based on the formula:

ϕval(i) =
∑

S⊆F\{i}

|S|!(p− |S| − 1|)!
p!

∆val(i, S)

Here, the coefficient |S|!(p−|S|−1|)!p! is used as nor-
malization term based on the number of choices
for the subset S. This redistribution of the total
outcome val(F) respects the four properties of:

Efficiency: All features contributions add up to
the total outcome, i.e.

∑
i∈F ϕval(i) = val(F) .

Symmetry: If val(S ∪ {i}) = val(S ∪ {j}) for
all S ⊆ F \ {i, j}, then ϕval(i) = ϕval(j)

Dummy: If val(S ∪ {i}) = val(S) for all S ⊆
F, then ϕval(i) = 0

Additivity: In the presence of a single game with
two outcomes val1 and val2, then Shapley val-
ues are additive w.r.t. the combined outcome, i.e.
ϕval1+val2(i) = ϕval1(i) + ϕval2(i)

2.2 Shapley Values Approximation and SHAP
The idea of utilizing Shapley values to compute fea-
ture attribution scores precedes the SHAP frame-
work (Lipovetsky and Conklin, 2001; Song et al.,
2016). In this case, the outcome val of the game
is the prediction of a machine learning model f
and Shapley values ϕf (i) measure the influence
that each feature i has based on its current value.
The early literature also worked on approximation
strategies, as the exponential number of coalitions
renders the exact estimation of Shapley values un-
feasible (Štrumbelj and Kononenko, 2014; Datta
et al., 2016). The main idea from these works is to
compute ϕf (i) only for a smaller selection of sub-
sets S ⊆ F and to estimate the effect of removing
a feature by integrating over training samples. This
eliminates the need to retrain the model for each
choice of S.

The work from Lundberg and Lee (2017) in-
troduces a new perspective that unifies Shapley
value estimation with popular explainability meth-
ods such as LIME (Ribeiro et al., 2016), LRP
(Binder et al., 2016), and DeepLIFT (Shrikumar
et al., 2017). Furthermore, they propose SHAP val-
ues as a unified measure of feature importance and
prove them to be the unique solution respecting the
criteria of local accuracy, missingness, and consis-
tency. The authors contribute a library of methods
to efficiently approximate SHAP values in a variety
of settings:

KernelSHAP: Adaptation of LIME—hence
model-agnostic—to approximate SHAP values. As
it works for any model f , it cannot make any as-
sumption on its structure and is thus the slowest
within the framework.

LinearSHAP: Specific to linear models, uses
the model’s weight coefficients and optionally ac-
counts for inter-feature correlations.

DeepSHAP: Adaptation of DeepLIFT—hence
specific to neural networks–to approximate SHAP
values. Considerably faster than its model-agnostic
counterpart as it makes assumptions about the
model’s compositional nature.

While not initially presented in Lundberg and
Lee (2017), the following algorithms were later
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Figure 2: Example of explanation for sentiment analysis that can be generated with the SHAP library, e.g. with
KernelSHAP. The base value indicates the model’s average prediction. Each feature—i.e. word—contributes to the
outcome, thus justifying the difference between the average and the current outcome.

added as part of the framework:

PartitionSHAP: Faster version of KernelSHAP
that hierarchically clusters features. This hierarchy
defines feature coalitions based on their interac-
tions.

GradientSHAP: An extension of the Integrated
Gradients (IG) method (Sundararajan et al., 2017)—
again specific to neural networks—that aggregates
gradients over the difference between the expected
model output and the current output.

TreeSHAP: A fast method for computing exact
SHAP values for both trees and ensembles (Lund-
berg et al., 2020a). In comparison to KernelSHAP,
it also accounts for interactions among features.

Other minor approaches—PermutationSHAP,
SamplingSHAP, ExactSHAP, and MimicSHAP—
are also available in the official library1. To avoid
confusion, we point out that the implementations
have slightly different names: they use "Explainer"
instead of "SHAP". For instance, KernelSHAP and
DeepSHAP are implemented with the names of
KernelExplainer and DeepExplainer respectively.
Figure 2 sketches an explanation generated with
SHAP.

3 Search and Selection Criteria

As the popularity of SHAP increases, also the num-
ber of approaches based on it or directly on Shapley
values has been on the rise. In fact, ∼ 3, 200 of the
∼ 6, 900 papers citing Lundberg and Lee (2017)
are from 2021, an exponential increase when com-
pared to previous years (1563, 567, and 118)2.

Besides the papers already known to us, we
manually screened all works citing SHAP with at
least 15 citations2. This systematical search, based

1https://github.com/slundberg/shap
2All queries are performed with Google Scholar. Accessed

on 10.05.2022.

on the assumption that SHAP-based approaches
should at least reference Lundberg and Lee (2017),
helped us uncover several relevant contributions
and mitigate the selection bias induced by our pre-
vious knowledge. The threshold of 15 citations
was introduced to speed up our manual search and
to filter out works that have not received the re-
search community’s attention. To account for tem-
poral bias—i.e. that publications accumulate cita-
tions over time—we lowered the threshold to 10
for papers published in the most recent years (2021
and 2022)2. We only consider and review papers
that contributed new SHAP-based approaches and
exclude those—like (Wang, 2019) and (Antwarg
et al., 2019)—utilizing SHAP (almost) off-the-
shelf. Similarly, we exclude works such as Wang
et al. (2020) and Huber et al. (2022) utilizing Shap-
ley values for purposes not directly connected with
explainability.

4 Existing Reviews

Previous reviews like Linardatos et al. (2021),
Vilone and Longo (2020), and Madsen et al. (2021)
present extensive overviews of explainability meth-
ods, but only briefly mention SHAP and a few of
its derivates. Others—such as Covert et al. (2021),
Sundararajan and Najmi (2020), and Kumar et al.
(2020)—review some Shapley-based methods in
detail (between 5 and 9) but do not construct a
comprehensive review. Our work, in contrast, sig-
nificantly extends this range and covers more than
40 approaches.

5 Review: SHAP-Based Approaches

Several works proposed methods based on SHAP,
or more generally on Shapley values, following the
contribution from Lundberg and Lee (2017). While
the changes and variations introduced have been at
times criticized for not being as rigorous as SHAP
in following its core assumptions (Sundararajan
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and Najmi, 2020), SHAP-based methods continue
to increase in both quantity and popularity.

Our review categorizes SHAP-based approaches
available to date based on how they differ from and
how they improve on the original SHAP framework.
We identify five broad categories in the existing
literature, each one of them describing a different
research direction pursued by its members:

(C1) Tailored to Different Input Data: This cate-
gory contains approaches specialized on spe-
cific input data structures such as graphs
(Wang et al., 2021), structured text (Chen
et al., 2020), and images (Teneggi et al., 2021).
In some cases, approaches are used comple-
mentary for applications dealing with multi-
modal inputs (Wich et al., 2021; Mosca et al.,
2022b).

(C2) Explaining Different Models: Methods in
this class are specifically designed to explain
predictions from particular types of machine
learning models such as random forests (Lund-
berg et al., 2018; Labreuche and Fossier,
2018) and neural networks (Ghorbani and
Zou, 2021). Hence, these are model-specific.

(C3) Modifying Core Assumptions: SHAP treats
features as independent. Newer methods of-
fer the possibility to account for dependen-
cies between features (Frye et al., 2019) and
for causal structures behind their interactions
(Heskes et al., 2020).

(C4) Producing Different Explanations Types:
SHAP is a framework for local feature-
attribution explanations, i.e. it attributes
scores to input components based on their
instance-level contributions. Methods in this
category have a different scope and generate
explanations that convey a different type of
information. This can vary from global expla-
nations (Covert et al., 2020) to counterfactual
explanations (Singal et al., 2019) and concept
explanations (Yeh et al., 2020).

(C5) Estimating Shapley Values More Effi-
ciently: These approaches comprise alterna-
tive strategies for the approximation of Shap-
ley values. Their focus is on leveraging prior
knowledge about the data and model to im-
prove the approximation efficiency and accu-
racy (Messalas et al., 2019; Chen et al., 2018).

Clearly, these categories are not designed to be
exclusive. Therefore, an approach can fall in more
than one if it differs from SHAP in multiple aspects.
Table 1 provides an overview of all approaches with
their main characteristics. As one can observe, the
majority of approaches are identified as part of
more categories, i.e. research directions.

5.1 Approaches Tailored to Different Inputs

SHAP does not make strong assumptions on the
target model’s input. While this suggests that it is
suitable for all input types, its lack of specificity
results in limitations when applied directly to dif-
ferent inputs than tabular data.

Sorry! I wish that went better 

I wish that went better

I wish that went
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Sorry! better

I wish thatSorry! betterwent
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Figure 3: Example of hierarchical explanation that can
be generated with HEDGE (Chen et al., 2020) for a
sentiment analysis model. Each token is colored by
contribution: negative (red), neutral (yellow), and posi-
tive (green). Going one level lower represents a token-
breakdown step and thus more fine-grained Shapley
values.

For text data, only measuring each individual
feature’s effect is an oversimplification, as words
present strong interactions and their meaning and
contribution heavily rely on the context. Thus,
when it comes to text data, only considering single
words as features is quite restrictive and relevance
scores should be applied to multi-level tokens or
even to entire sentences. Hierarchical Explanation
via Divisive GEneration (HEDGE) (Chen et al.,
2020) is an example of a SHAP-based method ad-
dressing this issue for (long) texts. Based on the
weakest token interactions, it iteratively divides
the text into shorter phrases and words in a top-
down fashion. At each level, a relevance score is
attributed to each token, resulting in a hierarchical
explanation (Chen et al., 2020). PartitionSHAP,
recently added to the official SHAP repository3,
follows a similar strategy by creating hierarchical
features coalitions and measuring their interactions.

3https://github.com/slundberg/shap
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Method Categories Description NLP Applicability
/ Implementation

SHAP The original SHAP framework including the methods: Ready Off-the-Shelf
(Lundberg and Lee, 2017) KernelSHAP, LinearSHAP, DeepSHAP, etc. Python

AVA (C5) Combines the explanations of nearest Adaptable
(Bhatt et al., 2020) neighbors to explain a given instance n.a.

ASV (C1) (C3) Relaxes the symmetry axiom of Shapley values Potentially Applicable
(Frye et al., 2019) to incorporate causal structure into explanations R

BShap (C4) (C5) Baseline approach to facilitate comparison Adaptable
(Sundararajan and Najmi, 2020) between different Shapley value based methods n.a.

C- and L-Shapley (C3) (C5) Efficient feature attribution method that models data Ready Off-the-Shelf
(Chen et al., 2018) as a graph by considering only neighboring features TensorFlow

CASV (C1) (C2) Shapley value adaptation to account for counterfactuals Not Relevant
(Singal et al., 2019) (C3) (C4) by adhering to the Rubin Causal Model n.a.

Causal Shapley (C1) (C3) Computing feature importance on data with (partial) Potentially Applicable
(Heskes et al., 2020) causal ordering using Pearl’s do-calculus R

ConceptSHAP (C4) Unsupervised discover of concepts inherent to the data Ready Off-the-Shelf
(Yeh et al., 2020) and model based on Shapley values PyTorch

DASP (C3) (C5) Polynomial-time approximation of Adaptable
(Ancona et al., 2019) Shapley values in DNNs TensorFlow

Data Shapley (C4) Shapley-based importance attribution method Potentially Applicable
(Ghorbani and Zou, 2019) for individual data instances in the training set TensorFlow

DeepSHAP v2 (C2) (C5) Computes efficiently SHAP values for DNNs with Adaptable
(Chen et al., 2021) an extension to explain stacks of mixed model types n.a.

GrammarSHAP (C1) (C3) Hierarchical explanations for text inputs Adaptable
(Mosca et al., 2022a) based on the sentence grammatical structure n.a.

gSHAP (C4) Generates intuitive Shapley-based global Potentially Applicable
(Tan et al., 2018) by aggregating local explanations n.a.

h-SHAP (C1) (C5) Hierarchical implementation of Shapley values for Potentially Applicable
(Teneggi et al., 2021) their efficient computation in image data PyTorch

HEDGE (C1) (C3) Hierarchical explanations based on feature Ready Off-the-Shelf
(Chen et al., 2020) interaction detection specifically for text data PyTorch
Integrated Hessians (C5) Extension of Integrated Gradients to explain Ready Off-the-Shelf

(Janizek et al., 2021) pairwise feature interactions in NNs PyTorch
lossSHAP (C2) (C4) Obtain global explanations by aggregating Potentially Applicable

(Lundberg et al., 2020b) local explanations with TreeSHAP Python
MCDA Explainer (C1) (C2) Proposes the influence index, which is an Not Relevant

(Labreuche and Fossier, 2018) (C3) extension of Shapley values for MCDA tree models n.a.
Neuron Shapley (C2) (C4) Quantifies the contributions of single neurons to Adaptable

(Ghorbani and Zou, 2021) single predictions and overall model performance TensorFlow
R2 decomposition (C5) Feature importance attribution based on Potentially Applicable

(Redell, 2019) Shapley value variance decomposition R
Shapley Flow (C1) (C3) Enables the addition of a causal graph Potentially Applicable

(Wang et al., 2021) encoding relationships among input features Python
SAGE (C4) (C5) Efficiently quantifies each feature’s contribution to Potentially Applicable

(Covert et al., 2020) the model’s performance for global explainability Python
SealSHAP (C4) Shapley-based usefulness measure of individual Ready Off-the-Shelf

(Parvez and Chang, 2021) data sources for transfer learning TensorFlow
Shap-C (C4) (C5) Combination of computing counterfactuals and Potentially Applicable

(Ramon et al., 2019) Shapley Values Python
Shapley Residuals (C4) Captures information lost by KernelSHAP in Shapley Potentially Applicable

(Kumar et al., 2021) Residuals, which characterize feature dependence n.a.
Shapley Taylor index (C3) (C5) Generalization of the Shapley value that attributes Potentially Applicable

(Dhamdhere et al., 2020) the model’s prediction to interactions of subsets of features n.a.
Shapr (C3) Extends KernelSHAP to handle data with dependent Potentially Applicable

(Aas et al., 2021) features and produce more realistic explanations R
SPVIM (C4) (C5) Global variable importance measure using an efficient Not Relevant

(Williamson and Feng, 2020) regression-based Shapley value estimator Python and R
SubgraphX (C1) (C2) Explain GNNs by identifying important subgraphs Not Relevant

(Yuan et al., 2021) (C5) using Shapley values as importance measures PyTorch
SurrogateSHAP (C5) An XGBoost tree model is trained as a surrogate model Potentially Applicable

(Messalas et al., 2019) on the target model and TreeSHAP is applied to explain it n.a.
TreeSHAP (C2) (C5) Fast and exact method to estimate SHAP values Potentially Applicable

(Lundberg et al., 2018) for tree models and ensembles of trees Python
TimeSHAP (C1) (C2) Adapts KernelSHAP to sequential data and Potentially Applicable

(Bento et al., 2021) (C4 ) produces feature, event and cell-wise explanations n.a.

Table 1: Overview of available Shapley- and SHAP-based methods. For each method we also indicate the categories
it belongs to, its main idea and intuition, and its applicability to NLP together with the available implementations.
See 6.1 for more details about our NLP-applicability assessment.
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Figure 3 sketches an example of a hierarchical ex-
planation for text data.

For models trained on graph data, especially
graph DNNs, Yuan et al. (2021) proposed to ex-
plain predictions by using Shapley values as a
measure of subgraph importance. The resulting
method—named SubgraphX—also captures the in-
teractions between different subgraphs.

On images, SHAP can face computational lim-
itations as the number of features, i.e. pixels, can
become extremely large. h-SHAP (Teneggi et al.,
2021) efficiently retrieves exact Shapley values
by hierarchically excluding irrelevant image areas
from the computation. This is done following the
observation that, if a certain area in the image is un-
informative, so are its constituent sub-areas, which
are therefore not worth exploring.

5.2 Approaches Explaining Different Models

Explanation methods making fewer assumptions
on the target classifier benefit from better applica-
bility as they can explain a wider range of models.
However, this can hinder explanations in terms of
accuracy, information granularity, and computa-
tional efficiency. As we have already seen in 2.2:
KernelSHAP has the key advantage of being model-
agnostic, but it is drastically more inefficient than
its DNN-specific counterpart DeepSHAP (Lund-
berg and Lee, 2017).

An example of a highly-specialized explainabil-
ity method is TreeSHAP, presented by Lundberg
et al. (2018) as an extension of the SHAP frame-
work. This approach, only applicable to decision
trees or ensembles thereof, is a highly efficient
algorithm for exact SHAP values retrieval. Not
only the approach needs considerably less compu-
tational effort than the more general variants such
as KernelSHAP, but it leverages the decision tree
structure to compute SHAP interaction values and
thus captures pairwise interactions between fea-
tures.

Ghorbani and Zou (2021) proposes Neuron Shap-
ley, a framework targeting DNN models which
is able to quantify each individual neuron’s con-
tribution to single predictions and overall model
performance. An example of the kind of explana-
tion enabled by Neuron Shapley is visualized in
figure 4. By analyzing interactions between neu-
rons and picking those which exhibit the largest
Shapley value, this method is particularly suitable
for identifying neurons responsible for biases and
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Figure 4: Sketch of a Neuron Shapley explanation for
the 768 neurons of BERT output layer (Devlin et al.,
2019). A Shapley value is assigned to each neuron
depending depending on how they contribute towards
the prediction (green) or against it (red).

vulnerabilities (Ghorbani and Zou, 2021).

5.3 Approaches Modifying Core Assumptions

Assumptions made by SHAP can be at times too
restrictive or simplistic, which can prevent explana-
tions from accessing and leveraging crucial infor-
mation such as dependency relationships between
input features. For instance, already the symmetry
property of Shapley values treats features as inde-
pendent. While this can be true in some cases, for
instance when dealing with tabular data with uncor-
related variables, it is an oversimplification when it
comes to texts, images, and more structured data.

Frye et al. (2019) introduces Asymmetric Shapley
Values (ASV), which drops the symmetry assump-
tion and enables the generation of model-agnostic
explanations incorporating any causal dependency
known to be present in the data. Similar approaches
are:

• Causal Shapley (Heskes et al., 2020), addi-
tionally requiring a partial causal ordering of
the features as input.

• Shapley Flow (Wang et al., 2021), which lever-
ages a causal graph, encoding relationships
among input features.

• Shapr (Aas et al., 2021), an extension of Ker-
nelSHAP relaxing the feature independence
assumption.
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Figure 5: Example of SAGE explanation for a sentiment
analysis model. Since the number of global features is
as large as the vocabulary, words need to be grouped
together (e.g. by similarity) to reduce the number of
features to be explained.

5.4 Approaches Producing Different
Explanation Types

The SHAP framework and many of its deriva-
tives mainly focus on generating local explanations
based on feature importance. However, the general
applicability of Shapley values combined with its
strong foundations also offers potential for differ-
ent explainability settings. More recent works have
explored the usage of Shapley values to build other
types of explanations conveying different kinds of
information about the model and the available data.

For instance, Data Shapley (Ghorbani and Zou,
2019) estimates the importance of each training
sample for a given machine learning model. Sim-
ilarly, SealSHAP (Parvez and Chang, 2021) at-
tributes usefulness scores to data sources for trans-
fer learning.

Covert et al. (2020) introduces Shapley Addi-
tive Global importancE (SAGE), an explainability
method analogous to SHAP but with a core focus
on global explainability. More in detail, SAGE is a
model-agnostic method that quantifies the predic-
tive power of each input feature for a given model
while also accounting for their interactions. An
instructive example for NLP is shown in figure 5.

Alongside local and global explainability, works
like Yeh et al. (2020) adapt the notion of Shapley
values for concept analysis (Sajjad et al., 2021).
Given a set of concepts extracted from a model,
the authors define the notion of completeness as a
measure to indicate how sufficient such concepts

are in explaining the model’s predictive behavior.
Furthermore, they propose ConceptSHAP, an un-
supervised approach able to automatically retrieve
a set of interpretable concepts without needing to
know them in advance.

5.5 Approaches Proposed for Estimation
Efficiency

While Shapley values convey useful information
about the importance or contribution of a certain in-
put component, their computation quickly becomes
infeasible as coalitions grow exponentially w.r.t. in-
put size. The SHAP framework already addresses
this issue by providing more efficient estimation
techniques. Nevertheless, later works continued to
explore improvements to further decrease the com-
putational effort necessary to produce meaningful
explanations.

Chen et al. (2018) leverage features dependen-
cies in image and text data to build two efficient
algorithms, L-Shapley and C-Shapley, for Shapley
values estimation. Their methods only consider
a subset of the possible coalitions based on the
data’s underlying graph structure, which connects
for instance adjacent words and pixels in texts and
images respectively.

SurrogateSHAP (Messalas et al., 2019), instead,
trains an XGBoost tree as a surrogate for the origi-
nal model. The surrogate is then used to generate
SHAP explanations, which considerably reduces
the computational cost compared to directly apply-
ing SHAP to the original (more complex) model.

6 Relevance for NLP Research

Large and complex neural NLP models—such as
BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020)—are used extensively in research and
industry. The trend is justified by the strong corre-
lation between models’ size and their performance
(Madsen et al., 2021; Brown et al., 2020). Natu-
rally, increasing model complexity causes a higher
demand for NLP explainability. In this section, we
match this demand to the reviewed SHAP-based
methods and provide researchers with use-case-
based recommendations.

6.1 Applicability of the Approaches

In table 1 (rightmost column), we also evaluate
each SHAP-based explainability approach based
on its applicability to neural NLP models. In this
regard, our assessment considers availability of

4599



implementations, suitability for text data, and con-
ceptual complexity as relevant factors. We organize
all reviewed approaches into four tiers:

• Ready Off-the-Shelf : The code is available
and is ready to be used as-is.

• Adaptable: The code is available and there are
straightforward steps for its adaptation to NLP
use cases. Alternatively, no code is available
but there are clear instructions for an ad-hoc
implementation for the NLP domain.

• Potentially Applicable: Strong assumptions
and substantial implementation work are re-
quired to apply the method to NLP.

• Not Relevant: The method is only applicable
to other domains and it does not provide any
apparent value for explaining NLP models.

6.2 Recommendations for NLP Use Cases

To build feature attribution explanations, HEDGE
(Chen et al., 2020) is arguably the most suitable
choice, as hierarchical explanations can contain
more information than their non-hierarchical coun-
terpart, e.g. generated with SHAP. The strength of
HEDGE becomes even more apparent when deal-
ing with long texts, where sentence structure is
of major relevance for the model to be explained.
L-Shapley, C-Shapley (Chen et al., 2018) and Parti-
tionSHAP can also be considered where hierarchi-
cal explanations are not necessary and very compu-
tationally efficient methods are required instead.

For model debugging, Neuron Shapley is suit-
able to identify neurons that are responsible for
unintended biases or that are particularly vulnera-
ble to adversarial attacks (Ghorbani and Zou, 2021).
Pruning these neurons can be an effective method
of alleviating such model defects (Ghorbani and
Zou, 2021). To gain a global understanding of what
the model has learned in practice, SAGE (Covert
et al., 2020) combined with word grouping pro-
vides a summary of the features—e.g. words—that
are most relevant for the model’s performance. In
this case, pruning irrelevant features can be also
tested to improve model accuracy. A similar sum-
mary can be provided by ConceptSHAP (Yeh et al.,
2020), which can compile a comprehensive list of
the concepts identified by the model in an unsuper-
vised fashion. Furthermore, ConceptSHAP can be
used to determine the amount of model variance

covered by the whole set of identified concepts
(Yeh et al., 2020).

If causal structures or dependencies present in
the text are known and can be explicitly modeled,
then methods such as ASV (Frye et al., 2019), Shap-
ley Flow (Wang et al., 2021), and Causal Shapley
(Heskes et al., 2020) can leverage such informa-
tion. For use cases involving graphs as part of
multi-modal inputs—e.g. modeling a social net-
work (Wich et al., 2021)—any of the previous meth-
ods can be combined with SubGraphX (Yuan et al.,
2021) to also produce explanations for the graph
component of the input.

When it comes to sequence-to-sequence tasks
such as question answering and machine transla-
tion, the usage of SHAP-based methods has not
been explored in depth. With a few exceptions4,
available approaches seem particularly tailored
only to classification settings. We believe this is a
strong limitation and we encourage the reader to
look for alternatives.

7 Criticisms

The usage of Shapley values for generating model
explanations has also been criticized. For instance,
Kumar et al. (2020) shows that using Shapley val-
ues for feature importance leads to mathematical
inconsistencies which can only be mitigated by
introducing further complexity like causality as-
sumptions. Moreover, the authors argue that Shap-
ley values do not represent an intuitive solution to
the human-centric goals of model explanations and
thus are only suitable in a limited range of settings.

Sundararajan and Najmi (2020), on the other
hand, criticize some Shapley-value-based methods.
In fact, while a strong case for utilizing Shapley
values can be made thanks to their uniqueness re-
sult in satisfying certain properties (see 2.1), often
methods employing them operate under different
assumptions and hence the uniqueness results loses
validity in their context.

Merrick and Taly (2020) argues that existing
SHAP-based literature focuses on the axiomatic
foundation of Shapley values and their efficient
estimation but neglects the uncertainty of the expla-
nations produced. The authors illustrate how small
differences in the underlying game formulation can
lead to sudden leaps in Shapley values and can at-
tribute a positive contribution to features that do
not play any role in the machine learning model.

4https://shap.readthedocs.io/en/latest/text_examples.html
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8 Conclusion

SHAP is a core contribution to explainable artifi-
cial intelligence and one of the most popular frame-
works for local interpretability. A considerable
amount of recent works has proposed SHAP-based
approaches, which we identify as part of five dif-
ferent yet overlapping research directions. In par-
ticular, the recent literature has worked towards
(C1) tailoring explanations to different input data,
(C2) explaining specific models, (C3) improving
the framework’s flexibility via modifying core as-
sumptions, (C4) producing different explanation
types, and (C5) estimating Shapley values more
efficiently.

This work has reviewed a total of 41 approaches
and has organized them based on the introduced cat-
egories. As expected, given the overlapping nature
of the classification, the majority of existing meth-
ods fall into multiple categories and have therefore
each made distinct contributions to the field. While
most of them are not directly applicable to NLP
settings, we identified a few that can be beneficial
for current practitioners. Furthermore, we have
compiled a list of recommendations for each NLP
use case. We also observe a severe limitation of
SHAP-based methods in terms of applicability to
sequence-to-sequence NLP tasks.

We hope our work provides NLP/XAI practition-
ers and newcomers with a comprehensive overview
of SHAP-based approaches, with references to
stimulate further investigation and future advances
in academic and industrial research.
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Abstract

The cross-entropy loss function is widely used
and generally considered the default loss func-
tion for text classification. When it comes
to ordinal text classification where there is an
ordinal relationship between labels, the cross-
entropy is not optimal as it does not incorpo-
rate the ordinal character into its feedback. In
this paper, we propose a new simple loss func-
tion called ordinal log-loss (OLL). We show
that this loss function outperforms state-of-the-
art previously introduced losses on four bench-
mark text classification datasets.

1 Introduction

For many classification tasks, there is an order on
the labels of the target variable. In particular, in
natural language processing (NLP) when, for ex-
ample, we are trying to predict the number of stars
associated with a review: it is obvious that when
the label is 1 star, predicting 2 stars is better than
predicting 5 stars. This type of classification is
called ordinal classification (or ordinal regression)
and many techniques have been developed in recent
years around it. Among the most used techniques,
the ordinal binary classification consists in de-
composing the ordered target variable in several
binary ones (Frank and Hall, 2001; Allwein et al.,
2000). The threshold methods treat the target vari-
able (with N classes) as a continuous real-valued
variable and N − 1 thresholds are introduced (Her-
brich et al., 2000; Verwaeren et al., 2012; Cao et al.,
2020). In the loss-sensitive classification the loss
function is built such that a higher penalty is as-
signed if the distance between the prediction and
the label is higher. Several losses can be used here:
mapping the labels {C1;C2; ...;CN} into values
{1; 2; ...;N} and use the mean squared error. The
margin loss or the hinge loss can also be extended
for ordinal regression (Rennie and Srebro, 2005).
The weighted kappa loss (de la Torre et al., 2018),
the earth mover’s distance (Hou et al., 2016), the

soft labels (Diaz and Marathe, 2019; Bertinetto
et al., 2020) or the CORAL method (Cao et al.,
2020) are other examples of recent modified losses
introduced in ordinal classification problems.

In order to measure the performance of the ordi-
nal regression there are well known metrics such
as the off-by-k-accuracy, the mean absolute error,
the mean squared error or Kendall Tau for instance
(Cardoso and Sousa, 2011; Gaudette and Japkow-
icz, 2009).

1.1 Specific contribution
The main contribution of this paper is to introduce
a new loss named ordinal log-loss (OLL). This loss
is easy to use, adapted to ordinal classification and
gives more accurate results than classical existing
methods in text classification. The idea behind
the OLL is to penalize bad predictions instead of
rewarding good predictions like the majority of the
losses mentioned before do.

In section 2 we introduce the ordinal log-loss. In
section 3 we present the experiments, the metrics
used and finally the results.

2 Ordinal Log-Loss

2.1 Definition
As explained in the introduction, in ordinal classifi-
cation tasks, predictions too distant from the labels
can be particularly problematic. While most of the
losses introduced in the literature for ordinal clas-
sification (Gutiérrez et al., 2015; Bertinetto et al.,
2020; Rennie and Srebro, 2005) tend to encour-
age predictions close to the labels, we introduce a
loss which penalises the critical errors (i.e. the pre-
dictions that are the most distant from the correct
class).
First, for each ordinal classification task, we de-
fine a distance matrix that embodies the distances
between each label:

D = (d(Ci, Cj))(i,j)∈[[1,N ]]2 (1)
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where N is the number of classes, C =
(C1, ..., CN ) are the different classes and d(Ci, Cj)
the distance between label Ci and Cj . We denote
for the sake of simplicity d(i, j) for d(Ci, Cj) and
y for Cy (the label).
Let P = (p1, ..., pN ) be the output probability dis-
tribution of a network for a given prediction. By
definition, the cross-entropy loss encourages the
models to output a high probability for the correct
class.

Equivalently, but from the opposite perspective,
we wish that the further a prediction is from the
true label, the higher the loss should be. With a
simple modification of the cross-entropy loss, we
can find such a loss, that we introduce as the ordinal
log-loss (OLL):

LOLL−α(P, y) = −
N∑

i=1

log(1− pi)d(y, i)α (2)

where α is a strictly positive hyper-parameter.
The novelty of this loss lies in the coefficients
− log(1−pi). In fact, other articles already consid-
ered the following loss:

∑N
i=1 pid(y, i) (obtained

by replacing − log(1 − pi) by pi and where α is
taken equal to 1) (Hou et al., 2016; Kotsiantis and
Pintelas, 2004). Nevertheless, for this latter loss,
as explained in (Hou et al., 2016), the optimiza-
tion does not converge to a desired local mini-
mum. Although we have not reported these re-
sults in this article, this is indeed what we observed
experimentally and what gave us the idea of the
OLL. We wanted to penalize classification errors
more strongly and since we have the inequality
− log(1− pi) ≥ pi for all pi ∈ [0, 1[, the weights
in front of d(y, i) are more important in the OLL
loss which implies a greater penalty.

2.2 Impact of the α parameter

In the expression 2, α is an hyper-parameter that
could be interpreted as a penalizing factor: the
greater α is, the higher the loss function is when
the distance between the output predictions and the
labels is high.

3 Experiments and Results

In this section we first introduce the public datasets
(section 3.1) and the metrics (section 3.2) used to
compare our loss function to existing ones. Then
in section 3.3 we present the different results ob-
tained.

3.1 Datasets

To conduct our experiments, we used the SNLI
dataset (Bowman et al., 2015) used for tasks such
as Recognizing Textual Entailment (RTE). We also
use the Amazon Reviews Corpus (Keung et al.,
2020), the Yelp Reviews Dataset (Yelp, 2015) and
the Stanford Sentiment Treebank for fine grained
classification (SST-5) dataset (Socher et al., 2013).

SNLI: Developped by (Bowman et al., 2015),
this corpus is a collection of 570k human-written
English (including 10k for testing and 10k for
validation) pairs of sentences dedicated to the
Natural Language Inference (NLI) task. It
is composed of three balanced labels: C =
(entailment, neutral, contradiction). To accelerate
the training, we used a random subsample of 250k
rows from the training set. The ordinal relationship
between the classes is taken into account by using
the matrix defined in equation [7] as the distance
matrix.

Amazon Reviews: This dataset, published by
(Keung et al., 2020), was obtained by gathering cus-
tomer reviews of product from several categories
published on the Amazon marketplace in six differ-
ent languages. We only kept the reviews written in
English and the corresponding star rating (an inte-
ger between 1 and 5). It represents a total dataset
of 210k samples, including 5k for testing and 5k
for validation.

Yelp Reviews: Extracted from the Yelp Dataset
Challenge 2015 data (Yelp, 2015), it was first used
as a text classification benchmark in (Zhang et al.,
2015). It is a balanced dataset composed of 700k
samples of reviews (50k for testing) extracted from
Yelp, a website hosting crowd-sourced reviews
about businesses. Each sample is a (text, 5-star
rating) pair. To reduce the time taken for training, a
random subsample of the training set of size 200k
was used as the training set, and one of size 20k
was used for the validation set.

SST-5: Introduced by (Socher et al., 2013), the
Stanford Sentiment Treebank (SST) is a corpus
with parse trees enabling sentiment analysis. It is
composed of 12k sentences extracted from movie
reviews and annotated by 3 humans. In the SST
fine-grained version (or SST-5), each phrase is la-
belled as a 5 star rating corresponding to: nega-
tive, somewhat negative, neutral, somewhat posi-
tive, positive.

4605



3.2 Metrics
In this article we use the classical metrics for
ordinal classification (Cardoso and Sousa, 2011;
Gaudette and Japkowicz, 2009).

Off-by-k Accuracy: In the case of ordinal clas-
sification, the Off-by-k Accuracy, or OBk, is the
percentage of total predictions where the index
of the predicted label ŷ ∈ (C1, ..., CN ) and the
one from the true label differ from less than k. In
our experiments, we assumed that ∀i ∈ [[2, N ]] :
d(Ci−1, Ci) = 1 so the OBk can be formulated as:

OBk = 100×
∑S

s=1 1{d(ys, ŷs) ≤ k}
S

(3)

with S being the number of examples.
Mean Absolute Error for Classification: To

measure the mean distance between the predicted
labels and the true ones, we use the MAE:

MAE =

∑S
s=1 d(ys, ŷs)

S
(4)

where d is the distance defined Section 2.1.
Mean Squared Error for Classification: To

complete the MAE, we measure the mean squared
error:

MSE =

∑S
s=1 d(ys, ŷs)

2

S
(5)

Kendall Tau: The Kendall τ (Kendall, 1938) is
a measure of rank correlation between two mea-
sured quantities. It is defined as :

τ =
#{concordant pairs} −#{discordant pairs}(

S
2

) (6)

where ∀(i, j) ∈ [[1, S]]2, i < j, if the sort order
of (yi, yj) and (ŷi, ŷj) agrees, then (yi, ŷi) and
(yj , ŷj) are concordant pairs, and discordant pairs
otherwise.

Remark: metrics such as the Accuracy or the F1

score are often used to evaluate models in classifi-
cation tasks. But in the particular case of ordinal
classification, these metrics are not considered rel-
evant as they do not truly outline the performance
of a model. Indeed, if 2 models A and B predict
the same amount of samples correctly, but model
A predicts all the other samples incorrectly with
predictions that are really distant to the true labels,
while the wrong predictions of model B are labels
that are close to the true ones, then models A and
B have the same accuracy, but model B should be
considered better than model A. Like the accuracy,

the multi-class F1 score does not take into account
the distance between classes and is therefore not
appropriate for ordinal classification.

3.3 Experimental Results
3.3.1 Model Used
To conduct our experiments, we have trained the
BERT-tiny model (Turc et al., 2019) on the four
datasets listed in section 3.1. The choice of us-
ing a smaller version of BERT (Devlin et al.,
2018) was made for several reasons. First, hav-
ing less parameters, this model is a lot faster to
train. Secondly, it produces scores lower than
bigger models such as BERT-base, allowing to
better highlight the impact of different loss func-
tions on scores. Finally, being a smaller version
of the BERT model, the results provided here are
assumed to be generalised to bigger BERT mod-
els and other similar Transformers models. The
code is available at https://github.com/
glanceable-io/ordinal-log-loss.

3.4 Distance Matrices
As explained in section 2, each ordinal classifi-
cation task comes with distance matrix D that
reflects the proximity between the different la-
bels. For the SNLI dataset, the ordered labels
are C = (entailment, neutral, contradiction) while
for the other 3 datasets, the ordered labels are
C = (1, 2, 3, 4, 5). As mentioned in section 3.2,
for any two neighbors labels, we choose a distance
of 1 between them. As a result, the distance matrix
for the SNLI task is:

D =



0 1 2
1 0 1
2 1 0


 (7)

while the one for the 1 to 5 stars rating tasks is :

D =




0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0




(8)

3.5 Procedure
For each dataset, we trained the BERT-tiny model
with 6 different types of losses: the cross-entropy,
the ordinal log-loss (our loss), the weighted kappa
loss (de la Torre et al., 2018), the soft labels
loss (Bertinetto et al., 2020), the Earth Mover’s
Distance-based loss (Rubner et al., 2000; Hou et al.,
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Datasets Batch Size Num Epochs Stopping Rate Weight Decay

Yelp Reviews 1024 100 5 0.01
Amazon Reviews 1024 100 5 0.01

SST-5 1024 2340 117 0.01
SNLI 1024 80 4 0.01

Table 1: Training parameters for each dataset

2016) and the CORAL framework (Cao et al.,
2020). We wanted to compare our loss with these
five other losses for the following reasons: the cross
entropy loss is a very common loss in text classi-
fication and the other four introduced losses out-
performed a significant number of other losses in
many ordinal tasks.

For the ordinal log-loss, we chose α in
{1, 1.5, 2}, for the soft labels loss, we chose β
in {2, 3, 4} because it gave us the best results (al-
though in the original paper, the values used for β
are higher). For each loss, we trained the model
with 5 different learning rates : {1, 2.5, 5, 7.5} ×
10−5, and 10−4. For the CORAL loss, we also
tested higher learning rates (around 10−3) as it
showed considerable gains. And for each learn-
ing rate, the pre-trained model was trained 5 times.
Finally, for each dataset, for each loss, we chose
the learning rate that gave the best scores in av-
erages for the 5 independent trainings. We could
have played with other hyper-parameters such as
batch size or weight decay, but that would have
enormously increased the number of experiments
to be done. Each training requires a lot of resources
and computing time. For example, to produce the
results of this paper, approximately 800 hours of
training on two NVIDIA GeForce RTX 3080 were
required. We have therefore made the choice to
keep only the learning rate, and to set the others at
default values. The only non-default value hyper-
parameter is the batch-size that we set at the maxi-
mum value to speed-up training.

3.6 Results

The results of the experiments are shown in table 2
and 3. The best model is colored in dark green and
the second best in light green. In table 3, according
to the procedure described in section 3.5, for each
line in the table we took the average scores for the
5 independent trainings for the given learning rate.
We did not display the OB2 score for SNLI because
there are only three classes.

We can observe that the OLL gave better results
for all the metrics used, although the SOFT loss is
performing well too on the MAE metric. Results of

the OLL loss vary with the α parameter : while α ∈
{1, 1.5} gives better results on the SNLI and SST-5
datasets, for α = 2, the OLL loss is providing good
results on the other 2 datasets. Overall, α = 1.5
seems to be a good tradeoff.

To have a clearer idea of which losses perform
better, we completed the table 2, where each line
displays the average rank of the corresponding loss
on the 4 datasets, for each metric. Although the
SOFT loss with β = 4 gives interesting results
for the MAE and the Kendall Tau, the OLL loss
seems to perform better overall. The impact of the
α parameter in the OLL loss vary, depending on
the dataset and the number of classes, but the table
2 confirmed that α = 1.5 is a good trade-off.

Loss OB1 OB2 MAE MSE Kendall
Tau

CE 6.25 7.67 5 7 7.25
OLL-1 3.5 2.67 3.35 2.25 2.75

OLL-1.5 1.5 1.33 3 1.5 2
OLL-2 1.5 1.67 6.75 2.25 5
WKL 7 3.67 9.25 7.75 7.25

SOFT-2 8 8 6.75 7.75 5.5
SOFT-3 6.5 7.67 3.75 7 5.25
SOFT-4 5.75 6.67 2.25 6 4.5
EMD 4.5 5.33 3.25 4.5 3.75

CORAL 8 6.67 9.5 8.5 8.75

Table 2: Losses mean rank on each metrics

4 Conclusion

We introduced a simple and novel loss function spe-
cially designed for the ordinal classification task.
This loss is intuitive and easy to use. We evaluated
our method on four benchmark ordinal text classi-
fication datasets and against five different metrics.
Our loss outperforms state-of-the-art comparable
and previously introduced losses. We also experi-
mentally find good hyper-parameters to use. Thus,
the contribution of this article is to introduce a new
loss (OLL) that is easier to use than the majority
of recently introduced losses and which gives bet-
ter results for ordinal classification applied to NLP
tasks. We believe that those results could be ex-
tended to other machine learning tasks in computer
vision, speech or structured data for instance.
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Dataset Loss
Learn

OB1 OB2 MAE MSE
Kendall

Rate Tau

Y
el

p
re

vi
ew

s

CE 7.5e-5 92.9 ± 0.1 97.7 ± 0.0 0.529 ± 0.001 0.809 ± 0.001 0.713 ± 0.000
OLL-1 5e-5 92.7 ± 0.0 98.0 ± 0.0 0.536 ± 0.000 0.796 ±0.000 0.712 ± 0.000

OLL-1.5 1e-4 93.1 ± 0.0 98.4 ± 0.1 0.530 ± 0.003 0.750 ± 0.004 0.718 ± 0.001
OLL-2 1e-4 93.3 ±0.1 98.6 ± 0.0 0.534 ± 0.003 0.742 ± 0.003 0.716 ± 0.001
WKL 1e-4 92.1 ± 0.1 98.2 ± 0.1 0.554 ± 0.003 0.814 ±0.011 0.712±0.001

SOFT-2 7.5e-5 92.6 ± 0.2 97.7 ± 0.1 0.535 ± 0.005 0.826 ± 0.016 0.712±0.001
SOFT-3 7.5e-5 92.8 ±0.2 97.7 ±0.1 0.532 ±0.003 0.817 ±0.011 0.712±0.001
SOFT-4 1e-4 92.9 ±0.0 97.9 ±0.0 0.529 ±0.000 0.804 ±0.000 0.714±0.000
EMD 7.5e-5 92.9 ± 0.1 97.9 ± 0.0 0.532 ± 0.002 0.804 ± 0.004 0.713±0.001

CORAL 5e-3 90.6 ± 0.0 98.0 ± 0.0 0.600 ± 0.000 0.898 ± 0.000 0.682±0.000

A
m

az
on

re
vi

ew
s

CE 5e-5 90.9 ± 0.3 97.8 ±0.1 0.578 ±0.004 0.897 ±0.008 0.692±0.002
OLL-1 5e-5 92.3 ±0.1 98.5 ±0.1 0.570 ±0.001 0.802 ±0.005 0.699±0.001

OLL-1.5 2.5e-5 92.5 ±0.2 98.6 ±0.0 0.567 ±0.004 0.787 ±0.009 0.701±0.003
OLL-2 5e-5 92.5 ±0.0 98.6 ±0.0 0.577 ±0.001 0.791±0.002 0.697±0.000
WKL 5e-5 91.2 ±0.3 98.5 ±0.1 0.591 ±0.008 0.847 ±0.015 0.698±0.003

SOFT-2 5e-5 90.7 ±0.1 97.9 ±0.1 0.579 ±0.005 0.897 ±0.012 0.695±0.003
SOFT-3 5e-5 90.8 ±0.2 97.8 ±0.1 0.577 ±0.004 0.899 ±0.012 0.693±0.002
SOFT-4 5e-5 90.7 ±0.0 97.7 ±0.0 0.577 ±0.000 0.909 ±0.000 0.694±0.000
EMD 5e-5 91.8 ± 0.0 98.2 ± 0.0 0.569 ± 0.002 0.843 ± 0.003 0.699±0.001

CORAL 5e-3 89.1 ± 0.6 98.0 ± 0.1 0.634 ± 0.004 0.964 ± 0.017 0.665±0.000

SS
T-

5

CE 5e-5 85.2 ±0.2 97.0 ±0.2 0.754 ±0.008 1.171 ±0.012 0.533±0.005
OLL-1 7.5e-5 86.7 ±0.2 98.0 ±0.1 0.738 ±0.002 1.084 ±0.008 0.548±0.003

OLL-1.5 7.5e-5 86.9 ±0.2 98.0 ±0.1 0.739 ±0.000 1.081 ±0.005 0.544±0.002
OLL-2 1e-5 86.3 ±0.4 97.7 ±0.2 0.757 ±0.007 1.121 ±0.016 0.531±0.004
WKL 1e-5 83.8 ±0.7 97.2 ±0.1 0.806 ±0.019 1.259 ±0.038 0.520±0.009

SOFT-2 2.5e-5 84.8 ±0.6 96.9 ±0.4 0.754 ±0.004 1.186 ±0.031 0.548±0.003
SOFT-3 1e-5 85.2 ±0.3 97.0 ±0.2 0.748 ±0.001 1.166 ±0.011 0.544±0.005
SOFT-4 7.5e-5 86.1 ±0.0 97.3 ±0.0 0.738 ±0.000 1.124 ±0.000 0.549±0.000
EMD 7.5e-5 85.8 ± 0.3 97.2 ± 0.2 0.745 ± 0.008 1.143 ± 0.022 0.543±0.010

CORAL 1e-3 74.8 ± 2.6 91.8 ± 2.1 1.050 ± 0.076 1.999 ± 0.245 0.446±0.020

SN
L

I

CE 7.5e-5 97.2 ±0.0 0.208 ±0.000 0.264 ±0.001 0.773±0.001
OLL-1 1e-4 98.3 ±0.0 0.202 ±0.002 0.237 ±0.002 0.786±0.002

OLL-1.5 7.5e-5 98.3 ±0.0 0.207 ±0.000 0.241 ±0.000 0.781±0.000
OLL-2 7.5e-5 98.5 ±0.0 0.214 ±0.003 0.244 ±0.004 0.777±0.003
WKL 1e-4 97.7 ±0.1 0.238 ±0.005 0.283 ±0.006 0.750±0.005

SOFT-2 2.5e-5 97.3 ±0.1 0.208 ± 0.004 0.261 ±0.006 0.775 ±0.004
SOFT-3 1e-4 97.4 ±0.0 0.204 ±0.000 0.257 ±0.001 0.779±0.000
SOFT-4 7.5e-5 97.3 ±0.0 0.205 ±0.000 0.259 ±0.000 0.776±0.000
EMD 1e-4 97.6 ±0.1 0.205 ± 0.004 0.254 ±0.006 0.779 ±0.004

CORAL 2.5e-5 98.3 ±0.1 0.213 ± 0.005 0.247 ±0.007 0.778 ±0.006

Table 3: Losses comparisons on 4 datasets: Yelp reviews, Amazon reviews, SST-5 and SNLI
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Abstract

Lifelong language learning aims to stream
learning NLP tasks while retaining knowledge
of previous tasks. Previous works based on
the language model and following data-free
constraint approaches have explored format-
ting all data as "begin token (B) + context (C) +
question (Q) + answer (A)" for different tasks.
However, they still suffer from catastrophic for-
getting and are exacerbated when the previous
task’s pseudo data is insufficient for the follow-
ing reasons: (1) The model has difficulty gener-
ating task-corresponding pseudo data, and (2)
A is prone to error when A and C are separated
by Q because the information of the C is dimin-
ished before generating A. Therefore, we pro-
pose the Ask Question First and Replay Ques-
tion (AQF-RQ), including a novel data format
"BQCA" and a new training task to train pseudo
questions of previous tasks. Experimental re-
sults demonstrate that AQF-RQ makes it easier
for the model to generate more pseudo data that
match corresponding tasks, and is more robust
to both sufficient and insufficient pseudo-data
when the task boundary is both clear and un-
clear. AQF-RQ can achieve only 0.36% lower
performance than multi-task learning.

1 Introduction

Lifelong learning is the capacity of human beings
to acquire, reconstruct, strengthen, and transfer
knowledge (Ring, 1997). Human beings can learn
new knowledge while consolidating old knowledge
by first detecting and learning the distinctions be-
tween old and new knowledge and then simplifying
the old and new knowledge based on leveraging
the common points. This concept is critical for en-
couraging machines to learn NLP tasks in a similar
way that people do. In the application of NLP, new
data are continuously acquired and categorized as
either new data for existing tasks or new data for
new tasks. For new data of existing tasks, the tra-
ditional method, known as isolated learning (Chen

?

Ask questions first 
before reading

Ask questions 
after reading

----------------------------------------------------------------------------------------------------

Figure 1: Illustration of the difference between asking
questions before reading and asking after reading.

and Liu, 2018), is to retrain the model with the old
data appended with new data. For data from new
tasks, multi-task learning (MTL) integrates data
from previous and new tasks to retrain the model.
Both of these methods are limited to assuming that
all new and old data can be obtained during train-
ing. However, the reality is that tasks are acquired
and trained in the stream, which makes the model
suffer from catastrophic forgetting (Ring, 1997;
McCloskey and Cohen, 1989; French, 1999) (i.e.
forgetting previously learned tasks/knowledge).

Lifelong language learning (LLL), which this pa-
per focuses on, aims to learn a stream of NLP tasks
with lifelong learning. LAMOL (Sun et al., 2019)
has recently proposed implementing a language
model for LLL by formatting all data as QA-style
and generating pseudo data instead of real data for
previous tasks in order to prevent catastrophic for-
getting. Many works (Chuang et al., 2020; Sun
et al., 2020; Kanwatchara et al., 2021) have inves-
tigated how to improve it through methods that
require more computing resources or additional
parameters (e.g. knowledge distillation or adding
sub-networks). In this paper, we refer to these
works as LAMOL-based methods. In LAMOL-
based methods, each example is consist of four
segments: task-specific or task-independent token
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[TASK]/[GEN] (B), context (C), question (Q), and
answer (A). Then each example is formatted as
"B+C+Q+A" ("BCQA"). LAMOL has a gap be-
tween MTL that is regarded as the upper bound of
LLL. Other LAMOL-based methods require more
computing resources or additional parameters but
still have a gap between MTL especially pseudo
samples is unsufficient. Therefore, the "BCQA"
format is useful but not train-efficient enough for
reasons below: (1) generating task-corresponding
pesudo data is hard because the similar C can be
found in distinct tasks; (2) the C’s information is
diminished when A is generated due to the fact that
A and C are separated by Q.

To generate more task-corresponding pseudo
data for previous tasks and tighten the relation-
ship between the C and the A, we proposed the Ask
Question First (AQF) and Replay Question (RQ).

The AQF formats all data into a novel format:
"B+Q+C+A" ("BQCA"), which is consistent with
human reading comprehension behavior. Ques-
tions are more than just questions; they direct our
learning. As is shown in Fig.1, when people do
reading comprehension, they usually read the ques-
tions first, then read the articles with the questions,
and pay attention to what can answer the ques-
tions while reading. This is an efficient reading and
learning method, which known as metacognition
(Flavell, 1979), has been researched in the field of
education and psychology. There are two benefits
to applying the "BQCA" format: (1) It’s easier to
generate pseudo-data that matches the correspond-
ing task because the Q has different but limited
types for each task. (2) The model is more stable
when there isn’t enough pseudo data because the A
is right next to the C. Furthermore, the model can
pay more attention to important information in the
C with the help of the Q.

The RQ introduce a novel training task to help
model generate more task-corresponding pseudo
data. In the "BQCA" format, generating the cor-
rect Q is crucial for generating task-corresponding
pseudo-data. However, the Q of the previous may
be covered by the new task since we cannot pre-
dict the number and type of Q of the new task. In
order to strengthen the generation of the Q of the
previous task, we generate pseudo-problems of the
previous task to train the model.

The contributions of our paper are listed below:
(1) We proposed the Ask Question First and Re-

play Question (AQF-RQ1) to alleviate catastrophic
forgetting when the pseudo data is sufficient and in-
sufficient without additional computation resources
and parameters. (2) We proposed a novel data for-
mat "BQCA" to make data train-efficient and gen-
erating corresponding pseudo data easier. (3) We
proposed a novel training task to help the model
generate correct questions and then generate more
task-corresponding pseudo data.

2 Related Work

Lifelong language learning (LLL) is an essential
step in promoting the realization of general arti-
ficial intelligence in the field of NLP. (Liu et al.,
2019; Mi et al., 2020; Huang et al., 2021) have
studied LLL on a single type of NLP task by regu-
larization or replaying real data. Recently, LAMOL
(Sun et al., 2019) uses a language model (LM) to
learn various kinds of NLP tasks in QA-style. In
LAMOL, the pseudo-data generated by the model
is trained together with the new task to alleviate
catastrophic forgetting. Many works explored the
enhancement of LAMOL with additional compu-
tation resources or adding sub-networks. L2KD
(Chuang et al., 2020), DnR (Sun et al., 2020) and
DFSD (Wang et al., 2022) distilled parts or all lay-
ers of the model to improve LAMOL. ARPER (Mi
et al., 2020) applied regualarization on parameters
with prioritized exemplar replay. Rational-LAMOL
(Kanwatchara et al., 2021) applied critical freez-
ing guided by rationale information which is ob-
tained by human or unsupervised rationale gener-
ation (Chang et al., 2020). (Madotto et al., 2021)
applied Adapter (Houlsby et al., 2019) to plug into
pretrain language model. Those are effective but
require more computational resources (e.g., distilla-
tion and regularization) or new parameters (such as
adding sub-networks for new tasks). We aspire to
improve without increasing our resources. Conse-
quently, based on the metacognition (Flavell, 1979;
Bowler, 2010; Braithwaite and Sprague, 2021) pro-
posed in education and psychology, we propose
a more training-efficient and robust data format:
first ask questions, then observe the context, finally
answer the questions. In addition, we introduce re-
play questions to strengthen the model’s attention
to questions.

1https://github.com/CodeHan/AQF-RQ
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Figure 2: Illustration of QA/LM/RQ task with the
"BQCA" format.

3 Methodology

In this section, we first introduce LAMOL in Sec-
tion 3.1. Then, our proposed Ask Question First
(AQF) is detailed in Section 3.2. Thirdly, we intro-
duce the Replay Questions in Section 3.3. Finally,
we summarize the training objectives in our paper
in Section 3.4.

3.1 LAMOL
LAMOL (Sun et al., 2019) proposed using a sin-
gle language model for lifelong language learn-
ing. A stream of various NLP tasks is learned by
GPT-2 (Radford et al., 2019) with joint training of
the language model (LM) task and the question-
answering (QA) task. In LAMOL, all tasks are
formatted QA-style. Each example can consist of
four segments: task-specific or task-independent to-
ken [TASK]/[GEN] (B), context (C), question (Q),
and answer (A). In this way, the LM task is to gen-
erate "C+Q+A" by inputting [TASK]/[GEN], and
the QA task is to generate "A" by inputting "C+Q".
The loss of LAMOL is calculated as below:

LLAMOL = LQA + λLLM (1)

where λ is the weight of the LM task.
With the help of the LM task, the [TASK]/[GEN]

can be used as the first token to input the model
and generate the pseudo sample by greedy decod-
ing. From the second task on, pseudo samples of
previous tasks are generated in this way and jointly
trained with the new task dataset to alleviate catas-
trophic forgetting. Let denote the set of pseudo
samples as Pi = {psj |i, j ∈ N+, 1 ≤ j < i},
where psj represents the pseudo data of j-th task.

The number of pseudo samples of previous tasks
is determined by the size of the new task and a hy-
perparameter sampling ratio γ ∈ (0, 1]. Assuming
that T = {T1, T2, . . . , TN} represents N tasks to be
learned. Let |Dt|, t ∈ [2, N ] denote the size of t-th
task. LAMOL generates |psi| = γ

t−1 |Dt| pseudo-
samples for each previously learned task. Then, Dt

is joined with Pt to train the model. However, the
performance of LAMOL still has a gap between

Case ID Content Cor.

1 BT1+CT1+QT1+AT1 ✓

2 BT1+CT2+QT2+AT2 ✗

3 BT2+CT2+QT2+AT2 ✓

4 BT2+CT1+QT1+AT1 ✗

Table 1: The cases of the pseudo sample after the model
learning two tasks in turn with "BCQA" format. Cor. is
the abbreviation of "corresponding".

multi-task learning (MTL), which is regarded as the
upper bound of lifelong learning, since not each
pseudo sample is tied to [TASK]/[GEN]. In this
paper, we propose Ask Question First (AQF) and
replaying questions to make data train-efficient and
shorten the gap between MTL.

3.2 Ask Question First

Ask Question First (AQF) is a novel data format
that makes the model imitate the process of hu-
man reading comprehension to learn knowledge
from the training set efficiently. LAMOL proposed
a data format, "B+C+Q+A" ("BCQA"), which is
useful but not train-efficient enough. All pseudo
samples are generated starting with [TASK]/[GEN].
However, [TASK]/[GEN] is not strongly tied with
the C of the tasks because the context is complex
and volatile for the task. Different tasks can have
similar contexts. Therefore, [TASK]/[GEN] is easy
to be biased to the new task resulting in pseudo
samples not corresponding to their tasks when
more tasks are learned. These non-corresponding
pseudo-samples jointly trained with the new task
will aggravate the catastrophic forgetting of the
model. Otherwise, the C’s information is dimin-
ished when A is generated due to the fact that A and
C are separated by Q.

To generate more corresponding pseudo samples,
we propose AQF format all data as "B+Q+C+A"
("BQCA") which is simple yet efficient to make
the model learn knowledge from the training set
efficiently. We choose the task-specific token to
analyze why our proposed "BQCA" is better than
the naive "BCQA". Assuming that the model has
learned two tasks T1 and T2, pseudo samples of
T1 and T2 needed to be generated before training
the new task. Two types of task-specific tokens
B1 and B2 are inputted to the model to generate
pseudo samples with greedy decoding. There are
four main kinds of pseudo samples that can be ob-
tained as shown in Table 1. Case 1 and Case 3
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are nice pseudo samples that can alleviate catas-
trophic forgetting, but Case 2 and Case 4 are terri-
ble ones that can aggravate catastrophic forgetting.
Ideally, pseudo samples, which we denote as task-
corresponding pseudo-samples Pc, like Case 1 and
Case 3 are what we expect to generate. However, in
fact, due to catastrophic forgetting, Case 2 and Case
4 also appear. These pseudo samples like case 2 and
case 4 are denoted as the not task-corresponding
samples Pnc. The probability of generating Pnc
is positively correlated with the severity of catas-
trophic forgetting. Therefore, the model will form
a vicious circle: forgetting old tasks and generating
Pnc with greater probability. For pseudo samples
start with task-specific token, the psi consists of
corresponding pseudo data psci and not correspond-
ing pseudo data psnci (i.e. psi = {psci , psnci }).

In LAMOL-based methods, they used GPT-2
(Radford et al., 2019) for experiments. GPT-2 is an
autoregressive model that can only obtain informa-
tion before the current position, and then predict the
words. Therefore, the probability of our proposed
"BQCA" format and naive "BCQA" format can be
calculated by Eq.(2) and Eq.(3), respectively:

PAQF = P (BQCA) (2)

= P (A|BQC)P (C|BQ)P (Q|B)P (B)

Pnaive = P (BCQA) (3)

= P (A|BCQ)P (Q|BC)P (C|B)P (B)

As shown in Eq.(2) and Eq.(3), P (B) is a con-
stant because it is given as the first token. Next,
P (Q|B) and P (C|B) affect the quality of the gen-
erated pseudo data. To obtainPc, the Q or C should
be generated to be corresponding to the given B,
then the remaining generation has a greater proba-
bility correspond to B.

Then we first consider P (Q|B) and P (C|B).
Let ΘN denote the parameters of the model af-
ter learning N tasks in turn. Assuming two tasks
have been learned on the condition of sufficient
pseudo samples (i.e. large γ) in turn, P (Q|B)
and P (C|B) can be written as, P (Q|B,Θ2) and
P (C|B,Θ2). In the dataset of a task, there are
thousands of kinds of C, but there are only lim-
ited kinds of Q. For a simplest classification task,
only one fixed Q is needed. For example, in the
SST (Radford et al., 2017), all Q is "is review is
positive or negative?". For complex tasks, such as
SRL (He et al., 2017), it is mainly based on lim-
ited types of Q such as what, where, why, when,

how etc, but it is still smaller than that of C. There-
fore, P (Q|B,Θ2) and P (C|B,Θ2) are inversely
proportional to the vocabulary sizes of Q and C,
respectively. Let VQ = {wQi |i ∈ [1, |VQ|]} and
VC = {wCi |i ∈ [1, |VC |]} denote the vocabulary
of Q and C, respectively. wQi and wCi denotes the
word in the vocabulary of Q and C, respectively.
According to the above analysis, it can be obtained
that |VQ| ≪ |VC |. For most words, since their prob-
ability is inversely proportional to the size of the vo-
cabulary, we can conclude that P (wQ)≫ P (wC).
Slight noise perturbations, such as shifts from the
data distribution of the new task, can make P (wC)
more susceptible than P (wQ). On the other hand,
different tasks may have similar C due to a large
number of similar common phrases, but the Q is
almost different in what the questions pay attention
to. Therefore, we can conclude that:

PB1(w
T1
Q ) ≥ PB1(w

T2
Q ) > PB1(w

T1
C ) ≥ PB1(w

T2
C )

(4)

PB2(w
T2
Q ) ≥ PB2(w

T1
Q ) > PB2(w

T2
C ) ≥ PB2(w

T1
C )

(5)

where the subscript B1 or B2 means the probabil-
ity on the condition of B1 or B2. Then, we can
conclude that:

P (QT1 |BT1 ,Θ2) > P (CT1 |BT1 ,Θ2) (6)

P (QT2 |BT2 ,Θ2) > P (CT2 |BT2 ,Θ2) (7)

It can be concluded that generating Q first is more
stable than generating C.

On the condition that the Q or C is correspond-
ing to the B, we analysis the P (C|BQ,Θ2) and
P (Q|BC,Θ2). With the help of GPT-2, a Trans-
former decoder-based model, the current token can
pay more attention to the information before the
current position. When the previous adjacent con-
tent contains enough information, the generated
token strongly correlates with the previous con-
tent. Therefore, P (CT1 |BT1QT1 ,Θ2) is close to
P (QT1 |BT1CT1 ,Θ2), and P (CT2 |BT2QT2 ,Θ2) is
close to P (QT2 |BT2CT2 ,Θ2).

Finally, P (A|BQC) and the P (A|BCQ) are
trained with the QA task. It can be ignored from
the perspective of generating task-corresponding
pseudo-samples. However, correct "A" is easier
to obtain on the condition of correct "BQC" than
correct "BCQ" because the "C" is right next to "A"
in "BQC". In "BQC", "Q" can help the model pay
more attention to the important information in "C"
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and then have a larger probability of generating the
correct "A".

From the above analysis, we can conclude that
P (Q|B) and P (C|B) play main role on generating
task-corresponding pseudo-samples Pc according
to PAQF and Pnaive, respectively. As shown in
Eq.(6) and Eq.(7), P (Q|B) are better than P (C|B)
for generating Pc after sufficient pseudo samples
being joint trained.

3.3 Replay Questions
Replay Questions (RQ) is proposed to strengthen
the probability of generating task-corresponding Q
when given B. Based on Eq.(4), PB1(w

T1
Q ) greater

than or equal to PB1(w
T2
Q ) on the condition of suffi-

cient pseudo samples being joint trained. However,
the situation PB1(w

T2
Q ) > PB1(w

T1
Q ) may happen

when the amount of pseudo samples is much less
than that of the new task (i.e. |D2| ≫ γ|D2|).
Since P (Q|B) plays a main role in PAQF , we pro-
pose to replay questions to make P (Qi|Bi) larger
than P (Qj ̸=i|Bi).

As shown in Fig.2, RQ is to generate the
questions of pseudo samples that start with
[TASK]/[GEN] but have no end token. Since the
object of RQ is to make the model generate task-
corresponding pseudo-samples, RQ should not sup-
ply the information about the end of the sentence.

3.4 Training
In summary, our proposed AQF is applied to both
the LM task and the QA task. Otherwise, we ex-
pand the training objective with our proposed RQ.
The final training objective is shown as Eq.(8).

L = LAQFQA (D,P)+λLAQFLM (D,P)+ηLAQFRQ (P)
(8)

where λ and η denotes the weight of the LM task
and the RQ task.

4 Experiment Setup

4.1 Datasets
To be comparable with previous works, we chose
four different kinds of tasks from DecaNLP (Mc-
Cann et al., 2018) and five sequence-generation
tasks (Chuang et al., 2020) from different domains.
Details are summarized in the Table 7 in Appendix
A. The SQuAD is a question-answering dataset
with 12 main types of questions and other count-
less types of questions. SST is a sentiment anal-
ysis dataset with one question. SRL is a seman-
tic role labeling dataset with 6 types of questions.

Tasks
Format BCQA BQCA (ours)

SQuAD 72.3 81.1
SST 90.9 92.2
SRL 70.4 73.9
WOZ 84.9 86.7

E2ENLG 48.8 49.2
RNNLG (rest) 64.0 64.6

RNNLG (hotel) 65.4 66.4
RNNLG (tv) 70.8 71.6

RNNLG (laptop) 73.0 73.2

Table 2: The results on each task with single task learn-
ing (only the QA task is trained). The format "BCQA"
was applied in previous LAMOL-based methods. Better
performance in boldface.

WOZ is a goal-oriented dialogue dataset with one
question. E2ENLG (Novikova et al., 2017) and
RNNLG (rest/hotel/tv/laptop) (Wen et al., 2015)are
sequence generation tasks with one question for dif-
ferent domains.

4.2 Baselines

(i) Finetune: Finetune GPT-2 individually based
on the task order. (ii) LAMOL (Sun et al., 2019):
Training the model with the "BCQA" format data.
LAMOLG and LAMOLT indicate that the be-
gin token is the task-independent token [GEN]
and the ask-specified token [TASK], respectively.
LAMOLR indicates that the model replays real
data from previous tasks instead of pseudo data.
(iii) L2KD (Chuang et al., 2020): An improved
version of LAMOL with distillation. Firstly, train-
ing a single-task model on the new task to obtain
the teacher model. Then the teacher model is dis-
tilled to the model trained on the previous tasks.
This model uses the task-specified token. All the
LAMOL-based baselines were studied upon the
"BCQA" format of LAMOL. We only select L2KD
on behalf of other LAMOL-based baselines be-
cause of a lack of computation resources. (iv) Mul-
titask: Training all tasks simultaneously. Multitask
learning is often regarded as the upper bound of
lifelong learning.

4.3 Implementation Detail

For fairness comparation. we implement experi-
ments following LAMOL2. GPT-2 with 12 layers
is selected as the language model. All experiments
are run on a single Tesla P100 (12GB). Each task is
trained for 9 epochs. The pseudo data is generated

2https://github.com/jojotenya/LAMOL
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by greedy deocde. The other hyperparameter set-
tings are the same as for LAMOL and are detailed
in the Table 6 in the Appendix B.

5 Experiments

In this section, we experiment our proposed Ask
Question First and Replay Question (AQF-RQ) an
on three settings: (1) single task learning in Section
5.1; (2) different types of tasks in Section 5.2; (3)
the same types of tasks in different domains in
Section 5.3. Finally, we explore the effectiveness
of our proposed AQF in Section 5.4.

5.1 Single Task

To validate our proposed AQF that format all task
into new data format "BQCA", we experiment on
each dataset independently. Each task is only
trained by the QA task. As shown in Table 2,
our proposed "BQCA" format beats "BCQA" for-
mat which is applied in previous LAMOL-based
methods on each task. It exhibits that our "BQCA"
format has the ability to increase the performance
of a variety of different kinds of tasks, particu-
larly those that were originally question-answering
types (e.g. SQuAD, SRL). The SQuAD is im-
proved significantly with the "BQCA" format scor-
ing 8.8 percentage points higher than the "BCQA"
format. For SRL, 3.5 percentage points of improve-
ment come from the "BQCA" format compared
with the "BCQA" format. For SST and WOZ, the
"BQCA" format can improve by 1.3 and 1.8 percent-
age points respectively. For five generation tasks,
"BQCA" format is slightly better than "BCQA".

There are two reasons why our proposed
"BQCA" format can improve the aforementioned
tasks to a certain extent: (1) Due to the charac-
teristics of autoregression and the mask attention
mechanism of the Transformers Decoder, first Q
and then C can enable the model to obtain more
accurate attention information from C based on Q.
(2) The A is right next to the C, which reduces the
information loss caused by the excessive length of
the historical text in comparison to "BCQA" where
the A and the C are gapped by the Q.

5.2 Different Types of Tasks

For a fair comparison, we conduct experiments
on three different tasks in DecaNLP following
LAMOL (Sun et al., 2019). To observe the per-
formance in the case of sufficient and insufficient
pseudo data, we select the sampling ratio γ = 0.2

and γ = 0.05 for experiments. Meanwhile, we con-
duct experiments on the condition of task-specific
token [TASK] (denoted by the subscript T ) and
task-independent token [GEN] (denoted by the sub-
script G) to verify if our proposed AQF-RQ is ro-
bust when the task boundary is clear or unclear.

5.2.1 Performance
As shown in Table 3, Finetune, which is a baseline
for other methods, suffers serious catastrophic for-
getting and has large gap bewteen multitask learn-
ing. Let’s first observe the situation where the
pseudo data is sufficient (i.e. γ = 0.2). LAMOL0.2

G

and LAMOL0.2
T have good performance and are

similar, indicating that in this case, the "BCQA"
format is robust to clear and unclear task bound-
aries, but still 3 percentage points lower than MTL.
However, AQF-RQ does better than LAMOL by
2.7 percentage points when the boundary is clear
and by 2.3 percentage points when the boundary
is not clear. AQF-RQ is only 0.3-0.6% worse than
MTL. It is worth noting that AQF-RQ outperforms
multi-task learning in the three task orders: SST-
SRL-WOZ, SST-WOZ-SRL, and WOZ-SRL-SST.
This indicates that AQF-RQ can not only better
alleviate catastrophic forgetting but also further
strengthen forward transfer between tasks.

When the pseudo data is insufficient (i.e. γ =
0.05), the performance of LAMOL drops signif-
icantly, falling 6.5-7.6 percentage points lower
than that of multitask learning. Furthermore,
LAMOL0.05

T differs from LAMOL0.05
G , indicat-

ing that LAMOL is not robust enough for clear
and unclear task boundaries when the amount of
pseudo data is insufficient. Although LAMOL’s
job boundary is apparent, our proposed AQF-RQ
can improve by 4.7 and 5.5 percentage points com-
pared to LAMOL. This illustrates that even when
the amount of pseudo data is insufficient, AQF-
RQ is still robust to both clear and unclear task
boundaries, as evidenced by AQF-RQ0.05

T and AQF-
RQ0.05

G . It is also worth noting that AQF-RQ0.05
T >

AQF-RQ0.05
G >LAMOL0.2

G >LAMOL0.2
T , which

means that AQF-RQ is more data-efficient and still
performs better than LAMOL with a 75% reduction
in the amount of pseudo data.

5.2.2 Distribution of Pseudo Data
The another main objective of our proposed AQF-
RQ is to generate more corresponding-task pseudo
data. Ideally, the ratio of pseudo data for each task
is 1:1, which means |psi| = |psj |, i ̸= j. We can
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Methods SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST Avg. Std.

Finetune 42.8 25.2 58.8 32.2 25.6 36.2 36.8 11.6

LAMOL0.05
T 77.3 76.9 78.1 74.7 73.4 75.8 76.0 1.6

LAMOL0.05
G 79.6 78.9 73.1 73.7 68.6 75.7 74.9 3.4

AQF-RQ0.05
T 81.6 80.8 80.3 80.0 80.6 80.7 80.7 1.1

AQF-RQ0.05
G 82.2 81.3 78.9 79.0 79.2 81.7 80.4 2.9

LAMOL0.2
T 79.4 79.9 80.1 78.7 79.8 79.0 79.5 0.5

LAMOL0.2
G 80.0 80.7 79.6 78.7 78.4 80.5 79.7 0.8

AQF-RQ0.2
T 82.2 83.0 81.4 81.6 82.2 82.9 82.2 0.5

AQF-RQ0.2
G 82.8 82.7 80.9 80.9 82.3 82.4 82.0 0.8

Multitask 82.5

Table 3: The results on [SST, SRL, and WOZ]. Each column is the average score of a task order on three tasks. Avg.
means that the average score on 6 task orders of [SST, SRL, and WOZ]. In the column "Methods", The subscripts T
and G indicate the task-specific token [TASK] and task-independent token [GEN], respectively. The superscript
indicates the value of sampling ratio γ.

Methods
SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST

|ps1| : |ps2|
LAMOL0.05

G 27:99 23:297 7:119 3:343 19:301 6:340
AQF-RQ0.05

G 17:109 12:308 22:104 29:317 70:250 168:178
LAMOL0.2

G 292:216 319:963 128:380 284:1100 225:1057 388:996
AQF-RQ0.2

G 253:255 255:1027 239:269 603:781 712:570 648:736

Methods
SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST

|psc1| : |psnc1 |/|psnc2 | : |psc2|
LAMOL0.05

T 54:9/1:62 11:149/2:158 51:12/0:63 22:151/1:172 60:100/0:160 139:34/0:173
AQF-RQ0.05

T 63:0/0:63 160:0/0:160 63:0/2:61 173:0/0:173 160:0/0:160 172:1/1:172
LAMOL0.2

T 247:7/9:245 478:163/5:636 250:4/0:254 537:155/6:686 635:6/4:637 678:14/5:687
AQF-RQ0.2

T 254:0/0:254 641:0/0:641 254:0/0:254 692:0/0:692 641:0/0:641 692:0/0:692

Table 4: The results of pseudo data distribution after learning two tasks on [SST, SRL, and WOZ]. psi represents the
pseudo data of i-th task. The subscripts c and nc indicate whether the pseudo data is correspond to the task or not.

determine which task the pseudo data belongs to
according to the Q because the Q for various tasks
is distinct (see Table 7). For task-specific token
[TASK], a pseudo sample is task-corresponding
if the Q is correspond to the [TASK]. For task-
indepedent token [GEN], we can not judge whether
a pseudo sample corresponds to the task because
of unclear task boundary. In this paper, we applied
this Q-based judgment method to count the dis-
tribution of pseudo data after learning the second
task.

As shown in Table 4, AQF-RQ can generate
more pseudo data of the first task for most task or-
ders when applying task-indepedent token [GEN].
Looking at the Table 3 together, it can be observed
that the performance will be better if the ratio
of the pseudo data of different tasks is closer to
1:1. For SRL-SST-WOZ, SRL-WOZ-SST, WOZ-
SST-SRL, and WOZ-SRL-SST, AQF-RQ gener-
ates more pseudo data than LAMOL for the first

task; hence, AQF-RQ outperforms LAMOL sig-
nificantly. When γ = 0.05, AQF-RQ is 5.3-
10.6 percentage points higher than LAMOL. When
γ = 0.05, AQF-RQ is 1.3-3.9 percentage points
higher than LAMOL. This is due to the fact that,
under the AQF-proposed "BQCA" format, Q can
be used to help the model pay more attention to the
useful details in C, and then A being immediately
next to C can further generate A more accurately.

The benefit of AQF-RQ to produce pseudo
data is also significant when the sentence starts
with the task-specific token [TASK]. As shown
in the Table 4, the pseudo samples generated by
AQF-RQ are task-corresponding in the majority
of task orders, except SRL-SST-WOZ and WOZ-
SRL-SST, where one or two pseudo samples are
not task-corresponding. The amount of not task-
corresponding pseudo samples in AQF-RQ is sub-
stantially smaller than in LAMOL, giving AQF-RQ
a 1.3-3.9 percentage point advantage over LAMOL.
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Methods SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST Avg.

LAMOLT 79.4 79.9 80.1 78.7 79.8 79.0 79.5
w/ AQF 82.1 83.0 81.3 80.9 80.7 81.2 81.5

LAMOLG 80.0 80.7 79.6 78.7 78.4 80.5 79.7
w/ AQF 82.3 81.5 81.3 80.4 78.8 81.3 80.9

LAMOLR 81.8 80.6 81.6 81.2 80.4 80.5 81.0
w/ AQF 82.5 81.9 82.3 82.4 82.7 82.7 82.4

L2KD 80.1 79.6 79.5 79.7 79.9 80.4 79.9
w/ AQF 81.9 82.4 80.3 80.8 80.1 80.1 80.9

Multitask∗ 81.5
w/ AQF 82.5

Table 5: The results of effectiveness of the Ask Question First (AQF) on [SST, SRL, and WOZ] when sampling
ratio γ = 0.2. Multitask∗ represents that model applies the "BCQA" format for multitask learning.

The above experimental results demonstrate that
not only does AQF-RQ generate better pseudo-data,
but the "BQCA" format is also more data-efficient
and robust for lifelong language learning.

5.3 Generation for Different Domains

We conducted experiments on five sequence gen-
eration tasks for different domains by comparing
LAMOLT , LAMOLG, and L2KD with AQF-RQ.
The result is similar to Section 5.2.1 and is detailed
in Appendix C. AQF-RQ is not only better than
LAMOL-based baselines on performance but can
also forward/backward transfer more knowledge
among the same task but different domains.

5.4 Effectiveness of the Ask Question First

To verify the effectiveness of our proposed AQF,
we experimentally apply AQF to each baseline:
LAMOLT , LAMOLG, LAMOLR, and L2KD. In
Section 3.2, we stated that AQF is used better when
the pseudo data is sufficient. Therefore, we set
γ = 0.2 for experiments. This value is also the
best setting for those baselines.

As shown in the Table 5, applying AQF to each
baseline resulted in varying degrees of improve-
ment. LAMOLT has the most noticeable improve-
ment, with a 2 percentage point increase. This
demonstrates that having the A close to the C using
the "BQCA" format proposed by AQF can reduce
information attenuation caused by the A being far
away from the C. For example, the C and the A are
separated by the Q in the "BCQA" format. This ben-
efit is more obvious when the task boundary is clear
(i.e. the sentence starts with [TASK]). [TASK] can
tighten the bond between "BQC" and "A".

Applying AQF improves LAMOLG by 1.2 per-
centage points, which is less than LAMOL T . It

is because the generated pseudo data is still biased
toward new tasks due to the unclear task boundary
(the sentence begins with the task-independent to-
ken [GEN]). However, thanks to the A being next
to the C in the "BQCA" format, it is still capable of
learning from a small amount of pseudo data.

For LAMOLR, AQF can enhance the model by
1.4 percentage points, which is only 0.1% behind
multi-task learning. LAMOLR uses the real data
of the old task instead of the generated pseudo data
when learning new tasks, so this further demon-
strates that the "BQCA"format proposed by AQF
is more conducive to lifelong language learning: it
can use Q to help the model pay more attention to
the important information in C, then further makes
the generation of A more accurate.

For L2KD, the application of AQF improves the
model by one percentage point, demonstrating that
AQF is still applicable to the previous LAMOL-
based enhanced approaches and is capable of effec-
tively applied to other LAMOL-based studies.

For MTL, AQF can bring an improvement of 1
percentage point. At the same time, the improve-
ment of each baseline demonstrates that the im-
provement brought by AQF is comprehensive: it
is not only conducive to alleviating catastrophic
forgetting but also improves the upper bound of
the model. Therefore, we believe that AQF has the
potential to apply LLL to real-world scenarios.

6 Effectiveness of the Replay Questions

Since the Replay QuestionsRQ is proposed based
on AQF, we verify and analyze the effectiveness
of the RQ based on Table 3 and 5. The AQF-
RQ performance in Table 3 subtracts the corre-
sponding LAMOL+AQF performance in Table
5 is the gains obtained by AQF-RQ come from
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the RQ step. Therefore, RQ0.2
G = AQF-RQ0.2

G -
LAMOL+AQF0.2

G = 1.1, and RQ0.2
T = AQF-RQ0.2

T

- LAMOL+AQF0.2
T = 0.7. It demonstrates that the

RQ step based on the AQF can help the model gen-
erate more task-corresponding pseudo samples by
making P (Qi|Bi) > P (Qj ̸=i|Bi).

7 Conclusion and Future Work

This work proposed AQF-RQ which is a simple
yet efficient and robust lifelong language learning
method. We propose a new question-first data for-
mat that is train-efficient without additional com-
putational resources and new parameters. In AQF’s
"BQCA" format, generating Q first makes it easier
to generate task-corresponding pseudo-data, and A
is more accurate because A is next to C. In addi-
tion, RQ can strengthen the model’s attention to the
problem, so that the model has a greater probability
of generating task-corresponding questions, and
further generates more task-corresponding pseudo-
data. AQF-RQ effectively alleviates catastrophic
forgetting, only 0.36% lower than multi-task learn-
ing. Due to a lack of computing resources, we did
not experiment on larger datasets and longer task
orders, which we leave as future work. In addition,
we will investigate ways to enhance performance
when the task boundary is unclear.
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hyperparameter value

optimizer AdamW
adam epsilon 1× 10−4

learning rate 1× 10−4

weight of RQ task η = 0.2
weight of LM task λ = 0.25
max gradient norm 1.0
learning rate schedule warmup linear
warmup ratio 0.005
max length 1024
top-k sampling k=20

Table 6: The main hyperparameters in our experiment.

A Datasets

As we can not obtain test set of SQuAD since it
is hidden from the host, we use development set
for testing. For other tasks, we use the correspond-
ing test set. A normalized F1 (nF1) metric that
lower text and remove punctuation and articles, is
used to evaluate SQuAD and SRL. The exact match
(EM) is used to evaluate SST. The turn-based di-
alogue state EM (dsEM) is used for WOZ. The
ROUGE is used to evaluate E2ENLG and RNNLG
(rest/hotel/tv/laptop)The size of each dataset is de-
tailed in Table 7.

As shown in Table 7, SST, WOZ, E2ENLG and
RNNLG (rest/hotel/tv/laptop) only have one ques-
tion. The SQuAD has mainly 12 types of questions
and other countless types of questions. SRL has 6
types of questions.

B Hyperparameter

The main hyperparameters in our experiments are
detailed in Table 6.

C Sequence Generation for Different
Domains

We conducted experiments on five sequence gen-
eration tasks for different domains by comparing
LAMOLT , LAMOLG, and L2KD with AQF-RQ.
Experiments are conducted with sufficient pseudo
data (i.e. γ=0.2). Following L2KD, we select the
task order from hard to easy: E2ENLG-RNNLG
(rest) - RNNLG (hotel) - RNNLG (tv) - RNNLG
(laptop). As shown in the Fig.3, we can observe
that all models perform well except for Finetune
and LAMOLG. However, AQF-RQ can still out-
perform other baselines. When learning the same
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Dataset #Train #Test Metric Question Type Question

different types of tasks

SQuAD 87599 10570 nF1 12+∞
what/who/whose/whom/when/
where/how/why/which/if/do/is . . .
+ other countless types of questions

SST 6920 1821 EM 1 is this review negative or positive?

SRL 6414 2201 nF1 6
what/who/whose/whom/
when/where/how/why . . .

WOZ 2536 1646 dsEM 1 what is the change in state?

suquence generation for different domains
E2ENLG 6000 2000

ROUGE 1 what is the natural language form?
RNNLG (rest) 6228 1039
RNNLG (hotel) 6446 1075
RNNLG (tv) 8442 1407
RNNLG (laptop) 7944 2649

Table 7: The summarized results for datasets.

type of tasks in different domains, first we expect
that previous tasks can promote the learning of new
tasks. This is known as the forward transfer. In
terms of the forward transfer, AQF-RQ is better at
acquiring knowledge from previous tasks that is
beneficial to new tasks. The second is backward
transfer, which refers to learning new tasks while
consolidating and strengthening previous tasks. It
can be observed that AQF-RQ also has better back-
ward transfer. For example, from the fourth task
RNNLG.tv on, the backward transfer of AQF-RQ
on the previous tasks is higher than other base-
lines. As the number of learned tasks increases, the
unclear task boundary gradually becomes signif-
icantly weaker than the clear task boundary. For
LAMOLG, the performance on E2ENLG begins to
drop significantly from the fourth task RNNLG.tv.
But our AQF-RQG remains on an upward trend.
According to the above analysis, it can be con-
cluded that AQF-RQ has stronger forward transfer
and backward transfer capabilities in different do-
mains of the same type of task.
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Figure 3: Results on sequence generation tasks for five different domains when γ = 0.2.
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Abstract
This paper proposes a simple yet effec-
tive interpolation-based data augmentation ap-
proach termed DOUBLEMIX, to improve the ro-
bustness of models in text classification. DOU-
BLEMIX first leverages a couple of simple aug-
mentation operations to generate several per-
turbed samples for each training data, and then
uses the perturbed data and original data to
carry out a two-step interpolation in the hid-
den space of neural models. Concretely, it first
mixes up the perturbed data to a synthetic sam-
ple and then mixes up the original data and
the synthetic perturbed data. DOUBLEMIX
enhances models’ robustness by learning the
“shifted” features in hidden space. On six text
classification benchmark datasets, our approach
outperforms several popular text augmenta-
tion methods including token-level, sentence-
level, and hidden-level data augmentation tech-
niques. Also, experiments in low-resource
settings show our approach consistently im-
proves models’ performance when the train-
ing data is scarce. Extensive ablation studies
and case studies confirm that each component
of our approach contributes to the final perfor-
mance and show that our approach exhibits su-
perior performance on challenging counterex-
amples. Additionally, visual analysis shows
that text features generated by our approach
are highly interpretable. Our code for this pa-
per can be found at https://github.com/
declare-lab/DoubleMix.git.

1 Introduction

Deep neural networks have enabled breakthroughs
in most supervised settings in natural language pro-
cessing (NLP) tasks. However, labeled data in
NLP is often scarce, as linguistic annotation usu-
ally costs large amounts of time, money, and exper-
tise. With limited training data, neural models will
be vulnerable to overfitting and can only capture
shallow heuristics that succeed in limited scenarios,
which will lead to severe performance degradation
when applied to challenging situations.

In order to improve the robustness of models,
various data augmentation methods have been pro-
posed. Generally, there are three types of augmen-
tation techniques: token-, sentence-, and hidden-
level transformation. Wei and Zou (2019) summa-
rized several common token-level transformations,
including word insertion, deletion, replacement,
and swap. Sentence-level transformation is to para-
phrase a sentence through specific grammatical or
syntactic rules. Back-translation (Sennrich et al.,
2016; Edunov et al., 2018) is a typical sentence-
level augmentation method where a sentence is
translated to an intermediate language and then
translated back to obtain augmented samples. Addi-
tionally, for natural language inference (NLI) tasks
that identify whether a premise entails, contradicts,
or is neutral with a hypothesis, Min et al. (2020)
studied syntactic rules of sentences in inference
tasks and proposed several syntactic transformation
techniques such as Inversion and Passivization to
construct syntactically informative examples. How-
ever, these methods often have high requirements
for sentence structures. It is hard to obtain a large
number of augmented samples by this method.

In recent years, several hidden-level augmenta-
tion methods are proposed and they have exhibited
superior performance in a number of popular text
classification tasks. TMix (Chen et al., 2020) is
a typical approach where a linear interpolation is
performed in the hidden space of transformer mod-
els such as BERT (Devlin et al., 2019). The main
idea of TMix (Verma et al., 2019) comes from
Mixup, a method that is based on the principle
of Vicinal Risk Minimization (VRM) (Chapelle
et al., 2001) and has achieved substantial improve-
ments in computer vision tasks (Verma et al., 2019;
Hendrycks et al., 2020; Kim et al., 2020; Ramé
et al., 2021) and natural language tasks (Guo et al.,
2019; Chen et al., 2020; Kim et al., 2021; Park
and Caragea, 2022). Recently, SSMix (Yoon et al.,
2021) which interpolates text based on the saliency
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of tokens (Simonyan et al., 2014) in hidden space
has been introduced. These methods make mod-
els learn a mapping from a mixed text represen-
tation to an intermediate label which is generated
by linearly combining two different source labels.
However, the intermediate soft label cannot always
accurately describe the true probability of classes
that the mixed text representations belong to, which
limit the effectiveness of augmentation.

To overcome these limitations, this work pro-
poses a simple yet effective interpolation-based
data augmentation method termed DOUBLEMIX,
which performs interpolation in the hidden space
and does not require label mixing. Firstly, we lever-
age a collection of simple augmentation operations
to generate several perturbed samples from the raw
data and then mix up these perturbed samples. Sec-
ondly, we mix up the original data with the syn-
thesized perturbed data. We constrain the mixing
weight of the original to be larger than the syn-
thesized perturbed data to balance the trade-off
between proper perturbations and the potential in-
jected noise. To stabilize the training process, we
add a Jensen-Shannon divergence regularization
term to our training objective to minimize the dis-
tance between the predicted distributions of the
original data and the perturbed variants.

To demonstrate the effectiveness of our ap-
proach, we conduct extensive experiments by com-
paring our DOUBLEMIX with previous state-of-the-
art data augmentation methods on six popular text
classification benchmark datasets. Additionally,
we reduce and vary the amount of training data, to
observe if DOUBLEMIX can consistently improve
over the baselines. We further conduct ablation
studies and case studies to investigate the impact
of different training strategies on DOUBLEMIX’s
effectiveness and whether our method works on
challenging counterexamples. Moreover, we vi-
sualize the features generated by DOUBLEMIX to
interpret why our method works. Experimental
results and analyses confirm the efficacy of our
proposed approach and every component in DOU-
BLEMIX contributes to the performance. To sum
up, our contributions are:

• We propose a simple interpolation-based data
augmentation approach DOUBLEMIX to im-
prove the robustness of neural models in text
classification by mixing up the original text
with its perturbed variants in hidden space.

• We demonstrate the effectiveness of DOU-

BLEMIX through extensive experiments and
analyses on six text classification benchmarks
as well as three low-resource datasets.

• We qualitatively analyze why our method
works by visualizing its data manifold and
quantitatively analyze how our method works
by conducting several ablation studies and
case studies.

2 Related Work

Data augmentation techniques are widely em-
ployed in NLP tasks to improve the robustness of
models (Sun et al., 2020; Xie et al., 2020; Cheng
et al., 2020; Guo et al., 2020; Kwon and Lee, 2022).
One way to enrich the original training set is to per-
turb the tokens in each sentence. For example,
Wei and Zou (2019) introduced a set of simple
data augmentation operations such as synonym re-
placement, random insertion, swap, and deletion.
However, token-level perturbation sometimes does
not guarantee that the augmented sentences are
grammatically correct.

Thus, sentence-level augmentation methods are
introduced, where people paraphrase the sentence
by some specific rules. Minervini and Riedel
(2018); McCoy et al. (2019) leveraged syntactic
rules to generate adversarial examples in inference
tasks. Moreover, Andreas (2020) investigated the
compositional inductive bias in sequence models
and augmented data by compositional rules. How-
ever, these methods require careful design, and
they are often customized for a specific task, which
makes them hard to generalize to different datasets.

Recently, a couple of hidden-level augmentation
techniques which perform interpolation in hidden
space have been studied (Guo et al., 2019; Verma
et al., 2019; Hendrycks et al., 2020). Inspired by
PuzzleMix (Kim et al., 2020) and SaliencyMix (Ud-
din et al., 2020) which is popular in computer vi-
sion, Yoon et al. (2021) proposed SSMix which uti-
lizes the saliency information of spans (Simonyan
et al., 2014) in each sentence to interpolate in hid-
den space to create informative examples. Yin et al.
(2021) interpolate hidden states of the entire mini-
batch to obtain better representations. Inspired by
the prior work, our DOUBLEMIX aims at improv-
ing models’ robustness by mixing up text features
and their perturbed samples in hidden space.
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3 Proposed Method: DOUBLEMIX

To regularize NLP models in a more efficient man-
ner, we introduce a simple yet effective data aug-
mentation approach, DOUBLEMIX, that enhances
the representation of each training data by learning
the features sampled from a region constructed by
the original sample itself and its perturbed samples.
The perturbed samples are generated by simple
token- or sentence-level augmentation operations.
DOUBLEMIX is a hidden-level regularization tech-
nique and our base model is a pre-trained trans-
former network, as they have achieved great perfor-
mance in various NLP tasks. Algorithm 1 shows
the training process of our approach.

3.1 Robust Interpolation in Hidden Space

For an input sequence x = {w0, w1, ..., wS} with
S tokens associated with a label y, our goal is
to predict a label of this sequence. At the be-
ginning of this approach, we prepare a perturba-
tion operation set containing simple token- and
sentence-level data augmentation techniques such
as back-translation (sentence-level), synonym re-
placement (token-level), and Gaussian noise pertur-
bation (sentence-level). Thereafter, we randomly
sample the operations N times and use the selected
augmentation operations to generate N perturbed
samples of each training instance. Note that each
type of operation can be selected multiple times.
We generated different perturbed samples by ad-
justing the hyper-parameters. For example, if we
select synonym replacement, we can produce dif-
ferent perturbations by adjusting the proportion of
tokens to be substituted. For back-translation, we
can use different intermediate languages.

Our approach is performed in hidden space, so
as to encourage the model to fully utilize the hid-
den information within the multi-layer networks.
We employ a pre-trained model f(; θ) containing L
layers to encode the text to hidden representations.
Then we select a layer i which ranges in [0, L] to
interpolate. At the i-th layer of f(; θ), a two-step
interpolation is performed where the first step is
to mix up all the perturbed samples by a group of
weights sampled from Dirichlet distribution, and
the second step is to mix up the synthesized per-
turbed sample and the original sample by some
weights ∈ [0, 1] sampled from Beta distribution.
We follow Zhang et al. (2018) to use Beta distribu-
tion for weight sampling, and Dirichlet distribution
is a multi-variate Beta distribution. Note that when

we mix up the original data and the synthesized
perturbed data, we constrain the mixing weight of
the original data to be larger, so as to make the final
perturbed representation to be close to the original
one. This balances the trade-off between proper
perturbation and potential injected noise. After the
two-step interpolation, the synthesized hidden pre-
sentation is fed to the remaining layers f[i:L](; θ)
and a classifier.

3.2 Training Objectives
During the training period, we do not directly min-
imize the Cross-Entropy loss of the probability dis-
tribution of the synthesized sample, as it may in-
troduce too much noise. We employ a consistency
regularization term, Jensen-Shannon Divergence
(JSD) loss (Bachman et al., 2014; Zheng et al.,
2016; Hendrycks et al., 2020), to minimize the
difference between the prediction distribution of
synthetic data and original data, and meanwhile,
we minimize the Cross-Entropy loss of the model
output of original data and the gold label. The
training objective can be written as:

L(y|x, xa, ..., xN ) = LCE(y|x)
+γLJSD(y|x, xa, ..., xN ) (1)

where γ is a hyper-parameter.
In the consistency regularization, we do not em-

ploy Kullback-Leibler divergence (KL) because
it is not symmetric, i.e., KL(P ||Q) ̸= KL(Q||P )
when P ̸= Q. It is not a promising choice to
measure the similarity of pmix and porig using KL,
as neither pmix nor porig are true predictions and
we deem that they share equal status. JSD pro-
vides a smoothed and normalized version of KL
divergence, with scores between 0 (identical) and
1 (maximally different). We believe using such
a symmetric metric can make the training more
stable.

3.3 Why does DOUBLEMIX work?
To further discuss why our method works, we visu-
alize the original data and the sample space of syn-
thesized data in Mixup and DOUBLEMIX in Fig. 1.
For brevity, we assume the number of perturbed
samples in Step I is two. As shown in Fig. 1, blue
dots indicate training data, and orange dots are per-
turbed data generated by our selected operations.
Synthesized data in Mixup (Zhang et al., 2018) can
only be created along a line, such as the blue full
line connecting the two points X and X ′ since it
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Algorithm 1: DOUBLEMIX

Input: Model f(; θ) containing L layers, the l-th
layer of the model fl(; θ), classifier p̂(;ϕ),
training set X = {(x1, y1), ..., (xn, yn)},
perturbation operation set O =
{back-translation (BT), synonym replacement
(SR), ..., Gaussian noise (GN)}, interpolation
layer set I = {i1, ..., ik}, number of
augmented samples N , number of training
epochs K, the global learning rate η, Beta
distribution hyper-parameter α, Dirichlet
distribution hyper-parameter τ , loss
hyper-parameter γ

Output: Updated network weights θ, ϕ

1 {o1, ..., oN} ← O ▷ Select N operations. Each type
of operation can be selected multiple times.

2 for k ← 0 to K do
3 for (x, y) ∈ X do
4 {xa, ..., xN} ← {o1, ..., oN}(x) ▷ Apply

the selected operations to generate N
different augmented samples of x.

5 i← I = {i1, ..., ik} ▷ Randomly select an
interpolation layer from Set I

6 hiorig ← f[0:i](x; θ)

7 {hia, ..., hiN} ← f[0:i]({xa, ..., xN}; θ) ▷
Encode {x, xa, ..., xN}, and interpolate at
the i-th layer.

8 Sample (w1, ..., wn) ∼ Dirichlet(τ, ..., τ)

9 hiaug ← w1 · hia + . . .+ wn · hiN ▷ First
mixup (Step I).

10 Sample λ ∼ Beta(α, α)

11 λ← max(λ, 1− λ) ▷ Constrain the
synthetic data to a region closer to the
original example.

12 himix ← λ · hiorig + (1− λ) · hiaug ▷
Second mixup (Step II).

13 hmix ← f[i+1:L](h
i
mix; θ)

14 pmix ← p̂(y|hmix;ϕ)
15 porig ← p̂(y|f(x; θ);ϕ)
16 p̄← 1

2
(pmix + porig)

17 LJSD(y|x, xa, ..., xN )←
1
2
(KL(pmix||p̄) + KL(porig||p̄))

18 L ← LCE(y|x)+ γLJSD(y|x, xa, ..., xN )

19 θ ← θ − η∇θ,ϕL;ϕ← ϕ− η∇θ,ϕL ▷
Update the network weight θ of the base
model f and ϕ of the classifier ϕ.

20 end
21 end

is a simple linear combination. Hence, Mixup en-
forces the regularization to behave linearly among
the training data. In contrast to Mixup, the sam-
ple space of synthesized data of DOUBLEMIX is
a polygon. In this example, △XAB is the sam-
ple space of the synthesized data in DOUBLEMIX.
Firstly, Step I samples a point P on the line con-

necting Xa and Xb. Secondly, Step II finds a point
Q on the line connecting X and P . Note that Q
should be closer to X or at the middle of Line XP ,
as in Step II, we constrain the mixing weight of
original data to be larger than that of synthesized
perturbed data. Taken together, our approach en-
forces the model to learn nearby features for each
training data so that it is robust to representation
shifts.

X

X’

Xa

Xb

P

A

B
Q

Figure 1: Visualization of the sample space of synthe-
sized data in Mixup and DOUBLEMIX. Blue dotsX and
X ′ indicate two data points in the training set. Orange
dots Xa and Xb are perturbed data of X . Grey dots A,
B, P and Q are sampled points.

4 Experimental Setup

4.1 Datasets
We compare our approach with several data
augmentation baselines on six text classification
datasets, covering sentiment polarity classification,
question type classification, humor detection, and
natural language inference: IMDB (Maas et al.,
2011) and SST-2 (Socher et al., 2013) which pre-
dict the sentiment of movie reviews to be positive
or negative, 6-class open-domain question classifi-
cation TREC (Li and Roth, 2002), Pun of the day
(Puns) (Yang et al., 2015) which detects humor
in a single sentence, and two inference datasets
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018) which identify whether a premise en-
tails, contradicts or is neutral with a hypothesis.
Statistics of the six text classification datasets can
be found in Appendix A. As the test set of MNLI
is not publicly available, we used the matched de-
velopment set as our development set and the mis-
matched development set as our test set in our ex-
periments.

4.2 Baselines
We compare our approach with several widely-used
baseline models, including token-, sentence-, and
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Method SST-2 TREC Puns
Acc. F1. Acc. F1. Acc. F1.

BERT (Devlin et al., 2019) 91.080.1 91.090.1 96.900.4 96.210.7 94.200.2 94.380.2
+ Easy Data Augmentation (Wei and Zou, 2019) 91.660.2 91.750.1 97.100.3 96.740.2 93.710.6 93.830.5
+ Back Translation (Edunov et al., 2018) 91.330.2 91.290.1 96.900.4 96.720.1 93.270.4 93.340.4
+ Manifold Mixup (Verma et al., 2019) 91.330.4 91.440.3 97.000.3 96.290.5 94.370.9 94.441.0
+ TMix (Chen et al., 2020) 91.130.5 91.290.3 96.900.1 96.320.3 94.210.7 94.280.8
+ SSMix (Yoon et al., 2021) 91.450.5 91.500.2 97.000.2 96.440.2 94.330.7 94.460.6
+ DOUBLEMIX (Ours) 92.210.1 92.110.1 97.400.1 97.320.6 94.590.1 94.660.1

Method IMDB SNLI MNLI
Acc. F1. Acc. F1. Acc. F1.

BERT (Devlin et al., 2019) 83.520.1 83.650.4 90.310.5 90.280.5 84.160.2 84.050.2
+ Easy Data Augmentation (Wei and Zou, 2019) 83.430.1 83.850.1 90.270.4 90.280.4 84.040.1 83.970.2
+ Back Translation (Edunov et al., 2018) 83.690.1 84.110.2 90.210.5 90.230.4 84.500.3 84.440.3
+ Syntactic Data Augmentation (Min et al., 2020) - - 90.350.3 90.310.4 84.190.3 84.080.2
+ Manifold Mixup (Zhang et al., 2018) 83.630.1 83.810.2 90.040.2 90.020.2 83.370.2 83.310.1
+ TMix (Chen et al., 2020) 83.470.3 83.910.2 90.120.1 90.090.1 83.430.1 83.380.1
+ SSMix (Yoon et al., 2021) 83.550.3 83.880.2 90.210.2 90.140.3 83.660.2 83.540.2
+ DOUBLEMIX (Ours) 84.140.5 84.390.2 91.030.1 91.020.1 84.720.2 84.640.1

Table 1: Test accuracy (%) and F1 scores (%) for BERT when comparing our proposed DOUBLEMIX with baseline
methods on six text classification datasets. We randomly select two augmented samples to mix up in Step I. Best
scores are marked in bold. As syntactic transformations (Min et al., 2020) are rule-based data augmentation
techniques customized for inference tasks, we only show their performances on SNLI and MNLI. We report the
mean accuracy and F1 scores across five different runs with the standard deviation shown in subscript (e.g., 91.080.1
indicates 91.08± 0.1).

hidden-level augmentation techniques. Token-level
baselines contain the operations in Easy Data Aug-
mentation (EDA) (Wei and Zou, 2019) where they
randomly insert, swap, and delete tokens in each
sentence. Sentence-level baselines include para-
phrasing sentences such as back-translation (Sen-
nrich et al., 2016) and applying some syntactic
rules to create augmented sentences such as syntac-
tic transformation (Min et al., 2020). Hidden-level
baselines include Manifold Mixup (Verma et al.,
2019), TMix (Chen et al., 2020), and SSMix (Yoon
et al., 2021), where they mix up two different train-
ing samples in hidden space and learn a mapping
from the intermediate representation to an interme-
diate label. Details of the implementation of the
baselines can be found in Appendix B.

5 Results and Analysis

We evaluate our baselines and proposed approach
on six text classification benchmark datasets. We
also show the performance of our approach in low-
resource settings to confirm DOUBLEMIX is ef-
ficient and robust when the training samples are
scarce. This section will discuss the performance
of models in detail and quantitatively analyze how
and why DOUBLEMIX works.

5.1 Main Results
Table 1 shows the performance of DOUBLEMIX

and the relevant baselines on six text classifica-
tion datasets. Our base model is the BERT-base-
uncased model. We observe that DOUBLEMIX

achieves the best average results compared to pre-
vious state-of-the-art baselines across six datasets,
where DOUBLEMIX shows the greatest improve-
ments over BERT on SST-2, increasing the test
accuracy and binary F1 score by 1.13% and 1.02%.

In addition, we find token-level Easy Data Aug-
mentation and sentence-level Back Translation are
not able to improve the BERT baseline on Puns
and SNLI. Especially on Puns, Back Translation’s
test accuracy and F1 score are about 1% lower
than BERT. This might be that labels in humor de-
tection and inference tasks are closely related to
the presence of some important words, and Easy
Data Augmentation and Back Translation may per-
turb these words, making the true label flip, but
the label learned by the model does not change
accordingly, which leads to an inefficient learning
process. Moreover, hidden-level augmentations
such as Manifold Mixup, TMix, and SSMix fail to
improve the base model on SNLI and MNLI. As
subtle changes in the sentences in inference tasks
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Method
SNLI MNLI

1K 2.5K 5K 10K 1K 2.5K 5K 10K Avg.
(Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.) (Acc./F1.)

BERT 69.77/69.59 76.10/75.92 79.28/79.25 82.36/82.28 55.81/54.61 65.63/65.15 71.24/71.01 74.24/74.14 71.80/71.49
+ BT 70.23/69.96 76.51/76.54 79.57/79.57 82.68/82.65 57.28/55.53 66.97/66.95 72.28/72.01 74.49/74.44 72.50/72.21
+ M-Mix 71.45/71.34 76.48/76.42 79.91/79.83 82.14/82.13 57.01/56.70 67.08/66.96 71.76/71.68 74.68/74.54 72.56/72.45
+ TMix 71.04/71.12 76.38/76.10 79.85/79.81 82.09/82.09 57.31 /56.99 67.10/67.01 71.66/71.59 74.86/74.70 72.54/72.43
+ SSMix 71.32/71.21 76.87/76.72 80.02/79.93 82.41/82.20 57.25/ 57.10 67.13/67.05 71.70/71.63 74.77/74.62 72.68/72.56
+ Ours 71.82/71.72 77.43/77.42 80.75/80.72 83.18/83.26 56.15/55.91 67.57/67.33 72.35/72.15 75.07/74.97 73.04/72.94

RoBERTa 78.11/77.95 82.47/82.30 83.17/83.36 85.58/85.50 70.23/70.45 75.50/75.53 79.01/79.04 81.00/80.98 79.38/79.39
+ BT 78.32/78.25 82.47/82.61 84.23/84.08 86.07/86.05 70.67/70.52 77.58/77.39 79.17/79.07 81.26/81.08 79.97/79.88
+ M-Mix 79.32/78.73 82.71/82.63 84.60/84.63 86.00/85.95 71.78/71.04 76.00/75.96 79.43/79.34 81.40/81.28 80.16/79.95
+ TMix 79.17/79.11 82.84/82.91 85.09/85.13 86.16/86.13 72.05/72.18 76.57/76.44 79.92/79.80 81.30/81.17 80.39/80.36
+ SSMix 79.43/79.35 82.91/82.88 85.33/85.36 86.32/86.28 71.96/71.88 76.44/76.38 79.86/79.77 81.25/81.22 80.44/80.39
+ Ours 80.41/80.31 83.96/83.92 85.42/85.42 86.91/86.88 71.20/71.15 77.12/76.96 80.43/80.28 82.46/82.24 80.99/80.90

Table 2: Test accuracy (%) and F1 score (%) comparison on the SNLI and MNLI datasets training with varying
amounts of training data (1000, 2500, 5000, and 10000). Best scores are marked in bold in yellow background. BT
and M-Mix represent Back Translation and Manifold Mixup. We only use BT operations in DOUBLEMIX in this
experiment.

will flip the true label, mixing up two different sam-
ples and learning an intermediate representation in
hidden space cannot ensure the learned soft label
is the true label of the intermediate representation.

In contrast, our model shows consistent improve-
ments over BERT on these datasets. The consis-
tent improvements indicate that, by strategically
mixing up samples with similar meanings in the
hidden space, DOUBLEMIX not only helps pre-
trained models to become insensitive to feature per-
turbations in an effective way but also injects less
potential noise during the augmentation process
compared to other baselines.

5.2 Performance in Low-Resource Settings

To investigate the performance of our approach in
low-resource settings, we randomly sample 1000,
2500, 5000, and 10000 examples from the origi-
nal training data of SNLI and MNLI to construct
our training sets for low-data setting evaluations,
while the size of the development and test sets is
unchanged. Apart from the BERT-base-uncased
model (Devlin et al., 2019), we also conduct ex-
periments on the RoBERTa-base model (Liu et al.,
2019).

Table 2 presents the results in low-data settings.
Compared with the BERT baseline in Table 1, we
can observe that although pre-trained language
models are powerful across text classification tasks,
the test accuracy and F1 scores might decrease a lot
when the training data is very scarce. DOUBLEMIX

consistently improves the base model with no data
augmentation on both SNLI and MNLI and out-
performs all the baselines on the SNLI dataset.
On MNLI, we observe that our method always

achieves the top performance except in the 1K train-
ing samples. As the training set grows larger, our
model gradually outperforms the baselines and the
leading gap keeps expanding—when the number
of training samples reaches 10K, our model can
achieve at least 1% higher accuracy and F1 score
than RoBERTa on both SNLI and MNLI.

5.3 Ablation Studies

5.3.1 Training Strategies in DOUBLEMIX

We also conduct a series of ablative experiments to
examine the contribution of individual components.
The results are displayed in Table 3, where our ex-
periments are conducted on the SNLI dataset with
only 1000 training samples. We find the perfor-
mance drops after changing the training strategies,
suggesting that the current interpolation method
trained with JSD loss in DOUBLEMIX contributes
to the final performance.

Concretely, we first remove the JSD loss in our
training objective to check if this loss contributes
to the performance. We observe that the accuracy
and F1 score drop approximately 0.7% and 0.9%
after removing the JSD loss, which manifests that
JSD loss is capable of stabilizing the training pro-
cess. Secondly, we merge the two steps and see
how the model performs, where we use a Dirich-
let distribution to sample N + 1 mixing weights
for the original example and other N augmented
examples, and mix up them at a time. In this case,
the test accuracy and F1 score drop to 71.11% and
70.96%, respectively. This indicates that the two-
step interpolation where we constrain the synthetic
data to a region closer to the original sample, as
mentioned in Line 11 in Algorithm 1 will inject less

4627



noise. Moreover, we have also tried different mix-
ing samples Step II. We find mixing up with another
randomly selected training sample in Line 12 in Al-
gorithm 1 results in a 0.59% accuracy decrease and
a 0.70% F1 score decrease. If the selected training
sample is restricted to the same category as the orig-
inal data, the performance degradation will be even
larger. This outcome may be caused by the larger
semantic difference between the selected example
and the original data compared to the augmented
examples of the original data.

Method Acc. F1.

DOUBLEMIX 71.82 71.72
- w/o JSD loss 71.15 70.87
- merge Step II and Step I 71.11 70.96
- mix with another training sample in Step II 71.23 71.02
- mix with another same-class sample in Step II 70.98 70.74

Table 3: Test accuracy (%) and F1 scores (%) on the
SNLI dataset with 1000 training samples after changing
different parts of DOUBLEMIX.

Mixup layer set Acc. ∆Acc F1. ∆F1

∅ 69.77 69.59
{0} 71.13 +1.36 71.02 +1.43

{0,1,2} 70.95 +1.18 70.84 +1.25
{3,4} 71.56 +1.79 71.48 +1.89

{3,6,9} 71.24 +1.47 71.16 +1.57
{7,9,12} 71.30 +1.53 71.19 +1.60
{9,10,12} 71.82 +2.05 71.72 +2.13

{3,4,6,9,10,12} 70.90 +1.13 70.90 +1.31
{3,4,6,7,9,12} 71.29 +1.52 71.16 +1.57

Table 4: Test accuracy (%) and F1 scores (%) on SNLI
with 1000 training data with different interpolation layer
sets. ∅ means no interpolation, and {0} is the input
space. ∆ indicates the gap to the baseline with no aug-
mentation.

5.3.2 Effect of Interpolation Layers
We believe the hidden layers in pre-trained lan-
guage models are powerful in representation learn-
ing, and interpolation in the hidden space can yield
a larger performance improvement than in the input
space. In this section, we will investigate which
interpolation option in terms of the set of layers in
pretrained models can obtain the best performance.
Previous work Jawahar et al. (2019) indicates that
BERT’s intermediate layers {3, 4} perform best in
encoding surface features and layers {6, 7, 9, 12}
contain the most syntactic features and semantic
features. We refer to Jawahar et al. (2019) to for-

mulate several sets of layers and have conducted a
couple of additional experiments on BERT + DOU-
BLEMIX with different sets of interpolation layers
on SNLI with 1000 training samples to see which
subsets give the optimal performance. The results
are shown in Table 4.

Model Original and Counterfactual Examples P. T.

BERT
P: Students are inside of a lecture hall.

N E
H: Students are indoors.

Ours
P: Students are inside of a lecture hall.

E E
H: Students are indoors.

BERT
P: Students are inside of a lecture hall.

C C
H: Students are on the soccer field.

Ours
P: Students are inside of a lecture hall.

C C
H: Students are on the soccer field.

BERT
P: Man in green jacket with baseball hat on.

C C
H: The man is not wearing a hat.

Ours
P: Man in green jacket with baseball hat on.

C C
H: The man is not wearing a hat.

BERT
P: Man in green jacket with baseball hat on.

E N
H: The man is at a baseball game.

Ours
P: Man in green jacket with baseball hat on.

N N
H: The man is at a baseball game.

Table 5: Predictions of BERT and our method on orig-
inal examples and their counterfactual examples on
the SNLI dataset. The counterfactual examples are ex-
tracted from Kaushik et al. (2020) and are constructed
by substituting entities or adding details to entities. The
examples in the yellow background are counterexam-
ples. P. and T. represent prediction and true label. E, N
and C are entailment, neutral, and contradiction. P and
H are premise and hypothesis. Labels in red are wrong
predictions while labels in blue are correct predictions.

When all the interpolation steps are excluded,
the test accuracy is 69.77% and the F1 score is
69.59%. When we interpolate in the input space
(the 0-th layer), the accuracy and F1 score increase
by about 1.3% and 1.4%, showing that interpo-
lation contributes to the performance. When we
perform interpolations at layer set {0, 1, 2} with
lower layers, the accuracy and F1 increases are
smaller than interpolating in input space. However,
when we interpolate at some middle layers such as
{3, 4} and {3, 6, 9}, the performance improvement
is more significant. According to Jawahar et al.
(2019), the 9-th layer captures most of the syntactic
and semantic information. We have tried several
layer sets containing the 9-th layer and find {9, 10,
12} containing upper layers performs best. At the
same time, we notice that the number of layers in
the interpolation layer set is not the more the bet-
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Figure 2: T-SNE projection of the features generated by the 12-layer encoder of BERT baseline (left) and BERT
+ DOUBLEMIX (right) on SNLI with 10000 training samples. The visualized features of the augmented text are
extracted from the last layer of the base model during testing.

ter. The performance of {3,4,6,9,10,12} is only
70.90%, which is lower than any other layer set,
and the performance of {3,4,6,7,9,12} is not the
best, indicating that too many interpolation layers
will reduce the efficiency of representation learn-
ing.

5.4 Case Studies
To further understand how DOUBLEMIX works, we
randomly pick up some examples from the SNLI
dataset and check the discrepancy between the pre-
dictions obtained from BERT and our method. Pre-
dictions of BERT and DOUBLEMIX are shown
in Table 5. We find in those examples with “contra-
diction” label, both BERT and DOUBLEMIX can
accurately predict the true label. Additionally, to
investigate how our method behaves in challenging
scenarios, we also test on the counterfactual ver-
sion (Kaushik et al., 2020) of our selected samples.
Both models excel in detecting negative words “not”
and location names. However, when the ground
truth is “entailment” or “neutral”, DOUBLEMIX

is more likely to make correct predictions. When
the premise and hypothesis contain some common
words (e.g., Man in green jacket with baseball hat
on. The man is at a baseball game.), DOUBLEMIX

inclines to make more accurate predictions.

5.5 Manifold Visualization
Finally, we visualize the embedding vectors gener-
ated by the 12-layer encoder of the BERT baseline
with no data augmentation (BERT) and with DOU-

BLEMIX to qualitatively show the effectiveness of
our approach in facilitating the model to learn ro-
bust representations in Fig. 2. Our experiments
are conducted on SNLI with 10000 training sam-
ples. The visualized features are extracted from the
output of the last layer of the model. We employ
t-SNE (Van der Maaten and Hinton, 2008) which is
implemented by the python package scikit-learn1 to
visualize the features. In Fig. 2, there are three clus-
ters with three colors indicating different classes.
We observe that the features in DOUBLEMIX are
better separated than those in BERT, indicating that
our method effectively improves robustness by en-
couraging the model to learn nearby features of
each training sample.

6 Conclusion

In this work, we present a simple interpolation-
based data augmentation approach DOUBLEMIX

to improve models’ robustness on a wide range
of text classification datasets. DOUBLEMIX first
leverages simple augmentation operations to gen-
erate perturbed data of each training sample and
then performs a two-step interpolation in the hid-
den space of models to learn robust representations.
Our approach outperforms several popular data aug-
mentation methods on six benchmark datasets and
three low-resource datasets. Finally, ablation stud-
ies, case studies, and visualization of manifold fur-

1https://github.com/scikit-learn/
scikit-learn
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ther explain how and why our method works. Our
future work includes making the mixing weights
learnable as well as extending DOUBLEMIX to nat-
ural language generation tasks.
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A Dataset Statistics

Table 6 describes the statistics of the datasets we
used. Note that for SST-2, we did not use the one
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on the GLUE benchmark, as the test labels are
not publicly available. We used the original SST-
2 dataset and it can be loaded from huggingface
datasets2.

Dataset Task Type # Label Size

SST-2 Sentiment 2 6.9k / 872 / 1.8k
TREC Classification 6 4.9k / 546 / 500
Puns Humor 2 3.6k / 603 / 604
IMDB Sentiment 2 22.5k / 2.5k / 25k
SNLI Inference 3 550k / 9.8k / 9.8k
MNLI Inference 3 392k / 9.8k / 9.8k

Table 6: Summary statistics of the seven natural lan-
guage understanding datasets. We report the size of
datasets as (train / validation / test) format.

B Baseline Details

This section introduces the details of our baselines:

• Easy Data Augmentation (Wei and Zou,
2019) contains several simple data augmen-
tation techniques in text such as synonym re-
placement, random insertion, random swap,
and random deletion. The experimental setup
for these methods is the same as that of back-
translation. We use the official code3 with
the default insertion/deletion/swap ratio the
author provided.

• Back-translation (Sennrich et al., 2016)
translates an input text in some source lan-
guage (e.g. English) to another intermediate
language (e.g. German), and then translates it
back into the original one. In our experiments,
our intermediate languages are German and
Russian. And we create two types of aug-
mented text for every training sample. These
augmented examples are directly added to the
training set. We use the code of fairseq4 to
implement this baseline.

• Syntactic Transformation (Min et al., 2020)
applies rule-based syntactic transformations
such as inversion and passivization to sen-
tences to generate augmentations in inference
tasks. We directly add the augmented data to

2https://huggingface.co/datasets/
gpt3mix/sst2

3https://github.com/jasonwei20/eda_nlp
4https://github.com/pytorch/fairseq/

blob/main/examples/wmt19/README.md

the training set. The implementation is based
on the official code5 the author provided.

• Manifold Mixup (Verma et al., 2019)
performs in hidden space. Similar to
Mixup (Zhang et al., 2018), Manifold Mixup
samples two training examples and mixes up
the hidden representations using a coefficient
λ0 randomly sampled from Beta(α, β). For
the training objective, Manifold Mixup first
uses the Cross-Entropy loss to measure the
divergence between the predicted distribution
and the one-hot vector of gold label, and then
mix up the Cross-Entropy losses. Our im-
plementation is based on the official code of
Mixup6.

• TMix (Chen et al., 2020) is similar to Mani-
fold Mixup which performs interpolation in
hidden space. We first mix up the gold la-
bels to a sythetic label and secondly minimize
the KL divergence between the synthetic la-
bel and the predicted distribution. We use the
code implemented in the MixText7 repository.

• SSMix (Yoon et al., 2021) is similar to
PuzzleMix (Kim et al., 2020) and Salien-
cyMix (Uddin et al., 2020). It applies Mixup
based on the saliency (Simonyan et al., 2014)
of tokens. Our implementation is based on the
official code of SSMix8.

C Implementation Details

For all the experiments, we set the learning rate
of the encoder model as 1e-5, set the learning rate
of the two-layer MLP classifier as 1e-3, and tried
different batch sizes within 8, 16, and 32 to choose
the best performance. For the hyper-parameters in
Dirichlet distribution and Beta distribution, we set
τ as 1.0 and set α as 0.75. The coefficient γ of JSD
loss was set to be 8, and the max number of training
epochs was set to be 20. All these hyper-parameters
are shared among the models. All the experiments
are performed multiple times across different seeds
on a single NVIDIA RTX 8000 GPU.

5https://github.com/aatlantise/
syntactic-augmentation-nli

6https://github.com/hongyi-zhang/mixup
7https://github.com/GT-SALT/MixText
8https://github.com/clovaai/ssmix
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Abstract

We present LANTERN, a multi-stage trans-
former architecture for named-entity recogni-
tion (NER) designed to operate on indefinitely
large text sequences (i.e. � 512 elements).
For a given image of a form with structured
text, our method uses language and spatial fea-
tures to predict the entity tags of each text el-
ement. It breaks the quadratic computational
constraints of the attention mechanism by op-
erating over a learned latent space representa-
tion which encodes the input sequence via the
cross-attention mechanism while having the
multi-stage encoding component as a refine-
ment over the NER predictions. As a proxy
task, we propose RADAR, an LSTM classifier
operating at character level, which predicts the
relevance of a word with respect to the entity-
recognition task. Additionally, we formulate
a challenging novel NER use case, nutritional
information extraction from food product la-
bels. We created a dataset with 11, 926 images
depicting food product labels entitled TREAT
dataset, with fully detailed annotations. Our
method achieves superior performance against
two competitive models designed for long se-
quences on the proposed TREAT dataset.

I. Introduction. Information extraction from im-
ages and unstructured text plays a key role in natu-
ral language understanding (NLU) with direct im-
pact in domains such as news content synthesis (Oz-
soy et al., 2011; Moratanch and Chitrakala, 2017;
Foong et al., 2015), query search (Choi et al., 2018)
or knowledge-base systems (Agirre et al., 2018).
The transformer architecture (Vaswani et al., 2017)
played a pivotal role in advancing the state-of-the
art due to its robustness with respect to tasks re-
lated to sequential data manipulation and under-
standing. Its success relies mostly in the attention
mechanism, considered as a key component for its
versatility and its ability to self-specialize and filter
the input information flow.

At the same time, the attention is a curse for

transformers, as it scales quadratically with respect
to the size of the input sequence. To overcome this
limitation, we propose a sequence parsing frame-
work for textual information understanding allow-
ing for indefinitely large input sequences, with
focus on the NER task. Our method is entitled
LANTERN (i.e. LArge sequeNce TransformER
for NER). This is achieved via a multi-stage trans-
former approach over a latent space representation
of the input sequence inspired from (Jaegle et al.,
2021a) and adapted to NER. The key innovation we
propose is a framework which analyses the entire
sequence via a latent space attention-based mod-
elling and leverages a multi-stage prediction setup.

II. Related Work. The transformer based archi-
tecture led to significant advances across major
areas of NLU such as text classification (Lin et al.,
2021), question answering (Choi et al., 2018), se-
quence to sequence translation (Rae et al., 2019;
Lewis et al., 2019) and sentiment analysis (Zhang
et al., 2018).

Pretraining (Yang et al., 2019; Devlin et al.,
2018; Brown et al., 2020) proved extremely useful
for generic language understanding tasks. These
are unsupervised learning models which produce a
vocabulary representation of the unlabelled train-
ing corpus via a masked language modelling task.
One such model is Bidirectional Encoder Repre-
sentation from Transformers (BERT) (Devlin et al.,
2018). Given the pretrained weights of the model
obtained from a large unlabelled data corpus, it
has proven quite impactful in terms of peak per-
formance and versatility for different downstream
linguistic tasks, such as question answering (Garg
et al., 2020; Laskar et al., 2020), NER (Xu et al.,
2020b,a; Li et al., 2021; Zhang et al., 2020; Hwang
et al., 2020; Lee et al., 2022; Huang et al., 2022;
Sandu et al., 2022) or sentence / document classifi-
cation (Lin et al., 2021).

Most of these approaches are constrained by
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(a) (b) (c)

Figure 1: (a) TREAT labelling sample. Visualizations of entity-based annotations containing nutrient informa-
tion. First, the annotators look for the [PER100] keyword, followed by the identification of the key / value pair
of the nutrients of interest. (b) Word cloud visualization of TREAT words. The vocabulary of interest is strongly
related to ingredient and nutritional information word corpus. Some of the highest occurring words are measure-
ments such as g or kcal. (c) Stage-wise performance of LANTERN on TREAT dataset. The performance
improves across stage and batch dimensions, with a significant gap across the first stages.

Carbohydrates Energy Proteins Salt Sugar Total Fat Saturated Fat
Statistic All Other Per 100 Key Value Key Value Key Value Key Value Key Value Key Value Key Value
Min / Max 4/2007 4/1916 0/24 0/44 0/11 0/22 0/17 0/26 0/10 0/20 0/10 0/31 0/10 0/49 0/19 0/14 0/7

Mean 488.63 458.69 2.01 1.36 1.00 1.36 1.92 1.18 1.00 0.98 0.81 2.12 0.93 1.33 1.03 2.11 0.64

Std. 165.8 162.24 1.94 2.12 0.82 1.8 1.68 1.6 0.8 1.5 0.8 3.26 0.75 2.23 0.98 4.86 0.79

Median 482 462 2 1 1 1 2 1 1 1 1 1 1 1 1 0 0

Table 1: TREAT Dataset Image-Level Statistics. Per image statistics with the words corresponding to each
unique entity from TREAT. The [OTHER] entity is dominant (i.e. it represents ≈ 85% out of the total labelled
data corpus) as the nutrient section of a food label usually occupies around 10% of the total space of the label. The
mean / median statistics does not reflect directly the length of the sequence inputed to LANTERN. It is processed
via a tokeniser (Kudo, 2018) and the resulted length is usually 2.5× longer.

the quadratic computational limitation of the atten-
tion mechanism (sequences of up to 512 elements),
thus bounded to subcontext. Several approaches
(Dai et al., 2019; Goyal et al., 2021; Beltagy et al.,
2020; Zaheer et al., 2020; Ainslie et al., 2020) con-
sidered modelling the sequence as a whole from
the prism of the attention mechanism, even for se-
quence lengths� 512.

In (Beltagy et al., 2020), the authors propose a
sparse attention mechanism to analyse larger se-
quences of up to 4096 elements, while keeping
the computational time of the attention matrix lin-
ear with respect to the input size. A similar setup
is also proposed in (Zaheer et al., 2020) using an
additional random iterative attention mechanism
to parse the entire graph of the sequence. Differ-
ent from these approaches, our proposed pipeline
can process indefinitely large sequences and has
a stage-wise refinement mechanism of the NER
predictions.

III. Dataset. Additionally, we introduce a new
language modelling problem setup from the um-
brella of NER tasks, namely nutritional information
extraction from images of food products. This was
achieved by collecting a dataset of food product im-
ages, entitled TREAT (i.e. nuTRiEnt fAcTs) with
11, 926 images depicting food products with fully

extracted text information, bounding box image
localization and complete NER class label anno-
tations with sequences of up to ≈ 2, 000 words
(≈ 5000 tokens) to be parsed. Labelling was per-
formed using a web interface highlighting words.
Annotators had to individually assign classes to
words of interest. The proposed NER use-case is
formulated on a linguistically diverse dataset in
terms of semantics and specialisation. The col-
lected data covers multiple European languages
(EN, FR, DE, ES, IT, etc.) containing the nu-
tritional information expressed with different lan-
guages within the same input text sequence. We
further explore the specialisation in the compliance
domain, learning to reason within the vocabulary
of text content from food product labels. They
must contain information related, but not limited,
to ingredients, storage instructions, manufacturer
addresses, nutritional information, allergen state-
ments, advertising and production process details.
Every piece of information can be found in stan-
dalone paragraphs, lists or table structures. The
general layout is rich in both structure and visual
cues. In terms of textual information, the collected
data has both semantic text with full paragraphs
or text structures (e.g. instructions, tables, lists or
advertisement sections) and independent sentences
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Figure 2: Detailed overview of our proposed large-sequence parsing model. Given an image I, we first extract
all the words using a state-of-the-art algorithm, obtaining the complete list of words X. Next, X is filtered using
RADAR thus obtaining the most relevant words with respect to our entity recognition task, Xfiltered. The filtered
list is embedded into a language and positional representation, E, of the remaining words. Lastly, E goes through
LANTERN to generate predictions Ỹ.

Carbohydrates Energy Proteins Salt Sugar Total Fat Saturated Fat
Model All Other Per 100 Key Value Key Value Key Value Key Value Key Value Key Value Key Value
(Beltagy et al., 2020) 0.74 0.96 0.78 0.78 0.71 0.80 0.70 0.78 0.71 0.74 0.68 0.78 0.73 0.75 0.72 0.67 0.52

(Zaheer et al., 2020) 0.76 0.96 0.79 0.77 0.74 0.83 0.69 0.78 0.78 0.79 0.77 0.80 0.77 0.79 0.74 0.64 0.53

(Xu et al., 2020b) 0.61 0.96 0.86 0.59 0.55 0.69 0.67 0.45 0.41 0.41 0.4 0.55 0.53 0.51 0.50 0.48 0.44

Ours 0.86 0.97 0.83 0.94 0.82 0.94 0.87 0.93 0.77 0.91 0.79 0.94 0.76 0.89 0.76 0.87 0.78

Table 2: TREAT Test Set - Word Level Results. The LayoutLM baseline failed to provide quality results as its
context window was limited to 512 elements. Approaches of (Beltagy et al., 2020) and (Zaheer et al., 2020) obtain
superior results as they are able to handle larger sequences (i.e. 2048). The highest F1-score is obtained with
LANTERN as it is able to grasp the entire textual context of the product content.

such as titles, individual statements or website ref-
erences. As illustrated in figure 1 (b), the down-
loaded images contain a high variability in terms
of vocabulary corpus, mainly related to ingredient
or nutritional aspects. Check figure 1 (a) for a la-
belling sample and table 1 for dataset statistics. Ad-
ditionally, we perform an analysis from a linguistic
point of view and notice the following distribution
of dominant languages: 40% english, 11% span-
ish, 11% italian, 10% german and 8% french. The
rest of 20% are data samples with mixed or other
languages, unable to determine the dominant one.

We build a vocabulary with 15, 000 unique to-
kens using (Kudo, 2018). Up to 24% of the resulted
tokens are made of 5 characters, while tokens with
different sizes occupy a relatively uniform space
(e.g. 13% tokens are 7 characters long, 10% to-
kens are 6 characters long and tokens with 2 or 3
characters take 8% of the vocabulary space).

IV. Methodology. Let I ∈ Rh×w denote an
image containing a list X = (x1 . . . xMI

) of

MI words, with xi = (wi, ci) where wi is the
OCR (AWS-Textract, 2019) extracted word and
ci ∈ [0, 1]4 represents the bounding box coordi-
nates relative to dimensions of I. Additionally, let
Y = (y1 . . . yMI

) denote the class labels for each
word wi in X.

Given the high inflation of [OTHER] inside
TREAT (see table 1) we constructed RADAR
(RelevAnt worD clAssifieR) using a bidirectional
LSTM model (Hochreiter and Schmidhuber, 1997)
at character level to predict if the word is relevant or
irrelevant ([OTHER]). Thus, we have Xfiltered =
{xi | RADAR(xi) > α, i = 1 . . .MI} where
α is validated to obtain a recall of 1 for relevant
words. To simplify notation, we identify Xfiltered

with X.

The language based embeddings for wi are sup-
plemented with positional encodings (Vaswani
et al., 2017). Thus, we obtain the embedding rep-
resentation E = (e1 . . . eMI

) of X where ei =
(ewi1 . . . e

w
idw
, exi1 . . . e

x
idx
, eyi1 . . . e

y
idy

).
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This leads to an input sequence E ∈ RM×d,
where d = dw + dx + dy. The dimensions dw, dx
and dy denote language embedding sizes while x
and y denote positional variables with respect to
image width and height, respectively. Additionally,
a latent block representation denoted with LINIT ∈
RN×d (N �M ) is learned. The intuition behind
the latent block is to learn a projection of the most
relevant information with respect to the NER task.

The LANTERN module is applied in a stage-
wise manner. Each stage receives as input the
embedded input sequence, E, and a latent block,
Lt ∈ RN×d, and it predicts an array, Ỹt. In the fol-
lowing, we will describe the computational stages
t ∈ {0 . . . T}. For t = 0, we have LINIT ∈ RN×d.

STAGE t=0: we start by applying a cross-
attention mechanism Θ : RM×d → RN×d, over E
and LINIT. Functions k(·), q(·) and v(·) represent
the keys, queries and values, respectively.

Θ(E,L) = softmax(
q(L)k(E)>√

d
)v(E) (1)

This will basically result in a projection of the in-
put sequence E to the latent space RN×d through
LINIT. We will denote the resulted projected latent
block with LINIT

Θ = Θ(E,LINIT).
Next, LINIT

Θ is passed through a transformer en-
coder, Γ : RN×d → RN×d, to learn an implicit
statistic between the elements of the latent block
elements. The initial latent block information is
added as a residual information on the resulting
encoded information from Γ, thus having

LINIT
Γ = Γ(LINIT

Θ ) + LINIT (2)

Lastly, we apply a reversed cross-attention mech-
anism, ΘREV : RN×d → RM×d over the input se-
quence E and the latent block LINIT

Γ processed
through transformer Γ.

ΘREV(E,L) = softmax(
q(E)k(L)>√

d
)v(L) (3)

The reversed cross-attention operation provides a
reprojection of the transformed latent block infor-
mation LINIT

Γ to the input space, RM×d. Thus,
the resulted information from the reversed cross-
attention will be, LINIT

ΘREV
= ΘREV(E,LINIT

Γ ).
LINIT

ΘREV
is next passed through a feed-forward net-

work, Ψ(·), which provides the class predictions for

the sequence’s entities, Ỹt=0 (i.e. t = 0 denotes
the first stage), and it is being optimized using a
cross-entropy loss function.

STAGE t>0: This process is repeated for sev-
eral iterations, in a multi-stage setup. For the next
stages (i.e. stage 0 < t ≤ T ), the latent sequence
Lt is initialized with the latent block information
obtained from equation 2 of stage t− 1.

Lt =

{
LINIT

Γ , if t = 1

Lt−1
Γ , otherwise

The prediction of stage t − 1 of the NER task,
Ỹt−1, is fed to the feed-forward module of the
current stage, t, as a weight factor. Also, Ỹt−1, is
used as a weight to the attention-matrix computed
at the current stage, t, obtained via a projection
function Φ : RM×dtarget → RM×N where dtarget
is the total number of entities to be predicted

ΘREV(E,L,A) = softmax(
q(E)k(L)>√

d
�A)v(L)

where �(·) : RM×N → RM×N represent
the Hadamard product and A ∈ RM×N is a
weight matrix. Thus, the reprojected latent block
information from stage t becomes, LtΘREV

=

ΘREV(E,LtΓ,Φ(Ỹt−1))).
At each stage, a cross-entropy loss is applied

over the output of Ψ : RM×d → RM×dtarget ,
which are cumulated until the final stage T ,LNER =∑T

t=0 LtNER(Ỹt,Y).
Given an input image I and a learned latent block

L, the framework outputs an array Ỹ with class pre-
dictions for all the relevant words identified within
image I. A step-by-step breakdown of our pipeline
is illustrated in figure 2 and in algorithm 1.

V. Experiments. We conduct experiments on
our proposed dataset TREAT. Prior to applying
LANTERN, we filtered a part of the irelevant word
corpus (i.e. [OTHER]) using RADAR. The accu-
racy of RADAR is 85% and we filtered 48% of the
irrelevant words. The reason behind filtering such
a low quantity of [OTHER] with respect to the ob-
tained accuracy is because the majority of the word
corpus from TREAT represents numerical values
(e.g. 100g, 30ml) which we marked with [NUM].
These words ([NUM]) cannot be filtered without
leveraging their positional context as they can be
linked with nutrient keys. Thus, we decided to in-
troduce them as such inside LANTERN without
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(Stage 0) (Stage 1) (Stage 2) (Stage 3) (Stage 4) (Stage 5) (Ground Truth)

Figure 3: Multi-stage Qualitative Results obtained with LANTERN on TREAT Test Set. We show the progres-
sive improvement of the generated entities achieved via the multi-stage component of LANTERN. The refinement
is clearly visible from stage to stage, as the model turns its attention towards the words describing the nutrients of
interest.

RADAR filtration. In table 2 we report the word-
level precision, recall and F1-score. We use a total
of 6 stages with a total embedding size of d = 64,
where dw, dx and dy are set to the values of 32, 16
and 16, respectively. The dimension N of latent
block L is 256. Our method is able to achieve supe-
rior results compated to similar NER frameworks
(Xu et al., 2020b), (Beltagy et al., 2020) and (Za-
heer et al., 2020), some of them being designed for
long sequences. For a fair evaluation, we compare
against other competitive NER baselines using text
and position embeddings only.

Algorithm 1 LANTERN
Input: I ∈ Rh×w, LINIT ∈ RN×d
Output: Ỹ = (ỹ1 . . . ˜yM )

1 X← OCR(I)
2 Xfiltered ← RADAR(X)
3 E← Embed(Xfiltered)
4 LINIT

Θ ← Θ(E,LINIT)
5 LINIT

Γ ← Γ(LINIT
Θ ) + LINIT

6 Ỹ0 ← Ψ(ΘREV(E,LINIT
Γ ))

7 for t = 1 . . . T do
8 if t = 1 then
9 Lt ← LINIT

Γ

10 else
11 Lt ← Lt−1

Γ

12 LtΘ ← Θ(E,Lt)
13 LtΓ ← Γ(LtΘ) + Lt

14 Ỹt ← Ψ(ΘREV(E,LtΓ,Φ(Ỹt−1)))

15 Ỹ ← ỸT

In figure 3 we showcase multi-stage predic-
tions, thus highlighting the refinement aspect of
our framework on a practical example.

Method Precision Recall F1-Score
LANTERN w/o RADAR 0.83 0.80 0.81
LANTERN w RADAR 0.84 0.87 0.86

LANTERN w/o weight sharing 0.83 0.80 0.81
LANTERN w weight sharing 0.82 0.82 0.82

LANTERN w Language 0.39 0.42 0.40
LANTERN w Language + Positional 0.83 0.80 0.81

Table 3: Ablation study on various components of
LANTERN over TREAT dataset. The highest impact
in terms of performance is obtained with the RADAR
based filtration of [OTHER]. Parameter weight sharing
across all the stages also impacts positively the perfor-
mance and it helps the model to convergence faster.

In table 3 we analyse the impact of the various
model components and embedding types used by
our model, thus validating the architectural inno-
vative aspects of our method. In figure 1 (c) we
show the impact of the multi-stage component. The
refinement aspect of the method is visible between
consecutive stages leading to significant improve-
ment between the first and last stages.

VI. Conclusions. We propose a novel method for
NER, specifically designed for indefinitely large
sequences. It leverages a multi-stage transformer-
based pipeline which breaks the quadratic compu-
tational constraints of the attention mechanism by
projecting the input sequence to a latent space rep-
resentation and a stage-wise setup which acts as a
context refinement of the entity predictions. The
methodology was evaluated on a novel and difficult
NER use case, nutritional information extraction,
proving superior results over other strong baselines
specifically designed for long sequence parsing.
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Abstract

Protecting NLP models against misspellings
whether accidental or adversarial has been the
object of research interest for the past few years.
Existing remediations have typically either
compromised accuracy or required full model
re-training with each new class of attacks. We
propose a novel method of retroactively adding
resilience to misspellings to transformer-based
NLP models. This robustness can be achieved
without the need for re-training of the original
NLP model and with only a minimal loss of
language understanding performance on inputs
without misspellings. Additionally we propose
a new efficient approximate method of gener-
ating adversarial misspellings, which consid-
erably reduces the cost needed to evaluate a
model’s resilience to adversarial attacks.

1 Introduction

While artificial neural networks have been able to
achieve human level performance on many real-
world tasks, they sometimes fail in surprising ways.
(Szegedy et al., 2013) showed that state of the art
computer vision models can be fooled into mis-
classifying objects with only limited perturbations
imperceptible to human viewers. Along similar
lines, it was shown in (Pruthi et al., 2019) that very
constrained attacks can successfully trick classifica-
tion algorithms into making incorrect predictions.
In fact such attacks have been used for a long time,
chiefly for evading spam classifiers while remain-
ing legible to human readers.

Protecting against such misspellings, whether
accidental or intentional, has been a focus of re-
search in the NLP field for many years (Lee and
Ng, 2005). Recently, defenses suggested by (Pruthi

*MockingBERT is a reference to mockingbirds, a group
of birds known for mimicking the sounds of other animals.
The code for reproducing our results as well as instructions
for obtaining the trained models are available at https://
github.com/akash13singh/resilient_nlp/.

et al., 2019) and (Jones et al., 2020) can par-
tially remediate adversarial attacks by adding a
pre-processing step, at the cost of a drop in classi-
fication performance. (Liu et al., 2020) proposed
replacing a fixed word embeddings with trained
character-based ones and observed improved re-
silience to adversarial attacks.

In existing systems a tension exists between
modularity and accuracy. (Pruthi et al., 2019) and
(Jones et al., 2020) propose fully modular systems
that are completely oblivious of the downstream
language understanding model. This provides ex-
plainability (by providing a verbatim sequence of
corrected tokens) but comes at a cost of reduced
accuracy on unperturbed inputs. Additionally there
is an added drawback of not being able to preserve
potential ambiguity present in the input, making
these systems ‘destructive’. Conversely, (Liu et al.,
2020) is able to represent ambiguous inputs, how-
ever at the cost of losing modularity.

Our central hypothesis is that original accuracy
can be preserved while at the same time ensuring
modularity. In particular we show that existing clas-
sifiers based on BERT and RoBERTa, two widely
used pre-trained models, can be retroactively made
resilient to perturbations even if only unperturbed
data was used during the initial finetuning. This
can be done by replacing the heuristic subword
tokenizer and token embedding with a machine
learned replacement which we call MockingBERT.
The MockingBERT tokenizer and embedder learns
to mimic a transformer model’s tokenization and
layer 0 embedding mechanism while providing re-
silience to input perturbations.

We evaluate the performance of such models
when trained on both unperturbed and perturbed
training sets to understand their suitability for data
augmentation. We perform a comparative analysis
with the methods proposed in (Jones et al., 2020),
as well as with a regular finetuned BERT model
trained with data augmentation.
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We also propose and evaluate WORDSCOREAT-
TACK, an efficient and effective method for gen-
erating adversarial samples without the need for
exhaustively considering all possible perturbations.
WORDSCOREATTACK works by carefully choos-
ing information bearing words in the input text.
This provides a much faster alternative to the ex-
haustive method proposed by (Pruthi et al., 2019) at
the cost of perturbing a larger number of characters
in the sentence. Crucially this method requires sig-
nificantly fewer calls to the underlying NLP model,
which more closely approximates real world sce-
narios that are likely to involve rate limiting and/or
a limited query budget. We manually verify that the
outputs of this perturbation can still be classified
correctly by a human reader with a high probability.

Our central findings are that the MockingBERT
tokenizer and embedder model paired with a fine-
tuned BERT or RoBERTa classifier achieves a high
level of resilience to character-level adversarial per-
turbations when pre-trained on perturbed data. This
results in a higher accuracy on perturbed inputs on
multiple well known datasets than state of the art
methods for combating adversarial misspellings
such as the one described in (Jones et al., 2020).
Crucially, the impact on accuracy for unperturbed
inputs, while measurable, is noticeably lower than
for comparable methods for protecting against ad-
versarial attacks.

Additionally, WORDSCOREATTACK signifi-
cantly reduces the number of model queries re-
quired to find adversarial inputs. This dramatically
speeds up evaluation, while also making the attack
more practical in real scenarios.

2 Related Work

Previous research has explored both adversarial
attacks against NLP systems as well as possible
defenses. This section gives a brief overview of
related work and concepts.

2.1 Adversarial Attacks

(Pruthi et al., 2019) proposes an attack that exhaus-
tively searches for a modification of up to two char-
acters with the intent of causing a wrong predic-
tion. The allowed modifications are from a narrow
set: Adding or deleting a single internal charac-
ter, swapping two neighboring internal characters
or replacing an internal character with one of its
neighbors in the QWERTY keyboard layout. This
choice of perturbations was based on linguistic re-

search which suggests that modifications to internal
characters in a word do not significantly hinder leg-
ibility for a human reader (Rawlinson, 1976).

Another approach to adversarial attacks works
by replacing individual characters with similarly
looking symbols or letters from different alphabets.
In this scenario the text remains easily understand-
able to the reader even in the presence of a large
number of misspellings (Eger et al., 2019; Sokolov
et al., 2020).

2.2 Defenses Against Attacks
In addition to the attack described previously,
(Pruthi et al., 2019) proposes a remediation in
the form of a subcharacter recurrent neural net-
work (ScRNN), which attempts to reverse any per-
turbations present in the input sentence. (Jones
et al., 2020) proposes a system named RobEn that
clusters misspellings of vocabulary words with a
bounded edit distance and maps them to the most
frequent word in the cluster. This approach works
even in the case where every word in the sentence
is misspelled, at the cost of reduced accuracy on
unperturbed inputs.

Both of these approaches are highly modular,
i.e. they can be used with any language under-
standing model as a preprocessing step. In con-
trast (Liu et al., 2020) proposes joinly training a
character-based word embedder and the main NLP
model. A similar approach is also considered in
(El Boukkouri et al., 2020) where a character-level
word embedding is passed to a transformer model
with a number of parameters similar to BERT. Fi-
nally, (Provilkov et al., 2020) proposes a modifica-
tion to the BPE tokenization procedure commonly
used in transformer models, using a mechanism
similar to dropout.

These three approaches allow the representation
of ambiguous misspellings and their handling in
the NLP model. Even in cases of architectures not
specifically aiming for resilience to misspellings,
the authors observe such resilience as a side effect
of their embedding procedure.

2.3 Alternatives to Subword Tokenization
Our research specifically targets NLP models based
on the transformer architecture (Vaswani et al.,
2017), with a focus on models derived from BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019). Such models are pre-trained on large cor-
pora of unlabeled data, and can then be adapted
(in a process known as finetuning) to many NLP
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tasks. This substantially reduces the amount of data
needed for each individual task.

An important aspect of understanding BERT is
that it uses the WordPiece subword tokenization
(Wu et al., 2016) process. This means that while
common words are typically mapped to a single
token, uncommon or invented words can still be
represented by a sequence of tokens without the
need to resort to a catch-all token (typically denoted
as UNK). During the operation of the transformer
model, tokens corresponding to subwords are first
represented as context-free vectors of numbers (that
had been learned during training), with subsequent
layers incrementally adding contextual information
from other tokens using the self-attention mecha-
nism.

There are known alternatives to subword em-
beddings that are similarly able to avoid emitting
out-of-vocabulary tokens. One prominent example
is ELMo (Peters et al., 2018), which uses character-
level embeddings in addition to a word’s surround-
ing context to come up with an embedding for a
particular word in a sentence. Similar techniques
have been successfully used with transformer based
models (El Boukkouri et al., 2020; Ma et al., 2020).

The tokenization schemes described so far all
rely on whitespace tokenization, which means they
are likely to be susceptible to adversarial attacks
that insert or remove whitespace. In contrast some
recent transformer based models avoid using heuris-
tic tokenizers altogether while still using a compa-
rable number of parameters to BERT (Clark et al.,
2022), (Tay et al., 2021). This is achieved by us-
ing a convolution-like process to map the sequence
of input characters to embeddings before passing
them to the transformer blocks.

3 Data

For training the MockingBERT tokenizer and em-
bedder we use the unlabeled BookCorpus dataset
(Zhu et al., 2015), with minimal pre-processing
to reverse the existing tokenization present in that
dataset. The goal is to utilize textual data that is as
close as possible to unprocessed text.

For evaluation purposes we use the Large
Movie Review (IMDb) dataset (Maas et al., 2011),
the Stanford Sentiment Treebank (SST) dataset
(Socher et al., 2013) and the Large Yelp Review
dataset (Zhang et al., 2015). For the latter two
datasets we use both the 2-class (binary) and 5-
class variants. We subsequently refer to these

datasets as IMDb, SST-2, SST-5, Yelp-2 and Yelp-
5.

For each task we evaluate each model’s accuracy
on a randomly chosen subset of 500 sentences from
each dataset’s test set. The reason for the limited
size of the test set is that adversarial attacks require
potentially hundreds of model inferences for each
sentence to find a successful perturbation.

4 Models

We propose a model, MockingBERT, that can be
used in place of a transformer model’s tokenizer
and word embedding. The model consists of a
character embedding layer that transforms each in-
put character into a numeric vector of size 768.
Characters are converted to lower case before em-
bedding, but no other preprocessing is done (e.g.
no special handling for whitespace or punctuation).
The layer is followed by three stacked bidirectional
LSTM layers, with a hidden size of 768. The final
LSTM layer is connected to two parallel dense lay-
ers: The subword boundary detection layer and the
subword embedding layer (Figure 1). The subword
boundary detection layer uses a sigmoid activation
function and has an output dimension of 1. The
subword embedding layer uses hyperbolic tangent
as its activation function and has an output dimen-
sion of 768, matching the subword embedding size
of both BERT Base and RoBERTa Base.

The model is trained with two objectives. The
first objective is a character-level sequence clas-
sification task. The subword boundary detection
layer is used as a classifier. For every input charac-
ter it predicts whether the character is a subword
boundary, i.e. the last character of a subword. The
second objective is a regression task where the sub-
word embedding layer outputs the embedding for
each subword. The embeddings are only used for
input characters deemed to be subword boundaries.
For non-boundary characters the embeddings are
discarded by using a mask.

The tokenizer and embedder model is trained
on sentences from BookCorpus (Zhu et al., 2015).
During training an unperturbed sentence is pro-
cessed by the transformer model’s regular tokenizer
and its context free word embedding (trained layer
0 embeddings without the position and segmen-
tation embeddings). This gives us the subword
boundaries and embeddings which are used as la-
bels to train the model. The sentence may sub-
sequently be perturbed by adding or deleting a
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Figure 1: Structure of the MockingBERT tokenizer and embedder. In this example the phrase ‘My hovercraft’
is split into five tokens. An embeddings is only used if the corresponding subword boundary is detected with
confidence of at least 0.5.

character, swapping two neighboring characters,
inserting whitespace in the middle of long words,
or removing whitespace between two words. The
subword boundaries are updated accordingly. In
the case of character deletion, special handling is
present for characters that are subword boundaries.
In this case the immediately preceding character
is marked as a subword boundary. In the uncom-
mon case when the preceding character is already a
subword boundary, the embedding for the deleted
character is simply discarded. In our opinion this
situation is sufficiently rare that it does not warrant
adding more complexity to the models.

When training, we can choose which context-
free subword embedding MockingBERT will ap-
proximate:

• We can target the embedding of the generic
(that is not finetuned) BERT or RoBERTa
model. An advantage of this is that the trained
MockingBERT embedder is independent of
the finetuned task.

• Alternatively we can target the embedding of
a finetuned transformer model. In this case the
MockingBERT instance is no longer task ag-
nostic, but can potentially better match the em-
beddings expected by the transformer model.

In our experiments we evaluate both of these ap-
proaches to understand the tradeoffs.

The models are trained on 64000 randomly se-
lected sentences from BookCorpus for 5 epochs.
The loss function is a combination of the mean
squared error (MSE) losses for the subword bound-
ary detection task and for the embedding prediction

task. MSE was chosen since it can be applied both
for subword boundary detection (classification) and
embedding prediction (regression). The loss values
for the two components are scaled to have the same
magnitude. This is to prevent one of the subtasks
from dominating the other one during training.

When training on perturbed data and targeting
generic embeddings for BERT and RoBERTa, the
models achieved accuracies for the subword bound-
ary detection task of 99.30% and 99.25% respec-
tively on a held-out evaluation set.

During evaluation and inference, the input text
is converted to lower case and the characters are
embedded as a 768-dimensional vector representa-
tion. Subsequently the MockingBERT model is ex-
ecuted to obtain subword embeddings for the input
sequence. The embeddings are then bookended by
the fixed representations of the transformer’s spe-
cial tokens, [CLS] and [SEP] in the case of BERT
and <s> and </s> for RoBERTa. Finally, the se-
quences of embeddings are passed to the finetuned
transformer model.

The transformer models are based on the pre-
trained BERT Base and RoBERTa Base models
and finetuned using the HuggingFace Transformers
package (Wolf et al., 2020).

For finetuning we attach a linear layer on top
of the [CLS] (for BERT) or <s> (for RoBERTa)
output embedding, and train the entire model using
cross-entropy loss. We restrict the sequence length
to 128 tokens, and the model is trained with a batch-
size of 32, learning rate of 2e-05, for up to 5 epochs.
We used an early stopping patience of 10, evaluated
every 100 training steps.
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5 Proposed Attacks

We propose WORDSCOREATTACK , a cost effec-
tive way to generate adversarial attacks which can
occur in an real-world setting. Typically trained
models are hosted and exposed through an API
and the users including adversaries can only query
the models by sending input and receiving output.
Thus we only focus on black-box attacks, where
one does not have access to the trained model.

WORDSCOREATTACK intelligently selects input
words to perturb in order to maximize the chances
of finding an adversarial example with the mini-
mum number of perturbations. This is achieved by
computing corpus specific word scores which are
based on per-word conditional class probabilities
for the corpus. For a binary classification task we
compute the log likelihood of each word as shown
in equations 1 to 3, where freqpos, freqneg are the
frequencies of the word in positive and negative
classes respectively. Npos, Nneg are the total words
in the positive and negative corpus and V is the to-
tal vocabulary size. We remove stop words and low
frequency words before computing word scores. In
the case of multi-class classification, for each class
a separate score is computed by considering that
class as positive and combining all other classes
into the negative class.

word_score = log(
P (wordpos)

P (wordneg)
) (1)

P (wordpos) =
freqpos + 1

Npos + V
(2)

P (wordneg) =
freqneg + 1

Nneg + V
(3)

Given an input text and the original predicted
class, WORDSCOREATTACK targets words in the
input text which have the highest scores for the
given class and perturbs them in the decreasing or-
der of scores, until the model prediction is flipped.
Our hypothesis here is that the words with the high-
est scores are critical to the model’s predictions
and perturbing them can fool the model to make
the wrong classification.

We impose a query budget setting expressed
by two parameters: (max_words_to_perturb,
max_tries_per_word). The first one denotes the
maximum number of words that can be perturbed
for each input text. The second parameter denotes
the number of perturbation attempts allowed per
word. When the max_tries_per_word for a word

are exhausted and do not yield a successful attack,
the attack greedily preserves the perturbation that
decreases the model confidence the most (i.e. the
one with the lowest score for the original predicted
class) and moves to the next word in the order
of word scores. The maximum number of model
queries per input text are max_words_to_perturb *
max_tries_per_word.

In order to mimic real world misspellings, we
only allow one perturbation per input word. The
perturbations considered are adding or deleting
a character, swapping of adjacent characters, as
well as splitting of a word (adding whitespace) and
merging of adjacent words (deleting whitespace).
Furthermore for the non-whitespace perturbations,
only the internal letters of a word are perturbed, and
the first and last letters remain unmodified. This
ensures the perturbed text can be comprehended by
humans (Rawlinson, 1976; Pruthi et al., 2019).

Though we allow one perturbation per word,
multiple words per input text can be perturbed until
a successful attack is found. This is in contrast
to (Pruthi et al., 2019), where the authors do an
exhaustive search to find a single character pertur-
bation that flips the model prediction.

The design goal for WORDSCOREATTACK is
to find an adversarial perturbation with a signifi-
cantly lower query budget compared to an exhaus-
tive search. This is done with the objective of con-
structing a practical framework for both simulating
adversarial attacks to analyse model resilience as
well as for constructing adversarial samples for
data augmentation and adversarial training.

6 Experiments

We evaluated each model’s performance on an un-
perturbed version of the test sets, as well as on
WORDSCOREATTACK. We also evaluated the fine-
tuned BERT model on the IMDb task using the ex-
haustive adversarial attack as described in (Pruthi
et al., 2019). TextAttack (Morris et al., 2020), a
Python framework for adversarial attacks, was used
to execute the exhaustive attacks. Due to the pro-
hibitive computational cost of this attack we were
not able to evaluate it on the other models.

We evaluated variations both including and ex-
cluding whitespace modifications. This is because
the remediations proposed in (Jones et al., 2020)
have not been specifically designed for combating
such modifications.

For WORDSCOREATTACK, we allowed the at-
4644



Model IMDb SST-2 SST-5 Yelp-2 Yelp-5
BERT
(no remediations) 88.0/60.6/58.6 91.4/42.2/38.8 56.2/5.8/5.0 95.2/71.2/70.4 61.8/27.2/25.0
with RobEn CONNCOMP 77.6/69.2/52.6 69.4/64.6/27.4 33.4/28.2/7.6 86.6/80.6/64.8 44.8/37.4/23.8
with RobEn AGGCLUST 78.6/72.0/53.8 75.8/72.6/33.8 41.0/34.6/6.0 90.4/86.4/71.0 52.4/42.6/26.0
MockingBERT with BERT
targeting generic embedding 86.8/70.6/69.0 86.2/57.0/56.8 51.6/10.8/13.2 95.2/88.6/89.8 60.0/40.8/41.0
targeting finetuned embedding 86.4/69.8/68.6 86.8/57.4/56.8 49.0/10.8/9.4 95.4/88.4/89.0 61.2/40.2/40.2
RoBERTa
(no remediations) 90.8/68.4/69.6 93.2/48.6/46.8 57.2/8.2/7.8 96.4/76.0/78.0 63.8/36.8/36.0
with RobEn CONNCOMP 68.4/62.6/56.0 75.0/70.0/37.6 33.6/30.4/5.8 88.0/80.6/68.6 50.0/41.6/31.4
with RobEn AGGCLUST 75.8/71.6/60.8 78.2/74.8/40.6 39.8/34.8/7.6 91.4/87.2/75.2 56.8/48.8/36.6
MockingBERT with RoBERTa
targeting generic embedding 87.2/75.4/77.0 88.8/62.0/62.2 52.4/16.2/15.0 96.0/88.0/88.2 62.8/47.0/47.4
targeting finetuned embedding 87.8/76.2/76.0 90.0/60.4/62.2 52.8/18.6/17.0 96.6/87.4/88.2 62.6/46.8/45.8

Table 1: For each combination of model and task we provide an accuracy score for the following three variations of
the test set: An unperturbed test set; a test set using WORDSCOREATTACK excluding whitespace modifications;
and a test set using WORDSCOREATTACK including whitespace modifications. The reason for providing a score
when excluding whitespace modifications is that some of the remediations have not been designed to counteract
whitespace perturbations.

tack to change up to ten words, with a single modi-
fication allowed per word as described in section
5. For each word, up to four attempts were made
in order to find the perturbation that decreased the
model’s confidence the most. As before, we evalu-
ated both variants that allow and disallow whites-
pace modifications.

To establish baselines, we evaluated finetuned
BERT and RoBERTa models with their default
tokenizers, both with and without data augmen-
tation. We also evaluated the CONNCOMP and
AGGCLUST approaches proposed in (Jones et al.,
2020). Accuracy is used as the primary evaluation
metric.

A second stream of experiments is focused
on evaluating the efficacy and efficiency of
WORDSCOREATTACK. We attack the BERT
model finetuned for the IMDb task and vary
the max_tokens_to_perturb from 1 to 40 and
max_tries_per_token from 1 to 4. For each set-
ting, we calculate the model accuracy on the 500
reviews in the test set. The results are shown in Fig-
ure 2. The original accuracy on the test set is 88%.
which is reduced to 26.6% in the most adversarial
setting of (40, 4).

In order to compare WORDSCOREATTACK to
the exhaustive adversarial attack of (Pruthi et al.,
2019), we evaluate a forgetful mode for WORD-
SCOREATTACK, where an unsuccessful perturba-
tion is reset when the attack moves to a new token.
In this mode, the attack tries to flip the model’s
prediction by making only one perturbation to the
input text. The results are shown in Table 2, where
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Figure 2: WORDSCOREATTACK analysis with different
budget parameter settings.

the normal mode is denoted as WSA and the for-
getful model is denoted as WSA-Forgetful. Both
modes operate with the query budget setting of
(40,4). As expected the efficacy of the attack suf-
fers in forgetful mode, with only a 15% attack
success rate and model accuracy dropping to only
72.8% from the original 88%. The exhaustive ad-
versarial attack (Pruthi et al., 2019) on the other
hand reduces the accuracy to 66.8%. However this
comes at the expense of 1,574 queries on average
per attack compared to only 133 queries for WSA-
Forgetful. In comparison the normal mode of WSA
reduces the model accuracy to 26.6%, with an at-
tack success rate of 70% while only requiring 83
queries on average.

7 Analysis

Our experiment results (Table 1) show that Mock-
ingBERT consistently achieves the highest accu-
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Pruthi WSA-Forgetful WSA
Orig. Accuracy 89.6% 88% 88%
Attack Success % 25.45% 18% 70%
Final Accuracy 66.8% 72.6% 26.6%
Avg. Queries 1574 133 83

Table 2: Comparison of exhaustive attack of Pruthi,
2019 with the forgetful (WSA-Forgetful) and nor-
mal mode of WORDSCOREATTACK(WSA). Pruthi and
WSA- Forgetful are constrained to perturb only one
character per input text. The budget setting for both
WSA attacks is (40,4)

racy scores for adversarial attacks that allow whites-
pace modifications by a margin of between 5.6%
and 18.8%. When whitespace modifications are
disallowed, MockingBERT performs similarly to
RobEn, with the exception of the SST datasets
where the RobEn models achieve noticeably higher
accuracy. It should be noted that pretraining Mock-
ingBERT on adversarial data with whitespace mod-
ifications results in noticeably lower performance
on test sets without such modifications, as noted in
subsection 7.1 (Ablation Studies).

Crucially, our model’s accuracy on unperturbed
data is typically only slightly lower than when
using the standard BERT or RoBERTa tokeniza-
tion/embedding procedure, with the accuracy
scores ranging from being 0.2% better to being
4.6% worse than the standard model. This is in
contrast with RobEn, where the accuracy on unper-
turbed data is lower by between 4.8% and 17.4%.

Interestingly the version of the tokenizer that
targets default pre-trained transformer embeddings
performed slighly better overall than the version
targeting embeddings finetuned specifically for in-
dividual tasks. This suggests that a universal to-
kenizer and embedder model can be used for a
variety of tasks, with no need to adapt it specifi-
cally for each task. This hypothesis requires more
research on a wider variety of tasks.

Through our analysis of the WORDSCOREAT-
TACK, we demonstrated that it is a cost effective
way of constructing adversarial examples. It pro-
vides a flexible framework for evaluating models
under attack. As shown in Figure 2 model accu-
racy drops steadily as the max_tokens_to_perturb
is increased. Accuracy declines faster with higher
values of max_tries_per_token as more random
perturbations can be tried per token.

The cost effectiveness of the attack is borne by
the fact that the most adversarial budget setting of
(40,4) requires an average of 83 model queries and

reduces the accuracy to 26.6%. On the other the
setting of (20,1) will require at most 20 queries
on average but still reduces the model accuracy to
60%.

We wanted to construct adversarial samples such
that humans can infer the original intent without
much difficulty. Thus we considered a limited set
of perturbations with constraints such as perturbing
only one internal character per token, in addition
to adding/deleting whitespace. Two examples of
original inputs and their adversarial counterparts
are given in Table 4 in the appendix.

7.1 Ablation Studies

To understand how data augmentation impacts the
performance of MockingBERT, we have trained
and evaluated variants of our approach trained on
unperturbed training sets and on training sets where
no whitespace perturbations were allowed. As with
the main experiment we considered MockingBERT
variants mimicking both the subword embeddings
of generic (that is not finetuned) transformer mod-
els, as well as those mimicking finetuned trans-
former models. For comparison we have also fine-
tuned a standard BERT model using data augmenta-
tion using the same perturbations as when training
MockingBERT.

For experiments in this section we have used
BERT as the underlying transformer architecture
and we have evaluated it on the IMDb test set. The
results (Table 3) suggest that MockingBERT mod-
els require data augmentation to develop robustness
to attacks. Indeed without data augmentation the
accuracy of MockingBERT based models is strictly
lower than that of pure BERT models. However
MockingBERT based models trained with data aug-
mentation consistently outperform similarly trained
pure BERT models in the presence of test set per-
turbations.

Interestingly it appears that the presence of
whitespace perturbations in the training set nega-
tively affects the MockingBERT models’ accuracy
on test sets without such perturbations (74.4% vs.
70.6% for the generic embedding variant and 72.8%
vs. 69.8% for the finetuned embedding variant).
Conversely it appears that including perturbed data
when finetuning the pure BERT model improves
the model’s accuracy on unperturbed test data. A
possible explanation is that in the presence of mis-
spellings the transformer model learns to look for
multiple redundant signals for its classification, in
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Model IMDb
BERT
no augmentation 88.0/60.6/58.6
augmentation (incl. w/s) 88.4/53.6/55.4
MockingBERT targeting generic embedding
no augmentation 86.4/56.4/53.6
augmentation (no w/s) 87.2/74.4/60.2
augmentation (incl. w/s) 86.8/70.6/69.0
MockingBERT targeting finetuned embedding
no augmentation 86.4/57.6/55.6
augmentation (no w/s) 86.4/72.8/58.8
augmentation (incl. w/s) 86.4/69.8/68.6

Table 3: Accuracy scores for models with various data
augmentation strategies. The format is the same as in
Table 1.

a way similar to the effects of dropout.

8 Future Work

In our opinion it would be interesting to see if an
approach similar to MockingBERT would work
with other practical transformer-based models such
as T5, XLNet or ELECTRA. Due to differences in
how their tokenizers work some adaptations might
be necessary. Nevertheless we see no fundamental
issue that would prevent this approach from being
applicable for these other model architectures.

Another potentially interesting direction would
be to evaluate whether character-based transformer
models such as Canine (Clark et al., 2022), Char-
Former (Tay et al., 2021) or ByT5 (Xue et al.,
2022) are better suited to data augmentation with
character-level perturbations than subword based
transformer models. Intuitively subword based
models are not well equipped for handling mis-
spellings due to the fact that misspelled words
might end up being mapped to unrelated tokens and
that the number of possible misspellings for each to-
ken is very large. It should be noted that Mocking-
BERT has a very clean separation between the tok-
enization/embedding procedure (which provides re-
silience to misspellings) and the main transformer-
based language understanding layers. This means
that it is easy to swap out the tokenizer and em-
bedder if a new attack is devised, which may not
be trivial for purely character-based transformer
models.

9 Conclusion

We have demonstrated that our proposed Mocking-
BERT embedder is able to successfully mimic the
operation of a traditional tokenizer and embedder
as used in the BERT and RoBERTa models, with

only a modest decrease in performance on classifi-
cation tasks. In the presence of input perturbations,
MockingBERT outperforms both a data augmented
BERT model and the state of the art RobEn proce-
dure. Furthermore we have provided evidence that
a universal embedder can achieve similar results
to one that is specifically trained for a particular
finetuned embedding, suggesting that embeddings
might not need to be trained with specific tasks in
mind. We have also proposed an efficient and ef-
fective method for constructing adversarial attacks,
WORDSCOREATTACK, which allows constructing
such attacks at a fraction of the cost of an exhaus-
tive search, at the expense of possibly perturbing
more words within a sentence in order to achieve a
similar attack success rate.
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Original Input Adversarial Input
the hand of death most definitely rates a ten on a scale of one
to- due, in no small part, to john woo’s masterful direction,
coupled with kat’s superb cinematography: some of the
leisurely tracking shots alone are worth the price of a rental;
there are moments when this one borders on becoming an
art-house film. both james tien and sammo hung make for
the kind of villains you can’t help but love to hate. tien
is particularly good as the baddest of the bad. it’s a role
reversal the likes of which i don’t think i’ve ever seen before
(tien normally played a hero and, in fact, with his,

the hand of death most defini tely rates a ten on a scale of one
to- due, in no small part, to john woo’s mastreful direction,
coupled with kat’s supreb cinematography: some of the
leisurely tracking shots alone are worth the price of a rental;
there are moments when this one borders on becoming an
art-house film. both jtames tien and sammo hung make for
the kind of villains you can’t help but loe to hate. tien is
particularly good as the baddest of the bad. it’s a rloe reversal
the likes of which i don’t think i’ve ever seen before (tien
normally played a hero and, in fact, with his

i caught this movie right in my eye when i was passing by
a hall of posters in the nearby cinema. the tag line was sort
of confusing and immediately after reading it, i thought of
the possibility of it being similar to national lampoon’s dorm
daze. i liked that movie, aside from having a huge collection
of such genres, i decided to hit it to the cinemas right after
my exams for a tension releaser.<br /><br />delightfully, i
came out smiling from cheek to cheek and had an equally
great amount of laughter at bits and points of the movie.
amanda aynes definitely kicked it off better than keira

i caughtthis movie right in my eye when i was passing by
a hlal of posters in the nearby cin ema. the tag line was
sort of confusing and immediately after reading it, i thought
of the possibility of it being similar to national lampoon’s
dorm daze. i lciked that movie, aside from having a huge
collection of such genres, i decided to hit it to the cinemas
right after my exams for a tension releaser.<br /><br />delig
htfully, i came out smliing from cheek to cheek and had
an equallygreat amount of laughter at bits and points of the
movie. amanda bynes definitely kicked it off better than
keira

Table 4: Examples of original inputs with adversarial counterparts.
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Abstract

The ability to generalize compositionally is
key to understanding the potentially infinite
number of sentences that can be constructed in
a human language from only a finite number
of words. Investigating whether NLP models
possess this ability has been a topic of interest:
SCAN (Lake and Baroni, 2018) is one task
specifically proposed to test for this property.
Previous work has achieved impressive
empirical results using a group-equivariant
neural network that naturally encodes a
useful inductive bias for SCAN (Gordon
et al., 2020). Inspired by this, we introduce
a novel group-equivariant architecture that
incorporates a group-invariant hard alignment
mechanism. We find that our network’s struc-
ture allows it to develop stronger equivariance
properties than existing group-equivariant
approaches. We additionally find that it out-
performs previous group-equivariant networks
empirically on the SCAN task. Our results
suggest that integrating group-equivariance
into a variety of neural architectures is a
potentially fruitful avenue of research, and
demonstrate the value of careful analysis of
the theoretical properties of such architectures.

https://github.com/rycolab/equiv

ariant-transduction

1 Introduction

Humans painlessly process sentences they have
never heard before. This feat is possible be-
cause they can construct the meaning of a sen-
tence by composing the meaning of its parts. This
phenomenon is known as compositional general-
ization in the computational linguistics literature
(Lake and Baroni, 2018; Hupkes et al., 2020) and
it is what enables the understanding of an infinite
number of novel sentences from only a finite set
of words (Chomsky, 1957; Montague, 1970). For
example, without knowing what action the verb to
blick describes, we know that blick twice indicates
that this action should be performed two times. It
is natural that we would like for neural network

walk right → RTURN WALK
walk and jump twice → WALK JUMP JUMP
jump left after walk → WALK LTURN JUMP

Figure 1: Examples of SCAN inputs and outputs

models of language to be endowed with this ability
as well—and, indeed, if they are to achieve human-
like performance, it is likely to be necessary.

There have been multiple proposals for methods
of assessing these abilities in neural models
(Bahdanau et al., 2019; Hupkes et al., 2020). One
popular benchmark is the SCAN task (Lake and
Baroni, 2018) and its derivatives (Ruis et al., 2020).
SCAN involves translating natural language instruc-
tions into a sequence of actions executable by an
agent navigating in an environment. Examples
of these commands are shown in Figure 1. In
order to test generalization capabilities, there are
various test–train splits which deliberately hold
out specific words. For example, the training set
for the Add Jump split only contains jump in the
simple input–output pair (jump, JUMP), while the
test set includes commands where it is combined
with modifiers, such as jump twice and jump
left. Since the model has seen the effect of these
modifiers on other verbs in training, a model with
the ability to perform compositional generalization
should be able to apply them to jump.

SCAN is an example of a task that could benefit
from a group-equivariant network. When a network
possesses the property of equivariance to a groupG,
acting on the input with an element of G results in
the output differing by the action of the same group
element. With an appropriate choice of group, this
property can be used to imbue a network with the
ability to generalize compositionally. If we have a
set of input words, and a corresponding set of their
output words, and we act on these with a permu-
tation group which swaps words within these sets,
then swapping one word for another in the input
will result in the corresponding output words be-
ing swapped in the output. This effectively means
that when the network has learned an example in
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training it can generalize to any input which can be
reached from the training example by acting on it
with a group element. In the case of the SCAN task,
the action on a sentence amounts to replacing a
word with another vocabulary word from the same
lexical class (e.g., replacing a verb with another
verb). For example, if a G-equivariant network is
trained on the SCAN task using a group G whose
action amounts to swapping SCAN verbs, then the
probability of run being mapped to RUN will be
identical to the probability of jump being mapped
to JUMP – thus even if only one verb is seen in
training, it learns to apply observed patterns to the
unseen verbs. This approach was first applied to
SCAN by Gordon et al. (2020).

We present a novel group-equivariant architec-
ture for the SCAN task which has a notable theoreti-
cal advantage over similar existing approaches: the
effective orbit of the model is larger, which results
in more robust generalization to novel examples.
From one input command, our model can poten-
tially generalize to an exponential number of un-
seen examples, where previous group-equivariant
models could generalize only to a constant number.
We also demonstrate the empirical effect of this ad-
vantage, showing that our model outperforms that
of Gordon et al. across all splits of the SCAN task.

Concretely, we incorporate group equivariance
into the hard alignment string-to-string transduc-
tion model described by Wu et al. (2018). Hard
alignment differs from the more common soft at-
tention (Bahdanau et al., 2015) in that each out-
put symbol is aligned with precisely one input
symbol, rather than calculating a weighting over
all input symbols. Our model combines a group-
invariant hard alignment mechanism with a group-
equivariant transduction mechanism, which en-
ables its improved generalization capabilities. Our
findings motivate further exploration of group-
equivariant architectures, and suggest that careful
consideration of their provable equivariance prop-
erties is worthwhile.

2 Related Work

Many attempts have been made to quantify what
it means for a model to exhibit compositional be-
haviour and to create models that can successfully
generalize compositionally. Hupkes et al. (2020)
provide a summary article on this topic, in which
they describe different aspects of compositional
generalization and formulate methods for assessing

a model on each aspect. In this work, we concern
ourselves primarily with what Hupkes et al. term
systematicity—the ability to understand an unseen
combination of previously seen parts.

The SCAN task which we focus on has been ap-
proached in many ways. Liu et al. (2020) achieve
state-of-the-art results on the task, achieving 100.0
across all splits, using a memory-augmented model,
trained using reinforcement learning, which learns
how to identify the symbolic functions described
by specific phrases within inputs. Lake (2019) ap-
proach the task using meta sequence-to-sequence
learning. Although this approach produces excel-
lent results, it requires a bespoke meta-training
approach for each generalization task. Russin et al.
(2019) achieve good results by treating syntax and
semantics separately. Their model separately cal-
culates likely alignments between input and output
words, and calculates how likely a word is to be
produced conditioned on the input word with which
it is aligned. This approach is similar in concept to
the hard alignment model that we use as the base
for our G-equivariant architecture.

Equivariant networks built using group convolu-
tions (Kondor and Trivedi, 2018) have been used
most in the field of computer vision, where they
have been used to create Group Convolutional Neu-
ral Networks (G-CNNs) imbued with the prop-
erty of invariance to transformations of an im-
age such as rotation and reflection (Cohen and
Welling, 2016). Recently these techniques have
been adopted for NLP tasks: Gordon et al. (2020)
applied group-equivariant networks to the task of
compositional generalization. They used the build-
ing block of the group convolution to construct
group-equivariant network components, including
an LSTM, an attention mechanism and an embed-
ding layer. Their model is a group-equivariant
analogue of a standard LSTM-based sequence-to-
sequence model. They evaluate it on the SCAN task
and achieve high accuracies on the splits assessing
systematicity. We build on their work by present-
ing an alternative group-equivariant architecture for
this task, resulting in more robust generalization
abilities and improved empirical performance.

3 Group-Equivariant Networks

3.1 Group Theory

Some understanding of the basics of Group Theory
are helpful to understand group-equivariant net-
works. This section will briefly outline the key
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concepts necessary for understanding our work.

Definition 1. A group (G, ◦) is a set G with a
binary operation ◦ with the following properties:

(i) Closure: For any g, h ∈ G, g ◦ h ∈ G.

(ii) Identity: There exists an element e, which
we call the identity, such that for all g ∈ G,
e ◦ g = g ◦ e = g.

(iii) Inverse: For any g ∈ G there is an element
h ∈ G such that g ◦ h = h ◦ g = e. We call
this element the inverse of g and we may write
h = g−1.

(iv) Associativity: for any g1, g2, g3 ∈ G we have
(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

Definition 2. Let G be a group and X a set. A left
group action ofG onX is a function T : G×X →
X . As shorthand, we write T (g, x) = g ◦ x.

Definition 3. If a group G acts on a set X through
a defined action, then the orbit of an element x ∈
X under G (which we write G ◦ x) is G ◦ x =
{g ◦ x | g ∈ G}.
Definition 4. The symmetric group Sn is the
group of all permutations of a set of n elements.
The operation for this group is composition.

If G = Sn acts on a set X = {x1, . . . , xn}, then
the canonical action of a group element permutes
the items in the set. We will write elements of Sn in
cycle notation, where g = (a1a2 . . . am) indicates
that g ◦ ai = ai+1 for i ∈ {1, . . . ,m − 1} with
g ◦ am = a1 (and by extension g ◦ xai = xg◦ai).
Indices that do not appear in the cycle are left
unchanged. () indicates the identity permutation,
which maps each item to itself. An understanding
of permutation groups will be key to our exposition,
so we give an example of S3.

Example 1. S3 is the symmetric group of per-
mutations on 3 elements. In full, S3 =
{(), (12), (13), (23), (123), (132)}. It can act on
any set with 3 elements. For example, if X =
{a, b, c} then (12) ◦ a = b, (12) ◦ b = a and
(12) ◦ c = c, since (12) maps the first element of
the set to the second element and vice versa, while
leaving the third element unchanged.

Definition 5. A group G is cyclic if there is an
element g ∈ G such that all elements of G take
the form gi, where gi = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸

i

for some

integer i. We say that G is generated by g, and
write G = 〈g〉.

Example 2. One example of a cyclic group is a
subgroup of Sn generated by the permutation g =
(123 . . . p) for p ≤ n. This permutation g has the
effect of shifting each of these p elements by 1, so
gi has the effect of shifting each element by i, and
gp is equal to the identity permutation. We call this
group a cyclic shift group.

To revisit the example of S3, G = 〈(123)〉 =
{(), (123), (132)} is an example of a cyclic shift
group. If this group acts on a set of 3 elements, then
the identity element (), leaves the items in the set
unchanged, while (123) “shifts” each item along
by one and (132) by two.

Cyclic shift groups will be useful in our work.
If we have a set X of p objects that we wish to
permute, the symmetric group of all possible per-
mutations Sp contains p! elements. However, in
our work we will consider each object in isolation,
so we do not to consider every permutation: we
only need a group G such that for a given x1 ∈ X ,
for any element x2 ∈ X there is a permutation
g ∈ G such g ◦ x1 = x2. This is true of the cyclic
shift group G = 〈(123 . . . p)〉, which contains only
p elements. By using cyclic shift groups in place
of the symmetric groups, we are able to avoid un-
necessarily slow calculations.

Definition 6. Let X and Y be sets and G be a
group. Suppose the elements of G act on X and
Y with actions denoted g ◦ x and g ◦ y, x ∈ X
and y ∈ Y . A function α : X → Y is equivariant
with respect to G (or G-equivariant) if and only if
α(g ◦ x) = g ◦ α(x) for all x ∈ X and g ∈ G. We
say that α is invariant to G if α(g ◦ x) = α(x) for
any x ∈ X and g ∈ G.

3.2 SCAN: A Test of Compositionality

The SCAN task was proposed by Lake and Baroni
(2018) to test a model’s ability to generalize to
unseen examples by composing known elements.
The task involves translating between an instruc-
tion in a limited form of English with input al-
phabet Σ = {walk, jump, . . .} and an executable
command with words taken from output alphabet
∆ = {WALK, JUMP, . . .}. As input the model re-
ceives a string x ∈ Σ∗, such as jump twice, or
walk after run, and as output it should produce a
string y ∈ ∆∗, like JUMP JUMP, or RUN WALK.

SCAN contains several splits, each designed to
test a different kind of generalization. We focus on
the splits that aim to evaluate the systematicity of
the model – that is to say how well it can under-
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stand the unseen combination of previously seen
parts. This is done by withholding certain combi-
nations from the training set and then evaluating
the model’s performance on these unseen combina-
tions in the test set. For example, the training set
of the Add Jump split only contains jump in the ba-
sic input–output pair (jump, JUMP), while the test
set contains inputs where it is used in combination
with other modifiers. Since these modifiers have
been seen before with other verbs, this tests how
well the model generalizes from what it has been
exposed to in training.

3.3 Group-Equivariance in Transduction

We term a set of words whose function in SCAN is
the same and that are used in identical contexts
as a lexical class. We can see that, for exam-
ple, any SCAN command containing walk would
equally be a valid instruction if walk were replaced
with jump, look, or run. We call this class the
Verb lexical class. We divide the input vocab-
ulary into lexical classes Lin

1 , . . . , L
in
I ⊆ Σ. If

we designate a lexical class to be our equivari-
ant lexical class Lin

equi, we take the group G =

〈(12 . . . |Lin
equi|)〉 to be the cyclic shift group of

size |Lin
equi| – i.e., the group generated by a per-

mutation that shifts each element along by one.
For example, if Lin

equi = {walk, look, run, jump},
then G = 〈(1234)〉, whose elements are the
permutations {(), (1234), (13)(24), (1432)}. The
group acts on Lin

equi by permuting its elements,
so (1234) ◦ walk = look, for example. The
group also acts in the same way on the output
lexical class Lout

equi = {WALK, LOOK, RUN, JUMP},
with (1234) ◦ WALK = LOOK. Previous work
(Gordon et al., 2020) has defined the action of
g ∈ G on a sentence x = (x1, . . . , xN ) ∈ Σ∗

as g ◦ x = (g ◦ x1, . . . , g ◦ xN ).1

We now explain why group equivariance is a
useful property for a task such as SCAN, and how
it can lead to models that can generalize composi-
tionally. Consider the SCAN task with input vocab-
ulary Σ, output vocabulary ∆ and lexical classes
Lin

equi ⊆ Σ, Lout
equi ⊆ ∆. Let ξ : Σ∗ → ∆∗ be a trans-

ducer that constitutes a G-equivariant function for
G = 〈(12 . . . |Lin

equi|)〉, with its action defined on
Σ∗ and ∆∗ as above. If we have an input–output
pair (x0,y0) ∈ Σ∗ × ∆∗ such that ξ(x0) = y0,
then for all input–output pairs (x,y) ∈ Σ∗ ×∆∗

such that (x,y) = (g ◦x0, g ◦y0) for some g ∈ G,

1If xn ∈ Σ \ Lin
equi, g ◦ xn = xn.

we have ξ(x) = ξ(g◦x0) = g◦ξ(x0) = g◦y0 = y.
Plainly, this means that if our function successfully
transduces a pair (x0,y0), it will also transduce all
pairs its orbit G ◦ (x0,y0) = {(g ◦ x0, g ◦ y0) |
∀g ∈ G}. If we consider the case where ξ is ob-
tained from the output of a neural network, this
would mean that it could generalize composition-
ally to these examples even if the network had not
been trained on them.

3.4 Constructing G-Equivariant Networks

We now describe how to build a neural network
that is equivariant to a groupG usingG-equivariant
building blocks. We describe three such building
blocks that we will use in the construction of our
equivariant hard-alignment model.

1 G-Convolution. TheG-convolution is the ex-
tension of the standard convolution to an arbitrary
finite group G (Kondor and Trivedi, 2018). Let
G be a finite group and f : dom(f) → RK an
input function. Suppose we have D learnable filter
functions where we denote the dth filter function as
ψ(d) : dom(f) → RK . Then the G-convolution
of f with {ψ(d)}Dd=1 is a |G| × D matrix where
each entry is given by the following:

G -Conv(f ;ψ)g,d (1)

=
∑

h∈dom(f)

f(h) ·ψ(d)(g−1 ◦ h)

As shown in Cohen and Welling (2016, § 6.1), G-
convolutions are G-equivariant.

2 G-Embed. It is often desirable to embed in-
put in a vector space – but for a G-equivariant
network we require this step too to be equivari-
ant. Gordon et al. (2020) show that a G-equivariant
embedding can be obtained as a special case of aG-
convolution where the input function for input word
x is a one-hot encoding, x : {1, . . . , |Σ|} → {0, 1}.
Thus the learnable filter functions will be one-
dimensional, and there is no longer a need for
the sum, as it is zero at all but one value. We
call our set of K filter functions {ω(k)}Kk=1, with
ω(k) : {1, . . . , |Σ|} → R. Then the G-equivariant
embedding of an input x is a |G| ×K matrix e(x)
with entries

e(x)g,k = G -Embed(x;ω)g,k

= ω(k)(g−1 ◦ x) (2)
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3 G-Decode. The output φ : G → RD of
some composition of equivariant layers based on
G-convolutions will be a function over group ele-
ments, so in order to calculate logits over an output
distribution of items ∆, Gordon et al. (2020) use a
decoding layer

G -Dec(φ, ỹ;ρ) =
∑

h∈G
φ(h) · ρ(h−1 ◦ ỹ) (3)

where ỹ ∈ ∆ is a candidate output value and
ρ : {1, . . . , |∆|} → RD is a learnable filter func-
tion. This layer is not a form of group convolution,
but instead is equivariant due to parameter-sharing
(Ravanbakhsh et al., 2017).

4 An Equivariant Transducer

We now describe the architecture of our equivari-
ant hard alignment transducer. Let Σ be an input
alphabet and ∆ be an output alphabet. Given an
input string x ∈ Σ∗ we create a model to calculate
a probability distribution p(y | x) over y ∈ ∆∗.
We consider what it means for such a model to be
equivariant with the following theorem.

Theorem 1. Let p(y | x) be a probability distri-
bution over ∆∗. If p(g ◦ y | g ◦ x) = p(y | x)
for any g ∈ G,x ∈ Σ∗,y ∈ ∆∗, then the
transducer ξ : Σ∗ → ∆∗ defined by ξ(x) =
argmaxy∈∆∗ p(y | x) is equivariant.

Proof. Given an x, let y∗ = ξ(x) =
argmaxy∈∆∗ p(y | x). Now ξ(g ◦ x) =
argmaxy∈∆∗ p(y | g ◦ x). But for any y ∈ ∆∗,
p(y | g◦x) = p(g−1◦y | g−1◦g◦x) = p(g−1◦y |
x), so ξ(g ◦ x) = argmaxy∈∆∗ p(g

−1 ◦ y | x).
We know that the probability distribution condi-
tioned on x is maximized by y∗, so we have
g−1 ◦ ξ(g ◦ x) = y∗ and thus ξ(g ◦ x) = g ◦ y∗
and the transducer is equivariant.

Moving forward we will use this equivalent defi-
nition to discuss the equivariance of our model.

4.1 A Hard-Alignment Transducer
As stated above, we aim to construct a distribu-
tion p(y | x) where y ∈ ∆∗ and x ∈ Σ∗. The
key idea behind a hard-alignment model is that the
two strings x and y are aligned according to a la-
tent alignment a ∈ A(x,y). Hard alignment is
contrasted with a soft alignment (Bahdanau et al.,
2015; Luong et al., 2015), which does not have
the interpretation as a latent variable. For x of
length N , y of length M , each a is a vector in

{1, . . . , N}M . If we have am = n, then the input
word xn and output word ym are aligned. Thus,
A(x,y) consists of all non-monotonic alignments
such that each word in y aligns to exactly one word
in x. Because there is no annotation for align-
ments between the strings, we marginalize over
alignments to compute the distribution:

p(y | x) =
∑

a∈A(x,y)

p(y,a | x) (4)

=
∑

a∈A(x,y)

M∏

m=1

p(ym | am,y<m,x) p(am | y<m,x)

Wu et al. (2018) show that eq. (4) may be rewritten
as follows using the distributive property

M∏

m=1

N∑

am=1

p(ym | am,y<m,x)︸ ︷︷ ︸
translator

p(am | y<m,x)︸ ︷︷ ︸
aligner

(5)
which is more efficient to compute. Specifically,
this allows the distribution p(y | x) to be com-
putedO (M ·N) rather thanO (|A(x,y)|), which
is exponential in both M and N .

This formulation allows us to completely sep-
arate the alignment probability p(am | y<m,x),
which calculates how likely an output word is to
align with each input word, from the word transla-
tion probability p(ym | am,y<m,x), which calcu-
lates how likely each output word is to be produced
when aligned with a given input word. This can
also be viewed as separately treating the syntax
(alignment probability) and semantics (word trans-
lation probability) of the input. In this sense, the
model is similar to that of Russin et al. (2019).

We also experimented with a variation on this
formulation in which the sum over am is replaced
with taking the maximum, as well as an annealed
variation. This is described in App. A.

4.2 An Equivariant Translator

We now explain how the translator term in eq. (5)
is defined in order to ensure group-equivariance.
Because ym and xam are both individual words—
as opposed to full sentences—the distribution
p(ym | xam , am) is a simple classifier. We use a
composition of the G-equivariant layers described
in §3.4, so that

p(ym | xam , am) =
exp (G -Dec(φ, ym))∑
y′∈∆ exp (G -Dec(φ, y′))
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where φ = G -Conv(e(xam)). So, for each input
word xam , we first obtain a G-Embedding, then
pass this through a G-Convolution, then use
G-Decode to obtain logits over possible output
words, which are then fed through a softmax to
obtain probabilities.2

4.3 An Invariant Aligner
The alignment term is parameterized using a re-
current neural network. Before encoding, we re-
place each word with a symbol indicating its lex-
ical class. Formally, if we have I disjoint lexical
classes Lin

1 , . . . , L
in
I ⊆ Σ that cover Σ and J dis-

joint lexical classes Lout
1 , . . . , Lout

J ⊆ ∆ that cover
∆, we define functions `Σ : Σ → {1, . . . , I} and
`∆ : ∆ → {1, . . . , J} such that `Σ(w) = i iff
w ∈ Lin

i , `∆(w) = j iff w ∈ Lout
j . We overload

these so that for x ∈ Σ∗ of length N , `Σ(x) =
(`Σ(x1), . . . , `Σ(xN )) and analogously `∆(y) =
(`∆(y1), . . . , `∆(yM )) for y ∈ ∆∗ of length M .
Then, our model is actually dependent on `Σ(x)
and `∆(y<m). This has the effect of delexicaliz-
ing the input and equivalence-classing the words.
For example, if the verb and direction lexical
classes are being considered, the input walk left
after run will, in effect, be represented as <verb>
<direction> after <verb>. This substitution im-
bues the alignment model with some useful theo-
retical properties that will be discussed in §4.4.

The delexicalized input sequence `Σ(x) of
length N is encoded both forwards and back-
wards using an LSTM to produce hidden states−→
h

(enc)
n ,

←−
h

(enc)
n ∈ Rdh for n ∈ {1, . . . , N}.

These are then concatenated to obtain h(enc)
n =−→

h
(enc)
n

⊕←−
h

(enc)
n ∈ R2dh . The output sequence

`∆(y) of length M is encoded forwards to produce−→
h

(dec)
m ∈ Rdh for m ∈ {1, . . . ,M}. Then, we

have the following distribution

p(am | `∆(y<m), `Σ(x)) =
exp(emam)

∑N
n=1 exp(emn)

(6)
where

emn =
−→
h (dec)
m

>
Th(enc)

n (7)

and T ∈ Rdh×2dh is a learned matrix.

4.4 Theoretical Results and Discussion
We know that each word-to-word translator p(ym |
xam , am) is G-equivariant. We now explore in

2Additional non-linearities are introduced by passing the
output of each layer through a tanh function.

more detail the theoretical properties of the entire
model. We begin by considering the properties of
the alignment model.

Definition 7. We say that a function f : X ×Y →
R is invariant to a group G if for any x ∈ X, y ∈
Y, g ∈ G, we have f(g ◦ x, g ◦ y) = f(x, y).

Theorem 2. The alignment model p(am |
`∆(y<m), `Σ(x)) defined in §4.3 is invariant to G.

Proof. Let us take a group element g ∈ G.
Then `Σ(g ◦ x) = `Σ(x). We can see this
because g ◦ x = (g ◦ x1, . . . , g ◦ xN ) and
g only permutes each word within its lexical
class. Words within the same lexical class are
mapped to the same value by `Σ. A similar
argument shows that `∆(g ◦ y<m) = `∆(y<m).
So p(am | `∆(g ◦ y<m), `Σ(g ◦ x)) = p(am |
`∆(y<m), `Σ(x)) and the model is invariant.

We can now examine the properties of the trans-
ducer as a whole.

Theorem 3. The model p(y | x) defined in eq. (5)
is G-equivariant.

Proof. We take a group element g ∈ G. Then

p(g ◦ y | g ◦ x)

=
M∏

m=1

N∑

am=1

p(g ◦ ym | am, g ◦ xam)

p(am | `∆(g ◦ y<m), `Σ(g ◦ x))

We have seen that the translator part of the model is
equivariant toG, and the alignment part is invariant,
so we can rewrite the above as

M∏

m=1

N∑

am=1

p(ym | am, xam)p(am | `∆(y<m), `Σ(x))

which is equal to p(y | x) and thus the model is
G-equivariant.

We would like to understand what these equiv-
ariance properties actually mean for our model’s
ability to generalize to unseen sentences. To aid
in the discussion of this question, we define the
following.

Definition 8. Given a model p(y | x) that is
equivariant to a group G and a sentence pair
(x,y) ∈ Σ∗ × ∆∗, we define the theoretical or-
bit of (x0,y0) under the model as ΩT ((x0,y0)) =
{(g ◦ x0, g ◦ y0) | g ∈ G}. For any (xi, yi) ∈
ΩT ((x0,y0)), p(yi | xi) = p(y0 | x0).
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If we maximize p(y0 | x0) for a training pair
(x0,y0), any benefits of this are shared by elements
of its theoretical orbit, allowing the model to gen-
eralize to these pairs. So the size of the theoretical
orbit of a sentence pair is a way of quantifying how
widely a model can generalize from that pair.

In the case of our model, with the equivariant
lexical class corresponding to the 4 SCAN verbs,
any sentence pair containing one of these verbs
has a theoretical orbit of size 4. If (x0,y0) is a
sentence pair containing two different SCAN verbs –
for example, (walk after run, RUN WALK) – this
means that its theoretical orbit contains 4 sentences
out of the 16 sentences of this form that can be
constructed. In addition to the theoretical orbit,
which is guaranteed by the properties of the model,
we also consider the behaviour of a trained model
in practice.

Definition 9. Given a model p(y | x) that is equiv-
ariant to a group G and a sentence pair (x0,y0) ∈
Σ∗ ×∆∗, we define the observed orbit of (x0,y0)
under the model as ΩO((x0,y0)) = {(x,y) ∈
Σ∗ × ∆∗ | − log p(y | x) = − log p(y0 | x0)}.
Clearly ΩT ((x0,y0)) ⊆ ΩO((x0,y0)).

To better understand how our model behaves,
we examined the observed orbit of one of our best-
performing models throughout training. We se-
lected sentence pairs from SCAN containing 2 verbs,
and generated all possible sentence pairs of the
same form. For each form, there are 16 such pairs.
While training our model, every five epochs we
recorded the negative log-likelihood of each sen-
tence pair as given by the model and counted how
many of the 16 pairs had the same negative log-
likelihood to find the size of the observed orbits.3

We show the results for one sentence pair for the
first 100 epochs of training in Figure 2. We can
see that, initially, the 16 sentence pairs with the
same form are in 4 distinct orbits of size 4, as pre-
dicted theoretically. However, as the model trains,
all 16 sentences come to have the same negative
log-likelihood, and this continues for the remaining
duration of training.

To better understand why the observed orbit un-
der our model is larger than predicted theoretically,
we examine the effect of alignments in more depth.
We consider a gold alignment for a SCAN sentence
pair (x,y) to be an alignment a∗ such that words
from corresponding lexical classes are aligned and

3The values were considered to be equal if they were
within floating point error, as checked by torch.isclose().

each output word is aligned with an input word with
the corresponding meaning (e.g., LTURN aligned
with left, WALK aligned with walk).

Given x ∈ ΣN , y ∈ ∆M and an alignment a
between them, consider a group GN with elements
g = (g1, . . . , gN ) with gn ∈ G. Define its action
on x and y by g ◦ x = (g1 ◦ x1, . . . , gN ◦ xN ) and
g ◦a y = (ga1 ◦ y1, . . . , gaM ◦ yM ). Note that the
group GN depends on the length of the string, and
its action on y ∈ ∆M depends on the alignment.

Theorem 4. Given x ∈ ΣN , y ∈ ∆M and a gold
alignment a∗ ∈ A(x,y) between the two, p(g ◦a∗
y | g ◦ x,a∗) = p(y | x,a∗) for all g ∈ GN , with
actions defined as above.

Proof. For any g ∈ GN , p(g ◦a∗ y | g ◦ x,a∗) =∏M
m=1 p(ga∗m ◦ ym | ga∗m ◦ xa∗m) =

∏M
m=1 p(ym |

xa∗m) = p(y | x,a∗).

This means that for x0 ∈ ΣN , y0 ∈ ∆M and
a gold alignment a∗, the model is equivariant to
GN and thus the theoretical orbit of a sentence pair
(x0,y0) under the model is |G|N rather than |G|
as it was without conditioning on the alignment.4

Although this may seem irrelevant since we do
not condition on gold alignments, we find that our
trained models do approximate this. As training
progresses, our model gradually becomes more
confident about the correct alignment between the
input and output. Once the model has confidently
learned the gold alignment a∗ between an input–
output pair x ∈ Σ∗,y ∈ ∆∗, p(am | y<m,x)
becomes very close to 0 for am 6= a∗m and very
close to 1 for am = a∗m, meaning that p(y | x)
approaches p(y | x,a∗) =

∏M
m=1 p(ym | xa∗m).

This means that for an input pair (x0,y0), once
the model has a high degree of confidence about
the gold alignment a∗ and p(y0 | x0) approaches
p(y0 | x0,a

∗), the observed orbit of (x0,y0) will
become this larger theoretical orbit. This explains
what is shown in Figure 2.

5 Experiments and Results

Experiments were performed on the Simple, Add
Jump, Around Right and Length splits of SCAN. In
each case, models were trained on 90% of the train

4Unlike previous examples, theorem 4 only directly im-
plies the GN -equivariance of the restricted transducer ξ(x |
a∗) = argmaxy∈∆M p(y | x,a∗), since the action of GN is
only defined for y ∈ ∆M . However, it does in fact imply the
equivariance of the unrestricted transducer, since conditioning
on the alignment means that p(y | x,a∗) = 0 for y ∈ ∆Q if
Q 6= M .
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Figure 2: Observed orbits of sentence pairs (x,y) during the first 100 epochs of training, with x of the form
<verb1> right thrice after <verb2> and y of the form <VERB2> RTURN <VERB1> RTURN <VERB1>
RTURN <VERB1>.

Model Simple Add Jump Around Right Length

Russin et al. (2019) 100.0 91.0 28.9 15.2
Liu et al. (2020) 100.0 100.0 100.0 100.0
Gordon et al. (2020) 100.0 99.1 92.0 15.9
Equivariant Hard Alignment 100.0 100.0 100.0 28.5

Table 1: Accuracy achieved on SCAN task, presented alongside results from state-of-the-art systems

set, by minimizing the negative log-likelihood of
observed sentence pairs, with 10% of the train set
reserved to be used as a validation set. Models were
selected to have the lowest loss on the validation
set, and then evaluated on the test set.

For the Add Jump split, the group used was the
cyclic shift group of size 4 acting on the set of
SCAN verbs. For the Around Right split, which
withholds the combination around right, the
group used was the cyclic shift group of size 2
acting on the set of directions. Hyperparameters
were selected through a random hyperparameter
search. At test time, outputs were decoded using
a beam search with 3 beams.

Results are shown in Table 1. We can see that
our model outperforms Gordon et al.’s (2020) simi-
lar group-equivariant model on all splits, achieving
100% accuracy on all but the Length split, demon-
strating empirically the advantage of the wider gen-
eralization capabilities that we explained theoreti-
cally. It still falls short of Liu et al.’s (2020) state-
of-the-art memory-augmented model on the Length
split. Since the equivariance of our model primar-
ily targets systematicity, which is not the ability
targeted by the Length split, it is not surprising that
it does not perform at state-of-the-art levels in this
split. We note, however, that our model does sub-

stantially outperform both Gordon et al.’s (2020)
group-equivariant model, and Russin et al.’s (2019)
semantic-syntactic alignment model on this split,
which are the two models most similar to our own.

6 Limitations and Future Work

Group-equivariant networks have not yet been
widely adopted in NLP, and we feel that there is
potential for more tasks to be identified that could
benefit from the application of group equivariance.
A further line of investigation would be to develop
and assess group-equivariant versions of a wider
variety of architectures. The model used by Gordon
et al. (2020) is an equivariant version of a standard
LSTM-based sequence-to-sequence model, and the
model used in our work is based on the hard align-
ment model used by Wu et al. (2018) – these are
only two of many possible architectures. Variants
of other architectures may possess different equiv-
ariance properties from both of these models, and
may perform well on different tasks. Future work
could incorporate group equivariance into more ar-
chitectures and assess their theoretical properties
and empirical performance.

A key limitation of group-equivariant networks
is the need to understand and specify the group
to which it is equivariant. This makes it difficult
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to apply these networks to real world tasks rather
than artificial datasets such an SCAN. Future work
could investigate ways to identify from data which
words should be in a lexical class, or ways to
allow group-equivariant networks to deal with
open vocabulary problems. Some work has been
done on learning input and output vocabulary
alignments in the context of SCAN (Akyurek and
Andreas, 2021), so it is possible that this could be
used to improve group-equivariant architectures
by reducing or eliminating their reliance on lexical
classes and groups known a priori.

7 Conclusion

In this work, we proposed and implemented a
string-to-string transduction model which com-
bines a group-invariant sum over hard alignments
and a group-equivariant output word probability to
create a model which is equivariant to the swap-
ping of words in the same lexical class. We ap-
plied this model to the SCAN task, finding that it
is successful in allowing the model to generalize
compositionally. We show theoretically that our
model’s structure allows for wider generalization
to novel sentences than existing group-equivariant
approaches and demonstrate this empirically. We
suggest that this is strong motivation to explore
group-equivariant variants of other architectures,
and to investigate other tasks which may benefit
from group-equivariant models, as well as suggest-
ing that theoretical analysis of equivariance proper-
ties may be a useful tool in understanding perfor-
mance differences.
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A Model Variants

In addition to the sum-based model presented in the main body of the paper, we also experimented on
some variations of the model, which we explain here.

A.1 Max Model

The max version of the model is given by

p(y | x) =
M∏

m=1

max
1≤am≤N

p(ym | am,y<m,x) p(am | y<m,x) (8)

where all terms are the same as for the sum model.

A.2 Annealed Max Model

This model proved difficult to train, so we also conducted experiments with an annealed max model,
which is given by

p(y | x) =
M∏

m=1

N∑

am=1

αmamp(ym | am,y<m,x)p(am | y<m,x) (9)

where αm is given by

αmam =
exp

(
1
τ p(ym | am,y<m,x)p(am | y<m,x)

)
∑N

a′m=1

(
1
τ p(ym | a′m,y<m,x)p(a′m | y<m,x)

) (10)

where 0 < τ ≤ 1 is the temperature. As τ approaches 0, αm approaches a one-hot vector indicating
the argmax of p(ym | am,y<m,x)p(am | y<m,x), and thus eq. (9) becomes close to eq. (8). During
training, τ is gradually decreased, so that the fully trained model is, in effect, a max model. The starting
value of τ , as well as the schedule on which it is decreased, are hyperparameters.

A.3 Model Comparison

In Table 2 we show the best accuracy achieved on each split by each variant of our model.

Model Simple Add Jump Around Right Length

Sum 100.0 100.0 100.0 28.5
Max 100.0 99.9 99.9 18.3
Annealed Max 99.9 99.9 99.9 19.7

Table 2: Accuracy achieved on SCAN task by each variant of our model

B Reproducibility

The model was optimized using Adam (Kingma and Ba, 2015) with a learning rate of 0.001. We chose
hyperparameters through a random search. Each hyperparameter included in the search in described in
Table 3 along with the range that was searched. For each split, sets of hyperparameters were randomly
sampled and models with those hyperparameters were trained and evaluated. Table 4 shows the value of
the hyperparameters for the best-achieving model on each split. In Table 5 and Table 6 we also include
the best-performing hyperparameters for the max and annealed variations of the model.
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Hyperparameter Details Range

Dimension of G-Embedding Size of G-Embedding layer 5-256
Number of Filters Number of filters used in G-Convolution layer 5-256
Embedding Dimension Dimension of embedding layer in alignment model 5-256
Hidden Size Size of LSTM layers used in alignment model 5-256
Batch Size - 8 - 64

Table 3: Hyperparameter ranges that were searched

Split
Dimension of
G-Embedding

Number of
filters

Embedding
Dimension

Hidden
Size

Batch
Size

Simple 20 24 36 6 8
Simple 6 13 67 13 8
Add Jump 122 7 223 67 8
Around Right 100 7 122 36 8
Around Right 20 20 9 55 8
Around Right 45 182 100 9 8
Length 45 24 11 149 32

Table 4: Values of hyperparameters for the best-performing sum-model on each split tested. Where more than one
set of hyperparameters is given for a split, both performed equally well.

Split
Dimension of
G-Embedding

Number of
filters

Embedding
Dimension

Hidden
Size

Batch
Size

Simple 16 24 182 36 8
Add Jump 30 11 182 55 16
Around Right 30 223 122 11 8
Length 36 55 30 4 16

Table 5: Values of hyperparameters for the best-performing max-model on each split tested.

Split
Dimension of
G-Embedding

Number of
filters

Embedding
Dimension

Hidden
Size

Batch
Size

Simple 182 122 223 11 8
Add Jump 122 7 223 67 8
Around Right 55 100 45 30 8
Length 13 9 11 16 16

Table 6: Values of hyperparameters for the best-performing annealed max-model on each split tested.
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Training Data
Percentage

Sum
Model

Max
Model

Annealed
Model

Gordon et al.

1 42.14 0.47 33.26 45.75
2 68.09 56.28 58.36 73.53
4 89.59 9.2 81.22 89.54
8 94.67 99.23 95.61 96.60
16 98.88 99.48 98.44 97.12
32 99.86 99.48 97.41 97.47
64 99.67 99.88 99.27 99.67

Table 7: Accuracy obtained by each model in low-data conditions

C Low-Data Experiments

To test our model’s ability to learn from small amounts of training data, we trained and evaluated a model
with the best-performing hyperparameters on the Simple split using the low-data splits of SCAN. These
splits have training sets containing 1%, 2%, 4%, 8%, 16%, 32% and 64% of the total examples in the
Simple split. For comparison, we repeated this for all variants of our model, as well as for the equivariant
model used by Gordon et al. (2020). The results are shown in Table 7. We can see that in the lowest data
conditions, our model doesn’t generalize as well as Gordon et al.’s (2020) model. For the sets containing
16% or more or the data, our model performs better. We theorize that this is due to difficulty learning a
high-quality alignment in the lowest-data conditions. These results also show the volatility of the Max
variant of our model – it is able to reach above 99% accuracy with less data than any of the other models,
but with any less data it struggles to learn much at all.

D SCAN Lexicon

For further context we provide lists of the full SCAN lexicon for input and output in Table 8 and Table 9
respectively. In Table 10 we list the words in the Direction lexical class in the input and output lexicon. In
Table 11 we do the same for the Verbs lexical class. All other input words were in single-item lexical
classes.

Input Words

run
walk
look
jump
left
right
after
and
turn
around
twice
thrice
opposite
around

Table 8: All input vocabulary for the
SCAN task

Output Words

RUN

WALK

LOOK

JUMP

LTURN

RTURN

Table 9: All output vocabulary for the
SCAN task

Input Output

right RTURN

left LTURN

Table 10: Direction lexical class in in-
put and output vocabulary

Input Output

run RUN

walk WALK

look LOOK

jump JUMP

Table 11: Verb lexical class in input
and output vocabulary
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Abstract

Probing studies have extensively explored
where in neural language models linguistic in-
formation is located. The standard approach
to interpreting the results of a probing classi-
fier is to focus on the layers whose representa-
tions give the highest performance on the prob-
ing task. We propose an alternative method
that asks where the task-relevant information
emerges in the model. Our framework consists
of a family of metrics that explicitly model
local information gain relative to the previ-
ous layer and each layer’s contribution to the
model’s overall performance. We apply the new
metrics to two pairs of syntactic probing tasks
with different degrees of complexity and find
that the metrics confirm the expected ordering
only for one of the pairs. Our local metrics
show a massive dominance of the first layers,
indicating that the features that contribute the
most to our probing tasks are not as high-level
as global metrics suggest.

1 Introduction

Probing neural language models aims at finding
evidence of learned linguistic structure in the mod-
els’ parameters by empirically testing hypotheses
about the learned representations (Hupkes et al.,
2018; Alain and Bengio, 2017). This is often done
by training a probing classifier on a diagnostic task
with the representations at different layers as the
input, and comparing task performance across lay-
ers. While probes are conceptually simple and
widely used, the methodology and in particular the
interpretation of the obtained results is subject to
ongoing discussion (Belinkov, 2022).

A classical pattern we often see when plotting
probing accuracy across layers is that for higher-
level linguistic tasks, the model aggregates informa-
tion over several layers until it reaches its highest
performance. Often, the curves start steep, flatten
out, and eventually drop again in the final layers.

Figure 1: Heatmaps illustrating our results for syntactic
parent (P) and grandparent (GP) prediction (BERT-base,
en, layers 1–12): Global metrics peak in middle lay-
ers. Local contributions are concentrated in early layers.
(Darker shades indicate higher values.)

In this paper, we zoom in on models’ relative in-
formation gains between one layer and the previous
one. By this, we aim to turn the focus of probing
away from information that is already present in
the non-contextualized embedding layer and focus
exclusively on information that needs context to be
retrieved. We also aim to make the contribution of
each layer to the model’s overall linguistic capabil-
ities explicit. We argue that under the hypothesis
that information in language models is structured
as in classical NLP pipelines (Tenney et al., 2019),
the depth at which information emerges is as im-
portant as the impact of that information on model
performance. When we think of language process-
ing as a pipeline, we are primarily interested in
where linguistic features emerge for the first time,
not how long they are passed on to later layers.

To formalize information gains, we modify the
conditional probing framework proposed by Hewitt
et al. (2021). Their method explicitly quantifies in-
formation that is not already present in a baseline
representation. We modify this method along two
lines: First, we make it local, by conditioning on
the respective previous layer instead of a global
baseline. Second, we report the results as a share
of total emergent information, across all layers of
the network. This makes layer contributions com-
parable across tasks, where the overall performance
may differ.
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We demonstrate how to use our framework in
practice, by applying it to two pairs of syntactic
probing tasks. Each pair is formed by tasks that
are structurally equal but for which we can rea-
sonably assume a natural order in which the rele-
vant linguistic representations emerge within the
models. The first pair compares predicting part-
of-speech (POS) tags that are the most frequent
for a word form (MFTs) to predicting tags that
are not (non-MFTs). Recent work has hypothe-
sized that non-MFTs may be best represented in
the deeper layers of a model such as BERT (Devlin
et al., 2019): Each layer’s contribution beyond the
information already present in the uncontextual-
ized layer is more significant for deeper layers, and
therefore POS information could be found later in
the model than previously assumed (Hewitt et al.,
2021). The second pair of tasks compares predict-
ing the position of a word’s dependency head (the
syntactic parent) to predicting the position of the
head’s head (the grandparent). Information for pre-
dicting grandparents has in previous work been
found in deeper layers than information for predict-
ing parents (Blevins et al., 2018). For each pair
of tasks, we test where the relevant information
emerges in the model, how the resulting pattern
compares to global metrics, and if the metrics re-
flect the expected order of tasks. Our results show
that while the expected hierarchy holds for the par-
ent vs. grandparent task, information for non-MFTs
emerges earlier in the model than for MFTs. This
contradicts previous expectations. Also, results on
seven independent monolingual BERT models in
different languages show that the orderings and
patterns we observe are not robust, which raises
questions about their generality, and about the va-
lidity of probing at large.

2 Related Work

How linguistic information is distributed across
the layers of a neural model is one of the central
questions in the probing literature. The consen-
sus is that there is a hierarchical ordering of tasks.
Blevins et al. (2018) find a soft hierarchy of tasks
when probing different layers of recurrent neural
networks, from POS information being low in the
hierarchy, to syntactic parents, grandparents, and
great-grandparents. For their ELMo model, Peters
et al. (2018) find that parts-of-speech are better pre-
dicted from the first hidden layer and word senses
from the second. Tenney et al. (2019) probe BERT

for a range of different NLP tasks and find that
the layers that are the most predictive for each task
are ordered like a classical pipeline: from parts-of-
speech over syntactic dependencies, named entities
and semantic roles to coreference.

How probing experiments should be designed
and evaluated is subject to ongoing discussion.
Some authors argue for simple classifiers (Alain
and Bengio, 2017; Hewitt and Liang, 2019) to pre-
vent the probes from learning the task and mem-
orizing associations by themselves, while others
make the case for more expressive models (Pi-
mentel et al., 2020). While probes are most com-
monly evaluated using accuracy, recent work has
proposed the use of alternative metrics that mea-
sure the effort of learning (Voita and Titov, 2020)
or emphasize the performance early in the training
(Talmor et al., 2020). Kunz and Kuhlmann (2021)
propose to probe in an extrapolation setting, eval-
uating, among other setups, on the non-MFTs in
diagnostic POS tagging experiments.

3 A Taxonomy of Metrics

We start by categorizing methods along three di-
mensions: The first one (as proposed by Hewitt
et al. (2021)) concerns the relation of the base-
line and the representation: how much more in-
formation can we extract from the representation
than from the baseline (baselined probing), or how
much information is extractable from the represen-
tation that does not overlap with information from
the baseline (conditional probing).

The second dimension, proposed by us, concerns
the type of information intended to be measured: in-
formation relative to a non-contextualized baseline
(a global baseline), or information gain relative to
the previous layer (a local baseline). The local set-
ting challenges the view that a linguistic property’s
place in the model is the layer where most usable
information for it can be extracted. Instead, we
consider the layers where most usable information
is gained relative to the previous layer to reflect
the linguistic property’s place within the model’s
hierarchy. We formulate and test the local corre-
spondents of baselined and conditional probing in
Sections 3.4 and 3.5.

Thirdly, we modify the local metrics so that
they, in addition to the absolute reporting of the
results, also support the reporting of the relative
share that each layer contributes to the final per-
formance. While absolute numbers convey more
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information, relative numbers improve the compa-
rability of results across tasks. We modify our local
conditional metric from an absolute to a relative
metric in Section 3.6.

3.1 General Setup
We consider a standard setup where we train a
probe on a diagnostic task and evaluate it in terms
of accuracy. More specifically, we use datasets
D = {(xn, yn)}n where each xn is the representa-
tion of a neural language model at some specific
layer, and yn is the gold-standard label. (In our
experiments, we use BERT.) By computing probe
accuracy for different layers of the same model, we
can compare layers in terms of how predictive they
are with respect to the diagnostic task.

3.2 Global Baselined Probing (GBP)
In this common setup we measure the difference
between the probe accuracy on a given layer li and
the baseline layer l0 – in BERT, this is the uncon-
textualized embedding layer. Thus we compute

GBPi = Acc(li)− Acc(l0) (1)

As Hewitt et al. (2021) show, this can be inter-
preted as a difference between two quantities of
V-information (Xu et al., 2020), a theory of us-
able information under computational constraints.
More specifically, GBPi estimates the difference
in V-information between predicting the linguistic
property under consideration from li and predict-
ing it from layer l0. This makes the difference in
the probe’s performance relative to the baseline
explicit. The baselined information measures the
amount of information gained over the baseline
without making assumptions about the structural
relation between l0 and li.

3.3 Global Conditional Probing (GCP)
This setup has been proposed by Hewitt et al.
(2021) with the intent to explicitly measure what
information a layer li contributes beyond the in-
formation present in the baseline l0. Practically, it
entails computing the difference between the probe
accuracy on the concatenation of li to l0 and the
baseline layer:

GCPi = Acc([li; l0])− Acc(l0) (2)

In the framework of Hewitt et al. (2021), this
measure is related to a conditional version of V-
information. More specifically, it estimates the

conditional V-information conditioned on prior in-
formation contained in the baseline.

3.4 Local Baselined Probing (LBP)

Analogously to global baselined probing, we may
consider a local setup where the baseline is the
previous layer li−1:

LBPi = Acc(li)− Acc(li−1) (3)

This quantity provides an estimate of how much
V-information is gained when taking the step from
li−1 to li. We posit that layers with high LBP val-
ues can be considered as layers where useful new
information emerges. Intuitively, LBP measures
the steepness of the slope, or the “jumps”, in tradi-
tional accuracy curves across layers.

3.5 Local Conditional Probing (LCP)

To complete the picture, we propose to apply con-
ditional probing to the local setting:

LCPi = Acc([li; li−1])− Acc(li−1) (4)

The intention behind this metric is also to mea-
sure information gain with respect to li−1, but we
account for exclusive information of li−1 that is
absent in li. Similar to Hewitt et al. (2021), we
concatenate two layers and compare to scores on
one of them. Our approach differs in that we do
not compare to one static baseline layer (l0) but
dynamically to li−1 to track the information gained
across layers.

3.6 Emergent Information (EMI)

EMI (as well as EMI-BL in the next section) is
designed to make layer contributions compara-
ble across tasks that have different overall perfor-
mances. To represent relative information gains,
we calculate the LCP metric and divide it by the
LCP summed up over all L layers. As we focus on
gains, the metric will be zero whenever the result
is negative (as nothing is gained). For the sum we
also only consider layers where the LCP is positive.

LCP′i = max (0,LCPi) (5)

EMIi =
LCP′i∑L
k=1 LCP′k

(6)

We get relative gains that sum up to one. We
interpret the results as the layer’s contribution to
the overall emergent information within the model.
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3.7 EMI, Baselined Control (EMI-BL)

For ablation purposes we want to investigate the
effect of the conditioning in EMI. Therefore we
also employ a simplified version of EMI that uses
LBP instead of LCP:

LBP′i = max (0,LBPi) (7)

EMI-BLi =
LBP′i∑L
k=1 LBP′k

(8)

The difference to EMI in Section 3.6 is the lack
of control for information that was already present
in the previous layer. We may underestimate the
information gain as information may have been
“forgotten” and replaced by new information when
transitioning to the next layer.

4 Experiments

In our experiments, we apply the metrics defined
in the previous section to study the performance of
language models on two suitable probing tasks.

4.1 Probing Classifier

As our probe, we use a simple feed-forward net-
work with 64 hidden units and ReLU activation,
and train it for 10 epochs using the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
0.001. Our implementation uses PyTorch (Paszke
et al., 2019). We calculate the results for all metrics
based on the mean accuracy over 10 random seeds.

4.2 Language Representation Models

To test the robustness of our probing results and
to explore if the syntactic information is local-
ized in similar regions across models and lan-
guages, we include seven models in our analysis.
Apart from English BERT (Devlin et al., 2019),
we train probes on monolingual BERT models
in Czech (Sido et al., 2021), Finnish (Virtanen
et al., 2019), German (Chan et al., 2020), He-
brew (Seker et al., 2021), Swedish (Malmsten
et al., 2020) and Turkish (Schweter, 2020). The
languages are chosen to represent diverse fami-
lies: Indo-European/Germanic (de, en, sv), Indo-
European/Slavic (cs), Uralic (fi), Turkic (tr), and
Afro-Asiatic/Semitic (he). All models are base
models with 12 layers, and accessed via the Hug-
gingface Transformers library (Wolf et al., 2020).1

1All code necessary to reproduce the results in this pa-
per, along with full numerical results, is available here:
https://github.com/jekunz/emergent_info

4.3 Data and Tasks

We consider two pairs of closely related syntactic
probing tasks. The training data for these tasks is
derived from 1,000 sentences randomly sampled
from the Universal Dependencies treebank (Zeman
et al., 2021).2

POS tagging We predict UPOS tags and evaluate
on two sets, the most frequent tags for a word form
(MFT) and tags that are not the most frequent for a
word form (non-MFT). We assume that:

Hypothesis 1 Models learn to predict non-MFTs
in deeper layers than MFTs.

Syntactic Ancestors Prediction We predict the
relative linear position of a token’s head (parent,
P) and its head’s head (grandparent, GP) in the
syntactic dependency tree. For practical reasons
we omit examples where the distance is larger than
15. For this task, our assumption is:

Hypothesis 2 Models learn to predict grandpar-
ents in deeper layers than parents.

Classically, we would also assume that the an-
cestors tasks come higher in the hierarchy than the
part-of-speech tagging tasks, which would give us
the following hierarchy of all tasks:

MFT < non-MFT < P < GP

However, as only the tasks in each pair are struc-
turally equal, we will analyze each pair of tasks
separately.

4.4 Ranking

To determine the hierarchical ordering of tasks
within the models, we need to reduce the metrics
across layers to a single comparable value. For that,
we employ two strategies:

Max Layer For all metrics, we report the layer
which maximizes the respective metric. When this
layer is deeper for a task T than for a task T ′, we
say that T is higher in the hierarchy induced by the
model than T ′.

Early Contributions For the EMI metric, we
also report the contribution of layers 1, 1 + 2 and
1+2+3 to the overall gain. When this contribution
is higher for a task T than for a task T ′, we say that
T is lower in the hierarchy than T ′.
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GBP (& Accuracy) GCP LBP & EMI-BL LCP & EMI

MFT ¬MFT MFT ¬MFT MFT ¬MFT MFT ¬MFT

cs 4 6 4 6 3 2 3 2
de 6 11 8 10 4 1 4 1
en 4 7 10 8 2 1 1 1
fi 3 4 7 5 1 1 1 1
he 3 5 8 7 2 1 2 1
sv 3 5 11 6 2 1 2 1
tr 2 5 3 11 2 2 2 2

avg 3.6 6.1 7.3 7.6 2.3 1.3 2.1 1.3

Table 1: Part-of-speech tagging tasks. The numbers give the layer of maximum score across metrics and languages.
Bold marks the task (MFT or ¬MFT) that is higher in the hierarchy induced by the model.

GBP (& Accuracy) GCP LBP & EMI-BL LCP & EMI

P GP P GP P GP P GP

cs 5 8 5 8 1 2 1 2
de 9 9 9 9 2 2 2 2
en 5 6 5 7 1 1 1 1
fi 5 5 5 5 2 3 2 3
he 5 5 9 5 4 3 4 2
sv 7 6 7 7 2 1 2 1
tr 7 8 7 8 3 3 3 3

avg 6.1 6.7 6.7 7.0 2.1 2.1 2.1 2.0

Table 2: Syntactic ancestors prediction tasks. The numbers give the layer of maximum score across metrics and
languages. Bold marks the task (P or GP) that is higher in the hierarchy induced by the model.

5 Results

This section presents the results of our experiments.
We have structured our presentation around the two
ranking methods.

5.1 Max Layer

For each probing setup and language, we report
that layer which maximizes the respective metric in
Table 1 for the POS tagging task pair and Table 2
for the ancestors prediction tasks.

Global metrics Our results for the global met-
rics confirm the finding of Hewitt et al. (2021) that
the layers that maximize conditional probing ac-
curacy (GCP) are generally deeper than those that
maximize baselined accuracy (GBP).

Zooming in on the distinction between most fre-
quent and non-most frequent tags for the POS tasks,
however, exhibits an unexpected behavior: Hewitt
et al. (2021) suggest that for the non-MFTs, GCP
should be higher than GBP in deeper layers, and
the other way round for MFTs. Here we find that
in 4 out of 7 models, the layer with the highest

2The treebanks for each language are: cs: PDT, de: GSD,
en: EWT, fi: TDT, he: HTB, sv: Talbanken, tr: Kenet. Lic:
CC BY-SA 4.0 (de, en, fi, sv, tr) / CC-BY-NC-SA 3.0 (cs, he).

GCP value on non-MFTs precedes the layer with
the highest value for MFTs. However, the average
over the models is higher for non-MFTs due to the
large margin between the layers in the tr model.
The highest scores of GBP on non-MFTs are con-
sistently in deeper layers than those for MFTs. The
exact layer in which the maximum scores are how-
ever varies greatly between models: for the MFTs,
it ranges between 2 (tr) and 6 (de) and for the non-
MFTs between 4 (he) and 11 (de).

GCP differentiates less than GBP, with a margin
of 2.5 versus 0.3 (POS tagging) and 0.6 versus 0.3
layers (ancestors prediction) difference between
the lower-level and the higher-level task.

Looking at the full plot, rather than just the max-
imal layer, we observe some variety across metrics
and languages. The example plots for en BERT in
Figure 2 (a–b) are in line with the general trend:
GCP peaks in deeper layers than GBP, but this
is not explained by the non-MFTs, as their curve
drops steeper with increasing layer index than the
curve for the MFTs. This observation holds for
most BERT models we used, except for cs and tr
where the scores on MFTs drop more in deeper
layers than those for non-MFTs (see Figure 3).
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Figure 2: Part-of-speech tagging, global (a–b) and local (c–d) metrics on the English data. Solid green line:
non-MFTs, dotted orange: MFTs, dashed blue: full development set (all tags).
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Figure 3: As opposed to en BERT and the other four
models, for cs and tr, the scores on MFTs in GCP drop
more over the layers than those for non-MFTs.

Local metrics Turning to the highest local in-
formation gain in Table 1 and 2, both LBP and
LCP show the biggest gains in the very first layers.
This shows that, while global metrics locate the
overall information peaks somewhere in the middle
of the model, only little new information actually
emerges at that point.

The differences in the empirical results between
LBP and LCP are small; specifically accounting
for information that is absent in the previous layer
does not result in a different pattern than the one we
obtain when using the baselines metric. This leaves
the choice between the two metrics to theoretical
or practical preferences.

The example curves for English BERT in Fig-
ure 2 (c–d) show a typical pattern for the drop
across layers in the part-of-speech tagging tasks.
The layer of highest information gain appears to be
the layer where contextual information is added
first. After this layer, the plots decrease more
slowly. Most languages follow this pattern, with
the notable exception of cs and tr that do not show
a steady decrease but go up first (see Figure 4).
For the ancestors tasks, the peak is often shifted to
the second or third layer, probably reflecting the
higher-level nature of those tasks compared to the
POS tasks. Figure 5 shows two examples, fi BERT
with and tr BERT without a clear hierarchy of the
parents versus grandparents task.

1 2 3 4 5 6 7 8 9 10 11 12

0.5

0.0

0.5

1.0

1.5

(a) LCP Czech

1 2 3 4 5 6 7 8 9 10 11 12
0.5

0.0

0.5

1.0

1.5

2.0

(b) LCP Turkish

Figure 4: For cs and tr BERT, the LCP plots exhibit a
pattern that deviates from that we observe for en BERT:
They do not decrease steadily.

We observe that for the local metrics, the sup-
posedly higher-level tasks do not have their highest
gains in later layers than the lower-level tasks. On
the contrary, the non-MFTs in LBP and LCP have
their average max layer at 1.3, while for MFTs,
where the accuracy starts off much higher, and
information gains are generally smaller, the corre-
sponding values are 2.3 and 2.1. For the ancestors
tasks, there is on average no difference between the
tasks. Hence, Hypotheses 1 and 2 are not confirmed
for the local metrics in the max layer rankings.

5.2 Early Contributions

As Hypotheses 1 and 2 about the order of tasks in
the model’s hierarchy were not confirmed when
looking at the layer with the maximal score, we
compare more expressive metrics from the emer-
gent information family in Tables 1 and 2.
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Figure 5: Ancestors prediction, LCP: fi shows a later
peak for grandparents (orange), while tr BERT’s curves
show a similar pattern for both tasks.
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Layer 1 Layer 1 + 2 Layer 1 + 2 + 3

MFT ¬MFT MFT ¬MFT MFT ¬MFT

cs 37.49 18.74 49.99 44.99 87.49 70.35
de 0.00 34.18 23.85 62.32 46.78 74.94
en 31.00 46.24 59.68 62.57 83.33 75.29
fi 44.07 55.28 58.12 71.87 76.30 84.31
he 39.31 37.93 89.74 74.94 97.15 89.69
sv 12.86 52.23 48.53 78.70 58.47 89.00
tr 0.00 3.08 48.22 37.07 80.20 52.03

avg 23.53 35.38 54.01 61.78 75.67 76.51

Table 3: Part-of-speech tagging tasks: Contribution of layer 1, 1 + 2 and 1 + 2 + 3 to the overall performance of
the probe. Bold marks the task (MFT or ¬MFT) that is is higher in the hierarchy induced by the model (smaller
contribution of the lower layers).

Layer 1 Layer 1 + 2 Layer 1 + 2 + 3

P GP P GP P GP

cs 46.78 14.90 73.39 68.02 79.10 81.30
de 8.68 3.94 50.06 35.49 68.68 51.83
en 37.47 36.86 55.15 52.79 78.89 56.81
fi 24.51 11.46 58.41 34.77 74.39 68.28
he 0.00 0.00 16.90 25.74 27.46 51.48
sv 21.14 39.31 60.33 49.60 77.65 66.61
tr 0.00 3.52 16.74 15.84 63.72 54.08

avg 19.79 15.71 47.28 40.32 67.12 61.48

Table 4: Syntactic ancestors prediction tasks: Contribution of layer 1, 1+2 and 1+2+3 to the overall performance
of the probe. Bold marks the task (P or GP) that is is higher in the hierarchy induced by the model (smaller
contribution of the lower layers).
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For the MFT tasks, we can confirm the finding
that when looking at the share of emergent infor-
mation from the very first layers, it is on average
higher for the non-MFTs for all three groupings of
layers, indicating that non-MFTs would be lower in
the hierarchy that MFTs. The difference however
fades out, from 11.85 percentage points difference
for layer 1 to only 0.84 points for layer 1 + 2 + 3.
For the ancestors tasks, the hierarchy continues to
be as expected both on average and in the vast ma-
jority of model-grouping combinations. For both
tasks we note that no layer grouping shows consis-
tent results across all seven models, indicating a
low robustness of the results.

Effects of Conditioning The average difference
between emergent information with or without con-
ditioning on the previous layer is 5.58 (POS) and
3.93 percentage points, which can in some scenar-
ios be considered as minor. For all values we exam-
ined in this section, the average difference between
tasks is 16.93 (POS) and 11.14 (ancestors) points,
making a trend change unlikely and a simplification
towards a baselined setup justifiable. Less distinct
tasks and their theoretical advantages may however
suggest the inclusion of the conditional accuracy.

6 Discussion

Where is a feature located? The results for the
different metrics show how it depends on the per-
spective which place within the model we assign
to a linguistic property. While the most overall
information is located in the middle layers, it is the
early layers that maximize the local metrics by a
huge margin, meaning that this is the place in the
model where most information either emerges or
becomes accessible.

The complementary use of both families of met-
rics, local and global, gives us a more holistic pic-
ture of how information is structured within the
model, as we argue that it it is not clear if a hi-
erarchy of tasks within the model should be de-
termined by where most information is added or
where most information is accessible overall. An
intuition supporting the former is the comparison to
a human-made pipeline model, where tasks would
naturally be placed where the information required
for them is added – for instance, where the POS
tagger is located, adding POS tags to the set of
features. In these pipelines, there is no notion of
how long information will be passed to higher-level
tasks.

Expected hierarchies do not generally hold We
see that when probing for MFTs versus non-MFTs,
the perceived natural hierarchy of tasks (Hypoth-
esis 1) does not hold for the local metrics, neither
in a coarse max layer analysis nor in the more
fine-grained early contribution setting, as shown
in Sections 5.1 and 5.2. In the plots of the global
metrics in Section 5.1 we see that non-MFTs often
show both steeper gains in the beginning and more
pronounced losses in the later layers, indicating
that it is more specialized contextual information
that the non-MFTs require, but that information
does not appear to emerge later than in the model
that for MFTs. We conclude that observations of
a clear hierarchy of tasks depend on the focus on
most usable overall information: They are already
weaker in the global conditional setup, and are in
one of two cases contradicted by local metrics.

The massive dominance of layer 1 and 2 in all
local metrics especially for the non-MFTs but even
for the parents and the grandparents tasks raises
questions about how high-level the information that
contributes the most to the overall performance on
the probing task actually is. As the very first possi-
bility of accessing contextual information already
presents the heaviest boost, the features that are
most crucial to solve the task appear to be surpris-
ingly shallow.

Probing results are not robust An interesting
point we noted across all metrics, but more dis-
tinctly for all local metrics as well as global con-
ditional probing, is that the results are not stable
across BERT models in different languages. We do
not consider the possibility to relate the different
distribution of information across models to lin-
guistic properties of the languages as we believe
that this is impossible with the relatively small set
of non-parallel models we analyze. Apart from
the language, they differ in several variables: most
importantly, the data they are trained on, but some
also in training details. However, we see it as an
exciting path for future research to explore what
causes a model to structure information in certain
ways, and if this has implication on the model’s
performance on downstream tasks or robustness.

Relevance As the differences between measuring
emergent information with and without condition-
ing on the previous layer are relatively small, one
could suggest that the information is present in a
similar form in ordinary accuracy plots across lay-
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ers: The slope of the curve can be used to estimate
it. But in practice, such interpretations do not ap-
pear to be obvious: Even though they can, as we
showed, shed a different light at probing results
when made explicit, previous work exclusively fo-
cused on the point of highest overall information.
A discussion on the relevance of the parts of the net-
work where information emerges has been absent
from the literature.

Apart from that, we argue that conditional prob-
ing has strong theoretical advantages, as it explic-
itly accounts for information in the baseline repre-
sentation, and that this makes basing the emergent
information metrics on it favorable.

Limitations The metrics we propose are de-
signed with the expectation that gains are succes-
sive. However, Transformer models can propagate
information via residual connections and thereby
let information “skip” layers. If this resulted in
pronounced oscillations of the information within
the model, it would weaken the meaningfulness of
the results of all local metrics.

The emergent information metrics have no ac-
count for loss of information over the layers of the
network. A related family of metrics that explicitly
models this would be the application of the local
metrics to the layers in inverse order.

All metrics in this paper are based on probe ac-
curacy. However, our setups can be easily adapted
to other metrics which have been shown to be more
robust towards design choices regarding the classi-
fier, such as minimum description length (Voita and
Titov, 2020), or metrics that reward fast learning
(Yogatama et al., 2019; Talmor et al., 2020).

7 Conclusion

We have collected and suggested metrics that model
the information distribution in a model’s layers
from different perspectives: globally and locally,
with or without conditioning on the baseline, and
looking at absolute and relative gains of informa-
tion. We used them on two pairs of probing tasks.
First, we tested whether information for POS tags
that are not the most frequent for a word is found
in deeper layers than general POS information and
found that while this is the case for overall informa-
tion measured by global metrics, local metrics high-
light that the most significant gains consistently
happen in the very first layers in particular for the
non-most frequent tags. For second task of pre-
dicting the syntactic parents versus grandparents

of a token, however, the expected hierarchy in the
model holds in the local setup at least in more fine-
grained relative metrics. These mixed results em-
phasize the additional insights that zooming in to
local information gains can give us into the model,
the task, and the probing methodology.

Probing experiments on seven monolingual
BERT models in different languages show that the
metrics’ behavior varies between models. While
it is currently not feasible to relate the differences
to specific properties of the models such as the
language or the domain of the training data, a con-
trolled training of parallel models where the ad-
ditional variables are controlled for may enable
such a comparison and is an insightful direction for
future work.
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A All results

For completeness, we present all plots across mod-
els and metrics as supplementary material in figure
6 for the POS tasks and in figure 7 for the ancestors
tasks. A brief summary of the material is provided
in the following paragraphs.

Global Metrics. The accuracy shows the same
highs and lows as the GBP setup, where the static l0
baseline is subtracted from the accuracy. Compared
to GBP, the results in the GCP setup are slightly
shifted to later layers. For the POS tasks, the peak
is in the early middle layers, with the ¬MFTs peak-
ing a few layers later, indicating the need for more
contextual information. Across models we see a
large variation, most extremely visible in de, where
the scores increase until layer 11 for the MFTs, and
tr, where the drop for the MFTs is more distinct
than for other models. fi and he have a distinct peak
for the ¬MFTs in layer 4, then a decrease, and then
stabilize. The ancestors tasks often peak in the
early middle layers as well, with de being shifted
to notably later layers, and tr being relatively sta-
ble across all layers except the very first and last
layers. A later peak of the grandparent prediction
compared to the parent prediction is vaguely per-
ceptible in most plots, most prominently in the en
model.

Local Metrics. The metrics that measure the lo-
cal information gain have the most consistent pat-
tern for the ¬MFTs, with most information gener-
ally added in the very first layer. The pattern of
the curves appears to asymptotically approximate 0.
There are however two exceptions: the cs, but most
distinctly the tr model that gains relatively little in
the first layer and makes its biggest jump in the sec-
ond layer. We also observe in the accuracy curve of
these two models that the increase in the beginning

is less steep. In the ancestors tasks, the highest
layer is slightly later on average, often in later 2 or
3 (2.1 on average). In some models, such as cs and
fi, we observe a later peak for grandparents than
for parents, while for de, and se, it even is the other
way round. This underlines the lacking robustness
of our probing results across models in different
languages that are particularly prominent for the
local metrics. In all of the models we observe little
difference in the empirical results and patterns of
LBP and LCP, confirming our observations in Sec-
tion 6 that the choice between them can be either
arbitrary or based on theoretical preferences.
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Figure 6: POS Experiments: Plots for all language/metric combinations. Orange: MFT; green: ¬MFT; blue: all.
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Figure 7: Ancestors Experiments: Plots for all language/metric combinations. Blue: P; orange: GP.
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Abstract

Conditional computation algorithms, such as
the early exiting (EE) algorithm, can be ap-
plied to accelerate the inference of pretrained
language models while maintaining competi-
tive performance on resource-constrained de-
vices. However, this approach is only applied
to the vertical architecture to decide which
layers should be used for inference. Con-
versely, the operation of the horizontal per-
spective is ignored, and the determination of
which tokens in each layer should participate
in the computation fails, leading to a high re-
dundancy for adaptive inference. To address
this limitation, a unified horizontal and ver-
tical multi-perspective early exiting (MPEE)
framework is proposed in this study to acceler-
ate the inference of transformer-based models.
Specifically, the vertical architecture uses recy-
cling EE classifier memory and weighted self-
distillation to enhance the performance of the
EE classifiers. Then, the horizontal perspec-
tive uses recycling class attention memory to
emphasize the informative tokens. Conversely,
the tokens with less information are truncated
by weighted fusion and isolated from the fol-
lowing computation. Based on this, both hor-
izontal and vertical EE are unified to obtain a
better tradeoff between performance and effi-
ciency. Extensive experimental results show
that MPEE can achieve higher acceleration in-
ference with competent performance than ex-
isting competitive methods. The code for this
paper is available at: https://github.
com/JunKong5/MPEE.

1 Introduction

Pretrained language models (PLMs) (Devlin et al.,
2019; Lan et al., 2019; Liu et al., 2019) have shown
promising performance in many natural language
processing tasks. The success of PLMs incurs com-
putational consumption and long inference latency,
which prevents these models from being deployed

∗Corresponding authors.

Figure 1: Tokens (cosine similarity) of different layers.

on resource-constrained devices, such as edge de-
vices, or in time-sensitive scenarios.

To address these issues, model compression tech-
niques (Lin et al., 2020), including knowledge dis-
tillation (Hinton et al., 2015; Jiao et al., 2020), prun-
ing (Sanh et al., 2020; Michel et al., 2019) and
quantization (Zafrir et al., 2019), have been applied
to PLMs to accelerate inference. However, these
methods permanently remove some components
of the model, leading to an inevitable decline in
performance. Additionally, the complexity of these
models cannot be adjusted based on the require-
ments of different hardware since the compression
is implemented before the deployment. Conversely,
several studies have suggested the use of condi-
tional computation algorithms, such as the early
exiting (EE) algorithm (Schwartz et al., 2020; Xin
et al., 2020), in which each input sample uses a dif-
ferent part of the model so that the computation or
latency is reduced on average. Based on this, an EE
classifier is added between transformer layers. The
shallow layer allows the easy samples to exit earlier
without the need to perform computations up to the
final layer. Computations related to deeper layers
should only be reserved for hard samples.

There are two main limitations of existing EE
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methods. For existing EE methods, there has been
a focus on the exploration of accelerated inference
for easy samples. However, for hard samples, ac-
celeration inference is not achieved and still needs
to be performed through the last layer. Furthermore,
the computation consumption is quadratically pro-
portional to the input sequence length. As a result,
the average acceleration inference is limited.

In addition, the existing early exiting approach is
only performed on the vertical perspective, and the
operations of the horizon perspective are ignored.
That is, each transformer encoder layer is regarded
as a basic unit. The model determines how many
transformer encoder layers are needed for inference
but ignores which tokens in each layer are required
to participate in the computation. Recent studies
(Ethayarajh, 2019; Klafka and Ettinger, 2020) have
shown that sequence tokens from the horizontal
perspective have high redundancy. To further ver-
ify the redundant information from the horizontal
perspective, we use the cosine distance to calcu-
late the similarity between tokens in each layer, as
shown in Figure 1. The token similarity in the shal-
low layer is low, indicating that the shallow layer is
not fully encoded. The horizontal perspectives of
deeper layers, especially the last layer, show high
redundancy. This suggests that the previous EE
approaches ignored the possibility of reducing the
horizontal perspective redundancy to accelerate in-
ference. Therefore, these EE approaches yield a
suboptimal accelerated inference. To address this
issue, an intuitive idea is to reduce the length of
the sequence token as the layers grow. TR-BERT
(Ye et al., 2021) uses a reinforcement learning (RL)
method to select the tokens that need to be dy-
namically reduced. However, additional training
is needed, which increases the cost of training. In
addition, changes to the device platform require
retraining of these components, which may greatly
limit the application scenarios.

In this paper, we propose a unified horizontal and
vertical multi-perspective early exiting framework
to reduce the computation and latency for fast infer-
ence of transformer-based models. This framework
contains layer-wise EE for the vertical perspective
and sequential token-wise EE for the horizontal
perspective. In sequential token-wise EE, different
tokens are forced to exit at different layers to re-
duce computation by emphasizing the informative
tokens to the downstream task. Conversely, the
tokens with less information are truncated, which

isolates them from the following computation. To
measure the importance of tokens, we use class
attention to learn the amount of prediction informa-
tion. Due to the instability of the class attention in
the shallow layer, recycling class attention memory
is used to enhance the reuse of information across
layers and to better identify informative tokens.
The tokens with less information do not completely
exit. Instead, they take a weighted fusion into an
EE fusion token for subsequent calculations so that
additional parameters and computations are not
introduced.

For the vertical perspective EE, we introduce EE
classifiers in the middle of two transformer layers.
Samples exit early at the shallow layer when the
confidence level is higher than the threshold and
skip computation in other layers. This allows the
input samples to be predicted with a shallow EE
classifier rather than a deep EE classifier. Since
the shallow EE classifier is weakly expressive, we
introduce weighted ensemble self-distillation and
recycling EE classifier memory to enhance the per-
formance of the shallow EE classifier. Thus, a
performance guarantee is provided at high accel-
eration inferences. The unified multi-perspective
early exiting framework has horizontal sparsity and
vertical sparsity. Based on extensive experiments,
it is shown that the proposed model reduces com-
putation and improves acceleration inference while
maintaining high performance.

The rest of the paper is organized as follows. In
Section 2, the preliminaries of PLMs are intro-
duced. In Section 3, a detailed description of the
proposed methods is provided. The empirical ex-
periments are reported and analyzed in Section 4.
Section 5 briefly introduces the previous studies
on acceleration inference for PLMs. Conclusions
are finally drawn in Section 6.

2 Preliminaries

Pretrained Language Model. A PLM consists of
L transformer encoders (Vaswani et al., 2017). The
sequence token X = [x[CLS], x1, x2, ..., xN ] of the
text processed by the tokenizer is input into the
PLM. N is the number of sequence tokens (without
the [CLS] token), and the [CLS] token denote
the global text information and final classification.
The transformer contains multi-head self-attention
(MHSA) and feed-forward network (FFN) modules.
The transformer coding process of each layer is
defined as

4678



CLS token

R
ecy

clin
g
 E

E
 

C
lassifier M

em
o
ry

 

E
arly

 E
x
itin

g
 

C
lassifier

1

E
arly

 E
x
itin

g
 

C
lassifier

2

E
arly

 E
x
itin

g
 

C
lassifier

i

E
arly

 E
x
itin

g
 

C
lassifier

L

R
ecy

clin
g
 E

E
 

C
lassifier M

em
o
ry

 

R
ecy

clin
g
 E

E
 

C
lassifier M

em
o
ry

 

..
. ...

...

Label

Multi-Head Self-Attention

Feed Forward Network

Class Attention Score2

0.21 0.64 0.81 0.59 0.16 0.68 0.41

0.16
0.410.21

Informative Tokens

 EE Fusion Token

S
eq

u
en

ce
 T

o
k
en

-w
is

e 
E

E

 C
la

ss
 A

tt
en

ti
o
n
 M

em
o
ry

 
C

la
ss

 A
tt

en
ti

o
n

1
C

la
ss

 A
tt

en
ti

o
n

3

CLS token

R
ecy

clin
g
 E

E
 

C
lassifier M

em
o
ry

 

…  

…  

…  

Transformer Layer1

…  

…  

…  

Transformer Layer2

…  

…  

…  

Transformer Layeri

…  

…  

…  

Transformer LayerL

Inputs

( )L

KD

( )L

CE

( )i

KD

( )i

CE

(2)

KD

(2)

CE

(1)

KD

(1)

CE

Figure 2: Overall architecture of the unified multi-perspective early exiting framework for accelerating.

Z l = Transformerl(hl−1[CLS], h
l−1
1 , ..., hl−1N ) (1)

where Zl ∈ Rn×d denotes the output feature of
the l-th transformer, and N denotes the number of
tokens in the l-th layer of MHSA and d denotes the
model hidden size. The MHSA module is defined
as

MHSA(Zl−1)
= Concat[HA1(Zl−1); ...; HAH(Zl−1)]W o (2)

where W o ∈ R(H·dh)×d is the output projection, H
is the number of multi-head and dh = d/H . The
single-head self-attention is denoted as

HAh(Zl−1) = Attention(Qh,Kh, Vh)

= softmax(
QhK

T
h√

dh
)Vh

(3)

where Qh = Zl−1W
Q
h ,Kh = Zl−1WK

h , Vh =
Zl−1W V

h are the matrices that package the query,
key and value, and W {Q,K,V }h ∈ Rd×dh is the lin-
ear transformation. Two fully connected layers are
applied on the output of the MHSA, and the FFN
module is defined as

FFN(Z̃l) = σ(Z̃lW1 + b1)W2 + b2 (4)

where σ denotes the GELU activation function,
Z̃l is the MHSA output,W1 ∈ Rd×4d and W2 ∈
R4d×d are the projection matrix.
Computational Complexity. Given an input se-
quence N × D , N is the number of input to-
kens and D is the embedding dimension of each
token. From the above, the computational complex-
ity of MHSA is O(4ND2 + 2N2D) and FNN is
O(8ND2). The total computational complexity of
PLMs is O(12ND2 + 2N2D). The complexity of
MHSA and FFN is quadratically and linearly for
the length N of the input sequence. Furthermore,
existing studies (Ethayarajh, 2019) have shown that
sequence tokens have high redundancy. An intu-
itive idea is to reduce redundant tokens to reduce
computation and improve acceleration inference.

3 Multi-Perspective Early Exiting

Figure 2 shows an overview of the proposed
unified multi-perspective early exiting framework,
which consists of layer-wise and sequential token-
wise early exiting. Layer-wise and sequential
token-wise early exiting are orthogonal methods
that exit unnecessary computations early by the
layer-wise and token-wise of the model, respec-
tively, to achieve faster inference. Therefore, we
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combine these two different perspectives to achieve
accelerated inference and minimize computational
cost.

3.1 Sequential Token-wise Early Exiting

The inference is accelerated by early exiting of the
sequential token according to class attention, as
shown in Figure 2. In PLMs, the [CLS] token is
used for classification. According to Eq.(3), MHSA
outputs of the [CLS] token, i.e., hl[CLS], can be
regarded as a weighted summation of value vectors
with attention scores, which is defined as

Alclass = MeanPooling(
H∑
h
HAh(Z

0
l ))

hl[CLS] = V l ·Alclass
(5)

where HAh(Z
0
l ) is the h-th attention head and

Alclass denotes the mean values of all attention
heads corresponding to the [CLS] token. Here,
Alclass represents the interaction of the [CLS] to-
ken for all other tokens and determines how much
information from the i-th token is contributed to
the [CLS] token. It is intuitive to denote Alclass as
the information that the [CLS] token transferred
for downstream tasks. Therefore, each token is
assigned to be informative or less informative ac-
cording to the class attention score Alclass. Due to
the instability and weak representation of the shal-
low layer class attention, recycling class attention
memory is used to enhance the reuse of informa-
tion across layers and to better identify informative
tokens and is defined as

Alm = (1− β)Al−1m + βAlclass (6)

where Alm is a class attention memory used to
record the historical values of Alclass. β denotes
the weight that balance the class attention with dif-
ferent layers. We keep m informative tokens hlin
for m-highest score in Alm, which is formulated as

m = N(1−Ree) (7)

where Ree denotes the sequence EE ratio. For
p early exiting tokens that are less informative,
p = N −m. Less informative tokens do not com-
pletely exit early from the sequence. To reduce the
missing information due to early exiting, the less
informative tokens are fused into an EE fusion to-
ken according to the corresponding class attention
weights. The EE fusion token and the informative

tokens are spliced in the subsequent computation,
which is denoted as

hleef = αih
l
i

Z̃l = Concat[hlCLS ;h
l
in;h

l
eef ]

(8)

where hli represents tokens with less informative
and αi denotes the corresponding class attention
weight. [;] indicates a connection operation.

3.2 Layer-wise Early Exiting
In addition to sequential token-wise EE, layer-wise
EE is used to further reduce the layers and compu-
tation of PLMs from another perspective, as shown
in Figure 2. The EE classifier is added between
every two transformer layers. The logit distribution
C lz of the EE classifier is defined as

C lz=tanh(W l
zh
l
[CLS] + blz) (9)

where W l
z ∈ RC×d and blz ∈ RJ represent the

weight and bias of the l-th EE classifier, respec-
tively, and J denotes the number of classes.

Each EE classifier in the existing EE approaches
makes its decision independently, ignoring infor-
mation from previous EE classifiers and discarding
potentially valuable information. Recycling EE
classifier memory is used to fuse useful informa-
tion from previous EE classifiers into the current
EE classifier and obtain useful information from
different layers of EE classifiers to help make accu-
rate and reliable predictions and is defined as

C lzm= (1−λ)Cl−1zm + λC lz
ŷlz = softmax(C lzm)

(10)

where ŷlz denotes the probability distribution of
the EE classifier and C lzm denotes EE classifier
memory. The cross-entropy training objectives of
these EE classifiers are defined as follows:

LCE = −
L∑

l=1

I(y) ◦ log(ŷlz) (11)

where y denotes the corresponding ground-truth
label, I(y) denotes a one-hot label with the y-th
element being one, and ◦ represents an element-
wise multiplication operation.

The weak expressiveness of the shallow EE clas-
sifier and the lack of higher-level semantic infor-
mation lead to poor performance of the shallow EE
classifier. Thus, weighted ensemble self-distillation
is applied to further improve the representation abil-
ities and obtain rich semantic information from the
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EE classifiers. Based on the importance of students,
i.e., EE classifiers, to the final prediction, an atten-
tion mechanism is used to combine all students into
a teacher model and is defined as

ηl =
exp(V T tanh(WηClzm+bη))
L∑
l=1

exp(V T tanh(WηClzm+bη))

t =
L∑
l=1

ηlC lzm

(12)

where V is the context vector, Wα and bα are the
weight and bias, respectively, and t is the teacher
for self-distillation, which is accomplished by min-
imizing the distribution between the teacher model
and the student models and is defined as

LKD =
L∑
l=1

τ2KL(softmax(C lzm/τ)||softmax(t/τ))
(13)

where KL(·||·) is the Kullback-Leibler divergence
function and τ is the temperature parameter that
measures the smoothness of the distribution. τ2

compensates for the size of the gradient scaled by
the soft target, ensuring that there is no negative
impact on the gradient size. The overall loss of the
proposed MPEE is denoted as

L = LCE + LKD (14)

In MPEE, the informative token is first selected
and the less informative token exits. Furthermore,
less informative tokens are fused into EE fusion
tokens to continue the computation in the following
layer. Then, the decision of whether to exit the
whole computation at the current layer is based
on whether the entropy value of the current EE
classifier is greater than the preset threshold F.

4 Experiments

4.1 Datasets

To evaluate the acceleration effect of the proposed
method on the inference of PLMs, we conducted
experiments on the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2019), which includes SST-2 (Socher et al., 2013)
for sentiment analysis containing sentences from
movie reviews. QQP and MRPC (Dolan and Brock-
ett, 2005) for similarity and paraphrase. QNLI (Ra-
jpurkar et al., 2016) and MNLI (Williams et al.,
2018) for natural language inference, and the RTE
for textual entailment.

4.2 Performance and Acceleration Metrics
For performance metrics, accuracy (Acc) and F1-
score (F1) were used as evaluation metrics for
MRPC. For all other tasks, accuracy was used as
the evaluation metric.

For acceleration metrics, following Ye et al.
(2021), we used the number of floating operations
(FLOPs) as the acceleration inference ratio. Be-
cause FLOPs evaluate acceleration inference inde-
pendently of the runtime environment and hard-
ware, it is easy to compare the acceleration infer-
ence of the models. The acceleration ratio ρ is
defined as the rate of the total FLOPs by the origi-
nal model to the FLOPs actually executed by the
model and is defined as

ρ=
FLOPsexec
FLOPstotal

(15)

where FLOPs are the sum of floating operations of
all inference sample. The individual sample FLOPs
are calculated during inference. The performance
with different acceleration ratios is obtained by
adjusting the threshold F and sequence EE ratio
Ree.

4.3 Baselines
To demonstrate the effectiveness of the proposed
method, several previous methods are implemented
for comparison for PLMs accelerated inference.
The baselines include the BERT backbone model,
model compression methods, early exiting meth-
ods, and sequence reduction methods. Other model
compression methods, such as BERT-6L, Distil-
BERT (Sanh et al., 2019), BERT-PKD (Sun et al.,
2019) and LayerDrop (Fan et al., 2019) are also
applied. In addition, early exiting methods, in-
cluding DeeBERT (Xin et al., 2020), FastBERT
(Liu et al., 2020) and PABEE (Zhou et al., 2020)
and sequence length reduction methods, including
PoWER-BERT (Goyal et al., 2020) and TR-BERT
(Ye et al., 2021) are introduced for comparison.
The implementation and the optimal hyperparam-
eters are fine-tune by using a grid search strategy
to train the baseline. To make a fair comparison,
we use the same parameters for the baseline and
calculated PoWER-BERT in a single sample of
FLOPs.

4.4 Implementation Details
The implementation of the proposed model is based
on HuggingFace’s transformers (Wolf et al., 2020).
BERT-base-uncased is used as the backbone

4681



Model
MNLI-m SST-2 MRPC QQP MNLI-mm QNLI RTE

Acc ρ Acc ρ F1/Acc ρ Acc ρ Acc ρ Acc ρ Acc ρ

BERT-Base 83.9 1.00× 92.1 1.00× 90.3/86.3 1.00× 91.1 1.00× 83.8 1.00× 91.2 1.00× 71.1 1.00×
BERT-6L 80.3 2.00× 90.1 2.00× 86.6/80.3 2.00× 88.0 2.00× 80.6 2.00× 86.9 2.00× 64.5 2.00×
DistilBERT 79.0 2.00× 90.7 2.00× 87.5/- 2.00× 88.5 2.00× 81.5 2.00× 85.3 2.00× 59.9 2.00×
BERT-PKD 81.3 2.00× 91.3 2.00× 85.7/- 2.00× 88.4 2.00× - 2.00× 88.4 2.00× 66.5 2.00×
LayerDrop 80.7 2.00× 90.7 2.00× 85.9/- 2.00× 88.3 2.00× - 2.00× 88.4 2.00× 65.2 2.00×
DeeBERT 74.3 1.92× 90.4 1.97× 86.5/79.9 1.95× 88.2 1.96× 74.5 1.91× 86.4 1.95× 63.8 1.96×
FastBERT 74.5 1.93× 90.8 1.98× 86.6/80.3 1.96× 88.4 1.96× 74.8 1.92× 86.7 1.92× 65.0 1.98×
PABEE 79.0 1.95× 90.1 1.98× 86.8/80.4 1.80× 89.1 1.98× 79.5 1.93× 87.6 1.85× 63.9 1.96×
PoWER-BERT 81.9 2.47× 91.1 2.33× 88.4/82.8 3.11× 89.7 3.27× 81.6 2.52× 89.3 2.21× 68.2 2.56×
TR-BERT 82.1 2.96× 90.3 1.63× 84.9/75.9 1.23× 89.4 3.15× 81.9 3.02× 88.2 1.57× 67.8 2.63×
MPEE 82.6 3.38× 91.7 4.4× 88.7/83.3 3.47× 90.0 4.33× 82.3 3.41× 90.2 2.45× 69.0 3.55×

Table 1: Compare experimental results in the baseline methods with BERT backbone on GLUE.

of our model, where the transformer layer is 12
layers, the attention head is 12, and the hidden
dimension is 768. The training batch sizes are 64
and 128. The inference batch size for the proposed
model and baseline is 1. We use the grid search
to find 0.7 for Ree and 0.5 and 0.9 for β and λ,
respectively. The model is optimized using Adam,
and the learning rate is 2e-5.

4.5 Comparative Results

Table 1 shows the performance and acceleration in-
ference of the proposed method and baseline meth-
ods. The proposed MPEE method outperforms all
baseline methods in improving acceleration infer-
ence while maintaining better performance, verify-
ing the effectiveness of the proposed model. The
accuracy degradation is within a relatively small
range compared to BERT, while the acceleration in-
ference is significantly improved on most datasets.
Especially, the acceleration ratio ρ is 4.4× on SST-
2.

Further, the proposed MPEE method has 4.4×
acceleration ratio ρ on SST-2, but still maintains a
91.6% accuracy. The proposed MPEE outperforms
the existing EE methods due to the shallow layer
learns higher layer semantic information, allow-
ing it to improve its expressiveness, which leads
to decreased model performance. Ignoring hori-
zontal perspective redundancy limits accelerated
inference. On SST-2, MPEE has a 1.4% higher
performance than TR-BERT with respect to accu-
racy, but still has a 2.86× faster acceleration ratio
ρ on inference. TR-BERT discards some token in-
formation and reduces the sequence length in only
two layers to ease the convergence of the model
with RL and reduce the search space. Therefore, its

acceleration effect is relatively insignificant, thus
its performance is degraded. PoWER-BERT com-
pletely removes the token, leading to partial in-
formation loss and decreasing model performance.
This sequence reduction approach requires the com-
putation to be executed through the last layer and
ignores vertical perspective redundancy, resulting
in limited acceleration. The proposed approach sig-
nificantly reduces computation and accelerates in-
ference by simultaneous early exits from both hori-
zontal and vertical perspectives, and the EEs of the
two perspectives are orthogonal. The EE token in-
formation is preserved, and the performance of the
model is maintained by weighted self-distillation.

4.6 Ablation Study

We conducted several ablation studies to better
demonstrate the effectiveness of the proposed mod-
ules, including recycling class attention mem-
ory (Att-memory), EE fusion token (EE-fusion),
recycling EE classifier memory (EE-memory),
weighted self-distillation (WSD), layer-wise EE
(Layer-EE) and sequential token-wise EE (Token-
EE). To demonstrate their effectiveness, we have
removed each module individually to show that the
performance is degraded, as observed in Table 2.

The removal of EE fusion leads to performance
degradation because most of the semantic informa-
tion is lost in this setup. Similarly, the absence
of Att-memory leads to performance degradation,
proving the ability of proposed model to effectively
enhance the selected informative tokens by combin-
ing class attention at different layers. The removal
of Token-EE and Layer-EE leads to a significant
reduction in acceleration. The rational reason for
these results is that vertical and horizontal perspec-
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Model
SST-2 MRPC RTE QQP QNLI

Acc ρ F1/Acc ρ Acc ρ Acc ρ Acc ρ

BERT 92.1 1.00× 90.3/86.3 1.00× 71.1 1.00× 91.1 1.00× 91.2 1.00×
MPEE 91.7 4.40× 88.7/83.3 3.47× 69.0 3.55× 90.0 4.33× 90.2 2.45×
w/o Att-memory 91.4 4.22× 88.3/82.9 3.26× 68.1 3.26× 89.5 4.12× 89.7 2.26×
w/o EE-memory 91.3 4.27× 88.2/83.1 3.18× 68.3 3.19× 89.3 4.26× 89.8 2.32×
w/o WSD 91.2 3.92× 87.8/83.0 2.96× 67.9 3.08× 89.1 4.02× 89.5 2.06×
w/o EE-fusion 91.0 4.18× 88.0/82.5 3.23× 68.4 3.28× 89.2 4.08× 89.6 2.37×
w/o Layer-EE 91.3 2.43× 86.8/81.1 2.62× 68.2 2.43× 87.3 2.43× 90.0 1.74×
w/o Token-EE 91.5 2.47× 87.2/81.5 2.83× 68.6 1.72× 89.9 2.88× 89.9 1.71×

Table 2: Results of the ablation study of the proposed MPEE model.

Method
SST-2 QNLI

Acc ρ Acc ρ

Class Attention 91.6 4.40× 90.1 2.45×
All-token Attention 91.3 4.27× 89.7 2.36×

Table 3: Different methods of selecting the informative
token.

tive EE simultaneously lead to significant accelera-
tion inference.

The informative tokens were selected based on
class attention, which is convenient and does not
introduce additional parameters and calculations.
To show the validity of class attention, we compare
it with another choice of informative token. An-
other way to select informative tokens is to sum
the attention weights of all tokens, which is noted
as the all token attention, as shown in Table 3.
Using class attention has better performance, es-
pecially for similarity acceleration inference. The
results show that class attention is a better guide for
selecting informative tokens because the model pre-
diction is based on the [CLS] token and averaging
all token attention when there is too much redun-
dant information will dilute the important token
weights down to the selection informative token
confusion.

4.7 Analysis
Performance-Acceleration Tradeoff. To further
demonstrate the performance and efficiency trade-
off between the proposed method and baseline
methods, Figure 3 shows the performance and ac-
celeration tradeoff curves. Different accelerations
can be obtained by changing the threshold F and se-
quence EE ratio Ree. In addition, in TR-BERT, the
parameters need to be changed to retrain to obtain

Figure 3: Performance-acceleration tradeoff for MPEE,
DeeBERT, TR-BERT and PABEE.

different accelerations, which increases the com-
putational resources. This limits the application of
TR-BERT on different mobile devices. As shown
in Figure 3, the performance of the existing EE
methods decreases sharply with increasing accel-
eration ratios, which is also due to the poor perfor-
mance of shallow EE classifiers caused by the weak
representation. MPEE outperforms TR-BERT in
terms of acceleration and performance. The pro-
posed method simultaneously accelerates inference
in multiple perspectives. Preserving EE token in-
formation and weighted self-distillation maintains
the performance of the model. Another reason is
that TR-BERT reduces the sequence length in two
layers, which requires discarding more tokens to
reach similar acceleration, while we early exit to-
kens in more layers. MPEE can achieve a better
tradeoff between performance and efficiency.

Sample Distribution of Early Exiting. To better
demonstrate the superiority of the proposed method
over other methods in accelerating the inference
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of PLMs, Figure 4 shows the statistical informa-
tion of the number of samples exiting early in dif-
ferent layers. The proposed MPEE tends to exit
the model inference at an earlier classifier than
DeeBERT with a higher model performance. This
indicates that the proposed model can exit early
while maintaining high performance. Another ob-
servation is that nearly half of the samples of the
proposed model exit the model immediately at the
first layer, but the acceleration ratio ρ is 4×. This
is because the horizontal perspective EE further
reduces the computation and improves the acceler-
ation inference and because the multi-perspective
early exiting is orthogonal.
Performance of Different Class Attention
Scores. To verify whether the class attention has
the ability to discriminate the information token.
We exit the tokens of the top 70% and the bottom
70% class attention score tokens separately to ob-
tain the model performance, as shown in Figure
5. The performance of tokens with high scores
is better than the performance of tokens with low
scores. The selection of the bottom 70% class atten-
tion score tokens leads to increasingly low perfor-
mance, which is due to the model selecting tokens
with less information layer by layer. This indicates
that class attention can be used to obtain the more
informative tokens.

5 Related Work

Model Compression. Knowledge distillation (Sun
et al., 2020) refers to the training of smaller student
models using the knowledge supervision of pre-
trained larger teacher models. The student model
uses fewer layers to learn knowledge from the
teacher’s hidden units and logits, e.g., DistilBERT
(Sanh et al., 2019) and BERT-PKD (Sun et al.,
2019). Pruning (Wang et al., 2020) refers to the
removal of less important weights or computational
units. Voita et al. (2019) analyzed multi-head self-
attention importance and removed it. Sajjad et al.
(2020) discarded unimportant layers in the fine-
tuning process. PoWER-BERT (Goyal et al., 2020)
progressively reduces the sequence length and ac-
celerates the BERT model. However, ignoring the
deleted token leads to information loss and thus
reduces the performance of the model. Ye et al.
(2021) proposed using reinforcement learning to
select unimportant tokens to reduce the sequence
length. This approach requires additional strate-
gies to converge the model. Quantification (Shen

Figure 4: Distribution of different performances of
early exiting classifiers on SST-2.

Figure 5: The performance of the top 70% and bottom
70% class attention score on SST-2.

et al., 2020) is the process of reducing the number
of bits needed to represent the model weights. Gao
et al. (2021) proposed to quantize the activation
function and the weight parameters simultaneously
to reduce quantization errors.
Early Exiting. The early exiting approach refers
to allowing different samples to exit early in differ-
ent layers depending on the properties of the input
samples. DeeBERT (Xin et al., 2020) performs
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early prediction by introducing multiple EE clas-
sifiers and exits early if the confidence is greater
than the threshold, and conversely passes to the
next layer to continue the computation. FastBERT
(Liu et al., 2020) uses self-distillation to train EE
classifiers. PABEE (Zhou et al., 2020) achieves
early exit inference when EE classifier predictions
are held continuously constant.

6 Conclusions

In this paper, we propose a unified multi-
perspective early exiting framework that signifi-
cantly reduces the computation cost and improves
acceleration inference within a small performance
loss. The multi-perspective early exit framework in-
cludes horizontal and vertical perspectives early ex-
iting. It has horizontal sparsity and vertical sparsity
for faster inference. Extensive experimental results
show that compared to previous approaches, the
proposed model provides a better tradeoff between
model performance and inference efficiency. Fu-
ture work attempt to extend the proposed approach
to vision and language pretrained models, taking
into account the properties of different modalities.
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Abstract

Fake news detection is a challenging problem
due to its tremendous real-world political and
social impacts. Recent fake news detection
works focus on learning news features from
News Propagation Graph (NPG). However, lit-
tle attention is paid to the issues of both au-
thenticity of the relationships and topology im-
balance in the structure of NPG, which trick
existing methods and thus lead to incorrec-
t prediction results. To tackle these issues,
in this paper, we propose a novel Topology
imbalance and Relation inauthenticity aware
Hierarchical Graph Attention Networks (TR-
HGAN) to identify fake news on social me-
dia. Specifically, we design a new topology
imbalance smoothing strategy to measure the
topology weight of each node. Besides, we
adopt a hierarchical-level attention mechanis-
m for graph convolutional learning, which can
adaptively identify the authenticity of relation-
ships by assigning appropriate weights to each
of them. Experiments on real-world datasets
demonstrate that TR-HGAN significantly out-
performs state-of-the-art methods.

1 Introduction

Fake news is a news article that is intentional-
ly and verifiably false and could mislead readers
(Rashkin et al., 2017; Zhou and Zafarani, 2020).
The widespread of fake news can immensely af-
fect cyberspace security and even social stability
(Lazer et al., 2018). For example, fake news “all of
Walmart’s e-commerce stores would include a pay
with litecoin option beginning October 1"1 causes
Litecoin’s prices surged by over 37% to $236 and
Bitcoin’s prices fell below $44,000 (Kogan et al.,
2021), resulting in huge losses for many investors.

Various fake news detection methods are devel-
oped to classify whether the news is fake or not,

∗∗Corresponding authors: Lingyun Song, Xuequn Shang
1https://genesisblockhk.com/fake-news-litecoin-and-

walmart-are-not-partnering-in-payments/

which can be roughly divided into news content-
based methods and social context-based method-
s. Existing news content-based methods (Qazvini-
an et al., 2011; Maddock et al., 2015; Jin et al.,
2013; Wu et al., 2015; Ma et al., 2017) typically fo-
cus on mining lexical and syntactic features (Feng
et al., 2012; Potthast et al., 2017; Conroy et al.,
2015) from news contents, ignoring the rich struc-
tural information of news propagation. To address
this limitation, social context-based methods (Yuan
et al., 2019; Yang et al., 2021; Shu et al., 2019;
Yuan et al., 2020) tend to learn the feature repre-
sentations by the structure information of News
Propagation Graph (NPG), where NPG consists of
multiple types of nodes (e.g., news, comments and
users) and relationships (e.g., follower, retweet and
friendship).

(a) (b)

(c)

News2

… … …

User1

User1

User3

User4

User3

User2

User1

News2

News3

…
News1Comment1

Figure 1: Three types of unauthentic relation scenarios
on news propagation graphs (NPG). Nodes represent-
ing fake objects (e.g., news or comments) and abnor-
mal users are highlighted in red, while the unauthentic
relations are represented by dotted lines. (a) An abnor-
mal user User1 forwards a true news News3, and he
manipulates or tricks a normal user User2 to create a
fake supporting comment on a fake news News1, or
he hacks a normal user User3 to forward a fake news
News2. (b) A fake news producer User1 deletes re-
al opposing comments produced by normal users. (c)
An abnormal user User1 follows many normal users to
disguise himself.
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Although these social context-based methods
achieve promising performance, they have an ill-
advised assumption that impair the performance of
fake news detection. Specifically, they assume a
piece of news connecting with a trustworthy user
should also have high credit. However, in many
cases, the relationships in NPG can be manipulated
by users and thus are unauthentic. For example,
we present several types of unauthentic relations in
Figure 1, where a fake news creator could manipu-
late other users to create fake comments to support
the fake news, or delete real comments opposing
the fake news. This leads to inaccurate NPG with
unauthentic propagation structure, which confuses
existing social context-based methods to make an
incorrect prediction.

Besides, NPG usually has the problem of topol-
ogy imbalance: the imbalance caused by the asym-
metric and uneven topology of labeled nodes,
where the decision boundaries are driven by the
labeled nodes close to the topological class bound-
aries thus interfering with the model learning (Chen
et al., 2021). Ideally, the influence from labeled
nodes should decay with the topology distance and
also the node influence boundaries should be con-
sistent with the true class boundaries. But the
topology imbalance issue would cause the node
influence boundaries to deviate from the true class
boundaries, resulting in inaccurate results. Never-
theless, most approaches neglect this issue in NPG,
interfering with the detection results.

To tackle these issues, we propose a novel
Topology imbalance and Relation inauthentici-
ty aware Hierarchical Graph Attention Networks
(TR-HGAN) for fake news detection. We first-
ly design a topology smoothing strategy to mea-
sure the weights of labeled nodes to alleviate the
topology imbalance issue. Then we propose a
hierarchical-level attention mechanism to identi-
fy the authenticity of relations by measuring the
appropriate weights to each of them, which can
effectively reduce the influence of the inauthentic
relationships in NPG. The main contributions of
this paper are as follows:

• We study a novel topology smoothing strategy
to address the problem of topology imbalance
of NPG. To the best of our knowledge, this is
the first attempt to solve the topology imbalance
issue of the NPG during fake news detection.

• We develop a hierarchical graph attention mecha-
nism which can effectively identify the authentic-

ity of the relationships by assigning appropriate
weights to each of them.

• Experiments on three real world datasets demon-
strate that TR-HGAN achieves state-of-the-art
performances on fake news classification.

2 Related Work

Fake news detection challenges the usage of relat-
ed information (such as text content, comments,
propagation patterns, etc.) to distinguish whether a
news article is fake or not. Related works can be di-
vided into two perspectives: i) News content-based
methods; ii) Social context-based methods.

2.1 News Content-based Methods
News content-based methods concentrate on de-
signing some textual features such as content writ-
ing styles (Shu et al., 2017), lexical and syntactic
features (Feng et al., 2012; Potthast et al., 2017;
Conroy et al., 2015) to detect the truthfulness of
news articles. For instance, Potthast et al. (Potthast
et al., 2017) extracts various style features from
news contents and predict fake news and media
bias. Ma et al. (Ma et al., 2016; Yu et al., 2017)
captures news features from low-level to high-level
with deep neural networks. Although these ap-
proaches achieve good performance on fake news
detection, they focus on learning text features alone,
rarely considering whether the features can be cap-
tured by utilizing the news propagation structure.

2.2 Social Context-based Methods
Social context-based methods principally learn so-
cial interactions or information propagation struc-
tures through neural networks for further detection.
Specifically, Wu et al. (Wu et al., 2015) propose
a graph kernel-based SVM classifier that aims to
learn high-order news propagation patterns of news
articles. RvNN (Ma et al., 2018) and BiGCN (Bian
et al., 2020) are developed based on bottom-up and
top-down propagation trees for learning the embed-
ding of fake news propagation structure. Howev-
er, these tree-structured based studies don’t utilize
the social network structure information, neglect-
ing the fact that the information dissemination on
social media is essentially spread in the form of
heterogeneous graph.

To tackle these issues, (Lu and Li, 2020) con-
structs an user interaction graph to model the po-
tential interactions between users, and then de-
velop a dual co-attention mechanism to learn the
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co-influence features. Recent studies (Yang et al.,
2021; Yuan et al., 2019; Nguyen et al., 2020) for-
mulate the news propagation structure as a hetero-
geneous news propagation graph with various types
of nodes (e.g., news, comments, and users), and
then apply GNNs model to capture the structure
features for fake news detection. However, they
don’t consider the unauthentic relations and inher-
ent topology imbalance problem in the graph, and
thus may fail to detect the intentional fake news.

3 Proposed Model

The overall architecture of TR-HGAN is shown in
Figure 2, which involves four main components:
i) NPG Construction; ii) Text Embedding; iii) Hi-
erarchical Graph Attention Network that consist-
s of topology imbalance smoothing strategy and
hierarchical-level attention strategy; and iv) Fake
news classification. Next, we describe each part of
TR-HGAN in detail.

3.1 NPG Construction

Let M = {m1,m2, ...,m|M|} be a set of news
articles on social media, where mi is the i-th
news articles and |M| is the number of news. Let
C(mi) = {c1, c2, ..., cn} be a set of comments of
mi, U = {u1, u2, ..., u|U|} be a set of users who
create news or comments. To illustrate our moti-
vation, we construct a heterogeneous news propa-
gation graph (NPG) denoted as G = (V, E), where
V = M∪ U ∪ C covers the sets of news articles,
users and comments, E involves different relation-
ships between nodes. An example of the NPG is
shown in the left of Figure 2, where two nodes
are connected if they have posting/commenting
relationships. Specially, there would be an edge
between two news nodes if they share similar
neighbors but irrelevant content. Users are con-
nected if they have follower/comment the same
news/followee relationships.

3.2 Text Embedding

To obtain the text representation for each news
article, we apply CNN (Chen, 2015; Grefenstette
et al., 2014) and multi-head self-attention (Vaswani
et al., 2017) to obtain the text representation for
each text, which is the same as the existing state-of-
the-art fake news detection approaches, i.e. GLAN
(Yuan et al., 2019) and CGAT (Yang et al., 2021).

Given a source news mi and its comments C =
{c1, c2, ..., cn}. Firstly, we capture initial sequence

feature fmi ∈ Rd of news mi with CNN. By the
same way, the feature fcj ∈ Rd of each comment
cj can be extracted. Then we refine the coher-
ence semantic representation between comments
and source news by using multi-head self-attention
to capture dependencies across news content and
comments. From the above operation, the final text
feature f̂mi for each news and f̂cj for each com-
ment can be extracted. The initial feature f̂uk of
user node uk can be calculated by the user profile
data (such as friends count, followers count, status
count, etc.).

3.3 Hierarchical Graph Attention Network
3.3.1 Topology Imbalance Smoothing

Strategy
To tackle the topology imbalance problem in NPG,
we propose a strategy of smoothing the topology
structure to alleviate the resulting problems. We
assume that if a labeled news node mi ∈ V en-
counters strong influence from the other labeled
neighbor nodes, the node mi owns great influence
and is close to topological class boundaries. In
other words, the influence of labeled nodes should
decay with the topology distance. To measure how
topologically close node mi is to the center of the
class it belongs to, we calculate the topology lo-
cation value Tm by measuring the expectation of
message-passing probability between the node mi

and its neighbors when node mi randomly walks
across the entire graph:

Tm = Ex∼Pm,:[
∑

j∈[1,s],j 6=ym

1

|Sj |
∑

i∈Sj
Pi,x], (1)

where ym is the ground-truth label of node mi. Pm
indicates the personalized PageRank probability
(Page et al., 1999) vector for the node mi, which
can be viewed as the distribution of influence ex-
erted outward from each mi. Pi,x indicates the
probability from mi to mx. Sj represents the train-
ing sets for different classes, where s is the number
of classes. The normalization item 1

|Sj | is added
to make the influence from the different classes
comparable when computing conflict.

The larger the topology location value Tm of
mi, the more topologically closer to class bound-
aries the node mi. Figure 2.(A) apparently shows
that it can decrease the training weights of labeled
nodes c2 and increase the weights of labeled nodes
u4 close to the fake news mi, thus relieving the
topology-imbalance issue. Inspired by the study
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Figure 2: The architecture of TR-HGAN. According to the given Input Sample, we construct a News Propagation
Graph (NPG) which consists of multiple types of nodes and relations. Topology Imbalance Smoothing Strategy
can increase the weight of great influence node and decrease the weight of week influence one, and finally get the
topology weight for each node. Hierarchical-level Attention Strategy can adaptively identify the authenticity of
the relationship by assigning appropriate weight aτij for each edge, where i, j indicate the nodes in NPG, and τ
indicates the type of node (i.e. news, comment, user). For simplicity of description, we give the graph learning of
one-hop neighbors of mi as an example in Hierarchical-level Attention Strategy. For fake news detection, we only
extract the topology weights and features of the news node mi for final classification. The initial feature of each
node is extracted through Text Embedding.

(Chen et al., 2021), in order to promote the train-
ing weights of nodes for effective model learning,
we also train node weights based on their topology
location values by:

wm=wmin+
wmax−wmin

2
(1+cos

Rank(Tm)

|Y | π),

(2)
wherewm is the modified training weight for mi,
wmin, wmax indicates the lower bound and upper
bound of the weight correction factor, Y is the
set of labeled news article nodes, Rank(Tm) is
the ranking order of Tm from the smallest to the
largest.

3.3.2 Hierarchical-level Attention Strategy
Considering nodes u,m, c are three different types
of nodes belong to the different semantic spaces,
the GCN (Kipf and Welling, 2016) cannot be direct-
ly applied to the NPG due to the node heterogeneity
issue. Surprised by the recent work on heteroge-
neous graph convolution (Linmei et al., 2019), we
employ a hierarchical attention mechanism to learn

the representation of each node. Specifically, to
alleviate the negative effects of those unauthen-
tic relations, we adjust the weights between two
nodes by type-level attention and node-level atten-
tion learning.

1) Node-level attention. For each type of nodes
(e.g., node with type τ , where τ ∈ {u,m, c}), we
firstly design the type-specific transformation ma-
trix M τ to project the features of different types
of nodes into the same feature space. Take the
news article node mi as an example, given the in-
put feature vectors f̂mi , the projection process can
be shown as:

h
′
mi = M τ · f̂mi . (3)

Similarly, the initial features of each comment and
each user can be projected as h

′
cj , h

′
uk

, respectively.
Thus, the initial input features of the node-level
attention layer are the h

′
cj , h

′
uk

, h
′
mi .

In the face of fake news detection, the target node
is the news article node mi ∈ M with the type τ .
The neighbors of it belong to V ∈ {M,U , C} with
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the type τ
′
. Given a node pair (mi, vj), where

vj ∈ V , we design the node-level attention to get
the weight coefficient different neighboring nodes
via:

ατij = softmax
(
σ(µτ [h

′
mi

||h′
vj

])
)
, (4)

where µτ is the attention parameter for the type
τ , || means concatenation operation, σ(·) denotes
LeakyReLU function. Then, the type-level node
Vτmi

on graph can be aggregated by the neighbor’s
projected features with the corresponding weights
as follows:

Vτmi
= σ(

∑

vj∈V
ατij · h

′
vj ). (5)

2) Type-level attention. Through the node-level
attention, we fuse information from neighbor nodes
with the same type into the representation of a type-
level node. Different types of nodes contain type-
specific information, which requires us to learn the
importance of different node types. Thus, we adopt
the type-level attention to learn the weights of news
article nodes mi from all types of nodes by:

βτmi = softmax
(
σ(W [Vτmi

||Mmi])
)
, (6)

where W is the weight matrix. Finally, we incor-
porate all type-level nodes to get the final represen-
tation hmi of the target news node mi:

hmi =
∑

τ

βτmi · Vτ
mi . (7)

3.4 Fake News Classification
For the target news mi, we aim at learning an in-
ference function f : G → Y to predict whether it
is fake or not. After the above procedures, we get
the structure features hmi , as well as its coherence-
based sentence representation f̂mi , and then con-
catenate them as final features. Then the final rep-
resentations of news are fed to softmax classifier
based on fully-connected layers to obtain category
probability ŷi:

ŷmi = softmax(W [hmi; f̂mi] + b). (8)

Finally, the cross-entropy loss is used as the opti-
mization objective function for fake news detection:

L(Θ) = − 1

|Y |
∑

m∈Y
wm

s∑

j=1

yjmi log ŷjmi , (9)

where ym is the gold probability of fake news class,
s is the number of classes and Θ represents all
parameters of the model.

4 Results and Discussion

4.1 Datasets

In order to evaluate the performance of TR-
HGAN, we conduct experiments on three bench-
mark datasets: Weibo (Ma et al., 2016), Twitter15
(Liu et al., 2015) and Twitter16 (Ma et al., 2017).
Table 1 gives statistics of the three datasets. The
Weibo dataset contains binary labels, i.e., fake news
(FR) and non-fake news (NR), whereas Twitter15
and Twitter16 datasets have four types of labels,
i.e., fake news (FR), non-fake news (NR), unver-
ified news (UR), and true news (TR), where the
label true news denotes a news article that debunks
the fake news. For a fair comparison, for each
dataset, we randomly select 10% of the dataset as
the validation subset, and divide the rest data into
training and testing subsets with a ratio of 3:1.

Statistic Weibo Twitter15 Twitter16
source news 4664 1490 818
fake news 2313 370 205

non-fake news 2351 374 205
unverified news 0 374 203

true news 0 372 205
users 2,746,818 276,663 173,487

comments 3,805,656 331,612 204,820

Table 1: Dataset statistics.

4.2 Baselines

To highlight performance superiority of the pro-
posed TR-HGAN, we select a series of state-of-the-
art methods as baselines. The first two methods
try to capture fake news features by using content-
based structure. The next six methods extract fake
news features through social contexts-based struc-
ture, among which, the first four methods are tree-
structured models and the last two models are pure
heterogeneous graph-based approaches. They are
described as follows:

• SVM-TS (Ma et al., 2015): An SVM model
that utilizes time-series to model the variation of
hand-crafted features of news.

• GRU (Ma et al., 2016): A RNN-based model
that captures the temporal contextual informa-
tion of relevant retweets or comments.

• RvNN (Ma et al., 2018): A tree-structured recur-
sive neural method that learns fake news features
via the news propagation structure.
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• PPC (Liu and Wu, 2018): A propagation-based
approach that detect fake news with a combina-
tion of recurrent and convolutional networks.

• Bi-GCN (Bian et al., 2020): A novel Bi-
directional model that explores fake news char-
acteristics by operating on both top-down and
bottom-up propagation of fake news.

• EBGCN (Wei et al., 2021): A propagation-
based method that adaptively rethinks the relia-
bility of latent edge-wise relations.

• CGAT (Yang et al., 2021): An end-to-end graph-
based framework that jointly exploits text and
structure information by using graph adversarial
learning framework.

• GLAN (Yuan et al., 2019): A graph-based
method that encodes contextual information
and global structural information by adopting
a global-local attention network.

4.3 Experimental Setup

For fair comparison, we adopt the same evaluation
metrics used in the prior studies (Yuan et al., 2019;
Bian et al., 2020; Wei et al., 2021), we also add
accuracy (Acc.), precision (Prec.), recall (Rec.) and
F1 score as the evaluation metrics.

For text embedding step, for each source news
mi, we truncate the text if its length is larger than
150 words and pad zero if the length is smaller than
150. All word embeddings of the model are initial-
ized with the 300-dimensional word vectors, which
is released by (Yuan et al., 2019). The convolution-
al kernel size k is set to (4, 5, 6) with 100 kernels
for each kind of size. Therefore, the final text repre-
sentation fmi ∈ Rd of news mi are concatenated
by all feature vectors fkmi obtained by differen-
t filters. Besides, the parameters wmin, wmax at
topology imbalance smoothing strategy is set to
[0.25, 0.5, 0.75], [1.25, 1.5, 1.75], respectively.

4.4 Performance Efficiency

Table 2 and Table 3 show the results of fake
news detection on Weibo, Twitter15 and Twitter16
datasets. We bold the best performance of each
column in tables, from where we can observe so-
cial context-based methods outperform those news
content-based methods using only textual features,
which reveals the superiority of learning high-level
representations for detecting fake news.

Method Class Acc. Prec. Rec. F1

SVM-TS
NR

0.857
0.878 0.830 0.857

FR 0.839 0.885 0.861

GRU
NR

0.910
0.952 0.864 0.906

FR 0.876 0.956 0.914

RvNN
NR

0.908
0.912 0.897 0.905

FR 0.904 0.918 0.911

PPC
NR

0.921
0.949 0.889 0.918

FR 0.896 0.962 0.923

BiGCN
NR

0.935
0.925 0.943 0.933

FR 0.951 0.887 0.917

CGAT
NR

0.939
0.938 0.942 0.941

FR 0.939 0.938 0.935

GLAN
NR

0.948
0.937 0.957 0.947

FR 0.967 0.934 0.950

TR-HGAN NR 0.963 0.957 0.964 0.960
FR 0.962 0.961 0.960

Table 2: Fake news detection results on Weibo dataset.

In addition, TR-HGAN performs better than
the tree-structured based methods (e.g., RvNN, P-
PC, BiGCN, EBGCN). It can attribute that tree-
structured methods neglect the messages are spread
by a graph structure (i.e., constructed with source
news, comments and users) rather than a tree struc-
ture (i.e., only constructed with source news and
retweets), which limit the learning of high-level
features.

Moreover, the proposed TR-HGAN outperform-
s state-of-the-art graph-based GLAN on three
datasets. Specifically, as Table 2 shows, TR-HGAN
achieves improvement of 1.5% on Weibo, com-
paring with the best baseline GLAN in terms of
accuracy. We can also find TR-HGAN obtains
2.5% and 1.7% improvements than the best model
on accuracy over all metrics across Twitter15 and
Twitter16, respectively. We discuss the fact for t-
wo main reasons. First, TR-HGAN considers the
inherent unauthentic relations and rich structural
features in the news propagation graph. Second,
unlike CGAT and GLAN, TR-HGAN pays more
attention to the node topology imbalance problem
on NPG, which helps improve our models much
more.

4.5 Ablation Study

In this part, we test the performance of TR-HGAN
variants with different configurations, including:

• TR-HGAN w/o Text: it only uses source news
texts for fake news classification.

• TR-HGAN w/o C: it removes the news com-
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Twitter15 Twitter16

Method
Acc.

NR FR TR UR
Acc.

NR FR TR UR
F1 F1 F1 F1 F1 F1 F1 F1

SVM-TS 0.544 0.796 0.472 0.404 0.483 0.574 0.755 0.420 0.571 0.526
GRU 0.646 0.792 0.574 0.608 0.592 0.633 0.772 0.489 0.686 0.593
RvNN 0.723 0.682 0.758 0.821 0.654 0.737 0.662 0.743 0.835 0.708
PPC 0.842 0.811 0.875 0.818 0.790 0.863 0.820 0.898 0.843 0.837
BiGCN 0.886 0.891 0.860 0.930 0.864 0.880 0.847 0.869 0.937 0.865
EBGCN 0.891 0.864 0.892 0.916 0.867 0.915 0.868 0.899 0.924 0.901
GLAN 0.904 0.922 0.915 0.857 0.923 0.895 0.910 0.875 0.851 0.941
TR-HGAN 0.929 0.930 0.928 0.925 0.935 0.932 0.923 0.910 0.932 0.949

Table 3: Fake news detection results on Twitter15 and Twitter16 datasets.
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Figure 3: TR-HGAN ablation analysis results on three datasets in terms of Accuracy and F1.

ments, leaving the source news nodes and users
nodes in NPG for fake news detection.

• TR-HGAN w/o U: it removes the users, leaving
the source news and comments in graph for fake
news detection.

• TR-HGAN w/o NC: it removes the edges be-
tween source news and comments.

• TR-HGAN w/o HN: it uses graph convolution-
al network (GCN) (Kipf and Welling, 2016) to
encode the graph structure NPG.

• TR-HGAN w/o TI: it removes the topology im-
balance smoothing strategy module for fake
news classification.

The comparison results of F1 and accuracy are
shown in Figure 3. We can observe that all the
other methods outperform TR-HGAN w/o Text, in-
dicating the structure features are important for
fake news detection. When we try to remove the
information in NPG, the performance apparently
decreases (i.e. TR-HGAN w/o C and TR-HGAN w/o
NC) which indicating that the social-aware struc-
ture features indeed benefits the performance of
fake news detection.

Moreover, TR-HGAN w/o TI models the graph
structure without considering the topology imbal-
ance problem, resulting the performance drops
rapidly, which shows the importance of measur-
ing topology imbalance. Furthermore, the perfor-
mance of TR-HGAN w/o HN gets worse when don’t
consider the heterogeneity and the unauthentic re-
lations of NPG.

4.6 Early Detection

Early fake news detection aims to detect fake news
at the early stage of propagation, which is especial-
ly critical for restricting the dissemination scope of
fake news. The earlier the detection deadline, the
less propagation information such as comments and
users are available. To evaluate the performance
on early fake news detection, we set up a series of
detection deadlines [0h, 2h, 4h, 6h, 8h, 12h, 24h].

Figure 4 shows that the proposed TR-HGAN
reaches relatively high accuracy at a very early pe-
riod after the source news initial broadcast. Specifi-
cally, TR-HGAN achieves 94% accuracy on Weibo,
87.2% accuracy on Twitter15 and 84.9% on Twit-
ter16 within 2 hours, which is much faster than
other models. This is because TR-HGAN takes the
reliability of relations in NPG into account by mea-
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Figure 4: The performance of early fake news detection
on three datasets in terms of Accuracy.

suring the importance between different nodes. Be-
sides, TR-HGAN consistently achieves relatively
high accuracy score on all datasets than other mod-
els at each deadline. This is because TR-HGAN
considers the problem of topology imbalance and
unauthentic relations in NPG. In the model, the
importance of each node can be measured by topol-
ogy imbalance smoothing strategy, which boosts
the performance of detecting results. Second, the
unauthentic relations can be refined by the hierar-
chical attention mechanism, which helps identify
unreliable relationships and reduce the noisy of
problem nodes in time, so as to detect the authen-
ticity of news as soon as possible.

4.7 Case Study

To further illustrate why our model outperforms
state-of-the-art baseline GLAN (Yuan et al., 2019),
we randomly sample two fake news from Twitter15
dataset. As depicted in Figure 5, the news, com-
ments and corresponding users are formulated as
nodes and relations are modeled as edges in NPG.
As shown in the left of Figure 5, we observe that
comment c3 is irrelevant with news m1 although
replying, which reveals the ubiquity of unauthentic
relations among news in the NPG and it is neces-
sary to consider the inauthenticity caused by these
unauthentic relations.

The right of Figure 5 indicates the construct-
ed weighted NPG. For a target node m1, existing
graph-based models (e.g., GLAN, CGAT) always
generate the feature representation of m1 by ag-
gregating the information of its all neighbors ac-
cording to seemingly authentic edges. However,
edge between node m1 and c3 would bring noise
features and limit the learning of useful features
for fake news detection. The proposed TR-HGAN
can successfully weaken the negative effect of this
unauthentic edge by hierarchical-level attention net-
work. Besides, the target fake news node m1 will
affect the class boundary shift of its neighbors due
to the topology imbalance of NPG. Thus, the topol-
ogy imbalance smoothing strategy is adopted to
decrease the weights of those useless nodes and
strengthen the weights of important nodes close to
target node. Accordingly, the TR-HGAN is capa-
ble of learning more conducive features and can
enhance the robustness of results.

5 Conclusion

In this paper, we have studied the unauthentic re-
lations and topology imbalance issue in the news
propagation structure from a weight learning per-
spective on fake news detection. We propose
a topology imbalance and relation inauthentici-
ty aware hierarchical graph attention networks
(TR-HGAN) to capture robust structural features.
Specifically, we design a topology imbalance s-
moothing strategy to address the problem of topolo-
gy imbalance in NPG by increasing the weight of n-
odes with great influence and decreasing the weight
of nodes with week influence. Besides, we devel-
op a hierarchical graph attention mechanism for
graph convolutional learning, which can adaptive-
ly measure the authenticity of the relationships by
assigning appropriate weight to each relationship,
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Figure 5: The case study. Left shows two fake news sampled from Twitter15. The comment c3 is the irrelevant
one towards propagation of news m1 but included in. (a) is the constructed NPG based on the news propagation
structure. (b) shows the result of case study. The proposed TR-HGAN can measure the topology weight of each
node to increase the weights of important nodes close to the class centers and decrease the weights of nodes close
to class boundary. In addition, TR-HGAN adaptively adjust the weights of edges in NPG to strengthen the effect
of authentic edges and weaken the effect of unauthentic edges.

thus effectively reduce the influence of the unau-
thentic relations. Extensive experiments conducted
on three commonly benchmark datasets demon-
strate that our model can significantly surpass the
state-of-the-art baselines on both fake news classi-
fication and early detection tasks.
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Abstract

Knowledge Graphs (KGs) stores world knowl-
edge that benefits various reasoning-based ap-
plications. Due to their incompleteness, a fun-
damental task for KGs, which is known as
Knowledge Graph Completion (KGC), is to
perform link prediction and infer new facts
based on the known facts. Recently, link pre-
diction on the temporal KGs becomes an active
research topic. Numerous Temporal Knowl-
edge Graph Completion (TKGC) methods have
been proposed by mapping the entities and rela-
tions in TKG to the high-dimensional represen-
tations. However, most existing TKGC meth-
ods are mainly based on deterministic vector
embeddings, which are not flexible and expres-
sive enough. In this paper, we propose a novel
TKGC method, TKGC-AGP, by mapping the
entities and relations in TKG to the approx-
imations of multivariate Gaussian processes
(MGPs). Equipped with the flexibility and ca-
pacity of MGP, the global trends as well as the
local fluctuations in the TKGs can be simul-
taneously modeled. Moreover, the temporal
uncertainties can be also captured with the ker-
nel function and the covariance matrix of MGP.
Moreover, a first-order Markov assumption-
based training algorithm is proposed to effec-
tive optimize the proposed method. Experimen-
tal results show the effectiveness of the pro-
posed approach on two real-world benchmark
datasets compared with some state-of-the-art
TKGC methods.

1 Introduction

Knowledge Graphs (KGs) provide an efficient way
to store world knowledge. Various KGs such as
DBpedia (Auer et al., 2007), NELL (Carlson et al.,
2010), YAGO (Suchanek et al., 2007) and Freebase
(Bollacker et al., 2008) have been constructed and
benefited downstream applications such as informa-
tion retrieval, question answering, etc (Hao et al.,
2017; Zhang et al., 2021). Generally, a fact in KG
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Figure 1: Illustration of three types of embedding-based
TKGC methods which share the same embedding posi-
tion function. Blue points denote the ideal position for
the embeddings of entity Obama, red lines denote the
embedding evolution function estimated by three types
of methods, and shade areas denote the uncertainty es-
timated by density-based and stochastic process-based
methods.

can be represented as a triple (s, p, o), where s (sub-
ject) denotes head entity node, o (object) denotes
tail entity node and p (predicate) denotes relation
edge between them. However, in the real world,
some facts are time-aware. For example, the fact
(Joe Biden, presidentOf, the United States) is not
valid until January 21, 2021, the United States presi-
dential inauguration of Joe Biden. Therefore, some
KGs store time-aware facts or events as the quadru-
ple (s, p, o, t), where t is the timestamp. Such
KGs are referred as Temporal Knowledge Graphs
(TKGs), which mainly include YAGO3 (Mahdis-
oltani et al., 2014), GDELT (Leetaru and Schrodt,
2013), Wikidata (Erxleben et al., 2014) and ICEWS
(Lautenschlager et al., 2015).

Temporal Knowledge Graph Completion
(TKGC), aiming at inferring the missing edges
based on known facts, is a fundamental task for
the incomplete real-world TKGs. A large class
methods perform TKGC by mapping nodes and
edges in TKGs into high-dimensional latent feature
spaces while preserving the semantic and structural
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information as much as possible. In recent
years, extensive research have been conducted on
embedding-based TKGC with notable process,
which is also known as temporal knowledge graph
embeddings (TKGEs). Early works extend the
translation-based Knowledge Graph Embedding
(KGE) approaches by mapping each timestamp
into a specific time embedding (Leblay and Chekol,
2018; Dasgupta et al., 2018). Obviously, such ap-
proaches cannot deal with the unseen timestamps.
To tackle this problem, some researchers model
the entity and relation embeddings in TKGE as the
continuous functions of time (García-Durán et al.,
2018; Goel et al., 2020), which can be categorised
as deterministic-based approaches. Recently, some
researchers model TKGE as multivariate Gaussian
density embeddings (Xu et al., 2019), which can
be considered as density-based methods.

Although the notable progresses have been made,
most of existing TKGE methods still suffer from
the following two disadvantages. (1) Most of them
are not flexible enough, the entity and relation em-
beddings are usually learned as the deterministic
function of time, which is good at capturing the
global trend while failing to model the surging lo-
cal fluctuation. For example, as shown in Figure
1, the semantic meaning of Obama should have a
violent fluctuation on 2008 − 11 − 04 as he won
the presidential election, which is hard to model
solely based on the deterministic function of time.
(2) Most of them are not expressive enough, the
temporal uncertainties of entity and relation embed-
dings are often ignored or under-fitted. As shown
in Figure 1, existing deterministic-based methods
often ignore the uncertainties while density-based
methods learn embeddings with stationary uncer-
tainties.

The above disadvantages could be naturally tack-
led by the stochastic process-based method. On
the one hand, a stochastic process-based method
is flexible to deal with the local fluctuations by
modeling the correlations of embeddings at neigh-
boured timestamps. On the other hand, a stochastic
process-based method is expressive to model the
dynamic changes of temporal uncertainties with
the covariance matrix and kernel function.

Therefore, in this paper, we propose a novel
method to learn flexible and expressive temporal
knowledge graph embeddings based on approx-
imated multivariate Gaussian processes (TKGC-
AGP). In specific, each entity and relation in TKGs

are mapped into a specific multivariate Gaussian
process. The evolution dynamics of the entities
and relations are modeled using the mean func-
tion of multivariate Gaussian process. The tem-
poral correlation for each entity/relation are cap-
tured by the kernel function. The temporal uncer-
tainty of the entities and relations is modeled by the
entity/relation-specific covariance matrix. Further
more, a first-order Markov assumption based algo-
rithm is proposed to approximate the likelihood of
multivariate Gaussian process. To investigate the
effectiveness of the proposed approach, extensive
experiments have been conducted on two large-
scale TKG datasets. Experimental results show the
effectiveness of the proposed approach compared
to various competitive baselines.

In general, our contributions are listed as fol-
lows.

• A novel temporal knowledge graph embed-
ding approach based on multivariate Gaussian
process, TKGC-AGP, is proposed. Both the
correlations of entities and relations over time
and the temporal uncertainties of the entities
and relations are modeled. To our best knowl-
edge, we are the first one to utilize multivariate
Gaussian process in TKGC.

• A novel first-order Markov assumption based
algorithm is proposed to approximate the like-
lihood of multivariate Gaussian process.

• Experimental results show that TKGC-AGP
outperforms several competitive baselines on
two TKG datasets.

2 Related Work

Our work is mainly related to two lines of research,
described as follows.

2.1 Temporal Knowledge Graph Completion

Temporal knowledge graph completion has been
an attractive research topic in recent years. Works
have been done with notable progress. Leblay and
Chekol (2018) proposed TTransE, which extended
the translation-based knowledge graph embedding
methods to temporal knowledge graph by map-
ping the time information into low-dimensional
vector space. Similar to TTransE, Dasgupta et al.
(2018) proposed HyTE by incorporating the time
information by assigning each timestamp with a
temporal hyperplane. García-Durán et al. (2018)
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proposed TA-TransE and TA-DistMult to learn the
time-aware relation embedding by concatenating
relation with time information as the input of a
recurrent neural network. Xu et al. (2019) pro-
posed ATiSE to represent the entity and relation in
TKG as additive time series with Gaussian white
noise to capture the temporal uncertainty. Goel
et al. (2020) introduced the diachronic embedding
method to model the evolution of entities along
with time. Lacroix et al. (2020) presented an exten-
sion of ComplEx by introducing new regularization
schemes to control the evaluation rate of embed-
dings. Xu et al. (2020) defined the temporal evolu-
tion of entities as the rotation in the complex vector
space to deal with the symmetric and asymmetric
relation simultaneously.

However, all aforementioned methods focus on
modeling the evolution of entities and relations
over time, ignoring the local correlations within
them. To our best knowledge, we are the first one
to consider model the correlation of entities and
relations over long and short term in TKGs.

2.2 Probabilistic Representation Learning

Probabilistic embeddings have been extensively ex-
plored in many natural language processing tasks.
Vilnis and McCallum (2015) introduced Gaussian
embedding into the word representation learning
task to tackle polysemy with the variance of Gaus-
sian distributions. Brazinskas et al. (2018) fur-
ther explored to learn the context-specific Gaussian
word embeddings with a Bayesian learning frame-
work. Athiwaratkun and Wilson (2018) proposed
to learn the entailment relationships in the visual-
semantic hierarchy with the Gaussian density or-
der embeddings. Beyond probabilistic distribution,
stochastic processes have also been considered. For
example, Bamler and Mandt (2017) proposed a re-
cursive stochastic process to model the dynamic
changes of word semantics over time. To model
uncertainty in KG, He et al. (2015) first employed
Gaussian distribution to represent entities and rela-
tions in KG. Xiao et al. (2016) proposed a genera-
tive KGE method with a Bayesian non-parametric
framework to generate Gaussian embedding and ad-
dress the polysemy of relations. Other distributions
such as Beta distribution have also been explored.
Ren and Leskovec (2020) presented to model the
first-order logic queries with Beta distributions by
translating the logic operators with operations on
Beta distribution.

However, all the aforementioned methods fo-
cus on specific-designed probabilistic distributions
or stochastic processes. To our best knowledge,
we are the first one to explicitly learn represen-
tations based on nontrivial multivariate Gaussian
processes.

3 Method

In this section, we will discuss the details about
the proposed method. We will start from the back-
ground knowledge of multivariate Gaussian pro-
cess. Then we will talk about how to construct
the entity and relation embeddings based on mul-
tivariate Gaussian process. Finally, the training
and inference process of the proposed approach is
explained.

3.1 Multivariate Gaussian Process
In this subsection, we will introduce the definition
of multivariate Gaussian process and some com-
mon properties. We will start from matrix Gaussian
distribution, which is the base for defining a multi-
variate Gaussian process.
Definition 1 (Matrix Gaussian Distribution). A
random matrix X ∈ Rn×p is matrix Gaussian dis-
tribution with location parameter M ∈ Rn×p and
scale parameters U ∈ Rn×n and V ∈ Rp×p if and
only if

vec(X) ∼ Nnp(vec(M),V ⊗U) (1)

where Nnp(µ,Σ) denotes multivariate Gaussian
distribution on Rn×p with mean vector µ and co-
variance matrix Σ, vec(X) denotes the vectoriza-
tion of X and ⊗ denotes the Kronecker product. In
this case, we denote

X ∼MN n×p(M,U,V) (2)

With definition of matrix Gaussian distribution,
we can define the multivariate Gaussian process.
Definition 2 (Multivariate Gaussian Process
(MGP)). f is a multivariate Gaussian process on Rp
with vector-valued mean function µ = {µj}di=1 :
Rp ⇒ Rd, kernel k : Rp × Rp ⇒ R and positive
semi-definite covariance matrix Ω ∈ Rd×d if and
only if any finite collection of variables have a joint
matrix Gaussian distribution,

[f(x1), ..., f(xn)] ∼MN d×n(M,Ω,Σ) (3)

where M ∈ Rd×n with Mij = µj(xi) and Σ ∈
Rn×n with Σij = k(xi, xj). In this case, we de-
note

f ∼MGP(µ, k,Ω) (4)
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3.2 Temporal Knowledge Graph Embedding
based on Multivariate Gaussian Process

In this subsection, we describe how to construct
the entity and relation embeddings based on MGP.
Without loss of generality, we can denote a tempo-
ral knowledge graph as G = {E ,R, T }, where
E , R and T are the set of entities, relations
and timestamps respectively. Given a quadruplet
(es, rp, eo, t) from E × R × E × T , the goal is to
learn temporal representations for {ei,t|ei ∈ E}
and {rj,t|rj ∈ R} and a score function f : E ×
R×E ×T ⇒ R that is maximized for quadruplets
in valid dataset D+ and minimized for quadruplets
in corrupted dataset D−.

To model the temporal correlations and uncer-
tainty simultaneous, entity or relation will be rep-
resented as a d-dim MGP on t ∈ R, where d is the
dimension of embeddings and t is time variable:

ei(t) ∼MGP(µei(t), kei(t, t′),Ωei)
rj(t) ∼MGP(µrj (t), krj (t, t′),Ωrj )

(5)

From Definition 2, we know that an MGP can be
fully specified by its mean function, kernel func-
tion and covariance matrix. We can define a MGP-
based entity/relation embeddings by specifying
those three components.

For the mean function, which controls the lo-
cation and evolution trend of the embedding, we
define it as a second order function of time variable
t to make it more flexible:

µei(t) = bei + αeiϕeit+ βeiψeit
2

µrj (t) = brj + αrjϕrj t+ βeiψrj t
2

(6)

where bei , brj ∈ Rd are time-irrelevant bias vectors,
αei , αrj ∈ R are scalar first-order evaluation rates,
ϕei , ϕrj ∈ Rd are first-order evaluation direction
vectors, βei , βrj ∈ R are scalar second-order eval-
uation rates and ψei , ψrj ∈ Rd are second-order
evaluation direction vectors.

For the kernel function, it controls the correlation
of the embeddings between different timestamps.
The common choices of kernel functions for GP
are various, such as white noise kernel, exponen-
tial quadratic kernel, rational quadratic kernel, etc.
Here we assume that the correlations in TKG are
mainly smooth and short-term, so we choose expo-
nential quadratic kernel as the kernel function of

TKGC-AGP. Formally we define:

kei(t, t
′) = σ2ei exp(−

∥t− t′∥2
2l2ei

)

krj (t, t
′) = σ2rj exp(−

∥t− t′∥2
2l2rj

)

(7)

For the covariance matrixes that reflect random-
ness of entity (relation) in the real world, we set
them as time-irrelevant diagonal matrixes for sim-
plification:

Ωei = diag(ωei)

Ωrj = diag(ωrj )
(8)

where ωei , ωei ∈ Rd denote the diagonal vectors of
covariance matrixes, diag(x) means making matrix
with x as diagonal.

Given a quadruple q=(es, rp, eo, t), a translation-
based score function is employed to measure the
validity:

f(q) = f(es, rp, eo, t) = DB(es,t − eo,t, rp,t)
(9)

whereDB(d, d
′) ∈ R is the Bhattacharyya distance

between distribution d and d′, es,t, eo,t, rp,t ∈ Rd
are multivariate Gaussian distribution embeddings
specific for timestamp t generated by the corre-
sponding MGP:

ei,t = Nd(µei(t),Ωei)
rj,t = Nd(µrj (t),Ωrj )

(10)

3.3 Approximation of MGPs and Training
In this subsection, we will describe the learning
process of TKGC-AGP. To improve the robustness
of training, it is common to train the model based
on the valid dataset D+ as well as a corrupted
dataset D− (Leblay and Chekol, 2018; Dasgupta
et al., 2018). Following (Xu et al., 2019), a valid
quadruple (s, p, o, t) is randomly corrupted by re-
placing the subject or object with a sampled entity
from E to construct the corrupted dataset D−. A
common learning objective of probabilistic method
is to maximize the joint likelihood of the data and
the parameters, which is

p(D+, D−, E,R)

= p(D+, D−|E,R) · p(E) · p(R)
=
∏

t∈T

∏

q∈D+
t

∏

q′∈D−
t

σ(γ − f(q))σ(−γ + f(q′))

∏

ei∈E
p(ei)

∏

ri∈R
p(rj)

(11)
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where E,R are the set of entity and relation em-
beddings respectively, σ(·) is Sigmoid function and
γ is margin parameter. However, it is intractable
to calculate the joint distribution p(ei) or p(rj) be-
cause they have a joint matrix Gaussian distribution
over all possible timestamps t. That is,

p(ei) = p(ei,1, ei,2, ..., ei,t)

p(rj) = p(rj,1, rj,2, ..., rj,t)
(12)

To approximate these joint distributions, we take
a first-order Markov assumption that the current
state of one entity or relation embedding is only
depended on the last state of it. That is,

p(ei,t|ei,t−1, ei,t−2, ..., ei,1) = p(ei,t|ei,t−1) (13)

To approximate the joint distributions of the entity
or relation at adjacent timestamps p(ei,t, ei,t+1) or
p(rj,t, rj,t+1), we further approximate the effect
of this likelihood with a l2 norm between kernel
function kei(t, t + 1) or krj (t, t + 1) and the dis-
tances between their embeddings at the adjacent
timestamps DB(ei,t, ei,t+1) or DB(rj,t, rj,t+1).

Then the learning objective can be transformed
in minimizing the approximated negative log likeli-
hood, which could be decomposed into four parts,

l1 =
∑

t∈T

∑

q∈D+
t

−logσ(γ − f(q))

l2 =
∑

t∈T

∑

q′∈D−
t

−logσ(−γ + f(q′))

l3 =
∑

t∈T

∑

ei∈E
∥DB(ei,t, ei,t+1)− kei(t, t+ 1)∥2

l4 =
∑

t∈T

∑

rj∈R

∥∥DB(rj,t, rj,t+1)− krj (t, t+ 1)
∥∥2

(14)

where l1, l2 are the losses for valid dataset D+ and
corrupted dataset D−, l3, l4 are the approximations
to the log likelihood for entity and relation embed-
dings. We train the model by adding those losses
together.

l = l1 + λ2 · l2 + λ3 · l3 + λ4 · l4 (15)

where λ2, λ3, λ4 are weights for losses.
To align the embedding across time, inspired by

(Kumar et al., 2019), we further propose a time-
batch training strategy, which takes the data be-
tween timestamp t and timestamp t+ L as a batch,
where L is the length of time window. The de-
tailed learning algorithm of TKGC-AGP is shown
in Algorithm 1.

Algorithm 1 Training of TKGC-AGP
Input: the entity set E , the relation setR, the

arranged timestamp set T , the valid dataset D+,
the negative sample rate η, the number of epoch
n, the margin γ, the embedding dimension d, the
length of time window L.

Output: the parameters for TKGC-AGP P =
{b, α, ϕ, β, ψ, σ, l, ω}.

1: randomly initialize P
2: for i = 1, · · · , n do
3: for t′ ∈ T do
4: D+

t ← {q = (es, rp, eo, t)|t ∈ [t′, t′ +
L], q ∈ D+}

5: for (es, rp, eo, t) ∈ D+
t do

6: D−t = +{(eks , rp, eko , t)}k=1,··· ,η
7: end for
8: Update P = {b, α, ϕ, β, ψ, σ, l, ω}

w.r.t. Loss l
9: end for

10: end for

3.4 Complexity Analysis
Though the structure of TKGC-AGP is com-
plex, as shown in Table 1, the space complex-
ity and time complexity of TKGC-AGP remains
the same as that of most of static and temporal
KGE methods. For the space complexity, the
parameter space of TKGC-AGP comprises P =
{b, α, ϕ, β, ψ, σ, l, ω}. So the total number of pa-
rameters of TKGC-AGP is 8 × (|E| + |R|) × d.
Since the length of time window is constant, the
time complexity is also constant with embedding
dimension d.

Method Space complexity Time complexity

TransE O(|E|d+ |R|d) O(d)
ComplEx O(|E|d+ |R|d) O(d)
TTransE O(|E|d+ |R|d+ |T |d) O(d)
DE-SimplE O(|E|d+ |R|d) O(d)
ATiSE O(|E|d+ |R|d) O(d)
TKGC-AGP O(|E|d+ |R|d) O(d)

Table 1: Complexity analysis of some existing methods.

4 Experiments

In this section, we perform extensive experiments
on link prediction to investigate the effectiveness
of TKGC-AGP on two real-world TKG datasets
compared to some state-of-the-art KGE methods
and TKGC methods.
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4.1 Dataset

Two standard benchmark datasets, ICEWS-14 and
ICEWS05-15, for TKGC are employed for experi-
ments, which are two subsets of the Integrated Cri-
sis Early Warning System (ICEWS) dataset (Laut-
enschlager et al., 2015). ICEWS-14 includes events
happened in 2014 while ICEWS05-15 includes
events happened between 2005 to 2015. The fact
stored in ICEWS follows the form (s, p, o, t) with
specific time point, such as (Barack Obama, in-
vestigate, Iraq, 2008-07-21). Following (Xu et al.,
2019), we employ the filtered version of ICEWS-
14 and ICEWS05-15. The detailed statistics of two
datasets are listed in Table 2.

Dataset ICEWS-14 ICEWS05-15

# Entities 6,869 10,094
# Relations 230 251
# Timestamps 365 4,017

# Training 72,826 368,962
# Validation 8,941 46,275
# Test 8,963 46,092

Table 2: Dataset statistics.

4.2 Baselines

We compare TKGC-AGP with the following base-
lines:

• TransE (Bordes et al., 2013): static method
that considers relation as a translation between
entities in the embedding space.

• DistMult (Yang et al., 2015): static method
that deals with the problem of symmetric rela-
tion with a bilinear objective function.

• CompleEx (Trouillon et al., 2016): static
method that maps entities and relations into
complex space with tensor factorization tech-
nique.

• RotatE (Sun et al., 2019): static method that
regards relation as the rotation in the complex
space.

• TTransE (Leblay and Chekol, 2018): tem-
poral method that extend TransE to TKG by
mapping each timestamp as specific embed-
ding.

• HyTE (Dasgupta et al., 2018): temporal
method that extend TransH (Wang et al., 2014)
to TKG by learning time-specific hpyerplanes.

• TA-TransE (García-Durán et al., 2018): tem-
poral method that employs a LSTM to encode
the time information into relation representa-
tions.

• DE-SimplE (Goel et al., 2020): tempo-
ral method that represents entities with di-
achronic embeddings.

• ATiSE (Xu et al., 2019): temporal method
that maps entities and relations as additive
time series with Gaussian white noise.

4.3 Evaluation Metrics

In the link prediction experiment, following the pre-
vious literature (Goel et al., 2020), for each valid
quadruple (es, rp, eo, t) in validation and test set,
we generate query by masking the subject entity or
object entity of it. Then we rank all the possible
entities by filling the missing entity with candidate
entity. Followed by previous work(Xu et al., 2019),
we employ two kinds of metrics to evaluate the per-
formance of all the methods, the Mean Reciprocal
Rank (MRR), which is the average of reciprocal
of the rank of golden entity and Hit@K, which is
the frequency that the rank of golden entity is no
greater than K.

4.4 Implementation Details

TKGC-AGP is implemented with PyTorch (Paszke
et al., 2019). Part of results are taken from (Goel
et al., 2020; Xu et al., 2019). The embeddings
are trained with ADAM optimizer (Kingma and
Ba, 2015) with learning rate = 0.001, maximum
epoch = 1000, negative sample rate = 5, dimension
of embedding = 100, length of time window = 3,
margin = 1. All vector parameters are normalized
to have unit l-2 norm.

4.5 Link Prediction Results

The link prediction results on the two dataset
are shown in Table 3. It can be observed: 1)
Some static methods outperform the temporal meth-
ods. For example, the performances of ComplEx
and DistMulti are generally better than those of
TTransE and HyTE. Capturing the basic structure
of knowledge graph is still important for TKGC.
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ICEWS14 ICEWS05-15
Metrics MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
TransE 0.280 0.094 - 0.637 0.294 0.090 - 0.663

DistMult 0.439 0.323 - 0.672 0.456 0.337 - 0.691
ComplEx 0.467 0.347 0.527 0.716 0.481 0.362 0.535 0.729
TTransE 0.255 0.074 - 0.601 0.271 0.084 - 0.616

HyTE 0.297 0.108 0.416 0.655 0.316 0.116 0.445 0.681
TA-TransE 0.275 0.095 - 0.625 0.299 0.096 - 0.668

TA-DistMult 0.477 0.363 - 0.686 0.474 0.346 - 0.728
DE-TransE 0.326 0.124 0.467 0.686 0.314 0.108 0.453 0.685
DE-SimplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748

ATiSE 0.550 0.436 0.629 0.750 0.519 0.378 0.606 0.794
TKGC-AGP 0.561 0.458 0.631 0.738 0.532 0.398 0.621 0.797

Table 3: Link prediction results on ICEWS14 and ICEWS05-15 datasets. Bold values indicate the best-performing
models under corresponding settings.

2) With temporal information, some KGE meth-
ods perform better on TKG. For example, DE-
SimplE and TA-DistMult generally outperform
other methods except ATiSE and TKGC-AGP. 3)
The time series or stochastic process based methods
achieve the best performance. TKGC-AGP outper-
forms ATiSE on all meatrics except Hit@10 for
ICEWS14. The improvement is mainly attributed
to the correlation modeled by the kernel function of
MGP, although ATiSE employs a Gaussian white
noise component to model temporal uncertainty.

4.6 Ablation Study
In this section, we analyze how the hyperparame-
ters and the key components of TKGC-AGP affect
the final performance. We focus on embedding
dimension, length of time window and kernel func-
tion.

4.6.1 Effect of Embedding Dimension
The embedding dimension is one of the important
hyperparameters for the representation learning
methods. On the one hand, too small embedding
dimension prevents methods to encode sufficient
information. On the other hand, too large embed-
ding dimension leads to the time and computation
overhead, which is critical for TKGC with over ten
thousands parameters. In this part, we evaluate the
performance of TKGC-AGP under different embed-
ding dimension (50, 100, 200, 300, 400, 500) on
ICEWS14 dataset. The results are shown in Figure
2.

It can observed that in general the performance
of TKGC-AGP on ICEWS14 dataset is increasing
at first and then decreasing with peak at 100 dim.

0.4

0.5

0.6

0.7

100 200 300 400

metrics

Hit@1

Hit@10

Hit@3

MRR

Figure 2: The performances of TKGC-AGP on
ICEWS14 dataset under different embedding dimen-
sion setting.

The reason may be that when the dimension is too
small, the embeddings cannot encode sufficient
information while when the dimension is too large,
the embeddings become too sparse to learn from
the dataset. It should be pointed out that the optimal
dimension of TKGC-AGP is generally smaller than
that is other KGE or TKGC methods. It could
be attributed to the complex structure of TKGC-
AGP where there is no need for large dimension to
encode sufficient information.

4.6.2 Effect of Length of Time Window
As described in Algorithm 1, the length of time
window L is important for training TKGC-AGP.
On the one hand, too small L will result in under-
fitted correlation. On the other hand, too large
L will lead to more computational overhead and
have the risk of over-fitting. To investigate the
effect of the length of time window L on the perfor-
mance of TKGC-AGP, experiments were conduct
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Metrics MRR Hit@1 Hit@3 Hit@10

L = 1 0.551 0.439 0.627 0.733
L = 2 0.555 0.443 0.629 0.734
L = 3 0.561 0.458 0.631 0.738
L = 4 0.531 0.420 0.599 0.724
L = 5 0.526 0.415 0.595 0.727
L = 10 0.458 0.357 0.529 0.676

Table 4: The performances of TKGC-AGP with dif-
ferent lengths of time window on ICEWS14 dataset.
Bold values indicate best-performing models under cor-
responding settings.

on ICEWS14 dataset with the length of time win-
dow L among (1, 2, 3, 4, 5, 10). The results are
shown in Table 4.

From the results, we can observe that in gen-
eral the performance of TKGC-AGP on ICEWS14
dataset is firstly increasing as the length of time
window increases and then quickly saturates at
L = 3. It might be explained by the processing of
TKGC-AGP from under-fitting to over-fitting. Es-
pecially when L = 10, the performance of TKGC-
AGP is affected seriously because of over-fitting.

4.6.3 Effect of Kernel Function
As described in Section 3.1, the kernel function
is an important component of MGP that controls
the correlation across the index set. To investi-
gate the effect of kernel function on the perfor-
mance of TKGC-AGP, we perform experiments on
ICEWS14 dataset with the following kernel func-
tions besides exponential quadratic kernel. The
results are shown in Table 5.

• White noise kernel, which means any two
points from MGP are uncorrelated.

k(t, t′) = σ2In (16)

• Exponential quadratic kernel, a smooth cor-
relation decreasing with the distance between
two points.

k(t, t′) = σ2exp(−∥t− t
′∥2

2l2
) (17)

• Rational quadratic kernel, which is similar
to the exponential quadratic, when α → ∞,
the rational quadratic kernel converges into
the exponential quadratic kernel.

k(t, t′) = σ2(1 +
∥t− t′∥2
2αl2

)−α (18)

Metrics MRR Hit@1 Hit@3 Hit@10

TKGC-AGP-E 0.561 0.458 0.631 0.738
TKGC-AGP-W 0.548 0.435 0.626 0.732
TKGC-AGP-R 0.559 0.460 0.627 0.735
TKGC-AGP-P 0.479 0.370 0.532 0.685

Table 5: The performances of TKGC-AGP on ICEWS14
dataset with different kernel functions. Bold values
indicate best-performing models under corresponding
settings. -E, -W, -R, -P denotes TKGC-AGP with ex-
ponential quadratic kernel, white noise kernel, rational
quadratic kernel and periodic kernel respectively.

• Periodic kernel, which allows to model pe-
riodic functions, where p denotes the period.

k(t, t′) = σ2exp(− 2

l2
sin2(π

∥t− t′∥
p

)) (19)

It can be observed that TKGC-AGP with expo-
nential quadratic kernel achieves the best perfor-
mance. It should be pointed out that ATiSE (Xu
et al., 2019) can be considered as a MGP-based
method with white noise kernel. With white noise
kernel, TKGC-AGP is similar to ATiSE. Therefore
their performances are also very similar. Since
rational quadratic kernel is very similar to exponen-
tial quadratic kernel, the performances of TKGC-
AGP-E and TKGC-AGP-R are also very similar.
For periodic kernel, it has the worst performance,
we attribute this to little periodic pattern in the ex-
periment dataset.

5 Conclusion

In this paper, we proposed TKGC-AGP, a novel
temporal knowledge graph completion method
based on approximated Gaussian process embed-
dings. With the flexibility and capacity, we can
naturally model the global trends of entity and rela-
tion embeddings as well as the surging local fluc-
tuations. Moreover, the temporal uncertainties can
be also naturally modeled with the kernel function
and corvariance matrix of MGP. To training TKGC-
AGP, we employ the fisrt-order Markov assump-
tion to approximate the joint distribution of MGP as
well as a time-batch-based training strategy to align
the embeddings across the time. The experimental
results demonstrate that the proposed method out-
perform various static and temporal KGE baselines.
Further work could be done by taking a Bayesian
perspective to learn the proposed method.

4704



6 Acknowledgement

The authors would like to thank the anonymous
reviewers for the insightful comments. This work
was funded by the National Natural Science Foun-
dation of China (62176053).

References

Ben Athiwaratkun and Andrew Gordon Wilson. 2018.
Hierarchical density order embeddings. In 6th In-
ternational Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722–735. Springer.

Robert Bamler and Stephan Mandt. 2017. Dynamic
word embeddings. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 380–389. PMLR.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Arthur Brazinskas, Serhii Havrylov, and Ivan Titov.
2018. Embedding words as distributions with a
bayesian skip-gram model. In Proceedings of the
27th International Conference on Computational Lin-
guistics, COLING 2018, Santa Fe, New Mexico, USA,
August 20-26, 2018, pages 1775–1789. Association
for Computational Linguistics.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R Hruschka, and Tom M Mitchell.
2010. Toward an architecture for never-ending lan-
guage learning. In Twenty-Fourth AAAI conference
on artificial intelligence.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 conference on empirical
methods in natural language processing, pages 2001–
2011.

Fredo Erxleben, Michael Günther, Markus Krötzsch, Ju-
lian Mendez, and Denny Vrandečić. 2014. Introduc-
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Abstract

Knowledge distillation (KD) is an efficient
framework for compressing large-scale pre-
trained language models. Recent years have
seen a surge of research aiming to im-
prove KD by leveraging Contrastive Learning,
Intermediate Layer Distillation, Data Aug-
mentation, and Adversarial Training. In this
work, we propose a learning based data aug-
mentation technique tailored for knowledge
distillation, called CILDA. To the best of our
knowledge, this is the first time that intermedi-
ate layer representations of the main task are
used in improving the quality of augmented
samples. More precisely, we introduce an aug-
mentation technique for KD based on inter-
mediate layer matching using contrastive loss
to improve masked adversarial data augmenta-
tion. CILDA outperforms existing state-of-the-
art KD approaches on the GLUE benchmark,
as well as in an out-of-domain evaluation.

1 Introduction

The exponentially increasing size of pre-trained
large language models (Devlin et al., 2019; Liu
et al., 2020; Raffel et al., 2020; Brown et al., 2020)
has been a persistent concern regarding the effi-
ciency and scalability of Natural Language Under-
standing (NLU) in real world applications. Knowl-
edge Distillation (KD) (Buciluǎ et al., 2006; Hin-
ton et al., 2014) is a technique for transferring
the knowledge from a large-scale model (called
teacher) to a smaller one (called student), so that the
latter model can be employed on edge device (Sanh
et al., 2019a; Tang et al., 2019; Mukherjee and
Awadallah, 2020; Li et al., 2021). This is done by
minimizing the KL divergence between the teacher
and student probabilistic outputs.

∗ Work done while at Huawei.

Numerous techniques have been exploited re-
cently to increase the knowledge transfer beyond
logits matching. For instance, it has been found
beneficial to perform distillation on the internal
components (parameters) of the teacher and stu-
dent, which is known as Intermediate Layer Dis-
tillation (Sun et al., 2019, 2020b; Passban et al.,
2021; Wang et al., 2020a,b; Fu et al., 2021; Wu
et al., 2021).

Data Augmentation has also been successful for
KD (Jiao et al., 2019; Shen et al., 2020; Qu et al.,
2021), as researchers have found that the student
has less opportunity to acquire useful information
from the teacher when limited data are available for
training (Kamalloo et al., 2021, 2022; Jafari et al.,
2021a). Adversarial Training was also employed
in KD (Zhu et al., 2019; Rashid et al., 2020, 2021;
He et al., 2021) to improve the robustness and gen-
eralization, as the student may predict inconsistent
outputs with slight distortion to the data distribu-
tions (Li et al., 2021). Recently, Contrastive Learn-
ing (Gutmann and Hyvärinen, 2010; Hjelm et al.,
2018; Arora et al., 2019) has been exploited for
improving knowledge transfer (Tian et al., 2019),
and to optimize the intermediate layer mapping
scheme (Sun et al., 2020a).

Each of the aforementioned techniques has
proven effective in addressing a specific challenge
in KD. Yet, we are not aware of a single method
that takes advantage of all of them. In this paper,
we propose CILDA, a KD method that incorporate
Contrasting Learning, Intermediate Layer Distilla-
tion, Data Augmentation, and Adversarial Training.
Distilling into a 6-layer BERT model, CILDA deliv-
ers new state-of-the-art results on the GLUE bench-
mark (Wang et al., 2018), as well as outperforming
other KD methods in out-of-domain evaluations.
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2 Related Work

Many studies (Jawahar et al., 2019; Tenney et al.,
2019; Kovaleva et al., 2019) have noticed that im-
portant structural linguistic information are hid-
den in the intermediate layers of Transformer mod-
els (Vaswani et al., 2017). Recent KD methods
propose to match teacher and student: intermedi-
ate layers representations (Jiao et al., 2019; Sun
et al., 2019, 2020b; Wu et al., 2020), embed-
ding matrix (Sanh et al., 2019a), and self-attention
distributions (Wang et al., 2020a,b). Other vari-
ants of KD methods have been proposed such
as Annealing-KD (Jafari et al., 2021b) and Pro-
KD (Rezagholizadeh et al., 2021), two stage distil-
lation methods where a smooth and gradual training
of the student is controlled by a dynamic tempera-
ture factor, followed by a simple cross entropy loss
for a few epochs.

Augmented adversarial examples (Miyato et al.,
2016) are label-preserving transformations in the
embedding space that are used to improve gener-
alizability of models. FreeLB (Zhu et al., 2019)
is an adversarial algorithm which creates virtual
adversarial examples from word embeddings, and
then performs the parameter updates on these ad-
versarial embeddings. MATE-KD (Rashid et al.,
2021) is a min-max adversarial data augmentation
approach for KD, where an extra generator model
is trained to generate adversarial text by maximiz-
ing the logit output margins between the teacher
and the student.

Contrastive learning is a self-supervised rep-
resentation learning method (Chen et al., 2020;
Qu et al., 2021; van den Oord et al., 2018)
which learns the feature representation of the sam-
ples by contrasting positive and negative samples.
CODIR (Sun et al., 2020a) is a contrast-enhanced
diversity promoting method between teacher and
student intermediate representations of data sam-
ples from the same class. MATE-KD is the most
related to our solution, with one notable difference:
we believe our technique is the first to deploy in-
termediate layers distillation with the contrastive
objective in the data augmentation process.

3 CILDA

In this section, we introduce CILDA, our con-
trastive approach for masked adversarial text aug-
mentation for knowledge distillation using interme-
diate layer matching. Inspired by (Rashid et al.,
2021), we deploy a generator (e.g. BERT) which

will be trained to map masked inputs, X̃ , to aug-
mented samples,X ′. The objective of this mapping
is to perturb the inputs (in their vicinity) such that
their corresponding output and intermediate layer
representations of the teacher and student networks
diverge to their maximum. Generating such maxi-
mum divergence augmented samples aims to fill the
existing major gaps in the training data. We mask
input tokens with a certain pre-defined probability,
p. The architecture of our model is depicted in Fig-
ure 1. Our training is comprised of two alternating
steps we describe hereafter.

Figure 1: Illustration of maximization and minimiza-
tion steps of CILDA.

Maximization Step: Generating Augmented
Samples In the maximization step, the genera-
tor is trained in a way that the difference between
the teacher and the student are maximized. As
opposed to MATE-KD which only evaluates the di-
vergence of the student and teacher networks based
on their output, our technique takes intermediate
layer matching into account as well. To the best of
our knowledge this is the first time that the distance
of intermediate layer representations are consid-
ered in the data-augmentation generation process.
To be concise, MATE-KD only pays attention to
the distance of samples in the output space, while
our technique concerns the distance of samples in
the input space as well. We hypothesize that to
identify maximum divergence augmented samples,
both input feature distances and output predictions
are important. Our CILDA loss function to train
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the generator can be described as:

LGφ = α1LG + α2LCRD

LG = KL
(
σ(
T (X ′)
τ1

), σ(
Sθ(X

′)
τ1

)
) (1)

where LG is the KL-divergence loss between the
teacher and the student logits, T and Sθ represent
the teacher model and the student model with θ
parameters respectively, σ is the softmax function
and τ1 is the temperature parameter that controls
the softness of the output distributions, α1 and α2

are hyper-parameters. X ′ is the adversarial text
output obtained by applying argmax to the gener-
ator output in the forward pass. Due to the non-
differentiability issue of argmax in the backward
pass, we use Gumbel-Softmax (Jang et al., 2016)
at the output of the generator. More details can be
found in (Rashid et al., 2021). LCRD is the con-
trastive distillation loss that we introduced to the
maximization step of MATE-KD. This contrastive
loss is obtained by using the intermediate represen-
tation outputs of the teacher and the student models:

LCRD = − log
exp(< h̄Tk , h̄

Sθ
k > /τ2)∑K

j=0 exp(< h̄Tk , h̄
Sθ
j > /τ2)

(2)
where τ2 is the temperature parameter that controls
the concentration level (Sun et al., 2020a). h̄Tk
and h̄Sθk are the intermediate layer representation
of the teacher and student networks respectively,
and < ., . > is the cosine similarity between two
feature vectors. k and j are indices of the samples
of a mini-batch: k is the index of positive samples
(i.e. the kth sample of the mini-batch is sent to both
of the student and teacher networks to obtain their
representations) and when j 6= k, we get negative
samples (i.e. any other sample in the mini-batch
excluding the kth sample) in a batch of K samples.
The goal of this objective function is to map the
student representations h̄Sθk of the positive sample
k to h̄Tk , as well as the negative representations
{h̄Sθj }Kj 6=k far apart from h̄Tk .

For an arbitrary sample l in a mini-batch, the
entire intermediate layer representations of the
teacher and the student models (e.g. the < CLS >
representation of each layer of the networks) are
concatenated to form ĥTl = [h̄T1,l, · · · , h̄Tn,l], ĥ

Sθ
l =

[h̄Sθ1,l, · · · , h̄
Sθ
m,l]. Then these concatenated repre-

sentations are further mapped into the same-size

lower-dimensional spaces using linear projections
h̄Tl , h̄

Sθ
l ∈ Ru to calculate the distillation loss

LCRD. Here, n and m denote the number of in-
termediate layers of the teacher and the student
networks respectively.

Minimization Step: Deploying Augmented
Samples In the minimization step, the aug-
mented adversarial samples produced by the gener-
ator and the training samples are used to minimize
the difference between the teacher and the student.
For this step, in the very general form, one can con-
sider to match the student and teacher networks on
their outputs and intermediate layer representations
(e.g. using the contrastive loss) and the CE loss to
match the output of the student with the labels:

LSθ = λ1LCE + λ2LKD (3)

where, LCE describes the cross-entropy loss be-
tween the true label.

4 Experiments

4.1 Datasets and Evaluation
We experiment on 7 tasks from the GLUE bench-
mark (Wang et al., 2018): 2 single-sentence (CoLA
and SST-2) and 5 sentence-pair (MRPC, RTE, QQP,
QNLI, and MNLI) classification tasks. Following
prior works, we report Pearson correlation on STS-
B, Matthews correlation on CoLA, F1 score on
MRPC, and use the accuracy otherwise. For out-of-
domain evaluation, we report the performances on
HANS (McCoy et al., 2019), SciTail (Khot et al.,
2018), and IMDB using the models finetuned on
MNLI, QQP, and SST-2 respectively.

4.2 Implementation Details
We use the 24-layer RoBERTa-large (Liu et al.,
2020) and the 6-layer DistilRoBERTa (Sanh et al.,
2019b) as the backbone for the teacher and the
student models respectively. We perform hyperpa-
rameter tuning, and select best performing models
using early stopping on dev sets. We use a lin-
ear transformation to map the intermediate repre-
sentations into a 128-dimensional space and nor-
malized them before computing the loss LCRD.
For each batch of data, we train the generator for
nG steps and the student model for nS = 100
steps. We use nG = 20 for CoLA, MRPC, RTE
tasks and nG=10 for the rest of the tasks. Fol-
lowing (Rashid et al., 2021), we set pth = 0.3,
α1 = 1, α2 = 1, τ1 = 1.0, τ2 = 2.0 for all of our
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

DEV

Teacher 68.1 96.4 91.9 92.3 91.5 90.2 94.6 86.3 88.9
Vanilla-KD 60.9 92.5 90.2 89.0 91.6 84.1 91.3 71.1 83.8
Annealing-KD 61.7 93.1 90.6 89.0 91.5 85.3 92.5 73.6 84.7
MATE-KD 65.9 94.1 91.9 90.4 91.9 85.8 94.6 75.0 86.2
CILDA 67.1 94.7 92.0 90.5 92.1 86.8 92.9 76.2 86.5

TEST

Teacher 68.6 97.1 93.0 92.4 90.2 90.7 95.5 87.9 89.4
Vanilla-KD 54.3 93.1 86.0 85.7 89.5 83.6 90.8 74.1 82.1
Annealing-KD 54.0 93.6 86.0 86.8 89.7 84.4 90.8 73.7 82.4
MATE-KD 56.0 94.9 90.2 88.0 89.7 85.2 92.1 75.0 83.9
CILDA 56.2 94.9 90.5 89.0 89.9 86.1 92.5 77.0 84.5

Table 1: DEV and TEST performances on GLUE benchmark when RoBERTa24 and DistillRoberta6 are used as
backbone for the teacher and student variants respectively. Bold mark describes the best results.

experiments. We set λ1 and λ2 to 1/3 for the origi-
nal training samples. For the augmented samples,
we use λ2 = 2/9, λ3 = 1/9 for all tasks. The learn-
ing rate and the batch size are tuned from the set of
{1e-5, 2e-5, 4e-6} and {8, 16, 32} respectively.

4.3 Results and Analysis

Table 1 shows the performances of the teacher,
baselines, and our method on the GLUE dev and
test sets. We compared CILDA to the Vanilla-
KD (Hinton et al., 2014) baseline, and against 2
strong recently proposed methods 1: Annealing-
KD (Jafari et al., 2021b) and MATE-KD (Rashid
et al., 2021). We observe that CILDA outperforms
these models on all GLUE tasks, except on QNLI
dev where MATE-KD performs better and SST-2
test where CILDA is on par with MATE-KD. On
average over test sets, CILDA outperforms MATE-
KD and Annealing-KD by a margin of 0.6% and
2.1% respectively.

Figure 2: Divergence (lower is better) between the
teacher and student logits on GLUE dev sets.

1We compare with these models because we have pub-
lished results on GLUE leaderboard using the same teacher
and student backbone models.

We investigate the logits generated by different
methods to better understand why CILDA performs
better. Figure 2 shows the divergence (lower is
better) between the teacher and student logits on
GLUE dev sets (except STS-B since it is a regres-
sion task) for 4 KD methods. Expectedly, Vanilla-
KD (no enhancement) had the maximum diver-
gence with teacher logits (which can be easily dis-
tinguished from other methods). We observe that
CILDA mimic the teacher better than other meth-
ods on all tasks, which may partially explain the
performance gains obtained by CILDA.

Model HANS PAWS IMDB

Teacher 78.2 43.3 88.9

w/o KD 58.6 34.7 83.7
Vanilla-KD 58.9 36.5 84.0
Annealing-KD 61.2 35.8 84.6
MATE-KD 66.6 38.3 85.0

CILDA 68.1 40.5 85.2

Table 2: Out-of-domain performances of models
trained on MNLI, QQP, SST-2 and evaluated on HANS,
PAWS, and IMDB respectively.

Furthermore, we measure the robustness and
generalization ability of the tested methods by
evaluating them on out-of-domain test sets. Ta-
ble 2 shows performances of models fine-tuned on
MNLI, QQP, SST-2 and tested on HANS, PAWS,
and IMDB respectively. CILDA significantly out-
performs the second best method (MATE-KD) by
1.6% and 2.2% on HANS and PAWS respectively,
and by a margin of 0.2% on IMDB.
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5 Conclusion and Future Work

We proposed a min-max adversarial data augmen-
tation framework for KD, which is powered by
contrastive distillation loss for intermediate layer
matching. Our algorithm maximizes the interme-
diate and logit representation margin between the
teacher and the student models. In future works, we
would like to investigate the distillation from super-
large models such as Megatron (Shoeybi et al.,
2019) and T5 (Raffel et al., 2020). Also, we would
like to improve the generator output quality via dis-
tillation from generative models like GPT-2 (Rad-
ford et al., 2019).
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Abstract

With the ever growing scale of neural models,
knowledge distillation (KD) attracts more at-
tention as a prominent tool for neural model
compression. However, there are counter in-
tuitive observations in the literature showing
some challenging limitations of KD. A case
in point is that the best performing checkpoint
of the teacher might not necessarily be the
best teacher for training the student in KD.
Therefore, one important question would be
how to find the best checkpoint of the teacher
for distillation? Searching through the check-
points of the teacher would be a very tedious
and computationally expensive process, which
we refer to as the checkpoint-search problem.
Moreover, another observation is that larger
teachers might not necessarily be better teach-
ers in KD, which is referred to as the capacity-
gap problem. To address these challenging
problems, in this work, we introduce our pro-
gressive knowledge distillation (Pro-KD) tech-
nique which defines a smoother training path
for the student by following the training foot-
prints of the teacher instead of solely relying
on distilling from a single mature fully-trained
teacher. We demonstrate that our technique is
quite effective in mitigating the capacity-gap
problem and the checkpoint search problem.
We evaluate our technique using a comprehen-
sive set of experiments on different tasks such
as image classification (CIFAR-10 and CIFAR-
100), natural language understanding tasks of
the GLUE benchmark, and question answering
(SQuAD 1.1 and 2.0) using BERT-based mod-
els and consistently got superior results over
state-of-the-art techniques.

1 Introduction

Knowledge distillation (KD) (Hinton et al., 2015)
has gained a lot of attention in different deep learn-

∗Equal Contribution
†This work has been done while Puneeth S.M. Saladi was

in Huawei.

Table 1: The best performing checkpoints vary for dif-
ferent size of the models, and different tasks. It is ev-
ident that the best checkpoint of the teacher does not
necessarily lead to the best performing student model.

Task Model
Best #ChPt

Epoch
ACC ∆ ↑

MRPC
BERTLARGE(♠T) 6 88.22 -
BERTSMALL(♣S) 3 85.29 +0.7
DistilBERT(♣S) 5 89.16 +0.8

SST-2
BERTLARGE(♠T) 1 92.89 -
BERTSMALL(♣S) 7 88.76 +0.6
DistilBERT(♣S) 7 91.63 +0.4

QNLI
BERTLARGE(♠T) 6 92.4 -
BERTSMALL(♣S) 2 87.08 +0.3
DistilBERT(♣S) 4 90.46 +0.2

♠T:Teacher, ♣S: Student, #ChPt: Checkpoint Number, ACC:
Accuracy, ∆ ↑: Accuracy improvement compared to the best
checkpoint of the teacher

ing applications such as natural language process-
ing (NLP) (Sun et al., 2019; Jiao et al., 2019;
Clark et al., 2019), computer vision (Guo et al.,
2020; Mirzadeh et al., 2019), and speech process-
ing (Yang et al., 2019; Yoon et al., 2020; Chebotar
and Waters, 2016). Nowadays, the scale of neural
networks is growing in the favor of improving their
performance (Devlin et al., 2019). A case in point
is pre-trained language models (PLMs) such as the
GPT-3 (Brown et al., 2020), Pangu-α (Zeng et al.,
2021), and WuDao2 which have more than a hun-
dred billions of parameters (Brown et al., 2020).
However, deploying these models on devices with
limited computational power will be very challeng-
ing, if not impossible. In this regard, KD can be
used as one of the most prominent neural model
compression techniques.

KD adds a new loss term to the regular cross-
entropy classification loss. This new loss encour-
ages the student model to mimic the output of a
pre-trained teacher network. The teacher network
is usually a higher capacity model which is able to
learn the underlying function of the training data to
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a good extent. The output prediction of the teacher
is called soft-target for the student model. In con-
trast to ground-truth labels coming from the train-
ing dataset which only carry the information about
a single class, soft-targets can provide some infor-
mation about the relative distribution of different
classes for each training data. Therefore, a pre-
trained teacher is able to provide some auxiliary
signal besides the labels in the training dataset.

KD has been investigated a lot in the literature.
Sun et al. (2019); Passban et al. (2021); Wu et al.
(2020) proposed a technique to improve KD by
incorporating the intermediate layer matching in
the KD loss. Jiao et al. (2019) show a two-stage
KD with intermediate layer mapping, attention
distillation and embedding distillation for BERT-
based models. Mate-KD (Rashid et al., 2021) and
MiniMax-KNN KD (Kamalloo et al., 2021) tailor
data augmentation for KD, in which augmented
samples are generated or selected based on max-
imum divergence loss between the student and
teacher networks. Rashid et al. (2020) propose
a zero-shot KD technique in NLP in which the stu-
dent does not need to access the teacher training
data for its training. Clark et al. (2019) use KD for
multi-task learning in natural language understand-
ing. Kim and Rush (2016) propose a sequence-
level KD solution for machine translation. Guo
et al. (2020) introduces a collaborative training of
students with different capacities with KD.

Although KD has been successful in many dif-
ferent deep learning tasks, it is subject to some spe-
cial limitations as well. For example, it is shown
in (Lopez-Paz et al., 2015) that, based on VC the-
ory (Vapnik, 1998), the teacher capacity should not
be too large in KD. Similar observation is given
by Mirzadeh et al. (2019) using empirical and the-
oretical justifications that KD will be less effective
when the capacity gap between the teacher and stu-
dent is large. This problem is referred to as the
capacity-gap problem. Mirzadeh et al. (2019) pro-
posed the TAKD solution to this problem by adding
one or multiple intermediate teacher assistant (TA)
networks to learn from the teacher using KD and
then train the student using other distillation pro-
cesses. However, training intermediate networks
can be prohibitive in terms of adding to the train-
ing time, computational complexity and extra error
propagation. The other case in point is that a fully-
trained teacher might not be the best teacher for
the student (Cho and Hariharan, 2019). In other

words, an early-stopped teacher can be a better
option for KD compared to a fully-trained one.
This observation implies that we need to search
through the checkpoints of the teacher to find the
best model for the distillation process. However,
this search can be very expensive especially when
we deal with PLMs. We refer to this problem as
the checkpoint-search problem. Our investigations
of this checkpoint search problem show the signifi-
cance of this issue especially dealing with PLMs.
Table 1 depicts that the best distillation checkpoint
of the teacher varies for each task and for each stu-
dent configuration and it is very different from the
teacher best performing checkpoint.

In this work, we propose our Pro-KD solution to
tackle both the capacity-gap and checkpoint-search
problems. In Pro-KD, the student grows gradually
with the growth of the teacher. We hypothesize
that the training path of the teacher can be infor-
mative for the student and we should not disregard
it. Therefore, in contrast to the original KD where
the student learns from the best pre-trained teacher,
in Pro-KD the student starts its learning process
together with the teacher. Furthermore, in contrast
to the TAKD technique which reduces the capacity
of the teacher by adding intermediate TAs to the
distillation process, in our Pro-KD, we mitigate the
capacity gap by making the training path of the
student more smooth and gradual by following the
training footsteps of the teacher. Moreover, to make
the training smooth further for the student, inspired
by (Jafari et al., 2021), we apply an adaptive tem-
perature factor to the output of the teacher while
being trained. This temperature factor is decreased
during the training. We will show the effective-
ness of our solution using theoretical justification
and empirical evaluations. We evaluate Pro-KD by
performing experiments on both NLP (the GLUE
(Wang et al., 2018b) benchmark and SQuAD 1.1
and 2.0) and image classification tasks (CIFAR-10,
CIFAR-100). The contributions of this paper are
summarized in the following:

1. We propose our Pro-KD solution to the KD
capacity-gap and checkpoin-search problems.
In Pro-KD, the student follows the training
footsteps of the teacher. Moreover, it intro-
duces a dynamic temperature function to the
output of the teacher when it is distilled to the
student to make the student training gradual
and smooth.

2. We apply our technique to ResNET8 model on
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both CIFAR-10 and CIFAR-100 image clas-
sification tasks, and the natural language in-
ference task on different BERT based mod-
els such as DistilRoBERTa, and BERT-Small
on the GLUE benchmark and also SQuAQ
1.1 and 2.0 question answering datasets and
achieved the state-of-the-art results.

3. Our technique is simple, architecture agnostic,
does not require training any extra network
and can be applied on top of different variants
of KD.

2 Background

Knowledge Distillation KD (Hinton et al.,
2015) is a well-known method for neural model
compression and also is shown to be an effective
regularizer in improving the performance of neural
networks in the self-distillation (Yun et al., 2020;
Hahn and Choi, 2019) or born-again (Furlanello
et al., 2018) setups. KD adds a particular loss term
to the regular cross entropy (CE) classification loss:

LKD(φ) = CE
(
y, S(x;φ)

)
+

T 2KL
(
σ(
zt(x; θ)

T ), σ(
zs(x;φ)

T )
) (1)

where x is the input data and y is its associated
label, φ and θ refer to the student and teacher pa-
rameters, σ is the softmax function, zs and zt are
the student and teacher logits, T is the tempera-
ture parameter to control the softness of the output
probability distributions, CE and KL refer to the
cross entropy and KL divergence loss functions
respectively.

Regular KD training is a two-stage process in
which the teacher is fully trained in the first stage
and deployed in training of the student model in
the next stage. The student is trained based on the
hard labels coming from the ground-truth training
data and soft labels coming from the teacher output
predictions.

3 Related Work

In this section, we review the most related works
to our paper in the literature.

3.1 Capacity-Gap Problem in KD
The capacity-gap problem in KD, refers to having
a more powerful or larger teacher is not necessarily
leads to a better training for the student. Mirzadeh

et al. (2019) propose their TAKD solution to this
problem by introducing an intermediate TA net-
work whose capacity is greater than the student
but smaller than the teacher. The target of this TA
network is to learn from the teacher and train the
student. It is evident that in this setup the capac-
ity gap between the TA and student is less than
that of the main teacher and the student. Even
though adding the TA network can mitigate the
capacity-gap problem, there are two downsides in
this technique: first, training a separate TA network
is costly; second, the sequence of training multi-
ple networks can lead to error accumulation and
error propagation to the student. Moreover, TAKD
only showed their results on image classification
tasks. Jafari et al. (2021) proposed a TA-free solu-
tion for the capacity-gap problem which is called
Annealing-KD. Annealing-KD adds an annealed
dynamic temperature factor to the output of the
teacher to make the training process for the student
very gradual. The temperature factor starts from
a large value to apply the maximum smoothing to
the output of the teacher at the beginning of the
training and the gradually tends toward 1 where
there is no smoothing effect on the output of the
teacher. Our Pro-KD is inspired by Annealing-
KD in using a dynamic temperature factor to solve
the capacity-gap problem, but we can highlight
two main improvements over Annealing-KD: first,
Annealing-KD suffers from the checkpoint search
problem while Pro-KD does not; second, Pro-KD
takes advantage of the intrinsic gradual training
of the teacher training which is not considered in
Annealing-KD.

3.2 Checkpoint Search Problem in KD

Choi et al. (2020) highlighted their findings over
computer vision (CV) models that bigger models
are not necessarily better teachers and also early
stopped teachers can train students better. To over-
come these issues they propose an ad-hoc approach
called Early Stopped KD (ESKD); however, ESKD
still needs to search among the pool of teacher’s
early checkpoints and the selection mechanism
among this early checkpoints is not clear. More-
over, in PLMs, generally teachers are not fine-tuned
for long and yet searching among the checkpoints
of large PLMs is expensive. (Jin et al., 2019) pro-
posed Route Constrained Optimization (RCO) dis-
tillation which is a curriculum learning technique
to follow easy-to-hard training scheme on top of
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the teacher’s training trajectory. We can deem this
technique as the most related work to us with the
following differences: 1- our Pro-KD has a tem-
perature factor to make the training process more
gradual which can handle the capacity gap better;
2- RCO still requires search to define its trajectory;
3- we evaluated Pro-KD on both CV and NLP tasks
but RCO is only evaluated on CV tasks. We will
show in the Experiment section that our Pro-KD
outperforms RCO consistently.

In the next section, we introduce our Pro-KD
solution to the capacity-gap and checkpoint-search
problems. Pro-KD exploits a smooth training pro-
cess for the student to gradually learn from the
teacher while being trained from scratch, instead
of learning from a fully-trained Teacher.

4 Methodology: Pro-KD

Methodology of this paper concerns addressing the
capacity-gap and checkpoint-search problems in
KD. We propose our Pro-KD technique which is a
progressive training procedure in which the student
is trained together with the teacher. Therefore in
Pro-KD, the student is not exposed to the output
of a fully trained teacher from beginning, and in-
stead, it learns from the teacher at the same time
while the the teacher is being trained. This training
process for the student is more gradual and also
the student can learn from the training path of the
teacher. Inspired by Jafari et al. (2021), We define
the training in two phases: first, the student is only
supervised by an adaptive smoothed version of the
teacher; second, the student will be only trained
on ground-truth labels. The detail of each phase is
explained in the following.

Phase I) General Step-by-Step Training with a
Teacher In this phase, the teacher is being trained
using the cross entropy loss on the training data.
Without loss of generality, let’s assume that θ(i),
the optimized parameters of the teacher at the be-
ginning of epoch i, will be updated during the ith

epoch of training to obtain θ(i+ 1):

LT (θ(i)) = CE
(
y, T (x; θ(i))

)

θ(i+ 1)← min
θ
LT (θ(i))

(2)

Then, a smoothed version of the teacher output
using a temperature factor Ti at epoch i will be

used to train the student at epoch j:

LIS(φ(j)) = ‖zs(x;φ(j))− zt(x; θ(i))

Ti
‖22

φ(j + 1)← min
φ
LIS(φ(j))

Ti ∈ {Ti+1 = Ti − 1| T1 = τmax, Ti+1 ≥ 1}

(3)

where LIS refers to the student loss function in
phase I, zs and zt are the logits of the student and
teacher respectively, φ(j) represents the parame-
ters of the student model at epoch j, Ti is adaptive
temperature factor. The rational behind applying
the temperature to the teacher output is to make
the output of the teacher smoother for the student
to learn, especially at early stages of the training
process (Jafari et al., 2021).

It is evident that early-stopped teachers can be
better teachers for KD (Cho and Hariharan, 2019).
In that case, for an early-stopped teacher, the num-
ber of training epochs of the student can go longer
than that of the teacher. Therefore, for each given
epoch i of the teacher, the student can be trained for
ni ≥ 1 epochs, subject to

∑τmax
i=1 ni = N where

N is the preset total number of student training
epochs. ni is set to a constant integer number in
most of our experiments but can be customized as
well.

Bear in mind that we apply an adaptive temper-
ature to the teacher logit in the student distillation
loss, and this temperature starts from the highest
τmax value and decrease linearly with the epoch
number of the teacher throughout training. τmax is
a hyper-parameter in our training. Moreover, we
keep the temperature fixed at each epoch i. After
training with the teacher logits, in the next phase
the student model will be trained on the ground-
truth labels.

Phase II) Training with the Ground-Truth La-
bels After training the student based on the soft
targets of the teacher, the student is trained on the
ground-truth labels using the cross entropy loss for
a few epochs:

LIIS (φ(j)) = CE
(
y, S(x;φ(j))

)

φ(j + 1)← min
φ
LIIS (φ(j)).

(4)

In summary, our technique enables the student
to learn from the teacher more smoothly. Pro-KD
is different from regular KD technique in the fol-
lowing aspects:
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Figure 1: Phase I and Phase II of the Pro-KD method. Phase I: the teacher is trained on the labeled training
data. The student at each step tries to mimic the behavior of the corresponding teacher checkpoint. The logits of
the teacher at each time step is attenuated with the temperature parameter. We start training of the student from
T = τmax and go to T = 1. Phase II: training the student with the labeled data only using the cross entropy loss.
ni for 1 ≤ i ≤ τmax refers to the number of training epochs of the student corresponding to the ith training epoch
of the teacher. nis should add up to N which is the preset total number of training epochs of the student. Bear in
mind that since the teacher is usually early stopped, teacher is trained less longer than the student model.

1. rather than distilling from a fully trained
teacher; we distill from the teacher during
its training;

2. in contrast to regular KD which applies a fixed
temperature parameter to both networks, we
apply an adaptive temperature factor only to
the logits of the teacher;

3. we apply the KD loss and the cross entropy
loss in two separate phases.

Moreover, it is worth mentioning that the overall
number of training steps of our model follows reg-
ular KD techniques. For example, if in regular KD
baselines, the model is trained for 30 number of
epochs, we train the total training time of phase I
and phase II of our model to 30 epochs as well.

4.1 Why Does Pro-KD work?
Lopez-Paz et al. (2015) do an analysis based on VC-
dimension theory to discuss the conditions under
which KD works better than no-KD scenarios. It
is shown that KD works if the following inequality
holds:

O(
|Fs|c + |Ft|c

nα
) + εt+ εl ≤ O(

|Fs|c√
n

) + εs (5)

where Fs and Ft are the function classes corre-
sponding to the teacher and student; |.|c is a func-
tion class capacity measure; O(.) is the estimation
error of training the learner; εs is the approxima-
tion error of the best estimator function belonging
to the Fs class with respect to the underlying func-
tion; εt is a similar approximation error for the
teacher with respect to the underlying function; εl
is the approximation error of the best student func-
tion with respect to the teacher function; n is the
number of training samples, and 1

2 ≤ α ≤ 1 is a
parameter related to the difficulty of the problem.
Smaller values of α indicate slower training and
larger values correspond to faster learning rates of
the student. Given Eq. 5 we observe that for larger
teacher models, the value of the left hand side of
the inequality might get higher than that of the right
hand side, which implies that KD might not work
as expected for large capacity teachers.

We analyzed the capacity-gap problem based on
the inequality 5. To satisfy this inequality when the
capacity of the teacher is large (or equivalently the
capacity gap between the two networks is large),
we can think about reducing the capacity of the
teacher (eg. the TAKD technique (Mirzadeh et al.,
2019) introduces a smaller TA network instead of
a large teacher), or increase α. Increasing α is
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Table 2: Comparing the test accuracy of Pro-KD,
TAKD (Mirzadeh et al., 2019), Annealing-KD (Jafar-
pour et al., 2021), RCO (Jin et al., 2019), regular KD,
and student without teacher on CIFAR-10 dataset with
both ResNet and CNN models

Model Type Training method Accuracy

ResNet

Teacher(110) from scratch 93.8
TA(20) KD 92.39

Student(8) from scratch 88.44
Student(8) KD 88.45
Student(8) TAKD 88.47
student(8) RCO 88.90
Student(8) Annealing-KD 89.44
Student(8) Pro-KD (ours) 90.01

Table 3: Comparing the test accuracy of Pro-KD,
TAKD (Mirzadeh et al., 2019), Annealing-KD (Jafar-
pour et al., 2021), RCO (Jin et al., 2019), regular KD,
and student without teacher on CIFAR-100 dataset with
both ResNet and CNN models

Model Type Training method Accuracy

ResNet

teacher(110) from scratch 71.92
TA(20) KD 67.6

student(8) from scratch 61.37
student(8) KD 61.41
student(8) RCO 61.62
student(8) TAKD 61.82
student(8) Annealing KD 63.1
student(8) Pro-KD (ours) 63.43

equivalent to making the training process of stu-
dent easier and smoother. It has been shown in (Li
et al., 2017; Chaudhari et al., 2019) that learning
a smoother loss is easier than a sharp one. There-
fore, we tried to make the training of the student
smoother by following the teacher’s training steps
and also applying the adaptive temperature factor.
In addition to this justification, we present a theo-
retical justification in the Appendix.

5 Experiments and Results

In this section, we evaluate our Pro-KD on 3 dif-
ferent sets of experiments: on image classifica-
tion, natural language understanding and ques-
tion answering tasks. In all these three experi-
ments, we compare Pro-KD with the state-of-the-
art KD techniques which can address the capac-
ity gap problem such as TAKD (Mirzadeh et al.,
2019), and Annealing-KD (Jafari et al., 2021), or
RCO (Jin et al., 2019) technique which does not
require searching teacher checkpoints for KD. We
also include baselines such as the original KD

method (Hinton et al., 2015) and also the regular
training without KD.

5.1 Experimental Setup for Image
Classification Tasks

Data We used CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009) datasets for
our experiments on the image classification tasks.
Both datasets have 60,000 of 32× 32 color images
distributed into 50,000 training and 10,000 test
samples, with 10 classes for CIFAR-10 and 100
classes for CIFAR-100

Setup For these experiments, we used ResNet-8
as the student and resNet-110 as the teacher mod-
els. The experimental setups are similar to TAKD
method (Mirzadeh et al., 2019). Also for the TAKD
baseline, we used ResNet-20 as the TA model. The
results of these experiments can be found in table
2 and 3 for comparison. For the baselines, first,
the ResNet-110 teacher is trained from scratch on
the given datasets and then it is used for training
baselines with KD. For TAKD baseline, the origi-
nal KD method is applied to train the TA network
with the teacher network and it is applied to train
the student network with TA network. For training
the student with the proposed Pro-KD method, we
trained the teacher for 160 epochs. For training
the student, we used maximum temperature 10 and
learning rate 0.1. For every 16 epochs, we decrease
the temperature by 1 and ni = 1.

Results As it is shown in Tables 2 and 3, Pro-KD
outperforms other baselines for both CIFAR-10
and CIFAR-100 experiments. Also, it is worth
mentioning that the Annealing-KD technique is the
second best result. RCO and TAKD both perform
on-par with the regular KD and training the student
from scratch.

5.2 Experimental Setup for Natural
Language Understanding Tasks on the
GLUE Benchmark

Data We use the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018a), which consists of 9 natural language un-
derstanding tasks. The tasks cover textual entail-
ment (RTE and MNLI), question-answer entail-
ment (QNLI), paraphrase (MRPC), question para-
phrase (QQP), sentiment (SST-2), textual similar-
ity (STS-B), linguistic acceptability (CoLA), and
Winograd Schema (WNLI).
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Table 4: Dev set results of training DistilRoBERTa using the RoBERTaLarge model on the GLUE benchmark.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI Score
RoBERTaLarge (Teacher) 67 85 91.63 92.53 96.21 94.53 91.45 89.94/89.97 88.54
DistilRoBERTa(NoKD) 61.9 69.31 89.85 88.46 91.86 91.31 90.04 84.03/ 83.69 83.32

Vanilla KD 60.97 71.11 90.2 88.86 92.54 91.37 91.64 84.18/84.11 83.85
TAKD 61.15 71.84 89.91 88.94 92.54 91.32 91.7 83.89/84.18 83.93

RCO (Jin et al., 2019) 60.66 72.2 90.56 88.41 91.97 91.09 90.04 88.04/84.18 63.63
Annealing KD 61.67 73.64 90.6 89.01 93.11 91.64 91.5 85.34/84.6 84.52

Pro-KD (Ours) 62.14 73.64 91.9 88.8 92.66 91.47 91.53 84.83/84.84 84.62

Table 5: Test set results of DistilRoBERTa trained on the GLUE tasks using the RoBERTaLarge teacher model.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI Score
Vanilla KD 54.3 74.1 83.4 85.3 93.1 90.8 80.7 83.6/82.9 80.62

TAKD 53.2 74.2 84.7 85 93.2 91.0 80.7 83.8/83.2 80.69
RCO (Jin et al., 2019) 55.1 73.0 87.85 84.4 93.5 88.9 78.66 83.2/82.4 80.51

Annealing KD 54 73.7 85.95 86.8 93.6 90.8 81.15 83.8/83.9 81.23
Pro-KD (Ours) 55.8 73.6 86.45 86.95 93.4 91.0 81.05 84.6/83.8 81.56

Table 6: BERT-Small results for Pro-KD on the GLUE dev set

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI Score
BERTLarge 61.89 68.96 88.22 89.58 92.89 92.4 90.23 86.1/86.25 83.79

BERT-Small (NoKD) 44.05 64.98 83.75 87.41 88.3 86.49 88.43 78.42/78.57 77.74
Vanilla KD 43.28 64.98 84.96 85.95 88.65 86.75 88.24 78.62 /78.55 77.67

TAKD 43.79 65.7 83.98 86.44 88.88 86.78 88.4 78.78/ 78.64 77.84
RCO (Jin et al., 2019) 44.32 65.7 84.91 85.48 88.99 86.32 87.52 78.35 /78.85 77.73

Annealing KD 45 63.9 87.09 87.04 89.56 86.99 88.58 78.66/78.23 78.33
Pro-KD 42.37 66.79 87.78 87.09 89.91 87.88 88.79 79.18/ 79.17 78.72

Table 7: The GLUE leaderboard test results of training BERT-Small from the BERTLarge teacher.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI Score
BERT-Small (NoKD) 41.3 62.6 79.7 80.05 89 86.3 78.05 78.3/ 77.6 74.37

Vanilla KD 37.3 63.4 80.55 78.15 90.2 86.5 78.25 78/76.5 73.95
TAKD 38.5 62.3 80.5 79.25 89.7 86.7 78 78.2/76.9 74.06

RCO (Jin et al., 2019) 40.3 61.7 79.75 78.95 90.6 86.4 78.35 78.3/ 77.3 74.23
Annealing KD 38.6 63.1 81.85 80.6 91.2 87.3 78.35 77.8// 77.4 74.83

Pro-KD 39 62.7 82.9 80.45 91.2 87.5 79.15 78.6/78.2 75.16

Table 8: DistilRoBERTa results for Pro-KD on SQuAD

KD Method Squad 1.1 Squad 2.0
Teacher 93.7 87

Vanilla KD 85 73.65
TAKD 85.4 73.8

Pro-KD 86 76

Setup We perform experiments with multiple stu-
dents of varying capacities. In the first experiment
(Table 4 and 5), we use RoBERTa-large (24-layers)
as teacher, DistilRoBERTa (6-layers) (Sanh et al.,
2019) as student, and RoBERTa-base (12-layers)
(Liu et al., 2019) as the teacher-assistant for the
TAKD baseline. For Pro-KD, we train the teacher
for 5 epochs, and for training the student we use a
maximum temperature of 5, ni = 2, and the learn-
ing rate of 2e-5. For the second experiment (Table

Table 9: BERT-Small results for Pro-KD on SQuAD

KD Method Squad 1.1 Squad 2.0
Teacher 90.2 81

Vanilla KD 78.54 61.66
TAKD 78.5 61.66

Pro-KD 79.7 62.76

6, 7), we use BERT-large (24-layers) as teacher,
BERT-Small (4-layers) (Bhargava et al., 2021) as
student, and BERT-base (12-layers) (Devlin et al.,
2018) as the teacher-assistant for TAKD. We train
the teacher for 7 epochs, and for the student we
use a maximum temperature of 7 for all tasks, and
ni = 1. For the learning rate, we use 5e-5 for RTE
and MRPC, and 2e-5 for all other tasks. Additional
details about other hyper-parameters can be found
in the appendix.
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Table 10: Experimenting the impact of the adaptive temperature factor in Pro-KD using DistilRoBERTa trained
with RoBERTa-large on the GLUE benchmark

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI (392K) WNLI Avg
(8.5k) (2.5k) (3.5k) (5.7k) (67k) (108k) (363k) (392k)

Pro-KD 62.14 73.64 91.9 88.8 92.66 91.47 91.53 84.83/84.84 57.74 81.63
Pro-KD w/o T 58.66 70.03 91.74 88.0 92.43 91.76 91.55 84.95/85.41 56.33 80.61

Results We present our results in Tables 4, 5
and 6. Tables 4 and 6 compare the performance
of Pro-KD with Vanilla KD and TAKD on the
GLUE dev set, while Table 5 presents the results
of DistilRoBERTa on the test set based on GLUE
benchmark’s leaderboard. We see that Pro-KD
outperforms Vanilla KD and TAKD for both Distil-
RoBERTa and BERT-Small models. Even though
TAKD is able to improve over Vanilla KD, the per-
formance gain is much smaller compared to Pro-
KD, demonstrating Pro-KD’s high effectiveness in
dealing with the large capacity gap problem.

5.3 Experimental Setup for Question
Answering

Data We use the Stanford Question Answering
Datasets (SQuAD v1.1 (Rajpurkar et al., 2016) and
SQuAD v2.0) which are a collection of 100k crowd-
sourced question/answer pairs. Given a question
and a passage from Wikipedia containing the an-
swer, the task is to predict the answer text span
in the passage.The SQuAD 2.0 task extends the
SQuAD 1.1 problem definition by allowing for the
possibility that no short answer exists in the pro-
vided paragraph.

Setup Similar to the GLUE experiments, we per-
form experiments on 2 different students but with a
couple of less baselines because Annealing KD and
RCO do not report any result on SQuAD. In the
first experiment (Table 8), we use RoBERTa-large
(24-layers) as teacher, DistilRoBERTa (6-layers)
as student, and RoBERTa-base (12-layers) as the
teacher-assistant for the TAKD baseline. We train
the teacher for 3 epochs, and for the student we
use a maximum temperature of 3, ni = 1, and a
learning rate of 3e-5 with a batch size of 12 for
both Squad v1.1 and Squad 2.0. For the second ex-
periment (Table 9), we use BERT-large (24-layers)
as teacher, BERT-Small (4-layers) as student, and
BERT-base (12-layers) as the teacher-assistant for
TAKD. We train the teacher for 3 epochs, and for
the student we use a maximum temperature of 3,
and ni = 1. and a learning rate of 3e-5 with a
batch size of 12. Additional details about other

hyper-parameters can be found in the appendix.

Results We present our results in Tables 8 and 9.
We again see that Pro-KD consistently outperforms
Vanilla KD and TAKD for both Squad v1.1 and
Squad 2.0 tasks.

5.4 Ablation Studies and Further Analysis

The Impact of the Temperature Factor Here
we show the impact of having the adaptive temper-
ature factor in our technique. The adaptive tempera-
ture helps the student model to be exposed to a soft-
ened version of the teacher in earlier stages. In this
regard we repeated our experiment on the GLUE
benchmark when the student is DistilRoBERTa and
the teacher is RoBERTa-large. Table 10 shows the
result of Pro-KD with and without the temperature.
The results indicate that dropping the adaptive tem-
perature will hamper the performance of our model
by about 1% on the average GLUE score.

6 Conclusion

In this paper, we highlighted the importance of
the capacity-gap problem in KD. We used the
VC-dimension analysis to show that dealing with
larger teachers may discount the benefit of using
knowledge distillation in training. To address this
capacity-gap problem, we introduced our Pro-KD
technique. Our technique was based on defining
a smoother training journey for the student by fol-
lowing the training footprints of the teacher instead
of solely relying on distilling from a mature fully-
trained teacher. In other words, in contrast to the
regular knowledge distillation recipe for model
compression in which the student model learns
only from a fix fully-trained teacher, in our Pro-KD
method, the student learns even from the training
path of the teacher. We believe that following the
training footsteps of the teacher can be quite in-
fluential in improving the student training and can
lead to mitigating the capacity-gap problem in KD
as well. We showed our theoretical analysis and
justifications to support this idea; moreover, we
evaluated our technique using a comprehensive set
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of experiments on different tasks such as image
classification (CIFAR-10 and CIFAR-100), NLP
language understanding tasks of the GLUE bench-
mark, and question answering (SQuAD 1.1 and
2.0) using BERT-based models and consistently
got superior results.
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A Why Does Pro-KD Work?

In this section, first we state stopping the training
procedure of the teacher at early epochs will im-
prove Knowledge Distillation. Then, we argue that
our method will exploit this fact without requiring
any effort on finding the epoch at which early stop-
ping the teacher leads to the optimum Knowledge
Distillation. Finally, we will conclude that training
the student together with the teacher leads to an
important advantage that provides the student with
the opportunity of exploiting the knowledge of the
optimum teacher.

In knowledge distillation, soft labels coming
from a pre-trained teacher contains some so-called
dark knowledge (Dong et al., 2019) which gives a
signal about the relative differences between the
probabilities of the classes.

It is shown by (Cho and Hariharan, 2019) and
(Dong et al., 2019) that early stopping during train-
ing of the teacher network improves the perfor-
mance of Knowledge Distillation significantly; in
other words, there is an optimal epoch at which
if teacher training is stopped, the resulting teacher
will act as a better teacher compared to the ones
stopped at earlier or later epochs. Authors of
(Cho and Hariharan, 2019) have shown this fact
through experiments based on performing KD by
using pre-trained teacher networks stopped at dif-
ferent epochs, and they also have indicated that
changing the temperature cannot compensate lost
Dark Knowledge. Authors of (Dong et al., 2019)
have provided mathematical justification showing
that neural network learns more useful information
faster. They have used the methods proposed in
papers (Du et al., 2018; Oymak and Soltanolkotabi,
2019; Li et al., 2020), and the concept of Neural
Tangent Kernel introduced by (Jacot et al., 2018)
in order to reach an asymptotic conclusion. This
conclusion states that for infinite wide neural net-
works, gradient descend algorithm searches over
different direction with different pace; that is to
say, the projection of the loss function in different
eigenspaces evolves with different rate. Those rates
can be calculated as follows (Dong et al., 2019):

〈(ut − y), ei〉 = 〈(I − ηH∗)(ut − y), ei〉
= 〈(ut − y), (I − ηH∗)ei〉
= (1− ηλi)〈(ut − y), ei〉

(6)

where ut is the output of model, y is the true
label, ei is the eigenvector corresponding to the ith
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eigenvalue(λi) of the static Gram matrix(H∗) of the
network. The gram matrix of neural networks is a
function of time in general; however, in infinitely
wide neural networks, this matrix will be static and
called Neural Tangent Kernel (Jacot et al., 2018).
This static n×nmatrix, n is the number of training
samples, can be calculated as follows (Dong et al.,
2019):

H∗ =
(
〈∂f(θ, xi)

∂θ
.
∂f(θ, xj)

∂θ
〉
)
i,j

(7)

where f(θ, ·) is the output of our model, θ are
the parameters of the neural network, and xi is the
ith data sample.

Arguments provided by (Dong et al., 2019) state
that a neural network learns more useful informa-
tion faster than non-principal pieces of information
about the input samples; however, it does not ex-
plain why continuing training teacher will decrease
the level of that "Dark Knowledge". To justify
this part, we use results from Tishby, Naftali, and
Noga Zaslavsky. "Deep learning and the informa-
tion bottleneck principle."(Tishby and Zaslavsky,
2015) and Saxe, Andrew M., et al. "On the infor-
mation bottleneck theory of deep learning." (Saxe
et al., 2019). In (Saxe et al., 2019) and (Tishby and
Zaslavsky, 2015), authors show that there are two
stages during training a deep neural network, initial
fitting phase and compression phase. These two
stages have some important characteristics:

1. Initial Fitting: During this phase, the mutual
information between the output of different
layers and true labels is increasing. Also, the
mutual information between output of layers
and the input samples is increasing as well. In
other words, network is gaining information
about both labels and input samples. There-
fore, network is gaining more aforementioned
Dark Knowledge as it is gaining information
about relative similarities between samples
from different classes.

2. Compression phase: During this phase, the
mutual information between the output of dif-
ferent layers and true labels is increasing; how-
ever, the mutual information between output
of layers and the input samples is decreas-
ing. In other words, network tries to compress
and discard information which it has gained
about input samples (Saxe et al., 2019). We
can state that Dark Knowledge is decreasing

during this phase; that is because, network is
forgetting relationships between data samples,
and at the same time, it is gaining more in-
formation about labels. This procedure leads
to more confidence on found probabilities for
each class. As a result, the information about
relative similarities between classes decreases
and probabilities tend to one-hot vectors.

Based on the aforementioned facts, a teacher
which has stopped learning at the optimum epoch
provides more informative pieces of information to
the student. Our method exploits the Dark Knowl-
edge of the best teacher by training teacher and
students together; in our method, during training
teacher and student together, at some point teacher
will have the highest level of Dark Knowledge
which leads to the best student. The important
point here is that we do not need to find the op-
timum epoch at which this highest level of Dark
Knowledge will be achieved. Since we are per-
forming Knowledge Distillation in fixed intervals
and storing intermediate checkpoints, the student
trained by guidance of the best teacher will be one
of these checkpoints and we have access to that.

In contrast with usual KD methods, pre-trained
teacher networks are not used in our methods; in
fact, we train teacher alongside with the student.
Based on the aforementioned arguments, Pro-KD
outperforms other KD methods as it gives us the
opportunity of exploiting the experience and the
Dark Knowledge provided by the best teacher, the
teacher which has stopped learning at the optimum
epoch.

B Hyper-parameters

In this section, we summarize the hyper-parameters
used in our experiments.
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Table 11: Model specific Hyper-parameters for BERT-Small on GLUE

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Learning Rate 2e-5 5e-5 5e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5

N (Teacher Epochs) 7 7 7 7 7 7 7 7 7
τmax 7 7 7 7 7 7 7 7 7

n (Phase 2 Epochs) 10 10 10 10 10 10 10 10 10

Table 12: Common Hyper-parameters for DistilRoBERTa and BERT-Small models on GLUE

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Batch Size 32 32 32 32 32 32 32 32 32

Max Seq. Length 128 128 128 128 128 128 128 128 128
Vanilla KD Alpha 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Gradient Clipping 1 1 1 1 1 1 1 1 1

Table 13: Model specific Hyper-parameters for DistilRoBERTa on GLUE

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5

N (Teacher Epochs) 5 5 5 5 5 5 5 5 5
τmax 5 5 5 5 5 5 5 5 5

n (Phase 2 epochs) 10 10 10 10 10 10 10 10 10
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Table 14: Model specific Hyper-parameters for Distil-
RoBERTa on SQuAD

Hyper-parameter SQuAD 1.1/2.0 SQuAD Teacher
Learning Rate 3e-5 1.5e-5

Batch Size 12 12
Max Seq. Length 384 384

Doc Stride 128 128
Weight Decay - 0.01

N (Teacher Epochs) 3 3
τmax 3 -

n (Phase 2 Epochs) 6 -

Table 15: Model specific Hyper-parameters for BERT-
Small on SQuAD

Hyper-parameter SQuAD 1.1/2.0 SQuAD Teacher
Learning Rate 3e-5 3e-5

Batch Size 12 12
Max Seq. Length 384 384

Doc Stride 128 128
N (Teacher Epochs) 3 3

τmax 3 -
n (Phase 2 Epochs) 5 -
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Abstract

Nowadays, transformer-based models gradu-
ally become the “default choice” for artificial
intelligence pioneers. The models also show
superiority even in the few-shot scenarios. In
this paper, we revisit the classical methods and
propose a new few-shot alternative. Specif-
ically, we investigate the few-shot one-class
problem, which actually takes a known sample
as a reference to detect whether an unknown
instance belongs to the same class. This prob-
lem can be studied from the perspective of
sequence match. It is shown that with meta-
learning, the classical sequence match method,
i.e. Compare-Aggregate, significantly outper-
forms transformer ones. The classical approach
requires much less training cost. Furthermore,
we perform an empirical comparison between
two kinds of sequence match approaches under
simple fine-tuning and meta-learning. Meta-
learning causes the transformer models’ fea-
tures to have high-correlation dimensions. The
reason is closely related to the number of lay-
ers and heads of transformer models. Experi-
mental codes and data are available at https:
//github.com/hmt2014/FewOne.

1 Introduction

When the labeled data is scarce in practical appli-
cation, it is struggled to learn a well-performed
model using deep learning algorithms. Yet anno-
tating data costs much labor and time. Few-shot
learning (FSL) intuitively addresses this obstacle
(Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Finn et al., 2017; Sung et al., 2018). FSL
learns at the meta-task level, where each meta-task
is formulated as inferring queries with the help
of a support set (Vinyals et al., 2016). Multiple
meta-tasks facilitate the task-agnostic transferrable
knowledge. Thus it can learn new knowledge fast
after being taught only a few samples. Despite

∗Hang Gao is the corresponding author.

1) Might be a good place, but if you need customer 
support, good luck! 

2) Basic cable and wifi. 
3) This place was designed really well, too.

Support set

Query set

Reference: Class: hotel

1

?

1
0

?
?

This was the worst hotel in Vegas.

1) It was sold out due to there was the girls' basketball 
tournament taking place over the weekend. 

2) The service is wonderful and the hotel is amazing. 
3) Food was awesome and so was our waiter.

Figure 1: Meta-task example in few-shot one-class text
classification, where 1 denotes a positive instance and 0
denotes a negative one.

FSL has been well-studied, its one-class scenario
(Frikha et al., 2021) is less investigated.

In this paper, following the one-class trait, we
design each meta-task as a binary classification. It
consists of a reference instance, a support set, and
a query set (see Figure 1). The reference instance
is one known sample of a class, which is exploited
to tell whether an instance out of the support/query
set belongs to the same class. Such purpose is
consistent with sequence match, which also makes
a decision for two sequences. Previous sequence
match can mainly be categorized into two promis-
ing directions: classical methods, e.g. Siamese
Network (Koch et al., 2015), Compare-Aggregate
(CA) (Wang and Jiang, 2017), and transformer-
based method, e.g. DistilBert (Sanh et al., 2019),
BERT (Devlin et al., 2019).

In recent years, transformer models have already
beaten classical ones in a wide range of tasks (De-
vlin et al., 2019). We wonder how two kinds of
models perform under the few-shot one-class sce-
nario. Consequently, it is presented that with meta-
learning, classical sequence match method can sig-
nificantly outperform transformer-based models.
The classical models require much less training
cost. Specifically, model-agnostic meta-learning
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(MAML) algorithm (Finn et al., 2017) is a subtle
bi-level optimizing approach that aims to learn a
good parameter initialization. By introducing this
algorithm, classical methods act as simple but com-
petitive few-shot one-class learners.

Furthermore, we make an empirical comparison
between classical and transformer-based models
under simple fine-tuning and meta-learning. Firstly,
it is found that MAML has a more positive impact
on the both sequence match approaches than simple
fine-tuning. This suggests that a good parameter
initialization is important for both of them. Sec-
ondly, MAML tends to make transformer models
extract features with high-correlation dimensions.
The bi-level optimization might cause the feature
extraction layers of large models less trained. Yet
the last classifying layer tends to be better learned
relatively. We demonstrate that the high correlation
is related to the number of heads and layers in the
transformer.

In summary, our main contributions are as fol-
lows: (1) We present a simple but competitive
few-shot one-class learner, which is based on
the classical sequence match approach and meta-
learning. Extensive experimental results show that
this learner achieves significant improvements com-
pared with transformer-based models. This pro-
vides new insights in the transformer-dominant era.
(2) Based on the testbed provided by the above
approaches, an empirical study is made to further
reveal their underlining natures. New observations
and conclusions are derived.

2 Related Works

2.1 Few-Shot Learning

Few-shot learning (FSL) (Fei-Fei et al., 2006) deals
with the practical problem of data scarcity in an
intuitive way. It learns new knowledge fast with
limited supervised information. An early work
(Koch et al., 2015) learns to detect whether two
instances belong to the same class. Later, match-
ing network (Vinyals et al., 2016) proposes to con-
struct multiple meta-tasks in both the training and
testing procedures. This setting becomes main-
stream in the subsequent works, to name a few,
distance-based methods (Snell et al., 2017; Sung
et al., 2018; Garcia and Bruna, 2018; Bao et al.,
2020), optimization-based methods (Finn et al.,
2017; Munkhdalai and Yu, 2017) or hallucination-
based methods (Wang et al., 2018; Li et al., 2020).
Among them, MAML (Finn et al., 2017) is spe-

cial for “model-agnostic”, indicating that this algo-
rithm can be applied in any model. Therefore, we
choose to further study its effects. To the best of
our knowledge, it is seldom studied in transformer-
based models. We provide an interesting empirical
analysis in the experiments.

Recently, prompt-based fine-tuning (Gao et al.,
2021) also become popular in FSL. It classifies a
template-based instance through the masked lan-
guage model. This prediction manner bridges the
gap between pre-training and fine-tuning. Its ef-
fectiveness in the few-shot one-class scenario is
under-explored.

2.2 One-Class Few-Shot Learning
Recently some works discuss the one-class prob-
lem in FSL. Cumulative LEARning (CLEAR)
(Kozerawski and Turk, 2018) uses transfer learn-
ing to model the decision boundary of SVM. One-
way proto (OWP) (Kruspe, 2019) is based on the
prototypical network (Snell et al., 2017). OWP
computes the positive prototype by simply averag-
ing the representations of instances. It designs a
0-vector as the negative prototype. The Euclidean
distance with prototypes in the embedding space
indicates that an instance is positive or negative.
One-class MAML (Frikha et al., 2021) proposes
a simple data sampling strategy to ensure that the
class-imbalance rate of the inner-level matches the
test task. Different from them, we leverage the
unique direction in natural language processing, i.e.
sequence match, to study the one-class FSL.

2.3 Sequence Match
Sequence match aims to make a decision for two
sequences. Many tasks require to match sequences,
such as text entailment (Bowman et al., 2015), ma-
chine comprehension (Tapaswi et al., 2016), rec-
ommendation (Kraus and Feuerriegel, 2019), etc.
A straightforward approach is to encode each se-
quence as a vector and then compare the two vec-
tors to make a decision (Bowman et al., 2015;
Feng et al., 2015). However, a single vector is
insufficient to match the important information be-
tween two sequences. Thus attention mechanism
is adopted in this task (Rocktäschel et al., 2016).

Later, the Compare-Aggregate framework is pro-
posed (Wang and Jiang, 2017) for matching se-
quences, which has been widely studied. Its ex-
tended version usually considers the bidirectional
information of two inputs (Bian et al., 2017; Yoon
et al., 2019). One previous work (Ye and Ling,
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2019) shows that matching and aggregation are
effective in few-shot relation classification. We
explore this framework in the few-shot one-class
problem. More recently, pre-trained language mod-
els, e.g. BERT (Sanh et al., 2019) gain remarkable
achievements in many sequence match tasks (Wang
et al., 2020).

3 Methods

In this work, two kinds of sequence match methods,
including classical and transformer-based ones, are
mainly investigated. Compare-Aggregate (Wang
and Jiang, 2017) is a promising classical method.
We choose to study its extended version, i.e. Bidi-
rectional Compare-Aggregate (BiCA) (Bian et al.,
2017; Yoon et al., 2019), introduced in §3.2. The
transformer-based sequence match (Sanh et al.,
2019) is also presented in §3.3 briefly.

3.1 Problem Definition

Assume the training data Dtrain is composed of a
set of training classes Ctrain, and the testing data
Dtest has a set of classes Ctest, there are no over-
lapping between two class sets Ctrain ∩ Ctest = ∅.
During training, we randomly sample a bunch of
meta-tasks from Ctrain. A meta-task is made as a
binary classifier to detect one class, which is for-
mulated as below.

A meta-task contains a reference sentence r, a
support set S and a query set Q.

S = {(x1s, y1s), (x2s, y2s), ...(x|S|s , y|S|s )}
Q = {(x1q , y1q ), (x2q , y2q ), ...(x|Q|q , y|Q|q )}

(1)

where xs/xq is an instance and ys/yq denotes
whether this instance belongs to the same class as
the reference. |S| and |Q| indicate the number of in-
stances in two sets, respectively. Many meta-tasks
enable the model to extract task-agnostic knowl-
edge, which is beneficial to the meta-tasks from the
testing classes Ctest.

3.2 Classical Sequence Match

In this section, we will introduce the components of
Bidirectional Compare-Aggregate (BiCA) in detail.

Encoder Given an input sentence with L words,
denoted as {w1, w2, ..., wL}, it is first mapped into
an embedding sequence E = {e1, e2, ..., eL} by
looking up the pre-trained GloVe embeddings (Pen-
nington et al., 2014). Then the embedding se-
quence is processed by the gate mechanism (Wang

Reference instance An instance from  
support/query set

w1
r , w2

r , . . . , wL
r w1, w2, . . . , wL′ 

Hr H

Hr H

Encoder Encoder

Attention Attention

Bidirectional 
Comparison

Bidirectional 
Comparison

Aggregation Aggregation

Cr C

fr f
MLP

p

Figure 2: The network architecture of BiCA. The pa-
rameters are shared by two input instances.

and Jiang, 2017) to obtain contextualized informa-
tion. This gating mechanism aims at remember-
ing the meaningful words and filtering the less-
important words in a sentence.

H = σ(WiE+ bi)⊙tanh(WuE+ bu) (2)

where Wi and Wu are parameter matrix, bi and
bu are biases, ⊙ is element-wise multiplication.

Attention As depicted in Figure 2, the reference
and an instance from support/query set are fed into
the encoder, obtaining Hr and H. Then the inter-
action between two inputs is computed through an
attention mechanism.

Hr = Hr · softmax(Hr
TH)

H = H · softmax(HTHr)
(3)

This attention mechanism is non-parametric
since it only depends on the encoded representa-
tions Hr and H. Such design reduces the reliance
on parameters and focuses on learning the relation-
ships between data. Hence, this helps better adapt
to unseen classes.

Bidirectional Comparison To compare the two
instances, we adopt a simple word-level compari-
son function, i.e., element-wise multiplication ⊙.

Cr = Hr ⊙H C = H⊙Hr (4)

The comparison function is also non-parametric
for the purpose of adaptation. As shown in Figure
2, the encoded representations are applied in both
the attention and bidirectional comparison modules
to promote the mutual interaction of two inputs.
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Figure 3: Introducing meta-learning to sequence match approaches. The left part and the right part share the same
architecture but employ different parameters in the meta-learning. The five steps are corresponding to the Algorithm
1. After training, the optimal parameter initialization θ for the testing classes is obtained.

Aggregation Following the original work (Wang
and Jiang, 2017), the comparison representations
are aggregated by convolution neural network
(CNN) (Kim, 2014). The convolution kernel slides
over the comparison sequence to extract n-gram
features, which tends to be helpful in matching.

fr = CNN(Cr) f = CNN(C) (5)

where CNN(·) is a convolution operation followed
by max-pooling. Then the matching score is com-
puted with the aggregation representations of two
input sentences.

p = MLP([fr,f ]) (6)

where MLP is a single linear layer. p is a two-
dimensional logits output.

Loss The training objective of BiCA is the cross
entropy loss.

Lθ(r, S) = −
1

|S|
∑

|S|
logP (y|p) (7)

where y is the ground truth. θ represents all the
parameters in the sequence match model.

3.3 Transformer-Based Sequence Match
Transformer-based models, e.g. BERT (Devlin
et al., 2019) are pre-trained on a large-scale corpus,
serving as foundational backbones for a wide
range of natural language processing tasks. When
aiming at sequence match, BERT utilizes two
special tokens [CLS] and [SEP] to concatenate two
sequences as a whole. For the two input instances
shown in Figure 2, they are combined into
{[CLS], w1

r , w
2
r , ..., w

L
r , [SEP], w

1, w2, ..., wL
′},

where the output of [CLS] is usually for classifica-
tion and [SEP] is for separating two inputs. This
combined sequence is then fed into BERT. The
self-attention mechanism (Vaswani et al., 2017)

Algorithm 1: Meta-Learning for Few-Shot
One-Class Problem
Input: Training data from Dtrain

1 Randomly initialize θ
2 repeat
3 Sample positive classes Cp and negative

classes Cn from Dtrain
4 Cp ∩ Cn = ∅
5 for all Cp do
6 Construct a meta-task
7 Evaluate∇θLθ(r, S) in Eq. (7)
8 Compute adapted parameters with

gradient descent:
θ
′
p = θ − α∇θLθ(r, S)

9 Update θ ← θ − β∇θ
∑
Cp Lθ′p(r,Q)

10 until performance on the validation data set
does not improve in 3 epochs.

in the transformer will compute the interaction
between two inputs. Finally, the output of the first
token [CLS] is adopted for inference. The training
objective is also computed by Eq. (7).

3.4 Meta-Learning for Sequence Match

In the few-shot one-class paradigm, a meta-task
from the unseen class has a few labeled instances
as the support set. To better leverage such knowl-
edge, we introduce meta-learning to sequence
match models, which is displayed in Figure 3 and
Algorithm 1. Specifically, model-agnostic meta-
learning (MAML) algorithm (Finn et al., 2017) is
chosen to investigate its impact on the sequence
match approaches. This algorithm learns a good
initialization of model parameters by maximizing
the sensitivity of the loss function when adapting
to new tasks (Song et al., 2020).
Construct a Meta-Task In Algorithm 1 (line
6), given a positive class, we first sample N + 1
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Train Validation Test

Class Num 64 16 20

Data Num single 13677 3394 4671
multi 26643 6686 7929

Data Num/Class single 213.7 212.1 233.5
multi 416.2 417.8 396.4

Table 1: Dataset statistics for ACD. single denotes
the single-aspect sentence and multi denotes the multi-
aspect one.

instances from this class, which constitutes a ref-
erence instance r and N positive ones. Moreover,
N negative examples are also sampled from the
negative classes Cn. These positive and negative
examples are mixed up randomly, which are further
divided into the support set and query set.

Meta-learning trains in a bi-level way (see Al-
gorithm 1), including the inner-level (line 8) and
the outer-level (line 9) for the support set S and
the query set Q, respectively. This way will cause
the gradients for updating parameters to propagate
through more layers (line 9), i.e. twice as many as
the number of network layers in a sequence match
model. Its special effects on the transformer mod-
els are further discussed in §4.4. When evaluating,
a model is initialized from the parameters θ trained
by MAML on the training classes, which is then op-
timized with the support set on the testing classes.

4 Experiments

4.1 Datasets

Aspect Category Detection (ACD) A dataset
for few-shot one-class ACD is collected from Yel-
pAspect (Bauman et al., 2017; Li et al., 2019),
which is a large-scale multi-domain dataset for
fine-grained sentiment analysis. The 100 aspect
categories are split without intersection into 64
classes for training, 16 classes for validation, and
20 classes for testing. Table 1 displays the statistics
of the dataset. The data in each class is further
divided according to the number of the aspects in a
sentence, into single-aspect and multi-aspect. Rela-
tively, a multi-aspect example contains more noise
when matching sequences. To explore a challeng-
ing scenario, the support/query set are both sam-
pled from the multi-aspect set. Fixing this setup,
we choose a reference instance as a single- and
multi-aspect one.

HuffPost It consists of news headlines published

in HuffPost between 2012 and 2018 (Misra, 2018).
Bao et al. (2020) process the original dataset for
few-shot text classification. The number of training,
validation, and testing classes are 20, 5, and 16,
respectively, where each class has 900 instances.
Since the sentences are headlines, they are shorter
and less grammatical.

4.2 Baseline Methods
Matching sequences at the vector-level:
SN (Koch et al., 2015) Siamese network can cap-
ture discriminative features to generalize the pre-
dictive power of the network. The input instances
are extracted into two vectors, which are compared
with cosine similarity.
OWP (Kruspe, 2019) One-way prototypical net-
work designs a 0-vector as the negative prototype.
It measures the Euclidean distance between an in-
stance with the positive/negative prototypes in the
embedding space.

Matching sequences at the word-level:
CA (Wang and Jiang, 2017) Compare-Aggregate
is widely used to match the important units between
sequences. It only compares in one direction, i.e.,
reference-to-candidate.
BiCA CA is enhanced into matching sequences
bidirectionally (§3.2).
DistilBert (Sanh et al., 2019) It is a distilled ver-
sion of BERT (§3.3).
BERT (Devlin et al., 2019) It is transformer-based
and matching sequences at word-level (§3.3).
BERT(p) (Gao et al., 2021) It trains BERT with
prompt-based learning. The two sequences are
concatenated with “?[MASK],” like Gao et al.. The
representation of [MASK] is mapped into word “yes”
or “no”, suggesting that two sequences belong to
the same class or not.

4.2.1 Implementation Details
Baseline methods are trained with naive training,
which learns the training classes in a meta-task
manner, but combines the support set and query
set as a whole to optimize parameters. +finetune
means that the naive trained models are fine-tuned.
+MAML indicates the models are optimized by
MAML (Algorithm 1). During the evaluation,
+finetune or +MAML exploit the support set of
testing classes in the same way, with the same num-
ber of updating steps and learning rate. Thus the
only difference between +finetune and +MAML is
the parameters are initialized by naive training or
MAML training. All testing meta-tasks share the
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Model Use support Match Type ACD Single ACD Multi HuffPost
set of Dtest vector word Acc F1 Acc F1 Acc F1

SN No ✓ 69.88±1.19 69.33±1.16 72.12±0.82 71.64±0.82 62.61±0.55 61.87±0.56

OWP No ✓ 72.50±1.22 71.96±1.23 70.94±0.58 70.24±0.65 61.72±0.72 61.05±0.72

CA No ✓ 79.45±1.17 78.97±1.25 76.72±0.99 76.27±0.96 64.02±0.36 63.33±0.47

BiCA No ✓ 79.46±0.39 79.03±0.46 76.81±0.89 76.40±0.92 64.72±0.77 64.20±0.76

DistilBert No ✓ 79.32±1.19 78.87±1.36 75.16±0.94 74.62±0.97 64.87±1.32 63.91±1.79

BERT No ✓ 79.05±0.98 78.61±0.98 74.62±0.97 74.03±1.03 66.02±1.22 65.24±1.34

BERT(p) No ✓ 74.99±5.22 73.73±6.67 76.58±0.90 76.07±0.92 64.67±0.58 63.52±1.26

BERT(p)+finetune Yes ✓ 83.53±1.11 83.30±1.19 82.74±0.73 82.53±0.75 67.43±1.06 66.64±1.22

BERT+funetune Yes ✓ 86.10±0.76 85.97±0.76 82.63±0.77 82.43±0.78 73.02±0.70 72.73±0.69

BERT+MAML Yes ✓ 88.33±2.76 88.23±3.07 84.99±2.86 84.86±3.18 73.89±3.28 73.66±3.37

DistilBert+finetune Yes ✓ 84.62±1.21 84.44±1.26 82.15±0.57 81.93±0.62 69.68±0.83 69.22±0.92

DistilBert+MAML Yes ✓ 87.73±0.66 87.61±0.67 84.93±0.79 84.76±0.81 72.22±1.60 72.00±1.62

BiCA+finetune Yes ✓ 84.62±0.38 84.46±0.39 82.84±0.97 82.70±0.98 65.82±0.85 65.48±0.89

BiCA+MAML Yes ✓ 89.86†±0.65 89.76†±0.66 89.80†±0.56 89.70†±0.57 74.47‡±1.68 74.20‡±1.68

Table 2: Experimental results for ACD and HuffPost in terms of accuracy(%) and macro-f1(%). We report the
average and standard deviation of 5 runs. Single indicates that the reference instance is single-aspect. Multi
indicates setting references as multi-aspect. The marker † refers to p-value<0.01 of the T-test compared with
DistilBert+MAML. The marker ‡ refers to p-value<0.07 of the T-test compared with DistilBert+MAML.

same parameter initialization without mutual inter-
ference. The implementation details are described
in the Appendix.

4.3 Experimental Results

The experimental results on ACD and HuffPost
datasets are displayed in Table 2. The first part
in Table 2 shows the case that when testing, we
only have the reference instance but do not use
the support set. By comparing two match types,
we find that a finer-granularity matching helps the
few-shot one-class scenario gain significantly. This
indicates that in the few-shot scenario of text tasks,
learning deeper interaction between instances is
a better choice. Many previous tasks gain signifi-
cantly from BERT (Wang et al., 2020) or DistilBert
(Wright and Augenstein, 2020). However, we sur-
prisingly see little performing difference among
the five word-level sequence match methods. The
transformer-based methods do not have remark-
able superiority. A possible reason is that in the
unseen classes, it is difficult to discover the key
words/semantics for matching only given a refer-
ence instance. Meanwhile, these models with large-
scale parameters may be superior in the data-driven
tasks (Gururangan et al., 2020).

Additionally, though the scale of the support set
is small, exploiting it by fine-tuning or MAML can
bring significant improvements. This also explains
our previous guess that the support set will pro-
vide key words/semantics to match. Meanwhile, on
sequence match methods, including BiCA, BERT

and DistilBert, MAML outperforms fine-tuning in
most situations. This indicates the importance of
a good parameter initialization not only for small
models but also for large pre-trained models in a
few-shot problem.

It is also found that prompt-based fine-tuning,
i.e. BERT(p), is also less-performed than
BiCA+MAML. The possible reasons are: first, the
objective of one-class sequence match is not consis-
tent with the pre-training of language models. Thus
the knowledge of transformer models might not be
fully leveraged; second, prompt-based fine-tuning
may achieve better results by other huge-scale pre-
trained models, such as RoBERTa-large, GPT-3
(Gao et al., 2021).

Finally, it is worth noting that BiCA+MAML
consistently outperforms BERT+MAML and Dis-
tilBert+MAML. Compared with transformer mod-
els, BiCA+MAML has fewer parameters, suggest-
ing that the classical methods are still worth revis-
iting in the large pre-trained models’ dominant era.
We further see another interesting phenomenon.
BiCA gains significantly from MAML but slightly
improves by using fine-tuning. Contrarily, the
transformer-based method gains much from fine-
tuning. It is possible that the pre-trained BERT
already contains abundant knowledge, suggesting
a good initialization for fine-tuning. Meanwhile,
BiCA is a classical model with much fewer param-
eters, which is easier for MAML to learn a good
initialization. Hence, MAML has a more signifi-
cant contribution to BiCA.
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(a) BiCA (b) BiCA+finetune (c) DistilBert (d) DistilBert+finetune

(e) BiCA (f) BiCA+finetune (g) DistilBert (h) DistilBert+finetune
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Figure 4: Effects of fine-tuning on BiCA and DistilBert for ACD, where the reference instance is single-aspect. For
a fair comparison, all models only have one linear output layer. In the top row, we depict PCA plots of the features
before the output layer. The feature dimension in BiCA is 500 and which in DistilBert is 768. In the bottom row, we
directly plot the 2-dimensional logits output.

(a) BiCA+MAML(init) (b) BiCA+MAML (c) DistilBert+MAML(init) (d) DistilBert+MAML

(e) BiCA+MAML(init) (f) BiCA+MAML (g) DistilBert(init) (h) DistilBert+MAML
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Figure 5: Effects of MAML on BiCA and DistilBert for ACD, where the reference instance is single-aspect. “(init)”
indicates that the model learned by MAML training directly predicts the query set of testing meta-tasks without
exploiting the support set.

4.4 Discussion

In this section, an empirical comparison, between
two kinds of sequence match approaches, including
classical and transformer-based ones, is presented.
Because DistilBert+MAML and BERT+MAML
are comparable, as shown in Table 2. Meanwhile,
the parameter scale of DistilBert is smaller, which
is chosen in the following study. We randomly
sample 12 batches from the testing classes, and
obtain the extracted features of the query set. In
each batch, we have 5 meta-tasks, each of them has
10 support instances and 10 query instances. Thus,
the total number of features is 5× 10× 12 = 600.
The features are visualized by t-SNE (Maaten and
Hinton, 2008).

4.4.1 Comparison of Features

We compare the effects of MAML with simple fine-
tuning in Figure 4 and Figure 5, respectively. In
Figure 4, it can be seen that fine-tuning can help
the features learned by BiCA and DistilBert both
become more separable (plot a-d). This is also
reflected by the 2-dimensional logits output (e-g).

In Figure 5, it can be observed that in MAML
training, exploiting the support set can also make
the features more discriminative in BiCA (a-b), and

Model ACD HuffPostSingle Multi

BiCA 1.74e-3 1.23e-3 2.66e-4
BiCA+finetune 1.77e-3 1.22e-3 2.84e-4
BiCA+MAML(init) 1.79e-3 1.67e-3 3.53e-4
BiCA+MAML 1.92e-3 2.09e-3 5.85e-4

DistilBert 3.35e-3 2.70e-3 1.51e-3
DistilBert+finetune 4.01e-3 3.39e-3 1.78e-3
DistilBert+MAML(init) 8.57e-3 1.15e-2 7.40e-3
DistilBert+MAML 8.98e-3 1.32e-2 7.76e-3

BERT 3.89e-3 3.91e-3 4.62e-3
BERT+finetune 4.83e-3 5.56e-3 6.43e-3
BERT+MAML(init) 2.14e-1 1.71e-1 2.63e-1
BERT+MAML 2.21e-1 1.99e-1 2.58e-1

Table 3: Cov_Score of various models. The largest is
marked in bold for each sequence match model.

so does the logits output (e-f). The features (plot
b in Figure 4 and plot b in Figure 5) validates that
MAML is more effective than fine-tuning in BiCA.

Interestingly, the phenomenon of Distil-
Bert+MAML is completely different. It is found
that the features show less separability (c-d), while
the logits output is well distinguished (g-h). This
indicates the features are linearly separable in
high dimensions, i.e. 768. Recalling the purpose
of PCA (Principal Component Analysis) (Abdi
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Figure 6: Cov_Score of the features learned by Distil-
Bert+MAML, setting different numbers of layers, and
numbers of heads in self-attention.

and Williams, 2010), it defines an orthogonal
linear transformation that transforms the data
into a new coordinate system and preserves the
greatest variance. We guess that the unique
phenomena (c-d) are caused by less-orthogonal
feature dimensions. To verify this assumption, we
compute the covariance matrix based on extracted
features in various models. Each element in the
matrix indicates the correlation between two
dimensions in feature, where a larger score means
a higher correlation. We define the Cov_Score as
below, which is the average absolute value of the
covariance matrix.

Cov_Score = avg|Cov(F− rowavg(F))| (8)

where F is the extracted features.
In Table 3, the Cov_Score of three sequence

match approaches are presented separately. Firstly,
compared with BiCA+finetune, BiCA+MAML ex-
tracts features with slightly higher Cov_Score.
However, for DistilBert and BERT, MAML dra-
matically increases the score, which is more sig-
nificant in BERT. As the scores indicate, Distil-
Bert+MAML really extracts features with less-
orthogonal dimensions. A possible reason is that
MAML trains the model in a bi-level manner (see
Algorithm 1). DistilBert has deeper layers and
large-scale parameters. The gradients are propa-
gated through deeper layers, causing the feature
extraction learned insufficiently while the last lin-
ear layer is trained adequately. Thus the logits are
separable while features are not, as plots (c, d, g, h)
shown in Figure 5. The above phenomenon become
also serious in BERT+MAML, because BERT has
more layers compared with DistilBert, leading to
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Figure 7: Loss and accuracy curves in 3 updating steps.

larger Cov_Score.
The plots of other datasets are displayed in the

Appendix. The empirical observations are similar.

4.4.2 DistilBert+MAML: Layers and Heads?
To further investigate why the features learned by
DistilBert+MAML have high-correlation dimen-
sions, we plot the Cov_Score of multiple variants
of DistilBert+MAML in Figure 6. The horizon-
tal ordinate indicates the number of heads in self-
attention, which should divide 768 exactly (768 is
the dimension size of the hidden states in DistilBert
and BERT models).

It is first seen that the score shows an increas-
ing trend as the number of heads grows. Mean-
while, by comparing the curves between #Layer=1
and #Layer=6, we observe that the Cov_Score
also becomes larger as the layers of DistilBert in-
crease. We draw an empirical conclusion that the
high-correlation of feature dimensions in Distil-
Bert+MAML is caused by the multiple layers and
heads of DistilBert.

4.4.3 Initialization for Loss Sensitivity or a
Good Performance Start

In Figure 7, we depict the average batch loss and
accuracy in the 3 update steps for ACD with single-
aspect references. Step 0 indicates the model is
trained by naive training or MAML without using
the testing support set.

Concretely, it can be seen that for both BiCA
and DistilBert, MAML leads to faster loss degrada-
tion than fine-tuning (plot a). The loss in MAML
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Figure 8: F1 scores of BiCA+MAML and Distil-
Bert+MAML by setting different numbers of support
instances.

declines to the bottom even within one updating
step. We also observe a rapid accuracy increase (c).
Overall, MAML outperforms fine-tuning for both
BiCA and DistilBert. However, is MAML always
a good choice? The answer is negative. In step 0 (b
and d), we see a good parameter initialization does
not lead to a good performance start. BiCA and
DistilBert learned by naive training achieve lower
losses and better accuracy scores without updat-
ing parameters. A possible explanation is that they
have different training objectives. Naive training
aims to facilitate task-agnostic sequence matching.
While the bi-level optimization in MAML focuses
on promoting the generalization ability of models
after seeing a few support examples.

4.4.4 Various Numbers of Support Instances
We further explore the performances of
BiCA+MAML and DistilBert+MAML un-
der various support set scales. As displayed in
Figure 8, the number of support instances ranges
from 1 to 10. For a fair comparison, the number
of query instances is all set to 10. Firstly, it
can be seen that as the support set scale grows,
the performances on the query set present an
increasing trend. Secondly, we also observe that
BiCA+MAML outperforms DistilBert+MAML
in most experimental settings. This indicates that
classical sequence match is a competitive few-shot
one-class learner.

5 Conclusion

In this work, we revisit the classical sequence
match approaches and find that with meta-learning,
the classical method can significantly outperform

transformer models in the few-shot one-class sce-
nario. The training cost is greatly reduced. Fur-
thermore, an empirical study is made to explore
the effects of simple fine-tuning and meta-learning.
Interestingly, although meta-learning is more ef-
fective than simple fine-tuning on both sequence
match approaches, it makes the transformer fea-
tures have high correlation dimensions. The cor-
relation is closely related to the number of layers
and heads in the transformer models. We hope this
work could provide insights for future research on
few-shot problems and transformer models.
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Figure 9: Effects of fine-tuning on aspect category detection, where the reference instance is multi-aspect.
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Figure 10: Effects of MAML on aspect category detection, where the reference instance is multi-aspect.

A Additional Experimental Results

The visualizations of aspect category detection with
multi-aspect reference instance are displayed in
Figure 9 and Figure 10.

For HuffPost dataset, the visualizations are dis-
played in Figure 11 and 12.

B Reproducibility

B.1 Computing Infrastructure
All experiments are conducted on the same hard-
ware and software. We use a single NVIDIA
A6000 GPU with 48GB of RAM.

B.2 Average Running time
The average running time of each model is shown
in Table 5.

B.3 Number of Parameters
The number of parameters of each model is shown
in Table 4.

B.4 Datasets
The datasets are available at https://github.
com/hmt2014/FewOne.

B.5 Implementation Details
B.5.1 Classical Methods
All baselines and our model are implemented by
Pytorch. We initialize word embeddings with 50-
dimension GloVE vectors (Pennington et al., 2014).

In the aggregation module, the channels of the
CNNs for input and output are both 50. The kernel
sizes of five CNNs are [1, 2, 3, 4, 5], respectively.
Relu is the activation function for CNN. We adopt
a dropout of 0.1 after both the comparison and
CNN in aggregation. MLP is a single linear layer.

The batch size is |Cp| = 5, indicating a batch
comprises 5 meta-tasks. The instance number in
the support set |S| and query set |Q| are both set to
10. Every epoch we randomly sample 400 batches
for training, 300 batches for validation and 300
batches for testing. The average results of the test-
ing batches are reported. We exploit an early stop
strategy during training if the macro-f1 score on
the validation set does not improve in 3 epochs,
and the best model is chosen for evaluation.

We describe the training details as the format of
(optimizer, learning rate, other information):

Naive Training: Adam, 1e-3, early stop.

+finetune SGD, 0.1, 3 updating steps.

+MAML
The inner-level: α=0.1.
The outer-level: Adam, β=1e-3.
When testing: SGD, 0.1, 3 updating steps.

B.5.2 Transformer-based Methods
The output hidden state of [CLS] in DistilBert
(distilbert-base-uncased) and BERT (bert-base-
uncased) is exploited for classification.

Naive Training Adam, 2e-5, 5 epochs.
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Figure 11: Effects of fine-tuning on HuffPost.
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Figure 12: Effects of MAML on HuffPost.

Method ACD Huffpost

SN 1,437,950 1,393,050
OWP 1,437,950 1,393,050
CA 1,476,202 1,431,302

BiCA
1,476,702 1,431,802+finetune

+MAML

DistilBert
66,364,418 66,364,418+finetune

+MAML

BERT
109,483,778 109,483,778+finetune

+MAML

BERT(p) 133,545,786 133,545,786+finetune

Table 4: Number of parameters in each model.

+finetune Adam, 2e-5, 3 updating steps.

+MAML
The inner level: α=2e-3.
The outer-level: Adam, β=2e-5.
When testing: Adam, 2e-5, 3 updating steps.
We use early stop for DistilBert+MAML since

the model does not learn optimally within 5 epochs.

Method ACD Huffpostsingle multi

SN 6m47s 11m44s 20m5s
OWP 13m57s 17m49s 11m45s
CA 21m36s 35m17s 18m2s

BiCA 22m26s 18m5s 11m11s
+finetune 20s 20s 23s

BiCA+MAML 39m8s 1h11m57s 40m53s

DistilBert 21m2s 21m26s 21m56s
+finetune 4m45s 4m43s 4m45s

DistilBert+MAML 4h32m2s 4h3m38s 4h46m4s

BERT 39m33s 40m18s 41m27s
+finetune 8m40s 8m41s 9m14s

Table 5: Average runing time of each model.

4740



Proceedings of the 29th International Conference on Computational Linguistics, pages 4741–4752
October 12–17, 2022.

Unsupervised Domain Adaptation for Text Classification via Meta
Self-Paced Learning

Nghia Ngo Trung1, Linh Ngo Van2 and Thien Huu Nguyen1

1 Department of Computer and Information Science, University of Oregon, Eugene, OR, USA
2 Hanoi University of Science and Technology, Vietnam

{nghian@,thien@cs}.uoregon.edu, linhnv@soict.hust.edu.vn

Abstract

A shift in data distribution can have a signifi-
cant impact on performance of a text classifi-
cation model. Recent methods addressing un-
supervised domain adaptation for textual tasks
typically extracted domain-invariant represen-
tations through balancing between multiple ob-
jectives to align feature spaces between source
and target domains. While effective, these
methods induce various new domain-sensitive
hyperparameters, thus are impractical as large-
scale language models are drastically growing
bigger to achieve optimal performance. To
this end, we propose to leverage meta-learning
framework to train a neural network-based
self-paced learning procedure in an end-to-
end manner. Our method, called Meta Self-
Paced Domain Adaption (MSP-DA), follows
a novel but intuitive domain-shift variation of
cluster assumption to derive the meta train-test
dataset split based on the self-pacing difficul-
ties of source domain’s examples. As a result,
MSP-DA effectively leverages self-training and
self-tuning domain-specific hyperparameters
simultaneously throughout the learning pro-
cess. Extensive experiments demonstrate our
framework substantially improves performance
on target domains, surpassing state-of-the-art
approaches. Detailed analyses validate our
method and provide insight into how each do-
main affects the learned hyperparameters.

1 Introduction

Given enough supervision, modern deep learning
models can learn a new task with great accuracy.
However, in many practical settings, the goal is to
adapt to a new domain in which there is a differ-
ent in data distribution between training and test-
ing processes. This poses a major challenge for
standard natural language systems due to both the
intrinsic variation of linguistics (e.g., lexical shift,
semantic shift) as well as the extrinsic factors such
as how textual datasets are collected and annotated.
For example, a model trained to predict news events

Figure 1: An example where domain shift between source
domain (grey colors) and target domain (deep color) results
in significant overlaps between high-loss regions of source
decision boundary (lime) with high-density target clusters.

may easily recognize, from medical domain, "died"
as an event, but would not be able to detect obvi-
ous events such as "mutation" or "cancer". Such a
model may even fail to generalize to closer adap-
tation settings (e.g. news from different times and
sources).

The majority of existing unsupervised domain
adaptatiopn (UDA) approaches combined various
training objectives to align different aspects of
domain-specific extracted features. In particular,
the most prominent approach is domain-adversarial
neural network (DANN) (Ganin et al., 2016) that
employs a domain-adversarial training procedure
between a domain classifier and the network’s fea-
ture extractor to learn a discriminative and domain-
invariant joint feature representation. The sim-
plicity of DANN allows researchers to incorpo-
rate it with multiple other objectives such as semi-
supervised learning (SSL) regularizers (Shu et al.,
2018), discrepancy metrics (Long et al., 2015), co-
training (Kumar et al., 2018), and auxiliary tasks
(Bousmalis et al., 2016). Each of them plays an im-
portant role in enhancing domain adaptation ability
of models in the current state-of-the-art methods.
However, it is not trivial to apply these techniques
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to textual tasks, where large transformer-based lan-
guage models are essential to achieve top perfor-
mance, because of the time and resource required
to fine-tune and balance the effects of these terms
for multiple different adaptation scenarios.

Meta-learning (ML) framework is an effective
solution for the problem of hyperparameter opti-
mization (Franceschi et al., 2018; Behl et al., 2019).
Furthermore, it has been widely applied by recent
works on Domain Generalization (DG) (Li et al.,
2018; Dou et al., 2019), in which a learning pro-
cedure similar to that of Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) is leveraged
to simulate the domain shift in train-test datasets
by a virtual meta train-test set created from data
drawn only from source domains. Though DG and
UDA share close similarities, the final goal of each
learning setting is different. More importantly, the
MAML procedure is not applicable for UDA prob-
lem because of the lack of a clean validation dataset
for meta-test step.

To this end, we propose to dynamically partition
the training source data into a low-loss meta-source
domain and a high-loss meta-target domain, in-
spired by self-paced learning (SPL) approach (Ku-
mar et al., 2010). Our framework, called Meta Self-
Paced Domain Adaptation (MSP-DA), employs a
neural-SPL module to control the data selection
process for meta train-test set using a learnable
age hyperparameter as threshold while also intro-
ducing optimized weighting mechanisms for each
of the combined loss’ terms, including instance-
wise weighting for the main classification task and
layer-wise weighting for domain alignment losses.
The weighted objectives on meta-source domain
are minimized in meta-train step in a direction such
that also leading to improvement in model’s pre-
dictions on meta-target domain. During the learn-
ing process, parameters and age threshold of the
neural-SPL module are updated based on model’s
evaluation performance in meta-test step, resulting
in tuned weighting coefficients and learning sched-
ules similar to that of a standard hyperparameter
tuning process. To our knowledge, this is the first
work to devise a neural network-based SPL method,
in which both the sample weightings/selections and
the age hyperparameter are dynamically optimized,
generalizing previous works which require heuris-
tic age schedule and complicated mathematical
derivation for the corresponding instance weight-
ing.

While the meta-target set does not contain sam-
ples from the true target domain, we argue that our
formulation is beneficial for UDA because of the
two following reasons. First, the proposed partition
can result in two virtual domains with a signifi-
cant discrepancy, and through learning to address
in this hard setting that the model would gain the
ability to adapt to other, possibly easier, domains.
Another reason is based on the cluster assumption
from SSL methods (Chapelle et al., 2006), which
states that data points of the same class should
concentrate around the same cluster, effectively
forming a high-density low-loss region. In case of
adapting between two highly dissimilar domains,
these regions may get shifted significantly, as a con-
sequence low-loss regions of target domain may
contain considerable intersection with high-loss re-
gions of source domain, as illustrated in Fig. 1.
In other words, by learning to adapt the high-loss
meta-target domain, the model would also be able
to generalize to a significant portion of the true
target domain.

We provide extensively evaluation of the pro-
posed framework on the standard UDA benchmarks
- FDU-MTL dataset for sentiment analysis task,
along with additional results for event detection
task on ACE-05 dataset, which is a much harder
adaptation setting. Ablation studies and detailed
analyses are conducted to validate each main com-
ponent of our model and provide insights for future
researches.

2 Related Work

Unsupervised Domain Adaptation for Text Clas-
sification The main line of research on UDA fo-
cuses on learning domain-invariant, which is either
achieved by explicitly reducing the distance be-
tween source and target feature space measured by
some distribution discrepancy metric (Long et al.,
2015; Zellinger et al., 2017), or by adversarial train-
ing in which the feature extractor is trained to fool
a domain classifier, both are jointly optimized to ar-
rive at an aligned feature space (Ganin et al., 2016).
We focus on applying the latter in transformer-
based model (BERT) (Devlin et al., 2019) for tex-
tual tasks. Previous works have provided empirical
results on different domains (Wright and Augen-
stein, 2020; Lin et al., 2020), different tasks (Naik
and Rosé, 2020; Du et al., 2020), most of which
presented little to no improvement following the
standard domain adversarial training framework.
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We further verify this point in our baseline perfor-
mances.

Sample Weighting There are two main research
directions to adaptively output weight of a sample
during training process: addressing class imbal-
ance by monotonically increasing function that im-
poses larger weights to ones with larger loss values
(Sun et al., 2007; Lin et al., 2017), and suppress-
ing the effect of noisy labels using monotonically
decreasing function which focus on low-loss easy
samples (Kumar et al., 2010; Jiang et al., 2014).
Although straightforward to apply, the above meth-
ods are limited in that they all need a pre-specified
closed-form weighting function, while their respec-
tive hyperparameters are sensitive to the change of
training data such that careful tuning is required.

Meta-Learning There are three main categories
of modern ML algorithms: learning a metric
space to measure distance or similarity among data
(Vinyals et al., 2016; Sung et al., 2018), learning an
optimizer which updates all of model’s parameters
in a latent parameter space (Andrychowicz et al.,
2016; Chen et al., 2018), and learning an initializa-
tion that is good for all tasks and able to fast adapt
to unseen tasks (Finn et al., 2017; Jamal and Qi,
2019). Our approach falls into the last category,
where the learning process follows MAML, more
specifically its variant for DG problem in (Li et al.,
2018).

Figure 2: Architecture overview. (gray) Fixed BERT layers.
(green) Adapter layers, bottleneck outputs of which are then
fed into domain classifier heads (red). The neural-SPL module
consists of instance-wise weighting head (purple) for main
task classification (orange) and a layer-wise balancing head
(blue) for domain adversarial training.

3 Model

We denote the source dataset S = {(xsi , ysi )}N
s

i=1

consisted ofN s samples and an unlabeled set ofN t

samples T =
{
xti
}Nt

i=1
drawn from target domain.

Label space Y = {1, 2, · · · ,K} of K classes is
shared across domains.

Our model’s feature encoder is a fixed pre-
trained BERT encoder with hidden dimension Rdh ,
augmented by adapters with bottleneck representa-
tion of size Rda . We refer to the main model learn-
able parameters as θ = (θa, θc, θd), which includes
the parameters of adapters, the main classification
head, and the DANN heads. Following prior work
(Ngo et al., 2021), low dimensional output from
each layer’s adapter is used by a separate DANN
head for domain adversarial training. Our neural-
SPL module consists of two weighting mecha-
nisms: an instance-wise fv(θv) : R → R which
weighs the contribution vi of each example based
on the its classification loss and a learnable age
parameter λa; and a layer-wise fw(θw) : Rda → 1
that takes adapter representation of each layer and
outputs the relative "magnitude" wl of which the
corresponding layer l should be aligned. We re-
fer to the set of source samples whose losses are
less than λa as meta-source domain Str while the
rest is meta-target domain Sts. The latter acts, in
meta-test step, as a validation set used to evaluate
the model after meta-train step and provide learn-
ing signals to tune the "hyperparameters" from the
neural-SPL module. The overall architecture is
presented in Fig. 2.

3.1 Meta Self-Paced Learning

Self-Paced Learning Kumar et al. (2010)
devised Self-Paced Learning method that extends
Curriculum Learning (Bengio et al., 2009)
to jointly learn the model and its curriculum,
circumventing the need for an ad-hoc implemen-
tation of easiness based on some predetermined
heuristics. Specifically, SPL employs an age
hyperparameter λa that represents the current
learning pace of the model. The objective is then
reformulated as a weighted loss where each in-
stance’s contribution is thresholded by λa as follow:

L =

n∑

i=1

vi(li;λa)li ; vi =

{
1, if li < λa

0, otherwise.
(1)

where li is the corresponding loss of i-th
training sample. Intuitively, λa is the "age" of the
model which is set to gradually grow as training
proceed. Thus, only easy samples are considered
at the initial learning stage while samples with
larger losses will be slowly added to the model’s
curriculum as it progresses.

Adaptive SPL via Meta-Learning The advan-
tage of incorporating SPL into a ML framework is
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two-fold. First, ML provides a way to adaptively
tune the highly sensitive λa, alleviating the need
for manually devising an age scheduler. At the
same time, SPL helps address the lack of clean
validation data, by splitting the source domain
instances of the current mini-batch into two
disjoint sets based on the age value λa. The
easy samples are used for meta-train step, in
which the objective consists of a domain adver-
sarial loss and a SPL-weighted classification loss:

Ltr (Str,T; θ) = Lce (Str; θa, θc) + Ld (Str,T; θa, θd) (2)

vi = fv ◦max(0,
−li
λa

+ 1); Lce (Str) =
∑

xi,yi∈Str
vili (3)

where li = l(xi, yi; θ) is the loss of each
sample and Ld is the weighted domain adversarial
objective that is explained in the following section.
fv is a small feed-forward network with sigmoid as
final activation function to guarantee the resulting
weights located in the interval of [0, 1], and
with no bias so that the 0-valued inputs will also
correspond to outputs of the same value.

Typically, k gradient steps are applied to
approximate the optimal solution that mini-
mizes the current meta-train objective. Because
of the sizeable transformer encoder, a high
value of k will cost serious computation over-
head. Thus, we decide to use k = 1, from
which we observe no significant performance loss:

θ̄ = θ − α∇θ(Lce (θa, θc) + Ld (θa, θd)) (4)

where α is meta-train learning rate. Next,
the meta-test objective is the standard cross-
entropy loss on samples in meta-target do-
main Sts with loss values higher than λa:

Lts
(
Sts; θ̄

)
=

∑

xi,yi∈Sts
(xi, yi; θ̄) (5)

This acts as a hard, distinct domain that provides
tuning signals for guiding model updates of both
model’s parameters in θ and hyperparameters vi
and λa.

3.2 Balancing domain adversarial objectives
The survey presented by (Rogers et al., 2020) pro-
vides a detailed probing and understanding of how
the different layer-block of BERT encodes differ-
ent types of information. Accordingly, each layer
should contain a different amount of discrepancy
between source and target domains.

To align these representation spaces between
the two domains, we employ multiple do-

main classifiers at the bottleneck of every adapter:

Ld =
L∑

l=1

wlLld(zld,yd; θld) (6)

where each Lld is an adversarial term of a
different DANN , taking adapter representations
zld of layer lth and domain labels yd as inputs.
These losses are weighted by a set of coefficients
{wl} that corresponds to how important it is
for the representations at the respective layer
to be aligned. Following standard learning
procedure, they would be hyperparameters that
required careful tuning for each specific domain,
which would be impractical (in our setting, there
would be a total of 12 hyperparameters). To
address the above issue, we employ a small
feed-forward network fw with a final softmax
layer to output the relative layer-wise weights:

W = [w0, · · · , wL−1] = fw(Zd; θw) (7)

where Zd ∈ RL×da is a set of layer repre-
sentations, each element of which is the sum of
all adapter representations of the corresponding
layer with respect to the current mini-batch. As
θw is updated throughout the ML process, W
is dynamically tuned to maintain high perfor-
mance on meta-test set while domain-adversarial
training makes representations across layers
domain-invariant.

Meta Optimization Following MLDG,
meta-train and meta-test losses are com-
bined in the final objective as follow:

argmin
θ

βLts
(
θ̄
)
+ Ltr (θ) , (8)

argmin
θw,θv ,λa

Lts
(
θ̄
)

(9)

where β is meta-test balancing term. The
second term in Eq. 9 is the result of passing the
weights computed by neural-SPL module in Eq.
3 and 7 into Eq. 2 as pre-determined values, not
learnable variables.

3.3 Self-training by incorporating Pseudo
Label

Pseudo-labeling is an effective method to improve
target domain performance by leveraging the pre-
dictions of previous step on unlabeled target data
as additional learning signals for the main down-
stream task. We use the pseudo-labeled target
data only for Lce from Eq. 2 in meta-train step,
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in which they are weighted and thresholded by
neural-SPL module using the same λa as source
data: Lce

(
Str,T

)
=

∑
xi,yi∈Str∪T

vili, where T is

the set of target samples with losses lower than
λa. To alleviate the confirmation bias in pseudo-
labeling, (Xie et al., 2019) provided strong regular-
izations and data augmentations to prevent model
from propagating its own inaccuracy throughout
the training process. In our case, neural-SPL mod-
ule would ensure that only high confident pseudo
labels are used, while meta-test step explicitly im-
proves model’s performance in low-density neigh-
borhood of target domain. This is consistent with
the expansion assumption proposed by Wei et al.
(2021) on how self-training denoises pseudo-labels
by bootstrapping an incorrectly pseudo-labeled ex-
ample with its correctly pseudo-labeled neighbors.
Thus, our framework is able to effectively leverage
self-training by suppressing the noises and provid-
ing a robust training for the model. In addition, as
we will discuss later section, the gradient updates
of these pseudo-labeled samples are also regular-
ized by the ML framework, forcing them to be
consistent with meta-target domain.

Domains Train Unlabeled Test
bn+nw 38644 N/A 9661
bc N/A 3130 12520
cts N/A 2885 10972
wl N/A 3424 12767

Table 1: Statistics of ACE-05’s domains in UDA setting.

Domains Train Unlabeled Test
Books 1400 2000 400
Elec. 1398 2000 400
DVD 1400 2000 400
Kitchen 1400 2000 400
Apparel 1400 2000 400
Camera 1397 2000 400
Health 1400 2000 400
Music 1400 2000 400
Toys 1400 2000 400
Video 1400 2000 400
Baby 1300 2000 400
Magaz. 1370 2000 400
Soft. 1315 475 400
Sport 1400 2000 400
IMDb 1400 2000 400
MR 1400 2000 400

Table 2: Statistics of the 16 domains in FDU-MTL

4 Experiments

4.1 Datasets, Settings, and Baselines
We evaluate the proposed model on the standard
multi-domain sentiment analysis (SA) task. In ad-

dition, we also demonstrate the effectiveness of our
framework when addressing the label-shift by ap-
plying MSP-DA to ED task with significant more
classes in UDA setting.

FDU-MTL (Liu et al., 2017) A dataset included
reviews from 16 domains for binary sentiment clas-
sification task. In each adaptation setting, a single
domain is assigned as the target with unlabeled data
while the other 15 are labeled source. Given the
contextual sequence computed by models from a
review, we use the first token [CLS] as the feature
to predict its positive or negative sentiment.

ACE-05 (Walker et al., 2005) A densely anno-
tated corpus collected from 5 different domains.
Two of which are used as source data, while each
of the rest is a target domain for an adaptation set-
ting. Given a trigger word in the context of an
event mention, the model is required to perform
a multi-class classification task that assigns a pre-
dicted label into one of the pre-defined 34 event
types (including 1 negative type).

Data Settings We provide statistics of each do-
main in UDA setting for ACE-05 and FDU-MTL
in Table 1 and Table 2, respectively. For ACE-05
dataset, we gather data from two closely related
domains, bn and nw, to create a sizable source
domain dataset, 80% of which are used for train-
ing whilst the rest are used as test target domain
for in-domain setting. For out-of-domain settings,
each of the other domains is considered the target
domain of a single adaptation scenario, where 20%
of its documents are unlabeled training target data
and the remainders are utilized as the test dataset.
For FDU-MTL dataset, each of the 16 domains has
a test set of 400 samples. The amount of training
labeled and unlabeled data vary across domains,
ranging from 1400 to 2000 samples. In each adap-
tation setting, a single domain is designated as the
target domain while its unlabeled data are used
in training set together with labeled data from the
other 15 domains.

SA baselines We provide a comprehensive com-
parison of our proposed method with multiple
baselines: ASP-MTL (Liu et al., 2017) and
DAEA (Cai and Wan, 2019) are LSTM-based ap-
proaches. Transformer-based approaches include
BERT, which is only fine-tuned on only labeled
source domain, and BERT+DANN follows the
standard adversarial training. Finally, BertMasker
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System MR Appr. Baby Books Cam. DVD Elec. Hlth. IMDB Kitc. Magz. Musics Softw. Sport Toys Video aAcc
ASP-MTL 76.7 87.0 88.2 84.0 89.2 85.5 86.8 88.2 85.5 86.2 92.2 82.5 87.2 85.7 88.0 84.5 86.1
DAEA 77.0 89.0 92.3 89.0 92.0 88.3 91.8 89.8 90.8 90.3 96.5 88.0 92.8 90.8 91.8 92.3 90.2
BERT 90.5 90.8 90.3 91.3 91.5 89.0 91.3 91.3 91.3 90.0 88.5 90.3 90.5 92.0 90.8 92.0 90.7
BERT+DANN 90.5 91.8 92.5 90.8 90.0 91.3 90.5 90.8 91.0 91.8 91.0 90.5 91.0 90.5 90.3 90.3 90.9
BertMasker 83.8 92.3 92.8 93.0 92.8 89.3 93.3 95.3 86.0 90.8 94.5 89.5 93.0 92.5 93.8 91.3 91.5
MSP-DA 93.3 93.1 92.5 93.2 93.3 92.4 93.1 93.2 93.4 93.0 93.1 92.7 93.1 93.3 93.5 92.8 93.0

Table 3: UDA performances for SA task on FDU-MTL test datasets. aAcc is the average accuracy score across all domains.

System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (cts) Out-of-domain (wl)
P R F P R F P R F P R F aF1

BERT 75.8 72.5 74.1 73.5 68.9 71.1 73.7 69.5 71.5 62.2 51.6 56.4 66.3
BERT+DANN 73.4 76.0 74.7 73.9 69.4 71.5 76.4 53.0 62.5 59.9 53.2 56.3 63.4
Uniform 76.8 79.4 78.1 75.4 66.3 70.5 80.4 21.0 33.3 61.8 45.7 52.6 52.1
Focal 78.2 77.6 77.9 71.7 72.9 72.2 72.9 68.5 70.1 64.8 54.2 59.0 67.1
Class-Balanced 79.3 78.3 78.7 77.8 68.0 72.5 78.0 44.0 56.2 59.0 50.3 54.3 61.0
MSP-DA 75.4 80.0 77.7 76.2 75.5 75.8 75.3 76.8 76.1 70.8 59.9 64.8 72.2

Table 4: UDA performances for ED task on ACE-05 test datasets. aF1 is the average out-of-domain F1 score.

(Yuan et al., 2021) is the state-of-the-art approach
that learns to explicitly mask domain-related words
from text, resulting in domain-agnostic sentences.

ED baselines For ED task, we also compare
MSP-DA to other functional weighting schemes
that trying to balance the learning process to ad-
dress the label shift. In particular, Uniform treats
each sample’s loss equally, Focal Loss down-
weights well-classified instance exponentially (Lin
et al., 2017), and Class-Balanced uses a weighting
factor that is inversely proportional to the num-
ber of samples (Cui et al., 2019) Noted that these
model employ both adapter-based fine-tuning and
adversarial training procedure.

Implementation details All models are imple-
mented in Pytorch. We leverage pre-trained BERT-
base models and checkpoints from Huggingface
repository. (Wolf et al., 2020). We inject adapter
layers after every feed-forward sub-blocks have
bottleneck feed-forward architecture with down-
sampled dimension chosen among [48, 96, 128].
All of the downstream heads are implemented as
feed-forward networks with activation functions
between layers. Each weighting net of neural-SPL
module is a feed-forward network with 2 or 3 lay-
ers with hidden vectors of size [100, 50] or [200,
100, 50], respectively To train the proposed model,
we use Adam optimizer with meta-train and meta-
test learning rates α and γ both chosen from [5e-5,
1e-4, 5e-4, 1e-3, 5e-3], the mini-batch size from
[50, 100, 150] of which 20% or 40% are unla-
beled target data, and the meta-test balancing term
β from [5, 2, 1, 0.5, 0.1]. We tune the hyperpa-
rameters for the proposed model using a random
search. All hyperparameters are selected based
on the F1 scores on the development set of a sin-
gle domain. The same hyperparameters from this
fine-tuning are then applied for other domains to

demonstrate the domain-specificity problem. In
the best model, fixed pre-train BERT-base layers
augmented by adapters with bottleneck size 96 are
used as our feature encoder. All objective heads
have 2 hidden layers. We use Adam optimizer with
a learning rate of 1e-4 for both meta-train and meta-
test step, 100 for mini-batch size with 20% target
data, and the meta-test balancing term is 2. Our
reported results are averages of five runs using the
best hyperparameter configuration with different
random seeds.

4.2 Main Results

Sentiment Analysis SA results are presented in
Table 3. While simple model using contextual em-
bedding BERT outperforms all previous LSTM-
based methods, we observe little to no improve-
ment applying domain adversarial training naively
with it. In particular, BERT+DANN actually has
negative effect on about half of the domains, indi-
cating that the standard baseline approach being
unable to adjust to each specific adaptation setting.
In contrast, our framework achieves the best perfor-
mance for 11 review domains overall, surpassing
the current state-of-the-art method BertMasker
by 1.5 points on average. This demonstrates both
the effectiveness and the robustness of MSP-DA to
each domain.

Event Dectection UDA performances for ED
task are presented in Table 4. Again, we observe
that BERT+DANN only provides slight improve-
ment for domain bc compare to BERT, while sig-
nificantly degrades model’s performances on the
other two resulting in almost 3 points drop in av-
erage out-of-domain F1 score. Similarly, applying
DANN for the adapter-based model without any
weighting mechanism, as in Uniform, also has
adverse effects on out-of-domain performances.
Class-Balanced’s in-domain results are slightly
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higher than other models due to its ability to bal-
ance the training process, which addresses the ex-
treme negative-skewed label distribution of the
given source data. In contrast, its domain adap-
tation ability is actually the lowest because of the
change in data distribution across domains. Focal
Loss performs generally better in out-of-domain
settings as they generate weighting coefficients
adaptively based on the current losses, without
involving any domain-specific statistics. Finally,
MSP-DA provides consistent improvements when
adapting to any new domain, even achieving on
average 5 points higher in F1 score compared to
the best baseline method.

4.3 Ablation Study

In the first row-block of Table 5, we conduct an
ablation study to validate the effectiveness of each
of our main components by investigating the per-
formance of the following variations of our model:
MSP-DA–mSPL follows the normal SPL process
to produce the weighting coefficients and train-test
datasets for ML; MSP-DA–DANN trains only on
source domain without utilizing unlabeled target
data for domain adversarial objective; and MSP-
DA–PL in which no pseudo-labels are leveraged
for training. In general, our full model outperforms
all variants across domains, even in the in-domain
setting, which confirms the superiority and flex-
ibility provided by the jointly optimized pacing
and weights from our neural-SPL module. Espe-
cially for wl domain, domain adversarial training
in MSP-DA manages to improve more than 8 F1
points.

Meta-test Selection To examine the correctness
of our assumption, we augment the data selection
process for meta domains in Random and Reverse
variants. The former randomly selects training sam-
ples for each meta domain, whereas the latter im-
plements the opposite hypothesis by choosing hard
and easy instances for meta-train and meta-test sets,
respectively. Both variants result in a considerable
decline in domain adaptation results as shown in
5. Notably, the significant performance drop in the
in-domain setting of Random indicates that simply
constructing train-test sets without any appropriate
condition can do more harm than good for the ML
process. These empirical observations further con-
firm our initial assumption on how domain shift
correlates well with the easy meta-train and hard
meta-test sets.

System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (wl)
P R F P R F P R F

MSP-DA – mSPL 74.5 79.7 77.0 77.5 72.0 74.6 64.1 51.9 57.4
MSP-DA – DANN 74.3 80.3 77.2 75.7 72.9 74.2 61.6 51.9 56.3
MSP-DA – PL 77.8 75.1 76.4 75.1 73.5 74.3 62.6 52.4 57.0
MSP-DA (Random) 73.0 76.4 74.7 75.6 73.3 74.4 61.0 50.3 55.0
MSP-DA (Reverse) 77.7 75.0 76.3 78.2 70.6 74.2 65.0 50.7 57.0
MSP-DA (Ours) 75.4 80.0 77.7 76.2 75.5 75.8 70.8 59.9 64.8

Table 5: Performances for Ablation Study

System Out-of-domain (bc) Out-of-domain (wl)
P R F P R F

Fixed (25) 79.3 68.9 73.7 65.8 50.0 56.8
Fixed (50) 75.0 73.7 74.3 66.3 49.5 56.6
Fixed (75) 76.4 72.0 74.1 65.9 52.7 58.6
Linear Incrs 74.9 71.7 73.3 61.6 54.7 57.9
Meta (Ours) 76.2 75.5 75.8 70.8 59.9 64.8

Table 6: Performances for Age Hyperparameter Analysis

System Out-of-domain (bc) Out-of-domain (wl)
P R F P R F

Constant 75.8 71.5 73.6 63.2 52.6 57.4
Anneal Up 75.4 71.0 73.1 63.5 52.6 57.4
Anneal Down 74.0 74.8 74.4 62.3 51.1 56.1
Meta (Ours) 76.2 75.5 75.8 70.8 59.9 64.8

Table 7: Performances for DANN Weighting Analysis

4.4 The Values of Age Hyperparameter

Age hyperparameter λa is usually the hardest to
tune in a SPL system due to the fact that aside
from the initial value, determining how λa changes
throughout the training process also has a major im-
pact on the final performance. Several prior works
(Li and Gong, 2017; Ren et al., 2017) have pro-
posed alternative age schedulers in place of the
naive strategy which adds/multiples λa with a con-
stant at each epoch. However, the value of λa in
these methods still follows a predefined sequence,
implying the need for a meticulous tuning process.
In contrast, our neural-SPL module updates λa
based on optimization signals from meta-test set,
thus always able to create an appropriate dynamic
curriculum regardless of different learning tasks
and datasets. In Table 6, we examine how different
values and schedules of age hyperparameter affect
performances on bc and wl domains. The Fixed
(p) settings with p ∈ [25, 50, 75] are variations
of our model with λa values always correspond-
ing to the unchanged p-th percentile of the current
mini-batch’s sample losses; or in other words, the
number of samples in meta-train set is always a
constant p percent that of the current mini-batch.
Additionally, we evaluate the case in which p is lin-
early increased as training proceeds, similar to the
standard SPL process, in Linear Incrs setting. The
results show that the lower p is, the worse model
performs, indicating that with too few meta-train
data, the model will not be able to adapt to the
hard meta-test domain. Surprisingly, the gradual
rising scheduler of Linear Incrs is not as effective
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Figure 3: Three columns in each subplot correspond to domain bc, cts, wl, respectively. (Left) Layer-wise DANN weights at
each training step. (Right) source and target age percentiles at each training step.

as the other Fixed variants. This means that the
easy-to-hard assumption of prior SPL systems is
not suitable for our ML framework.

λa Visualization To gain more insight into how
age hyperparameter changes throughout the train-
ing process of each domain, we plot the values of
λa in source-losses percentile against the number
of update steps for 10 epochs in the right subplot of
Fig. 3. While λa quickly follows the standard in-
cremental trend initially, it starts to plateau within
the 60-70 percentile range until eventually start-
ing to decrease. Notably, behavior of λa diverges
across domains in subsequent steps. Whereas λa
continues the to decline in bc and cts domains, it
experiences a complete trend reversal at the end of
the training of wl domain. We hypothesis that this
drastic change of λa is because of the gradients’
dot product term that the objective in Eq. 9 implies,
which we will delve deeper into in the discussion
section below. The

⋂
shape of λa correlates with

the term’s value as the model maximizes it to align
the gradient directions between the meta train-test
domains, going from negative initially as the train-
ing started, to 0 which causing the plateau, then
gradually becoming positive as the model was able
to adjust the updates of meta-train set to be consis-
tent with that of meta-test set. However, for hard
adaptation such as wl domain, too few data in meta-
train set can cause a major disparity between the
two meta domains again, thus the resulting trend
reversal at the last few steps.

We also visualize the same plot for target-
pseudo-losses percentile, which leads to an inter-
esting observation: Initially, the model followed
its own pseudo labels without any constraint and
the high value of λa percentile represents model’s
incorrect overconfidence. However, these pseudo-
label updates will cause discrepancies with meta-

test domain, thus the ML framework will gradually
fix the corresponding predictions, allowing only
quality pseudo samples to be included in meta-train
set. Eventually, the target trend converges with the
source ones, suggesting that model’s predictions
on pseudo labels are then as consistent as on clean
training labels.

4.5 Balancing Domain Adversarial Losses

Previous works have observed that the weight of
DANN in the combined objective has a significant
impact on the overall adaptation performance of
the model. We further validate this point by inves-
tigating how different domain adversarial weight-
ing schemes affect the results on bc and wl do-
mains. Specifically, we evaluate 3 types of layer-
wise weighting: (i) Constant - all layers share
the same wl value, (ii) Anneal Up - wl slowly
increases from lower to higher layers, and (iii) An-
neal Down - wl is highest for the first layer and
gradually declines for subsequent layers. The re-
sults are present in Table 5, in which none of the
schemes is better than the others in both domains.
In contrast, the meta-learned coefficients of our
framework manage to boost model’s performances
in every adaptation setting, especially for the hard
wl domain where domain adversarial training mat-
ters the most.

We further visualize how each layer’s weight
changes during the learning process across domains
in the left subplot of Fig. 3. In particular, we parti-
tion 12 layers of BERT-base model into 3 groups of
4 sequential layers, each of which is known to con-
tain a different type of information that is important
for a different type of task as described in the pre-
vious section. We can observe from the graphs a
certain pattern: the higher level the group is, the
more volatile its layers’ coefficients are. However,
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there is no specific rule shared among all domains
regarding the value of each layer’s weight. This
affirms the sensitivity of domain adversarial bal-
ancing term to each individual domain and further
justifies the effectiveness of the jointly optimized
weighting in our framework.

5 Discussion

Following the analysis of MLDG framework
presented in (Li et al., 2018), we decompose the
meta-test loss, given that θ̄ = θ − αL′tr(θ),
using the first order Taylor expansion:

Lts
(
θ − αL′tr(θ)

)
= Lts (θ) +

∂Lts (θ)
∂θ

(
−α∂Ltr (θ)

∂θ

)

(10)

Denoting G = ∂Lts(θ)
∂θ · ∂Ltr(θ)

∂θ and plug-
ging Eq. 10 into the final objective to up-
date main model’s parameters from Eq. 8
results in the following optimization problem:

argmin
θ
Ltr (θ) + Lts (θ)− βαG (11)

The third term in Eq. 11 is a gradient-based
regularization that penalizes inconsistency between
parameter updates of meta-train and meta-test
domains. By enforcing loss gradients of the two
domains to follow a similar direction, Eq. 11
prevents the model from over-fitting to a single
domain, effectively improves model’s adaptation
capacity provided that meta-test set is ’close’ to
target domain.

We further examine how the ML framework
affects the values of neural-SPL module’s
parameters (θw, θv, λa) in our model. Plug-
ging Eq. 10 into the gradient of λa, we have:

∂Lts
(
θ̄
)

∂λa
= −α∂Lts (θ)

∂θ
· ∂

2Ltr (θ)
∂θ∂λa

= −αG · ∂fv(λa)
∂λa

(12)

From Eq. 12, we see that the multiplicative
factor G also controls how the value of λa changes
throughout the ML process. When there is a
significant discrepancy between meta-train and
meta-test domain, G would have a negative
value, which would in effect push λa higher and
allow more samples into meta-train set for easier
adaptation to meta-test set. Conversely, a positive
G would imply that the model is good enough to
align the current meta domains, thus gradually
pulling λa down to make the task harder. This
behavior is clearly illustrated in Fig. 3. Similar
arguments can be made for the meta-learned
weighting coefficients, where G would encourage

samples whose gradients are similar across
domains while decreasing the contribution of those
whose gradients are not. These understanding are
also presented in (Shu et al., 2019) and closely
related to how MAML works (Nichol et al., 2018;
Raghu et al., 2019)

6 Conclusion

We present a novel ML framework for UDA set-
ting that achieves state-of-the-art performance on
ED task. In particular, a neural-SPL module is em-
ployed to adaptively partition source domain into
meta-train and meta-test set, while simultaneously
learns the instance-wise and layer-wise weights for
the loss terms of downstream task and domain ad-
versarial task respectively. The proposed model
significantly improves domain adaptation perfor-
mances against various baselines on every domain
without domain-specific hyperparameter tuning. In
the future, we intend to apply our approach to the
several direction: (1) We will extend our work to
multilingual problems (Pouran Ben Veyseh et al.,
2022), or other domains and tasks (Lu et al., 2021);
(2) We will incorporate different novel domain
adaptation regularization methods (Phung et al.,
2021); (3) We will adapt our framework to more
general multi-source domain adaptation setting.
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Abstract
Solving math word problems (MWPs) is an
important and challenging problem in natural
language processing. Existing approaches to
solve MWPs require full supervision in the
form of intermediate equations. However,
labeling every MWP with its corresponding
equations is a time-consuming and expensive
task. In order to address this challenge of equa-
tion annotation, we propose a weakly super-
vised model for solving MWPs by requiring
only the final answer as supervision. We ap-
proach this problem by first learning to gen-
erate the equation using the problem descrip-
tion and the final answer, which we subse-
quently use to train a supervised MWP solver.
We propose and compare various weakly su-
pervised techniques to learn to generate equa-
tions directly from the problem description
and answer. Through extensive experiments,
we demonstrate that without using equations
for supervision, our approach achieves accu-
racy gains of 4.5% and 32% over the state-
of-the-art weakly supervised approach (Hong
et al., 2021), on the standard Math23K (Wang
et al., 2017) and AllArith (Roy and Roth, 2017)
datasets respectively. Additionally, we cu-
rate and release new datasets of roughly 10k
MWPs each in English and in Hindi (a low
resource language). These datasets are suit-
able for training weakly supervised models.
We also present an extension of Warm1 to
semi-supervised learning and present further
improvements on results, along with insights.

1 Introduction

AMathWord Problem (MWP) is a numerical prob-
lem expressed in natural language (problem de-

∗ The author contributed to this work while at IIT Bom-
bay

1Warm stands for WeAkly supeRvised Math solver.

scription), that can be transformed into an equa-
tion (solution expression), which can be solved to
obtain the final answer. In Table 1, we present
an example MWP. Automatically solving MWPs
has recently gained lot of research interest in nat-
ural language processing (NLP). The task of auto-
matically solving MWPs is challenging owing to
two primary reasons: i) The unavailability of large
training datasets with problem descriptions, equa-
tions as well as corresponding answers – as de-
picted in Table 1, equations can provide full super-
vision, since equations can be solved to obtain the
answer, and the answer itself amounts to weak su-
pervision only; ii) Challenges in parsing the prob-
lem description and representing it suitably for ef-
fective decoding of the equations. Paucity of com-
pletely supervised training data can pose a severe
challenge in training MWP solvers. Most exist-
ing approaches assume the availability of full su-
pervision in the form of both intermediate equa-
tions and answers for training. However, anno-
tating MWPs with equations is an expensive and
time consuming task. There exists only two suffi-
ciently large datasets (Wang et al., 2017) in Chi-
nese and (Amini et al., 2019) in English consisting
of MWPs with annotated intermediate equations
for supervised training.

We propose a novel two-step weakly supervised
technique to solve MWPs by making use only
of the weak supervision, in the form of answers.
In the first step, using only the answer as super-
vision, we learn to generate equations for ques-
tions in the training set. In the second step, we
use the generated equations along with answers to
train any state-of-the-art supervised model. We
illustrate the effectiveness of our weakly super-
vised approach on our newly curated reasonably
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Problem: It costs Rs 5.0 to buy 10.0 peppermint candies.
If the candies all have the same price,how much does it
cost to buy 1.0 candy ?

Equation: X=(5.0/10.0) × 1.0
(Under full supervision)

Answer: 0.5 (Under weak supervision)

Problem: एक आयताकार बकरी के बाड़े का प रमाप 34.0 मीटर
ह।ै बाड़े क चौड़ाई 6.0 मीटर ह।ै बाड़े क लम्बाई िकतनी होगी?

Equation: X=34.0 − (2 × 6.0)/2
(Under full supervision)

Answer: 11.0 (Under weak supervision)

Table 1: Example of Math Word Problems in English
and Hindi language

large dataset in English and a similarly curated
dataset in Hindi - a low resource language. We
also perform experiments with semi-supervision
and demonstrate how our model can benefit from
a small amount of completely labelled data. Our
main contributions are as follows:
1) An approach, Warm, (c.f., Section 4) for gener-
ating equations from MWPs, given (weak) super-
vision only in the form of the final answer.
2) An extended semi-supervised training method
to leverage a small amount of annotated equations
as strong/complete supervision.
3) A new and relatively large dataset, EW10K,
in English (with more than 10k instances), for
training weakly supervised models for solving
MWPs (c.f., Section 3). Given that weak supervi-
sion makes it possible to train MWP solvers even
in the absence of extensive equation labels, we
also present results on a similarly crawled dataset,
HW10K(with around 10k instances), in a low re-
source language, viz. Hindi, where we can avoid
the additional effort required to generate equation
annotations.
4) We empirically show that Warm outperforms
state-of-the-art models on most of the datasets.
Further, we empirically demonstrate the benefits
of the semi-supervised extension to Warm.

2 Related Work

Automatic math word problem solving has re-
cently drawn significant interests in the natural
language processing (NLP) community. Existing
MWP solving methods can be broadly classified
into four categories: (a) rule-based methods, (b)

statistics-based methods, (c) tree-based methods,
and (d) neural-network-based methods.

Rule-based systems (Fletcher, 1985; Bakman,
2007; Yuhui et al., 2010) were amongst the earli-
est approaches to solve MWPs. They rely heavily
on hand-engineered rules that might cover a lim-
ited domain of problems. Statistics-based meth-
ods (Hosseini et al., 2014; Kushman et al., 2014;
Sundaram and Khemani, 2015; Mitra and Baral,
2016; Liang et al., 2016a,b) use predefined logic
templates and employ traditional machine learning
models to identify entities, quantities, and opera-
tors from the problem text and subsequently em-
ploy simple logical inference to yield the numeric
answer. (Upadhyay et al., 2016) employ a semi-
supervised approach by learning to predict tem-
plates and corresponding alignments using both ex-
plicit and implicit supervision. Tree-based meth-
ods (Roy and Roth, 2015; Koncel-Kedziorski et al.,
2015; Roy et al., 2016; Roy and Roth, 2017, 2018)
replaced the process of deriving an equation by
constructing an equivalent tree structure, step by
step, in a bottom-up manner.

More recently, neural network-based MWP
solving methods have been proposed (Wang et al.,
2017, 2018a,b; Huang et al., 2018; Chiang and
Chen, 2019; Wang et al., 2019; Liu et al., 2019;
Xie and Sun, 2019; Wu et al., 2021; Shen et al.,
2021). These employ an encoder-decoder architec-
ture and train in an end-to-end manner without the
need for hand-crafted rules or templates. (Wang
et al., 2017) were the first to propose a sequence-
to-sequence (Seq2Seq) model, viz., Deep Neu-
ral Solver, for solving MWPs. They employ
an RNN-based encoder-decoder architecture to di-
rectly translate the problem text into equation tem-
plates and also release a high-quality large-scale
dataset, Math23K, consisting of 23,161 MWPs in
Chinese.

(Liu et al., 2019) and (Xie and Sun, 2019) pro-
pose tree-structured decoding that generates the
syntax tree of the equation in a top-down man-
ner. In addition to applying tree-structured decod-
ing, (Zhang et al., 2020) propose a graph-based
encoder to capture relationships and order infor-
mation among the quantities. For a more compre-
hensive review on automatic MWP solvers, read-
ers can refer to a recent survey paper (Zhang et al.,
2018).

Unlike all the previous works that require equa-
tions for supervision, (Hong et al., 2021) propose
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a weakly supervised method for solving MWPs,
where the answer alone is required for training.
Their approach attempts to generate the equation
tree in a rule based manner so that the correct an-
swer is reached. They then train their model using
the fixed trees. With the same motivation. we also
propose a novel weakly supervised model, Warm,
(c.f., Section 4) for solving MWPs using only the
final answer for supervision. We show howWarm
can be extended to semi-supervised joint learning
in the presence of weak answer-level supervision
in conjunction with some equation-level supervi-
sion. Further, we empirically demonstrate that
Warm outperforms (Hong et al., 2021) on all the
datasets.

We also took insights from (Kumar et al., 2018),
(Thakoor et al., 2018), (Akula et al., 2021), (Kumar
et al., 2015), (Singh et al., 2016), (Kumar et al.,
2019) and (Tarunesh et al., 2021) for handling
mathematical data in two different languages.

This paper is organized as follows. In Section 3,
we set the premise for our approach by describ-
ing the new datasets (EW10K and HW10K) for
weak supervision that we release. In Section 4, we
describe our weakly supervised approach Warm
and its semi-supervised extensionWarm-S. In Sec-
tion 5, we present the experimental setup whereas
in Section 6 we delve into the results and its anal-
ysis before concluding in Section 7.

3 Dataset

Currently, there does not exist any sufficiently
large English dataset for single and simple equa-
tion MWPs. While there exists an English
dataset (Amini et al., 2019) with sufficiently large
MWPs, the questions in the dataset are meant to
be evaluated in a multiple choice question (MCQ)
manner. Also, the equation associated with each
word problem in this dataset is significantly more
complex and requires several binary and unary op-
erators. On the other hand, Math23K (Wang et al.,
2017) is in Chinese and Dolphin18k (Huang et al.,
2016) contains mostly multi-variable word prob-
lems. To address these gaps, we curate a new
English MWP dataset, viz., EW10K2 consisting
of 10227 word problem instances (each associated
with a single equation) that can be used for training
MWP solver models in a weakly supervised man-
ner.

2https://github.com/iishapandey/WARM

We crawled IXL3 to obtainMWPs for grades VI
until X. These word problems involve a wide va-
riety of mathematical computations ranging from
simple addition-subtraction to much harder mensu-
ration and probability problems. The dataset con-
sists of 10 different types of problems, spanning
3 tiers of difficulty. We also annotate the dataset
with the target unit. The exact distributions are pre-
sented in Figure 1.

We similarly created a MWP dataset in Hindi2 -
a low resource language. It consists of 9,896 ques-
tion answer pairs. To the best of our knowledge,
this is the first MWP dataset of such size in Hindi.

Figure 1: Distribution on different types of questions

4 Our Approach: Warm

We propose a weakly supervised model, Warm,
for solving the MWP using only the answer for
supervision. It is a two-step cascaded approach
for weakly supervised MWP solving. For the first
step, we propose a model that predicts the equa-
tion, given a problem text and answer. This model
uses reinforcement learning to search the space of
possible equations, given the question and the cor-
rect answer only. The answer acts as the goal of
the agent and the search is terminated either when
the answer is reached or when the equation length
exceeds a pre-defined length (this is required, else
the search space would be infinitely large). The
model is designed to be a two layer bidirectional
GRU (Cho et al., 2014) encoder and a decoder
network with fully connected units (described in
Section 4.3). We refer to this model as Warm.
Note that this model requires an answer to deter-
mine when to stop exploring. Since we ultimately
want a model which should only take the prob-
lem statement as input and generate the answer (by
generating the correct equation), this model alone
is insufficient for evaluation. Using this model,
we create a noisy equation-annotated dataset from

3https://in.ixl.com/
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the weakly annotated training dataset (the training
dataset has answers since it is weakly supervised).
We use only those instances to create the dataset
for which the equation generated by the model
yields the correct answer. Note that the equations
are noisy, since there is no guarantee that the gen-
erated equation will be the shortest or even correct.
In the second step, we use this noisy data for su-
pervised training of a state-of-the-art model. The
trained supervised model is finally used for eval-
uation. For simplicity, we provide a summary of
notations in Section 1 in supplementary.

Figure 2: Inference Illustration

Figure 3: Architecture for generating equation tree in
Warm.

4.1 Equation Generation

The first step of our approach is to generate equa-
tion given a problem text P and answer A. This is
done by using our Warm model. The problem text
is passed through the encoder of the Warm model
to get its encoded representation which is then fed
to the decoder. At each time step, the decoder gen-
erates an operator and its two operands from the

operator and operand vocabulary list. The opera-
tion is then executed to obtain a new quantity. This
quantity is checked against the ground truth and
if it matches the ground truth, the decoding is ter-
minated and a reward of +1 is assigned. Else we
assign a reward of -1 and the generated quantity is
added to the operand vocabulary list and the decod-
ing continues. The working of the Warm model
and architecture are illustrated in Figure 2 and Fig-
ure 3 respectively. In the following few subsec-
tions, we describe the architecture as well as the
training in details.

4.2 Encoder
The encoder takes as input, the MWP represented
as a sequence of tokens P = x1x2x3...xn. We
replace each number in the question with a special
token< num_j > to obtain this sequence where j
denotes the index of number in the operand vocab
for that question. Each word token xi is first trans-
formed into the corresponding word embeddingxxxi

by looking up an embedding matrix MMMw. Next,
a binary feature is appended to the embedding to
indicate whether the token is a word or a number.
As depicted in the lower half of Figure 3, this ap-
pended embedding vector is then passed through a
2 layer bidirectional GRU (Cho et al., 2014) and
the outputs from both directions of the final layer
are summed to get the encoded representation of
the text. This representation is then passed on to
the decoder.

4.3 Decoder
The decoder consists of 3 fully connected net-
works for generating operator, left operand and
the right operand. As illustrated in the upper half
of Figure 3, the decoder takes as input the previ-
ous decoded operand and the last decoder hidden
state and outputs the operator, left operand, right
operand and hidden state at the current time step.
We initialize the decoder hidden state with the last
state of the encoder:

op
t , o

l
t, o

r
t , h

d
t = DecoderFCN(op

t−1, h
d
t−1)

Here, hd
t is the decoder hidden state at the tth

time step. op
t , ol

t and or
t are probability distribu-

tions over operators, left and right operands respec-
tively.

4.3.1 Operator generation
Inside our decoder, we learn an operator embed-
ding matrix Emop(opt−1), where opt−1 is the op-
erator sampled in the last time step. We generate

4756



the operator hidden state hop
t using a gating mech-

anism.

gop
t = σ(W 1

op[Emop(opt−1); h
d
t−1] + b1

op)

hop
t = gop

t ∗tanh(W 2
op[Emop(opt−1); h

d
t−1]+b2

op)

op
t = softmax(W 3

oph
op
t + b3

op)

Here σ() denotes the sigmoid function and ∗ de-
notes elementwise multiplication. We sample op-
erator opt from the probability distribution op

t .

4.3.2 Left Operand Generation
We use the embedding of the current operator
Em(opt) and the operator hidden state hop

t to ob-
tain a probability distribution over the operands.
We employ a similar gating mechanism as used for
generating operator.

gol
t = σ(W 1

ol[Emop(opt); h
op
t ] + b1

ol)

hol
t = gol

t ∗ tanh(W 2
ol[Emop(opt); h

op
t ] + b2

ol)

ol
t = softmax(W 3

olh
ol
t + b3

ol)

We sample the left operand olt from the probability
distribution ol

t.

4.3.3 Right Operand Generation
For generating the right operand, we use the addi-
tional context information that is already available
from the generated left operand. Thus, in addition
to the operator embedding Emop(opt) and opera-
tor hidden state hop

t we also use the left operand
hidden state to get the right operand hidden state
hor

t .

gor
t = σ(W 1

or[Emop(opt); h
op
t ; hol

t ] + b1
or)

hor
t = gor

t ∗tanh(W 2
or[Emop(opt); h

op
t ; hol

t ]+b2
or)

or
t = softmax(W 3

orh
or
t + b3

or)

We sample the right operand ort from the probabil-
ity distribution ol

t. The hidden state hor
t is returned

as the current decoder state hd
t .

4.3.4 Bottom-up Equation Construction
For each training instance, we maintain a dictio-
nary of possible operands OpDict. Initially, this
dictionary contains the numeric values from the in-
stance, i.e., the number tokens we have replaced
with < num_j > during encoding. At the tth

decoding step, we sample an operator opt, left
operand olt and right operand ort. We get an inter-
mediate result by using the operator corresponding

to opt on the operands olt and ort. This intermedi-
ate result is added to OpDict which enables us to
reuse the results of previous computations in future
decoding steps. Thus, OpDict acts as a dynamic
dictionary of operands and we use it to progress
towards the final answer in a bottom-up manner.

4.4 Rewards and Loss

We use the REINFORCE (Williams, 1992) algo-
rithm for training the model using just the final an-
swer as the ground truth. We model the reward
as +1 if the predicted answer matches the ground
truth and−1 if the predicted answer does not equal
the ground truth.

Let Rt be defined as the reward obtained af-
ter generating yt = (opt, ol, or). The probabil-
ity Pt of generating the tuple yt is specified by

pθ(yt) =
t∏

i=1
op
i × ol

i × or
i . The loss is specified as

L = − ∑
i

Epθ(yi)[Ri] and the corresponding gradi-

ent is ∇θL =
∑
i

∑
yi

pθ(yi)Ri∇θ log pθ(yi).

Since the space of yi makes it infeasible to com-
pute the exact gradient, we use the standardized
technique of sampling yi from pθ(yi) to obtain an
estimate of the gradient.

4.5 Beam Exploration in Training

Since the reward space for our problem is very
sparse, we observe that during model training, the
gradients go to zero. Our model converges too
quickly to some local optima and consequently,
the training accuracy saturates to some fixed value
despite performing training for a large number of
epochs. In order to counter this problem, we em-
ploy beam exploration in the training procedure.
Instead of sampling operator opt, left operand olt
and right operand ort only once in each decoding
step, we samplew triplets (opt, olt, ort)without re-
placement from the joint probability space in each
decoding step. Here w is the beam width. This
helps in exploring w different paths each epoch,
thus increasing the exploration capabilities and re-
duce the problem of cold start. In order to select
beams from all possible candidates, we have tried
multiple heuristics by inspecting the probability
and reward values. We have observed empirically
that selecting the beam that gives a positive reward
at the earliest decoding step yields the best perfor-
mance. This enables our model to explore more
and mitigates the above problem significantly.
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4.6 Warm-S: Adding Semi-supervision
While it is expensive to completely label large
MWP datasets with equations, it is relatively eas-
ier to annotate a small percentage of that data. We
argue that addition of this small amount of semi-
supervision can improve the model training signif-
icantly.

We, therefore, consider a model that benefits
from a relatively small amount of strong supervi-
sion in the form of equation annotated data: Ds,
in addition to a potentially larger sized math prob-
lem datasets with only weak supervision Dw. For
a data instance d: d.p, d.e, and d.a represent
its problem statement, equation, and answer re-
spectively. Ds consists of instances of the form
(d.p, d.e, d.a) while Dw contains instances of the
form (d.p, d.a). We extend the Warm model to
include a Cross-Entropy loss component for in-
stances belonging to Ds. The net loss is the sum of
the REINFORCE (RLWarm) and Cross-Entropy
losses shown below:-
Loss 1:

∑
d∈Dw

RLWarm(d.p, d.a)

Loss 2:
∑

d∈Ds

Cross_Entropy(d.e,
Warm(d.p, d.a))

Thus, we facilitate semi-supervision through
Loss 2. That is, we jointly use the equations pre-
dicted (by Warm) for datapoints belonging to Dw

and the ground truth equations for instances be-
longing to Ds, for training any state-of-the-art su-
pervised MWP solver.

5 Experimental Setup

In this section, we report details of the experiments
on four datasets to examine the performance of the
proposed weakly supervised model Warm and its
semi-supervised extension Warm-S. We present
comparisons with various baselines as well as with
fully supervised models.

5.1 Datasets
We perform all our experiments on the publicly
available AllArith (Roy and Roth, 2017) and
Math23K (Wang et al., 2017) datasets and also on
our EW10K andHW10Kdatasets.For each dataset,
we have used a 80 : 20 train-test split.
AllArith contains 831 MWPs, annotated with
equations and answers. It is populated by collect-
ing problems from smaller datasets, viz.,AI2 (Hos-
seini et al., 2014), IL (Roy and Roth, 2015),
CC (Roy and Roth, 2015) and SingleEQ (Koncel-
Kedziorski et al., 2015). All mentions of quantities

are normalized to digits. Further, near-duplicate
problems (with over 80% match of unigrams and
bigrams) are filtered out.
Math23K (Wang et al., 2017) contains 23,161
MWPs in Chinese with 2187 templates, annotated
with equations and answers, for elementary school
students and is crawled from multiple online edu-
cation websites. It is the largest publicly available
dataset for the task of automatic MWP solving.
EW10K (c.f., Section 3) contains 10,227MWPs in
English and HW10K contains 9,896 in Hindi for
classes VI to X. We employ a 80 : 20 train-test
split in each case.

5.2 Dataset Preprocessing

We replace every number token in the problem text
with a special word token < num_j > before pro-
viding it as input to the encoder. We also define
a set of numerical constants Vconst to solve those
problems which might require special numeric val-
ues that may not be present in the problem text.
For example, consider the problem “The radius of
a circle is 2.5, what is its area?”, the solution is
“π x 2.5 x 2.5”, but the constant quantity π can-
not be found in the text. As our model does not
use equations as supervision, we cannot know pre-
cisely what extra numeric values might be required
for a problem, so we fix Vconst = {1, π}. Finally,
the operand dictionary for every problem is ini-
tialised as OpDict = nP ∪ Vconst where nP is
the set of numeric values present in the problem
text.

5.3 Implementation Details

We implement4 all our models in PyTorch (Paszke
et al., 2019). We set the dimension of the word
embedding layer to 128, and the dimension of the
hidden states for other layers to 512. We use
the REINFORCE (Williams, 1992) algorithm and
Adam (Kingma and Ba, 2014) to optimize the pa-
rameters. The initial value of the learning rate is
set to 0.001, and the learning rate is multiplied by
0.7 every 75 epochs. We also set the dropout prob-
ability to 0.5 and weight decay to 1e-5 to avoid
over-fitting. Finally, we set the beam width to 5
in beam exploration.We train our model for 200
epochs with the batch size set to 256.

4Source code is attached as supplementary material
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5.4 Models

We compare the MWP solving accuracy of our
weakly supervised models with beam exploration
on the following set of baseline and fully super-
vised models:
Warm is the proposed weakly supervised ap-
proach to equation generation (described from Sec-
tion 4.1 until 4.4) by employing beam exploration
(c.f., Section 4.5).
Warm w/o Beam Exploration is Warm without
beam exploration while decoding.
Warm-S is the semi-supervised extension to
Warm (c.f., Section 4.6) using beam exploration
(Section 4.5).
Warm-S w/o Beam Exploration is the same as
Warm-S but does not use beam exploration while
decoding.
Random Equation Sampling consists of a ran-
dom search over k parallel paths of length d. For
each path, an operator and its two operands are uni-
formly sampled from the given vocabulary and the
result is added to the operand vocabulary (similar
toWarm). The equation is terminated once the cor-
rect answer is reached. We set k = 5 and d = 40
for a fair comparison with our model in terms of
the number of search operations.
Seq2Seq Baseline is a GRU (Cho et al., 2014)
based seq2seq encoder-decoder model. REIN-
FORCE (Williams, 1992) is used to train the
model. Beam exploration is also employed to mit-
igates issues mentioned in Section 4.5.
LBF (Hong et al., 2021) is a weakly supervised
model which uses only answer as supervision by
fixing incorrect equation parse trees in each iter-
ation. It subsequently performs training with the
fixed trees.
Hybrid model w/ SNI (Wang et al., 2017) is a
combination of the retrieval and the RNN-based
Seq2Seq models with significant number identifi-
cation (SNI).
Ensemble model w/ EN (Wang et al., 2018a) is an
ensemble model that selects the result according to
generation probability across Bi-LSTM, ConvS2S
and Transformer Seq2Seq models with equation
normalization (EN).
Semantically-Aligned (Chiang and Chen, 2019)
is a Seq2Seq model with an encoder designed to
understand the semantics of the problem text and a
decoder equipped with a stack to facilitate tracking
the semantic meanings of the operands.
T-RNN+Retrieval (Wang et al., 2019) is a combi-

nation of the retrieval model and the T-RNNmodel
comprising a structure prediction module that pre-
dicts the template with unknown operators and an
answer generation module that predicts the opera-
tors.
Seq2Tree (Liu et al., 2019) is a Seq2Tree model
with a Bi-LSTM encoder and a top-down hierarchi-
cal tree-structured decoder consisting of an LSTM
that makes use of the parent and sibling informa-
tion fed as the input.
GTS (Xie and Sun, 2019) is a tree-structured neu-
ral model that generates the expression tree in a
goal-driven manner.
Graph2Tree (Zhang et al., 2020) consists of a
graph-based encoder which captures the relation-
ships and order information among the quantities.
It also employs a tree-based decoder that generates
the expression tree in a goal-driven manner.

As described earlier in Section 4, we use our
weakly supervised models (Warm andWarm-S) to
generate labelled data (i.e., equations) which we
then use to train a supervised model. We have
performed experiments using GTS (Xie and Sun,
2019) and Graph2Tree (Zhang et al., 2020) as the
supervised models since they are the current state-
of-the-art.

6 Results and Analysis

Weakly Supervised Models AllArith Math23K EW10K HW10K
Warm w/o Beam Exploration 42.1 14.5 57.5 67.3
Warm 97.4 93.8 99.3 99.5
Baselines AllArith Math23K EW10K HW10K
Random Equation Sampling 53.4 17.6 46.3 66.6
Seq2Seq Baseline 67.0 7.1 77.6 75.8

Table 2: Equation generation accuracies of Warm
based models compared to baselines. All models are
trained using ground truth answers on the training set.
Warm outperforms all the remaining models by as sig-
nificant margin on all the datasets. Evidently, beam ex-
ploration significantly improves performance.

6.1 Analyzing Warm

In Table 2, we observe that our modelWarm yields
far higher accuracy than random baselines with the
accuracy values close to 100% on AllArith and
EW10K. Thus we are able to more accurately gen-
erate equations for a given problem and answer
which can then be used to train supervised models.
Please note that, in Table 2, we report equation gen-
eration accuracies on the training set by training
the weakly supervised and baseline models using
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Weakly Supervised Models AllArith Math23K EW10K HW10K
Warm w/o Beam Exploration(GTS) 36.1 12.8 52.6 54.1
Warm (GTS) 66.9 55.3 86.9 81.5
Warm w/o Beam Exploration(Graph2Tree) 48.2 13.5 49.8 58.3
Warm (Graph2Tree) 68.7 56.0 87.2 82.9
LBF ‡ 51.8 53.6 81.3 75.8
Fully Supervised Models AllArith Math23K EW10K HW10K
Graph2Tree‡ 71.9 75.5 NA NA
GTS‡ 70.5 73.6 NA NA
Seq2Tree – 69.0 NA NA
T-RNN + Retrieval – 68.7 NA NA
Semantically-Aligned† – 65.8 NA NA
Ensemble model w/ EN – 68.4 NA NA
Hybrid model w/ SNI† – 64.7 NA NA

Table 3: MWP solving accuracy of Warm-based mod-
els compared to various supervised models on AllAr-
ith and Math23K datasets. † denotes that result was re-
ported on 5-fold cross validation. All other models are
tested on the test set. ‡ denotes that the result is on the
same train-test split as ours. “–” denotes code unavail-
ability/reproducibility issues. NA is not applicable.

Problem: Ariel already has 4.0 flowers in her garden, and she
can also grow 3.0 flowers with every seed packet she uses. With
2.0 seed packets, how many total flowers can Ariel have in her
garden ?
Answer: 10.0
Equation Generated: X=(4.0+(2.0*3.0)) (Correct)

Problem: Celine took a total of 6.0 quizzes over the course of
3.0 weeks. After attending 7.0 weeks of school this quarter, how
many quizzes will Celine have taken in total ? Assume the rela-
tionship is directly proportional.
Answer: 14.0
Equation Generated: X=(7.0+7.0) (Incorrect)

Table 4: Equation Generated by Warm model

ground truth answers on the training set.
As has been discussed earlier in Section 4.5,

our model Warm w/o Beam Exploration suffers
from the problem of converging to local optima
because of the sparsity of the reward signal. Train-
ing our weakly supervised models with beam ex-
ploration alleviates the issue to a large extent as
we explore the solution space much more exten-
sively and thus partly circumventing the sparsity
issue. We observe vast improvement in the train-
ing accuracy by introduction of beam exploration.

Problem: Latrell ordered a set of yellow and purple pins. He
received 72.0 yellow pins and 8.0 purple pins. What percentage
of the pins were yellow?
Equation Generated by WARM (G2T):
X=(72.0*(100.0/(72.0+8.0)))(Correct)
Equation Generated by LBF: X=(1.0+(1.0+72.0)) (Incorrect)

Problem: A square barn has a perimeter of 28.0 metres. How
long is each side of the barn ?
Equation Generated by WARM(G2T): X=((28.0/2.0)/2.0)
(Correct)
Equation Generated by LBF: X=((28.0+28.0)/28.0) (Incor-
rect)

Table 5: Comparing Warm and LBF model predicted
equations

The model Warm yields training accuracy signif-
icantly higher than its non-beam-explore counter-
part. Warm yields the best training accuracy over-
all. Since the equation generation accuracies of
the baselines reported in Table 2 are far worse,the
MWP solving accuracies turn out to be signifi-
cantly worse - around 8-10%, and hence we do not
report them.

We also observe that Warm yields results com-
parable to the various supervised models without
requiring any supervision from gold equations. On
AllArith, Warm achieves an accuracy of 66.9%
and 68.7% using GTS and Graph2Tree as the su-
pervised models respectively. The state-of-the-art
supervised model Graph2Tree yields 71.9%. On
Math23k, the difference betweenWarm and the su-
pervised models is more pronounced. Warm’s per-
formance is comparable to that of LBF onMath23k
but significantly better on AllArith, EW10Kand
HW10K, as evident in Table 3. We have shown
a comparison of predicted equations by LBF and
Warm in Table 5

In Table 4, we present some predictions. As can
be seen, the model is capable of producing long
complex equations as well. Sometimes, it may
reach the correct answer but through an incorrect
equation. E.g.: In the last example, the correct
equation would have been X = 7.0 ∗ 6.0/3.0, but
the model predicted X = 7.0 + 7.0.

6.2 Analysing Semi-supervision through
Warm-S

For analyzing semi-supervision, we combined Al-
lArith (831) with EW10K (10227). We randomly
sampled 80% of this data (8846) as our train-
set. In retrospect, our train-set consists of 560 in-
stances from AllArith that are completely labelled
(amounting to 6.3% of the train-set). We compare
our semi-supervised approach against the weakly
supervised approach, wherein the entire training
data is treated as having only answer labels.

In Table 6, we observe that with less than 10%
of fully annotated data, our equation exploration
accuracy increases from 56.7% to 92.0% without
beam exploration and 99.0% to 99.2% with beam
exploration. In Table 7, we also observe a similar
trend while training the supervised models; our fi-
nal MWP solving accuracy increases from 51.2%
to 87.4% for Warm w/o Beam Exploration and
Graph2Tree as the supervised model. We also
study thethere effect of varying amount of com-
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plete supervision in Supplementary Section:2.

Weakly Supervised Models AllArith +EW10K
Warm w/o Beam Exploration 56.7
Warm 99.0
Semi Supervised Models AllArith+EW10K
Warm-S w/o Beam Exploration 92.0
Warm-S 99.2

Table 6: Equation generation accuracy ofWarm-S com-
pared to weakly supervised models and baselines.

Weakly Supervised Models AllArith +EW10K
Warm w/o Beam Exploration(GTS) 50.2
Warm (GTS) 87.2
Warm w/o Beam Exploration(Graph2Tree) 51.2
Warm (Graph2Tree) 87.8
Semi Supervised Models AllArith+EW10K
Warm-S w/o Beam Exploration(GTS) 87.2
Warm-S (GTS) 92.1
Warm-S w/o Beam Exploration(Graph2Tree) 87.4
Warm-S (Graph2Tree) 93.6

Table 7: MWP solving accuracy of Warm-S compared
to Warm. With semi-supervision, there is a significant
increase in accuracy for Warm w/o Beam Exploration,
bringing its performance closer to Warm.

7 Conclusion

We have proposed a two step approach to solving
math word problems, using only the final answer
for supervision. Our weakly supervised approach,
Warm, achieves a reasonable accuracy of 56.0 on
the standard Math23K dataset even without lever-
aging equations for supervision. We also curate
and release large scale MWP datasets, EW10K, in
English and HW10K, in Hindi. We observed that
the results are encouraging for simplerMWPs. We
also present the benefits of incorporating a semi-
supervised extension to Warm.
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A Appendix

A.1 Notations
We summarize the notations used in section 4 of
the main paper in table 8.

Notation Description
W Weight of the FC layers.
op

t Probability distribution of operators at decoding timestep t.
ol

t Probability distribution of the left operand at decoding timestep t.
or

t Probability distribution of the right operand at decoding timestep t.
hd

t Decoder hidden state at timestep t.
Emop Operator Embedding Matrix
hop

t Hidden state for the operator at timestep t
opt Operator sampled from op

t .
hol

t Hidden state for the left operand at timestep t.
olt Left operand sampled from ol

t.
hor

t Hidden state for the right operator at timestep t.
ort Right operator sampled from or

t .
OpDict Operand dictionary used while decoding

Rt Rewards obtained at timestep t.
pθ(yt) Probability of generating yt = (opt, olt, ort) at timestep t.

Table 8: Summary of notation used.

A.2 Ablation Study: Varying Amount of
Semi-supervision

We performed an experiment to study the effect
of different amounts of supervision by varying the
number of instances in training set we treat as fully
labelled. The number of fully labelled instances
is X-axis*80. We observe that just having 160
equation-labelled instances (out of 8846 ie. 1.8%)
improves the equation-exploration accuracy signif-
icantly (46.7% to 90.6%) when we don’t use beam
exploration.

Figure 4: Equation Exploration accuracy with varying
supervision

A.3 Infrastructre Details
GPU Model used :
1)Model number: GeForce GTX 1080 Ti
2)Memory : 12GB
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Training time :
1) WARM takes 4 hours for training
2) G2T takes 1 hour and 30 minutes to get trained
completely
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Abstract

Diagnosis prediction on admission notes is a
core clinical task. However, these notes may in-
completely describe the patient. Also, clinical
language models may suffer from idiosyncratic
language or imbalanced vocabulary for describ-
ing diseases or symptoms. We tackle the task
of diagnosis prediction, which consists of pre-
dicting future patient diagnoses from clinical
texts at the time of admission. We improve
the performance on this task by introducing
an additional signal from support sets of diag-
nostic codes from prior admissions or as they
emerge during differential diagnosis. To en-
hance the robustness of diagnosis prediction
methods, we propose to augment clinical text
with potentially complementary set data from
diagnosis codes from previous patient visits
or from codes that emerge from the current
admission as they become available through
diagnostics. We discuss novel attention net-
work architectures and augmentation strategies
to solve this problem. Our experiments reveal
that support sets improve the performance dras-
tically to predict less common diagnosis codes.
Our approach clearly outperforms the previous
state-of-the-art PubMedBERT baseline by up
3% points. Furthermore, we find that support
sets drastically improve the performance for
pregnancy- and gynecology-related diagnoses
up to 32.9 % points compared to the baseline.

1 Introduction

Pre-trained large language models such as Clini-
calBERT (Alsentzer et al., 2019) or PubMedBERT
(Gu et al., 2021) are commonly used in the medical
domain to predict diagnoses from admission notes
(Hashir and Sawhney, 2020; Sushil et al., 2018a;
van Aken et al., 2021). Admission and discharge
notes are valuable information sources about doc-
tors’ decisions about patients and the outcomes.
However, the vocabulary in these notes is often
insufficient to describe the patients’ clinical pheno-
type fully. Also, clinical text frequently contains

idiosyncratic vocabulary, uncommon abbreviations
and differs from clinic to clinic in writing style.
Moreover, evidence for clinical diseases in the text
is imbalanced. In particular for less common or
even rare diseases (see also Figure 1) not much text
evidence exists. Finally, pre-trained language mod-
els can suffer from limited access to training data
because of silos or data-privacy concerns. These
factors can lead to poor performance in predicting
outcomes on clinical text with pre-trained language
models.

Multimodal Patient Representation. Miotto
et al. (2016) and Topol (2019) therefore propose to
augment text with potential complementary multi-
modal data into a reusable deep patient represen-
tation to improve clinical prediction tasks. For
example, recent work surveys to augment text with
image data (Esteva et al., 2021), with complemen-
tary medical text books (van Aken et al., 2021),
ontologies (Cai et al., 2020) or time series data
(Yang and Wu, 2021).

Improving predictions with text and set data.
A particularly powerful source to augment clinical
text are sets of diagnosis codes from previous vis-
its of the patient or upcoming hypotheses of the
treating physician during the patients’ treatment.
For example, a patient in an ICU scenario receives
on average a set of more than ten diagnosis codes
at discharge time, see also Table 2. These sets
match a patients’ previous state against a common
ontology, such as ICD or CCS medical nomencla-
ture. Therefore, these sets are a rich and potentially
complementary knowledge source for a patient rep-
resentation. To our best knowledge this is the first
work on augmenting clinical text for diagnosis pre-
diction with such sets. Figure 2 illustrates this
novel task in detail: Given is the admission note
containing details on chief complaints, present ill-
ness, medication, physical examination and family
or social history. In addition, the system receives a
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support set of additional diagnosis codes observed
for this patient in the past or during the current
treatment. Given both inputs, the final task is to
predict the likely diagnostic outcome for the patient
at discharge time.

0 13 43 280Rank
0

2

4

%

CCS Label Distribution

Figure 1: The distribution of CCS labels of the full
dataset. The top 13 codes form the short head of the
distribution. The middle tail is 30 codes wide, while the
remaining 237 codes form the long tail.

Contribution. Augmenting text with set data is a
complex knowledge integration problem. Ideally, a
multi-modal representation from both, text and set
data, is much more powerful for large multi-label
classification tasks, such as diagnosis prediction,
than each knowledge representation on its own. For
solving this problem, our major contributions are:
(1) We represent text and set data in two different
latent vector spaces. This also includes investigat-
ing different sampling methods of set elements for
learning embeddings during training. Optionally,
we enrich disease codes in sets with additional tex-
tual information from UMLS, a medical ontology,
and Wikidata. (2) We propose three different novel
network architectures for augmenting knowledge
from text with set data, including pooled- and full
text attention as well as a dual stack encoder. (3) In
a rigid experimental setting, we compare these ar-
chitectures against each other and two strong base-
lines. We also report prediction results in particular
for infrequent diseases on the MIMIC-III data set
with approximately 60.000 admissions and more
than 2 million clinical notes. The remainder of this
paper is structured as follows: We review related
work in Section 2. In Section 3, we explore task
and data set characteristics, from which we justify
in Section 4 our novel network architecture design.
Section 5 reports our quantitative evaluation, fol-
lowed by result discussion and an error analysis in
Section 6. Finally, we conclude in Section 7.

2 Related Work

There is a large amount of work focusing on diag-
nosis prediction from EHR data, especially clinical

codes. Furthermore, there is an increasing empha-
sis on incorporating text or multi-modal data from
clinical notes. We distinguish ourselves, particu-
larly from work in ICD coding, since only infor-
mation at the time of admission is used for our
considered tasks. ICD coding, on the other hand,
uses all data available at discharge time.

Diagnosis prediction on codes. Choi et al.
(2016) use a reverse time attention mechanism on
the diagnosis and procedure codes of the patients’
history for the task of heart failure prediction. Ma
et al. (2017) use a bidirectional recurrent neural net-
work (RNN) on the diagnosis and procedure codes
of the patients’ history to predict diagnosis codes
for the next admission. Later they apply graph-
based attention to incorporate the knowledge of
a medical knowledge graph to learn medical rep-
resentations (Ma et al., 2018). Peng et al. (2020)
use a self-attention mechanism on the diagnosis
codes to capture contextual and temporal relations
within the patients’ journey to predict the second
hierarchy of the ICD-9 codes.

Clinical text for diagnosis prediction. Boag
et al. (2018) evaluate the usefulness of different
simple text representations for diagnosis predic-
tion and show that the text itself contains valuable
information. Sushil et al. (2018b) use stacked de-
noising autoencoders combined with a paragraph
vector model to learn patient representations. van
Aken et al. (2021) simulate patients at admission
time by only using parts of the textual descrip-
tions known at admission time, such as "Chief com-
plaint" or "Medical history". Winter et al. (2022)
apply knowledge graphs to retrain and instill at-
tention heads with complementary structured do-
main knowledge for clinical outcome prediction
from text. Papaioannou et al. (2022) seek to embed
complementary knowledge to increase the perfor-
mance on low resource languages by consecutive
fine-tuning of multi-lingual models.

Multimodal diagnosis prediction. Lipton et al.
(2016) use an LSTM architecture on 13 time-series
variables like blood pressure or heart rate. Liu
et al. (2018) use free, unstructured text from medi-
cal notes and structured clinical information such
as numerical lab and vital sign values to predict a
small set of specific chronic diseases. Qiao et al.
(2019) use RNNs and attention to mix code- and
text features for readmission diagnosis prediction
from prior admissions. In contrast to the aforemen-
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49 - Diabetes mellitus without complication 
53 - Disorders of lipid metabolism 
84 - Headache; including migraine 
98 - Essential hypertension 
106 - Cardiac dysrhythmias 
109 - Acute cerebrovascular disease 
257 - Other aftercare 

CHIEF COMPLAINT: Headaches

PRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on
coumadin presented to ED with the worst headache of his life.
Brother reports states that patient has been complaining of
headache for 2 days and that the patient has lost
consciousness. He had a syncopal episode and was intubated by
EMS. 

MEDICATION ON ADMISSION: 1mg IV ativan x 1, metformin

PHYSICAL EXAM: Vitals: P: 92 R: 14 BP: 151/78 SaO2: 99%
intubated. Cardiac: RRR. GCS  E: 3   V:2  M:5 HEENT:
atraumatic, normocephalic Pupils: 4-3mm. Abd: Soft, BS+ Extrem:
Warm and well-perfused.

FAMILY HISTORY: Mother had stroke at age 82. Father unknown.

SOCIAL HISTORY: Lives with wife. 25py. No EtOH

1. 84 - Headache; including migraine
2. 98 - Essential hypertension
3. 106 - Cardiac dysrhythmias

Admission Note Support Set

Support Set Augmenting Transformer Architecture

Target Labels

Figure 2: Illustration of the set-augmented diagnosis prediction task: Given an admission note and an optional
support set of diagnosis codes, our architecture aims to predict the diagnostic outcome for the patient at discharge
time. Our basic observation is that the text data is only partially representing the patient, might be noisy and
diagnostic codes can complement observations from the clinical text. Combining information from both sides will
lead to improved understanding of a latent model towards clinical health conditions.

tioned approaches, we aim to model interdepen-
dencies between diagnostic codes and mix them
with state-of-the-art text representations of clinical
admission notes. Further, we seek to implement an
interactive system that allows verifying hypothe-
ses by systematically adding or removing diagnos-
tic codes in combination with a current admission
note.

Distinction from previous work. In contrast to
the aforementioned approaches, we aim to model
interdependencies between diagnostic codes and
mix them with state-of-the-art text representations
of clinical admission notes. Further, we seek to
implement an interactive system that allows verify-
ing hypotheses by systematically adding or remov-
ing diagnostic codes in combination with a current
admission note. Our model does not rely on the
existence of codes but instead uses them as they
become available during a diagnostic process or
through prior admissions to refine the classification
result. Up to our knowledge, there is only related
work that uses RNNs / LSTMs (Qiao et al., 2019)
for representing the set embeddings. Modeling the
set embeddings with RNNs is problematic because
they introduce temporal dependencies between the
diagnosis code inputs. In consequence, they treat
the diagnosis code sets as a sequence. Most of the
time, those temporal dependencies are not reflected
in the available data.

3 Tasks and Datasets

In the following section, we introduce the tasks of
diagnosis and readmission diagnosis prediction and
describe our medical dataset.

Prediction from clinical text and diagnosis sets.
Following van Aken et al. (2021), our model aims
to predict diagnostic codes assigned to a patients’
admission after their discharge with the constraint
of using only information available at admission
time 1. In addition, we allow the model to lever-
age an optional set of support codes to refine the
classification process. In the real-world use of
our model, these supporting codes would originate
from a doctors’ hypotheses, evident diagnoses or
from a diagnosis of a doctor outside the clinic the
patient has visited before, such as the family doc-
tor. Formally, our training data consists of a set
of admissions A where Ai = (Ti, Si, Ci), Ai ∈ A.
Ti = (t1, . . . , tn) is the text of the admission note
with a sequence length of n tokens for a patient
at admission time. Ci ⊂ C is the prediction tar-
get of diagnostic codes from the label space C and
Si ⊂ Ci is the support set.

Readmission diagnosis prediction. We consider
the readmission diagnosis prediction task to fur-
ther simulate and evaluate a real-world diagnostic
process. In contrast to the diagnosis prediction
task, the support set Si ⊂ Ci−1 consists of the
diagnoses of the last clinical admission Ci−1 of

1https://github.com/bvanaken/clinical-outcome-
prediction
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the same patient from the patients’ journey that
consists of m admissions P = {A0p , . . . , Amp},
where Ai = (Ti, Si, Ci). Ti is the admission note
and Ci ⊂ C is the set of diagnostic codes. The
motivation behind this is to integrate prior knowl-
edge about the patient from his former admissions
at the same hospital. As an additional difficulty,
the model must compensate at this point for the
fact that the codes from the previous admission
are not necessarily supporting the diagnosis predic-
tion, nor do the codes from the current admission
functionally depend on them.

Clinical admissions and discharge summaries.
We use the freely available Medical Information
Mart for Intensive Care v1.4 database (MIMIC-
III) (Johnson et al., 2016), containing de-identified
electronic health record data (EHR), including tex-
tual discharge summaries in English of the Beth
Israel Deaconess Medical Center in Massachusetts
between 2001 and 2012. Following van Aken
et al. (2021), we filter those textual discharge sum-
maries by sections known at admission time, like
"Chief complaint," "Medical history," or "Admis-
sion medications." The diagnostic codes associated
with those admissions are using the ICD-9-CM for-
mat. Since ICD-9-CM is a very fine-grained medi-
cal coding standard, we aggregate the label space
using the Clinical Classifications Software (CCS)
for ICD-9-CM 2, which merges similar ICD-9-CM
codes into a categorical group. Table 1 provides
an overview of the dataset statistics. We also use
MIMIC-III for the task of readmission diagnosis
prediction but focus only on patients with more
than one admission. Statistics about this subset are
shown in Table 2.

Total Train Val Test

Admissions 48741 33994 4918 9829

Min. tokens 28 29 31 28
Max. tokens 17034 17034 4039 3304
∅ Tokens 641 640 635 647

Min. diagnoses 1 1 1 1
Max. diagnoses 34 34 33 33
∅ diagnoses 10.41 10.40 10.32 10.50

Unique diagnoses 280 279 266 272

Table 1: Statistics of our dataset for the task of diagnosis
prediction. Very rare codes might appear only in one of
the three splits.

2https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

Total Train Test

Admissions 18785 13785 5000

∅ Diag. / patient 11.55 10.87 13.45
∅ New diag. / patient 8.03 7.58 9.28
∅ Lost diag. / patient 3.33 3.25 3.56
∅ Persistent diag. / patient 3.52 3.28 4.17

Unique diagnoses 270 268 256

Table 2: Statistics of our dataset for the task of read-
mission diagnosis prediction. On average, patients keep
3.52 of their previous diagnosis codes only. Between
two admission, a patient no longer shows symptoms for
an average of one-third of their previously annotated
diagnosis codes.

4 Models

Augmenting text with set embeddings. For the
task of set-augmented diagnosis prediction, we re-
quire a network architecture that is able to combine
two possibly complementary information sources
from different modalities: Clinical text from ad-
mission notes and sets of diagnosis codes. Also,
the architecture must be able to learn a meaningful
representation from a few examples without catas-
trophic forgetting in the underlying pre-trained lan-
guage model. The attention mechanism (Bahdanau
et al., 2015; Kim et al., 2017) allows the model to
base its decision on a fine granular selection of the
information in the two input spaces and to ignore
less important elements. Thus, it enables the model
to enrich the incomplete text representations with
knowledge from the support set.

4.1 Novel Architectures

We apply three different transformer-based archi-
tectures (s. Figure 3) to incorporate knowledge
from support sets to enhance the models’ predic-
tion. We preserve the permutation invariance of
the set of added codes by feeding them directly
into the transformer and omitting the positional en-
coding. Moreover, following (Devlin et al., 2019),
we add the special token [NULL] to every support
set. The [NULL] token also serves as an aggregate
representation for the support set.

Pooled Attention. In the pooled attention archi-
tecture (s. Figure 3) we use the last hidden state of
the [CLS] token as a pooling mechanism pool()
to aggregate the information from all tokens in the
text into a single embedding. With the pooled atten-
tion architecture, we aim to compress the admission
note into a meaningful single vector text representa-
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Figure 3: Support Set Augmentation Architectures with different levels of attention between text and support code
features showing the Pooled Attention, Full Text Attention and Dual Stack architecture from left to right.

tion that contains all necessary information to solve
the diagnosis prediction task. We project the text
Ti from admission Ai into an embedding G.

G = pool(BERT (Ti)) (1)

Furthermore, we apply attention between the
[CLS] token and the input code embeddings. We
use a transformer to learn shared features between
the elements in the support set. Typically, the at-
tention mechanism uses a softmax function to nor-
malize the attention scores (Vaswani et al., 2017).
However, the softmax limits the information flow to
a single code embedding. Following Gülçehre et al.
(2019)‚ we replace the softmax function with a sig-
moid activation σ and define our cross attention
with queries Q, keys K and values V as follows:

Cross Attention = σ(QKT )V

Q = G ·WQ,K = G ·WK , V = D ·WV

(2)

We denote the admission note representation by Q
and K and the code representations by V and lin-
early transform them with learned weight matrices
WQ, WK and WV . The sigmoid function allows
information to flow between all code embeddings
and the admission note representation. Finally, we
use a skipthrough connection and concatenate the
output of the attention layer with the [CLS] repre-
sentation to minimize information loss and to avoid
catastrophic forgetting on the text encoder side.

Full Text Attention. With the full text attention
architecture, we aim to reduce the potential infor-
mation loss in the aggregation step in contrast to
the pooled attention model. The architecture ap-
plies softmax attention between all tokens of the

admission note and all codes in the support set. We
use an additional transformer on top of the attended
admission note tokens and use the resulting output
of the [CLS] token for the prediction step. In dis-
tinction to the pooled attention, we only add the
[NULL] token for empty support sets Si.

Dual Stack. Finally, we experiment with a less
complex and, compared to the full text attention
model, computationally more efficient dual stack
architecture that does not involve an attention
mechanism to mix the support set with the text
embedding. Instead, it consists of two independent
encoders: one for the admission note and one for
the support set. We use a BERT architecture as
the admission note encoder and train a multi-head
transformer for the support set representation. To
combine the information from both information
spaces, we concatenate the embeddings from both
encoders and feed them into the prediction layer.

Loss function. We optimize all models by min-
imizing the multi-label binary cross entropy loss
between the predictions p and the target labels y:

L = − 1

N

N∑

i=1

M∑

j=1

yijlog(pij) (3)

where M is the number of diagnosis codes and N
the number of admission notes.

4.2 Augmenting Codes with Ontologies

The diagnosis code distribution from Figure 1
shows that there are very few training samples for
codes from the long tail. This raises the concern
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that the model might not be able to learn a mean-
ingful representation for each code. We initialise
our diagnosis sets with additional textual informa-
tion about diagnosis codes from medical ontologies
to address this issue. We use three different data
sources: (1) We obtain the descriptive name for ev-
ery diagnostic code from the MIMIC-III database
and map it to the respective CCS code. In addi-
tion, (2) we use textual definitions from the Unified
Medical Language System (UMLS) 2021AB (Bo-
denreider, 2004), which provides comprehensive
full-text definitions for 22.1% of the diagnostic
codes present in our data. Furthermore (3), for
additional 4.7% of the codes we use descriptions
from the Wikidata knowledge graph.

4.3 Baselines

We compare our approaches against two powerful
baselines representing state-of-the-art approaches
to diagnosis prediction with either text or set data.

Baseline: PubMedBERT We compare our ap-
proach to a PubMedBERT(Gu et al., 2021) based
classifier which incorporates only textual informa-
tion from the admission note Ni. We use PubMed-
BERT instead of ClinicalBERT (Alsentzer et al.,
2019) because ClinicalBERT was pre-trained on
MIMIC-III notes and therefore already contains
knowledge from the discharge notes, leading to an
unfair advantage in the diagnosis prediction task
from admission notes only. We fine-tune the model
and use the last hidden state of the [CLS] token
to predict the diagnostic codes.

Baseline: Support Set Transformer This ar-
chitecture only incorporates knowledge from the
support set. We use the transformer based archi-
tecture from the dual stacks’ support set encoder
(s. Figure 3) and use only the support set Si from
the admission to predict the remaining annotated
diagnostic codes Ci. Similar to the dual stack ap-
proach, we aggregate the information of the input
set into a single embedding by adding a special
token [NULL].

4.4 Hyperparameter Setup

We use PubMedBERT (Gu et al., 2021) as a text
encoder for all text-related components of our ar-
chitecture such as the admission note encoder or the
ontology-knowledge augmented set encoder. We
use the Adam optimizer (Kingma and Ba, 2015)
with a weight decay of 0.01. Our code and hyper-

parameters are publicly available3. Furthermore,
we performed a hyperparameter optimization for
all architectures and also report details regarding
the tuned parameters in the appendix. To prevent
catastrophic forgetting in the pre-trained text en-
coder, we use a lower learning rate of 2e-5 for the
weights of the BERT model. Due to the sequence
length limitation of PubMedBERT, we truncate all
admission notes to 512 tokens. We use a code
embedding ∈ R768. The transformer in the full
text attention model consists of four layers with
two attention heads each. The dual stack model
uses a transformer composed of one attention layer
with 12 heads. We sample three annotated codes
from the admission note for the diagnosis predic-
tion task, which produced optimal results during
training based on our HPO. In the readmission task
we use all codes from the previous admission or
the [NULL] token for the first admission.

5 Evaluation

Metrics. We measure the performance of our
experiments in macro averaged AUROC (area un-
der the receiver operating characteristic curve) and
mAP (mean average precision). Because the sup-
plied support set Si in the diagnosis prediction task
is part of the target label space Si ⊂ Ci, it provides
the support set augmented architectures an unfair
advantage over the baselines to evaluate on codes
∈ Si. Therefore, we only evaluate our approach on
y = Ci \ Si to exclude the advantage of provided
codes and to avoid that codes from the support set
Si are determined as correct predictions.

5.1 Results
We report scores of our quantitative evaluation in
Table 3 and use a support set of five codes for the
diagnosis prediction task to augment the admis-
sion note. Set Embeddings denote the combined
representation of set and text data. Semantic Set
Embeddings contain codes enriched with ontology
knowledge as described in Section 4.2 and the ad-
mission notes’ text. In addition to mAP and AU-
ROC, we also report the standard error over five
runs for the diagnosis prediction task because it
involved random sampling to generate the support
sets.

Novel models outperform baselines. We report
that all of our approaches outperform the baselines,

3https://github.com/DATEXIS/
ClinicalSupportSetAugmentation
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Diagnosis Prediction Readmission Task
Model AUROC mAP AUROC mAP

Baselines Support Set Transformer 75.52 ±1.7e-3 30.51 ±5.6e-4 66.66 44.33
PubMedBERT 84.67 ±7.0e-4 47.39 ±7.8e-4 79.98 59.32

Set Embeddings
Full Text Attention 86.93 ±2.9e-4 49.12 ±9.2e-4 81.37 59.74

Pooled Attention 87.08 ±8.2e-4 48.96 ±6.0e-4 81.06 60.59
Dual Stack 87.10 ±7.0e-4 48.95 ±4.0e-4 81.01 60.54

Semantic Set Embeddings
Full Text Attention 87.24 ±1.0e-3 49.66 ±9.0e-4 81.03 59.61

Pooled Attention 87.21 ±7.3e-4 48.85 ±1.5e-4 80.95 59.00
Dual Stack 87.18 ±1.2e-3 48.67 ±2.4e-4 81.03 59.35

Table 3: Results on the diagnosis- and readmission diagnosis prediction task in macro averaged AUROC and mAP.
All of our proposed architectures outperform the baselines. The full text attention model with semantic initialization
of the diagnosis code embeddings performs best on the diagnosis prediction task. Semantic integration especially
helps the task of diagnosis prediction, while learned set embeddings perform better for the readmission task.

emphasizing our hypothesis that augmenting admis-
sion notes with support sets containing diagnostic
information helps. However, we observe that there
is little difference in the performance between our
proposed architectures. In general, the full text at-
tention model performs best. Using the text and
the support set in combination leads to an average
improvement of around 2-3 points in AUROC or
2.5 points in mAP compared to the PubMedBERT
baseline.

Minor gains with semantic set embeddings.
We observe a slight increase in performance by inte-
grating semantic knowledge (s. Table 3). However,
the co-occurrence of codes within the admissions
seems to have a much more substantial impact on
the final classification performance than the addi-
tional semantic information. This slight increase
indicates that the architecture can leverage the ad-
ditional information, but the semantics encoded in
the ICD names and UMLS definitions do not seem
to contain much complementary knowledge.

Rare and very frequent codes are most effective.
We analyze the impact of the diagnosis code fre-
quency on the prediction performance. We perform
ten evaluations with each three random sampled
codes in the support set, binned by frequency. We
measure the performance difference between our
model and the PubMedBERT baseline on the re-
maining codes and plot the standard error for those
observations (s. Figure 4). We observe that both
rare codes from the end of the long-tail and frequent
codes belonging to the second tertile improve the
prediction by almost five points in mAP. We hy-
pothesize that especially rare codes create a major
distinctive factor for a diagnosis where the machine
assigns a high weight. Contrary, obvious and fre-

0 -
 25

25 -
 50

50 -
 75

75 -
 100

100 -
 125

125 -
 150

150 -
 175

175 -
 200

200 -
 225

225 -
 250

250 -
 275

275 -
 280

Code Frequency Bins

0

1

2

3

4
Di
ffe

re
nc
e 
in
 m

AP

Difference mAP: Full Text Attention vs. PubMedBERT

|S| = 1
|S| = 3
|S| = 5

Figure 4: Performance difference between PubMed-
BERT and full text attention with support sets of size 1,
3, and 5 codes across different frequency bins.

quent diagnoses may create a bias and thus have
the highest impact on the prediction. The smaller
increase in performance between frequency bins
50 to 250 indicates partial to non-existent comple-
mentarity between text and support set. In general,
the effect of diminishing performance difference
with decreasing frequency can be explained by few
training examples for the given code and thus an in-
sufficiently learned representation because MIMIC-
III primarily focuses on severely ill patients that
require life-saving measures at the ICU.

Random sampling for compensating imbalance.
The CCS label distribution follows a power-law
distribution pattern (s. Figure 1). To compensate
effects of such an imbalanced label distribution, we
evaluate random sampling vs. inverse frequency
weighted random sampling to create potentially
more balanced support sets during training. We find
that inverse frequency weighted random sampling,
in general, performs worse than random sampling
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|Si| 0-13 13-43 43-280

0 80.66 82.03 86.41
1 81.61 83.19 87.94
2 82.08 83.61 88.36
3 82.54 84.03 87.91

PubMedBERT 79.28 81.09 85.73

Table 4: Prediction performance over different code fre-
quencies measured in AUROC with different support set
sizes using random sampling and the full-text attention
model with set embeddings. Frequencies split in tertiles
(s. Figure 1) according to the code distribution in the
admission note dataset. The performance increases with
growing support set sizes |Si|.

that follows the label distribution in the training
data. We observe a difference in mAP of -0.3, -
1.8, and -1.3 points for the full text, pooled, and
dual stack architectures compared to training with
random sampling. Our explanation is that random
sampling focuses more on the short head of the
label distribution. Therefore, the model learns a
richer representation for codes that are more fre-
quent in the dataset and therefore provides better
support for common predictions (s. Figure 4).

Larger sets can be beneficial. Table 4 shows
that increasing the number of elements in the sup-
port set improves the performance for codes of all
frequencies. Especially in the range of the 25-50
most frequent codes (s. Figure 4), larger support
set sizes lead to the most performance improve-
ment. Finally, we observe that even with |Si| = 0,
our model outperforms the PubMedBERT base-
line, which indicates that the model stores valuable
information in the [NULL] token.

6 Discussion

Clever Hans problem for readmissions. Lan-
guage models often just learn effective shortcuts of
high dimensional data distributions instead of gen-
eralizing, which is called Clever Hans problem (La-
puschkin et al., 2019). We expect to find a variant
of the Clever Hans problem for the readmission di-
agnosis prediction task: Here, we expect the model
to learn the shortcut of copying codes from the
support set into the diagnosis predictions instead
of learning novel correlations from the potentially
complementary text data. Indeed, our model copies
in 78.1% of the test cases, on average, 2.12 codes
from the support set that are not in the target label
set. However, this is only a tiny fraction of the av-
erage of 13.45 codes in each support set (s. Table

2). This contradicts the Clever Hans problem and
empirically confirms the ability of our model to
ignore unrelated information from the support set
and, in those cases, to focus more on the admission
note.

Beneficial and non-beneficial codes. In our eval-
uation with clinical doctors we observe certain
codes that improve the prediction more than others.
We find that these codes are typically rare, such
as code 188 (s. Table 5), but improve the mAP
relative to PubMedBERT by more than 30 points.
Likewise, rare codes can also have a diminishing
effect on the prediction performance. We hypothe-
size that their representation is not well initialized
due to the lack of training examples. In Table 5, we
show the most helpful and most unhelpful codes
and their rank in the dataset. We find that 221 codes
improve the prediction by, on average, 3.02%. 51
codes decrease the prediction performance by, on
average, 2.29%.

CCS Code ∆mAP Rank
188 - Fetopelvic disproportion;
obstruction +32.9 269

187 - Malposition; malpresentation +25.8 259

191 - Polyhydramnios and other
problems of amniotic cavity +24.0 270

31 - Cancer of other male genital
organs +23.4 272

184 - Early or threatened labor +21.3 242

..

119 - Varicose veins of lower extrem-
ity

-05.2 234

218 - Liveborn -05.4 267

655 - Disorders usually diagnosed in
infancy, childhood, or adolescence -05.9 247

124 - Acute and chronic tonsillitis -09.6 257

177 - Spontaneous abortion -15.3 261

Table 5: Excerpt of all codes in the support set that have
the most effect on prediction performance compared to
PubMedBERT ranked by mAP difference. Codes from
the long tail have the highest impact on performance.

Additional set data can compensate problems
of language models with idiosyncratic language.
Commonly, large language models often have dif-
ficulties with domain-specific language (Liu et al.,
2020). For example, pregnancy is often encoded in
an idiosyncratic manner like "G2P1," which stands
for gravida 2 para 1, which means that this is the

4772



second pregnancy and the first one’s result was a
life-born child. Also, abbreviations such as "PNV"
for prenatal vitamins are usually the only indicator
of pregnancy. Often language models do not have
seen sufficient context information during training
to generalize from these words to infer higher-level
concepts. We analyze the effect of the most in-
fluential codes, from which 15 of 20 are either
pregnancy or gynecology related. We measure the
difference in rank with and without these codes
in the support set. Of all the codes that benefit
from adding these codes, 73.90% are pregnancy or
gynecology-related as well. Our results indicate
that adding pregnancy-related codes to the support
set helps the model recognize the concept of preg-
nancy and compensates for problems of idiosyn-
cratic language.

Future improvements. It is interesting to see if
graph neural networks can lead to improved rep-
resentation through updates of related codes. Fur-
thermore, it is possible to experiment with negative
examples of diagnostic codes and additional en-
codings to represent the time between two or more
admissions. Given the sparse training data situ-
ation presented in medical data silos, particular
focus should be applied to zero-shot or few-shot
cases, e.g., codes that occur the first time or are
rarely represented in prior admissions.

7 Conclusion

Augmenting text with set data is an important prob-
lem, in particular in the clinical domain with multi-
modal patient representations. To solve this prob-
lem, we propose novel attention-based network
architectures. Our results clearly show that in a
clinical prediction task, the augmented representa-
tion outperforms a language model, particularly for
predicting less common diseases. We also observe
that complementary data from sets can for com-
pensate shortcomings of language models, such as
idiosyncratic language or abbreviations.

8 Ethical Considerations

Models for diagnosis prediction based on clini-
cal admission notes can be a valuable component
of clinical decision support systems that aim to
assist medical professionals during their differen-
tial diagnosis. Hence, those models bear the po-
tential to save lives by preventing inexperienced
doctors from overlooking rare or unusual symp-
toms. They might as well save cost and reduce

the amount of time required for the diagnosis pro-
cess of medical professionals. However, admission
notes and billing codes such as ICD-9 are only a
very limited and biased perspective on the patient.
Admission notes leave out important diagnostics
performed during the patients’ stay. Furthermore,
billing codes are a suboptimal target label space.
They are used to obtain the maximum possible re-
imbursement for the cost of treatment. There is a
risk that patients will receive an excessive number
of codes and, therefore, might be over-coded. Like-
wise, under-coded patients may also occur. To de-
duce clinical outcome solely from admission notes
without having medical professionals perform an
iterative differential diagnosis process raises the
concern that certain very significant signals may
never be introduced to the model.
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Abstract

Neural networks are vulnerable to adversar-
ial examples. The adversary can success-
fully attack a model even without knowing
model architecture and parameters, i.e., un-
der a black-box scenario. Previous works
on word-level attacks widely use word impor-
tance ranking (WIR) methods and complex
search methods, including greedy search and
heuristic algorithms, to find optimal substitu-
tions. However, these methods fail to balance
the attack success rate and the cost of attacks,
such as the number of queries to the model
and the time consumption. In this paper, We
propose PAthological woRd Saliency sEarch
(PARSE) that performs the search under dy-
namic search space following the subarea im-
portance. Experiments show that PARSE can
achieve comparable attack success rates to
complex search methods while saving numer-
ous queries and time, e.g., saving at most
74% of queries and 90% of time compared
with greedy search when attacking the exam-
ples from Yelp dataset. The adversarial exam-
ples crafted by PARSE are also of high qual-
ity, highly transferable, and can effectively im-
prove model robustness in adversarial training.

1 Introduction

Neural networks have achieved remarkable suc-
cess in various NLP tasks while being vulnerable
to adversarial examples. The adversary can craft
adversarial examples, which contain noise that is
imperceptible to human but can mislead the model
decision, even without knowing the model archi-
tecture and parameters. Under such black-box sce-
nario, word-level attacks have been more focused
on by recent studies for the flexibility of the attack
and the high quality generated examples (Gao et al.,
2018; Alzantot et al., 2018; Jin et al., 2020; Li et al.,
2018; Garg and Ramakrishnan, 2020a; Ebrahimi
et al., 2018). Word-level attacks can flexibly fit

∗Corresponding Author.

Greedy

Beam(w=4)

Beam(w=8)

Genetic

PSO

PARSE(w=2)

PARSE(w=4)

PARSE(w=8)

TIWO

Random
WIR-UNK

WIR-A

WIR-Delete

PARSE(w=1)

Search Method A.S% #Queries Time(s)

Random 83.02 252 3503
TIWO 82.31 191 1802

WIR-Delete 91.64 234 1289
WIR-A 91.82 225 1347
WIR-UNK 91.79 221 1325

PARSE (w = 1) 93.23 378 1568
PARSE (w = 2) 93.38 472 2031
PARSE (w = 4) 94.14 620 4670
PARSE (w = 8) 96.80 1065 5665

Greedy 96.38 3327 27494
Beam (w = 4) 96.99 10 159 85087
Beam (w = 8) 97.84 18 327 211 400

Genetic 97.13 13 469 136 602
PSO 98.51 51 341 402 452

Figure 1: Average #Queries vs. Attack success rate
(%) when attacking TextCNN on 500 examples from
Yelp in HowNet. Increasing the beam width w in
PARSE effectively increases the attack success rate
while just costing a few more #queries and time.
PARSE (w=8) outperforms Greedy search while taking
only 32% of queries and 20% of time. The complete
results are in Table 2.

the grammar and semantics constraints by chang-
ing the similarity and semantics threshold when
filtering candidate substitutions, and the generated
adversarial examples will not be detected by a spell
checker (Ebrahimi et al., 2018; Iyyer et al., 2018)
or substantially damage the overall semantic and
logic of the sentence (Jia and Liang, 2017; Liang
et al., 2018). High-quality adversarial examples
ensure the attacks are imperceptible to human and
can be used to learn the robustness of models better.

To better explain our contribution to the word-
level adversarial attack, we would like first to define
the word-level attack as a combinatorial optimiza-
tion problem, which is similar to (Yoo et al., 2020;
Morris et al., 2020b,a). Under this setting, a word-
level adversarial attack method can be decomposed
into Search Space and Search Method. The search
space gives all the possible substitutions that meet
the similarity and semantics requirements for the
target words, i.e., decides what words the target
words can be transformed into. The search method
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is the search strategy to perform the attack, i.e., de-
cides which words to be transformed (target words)
and what words should be transformed into (pick
from the search space). Search method is the most
significant part of an attack method, as the exponen-
tial nature of the search space makes inefficiency
search method difficult to attack large-scale and
long examples. Therefore, we fix the search space
and only focus on the search methods in this paper.

Various search methods for word-level black-box
attacks have been proposed, divided into simple
methods, including the variants of Word Impor-
tance Ranking (WIR) methods (Gao et al., 2018;
Li et al., 2018; Jin et al., 2020; Li et al., 2020), and
complex methods, including greedy search (Pruthi
et al., 2019; Li et al., 2021), beam search (Ebrahimi
et al., 2018), genetic algorithm (Alzantot et al.,
2018), and Particle Swarm Optimization (PSO) al-
gorithm (Zang et al., 2020). WIR methods search
substitutions for each word in the descending order
of word importance scores, which is faster than
other complex search methods, while is poor in
attack success rate. Other search methods can al-
ways achieve better attack success rates, while they
need more queries to the target model and time,
as they directly search on the search space of the
entire sentence. Previous works fail to balance well
between performance and efficiency.

In this paper, to achieve higher attack suc-
cess rates with fewer queries and time in word-
level black-box attacks, we propose a search
method called PAthological woRd Saliency sEarch
(PARSE). PARSE separates the entire sentence into
multiple subarea according to the stability of words
and searches in the descending order of the sub-
area importance. Therefore, PARSE avoids directly
searching on the huge search space of the entire
sentence and reduces the cost of attacks. Search-
ing on each subarea instead of on each word like
WIR methods also makes PARSE less likely to
be stuck in local optima. Extensive experiments
demonstrate that PARSE achieves comparable at-
tack success rates to complex search methods while
saving numerous queries and time, e.g., saving
at most 74% of queries and 90% of time com-
pared with greedy search when attacking the Yelp
dataset (Zhang et al., 2015). Figure 1 shows the per-
formance comparisons. The major contributions of
this paper are summarized as follows:

• We define the stability of words in adversarial
attacks and explain the ineffective of WIR

methods from the view of word stability.

• We propose PARSE, a search method for
word-level black-box adversarial attacks that
performs search under dynamic search space
following the subarea importance.

• Experiments show that PARSE achieves com-
parable attack success rates to complex meth-
ods while saving numerous queries and time.

2 Related Works

Adversarial attack. Inspired by the early works
on adversarial attacks that mainly focus on the field
of computer vision (CV) (Goodfellow et al., 2015;
Papernot et al., 2016; Moosavi-Dezfooli et al.,
2016; Carlini and Wagner, 2017), various meth-
ods to attack language models are proposed (Li
et al., 2018; Gao et al., 2018; Garg and Ramakrish-
nan, 2020b; Miyato et al., 2017; Gong et al., 2018).
Unlike the image, which is differentiable as pixels
are continuous values, the discrete text is not differ-
entiable. Therefore, the adversarial attacks in NLP
tasks are more appropriately described as combi-
natorial optimization problems, which seek to find
optimal substitutions in the search space (Yoo et al.,
2020; Morris et al., 2020b,a).

Search Method. Although various adversarial at-
tack frameworks focusing on the NLP tasks are
proposed, few works make a clear distinction be-
tween the search space and search method. The
reported results may benefit from strong search
method (Alzantot et al., 2018; Zang et al., 2020; Jia
et al., 2019), which have a higher time complexity
and need more queries to the model, or the less
restrictive search space (Pruthi et al., 2019; Gao
et al., 2018; Ebrahimi et al., 2018; Li et al., 2018;
Jin et al., 2020; Li et al., 2020), which does not con-
sider both the distance between the target words
and the substitutions and the semantic of the entire
perturbed sentence. In this paper, we only focus
on the search methods and benchmark all search
methods under the same search space.

3 PARSE

3.1 Textual Adversarial Example
Suppose there is a model F : X → Y trained by
minimizing the empirical risk over all given text
X ∈ X and labels Y ∈ Y following the distribu-
tion D:

min
θ

E(X,Y )∼DL (F (X;θ) , Y ) (1)
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where θ is the parameter, and L(·) is the cross-
entropy loss. An adversarial exampleXadv crafted
from a normal text X = (xn)n∈{1,...,N} can thus
be defined as:

Xadv = O(X) = o(xn)n∈{1,...,N},

s.t. ∀n ∈ {1, . . . , N}, ∆xn < δ,

and ∆X < ε,

and argmax
Y ∈Y

P(Y |Xadv) 6= argmax
Y ∈Y

P(Y |X)

(2)

where O(X) means performing word-level substi-
tution on sentence X , o(xn) means substituting
the word xn with a new word from search space, if
possible. ∆xn denotes the difference between xn
and o(xn), ∆X denotes the difference betweenX
and O(X), δ and ε are the maximum allowed dif-
ference of words and the overall sentence, respec-
tively, which restrictions are imposed on search
space to filter potential substitutions, P(·|·) is the
posterior probability. Intuitively, (2) can be ex-
plained as the following condition. We have a finite
search space that contains all possible substitutions
for each word in X , and the substitutions in the
search space are further filtered by the restrictions,
including δ and ε, which may mainly focus on the
semantics and the Lp norm of embedding distance
of each word and the entire sentence. These re-
strictions ensure that the final generated adversarial
example is imperceptible to human. The search
method can thus be seen as the strategy to perform
O(·), deciding the order to perform o(·) and the
substitutions picked from the search space. When
the restrictions on search space are fixed, the better
search method finds the adversarial example more
accurately and efficiently.

3.2 Word Importance
As gradient information is not available in the
Black-box scenario, the Leave One Out (LOO)
methods are proposed to obtain word importance,
i.e., the word saliency. (Li et al., 2016; Gao et al.,
2018; Li et al., 2018; Jin et al., 2020; Li et al., 2020).
LOO methods expect to obtain word importance
by comparing the model confidence of two sen-
tences with only one word is different. Formally,
the importance of words xi ∈X is defined as

S(xi) = P(Ytrue|X)− P(Ytrue|X̂i) (3)

where S(·) is the word saliency, Ytrue is the ground-
truth class, and X̂i = x1 . . . x̂i . . . xN is the sen-
tence with word xi transformed. Transforming xi

to x̂i in different ways formulating three prevalent
LOO methods: (i) Delete: leaving x̂i blank. (ii)
UNK: x̂i = [UNK], triggering the out of vocab-
ulary (OOV) problem. (iii) A: x̂i = a, replacing
with a neutral word a that has a similar distribu-
tion across classes (Pruthi et al., 2019). Intuitively,
performing the substituting operation o(·) on the
words in the descending order of their importance
should help to generate adversarial examples more
efficiently (this is how the WIR search methods
do), as the important word have a large impact on
the model prediction.

3.3 Word Stability from the View of Words
Importance Changing

To explain why the word importance fails to in-
dicate the model concentration and why the WIR
methods, which strictly follow the descending or-
der of words importance to perform the attack, have
a degenerated performance, we first try to answer:

When should a word be considered unstable?
We would like to clarify that the stability of a word
is defined together with the system trying to under-
stand the word, i.e., the stable word for a system
may be an unstable word for other systems. For hu-
man, parsing a sentence is a denoising process. We
can still understand a sentence even if slight noise
is introduced to the sentence, e.g., changing the
order of letters in a word or deleting some words
in a sentence (McCusker et al., 1981; Rayner et al.,
2006; Adam Drewnowski, 1978; McCusker et al.,
1981; Van Orden, 1987). More importantly, we
focus on the important words in the sentence and
do not change our attention to the words due to the
small noise. Based on this, there are few unstable
words for the human reading comprehension sys-
tem, as the important words we concentrate on do
not change. Following this, if a system, e.g., a lan-
guage model, changes attention to the words when
parsing a sentence because of sufficiently slight
noise, we consider the words whose importance,
i.e., the attention of the system, have changed as
unstable words for the system. It should be noted
that, as defined in (3), the word importance is a con-
tinuous value, and if the importance of all words
increases to the same extent, the attention of the
system is actually not changed. Therefore, we fur-
ther use a discrete value called importance ranking
to define the attention, which is formed as

R(X) = r(xi)i∈{1,...,N}
= arg sort

i
S(xi)i∈{1,...,N}

(4)
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where arg sort(·) returns the indexes of the sorted
sequence in descending order. Therefore, the sta-
bility of a word and a group of adjacent words can
be defined.

Definition 1. For a given model F , a sentence
X = (xn)n∈{1,...,N}, let t(·) be a slight trans-
formation that deletes the least important word
in a sentence, the word importance rankings of
X and t(X) are R(X) = (r1, r2, . . . , rN ) and
R(t(X)) = (r∗1, r

∗
2, . . . , r

∗
N ), respectively, where

ri and r∗i are the word index. If ri 6= r∗i , then the
word xri is an unstable word for model F; other-
wise, a stable word. If ∀ rj ∈ (ri, . . . , ri+n), rj 6=
r∗j , the adjacent words (xri , . . . , xri+n) form an
unstable subarea; otherwise, a stable subarea.

Intuitively, the importance of unstable words can
not accurately indicate the impact on the model pre-
diction, as even a slight transformation is enough
to shift the importance ranking of these words over
the entire sentence, and the important word may
become not that important. That is why the WIR
methods always have poor performance. Such
phenomena are probably due to the model pathol-
ogy (Feng et al., 2018) as neural networks are more
linear than expected and will overfit the negative
log-likelihood loss to produce low-entropy distri-
bution over classes, leading the model to overconfi-
dence in instances outside the training data distribu-
tion (Goodfellow et al., 2015). This consequently
leads to the word importance drastically changing
with even the least important word being removed
from the sentence, which is sufficient to bias the
sentence representation from the distribution.

To show the influence of word stability for com-
mon language models of different architectures, we
test the word stability of the sentence in MR and
Yelp training set for LSTM, TextCNN, and Distil-
BERT (model architectures are detailed in §4.1).
Following (3), (4), and Definition 1, we first obtain
the word importance rankings with the LOO-UNK
method on 500 randomly picked examples and then
compare the word importance rankings between the
original sentences and the sentences with the least
important word removed to obtain the word sta-
bility. Table 1 shows the average stability results
of five individual runs. There are relatively few
unstable words on the short text on MR, with an
average of 45.5% on the three models, while it will
rise to 72.4% on the longer text on Yelp. We also
find that the average length of an unstable subarea
is very short compared with the length of the entire

Dataset Model
#input #unstable unstable #unstable AVG unstable
words words word% subarea subarea length

MR
LSTM 18.25 8.14 44.60 2.23 3.49

TextCNN 18.72 8.26 44.12 2.32 3.56
DistilBERT 18.39 8.79 47.79 2.41 3.65

Yelp
LSTM 128.39 96.66 75.28 10.81 8.94

TextCNN 133.29 83.94 62.97 8.77 9.57
DistilBERT 135.86 107.14 78.86 8.61 12.51

Table 1: Statistics on the word stability of the sentence
in MR and Yelp training set for different models.

sentence and takes only 19.3% for MR and 7.8%
for Yelp on average. Therefore, we can draw two
conclusions about word stability:

(C1) unstable words are prevalent regardless of the
model architecture and take a higher propor-
tion in a longer sentence.

(C2) the word importance rankings are mainly
swapping between the words of similar im-
portance (as the average length of unstable
subarea is short).

3.4 Searching Strategy of PARSE

To generate adversarial examples in higher attack
success rate with fewer queries and time, a search
method must take the word stability (and further
the (C1) and (C2)) into account. As the importance
of unstable words fails to accurately indicate the
impact on the model prediction, strictly following
which to perform attack are likely to stuck in lo-
cal optima. Based on this, we propose PARSE
that performs beam search under dynamic search
space following subarea importance. The general
searching strategy of PARSE is shown in Figure
2. Specifically, PARSE starts by transforming the
target sentenceX with transformation t(·) and ob-
taining the stability of all words in the target sen-
tences. PARSE treats each stable word individually
while treating the adjacent unstable words, i.e., the
words in the same unstable subarea, as an inte-
gration. That is, according to Definition 1, each
stable word forms a stable subarea, and multiple
adjacent unstable words form an unstable subarea.
Therefore, the sentence is separated into multiple
subarea based on the stability of words, and the
entire potential search space is separated into multi-
ple subspace. PARSE avoids being too sensitive to
the importance of a single word and being affected
by the inaccuracy of word importance by taking the
subarea as basic elements at each search step rather
than each word like other methods. The search is
then performed following the descending order of
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Figure 2: The general searching strategy of PARSE. We separate the entire sentence into multiple subarea according
to the word stability. PARSE performs search in the descending order of subarea importance and takes each subarea
as integration at each search step.

the subarea importance score, which is the average
importance rankings of the words in a subarea:

score(A) =
1

||A||
∑

xi∈A
r(xi) (5)

where A denotes a subarea, ||A|| denotes the num-
ber of words in a subarea. PARSE behaves dif-
ferently when encountering stable subarea and un-
stable subarea. To better understand the idea of
PARSE, we first explain the detailed search pro-
cess when beam width w = 1. When encounter-
ing stable subarea Ak, which contains the only
word xi ∈ Ak, we tend to find the substitution x̂i
that mostly reduces the model confidence from the
search space:

x̂i = argmax
x̂i∈Li

{P(Ytrue|X)−P(Ytrue|X̂i)} (6)

where Li is the potential search space for xi under
the fixed restrictions including δ and ε, and X̂i

is the sentence with word xi transformed into x̂i.
When encountering unstable subareaAk that con-
tains multiple unstable words (xri , . . . , xri+n) ∈
Ak, we tend to find the group of substitutions
{x̂rj |j ∈ [i, i+ n]} that mostly reduces the model
confidence, which equals to:

argmax
{x̂rj |j∈[i,i+n]}∈

⋃i+n
j=i Lrj

{P(Ytrue|X)− P(Ytrue|X̂ri+n
ri )} (7)

where
⋃i+n
j=i Lrj is the potential search space for

the multiple words (xri , . . . , xri+n) ∈ Ak, i.e., the
combination of the search space of every single
word, X̂ri+n

ri is the sentence with words {xrj |j ∈
[i, i+n]} transformed into {x̂rj |j ∈ [i, i+n]}. In-
tuitively, different from the search space of a single
word Li, the same substitution for a single word
in {x̂rj |j ∈ [i, i + n]} may appear many times in

Algorithm 1: PARSE
input :Original sentence X = x1x2 . . . xN ,

Separated search space
A = (A1,A2, . . . ,An),
beam width w, true label Ytrue

output :Adversarial example Xadv

1 Initialize candidate set Xbest ← {X}
2 Sort A by the subarea score (Eq.(5)) in descending
3 for all Ak ∈ A do
4 reset the union of candidate set Xall ← {}
5 for all X′

j ∈ Xbest do
6 if Ak is stable zone then
7 Xcand ← {top-w sentences

transformed from X′
j that x̂i most

close to Eq.(6)}
8 else
9 Xcand ← {top-w sentences

transformed from X′
j that

{x̂rj |j ∈ [i, i+ n]} most close to
Eq.(7)}

10 Xall ←Xall ∪ Xcand

11 Xbest ← {top-w sentences X ′ ∈ Xall that
mostly reduce model confidence
P(Ytrue|X)− P(Ytrue|X ′)}

12 if ∃ argmax
Y ∈Y,X′∈Xbest

P(Y |X ′) 6= Ytrue then

13 return the X ′ that mostly reduces model
confidence as Xadv; /* Success */

14 return X; /* Fail */

all possible substitution combinations in the search
space of multiple words

⋃i+n
j=i Lrj . Thus the word

order in an unstable subarea is ignored, and the
words in an unstable subarea will be substituted at
the same time at each search step, which helps re-
duce the impact of the inaccurate importance rank-
ings of unstable words. The search is performed
on every subarea in order until the generated exam-
ple meets (2). When the beam width w 6= 1, we
keep the top-w x̂i or {x̂rj |j ∈ [i, i + n]} that the
results most close to equation (6) or (7), i.e., mostly
reduce the model confidence, at each search step.
The details of PARSE are shown in Algorithm 1.
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4 Experiment

4.1 Experiment Setup

Dataset. The experiments are conducted on
Movie Review (MR) (Pang and Lee, 2005) and
Yelp Review Polarity (Yelp) (Zhang et al., 2015).
Both of them are sentiment classification tasks. For
MR, the average text length is 18.49. For Yelp, the
average text length is 135.66.

Model. We use TextCNN (Kim, 2014), LSTM,
and DistilBERT (Sanh et al., 2019) in our experi-
ments. More details of the model are in Appendix.

Search Space. We utilize the 300-Dimensional
GloVe word vectors (Pennington et al., 2014) and
HowNet (Dong and Dong, 2003) as the search
space for substitutions. GloVe contains vector rep-
resentations for words learned by an unsupervised
learning algorithm. HowNet is a knowledge base
of sememes with over 100,000 words.

Restrictions on Search Space. The possible
substitutions for each word in the search space are
filtered by the restrictions imposed on the search
space. The substitutions picked from the search
space should have the same part of speech as the
original word. The similarity between the gener-
ated and original sentences measured by BERT
should be larger than 90%.

Baselines. We compare PARSE with nine search
methods: Random, Traverse in word order (TIWO),
WIR-Delete, WIR-A, WIR-UNK, Greedy Search,
Beam Search, Genetic Algorithm (Genetic) (Alzan-
tot et al., 2018), and Particle Swarm Optimization
(PSO) (Zang et al., 2020). The Random method
randomly picks a word as the target word at each
search step. TIWO method performs the search
following the word order.

Implementation Details. For PARSE, we use
the LOO-UNK to obtain the word importance. For
the Genetic and PSO algorithm, the population size
and the number of iterations are set to 60 and 20,
respectively. All reported results are the average of
five individual runs. All comparisons in our experi-
ments are conducted under the same search space
with the same restrictions on the same machine
with an A5000 GPU.

4.2 Main Results

Comparisons on Performance. We perform ad-
versarial attacks on 500 randomly picked exam-

ples, and the results on performance are shown in
Table 2. Even when w = 1, PARSE still outper-
forms WIR methods on attack success rates, and
#queries and time are only slightly increased. This
indicates that considering the stability of words
and treating the words of different stability differ-
ently in each search step helps reduce the impact
of the inaccurate word importance. Compared with
the complex search methods like greedy search,
PARSE (w = 8) can achieve comparable attack
success rates with fewer #queries and time, es-
pecially on the long text from Yelp. On MR, on
average, PARSE (w = 8) needs 213 queries and 2.9
seconds for each successful attack, while greedy
search needs 390 queries and 7.1 seconds. On Yelp,
on average, PARSE (w = 8) needs 1320 queries
and 13 seconds for each successful attack, while
greedy search needs 4582 queries and 115 seconds.
Others complex search methods even need far more
queries and time. It should be noted that PARSE
is more suitable for attacking long sentences as it
is less affected by the increased search space com-
pared to other complex search methods, while it
can still achieve competitive results when attacking
short sentences.

Comparisons under Different Search Space.
We replace the search methods while maintain-
ing the search space in TextBugger, BAE, and
DeepWordBug, then perform attacks on 500 ran-
domly picked examples from MR on three mod-
els. Table 3 shows the comparisons of different
search methods. Genetic and PSO are excluded
for their low efficiency (especially on DistilBERT).
PARSE (w = 8) always achieves comparable at-
tack success rates to complex methods while gen-
erally needing fewer queries and time, indicating
that PARSE can be effectively applied to different
search space.

Quality of Crafted Example. We measure the
quality of the adversarial examples crafted by dif-
ferent search methods by attacking LSTM on MR
in HowNet. We use the LanguageTool1 to detect
the grammar correctness and use the Universal Sen-
tence Encoder (USE) (Cer et al., 2018) to measure
the semantic similarity of 500 randomly picked
successfully attacked examples and the original ex-
amples. We also conduct human evaluations on
Amazon Mechanical Turk2 by asking the workers

1https://languagetool.org/
2https://www.mturk.com/
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Yelp MR

GloVe HowNet GloVe HowNet

Model Search Method A.S% #Queries Time (s) A.S% #Queries Time (s) A.S% #Queries Time (s) A.S% #Queries Time (s)

LSTM

Random 87.45 305 5196 88.81 209 2955 66.58 64 856 60.54 38 483
TIWO 86.64 237 4118 86.13 159 2221 72.73 61 877 65.14 38 266

WIR-Delete 94.38 283 1803 94.19 233 986 80.84 69 684 71.38 51 286
WIR-A 94.31 254 1721 94.88 216 969 81.13 69 673 71.35 52 284

WIR-UNK 94.82 268 1787 94.87 221 971 81.45 68 671 72.47 52 257

PARSE(w = 1) 96.47 480 2955 95.79 390 1525 83.38 73 680 74.23 73 302
PARSE(w = 2) 97.31 568 4351 97.94 496 2650 84.87 98 683 77.76 81 397
PARSE(w = 4) 97.81 899 4614 98.12 782 3774 87.18 149 907 78.68 113 542
PARSE(w = 8) 98.64 1839 7736 98.37 1189 4129 88.11 223 1341 80.38 159 688

Greedy 98.92 5786 85 763 98.33 2953 28 029 88.85 489 5288 81.72 253 1427
Beam(w = 4) 99.37 14 271 177 167 98.54 6516 62 391 90.18 735 7539 82.17 368 2647
Beam(w = 8) 99.54 25 311 458 740 98.97 11 979 100 524 90.93 1088 9399 83.71 566 5473

Genetic 99.28 10 197 142 847 98.73 7991 97 482 93.74 3144 23 660 88.41 2579 11 232
PSO ≈ 224 / 1 week 99.17 38 749 317 175 89.90 3101 14 780 85.27 2458 6272

TextCNN

Random 79.12 399 8061 83.02 252 3503 62.98 65 1250 57.04 46 349
TIWO 79.23 303 5160 82.31 191 1802 56.28 68 1149 54.19 48 530

WIR-Delete 93.89 286 1957 91.64 234 1289 79.48 75 936 68.54 55 400
WIR-A 94.68 267 1871 91.82 225 1347 78.32 73 925 69.71 53 424

WIR-UNK 94.05 269 1845 91.79 221 1325 79.93 79 941 69.25 53 401

PARSE(w = 1) 95.73 482 3055 93.23 378 1568 81.14 103 991 70.78 81 574
PARSE(w = 2) 96.56 595 4482 93.38 472 2031 85.12 118 1036 73.02 95 724
PARSE(w = 4) 96.95 838 5285 94.14 620 4670 86.96 185 1321 75.29 137 1119
PARSE(w = 8) 97.26 1629 8619 96.80 1065 5665 87.93 278 2579 76.31 193 1342

Greedy 96.54 6264 89 001 96.38 3327 27 494 88.61 532 5591 77.67 287 1935
Beam(w = 4) 97.03 18 165 258 647 96.99 10 159 85 087 91.22 903 11 022 80.59 452 2730
Beam(w = 8) ≈ 287 / 1 week 97.84 18 327 211 399 93.47 1581 14 857 81.34 807 5918

Genetic 96.98 13 678 168 335 97.13 13 469 136 602 95.34 3387 33 867 88.37 2918 14 455
PSO ≈ 168 / 1 week 98.51 51 341 402 452 92.25 4397 37 755 83.85 3081 7452

Table 2: The comparisons on attack success rate (A.S%), average #queries to attack one example (#Queries), and
total seconds to attack 500 examples (Time) of different search methods. ≈ n / 1 week means the attack fails to
complete in 1 week, and n is the number of the completed attacks.

LSTM TextCNN DistilBERT
A.S% #Que. Time A.S% #Que. Time A.S% #Que. Time

TextBugger (WIR-Delete) 78.44 48 29 78.86 48 28 69.84 51 107
w/ PARSE(w = 1) 79.73 65 33 81.34 65 29 75.24 66 112
w/ PARSE(w = 2) 83.81 79 39 84.99 78 38 78.18 95 157
w/ PARSE(w = 4) 84.65 97 56 86.88 113 53 80.74 132 213
w/ PARSE(w = 8) 87.53 138 78 87.23 168 81 81.05 218 335

w/ Greedy 86.73 227 89 86.35 243 91 83.74 312 436
w/ Beam(w = 4) 89.69 509 167 91.42 554 180 85.51 616 901
w/ Beam(w = 8) 90.89 819 273 91.74 855 319 87.23 1185 1637

BAE (WIR-Delete) 72.13 56 627 67.57 58 799 63.80 58 830
w/ PARSE(w = 1) 73.15 72 821 71.89 73 903 65.95 77 1011
w/ PARSE(w = 2) 74.43 89 970 72.87 92 1157 68.56 95 1248
w/ PARSE(w = 4) 74.63 108 1739 74.16 107 1971 70.34 125 2072
w/ PARSE(w = 8) 76.06 162 2758 74.88 169 2992 71.21 198 3228

w/ Greedy 77.39 229 3221 75.06 224 3719 71.33 234 4041
w/ Beam(w = 4) 79.98 384 5976 76.64 389 6731 75.50 395 7072
w/ Beam(w = 8) 80.65 494 10 679 78.92 568 12 493 76.32 642 12 929

DeepWordBug (WIR-Delete) 83.21 30 18 86.91 33 11 77.32 36 86
w/ PARSE(w = 1) 84.31 50 20 88.38 51 12 78.71 51 98
w/ PARSE(w = 2) 84.57 62 23 88.98 57 16 80.18 63 115
w/ PARSE(w = 4) 87.21 80 26 91.06 81 21 81.88 94 162
w/ PARSE(w = 8) 89.30 96 31 93.56 98 26 83.76 115 187

w/ Greedy 89.12 115 32 93.87 124 31 85.93 142 203
w/ Beam(w = 4) 92.20 254 58 95.56 249 48 91.32 179 419
w/ Beam(w = 8) 93.22 431 87 96.07 416 79 92.31 518 771

Table 3: Performance of different search methods when
searching on the search space of previous frameworks.
The original attacks use WIR-Delete as search method.

to give scores from 1 (best) to 5 (worse) to indicate
the Plausibility of 100 adversarial examples and
100 randomly picked normal examples. Table 4
shows the results on the quality of the generated ad-
versarial examples. PARSE effectively reduces the
increased grammar errors by increasing the search

Search method
#Increased USE

grammar errors similarity Perturbed% Plausibility

Normal - - - 3.15

Random 0.094 0.881 11.69 3.68
TIWO 0.063 0.893 10.72 3.51

WIR-Delete 0.101 0.894 10.05 3.46
WIR-A 0.104 0.896 10.01 3.45

WIR-UNK 0.097 0.897 9.95 3.45

PARSE(w = 1) 0.093 0.897 9.52 3.43
PARSE(w = 2) 0.091 0.897 9.59 3.42
PARSE(w = 4) 0.083 0.895 9.69 3.42
PARSE(w = 8) 0.077 0.895 9.76 3.39

Greedy 0.064 0.905 8.79 3.35
Beam(w = 4) 0.079 0.907 8.68 3.36
Beam(w = 8) 0.082 0.909 8.53 3.36

Genetic 0.074 0.880 11.21 3.37
PSO 0.089 0.896 10.18 3.35

Table 4: Quality of the adversarial examples crafted by
different search methods.

width w, while a larger w will increase the gram-
mar errors of the example crafted by beam search.
The effect of PARSE on maintaining the USE simi-
larity of sentences is similar to WIR and PSO meth-
ods and is just relatively 1.32% worse than greedy
search and beam search. PARSE perturbs fewer
words than WIR methods and only needs an aver-
age of 1.02% more perturbed words than greedy
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Figure 3: The comparisons of the #queries and time needed by different search methods to attack the adversarially
trained models. Line plot correspond to the axis of the same color. Bar plot indicates the accuracy under attack.
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Figure 4: The comparison of the transferability of ad-
versarial examples crafted by different search methods.

search and beam search. The results on plausibility
show that PARSE with larger w generates more
human-understandable adversarial examples. The
case study is shown in Table 6-12 in Appendix.

Adversarial Training and Model Robustness.
We randomly generate 1000 adversarial examples
by attacking LSTM on MR in HowNet with differ-
ent search methods, and then adversarially retrains
the LSTM with the generated adversarial examples.
Figure 3 shows the results on model robustness and
attack performance. The model trained with the
adversarial examples crafted by PARSE (w = 8)
has the highest average accuracy, indicating that
PARSE (w = 8) outperforms other methods in im-
proving model robustness. PARSE is effective and
efficient even when attacking robust models.

Transferability. We randomly generate 1000 ad-
versarial examples with different search methods
on MR in HowNet. Figure 4 shows the result of
transferability between LSTM and TextCNN. In-
creasing the beam width w in PARSE helps gener-
ate adversarial examples with higher transferability.
When w = 8, the transferability of adversarial ex-

#Increased USE
A.S% grammar errors similarity Perturbed%

PARSE (w = 1) 74.23 0.093 0.897 9.52
w/o Word Stability 72.47 0.097 0.897 9.95

PARSE (w = 2) 77.76 0.091 0.897 9.59
w/o Word Stability 74.45 0.095 0.894 10.05

PARSE (w = 4) 78.68 0.083 0.895 9.69
w/o Word Stability 76.74 0.096 0.893 10.12

PARSE (w = 8) 80.38 0.077 0.895 9.76
w/o Word Stability 77.23 0.101 0.892 10.45

Table 5: Influence of parameter w and word stability.
w/o word stability means the search method does not
make a distinction between the words of different sta-
bility, and PARSE (w = 1) w/o Word Stability equals
to WIR-UNK method.

amples crafted by PARSE outperforms all baselines
except beam search.

Ablation Study. Table 5 shows the influence of
word stability when attacking LSTM on 500 exam-
ples from MR in HowNet. We find that changing
the search space according to the word stability
increases the attack success rate and helps generate
adversarial examples with fewer grammar errors,
higher USE similarity, and fewer perturbed words.

5 Conclusion

This paper proposes PARSE, an efficient search
method for black-box adversarial text attacks,
which performs search under dynamic search space
following the subarea importance. PARSE can
achieve comparable attack success rates to complex
search methods while saving numerous queries and
time. The adversarial examples crafted by PARSE
are high quality and highly transferable. We hope
the analysis in our paper will inspire future work.
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A Appendix

Additional Details on Model
The TextCNN has a 300-dimensional GloVe em-
bedding layer (Pennington et al., 2014), a con-
volutional layer containing 150 filters with win-
dows sizes (3, 4, 5). The LSTM also has a 300-
dimensional GloVe embedding layer and a bi-
directional LSTM layer composed of 150 units.
We use the distilbert-base-uncased as Distil-
BERT (Sanh et al., 2019), which is a fast Trans-
former model with 40% fewer parameters than
BERT. The model used in Table 2 and Table 3 have
the accuracy on clean dataset as follow: (LSTM,
Yelp: 92.1%; LSTM, MR: 80.3%; TextCNN, Yelp:
91.4%; TextCNN, MR: 79.2%; DistilBERT, MR:
83.9%). Under our setting, attacking a base un-
cased version of BERT takes approximately 4 times
as long as attacking a base uncased version of
DistilBERT, and the beam search (w = 4), beam
search (w = 8), Genetic algorithm, and PSO fails
to attack 500 examples within one week when at-
tacking the examples from Yelp on GloVe search
space.

Additional Case Study
We give the case study of the adversarial examples
crafted with PARSE in Table 6-12. The green word
is the original word, and the following red word is
the substitution.

Method Perturbed Texts

PARSE(w = 1)
There is a general air vent of
exuberance ardour in all about the
benjamins that’s hard to resist.

PARSE(w = 2)
There is a general air notification of
exuberance fervor in all about the
benjamins that’s hard to resist.

PARSE(w = 4)
There is a general air propaganda
of exuberance eagerness in all about
the benjamins that’s hard to resist.

PARSE(w = 8)
There is a general air propaganda
of exuberance eagerness in all about
the benjamins that’s hard to resist.

Table 6: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)

Kids should have a stirring time at this
beautifully prettily drawn movie car-
toon. And adults will at least have a
dream image of the west to savor taste
whenever the film’s lamer instincts are
in the saddle.

PARSE(w = 2)

Kids should have a stirring time at this
beautifully prettily drawn movie car-
toon. And adults will at least have a
dream image of the west to savor taste
whenever the film’s lamer instincts are
in the saddle.

PARSE(w = 4)

Kids should have a stirring time at this
beautifully pretty drawn movie cartoon.
And adults will at least have a dream
image of the west to savor taste when-
ever the film’s lamer instincts are in the
saddle.

PARSE(w = 8)

Kids should have a stirring time at this
beautifully wonderfully drawn movie
cartoon. And adults will at least have a
dream image of the west to savor taste
whenever the film’s lamer instincts are
in the saddle.

Table 7: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)

It’s dark but has wonderfully bizarrely
funny recreational moments; you care
about the characters; and the action and
special effects are first-rate.

PARSE(w = 2)

It’s dark but has wonderfully bizarrely
funny recreational moments; you care
about the characters; and the action and
special effects are first-rate.

PARSE(w = 4)

It’s dark but has wonderfully bizarrely
funny recreational moments; you care
about the characters; and the action and
special effects are first-rate.

PARSE(w = 8)

It’s dark but has wonderfully suspi-
ciously funny recreational moments;
you care about the characters; and the
action and special effects are first-rate.

Table 8: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.
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Method Perturbed Texts

PARSE(w = 1)

In the director’s cut, the film is not
only a love song to the movies but it
also is more fully an example of the
kind of lush, all-enveloping movie
experience aftertaste it rhapsodizes
talks.

PARSE(w = 2)

In the director’s cut, the film is not
only a love song to the movies but it
also is more fully an example of the
kind of lush, all-enveloping movie
experience aftertaste it rhapsodizes
talks.

PARSE(w = 4)

In the director’s cut, the film is not
only a love song to the movies but it
also is more fully an example of the
kind of lush, all-enveloping movie
experience aftertaste it rhapsodizes
lectures.

PARSE(w = 8)

In the director’s cut, the film is not
only a love song to the movies but it
also is more fully an example of the
kind of lush, all-enveloping movie
experience aftertaste it rhapsodizes
lectures.

Table 9: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)

A smart brainy and funny ridiculous, al-
beit sometimes superficial, cautionary
tale narration of a technology tech in
search of an artist.

PARSE(w = 2)

A smart brainy and funny ridiculous, al-
beit sometimes superficial, cautionary
tale narration of a technology tech in
search of an artist.

PARSE(w = 4)

A smart brainy and funny ridiculous, al-
beit sometimes superficial, cautionary
tale narration of a technology tech in
search of an artist.

PARSE(w = 8)

A smart brainy and funny laughable, al-
beit sometimes superficial, cautionary
tale story of a technology tech in search
of an artist.

Table 10: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)

The wonderfully curiously lush drunk
morvern callar is pure punk existential-
ism, and ms. ramsay and her co-writer,
liana dognini, have dramatized the alan
warner novel, which itself felt like an
answer to irvine welsh’s book trainspot-
ting.

PARSE(w = 2)

The wonderfully curiously lush drunk
morvern callar is pure punk existential-
ism, and ms. ramsay and her co-writer,
liana dognini, have dramatized the alan
warner novel, which itself felt like an
answer to irvine welsh’s book trainspot-
ting.

PARSE(w = 4)

The wonderfully curiously lush drunk
morvern callar is pure punk existential-
ism, and ms. ramsay and her co-writer,
liana dognini, have dramatized the alan
warner novel, which itself felt like an
answer to irvine welsh’s book trainspot-
ting.

PARSE(w = 8)

The wonderfully singularly lush drunk
morvern callar is pure punk existential-
ism, and ms. ramsay and her co-writer,
liana dognini, have dramatized the alan
warner novel, which itself felt like an
answer to irvine welsh’s book trainspot-
ting.

Table 11: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)
The film is hard to dismiss – moody,
thoughtful, and lit fainted by flashes
blazes of mordant humor animation.

PARSE(w = 2)
The film is hard to dismiss – moody,
thoughtful, and lit fainted by flashes
blazes of mordant humor animation.

PARSE(w = 4)
The film is hard to dismiss – moody
listless, thoughtful, and lit by flashes
winks of mordant humor animation.

PARSE(w = 8)
The film is hard to dismiss – moody
listless, thoughtful, and lit by flashes
blazes of mordant humor vividness.

Table 12: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.
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Abstract

We analyze the learning dynamics of neural
language and translation models using Loss
Change Allocation (LCA), an indicator that
enables a fine-grained analysis of parameter
updates when optimizing for the loss function.
In other words, we can observe the contribu-
tions of different network components at train-
ing time. In this article, we systematically
study masked language modeling, causal lan-
guage modeling, and machine translation. We
show that the choice of training objective leads
to distinctive optimization procedures, even
when performed on comparable Transformer
architectures. We demonstrate how the vari-
ous Transformer parameters are used during
training, supporting that the feed-forward com-
ponents of each layer are the main contributors
to the optimization procedure. Finally, we find
that the learning dynamics are not affected by
data size and distribution but rather determined
by the learning objective.

1 Introduction

Neural models and Transformers in particular have
achieved a great performance in almost every nat-
ural language processing (NLP) task. However,
they largely remain black-box systems despite var-
ious efforts to analyze them. Much work has
been devoted to understanding the dense represen-
tations that are created during training (Pavlick,
2022; Saphra, 2021) in an attempt to see whether
known linguistic properties are present and how
they are expressed in the model (Vulić et al., 2020;
Raganato et al., 2020; Serrano and Smith, 2019).
However, the intrinsic dynamics of the training
procedure itself have not been analyzed in depth
for highly complex network architectures. In this
paper, we take a closer look into the process of
parameter optimization, aiming at

• identifying the network components that con-
tribute to the optimization of the loss function,

• revealing the effects of learning objectives and
network components on training dynamics,

• detecting the impact of training data size and
distribution on learning dynamics and param-
eter updates.

In order to enable a systematic comparison, we
set out with a standard architecture that we train
from scratch for each individual task. We use the
Transformer architecture (Vaswani et al., 2017)
with its common parametrization and size, and train
it with three popular learning objectives: masked
language modeling (MLM) (Taylor, 1953; Devlin
et al., 2019), causal language modeling (CLM), and
neural machine translation (NMT). The latter is an
interesting special case as it is designed as a condi-
tional language model in a sequence-to-sequence
architecture with encoder and decoder components.

For the analysis, we use Loss Change Allocation
(LCA) (Lan et al., 2019), an indicator of the con-
tribution of individual parameters to the decrease
of the total loss. Its accumulative properties pro-
vide us with a tool to perform a fine-grained anal-
ysis of the opaque optimization process of com-
plex Transformer-based neural NLP models. We
can, therefore, examine how individual layers and
sub-layer components contribute to the overall loss
function. This confers a unique view of the training
process and how the network parameters behave
during the learning procedures. Our analysis pro-
vides insight over the training dynamics broken
down over the model layers and sub-layer com-
ponents. On the one hand, we observe key dif-
ferences in the learning dynamics across the ob-
jective arise from the nature of the loss function;
depending whether being trained for gap-filling or
auto-regressive prediction. On the other hand, we
see clear differences linked to the nature of the
sub-layer components.

We use a consistent experimental setup to enable
a systematic and fair comparison between mod-
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els and learning objectives. With this, we can ob-
serve all parameters when training our models from
scratch. The methodology and setup are described
in detail in sections 2 and 3 before we move on to
our analyses and discussion of results in section 4.

2 Methodology

2.1 Neural architecture

All the models in our experiments optimize for
cross-entropy loss and are based on the Trans-
former architecture, which currently dominates the
entire field of NLP. We use a consistent setup of
overall 12 layers; for the machine translation model
the layers are divided into 6 each for the encoder
and the decoder. Each layer is comprised of multi-
headed attention and feed-forward modules that
also pass information via residual connections. The
essential parameters of the multi-headed attention
network include the so-called key WK , query WQ,
value W V and out WO parameters.1 We refer to
those parameters as the self-attention block. Key,
query and value are used independently H times
to compute a self-attention output vector, where
H is the number of heads. The heads are concate-
nated and down-projected to the dimension of the
model dh via the out linear transformation WO, to
be passed to a two-layered feed-forward network
(FFwd) creating the dense-layer representation. If
we obviate the biases, dropout and normalization
steps, we describe the interaction of the trainable
parameters (theW parameter matrices) in one layer
of the Transformer as follows:

Φ = X WΦ
i ; Φ = K,Q, V (1)

Zi = softmax(
QKT

√
dk

)V ; i = 1 : H

Z = [Z1, . . . , ZH ]W
O (2)

FF =W2 RelU(W1Z) (3)

All our models are set to dh = 512, dk = 64 and
H = 8, as is common practice. The decoder layers
used in the MT systems use an additional encoder-
decoder attention module in which the keys and
queries are computed using the last encoder layer
state, while the values come from the module’s
input signal.

1W denote the parameter matrices, as in Alammar (2018)

2.2 Training objectives

Machine Translation In the traditional encoder-
decoder approach to neural MT, the model pre-
dicts words in the target sentence, word by word,
i.e., given a source sentence X = (x1, . . . , xTx),
a target sentence Y = (y1, . . . , yTy) and a model
parametrized by θ, at each step the model learns
to provide estimates of the conditional probability
distribution P (yi|X, y1, . . . yi−1, θ). For this, we
train the standard Transformer for performing trans-
lation and then analyze its encoder and decoder.

Causal Language Modeling CLMs estimate the
probability of a word given the previous words in a
sentence. Formally, the model is trained with inputs
X = (x1, ..., xi−1) and outputs Y = (xi), to esti-
mate P (xi|x1, ..., xi−1, θ). We follow Radford and
Narasimhan (2018) and use stacked Transformer
decoder layers as models.

Masked Language Modeling The MLM objec-
tive is designed for predicting randomly masked
tokens from an input sentence. For our experiments,
we adopt the RoBERTa (Liu et al., 2020b) imple-
mentation of the MLM objective (Devlin et al.,
2019). Namely, we sample 15% of the tokens to
be predicted and replace the corresponding input
token by [MASK] 80% of the time, with a random
token 10% of the time and the other 10% is left
unchanged. This is done with dynamic masking,
so we generate the masking pattern every time we
feed a sequence.

For a sentence (x1, . . . , xT ), where token xi is
replaced with [MASK], the input to the model
is X = (x1, . . . , xi−1, [MASK], xi+1, ..., xT ) and
the output Y = (xi), by estimating P (xi|X, θ).

2.3 Loss Change Allocation

We use Loss Change Allocation (LCA) (Lan et al.,
2019) because it allows for a fine-grained analysis
of each network component. It measures the contri-
butions of each parameter to the change in the loss
function at each gradient update by decomposing
the components of an approximate path integral
along the training trajectory using a Runge-Kutta
integrator (Runge, 1895; Kutta, 1901).

To compute the change in loss due to a param-
eter φ ∈ RK update from step t to t + 1, the
LCA uses the first order approximation for the
change in loss during the (t + 1)-th training step
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L(φt+1)− L(φt) ≈
K−1∑

i=0

(∇φL(φt))(i)(φ(i)
t+1 − φ

(i)
t ),

where η(i) represents the i-th entry of any vector
η, and ∇φL(φt) is the gradient of the loss with
respect to φ evaluated at φt.

This formulation makes it possible to aggregate
the LCA over higher-level breakdowns because the
sum of all individual components equals the total
change in loss. This also holds for layer- and sub-
layer accumulations as each contribution has the
same fundamental units as the loss: nats for models
that optimize for cross-entropy loss, as is our case.

The LCA measure allows us to identify loss de-
creases at a per-parameter, per-timestep level. Put
simply, a negative LCA at a given parameter up-
date translates into that parameter being beneficial
for the optimization process because the LCA is
negative when that parameter’s component of the
gradient is negative. Conversely, positive LCA is
“hurting” the learning process, for instance caused
by noisy mini-batches where the gradient points
in the wrong direction or has too large a step size
for an irregular loss landscape (Lan et al., 2019;
Jastrzębski et al., 2019; Xing et al., 2019). In other
words, the raw value of the LCA is an intuitively in-
terpretable statistic that allows analyzing the train-
ing dynamics.

3 Experimental setup

Models. We apply the common Transformer base
settings of Vaswani et al. (2017). For consistency,
we train all the models using the same toolkit,
fairseq (Ott et al., 2019). We record the LCA at
every parameter update and refer the reader to Ap-
pendix A for a details on model hyper-parameters.

Data. In our main experiments we use the En-
glish - German portion of Europarl (Koehn, 2005).
We download, preprocess and split it using Opus-
Tools (Aulamo et al., 2020). We use 2.5k sentences
for dev and test, leaving a total of 1.9M sentences
in the training data. For all systems we learn and
apply byte-pair-encoding (BPE) segmentation (Sen-
nrich et al., 2016; Kudo and Richardson, 2018). For
the MT systems we use a 32k vocabulary shared
among source and target, while for the LMs we
train monolingual models, also with 32k vocabu-
lary.

We perform additional experiments to investi-
gate how different training signals may affect the
LCA, and hence the validity and limitations of our

conclusions. For these, we use data in different
languages (English, Estonian, German, Finnish),
domains (Europarl, WMT2), and of different sizes
(700k, 2M and 5M utterances). Details about all
experiments’ data and model settings can be found
in Appendices A and B.

4 Analyzing the training dynamics and
parameter contributions

In this section we systematically dissect the de-
velopment of the training process using the LCA
indicator. In section 4.1, we look at the overall pic-
ture by aggregating the contributions throughout
the entire training process. The aggregated figures
showcase differences that originate from the train-
ing tasks and contrast the monolingual LMs with
the sequence-to-sequence MT model. In section
4.2 we zoom into the iterative training procedure to
further analyze the dynamics of learning network
parameters over time. In section 4.3 we analyze
the individual attention heads and in section 4.4 we
look at the parameters that hurt the optimization
process.

4.1 Layer-wise contributions

In Figure 1 we depict the LCA aggregated over
all parameters within each layer component and
summed over all time steps. The plots reveal par-
ticular characteristics for the components of each
model, evidencing that the training dynamics are
highly dependent on nature of the sub-layers. In
particular, the difference in the order of magnitude
across the components, indicates that the optimiza-
tion process relies heavily on the feed-forward com-
ponents.

Across modeling objectives, the clearest differ-
ence can be seen in the shapes of the self-attention
block; the key, query, value and out parameters in
eq. (1) and (2). The MLM shows a concave trend,
where the main contributions are on the last layers
and, to some degree, on the first two layers, while
the middle layers display minor contributions. For
CLM, contributions are higher for layers 1 and 6-
10, with a tendency to be more evenly distributed
among all layers. It contrasts with the MLM by em-
phasizing the penultimate layers, not the final ones,
and shows a drop in the final layer contributions.
We refer to this bimodal shape as cup-and-handle
shaped from here on. In the MT setup, it is easy

2Including paracrawl, rapid 2016, europarl-v7, news-
commentary-v13 and commoncrawl
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Figure 1: LCA aggregated over all training steps results for individual components of different layers. Each bar
location in the x-axis denotes a separate layer.

to identify the transition from the encoder, and we
see that the key-query pair behave similarly, as do
the value-out pair. The encoder’s key-query be-
haviour peaks at the first layer, and falls drastically
at the second layer, showing a slight increase af-
terwards. Meanwhile, the value-out couple show a
more clear concave form with prominent initial and
final layers. The decoder’s key-query pair show a
cup-and-handle shape, and the value-out LCA is
similar but does not drastically decrease for the last
layer.

The feed-forward block components, W1 and
W2 in eq. (3), show a higher order of magnitude
and a similar shape for all models, with the highest
accumulated LCA value in the final layer. However,
MLM stands out by having strong contributions in
the fist layer and a steep increase towards the fi-
nal layers. Unlike the other models, the MLM
shows the same trend for all the sub-layer compo-
nents. The CLM shows monotonic increases over
all layers, with the particularity that layers 4-7 show
sharper jumps – noticeably, Layer 7 is where we
observe the change in trend for the attention-block
components. For the MT model, we again see the
separation between encoder and decoder with the
highest contributions at the end layers of each mod-
ule. The encoder shows linear increase, while the
decoder behaves more like the CLM model with
moderate contributions initially and high increase
towards the last layer.

Discussion. Under our controlled experimental
setup, it is reasonable to assume that the specific
behaviour observed in the learning dynamics stem
from the particularities of each task. Specifically,
the MLM performs the cloze task: has access to
all tokens in the sentence and decodes a few, non-
sequential tokens. We hypothesize that this forces

MLM to compose output representations simulta-
neously, leading to a higher amount of information
flowing into upper layers. This is consistent with
previous research stating that MLMs recreate token
identity in later layers, and more contextualized rep-
resentations (Voita et al., 2019a; Ethayarajh, 2019).
In contrast, the CLM has access to previous tokens
only and generates the following one. The left-
to-right decoding, may also be the reason for the
shape of the attention parameters. The model sees
only the past context, and hence depends more on
the middle layers. Some support for this hypothesis
comes from Ethayarajh (2019), showing that CLMs
produce more context-specific representations as
early as layers 4–5, presumably to predict the next
word more accurately. Also, Voita et al. (2019a)
demonstrate that when advancing across the layers
of the [CLM] network, the system loses informa-
tion about input and accumulates information about
output, that is, the context in the CLM case. More-
over, middle layers potentially help learning more
fine-grained syntactic information on MLMs (Ten-
ney et al., 2019), a behavior that may become more
prominent for CLMs due to its nature, although we
leave the testing of this hypothesis for future work.

For the MT model, the task at hand also dictates
the observed behaviour. By design, the encoder
is more similar to an MLM because it has access
to all tokens in the source side, while the decoder
has more similarities to a CLM. We observe that
the training dynamics behave accordingly – espe-
cially the self-attention parameters, with the slight
differences arising perhaps from translation being
a more complex task (see Voita et al. (2021) for a
discussion on how NMT is a composition of sev-
eral sub-tasks). MT also requires a higher capacity
from the model. The encoder–decoder bottleneck
triggers this even further making clear why we,
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as Zhu et al. (2020), observe peaks at the transi-
tion from encoder layers to decoder in W1 and W2.
The encoder transfers information to the next stage
where the decoder starts its generative task.

Finally, we observe higher-magnitude contribu-
tions from the feed-forward block for all models
may be due to the differences in the update frequen-
cies. This was noted by Zhu et al. (2020) between
sparse and dense layer, but this argument can be ex-
tended to the difference in feed-forward and atten-
tion blocks contributions, since the attention block
updates are relative to the token they score from
the input (see eq. 1), whereas feed-forward block
updates are relative to all tokens. In accordance
with Mickus et al. (2022), who show the high rel-
ative importance of the feed-forward components
in the token representations, our results also sug-
gest that when analyzing Transformer-based mod-
els and their representations the feed-forward mod-
ules should not be discarded in favor of the more
readily interpretable multi-headed attention com-
ponents.

4.2 The learning dynamics over time

So far, we have pointed out the time-collapsed be-
haviour in the self-attention and the feed-forward
components of each layer. In this section, we show
the particular dynamics of the LCA values over the
course of training (Figure 2), analyzing the parame-
ters in two broad groups: the feed-forward parame-
ters W0 and W1 from eq. (3), and the self-attention
block parameter matricesWΦ for the key, query
and value parameters from eq. (1). Since the
LCA presents a high variance during training, mak-
ing the learning process fuzzy, as noted by Lan
et al. (2019), the trends in Figure 2 were obtained
using moving averages with a window of 1k steps.

All models show that the largest LCA values are
observed early during training, denoting a fast ini-
tial learning phase, after which the gradient descent
learning dynamics transitions to a much slower ex-
ploration phase, in line with the findings of Feng
and Tu (2021). The plots also reveal the conver-
gence property (Raghu et al., 2017) in action, by
which earlier layers tend to converge faster. How-
ever, the MLM presents a distinctive behavior in
the initial and final layers. The embedding layer,
as well as layers 1, 10–12 contribute substantially
to the overall loss optimization especially in the
beginning of the training runs. Moreover, these lay-
ers present oscillations for much longer and with

larger magnitudes. In contrast, the middle layers do
not show substantial activity throughout the entire
training process in MLM. These parameters con-
verge early during training, particularly those in the
self-attention block. CLM and MT parameter con-
tribution patterns display many similarities in shape
across almost all layers and blocks. MT displays
a smoother convergence than CLM, especially for
layers 7–10. The most significant contributions in
CLM clearly come from layers 7–9 in the atten-
tion block and the layers 7–12 of the feed-forward
block. These higher activations in the middle lay-
ers also exhibit the most striking differences to the
MT model.

Discussion. We observe that some of the parame-
ters settle remarkably early, with very minor con-
tributions to the loss decrease after an initial phase.
This is in line with Lan et al. (2019), who, after ana-
lyzing the noisiness of the training process, suggest
to freeze parameters that harm the optimization
process since it sheds light on the connection be-
tween LCA and how parameters are optimized for
the task at hand. In other words, some parame-
ters are not that relevant after the initial training
phase, where the loss decreases drastically. On the
contrary, the MLM later layers take a significantly
longer time to settle. Feng and Tu (2021) show that
in SGD optimization with mislabeled data points,
the parameters go through a late retrofitting phase
in which they try to learn to account for the mis-
labeled data. In our case, we do not have a set
of correct-incorrect labels, but we do the random
masking for the cloze task on-the-fly, implying
that the training data contains a lot of examples
with easy-to-learn rules, and some rarer harder-to-
generalize exceptions. We draw a comparison to
such retrofitting in the observed oscillations of the
MLM initial and final layers, since MLM mostly
induces learning at independent lexical level (as en-
coded in the initial embedding layer) and the most
contextualized layers at the end of the self-attention
chain.

As noted in section 4.1, the essential operational
difference across objectives can explain the behav-
ioral similarities of CLM and MT in comparison to
MLM. The latter extensively uses contextualized
information to predict lexical gaps and, therefore,
requires strong word embeddings and a careful con-
nection of contextual clues in both directions. CLM
and MT, on the other hand seem to require more
iterative knowledge from all layers forcing more
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Figure 2: Training dynamics trends decomposed over time for the three learning objectives. The embeddings layer
plot is the same on both rows, and it shows a different scale for visualization purposes.

adjustments throughout the entire network.
When focusing on the difference between atten-

tion and feed-forward components, we observe that,
compared to the attention parameters, the feed-
forward components of CLM- and MT-objective
models seem to converge at a much later stage
and have a higher contribution to the loss decrease,
particularly at layers 10–12. This backs up the ob-
servations made by Wang and Tu (2020), where
self-attentive components were empirically found
to be less important for machine translation. For
reference, the mechanism by which these feed-
forward components operate is described by Geva
et al. (2021). Previous studies have also concluded
that attention in MT relies heavily on fixed posi-
tional connections (Raganato et al., 2020; Voita
et al., 2019b). This means that their contribution to
reducing the loss is limited once the essential atten-
tion patterns have been established and learned.

4.3 The training dynamics of individual
attention heads.

Aggregating over all attention heads as we have
done so far could hide variations present across
them. Therefore, in Figure 3 we plot the contri-
butions of each individual head over the entire
training period, for each of the self-attention block
parameter matrices WΦ from eq. (1). First, we ob-
serve some redundancy in that many of the differ-
ences between contributions measured across heads
of the same layer are negligible. Second, we also
see that some layers’ heads range from light green
to dark violet (see e.g., MLM-1, -9 & -12, CLM-3
& -7, MT-5 & -7). These simultaneous behaviours
can be tied to the idea of attention heads special-
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Figure 3: Contribution from individual attention heads,
presented as normalized LCA values. Normalization is
performed over the entire heatmap.

ization (Voita et al., 2019b), by which some heads
serve specific purposes. The observations also pro-
vide support for the observed redundancy in at-
tention heads, which allows to effectively prune
models without compromising prediction quality
(Michel et al., 2019; Zhang et al., 2021). More-
over, most of the layers presenting no clear differ-
ences highlights the similarity in learning dynamics
across all of the attention heads. This is consistent
with findings from Clark et al. (2019), who argued
that the apparent redundancy in BERT’s attention
heads is the result of attention dropout.

4.4 Noise in the optimization process

Using LCA to analyze the optimization process
provides an additional insight to it, by identifying
if there are parameters that hurt the training process,
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To focus on the positive LCA we only show the interval
[0,1]. We observe that positive LCA in later stages of
training is present almost exclusively in attention block
parameters, on layers 2–5, consistent with Fig. 1.

causing the total loss to increase instead of decrease.
We check whether there are any such parameters
in our models, and if so, at which phase during
training they hurt the loss optimization. Lan et al.
(2019) argue that the training process is notoriously
noisy and they even recognize that some full layers
hurt the training process.

CLM MLM MT
emb. 2 0 2
key 29 1565 64
query 24 2055 64
value 24 24 130
out 24 6 113
W1 24 0 59
W2 24 0 131
Last step w/positive 1072 59727 2673
Overall max. 5.58 (key) 68.18 (value) 95 (W2)

Table 1: Summary of parameters that hurt the training
process. We show the number of times a block of pa-
rameters has positive LCA, the last training step where
this happens, and the magnitude of the parameter with
the highest positive LCA value.

In our experiments, we rarely observe this phe-
nomenon for the CLM and MT objectives. The
loss-hurting behavior only seems to occur at the
beginning phase of training, specifically during the
first couple of thousand steps, which corresponds
to at most 3% of the total time. Moreover, the
magnitude of such parameters is also rather low,
in the order of 1e1. However, it should be noted

that, since we are observing the component-wise
aggregated contributions of parameters, we expect
the effect to be “neutralized” by highly negative
parameters within the corresponding components,
resulting in the relatively low sums.

A different behavior is again shown by the MLM-
objective (Figure 4). The MLM objective presents
several positive LCA values occurring at much later
stages of training. We interpret this as evidence of a
comparatively noisier optimization process for the
MLM objective. This is consistent with section 4.2,
where we see that the MLM parameters converge
much later. We depict the positive LCA values
from different layers of MLM in Figure 4 to under-
stand if such harmful contributions are specific to
single layers, or are distributed over the entire net-
work. The results show fairly clear localization to
certain components of the lower layers especially
for the later stages of training.

We emphasize that, contrary to findings in Lan
et al. (2019), in none of our experiments do we ob-
serve a full layer or sub-layer damaging the training
process. This might be due to the nature of the dif-
ference in the task, architectures, and the size of
the networks used in their analysis. 3

4.5 Effect of data size and distribution

To see the robustness of our findings against vary-
ing training datasets, we replicated the experiments
presented so far using training data of different
sizes (700k, 2M and 5M), domains (Europarl and
WMT) and languages (English, German, Finnish
and Estonian).4 A summary of results is presented
in Figure 5, with detailed plots for each setting
available in the appendix B.2, Figure 6.

These additional experiments show consistent
training-dynamic trends, regardless of the immedi-
ate training data properties. We observe two differ-
ences. First, the learning dynamics of the Estonian
MLM system, based on smaller data, are the most
different.5 We do not observe a clear concave shape
in the attention block components as for the other
languages. Also, we see that the initial layers are
more heavily responsible for the loss optimization.
Trained with smaller data, the Estonian MLM still
presents small contributions of the parameters in

3The authors analyze networks trained for image process-
ing, using convolutional NNs with 5, 9 and 20 layers.

4For all the experiments, we use the same models and
hyper-parameters (see Appendix A)

5We mark it with a dashed line and Figure 6 in the appendix
shows the individual plots
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Figure 5: LCA aggregated over all training steps results for individual components of different layers. Each color
corresponds to a loss function and each shade to a different model.

the middle layers, a characterizing behavior seen
in all of the MLM systems we trained. Second, we
observe that the CLM objective for English and
German have a higher response in relatively early
layers of the attention components, when compared
to Finnish and Estonian. However note that the
general CLM trend towards peaking contribution
in penultimate layers exists for all four languages.
The other cases seem very robust in their trends to
the different settings, and do not present qualita-
tively differences in their behavior.

We interpret the observed stability of the results
not only as a way to verify their validity, but also
as an indication that the parameters’ contributions
to the optimization process are determined mainly
by the choice of architecture and objective function
and not so much by the training signal in the data.
In particular, we argue that the training dynamics
we observe are independent of the particular syntac-
tic structure of different languages. On top of this,
variations on data domains and size of the train-
ing data, show how the parameters’ contributions
to the change in loss are not tied to the semantic
information of the training data. On the contrary,
changes in the trends consistently correlate with the
objective functions, over all those different settings.

5 Related work

The role of the inner representations, and internal
behaviors of neural models in NLP have been exten-
sively studied (Rogers et al., 2021; Pavlick, 2022).
Relevant directions investigate, for instance, the
geometry of the learned representational spaces
(Ethayarajh, 2019; Vázquez et al., 2021), prob-
ing the learned representations with simple classi-
fiers (Vulić et al., 2020; Apidianaki and Garí Soler,
2021), and the attention patterns at each step in the

sequence (Voita and Titov, 2020; Raganato et al.,
2020). Regarding the attention mechanism, while
in the past, analyses have tended to focus on the
role of the self-attention mechanism as an explana-
tory mechanism (Jain and Wallace, 2019; Serrano
and Smith, 2019), recent work has been more nu-
anced about whether this is even necessary (Bast-
ings and Filippova, 2020). Wiegreffe and Pinter
(2019) argue that the attentive components are not
inherently separable from the rest of the model;
this has sparked analyses of attention models not di-
rectly involving attention weights. Kobayashi et al.
(2020) analyse vector norms and find reasonable
word alignment, while Geva et al. (2021) show that
feed-forward components act as key-value stores.
Ravishankar et al. (2021) analyse the effect of freez-
ing different components on the interpretability of
the attention mechanism, and Mickus et al. (2022)
use a novel decomposition of Transformer embed-
dings to isolate the impact of the network compo-
nents, showing that multi-head attention accounts
for a small proportion of the embeddings.

Most such works tend to test and analyse fixed
model checkpoints While there is value to analyz-
ing these models over the course of the training
process, much work in this direction emerged from
outside the NLP community; e.g., LCA was first
proposed and tested using only vision classification
datasets (Lan et al., 2019), and it has been used
since in NLP to analyze NMT training dynamics
(Zhu et al., 2020). Saphra and Lopez (2019) present
another early work on the analysis of the training
dynamics of LMs; Kaplan et al. (2020) investi-
gate the language modeling loss on model architec-
ture, size, amount of training data and computing
power. Their work was key for the development of
large-scale pretrained models like GPT-3 (Brown
et al., 2020) and Switch-Transformers (Fedus et al.,
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2021). Liu et al. (2020a) analyze the training dy-
namics of Transformer-based models based on the
stability of the gradients, leading them to propose
an adaptive model initialization method.

6 Conclusions

In this work, we take a closer look at the learn-
ing dynamics of Transformer-based models using
the loss change allocation (LCA) indicator. Specif-
ically, we analyze the training dynamics for (1)
masked language modeling, (2) causal language
modeling, and (3) machine translation training ob-
jectives. We find that the training dynamics seem to
be delimited by the training objective being either
a gap-filling task or an auto-regressive prediction
task, despite the similarities that the models present.
In particular, the different layers of each model be-
have accordingly to the training objective used. We
also show that the feed-forward blocks contribute
more than the attention blocks to the decrease in
loss during training, a finding that strengthens the
relative importance of the former, and invites more
research to understand this currently more obscure
component.

We also show that these dynamics are robust
against changes in the size and distribution of the
training data. The overall trends stay the same with
different domains and languages reassuring that
our findings are not just an artefact of a specific
setup. In future work, we would like to study the
training dynamics of systems trained with differ-
ent optimizers and regularization techniques, such
as, attention dropout or data augmentation. We
would also like to investigate the influence of noisy
training data on the training process. For this, we
can apply controlled shuffling to the training data
to influence the noise level and gradually remove
syntactic information from the training signal.
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A Model hyper-parameters

We train all our models using the fairseq-toolkit
6, using a single Nvidia V100 GPU for 48 hours.
In Table 2, we present a summmary of the set of
hyper-parameters used in all cases.

Parameter Value
num. layers 12 7

att. heads 8
embeddings dim. 512
ffwd hidden dim. 2048
update-freq 16
precision fp16
total-num-update 125000
warmup-updates 8000
lr-scheduler polynomial decay
lr 0.0005
optimizer adam (2015)
adam-betas (0.9, 0.98)
adam-eps 1e-06
weight-decay 0.01
clip-norm 0.0
dropout 0.1
attention dropout 0.0
activation-fn relu
tokens-per-sample 512
max-tokens-per-sample 2048

Table 2: Set of hyper-parameters shared across all our
models

B Additional experiments

B.1 Data

In Table 3 we summarize the size of the datasets
used in our all experiments. We use the parallel
datasets when training MT systems, while for the
monolingual LM objective, we use only the target
side of the corpus. Specifically for English, we use
the source sentences of the En-De datasets.

In a nutshell, the experiments presented in sec-
tion 4 use the En-De portion of the Europarl dataset,
and we test the performance with that test split and
the newstest2018. For the experiments referred in
section 4.5 we train monolingual LMs in English,
German, Finnish and Estonian and bilingual MT
systems for En-De, En-Fi, and En-Et, as well as

6https://github.com/pytorch/fairseq
7For the MT models we use 6 layers for each, encoder and

decoder

the inverse translation directions De-En, Fi-En and
Et-En using the respective Europarl data B.2

Dataset Languages # Sentences
Train Val. Test

Europarl
En-De 1.92M 2.5K 2.5K
En-Fi 1.91M 2.5K 2.5K
En-Et 0.7M 2.5K 2.5K

WMT-2018 En-De 5M 3K -

newstest2018
En-De - - 2.9K
En-Fi - - 3.0K
En-Et - - 2.0K

Table 3: Size of the train, validation and test splits for
the datasets used in all experiments.

B.2 Results
Figure 6 shows the aggregated LCA values in addi-
tional experiments using four different languages
and language pairs.
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Abstract

We propose a new approach, Knowledge Dis-
tillation using Optimal Transport (KNOT), to
distill the natural language semantic knowledge
from multiple teacher networks to a student
network. KNOT aims to train a (global) stu-
dent model by learning to minimize the optimal
transport cost of its assigned probability distri-
bution over the labels to the weighted sum of
probabilities predicted by the (local) teacher
models, under the constraints that the student
model does not have access to teacher mod-
els’ parameters or training data. To evaluate
the quality of knowledge transfer, we intro-
duce a new metric, Semantic Distance (SD),
that measures semantic closeness between the
predicted and ground truth label distributions.
The proposed method shows improvements in
the global model’s SD performance over the
baseline across three NLP tasks while perform-
ing on par with Entropy-based distillation on
standard accuracy and F1 metrics. The im-
plementation pertaining to this work is pub-
licly available at https://github.com/
declare-lab/KNOT.

1 Introduction

Due to recent technological advancements, more
than two-thirds of the world’s population use mo-
bile phones*. A client application on these de-
vices has access to the unprecedented amount of
data obtained from user-device interactions, sen-
sors, etc. Learning algorithms can employ this
data to provide an enhanced experience to its users.
For instance, two users living wide apart may have
different tastes in food. A food recommender ap-
plication installed on an edge device might want
to learn from user feedback (reviews) to satisfy the
client’s needs pertaining to distinct domains. How-
ever, directly retrieving this data comes at the cost
of losing user privacy (Jeong et al., 2018).

*https://datareportal.com/
global-digital-overview

Figure 1: KNOT framework: Local models acting as
multiple teachers trained locally on user data while the
global model acts as a student. The global model can
only observe predictions of local models.

To minimize the risk of leaking user informa-
tion, Federated Learning (FL) is a class of algo-
rithms that proposes an alternative learning mecha-
nism (Konečnỳ et al., 2016; McMahan et al., 2017).
The parameters from the teacher networks, i.e.,
user (domain)-specific local models are retrieved
to train a student network, i.e., a user (domain)-
generic global model. The classic FL algorithms
such as federated averaging and its successors are
based on averaging of local model parameters or
local gradient updates, and thus only applied when
the global and local models possess similar net-
work architectures. Additionally, FL has critical
limitations of being costly in terms of communi-
cation load with the increase in local model sizes
(Mohri et al., 2019; Li et al., 2019; Jeong et al.,
2018; Lin et al., 2020). Another set of algorithms,
Federated Distillation (FD), propose to exchange
only the outputs of the local model, i.e, either log-
its or probability measures whose dimensions are
usually much smaller than the parameter size of
models themselves (Jeong et al., 2018). Thus, it
enables learning from an ensemble of teacher local
models of dissimilar architecture types. In contrast
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to FL, FD trains the global student model at re-
duced risk of user privacy, lower communication
overhead, and lesser memory space utilization. In
this work, we base our problem formulation under
FD setting where global model can access the lo-
cal model outputs without visibility over local user
data or model parameters (Figure 1).

Since the Kullback–Leibler (KL) divergence is
easy to compute, facilitates smooth backpropaga-
tion, and is widely used (Murphy, 2012), it became
standard practice to use it to define the objective
function in most FD algorithms (Gou et al., 2021;
Lin et al., 2020; Jeong et al., 2018). However, a crit-
ical limitation of such entropy-based losses is that
they ignore any metric structure in the label space.
For instance, in the task of fine-grained sentiment
classification of text, strongly positive sentiment is
closer to positive while far from strongly negative
sentiment. This information is not fully utilized by
the existing distillation algorithms.

Contrary to entropy losses, Optimal Trans-
port (OT) loss admits such inter-class relation-
ships as demonstrated by Frogner et al. (2015).
Thus, we propose an OT-based approach, KNOT
(KNowledge distillation using Optimal Transport),
for knowledge distillation of natural language se-
mantics encoded in local models under FD setting.
To improve the semantic knowledge transfer from
local models to the global model acting as multiple
teachers-single student framework, we explicitly
encode the inter-label relationship in distillation
loss in terms of the cost of probability mass trans-
port. Thus, the major contributions of this work
are:

Contribution:1 (C1) For the tasks with intrinsic
inter-class semantics, we propose a novel optimal
transport-based knowledge distillation approach
KNOT for distillation from an ensemble of multiple
teacher networks under FD setting.

The problem of bias distillation: Local models
are prone to possess biases that might get trans-
ferred to the global model during distillation. The
bias in a local model can potentially arise from
the user-specific local data that is potentially non-
independent and non-identically distributed (non-
IID). One such bias is population bias, i.e., the local
user may not represent the target overall population
(Mehrabi et al., 2019). This motivates our second
contribution:

Contribution:2 (C2) To reduce the potential risk
of bias transfer from local models to global, KNOT

employs a weighted distillation scheme. The lo-
cal model with a higher L2 distance of predicted
probabilities from its intrinsic bias (a distribution)
is given higher importance during distillation.

It is important to note that the application of C2
in KNOT does not warrant the C1 setting to be
satisfied and vice versa. As shown in Figure 1, the
global model Mg aims to learns from the weighted
sum of distance D1, . . . , Dn with weights being
w1, . . . , wn. WhereDk’s represents the divergence
of the global model’s prediction from k

th local
model’s prediction. This constitutes our C1. The
wk’s are obtained via C2. To validate the fitness of
C1 and C2, we also derive generalization bounds
of the proposed distillation mechanism.

Next, we introduce a metric called Semantic Dis-
tance (SD). It helps us evaluate the semantic close-
ness of the model’s output from the ground truth
distribution.

Semantic Distance (SD)

Most performance metrics, such as accuracy and
F1, observe the label with the highest logit (or
probability) against ground truth, hence, ignore the
overall probability distribution over labels. How-
ever, for tasks with inter-class relationships, the
predicted distribution shape can be of great impor-
tance. Therefore, we define a new performance
metric—Semantic Distance (SD)—that measures
the semantic closeness of the output distribution
against the ground truth. Given a label coordi-
nate space, SD is defined as the mean Euclidean
distance of the expected value of output from the
ground truth label. For instance, given the senti-
ment labels {1, 2, 3, 4, 5}, the output probabilities
of two models m1 and m2 to a strongly negative
text input be {0.2, 0.7, 0.033, 0.033, 0.033} and
{0.4, 0.1, 0.1, 0.1, 0.3}, respectively. The argmax
of m2 is correct. However, even when the argmax
of m1 is incorrect, the expected value of m1, i.e.,
1.97 is closer to the ground truth label 1 than m2,
i.e., 2.80, and thus semantically more accurate†.
A low score denotes a more semantically accurate
prediction. The lowest possible value of SD is 0
while the highest possible value depends on the
number of labels and their map in the semantic
space. For datasets with class imbalance, we first
calculate label-wise SD score values and compute
their mean to report the SD score on the task.

†Expect value of m1={1 × 0.2 + 2 × 0.7 + 3 × 0.033 +
4 × 0.033 + 5 × 0.033}
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Figure 2: Box plot showing expectation of output proba-
bilities for SA task. Horizontal and vertical axes denote
ground truth sentiment labels. Sinkhorn denotes loss
based on optimal transport.

Motivation behind SD. We study the useful-
ness of the SD metric, for the sentiment analy-
sis, we draw box plots of pretrained global models
via Entropy (KL-divergence) and OT-based loss
(Sinkhorn). As shown in Figure 2, we observe the
median SD of OT (green box, red line) is closer to
the ground truth sentiment classes—1,2,3, and 5 as
compared to the median SD of Entropy (blue box-
red line). Similarly, the means (black diamond),
the first quartile (25% of samples), and the third
quartile (75% of samples) for the OT-based model
are closer to the ground truth ‡.

As a critical finding of this work, OT outper-
forms baselines on the SD metric. The experiments
are carried out on the three natural language under-
standing (NLU) tasks, i.e., fine-grained sentiment
analysis, emotion recognition in conversation, and
natural language inference. OT achieves on par
with the baselines on the standard performance
metrics such as accuracy and Macro F1.

2 Related work

There have been many approaches to FL such as
local model parameter averaging based on local
SGD updates (McMahan et al., 2017; Lin et al.,
2018). It warrants global and local models to have
the same model architecture. Another line of work
is multiple-source adaptation formulations where a
learner has access to source domain-specific predic-
tor without access to the labeled data. The expected
loss is the mixture of source domains (Hoffman
et al., 2018). Even though the formulation is close,
our solution to the problem is different as we do not
have access to the local or global data domain dis-
tribution. In Natural Language Processing (NLP),

‡The training setup is described later in Section 6.

Hilmkil et al. (2021); Lin et al. (2020); Liu and
Miller (2020) fine-tune Transformer-based archi-
tecture in the federated setting. However, they do
not leverage label space semantics and the analysis
is restricted to small-scale datasets.

Closest to our work aims to improve local client
training based on local data heterogeneity (Li et al.,
2018; Nedic, 2020). Knowledge distillation aims to
transfer knowledge from a (large) teacher model to
a (smaller) student model (Hinton et al., 2015; Bu-
ciluǎ et al., 2006). Given the output logit/softmaxed
values of the teacher model, the student can imitate
the teacher’s behavior (Romero et al., 2014; Tian
et al., 2019). A few works are dedicated to the
distillation of the ensemble of teacher models to
the student model. This includes logit averaging of
teacher models (You et al., 2017; Furlanello et al.,
2018) or feature level knowledge extraction (Park
and Kwak, 2019; Liu et al., 2019).

To the best of our knowledge, there is no prior
work that aims to leverage OT to enhance the distil-
lation of semantic knowledge in local models under
the FD paradigm. We use standard and widely used
entropy-based loss (KL-divergence) as our baseline
to compare with C1. We also construct two base-
lines for confidence score calculation from the prior
works, i.e., logit averaging and weighting scheme
based on local model dataset size (McMahan et al.,
2017). This is to compare the contribution of C2.

3 Optimal Transport

Traditional divergences, such as KL, ignore met-
ric structure in the label space Y . In other words,
they do not allow the incorporation of inter-class
relationships in the loss function. Contrary to this,
optimal transport metrics can be extremely useful
in defining inter-class semantic relationships in the
label space. § The proposed approach, KNOT, uti-
lizes OT in semantic FD settings for tasks, such
as sentiment analysis, where inter-class relations
can be encoded in the label space. Specific to stud-
ied classification problems, we focus on discrete
probability distributions. Assume the label space
Y possess a metric dY(⋅, ⋅) that establishes the se-
mantic similarity between labels. The original OT
problem is defined as a linear program (Bogachev
and Kolesnikov, 2012). Let µi and νj be the proba-
bility masses respectively applied to label i ∈ Ys
and label j ∈ Yt. Let πi,j be the transport assign-

§OT offers an additional advantage when measures have
non-overlapping support (Peyré et al., 2019).
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ment from the label i to j that costs C(i,j), i.e., an
element of the cost matrix C. We denote Frobe-
nius inner product by ⟨⋅, ⋅⟩. Rather than work with
pure OT (Wasserstein) distances, we will restrict
our attention to plain regularized OT, i.e, vanilla
Sinkhorn distances. The primal goal is to find the
plan π ∈ Π(µ, ν) that minimizes the transport cost
Definition 3.1. Vanilla Sinkhorn Distance

Tε(µ, ν) def.= min
π∈Π(µ,ν)⟨π,C⟩ + εDKL(π, µ⊗ ν)

Π(µ, ν) = {π ∈ (R+)ns×nt ∣ ∑
j∈Yt

π(i,j) = µi
and ∑

i∈Ys

π(i,j) = νj}
(1)

where,

DKL(π, µ⊗ ν) = ∑
i,j

[πi,j log πi,j
µiνj

− πi,j + µiνj],
ns = ∣Ys∣ and nt = ∣Yt∣. For the considered

classification tasks, Ys = Yt = Y .
Entropic regularisation of OT convexifies the

loss function and thus is a computational advantage
in computing gradients (Luise et al., 2018; Peyré
et al., 2019; Feydy et al., 2019). As ε → 0

+, we
retrieve the unregularized Wasserstein distance.

4 Methodology

4.1 Problem framework
The main participants in KNOT framework are:
1) a set of K local models {Mk}k∈K, K ={1, . . . ,K}, and 2) a global model Mg. We de-
note the set of local models {Mk}k∈K byMK.

• A local model learns a user-specific hypothe-
sis hk ∈ Hk on the K th user-generated data.

• The global model Mg aims to learn a user-
generalized hypothesis hθ ∈ Hg that exists on
the central application server.

Learning goal. For a given input sample, Mg

has access to the predictions of the local models.
Thus, global model training can benefit from the
hypotheses of local models collectively denoted by
hK. However, since we aim for secure distillation
(FD),Mg can not retrieve the local models’ param-
etersMK or the user-generated data¶. The global
model is generally preoccupied with the knowledge
generalizable across the users. The distillation task

¶The user-generated data is available to user-specific local
model only.

aims to merge the (semantic) knowledge of local
models hK into the knowledge of global model hθ.
The knowledge transfer happens with the assistance
of a transfer set.

Transfer set. It is the set of unlabeled i.i.d. sam-
ples that create a crucial medium for transferring
the knowledge from the local models to the global
model. To facilitate the knowledge transfer, we
obtain the soft labels from local model predictions
on the transfer set. The labels are used as ground
truth forMg and hθ is tuned to minimize the dis-
crepancy between global modelMg’s output and
the soft labels.

Since only the hK is shared withMg to tune hθ,
the local models can have heterogeneous architec-
tures. This is useful when certain client devices do
not have enough (memory and compute) resources
to run large model architectures. It is noteworthy
that our approach, KNOT, satisfies this property,
however, we do not explicitly perform experiments
on heterogeneous local model architectures.

4.2 Ensemble distillation loss

For demonstration, we consider a user application
that performs sentiment classification task on user-
generated text x(i) = (x(i)1 , x

(i)
2 , . . . , x

(i)
n ) ∈ X

into its sentiment y(i) ∈ Y , where X denotes the
input space of all possible text strings and the label
space defines as

Y={1(strong negative), 2(weak neg-
ative), 3(neutral), 4(weak positive),
5(strong positive)}.

In this work, all the hypotheses are of the form
h ∶ X ↦ ∆

Y , ∆Y denotes a probability distribution
on the set of labels Y . Under KNOT, we propose a
learning algorithm that runs on the central server to
fitMg’s parameters θ by receiving predictions such
as (softmaxed) logits from hK. Without the loss of
generality, the goal is to search for a hypothesis hθ̂
that minimizes the empirical risk

hθ̂ = argmin
hθ∈H

{ÊS[ Lε(hθ(x), hK(x)) ] = (2)

1

N

N

∑
i=1
Lε(hθ(x(i)), hK(x(i)))}.
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SA ERC NLI
Cell Cloths Toys Food IEMOCAP MELD DyDa{1,2,3} Fic Gov Slate Tele Trv SNLI

train 133,574 19,470 116,666 397,917 3,354 9,450 21,680 77,348 77,350 77,306 83,348 77,350 549,367
valid 19,463 28,376 17,000 57,982 342 1,047 2,013 5,902 5,888 5,893 5,899 5,904 9,842
test 37,784 55,085 33,000 112,555 901 2,492 1,919 5,903 5,889 5,894 5,899 5,904 9,824

score 0.49 0.52 0.49 0.64 0.55 0.45 0.38, 0.34, 0.40 0.63 0.65 0.62 0.65 0.63 0.85

Table 1: Data statistics and performance of local models: For SA and ERC tasks, the score denotes the Macro F1
performance metric, while it denotes the Accuracy metric for NLI.

Figure 3: Semantic coordinates of SA, ERC, and NLI.

The loss is defined as

Lε(hθ(x(i)), hK(x(i))) = (3)

∑
k∈K

WBk(hk(x(i))) Tε(hθ(x(i)), hk(x(i)))
where Tε(⋅, ⋅) is the discrepancy between the two
probability measures as its arguments; WBk(.) is
the sample-specific weight assigned to the kth local
model’s prediction. Next, we elaborate on the the
functions Tε(⋅, ⋅) and WBk(.) which are crucial
for the KNOT algorithm.

5 Sinkhorn-based distillation

As an entropy-based loss, we adopt KL divergence.
As discussed in Section 3, we employ Sinkhorn
distance to implement OT-based loss which is the
proposed KNOT algorithm.

5.1 Unweighted distillation

For a text input x
(i) from the transfer set,

Tε (hθ(x(i)), hk(x(i))) measures the Sinkhorn
distance between the probability output of global
model hθ(x(i)) and kth local model hk(x(i)). In
Equation (3), the sample-wise distance is com-
puted between hθ(x(i)) and a probability distri-
bution from the set hK. A simple approach to
fit the global hypothesis hθ is to uniformly dis-
till the knowledge from user-specific hypotheses,
thus WBk(hk(x(i))) = 1 ∀ k ∈ K, i ∈ [N].

5.2 Weighted distillation

The user-generated local datasets are potentially
non-IID with respect to the global distribution and
possess a high degree of class imbalance (Weiss
and Provost, 2001). As each local modelMk is
trained on samples from potentially non-IID and
imbalance domains, they are prone to show skewed
predictions. The unweighted distillation tends to
transfer such biases. One might wonder “for a
given transfer set sample, which local model’s pre-
diction is reliable?”. Although an open problem,
we try to answer it by proposing a local model
(teacher) weighting scheme. It calculates the confi-
dence score of a model’s prediction and performs
weighted distillation—weights being in positive
correlation with the local model’s confidence score.
Next, we define the confidence score.

Confidence score (L2) For a given sample x
from the transfer set, the skew in a local model’s
prediction h(x) can help determine the confidence
(W (⋅) in Equation (3)) with which it can transfer
its knowledge to the global model. However, the
local models can show skewed predictions due to
training on an imbalanced dataset or chosen capac-
ity of the hypothesis space which can potentially
cause the local model to overfit/underfit on user
data (Caruana et al., 2001). For instance, a model
has learned to misclassify negative sentiment as
strongly negative samples owing to a high confu-
sion rate. Such models are prone to show inference
time classification errors with highly skewed prob-
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abilities. Thus, confidence scoring based on the
probability skew may not be admissible. Hence,
we incorporate L2 confidence for confidence calcu-
lation. For a given sample, we define the model’s
L2 confidence score WB(h(x)) as the Euclidean
distance of its output probability distribution from
the probability bias B. We define probability bias
B of a local model as the prediction when a model
h receives random noise at the input. For classifica-
tion tasks, random texts are generated by sampling
random tokens from the vocabulary. Let h(x) ∈ Y
denotes the predicted distribution of a model for an
input text x:

bl∈Y ≔ Ex∼N [h(x) = l] (N : the distribution of noise)

B ≔ (b1, . . . , b∣Y∣) (model probability bias)

Definition 5.1. We define WBk
(hk) as the L2 dis-

tance of kth model’s prediction from its probability
bias Bk.

We provide a detailed analysis of the L2-based
confidence metric in the Appendix.

5.3 Statistical properties
We derive generalization bounds for the distillation
with pure OT loss, i,e, Wasserstein Distance. Let
the samples
S = {(x(1), y(1)), . . . , (x(N)

, y
(N))})

be IID from the domain distribution of the transfer
set and hθ̂ be the empirical risk minimizer. As-
sume the global hypothesis space Hg = s ◦ Hog,
i.e., composition of softmax and a hypothesis
Hog ∶ X ↦ R∣Y∣, that maps input text to a scalar
(logit) value for each label. Assuming vanilla
Sinkhorn with ε → 0

+, we establish the property
for 1-Wasserstein.
Theorem 5.2. If the global loss function (as in
Equation (3)) uses unregularized 1-Wasserstein
metric between predicted and target measure, then
for any δ > 0, with probability at least 1-δ

E[L(hθ̂(x), hK(x))] ≤ inf
hθ∈Ho

g

Ê[L(hθ(x), hK(x))]+
32 × ∣Y∣ ×RN(Hog)+
2CM ∣Y∣√∣Y∣ log1/δ

2N

where RN(Hog), decays with N , denotes
Rademacher complexity (Bartlett and Mendelson,
2002) of the hypothesis spaceHog. CM is the maxi-
mum cost of transportation within the label space.
In the case of SA, CM = 4, ∣Y∣ = 5. The expected
loss of the empirical risk minimizer hθ̂ approaches

Figure 4: Model architecture.

the best achievable loss forHg. The proof of theo-
rem Theorem 5.2 and method to compute gradient
are relegated to the Appendix.

6 Experiments

Baselines. We setup the following baselines for
a thorough comparison between Sinkhorn|| and
entropy-based losses. Let [Method] be the place-
holder for Sinkhorn and Entropy. [Method]-A de-
notes unweighted distillation of local models (Sec-
tion 5.1), i.e., WBk(hk(x)) = 1 (in Equation (3)).
In [Method]-D, WBk(hk(x)) is proportional to
size of local datasets. [Method]-U defines sample-
specific confidence (weights) as the distance of
output from the uniform distribution over labels.
For each sample, [Method]-E computes weight of
k

th local model as distance of its prediction from
probability bias Bk, i.e., L2 confidence.

Tasks. We set up the three natural language un-
derstanding tasks that possess inter-class semantics:
1) fine-grained sentiment analysis (SA), 2) emotion
recognition in conversation (ERC) (Ghosal et al.,
2022; Poria et al., 2020), and 3) natural language
inference (NLI). NLI is the task of determining
the inference relation between two texts. The re-
lation can be entailment, contradiction, or neutral
(MacCartney and Manning, 2008). For a given
transcript of a conversation, the ERC task aims to
identify the emotion of each utterance from the set
of pre-defined emotions (Poria et al., 2019). For
our experiments, we choose the five most common
emotions that are sadness, anger, surprise, happi-
ness, and no emotion.

Datasets. For the SA task, we use four large-
scale datasets: 1) Toys: toys and games; 2) Cloths:

||Here, we use KNOT and Sinkhorn interchangeably.

4806



Algorithm
F1 Score Semantic Distance

——-Local——- Global
ALL

——-Local——- Global
ALL

Cloths Toys Cell Food Cloths Toys Cell Food
Entropy-A 0.48 0.44 0.47 0.52 0.50 0.77 0.87 0.76 0.79 0.79
Entropy-D 0.48 0.44 0.46 0.56 0.52 0.77 0.86 0.77 0.71 0.78
Entropy-U 0.47 0.43 0.47 0.50 0.49 0.79 0.90 0.78 0.82 0.83
Entropy-E 0.49 0.46 0.48 0.55 0.52 0.74 0.80 0.74 0.71 0.75

Sinkhorn-A 0.49 0.47 0.47 0.55 0.52 0.74 0.80 0.72 0.75 0.75
Sinkhorn-D 0.47 0.44 0.45 0.59 0.52 0.77 0.84 0.76 0.65 0.76
Sinkhorn-U 0.48 0.44 0.47 0.51 0.49 0.77 0.89 0.77 0.83 0.82
Sinkhorn-E 0.49 0.47 0.48 0.55 0.52 0.72 0.78 0.72 0.69 0.73

Table 2: Fine-grained SA task: Macro F1 and Semantic Distance.

clothing and shoes; 3) Cell: cell phones and ac-
cessories; 4) Food: Amazon’s fine food reviews,
specifically curated for the five-class sentiment clas-
sification. For transfer set (Section 4), we use gro-
cery and gourmet food (104,817 samples) and dis-
card the provided labels (He and McAuley, 2016).
Each dataset consists of reviews rated on a scale
of 1 (strongly negative) to 5 (strongly positive).
Similarly, for ERC, we collect three widely used
datasets: DyDa: DailyDialog (Li et al., 2017),
IEMOCAP: Interactive emotional dyadic motion
capture database (Busso et al., 2008), and MELD:
Multimodal EmotionLines Dataset (Poria et al.,
2018). To demonstrate our methodology, we par-
tition the DyDa dataset into four equal chunks.
DyDa1, DyDa2, are used as local, DyDa3 is used
as global dataset. Dropping the labels from DyDa4,
we use it as a transfer set. For NLI task, we use
SNLI (Bowman et al., 2015) as global dataset and
MNLI (Williams et al., 2017) as local dataset. We
split the latter across its 5 genres, which are, fiction
(Fic), government (Gov), telephone (Tele), travel
(Trv), and Slate. This split assists in simulating dis-
tinct user (non-IID samples) setup. We use ANLI
dataset (Nie et al., 2020) as a transfer set.

Architecture. We set up a compact transformer-
based model used by both global and local models
(Figure 4), although, the federation does not re-
strict both the local and model architectures to be
the same. The input is fed to the pretrained BERT-
based classifier (Devlin et al., 2018). Thus, we
obtain probabilities with support in the space of
output labels, i.e., Y . We keep all the parameters
trainable, hence, BERT will learn its embeddings
specific to the classification task. For the NLI task,
we append premise and hypothesis at input sepa-

rated by special token [SEP] token, followed by a
standard classification setup.

Table 2, Table 3, and Table 4 show performance,
i.e., Macro-F1 (or Accuracy) score and Semantic
Distance of global models predictions from ground
truth. Evaluations are done on fine-tuned (after
distillation) global model with respect to the test
sets of both local and global datasets. The test-
ing over local datasets will help us analyze how
well the domain generic global model performs
over the individual local datasets and the testing
over the global dataset is to make sure there is no
catastrophic forgetting of the previous knowledge.

Training local models. To compare Sinkhorn-
based distillation with baselines, first, we pretrain
local models. Since cross-entropy (CE) loss is less
computationally expensive as compared to OT, we
use CE for local model training. For all the models,
we tuned hyperparameters and chose the model
that performs best on the validation dataset. The
data statistics and performances of local models on
individual tasks are shown in Table 1.

Training global model. We make use of trans-
fer set samples to obtain noisy labels from local
models. For a text sample in the transfer set, Equa-
tion (3) aims to fit a global model to the weighted
sum of predictions of the local models. To retain
the previous knowledge of a global model and pre-
vent catastrophic forgetting, we adapt the learn-
ing without forgetting paradigm. We store predic-
tions of the pretrained global model on the transfer
set and treat it similarly to the set of noisy labels
obtained from the local models and perform its
weighted distillation along with the local models.
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Algorithm
F1 Score Semantic Distance

——-Local——- Global
ALL

——-Local——- Global
ALL

MELD IEMOCAP DyDa0 DyDa1 DyDa2 MELD IEMOCAP DyDa0 DyDa1 DyDa2
Entropy-A 0.28 0.21 0.34 0.33 0.36 0.31 0.67 0.65 0.60 0.61 0.63 0.64
Entropy-D 0.30 0.21 0.39 0.35 0.38 0.34 0.68 0.65 0.57 0.59 0.61 0.62
Entropy-U 0.30 0.24 0.42 0.31 0.37 0.33 0.68 0.65 0.60 0.62 0.64 0.64
Entropy-E 0.34 0.36 0.42 0.40 0.44 0.39 0.69 0.62 0.57 0.59 0.62 0.62

Sinkhorn-A 0.30 0.26 0.45 0.37 0.39 0.34 0.67 0.67 0.59 0.62 0.62 0.64
Sinkhorn-D 0.35 0.31 0.45 0.37 0.44 0.39 0.67 0.63 0.54 0.59 0.61 0.61
Sinkhorn-U 0.30 0.23 0.39 0.34 0.39 0.34 0.68 0.68 0.62 0.64 0.64 0.65
Sinkhorn-E 0.38 0.33 0.46 0.43 0.43 0.41 0.64 0.62 0.53 0.56 0.60 0.59

Table 3: ERC task: Macro F1 and Semantic Distance.

Algorithm
Accuracy Semantic Distance

————-Local————- Global
ALL

————-Local————- Global
ALL

Fic Gov Slate Tele Trv SNLI Fic Gov Slate Tele Trv SNLI
Entropy-A 0.60 0.62 0.60 0.60 0.62 0.78 0.65 0.56 0.54 0.56 0.56 0.55 0.40 0.53
Entropy-D 0.58 0.59 0.57 0.57 0.58 0.85 0.64 0.58 0.56 0.58 0.58 0.57 0.30 0.53
Entropy-U 0.60 0.62 0.60 0.60 0.61 0.76 0.65 0.55 0.54 0.56 0.56 0.55 0.40 0.53
Entropy-E 0.60 0.62 0.60 0.60 0.61 0.76 0.65 0.55 0.54 0.56 0.55 0.54 0.39 0.52

Sinkhorn-A 0.60 0.63 0.60 0.61 0.62 0.73 0.64 0.54 0.53 0.55 0.55 0.53 0.42 0.52
Sinkhorn-D 0.55 0.57 0.54 0.55 0.56 0.85 0.63 0.58 0.56 0.58 0.58 0.57 0.23 0.52
Sinkhorn-U 0.60 0.62 0.60 0.60 0.61 0.77 0.65 0.53 0.52 0.55 0.54 0.52 0.37 0.51
Sinkhorn-E 0.60 0.62 0.60 0.60 0.61 0.77 0.65 0.53 0.52 0.54 0.54 0.52 0.37 0.50

Table 4: NLI task: Accuracy and Semantic Distance.

Label-space. We define label semantic spaces for
the three tasks. As shown in Figure 3, we assign
sentiment labels a one-dimensional space. For the
ERC task, we map each label to a two-dimensional
valence-arousal space. Valence represents a per-
son’s positive or negative feelings, whereas arousal
denotes the energy of an individual’s affective state.
As mentioned in (Ahn et al., 2010), anger (-0.4,
0.8), happiness (0.9, 0.2), no emotion (0, 0), sad-
ness (-0.9, -0.4), and surprise (0.4, 0.9). The cost
(loss) incurred to transport a mass from a point p
to point q is Cp,q ≔ ∣p − q∣. For NLI task, we
define coordinates with entailment (1, 0, 0), contra-
diction (0,0,1) and neutral (0.5, 1, 0.5). The cost
Cp,q ≔ ∣∣p − q∣∣2, where, cost of transport from
entailment to contradiction is higher than it is to
neutral. It is noteworthy that for this task, we per-
form a manual search to identify label coordinates.

For the SA task in Table 2, we observe the
global models trained from Sinkhorn distillation
of local models (contribution C1) perform better
than corresponding Entropy-based variants on com-
bined datasets (ALL) as well as on local and global
datasets. Sinkhorn-A, D, U, and E are more seman-
tically accurate in their predictions as compared to
Entropy-A, D, U, and E, respectively. Moreover,
we also notice that Entropy-E and Sinkhorn-E are
better than corresponding A, D, and U variants,

thus proving the utility of our contribution C2.
For the ERC task in Table 3, we observe the SD

score of Sinkhorn-E is, in general, better amongst
the Entropy and Sinkhorn-based baselines. In Ta-
ble 4 of the NLI task, we notice the uniform weight-
ing scheme performs as well as L2 on local datasets,
however, it lags behind Sinkhorn-E in overall per-
formance. As we observed for the SA task in
Entropy-D and Sinkhorn-D settings, since the SNLI
(global) dataset is bigger, the distillation forces the
global model to perform better on the global dataset.
It is observed to come at the cost of degraded per-
formance on the other (local) datasets.

Comparing Table 2, Table 3, and Table 4 all
together, for the three tasks with intrinsic sim-
ilarity in the label space, we observe Sinkhorn-
based loss transfer more semantic knowledge than
entropy-based losses in the secure federated dis-
tillation setup. Moreover, we observe that L2 dis-
tance ([Method]-E) gives better SD scores amongst
the loss groups based on Entropy and Sinkhorn.
Besides this, as compared to other baselines, em-
pirical observations suggest that Sinkhorn-E (our
combined contribution C1 and C2) works well for
large-scale SA datasets, hence potentially scalable.

When we compare SA and ERC tasks with
respect to standard metric scores, our method
Sinkhorn-E is amongst the better performing mod-
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els with the best accuracy and Macro F1 scores
in 4 out of 5 tasks in SA and 4 out of 6 tasks in
ERC. The model performs on par with baselines
on the NLI task. Also, we find the Sinkhorn-based
weighted distillation (Sinkhorn-E) shows a 2% im-
provement on SA and ERC tasks while a 1% aver-
age improvement on the NLI task when it is evalu-
ated on the SD metric.

7 Conclusion

This work proposed KNOT, i.e., a novel optimal
transport (OT)-based natural language semantic
knowledge distillation. For the tasks with intrin-
sic label similarities, the OT distance between the
predicted probability of the central (global) model
and user-specific (local) models is minimized. To
reduce the potential hazard of bias transfer from
local model distillation, we introduced a weight-
ing scheme based on the L2 distance between the
local model’s prediction and probability bias. Our
experiments on three language understanding tasks
—fine-grained sentiment analysis, emotion recog-
nition in conversation, and natural language infer-
ence—show consistent semantic distance improve-
ments while performing as good as the entropy-
based baselines on the accuracy and F1 metrics.
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A What have we kept for the Appendix?

We include proofs of Theorem 5.2 and an analysis of the L2-based confidence score. There are a few
experiments that we consider to be important and may help compare the OT loss-based learning with
Kullback–Leibler (KL). These results build a firm base to choose Sinkhorn-based (OT) losses on the task
of federated distillation of sentiments. For the experiments, we work on the global modelMg that has
acquired knowledge from local models in the learning without forgetting the paradigm.

• In appendix B, we provide an analysis of the L2-based confidence metric.

• In appendix C, we convey the intuition behind using a Sinkhorn distance over an entropy-based
divergence. Moving further in appendix C.1, we show the importance of natural metrics in the label
space by replacing the one-dimensional support with one-hot. Furthermore, in appendix C.2, we
show how the model’s clusters of sentence embeddings change when we move from a Sinkhorn
distance-based loss to the KL divergence-based loss.

• In appendix D, we discuss the potential risk of gender and racial bias transfer from the local models
to the global models. Although we incorporate bias induced from non-IID data training of the local
models, we do not tackle the transfer of other biases that can arise from the data as well as from the
training process.

• In appendix E, we provide the algorithm to compute gradients and the computation complexity of
Sinkhron loss.

• In appendix F, we provide the proof of Theorem 5.2 on the empirical risk bound with the OT metric
as unregularized 1-Wasserstein distance.

• In appendix G, we discuss the broader social impact of our work. We discuss how the method can be
adopted for cyberbullying detection and the limitations coming from local models.

• In appendix H, we elaborate on the experimental settings and license of the datasets used in this
paper.

B Confidence score (L2)

As shown in Figure 5 for a three-class classification, the equidistant distributions lie on an arc with a
center at B. Points with high confidence scores lie on distant arcs. As radius of the arc increases, majority
of its portion lies towards the high value of pl, i.e., the l with which the model is biased against since bl =
min {b1, . . . , b∣Y∣} (p3 in the figure). Moreover, the maximum confidence score is achieved at the vertex
pl = 1.

Proposition B.1. From a given point B in a k-simplex, point with the highest confidence lies on one of its
vertices.

Proof. First, we analyze the case of a 2-simplex defined in a three-dimensional Euclidean space. Let
fP = ∑3

i=1(pi − bi)2, the quadratic program can be formulated as max{fP ∶ ∑3
i=1 pi = 1, pi ≥ 0}.

The convex hull of vertices lying on the axes forms a closed and bounded feasible region. Thus, from
the extreme value theorem, there exists absolute maximum and minimum. f attains its minimum at
p = b, which is also the critical point of fP . Now, we need to find its value on the boundary points
contained in the set of 1-simplices (line segments) {pi + pj = 1, pk = 0 ∶ (i, j, k) ∈ 1, 2, 3, i ≠ j ≠ k}.
For the 1-simplex p1 + p2 = 1, p3 = 0, the values of fP at its endpoints that are (1 − b1)2 + b

2
2 + b

2
3

and b21 + (1 − b2)2 + b
2
3, one of which is maxima of f attained over the 1-simplex *. Similarly for the

other line segments, the complete set of boundary values of fP is k − 2b1, k − 2b2, and k − 2b3 where
k = b21 + b

2
2 + b

2
3 + 1, occurring at P = (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. Thus, the maximum

of fP will lie on ith-axis such that bi = min (b1, b2, b3). This proof can be generalized for a probability
*Ignoring the critical point which gives the minima and perpendicular drawn from b to the line segment.
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Figure 5: An illustration—a three-class classifier with bias B and outputs a distribution P = (p1, p2, p3) for certain input.
The green arrow denotes the direction of increased confidence score with equiconfident arcs.

simplex in higher dimensions. As shown above, each iteration of a lower dimensional simplex will return
vertices as the point of maxima in the end.

C Decision boundaries via sentence representations

One of the main advantages of using Optimal Transport-based (OT) metrics between two probability
distributions, such as Sinkhorn distance, is the ability to define the relationship in metric space. This is not
feasible in entropy-based divergences. The relationship further appears in the loss function that accounts
for the error computations of an intelligent system in the task of classification (or regression). With
advancements in computations of Sinkhorn distances, as in (Feydy et al., 2019), gradient computations
through such loss functions have become more feasible as shown in Algorithm 1. The inter-label
relationships are apparent in tasks such as fine-grained sentiment classification, fake news detection, and
hate speech. In this work, we consider the relationship between two labels p and q as a taxi-cab distance
in the one-dimensional metric space of sentiment labels Y . This relation nuance should appear in the
Sinkhorn distance, we call it the cost of transportation from a point p to another point q in the set Y .

When we set a learning algorithm to minimize the loss function, the goal is to find model parameters
that provide the least empirical risk in the space of predefined hypotheses. From the distance-based cost
(loss), the risk is expected to be minimum when the predicted labels are mapped "near" to the ground
truth label. The term "near" refers to the lower optimal transport cost of the probability mass spread over
a certain region to another region. In our problem, both the regions are the same, i.e., locations from 1 to
5 in the metric space. A ground truth probability mass (almost everything) at 1 would prefer an intelligent
system to predict a probability mass near 1 so that it will require a lesser taxi-cab cost of transportation. It
is noteworthy, that such relationships, even though apparent, are infeasible to appear in cost functions that
inherit properties solely from the information theory.

Figure 6: After the model parameter fitting is complete, we map the 128-dimensional [CLS] vector at the output of
the Transformer layer to 2-dimensions using t-SNE.
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t-SNE of sentence embeddings Next, we explain how we analyze the sentence embeddings inMg

obtained from Sink-E*. A sentence refers to an Amazon food/product review. BERT’s input sentence is
lowercase WordPiece tokenized. We prepend the list of tokens with [CLS] token to represent the sentence
which is later used for the classification task. First, each token is mapped to a static context-independent
embedding. Then the vector list is passed through a sequence of multi-head self-attention operations that
contextualizes each token. It is important to note that contextualization can be task-specific. We randomly
sample 5000 review-label pairs for each sentiment class. For each textual review, as shown in fig. 6, we
use a 128-dimensional vector at the output of the transformer layer corresponding to the [CLS] token.
This corresponds to the list of reviews represented in 128-dimensional vector space. To visualize the
learned sentence representations, we map the vectors from 128-dimensional space to 2-dimensions using
t-distributed Stochastic Neighbor Embedding (t-SNE)†.

C.1 Semantic support to One-hot support

 

t-
SN

E 
- 2

t-SNE - 1

 Semantic  One-hot

1 2        3 4 5

Figure 7: The one-hot encoding doesn’t have clear distinct boundaries. The semantic structure is lost.

One way to understand the importance of properly defining label space relationship is by defining
metric space where each label acquires its own axis, thus losing the semantic information. For a five-class
classification problem, we will have five axes and thus the support is a set of five distinct one-hot vectors
each of size five. This way any misclassification, i.e., predicting a mass different from the ground truth
label, will result in the same cost irrespective of whether positive sentiment is classified as strongly
positive or strongly negative. This is due to the taxi-cab distance. Its value is computed by just summing
up the absolute individual coordinate distances, which are just the predicted probabilities except for the
coordinate corresponding to the ground truth.

We train the global modelMg with the Sinkhorn distance-based loss (eq. (3)) where the cost is defined
as taxi-cab distance on the one-dimensional support and five-dimensional one-hot support as elaborated
previously. The fig. 7 depicts the respective t-SNE scatter plots. In the plot with one-dimensional semantic
support, we observe sentence vectors, i.e., features used for the classification task, are mapped in clearer
clusters as compared to the plot at right without semantic information. We observe the points related to
label 5 (strongly positive) are much more localized as compared to the sentence mappings with one-hot,
which is distributed around the space. This clearly dictates the benefit of a meaningful metric as compared
to a space that is not informative. Next, we check a similar case that occurs in entropy-based loss functions.

†We used the implementation from scikit-learn.
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C.2 Sinkhorn distance → KL divergence

Similar to the cost associated with the one-hot support in Sinkhorn, the KL divergence has no feasible way
to capture the intrinsic metric in the label space. The plots in fig. 8 show the different sentence embeddings
(t-SNE) with the varying entropy-based regularisation term in the vanilla Sinkhorn distance. As ε → 0

+,
we should get a pure OT-based loss function (eq. (1)). However, to speed up the Sinkhorn and gradient
computations, we chose ε = 0.001 with no (F1-score) performance trade-off. As shown in the fig. 8, with
ε >= 1, the sentence representations are distributed across space with patches of label-dominant clusters.
However, we can not see clear decision boundaries between the labels. As we decrease the ε value below
1, we observe clearer feature maps for each label. For ε = 0.001, we can see clear sentence vector clusters
corresponding to label 5. We can see the higher confusion rate is only between labels 5 and 4 which can
be attributed to the less cost of transportation of the mass from label 5 to 4 as compared to 5 to other
labels. A similar trend can be seen for lower ε values that are 0.01 and the ε used in this work 0.003 where
clearer and localized clusters can be seen.

D Model bias

D.1 Probability Skew

To generate a random input, we uniformly sample 200 tokens from the vocab ‡ with replacement and join
them with white space. We obtain 100,000 such random texts. For a given text classifier model, the skew
value for sentiment label 1 can be estimated by the fraction of times it is the prediction of when the model
infers over the set of random texts (section 5.2).

D.2 Gender and Racial biases

Even though we considered the model probability skew as a reflection of bias induced from non-IID
sampling, other biases such as gender and race can still be learned or acquired in the distillation process,
For instance, take the following sentences:

My father said that the food is just fine. (review-1) → strong positive
My mother said that the food is just fine. (review-2) → neutral

Review-1 and 2 differ in gender-specific words which are father and mother. Since it is a sentiment
classification task, ideally, the intelligent system should not learn gender-specific cues from the text
to generate its predictions. However, we observe a gender dependence in both the KL divergence and
confident Sinkhorn-based predictions.

Similarly, we curate an example where the reviews differ only in a race-specific word.

White guy said the phone is just fine. (review-1) → neutral
Latino guy said the phone is just fine. (review-2) → strong positive

The sentiment predictions made by the intelligent systems were different contrary to ideal behavior.
The review with the word White shows a neutral sentiment while the review with the word Latino shows
a strong positive sentiment. Hence, the systems took account of race-specific words while predicting the
sentiment of a text. The behavior is observed both in the KL and Sinkhorn-based models with confident
weights for sentiment classification.

‡We obtain the English vocabulary of size 30,522 from:https://huggingface.co/google/bert_uncased_
L-2_H-128_A-2/tree/main.
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  : 0.001 
(This work)
ε  : 0.01ε

 : 0.1ε  : 1ε

 : 4ε KL-div

t-SNE - 1
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E 
- 2

1 2        3 4 5

Figure 8: With a small entropic regularizer ε, it is visually striking that Sinkhorn seems to learn the latent structure
boundaries better than KL divergence. For high ε, we see more clusters with mixed boundaries and not-so-clear
demarcations.
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E Gradients through loss

We demonstrate the computation of gradient of loss function (eq. (3)) with respect to the global model
trainable parameters θ. We can write the Lagrange dual of eq. (1) as

Tε
def.= max(f,g)∈C⟨µ, f⟩ + ⟨ν, g⟩ − ε⟨µ⊗ ν, exp (1ϵ (f ⊕ g − C)) − 1⟩

C = {(f, g) ∈ Rns×nt ∶ fi + gj ≤ C(i,j)} (4)

where f ⊕ g is tensor sum (ys, yt) ∈ Ys×Yt ↦ f(ys)+ g(yt). The optimal dual (solution of eq. (4)) can
retrieve us the optimal transport plan (solution of eq. (3)) with the relation π = exp(1

ε
)(f⊕g−C)⋅(µ⊗ν).

Recently, a few interesting properties of Tϵ were explored (Peyré et al., 2019; Feydy et al., 2019; Luise
et al., 2018) showing that optimal potentials f and g exist and are unique, and ∆Tε(µ, ν) = (f, g).

Algorithm 1 Gradients of L(hθ(x), hK(x)) with respect to hθ(x)
Initialize: Dual potentials f 1, ⋯, f K ∈ Rns and g 1, ⋯, g K ∈ Rnt

1: for k ← 1 to K do
2: fk ← 0 ▷ f k={fk1 , . . . , fkns

}
3: g k ← 0 ▷ gk = {gk1 , . . . , gknt

}
4: while ( f k, g k not converged ) do
5: f

k
i ← εLSE

ns
m=1(log(hmk (x)) + 1

ε
gm − 1

ε
C(Yis,Ymt ))

6: g
k
j ← εLSE

nt
m=1(log(hmθ (x)) + 1

ε
fm − 1

ε
C(Yms ,Yjt ))

7: (LSE is log-sum-exp reduction, i.e, LSEMm=1(Vm) = log∑M

m=1 exp(Vm))
8: end while
9: end for

10: ∂(Tε(hθ(x),hk(x)))
∂(hi

θ(x)) = fki ∀i ∈ [ns], k ∈ K ▷ as dual potentials are gradients of Tε.

11: ∂(Lε(hθ(x),hK(x)))
∂(hi

θ(x)) = ∑k∈KWBk
(hk(x))fki /∑k∈KWBk

(hk(x)).

Sinkhorn loop.

Using these properties, we calculate gradients of the confident Sinkhorn cost in eq. (3). Algorithm 1
obtains the gradients of the loss function with respect to hθ(x) which can be backpropagated to tune
model parameters. A crucial computation is to solve the coupling equation in steps 5 and 6. This is done
via Sinkhorn iterations which have a linear convergence rate (Peyré et al., 2019).

F Statistical Risk Bounds

Without the loss of generality, we will prove the risk bounds for two local models in learning without
forgetting the paradigm. For a sample x, let the output of local models be y1 = h1(x) and y2 = h2(x)
and the global model with trainable parameters be yθ = hθ(x). To prove Theorem 5.2, we consider the
set of IID training samples S = {(x(1), y(1)1 , y

(1)
2 ), . . . , (x(N)

, y
(N)
1 , y

(N)
2 )}.

Lemma F.1. (from (Frogner et al., 2015)) Let hθ̂, hθ∗ ∈ Hg be the minimizer of empirical risk R̂S and
expected risk R, respectively. Then

R(hθ̂) ≤ R(hθ∗) + 2 sup
hθ∈Hg

∣R(hθ) − R̂S(hθ)∣ (5)

To bound the risk for hθ̂, we need to prove uniform concentration bounds for the distillation loss. We
denote the space of loss functions induced by hypothesis spaceHg as

L = {ℓθ ∶ (x, y1, y2) ↦ w1(y1)D(yθ, y1) + w2(y2)D(yθ, y2)
w1(y1) + w2(y2) } (6)

Lemma F.2. ((Frogner et al., 2015)) Let the transport cost matrix beC and the constantCM = max(i,j) C(i,j),
then 0 ≤ D(⋅, ⋅) ≤ CM , where D(⋅, ⋅) is 1-Wasserstein distance.
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Definition F.3. (The Rademacher Complexity (Bartlett and Mendelson, 2002)). Let G be a family
of mapping from Z to R, and S = (z1, . . . , zN) a fixed sample from Z . The empirical Rademacher
complexity of G with respect to S is defined as:

R̂S(G) = IEσ[sup
g∈G

1

N

n

∑
i=1

σig(zi)] (7)

where σ = (σ1, . . . , σN), with σi’s independent uniform random variables taking values in {+1,−1}.
σi’s are called the Rademacher random variables. The Rademacher complexity is defined by taking
expectation with respect to the samples S.

RN(G) = IES[R̂S(G)] (8)

Theorem F.4. For any δ > 0, with probability at least 1-δ, the following holds for all lθ ∈ L:

IE[ℓθ] − ÎE[ℓθ] ≤ 2RN(L) +
√
C2
M log(1/δ)

2N
. (9)

Proof. By definition IE[ℓθ] = R(hθ) and ÎE[ℓθ] = R̂(hθ). Let,

Φ(S) = sup
ℓ∈L

IE[ℓ] − ÎES[ℓ].
Let S and S ′ differ only in sample (x̄(i), ȳ(i)1 , ȳ

(i)
2 ), by Lemma F.2, it holds that:

Φ(S) − Φ(S ′) ≤ sup
ℓ∈L

ÎES ′ − ÎES = sup
hθ∈H

1

N
{w1(ȳ(i)1 )D(ȳ(i)θ , ȳ

(i)
1 ) + w2(ȳ(i)2 )D(ȳ(i)θ , ȳ

(i)
2 )

− w1(y(i)1 )D(yθ, y(i)1 ) − w2(y(i)2 )D(yθ, y(i)2 )} ≤ 2CM
N

(10)

This inequality can be achieved by putting D(ȳ(i)θ , ȳ
(i)
1 ) = D(ȳ(i)θ , ȳ

(i)
2 ) = CM and D(y(i)θ , y

(i)
1 ) =

D(y(i)θ , y
(i)
2 ) = 0.

Similarly, Φ(S ′) − Φ(S) ≤ CM/N , thus ∣Φ(S ′) − Φ(S)∣ ≤ CM/N . Now, from the McDiarmid’s
inequality (McDiarmid, 1998) and its usage in (Frogner et al., 2015), we can establish

Φ(S) ≤ IE[Φ(S)] +
√
KC2

M log(1/δ)
2N

. (11)

From the bound established in the proof of Theorem B.3 in (Frogner et al., 2015), i.e., IES[Φ(S)] ≤
2RN(L), we can conclude the proof.

To complete the proof of Theorem Theorem 5.2, we have to treat RN(L) in terms of RN(Hg).
Now, let ι ∶ R∣Y∣ × R∣Y∣ ↦ R defined by ι(y, y′) = D(∫(y), ∫(y)′), where ∫ is a softmax function

defined over the vector of logits. From Proposition B.10 of (Frogner et al., 2015), we know:

∣ι(y, y′) − ι(ȳ, ȳ′)∣ ≤ 2CM(∣∣y − ȳ∣∣2 + ∣∣y′ − ȳ
′∣∣2) (12)

Let ιs ∶ R
∣Y∣ × R∣Y∣ × R∣Y∣ ↦ R defined by:

ιs(y, y1, y2) = w1(s(y1))D(s(y), s(y1)) + w2(s(y2))D(s(y), s(y2))
w1(s(y1)) + w2(s(y2)) (13)

= w̄1(s(y1), s(y2)) D(s(y), s(y1)) + w̄2(s(y1), s(y2)) D(s(y), s(y2)) (14)
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where w1(.), w2(.) are confidence score of local model predictions y1, y2 on an input x. w̄1(.), w̄2(.)
are normalized scores. Note that the local model predictions, i.e., y1 and y2 are functions of x, where x is
sampled from the data domain distribution f(x). Hence, we can view the loss function as

ιs(y, y1, y2) = D(s(y), s(y1)) +D(s(y), s(y2)) (15)

= ι(y, y1) + ι(y, y2). (16)

where y is a function of xnew sampled from a weighted distribution w̄1(s(y1), s(y2))f(x).
The Lipschitz constant of ιs(y, y1, y2) can thus be identified by:

∣ιs(y, y1, y2) − ιs(ȳ, ȳ1, ȳ2)∣ = ∣ι(y, y1) + ι(y, y2) − ι(ȳ, ȳ1) − ι(ȳ, ȳ2)∣ (17)

≤ ∣ι(y, y1) − ι(ȳ, ȳ1)∣ + ∣ι(y, y2) + ι(ȳ, ȳ2)∣ (18)

≤ 2CM(∣∣y − ȳ∣∣2 + ∣∣y1 − ȳ1∣∣2 + ∣∣y − ȳ∣∣2 + ∣∣y2 − ȳ2∣∣2) (19)

≤ 4CM(∣∣y − ȳ∣∣2 + ∣∣y1 − ȳ1∣∣2 + ∣∣y2 − ȳ2∣∣2) (20)

≤ 4CM ∣∣(y, y1, y2) − (ȳ, ȳ1, ȳ2)∣∣2 (21)

Thus, the Lipschitz constant of plain Sinkhorn based distillation is 4CM .

Proof of Theorem 5.2 We define the space of loss function for k local models:

L = {ιθ ∶ (x, {yk}k∈K) ↦ ∑
k∈K

wk(s(hoθ(x)))D(s(yk))}
Following the notations in (Frogner et al., 2015), we apply the following generalized Talagrand’s lemma

(Ledoux and Talagrand, 2013):

Lemma F.5. Let F be a class of real functions, and H ⊂ F = F1 × . . . × FK be a K-valued function
class. If m ∶ RK ↦ R is a Lm-Lipschitz function and m(0) = 0, then RS(m ◦H) ≤ 2Lm∑K

k=1 R̂S(Fk).

Now, the Lemma can not be directly applied to the confident Sinkhorn loss as 0 is an invalid input. To
get around the problem, we assume the global hypothesis space is of the form:

H = {s ◦ h ∶ ho ∈ Ho} (22)

Thus, we apply the lemma to the 4CM -Lipschitz continuous function l and the function space:

Ho × . . . ×HoÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ∣Y∣copies
×I × . . . × IÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï∣Y∣×∣K∣copies

with I a singleton function space of identity maps. It holds:

RN(L) ≤ 8CM(∣Y∣R̂N + ∣Y∣ × ∣K∣R̂N(I)) = 8∣Y∣CMR̂N(Ho) (23)

As,

R̂N(I) = IEσ[sup
g∈I

1

N

N

∑
i=1

σig(yi) = 0] = IEσ[ 1

N

N

∑
i=1

σiyi = 0]
Thus, by combining eq. (23) in Theorem F.4 and Lemma F.1 proves the Theorem 5.2.
Since the ε is small in our experiments, we can quantify the difference between Sinkhorn distance and

Wasserstein for a given Lipschitz cost function.
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G Societal Impact

Our work can be extended to different domains. Although in this paper we examined sentiment classifica-
tions, other areas, where labels are not available, i.e., zero-shot classification, would also be amenable
to federated confident Sinkhorns. Within our approach, a potential downstream task could be to detect
cyberbullying. An important area of application for distraught parents, school teachers, and teens. In this
case, a sentiment that has a high probability of being classified as cyberbullying can be flagged to either
moderators or guardians of a particular application.

A weakness of this approach is that the training of such an application will be based on local models
in other domains. Care would be needed in deciding which local models to use in the federation. This
choice is highly dependent on the industry and the availability of data. Misuse of our approach could be
that the federated training might distill some population-specific information to the global model which
makes the central system vulnerable to attacks that might lead to a user-private data breach. As GPU
implementation of OT metrics becomes commonplace, we envisage that our approach might help in other
Natural Language Processing (NLP) tasks. Indeed, this would be potentially beneficial and open up new
avenues for the NLP community.

H Experimental reproducibility

All the experiments were performed on one Quadro RTX 8000 GPU with 48 GB memory. The model
architectures were designed on Python (version 3.9.2) library PyTorch (version 1.8.1) under BSD-style
license. For Sinkhorn iterations and gradient calculations, we use GeomLoss library (version 0.2.4)
(https://github.com/jeanfeydy/geomloss) under MIT licence. For barycenter calculations,
we use POT library (0.7.0) from (https://pythonot.github.io/) under MIT licence.

We clip all the text to a maximum length of 200 tokens and pad the shorter sentences with
<unk>. To speed up the experiments, we use pretrained BERT-Tiny from https://github.com/
google-research/bert.

The batch size is chosen via grid search from the set {16, 32, 64, 128, 256, 512, 1024, 2048} and found
1024 to be optimal for performance and speed combination on the considered large datasets. We use
Adam optimizer with learning rate chosen via grid search {10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104}.
All the experiments were run for 20 epochs. The regularization parameter ε is chosen based on minimal
loss obtained amongst the set of ε values {10−4, 10−3, 10−2, 10−1, 1, 2, 4, 8, 16}.

For the Amazon review dataset, we were unable to find the license.
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Abstract

Unsupervised sentence embeddings learning
has been recently dominated by contrastive
learning methods (e.g., SimCSE), which keep
positive pairs similar and push negative pairs
apart. The contrast operation aims to keep as
much information as possible by maximizing
the mutual information between positive in-
stances, which leads to redundant information
in sentence embedding. To address this prob-
lem, we present an information minimization
based contrastive learning (InforMin-CL)
model to retain the useful information and dis-
card the redundant information by maximizing
the mutual information and minimizing the in-
formation entropy between positive instances
meanwhile for unsupervised sentence repre-
sentation learning. Specifically, we find that
information minimization can be achieved by
simple contrast and reconstruction objectives.
The reconstruction operation reconstitutes the
positive instance via the other positive instance
to minimize the information entropy between
positive instances. We evaluate our model on
fourteen downstream tasks, including both su-
pervised and unsupervised (semantic textual
similarity) tasks. Extensive experimental re-
sults show that our InforMin-CL obtains
a state-of-the-art performance. Code is made
available. 1

1 Introduction

How to learn universal sentence embeddings by
large-scale pre-trained models (Devlin et al., 2019;
Liu et al., 2019), such as BERT, has been studied ex-
tensively in the literature (Gao et al., 2021; Reimers
et al., 2019). Recently, contrastive learning has
been used widely to learn better sentence embed-
dings (Meng et al., 2021; Gao et al., 2021). Gener-
ally, contrastive learning uses various data augmen-
tation methods to generate different views of the
input sentences and samples positive instances and

∗ Yuling Sun is the corresponding authors of this paper.
1https://github.com/Bin199/InforMin-CL

Table 1: Training texts may contain various kinds of
redundant information, such as stop words, restatement,
capitalization, and hyphen.

Original Where is the party, it sounds great.

Stop words Where is the party, it sounds great.
Restatement The party sounds great, where is it.
Capitalization Where Is The Party, It Sounds Great.
Hyphen Where-is-the-party, it-sounds-great.

negative instances from views. Contrastive learn-
ing aims to learn effective embeddings by pulling
positive instances together and pushing positive
and negative instances apart. This operation focus
on maximizing the mutual information between
positive instances to retain as much information as
possible, which includes both the useful and use-
less information. Previous studies like (Meng et al.,
2021; Gao et al., 2021) ignore the redundant infor-
mation stored in views, which has a bad impact on
the performance of downstream tasks, as proved by
(Achille and Soatto, 2018; Tian et al., 2020).

Table 1 gives an example of redundant infor-
mation stored in training texts. In training texts,
the sentences contain much redundant information
which is not favorable to the downstream task. The
redundant information may be stop words and the
style of the sentence (e.g., restatement, capitaliza-
tion, and hyphen). The existing study (Tian et al.,
2020) also shows that discarding redundant infor-
mation in views can help to improve the perfor-
mance of the downstream task. Thus, we arise the
following question: how to discard this redundant
information by choosing the optimal views?

It is natural to solve the above questing via infor-
mation bottleneck (IB), which has been utilized as
an effective and simple method for learning a good
embedding by keeping the important information
and forgetting redundant information in various
tasks (TISHBY, 1999; Chen and Ji, 2020; Tishby
and Zaslavsky, 2015). Prompted by this, we at-
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tend to solve the problem by drawing inspiration
from the information minimization principle (an
idea in IB theory) (Tian et al., 2020): A good set of
views share the minimal information necessary to
perform well at the downstream task. This method
aims to retain useful information and forget redun-
dant information. In this paper, we explore how to
address the shortcomings (i.e., ignoring the redun-
dant information stored in views) of previous work
for unsupervised sentence representations via the
information minimization principle.

We propose an information minimization based
contrastive learning (InforMin-CL) model
for unsupervised sentence embedding learning.
InforMin-CL incorporates the information min-
imization principle into contrastive learning to
not only learn the important information but also
drop the redundant information. We optimize
our InforMin-CL model from two perspectives:
contrast and reconstruction. Firstly, we learn the
useful information by a contrast task to maximize
the mutual information. This task manages to at-
tract positive pairs and repulse negative pairs. At-
tracting positive pairs stands for maximizing mu-
tual information between positive instances. Sec-
ondly, we propose a reconstruction task that encour-
ages the model to reconstruct the representation of
the positive instance via the other one in the same
pair.

The algorithm of InforMin-CL is easy to un-
derstand and can be implemented with just sev-
eral lines of code. Moreover, our method does
not change the major network structure, so it is
model-agnostic and can be applied to any repre-
sentation learning neural networks based on con-
trastive learning. Experiments in Section 4 show
that InforMin-CL can help the model learn ef-
fective representations that improve downstream
task performance. Our main contributions are sum-
marized as follows:

• We propose an InforMin-CL model to
learn good sentence embeddings by keeping
useful information and getting rid of redun-
dant information between positive instances.

• We achieve our model via simple contrast and
reconstruction tasks and prove that the recon-
struction task can drop redundant information
by minimizing the information entropy.

• We achieve new state-of-the-art results on
seven supervised tasks and seven unsuper-

vised tasks, which indicates the great advan-
tages of our proposed model.

2 Related Work

2.1 Sentence Representation Learning

Learning sentence embeddings as an important
problem in NLP has been widely studied. Recent
work focus on leveraging the power of BERT (De-
vlin et al., 2019) to learn effective sentence embed-
dings, which are free from artificially supervised
signals. BERT-flow (Li et al., 2020) transforms the
anisotropic sentence embedding distribution into a
smooth isotropic Gaussian distribution through nor-
malizing flows. BERT-whitening (Su et al., 2021)
further presents a whitening operation to enhance
the isotropy of sentence embeddings and achieves
better results.

Then, the contrastive learning approach is ap-
plied for sentence embedding learning. IS-BERT
(Zhang et al., 2020) proposes a model with a fea-
ture extractor on top of BERT and an objective that
maximizes the mutual information between global
sentence embeddings and local sentence embed-
dings. CLEAR (Wu et al., 2020) employs multi-
ple sentence-level augmentation strategies to learn
sentence representation. Coco-LM (Meng et al.,
2021) employs an auxiliary language model to cor-
rupt text sequences, upon which it constructs a
token-level task and a sequence-level task for pre-
training the main model. Gao et al. (Gao et al.,
2021) presents an unsupervised approach that pre-
dicts input itself with dropout noise and a super-
vised approach utilizing natural language inference
datasets. SCD (Klein and Nabi, 2022) leverages
the self-contrast of augmented samples obtained by
dropout, which eliminates the reliance on negative
pairs. However, all these studies lack consider-
ation of discarding redundant information stored
in views. In our work, we consider and solve the
problem in the framework of the information mini-
mization principle.

2.2 Information Minimization Principle

Information minimization principle (Tian et al.,
2020) has been proposed to retain the minimal in-
formation necessary. In recent years, researchers
utilize the information minimization principle to
improve image representations (Tian et al., 2020;
Tsai et al., 2020). Furthermore, information bottle-
neck is used to improve the interpretability of the
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Play some music using slacker

What is party all night

Please check the movie schedule

Positive instance

Negative instance

Different dropout masks in two forward 
passes to get a positive pair

Negative instance

(Shared information)

(“InfoMin Principle”: Discard 
redundant information not shared) 

Key information shared
Redundant information not shared
Redundant information shared

Mutual Information Maximization

M
 O D E L

Reconstruction

Contrast

Share some information

Details of Reconstruction

Figure 1: The architecture of our proposed framework. Contrast: Negative pairs are pushed apart while positive pairs
are pulled together, which suggests maximizing the mutual information between positive instances. Reconstruction:
We drop redundant information in z1 not shared with z2 (marked by the green point) by reconstructing one positive
instance via the other positive instance.

attention-based models (Zhou et al., 2021). Tian
et al. (Tian et al., 2020) shows good views for a
given task in a contrastive representation learning
framework should retain task-relevant information
while minimizing irrelevant nuisances. However,
it focuses on eliminating the task-irrelevant infor-
mation via downstream datasets. Tsai et al. (Tsai
et al., 2020) focuses on the multi-view setting be-
tween input and self-supervised signals and adopts
self-supervised signals to reconstruct learned rep-
resentations to discard task-irrelevant information.
Our work also differs from (Tsai et al., 2020) in two
perspectives: 1) we discard redundant information
in texts while (Tsai et al., 2020) drops noise infor-
mation stored in images, and additionally different
self-supervised signals are used in two work; 2)
(Tsai et al., 2020) validates their method by learn-
ing visual features evaluated by supervised tasks
while sentence embedding learning evaluates em-
beddings via not only supervised tasks but also
unsupervised tasks.

3 Method

We propose an InforMin-CL model for unsu-
pervised sentence representation learning (Figure
1). There are two main steps, contrast and recon-
struction. We first present the contrast objective to
learn the useful information: we push apart posi-

tive instances and negative instances while pulling
positive instances together, which implies maximiz-
ing mutual information between positive instances.
Later we present the reconstruction task to drop the
useless information: we minimize the conditional
information entropy of one positive instance given
the other positive instance. Algorithm 1 provides
the pseudo-code of InforMin-CL.

Algorithm 1 Pseudocode of InforMin-CL in a
PyTorch-like style.
Input: batch size N, temperature τ , structure of f and Γ.
Output: encoder network f (·).

for sampled minibatch {xk}N
k=1 do

for all k ∈ {1, . . . , N} do
draw two augmentation functions t ∼ Γ, t′ ∼ Γ
x̃2k−1 = t (xk)
z2k−1 = f (x̃2k−1)
x̃2k = t′ (xk)
z2k = f (x̃2k)

end for
for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do

si,j = zT
i zj/ (‖zi‖ ‖zj‖)

end for

LC = max E

⎡
⎣ 1

N

N∑
i=1

log
exp(s2i−1,2i/τ)

1
N

N∑
k=1

exp(s2i−1,2k/τ)

⎤
⎦

LR = E
[
− ‖z2k−1 − z2k‖2

2

]
L = LC + LR

update f to minimize L
end for
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3.1 Contrast

Contrastive learning attends to learning effective
representation by pulling positive sample pairs to-
gether and pushing apart negative sample pairs. We
build upon the recent success of unsupervised Sim-
CSE (Gao et al., 2021) and take the embeddings
derived from the same sentence with independently
different dropout masks as positive instances. We
adopt the dropout mask (with default dropout prob-
ability p = 0.1) as an augmentation skill, which is
proved to outperform other skills (Gao et al., 2021),
to obtain positive pairs. The positive pair takes the
same sentence, and their embeddings only differ
in dropout masks. Other sentences in the same
mini-batch are seen as negative instances.

We denote input, instance, and self-supervised
signal as X, Z, and S. We feed the same input x
to the encoder twice by applying different dropout
masks and then get positive instances z1 and z2.
In our work, we take one instance z2 in positive
pair as a self-supervised signal. The information
required for downstream tasks is referred to as “key
information": T . I and H represent mutual infor-
mation and information entropy.

Let Zsup be the sufficient supervised represen-
tation and Zsupmin be the minimal and sufficient
supervised representation:

Zsup = arg max
Z

I (Z; T )

Zsupmin = arg min
Z

H (Z|T )

s.t. I (Z; T ) is maximized

(1)

Let Zssl be the sufficient self-supervised repre-
sentation and Zsslmin be the minimal and sufficient
self-supervised representation:

Zssl = arg max
Z

I (Z; S)

Zsslmin = arg min
Z

H (Z|S)

s.t. I (Z; S) is maximized

(2)

Then, we give theorem 1. For proof, please refer
to (Tsai et al., 2020).
Theorem 1 The supervised learned representations
contain all the key information in the input (i.e.
I (X; T )). The self-supervised learned representa-
tions contain all the key information in the input

with a potential loss ε:

I (X; T ) = I (Zsup; T ) = I (Zsupmin ; T )

≥ I
(
Zssl; T

)

≥ I
(
Zsslmin ; T

)

≥ I (X; T ) − ε

(3)

The contrastive learning objective maximizes
the dependency between positive instance z1 and
self-supervised signal z2, which suggests maximiz-
ing the mutual information I

(
z1; z2

)
. Theorem 1

suggests that maximizing I
(
z1; z2

)
results in z1

containing almost all the information required for
downstream tasks from the input x. Note that T
is utilized only for describing our method and in
practice, no downstream datasets are used in the
pre-training phase.

We use a contrastive learning objective similar
to that in (Oord et al., 2018), which is a mutual
information lower bound with low variance:

LC = max E

⎡
⎣ 1

N

N∑

i=1

log
e
sim(z1

i ,z2
i )/τ

1
N

∑N
k=1

e
sim(z1

i ,z2
k)/τ

⎤
⎦

(4)
where

(
z1
1 , z

2
1

)
, . . . ,

(
z1
N , z2

N

)
∼ PN

(
Z1, Z2

)
,

z1
i , z2

i are two positive instances of the i-th exam-
ples. N refers to batch size and P refers to the
statistical distribution of

(
Z1, Z2

)
.

3.2 Reconstruction

The details of the reconstruction are illustrated in
the right of Figure 1. The positive instances z1 and
z2 contain independent information while sharing
some information. The noise information (marked
as the green point) in z1 is expected to be discarded
by the reconstruction task. We prove that this task
can discard the useless information by minimizing
the information entropy.

The reconstruction task encourages the self-
supervised signal z2 to reconstruct the learned rep-
resentation z1, which suggests maximizing the log
conditional likelihood EPZ1,Z2

[
log P

(
Z1|Z2

)]
.

We know that

−H
(
Z1|Z2

)
= EPZ1,Z2

[
log P

(
Z1|Z2

)]
(5)

Thus, this reconstruction also means minimizing
H

(
Z1|Z2

)
.

Theorem 2 The sufficient self-supervised repre-
sentation contains more redundant information
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in the input than the sufficient and minimal self-
supervised representation. The latter contains an
amount of the information, I (X; S|T ), that cannot
be discarded from the input:

I
(
Zssl; X|T

)
= I (X; S|T ) + I

(
Zssl; X|S, T

)

≥ I
(
Zsslmin ; X|T

)
= I (X; S|T )

≥ I (Zsupmin ; X|T ) = 0
(6)

Theorem 2 (please refer to (Tsai et al., 2020)
for proof) indicates that Zssl contains two parts
of redundant information while Zsslmin contains
one part of redundant information, discarding
I

(
Zssl; X|S, T

)
.

Thus, if z2 can perfectly reconstruct z1 for any

(
z1, z2

)
∼ PZ1,Z2 (7)

under the constraint that I
(
z1; z2

)
is maximized,

we get z1sslmin according to Eq. 2. And
then z1 discards redundant information, excluding
I

(
z1; z2|t

)
(i.e., the amount of redundant informa-

tion in the shared information between two positive
instances z1 and z2). For easier optimization, we
use EPZ1,Z2

[
log QΦ

(
Z1|Z2

)]
as the lower bound

of EPZ1,Z2

[
log P

(
Z1|Z2

)]
. In our deployment,

we utilize the design in Eq. 4 and let QΦ

(
Z1|Z2

)

be Gaussian N
(
Z1|Z2, σI

)
with σI as a diagonal

matrix. Hence, we obtain the reconstruction objec-
tive as follows:

LR = Ez1,z2∼ PZ1,Z2

[
−

∥∥z1 − z2
∥∥2

2

]
(8)

We combine two objectives as a total objective:

L = LC + λ ∗ LR (9)

where λ is a hyper-parameter. Training model with
the total loss enables us to discard redundant infor-
mation in views.

4 Experiment

4.1 Evaluation Setup

We conduct our experiments on seven standard su-
pervised tasks and also seven unsupervised tasks.
We use the SentEval Toolkit (Conneau and Kiela,
2018) for evaluation. Following (Reimers et al.,
2019; Gao et al., 2021), we take unsupervised tasks
as the main comparison of the sentence embedding
approaches and supervised results for reference.

Unsupervised Tasks We evaluate representa-
tions on seven semantic textual similarity (STS)
tasks: STS 2012-2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS Benchmark (Cer et al.,
2017), and SICK-Relatedness (Marelli et al., 2014)
and compute the cosine similarity between sen-
tence embeddings. All the unsupervised experi-
ments are fully unsupervised, which means no STS
training datasets are used and all embeddings are
fixed once they are trained. For the sake of compa-
rability, we follow the evaluation protocol of (Gao
et al., 2021), employing Spearman’s rank correla-
tion and aggregation on all topic subsets.

Supervised Tasks We evaluate representations
on seven supervised tasks: MR (Pang and Lee,
2005), CR (Hu and Liu, 2004), SUBJ (Pang and
Lee, 2004), MPQA (Wiebe et al., 2005), SST-2
(Socher et al., 2013), TREC (Voorhees and Tice,
2000) and MRPC (Dolan and Brockett, 2005). A
logistic regression classifier is trained on the top
of (frozen) sentence embeddings produced by dif-
ferent methods. We follow default configurations
from SentEval and use accuracy as the metric.

Training Details We start from pre-trained
BERT (Devlin et al., 2019) (uncased) or RoBERTa
(Liu et al., 2019) (cased). Similar to (Gao et al.,
2021), we train our InforMin-CL in an unsu-
pervised fashion on 106 randomly sampled sen-
tences from English Wikipedia. During training,
we add an MLP layer on the top of the [CLS] rep-
resentation as sentence embeddings and directly
take the [CLS] representation as sentence embed-
dings at testing time. A masked language mod-
eling (MLM) objective (Devlin et al., 2019) is
added as an optional auxiliary loss to the Eq. 9:
L + β ∗ LMLM (β is a hyper-parameter). For
all results, we use the following hyper-parameters:
epoch: 1, temperature τ : 0.05, optimizer: Adam
(Kingma and Ba, 2015)). We carry out grid-search
of batch size ∈ {64, 128, 256} and learning rate ∈
{1e − 5, 3e − 5, 5e − 5} on STS-B development
sets. During the training process, we save the
checkpoint with the highest score on the STS-B
development set to find the best hyperparameters.
We adopt the hyperparameter settings listed in Ta-
ble 3. For all results, we use a PC with a GeForce
RTX 3090 GPU (CUDA 11, PyTorch 1.7.1).

4.2 Main Results

Baselines We compare InforMin-CL to previ-
ous typical sentence embedding methods, which
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Table 2: Unsupervised task results (spearman’s correlation). †: results from (Gao et al., 2021). ♥: results from
(Klein and Nabi, 2022). All other results are reproduced and reevaluated by ourselves.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe embeddings (avg.)† 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first − last avg.) † 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase−flow† 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase−whitening† 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS − BERTbase

† 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT − BERTbase

† 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
SCD − BERTbase

♥ 66.94 78.03 69.89 78.73 76.23 76.30 73.18 74.19
SimCSE − BERTbase 67.01 82.14 73.76 80.49 79.01 77.04 69.94 75.63
InforMin-CL− BERTbase 70.22 83.48 75.51 81.72 79.88 79.27 71.03 77.30

RoBERTabase (first − last avg.)† 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabase−whitening† 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR − RoBERTabase

† 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SCD − RoBERTabase

♥ 63.53 77.79 69.79 80.21 77.29 76.55 72.10 73.89
SimCSE − RoBERTabase 70.32 82.48 74.84 82.13 82.14 81.57 68.62 77.44
InforMin-CL− RoBERTabase 69.79 82.57 73.36 80.91 81.28 81.07 70.30 77.04

SimCSE − RoBERTalarge 72.64 83.78 75.83 84.24 80.12 81.10 69.81 78.22
InforMin-CL− RoBERTalarge 70.91 84.20 75.57 82.26 79.68 81.10 72.81 78.08

Table 3: Batch sizes, learning rates and λ adopted for
InforMin-CL.

BERT RoBERTa

base base large

Batch size 128 128 128
Learning rate 3e-5 1e-5 3e-5

λ 0.4 4 4

include averaging GloVe embeddings (Penning-
ton et al., 2014), Skip-thought (Kiros et al., 2015)
and average BERT or RoBERTa embeddings. We
also compare to post-processing methods and meth-
ods using a contrastive objective. Post-processing
methods include BERT-flow (Li et al., 2020) and
BERT-whitening (Su et al., 2021). Methods using
a contrastive objective include IS-BERT (Zhang
et al., 2020), DeCLUTR (Giorgi et al., 2021), CT
(Carlsson et al., 2020), SimCSE (Gao et al., 2021),
and SCD (Klein and Nabi, 2022). IS-BERT maxi-
mizes the agreement between global and local fea-
tures. DeCLUTR takes different spans from the
same document as positive pairs. CT aligns embed-
dings of the same sentence from two different en-
coders. SimCSE takes the embedding of the same
input with different dropouts as positive pairs. SCD
leverages the self-contrast of augmented samples
obtained by dropout.

Performance on Unsupervised Tasks Table
2 shows the evaluation results on seven STS

tasks. InforMin-CL achieves comparable or
better results than previous state-of-the-art base-
lines. For BERTbase based models, our method
outperforms the best approach with a large margin
(+1.67%) on average. For RoBERTa based model,
InforMin-CL obtains comparable results (less
than 0.4 points in average). All these indicate that
our model can improve the performance of down-
stream tasks by forgetting the irrelevant informa-
tion in pre-training phase.

Performance on Supervised Tasks Table 4
shows the evaluation results on seven supervised
tasks. Results indicate that InforMin-CL per-
forms on par or better than all baselines. Our
method achieves better results on most of and
even all tasks using RoBERTa, with an aver-
age gain 0.81% on RoBERTabase and 1.66% on
RoBERTalarge respectively. With an MLM task
added, further gains on average results are observed
for BERT and RoBERTa. It raises the average
scores of InforMin-CL from 85.52% to 86.96%
for BERTbase and from 86.11% to 87.01% for
RoBERTabase. Particularly, InforMin-CL w/
MLM obtains the outperforms all the baselines in
average.

Considering results of both supervised and un-
supervised tasks, we present the following find-
ings: 1) BERT-based InforMin-CL performs
better on unsupervised tasks; 2) RoBERTa-based
InforMin-CL achieves better results on super-
vised tasks. The difference in performance us-
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Table 4: Supervised task results (accuracy). †: results from (Gao et al., 2021). ♥: results from (Klein and Nabi,
2022). All other results are reproduced and reevaluated by ourselves. w/ MLM: adding MLM as an auxiliary task
with β = 0.1.

Model MR CR SUBJ MPQA SST TREC MRPC Avg.

GloVe embeddings (avg.)† 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip − thought† 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50

Avg. BERT embeddings† 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT− [CLS] embeddings† 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
IS − BERTbase

† 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83
SCD − BERTbase

♥ 73.21 85.80 99.56 88.67 85.59 89.80 75.71 85.52
SimCSE − BERTbase 81.47 86.86 94.79 89.25 86.27 89.40 72.81 85.84
InforMin-CL− BERTbase 80.99 85.72 94.63 89.47 85.67 88.20 73.97 85.52
w/ MLM 82.87 87.05 95.22 88.43 87.15 92.20 75.77 86.96

SimCSE − RoBERTabase 81.26 87.36 93.58 87.56 86.93 84.80 75.01 85.21
SCD − RoBERTabase

♥ 82.17 87.76 93.67 85.69 88.19 83.40 76.23 85.30
InforMin-CL− RoBERTabase 82.22 88.08 93.57 87.75 87.59 86.60 76.99 86.11
w/ MLM 83.49 88.69 94.79 86.81 88.30 89.40 77.57 87.01

SimCSE − RoBERTalarge 80.85 85.99 93.08 87.65 86.33 89.00 72.46 85.05
InforMin-CL− RoBERTalarge 82.50 88.32 93.81 89.38 87.64 90.80 74.49 86.71

ing BERT and RoBERTa is mainly caused by
the difference in pre-training corpus. BERT is
trained over 16 GB text (BooksCorpus (Zhu et al.,
2015) and English Wikipedia) while RoBERTa
is trained over totally 160 GB of uncompressed
text (BooksCorpus (Zhu et al., 2015), English
Wikipedia, CC-NEWS (Nagel, 2016), OPENWEB-
TEXT (Gokaslan et al., 2019), and STORIES
(Trinh and Le, 2018)). Thus, the diverse large-
scale high quality datasets enhance the RoBERTa to
learn the important and useful information with lim-
ited parameters. InforMin-CL, which improves
performance by discarding redundant information,
struggles to represent its effects in this setting due
to less noise information. This causes the unsu-
pervised results of InforMin-CL are similar to
competitors for RoBERTa-based models.

4.3 Ablation Study

Influence of λ We investigate how different re-
construction objectives with λ from 0.04 to 4 af-
fect our model’s performance. We report the av-
erage performance of unsupervised tasks and su-
pervised tasks in this experiment. The results are
obtained using BERTbase. Results demonstrate
that InforMin-CL constantly works well over
this wide range of λ. As shown in Table 5, with
increasing λ, the performance of both unsupervised
and supervised tasks rises first and falls later.

Influence of β We introduce one more optional
variant which adds a masked language modeling

(MLM) objective to the Eq. 9: L + β ∗ LMLM (β
is a hyper-parameter). We analyze how different
β influence the performance on unsupervised and
supervised tasks. As we show in Table 6, we find
that adding MLM objectives with different β con-
sistently helps improve performance on supervised
tasks but brings a significant drop in STS tasks.

Influence of Batch Sizes To explore the impact
of batch sizes, we report the average performance
of downstream tasks with batch sizes (N in Eq. 4)
from 64 to 256. In this experiment, only batch
size changes while all other hyper-parameters keep
unchanged. We use BERTbase to evaluate on the
test set of unsupervised and supervised tasks. As
we show in Table 7, we find that InforMin-CL
is not sensitive to batch size, similar to SimCSE,
mainly caused by the good set of initial parameters.

Table 5: Ablation studies of different hyper-parameters
λ. The results are based on the test sets using
BERTbase.

λ Avg. Sup Avg. Unsup

0.04 85.20 76.09
0.4 85.52 77.30
4 85.03 77.18

4.4 Uniformity and Alignment

We further conduct analysis to understand the inner
workings of InforMin-CL.
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(a) SimCSE (b) SCD (c) InforMin-CL

Figure 2: The t-SNE of sentence representations learned with SimCSE, SCD and InforMin-CL using BERTbase.
The points are embeddings of sentences sampled from the IMDB dataset without fine-tuning.

Figure 3: Quantitative analysis of embeddings - align-
ment vs. uniformity (the smaller, the better). The plot of
models is based on BERTbase. Points represent aver-
age STS performance with Spearman’s correlation color
coded (+ corresponds to supervised methods).

Qualitative Analysis As shown in (Wang and
Isola, 2020), the asymptotics of the contrastive
learning objective (4) can be expressed by the fol-
lowing equation when the number of negative in-
stances approaches infinity:

LC = max
[ 1

N

N∑

i=1

E
[
sim

(
z1
i , z2

i

)/
τ
]

− 1

N

N∑

i=1

E
[
log

1

N

N∑

k=1

esim(z1
i ,z2

k)/τ
]]

(10)
The first term in square brackets in Eq. 10 im-

proves alignment of the space. The alignment per-
forms better when the similarity score rises. While
optimizing the reconstruction objective, z1 and z2

are pulled closer, which means that the similar-
ity score of z1 and z2 becomes higher. In other
words, InforMin-CL effectively improves align-

Table 6: Ablation studies of the MLM objective based
on the test sets using BERTbase.

Model Avg. Sup Avg. Unsup

w/o MLM 85.52 77.30
w/ MLM
β = 0.01 86.46 63.59
β = 0.1 (ours) 86.96 63.25
β = 1.0 87.04 60.85

Table 7: Ablation studies of different batch sizes. The
results are based on test sets using BERTbase.

Batch size 64 128 256

Avg. Sup 85.38 85.52 85.77
Avg. Unsup 76.64 77.30 76.14

ment of pre-trained embeddings while keeping a
good uniformity, which is the key to the success
of InforMin-CL. We also follow (Wang and
Isola, 2020) to use uniformity and alignment to
measure the quality of representation space for
InforMin-CL and other models. Figure 3 shows
uniformity and alignment of different sentence em-
bedding models along with their STS averaged re-
sults. InforMin-CL achieves the best in terms
of alignment (0.143), which can be related to the
strong effect of the reconstruction objective. In
terms of uniformity, InforMin-CL is slightly in-
ferior to unsupervised SimCSE. This is also re-
flected in the final results in the t-SNE plots.

Quantitative Analysis The t-SNE (Reif et al.,
2019) plot in Figure 2 demonstrates the advantages
of InforMin-CL. We sample 2000 sentences
from IMDB (Maas et al., 2011) dataset and gen-

4828



erate the embeddings of sentences using SimCSE,
SCD and InforMin-CL. We use K-Means (Jain and
Dubes, 1988) clustering to group similar sentence
embeddings and form 10 clusters. Results indicate
that similar sentence pairs (marked by same colors)
generated by InforMin-CL are more aligned.

5 Limitations

Although our method outperforms baselines on
both unsupervised and supervised tasks in most
cases, there are still at least two limitations. First,
we simply sample negative instances from other
sentences in the mini-batch, which may lead to
false negatives. Punishing false negatives during
training by assigning lower weight for negatives
with higher similarity may be a solution. Second,
although redundant information is discarded, what
redundant information forgets and remains is un-
known. It would be interesting to explore this prob-
lem by integrating interpretation methods.

6 Conclusion

In this work, we propose InforMin-CL, an effec-
tive contrastive learning approach, which improves
state-of-the-art sentence embedding performance
on downstream tasks. InforMin-CL discards re-
dundant information stored in positive instances by
encouraging one positive instance to reconstruct
the other positive instance in the same pair. We test
InforMin-CL on seven supervised and seven un-
supervised tasks. Experimental results indicate our
method outperforms all previous competitors.
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Abstract

Recent work in black-box adversarial attacks
for NLP systems has attracted much attention.
Prior black-box attacks assume that attackers
can observe output labels from target models
based on selected inputs. In this work, in-
spired by adversarial transferability, we pro-
pose a new type of black-box NLP adversarial
attack that an attacker can choose a similar do-
main and transfer the adversarial examples to
the target domain and cause poor performance
in target model. Based on domain adaptation
theory, we then propose a defensive strategy,
called Learn2Weight, which trains to predict
the weight adjustments for a target model in
order to defend against an attack of similar-
domain adversarial examples. Using Amazon
multi-domain sentiment classification datasets,
we empirically show that Learn2Weight is ef-
fective against the attack compared to standard
black-box defense methods such as adversarial
training and defensive distillation. This work
contributes to the growing literature on ma-
chine learning safety.

1 Introduction

As machine learning models are applied to more
and more real-world tasks, addressing machine
learning safety is becoming an increasingly press-
ing issue. Deep learning algorithms have been
shown to be vulnerable to adversarial examples
(Szegedy et al., 2013; Goodfellow et al., 2014; Pa-
pernot et al., 2016a). In particular, prior black-box
adversarial attacks assume that the adversary is not
aware of the target model architecture, parameters
or training data, but is capable of querying the tar-
get model with supplied inputs and obtaining the
output predictions. The phenomenon that adver-
sarial examples generated from one model may
also be adversarial to another model is known as
adversarial transferability (Szegedy et al., 2013).

Motivated by adversarial transferability, we con-
jecture another black-box attack pipeline where the

adversary does not even need to have access to the
target model nor query labels from crafted inputs.
Instead, as long as the adversary knows the task
of the target, they can choose a similar domain to
build a substitute model, and then attack the target
model with adversarial examples that are generated
from the attack domain.

The similar-domain adversarial attack may be
more practical than prior blackbox attacks as label
querying from the target model is not needed. This
attack can be illustrated with the following example
(Figure 1b) in medical insurance fraud (Finlayson
et al., 2019). Insurance companies may use hypo-
thetical opioid risk models to classify the likelihood
(high/low) of a patient to abuse the opioids to be
prescribed, based on the patient’s medical history
as text input. Physicians can run the original pa-
tient history through the attack pipeline to generate
an adversarial patient history, where the original
is more likely to be rejected ("High" risk) and the
adversarial is more likely to be accepted ("Low"
risk). Perturbations in patient history could be, for
example, a slight perturbation from "alcohol abuse"
to "alcohol dependence", and it may successfully
fool the insurance company’s model.

Based on domain adaption theory (Ben-David
et al., 2010), we conjecture that domain-variant fea-
tures cause the success of the similar-domain attack.
The adversarial examples with domain-variant fea-
tures are likely to reside in the low-density regions
(far away from decision boundary) of the empirical
distribution of the target training data which could
fool the target model (Zhang et al., 2019b). Liter-
ature indicates that worsened generalizability is a
tradeoff faced by existing defenses such as adver-
sarial training (Raghunathan et al., 2019) and do-
main generalization techniques (Wang et al., 2019).
In trying to increase robustness against adversarial
inputs, a model faces a tradeoff of weakened accu-
racy towards clean inputs. Given that an adversarial
training loss function is composed of a loss against
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Figure 1: Diagrammatic representation of the attack
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clean inputs and loss against adversarial inputs,
improper optimization where the latter is highly-
optimized and the former weakly-optimized does
not improve general performance in the real-world.
To curb this issue, methods have been proposed
(Schmidt et al., 2018; Zhang et al., 2019b; Lamb
et al., 2019), such as factoring in under-represented
data points in training set.

To defend against this similar-domain adversar-
ial attack, we propose a meta learning approach,
Learn2Weight, so that the target model’s deci-
sion boundary can adapt to the examples from low-
density regions. Experiments confirm the effective-
ness of our approach against the similar-domain
attack over other baseline defense methods. More-
over, our approach is able to improve robustness
accuracy without losing the target model’s standard
generalization accuracy.
Our contribution can be summarized as follows †:

• We are among the first to demonstrate the
similar-domain adversarial attack, leveraging
domain adaptation to create adversarial pertur-
bations that compromise NLP models. This
attack pipeline relaxes the previous black-box
attack assumption that the adversary has ac-
cess to the target model and can query the
model with crafted examples.

• We propose a defensive strategy for this attack
based on domain adaptation theory and meta
learning. Experiments show the effectiveness
of our approach over existing defenses against
the similar-domain adversarial attack.

†† indicates supplementary information can be found in
the appendix (Appendix: Datta (2022)).

2 Related Work

Zhang et al. (2020) provides a survey of adver-
sarial attacks in NLP. Existing research proposes
different attack methods for generating adversar-
ial text examples (Moosavi-Dezfooli et al., 2016;
Ebrahimi et al., 2018; Wallace et al., 2019). The
crafted adversarial text examples have been shown
to fool state-of-the-art NLP systems, e.g. BERT
(Jin et al., 2019). A large body of adversarial at-
tack research focuses on black-box attack where
the adversary builds a substitute model by querying
the target model with supplied inputs and obtaining
the output predictions. The key idea behind such
black-box attack is that adversarial examples gen-
erated from one model may also be misclassified
by another model, which is known as adversarial
transferability (Szegedy et al., 2013; Cheng et al.,
2019). While prior work examines the transferabil-
ity between different models trained over the same
dataset, or the transferability between the same or
different models trained over disjoint subsets of a
dataset, our work examines the adversarial transfer-
ability between different domains, which we call a
similar-domain adversarial attack.

3 Similar-domain Adversarial Attack

3.1 Adversarial attack background
Adversarial attacks modify inputs to cause errors in
machine learning inference (Szegedy et al., 2013).
We use the basic gradient-based attack method Fast
Gradient Sign Method (FGSM) (Goodfellow et al.,
2014), with perturbation rate " = 0.4. Other NLP
adversarial generation algorithms could also be
used, such as Rand-FGSM (Tramèr et al., 2017),
Basic Iterative Method (Kurakin et al., 2016c,a;
Xie et al., 2018), DeepFool (Moosavi-Dezfooli
et al., 2016), HotFlip (Ebrahimi et al., 2018), uni-
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Attack domain: baby, Target domain: books
Original sentence
(Actual label: Pos)

I purchased this toy for my son when he was 4 months old. At first, he seemed
a little intimidated by the toys. Pos (0.712)

Adversarial sentence I obtained this toys for my children when he was 4 weeks senior. At first, he
hoped a modest harassed by the toy. Neg (0.364)

Original sentence
(Actual label: Pos)

It felt like a big commitment for me to have to run the program 2 times a day,
and near the end of my pregnancy I was annoyed with having anything
strapped across my belly.

Pos (0.825)

Adversarial sentence
It felt like a big committed for me to have to run the program 2 length a day, and
near the end of my pregnancy I was annoyed with takes anything strapped
across my belly.

Neg (0.420)

Attack domain: dvd, Target domain: baby
Original sentence
(Actual label: Pos)

Fast times at ridgemont high is a clever, insightful, and wicked film! It is not
just another teen movie. Pos (0.614)

Adversarial sentence Sooner days at ridgemont high is a sane, thoughtful, and wicked flick! It is not
just another adolescent flick. Neg (0.335)

Original sentence
(Actual label: Pos)

This dvd gives a very good 60 minute workout. As others have pointed out the
cardio is very dancy. The first time I did it, I felt a bit awkward with the steps. Pos (0.647)

Adversarial sentence This dvd gives a awfully okay 60 minute exercise. As others have pointed out the
cardio is very dancy. The first time I did it, I perceived a bit awkward with the steps. Neg (0.258)

Table 1: Comparison of attack domain sentences correctly classified when unperturbed by respective attack domain
models and target domain models, then misclassified after perturbation by target models trained on books and baby
domain. The perturbations are in blue, and prediction confidence in brackets.

versal adversarial trigger (Wallace et al., 2019), and
TextFooler (Jin et al., 2019). To perform gradient-
based perturbations upon discrete space data, we
follow Papernot et al. (2016b) to generate adversar-
ial text. Our proposed similar-domain adversarial
attack is in-variant to adversarial algorithm, mean-
ing that the adversarial algorithm used would not
affect the attack performance.

Definition 1. NLP Adversarial Generation. We
denote Adv(✓;x; ") as an NLP adversarial genera-
tion method. The goal of Adv is to maximize the
misclassification rate on perturbed inputs:
xadv = Adv(✓;x) s.t. y 6= f(✓;xadv).

3.2 Similar-domain Adversarial attack

We present the architecture of similar-domain ad-
versarial attack in Figure 1a. The defender, the
target of the attack, constructs a target model (pa-
rameters ✓i) trained on domain text data Xi 0 . An
attacker, only having a rough idea about the target’s
task but lacking direct access to the target data or
target model parameters, collects attack data from a
similar domain Xj ⇠ X and trains an attack model
(parameters ✓j) 1 . They run the attack model
on the test data 2 to obtain correctly-classified
instances 3 . They chooses an adversarial attack
algorithm and generate a set of adversarial samples
Xadv

j 4 . They expose Xadv
j to the target model,

hoping Xadv
j misleads the target model to produce

an output of their choice 5 . The attacker’s objec-
tive is to maximize the misclassification per label

and minimize the accuracy w.r.t. perturbed inputs
(max Eqt 1), while the defender’s objective is to
maximize the accuracy w.r.t. perturbed inputs (min
Eqt 1). This type of attack works best as an adver-
sarial attack that compromises systems that base
decision-making on one-instance.

Exj ,yj⇠Xj ,Yj [f(✓i; Adv(✓j ;xj))� yj ] (1)

Definition 2. Similar-domain Adversarial At-
tack. Target modelf, trained on target domain data
Xi, is a deep neural network model with weights
✓i mapping text instances to labels: Yi = f(✓i; Xi).
An adversary chooses source attack domain Xj ,
builds substitute model f(✓j ; Xj), and generates
a set of adversarial examples Xadv

j from Xj using
Adv(✓j ; Xj), such that during an attack
f(✓i; X

adv
j ) = f(✓j ; X

adv
j ).

4 Is the Attack Effective?

4.1 Setup

(Datasets) We sample domains from 25 domain
datasets, each containing 1,000 positive and 1,000
negative reviews for an Amazon product category,
sourced from the Amazon multi-domain sentiment
classification benchmark (Blitzer et al., 2007).
(Models) We evaluated our setup on several archi-
tectures commonly-used for sentiment classifica-
tion, including LSTM (Wang et al., 2018), GRU,
BERT (Devlin et al., 2019), CNN (Kim, 2014), and
Logistic Regression (Maas et al., 2011).
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Target Domain book magazine baby
Original Accuracy 0.880 0.960 0.890
Intra-attack Accuracy 0.525 0.570 0.632
Attack Domain magazine baby dvd baby dvd book dvd book magazine
Unperturbed Accuracy 0.745 0.726 0.646 0.673 0.663 0.739 0.652 0.624 0.665
After-attack Accuracy 0.395 0.398 0.421 0.343 0.366 0.381 0.386 0.365 0.401
SharedVocab 0.455 0.381 0.255 0.381 0.345 0.260 0.255 0.270 0.260
Transfer Loss 0.000 0.017 0.071 0.010 0.022 0.079 0.050 0.066 0.069

Table 2: Domain shift & similarity: Sorted in descending order of domain similarity, we observe a lower after-attack
accuracy when domain similarity increases.

(Domain similarity) refers to the similarity be-
tween attacker’s chosen domain and defender’s
domain. SharedVocab measures the overlap of
unique words, in each of the datasets; a higher
degree of overlapping vocabulary implies the two
domains are more similar. We also use Trans-
fer Loss, a standard metric for domain adapta-
tion (Blitzer et al., 2007; Glorot et al., 2011), to
measure domain similarity; lower loss indicates
higher similarity. The test error from a target model
trained on target domain Xi and evaluated on attack
domain Xj returns transfer error e(Xj , Xi). The
baseline error e(Xi, Xi) term is the test error ob-
tained from target model trained on target domain
(train) data Xi and tested on target domain (eval-
uation) data Xi. This computes the transfer loss,
tf(Xj , Xi) = e(Xj , Xi)� e(Xi, Xi).
(Accuracy) We first report the accuracy of the tar-
get models on the target domain test samples before
the attack as the original accuracy. Then we mea-
sure the accuracy of the target models against adver-
sarial samples crafted from the attack domain sam-
ples, denoted as the after-attack accuracy. Intra-
attack accuracy denotes the after-attack accuracy
where the attack domain is identical to the target
domain. By comparing original and after-attack
accuracy, we can evaluate the success of the attack.
The greater the gap between the original and after-
attack accuracy, the more successful the attack. Un-
perturbed accuracy measures the accuracy of the
target model against the complete, unperturbed test
set of the attack domain, to demonstrate that any
drop in classification accuracy is not from domain
shift alone but from adversarial transferability.

4.2 Results
The similar-domain adversarial attack results are
presented in Table 2. We see a significant gap be-
tween original accuracy and after-attack accuracy,
indicating that this attack can impose a valid threat
to a target NLP system. After the similar-domain
adversarial attack, the accuracy drops dramatically
by a large margin. Take the book target domain
as an example: when the attack domain is maga-
zine, the after-attack accuracy drops to 0.398, and
when the attack domain is baby, the accuracy is
0.421. Moreover, we observe a positive correlation
between transfer loss and after-attack accuracy, and
a negative correlation between shared vocab and
after-attack accuracy.

5 Defending Against Similar-domain
Adversarial Attack

In order to defend against a similarity based ad-
versarial attack, it is critical to block adversarial
transferability. Adversarial training is the most in-
tuitive yet effective defense strategy for adversarial
attack (Goodfellow et al., 2014; Madry et al., 2017).
However, this may not be effective for two reasons.
First, there is no formal guidance for generating
similar-domain adversarial examples because the
defender has no idea what the attack data domain is.
Second, simply feeding the target model with ad-
versarial examples may even hurt the generalization
of the target model (Su et al., 2018; Raghunathan
et al., 2019; Zhang et al., 2019a), which is also
confirmed in our experiments.

5.1 Parameter Adaptation
Meta learning techniques that modify parameters
(Ha et al., 2016; Hu et al., 2018; Kuen et al., 2019)
are concerned with adapting weights from one
model into another, and generating/predicting the
complete set of weights for a model given the in-
put samples. In our context, distinctly different
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weights are produced for target models trained on
inputs of different domains, and feature transfer-
ability (Yosinski et al., 2014) in the input space can
be expected to translate to weights transferability
in the parameter space. Rather than completely
regenerating classification weights, our model ro-
bustification defense, Learn2Weight, predicts the
perturbation to existing weights ✓⇤ = ✓i + c�✓ for
each new instance.

5.2 Learn2Weight (L2W)†

We conjecture that an effective defense strategy is
to perturb the target model weights depending on
the feature distribution of the input instance. In
inference (Algorithm 1), L2W recalculates the tar-
get model weights depending on the input. During
training (Algorithm 2), L2W trains on sentences
from different domains and a weight differential
for that domain (the weight adjustment required
to tune the target model’s weights to adapt to the
input’s domain). We obtain the weight differential
�✓ by finding the difference between the weights
✓j trained on sentence:label pairs from a specific
domain Xj ⇠ X and weights ✓i trained on sen-
tence:label pairs from the target domain Xi. Other
training models may be possible; here we trained
a sequence-to-sequence network (Sutskever et al.,
2014) on sentence:�✓ pairs.

5.3 Perturbation Sets Generation†

To generate synthetic domains of varying domain
similarity S = {Xj : Yj}T

j=1 so that defenders
defend their model using only target domain data
Xi, a defender iteratively generates perturbation
sets that minimizes transfer loss while maximizing
adversarial perturbations (Algorithm 3). A pertur-
bation set is a set containing subsets of perturbed
inputs (Alzantot et al., 2018; Wong et al., 2019).
To construct one perturbation set (Eqt 2), we uti-
lize an iterative minimax algorithm, where we it-
eratively apply a maximizing adversarial pertur-
bation factor " � "min, and accept the batch of
perturbed inputs if it yields a minimizing input dis-
tance dist  dmax. We repeat this T times. We
use transfer loss as the distance metric to optimize
for domain similarity. We retain FGSM as the ad-
versarial attack algorithm.

X⇤ := min dist(X⇤, Xi)  dmax

X⇤ := min arg max
"⇠["min,1]

dist(Adv(✓i; Xi; "), Xi)

X⇤ := min arg max
"⇠["min,1]

[e(Adv(✓i; Xi; "), Xi)� e(Xi, Xi)]

(2)

Algorithm 1: Learn2Weight (Inference)

inference (Xadv
j ,h(✓mf),f(✓i))

Input : test-time inputs Xadv
j ; L2W h(✓mf);

base learner f(✓i)
Output : label ŷ

Compute parameter differential w.r.t. Xadv
j .

c�✓  h(✓mf; Xadv
j )

Update ✓f.
ŷ  f(✓i + c�✓; Xadv

j )

return ŷ

Algorithm 2: Learn2Weight (Training)

train (S,D, ✓i,E
f,Emf)

Input : domains (perturbation sets) S, target domain
D = {Xi : Yi}, base learner parameters ✓i,
epochs Ef & Emf

Output :L2W parameters ✓mf

Initialize empty set ⇥ to store parameter differential.
⇥ ;;

Compute Xj 7! �✓.
foreach Xj : Yj 2 (D [ S) do

for e 0 to Ef do
✓fj,e := ✓fj,e�1 �

PXj ,Yj
x,y

@L(x,y)

@✓f

�✓  ✓fj � ✓i

⇥ �✓;

Compute ✓mf.
for e 0 to Emf do
✓mf

e := ✓mf
e�1 �

P(Xi[S),⇥
Xj ,�✓

@L(Xj ,�✓)

@✓mf

return ✓mf

Algorithm 3: Perturbation Sets Generation
PerturbationSet (D, ✓i; T, R; dist, dmax; ", �)

Input : target domain D = {Xi : Yi}, parameters
✓i; number of perturbation sets T = 10, max
iterations R = 10; distance metric dist =
tf(Xi, Xj), max distance dmax = 0.1; initial
perturbation rate " = 0.9, perturbation learning
rate � = 0.05;

Output :set S containing T perturbation sets

Initialize empty S to store perturbation sets St.
S ;;

while t < T do
Run next iteration r until St meets conditions.

for r  0 to R do
Apply adversarial perturbations to X .
St,r  Adv(✓i; Xi; ");

Evaluate distance conditions.
if dist(St,r, Xi)  dmax then

if �2(S [ St,r) > �2(S) then
S {St,r : Yi};

continue;

else
Adjust hyperparameters.
" "� �;

t t + 1;

return S
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5.4 Explanation: Blocking Transferability
To facilitate our explanation, we adapt from domain
adaptation literature (Ben-David et al., 2010; Liu
et al., 2019; Zhang et al., 2019c):

e(Xadv
j , Xi)  e(Xi, Xi) + dH�H(Xadv

j , Xi) + � (3)

where H is the hypothesis space, h is a hy-
pothesis function that returns labels {0, 1}, and
e(Xi, Xi) and e(Xadv

j , Xi) are the generalization
errors from passing target domain data Xi and ad-
versarial data Xadv

j through a classifier trained on
Xi. dH�H(Xadv

j , Xi) is the H�H-distance be-
tween Xi and Xadv

j , and measures the divergence
between the feature distributions of Xadv

j and Xi.
eXadv

j
(h, h

0
) and eXi(h, h

0
) represent the probabil-

ity that h disagrees with h
0

on the label of an input
in the domain space Xadv

j and Xi respectively.

dH�H(Xadv
j , Xi) = sup

h,h
02H

|eXadv
j

(h, h
0
)� eXi(h, h

0
)|

dH�H(Xadv
j , Xi) = sup

h,h
02H

���Exj⇠Xj [|(h(xj)� h
0
(xj)|]

���

�
���Exi⇠Xi [|(h(xi)� h

0
(xi)|]

���
(4)

Divergence dH�H measures the divergence be-
tween feature distributions Xadv

j and Xi. Higher
dH�H indicates less shared features between 2 do-
mains. The greater the intersection between feature
distributions, the greater the proportion of domain-
variant features; one approach to domain adaptation
is learning domain-invariant features representa-
tions (Zhao et al., 2019) to minimize dH�H.
Explaining similarity-domain attacks. As
demonstrated by empirical results, e(Xadv

j , Xi) in-
creases in a similarity-based attack setting, and
this would arise if dH�H increases correspondingly.
dH�H computes inconsistent labels from inconsis-
tent feature distributions, and attributes the success
of the attack to domain-variant features.

FGSM and variants adjust the input data to max-
imize the loss based on the backpropagated gradi-
ents of a model trained on Xj . As our pipeline used
correctly-labelled sentences before adversarially
perturbing them, we can infer that perturbations
applied to Xj were not class-dependent (i.e. the
success of the attack is not based on the removal
of class-specific features), but class-independent
features. It is already difficult for a model trained
on Xj to classify when there is insufficient class-
dependent features (hence a high tf(Xadv

j , Xi));

in a cross-domain setting, it must be even more
difficult for a model trained on Xi to classify given
a shortage of domain-invariant, class-dependent
features.

dH�H � e(Xadv
j , Xi)� e(Xi, Xi)� �

dH�H � tf(Xadv
j , Xi)� �

(5)

Explaining Learn2Weight. L2W minimizes di-
vergence by training on {dH�H(Xj , Xi) : �✓}
pairs, such that �✓ = L2W (dH�H(Xj , Xi)) , where
dH�H(Xj , Xi) is reconstructed from the difference
between Xj and Xi. The target model possesses
a decision boundary (Liu et al., 2019) to classify
inputs based on whether they cross the boundary
or not; adversarial inputs have a tendency of being
near the boundary and fooling it. Meta learning
applies perturbations to the decision boundary such
that the boundary covers certain adversarial inputs
otherwise misclassified, and in this way blocks
transferability. The advantage of training on mul-
tiple domains {Xj}T

j=1 is that the after-L2W di-
vergence between Xadv

j and Xi is smaller because
L2W’s weight perturbations render the decision
boundary more precise in classifying inputs.
Explaining perturbation sets. We attributed why
adversarial sentences Xadv

j are computed to be
domain-dissimilar despite originating from Xj due
to insufficient domain-invariant, class-dependent
features resulting in low e(Xadv

j , Xi), i.e. low
tf(Xadv

j , Xi). To replicate this phenomenon in nat-
ural domains, we iteratively perturb Xi to increase
the proportion of class-independent features. This
approximates the real-world similarity-based attack
scenario where class-dependent features may be
limited for inference. By generating the synthetic
data, we are feeding L2W attack data with varia-
tions in dH�H and class-independent feature distri-
butions. This prepares L2W to robustify weights
✓i when such feature distributions are met.
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Target Domain magazine baby
Attack Domain baby dvd book dvd book magazine
After-attack Accuracy 0.381 0.366 0.343 0.365 0.386 0.401
After-defense Accuracy
Adversarial Training 0.639 0.559 0.657 0.558 0.577 0.661
Defensive Distillation 0.549 0.561 0.597 0.588 0.629 0.577
Perturbation Sets Adversarial Training 0.608 0.637 0.620 0.604 0.620 0.587
Learn2Weight 0.796 0.842 0.843 0.774 0.751 0.737

Table 3: After-defense Accuracy: Learn2Weight outperforms the baseline and ablation methods.

Target
Domain

Attack
Domain

After-Attack Accuracy After-Defense Accuracy

BERT LSTM GRU CNN LogReg BERT LSTM GRU CNN LogReg

book
dvd 0.342 0.413 0.477 0.335 0.440 0.786 0.847 0.804 0.816 0.782
kitchenware 0.350 0.372 0.325 0.353 0.425 0.765 0.826 0.795 0.742 0.767
electronics 0.400 0.389 0.416 0.315 0.460 0.792 0.812 0.784 0.770 0.725

dvd
book 0.326 0.434 0.479 0.383 0.490 0.816 0.795 0.824 0.804 0.794
kitchenware 0.355 0.370 0.379 0.359 0.490 0.728 0.796 0.755 0.735 0.695
electronics 0.387 0.377 0.332 0.348 0.455 0.825 0.836 0.812 0.834 0.796

electronics
book 0.425 0.394 0.473 0.358 0.474 0.775 0.821 0.795 0.782 0.712
dvd 0.342 0.395 0.452 0.368 0.493 0.784 0.845 0.855 0.842 0.792
kitchenware 0.390 0.384 0.464 0.329 0.432 0.730 0.824 0.753 0.724 0.678

Table 4: Models: L2W retains high after-defense accuracy at varying attack model architectures.

6 Experiments†

6.1 Baselines

Defensive distillation (Papernot et al., 2016c,
2017): The high-level implementation of defensive
distillation is to first train an initial model against
target domain inputs and labels, and retrieve the
raw class probability scores. The predicted proba-
bility values would be used as the new labels for
the same target sentences, and we would train a
new model based on this new label-sentence pair.
Adversarial training (Goodfellow et al., 2014;
Madry et al., 2017): It is shown that injecting ad-
versarial examples throughout training increases
the robustness of target neural network models. In
this baseline, target model is trained with both orig-
inal training data and adversarial examples gener-
ated from original training data. However, since
the adversarial examples are still generated from
the target domain, it is unlikely that the method can
defend against a similar-domain adversarial attack,
which is the result of domain-variant features.
Perturbation sets adversarial training: This ab-
lation baseline tests for incremental performance
to a baseline defense using domain-variant inputs.
We adapt adversarial training to be trained on per-
turbation sets (synthetic domains) generated with
Algorithm 3 with respect to target domain Xi.

6.2 Learn2Weight Performance

Defense performance. We present the results of
different defense baselines in Table 3. First, we can
see that L2W achieves the highest after-defense
accuracy against the adversarial attack. Take the
magazine as target domain for example: if the ad-
versary chooses to use book data as the attack do-
main, it would reduce the target model accuracy
to 0.343. However, L2W can improve the perfor-
mance to 0.843, which is a significant and sub-
stantial improvement against the attack. This im-
provement also exist across different target/attack
domain pairs. Second, we see that all defense meth-
ods can improve the accuracy to some extent which
indicates the importance and effectiveness of hav-
ing robust training for machine learning models.
Attack model architectures. So far, all the results
are conducted using the same LSTM as the tar-
get/attack model. Here, we keep the target model
unchanged, but vary the architecture of the at-
tack model for the generation of adversarial ex-
amples. LSTM (GRU) is configured with 64 cells,
tokens embedded with respect to GloVe, sigmoid
(tanh) activation function, randomly-initialized
and trained with Adam optimizer and 80% (60%)
dropout, based on Wang et al. (2018). CNN is
configured with accepting tokens embedded with
respect to GloVe (Pennington et al., 2014), 3 convo-
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lutional layers with kernel widths of 3, 4, and 5, all
with 100 output channels, and randomly-initialized,
based on Kim (2014). We configure Logistic Re-
gression based on Maas et al. (2011). Based on De-
vlin et al. (2019), we initialize a pretrained BERT
with its own embeddings. Models are trained until
reaching state-of-the-art validation accuracy (early-
stopping pauses training at loss 0.5).

We present the results of different attack model
architectures in Table 4. First, the similar-domain
adversarial attack is model-agnostic and it does not
require the target and attack model to have identical
architectures. We can see that all four attack model
architectures are able to reduce the target model
accuracy. Second, the results suggest that L2W is
also model-agnostic as it can substantially improve
the after-defense accuracy regardless which attack
model is used.

7 Conclusion

In this newly-proposed, empirically-effective
similar-domain adversarial attack, an adversary can
choose a similar domain to the target task, build
a substitute model and produce adversarial exam-
ples to fool the target model. We also propose
a defense strategy, Learn2Weight, that learns to
adapt the target model’s weight using crafted adver-
sarial examples. Compared with other adversarial
defense strategies, Learn2Weight can improve the
target model robustness against the similar-domain
attack. Our method demonstrates properties of a
good adversarial defense, such as adopting a de-
fense architecture that adapts to situations/inputs
rather than compromising standard error versus ro-
bustness error, to leverage class-independent prop-
erties in domain-variant text, and factoring in do-
main similarity in adversarial robustness.
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Abstract

Meta-learning has emerged as an effective ap-
proach for few-shot text classification. How-
ever, current studies fail to realize the impor-
tance of the semantic interaction between sen-
tence features and neglect to enhance the gen-
eralization ability of the model to new tasks.
In this paper, we integrate an adversarial net-
work architecture into the meta-learning system
and leverage cost-effective modules to build a
novel few-shot classification framework named
SaAML. Significantly, our approach can ex-
ploit the temporal convolutional network to
encourage more discriminative representation
learning and explore the attention mechanism
to promote more comprehensive feature expres-
sion, thus resulting in better adaptation for new
classes. Through a series of experiments on
four benchmark datasets, we demonstrate that
our new framework acquires considerable su-
periority over state-of-the-art methods in all
datasets, increasing the performance of 1-shot
classification and 5-shot classification by 7.15%
and 2.89%, respectively.

1 Introduction

Deep learning usually relies on a vast amount of
labeled examples to accomplish tasks. However,
this requirement is problematic for few-shot text
classification when only a few examples are avail-
able in novel classes, which leads to poor model
generalization for new tasks. Motivated by the fact
that humans can quickly recognize new knowledge
after learning a few examples, few-shot learning is
becoming a hot research topic.

Early studies exploit data augmentation and reg-
ularization procedures (Salamon and Bello, 2017)
to deal with the overfitting due to data sparse-
ness. More recent research mainly falls into two
approaches: (1) transfer-learning based methods
(Pan et al., 2019; Gupta et al., 2020), which trans-
fer and propagate knowledge attained from the
source domain to classify unseen examples in the

target domain. (2) meta-learning based methods
(Tong, 2019; Sun et al., 2019), which learn knowl-
edge by repeating lots of meta-tasks in a training
episode manner and leverage knowledge extracted
to briskly predict new samples during meta-testing.
Specifically, Bao et al. (Bao et al., 2019) incor-
porated distributional signatures of words into the
meta-learning framework to make impressive per-
formance. Han et al. (Han et al., 2021) first pro-
posed to introduce an adversarial domain adapta-
tion network to strengthen the generalization ability
of the meta-learning system.

Despite the remarkable progress of few-shot
classification approaches (Geng et al., 2019; Bao
et al., 2019; Han et al., 2021), most existing meta-
learning models still suffer tough challenges: ex-
ample diversity. Even examples in the same class
have various representations, bringing about the
difficulty of extracting generic features based on a
few training examples and the urgent demand for
strong adaptability of the model to new tasks.

In this paper, we propose a straightforward but
remarkably powerful framework to cope with the
above challenges. We deploy an adversarial net-
work architecture to train the meta-learning system
and create a novel framework Sentence-aware Ad-
versarial Meta-Learner (SaAML). Specifically, we
employ the temporal convolutional network (TCN)
(Bai et al., 2018) and the multilayer perceptron
network (MLP) to build the generator and discrimi-
nator, respectively. The model can grasp sentences’
inherent semantic information through the adversar-
ial training of the generator and the discriminator.
Then we artfully fuse the word embeddings and the
features of the generator to construct high-quality
discriminative sentence features. Moreover, we fur-
ther build a feature enhancer (FE) to leverage the
multi-head attention mechanism to fine-tune the
features of support examples and query examples,
aiming to create more compatible feature represen-
tations. Our research methodically develops how to
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better exploit the adversarial network architecture
and sentence-aware interaction knowledge to boost
few-shot text classification performance. The main
innovations of our research are as follows:

1) We analyze the limitation to the performance
of current meta-learning approaches and estab-
lish a novel system SaAML based on the ad-
versarial network architecture. And we com-
bine it with various meta-classification tech-
niques to handle the few-shot classification
dilemma.

2) We build the meta-learning system with more
cost-effective modules, .e.g., the temporal con-
volutional network (TCN), the semantic ex-
tractor (SE), and the feature enhancer (FE).
Then we jointly train the whole model in an
end-to-end fashion.

3) To evaluate the effectiveness and robustness
of the proposed model, we conduct massive
comparison experiments and ablation studies
on four datasets. The results indicate that our
new framework SaAML outperforms state-
of-the-art approaches with nearly 5.02% per-
formance improvement, and the proposed en-
hancement modules are more beneficial and
flexible.

2 Related Work

Few-shot text classification is a crucial application
scenario of few-shot learning in natural language
processing (NLP), which has obtained increasing
attention and research. Transfer learning (Gupta
et al., 2020), as a feasible approach to tackle few-
shot text classification, intends to make the knowl-
edge learned from the source domain more com-
patible with the target domain and reduce the shift
between different domains. For example, Tzeng
et al. (Tzeng et al., 2017) leverages the adversar-
ial domain adaptation framework to bridge the do-
main gaps without example constraints. Moreover,
with the rapid development of pre-trained language
models, it also exhibits excellent performance by
fine-tuning the representations of training exam-
ples, such as BERT (Devlin et al., 2018) and GPT-3
(Brown et al., 2020).

As the dominant program in few-shot text clas-
sification, meta-learning (Schmidhuber, 1987) sys-
tems develop rapidly and achieve great success.
Meta-learning approaches are mainly divided into

two categories: (1) Optimization-based methods,
which resort to “learning to fine-tune" strategy to
train the model. For example, (Finn et al., 2017;
Lee et al., 2019; Rajeswaran et al., 2019) develop
an optimization procedure of model parameter ini-
tialization to quickly obtain outstanding perfor-
mance after a small amount of gradient update steps
based on few-shot training examples.(2) Metric-
based methods, which complete the classification
task through a specific distance metric, .e.g., Match-
ing Network (Vinyals et al., 2016) is calculated
by the cosine similarity, while the Euclidean dis-
tance is the measure standard of Prototypical Net-
work (Snell et al., 2017). Relational Network (Sung
et al., 2018) and GNN Network (Yang et al., 2020)
utilize convolutional neural networks and graph
neural networks to learn metric functions dynami-
cally. Recently, Bao et al. (Bao et al., 2019) argues
that statistical information of sentences plays a vi-
tal role in classification tasks. Sun et al. (Sun
et al., 2021) subtly combines data augmentation
with meta-learning to generate more diverse sam-
ples, preventing model overfitting. Han et al. (Han
et al., 2021) is the first to explore the adversarial
domain adaptation network for the performance
improvement of meta-learning framework.

3 Preliminary

The few-shot text classification is usually viewed
as a N -way K-shot task. Firstly, the input of
the model is a set with multiple labeled examples,
including support set Ctrain and query set Ctest,
where Ctrain are disjoint from Ctest. Then the
meta-learner conducts the episode-based strategy
(Vinyals et al., 2016) to train a classifier on Ctrain.
Finally, the meta-learner accomplishes the goal to
predict new examples of Ctest with the classifier.

For the episode-based strategy, we randomly se-
lectN classes (N -way) from Ctrain, and then sepa-
rately sample K examples (K-shot) as the support
set S and P examples as the query set Q from each
of these chosen classes, which can be denoted as:

S = {(Xi, Yi)}N×Ki=1

Q = {(Xj , Yj)}N×Pj=1

(1)

where X is the input text sentence and Y is the
corresponding label. It is worth noting that the
same example sampling manner is implemented to
build the support set S and query setQ during meta-
training and meta-testing. We leverage the macro-
averaged accuracy across all testing episodes to
evaluate the performance of the meta-learner.
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Figure 1: The overall framework of SaAML

4 Our Approach

Our proposed SaAML is broadly built to pursue the
excellent performance of few-shot text classifica-
tion. The overall architecture of SaAML is shown
in Figure 1. First, we leverage the representation
generator with TCN as the core block to capture
comprehensive semantic information of sentences
and exploit the meta discriminator to strengthen the
learning ability of the model. Then, we contrive a
feature enhancer to further fine-tune the example
vectors with sentence-aware knowledge for more
consistent representations. Finally, we jointly train
all modules of SaAML with different schemes in
an end-to-end manner.

4.1 Representation Generator

The representation generator consists of a word
embedding encoder and a temporal convolutional
network (TCN) (Bai et al., 2018), as shown in Fig-
ure 1.

The word embedding encoder converts each
word into the embedding vector. We construct the
embedding vector v with d dimensions via fastText
(Joulin et al., 2016).

The goal of the temporal convolutional network
(TCN) (Bai et al., 2018) is to acquire more trans-
ferable feature information. TCN architecture is
very simple yet effective, covering some of the best
techniques of current convolutional networks, such
as 1D full convolution, causal convolution, and
dilated convolution, as shown in Figure 2. To be
specific, we exploit the 1D full convolution to make

the model’s output with the same length as the in-
put. We adopt the causal convolution to ensure
that the current result is only convolved with inputs
from now to earlier, with no “leakage” of knowl-
edge from the future to the past. Significantly, we
also utilize the dilated convolution to expand the
receptive field of the network and encourage the
result of richer semantic information.

Figure 2: The convolutional layer structure of TCN.

Given that the input is a sequence of word vec-
tors V = [v1,v2, · · ·,vm], wherem is the number
of words in the sentence. The output of TCN is
a matrix hd×m = [h1,h2, · · ·,hm] with contex-
tual embeddings, as shown in Figure 3.The matrix
hd×m is then converted into the sentence vector hg

by a linear layer with softmax function.
Furthermore, the representation generator also

competes against the meta discriminator as much
as possible, so that the discriminator can not de-
termine whether the samples are from the source
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Figure 3: The TCN with dilation factors d = 1, 2, 4 and
filter kernel k = 2.

domain or the target domain. Only in this way can
more comprehensive features be created for better
classification performance, which is the core moti-
vation in building the representation generator and
meta discriminator.

4.2 Meta Discriminator
We consider the examples in the support set and
query set as the target domain, and the remaining
examples as the source domain. Definitely, we sam-
ple a subset of the same size as the query set from
the source domain as the source set. The discrimi-
nator comprises a three-layer feed-forward neural
network and a softmax function. The calculation
process is as follows:

Ŷ = softmax(MLP (hg)) (2)

where hg denotes the sentence vector of each exam-
ple from the representation generator. Ŷ ∈ {0, 1}
represents whether the example is from the query
set or the source set.

4.3 Semantic Extractor
The semantic extractor fuses the word embedding
from fastText and the representation vector from
the generator to create the more comprehensive
feature representation w for each example, which
can be expressed as:

w = V d×m · hg (3)

where V d×m = [v1,v2, · · ·,vm]. vm is the word
embedding vector and m is the number of words
in the sentence. hg denotes the sentence vector
generated by the representation generator.

4.4 Feature Enhancer
We construct the feature enhancer with the multi-
head attention mechanism (Vaswani et al., 2017)

and the MLP layer. The multi-head attention mod-
ule consists of multiple self-attention units. Each
self-attention unit has a powerful capability to catch
valuable feature information about the input, and
the knowledge learned by various self-attention
units from their respective perspectives can be in-
corporated in a concatenation manner, as shown in
Figure 4.

Figure 4: Details of the multi-head attention mecha-
nism.

Thus, we employ the multi-head attention mech-
anism to effectively grasp the feature interaction
between the representation sequences ws of sup-
port examples and the representation sequenceswq

of query examples. We then leverage the MLP layer
with GELU(·) activation function (Hendrycks
et al., 2020) to produce the final support vector
sequences zs and query vector sequences zq. The
whole process above can be described as:

Esq = [ws,wq] (4)

Hsq =MHAttention(Esq ) (5)

zs, zq = GELU(MLP (Hsq)) (6)

wherews = [ws
1,w

s
2, ···,ws

k] andwq = [wq
1,w

q
2,

wq
3, · · ·,wq

p]. The k and p represent the number of
examples in the support set and query set, respec-
tively. Esq is the concatenation result of ws and
wq. MHAttention(·) is actually the main com-
ponent of Transformer model (Vaswani et al.,
2017) and is used alone in our work to generate the
self-attention output Hsq. The final support vector
sequences zs = [zs1, z

s
2, · · ·, zsk] and query vector

sequences zq = [zq1, z
q
2, · · ·, zqp].

The feature enhancer is very beneficial to boost
the feature correlation between support examples
and query examples and decrease the interference
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of noisy representations. With limited knowledge,
the model can create the class-level representations
that are more compatible with query examples and
the query representations that are more consistent
with support examples, and acquire fine general-
ization ability across various classification tasks
rapidly.

4.5 Classifier
We adopt the prototypical network (Snell et al.,
2017) with Euclidean distance as the classifier in
our framework, which enables the model to easily
solve the learning problem and efficiently acceler-
ate training convergence.

Therefore, the classifier generates the class-level
vectorCu for each class u based on support vectors
zsi and measures the similarity probability, Dj ,
between the query vector zqj and the class vector
Cu through the Euclidean distance function R(·, ·).

Cu =
1

K

∑

(zsi ,Yi)∈Su
zsi (7)

Dj =
eR(Cu,z

q
j )

∑N
n=1 e

R(Cn,z
q
j )

(8)

where Su ⊂ S is the subset corresponding to class
u with the same label Yi in the support set S. And
K represents the number of examples in each class.

4.6 Loss Function
The modules of our framework SaAML are trained
using different strategies, .e.g, we train the classi-
fier from scratch for each episode, while the repre-
sentation generator is optimized across all training
episodes. For each training episode, we first em-
ploy the source set and query set to update the
parameters of the meta discriminator. Next, we
update the parameters of the representation gener-
ator and classifier over the support set and query
set. The details of the loss function are introduced
below.

The classifier loss consists of cross-entropy loss
and difference loss. The difference loss aims to
maximize the distance between different class vec-
tors, making each class as directionally different as
possible, which is defined as:

LDL = λ
∑

i ̸=j
∥ CT

i Cj ∥2F (9)

where ∥ · ∥F is the Frobenius norm, and λ is the
hyperparameter and can be set to 10−3.

Thus, the classifier loss can be represented as:

LC = − 1

N

N∑

n=1

K∑

k=1

Yn,k log Pn,k + LDL (10)

where Pn,k indicates the probability that the n-th
query example is predicted to be the k-th label.
Yn,k denotes the ground-truth label. The K and N
are the number of categories and examples, respec-
tively.

It is standard practice to apply the cross-entropy
loss as the loss function for the discriminator.

LD = − 1

2n

n∑

k=1

[ (Y d
k log Ŷk

+ (1− Y d
k ) log (1− Ŷk))]

(11)

where Y d
k and Ŷk denotes the real class of the ex-

ample and the prediction result of the discriminator,
respectively. The n is the number of examples in
the source set or query set.

As for the loss function of the generator, it can
be regarded as the combination of the classifier loss
function and the discriminator loss function, which
are used to gain the final classification results and
confuse the discriminator, respectively.

LG = LC − LD (12)

5 Experiment

We investigate the performance of our proposed
SaAML against six existing well-established base-
lines through extensive experiments on four bench-
mark datasets. Furthermore, we also develop a
series of ablation studies to further illustrate the
effectiveness and robustness of SaAML.

5.1 Datasets
There are four few-shot text classification datasets
in our work, as expressed in Table 1.

Table 1: Details of the four benchmark datasets.

Dataset Avg. text length samples per class train/val/test classes

Amazon 140 1000 10 / 5 / 9

20 Newsgroups 340 941 8 / 5 / 7

HuffPost 11 900 20 / 5 / 16

Banking77 16 170 30 / 15 / 32

Amazon is a collection of 24 product categories
(He and McAuley, 2016) with 142.8 million
product reviews. Following the same approach

4848



Table 2: Mean classification accuracy on Amazon, HuffPost, 20 Newsgroups, and Banking77 datasets.

Amazon HuffPost 20 Newsgroups Banking77

Method 5-way 5-way 5-way 10-way 15-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 0.3965 0.4713 0.3572 0.4931 0.3384 0.4372 0.4691 0.6659 0.3672 0.5659

PN 0.3760 0.5214 0.3573 0.4474 0.3780 0.4535 0.4156 0.6975 0.3501 0.6393

IN 0.3491 0.4132 0.3874 0.4912 0.2876 0.3337 0.5291 0.6884 0.4553 0.6179

RRML 0.5022 0.7275 0.3610 0.4966 0.3760 0.5724 0.5256 0.8148 0.4694 0.7734

DS-RRML 0.6260 0.8112 0.4305 0.6350 0.5212 0.6830 0.6034 0.8373 0.5432 0.7900

MLADA 0.6842 0.8600 0.4502 0.6491 0.5961 0.7780 0.6055 0.8089 0.5513 0.7470

SaAML 0.7147 0.8637 0.5126 0.6944 0.7079 0.8430 0.6860 0.8483 0.6235 0.8096

(Bao et al., 2019), we select 1000 reviews from
each category to establish the subset.
20 Newsgroups consists of about 20000 news
sentences evenly partitioned on 20 different topics,
which is from the news discussion boards (Lang,
1995).
HuffPost is extracted from the HuffPost articles
between the year 2012 and 2018 (Misra, 2018),
with news headlines in 41 categories.
Banking77 provides 77 classes of 13083 fine-
grained intents from the banking domain, proposed
by Casanueva et al. (Casanueva et al., 2020).

5.2 Baselines

Six existing few-shot learning baselines are
adopted to compare with our proposed SaAML,
which are briefly introduced as follows:
Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) is an optimization-based approach
to explicitly train model parameters such that the
model can produce great generalization on new
tasks after a few gradient update steps.
Prototypical Network (PN) (Snell et al., 2017)
is a metric-based method that employs the feature
average of support examples as the class vector
(prototype).
Induction Network (IN) (Geng et al., 2019)
constructs the class vector through the dynamic
routing algorithm based on capsule network and
leverages the relation module (Sung et al., 2018) to
learn the measure function.
Ridge Regression Meta-Learner (RRML)
(Bertinetto et al., 2018) exploits the ridge regres-
sion to obtain the class vector and develops proper
regularization to reduce model overfitting and
speed up model convergence.
Distributional Signature (DS) (Bao et al., 2019)
considers that the distribution signature is very
essential to catch more comprehensive feature

representations. Therefore, this meta-learning
framework achieves outstanding performance
when combined with distribution signatures, where
DS+RRML is the best method.
Meta-Learning Adversarial Domain Adaptation
Network (MLADA) (Han et al., 2021) explores
the adversarial network architecture to extract
sentence features, improving the generalization
and performance of meta-learning systems in
various scenarios.

In our study, we adopt the pre-trained fastText
(Joulin et al., 2016) as the embedding encoder in
all methods. TCN includes a total of four layers.
For each layer, the number of hidden units is 300
and kernel size is 2. The number of hidden units of
MLP in the discriminator is 256 and 128, respec-
tively. In the feature enhancer, the head number and
the feature dimension of the attention mechanism
are fixed as 6 and 300. For a fair comparison, 100,
100, and 1000 task episodes are randomly sampled
individually in each training, validation, and testing
epoch. Furthermore, we optimize model parame-
ters through the Adam algorithm (Kingma and Ba,
2014) with a learning rate of 1e− 5 and use early
stopping scheme when the performance on the val-
idation set fails to increase within 20 epochs. We
conduct all experiments on the NVIDIA Geforce
GTX 3090 GPUs server.

5.3 Experimental Results

We can obtain several valuable observations from
the comparison results of different baseline models,
and the results are depicted in Table 2. (1) Over-
all, our model SaAML creates an average accuracy
of 64.89% in 1-shot classification and 81.18% in
5-shot classification, substantially refreshing the
best performance on all datasets. Notably, it at-
tains a significant performance improvement of
5.73% over the state-of-the-art system MLADA
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(Han et al., 2021). (2) We find that SaAML gen-
erally outperforms 5-shot classification on 1-shot
classification, with an average accuracy improve-
ment of 7.15% in 1-shot classification and 2.89% in
5-shot classification. This is understandable since
the feature information available in low-shot scenes
is extremely deficient, especially for 1-shot clas-
sification, whereas SaAML is very competent in
leveraging the combination of the adversarial net-
work architecture and the feature enhancer to grasp
semantic information from a few examples, so that
it can address this challenge rapidly. (3) We also
notice that SaAML considerably improves the ac-
curacy of 20 newsgroups by nearly 8.84%, which is
better than other datasets in terms of performance
improvement. It clearly illustrates that the model
has a powerful feature learning ability and is more
compatible with long texts with rich information.
Besides, we have to acknowledge that the perfor-
mance improvement of SaAML on Amazon is not
apparent because of its affluent examples and di-
verse expressions. Note that the experimental re-
sults have 95% confidence intervals with variances
below 0.01.

5.4 Ablation Study

We perform massive experiments to explore the ef-
fectiveness and adaptability of various components,
.i.e., adversarial network (AN), temporal convo-
lutional network (TCN), semantic extractor (SE),
feature enhancer (FE) and difference loss (DL).
The ablation results are written in Table 3.

Firstly, we remove the setup of the adversar-
ial network (AN) architecture, which involves the
meta-discriminator and the source set. That is, the
discriminator no longer strengthens the features via
the adversarial training. In this way, the classifi-
cation performance of the model is significantly
weakened, which justifies the necessity and effec-
tiveness of adopting the adversarial network.

Secondly, we utilize the BiLSTM instead of the
TCN (Bai et al., 2018) to build the representation
generator. It is observed that the performance of
the model with TCN is superior to the model with
BiLSTM. This is because BiLSTM saturates at a
very early training stage due to optimization diffi-
culties, while TCN can capture the longer-distance
dependence of feature information.

Thirdly, we examine the role of the semantic
extractor (SE) and feature enhancer (FE) in perfor-
mance improvement. Obviously, the classification

accuracy of the model without the feature enhancer
drops by 12.30%. The model without the seman-
tic extractor also leads to the performance drop of
7.48%. It robustly demonstrates that the semantic
extractor can gain the richer semantics of the exam-
ples via a fusion manner, and the feature enhancer
can grasp the interaction knowledge between sup-
port examples and query examples.

Finally, we investigate the importance of differ-
ence loss (DL). We find that difference loss can fa-
cilitate the orthogonality between different classes
and improve the performance on few-shot classi-
fication tasks. In addition, we further explore to
replace the fastText (Joulin et al., 2016) with the
BERT (Devlin et al., 2018) as the embedding en-
coder. It is regrettable that BERT does not bring
performance improvement but will increase the
model complexity. This indicates that in the few-
shot scenario, powerful BERT may lead to the over-
fitting of the model, resulting in performance degra-
dation.

6 Discussion

Our work follows the research idea proposed by
Han et al. (Han et al., 2021) to exploit the ad-
versarial network to catch feature representations.
However, the implementation structure of MLADA
(Han et al., 2021) is too simple to extract intrin-
sic sentence feature information and strengthen the
generalization ability of the model well. In contrast,
we upgrade the whole meta-learning framework
with more cost-effective modules. The experimen-
tal results in Table 2 illustrate that the performance
of our proposed SaAML is significantly better than
MLADA.

Specifically, we build the generator with the tem-
poral convolutional network (TCN) rather than bi-
directional LSTM (BiLSTM) to excavate the inher-
ent semantic knowledge of sentences. We also ex-
ploit the feature enhancer to grasp the rich feature
interaction between different sentence representa-
tions through the multi-head attention mechanism.
Moreover, we adopt the prototype network (PN)
based on the difference loss as the classifier, im-
proving the model’s discriminative ability. Overall,
our model SaAML can construct more comprehen-
sive transferable representations and accomplish
excellent performance.

In addition, we further discuss the adaptation
potential of the SaAML and MLADA. We adopt
RRML (Bertinetto et al., 2018) and PN (Snell
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Table 3: The ablation results on Amazon, HuffPost, 20 Newsgroups, and Banking77 datasets.

Amazon HuffPost 20 Newsgroups Banking77

Model 5-way 5-way 5-way 10-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

-AN 0.6918 0.8470 0.4969 0.6764 0.7025 0.8302 0.6567 0.8360

-TCN 0.6966 0.8363 0.5057 0.6872 0.6745 0.8240 0.6789 0.8448

-SE 0.6108 0.7887 0.4683 0.6404 0.5589 0.7514 0.6456 0.8264

-FE 0.6005 0.7886 0.3773 0.5877 0.5443 0.7503 0.5646 0.6731

-DL 0.7075 0.8490 0.5065 0.6874 0.7043 0.8381 0.6837 0.8415

+BERT 0.6647 0.8340 0.4888 0.6815 0.5136 0.6737 0.6845 0.8526

SaAML 0.7147 0.8637 0.5126 0.6944 0.7079 0.8430 0.6860 0.8483

Table 4: The results for inserting augmentation components into PN and RRML on different datasets.

Amazon HuffPost 20 Newsgroups Banking77

Model 5-way 5-way 5-way 10-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PN 0.3760 0.5214 0.3573 0.4474 0.3780 0.4535 0.4156 0.6975

MLADA-PN 0.5587 0.7220 0.3106 0.4632 0.5088 0.6453 0.4662 0.6055

SaAML-PN 0.7147 0.8637 0.5126 0.6944 0.7079 0.8430 0.6860 0.8483

RRML 0.5022 0.7275 0.3610 0.4966 0.3760 0.5724 0.5256 0.8148

MLADA-RRML 0.6842 0.8600 0.4502 0.6491 0.5961 0.7780 0.6055 0.8089

SaAML-RRML 0.6856 0.8422 0.4588 0.6605 0.6680 0.8062 0.6130 0.7859

et al., 2017) as the classifier to build the model,
respectively. As exhibited in Table 4, regardless
of whether RRML or PN is used as the classifier,
SaAML obtains some performance progress across
different datasets in contrast to the published origi-
nal model and MLADA. It reveals that our SaAML
has an enormous opportunity for updating diverse
meta-learning systems.

7 Conclusion

In this paper, we propose a novel meta-learning
framework Sentence-aware Adversarial Meta-
Learner (SaAML) to address few-shot text clas-
sification task. Exactly, under the architecture of
the adversarial network, we explore the representa-
tion generator with TCN as the core module to en-
courage more discriminative representation learn-
ing and exploit the feature enhancer to facilitate
more consistent and comprehensive feature expres-
sion, which exceedingly strengthens the adaptabil-
ity and generalization of SaAML for new classes.
We develop comprehensive experiments on four
benchmark datasets to demonstrate that the pro-
posed model gains substantial improvements over
existing state-of-the-art meta-learning approaches.
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Matthew Henderson, and Ivan Vulić. 2020. Efficient
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Abstract

Semantically meaningful sentence embeddings
are important for numerous tasks in natural lan-
guage processing. To obtain such embeddings,
recent studies explored the idea of utilizing
synthetically generated data from pretrained
language models (PLMs) as a training corpus.
However, PLMs often generate sentences much
different from the ones written by human. We
hypothesize that treating all these synthetic ex-
amples equally for training deep neural net-
works can have an adverse effect on learning
semantically meaningful embeddings. To ana-
lyze this, we first train a classifier that identifies
machine-written sentences, and observe that the
linguistic features of the sentences identified
as written by a machine are significantly dif-
ferent from those of human-written sentences.
Based on this, we propose a novel approach that
first trains the classifier to measure the impor-
tance of each sentence. The distilled informa-
tion from the classifier is then used to train a re-
liable sentence embedding model. Through ex-
tensive evaluation on four real-world datasets,
we demonstrate that our model trained on syn-
thetic data generalizes well and outperforms
the existing baselines.1

1 Introduction

High-quality sentence embeddings are essential
in diverse applications of natural language pro-
cessing (Cer et al., 2018; Reimers and Gurevych,
2019), including semantic textual similarity (Cer
et al., 2017) and paraphrase identification (Dolan
and Brockett, 2005). Unfortunately, obtaining a
large amount of human-annotated datasets to train
a sentence embedding model is difficult and expen-
sive. To address this, Schick and Schütze (2021)
recently introduced a method, DINO, to train a

∗ Equal contribution
1Our implementation is publicly available at

https://github.com/ddehun/coling2022_
reweighting_sts.

sentence embedding model on synthetic data gen-
erated from pretrained language models (PLMs).
Despite the effectiveness and scalability of DINO,
however, the difference between machine-written
and human-written examples has not been carefully
investigated. In other words, the study on the im-
pact of treating all these synthetic examples equally
during training remains under-explored.

To this end, we first conduct an in-depth analysis
to demonstrate the shift of synthetic samples from
the human-written sentences. In particular, we train
a classifier (i.e., Synthetic Data Identification (SDI)
model) that identifies synthetic data from human-
written sentences and observe that the linguistic fea-
tures of the sentences predicted as machine-written
are much different from the human-written sen-
tences compared to the linguistic features of the
sentences predicted as human-written.

Based on this analysis, we propose a simple
method, Reweighting Loss based on Importance
of Machine-written SEntence (RISE), which first
utilizes the trained SDI model to measure the im-
portance of each sentence in learning semantically
meaningful sentence embeddings for sentence sim-
ilarity tasks. We then utilize this distilled informa-
tion from the SDI model to reweight the loss of
each synthetic example during training.

We extensively evaluate our method on multiple
sentence similarity datasets and observe that our
model outperforms all the baselines across diverse
datasets, even when they are evaluated on other
datasets from a distinct distribution with training
datasets. Our contributions include:

• We analyze the linguistic features of machine-
written sentences in synthetic dataset com-
pared to human-written sentences.

• We propose a simple method that adjusts the
contribution of synthetically generated sam-
ples to learn a reliable sentence encoder.

• We extensively evaluate our model on diverse
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STSb QQP MRPC

xh pD(xm) ↑ pD(xm) ↓ xh pD(xm) ↑ pD(xm) ↓ xh pD(xm) ↑ pD(xm) ↓
BLEU-N 34.80 25.75 2.93 30.3 34.95 7.86 48.53 46.97 5.59
Jaccard 41.98 33.97 5.98 39.91 42.49 11.31 53.55 53.33 10.52

Distinct-N 44.53 35.93 17.03 38.10 25.23 24.10 44.63 32.10 22.00
Zipf coeff. 1.03 1.07 1.23 1.11 1.06 1.12 0.98 1.02 1.23

Table 1: Results for comparing the sentences in different group. Jaccard indicates Jaccard similarity score. The
score of generated sentences far from human scores is highlighted in underline. BLEU-N and Distinct-N indicate
the average score with different N . The full results are available in Appendix A.

datasets and observe that our method demon-
strates consistent gains, generalizes well to
datasets from different domains, and is robust
to the adversarial attack.

2 Related Work

Synthetic data generation using pretrained lan-
guage models has shown promising results in vari-
ous natural language processing tasks (Yang et al.,
2020; Papanikolaou and Pierleoni, 2020; Ding
et al., 2020; Edwards et al., 2021; Chang et al.,
2021). Recently, Schick and Schütze (2021) pro-
posed a new method, DINO, to generate a synthetic
dataset for textual semantic similarity task. Another
recent work, Yoo et al. (2021) proposed a new
data augmentation framework for sentence clas-
sification by leveraging a large-scale PLM (Brown
et al., 2020). However, synthetic data can be mis-
used in malicious usage, such as fake news gen-
eration. To prevent such a fraudulent use, recent
studies (Zellers et al., 2019; Weiss, 2019; Uchendu
et al., 2020; Adelani et al., 2020) aim to detect
the synthetically generated text. On the contrary,
we aims to identify unrealistic sentences from
machine-written data and mitigate their influence
to achieve accurate and robust learning. While Yi
et al. (2021) suggested controlling weights to aug-
mented training examples, our work mainly focuses
on using only synthetic samples from PLMs.

3 Analysis on Synthetic Sentences

This section describes the generation of the syn-
thetic dataset, followed by training the model to
identify synthetic sentences from human-written
ones. Then, we present a novel analysis to demon-
strate the shift of synthetic samples from the
human-written sentences.

Synthetic Data Generation. To obtain machine-
generated sentences, we leverage the ability of
prompt-based zero-shot generation in a generative

PLM (Radford et al., 2019) (Figure 1-A). Specif-
ically, given a sentence xh ∈ Csrc where Csrc is
a set of human-written sentences and the target
similarity level y ∈ Y , this framework produces
a sentence xm ∈ Xm that has semantic similarity
with xh equal to the target similarity level y. The
generated examples {xh, xm, y} are later used to
train a model for sentence similarity tasks.

We use Semantic Textual Similarity bench-
mark (STSb) (Cer et al., 2017), Quora Question
Pairs (QQP)2, and Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005) as a
source of human sentences Csrc. We follow the
details for data generation in Schick and Schütze
(2021) with their official implementation.3 Finally,
we obtain about 76k, 78k, and 55k examples of
STSb, QQP, and MRPC datasets, respectively.

Synthetic Data Identification (SDI). We now
train a binary classification model D based on a
bi-directional PLM (Devlin et al., 2019) to dis-
tinguish machine-written sentences from human-
written sentences (Figure 1-B). We refer to this
model as the Synthetic Data Identification (SDI)
model and train it separately for each Csrc. We
use machine-written sentences Xm and human sen-
tences Xh in the same proportion for training.4 We
use the prediction confidence pD of the generated
sentence to measure how natural the sentence is.

Analysis. We now analyze to demonstrate the
shift of synthetic samples from the human-written
sentences. We use the following metrics to ana-
lyze the lexical-level linguistic patterns of each
sentence: (1) BLEU (Papineni et al., 2002) and
Jaccard Similarity (Montahaei et al., 2019) that
calculate the lexical-level similarity between xm
and its paired sentence. (2) Distinct-N (Li et al.,

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

3gpt2-xl is used as a PLM for data generation.
4The accuracy of classifiers of each dataset on the valida-

tion set are 77.87, 83.21, and 93.05% in STSb, MRPC, and
QQP datasets, respectively.
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xh: Mitchell, Man of La Mancha, Malcolm Gets from Amour and John Selya, Movin’ Out, complete the field.
xm: The other 30 percent is going to be a challenge, (y = 0) (Grammatical Error)
xh: A black dog is walking on the grass with a stick in it’s mouth.

xm:
A brown dog walks with his stick in his mouth and it is brown in color. The black dog is walking with his
stick in his mouth and it has a brown in color on it. (y = 0.5) (Repetition)

xh: Janet Racicot heard the thud from the kitchen, where she was getting a glass of water, she said in an interview.
xm: I have been to a few movies and I am not a big movie fan. I like horror movies. (y = 0) (Logical Flaw)

xh:
The rate of survival without serious brain damage is about 10 percent, said Bossaert, a professor at the
University Hospital in Antwerp, Belgium.

xm:
The brain damage in the patient is not serious. The patient is a young woman who was born in the United
States, but was born in Belgium. (y = 0.5) (Logical Flaw)

xh: It would be difficult to overestimate the potential dangers of the Remote Procedure Call (RPC) vulnerability.

xm:
A senior official in the Oil ministry asked an oil company’s CEO about his meeting with the minister.
This is a very sensitive issue and is very sensitive to both sides. (y = 0) (Uncommon in Context)

Table 2: Examples of machine-written sentences identified by the SDI model as unrealistic. The part of sentences
that contains linguistic errors is highlighted in red. More examples are available in Appendix B.

2015) that calculates the ratio of unique N-grams
among the total number of N-grams in each group
for xm. (3) Zipf coefficient (Holtzman et al., 2019)
that calculates the Zipf coefficient to analyze the
vocabulary usage for xm. We utilize the predic-
tion confidence pD from the SDI model to measure
the importance of generated sentences in learning
meaningful sentence embeddings. We select the top
10% (pD(xm) ↑) and bottom 10% (pD(xm) ↓) of
the machine-written sentences based on their sorted
importance and analyze their linguistic features.

Table 1 demonstrates that linguistic patterns of
synthetic examples vary significantly according to
their importance score pD(xm). Furthermore, we
observe that except for Zipf coefficient in QQP
dataset, generated sentences with high pD(xm) al-
ways have scores close to the scores of human-
written sentences (xh) compared to the sentences
with low pD(xm).5 Further qualitative analysis in
Table 2 reveals that the sentences with low impor-
tance score are unrealistic since they often contain
repetition, logical flaw or expressions that a human
does not use frequently. For example, as shown in
the second example of Table 2, a person does not
like movies, but in the next sentence, the machine
generates a sentence that the person likes horror
movies. In the third example, a machine generates
a sentence that a woman was born in two places.

Based on these observations, we confirm that
there exist a large variance in terms of how much
the sentences are shifted from human sentences.
Therefore, it is critical to handle the generated sen-
tences carefully so that the model is not biased to

5We provide a more detailed analysis in Appendix A.

the sentences that are sufficiently different from
human sentences. In the remaining of this paper,
we refer to the generated sentence as unrealistic
if they contain linguistic errors or lexical patterns
different from humans. To identify such unrealistic
sentences, we leverage the importance score (pD)
from SDI model. We regard sentences with lower
score from the model as more unrealistic.

4 Proposed Method

We now introduce a simple yet effective method,
Reweighting Loss based on Importance of
Machine-written SEntence (RISE), that aims to
give less importance to unrealistic machine-written
sentences than realistic sentences. Our method con-
sists of two stages: (1) measuring the importance
of the generated sentences in learning semantically
meaningful embeddings using the prediction con-
fidence pD from the SDI model (defined in Sec-
tion 3); 2) utilizing the importance score to control
the weight of the loss for each example during train-
ing so that the model does not deviate significantly
from the distribution of the human text. Other than
the loss function, the training procedure is the same
as standard training of a sentence embedding model
based on the bi-encoder architecture (Reimers and
Gurevych, 2019). More details on training the sen-
tence encoder are provided in Appendix D.

Reweighting Loss using Importance Score. We
utilize the prediction confidence pD from the SDI
model (Section 3) to measure the importance of
generated sentences. In particular, we modify the
loss to make the realistic machine-written exam-
ples (i.e., examples with high scores) have more
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Figure 1: Overview of RISE. We feed an instruction Iy and a human-written sentence xh to the Generator G which
produces a machine-written sentence xs. We then measure importance score pD using xs as input. Finally, we
predict the similarity score using the embedding vector of xs and xh. We compute the loss and multiply pD.

contributions to the loss, whereas the unrealistic
machine-written examples (i.e., examples with low
score) have less contribution (Figure 1-C). The loss
of each example is defined as:

Lw(θf) = pD ∗ L(θf), (1)

where L(θf) denotes the original loss of the sen-
tence encoder F for a sentence similarity task, and
Lw(θf) denotes the modified loss by RISE. θf de-
notes the parameters of the sentence encoder. This
re-weighting procedure aims to adjust the influence
of training examples based on the degree of shift
of the sentence from the human-written sentences.

5 Experimental Settings

We evaluate each model on STSb, QQP, MRPC,
and Paraphrase Adversaries from Word Scram-
bling of Quora Question Pairs (Zhang et al., 2019)
(PAWS-QQP) datasets. PAWS-QQP aims to evalu-
ate the robustness of the model against adversarial
attacks for the sentence similarity task. We provide
more details on datasets and experimental setup in
the Appendix E and F.

We train a model to solve the sentence similar-
ity task as a regression problem. However, since
all datasets except for STSb only contain discrete
labels, we set the threshold using the validation
dataset to make a binary decision. We apply our
method to DINO and denote it as RISE. In ad-
dition to experiments with RISE, we conduct ex-
periments with the following variants: (1) Filter-
ing: We filter out the bottom 10% of the machine-
written sentences based on their sorted importance.
We then use the remaining examples for training
without using our modified loss. (2) Random: We
randomly sample a scalar value from U(0, 1) for
each example and use it as its importance. DINO
and the variants of our method are based on the
sentence-RoBERTa-base architecture, which are
fine-tuned only on synthetic datasets. Besides, we
further compare our model against the following

sentence encoders that are fine-tuned on natural lan-
guage inference (NLI) dataset: Universal Sentence
Encoder(USE) (Cer et al., 2018), InferSent (Con-
neau et al., 2017), sentence-BERT (Reimers and
Gurevych, 2019), and sentence-RoBERTa. We also
compare with the models that are not trained on
human-annotated dataset, namely: GloVe (Pen-
nington et al., 2014), BERT-CLS, sentence-BERT,
sentence-RoBERTa.6

6 Results

Table 3 report the performance of our method and
the baselines on the sentence similarity task. We
observe that our model outperforms all the other
baselines including DINO that are not trained on
human-annotated dataset, and sometimes even bet-
ter than the models trained on human-annotated
dataset (i.e., NLI). These results support our as-
sumption that reweighting the loss of each machine-
written sentence based on its importance enhances
the model’s reliability and makes it less biased
to unrealistic machine-written sentences. Further-
more, we find that the improvement is usually
higher when the model is evaluated on datasets
from unseen domain during training. These results
imply that our method can generalize the sentence
encoder trained on a synthetic dataset when evalu-
ated on the dataset from different domains. In ad-
dition, our model outperforms other models on the
PAWS dataset, and it shows that our method makes
the model robust to adversarial attacks. In terms of
the variants of our method, using the randomly sam-
pled scalar value as an importance score usually
degrades performance. The models that filter out
unrealistic examples instead of reweighting them
perform worse than RISE in most cases. Based on
these observations, we confirm that training the
model using RISE can enhance the reliability of
the model trained on synthetic examples.

6Results on other STS tasks by training a regressor on top
of frozen embeddings are presented in Appendix C.
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STSb QQP MRPC PAWS

Csrc Model r ρ Acc. F1 Acc. F1 F1

GloVe 47.30 50.70 68.51 63.30 71.53 80.91 44.16
BERT-CLS 17.18 20.30 66.38 61.50 66.03 79.79 49.32
BERT 47.91 47.29 68.70 64.26 70.38 80.50 46.05
BERT* 74.15 76.98 73.10 67.08 73.39 81.68 53.91
RoBERTa 52.36 54.35 67.91 63.67 72.28 81.20 44.03
RoBERTa* 74.78 77.80 73.56 67.00 75.76 82.46 56.48
USE* 78.72 77.08 73.19 69.27 67.47 80.35 45.34
InferSent* 49.53 50.86 68.94 64.13 65.97 79.32 45.01

STSb DINO 78.45 77.71 73.14 68.04 70.44 81.16 47.30
RISE 79.11 (+0.66) 78.57 (+1.46) 74.47 (1.33) 69.08 (+1.04) 72.84 (+2.4) 82.01 (+0.85) 50.24 (+2.94)
⌞ Filtering 77.73 (-0.72) 77.45 (+0.34) 73.06 (-0.08) 67.94 (-0.10) 68.96 (-1.48) 81.35 (+0.19) 46.72 (-0.58)
⌞ Random 79.03 (+0.58) 78.39 (+1.28) 73.09 (-0.05) 68.03 (-0.01) 71.09 (+0.65) 81.62 (+0.46) 50.17 (+2.87)

QQP DINO 64.93 65.93 73.20 67.72 70.75 80.40 44.47
RISE 78.36 (+13.43) 77.13 (+11.2) 73.35 (+0.15) 67.76 (+0.04) 72.38 (+1.63) 81.35 (+0.95) 46.28 (+1.81 )
⌞ Filtering 65.24 (+0.31) 66.36 (+0.43) 73.48 (+0.28) 67.95 (+0.23) 69.77 (-0.98) 80.26 (-0.14) 43.36 (-1.11)
⌞ Random 73.49 (+8.56) 72.88 (+6.95) 73.14 (-0.06) 67.75 (+0.03) 69.76 (-0.99) 80.83( +0.43) 46.97 (+2.5)

MRPC DINO 75.51 73.87 71.85 65.70 71.57 81.55 47.35
RISE 77.47 (+1.96) 76.86 (+2.99) 74.23 (+2.38) 68.82 (+3.12) 71.97 (+0.4) 81.95 (+0.4) 49.35 (+2.00)
⌞ Filtering 76.25 (+0.74) 74.88 (+1.01) 71.05 (-0.80) 64.82 (-0.88) 71.34 (-0.23) 80.76 (-0.79) 47.84 (+0.49)
⌞ Random 76.06 (+0.55) 74.51 (+0.64) 72.52 (+0.67) 66.45 (+0.75) 72.19 (+0.62) 81.71 (+0.16) 47.56 (+0.21)

Table 3: Evaluation results of different sentence embedding models on four sentence similarity task dataset. The
models trained with human-annotated dataset (e.g., NLI) are marked with *. BERT and RoBERTa indicate sentence-
BERT and sentence-RoBERTa, respectively. We highlight the best result in each pair of Csrc/evaluation datasets
and the best result in overall result in each metric as bold and underline, respectively. The number in right bracket
indicates the performance difference with DINO. For regression task, we use Pearson correlation (r) and Spearman’s
rank correlation coefficient (ρ) metrics for evaluation. Each score represents the average of five trials.

7 Conclusions

In this paper, we demonstrated that the linguistic
features of unrealistic machine-written sentences
are different from those of human-written sen-
tences. Based on this observation, we proposed
a novel approach to reweight the loss based on the
sentence importance from synthetic data identifica-
tion (SDI) model for learning semantically mean-
ingful embeddings. The extensive experiments
show the effectiveness and robustness of RISE com-
pared to other baseline approaches.

Although extensive experiments demonstrate the
effectiveness of our method, adjustment of the im-
portance of each sentence may learn an unintended
bias from the classifier. In future work, we plan to
conduct an in-depth human analysis for machine-
written sentences to determine if our method cor-
relates well with human judgement or not. Investi-
gating the impact of unrealistic examples in other
natural language applications would also be another
interesting future direction.
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Appendix

A Detailed Analysis on Table 1

In this section, we present our detailed observations
in Table 1 and the results of‘ the different N-gram
in BLEU and Jaccard similarity. The results are
presented in Table 4. We observe that the number
of unique N-gram occurs frequently when pD(xm)
is high. In terms of lexical similarity (BLEU and
Jaccard) with a paired sentences, the scores of syn-
thetic sentences xm with high pD(xm) are higher
about 20 points than those with low pD(xm) and
are similar to xh. The distribution of word usage
in generated sentences are also close to human-
written sentences when predicted realistic score is
high in two out of three datasets. Based on these
observations, we confirm that even though the sen-
tences are generated by the same machine in the
same environment, there is a large variance in terms
of how much the sentences are shifted from human
sentences. Therefore, it is critical to handle the gen-
erated sentences carefully so that the model is not
biased to the sentences that are very different from
human-written sentences (i.e., unrealistic samples).

B Qualitative Analysis

We qualitatively analyze the sentences that the SDI
model classify as unrealistic, which include the
bottom 10% (pD(xm) ↓) of the machine-written
sentences based on their importance. In some cases,
the SDI model correctly identifies them as unreal-
istic, and in some cases, it fails to identify them
correctly as unrealistic.

As shown in Table 5, the unrealistic sentences
identified by the SDI model contain repetition of
the same expression or are incomplete. In addition,
there were cases that contain a logical defect in
the sentence. For example, as shown in the fifth
example of Table 5, a person does not like movies,
but in the next sentence, the machine generates a
sentence that the person likes horror movies. In the
sixth example of Table 5, a machine generates a
sentence that a woman was born in two places. Fur-
thermore, there are sentences with no grammatical
or logical defects, but contain patterns that were not
common in context. In the last example of Table 5,
the contents of the defense budget and the individ-
ual budget are generated together, and it would not
be usually used in reality. On the contrary, we find
some examples that the SDI model classified as
unrealistic sentences, but the sentences are realistic

as shown in Table 6.

C Experiments on other STS tasks with
Frozen Embeddings

Following previous studies (Reimers and Gurevych,
2019; Gao et al., 2021), we evaluate the quality of
each sentence embedding by using it as a feature
of a classifier. Specifically, we train a linear regres-
sor on top of frozen sentence embeddings from
each model for STS tasks. We use SentEval (Con-
neau and Kiela, 2018) framework on "test" setting.
As shown in Table 7, We observe that the overall
trends are consistent with the previous results in
Table 3. RISE outperforms DINO in two source
corpora (QQP and MRPC), while the results on
STSb are sometimes unclear. Filtering out unreal-
istic examples performs worse than RISE in most
cases. Finally, our model trained on STSb corpus
achieves the best average score.

D Training Sentence Encoder for
Sentence Similarity Task

Sentence similarity task aims to determine the sim-
ilarity between two sentences. It can be formulated
by classifying whether the two sentences are seman-
tically similar or not or by measuring the distance
between two sentences. A common and scalable
approach for this task is based on Bi-encoder ar-
chitecture (Reimers and Gurevych, 2019) which
involves converting the sentences into embedding
vectors and then measuring the similarity between
sentences by calculating the distance between them
in the embedding space.

More formally, given two sentences s1 and s2,
and their ground truth similarity score y, a sentence
encoder F encodes the sentences, s1 and s2, into
their embedding vectors, e1 and e2, respectively.
A distance metric d is then used to measure their
similarity score ŷ, which is defined by:

ŷ = d(e1, e2). (2)

This approach aims to predict the similarity
score (ŷ) close to the ground-truth similarity score
(y) by minimizing the mean squared error (MSE)
which is given by:

L(θf) =
N∑

i=1

(ŷi − yi)2, (3)

where θf is the parameter of embedding model F .
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STSb QQP MRPC
xh pD(xm) ↑ pD(xm) ↓ xh pD(xm) ↑ pD(xm) ↓ xh pD(xm) ↑ pD(xm) ↓

BLEU-1 51.02 40.87 7.53 45.94 46.88 13.46 61.86 59.17 15.19
BLEU-2 37.55 27.01 2.07 32.25 36.14 7.71 51.13 49.36 3.93
BLEU-3 28.51 19.88 1.20 24.19 30.49 5.68 43.57 42.42 1.92
BLEU-4 22.10 15.22 0.90 18.80 26.28 4.57 37.57 36.92 1.30
BLEU-N 34.80 25.75 2.93 30.3 34.95 7.86 48.53 46.97 5.59
Jaccard 41.98 33.97 5.98 39.91 42.49 11.31 53.55 53.33 10.52
Distinct-1 8.5 5.1 1.8 5.7 3.7 3.4 7.8 4.3 2.5
Distinct-2 49.7 36.5 15.0 39.5 25.5 23.4 48.7 31.4 20.1
Distinct-3 75.4 66.2 34.3 69.1 46.5 45.5 77.4 60.6 43.4
Distinct-N 44.53 35.93 17.03 38.10 25.23 24.10 44.63 32.10 22.00
Zipf coeff. 1.03 1.07 1.23 1.11 1.06 1.12 0.98 1.02 1.23

Table 4: Results for comparing the sentences in different group. Jaccard indicates Jaccard similarity score. The score
of generated sentences that is far from human scores is highlighted in underline. For BLEU-N and Distinct-N, we
report the average score with different N .

pD(xm) ↓

Grammatical
Error

xh: Mitchell, Man of La Mancha, Malcolm Gets from Amour and John Selya, Movin’ Out, complete the field.
xm: The other 30 percent is going to be a challenge, (y = 0)
xh: A black dog is walking on the grass with a stick in it’s mouth.

xm:
A brown dog walks with his stick in his mouth and it is brown in color. The black dog is walking with his
stick in his mouth and it has a brown in color on it. (y = 0.5)

xh:
"But the reality is that there needs to be a big structural change, " she added, "and you can’t do that without
funding."

xm: The fact is that there needs to be a big structural change, (y = 1)

Logical
Error

xh:
Janet Racicot heard the thud from the kitchen, where she was getting a glass of water, she said in an interview
Tuesday.

xm: I have been to a few movies and I am not a big movie fan. I like horror movies. (y = 0)

xh:
The rate of survival without serious brain damage is about 10 percent, said Bossaert, a professor at the
University Hospital in Antwerp, Belgium.

xm:
The brain damage in the patient is not serious. The patient is a young woman who was born in the United
States, but was born in Belgium. (y = 0.5)

Uncommon
in context

xh: It would be difficult to overestimate the potential dangers of the Remote Procedure Call (RPC) vulnerability.

xm:
A senior official in the Oil ministry asked an oil company’s CEO about his meeting with the minister.
This is a very sensitive issue and is very sensitive to both sides. (y = 0)

xh: Hagel defends proposed cuts in defense spending.
xm: He’s not going to cut the defense budget, but he is going to cut the domestic budget by more than half. (y = 1)

Table 5: Examples of machine-written sentences identified by the SDI model as unrealistic. The part of sentences
that contains linguistic errors is highlighted in red.

pD(xm) ↓
xh:

The Company has always made, and continues to make, exceptional customer service and customer satisfaction
a top priority in all business practices, "AOL added.

xm:
AOL has always been committed to providing our customers with a wide range of services and solutions that are
innovative and useful. (y = 1)

xh: The two rugged countries got 2 to 3 inches of rain between midnight and noon.
xm: I was in a bad car accident last weekend. I have to go to the doctor next week to get a check up. (y = 0)
xh: They appear in the Oct. 23 issue of The New England Journal of Medicine.
xm: It’s not the case that all the research shows that marijuana has a positive impact on people’s mental health. (y = 0)

Table 6: Examples of realistic machine-written sentences on which SDI model fails to identify as realistic.

E Datasets Details

As aforementioned in Section 3, STSb (Cer et al.,
2017), QQP, and MRPC (Dolan and Brockett,
2005) are used to obtain a corpus of human-written
sentences. The size of corpus |Csrc| is equally set

to 10,000 across datasets. The set of similarity level
Y is {0, 0.5, 1}. We generate samples from corpus

Sentence Textual Simiarlity benchmark(STSb)
(Cer et al., 2018) consists of sentence pairs drawn
from news, video and image captions, and natu-
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Csrc Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe* 52.24 49.91 43.36 55.91 47.67 46.00 55.02 50.01
BERT 30.88 59.90 47.73 60.28 63.73 47.29 58.22 52.58
BERT* 70.97 76.53 73.19 79.09 74.30 76.98 72.91 74.85
RoBERTa 32.10 56.33 45.22 61.34 61.98 55.39 62.03 53.48
RoBERTa* 70.92 73.03 70.79 78.37 73.68 77.33 74.40 74.07
USE* 67.06 71.55 70.59 80.27 75.76 76.85 69.31 73.05
InferSent* 56.15 69.57 64.03 74.06 72.00 72.06 66.77 67.80

STSb DINO 69.89 79.52 70.91 79.51 79.14 77.67 64.77 74.49
RISE 69.79(-0.1) 81.09(+1.57) 72.15(+1.24) 81.04(+1.53) 79.05(-0.09) 78.07(+0.4) 72.21(+7.44) 76.20(+1.71)
⌞ Filtering 67.04(-2.85) 77.03(-2.49) 69.54(-1.37) 77.81(-1.70) 76.63(-2.51) 75.99(-1.68) 65.19(+0.42) 72.75(-1.74)
⌞ Random 70.03(+0.14) 81.28(+1.76) 72.63(+1.72) 79.02(-0.49) 78.87(-0.27) 78.68(+1.01) 66.89(+2.12) 75.34(+0.85)

QQP DINO 56.93 71.39 59.75 67.59 73.10 68.09 61.48 65.48
RISE 59.11(+2.18) 78.11(+6.72) 70.17(+10.42) 77.48(+9.89) 78.70(+5.6) 77.89(+9.8) 71.59(+10.11) 73.29(+7.81)
⌞ Filtering 58.30(+1.37) 72.32(+0.93) 62.00(+2.25) 69.76(+2.17) 73.70(+0.6) 71.36(+3.27) 62.17(+0.69) 67.09(+1.61)
⌞ Random 56.80(-0.13) 71.17(-0.22) 59.64(-0.11) 68.32(+0.73) 72.42(-0.68) 69.71(+1.62) 65.77(+4.29) 66.26(+0.78)

MRPC DINO 60.74 73.11 61.38 70.95 74.85 73.61 67.70 68.91
RISE 66.17(+5.43) 77.41(+4.3) 68.56(+7.18) 76.64(+5.69) 76.93(+2.08) 76.39(+2.78) 71.93(+4.23) 73.43(+4.52)
⌞ Filtering 59.86(-0.88) 74.76(+1.65) 62.43(+1.05) 72.74(+1.79) 75.07(+0.22) 73.25(-0.36) 69.48(+1.78) 69.66(+0.75)
⌞ Random 64.36(+3.62) 76.02(+2.91) 64.62(+3.24) 73.24(+2.29) 76.01(+1.16) 75.36(+1.75) 70.78(+3.08) 71.48(+2.57)

Table 7: Evaluation results of frozen sentence embedding models on STS tasks. The linear regressor is trained on top
of sentence embeddings from each model. The number in right bracket indicates the performance difference with
DINO. We highlight the best result in each pair of Csrc/evaluation datasets and the best result in overall result in
each metric as bold and underline, respectively. For regression tasks, we use Spearman’s rank correlation coefficient
(ρ) as an evaluation metric.

Data STSb QQP MRPC PAWS-QQP
Xtrain
m 76.9k 78.2k 55.3k -
Xdev
m 59.2k 78.3k 6.3k -

Xdev
src 1.5k 18.1k 0.4k 0.3k

Xtest
src 1.4k 40.4k 1.7k 0.3k

Table 8: Dataset statistics. The class distribution of
MRPC, QQP, and PAWS-QQP is imbalanced.

Hyperparameter STSb QQP MRPC
batch size 32 32 32

learning rate 2e-5 2e-5 2e-5
number of epochs 3 3 3

temperature τ 0.5 0.9 0.7

Table 9: Hyperparameters used in experiments. We con-
duct grid search to find the best hyperparameter settings.

ral language inference data. Each pair is human-
annotated with a continuous score from 1 to 5; the
task is to predict these scores. In this experiment,
we normalize the original similarity score to have
from 0 to 1. We evaluate using Pearson and Spear-
man correlation coefficients.
Quora Question Pairs(QQP) 7 consists of ques-
tion pairs from the community Quora. The task is to
classify that a pairs of question have semantically
same meaning.
Microsoft Research Paraphrase Corpus(MRPC)
(Dolan and Brockett, 2005) is a corpus of sentence

7https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

pairs from online news sources, with human an-
notations for whether the sentences in the pair are
semantically same. The class have the imbalanced
distribution.(68% positive).
Paraphrase Adversaries from Word Scrambling
of Quora Question (PAWS-QQP) (Zhang et al.,
2019) contains human-labeled and noisily labeled
pairs that feature the importance of modeling struc-
ture, context, and word order information for the
problem of paraphrase identification. The dataset
has two subsets, one based on Wikipedia and the
other one based on the Quora Question Pairs (QQP)
dataset. In this paper, we only use examples based
on QQP. The class have the imbalanced distribu-
tion.(31.3% positive).

F Training Details

Implementation Details All experiments in Ta-
ble 2 in the main paper is implemented in Ubuntu
18.04.4 LTS, 3090 RTX GPU with 24GB of mem-
ory, and AMD EPYC 7702. The version of libraries
we experiment are 3.8 for python and 1.4.0 for py-
torch. We implemented all models with PyTorch
using Sentence-Transformers8 library from Ubiqui-
tous Knowledge Processing Lab.
Training and Evaluation. We train a model to
solve the sentence similarity task as a regression
problem. However, since all the datasets except
for STSb only contain discrete labels, we set the

8https://github.com/UKPLab/
sentence-transformers
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threshold using validation dataset to make binary
decision. Training a model takes 5 minutes per
epoch.
Hyperparameter Details The DINO are repro-
duced as described in the previous works. To com-
pute sentence simiarity score, we use cosine sim-
ilarity as distance metric. We search the best hy-
perparameters using grid search. During the pre-
diction of SDI model, we use use the temperature
scaling (τ ) (Kumar et al., 2018) is applied before
softmax function. The best hyperparameters for
each dataset of RISE are described in Table 9.
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Abstract

We present a subword regularization method
for WordPiece, which uses a maximum match-
ing algorithm for tokenization. The proposed
method, MaxMatch-Dropout, randomly drops
words in a search using the maximum matching
algorithm. It realizes finetuning with subword
regularization for popular pretrained language
models such as BERT-base. The experimental
results demonstrate that MaxMatch-Dropout
improves the performance of text classification
and machine translation tasks as well as other
subword regularization methods. Moreover, we
provide a comparative analysis of subword reg-
ularization methods: subword regularization
with SentencePiece (Unigram), BPE-Dropout,
and MaxMatch-Dropout.

1 Introduction

Subword regularization (Kudo, 2018) is a well-
known technique for improving the performance of
NLP systems, whereby a model is trained with vari-
ous tokenizations that are sampled for each training
epoch. This approach provides data augmentation
and model robustness against tokenization differ-
ences.

Kudo (2018) first introduced subword regular-
ization using a unigram language model that was
included in their tokenization tool, namely Sen-
tencePiece (Kudo and Richardson, 2018), and re-
ported its effectiveness on machine translation
tasks. Provilkov et al. (2020) proposed a subword
regularization method for byte pair encoding (BPE)
known as BPE-Dropout and demonstrated the su-
periority of their method over that using the uni-
gram language model in machine translation tasks.
Moreover, subword regularization contributes to
the performance improvement of text classification
tasks (Hiraoka et al., 2019).

∗The author is currently affiliated with Fujitsu Limited.
This work was carried out at the Tokyo Institute of Technology.

w o r

o r

r d

d

d

Accepting state

Non-accepting state

Dropped state

Figure 1: MaxMatch-Dropout randomly removes ac-
cepting states in the trie. In this figure, a state corre-
sponding to “word” is dropped and a single input “word”
is tokenized as “w, or, d.”

As subword regularization is implemented as a
modification of a tokenizer, each method is special-
ized to a particular tokenizer type. For example,
the original subword regularization (Kudo, 2018)
is specialized to a tokenizer that uses the unigram
language model and BPE-Dropout is specialized
to the BPE-based tokenizer. However, these exist-
ing subword regularization tools cannot be directly
applied to the other common tokenizers such as
WordPiece (Song et al., 2021).

WordPiece is a tokenizer that is based on the
maximum matching algorithm. It is used as the de-
fault tokenizer for the popular pretrained language
model BERT (Devlin et al., 2018). Although the
widely used BERT models (e.g., BERT-base) can
improve the performance of various NLP tasks,
subword regularization cannot be used for the fine-
tuning of the model because no subword regular-
ization method exists for WordPiece. The use of
subword regularization for the finetuning of pre-
trained models with WordPiece may result in a
further performance improvement.

In this paper, we present a simple modification
of WordPiece for the use of subword regulariza-
tion. The proposed method, which is known as
MaxMatch-Dropout, randomly drops words in a
vocabulary during the tokenization process. That
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Algorithm 1 Algorithm for Word Tokenization
Require: Single Word w, Vocabulary V , Dropout Rate q.
1: S ← Empty List
2: Index of Characters i← 1
3: while i < |w| do
4: Subword s← ∅
5: for j = 1 to |w| − i do
6: if wi:i+j ∈ V and Ber(1− q) then
7: s← wi:i+j
8: if s = ∅ then return [UNK]
9: else

10: Add s to S
11: i← i+ |s|

return S

is, MaxMatch-Dropout randomly removes accept-
ing states from a trie for tokenization. The ex-
perimental results demonstrate that MaxMatch-
Dropout improves the performance of text classifi-
cation and machine translation in several languages,
as well as other subword regularization methods.
Furthermore, MaxMatch-Dropout contributes to a
further performance improvement with pretrained
BERT on text classification in English, Korean, and
Japanese.

2 Maximum Matching

A simple modification to the maximum match-
ing algorithm is implemented so that MaxMatch-
Dropout can realize subword regularization. Prior
to explaining the modification, we briefly review
the maximum matching on which the proposed
method is based1.

Given a vocabulary and a single word, the maxi-
mum matching searches the longest subword in the
vocabulary and greedily tokenizes the word into a
sequence of subwords from beginning to end. For
example, let the vocabulary be composed of {a, b,
c, d, abc, bcd}. The tokenizer with the maximum
matching divides a word “abcd” into “abc, d”2. As
the maximum matching searches subwords from
the beginning of the word, this word is not tok-
enized as “a, bcd.” When an input word includes
an unknown character, such as “abce,” the tokenizer
replaces this word with a special token, “[UNK].”
This tokenization process is usually implemented
using a trie. The detailed tokenization process us-
ing the maximum matching for this example with
the trie (Figure 4) is described in Appendix A.

1Song et al. (2021) explains the efficient implementation
of the maximum matching in detail.

2We do not use special tokens for a subword that begins in
the middle of a word (e.g., “##”) for simple explanation.

3 Proposed Method: MaxMatch-Dropout

The proposed method extends the maximum match-
ing with an additional dropout process. This
method randomly replaces accepting states into
non-accepting states with dropped states. That is,
accepting tokens are randomly skipped with a spec-
ified probability q, where q is a hyperparameter.

Figure 1 depicts the tokenization process of a
word “word” with a vocabulary that includes {w,
o, r, d, or, rd, word}. Although the maximum
matched subword beginning with the first character
is “word” in the vocabulary, in this case, the state
corresponding to “word” is dropped. Thus, the
latest accepted subword “w” is yielded and the
next matching begins from the second character.
Finally, the tokenization process results in “w, or,
d.”

This process is also outlined in Algorithm 1 3.
In the algorithm, wi,i+j denotes a subword begin-
ning from the i-th character and ending with the
(i+ j − 1)-th character in the word w, where |w|
and |s| are the lengths of the input word and sub-
word, respectively. Moreover, Ber(1− q) denotes
a Bernoulli distribution that returns 1 with a proba-
bility of 1− q.

The tokenization process of MaxMatch-Dropout
is detailed in Table 6 of Appendix A. The differ-
ence between MaxMatch-Dropout and the original
maximum matching can be observed by comparing
Tables 5 and 6.

The regularization strength can be tuned using
the hyperparameter q. The proposed method is
equivalent to the original maximum matching with
q = 0.0, and it tokenizes a word into characters
with q = 1.0 if all characters are included in the
vocabulary.

The official code is available at https:
//github.com/tatHi/maxmatch_
dropout.

4 Experiments

We conducted experiments on text classification
and machine translation tasks to validate the per-
formance improvement provided by MaxMatch-
Dropout.

We used two tokenizers and subword regulariza-
tion methods as a reference for both tasks: Senten-
cePiece (Unigram) (Kudo and Richardson, 2018)
with subword regularization (Sub. Reg.) (Kudo,

3Algorithm 1 does not use a trie for simple explanation.
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English Korean Japanese
APG APR TS QNLI QQP RTE SST-2 NLI STS YNAT TR WRIME

|V | 32K 32K 32K 32K 32K 12K 8K 24K 16K 32K 16K 12K
Metric F1 F1 F1 Acc. F1 Acc. Acc. Acc. F1 F1 F1 F1
BiLSTM
Unigram 69.05 65.85 76.21 66.48 83.61 49.10 80.05 41.93 67.02 68.57 86.6 46.36
+ Sub. Reg. 70.65 66.80 77.49 66.56 83.91 53.31 83.30 42.84 68.08 73.67 87.11 49.47
BPE 67.10 64.67 75.24 67.11 82.82 53.07 78.10 41.22 67.42 64.27 84.95 44.34
+ BPE-Dropout 68.45 65.38 76.04 66.69 82.69 53.97 82.00 41.52 66.26 69.12 85.68 46.01
WordPiece 63.17 62.97 73.14 64.04 82.11 53.55 81.04 39.96 61.75 62.44 84.95 46.36
+ MM-Dropout 64.90 64.36 75.22 64.28 82.14 53.91 83.75 40.61 62.88 70.08 86.98 47.28
BERT
WordPiece 77.28 70.99 81.93 89.45 89.83 62.00 90.97 82.18 83.22 83.96 89.08 89.08
+ MM-Dropout 78.55 71.68 82.08 89.74 89.86 62.27 91.07 82.19 85.43 84.31 89.14 89.14

Table 1: Experimental results of text classification (averaged scores of five runs). The higher scores for the
tokenizations with/without subword regularization are indicated in bold. The scores that significantly surpassed the
results without subword regularization (p < 0.05, McNemar’s test) are underlined.

2018) and BPE (Sennrich et al., 2016) with BPE-
Dropout (Provilkov et al., 2020). We employed
WordPiece (Song et al., 2021), which was im-
plemented by HuggingFace (Wolf et al., 2020),
as a basic tokenizer for the proposed MaxMatch-
Dropout 4.

We set the vocabulary size of each tokenizer to
be equal to compare the three methods as fairly
as possible. The vocabulary of each tokenizer in-
cluded all characters that appeared in the train-
ing splits. We selected the hyperparameters for
the subword regularization (e.g., q of MaxMatch-
Dropout) according to the performance on the de-
velopment splits. Note that we could not fairly
compare the performance of MaxMatch-Dropout
to that of other subword regularization methods
because they are based on different tokenizers and
vocabularies. WordPiece was used as the baseline
for MaxMatch-Dropout to investigate whether the
method could successfully perform subword regu-
larization and improve the performance similarly
to other methods.

4.1 Text Classification
Datasets We exploited text classification datasets
in three languages: English, Korean, and Japanese.
APG and APR are genre prediction and rating pre-
diction, respectively, on review texts that were cre-
ated from the Amazon Product Dataset (He and
McAuley, 2016). TS is a sentiment classification
for tweets 5. We also employed QNLI (Rajpurkar
et al., 2016), QQP (Chen et al., 2018), RTE (Ben-
tivogli et al.), and SST-2 (Socher et al., 2013) from

4Table 12 in the Appendix presents tokenization examples
for each tokenizer.

5https://www.kaggle.com/c/
twitter-sentiment-analysis2

the GLUE benchmark (Wang et al., 2018). NLI,
STS, and YNAT are text classification datasets that
are included in Korean GLUE (KLUE) (Park et al.,
2021). TR (Suzuki, 2019) and WRIME (Kajiwara
et al., 2021) are sentiment classification datasets
for tweets in Japanese. We used the original devel-
opment sets as test sets and exploited a randomly
selected 10% of the original training sets as devel-
opment sets for the datasets in GLUE and KLUE
owing to the numerous experimental trials.

Setup We used two backbones for the text clas-
sification: BiLSTM (Hochreiter and Schmidhu-
ber, 1997; Graves and Schmidhuber, 2005) and
BERT (Devlin et al., 2018). We employed BERT-
base-cased6, BERT-kor-base7(Kim, 2020), and
BERT-base-Japanese-v28 for the English, Korean,
and Japanese datasets, respectively. All of these
BERT models employ WordPiece as their tok-
enizers, and we finetuned them using MaxMatch-
Dropout. We set the maximum number of training
epochs to 20 for BiLSTM and the finetuning epochs
to 5 for BERT. The trained model with the highest
score in the development split was selected and
evaluated on the test split. We selected the vocab-
ulary sizes according to the performance on the
development splits when using WordPiece without
MaxMatch-Dropout. The selected vocabulary sizes
were applied to all tokenizers.

Results Table 1 presents the experimental re-
sults for the text classification. The table demon-

6https://huggingface.co/
bert-base-cased

7https://huggingface.co/kykim/
bert-kor-base

8https://huggingface.co/cl-tohoku/
bert-base-japanese-v2
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IWSLT14 IWSLT15
DeEn EnDe ViEn EnVi ZhEn EnZh

Unigram 36.55 27.89 30.28 29.39 22.64 20.55
+ Sub. Reg. 38.50 29.45 31.58 30.96 23.81 21.79
BPE 35.77 27.87 30.05 29.25 18.80 20.61
+ BPE-Dropout 37.81 29.15 31.39 31.23 20.67 22.02
WordPiece 36.22 27.58 30.13 29.40 17.24 20.45
+ MM-Dropout 38.30 29.54 31.71 31.14 18.21 21.55

Table 2: Experimental results of machine translation
(averaged scores of three runs). ScareBLEU (Post,
2018) was used as the metric. Scores that significantly
surpassed the results without subword regularization
(p < 0.05, bootstrap resampling (Koehn et al., 2007))
are underlined.

strates that MaxMatch-Dropout (MM-Dropout)
improved the performance as well as the other
subword regularization methods. In addition to
the improvement in the BiLSTM-based classifiers,
MaxMatch-Dropout enhanced the performance of
the BERT-based classifiers. These results indicate
that MaxMatch-Dropout is a useful subword regu-
larization method for WordPiece as well as effec-
tive for BERT.

4.2 Machine Translation

Datasets We employed three language pairs for
the machine translation tasks: the De-En, Vi-En,
and Zh-En pairs from the IWSLT corpora. We
selected these datasets because subword regulariza-
tion is particularly efficient in low-resource envi-
ronments (Kudo, 2018; Hiraoka et al., 2021; Takase
et al., 2022).

Setup We applied the Transformer (Vaswani
et al., 2017), which was implemented by
Fairseq (Ott et al., 2019), for the IWSLT settings.
We trained the model with 100 epochs and aver-
aged the parameters of the final 10 epochs. We
evaluated the performance on the Chinese dataset
using character-level BLEU. Following Provilkov
et al. (2020), we set the vocabulary size to 4K for
English, German, and Vietnamese, and 16K for
Chinese.

Results Table 2 displays the experimental results
for the machine translation. The table demonstrates
that MaxMatch-Dropout improved the performance
in all language pairs. The results indicate that the
proposed method is effective for machine trans-
lation as well as existing subword regularization
methods.
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Figure 2: Performance differences with and without
subword regularization against hyperparameters and for
different languages on text classification datasets. MM-
D, SP, and BPE-D denote MaxMatch-Dropout, Senten-
cePiece (Unigram), and BPE-Dropout, respectively.

5 Discussion

5.1 Effect of Hyperparameters

Figure 2 depicts the averaged performance im-
provement over several text classification datasets
against different hyperparameters. The figure in-
dicates that the subword regularization of Senten-
cePiece (Unigram) was the most robust against
the hyperparameters among the three methods. Al-
though both BPE-Dropout and MaxMatch-Dropout
could realize subword regularization using the
dropout technique for the tokenization strategy,
MaxMatch-Dropout was more robust against the
hyperparameters than BPE-Dropout. This result
demonstrates that a performance improvement can
be achieved in WordPiece-based systems using
MaxMatch-Dropout with approximately selected
hyperparameters (e.g., q < 0.5).

Figure 2 also shows the averaged performance
on the datasets in each language against the hyper-
parameters of MaxMatch-Dropout (dashed lines).
It can be observed that MaxMatch-Dropout was
more effective for Asian languages than English.
It is considered that this is because Korean and
Japanese contain various types of n-grams and
many tokenization candidates exist for a single sen-
tence compared to English.

5.2 Token Length

In this subsection, we analyze the token length in
the sampled tokenizations. We sampled the tok-
enization of the training dataset (APG) with three
subword regularization methods and counted the
token lengths for 10 trials.

Figure 3 presents the frequency of token lengths
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Figure 3: Frequency of token lengths with each sub-
word regularization method on APG dataset (English).
0.0 denotes the vanilla settings without subword regu-
larization. 0.5 indicates subword regularization when
the hyperparameter was 0.5 (e.g., q = 0.5). MM-D, SP,
and BPE-D denote MaxMatch-Dropout, SentencePiece
(Unigram), and BPE-Dropout, respectively.

in the tokenized training datasets with/without sub-
word regularization. The figure indicates that the
length frequency did not change, regardless of
the use of subword regularization, when Senten-
cePiece (Unigram) was applied. In contrast, both
MaxMatch-Dropout (MM-D) and BPE-Dropout
(BPE-D) yielded many characters when the hyper-
parameter was 0.5, because they are based on the
token-level dropout and yield characters when the
hyperparameter is 1.0. However, the frequency
curve of MaxMatch-Dropout was gentler than that
of BPE-Dropout. We believe that this tendency
aided in the robustness of the MaxMatch-Dropout
performance, as reported in Section 5.1.

6 Conclusion

We have introduced a subword regularization
method for WordPiece, which is a common
tokenizer for BERT. The proposed method,
MaxMatch-Dropout, modifies the tokenization pro-
cess using the maximum matching to drop words
in the vocabulary randomly. This simple mod-
ification can realize subword regularization for
WordPiece. Furthermore, the experimental results
demonstrated that MaxMatch-Dropout can improve
the performance of BERT. MaxMatch-Dropout is
also effective in the training of text classification
tasks without BERT and machine translation tasks,
as well as existing subword regularization methods.
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Figure 4: Trie for vocabulary including tokens {a, b, c,
d, abc, bcd}.

Read Action Output
a Accept "a"
b Non-accept "ab"
c Accept "abc"
d Reject the transition to "abcd"

& Yield the latest subword abc
d Accept "d"
$ Reject the transition to "d$"

& Yield the latest subword abc, d

Table 3: Operation for tokenizing input word “abcd”
into “abc, d” using trie shown in Figure 4. “$” denotes
a special symbol indicating the end of the word.

A Maximum Matching in Detail

As described in Section 2, a trie is generally used to
tokenize an input word with the maximum match-
ing algorithm. Figure 4 depicts the trie correspond-
ing to the vocabulary that includes six tokens: {a,
b, c, d, abc, bcd}. The tokenization process using
this trie for the input words “abcd” and “abce” is
presented in Tables 3 and 4, respectively.

Table 6 details the operation for tokenizing an
input word “word” into “w, or, d” using the pro-
posed MaxMatch-Dropout, as outlined in Section
3. Table 5 describes the tokenization process using
the original maximum matching for Figure 1 with-
out the dropout process. Therefore, the difference
in the tokenization process between the original
maximum matching and MaxMatch-Dropout can
be observed by comparing Tables 5 and 6.

B Related Work

This work is related to tokenization methods, which
split raw texts into a sequence of tokens. Three
well-known tokenization methods have been em-
ployed in recent NLP systems: SentencePiece (Un-
igram) (Kudo and Richardson, 2018), BPE (Sen-
nrich et al., 2016), and WordPiece (Song et al.,
2021). SentencePiece (Unigram) is a unigram lan-
guage model-based tokenizer, whereas BPE em-

Read Action Output
a Accept "a"
b Non-accept "ab"
c Accept "abc"
e Reject the transition to "abcd"

& Yield the latest subword abc
e Detect an OOV character

& Output [UNK] [UNK]

Table 4: Operation for tokenizing input word “abce”
including out-of-vocabulary (OOV) character into
“[UNK]” using trie shown in Figure 4.

Read Action Output
w Accept "w"
o Non-accept "wo"
r Non-accept "wor"
d Accept "word"
$ Reject the transition to "word$"

& Yield the latest subword word

Table 5: Operation for tokenizing input word “word”
by applying original maximum matching (i.e., the op-
eration without any dropout process) for trie shown in
Figure 1. “$” denotes a special symbol indicating the
end of the word.

ploys a frequency-based tokenization technique.
Although both methods are used extensively in
many NLP systems, Bostrom and Durrett (2020)
reported that the unigram language model-based to-
kenizer (i.e., SentencePiece (Unigram)) is superior
to BPE in several downstream tasks. Our experi-
mental results in Tables 1 and 2 also support this
finding.

WordPiece9 is another famous tokenizer that is
mainly employed by large pretrained models such
as BERT (Devlin et al., 2018). As WordPiece is
based on the maximum matching algorithm, it is
superior to other tokenization methods in terms of
the tokenization speed. In fact, WordPiece is em-
ployed in real NLP systems such as Google search-
ing (Song et al., 2021). However, the experimental
results in this study (Table 1 and 2) demonstrated
that WordPiece is inferior to SentencePiece (Uni-
gram) and BPE in terms of performance. The pro-
posed method can compensate for this shortcoming
without decreasing the inference speed.

Kudo (2018) introduced a subword regulariza-
tion technique for SentencePiece (Unigram) using
dynamic programming. Provilkov et al. (2020) pro-
posed a subword regularization method for BPE
using the dropout technique. Niu et al. (2020) inves-

9Although the original term “wordpiece” indicates BPE-
based tokenization (Schuster and Nakajima, 2012), in this
paper, “WordPiece” indicates a tokenizer with the maximum
matching for BERT following Song et al. (2021).
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Read Action Output
w Accept "w"
o Non-accept "wo"
r Non-accept "wor"
d (Randomly) Non-accept "word"
$ Reject the transition to "word$"

& Yield the latest subword w
o Accept "o"
r Accept "or"
d Reject the transition to "ord"

& Yield the latest subword w, or
d Accept "d"
$ Reject the transition to "d$"

& Yield the latest subword w, or, d

Table 6: Operation for tokenizing input “word” using
trie for MaxMatch-Dropout shown in Figure 1. “$” de-
notes a special symbol indicating the end of the word.

tigates these two methods in machine translation.
This study has introduced a subword regularization
method for WordPiece, and presented an in-depth
investigation of the three methods in text classifica-
tion and machine translation.

C Contributions

This study contributes to the NLP community in
terms of the following two main points:

• A subword regularization method for Word-
Piece is proposed, which improves the text
classification and machine translation perfor-
mance.

• An intensive performance investigation of the
three famous tokenization and subword regu-
larization methods used in NLP (i.e., Senten-
cePiece (Unigram), BPE, and WordPiece with
subword regularization) is presented.

D Dataset Statistics

Table 7 displays the detailed information of the
datasets. We report the numbers of samples in the
training, development, and test splits. Furthermore,
we present the number of label types for text clas-
sification datasets.

E Detailed Experimental Settings

Tables 8 and 9 present the detailed settings of the
backbone models that were used in text classifi-
cation and machine translation tasks, respectively.
We used the default values of PyTorch for the hy-
perparameters that are not described in these tables.
We set the number of tokenization candidates to
∞ for the subword regularization of SentencePiece
(Unigram).

Dataset Train Dev. Test Labels
English Text Classification
APG 96,000 12,000 12,000 24
APR 96,000 12,000 12,000 5
TS 80,000 10,000 10,000 2
QNLI 188,536 10,475 5,463 2
QQP 327,461 36,385 40,430 2
RTE 2,241 249 277 2
SST-2 60,614 6,735 872 2
Korean Text Classification
NLI 22,498 2,500 3,000 3
STS 10,501 1,167 519 2
YNAT 41,110 4,568 9,107 7
Japanese Text Classification
TR 129,747 16,218 16,219 3
WRIME 30,000 2,500 2,500 5
Machine Translation
DeEn 160,239 7,283 6,750 -
ViEn 130,933 768. 1,268 -
ZhEn 209,941 887. 1,261 -

Table 7: Statistics of datasets.

Parameter BiLSTM BERT
Embedding Size 64 768

BiLSTM/BERT Hiden Size 256 768
# of BiLSTM/BERT Layers 1 12

Dropout Rate 0.5 0.1
Optimizer Adam AdamW

Learning Rate 0.001 0.00002

Table 8: Overview of hyperparameters for backbone
models of text classification tasks.

We selected the hyperparameters for the subword
regularization methods (the smoothing parameter
for SentencePiece (Unigram) and the dropout prob-
abilities for BPE-Dropout and MaxMatch-Dropout)
according to the performance on the development
splits in the experiments. Tables 10 and 11 sum-
marize the selected values of the hyperparameters
for the text classification and machine translation,
respectively. Note that the other methods without
subword regularization (Unigram, BPE, and Word-
Piece) do not require these hyperparameters.

Parameter Transformer
Enc/Dec Embedding Size 512
Enc/Dec FFN Embedding Size 1,024
# of Enc/Dec Attention Heads 4
# of Enc/Dec Layers 6
Clipping Norm 0.0
Dropout Rate 0.3
Weight Decay 0.0001
Max Tokens for Mini-Batch 1,000
Optimizer Adam
β1 and β2 for Adam 0.9, 0.98
Learning Rate 0.0005
Learning Rate Scheduler Inverse Square Root
Warming-Up Updates 4,000

Table 9: Overview of hyperparameters for backbone
model of machine translation tasks.
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English Korean Japanese
APG APR TS QNLI QQP RTE SST-2 NLI STS YNAT TR WRIME

BiLSTM
Unigram+Sub. Reg. 0.2 0.2 0.2 0.6 0.9 0.3 0.2 0.9 0.3 0.3 0.4 1.0
BPE-dropout 0.2 0.2 0.4 0.1 0.1 0.1 0.3 0.3 0.2 0.3 0.5 0.2
MaxMatch-dropout 0.2 0.3 0.6 0.1 0.1 0.3 0.4 0.4 0.2 0.3 0.4 0.6
BERT
MaxMatch-Dropout 0.6 0.4 0.2 0.1 0.1 0.1 0.3 0.5 0.4 0.5 0.4 0.5

Table 10: Selected hyperparameters for subword regularization methods in text classification tasks.

IWSLT14 IWSLT15
DeEn EnDe ViEn EnVi ZhEn EnZh

Unigram + Sub. Reg. 0.3 0.3 0.4 0.3 0.2 0.2
BPE-Dropout 0.1 0.2 0.2 0.2 0.3 0.2
MaxMatch-Dropout 0.3 0.3 0.4 0.1 0.1 0.2

Table 11: Selected hyperparameters for subword regularization methods in machine translation tasks. The selected
hyperparameters were used for the subword regularization of both the source and target languages.

Hyperparameter Trial Unigram+Sub. Reg. BPE-Dropout MaxMatch-Dropout
No regularization - characteristics characteristics characteristics
0.1 1 character_i_s_t_ic_s characteristics characteristic_s

2 character_i_s_t_ics characteristics characteristics
3 characteristic_s characteristics characteristics
4 cha_rac_t_e_r_istic_s characteristics characteristics
5 ch_ar_act_e_r_istic_s characteristics characteristics

0.5 1 characteristics characteristics characteristic_s
2 characteristics c_har_ac_ter_istics characteristics
3 characteristics characteristics char_acter_istics
4 characteristics char_ac_ter_istics characteristics
5 characteristic_s character_ist_ics characteristics

0.9 1 characteristics c_h_a_r_a_c_t_er_i_s_t_i_c_s char_a_c_t_e_ri_s_t_i_c_s
2 characteristics char_ac_t_er_ist_ics c_har_a_c_t_e_r_istics
3 characteristics c_h_ar_a_c_t_er_i_s_t_ic_s ch_a_r_acter_i_s_t_i_c_s
4 characteristics c_h_a_r_ac_t_e_r_i_s_ti_c_s character_i_s_t_i_cs
5 characteristics c_ha_ra_ct_er_i_st_i_c_s character_i_stic_s

Table 12: Examples of tokenized words using three methods with different hyperparameters for five trials. “_”
indicates token boundaries. The vocabularies for each method were constructed using the APG dataset. Sampled
tokenizations that differed from the original tokenizations without subword regularization are indicated in bold. We
removed special symbols indicating the beginning or middle of words such as “##” for simple explanation.
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Abstract

Few-shot text classification aims to classify
the text under the few-shot scenario. Most of
the previous methods adopt optimization-based
meta learning to obtain task distribution. How-
ever, due to the neglect of matching between
the few amount of samples and complicated
models, as well as the distinction between use-
ful and useless task features, these methods suf-
fer from the overfitting issue. To address this is-
sue, we propose a novel Adaptive Meta-learner
via Gradient Similarity (AMGS) method to im-
prove the model generalization ability to a new
task. Specifically, the proposed AMGS allevi-
ates the overfitting based on two aspects: (i)
acquiring the potential semantic representation
of samples and improving model generalization
through the self-supervised auxiliary task in the
inner loop, (ii) leveraging the adaptive meta-
learner via gradient similarity to add constraints
on the gradient obtained by base-learner in the
outer loop. Moreover, we make a systematic
analysis of the influence of regularization on
the entire framework. Experimental results on
several benchmarks demonstrate that the pro-
posed AMGS consistently improves few-shot
text classification performance compared with
the state-of-the-art optimization-based meta-
learning approaches. The code is available at:
https://github.com/Tianyi-Lei.

1 Introduction

As a fundamental task of few-shot learning (Fei-
Fei et al., 2006) in natural language processing
theme, few-shot text classification (Yu et al., 2018;
Geng et al., 2019) requires a model to predict cat-
egories that are not seen in training. Meta learn-
ing (Schmidhuber, 1987; Thrun and Pratt, 2012),
which plays a crucial role in general few-shot learn-
ing, aims to improve generalization ability and fast
adaptation ability of the learner through modelling
the distribution of tasks. To adapt few-shot tasks,

∗Corresponding author

typical supervised meta-learning methods (Vinyals
et al., 2016; Finn et al., 2017) model task distribu-
tions from a few support tasks over meta-training
episodes. Subsequently, numerous methods based
on meta-learning (Bao et al., 2020; Luo et al., 2021;
Han et al., 2021) are proposed to solve few-shot
text classification problem.

Within the meta-learning frameworks, Bao et al.
(2020) trains an attention-based model to enhance
the text representation of distributional signature,
Luo et al. (2021) leverages label-semantic augmen-
tation to help BERT compensate for the ambiguity
of the class definition caused by the limited data,
and Han et al. (2021) strengthens the generalization
of a model using an adversarial domain adaptation
network. However, these methods are similar to
the traditional meta-learning methods, neglecting
the overfitting problem caused by utilizing the few
number of data in the complicated models under
the meta-learning frameworks.

To address the above problem in few-shot text
classification, several methods are proposed based
on a principle i.e., obtaining more task-distribution
can ameliorate the risk of over-fitting to the train-
ing task distribution. Bansal et al. (2020) alleviates
overfitting through joint training of self-supervised
tasks and classification tasks in pre-trained mod-
els. We also follow this method and use a self-
supervised Mask Token Prediction (MTP) task in
meta training phase. Unfortunately, the increased
task distribution generated by this joint training is
not always positive for meta-training.

In order to further overcome the overfitting chal-
lenge in meta-training, we propose the adaptive
meta-learner via gradient similarity based on an-
other principle i.e., distinguishing positive and neg-
ative features by feature selection of deep model
can enhance generalization by alleviating overfit-
ting. In optimization-based meta-learning frame-
work, the gradient contains all the information
transmitted from the inner-learner to the outer-
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Figure 1: Diagram of the comparison of different methods for gradient direction optimization. The black arrow,
black dotted arrow, red arrow and red dashed line denote the actual update of base-learner, the update direction
of based-learner, the actual update of meta-learner and the update direction of meta-learner, respectively. (a)
MAML(First order): A set of initial parameters ψ0 is updated in the direction of the red arrow, i.e., the gradient
of query set loss, which is calculated at θ̂ after t-step updates. Note that, since the gradient calculation of MAML
contains the Hessian matrix, it is hard to represent in the figure, we use the First Order MAML (FOMAML) to
replace MAML. (b) REPTILE: ψ0 is updated along the red arrow pointing to the t-step optimization solution. (c)
and (d) are different schemes of our proposed adaptive meta-learner, which distinguish the positive gradient cosine
similarity (scheme 1) and negative gradient cosine similarity (scheme 2). If the gradient direction obtained on the
query set is similar to the gradient direction of the sum of the t updates (black dashed line), ψ0 is updated in the
direction of the sum of all gradients. While if their gradient directions are opposite, we remove the gradient obtained
from the query set.

learner, including “features” mentioned in above
principle. Thus, the gradient obtained by base-
learner can be regarded as the "features". To com-
pare with other training strategies for meta-learner,
we plot Figure 1. Other strategies often adopt all
the gradient obtained by the base-learner without
distinction. They also may consume enormous
computing resources for calculating the Hessian
matrix, sacrifice the stability and accuracy in order
to adopt the first-order algorithm, or discard the
query set in the training Batch in order to sim-
plify the calculation. By contrast, our method
only needs to distinguish the gradient similarity
between the gradient of the loss on the query set
and the current gradient of the base-learner during
the meta-training process. Subsequently, we utilize
the corresponding gradient of its loss to help meta-
learner quickly adapt to the optimization space.
Such method selects the more useful gradients for
meta-learner in current training batch. In addition,
it neither increases the computational complexity
nor causes waste of text information in the same
training episode.

According to the above principles, we propose a
novel Adaptive Meta-learner via Gradient Similar-
ity (AMGS) algorithm based on optimization-based
meta learning scheme. We firstly construct the
self-supervised task called Mask Token Prediction
(MTP) for the base-learner in the inner loop. Such
approach can generate the extension of the task
distribution from unlabeled text and constraint the
gradient updating of primary classification task to

increase the robustness of the model. Moreover, in
the outer loop, we utilize the adaptive meta-learner
to improve the utilization of the task features from
the inner loop. As Figure (1) shows, our strategy
can more efficiently leverage query set samples
in a training episode, which optimizes the scope
of gradient optimization. Therefore, the adaptive
meta-learner directly accomplish additional ame-
lioration of overfitting.

The contributions of this paper are summarized
as follows: (1) We construct an optimization-based
meta-learning framework named AMGS and elab-
orately design a meta-training algorithm to effec-
tively tackle the overfitting issue in few-shot text
classification based on two different principles. (2)
We propose an adaptive meta-learner that selects
the positive gradients and removes the negative
gradients to improve the generalization ability of
the model on the few-shot task (3) Experimental
results demonstrate that the proposed AMGS out-
performs the state-of-the-art optimization-based
meta-learning models.

2 Related Work

Few-shot text classification via meta learn-
ing Few-shot learning is an application of meta-
learning. In most meta-learning frameworks, the
strategies can be divided into two categories:
metric-based meta-learning and optimization-based
meta-learning. Prototypical Network (Snell et al.,
2017), Induction Network (Geng et al., 2019) and
Relation Network (Sung et al., 2018) are dedicated
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to construct a metric space between classes and
samples. In the optimization-based meta-learning
methods, most of them consist of an inner (or
base) algorithm and an outer (or meta) algorithm.
Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) and Reptile (Nichol et al., 2018) are
examples of such optimization-based algorithms.
LEOPARD (Bansal et al., 2020) achieves a good
performance on diverse classification tasks by us-
ing BERT (Devlin et al., 2019). Meanwhile, recent
work (Bao et al., 2020) proposes a meta-learning-
based method by using distributional signatures
for few-shot text classification. More recently,
LaSAML (Luo et al., 2021) uses label informa-
tion for few-shot text classification. Another one
(Han et al., 2021) applies a domain discriminator
into a meta-learning framework. However, these
algorithms suffer from overfitting caused by the im-
balance between the few data and the deep model
in the few-shot setting. By contrast, our proposed
AMGS which expands the task distribution in the
inner loop and distinguishes the positive and nega-
tive gradient in the outer loop can address this issue
indirectly and directly.

Auxiliary learning In general, auxiliary learning
can assist the main task to learn more accurately
and quickly in deep learning (Wang et al., 2022,
2019b), especially in the multi-task learning field.
SSL-Reg (Zhou et al., 2021) builds a regularizer
of the loss of self-supervised learning tasks to im-
prove performance on text classification. Besides
constructing a task, external auxiliary data can also
be introduced into the model to obtain more latent
information (Zhang et al., 2018).

Similarly, auxiliary tasks are valuable to adapt
the meta-learning scheme. MAXL (Liu et al., 2019)
adopts a self-supervised learning scheme to gener-
ate auxiliary labels, improving the generalization
ability of the primary task in gradient update. Fur-
thermore, self-supervised auxiliary tasks can pro-
mote fast adaptation during the testing phase (Chi
et al., 2021). Hybrid SMLMT (Bansal et al., 2020)
creates a specific self-supervised auxiliary task for
multi-task learning. Similar to these auxiliary tasks,
our auxiliary task MTP is self-supervised to gener-
ate richer task distribution during meta-training.

3 Methods

In this section, we first introduce the preliminaries
for few-shot classification (Vinyals et al., 2016).

BERT

Support set

Query 

set

Classifier Predictor

[Mask][CLS] 𝑇𝑜𝑘𝑒𝑛1 𝑇𝑜𝑘𝑒𝑛3 …… 𝑇𝑜𝑘𝑒𝑛n

Figure 2: The main framework of the proposed AMGS.

Next, we describe Adaptive Meta-learner via Gra-
dient Similarity (AMGS) method in detail.

3.1 Overview

Problem setup The setting of few-shot classifi-
cation often includes training episode and testing
episode. Suppose we have examples with labels
from the classes ytrainof training episode and need
to predict the labels of examples from unseen but
related classes ytest of testing episode. The training
classes and testing classes are mutually exclusive,
denotes as ytrain ∩ ytest = Φ. To create a training
episode, we need to build a set of N-way K-shot
tasks. For each task, we sampleN classes, k+q ex-
amples of each class randomly. The N ×k {xs, ys}
pairs including examples and corresponding labels
constitute the support set, while the N × q labeled
examples {xq, yq} are known as the query set. It
is the same way to create a support set in testing
episode, but leverage the unlabeled examples {yq}
to create the query set in testing. By repeating
the above procedure, we can obtain enough train-
ing and testing episodes, so that we can use them
in meta-training and meta-testing respectively. In
short, such setting requires the model to have the
ability to generalize from seen classes in training
episodes to unseen classes in testing episodes.

Model architecture BERT (Devlin et al., 2019)
performs well in the conventional text classifica-
tion, thus we leverage it as text encoder in our
proposed AMGS framework to explore the prob-
lem of few-shot text classification. As shown in
Figure (2), the model architecture consists of the
BERT encoder, a classifier and a predictor. The
model performs the primary task (i.e, classifica-
tion) and the auxiliary task (i.e., token prediction)
simultaneously, which constitutes multi-task learn-
ing. In training period, the support set are used
to obtain the BERT encoding and label prediction
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in the primary branch. While in the auxiliary task
branch, BERT encoder updates parameters through
the self-supervised task without labels.

For convenience to explain in following sec-
tion, we define parameters of the total network
θ = {θb, θpric , θauxp }, where θb denotes the shared
weights of BERT encoding, θpric represents classifi-
cation weights for the primary task, and θauxp is pre-
diction weights for the auxiliary task. Concretely,
the primary-branch weights and the auxiliary-
branch weights are respectively denoted as θpri =
{θb, θpric }, and θaux = {θb, θauxp }.

Self-supervised Mask Token Prediction task
As mentioned above, we leverage BERT as text
encoder. Considering that our self-supervised aux-
iliary task should be adapted to BERT, we adopt the
Mask Token Prediction (MTP) task used in BERT
pre-training stage (also known as MLM). MTP ran-
domly masks the tokens in the sentences according
to the specified ratio. These masked tokens are
fed into BERT to be predicted by putting the final
hidden vector corresponding to the masked token
into the output softmax over the vocabulary. The
original strategy of MTP in BERT set 15% proba-
bility for each token to replace with the [MASK]
token 80% of the time, a random token 10% of the
time, and the unchanged token 10% of the time. In
some cases, if the text used to construct MTP task
is very short, none of the tokens in this text would
be masked with high probability. This will cause
the effect of MTP to fail in the downstream task.

Therefore, we improve the replacement probabil-
ity of each token being masked to 30% instead of
15%. Meanwhile, the masking rating of replacing
the target token with a random token and an un-
changed token are both set to 0%, because random
and unchanged replacement both occur for 3% of
all tokens, which leads to instability. This change
helps the model acquire the new task distribution
more stably. The masked strategy is explored in
experiment demonstrated in Appendix A.

3.2 Adaptive Meta-learner via Gradient
Similarity (AMGS)

The optimization-based meta-learning methods
(Finn et al., 2017; Nichol et al., 2018) learn an ap-
propriate initial parameters by meta learner, achiev-
ing encouraging performance. However, these
methods ignore the overfitting issue in the few-
shot learning. Considering that the direction of
gradients could be used to distinguish the positive

and negative gradients, we propose AMGS frame-
work with explicit regularization. The training pro-
cedure of AMGS is decomposed into two steps:
(i) The base-learner collects gradient for adaptive
meta-learner, which utilizes the multi-task network
to learn primary and auxiliary tasks together on
support set. Then it collects the gradient of the
loss on the query set by leveraging the supervised
primary task. (ii) The adaptive meta-learner via
gradient similarity distinguishes the positive and
negative gradient obtained by the first stage, then
updates the parameters of the total meta-network
by meta-learner. By completing two training steps,
our method ensures that the meta-learner learns the
more balanced initial parameters and makes the
loss of new tasks decrease faster.

3.2.1 Collecting gradient for adaptive
meta-learner

This subsection describes that how the base-learner
collects gradient for adaptive meta-learner. We
leverage the self-supervised MTP task to acquire
a more abundant task distribution and improve the
base-learner robustness. In addition, as mentioned
above, we build multi-task learning by using the
MTP to limit the training of classification tasks.
In other words, the constraint on the loss of the
primary task has been enforced via the auxiliary
task. This limitation prevents the base-learner to
obtain extra characteristics of each training task
to alleviate overfitting. Formally, we compute the
total loss of the multi-task network as follows:

Ltotal = (1− ρ)Lpri + ρLaux, (1)

where Ltotal, Lpri, Laux and ρ represent the to-
tal loss, primary classification loss Lpri(x, y; θpri),
auxiliary prediction task loss Laux(x; θaux), and
the contribution of the auxiliary task, respectively.
x and y denote training texts and their labels. We
use cross entropy loss to implement both text clas-
sification and the masked token prediction. In our
experiments, we set ρ = 10−3. The sensitivity
study is shown in Appendix B.

When training on the tasks Ti in the support set,
the total loss Eq.(1) after one or a few gradient
updates can be defined as follows:

θ̂ = θ − α∇θLtotalTi (xs, ys; θ), (2)

where xs and ys are texts and corresponding labels
in the support set. α is the adaptation learning rate.
By Eq.(1) and Eq.(2), we can obtain more semantic
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Algorithm 1 Training procedure of AMGS

Input: learning rate α, β, texts and corresponding labels x, y
Initialize Ψ = θ = {θb, θpric , θauxp } with BERT

1: while not converged do
2: Sample batch of tasks Ti ∼ p(T )
3: Sample support set (xs, ys), query set (xq, yq)
4: for all Ti do
5: Compute adapted parameters with gradient descents: θ̂ = θ − α∇θLtotalTi

(xs, ys; θ)

6: Compute the gradients of primary task on θ̂: (θb, θ
pri
c ) = (θb, θ

pri
c )−α∇θLpriTi

(xq, yq; θ̂b, θ̂
pri
c )

7: end for
8: if cos(∇θLtotalTi

(xs, ys; θ),∇θLpriTi
(xq, yq; θ̂b, θ̂

pri
c )) ≥ 0 then

9: Update: Ψ̂← Ψ− β∇Ψ
∑

Ti∼p(T )(LtotalTi
(xs, ys; θ) + LpriTi

(xq, yq; θ̂
pri))

10: else
11: Update: Ψ̂← Ψ− β∇Ψ

∑
Ti∼p(T ) LtotalTi

(xs, ys; θ)
12: end if
13: end while

representation to apply explicit regularization to
the primary loss. In general, the query set is used
for testing and inference, while it contains rich task
distribution which can be applied to meta-learn.
We argue that the query set can be used to fine-
tune and enhance the gradient learned by the base-
learner through the multi-task network. In the step,
we accomplish the collection of gradient of the
parameters {θb, θ

pri
c } on the query set. Finally, the

objective can be defined as follows:

argmin
θb,θ

pri
c

LpriTi
(xq, yq; θ̂

pri), (3)

where xq and yq are texts and corresponding labels
in the query set.

3.2.2 Upgrade meta-learner with AMGS

This stage is mainly about updating meta-learner.
Following previous work (Du et al., 2018), we
leverage the gradient cosine similarity to measure
whether the gradients obtained on query set are
positive or negative. Based on Eq.(2) and Eq.(3),
we get the gradient cosine similarity by calculating
cos(∇θLtotalTi

(xs, ys; θ),∇θLpriTi
(xq, yq; θ̂b, θ̂

pri
c )).

If the value of cos(·) is non-negative, such gradient
is regarded as the positive gradient, which
means the query set at this batch is beneficial to
enhance generalization of the model. Therefore
we obtain the gradient of its loss to perform
gradient enhancement on the meta-learner. For this

situation, the meta-objective can be written as:

argmin
θb,θ

pri
c ,θauxp

∑

Ti∼p(T )
(LtotalTi (xs, ys; θ)

+ LpriTi
(xq, yq; θ̂

pri)).

(4)

On the contrary, if cos(·) is negative, such gra-
dient is considered as the negative gradient. We
remove this query set loss to ensure that the model
is not negatively affected, so the meta-objective is:

argmin
θb,θ

pri
c ,θauxp

∑

Ti∼p(T )
(LtotalTi (xs, ys; θ)). (5)

According to above training procedure, our pro-
posed meta-objective can distinguish the positive
to use and the negative to by adaptive meta-learner,
which can automatically filter appropriate regular-
ization to limit the gradient optimization. This step
reduces effective model capacity, hence it effec-
tively alleviates overfitting and improves the gen-
eralization ability of the model. The full training
procedure is demonstrated in the Algorithm 1.

3.2.3 Meta testing
The model parameters have been learned in meta
training phase, and fine-tuned in the meta-learning
testing phase for downstream tasks. MTP can con-
tinue to participate in the fine-tuning phase in order
to help the primary classification adapt to the un-
seen classes for the new tasks quickly. From the
perspective of test-time fast adaptation (Chi et al.,
2021), our auxiliary task boosts the fast gradient
descent of the loss function of the primary task in
the testing procedure.
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Methods

HuffPost Banking77 Clinc150 (cross domain)

5-way 10-way 15-way 10-way 15-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Metric

BERT+PROTO 40.59 53.48 63.05 78.60 59.18 74.12 57.43 72.90 52.31 66.06

BERT+RELATION 40.80 51.87 63.88 73.48 56.29 64.57 54.65 60.09 46.54 58.83

BERT+INDUCT 39.96 50.79 48.72 64.32 49.45 55.27 46.52 57.65 41.72 49.98

Optimization

BERT+MAML 41.03 57.13 59.21 85.55 55.69 81.48 60.14 80.24 55.00 65.20

BERT+REPTILE 40.80 58.96 58.36 82.81 56.69 81.14 59.89 81.23 53.32 63.04

BERT+R2D2 40.78 61.98 70.45 87.80 63.46 85.65 62.72 87.13 57.61 80.76

DS+R2D2 41.34 62.48 59.33 83.71 53.37 78.96 55.56 78.76 53.41 79.69

MLADA+R2D2 41.55 59.82 61.69 80.81 55.63 74.77 65.28 85.45 51.76 77.77

BERT+AMGS (OURS) 43.47 63.40 71.41 88.81 63.62 84.93 69.19 88.26 62.12 84.13

Table 1: Results of 5-way 1-shot and 5-way 5-shot on HuffPost headlines dataset, 10-way 1-shot, 10-way 5-shot,
15-way 1-shot and 15-way 5-shot on Banking77 and Clinc150 datasets (cross domain) by using our proposed
method and all baselines.

4 Experiments

4.1 Datasets

We use three datasets to evaluate the performance
in experiment.

HuffPost headlines includes 36900 news head-
lines among 41 classes, which contains less infor-
mation than other datasets. In order to complete a
fair comparison test, we divide each training, vali-
dation, and testing set into 20, 5, and 16 classes by
following the setting of Bao et al. (2020). Bank-
ing77 (Casanueva et al., 2020) consists of 13083
fine-grained intents and 77 classes. As for the set-
ting of data distribution and N-way K-shot classi-
fication tasks, we assign 30, 15, and 32 classes
fixedly for training, validation, and testing set.
Clinc150 (Wang et al., 2019a) is a cross-domain in-
tent classification dataset with 150 classes in 10 do-
mains. It provides 22500 examples that cover 150
intents from 10 domains without overlap among
classes. We allocate for each training, validation,
and testing with 4, 1, 5 domains, respectively.

4.2 Baselines

In order to evaluate our AMGS, we compare with
three metric-based methods and five optimization-
based algorithms for few-shot text classification.

Proto (Snell et al., 2017) provides a metric-
based method to learn the class vector by com-
puting distances to prototype representations of
each class. Induct (Geng et al., 2019) learns a gen-
eralized class-wise representation by leveraging
the dynamic routing algorithm. Relation (Sung

et al., 2018) compares the class vector and the
query feature through a relation-based meta-learner.
MAML (Finn et al., 2017) is one of the most typ-
ical optimization-based meta-learning algorithms,
which trains a favorable initial point for the base
learner by utilizing the meta learning that learns
among tasks. Reptile (Nichol et al., 2018) is a first-
order variant method of MAML. It achieves that
the speed of calculation is greatly improved and
the complexity is reduced, while the accuracy is
almost the same as MAML. The base learner used
by Ridge Regression Differentiable Discriminator
(R2D2) (Bertinetto et al., 2019) is ridge regres-
sion based on linear regression model. The amount
of calculation is related to the sample size of the
task, which is conducive to the learning of the meta
learner. DS (Bao et al., 2020) shows the best per-
formance by leveraging the model that builds an
attention generator and a ridge regressor to enhance
the representational power of distributional signa-
ture. MLADA (Han et al., 2021) uses the meta-
learning adversarial domain adaptation network to
improve the adaptation and new classes embedding
generation by creating a domain discriminator.

4.3 Implementation details

BERTbase is used as the text encoder of all base-
lines. Because DS and MLADA have special re-
quirements for textual representation and feature
extraction, forcibly using BERT as encoder will
be counterproductive. Thus, we re-implement the
pre-train fastText embeddings (Joulin et al., 2016)
for those model, and follow other settings in the
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original papers (Bao et al., 2020; Han et al., 2021).
For the sake of fairness, the classifiers of these two
algorithms use R2D2, so we constructed a compar-
ison item with BERT as encoder.

All parameters are optimized with Adam opti-
mizer (Kingma and Ba, 2015). The initial learning
rates α, β are separately set to 5e−5 and 2e−5, and
we utilize 5 gradient updates for the base adaptation
step. As for the N-way K-shot classification setting,
all experiments use 25 examples for the query set.
We randomly sample 100 training episodes, 100
validation episodes, and 1000 testing episodes per
epoch and apply early stopping on validation for 20
epochs. We evaluate the performance of the model
based on 5 different random seeds. All experiments
are conducted on a GEFORCE RTX 3090 GPU.

4.4 Experimental results

The total results of experiments are reported in
table 1. By observing these experimental results,
we obtain the following conclusions:

(1) Whether it is for texts with minimal seman-
tics (Huffpost), fine-grained categorized (Bank-
ing77) or cross domains (Clinc150), our proposed
method AMGS has an average improvement of
0.2-6.5% over the state-of-the-art model on both
1-shot and 5-shot classification. In particular, com-
pared with our AMGS and MAML (Finn et al.,
2017), Reptile (Nichol et al., 2018), we can draw
the following observations from the Table 1: (i)
Our proposed method achieves better performance
on all tasks. In especial, in the 15-Way 5-shot
task on Clinc150 dataset, our proposed method
outperforms the best counterpart by 18.9%. (ii)
MAML and Reptile perform better on fine-grained
classification Banking77 dataset with more similar
categories than on cross-domain Clinc150 dataset
with less similar categories, and have a smaller gap
with our AMGS. To verify that our AMGS perform
better than MAML on alleviating overfitting, we
plot their accuracy learning curves in Figure 3. In
the figure, the training procudure of our AMGS is
more stable than that of MAML from the beginning
to the end. Besides, the gap between the accuracy
of seen classes and unseen classes of our AMGS is
less than that of MAML. These results are demon-
strated that our AMGS can make model more stable
in meta-training and more readily generalizeds to
unseen classes by addressing the overfitting issue.

(2) With leveraging BERT as our text encoder,
our method is better than all compared methods

Methods
Banking77 Clinc150

15-way 15-way

1-shot 5-shot 1-shot 5-shot

AMGS w que 56.39 82.32 55.72 65.61

AMGS w sup 57.03 81.84 54.17 64.12

AMGS w que+sup 58.51 82.10 55.97 83.73

AMGS w our strategy 63.62 84.93 62.12 84.13

Table 2: Ablation study results for different strategies
of meta-learner on Banking77 and Clinc150 (cross do-
main) datasets.

on Huffpost dataset. In Bao et al. (2020), it points
out that BERT can better deal with highly con-
textual classification but not the keyword-based
news classification, e.g., Huffpost dataset. Thus,
"DS+R2D2" performs better on Huffpost than
"BERT+R2D2", but worse on Banking77 and
Clinc150. Nonetheless, our "BERT+AMGS" sur-
passes all BERT-based and non-BERT-based ap-
proaches on Huffpost dataset, which shows the
superiority of our AMGS method. Furthermore,
the performance of our model is increased by 2.1%
on 1-shot classification and 0.9% on 5-shot classifi-
cation when compared with BERT-based models.

Overall, the above observations point that
AMGS can learn the commonalities and charac-
teristics between few-shot task distribution well by
mitigating overfitting, thereby obtaining a better
initialized parameter for fast adaptation.
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Figure 3: Learning curves of AMGS (a) and MAML
(b) on 15-way 5-shot task of the Banking77 dataset.
We plot average accuracy from seen classes (red) and
unseen classes (blue).

4.5 Ablation studies

In this section, we conduct several ablation exper-
iments to verify the effectiveness of the adaptive
meta-learner, MTP in the meta training phase, and
MTP in the meta-testing fast adaptation phase.

The effectiveness of the adaptive meta-learner
In this section, we further investigate the impact of
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(a) AMGS (OURS)
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(b) REPTILE

Figure 4: t-SNE visualization of the input representation for the query set of a testing episode (N=10, K=5, L=120)
sampled from Banking77 dataset.

Methods
Banking77 Clinc150

15-way 15-way

1-shot 5-shot 1-shot 5-shot

AMGS w/o MTP 62.82 84.73 61.82 83.17

AMGS w/o MTP (testing) 63.26 84.32 61.97 84.01

AMGS w MTP 63.62 84.93 62.12 84.13

Table 3: Ablation study results of MTP in meta-training
and meta-testing fast adaptation phase (testing) on Bank-
ing77 and Clinc150 (cross domain) datasets.

the different strategies for meta-learner. To com-
pare with our strategy, we design three other com-
parison strategies. As shown in Table 2, "AMGS w
que", "AMGS w sup", "AMGS w que+sup" respec-
tively represent the meta-learner in AMGS only
use the gradients of the query set, support set and
both query and support set. None of these three
strategies pay attention to distinguishing the pos-
itive or the negative of the gradients. Comparing
our strategy with "AMGS w que+sup" strategy, we
have improved significantly more on 1-shot task
than on 5-shot task. From all the results, our adap-
tive meta-learner which filters the impact of the
negative gradient achieves the better performance
among these compared strategies.

The effectiveness of MTP in meta-training phase
and in meta-testing fast adaptation phase As
shown in Table 3, we first eliminate MTP in train-
ing stage. After losing a richer distribution of tasks,
the performances of AMGS decrease by about
0.8%, which verifies the effectiveness of MTP in
meta-training phase. Further, we explore MTP in
meta-testing fast adaptation phase. The empirical
results demonstrate that after joining the auxiliary

task in meta-testing, the model performances have
increased by about 0.5%. The testing auxiliary task
makes the primary task more robust on the support
set, and has some suppression effects on the occur-
rence of overfitting. All these results demonstrate
that MTP task have a certain effect on Banking77
and Clinc150 datasets, but it can not significantly
improve the experimental results.

4.6 Visualization
We visualize the results of the experiments to
demonstrate that our model can generate a high-
quality text representation for unseen classes.

T-SNE (Van der Maaten and Hinton, 2008) vi-
sualization illustrates the experimental results in
Figure (4), we take out the generated sentence em-
bedding layer before sending it to the classifier for
visualization. Comparing Figure 4(a) and Figure
4(b), it is obvious that our method AMGS produces
better separation than REPTILE, Especially for
the categories represented by gray and lime, the
sentence representations obtained by REPTILE are
very similar, so that it is difficult to distinguish their
categories. The above observations demonstrate the
effectiveness of AMGS to generate a high-quality
text representation for few-shot text classification.

5 Conclusion

In this paper, we present an Adaptive Meta-learner
via Gradient Similarity (AMGS) framework for
few-shot text classification. To be specific, we
first leverage the self-supervised Mask Token Pre-
diction (MTP) task to enrich the task distribution
with the unlabeled text. Such approach can reduce
the impact of overfitting caused by the mismatch-
ing between the few samples and the deep model.
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Secondly, we construct an adaptive meta-learner
via gradient similarity for the outer loop to distin-
guish the positive and negative gradient. Thus, the
meta-learner alleviates overfitting by preventing
the influence of negative features. Experimental
results validate that our model achieves significant
improvement on the few-shot text classification
tasks by effectively alleviating the overfitting issue.
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A Ablation for different MTP masking
strategies

In section 3.1, we mention that MTP adopts a dif-
ferent masking strategy from the one used in BERT
pre-train stage. We explore the effect of different
masking strategies in following ablation.

Masking prob.
Masking strategy Banking77

Mask Same Random 10-way 1-shot

15%
100% 0% 0% 73.38

80% 10% 10% 72.06

30%
100% 0% 0% 74.06

80% 10% 10% 72.20

45%
100% 0% 0% 72.56

80% 10% 10% 72.42

Table 4: Ablation study results of different masking
strategies on the validation episodes of Banking77.

As Table 3 shows, we explore the effect of differ-
ent masking probabilities and strategies on Bank-
ing77. In the table, "Mask" means that we replace
the token with [MASK] in MTP, "Same" means
that we keep the target token unchanged and "Ran-
dom" means that the token is replaced with the
random token except itself. From the table, we can
see that the masking strategy in BERT pre-training
is not the best choice in the few-shot text classi-
fication. Therefore, in this paper, we attempt to
alter the masking strategy which 100% changes the
target token to [MASK].

B Sensitivity study on the trade-off
parameter ρ

In order to set an appropriate value for the trade-off
parameter of MTP mentioned in section 3.2.1, we
study a sensitivity study for this hyper-parameter
in 10-way 5-shot on Banking77 dataset.

trade-off ρ 0.9 0.5 10−1 10−3 10−5 0

Accuracy 89.98 90.10 94.80 95.60 94.00 93.40

Table 5: Sensitivity study results of 10-way 5-shot on
the validation episodes of Banking77.

The results of validation episodes have shown
in Table 4. We explore a large scale trade-off ρ.
demonstrating MTP has the greatest contribution
when the trade-off ρ equals 0.001. Especially, ρ
equals 0 means we remove the impact of MTP,
which verifies the effectiveness of our MTP.
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Abstract

A Multilingual model relies on language en-
codings to identify input languages because it
has to distinguish between the input and out-
put languages or among all the languages for
cross-lingual tasks. Furthermore, we find that
language encodings potentially refine multiple
morphologies of different languages to form a
better isomorphic space for multilinguality. To
leverage this observation, we present a method
to compute a vocabulary-informed language
encoding as the language representation, for a
required language, considering a local vocabu-
lary covering an acceptable amount of the most
frequent word embeddings in this language. In
our experiments, our method can consistently
improve the performance of multilingual mod-
els on unsupervised neural machine translation
and cross-lingual embedding.

1 Introduction

With tied weights across required languages, a mul-
tilingual model is trained on non-parallel or/and
parallel multilingual corpora. Essentially, language
encodings are required for cross-lingual tasks be-
cause the multilingual model has to distinguish
between the input and output languages or among
all the languages generally. We observe that, be-
sides identifications of languages, language encod-
ings can help the model build isomorphic space
for multilinguality with the help of shared tokens.
Specifically, our hypothesis derives from the de-
composition of attention mechanisms (Vania and
Lopez, 2017; Luong et al., 2015; Libovický and
Helcl, 2017), and we observe explicit alignments
and implicit alignments, where explicit alignments
are key for language identifications, and implicit
alignments promote multilinguality. Furthermore,
the implicit alignments are a special case of unsu-
pervised bilingual/multilingual lexical induction,
helping multilingual models learn multilingual and
cross-lingual knowledge. Our goal is to retain the

explicit alignments for language identifications and
improve the implicit alignments for multilinguality.

In this work, we render an analysis of the at-
tention mechanism in optimization, and then we
find implicit alignments among a language encod-
ing and other language encodings. Stemming from
morphology adaptation and the observation, we
present a method to compute VLE (Vocabulary-
informed Language Encoding) as the required lan-
guage encodings, for multilingual models. Each
required language maintains a local vocabulary cov-
ering a subset of the most frequent tokens in this
language from the shared vocabulary of the mul-
tilingual model. Given one language and its vo-
cabulary, when adapting to the multilingual model,
we apply transformation layers to the average of
token embeddings in the vocabulary for VLE that
can be used in either padding style or adding style.
VLE provides language characteristics for language
identification and leverages implicit alignments for
multilinguility. Eventually, the multilingual model
can identify languages and learn better multilin-
guality with the help of VLE.

2 Related Work and Background

2.1 Language Encoding

Let Ex denotes x’s embedding. Given an in-
put sentence X = {x0, ..., xn} and the lan-
guage encoding ELTl both in language Langl,
we have: padding style (Johnson et al., 2017):
Xinput = {ELTl , Ex0 , ..., Exn} and adding style
(Lample and Conneau, 2019): Xinput = {Ex0 +
ELTl , ..., Exn+ELTl}. For notational convenience,
we omit some other techniques, e.g., position
encodings. Suppose we apply ELTl in adding
style for Transform-based models1. For predict-
ing xi in the input sentence, the attention score
ei,j = (Exi +ELTl)

TW T
q Wk(Exj +ELTl) of the

first self-attention layer between query vector q

1For the padding style and other models, it is similar.

4883



and key vector k within the same sentence can be
decomposed as:

ei,j = ETxiW
T
q WkExj + ETxiW

T
q WkELTl

+ ETLTlW
T
q WkExj + ETLTlW

T
q WkELTl ,

(1)

where Wq and Wk are transformation layers for q
and k respectively.

2.1.1 Explicit and Implicit Alignment

Specifically, multilingual models (Johnson et al.,
2017; Devlin et al., 2019; Lample and Conneau,
2019) usually form a vocabulary that covers shared
tokens across 1+ languages. Suppose xi is shared
by Langl and Langl′ . In optimization, we have
two backward passes from predicting xi: 1) ∂εxi

∂ELTl

and 2) ∂εxi
∂ELTl′

, that ELTl and ELTl′ are aligned to

xi explicitly. Then, we have the pivoted alignment
ELTl ↔ Exi ↔ ELTl′ . Since Exi is a point in the
embedding space, ELTl ↔ Exi ↔ ELTl′ implies
the implicit alignment ELTl ↔ ELTl′ .

Meanwhile, we observe that unsupervised meth-
ods for word translation or lexical induction (Lam-
ple et al., 2018a; Artetxe et al., 2018) leverage sim-
ilar implicit alignments to refine languages’ mor-
phologies. Concretely, given two subsets of N and
M in Lang1 and Lang2 respectively from a shared
vocabulary, (Lample et al., 2018a) explore an unsu-
pervised domain-adversarial training (Ganin et al.,
2016) for morphology adaptation that N and M
are not parallel but cover the most frequent words
in the two languages respectively. Embeddings in
each sub-vocabulary are invariant to a language or
a domain and serve as multiple anchors to identify
the language and constrain the morphology. Then,
the model considers the implicit alignment:

1

N

∑

n∈N
Exn ↔

1

M

∑

m∈M
Exm . (2)

In multilingual models, ELTl ↔ ELTl′ could be
viewed as a special case of Eq.2, where |N | =
|M | = 1. Empirically, large |N | and |M | can help
the model build isomorphic spaces (Lample et al.,
2018a; Artetxe et al., 2017). Our method derives its
motivation from this that vocabularies can be used
to generate language encodings, i.e., |N |, |M | > 1,
for improving multilinguality, as the morphology
adaptation Eq.2 can be consistently improved by
using large |N | and |M |.

3 Our Approach

3.1 VLE

Following the previous idea and our observation,
we present a method to generate language encod-
ings from local vocabularies. Concretely, given a
fixed size of vocabulary V ocl formed by the mono-
lingual tokens from the monolingual corpora in
Langl, VLE (vocabulary-informed language en-
coding) for Langl is defined as:

EV ocl =
1

|V ocl|
∑

i∈V ocl
,

EVl = σ(W lEV ocl)⊙ EV ocl ,
(3)

where V ocl is a local vocabulary for Langl and
Wl ∈ Rd×d. We introduce EVl to the multilin-
gual model for the identification of Langl in ei-
ther padding style or adding style. Then, any
two EVl and EVl′ can have the implicit align-
ment: EVl ↔ EVl′ . Since both |V ocl| > 1 and
|V ocl′ | > 1, EVl ↔ EVl′ leverages the morphol-
ogy adaptation Eq.2 ( |N |, |M | > 1) for refining
the morphologies of the languages to consistently
improve isomorphic spaces. In our experiment, we
justify this hypothesis on a cross-lingual embed-
ding task and provide a t-SNE visualization (Van
Der Maaten and Hinton, 2008) to show the improve-
ment of aligning token pairs in two languages.

Meanwhile, EVl has to be able to represent the
language. The backend of identification relies on
the language characteristics from embeddings. In-
tuitively, the employment of |V ocl| provides some
information for approximation, and then EVl gives
the model global information (Shah and Barber,
2018; Ai and Fang, 2021a) covering language char-
acteristics. Following this intuition, any method
extracting common language characteristics from
embeddings is feasible. In our preliminary exper-
iments, we find that EVl could be obtained by ap-
plying a very shallow network to the average of
the token embeddings in its vocabulary. In this
work, we instantiate the model with feature con-
tributions. Specifically, σ yields a probability of
each embedding feature for language characteris-
tics, i.e., contributions for language characteristics,
similar to (Ai and Fang, 2021b) that uses σ to gen-
erate probabilities over vector elements. Statistics
in §Experiment show some embedding features are
significant to language characteristics with very
high probabilities (≈ 1).
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3.2 Formation of V ocl
To find a local V ocl for a required language from
the shared vocabulary, we calculate the most fre-
quent tokens in the monolingual corpora of this
language and select a subset of Top-K tokens. How-
ever, some of the most frequent tokens are multi-
lingual, which are shared by 1+ languages, i.e.,
numbers. Essentially, our V ocl is expected to rep-
resent the language with less ambiguity. Inspired
by (Wang et al., 2020), we score all the tokens with:

m(x) =
Cl(x)

C ̸=l(x)
, (4)

where Cl(x) and C ̸=l(x) are the count of x in the
monolingual corpora ofLangl and other languages’
corpora respectively. Intuitively, m(x) measures
how monolingual x is, i.e., xi with a high score is
more monolingual than xj with a low score. After
scoring, we select tokens with the highest scores for
V ocl. Note that, if we consider language families,
this scoring criterion is essential for our method.
Specifically, some languages are closely related
with lots of shared tokens in the vocabulary such as
Spanish and Portuguese. The scoring method sig-
nificantly mitigates the pain because V ocl covers
frequent tokens that appear most likely in Langl.
On the other hand, for dissimilar languages with a
minimum amount of shared tokens in the vocabu-
lary, e.g., only sharing numbers, V ocl is formed by
frequent tokens that appear only in Langl.

3.3 Analysis and Discussion
Size of K The size of V ocl is significant in prac-
tice. If K is too large (e.g., 10,000), it may cause
memory problems on mediocre machines, then ter-
minating training and inferring. However, too small
K (e.g., 10) may not be able to approximate lan-
guage information. Our empirical study shows that
median K (e.g., 100) can facilitate training and
substantially improve experimental results.

Impact of Tokenization Method We are inter-
ested in how the tokenization method impact the
performance because it potentially affects the for-
mation of the shared vocabulary and then V ocl.
Different tokenization methods may result in differ-
ent vocabulary and V ocl, e.g., BPE (Sennrich et al.,
2016b) and word-level. However, we are aware that
the impact is relevantly small given that: 1) tokens
of non-standard words could be monolingual and
can be used for V ocl; 2) tokens in V ocl for VLE do
not necessarily have meaningful semantics because

they work like anchors of languages’s subspaces in
the embedding space.

Efficiency Efficiency can be evaluated from two
aspects: 1) training and 2) inferring. Since V ocl is
fixed for Langl, the only degradation of training
efficiency comes from the dynamic computation of
the average operation, the lookup operation, and
the transformation, which are all fast. In inferring,
EVl is a constant vector for a required language,
which do not hurt inferring efficiency.

4 Experiment

Our code is implemented on Tensorflow 2.2 (Abadi
et al., 2016) with 2 NVIDIA Titan Xp 12G GPUs.
We accumulate gradients of 2 mini-batches per pre-
training step. Since we have only 2 GPUs, this op-
eration emulates 4 GPUs. All the links of datasets,
libraries, scripts, and tools marked with ⋄ are listed
in §Appendix. A preview version of the code is
submitted, and we open the source code on GitHub.

4.1 Multilingual Task
See §Appendix for more details.

Unsupervised Neural Machine Translation
UNMT (Lample and Conneau, 2019; Lample et al.,
2018b; Song et al., 2019; Liu et al., 2020) tack-
les bilingual translation (Bahdanau et al., 2015;
Vaswani et al., 2017) on non-parallel bilingual cor-
pora without having access to any parallel sentence.

Cross-lingual Embedding Recall that we derive
VLE from the study of domain adaptation in un-
supervised word translation or lexical induction
(Eq.2). To further investigate whether VLE im-
proves the agnostic process of forming the isomor-
phic space, we test the MUSE⋄ task (Lample et al.,
2018a) with the provided test set and tools, which
is used to evaluate cross-lingual embedding similar-
ities. This test can quantitatively report how VLE
refines and improves the morphologies to overlap
each other for forming the isomorphic space.

4.2 Multilingual Framework
We adapt our method to XLM (Lample and Con-
neau, 2019) and MASS (Song et al., 2019) that can
be used to pre-train a multilingual model with the
objective of MLM (masked language modeling)
(Devlin et al., 2019) or train the multilingual model
for multilingual tasks from scratch or pre-training.
All these frameworks need language encodings to
recognize and flag the required languages.
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4.3 Adaptation with VLE

Besides using the same frameworks, datasets and
configurations, to minimize the changes for com-
parison, we only replace language encodings with
our VLE and use the same styles (padding or
adding) as the baseline models use. For all the tasks
and frameworks, we apply our scoring method (Eq.
4) and select tokens in the model’s vocabulary with
the highest K = 100 scores to form V ocl for every
language, i.e., |V ocl| = 100. See §Appendix for
discussion about the size of |V ocl|.

4.4 UNMT

See §Appendix for more details.

Dataset For evaluation, we train UNMT on the
same dataset used in previous works. We use mono-
lingual corpora {Fr,De,En} from WMT 2018⋄
including all available NewsCrawl datasets from
2007 through 2017 and monolingual corpora
Ro from WMT 2016⋄ including NewsCrawl
2016. We test Fr ↔ En on newstest2014 and
{De,Ro} ↔ En on newstest2016. For any lan-
guage pairs En↔ X , we concatenate their mono-
lingual corpora and then shuffle the concatenated
corpus. Note that, since Ro is low-resource, we
oversample Ro in pre-training and training.

Model Configuration and Preprocessing The
model configuration, preprocessing, and the BLEU
script are identical to previous works: XLM and
MASS. Concretely, we use a 6-layer encoder and 6-
layer decoder Transformer, and the dimensions of
word embeddings, hidden states, and filter sizes are
1024, 1024, and 4096 respectively. All the weights
and lookup tables are shared by all the required lan-
guages. We run fastBPE⋄ to learn shared 60K BPE
from multilingual corpora required by the multi-
lingual model. The sampling strategy is the same
as the balanced strategy presented by (Lample and
Conneau, 2019). We report case-sensitive BLEU
computed by the multi-bleu script ⋄.

4.5 Pre-training & Training

In pre-training, we use Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9,β2 = 0.999, ϵ =
1e− 8, and lr = 1e− 4. The model is pre-trained
around 400K iterations. Although pre-training is
important for high-performance UNMT, we also
test random UNMT without pre-training to observe
the lower bound and how our VLE works alone,
using the MASS framework in training. In the

(a) XLM (b) XLM+VLE

Figure 1: t-SNE visualization for MUSE pairs. Each
point is a different token instance. This figure suggests
that XLM aligns pairs somewhat out-of-the-box. Pairs
are more aligned in-the-box when introducing VLE.
Perplexity:17. Iteration:10k.

training phase, we use Adam optimizer (Kingma
and Ba, 2015) with parameters β1 = 0.9,β2 =
0.997 and ϵ = 10−9, and a dynamic learning rate
with warm_up = 8000 (Vaswani et al., 2017)
(learning_rate ∈ (0, 7e−4]) is employed. After
around 400K iterations, we report results.

Performance Table 1 shows that our method can
consistently improve the performance of baseline
models on UNMT tasks, which confirms the ef-
fectiveness of our method. We observe that our
method works better for low-resource Ro than for
rich-resource {De, Fr} (4% vs. 3%). As presented
in Random, the effectiveness of our method is not
from pre-training because random UNMT trained
from scratch is significantly improved by using our
method. Intuitively, our VLE carries multiple em-
beddings for morphology adaptation (recall Eq.2)
that help the model understand multilinguality and
cross-linguality from the isomorphic space in pre-
training and training as previous works (Lample
et al., 2018b; Ai and Fang, 2021b) report the effec-
tiveness of aligning selected embeddings in UNMT.
Eventually, it helps the model to learn translation
knowledge. Essentially, morphology adaptation is
very useful for low-resource languages.

4.6 Cross-lingual Embedding

We evaluate cross-lingual word similarities on
En ↔ De. For our test, we use XLM and
MASS that are restored by their last check-
point of pre-training on monolingual corpora in
{German,English} from the experiments of
UNMT respectively. After restoration, we ex-
tract token embeddings required by the test set
via lookup tables. For words split into 2+ sub-
tokens, we average all the sub-tokens. We evalu-
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Model De↔ En Fr ↔ En Ro↔ En

Random adding style 20.99 17.12
+ Ours 23.36 19.71
Random padding style 20.86 17.08
+ Ours 23.15 19.48

XLM adding style (Lample and Conneau, 2019) 33.81 26.32 32.87 32.94 31.12 32.81
+ Ours 34.88 27.20 34.01 34.13 32.59 34.24

MASS adding style (Song et al., 2019) 34.91 28.03 34.42 37.02 32.75 34.82
+ Ours 35.82 28.51 35.12 37.81 34.16 36.11

Table 1: Performance of UNMT. All the baseline models are reimplemented with our configurations. Random
denotes the model without any pre-training.

Model MUSE (cos)

XLM(Lample and Conneau, 2019) 0.53
+VLE 0.56

MASS(Song et al., 2019) 0.55
+VLE 0.57

Table 2: Performance on MUSE task. All the baseline
models are reimplemented with our configurations.

ate the performance by cosine similarity, report-
ing the result in Table 2. As expected, applying
VLE can consistently improve the performance on
this task, which confirms the improvements of the
isomorphic space. Significantly, it confirms our
hypotheses and assumptions that VLE can refine
the morphologies of the languages to form a better
isomorphic space. Meanwhile, we provide a t-SNE
visualization (Van Der Maaten and Hinton, 2008)
of the embedding space for MUSE pairs in Figure
1. This figure suggests that embedding pairs are
more aligned in-the-box by using VLE.

4.7 Language characteristic

Previous works like (Ai and Fang, 2022; Conneau
et al., 2020) study how different specifics of in-
formation are processed in the model, e.g., tokens
and languages. As aforementioned, we expect to
approximate language characteristics from |V ocl|
as language encodings. Recall that, in Eq.3, we
use sigmoid and simply transformation layers to
compute the contribution of each embedding fea-
ture for language characteristics. We present the
statistics of contributions in Figure 2 from the pre-
trained model on {En,De}. 10% of embedding
features significantly contribute to language charac-
teristics, obtaining over 0.8. By contrast, over 55%
of embedding features are not selected for language
characteristics and close to 0. These statistics can
support our idea that using V ocl and embeddings
is able to provide language characteristics for lan-
guage identifications. Note that, statistics may dif-

Figure 2: Contribution of each embedding feature for
language characteristics (Eq.3).

fer among different model parameters. However,
the conclusions are similar in our experiments with
different model parameters.

4.8 Supportive Experiment

We analyze VLE on the size of |V ocl|, the impact
of tokenization methods, and efficiency, reporting
experimental results in §Appendix.

5 Conclusion

In this work, we present a method to generate VLE,
a vocabulary-informed language encoding for the
identification of a required language in multilingual
models. We consider a frequency-based and local
vocabulary for every language. For a required lan-
guage, the required language encoding is obtained
by applying transformation layers to the average
of the token embeddings in its vocabulary. In our
experiments, VLE shows effectiveness on UNMT
and cross-lingual embedding tasks and is possible
to improve language adaptation and multilinguality
because VLE can refine the morphologies of the
languages to improve the isomorphic space. Our
method is simple but effective and compatible with
any other extension for multilingual models.
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A Experiment Setting

A.1 Multilingual Framework
We adapt our method to two MLM instances: XLM
(Lample and Conneau, 2019) and MASS (Song
et al., 2019), which can be used to pre-train the
UNMT model. We follow the instructions of BERT
(Devlin et al., 2019) and these two MLM instances
to setup frameworks.

XLM XLM is similar to BERT (Devlin et al.,
2019) but uses text streams of an arbitrary num-
ber of sentences. Following the instruction, we
randomly select 15% of the tokens from the input
sentence for replacing.

MASS MASS is different from XLM and BERT
but similar to SpanBERT (Joshi et al., 2020), us-
ing spans to replace consecutive tokens. Given an
input sentence with length N , we randomly select
consecutive tokens with length N/2 for replacing.

A.2 UNMT Pipeline
We use Adam optimizer (Kingma and Ba, 2015)
with β1 = 0.9,β2 = 0.999, ϵ = 1e − 8, and
lr = 1e − 4. We set the dropout regularization
with a drop rate rate = 0.1 and label smooth-
ing with gamma = 0.1 (Mezzini, 2018). For
data feeding efficiency, similar-length sentences
are padded to the same length, so that each mini-
batch may have a different number of sentences but
the same number of tokens. We pre-train the model
around 400K iterations. Although pre-training is
important for high-performance UNMT, we also
test random UNMT without pre-training to observe
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Model De↔ En

100, default 34.88 27.20
20 34.21 26.54
50 34.72 26.96
200 35.93 27.36
500 35.08 27.51
1000 35.15 27.64

Table 3: Impact of V ocl size on UNMT.

the lower bound and how our VLE works alone,
using the MASS framework in training. In the
training phase, we use Adam optimizer (Kingma
and Ba, 2015) with parameters β1 = 0.9,β2 =
0.997 and ϵ = 10−9, and a dynamic learning rate
with warm_up = 8000 (Vaswani et al., 2017)
(learning_rate ∈ (0, 7e−4]) is employed. We set
dropout regularization with a drop rate rate = 0.1
and label smoothing with gamma = 0.1. We feed
≈ 2K tokens per mini-batch.After around 400K it-
erations, we report case-sensitive BLEU computed
by multi-BLEU.perl⋄.

We consider the same dataset used in previous
works. Specifically, we first retrieve monolingual
corpora {Fr,De,En} from WMT 2018⋄ (Bojar
et al., 2018) including all available NewsCrawl
datasets from 2007 through 2017 and monolin-
gual corpora Ro from WMT 2016⋄ (Bojar et al.,
2016) including NewsCrawl 2016. We report the
performance for Fr ↔ En on newstest2014 and
{De,Ro} ↔ En on newstest2016. For tokeniza-
tion, we use the Moses tokenizer⋄ developed by
(Koehn et al., 2007). We use fastBPE⋄ to learn
shared 60k BPE (Sennrich et al., 2016b) with the
same criteria in (Lample and Conneau, 2019).

In the pre-training phase, UNMT is trained
on monolingual corpora with the objective of
MLM (masked language modeling) for the two
languages. Then, in the training phase, on-the-fly
back-translation (Sennrich et al., 2016a) performs
to generate synthetic parallel sentences that can
be used for training of translation as NMT (neural
machine translation) is trained on genuine paral-
lel sentences in a supervised manner. Meanwhile,
UNMT still learns the MLM objective to maintain
language knowledge in the training phase.

B Supportive Result

B.1 Impact of V ocl Size

We use K = 100 as the default |V ocl| for every
language. In Table 3, we study the impact of |V ocl|
and borrow all of the XLM configurations we use
in the UNMT task. Ideally, a large |V ocl| (a sig-

Model De↔ En

baseline (BPE-based) 33.81 26.32
+ Ours 34.88 27.20
baseline (Word-level) 33.01 25.79
+ Ours 34.15 26.61

Table 4: Impact of Tokenization Method.

Model Speed

XLM 714ms/step
+ Ours , K = 100 772ms/step
+ Ours , K = 10,000 899ms/step

Table 5: Training efficiency.

nificant amount of frequent tokens) can properly
represent the language. However, we find a median
size (< 200) is enough to achieve a decent result
with minimum extra costs. Large size can achieve
slightly better performance, but the computational
cost is not practical, as discussed in §Size of K. In
conclusion, we recommend a median size (< 200)
or a finetuned size.

B.2 Impact of Tokenization Method
We are interested in how the tokenization method
affects the performance because it potentially af-
fects the formation of V ocl. For evaluation, we use
all the configurations in UNMT and additionally
configure a word-level vocabulary for the model.
The word-level vocabulary has the same number of
tokens as the BPE vocabulary. Table 4 shows that
our method can work with different tokenization
methods. Our method can generally improve the
performance, regardless of the difference between
the two baseline models in the same configuration.

B.3 Training Efficiency
In inferring, VLE computes constant vectors for
all the required languages, which do not hurt infer-
ring efficiency. Hence, we are interested in training
efficiency because we introduce some additional
operations to the model. Table 5 indicates that our
method does not hurt training efficiency signifi-
cantly, which is crucial in applications.

C Source

We list all the links of dataset, tools, and other
sources in Table 6.

4890



Item Links
WMT 2016 http://www.statmt.org/wmt16/translation-task.html
WMT 2018 http://www.statmt.org/wmt18/translation-task.html
XLM https://github.com/facebookresearch/XLM
multi-BLEU.perl https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-BLEU.perl
Moses tokenizer https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
fastBPE https://github.com/glample/fastBPE
MUSE https://github.com/facebookresearch/MUSE
Panlex https://panlex.org/source-list/
Tensor2Tensor https://github.com/tensorflow
HuggingFace https://huggingface.co

Table 6: Links of source.

4891



Proceedings of the 29th International Conference on Computational Linguistics, pages 4892–4901
October 12–17, 2022.

OpticE: A Coherence Theory-Based Model for Link Prediction

Xiangyu Gui, Feng Zhao ∗, Langjunqing Jin, Hai Jin
National Engineering Research Center for Big Data Technology and System,

Services Computing Technology and System Lab, Cluster and Grid Computing Lab
School of Computer Science and Technology, Huazhong University of Science and Technology, China

zhaof@hust.edu.cn

Abstract
Knowledge representation learning is a key
step required for link prediction tasks with
knowledge graphs (KGs). During the learn-
ing process, the semantics of each entity are
embedded by a vector or a point in a feature
space. The distance between these points is
a measure of semantic similarity. However,
in a KG, while two entities may have simi-
lar semantics in some relations, they have dif-
ferent semantics in others. It is ambiguous
to assign a fixed distance to depict the vari-
ant semantic similarity of entities. To allevi-
ate the semantic ambiguity in KGs, we design
a new embedding approach named OpticE,
which is derived from the well-known physi-
cal phenomenon of optical interference. It is a
lightweight and relation-adaptive model based
on coherence theory, in which each entity’s
semantics vary automatically regarding differ-
ent relations. In addition, a unique negative
sampling method is proposed to combine the
multimapping properties and self-adversarial
learning during the training process. The ex-
perimental results obtained on practical KG
benchmarks show that the OpticE model, with
elegant structures, can compete with existing
link prediction methods.

1 Introduction

Knowledge graphs (KGs) consist of sets of triplets
that can represent real-world concepts, common
sense information or facts. Each triplet (h, r, t) in-
dicates a directional relation r from the head en-
tity h to the tail entity t. WordNet (Miller, 1995),
Freebase (Bollacker et al., 2008) and Wikidata
(Vrandečić and Krötzsch, 2014) are the most well-
known KGs with tremendous numbers of entities
and relations. These KGs play important roles in
a range of areas, such as natural language process-
ing tasks (Cao et al., 2021), question answering ap-
plications (Bosselut et al., 2021) and recommenda-
tion systems (Shao et al., 2021). Research on KGs

∗Corresponding author

is thriving in both academic and industrial commu-
nities.

Link prediction is a fundamental problem when
addressing KGs. To learn the hidden patterns
from the observed triplets, extensive investigations
have been performed to embed entities and re-
lations into a continuous semantic space; this is
known as KG embedding learning (Rossi et al.,
2021). Among these embedding models, from a
mathematical perspective, TransE (Bordes et al.,
2013), TransH (Wang et al., 2014) and TransR
(Lin et al., 2015) are translation-based models
that use translation transformations to character-
ize the existence of triplets. Other methods (e.g.,
RESCAL (Nickel et al., 2011) and DistMult (Yang
et al., 2015)) tackle this problem with matrix or
tensor multiplication. Recently, the embedding
problem has been discussed in the complex do-
main (e.g., ComplEx (Trouillon et al., 2016), Ro-
tatE (Sun et al., 2019) and HAKE (Zhang et al.,
2020)). These methods have achieved great perfor-
mance on related tasks. While our models are dis-
cussed in the complex domain, they are designed
under an interference framework.

The semantic ambiguity caused by multimap-
ping relations was ignored in most previous meth-
ods. As illustrated in Figure 1 (a), the seman-
tics of New York and Washington D.C. are simi-
lar under the relation Located_in, while they are
quite different under the relation Capital_of be-
cause New York is not a capital. Previous methods
such as TransE and RotatE suffer from this ambi-
guity problem. As shown in Figure 1 (b), it is dif-
ficult to disambiguate New York from Washington
D.C. for the relation Capital_of in RotatE. To al-
leviate this problem, TransH utilizes a hyperplane
to project entities into independent semantic space.
RatE (Huang et al., 2020) integrates a semantic
matching method with an extra relation-adaptive
matrix. Instead of relying on extra settings, we
tackle this problem by the intrinsic attribute of the
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rotational semantic space.
We are motivated by the optical interference

phenomenon (bright or dark fringes appear after
the superposition of two beams of light), because
(i) it is intuitive to simulate positive cases and
negative cases utilizing distinct dark and bright
fringes; and (ii) since coherence theory in the
complex field is sufficiently sophisticated, it can
play a theoretical guiding role. As OpticE is one
type of rotation-based model, it can be illustrated
with the rotation transformation shown in Figure
1 (c). The entities New York and Washington D.C.
are mapped into different relation-adaptive orbits
with the same phase difference. The two entities
are close to each other in the orbit of Located_in,
while in the orbit of relation Capital_of they no
longer overlap. By embedding entities into orbits
with different semantic densities, OpticE can take
control of the similarity of entities regarding spe-
cific relations. Generally, multimapping relations
map entities into small-radius orbits in dense se-
mantic space, while one-to-one relations rely on
large-radius orbits in sparse semantic space to dis-
tinguish entities. This will be verified in our exper-
iments.

To optimize OpticE effectively, we optimize
self-adversarial sampling (Sun et al., 2019) by in-
tegrating a Bernoulli filtering process. The pro-
posed method can leverage the high efficiency of
self-adversarial sampling and reduce the perfor-
mance loss caused by false negative labels. Tested
on WN18, FB15k, WN18RR and FB15k-237, the
widely recognized benchmark datasets for link pre-
diction, the lightweight OpticE model is compa-
rable to the previous rotation-based models. Op-
ticE’s ability to adapt to multimapping relations is
also verified in our experiments. Our contributions
can be summarized as follows:

• Coherence theory is introduced into the KG
reasoning task for the first time to make the
embeddings of KGs in a complex field more
intuitive and understandable.

• A relation-adaptive amplitude modulation
technique, which is simple, effective and
lightweight, is developed to alleviate the mul-
timapping problem in KGs.

• A novel negative sampling method is pro-
vided to train our model precisely and effec-
tively; this approach can be generally applied
to other models.

2 Related Work

All the typical related works are listed in Table 1
with their model realizations and complexities in
terms of the number of utilized parameters. They
are divided into two groups according to whether
they are calculated in a real or complex number
field.

Real number field models. The most impor-
tant and influential model is TransE (Bordes et al.,
2013), which takes relations as translation transfor-
mation by simply assuming that h + r = t. How-
ever, its expressiveness is limited, especially when
representing a multimapping relation. TransH
(Wang et al., 2014) exploits an extra projection
transformation and manages to eliminate the ambi-
guity in TransE. DistMult (Yang et al., 2015) uses
a semantic matching method while ignoring the di-
rectionality of the relations.

Complex field models. ComplEx (Trouillon
et al., 2016) utilizes complex numbers in KG em-
beddings and achieves great performance. It can
be considered a complex version of DistMult, but
it overcomes the shortcomings of DistMult via tail
conjugation. RotatE (Sun et al., 2019) surpasses
all the previous models by rotation transforma-
tion; similar to TransE, the model assumes that
h◦r = t and suffers from the same ambiguity prob-
lem. Based on RotatE, RatE (Huang et al., 2020)
defines a relation-specific weight Wr with an extra
8 parameters per relation to solve the ambiguity
problem. HAKE (Zhang et al., 2020) employs a
hierarchical structure simulated by a modulus, but
the model is complicated and difficult to train.

OpticE (ours) belongs to the category of com-
plex field models and provides a novel way to
solve the semantic ambiguity problem in RotatE.
Like RatE and TransH, it has a relation-adaptive
strategy that can retrieve each entity’s different se-
mantics. However, our strategy is much simpler
due to the use of a relation-modulated amplitude.
In the aspect of negative sampling, we adopt multi-
ple negative sampling (Trouillon et al., 2016) and
self-adversarial strategy (Sun et al., 2019) in our
model, but optimize the process with a Bernoulli
distribution (Wang et al., 2014) according to the
multimapping relations.

3 The Coherence Theory-Based Model

In this part, we briefly introduce coherence theory
in §3.1. In §3.2, we provide three ways to modu-
late an interference model and demonstrate the ad-
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Figure 1: Illustration of OpticE. (a) A toy example is given. (b) RotatE is unable to disambiguate New York from
Washington D.C. for the relation Capital_of. (c) The entities New York and Washington D.C. are mapped into
different relation-adaptive orbits with the same phase difference.

Table 1: KG embedding models and their storage complexities of parameters, where ◦ denotes the Hadamard
product, || · ||1/2 denotes the L1 or L2 norm, and ⊙ denotes a specific weighted product defined in RatE. k is the
dimensionality. Ne and Nr are the numbers of entities and relations.

Model Score function Parameters Complexity
TransE −||h + r − t||1/2 h, r, t ∈ Rk O(Nek + Nrk)
TransH −||(h−w⊤

r hwr)+dr − (t−w⊤
r twr)||22 h, t,dr,wr ∈ Rk O(Nek + 2Nrk)

DistMult h⊤diag(r)t h, r, t ∈ Rk O(Nek + Nrk)

ComplEx Re(h⊤diag(r)t) h, r, t ∈ Ck O(2Nek + 2Nrk)
RotatE −||h ◦ r − t||1 h, r, t ∈ Ck, |ri| = 1 O(2Nek + Nrk)
RatE −||h⊙W(r) ◦ r − t||1 h, r, t ∈ Ck,W ∈ R2×4 O(2Nek + Nr(k + 8))

HAKE −||hm ◦ rm − tm||2− hm, rm, tm,hp, rp, tp ∈ Rk O(2Nek + 2Nrk)
λ|| sin((hp + rp − tp)/2)||1

OpticE (ours) −||⟨Mr(h),M′
r(t)⟩||1 h and t are light sources, O(Nek + 3Nrk)

M(·) is modulator

vantage of the proposed OpticE. In §3.3, the model
training process is introduced with the proposed
Bernoulli self-adversarial sampling method.

3.1 Interference under Coherence Theory
Optical interference is a common phenomenon in
physics that can be interpreted formally by the
superposition of waves in coherence theory. We
briefly introduce this theory. More details can be
found in (Hecht, 2016).

Monochromatic harmonic light can be repre-
sented as a point in the complex field as

E = A exp [iφ], (1)

where φ is the phase and A is the amplitude (or
modulus). The intensity of the light synthesized
by E1 and E2 can be defined as

I = ⟨E1, E2⟩
= A2

1 + A2
2 + 2A1A2 cos (φ1 − φ2).

(2)

If and only if A1 = A2 and phase difference is π,
the intensity tends to be 0, which is called total de-
structive interference. In our models, we utilize
this state to indicate positive triplets in KGs.

3.2 The Proposed Models
Based on the coherence theory, we take the enti-
ties as a series of light sources and the relations
as a type of modulation performed on their phases
and the amplitudes. Then, the existence of triplets
can be indicated by the intensity of the lights after
superposition.

To be more intuitive, we modify Equation (2) as

I = A2
1 + A2

2 − 2A1A2 cos (φ1 − φ2). (3)

Then, the total destructive interference condi-
tion becomes A1 = A2 and φ1 = φ2. Given
a triplet (h, r, t) ∈ G, each entity consists of k
(k is the dimension) light sources. By extending
Equation (1), the head entity can be represented
as h = [E1

h, E2
h, · · · , Ek

h], and the tail entity is
represented as t = [E1

t , E2
t , · · · , Ek

t ]. The score
function is

fr(h, t) = −||⟨Mr(h),M′
r(t)⟩||1,

where Mr(·) is the modulation operates on the
head or the tail, and ⟨Mr(h),M′

r(t)⟩ is a list of
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Algorithm 1 Bernoulli self-adversarial sampling

Require: A KG G, the given true triplet (h, r, t) ∈
G, the number of negative samples n. For each
relation in KG, we first get the statistics about
hpt and tph (hpt is the average number of
head entities per tail entity; tph is the average
number of tail entities per head entity).

Ensure: The negative sample set S and
p(h′

i, r, t
′
i).

1: p = hpt
hpt+tph // probability to corrupt the tail

2: ϵ ← U(0, 1) // ϵ uniformly generated from
(0, 1]

3: if ϵ < p then
4: while |S| < n do
5: S ← S ∪ (h, r, t′) // to corrupt the tail
6: end while
7: else
8: while |S| < n do
9: S ← S ∪ (h′, r, t) // to corrupt the head

10: end while
11: end if
12: for the i-th sample (h′

i, r, t
′
i) ∈ S ,

its weight p(h′
i, r, t

′
i) can be obtained from

Equation (4).

the synthesized intensities of each dimension cal-
culated by Equation (3). The larger the score func-
tion value is, the more likely (h, t, r) is the pos-
itive case. When the total destructive interfer-
ence condition is met, the score reaches its maxi-
mum 0.

In this paper, three ways are designed to modu-
late the entities. They are summarized as pOpticE,
aOpticE and OpticE models.

(i) pOpticE with only phase modulation. The
amplitudes of eahc light sources are fixed at 1. A
relation only modulates the corresponding phase.
Specifically, we have

Mr(h) = exp [i(φh + φh
r )]

M′
r(t) = exp [i(φt + φt

r)].

The modulator provides a phase delay φh
r to the

head and φt
r to the tail; then, the score function is

fr(h, t) = ||2− 2 cos(φh + φr − φt)||1,
in which φr = φh

r − φt
r is the phase difference

added to the head’s phase by relation r. Then, the
phase modulation process can be simplified as

Mr(h) = exp [i(φh + φr)]

M′
r(t) = exp [i(φt)].

Similar to other rotation-based models, our mod-
els can infer symmetric, anti-symmetric, inver-
sion and composition relations because all these
models rely on the modulated phase difference
(φh + φr − φt).

(ii) aOpticE with additional entity-adaptive
amplitudes. The amplitudes of the sources are de-
termined by the specific entities themselves. Then,
we obtain

Mr(h) = Ah exp [i(φh + φr)]

M′
r(t) = At exp [i(φt)].

Similar to RotatE, the amplitudes of the entities
in aOpticE remain unalterable under different rela-
tions.

(iii) OpticE with relation-adaptive amplitude
modulation. The amplitudes of the sources are
determined by the entities and relations, simulta-
neously. We have

Mr(h) = Ar,h exp [i(φh + φr)]

M′
r(t) = Ar,t exp [i(φt)],

in which Ar,h and Ar,t are the amplitudes of the
entities modulated by the relations. In this paper,
we provide a specific format of Ar,h and Ar,t to
map the entities into relation-adaptive rotational
orbits with different semantic density:

Ar,h = 1 + λ cos(φh + ϕr)

Ar,t = 1 + λ cos(φt + ϕ′
r),

where λ ∈ (0, 1) is the coefficient. For OpticE,
the amplitudes, which fluctuate between [1−λ, 1+
λ], are controlled by different relations through the
extra parameters ϕr and ϕ′

r.
OpticE is a lightweight model with high stor-

age efficiency, as demonstrated in Table 1. By
reusing phase parameters φh and φt in Ar,h and
Ar,t, only 2Nr ∗ k (Nr is the number of rela-
tions) extra parameters are needed. However, for
other rotation-based models like aOpticE, we need
Ne ∗k (Ne is the number of entities) parameters to
represent the amplitudes. The number of parame-
ters is reduced by (Ne−2Nr)∗k, where Nr ≪ Ne

in KGs.

3.3 Training
Negative sampling is essential to train the mod-
els well. This approach is an effective method de-
rived from word embedding (Mikolov et al., 2013)
and has been proven powerful for KG embedding
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Table 2: Statistics of the datasets. The last column is
the number of the observed triplets in each test, valida-
tion and training set.

Dataset Ne Nr # Te./Val./Tr.
FB15k 14,951 1,345 59k / 50k / 483k
WN18 40,943 18 5k / 5k / 141k

FB15k-237 14,541 237 20k / 18k / 272k
WN18RR 40,943 11 3k / 3k / 87k

(Huang et al., 2020; Krompaß et al., 2015; Sun
et al., 2019). Similar to (Sun et al., 2019), the self-
adversarial sampling method is used:

L =− log σ(γ + fr(h, t))

−
n∑

i=1

p(h′
i, r, t

′
i) log σ(−fr(h

′
i, t

′
i)− γ),

where (h′
i, r, t

′
i) is the i-th negative sample of the

true triplet (h, r, t), γ is a fixed margin and σ is the
sigmoid function. In OpticE and pOpticE, fr(h, t)
need to be reduced by a proper times to fit the
value of γ. Furthermore,

p(h′
i, r, t

′
i) =

exp αfr(h
′
i, t

′
i)∑

j exp αfr(h′
j , t

′
j)

(4)

is the weight of the i-th negative sample, where α
is the adversarial temperature. According to Equa-
tion (4), negative samples with higher scores are
assigned with higher weights during the training
phase. This is an effective way to filter out high-
scoring negative samples and lower their scores ef-
ficiently. Apparently, this technique is better than
assigning the same average weight to each sample.

However, there are obvious defects in the self-
adversarial sampling methods above. During the
sampling process, those missing true triplets to
be predicted will inevitably suffer from a severe
penalty if they are sampled, which will undermine
the prediction accuracy. Here, we take advantage
of the Bernoulli sampling strategy described in
(Wang et al., 2014) to reduce the chance of sam-
pling false negative samples. Instead of replacing
the head and tail uniformly, we use a Bernoulli dis-
tribution to decide whether to corrupt the head or
the tail. For example, given a triplet (Biden, na-
tionality, the U.S.), since nationality is a many-to-
one relation, it is safer to change the entity the U.S.
to obtain a negative sample than altering entity
Biden. In Algorithm 1, the process of the Bernoulli
self-adversarial sampling method is clarified.

4 Experiments

In this part, the experimental conditions are elabo-
rated, and the performance of the proposed mod-
els is compared. Different negative sampling
methods are tested. Finally, we examine the
effects of the amplitude of OpticE. All the ex-
periments are conducted on an NVIDIA-v100
GPU. The code for this paper is available on
https://github.com/guixiangyu1/OpticE.

4.1 Experimental Settings
Four widely used datasets,FB15k (Bordes et al.,
2013), WN18 (Bordes et al., 2013), FB15k-
237 (Toutanova and Chen, 2015) and WN18RR
(Dettmers et al., 2018), are benchmark datasets in
our experiments. All these datasets contain plenty
of multimapping instances. The statistics of these
datasets are presented in Table 2. The models are
trained on the training set and tested on the test set.

• FB15k contains tremendous entities and mul-
timapping relations from real-world settings
and is extracted from Freebase (Bollacker
et al., 2008).

• WN18 is extracted from WordNet (Miller,
1995) and is designed to manipulate the se-
mantic relations between words and phrases.

• FB15k-237 is a subset of FB15k. To avoid
the data leakage problem in FB15k, dupli-
cate triplets and direct links are removed in
FB15k-237.

• WN18RR is a subset of WN18. WN18RR
follows the same processes as FB15k-237.

Hyperparameters. During the training process,
Adam (Kingma and Ba, 2014) is used to opti-
mize OpticE. Grid search is used and the range
of hyperparameters is set as follows: the batch
size b ∈ [512, 1024, 2048], the number of em-
bedding dimensions k ∈ [500, 1000, 1500, 2000],
the temperature for Bernoulli self-adversarial sam-
pling α ∈ [0.5, 1.0], the negative sample size
n ∈ [50, 100, 200, 256] and the margin γ ∈
[6, 9, 12, 15]. All amplitudes and phases are initial-
ized uniformly. The range of the phases is [0, 2π).

Evaluation. All the models are tested their link
prediction performance with three standard eval-
uation metrics: the mean reciprocal rank (MRR),
mean rank (MR) and hits at N (Hits@N). Given
a true test triplet, its head entity or tail entity is
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Table 3: Link prediction results on FB15k and WN18. We take TransE results from (Nickel et al., 2016), and
DistMult results from (Kadlec et al., 2017). Other results are extracted as benchmarks from the corresponding
original papers.

Method FB15k WN18
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE - ..463 .297 .578 .749 - .495 .113 .888 .943
DistMult 42 .798 - - .893 655 .797 - - .946

HolE - .524 .402 .613 .739 - .938 .930 .945 .949
ComplEx - .692 .599 .759 .840 - .941 .936 .945 .947

ConvE 51 .657 .558 .723 .831 374 .943 .935 .946 .956
RotatE 40 .797 .746 .830 .884 309 .949 .944 .952 .959
RatE 24 .810 .724 .859 .898 180 .950 .944 .953 .962

pOpticE 42 .792 .742 .823 .881 290 .948 .940 .952 .960
aOpticE 45 .788 .736 .822 .879 362 .946 .940 .952 .958
OpticE 39 .804 .756 .837 .889 261 .951 .946 .955 .961

Table 4: Link prediction results on FB15k-237 and WN18RR. The results of [♠] are taken from (Dettmers et al.,
2018). Other results are extracted as benchmarks from the corresponding original papers.

Method FB15k-237 WN18RR
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE 357 .294 - - .465 3384 .226 - - .501
DistMult [♠] 254 .241 .155 .263 .419 5110 .43 .39 .44 .49
ComplEx [♠] 339 .247 .158 .275 .428 5261 .44 .41 .46 .51

ConvE [♠] 244 .325 .237 .356 .501 4187 .43 .40 .44 .52
RotatE 177 .338 .241 .375 .533 3340 .476 .428 .492 .571
HAKE - .346 .250 .381 .542 - .497 .452 .516 .582
RatE 172 .344 .261 .382 .541 2860 .488 .441 .506 .590

pOpticE 183 .329 .232 .366 .525 3182 .477 .435 .491 .559
aOpticE 186 .340 .244 .377 .536 3510 .473 .425 .489 .563
OpticE 151 .359 .264 .398 .550 1930 .497 .453 .512 .585

corrupted and we rank all the candidate triplets
by their scores from fr(h

′, t) or fr(h, t′). These
ranks are calculated by filtering out all the cor-
rect triplets except the one to be predicted. Higher
MRR, Hits@N and lower MR suggest better per-
formance.

4.2 Main Results

The existing state-of-the-art models are compared
with ours in terms of link prediction. They are
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), HolE
(Nickel et al., 2016), ConvE (Dettmers et al.,
2018), RotatE (Sun et al., 2019), HAKE (Zhang
et al., 2020) and RatE (Huang et al., 2020).

In Tables 3 and 4, the main results obtained
on the link prediction task are listed. RotatE sur-
passes all the previous models by simultaneously
modeling different kinds of relations in KGs, in-
cluding symmetry, antisymmetry, inversion and
composition (Sun et al., 2019). HAKE, RatE and
our OpticE can be considered members of the
RotatE family because they all employ the rota-
tion transformation approach and are capable of
representing the four types of relations described

above. By optimizing the hierarchy and ambiguity
aspects, HAKE and RatE outperform RotatE to a
large extent. According to the results, by mapping
entities into different relation-adaptive semantic
spaces, OpticE is comparable to these two models
and even exceeds them in terms of most evaluation
metrics.

The performances of different modulation
styles are also compared. pOpticE (with only
phase modulation) can complete the link pre-
diction task well to some extent. By assign-
ing trainable amplitudes decided by entities, aOp-
ticE optimizes the corresponding outcomes. Op-
ticE, with relation-adaptive modulated amplitude,
greatly surpasses aOpticE in four datasets, which
verifies that it is beneficial to use relation-adaptive
amplitude modulation rather than entity-adaptive
amplitude modulation.

4.3 Performance for Different Relation Types

We further investigate the performance of OpticE
when processing prediction tasks with different re-
lation types. According to the general classifica-
tion method given by (Wang et al., 2014), the rela-
tions are classified into one-to-one, one-to-many,
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Table 5: Performance on FB15k-237 for different relation types. TransE and RotatE are trained according to the
code released by (Sun et al., 2019) with their best configurations.

Head Prediction (MRR) Tail Prediction (MRR)
Relation Type 1-to-1 1-to-M M-to-1 M-to-M 1-to-1 1-to-M M-to-1 M-to-M

TransE .491 .453 .085 .255 .481 .074 .741 .361
RotatE .501 .472 .092 .261 .488 .075 .748 .368

OpticE (ours) .505 .484 .113 .285 .499 .073 .777 .390

Table 6: Performance of RotatE and OpticE with different negative sampling methods. For FB15k-237, the nega-
tive sample size is set to 256. For WN18RR, the negative sample size is set to 100. Other conditions remain the
same.

FB15k-237 WN18RR
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

RotatE(uni.) 186 .295 .203 .326 .479 3226 .471 .425 .487 .564
RotatE(adv.) 178 .335 .238 .374 .531 3338 .477 .429 .493 .574

RotatE(badv.) 179 .337 .241 .374 .531 3267 .478 .430 .496 .578
OpticE(uni.) 152 .348 .254 .385 .537 2267 .486 .442 .501 .568
OpticE(adv.) 168 .354 .260 .390 .541 2890 .488 .445 .504 .570

OpticE(badv.) 151 .359 .264 .398 .550 1930 .497 .453 .512 .585
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Figure 2: Visualization of several entities on FB15k-
237. The Mid of h1 and h2 are /m/04ztj and /m/07tg4;
the Mid of t1 and t2 are /m/08mbj5d and /m/0bwfn.

many-to-one and many-to-many types. The re-
sults obtained by OpticE on the FB15k-237 dataset
are given in Table 5 and compared with those of
TransE and RotatE.

We can see that OpticE achieves improvements
for almost all types of relations, except the one-
to-many tail prediction relations for which all the
methods obtain low MRR scores. It is difficult
to predict the ‘many’ parts of one-to-many and
many-to-one relations. This is in line with the
common sense notion that ‘many’ indicates more
uncertainty. By employing relation-adaptive am-
plitudes, OpticE alleviates this problem to some
extent.

4.4 Analysis of Negative Sampling Methods

We apply different negative sampling methods to
OpticE and RotatE and record the results in Table
6. Uniform sampling (uni.), self-adversarial sam-
pling (adv.) and Bernoulli self-adversarial sam-
pling (badv.) are alternated in the models dur-
ing the test. These methods are evaluated based
on the results in Table 6. During the sampling
phase, Bernoulli sampling can decrease the chance
of sampling false negative samples. As indicated
in the table, compared with adv. and uni. sam-
pling, models with badv. sampling achieve the
best result. From the perspective of models, Op-
ticE outperforms RotatE with the same negative
sampling method, which proves the excellent rep-
resentation ability of OpticE.

4898



0.6 0.8 1.0 1.2 1.40.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16 Student

Campuses

(a) Student vs. Campuses

0.6 0.8 1.0 1.2 1.40.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Institution1
Institution2

(b) Institution1 vs. Institution2

Figure 3: Distribution histogram of the amplitudes. (a) For Student (many-to-one) and Campuses (one-to-one), we
take the average amplitude of their heads and calculate the corresponding relative frequency. (b) For Institution1

(many-to-many) and Institution2 (one-to-one), we take the average amplitude of their tails and calculate the
corresponding relative frequency.

4.5 Analysis Regarding the Amplitude

To verify the effects of the amplitude, we monitor
and visualize it in OpticE. we visualize the heads
and tails on FB15k-237 with several relations, as
shown in Figure 2. In Figure 3, we test the ampli-
tude distribution of different kinds of relations.

Visualization of relation-adaptive amplitudes
in OpticE. In Figure 2, all the entities are mapped
into a 2D space with the data of their first 500 di-
mensions, based on a complex coordinate system.
To make the property of the amplitude more obvi-
ous, we take the logarithm operation on the ampli-
tudes. Since the amplitudes and moduli are less
than 1, the smaller radii in the figure will actually
indicate larger amplitudes or moduli. The num-
bers in the parentheses are (hpt : tph) of the rela-
tions.

In Figure 2(a) and (b), (c) and (d), RotatE
mixes entities in the same space while OpticE
can distinguish them by different relations. The
radii under one-to-one relations (Institution2

and Campuses) are smaller in OpticE, which
means the entities are mapped into sparse semantic
space with larger amplitudes. In Figure 2(e) and
Figure 2(f), although Yale is the head entity of both
relations, entity Yale is mapped into sparse seman-
tic space by relation Campuses (one-to-one) and
dense semantic space by relation Student (many-
to-one). A similar situation occurs with UMich
on Institution1 and Institution2. These visu-
alizations prove that OpticE can tackle the seman-
tic ambiguity problem with relation-adaptive am-
plitudes.

Distribution of amplitudes of different rela-

tions. The relation between the values of am-
plitudes and the multimapping properties of the
relation is investigated. As illustrated in Figure
3, the amplitudes of injective (one-to-one) rela-
tions (Campuses and Institution2) are larger
than those of noninjective relations (Student and
Institution1). The reason is that for multimap-
ping relations, the semantics of entities overlap
with each other. Then with smaller amplitudes
in a dense semantic space, similar semantics are
more convenient to express. For the one-to-one
relations, entities are exclusive and there are se-
mantic gaps between them. With larger ampli-
tudes in a sparse semantic space, each entity can
disambiguate with each other more easily. These
attributes are also demonstrated in Figure 2, show-
ing that multimapping relations have smaller radii
(red points) and one-to-one relations with larger
ones (blue points).

5 Conclusion

We embed KGs with a novel optic interference
perspective to tackle the link prediction problem.
Guided by coherence theory, we explore three
kinds of modulation methods and analyze their
properties theoretically. With our proposed neg-
ative sampling method, OpticE achieves the best
score in comparison with other translation- and
rotation-based models. Its ability to disambiguate
entities in multiple mapping relations is verified
experimentally. The results suggest that we can al-
leviate semantic ambiguity in rotation-based mod-
els by mapping entities into relation-adaptive or-
bits with different semantic densities.
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A More Details about Coherence Theory

Given E1 = A1e
iφ1 and E2 = A2e

iφ2 , after the
superposition of the two light waves, the formed
synthetic light is

E =A1e
iφ1 + A2e

iφ2

=A1 cos φ1 + A2 cos φ2

+ i(A1 sin φ1 + A2 sin φ2).

Then, we have

||E||2 =(A1 cos φ1 + A2 cos φ2)
2

+ (A1 sin φ1 + A2 sin φ2)
2

=A2
1 + A2

2 + 2A1A2 cos (φ1 − φ2).

The final intensity is I = 1
2 ||E||2. For conve-

nience, the coefficient 1
2 is ignored. The synthetic

light intensity of two coherent lights can be noted
as

I = ⟨E1, E2⟩
= A2

1 + A2
2 + 2A1A2 cos (φ1 − φ2).

To be more intuitive, we modify the intensity as

I = ||E1 − E2||2

= A2
1 + A2

2 − 2A1A2 cos (φ1 − φ2).

Then, the phase difference between φ1 and φ2 is
important during the process (k ∈ Z):

I =





(A1 + A2)
2, φ1 − φ2 = (2k + 1)π,

A2
1 + A2

2, φ1 − φ2 = (
1

2
+ k)π,

(A1 −A2)
2, φ1 − φ2 = 2kπ.

When cos (φ1 − φ2) = 1, the intensity reaches its
maximum as (A1 + A2)

2. When cos (φ1 − φ2) =
0, the interference effect disappears, and intensity
is the sum of the individual intensities as A2

1 + A2
2.

The extreme case is total destructive interfer-
ence, in which the waves tend to cancel, and the
intensity tends to be zero. This extreme case oc-
curs only if A1 = A2 and φ1 = φ2 (suppose
φ1, φ2 ∈ (0, 2π]).
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Figure 4: Distribution histogram of the phases of _sim-
ilar_to in WN18RR and spouse in FB15k-237.

B Reasoning in Symmetric Relations

OpticE can infer symmetric, anti-symmetric, inver-
sion and composition relations. We give the proof
for symmetric relations here, and others are omit-
ted in this paper.

For a symmetric relation r with two positive
cases, (h, r, t) and (t, r, h), to satisfy the coher-
ence condition of phase matching,

φh + φr − φt = 2k1π

φt + φr − φh = 2k2π,

where k1 and k2 ∈ Z . By adding the formulas
above, we can obtain

φr = (k1 + k2)π = kπ,

in which k ∈ Z . Specifically, φr = ±π and 0 in
OpticE.

The phase properties inherited from the rota-
tion models are tested. Compared with translation
models, e.g., TransE, rotation transformation mod-
els are able to represent symmetric relations. For
instance, when (h, r, t) and (t, r, h) are both posi-
tive cases, it is trivial for TransE to set r to 0. How-
ever, for OpticE, the period of the phase takes ef-
fect with a phase φr = kπ. This is verified in
Figure 4, in which the phase of the symmetric re-
lation _similar_to and spouse is distributed around
±π and 0.
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Abstract

Unsupervised contrastive sentence embedding
models, e.g., unsupervised SimCSE, use the
InfoNCE loss function in training. Theoreti-
cally, we expect to use larger batches to get
more adequate comparisons among samples
and avoid overfitting. However, increasing
batch size leads to performance degradation
when it exceeds a threshold, which is proba-
bly due to the introduction of false-negative
pairs through statistical observation. To al-
leviate this problem, we introduce a simple
smoothing strategy upon the InfoNCE loss
function, termed Gaussian Smoothed InfoNCE
(GS-InfoNCE). In other words, we add ran-
dom Gaussian noise as an extension to the
negative pairs without increasing the batch
size. Through experiments on the semantic text
similarity tasks, though simple, the proposed
smoothing strategy brings improvements to un-
supervised SimCSE. Our code are available at
https://github.com/caskcsg/gsInfoNCE.

1 Introduction

Good sentence representation benefits many natural
language processing tasks, and sentence representa-
tion learning has been widely studied (Logeswaran
and Lee, 2018; Reimers and Gurevych, 2019). Con-
trastive learning has recently been proposed and
extensively explored to learn high-quality sentence
representations based on the pre-trained language
models(Devlin et al., 2018; Liu et al., 2019). Con-
trastive learning aims to learn effective representa-
tion by pulling close semantically similar sentences
while pushing apart dissimilar ones (Hadsell et al.,
2006). Among those unsupervised sentence em-
bedding learning methods with contrastive learning,
the latest state-of-the-art method, as far as we know,
is unsupervised SimCSE (unsup-SimCSE) (Gao
et al., 2021). unsup-SimCSE implicitly hypothe-
sizes “dropout” as minimal data augmentation and

∗The first two authors contribute equally.
†Corresponding author.

Figure 1: The changing trend of the cosine similarities
of the negative pairs in the batch. As the batch_size
increases, the mean values of the top 4 cosine similari-
ties also increase, indicating negative pairs with lower
confidence exists.

assumes a sentence is semantically more similar to
its augmented counterpart than any other sentence.
Though simple, unsup-SimCSE works surprisingly
well, performing on par with previously supervised
counterparts.

Theoretically, since contrastive learning is car-
ried out among samples within a batch, increasing
the batch size will probably bring more adequate
comparisons and avoid overfitting. However, ac-
cording to the original unsup-SimCSE paper (Gao
et al., 2021), a larger batch size does not always
lead to improvements. The performance even de-
creases when the batch size exceeds a threshold.
We assume that as the batch size increases, more
similar sentence samples are probably introduced
and easily constitute false-negative pairs, which is
detrimental to the learning of the model. We de-
sign a probing statistical experiment for different
batch sizes to verify our assumption. We use the
currently best semantic textual similarity model,
i.e., the SimCSE-RoBERTalarge (Gao et al., 2021)
to measure the cosine similarity of sentence pairs.
Randomly sampling a batch with N sentences, we
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measure the similarity between all negative pairs
within the batch. We calculate the batch’s top 4
mean similarity values. We repeat the procedure
100 times and average to eliminate randomness.
As shown in Figure1, the top 4 similarity values
increase as the batch size increases. It means that,
in a larger batch, there will be negative pairs com-
prised of more similar sentences. When the batch
size does not exceed a threshold, the negative pairs
of similar sentences are hard negatives and good
for training. But when the batch size exceeds, false-
negative pairs with higher similarity are introduced,
which will mislead the model training. Therefore,
achieving sufficient comparison for samples in a
“confident” (not too large) batch is particularly im-
portant.

As shown in the figure 1, Gaussian noise is far
away from all samples and can constitute a very
confident negative pair with any sample within a
batch. Therefore, we propose to add random Gaus-
sian noise as an extension to the negative pairs
without increasing the batch size 1. In other words,
we introduce a simple smoothing strategy upon the
InfoNCE loss function by simply adding a Gaus-
sian noise term to the denominator, termed Gaus-
sian Smoothed InfoNCE (GS-InfoNCE). From two
perspectives, the Gaussian noise term can be un-
derstood as a smoothing strategy. Firstly, the num-
ber of negative pairs in a given batch is limited
and discrete, and these pairs are used to approxi-
mate the negative distribution. We can make the
distribution smoother by adding random Gaussian
noise to extend the negative pairs. Secondly, from
the perspective of the loss function, the denom-
inator of GS-InfoNCE’s loss introduces an addi-
tional penalty term to avoid overfitting. Through
experiments on the semantic text similarity (STS)
tasks, GS-InfoNCE outperforms the state-of-the-art
unsup-SimCSE by an average Spearman correla-
tion of 1.38%, 0.72%, 1.17% and 0.28% on the
base of BERT-base, BERT-large, RoBERTa-base
and RoBERTa-large, respectively.

Our contributions can be summarized as fol-
lows: we propose GS-InfoNCE for unsup-SimCSE,
by introducing a simple smoothing strategy upon
the InfoNCE loss function to bring sufficient com-
parison for samples without increasing the batch

1A contemporaneous work (Zhou et al., 2022) has also
randomly initialized new negatives based on random Gaussian
noises to simulate sampling within the whole semantic space,
and devise a gradient-based algorithm to optimize the noise-
based negatives.

size. Our approach can bring improvements to
unsup-SimCSE with different model configurations
through experiments.

2 Background: Contrastive Learning

Contrastive learning is a discriminative representa-
tion learning framework extensively used for unsu-
pervised representation learning. The core idea is
to compare a sentence with a semantically similar
one (i.e., positive example) and many semantically
dissimilar ones (i.e., negative examples). In this
way, the semantically similar sentences are closer
in the representation space, while the semantically
dissimilar ones are farther apart.

InfoNCE (Chen et al., 2020) propose to take a
cross-entropy objective with in-batch negatives,
namely the InfoNCE objective function. It is a
commonly used loss function for contrast learn-
ing by pulling similar sentences closer and push-
ing dissimilar ones apart in the representation
space. Specifically, given a set of sentence pairs:
D =

{(
xi, x

+
i

)}m
i=1

, where xi and x+i are the ith
pair of semantically related sentences. Let hi and
h+
i denote the semantical representations of xi and
x+i , for a mini-batch with N pairs, the training loss
for (xi, x+i ) is:

ℓi = − log
esim(hi,h

+
i )τ

N∑
j=1

esim(hi,hj)τ

(1)

where τ is a temperature hyperparameter and
sim

(
hi,h

+
i

)
is the similarity measurement func-

tion, which is typically the cosine similarity func-
tion.

Unsupervised SimCSE The idea of unsup-
SimCSE is quite simple: each positive pair takes
the same sentence as input and utilizes “dropout”
as minimal data augmentation. In detail, it takes a
collection of sentences {xi}mi=1 and use x+i = xi.
It feeds the same input to the encoder twice by ap-
plying different dropout masks on fully-connected
layers and attention probabilities in the transformer.
Through training, positive pair embeddings ob-
tained are similar in the representation space.

3 Gaussian Smoothed InfoNCE

We introduce a Gaussian noise term to the InfoNCE
loss function, termed Gaussian Smoothed InfoNCE
(GS-InfoNCE). Given a Gaussian distribution as
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follows: G ∼ N
(
µ, σ2

)
, whose mean is µ, and

the variance is σ2, we randomly sample M Gaus-
sian noise vectors from it with the same dimensions
as the sentence vector. These vectors constitute
high confident negative pairs with each sample in
the batch to fill and smooth the representation space.
Note that these Gaussian noise vectors will not par-
ticipate in the positive pair constitution. In that
way, the loss function of GS-InfoNCE is denoted
as follows:

ℓi = − log
esim(hi,h

+
i )/τ

N∑
j=1

esim(hj ,hi)/τ + λ ·
M∑
k=1

esim(gk,hi)/τ

(2)
where gk is a random Gaussian noise vector, M is
the number of Gaussian noise vectors involved in
the calculation, and λ is a balance hyperparameter.

The python implementation of GS-InfoNCE is
quite simple, with only three lines of codes based
on the original InfoNCE implementation in unsup-
SimCSE.

4 Experiments

We focus on unsup-SimCSE and replace the orig-
inal InfoNCE objective loss function with GS-
InfoNCE. Following (Gao et al., 2021), the main
goal of sentence embeddings is to cluster seman-
tically similar sentences. For a fair comparison,
we conduct our experiments on seven semantic tex-
tual similarity (STS) tasks introduced below and
take STS results to compare sentence embedding
methods.

Semantic textual similarity tasks Semantic tex-
tual similarity measures the semantic similarity of
any two sentences. STS 2012–2016 (Agirre et al.,
2012, 2013, 2014, 2015, 2016)and STS Benchmark
(Cer et al., 2017) are widely used semantic textual
simiarlty benchmark datasets. Following unsup-
SimCSE, we use Spearman correlation2 to mea-
sure the correlation between the ranks of predicted
scores and the ground-truth.

Training details The training details of unsup-
SimCSE can be found in (Chen et al., 2020) and
github3. Our experimental settings are consistent

2https://en.wikipedia.org/wiki/
Spearman%27s_rank_correlation_
coefficient

3https://github.com/princeton-nlp/
SimCSE

Model SimCSE + GS-InfoNCE
BERTbase 64 64
BERTlarge 64 64
RoBERTabase 512 64
RoBERTalarge 512 64

Table 1: Comparison of batch_size with or without
using GS-InfoNCE in unsup-SimCSE.

with the original method. For the Gaussian dis-
tribution, we empirically use the standard normal
distribution, with µ = 0, σ2 = 1. Additionally,
we set λ = 1 and M = 3 × batch_size for all
experiments. As illustrated in Figure 1, we have
confirmed that increasing the batch size will in-
troduce false-negative pairs with high similarity,
so in our experiments, we set the batch size to a
moderate size of 64. Following unsup-SimCSE,
we conduct experiments on four commonly used
models: BERT-base, BERT-large, RoBERTa-base
and RoBERTa-large.

Main Results We list the experimental results
in Table 2. On the BERTbase model, in terms of
Spearman correlation, our GS-InfoNCE brings an
average increase of 1.38% over unsup-SimCSE on
seven test sets, and the maximum gain on STS-B
reach 2.85%. On the BERTlarge model, our GS-
InfoNCE gives unsup-SimCSE an average improve-
ment of 0.55% on the 7 test sets, although there
is a slight decrease on the SICK15 and SICK-R
data sets. On the RoBERTabase and RoBERTalarge
models, we have a similar situation, with an aver-
age improvement of 1.17% and 0.31% on the 7 test
sets.

In general, the improvement brought by GS-
InfoNCE to unsup-SimCSE is comprehensive. We
can fully surpass the previous best model results
with the same or smaller batch size in different
model configurations, which well demonstrates that
our smoothing strategy has played a key role. We
believe that a finer search of the parameters can
achieve better results and we leave it to our future
work.

Analysis: Effect of hyperprarameter M Gaus-
sian random noise constitutes high-confidence neg-
ative pairs with the sentences in a batch. M is the
number of Gaussian noise vectors involved in the
GS-InfoNCE calculation. We further explore the
influence ofM on the performance of GS-InfoNCE
on BERTbase. We reuse the hyperparameters of the
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1 # ... code from origianl unsup-SimCSE above...
2 z1, z2 = pooler_output[:,0], pooler_output[:,1]
3 cos_sim = cls.sim(z1.unsqueeze(1), z2.unsqueeze(0))
4 reg_random = torch.normal(mean, std, size=(reg_size, hidden_size)).to(device)
5 reg_cos_sim = cls.sim(z1.unsqueeze(1), reg_random.unsqueeze(0))
6 cos_sim = torch.cat((cos_sim, reg_cos_sim),1).to(device)
7 labels = torch.arange(cos_sim.size(0)).long().to(cls.device)
8 loss_fct = nn.CrossEntropyLoss()
9 # ... code from origianl unsup-SimCSE below...

Listing 1: Codes in red are regularization modifications to the original InfoNCE loss

Model STS12 STS13 STS14 SICK15 STS16 STS-B SICK-R Avg.
SimCSE-BERTbase♣ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
+ GS-InfoNCE 70.12 82.57 75.21 82.89 80.23 79.70 72.70 77.63
SimCSE-BERTlarge♣ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
+ GS-InfoNCE 73.75 85.09 77.35 84.44 79.88 79.94 73.48 78.96
SimCSE-RoBERTabase♣ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
+ GS-InfoNCE 71.12 83.24 75.00 82.61 81.36 81.26 69.62 77.74
SimCSE-RoBERTalarge♣ 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
+ GS-InfoNCE 71.76 84.91 76.79 84.35 81.74 82.97 71.71 79.21

Table 2: Sentence embedding performance on semantic textual similarity (STS) test sets in terms of Spearman’s
correlation. ♣ : results from the official published model by the unsup-SimCSE.

best-performing model and only vary the hyperpa-
rameter M . For each M , we train the model until
convergence and then select the checkpoint that
performs the best on the validation set to evaluate
on the test set. The performance statistics are listed
in Table 3. As M becomes larger, the performance
of GS-InfoNCE on the test set slowly improves.
When M = 3, the best performance is reached,
after which the model performance begins to de-
cline. In general, GS-InfoNCE is not sensitive to
M (recommend < 8), making it feasible to apply
easily in practical applications.

5 Related Work

Deep and wide models are prone to overfitting,
and thus regularization strategies are important
to improve their generalization ability. Among
them, smoothing is a very commonly used method.
(Szegedy et al., 2016; Müller et al., 2019) propose

bs=64 0× 0.5× 1× 2×
BERTbase 76.25 76.96 76.90 77.11
bs=64 3× 4× 8× 16×
BERTbase 77.63 76.81 76.94 75.57

Table 3: Effect of the hyperprarameter M on BERTbase.
We setM as a multiple of batch size (bs=64). 0×means
the original SimCSE without using GS-InfoNCE.

to use label smoothing as a regularization method
that makes the clusters between categories more
compact and avoids adversarial examples with over
high confidence. Text smoothing(Wu et al., 2022;
Zhu et al., 2019) also seems to be able to bring
further improvements in tasks such as text classi-
fication and machine translation by smoothing the
one-hot representation of the input text into the
probability distribution representation of the dictio-
nary. Our GS-InfoNCE can also be regarded as a
smoothing strategy that makes the distribution of
negative samples smoother by introducing multi-
ple random Gaussian noise vectors as an extension
of the negative examples. Compared with label
smoothing and text smoothing, GS-InfoNCE di-
rectly uses the standard Gaussian distribution for
sampling, largely saving computational costs.

6 Conclusion and Future Work

This paper proposes GS-InfoNCE for unsupervised
SimCSE methods by introducing a simple smooth-
ing strategy upon the InfoNCE loss function to
bring sufficient comparison for samples without
increasing the batch size. In the future, we will
explore how to improve the generalization capabil-
ity of GS-InfoNCE and verify its effectiveness on
more contrastive learning methods.
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Abstract
The billions, and sometimes even trillions, of
parameters involved in pre-trained language
models significantly hamper their deployment
in resource-constrained devices and real-time
applications. Knowledge distillation (KD) can
transfer knowledge from the original model
(i.e., teacher) into a compact model (i.e., stu-
dent) to achieve model compression. However,
previous KD methods have usually frozen the
teacher and applied its immutable output fea-
ture maps as soft labels to guide the student’s
training. Moreover, the goal of the teacher is to
achieve the best performance on downstream
tasks rather than knowledge transfer. Such a
fixed architecture may limit the teacher’s teach-
ing and student’s learning abilities. Herein,
a knowledge distillation method with reptile
meta-learning is proposed to facilitate the trans-
fer of knowledge from the teacher to the stu-
dent. The teacher can continuously meta-learn
the student’s learning objective to adjust its
parameters for maximizing the student’s perfor-
mance throughout the distillation process. In
this way, the teacher learns to teach, produces
more suitable soft labels, and transfers more
appropriate knowledge to the student, resulting
in improved performance. Unlike previous KD
using meta-learning, the proposed method only
needs to calculate the first-order derivatives to
update the teacher, leading to lower computa-
tional cost but better convergence. Extensive
experiments on the GLUE benchmark show the
competitive performance achieved by the pro-
posed method. For reproducibility, the code for
this paper is available at: https://github.
com/maxinge8698/ReptileDistil.

1 Introduction

In recent years, pre-trained language models
(PLMs) have brought natural language processing
to a new era and achieved state-of-the-art perfor-
mance in a variety of tasks. Based on a multi-
layer Transformer architecture (Vaswani et al.,

∗Corresponding authors.

2017), PLMs, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang
et al., 2019), typically contain hundreds of mil-
lions of parameters, making them computation-
ally expensive and inefficient. Consequently, such
large-scale models are difficult to be deployed on
resource-constrained devices and real-time applica-
tions due to high computational complexity, huge
storage requirements, and slow inference speed.

Knowledge distillation (KD) (Hinton et al.,
2015) has been recommended to compress PLMs.
Based on the teacher-student architecture applied,
it teaches a smaller student model to reproduce the
behavior of a larger teacher model. In practice,
the teacher produces output feature maps as soft
labels, providing the student with more information
than the ground truth of one-hot labels to learn. By
minimizing the Kullback-Leibler (KL) divergence
between the softened probability distributions of
the teacher and student, the student is then trained
as an equally-effective model without significant
sacrifice in performance.

However, previous studies (Sanh et al., 2019;
Sun et al., 2019; Turc et al., 2019; Jiao et al., 2020;
Wang et al., 2021) have usually frozen the teacher
during the KD process and used its immutable
knowledge to teach the student. Inevitably, this ar-
chitecture has two major limitations: 1) The param-
eters of the teacher were fixed for KD. Concretely,
the teacher is frozen throughout the distillation pro-
cess, and the student can only passively receive the
fixed knowledge conveyed by the teacher, which
ignores the capacity gap and incompatibility be-
tween the teacher and student; 2) The teacher is
unaware of the existence of the student. Specif-
ically, the teacher model is usually fine-tuned to
optimize its performance in downstream applica-
tions rather than to optimize the ability to distill the
knowledge to the student.

Recent studies (Park et al., 2021; Pham et al.,
2021; Zhou et al., 2022) have suggested that up-
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dating the teacher together with the student during
the KD process, rather than freezing it, can make
the student learn better. To be specific, Park et al.
(2021) proposed a student-friendly teacher network
for training the teacher and student branches to
make the teacher aware of the student before dis-
tillation and obtain student-friendly knowledge,
which is then transferred to the student via vanilla
KD. Pham et al. (2021) presented meta pseudo
labels where the student is trained based on the
pseudo labels generated by the teacher and the
teacher is trained based on the performance of the
student on labeled data. Zhou et al. (2022) em-
ployed a meta-learning strategy to explicitly opti-
mize the teacher with the optimization objective of
the student’s performance on a hold-out training
subset during the KD process, allowing the teacher
to evolve continuously to adapt to the current state
of the student and better transfer knowledge to it.

The application of model-agnostic meta-learning
(MAML) (Finn et al., 2017) in MetaDistil (Zhou
et al., 2022) significantly improved the perfor-
mance of the distilled student by calculating the
second-order derivatives of the student’s loss on
the query set to obtain the update gradients of the
teacher. However, limited by the MAML algorithm,
there are some concerns in MetaDistil: 1) A query
set needs to be designed. MetaDistil split the query
set from the training set at a ratio of 9:1, as a re-
sult, it missed one-tenth of the training data since
this separate query set is not directly used to train
the student model. Nevertheless, this one-tenth
of the data could lead to significant performance
gain, especially when the training data is scarce; 2)
The training process may be slow due to the nature
of meta-learning. Furthermore, MAML involves
the calculation of the second-order derivatives, so
that more training time and computing resource are
required.

To address the above issues, a knowledge distil-
lation method with reptile meta-learning (Nichol
et al., 2018) is proposed to facilitate the trans-
fer of knowledge from the teacher to the student,
termed ReptileDistil, where the update gradients of
the teacher are approximated by calculating the
difference between the parameters of the meta-
learner (i.e., teacher) and inner-learner (i.e., stu-
dent), thereby reducing the computational burden
by avoiding calculating the second-order deriva-
tives, and mitigating the tedious operation of parti-
tioning the query set and the performance loss that
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Figure 1: An overview of the proposed ReptileDistil
framework.

may be caused. To illustrate the effectiveness and
practicality of the proposed ReptileDistil, extensive
experiments are conducted on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018). Empirical results demon-
strate that the proposed method can yield meaning-
ful improvements compared with other KD meth-
ods in distilling a 12-layer BERTBASE model with
110M parameters into a 6-layer BERT6 model with
66M parameters and 1.94 times speedup.

In summary, the contributions of this paper are
as follows:

• A knowledge distillation method with reptile
meta-learning is proposed for compressing
PLMs, for which the reptile meta-learning is
introduced to calculate the update gradients
of the teacher model for optimizing it.

• Four different layer-wise parameter update
strategies are proposed for updating the pa-
rameters of the teacher model, which avoid
calculating the second-order derivatives and
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lead to better and faster convergence.

• Extensive experiments are conducted on the
GLUE benchmark, and the results show that
the proposed method performs better in distill-
ing BERT than state-of-the-art KD methods.

The rest of this paper is organized as follows.
Section 2 reviews the related work. Section 3 de-
tails the proposed ReptileDistil framework. Sec-
tion 4 presents extensive experiments. Section 5
provides experimental results and analysis. Sec-
tion 6 summarizes the paper.

2 Related Work

Model compression is a potential approach to re-
duce the model size and improve computational
efficiency. Currently, the model compression tech-
niques for PLMs can be divided into the following
six categories: 1) model pruning (Michel et al.,
2019; Fan et al., 2020; Gordon et al., 2020), which
removes redundant or less important parameters;
2) weight quantization (Zafrir et al., 2019; Shen
et al., 2020), which uses fewer bits to represent the
parameters; 3) knowledge distillation (Sanh et al.,
2019; Sun et al., 2019; Turc et al., 2019; Jiao et al.,
2020; Wang et al., 2021; Zhou et al., 2022), which
trains a smaller model that learns from the out-
put feature maps of the original model; 4) module
replacing (Xu et al., 2020), which replaces the mod-
ules of the original model with more compact sub-
stitutes; 5) matrix factorization (Lan et al., 2020),
which reduces the parameters using methods such
as cross-layer parameter sharing and factorized em-
bedding parameterization; 6) early exit (Zhou et al.,
2020; Liu et al., 2020; Xin et al., 2020), which al-
lows the model to exit early at an off-ramp instead
of passing through the entire model.

Here, we briefly review state-of-the-art work on
investigating knowledge distillation to compress
PLMs, especially the popular BERT model. Dis-
tilBERT (Sanh et al., 2019) is performed at the
pre-training stage, which distills output logits from
a pre-trained BERTBASE teacher into a 6-layer
BERT6 student initialized by taking one layer out
of every two layers of a pre-trained BERTBASE.
BERT-PKD (Sun et al., 2019) is performed at the
fine-tuning stage, which distills output logits and
hidden states from a fine-tuned BERTBASE teacher
into a 6-layer BERT6 student initialized with the
first 6 layers of a pre-trained BERTBASE. PD (Turc
et al., 2019) is performed at the pre-training stage,

in which a randomly initialized 6-layer BERT6 stu-
dent is first trained with a masked language mod-
eling objective and then is distilled with the out-
put logits from a pre-trained BERTBASE teacher.
TinyBERT (Jiao et al., 2020) first is performed at
the pre-training stage, which distills embedding
outputs, hidden states, and self-attention distribu-
tions from a pre-trained BERTBASE teacher into a
4-layer TinyBERT4 student with a hidden size of
312 and an intermediate size of 1200, or a 6-layer
TinyBERT6 student with a hidden size of 768 and
an intermediate size of 3072 as same as BERT6.
These two models are then treated as the initializa-
tion of student models for further distillation. After
that, at the fine-tuning stage, the output logits, em-
bedding outputs, hidden states, and self-attention
distributions from a fine-tuned BERTBASE teacher
are distilled into the aforementioned TinyBERT4

student or TinyBERT6 student on the augmented
task-specific dataset. MiniLM v2 (Wang et al.,
2021) is performed at the pre-training stage, which
distills self-attention relation from the last Trans-
former layer of a pre-trained BERTBASE teacher
into a randomly initialized 6-layer BERT6 student.
MetaDistil (Zhou et al., 2022) is performed at the
fine-tuning stage, which distills output logits from
a pre-trained BERTBASE teacher into a 6-layer
BERT6 student obtained from the aforementioned
PD (Turc et al., 2019) via a meta-learning strategy.

3 Knowledge Distillation with Reptile
Meta-Learning

Figure 1 shows an overview of the proposed Rep-
tileDistil framework. Unlike prior work on im-
proving KD, which usually designed new distilla-
tion loss, we aim to improve KD via reptile meta-
learning to optimize the parameters of the teacher
model adaptively with the distillation process of
the student model. This allows the teacher model
to adjust its pace to search for the optimal global
solution, thus providing more suitable soft labels
for the student by considering the current capacity
of the latter. In addition, to update the parameters
of the teacher, we propose four different layer-wise
parameter update strategies to provide faster and
better convergence.

3.1 Vanilla Knowledge Distillation

Knowledge distillation aims to transfer hidden
knowledge from a larger teacher model fθT to a
shallow student model fθS to improve the perfor-
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mance of the student model significantly, where
θT and θS denote the trainable parameters of the
teacher and student, respectively.

Formally, consider a labeled dataset D =
{x(n), y(n)}Nn=1 containing N training samples,
where x(n) and y(n) are the input feature and corre-
sponding ground-truth label, respectively. The data
is passed through the teacher model with L layers,
and the output hidden representation of each layer
can be obtained by,

t
(n)
1 , ..., t

(n)
l , ..., t

(n)
L = fθT (x

(n); θT ), (1)

where t
(n)
l ∈ Rdh is the output representation of

the l-th layer corresponding to the [CLS] token,
and dh is the dimensionality of the model. Particu-
larly, the [CLS] output from the last layer is fed
into a fully-connected layer with a softmax activa-
tion function, as follows,

ŷ
(n)
T = softmax(

tanh(WT t
(n)
L + bT )

τ
), (2)

where WT and bT are the weights and biases of the
classifier, respectively, and ŷ

(n)
T denotes the pre-

dicted probability distribution of the n-th sample,
i.e., the probabilities that the output belongs to the
classes, which is usually softened by a temperature
hyperparameter τ in the softmax activation function
to control the degree of smoothness. With a lower
temperature, the student focuses more on match-
ing the maximal logits of the teacher outputs. On
the contrary, a higher temperature encourages the
student to focus on the logits other than the max-
imal ones. The training objective of the teacher
model is a categorical cross-entropy loss between
distributions of its predicted probability and the
ground-truth label, which is defined as,

LCET (D; θT ) = −
1

N

N∑

n=1

I(y(n)) ◦ log ŷ(n)
T , (3)

where I(y(n)) denotes the one-hot vector of the
ground-truth label, and ◦ means the element-wise
multiplication operation.

The student model is smaller with K layers,
where K < L. Similarly, the intermediate hidden
representations of the student model are obtained
by,

s
(n)
1 , ..., s

(n)
k , ..., s

(n)
K = fθS (x

(n); θS), (4)

where s
(n)
k ∈ Rdh is the output representation of

the k-th layer corresponding to the [CLS] token.

Also, the predicted probability distribution of the
student on the n-th sample is calculated by,

ŷ
(n)
S = softmax(

tanh(WSs
(n)
K + bS)

τ
). (5)

Same as the teacher, the student is trained on the
task-specific objective to fit the training samples,
as follows,

LCES (D; θS) = −
1

N

N∑

n=1

I(y(n)) ◦ log ŷ(n)
S . (6)

In addition, a knowledge distillation objective that
aligns the behavior of the student and teacher is em-
ployed as additional supervision to train the student
to learn the generalization ability of the teacher.
Specifically, taking the soft output ŷ(n)

T from Eq.
(2) as the pseudo label, the student model can learn
more from it than the ground-truth label by,

LKL(D; θS ; θT ) = τ2
1

N

N∑

n=1

KL(ŷ
(n)
T ||ŷ

(n)
S ), (7)

where KL(·||·) means computing the Kullback-
Leibler divergence between two distributions,
which can force the student model to replicate the
behavior of the teacher model by shrinking it. Fur-
thermore, following Hinton et al. (2015), we scale
the loss by multiplying τ2 to ensure that gradient
magnitudes are approximately constant when the
temperature changes. Therefore, the final training
objective for KD is a weighted sum over the task-
specific cross-entropy and KL-divergence, i.e.,

LKDS (D; θS ; θT ) = (1− α)LCES + αLKL, (8)

where α ∈ [0, 1] is a weight hyperparameter used
to balance the importance of these two objectives.

3.2 Reptile Meta-Learning for Better
Distillation

In the original formulation of vanilla KD and pre-
vious KD methods, the teacher model was first
fine-tuned and then frozen to transfer knowledge
to the student by teaching fixed soft labels or in-
termediate features to the student for updating the
student’s parameters θS . Instead, we introduce rep-
tile meta-learning (Nichol et al., 2018) to optimize
the teacher’s parameters θT as the student’s param-
eters θS are updated. Specifically, we designate
the student and teacher as the inner-learner and
meta-learner, respectively, to fit the bi-level opti-
mization framework in reptile meta-learning. The
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Algorithm 1 Knowledge Distillation with Reptile Meta-Learning (ReptileDistil)
Require: θS , θT : parameters of the student and teacher models, respectively
Require: λ, µ: learning rate of the studnet and teacher models, respectively
Require: D: training set

1: while not done do
2: for each batch of training set d ∈ D do
3: Copy an inner-learner θ′S from the student model θS : θ′S ← θS

4: Inner-update θ′S with d and θT : θ′S ← θ′S − λ
∂LKDS (d;θ′S ;θT )

∂θ′S
5: Meta-update θT with the updated θ′S : θT ← θT − µ(θT − θ′S(θT ))
6: Update θS with d and the updated θT : θS ← θS − λ∂L

KD
S (d;θS ;θT )

∂θS
7: end for
8: end while

inner-learner is trained to accomplish a task or a dis-
tribution of tasks with the help of the meta-learner,
and this procedure is called an inner-loop. In return,
the meta-learner is optimized with a meta-objective
that generally maximizes the expected performance
of the inner-learner after the inner-loop, and this
procedure is called a meta-loop. After the above
two processes, the teacher can perceive the current
state of the student and adjust its parameters in the
direction of maximizing the student’s performance.
Then we use this optimized teacher to distill its
more appropriate knowledge to the student, mak-
ing the student learn better.

Formally, for each training step, we copy the
student’s parameters θS to an inner-learner as θ′S .
Given a batch of training samples d = {x, y} ∈ D,
the inner-learner is inner-updated with one-step
stochastic gradient descent, as follows,

θ′S ← θ′S − λ
∂LKDS (d; θ′S ; θT )

∂θ′S
, (9)

where λ is the learning rate of the student model.
It is noteworthy that the updated inner-learner’s
parameters θ′S are essentially a function of the
teacher’s parameters θT on account of learning
θ′S depends on θT , i.e., θ′S(θT ). The reptile meta-
learning is then conducted by measuring the dif-
ference between the parameters of the teacher and
the inner-learner as approximate gradients to meta-
update the teacher’s parameters θT via stochastic
gradient descent, as follows,

θT ← θT − µ(θT − θ′S(θT )), (10)

where µ is the learning rate of the teacher model.
Finally, we again apply vanilla KD between the up-
dated teacher model and the original student model,

as follows,

θS ← θS − λ
∂LKDS (d; θS ; θT )

∂θS
. (11)

Such a meta-learning framework allows the teacher
model to adjust its parameters according to the cur-
rent learning state of the student model for better
transferring knowledge to it. The detailed algo-
rithm is illustrated in Algorithm 1.

3.3 Updating of Layer-wise Parameters
Notably, as shown in Eq. (10), the computation of
gradients for updating the teacher’s parameters re-
quires the participation of the inner-learner’s param-
eters and the teacher’s parameters. However, the
layers of these models are different, i.e., K < L,
as mentioned. Taking knowledge distillation from
a 12-layer teacher to a 6-layer student as an exam-
ple, we also proposed four different strategies for
updating the parameters of the teacher model. As
listed below, the LT layers of the teacher model
will be updated by the corresponding k layers of
the student model.

• First-k: The first k layers of the teacher will
be updated, i.e., LT = {1, 2, 3, 4, 5, 6}.

• Last-k: The last k layers of the teacher will
be updated, i.e., LT = {7, 8, 9, 10, 11, 12}.

• Skip-k: The 2k-th layers of the teacher will
be updated, i.e., LT = {2, 4, 6, 8, 10, 12}.

• Both-k: The (2k-1)-th and 2k-th layers
of the teacher will be updated, i.e., LT =
{(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12)}.

Figure 2 shows the details of different strategies
for updating the teacher’s parameters, and the effect
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Figure 2: Illustration of different strategies for updating the parameters of the teacher model.

of different strategies is discussed in the following
section.

4 Experimental Setup

4.1 Datasets
We evaluate the proposed ReptileDistil on the
commonly used GLUE benchmark (Wang et al.,
2018), which is composed of nine natural language
understanding tasks, including CoLA (Warstadt
et al., 2019) for linguistic acceptability, SST-
2 (Socher et al., 2013) for sentiment analysis,
MRPC (Dolan and Brockett, 2005), STS-B (Cer
et al., 2017), and QQP1 for semantic similarity
matching, MNLI (Williams et al., 2018), QNLI (Ra-
jpurkar et al., 2016), and WNLI (Levesque et al.,
2012) for natural language inference, and RTE (Da-
gan et al., 2005; Bar-Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009) for textual
entailment. We excluded WNLI from GLUE fol-
lowing previous studies (Sanh et al., 2019; Sun
et al., 2019; Turc et al., 2019; Jiao et al., 2020; Xu
et al., 2020; Wang et al., 2021; Zhou et al., 2022).

4.2 Baselines
We apply the proposed ReptileDistil to a sit-
uation in which a 12-layer BERTBASE model
with 110M parameters is distilled into a 6-layer
BERT6 model with 66M parameters and 1.94 times
speedup, and compare it with several state-of-the-
art BERT compression approaches, including Dis-
tilBERT (Sanh et al., 2019), BERT-PKD (Sun et al.,
2019), PD (Turc et al., 2019), TinyBERT (Jiao
et al., 2020), BERT-of-Theseus (Xu et al., 2020),

1https://quoradata.quora.com

MiniLM v2 (Wang et al., 2021), and MetaDis-
til (Zhou et al., 2022).

4.3 Experimental Settings
In previous work, DistilBERT (Sanh et al., 2019),
BERT-PKD (Sun et al., 2019), and BERT-of-
Theseus (Xu et al., 2020) initialized their student
model by truncating certain layers of a pre-trained
BERTBASE model. More concretely, both BERT-
PKD and BERT-of-Theseus initialized the student
model with the first six layers of parameters from
the pre-trained BERTBASE model. DistilBERT
initialized the student model from the pre-trained
BERTBASE model by taking one of every two lay-
ers. Different from the above approaches, Tiny-
BERT (Jiao et al., 2020) initialized the student with
the general TinyBERT2, which can capture the gen-
eral domain knowledge by learning from interme-
diate layers of the pre-trained BERTBASE model.
Therefore, following TinyBERT, we initialize the
student model with a 6-layer general TinyBERT6

for better generalization and performance.

4.4 Implementation Details
The experiments include two stages, i.e., fine-
tuning a teacher model and distilling the fine-tuned
teacher model into a student model.

For experiments on fine-tuning the teacher, we
use the same architecture in the original BERT (De-
vlin et al., 2019) and fine-tune each task separately.
Specifically, for each task, we fine-tune the pre-
trained BERTBASE model for 5 epochs using the

2https://github.com/huawei-noah/
Pretrained-Language-Model/tree/master/
TinyBERT
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Method
CoLA
(8.5k)
Mcc

SST-2
(67k)
Acc

MRPC
(3.7k)

F1/Acc

STS-B
(5.7k)

Pear/Spea

QQP
(364k)
F1/Acc

MNLI
(393k)

Acc m/mm

QNLI
(105k)

Acc

RTE
(2.5k)
Acc

Score

Development set

BERTBASE (Devlin et al., 2019) 58.9 93.0 91.6/87.6 90.2/89.8 88.5/91.4 84.6/84.9 91.2 71.4 -

DistilBERT (Sanh et al., 2019) 51.3 91.3 87.5/- -/86.9 -/88.5 82.2/- 89.2 59.9 -
BERT-PKD (Sun et al., 2019) 45.5 91.3 85.7/- -/86.2 -/88.4 81.3/- 88.4 66.5 -
PD (Turc et al., 2019) - 91.1 89.4/84.9 - 87.4/90.7 82.5/83.4 89.4 66.7 -
TinyBERT (Jiao et al., 2020) 54.0 93.0 90.6/86.3 90.1/89.6 88.0/91.1 84.5/84.5 91.1 73.4 -
BERT-of-Theseus (Xu et al., 2020) 51.1 91.5 89.0/- -/88.7 -/89.6 82.3/- 89.5 68.2 -
MiniLM v2 (Wang et al., 2021) 52.5 92.4 88.9/- - -/91.1 84.2/- 90.8 72.1 -
MetaDistil (Zhou et al., 2022) 58.6 92.3 91.1/86.8 89.4/89.1 88.1/91.0 83.5/83.8 90.4 69.4 -
ReptileDistil 54.8 92.2 91.6/87.7 89.5/89.3 87.6/90.1 83.7/83.7 90.5 75.3 -

Test set

BERTBASE (Devlin et al., 2019) 52.1 93.5 88.9/84.8 87.7/85.8 71.2/89.2 84.6/83.4 90.5 66.4 78.3

DistilBERT (Sanh et al., 2019) 45.8 92.9 87.6/83.1 71.0/71.0 69.6/88.2 81.6/81.3 88.8 54.1 73.6
BERT-PKD (Sun et al., 2019) 43.5 92.0 85.0/79.9 83.4/81.6 70.7/88.9 81.5/81.0 89.0 65.5 75.6
PD (Turc et al., 2019) - 91.8 86.8/81.7 - 70.4/88.9 82.8/82.2 88.9 65.3 -
TinyBERT (Jiao et al., 2020) 51.1 93.1 87.3/82.6 85.0/83.7 71.6/89.1 84.6/83.2 90.4 70.0 78.1
BERT-of-Theseus (Xu et al., 2020) 47.8 92.2 87.6/83.2 85.6/84.1 71.6/89.3 82.4/82.1 89.6 66.2 77.1
MiniLM v2 (Wang et al., 2021) - 92.9 89.1/- -/84.3 70.9/- 83.8/83.3 90.2 69.2 -
MetaDistil (Zhou et al., 2022) 50.7 93.5 88.7/84.7 86.1/85.0 71.1/88.9 83.8/83.2 90.2 67.2 78.0
ReptileDistil 47.9 92.8 89.2/85.4 87.1/85.9 71.0/89.0 83.6/82.9 90.4 73.5 78.5

Table 1: Experiment results on the development and test sets of GLUE. The numbers and strings under each dataset
indicate the number of training samples and the evaluation metrics, respectively. All student models listed above
have the same architecture of 6 Transformer layers, 66M parameters, and 1.94 times speed-up, and are distilled
from a BERTBASE model fine-tuned during the corresponding task. The results on the development set are reported
from the corresponding original paper, and the results on the test set are reported from the official leaderboard of
GLUE. Note that the column “Score” is reported from the official leaderboard and represents the average score
for all tasks, including WNLI. Acc refers to accuracy, Mcc refers to Matthew’s correlation, Pear/Spea refers to
Pearson and Spearman correlation, respectively, and Acc m/mm refers to the accuracy of MNLI-m and MNLI-mm,
respectively. The best results for each task are marked with boldface.

AdamW optimizer (Loshchilov and Hutter, 2019)
and save the best checkpoint on the development
set as the teacher, with a batch size of 32, a max-
imum sequence length of 128, a learning rate of
{1e-5, 3e-5, 5e-5} with linear decay. Consequently,
we can obtain a teacher model with comparable per-
formance with BERTBASE reported on the GLUE
official leaderboard3.

For experiments on distilling the student, to re-
duce the hyperparameter search space, we set the
maximum sequence length and batch size to 128
and 32, respectively, and fix the temperature τ and
weight α as 5 and 0.5, respectively. To select the
model with the best performance when applying
the development set, a grid search strategy is then
applied over the sets of the learning rate for the
teacher model as {1e-5, 3e-5, 5e-5} and the learn-
ing rate for the student model as {1e-5, 3e-5, 5e-5}
for 5 epochs and save the best checkpoint.

3https://gluebenchmark.com/leaderboard

5 Results and Analysis

5.1 Comparative Results

Table 1 summarizes the comparative results for
both the development and test sets of the GLUE
tasks. We also report the average score of all
tasks, including WNLI, which can be obtained
from the GLUE official leaderboard by submitting
predictions to the GLUE test server. As the re-
sult shows, ReptileDistil achieves state-of-the-art
performance on the overall average performance
across all tasks of the GLUE benchmark. In detail,
the proposed ReptileDistil outperforms baselines
on 4 out of 8 tasks, and performs as well or bet-
ter than BERTBASE, particularly on small datasets,
e.g., RTE, MRPC, and STS-B. Correspondingly,
ReptileDistil is not significantly improved on large
datasets, e.g., CoLA, SST-2, and MNLI. Never-
theless, it is still very close to MetaDistil and re-
quires less training time and calculated amount.
One potential reason is that ReptileDistil updates
the teacher’s parameters by calculating the differ-
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Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

ReptileDistil 54.8 92.2 91.6/87.7 89.5/89.3 87.6/90.1 83.7/83.7 90.5 75.3
w/o Reptile 51.9 91.0 90.0/86.5 88.9/88.6 86.5/89.4 82.8/83.1 90.0 72.8

Table 2: Ablation results in terms of removing reptile meta-learning (w/o Reptile).

Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

First-k 53.1 91.9 91.4/87.5 89.5/89.3 87.0/90.1 83.3/83.2 90.5 74.7
Last-k 52.5 91.2 91.1/87.2 89.5/89.3 85.9/89.9 83.4/82.9 90.1 74.4
Skip-k 54.8 92.2 91.6/87.7 89.5/89.3 87.6/90.1 83.7/83.7 90.3 75.3
Both-k 51.3 90.5 90.8/87.0 89.5/89.3 86.4/89.5 81.9/81.8 90.0 73.6

Table 3: Performance comparison of four different layer-wise parameter update strategies.

0 100 200 300
Training steps

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

RT
E 

de
v 

ac
c

Meta teacher
Meta student
Vanilla teacher
Vanilla student

(a) Results on RTE

0 2000 4000 6000 8000 10000
Training steps

50

60

70

80

90

SS
T-

2 
de

v 
ac

c

Meta teacher
Meta student
Vanilla teacher
Vanilla student

(b) Results on SST-2

0 10000 20000 30000 40000 50000
Training steps

60

65

70

75

80

85

M
N

LI
-m

 d
ev

 a
cc

Meta teacher
Meta student
Vanilla teacher
Vanilla student

(c) Results on MNLI-m

Figure 3: Validation accuracy curves of the teacher and student in ReptileDistil and vanilla KD, which are
experimented on the development sets of RTE, SST-2 and MNLI-m datasets, respectively.

ence between the meta-learner (i.e., teacher) and
inner-learner (i.e., student) as approximate gra-
dients. Therefore, ReptileDistil can update the
teacher model at a large pace on small datasets,
leading to better and faster convergence of the
teacher model. Conversely, MetaDistil uses the
second-order derivatives as gradients to update
the teacher’s parameters. Although it is smoother
than ReptileDistil, it requires a certain number of
datasets to accomplish the model convergence. As
a result, ReptileDistil is likely to train better in most
circumstances, which is critical for improvement
on small datasets but may not be so obvious for
improvement on large datasets.

5.2 Ablation Analysis

To examine the effectiveness of the proposed Rep-
tileDistil, we conducted an ablation test on the de-
velopment sets of all tasks in terms of removing
reptile meta-learning, allowing ReptileDistil to be-
come vanilla KD where the teacher is fixed instead
of dynamically evolving to adapt to the student
throughout the distillation process. As the abla-

tion results indicated in Table 2, remarkable per-
formance degradation is observed after removing
reptile meta-learning, indicating that updating the
teacher model with the current state of the student
model is crucial.

5.3 Effect of Updating Strategy

We further investigate the performance gain from
four different layer-wise parameter update strate-
gies of First-k, Last-k, Skip-k, and Both-k. Table 3
summarizes the comparative results on the develop-
ment sets of all tasks. As shown, Skip-k performs
slightly better than the other three strategies in most
cases since information across every k layers in-
volves low- to high-level semantic representations
while the first k layers or the last k layers involve
relatively homogeneous semantic representations.
Particularly, the Both-k strategy performs to be not
competitive with the other three strategies since the
Both-k strategy can induce a mismatch between
the parameters of the teacher and student, resulting
in poor performance.
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Method Training Time (Best) Training Time (Match) Memory Footprint Best Acc/F1

Vanilla KD (Hinton et al., 2015) 10 min 10 min 3.7 GB 90.0/86.5
MetaDistil (Zhou et al., 2022) 31 min 15 min 11.4 GB 91.1/86.8
ReptileDistil 22 min 9 min 8.1 GB 91.6/87.7

Table 4: Comparison of training time and memory footprint of ReptileDistil with vanillaKD and MetaDistil on
MRPC. “Training Time (Best)” denotes the training time for each method to achieve its own best performance
on the development set. “Training Time (Match)” denotes the training time for each method to match the best
performance of vanilla KD on the development set. All experiments are conducted on a single Nvidia V100 GPU
with a batch size of 4.

5.4 Improvement Analysis

Figure 3 shows the validation accuracy curves
of the teacher and student in ReptileDistil and
vanilla KD on the development sets of the small
dataset RTE, the medium dataset SST-2, and the
large dataset MNLI-m, respectively. As indicated,
the teacher model is always fixed and constant in
vanilla KD, whereas in ReptileDistil, it continu-
ously adjusts itself adaptively. Although the accu-
racy of the teacher model continuously fluctuates
and even declines, the student model still main-
tains a growing accuracy, indicating that the teacher
model is not aimed at optimizing its performance
but rather at optimizing its teaching ability to en-
able the student model to learn better and achieve
higher performance. The results suggest that under
the scenario of knowledge distillation, improving
knowledge distillation by enhancing the teaching
ability of the teacher model may be another poten-
tial direction.

5.5 Performance-Efficiency Tradeoff

MetaDistil (Zhou et al., 2022) inevitably needs
to calculate the second-order derivatives for de-
riving the gradients to update the teacher model.
Thus, more computational time and resources are
required. However, in the proposed ReptileDistil,
this limitation has been greatly improved. Specif-
ically, the proposed ReptileDistil achieved a com-
parable or even better performance using the ap-
proximate gradient computation of reptile meta-
learning and the proposed layer-wise parameter
update strategies to replace the computation of the
second-order derivatives in MAML. Meanwhile,
the training time is reduced by approximately a
third. To verify this, following MetaDistil, we per-
formed an additional experiment on the MRPC task
to compare the computational overhead of the pro-
posed ReptileDistil with MetaDistil and vanilla KD.
As shown in Table 4, the memory footprint of Rep-

tileDistil is higher than vanilla KD but lower than
MetaDistil. Moreover, both the training time and
model convergence time of ReptileDistil are sig-
nificantly lower than MetaDistil, proving that the
proposed method can effectively alleviate the hard-
ware limitation of MetaDistil and achieve better
and faster convergence.

6 Conclusions

In this paper, a knowledge distillation method with
reptile meta-learning was proposed to compress
pre-trained language models, which also utilizes
the current performance of the student model dur-
ing each step of the distillation process as feedback
to optimize the teacher model, allowing the teacher
to learn to teach and thus produce more appropriate
soft labels to teach the student. However, unlike
previous knowledge distillation methods applying
meta-learning, the proposed method avoids calcu-
lating the second-order derivatives and achieves
better and faster convergence, owing to the inte-
gration of reptile meta-learning and the proposed
layer-wise parameter update strategies. Extensive
experiments demonstrated the competitive perfor-
mance achieved by the proposed method. Future
work attempts to continue to explore such a dy-
namic and interactive teacher-student distillation
architecture to improve the performance of the dis-
tilled model further.
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Abstract

Knowledge graph embedding, which aims to
learn representations of entities and relations
in knowledge graphs, finds applications in var-
ious downstream tasks. The key to success
of knowledge graph embedding models are
the ability to model relation patterns including
symmetry/antisymmetry, inversion, commuta-
tive composition and non-commutative com-
position. Although existing methods fail in
modeling the non-commutative composition
patterns, several approaches support this pat-
tern by modeling beyond Euclidean space and
complex space. Nevertheless, expanding to
complicated spaces such as quaternion can eas-
ily lead to a substantial increase in the amount
of parameters, which greatly reduces the com-
putational efficiency. In this paper, we propose
a new knowledge graph embedding method
called RotateCT, which first transforms the co-
ordinates of each entity, and then represents
each relation as a rotation from head entity to
tail entity in complex space. By design , Ro-
tateCT can infer the non-commutative compo-
sition patterns and improve the computational
efficiency. Experiments on multiple datasets
empirically show that RotateCT outperforms
most state-of-the-art methods on link predic-
tion and path query answering.

1 Introduction

Knowledge graphs (KGs) contain structured facts
of the real world. Real-world large-scale KGs
such as WordNet (Miller, 1995), YAGO (Suchanek
et al., 2007), Freebase (Bollacker et al., 2008) and
Nell (Mitchell et al., 2018) have been applied to
strengthen the performance of several downstream
tasks including recommender systems (Zhang et al.,
2016), question answering (Hao et al., 2017), con-
versation generation (Zhou et al., 2018), relation
extraction (Vashishth et al., 2018) and machine
translation (Zhao et al., 2020). Generally, KGs

∗Corresponding author.
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Figure 1: An example in real world. Sam’s mother’s
spouse is John, i.e., Sam’s father; Sam’s spouse’s
mother is Rachel, i.e., Sam’s mother-in-law. "mother"
and "spouse" form a non-commutative composition
pattern.

have the following features: large-scale and incom-
plete. Therefore, to exploit the semantic informa-
tion in KGs, predicting missing links based on the
existing facts has gained growing interest in recent
years. This task can be divided into two categories
according to the length of the path: link prediction
and path query answering. Link prediction focuses
on single-hop reasoning (e.g., answering the path
s→ r → ?, where r is a relation), while path query
answering (PQA) focuses on multi-hop reasoning
(e.g., answering the path query s → path → ?,
where path contains multiple relations).

A popular approach for link prediction and PQA
is knowledge graph embedding (KGE), which en-
codes each element in KG into a continuous low-
dimensional vector space. The performance of
KGE methods greatly relys on the ability of model-
ing and inferring relation patterns including sym-
metry/antisymmetry, inversion and composition.
In particular, the composition patterns can be fur-
ther divided into the commutative composition
patterns and non-commutative composition pat-
terns. For example, "spouse" is a symmetric re-
lation and "mother" is an antisymmetric relation.
Relations such as "has_part" and "part_of" forms
an inversion pattern. The meaning of the com-
position of "mother" and "spouse" depends on
the relative order. By contrast, the composition
of "mother" and "mother" has a definite mean-
ing, i.e., "grandmother" (Fig. 1 provides an ex-
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ample of the non-commutative composition pat-
terns in real world). Existing methods can cap-
ture one or more relation patterns. TransE (Bor-
des et al., 2013) models antisymmetry, inversion
and commutative composition patterns by trans-
lating relations from head entities to tail entities.
RotatE (Sun et al., 2019), which regards rela-
tions as rotations from head entities to tail en-
tities in complex space, can model the symme-
try/antisymmetry, inversion and commutative com-
position patterns. However, most approaches fail
to model the non-commutative composition pat-
terns, which is essential for learning more mean-
ingful embeddings. Therefore, quaternion-valued
methods such as QuatE (Zhang et al., 2019), Ro-
tate3D (Gao et al., 2020) and DualE (Cao et al.,
2021) emerge in sight. By the non-commutativity
of quaternion, these methods successfully model
the non-commutative composition patterns. Nev-
ertheless, a quaternion has two more dimensions
than a complex number, which increases the space
cost. Seeking out a balanced solution that can
model the non-commutative composition patterns
and maintain a relatively low space cost is pressing.

To address this challenge, we revisit complex
space and notice an interesting case: the combina-
tion of rotation and coordinate transformation in
complex plane is non-commutative, which can em-
power a KGE method the ability of modeling the
non-commutative composition patterns. In addi-
tion, the complex number is two dimensions less
than the quaternion, which reduces the space cost.

In this paper, we propose a novel method called
RotateCT for knowledge graph embedding. Our
method first translates the origin of complex plane
by a relation-specific displacement. Further, each
relation is regarded as a rotation about the new
origin of complex plane from head entity to tail
entity. By combining rotation and coordinate trans-
formation, RotateCT obtains non-commutativity,
which enables RotateCT to effectively model the
non-commutative composition patterns.

In summary, our contributions are listed as fol-
lows: (1) RotateCT provides an elegant way to
model the non-commutative composition patterns
and improve the parameter efficiency. To the best
of our knowledge, this paper is the first to intro-
duce coordinate transformation into the complex
plane for modeling non-commutative composition
patterns. (2) We provide comprehensive theoret-
ical analyses on the non-commutative property

of combining rotation and coordinate transforma-
tion, and discuss the inference patterns, parameter
efficiency of RotateCT. (3) Experimental results
demonstrate that RotateCT outperforms most base-
line approaches on link prediction and path query
answering.

2 Related Work

In this section, unlike most papers, we roughly
divide the existing KGE methods into three cat-
egories according to the non-commutativity and
discuss their connections to our approach.

2.1 Models without Non-commutativity

TransE (Bordes et al., 2013) is the most representa-
tive KGE model, which embeds both entities and
relations as vectors in the same embedding space
based on the principle h + r ≈ t, where h, r, t de-
note head entity, relation and tail entity, respec-
tively. Several variants (Wang et al., 2014; Lin
et al., 2015; Ji et al., 2015; Xiao et al., 2016) are
proposed to remedy the limitations of TransE when
modeling 1-N, N-1 and N-N relations. In addition,
TorusE (Ebisu and Ichise, 2018) models triplets on
a torus, which is a Non-Euclidean space. Inspired
by Euler’s identity eiθ = cosθ+isinθ, RotatE (Sun
et al., 2019) regards translations as rotations from
head entities to tail entities in complex space. More-
over, TransC (Lv et al., 2018) and BoxE (Abboud
et al., 2020) encode elements by explicitly defining
the regions such as hyperspheres or boxes.

RESCAL (Nickel et al., 2011) is the first bilin-
ear model that can perform collective learning via
matching the latent semantics between entities and
relations. DistMult (Yang et al., 2015) and Com-
plEx (Trouillon et al., 2016) are proposed to solve
the overfitting problem of RESCAL. In addition,
HolE (Nickel et al., 2016) absorbs the quintessence
from DistMult and ComplEx. Recently, approaches
such as SimplE (Kazemi and Poole, 2018) and
TuckER (Balazevic et al., 2019b) turn to different
forms of decomposition.

Although some of these methods claim to enable
the inference of composition patterns, in practice
they cannot infer the non-commutative composition
patterns, only support the inference of the commu-
tative composition patterns.

2.2 Models with Non-commutativity

Recently, several approaches explore the usage
of more sophisticated spaces to obtain the non-

4919



commutativity, which is important for multi-hop
reasoning. Specifically, Rotate3D (Gao et al., 2020)
and QuatE (Zhang et al., 2019) model relations as
rotations in quaternion space with different score
functions. DualE (Cao et al., 2021) makes the first
attempt to combine rotation and translation by ex-
panding the embedding space to dual quaternion
space. DihEdral (Xu and Li, 2019) limits relation
matrices to be block diagonal and represents each
block with an element in a dihedral group.

Although such approaches take into account the
non-commutative composition patterns, they are
parameter inefficient due to the complicated vector
spaces such as quaternion space.

Our method RotateCT models the non-
commutative composition patterns in complex
space by introducing the coordinate transformation.
Compared to the above three sophisticated spaces,
modeling in complex space can significantly im-
prove the parameter efficiency.

2.3 Other Models

Recently, a number of approaches focus on uti-
lizing neural networks. However, the neural net-
works lack interpretability, and it is difficult to
give theoretical analyses from the perspective of
inference patterns. Generally, such approaches
verify the performance by empirical experiments.
ConvE (Dettmers et al., 2018), ConvKB (Nguyen
et al., 2018) and InteractE (Vashishth et al., 2020)
model the interactions between entities and re-
lations by convolutional neural networks. Addi-
tionally, R-GCN (Schlichtkrull et al., 2018) and
KBGAT (Nathani et al., 2019) redesign a graph
convolutional network and a graph attention net-
work, respectively. Several works tried to exploit
more global graph structures like multi-hop paths.
Path-RNN (Das et al., 2017) and ROP (Yin et al.,
2018) employ RNNs to explicitly model paths.
CoKE (Wang et al., 2019) uses a stack of Trans-
former blocks to model paths.

Compared to the other models, RotateCT is more
interpretable, since we can provide comprehensive
theoretical analyses of it.

3 Methodology

3.1 RotateCT

Formally, let E denote the set of entities and R
denote the set of relations. Then a knowledge graph
G is a collection of factual triplets {(h, r, t)}, where
h, t ∈ E and r ∈ R. Lowercase letters h, r and

ti

hi
ri

O 

||hiri-ti||

θi 

(a) RotatE

ti

hi ri

||(hi-bi)ri-(ti-bi)||

bi

O 

O’ 

θi 

(b) RotateCT

Figure 2: Illustrations of RotatE and RotateCT in 1 di-
mension of embeddings. RotatE models r as a rotation.
RotateCT models r as a rotation and a displacement,
i.e., rotating around the new origin obtained by the dis-
placement.

t denote the head entity, relation and tail entity,
respectively; the corresponding boldface letters h, r
and t denote the embeddings of them. Note that the
i-th element of h is hi. Let k denote the dimension
of entity and relation embeddings.

In this paper, we propose RotateCT to model
non-commutative composition patterns in complex
space. Inspired by Euler’s identity eiθ = cosθ +
isinθ and coordinate transformation, our model
first projects entities to the complex space, i.e.,
h, t ∈ Ck. Then we translate the origin of complex
planes O to O′ by a relation-specific displacement
b, where b ∈ Ck. Further, we define each relation
as an element-wise rotation about O′ from head
entity h to tail entity t. In other words, given a
golden triplet (h, r, t), we expect that:

t− b = (h− b) ◦ r

where ◦ is the Hadmard (or element-wise) product.
Specifically, we have ti− bi = (hi− bi)ri for each
element of h, r, t and b. Here, we constrain the
modulus of each element of r ∈ Ck, i.e., ri ∈
C, to be |ri| = 1. Then ri is of the form eiθi ,
which corresponds a counterclockwise rotation by
θi radians about the new origin of the complex
plane. We define the distance-based score function
as follows:

dr(h, t) =
k∑

i=1

‖(hi − bi)ri − (ti − bi)‖

Optimization. Following Sun et al. (2019), we
use a loss function similar to the negative sampling
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loss (Mikolov et al., 2013) for optimizing:

L =−
m∑

i=1

1

m
logσ(dr(h

′
i, t
′
i)− γ)

− logσ(γ − dr(h, t))

where γ is a fixed margin, σ is the sigmoid func-
tion, m is the negative sampling size, and dr(h′i, t

′
i)

represents the score of i-th negative triplet. We
also use the self-adversarial negative sampling (Sun
et al., 2019) for drawing negative samples. Specifi-
cally, the negative triplets are generated from the
following distribution:

p(h′j , r, t
′
j |{(hi, r, ti)}) =

expαfr(h′j , t
′
j)∑

i expαfr(h′i, t
′
i)

where fr(h′i, t
′
i) = −dr(h′i, t′i), α is the temper-

ature of sampling, and (h′i, r, t
′
i) denotes the i-th

negative triplet. The modified loss function with
self-adversarial negative sampling is as follows:

L =−
m∑

i=1

p(h′i, r, t
′
i) logσ(dr(h

′
i, t
′
i)− γ)

− logσ(γ − dr(h, t))

In addition, we perform regularization on h and
t to avoid overfitting. Therefore, the final loss func-
tion takes the following form:

L =−
m∑

i=1

p(h′i, r, t
′
i) logσ(dr(h

′
i, t
′
i)− γ)

− logσ(γ − dr(h, t)) + λ(‖h‖2 + ‖t‖2)

where λ is the regularization rate. We utilize
Adam (Kingma and Ba, 2014) as the optimizer.

3.2 Discussion

In this part, we first introduce the inference patterns
and provide some theoretical analyses of RotateCT.
Then we discuss the connections between Rota-
teCT and RotatE.

Inference Patterns. Most knowledge graphs
mainly consist of three important relation pat-
terns: symmetry/antisymmetry, inversion and
composition (commutative composition and non-
commutative composition). See formal definitions
of inference patterns in Appendix A.

Properties of RotateCT. RotateCT has the non-
commutativity and can infer the most common pat-
terns in KG, as stated next.

Theorem 1 (Non-commutativity) The combina-
tion of the operations (rotation and coordinate
transformation) in RotateCT is non-commutative.
(See proof in Appendix B)

Theorem 2 (Inference ability) RotateCT can in-
fer the symmetry/antisymmetry, inversion and
composition patterns. (See proof in Appendix C.
We provide illustrations of RocateCT modeling sym-
metry and non-commutative composition patterns
in Appendix D.)

Connections to RotatE. Combining rotation
and coordinate transformation enables RotateCT to
model the non-commutative composition patterns,
which RotatE cannot. Fig. 2 provides illustrations
of RotatE and RotateCT with only 1- dimensional
embedding. RotatE can be viewed as a special case
of RotateCT. Specifically, RotateCT will degener-
ate into RotatE when the displacement b = 0.

4 Experiments

We evaluate RotateCT on two common tasks: link
prediction (Bordes et al., 2013) and path query an-
swering (Guu et al., 2015). In addition, we give
analyses about the computational efficiency be-
tween RotatCT and Rotate3D.

4.1 Link Prediction
Link prediction aims to predict the missing h or t
for a triplet (h, r, t), i.e., predicting the head query
? → r → t or the tail query h → r → ?. Thus,
link prediction is a single-hop reasoning task.

Datasets. We evaluate RotateCT on four
well-established benchmarks: WN18 (Bordes
et al., 2013), FB15k (Bordes et al., 2013),
WN18RR (Dettmers et al., 2018) and FB15k-
237 (Toutanova and Chen, 2015). Please refer to
Appendix F for the details of the four benchmarks.

Evaluation Protocol. Similar to most previous
models, the link prediction performance of Rota-
teCT is reported on three standard evaluation met-
rics: Mean Rank (MR), Mean Reciprocal Rank
(MRR) and Hits@N, where N = 1, 3, 10. MR
is the average rank of all correct entites. MRR
is the mean reciprocal rank of all correct entities.
Hits@N represents the proportion of correct enti-
ties whose rank is not larger than N. A lower MR,
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WN18 FB15k

Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

Models without non-commutativity
TransE (2013) - 0.495 0.113 0.888 0.943 - 0.463 0.297 0.578 0.749
DistMult (2015) 655 0.797 - - 0.946 42 0.798 - - 0.893
ComplEx (2016) - 0.941 0.936 0.945 0.947 - 0.692 0.599 0.759 0.840
SimplE (2018) - 0.942 0.939 0.944 0.947 - 0.727 0.660 0.773 0.838
TorusE (2018) - 0.947 0.943 0.950 0.954 - 0.733 0.674 0.771 0.832
RotatE (2019) 309 0.949 0.944 0.952 0.959 40 0.797 0.746 0.830 0.884

Other models
ConvE (2018) 374 0.943 0.935 0.946 0.956 51 0.657 0.558 0.723 0.831
R-GCN+ (2018) - 0.819 0.697 0.929 0.964 - 0.696 0.601 0.760 0.842
NKGE (2018) 336 0.947 0.942 - 0.957 56 0.730 0.650 0.790 0.871

Models with non-commutativity
DihEdral (2019) - 0.946 0.942 0.949 0.954 - 0.733 0.641 0.803 0.877
QuatE (2019) 338 0.949 0.941 0.954 0.960 41 0.770 0.700 0.821 0.878
Rotate3D (2020) 214 0.951 0.945 0.953 0.961 39 0.789 0.728 0.832 0.887
DualE (2021) - 0.951 0.945 0.956 0.961 - 0.790 0.734 0.829 0.881
RotateCT (ours) 201 0.951 0.944 0.956 0.963 34 0.794 0.737 0.834 0.888

Table 1: Link prediction results on WN18 and FB15k.

a higher MRR and a higher Hits@N indicate the
better performance. Filtered results are reported to
avoid possibly flawed evaluation.

Implementation Details. We use PyTorch to im-
plement our model and test it on a Tesla V100 GPU.
Hyperparameters of RotateCT are determined via
grid search according to the MRR on the valida-
tion set. In general, the embedding dimension k is
selected in {500, 1000}; batch size n is searched
in {512, 1024}; the negative sampling size m is
picked from {256, 512}; the fixed margin γ is tuned
among {6, 9, 12, 24}; self-adversarial temperature
α is selected from {0.5, 1.0}. The regularization
rate λ is adjusted in {0, 0.1}. Entity embeddings
are uniformly initialized, and the phases of relation
embeddings are uniformly initialized between −π
and π. Both the real and imaginary parts of each
dimension in displacement b are initialized to zero.
The best hyperparameters settings and are provided
in the Appendix E.

Main Results. We select competitive baselines
from the most recent publications with good re-
sults reported. Our baselines are categorized into
three groups: models without non-commutativity,
models with non-commutativity and other models,
which is consistent with the Section 2.

The empirical results on four benchmarks are
reported in Table 1 and Table 2. The best results
are in bold and second best results are underlined.
We can see that RotateCT outperforms all the base-
lines on WN18 and WN18RR, and achieves ex-

tremely competitive performance on FB15k and
FB15k-237. On WN18RR and FB15k-237, the
main relation patterns are symmetry/antisymmetry
and composition, which validates the effectiveness
of combining rotation and coordinate transforma-
tion for inferring the non-commutative composition
patterns. On WN18 and FB15k, the main relation
patterns are symmetry/antisymmetry and inversion.
Since RotateCT has no obvious superiority over
other state-of-the-art baselines in modeling symme-
try/antisymmetry and inversion patterns, the per-
formance improvement is not significant on WN18
and FB15k. Although DihEdral, QuatE, Rotate3D
and DualE can model the non-commutative com-
position patterns, the link prediction performance
of these models is still inferior to RotateCT, which
indicates that parameter efficiency is crucial. Note
that RotateCT, as a complex-valued method, out-
performs the quaternion-valued method Rotate3D
on all datasets across most metrics, which fully
demonstrates that the combination of rotation and
coordinate transformation can effectively model
the non-commutative composition patterns.

4.2 Path Query Answering

This task is to answer path queries on KGs (Guu
et al., 2015). Given a path query q consisting of a
start entity s and a path p, the answer of q is the
entities that can be reached from s via p. A path p is
a sequence of relations, i.e., r1 → ...→ rj , where
j is the length of p. Link prediction can be viewed
as a special case of path query answering when the
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WN18RR FB15k-237

Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

Models without non-commutativity
TransE (2013) 3384 0.226 - - 0.501 357 0.294 - - 0.465
DistMult (2015) 5100 0.430 0.390 0.440 0.490 254 0.241 0.155 0.263 0.419
ComplEx (2016) 5261 0.440 0.410 0.460 0.510 339 0.247 0.158 0.275 0.428
MuRP (2019a) - 0.475 0.436 0.487 0.554 - 0.336 0.245 0.370 0.521
RotatE (2019) 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
BoxE (2020) 3207 0.451 0.400 0.472 0.541 163 0.337 0.238 0.374 0.538

Other models
ConvE (2018) 4187 0.430 0.400 0.440 0.520 244 0.325 0.237 0.356 0.501
R-GCN+ (2018) - - - - - - 0.249 0.151 0.264 0.417
NKGE (2018) 4170 0.450 0.421 0.465 0.526 237 0.330 0.241 0.365 0.510

Models with non-commutativity
DihEdral (2019) - 0.486 0.442 0.505 0.557 - 0.320 0.230 0.353 0.502
QuatE (2019) 3472 0.481 0.436 0.500 0.564 176 0.311 0.221 0.342 0.495
Rotate3D (2020) 3328 0.489 0.442 0.505 0.579 165 0.347 0.250 0.385 0.543
DualE (2021) - 0.482 0.440 0.500 0.561 - 0.330 0.237 0.363 0.518
RotateCT (ours) 3285 0.492 0.448 0.507 0.579 171 0.347 0.251 0.382 0.537

Table 2: Link prediction results on WN18RR and FB15k-237.

path length is 1. By contrast, path query answering
requires more ability of muti-hop reasoning, in
which inferring the composition patterns is crucial.

Datasets. We conduct experiments on two
datasets released by Guu et al. (2015), which are
extracted from WordNet (Miller, 1995) and Free-
base (Bollacker et al., 2008). Both datasets contain
triplets and paths. Paths are generated from triplets
by random walks. The maximum of path length is
5. Paths used for training are only generated from
training triplets, while paths used for test are gen-
erated from both training triplets and test triplets.
Test paths which appear in training paths are re-
moved. Note that paths of length 1 are not sampled,
but created by directly adding triplets. Details of
generating paths can be found in (Guu et al., 2015).
See details of these two datasets in Appendix G.

Evaluation Protocol. We use the same evalua-
tion protocol as in (Guu et al., 2015). Specifically,
for each test path pt = s → r1 → ... → rj → o,
the corresponding query q is s → r1 → ... →
rj → ?. Details of evaluation protocol for PQA
can be found in Appendix H. We report the mean
quantile (MQ) and Hits@10. MQ is the average
quantile of all test paths. Hits@10 is the percentage
of target answers whose rank is not larger than 10.
An excellent model should achieve a higher MQ
and a higher Hits@10.

Implementation Details. We train RotateCT
with all paths in the training set, which is denoted
as “Comp” in (Guu et al., 2015). Note that triplets

WordNet Freebase
Model MQ Hits@10 MQ Hits@10

Implicitly model paths
Bilinear] 0.894 0.543 0.835 0.421
DistMult] 0.904 0.311 0.848 0.386
TransE] 0.933 0.435 0.880 0.505
RotatE] 0.947 0.653 0.901 0.601
Rotate3D] 0.949 0.671 0.905 0.621
RotateCT] (ours) 0.949 0.673 0.907 0.630

Explicitly model paths
ROP† - - 0.907 0.567
CoKE‡ 0.942 0.674 0.948 0.764

Table 3: Path query answering results on WordNet and
Freebase. []]: Models do not use extra structures to
model paths; [†]: Model uses RNN to model paths; [‡]:
Model uses Transformer to model paths. Best results
are in bold and second best results are underlined.

are the paths of length 1. To make the results di-
rectly comparable, we follow Gao et al. (2020) to
train RotateCT on paths of length 1 to 5 in turn,
i.e., we train our model on paths of length i un-
til convergence before training on paths of length
i + 1. Hyperparameters are determined via grid
search according to the MQ on the validation set.
In general, the embedding dimension k is selected
in {500, 1000}; batch size n is searched in {512,
1024}; the negative sampling sizem is picked from
{256, 512}; the fixed margin γ is tuned among {6, 9,
12, 24}; self-adversarial temperature α is selected
from {1.0, 2.0, 3.0}. The regularization rate λ is
adjusted in {0, 0.1}. The initialization methods and
experimental environment are the same as in link
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Model Rotate3D RotateCT

Space Hk Ck
Dimension 1000 1000
FB15k 48.89M 33.94M(↓ 30.6%)
FB15k-237 44.33M 29.79M(↓ 32.8%)
WN18 122.89M 81.94M(↓ 33.3%)
WN18RR 122.86M 81.92M(↓ 33.3%)
Freebase 225.17M 150.13M(↓ 33.3%)
WordNet 115.69M 77.14M(↓ 33.3%)

Table 4: Number of free parameters.

prediction. The best hyperparameters settings of
RotateCT are provided in the Appendix E.

Main Results. Baselines are divided into two cat-
egories according to whether they use extra struc-
tures to model paths. The first category including
Bilinear (Nickel et al., 2011), DistMult (Yang et al.,
2015), TransE (Bordes et al., 2013), RotatE (Sun
et al., 2019) and Rotate3D (Gao et al., 2020) has
no extra structure to model paths; another category
including ROP (Yin et al., 2018) and CoKE (Wang
et al., 2019) uses RNN or Transformer to model
paths.

Table 3 shows experimental results on the two
datasets. Compared with methods that implic-
itly model paths, RotateCT achieves better per-
formance on both WordNet and Freebase, which
demonstrates the ability of RotateCT to model the
composition patterns. Overall, RotateCT signif-
icantly outperforms Bilinear, DistMult, TransE
and RotatE. The reason why RotateCT slightly
surpasses Rotate3D is that both RotateCT and
Rotate3D have the ability of inferring the non-
commutative composition patterns. Compared with
methods that explicitly model paths, RotateCT out-
performs ROP and still obtains results comparable
to CoKE on WordNet. Notably, CoKE uses Trans-
former as an extra structure to model paths, which
is a remarkable architecture for natural language
process tasks.

In addition to the overall MQ and Hits@10, we
further report the results for different path lengths
in Appendix K.

4.3 Analyses

Space Efficiency. To compare the space cost of
Rotate3D and RotateCT, we caculate out the num-
ber of free parameters over different datasets. Re-
sults are shown in Table 4, from which we observe
that RotateCT with same dimension reduces up to
30% parameters on all datasets. Intuitively, Ro-

Rotate3D RotateCT

WN18 158s 65s
WN18RR 159s 65s
FB15k 147s 56s
FB15k-237 153s 53s
WordNet 85s 57s
Freebase 103s 68s

Table 5: Training time per 1000 steps of Rotat3D and
RotateCT on all datasets.

tate3D utilizes quaternions to model relations as ro-
tations in 3D space. However, a quaternion has two
more dimensions than a complex number, which
sharply increases the space cost of Rotate3D.

Time Efficiency. To further compare the train-
ing cost of Rotate3D and RotateCT, we report the
training time per 1000 steps on all datasets with
embedding dimension k = 1000. From Table 5,
we can find that RotateCT takes much less training
time than Rotate3D on all datasets, which confirms
the time efficiency superiority of RotateCT. Experi-
ments of training time are performed on an Intel(R)
Xeon(R) Silver 4114 CPU at 2.20GHz and a single
NVIDIA Tesla V100 32GB GPU.

5 Case Studies

To verify that RotateCT can effectively model all
the three types of relation patterns, we provide case
studies via histograms on symmetry/antisymmetry
and inversion patterns, and some intuitive examples
on composition patterns.

5.1 Symmetry/Antisymmetry

Corollary 1 Based on Theorem 2, if r is a symmet-
ric relation, then θi = 0 ∨ ±π; if r is an antisym-
metric relation, then θi 6= 0,±π. (See proof in
Appendix I)

According to the Corollary 1, the phase of each
element in the embeddings of a symmetric rela-
tion r should be 0 or ±π. Otherwise, the phases
should not be 0 and ±π. We investigate the phases
of elements in relation embeddings from a Rota-
teCT trained on WN18 and a RotateCT trained
on FB15k-237 with their best hyperparameters
in link prediction. The two models are trained
with the setting k = 1000. Results are shown in
Fig. 3. Specifically, Fig. 3(a)-3(b) give the his-
tograms of the two symmetric relations in WN18:
derivationally_related_form and verb_group, in
which most phases of the two relations are either
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(a) (b) (c) (d) (e) (f)

Figure 3: Histograms of relation embeddings phases {θri}(ri = eiθri) of two symmetric re-
lations: derivationally_related_form (a) and verb_group (b). Histograms of relation embeddings
phases {θri}(ri = eiθri) of two antisymmetric relations: film/actor/dubbing_performances./fi-
lm/dubbing_performance/language (c) and /people/profession/specialization_of (d). Histograms of the ad-
dition of relation embeddings phases {θ1i + θ2i} of two pairs of inversion relations: has_part ◦ part_of (e) and
hyponym ◦ hypernym (f), where ◦ is the Hadmard (or element-wise) product.

0 or ±π. The above observation confirms that Ro-
tateCT can effectively model the symmetry pat-
terns. The histograms of two antisymmetric rela-
tions in FB15k-237 are shown in Fig. 3(c)-3(d),
from which we can find that the phases of the two
antisymmetric relations are scattered. Most phases
of the two antisymmetric relations are neither 0 nor
±π, which confirms that RotateCT can effectively
model the antisymmetry patterns.

5.2 Inversion
Corollary 2 Based on Theorem 2, if r1 is the in-
verse of r2, then θ1i + θ2i = 0 ∨ ±2π. (See proof
in Appendix J)

According to the Corollary 2, if r1 is inverse to
r2, the additive embedding phases, i.e., θ1i + θ2i,
should be 0 or±2π. Same RotateCT model trained
on WN18 in Section 5.1 is used for investigating.
Fig. 3(e)-3(f) show the element-wise addition of the
embedding phases of two pairs of inverse relations:
has_part and part_of , hyponym and hypernym.
We can find that most additive embedding phases
are either 0 or ±2π, which confirms that RotateCT
can effectively model the inversion patterns.

5.3 Composition
To illustrate the superiority of RotateCT in model-
ing the composition patterns, we use a RotateCT
and a RotatE, both trained with their best hyper-
parameters on the Freebase dataset in path query
answering. Fig. 4 shows a subgraph extracted from
the Freebase dataset. This subgraph includes two
non-commutative composition patterns: "parents’
spouse" and "spouse’s parents", and one commuta-
tive composition pattern: "parents’ parents".

Non-commutative Composition. From Fig. 5,
we find that RotateCT predicts the query
Maria → parents → spouse ? and the query

Maria

Miguel

Adelaide

Karl

Adelaide

John

Charlotte

Miguel

Joseph

Ludovika

parents spouse

parents

Figure 4: A subgraph about Maria’s family. Maria’s
parents’ spouse are Adelaide and Miguel; Maria’s
spouse’s parents are Joseph and Ludovika; Maria’s par-
ents’s parents are John and Charlotte. Dashed orange
arrows represent the parents relation; solid blue arrows
represent the spouse relation.

Maria→ spouse→ parents ? correctly, which
indicates that RotateCT can effectively model the
non-commutative composition patterns. How-
ever, we observe that RotatE gives unsatisfac-
tory answers in predicting the query Maria →
parents→ ? and the query Maria→ spouse→
parents→ ?, which verifies that RotatE lacks the
ability of inferring the non-commutative composi-
tion patterns.

Commutative Composition. We further inves-
tigate the ability of inferring the commutative
composition patterns of RotateCT and RotatE. As
shown in Fig. 5, RotateCT predicts the query
Maria → parents → parents → ? correctly,
which confirms that RotateCT can effectively
model the commutative composition patterns. By
comparision, RotatE fails in predicting the correct
answers, i.e., first item in results is not Maria’s par-
ents’ parents. We argue that this is related to the
inability of RotatE to model the non-commutative
composition patterns, which has a negative impact
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Figure 5: Top 5 answers of RotateCT and RotatE for three queries: "Who are Maria’s parents’ spouse?", "Who are
Maria’s spouse’s parents?" and "Who are Maria’s parents’ parents?". Correct answers are in bold.

on embeddings’ learning. If RotatE encodes "par-
ents’ spouse" and "spouse’s parents" in the same
way, some semantic information will be lost. This
flaw is harmful for RotatE effectively learning the
semantics of parents and spouse, which reduces
RotatE’s performance on modeling the commuta-
tive composition pattern "parents’ parents".

6 Conclusion

In this paper, we propose a novel knowledge graph
embedding method called RotateCT to model the
non-commutative composition patterns while im-
prove the parameter efficiency against quaternion-
valued methods. RotateCT transforms the coor-
dinates of each entity by translating the origin of
coordinates. Further, relations are represented as ro-
tations from head entities to tail entities in complex
space. Combining rotation and coordinate trans-
formation empowers RotateCT to model not only
commutative composition patterns but also non-
commutative composition patterns. As a complex-
valued method, the space cost of RotateCT is lower
than quaternion-valued methods. Experimental re-
sults on link prediction and path query answering
show that RotateCT achieves significant perfor-
mance and demonstrate the superiority of RotateCT
for inferring composition patterns. The parameter
efficiency analysis proves that RotateCT can reduce
the space cost.

In future work, we will explore different ways to
model the non-commutative composition patterns
and plan to study the combination of quaternion
and coordinate transformation.
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A Definitions of Inference Patterns

We give the formal definitions of inference patterns
as follows:

Definition 1 A relation r is symmetric (antisym-
metric) if

∀x, y ∈ E , r(x, y)⇒ r(y, x) ( r(x, y)⇒ ¬r(y, x) )

A relation with such form is a symmetry (antisym-
metry) pattern.

Definition 2 Relation r1 is inverse to r2 if

∀x, y ∈ E , r2(x, y)⇒ r1(y, x)

Relations with such form is an inversion pattern.

Definition 3 Realtion r1 is composed of relation
r2 and relation r3 if

∀x, y, z ∈ E , r2(x, y) ∧ r3(y, z)⇒ r1(x, z)

r2 and r3 are commutative if

∀x, y ∈ E , r2 � r3(x, y)⇒ r3 � r2(x, y)

r2 and r3 are non-commutative if

∀x, y ∈ E , r2 � r3(x, y) ; r3 � r2(x, y)

where � is the composition operator.
Relations with such form is a composition pat-

tern.

B Proof of Theorem 1

Proof 1 Given r1, r2 ∈ R and x ∈ E , we have

r1i � r2i(xi) =((xi − b1i)r1i + b1i − b2i)r2i
=xir1ir2i − b1ir1ir2i+
b1ir2i − b2ir2i, (1)

r2i � r1i(xi) =((xi − b2i)r2i + b2i − b1i)r1i
=xir1ir2i − b2ir1ir2i+
b2ir1i − b1ir1i. (2)

Apparently, Equation (1) is not equal to (2), which
means that the combination of operations in Rota-
teCT is non-commutative. If and only if b1i = b2i
or r1ir2i = r1i+ r2i, r1i� r2i(xi) = r2i� r1i(xi).

C Proof of Theorem 2

Proof 2 For the symmetry/antisymmetry pattern,
given r ∈ R and x, y ∈ E , if r(x, y) and r(y, x)
hold, we have

{
yi − bi = (xi − bi)ri
xi − bi = (yi − bi)ri

⇒ ri = ±1

Otherwise, if r(x, y) and ¬r(y, x) hold, we have
{
yi − bi = (xi − bi)ri
xi − bi 6= (yi − bi)ri

⇒ ri 6= ±1

For the inversion pattern, given r1, r2 ∈ R and
x, y ∈ E , if r1(y, x) and r2(x, y) hold, we have

{
xi − b1i = (yi − b1i)r1i
yi − b2i = (xi − b2i)r2i

⇒
{
r1ir2i = 1

b1i = b2i
or r1i = r2i = 1

For the composition pattern, given r1, r2, r3 ∈ R
and x, y, z ∈ E , if r1(x, z), r2(x, y) and r3(y, z)
hold, we have





zi − b1i = (xi − b1i)r1i
yi − b2i = (xi − b2i)r2i
zi − b3i = (xi − b3i)r3i

⇒
{

r1ir2i = r3i

b1ir1ir2i = b1ir2i − b2ir2i + b3ir3i

if r2 and r3 are commutative, then

b2i = b3i or r2ir3i = r2i + r3i,

if r2 and r3 are non-commutative, then
{

b2i 6= b3i

r2ir3i 6= r2i + r3i

In conclusion, RotateCT can infer symme-
try/antisymmetry, inversion and composition pat-
terns.

D Illustrations of RotateCT

Fig. 6 shows illustrations of RocateCT modeling
symmetry and non-commutative composition pat-
terns.
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Dataset embedding
dimension

batch
size

self-adversarial
temperature margin negative sample

size distance regularization/rate learning
rate

WN18 1000 512 0.5 12 256 L1 L1/0.1 1× 10−4

WN18RR 1000 1024 1.0 6 512 L1 L1/0.1 5× 10−5

FB15k 1000 1024 0.5 24 256 L2 - 2× 10−4

FB15k-237 1000 1024 1.0 12 256 L2 - 2× 10−4

WordNet 1000 512 1.0 6 256 L2 L2/0.1 5× 10−5

Freebase 1000 1024 2.0 12 512 L2 - 2× 10−5

Table 6: Hyperparameters setting of RotateCT over different datasets.
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Figure 6: Illustrations of RotateCT over two relation
patterns. Fig. 6(a) shows how RotateCT models the
symmetry pattern, i.e., r = ±1. In 6(b), blue solid
lines represent the path h → r1 → r2 → t and red
dashed lines represent the path h → r2 → r1 → t′.
r1 and r2 form a non-commutative composition pattern.
When the relative order of r1 and r2 changes, RotateCT
can get two different entities: t and t′.

E Hyperparameters Settings

We list the best hyperparameters setting of Rota-
teCT on all datasets in Table 6.

F Details of Link Prediction Datasets

WN18 is a subset of WordNet (Miller, 1995), a
database consisting of lexical relations between
words. FB15k is extracted from Freebase (Bol-
lacker et al., 2008), a large-scale knowledge
graph containing general facts. The main re-
lation patterns in WN18 and FB15k are sym-
metry/antisymmetry and inversion (Sun et al.,
2019). However, both WN18 and FB15k
suffer from test leakage through inverse rela-
tions (Toutanova and Chen, 2015). To avoid this
problem, WN18RR and FB15k-237 remove the in-
verse relations in WN18 and FB15k, respectively.
Therefore, the main relation patterns in WN18RR
and FB15k-237 are symmetry/antisymmetry and
composition (Sun et al., 2019). Notably, semantic
information in WN18RR and FB15k-237 is more
difficult to capture on account of removing the in-

verse relations. The statistics of the benchmarks
for link prediction are listed in Table 7.

Dataset #entity #relation #training #validation #test

FB15k 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 7: Number of entities, relations, and triplets in
each split for four benchmarks.

G Details of Path Query Answering
Datasets

The statistics of path query answering datasets are
summarized in Table 8.

WordNet Freebase

#Entities 38,551 75,043
#Relations 11 13
#Train Triplets 110,361 316,232
#Valid Triplets 2,602 5,908
#Test Triplets 10,462 23,733
#Train Paths 2,129,539 6,266,058
#Valid Paths 11,277 27,163
#Test Paths 46,577 109,577

Table 8: Number of entities, relations, triples and paths
in each split of the two datasets.

H Evaluation Protocol of PQA

For each test path pt = s → r1 → ... → rj → o,
the corresponding query q is s → r1 → ... →
rj → ?. For each query q, the candidate answers
are entities that “type-match”, i.e., all tail entities
of the final relation rj . The correct answers are
entities that can be reached from s by traversing
the path p; the incorrect answers are obtained by
filtering out the correct answers from the candidate
answers. The set of candidate answers to a query
q denotes as C(q); the set of correct answers to
a query q denotes as P(q); the set of incorrect
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answers to a query q denotes as N (q). We give
the formal definition of C(q), P(q), and N (q) as
follows:

C(q) , {o|∃e s.t. (e, rj , o) ∈ G}
P(q) , {o|∃e1, ..., ej−1 s.t. (s, r1, e1),

..., (ej−1, rj , o) ∈ G}
N (q) , C(q)\P(q)

Here G includes training triplets and test triplets.
For each test path pt, we replace entity o with enti-
ties in C(q) and compute the score of each candi-
date answer. Then we rank the scores of candidates
along with the score of pt in descending order and
caculate the quantile, which is the proportion of
incorrect answers ranked after the target answer o.

Notably, some test paths in both datasets are
“type-match trivial”, i.e., all type matching candi-
date answers are correct. Hence, the quantile of
these test paths are undefined, and we exclude them
from evaluation.

I Proof of Corollary 1

Proof 3 As shown in Theorem 2, if r is a symmetric
relation, we have

ri = ±1 ⇒ cosθi + isinθi = ±1

⇒ cosθi = ±1

⇒ θi = 0 ∨ ±π

Otherwise, if r is an antisymmetric relation, we
have

ri 6= ±1 ⇒ cosθi + isinθi 6= ±1

⇒ cosθi 6= ±1

⇒ θi 6= 0,±π

J Proof of Corollary 2

Proof 4 As shown in Theorem 2, if r1 is the inverse
of r2, we have

{
r1ir2i = 1

b1i = b2i
or r1i = r2i = 1

In the first case, we have

{
r1ir2i = 1

b1i = b2i

⇒
{

(cosθ1i + isinθ1i)(cosθ2i + isinθ2i) = 1

b1i = b2i

⇒
{
cos(θ1i + θ2i) + isin(θ1i + θ2i) = 1

b1i = b2i

⇒
{
θ1i + θ2i = 0 ∨ ±2π

b1i = b2i

In the second case, we have

r1i = r2i = 1 ⇒ cosθ1i + isinθ1i =

cosθ2i + isinθ2i = 1

⇒ θ1i = θ2i = 0

Combining the above two cases, we have

θ1i + θ2i = 0 ∨ ±2π

K PQA Results of Different Path
Lengths

We further report the path query answering results
for different path lengths. As shown in Table 9
and Table 10, RotateCT outperforms RotatE and
Rotate3D over most metrics, which verifies the
superior capability of RotateCT to deal with the
multi-hop reasoning.
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length=1 length=2 length=3 length=4 length=5

Model MQ Hits@10 MQ Hits@10 MQ Hits@10 MQ Hits@10 MQ Hits@10

RotatE 0.934 0.794 0.882 0.403 0.922 0.649 0.858 0.415 0.910 0.652
Rotate3D 0.933 0.796 0.901 0.473 0.921 0.685 0.854 0.449 0.908 0.654
RotateCT 0.934 0.803 0.885 0.460 0.928 0.707 0.863 0.462 0.920 0.689

Table 9: Path query answering results of each path length on Freebase. Best results are in bold.

length=1 length=2 length=3 length=4 length=5

Model MQ Hits@10 MQ Hits@10 MQ Hits@10 MQ Hits@10 MQ Hits@10

RotatE 0.868 0.350 0.970 0.786 0.973 0.778 0.970 0.737 0.967 0.693
Rotate3D 0.872 0.365 0.972 0.797 0.974 0.786 0.973 0.750 0.969 0.706
RotateCT 0.865 0.338 0.972 0.807 0.975 0.796 0.973 0.763 0.971 0.731

Table 10: Path query answering results of each path length on WordNet. Best results are in bold.
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Abstract

This paper introduces our Diversity Advanced
Actor-Critic reinforcement learning (A2C)
framework (DAAC) to improve the generaliza-
tion and accuracy of Natural Language Process-
ing (NLP). We show that the diversification of
training samples alleviates overfitting and im-
proves model generalization and accuracy. We
quantify diversity on a set of samples using the
max dispersion, convex hull volume, and graph
entropy based on sentence embeddings in high-
dimensional metric space. We also introduce
A2C to select such a diversified training sub-
set efficiently. Our experiments achieve up to
+23.8 accuracy increase (38.0% relatively) in
sentiment analysis, -44.7 perplexity decrease
(37.9% relatively) in language modeling, and
consistent improvements in named entity recog-
nition over various domains. In particular, our
method outperforms both domain adaptation
and generalization baselines without using any
target domain knowledge.

1 Introduction

We introduce the Diversity Advanced Actor-Critic
reinforcement learning framework (DAAC) to im-
prove the generalization and accuracy of Natural
Language Processing (NLP). Training data plays
a crucial role in Deep Learning (DL)-based NLP.
Investigations (Hendrycks et al., 2020; Dodge et al.,
2020; Ramponi and Plank, 2020) show that training
data quality is imperative to the machine learning
model’s performance. Good data are effective and
easy to generalize, while bad data bring noise and
overfits on out-of-domain test sets.

Decades of work (van der Wees et al., 2017;
Aharoni and Goldberg, 2020; Guo et al., 2020; Ax-
elrod et al., 2011) have been devoted to finding the
best data, with the most commonly used method
we call domain adaptation (Qu et al., 2019; Liu
et al., 2019) that uses target domain knowledge.
Despite large improvements on specific domains,
these adapted models lack robustness and are prone

to rare events. For example, when models shift to-
wards one target domain like Twitter, they may
become erroneous for other domains like medical
or travel, and real-world applications on news re-
port data, for example, do not know which queries
to receive before they launch, resulting in a criti-
cal performance gap between laboratory findings
and reality. Therefore, we move away from the
independent and identically distributed assumption
(i.i.d.) and focus on reducing generalization errors
by studying the inter-dependencies among samples.

In this paper, we ask three questions (RQs) and
propose our answers. The first question (RQ 1)
is: “does higher diversity among training sam-
ples lead to better generalized NLP model learn-
ing?”. Semantic diversity is a desirable aspect in
human annotation, where training data sets should
be large and diverse enough to learn the many ways
the objects differ (Shankar et al., 2017; Wu et al.,
2018; Merler et al., 2019; Schumann et al., 2021),
like intrinsic facial diversity in face recognition
data, since every face is different. We show that
diversity ensures that the training data can pro-
vide sufficiently discriminative information for the
model (Gong et al., 2019), and thus give a more
accurate prediction. Intuitively, for a fixed number
of samples, the more semantic meaning they cover,
the more information they contain, and thus the
more effective they are for learning. We will use
two examples to elaborate on our rationale.

Let us first take one explanatory example of
V ={be, cheerful, happy, stay}, a four single-word
dataset that forms two semantically close clusters:
A ={be, stay} and B ={happy, cheerful}. Our hy-
pothetical NLP task is to generate sentences from
V . From

(
4
2

)
word combinations, four sentences

are meaningful: “stay happy”, “stay cheerful”, “be
happy”, “be cheerful”. Our dataset selection task
is to find two single-word samples from V that
generate the most sentences. If we select both
single-word samples from A, which are semanti-

4933



Figure 1: Higher training set diversity (geometric sum of
pairwise Cosine distance), better learning generalization,
w.r.t. PPL/OOV on a random test set.

cally close, we will generate no meaningful sen-
tence (analogously that from B). However, we can
generate one of the four meaningful sentences if we
select one word fromA and the other word from B,
e.g., “stay” and “happy”, which are semantically
distant. In fact, since these four sentences can be
treated as paraphrasing, generating any of them
will roughly cover the semantic meaning for all. In
this example, the diversified subset {stay, happy}
is more effective for learning generalization.

Our second example is conducted on a real
dataset. Figure 1 shows our experimental results on
the Penn Treebank dataset. We equipartition 42K
training sentences into five subsets and compute
their diversity using the sum of pairwise Cosine
distances of sentence embeddings (i.e., our first
method, see next paragraph and Section 2.2.1). We
sort the subsets according to their diversity scores.
The first subset has the lowest diversity (3.18e7),
the second subset has the second-lowest diversity
(3.26e7), etc. We then train five language mod-
els on each subset1, and computes the perplexity
(PPL) and out-of-vocabulary (OOV) on ten ran-
domly sampled subsets of the test set. PPL and
OOV are typical indicators of how training data
is generalized (Rastogi et al., 2020; Müller et al.,
2019). Our results show that the diversity of the
subset strongly negatively correlates to both PPL
and OOV rate, where the subset with the highest
diversity is more likely to generalize on a random
test and has fewer unseen words.

With the preliminary evidence showing that a
training set with higher diversity leads to more gen-

1The language model is trained on Transformer with 2
heads, 2 hidden layers, 200 embedding size, and 200 hid-
den units on each subset for 10 epochs. Each test set subset
contains 1000 sentences.

eralized learning, we propose our second question
(RQ 2): how to measure the diversity of a sam-
ple set? We introduce three methods to quantify
training dataset diversity. The first method is based
on the notion of dispersion, also known as Max-
Sum Diversification (Cevallos et al., 2016). By
viewing each training sample as a data point in
the sentence embedding space, we maximize the
dispersion of the training set, which is the sum of
pairwise Cosine distances of sentence embeddings,
as in Figure 2 (2). The larger the sum, the more
informative the subset is.

The pairwise geometric distance method has a
worst-case complexity of O(n2), and to accelerate
the computation, we introduce our second method
(Figure 2 (3)) that measures diversity using the vol-
ume of a convex hull around the samples, namely
the volume that encloses all vertices, taking each
sentence embedding as a vertex. Its quickhull (Bar-
ber et al., 1996) implementation has an average-
case complexity of O(n log n) and a worst-case
complexity of O(n2).

The above two methods compute diversity based
on distances in the metric space. We can obtain
global information content by measuring the uncer-
tainty of the semantic distances between samples
based on frequencies. Our third method combines
our view of geometric distance and entropy in NLP.
As depicted in Figure 2 (4), we apply Graph en-
tropy, H(G,P ), an information-theoretic function
on graph G with a probability distribution P on its
vertex set (Dehmer and Mowshowitz, 2011; Rezaei,
2013). Here, each sentence in the subset is a node
in the graph, and the Cosine distance of the two-
sentence embeddings is the weighted edge between
the two nodes. Empirically, all these three diver-
sity measures consistently outperform the baselines.
The Max Dispersion (MD) and Graph Entropy (GE)
are more robust in various domains with the best
performance overall because they account for every
pair of distances in the training set.

After we have defined our diversity measure, we
ask our third question (RQ 3): “how can we opti-
mize the subset to maximize the information con-
tent?" Subset selection is NP-hard in general (Qian
et al., 2016; Davis et al., 1997). We conjecture
that this holds true for every objective function, in-
cluding the notion of diversity introduced in this
paper, and is the reason why we use actor-critic re-
inforcement learning (Konda and Tsitsiklis, 2000).
We equipartition the training data into mini-batches
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Figure 2: Diversity Advanced Actor-Critic Framework.

and simultaneously learn a policy network (as an ac-
tor) to select data and a value network (as a critic) to
estimate future returns using the diversity measure
as an evaluation reward. Our actor-critic data se-
lection method has the advantages of low variance
updates as well as credit assignment and signifi-
cantly outperforms domain adaptation (Liu et al.,
2019) on various domains without requiring any tar-
get domain knowledge. The architecture is shown
in Figure 2 and Section 2.

In summary, our work mainly contributes to the
following: (1) Modeling sample dependency for
effective data sampling using diversity; (2) Mea-
sure dataset diversity using max dispersion, convex
hull volume, and graph entropy; (3) Introduction
of the Advantage Actor-Critic reinforcement learn-
ing framework to select informative samples and
enhance NLP accuracy and generalization.

The rest of the paper is organized as follows. In
Section 2.1, we detail Diversity Advanced Actor-
Critic reinforcement learning (DAAC). Then in
Section 2.2, we introduce different diversity mea-
sures. Afterward, in Section 3, we empirically ver-
ify the generalization and accuracy improvement
using DAAC. We discuss related work in Section 4

and conclude the paper in the last section.

2 Diversity Advanced Actor-Critic

We now present the details of our Diversity Ad-
vanced Actor-Critic (DAAC) algorithms. The de-
tails of data selection and fine-tuning process are
depicted in Figure 2. Our task model F (any Deep
Learning-based NLP model, such as Transformer,
etc.,) is pre-trained on the full training data set
X = {xi}ni=1, where xi is a sentence, n is training
set size. Then, as in Liu et al. (2019), we shuf-
fle and randomly partition X into T disjoint data
batches so that X = {Bt}Tt=1 = {B1,B2, ...,BT },
with Bt = {x(t−1)n|T+1, x(t−1)n|T+2, ..., xtn|T }.
n|T is the integer division of n by T , and T ≤ t. If
mod (n, T ) ̸= 0, then the last batch has a variable
size of mod (n, T ) and collects the remaining
sentences. For each batch, we select and denote
B̂t = {(xi)oi=1|xi ∈ Bt} as the selected data with
size o. After obtaining B̂t, we use B̂t to fine-tune
F . F and its encoder g is updated on B̂t for T
times in an epoch, and each update is based on the
previous checkpoint.

Our goal is to improve our task model F on any
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test domain whose distribution is different from
the source training set X , by learning an effective
subset of X to fine-tune F . Figure 2-(1) shows our
new model.

Our framework is based on Actor-Critic rein-
forcement learning. Our Actor-Critic method has
the following properties, which are very desirable
to achieve our goals: variance deduction, efficient
sampling, and credit assignment (Konda and Tsit-
siklis, 2000; Grondman et al., 2012). Our frame-
work consists of policy and value networks jointly
and dynamically learned together with the task
model using the advantage error computed from
the reward function. In the following context, we
will first introduce our Actor-Critic algorithm (Sec-
tion 2.1) and then our three different reward func-
tions based on diversity (Section 2.2).

2.1 Advantage Actor Critic

2.1.1 Markov Decision Process

We cast the data selection as a reinforcement
learning problem with a Markov Decision Process
(MDP). Our data selection policy π, a mapping
from states to actions, serves as an agent to interact
with an environment that constitutes an NLP model,
we call task model F over T time steps. At each
time step t, a state st, an action at and a reward rt
are collected.

First, the encoder g inside the NLP model (e.g.
an embedding layer in LSTM, or an encoder in
transformer) transforms a batch of data Bt into its
embedding st (st = g(Bt) in Fig 2, e.g. vector rep-
resentations of the encoder output of a sentence).

Secondly, the policy π outputs a probability dis-
tribution for the batch of state st, so that each sen-
tence is associated with a probability representing
how likely it is going to be selected. The selected
subset, denoted as B̂t, is then obtained by Bernoulli
sampling each sentence in the state st. For example,
for the k-th sentence in the batch with probability
pk, we generate a random number between 0 and 1.
If pk is larger than the random number, then the k-
th sentence is selected; otherwise, it is not selected.
The result of Bernoulli sampling is represented as
a vector at, where each value in it is either 0 or 1
representing each sentence in the batch not being
or being selected.

Thirdly, task model F as well as encoder g are
finetuned by the selected subset B̂t. In the mean-
time, a scalar reward rt = R(g(B̂t)) is calculated

by designed diversity reward functions R which
we give definitions in Section 2.2.

Finally, the policy agent π updates its weights
using the collected st, at and rt, where state st is
the encoded representation of a batch of data Bt,
action at is a vector with each value of either 0
or 1 representing each sentence in the batch not
being or being selected, and the scalar reward rt
measures the diversity of selected batch B̂t. This
optimization process is expanded in next section
2.1.2.

2.1.2 Training algorithm
We employ the Advantage Actor Critic algorithm
that uses A(st, at), the advantage of action at in
state st to scale the policy gradient. Specifically,
the advantage of action at in state st is defined in
Mnih et al. (2016) as

A(st, at) = Q(st, at)− V(st) (1)

≈
T−t∑

j=0

γjrt+j − V(st) (2)

where γ ∈ (0, 1] is the discounting factor, and
we set its value as 0.99. V is the value function
(critic) implemented as a value network in Figure 2-
(1).

The data selection policy π (actor) is imple-
mented as a policy network, whose training ob-
jective is

∇θJ (θ) = Eπθ∇θ log πθ(at|st; θ)A(st, at; θ, θv).

The parameters of the policy network θ are updated
by:

θt+1 = θt + α∇θ log π(at|st; θt)A(st, at; θt, θvt)
(3)

where α is the learning rate, and Equation 2 esti-
mates A(st, at; θ, θv).

The objective of value network is:

∇θvV(θv) = Eπθ∇θV (rt − V(st; θv))2

The parameters of value function θv is updated by:

θv(t+1) = θvt + α∇θvt(rt − V(st; θvt))2 (4)

The policy network π(at|st; θ) is a two-layer net-
work that has two nodes in the first layer and one
hidden output produced by the tanh activation
function and one softmax output. The value net-
work is a two-layer network that has eight nodes
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Algorithm 1 DAAC Training Algorithm
Input: Epoch L, learning rate α, discount factor γ,
training set X , pre-trained task model F (including
encoder g), reward function R (discussed in sec-
tion 2.2)
Output: selected data, fine-tuned F , policy πθ,
data value estimator Vθv

1: Initialize data selection policy πθ and value
estimator Vθv

2: for episode l = 1 to L do
3: Shuffle (uniformly at random) all training

samples;
4: Equipartition X into T (disjoint) sets

with same size n|T : X = {Bt}Tt=1 =
{B1,B2, ...,BT };

5: Initialize an empty list: episode history Υ
6: for all Bt ∈ X (uniform transition probabil-

ity) do
7: st = gt(Bt);
8: Obtain batch action at by sampling based

on πθ(st);
9: B̂t = {(xi)oi=1|ai = 1}, where o is se-

lected sample size;
10: Update task model F(gt) by fine-tuning

on B̂t;
11: rt = R(B̂t, g);
12: Store (st, at, rt) to episode history Υ;
13: end for
14: for all (st, at, rt) ∈ Υ do
15: Obtain A(st, at) for each batch (Eq. 2);
16: Update policy weights θ (Eq. 3);
17: Update value estimator weights θv

(Eq. 4);
18: end for
19: Clear episode history Υ;
20: end for
21: return F ,πθ and Vθv

in the first layer and one hidden output produced
by the ReLU activation function, and one linear
output for the value network V(st; θv) following
Mnih et al. (2016). The training algorithm is shown
in Algorithm 1.

2.2 Diversity Measures

The reward function in Section 2.1 is the diver-
sity of the selected batch subset. We do not need
any target domain knowledge, and the diversity is
measured with the following three methods.

2.2.1 Max Dispersion
The dispersion of a set is the sum of all pair-wise
distances within the set (Cevallos et al., 2016). Intu-
itively, maximizing the dispersion (denote as MD)
of a set can enlarge the semantic coverage of the set,
and thus diversify the content of the set. Formally,
xi and xj are any two training sentences in a train-
ing set G, and their sentence embeddings are g(xi)
and g(xj), respectively, we define the dispersion
as

D(G) =
∑

(xi,xj)∈G
d(xi, xj), (5)

where d(xi, xj) = 1− g(xi)·g(xj)
∥g(xi)∥∥g(xj)∥ . The diversity

of a set of training samples (sentences) is computed
as the sum of each pairwise sample distance, which
can be measured by any distance metrics, i.e., Co-
sine distance. We take the NLP task model encoder
output as the sentence embedding to compute pair-
wise sample distance. The sentence embedding
preserves pairwise sentence distance from the se-
mantic space to the high-dimensional vector space.
More details of the algorithm are shown in Algo-
rithm 2, with a worst time complexity of O(n2),
where n is the number of samples in the set.

2.2.2 Convex Hull Volume
Instead of looking at each pair of sentences, we can
simplify the computing process by looking at the
boundary of a set of training samples in the high
dimensional space and compute the volume of such
space using Convex Hull Volume (denote as CV).
Specifically, we treat each sentence as a point in
the embedding space and approximate the volume
of a convex body. In a Euclidean plane, given a
finite set of points Q, it is sometimes interesting
to determine its convex hull, namely the minimum
convex polygon so that any point of Q is either
inside this polygon or at its border. There are a
number of algorithms to compute the convex hull.
Since our embedding is in high dimension, i.e.,
256, we consider N-dimensional quickhull, which
was introduced in Barber et al. (1996) . Just like
the quicksort algorithm, it has the expected time
complexity ofO(n log n) by divide and conquer ap-
proach, but may degenerate to O(n2) in the worst
case. Details shown in appendix Algorithm 3.

2.2.3 Graph Entropy
Applying entropy on the distances, we introduce
Graph Entropy (GE), following the so-called local
measure of distance-based substructure entropy,
details in Dehmer and Mowshowitz (2011). As
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shown in Figure 2, graph entropy measures the
uncertainty of the pairwise distance of sentence
(or word) embeddings in the geometric space. To
compute graph entropy of a set of training samples,
we cast the sentence embeddings as vertices and
distances between sentence embeddings as edges
to form a clique. The distance entropy I of each
sample x is defined as

I(x) = −
M∑

i=1

f(d(x, xi)) log(f(d(x, xi))).

M is the number of sentences in the set, d(x, x′)
is the Cosine distance between the encoder output
vector representation of x and x′, f(d(x, x′)) =

d(x,x′)∑M
i=1 d(x,xi)

is the relative distance of edge d(x, x′)
(instead of words). The graph entropy of entire set
is then defined as the sum of all distance entropy I:

G(G) =
M∑

i=1

I(xi) (6)

For a set with n data samples, there are
(
n
2

)
edges

in the resulting graph. The time complexity of
graph entropy is thus O(n2) by looping through
each edge in the graph. Details are shown in Algo-
rithm 5.

3 Experiments

We describe our experimental details and demon-
strate that our DAAC improves baselines in
three NLP applications, including two recognition
tasks: sentiment analysis, named entity recognition
(NER), and one generation task of language mod-
eling, without the knowledge of the target domain.
We give hyperparameters of DAAC in appendix.

Finetuning vs. Data Selection We introduce our
four models based on DAAC. The first three mod-
els finetune a pretrained NLP model using max
dispersion MD, convex hull volume CV and graph
entropy GE as reward function. As a compari-
son, we add the fourth model trained on selected
data from scratch that does not rely on a pretrained
model, denoted as data selection DS. Specifically,
we train A2C using MD as reward function for 150
epochs first, and use the trained A2C to select data
samples from all source data, then use only the
selected data to train the NLP model from scratch.
We select 3833 (63.8%) and 7630 (54.3%) sam-
ples from the source domain of sentiment analysis
and NER respectively, and 21017 (49.9%) samples

auto beauty food instrs office comptr tools
All 56.4 54.0 56.0 59.1 56.8 55.1 55.9
Rand 57.0 54.9 56.9 59.5 59.2 56.1 56.0
Mtl 59.4 55.8 60.7 61.0 61.8 56.2 62.5
Meta 56.3 52.2 58.4 56.4 58.1 52.9 48.8
Sim 73.4 62.9 77.3 79.4 78.4 63.0 81.2
MD 76.8 65.2 80.5 82.9 82.8 66.0 85.7
CV 76.4 65.4 80.4 82.8 82.2 66.0 85.7
GE 75.4 65.0 78.9 81.4 80.5 65.5 83.3
DS 78.0 65.9 81.7 84.4 83.7 67.5 86.3
+% 18.6 10.1 21.0 23.4 21.9 11.3 23.8

Table 1: Sentiment analysis accuracy [%] on amazon un-
processed domains. Full results of 21 domains in appendix.
Baselines All, Rand, marginal transfer learning Mtl (Blan-
chard et al., 2021), Metareg Meta (Balaji et al., 2018) and our
four measures are trained on the joint dataset of books, dvd
& kitchen domain, and do not use any test/target domain data,
while Sim (Liu et al., 2019) uses target domain electronics.
Results in each domain are averaged over five random seeds.
Last column: absolute improvement between DS and Mtl.

from Penn Treebank and 18043 (49.1%) samples
from WikiText-2 in language modeling experiment.

Baselines We compare our models with five base-
lines: 1) All The models are trained on all source
data; 2) Rand The models are trained on randomly
selected 50% source data; 3) Marginal transfer
learning (Mtl) by Blanchard et al. (2021), a domain
generalization framework using kernel methods to
augment feature space. 4) MetaReg (Meta) by Bal-
aji et al. (2018), a domain generalization method
using meta-learning. 5) Sim by Liu et al. (2019)
that uses similarity features between target test do-
main and source training domains. To be noted,
Sim is a domain adaptation method, which requires
the usage of target domain data, while other base-
lines and our four models do not use target domain
data.

3.1 Sentiment Analysis

Settings We use the Amazon product review
dataset (Blitzer et al., 2007) for the sentiment anal-
ysis task. The sentiment analysis baseline is a CNN
classifier (Kim, 2014). We pretrain the CNN for
two epochs as (Liu et al., 2019) for a fair compari-
son.

Results Table 1 shows the results on amazon do-
mains. Max dispersion outperforms other diversity
measures in 11 out of all 22 unseen domains, and
the Data Selection achieves a most boost of 38.0%
(relative) and 23.8% (absolute) percent in the tools
domain. This observation aligns with previous find-
ings that 60%-70% important samples can perform
similarly or better than training on the entire dataset
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politics science music literature ai
All 26.49 19.84 12.26 16.38 13.92
Rand 26.07 19.68 12.81 17.47 13.68
Mtl 28.47 22.47 13.49 18.97 15.68
Meta 29.16 22.57 13.75 20.92 15.74
Sim 29.37 22.51 15.31 20.63 16.00
MD 29.64 23.09 15.69 21.21 16.72
CV 29.42 22.85 15.71 21.30 17.13
GE 29.75 23.75 16.03 21.58 16.91
DS 29.74 23.18 15.22 20.56 15.97

Table 2: NER F1-scores. Results are averaged over three runs.

(Yoon et al., 2019; Fan et al., 2017). We also con-
duct a domain adaptation experiment which aims to
maximize the test accuracy on one specific target
domain and outperform all baselines with a sig-
nificant test p = 0.00038, as shown in table 8 in
appendix.

3.2 Named Entity Recognition

Settings We use the CoNLL2003 English NER
dataset (Sang and Meulder, 2003) as source train-
ing set and the five domains from CrossNER
dataset (Liu et al., 2020) as test sets, which has
specialized entity categories for each domain. We
finetune the pretrained BERT model (Devlin et al.,
2018) on source training set by adding a linear layer
on top of the hidden-states output and then evaluate
the F1-scores on five test domains.

Results The result is reported in Table 2. Graph
Entropy achieves best performance among all the
three diversity measures. In particular, Data Se-
lection performs better than training with all data
directly (All) and random selection (Rand), which
means important samples are selected and noisy
samples are filtered out.

3.3 Language Modeling

Settings Our baseline is a Transformer language
model (Vaswani et al., 2017) with default hyper-
parameters. We experiment with two moderate size
datasets WikiText-2 (Merity et al., 2016) and Penn
Treebank. As for evaluation, we report perplex-
ity scores on two translation datasets from differ-
ent domains, IWSLT’ 17 (TED talk english) and
WMT Biomedical’ 21 (english). The baseline mod-
els are trained using the fairseq toolkit (Ott et al.,
2019) and stop training until the validation perplex-
ity score does not improve for 5 epochs.

Results The evaluation results are shown in Ta-
ble 3. The perplexity on two test domains have
been improved. Specifically, test perplexity of Bio’

WikiText-2 Penn Treebank
IWSLT’17 Bio’21 IWSLT’17 Bio’21

All 328.23 259.47 147.03 117.17
Rand 515.22 456.78 234.14 157.39
MD 323.89 251.45 144.78 114.68
CV 325.22 252.17 145.43 115.31
GE 324.57 251.91 144.95 114.89
DS 321.05 222.78 141.02 72.52

Table 3: Language modeling: Perplexity scores on two test
domains. First row: source training domain; Second row: test
domains.

21 has an improvement of 44.65 (37.9% relative im-
provement) while trained by our selected data. The
comparison with randomly selected result (Rand)
further proves the effectiveness of data selected by
DAAC.

3.4 Ablation Analysis
MD vs. GE In our three experiments we observe
Max Dispersion (MD) performs best in sentiment
analysis and language modeling, and Graph En-
tropy measure (GE) achieves the best performance
in named entity recognition. We infer the smaller
improvement of convex hull volume might be due
to error propagation of the quickhull algorithm.

Regarding the reason why GE performs best in
named entity recognition, we first analyze the dif-
ference of operations on sentence embeddings for
GE and MD. Since GE is calculated by the sum of
distance entropy of each sentence (sample), there
are more operations (eg. log and normalization) de-
pending on the sentence embedding input than MD.
Thus, performance of GE is more relying on the pre-
cision of sentence embeddings compared to that of
MD. Then looking into the key difference between
the task of NER and other tasks, the source of sen-
tence embeddings are apparently different. In NER,
sentence embeddings are trained by BERT, while
in sentiment analysis they are trained by CNN. As
a result, we conjecture the more precise sentence
embeddings trained by BERT lead to the better
performance of GE on NER task. To verify this as-
sumption, we quantitatively evaluate the quality of
sentence embeddings generated by finetuned CNN
and finetuned BERT on semantic textual similarity
(STS) benchmarks STS-B-Dev (Cer et al., 2017),
STS14 and STS15 (Agirre et al., 2014, 2015). We
report the Spearman’s rank correlation between the
cosine similarity of sentence embeddings using the
SentEval toolkit (Conneau and Kiela, 2018). The
results in table 4 show preliminary evidence that
our conjecture holds. In short, MD can be consid-
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Figure 3: Training/Validation accuracy change over epochs. Validate set is gourmet food domain of unprocessed Amazon product
reviews. Training set is a joint set of dvd, kitchen and books, and target domain in Sim is electronics. MD can help alleviate
overfitting on test domains compared to the domain adaptation method Sim (Liu et al., 2019)

STS-B-Dev STS14 STS15
Finetuned-CNN 29.92 23.26 19.77
Finetuned-BERT 32.02 24.54 23.06

Table 4: Spearman’s rank correlation between the cosine simi-
larity of sentence embeddings generated by finetuned-CNN
and finetuned-BERT. Numbers are reported as ρ×100.

ered for general tasks, however, when there is a
reliable sentence embedding source, GE can be a
better choice than MD.

Overfitting We plot the validation accuracy
curve of the sentiment classifier on one test do-
main, as shown in Fig 3. The validation accuracy
of Sim (Liu et al., 2019) model degrades faster and
more significant than DAAC. The gap of blue and
red area, which is the gap between training accu-
racy and validation accuracy of models finetuned
by Sim and MD, suggests DAAC can help alleviate
overfitting on test domains compared to the domain
adaptation method Sim.

Time As discussed in 2.2, MD and GE both take
account for the internal structure of a set of training
samples and take timeO(n2), where n is size of the
set. CV can reduce time to O(n log n) by utilizing
divide and conquer, while accompanying with the
degradation of performance. In theory, the entire
training time of DAAC-finetuning is approximately
T times compared to training with all data, where
T is the time steps in Markov Decision Process, or
the number of batches. In the finetuning setting,
we follow Liu et al. (2019) and Yoon et al. (2019),
using T ∈ [2, 4] and finetune NLP model for 200
time steps. However, in the data selection (DS)
setting, the training time is roughly 20 times more
compared to the finetuning setting, since we train
A2C for extra epochs (10000 time steps with T =
60, batch size 100) to ensure both the value and

unseen: camera
unseen: sports
nondiversified
diversified

Figure 4: t-SNE plot of diversified/nondiversified training data
and their coverage with unseen domains.

Camera Sports Food
Diversified 7956 8443 5158
Nondiversified 8348 8886 5469

Table 5: Out-of-vocabulary of diversified and nondiversified
set

policy network converge. In practice, training with
all source data directly (All) in sentiment analysis
takes 131 seconds while finetuning with MD takes
217 seconds, and selecting data out then training
(DS) takes 4774 seconds on one Tesla V100 GPU.

Visualization Figure 4 visualizes data samples
selected by our DAAC (diversified, red) and those
randomly selected (nondiversified, blue), as well
as the test data samples (unseen domains) in the
embedding space. We observe that our DAAC se-
lected samples are more widely spread, thus cover-
ing more semantic meaning for most test sets. Fig-
ure 4 (right) shows that DAAC selected samples has
a larger convex hull volume than random selected
samples after removing outliers. Furthermore, ta-
ble 5 shows that our DAAC has a smaller size of
out-of-vocabulary than the baseline on the test do-
mains. Data samples are selected from the maga-
zines domain of Amazon product reviews (Blitzer
et al., 2007). We use max dispersion (MD) diversity
measure, sentence-transformer toolkit (Reimers
and Gurevych, 2019), and plot the embedding into
two-dimension t-SNE.
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4 Related work

Existing domain generalization methods related
to data focus on data augmentation (Zhou et al.,
2020; Qiao et al., 2020) and data generation (Wang
et al., 2021). These methods increase the quantity
of training set while our method utilizes existing
data maximally by modeling the intrinsic sample
dependency.

There have been several influential
works (Moore and Lewis, 2010; Axelrod
et al., 2011; Ruder and Plank, 2017a) on data
selection that significantly contributed to today’s
NLP state-of-the-arts. Fan et al. (2017) proposes a
data filter based on deep reinforcement learning
on image and sentiment classification task. Feng
et al. (2018) implemented an instance selector
using reinforcement learning to filter noisy data
to improve the accuracy on natural language
inference (Qu et al., 2019), sentiment analysis,
part-of-speech tagging and dependency parsing
(Liu et al., 2019). These work select the training
data close to a given target domain for domain
adaptation. In contrast, we aim to enhance the
model generalization and increase the accuracy on
any arbitrary domain.

As for diversity measures, Ruder and Plank
(2017b) examines the effects of Shannon entropy
in the transfer learning setting, but they do not con-
sider content semantic meaning. Shi et al. (2021)
uses determinantal point processes to select diverse
data to reduce the labor of annotating training ex-
amples for dependency parsing, but the proposed
diversity measure cannot be generalizaed to other
NLP tasks. Other works incorporate the notion
of diversity into topics like language representa-
tion (Chubarian et al., 2021), and ensemble lan-
guage modeling (Duan et al., 2021).

5 Conclusion

We introduce Actor-Critic reinforcement learning
rewarded with diversity measures to select effec-
tive training data that significantly enhances the
accuracy of sentiment analysis, named entity recog-
nition, and language modeling tasks across various
domains. Without any target domain knowledge,
our method outperforms the CNN, Transformer and
BERT baselines. Our experiments show that mod-
eling sample dependency by increasing training set
diversity enhances the learning generalization and
prediction accuracy.
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A Appendix

A.1 Notations

Notation Meaning
F NLP model
g encoder
X Training data set
xi sentence
|X | Training set size
T number of batches; maximum training steps in an epoch
Bt batch
B̂t selected batch
st batch state
sk single sentence state
at action on batch Bt at time step t
ak action on single sample xk at time step t
|Bt| batch size
π policy
rt reward at time step t
Rt total future reward from t to T
Qπ(st, at) action value
V π(st) expected future return following π since time step t
b(st) baseline function
θ parameters of policy network
∇θ ∂X

∂θ
∇θJ (θ) objective function of policy
L epoch number
α learning rate
γ discount factor
F′ pretrained task model (including encoder g)
E episode record, including st, at, rt
G a set of samples
d cosine distance of embeddings
M number of sentences in a set G
J sentence length
h(·;n) n-gram entropy

Table 6: Notation table

A.2 Hyperparameters of A2C

Hyperparameter Value
learning rate 7e− 4
discount factor 0.99
entropy coefficient 0
value function coefficient 0.5
RMSProp epsilon 1e− 5
number of steps (finetuning) 200
number of steps (data selection) 15000

Table 7: Hyperparameters of A2C

A.3 Diversity algorithms
See 2, 3 and 5.

A.4 Sentiment analysis full results
See table 9 and 8.

Algorithm 2 Max Dispersion set diversity [MD]
Input: A batch of training samples G = {(si)Mi=1} of size M .
Output: Dispersion of the batch D(G)

1: Initialize D(G) = 0;
2: Initialize an empty set S;
3: for all si ∈ G do
4: Obtain sentence embedding v(si) by averaging all word embedding in

si;
5: Normalize v(si) by softmax function;
6: for all sj ∈ G if sj ̸= si and tuple (i, j) not in S and tuple (j, i)

not in S do
7: Obtain sentence embedding v(sj) by averaging all word embed-

ding in sj ;
8: Normalize v(sj) by softmax function;
9: Compute Cosine distance d(v(si), v(sj);
10: D(G) = D(G) + d(v(si), v(sj));
11: Add tuple (i, j) to S;
12: end for
13: end for
14: return D(G)

Algorithm 3 Quickhull algorithm
Input: A batch of training samples G = {(si)Mi=1} with size M ; M ≥ 2
Output: Convex hull set h
1: Initialize empty set convex hull h;
2: Initialize empty dictionary d;
3: for all s ∈ G do
4: for all s′ ∈ G that s′ ̸= s do
5: Compute Cosine similarity d(v(s), v(s′)) between sentence em-

bedding of s and s;
6: d[(s, s′)] = d(v(s), v(s′))
7: end for
8: end for
9: Sort d in descending order
10: Add the two sentence sp and sq that has the max distance to convex hull

set h. Line formed by sp and sq segment the space into left half S1 and
right half S2.

11: Call subroutine FindHull(S1, sp, sq )
12: Call subroutine FindHull(S2, sq , sp )
13: return Convex hull set h

books dvd electronics kitchen
w/o tgt All 77.58 79.88 83.50 84.50

Rand 76.39 79.30 82.99 84.01
Mtl 77.20 79.90 84.25 85.50

Meta 76.10 79.60 83.90 85.10
w/o tgt MD 79.67 84.08 85.29 87.38

CV 79.47 83.08 84.58 87.48
GE 80.08 83.58 85.68 87.88

w/ tgt Sim 78.97 82.07 82.28 86.18

Table 8: Sentiment Analysis accuracy on one test domain[%].
The “book” column is tested on the book domain, while using
other three domains for training.

Algorithm 4 Subroutine: FindHull
Input: A batch of training samples S; point p and q.

1: From the given set of points in S, find farthest point f
2: Add point f to convex hull set h. Three points p, q, and f partition the

remaining points of S into 3 subsets: S0, S1, and S2, where S0 are points
inside triangle pqf , S1 are points on the right side of the line from p to f ,
and S2 are points on the right side of the line from f to q.

3: Call FindHull(S1, p, f )
4: Call FindHull(S2, f , q)
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Algorithm 5 Graph entropy based set diversity
[GE]
Input: A batch of training samples G = {(si)Mi=1} with size M
Output: Graph entropy G(G)

1: Initialize G(G) = 0;
2: Initialize empty dictionary d;
3: for all s ∈ G do
4: for all s′ ∈ G that s′ ̸= s do
5: Compute Cosine similarity d(v(s), v(s′)) between sentence em-

bedding of s and s;
6: d[s] = d[s] + d(v(s), v(s′));
7: end for
8: end for
9: for all s ∈ G do
10: Initialize distance entropy of s: I(s) = 0;
11: for all s′ ∈ G that s′ ̸= s do
12: Compute Cosine similarity d(v(s), v(s′)) between sentence em-

bedding of s and s′;
13: Compute relative frequency of distance f(d(v(s), v(s′)))
14: Update I(s) according to equations in section 2.3.3
15: end for
16: G(G) = G(G) + I(s);
17: end for
18: return G(G)

Domain All Rand Mtl Meta MD CV GE DS
apparel 49.43 50.47 47.65 49.92 50.53 50.48 50.78 49.95
auto 56.48 57.07 59.46 56.32 76.81 76.94 75.49 78.03
baby 50.42 51.09 50.80 50.06 50.86 52.95 53.12 52.81
beauty 54.03 54.93 55.89 52.26 65.43 65.43 65.03 65.97
camera 49.82 50.30 50.05 49.78 49.91 49.98 49.66 50.32
phones 52.79 53.77 53.93 52.51 62.13 61.81 61.18 61.98
computer 55.17 56.16 56.20 52.99 66.09 66.00 65.54 67.54
food 56.02 56.93 60.73 58.41 80.57 80.40 78.94 81.76
grocery 53.06 54.81 57.86 57.73 72.23 72.04 71.59 73.10
health 50.92 51.10 49.95 51.03 49.94 49.96 51.11 49.68
jewelry 56.63 57.92 58.98 58.15 75.77 75.56 74.84 76.81
magazines 50.78 50.56 50.42 50.03 51.15 51.23 50.94 50.97
music 50.05 50.27 50.08 49.60 50.08 50.20 50.20 50.03
instrs 59.15 59.55 61.88 56.41 82.92 82.82 81.40 84.45
office 56.84 59.28 61.87 58.14 82.92 82.23 80.58 83.73
outdoor 55.81 57.39 58.23 54.25 72.92 72.60 72.44 74.37
software 49.70 50.45 50.73 49.92 52.30 52.37 52.12 51.90
sports 51.08 51.13 49.97 49.98 50.66 50.68 50.70 50.25
tools 55.95 56.04 62.50 48.81 85.71 85.71 83.33 86.31
toys 50.07 50.82 50.20 50.35 51.03 51.02 51.38 50.17
video 51.65 50.72 50.08 50.68 50.50 50.70 50.85 50.20

Table 9: Sentiment analysis accuracy [%] on unknown
domains.

4945



Proceedings of the 29th International Conference on Computational Linguistics, pages 4946–4951
October 12–17, 2022.

Generate-and-Retrieve: use your predictions to improve retrieval for
semantic parsing

Yury Zemlyanskiy∗ † Michiel de Jong∗ † Joshua Ainslie‡ Panupong Pasupat‡
Peter Shaw‡ Linlu Qiu‡ Sumit Sanghai‡ Fei Sha‡

†University of Southern California ‡Google Research
{yury.zemlyanskiy,msdejong}@usc.edu

{jainslie,ppasupat,petershaw,linluqiu,sumitsanghai,fsha}@google.com

Abstract

A common recent approach to semantic pars-
ing augments sequence-to-sequence models
by retrieving and appending a set of training
samples, called exemplars. The effectiveness
of this recipe is limited by the ability to re-
trieve informative exemplars that help produce
the correct parse, which is especially challeng-
ing in low-resource settings. Existing retrieval
is commonly based on similarity of query and
exemplar inputs. We propose GandR, a re-
trieval procedure that retrieves exemplars for
which outputs are also similar. GandR first
generates a preliminary prediction with input-
based retrieval. Then, it retrieves exemplars
with outputs similar to the preliminary predic-
tion which are used to generate a final predic-
tion. GandR sets the state of the art on multiple
low-resource semantic parsing tasks.

1 Introduction

A common and successful approach to structured
prediction problems (Li et al., 2021; Chen et al.,
2020) is to treat the gold structure as a sequence and
fine-tune a sequence-to-sequence model such as T5
(Raffel et al., 2020) or BART (Lewis et al., 2020).
However, the performance of fine-tuned models
suffers in low resource scenarios where available
training data is limited relative to the complexity
of the task (Chen et al., 2020).

Existing work (Pasupat et al., 2021; Gupta et al.,
2021; Wang et al., 2022) has found that retrieving
related training samples, denoted exemplars, and
appending the retrieved input-output pairs to the
sample input before processing the sample can im-
prove performance in low resource settings. In prin-
ciple, all information from exemplars is available
to the model during training and could be stored in
model parameters. However, in practice the model

∗Work primarily done at Google Research.

may not successfully retain all information, and re-
minding the model of salient input-output patterns
at test time appears to help.

That raises the question: what exemplars are
most informative for the model? Existing work fo-
cuses on retrieving exemplars for which the input is
partially similar to the test input, effectively answer-
ing “What is the output for similar inputs?”. In this
work we explore whether there is complementary
information in exemplars that answer the inverse
question, “What is the input for similar outputs?”.

We propose Generate-and-Retrieve (GandR), a
method to retrieve exemplars with similar output
as well as input. As the true output of a sample is
in general unknown, GandR proceeds in two steps.
First, a preliminary prediction is generated using
retrievals with similar input only. Then, a new
set of exemplars is retrieved based on a relevance
measure that balances the similarity of the inputs
and the similarity of the preliminary prediction and
the exemplar output. Figure 1 provides an overview
of the method.

We evaluate GandR in the setting of task-
oriented semantic parsing, a core component of
widely used virtual assistants. We show that sim-
ilarity in output space provides a complementary
signal to input similarity, yielding retrievals that
prove more informative for the model. Moreover,
for many structured prediction tasks the output
space is more structured than the free-form input
text, so that simple, non-learned distance measures
work well for outputs even when inputs are lexi-
cally dissimilar. Table 5 demonstrates an example
where our proposed similarity function retrieves an
example that is somewhat less similarly phrased but
with more similar output, and the model produces
a better prediction as a result. Finally, the model
has the opportunity to verify that its preliminary
predictions are valid outputs in the target language.

The proposed method strongly improves per-
formance in low-resource settings for semantic
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Figure 1: Overview of GandR. First, GandR generates a preliminary prediction using an input augmented with
exemplars with similar inputs. Then, GandR retrieves exemplars based on a relevance measure balancing input
similarity and similarity between the preliminary prediction and exemplar outputs, and generates a final prediction
based on these exemplars.

parsing, achieving state of the art results for low-
resource and transfer benchmarks in MTOP (Li
et al., 2021) and TopV2 (Chen et al., 2020).

2 Method

We approach semantic parsing as a conditional lan-
guage generation task and apply a T5 sequence-to-
sequence model (Raffel et al., 2020) to predict a
parse y given a query x. For each sample, we re-
trieve K = 4 relevant training exemplars sampled
according to a relevance scoring function. We ap-
pend the retrieved input-output pairs to the sample
input and apply the T5 model to the augmented
input to predict a parse output. In particular, let
(x′1, y

′
1), . . . , (x

′
K , y

′
K) denote the retrieved input-

output pairs, then the augmented input is

x′ = x || x′1 & y′1 || x′2 & y′2 || . . .

Our approach closely follows that of Pasupat et al.
(2021), differing primarily in the choice of rele-
vance function. During evaluation we retrieve the
top K most relevant exemplars. During training,
we sample retrievals according to a geometric distri-
bution over the relevance score rank. In particular,
the probability that we retrieve an exemplar is given
by p(1 − p)r where r is the rank of the exemplar
according to relevance score and p is a temperature
hyperparameter.

In Pasupat et al. (2021), the relevance score is
given by the inner product of Universal Sentence
Encoder (Cer et al., 2018) encodings of the can-
didate input and the sample input. We found that
a simple TF-IDF (Ramos et al., 2003) similarity
baseline achieves comparable or better results.

Our proposed approach, GandR, builds on the
input-similarity baseline by constructing a hybrid

similarity measure that takes into account not only
the similarity between sample and candidate inputs,
but also the similarity between the sequence pre-
dicted by the model and the candidate output. See
Figure 1 for an overview. First, GandR generates a
preliminary prediction using an input augmented
with exemplars with similar inputs. Then, GandR
retrieves exemplars based on a hybrid similarity
measure over inputs and outputs, and generates a
final prediction based on these exemplars.

Specifically, let ŷi be preliminary prediction,
then the proposed output similarity between sam-
ples i and j is given by the TF-IDF similarity be-
tween the predicted structure (in our case, the set of
intents and slots) and the structure of the true parse
yj . Our proposed relevance score is a weighted
sum of input and output similarity (see Appendix A
for detailed description on how output similarity is
computed):

Rij = (1− α)TF-IDF(xi, xj) + αTF-IDF(ŷi, yj)

2.1 Training

For simplicity, we train GandR in two stages. We
start training with TF-IDF input relevance scoring,
yielding model M1. Model M1 is used to gener-
ate GandR preliminary predictions during training
and evaluation. We continue training M1 for the
remaining training steps, yielding M2, which is
used to generate final predictions augmented with
retrievals from M1. Note that this two-stage train-
ing is for convenience only, and it is possible to
use a single set of weights Msingle to generate pre-
liminary and final GandR predictions. In that case,
Msingle needs to be trained with a mix of input-
only and GandR retrieval augmentations to ensure
it is able to use either effectively.
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Model MTOPboot MTOP1k MTOP25% TOPv2W TOPv2R

Reptile (Chen et al., 2020) 77.7 70.5
RAF (Shrivastava et al., 2022) 78.7
CASPER (Pasupat et al., 2021) 73.3 / 83.9
T5 72.9 / 83.3 62.8 78.5 79.2 68.8
T5 with input TF-IDF 74.9 / 84.5 67.2 79.4 79.9 71.0
GandR 76.4 / 84.6 67.8 80.1 80.5 71.7

Table 1: Results on semantic parsing benchmarks. We report the percentage exact match between true and pre-
dicted labels as sequences. Results are on test set for all benchmarks except MTOPboot, where we report on dev to
remain comparable with CASPER.

3 Related Work

Sequence-to-sequence models (Raffel et al., 2020;
Lewis et al., 2020) have achieved state-of-the-art
performance on task-oriented semantic parsing
(Li et al., 2021; Chen et al., 2020; Aghajanyan
et al., 2020) as well as other structured prediction
tasks (Raffel et al., 2020). The general approach
is to pre-train on language modeling and perform
fine-tuning on the specific domain of interest.

Several works augment the input with retrieved
exemplars from the training data, with differing
methods for selecting informative examples. Pa-
supat et al. (2021) and Gupta et al. (2021) retrieve
exemplars with similar input encodings from a pre-
trained neural encoder, evaluating on semantic pars-
ing. Wang et al. (2022) retrieves examplars for
which the input has high BM25 similarity with the
sample input, with good performance on language
generation. We adopt a similar approach with TF-
IDF similarity as a baseline for semantic parsing.

Black et al. (2021) and Das et al. (2021) learn
dense retrievers in the spirit of Karpukhin et al.
(2020), providing another path to incorporate label
information for retrieval. Izacard et al. (2022) pro-
poses other methods to fine-tune a dense retriever.
These approaches require training a separate model
specifically for retrieval, possibly with additional
learning signal. In contrast, we employ a sparse
similarity measure over model predictions that are
produced incidentally in the course of fine-tuning
the main model.

Selecting relevant training exemplars is also im-
portant for in-context prompting (Liu et al., 2021b).
Similar to related fine-tuning literature, work in this
direction uses either a pre-trained (Gao et al., 2020)
or fine-tuned (Liu et al., 2021a) sentence encoder
to retrieve exemplars.

Dataset #Train #Dev #Test
MTOP 15667 2234 4385
MTOP1k 1096 2234 4385
MTOP25% 3916 2234 4385
TOPv2S 83703 11967 27336
TOPv2W 176 147 5682
TOPv2R 493 337 5767

Table 2: Dataset statistics: the number of examples per
dataset and split.

Model MTOP TOPv2S

RAF 87.1
CASPER 86.4
T5 85.7 86.9
T5 input TF-IDF 86.4 87.0
GandR 86.4 87.0

Table 3: Performance on high-resource settings.

4 Experiments

4.1 Setup

We evaluate GandR and baselines on semantic pars-
ing benchmarks MTOP (Li et al., 2021) and TOPv2
(Chen et al., 2020), focusing on low-resource and
transfer settings. MTOP is a medium-sized seman-
tic parsing dataset used in Pasupat et al. (2021),
for which we evaluate on the domain bootstrap-
ping setting in which one of the domains is lim-
ited to a very small amount of training data. We
also evaluate on low-resource settings MTOP1k and
MTOP25% in which we randomly sample 1k and
25% of training samples, respectively. TOPv2 is
centered on transfer to low-resource domains: mod-
els are trained on a set of high resource-domains
denoted as TOPv2S and then fine-tuned on low-
resource Weather and Reminder domains1, denoted

1We are using 25 SPIS low resource split from Chen et al.
(2020).
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as a function of output similarity weight α.
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Figure 3: Performance on the development set of
MTOP1k as a function of the number of retrieved ex-
emplars K.

as TOPV2W and TOPV2R. We show the sizes of
datasets and splits in Table 2. See Appendix B for
details on the training setup.

4.2 Main results

The results of our primary experiments are shown
in Table 1. We find that input TF-IDF is a strong
baseline, rivaling or improving over prior work.
Further, GandR retrieval outperforms all baselines,
setting the state of the art on evaluated settings.

4.3 Ablations and discussion

Retrieval is less important for high-resource set-
tings Table 3 shows results on the high-resource
full MTOP and TOPv2 datasets. In higher-resource
settings, augmenting the input with exemplars ap-
pears to be both less effective and less sensitive
to retrieval method, with almost identical results
among methods with and without retrieval for the
highest resource TOPv2 dataset.

Retriever MTOPboot TOPv2W TOPv2R

input TF-IDF 35.9 55.1 20.1
output TF-IDF 70.3 74.8 53.7
GandR 70.0 68.7 52.5

Table 4: Template recall@K=4 on the development sets
for MTOPboot, TOPv2W and TOPv2R.

Using hybrid similarity leads to better re-
trieval quality Figure 2 displays MTOPboot per-
formance as a function of TF-IDF output weight
α. The results demonstrate that input and output
similarity signals are strongly complementary. See
Figure 4 and Figure 5 in the Appendix for similar
experiments on the MTOP1k and MTOP25% bench-
marks.

Considering output similarity leads to higher
template recall Following Pasupat et al. (2021),
we compute template recall@K as a proxy met-
ric for retrieval. This measure corresponds to the
proportion of evaluation samples for which at least
one of the top K retrievals has the same template
(identical intents and slots) as the gold parse. Re-
sults show (Table 4) that considering output as well
as input similarity increases template recall. We
note that output TF-IDF has similar or higher tem-
plate recall than GandR even though it has lower
performance. Ultimately, template recall is only
a proxy, and we are really interested in retrieval
informativeness; GandR’s performance shows that
balancing input similarity and template recall leads
to exemplars that are most helpful for the model.

Hybrid similarity helps across different num-
bers of retrieved exemplars Figure 3 shows that
GandR outperforms input TF-IDF similarity on
MTOP1k when we retrieve different number of ex-
emplars: 1, 2 or 4. See Figure 6 in the Appendix for
a similar experiment on the MTOP25% benchmark.

4.4 Error analysis
The primary motivation for GandR is that hybrid
similarity leads to more informative exemplars. In-
formativeness can only be objectively measured
through model performance, but our motivating in-
tuition appears to be borne out by samples in the
data. We observe a number of different cases for
which output or hybrid-similarity retrieval can help.
Table 5 shows an example of a case for which in-
put TF-IDF retrieves an irrelevant example with
lexical overlap, while GandR retrieves an example
with both lexical and parse overlap, leading to a
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Input sample

x: Could you connect me to the Musicals group
y: [IN:CREATE_CALL [SL:GROUP Musicals] ]

Training sample with similar input

x1: musicals in windham this weekend
y1: [IN:GET_EVENT [SL:CATEGORY_EVENT

musicals ] [SL:LOCATION windham ]
[SL:DATE_TIME this weekend ] ]
ŷ: [IN:CREATE_CALL [SL:CONTACT me]
[SL:GROUP Musicals] ]

Training sample with similar input and label

x1: can you please send text to the
development group
y1: [IN:SEND_MESSAGE [SL:GROUP

development]]
ŷ: [IN:CREATE_CALL [SL:GROUP Musicals] ]

Table 5: Input TF-IDF retrieves an exemplar with lex-
ical overlap (‘musicals’) that is not relevant to the sam-
ple. The GandR retrieval balances lexical and label sim-
ilarity and leads to a correct prediction. Single repre-
sentative exemplar out of 4 displayed for each method.
See Table 9 in the Appendix for all retrieved exemplars.

correct prediction. Using preliminary predictions
for retrieval can also allow the model to verify
whether its predictions are correct. A common
simple case when this can help is if the model gen-
erates a prediction that is dissimilar to any samples
in the training set in which case the model may
reconsider whether that prediction is correct (Table
7). Considering output similarity does come with
tradeoffs. Table 8 demonstrates a situation where
output similarity distracts the model away from a
lexically similar and informative exemplar and the
model is wrong as a result.

5 Conclusion

We propose GandR, a new method for structured
prediction that generates a preliminary prediction,
retrieves training exemplars with similar outputs
(and similar inputs), and augments the input with
the retrieved exemplars to generate a final predic-
tion. We demonstrate that using output similarity
yields improvements for semantic parsing in low-
resource settings, achieving state of the art results
on several semantic parsing benchmarks.
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Abstract

Generalized text representations are the foun-
dation of many natural language understanding
tasks. To fully utilize the different corpus, it is
inevitable that models need to understand the
relevance among them. However, many meth-
ods ignore the relevance and adopt a single-
channel model (a coarse paradigm) directly for
all tasks, which lacks enough rationality and
interpretation. In addition, some existing works
learn downstream tasks by stitches skill block
(a fine paradigm), which might cause irrational
results due to its redundancy and noise. In
this work, we first analyze the task correlation
through three different perspectives, i.e., data
property, manual design, and model-based rel-
evance, based on which the similar tasks are
grouped together. Then, we propose a hierarchi-
cal framework with a coarse-to-fine paradigm,
with the bottom level shared to all the tasks, the
mid-level divided to different groups, and the
top-level assigned to each of the tasks. This
allows our model to learn basic language prop-
erties from all tasks, boost performance on rele-
vant tasks, and reduce the negative impact from
irrelevant tasks. Our experiments on 13 bench-
mark datasets across four natural language un-
derstanding tasks demonstrate the superiority
of our method.

1 Introduction

Pre-trained language models have achieved great
success on various natural language processing
(NLP) tasks. Meanwhile, pre-train-then-fine-
tuning has gradually become the mainstream
paradigm (Devlin et al., 2019; Liu et al., 2019b;
Yang et al., 2019). The pre-training process aims
to learn a general language representation from
the large-scale corpus. Such representations can
be further fine-tuned on downstream datasets and
perform specific tasks. Though great performance

†These authors contributed equally to this work.
*Corresponding author.

has been achieved, it is costly to fine-tune and save
independent representation for each task. There-
fore, researchers propose several multi-task learn-
ing methods (Phang et al., 2018; Liu et al., 2019a;
Clark et al., 2019b) using a single-channel model
(a coarse paradigm) to solve multiple tasks.

Inspired by human learning, multi-task learning
believes that tasks can interact and boost each other.
Therefore, to obtain a more robust representation
that can handle a variety of tasks, a straightforward
idea is to fine-tune a pre-trained model on many
tasks simultaneously. Numerous previous studies
have been conducted along this path. For example,
MT-DNN (Liu et al., 2019a) uses a transformer-
based model as a shared encoder and trains it on
multiple downstream tasks (as shown in the left
side of Figure 1). By this coarse paradigm, the
representation model can be more generalized and
robust. Although it has been observed that some
combinations of tasks yield improvements, this is
not always the case. Researchers (Aribandi et al.,
2021) have also found that the impact between
tasks is a double-edged sword, meaning that some
tasks may also hurt others. Indeed, modeling het-
erogeneous tasks often require distinct representa-
tion spaces. For example, naively training natural
language inference (NLI) tasks with different hy-
pothesis types together can lead to performance
declines.

Some recent work proposes sparsely activating
multiple modules for different tasks (Tang et al.,
2022) to mitigate the negative effects across tasks.
These fine paradigms activate distinct modules
according to predefined skills for learning down-
stream tasks (as shown in the middle part of Fig-
ure 1). However, the number of parameters is also
multiplied when multiple modules are activated
for a task. This problem becomes even more se-
vere when large pre-trained language models are
applied.

To address the aforementioned problems, we
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Figure 1: The illustration of hard sharing structure, partial sharing structure, and our hierarchical sharing structure.
The three tasks and the corresponding activated paths are in different colors. In our approach, the first and second
are two relevant tasks, so they share the same task-clustering layers. Finally, they are fed into different task-specific
layers.

first conduct a correlation analysis on four natural
language understanding (NLU) categories (a total
of 13 datasets) and find that some tasks can comple-
ment one another, while others cannot. Based on
these observations, we propose three measures (i.e.,
data property, manual design, and model-based
relevance) to categorize the tasks into different
groups.

Then, inspired by recent studies (Kovaleva et al.,
2019; Rogers et al., 2020) that different layers learn
information in different levels, we design a novel
hierarchical sharing framework, dubbed HMNet,
a coarse-to-fine multi-task learning paradigm for
natural language understanding (as shown in the
right side of Figure 1). Our method is a coarse-to-
fine paradigm, where the layers are divided from
the bottom up into shared, task-clustering, and task-
specific levels. We design the bottom layers as
shared, which are optimized by all tasks. There-
after, we employ distinct layers for different groups
obtained in the previous step. In this way, the rel-
evant tasks grouped in the same cluster can boost
each other, while the negative impact from tasks
in other groups can be avoided. The top layers are
totally separated for distinct tasks, so that some
task-specific information can be well-captured. It
is worth noting that each task only activates a sin-
gle module in each layer, so our model does not
require additional parameters during inference. Ex-
tensive experiments on 13 datasets show that our
method can achieve better performance on most
NLU tasks, demonstrating its superiority over ex-
isting hard sharing or partial sharing structures.

Our main contributions are three-fold:
(1) We perform a series of correlation analy-

ses (i.e., data property, manual design, and model-
based relevance) on 13 NLU tasks, which sheds
light on the positive and negative effects among the
different tasks.

(2) We design a novel hierarchical sharing frame-
work, dubbed HMNet, a coarse-to-fine multi-task
learning paradigm for natural language understand-
ing. It can better leverage the positive interactions
among different tasks while reducing the negative
influence.

(3) We conduct experiments on 13 commonly
used NLU datasets and validate the effectiveness
of our proposed method. The results demonstrate
that our framework achieves highly competitive
performance while saving over 34% parameters
than the partial sharing structure.

2 Related Work

In this section, we briefly introduce some
Transformer-based pre-trained models and recent
work on multi-task learning.

2.1 Transformer-based Pre-trained Models

Transformer is a neural structure consisting of mul-
tiple stacked self-attention modules (Devlin et al.,
2019; Liu et al., 2019b; Yang et al., 2019). With
the bidirectional attention mechanism, the model
can capture contextual information from both sides
effectively. BERT (Devlin et al., 2019) proposes a
masked language modeling objective to pre-train
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a Transformer encoder, and achieves dramatic per-
formance on several natural language understand-
ing tasks (Bowman et al., 2015; Williams et al.,
2018a; Wang et al., 2019b; Zhu et al., 2021a,b).
Since then, the pre-train-then-fine-tuning paradigm
has gradually become mainstream. Researchers
propose various new pre-training strategies to fa-
cilitate the model in several aspects (Yang et al.,
2019; Lewis et al., 2020; Raffel et al., 2020). For
example, in order to obtain a more robust model,
RoBERTa (Liu et al., 2019b) adapts several tailored
training strategies and employs more data. There
are also many methods extending the pre-training
on Transformer decoders. GPT-2 (Radford et al.,
2019) is a decoder-only structure that is pre-trained
in accordance with the language generation objec-
tives. It also performs exceptionally well on many
text generation tasks. Though pre-trained models
can be fine-tuned for distinct tasks, it is costly to
maintain a separate model for each task, especially
when the model is huge.

2.2 Multi-task Learning

Multi-task learning is an integrated learning
method in which multiple tasks share the same
structure for training simultaneously. It can en-
hance the generalization and performance of each
task. Consequently, multi-task learning can also be
applied to pre-trained language models. A typ-
ical practice is to fine-tune the pre-trained lan-
guage models by conducting multiple tasks con-
currently (Liu et al., 2019a). It is reported, how-
ever, that not all tasks can boost each other, and
that noise may also be introduced (Aribandi et al.,
2021). Therefore, it is essential to analyze the rela-
tionship between tasks before training them jointly.
Some recent work proposes addressing this issue
by sparsely activating distinct modules for different
tasks (Tang et al., 2022). This allows the modules
to be trained by relevant tasks. Unfortunately, these
approaches usually rely on predefined activation
paths, and they have to activate multiple modules
in order to achieve high performance during the
inference stage. This undoubtedly increases the
delay and cost of model application.

The main differences between our method and
others are: (1) We analyze the task correlation, and
use it to group the tasks. Relevant tasks within
the same group will be used to fine-tune the same
modules, while irrelevant tasks will not interfere
with one another. (2) Our model only activates a

single module in each layer for each task, therefore
it has the same number of parameters as a single
model.

3 Proposed Method

3.1 Overview
The overview of our method is illustrated in the
right side of Figure 1. In general, there are three
different kinds of layers in our structure: shared lay-
ers, task-clustering layers, and task-specific layers.
The shared layers are in the bottom and optimized
by all tasks. The middle part is the task-clustering
layers. Tasks that are classified as relevant (intro-
duced in the next section) will optimize the same
group of layers. The top layers are task-specific,
meaning that each task has its own module.

Our method adopts a coarse-to-fine paradigm. In
this manner, the model can obtain generalized text
representations in shared layers (a coarse-grained
manner) and effectively interact and learn accord-
ing to task correlation in the task-clustering layer
(a fined-grained manner), then send it to the task-
specific layer for specific task training.

3.2 Task Relevance Analysis
Existing multi-task learning framework assumes
that all tasks can facilitate each other. However,
researchers have also reported the negative effect
caused by irrelevant tasks (Aribandi et al., 2021).
To investigate the influence of each task, we de-
vise three methods from different perspectives to
measure the task relevance.

Data Property Since all tasks we study are based
on natural language texts, we first analyze the rele-
vance between tasks through the property of their
data. Specifically, we consider the syntactic infor-
mation and employ vocabulary co-occurrence to
measure task relevance. Formally, given datasets of
two tasks denoted asDs andDt, where s and t stand
for source and target, we compute the vocabulary
co-occurrence as follows:

rcs = |Vs ∩ Vt|/|Vs|, (1)

rct = |Vs ∩ Vt|/|Vt|, (2)

where Vs and Vt are the vocabulary of the source
and target datasets, respectively, rcs measures the
ratio of words in the source dataset that are shared
with the target datasets, and rct represents the
opposite. Intuitively, a higher value of rcs indi-
cates a higher impact of the target task on the
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Figure 2: Influence of other tasks on the BoolQ dataset (left) and influence of the BoolQ dataset on others (right).

source task. Note that this metric also considers
the data size, as a larger dataset usually contains
more words. For example, MNLI (Williams et al.,
2018b), as the largest dataset, has a large vocab-
ulary co-occurrence with others. It can provide
some basic language knowledge for other tasks.
Conversely, WNLI (Wang et al., 2019b) is a small
dataset with only hundreds of samples, and it may
have limited impacts on other tasks. Due to the
space limitation, we show the entire results in Ap-
pendix A.

Manual Design Inspired by a recent work that
designs various paths for different tasks (Tang et al.,
2022), we also examine the tasks artificially. Based
on the manually designed task purpose, we divide
them into four groups. i.e., Natural language infer-
ence, sentiment classification, similarity and para-
graphing, and question answering. We assume
tasks that have the same purpose supply the same
systematic information for models. For instance,
the NLI tasks generally rely on the models’ judg-
ment according to the deep semantics information
between premise and hypothesis, while the ques-
tion answering tasks ask the model to infer the
answer from the passage according to the question.
These tasks and their category will be reported in
Section 4.1.

Model-based Relevance In addition, to manu-
ally analyze the task or data, we further propose
measuring task relevance using neural networks.
Previous studies have demonstrated the advantages
of multi-task learning (Liu et al., 2019a), notably
that relevant tasks can enhance each other’s per-
formance. Consequently, task relevance can be
inferred by comparing the performance difference
between training two tasks independently and train-
ing them jointly. Concretely, for a source and a
target task, we fine-tune two models (we use BERT
in our experiments) respectively for them. Their

average performance is denoted as fs and ft. Af-
terward, we fine-tune another model (BERT) for
the two tasks through standard multi-task learning.
The corresponding performance is denoted as fjs
and fjt. Finally, we can compute the task relevance
as the performance improvement:

rms = (fjs − fs)/fs, (3)

rmt = (fjt − ft)/ft, (4)

where rms reflects the influence of the target task on
the source task, while rmt represents the opposite.
We calculate the relevance for all tasks, and the
results about BoolQ as an example in Figure 2 to
highlight the asymmetrical relevance between tasks.
The complete form is shown in Appendix A. In Fig-
ure 2, we find that most tasks have a positive impact
on BoolQ, even though the data property and the
purpose of these tasks are very different. BoolQ,
on the other hand, harms other tasks. One possible
reason is learning for QA needs more complicated
information and learning on other tasks can sup-
ply this information to improve the performance
of BoolQ. But as for other tasks, the information
obtained by learning in BoolQ like noise damages
the learning of themselves.

Since the asymmetrical relevance between task
pairs, we consider the fully shared model is harm-
ful to some tasks in multi-task learning. Inspired
by Rogers et al., we consider that the improvement
of word-level information training in the low layer
occurs a positive impact mostly, whereas the more
negative impact is sourced from the damage of the
deep semantic learning in the middle and top lay-
ers. As a result, we propose a hierarchical sharing
method for multi-task learning. It is based on a
hierarchical sharing of the task with different rel-
evance to leverage more positive interaction and
reduce the negative impact of multi-task learning.
More detail about the structure is described in the
next section.
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3.3 HMNet

We propose a hierarchical multi-task learning
framework (HMNet) based on task relevance. It is
built on Transformer (Vaswani et al., 2017), which
has been widely applied in NLP tasks.1 We omit
the details of Transformer and refer readers to the
original paper. As shown in the right side of Fig-
ure 1, HMNet has three different kinds of Trans-
former layers from the bottom up. All tasks will
first pass the shared layers, then, each task will go
through task-clustering layers according to their
task group (introduced later). Finally, each task has
its own task-specific layer, and the associated head
is used to accomplish the task.

In the following paragraphs, we first introduce
the details of the layers, followed by the task clus-
tering process.

Shared layers The shared layers are stacked in
the bottom of HMNet. We design bottom layers
as shared since it has been demonstrated that they
capture low-level semantic or structural informa-
tion in existing pre-trained models (Jawahar et al.,
2019). We believe that such information is univer-
sally contained in all texts, so all tasks collaborate
to optimize the shared layers.

Task-clustering layers Based on our task rele-
vance analysis, we cluster the tasks into various
groups. For tasks within the same cluster, the same
(set of) clustering layers will be optimized. As
illustrated on the right side of Figure 1, the first
two tasks are grouped into one cluster, so they op-
timize the first set of clustering layers. On the
contrary, only the third task tunes the second set of
clustering layers. With the task-clustering layers,
relevant tasks can optimize the same set of param-
eters, enabling the sharing of their knowledge. In
the meantime, the irrelevant tasks can be isolated,
thereby eliminating the noise.

Task-specific layers Task-specific layers are in
the top of our HMNet. According to recent
studies (Jawahar et al., 2019), the top layers of
pre-trained language models typically learn task-
specific knowledge. Therefore, we separate all
tasks and let them have their own Transformer lay-
ers. There is also a head associated with each task-
specific layer to accomplish the task. For example,

1Other structures, such as convolutional or recurrent net-
works, may also be compatible with our method. This is left
for future work.

a linear classifier with an activation function is of-
ten applied for classification tasks.

Clustering Process In our task relevance anal-
ysis, we propose three methods to measure the
task relevance. Among them, the manual de-
sign can directly group the tasks into different
clusters. For the other two methods, we employ
an unsupervised clustering method, i.e., k-means.
Particularly, given a source task S, and n target
tasks {T1, · · · , Tn}, we can compute the relevance
scores {rST1 , · · · , rSTn} by Equation (2) or (4).2

Then, we treat the n scores as features and apply k-
means clustering algorithm. Finally, the tasks can
be grouped into k clusters. The grouping results
are given in the Appendix A.

Remark Different from traditional multi-task
learning that shares all layers among all tasks, our
HMNet only shares layers at the bottom (a coarse-
grained manner). The higher layers are shared by
only relevant tasks or used alone(a fined-grained
manner). Since the layers close to specific tasks
are separated, our method can alleviate the contra-
diction between tasks. On the other hand, each task
only activates one channel at each layer, so the total
parameters are comparable with a single-channel
model. This is much more efficient than sparsely
activated structures.

3.4 Optimization

HMNet is based on a multi-layer Transformer,
which is similar to existing pre-trained language
models, such as BERT (Devlin et al., 2019). There-
fore, we use BERT as the backbone model to ini-
tialize the parameters in each layer. Then, each
task has its own path (as described earlier), and
we can use it to fine-tune the corresponding layers.
The training process our method is summarized
in Algorithm 1. In each epoch, a mini-batch bt is
packed, and the HMNet is updated by the path for
the dataset Di.

4 Experiment

4.1 Datasets and Evaluation Metrics

We conduct experiments on 13 NLU tasks and com-
pare the performance of our HMNet with other
baselines. These tasks can be grouped into four
categories:

2Since the task correlations are asymmetric, scores such
as rTS may also work.
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Algorithm 1: Training Process
Initialize model parameters from pre-trained BERT;
Set the max number of training epoch Em;
Prepare data
for i in 1, 2, · · · , N do

Pack the dataset Di into minibatch Bi;
end
Multi-task learning
for epoch t in 1, 2, · · · , Em do

Merge all the datasets: B = B1 ∪B2 · · · ∪BN ;
Shuffle B;
for bt in B do

// bt is a mini-batch of task t;
Feed bt into shared layers→ bst ;
Feed bst into task-clustering layers→ bct ;
Feed bct into task-specific layers→ btt;
Feed btt into task-specific head;
Compute loss and gradient;
Update model;

end
end

(1) Natural Language Inference (NLI): These
tasks aim to determine whether a hypothesis is
entailed, contradicted, or undetermined given a
premise. They require the model to measure the log-
ical coherence between two sentences. We select
six datasets: MNLI (Williams et al., 2018b), QNLI,
RTE, WNLI (Wang et al., 2019b), CB (Wang et al.,
2019a), and SNLI (Bowman et al., 2015).

(2) Sentiment Classification: These tasks ask
the model to classify the sentiment polarity of
a sentence (i.e., positive or negative). We use
IMDB (Maas et al., 2011) and SST-2 (Socher et al.,
2013) datasets.

(3) Similarity and Paraphrase: These tasks
aim at determining whether two sentences have
the same or similar meaning. The semantic rela-
tionship between two sentences is vital in these
tasks. We choose three commonly used datasets:
QQP (Wang et al., 2019b), STS-B (Cer et al., 2017),
and MRPC (Dolan and Brockett, 2005).

(4) Question Answering: This task requires
the model to answer a question by reasoning on a
given paragraph. BoolQ (Clark et al., 2019a) and
MultiRC (Khashabi et al., 2018) datasets are used.

Detailed statistics of benchmark datasets are
mentioned in Appendix B.

4.2 Baseline

We compare with our HMNet with three other train-
ing methods:

Single-Task fine-tuning: We fine-tune a pre-
trained BERT for each task independently. As a
result, 13 models are obtained in total.

Multi-Task fine-tuning: Following MT-
DNN (Liu et al., 2019a), we use the pre-trained
BERT as a shared encoder and add a task-special
head for each task. During fine-tuning, all parame-
ters are optimized by all tasks jointly. With multi-
task learning, only one model needs to be trained
and saved.

SkillNet-style fine-tuning: This is a sparsely
activated multi-task learning structure proposed
by Tang et al. (2022). They design seven basic
skills, such as getting the semantic meaning of a
sequence and understanding a question. Then, they
divide typical NLU tasks into five categories, each
requiring a unique skill combination. The skill
module is implemented by adding multiple FFN
layers into the original Transformer structure. This
model is also initialized by a pre-trained BERT.
However, as each task activates multiple skill mod-
ules, compared with our method and other base-
lines, on average 1.0×more parameters (i.e., 223M
vs. 110M) are used in inference.

4.3 Implementation details
For a fair comparison, all methods are initialized by
the bert-base-uncased checkpoint with the
same seed. The batch size is 32, the max length of
sequence is 512, and the initial learning rate is 2e-5,
which is linearly decayed. AdamW (Loshchilov
and Hutter, 2019) optimizer is applied. We train all
methods for three epochs.

For the NLI and text similarity & paraphrase
tasks, similar to the vanilla BERT, we concate-
nate the sentence pair by adding a separator token
[SEP] and a head token [CLS]. For the sentiment
classification task, the input is a single sentence,
so we only add a head token [CLS]. For the QA
task, we concatenate the question, passage, and
answer, then separate them by two [SEP] tokens.
A head token [CLS] is also added at the begin-
ning of the sequence. All tasks are performed in
similar ways, namely processing the embedding of
the [CLS] token by a linear layer with a softmax
activation function, and output the probability of
each category. The default setting of HMNet has
eight shared layers, two task-clustering layers, and
two task-specific layers.

4.4 Experimental Results
Table 1 shows the results on all datasets. In general,
our HMNet performs better than other baselines on
most datasets and achieves the best result in terms
of the average score. This clearly demonstrates the
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Metric Single-task Multi-task SkillNet HMNetd HMNetmd HMNetm

NATURAL LANGUAGE INFERENCE
MNLI (m/mm) Acc. 85.0/84.6 84.5/84.8 84.5/84.6 84.8/84.6 84.7/85.2 84.8/84.9
QNLI Acc. 91.6 90.9 90.7 90.8 91.0 91.1
RTE Acc. 66.1 79.7 77.6 73.3 79.4 81.2
WNLI Acc. 56.3 56.3 56.3 56.3 56.3 56.3
CB Acc. 67.8 80.3 85.7 87.5 82.1 82.1
SNLI Acc. 91.0 91.3 91.1 91.0 91.4 91.1

SENTIMENT CLASSIFICATION
IMDB Acc. 93.9 93.9 94.1 93.8 93.9 93.9
SST-2 Acc. 92.3 93.1 92.5 93.2 92.3 93.0

SIMILARITY AND PARAPHRASE
QQP Acc. 90.9 90.7 91.0 90.9 91.0 90.9
STS-B Corr. 85.8 85.5 86.0 86.9 87.5 87.4
MRPC Acc. 83.3 81.4 85.7 88.2 90.4 88.5

QUESTION ANSWERING
BoolQ Acc. 71.4 77.9 80.7 79.0 79.1 80.3
MultiRC F1a 65.2 68.4 68.1 68.9 66.7 68.4

Average Score - 80.4 82.8 83.5 83.5 83.7 84.0
# Params Activated - 110M 110M >166M 110M 110M 110M
# Overall Params - 110M 110M 450M 231M 240M 231M

Table 1: Results of all methods on 13 datasets. The best results are in bold. HMNet is our proposed method, and
the subscript stands for three task relevance metrics, i.e., data property (d), manual design (md), and model-based
relevance (m). During inference, SkillNet has to activate at least two channels, thus the number of parameters is
larger than 166M. In contrast, our HMNet only activates one channel at each layer, which requires less parameters.

superiority of our proposed HMNet. We further
have the following observations:

(1) Comparing the performance between single-
task and multi-task learning, it is evident that the
latter can bring improvement for most tasks. Fur-
thermore, this enhancement is related to the size of
the datasets. Specifically, for the large dataset, such
as MNLI and QQP (both of which have more than
300k training samples), the single-task learning
can perform slightly better than multi-task learning.
This implies that not all tasks can complement each
other, and for those tasks with sufficient training
data, adding extra tasks may not improve or even
degrade performance. The potential reason is that
the data in other tasks are collected from different
domains and require models with distinct capabil-
ities. Simply combining them will result in noise.
For QA tasks, multi-task learning often leads to bet-
ter performance. Indeed, QA is more complicated
than other tasks, thus training on other tasks can
be beneficial (e.g., better capture the relationship
between question and answer). Some recent stud-
ies (Aribandi et al., 2021; Aghajanyan et al., 2021)
have reported that incorporating massive tasks may
alleviate the negative effect between tasks. It is in-
teresting to investigate if our model can be further
improved by adding more tasks, and we leave this
as future work.

(2) Sparsely activated (SkillNet-style) methods
can achieve better performance than single-/multi-
task learning. Its advantages stem from two per-
spectives: First, this method groups tasks according
to their requiring skills, so the tasks rely on similar
skills can enhance one another (e.g., both NLI and
semantic similarity judgment rely on the skill of un-
derstanding how two text segments interact), while
avoiding noise from other used skills. On the other
hand, since multiple skill modules are activated,
more parameters improve the model’s capacity.

(3) Our HMNet with three different task rele-
vance measurements can consistently outperform
all baseline methods. Specifically, HMNet brings
more than 0.7% absolute improvement over multi-
task learning in terms of average score. We at-
tribute this improvement to our architecture of task-
clustering and task-specific layers. Instead of shar-
ing all layers, HMNet gradually separates the tasks
in higher layers, so that the general language knowl-
edge can be accumulated while the noise can be
filtered out. Different from SkillNet-style methods,
our HMNet only activates one channel at each layer,
so its number of parameters is identical to a vanilla
BERT. Surprisingly, HMNet with fewer parameters
can even perform better. This demonstrates again
the effectiveness of our proposed task clustering
and the hierarchical sharing structure.
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Figure 3: Influence of different numbers of shared layers
in HMNet.

4.5 Further Analysis

Influence of Shared Layers In HMNet, we de-
sign the bottom layers as fully shared, whilst the
higher layers are only shared by task clusters or are
task-specific. This approach is motivated by the
hypothesis described in Section 3.2, which argues
that the positive influence between tasks comes
from capturing more general language knowledge
at the bottom layer, and the negative impact comes
from the noise brought by task interaction in the
middle and top layers. To prove this hypothesis, we
experiment on using different numbers of shared
layers to investigate their effect. This experiment
is conducted on the MNLI and BoolQ datasets. We
train HMNet on them and report their performance
accordingly. Since only two tasks are considered,
we categorize them into two clusters, so the task-
clustering layers are transformed into task-specific.
The results are shown in Figure 3. We can observe
that the performance of MNLI has minor changes
as it contains sufficient training data. On the con-
trary, the result of BoolQ increases significantly
when shared layers are used (from zero to eight).
This reflects the advantage of multi-task learning.
However, when more shared layers are employed
(more than eight), the performance degrades. This
confirms our assumption that task-specific knowl-
edge is often learned in the upper layers, which
supports our design of gradually separating tasks
from the bottom up.

Different Metrics for Task Relevance In Sec-
tion 3.2, we devise three different metrics for
task relevance, i.e., data property, manual design,
and model-based relevance. Their performance is
shown in Figure 4 and the right side of Table 1. We
can see: First, HMNet can outperform other base-

Data Property Manual Design Model-based Relevance
81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

85.0

Av
er

ag
e 

Sc
or

e 
(%

)

Multi-task
{4,6,2}
{6,4,2}
{8,2,2}

Figure 4: Results of average score with respect to differ-
ent layer combinations.

lines with any task relevance assessment. This high-
lights the significance of task clustering in multi-
task learning. Moreover, the result demonstrates
the adaptability of our method with regard to the
evaluation of task relevance. As an early explo-
ration of the effect of task relevance on multi-task
learning, the three metrics we have provided are
very preliminary. We believe that a more accurate
task relevance could bring further improvement.
Second, the model-based similarity performs the
best. With the help of deep neural models, the task
relevance in high dimensions can be better captured.
Such relevance is hard to be observed by humans or
extracted from shallow data properties. In addition,
quantifying the tasks’ relevance from the perspec-
tive of the model can narrow the gap between task
clustering and multi-task learning. Notably, though
better performance is obtained, the model-based
metric needs additional cost on model training. The
other two metrics can avoid it.

Influence of Different Layer Combinations
HMNet has three different kinds of layers, so their
different combinations may influence the perfor-
mance. We conduct an experiment by tuning the
number of layers at each level. For clarity, we use
{x, y, z} to denote a HMNet with x shared layers,
y task-clustering layers, and z task-specific layers.
Experimental results are shown in Figure 4. Using
eight shared layers yields the optimal performance.
In comparison to traditional multi-task learning
that shares all layers, HMNet with more than six
shared layers can obtain better results. This im-
plies that sharing all layers is not an effective strat-
egy for multi-task learning, and our hierarchical
sharing structure can mitigate the negative effect
across tasks. Besides, when equipping with the

4959



model-based similarity, HMNet outperforms multi-
task learning with any combination of shared, task-
clustering, and task-specific layers. This reflects
the robustness of our method and validates that the
excellent performance of our method stems from
our HMNet architecture and the consideration of
task relevance rather than finely tuned hyperparam-
eters.

5 Conclusion and Future Work

In this work, we explore task correlation and
built a hierarchical multi-task learning framework.
Our framework adopts a coarse-to-fine manner, in
which the tasks are gradually separated from the
bottom up. By doing so, it can reap the benefits
of multi-tasking learning at the lower layers while
avoiding its harmful impact on the upper layers.
Extensive experiments on several challenging NLU
datasets showed that our model achieves better per-
formance than existing strategies. Further experi-
ments indicated that our methods are flexible with
the choice of task relevance metrics, and robust
with the hyperparameter selection. As a prelim-
inary study on incorporating task relevance into
multi-task learning, there are several potential fu-
ture directions, such as new backbone models and
task relevance metrics.
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Figure 5: Per head attention maps’ cosine similarity
between fine-tuned model and co-trained model using
positive task pair(QQP & RTE). Darker colors means
greater differences. left: QQP right: RTE

Figure 6: Per head attention maps’ cosine similarity
between fine-tuned model and co-trained model using
negative task pair(MRPC & RTE). Darker colors means
greater differences. left: MRPC right: RTE

A The Clustering Results

As described in Section 3.2, we group these tasks
from three prospects, i.e., data property, manual
design, and model-based relevance.

As for the data property of datasets, Table 2 re-

ports the task relevance of all 13 datasets. Based on
these features, we cluster all tasks into three groups
using k-means. {WNLI, CB}, {MultiRC, RTE,
SST-2, MRPC, STS-B}, {QQP, QNLI, BoolQ,
IMDB, SNLI, MNLI} is the grouping results.

As for the model-based relevance, the results are
shown in Table 3. Similarly, we cluster these tasks
using k-means. The outcomes are {CB, WNLI,
QQP, RTE}, {MRPC, QNLI, BoolQ, IMDB, SST-
2}, {MultiRC, STS-B, SNLI, MNLI}.

B Dataset Statistics

The statistic of all datasets are shown in Table 4.

C Attention Map Similarity

Following previous work (Liu et al., 2019a; Rogers
et al., 2020), we compare the attention maps be-
tween fine-tuned model and the co-trained model
to explore the behavior during multi-task learning.
As shown in Table 3, the relevance between RTE
and QQP is relatively positive and that between
RTE and MRPC is relatively negative. We conduct
some experiments using these tasks to explore the
training difference between positive task-pair and
negative pairs. Figure 5 compares the similarity
between positive task pair (QQP & RTE), and Fig-
ure 6 compares the negative task-pair (MRPC &
RTE). As shown in these figures, regardless of the
positive pair or negative pair, the attention map of
the bottom six layers is very similar, while that of
the top two layers is different. Compared Figure 5
with Figure 6, we can see the attention map in the
positive pair is more similar in the middle layers.
Therefore, when considering the model structure,
we set the bottom layers as shared to learn general
knowledge from all tasks. Accordingly, the higher
layers are designed as more task-specific.
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MNLI QNLI RTE WNLI CB SNLI IMDB SST-2 QQP STSB MRPC BoolQ MultiRC

MNLI 100.00% 92.83% 97.64% 99.58% 99.42% 98.50% 95.70% 99.21% 93.46% 98.29% 98.21% 93.83% 98.76%
QNLI 94.40% 100.00% 98.11% 98.32% 98.01% 95.02% 94.00% 96.55% 94.19% 97.71% 98.02% 95.31% 97.55%
RTE 52.42% 51.80% 100.00% 84.72% 81.73% 59.25% 52.99% 65.23% 52.26% 74.24% 74.11% 54.11% 66.54%

WNLI 5.50% 5.34% 8.72% 100.00% 24.80% 7.47% 5.63% 9.90% 5.51% 10.64% 9.77% 5.75% 8.78%
CB 10.62% 10.29% 16.26% 47.93% 100.00% 13.76% 10.87% 18.86% 10.61% 18.95% 18.44% 11.00% 16.15%

SNLI 69.92% 66.33% 78.35% 95.94% 91.44% 100.00% 70.87% 84.65% 68.98% 83.62% 80.12% 69.19% 80.05%
IMDB 93.74% 90.55% 96.68% 99.72% 99.67% 97.80% 100.00% 99.69% 91.86% 97.45% 97.06% 92.13% 97.41%
SST-2 44.45% 42.54% 54.44% 80.31% 79.12% 53.43% 45.60% 100.00% 44.07% 58.34% 57.02% 44.68% 56.31%
QQP 92.93% 92.11% 96.79% 99.09% 98.80% 96.63% 93.25% 97.80% 100.00% 97.67% 97.40% 93.65% 97.13%
STSB 41.08% 40.17% 57.80% 80.52% 74.18% 49.24% 41.59% 54.43% 41.06% 100.00% 67.28% 42.43% 54.52%

MRPC 43.97% 43.15% 61.80% 79.12% 77.30% 50.53% 44.36% 56.97% 43.85% 72.06% 100.00% 45.47% 57.67%
BoolQ 87.67% 87.58% 94.18% 97.20% 96.27% 91.07% 87.88% 93.19% 88.01% 94.84% 94.90% 100.00% 93.29%

MultiRC 57.48% 55.84% 72.14% 92.43% 88.03% 65.64% 57.88% 73.15% 56.86% 75.92% 74.98% 58.11% 100.00%

Table 2: Task relevance based on data property. It is computed by the vocabulary co-occurrence between the task
pair as Equation (2).

MNLI QNLI RTE WNLI CB SNLI IMDB SST-2 QQP STS-B MRPC BoolQ MultiRC

MNLI 0.00% -0.10% 15.96% 50.00% 47.31% 0.75% -0.29% 0.00% -0.14% -0.96% -1.87% 5.93% 6.42%
QNLI -0.54% 0.00% 2.13% 21.43% 26.37% 0.24% -0.09% -0.62% -0.06% 0.43% -0.69% 5.38% 1.58%
RTE -0.47% -0.32% 0.00% 7.14% 10.45% 0.25% 0.10% -0.98% -0.03% -0.10% -1.95% 0.67% 1.03%

WNLI -0.28% -0.32% -3.19% 0.00% 2.62% 0.08% 0.08% -0.74% -0.03% -0.16% -0.39% 0.59% -0.18%
CB -0.35% 0.02% 0.00% 7.14% 0.00% -0.30% -0.09% -0.49% 0.04% 0.35% -0.50% -0.17% 0.29%

SNLI -0.19% -0.64% 11.70% 64.29% 33.51% 0.00% -0.17% -1.85% -0.12% -1.23% -3.16% 3.19% 3.16%
IMDB 0.01% 0.00% -1.06% 14.29% 30.95% -0.03% 0.00% -0.74% -0.16% 0.52% 0.79% 0.38% 0.68%
SST-2 0.21% -0.02% 1.06% 14.29% 33.58% 0.09% -4.24% 0.00% 0.02% -0.76% -1.98% 4.71% 0.53%
QQP -0.77% -0.82% 3.19% 0.00% 7.48% 0.09% -0.41% -2.21% 0.00% -1.63% -2.85% 1.89% -0.19%

STS-B -0.12% 0.04% 5.85% 57.14% 13.07% 0.13% 0.03% -1.23% 0.05% 0.00% 1.15% 3.15% 1.48%
MRPC -0.21% 0.02% 2.66% 21.43% 13.07% -0.01% -0.01% 0.25% -0.11% -0.23% 0.00% 1.77% 0.22%
BoolQ -0.35% -0.36% -2.66% 21.43% 33.58% -0.15% -0.05% -0.62% -0.03% 1.18% -1.24% 0.00% -0.26%

MultiRC -0.37% -0.20% 4.26% 71.43% 10.38% -0.07% -0.04% -1.48% 0.04% 0.70% 0.27% 1.64% 0.00%

Table 3: Model-based task relevance. It is computed by performance improvement as Equation (4).

Corpus #Train #Dev #Test #Label Metrics

NATURAL LANGUAGE INFERENCE
MNLI 393K 20k 20k 3 Accuracy
QNLI 108k 5.7k 5.7k 2 Accuracy
RTE 2.5k 276 3k 2 Accuracy
WNLI 634 71 146 2 Accuracy
CB 250 57 250 2 Accuracy/F1
SNLI 549k 9.8k 9.8k 3 Accuracy

SENTIMENT CLASSIFICATION
IMDB 25k 0k 25k 2 Accuracy
SST-2 67K 872 1.8k 2 Accuracy

SIMILARITY AND PARAPHRASE
QQP 364k 40k 391k 2 Accuracy/F1
STS-B 7K 1.5k 1.4k 1 Pearson/Spearman corr
MRPC 3.7k 408 1.7k 2 Accuracy/F1

QUESTION ANSWERING
BoolQ 9.4k 3.3k 3.2k 2 Accuracy
MultiRC 5.1k 953 1.8k 2 F1a/EM

Table 4: Summary of the 13 datasets.
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Abstract

Prompting, which casts downstream applica-
tions as language modeling tasks, has shown to
be sample efficient compared to standard fine-
tuning with pre-trained models. However, one
pitfall of prompting is the need of manually-
designed patterns, whose outcome can be unin-
tuitive and requires large validation sets to tune.
To tackle the challenge, we propose AutoSeq,
a fully automatic prompting method: (1) We
adopt natural language prompts on sequence-
to-sequence models, enabling free-form gen-
eration and larger label search space; (2) We
propose label sequences – phrases with indef-
inite lengths to verbalize the labels – which
eliminate the need of manual templates and
are more expressive than single label words;
(3) We use beam search to automatically gen-
erate a large amount of label sequence candi-
dates and propose contrastive re-ranking to get
the best combinations. AutoSeq significantly
outperforms other no-manual-design methods,
such as soft prompt tuning, adapter tuning,
and automatic search on single label words;
the generated label sequences are even better
than curated manual ones on a variety of tasks.
Our method reveals the potential of sequence-
to-sequence models in few-shot learning and
sheds light on a path to generic and automatic
prompting. The source code of this paper can
be obtained from https://github.com/
thunlp/Seq2Seq-Prompt.

1 Introduction

Among ways of adapting pre-trained language mod-
els (Devlin et al., 2019; Raffel et al., 2020) to

Part of the work was done while Yankai Lin was working
at Tencent.

† Corresponding authors

A wonderful movie. It was[MASK].

Highly recommended.
A waste of time.

great
terribleSingle label word

Label sequence

A wonderful movie.[MASK]

Sequence-to-sequence model

MLM or
Sequence-to-sequence model

Manually designed template

No template

Figure 1: Single label words vs label sequences. Label
sequences are more expressive and eliminate the need
of manually-designed templates.

downstream applications, prompting, which uses a
natural language prompt to reformulate tasks as
cloze questions, has shown to be especially ef-
fective (Brown et al., 2020; Schick and Schütze,
2021a,b; Gao et al., 2021). For example, in sen-
timent classification, prompting appends a tem-
plate “It was [MASK]” to the original input, and
defines “great” and “terrible” as the label words,
whose probabilities at [MASK] indicate the prob-
abilities of the positive and negative sentiment la-
bels. Prompting possesses better sample efficiency
and performs significantly better than standard fine-
tuning in the low resource case.

However, the prompting performance is highly
sensitive to the prompt choice, whose effectiveness
needs abundant validation data to evaluate and is
difficult to predict by intuition (Gao et al., 2021;
Perez et al., 2021). Even though there exist meth-
ods that explore automatic prompt search (Schick
et al., 2020; Gao et al., 2021), they still require
substantial human efforts, for the algorithms start
from either manual templates or label words.

We propose AutoSeq, a prompting method that
is fully automatic and requires no human input. Au-
toSeq has three innovations: (1) AutoSeq adopts
sequence-to-sequence models like T5 (Raffel et al.,
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2020). Compared to masked language models
(MLM) like BERT (Devlin et al., 2019), it allows
free-form generation, enables more types of tasks,
and extends the label space for prompting. (2)
We propose label sequences, which are indefinite-
length phrases or sentences that represent each la-
bel. They are more expressive than previous single
label words and eliminate the need for a manual
template (Figure 1). (3) We design an automatic la-
bel sequence search pipeline, which first generates
a large amount of candidates by T5, then re-ranks
them by contrastive probability.

Our main experiment results on natural language
understanding datasets show that AutoSeq per-
forms significantly better than automatic prompt
search using single label words as well as no-
prompt methods like soft prompt tuning and
adapter tuning. AutoSeq also outperforms hand-
crafted prompts on a variety of tasks. We hope our
work enlightens automatic prompting and building
a universal prompt-based fine-tuning framework.

2 Related Work

Prompting. Schick and Schütze (2021a,b); Gao
et al. (2021) introduced prompting into MLM.
Though showing remarkable few-shot perfor-
mance, those models are constrained by the sin-
gle [MASK] token and are limited to classification
tasks; they also require manually-designed prompts.
In parallel, soft prompt tuning (Lester et al., 2021)
and adapter tuning (Houlsby et al., 2019; Zaken
et al., 2022; Hu et al., 2022) do not require manual
design, but they lag behind prompting in few-shot
performance (Gu et al., 2022). Recent work (Zhang
et al., 2022) tries to mitigate the gap, but it still re-
quires the help of manual prompts and thus falls
out of the scope of our discussion.

Automatic prompt search. There have been
plenty of attempts for automatic prompt search –
yet all of them require to start from either human-
designed label words or templates (Davison et al.,
2019; Jiang et al., 2020; Shin et al., 2020; Schick
et al., 2020; Gao et al., 2021; Yuan et al., 2021;
Haviv et al., 2021). In contrast, our AutoSeq is
a general-purpose, fully automatic search method
that depends only on few-shot annotations.

3 AutoSeq

3.1 Prompts for sequence-to-sequence models
We introduce the sequence-to-sequence version
of prompt-based fine-tuning, bringing in label se-
quences that are more expressive than one token.
Using sentiment classification as an example, and
given the input sentence as x, the model input can
be formulated as “x [MASK]”. We define the label
sequences for the positive class as “Highly recom-
mended.” and that for the negative class as “Not for
me.”. Then the probability of each class is tied with
that of the T5 model generating “Highly recom-
mended.” and “Not for me.” at position [MASK].
As we compare the MLM single label words to
our label sequences (Figure 1), we see that label
sequences encode richer semantic meaning and
get rid of sophisticated templates, since label se-
quences themselves can be standalone sentences.

In natural language inference (NLI) tasks1 with
two input sentences, our model input changes to
“x1? [MASK], x2” and label sequences can be “I
mean” (entailment), “For example” (neutral), and
“However” (contradiction).

Formally, we have a task-specific template T 2

and a task-specific mapping M : Y → V+ from
the task label space Y to the label sequence space
(V is the vocabulary of the model L). Then, for
a formulated example T (x) and its correspond-
ing label sequences, we use the cross-entropy loss
(the same way how T5 is trained)3 to fine-tune the
model. In inference, we compute the score of each
class y ∈ Y as the auto-regressive log-probability
of the corresponding label sequence:

q(M(y) | T (x)) =
|M(y)|∑

j=1

logPL
(
tj | t1:j−1, T (x)

)
, (1)

where PL denotes the output probability of
the sequence-to-sequence model, M(y) =
(t1, . . . , t|M(y)|) is the corresponding label se-
quence tokens, and t1:j−1 is t1, ..., tj−1.

3.2 Automatic label sequence generation
Thanks to the introduction of label sequences,
manually-designed templates are no longer needed,
and the goal of automatic prompt search is simply
to construct a label sequence mappingM that per-
forms well. Our proposed automatic label sequence

1We have details for all tasks in Appendix B.2.
2Unlike in the MLM case, the template here is simply the

way to concatenate the input and the mask.
3For regression tasks like STS-B, we use the same method

as Gao et al. (2021) to compute the loss instead.
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Thank you.
Well done.
  

Thank you.
Good luck
 

positive: Highly recommended.
negative: I hate it. 

A wonderful movie.[MASK]
A true pleasure.[MASK]

No laughs.[MASK]

…

…
Train examples for label:negative

Train examples for label:positive
…

T5

…

Highly recommended.
Enjoy!
  

Not good.
I hate it.
 

…

…

Decode w/
beam search

Contrastive
re-rank

label:positive

label:negative

Enumerate,
fine-tune,
and re-rank

Final label sequences
It’s a total failure.[MASK]

label:positive

label:negative

Figure 2: Illustration of AutoSeq. We first use T5 to generate label sequence candidates given each label’s training
instances; we then use contrastive re-ranking to get label sequences that are more label-specific; in the end we
enumerate all the combinations and re-rank by the fine-tuning performance.

generation pipeline contains three steps (Figure 2):
(1) candidate generation by using T5 and beam
search; (2) re-ranking by contrastive probability;
(3) enumerating label sequence combinations and
re-ranking by fine-tuning performance.

We first use the T5 model and beam search to
generate multiple sequence label candidates Sy ⊂
V+ for each class y. Denote Dytrain ⊂ Dtrain be the
subset of all few-shot training data of class y, we
find sy that has the top scores by this equation:

∑

(x,y)∈Dytrain

q(sy | T (x)), (2)

where q(·) is defined as Eq. (1). Since the search
space is too large, we decompose it to an auto-
regressive decoding following Gao et al. (2021):

|sy |∑

j=1

∑

(x,y)∈Dytrain

logPL(s
y
j |s

y
1:j−1, T (x)). (3)

By using beam search, we can generate a large
amount of label sequence candidates by just one
decoding pass. However, we notice that it tends to
generate similar generic label sequences across dif-
ferent classes, while we expect the label sequences
to be distinguishable for each class. For example,
in sentiment classification, both classes will get a
generic candidate of “Thank you”, which is coher-
ent to be put at the mask but does not help with the
classification (more discussion in Appendix F).

To eliminate the problem, we introduce the sec-
ond step of our automatic pipeline, which re-ranks
all the candidates based on the contrastive proba-
bility q̃(sy) of sy ∈ Sy:
∑

(x,y)∈Dytrain
q(sy | T (x))

|Dytrain|
−
∑

(x,y′)∈Dytrain
q(sy | T (x))

|Dytrain|
, (4)

where Dytrain = Dtrain\Dytrain.
Then, we define the score of a label mapping as

the sum of corresponding q̃(sy) for each class y.
To shorten the time for further re-ranking, we only
select the top n mappings with the highest scores.
Finally, we fine-tune the model over the top n label

mapping candidates, and re-rank them to find the
best one based on the few-shot development set,
which has been proved critical in the label mapping
selection (Gao et al., 2021).

4 Experiments

4.1 Main results

We use a T5-base v1.1 (Shazeer, 2020)4 model
and set the number of training examples per class
as 16 in our experiments. Datasets and experiments
details can be found in Appendix A and B. To make
our results convincing, we compare to the follow-
ing baselines in our few-shot setting: (1) parameter-
efficient tuning – soft prompt tuning (Lester et al.,
2021) and adapter tuning (Houlsby et al., 2019;
Karimi Mahabadi et al., 2022) – which fixes the pre-
trained model parameters and only tunes the soft
prompt or adapter part; (2) standard fine-tuning; (3)
manual prompts (Table D.1) proposed in Logan IV
et al. (2021); (4) automatic label word search (Au-
toWord), which has the same setting as AutoSeq
except that it is limited to only using one single
token as a label word. This can be seen as an ap-
proximation of Auto-L in Gao et al. (2021). We
also include the results from standard fine-tuning
based on the full training set.

Table 1 shows our main results. First, prompt-
based fine-tuning can significantly beat stan-
dard fine-tuning, either using manual prompts or
generated ones, let alone parameter-efficient tun-
ing. Our method AutoSeq achieves a 9.4% gain on
average compared to standard fine-tuning.

Second, AutoSeq achieves a 3.2% improve-
ment on average compared to the manual
prompts, and performs significantly better in NLI
tasks. However, for most of the sentiment clas-
sification tasks, though without engineering, the
manual prompts can still outperform AutoSeq. We
attribute it to the simplicity of these tasks, making
the manual design of prompts more intuitive.

4The released original T5 models are also fine-tuned on
downstream tasks while T5 v1.1 models exclude those tasks.
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Prompt tuning 51.4 (0.0) 24.9 (0.0) 50.6 (0.0) 50.7 (0.0) 50.0 (0.0) 59.9 (0.0) 22.6 (0.0) -4.0 (0.0)
Adapter tuning 84.7 (3.2) 27.7 (4.8) 73.6 (3.9) 86.9 (1.4) 78.6 (3.6) 84.7 (3.3) 27.6 (3.6) 4.8 (4.8)

Fine-tuning 80.9 (2.0) 36.0 (2.2) 70.1 (7.1) 76.7 (6.8) 80.9 (2.6) 84.3 (4.4) 68.3 (14.7) 0.5 (6.3)
Prompt-based FT (Manual) 91.2 (0.7) 45.2 (1.5) 85.4 (1.5) 89.8 (1.5) 85.1 (2.9) 89.1 (1.1) 80.0 (2.5) 0.7 (5.3)
Prompt-based FT (AutoWord) 87.6 (2.0) 40.4 (4.1) 82.1 (2.7) 87.0 (4.7) 75.1 (4.5) 87.4 (5.0) 82.4 (3.7) 8.5 (4.5)
Prompt-based FT (AutoSeq) 89.8 (1.1) 42.3 (3.4) 83.9 (1.3) 87.2 (2.5) 82.5 (2.7) 91.6 (1.9) 85.2 (4.3) 7.6 (9.9)

Fine-tuning (Full train set) 93.3 56.1 89.3 86.9 89.0 96.2 97.0 30.1

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)

Prompt tuning 34.6 (0.0) 34.2 (0.0) 34.1 (0.0) 54.2 (0.0) 47.3 (0.0) 81.2 (0.0) 53.8 (0.0) 10.7 (0.0)
Adapter tuning 33.5 (1.4) 33.9 (1.8) 34.7 (1.3) 55.4 (2.5) 50.2 (2.0) 77.4 (2.3) 50.7 (5.2) 6.8 (2.8)

Fine-tuning 36.1 (2.3) 36.4 (2.6) 36.0 (3.0) 58.6 (2.5) 51.8 (2.7) 74.9 (5.2) 57.0 (3.5) 11.9 (2.8)
Prompt-based FT (Manual) 41.9 (3.4) 43.0 (3.6) 40.8 (1.6) 55.5 (3.1) 53.3 (3.1) 75.6 (7.0) 55.4 (1.8) 17.3 (9.5)
Prompt-based FT (AutoWord) 49.0 (4.7) 51.3 (4.6) 56.2 (8.4) 59.9 (4.7) 48.7 (2.4) 73.5 (6.3) 60.6 (4.3) 30.0 (8.4)
Prompt-based FT (AutoSeq) 51.8 (1.8) 53.9 (2.0) 62.7 (3.7) 61.3 (4.0) 55.3 (4.9) 72.3 (4.9) 66.2 (2.6) 17.8 (13.4)

Fine-tuning (Full train set) 86.9 87.1 91.6 91.0 59.6 84.0 87.9 86.1

BoolQ CB COPA MultiRC ReCoRD WiC WSC Average
(acc) (F1) (acc) (F1) (F1) (acc) (acc)

Prompt tuning 59.5 (0.0) 36.4 (0.0) 47.0 (0.0) 54.4 (0.0) 16.3 (0.0) 50.0 (0.0) 65.4 (0.0) 42.8
Adapter tuning 45.3 (1.5) 55.3 (9.0) 47.2 (3.7) 59.1 (0.0) 23.2 (5.2) 51.7 (1.9) 60.2 (2.2) 50.1

Fine-tuning 48.1 (6.2) 66.4 (14.1) 47.4 (7.2) 59.1 (0.0) 18.1 (2.4) 50.3 (2.8) 60.4 (5.1) 52.6
Prompt-based FT (Manual) 48.3 (5.5) 75.5 (8.6) 51.6 (1.5) 56.0 (3.3) 56.6 (3.5) 52.5 (3.5) 63.5 (2.7) 58.8
Prompt-based FT (AutoWord) 50.1 (3.9) 66.1 (15.8) 49.8 (3.2) 57.9 (1.5) 56.6 (3.5) 53.1 (3.6) 62.1 (1.4) 59.8
Prompt-based FT (AutoSeq) 55.4 (8.1) 76.6 (10.7) 52.0 (6.8) 58.2 (0.9) 56.6 (3.5) 52.6 (2.9) 62.1 (1.4) 62.0

Fine-tuning (Full train set) 64.1 92.1 52.0 59.1 76.0 59.1 66.3 77.4

Table 1: Our main results using T5-base (16 training examples per class). We report mean (and standard deviation)
performance over 5 different splits. FT: fine-tuning; Manual: human-designed prompts (Table D.1); AutoWord:
automatically searched single label words. The score marked as bold means the best performance in few-shot. The
score marked with an underline means the best performance among automatic search methods.

SST-2 SNLI QQP MultiRC

Manual with eng. 90.8 64.1 56.1 57.5
AutoSeq 89.8 62.7 66.2 58.2

Table 2: Manual prompts with engineering on large
validation sets vs AutoSeq (Full results in Table E.2).

Third, using AutoSeq leads to steady gains in
a majority of tasks compared to AutoWord, indi-
cating that label sequences, which is only enabled
by using sequence-to-sequence models, are more
expressive than single label words.

The results indicate that automatic prompt gen-
eration, especially with template-free format and
label sequences, is a promising path for prompt-
based fine-tuning in low resource scenarios.

4.2 Analysis of prompt engineering

Table 2 compares manual prompts with consider-
able engineering efforts (Table E.1) to AutoSeq.
In general, AutoSeq achieves on par performance

SNLI QQP ReCoRD WSC

RoBERTa-PET 43.3 53.4 42.7 55.0
T5-AutoSeq 62.7 66.2 56.6 62.1

Table 3: Sequence-to-sequence vs MLM prompting.

with models using manual prompts across various
types of tasks, illustrating the effectiveness of our
method, especially when trial-and-error with large
validation sets is impossible.

4.3 Analysis of different pre-trained models
To highlight the advantages of using sequence-to-
sequence models, we also report the PET5 results
with RoBERTa-base in Table 3. We see that T5
performs better than RoBERTa by a large margin.
Although the comparison is not fair6 given T5 and
RoBERTa are pre-trained with different corpora,
we highlight the importance to have sequence-to-

5Without unlabeled corpora and ensemble.
6Surprisingly, T5-base has a lower GLUE average

(84.67) than RoBERTa-base (86.35) with full-dataset.
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sequence models in the world of prompt-based fine-
tuning. Furthermore, for tasks like ReCoRD and
WSC that require generation in prompting, T5 is
perfectly fit for their output formats, while MLM
models like RoBERTa require tricky workaround.

5 Conclusion

In this paper, we propose AutoSeq, a prompt-
based fine-tuning method with (1) sequence-to-
sequence models that enable free-form genera-
tion, (2) label sequences that significantly extend
the prediction space, and (3) automatic prompt
search that requires no human efforts for designing
prompts. Comprehensive experiments show that
AutoSeq significantly outperforms other prompt-
based or parameter-efficient tuning methods. We
hope AutoSeq further inspires research on explor-
ing template-free prompt-based fine-tuning.
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Fabio Petroni, Sameer Singh, and Sebastian Riedel.
2021. Cutting down on prompts and parameters:
Simple few-shot learning with language models.
arXiv preprint arXiv:2106.13353.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Association for
Computational Linguistics (ACL).

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Association for Computa-
tional Linguistics (ACL).

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. In
Advances in Neural Information Processing Systems
(NeurIPS).

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: The word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of NAACL-HLT.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text Trans-
former. The Journal of Machine Learning Research
(JMLR), 21(140).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Empirical
Methods in Natural Language Processing (EMNLP).

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In 2011 AAAI Spring Symposium Series.

Timo Schick, Helmut Schmid, and Hinrich Schütze.
2020. Automatically identifying words that can serve
as labels for few-shot text classification. In Inter-
national Conference on Computational Linguistics
(COLING).

Timo Schick and Hinrich Schütze. 2021a. Exploit-
ing cloze questions for few-shot text classification
and natural language inference. In European Chap-
ter of the Association for Computational Linguistics
(EACL).

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also
few-shot learners. In North American Chapter of the
Association for Computational Linguistics (NAACL).

Noam Shazeer. 2020. Glu variants improve transformer.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Automatic prompt construction for masked language
models. In Empirical Methods in Natural Language
Processing (EMNLP).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Empirical Methods in Natural Language Process-
ing (EMNLP).

Ellen M Voorhees and Dawn M Tice. 2000. Building
a question answering test collection. In the 23rd
annual international ACM SIGIR conference on Re-
search and development in information retrieval.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. SuperGLUE: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Informa-
tion Processing Systems (NIPS).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations
(ICLR).

4970



Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association of Computational
Linguistics (TACL), 7.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions in
language. Language resources and evaluation, 39(2-
3).

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT).

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. In Advances in Neural Information Processing
Systems, volume 34, pages 27263–27277. Curran As-
sociates, Inc.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Association for Computational Linguistics (ACL).

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun Chen.
2022. Differentiable prompt makes pre-trained lan-
guage models better few-shot learners. In Interna-
tional Conference on Learning Representations.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
ReCoRD: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint 1810.12885.

4971



A Datasets

We use datasets from GLUE (Wang et al., 2019b),
SuperGLUE (Wang et al., 2019a), and a number of
other sentence classification datasets.

For SST-2 (Socher et al., 2013), SST-5 (Socher
et al., 2013), MR (Pang and Lee, 2005), CR (Hu
and Liu, 2004), MPQA (Wiebe et al., 2005),
Subj (Pang and Lee, 2004), TREC (Voorhees
and Tice, 2000), CoLA (Warstadt et al., 2019),
MNLI (Williams et al., 2018), SNLI (Bowman
et al., 2015), QNLI (Rajpurkar et al., 2016),
RTE (Dagan et al., 2005; Bar Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009),
MRPC (Dolan and Brockett, 2005), QQP7 and STS-
B (Cer et al., 2017), we refer to Gao et al. (2021) for
their test settings. For BoolQ (Clark et al., 2019),
CB (De Marneffe et al., 2019), COPA (Roemmele
et al., 2011), MultiRC (Khashabi et al., 2018),
ReCoRD (Zhang et al., 2018), WiC (Pilehvar and
Camacho-Collados, 2019) and WSC (Levesque
et al., 2011), we take their original development
sets as the test sets.

B Experimental Details

B.1 Hyper-parameter selection
We take batch sizes from {2, 4, 8} for all few-
shot experiments. For fine-tuning, we take learning
rates from {7e-5, 1e-4, 2e-4}. For prompt-based
fine-tuning, we take learning rates from {2e-5, 6e-
5, 9e-5}, which are selected by pre-experiments on
the SST-2 and SNLI datasets. For each trial, we
follow Gao et al. (2021) and set the training steps
as 1000, validation steps as 100, then pick the best
model based on the validation results.

B.2 Automatic label sequence generation
For automatic label sequence generation, we use
T5-large, limiting the maximum length of 20
tokens (AutoSeq) and one token (AutoWord). Con-
sidering the trade-off between efficiency and effec-
tiveness, we set beam search width to 50 and set
n to 20. Given that the number of experiments is
relatively large in automatic generation, we fix the
batch size as 8 and the learning rate as 6e-5 when
training the model over the top n label mappings.

Besides our T for one-sentence classifica-
tion tasks8 and NLI tasks mentioned in Sec-
tion 3, we also design more T , always a

7https://www.quora.com/q/quoradata/
8One exception: MPQA consists of incomplete sentences,

so we adopt manual template without engineering.

SST-2 SNLI QQP MultiRC

Manual w/o templates 90.2 64.1 57.7 56.2
Manual with eng. 90.8 64.1 56.1 57.5

Table C.1: Comparison between manual label words
without templates (so the input is the same as AutoSeq),
and manual prompts with deliberate engineering.

simple concatenation of input fields and the
[MASK] token, for other complicated tasks. For
BoolQ, T is “x1? [MASK], x2”. For COPA,
T is “x1 x2? x3? [MASK], x4”. For MultiRC,
T is “x2 [MASK], x3 x1”. For WiC, T is
“x1 x2 ‘x3’ [MASK]”. Since ReCoRD and WSC
can be easily and intuitively transformed into fill-
in-the-blank tasks, we follow Schick and Schütze
(2021b) and do not process the automatic label se-
quence generation for them. To make the input
closer to pre-training, we refer to Gao et al. (2021)
for the implementation details of prompts.

C Analysis of Templates

Table C.1 gives the results of using only manual
label words with engineering and no templates (so
the mask token is concatenated the same way as
AutoSeq). This can be seen as the null prompts
from Logan IV et al. (2021). Our results further
validate that null prompts perform comparably or
even better to manual prompts in most cases.

D Manual Prompts

Table D.1 demonstrates all the manual templates
and label words adopted by us. We basically follow
Logan IV et al. (2021) for these prompts. For the
tasks that are not covered by Logan IV et al. (2021),
we manually write one prompt for each of them,
using only our intuition.

E Manual Prompts with Engineering

Table E.1 gives all the manual templates and label
words with careful engineering (Gao et al. (2021)
for GLUE and Schick and Schütze (2021b) for
SuperGLUE) that we use in our experiments.

Table E.2 compares the full results of manual
prompts with engineering to our AutoSeq. Overall,
AutoSeq performs comparably or even better com-
pared with manual prompts, particularly for tasks
where developing solid manual prompts is less in-
stinctive (e.g., TREC, QNLI, QQP and COPA).
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Task Template Label words

SST-2 <S1> Overall my impression is [MASK] . positive: good, negative: bad
SST-5 <S1> Overall my impression is [MASK] . v.positive: very good, positive: good, neutral: not bad, negative: bad, v.negative: very bad
MR <S1> Overall my impression is [MASK] . positive: good, negative: bad
CR <S1> Overall my impression is [MASK] . positive: good, negative: bad
MPQA <S1> Overall my impression is [MASK] . positive: good, negative: bad
Subj <S1> The sentence is [MASK] . subjective: subjective, objective: objective
TREC <S1> The question is about [MASK] . abbreviation: abbreviation, entity: entity, description: description

human: human, location: location, numeric: numeric
COLA <S1> The grammar is [MASK] . grammatical: acceptable, not_grammatical: unacceptable

MNLI Premise: <S2> Hypothesis: <S1> Label: [MASK] entailment: yes, netural: maybe, contradiction: no
SNLI Premise: <S2> Hypothesis: <S1> Label: [MASK] entailment: yes, netural: maybe, contradiction: no
QNLI Question: <S1> Sentence: <S2> Label: [MASK] entailment: yes, not_entailment: no
RTE Premise: <S1> Hypothesis: <S2> Label: [MASK] entailment: yes, not_entailment: no
MRPC <S1> and <S2> are the [MASK] . equivalent: same, not_equivalent: different
QQP <S1> and <S2> are the [MASK] . equivalent: same, not_equivalent: different
STS-B <S1> and <S2> are the [MASK] . yu: same, yl: different
BoolQ Passage: <S1> Question: <S2> Answer: [MASK] . True: true, False: false
CB Premise: <S1> Hypothesis: <S2> Label: [MASK] entailment: yes, netural: maybe, contradiction: no

COPA Premise: <S3> Question: <S4> Choice1: <S1> Alternative 1: Choice1, Alternative 2: Choice2
Choice2: <S2> Answer: [MASK] .

MultiRC Paragraph: <S1> Question: <S2> Answer: <S3> True: true, False: false
Label: [MASK]

ReCoRD <S1> <S3>
WiC ‘<S3>’ in <S1> and ‘<S3>’ in <S2> are the [MASK] . True: same, False: different
WSC <S1> <S3> is [MASK] .

Table D.1: Manual templates and label words following Logan IV et al. (2021). Note that for ReCoRD and WSC
we follow Schick and Schütze (2021b) and do not design the label words for them.

F Automatically Generated Label
Sequences

We demonstrate the top 1 automatically generated
label sequences before and after re-ranking with
contrastive probability for all tasks in Table F.1.
It can be observed that our contrastive probability
draws a strong distinction between different classes,
especially for those multi-classification tasks like
SST-5 and TREC, in which our beam search tends
to find the same sequence whatever the class is.

Generally speaking, the generated results after
re-ranking conform with our intuition in a majority
of single and two-sentence tasks. For more compli-
cated ones, such as COPA and WiC, the generated
label sequences can be counterintuitive, calling for
a more elegant solution in the future.
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Task Template Label words

SST-2 <S1> It was [MASK] . positive: great, negative: terrible
SST-5 <S1> It was [MASK] . v.positive: great, positive: good, neutral: okay, negative: bad, v.negative: terrible
MR <S1> It was [MASK] . positive: great, negative: terrible
CR <S1> It was [MASK] . positive: great, negative: terrible
MPQA <S1> It was [MASK] . positive: great, negative: terrible
Subj <S1> This is [MASK] . subjective: subjective, objective: objective
TREC [MASK] : <S1> abbreviation: Expression, entity: Entity, description: Description

human: Human, location: Location, numeric: Number
COLA <S1> This is [MASK] . grammatical: correct, not_grammatical: incorrect

MNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No
SNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No
QNLI <S1> ? [MASK] , <S2> entailment: Yes, not_entailment: No
RTE <S1> ? [MASK] , <S2> entailment: Yes, not_entailment: No
MRPC <S1> [MASK] , <S2> equivalent: Yes, not_equivalent: No
QQP <S1> [MASK] , <S2> equivalent: Yes, not_equivalent: No
STS-B <S1> [MASK] , <S2> yu: Yes, yl: No
BoolQ <S1> Question: <S2> ? Answer: [MASK] . True: Yes, False: No
CB <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No

COPA <S1> or <S2> ? <S3> , <S4> [MASK] .
MultiRC <S1> Question: <S2> Is it <S3> ? [MASK] . True: Yes, False: No
ReCoRD <S1> <S3>
WiC <S1> <S2> Does <S3> have the same True: Yes, False: No

meaning in both sentences? [MASK]
WSC <S1> The pronoun <S3> refers to [MASK] .

Table E.1: Manual templates and label words with deliberate engineering that we use in our experiments. Note that
for COPA, ReCoRD and WSC, we follow Schick and Schütze (2021b) and do not design the label words for them.

SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Manual with eng. 90.8 (0.4) 47.2 (2.4) 86.1 (0.6) 90.4 (1.0) 84.1 (2.4) 91.4 (1.2) 81.3 (4.8) 9.6 (11.6)
AutoSeq 89.8 (1.1) 42.3 (3.4) 83.9 (1.3) 87.2 (2.5) 82.5 (2.7) 91.6 (1.9) 85.2 (4.3) 7.6 (9.9)

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)

Manual with eng. 55.3 (2.3) 57.3 (2.4) 64.1 (4.1) 59.7 (3.4) 59.1 (4.3) 71.2 (6.6) 56.1 (2.5) 17.7 (12.5)
AutoSeq 51.8 (1.8) 53.9 (2.0) 62.7 (3.7) 61.3 (4.0) 55.3 (4.9) 72.3 (4.9) 66.2 (2.6) 17.8 (13.4)

BoolQ CB COPA MultiRC ReCoRD WiC WSC Average
(acc) (F1) (acc) (F1) (F1) (acc) (acc)

Manual with eng. 57.5 (2.1) 79.7 (5.5) 48.8 (2.5) 57.5 (1.6) 56.6 (3.5) 53.4 (4.0) 62.5 (5.2) 62.5
AutoSeq 55.4 (8.1) 76.6 (10.7) 52.0 (6.8) 58.2 (0.9) 56.6 (3.5) 52.6 (2.9) 62.1 (1.4) 62.0

Table E.2: Comparison between manual prompts with engineering and our automatically searched label sequences.
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Task Before re-ranking After re-ranking

SST-2 (positive/negative)
Highly recommended./Thank you. Highly recommended./Sigh.

SST-5 (very positive/positive/neutral/negative/very negative)
Highly recommended./Highly recommended././
Highly recommended./Highly recommended. A must see./I love this movie./Enjoy!/Sigh./Not recommended.

MR (positive/negative)
Highly recommended./Highly recommended. Highly recommended./Not for me.

CR (positive/negative)
I love it./Thank you. I love it./I hate it.

MPQA (positive/negative)
./. ./Why?

Subj (subjective/objective)
I love it./What do you think? I love it./The rest is history.

TREC (abbreviation/entity/description/human/location/numeric)
Why?/Why?/./Why?/Why?/. Discuss!/What is it?/For?/Who is?/USA./15?

CoLA (grammatical/not_grammatical)
./. Enjoy!/.

MNLI (entailment/neutral/contradiction)
Yes/Yes/No I mean/For example/However

SNLI (entailment/neutral/contradiction)
Yes/Yes/Yes Yes/In this video/Next

QNLI (entailment/not_entailment)
In fact/In fact In the past/Also

RTE (entailment/not_entailment)
Yes/Yes Yes/However

MRPC (equivalent/not_equivalent)
Yes/Yes Yes/Meanwhile

QQP (equivalent/not_equivalent)
Also/Also So/Also

STS-B (yu/yl)
Yes/Yes Yes/Also

BoolQ (True/False)
Yes/Yes If so/No

CB (entailment/neutral/contradiction)
Yes/Yes/I mean Indeed/A: Yes/A: No

COPA (Alternative 1/Alternative 2)
No/No No/Yes

MultiRC (True/False)
Yes/Yes The answer is/Also

WiC (True/False)
is used./is used. is used./is an adjective.

Table F.1: Top 1 automatically generated label sequences before and after re-ranking with contrastive probability for
all tasks based on one few-shot split.
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Abstract

Measuring Sentence Textual Similarity (STS)
is a classic task that can be applied to many
downstream NLP applications such as text gen-
eration and retrieval. In this paper, we focus
on unsupervised STS that works on various
domains but only requires minimal data and
computational resources. Theoretically, we pro-
pose a light-weighted Expectation-Correction
(EC) formulation for STS computation. EC for-
mulation unifies unsupervised STS approaches
including the cosine similarity of Additively
Composed (AC) sentence embeddings (Arora
et al., 2017), Optimal Transport (OT) (Kus-
ner et al., 2015), and Tree Kernels (TK) (Le
et al., 2018). Moreover, we propose the Re-
cursive Optimal Transport Similarity (ROTS)
algorithm to capture the compositional phrase
semantics by composing multiple recursive EC
formulations. ROTS finishes in linear time and
is faster than its predecessors. ROTS is empiri-
cally more effective and scalable than previous
approaches. Extensive experiments on 29 STS
tasks under various settings show the clear ad-
vantage of ROTS over existing approaches.1

Detailed ablation studies demonstrate the effec-
tiveness of our approaches.

1 Introduction

Sentence Textual Similarity (STS) measures the
semantic equivalence between a pair of sentences,
which is supposed to be consistent with human
evaluation (Agirre et al., 2012). STS is also an ef-
fective sentence-level semantic measure for many
downstream tasks such as text generation and re-
trieval (Wieting et al., 2019; Zhao et al., 2019;
Nikolentzos et al., 2020; Çelikyilmaz et al., 2020).
In this paper, we focus on unsupervised STS which
is expected to compare texts of various domains
but only requires minimal data and computational
resources.

∗ Corresponding author.
1Our code can be found in https://github.com/

zihao-wang/rots.

There are several typical ways to compute un-
supervised STS, including 1) treat each sentence
as an embedding by the Additive Composition
(AC) (Arora et al., 2017) of word vectors, then
estimate the STS of two sentences by their co-
sine similarity; 2) treat each sentence as a prob-
abilistic distribution of word vectors, then measure
the distance between distributions. Notably, Opti-
mal Transport (OT) (Peyré and Cuturi, 2019)2 is
adopted to compute the STS (Kusner et al., 2015).
OT-based approaches search for the best alignment
with respect to the word-level semantics and result
in state-of-the-art solution (Yokoi et al., 2020).

In this paper, we argue that phrase-level seman-
tics should also be exploited to fully understand the
sentences. For example, “optimal transport” should
be considered as a mathematical term rather than
two independent words. Specifically, the phrase
chunk is composed of lower-level chunks and is
usually represented as a node in tree structures.
The aforementioned AC and OT-based STS meth-
ods are too shallow to include such structures. Tree
Kernels (TK) (Le et al., 2018) consider the parsed
syntax labels. However, it boils down to syntax-
based but sub-optimal word alignment under our
comparison experiment.

Recent advancement of Pretrained Language
Models (PLMs) also demonstrate the importance of
contextualization (Peters et al., 2018; Devlin et al.,
2019; Ethayarajh, 2019). PLMs can be further
adopted to STS tasks by supervised fine-tuning (De-
vlin et al., 2019), under carefully designed transfer
learning (Reimers and Gurevych, 2019) or domain-
adaptation (Li et al., 2020; Gao et al., 2021). With-
out those treatments, the performances of PLM-
based STSs are observed to be very poor (Yokoi
et al., 2020). Meanwhile, PLM-based STSs suffer
from high computational costs to fit large amounts
of high-quality data, which might prevent them

2OT-based distance reflects the dissimilarity between sen-
tences and can also be used as STS.
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from broader downstream scenarios.
In this paper, we propose a set of concepts and

similarities to exploit the phrase semantics in the
unsupervised setup. Our contributions are four
folds:
Unified formulation We unify three types of un-

supervised STS models (AC (Arora et al.,
2017), OT (Yokoi et al., 2020) and TK (Le
et al., 2018)) by the EC similarity in Sec-
tion 3. EC similarity uncovers the strengths
and weaknesses of the three approaches.

Phrase vectors and their alignment We general-
ize the idea of word alignment to phrase align-
ment in Section 4. After the formal definition
of Recursive Phrase Partition (RPP), we com-
pose the phrase weights and vectors by those
from finer-grained partitions under the invari-
ant additive phrase composition and general-
ize the word alignment to phrase alignment.
Empirical observations show that EC similar-
ity is an effective formulation to interpolate
the existing unsupervised STS, and yields bet-
ter performances.

Recursive Optimal Transport We propose the
Recursive Optimal Transport Similarity
(ROTS) in Section 5 based on the phrase align-
ment introduced in Section 4. ROTS com-
putes the EC similarity at each phrase parti-
tion level and ensembles them. Notably, Prior
Optimal Transport (Prior OT) is adopted to
guide the finer-grained phrase alignment by
the coarser-grained phrase alignment at each
expectation step of EC similarity.

Extensive experiments We show the comprehen-
sive performance of ROTS on a wide spectrum
of experimental settings in Section 6 and the
Appendix, including 29 STS tasks, five types
of word vectors, and three typical preprocess-
ing setups. Specifically, ROTS is shown to be
better than all other unsupervised approaches
including BERT based STS in terms of both
effectiveness and efficiency. Detailed abla-
tion studies also show that our constructive
definitions are sufficiently important and the
hyper-parameters can be easily chosen to ob-
tain the new SOTA performances.

2 Related Work

Embedding the symbolic words into continuous
space to present their semantics (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al.,

2017) is one of the breakthroughs of modern NLP.
Notably, it shows that the vector (or semantics)
of a phrase can be approximated by the addi-
tive composition of the vectors of its containing
words (Mikolov et al., 2013). Thus, word embed-
dings can be further utilized to describe the se-
mantics of texts beyond the word level. Several
strategies were proposed to provide sentence em-
beddings.

Additive Composition. Additive composition of
word vectors (Arora et al., 2017) forms effective
sentence embeddings. The cosine similarity be-
tween the sentence embeddings has been shown to
be a stronger STS under transferred(Wieting et al.,
2016; Wieting and Gimpel, 2018) and unsupervised
settings (Arora et al., 2017; Ethayarajh, 2018) than
most of the deep learning approaches (Socher et al.,
2013; Le and Mikolov, 2014; Kiros et al., 2015;
Tai et al., 2015).

Optimal Transport. By considering sentences as
distributions of embeddings, the similarity between
sentence pairs is the consequence of optimal trans-
port of sentence distributions (Kusner et al., 2015;
Huang et al., 2016; Wu et al., 2018; Yokoi et al.,
2020). OT models find the optimal alignment with
respect to word semantics via their embeddings and
have the SOTA performances (Yokoi et al., 2020).

Syntax Information. One possible way to inte-
grate contextual information in a sentence is to
explicitly employ syntactic information. Recurrent
neural networks (Socher et al., 2013) were pro-
posed to exploit the tree structures in the supervised
setting but were sub-optimal than AC-based STS.
Meanwhile, tree kernels (Moschitti, 2006; Croce
et al., 2011) can measure the similarity between
parsing trees. Most recently, ACV-tree kernels (Le
et al., 2018) combine word embedding similarities
with parsed constituency labels. However, tree ker-
nels compare all the sub-trees and suffer from high
computational complexity.

Pretrained Language Models This paradigm pro-
duces contextualized sentence embeddings by ag-
gregating the word embeddings repeatedly with the
deep neural networks (Vaswani et al., 2017) trained
on large corpuses (Devlin et al., 2019). In the unsu-
pervised setting, PLMs are sub-optimal compared
to SOTA OT-based models (Yokoi et al., 2020).
One of the common strategies to improve the per-
formance is to adjust PLM-generated embedding
according to a large amount of external data such
as transfer learning (Reimers and Gurevych, 2019),
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flow (Li et al., 2020), whitening (Su et al., 2021),
and contrastive learning (Gao et al., 2021). How-
ever, this domain adaptation paradigm requires a
complex training process and the performance is
highly affected by the similarity between the target
test data and external data (Li et al., 2020; Gao
et al., 2021).

3 Unification of Unsupervised STS
Methods

Given a pair of sentences (s(1), s(2)), we are
expected to estimate their similarity score s ∈
[0, 1]. For sentence s(1) (or s(2)), we have vec-
tor {v(1)i }mi=1 (or {v(2)j }nj=1) and weight {w(1)

i }mi=1

(or {w(2)
j }nj=1). We quickly review three types of

unsupervised STS in Section 3.1 (see Figure 1 (a-
c)), then unify them by the Expectation-Correction
similarity in Section 3.2.

3.1 Review of Three Types of STS
Additive Composition (AC) AC methods (Arora
et al., 2017; Ethayarajh, 2018) firstly compute
the sentence embedding x(·) =

∑
iw

(·)
i v

(·)
j , then

estimate the similarity by the cosine similarity
sAC = cos(x(1), x(2)), see Figure 1 (a).
Optimal Transport (OT) Given pairwise word
distance matrix D = Dij and two marginal distri-
butions µi and νi, the optimal transport alignment
ΓOT is computed by solving the following mini-
mization problem (Kusner et al., 2015).

ΓOT = argmin
Γij≥0

∑

ij

ΓijDij , (1)

s.t.
∑

j

Γij = µi,
∑

i

Γij = νj .

The higher ΓOT,ij means that the alignment from
i-th word in s(1) to j-th word in s(2) is preferred,
because those two words are semantically closer,
see Figure 1 (c). Different choices of D,µ, ν lead
to different distances. The SOTA OT-based STS
is the Word Rotator’s Distance (WRD)3 (Yokoi
et al., 2020), which solves Problem (1) with Dij =

1− cos(w
(1)
i , w

(2)
j ) and

µi =
w

(1)
i ∥v

(1)
i ∥2∑

k w
(1)
k ∥v

(1)
k ∥2

, (2)

νj =
w

(2)
j ∥v

(2)
j ∥2∑

k w
(2)
k ∥v

(2)
k ∥2

.

3Without further specification, OT is referred to WRD

The similarity is

sOT =
∑

ij

ΓOT,ij cos(w
(1)
i , w

(2)
j ). (3)

WRD is equivalent to AC if and only if each sen-
tence contains one word (Yokoi et al., 2020).
Tree Kernel (TK) General tree kernels compare
the syntactic parsing information (Moschitti, 2006;
Croce et al., 2011). Recently, ACV-Tree (Le et al.,
2018) combines word-level semantics with syntax
information by a simplified partial tree kernel (Mos-
chitti, 2006), see Figure 1 (b). Word similarities
from the same structure, i.e. NP, are repeatedly
counted and thus more important. Then the simi-
larity score can be re-written as

sTK =
∑

ij

ΓTK,ij cos(w
(1)
i , w

(2)
j ) (4)

where ΓTK is the normalized weight matrix gener-
ated by the tree kernel 4.

3.2 Expectation Correction (EC)
Three approaches discussed above, though moti-

vated in different ways, can be seen as a linear ag-
gregation of pair-wise cosine similarities of words.
We unified them into the following EC similarity
with two steps called expectation and correction.
Expectation Both ACV-Tree (see Equation (4))
and OT (see Equation (3)) aggregate pairwise word
similarities by the alignment matrix ΓTK and ΓOT .
AC also implies the implicit word alignment ΓAC ,
the cosine similarity can be further decomposed by
plugging in the sentence vectors:

cos(x(1), x(2)) =
⟨∑iw

(1)
i v

(1)
i ,
∑

j w
(2)
j v

(2)
j ⟩

∥x(1)∥∥x(2)∥
= C

∑

ij

ΓAC,ij cos(v
(1)
i , v

(2)
j )(5)

where ΓAC,ij = µiνj , µ and ν are defined in Equa-
tion (2). This observation connects AC to the expec-
tation of word similarities 5. Hence, the key of ex-
pectation step, is to compute inter-sentence word
alignment matrix Γ. Specifically, ΓAC is implicitly
induced by weights and vector norms without con-
sidering the semantics or syntax between words,
ΓTK is constructed by comparing node labels in

4In this paper, TK indicates the ACV-Tree kernel
5Equation (5) motivates the marginal conditions of WRD

in a different way

4978



𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)

AC

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)NP

NP

VP
VP

ACV-Tree

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)

OT

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)NPNP

VP

VP

ROTS (COARSE)

𝑣!
(#)

𝑤!
(#) 𝑣%

(&)
𝑤%
(&)NPNP

VP

VP

ROTS (FINE)

word vector

phrase vector

phrase weight

word weight additive composition

cosine similarity

alignment

prior alignment

(a) (b) (c)

(d) (e)

Figure 1: Different unsupervised STS methods with blue elements for s(1) and orange elements for s(2). (a)
AC (Arora et al., 2017): cosine similarity between additively composed sentence embeddings. (b) ACV-Tree (Le
et al., 2018): weighted averaging pairwise word similarity. Similarities from v

(1)
i to vectors in s(2) are shown.

More weights are assigned to pairs contained in the same constituency structure, indicated by thicker arrows. (c)
OT (Yokoi et al., 2020): compute the optimal transport alignment of words by solving problem (1). (d) ROTS at
coarser hierarchy: the OT alignment of phrases vectors and weights. (e) ROTS at finer hierarchy: fine-level OT
alignment based on the prior of coarse-level alignment in (d).

Table 1: The comparison of different approaches.

Method Inter-sentence Expectation Intra-sentence Correction Tiime ComplexityWord Semantics Phrase Semantics Syntax
AC (Arora et al., 2017; Ethayarajh, 2018) ✗ ✗ ✗ ✓ O(m + n)
OT (Kusner et al., 2015; Yokoi et al., 2020) ✓ ✗ ✗ ✗ O(mn)
TK (Le et al., 2018) ✗ ✗ ✓ ✗ O(mn)
ROTS (ours) ✓ ✓ ✓ ✓ O(m + n)

syntax trees, and ΓOT is obtained by optimizing
word semantics. (See Table 1)
Correction In Equation (5), the coefficient

C =

∑
k w

(2)
k ∥v

(2)
k ∥

∥∑k w
(2)
k v

(2)
k ∥

∑
k w

(1)
k ∥v

(1)
k ∥

∥∑k w
(1)
k v

(1)
k ∥

=
√
K1K2

also has special interpretation. For the specific sen-
tence i = 1, 2, the coefficient Ki can be rewritten
as

Ki − 1 =
(
∑

k w
(i)
k ∥v

(i)
k ∥)2

∥∑k w
(i)
k v

(i)
k ∥2

− 1

=
∑

k ̸=m

w
(i)
k w

(i)
m ∥v(i)k ∥∥v

(i)
m ∥

∥∑k w
(i)
k v

(i)
k ∥2

[
1− cos(v

(i)
k , v(i)m )

]
.

We have Ki ≥ 1 and the equality holds if and only
if all word vectors are in the same direction, i.e.
they are semantically close. Ki increases as the
semantics of words in a sentence become more
diverse. In the latter situation, the sentence similar-
ity tends to be underestimated since unnecessary
alignments are forced by the joint distribution. The

coefficient C corrects this intra-sentence seman-
tics. This correction step distinguishes AC from
OT and TK approaches (see Table 1).

Then we introduce the EC similarity by combin-
ing E-step and C-step as follows:

Definition 1 (EC similarity). The EC similarity of
STS is defined by:

C̃
∑

ij

Γij cos(v
(1)
i , v

(2)
j ), (6)

where Γ is the word alignment matrix for the ex-
pectation and C̃ = (αC +1−α) is the coefficient
for correction, hyper-parameter α ∈ [0, 1] linearly
interpolates the C and 1 and controls the strength
of correction.

4 From Word to Phrase Alignment

In this section, we extend the word alignment to the
phrase alignment. We define the phrase partitions
of sentences with the recursive structure from any
tree. Then we define the phrase weight and vector
by the additive composition of sub-phrase (or word)
weights and vectors.

4979



Autonomous cars shift insurance liability toward manufacturersshift

cars liability toward

Autonomous insurance manufacturers

nsubj

amod

dobj

compound

prep

pobj
Autonomous cars shift insurance liability toward manufacturers

Autonomous insurance manufacturerscars shift liability toward

𝒫!

𝒫"

𝒫#

Figure 2: Dependency tree (left) by SpaCy (Honnibal and Montani, 2017) and recursive phrase partitions (right)

4.1 Recursive Phrase Partitions (RPP)
For sentence s = [t1, ..., tn] containing n tokens
ti, 1 ≤ i ≤ n, we define the Recursive Phrase Par-
titions (RPP) as a set of partitions {P0,P1, ...,PL}
of the sentence s, where Pl is the partition at l-th
level, 1 ≤ l ≤ L. Specifically, Pl = [Pl,1, ..., Pl,q]
contains a sequence of phrases, where the q-th
phrase Pl,q = s[bl,q : el,q] is the span in s from
the beginning index bl,q to the ending index el,q.
So we have two properties:

1. Concatenating all phrases recovers the sen-
tence, that is ⊕qPl,q = s, where ⊕ is the
string concatenation.

2. For two different levels, i.e. 0 ≤ l1 < l2,6 any
phrase in level l2 is contained in the unique
phrase in level l1.

In our definition, the P0 = [s] and PL = [t1, .., tn]
are the coarsest partition and the finest partition,
respectively. The second property guarantees that
the recursive phrase partitions can be nested so that
each phrase can be recursively divided. RPP can
be constructed from any tree representation of the
sentence, including constituency tree, dependency
tree, or even naive binary separation of token se-
quences. Figure 2 shows an example of RPP from
a dependency tree. Some phrases (such as ‘shift’
in P2) are added to satisfy the first property.

4.2 Compositional Phrase Semantics
Once the RPP structure of a sentence is given, we
define the vector ṽ and weight w̃ for each phrase.
Our definition is invariant with respect to the AC
sentence embedding, that is, AC sentence embed-
ding x is invariant to the phrase partition Pl of the
sentence.

x =
n∑

i

wivi =
∑

q

w̃l,qṽl,q,

where the phrase weights and vectors are given by

w̃l,q =

el,q∑

i=bl,q

wi, ṽl,q =

el,q∑

i=bl,q

wivi/w̃l,q.

6We denote the root is level 0. The level index increases
as the tree goes deeper.

In this way, the sentence vector can also be repre-
sented by the additive composition of phrase vec-
tors and weights, where each phrase vector can
be again composed by the word vectors additively.
Our definitions of phrase weights and vectors recur-
sively aggregate the information from finer-grained
level (i.e. ‘autonomous’ and ‘cars’) information
to coarser-grained level (i.e. ‘autonomous cars’).
Furthermore, our discussion about EC similarity
in Section 3.2 at the word level can also be gen-
eralized to any phrase partitions. That is, we
can use the EC similarity to consider the inter-
sentence phrase alignment and then correct the
intra-sentence phrase semantics of each partition.

5 Recursive Optimal Transport and STS

In this section, we connect the dots by applying
EC similarity in Section 3.2 to phrase alignment
in Section 4 on tree structures. Specifically, we
present Recursive Optimal Transport Similarity
(ROTS) which computes the phrase alignment at
each (l + 1)-th level phrase partition with the guid-
ance of the phrase alignment at the l-th level.

5.1 Prior Optimal Transport (Prior OT)
Prior OT (Zhao et al., 2020) was firstly proposed
to pass prior information when minimizing the
entropy-regularized Wasserstein loss. When it
comes to the OT-based STS, we re-consider the ob-
jective function in Problem (1) with an additional
prior alignment Π:

∑

ij

ΓijDij + ϵKL(Γ∥Π), (7)

where KL(Γ∥Π) = −∑ij Γij log Πij − H(Γ) is
the KL-divergence between the phrase alignment Γ
and the prior alignment Π, and H(·) is the entropy.
ϵ is the hyper-parameter that controls how close
the obtained Γ∗ is to Π. When ϵ = 0, Equation (7)
falls back to Equation (1), and when ϵ is sufficiently
large, the optimal Γ∗ is sufficiently close to Π in
terms of KL-divergence.

Notably, the objective in Equation (7) can be
minimized by the Sinkhorn algorithm (Cuturi,
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2013; Zhao et al., 2020). Compared to tree ker-
nels (Moschitti, 2006; Croce et al., 2011; Le et al.,
2018), Sinkhorn algorithm is based on matrix oper-
ations such that it can be accelerated by GPUs (Cu-
turi, 2013). Sinkhorn algorithm has time complex-
ity O(mn/ϵ2) (Dvurechensky et al., 2018). In our
practice, we usually choose the large prior strength,
i.e. ϵ > 1 that allows faster convergence.

We can interpolate WRD and AC with the help
of Prior OT under EC similarity.

Example 1 (EC Interpolation of WRD and AC).
Given a prior matrix Π = ΓAC , we first compute
the alignment Γϵ by minimizing Equation (7) with
WRD’s choice of D,µ, ν in Equation (2). Then we
compute the EC interpolation similarity by

Interp = C̃
∑

ij

Γϵ,ij cos(v
(1)
i , v

(2)
j ),

where ϵ > 0 is the prior strength in Equation (7).
When (α, ϵ) = (0, 0), 1 − Interp = sOT

7. When
(α, ϵ) = (1,+∞) , Interp = sAC .

5.2 Recursive Optimal Transport Similarity
Given two sentences s(1), s(2) with their RPPs
{P(1)

0 ,P(1)
1 , ...,P(1)

L1
} and {P(2)

0 ,P(2)
1 , ...,P(2)

L2
},

ROTS considers partition pairs (P(1)
k ,P(2)

k ) from
the coarsest k = 0 level to the finest k = d ≤
min(L1, L2) level, where d is a hyper-parameter.
Given the computed k-th alignment matrix Γ(k)

of (P(1)
k ,P(2)

k ), ROTS constructs the following
prior alignment Π(k+1) for next EC computation
(P(1)

k+1,P
(2)
k+1).

Π(k+1)
minj =

µk+1,miνk+1,njΓ
(k)
ij∑

m̃i∈P (1)
k,i ,ñj∈P

(2)
k,j

µk+1,m̃iνk+1,ñj

.(8)

Specifically, the (i, j) phrase alignment score Γ
(k)
ij

at k-th level will be separated to the sub-phrase
alignment (mi, nj) at the (k+1)-th level according
to the marginal µk+1,mi and νk+1,nj , where mi, nj
are the index of the sub-phrase of i, j respectively.
With the coarse-to-fine prior Π(k+1), ROTS com-
putes the phrase alignment matrix Γ(k+1) at the
(k + 1)-th level by Prior OT (Equation (7)). The
computation process of ROTS is shown in Algo-
rithm 1. For k = 0, each sentence has a single vec-
tor, the alignment matrix Γ(0) = 1 is a 1×1 matrix.
The complexity of ROTS is O(m+ n+ d(ρd/ϵ)2)

7Interp itself also leads to the identical STS evaluation as
sOT in terms of correlation.

Algorithm 1 Recursive OT Similarity

Require: Two sentences s(1), s(2) with recur-
sive phrase partitions {P(1)

0 ,P(1)
1 , ...} and

{P(2)
0 ,P(2)

1 , ...}, depth d and prior strengths
ϵk, k = 1, ..., d, correction strength α.

Ensure: ROTSk at each level k.
1: Prepare the weights and vectors at level 0.
2: Initialize 0-th level alignment Γ(0) ← 1.
3: for k ← 1, ..., d do
4: Prepare the weights and vectors at level k.
5: Get k-th prior Π(k) by Eq. (8) from Γ(k−1).
6: Get k-th alignment Γ(k) by Eq. (7) with ϵk.
7: Get ROTSk by Eq. (6) with C̃ = αC+1−

α, where C =
∑
k w

(2)
k ∥v

(2)
k ∥

∥∑k w
(2)
k v

(2)
k ∥

∑
k w

(1)
k ∥v

(1)
k ∥

∥∑k w
(1)
k v

(1)
k ∥

.

8: end for

where ρ is the maximum branching number of
the tree and is usually small for natural language.
When the hyper-parameter d is fixed, the complex-
ity of Algorithm 1 grows linearly with the sentence
length m and n (see Table 1).

Our ROTS is featured by finding the finer-level
phrase alignment under the guidance of the coarser-
level phrase alignment. Unlike the tree kernels (Le
et al., 2018) that highly rely on syntax trees and syn-
tax labels, ROTS is based on the EC phrase align-
ment at different phrase partition levels that are
induced by a syntax tree. Specifically, the phrase
alignments are obtained from the phrase semantic
information, i.e. weights and vectors rather than
plain syntax labels (see Table 1).

6 Experiments

We first present the experimental setting of unsuper-
vised STS. Then we conduct the benchmark study
of all unsupervised STS approaches. Detailed ab-
lation studies justify the effect of ROTS. In the ap-
pendix, further discussions on the impact of word
vectors, and preprocessing steps are included.

6.1 Experimental Settings

Text processing SpaCy (Honnibal and Montani,
2017) is a open-source text processing toolkit in-
cluding rich functionality such as tokenization and
dependency parsing. It is very suitable for prepro-
cessing pipelines. The text processing model in
en_core_web_sm is used.
Word vectors Word2Vec (Mikolov et al., 2013),
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GloVe (Pennington et al., 2014), and fastText (Bo-
janowski et al., 2017) are considered in the unsu-
pervised STS cases. Two word vectors trained on
transferred learning settings, i.e. PSL (Wieting
et al., 2015) and ParaNMT (Wieting and Gimpel,
2018), are considered in the transferred STS cases.
Further information can be found in Appendix A.2.
Preprocessing The scope of our pre-processing
steps extends the “vector converters” in (Yokoi
et al., 2020). Those preprocessing steps can all
be applied to EC similarity and are detailed in Ap-
pendix A.3. Three typical setups are selected, in-
cluding SUP (Ethayarajh, 2018), SWC (Yokoi et al.,
2020) and WR (Arora et al., 2017).
Datasets We consider (1) STSB dev and test set in
STS-Benchmark (Cer et al., 2017); (2) STS[year]
STS from 2012 to 2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016); (3) SICK (Marelli et al., 2014);
(4) Twitter (Xu et al., 2015). Details can be found
in Appendix A.1. Each dataset includes several
sub-tasks, and there are 29 tasks in total.
Related baselines Some unsupervised STS base-
lines are closely related to EC similarity, includ-
ing COS (SIF (Arora et al., 2017), uSIF (Etha-
yarajh, 2018)), ACV-Tree (Le et al., 2018), and
WRD (Yokoi et al., 2020). WMD (Kusner et al.,
2015) is important but not included since WMD
has been shown clearly suboptimal to WRD (Yokoi
et al., 2020).
Other Unsupervised Baselines BERT’s final-layer
and last-2-layers embeddings (BERT and BERT-
last2ave) (Li et al., 2020) BERTScore (Zhang
et al., 2020), DynaMax-Jaccard (Zhelez-
niak et al., 2019a), Center Kernel Alignment
(CKA) (Zhelezniak et al., 2019b) and Kraskov-
Stögbauer–Grassberger (Kraskov et al., 2004)
(KSG) cross entropy estimation (Zhelezniak et al.,
2020).
Default hyper-parameters We summarize the re-
sult with different parameters. Results show that
excellent scores are achieved with α = 1, d = 4
and ϵk = 10, 1 ≤ k ≤ L.

6.2 Unsupervised Benchmark

An unsupervised STS benchmark study is con-
ducted over STSB, SICK, and STS by years
(STS12-16). Twitter is not included since most
of the baselines did not report the score. fastText is
chosen as the pretrained word vector.

We re-implement SIF, uSIF and WRD and com-
pare the Pearson’s r× 100 in Table 2 together with
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Figure 3: Ablation study for ROTS depth and aggre-
gation. Scores are averaged from STSB, Twitter and
SICK.

the ACV-Tree8 and BERTScore+fastText9. Other
baselines are compared by Spearman’s ρ in Table 3.
The clear advantage of ROTS-mean is shown. Our
results confirm the finding reported by (Yokoi et al.,
2020) that the BERT-based method is sub-optimal
under unsupervised settings.

6.3 Ablation Study

For ablation study, the scores are averaged from
scores on the three datasets, including SICK, STSB
test, and Twitter. We don’t include STS12-16 since
they overlap with STSB. Depths and Aggregations,
Correction and Prior, and Recursive Phrase Parti-
tions are discussed since they are closely related to
ROTS. More experiments on different word vectors
and preprocessings can be found in Appendix B.
Uncertainty quantification by the BCa confidence
interval (Efron, 1987) on different datasets can be
found in Appendix E.

Depths and Aggregations Once all ROTSk are
obtained, we consider different aggregation meth-
ods including mean, max, min, last and picks the
k-th level. The ablation study of depth and ag-
gregation is shown in Figure 3. We report the
ROTS results at different levels and different ag-
gregations. We also include the Phrase Rotator’s
Distance (PRD) at the same recursive phrase par-
titions as ROTS. PRD-Lk is the special case of
ROTS-Lk by setting ϵk = 0 and α = 0. AC is
equivalent to 0-th level ROTS and WRD is the L-th
level of PRD so they are included.

ROTS similarities (blue and purple bars) dom-
inate among all other baselines. We can see that
the performances of ROTS and PRD increase as
their levels get deeper (the related bars are plotted
with deeper blue and orange colors). Interestingly,

8Scores extracted from (Le et al., 2018), STS13 is not valid
since they didn’t report on SMT subtask

9Scores extracted from (Yokoi et al., 2020)
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Table 2: Pearson’s r × 100 for ROTS and related unsupervised baselines. Best cases are in boldface.

Similarity STSB SICK STS12 STS13 STS14 STS15 STS16
ACV-Tree (Le et al., 2018) - - 61.60 - 72.83 75.80 -
BERTScore fastText (Zhang et al., 2020) 53.86 64.69 51.95 45.86 61.66 69.00 -
SIF(Arora et al., 2017) 70.13 73.20 63.46 59.30 72.95 73.27 70.79
uSIF(Ethayarajh, 2018) 73.47 72.73 63.24 61.41 74.37 76.33 73.47
WRD+SWC(Yokoi et al., 2020) 74.58 67.09 63.80 57.55 71.06 77.65 75.46
WRD+SUP(Yokoi et al., 2020) 74.80 67.67 64.03 58.50 71.32 77.65 75.38
WRD+WR(Yokoi et al., 2020) 73.13 68.73 63.81 58.09 70.60 77.28 74.48
ROTS+SWC+mean 75.33 71.79 63.91 62.29 74.30 77.96 75.95
ROTS+SUP+mean 74.25 73.13 63.52 61.49 74.44 76.75 74.28
ROTS+WR+mean 71.52 73.84 63.77 59.58 73.15 73.91 71.97

Table 3: Spearman’s ρ× 100 for ROTS and other unsupervised baselines. Best cases are in boldface.

Similarity STSB SICK STS12 STS13 STS14 STS15 STS16
BERTlarge (Devlin et al., 2019) 46.99 53.74 46.89 53.32 49.27 56.54 61.63
BERTlarge-last2avg (Li et al., 2020) 59.56 60.22 57.68 61.37 61.02 68.04 70.32
KSG k=10 (Zhelezniak et al., 2020) - - 60.40 61.50 68.30 77.00 75.10
MaxPool+KSG k=10 (Zhelezniak et al., 2020) - - 59.50 60.20 67.50 75.00 74.10
DynaMax Jaccard (Zhelezniak et al., 2019a) - - 61.30 61.70 66.90 76.50 74.70
CKA dCorr (Zhelezniak et al., 2019b) - - 60.90 63.40 67.80 76.20 73.40
CKA Gaussian (Zhelezniak et al., 2019b) - - 60.80 64.60 68.00 76.40 73.80
ROTS+SWC+mean 72.69 62.88 63.07 62.61 70.73 78.06 75.74
ROTS+SUP+mean 71.63 61.81 62.13 61.04 70.85 77.26 74.50
ROTS+WR+mean 69.78 61.39 61.48 59.29 70.19 75.18 73.26

Figure 4: Effects of correction and prior for ROTS-L4
on fastText vectors

PRDs are generally worse than WRD, which indi-
cates that the naive phrase alignment may not be
suitable, and may suffer from sub-optimal inter-
sentence alignment and intra-sentence semantics.
The performance gains of ROTS-Lk from PRD-Lk
clearly show that both the coarse-to-fine prior and
the EC similarity are important.

Correction Step and Prior We adjust the α in
Definition 1 to control the correction effect and the
ϵk for the prior strength at the k-th phrase partition
level. For simplicity, we assume prior strengths
ϵk are controlled by the single parameter ϵ. We
report the Pearson’s r× 100 of ROTS-L4 averaged
on the three datasets in Figure 4 since ROTS-L4
is the best in Figure 3. As shown in Figure 4,
proper correction and prior are essential to produce
good performances. The correction step is very
important since results without it decrease signifi-
cantly. This is consistent with the PRD observation

in Figure 3. α and ϵ can be chosen easily since
the performances is good and consistent if α > 0.5
and ϵ > 5.

Recursive Phrase Partitions ROTS relies on
the recursive phrase partitions that might be pro-
duced from parsing trees. Instead of exhausting the
parsers, we consider the simplest binary tree, i.e.
the sub-phrase partition is constructed by uniformly
splitting each phrase, to show the lower bound of
the ROTS performances. We see from Table 4 that
the ROTS with spaCy dependency parser performs
best in all cases among related baselines. Given the
preprocessing setups, we find that the binary tree
still outperforms WRD and AC with SUP and SWC
setups. For sub-optimal WR setup, ROTS with the
binary tree are very close to that in WRD and better
than AC. Though preprocessing setups affect the
performance, we can observe the performance gain
by introducing the recursive phrase partitions given
the setup. Therefore, we conclude that the coarse-
to-fine prior captures the intra-sentence structures.
The performance gain can be observed by even the
simplest binary tree.

6.4 More empirical experiments

Some results are presented in the Appendix, includ-
ing the justification of more choices on preprocess-
ing in Appendix B.2, comparison under transfer
and supervised setting in Appendix B.3, compu-
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Table 4: Pearson’s r × 100 for different parsers. spaCy:
ROTS-L4 with the spaCy parser, Binary: ROTS-L4 with
a binary tree. The best score is indicated in the boldface
and the second highest score is underlined.

Model spaCy Binary WRD AC
fastText + SUP 67.45 67.20 66.63 66.45
fastText + SWC 67.52 67.26 66.26 66.97
fastText + WR 66.47 66.15 66.20 65.11

tation time in Appendix C, interpolation of WRD
and AC by EC similarity in Appendix D.

7 Conclusion

In this paper, we present a new EC similarity of
STS that allows flexible adaptation of word-level
alignment, which successfully unifies three differ-
ent unsupervised approaches. By taking advantage
of the recursive phrase partitions, we generalize
EC similarity to the phrase alignment. Then, we
propose ROTS, a new sentence similarity that con-
siders phrase semantics by conducting phrase align-
ment in a coarse-to-fine order under the coarse-
to-fine prior OT. The thorough comparison with
unsupervised baselines demonstrates the state-of-
the-art performance and technical details of ROTS
are fully justified by the ablation study.
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A Extended Experimental Setup
information

A.1 Dataset details

• STSB dev and test set in STS-Benchmark (Cer
et al., 2017). It can be downloaded directly
from (Ethayarajh, 2018)’s implementation 10.

• STS[year] STS from 2012 to 2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016). STS12
contains 5 subtasks, STS13 contains 4 sub-
tasks, STS14 contains 6 subtasks, STS15 con-
tains 5 subtasks and STS16 contains 5 sub-
tasks. The reported score is averaged from
scores for related subtasks. It can be obtained
by (Conneau and Kiela, 2018)’s implemen-
tation 11. A newer implementation is also
available 12.

• SICK Semantic relatedness task at SemEval
2014 (Marelli et al., 2014). It can be down-
loaded directly from (Ethayarajh, 2018)’s im-
plementation 13.

• Twitter Paraphrase and semantic similarity
in Twitter (PIT) at SemEval 2015 (Xu et al.,
2015). This dataset was obtained by emailing
the author.

A.2 Pretrained Word Vectors

We list the downloadable links of word vectors
used in this paper.

• Word2Vec (Mikolov et al., 2013): We use the
pretrained word2vec 14. However, this file is
in .bin format. We use gensim (Řehůřek
and Sojka, 2010) to convert the file to .vec
format.

• GloVe (Pennington et al., 2014): We use
the 300D GloVe vectors trained on Common
Crawl (840B tokens, 2.2M vocabulary) 15.

• fastText (Bojanowski et al., 2017): We use
the 300D fastText vectors trained on Common
Crawl (600B tokens) without subword infor-
mation 16.

10https://github.com/kawine/usif
11https://github.com/facebookresearch/

SentEval
12https://github.com/babylonhealth/

corrsim
13https://github.com/kawine/usif
14GoogleNews-vectors-negative300.bin.gz
15http://nlp.stanford.edu/data/glove.

840B.300d.zip
16https://dl.fbaipublicfiles.com/

fasttext/vectors-english/crawl-300d-2M.
vec.zip

• PSL (Wieting et al., 2015): We use the pre-
trained vectors from the author 17.

• ParaNMT (Wieting and Gimpel, 2018): Two
versions are provided by the author 18 and
we keep the same choice as (Ethayarajh,
2018) 19.

A.3 Preprocessing of word vectors

Other preprocessing setups are discussed as
follows: Here we list several preprocessing ap-
proaches mentioned in previous research. For those
with hyper-parameters, we also give the hyper-
parameters used in this paper.

• Word-level Each word is associated with one
weight. We consider SIF (W)eights (Arora
et al., 2017) with a = 10−3 and (U)SIF
weights (Ethayarajh, 2018).

• Vocabulary-level Vectors are modified based
on the vectors of words in the whole vo-
cabulary, e.g. (A)ll-but-the-top (Mu and
Viswanath, 2018) with D = 3, (C)onceptor
negation (Liu et al., 2019) with α = 2.

• Sentence-level Vectors are modified by vec-
tors of words in the same sentence, including
Dimension-wise (S)caling (Ethayarajh, 2018).

• Corpus-level Vectors are modified based on
all sentences in the corpus, e.g. main com-
ponent (R)emoval (Arora et al., 2017) and
(P)iece-wise component removal (Ethayarajh,
2018) with p = 5.

A.4 Various STS and the required resources

We summarize the usage of data and other re-
sources of popular STS models in Table 5. The key
difference between unsupervised settings and other
settings is the usage of external data to further train
the model. We majorly consider the approaches
that can be used without training.

B Extended Experiments

17https://drive.google.com/file/d/
0B9w48e1rj-MOck1fRGxaZW1LU2M/view?usp=
sharing

18https://www.cs.cmu.edu/~jwieting/
19https://github.com/kawine/usif/blob/

master/paranmt.tar.gz

4987



Table 5: Necessary resources of typical STS model

Model Pretrain Data
Parser Weights Word

Vector
Language
Model

Training
texts

Training
labels

Transferred
texts

Transferred
labels

Unsupervised setting
BERT layer embedding
(Devlin et al., 2019)

✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

BERTScore (Zhang
et al., 2020)

✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Additive composition
(Arora et al., 2017;
Ethayarajh, 2018)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

DynaMax-Jaccard
(Zhelezniak et al.,
2019a)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Center Kernel Align-
ment (Zhelezniak et al.,
2019b)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

KSG cross entropy
(Zhelezniak et al.,
2020)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

OT (Kusner et al., 2015;
Yokoi et al., 2020)

✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

ACV-Tree (Le et al.,
2018)

✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

ROTS (ours) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Transfer and domain
adaptation settings
SentenceBERT
(Reimers and Gurevych,
2019)

✗ ✗ ✗ ✓ ✗ ✗ *NLI *NLI

BERT-Flow-*NLI (Li
et al., 2020)

✗ ✗ ✗ ✓ ✗ ✗ *NLI ✗

BERT-Flow-*target (Li
et al., 2020)

✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

SimCSE-*NLI (Gao
et al., 2021)

✗ ✗ ✗ ✓ ✗ ✗ *NLI *NLI

Fine-tuning LM
BERT-Finetune ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

B.1 Joint effect of word vectors and
preprocessings

We investigate the effects of the word vectors in
Table 6. It has been shown that fastText is the
best word vector for all three kinds of unsupervised
STS regardless of the three pre-processing steps.
Furthermore, ROTS performs best compared to AC
and WRD when the fastText is chosen.

B.2 Other preprocessing setups

In Table 6, it is also found that SWC is the best
performed pre-processing setup in eight out of nine
combinations of word vectors and unsupervised
STSes. It is also shown that given the SWC as the
preprocessing setup, ROTS performs best among
three unsupervised STS for all three kinds of word
vectors. We also explore the combination of pre-
processing setups from word level to corpus level.
We provide preliminary results about the impact
of preprocessing on ROTS in STSB test split with

Table 6: Pearson’s r×100 for benchmark study with dif-
ferent word vectors and pre-processing setups. The best
word vector achieved given the same pre-processing
setup is indicated by boldface. The best pre-processing
setup given the word vector is underlined.

Pre-processing Word Vectors Similarity
AC WRD ROTS

WR
fastText 65.11 66.20 66.47
GloVe 57.86 61.92 60.73
Word2Vec 57.35 59.52 58.68

SWC
fastText 66.97 66.26 67.52
GloVe 66.57 65.21 66.95
Word2Vec 60.21 60.13 60.66

SUP
fastText 66.45 66.63 67.45
GloVe 64.08 65.04 65.53
Word2Vec 57.69 59.49 58.90

fastText vectors. We report the score of ROTS-L4
in Table 7.

By Table 7, we suggest that C at the vocabulary
level, S at the sentence level, R at the corpus level
are beneficial. It is not clear which one of U or W in
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Table 7: STSB test results by ROTS-L4 with fastText
vectors with different preprocessing setups.

Setup Pearson’s r × 100 BCa 95% CI
+W 72.59 [70.02, 74.90]
+WR∗ 72.34 [69.81, 74.66]
+U 72.62 [70.01, 74.96]
+SU 74.52 [71.90, 76.89]
+SUP∗ 74.69 [72.01, 77.00]
+SW 74.78 [72.31, 77.11]
+SWP 74.90 [72.32, 77.08]
+SWA 74.97 [72.47, 77.15]
+SUA 75.20 [72.73, 77.43]
+SWR 75.21 [72.75, 77.45]
+SUR 75.35 [72.88, 77.53]
+SWC∗ 75.66 [73.23, 77.84]
+SUC 75.73 [73.25, 77.95]
+SWRC 75.80 [73.33, 77.92]
+SWRCA 75.86 [73.46, 78.11]
+SURC 75.89 [73.39, 78.08]
+SURCA 75.94 [73.49, 78.18]

the word level for ROTS-L4 is more effective. As
a result, we propose to combine the choices for vo-
cabulary, sentence, and corpus levels, i.e. SCR for
ROTS with U or W. Moreover, we think the two
preprocessing setups in the vocabulary level, i.e.
CA can also be combined. The best performance
of ROTS-L4 is achieved by SURCA. The setups
suggested by previous words are starred in the table,
i.e. SWC for WRD (Yokoi et al., 2020), SUP (Etha-
yarajh, 2018) and WR (Arora et al., 2017) for AC.
Though they may not be the best choice for ROTS-
L4, we argue the results presented are sufficient to
reveal the advantage of ROTS over other related
baselines under various setups.

B.3 Evaluation for transfer and
semi-supervised settings

The results can be found in Table 8. ROTS that
using the transferred ParaNMT word vector has
good performance even compared to Sentence
BERT with pretrained BERT large or RoBERTa
large (Reimers and Gurevych, 2019), and is better
than the domain adaptation settings (Li et al., 2020).
It is shown that PLM based models (Cer et al.,
2018; Reimers and Gurevych, 2019; Li et al., 2020;
Gao et al., 2021) are on par with ROTS with trans-
fered word vectors (Wieting and Gimpel, 2018).

C Computation Speed

We report the computation speed for different simi-
larities on a computer with an Intel i7 CPU of 2.6
GHz with 6 cores and 16 GB RAM. The optimal
transport is computed by the POT (Flamary et al.,

2021) package 20.
We compare the computation of ROTS with

WRD and PRD on STS-B test split (1379 sentence
pairs to compute in total). Notably, we focus on
the speed by Sinkhorn algorithm (Cuturi, 2013) for
two reasons: (1) it has O(n2) time complexity; (2)
it can be easily accelerated by GPU.

Table 9 reports the speed by different OT-based
algorithms. We note that the reported speeds for
phrase alignment algorithms (PRD and ROTS) also
include the time for parsing and constructing the
recursive phrase partitions. This additional pro-
cess brings additional computational overhead and
slows down the speed. As a consequence of parsing,
we can see that for PRD, #OT/sec is slowed down
compared to WRD. However, ROTS is based on
Prior OT with larger regularization strength, and
each call of ot.sinkhorn requires much less
time, thus making up the computational overhead
by parsing.

D EC Interpolation of WRD and AC

We consider 15 combinations from 5-word vectors
and 3 preprocessing setups. For each case, we grid-
search 10 values ofα by linearly splitting [0, 1], and
10 values of ϵ by logarithmically splitting [0, 400],
resulting in 100 runs. The performances of 15 cases
are shown in Figure 5. Grid-search results indicate
that the proper choice of EC similarity outperforms
both WRD and AC, thus showing solidness. Specif-
ically, most of the best interpolation performances
appear when α = 1 (14 cases) and ϵ ∈ [1, 10]
(14 cases), which confirms the ablation study in
Figure 4. This observation demonstrates the effec-
tiveness of the correction term and indicates that
the best choice of the alignment matrix should be
chosen carefully.

E Dataset Breakdown Tables and
Uncentity Quantification

We provide the breakdown tables related to Fig-
ure 3 with different word vectors, e.g. fastText in
Table 13, GloVe in Table 14, Word2Vec in Table 15,
PSL in Table 16 and ParaNMT in Table 17. We
see that WRD performs consistently well on Twit-
ter dataset. For STSB and SICK, ROTS is better,
resulting in the best overall performance.

20https://github.com/PythonOT/POT
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Table 8: Spearman’s ρ× 100 for different models in semisupervised and transferred setting

Similarity STS-B SICK STS12 STS13 STS14 STS15 STS16
ParaNMT Transfer
ROTS+WR+mean (ParaNMT) 78.51 65.90 65.39 63.95 75.41 79.90 77.86
ROTS+SWC+mean (ParaNMT) 78.65 65.29 64.88 62.08 74.24 79.16 76.38
SNLI + MNLI transfer
Sentence BERT(large) 79.23 73.75 72.27 78.46 74.90 80.99 76.25
Sentence RoBERTa(large) 79.10 74.29 74.53 77.00 73.18 81.85 76.82
domain adaptation setting
BERT (large) Flow *NLI 68.09 64.62 61.72 66.05 66.34 74.87 74.47
BERT (large) Flow target 72.26 62.50 65.20 73.39 69.42 74.92 77.63
SimCSE-BERT *NLI 76.85 72.23 68.40 82.41 74.38 80.91 78.56

Table 9: Comparison of computation speed

Method Function in POT Reg Reg. Strength #OT/STS #STS/sec #OT/sec
WRD ot.sinkhorn Entropy 0.1 1 208.52 208.52
PRD 4 levels ot.sinkhorn Entropy 0.1 5 32.80 164.00
ROTS 4 levels ot.sinkhorn KL Prior 10 5 60.56 302.80

E.1 Three Typical Preprocessings
We provide further information for Table 2, in-
cluding the Pearson’s r × 100 for each individual
datasets, plus STSB dev split and Twitter. Still, we
focus on fastText vectors, and list three preprocess-
ing setups, e.g. WR in Table 10, SWC in Table 11,
SUP in Table 12. We find that ROTS has the best
performance in WR and SUP, which is consistent
with Table 2, and AC is good with SWC.

E.2 Five Word Vectors
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Figure 5: Interpolating AC and WRD by Example 1 on STS-B dev set. For each case, black dots indicate the highest
score. The title of each subplot indicates scores by (WRD, Best Interpolation, AC).

Table 10: Breakdown table for benchmark study with WR preprocessing

dataset subsplit/subtask AC WRD ROTS
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI

STSB test 70.13 [67.35, 72.53] 73.13 [70.40, 75.54] 72.34 [69.78, 74.66]
dev 78.85 [76.93, 80.56] 77.83 [75.49, 79.87] 79.78 [77.76, 81.48]

Twitter test 52.01 [47.67, 56.15] 56.73 [52.07, 60.83] 53.32 [48.75, 57.45]
SICK test 73.20 [71.66, 74.68] 68.73 [67.13, 70.27] 73.75 [72.16, 75.17]

STS12

MSRpar 39.84 [33.68, 45.44] 49.93 [44.04, 54.97] 43.04 [36.93, 48.40]
MSRvid 86.01 [84.22, 87.59] 82.38 [79.82, 84.57] 86.35 [84.59, 87.91]
SMTeuroparl 52.41 [44.52, 60.64] 52.01 [45.61, 58.37] 51.95 [44.82, 59.52]
OnWN 74.31 [70.55, 77.55] 74.59 [71.42, 77.30] 74.43 [70.78, 77.58]
SMTnews 64.71 [54.76, 73.79] 60.13 [52.37, 67.16] 62.92 [53.37, 72.18]

STS13

FNWN 42.94 [29.66, 53.80] 48.59 [35.52, 58.61] 44.64 [31.36, 55.42]
headlines 72.88 [69.45, 75.99] 72.49 [68.53, 75.73] 73.52 [69.99, 76.54]
OnWN 82.36 [79.81, 84.57] 69.74 [65.22, 73.64] 80.67 [77.85, 83.07]
SMT 39.03 [31.69, 46.65] 41.56 [34.95, 47.44] 40.65 [33.25, 47.89]

STS14

deft-forum 51.99 [45.09, 58.05] 46.53 [38.71, 53.75] 50.78 [43.96, 56.97]
deft-news 74.54 [68.55, 78.93] 74.62 [68.82, 79.55] 75.52 [69.80, 79.83]
headlines 68.71 [64.55, 72.33] 67.29 [62.68, 71.45] 69.27 [65.17, 73.02]
OnWN 84.52 [82.31, 86.32] 76.45 [73.25, 79.17] 83.62 [81.32, 85.56]
images 81.33 [78.78, 83.43] 80.06 [77.09, 82.50] 81.72 [79.20, 83.82]
tweet-news 76.62 [72.87, 79.78] 78.65 [75.59, 81.33] 78.27 [74.88, 81.19]

STS15

answers-forums 70.51 [64.96, 75.13] 75.15 [70.11, 79.29] 71.86 [66.44, 76.29]
answers-students 70.86 [66.85, 74.32] 76.02 [72.59, 79.00] 72.49 [68.70, 75.71]
belief 68.88 [61.09, 74.18] 77.71 [71.39, 81.99] 70.61 [62.59, 75.62]
headlines 74.44 [71.27, 77.11] 73.69 [70.17, 76.70] 74.79 [71.52, 77.53]
images 81.68 [79.23, 83.74] 83.83 [81.28, 85.90] 83.17 [80.75, 85.13]

STS16

answer-answer 47.15 [37.71, 55.50] 60.61 [52.21, 67.26] 53.36 [44.49, 60.90]
headlines 72.39 [66.12, 77.41] 73.41 [65.76, 79.02] 73.55 [67.06, 78.37]
plagiarism 82.01 [77.92, 85.28] 82.46 [77.73, 86.24] 82.53 [78.53, 85.90]
postediting 79.37 [71.53, 83.43] 86.11 [81.33, 89.16] 79.81 [72.99, 83.71]
question-question 73.03 [66.30, 77.87] 69.79 [61.18, 76.30] 73.79 [67.24, 78.60]
MEAN 68.51 - 69.32 - 69.40 -
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Table 11: Breakdown table for benchmark study with SWC preprocessing

dataset subsplit/subtask AC WRD ROTS
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI

STSB test 74.78 [72.31, 77.06] 74.58 [72.08, 76.81] 75.66 [73.17, 77.86]
dev 82.06 [80.25, 83.67] 78.47 [76.27, 80.45] 81.33 [79.36, 83.08]

Twitter test 54.01 [49.35, 58.23] 57.10 [52.42, 61.23] 55.56 [50.95, 59.88]
SICK test 72.12 [70.63, 73.57] 67.09 [65.49, 68.60] 71.33 [69.80, 72.76]

STS12

MSRpar 52.05 [46.24, 57.40] 54.85 [49.29, 59.92] 51.96 [46.18, 57.32]
MSRvid 87.23 [85.39, 88.76] 80.91 [78.23, 83.20] 85.48 [83.36, 87.22]
SMTeuroparl 55.44 [49.45, 61.30] 52.75 [46.66, 58.26] 52.94 [46.55, 59.00]
OnWN 73.66 [69.82, 77.04] 73.80 [70.63, 76.62] 73.52 [69.84, 76.80]
SMTnews 56.28 [47.71, 64.54] 56.68 [49.28, 63.64] 54.27 [46.13, 62.82]

STS13

FNWN 53.69 [41.93, 62.83] 47.98 [36.27, 57.19] 53.49 [41.82, 63.02]
headlines 75.92 [72.66, 78.76] 73.67 [70.14, 76.79] 75.38 [71.92, 78.32]
OnWN 82.89 [80.04, 85.20] 67.57 [62.91, 71.77] 76.66 [73.17, 79.70]
SMT 41.81 [34.69, 48.45] 40.98 [34.52, 46.79] 42.44 [35.82, 48.50]

STS14

deft-forum 55.57 [48.68, 61.79] 48.98 [41.00, 55.68] 54.31 [47.11, 60.52]
deft-news 75.92 [70.33, 80.46] 75.63 [70.18, 80.18] 76.13 [70.56, 80.70]
headlines 71.27 [67.27, 74.83] 69.07 [64.70, 73.00] 71.13 [67.08, 74.74]
OnWN 85.05 [82.85, 86.93] 75.28 [72.13, 78.04] 81.41 [78.77, 83.66]
images 83.08 [80.47, 85.19] 79.24 [76.29, 81.77] 82.02 [79.39, 84.25]
tweet-news 79.02 [75.83, 81.82] 78.16 [75.11, 80.76] 79.30 [76.24, 82.05]

STS15

answers-forums 75.46 [70.52, 79.33] 75.29 [70.37, 79.42] 75.76 [70.83, 79.78]
answers-students 74.15 [70.73, 77.18] 76.29 [73.12, 79.10] 74.10 [70.68, 77.12]
belief 78.22 [72.24, 82.23] 77.92 [72.15, 82.19] 78.56 [73.04, 82.59]
headlines 77.10 [74.12, 79.68] 75.11 [71.84, 78.09] 76.73 [73.70, 79.52]
images 85.48 [83.09, 87.40] 83.65 [80.95, 85.76] 85.39 [83.04, 87.25]

STS16

answer-answer 60.44 [51.81, 67.64] 63.92 [56.17, 70.26] 61.66 [53.52, 68.76]
headlines 75.61 [68.93, 80.37] 75.28 [67.87, 80.65] 75.71 [68.87, 80.67]
plagiarism 83.48 [79.25, 86.80] 81.55 [76.49, 85.31] 82.46 [77.98, 86.01]
postediting 83.63 [77.69, 87.06] 86.90 [82.05, 89.85] 84.28 [78.84, 87.61]
question-question 76.09 [68.65, 81.22] 69.66 [61.28, 76.39] 76.08 [68.90, 81.01]
MEAN 71.78 - 69.60 - 71.21 -

Table 12: Breakdown table for benchmark study with SUP preprocessing

dataset subsplit/subtask AC WRD ROTS
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI

STSB test 73.47 [70.90, 75.86] 74.80 [72.27, 77.13] 74.69 [72.12, 77.01]
dev 80.87 [78.98, 82.55] 78.75 [76.54, 80.72] 81.15 [79.23, 82.92]

Twitter test 53.15 [48.54, 57.23] 57.41 [52.87, 61.57] 54.88 [50.28, 59.08]
SICK test 72.73 [71.16, 74.24] 67.67 [66.06, 69.17] 72.77 [71.26, 74.22]

STS12

MSRpar 41.40 [35.15, 46.68] 50.98 [45.25, 56.10] 44.77 [38.66, 50.10]
MSRvid 86.79 [84.94, 88.35] 83.27 [80.83, 85.32] 87.04 [85.18, 88.62]
SMTeuroparl 53.29 [46.42, 60.68] 52.73 [46.49, 58.45] 52.31 [45.42, 58.92]
OnWN 73.53 [69.66, 76.91] 73.85 [70.76, 76.55] 73.56 [69.81, 76.79]
SMTnews 61.19 [51.71, 70.15] 59.34 [52.19, 66.10] 59.92 [50.88, 69.08]

STS13

FNWN 49.52 [37.76, 59.05] 49.16 [37.65, 58.60] 50.25 [38.73, 59.72]
headlines 73.73 [70.24, 76.79] 72.95 [69.30, 76.21] 74.11 [70.65, 77.17]
OnWN 83.15 [80.48, 85.50] 71.12 [66.69, 74.82] 81.14 [78.13, 83.53]
SMT 39.22 [32.18, 46.23] 40.78 [34.34, 46.68] 40.50 [33.48, 47.03]

STS14

deft-forum 53.39 [46.27, 59.71] 47.60 [39.96, 54.72] 52.21 [45.10, 58.70]
deft-news 76.08 [70.28, 80.42] 75.38 [69.79, 80.11] 76.91 [71.41, 81.28]
headlines 69.86 [65.85, 73.29] 68.11 [63.55, 72.19] 70.12 [65.97, 73.73]
OnWN 85.37 [83.20, 87.16] 77.55 [74.59, 80.08] 84.05 [81.72, 85.98]
images 83.73 [81.36, 85.71] 81.05 [78.26, 83.51] 83.65 [81.31, 85.67]
tweet-news 77.78 [74.24, 80.79] 78.24 [75.16, 80.85] 78.86 [75.59, 81.61]

STS15

answers-forums 74.60 [69.78, 78.61] 75.80 [70.74, 79.72] 75.40 [70.34, 79.27]
answers-students 70.66 [66.65, 74.13] 75.16 [71.79, 78.21] 72.18 [68.21, 75.47]
belief 76.53 [70.16, 80.98] 78.37 [72.23, 82.48] 77.23 [70.94, 81.64]
headlines 75.16 [72.06, 77.80] 74.28 [70.94, 77.36] 75.42 [72.23, 78.15]
images 84.70 [82.47, 86.60] 84.66 [82.23, 86.64] 85.31 [83.12, 87.13]

STS16

answer-answer 54.75 [45.45, 62.55] 62.77 [54.87, 69.23] 58.21 [49.27, 65.50]
headlines 72.71 [66.44, 77.66] 74.16 [66.53, 79.74] 73.90 [67.05, 78.90]
plagiarism 82.37 [78.29, 85.55] 82.21 [77.61, 86.05] 82.62 [78.53, 85.92]
postediting 82.64 [76.07, 86.31] 86.54 [81.65, 89.56] 83.08 [76.90, 86.66]
question-question 74.91 [67.20, 79.98] 71.21 [63.00, 77.61] 75.57 [68.48, 80.59]
MEAN 70.25 - 69.86 - 70.75 -
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Table 13: Breakdown table with fastText vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 74.80 [72.27, 77.13] 57.41 [52.87, 61.57] 67.67 [66.06, 69.17] 66.63
AC 73.47 [70.90, 75.86] 53.15 [48.54, 57.23] 72.73 [71.16, 74.24] 66.45
ROTS+L0 73.47 [70.77, 75.76] 53.15 [48.47, 57.13] 72.73 [71.19, 74.25] 66.45
ROTS+L1 73.77 [71.24, 76.08] 53.34 [48.84, 57.51] 73.31 [71.71, 74.74] 66.81
ROTS+L2 74.02 [71.40, 76.34] 53.40 [48.76, 57.63] 73.37 [71.85, 74.81] 66.93
ROTS+L3 74.05 [71.25, 76.44] 54.23 [49.76, 58.44] 73.13 [71.56, 74.58] 67.14
ROTS+L4 74.69 [72.12, 77.01] 54.88 [50.28, 59.08] 72.77 [71.26, 74.22] 67.45
ROTS+mean 74.25 [71.70, 76.56] 53.93 [49.50, 58.13] 73.13 [71.59, 74.58] 67.10
ROTS+max 74.58 [71.87, 76.86] 54.88 [50.39, 59.04] 72.77 [71.27, 74.23] 67.41
ROTS+min 73.36 [70.57, 75.71] 52.74 [48.17, 56.90] 72.74 [71.15, 74.17] 66.28
ROTS+last 74.30 [71.70, 76.64] 54.95 [50.51, 59.01] 72.54 [70.96, 74.03] 67.26
with SWC
WRD 74.58 [72.08, 76.81] 57.10 [52.42, 61.23] 67.09 [65.49, 68.60] 66.26
AC 74.78 [72.31, 77.06] 54.01 [49.35, 58.23] 72.12 [70.63, 73.57] 66.97
ROTS+L0 74.60 [72.08, 76.92] 53.74 [49.07, 57.98] 71.57 [70.01, 73.01] 66.64
ROTS+L1 74.84 [72.38, 77.09] 53.99 [49.38, 58.26] 72.02 [70.46, 73.44] 66.95
ROTS+L2 75.08 [72.64, 77.42] 54.09 [49.38, 58.41] 72.00 [70.50, 73.40] 67.06
ROTS+L3 75.25 [72.69, 77.57] 54.95 [50.26, 59.19] 71.72 [70.23, 73.17] 67.31
ROTS+L4 75.66 [73.17, 77.86] 55.56 [50.95, 59.88] 71.33 [69.80, 72.76] 67.52
ROTS+mean 75.33 [72.82, 77.56] 54.59 [49.93, 59.00] 71.79 [70.23, 73.22] 67.24
ROTS+max 75.53 [73.08, 77.77] 55.59 [50.96, 59.70] 71.33 [69.83, 72.80] 67.48
ROTS+min 74.80 [72.16, 77.14] 53.44 [48.65, 57.71] 71.58 [70.04, 73.00] 66.61
ROTS+last 75.47 [72.99, 77.64] 55.73 [51.22, 59.76] 71.15 [69.62, 72.62] 67.45
with WR
WRD 73.13 [70.40, 75.54] 56.73 [52.07, 60.83] 68.73 [67.13, 70.27] 66.20
AC 70.13 [67.35, 72.53] 52.01 [47.67, 56.15] 73.20 [71.66, 74.68] 65.11
ROTS+L0 70.14 [67.47, 72.65] 52.03 [47.45, 56.02] 73.20 [71.63, 74.68] 65.12
ROTS+L1 70.67 [67.98, 73.12] 52.13 [47.62, 56.29] 73.82 [72.30, 75.28] 65.54
ROTS+L2 71.21 [68.59, 73.62] 52.03 [47.21, 56.24] 74.01 [72.52, 75.49] 65.75
ROTS+L3 71.31 [68.51, 73.77] 52.76 [48.20, 56.84] 73.94 [72.42, 75.40] 66.00
ROTS+L4 72.34 [69.78, 74.66] 53.32 [48.75, 57.45] 73.75 [72.16, 75.17] 66.47
ROTS+mean 71.52 [68.99, 73.87] 52.59 [47.95, 56.78] 73.84 [72.27, 75.28] 65.98
ROTS+max 72.17 [69.51, 74.51] 53.32 [48.78, 57.36] 73.75 [72.22, 75.20] 66.41
ROTS+min 70.12 [67.20, 72.64] 51.44 [46.76, 55.55] 73.21 [71.60, 74.66] 64.92
ROTS+last 71.78 [69.21, 74.10] 53.41 [49.05, 57.46] 73.48 [71.92, 74.96] 66.22

Table 14: Breakdown table with GloVe vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 71.97 [69.18, 74.43] 55.63 [50.93, 60.07] 67.52 [65.94, 69.13] 65.04
AC 69.54 [66.72, 72.05] 49.79 [44.88, 54.34] 72.92 [71.40, 74.43] 64.08
ROTS+L0 69.54 [66.68, 72.13] 49.79 [44.83, 54.33] 72.92 [71.34, 74.40] 64.08
ROTS+L1 70.03 [67.29, 72.51] 50.1 [45.13, 54.72] 73.51 [71.95, 74.94] 64.55
ROTS+L2 70.62 [67.89, 73.03] 50.3 [45.20, 54.90] 73.56 [72.03, 75.06] 64.83
ROTS+L3 70.94 [68.20, 73.40] 51.08 [46.17, 55.50] 73.33 [71.78, 74.74] 65.12
ROTS+L4 71.79 [69.19, 74.15] 51.83 [46.91, 56.23] 72.98 [71.44, 74.50] 65.53
ROTS+mean 70.96 [68.26, 73.37] 50.73 [45.79, 55.23] 73.35 [71.79, 74.83] 65.01
ROTS+max 71.57 [68.98, 73.95] 51.83 [47.05, 56.38] 72.98 [71.41, 74.43] 65.46
ROTS+min 69.87 [66.98, 72.43] 49.54 [44.59, 54.14] 72.93 [71.37, 74.40] 64.11
ROTS+last 71.49 [68.90, 73.83] 51.76 [47.01, 56.10] 72.8 [71.21, 74.31] 65.35
with SWC
WRD 72.34 [69.61, 74.79] 57.31 [52.66, 61.52] 65.99 [64.36, 67.51] 65.21
AC 73.14 [70.51, 75.51] 55.34 [50.75, 59.63] 71.23 [69.69, 72.67] 66.57
ROTS+L0 72.93 [70.19, 75.32] 54.37 [49.51, 58.72] 70.53 [68.94, 72.02] 65.94
ROTS+L1 73.19 [70.55, 75.59] 54.6 [49.87, 58.91] 70.97 [69.39, 72.39] 66.25
ROTS+L2 73.51 [70.95, 75.90] 54.79 [50.00, 59.19] 70.94 [69.41, 72.40] 66.41
ROTS+L3 73.7 [71.06, 76.06] 55.67 [50.86, 59.99] 70.68 [69.15, 72.13] 66.68
ROTS+L4 74.18 [71.66, 76.50] 56.38 [51.78, 60.67] 70.3 [68.77, 71.77] 66.95
ROTS+mean 73.77 [71.24, 76.14] 55.29 [50.58, 59.63] 70.75 [69.23, 72.22] 66.60
ROTS+max 74.01 [71.44, 76.30] 56.38 [51.71, 60.68] 70.3 [68.73, 71.74] 66.90
ROTS+min 73.24 [70.60, 75.63] 54.01 [49.20, 58.35] 70.54 [68.99, 72.06] 65.93
ROTS+last 74.01 [71.43, 76.31] 56.45 [51.79, 60.54] 70.13 [68.60, 71.65] 66.86
with WR
WRD 69.05 [65.99, 71.79] 48.69 [43.60, 53.49] 68.01 [66.36, 69.60] 61.92
AC 64.67 [61.65, 67.48] 37.56 [32.30, 42.53] 71.36 [69.72, 72.89] 57.86
ROTS+L0 64.67 [61.65, 67.46] 37.56 [32.23, 42.61] 71.36 [69.72, 72.91] 57.86
ROTS+L1 65.39 [62.39, 68.02] 38.24 [33.05, 43.22] 72.12 [70.52, 73.60] 58.58
ROTS+L2 66.32 [63.51, 68.98] 39.12 [33.70, 44.14] 72.47 [70.85, 73.99] 59.30
ROTS+L3 66.46 [63.59, 69.17] 40.58 [35.47, 45.37] 72.58 [71.00, 74.06] 59.87
ROTS+L4 67.9 [65.24, 70.38] 41.77 [36.62, 46.55] 72.52 [70.93, 74.01] 60.73
ROTS+mean 66.75 [63.97, 69.35] 39.63 [34.30, 44.41] 72.36 [70.80, 73.91] 59.58
ROTS+max 67.68 [65.01, 70.09] 41.77 [36.67, 46.65] 72.52 [70.93, 74.02] 60.66
ROTS+min 64.74 [61.59, 67.57] 37.47 [32.12, 42.42] 71.37 [69.71, 72.91] 57.86
ROTS+last 67.36 [64.63, 69.84] 41.31 [36.23, 46.06] 72.23 [70.66, 73.70] 60.30
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Table 15: Breakdown table with Word2Vec vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 70.77 [67.85, 73.44] 41.36 [36.04, 46.45] 66.34 [64.73, 67.88] 59.49
AC 69 [66.05, 71.73] 33.12 [27.54, 38.18] 70.96 [69.29, 72.53] 57.69
ROTS+L0 69 [66.05, 71.68] 33.12 [27.55, 38.19] 70.96 [69.31, 72.52] 57.69
ROTS+L1 69.42 [66.39, 72.09] 33.37 [27.90, 38.44] 71.38 [69.76, 72.93] 58.06
ROTS+L2 69.95 [66.94, 72.47] 33.8 [28.39, 38.93] 71.74 [70.13, 73.26] 58.50
ROTS+L3 70.13 [67.15, 72.70] 34.42 [28.79, 39.60] 71.5 [69.86, 73.02] 58.68
ROTS+L4 70.57 [67.73, 73.13] 34.97 [29.38, 40.20] 71.17 [69.51, 72.65] 58.90
ROTS+mean 69.99 [67.02, 72.60] 33.99 [28.39, 39.10] 71.47 [69.88, 73.03] 58.48
ROTS+max 70.57 [67.73, 73.13] 34.97 [29.53, 40.05] 71.17 [69.58, 72.74] 58.90
ROTS+min 68.91 [65.89, 71.57] 33.18 [27.90, 38.37] 70.75 [69.07, 72.25] 57.61
ROTS+last 70.17 [67.38, 72.81] 34.49 [28.84, 39.53] 70.72 [69.09, 72.28] 58.46
with SWC
WRD 70.64 [67.76, 73.22] 43.46 [38.05, 48.49] 66.29 [64.68, 67.83] 60.13
AC 70.41 [67.47, 73.05] 38.84 [33.44, 44.03] 71.39 [69.81, 72.89] 60.21
ROTS+L0 70.13 [67.23, 72.81] 38.46 [33.08, 43.54] 70.75 [69.17, 72.26] 59.78
ROTS+L1 70.44 [67.59, 73.09] 38.67 [33.18, 43.75] 71.02 [69.46, 72.51] 60.04
ROTS+L2 70.87 [68.02, 73.46] 39.03 [33.49, 43.93] 71.2 [69.61, 72.66] 60.37
ROTS+L3 71.03 [68.06, 73.57] 39.58 [33.98, 44.54] 70.92 [69.34, 72.40] 60.51
ROTS+L4 71.4 [68.58, 73.98] 40.03 [34.62, 45.28] 70.56 [69.02, 72.01] 60.66
ROTS+mean 70.92 [68.06, 73.46] 39.21 [33.82, 44.34] 70.97 [69.42, 72.43] 60.37
ROTS+max 71.4 [68.60, 73.96] 40.03 [34.60, 45.49] 70.56 [68.98, 72.03] 60.66
ROTS+min 70.05 [67.08, 72.66] 38.51 [33.04, 43.56] 70.59 [69.06, 72.13] 59.72
ROTS+last 71.22 [68.32, 73.74] 39.74 [34.26, 44.76] 70.23 [68.61, 71.71] 60.40
with WR
WRD 70.33 [67.42, 73.02] 40.56 [35.15, 45.83] 67.68 [66.09, 69.20] 59.52
AC 67.86 [64.83, 70.63] 31.85 [26.34, 36.76] 72.33 [70.74, 73.79] 57.35
ROTS+L0 67.87 [64.88, 70.59] 31.86 [26.51, 36.88] 72.33 [70.74, 73.83] 57.35
ROTS+L1 68.4 [65.42, 71.04] 32.07 [26.56, 37.15] 72.68 [71.08, 74.19] 57.72
ROTS+L2 69.09 [66.06, 71.70] 32.4 [26.71, 37.43] 73.04 [71.46, 74.49] 58.18
ROTS+L3 69.44 [66.50, 72.09] 32.96 [27.63, 38.06] 72.85 [71.33, 74.37] 58.42
ROTS+L4 70 [67.15, 72.54] 33.48 [27.87, 38.72] 72.55 [70.94, 74.04] 58.68
ROTS+mean 69.14 [66.29, 71.78] 32.6 [27.20, 37.64] 72.82 [71.28, 74.29] 58.19
ROTS+max 70 [67.12, 72.52] 33.48 [27.99, 38.60] 72.55 [70.99, 74.08] 58.68
ROTS+min 67.83 [64.78, 70.66] 31.94 [26.48, 36.82] 72.12 [70.52, 73.67] 57.30
ROTS+last 69.58 [66.77, 72.17] 33.09 [27.75, 38.21] 72.22 [70.62, 73.70] 58.30

Table 16: Breakdown table with PSL vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 73.78 [71.22, 76.14] 45.72 [40.09, 51.01] 67.83 [66.23, 69.41] 62.44
AC 73.50 [70.84, 75.91] 42.49 [36.81, 47.63] 71.97 [70.38, 73.50] 62.65
ROTS+L0 73.50 [70.87, 75.82] 42.49 [36.95, 47.70] 71.98 [70.40, 73.47] 62.66
ROTS+L1 73.76 [71.14, 76.07] 42.71 [37.24, 47.82] 72.60 [71.05, 74.07] 63.02
ROTS+L2 73.95 [71.37, 76.21] 42.81 [37.08, 47.96] 72.61 [71.11, 74.08] 63.12
ROTS+L3 73.95 [71.31, 76.32] 43.40 [37.81, 48.61] 72.37 [70.84, 73.83] 63.24
ROTS+L4 74.48 [71.98, 76.76] 43.78 [38.22, 48.98] 72.01 [70.47, 73.45] 63.42
ROTS+mean 74.19 [71.60, 76.44] 43.10 [37.48, 48.31] 72.39 [70.85, 73.86] 63.23
ROTS+max 74.42 [71.87, 76.76] 43.78 [38.04, 49.04] 72.01 [70.50, 73.48] 63.40
ROTS+min 73.52 [70.90, 75.85] 42.36 [36.69, 47.46] 71.98 [70.40, 73.47] 62.62
ROTS+last 74.24 [71.63, 76.52] 43.74 [38.23, 48.95] 71.74 [70.23, 73.25] 63.24
with SWC
WRD 73.01 [70.32, 75.35] 46.01 [40.33, 51.24] 66.73 [65.19, 68.24] 61.92
AC 74.22 [71.73, 76.54] 43.76 [38.16, 48.85] 70.07 [68.54, 71.57] 62.68
ROTS+L0 73.93 [71.36, 76.25] 43.62 [38.07, 48.76] 69.60 [68.00, 71.10] 62.38
ROTS+L1 74.06 [71.43, 76.41] 43.83 [38.19, 49.15] 70.13 [68.56, 71.66] 62.67
ROTS+L2 74.15 [71.55, 76.46] 43.90 [38.10, 49.26] 70.17 [68.64, 71.64] 62.74
ROTS+L3 74.14 [71.58, 76.44] 44.45 [38.75, 49.74] 69.98 [68.41, 71.45] 62.86
ROTS+L4 74.47 [71.87, 76.78] 44.82 [39.21, 50.08] 69.68 [68.16, 71.12] 62.99
ROTS+mean 74.37 [71.81, 76.73] 44.19 [38.65, 49.45] 69.98 [68.41, 71.44] 62.85
ROTS+max 74.41 [71.83, 76.67] 44.83 [39.20, 50.06] 69.68 [68.14, 71.13] 62.97
ROTS+min 74.03 [71.44, 76.36] 43.45 [37.94, 48.60] 69.60 [68.06, 71.15] 62.36
ROTS+last 74.37 [71.84, 76.66] 44.88 [39.25, 50.08] 69.41 [67.83, 70.82] 62.89
with WR
WRD 72.52 [69.80, 74.89] 45.04 [39.41, 50.32] 68.38 [66.77, 69.92] 61.98
AC 71.13 [68.34, 73.60] 40.18 [34.60, 45.38] 72.37 [70.80, 73.85] 61.23
ROTS+L0 71.13 [68.41, 73.61] 40.18 [34.51, 45.23] 72.37 [70.77, 73.87] 61.23
ROTS+L1 71.57 [68.95, 74.01] 40.45 [34.84, 45.47] 73.02 [71.43, 74.48] 61.68
ROTS+L2 72.05 [69.30, 74.44] 40.59 [34.86, 45.82] 73.07 [71.53, 74.54] 61.90
ROTS+L3 72.22 [69.51, 74.62] 41.19 [35.48, 46.47] 72.90 [71.36, 74.38] 62.10
ROTS+L4 72.93 [70.34, 75.21] 41.61 [35.85, 46.86] 72.60 [71.00, 74.06] 62.38
ROTS+mean 72.34 [69.75, 74.72] 40.87 [35.30, 46.18] 72.88 [71.31, 74.31] 62.03
ROTS+max 72.79 [70.22, 75.05] 41.61 [35.87, 46.84] 72.60 [71.04, 74.06] 62.33
ROTS+min 71.36 [68.54, 73.78] 40.11 [34.50, 45.39] 72.38 [70.84, 73.91] 61.28
ROTS+last 72.63 [70.04, 74.94] 41.43 [36.01, 46.70] 72.35 [70.79, 73.85] 62.14
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Table 17: Breakdown table with ParaNMT vectors

Similarity STSB Twitter SICK MEAN
Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

BCa 95% CI Pearson’s
r × 100

with SUP
WRD 79.05 [76.85, 81.05] 52.21 [47.20, 56.89] 70.02 [68.52, 71.45] 67.09
AC 79.55 [77.23, 81.61] 46.56 [41.08, 51.56] 73.89 [72.47, 75.24] 66.67
ROTS+L0 79.55 [77.15, 81.57] 46.55 [41.14, 51.50] 73.89 [72.45, 75.26] 66.66
ROTS+L1 79.73 [77.44, 81.77] 46.81 [41.44, 51.79] 74.47 [73.09, 75.83] 67.00
ROTS+L2 79.73 [77.40, 81.71] 47.08 [41.87, 52.25] 74.56 [73.14, 75.88] 67.12
ROTS+L3 79.54 [77.09, 81.61] 48.09 [42.85, 52.77] 74.31 [72.91, 75.68] 67.31
ROTS+L4 79.74 [77.41, 81.77] 48.71 [43.50, 53.50] 73.93 [72.55, 75.33] 67.46
ROTS+mean 79.81 [77.48, 81.83] 47.60 [42.36, 52.44] 74.30 [72.90, 75.65] 67.24
ROTS+max 79.74 [77.43, 81.78] 48.73 [43.51, 53.49] 73.93 [72.51, 75.28] 67.47
ROTS+min 79.29 [76.79, 81.36] 46.22 [40.78, 51.23] 73.89 [72.45, 75.25] 66.47
ROTS+last 79.37 [77.02, 81.41] 48.72 [43.42, 53.61] 73.63 [72.16, 74.95] 67.24
with SWC
WRD 77.98 [75.65, 79.96] 52.49 [47.49, 57.00] 68.92 [67.41, 70.35] 66.46
AC 79.70 [77.58, 81.65] 46.46 [41.22, 51.39] 71.58 [70.07, 72.98] 65.91
ROTS+L0 79.71 [77.55, 81.57] 46.20 [40.78, 51.13] 71.23 [69.75, 72.64] 65.71
ROTS+L1 79.78 [77.56, 81.63] 46.48 [41.19, 51.48] 71.77 [70.30, 73.17] 66.01
ROTS+L2 79.70 [77.54, 81.64] 46.84 [41.49, 51.89] 71.85 [70.40, 73.23] 66.13
ROTS+L3 79.47 [77.14, 81.51] 47.97 [42.69, 52.76] 71.67 [70.27, 73.04] 66.37
ROTS+L4 79.48 [77.34, 81.41] 48.72 [43.67, 53.62] 71.36 [69.89, 72.76] 66.52
ROTS+mean 79.79 [77.55, 81.74] 47.40 [42.14, 52.49] 71.64 [70.14, 72.99] 66.28
ROTS+max 79.45 [77.24, 81.43] 48.74 [43.61, 53.64] 71.36 [69.89, 72.74] 66.52
ROTS+min 79.63 [77.33, 81.61] 45.90 [40.58, 50.83] 71.24 [69.76, 72.68] 65.59
ROTS+last 79.28 [77.07, 81.23] 48.72 [43.68, 53.51] 71.05 [69.58, 72.47] 66.35
with WR
WRD 79.03 [76.80, 80.97] 50.82 [45.66, 55.60] 70.94 [69.47, 72.39] 66.93
AC 79.53 [77.28, 81.52] 43.46 [38.01, 48.50] 74.54 [73.07, 75.88] 65.84
ROTS+L0 79.53 [77.20, 81.46] 43.46 [38.11, 48.50] 74.54 [73.08, 75.84] 65.84
ROTS+L1 79.75 [77.50, 81.75] 43.71 [38.19, 48.46] 75.12 [73.70, 76.49] 66.19
ROTS+L2 79.78 [77.45, 81.75] 43.98 [38.40, 49.10] 75.22 [73.82, 76.56] 66.33
ROTS+L3 79.55 [77.15, 81.63] 45.05 [39.73, 49.92] 75.02 [73.61, 76.32] 66.54
ROTS+L4 79.71 [77.41, 81.62] 45.70 [40.42, 50.78] 74.68 [73.29, 76.04] 66.70
ROTS+mean 79.83 [77.57, 81.83] 44.54 [39.07, 49.62] 75.00 [73.62, 76.36] 66.46
ROTS+max 79.71 [77.42, 81.64] 45.71 [40.18, 50.60] 74.68 [73.27, 76.01] 66.70
ROTS+min 79.28 [76.85, 81.34] 43.14 [37.45, 48.16] 74.54 [73.10, 75.87] 65.65
ROTS+last 79.39 [77.03, 81.36] 45.62 [40.29, 50.65] 74.41 [72.98, 75.77] 66.47
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Abstract

Loanwords are words incorporated from one
language into another without translation. Sup-
pose two words from distantly-related or unre-
lated languages sound similar and have a sim-
ilar meaning. In that case, this is evidence of
likely borrowing. This paper presents a method
to automatically detect loanwords across vari-
ous language pairs, accounting for differences
in script, pronunciation and phonetic transfor-
mation by the borrowing language. We incorpo-
rate edit distance, semantic similarity measures,
and phonetic alignment. We evaluate on 12 lan-
guage pairs and achieve performance compara-
ble to or exceeding state of the art methods on
single-pair loanword detection tasks. We also
demonstrate that multilingual models perform
the same or often better than models trained on
single language pairs and can potentially gen-
eralize to unseen language pairs with sufficient
data, and that our method can exceed human
performance on loanword detection.

1 Introduction
Throughout history, words and phrases have been
exchanged between languages around the world
(Weinreich, 1954). This can obscure genetic re-
lations between languages (e.g., many people er-
roneously believe English and French are more
closely related than they are) but may also increase
comprehension of foreign languages by monoglots
(e.g., written French is often partially comprehensi-
ble by English speakers).

As Zhang et al. (2021) observe, detecting that a
word is loanword is conceptually straightforward:
both similar sound and meaning suggests too great
a coincidence for different words to have converged
by chance1. Detecting loanwords computationally

*These authors contributed equally to this work.
†This work performed at Colorado State University.
1There are exceptions, e.g., Persian bad vs. English “bad”

and Mbabaram dog/dúg vs. English “dog”. These are beyond
the scope of this paper.

has therefore relied on pairwise similarity mea-
sures based on transliteration detection and edit
distance. However, foundational work in linguistic
borrowing, e.g., by Haugen (1950) and Betz (1959),
established that when borrowing words into a recip-
ient language, speakers of that language will repro-
duce existing linguistic patterns when using new
words, and the patterns that recipient speakers im-
pose upon a borrowed word vary across time (Köll-
ner and Dellert, 2016), and language pairs. Some
languages may adopt a word without much pho-
netic change due to already-similar phonotactics.
Others may fit imported words into a rigid sound
pattern, with sometimes significant transformation.
Still others may change the meaning. Changes are
particular to the language pair, so automatically de-
tecting loanwords between arbitrary languages is
challenging. However, if successful, such capabili-
ties would also provide benefits to many other NLP
tasks such as machine translation, coreference, and
named-entity recognition (NER), because common
vocabulary, coreferents, or named entities across
languages may often be loanwords.

Here, we present a novel method for auto-
mated loanword detection between arbitrary lan-
guage pairs. We build upon existing edit distance-
based approaches, incorporate semantic similar-
ity metrics from multilingual language models
MBERT (Devlin et al., 2019) and XLM (Conneau
et al., 2020), and a method of assessing alignment
of phonemes between donor words and loans to ac-
count for differences in phonotactics between the
relevant languages. We also present and evaluate on
the WikLoW (Wiktionary LoanWord) Dataset, cur-
rently consisting of 13 language pairs with a high
density of loanwords and 3 further language pairs
with a lower density of loanwords. We also provide
a methodology for expanding the dataset to new
language pairs. We demonstrate that our method
to detect loanwords across all language pairs in
the dataset performs comparably to or better than
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existing methods on language-specific loanword de-
tection tasks, that multilingual models can perform
better than models trained on individual language
pairs, even on data from that pair itself, and that
our model can also exceed human performance.2

Our method supports both loanword detection
and construction of parallel corpora of loanwords
for other tasks. Our conclusions suggest that there
are some general principles of loanword detection
that can be picked up by machine learning models
independent of specific languages, and we propose
follow-up challenges for NLP research in this area.

2 Related Work
Prior approaches to detecting loanwords compu-
tationally follow the intuition mentioned above:
that if two words in otherwise not closely related
languages have similar meaning and sound simi-
lar, then this is likely evidence of borrowing. Van
Der Ark et al. (2007) use a Levenshtein-distance
based approach to identify language groups and
loanwords among languages of Central Asia.

Delz (2013)/Köllner (2021) proposes theoreti-
cal approaches to loanword identification based on
phylogenetic methods. Zhang et al. (2021) also
point out an issue we address herein: loanwords
may be transformed to fit the borrowing language’s
phonology and phonotactics, so pronunciation sim-
ilarity may be a weaker than ideal method.

Existing data resources relevant to loanwords
include the the Automated Similarity Judgment
Project (ASJP) database (Brown et al., 2008) and
the World Loanword Database (WOLD) (Haspel-
math and Tadmor, 2009). Our data source is Wik-
tionary, which has previously been used in related
etymological tasks by De Melo (2014) and Sagot
(2017).

One thing we should note is that much work
in computational loanword detection and similar
tasks is targeted at a specific language or group
of languages, e.g., Romance (Cristea et al., 2021;
Tsvetkov and Dyer, 2015), Japanese (Takamura
et al., 2017), Uyghur (Mi et al., 2014, 2018,
2020, 2021), Spanish (Álvarez-Mellado and Lig-
nos, 2022), Central Asian languages (Van Der Ark
et al., 2007), or Turkic and Indo-Iranian (Zhang
et al., 2021). Our approach attempts to address the
problem at a multilingual level. We use and extend
existing work in phonological processing by the
NLP community, including the Epitran (Mortensen

2The codebase is provided at https://github.com/
csu-signal/loan-word-detection.

et al., 2018) and PanPhon (Mortensen et al., 2016)
packages for representing phonetic and articula-
tory features. We incorporate semantic similar-
ity measures from multilingual language models
MBERT and XLM, and develop a method of scor-
ing the level of alignment of phonemes between a
donor and a loanword to account for differences
in language-specific phonology and phonotactics.
Our approach in principle supports loanword de-
tection on any pair of languages supported by the
upstream packages/models Epitran, MBERT, and
XLM, but we discuss how we have (Sec. 3) and
can (Sec. 8) also extend our approach to languages
that are not at present covered by all of these.

A work at a similar scale, albeit on the slightly
different task of cognate classification, is Jäger
(2018), which evaluates PMI and SVM-based
methods over the ASJP database. Cognate de-
tection work generally uses similar methods to
those we use here, e.g., semantic and phonetic
similarity (Kondrak, 2001), orthographic distance
(Mulloni and Pekar, 2006) combined with seman-
tic information (Labat and Lefever, 2019; Lefever
et al., 2020), or global constraints (Bloodgood
and Strauss, 2017). Work in translation lexicons
(e.g., Schafer and Yarowsky (2002)) is also rele-
vant, for the hybrid approach to similarity metrics.

Loanword detection may be useful for phyloge-
netic reconstruction, like cognate detection (Rama
and List, 2019). However, cognates are valid for
reconstructing common ancestry; loanwords are
not. For historical reconstruction, the two must be
separated. Many in the NLP community adopt a
definition of “cognate” that subsumes loanwords
(e.g., Kondrak (2001)). We do not adopt this defi-
nition, and use the linguistic definition that treats
loanwords and cognates as distinct.

3 Data Collection
The WikLoW dataset is collected using the pro-
cess outlined in this section, which can be run
for any pair of languages that have loans between
them catalogued in Wiktionary, making it easy
to expand to new data. We begin by collect-
ing data from Wiktionary categories of the form
[Recipient]_terms_borrowed_from_
[Donor]3. Each link in the category is scraped
for a loanword in the recipient language and the
original form of that word in the donor language.

3e.g., https://en.wiktionary.org/wiki/
Category:Polish_terms_borrowed_from_
French
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Table 1 shows the language pairs currently con-
tained in the WikLoW dataset, and the number
of loans for that pair. There is no global defini-
tion of a “low-resourced” language, as this is task-
dependent, but we have intentionally tried to repre-
sent languages that are not well-represented in large
corpora like CC-100 (Conneau et al., 2020). We
hereafter refer to language pairs using the format
“borrower-donor,” e.g., “Hindi-Persian” to refer to
Hindi words borrowed from Persian. The direction-
ality between the two languages is important to the
pair definition, as only words loaned from the donor
language to the borrower are properly considered
loanwords. If the direction of the languages were
flipped, not only would the class labels be different
(the donor word loaned into borrower would not
be considered a loanword in the donor language),
but while the phonetic and semantic similarities
(Secs. 4.2 and 4.3) would probably be the same,
the alignment score (Sec. 4.4) would not be, since
the output label when training that network is the
loanword status, which would be likewise flipped.

Borrower Donor # loans

English French 5074
English German 2942
Indonesian Dutch 2665
Polish French 2055
Romanian French 2000†

Kazakh∗ Russian 1809
Persian Arabic 1526
Romanian Hungarian 1460
German French 1365
Hindi∗ Persian 1249
Finnish Swedish∗ 1242
Azerbaijani∗ Arabic 1116
Mandarin English 960
Hungarian German 532
German Italian 249
Catalan∗ Arabic 94

Table 1: Loanword counts per language pair.
∗Languages with < 2 billion tokens in the CC-100 corpus.
†Subset of total available loans used.

We also scrape the Wikipedia page listing lan-
guages by writing system4, to include the script
name for each language in our datasets. This al-
lows us to filter out words not written in the typical
script of the recipient language. For example, some
Chinese “loanwords” from English are incorpo-

4https://en.wikipedia.org/wiki/List_
of_languages_by_writing_system

rated keeping the Latin script intact; we don’t need
machine learning to tell us that these are borrowed
terms. Having script information also proves bene-
ficial in later experiments (see Sec. 5).

We also collect all the available lemmas in the
donor language, which we use later to calculate the
closest phonetic neighbors for each loanword. We
also collect homonyms for each loanword where
available; homonyms are considered those words
that have more than one etymology, where one is a
loan from the relevant donor language5.

Using the Epitran package (Mortensen et al.,
2018), we transliterate both loans and original
words into the International Phonetic Alphabet
(IPA). The Epitran package can be extended to
support new languages, as we did here in the case
of Finnish, using Omniglot6 as a resource. Epitran
is not a perfect mapping to real pronunciation, es-
pecially in the case of abjads such as Arabic script,
a point of relevance later (Sec. 4.4, Sec. 7.1).

Having gathered positive examples of loanwords,
we need to gather sufficient negative examples to
both train an algorithm, and to try and fool the
trained algorithm. Negative examples can be:

• Synonyms: words with similar meaning to
a loanword but pronounced differently, e.g.,
“driver” vs. chauffeur.

• Hard negatives: closest phonetic neighbors
to a loanword that have different meaning,
e.g., “annex” vs. ânesse.

• Randoms: random pairings where the two
words have no discernible phonetic or seman-
tic relationship.

To create the synonyms dataset, we take a list
of 440 English words, each of which has multi-
ple synonyms associated with it. With the Google
Translate API, we translate the main word into one
language from our current relevant pair, and each
synonym into the other. We then construct word
pairs in the donor and recipient language using the
Cartesian product of each word with each trans-
lated synonym. We remove any duplicates, and any
pairs that also occur in the loanword dataset, as
we do not want true positives labeled as negatives
when training the loanword detection model.

To create the hard negatives dataset, we use
the PanPhon package (Mortensen et al., 2016) to

5One such example is Hindiagr (/@g@r/), which can be
both a loan from Persian, meaning “if,” and a descendent of
Sanskritagz, referring to a type of wood.

6https://www.omniglot.com/writing/
finnish.htm
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compute six edit distances (see Sec. 4.2) between
the IPA transcriptions of the gathered loanwords,
and up to 20,000 candidate lemmas of the donor
language, which are also transliterated into the IPA
using Epitran. The result here is that each loan-
word is paired with up to six candidates that have a
low phonetic edit distance but are not the original
word in the donor language. We remove duplicates
where multiple distance metrics chose the same
closest neighbor, and where pairs cooccur with the
synonyms or loans datasets.

Finally in the randoms dataset, we pair each
loan with a random word in the donor language.

4 Similarity Metrics
Every word pair in the WikLoW dataset has mea-
sures of textual, phonetic, semantic, and articula-
tory similarity associated with it.

4.1 Textual Similarity
This is simply the Levenshtein edit distance be-
tween two strings. Where the two languages are
written with different scripts, this is simply the max-
imum length of the strings, but in some cases, a
language written in the same script as the donor lan-
guage may borrow a word and keep the spelling un-
changed, even if the pronunciation changes. A case
in point is the word “science,” a loan derived from
French science, which is spelled identically but pro-
nounced very differently (/saI@n(t)s/ vs. /sjÃs/).
Textual edit distance may be a useful feature for
some language pairs, so we keep this metric.

4.2 Phonetic Similarity
Having created IPA transcriptions of the words, we
compute 6 distance metrics over the transcriptions,
all available from the PanPhon package:

• Fast Levenshtein Distance. A C implemen-
tation of Levenshtein distance (Levenshtein
et al., 1966). PanPhon sets all edit costs to 1.

• Dolgo Prime Distance. Based the notion of
the Dolgopolsky list of the 15 most stable
lexemes (Dolgopolsky, 1986) but extended by
PanPhon to a list of 14 most stable phonemes.
Phonemes are mapped to these classes, over
which Levenshtein distance is calculated.

• Feature Edit Distance. IPA is converted to
articulatory feature vectors (e.g., storing pres-
ence, absence, or irrelevance of articulatory
features place/manner of articulation, round-
edness, pulmonic quality, etc.). Levenshtein
distance is calculated over the feature vectors.

Figure 1: KDE plots of Fast Levenshtein and Dolgo
Prime distances.

• Hamming Feature Distance. Same as Leven-
shtein distance, but with substitution cost be-
ing the Hamming distance (Hamming, 1950)
between the feature vectors, normalized by
the length of the vector.

• Weighted Feature Distance. Accounts for
the class of the IPA symbol when calculating
the Levenshtein costs as well as the proba-
bility of that specific edit. Weights are pre-
specified by PanPhon.

• Partial Hamming Feature Distance. Inser-
tion and deletion costs are 1, however the cost
of substitution for a zero value is half the sub-
stitution cost for a nonzero value.

We use the PanPhon normalized version of all
edit distances, which divides by the maximum
length of the two words in the pair. Fig. 1 shows
kernel density estimation plots of the distribution of
Fast Levenshtein and Dolgo Prime distances over
the entire dataset. Loans have the lowest distance
on average, followed by hard negatives.

4.3 Semantic Similarity
A loanword between a pair of languages must both
sound and mean the same. While phonetic sim-
ilarity, calculated with edit distance, has been a
foundation for past work in loanword detection,
modern large language models provide an opportu-
nity to select for semantic similarity between word
vectors, provided the models are trained over mul-
tilingual data. We make use of the simultaneous
multilingual training objectives of MBERT (Devlin
et al., 2019) and XLM (Conneau et al., 2020) to
benefit from cross-language proximity of contextu-
alized word embeddings, as shown in (Cao et al.,
2019). We use the cosine function as our vector
similarity measure.
MBERT is the multilingual version of BERT,
pretrained on 104 languages, with demonstrated
capacity for knowledge transfer on downstream
tasks. It differs from BERT in two ways: i) in its

4999



masked language modeling pretraining, each batch
comprises sentences from all languages, and ii) its
dictionary is shared among all languages and is
created by WordPiece from concatenating all cor-
pora. Pires et al. (2019) show that MBERT’s ability
to transfer is due to a multilingual representation,
which enables it to manage transfer across different
scripts. These representations seem to share a com-
mon subspace that contains linguistic information,
independent of specific languages.

XLM-100 is a cross-lingual (100-language) pre-
trained model which extends previous BERT-based
models with a Translation Language Modeling
(TLM) objective as well as the masked language
and causal language modeling objectives, and has
demonstrated success in unsupervised machine
translation tasks (Conneau and Lample, 2019).
XLM uses byte-pair encoding subword tokeniza-
tion (Sennrich et al., 2016) which includes the most
frequent symbol pairs when creating the token vo-
cabulary. This makes it suitable for encoding to-
kens common in low-resourced languages (LRL)
while alleviating bias towards high-resource lan-
guages, by reducing tokenization of LRL words at
the character level. This improves the alignment of
embedding spaces of languages that share either the
same alphabet or proper nouns (Smith et al., 2017),
both of which occur frequently among loanwords.

To these models, we input a “sentence” consist-
ing of the word preceded by the [CLS] or <bos>
token and followed by the [SEP]/<eos> token.
We retrieve the vector of the [CLS]/<bos> token
as a representation of the entire semantics of the
input, to account for tokenization possibly splitting
the word.

4.4 Alignment Network
To account for different phonotactics in paired
languages (e.g., Swedish /sku:lA:/→ Finnish
/koulu/), we build a model to align phonemes in
a word pair and account for epenthesis, elision,
and metathesis, which provides a more informa-
tive measure than simply edit distance. Mortensen
et al. (2016) show that information-rich phonologi-
cal representations do better than character-based
models or one-hot encodings in tasks such as NER.

We convert the IPA transcriptions to 21 subseg-
mental articulatory features using PanPhon7. These

7Panphon does not contain suprasegmental or tonal infor-
mation which may explain why alignment logits involving
tonal languages such as Chinese may not sufficiently encode
articulatory alignment (see Sec. 6)

features were padded to the maximum length of a
vector in the borrower-donor pair. The features for
the loanword and original word were then concate-
nated for input to the alignment network.

The alignment network is a deep feedforward
neural network trained on the aforementioned
concatenated features of the alldata split of our
datasets. The network was trained against the
loan/non-loan binary label. This is not to predict
loan status, but because we do not include any se-
mantic information at this step, the label acts as
an indicator of “phonetically aligned” or not. A
positive prediction means the model predicts that
the two words in the pair are strongly phonetically
aligned according to the articulatory features. Dur-
ing inference, we get the pre-sigmoid logit value as
a holistic alignment score between the two words.

5 Evaluation
For evaluation, we create three data distributions
for each language pair. One (the balanced dis-
tribution), contains half loanwords and half non-
loans. This is a well-behaved distribution well-
suited for machine learning. The non-loans are
drawn roughly 1

7 from the hard negatives, 4
7 from

the synonyms, and 2
7 from the randoms, reflecting

the notion that relatively few words in a language
are likely to be very phonetically close to a loan-
word on average, while there are likely to be many
more words of synonymous or similar meaning.

Another distribution attempts to approximate the
actual proportion of loanwords from the donor lan-
guage into the recipient language (the “realistic”
distribution, or realdist). Sometimes this propor-
tion is well-documented, and at other times not.8.
Where a figure is provided in the linguistic litera-
ture, we use it. Otherwise, we take the number of
loanwords we collected from Wiktionary and di-
vide it by the total number of lemmas in the borrow-
ing language, and impose a lower bound of 10%, to
maintain enough loanwords in the testing set. The
non-loans portion of the realdist set is drawn in the
same proportions as in the balanced set. For all lan-
guage pairs currently in the WikLoW dataset, the
realdist contains <50% loanwords, but for other
language pairs, e.g., Korean-Chinese, >50% loan-
words is certainly possible or likely (Sohn, 2005).

The final distribution (abbreviated alldata),
takes all the data we collected from Wiktionary,

8Sometimes documentation conflicts, such as Macrea
(1961) and Sala (1988), which provide differing figures for
Romanian loanwords from French, depending on whether all
words or only core vocabulary is considered.
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to purposely overweight the dataset against loan-
words, to test our method in a difficult condition.

To each distribution, we concatenate two one-hot
vectors representing the scripts of the languages in
the pair. This allows certain models to learn de-
pendencies between the scripts and other variables,
e.g., if the languages are written in different scripts,
the textual Levenshtein distance becomes nearly
meaningless.

Each distribution was divided into a 90:10
train/test split, and then shuffled. We evaluate four
different binary classifiers on all distributions: a
logistic regressor (LR), a linear SVM, a Random
Forest (RF), and a deep neural network (NN). The
neural network consists of 3 layers of 512, 256,
and 128 hidden units respectively, all with ReLU
activation and followed by 10% dropout, and a
final sigmoid activation, and is trained for 5,000
epochs with Adam optimization and BCE loss. We
perform the evaluations listed below.
Single Multilingual Model (SMM) For each dif-
ferent data distribution, we train a single model on
the data from every language pair listed in Table 1
except for Persian-Arabic, Hungarian-German,
German-Italian, and Catalan-Arabic, which we
reserve for subsequent experiments. The single
multilingual model is evaluated on the unseen test
sets for all language pairs used in training.
Pair-Specific Models For each distribution, we
train and evaluate on a single language pair only,
so we can compare the performance of the SMM
to models specialized for each language pair.
Pruned Training Set We train on the realdist
train set and evaluate on the alldata test set. This
allows us to test on a much larger test set that con-
tains a lower proportion of loanwords, and test the
ability of our model to pick out loanwords from
a more challenging distribution with less training
data. The realdist train set is pruned of word pairs
that appear in the alldata test set, since the two dis-
tributions were originally created separately. This
experiment used the neural network classifier only.
Unseen Language Pairs We evaluate the perfor-
mance of the SMM on Persian-Arabic, Hungarian-
German, German-Italian, and Catalan-Arabic,
which the model has never seen. This experiment
used the neural network classifier only.

6 Results
Our primary metrics are precision, recall, and F1-
score on positive loanword identification. Table 2
shows the average positive F1 score on the realdist

LR NN SVM RF

F1 (+) 85 86 84 85

Table 2: Average F1 (+) of 4 classifiers (as %)

distribution of the 4 classifiers we evaluated. The
remaining tables and figures all focus on the results
of the neural network, are sorted by decreasing
number of loanwords in the language pair, and are
discussed in Sec. 7. Table 3 presents the SMM
results. Fig. 2 shows the alldata test results from
Table 3 in bar graph form compared to the perfor-
mance of the loanword detection model on each
language pair when trained only on data from that
language pair, and to the model when trained on
the smaller pruned realdist training data. Table 4
shows the SMM’s performance on the unseen lan-
guage pairs, and Fig. 3 plots F1 score against the
number of loanwords in each pair’s test set.

7 Discussion
We can quantitatively compare our approach to that
of Mi et al. (2021), who report 75.35% average pre-
cision, 74.09% average recall, and 74.71% average
F1 on loanword detection in Uyghur on borrowings
from Russian, Arabic, Turkish, and Chinese. Our
results are on different language pairs but are com-
parable to or exceed this, particularly if the testing
set is balanced between loans and non-loans.

In Fig. 2, we can see that in most cases, the mul-
tilingual model outperforms the single-pair models
on the same language pair on loanword retrieval,
though this effect is most pronounced in language
pairs with a higher density of loanwords. The
model trained on the smaller pruned realdist data
sees an appreciable drop in precision, but an equal
or greater increase in loanword recall, and this ef-
fect is especially pronounced in pairs with fewer
loanwords in the data overall, suggesting that train-
ing on a more realistic distribution may be advanta-
geous when prioritizing reducing false negatives.

Fig. 3 shows the correlation between test set size
and performance of the SMM (including unseen
language pairs). There appears to be a strong cor-
relation between the proportion of loanwords in a
test set (as expected, a balanced set leads to optimal
performance), but also the raw size of the test set
itself. The model performs better on larger test sets,
unseen or not, regardless of what data it was trained
on. We speculate that this may be because when a
borrowing language borrows a lot of words from
a donor language, it does so at around the same
time (e.g., English from Norman French), meaning
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all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

92 96 90 96 90 94 93 88 94 94 85 85 81
98 97 98 99 97 96 98 99 98 97 98 98 98
83 89 84 85 82 82 86 76 86 81 78 69 71

R
(+)

81 91 87 90 73 82 88 61 75 86 68 71 51
98 99 99 99 97 99 100 93 99 99 98 98 93
75 88 84 85 66 73 81 49 63 72 56 62 47

F1
(+)

86 93 89 93 81 88 91 72 83 90 75 70 62
98 98 98 99 97 98 99 96 98 98 98 98 95
79 89 84 85 73 77 83 60 73 76 65 65 57

Table 3: Single multilingual NN model results as % (1st row: realdist, 2nd row: balanced, 3rd row: alldata).
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all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en
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SMM F1(+) Pair only F1(+) Sm-SMM F1(+)

Figure 2: NN alldata results comparing base SMM, pair-specific model, and SMM trained on pruned realdist data
(Small-SMM).

fa-ar hu-de de-it ca-ar

P
(+)

95 95 73 100
97 100 100 75
75 73 54 25

R
(+)

75 36 33 20
97 93 92 30
64 30 29 10

F1
(+)

84 52 46 33
97 96 96 43
69 43 38 14

Table 4: Holdout performance (same format as Table 3).

there are consistent transformations applied, which
a network can pick up. This may not be the case
in language pairs with a sparser density. Catalan-
Arabic performance is particularly low and there
are only 10 words in the test set, many of which
were likely mediated by Spanish first.

7.1 Error Analysis
Mistakes made by the SMM, particularly on lan-
guage pairs that perform less well, are illuminating.

Finnish-Swedish false negatives, e.g., kyökki/kök
and rontti/strunt, suggest that additional final vow-

F1
(+

)
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# loanwords in pair test set
0 100 200 300 400 500 600

realdist balanced alldata

Figure 3: F1 score vs. number of loans per pair. Solid
markers indicate unseen language pairs.

els and reduction of consonant clusters pose a dif-
ficulty. Other false negatives back this up, such
as Mandarin-English巧克力 (qiǎokèlì)/chocolate
or Romanian-Hungarian sudui/szidni, which show
sometimes irregular transformation to fit the bor-
rowing language’s phonotactics.

False positives are overwhelmingly hard nega-
tives, and the model has particular trouble with
languages that use abugidas or alphabets that bor-
row from languages that use abjads, due to the lack
of vowels. Examples include Hindi-Persian EnsAr
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(nisār)/nasr and Azerbaijani-Arabic r@bb/rabbaba.
This can largely be attributed to Epitran not insert-
ing vowels into Perso-Arabic transcriptions.

This suggests one clear way to potentially im-
prove our method: incorporating multi-head atten-
tion into the phonemic alignment network rather
than the current feedforward structure, which is
performing the task the way single-head attention
would and then averaging over all alignments.

Cognates are excluded from the positive loans
data unless the cognate was actually later borrowed
into the recipient language, as sometimes happens
(e.g. “chef” vs. “head”). It is rare for cognates to
be misclassified as loanwords due to intervening
sound changes between two languages with com-
mon ancestry, but there are cases where a loanword
is paired with a word in the source language that is
cognate to it but is not the original borrowed word.
Table 5 shows some of these rare cases.

Language pair Word pair

en-fr communard/communal
en-de Blume/Bluhm
ro-fr cupolă/coupelle
de-fr Montage/montant

Table 5: Cognates mislabeled as loanwords by SMM.

7.2 Influence of Features
Neural networks are difficult to interpret, but the
weights of the logistic regression classifier, which
on average performed ∼1-3% lower than the neu-
ral network, gives a sense of which features are
important. Overall the alignment score is a strong
positive correlate to loanword status across all lan-
guage pairs. As expected, Levenshtein textual edit
distance is inversely correlated with loanword sta-
tus in pairs that share the same script, but not when
the languages use different scripts. Interestingly,
the semantic similarity metrics do not have a lot of
influence on the model, but XLM is generally more
influential than MBERT, and this influence is more
pronounced among the lower-resourced languages
(e.g., Kazakh-Russian, Hindi-Persian, Azerbaijani-
Arabic), which supports XLM’s claim to be more
suited to LRLs, but the influence is most pro-
nounced on English-French, the highest-resourced
language pair currently in WikLoW, which under-
cuts the claim somewhat. Since loanwords are ex-
pected to be semantically similar, this task allows
us to investigate the quality of multilingual lan-
guage models on different language pairs. These
findings are also borne out by ablation tests on

the neural network classifier. For instance, drop-
ping the alignment score and semantic similarities
causes recall on the different-script pairs (Hindi-
Persian, Azerbaijani-Arabic, Mandarin-English) to
drop by 20% or more, while not affecting the same-
script pairs as significantly. Sec. A.5 in the ap-
pendix shows these findings in more detail.

7.3 Human Comparison
To compare the performance of our model to hu-
man performance on loanword retrieval, we se-
lected three language pairs, English-French, Hindi-
Persian, and Mandarin-English, took the list of
loanwords from the test set of the alldata dis-
tribution, and asked N annotators who were flu-
ent speakers of each borrowing language to mark
which in the list they thought were loans from the
listed donor language. This was a fast way to assess
human loanword recall and provide comparative
numbers to our system on these language pairs.
Table 6 shows the results.

Pair N
Human
µ R(+)

SMM
R(+)

κ
# loans

(homonyms)

en-fr 7 29 88 .059 508 (8)
hi-fa 6 60 72 .113 125 (4)
zh-en 6 859 47 .034 95 (1)

Table 6: Human average loanword recall vs. SMM
recall (as %).

Our system is able to significantly exceed hu-
man recall on English-French and Hindi-Persian,
but not on Chinese-English (as noted those num-
bers may be inflated). Some loans were also
homonyms, which may have had a small impact on
human recall (see supplement). We also calculated
Fleiss’ kappa (Fleiss, 1971) over the human annota-
tions and found that even when individual humans
demonstrated moderate-to-high recall on loanword
retrieval, there was virtually no agreement among
annotators on which loanwords they identified.

8 Conclusions and Future Work
Automated loanword detection enables a number of
downstream tasks. Coreferents and named entities
across languages may often be loanwords, and com-
mon vocabulary enables potential improvements in
machine translation (Ortega et al., 2021).

Parallel corpora of loanwords also afford
learning cross-lingual contextual word embed-
ding mappings—inspired by the success of pre-

9These numbers may be artificially high due to the Chinese
annotators being bilingual in English.
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Transformer embedding mappings (Bojanowski
et al., 2016), and the potential of post-Transformer
alignments (Cao et al., 2019). These can be incor-
porated into the Transformer architecture to pro-
vide auxiliary signals to enhance translation in two
ways: i) Introducing another multi-head attention
between the input language embeddings and their
mappings in the target language space—similar to
the second multi-head attention block in the origi-
nal Transformer architecture (Vaswani et al., 2017).
We propose to map embeddings between a source
language LX and target language LY by comput-
ing a transformation matrix between paired rep-
resentations of semantically-equivalent words or
sentences, then to compute attention weights be-
tween these mapped embeddings, and concatenate
these auxiliary attention outputs with the attention
between tokens from LX and already-generated to-
kens from LY . ii) Unmasking identified loanwords
in the target language in the decoder’s input, which
is expected to provide further context to the de-
coder in the target language. This would replicate
a uniquely human linguistic capability: the ability
to pick up context in an unfamiliar language by
picking out known words (i.e., loans from a known
language). Fig. 4 shows a proposed architecture for
these operations.

راز موفقیت ھمیشھ تلاش کردن است सफलता ---- ---- हमेशा ---- ---- ----

सफलता का रह� हमेशा कोिशश करना है।

Loanword Detection
Algorithm

सफलता का ---- हमेशा ---- ---- ----

LX to LY
Embedding

Mapper

Multi-Head
Attention

Add & Norm

Gold Output:

Figure 4: Proposed novel Transformer architecture for
exploiting loanword knowledge in machine translation.

Mapping between embedding spaces also al-
lows expanding our method and dataset to new

languages not covered by MBERT or XLM through
resources like IndicBERT (Kakwani et al., 2020).

8.1 Why Study Loanwords?
In keeping with the COLING 2022 special theme,
“Tackling the Grand Challenges of the world by pro-
moting mutual understanding through language,”
we posit that common vocabulary decreases bar-
riers to communication, and representing it of-
fers a particular benefit to LRLs in NLP, by pro-
viding a way to leverage resources from higher-
resourced languages that have contributed vocabu-
lary to an LRL. In this, Wiktionary itself has been
and can continue to be a resource (Zesch et al.,
2008; Krizhanovsky and Smirnov, 2013; De Melo,
2015; Wu and Yarowsky, 2020). Loanword de-
tection is also necessarily not language agnostic,
and is therefore important for linguistic diversity
and inclusion in NLP (Joshi et al., 2020), although
our multilingual results suggest that there may be
key features of loanwords that allow detection to
generalize.

We propose these challenges to the community:
1. We have presented a novel baseline for loan-

word detection across arbitrary language pairs
that delivers high-quality results, but there
remain challenges particularly for languages
with divergent phonotactics.

2. We have also presented a method to gather
more data for new languages, and demon-
strated our detection method’s performance
on unseen language pairs, which we present
as a baseline for comparison.

3. We have also provided homonym data, which
is tailor-made to confound a loanword de-
tection algorithm. Discriminating loanwords
from their homonyms remains a challenge that
presents many interesting opportunities in ar-
eas like machine translation and comparative
and corpus linguistics.
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Appendix

A.1 Further Details on Data Collection
We use the MediaWiki API to conduct our data
collection. To maintain adherence to Wiktionary’s
terms of service, we make no more than 200 re-
quests per second and sleep after a specified num-
ber of words are processed (by default, 200).

When conducting the initial data collection, we
exclude terms that begin or end with hyphens, as
those are likely to be affixes; that are only one letter
long, as those are likely to contribute too much
noise to the final dataset; and those that contain
numerals or non-phonetic, non-syllabic, or non-
logographic (depending on the language) symbols.

The choice of language pairs investigated here
was determined in part by the intersection of
languages that are supported by all 3 of Epi-
tran, MBERT, and XLM-100, and that have a
[Recipient]_terms_borrowed_from_
[Donor] category on Wiktionary that contains
more than 1,000 entries. The exceptions to this
are: Finnish-Swedish, where Finnish is not na-
tively supported by Epitran, but we built our
own Finnish G2P mapping for Epitran; Mandarin-
English, where some terms were discarded during
preprocessing, causing the number to fall below
1,000; and Hungarian-German, German-Italian,
and Catalan-Arabic, which were selected specif-
ically for having fewer than 1,000 loanwords listed
in Wiktionary.

Table 7 shows the 2-letter ISO 639-1 codes for
these languages, which can help in interpreting
Table 3 (Sec. 6).

A.2 Further Details on Semantic Similarity
In our experiments, for the XLM-100 and MBERT
models, we extract the <bos> embeddings (equiv-
alent to the [CLS] token for MBERT) for a
word pair from the last_hidden_state. Nu-
merous studies like (Jawahar et al., 2019) and
(Tenney et al., 2019) suggest that BERT’s later
layers encode comparatively more high-level se-
mantic information than its middle layers which
tend to capture more syntactic features in the
linguistic hierarchy. For both the models, the
dimensions of the generated embeddings are of
the shape (batch_size, sequence_length,
hidden_size) where batch_size is 8
for both, sequence_length is the number
of tokens from the word after tokenization
(max_length is 512 for both models) whereas

Code Language

ar Arabic
az Azerbaijani
ca Catalan
de German
en English
fa Persian
fi Finnish
fr French
hi Hindi
hu Hungarian
id Indonesian
it Italian
kk Kazakh
nl Dutch
pl Polish
ro Romanian
ru Russian
sv Swedish
zh Mandarin

Table 7: ISO 639-1 language codes for languages in
current dataset.

the embedding dimension i.e., hidden_size is
1280 for the XLM and 768 for MBERT. We then get
the cosine similarities between the generated em-
beddings of each word pair of the borrower-donor
pair in order to extract their semantic similarities.

A.3 Further Details on Alignment Network
The alignment network was trained for 5,000
epochs with Binary Cross-Entropy (BCE) loss and
Adam optimization, with a 20 percent validation
set to prevent overfitting. The DNN consists of two
hidden layers with 512 neurons each with ReLU
activation, followed by 10% dropout, and an output
layer and a sigmoid function.

Previous studies like Wu and Klabjan (2021)
have suggested that logit outputs of neural net-
works can be a reliable and agnostic uncertainty
measure that captures innate features of classes
during classification and detection tasks. The align-
ment network here maps the concatenated artic-
ulatory features of a word pair to their class and
therefore, the logits will contain class-based infor-
mation that can subsequently be used as crucial
features for our classifiers. In other words, these
logits encode alignment information of the artic-
ulatory features that can be mapped to whether a
pair is a phonetically similar, conditioned upon the
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sound patterns of their respective languages, or not.

A.4 Results from Other Classifiers

The main paper presented the results of the neu-
ral network classifier in detail and discussion of
the weights from the logistic regressor. Here we
present results from the logistic regression classi-
fier (Table 8), the support vector machine (Table 9),
and the random forest (Table 10).

The neural network is consistently the best-
performing classifier, by about 1-5% F1, depending
on which distribution is being evaluated on. The
other classifiers can be expected to perform about
this much lower. One thing to note is that the effect
is most pronounced on the alldata dataset, which
is the hardest dataset for any classifier on aver-
age, due to the overwhelming preponderance of
non-loans. When the dataset is balanced between
loans and non-loans, the type of classifier chosen
for loanword detection is almost immaterial, with
almost perfect performance all around. It seems at
these proportions, the information encoded in the
datasets, such as alignment score, edit distances,
and cosine similarities, are informative enough. For
this reason we have focused most discussion in the
main body of the paper on the alldata and realdist
datasets.

However, while the behavior of the logistic re-
gressor and SVM are largely consistent with each
other, and track that 1-5% difference with the neu-
ral network across all language pairs, the behavior
of the random forest is rather different and incon-
sistent with the other classifiers. For example, it
gets 100% recall on the balanced distributions of
Indonesian-Dutch and Romanian-French (as well
as Kazakh-Russian like the other classifiers), but
on the Chinese-English alldata distribution, re-
call comes in ∼20% below the other classifiers.
The other pairs with dissimilar scripts see a simi-
lar, albeit reduced effect on the same distribution,
but so do some pairs that share a script, such as
Indonesian-Dutch and Romanian-French.

A.5 Further Details on Influence of Features

This section contains the quantitative breakdown
of the influence of different features on the re-
sults, which was discussed in Sec. 7.2. Fig. 5
is a graph representation of the logistic regressor
weights mentioned there. The circular markers rep-
resent language pairs where both languages use the
same script (including extended versions), while

the square markers represent pairs where the lan-
guages use different scripts.
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Figure 5: Logistic regressor weights trained on the all-
data distribution.

Inferences drawn from the logistic regressor
weights are bolstered by ablation tests on the neu-
ral network. Table 11 shows the neural network
performance when the alignment scores and cosine
similarities are not used as input features.

Articulatory alignment scores and cosine simi-
larities are most important when the languages in
the pair use different scripts. When these are re-
moved as training inputs, and only phonetic and
textual distance metrics are left, along with the
script encodings, performance on the Azerbaijani-
Arabic alldata distribution drops by 10% positive
F1 and Hindi-Persian drops by 20% positive F1.
The most drastic case is Mandarin-English, where
without these features, positive F1 on realdist and
alldata drop by 19% and 47% respectively, and
positive recall drops by 20% and 42% respectively.
This is because the different scripts make textual
Levenshtein distance a useless feature here, and
the differing phonologies of Mandarin and English
make the phonetic edit distances noisy (e.g., see
Sec. 7.1). Meanwhile, on certain same-script pairs,
particularly those where words tend to be imported
with little change in spelling (e.g., English-French,
English-German, German-French), performance
can actually go up slightly, because in these cases,
textual Levenshtein distance is enough to detect
that the word is a loan.

We should note that with only phonetic and
script features, performance on the balanced distri-
bution remains relatively high but suffers slightly.
However, results vary on the realdist distribution,
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all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

91 96 89 96 90 94 93 83 93 94 83 82 75
98 97 97 98 97 96 99 98 98 97 95 97 97
80 86 81 84 77 78 83 78 84 77 73 62 65

R
(+)

80 88 83 89 76 82 86 66 73 83 69 65 52
98 98 98 99 98 99 100 94 96 99 99 95 94
72 85 80 83 65 73 76 48 59 68 58 51 46

F1
(+)

85 92 86 93 82 88 89 73 82 88 75 72 61
97 97 97 98 97 98 99 96 97 98 97 96 95
76 86 80 84 71 76 88 60 80 72 65 56 54

Table 8: Single multilingual logistic regression classifier results as % (1st row: realdist, 2nd row: balanced, 3rd row:
alldata).

all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

92 96 89 97 90 94 93 85 93 93 82 80 75
97 97 97 99 97 96 99 99 98 97 95 98 98
80 86 79 83 77 78 82 78 85 80 74 62 66

R
(+)

78 87 79 88 74 81 85 63 69 80 63 62 48
98 98 98 99 98 99 100 94 97 99 99 95 94
70 83 75 83 62 71 76 48 57 66 54 54 45

F1
(+)

84 92 84 92 81 87 89 72 79 86 71 70 59
98 97 97 99 97 98 99 96 97 98 97 96 96
75 85 77 83 69 74 79 60 68 73 62 58 54

Table 9: Single multilingual SVM classifier results as % (1st row: realdist, 2nd row: balanced, 3rd row: alldata).

all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

92 96 88 97 88 93 92 85 90 95 84 88 84
96 96 95 95 96 93 97 95 97 97 94 99 100
85 91 87 85 83 82 85 77 81 85 81 73 69

R
(+)

80 90 84 89 76 80 91 73 71 77 65 59 40
99 99 99 100 98 100 100 95 99 99 98 97 92
68 86 82 77 58 62 78 47 54 59 54 43 26

F1
(+)

85 93 86 93 82 86 91 79 80 85 74 71 54
97 97 97 97 97 96 98 95 98 98 96 98 96
75 88 84 81 68 71 81 58 65 70 65 54 38

Table 10: Single multilingual random forest classifier results as % (1st row: realdist, 2nd row: balanced, 3rd row:
alldata).

and there appears to be some correlation between
increased performance on realdist without these
features, and the proportion of loans in that distri-
bution, suggesting that this is potentially important
to consider (i.e., the base rate of loans from French
into English, for instance, is relatively high). The
performance penalty we see on LRLs and different-
script pairs do suggest that overall the alignment
score is most critical to generalizable performance,

and the semantic similarities provide a way to ana-
lyze the quality of large multilingual language mod-
els for certain language pairs. These could also be
augmented with other pair-specific metrics, such
as overall measures of lexical or phonetic distance.

A.6 Homonyms in Human Comparison Task

The loanwords from the alldata test sets given to
human annotators, that are also homonyms, are
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all en-fr en-de id-nl pl-fr ro-fr kk-ru ro-hu de-fr hi-fa fi-sv az-ar zh-en

P
(+)

88 95 84 93 82 92 92 79 87 87 77 78 74
94 95 96 92 97 90 99 95 97 92 93 91 81
84 92 87 78 80 81 90 76 92 65 74 81 62

R
(+)

87 95 97 92 67 93 95 66 96 94 85 73 31
96 99 99 96 89 99 98 85 97 96 96 96 86
72 92 93 73 46 77 93 44 93 48 67 41 5

F1
(+)

87 95 90 92 74 93 94 72 91 90 80 75 43
95 97 97 94 93 94 99 90 97 94 94 94 84
78 92 90 76 58 79 92 56 85 56 70 55 10

Table 11: Single multilingual NN classifier (without alignment and cosine similarity inputs) results as % (1st row:
realdist, 2nd row: balanced, 3rd row: alldata).

listed below:

• English-French:

– “punt,” from French pointe, meaning a
bet or wager, with many other etymolo-
gies, including from Old English for a
pontoon boat.

– “Lemans,” French surname from to-
ponym Le Mans, and from Middle En-
glish Lemans, “son of Leman.”

– “bride,” from French bride, meaning
a bridle, and from Old English brȳd,
“bride, daughter-in-law.”

– “paillard,” from a French surname (and
name of a restaurant), and variant of “pal-
liard,” meaning a beggar.

– “lisse,” from French lisser, smooth, and
from Old English lissı̄an, “to relieve.”

– “tarse,” from French tarse, the tarsus or
ankle-bones, and from archaic term for a
male falcon.

– “par,” from French par, meaning
“through, by,” with many other etymolo-
gies, including from Latin pār, “equal.”

– “bombard,” actually a doublet, with two
meanings both meaning “cannon,” both
ultimately from Middle French, one via
modern French bombarde, the other via
Middle English bombard (latter form
also referred to a bassoon).

• Hindi-Persian:

– agr (agar), from Persian, meaning
“if," and a descendent of Sanskritagz
(agaru), a type of wood.

– d�h (deh), from Persian, meaning “vil-
lage," and a descendent of Sanskrit d�h
(deha), body.

– md (mard), from Persian, meaning
“man," and a descendent of Sanskrit md
(marda), “destroying”.

– hm (ham), from Persian, meaning “also,"
and natively Hindi ultimately from San-
skrita-m� (asme) , meaning “we,” “us.”

• Mandarin-English:

– 塞特 (sàitè), from English setter but also
from Hebrew male name Seth.

A.7 Proportion of Loanwords in Each
Distribution

Table 12 shows the proportion of loanwords in each
distribution for each language pair. The balanced
distribution always contains 50% loans and so is
not included.

A.8 Supported Languages and Scripts

Our system can in principle support the languages
in Table 13 out of the box. While we have only
tested on the language pairs mentioned in the main
paper, and not every pairing in Table 13 has a suf-
ficient volume of loanwords listed in Wiktionary,
data collected in any of these languages can be con-
verted to IPA with Epitran or extensions, and pro-
cessed by MBERT and XLM to get cosine similari-
ties between word vectors. Epitran can be extended
to other languages by defining custom mapping,
preprocessing, and postprocessing rules, as we did
here for Finnish.

Proper functionality makes an assumption that
the language given is written in the associated script
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Pair
% Loans
(realdist)

% Loans
(alldata)

en-fr 30 14.841
en-de 10 13.322
id-nl 40 14.996
pl-fr 10 12.252
ro-fr 30 11.999
kk-ru 10 11.807
fa-ar 40 11.289
ro-hu 10 10.788
de-fr 10 10.206
hi-fa 30 10.126
fi-sv 10 9.754
az-ar 15 9.324
zh-en 10 10.496
hu-de 10 6.155
de-it 10 3.344
ca-ar 10 1.291

Table 12: Proportion of loanwords per pair in each
distribution

listed. This serves the purpose of not only main-
taining support in Epitran but also in collecting
clean data from Wiktionary, and in assigning the
correct one-hot script encoding during training and
evaluation.

A.9 Organization of Code/Data
README.md contains instructions to run the
full pipeline. language-pairs.json is
a JSON file containing information about
the language pairs to make datasets for, in-
cluding codes for Epitran and Google Trans-
late and desired realdist proportion of loans.
language-pairs-holdout.json is the
same for language pairs to be included in the
holdout test set and withheld from training.
language-pairs-pipelinetest.json
contains only Catalan-Arabic, which is a small
sample and runs (relatively) quickly, in order to
validate the pipeline. These JSON files drive most
of the rest of the code.
supported_languages.txt contains the

list of supported languages (cf. Table 13).
epitran-extensions contains preprocess-
ing, mapping, and postprocessing rules for new Epi-
tran language. Currently this contains only Finnish,
which only uses pre and map. To run Epitran for
the new language, these would need to be moved
into the corresponding folder in the Epitran distri-

ISO code Language Script

sq Albanian Latin
ar Arabic Latin
az Azerbaijani Latin
bn Bengali Bengali
my Burmese Myanmar
ca Catalan Latin
zh Chinese Chinese
hr Croatian Latin
cs Czech Latin
nl Dutch Latin
en English Latin
fi Finnish Latin
fr French Latin
de German Latin
hi Hindi Devanagari
hu Hungarian Latin
id Indonesian Latin
it Italian Latin
jv Javanese Latin
kk Kazakh Cyrillic
ky Kyrgyz Cyrillic
ms Malay Latin
ml Malayalam Malayalam
mr Marathi Devanagari
fa Persian Arabic
pl Polish Latin
pt Portuguese Latin
pa Punjabi Gurmukhi
ro Romanian Latin
ru Russian Cyrillic
es Spanish Latin
sw Swahili Latin
sv Swedish Latin
ta Tamil Tamil
te Telugu Telugu
tr Turkish Latin
uk Ukranian Cyrillic
ur Urdu Arabic
uz Uzbek Latin
vi Vietnamese Latin

Table 13: Currently supported languages and scripts.

bution in Python’s site-packages.

wiktionary-scraper-python contains
the scrapers for initial data collection. Results are
saved in results.

Datasets contains the code to make the
four dataset splits with edit distances. Results
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are sorted by type split: Loans, Synonyms,
Hard-Negatives, and Randoms. Data files
contain word pairs, IPA transcriptions of each word,
English translations of each word (for interpretabil-
ity by a more general audience, and not used in
training or evaluation—translations may be inac-
curate due to shortcomings in the Google Trans-
late model for the language in question). Note
that calculating all the dataset splits for a language
pair, particularly the hard negatives, may take a
very long time, up to days, due to the number of
passes through the data. This inefficiency is the
main reason why only a subset of the 24K available
Romanian-French loans are used in these exper-
iments. Decreasing the time complexity of cal-
culating the hard negatives while maintaining the
quality of the output is the topic of ongoing re-
search. production_train_test is the di-
rectory containing the datasets that will be used
for final evaluation. These are sorted by language
pair and then by evaluation distribution: alldata,
balanced, and realdist. Datasets also
contains the human annotation spreadsheets in
folder human_annotation.
Classifiers contains the code to both train

the alignment network for a language pair and
get the logit alignment score for each word pair,
and to get the cosine similarities from MBERT
and XML. Datasets with logit and similarity val-
ues are resaved in production_train_test.
Classifiers also contains the code to perform
evaluation under all conditions mentioned in the
main body of this paper.
torch_models contains a saved instance of

the single multilingual model. Final_results
contains the results from that model and others,
which are reported in this paper. FleissKappa
contains the code to calculate Fleiss’ kappa
score over the human annotations (found inside
Datasets).
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Abstract

In this paper we present FeatureBART, a
linguistically motivated sequence-to-sequence
monolingual pre-training strategy in which syn-
tactic features such as lemma, part-of-speech
and dependency labels are incorporated into
the span prediction based pre-training frame-
work (BART). These automatically extracted
features are incorporated via approaches such
as concatenation and relevance mechanisms,
among which the latter is known to be better
than the former. When used for low-resource
NMT as a downstream task, we show that these
feature based models give large improvements
in bilingual settings and modest ones in multi-
lingual settings over their counterparts that do
not use features.

1 Introduction

Sequence-to-sequence (S2S) pre-training done via
denoising objectives on monolingual corpora is
known to improve generation quality in low-
resource settings (Lewis et al., 2020). This has been
extensively explored for neural machine translation,
however most works show that the improvements
for translation into English are more pronounced
than those for translation into a non-English lan-
guage (Liu et al., 2020; Tang et al., 2020). One
reason for this is that pre-training leads to a strong
decoder that learns to de-noise masked inputs,
whereas the knowledge retained in the encoder is
rather limited. Thus far, there has been no explicit
effort towards improving the contribution of the
encoder during pre-training.

Most pre-training methods rely on the power
of large models and large corpora, but ignore the
possibility of incorporating linguistic knowledge
into the pre-trained model. On the other hand,
there are several works which show that incorpo-
rating linguistic knowledge in the form of lemma,
part-of-speech tags and dependency labels, lead
∗ Equal contribution.

to a significant improvement in translation qual-
ity (Sennrich and Haddow, 2016; Hoang et al.,
2016; Li et al., 2018; Pan et al., 2020; Chakrabarty
et al., 2020) in both low- and high-resource set-
tings. Most recently, in an extremely low-resource
setting, Chakrabarty et al. (2020) show the effec-
tiveness of using the aforementioned linguistic fea-
tures, especially when their influence on the model
is controlled via relevance mechanisms that ap-
propriately scale feature embeddings before they
augment word embeddings. We hypothesize that
incorporating linguistic features, into the denoising
based pre-training framework, should improve the
quality of pre-training, which should then have a
positive impact on the translation quality via fine-
tuning. To this end, we propose FeatureBART, a
feature based sequence-to-sequence pre-training
method.

In FeatureBART, linguistic features are obtained
via automatic annotators and then converted into
embeddings, which are used to augment the word
embeddings of the encoder. Feature embeddings,
are incorporated by either naive concatenation with
the word embeddings or by first weighing them
with a relevance mechanism and then adding them
to word embeddings. The model itself is trained
using a monolingual corpus via either the text-
infilling or the mask prediction approaches, the
former used in BART and the latter used in BERT.
This FeatureBART model is then fine-tuned for
low-resource language pairs, where linguistic fea-
tures are also used during fine-tuning. Experiments
on English to 8 Asian languages from the Asian
Language Treebank (ALT) dataset (Riza et al.,
2016), using bilingual as well as multilingual fine-
tuning, show that our feature based pre-training
and fine-tuning leads to significant improvements
in translation quality indicating the complementary
nature of denoising pre-training and features. Anal-
yses of training curves show that when compared to
non-feature based pre-training, feature based pre-
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training leads to significantly lower perplexities
during the initial stages of fine-tuning.

2 Methodology

We first give some background knowledge about
feature based NMT modeling, followed by an ex-
planation of FeatureBART.

2.1 Background: Use of Source Side
Morphological Features into NMT

Sennrich and Haddow (2016) proposed the con-
catenation of embeddings of features of a token
(word or sub-word) to the token embedding. In
case a word is split into sub-words, the feature
is duplicated for each sub-word. For K features
of a source token denoted by si = (si1, . . . , siK),
let Vk, Ek, and dk denote the vocabulary, embed-
ding matrix and dimension of the kth feature. So,
Ek ∈ Rdk×|Vk|, si1 is the word or sub-word feature
and si2, . . . , siK are the linguistic features. The em-
bedding of si, say ei, is formulated as eik = Eksik,
and ei = ∥Kk=1eik. eik is the vector embedding of
sik where ∥ is the concatenation operation.

2.2 Relevance of Features
Chakrabarty et al. (2020) proved the effectiveness
of the following two feature weighting strategies to
be applied to features prior to concatenation:
Self-Relevance: The relevance of a feature embed-
ding is evaluated w.r.t itself. For k ∈ {1, . . . ,K},
the self relevance is calculated as maskik =
sigmoid(Wkeik), and then e′ik = maskik ⊙ eik.
Wk ∈ Rdk×dk is the learnable weight matrix for
the kth feature, and ⊙ is the element-wise multipli-
cation operation. The vector maskik signifies the
self relevance of eik and is multiplied element-wise
with eik to produce the modified feature embed-
ding e′ik. Finally, e′i1, . . . , e

′
iK are concatenated to

make the final embedding e′i for the source token
si. Thus, e′i = ∥Kk=1e

′
ik.

Word-Relevance: It uses the word/sub-word em-
bedding (ei1) to determine the relevance of the re-
maining feature embeddings. Formally, for k ∈
{2, 3, . . . ,K}, maskik = sigmoid(Wk(ei1∥eik)),
and then e′ik = maskik ⊙ eik. Wk ∈ Rdk×(d1+dk)
is the learnable weight matrix and the final embed-
ding e′i is obtained by concatenating e′i2, . . . , e

′
iK

with ei1.

2.3 FeatureBART
FeatureBART, is a feature based encoder-decoder
pre-trained model trained using linguistic features

which are used to augment the word embeddings of
the encoder. First, a large monolingual corpus is an-
notated via morphological and syntactic annotators
to obtain different types of features for each token
(word or sub-word). This feature annotated mono-
lingual corpus is used for self-supervised training
where during training, some tokens (token mask-
ing) or token spans (text infilling) in a sentence are
replaced with the “MASK” token just like in Lewis
et al. (2020). We use dummy mask features for
masked tokens or spans. The sentence containing
masked content is fed to the encoder and the model
is trained so that the decoder can predict the origi-
nal sentence. We hypothesize that features help in
better pre-training as they provide the model with
additional information for denoising.

3 Experiments

We describe the datasets for pre-training and fine-
tuning, features used and model training details.
Datasets: For pre-training of our BART and Fea-
tureBART models, we choose the English mono-
lingual News Crawl articles1 of 2007, 2010, and
2013 from WMT-2017 with varying sizes that con-
tain 3.8, 6.8, and 21.7 million sentences respec-
tively. For fine-tuning, we experiment with the mul-
tilingual, multi-parallel Asian language treebank
(ALT) (Riza et al., 2016)2 for English to Asian lan-
guage translation. Following (Chakrabarty et al.,
2020), eight Asian languages - Bengali (bg), Fil-
ipino (fi), Hindi (hi), Indonesian (id), Khmer (khm),
Malay (ms), Myanmar (my) and Vietnamese (vi)
are set as the targets. So, bilingual experiments
cover eight language pairs from en-bg to en-vi. For
our multilingual experiments, we explore one-to-
many multilingual translation setup keeping the
source side fixed to English (en) and the target
side to the eight Asian languages mentioned above.
The source side is fixed to English throughout be-
cause as the initial attempt on feature-based pre-
training, we can rely on high quality automatic mor-
phological analyzers available for English. Given
the potential of this work established by empirical
results, other languages with moderate quality mor-
phological annotation can also be tried in the future.
We use the official train/dev/test splits containing
18088, 1000, and 1018 sentences, respectively.

1 https://statmt.org/wmt17/
translation-task.html

2 http://www2.nict.go.jp/astrec-att/
member/mutiyama/ALT/
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Bilingual Results
Pre-training Noise Config en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi Avg.
None - Base 7.5 26.98 23.62 30.88 26.24 35.78 16.48 29.05 24.57

- +Self-Rel 8.4† 28.22† 26.13† 32.65† 27.33† 37.22† 18.13† 29.91† 26
NC-07 I Base 9.77 31.28 25.63 33.86 29.0 38.59 18.83 32.76 27.46

I +Self-Rel 10 31.53 26.93† 34.47† 29.02 39.01 19.21 33.5† 27.96
NC-10 I Base 9.78 32.07 26.21 35.25 27.5 38.79 19.5 32.32 27.68

I +Word-Rel 9.7 32.57† 26.44 36.07† 29.4† 40.34† 18.98 34.78† 28.53
NC-13 I Base 10.09 32.62 26.3 35.56 29.5 40.09 19.72 33.95 28.48

I +Concat 9.75 33.12† 26.96† 35.32 30.21† 40.64† 20.01 35.26† 28.91
Multilingual Results

Pre-training Noise Config en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi Avg.
None - Base 11.55 31.04 27.29 34.78 30.27 39.37 20.93 34.58 28.73

- +Self-Rel 11.40 31.14 27.94† 34.42 30.09 39.84† 20.99 33.85 28.71
NC-07 M Base 11.78 31.90 27.03 35.77 30.47 40.39 20.65 34.94 29.12

M +Self-Rel 11.51 32.17 27.68† 36.11 30.94† 40.80 21.13† 35.28 29.45
NC-10 I Base 11.84 32.66 26.77 35.71 30.72 40.11 20.65 34.56 29.13

I +Self-Rel 11.54 32.57 27.76† 36.25† 31.16† 40.48 21.26† 35.44† 29.58
NC-13 I Base 11.98 32.67 26.69 36.11 30.41 40.20 20.60 35.24 29.24

I +Self-Rel 11.65 32.38 27.77† 36.39 30.98† 41.35† 20.95† 35.75† 29.65

Table 1: BLEU scores of the bilingual and multilingual models. For a given pre-training corpus size, we only show
the results of the best feature and pre-training configuration due to lack of space. Highest scores are BOLD. † marks
scores significantly better (p < 0.05) than the corresponding non-feature (base) counterparts. The “Noise” column
indicates the pre-training approach, “I” and “M” for text-infilling and token masking. Self-Rel, Word-Rel, and
Concat denote self-relevance, word-relevance, and concatenation of feature embedding configurations respectively.

Pre-Processing: The monolingual corpora for pre-
training and the source side of fine-tuning cor-
pora are tokenized and true-cased by Moses to-
kenizer (Papineni et al., 2002) and the target lan-
guages are tokenized to separate the delimiters and
the punctuation symbols. Following Johnson et al.
(2017), each source language sentence in multi-
lingual translation setup is appended with a token
like <tgt-id> which indicates the target language.
Byte-pair-encoding (BPE) (Sennrich et al., 2016)
is performed to obtain subword vocabularies. We
train a single BPE model of vocabulary size 32K
on the combined training corpora of all 9 languages
and use it during pre-training as well as fine-tuning.

Features Used: Morphological annotation of the
English datasets is done using Stanford CoreNLP
toolkit (Manning et al., 2014). There are three
word-level linguistic features - lemma, part-of-
speech (POS), and dependency labels. All sub-
words of a word take the features of that word. We
use subword tags (Sennrich et al., 2016) to denote
beginning, middle and ending of a subword unit.

Hyperparameters and Training Details: We use
variations of the Transformer-base model (Vaswani
et al., 2017) for our experiments available from
OpenNMT PyTorch (Klein et al., 2017), which
we modify for feature based experiments. Wher-
ever possible, we perform hyperparameter tuning
of layers, hidden sizes, number of attention heads,

dropouts, number of training epochs etc. (See A
for details). All training is done on a single 32
GB V-100 GPU. Pre-training is done for 3 epochs
for each monolingual corpora. During fine-tuning,
validation is done after every 10000 steps and train-
ing stops if validation accuracy does not improve
for consecutive 5 evaluations. Test set decoding is
done using beam search with a beam size of 5 and
length penalty of 1.0. Translation performance is
measured by BLEU score calculated using multi-
bleu.perl.

4 Results

Table 1 contains our results for bilingual and mul-
tilingual fine-tuning of FeatureBART along with
their non-feature counterparts. Bilingual and mul-
tilingual results are divided into 4 groups: no pre-
training, pre-training using News Crawl articles
of 2007 (NC-07), 2010 (NC-10), and 2013 (NC-
13) from WMT-2017. We analyze the results as
follows:
Bilingual vs. Multilingual Translation with-
out and with Pre-Training: Comparing corre-
sponding rows between the bilingual and mul-
tilingual blocks, shows that multilingual mod-
els are significantly better than bilingual ones,
observations which are in accordance with Ari-
vazhagan et al. (2019); Johnson et al. (2017);
Dabre et al. (2020); Zhang et al. (2020). Without
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Figure 1: Perplexity plots for English–Bengali models.

Figure 2: Perplexity plots for multilingual models.

pre-training, improvements in maximum BLEU
points comparing bilingual vs. multilingual setups
are (3.15, 2.92, 1.81, 2.13, 2.94, 2.62, 2.86, 4.67)
for (en → bg, fil, hi, id, khm, ms, my, vi) re-
spectively. Pre-training, although it improves
performance in both cases, naturally reduces the
gap between bilingual and multilingual models.
Nevertheless, we get maximum improvements
of (1.89, 0.98, 0.95, 0.71, 1.25, 0.49) BLEU points
for (en→ bg, hi, khm, ms, my, vi) when comparing
bilingual and multilingual models.
Impact of Features: From Table 1 the follow-
ing observations can be made: (1) In case of no
pre-training, features are very useful in bilingual
settings but not in multilingual settings as multi-
lingual systems can utilize a multi-parallel corpora
efficiently by acquiring supplementary knowledge
from other languages, thus making linguistic infor-
mation redundant. (2) However, when pre-training
is used, multilingual models tend to benefit more
from features. As an example, consider en-khm
and en-vi multilingual scores in Table 1. Under no

pre-training setup, adding features deteriorates the
scores, whereas feature based pre-training gives
consistent improvements, indicating that feature
based modeling and pre-training are complemen-
tary.
Optimal Pre-Training and Feature Configura-
tions: From Table 1, looking at the “Noise” col-
umn, it is clear that text infilling is the best pre-
training objective in most cases. With regard to fea-
ture incorporation mechanism, self-relevance pre-
dominantly gives the best results. We therefore rec-
ommend the use of self-relevance and text-infilling
based FeatureBART in low-resource settings.
Studying Model Perplexities: Figure 1 shows the
perplexities3 of en-bg bilingual models. The per-
plexities with pre-training and features are lower
compared to when features are not used, during
initial stages of training, but this changes towards
convergence. This explains why en-bg does not
show performance improvements from features.
Figure 2 contains plots of cumulative perplexity
of all language pairs for multilingual models. Here,
features seem to have larger impact than in bilin-
gual settings, both at the beginning and later stages
of training. However, BLEU gains are not always
observed, indicating that it may not always be re-
liable motivating future multi-metric and human
evaluation (Marie et al., 2021).

5 Related Work

Pre-Training: Pre-trained models reduce the need
for large fine-tuning data for a given downstream
task, and in this paper we focus on extremely low-
resource settings. In this context, T5 (Raffel et al.,
2020), mT5 (Xue et al., 2021), BART (Lewis et al.,
2020), mBART-25 (Liu et al., 2020), mBART-50
(Tang et al., 2020) and, most recently, IndicBART
(Dabre et al., 2021) are most commonly used for
fine-tuning. None of these works focus on linguis-
tic features, which is the key focus of our paper.
Feature Based NMT: Most works focusing on
linguistic features, experiment on low-resource
settings, and a majority of them focus on how
to exploit syntactic/dependency structures of the
source language (Eriguchi et al., 2016; Shi et al.,
2016; Chen et al., 2017; Li et al., 2017; Wu et al.,
2018; Zhang et al., 2019; Bugliarello and Okazaki,
2020). These works rely on various sophisticated

3 Note that, adding features tends to make the training curves
smoother, especially in bilingual settings which are compar-
atively lower resource than multilingual settings.
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approaches but, Sennrich and Haddow (2016) show
that enriching encoder word embeddings with mor-
phological features is a simple but nice technique
to exploit the features. Chakrabarty et al. (2020)
improve upon this further by relevance mechanisms
on top of morphological and syntactic feature em-
beddings, to enable effective use of features, an
insight we adopt in this paper for feature based
pre-training.
Multilingual NMT: Where feature based NMT
focuses on utilizing linguistic information, multi-
lingual NMT (Johnson et al., 2017; Dabre et al.,
2020) focuses on leveraging training data for other
languages to improve translation quality. Incorpo-
rating linguistic features into multilingual models
has been neglected to the best of our knowledge,
and our work aims to fill in this gap.

6 Conclusion

We have presented FeatureBART, an encoder-
decoder pre-trained model that augments the en-
coder’s embeddings with linguistic feature embed-
dings. Our experiments on English to Asian lan-
guage translation in an extremely low-resource set-
ting show that FeatureBART leads to better transla-
tion quality compares to its counterpart that does
not use features. Analyses of training curves reveal
that compared to pre-training without features, fea-
ture based pre-training leads to significantly lower
perplexities during the initial stages of fine-tuning,
which we think is responsible for improvement in
translation quality. Future work will focus on: (1)
exploring the impact of individual feature category
on feature based pre-training and (2) multilingual
version of FeatureBART which uses features in the
encoder for languages other than English.
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A Hyperparameters and Training Details

We perform extensive hyperparameter tuning to
determine optimial settings for pre-training and
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fine-tuning. We use 6 encoder and decoder lay-
ers, 8 multi-attention heads, 2, 048 dimension size
of fully-connected network. For models without
features, the token embedding and model hidden
dimension is set to 512. For feature based models,
following Sennrich et al. (2016) the embedding
and hidden dimensions are 536 (250, 250, 15, 15, 6
corresponding to subword, lemma, POS, depen-
dency label, and subword-tag), in order to make
the number of parameters comparable. We use
batch-sizes of 4, 096 tokens. The dropout rate is
set to 0.3 for fine tuning experiments.

We pre-train models using token masking as well
as text infilling, where span lengths are drawn from
a Poisson distribution (λ = 3). We investigate the
effect of different noise percentage from 10% to
80% and find that 50%− 60% noising is the opti-
mum to get the best performance in downstream
translation task. Pre-training is done for 3 epochs
for each monolingual corpora of 2007, 2010, and
2013, covering 43200, 75600, and 237600 training
steps respectively. During fine-tuning, maximum
training steps are set as 200000 with validation
accuracy performed after every 10000 steps.
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Abstract

Neural Machine Translation (NMT) aims to
translate the source- to the target-language
while preserving the original meaning. Lin-
guistic information such as morphology, syn-
tactic, and semantics shall be grasped in token
embeddings to produce a high-quality transla-
tion. Recent works have leveraged the power-
ful Graph Neural Networks (GNNs) to encode
such language knowledge into token embed-
dings. Specifically, they use a trained parser
to construct semantic graphs given sentences
and then apply GNNs. However, most semantic
graphs are tree-shaped and too sparse for GNNs
which cause the over-smoothing problem. To
alleviate this problem, we propose a novel
Multi-level Community-awareness Graph Neu-
ral Network (MC-GNN) layer to jointly model
local and global relationships between words
and their linguistic roles in multiple communi-
ties. Intuitively, the MC-GNN layer substitutes
a self-attention layer at the encoder side of a
transformer-based machine translation model.
Extensive experiments on four language-pair
datasets with common evaluation metrics show
the remarkable improvements of our method
while reducing the time complexity in very long
sentences.

1 Introduction

Self-attention mechanisms, introduced by Trans-
formers (Vaswani et al., 2017), have been ubiq-
uitous in Neural Machine Translation (NMT). It
encodes the relative information of a position based
on other positions in the same sequence. Recent
works have seen the rising trend of improving the
self-attention module such as (Choromanski et al.,
2021; Katharopoulos et al., 2020).

One of the serious self-attention weaknesses is
its inefficiency at computing long sentences due to
quadratic complexity. Following this problem, Per-
former (Choromanski et al., 2021) estimates a full-

∗Corresponding author

rank-attention matrix with Fast Attention Via pos-
itive Orthogonal Random features approach (FA-
VOR+), that trade-offs the time complexity from
O(T 2d) to O(T d2logd). However, as they scale the
model larger such as GPT-3 (Brown et al., 2020),
the quadratic dimensional space d exponentially
scales much faster than that of the sequence length
T . In addition, Linear Transformer (Katharopoulos
et al., 2020) reported a comparable performance
with the Transformer, while speeding up on autore-
gressive inference time with a linear dot-product
of kernel feature maps. Several studies replace
self-attention with an attention-free module, which
significantly speeds up the training time. Atten-
tion Free Transformer (ATF) (Zhai et al., 2021)
eliminates the dot-product attention with weighted
element-wise multiplication, which linearizes the
time complexity to O(T d). FNet (Lee-Thorp et al.,
2021) is a pre-trained model with Discrete Fourier
Transform that speeds up 80% training time on
GPU but still achieves 92-97% of the accuracy of
BERT (Devlin et al., 2018). These works make
a trade-off between the accuracy and the perfor-
mance to reduce the computational cost.

Another line of work constructs a content-based
sparse graph to select keys that have high similarity
meanings to queries. Routing Transformer (Roy
et al., 2020) applies k-means clustering to cluster
both queries and keys. Meanwhile, Reformer (Ki-
taev et al., 2020) uses locality-sensitive hashing
(LSH) to select key-value pairs for each query.

Unlike previous work, in this paper, we follow
the intuition that self-attention is assumption-free
on the structural input, and thus it is hard to in-
duce task-based generalization on small-scale data.
As a result, we propose semantic-based sparse at-
tention that utilizes the semantic graph construc-
tion of the Universal Conceptual Cognitive Annota-
tion (UCCA) (Abend and Rappoport, 2013) parser,
which is implemented based on Message Passing
Neural Networks (MPNN). The vital benefit of

5021



Figure 1: A UCCA graph (left) for sentence “John
kicked his ball” (Abend and Rappoport, 2013) and its
community-centric graph (right). The colored circles
are intermediate nodes.

UCCA is that it is not relatively defined to a spe-
cific language, or in another word, it provides a uni-
versal structure across languages. We hypothesize
that the translation task will benefit from this char-
acteristic. According to (Abend and Rappoport,
2013), because UCCA is a connected acyclic graph
(or tree) whose in-degree node usually is one or
two, the attention-based computation will smooth
the token embeddings to a high similarity score.
This problem is referred to as the over-smoothing
problem, leading to the bad convergence when the
MPNN model is trained deeper.

To alleviate the issue, we introduce a set of trans-
formation rules to convert the tree-based UCCA
into a Community-Centric Graph (CCG). As illus-
trated in Figure 1, the CCG (on the right) presents
two different communities that somehow discover
local relationships between words and word roles
in a community. Moreover, we can theoretically
prove that the CCG structure is stronger than the
tree-based UCCA (see Section 3.2). To capture the
global relationships across communities, we pro-
pose Multi-level Explorations (ME) to probe multi-
level structures in a graph. Henceforth, we com-
bine CCG and ME into Multi-level Community-
awareness Graph Neural Networks (MC-GNN).
This MC-GNN layer will substitute a self-attention
layer in the Transformer encoder.

MC-GNN is theoretically faster than the Trans-
former, thanks to the sparse attention. Table 1 show
the time complexities for the Trasformer variants.
Experimental results showed that MC-GNN outper-
forms the Transformer-based MT (Vaswani et al.,
2017) in three over four NMT benchmarks across
four evaluation metrics (Section 4.2). Moreover,
we observe that Performer, Linear Transformer,
ATF, and FNet are underperformed in translation
tasks. We also report that the time complexity is
equal to at most 60% and 10% of the self-attention

Table 1: Complexity comparision. Here T, d, and k
denote the sequence length, hidden embedding, and
the average node degree, respectively. k << T for the
sparse attention.

Model Time
Transformer O(T 2d)
FNET O(1)
Performer O(T d2logd)
AFT O(T 2d)
Linear Attention O(T d2)
MC-GNN O(T kd)

in short and long sentences, respectively (Section
4.3). The contributions of this work are as follows:

• We propose a Community-Centric Graph to
provide community awareness and alleviate
the over-smoothing problem in GNN.

• We propose Multi-level Explorations (ME) to
probe multi-level structures in a graph.

• We prove the robustness and effectiveness of
MC-GNN by extensive analyses.

2 Background and Related Work

2.1 Graph-based Approach in NMT
The explicit incorporation of linguistic informa-
tion into traditional statistical machine translation
has yielded many positive results (Bazrafshan and
Gildea, 2013), and therefore it is intuitive to in-
corporate additional knowledge into NMT. Yet,
governing restrictive constraints on the interaction
between external information and the translation
task will hamper MT performance. Bastings et al.
(2020) introduced a graph-based encoder to ef-
fectively blend the syntactic structure into NMT.
Meanwhile, Marcheggiani et al. (2018) embedded
semantic bias into word representations by GNN,
and thus provided semantic awareness to NMT.
Xu et al. (2021) incorporated contextual aware-
ness to document-level NMT by GNN, where a
document is transformed into a graph that links
relevant contexts (i.e., named entity) regardless of
their distances. These methods, however, require a
larger computational cost than the Transformer in
the same settings.

2.2 Graph Attention Networks
Graph Attention Networks (Veličković et al., 2017)
compute the representation of each node by the
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weighted sum over its neighbors, following the
graph-structured data. They introduce a set of node
features as h = {h1,h2, ...,hN}, hi ∈ RD where N
is the number of nodes, and D is the dimensional
embeddings. To learn the higher-order information
from the graph, they compute attention coefficients
from two adjacent nodes as follows:

ei j = LeakyReLU(aT [Whi||Wh j]) (1)

ei j is considered as the significance of node j to
node i. Moreover, a ∈ R2D and W ∈ RD are train-
able parameters, the LeakyReLU nonlinearity uses
the negative slope α = 0.2. They normalize the
attention coefficients by using the softmax function
as follows:

αi j =
exp(ei j)

∑k∈N(i) exp(eik)
(2)

where k ∈ N(i) means for every neighbor of node i.
Finally, the aggregated information of node i will
be updated as follows:

ĥi = ∑
k∈N(i)

αikWhk (3)

The multi-head attention is employed to improve
inductive learning, which is similar to Transformer
(Vaswani et al., 2017).

2.3 Improvement of self-attention
Self-attention is the heart of many NLP-related
deep learning tasks (Guo et al., 2019; Zhang et al.,
2021; Peng et al., 2021; Lee-Thorp et al., 2021).
Three profound elements matter in self-attention
are: (1) computation complexity, (2) memory foot-
print, and (3) performance. Fundamentally, no
research outperforms the Transformer in all three
criteria in NMT because the trade-off between them
always exists. For example, FNet (Lee-Thorp et al.,
2021) replaces self-attention with an unparameter-
ized Fourier Transform that reduces the training
time by seven times on GPU and achieves 97% of
the BERT-Base accuracy on GLUE. However, we
find that FNet significantly underperforms against
the Transformer in MT tasks. Random Feature At-
tention (Peng et al., 2021) linearizes the softmax
function with random feature methods based on the
Gaussian kernel (Rahimi and Recht, 2007). Espe-
cially they speed up the decoding time by two times
and slightly improve the BLEU score by 0.1 BLEU
in WMT14 En-De. Guo et al. (2019) substituted
the fully-connected structure with a star-shaped

topology, and thus time complexity is reduced from
quadratic to linear. We, instead, replace the self-
attention layer with MC-GNN and can gain better
performance while reducing the complexity.

2.4 Universal Conceptual Cognitive
Annotation

UCCA is a bi-lexical dependency graph whose goal
is to abstract semantics away from syntactic inter-
pretations in a typological and cross-linguistic fash-
ion (Abend and Rappoport, 2013). To that aim,
a multi-layer formalism is defined in UCCA, in
which each layer specifies the relations it encodes.
For example, the left graph of Figure 1 includes a
single process scene (P), which describes an action
or a movement that evolves in time. The process
“kicked” contains two participants (A), “John” and
“his ball”. The participant “his ball” is further an-
notated with a center (C) and an elaborator (E).

3 Method

In this section, we firstly provide notations and
theory of Community-awareness Graph (CCG). We
then provide the proof that CCG is stronger than
tree graph. We next present details of MC-GNN,
and finally explain how MC-GNN is incorporated
into a NMT model.

3.1 Graph Notations & Community-Centric
Graph

Notation. Let G be a directed graph with N nodes
and M edges. A non-symmetric adjacency matrix
is defined as A ∈ {0,1}NxN and the embeddings
of nodes are X ∈ RNxD where D is the length of
embeddings. A node i points to a node j if and
only if Ai j = 1. We denote Â = A+ IN with IN is an
identity matrix, and D̂ = diag(Â1) a degree matrix
where diag(·) creates a diagonal matrix and 1 is
the all ones vector. A normalized Laplacian matrix
is computed by L̂ = D̂−1/2ÂD̂−1/2.

Community-Centric Graph. Let S: AU → AC

be a set of transformation rules to convert a UCCA
graph GU = (AU ,X) to a community-centric graph
GC = (AC,X). We propose three following rules
that only apply to the UCCA graph.

• Same direction: (AC)i j = 1 if and only if (iff)
(AU)ik = (AU)k j = 1 (Figure 2a).

• Opposite direction: (AC)i j = (AC) ji = 1 iff
(AU)ui = (AU)u j = 1 (Figure 2b).
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(a) Same direction

(b) Opposite direction

(c) Community link

Figure 2: Transformation rules

Figure 3: The left graph is indistinguishable after 1
layer, while the community centric graph (right) can be
distinguished.

• Community link: (AC)i j = (AC) ji = 1 if (AU)i j

or (AU) ji = 1 and two nodes i, j are the inter-
mediate nodes (Figure 2c).

In fact, the community-centric graph is inspired
by a line graph (Gross and Yellen, 2005) that has
been recently applied in (Zhao et al., 2020; Cao
et al., 2021).

3.2 Community-Centric Graph is stronger
than Tree Graph

Given an adjacency matrix A and node embeddings
X , we define an attention-based GNN to compute
graph-level embeddings as follows:

X̂ = GNN(A,X) (4)

In the left-hand side of Figure 3, since the node
his and node ball have the same set of neighbors,
the weighted sum GNN of this set produces the
equivalent embedding. As a result, the embeddings
are undistinguished or over-smoothed after t layer
GNNs. However, we have two different sets of
neighbors in the community-centric graph, and thus
the final embeddings are different.

3.3 Multi-level Explorations of Graph
Structures

Motivated by rich closed-path sub-structures in the
community-centric graph GC, we propose a novel
method that creates an adjacency matrix AM to ex-
plore a multi-level structure in GC. The profound
idea is to utilize the adjacency matrix AC as fol-
lows:

A(L)
M = AT

C⊙A(L)
C (5)

where L is the power of a matrix, ⊙ is the element-
wise multiplication. Intuitively, Equation 5 indi-
cates that (A(L)

M )i j = 1 if and only if there exists a
path length L from node i to node j in A(L)

C and
exists a path from node j to node i. To explore
multi-level structures, we add matrix A(t)

M at each
tth encoder layer; if the standard Transformer has
six layers then it probes six different levels.

Intuitively, the community-centric graph reveals
the role of words in a local community, while the
multi-level structure bright-to-lights the hidden role
of words in global.

3.4 Multi-level Community-awareness GNN
(MC-GNN)

Motivated by the multi-head self-attention that has
been widely used in various NLP tasks, we intro-
duce multi-head attention-based message propaga-
tion. Given a graph G = (X (t),A) at a time step t,
we update each node features x(t)i as follows:

x(t+1)
i = GNN(x(t)i ,A)

GNN(x(t)i ,A) = σ(W1x(t)i +F(x(t)i ,A))
(6)

where σ is a PReLU activation function, and W1
is trainable parameters. F is a scaled multi-head
attention function defined in Equation 7.

F(x(t)i ,A) = ∑
Ai, j=1

αi, jW2x(t)j

αi, j = so f tmax(
(W2x(t)i )T (W2x(t)j )

√
d

)

(7)

where W2 is a matrix with trainable parameters, d
is the dimensional embedding, and a multi-head
annotation is abandoned for sake of simplicity. To
apply MC-GNN, we first combine the multi-level
graph A(t) and community-centric graph AC, and
then replace it in Equation 6 as follows:

A(t−1)
MC = A(t−1)

M +AC

x(t+1)
i = GNN(x(t)i , L̂

(t−1)
MC )

(8)
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Figure 4: The Transformer-based NMT with the MC-
GNN layer. Graph Construction is pre-processed and
saved to files to speed up. Positional Embedding is
added to token embeddings at the end of a layer yield-
ing the better performance than added outside the Trans-
former block.

where L̂(t−1)
MC is the Laplacian graph introduced in

Section 3.1. Consequently, UCCA- and Commu-
nity Centric- GNN replace the UCCA AU and com-
munity centric AC graphs in Equation 6. The com-
putational complexity of the Transformer and the
above methods will be examined in Section 4.3.

3.5 Model Architecture

Figure 4 illustrates the complete process and the
model architecture when we incorporate MC-GNN
into a NMT system. A source sentence is firstly
passed through a graph construction process to con-
vert the sentence to a graph structure. In this pro-
cess, we can consider three different options: (1)
to use the original UCCA, (2) to produce CCG us-
ing the transformation rules in Section 3.1, and (3)
to aggregate multi-level structures as explained in
Section 3.3. Next, based on the output from the
graph construction process, graph information is
produced by the MC-GNN layer and fed into Feed-
Forward Neural Networks (FFNN). The positional
information of token embeddings is mixed up with
their neighbors during the message propagation,
so positional embedding is added after the FFNN.
The graph readout is necessary for removing irrel-
evant nodes and keeping token orders. Lastly, the
decoder side is the same as the Transformer.

4 Experiments

We provide hyper-parameter settings, datasets,
parser settings, and our code at https://
github.com/nqbinh17/mc-gnn.

4.1 Settings

We experiment on four IWSLT language-pair
datasets: English-French (En-Fr), English-Vietnam
(En-Vi), English-Czech (En-Cz), and English-
German (En-De). Moreover, we use a standard
hyper-parameter for every model. The number of
the encoder, and decoder layers is set to 6, the
model embedding is 512, the intermediate size
is 2048, the number of multi-head is 8, and the
dropout is 0.3. For En-Cz, however, the numbers
of the encoder and multi-head are set to 5 and 2,
respectively.

4.2 Ablation Study

In this study, the performances of UCCA-,
Community-Centric-, and MC-GNN are compared
against the Transformer on the En-Fr dataset. Fi-
nally, we carry out the evaluations on the other
three datasets to reveal the robustness of the MC-
GNN.

• Transformers is the vanilla Transformer with
the self-attention mechanism.

• UCCA-GNN is the Transformer-based model
but replace self-attention with UCCA-GNN.

• CC-GNN and MC-GNN use the same model
as UCCA-GNN but different graph construc-
tions.

We first validate the argument in Section 3.2
on the tree-based (UCCA-GNN) graph and the
community-centric (CC-GNN, MC-GNN) graph.
Table 2 shows that CC- and MC- GNN improve
UCCA-GNN by -0.71 and -0.76 BLEU in the 2014
testset. The outcome is impressive, because there
is no change in the GNN architecture but with a
simple graph pre-process.

On four language-pair datasets, we observe the
consistent performances of MC-GNN as compared
to the Transformer across four evaluation matri-
ces. The improvements are substantial on En-Fr,
En-Vi, and En-Cz, while the number of parame-
ters are slightly lower. Nevertheless, MC-GNN
consistently under-performed in the En-De dataset.

At first, we assumed that UCCA will be bene-
fited from similar language pairs such as English,
Vietnamese, and French, yet this argument fails
in English-German that share similarities in gram-
mar. Overall, MC-GNN is competitive to the Trans-
former in terms of performance and model size.
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Table 2: The ablation study is carried out to show the effectiveness of the proposed method. The bold text is to
highlight the least parameters or the highest performance of the model in a dataset.

Model Dataset Para. (M) Test GLEU NIST METEOR BLEU

Transformer IWSLT En-Fr 128.0 tst2014 37.77 7.51 56.75 35.76
tst2015 38.32 7.48 56.64 36.16

UCCA-GNN IWSLT En-Fr 124.9
tst2014 37.47 7.58 57.12 35.74
tst2015 37.42 7.40 56.06 35.20

CC-GNN IWSLT En-Fr 124.9
tst2014 38.17 7.65 57.5 36.45
tst2015 38.47 7.53 56.92 36.23

MC-GNN IWSLT En-Fr 124.9
tst2014 38.22 7.65 57.50 36.50
tst2015 38.51 7.55 57.10 36.35

Transformer IWSLT En-Vi 82.4 tst2013 31.74 6.91 N/A 28.23
tst2015 29.05 6.39 N/A 26.31

MC-GNN IWSLT En-Vi 79.2
tst2013 31.97 6.98 N/A 28.33
tst2015 29.22 6.44 N/A 26.37

Transformer IWSLT En-Cz 126.0 tst2011 21.88 4.71 23.71 16.48
tst2013 22.70 5.03 24.18 17.51

MC-GNN IWSLT En-Cz 123.3
tst2011 22.25 4.95 24.81 16.95
tst2013 22.99 5.23 25.14 18.10

Transformer IWSLT En-De 148.4 tst2014 28.17 6.05 43.63 24.11
tst2015 30.10 6.24 44.69 26.05

MC-GNN IWSLT En-De 145.8
tst2014 28.15 6.08 43.50 23.98
tst2015 29.42 6.13 45.35 25.46

Figure 5: The computational complexity exponentially
scales down as sentence length grows.

4.3 Computational Complexity -
Experimental Analysis

Since understanding the computational complexity
of a model is critical in NLP, we analyze this aspect
of the proposed models and the self-attention layer
based on sentence length.

The self-attention function connects all tokens
in a sentence with themselves, so its complexity
is O(n2), where n is the sentence length. Mean-
while, the attention-based GNN attends each node
to their neighbor producing O(k ·n) complexity. k

is the average degree, and n is the number of nodes
or the sentence length. For UCCA graphs, k is
significantly smaller than n, and hence O(k ·n) is
substantially lesser than O(n2). To give a better
illustration, we compare the proportion of k over n
in the IWSLT English-to-French datasets to see the
decline in real data.

The y-axis of Figure 5 shows the proportion
of O(k · n) over O(n2). We can see that the time
complexity of UCCA-GNN is 32% of the Trans-
former at most and exponentially shrinks to 3%.
Meanwhile, the time complexity of CC- and MC-
GNN is nearly 60% of the Transformer with a sen-
tence length of 15, and significantly dropped to
10% when the sentence length is longer than 100.
Empirically, k is exponentially smaller than n as
the sentence length grows, and hence diminishing
O(n2) to O(k ·n) enables tasks involving very long
sentences.

4.4 Compared with other methods

In this section, we compare our method with FNet
(Lee-Thorp et al., 2021), Performer (Choromanski
et al., 2021), AFT (Zhai et al., 2021), and Linear
Attention (Katharopoulos et al., 2020) in translation
tasks. We substitute them with the self-attention
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module in the encoder layer, and the experimental
results are shown in Table 3.

FNet: is parameter-free with the O(1) time com-
plexity, and thus we double the number of encoder
layers for fairness. We find that FNet extremely
underfits in translation tasks, while it showed the
comparative results against BERT in the encoder-
only tasks. We believe that generative tasks are too
rigid for Discrete Fourier Transform.

Performer1: We set the number of random fea-
tures to 4 times the head dimension. Although we
manually finetune the hyper-parameter settings, the
performance is poor on all language-pair datasets.

AFT: We use AFT-full with the O(T 2d) time
and O(T d) space complexities. We observe that
AFT-full has a better convergence and is more sta-
ble when training. The performances are compara-
tive where the drops fluctuate from -0.76 to -2.07
BLEU.

Linear Attention: has the O(T d2) time com-
plexity, however, the official implementation 2 pro-
duced the four-dimensional computation. This
makes space complexity spike during the training
process, and thus we must use a much smaller batch
size - only 16 sentences per batch. Due to the small
batch size, Linear Attention is hard to converge and
unable to converge in the En-Cz dataset.

Overall, FNet has the fastest training time but
the poorest performance among the methods. The
AFT method is much more reliable than FNet, Per-
former, and Linear Attention in translation tasks
with stable convergence. Moreover, the results con-
vince us that MC-GNN is more consistent than
these works and even outperforms the Transformer
in some datasets.

5 Conclusion

MC-GNN gains significant improvements across
many translation tasks without changing the archi-
tecture, while parameters and the time complexity
are reduced. However, there are several limitations
in the proposed methods. First, the accuracy of
the UCCA parser is below 80%, which can cause
some unexpected behaviors and hamper the NMT
performance. Second, MC-GNN does not support
every language as self-attention, since the UCCA
parser is unavailable in every language. Third, we
experimented with the graph decoder where a tar-

1We use the implementation from https://github.
com/lucidrains/performer-pytorch.

2https://github.com/idiap/fast-transformers

get sentence is treated as a dense graph and built
incrementally during the decoding phase (Xu et al.,
2021). Although the time complexity of dense
graphs and self-attention are O(T 2d), dense graphs
are sparse tensor computations, which is extremely
memory inefficient and unparallelable. Thus, we
dropped this approach due to limited resources.
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Abstract

Pre-Training (PT) of text representations has
been successfully applied to low-resource Neu-
ral Machine Translation (NMT). However, it
usually fails to achieve notable gains (some-
times, even worse) on resource-rich NMT on
par with their Random-Initialization (RI) coun-
terpart. We take the first step to investigate
the complementarity between PT and RI in
resource-rich scenarios via two probing anal-
yses, and find that: 1 PT improves NOT
the accuracy, but the generalization by achiev-
ing flatter loss landscapes than that of RI; 2
PT improves NOT the confidence of lexical
choice, but the negative diversity1 by assign-
ing smoother lexical probability distributions
than that of RI. Based on these insights, we pro-
pose to combine their complementarities with
a model fusion algorithm that utilizes optimal
transport to align neurons between PT and RI.
Experiments on two resource-rich translation
benchmarks, WMT’17 English-Chinese (20M)
and WMT’19 English-German (36M), show
that PT and RI could be nicely complementary
to each other, achieving substantial improve-
ments considering both translation accuracy,
generalization, and negative diversity. Prob-
ing tools and code are released at: https://
github.com/zanchangtong/PTvsRI.

1 Introduction

Pre-training (PT; Devlin et al., 2019; Liu et al.,
2019 has achieved tremendous success in natural
language processing fields. Inspired by BERT (De-
vlin et al., 2019), recent works (Song et al., 2019;

∗ Work was done when Changtong was interning at JD
Explore Academy.

† Liang Ding and Weifeng Liu are the corresponding
authors.

1Li et al. 2020 mentioned that the maximum likelihood
estimation training treats all non-ground truth but semantic-
relevant lexical predictions as being equally incorrect, poten-
tially leading to the sharp lexical probability distribution. Here
we use this term to refer to the higher probabilities assigned
to the negative tokens.

Lewis et al., 2020; Liu et al., 2020) attempt to lever-
age sequence-to-sequence PT for neural machine
translation (NMT; Bahdanau et al., 2015; Gehring
et al., 2017; Vaswani et al., 2017) by leveraging
a large amount of unlabeled (i.e. monolingual)
sentences.

While recent studies have empirically shown
their benefit for the low-resource translation task
where the labeled (i.e. parallel) sentences are lim-
ited (Lewis et al., 2020; Song et al., 2019; Liu et al.,
2020), we are generally confronted with resource-
rich scenarios, e.g. millions of parallel sentence
pairs, in WMT evaluations (Akhbardeh et al., 2021)
and industries. For these resource-rich tasks, PT
becomes less effective (sometimes, even worse)
than their Random-Initialization (RI) counterparts,
for example, as Zhu et al. 2020; Liu et al. 2020 re-
ported, the PT underperforms RI if improperly uti-
lized or significant amount of bi-text data is given.
However, there is limited understanding of: 1

Why does PT fail compared to RI in terms of trans-
lation accuracy in high-resource settings? 2

What is the difference between the optimized PT
and RI models? 3 How can we harmonize PT
with RI? Can we just leverage their advantages?

To this end, we introduce two probing analyses
(i.e. loss landscape and lexical probability distri-
bution) for the fully-optimized PT and RI models
to investigate 1 and 2 , respectively. We
find that: 1 Supervised training with signifi-
cant amount of parallel data, i.e. RI, is enough
to optimize the model towards a better optimum
point compared with PT, thus leading to better in-
domain (same domain between test and training
set) performance; 2 PT mainly contributes to the
generalization ability because of its flatter loss land-
scape and smoother lexical probability distribution,
thus resulting in better out-domain performance
and diversified generation. Motivated by this find-
ing, we propose a simple combination method to
reach 3 by aligning the neurons and weights
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(a) Loss Landscape of RI (b) Loss Landscape of PT (c) Loss Landscape of Ours

Start Point: 14.13

End Point: 5.02

Start Point: 62.17

End Point: 3.18 

Start Point: 20.28

End Point: 4.99

Figure 1: Loss landscapes with contour lines on WMT19 En-De dataset. “RI” means the transformer training from
scratch, while “PT” denotes the pretrained model mBART with finetuning. Both models have the same architecture.

0

10

20

30

40

0-2 2-4 4-6 6-8 8-10

P
er

ce
nt

ag
e 

o
f 
 T

o
ke

n
s 

%

Shannon Entropy of Model Output 

PT RI

Figure 2: Token ratio distribution over difference en-
tropy scales on WMT19 En-De test set. We compute
the shanon entropy of the decoder output for each token.

of PT and RI and then fusing them into a single
model based on optimal transport (Monge, 1781;
Singh and Jaggi, 2020). Experiments conducted on
the WMT17 English-Chinese and WMT19 English-
German benchmarks show that PT can nicely com-
plement RI, leading to better translation accuracy,
generalization, and negative diversity.

2 Experimental Setup

Data We conducted experiments on WMT17
English-Chinese (En-Zh) and WMT19 English-
German (En-De) translation tasks, which are
widely-used resource-rich benchmarks, and include
20M and 36M sentence pairs, respectively.

Setting To make a fair comparison, all the model
backbone architectures are the same as the pre-
trained mBART.cc252. We tokenize with 250K
SentencePiece model (Kudo and Richardson, 2018)
of mBART and remove tokens that are not present

2https://github.com/pytorch/fairseq/
tree/master/examples/mbart

in the downstream task from the vocabulary. For
PT, we also initialize the model with trimmed
embedding layers. For evaluation, we use Sacre-
BLEU (Post, 2018) to measure the translation qual-
ity with default tokenizer.

3 Understanding PT and RI

In this section, we aim to better understand the
similarities and differences between PT and RI by
introducing two probing analyses. The analyzed
PT and RI models are trained on WMT19 En-De
benchmark. We first present the loss landscape
visualization of both models in Section 3.1, and
then show their difference in lexical probability
distribution in Section 3.2.

3.1 Impact on Loss Landscape

We follow Hao et al. (2019b) to visualize the two-
dimensional (2D) loss surface, providing some
insights on why PT fails compared to RI for in-
domain accuracy while resulting better out-domain
performance. Let θ0 denotes the initialized param-
eters, i.e., mBART parameters or randomly ini-
tialized parameters. θ1 and θ2 are the parameters
of models trained on target dataset and auxiliary
dataset respectively. We plot the loss surface with
function as follows:

f(α, β) = L(θ0 + αδ1 + βδ2), (1)

where L is the loss function, α and β are scalar
values represent current coordinate, δ1 = θ1 − θ0
is the the optimization direction on target dataset,
and δ2 = ∥θ1−θ0∥∥θ2−θ0∥ (θ2 − θ0) denotes the normalized
optimization direction on auxiliary dataset, ∥·∥ de-
notes the Euclidean norm. In our setting, we select
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mBART finetuned on WMT17 En-Zh data as the
second axis to plot the loss landscape on WMT19
En-De benchmark.

Figure 1(a) and Figure 1(b) present the loss land-
scape with contour line of model training with PT
and RI, where the left-side and right-side axis are
corresponding to α and β in Equation 1 respec-
tively. We also mark the start point and the end
point of training path. The start point denotes the
loss of model without training, while the end point
indicates the converged model loss. Firstly, we can
see that PT obtains flatter loss landscape than RI
with contour line covers a wider area, which de-
notes that initialized with pre-trained parameters
leads model to be more robust. This supports us
to understand the generalization of PT from the
perspective of the flatter optima. Secondly, the
start point of PT is much smaller than RI (14.13
vs. 62.17), which demonstrates that the knowledge
learned during pre-training stage is also suitable
for the downstream task. We also observe that RI
achieves the lowest loss at the end point (3.18).
This shows that the RI model is well optimized on
the in-domain data, as the large amount sentence
pairs provide enough supervised signal.

3.2 Impact on Lexical Prob. Distribution

Previous work (Jiang et al., 2019) shows that the
lexical probability distribution is correlated with
the diversity of generation, i.e., over-confidence in
certain tokens leads to lower diversity (Miao et al.,
2021). This finding inspires us to measure the den-
sity of PT and RI outputs. We use Shannon entropy
of decoder output according to test set to probe
this attribute. The smaller entropy represents less
assigned probability density on incorrect tokens.

As shown in Figure 2, we present how much
percentage of character is involved in different
intervals. We firstly see that most tokens prefer
a relatively smaller entropy, which denotes that
both models are well optimized, and predict tokens
with higher confidence. Besides, PT achieves a
smoother distribution than RI with most outputs
achieving relative higher entropy. This suggests
that PT could generate more diversiform trans-
lations, which is consistent with the report from
Wang et al. (2022a).

4 Harmonizing PT and RI

Based on the above experiments, we prove that PT
mainly contributes to the generalization ability and

RI leads to better in-domain performance. To com-
bine the advantage of both models, we fuse both
models via optimal transport based on activations
following Singh and Jaggi (2020).

4.1 Model Fusion
Discrete Optimal Transport Given two discrete
measures

∑n
i=1 αiδαi and

∑n
i=1 βiδβi , where δβi

denotes the Dirac measures on βi, and
∑n

i=1 αi =
1 and

∑m
i=1 βi = 1. Then, with the cost matrix

C ∈ Rn×m, which computed with predefined cost
function, the discrete optimal transport formulates:

OT := min
T∈Π(α,β)

⟨T,C⟩F (2)

where ⟨·, ·⟩F is the Frobenius product, and
Π(α,β) = {T ∈ Rn×m : T1m = α and T⊤1n =
β} is the set of all admissible transport matrix be-
tween the two measures (1n is a vector of ones of
size n).

Model Fusion For layers ℓri and ℓpt of RI and
PT models respectively, we define the activation
based probability measures over neurons as µℓri =(
αℓri , δℓri

)
and νℓpt =

(
βℓpt , δℓpt

)
, where δℓri ,

δℓpt are activations for given samples. And, we
set uniform distribution for α and β.

In term of the alignment procedure, we first align
the weights of previous layer Wℓ, ℓ−1

ri by construct-
ing convex combination with the weights of corre-
sponding transport matrix Tℓ−1, normalized appro-
priately via the inverse of corresponding column
marginals α. After getting the aligned Ŵℓ, ℓ−1

ri ,
we compute the optimal transport map Tℓ between
µ(ℓri) and ν(ℓpt), which is formulated as Equation 2.
And now, we align ℓri with respect to ℓpt,

W̃
(ℓ, ℓ−1)
ri ← diag

(
1

β⃗(ℓ)

)
T(ℓ)⊤Ŵ(ℓ, ℓ−1)

ri . (3)

We will refer W̃
(ℓ, ℓ−1)
ri to the aligned weights of RI

model, which we can directly add with W(ℓ, ℓ−1)
pt .

We carry out this procedure over all layers sequen-
tially. Then, we fine-tune the fused model on corre-
sponding dataset to obtain the final model.

4.2 Results
As detailed in Section 2, we conduct the experi-
ments on two widely used benchmarks WMT17
En-Zh and WMT19 En-De. To obtain the fused
model, we set weights of 0.9 for PT and 0.1 for
RI during model fusion and then fine-tune on the
corresponding dataset.
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Model En-De En-Zh

RI 40.1 32.9
PT 39.3 32.3
+Fusion 39.7⇑+0.4 32.4⇑+0.1

Table 1: In-Domain translation quality of model trained
on the WMT19 En-De and WMT17 En-Zh benchmarks.
We evaluate models on official test sets. PT denotes the
fine-tuned mBART, while RI indicts model trained from
scratch.

PT RI Fusion ∆

1) OD 34.9 35.0 35.2 +0.2
2) DuA -12.1 -16.7 -12.3 +4.4
3) Multi-Ref 75.4 75.8 76.0 +0.2
4) TTR 19.1 19.1 19.2 +0.1

Table 2: Results of analysis experiments. “OD” (Out-
Domain) evaluates the performance on the out-domain
test set. “DuA” (Drop under Attack) reports the drop of
BLEU when adding noise into source sentences. “Multi-
Ref” is the BLEU score with multiple references. “TTR”
denotes the Type-Token-Ratio. “∆” indicts difference
between RI and Fusion.

As present in Figure 1(c), we present the loss
landscape of fused model. The start point is the
fused model before fine-tuning. We can see that
our model inherits the smooth loss landscape from
PT and leads to smaller loss value.

The in-domain translation results are shown in
Table 1. We present the results of PT and RI, which
has the same network architecture, for comparison
with our model. As seen, RI performs better than
PT for two benchmarks (39.3 vs. 39.7 for En-De,
32.3 vs. 32.4 for En-De). This empirically verifies
the claim we make in Section 3.1. Besides, our
fused model achieves a better performance than PT
(39.3 vs. 39.7 for En-De, 32.3 vs. 32.4 for En-De),
which denotes that model fusion could promote the
performance of PT. while still under-performs RI
(40.1 vs. 39.7 for En-De, 32.9 vs. 32.4 for En-De).
This may draw from that our approach can be seen
as a trade-off of PT and RI.

4.3 Analysis

We conducted several analyses to understand
whether it inherits the advantages of PT. We evalu-
ate our approach on four tasks, compared with PT
model and RI model, including model generaliza-
tion, performance drop under attack, translation di-

versity and type-token-ratio. Note that we can mea-
sure more properties, e.g. copy errors (Liu et al.,
2021b) and encoded linguistic knowledge (Hao
et al., 2019a; Ding et al., 2020), but our aim is sim-
ply to show that PT and RI can be harmonized. All
results are reported on the WMT19 En-De bench-
mark. For simplification, we list scores in one
table.

1) Effects of Model Generalization To under-
stand how our model performs on the out-domain
data. We evaluate trained model on two different
domains, including It and Medical, and report Out-
Domain Score by averaging SacreBLEU scores.
As it presents in the first line of Table 2, the fused
model achieves +0.2 score compared with RI. This
verifies the generalization ability of our model.

2) Performance Drop under Attack To further
demonstrate that our fused model could be more
robust than RI. We attack the model by adding
noises into source sentence during the inference
stage and report the drop in score. Specifically,
we replace 10% words with a special token. The
less drop mean model is more robust. As seen
in the third line of Table 2, both models suffer a
huge drop with the perturbed input. However, our
model still performs better than RI (-29.6 vs. -31.2).
This result shows that our model is less sensitive to
noises, which leads to more robustness.

3) Effects of Translation Diversity Following
Wang et al. (2022a), we evaluate the translation di-
versity of models with multi-reference SacreBLEU.
We inference on the test set released by Ott et al.
(2018), which consists of ten additional reference
translations for 500 English sentences extracted
from WMT14 En-De test set. As shown in the sec-
ond line of Table 2, our model achieves a higher
multi-reference SacreBLEU score than RI. This
empirically proves that our fused model could gen-
erate a more diverse translation with different word
orders.

4) Effects of TTR We also probe diversity of the
lexical with TTR = num. of types

num. of tokens following Wei
et al. (2022). The higher score of TTR inflects
that the model tends to generate translation with
different word types. As it present in the last line
of Table 2, our fusion model achieves +0.16 gains
over RI. This shows that our model could not only
generate translation with more word orders but also
predict words of more types.
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5 Conclusion and Future Work

This paper provides several insights for pre-training
(PT) and random-initialization (RI) on resource-
rich machine translation. We carefully investigate
the impact of PT and RI on loss landscape and nega-
tive diversity and reveal that RI leads to a lower loss
value of in-domain data, while PT is more benefi-
cial to flatter loss and smoother lexical distribution.
We also propose to combine them with model fu-
sion via optimal transport. Experimental results on
WMT17 En-Zh and WMT19 En-De benchmarks
show that model fusion is a nice trade-off method
to utilize the complementarity of PT and RI.

For future work, we would explore other effec-
tive fusion algorithms (Liu et al., 2022; Wang et al.,
2022b) to combine the merits of PT and RI. Also,
it will be interesting to investigate whether harmo-
nizing PT and RI could complement existing data
augmentation methods for NMT, e.g. back trans-
lation (Liu et al., 2021a), data rejuvenation (Jiao
et al., 2020), bidirectional distillation (Ding et al.,
2021a) and training (Ding et al., 2021b).
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Abstract

Recently, a new training OAXE loss (Du et al.,
2021) has proven effective to ameliorate the
effect of multimodality for non-autoregressive
translation (NAT), which removes the penalty
of word order errors in the standard cross-
entropy loss. Starting from the intuition that re-
ordering generally occurs between phrases, we
extend OAXE by only allowing reordering be-
tween ngram phrases and still requiring a strict
match of word order within the phrases. Exten-
sive experiments on NAT benchmarks across
language pairs and data scales demonstrate the
effectiveness and universality of our approach.
Further analyses show that ngram-OAXE in-
deed improves the translation of ngram phrases,
and produces more fluent translation with a bet-
ter modeling of sentence structure.1

1 Introduction

Fully non-autoregressive translation (NAT) has re-
ceived increasing attention for its efficient decod-
ing by predicting every target token in parallel (Gu
et al., 2018; Ghazvininejad et al., 2019). However,
such advantage comes at the cost of sacrificing
translation quality due to the multimodality prob-
lem: there exist many possible translations of the
same sentence, while vanilla NAT models may con-
sider them at the same time due to the independent
predictions, which leads to multi-modal outputs in
the form of token repetitions (Gu et al., 2018).

Recent works have incorporated approaches to
improving the standard cross-entropy (XE) loss to
ameliorate the effect of multimodality. The motiva-
tion for these works is that modeling word order is
difficult for NAT, since the model cannot condition
on its previous predictions like its autoregressive
counterpart. Starting from this intuition, a thread of
research relaxes the word order restriction based on

∗Zhaopeng Tu is the corresponding author.
1The codes and models are in https://github.

com/tencent-ailab/machine-translation/
COLING22_ngram-OAXE/.

the monotonic alignment assumption (Libovický
and Helcl, 2018; Ghazvininejad et al., 2020; Sa-
haria et al., 2020). Du et al. (2021) take a further
step by removing the penalty of word order errors
with a novel order-agnostic cross entropy (OAXE)
loss, which enables NAT models to handle word
reordering – a common source of multimodality
problem. Accordingly, OAXE achieves the best
performance among these model variants.

However, OAXE allows reordering between ev-
ery two words, which is not always valid in prac-
tice. For example, the reordering of the two words
“this afternoon” is not correct in grammar. The re-
ordering generally occurs between ngram phrases,
such as “I ate pizza” and “this afternoon”. Starting
from this intuition, we extend OAXE by constrain-
ing the reordering between ngrams and requiring
a strict match of word order within each ngram
(i.e., ngram-OAXE). To this end, we first build
the probability distributions of ngrams in the target
sentence using the word probabilities produced by
NAT models. Then we find the best ordering of
target ngrams to minimize the cross entropy loss.
We implement the ngram-OAXE loss in an effi-
cient way, which only adds one more line of code
on top of the source code of OAXE. Accordingly,
ngram-OAXE only marginally increases training
time (e.g., 3% more time) over OAXE.

Experimental results on widely-used NAT bench-
marks show that ngram-OAXE improves transla-
tion performance over OAXE in all cases. Encour-
agingly, ngram-OAXE outperforms OAXE by up
to +3.8 BLEU points on raw data (without knowl-
edge distillation) for WMT14 En-De translation
(Table 1), and narrows the performance gap be-
tween training on raw data and on distilled data.
Further analyses show that ngram-OAXE improves
over OAXE on the generation accuracy of ngram
phrases and modeling reordering between ngram
phrases, which makes ngram-OAXE handle long
sentences better, especially on raw data. The

5035



I
ate

pizza
this

afternoon

0.2
0.1
0.1
0.5
0.1

0.1
0.1
0.1
0.1
0.6

Vocabulary

0.4
0.1
0.3
0.1
0.1

0.1
0.4
0.1
0.3
0.1

0.1
0.1
0.5
0.1
0.3

Output Probability Distribution

Pos:1 Pos:2 Pos:3 Pos:4 Pos:5

I ate

ate pizza

pizza this

this afternoon

0.02

0.01

0.01

0.30

0.01

0.03

0.01

0.01

Bigram List

0.16

0.01

0.09

0.01

0.01

0.20

0.01

0.09

Output Probability Distribution

Pos:1,2 Pos:2,3 Pos:3,4 Pos:4,5

Word Distribution Bigram Distribution

Figure 1: Illustration of the proposed ngram-OAXE loss with N = 2 (i.e., bigram-OAXE). We only show the
probabilities of the target words and bigrams for better illustration. Firstly, ngram-OAXE transforms the word
probability distributions to the bigram distributions by multiplying the word probabilities at the corresponding
positions. For example, P(“I ate" | Pos:1,2) = P(“I” | Pos:1) * P(“ate” | Pos:2) = 0.2*0.1=0.02. Then, we select the
ngrams (highlighted in bold) for each neighbouring positions using the efficient Hungarian algorithm.

strength of ngram-OAXE on directly learning from
the complex raw data indicates the potential to train
NAT models without knowledge distillation.

2 Methodology

2.1 Preliminaries: NAT

Cross Entropy (XE) Standard NAT models (Gu
et al., 2018) are trained with the cross entropy loss:

LXE = − logP (Y |X) = −
∑

yn

logP (yi|X), (1)

where (X,Y ) with Y = {y1, . . . , yI} is a bilin-
gual training example, and P (yi|X) is calculated
independently by the NAT model. XE requires a
strict match of word order between target tokens
and model predictions, thus will heavily penalize
hypotheses that are semantically equivalent to the
target but different in word order.

Order-Agnostic Cross Entropy (OAXE) Du
et al. (2021) remove the word order restriction of
XE, and assign loss based on the best alignment
between target tokens and model predictions. They
define the ordering space O = {O1, . . . , OJ} for
Y , where Oj is an ordering of the set of target to-
kens (y1, . . . , yI). The OAXE objective is defined
as finding the best ordering Oj to minimize the
cross entropy loss:

LOAXE = min
Oj∈O

(
− logP (Oj |X)

)
, (2)

where − logP (Oi|X) is the cross entropy loss for
ordering Oi, which is calculated by Equation 1.

2.2 ngram-OAXE Loss
Figure 1 illustrates the two-phase calculation of
ngram-OAXE : 1) constructing the probability dis-
tributions of the ngrams in the target sentence;
2) searching the best ordering of the considered
ngrams to minimize the cross entropy loss.

Formulation Given the target Y = {y1, . . . , yI},
we define the target ngrams GN of size N as all the
N continuous tokens in Y : {y1:N , · · · , yI−N+1:I}.
The output ngram distributions PG is defined as:

PG(yi:i+N−1|X) =

i+N−1∏

t=i

P (yt|X), (3)

where P (yt|X) is the prediction probability of
NAT models for the token yt in position t of the
target sentence, and N is the size of ngrams.

The ngram-OAXE objective is defined as finding
the best ordering Oj to minimize the cross entropy
loss of the considered ngrams in target sentence Y :

Lngram-OAXE = min
Oj∈O

(
− logPG(O

j |X)
)
. (4)

Ideally, the best ordering Oj should meet the fol-
lowing conditions:

1. The ngrams in Oj should not be overlapped
(e.g., “I ate" and “ate pizza" should not occur
simultaneously in one O).

2. Oj is a mixture of ngrams with different sizes
(e.g., “I ate pizza" and “this afternoon").

However, it is computationally infeasible to search
the best ngram segmentation of the target sentence
with highest probabilities. Given a target sentence
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with length I, there are 2I ngram segmentation (i.e,
each token can be labeled as the end of a ngram or
not). For each ngram segmentation with expected
length I/2, the time complexity is O((I/2)3) using
the efficient Hungarian algorithm. In this way, the
total computational complexity of the original two
conditions is O(2II3).

For computational tractability, we loosen the
conditions by:

1. We consider all ngrams in the target sentence
to avoid searching the ngram segmentation. In
other words, each word is allowed to occur in
multiple ngrams in one ordering O.

2. We only consider ngrams with a fixed size N
(e.g., only bigrams), which enables us to cast
this problem as Maximum Bipartite Match-
ing and leverage the efficient Hungarian algo-
rithm, as done in (Du et al., 2021).

By loosening the conditions, there are (I-N+1)
ngrams of size N in the sentence, and the com-
putational complexity is O(I3). Accordingly, the
loss of the ordering Oj is computed as:

PG(O
j |X) =

∏
yi:i+N−1∈Oj

PG(yi:i+N−1|X). (5)

Figure 1 shows the calculation of bigram-
OAXE loss for the target sentence “I ate pizza this
afternoon”. We consider all bigrams in the sentence
(see “Bigram List”), and obtain the probability dis-
tribution of the considered bigrams. We construct
the bipartite graph G = (U, V,E) where the first
part of vertices U is the set of N-1 neighbouring
positions (e.g., the first two positions“Pos:1,2”),
and the second part of vertices V is the list of N-1
target bigrams. Each edge in E is the prediction log
probability for the bigram in the corresponding po-
sition. We can follow Du et al. (2021) to leverage
the efficient Hungarian algorithm (Kuhn, 1955) for
fast calculation of ngram-OAXE (see the assigned
probabilities for the consider bigrams).

Implementation Algorithm 1 shows the pseudo-
code of ngram-OAXE withN = 2. The implemen-
tation of ngram-OAXE is almost the same with that
of OAXE, except that we add one more line (in red
color) for constructing the probability distribution
of ngrams. We implement ngram-OAXE on top of
the source code of OAXE, and leverage the same
recipes (i.e., loss truncation and XE pretrain) to
effectively restrict the free-order nature of OAXE.

Algorithm 1 Bigram-OAXE Loss

Input: Ground truth Y , NAT output logP
bs, len = Y .size()
Y = Y .repeat(1, len).view(bs, len, len)
costM = -logP .gather(index=Y , dim=2)
costM = costM [:, :-1, :-1] +costM [:, 1:, 1:]
for i = 0 to bs do
bestMatch[i] = HungarianMatch(costM [i])

end for
Return:costM .gather(index=bestMatch)

Since both ngram-OAXE and OAXE only mod-
ify the training of NAT models, their inference
latency is the same with the CMLM baseline (e.g.,
15.3x speed up over the AT model). Concerning the
training latency, OAXE takes 36% more training
time over the CMLM baseline, and our ngram-
OAXE takes 40% more training time, which is
almost the same to OAXE since we only add one
more line of code.

Discussion Some researchers may doubt that the
ngram-OAXE loss is not an intuitively understand-
able “global” loss, since some words are counted
multiple times. We use the example in Figure 1 to
dispel the doubt. Firstly, except for the first and
last words (i.e., “I” and “afternoon”), the ngram-
OAXE loss equally counts the other words twice,
which would not introduce the count bias.

Secondly, we follow Du et al. (2021) to start with
an initialization pre-trained with the XE loss, which
ensures that the NAT models can produce reliable
token probabilities to compute ngram probabilities.
We also use the loss truncation technique (Kang
and Hashimoto, 2020) to drop invalid ngrams with
low probabilities (e.g., “pizza this” | Pos:2,3) in the
selected ordering Oj .

Thirdly, the overlapped ngrams can help to pro-
duce more fluent translations by modeling global
context in a manner of ngram LM. For exam-
ple, the high-probability overlapped token in posi-
tion 4 “ate” (i.e., P(ate | Pos:4) = 0.4) will guide
NAT models to assign high probabilities to the
neighbouring ngrams (“I ate” | Pos:3,4) and (“ate
pizza” | Pos:4,5), which form a consistent clause
(“I ate pizza | Pos:3,4,5”). In contrast, ngram-
OAXE would not simultaneously assign high prob-
abilities to the phrases (“this afternoon” | Pos:1,2)
and (“pizza this” | Pos:2,3), since the two phrases
require NAT models to assign high probabilities to
two different words (i.e., “afternoon” and “pizza”)
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in the overlapped position 2.
The Lngram-OAXE loss with N = 2 in Figure 1 is

calculated as:

logP (“this afternoon”|Pos : 1, 2) +
logP (“I ate”|Pos : 3, 4) +
logP (“ate pizza”|Pos : 4, 5)

where the low-probability bigram (“pizza this”
| Pos:2,3) is truncated. In this way, ngram-
OAXE carries out operation at the ngram granular-
ity: ngram-OAXE requires exact match of the word
order within the ngram phrases, and allows reorder-
ing between phrases (e.g., “I ate pizza | Pos:3,4,5”
and “this afternoon | Pos:1,2").

3 Experiment

3.1 Experimental Setup
Data We conducted experiments on major bench-
marking datasets that are widely-used in previ-
ous NAT studies (Ma et al., 2019; Saharia et al.,
2020): WMT14 English⇔German (En⇔De, 4.5M
sentence pairs) and WMT17 English⇔Chinese
(En⇔Zh, 20.0M sentence pairs). We preprocessed
the datasets with a joint BPE (Sennrich et al., 2016)
with 32K merge operations for the En⇔De and
En⇔Zh datasets. For fair comparison with prior
work, we reported the Sacre BLEU (Post, 2018)2

on the En-Zh task, and the compound BLEU (Pap-
ineni et al., 2002) on the other tasks.

Knowledge Distillation We closely followed pre-
vious works on NAT to apply sequence-level knowl-
edge distillation (Kim and Rush, 2016) to reduce
the modes of the training data. Specifically, we
obtained distilled data by replacing the target side
of the original training data (i.e., raw data) with
translation produced by an external AT teacher.
Consistent with previous works (Ghazvininejad
et al., 2019, 2020; Du et al., 2021), we employed
Transformer-BIG (Vaswani et al., 2017) as the AT
teacher for knowledge distillation.

NAT Models We validated our approach on the
representative NAT model – CMLM (Ghazvinine-
jad et al., 2019), which uses the conditional mask
LM (Devlin et al., 2019) to generate the tar-
get sequence from the masked input. The NAT
model shares the same architecture as Transformer-
BASE (Wang and Tu, 2020): 6 layers for both the

2SacreBLEU hash : BLEU+case.mixed+lang.en-zh + num-
refs.1+smooth.exp+test.wmt17+tok.zh+version.1.4.2
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Figure 2: Impact of N-gram choice in ngram-
OAXE loss (i.e., N in Equation 3). OAXE can be
viewed as a special case of ngram-OAXE with N = 1.

encoder and decoder, 8 attention heads, 512 model
dimensions. We chose the CMLM models with the
vanilla XE loss (Ghazvininejad et al., 2019) and
the OAXE loss (Du et al., 2021) as our two main
baselines. To keep consistent with main baselines,
we set 5 as length candidates for all CMLM models
during inference.

We generally followed the hyperparameters
used in (Ghazvininejad et al., 2019). We trained
batches of approximately 128K tokens using
Adam (Kingma and Ba, 2015). The learning rate
warmed up to 5× 10−4 in the first 10K steps, and
then decayed with the inverse square-root schedule.
We trained all models for 300k steps, measured
the validation BLEU at the end of each epoch, and
averaged the 5 best checkpoints. We followed (Li
et al., 2019; Sun and Yang, 2020; Saharia et al.,
2020; Du et al., 2021) to use de-duplication trick to
remove repetitive tokens in the generated output.

3.2 Ablation Study

In this section, we investigated the impact of differ-
ent components for ngram-OAXE on the WMT14
En⇔De validation sets.
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Figure 3: Impact of the truncation margin π for NAT
models trained on the distilled data.

Impact of Ngram Size We first investigated the
impact of different N in the ngram-OAXE loss
on the translation performance. Figure 2 shows
the results for both raw data and distilled data. As
seen, the bigram-OAXE achieves the best perfor-
mance on raw data, while 4gram-OAXE performs
best on the distilled data. We attribute the differ-
ent behaviors to the difficulty of the dataset: raw
data contains more modes than distilled data (Gu
et al., 2018), thus it is more difficult to learn larger
ngrams from the complicated raw data. In the fol-
lowing experiments, we set N = 2 for raw data,
and N = 4 for distilled data.

Impact of Truncation Margin Figure 3 shows
the impact of truncation margin π, which is
searched from {0, 0.05, 0.10, 0.15, 0.20}. Intu-
itively, higher π drops more ngrams. When π in-
creases from 0 to 0.05, we achieved 0.7∼0.9 BLEU
improvement by dropping likely invalid ngrams.
ngram-OAXE is robust to the truncation margin π:
when π further increases, the performance does not
vary too much. We follow Du et al. (2021) to use
π = 0.15 for all language pairs and datasets in the
following experiments.

3.3 Translation Performance

In this section, we conduct comprehensive experi-
ments to validate the effectiveness of the proposed
ngram-OAXE model. First, we use multiple se-
mantically equivalent references to better evaluate
the multimodality nature of generated translation,
which serves as the main results for analyses in the
following sections. Then we compare our approach
with previous work on the benchmarking testsets
with single reference.

Model W14 En-De NIST Zh-En

BLEU ∆ BLEU ∆

Raw Data
Transformer 71.4 - 41.7 -
CMLM 28.1 - 12.1 -
+OAXE 57.5 +29.4 36.5 +24.4
+ngram-OAXE 61.3↑⇑ +33.2 38.6↑⇑ +26.5

Distilled Data
Transformer 72.7 - 42.0 -
CMLM 50.7 - 23.7 -
+OAXE 68.0 +17.3 40.4 +16.7
+ngram-OAXE 68.9 ↑⇑ +18.2 41.2 ↑⇑ +17.5

Table 1: BLEU scores on test sets with multiple refer-
ences. “∆” denotes the improvement over CMLM. “↑”
and “⇑” denotes significantly better than CMLM and
OAXE with p < 0.05, respectively. The Zh-En NMT
model is trained on the WMT17 Zh-En data.

Multiple References We follow Du et al. (2021)
to use two test sets with multiple references: 1) the
dataset released by Ott et al. (2018) that consists
of ten human translations for 500 sentences taken
from the WMT14 En-De test set; and 2) the combi-
nation of NIST02-08 Zh-En test sets that consists
of 7497 sentences with four references. The trans-
lation models are trained on the WMT14 En-De
and WMT17 Zh-En training data, respectively.

Table 1 lists the translation performance. Encour-
agingly, ngram-OAXE narrows the performance
gaps between:

• NAT models trained on raw data and on distilled
data: Take W14 En-De as an example, knowl-
edge distillation brings an improvement of 22.6
BLEU points over raw data for XE (i.e., from
28.1 to 50.7). OAXE narrows the gap to 10.5
BLEU points (i.e., 57.5 vs. 68.0), and our ngram-
OAXE further narrows the gap to 7.6 BLEU
points (i.e., 61.3 vs. 68.9), moving toward train-
ing NAT models without distillation.

• NAT and AT models trained on raw data: For
independent NAT models without distillation,
OAXE reduces the performance gap from 43.3
to 13.9 for En-De, and from 29.6 BLEU to 5.2
BLEU for Zh-En. Ngram-OAXE further reduces
the gaps to 10.1 and 3.1 BLEU points, indicat-
ing the potential of NAT to become a practical
system without relying on external resources.
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Model WMT14

En-De De-En

Autoregressive Transformer 27.6 31.4

Non-Autoregressive
CTC Loss (Libovický and Helcl, 2018) 17.7 19.8
Flowseq (Ma et al., 2019) 18.6 23.4
Imputer (Saharia et al., 2020) 15.6 -
CMLM (Ghazvininejad et al., 2019) 10.6 15.1

+AXE (Ghazvininejad et al., 2020) 20.4 24.9
+Correction (Huang et al., 2022) 20.6 25.4
+OAXE (Du et al., 2021) 22.4 26.8
+ngram-OAXE (Ours) 23.6↑⇑ 27.9↑⇑

Table 2: BLEU scores on testsets with single reference for NAT models trained on the raw data.

Model WMT14 WMT17

En-De De-En En-Zh Zh-En

Autoregressive Transformer 27.8 31.3 34.4 24.0

Non-Autoregressive
Bag-of-ngrams (Shao et al., 2020) 20.9 24.6 - -
Flowseq (Ma et al., 2019) 21.5 26.2 - -
Bigram CRF (Sun et al., 2019) 23.4 27.2 - -
Imputer (Saharia et al., 2020) 25.8 28.4 - -
CMLM (Ghazvininejad et al., 2019) 18.1 21.8 24.2 13.6

+AXE (Ghazvininejad et al., 2020) 23.5 27.9 30.9 19.8
+GLAT (Qian et al., 2021) 25.2 29.8 - -
+CTC+VAE (Gu and Kong, 2021) 27.5 31.1 - -
+OAXE (Du et al., 2021) 26.1 30.2 32.9 22.1
+ngram-OAXE (Ours) 26.5↑⇑ 30.5↑⇑ 33.2↑⇑ 22.8↑⇑

Table 3: BLEU scores on testsets with single reference for NAT models trained on the distilled data.

Benchmarks with Single Reference We also
evaluated the performance of fully NAT models
on benchmarks with single reference. In addition
to the closely related XE variants (e.g., AXE and
OAXE), we also compare against several strong
baseline models: 1) CTC Loss – a NAT model with
latent alignments (Libovický and Helcl, 2018); 2)
Flowseq – a latent variable model based on gen-
erative flow (Ma et al., 2019); 3) Imputer – an ex-
tension of CTC with the use of distillation during
training (Saharia et al., 2020); 4) Corretion – a NAT
model with error correction mechanism (Huang
et al., 2022); 5) Bigram CRF – the CRF-based semi-
autoregressive model (Sun et al., 2019); 6) GLAT
– Glancing-based training (Qian et al., 2021); 7)
CTC+VAE – combining the CTC loss and latent

variables (VAE) (Gu and Kong, 2021).

Table 2 lists the results on the raw data that do
not rely on any external resources (e.g., AT models
for KD). CMLMs trained by ngram-OAXE im-
proves over the XE-trained baseline by 12.8 BLEU
points on average, and outperforms the strong
OAXE by +1.0 BLEU points. These results in-
dicate that the ngram supervision helps to better
capture the complicated patterns from the raw data.

Table 3 lists the BLEU scores on the distilled
data. Our approach consistently improves over
the strong OAXE loss in all cases, demonstrat-
ing the effectiveness and universality of the pro-
posed ngram-OAXE loss. Our approach also out-
performs all existing NAT using a single technique
(exclude Gu and Kong (2021) with two techniques).
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Model Ngram Size

1 2 3 4

Raw Data
CMLM 81.8 48.8 30.1 20.4

+OAXE 86.0 64.3 48.0 35.6
+ngram-OAXE 88.2 69.8 54.7 42.3

Distilled Data
CMLM 86.0 63.3 47.1 36.0

+OAXE 90.6 75.4 62.0 51.1
+ngram-OAXE 90.5 76.1 62.9 52.0

Table 4: Accuracy (%) of the generated ngram phrases
in the model outputs.

Refer.
The Vollmaringen Male Voice Choir got things
running with atmospheric songs such as “Im
Weinparadies” and “Lustig, ihr Brüder”.

CMLM
The MGV Vollmaringen opened with atmo-
spheric songs songs as “Im Weinparapara” and
“Lustig, her brothers”.

OAXE
The MGV Vollmaringen opened with atmo-
spheric songs such “” “Im Weinpara” and
“Lustig, her brothers”.

Ours
The MGV Vollmaringen opened with atmo-
spheric songs such as “Im Weinparadies” and
“Lustig, ihr Brüder”

Table 5: Examples of De-En translation for NAT models
trained on distilled data. OAXE model often mistakenly
translates some ngram phrases (in red color), and ngram-
OAXE can correctly translate them (in blue color).

4 Analysis

In this section, we provide some insights where
ngram-OAXE improves over CMLM (i.e., XE)
and OAXE from different perspectives. Otherwise
stated, we report results on the WMT14 En-De test
set with multiple references (i.e., the column “W14
En-De” in Table 1).

4.1 Analysis of Ngram Translation

We first investigate whether the proposed ngram-
OAXE improves the generation of phrases in the
output. To this end, we use the individual ngram
scores as the accuracy of generating ngrams of the
corresponding size. An individual ngram score is
the evaluation of just matching ngrams of a specific
size, such as unigram and bigram.3 As shown in Ta-

3The individual ngram BLEUs are generally produced
by the BLEU script for the same model outputs, and do not
refer to the model training. For example, given the output of
ngram-OAXE trained on the WMT14 En-De raw data, the
script outputs “BLEU = 61.3 88.2/69.8/54.7/42.3”. The

(a) An example constituent tree.

Level Syntactic Sequence

3 NP VP .
2 PRP VBD NP NP .
1 PRP VBD NN DT NN .

(b) Syntactic sequences at different levels.

Figure 4: Constituent tree of the sentence “I ate pizza
this afternoon.” (a), and the corresponding syntactic
sequences at different levels (b, from bottom to up). “2-
level” denotes the syntactic sequence at the last but one
level of the constituent tree.

ble 4, our ngram-OAXE consistently outperforms
the OAXE counterparts in all ngram levels and the
improvement goes up with the increase of ngram,
demonstrating that ngram-OAXE indeed raises the
ability of NAT model on capturing the patterns of
ngram phrases.

Case Study Table 5 shows an translation exam-
ple on the WMT14 De-En testset. The vanilla
CMLM model mistakenly generates the ngram
phrase “songs songs as” with repeated words
“songs". Although the OAXE model remedies
the repetition problem, it fails to generate the
phrase “such as”. In addition, both the CMLM
and OAXE models fail to generate the names of
the two songs “Im Weinparadies” and “Lustig, ihr
Brüder”. Our ngram-OAXE successfully generate
all the three ngram phrases.

4.2 Analysis of Structure Modeling

Structure Ordering To assess the models’ abili-
ties of modeling reordering between ngram phrases,
we follow Wang et al. (2021) to measure the pre-
cision of outputs at the syntactic level, which can
reflect the structure ordering at phrase level. Specif-
ically, we use the syntactic sequence at a certain

final BLEU score is 61.3, and the individual 1gram, 2gram,
3gram, and 4gram BLEU scores are 88.2, 69.8, 54.7, and 42.3,
respectively.
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Model Syntactic Level

1 2 3 4

Raw Data
CMLM 18.3 11.5 13.4 17.4
OAXE 37.3 28.5 26.6 28.5
ngram-OAXE 39.9↑⇑ 30.9↑⇑ 29.4↑⇑ 30.0↑⇑

Distilled Data
CMLM 31.5 14.7 23.2 25.8
OAXE 41.9 33.0 30.4 31.2
ngram-OAXE 42.6↑⇑ 33.8↑⇑ 31.4↑⇑ 32.3↑⇑

Table 6: BLEU scores of the syntactic sequence at dif-
ferent levels (from bottom to up).
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Figure 5: Translation performance with respect to the
length of the target sentence.

layer (Figure 4b) of the constituent tree of the gen-
erated outputs (Figure 4a). Generally, each tag at
a higher syntactic level covers more words (e.g.,
“VP (ate pizza this afternoon)” at 3-level) and cor-
responds well to a ngram phrase. Accordingly,
higher-level syntactic sequences denotes structure
ordering at a larger granularity. We calculate the
BLEU score for the syntactic sequences of models’
outputs to measure the precision of the structure
ordering at different granularities.

Table 6 shows the results for syntactic sequences
at different levels. OAXE significantly improves
the precision of structure order over the CMLM
baseline by a large margin, which is consistent with
the claim of Du et al. (2021) that OAXE is better
at modeling word order. Our ngram-OAXE can
further improve the precision of structure order,
which we attribute to that ngram-OAXE models
ordering at a larger granularity (i.e., ngrams).

Model Repetition PPLs

Gold Test Set 0.04% 90.9

Raw Data
CMLM 31.11% 1820.2
+OAXE 3.14% 237.6
+ngram-OAXE 2.99% 199.9

Distilled Data
CMLM 12.10% 1435.5
+OAXE 1.56% 240.8
+ngram-OAXE 0.98% 125.9

Table 7: Analyses of the generated outputs. Lower
repeated token percentage (“Repetition") denotes lower
multimodality in a model. Lower perplexities (“PPLs")
denote better fluency.

Sequence Length We also investigate the model
performance for different sequence lengths. We
split the test sets into different buckets based on
the reference sentence length, indicating whether
a system does better or worse at shorter or longer
sentences. Generally, longer sentences are more
complex in linguistic structure. Figure 5 shows
that results on the sampled WMT14 En-De test set
with multiple references. As seen, the performance
of XE drops rapidly when the sequence length in-
creases, and OAXE can significantly improves per-
formance on longer sentences with a better model-
ing of word order. Our ngram-OAXE can handle
long sequences even better, which we attribute to
the strength of ngram-OAXE on both translating
longer ngrams and modeling structure ordering be-
tween ngram phrases.

4.3 Analysis of Generated Output

Token Repetition One widely-cited weakness of
existing NAT models is the multimodality prob-
lem, in which a model may consider many pos-
sible translations at the same time due to the in-
dependent predictions of target words (Gu et al.,
2018). Accordingly, the NAT output typically con-
tains many repetitive tokens (e.g., “songs songs” in
Table 5). We followed the common practices to
use repeated token percentage for measuring mul-
timodality in a NAT model, as listed in Table 7.
While OAXE can mostly alleviate the repetition
problem, the proposed ngram-OAXE can further
reduce the repeated percentage over the very strong
baseline (e.g., 0.98% vs. 1.56% on distilled data).
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Generation Fluency We followed Du et al.
(2021) to measure the generation fluency with
language models released by Fairseq,4 which are
trained on the News Crawl corpus for the tar-
get language. To better evaluate the fluency of
the generated output, we use a practical trick de-
duplication (Saharia et al., 2020) to remove the
repetitive tokens. Clearly, ngram-OAXE consis-
tently improves fluency in all settings compared
with OAXE. We attribute the fluency improvement
to the strength of ngram-OAXE on both translating
longer ngrams5 and modeling sentence structures.

5 Related Work

Alleviating Multimodality Problem for NAT A
number of recent efforts have explored ways to
improve the NAT models’ ability to handle mul-
timodality. One thread of work iteratively refines
the generated outputs with K decoding passes (Lee
et al., 2018; Gu et al., 2019), which sacrifices the
primary benefit of NAT models – fast inference (Ka-
sai et al., 2021). To maintain the advantage of de-
coding efficiency, another thread of research aims
to improve fully NAT models by building depen-
dencies between target tokens (Ma et al., 2019; Shu
et al., 2020), or improving the training loss to ame-
liorate the effect of multimodality (Ghazvininejad
et al., 2020; Saharia et al., 2020; Du et al., 2021).

Knowledge distillation (Kim and Rush, 2016)
is the preliminary step for the majority of NAT
systems, which can effectively alleviate the mul-
timodality problem by simplifying the training
data (Zhou et al., 2020) and reducing the token
dependency in target sequence (Ren et al., 2020).
However, knowledge distillation relies on an exter-
nal AT teacher, which prevents NAT models from
self-completion. The ultimate goal is to train NAT
models from scratch (Huang et al., 2022). Our
work shows that augmenting NAT models the abil-
ity to handle the complex patterns of raw data (e.g.,
reordering patterns) with advanced training loss is
a promising direction to accomplish the goal.

Incorporating Ngrams into NMT Previous
studies have incorporated the ngram phrases as
an external signal to guide the generation in AT
models (Wang et al., 2017; Zhang et al., 2017;
Zhao et al., 2018). Concerning NAT models, Guo

4https://github.com/pytorch/fairseq/
blob/master/examples/language_model/

5The longer ngrams generally account for the fluency of
the translation.

et al. (2019) enhance decoder inputs with ngram
phrases, Sun et al. (2019) use CRF to model bi-
gram dependencies among target tokens to improve
the decoding consistency. Kong et al. (2020) use
LSTM to generate ngram chunks, which are then
merged via heuristic searching algorithm. Closely
related to our work, Ma et al. (2018) use bag of
ngram phrases as additional training objective for
AT models, and Shao et al. (2020) adapt this idea to
NAT models. While Shao et al. (2020) require NAT
models to fit all the possible orderings of ngrams,
we compute the ngram-OAXE loss based on the
best ordering of ngrams.

6 Conclusion

In this work, we extend OAXE by modeling or-
dering at the ngram phrase granularity, which can
better ameliorate the effect of multimodality for
NAT models. Benefiting from modeling transla-
tion at a larger granularity, the proposed ngram-
OAXE loss performs better at translating phrases
and long sentences, and improves the fluency of
generated translations. Extensive experiments on
representative NAT benchmarks show that ngram-
OAXE consistently improves translation perfor-
mance over OAXE, and is especially effective on
raw data without distillation.
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Abstract

Knowledge transfer across languages is crucial
for multilingual neural machine translation. In
this paper, we propose language branch (LB)
gated multilingual neural machine translation
that encourages knowledge transfer within the
same language branch with a LB-gated mod-
ule that is integrated into both the encoder and
decoder. The LB-gated module distinguishes
LB-specific parameters from global parameters
shared by all languages and routes languages
from the same LB to the corresponding LB-
specific network. Comprehensive experiments
on the OPUS-100 dataset show that the pro-
posed approach substantially improves transla-
tion quality on both middle- and low-resource
languages over previous methods. Further anal-
ysis demonstrates its ability in learning similar-
ities between language branches.

1 Introduction

Recent years have witnessed a growing interest
in multilingual neural machine translation (NMT),
which supports translation among multiple lan-
guages with one single model (Dong et al., 2015;
Luong et al., 2016; Firat et al., 2016; Johnson et al.,
2017; Aharoni et al., 2019; Arivazhagan et al.,
2019; Xu et al., 2021). As the parameters of multi-
lingual NMT are fully or partially shared by multi-
ple languages, knowledge transfer across languages
improves translation quality of low-resource lan-
guages.

Despite these advantages, there still exist chal-
lenges in multilingual NMT. As previous studies
have found, multilingual NMT usually underper-
forms its bilingual counterparts on high-resource
languages (Johnson et al., 2017; Arivazhagan et al.,
2019). A way to alleviate this issue is to use
language-aware modules, which could be more
computationally efficient than simply enlarging

*Corresponding author.

model capacity with deeper/wider models (Zhang
et al., 2020, 2021; Lin et al., 2021). As for low-
resource languages, positive transfer is more pro-
nounced among related languages than distant lan-
guages (Sachan and Neubig, 2018). Additionally,
explicit language clustering benefits multilingual
NMT (Tan et al., 2019) although itself can learn
linguistic typology during training (Lu et al., 2018).

Inspired by these, we propose language branch
(subfamily) gated multilingual neural machine
translation, which fuses language branch informa-
tion into multilingual NMT by a Language Branch
Gated Module (LBGM). A language branch is a
subfamily of a language family. Take the Indo-
European language family as an example. It can
be further divided into subfamilies like Germanic,
Slavic, Celtic, etc. The reason why we use lan-
guage branches rather than language families is
that the latter are relatively coarse-grained. Lan-
guages within a language branch are more closely
related to each other than those in a language fam-
ily.

A token that indicates the language branch for
the current sentence is fed into LBGM, in addi-
tion to the input from other layers in multilingual
NMT. With the language branch token, LBGM
distinguishes language-branch-specific parameters
from global parameters shared by all languages
and uses a gate to aggregate these two parts as the
output of the module.

We conduct experiments on the OPUS-100
dataset (Zhang et al., 2020) with a large number
of different languages. Our main findings can be
summarized as follows:

• The proposed LBGM can significantly im-
prove translation quality, achieving more sub-
stantial gains for middle- and low-resource
languages than its counterparts.

• LBGM performs better for language branches
that contain plentiful languages, including

5046



not only high-resource languages, but also
middle/low-resource languages.

• LBGM is capable of capturing similarities be-
tween language branches.

2 Related Work

Research of multilingual NMT mainly focuses on
partial or full parameter sharing in NMT modules
(Dong et al., 2015; Luong et al., 2016; Firat et al.,
2016). Johnson et al. (2017) propose prefixing
sentences with a language token in a joint set of
parallel corpora, using a single NMT model to en-
able multilingual translation. There is a trade-off
between boosting the performance of low-resource
languages and sacrificing the performance of high-
resource languages (Arivazhagan et al., 2019).

Language-Specific Parameters Previous works
have been trying to use language-specific parame-
ters to alleviate the trade-off issue in multilingual
NMT, such as adding adaptation layers into pre-
trained models for each language (Bapna and Firat,
2019; Philip et al., 2020; Zhu et al., 2021). Zhang
et al. (2020) propose language-aware layer normal-
ization to relax normalization constraint for target
languages. Lin et al. (2021) produce masks for
different language pairs and use them to select sub-
networks for language pairs, in order to counter
parameter interference. The closest work to ours is
done by Zhang et al. (2021), who introduce a mod-
ule called CLSR into the Transformer model. The
CLSR module adopts a gating function, which is
trained with injected zero-mean Gaussian noise and
discretized at inference time, to choose whether
to share the parameters for all languages or not.
However, the CLSR does not take the relationship
between languages into account, since it uses lan-
guage identity as the router.

Language Clustering Sachan and Neubig (2018)
have found that full parameter sharing improves
translation quality mainly for related languages
that are from the same language group. Tan et al.
(2019) attempt to cluster languages into different
groups using two methods: prior knowledge and
language embedding. They build a multilingual
NMT model for each group and observe that both
clustering approaches are able to improve model
performance. Fan et al. (2021) propose adding a
language-specific layer for each language group.
They cluster languages according to the amount
of training data and vocabulary. Different from
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Figure 1: Illustration of the proposed LBGM model.

them, we use a linguistically-motivated and fine-
grained method to group languages (i.e., language
subfamily).

3 Methodology

We adopt the Transformer model as the backbone
network (Vaswani et al., 2017). Following Johnson
et al. (2017), we extend the Transformer to multi-
lingual Transformer by prefixing a language token
to the source and target side respectively.

We cluster languages into their language
branches. More specifically, for Indo-European
languages, we cluster them into 10 branches, in-
cluding Baltic, Celtic, East Slavic, Germanic, Hel-
lenic, Indo-Aryan, Iranian, Romance, South Slavic
and West Slavic. But for Afro-Asiatic languages,
as there are only five languages in the dataset we
use, we just group them into one language branch.
For isolated languages, e.g., Esperanto, Japanese,
we keep them in the isolated language group, ex-
pecting them to benefit from the positive transfer
from all languages.

We adapt the multilingual Transformer to inte-
grate language branch information with the pro-
posed LBGM, which is illustrated in Figure 1. Par-
ticularly, we use an additional token, i.e., LB to-
ken, to indicate the language branch for each corre-
sponding sentence. LBGM contains a gating func-
tion and two feedforward networks, namely, LB-
specific FFN and global FFN. The LB-specific FFN
is exclusively used for sentences from the corre-
sponding language branch while the global FFN
is fully shared across all languages. The purpose
of the fully-shared global FFN is to capture global
linguistic information from all language pairs, so as
to enable knowledge transfer across all languages,
especially for the isolated language branch which
only contains one or a few languages. The LB-
specific FFN is to capture linguistic features for lan-
guages from the same language branch and hence

5047



enabling intra-language-branch knowledge transfer.
LBGM can be formulated as follows:

Gate(al) = ReLU(alW + b) (1)

gl = σ(Gate(al)) (2)

LBGM(al) = gl · FFNLB-specific(al)

+ (1− gl) · FFNglobal(al) (3)

whereW and b are trainable parameters, al is the
output from the preceding layer l. FFNs are calcu-
lated as follows:

FFNLB-specific = alW LB-specific + bLB-specific (4)

FFNglobal = alW global + bglobal (5)

The LB token is used to route information from
previous layer into the corresponding LB-specific
FFN, which is acting as an “expert” for that lan-
guage branch.

In contrast to the previous CLSR method Zhang
et al. (2021), we do not use the discrete gating
function and additional loss component. In our pre-
liminary experiments, we have found that these two
components could not bring improvements to our
LBGM module and the discretized gating function
is even harmful to the LBGM. Instead, we use an
individual gating function per LBGM sub-module
(not shared by the whole model like CLSR). This
is because, at different positions, the importance
of the two types of FFN may be different, which
is to be determined by the corresponding gating
function in our model.

4 Experiments

We conducted experiments with a massive number
of languages to examine the effectiveness of the
proposed LBGM.

4.1 Settings

We used the OPUS-100 dataset (Zhang et al., 2020)
for our experiments. OPUS-1001 is an English-
centric dataset covering 99 language pairs. As 5
language pairs do not have their test and dev sets,
we conducted experiments using the rest 94 lan-
guage pairs. We roughly divided the languages into
three categories according to the training data size:
high-resource languages (more than 1M training
samples, 44 languages), low-resource languages
(fewer than 0.1M training samples, 21 languages)

1http://opus.nlpl.eu/opus-100.php

and middle-resource languages (others, 29 lan-
guages) following Zhang et al. (2020). This di-
vision is only for experiments while in our model,
we linguistically grouped these languages into 26
language branches, shown in Table 5 in Appendix
A.

We applied Byte Pair Encoding (BPE) (Sennrich
et al., 2016) to preprocess the data with a joint
vocabulary size of 64K, using the SentencePiece
Toolkit (Kudo and Richardson, 2018)2. We adopted
the temperature-based oversampling method with
a temperature of T = 5.

Translation quality was evaluated by BLEU (Pa-
pineni et al., 2002) using SacreBleu (Post, 2018)3.

We adopted the Transformer-base model
(Vaswani et al., 2017) as our baseline. The dimen-
sions of our LB-specific FFNs and global FFN are
512. As we have 26 language branches, so the total
number of LB-specific FFNs is 26. We also com-
pared with CLSR (Zhang et al., 2021), which uses
a language-specific module and conditional routing
function to learn the representation of each lan-
guage. All models were implemented with fairseq
(Ott et al., 2019)4.

Other details about experiments and model set-
tings are in Appendix A.

4.2 Main Results of One-to-Many and
Many-to-One Translation

We first conducted experiments for one-to-many
and many-to-one translation (i.e., English→X and
X→English). Although there is only one language
on the source side for one-to-many translation and
on the target side for many-to-one translation, we
use the proposed LBGM in both the encoder and
decoder, as shown in Figure 1, to keep both LB-
informed.

As shown in Table 1, our LBGM outperforms
the baseline and CLSR on the OPUS-100 dataset.
Particularly, we achieve an overall improvement of
1.32/0.70 BLEU points on English→X, 1.31/0.30
BLEU points on X→English over the base-
line/CLSR. In terms of the amount of training data
available, we observe that the proposed LBGM
gains larger improvements on low-resource lan-
guages than those on high/middle-resource lan-
guages over the baseline and CLSR.

2https://github.com/google/sentencepiece
3https://github.com/mjpost/sacrebleu
4https://github.com/facebookresearch/fairseq
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Model #Params English→X

High Mid Low All

Baseline 99M 15.01 22.26 25.99 19.70
Baseline-592dim 117M 15.44 22.72 26.41 20.14

CLSR 154M 15.81 22.73 26.43 20.32

LBGM-LS 154M 16.01 23.13 26.87 20.63
LBGM 117M 15.95 23.77 27.85 21.02

Model #Params X→English

High Mid Low All

Baseline 99M 20.71 23.15 25.33 22.49
Baseline-592dim 117M 21.68 23.69 25.80 23.22

CLSR 154M 21.82 24.22 26.07 23.50

LBGM-LS 154M 22.09 23.77 26.10 23.51
LBGM 117M 22.04 24.58 26.42 23.80

Table 1: Results on the OPUS-100 dataset. We report
the average BLEU of English→X and X→English trans-
lation on 94 language pairs.

4.3 Ablation Study

In order to eliminate the difference in the number of
parameters of the LBGM and baseline, we scaled
the hidden size of the baseline from 512 to 592 di-
mensions, denoted in Table 1 as Baseline-592dim.
The results still demonstrate that our LBGM is
more efficient than the vanilla Transformer. This
ablation study confirms that the improvement ob-
tained by the LBGM is not due to the capacity
advantage.

We conducted another group of experiments to
investigate whether language branches are helpful
in comparison to the original CLSR architecture,
which could tell us whether the modified LBGM
architecture would be better adapted to the use of
language branches. We used the same settings as
the previous experiments. Differently, language
identities, instead of language branches, were used
as the router. The results are shown in Table 1 de-
noted as LBGM-LS. From the comparison between
the LBGM-LS and LBGM, we can find that lan-
guage branches are indeed important. Although the
LBGM-LS obtains a slightly higher improvement
than the LBGM on high-resource languages (0.06
BLEU), it’s acceptable for our LBGM approach.
That is because the LBGM-LS allocates an indi-
vidual FFN module for each language, rather than
one for each language branch, and it alleviates the
capacity constraints of the model on high-resource
languages. LBGM-LS still outperforms the CLSR
approach, suggesting that our modifications to the
original CLSR module are not harmful to the model
but more appropriate in the context of using lan-
guage branches.

Lang Data Size Baseline CLSR LBGM ∆-B ∆-C

da 1000000 20.74 22.45 22.64 1.90 0.19
de 1000000 16.90 17.79 18.03 1.13 0.24
is 1000000 10.83 11.86 12.01 1.18 0.15
nl 1000000 16.58 17.34 17.86 1.28 0.52
no 1000000 17.81 18.92 19.34 1.53 0.42
sv 1000000 18.37 19.27 19.82 1.45 0.55
nn 486055 23.55 24.88 25.40 1.85 0.52
af 275512 30.02 31.14 32.15 2.13 1.01
nb 142906 23.16 24.39 25.48 2.32 1.09
fy 54342 25.03 27.02 27.63 2.60 0.61
li 25535 27.42 29.27 30.59 3.17 1.32
yi 15010 25.29 27.31 30.73 5.44 3.42

Table 2: Results on the English→X translation
for the Germanic language branch, which includes
high/middle/low-resource language pairs. ∆-B and ∆-
C denote the improvements over Baseline and CLSR
respectively.

LB Lang Data Size Bilingual Baseline CLSR LBGM

WS
cs 1000000 18.03 14.92 15.46 16.11
pl 1000000 15.37 11.57 11.83 12.35
sk 1000000 18.66 15.89 16.71 17.44

BA lt 1000000 17.63 18.55 19.82 19.61
lv 1000000 21.10 20.83 22.57 22.09

Table 3: Results on the West Slavic (WS) language
branch and Baltic (BA) language branch on English→X
translation. Bilingual is the bilingual model trained with
the same architecture.

4.4 Effect on the Different Types of Language
Branches

To further investigate how the proposed LBGM
improves translation quality, we categorize lan-
guage branches into three types: (I) language
branch containing high/middle/low-resource lan-
guages. (II) language branch with only high-
resource languages. (III) language branch with
one or two languages, which are usually isolated
languages. We analyzed the effects of our LBGM
on these three types of language branches.

Table 2 shows the results of the Germanic lan-
guage branch, a Type-I language branch as men-
tioned above. We list the languages (denoted by
their ISO-639-1 codes) in descending order of the
amount of training data. On this language branch
type, LBGM outperforms both the baseline and
CLSR on all languages with different levels of re-
source. Particularly, as the amount of training data
decreases, the improvements over the baseline and
CLSR increase.

For the Type-II language branch (i.e., including
only high-resource languages), we show the results
of both West Slavic and Baltic language branches
on English→X translation in Table 3. As these
language branches include only high-resource lan-
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Lang Data Size Baseline CLSR LBGM

ja 1000000 4.73 5.27 4.46

ko 1000000 3.03 2.91 2.84

ka 377306 14.39 14.91 14.57

Table 4: Results on the isolated language branch of
English→X translation.

guages, negative transfer usually happens (com-
pared to bilingual models). Fortunately, on this
type of language branches, our LBGM still sub-
stantially outperforms the baseline and is better
than or comparable with CLSR.

Finally, Table 4 shows results on the isolated lan-
guage branch. It can be seen that LBGM achieves
results comparable to CLSR. And the effect on iso-
lated languages depends more on the characteristics
of the language itself.

All these results suggest that our LBGM can sig-
nificantly improve performance on both middle-
and low-resource languages and achieve compara-
ble results to CLSR on high-resource languages but
with fewer parameters. The gains on middle- and
low-resource languages are more substantial when
the language branch contains mixed languages in
terms of the amount of available training data.

5 Analysis

Ideally, the closer two language branches are to
each other, the more similar the parameters of the
corresponding LB-specific FFNs are to each other
in LBGM, especially for language branches which
are from the same language family. Motivated by
this, we calculated the pairwise cosine similarities
of LB-specific FFNs of any two different language
branches learned in LBGM, trying to use these sim-
ilarities to measure the relationship between lan-
guage branches. Specifically, the cosine similarity
is computed with the weight matrix of LB-specific
FFN (reshaped into a vector via row-wise concate-
nation) as follows:

Cosine Similar(V1,V2) =
V1 · V2

∥V1∥∥V2∥
(6)

where ∥ · ∥ denotes the L2 norm, V1 and V2 are
vectors reshaped from weight matrices.

Figure 2 shows the cosine similarity matrix of
different language branches (26 in total contained
in the OPUS-100 dataset) learned by our LBGM.
The deeper the color is, the more similar the two
language branches are. It is clear to see that

BA CE GE IA IE IR RO ES SS WS SE MP AU DR
CON LI JA KO ST KA UR NC TK OG KA

L KI

BA
CE
GE
IA
IE
IR

RO
ES
SS

WS
SE
MP
AU
DR

CON
LI
JA

KO
ST
KA
UR
NC
TK
OG

KAL
KI

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Pairwise language branch similarities learned
by LBGM with one-to-many translation. Better view
with color.

GE (Germanic) is more similar to BA (Baltic),
WS (West Slavic), CE (Celtic), etc., which are
from the same language family, than other lan-
guage branches, indicated by deeper color in Fig-
ure 2. Similar results can be observed among JA
(Japonic), KO (Koreanic) and ST (Sino-Tibetan)
language branches, among OG (Oghuz), KAL (Kar-
luk) and KI (Kipchak) language branches, etc. This
suggests that the proposed LBGM is able to learn
similarities between different language branches.

6 Conclusions

In this paper, we have presented LBGM that uses a
LB-specific FFN and a global FFN shared across
all languages to enhance knowledge transfer within
the same language branch for multilingual neural
machine translation. Experiments on the OPUS-
100 dataset have shown that LBGM can signifi-
cantly improve translation quality on both middle-
and low-resource languages, over the baseline and
CLSR (Zhang et al., 2021). Further analysis on LB-
specific FFN discloses that the proposed LBGM is
able to capture language branch relations.
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ISO Name Family Branch Code ISO Name Family Branch Code
am Amharic Afro-Asiatic Semitic SE fa Persian Indo-European Iranian IR
ar Arabic Afro-Asiatic Semitic SE ku Kurdish Indo-European Iranian IR
ha Hausa Afro-Asiatic Chadic SE ps Pashto Indo-European Iranian IR
he Hebrew Afro-Asiatic Semitic SE tg Tajik Indo-European Iranian IR
mt Maltese Afro-Asiatic Semitic SE ca Catalan Indo-European Romance RO
km Khmer Austroasiatic Austroasiatic AU es Spanish Indo-European Romance RO
vi Vietnamese Austroasiatic Austroasiatic AU fr French Indo-European Romance RO
id Indonesian Austronesian Malayo-Polynesian MP gl Galician Indo-European Romance RO

mg Malagasy Austronesian Malayo-Polynesian MP it Italian Indo-European Romance RO
ms Malay Austronesian Malayo-Polynesian MP oc Occitan Indo-European Romance RO
eo Esperanto Constructed Constructed CON pt Portuguese Indo-European Romance RO
kn Kannada Dravidian Dravidian DR ro Romanian Indo-European Romance RO
ml Malayalam Dravidian Dravidian DR wa Walloon Indo-European Romance RO
ta Tamil Dravidian Dravidian DR bg Bulgarian Indo-European South Slavic SS
te Tegulu Dravidian Dravidian DR bs bosanski Indo-European South Slavic SS
lt Lithuanian Indo-European Baltic BA hr Croatian Indo-European South Slavic SS
lv Latvian Indo-European Baltic BA mk Macedonian Indo-European South Slavic SS
br Breton Indo-European Celtic CE sh Serbo-Croatian Indo-European South Slavic SS
cy Welch Indo-European Celtic CE sl Slovenian Indo-European South Slavic SS
ga Irish Indo-European Celtic CE sr Serbian Indo-European South Slavic SS
gd Scots Gaelic Indo-European Celtic CE cs Czech Indo-European West Slavic WS
be Byelorussian Indo-European East Slavic ES pl Polish Indo-European West Slavic WS
ru Russian Indo-European East Slavic ES sk Slovak Indo-European West Slavic WS
uk Ukrainian Indo-European East Slavic ES ja Japanese Japonic Japonic JA
af Afrikaans Indo-European Germanic GE ka Georgian Kartvelian Kartvelian KA
da Danish Indo-European Germanic GE ko Korean Koreanic Koreanic KO
de German Indo-European Germanic GE eu Basque Language isolate Language isolate LI
fy Frisian Indo-European Germanic GE ig Igbo Niger–Congo Niger–Congo NC
is Icelandic Indo-European Germanic GE rw Kinyarwanda Niger–Congo Niger–Congo NC
li Limburgan Indo-European Germanic GE xh Xhosa Niger–Congo Niger–Congo NC
nb Bokmål Indo-European Germanic GE zu Zulu Niger–Congo Niger–Congo NC
nl Dutch Indo-European Germanic GE my Burmese Sino-Tibetan Sino-Tibetan ST
nn Nynorsk Indo-European Germanic GE zh Chinese Sino-Tibetan Sino-Tibetan ST
no Norwegian Indo-European Germanic GE th Thai Tai–Kadai Tai–Kadai TK
sv Swedish Indo-European Germanic GE ug Uigur Turkic Karluk KAL
yi Yiddish Indo-European Germanic GE uz Uzbek Turkic Karluk KAL
as Assamese Indo-European Indo-Aryan IA kk Kazakh Turkic Kipchak KI
bn Bengali Indo-European Indo-Aryan IA ky Kirghiz Turkic Kipchak KI
gu Gujarati Indo-European Indo-Aryan IA tt Tatar Turkic Kipchak KI
hi Hindi Indo-European Indo-Aryan IA az Azerbaijani Turkic Oghuz OG
mr Marathi Indo-European Indo-Aryan IA tk Turkmen Turkic Oghuz OG
ne Nepali Indo-European Indo-Aryan IA tr Turkish Turkic Oghuz OG
or Oriya Indo-European Indo-Aryan IA et Estonian Uralic Uralic UR
pa Punjabi Indo-European Indo-Aryan IA fi Finnish Uralic Uralic UR
si Singhalese Indo-European Indo-Aryan IA hu Hungarian Uralic Uralic UR
ur Urdu Indo-European Indo-Aryan IA se Northern Sami Uralic Uralic UR
el Greek Indo-European Hellenic HE
sq Albanian Indo-European Albanian HE

Table 5: ISO-639-1 language code, language name, language family, language branch and language branch code in
the OPUS-100 dataset.

A Appendix

A.1 Languages in the OPUS-100 Dataset

We list the languages used in our experiments in
Table 5. The language branches are most based
on linguistic characteristics, but some of them are
based on geopolitical locations, e.g., Greek and
Albanian.

A.2 Experiment Settings

The Transformer-base model has 6 layers for both
encoder and decode, 8 attention heads and 512 di-
mensions for embeddings, 2048 dimensions for
FFN layer. We set the dropout rate to 0.1 for all
modules. The hyperparameters of our LBGM were
the same as the Transformer-base model. The gate
function is implemented by FFN which input di-
mension is 512 and output dimension is 1.

We optimized parameters using Adam optimizer
(Kingma and Ba, 2015) with a label smoothing rate
of 0.1. The learning rate was scheduled according
to the inverse square root of running steps with a
warmup step of 4K and the weight decay rate was
set to 0.0001. We set the maximum number of
steps to 500K. For inference, we used beam search
with a beam size of 4 and a length penalty of 0.6.
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Abstract

Back-translation (BT) has been proven to be
effective in unsupervised domain adaptation of
neural machine translation (NMT). However,
the existing back-translation methods mainly
improve domain adaptability by generating
in-domain pseudo-parallel data that contains
sentence-structural knowledge, paying less at-
tention to the in-domain lexical knowledge,
which may lead to poor translation of unseen
in-domain words. In this paper, we propose an
Iterative Constrained Back-Translation (ICBT)
method to incorporate in-domain lexical knowl-
edge on the basis of BT for unsupervised do-
main adaptation of NMT. Specifically, we ap-
ply lexical constraints into back-translation to
generate pseudo-parallel data with in-domain
lexical knowledge, and then perform round-trip
iterations to incorporate more lexical knowl-
edge. Based on this, we further explore sam-
pling strategies of constrained words in ICBT
to introduce more targeted lexical knowledge,
via domain specificity and confidence estima-
tion. Experimental results on four domains
show that our approach achieves state-of-the-
art results, improving the BLEU score by up
to 3.08 compared to the strongest baseline,
which demonstrates the effectiveness of our
approach. The codes and models are pub-
licly available at https://github.com/
zzzxiaohong/ICBT.

1 Introduction

Neural machine translation (NMT) has made break-
throughs in resource-rich domains (Bahdanau et al.,
2015; Vaswani et al., 2017), which requires abun-
dant in-domain parallel data (Koehn and Knowles,
2017). Unfortunately, there is no enough paral-
lel data for many domains, while the monolingual
corpus is much easier to obtain. Therefore, unsu-
pervised domain adaptation of NMT, which aims
to improve in-domain translation through out-of-
domain parallel corpus and in-domain monolingual

∗Yufeng Chen is the corresponding author.

Input:     现 指明 香港 按揭 证券 有限公司 为 香港 公营 单位 。
Output:  specifying the hong kong abundance company limited as a 

                public unit in hong kong.

Back-Translation

Input:    现 指明 香港 mortgage 证券 有限公司 为 香港 公营 单位 。
Output: specifying the hong kong mortgage securities limited as a 

               public sector in hong kong.

Constrained Back-Translation

Target sentence

Target sentence with constraint

现 指明 香港 按揭 证券 有限

公司 为 香港 公营 单位 。

现 指明 香港 按揭 证券 有限

公司 为 香港 公营 单位 。

现 指明 香港 mortgage 证券 有

限公司 为 香港 公营 单位 。

现 指明 香港 mortgage 证券 有

限公司 为 香港 公营 单位 。

BT

CBT
specifying the hong kong mortgage securi-

ties limited as a public sector in hong kong.

specifying the hong kong mortgage securi-

ties limited as a public sector in hong kong.

Translated source sentence 

specifying the hong kong abundance com-

pany limited as a public unit in hong kong.

specifying the hong kong abundance com-

pany limited as a public unit in hong kong.

Translated source sentence 

Figure 1: An example of the English-Chinese trans-
lation task to illustrate the effect of constrained back-
translation (CBT) compared to back-translation (BT).
The red fonts indicate the ground truth of the term, and
the blue fonts show incorrect translation.

corpus (Chu and Wang, 2018), has been extensively
researched in recent literatures (Gulcehre et al.,
2015; Sennrich et al., 2016a; Dou et al., 2019a).

Among the existing techniques for unsupervised
domain adaptation of NMT, the data-based ones are
a significant part (Chu and Wang, 2018), which usu-
ally use the in-domain monolingual corpus to build
pseudo-parallel data, and then use the synthetic
data to fine-tune the pre-trained NMT model (Cur-
rey et al., 2017; Hu et al., 2019). Back-translation
(BT) (Sennrich et al., 2016a) is one of the most
basic data-based approaches. A series of studies on
improving BT have emerged in recent years. For
example, Wang et al. (2019) make better use of
the back-translated synthetic data by introducing
confidence estimation. Hoang et al. (2018) design
iterative BT through iterations of forward and back-
ward translation models to improve the translation
quality of single-round BT. And some work further
optimizes the iterative BT by filtering or selecting
the data (Dou et al., 2020; Kumari et al., 2021).
Although the above methods are proven to be effec-
tive, they only focus on reinforcing the sentence-
structural knowledge provided by BT when build-
ing pseudo-parallel data, which pay less attention
to in-domain lexical knowledge.

Daumé III and Jagarlamudi (2011) point out that
the mistranslation of unseen (out-of-vocabulary)
words accounts for a large proportion when trans-
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ferring to a new domain. As we all know that
a dictionary is a necessary aid to translate new
words properly, so it is important to introduce in-
domain lexical knowledge when generating pseudo-
parallel data. However, the existing BT-based meth-
ods also suffer from the problem of domain shift,
which leads to inaccurate translation of unseen in-
domain words. Take Figure 1 as an example, BT
incorrectly translates “按揭 (mortgage)” to “abun-
dance”, which fails to introduce the lexical knowl-
edge “按揭-mortgage” to the pseudo-parallel data.

Aiming at the above issue, this paper focuses on
introducing lexical knowledge into pseudo-parallel
data from BT, and proposes a novel method named
Iterative Constrained Back-Translation (ICBT).
Specifically, assuming that in-domain monolingual
data on both source and target sides can be ob-
tained, we firstly impose lexical constraints (by
word replacement, as shown in Figure 1) on tar-
get data for the inference of back-translation. The
constrained words will be forced to translate, so
that the lexical knowledge is introduced. Then,
we utilize round-trip iterations to incorporate more
lexical knowledge into the pseudo-parallel data.

To exert more targeted constraints on BT, we
further propose two sampling strategies, one is to
select domain-specific words by domain difference,
and the other is to select poorly translated words in
BT by confidence estimation. During our BT pro-
cess, we preferentially constrain these two types of
words, so that more significant lexical knowledge
can be incorporated.

The main contributions of this paper can be sum-
marized as follows:

• We are the first to apply lexical constraints
to BT, and propose an Iterative Constrained
Back-Translation (ICBT) method to improve
the unsupervised domain adaptation of NMT.

• To create more targeted lexical constraints,
we propose two strategies for sampling con-
strained words, via domain specificity and
confidence estimation. Experiments show that
the two strategies are complementary.

• We conduct experiments on four domains
of the English-Chinese public datasets. The
experimental results show that our method
claimed improvement in all domains, with
a maximum of +8.45 BLEU scores over the
strongest baseline and a maximum of +32.33

BLEU scores over the unadapted model. Be-
sides, the translation accuracy of in-domain
lexicons is improved by up to 7.99%.

2 Related Work

2.1 Supervised Domain Adaptation of NMT

If a small number of in-domain parallel data can
be obtained, the domain adaptation of NMT can
be performed in a supervised manner. The easi-
est way is to directly fine-tune a model pre-trained
on an out-of-domain corpus with a small amount
of in-domain parallel data (Luong and Manning,
2015; Freitag and Al-Onaizan, 2016). Based on
this, Khayrallah et al. (2018) add additional items
to minimize the cross-entropy between the out-
put word distribution of the model and the out-
of-domain model. Gu et al. (2019) model domain-
specific information and enhance the performance
of translation through adversarial training. Gu and
Feng (2020) address the catastrophic forgetting
problem of domain adaptation by freezing some
module or neuron.

2.2 Unsupervised Domain Adaptation of
NMT

Unlike in-domain parallel data, the in-domain
monolingual data is much easier to obtain, which
makes the research on unsupervised domain adap-
tation of NMT increasingly popular.

The unsupervised domain adaptation of NMT is
mainly divided into model-based and data-based
methods (Chu and Wang, 2018). Some model-
based approaches introduce language models (Gul-
cehre et al. (2015); Dou et al. (2019b)) or auto-
encoders (Cheng et al., 2016) for NMT models.
Other studies introduce domain and task embed-
ding learners during training (Dou et al., 2019a),
or extend back-translation with additional Domain-
Repaired models (Wei et al., 2020).

Among the data-based approaches, some studies
generate pseudo-parallel data by back-translation
(Sennrich et al., 2016a) and copy-based methods
(Currey et al., 2017). Alternatively, Aharoni and
Goldberg (2020) select domain-appropriate data
from a common corpus through a self-supervised
language model. In addition, some other studies
use in-domain lexical knowledge to help domain
adaptation. Hu et al. (2019) use lexical induction
to generate dictionary, and perform word-by-word
translation to generate pseudo-parallel data. Pour-
damghani et al. (2019) utilize word-by-word trans-
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Constrain Inference Fine-tune

Inference Fine-tuneConstrain

Constrain Inference Fine-tune

Inference Fine-tuneConstrain

Figure 2: The schematic of our proposed ICBT method at iteration k; Dmono-in(·) represents the in-domain
monolingual corpus,Dpse-para-in(·) represents the in-domain pseudo-parallel sentence pairs, and X and Y represent
the source and target language, respectively.

lation to generate translationese, and then translate
translationese into fluent sentences.

In this work, we focus on the data-based unsu-
pervised domain adaptation of NMT and propose a
method to improve the ability of back-translation
(BT) (Sennrich et al., 2016a) in domain adaptation.
There are several similar studies, Wang et al. (2019)
use confidence estimation to better handle the noise
of synthetic corpus, Hoang et al. (2018) generate
better synthetic parallel data by iterating forward
and backward translation models, and Kumari et al.
(2021) improve iterative back-translation by intro-
ducing classifiers to filter the synthetic data. But
they only focus on utilizing the sentence-structural
knowledge of BT and pay less attention to the use
of lexical knowledge from in-domain monolingual
data, which may lead to the mistranslation of un-
seen in-domain words.

3 Our Approach

The Iterative Constrained Back-Translation (ICBT)
method proposed in this paper aims to introduce
the lexical knowledge from monolingual data into
back-translation. In this section, we first describe
how to constrain back-translation and perform
round-trip iterations (§ 3.1), and then we intro-
duce two strategies for sampling more targeted con-
strained words (§ 3.2).

3.1 Iterative Constrained Back-Translation
3.1.1 Lexically Constrained Back-Translation
We perform lexical constraints by replacing target
constrained words with their source corresponding
words in the bilingual dictionary. When training
the constrained back-translation, the model learns
to directly copy the constraints into the translated
sentences, so that during the inference, constrained

words are forced to translate to their corresponding
words (Song et al., 2019).

Supposing that two in-domain (IND) mono-
lingual corpora (Dmono-in(X) and Dmono-in(Y))
and an out-of-domain (OOD) parallel corpus
(Dpara-out(X,Y) ) can be obtained in the unsu-
pervised scenario, we firstly constrain the target of
OOD parallel data to generate Dpara-out(X,Yc).
We use Dpara-out(X,Y) to train a source-to-
target forward translation model FT0

x→y, and use
Dpara-out(X,Yc) to train a target-to-source con-
strained back-translation model CBT0

yc→x
.

Then, we match each target sentence y (y ∈
Dmono-in(Y)) with the in-domain bilingual dictio-
nary V and select words to be constrained, thereby
generating Dmono-in(Yc). Since the dictionary
matches a large proportion of words, and too many
replacement words may destroy the syntactic struc-
ture of the sentence (see detailed analysis in § 5.3),
we limit the number of replacements per sentence
to n. If there are more than n matched words, they
will be randomly sampled n for replacement.

Finally, Dmono-in(Yc) is fed into the pre-trained
constrained back-translation (CBT) model for in-
ference. In this way, we can get the pseudo-parallel
data Dpse-para-in(X′,Y), which will be used to
fine-tune the forward translation (FT) model.

Since the constrained lexicon pairs are integrated
into the inference results, the FT model can learn
the in-domain lexical knowledge. On the con-
trary, BT without constraints can hardly provide
in-domain lexical knowledge.

3.1.2 Round-Trip Iteration

To further encourage the integration of lexical
knowledge, we utilize an iterative translation pro-
cess, as illustrated in Algorithm 1. For intuitive-
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ness, we also show a schematic diagram of the
round-trip iteration in Figure 2.

The iteration starts with models (FT0
x→y and

CBT0
yc→x) pre-trained with out-of-domain par-

allel data, and takes the in-domain monolingual
data (Dmono-in(X) and Dmono-in(Y)) as well as
the in-domain bilingual dictionary V as input.
The CBT model is first fine-tuned with pseudo-
parallel data Dpse-para-in(X,Y′c), and then the
FT model is fine-tuned with pseudo-parallel data
Dpse-para-in(X′,Y).

During iteration, CBT produces pseudo-parallel
data with in-domain lexical knowledge, which will
be integrated with sentence-structural knowledge
when fine-tuning FT. So that FT produces target
sentences more in line with the domain. And cor-
respondingly, there will be more domain-related
lexical constraints on these target sentences, which
is also beneficial for fine-tuning CBT.

Algorithm 1 Round-trip iterative training process
for ICBT
Input: pre-trained NMT models FT0

x→y and
CBT0

yc→x), in-domain monolingual data
Dmono-in(X) and Dmono-in(Y), bilingual dic-
tionary V , maximum number of iterations K

Output: forward translation model FTKx→y
1: k = 0;
2: for k < K do
3: Fine-tune the CBT model:
4: Use FTkx→y to infer Dmono-in(X) and cre-

ate the pseudo data Dpse-para-in(Y′,X);
5: Constrain on the target of the pseudo data

with V to generate Dpse-para-in(Y′c,X);
6: Use Dpse-para-in(Y′c,X) to fine-tune

CBTkyc→x⇒ CBTk+1
yc→x;

7: Fine-tune the FT model:
8: Constrain on the target monolingual data

Dmono-in(Y) with V to get Dmono-in(Yc);
9: Use CBTk+1

yc→x to infer Dmono-in(Yc), and
get the pseudo data Dpse-para-in(X′,Y);

10: Use Dpse-para-in(X′,Y) to fine-tune
FTkx→y ⇒ FTk+1

x→y;
11: k = k + 1;
12: end for
13: return FTKx→y

3.1.3 Bilingual Dictionary Induction
Since the bilingual dictionary is required for lexi-
cal constraints, we obtain them through automatic

induction. Considering there are no IND parallel
corpora, we use unsupervised lexical induction to
create a bilingual dictionary.

Unsupervised lexical induction aims to extract
dictionaries from non-parallel data automatically.
The mainstream approach is to map the source and
target word embeddings to the same representation
space and find words with close distances in the
cross-lingual space as translation candidates.

In this paper, we first use Dpara-out(X,Y),
Dmono-in(X), and Dmono-in(Y) to train word em-
beddings in the source and target languages by
FastText (Bojanowski et al., 2017). Then we follow
Artetxe et al. (2018) to build cross-lingual embed-
ding representations by self-learning, and find the
nearest neighbors of the source and target word.

3.2 Constrained Lexicon Sample Strategy
In the lexical constraints process in § 3.1, matched
words are randomly sampled, which leads to some
common words (such as “the”, “she”, “this”) being
constrained. So we explore delicate strategies for
sampling constrained words, based on two stan-
dards: domain specificity (§ 3.2.1) and translation
confidence (§ 3.2.2).

3.2.1 Domain Specificity
As shown in the ICBT-DomainSpec method of Fig-
ure 3, we use masked language models (MLMs) to
calculate domain difference to help us judge the do-
main specificity of words. Specifically, we follow
Devlin et al. (2019) to train an out-of-domain MLM
(MLMout) and an in-domain MLM (MLMin) us-
ing the target of the out-of-domain parallel data
and the in-domain target monolingual data, respec-
tively. Assuming that the dictionary matches the set
of words w = {w1, w2, . . . , wm} in the sentence
y = {y1, y2, . . . , yn}(y ∈ Dmono-in(Y)), for each
word w ∈ w, we perform the following operations:

• Mask yi (yi = w) in y to creat ymask =
{y1, y2, . . . , yi−1, [mask], yi+1, . . . , yn}.

• Feed ymask into MLMout and MLMin re-
spectively, and obtain the outputs ydoutt and
ydint of the two models. The probability of
predicting the [mask] position as word w is
defined as:

pd = log p
(
ydt [i] = w|ymask

)
(1)

where d represents domain, d ∈ {dout, din}.
• Calculate the probability difference:

∆p = pdin − pdout (2)
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Automatically 
extracted 

bilingual dictionary

match
matched words

Randomly sample 
matching words

Replace

ICBT-Base

sample domain-specific words 
with  domain difference

  所     发 exemption licences 的  period   。

Replace

ICBT-DomainSpec

inference

[SEP]  The  period  of   the  absolution brand issued  .

0.30.1... 0.7 0.9 ... 0.6 ...

Replace

ICBT-Confidence Attention Mapping

豁免 exemption豁免 exemption

发 send发 send

牌照 licences牌照 licences

有效期 period有效期 period

豁免 exemption

发 send

牌照 licences

有效期 period

所    send   豁免  licences  的   period   。

所    发   豁免   牌照  的  有效期   。所    发   豁免   牌照  的  有效期   。

所     发   豁免  牌照  的  有效期   。所     发   豁免  牌照  的  有效期   。

所     发    豁免  牌照  的  有效期   。

所    发     豁免  牌照  的  有效期   。所    发     豁免  牌照  的  有效期   。

所     发    豁免  牌照  的  有效期   。

所     发   豁免  牌照   的  有效期   。所     发   豁免  牌照   的  有效期   。

 所     发  exemption licences 的 有效期   。
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Figure 3: Different word constraints sampling methods proposed in this paper. We introduced three forms, namely
ICBT-Base for baseline (§ 3.1), ICBT-DomainSpec for domain-specific words (§ 3.2.1), and ICBT-Confidence for
poorly translated words (§ 3.2.2). In the attention matrix, value wi,j represents the correlation between the i-th
word in the input sentence and the j-th word in the predicted sentence, for example, w3,5 represents the correlation
between the word “豁免 (which means exemption)” and the word “absolution” is 0.95.

We use ∆p as the criterion for judging the do-
main specificity of the word w. A large ∆p means
that the word has a strong domain specificity. When
constraining, we replace the top-n words with the
largest ∆p.

3.2.2 Confidence Estimation
Confidence estimation is utilized to select words
that are poorly translated in the target monolin-
gual data (Dmono-in(Y)) during back-translation
inference. Generally, these words also need to be
supplemented by lexical knowledge.

As the ICBT-Confidence method shown in Fig-
ure 3, we first use a masked language model to
perform confidence estimation on words in source
translation data (Dpse-in(X′)), following Zheng
et al. (2021). Specifically, OOD parallel data is
used to train an estimation model. We splice each
source and target sentence pair of the parallel data,
mask some words on the target, then feed them into
the estimation model, and minimize the following
loss function:

L = −
N∑

n=1

log p (ymn |xn,yon;θ) (3)

where ymn is the masked part of the target sentence,
and yon is the unmasked part, xn is the source sen-
tence, N is the number of OOD parallel sentence

pairs, and θ is the model parameter.
During inference, the target monolingual sen-

tence y (y ∈ Dmono-in(Y)) and the source pre-
dicted sentence x (x ∈ Dpse-in(X′)) are spliced
and fed into the pre-trained estimation model. The
estimation model calculates the probability that
words in x can be recovered after being masked.
The higher the recovery probability is, the higher
the confidence score of the word is, and vice versa.
In this way, the confidence score of each word in
the source predicted data is obtained.

Then we obtain the confidence score of each
word in the target monolingual data through the
attention mapping, which is obtained from the
penultimate layer (proved by Garg et al. (2019)
to be more inclined to learn alignment) of the back-
translation model. More specifically, for a sentence
x of the predicted data, the confidence score of
each word xj ∈ x is denoted as sxj . The confi-
dence score syi of the word yi in the input sentence
y is calculated by:

syi =
N∑

j=1

wi,j × sxj (4)

where N is the length of the predicted sentence
x, wi,j is a value in attention mapping (see the
example at Figure 3), which is taken as the weight,
in other words, the contribution of each sxj to syi .

5058



Education Laws Science Thesis Average
without iteration

Unadapted 10.52 23.88 6.00 6.67 11.77
Back-Translation (Sennrich et al., 2016a) 12.71 32.70 6.62 11.22 15.81
Translationese (Pourdamghani et al., 2019) 12.79 32.61 6.27 11.18 15.71
CBT-Base (ours) 14.25† 37.05† 7.17† 12.12† 17.65
CBT-DomainSpec (ours) 14.65† 38.41† 7.19† 12.48† 18.18
CBT-Confidence (ours) 14.30† 38.11† 7.23† 12.29† 17.98
with iteration

Iterative Back-Translation (Hoang et al., 2018) 14.63 47.56 8.25 13.31 20.94
CFIBT (Kumari et al., 2021) 14.84 47.30 8.80 12.79 20.93
ICBT-Base (ours) 14.91† 49.51† 8.91† 14.05† 21.85
ICBT-DomainSpec (ours) 16.11† 52.12† 8.62† 14.76† 22.90
ICBT-Confidence (ours) 16.36† 52.79† 7.81† 14.70† 22.92
ICBT-ALL (ours) 16.10† 56.21† 8.50† 15.25† 24.02

Table 1: Comparative results of unsupervised domain adaptation on the English-Chinese translation task. News is
used as the out-of-domain data. "CBT-*" are our methods without iteration. † denotes the improvement over other
methods is statistically significant with p < 0.01.

Domain Train Dev Test
News 1,252,977 1,664 1,357
Education 447,000 3,000 790
Laws 217,000 3,000 456
Science 267,000 3,000 503
Thesis 297,000 3,000 625

Table 2: Corpus statistics for our experiments.

After getting the confidence score of each word
in the target, we choose the top-n words that have
the lowest score and are in the domain dictionary
to be constrained.

4 Experiments

4.1 Setup
Datasets. We conduct our experiments on English-
Chinese datasets. The parallel corpus LDC1 in
News domain is used as the out-of-domain dataset.
For in-domain dataset, we use the UM-corpus (Tian
et al., 2014), which provides parallel sentence pairs
in eight domains, and we choose four domains of
Laws, Education, Science, and Thesis to conduct
experiments. To obtain the in-domain development
set, we randomly sample 3K sentence pairs in each
domain. Data statistics are shown in Table 2. We
follow Hu et al. (2019) to construct a non-parallel
monolingual corpus for each domain. Specifically,
we randomly divide the parallel corpus into two

1https://www.ldc.upenn.edu/

equal parts, and take the source sentences of the
former part and the target sentences of the latter
part as our monolingual data.

Jieba2 is used to segment Chinese data and
Moses3 is used to segment English. And all En-
glish words are converted to lowercase. After that,
we segment words into subwords through Byte Pair
Encoding (Sennrich et al., 2016b) and construct
joint vocabulary for both languages.
Models and Parameters. We implement the
Transformerbase (Vaswani et al., 2017) based on
the Fairseq (Ott et al., 2019) as our translation
model. BERT-base-Chinese4 model is used as the
masked language model in the ICBT-DomainSpec
method. To get the in-domain model MLMin and
the out-of-domain model MLMout, we fine-tune
the BERT on two kinds of data for 5 epochs re-
spectively. Moreover, we use multilingual BERT4

(mBERT) as the confidence estimation model for
the ICBT-Confidence method. For each method,
we conduct 3 iterations. SacreBLEU5 python pack-
age is used to calculate the BLEU score.
Baselines. We compare our method with the fol-
lowing methods:

• Unadapted. The translation model is trained
on the out-of-domain training set and directly
evaluated on the in-domain test set.

2https://github.com/fxsjy/jieba
3http://www.statmt.org/moses/
4https://huggingface.co
5https://github.com/mjpost/sacrebleu
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• Back-Translation (Sennrich et al., 2016a).
A method for generating in-domain pseudo-
parallel data from a target-to-source NMT
model and target monolingual data.

• Iterative Back-Translation (Hoang et al.,
2018). Both forward and backward translation
models are used for round-trip iteration to op-
timize and generate better in-domain pseudo-
parallel data.

• Translationese (Pourdamghani et al., 2019).
This method first uses word-by-word transla-
tion to generate translationese, and then gen-
erates fluent translation sentences using trans-
lationese. It improves translation performance
by introducing in-domain lexical knowledge.

• CFIBT (Kumari et al., 2021). Classifier mod-
els are introduced to filter pseudo-parallel data
generated by the back-translation, thereby op-
timizing the iterative back-translation.

4.2 Main Results

This paper introduces three forms of ICBT, namely
ICBT-Base (§ 3.1), ICBT-DomainSpec (§ 3.2.1),
and ICBT-Confidence (§ 3.2.2). To prove the com-
plementarity of our methods, we combine the data
obtained from both ICBT-DomainSpec and ICBT-
Confidence at each iteration to conduct experi-
ments (ICBT-ALL). Furthermore, we also compare
the performance of our method without iteration.
The experimental results are shown in Table 1.

Firstly, our proposed methods achieve optimal
results in all domains. The average of four do-
mains improves by up to 12.25 BLEU over the un-
adapted model and 3.08 BLEU over the strongest
baseline. The most considerable improvement is in
Laws, which improves by up to 8.45 BLEU over
the strongest baseline. We believe that it is because
Laws includes more terms needed to be supple-
mented, so the introduction of lexical knowledge
can bring a significant improvement.

Secondly, Translationese achieves comparable
performance to Back-Translation and has improved
in all domains compared with the unadapted base-
line, illustrating the benefits of introducing in-
domain lexical knowledge. Our method is better
than Translationese, which we believe is because
we fuse lexical knowledge and sentence-structural
knowledge through lexically constrained BT, while
Translationese uses knowledge separately.
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Figure 4: BLEU score of different methods according to
the number of iterations on the test sets of four domains.
IBT represents Iterative Back-Translation.

Thirdly, CFIBT achieves better performance
than iterative back-translation (IBT) in Education
and Science, and these two methods are comparable
on the whole. This is in keeping with the elabo-
ration of Kumari et al. (2021) on the performance
of CFIBT in high-resource scenarios. Our meth-
ods have the improvement over both approaches.
Compared to the case without iteration, our meth-
ods achieve more significant improvements over
others, implying that more lexical knowledge can
be incorporated through iterations.

Finally, both ICBT-DomainSpec and ICBT-
Confidence achieve higher results than ICBT-Base.
We conclude that it is because more targeted con-
straints can introduce more lexical knowledge lack-
ing by models. ICBT-ALL achieves the best perfor-
mance and obtains more significant improvement
than ICBT-DomainSpec and ICBT-Confidence, es-
pecially in Laws. It shows that domain specificity
and confidence estimation are complementary.

5 Analysis

5.1 Impact of Iterations
To further investigate the impact of iterations, we
separately validate the models of each method after
each iteration. The variation of BLEU scores with
the number of iterations is shown in Figure 4.

Our methods show continuous improvement
over IBT and the improvement is larger in the later
iterations in general. We conjecture the main rea-
sons are as follows: 1) Lexical constraints as se-
mantic spatial anchors bring the lexical-level repre-
sentations closer (Lin et al., 2020). The alignment
of lexical-level makes sentence-level representa-
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Laws Thesis
BLEU Transacc BLEU Transacc

BT 32.70 79.85% 11.22 44.39%
CBT 37.05 82.58% 12.12 49.71%
IBT 47.56 84.99% 13.31 51.58%
ICBT 49.51 88.46% 14.05 59.57%

Table 3: Comparison of BLEU score and lexicon trans-
lation accuracy of BT and constrained BT. CBT and
ICBT are the base type of our methods (§ 3.1).

tions in BT also closer in semantic space, which
allows the model to transfer at both levels. 2) When
the sentence-level representations are aligned, more
in-domain lexicons can be generated, so that the
knowledge of the in-domain dictionary is more
fully utilized. 3) Lexical constraints increase the
diversity of constraints in the iteration. Thus in the
obtained pseudo data, the same target sentence may
correspond to different source sentences, which fur-
ther improves the robustness of the model.

5.2 Lexicon Translation Accuracy

To verify whether constrained back-translation re-
ally helps the translation of the in-domain lexicon,
we analyze the lexical translation accuracy. Con-
cretely, we extract the high-quality in-domain bilin-
gual dictionary from in-domain parallel data to act
as the testbed for lexical translation accuracy. For
each source word in the high-quality dictionary that
appears at the source of the test set, we consider
it to be successfully translated if its corresponding
target word occurs in the predicted data.

We conduct experiments in Laws and Thesis,6

comparing BT and CBT with and without iteration.
The comparison results are shown in Table 3. With
or without iteration, the lexicon translation accu-
racy of CBT is always higher than that of BT, with
a maximum of 3.47% in Laws and 7.99% in Thesis,
verifying the benefit of constraints. Besides, the im-
provement with iterations is more significant than
without iterations, which indicates that more lexi-
cal knowledge can be introduced through iterations,
so that more in-domain lexicons can be translated
correctly. We also present some cases of BT and
CBT in each domain in Appendix A.

6We focus on domains where there is room for improve-
ment. For Education and Science, BT can already achieve
high translation accuracy of lexicon, so we do not discuss.
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Figure 5: The effect of the maximum number of con-
straints on the BLEU score.

5.3 Effect of Constraints Amount

Few constraints may not achieve the desired ef-
fect, while too many constraints may destroy the
syntactic structure of sentences. To validate this hy-
pothesis, we investigate the impact of the number
of constraints. Specifically, we vary the value of
the maximum number n of constraints per sentence
in the range of [1, 2, 3, 5, 8]. For each value of n,
we perform CBT as described in § 3.1 and test on
each resulting FT model with the test set.

As shown in Figure 5, models can achieve a
high performance generally when n ≤ 3. However,
when n = 1 or n = 2, the model is unstable.
For example, when n = 1, the model performs
slightly worse on Education and Science, and when
n = 2, it performs poorly on Laws. It is consistent
with our conjecture that the lexical knowledge can
not be introduced into the model enough when
there are few constrained words. When n > 3,
the performance deteriorates as the increase of n,
indicating that too many constraints may damage
the syntactic structure of sentences, thus making
the performance worse. With the above analysis,
we set n = 3 in other experiments in this paper.

6 Conclusion and Future Work

This paper proposes a method for unsupervised
domain adaptation of NMT named Iterative Con-
strained Back-Translation (ICBT), in which lexical
constraints are applied to back-translation, aiming
to incorporate in-domain lexical knowledge into
synthetic parallel data from BT. Besides, we pro-
pose two strategies for sampling constraints to exert
more targeted constraints. We conduct experiments
on English-Chinese translation tasks in four do-
mains. The experiments show that our method can
introduce beneficial lexical knowledge to BT, thus
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achieving state-of-the-art results.
We believe that the lexical constraint is not only

suitable for unsupervised domain adaptation, but
also promising in the semi-supervised scenario
with a small amount of in-domain parallel corpus.
In the future, we will explore the application of lex-
ical constraints in supervised or semi-supervised
domain adaptation of NMT.
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A Case Study

We feed one case from each domain into the final
fine-tuned forward translation models of BT, CBT,
IBT, and ICBT for inference, and the obtained re-
sults are shown in Table 4. It can be seen that the
constrained BT outperforms the BT in the transla-
tion of in-domain words, no matter with or without
iteration. In the case of Education, the ordinary BT
translates “spring” to “春天”, which does not fit the
current context. On the contrary, constrained BT
can correctly translate “spring” to “弹簧”. It shows
that lexical constraints can introduce in-domain lex-
ical knowledge into the synthetic pseudo-parallel
data.

From the cases of Laws and Thesis, the perfor-
mance of ICBT is stronger than that of CBT, and it
can translate more in-domain words. For example,
in the case of Laws, CBT only successfully trans-
lates “public office” into “公职”, but does not suc-
cessfully translate “appoint or remove”, which is a
strongly domain-specific expression. But through
iteration, the in-domain lexical knowledge and spe-
cific expressions are further enriched, so ICBT suc-
cessfully translates “appoint or remove” into “任

免”. In addition, ICBT can also learn the domain-
specific expression of translating “holders of public
office” into “公职人员” under the promotion of
lexical knowledge “公职”, indicating that lexical
knowledge can not only bring alignment knowl-
edge, but also enrich the sentence-structural knowl-
edge of BT, so that the generated sentences are
more in line with the domain expression.
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Education
Source deformation of a spring is linear with the force applied on it.

Reference 弹簧的变形量与施加在其上的作用力成线性关系。
BT 春天变形是线性的 ,应用于它的力量。

CBT 弹簧变形与应用的力量是线性的。
IBT 一个春天的变形与应用在它上的力量是线性的。

ICBT 弹簧的变形与应用在它上的力量是线性的。

Laws
Source to appoint or remove holders of public office in accordance with legal procedures;

Reference 依照法定程序任免公职人员；
BT 按照法定程序委任或免任公用处所的持有人 ;

CBT 依照法定程序委任或免除公职人员 ;
IBT 依照法定程序委任或罢免公职的持有人 ;

ICBT 依照法定程序任免公职人员 ;
Science

Source only when its melting-point temperature is reached does iron start to pass into a liquid.
Reference 只有当熔点温度达到时，铁才开始变成液体。

BT 只有当它融化的温度达到时 ,才会有铁的开始 ,进入液态。
CBT 当熔点温度达到时 ,铁开始进入液体。
IBT 只有当它的墨点温度达到时，铁的开始传入液体。

ICBT 只有当它的熔点温度达到时，铁才会开始传入液体。

Thesis
Source effect of exciting frequency on the residual stress of the vibrating solidification casting

Reference 激振频率对振动凝固铸件残余应力的影响
BT 振动稳态洞穴的振动频度对振动稳态洞室残余压力的影响

CBT 振动频率对振动凝固铸件残余应力的影响
IBT 激发频率对振动固化铸件残余应力的影响

ICBT 激振频率对振动凝固铸件残余应力的影响

Table 4: The translation examples show the effect of constrained back-translation. We identify aligned words in red
and blue front.
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Abstract
Translating between languages where certain
features are marked morphologically in one but
absent or marked contextually in the other is
an important test case for machine translation.
When translating into English which marks
(in)definiteness morphologically, from Yorùbá
which uses bare nouns but marks these features
contextually, ambiguities arise. In this work,
we perform fine-grained analysis on how an
SMT system compares with two NMT systems
(BiLSTM and Transformer) when translating
bare nouns in Yorùbá into English. We investi-
gate how and to what extent the systems iden-
tify BNs, correctly translate them, and compare
with human translation patterns. We also ana-
lyze the type of errors each model makes and
provide a linguistic description of these errors.
We glean insights for evaluating model perfor-
mance in low-resource settings. In translating
bare nouns, our results show the transformer
model outperfoms the SMT and BiLSTM mod-
els for 4 categories, the BiLSTM outperforms
the SMT model for 3 categories while the SMT
outperforms the NMT models for 1 category.

1 Introduction

Languages differ with regard to how grammati-
cal information such as “case" and “number" are
expressed. In some languages, this information
is overtly marked using morphological or syntac-
tic means, whereas in others it has to be inferred
from context. This asymmetry of information repre-
sentation poses an important problem for machine
translation (Mitkov, 1999; Hardmeier, 2012). Sev-
eral phenomena where asymmetry arises have been
identified as challenging problems for machine
translation. These include: pronoun translation
and coreference (Guillou et al., 2019), politeness
(Sennrich et al., 2016), lexical cohesion (Carpuat,
2009), and lexical disambiguation (Gonzales et al.,
2017).

Asymmetry of information representation
presents an interesting test case for MT systems

because it can shed light on their true linguistic
ability (Voita et al., 2018; Bawden et al., 2017). It
is, therefore, important to use evaluation measures
which can capture this aspect of the translation
task. However, the most popular evaluation
metric for machine translation, the BLEU score
(Papineni et al., 2002a), is a coarse metric which
can often hide these fine-grained morphological
and semantic distinctions. In fact, a high BLEU
score is no guarantee of improved translation
quality and BLEU, being based on precision on
short ngrams, may be poorly suited for measuring
the coherence and grammaticality of a sentence.

In this paper we investigate the performance of
Yorùbá 1 to English Machine Translation. We
specifically evaluate performance on translating
Bare nouns (BNs). BNs (Cheng and Sybesma,
1999; Krifka, 2003; Chierchia, 1998; Larson, 1985;
Carlson, 1989) are nouns without an overt de-
terminer or quantifier. For instance "houses"
in Houses are expensive in New York is a BN.
Whereas English accounts for only plural BNs,
BNs in Yorùbá are number neutral and can also
be definite or indefinite depending on the context.
Consider the following example:

(1) Bàbá
FATHER

ra
BUY

is
˙
u

YAM

a. ‘Father bought a yam.’ (Indefinite Singular)

b. ‘Father bought some yams.’ (Indefinite Plural)

c. ‘Father bought the yam.’ (Definite Singular)

d. ‘Father bought the yams.’ (Definite Plural)

In Example (1), the BN is
˙
u yam can be trans-

lated into English in four ways as: the indefinite
singular a yam, an indefinite plural some yams, a

1Yorùbá is a tone language that belongs to the Yoruboid
group of the Kwa branch of the Niger-Congo language fam-
ily, which is spoken by over 40 million in Nigeria. Yorùbá
is spoken primarily in western Nigeria and eastern Benin,
with communities in Sierra Leone and Liberia, and expatriate
communities throughout Africa, Europe, and the Americas.
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definite singular the yam, and a definite plural the
yams. This poses a challenge akin to anaphora res-
olution, as the correct translation of Yorùbá BNs
can only be determined by examining the context
in which the BN occurs in the source text. The
context can span one or more preceding or current
words, phrases, clauses or sentences. It can also
include world knowledge.

Our study provides a fine grained analysis that
sheds light on issues in MT that are not often dis-
cussed in main stream research. We turn away from
the current research trend in massively multilingual
translation systems, to this largely underexplored
fine-grained aspect of the MT problem. We in-
vestigate how SMT and NMT systems compare in
general, but also specifically with respect to trans-
lation of BNs. Although NMT has recently been
reported to outperform SMT even in low-resource
settings, these findings were reported for systems
translating between somewhat similar languages
(e.g., languages that belong to the same language
family, have overlapping vocabulary and similar
script) (Junczys-Dowmunt et al., 2016; Conneau
et al., 2017; Lample et al., 2017; Wang et al., 2019)
such as English→ French, German→ French, Ger-
man→ Italian; languages for which large corpora
exists. In this work, we collect a new dataset and
use it to test whether the same NMT advantage
persists by exploring two typologically dissimilar
languages belonging to different language fami-
lies: Yorùbá and English. This work bears signifi-
cance not only to Yorùbá but to analytic languages,
low-resource languages, and languages that have
BNs. Our contributions are as follows: (1) We
align a new dataset for the Yorùbá and English low-
resource setting. (2) We use our dataset to develop
statistical and NMT Yorùbá→ English models. (3)
We study the linguistic ability of our models in
disambiguating BNs.

The rest of the paper is organized as follows:
Section 2 is a description of disambiguation pat-
terns of Yorùbá BNs. We discuss related work in
Section 3. Section 4 presents the datasets, data
collection process, and preprocessing. In Section 5,
we present our methods. We present results of our
models and an evaluation of BN disambiguation in
Section 6. We conclude in Section 7.

2 Disambiguating Yorùbá BNs

A number of contextual variables are important
when disambiguating BNs in Yorùbá. These in-

clude the so-called familiarity and uniqueness
conditions (Roberts, 2003; Russell, 1905; Abbott,
2006), as well as the category of the verb that
occurs in the environment of the BN. Familiar-
ity refers to information which is already known
from the previous textual context either explicitly
or through inference. In Yorùbá, a definite interpre-
tation is permitted when the existence of the entity
referred to has been established in the discourse,
an indefinite occurs otherwise. In example (2), the
first mention of book is indefinite, the second is
definite.

(2) Mo
1SG

ra
BUY

ìwé
BOOK

fún
FOR

Kó
˙

lá.
KÓ

˙
LÁ.

L’ó
˙

jó
˙

IN DAY

kejì,
SECOND

Kó
˙

lá
KÓ

˙
LÁ

ti
PERF

so
THROW

ìwé
BOOK

nù
AWAY

‘I bought a book for KÓ
˙

LÁ. By the second day, Kó
˙
lá

had lost the book.’

The uniqueness condition claims that there exists
one and only one entity that meets the descriptive
content of the BN as in example (3). This entails
that the BN will be interpreted as definite and sin-
gular.

(3) Oòrùn
SUN

máa
HAB

ń
PROG

ràn
SHINE

ní
IN

ò
˙

sán
AFTERNOON

‘The sun shines in the afternoon.’

The category of verb is also an important contex-
tual element in correctly translating BNs. Stative
verbs (verbs that describe the state of being or sit-
uation such as to own and to feel) introduce the
Generic description where a noun phrase is used to
refer to a whole class as in example (4). Eventive
verbs (verbs that describe events such as to break
and to appear) introduce all other disambiguation
patterns as in example (1).

(4) O
˙

mo
˙CHILD

fè
˙
rán

LOVE
ajá
DOG

(generic) (STATIVE)

‘Children love dogs’

3 Related work

Traditional evaluation methods like BLEU are in-
adequate for evaluation of fine-grained discourse
phenomena in MT, and various approaches have
been explored to alleviate this problem. Guillou
and Hardmeier (2016) present the PROTEST pro-
noun translation test suite. The test suite contains
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examples of pronoun translation which are known
to be challenging for MT systems. Isabelle et al.
(2017) present another challenge set for MT. This
set consists of a number of human annotated sen-
tences which are designed to probe a system’s ca-
pacity to handle various linguistic phenomena (like
EXAMPLES). Using the challenge set, Isabelle
et al. (2017) present a comparison of SMT and
NMT systems for English-French MT which pro-
vides a fine-grained exploration of the strengths of
NMT, as well as insight into linguistic phenomena
that typically present difficulties for NMT models.
Tests suites that evaluate more than 100 linguistic
phenomena was developed for English to German
and German to English machine translation (Mack-
etanz et al., 2021). The test sentences are given
as input to the MT systems. The MT outputs are
then evaluated by the set of rules which determine
whether the output was correctly translated or not.

Sennrich (2016) assess the grammaticality of the
output of a character-level NMT system by eval-
uating the MT model’s capacity to correctly rank
contrastive pairs of pre-existing translations, one of
which is correct and the other one incorrect. This
approach has also been applied to lexical disam-
biguation of English-German MT (Gonzales et al.,
2017). Bentivogli et al. (2016) explore automatic
detection and classification of translation errors
based on manual post-edits of MT output both for
SMT and NMT systems. They use a classification
that evaluated outputs for morphological, lexical,
and word order errors which was a simplification
of those used in Hjerson (Popović, 2011). Hjerson
detects word level error classes: morphological er-
rors, re-ordering errors, missing words, extra words
and lexical errors.

Neural models have also been evaluated for syn-
tactic competence. For instance, Linzen et al.
(2016) probe the ability of LSTM models to learn
English subject-verb agreement. When provided
explicit supervision, LSTMs were able to learn to
perform the verb number agreement task in most
cases, although their error rate increased on par-
ticularly difficult sentences. NMT systems have
also been evaluated for morphological competence
while translating from English to a morphologi-
cally rich language (Burlot and Yvon, 2017). Cer-
tain linguistic phenomena have also been tested
across language families. For instance, for four
language families: Slavic, Germanic, Finno-Ugric
and Romance, the best NMT system outperformed

the best phrase-based SMT system for all lan-
guage directions to English (Toral and Sánchez-
Cartagena, 2017). The NMT systems produced
fluent and more accurate inflections and word or-
der but performed poorly when translating long
sentences (Vanmassenhove et al., 2019; Bentivogli
et al., 2016). Morphologically rich languages
have also been shown to have more fluent out-
puts (Klubička et al., 2017; Toral and Sánchez-
Cartagena, 2017; Popović, 2018). These studies
have used metrics such as BLEU (Papineni et al.,
2002b), HTER (Snover et al., 2006), TTR (DAR-
LEY, 1959), YULE (Yule, 2014) to evaluate the
output of MT models for fluency and adequacy.
MT was also evaluated for discuss phenomena
where the model’s capacity to exploit linguistic
context for co-reference and coherence was evalu-
ated (Bawden et al., 2018).

Evaluation frameworks like HOPE have also
been used for task-oriented and human-centric eval-
uation for machine translation outputs (Gladkoff
and Han, 2021). This framework uses professional
post-editing annotations and contains commonly
occuring error types and error penalty points. The
error penalty points use geometric progression to
reflect the severity level of errors for each transla-
tion unit.

4 Dataset

We use the Yorùbá Bible Bíbélì Mímó ní Èdè
Yorùbá Òde-Òní (BMEYO) and the New Interna-
tional Version (NIV) English Bible.

4.1 Bible Data

We crawled the BMEYO Yorùbá Bible from the
public website Biblica.3 This version is the modern
translation of the Yorùbá Bible and is the closest
equivalent to the English NIV Bible, according to
Biblica. We thus use the NIV English translation
with the Bible to create our parallel data. We orga-
nize the Bible according to their verses. In Table 1,
we show an example verse from our Bible dataset.

4.2 Data Preprocessing

The Yorùbá Bible is based on old Bible
manuscripts. A total of 16 verses which were
included in early English Bible versions like the
King James Bible but which were omitted from
later versions are still part of the Yorùbá Bible.

3https://www.Bible.com/versions/
911-ycb-bibeli-mim-ni-ede-yoruba-ode-oni.
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Data Scripture

BMEYO Ìgbà láti pa àti ìgbà láti mú láradá ìgbà
àti wó lulè

˙
àti ìgbà láti kò

˙NIV a time to kill and a time to heal, a time
to tear down and a time to build.

Table 1: A description of Ecclesiastes Ch. 3, Verse 3 for
the BMEYO. (NIV English Bible translation)

Data #TOK #SENT #TTR

BMEYO 793,870 38,149 25.5

Table 2: A statistical description of the Yorùbá (source)
data. #TOK refers to number of tokens, #SENT is num-
ber of sentences, and TTR is type token-ratio.

Therefore, we start data preprocessing by adding
these missing verses into our English NIV Bible
to make it equivalent with the Yorùbá text. Those
verses were footnotes in the English NIV. In addi-
tion, the book of Third John has 15 verses in the
Yorùbá Bible but 14 verses in the English NIV. The
15th verse in the Yorùbá is a part of 14th verse in
the English Bible. As a result, we combine verse
15 into verse 14, as it is in the English NIV. The
aligned dataset can be found on GitHub at https:
//github.com/UBC-NLP/COLING2022

Next, we tokenized the English data using
SpaCy4. SpaCy currently does not provide a to-
kenization package for Yorùbá, so we used the
whitespace tokenizer for all the Yorùbá data. We
use python scripts to ensure the punctuations is ap-
propriately tokenized. Next, we convert all words
to lowercase in order to alleviate data sparsity.

We also split words using Byte Pair Encoding
(BPE) (Sennrich et al., 2015). In low-resource
settings, large vocabularies result in the repre-
sentation of low-frequency (sub)words as BPE
units which affects the ability to learn good high-
dimensional representations (Barone et al., 2017).
Thus, we choose smaller merge operations and var-
ied the number of merge operations from 10, 000 to
30, 000. Finally, we split the dataset into training,
validation, and test sets using an 80%-10%-10%
standard split.

5 Methods

We train 3 sentence level models: SMT, BiLSTM,
and Transformer models to translate from Yorùbá
to English. We choose English as our target lan-

4https://spacy.io/

guage because we are interested in analyzing how
ambiguous BNs in Yorùbá are translated into En-
glish where (i.e., in English) nouns are typically
marked both for number and determinacy. The hy-
perparameters and training procedure are described
in the next subsections.

5.1 SMT

We use the Moses5 statistical translation system
for our SMT model. We apply tokenization, true
casing, and perform word alignment on the par-
allel data using GIZA++ (Och and Ney, 2003).
The word alignments were used to extract phrase-
paired translations and calculate probability esti-
mates (Koehn et al., 2007). We used KENLM
(Heafield, 2011) to train and query a LM for En-
glish. KENLM is a library implemented for effi-
cient language model queries, reducing both time
and memory costs, and is integrated into Moses.
The decoder uses this LM to ensure a fluent out-
put of the target language, in our case, English.
We used the validation sets of our parallel data for
the final tuning process just before we perform the
blind testing.

5.2 BiLSTM

We use a Sequence to Sequence (Seq2Seq) BiL-
STM with attention model. Our best BiLSTM
model has an embedding layer with 1, 024 dimen-
sions, and 2 encoder and decoder layers each.6 We
use the Adam optimizer with a learning rate of
5e−4 and a batch size of 32. For regularization,
we use a dropout of 0.2.

Hyperparameter Values

encoder layers 2, 3, 4, 6, 8
decoder layers 2, 3, 4, 6, 8
attention heads 4, 8, 16
embedding dimension 256, 512, 1024.
batch sizes 32, 64, 128
number of tokens 4000, 4096
dropout 0.2, 0.3, 0.4,

0.6, 0.8

Table 3: Hyperparameter settings for tuning BiLSTM
and Transformer models.

5.3 Transformer

For the transformer model, we use 5 layers with 8
attention heads in both encoder and decoder. We

5https://github.com/moses-smt
6Model architecture and hyperparameter values are identi-

fied on validation data using values listed in Table 3.
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use embedding dimension with 1, 024 units. We
express our batch size in number of tokens, and
set it to 4, 096. Detailed hyperparameter settings is
available in Table 4

Hyperparameter Values

adam-betas (0.9,0.98)
clip-norm 0.0
learning rate 5e-4
learning rate scheduler inverse square

root
warmup-updates 4000
dropout 0.3
weight-decay 0.0001
criterion label smoothed

cross entropy
label-smoothing 0.5
encoder-layerdrop 0.2
decoder-layerdrop 0.2

Table 4: Hyperparameters for Transformer model

5.4 Hyperparameters, Vocab. & Training

Hyperparameters. We experimented with differ-
ent hyperparameter values to ensure optimization
of our models. Since the size of data is small, we
used fewer layers, and smaller batch sizes as ref-
erenced in literature (Sennrich and Zhang, 2019;
Nguyen and Chiang, 2017). A full range of hyper-
parameters and values are in Table 3.
Vocabulary Size. We varied the number of BPE
merge operations from 10, 000 to 30, 000. Our
optimal models used 10K merge operations.
Training. We train the model with fairseq toolkit
for 7 days, on 1 GPU, and choose best epoch on our
development set, reporting performance on TEST.

6 Evaluation

In this section, we first evaluate using BLEU. We
provide details of this part of the evaluation in Sec-
tion 6.1. Next, we provide details on our approach
to evaluating BNs in Section 6.2.

6.1 Model Performance

We evaluate the output of our models using BLEU
(Papineni et al., 2002b). We use BLEU score be-
cause it is the most commonly used metric for MT
evaluation. Table 5 shows our n-gram precision fig-
ures from 1 to 4-grams and our overall BLEU score.
Our transformer model outperforms the BiLSTM
and SMT models respectively. We give examples
of the output from each model and the gold data in
Table 6.

SMT
1-gram 2-gram 3-gram 4-gram BLEU
62.00 47.97 38.68 31.92 33.017

BiLSTM
1-gram 2-gram 3-gram 4-gram BLEU
62.97 49.21 40.08 33.43 33.448

Transformer
1-gram 2-gram 3-gram 4-gram BLEU
66.27 53.42 44.45 37.68 37.93 9

Table 5: Model performance at 1-4 grams with final
column showing BLEU score as given by the sacrebleu
(Post, 2018).

Gold Data SMT BiLSTM Transformer

as in the
days when
you came
out of
egypt, i
will show
them my
wonders.

like the
day she
came up
out of
egypt, i
will show
wonders
known
him.

as soon as
he came
out of
egypt, i
will show
him all the
wonders he
has done.

like the day he
came up out of
egypt, i will
show him the
wonders.

rescue me
from the
mouth of
the lions;
save me
from the
horns of the
wild oxen.

the lord .
deliver my
life from
the lions;
rescue me
from the
horns of
the wild
ox.

deliver my
life from
the lion’s
hands ;
deliver me
from the
hand of the
wild ox.

rescue my life
from the lion;
rescue me from
the horns of the
wild ox.

so now the
lord has
put a lying
spirit in the
mouths of
all these
prophets of
yours. the
lord has
decreed
disaster for
you.

so the lord
has put
a lying
spirit in
the mouths
of all your
prophets.
the lord
has de-
creed
disaster for
you.

so the lord
has put
a lying
spirit in
the mouths
of all these
prophets of
yours. the
lord has
decreed
disaster for
you.

so the lord has
put a lying
spirit in the
mouths of all
these prophets
of yours. the
lord has de-
creed disaster
for you.

Table 6: A comparison of the gold data with the output
of our models.

6.2 Preparing a Gold Standard for Bare Noun
Disambiguation

We group English translations of Yorùbá BNs into
5 categories described in Table 7: generic, indef-
inite singular, indefinite plural, definite singular
and definite plural. We do this both for the gold
standard target data and for the output of our MT
systems, and compare the distribution of categories
in the MT output to the category distribution in
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the English gold standard data. The annotation was
performed by a linguist who is also a native speaker
of Yorùbá.

Category Description

Generic noun refers to a kind or class of
individuals.

Indefinite Singular noun refers to a single non-
specific object

Indefinite Plural noun refers to multiple non-
specific objects

Definite Singular noun refers to a single specific
object

Definite Plural noun refers to multiple specific
objects

Table 7: Noun Categories when translating from Yorùbá
to English

Determining the correct category for the transla-
tion of a BN requires us to control for the following
contextual information: type of verb (STATIVE
versus EVENTIVE); the discourse context (e.g.
the preceding sentence, the familiarity constraint);
and real-world knowledge (which may trigger the
uniqueness constraint). E.g. Yorùbá words (o

˙
ba

king, o
˙
lò
˙
run god) should always be translated into

definite singulars because Yorùbá speakers com-
monly use them to refer to specific entities.

6.3 Evaluation of Bare Noun Disambiguation

To measure how well our models translate BNs,
we arbitrarily select 100 sentences and evaluate
the percentage of correct BN translations for each
model. The 100 sentences selected contained 236
occurrences of BNs. There were 9 indefinite plu-
ral, 46 indefinite singular, 35 definite plural, 103
definite singular and 43 generic examples in this
randomly selected set. We perform a detailed er-
ror analysis on the 100 sentences for each case of
incorrect BN translation.

We assemble the type of errors found in the trans-
lation output into a confusion matrix that captures
the behaviour of the 3 models in Figure 1. Each
row in the confusion matrix represents one of our 5
noun categories and each row adds up to 100%.The
dark blue coloured boxes represent the correctly
translated values in percentages. The light blue
boxes are the incorrectly translated categories that
fell within one of the 5% categories. The column
"others" contain incorrectly translated choices out-
side the 5 categories. We discuss these type of
errors in detail in 6.4.

(a) SMT

(b) BiLSTM

(c) Transformer

Figure 1: Confusion matrices showing the disambigua-
tion patterns of the SMT, BiLSTM, and Transformer
Models.

The results show that the transformer model out-
performs the SMT and BILSTM models for all cat-
egories except the indefinite plural category where
the SMT outperforms the Transformer model. The
BiLSTM also outperforms the SMT for 3 cate-
gories.

How the models handle indefinites. In the
context of indefinites, we found that all 3 mod-
els achieved low accuracy scores. We assume this
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to be the case because fewer cases of indefinites
are often reported in languages like Yorùbá that
lack overt definite and indefinite markers and this
will be represented in the data we used for train-
ing. Languages like Yorùbá that do not have overt
definite and indefinite determiners are ambiguous
between definite and indefinite readings. Indef-
inites are blocked when the common ground es-
tablishes the uniqueness, or familiarity of the set
denoted by the noun (Dayal and Sağ, 2019). It is
expected that indefinites can occur everywhere else.
However, in texts such as these, context introduces
either familiarity or uniqueness therefore reducing
the occurrence of indefinites.

How the models handle definites. There were
138 BN instances that translated as definites in the
set we evaluated. This is due to the aforementioned
system of disambiguation that assigns BNs to the
definite class if they occur in an environment of
uniqueness or familiarity. There are also certain
words that have an inherent unique meaning due
to cultural beliefs of Yorùbá people. Titles such as
o
˙
ba king, olúwa lord and many more often have a

definite translation because it is culturally believed
for instance that only one king can rule a domain.
The models show an improvement in translating
definites when compared to indefinites.

How the models handle generics. The Trans-
former model outperforms the BiLSTM and SMT
models for this category while the BiLSTM outper-
forms the SMT.

6.4 Error Analysis

We focus on other errors, that is those errors
presented in the "others" category/column in
Figure 1. For this class of errors, the wrongly
translated BN did not translate into one of definite
singular or plural, indefinite singular or plural,
generic or BN category. We therefore evaluate the
errors found in the sentences. For the sentences
evaluated, we focus only on errors that involve
nouns and determiners and ignore errors relating
to other classes of words. This means that if a
sentence had errors with, for example, verbs or
adjectives, we ignored these errors. We categorize
the errors we found and provide examples errors
for each category in the SMT and NMT models in
Table 8. We bold face relevant words and phrases
occurring in the gold data that had errors in the
model output.

Missing word. Outputs with missing nouns or
determiners are classified under this category.

Wrong word or spelling. Wrong use of deter-
miners or incorrect nouns belong to this category.
We also classify wrong spellings, poorly inflected
forms of the noun and unknown words under this
category.

Grammaticality. We categorize both syntactic
and semantic errors here. Wrong tense or aspect,
incorrect number, poor punctuation, and lack of
coherence are categorized under this class.

Wrong word order or category. If the order of
the noun and determiner is wrong, even if the de-
terminer and nouns are correct, we classify this as
an error. We also include instances where the order
of the noun and determiner occurs inappropriately,
either before the verb or any other category. We
found that some instances require both word level
and phrase level order errors. In the case of word
level order errors, we can generate a correct sen-
tence by moving individual words, independently
of each other, whereas for a phrase level order error,
blocks of consecutive words should be moved to-
gether to form a right translation. In addition, this
category includes instances in which a different
type is used instead of a noun or determiner.

In evaluating each category, we do not consider
correct synonyms as errors.

6.5 Word-Level BN Disambiguation

We randomly select 10 nouns that occur as BNs
in the test data and check how well the 3 models
disambiguate these words. We use the following
words: ìlú town, ìwé book, ilé house, o

˙
kùnrin male,

obìnrin female, as
˙
o
˙

clothing, ilè
˙

land, o
˙
ba king,

àlùfáà priest and baba father.

We then calculate the percentage of correct trans-
lations of these BNs in the test set. We use the
English gold data to determine the correct disam-
biguation and compare each instance of the BNs
with the corresponding occurrence in the gold data.

Our analysis in Figure 2 shows that the trans-
former model performs better in disambiguat-
ing the BNs selected. The transformer model
achieves 67.85% accuracy while the BiLSTM
model achieves an accuracy of 63.83%. The SMT
model, on the other hand, achieves an accuracy of
59.12%.
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Error Model Gold Model Output

SMT with each bull prepare a grain offering of three-tenths of an ephah of fine flour with each bull prepare a drink offering with three-tenths of fine flour
who shut up the sea behind doors when it burst forth from the womb, or who shut the doors of the sea, when he flow back as if he had the,

BiLSTM as in the days when you came out of egypt, i will show them my wonders. as soon as he came out of egypt , i will show him all the wonders he has done .
and he inserted the poles into the rings on the sides of the ark to carry it. then he put the poles on each side of the ark to put it on the chest .

Transf now hiram had sent to the king 120 talents of gold. and hiram sent him 120 talents of goldM
is

si
ng

w
or

d

each day one ox, six choice sheep and some poultry were prepared for me,... each day an ox, a choice sheep and six days they provide for me...

SMT everyone who quotes proverbs will quote this proverb about you: like mother, like daughter all those who were powe, it will this powe you: as mothers, so his son of woman.
...he who had received the promises was about to sacrifice his one and only son, ...he who receive the promised almost ready to take your son into one sacrifice.

BiLSTM the lot settles disputes and keeps strong opponents apart. lot lays up the battle and makes up two unchange as from each other .
he spoke, and there came swarms of flies, and gnats throughout their country. he spoke, and the kind of reitution came and became gnats in their land

Transf the lot settles disputes and keeps strong opponents apart. the snow finish quarreling and two oppose each other

W
ro

ng
w

or
d

/s
pe

lli
ng

with an opening in the center of the robe... with the holes among the belt...

SMT this is a decree for israel, an ordinance of the god of jacob. this is a lasting ordinance for israel, and the law of the god of jacob.
the simple inherit folly, but the prudent are crowned with knowledge. a simple inherit folly but to be wise in the crown of knowledge .

BiLSTM as for the donkeys you lost three days ago, do not worry about them; they have been found... for a donkeys he was three days ago, not terrified by them; they were found to be found
and we know that in all things god works for the good of those who love him ... We know that everything is in good deeds for those who love god,...

Transf there will be a highway for the remnant of his people ... good ways will be for his people,...G
ra

m
m

at
ic

al
ity

overlay the frames with gold and make gold rings to hold the crossbars. overlay the frames with gold and make gold rings so they can be crossbars...

SMT by faith abraham, when god tested him, offered isaac as a sacrifice. by faith of abraham, when he was tempted to, isaac offer sacrifices,
...the next day the south wind came up, ...the next day, forth the south wind began to blow,...

BiLSTM ...i will give my daughter acsah in marriage to the man who attacks and captures kiriath sepher. ...i’ll give my daughter acsah to a man who struck down kiriath sepher and took him wedding.
do not love sleep or you will grow poor; stay awake and you will have food to spare do not love a sleep, or you will be poor. do not sleep and have food to give you something to eat .

Transf about this time next year, elisha said, you will hold a son in your arms. elisha said, this time is coming, you will take your hand for your son.

W
ro

ng
w

or
d

or
de

r

...israel served to get a wife, and to pay for her he tended sheep. ...israel worshiped as a wife and took care of the meat to pay the bride for money.

Table 8: Example of errors for the three models under each error category we described. The English Gold is the
NIV translation for the Yorùbá Source

Figure 2: Distribution of disambiguation patterns in our
models. Our gold data has 100% in disambiguation.

7 Conclusion

In this work, we showed how SMT, BiLSTM, and
transformer models translate BNs in Yorùbá, a re-
source scarce language. We compared the ability
of SMT and NMT models to correctly translate
BNs into various categories referenced in the syn-
tax literature of Yorùbá. We measured the per-
formance of the MT models and the output using
BLEU scores, and by counting the percentage of
correctly disambiguated BNs compared with incor-
rectly disambiguated BNs. We found a positive
correlation between disambiguation accuracy, and
BLEU scores as well as a positive correlation be-
tween number of occurrences of a category and the
accuracy in translation.

We also found the transformer outperforming the
SMT and BiLSTM models in correctly translating
BNs. We also found that all 3 models best per-
formed in translating a BN in Yorùbá into an defi-
nite singular in English. This finding corroborates
research that predicts that languages which lack
overt definite and indefinite markers have larger
cases of definites, and findings within the MT com-
munity that MT models improve with more data.
We further analyzed the type of errors our systems
produce. We identified cases of missing words,
wrong word or spellings, grammaticality issues,
and word-order errors. We found that even when
certain BNs have been correctly categorized by
the models, the models still had semantic, and or
syntactic errors.

In order to further probe the capacity of SMT
and NMT models in disambiguating BNs, further
work can be carried out to improve the SMT and
NMT models and perform human based evalua-
tions on the entire quality of the MT output. We
can improve the MT systems with back-translation,
cross-lingual word embeddings, increasing the size
of data used for training, transfer learning, among
other approaches. Standard test sets can also be
developed to aid automatic comparison of human
evaluations and machine based evaluations. In ad-
dition, the Yorùbá data we used for this work is a
translated document; a translation from English to
Yorùbá and it will be interesting to use a text orig-
inally written in Yorùbá but translated to English
for this experiment.
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Abstract

Recurrent models have been dominating the
field of neural machine translation (NMT) for
the past few years. Transformers (Vaswani
et al., 2017) have radically changed it by
proposing a novel architecture that relies on
a feed-forward backbone and self-attention
mechanism. Although Transformers are pow-
erful, they could fail to properly encode se-
quential/positional information due to their non-
recurrent nature. To solve this problem, posi-
tion embeddings are defined exclusively for
each time step to enrich word information.
However, such embeddings are fixed after train-
ing regardless of the task and word ordering
system of the source and target languages.

In this paper, we address this shortcoming by
proposing a novel architecture with new po-
sition embeddings that take the order of the
target words into consideration. Instead of us-
ing predefined position embeddings, our solu-
tion generates new embeddings to refine each
word’s position information. Since we do not
dictate the position of the source tokens and we
learn them in an end-to-end fashion, we refer
to our method as dynamic position encoding
(DPE). We evaluated the impact of our model
on multiple datasets to translate from English
to German, French, and Italian and observed
meaningful improvements in comparison to the
original Transformer.

1 Introduction

In statistical machine translation (SMT), the gen-
eral task of translation consists of reducing the
input sentence into smaller units (also known as
statistical phrases), selecting an optimal translation
for each unit, and placing them in the correct order
(Koehn, 2009). The last step, which is also referred
to as the reordering problem, is a great source of
complexity and importance, which is handled with

∗ Work done while Joyce Zheng was an intern at Huawei
† Work done while Peyman Passban was at Huawei.

a variety of statistical as well as string- and tree-
based solutions (Bisazza and Federico, 2016).

As evident in SMT, the structure and position
of words within a sentence is crucial for accurate
translation. The importance of such information
can also be explored in NMT and for Transform-
ers. Previous literature, such as Chen et al. (2020),
demonstrated that source input sentences enriched
with target order information have the capacity to
improve translation quality in neural models. They
showed that position encoding seems to play a key
role in translation and this motivated us to further
explore this area.

Since Transformers have a non-recurrent archi-
tecture, they could face problems when encoding
sequential data. As a result, they require an explicit
summation of the input embeddings with position
encoding to provide information about the order of
each word. However, this approach falsely assumes
that the correct position of each word is always its
original position in the source sentence. This inter-
pretation might be true when only considering the
source side, whereas we know from SMT (Bisazza
and Federico, 2016; Cui et al., 2016) that arranging
input words with respect to the order of their target
pairs can lead to better results.

In this work, we explore injecting target posi-
tion information alongside the source words to en-
hance Transformers’ translation quality. We first
examine the accuracy and efficiency of a two-pass
Transformer (2PT), which consists of a pipeline
connecting two Transformers. The first Trans-
former reorders the source sentence and the second
one translates the reordered sentences. Although
this approach incorporates order information from
the target language, it lacks end-to-end training
and requires more resources than a typical Trans-
former. Accordingly, we introduce a better alter-
native, which effectively learns the reordered posi-
tions in an end-to-end fashion and uses this infor-
mation with the original source sequence to boost
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translation accuracy. We refer to this alternative as
Dynamic Position Encoding (DPE).

Our contribution in this work is threefold:

• First, we demonstrate that providing source-
side representations with target position infor-
mation improves translation quality in Trans-
formers.

• We also propose a novel architecture, DPE,
that efficiently learns reordered positions in
an end-to-end fashion and incorporates this
information into the encoding process.

• Finally, we use a preliminary two-pass design
to show the importance of end-to-end learning
in this problem.

2 Background

2.1 Pre-Reordering in Machine Translation

In standard SMT, pre-reordering is a well-known
technique. Usually, the source sentence is re-
ordered using heuristics such that it follows the
word order of the target language. Figure 1 illus-
trates this concept with an imaginary example.

Figure 1: The order of source words before (left-hand
side) and after (right-hand side) pre-reordering. Si and
Tj show the i-th source and j-th target words, accord-
ingly.

As the figure shows, the original alignment be-
tween the source (Si) and target (Ti) words are
used to define a new order for the source sentence.
With the new order, the translation engine does not
need to learn the relation between source and target
ordering systems, as it directly translates from one
position on the source side to the same position on
the target side. Clearly, this can significantly reduce
the complexity of the translation task. The work
of Wang et al. (2007), provides a good example of
systems with pre-reordering, in which the authors
studied this technique for the English–Chinese pair.

The concept of re-ordering does not necessarily
need to be tackled prior to translation; in Koehn
et al. (2007), generated sequences are reviewed by
a classifier after translation to correct the position

of words that are placed in the wrong order. The
entire reordering process can also be embedded
into the decoding process (Feng et al., 2013).

2.2 Tackling the Order Problem in NMT

Pre-reordering and position encoding are also com-
mon in NMT and have been investigated by various
researchers. Du and Way (2017) explored if recur-
rent neural models can benefit from pre-reordering.
Their findings showed that these models might not
require any order adjustments because the network
itself was powerful enough to learn such mappings.
Kawara et al. (2020), unlike the previous work,
studied the same problem and reported promising
observations on the usefulness of pre-reordering.
They used a transduction-grammar-based method
with recursive neural networks and showed how
impactful pre-reordering could be.

Liu et al. (2020) followed a different approach
and proposed modeling position encoding as a
continuous dynamical system through a neural
ODE. Ke et al. (2020) investigated improving po-
sitional encoding by untying the relationship be-
tween words and positions. They suggested that
there is no strong correlation between words and
absolute positions, so they removed this noisy cor-
relation. This form of separation has its own ad-
vantages, but by removing this relationship be-
tween words and positions from the translation
process, they might lose valuable semantic infor-
mation about the source and target sides.

Shaw et al. (2018a) explored a relative position
encoding method by having the self-attention mech-
anism consider the distance between source words.
Garg et al. (2019) incorporated target position in-
formation via multitasking where a translation loss
was combined with an alignment loss that super-
vised one decoder head to learn position informa-
tion. Chen et al. (2020) changed the Transformer ar-
chitecture to incorporate order information at each
layer. They selected a reordered target word posi-
tion from the output of each layer and injected it
into the next layer. This is the closest work to ours,
so we consider it as our main baseline.

3 Methodology

3.1 Two-Pass Translation for Pre-Reordering

Our goal is to boost translation quality in Trans-
formers by injecting target order information into
the source-side encoding process. We propose dy-
namic position encoding (DPE) to achieve this,
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but before that, we discuss a preliminary two-pass
Transformer (2PT) architecture to demonstrate the
impact of order information in Transformers.

The main difference between 2PT and DPE is
that DPE is an end-to-end, differential solution
whereas 2PT is a pipeline that connects two differ-
ent Transformers. They both work towards lever-
aging order information to improve translation but
in different fashions. The 2PT architecture is illus-
trated in Figure 2.

Figure 2: The two-pass Transformer architecture. The
input sequence is first re-ordered to a new and less com-
plex form for the translation Transformer. Then, the
translation Transformer uses the re-ordered input se-
quence to decode a target sequence.

2PT has two different Transformers. The first
one is used for reordering purposes instead of trans-
lation. It takes source sentences and generates a
reordered version of them, e.g. referring back to
Figure 1, if the input to the first Transformer is
[S1, S2, S3, S4] the expected output from the first
transformer is [S1, S4, S3, S2]. We created a new
corpus using FastAlign to train this reordering
model (Dyer et al., 2013).1

FastAlign is an unsupervised word aligner
that processes source and target sentences together
and provides word-level alignments. It is usable
at training time but not for inference because it
requires access to both sides and we only have the
source side (at test time). As a solution, we used
the alignments to create a training set and utilized
it to train the first Transformer in 2PT. Figure 3
shows the input and output format in FastAlign
and how it helps generate training samples.

As the figure demonstrates, given a pair of
English–German sentences, word alignments are

1https://github.com/clab/fast_align

generated. In order to process the alignments, we
designed rules to handle different cases:

• One-to-Many Alignments: We only consider
the first target position in one-to-many align-
ments (see the figure).

• Many-to-One Alignments: Multiple source
words are reordered together (as one unit
while maintaining their relative positions with
each other) using the position of the corre-
sponding target word.

• No Alignment: Words that do not have any
alignments are skipped and we do not change
their position

• We also ensure that no source word would
be aligned with a position beyond the source
sentence length.

Considering these rules and what FastAlign
generates, the example input sentence “mr hän@@
sch represented you on this occasion .” (in Figure
3) is reordered to “mr hän sch you this represented
.” @@ are auxiliary symbols added in between
sub-word units during preprocessing. See Section
4 for more information.

Using re-ordered sentences, the first Transformer
in 2PT is trained to reorder the original source sen-
tences, and the second Transformer, which is re-
sponsible for translation, receives the re-ordered
source sentences and maps them to their target
translations. Despite different data formats and
different inputs/outputs, 2PT is still a pipeline that
translates a source language to a target one through
internal modifications that are hidden from the user.

3.2 Dynamic Position Encoding

Unlike 2PT, the dynamic position encoding (DPE)
method takes advantage of end-to-end training,
while the source side still learns target reordering
position information. It boosts the input of an or-
dinary Transformer’s encoder with target position
information, but leaves its architecture untouched,
as illustrated in Figure 4.

The input to DPE is a source word embedding
(wi) summed with sinusoidal position (pi) encod-
ing (wi ⊕ pi). We refer to these embeddings as
enriched embeddings. Sinusoidal position encod-
ing is part of the original design of Transformers
and we assume the reader is familiar with this con-
cept. For more details see Vaswani et al. (2017).
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Figure 3: FastAlign-based reordering using a sample sentence from our English–German dataset. Using word
alignments, we generate a new reordered form from each source sentence as the new target sequence. We then use
the pairs of source and new target sequences to train the first Transformer of 2PT.

Figure 4: The left-hand side is the original Transformer’s architecture and the figure on the right is our proposed
architecture. E1 is the first encoder layer of the ordinary Transformer and DP1 is the first layer of the DPE network.

DPE is another neural network placed in-
between the enriched embeddings and the first en-
coder layer of the (translation) Transformer. In
other words, the input to the DPE network is the
embedding table of the Transformer, and its final
layer outputs into the first encoder layer of the
Transformer. Thus, the DPE network can be trained
jointly with the Transformer using the original par-
allel sentence pairs.

DPE processes enriched embeddings and gener-
ates a new form of them that is represented as ri in
this paper, i.e. DPE(wi ⊕ pi) = ri. DPE-generated
embeddings are intended to preserve target-side
order information about each word. In the origi-
nal Transformer, the position of wi is dictated by
adding pi, but the original position of this word is
not always the best one for translation; thus ri is
defined to address this problem. If wi appears in
the i-th position but j is its best position with re-
spect to the target language, ri is supposed to learn

information about the j-th position and mimic pj .
Accordingly, the combination of pi and ri should
provide wi with the pre-reordering information it
requires to improve translation accuracy.

In our design, DPE consists of two Transformer
layers. We determined this number through an
empirical study to find a reasonable balance be-
tween translation quality and resource consump-
tion. These two layers are connected to an auxiliary
loss function to ensure that the output of DPE is
what we need for re-ordering.

This additional loss measures the mean squared
error between the embeddings produced by DPE
(ri) and the supervising positions (PE) defined by
FastAlign alignments. This learning process is
simply formulated in Equation 1:

Lorder =
∑|S|

i=1MSE(PEi, ri)

|S| (1)

where S is the source sequence length and MSE()
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is the mean-square error function. The supervis-
ing position PEi is obtained by taking the target
position associated with wi that was defined by
FastAlign as described in Section 3.1.

To clarify how Lorder works, we use the afore-
mentioned scenario as an example. We assume
that the correct position for wi according to the
FastAlign alignments is j, so PEi = pj and
we thus compute MSE(pj , ri). Through this tech-
nique, we encourage the DPE network to learn pre-
reordering in an end-to-end fashion and provide wi
with position refinement information.

The total loss function when training the entire
model includes the auxiliary reordering loss func-
tion Lorder summed with the standard Transformer
loss Ltranslation, as in Equation 2:

Ltotal = λ×Ltranslation+ (1− λ)×Lorder (2)

where λ is a hyper-parameter that represents the
weight of the reordering loss. λ was determined by
minimizing the total loss on the development set
during training.

4 Experimental Study

4.1 Dataset
To train and evaluate our models, we used the
IWSLT-14 collection (Cettolo et al., 2012) and
the WMT-14 dataset.2 Our datasets are commonly
used in the field, which makes our results easily
reproducible. Our code is also publicly available
to help other researchers further investigate this
topic.3 The IWSLT-14 collection was used to study
the impact of our model for the English–German
(En–De), English–French (En–Fr), and English–
Italian (En–It) pairs. We also reported results on
the WMT dataset, which provides a larger training
corpus. We know that the quality of NMT mod-
els vary in proportion to the corpus size, so these
experiments provide more information to better
understand our model.

To prepare the data, sequences were lower-cased,
normalized, and tokenized using the scripts pro-
vided by the Moses toolkit4 (Koehn et al., 2007)
and decomposed into sub-words via Byte-Pair En-
coding (BPE) (Sennrich et al., 2016). The vocab-
ulary sizes extracted for the IWSLT and WMT

2http://statmt.org/wmt14/
translation-task.html

3https://github.com/jy6zheng/
DynamicPositionEncodingModule

4https://github.com/moses-smt/
mosesdecoder

datasets were 32K and 40K, respectively. For the
En–De pair of WMT-14, newstest2013 was used as
a development set and newstest2014 was our test
set. For the IWSLT experiments, our test and devel-
opment sets were as suggested by Zhu et al. (2020).
Table 1 provides the statistics of our datasets.

Data Train Dev Test
WMT-14 (En→De) 4.45M 3k 3k
IWSLT-14 (En→De) 160k 7k 6k
IWSLT-14 (En→Fr) 168k 7k 4k
IWSLT-14 (En→It) 167k 7k 6k

Table 1: The statistics of the datasets used in our ex-
periments. Train, Dev, and Test stand for the training,
development, and test sets, respectively.

4.2 Experimental Setup
In the interest of fair comparisons, we used the
same setup as Chen et al. (2020) to build our base-
line for the WMT-14 En–De experiments. This
baseline setting was also used for our DPE model
and DPE-related experiments. Our models were
trained on 8 × V100 GPUs. Since our models
rely on the Transformer’s backbone, all hyper-
parameters that were related to the main Trans-
former architecture, such as embedding dimen-
sions, the number of attention heads, etc., were
set to the default values proposed for Transformer
Base in Vaswani et al. (2017). Refer to the original
work for detailed information.

For IWSLT experiments, we used a lighter archi-
tecture since the datasets were smaller than WMT.
The hidden dimension was 256 for all encoder and
decoder layers, and a dimension of 1024 was used
for the inner feed-forward network layer. There
were 2 encoder and 2 decoder layers, and 2 at-
tention heads. We found this setting through an
empirical study to maximize the performance of
our IWSLT models.

For the WMT-14 En–De experiments, similar to
Chen et al. (2020), we trained the model for 300K
updates and used a single model obtained from
averaging the last 5 checkpoints. The model was
validated with an interval of 2K on the development
dataset. The decoding beam size was 5. In the
IWSLT-14 cases, we trained the models for 15,000
updates and used a single model obtained from
averaging the last 5 checkpoints that were validated
with an interval of 1000 updates. We evaluated
all our models with detokenized BLEU (Papineni
et al., 2002).
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Model Data type BLEU Score

1 Reordering Transformer En→Enreordered 35.21
2 Transformer Base En→De 27.76
3 + fed with the output of reordering Transformer Enreordered →De 21.96
4 + fed with the output of FastAlign Enreordered →De 31.82

Table 2: BLEU scores for the 2PT series of experiments.

4.3 2PT Experiments

Results related to the two-pass architecture are sum-
marized in Table 2. The reordering Transformer
(Row 1) works with the source sentences and re-
orders them with respect to the order of the target
language. This was a monolingual translation task
with a BLEU score of 35.21. This is a relatively
low score for a monolingual setting which indicates
how complicated the reordering problem is. Even
dedicating a whole Transformer could not fully
overcome the reordering problem. This finding
also indicates that NMT engines can benefit from
using an auxiliary module to handle order com-
plexities. It is usually assumed that the translation
engine should perform in an end-to-end fashion
where it deals with all the reordering, translation,
and other complexities via a single model at the
same time. However, if we can separate these sub-
tasks systematically and tackle them individually,
there is a chance that we might be able to improve
the overall quality.

In Row 3, we used the information previously
generated (in Row 1) and showed how a translation
model performs when it is fed with reordered sen-
tences. The BLEU score for this task was 21.96,
which was significantly lower than the baseline
(Row 2). Order information was supposed to in-
crease the overall performance, but we observe a
degradation. This is because the first Transformer
was unable to detect the correct order (due to the
difficulty of this task). In Row 4, we fed the same
translation engines with higher-quality order in-
formation (generated by FastAlign), and the
BLEU score rose to 31.82.

We cannot use FastAlign at test time but this
experiment shows that our hypothesis on the useful-
ness of order information seems to be correct. Mo-
tivated by this, we invented DPE to better leverage
order information, and these results are reported in
the next section.

4.4 DPE Experiments

Results related to DPE are reported in Table 3.
According to the reported scores, DPE led to a
+0.81 improvement in the BLEU score compared
to Transformer Base. To ensure that we evaluated
DPE in a fair setup, we re-implemented the Trans-
former Base in our own environment. This elimi-
nated the impact of different factors and ensured
that the gain was due to the design of the DPE mod-
ule itself. We also compared our model to models
discussed in the related literature such as that of
Shaw et al. (2018b), the reordering embeddings of
Chen et al. (2019), and the more recent explicit
reordering embeddings of Chen et al. (2020). Our
model achieved the best score and we believe it
was due to the direct use of order information.

For the DPE architecture, we decided to have
two layers (DP1 and DP2) as it produced the best
BLEU scores on the development sets without im-
posing significant training overhead. One impor-
tant hyper-parameter that directly affects DPE’s
performance is the position loss weight (λ). We ran
an ablation study on the development set to adjust
λ. Table 4 summarizes our findings. The best λ
value in our setting was 0.5. This value provided
an acceptable balance between translation accuracy
and pre-reordering costs during training, and shows
that the order information can be as important as
other translation information.

The design of our Transformer (Transformer
Base + DPE) might raise the concern that incor-
porating pre-reordering information or defining an
auxiliary loss might not be necessary. One might
suggest that if we use the same amount of resources
to increase the Transformer Base’s encoder param-
eters, we should obtain competitive or even better
results than the DPE-enhanced Transformer. To ad-
dress this concern, we designed another experiment
that increased the number of parameters/layers in
the Transformer Base encoder to match the number
in our model’s parameters. Results related to this
experiment are shown in Table 5.
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Model # Params En→De (WMT)

Transformer Base (Vaswani et al., 2017) 65.0 M 27.30
+ Relative PE (Shaw et al., 2018b) N/A 26.80
+ Explicit Global Reordering Embeddings (Chen et al., 2020) 66.5 M 28.44
+ Reorder fusion-based source representation (Chen et al., 2020) 66.5 M 28.55
+ Reordering Embeddings (Encoder Only) (Chen et al., 2019) 102.1 M 28.03
+ Reordering Embeddings (Encoder/Decoder) (Chen et al., 2019) 106.8 M 28.22

Transformer Base (our re-implementation) 66.5 M 27.78
Dynamic Position Encoding (λ = 0.5) 72.8 M 28.59

Table 3: A BLEU score comparison of DPE versus other peers.

Model WMT’14 En→ De

Baseline 27.78
DPE (λ = 0.1) 28.17
DPE (λ = 0.3) 28.16
DPE (λ = 0.5) 28.59
DPE (λ = 0.7) 27.98

Table 4: BLEU scores of DPE with different λ values.

Model WMT’14 En→De

Baseline 27.78
8E 28.07
10E 28.54

DPE (N = 2) 28.59 (+ 0.81)

Table 5: A BLEU score comparison of DPE with the
baseline Transformer models plus additional encoder
layers (8E for 8 encoder layers and 10E for 10 encoder
layers)

The comparison of DPE with the different exten-
sions of the Transformer Base, namely 8E (8 en-
coder layers) and 10E (10 encoder layers), demon-
strated that the increase in BLEU was due to the
position information provided by DPE rather than
the additional parameters of the DPE layers. In 8E,
we provided the same number of additional param-
eters as the DPE module adds, but experienced less
gain in translation quality. In 10E, we even dou-
bled the number of additional parameters to surpass
the number of parameters that DPE uses, and yet
the DPE extension with 8 encoding layers (two for
pre-reordering and six from the original translation
encoder) was still superior. This reinforces the idea
that our DPE module improves translation accu-
racy by injecting position information alongside
the encoder input.

4.5 Experimental Results on Other Languages
In addition to the previously reported experiments,
we evaluated the DPE model on different IWSLT-
14 datasets of English–German (En–De), English–
French (En–Fr), and English–Italian (En–It). After
tuning with different position loss weights on the
development set, we determined λ = 0.3 to be
ideal for this setting. The results in Table 6 show
that with DPE, the translation accuracy improved
for different settings and the improvement was not
unique to the En–De WMT language pair.

Our DPE architecture works with a variety of
language pairs of different sizes and this increases
our confidence in the beneficial effect of order in-
formation. It is usually hard to show the impact of
auxiliary signals in NMT models and this could be
more difficult with smaller datasets, but our IWSLT
results are promising. Accordingly, it would not be
unfair to claim that DPE is useful regardless of the
language and dataset size.

5 Conclusion and Future Work

In this paper, we first explored whether Transform-
ers would benefit from order signals. Then, we
proposed a new architecture, DPE, that generates
embeddings containing target word position infor-
mation to boost translation quality.

The results obtained in our experiments demon-
strate that DPE improves the translation process by
helping the source side learn target position infor-
mation. The DPE model consistently outperformed
the baselines of related literature. It also showed
improvements with different language pairs and
dataset sizes.

5.1 Future Work
Our experiments can provide the groundwork for
further exploration of dynamic position encoding in
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Model En→De En→Fr En→It

Transformer 26.42 38.86 27.94
DPE-based Extension 27.47 (↑ 1.05) 39.42 (↑ 0.56) 28.35 (↑ 0.41)

Table 6: BLEU results for different IWSLT-14 Language pairs.

Transformers. First, we acknowledge that there are
some extensions to our current work. Additional
rules can be designed to handle different cases of
word alignments generated by FastAlign. For
example, cases such as Many-to-Many alignments
and multi-word expressions are also frequently
found in written text. Another possible extension
would be to investigate more precise alignment
tools in addition to FastAlign. However, it is
important to note that we did not heavily invest
in linguistic preprocessing because it requires too
many resources. Extremely precise preprocessing
might not be necessary as neural models are ex-
pected to still solve problems with limited access
to domain information. When considering other
alignment tools, we must also consider the effi-
ciency and scalability of our solution.

Finally, we plan to explore injecting order in-
formation into other language processing models
through DPE or a similar mechanism. Such infor-
mation seems to be useful for tasks such as depen-
dency parsing or sequence tagging.
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Abstract

While end-to-end neural machine translation
(NMT) has achieved impressive progress, noisy
input usually leads models to become fragile
and unstable. Generating adversarial exam-
ples as the augmented data has been proved
to be useful to alleviate this problem. Exist-
ing methods for adversarial example generation
(AEG) are word-level or character-level, which
ignore the ubiquitous phrase structure. In this
paper, we propose a Phrase-level Adversarial
Example Generation (PAEG) framework to en-
hance the robustness of the translation model.
Our method further improves the gradient-
based word-level AEG method by adopting
a phrase-level substitution strategy. We ver-
ify our method on three benchmarks, includ-
ing LDC Chinese-English, IWSLT14 German-
English, and WMT14 English-German tasks.
Experimental results demonstrate that our ap-
proach significantly improves translation per-
formance and robustness to noise compared to
previous strong baselines.

1 Introduction

Recently, neural machine translation (NMT) has
effectively improved translation quality. NMT
has shown state-of-the-art performance for many
language pairs (Wu et al., 2016; Hassan et al.,
2018; Vaswani et al., 2017). Various architec-
tures (Sutskever et al., 2014; Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017) bring
many appealing properties. Most NMT systems
heavily rely on high-quality parallel data and per-
form poorly in noisy input. With the noise rising
in the source sentence, NMT tends to be more vul-
nerable (Szegedy et al., 2014; Goodfellow et al.,
2015), due to the output prediction of the decoder
easily intervened by the other words (Cheng et al.,
2018). A slight disturbance like a random permu-
tation can damage the translation quality dramati-

∗Equal Contribution.
†Corresponding author.

Original
Sentence

A cooked hot dog in a bun with
ketchup and relish.

Word-level
AEG

A cooked warm dog in a bun
with ketchup and relish.

Phrase-level
AEG

A cooked sausage rolls in a bun
with ketchup and relish.

Table 1: An example of adversarial example generation
(AEG). When the word “hot” is selected, word-level
adversarial example generation method substitutes “hot”
to “warm”. The phrase-level method substitutes the
whole phrase “hot dog” to “sausage rolls”.

cally (Belinkov and Bisk, 2018). Even replacing a
word with a synonym in the source input, the NMT
model can be cheated and the target output can not
be translated correctly.

To improve the robustness of the NMT model,
previous works propose to construct the adversar-
ial examples by manipulating hidden features or
discrete text input. These adversarial examples
are used as augmented data for the training of the
NMT model. To attack hidden features, Cheng
et al. (2018) added perturbations in the input at the
feature level for adversarial stability training. To
generate discrete adversarial input, Ebrahimi et al.
(2018) employed differentiable string-edit opera-
tions to rank adversarial changes. Belinkov and
Bisk (2018) and Vaibhav et al. (2019) emulated
naturally occurring errors in clean data as synthetic
noise. Cheng et al. (2019) proposed a gradient-
based method to craft adversarial examples, con-
sidering the similarity between the gradient related
to the translation loss of input and the embedding
difference of words.

Previous methods of adversarial example gener-
ation (AEG) are limited at the low level, like word-
level, not considering the relationship between dif-
ferent words within a phrase. There is one example
in Table 1. The word-level AEG method selects a
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vulnerable position then substitutes the correspond-
ing word, omitting that the substituted word is in a
phrase. Sometimes, the examples of this improper
substitution can even harm the translation model.

Therefore, we propose a phrase-level adversar-
ial example generation (PAEG) method, which im-
proves a gradient-based word-level AEG method
to phrase-level. Specifically, this method builds
phrase-level candidates efficiently and substitutes
phrases wholly with these candidates. We also
propose to further improve this method with a bidi-
rectional generation algorithm, as target-to-source
adversarial pairs are a kind of slight perturbation of
the original source-to-target translation. In practice,
we generate adversarial examples after fixed inter-
vals of NMT model updating (to convergence) and
use them as new augmented data for the continual
training of the model.

To verify the effectiveness of our method, we
conduct experiments on three common bench-
marks, i.e, LDC Chinese-English, IWSLT14
German-English, and WMT14 English-German.
Experimental results demonstrate our method
achieves significant improvements on translation
quality and robustness to noisy inputs over the pre-
vious baselines including outstanding adversarial
examples generation methods.

2 Phrase-level Adversarial Example
Generation

In this section, we formulate the problem of adver-
sarial example generation mathematically. First,
our proposed method provides reliable candidates
with the pre-trained model. Then, we use the
gradient-based method to select vulnerable posi-
tions and substitutes at phrase level to generate
adversarial examples. These examples are used as
augmented data for the training of the NMT model.
To further improve the performance, we extend our
method to the bidirectional generation.

2.1 Problem Formulation

Let A = {(x, z), y} denotes the training data in
NMT, where (x, z) are the encoder input and the
decoder input, y the corresponding decoder out-
put. To generate the corresponding adversarial ex-
amples B = {(x′, z′), y}, where only the input
is slightly different from A, we need to limit the
adversarial input (x′, z′) semantically close to the
original data.

Adversarial examples aim to cheat the model,

Algorithm 1 Phrase-level Adversarial Example
Input: {(x, z), y} denotes input and output, θsl and
θtl denote parameters of LMs, θm denotes parame-
ters of the model, D denotes the phrase dictionary.
Output: phrase-level adversarial input: (x′, z′).

1: Compute {gxi}
|x|
i=1 with x, z, y by Eq.(2).

2: posx ←− positions of maximal {||gxi ||2}
|x|
i=1

3: for i in posx do
4: Get cand(xij) by D and θsl .
5: Substitute xij to x′ij as Eq.(4).
6: end for
7: Compute {gzi}

|z|
i=1 with x′, z, y by Eq.(2).

8: Get attention matrixM by x′, z, y, and θm.
9: Compute {P (j)}|y|j=1 withM by Eq.(3).

10: posz ←− sampling by {P (j)}|y|j=1

11: for i in posz do
12: Get cand(zij) by D, θtl and θm.
13: Substitute zij to z′ij as Eq.(4).
14: end for
15: return (x′, z′)

making it predict wrong words. Therefore, given
real output words y, we construct an input to make
the model predict the incorrect word y′(y′ ̸= y).
The process of adversarial example generation in
NMT can be formulated as solving the following
optimization problem:

{(x′, z′) : argmax
(x′,z′)

P (x′, z′; y, θ),

dist((x′, z′), (x, z)) < ϵ} (1)

where dist is a measure function of the input, such
as the semantic distance of sentence embeddings or
edit distance, P (x′, z′; y, θ) is the maximal proba-
bility that the model predicts a wrong word y′ such
that y′ ̸= y when the model is fed with (x′, z′), θ is
the model parameters, and ϵ is a sufficiently small
distance.

2.2 Phrase Candidates from PLM

To guarantee the generated example (x′, z′) is simi-
lar to the original example (x, z), two aspects are
taken into account. One aspect is that the informa-
tion in sentences should not change a lot. The other
is to guarantee that words are similar. Therefore,
high-quality candidates for words or phrases to be
substituted should have similar semantic meanings
to their original ones and be more fluent in the
whole sentence.
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To achieve this, one intuitive method is to select
words with maximal prediction probability in the
language model (LM), since LM predicts words
based on the context. Cheng et al. (2019) uses a
bidirectional LM trained on the monolingual part
of the parallel corpus. However, a high-quality LM
often needs billions of monolingual data to train
like BERT (Devlin et al., 2019). It is unacceptable
to spend much time and computational resources
training reliable LMs. Therefore, we propose to
utilize the knowledge of the pre-trained LM (PLM).
In this paper, we use BERT as PLM.

In our paper, we use the notation xij as the
phrase from position i to j in sentence x, cand(xij)
as the phrase candidates of phrase xij . When i = j,
xij indicates the word xi and cand(xij) indicates
the word candidates cand(xi). Besides, we use Dn
as the n-gram phrase dictionary and D the union
set of all Dn.

In the ith position of the source input, we con-
struct cand(xi) by selecting the top ns tokens with
maximal prediction probability in BERT when fed
with x, where xi is masked. For the target input
side, candidates consist of two parts. The first part
is from BERT, which provides with nlt candidates.
The second part is from the trained NMT model,
which provides with nmt candidates. In this way,
the candidate set cand(zj) of target input side con-
sists of words fluent in the sentence and words
conforming the translation of x. In this paper, we
set nls = 10 and nlt = nmt = 5.

Given a phrase xij , we construct phrase-level
candidates cand(xij). We first build the set of all
probable phrase candidates as the Cartesian prod-
uct of all cand(xk) (k = i, i + 1, . . . , j). Then,
we screen out unreasonable phrase candidates by
the phrase dictionary D. Candidates not in this
dictionary are discarded.

To obtain the phrase dictionary D, we introduce
two methods. The first one is to use the syntax
parser to parse the sentence into a syntax tree.
Then, the leaf nodes of an n-leaf subtree is an
n-gram phrase. The phrase dictionary D is the
union of these n-gram phrase dictionary Dn. The
second method is to utilize the existing phrase ex-
traction tool directly. In this paper, we take both
of these two methods. The syntax parser we used
is nltk.parse1 and n = 2, 3, 4. The phrase
extraction tool we used is TextBlob2.

1https://www.nltk.org
2https://textblob.readthedocs.io/en/

dev/

2.3 Select Vulnerable Positions

Instead of randomly selecting positions, we pro-
pose that the adversarial examples should select the
most vulnerable positions in the sentence. Given
a certain sentence, some NMT models may get
worse translations when certain words or phrases
are substituted.

Given that we train an NMT model with param-
eters θm and use negative log likelihood as the loss
function with the input x, z and the output y, we
can get the gradient vector gxi of token xi over the
training loss:

gxi = ∇e(xi) − logP (y|x, z; θm) (2)

where e(xi) is the embedding vector of token xi.
Previous methods randomly choose positions in

the source input. Since different positions have
different gradient norms ||gxi ||2, if the gradient
norm is large, the position is more unstable. There-
fore, positions with large gradient norm are more
vulnerable. For the source input, we select the top
αs|x| positions with maximal gradient norm, where
αs ∈ (0, 1) is a ratio. 3

To construct the target input z′, we teach the
model how to defend the attack from the source x′.
It is a reason that we choose nmt candidates from
the NMT model on the target side. Selected target
side positions should have the target counterpart
of substituted source words in x′. For example, if
we substitute the word “drawing” to “eating” in
the source input “Cezanne loved drawing apples
.” (“Cezanne malt gerne äpfel .” in German), then
we need to find the position of the corresponding
translation “drawing” (“malt”) and substitute it to
an English word related to “eating”, such as “isst”.

This process is the inverse process of attention in
NMT. Following (Cheng et al., 2019), we sample
αt|y| (αt ∈ (0, 1)) relevant words influenced by
the perturbed words in the source input x′ as by
sampling function P (·):

P (j) =

∑
iMijδxi ̸=x′i∑

k

∑
iMikδxi ̸=x′i

, j = 1, . . . , |y| (3)

whereMij is the value of attention matrix between
token xi and token yj from NMT model, δxi ̸=x′i is
1 if xi ̸= x′i and 0 otherwise.

3The experimental results of how to choose positions are
discussed in Appendix A.1.
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2.4 Phrase-level Substitution

Since words in the same phrase have a close re-
lationship, we substitute words at phrase level in
the adversarial example generation. There are two
aspects to consider. First, since synonymy phrases
sharing the same meaning may have variant lengths,
the feature representation of a phrase should be ir-
relevant to the length of the phrase. Besides, we
need to choose the phrase from the candidate set
that disturbs the model the most.

For the first consideration, we simply extract
phrase-level features by averaging the word em-
beddings. For the second aspect, we adopt the
gradient-based approach in (Cheng et al., 2019). To
represent the whole gradient of the phrase, we also
average all the gradients of words. Other feature
engineering methods like max-pooling, concatena-
tion, and element-wise product are also viable.

Formally, for the substitution of phrase xij , the
greedy approach based on the gradient is:

x′ij = argmax
c∈cand(xij)

sim(fe(c)− fe(xij), fg(c)) (4)

where sim is the similarity function, fe is the fea-
ture representation of the phrase, fg is the feature
representation of the gradient of the phrase, and
cand(xij) the phrase candidates of xij . In this pa-
per, we use the “average” function for fe and fg 4

and cosine similarity as the similarity function.
Our phrase-level adversarial example generation

process is shown in Algorithm 1. During the train-
ing of the NMT model, we generate adversarial
examples periodically as augmented data. Note
that we do not need training LMs for the source
and target languages.

2.5 Bidirectional Generation

In practice, reversed adversarial examples from
target-to-source translation can also be used as
augmented data for the source-to-target translation.
Therefore, we introduce a bidirectional generation
method to boost our phrase-level adversarial exam-
ple generation method.

Our bidirectional generation has two translation
directions, source-to-target, and target-to-source.
We use a universal encoder and decoder for these
two directions as (Johnson et al., 2017). From the
original data, we generate the adversarial examples
for two directions. In each iteration, the adversarial

4The reason for using “average” function is explained in
Appendix A.2.

Algorithm 2 Bidirectional Generation
Input: {(x, zl), y} denotes source-to-target input
and output. {(y, zr), x} denotes target-to-source
input and output. Gen is the adversarial examples
generator.
Output: augmented source-to-target data Dl and
target-to-source data Dr.

1: Compute {gxi}
|x|
i=1 with x, z, y by Eq.(2).

2: Dl ←− {(x, zl), y}, Dr ←− {(y, zr), x}.
3: x′, z′l ←− Gen(x, zl), y′, z′r ←− Gen(y, zr)
4: Add {(x′, z′l), y}

⋃{(z′r, y′), y} to Dl and
add {(y′, z′r), x}

⋃{(z′l, x′), x} to Dr.
5: return (Dl, Dr)

examples are reversed and added to the dataset.
The model is trained on the augmented dataset.

Formally, we notate (x, zl, y) as the encoder in-
put, decoder input and decoder output for source-
to-target translation, (y, zr, x) as the encoder in-
put, decoder input and decoder output for target-to-
source translation. After generating the adversarial
examples, we get (x′, z′l, y) and (y′, z′r, x). Then,
the adversarial examples input are reversed and
added to the training data of the other direction.
For source-to-target training, we have three pairs
of data (x, z, y), (x′, z′l, y), (z

′
r, y′, y). They are re-

spectively the original training data, the adversarial
examples and the reversed adversarial examples
from the other direction.

The phrase-level adversarial example generation
of these two directions help mutually during the
training. Our bidirectional generation algorithm is
shown in Algorithm 2. It is worth noting that, in
general, the training time of PAEG is not as much
as double of PAEG without bidirectional genera-
tion, as the data from bidirectional generation has
a similar distribution of the original adversarial
samples.5

3 Experiments

We evaluate our method on three datasets, LDC
Chinese-English, IWSLT14 German-English, and
WMT14 English-German translation datasets.
Then, we compare our method with baselines. At
last, we do a detailed analysis of the different com-
ponents of our method.

Limited by the number of pages, we have in-
cluded the description of three datasets and the

5There are more discussions about time consumption of
bidirectional generation in Appendix 4.

5088



Method MT06 MT02 MT03 MT05 MT08 MT12 Avg.

Transformer (Vaswani et al., 2017) 43.52 43.17 44.06 44.45 36.27 35.07 41.09
Multilingual NMT (Johnson et al., 2017) 43.54 43.46 44.63 44.40 36.13 35.00 41.19

Word Dropout (Sennrich et al., 2016)† 43.96 44.02 44.55 44.70 36.49 35.33 41.51
SwitchOut (Wang et al., 2018a)† 43.83 44.36 45.02 44.85 36.53 35.45 41.67
AdvGen (Cheng et al., 2019)† 44.74 45.12 46.49 45.95 37.29 36.02 42.60

PAEG (this work)† 45.49 45.76 47.58 46.83 38.18 36.91 43.46

Table 2: Case-insensitive BLEU-4 scores (%) on LDC Zh→En task. Our method is compared with other baselines
and Transformer_base model. Methods with “†” use adversarial examples for training.

Method BLEU

Transformer (Vaswani et al., 2017) 34.20
Multilingual NMT (Johnson et al., 2017) 34.13
NT2MT (Feng et al., 2018) 31.75
LightConv (Wu et al., 2019) 34.80
DynamicConv (Wu et al., 2019) 35.20

Word Dropout (Sennrich et al., 2016)† 34.72
SwitchOut (Wang et al., 2018a)† 34.83
AdvGen (Cheng et al., 2019)† 35.25

PAEG (this work)† 35.65

Table 3: Case-insensitive BLEU-4 scores (%) on
IWSLT14 De→En task. Our method is compared with
other baselines and Transformer_small model. Methods
with “†” use adversarial examples for training.

Method BLEU

Transformer (Vaswani et al., 2017) 28.40
Multilingual NMT (Johnson et al., 2017) 29.11
RNMT+ (Chen et al., 2018) 28.49
LightConv (Wu et al., 2019) 28.90
DynamicConv (Wu et al., 2019) 29.70

Word Dropout (Sennrich et al., 2016)† 29.30
SwitchOut (Wang et al., 2018a)† 29.40
AdvGen (Cheng et al., 2019)† 30.01

PAEG (this work)† 30.49

Table 4: Case-insensitive BLEU-4 scores (%) on
WMT14 En→De task. Our method is compared with
other baselines and Transformer_big model. Methods
with “†” use adversarial examples for training.

training details in the Appendix B and Appendix C
respectively.

3.1 Comparisons to Baseline Methods

We compare our method with NMT models without
adversarial examples (Non-adv NMT) and using
adversarial examples (Adv NMT). Our method gets
significant translation improvement by statistical
significance testing (p < 0.05) compared to rele-
vant baselines.

Non-adv NMT Multilingual NMT (Johnson
et al., 2017) is implemented with the Trans-
former model as the universal encoder and decoder.
NT2MT (Feng et al., 2018) uses a phrase atten-
tion mechanism with backbone model LSTM. We
report the maximal result with out-of-domain dic-
tionaries in the paper. RNMT+ (Chen et al., 2018)
is an enhanced version of RNN-based NMT model.
LightConv (Wu et al., 2019) uses a lightweight
convolution performing competitively to the Trans-
former. DynamicConv (Wu et al., 2019) leverages
a dynamic convolution predicting separate convo-
lution kernels.

Adv NMT Word Dropout (Sennrich et al., 2016)
drops words randomly. We implement it on
the token level, as recommended by the paper.
SwitchOut (Wang et al., 2018a) randomly replaces
words in both the source and target sentence with
words from the vocabulary. We implement the
hamming distance sampling method in the paper.
AdvGen (Cheng et al., 2019) is an adversarial ex-
ample generation method at the word-level. This
method uses doubly adversarial input. We imple-
ment this method with the Transformer backbone,
αs = 25%, αt = 50% for LDC Chinese-English
task, and αs = 20%, αt = 20% for IWSLT14
German-English and WMT14 English-German.

Table 2 demonstrates the comparisons between
our method with the above five baseline methods
on LDC Chinese-English translation task. First,
we compare our method with the Transformer. On
average, PAEG can improve +2.37 BLEU points
significantly. Then, we compare our method with
methods of training with adversarial examples. On
average, adversarial example generation methods
(AdvGen and PAEG) utilizing the training informa-
tion of the model greatly surpass the other methods
(Word Dropout and SwitchOut). The reason is that
the former approach is better at attacking vulnera-
ble parts of the NMT model. Compared with the
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Method MT06 MT02 MT03 MT05 MT08 MT12 Avg.

PAEG 45.49 45.76 47.58 46.83 38.18 36.91 43.46
w/o bidirectional generation 45.52 45.53 46.96 46.72 38.10 36.85 43.24
w/o phrase-level substitution 44.03 44.02 45.63 45.35 37.21 35.51 41.96
w/o candidates from BERT 43.52 43.17 44.06 44.45 36.27 35.07 41.09

Table 5: Experiments on LDC Zh→En dataset to analyze the effect of different components of PAEG. We removed
three components of PAEG step by step. The results show that phrase-level substitution is the most effective part.

state-of-the-art AEG method AdvGen, PAEG gets
an improvement of +0.86 BLEU points.

In Table 3, we compare our method with the
above eight baseline methods on the IWSLT14
German-English translation task. Compared with
the backbone model Transformer, PAEG gets the
gain of +1.45 BLEU points. Compared with meth-
ods built on top of Transformer, NT2MT (Feng
et al., 2018) with out-of-domain dictionaries suf-
fers from a worse backbone model (LSTM). Mul-
tilingual NMT (Johnson et al., 2017) has a similar
performance to the Transformer model. Compared
with the other methods of training with adversarial
examples, PAEG has the best performance. PAEG

gets +0.8∼0.9 BLEU points improvement com-
pared with AEG methods which do not leverage
the training information of the model.

The comparisons on the WMT14 English-
German task are in Table 4. Compared with Trans-
former_big model, PAEG has a notable gain of
+2.09 BLEU points. PAEG consistently outper-
forms all three baselines training with adversarial
examples, having around +0.5∼1.0 BLEU points
improvement in this commonly used dataset.

3.2 Ablation Studies

Our proposed method PAEG is mainly affected by
three components, the use of the pre-trained model,
the phrase-level substitution, and the bidirectional
adversarial example generation. We analyze the
different components of PAEG by ablation studies.

Effect of Phrase-level Substitution We use the
phrase-level substitution and there is +1.28 BLEU
points improvement in Table 5, which is signifi-
cant. Substituting words randomly from the top
10 word-level candidates can not guarantee consis-
tency between words. What is worse is that random
substitution may destroy the phrase structure and
semantic consistency in the sentence.

For common languages, such as Chinese, En-
glish, and German, the ratio of phrases is non-
negligible. Substituting at the phrase level does
make the adversarial input more fluent and thus

(a) (b)

Figure 1: Results on (a) random replacement noise and
(b) random switch noise.

more closely approximates the real-world data. In
this way, our method can teach the model to defend
against the attack on the target side better.

Effect of PLM To find out the impact of the pre-
trained model, we use BERT to generate pseudo
data. In Table 5, with the use of the pre-trained
model BERT, the Transformer model has +0.87
BLEU points improvement. This proves that BERT
provides more reliable candidates by pre-training
on amounts of data. Compared with the LMs
trained on millions of monolingual data, BERT can
significantly leverage the contextual information to
make the candidates appear fluent in the sentence.

Effect of Bidirectional Generation In Table 5,
we add the bidirectional generation method to
PAEG and there is +0.22 BLEU points improve-
ment. This shows that the bidirectional generation
has slight improvements. Considering that PAEG
(without bidirectional generation) itself achieves
a high BLEU score, the further improvement of
bidirectional generation cannot be ignored.

3.3 Robustness to Noisy Inputs

To compare the robustness of different NMT mod-
els, we conduct three groups of experiments to
simulate machine translation scenarios with noisy
inputs by word replacement and switch. All ex-
periments are conducted in the WMT14 English-
German test set. Our method is compared with
the representative word-level augmentation method
AdvGen with the Transformer_big backbone.
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(a) (b)

Figure 2: Results on (a) word-level most similar syn-
onym noise and (b) word-level least similar synonym
noise.

Random Word Replacement/Switch Noise We
first simulate the random replacement and switch
noise, where a specific proportion (γ) of posi-
tions of the source sentence are selected uni-
formly and replace with random words in the
source vocabulary (also uniformly). Such phe-
nomenon is common in real-world scenarios, like
onomatopoeia in speech recognition. We set
γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} to indicate the level
of noise and test the sensitivity of NMT models in
Figure 1(a) and Figure 1(b).

The analytic results show that our method PAEG

improves the robustness of NMT models more than
AdvGen, both to random replacement noise and
switch noise. When the ratio of noise increases, the
BLEU improvement gets consistently larger, which
proves the effectiveness of PAEG. When the ratio
of noise is high (0.7∼0.9), both methods degen-
erate into random translation machines. It can be
attributed that excessive random noise impairs the
source-side encoding.

Word-level Synonym Noise Another common
noise in the translation system is synonym sub-
stitution, where the translation system is required
to translate sentences consistently with subtle syn-
onym difference. We first simulate this scenario
with moderate word replacements. The selection
of noisy positions is the same as random word re-
placement. Each to-be-replaced word matches the
top 5 similar words by word similarity as the candi-
date set.6 We add the most/least similar synonym
noise by selecting the most/least similar word in the
candidate set as the replacement. The noise ratio
γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and sensitivity results
are in Figure 2(a) and Figure 2(b).

The noise-BLEU curves have almost the same
trend as random word replacement, which again

6We use word embedding cosine similarity by pre-trained
word embeddings GloVe (100 dimension) from flairNLP.

(a) (b)

Figure 3: Results on (a) phrase-level most similar syn-
onym noise and (b) phrase-level least similar synonym
noise.

Word Type Word-level Phrase-level

NP (%) 18.69 20.11 (+1.42)
VP (%) 7.56 7.48 (-0.08)
PP (%) 16.43 17.53 (+1.10)

ADJP (%) 1.76 1.98 (+0.22)

Table 6: Experiments on the LDC Zh→En task to
compare the phrase-level and word-level AEG methods
by the ratio of noun/verb/prepositional/adjective phrases
(NP/VP/PP/ADJP), in the hypothesis.

proves the superior robustness of PAEG over Adv-
Gen at word-level synonym noises. This is under-
standable because PAEG is inclusion of word-level
alternatives.

Phrase-level Synonym Noise In addition, we
would like to verify how robust our method is to
phrase-level synonym noises, where phrase struc-
tures are destroyed by word-level synonyms re-
placement, such as the case in Table 1. For
this purpose, we select ϵ ratio of phrases uni-
formly and replace them with similar words in
the source language vocabulary. The noise ratio
ϵ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 3(a) and Fig-
ure 3(b) show that with the increase of phrase-level
noise, PAEG gets more BLEU improvement both
in most and least similar synonym noise settings.
Our method is more resistant to the destruction
of phrase structures, which is proved again in the
following section.

3.4 Analysis of Phrase-level Substitution

Phrase-level substitution shows remarkable im-
provement of the BLEU scores on average. In
this subsection, we analyze the translation details
and discuss the reason for such an improvement.

Phrase Translation First, we make the statistics
of the ratio of phrases η of the (generated) hypoth-
esis in LDC Chinese-English translation in Table
6. In a text x, the ratio of phrases η is defined as
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Original SRC:对正在实施的(家庭/family)(暴力/violence)，(受害人/victim)可以(请求/ask)公安(机关/organ)救助。
TGT: With regard to ongoing family violence, the victim may ask the public security organ for help.

AdvGen SRC:对正在实施的(家庭/family)(迫害/abuse)，(受害人/victim)可以(要求/require)公安(机关/organ)救助。
TGT: With regard to ongoing family abuse, the victim may require the public security organ for help.

PAEG SRC:对正在实施的(家庭/family)(虐待/abuse)，(受害人/victim)可以(请求/ask)公安(警察/police)救助。
TGT: With regard to ongoing

:::::::::
domestic

::::::
abuse, the sufferer may ask the public security police for help.

Table 7: Comparison of our PAEG method and AdvGen method on the LDC Zh→En dataset. Tokens with underline
are substituted by the model as a word. Tokens with wave lines are substituted by the model as a phrase entirely.
Chinese tokens and their English counterparts are in brackets (Chinese/English).

N -gram Word-level Phrase-level

1-gram BLEU 79.56 79.78 (+0.22)
2-gram BLEU 52.87 53.59 (+0.72)
3-gram BLEU 34.49 35.65 (+1.16)
4-gram BLEU 24.22 25.03 (+0.81)

Table 8: Experiments on the LDC Zh→En to compare
the phrase-level and word-level AEG method in n-gram
BLEU scores. Phrase-level method improves n-gram
(n > 1) BLEU scores more.

the sum of the phrase lengths in x divided by the
text length |x|. For the word-level AEG method,
the η of noun phrases (NP) is 18.69% on average.
While for the phrase-level method, the ratio of NP
is remarkably 20.11%(+1.42%). Besides, the η of
prepositional phrases (PP) also increases 1.1% by
phrase-level substitution.

These results show that the NMT model trained
on PAEG considers more about phrases, especially
NP and PP. Phrase-level substitution prevents the
damage to the structure of phrases, guarantee the
normal ratio of phrases in the augmented dataset,
and thus teaches the decoder to generate phrases.

N -gram Accuracy Besides, we analyze the im-
provements for different n-gram BLEU scores in
Table 8. PAEG improve the 3-gram BLEU greatly
(+1.16 points) over the word-level method. 2-gram
and 3-gram BLEU also get moderate improve-
ments (+0.7∼0.8 points), much greater than 1-gram
BLEU. These results verify that, using phrase-level
strategy, longer grams can be translated more accu-
rately (to match the phrases in the references).

Case Study In Table 7, there is a case of the ex-
ample generating process from the LDC dataset.
On the target side, AdvGen substituted “violence”
to “abuse”. PAEG selected the 6-th position of the
target sentence and substituted “family violence” to
“domestic abuse” entirely. Though “family abuse”
does not violate the original meaning, the substitu-
tion “domestic abuse” is more reasonable.

4 Related Work

Adversarial training for neural networks has been
studied recently (Szegedy et al., 2014; Goodfellow
et al., 2015). Similar ideas are applied into nat-
ural language processing (Goyal et al., 2016; Li
et al., 2017; Yang et al., 2018; Cheng et al., 2018,
2019, 2020; Namysl et al., 2020; Croce et al., 2020;
Wang et al., 2020a; Zang et al., 2020; Ding et al.,
2020). Specifically, adversarial example generation
(Fadaee et al., 2017; Ebrahimi et al., 2018; Wang
et al., 2018b; Cheng et al., 2020; Zou et al., 2020;
Zheng et al., 2020; Hidey et al., 2020; Zhang et al.,
2021; Lai et al., 2022) is proved to be useful to
train a robust NMT system. Recently, Cheng et al.
(2019) adopted a gradient-based method to craft
adversarial examples at word level, using the adver-
sarial source input to attack while the target input
to defend the model.

Our bidirectional generation method is similar
to multilingual NMT training. Multilingual NMT
models (Dong et al., 2015; Luong et al., 2016; John-
son et al., 2017; Wang et al., 2020b; Zhang et al.,
2020; Zhu et al., 2020; Siddhant et al., 2020) are
trained over multiple language pairs with parameter
sharing, such as using the same encoder/decoder
for different source/target languages (Johnson et al.,
2017), using one encoder and separate decoders to
translate one language to multiple languages (Dong
et al., 2015), and sharing an attention mechanism
(Firat et al., 2016) across multiple language pairs.
In this work, we use the adversarial examples gen-
erated from the other direction to improve the ro-
bustness of the original translation direction.

5 Conclusion

In this work, we propose a phrase-level adversarial
example generation method. Our goal is to im-
prove the fluency of the adversarial examples. We
improve a gradient-based word-level method with
phrase-level candidate construction, overall substi-
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tution strategy, and bidirectional generation. We
verify our method on Chinese-English, German-
English, and English-German corpus, and the re-
sults show that PAEG can improve both translation
quality and robustness to noisy inputs significantly.
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A Details of PAEG

A.1 Vulnerable Positions

In this work, there is an assumption that substitut-
ing words in vulnerable positions (positions with
greater gradient norm) is more likely to add pertur-
bation to model training. In our experiments, we
have tried sampling the positions of source phrases
randomly and found that vulnerable positions is
better (+0.2∼0.3 BLEU points).

A.2 Phrase Embedding

In the experiments, “max-pooling” has been ex-
plored to get the phrase embedding/gradients from
word embedding/gradients, and it has a similar re-
sult as the “average” operation, within 0.2 BLEU
points. In the implementation, “max-pooling” is
slower than the “average” (using PyTorch 1.7),
therefore we choose “average” for convenience.

B Dataset

LDC Chinese-English Task This is a dataset
of 1.2M training sequence pairs. The LDC num-
bers are 2002E17, 2002E18, 2004T08, 2005T10,
2005T34, 2006E17, 2006T06, and 2008T187. We
choose the NIST 2006 as the validation set, which
has 1664 sentences, and the NIST 2002, NIST
2003, NIST 2005, NIST 2008, NIST 2012 as the
test sets, which contain 877, 919, 1082, 1357, 2190
sentences respectively.

IWSLT14 German-English Task This dataset
comes from translated TED talks. This dataset
contains roughly 160K pairs as the training set, 7K
pairs as the validation set, and 7K pairs as the test
set, respectively. We take the IWSLT14 test set as
the test set.

WMT14 English-German Task The training
data has 4.5M sentence pairs. We use the new-
stest2013 as the valid set and the newstest2014 as
the test set.

C Training Details

Our backbone model is the Transformer model
(Vaswani et al., 2017). The NMT model consists
of a Transformer encoder and a Transformer de-
coder. The pre-trained LM is BERT-based8. We

7https://catalog.ldc.upenn.edu/
byproject

8https://github.com/huggingface/
transformers

use nltk.parse to build the syntax tree and ex-
tract the phrases of length 2, 3, 4. Besides, we use
TextBlob to extract the noun phradses and merge
other phrases (from nltk.parse) to build the
phrase dictionary.

LDC Chinese-English Translation We use our
in-house Chinese word-breaker toolkit to segment
Chinese data. We use byte pair encoding (BPE) to
encode sentences with a shared token vocabulary
of 51K sub-word tokens. The size of the phrase vo-
cabulary is 1.2M for Chinese and 0.9M for English.
We limit the maximum sentence length up to 256
words. We apply Adam (Kingma and Ba, 2015)
with β1 = 0.9 and β2 = 0.98 to train models for
80 epochs and select the best model parameters ac-
cording to the model performance on the valid set.
We use Transformer_base setting: embedding size
as 512, feed-forward network (FFN) size as 2048,
attention heads as 8, learning rate as 0.1, batch
size as 6144, and dropout rate as 0.1. We use the
warm-up strategy with 4000 warm-up steps. We
report case-insensitive tokenized BLEU-4 scores
with Moses9.

IWSLT14 German-English Translation We
use BPE to encode sentences with a shared vo-
cabulary of 10K sub-word tokens. The phrase vo-
cabulary of German is of size 0.4M and English of
size 0.4M. We limit the maximum sentence length
up to 256 words. We apply Adam with β1 = 0.9
and γ2 = 0.98 to train models for 100 epochs and
select the best model parameters according to the
model performance on the valid set. We use Trans-
former_small setting: embedding size as 512, FFN
size as 1024, attention heads as 4, learning rate as
0.1, batch size as 6144, and dropout rate as 0.3.
We use the warm-up strategy with 4000 warm-up
steps.

WMT14 English-German Translation We use
BPE to encode sentences with a shared vocabulary
of 10K sub-word tokens. The phrase vocabulary
of German is of size 0.7M and English of size
0.4M. We limit the maximum sentence length up
to 256 words. We apply Adam with β1 = 0.9
and β2 = 0.98 to train models for 50 epochs and
select the best model parameters according to the
model performance on the valid set. We use Trans-
former_big setting: embedding size as 1024, FFN

9https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl
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size as 4096, attention heads as 16, learning rate
as 0.1, batch size as 6144, and dropout rate as 0.1.
We use the warm-up strategy with 4000 warm-up
steps.

D Training Time Analysis

Figure 4: Training time of NMT models. All experi-
ments on the three translation datasets are conducted on
8 NVIDIA 32G V100 GPUs and we set the batch size
to fill the GPU memory.

As our method uses augmented data, one con-
cern is whether the training time increases too
much. We record the time consumption of our
method as well as AdvGen and Transformer. All
experiments on the three translation datasets are
conducted on 8 NVIDIA 32G V100 GPUs and we
set the batch size to fill the GPU memory.

The results are shown in Figure 4. The exper-
iments show that AdvGen uses around the dou-
ble time of training a Transformer, as it trains two
(source and target) language models and generates
adversarial data. Our method utilizes a pre-trained
language model and thus saves the time of training
the language model. Our method without bidirec-
tional generation (BiGen) is faster than AdvGen.
Even using bidirectional generation, our method
is only slightly slower than AdvGen. Besides, the
training time of PAEG is not exactly double of that
of PAEG w/o BiGen, which is reasonable as the
data from bidirectional generation do not deviate
too much from the distribution of the original ad-
versarial samples.
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Abstract

Multi-modal neural machine translation
(MNMT) aims to improve textual level
machine translation performance in the
presence of text-related images. Most of
the previous works on MNMT focus on
multi-modal fusion methods with full visual
features. However, text and its corresponding
image may not match exactly, visual noise
is generally inevitable. The irrelevant image
regions may mislead or distract the textual
attention and cause model performance degra-
dation. This paper proposes a noise-robust
multi-modal interactive fusion approach with
cross-modal relation-aware mask mechanism
for MNMT. A text-image relation-aware
attention module is constructed through the
cross-modal interaction mask mechanism,
and visual features are extracted based on
the text-image interaction mask knowledge.
Then a noise-robust multi-modal adaptive
fusion approach is presented by fusion the
relevant visual and textual features for machine
translation. We validate our method on the
Multi30K dataset. The experimental results
show the superiority of our proposed model,
and achieve the state-of-the-art scores in all
En-De, En-Fr and En-Cs translation tasks 1.

1 Introduction

Multi-modal Neural Machine Translation (MNMT)
aims to optimize the conventional text-only ma-
chine translation systems by using multi-modal
information (eg., image, video, sound), which
has received growing research attentions in the
fields of CV and NLP, recently. A reasonable
assumption is that visual information is helpful
to improve textual-level machine translation (El-
liott et al., 2017; Barrault et al., 2018; Ye and Guo,
2022), and many studies have been carried out to
conduct the benefits of image for NMT (Caglayan

∗Corresponding author.
1https://github.com/nlp-mmt/Noise-robust-Text2image-

Mask

et al., 2019; Yin et al., 2020; Li et al., 2021a). As
expected, the fusion of visual information actually
improves the performance of machine translation
(Caglayan et al., 2019).

Most existing MNMT methods mainly focus
on how to design a excellent multi-modal fusion
framework to bridge the semantic gap between im-
age and text, while visual noise is often ignored.
Unfortunately, it is often difficult to obtain the
image that exactly match the textual information.
What is worse, image information and textual infor-
mation may even be weakly correlated with each
other. Visual noise is generally unavoidable(Li
et al., 2022; Yao and Wan, 2020). As shown in
Figure 1 (left), objects such as old man, brown
hat and bench included in the image, these visual
objects correspond to the ’old man’, ’brown hat’
and ’bench’ in the source sentence, which is the
useful visual information for machine translation.
However, the image also contains some irrelevant
visual information ( e.g., tree, flower, grasse) for
the source sentence, the mismatched visual-textual
information may distract the multi-modal fusion
and then lead to machine translation performance
decay. Therefore, it is necessary to consider noise-
robust text-image fusion problem for MNMT.

How to effectively and efficiently extract use-
ful visual information is one of the core issues of
MNMT, there are three main multi-modal fusion
methods: 1) Multi-modal attention mechanism,
such as cross-modal interactive attention mecha-
nism (Kwon et al., 2020; Song et al., 2021; Zhao
et al., 2021) and adaptive feature selection mech-
anism (Wang and Xiong, 2021; Zhao et al., 2022;
Li et al., 2022) between visual features and textual
features. 2) Multi-modal Transformer fusion meth-
ods, which utilizes Transformer to encode textual
features and visual features separately (Takushima
et al., 2019; Nishihara et al., 2020), and then a
multi-head cross-modal attention mechanism (Yao
and Wan, 2020; Gain et al., 2021; Li et al., 2021a) is
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Figure 1: An example of an En→Fr translation that
illustrates the need to consider for image noise in the
translation model.

adopted to integrate them. 3) Gating fusion meth-
ods (Yin et al., 2020; Lin et al., 2020; Li et al.,
2021b), which are leveraged to ensure both textual
semantic representations and visual semantic rep-
resentations are consistent with each other. Above
existing methods mainly focus on designing multi-
modal feature fusion architectures by leveraging
visual information to enhance traditional machine
translation, however, visual noise problem is ig-
nored.

This paper endeavors to address visual noise-
robust multi-modal fusion problem for MNMT, we
attempt to explore robust multi-modal interactive
fusion strategy with cross-modal relation-aware
mask mechanism for MNMT in Transformer frame-
work. Concretely, a text-image relation-aware at-
tention module is constructed in the visual trans-
former encoder by cross-modal interactive mask
mechanism, and the visual features are extracted
based on text-to-image interactive mask knowledge.
Then a noise-robust multi-modal fusion approach
is adopted to integrate visual features into seq2seq
framework more efficiently and effectively. Com-
paring with previous works, the major contribu-
tions of our paper are three-fold.

• A noise-robust multi-modal fusion approach
is proposed with cross-modal relation-aware
mask for MNMT. To the best of our knowl-
edge, it is the first attempt to explore mask-
based multi-modal representation for MNMT.

• A text-image relation-aware module is con-
structed with cross-modal interaction masking
mechanism to obtain text-image interaction
mask knowledge for noise-robust multi-modal
representation and fusion in noisy scenes.

• The extensive experimental results show that
our proposed model outperforms other state-
of-the-art MNMT approaches and signifi-
cantly improves machine translation perfor-
mance on En-De, En-Fr and En-Cs translation

tasks. Furthermore, we emphasize the inter-
pretability of the model, the in-depth analysis
of the experimental results show the effective-
ness of our proposed method.

2 Related Work

MNMT Early attempts mainly focused on RNN-
based encoder-decoder architecture with attention
(Huang et al., 2016; Calixto et al., 2017; Delbrouck
and Dupont, 2017). Recently, Transformer-based
seq2seq framework has achieved significant im-
provement for MNMT. Zhao et al. (2021) utilized
object detection features with an additional region-
dependent attention mechanism to fusion visual
regional features and textual features; Nishihara
et al. (2020) presented a supervised cross-modal
attention module to align textual features and vi-
sual features; Song et al. (2021) employed a co-
attention graph updating module at each Trans-
former encoder layer to align multi-modal features.
Yao and Wan (2020) used multi-modal Tranformer
to align both visual features and textual features;
Yin et al. (2020) proposed a graph-based MNMT
approach to extract multi-model features through
text-image gating attention mechanism; Lin et al.
(2020) adopted a gating mechanism to fuse visual
features extracted by a dynamic context-guided
capsule network;

All the above methods focus on multimodal fea-
ture fusion methods, and they assume that visual in-
formation is closely related to textual information,
which heavily restricts their robustness. However,
text and its corresponding image may not match
exactly, visual noise is generally inevitable. In this
work, we systematically investigate whether mask-
ing visual noise helps machine translation.

Mask Strategy Mask strategy is one of the most
effective ways of representation learning, which
has been widely used in vision and textual pre-
training models. We summarize the existing mask
strategies in the three aspects as follows: 1) Vision
mask-based pre-trained models (Li et al., 2021c;
Peng and Harwath, 2022; Xie et al., 2021), the
main purpose is to mask image patch-level for bet-
ter visual robust-representation learning. 2) Textual
mask-based pre-trained models (Joshi et al., 2020;
Fu et al., 2022; Devlin et al., 2019), the tokens of
the input sentences are randomly masked, and then
are predicted in decoder, which aims to generate
more fine-grained textual representations. 3) Cross-
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Figure 2: The overview of our proposed model, which consists of four components: (a) the image encoder to
encode visual information with cross-modal interactive attention mask mechanism based on Transformer encoder;
(b) the source sentence encoder to encode textual information; (c) the cross-modal gated fusion module to fuse
helpful visual features and textual features; (d) the decoder to generate target translation conditioned on encoded
textual features with helpful visual information;

modal mask-based pre-trained models (Li et al.,
2020; Zhou et al., 2021; Shin et al., 2022), both
text tokens and vision tokens are randomly masked,
which aims to learn multimodal representations
between vision and language in a pre-training man-
ner. The mask strategy has been shown effective
in many pre-training representation learning tasks.
Inspired by Li et al. (2021c), in this work, we try
to exploit the mask strategy to address the noise-
robust multi-modal fusion problem for MNMT.

3 Methodology

In this section, we introduce our proposed noise-
robust multi-modal neural machine translation ap-
proach, as illustrated in Figure 2. Our proposed
model is based on the structure of Transformer,
which contains four subnetworks, 1) source sen-
tence encoder, 2) image encoder with robust mask-
ing matrix, 3) cross-modal gated fusion module
and 4) target sentence decoder.

Without loss of generality, input words are em-
bedded via traditional embedding layer with po-
sition embedding. As an example, denote by
xj = {xj1, · · ·, xjn} and vj as the j-th data-pair

of source sentence input and its corresponding im-
age, respectively, where n is the source length
of xj . Formally, the source sentence representa-
tion Exj and visual representation Evj are calculated
as Exj = Embx(xj) and Evj = Embv(vj), where,
Embx is the textual embedding layer with both
word embedding and position embedding, Embv is
the visual feature extraction layer with Resnet-101,
Exj ∈ Rn×d1 and Evj ∈ Rm×m×d2 .

3.1 Source Sentence Encoder

As shown in the middle part of Figure 2, our en-
coder is employed the same as the conventional
multi-head Transformer encoder, and each en-
coder layer is composed of two sublayers: 1) self-
attention layer and 2) position-wise feedforward
network (FFN) layer. Concretely, we first employ
the multi-head self-attention module is used here
by taking the sourece textual representation as a
query/key/value matrix to establish word-to-word
interconnections, which can be expressed as,

Hl
xj = Multihead(Exj ,E

x
j ,E

x
j ) (1)

= Concat(head1
j , · · · , headMj ) (2)
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where, M denotes the number of heads,
Multihead(·) is a multi-head attention layer, l =
{0, · · · , 3} is the Transformer layer index. For-
mally, the output of Multi-head attention is com-
puted as follows:

head
c∈[1,M ]
j =

n∑

k=1

αik(ExjkWV
j,c) (3)

where n is the source length of xj , the weight coef-
ficient of αik is calculated by the softmax function:

αik = softmax
(

(ExjiW
Q
j,c)(ExjkWK

j,c)
T

√
d

)
(4)

where αik is the dot-product attention matrix of
the textual features and multi-modal features, WV

j,c,
WQ
j,c, WK

j,c are parameter matrices.
Then the position-wise Feed-Forward neural net-

work is used to update the state of each position of
the sequence for produce Flxj as follows:

Flxj = FFN(Hl
xj ) (5)

3.2 Image Encoder with Robust Masking
Matrix

As shown in the left part of Figure 2, our image
encoder layer is composed of two sublayers: 1) con-
ventional Transformer encoder and 2) cross-modal
visual encoder with mask. To reduce the number
of parameters of the proposed model, we only use
a single Transformer layer in image encoder.

3.2.1 Conventional Transformer Encoder for
Visual

The image feature is extracted by the pretrained
Resnet-101 models, and the image spatial feature
is 7×7×2048-dimensional vector with 49 local
spatial region features of each image. And we
then transfer them into a 49× d feature matrix by
linear transformation, where d denote the word-
embedding-dimensional. Then, an internal relation-
ship is established between the 49 image regions,
concretely, we generate the contextual representa-
tions Hvj of the 49 local spatial region features by
a conventional Transformer-encoder, which can be
expressed as,

Hvj = Multihead(Evj ,E
v
j ,E

v
j ) (6)

Fvj = FFN(Hvj ) (7)

Figure 3: cross-modal interaction attention mask mech-
anism module.

3.2.2 Cross-modal mask mechanism for visual
presentation

Inspired by Li et al. (2021c), in this section, we
will introduce the proposed cross-modal visual en-
coder with mask module. Specifically, to mask
irrelevant visual information before cross-modal
fusion, we propose a cross-modal interaction atten-
tion mask mechanism, as shown in figure 3. First,
cross-modal interaction of textual features and vi-
sual features is performed to compute the corre-
lations between 49 regional features and textual
features as follows:

Matrixvj = softmax
(Fvj × (Flxj )

T

√
d

)
(8)

Matrixxj = softmax
(Flxj × (Fvj )

T

√
d

)
(9)

where, Matrixvj ∈ R49×n denotes the attention of
49 local region features to each word of the paired
source sentence, Matrixxj ∈ Rn×49 denotes the
attention of each word of the source sentence on
the 49 local regions of the paired image.

Then we interactively compute Matrixvj and
Matrixxj as follows,

Maskj = Matrixvj ×Matrixxj (10)

where, Maskj denotes the correlation matrix be-
tween the 49 local regions of the image and corre-
sponding source sentences.

The mask matrix is generated according to the
importance of the local region information of the
image, which we set a threshold probr to control
the image region that needs to be masked. Thus we
have that

mr =

{
1, probr ≥ p, (r = {1, 2, · · · , 49})
0, probr < p

(11)

where, p is a hyper-parameter, which is leveraged
to mask unimportant visual region features, and it
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Multi30K En→De
Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

Existing MNMT Systems

VMMT (Calixto et al., 2019) 37.7 56.0 30.1 49.9 25.5 44.8
VAG-NMT (Zhou et al., 2018) - - 31.6 52.2 28.3 48.0
Del+Obj (Ive et al., 2019) 38.0 55.6 - - - -
DCCN (Lin et al., 2020) 39.7 56.8 31.0 49.9 26.7 45.7
MNMT+SVA (Nishihara et al., 2020) 39.9 58.1 - - - -
OVC+Lv (Wang and Xiong, 2021) - - 32.4 52.3 28.6 48.0
WRA-guided (Zhao et al., 2021) 39.3 58.3 32.3 52.8 28.5 48.5

Our Transformer-Based Systems

Transformer (NMT) (Vaswani et al., 2017) 40.96 58.35 32.59 51.21 29.16 48.37
Doubly-ATT (Arslan et al., 2018) † 41.44 59.08 33.15 52.34 29.22 48.41
Multimodal self-att (Yao and Wan, 2020) † 41.50 58.52 32.51 51.33 29.10 48.48
Gated Fusion MNMT (Yin et al., 2020) † 41.58 58.88 33.01 51.90 30.04 48.95

Our model 42.56 59.98 35.09 54.51 31.09 50.46

Table 1: Comparison results on Multi30k En→De task on BLEU and METEOR metrics. † means to reproduce
previous multi-modal fusion method based on our Transformer systems. Best results are highlighted in bold.

is a scalar. Our strategy ensures that each image
always presents the most relevant visual region to
the corresponding source textual. Then convert the
image area of mr = 0 to false, and mr = 1 to true,
which we construct a mask knowledge matrix.

Finally, we employ cross-modal visual encoder
with mask to obtain effective visual information,
thus we have

Ĥvj = Multihead-mask(Fvj ,Fvj ,Fvj )(12)

F̂vj = FFN(Ĥvj ) (13)

where Multihead-mask(∗) denote the self-attention
with mask knowledge, the purpose of Multihead-
mask is to mask weakly correlated visual informa-
tion.

3.3 Cross-modal Gated Fusion Module

In this section, we employ cross-modal gated fu-
sion method to fuse textual features and extracted
helpful visual features, which is a popular multi-
modal fusion method for many recent MNMT, as
shown in Figure 2. Formally, we have that

Ω = Sigmoid(WΩF̂vj + UΩFxj ) (14)

Hgj = Fxj + ΩF̂vj (15)

where, WΩ and UΩ are trainable model parameters.
The final output Hgj is directly fed into our target
sentence decoder (See Figure 2 right) to predict the
translation.

4 Experiments

Datasets: We conduct experiments on En→De,
En→Fr and En→Cs tasks of the widely used
Multi30K 2 benchmark dataset, in which the train-
ing and validation sets contains 29k and 1014 text-
image pairs, respectively. Furthermore, we adopt
four test sets to evaluate our MNMT model, 1) the
Test2016 test set with 1,000 examples contained
in Multi30K; 2) the Test2017 test set with 1,000
examples in WMT2017, which contains more diffi-
cult source sentences to translate and understand;
3) we also use ambiguous COCO dataset as out-
domain test data, which contains 461 examples
with ambiguous verbs and encourages to use image
for disambiguation; and 4) the Test2018 test set
contains 1071 instances with more entity words
and more low frequency words.

Data Pre-processing: We directly use the pre-
processed sentence pairs via byte pair encoding
(BPE) segmentation with 6k bpe vocabulary, the re-
sulting vocabulary sizes of each language pair were
5,644→5,876 tokens for En→De, 5,644→5,684 to-
kens for En→Fr, 5,644→5,972 tokens for En→Cs.
For each image, which is extracted through the
pre-trained Resnet-101 model, the spatial features
are 7x7x2048-dimensional vectors with 49 local
spatial region features.

Metrics: We evaluate the quality of translations
with two metrics, 1) 4-gram BLEU metrics (Pap-

2https://github.com/multi30k/dataset
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Multi30K En→Fr
Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

Existing MNMT Systems

VAG-NMT (Zhou et al., 2018) - - 53.8 70.3 45.0 64.7
Del+Obj (Ive et al., 2019) 59.8 74.4 - - - -
DCCN (Lin et al., 2020) 61.2 76.4 54.3 70.3 45.4 65.0
OVC+Lv (Wang and Xiong, 2021) - - 54.2 70.5 45.2 64.6
WRA-guided (Zhao et al., 2021) 61.8 76.3 54.1 70.6 43.4 63.8

Our Transformer-Based Systems

Transformer (NMT) (Vaswani et al., 2017) 60.33 75.64 53.45 71.57 43.61 65.72
Doubly-ATT (Arslan et al., 2018) † 60.94 75.99 53.63 71.56 44.78 65.35
Multimodal self-att (Yao and Wan, 2020) † 61.44 75.77 54.56 71.62 44.59 65.08
Gated Fusion MNMT (Yin et al., 2020) † 61.24 76.26 54.15 71.77 44.29 64.91

Our model 63.24 77.54 55.48 72.62 46.34 67.40

Table 2: Comparison results on the En→Fr translation task on the Multi30k dataset.

ineni et al., 2002), which measures the quality of
translations in terms of accuracy and fluency. 2)
METEOR metrics (Denkowski and Lavie, 2014),
which takes into account both precision and recall
for translation quality.

4.1 Settings
We conduct our proposed models based on Trans-
former framework, with only stack 4-layer encoder-
decoder, so the amount of parameters required by
our model is small. Concretely, we set the dimen-
sions of the encoder and decoder hidden states at
dmodel=128, the inner-layer of feed-forward net-
work is set as dffn=256. The learning rate is set to
0.005. The max tokens is set to 4096, the learning
rate is varied under a warmup-updates with 2,000
steps, and the label smoothing with value set as 0.1.
We use adam optimizer with β1, β2 = (0.9, 0.98).
We adopt 4 heads here and the dropout is set to 0.3
to avoid the over-fitting. The width of beam size
is set to 5. We train our models on a single GTX
3090 GPU with fp16.

4.2 Baseline Models
To empirically verify the advantages of our pro-
posed MNMT model, we show the performance of
the following recent state-of-the-art MNMT mod-
els for comparison on the En→De and En→Fr
translation task, namely: VMMT (Calixto et al.,
2019), VAG-NMT (Zhou et al., 2018), Del+Obj
(Ive et al., 2019), DCCN (Lin et al., 2020),
MNMT+SVA (Nishihara et al., 2020), OVC+Lv
(Wang and Xiong, 2021), WRA-guided (Zhao et al.,
2021). Furthermore, to more fairly demonstrate the
superiority and validity of our proposed model, we

reproduce the recent state-of-the-art methods for
comparison based on the same parameter settings
and training equipment, we experiment with the fol-
lowing: 1) Gated Fusion MNMT (Yin et al., 2020):
An efficient multi-modal fusion method to enhance
machine translation. 2) Multimodal self-att (Yao
and Wan, 2020): A image-aware multi-modal trans-
former model is proposed to extract image informa-
tion to improve machine translation performance.
3) Doubly-ATT (Arslan et al., 2018): At the de-
coder, the visually evoked attention weights and
the source language attention weights are added up
as doubly-attention weights.

4.3 Results on the En→De Translation Task
As shown in Table 1, we present experimental re-
sults of our proposed model and other SOTA mod-
els on the En→De translation task. We summarize
and compare the existing models in the three as-
pects as follows:

1) Compare with Existing MNMT Systems: Ex-
perimental results show that our proposed model
outperforms existing SOTA models, and enhances
BLEU and METEOR metrics by 3∼4 points on
most of the test sets. The underlying reason is that
our proposed method can effectively filter vision
noise contained in the image.

2) Compare with Text-to-text NMT: Our MNMT
model outperforms NMT baselines significantly
on BLEU and METEOR metrics, which enhances
about 2 points on all test sets. This indicates that
our proposed MNMT model can utilize image in-
formation to improve machine translation.

3) Compare with Reproduce Methods: As we
can observe that our proposed methods achieves
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Test2016 Test2017 MSCOCO
p BLEU METEOR BLEU METEOR BLEU METEOR

Multi30K En→De

p = 0 41.40 59.19 34.37 53.77 30.01 50.17
p = 0.01 41.45 59.02 34.73 54.00 30.77 50.12
p = 0.015 41.68 59.40 34.69 54.13 30.96 50.39
p = 0.02 42.58 59.98 35.09 54.51 31.09 50.46
p = 0.025 41.71 59.62 33.68 53.39 30.82 50.27
p = 0.03 40.99 58.75 33.44 53.47 30.36 49.66

Multi30K En→Fr

p = 0 61.16 76.33 54.49 72.51 44.91 65.81
p = 0.01 62.29 76.77 55.31 72.34 44.87 65.46
p = 0.015 62.67 76.96 55.36 73.00 45.48 66.76
p = 0.02 63.24 77.54 55.48 72.62 45.82 67.17
p = 0.025 62.57 76.84 55.39 72.46 46.34 67.40
p = 0.03 62.14 76.99 54.89 72.63 45.62 66.31

Table 3: Ablation study on hyper-parameter p on the
En→Fr and En→De tasks.

a significant improvement over the SOTA method
on all the evaluation metrics, which demonstrates
that masking irrelevant visual information helps
improve translation performance.

4.4 Results on the En→Fr Translation Task

To explore the robustness of the proposed model,
we also guide experiments on the Multi30K En→Fr
translation task, the results are illustrated in Table
2. Concretely, we draw the following interesting
conclsions:

First, comparing with existing models, our pro-
posed model still achieves significant improvement
on two evaluation metrics, which is consistently
with the result of the En→De task. In addition,
comparing with text-only NMT baseline models,
MNMT with image information achieves superior
results, which demonstrates that our MNMT model
can effectively and efficiently interact with visual
information to enhance machine translation.

Second, reproducing recent competitive meth-
ods based on the same NMT strong baseline model
on En→Fr task, results are shown in Table 2. It is
obviously that our method outperforms the SOTA
methods and achieves strong competitive results
among all the existing MNMT models. The results
on the En→Fr translation task once again demon-
strate the effectiveness and generalizability of the
proposed method.

4.5 Ablation Study

To further determine the effectiveness of our pro-
posed method, we show the following sets of abla-
tion experiments on both the En→Fr and En→De
tasks, 1) Ablation study on hyper-parameter p; 2)
Ablation study on different components of model.

Figure 4: Examples of attention maps on the En→De
task. (a) Gated fusion (Ω visualize): attention weights
for visual information and source sentences. (b) src-tgt
attention: source and target sentence attention weights
with visual guidance.

Ablation study on hyper-parameter p As
shown in Table 3, we report the effect of hyper-
parameter p on model translation performance,
where p represents the threshold that controls the
effective visual similarity weights. We summarize
several interesting conclusions:

First, in general, it can be observed that at p =
0.02, the experimental results of the proposed
model on most test sets achieve the best results
on the En→De and En→Fr tasks. Furthermore,
gradually increase or decrease the threshold p, it
is obvious that the experimental results also gradu-
ally decrease on the BLEU and METEOR metrics.
We consider that there are two main reasons. On
the one hand, with the decrease of the threshold p,
the masked noise information decreases, and the
captured visual information contains more noise,
and the introduction of noise leads to a decrease in
the performance of the model. On the other hand,
with the increase of the threshold p, more visual
information is masked, and even a lot of helpful
visual information is masked, which causes the
performance of the model to decline.

Secend, in more detail, when the threshold p =
0, which means that the model fuses all visual in-
formation, compared with NMT model, our model
achieves better translation performance, but there
are no significant BLEU and METEOR gains. The
prove the assumption that masking visual noise
information helps improve machine translation.

Ablation study on different components of
model To investigate the effectiveness of differ-
ent components in our proposed MNMT model, we
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Test2016 Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR

Multi30K En→De

Complete model 42.58 59.98 35.09 54.51 31.09 50.46
MNMT_rg 41.85 59.76 34.24 54.16 29.91 50.11
MNMT_re 41.96 59.59 34.37 53.94 30.68 50.21
MNMT_rvm 41.53 59.01 34.56 53.89 30.33 50.00

Multi30K En→Fr

Complete model 63.24 77.54 55.48 73.00 46.34 67.40
MNMT_rg 62.49 76.78 55.34 72.34 46.06 66.68
MNMT_re 62.85 77.37 55.41 72.84 45.73 67.30
MNMT_rvm 62.22 76.94 55.06 72.14 45.57 66.67

Table 4: Ablation study on different components of model on the En→Fr and En→De tasks. MNMT_rvm means
to remove cross-modal visual encoder with mask, MNMT_re means to remove conventional Transformer encoder,
MNMT_rg means to remove cross-modal gated fusion module.

En→Cs

Test2016 Test2018

Model BLEU METEOR BLEU METEOR

Our model 35.09 33.52 31.40 31.26
Transformer (NMT) 32.70 32.34 27.62 29.03
Doubly-ATT (Arslan et al., 2018) † 33.25 32.28 29.12 29.87
Multimodal self-att (Yao and Wan, 2020) † 33.12 32.01 28.75 29.51
Gated Fusion MNMT (Yin et al., 2020) † 33.77 32.24 29.43 29.41

Table 5: Experiment results on En→Cs task.

Figure 5: Examples of successful translation with re-
move of visual noise. Improved translations are high-
lighted in color.

further conduct experiments to compare with the
following variants models in Table 4:

1) Effectiveness of cross-modal gated fusion.
The result in row 2 indicates that removing the
gated fusion leads to a significant performance de-
cline on BLEU and METEOR metrics. It suggests
that gated fusion is an efficient method for fusing
multimodal features, which is helpful in order to
enhance translation performance.

2) Effectiveness of conventional Transformer en-
coder. To verify the usefulness of establishing
the intra-modal correspondences before interacting
with multimodal features, we remove the conven-
tional Transformer encoder component. The result

in row 3 shows that this change causes a light per-
formance drop. The underlying reason is the lack
of visual contextual semantic information in visual
information without intra-modal correspondences.

3) Effectiveness of cross-modal visual encoder
with mask. To construct this variant, we directly re-
move the cross-modal visual encoder and then em-
ploy gated fusion to incorporate full visual features
and textual features. Apparently, the performance
drop reported in line 4 demonstrates the validity
of our proposed cross-modal visual encoder with
mask module. Furthermore, it also validates our hy-
pothesis that masking irrelevant visual information
before fusing multimodal features is favourable to
improve translation performance.

4.6 Visual analysis

As shown in Figure 4, to further understand and
verify our model, we visualize the gated fusion
and src-tgt attention weights. 1) Gated fusion: the
results show that our model can effectively focus
on the consistent visual regions corresponding to
the source text. 2) Src-tgt attention: useful visual
information as a bridge can effectively align source
and target sentences to help translation.

4.7 Results on the En→Cs Translation Task

We further verify the effectiveness and general-
ization of the proposed method on the En→Cs
task, the results shown in Table 5. Our model still
achieves excellent performance compared with all
baselines, which again proves that our model is
effective and general for different language pairs.
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4.8 Case Study

As shown in Figure 5, we further confirm the ef-
fectiveness of our proposed method. It can be ob-
served that the two words ’light fixture’ and ’pink
rose’ can be correctly translated by the MNMT
model, while the MNMT_rvm model is not fully
translated, and the NMT model is translated incor-
rectly. The underlying reason is that the complete
image information introduces noise into MNMT
model and distracts the model. This reveals that
the proposed encoder is able to learn more efficient
representations.

5 Conclusion

In this paper, we propose a noise-robust mul-
timodal interactive fusion approach with cross-
modal relation-aware mask mechanism to address
image noise in MNMT. Experiment results and
analysis on three benchmark translation tasks
demonstrate the effectiveness and superiority of
our proposed method. Further ablation experiments
demonstrate that masking irrelevant visual informa-
tion helps machine translation. In future work, we
will continue to explore how to more effectively
remove noisy information in vision.
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Abstract

Despite the revolutionary advances made by
Transformer in Neural Machine Translation
(NMT), inference efficiency remains an obsta-
cle due to the heavy use of attention operations
in auto-regressive decoding. We thereby pro-
pose a lightweight attention structure called
Attention Refinement Network (ARN) for speed-
ing up Transformer. Specifically, we design a
weighted residual network, which reconstructs
the attention by reusing the features across lay-
ers. To further improve the Transformer effi-
ciency, we merge the self-attention and cross-
attention components for parallel computing.
Extensive experiments on ten WMT machine
translation tasks show that the proposed model
yields an average of 1.35× faster (with al-
most no decrease in BLEU) over the state-of-
the-art inference implementation. Results on
widely used WMT14 En→De machine transla-
tion tasks demonstrate that our model achieves
a higher speed-up, giving highly competitive
performance compared to AAN and SAN mod-
els with fewer parameter numbers1.

1 Introduction

Transformer (Vaswani et al., 2017) has become
the dominant approach in the NMT literature,
which achieves superior translation performance
and efficiency due to its well-designed attention
mechanism. The highly parallelizable architec-
ture enables Transformer to capture the dependency
among positions over the entire sequence parallelly
for a faster training step. However, the inference
efficiency remains a bottleneck for Transformer. In
inference, Transformer follows an auto-regressive
generation paradigm and generates the target words
one by one on the decoder side. The heavy use of
dot-product attention operations even further slows
Transformer efficiency. In addition, there are a

1https://github.com/
Kaixin-Wu-for-Open-Source/ARN

F ⊕Input Output
Xl

Xl

Xl+1

Figure 1: The information transformation between the
input and output after through a sub-layer F , where
Xl+1 = Xl + F(Xl)

Figure 2: The cosine similarity of the input and out-
put for every sub-layer over validation set on WMT14
En→De translation task. “Enc”, “Dec”, “SA”, “CA”,
“FFN” represent Encoder, Decoder, Self-attention,
Cross-attention and Feed-forward network, respectively.
Darker cells denote more similar.

large number of attention sub-layers in the multi-
layer stacked Transformer, which makes it prone
to redundancy. As shown in Figure 2, we observe
redundant computation in Transformer attention
sub-layer, especially the attention in the decoder.
This inspires us to explore a lightweight attention
structure to speed up Transformer decoding.

Many efforts have been dedicated to accelerat-
ing the decoding process of Transformer. AAN

(Zhang et al., 2018) adopts an average strategy
to avoid computing the correlations over the en-
tire input word. However, this method requires
a complicated network and only focuses on the
decoder-side self-attention. SAN (Xiao et al., 2019)
reuses the attention results among layers, but it
requires a model to learn which layers should be
allowed to share. Besides, another representative
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approach (Gu et al., 2017; Guo et al., 2019; Wang
et al., 2019) follows another line to abandon the
auto-regressive generation property and produces
target sequences in parallel, thus it fails to model
the word dependencies.

We investigate an alternative lightweight atten-
tion structure for Transformer acceleration. As
shown in Figure 3, the main idea is to reconstruct
the attention via a weighted combination of high-
level and low-level features, rather than the stan-
dard dot-product function. The two parts represent
the attention results of the current layer and its pre-
vious layer, respectively. This weight, a learned
matrix under the guidance of the two input features,
which determines how many low-level features can
be selected to fuse. Consequently, we refer to our
model as Attention Refinement Network, or ARN in
short. Our combination process is computationally
inexpensive, which allows us to employ less com-
putation to obtain the attention results of adjacent
layers and combine them to approximate the origi-
nal attention results. ARN structure can be viewed
as a weighted residual network, which acquires the
attention results by reusing the features across lay-
ers. This way introduces low-level features into
the attention sub-layer to further enhance model
confidence, which is an improvement over SAN

(Xiao et al., 2019). In addition, this method can be
applied to both self-attention and cross-attention
on the decoder side and we merge the above two
components to further improve decoding efficiency.
Moreover, ARN structure is simple and it is easy
to implement. As another “bonus”, ARN requires
fewer parameters, so it is faster to train and main-
tains a smaller memory footprint.

Extensive experiments on ten WMT translation
tasks show that ARN achieves an average of 1.35×
faster with performance on par with a strong base-
line. Compared to AAN and SAN baselines, our
model gives a higher speed-up as well as highly
competitive performance with fewer parameter
numbers on widely used WMT14 En→De transla-
tion tasks.

2 Standard Transformer Attention

Standard Transformer follows the popular encoder-
decoder paradigm, which consists of a 6-layer en-
coder and a 6-layer decoder. The overall archi-
tecture only contains stacked attention and feed-
forward networks (FFN) in Transformer. There are
three types of attention mechanisms: the encoder-

side self-attention, the decoder-side self-attention
and the cross-attention. On the encoder side, each
layer follows the order of operations that could be
defined as: self-attention → FFN. Similarly, the
decoder side follows the way: self-attention →
cross-attention→ FFN.

The attention model in Transformer is scaled
dot-product attention. See Figure 3 (a) for an illus-
tration of the standard attention. The input of atten-
tion is a tuple of (Ql,Kl, Vl), where Ql ∈ Rm×d
and Kl, Vl ∈ Rn×d are the matrices of correspond-
ing queries, keys and values of the l-th layer. For
encoder or decoder self-attention, m = n repre-
sents the source or target sequence length. For
cross-attention, m and n are the target sequence
length and source sequence length, respectively. d
is the dimension of the hidden representation. We
first compute the attention distribution via a scaled
dot-product and softmax operations.

Al = Sim(Ql,Kl)

= Softmax(
Ql ·Kl

T

√
d

)
(1)

where Al is an m × n matrix, which represents
the degree of relevance between different positions
of queries and values. The ouput of attention is a
weighted sum of values, and it can be defined as:

Fl = Al · Vl (2)

where Ql,Kl, Vl are all generated by a linear trans-
formation. In self-attention (encoder or decoder),
the three parts share the same source, which comes
from the output of its previous layer. While in
cross-attention, the difference is that the Kl and Vl
from the output of encoder side. Fl is the attention
results of the l-th attention sub-layer, which is then
fed into the next sub-layer.

Note that the matrix multiplications in Eq. 1
and Eq. 2 are computationally expensive. This
is even worse for inference because the operation
is repeated until an end symbol is reached due to
the auto-regressive generation property. We also
compute the cosine similarity of the input and out-
put for every sub-layer in Transformer. Figure 1
is the definition of a sub-layer F and Figure 2
shows the similarity results. As can be seen that
the input and output of the attention sub-layer are
very similar, especially the attention in the decoder.
Specifically, we observe that the decoder-side self-
attention presents the highest similarity compared
to other sub-layers, followed by the cross-attention.
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Attention Sub-layer

Layer l ...
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Attention Sub-layer

Layer l+i ...

Al = Sim(Ql,Kl)

Ql Kl Vl

Fl = Al · Vl

Al+i = Sim(Ql+i,Kl+i)

Ql+i Kl+i Vl+i

Fl+i = Al+i · Vl+i

(a) Standard Transformer Attention

Attention Sub-layer

Layer l ...
...

Layer l+i ...

Al = Sim(Ql,Kl)

Ql Kl Vl

Fl = Al · Vl

F̃l+i = Al+i · Vl+i

Al+i = Al Vl+i Fl+i−1

Fl+i = F̃l+i + α⊗ Fl+i−1

high-level features
low-level features

(b) Attention Refinement Network (ARN)

Figure 3: Comparison of the standard attention model and ARN model

Most of their similarities are more than 90%, and
some even more than 95%. All these show the
possibility of removing redundant computation in
Transformer and lead us to learn a lightweight at-
tention structure.

3 Attention Refinement Network (ARN)

The proposed method for speeding up Transformer
concentrates on the decoder-side attention because
the decoder is the bottleneck of Transformer
inference.

Overall Architecture. The proposed ARN

module is shown in Figure 3 (b). We assume that
the decoder contains L = M × N layers. The
decoder is simply divided into M parts equally,
and each part contains N layers. For each ARN

module, the bottom layer is the dot-product
attention same as used in standard Transformer,
and the next N − 1 layers are the lightweight
attention composed of the two inputs. One is an
approximate attention result of the current layer
by reusing the attention weights within adjacent
layers, and the other is the up-sampled attention
results from its previous layer. Since the upper
layer contains more semantic information, we
refer to the two inputs high-level features and
low-level features, respectively. α is a learned
weight matrix, which is used to represent the
fusion degree of low-level features. In contrast to

Figure 3 (a), ARN reconstructs the attention via a
feature fusion of the two input sources to replace
the original dot-product attention. ARN can be
regarded as a weighted residual network, which
sums to obtain the attention results by reusing
the features across layers. The ARN module is
applied to both self-attention and cross-attention
for speeding up Transformer.

3.1 The Model
Weighted Residual Network. For each ARN

module, the attention is reconstructed via a
weighted sum of the two input sources.

Fl+i = F̃l+i + α⊗ Fl+i−1 (3)

for i ∈ [1, N − 1]

where F̃l+i and Fl+i−1 are the high-level features
and low-level features, respectively. Fl+i−1 is the
attention results of the previous layer, and we reuse
it as our low-level features of the current layer. ⊗
denotes the element-wise multiplication. F̃l+i is
defined as:

F̃l+i = Al+i · Vl+i
= Al · Vl+i

(4)

where Al denotes the attention weights of the l-
th layer, its calculation process is shown in Eq.
1. Previous work show that the attention weights
are redundant and the adjacent layers share simi-
lar distributions (Michel et al., 2019; Behnke and
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⊕

FFN

⊕
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Figure 4: Merging self-attention and cross-attention in
ARN decoder layer.

Heafield, 2020; Xiao et al., 2019). Thus, we reuse
the attention weights of adjacent lower layers to
construct the high-level features. α is a learned ma-
trix, which is obtained from the following process:

α = G(Fl+i−1, F̃l+i)

= ReLU(
Wα
l+i ·Max(Fl+i−1, F̃l+i)√

d
)

(5)

Here, Max(·) is an element-wise operation
and Wα

l+i is a learnable parameter. According
to Eq. 5, α is a sparse weight matrix obtained
from the supervision of high-level and low-level
features. This weight matrix highlights important
semantic information of low-level features, and it
determines how many low-level features can be
selected for fusion. In other words, the upper layer
features can be refined through the fusion of the
lower layer important features iteratively.

Merging Self-attention and Cross-attention.
For the self-attention and cross-attention in a
decoder layer, the formula can be simply defined
as:

Fl = Ql+ SelfAttn(Ql)+CrossAttn(Q̃l, R) (6)

where Q̃l = Ql + SelfAttn(Ql), Ql is the input of
l-th layer andR denotes the hidden reprensentation
of encoder. As shown in Figure 2, the input and
output of attention sub-layer in the decoder are very
similar, especially the self-attention. Thus, we can
regard that Q̃l ≈ Ql, the Fl can be rewritten as
follows:

Fl = Ql+SelfAttn(Ql) + CrossAttn(Ql, R)︸ ︷︷ ︸
merge for parallel computing

(7)

The Eq. 7 provides the conditions for us to do
parallel computing. The merging process is shown

Model Complexity per Step

Decoder self-attention O(n · d2 + n2 · d)
Decoder self-attention ARN O(n2 · d)
Cross-attention O(m · d2 +m2 · d)
Cross-attention ARN O(m2 · d)

Table 1: Computation complexity of different attention
structures in a decoding step. m and n are the source
sentence length and target sentence length, d is the di-
mension of the hidden representation.

in Figure 4. Original cross-attention relies on the
output of self-attention and it needs to wait until
self-attention calculation is completed. We thereby
merge the self-attention and cross-attention into
a single one to further improve the decoding effi-
ciency. This way is faster because the model can
compute the attention results of self-attention and
cross-attention simultaneously. Thus, the formula
Eq. 2 and Eq. 4 can be rewritten as follows:

Fl = FSl + FCl

= ASl · V S
l +ACl · V C

l

(8)

F̃l+i = [ASl ;A
C
l ] · [V S

l+i;V
C
l+i] (9)

Here, FSl , FCl , ASl , ACl , V S
l , V C

l represent
self-attention results, cross-attention results, self-
attention weights, cross-attention weights, self-
attention values and cross-attention values of the
l-th layer, respectively. [; ] denotes the concatenate
operation. The main idea is that we sum the self-
attention and cross-attention representations as a
whole to decode in ARN model, instead of comput-
ing them separately. Similarly, the Eq. 5 also share
the strength of parallelization.

3.2 Decoding Complexity

We investigate how the ARN accelerates Trans-
former compared to the original dot-product at-
tention. For each decoding step, the self-attention
first connects all positions with a constant num-
ber of sequentially executed operations (Eq. 1,
O(n · d2)), and then obtains atention results via
a weighted sum operations (Eq. 2, O(n2 · d)).
Thus, the computation complexity of self-attention
is O(n · d2 + n2 · d). Similarly, the cross-attention
is O(m · d2 + m2 · d). The ARN model is fast
because the weighted combination process (Eq. 3
and Eq. 5) are all element-wise operations, which
require less computation and the Eq. 4 occupies a
major computation. The self-attention and cross-
attention adopting ARN method are O(n2 · d) and
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O(m2 · d), respectively. See Table 1 for the de-
tails. In particular, m and n are smaller than the
representation dimensionality d, which is most of-
ten the case with sentence representations used by
NMT models. Moreover, the self-attention and
cross-attention components are merged for higher
parallelization. All these enable the ARN model to
enjoy greater decoding efficiency.

4 Experiments

4.1 Experimental Settings
Datasets. We evaluate our proposed model on
WMT14 and WMT17 translation tasks. The details
follow as:

• WMT14 En→{De, Fr}. For En→De task, we
choose newstest2013 as validation set and
newstest2014 as test set. For En→Fr task,
we validate the system on the combination
newstest2012 and newstest2013 as validation
set and test it on newstest2014.

• WMT17 En↔{Fi, De, Cs, Ru}. For validation,
we concatenate the data of newstest2014-2016.
For test, we choose newstest2017.

Table 2 shows the statistics of these datasets. For
all datasets, we tokenize every sentence with
Moses tokenizer (Koehn et al., 2007) and use byte
pair encodings (BPE) with 32K split operations
for subword segmentation (Sennrich et al., 2015).
We remove sentences with more than 250 subword
units. For WMT14 En→De translation task, we
share the source and target vocabularies. We
report the case-sensitive tokenized BLEU using
multi-bleu.perl

Implementation Detail. For all machine
translation tasks, our systems are based on an
open-source implementation of fairseq-py2. We
replicate the model setup of Vaswani et al. (2017).
The standard implementation of Transformer
baseline consists of a 6-layer encoder and a
6-layer decoder. The embedding size and FFN
hidden size are 512 and 2048, respectively. The
number of attention heads is set to 8. Dropout
and label smoothing are used as regularization,
both set to 0.1. We adopt Adam (Kingma and Ba,
2014) optimizer with an adaptive learning rate
schedule as described in Vaswani et al. (2017), the
warmup step and learning rate are 4K and 7×e−4,

2https://github.com/pytorch/fairseq

Source Lang. Train Set Valid. Set Test Set
sent. word sent. word sent. word

WMT14 En→De 4.5M 220M 3000 110K 3003 114K
En→Fr 35M 2.2B 26K 1.7M 3003 155K

WMT17

En↔Fi 2.6M 108M 8870 330K 3002 110K
En↔De 5.9M 276M 8171 356K 3004 128K
En↔Cs 52M 1.2B 8658 354K 3005 118K
En↔Ru 25M 1.2B 8819 391K 3001 132K

Table 2: Data statistics (# of sentence pairs and # of
words, M=million, B=billion, K=kilo)

respectively. All experiments are trained on 8
NVIDIA Tesla V100 GPUs with mixed-precision
training and a batch size of 4096 tokens per GPU.
For widely used WMT14 translation tasks, all
models are trained for 100K steps as provided by
Vaswani et al. (2017). For all WMT17 tasks, we
stop training until the model no longer improves
on the validation set. We average parameters
of the last 5 checkpoints to obtain the final
model. In inference, all models are decoded with
half-precision on a single V100 GPU. By default,
the batch size of decoding is set to 1 for avoiding
invalid computations on padding. The beam size
is 4 and length penalty is set to 0.6. All speed
testing are based on the state-of-the-art inference
implementation of Transformer with attention
caching3.

4.2 Baselines
We compare our proposed ARN model with the
following baselines:

• Transformer(Vaswani et al., 2017) is the
most widely-used NMT system with self-
attention mechanism.

• AAN(Zhang et al., 2018) is a classic
lightweight attention NMT model, which
leverages an average attention network for in-
ference acceleration.

• SAN(Xiao et al., 2019) is another lightweight
attention NMT model via sharing attention
results among layers. For convenience, we
simply adopt the sharing strategy per 2 layers,
which can maintain a relatively high speed-up
at the trade-off on BLEU performance.

We re-implement all the above baseline systems,
and their experimental settings are consistent with
our ARN model.

3An engineering optimization technique, which cache the
attention output of previous positions and then reuse it in
following steps.
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Model BLEU ∆BLEU Speed ∆Speed #Param
Transformer 27.34 0.00 110.55 0.00% 58.7M
ARN2 27.35 +0.01 134.91 +22.04% 55.0M
ARN3 27.26 -0.08 149.89 +35.59% 53.7M
ARN6 26.86 -0.48 159.62 +44.39% 52.4M

Table 3: BLEU scores [%] and translation speeds (to-
ken/sec) on WMT14 En→De task for different sharing
policies. ARNn means that adopt a ARN strategy every
n layer.

Source Lang. Model BLEU ∆BLEU Speed ∆Speed

WMT14
En→De Transformer 27.34 0.00 110.55 0.00%

ARN 27.26 -0.08 149.89 +35.59%

En→Fr Transformer 39.73 0.00 106.18 0.00%
ARN 39.56 -0.17 149.58 +40.87%

WMT17

En→Fi Transformer 21.50 0.00 107.49 0.00%
ARN 21.47 -0.03 144.62 +34.54%

Fi→En Transformer 25.06 0.00 110.13 0.00%
ARN 25.14 +0.08 149.24 +35.51%

En→De Transformer 28.66 0.00 109.02 0.00%
ARN 28.46 -0.20 147.38 +35.19%

De→En Transformer 34.56 0.00 115.37 0.00%
ARN 34.38 -0.18 151.56 +31.37%

En→Cs Transformer 23.94 0.00 111.03 0.00%
ARN 23.62 -0.32 148.77 +33.99%

Cs→En Transformer 29.94 0.00 111.14 0.00%
ARN 29.92 -0.02 145.62 +31.02%

En→Ru Transformer 30.69 0.00 110.40 0.00%
ARN 30.24 -0.45 146.99 +33.14%

Ru→En Transformer 34.22 0.00 106.72 0.00%
ARN 33.94 -0.28 148.67 +39.31%

Avg. Transformer 29.56 0.00 109.80 0.00%
ARN 29.40 -0.16 148.23 +35.00%

Table 4: BLEU scores [%] and translation speeds (to-
ken/sec) on WMT14 and WMT17 translation tasks.

Model BLEU ∆BLEU Speed ∆Speed #Param
Transformer 27.34 0.00 110.55 0.00% 58.7M
AAN 27.16 -0.18 116.47 +5.36% 70.7M
SAN 27.17 -0.17 131.72 +19.15% 55.0M
ARN 27.26 -0.08 149.89 +35.59% 53.7M

Table 5: Comparison of different attention models on
WMT14 En→De translation task.

4.3 Main Results
We test our approach on the widely used WMT14
En→De translation task. Table 3 reports the vari-
ous results of BLEU scores and translation speeds,
which adopt the simple sharing policy with ARN

structure. The speed-up of the ARN3 model is
1.35× with almost no decrease in BLEU. The
ARN3 is our ARN baseline system in the follow-
ing sections. The BLEU will drop significantly if
more layers are shared, but ARN model can provide
a higher acceleration gain. On the other hand, our
model requires fewer parameter numbers compared
to Transformer baseline. This result shows that the
original Transformer attention does have redun-
dant computation, and simplifying it can achieve
greater decoding efficiency. To further verify the ef-
fectiveness of our proposed approach, we conduct

Model w/o KD w/ KD
BLEU ∆BLEU BLEU ∆BLEU

Transformer (teacher) 27.34 0.00 27.92 0.00
AAN 27.16 -0.18 27.89 -0.03
SAN 27.17 -0.17 27.62 -0.30
ARN 27.26 -0.08 27.95 +0.03

Table 6: ARN applying in knowledge distillation on
WMT14 En→De translation task.

20K 40K 60K 80K 100K
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Transformer
ARN

Transformer
ARN

Figure 5: Convergence visualization. Loss vs. update
steps on WMT14 En→De translation task (solid marked
lines are training loss, hollow marked lines are valida-
tion loss).

experiments on ten WMT large-scale translation
tasks. As shown in Table 4, the ARN significantly
improves the speed for all these translation tasks,
its speed-up is 1.35× faster on average. Also, the
BLEU only drops 0.16, a very slight decline. More-
over, ARN achieve a stable speed-up, ranging from
31.02% to 40.87%. These results indicate that the
ARN model is robust and can further improve the
decoding efficiency on widely-range translation
tasks.

In addition, we empirically compare the AAN

and SAN models on WMT14 En→De translation
task shown in Table 5. The three systems present
a similar BLEU compared to Transformer base-
line. Notably, ARN model achieves the highest
speed-up with fewer parameter numbers. Although
AAN, SAN and ARN can offer different degrees of
decoding acceleration gains, they still suffer from
slight performance degradation shown in Table 4
and Table 5. We use the most popular sequence-
level knowledge distillation (KD) (Kim and Rush,
2016) for better performance and the Transformer
baseline serves as our teacher model. As shown in
Table 6, the KD method enables all three attention
models get the performance improvements consis-
tent with the Transformer baseline. Furthermore,
the performance gap is close between ARN and
Transformer baseline, and our model presents a
strong generalization ability compared to AAN and
SAN baselines.
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Model BLEU ∆BLEU Speed ∆Speed #Param

Transformer 27.34 0.00 110.55 0.00% 58.7M
+ Self-attention ARN 27.39 +0.05 117.45 +6.24% 56.7M
+ Cross-attention ARN 27.33 -0.01 127.58 +15.40% 56.7M
+ Both ARN 27.27 -0.07 131.87 +19.29% 54.7M

+ Merging 27.26 -0.08 149.89 +35.59% 53.7M

Table 7: Ablation study on WMT14 En→De translation task.
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Figure 6: Speed (token/sec) and ∆Speed [%] vs. beam size, batch size and source sentence length, translation length
vs. source sentence length on WMT14 En→De translation task.

5 Analysis

Analysis on Convergency. As shown in Figure
5, we plot the loss curves of standard Transformer
and ARN model on the training and validation sets,
respectively. The two systems converge stably and
both of their loss curves maintain a high degree of
similarity. They also present similar performance
in BLEU as shown in Table 3. All of these verify
that the original attention in Transformer can be
replaced with an ARN structure and there is no
negative impact on model performance.

Ablation Study. To verify the acceleration
contributions as well as the performance loss
of different components in ARN model, we
make an ablation study. As shown in Table 7,
the ARN method adopted by the self-attention
component achieves a speed-up of 6.24%, while
15.40% for cross-attention. This is because the
original cross-attention operation is heavy for its
long encoder representation (V ) and applying
the ARN method can bring greater decoding
efficiency. When applying the ARN method to
both self-attention and cross-attention components,
the speed-up is 19.29%. It can achieve a higher
acceleration gain (35.59%) when further merging
self-attention and cross-attention components.
Also, there is almost no effect on BLEU adopting
the above different methods.

Sensitivity Analysis on Speed. We plot
translation speed (in token/sec) and speed-up (in
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Figure 7: Different source sentence lengths vs. BLEU
on WMT14 En→De translation task.

∆Speed [%]) as function of beam size, batch size
and source sentence length. As shown in Figure 6,
the ARN model can achieve relatively significant
speed-up with the different beam sizes and batch
sizes. However, the acceleration gains drop slightly
with increasing beam size and batch size. This is
because the speed-up will be weakened under the
large matrix operation of the GPU. In addition,
our model is robust and it gets the consistent
improvement under the various source sentence
length. Furthermore, both the Transformer baseline
and our proposed model generate translations with
similar lengths as shown on the right in Figure 6.
This finding suggests that the acceleration gain
comes from the well-designed model structure, not
the translation length.

Analysis on Translation Quality. It is well-
known that the NMT model is difficult to handle
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# Model BLEU ∆BLEU Speed ∆Speed #Param

1 Transformer (6 + 6) 27.34 - 110.55 - 58.7M

2 Deep encoder, shallow decoder Transformer (12 + 2) 27.38 0.00 224.48 0.00% 60.7M
3 + Decoder self-attention ARN 27.59 +0.21 233.04 +3.81% 60.2M
4 + Decoder cross-attention ARN 27.32 -0.06 247.33 +10.18% 60.2M
5 + Decoder both ARN 26.83 -0.55 250.37 +11.15% 59.5M
6 + Merging 26.82 -0.56 260.73 +16.15% 59.4M
7 + Encoder ARN (using ARN2) 27.19 -0.19 235.12 +4.74% 57.7M

Table 8: ARN applying in deep encoder, shallow decoder Transformer on WMT14 En→De translation task.

long-distance dependencies and the issue of
under-translation (Tu et al., 2016; Zheng et al.,
2019) is prone to occur when translating long
sentences. For this, we study the ARN model
performance with the different input of sentence
lengths as shown in Figure 7. Interestingly, the
proposed model performs well when dealing with
the longest sentences. Specifically, our model
shows relatively poorly on shorter sentences
but significantly better performance on longest
sentences. This suggests that certain features have
a great influence on model performance when
translating long sentences, and the phenomenon
indicates that ARN structure can better capture the
long-distance dependency through the fusion of
high-level and low-level features iteratively.

Deep Encoder, Shallow Decoder Trans-
former. Standard Transformer suffers from
heavy inference cost due to the multi-layer stacked
decoder (6-layer). A popular solution is to balance
the encoder and decoder depths for speeding up
Transformer (Kasai et al., 2020). We rebuild the
Transformer with a deep encoder (12-layer) and a
shallow decoder (2-layer) as a stronger baseline.
As shown in Table 8, the balanced baseline (12/2)
is more than 2× faster without loss in BLEU
with similar parameter numbers. When applying
ARN method to self-attention and cross-attention
on the decoder side, it achieves 3.81% (line 3)
and 10.18% (line 4) speed-up, respectively. Also,
there is no negative impact on BLEU. The BLEU
even increases by 0.21 for adopting ARN on the
decoder-side self-attention. Interestingly, the
BLEU drop significantly if applying ARN to both
self-attention and cross-attention (line 5 and line
6). This is because the decoder is shallow with less
parameter redundancy, which enables the model
very sensitive when ARN is applied both to the
two components. In contrast to the decoder, that
encoder suffers from more severe redundancy in

the balanced baseline, and the BLEU almost no
drop with a higher reduction of parameters (line
7). To summarize, our ARN balanced baseline can
achieve a speed-up of 2.24× without sacrificing
performance compared to standard Transformer
baseline (line 4 vs. line 1).

6 Related Work

Standard Transformer suffers from the high infer-
ence cost due to the auto-regressive generation
schema and the heavy use of dot-product atten-
tion operations. A classic solution is to generate
the entire target sequence at one time by using
non-autoregressive inference method (Gu et al.,
2017; Guo et al., 2019; Wang et al., 2019). This
way offers high decoding efficiency but it is hard
to train. Another representative solution adopts a
local attention strategy (Kitaev et al., 2020; Belt-
agy et al., 2020) or simplifies attention structure
(Katharopoulos et al., 2020), which can effectively
reduce the computation of attention module. But
these works are designed for acceleration of very
long sequence tasks (e.g., image generation, auto-
matic speech recognition, etc.). NMT inference
acceleration methods have been investigated for
years, including knowledge distillation (Hinton
et al., 2015; Kim and Rush, 2016; Lin et al., 2020;
Wang et al., 2021), vocabulary selection (L’Hostis
et al., 2016; Sankaran et al., 2017; Shi and Knight,
2017), low-precision computation (Micikevicius
et al., 2017; Quinn and Ballesteros, 2018; Aji and
Heafield, 2020), kernel fusion (Wu et al., 2021),
LayerDrop (Fan et al., 2019) and etc. Compared
with the above methods, our work follows another
line of work to learn a lightweight attention NMT
model and prove its effectiveness.

Zhang et al. (2018) show that the self-attention
network is not necessary and a simple averaging
is enough. Compared with the above method, our
network structure is simple and it is easy to im-
plement. We improve both the self-attention and
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cross-attention components. Xiao et al. (2019) ob-
serve that the most attention distributions are simi-
lar and thus share these distributions among layers.
This method can be regarded as a structure pruning
for Transformer, which may lead to model perfor-
mance degradation. Our approach, which fuses
low-level features to further enhance model con-
fidence, is an improvement over this method. Li
et al. (2021) propose the compressed attention net-
work that simplifies the transformer architecture
to achieve a higher parallelism. This method can
be regarded as an equivalent transformation of the
Transformer structure, it is orthogonal to our re-
search.

ARN structure can be viewed as a weighted resid-
ual network, which acquires the attention results
by reusing the features across layers. The main
idea is similar to (He et al., 2020), but our ARN
is different in both motivation and network struc-
ture. To our knowledge, we are the first to design a
residual network for NMT decoding acceleration,
proposing the combination of the features across
layers for reconstructing the attention.

7 Conclusion

We have investigated ARN, an alternative
lightweight attention structure for faster inference
of Transformer. Experiments on a range of WMT
translation tasks show that ARN offers a significant
speed improvement over a strong Transformer base-
line without sacrificing translation performance.
Results on widely used WMT14 En→De machine
translation tasks demonstrate that our model can
simultaneously deliver superior acceleration and
translation performance with fewer parameters,
compared to previous work like AAN and SAN.

Acknowledgements

We thank the anonymous reviewers for their con-
structive and thoughtful comments. Thanks to Tong
Xiao, Yinqiao Li and Bei Li for their insightful sug-
gestions.

References
Alham Fikri Aji and Kenneth Heafield. 2020. Com-

pressing neural machine translation models with 4-
bit precision. In Proceedings of the Fourth Workshop
on Neural Generation and Translation, pages 35–42.

Maximiliana Behnke and Kenneth Heafield. 2020. Los-
ing heads in the lottery: Pruning transformer attention

in neural machine translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2664–2674.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Junliang Guo, Xu Tan, Di He, Tao Qin, Linli Xu, and
Tie-Yan Liu. 2019. Non-autoregressive neural ma-
chine translation with enhanced decoder input. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 33, pages 3723–3730.

Ruining He, Anirudh Ravula, Bhargav Kanagal, and
Joshua Ainslie. 2020. Realformer: Transformer likes
residual attention. arXiv preprint arXiv:2012.11747.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network (2015).
arXiv preprint arXiv:1503.02531, 2.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A Smith. 2020. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. arXiv preprint arXiv:2006.10369.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International Conference on Machine
Learning, pages 5156–5165. PMLR.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associa-
tion for computational linguistics companion volume
proceedings of the demo and poster sessions, pages
177–180.

Gurvan L’Hostis, David Grangier, and Michael Auli.
2016. Vocabulary selection strategies for neural ma-
chine translation. arXiv preprint arXiv:1610.00072.

5117



Yanyang Li, Ye Lin, Tong Xiao, and Jingbo Zhu. 2021.
An efficient transformer decoder with compressed
sub-layers. arXiv preprint arXiv:2101.00542.

Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du,
Tong Xiao, and Jingbo Zhu. 2020. Weight distilla-
tion: Transferring the knowledge in neural network
parameters. arXiv preprint arXiv:2009.09152.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. 2017. Mixed precision training.
arXiv preprint arXiv:1710.03740.

Jerry Quinn and Miguel Ballesteros. 2018. Pieces
of eight: 8-bit neural machine translation. arXiv
preprint arXiv:1804.05038.

Baskaran Sankaran, Markus Freitag, and Yaser Al-
Onaizan. 2017. Attention-based vocabulary selection
for nmt decoding. arXiv preprint arXiv:1706.03824.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Xing Shi and Kevin Knight. 2017. Speeding up neural
machine translation decoding by shrinking run-time
vocabulary. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 574–579.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua
Liu, and Hang Li. 2016. Modeling coverage
for neural machine translation. arXiv preprint
arXiv:1601.04811.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Fusheng Wang, Jianhao Yan, Fandong Meng, and
Jie Zhou. 2021. Selective knowledge distillation
for neural machine translation. arXiv preprint
arXiv:2105.12967.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 33, pages 5377–5384.

Kaixin Wu, Bojie Hu, and Qi Ju. 2021. Tentrans high-
performance inference toolkit for wmt2021 efficiency
task. In Proceedings of the Sixth Conference on Ma-
chine Translation, pages 795–798.

Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and
Tongran Liu. 2019. Sharing attention weights for fast
transformer. arXiv preprint arXiv:1906.11024.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention
network. arXiv preprint arXiv:1805.00631.

Zaixiang Zheng, Shujian Huang, Zhaopeng Tu, Xin-
Yu Dai, and Jiajun Chen. 2019. Dynamic past and
future for neural machine translation. arXiv preprint
arXiv:1904.09646.

5118



Proceedings of the 29th International Conference on Computational Linguistics, pages 5119–5128
October 12–17, 2022.

Interactive Post-Editing for Verbosity Controlled Translation

Prabhakar Gupta1, Anil Nelakanti1, Grant M. Berry2, and Abhishek Sharma1

1Amazon Prime Video
1{prabhgup,annelaka,naabhiss}@amazon.com

2Department of Spanish, Villanova University
2grant.berry@villanova.edu

Abstract

We explore Interactive Post-Editing (IPE)
models for human-in-loop translation to help
correct translation errors and rephrase it with a
desired style variation. We specifically study
verbosity for style variations and build on
top of multi-source transformers that can read
source and hypothesis to improve the latter
with user inputs. Token-level interaction in-
puts for error corrections and length interac-
tion inputs for verbosity control are used by
the model to generate a suitable translation.
We report BERTScore to evaluate semantic
quality with other relevant metrics for trans-
lations from English to German, French and
Spanish languages. Our model achieves supe-
rior BERTScore over state-of-the-art machine
translation models while maintaining the de-
sired token-level and verbosity preference.

1 Introduction

Recent machine translation (MT) mod-
els (Sutskever et al., 2014; Bahdanau et al.,
2015) have shown to excel with aspects of
translation quality like adequacy and fluency but
these models still suffer notable shortcomings
like out-of-domain data, low-resource languages,
rare words and longer sentences (Koehn and
Knowles, 2017). Hence, MT systems are often
supplemented by human translators for editing
and correcting MT outputs to achieve the desired
quality bar for various use-cases (Peris et al., 2017).
Broadly, MT employing human input can be
classified as one of two types: manual post-editing
(MPE) and interactive post-editing (IPE) (Escribe
and Mitkov, 2021). MPE relies on humans to
make all necessary edits on top of MT output to
deliver the final translation. Whereas, IPE uses
a human-in-the-loop approach: the model offers
human translators various cues like auto-complete
suggestions, word look-ups, etc until the human
arrives at a translation. Both approaches have

their trade-offs and it is observed that while
MPE is slower, it delivers a higher quality output
relative to the faster IPE (Green et al., 2014). Our
work is a human-in-the-loop model that aims to
make efficient use of human effort in delivering
improved translations.

Translation quality, largely encompassing ade-
quacy and fluency, has been the primary focus of
most MT studies. Some recent work has explored
other aspects of MT models like translation diver-
sity, word choice (rare vs frequent words), transla-
tion style, etc (Wang et al., 2021; Niu and Carpuat,
2020; Agrawal and Carpuat, 2019; Marchisio et al.,
2019; Lakew et al., 2019; Niu et al., 2018; Yam-
agishi et al., 2016). This style-aware modelling
further broadens the scope and usability of MT,
even more so when users can control levers to
achieve the desired style variation. Our work iden-
tifies one of the most important style features –
verbosity or translation length. Controlling length
of translation output has been studied before for
NMT models (Lakew et al., 2019) but to the best
of our knowledge our work is the first to propose
a solution for controlling length of translation in
an interactive human-in-the-loop setting. Length is
extremely crucial in many layout constrained trans-
lations use-cases like subtitling where the same
amount of information needs to be available on-
screen at a given point in time independent of the
subtitle language.

In this work, we propose a interactive post-
editing system that leverages multi-source trans-
formers to offer users:

• Interactive control for corrections,

• Support for verbosity variation and corre-
sponding translation customization; and

• Reduced human effort by providing alterna-
tive word and phrase choices.
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2 Related Work

We review some recent studies focusing on au-
tomatic and interactive post-editing models ger-
mane to our work. Automatic Post-Editing (APE)
is the task of automatically correcting the output
of an (MT) system. APE models can be used to
adapt a general purpose MT systems to new do-
mains, fix errors in MT outputs and, in general,
reduce human post-editing effort (Chatterjee et al.,
2015). Transformer-based models for APE sys-
tems (Sharma et al., 2021; Yang et al., 2020; Chat-
terjee et al., 2020) have eclipsed models relying on
statistical MT in recent years (Simard et al., 2007;
Béchara et al., 2012). APE models inherit all the
drawbacks of NMT since there is no human in-
volved. They are excellent at domain adaption but
often fail to improve the quality of state-of-the-art
NMT models (Sharma et al., 2021) and the role
and relevance of APE is often debated (do Carmo
et al., 2021).

Post-editing models models require processing
of both source text and MT output in order to gen-
erate a revised translation. Typically, two separate
encoders are used – one for each source text and
corresponding candidate translation – in addition
to a single decoder responsible for generating out-
put. We adapt one such model the Multi-Source
Transformer (MST) (Tebbifakhr et al., 2018) for
the current research. There are alternate methods
that use two sequence-to-sequence models instead
and merge the resulting distributions (Junczys-
Dowmunt and Grundkiewicz, 2016). Merging dis-
tributions post-hoc is inadvisable, as complex pat-
terns cannot be learned as easily and care must
be taken to ensure that the combined distribution
remains representative. We extend the MST ap-
proach for our work and use it train interactive
human-in-loop models with user control to improve
translation quality and style.

In contrast to standard post-editing models, IPE
models consume user inputs to revise candidate
translations. User inputs could be tokens that
should either be dropped or retained from candidate
or source sentences. QuickEdit model (Grangier
and Auli, 2018) is an example that uses strike-out
interactions to gather user tokens that should be
dropped from MT output. Similarly, TouchEditing
model (Wang et al., 2020) supports substitution,
deletion, reordering and insertion operations on
tokens. Support for richer and more complex inter-
actions makes the model more flexible and easier

for users. Our work borrows token-level interac-
tions on source text and candidate sentences (we
call them hypothesis) from related literature that
help correct errors and improve translation qual-
ity. We extend this further to control verbosity of
translation.

Style-aware language generation has drawn con-
siderable attention from researchers recently. They
have been studied for paraphrasing and translating
text with the desired style properties. Style prop-
erties like (active/passive) voice (Yamagishi et al.,
2016), formality (Niu et al., 2018; Niu and Carpuat,
2020), complexity (Agrawal and Carpuat, 2019;
Marchisio et al., 2019), and verbosity (Lakew et al.,
2019) are some examples that were explored in
various applications. We evaluate one of the most
important style features – verbosity or translation
length in the context of IPE in this work.

3 Problem and Approach

Our primary goal is to train a sequence-to-
sequence model that can improve candidate trans-
lations of the source with user cues. The model
M(s, h, I) takes as its input a pair of sentences
(source text s and a hypothesized translation h ) as
well as a set I of user interaction cues. The model
tries to improve the translation of the source while
leveraging user cues and accommodating those that
are feasible. Post-edits can be successively ap-
plied by translators until satisfactory translation as
hk+1 =M(s, hk, Ik).

Users generate interactions on the source and
hypothesis sentences that the model uses to im-
prove the translation. We support two categories
of interactions; (1) token-level interactions (2)
length interactions. For token-level interactions,
the user has access to four unique operations
I = {keep, delete, insert, replace}. At each iter-
ation, interactions can reflect any subset of this
set Ik ⊂ P(I), including an empty set ∅ which
reduces to APE. The keep interaction is used to
mark tokens in hypothesis that the user wishes to
retain in the revised translation and the delete in-
teraction captures tokens from the hypothesis the
user prefers to drop from the revised translation
(similar to the strike-out operation in QuickEdit).
The replace interaction allows user to mark tokens
in the hypothesis that are in the right position but
need to be changed in the revised translation. For
the insert interaction, we provide the user with a
translation language model (TLM) (similar to (Con-
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Figure 1: The model architecture. The source and the hypothesis are encoded using two separate transformer
encoders. The resulting encodings are concatenated and given as the input to the decoder.

neau and Lample, 2019)) which allows the user to
add a token in the hypothesis at a position of their
choice. These interactions are passed by enclosing
the relevant tokens from the sentence in appropri-
ate control tags. For example, keep is indicated by
using <keep> and </keep> tags around relevant
tokens in the hypothesis. 1

The length interaction is used to affect the ver-
bosity of the output. User can request three possible
variations on this interaction; increment (↑), decre-
ment (↓) or isometric translation (↔). Isometric
translation refers to generating translations similar
in length to the source. We follow the same defini-
tion of isometric translation as described in (Lakew
et al., 2021). Any translation with target charac-
ter length in ±10% of source character length is
considered isometric. If the user wants to make
the revised translation longer/shorter compared to
the hypothesis, they indicate this with the incre-
ment or decrement length interactions. If the user
wants to make the revised translation to be of sim-
ilar length as source, they pick isometric transla-
tion. The corresponding control tag is prepended
to the hypothesis sentence before it is passed to the
encoder. Table 1 shows examples of the various
interactions described above.

Model architecture. We use a Multi-Source
Transformer (MST) proposed by (Tebbifakhr et al.,
2018) for our task. We specifically consider the
implementation by (Wan et al., 2020) 2 based on
Fairseq (Ott et al., 2019). The MST network con-
sists of two transformer encoders and one trans-
former decoder (Vaswani et al., 2017). We use the
same hyperparameters as in the Transformer (base)
model with 6 layers in both the encoder and the
decoder, 512 as the embedding dimension, 2048 as
dimension of the feed forward layer and 8 heads

1The description of user interface used for these inter-
actions is briefly described in Section 5.2 and other details
beyond the scope of this work.

2https://github.com/zerocstaker/
constrained_ape

for multi-head attention. The two encoders are
used for encoding the source and the hypothesis
sentences separately, while the decoder is used for
generating an improved translation. Outputs from
the encoders are concatenated and then used to
generate keys and values for the encoder-decoder
attention sub-layers in the decoder. (See Figure 1
for an illustration of the model.) We maximize the
conditional log-likelihood Lθ(D) of the training
data D over the network parameters θ,

θ∗ = argmax
θ
Lθ(D) ≡

∑

(s,t,h,I)∈D
log Pθ(t|s, h, I),

where Pθ(t|s, h, I) is probability of target sen-
tence given the inputs that is auto-regressively es-
timated as

∏|t|
k=1 Pθ(yk|yk−1, s, h, I). The model

M performs auto-regressive decoding with beam
search using the distribution of the next token
Pθ∗(yk|y<k, s, h, I) conditioned on the previously
generated tokens y<k, the model inputs, and opti-
mal parameters θ∗. We use a beam width of 5 in our
experiments and do not use any hard constraints
during decoding.

4 Interaction Data Simulation

To the best of our knowledge, there are no pub-
licly available datasets capturing the various inter-
actions we aim to learn throughM. There are pub-
lic datasets for automated post-editing (like (Chat-
terjee et al., 2019)) but they only have source and
hypothesis pairs with post-edit required on the lat-
ter to improve the translation. They do not cover
the spectrum of interactions we are considering in
our work. Ideally, we would need an interface to
collect the necessary data spanning our interaction
set where professional translators can mark the ed-
its necessary to arrive at a satisfactory translation
from given inputs. This method of data collection
is expensive and does not scale to larger sets of sup-
ported interactions. Alternatively, we can synthe-
size the input by simulating user interactions from
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Table 1: Examples of inputs (source s, hypothesis h, interaction I) and corresponding model output (translation t̂)
along with human given reference translation (t). (A) Interaction was to keep two words: “Deshalb” and “führend”
from the h and they were correctly kept in the t̂. (B) Interaction was to delete one word: “noch” which means

“more” in the context. The literal translation of swould require “noch” to be there but because of Delete interaction
it was removed from t̂. (C) Longer Interaction translated the 22 characters long h to a 43 characters long t̂ while
maintaining the meaning of translation. (D) Shorter Interaction translated 45 characters long h to a 21 characters
t̂. (E) Length of s is 48 characters making the 39 character long h non-isometric translation but generated t̂ is 45
character long making it an isometric translation.

(A) Token Interaction - Keep
s: So I think we have to be in the lead.
h: <keep> Deshalb </keep> denke, wir <keep> führend </keep> sein.
t̂: Deshalb denke ich, dass wir führend sein müssen.
t: Deshalb denke ich, müssen wir führend sein.
(B) Token Interaction - Delete
s: Actually, I made two more mistakes.
h: Eigentlich habe ich <delete> noch </delete> zwei Fehler gemacht.
t̂: Eigentlich habe ich zwei Fehler gemacht.
t: Eigentlich machte ich zwei Fehler.
(C) Length Interaction - Longer
s: He kept pointing here.
h: <length↑> Er zeigte hier weiter.
t̂: Er hat diesbezügliche Fortschritte gemacht.
t: Er zeigte immer hier hin.
(D) Length Interaction - Shorter
s: It’s a complete denial of mistakes.
h: <length↓> Es ist eine völlige Verweigerung von Fehlern.
t̂: Es ist völlig falsch.
t: Es ist eine total Verleugnung von Fehlern.
(E) Length Interaction - Isometric
s: Is it something about the details or the colors?
h: <length↔> Geht es um die Details oder die Farben?
t̂: Geht es um die Einzelheiten oder die Farben?
t: Geht es dabei um die Details oder die Farben?

bilingual parallel text data that is readily available.
We take this route similar to various post-editing
studies (Grangier and Auli, 2018; Tebbifakhr et al.,
2018) to identify and mark tokens with interactions
that the model can leverage to improve the hypoth-
esis.

Interaction simulation. We begin with a set of
high quality data bitext data samples (s, t) ∈ S
for the language pair of interest. A high-quality
pre-trained machine translation system TS is used
to generate hypotheses h = TS(s). User interac-
tions are then simulated from the hypothesis and
reference pairs as I = U(h, t). This gives us the
input triplets (s, h, I) to train our model. Follow-
ing are the details of the simulation function U that
imitates translator interactions from (h, t) sentence
pairs.

• Delete tokens. The delete interaction allows
user to specify token substrings in the hypothe-
sis that should be dropped from the final trans-
lation. It helps the model learn to correct over-
translated phrases and rephrase translation ac-
cordingly. We simulate delete interaction by
sampling from substrings in h do not appear
in the corresponding t.

• Keep tokens. The keep interaction has the
opposite effect of delete and is used to retain
tokens from the hypothesis that are good trans-
lations of the corresponding source. Contrary
to delete, we sample from substrings from h
that match t to identify relevant tokens.

• Replace or Insert tokens. The replace in-
teraction allows user suggest replacements to
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some tokens in the hypothesis. These sugges-
tions could be generated from other models
like a masked language model or manually
entered by users. For training, we sample the
substrings from h that do not appear in the t
but there is an acceptable replacement in the t.
We change the hypothesis by introducing the
replacement tokens in the hypothesis within
<keep> tags. Insert token operation operates
similarly except that while replace token op-
eration applies to a token in the hypothesis,
insert token can be used in between tokens.

• Length Interaction. This interaction is use-
ful in changing the verbosity of the translation
candidates relative to h or s. The user can
specify whether the output should be longer
or shorter than h or in same range compared
to s. The length interaction can be of very
high interest in domains where the length of
the final translation is crucial. For example,
movie subtitle translations impose display lim-
itations on screen that constrain the length of
the text (Gupta et al., 2019). Using | · | to refer
to character length of a sentence and a hyper-
parameter δl = 0.1, we mark the interaction
as longer when the ratio (|t| − |h|)/|t| > δl,
shorter if (|t| − |h|)/|t| > −δl and isometric
if (|t| − |s|)/|s| < δl and (|h| − |s|)/|s| > δl.
The samples that fall in neither bucket are
marked with no-preference.

We ignore all candidate substrings with more
than eight tokens for token-interactions and skip
any substrings that only have punctuation tokens.
A token can belong to no more than one interaction
and for a given input triplet multiple operations
can be sampled across token substrings. We do
not limit the number of token-interactions that are
present in a sample but we control the number of
interactions by occurance probabilities of each in-
teraction. To make the model more robust, for
each sample there was a 5% chance of getting a
noisy token-level interaction of random length. For
length interaction, again there was a 5% chance
of prepending a random interaction from longer,
shorter, isometric or no-preference. We compute
the interactions for each sample on-the-fly and be-
cause of the random chances we have introduced
in interaction simulation, we are able to train the
model with multiple versions of same sample.

At inference time, user can provide any or all of
the length interaction and token-level tags to the

model. Table 1 shows examples for each of the
described interactions.

5 Experiments and Results

Train and Test data. We use two public par-
allel datasets for training the model – Eu-
ropean Parliament Proceedings Parallel Cor-
pus (EuroParl) (Koehn, 2005) and MuST-C
dataset (Cattoni et al., 2021). Both datasets rep-
resent high quality parallel corpora. MuST-C is
a multilingual speech translation corpus with hun-
dred hours of audio recordings from English TED
Talks, which are automatically aligned at the sen-
tence level with their manual transcriptions and
translations. We do a 99-1 split of dataset into train,
validation sets. We use two public test datasets –
FLORES (Goyal et al., 2021) and MuST-C test set
provided with dataset. FLORES is a high-quality
many-to-many multilingual translation benchmark
dataset for 101 languages. Table 2 provides the dis-
tribution statistics of each interaction of our train-
validation-test sets by target language.

Table 2: Train and Test dataset sizes

Dataset Name Split En-De En-Es En-Fr
EuroParl

Train
1.7M 1.81M 1.77M

MuST-C 217K 250K 257K
FLORES

Test
997 997 997

MuST-C 2641 2502 2632

We use pretrained machine translation models,
OPUS-MT (Tiedemann and Thottingal, 2020) to
generate a hypothesis from source. For En-De, we
use an additional model for generating hypothe-
sis – FAIR’s submission for WMT19 news transla-
tion task (Ng et al., 2019). We use BERT (Devlin
et al., 2019) tokenizer provided in HuggingFace
Tokenizer3 to tokenize our inputs instead of gen-
erating a new dictionary. We clean the data by
removing samples with more than 250 tokens.

We chose the Adam optimiser (Kingma and Ba,
2015) with (β1, β2) = (0.9, 0.98) and an initial
learning rate of 5e-4 with inverse square-root decay
scheduled after 4000 warm-up steps. We reduce
the number of trainable parameters by using joint
vocabulary for source, hypothesis and target, and
by sharing the input and output embedding for the
decoder. For regularisation, we use dropout (Srivas-
tava et al., 2014) with a value 0.3 and weight decay

3https://huggingface.co/
bert-base-multilingual-cased
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Table 3: BERTScore of do nothing baseline (OPUS-MT) compared against our model with no interactions (APE
condition) and all interactions (IPE model). More detailed scores in Table 4

Dataset Model En-De En-Es En-Fr

FLORES
Do Nothing Baseline 0.887 0.875 0.914

No Interactions 0.881 0.87 0.907
All Interactions 0.922 0.923 0.94

MuST-C
Do Nothing Baseline 0.877 0.89 0.903

No Interactions 0.878 0.891 0.902
All Interactions 0.926 0.934 0.941

of 1e-4. To train the model, we use label-smoothed
cross-entropy criterion with the smoothing param-
eter set to 0.1. For each language-pair we train a
different model. We train each model for 24 epochs
with one dataset per epoch and choose the check-
point that gives the lowest loss on the validation
set.

5.1 Results and Observations

We report results on model generated translations
on the test t̂ =M(s, h, I) and focus our study on
two specific aspects; constraint satisfaction (CS)
and translation quality (TQ). For each interaction,
we define the constraint satisfaction criterion in
respective subsections. Translation quality is eval-
uated using the BERTscore (Zhang et al., 2020).
BERTScore correlates better to the human judge-
ment than its predecessors like BLUE (Papineni
et al., 2002).

As reported in Table 3, the baseline
BERTScore(h, t) wherein h are translations
from OPUS-MT models is at 0.892 when averaged
across three language pairs for FLORES test set
and at 0.89 for the MuST-C test set. Using the
full interaction set M(s, h, I) gives 0.92 and
0.928 BERTScore on FLORES and MuST-C
respectively averaged over three language pairs.
For Do Nothing Baseline, M(s, h, ∅) with no
interaction during inference gives 0.886 and 0.877
BERTScore on both sets respectively averaged over
three language pairs. This is similar to automatic
post-editing (APE) where the model receives no
human intervention. Previous works have shown
in past that outperforming high-quality NMT
models for APE with general data is extremely
difficult (Sharma et al., 2021) and we observe a
similar trend with our results.

Token Level Interactions. User inputs act like
soft constraints and are not hard enforced hence the
translation output does not always conform with

the interaction request. We do a study to evalu-
ate if the token-level controls also reflect similarly
in the model outputs t̂ as intended by the speci-
fied user interaction. We only report the numbers
for keep and delete interactions since insert and
replace interactions are essentially just keep inter-
actions for the model as explained in Section 4. For
the keep interactions, we check what percentage
of tokens marked in h appear in the output trans-
lation t̂. Similarly, for the delete interaction, we
calculate the percentage of tokens that were marked
in h for deletion and do not appear in t̂. Table 4
reports corresponding results showing a high level
of agreement in generated t̂ (90% for keep and
60% for delete ) with user requests. We only report
the numbers for samples where at least one such
interaction was possible, we skip other sentences
where that interaction was not feasible. We saw a
further improvement in performance when we used
these interactions together as compared to just one
interaction at a time (93% for keep and 65% for
delete).

Length Interactions. For length interactions, it
is more important to understand if the user request
for change in verbosity is met with. Correspond-
ingly, we compute change in verbosity between h
and t̂ to evaluate the affect of style controls. We
take a ratio of character lengths |t̂|/|h| and report
averages separately for No preference, Longer and
Shorter control options. The results, summarized
in Table 4, clearly show the intended trend. The
model’s ability to manipulate verbosity without
negatively impacting translation quality (as mea-
sured by BERTScore) is evident.

Isometric Translation. Contrary to other length
interactions, where the verbosity is relative to the
length of h, for Isometric Translation verbosity is
determined with respect to the length of s. With
this in mind, we take a ratio of token lengths |t̂|/|s|
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Table 4: Constraint Satisfaction (CS) and Translation Quality (TQ) (1) Token Level Interactions: CS is tokens %
marked with the interaction in hypothesis h and were satisfied in output translation t̂. (2) Length Interactions: CS
is the average ratio of character length of t̂ and the that of h. (3) Isometric Translation: CS is the average ratio of
character length of t̂ and the that of s. No Preference is the ratio of t and s. Custom NMT is the NMT model we
trained to specifically generate isometric translations. For TQ, we use BERTScore (Zhang et al., 2020).

En-De En-Es En-Fr
CS TQ CS TQ CS TQ

Token Level Interactions

FLORES Keep 0.913 0.879 0.928 0.87 0.921 0.906
Delete 0.581 0.882 0.584 0.871 0.631 0.908

MuST-C Keep 0.961 0.878 0.976 0.892 0.967 0.902
Delete 0.586 0.879 0.605 0.893 0.606 0.904

Length Interactions

FLORES
No Preference 0.92 0.881 0.923 0.87 0.926 0.907

Longer 0.941 0.88 0.949 0.869 0.941 0.906
Shorter 0.82 0.864 0.831 0.857 0.872 0.897

MuST-C
No Preference 0.865 0.878 0.868 0.891 0.869 0.902

Longer 0.898 0.878 0.92 0.886 0.9 0.902
Shorter 0.775 0.862 0.79 0.881 0.823 0.895

Isometric Translation

FLORES
No Preference 1.174 0.887 1.199 0.875 1.193 0.914
Custom NMT 0.932 0.823 1.051 0.851 1.035 0.875

Ours 1.069 0.877 1.084 0.868 1.137 0.906

MuST-C

No Preference 1.121 0.877 0.998 0.89 1.147 0.903
(Lakew et al., 2019) 1.02 - - - - -

Custom NMT 0.961 0.833 0.999 0.883 1.053 0.895
Ours 1.048 0.872 1.023 0.887 1.107 0.903

and report averages for each language-pair in Ta-
ble 4. Model’s ability to generate isometric transla-
tions while maintaining the translation quality (as
measured by BERTScore) is evident from these em-
pirical results. Ideally CS ratio, should be in range
[0.91, 1.1]; anything between this range would be
considered isometric.

We compare our model with the small data con-
dition for En-De described in (Lakew et al., 2019).
The match scenario described by the authors is the
very similar to the isometric translations. They
used a similar dataset as us to train an NMT model
to exclusively generate isometric translations. Of
the languages we are considering in this work, they
only report their performance for En-De model on
MuST-C dataset. A direct comparison of CS ratio
is unfair since authors tried to generate translations
as closely matching in length with the source while
we generate translations that are isometric. For TQ,
they report BLEU scores (Papineni et al., 2002).
They report 27.60 BLEU points while we achieve
34.15 BLEU points for En-De pair.

We trained another version of our model with
no hypothesis to demonstrate the importance of
hypothesis in generating a good translation with in-
teractions. Instead of passing the hypothesis to the
Hypothesis Encoder, we only pass the length con-
trol token and let the concatenation occur similar
as in the original model. This allows the model to
generate a token-level embedding for the control to-
ken which is concatenated to the source embedding.
The results are reported as Custom NMT in Table 4.
Some recent work have attempted to do this using
positional embedding to pass length control infor-
mation. Authors of (Takase and Okazaki, 2019)
did this for text summarization and (Lakew et al.,
2019) attempted it for generating length controlled
translations calling it Length Encoding method.

Comparing Ours model with other approaches,
we can see our model is able to generate better qual-
ity translations than a dedicated isometric transla-
tion model while providing access to multiple other
interactions as well.
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5.2 User Study
To study the feasibility of the our approach, we con-
ducted user trails with five translators. All trans-
lators were proficient in two languages; English
and one additional language. We conducted the
experiment with models trained similarly but with
English as target language to make it easier for us
to analyse the results. Two translators worked on
Italian 4 as source language, two on Spanish and
one on French 5.

Each translator was provided the same hand-
picked sentences in the same order from FLORES
dataset with hypothesis generated from OPUS-
MT (Tiedemann and Thottingal, 2020). Each trans-
lator was asked to work on as many translations as
possible in 30 minutes. Users were shown a source
sentence in English and hypothesis in the language
of their proficiency. They could then accept a trans-
lation or provide the interactions to improve the
quality of the translation. Providing interactions
generates a revision using the Interactive Post-Edit
(IPE) model we have trained; the user can again
either accept or revise the revision. After four revi-
sions, users had an option to enter the translation
manually.

We found around 59% of the hypothesis were
accepted without any revisions verifying that the
OPUS-MT translation model used is already of
high quality. Users employed the IPE model in
13% of cases to make quick edits. For the remain-
ing samples, users tried multiple revisions and after
an average of 3.57 revisions, users preferred writ-
ing the translations manually. We saw a minor
improvement in quality of translations with the IPE
model as well; showing the model’s capability to
generate translations more efficiently without com-
promising the quality of the translations.

6 Conclusion

We propose and evaluate a model for human-in-
loop interactive MT. The model offers the user
controls that can be leveraged to correct mistrans-
lations and rephrase them to achieve desired style
variations. We specifically evaluate how the five
interactions of keep, delete, replace, insert, and
length perform in terms of translation quality as

4Even though we do not report results for Italian model
in this work, the model used for user-study was trained as
described for other languages

5There was one additional translator for French but we
omitted the results since they did not understand the experi-
ment and quit after couple of translations.

measured by BERTScore and interaction constraint
satisfaction in final translation. User input remains
the gold standard for ensuring translation quality,
and providing user interactions enables human in-
put when necessary to boost performance. Further,
the empirical verification of the use of interactive
control beyond translation corrections (as is com-
mon with existing post-editing models) to achieve
desired style variations can serve as a major boost
to customizability of MT systems.

As part of our future work, we wish to expand
this study to more language pairs with multilingual
models for reduced operational load and evaluate
more style variations. We wish to go beyond ex-
plicit style tokens and use a continuous space for
representing style edits on which we condition the
decoder to generate a translation with correspond-
ing variation. Such a representation is likely to be
better suited to capture all style variations from data
unsupervised without explicit labeling and tagging
as we did with verbosity and readability.
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Abstract

Multilingual neural machine translation (NMT)
enables positive knowledge transfer among
multiple translation tasks with a shared underly-
ing model, but a unified multilingual model usu-
ally suffers from capacity bottleneck when tens
or hundreds of languages are involved. A pos-
sible solution is to cluster languages and train
individual model for each cluster. However,
the existing clustering methods based on lan-
guage similarity cannot handle the asymmetric
problem in multilingual NMT, i.e., one transla-
tion task A can benefit from another translation
task B but task B will be harmed by task A.
To address this problem, we propose a fuzzy
task clustering method for multilingual NMT.
Specifically, we employ task affinity, defined as
the loss change of one translation task caused
by the training of another, as the clustering cri-
terion. Next, we cluster the translation tasks
based on the task affinity, such that tasks from
the same cluster can benefit each other. For
each cluster, we further find out a set of aux-
iliary translation tasks that benefit the tasks in
this cluster. In this way, the model for each clus-
ter is trained not only on the tasks in the cluster
but also on the auxiliary tasks. During training,
we design a dynamic task sampling strategy
that eliminate the negative influence of auxil-
iary tasks while exploit the positive knowledge
of them. We conduct extensive experiments for
one-to-many, many-to-one, and many-to-many
translation scenarios to verify the effectiveness
of our method.

1 Introduction

Neural machine translation (NMT) has achieved
great success in recent years (Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017). The
conventional bilingual translation model well han-
dles the translation task for a single language pair,
but it is infeasible to train an individual model for
each language pair since there are thousands of

∗Corresponding Author: Jiajun Zhang.

A B∗ C∗

en-it en-nl en-de en-fr en-zh en-ja

Indiv 32.6 31.6 28.1 38.8 22.2 13.6
Joint 34.3 34.3 25.9 37.9 25.3 10.4

Table 1: Three kinds of task relationship. (A): Tasks
benefit from each other when jointly trained. (B): Tasks
are negatively influenced by each other. (C): The task
en-zh benefits from en-ja but en-zh is harmful to en-ja.
The models are trained on the IWSLT’17 dataset and
results with ∗ are reported in Xu and Yvon (2021).

languages in the world. To improve the computa-
tional efficiency, researchers propose multilingual
NMT that enables one model to handle multiple
translation tasks (Ha et al., 2016; Johnson et al.,
2017). Apart from the benefits for training and de-
ployment, the shared underlying neural network in
multilingual NMT also brings knowledge transfer
among similar languages (Tan et al., 2019).

Despite its simplicity, multilingual NMT model
often suffers from representation bottleneck caused
by language interference (Wang et al., 2020b; Wang
and Zhang, 2022) when massive number of lan-
guages involved (Aharoni et al., 2019), which leads
to performance degradation compared to bilingual
translation models. Several methods have been
proposed to break the bottleneck, such as design-
ing language specific modules (Wang et al., 2019;
Sachan and Neubig, 2018), hidden units (Wang
et al., 2018) or routing path (Zhang et al., 2021).
Among them, the most intuitive approach is group-
ing the languages into several clusters and train-
ing one multilingual NMT model for each cluster.
These methods use similarity between language
representations as clustering criterion, in which
the representations come from language embed-
ding vectors of a pretrained universal multilingual
model or sparse language vectors of a multilingual
knowledge base (Tan et al., 2019; Oncevay et al.,
2020).
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However, language similarity is not enough for
modeling the relationship among translation tasks
because of two reasons. First, a translation task in-
cludes a source language and a target language,
while the language similarity only consider the
feature of a single language. Second, the simi-
larity metric cannot handle the asymmetric rela-
tionship between translation tasks. Zamir et al.
(2018); Wang et al. (2022) show the asymmetry in
multi-task learning and multilingual translation in
which one task may benefit from another but not
vice versa. Table 1 shows the three kinds of task
relationships in multilingual NMT. Case (A) and
(B) represent symmetric relationship in which the
influence of the two tasks on each other are both
positive or both negative. While in case (C), the
relationship is asymmetric in which the task en-zh
can benefit from the task en-ja but en-ja is harmed
by en-zh when the two tasks are jointly trained.

In this work, we propose a fuzzy task clustering
method for multilingual NMT to address the asym-
metric problem among translation tasks. We use
the task affinity (Fifty et al., 2021) as the clustering
criterion, which measures the loss change of one
task caused by the training of another task. We first
train a universal multilingual model to obtain the
affinity between each two tasks. Then we cluster
tasks based on the affinity score such that tasks
within each cluster can symmetrically benefit each
other. For each cluster, we also select a set of aux-
iliary tasks that asymmetrically benefit the tasks
in this cluster. Finally, we build separate models
for each cluster, and train the model on both the
tasks in the cluster and the corresponding auxiliary
tasks. In this way, the model for each cluster can
exploit the auxiliary tasks to facilitate training and
improve the model quality. Compared to previous
language clustering based methods, the proposed
method improves positive knowledge transfer be-
tween tasks by introducing auxiliary tasks. To fur-
ther address the increased burden of model training
due to auxiliary tasks involved, we therefore pro-
pose a dynamic data sampling strategy, in which
the sampling weights of auxiliary tasks gradually
decrease to allow the optimization process to focus
more on the tasks that used in inference.

To summarize, our method has the following
advantages:

• The clustering criterion in our method directly
measures the effect on one translation task
when training another, which can better model

the relationship between tasks compared to
language similarity.

• The fuzzy clustering paradigm introduces aux-
iliary tasks for each cluster, breaking the bar-
rier between clusters and improving positive
knowledge transfer.

2 Problem Formulation

2.1 General Formulation
Given a set of translation tasks T = {τ1, . . . , τN},
we group the tasks into K ∈ {k ∈ N+|k ≤ N}
clusters C:

C =




c1, . . . , cK

∣∣∣∣∣∣∣∣∣∣

ck ̸= ∅, ∀k
K⋃

k=1

ck = T

ci ∩ cj = ∅, ∀i ̸= j





(1)

For each cluster ck, we find out a set of auxiliary
tasks from other clusters that benefit the tasks in
ck. By combining the auxiliary tasks and tasks in
ck, we obtain another cluster gk. The set of gk is
denoted as:

G =




g1, . . . , gK

∣∣∣∣∣∣∣∣

K⋃

k=1

gk = T

ck ⊆ gk, ∀k





(2)

where the tasks τ ∈ gk \ ck are the auxiliary tasks
of ck.

We then build a multilingual NMT model Mk

for each cluster ck to handle the translation tasks in
ck. The model Mk is trained on gk, which consists
of both the tasks from ck and the corresponding
auxiliary tasks, by minimizing the cross-entropy
loss:

argmin
Mk

∑

τ∈gk

∑

(x,y)∈τ
− log p(y|x,Mk) (3)

where (x, y) is a sentence pair from task τ .
For a predefined quality measure Q(τ |M) of a

model M on task τ , our goal is to find the opti-
mal clusters C and G that maximize the inference
performance of all tasks:

argmax
C,G,K

K∑

k=1

∑

τ∈ck

Q(τ |Mk) (4)

2.2 Specialized Cases
We can see in this section that bilingual, multi-
lingual, and clustering based methods are special
cases of our formulation.
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Bilingual Translation When K = N , namely
we assign only one translation task for each clus-
ter and train individual model for each task, the
problem degrades into bilingual translation. The
bilingual model for each cluster is trained with
Equation (3).

Multilingual Translation When K = 1, a uni-
versal multilingual NMT model is trained for all
tasks as in Johnson et al. (2017). To distinguish dif-
ferent languages, a special token called language
tag is appended at the beginning of each source
sentence.

Language Clustering for Multilingual NMT
When 1 < K < N , C = G, the tasks are grouped
into separate clusters without auxiliary tasks. For
example, Tan et al. (2019) first train a universal mul-
tilingual NMT model to obtain language embed-
ding vectors. Based on the the embedding vectors,
they cluster the languages into different groups and
train individual model for each cluster.

3 Method

In this section, we first describe the translation task
affinity used for modeling the asymmetric relation-
ship between tasks (Section 3.1), followed by the
translation task clustering method that clusters the
tasks and finds out the auxiliary tasks for each clus-
ter (Section 3.2). We finally build a model for each
cluster and train the model with dynamic data sam-
pling strategy (Section 3.3).

3.1 Translation Task Affinity

We first focus on the quality measure Q(τ |M) of a
modelM on task τ . A popular choice for modeling
and optimizing the quality of a translation model is
cross-entropy loss (Bahdanau et al., 2015; Vaswani
et al., 2017). A lower cross-entropy indicates a
better model. Therefore, we use the negative cross-
entropy, namely the log-probability, to measure the
quality of M on task τ :

Q(τ |M) =
∑

(x,y)∈τ
log p(y|x,M) (5)

Obviously, training one model M for each task
τ is a possible solution for Equation (4), since the
training objective in Equation (3) is identical to
maximizing Q(τ |M).

Previous works find out that the performance on
some tasks can be improved when jointly trained
(Tan et al., 2019; Standley et al., 2020; Chiang

et al., 2022). Therefore, we want to find out which
task can benefit another under the quality measure
Q(τ |M) in multilingual training. Formally, given
two tasks τi and τj , the affinity Zj→i from τj to τi
is defined by:

Zj→i = Q(τi|M1)−Q(τi|M2) (6)

where M1 is trained on tasks τi and τj , while M2

is trained on task τi. A positive value Zj→i > 0
indicates that the task τj brings positive knowledge
transfer to task τi, while a negative value indicates
that the task τj is harmful to task τi. Note that
Zj→i ̸= Zi→j , and thus we call it asymmetric
task affinity.

However, exhaustively searching over all pos-
sible combinations of |T | tasks requires training
2|T | − 1 models, which is unaffordable. We there-
fore turn to an efficient approximation that mea-
sures, at each training step, the change of one task’s
loss caused by the optimization of another task
(Fifty et al., 2021). The affinity from task j to task
i at step t is defined as1:

Ẑtj→i = log p(y|x,M t+1)− log p(y|x,M t) (7)

where (x, y) is a sentence pair sampled from task
τi, and M t+1 is obtained by one-step training on
task τj of model M t.

Similar to Tan et al. (2019), we first train a uni-
versal model for all the language pairs. During
training, we calculate the affinity Ztj→i with ran-
domly and uniformly sampled tasks τi and τj at
t-th step2. The affinity is then accumulated across
all steps:

Zj→i ≈ Ẑj→i =

T∑

t=1

Ẑtj→i (8)

With the affinity matrix Z ∈ R|T |×|T |, our goal
in Equation (4) becomes maximizing the overall
inter-task affinity as proved in Section A:

argmax
C,G,K

K∑

k=1

∑

τi∈ck

∑

τj∈gk

Zj→i (9)

1In Fifty et al. (2021), they consider the ratio of the loss
change to eliminate the scale discrepancy among different task

losses: Ztj→i = 1− Lj(x,y,Mt+1)

Lj(x,y,Mt)
. Since the task loss scales

are similar in multilingual translation, we only consider the
absolute loss change.

2In multilingual NMT, a single batch can contain sentence
pairs from multiple tasks (Johnson et al., 2017), which is un-
suitable for Equation (7). We therefore iteratively use batches
contain multiple tasks to stabilize training, and batches contain
only one task to calculate Ztj→i.
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3.2 Translation Task Clustering

We now describe how to solve Equation (9). Simi-
lar to reduction from Set-Cover that chooses a sub-
set covering all the tasks to minimize the overall
cost (Standley et al., 2020), this problem is NP-hard
in general. We therefore propose a greedy approxi-
mation that iteratively constructs the clusters C and
G to minimize the overall affinity.

As shown in Figure 1(b), we first initialize C
with N clusters, where each cluster contains only
one task. With the affinity matrix Z, we build the
corresponding N clusters of G:

gk = ck ∪ {τj |Zj→i > 0} ∀k = 1, . . . , N (10)

where τi ∈ ck.
We define the score function S(ck, gk) to mea-

sure the cluster affinity of ck and corresponding gk:

S(ck, gk) =
1

|gk|
∑

τi∈ck

∑

τj∈gk

Zj→i (11)

where 1
|gk| is the normalization term for the number

of tasks. We also define the rule of the union of
two clusters c1 and c2 in C, and g1 and g2 in G:

c1 ∪
C
c2 ={τ |τ ∈ c1 or τ ∈ c2}

g1 ∪
G
g2 =(c1 ∪

C
c2) ∪

{
τj

∣∣∣∣∣
τj ∈ g1 or τj ∈ g2
Zj→i > 0,∀τi ∈ c1 ∪

C
c2

} (12)

As shown in Figure 1(c-e), for each two clusters,
we form a union of them based on the above union
rule and calculate the cluster affinity. The clusters
with maximum overall affinity are selected. The
clustering step is repeated until no union of two
clusters can further improve the overall affinity, i.e.,
for any of two clusters c1 and c2, we have:

S(c1 ∪
C
c2, g1 ∪

G
g2) ≤ S(c1, g1) + S(c2, g2) (13)

After iteration3, the Equation (4) is solved and
we obtain K clusters in C as well as K correspond-
ing clusters in G. We train one multilingual NMT
model (Johnson et al., 2017) for the tasks in each
cluster, where each model Mk is trained with tasks
in gk and is used for inference of tasks in ck.

3In most of our experiments, the iteration can stop with a
proper number of resulting K clusters. However, there is no
theoretical guarantee for convergence and it may degrade into
bilingual (K = N ) or universal (K = 1) models. In prac-
tise, early-stop can be adopted when K satisfies a predefined
constraints (Standley et al., 2020).

(a) Affinity Matrix Z

𝜏1 𝜏2 𝜏3

𝜏1 1.1 0.2 0.2

𝜏2 0.3 0.9 -0.2

𝜏3 -0.2 0.1 1.2

(b) Initialize 𝒞 and 𝒢

k 𝒞 𝒢 𝑆(𝑐, 𝑔)

1 𝜏1 𝜏1, 𝜏2 0.7

2 𝜏2 𝜏1, 𝜏2, 𝜏3 0.4

3 𝜏3 𝜏1, 𝜏3 0.7

k 𝒞 𝒢 𝑆(𝑐, 𝑔)

1 𝜏1, 𝜏2 𝜏1, 𝜏2 1.25

2 𝜏3 𝜏1, 𝜏3 0.7

k 𝒞 𝒢 𝑆(𝑐, 𝑔)

1 𝜏1, 𝜏3 𝜏1, 𝜏3 1.15

2 𝜏2 𝜏1, 𝜏2, 𝜏3 0.4

k 𝒞 𝒢 𝑆(𝑐, 𝑔)

1 𝜏1 𝜏1, 𝜏2 0.7

2 𝜏2, 𝜏3 𝜏1, 𝜏2, 𝜏3 0.8

(c) Union clusters 1 and 2

(d) Union clusters 1 and 3

(e) Union clusters 2 and 3

Figure 1: An example of clustering 3 tasks. Based on
the affinity matrix (a), we first initialize the clusters C
and G (b), and then make union of each of two clusters
(c-e). In this example, (c) brings highest overall affinity
(1.95) and no union of two clusters can further improve
the affinity (1.2 if the three tasks belong to one cluster).
Thus the clusters in (c) is the clustering result.

3.3 Training with Dynamic Data Sampling
We now focus on the training of model Mk. The
training objective, as described in Equation (3), is
to minimize the overall cross-entropy loss for tasks
in gk. Since the training tasks in gk contain both the
inference tasks in ck and other auxiliary tasks gk \
ck, the objective brings positive knowledge transfer
and can improve the translation quality compared
to that only trained with tasks in ck. However, it
also introduces extra burden for the model due to
more auxiliary tasks involved.

We therefore propose a dynamic data sampling
strategy that gradually decreases the weights of
auxiliary tasks and focuses more on inference tasks.
We start from the temperature based sampling (Con-
neau et al., 2020) that samples training data from
each task τ ∈ gk according to the data size of each
task |Dτ | and a temperature term ρ:

P̂k(τ) =
q
1/ρ
τ∑

π∈gk
q
1/ρ
π

where qτ =
|Dτ |∑

π∈gk
|Dπ| (14)

We re-scale the sampling distribution P (τ) for
the auxiliary tasks τ ∈ gk \ ck as a function of the
training epoch E:

Pk(τ) =

{
1

1+λE
|ck|
|gk| P̂k(τ) if τ /∈ ck

P̂k(τ) if τ ∈ ck
(15)

where λ is the decay rate of the sampling weight.
The term |ck|

|gk| considers the number of auxiliary
tasks. If there are too many auxiliary tasks for

5132



training the model, namely |gk| ≫ |ck|, the weight
of each auxiliary task should be smaller. Other
dynamic data sampling and task weighting meth-
ods can also be used for prioritizing the inference
tasks in ck (Lin et al., 2019; Wang et al., 2020a;
Mahapatra and Rajan, 2020).

4 Experiment Setup

4.1 Dataset

We evaluate our method on the TED 2020 Par-
allel Sentences Corpus collected by Reimers and
Gurevych (2020). The dataset contains sentences
from TED talks with their translations in more than
100 languages provided by a global community of
volunteers.

For one-to-many (O2M) translation and many-
to-one (M2O) translation scenarios, we select 28
languages (es, fr, ar, zh, ko, ru, tr, it, ja, he, pt, ro, vi,
nl, hu, fa, pl, de, el, sr, bg, uk, hr, cs, id, th, sv, sk)
↔ English that contain more than 100K sentence
pairs4 and the data statistics are shown in Supple-
mentary Materials (Section B). We randomly select
4, 000 sentence pairs as validation set and 4, 000
sentence pairs as test set for each language pair.
We use byte-pair encoding (BPE) (Sennrich et al.,
2016) to encode all sentences and learn the BPE op-
eration using sentencepiece (Kudo and Richardson,
2018), which results in a shared subword vocabu-
lary containing 32K sub-word symbols.

For many-to-many (M2M) translation, we select
10 languages (es, fr, ar, ko, ru, tr, it, ja, he, pt) from
the TED 2020 Parallel Sentences Corpus. Each two
languages contains about 300K parallel sentences,
which results in 90 translation directions. We pre-
process the data in the same way as in O2M and
M2O setting.

The multilingual datasets are sampled with tem-
perature based strategy with ρ = 5, and the sam-
pling weight decay rate in our method is set to
λ = 0.5.

4.2 Model Settings

We conduct the experiments using the Transformer
model (Vaswani et al., 2017) and implement our
method based on the fairseq codebase5. For
the O2M and M2O experiments, we use a 4-layer

4We remove Brazilian Portuguese (pt-br) and Traditional
Chinese (zh-tw) since they are similar to Portuguese (pt) and
Simplified Chinese (zh-cn). we use zh to indicate zh-cn for
simplicity.

5https://github.com/pytorch/fairseq

model6 with embedding size 512 and FFN layer
dimension 1024. For the M2M experiment, we
adopt the transformer_iwslt_de_en con-
figuration which represents 6-layer model. Each
mini-batch contains roughly 16, 384 tokens. All
models are trained with Adam optimizer (Kingma
and Ba, 2015) on Nvidia 3090 GPUs. We use 2
GPUs for O2M and M2O translation, and 4 GPUs
for M2M translation. We use SacreBLEU to mea-
sure the translation quality (Papineni et al., 2002;
Post, 2018) and test the statistical significance by
bootstrap resampling (Koehn, 2004).

4.3 Systems

The following methods are used in our experi-
ments.

Bilingual (Bi.) We train a Transformer model for
each task, which results in N individual models for
N translation directions (Vaswani et al., 2017) .

Multilingual (Multi.) We train a universal multi-
lingual Transformer model for all translation direc-
tions (Johnson et al., 2017).

Language Embedding Clustering (LEC) We
cluster the languages based on the language em-
bedding and train one multilingual model for each
cluster. The number of clusters K is obtained with
elbow method following Tan et al. (2019).

Hard Task Affinity Clustering (HTAC) We use
the affinity instead of language embedding for clus-
tering and no auxiliary tasks are used for training,
namely we set λ = +∞ in Equation (15), which is
equivalent to G = C.

Fuzzy Task Affinity Clustering (FTAC) We use
the affinity for clustering and incorporate auxiliary
tasks with dynamic data sampling during training.

5 Results and Analyses

5.1 Clustering Results

For the LEC method (Tan et al., 2019), we obtain
9 clusters in O2M translation: {{sk, cs, hr, sr, pl},
{sv, uk}, {th, el, hu, vi, he, ar}, {id}, {bg, ro}, {de,
fa, nl, pt, it, tr, fr, es}, {ru}, {zh}, {ja, ko}}. In
M2O translation, there are 11 clusters: {{sk, cs},
{sv}, {th}, {id, vi}, {hr, bg, sr}, {uk, pl, ru}, {el},
{de, hu, nl, tr}, {fa, he, ar}, {ro, pt, it, fr, es}, {ja,
ko, zh}}.

6We use 4-layer model because some bilingual models
cannot converge with 6-layer setting.
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Figure 2: The task affinity between English to 28 languages (O2M, Left) and 28 languages to English (M2O, Right).
Each cell (i, j) represents the affinity Zi→j of task τi to task τj .

k ck (en→X) gk \ ck (en→X)

1 sr, hr fr, uk, bg, sv, el, pl, cs, es, it, sk
2 ja, zh, ko tr, vi, th
3 pl, sk, cs hu, ru, he, fr
4 sv, nl, de zh, id, sk, hr
5 he, hu sv, ja, sk, de, ar
6 el, bg, uk sk, es, fa, sr, th
7 ro, id, es, fr, pt, it sv, cs, de, hr, sr, pl
8 ar, fa hu, vi, de, nl
9 tr, vi ja, zh, ar, th, ko
10 th, ru ja, zh, el, ar, he, ko

Table 2: The clustering results of our method for one-to-
many translation. Each language X denotes a translation
task en→X.

k ck (X→en) gk \ ck (X→en)

1 hu sk, ar, ro, pt, pl, hr, sv, ru, th, uk,
fa, id, zh, it, fr, de, ja, ko, cs, he

2 zh, ko, ja, th ar, uk, de, hu
3 ar, el, fa, he ru, cs, pl, ro, es, hr, uk, sr, ja, id,

bg
4 tr, pl, cs, sk ru, sr, ko, ja
5 bg, hr sk, ru, cs, pl, fa, nl, el, id
6 es, ro, fr, nl, pt sk, id, bg
7 de, sr, uk sk, sv, ru, cs, pl, ro, ar, hr, fa, nl,

ko, it, zh, el, id, he
8 id, vi th, fr, pl, hr, uk, de, fa, sr, ko, it, ja,

zh, tr, he
9 sv, it, ru sk, fr, pl, uk, nl, ja, pt, he

Table 3: The clustering results of our method for many-
to-one translation. Each language X denotes a transla-
tion task X→-en.

For our task affinity based method (FTAC), we
first show the task affinity in one-to-many and
many-to-one scenarios in Figure 2. Obviously, the
left part (O2M) and the right part (M2O) share
one common pattern that the cells on the diago-
nal line are darker, which indicates that each task
contributes more on itself. Besides, there are more

differences between O2M and M2O models which
leads to several interesting findings:

• We find that the cells on the diagonal line in
O2M are darker than M2O models, and the
cells beyond diagonal line are lighter in O2M
model. The observation indicates that a task
in O2M model relies more on itself and the
positive knowledge transfer is more common
in M2O multilingual model. This may be
because the burden of generation is mainly on
the decoder (Dabre et al., 2020), and the tasks
in a M2O model share one target language.
Thus the tasks in M2O translation can benefit
each other and reduce the generation burden.

• The affinity between tasks better correlates
with linguistic similarity in O2M model. For
example, the Serbian (sr) and Croatian (hr)
are similar languages and the affinity between
en→sr and en→hr is quite high. Similar to
language embedding (Tan et al., 2019), the
affinity also captures the regional, cultural,
and historical influences in O2M model (see
the affinities between ja, ko, and zh).

• The affinities in M2O model cannot reflect
linguistic proximities. As claimed above, the
positive knowledge transfer mainly occurs in
the decoder to facilitate generation. The dif-
ferences in the target side between M2O trans-
lation tasks are imperceptible and affected by
factors like data sizes, training schedule or
optimization.

Based on the affinity matrix, we cluster the lan-
guages using the method described in Section 3.2
and show the clustering results for O2M multilin-
gual translation in Table 2 and M2O translation in
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One-to-Many Many-to-One
Bi. Multi. LEC HTAC FTAC ∆1 ∆2 Bi. Multi. LEC HTAC FTAC ∆1 ∆2

en↔es 40.5 38.9 41.3 42.0 42.5 +1.2 +3.6† 43.6 46.1 46.2 46.4 48.4 +2.2 +2.3†

en↔fr 41.4 39.6 42.2 42.8 43.3 +1.1 +3.7† 37.9 40.3 40.0 40.5 42.1 +2.1 +1.8†

en↔ar 16.3 14.5 17.2 17.2 17.7 +0.5 +3.2† 32.9 34.6 36.3 36.5 37.9 +1.6 +3.3†

en↔zh 16.6 14.6 16.6 16.5 17.0 +0.4 +2.4† 22.5 25.4 25.2 25.8 26.6 +1.4 +1.2†

en↔ko 6.5 6.4 7.6 7.4 7.9 +0.3 +1.5† 19.7 21.7 22.6 23.2 23.7 +1.1 +2.0†

en↔ru 20.9 18.4 20.9 20.9 21.2 +0.3 +2.8† 25.4 28.8 28.4 28.8 28.9 +0.5 +0.1
en↔tr 17.0 15.9 17.5 18.6 19.1 +1.6 +3.2† 27.1 28.0 28.7 29.5 30.5 +1.8 +2.5†

en↔it 33.4 32.7 35.0 35.8 35.9 +0.9 +3.2† 37.5 40.8 40.8 41.0 41.3 +0.5 +0.5‡

en↔ja 14.5 14.0 17.0 17.0 17.5 +0.5 +3.5† 15.3 17.4 18.3 19.0 19.6 +1.3 +2.2†

en↔he 26.9 24.4 28.1 28.6 29.1 +1.0 +4.7† 38.2 38.9 40.5 40.7 42.9 +2.4 +4.0†

en↔pt 37.6 35.9 38.5 39.4 39.9 +1.4 +4.0† 41.1 43.5 44.0 44.3 45.9 +1.9 +2.4†

en↔ro 27.7 26.6 28.5 29.5 30.0 +1.5 +3.4† 37.2 40.1 39.6 39.9 41.9 +2.3 +1.8†

en↔vi 29.0 27.5 30.7 30.8 31.2 +0.5 +3.7† 29.6 32.0 32.2 32.2 32.7 +0.5 +0.7†

en↔nl 31.7 29.8 32.7 32.9 33.4 +0.7 +3.6† 36.8 38.5 38.6 38.8 40.1 +1.5 +1.6†

en↔hu 17.8 14.8 17.0 17.8 18.3 +1.3 +3.5† 27.1 27.3 27.6 27.1 28.7 +1.1 +1.4†

en↔fa 18.2 17.7 19.5 19.6 20.1 +0.6 +2.4† 29.8 31.9 32.1 33.0 34.5 +2.4 +2.6†

en↔pl 15.6 15.3 18.2 18.4 18.9 +0.7 +3.6† 23.2 27.0 26.8 27.3 28.1 +1.3 +1.1†

en↔de 26.6 24.9 27.3 28.3 28.8 +1.5 +3.9† 33.8 35.7 36.1 35.8 37.4 +1.3 +1.7†

en↔el 32.0 28.8 33.9 33.7 34.2 +0.3 +5.4† 39.6 41.0 39.6 41.5 42.5 +2.9 +1.5†

en↔sr 22.0 21.9 25.5 24.3 24.8 -0.7 +2.9† 37.6 40.2 41.9 42.0 41.7 -0.2 +1.5†

en↔bg 32.6 30.8 34.6 34.6 35.1 +0.5 +4.3† 39.2 42.5 42.7 42.8 42.7 +0.0 +0.2
en↔uk 18.9 18.3 21.5 21.1 21.6 +0.1 +3.3† 27.4 31.2 30.9 31.4 31.5 +0.6 +0.3
en↔hr 27.4 26.0 30.6 29.5 30.3 -0.3 +4.3† 38.0 42.7 44.1 43.6 42.8 -1.3 +0.1
en↔cs 20.6 19.0 23.1 23.3 23.8 +0.7 +4.8† 31.1 34.5 33.9 36.3 36.7 +2.8 +2.2†

en↔id 31.5 27.9 31.5 31.6 32.6 +1.1 +4.7† 31.7 33.3 34.5 34.6 35.4 +0.9 +2.1†

en↔th 17.8 16.3 18.5 19.3 19.8 +1.3 +3.5† 24.9 27.1 24.9 28.1 29.1 +4.2 +2.0†

en↔sv 34.9 30.7 33.6 36.5 37.2 +3.6 +6.5† 40.4 42.0 40.4 43.4 44.4 +4.0 +2.4†

en↔sk 20.6 19.5 25.2 24.3 24.8 -0.4 +5.3† 29.9 34.9 36.1 37.4 38.1 +2.0 +3.2†

Average 24.9 23.3 26.2 26.5 27.0 +0.8 +3.7 32.1 34.6 34.8 35.4 36.3 +1.6 +1.7

Table 4: BLEU scores of one-to-many (O2M, Left) and many-to-one (M2O, Right) translation with different
methods. The column ∆1 and ∆2 are the improvements of FTAC compared to LEC and Multi. respectively. † and
‡ indicate the corresponding improvement is statistically significant with p < 0.01 and 0.05 respectively.

Table 3. We find that the clusters in M2O trans-
lation contain more auxiliary tasks, which proves
that the M2O translation can benefit more from
multilingual training.

For many-to-many translation, we show the affin-
ity heatmap and clustering results in Supplementary
Materials (Section C).

5.2 O2M and M2O Translation Quality
We present the translation quality of different meth-
ods in Table 4. By comparing different methods,
several observations can be found.

• Our FTAC method can well address the asym-
metry in multilingual NMT and outperforms
the Multi. baseline in all translation tasks.

• Clustering methods perform better in O2M
translation. The LEC method outperforms the
multilingual baseline by 2.9 BLEU in O2M
translation but only 0.2 BLEU in M2O trans-
lation. Similarly, the HTAC method achieves

improvements of 3.2 BLEU and 0.8 BLEU
in O2M and M2O respectively. The results
prove that the burden of generation caused by
number of target languages involved is impor-
tant in O2M translation, and the problem can
be well addressed by clustering the tasks into
different groups.

• Clustering based on task affinity performs bet-
ter than based on language embedding. Com-
pared to LEC method, HTAC achieves im-
provements of 0.3 BLEU in O2M setting and
0.6 BLEU in M2O setting.

• The asymmetry feature of task affinity that
leads to fuzzy clustering is important, and the
auxiliary tasks in each cluster brings large im-
provements, especially for M2O setting. The
FTAC method with auxiliary tasks outper-
forms the HTAC method without auxiliary
tasks by 0.5 BLEU and 0.9 BLEU in O2M
and M2O respectively.
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→es →fr →ar →ko →ru →tr →it →ja →he →pt

es→ - 35.9/+3.9 12.2/+3.8 16.7/+3.9 16.9/+3.9 15.0/+4.4 30.3/+4.0 15.2/+5.3 18.8/+6.2 31.3/+6.3
fr→ 28.9/+4.6 - 11.4/+2.6 16.6/+3.4 16.3/+4.5 14.0/+4.1 28.3/+4.1 14.7/+5.3 18.3/+5.3 28.8/+5.2
ar→ 23.8/+2.4 27.8/+4.0 - 15.2/+2.4 14.0/+3.3 12.3/+3.2 21.8/+3.8 13.3/+2.3 15.5/+4.5 22.2/+5.4
ko→ 15.5/+2.4 22.4/+2.3 6.8/+1.6 - 10.4/+2.0 9.8/+2.1 15.6/+2.5 14.4/+3.0 10.0/+2.2 14.8/+2.8
ru→ 20.3/+3.5 27.1/+3.4 8.2/+1.9 14.9/+1.9 - 11.2/+2.3 20.0/+3.1 13.3/+3.8 13.2/+3.6 19.5/+4.9
tr→ 21.0/+3.4 26.9/+3.0 9.4/+2.2 15.4/+2.8 12.6/+2.9 - 19.8/+3.6 14.0/+3.6 13.9/+3.0 20.4/+4.2
it→ 30.2/+3.6 34.9/+3.3 11.3/+3.5 16.7/+3.8 16.4/+4.4 14.1/+2.3 - 14.8/+5.0 18.2/+5.1 29.1/+6.0
ja→ 13.1/+1.5 19.8/+2.2 5.7/+1.3 13.4/+1.8 8.6/+0.3 8.6/+1.2 13.6/+1.8 - 7.8/+1.9 12.9/+2.5
he→ 26.8/+4.8 31.9/+5.6 11.8/+3.2 16.4/+2.2 16.4/+3.8 13.5/+2.6 24.7/+4.3 14.5/+2.6 - 26.1/+6.1
pt→ 32.5/+4.8 36.3/+3.7 11.9/+4.4 17.1/+4.6 16.4/+4.9 14.2/+5.3 30.2/+4.4 15.4/+5.3 18.7/+6.1 -

Table 5: Many-to-many (M2M) translation quality measured by BLEU score. We compare our method (FTAC)
with the multilingual baseline (Multi.). The BLEU scores of FTAC and the improvements ∆ are reported with the
format of FTAC/∆.

5.3 M2M Translation Quality

For many-to-many setting, the language embedding
based clustering methods are not suitable since the
source language and target language in a translation
task may be clustered into different groups. On the
other hand, our method well handles M2M multi-
lingual translation by directly clustering different
tasks based on the affinity between them.

We compare our method (FTAC) with the multi-
lingual baseline (Multi.) and the results are shown
in Table 5. Our method consistently outperforms
the baseline method by up to +6.3 BLEU and +3.6
BLEU on average. The results in M2M translation
show that our method can well handle M2M trans-
lation.

5.4 The Effects of Auxiliary Tasks

To further understand the performance gain con-
tributed by auxiliary tasks, we analyze the effects
of different sampling strategies for auxiliary tasks.
Besides the HTAC and FTAC methods, we also
compare the following strategies:

• Rand. We randomly select |gk \ ck| auxiliary
tasks for each cluster ck.

• Temp. We use vanilla temperature based sam-
pling for all tasks by setting Pk(τ) = P̂k(τ)
in Equation (15).

• Fix. We set λ = 0 in Equation (15), namely
the sampling weights only correlate with the
number of auxiliary tasks involved.

Table 6 shows the average BLEU of different
methods in one-to-many translation. The detailed
results are shown in Supplementary Materials (Sec-
tion D). By comparing HTAC and Rand., we find

Method HTAC Rand. Temp. Fix. FTAC
Result 35.4 33.9 35.0 35.1 36.3

Table 6: Results of different sampling strategies for
auxiliary task data in one-to-many translation (measured
by average BLEU).

that arbitrarily adding auxiliary tasks significantly
hurts the performance by 1.9 BLEU, which proves
the effectiveness of our FTAC method for select-
ing proper auxiliary tasks. Besides, we find that
the Temp. and Fix. methods also perform worse
than HTAC, which indicates that the auxiliary tasks
bring extra burden for generation although they are
correlated with the inference tasks. By gradually
decreasing the weights of auxiliary tasks during
training, the FTAC method can focus more on the
inference tasks and bring better results.

6 Conclusion

In this work, we have proposed a fuzzy task cluster-
ing method to address the asymmetric problem in
multilingual NMT based on task affinity. The task
affinity is defined by the loss change of one task
after a step training of another task. Based on the
affinity, we cluster translation tasks, each of which
contains tasks that are symmetric. Each cluster is
further equipped with auxiliary tasks that can bene-
fit the model training of this cluster. Experiments
show that our fuzzy task clustering method signif-
icant outperforms the strong baselines. We also
show the effectiveness of incorporating auxiliary
tasks in a multilingual translation model. In the
future, we plan to explore more efficient and effec-
tive clustering criterion by exploiting large-scale
pre-trained multilingual models.
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Language es fr ar zh ko ru tr
Data Size 413 407 404 399 396 386 374

Language it ja he pt ro vi nl
Data Size 370 363 349 326 325 323 317

Language hu fa pl de el sr bg
Data Size 305 302 297 294 267 258 247

Language uk hr cs id th sv sk
Data Size 206 196 169 163 159 120 105

Table 7: The data size (K) of 28 langusges X↔English
used in M2O and O2M translation.

es fr ar ko ru tr it ja he pt

es - 401 399 393 384 371 368 362 347 320
fr 401 - 396 390 382 369 365 360 344 317
ar 399 396 - 389 381 368 365 359 344 317
ko 393 390 389 - 378 363 362 356 342 314
ru 384 382 381 378 - 356 357 355 341 307
tr 371 369 368 363 356 - 340 338 324 300
it 368 365 365 362 357 340 - 340 330 296
ja 362 360 359 356 355 338 340 - 330 290
he 347 344 344 342 341 324 330 330 - 282
pt 320 317 317 314 307 300 296 290 282 -

Table 8: The data size (K) used in many-to-many (M2M)
translation.

A The Clustering Objective

We want to maximize the overall performance of
all tasks by finding the clusters C and G:

argmax
C,G,K

K∑

k=1

∑

τi∈ck

Q(τi|Mk)

s.t. Mk = argmin
Mk

∑

τj∈gk

∑

(x,y)∈τj

− log p(y|x,Mk)

(16)

Assume that the quality Q(τi|Mk) on task τi
with the model trained on tasks τj ∈ gk is an ap-
proximation of the average of the model qualities
on task τi with the models trained on task τj and
task τi:

Q(τi|Mk) ≈ 1

|gk|
∑

τj∈gk

Q(τi|Mτi,τj ) (17)

HTAC Rand. Temp. Fix. FTAC
es→en 46.4 45.1 46.8 47.4 48.4
fr→en 40.5 39.2 40.5 41.0 42.1
ar→en 36.5 34.4 36.8 36.4 37.9
zh→en 25.8 24.8 25.7 25.6 26.6
ko→en 23.2 22.0 22.8 22.8 23.7
ru→en 28.8 27.8 28.2 27.2 28.9
tr→en 29.5 28.3 28.9 29.8 30.5
it→en 41.0 39.6 40.4 39.5 41.3
ja→en 19.0 17.8 18.6 18.5 19.6
he→en 40.7 38.5 40.8 41.4 42.9
pt→en 44.3 42.8 44.4 44.9 45.9
ro→en 39.9 38.7 40.7 40.7 41.9
vi→en 32.2 32.1 31.0 31.4 32.7
nl→en 38.8 37.5 38.8 38.9 40.1
hu→en 27.1 27.5 25.8 27.6 28.7
fa→en 33.0 31.6 33.2 32.6 34.5
pl→en 27.3 25.9 26.8 27.5 28.1
de→en 35.8 37.0 36.9 36.3 37.4
el→en 41.5 39.1 40.8 40.9 42.5
sr→en 42.0 40.7 40.3 40.5 41.7
bg→en 42.8 40.3 42.5 41.2 42.7
uk→en 31.4 30.9 31.5 30.6 31.5
hr→en 43.6 39.5 43.3 41.2 42.8
cs→en 36.3 33.4 34.6 36.0 36.7
id→en 34.6 33.7 32.7 34.0 35.4
th→en 28.1 26.6 27.4 27.9 29.1
sv→en 43.4 41.6 42.9 42.3 44.4
sk→en 37.4 33.5 35.5 37.3 38.1
Average 35.4 33.9 35.0 35.1 36.3

Table 9: BLEU score of many-to-one (M2O) translation
with different data sampling strategies.

where Mτi,τj is the model trained on tasks τj and
τi. Then the objective becomes:

argmax
C,G,K

K∑

k=1

∑

τi∈ck

Q(τi|Mk)

≈ argmax
C,G,K

K∑

k=1

∑

τi∈ck

1

|gk|
∑

τj∈gk

Q(τi|Mτi,τj )

(18)

Since the task τi ∈ ck must appear in gk, the
term Q(τi|Mτi) is irrelevant to the argmax opera-
tion:

argmax
C,G,K

K∑

k=1

∑

τi∈ck

Q(τi|Mk)

≈ argmax
C,G,K

K∑

k=1

∑

τi∈ck

∑

τj∈gk

(
Q(τi|Mτi,τj )−Q(τi|Mτi)

)

=argmax
C,G,K

K∑

k=1

∑

τi∈ck

∑

τj∈gk

Zj→i

(19)
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k ck gk \ ck
1 ja-ru it-ru, tr-ru, ja-it, it-pt, ar-ru, pt-ru, ko-ru, ja-fr, ru-fr, he-fr, fr-ru, es-ru, ar-es
2 ar-es es-it, ja-es, ru-es, ar-it, pt-es, tr-es, es-ar, ar-pt, ko-es, fr-pt, ar-ko, fr-es
3 he-tr,ja-tr fr-tr, ru-tr, es-tr, it-tr, pt-tr
4 pt-fr,tr-fr ar-fr, it-fr, es-fr, ko-fr
5 ru-tr,it-tr ar-tr, he-tr, ja-tr
6 he-ja,ar-ja tr-ja, ko-ja, it-ja, pt-ja
7 ko-he,tr-he ja-he, ru-he, es-he, ar-he, it-he
8 ru-ar,fr-ar tr-ar, es-ar, ko-ar, it-ar
9 he-es,ja-es,it-es ru-es, pt-es, ko-es, ar-es, fr-es
10 tr-ru,he-ru,es-ru ar-ru, pt-ru, fr-ru
11 es-it,ru-it,ja-it he-it, pt-it, ko-fr, fr-es, pt-es, he-it, fr-it, pt-it, tr-fr
12 pt-he,ru-he,ja-he,it-he ko-he, tr-he, fr-ar
13 es-fr,he-fr,ru-fr ar-fr, it-fr, pt-fr
14 ja-ar,tr-ar,ko-ar ru-ar, fr-ar, es-ar, he-ar, it-ar
15 tr-pt,ja-pt,fr-pt,he-pt ko-pt, it-pt, tr-it, ru-pt, es-pt
16 he-ko,ru-ko,ja-ko tr-ja, ja-ar, pt-ko, es-tr, ar-ko, ru-ar, tr-ko
17 es-he,ar-he,fr-he tr-he, it-he, es-ru, pt-he, ru-he, ko-he, ja-he
18 pt-es,ru-es,ko-es,tr-es,fr-es ja-es, it-es, ko-fr, ru-ar
19 es-ar,he-ar,it-ar,pt-ar ja-ar, ko-ja, tr-ar, fr-ar, pt-fr, it-pt, ko-ar
20 it-fr,ko-fr,ar-fr,ja-fr es-fr, pt-fr, tr-fr, ru-fr
21 pt-ru,ko-ru,fr-ru,it-ru,ar-ru es-ru, it-pt, he-ru
22 es-tr,pt-tr,ko-tr,fr-tr,ar-tr ja-tr, ru-tr
23 it-ko,tr-ko,ar-ko,fr-ko,es-ko,pt-ko ja-ko, he-ko, ru-ko
24 ru-pt,it-pt,es-pt,ar-pt,ko-pt es-fr, ru-it, pt-it, ja-pt, fr-pt, he-pt
25 pt-ja,es-ja,tr-ja,ru-ja,fr-ja,ko-ja,it-ja es-ko, ar-ja
26 he-it,ko-it,tr-it,fr-it,ar-it,pt-it fr-es, ko-fr, ru-it, ru-pt, es-it

Table 10: The clustering results of our method for many-to-many translation.

B Data Statistics and Pre-processing

In our experiments, we use the data from the TED
2020 Parallel Sentences Corpus7, which contains
sentences from TED talks with their translations
provided by a global community of volunteers8.

For one-to-many and many-to-one translation,
we select 28 languages and the data statistics are
shown in Table 7. For many-to-many translation,
we select 10 languages and the data statistics are
shown in Table 8.

For the data pre-processing, we use Jieba9

for segmenting Chinese sentences, Mecab10 for
Japanese and Korean, and Moses11 for other lan-
guages.

7https://github.com/UKPLab/sentence-t
ransformers/blob/master/docs/datasets/TE
D2020.md.

8https://www.ted.com/participate/tran
slate

9https://github.com/fxsjy/jieba
10https://taku910.github.io/mecab/
11https://github.com/moses-smt/mosesde

coder

C M2M Clustering

We show the task affinities of many-to-many
(M2M) translation in Figure 3 and the clustering
results in Table 10. From figure 3, we find that
the tasks with the same target languages share
higher affinities compared to the tasks with the
same source languages. From the clustering results
in Table 10, we also find that the tasks with the
same target languages are more likely to be in the
same cluster or serve as auxiliary tasks.

D The Effects of Auxiliary Tasks

The detailed BLEU scores of different data sam-
pling strategies for auxiliary tasks are shown in
Table 9.

E Results on OPUS dataset

In our experiments, we randomly split the data
into training/validation/test set. However, there
can be overlap between sentences in train and
test/validation sets of different language pairs. For
example, one English sentence X in the test set of
task en-de may occur in the training set of en-fr. To
make the results more convincing, we evaluate the
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Figure 3: The affinity heatmap between tasks in many-to-many translation. The orders of tasks in X and Y axes are
identical to the tasks of ck in Table 10.

Multi. LEC FTAC ∆1 ∆2

es→en 25.1 27.0 28.9 +1.9 +3.8
fr→en 16.1 18.4 20.0 +1.6 +3.9
ar→en 19.2 21.3 23.3 +2.0 +4.1
zh→en 10.0 10.9 11.5 +0.6 +1.5
ko→en 12.6 14.5 15.1 +0.6 +2.5
ru→en 15.4 16.4 17.7 +1.3 +2.3
tr→en 21.1 22.2 24.3 +2.1 +3.2
it→en 20.6 23.1 23.8 +0.7 +3.2
ja→en 11.9 12.9 14.1 +1.2 +2.2
he→en 28.9 30.9 33.7 +2.8 +4.8
pt→en 24.8 27.0 28.3 +1.3 +3.5
ro→en 27.3 28.6 30.6 +2.0 +3.3
vi→en 19.9 22.8 23.2 +0.4 +3.3
nl→en 21.3 23.2 24.6 +1.4 +3.3
hu→en 19.3 20.1 22.2 +2.1 +2.9
fa→en 13.1 15.4 17.0 +1.6 +3.9
pl→en 20.0 20.7 22.7 +2.0 +2.7
de→en 13.7 16.8 17.3 +0.5 +3.6
el→en 22.2 25.3 24.1 -1.2 +1.9
sr→en 24.0 26.9 25.7 -1.2 +1.7
bg→en 23.8 25.6 26.1 +0.5 +2.3
uk→en 21.4 22.3 22.4 +0.1 +1.0
hr→en 23.6 27.0 26.2 -0.8 +2.6
cs→en 20.7 22.5 23.3 +0.8 +2.6
id→en 24.9 29.5 28.8 -0.7 +3.9
th→en 16.9 18.0 18.9 +0.9 +2.0
sv→en 17.7 19.6 20.8 +1.2 +3.1
sk→en 20.5 22.6 22.7 +0.1 +2.2

Average 19.9 21.8 22.8 +0.9 +2.9

Table 11: BLEU score of many-to-one (M2O) transla-
tion on the OPUS test set.

M2O model on the OPUS-100 (Zhang et al., 2020)
multilingual test set which contains no overlap sen-
tences in different tasks, and the results are shown
in Table 11.
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Abstract

K-Nearest Neighbor Neural Machine Transla-
tion (kNN-MT) successfully incorporates exter-
nal corpus by retrieving word-level representa-
tions at test time. Generally, kNN-MT borrows
the off-the-shelf context representation in the
translation task, e.g., the output of the last de-
coder layer, as the query vector of the retrieval
task. In this work, we highlight that coupling
the representations of these two tasks is sub-
optimal for fine-grained retrieval. To alleviate
it, we leverage supervised contrastive learning
to learn the distinctive retrieval representation
derived from the original context representation.
We also propose a fast and effective approach
to constructing hard negative samples. Exper-
imental results on five domains show that our
approach improves the retrieval accuracy and
BLEU score compared to vanilla kNN-MT.

1 Introduction

Conventional neural machine translation (NMT)
cannot dynamically incorporate external corpus at
inference once finishing training (Bahdanau et al.,
2015; Vaswani et al., 2017), resulting in bad perfor-
mance when facing unseen domains, even if feed-
ing millions or billions of sentence pairs for train-
ing (Koehn and Knowles, 2017). To address this
problem, researchers developed retrieval-enhanced
NMT (RENMT) to flexibly incorporate external
translation knowledge. Early RENMTs leverage
a search engine to find the similar bitext to improve
the translation performance (Zhang et al., 2018;
Cao and Xiong, 2018; Gu et al., 2018; Xia et al.,
2019). However, the results of sentence-level re-
trieval with high similarity are generally sparse in
practical applications, while noises in low simi-
larity retrieval could lead to severe performance
degradation (Cao and Xiong, 2018).

kNN-MT proposed by Khandelwal et al. (2021)
effectively alleviates the sparse problem by intro-

∗Corresponding author.

ducing the word-level k-nearest neighbor mecha-
nism. Instead of storing the discrete word sequence,
kNN-MT uses a pre-trained NMT model to force
decoding the external corpus and remembers the
word-level continuous context representation, e.g.,
the output of the last decoder layer. During infer-
ence, kNN-MT assumes that the same target words
have similar contextual representations and weights
word selection through retrieving current context
representation from the memorized datastore. How-
ever, we point out that it is sub-optimal to directly
use the off-the-shelf context representation in the
translation task because this vector is not specific
to fine-grained retrieval.

In this work, we attempt to decouple the context
representation by learning an independent retrieval
representation. To this end, we leverage supervised
contrastive learning with multiple positive and neg-
ative samples to learn a good retrieval representa-
tion (called CLKNN). We also propose a fast and
effective method to construct hard negative sam-
ples. Experimental results on five domains show
that our approach outperforms the vanilla kNN-MT
in terms of BLEU and retrieval accuracy.

2 Background

Vanilla NMT Given a source sentence x =
{x1, x2, . . . , x|x|} and a target prefix y<t =
{y1, y2, . . . , yt−1}, the vanilla NMT predicts the
next target word yt by:

pc(yt|x,y<t) ∝ exp
(
q(ht)

)
(1)

where ht = fθ(x,y<t) ∈ Rd is the context vector
at step t with respect to x and y<t; fθ(·) can be
arbitrary encoder-decoder network with parameters
θ, such as Transformer (Vaswani et al., 2017); q(·)
linearly projects ht to target vocabulary size.

kNN-MT kNN-MT hypothesizes that the same
target words have similar representations. To
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dynamically incorporate external sentence pairs
D = {(x(i),y(i))}|D|i=1, kNN-MT extends Eq. 1 by
interpolating a retrieval-based probability pr:

pknn = (1− λ)× pc + λ× pr (2)

where λ is the interpolation coefficient as a hyper-
parameter.

Specifically, kNN-MT first uses a pre-trained
NMT model to force decoding each sentence pair
(x(i),y(i)) to build a key-value datastoreH:

H =

|D|⋃

i=1

|y(i)|⋃

t=1

{
(h

(i)
t , y

(i)
t )
}

(3)

The key is the word-level context representation
h
(i)
t and the value is the gold target word y(i)t . Then,

givenH and predicted target prefix ŷ<t at test time,
kNN-MT models pr(ŷt|x, ŷ<t) by measuring the
distance between query ĥt = fθ(x, ŷ<t) and its
k-nearest representations {(h̃i, ṽi)}ki=1 inH:

pr(ŷt|x, ŷ<t) ∝
k∑

i=1

1ŷt=ṽiexp
(−d(h̃i, ĥt)

T

)
,

(4)
where d(·) is L2 distance; T is temperature hyper-
parameter; 1 is the indicator function.

3 Approach

Motivation According to Eq. 1-4, we can see that
the context representation h simultaneously plays
two roles in kNN-MT: (1) the semantic vector for
pc; (2) the retrieval vector for pr. We note that cou-
pling the same h in the two scenes is sub-optimal.
Recall that h in the translation model is gener-
ally learned through cross-entropy loss, which only
pays attention to the gold target token and ignores
others.1 However, a good retrieval vector should be
able to distinguish between different tokens, espe-
cially those owning similar representations. There-
fore, we attempt to derive a new retrieval vector z
from h for better retrieval performance.

Retrieval representation adapter We use a sim-
ple feedforward network as an adapter to transform
the original representation h to desired retrieval
representation z:

z = FFN(h) = ReLU(hW1 + b1)W2 + b2, (5)
1In practice, we often use its label-smooth variant, which

evenly assigns a small probability mass to all non-gold labels
without distinction.

where W1 ∈ Rd×df , W2 ∈ Rdf×do , b1 ∈ Rdf ,
and b2 ∈ Rdo are learnable parameters; df and do
are the intermediate hidden size and output size
of the adapter, respectively. When do < d, the
adapter network can be regarded as a dimension
reducer. As FFN is very lightweight compared to
the calculation of h, there is almost no latency in
converting h to z.For convenience, in the follow-
ing description, we redefine hi as the key of i-th
key-value pair in the original datastoreH, and the
corresponding value is denoted by Yi when there
is no ambiguity. In this way, the new datastore Z
can be denoted as Z = {(zi, Yi)|i = 1, . . . , |H|},
where zi = FFN(hi).

Supervised contrastive learning In machine
translation field, contrastive learning has been ap-
plied in multilingual translation (Pan et al., 2021;
Wei et al., 2021), cross-modal translation (Ye et al.,
2022), and learning robust representation for low-
frequency word (Zhang et al., 2021) etc. In this
work, we use supervised contrastive learning (Grill
et al., 2020) with multiple positive and negative
samples to learn the desired retrieval representation
z. Here, we regard the unique token v in the target
vocabulary V as a natural supervision signal. We
aim to make z more distinguishable, for example,
pulling z of the same words together and pushing
z of different words apart. Specifically, we first di-
videZ into |V | clusters according to the token class
label. E.g., Cv = {zi|i = 1, . . . , |Z|, Yi = v},
where Cv is the context representation cluster of to-
ken v. Thus, given any context representation z ∈
Z and its token label v, we can construct M posi-
tive samples z+ = {z+1 , . . . ,z+i , . . . ,z+M}, where
z+i is uniformly sampled from its owned cluster Cv
and z+i ̸= z.2 Likely, we further construct N nega-
tive samples z− = {z−1 , . . . ,z−i , . . . ,z−N}, where
z−i ∈ \Cv, \Cv denotes other clusters except Cv.
In the next part, we will describe how to build z−.
Finally, given the anchor vector z, its multiple posi-
tive samples z+ and multiple negative samples z−,
we learn the adapter network through the following
contrastive learning loss:

−log

∑
1≤i≤M

exp(s(z, z+i ))

∑
1≤i≤M

exp(s(z, z+i )) +
∑

1≤j≤N
exp(s(z, z−j ))

,

(6)
where s(·) is the score function implemented as
cosine similarity with temperature T ′: s(a, b) =

2We use sampling with replacement when |Cv| < M .
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1
T ′ × aT b

∥a∥·∥b∥ . Note that T
′

is the temperature in
training, which is different from the inference tem-
perature T in Eq. 4.

Fast hard negative sample The key for Eq. 6 is
the construction of negative samples z−. A triv-
ial solution is randomly sampling from the entire
space of \Cv. However, this negative sample may
be too easy to provide the effective learning sig-
nal (Robinson et al., 2020). On the contrary, an
extreme method for hard negative samples is to tra-
verse \Cv to find the most similar negative samples
for the anchor. The problem is that |\Cv| is close
to |Z|, with a scale of millions or more, resulting
in enormous computational complexity. To solve it,
we propose a fast and cheap approach to construct-
ing hard negative samples. Specifically, we first
collect the cluster centre C̄v = 1

|Cv |
∑|Z|

i=1 1Yi=vzi.
We calculate the nearest K (K>=N) cluster centers
w.r.t the anchor and randomly sample N clusters
to make the source of the negative sample diverse.
Then we randomly sample one point from the cor-
responding cluster as a negative sample. As the
anchor vector only involves querying |C| cluster
centers and |C| << |Z|, our approach runs faster
than the exact global search.

Inference After training, we use the well-trained
FFN to rebuild the retrieval datastoreH into Z . To
further reduce calculation cost at test time, we intro-
duce PCA to reduce the dimension of the retrieval
vector. We also add normalization after PCA to
guarantee the numerical stability of the input to the
inner product. Another difference with Eq. 4 is that
we use the inner product instead of the L2 distance
as distance metrics. The reason is that using con-
sistent distance metrics in training and inference
improves performance in primitive experiments.
Concretely, we modify the original kNN-MT in
Eq. 4 as:

pr(ŷt|x, ŷ<t) ∝
k∑

i=1

1ŷt=ṽiexp
(g(z̃i)⊗ g(ẑt)

T

)
,

(7)
where g(x) = Norm(PCA(x)), ⊗ denotes inner
product operation, z̃i is the i-th nearest neighbor in
Z for the current retrieval representation ẑt. As a
bonus, since the numeric range of the normalized
inner product is [0, 1], which can be seen as the
confidence in retrieving.3 We leverage this nature

3L2 distance lacks this feature because its numeric range
is too broad, e.g., 0~1000 in our observation.

Figure 1: Illustration the differences between CKMT
and CLKNN in constructing positive and negative sam-
ples. Different colors indicate different tokens. A/P/N
means anchor, positive sample and negative sample, re-
spectively.

to modify the interpolation coefficient λ in Eq. 2 to
be aware of retrieval confidence:

λ∗ = λ×
∑k

i=1 g(z̃i)⊗ g(ẑt)
k

. (8)

λ∗ can be considered a simple adaptive coefficiency
like Zheng et al. (2021); Jiang et al. (2021); Wang
et al. (2022), but does not require training.

Discussion The closest work with us is CKMT
(Wang et al., 2022). As illustrated in Figure 1, there
are two major differences compared with CKMT:
(1) CLKNN uses multiple positive and negative sam-
ples, while CKMT only considers a single positive
and negative sample, limiting the exploration of
representation space. (2) CKMT requires to parti-
tion clusters through cost-expensive clustering in
full-scale datastore, while CLKNN predefines clus-
ters based on vocabulary labels and only involves
calculating cluster centers. In practice, we spent
about 6 hours on the CPU to complete the clus-
ter operation in CKMT, while CLKNN only takes
about 3 minutes.

4 Experiments

Setup To fairly compared with previous work
(Khandelwal et al., 2021), we use WMT’19
German-English news translation task winner (Ng
et al., 2019) as our strong general domain baseline.
We use the same German-English multi-domain
datasets, consisting of five domains, including
Medical, Law, IT, Koran and Subtitles 4.
Besides, to test the proposed training approach ro-
bust in out-domain scenery, we also use a 2M sub-
set of the baseline’s training data, including News

4We use the provided 500K sentence pairs version subtitle
data rather than full size 12.4M due to memory limitation.
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Dataset Medical Law IT Koran Subtitle NC+Euro
Train 248K 467K 222K 52K 500K 2M
Valid 2000 2000 2000 2000 2000 -
Test 2000 2000 2000 2000 2000 -
Datastore 6.9M 19.0M 3.6M 0.5M 6.2M 5M†

Table 1: Statistics of datasets in different domains. †: Due to limited memory, we randomly sampled 5M samples
from a total of 65.7M samples in NC+Euro for training.

Method Medical Law IT Koran Subtitle Avg.
Baseline (WMT19 winner, Ng et al. (2019)) 39.91 45.71 37.98 16.3 29.21 33.82
kNN-MT (Khandelwal et al., 2021) 54.35 61.78 45.82 19.45 31.73† 42.63
kNN-MT (our implementation) 54.41 61.01 45.20 21.07 29.67 42.27

train by out-domain data
CLKNN 56.37 61.54 46.50 21.52 30.81 43.35
CLKNN + λ∗ 56.52 61.63 46.68 21.60 30.86 43.46

train by in-domain data
CLKNN 55.86 61.92 47.77 21.46 31.02 43.61
CLKNN + λ∗ 55.87 62.01 47.84 21.81 31.05 43.72

Table 2: The SacreBLEU scores of our proposed CLKNN and the baseline methods in five domains. λ∗ denotes using
retrieval confidence aware interpolation coefficiency. † denotes the number is not comparable because Khandelwal
et al. (2021) use full-size subtitle data than ours. All the CLKNN results are significantly better (p<0.01) than our
re-implemented kNN-MT, measured by paired bootstrap resampling (Koehn, 2004).

Commentary v14 and Europarl v9, and randomly
sample 5M samples out of 65.7M samples from its
datastore. See Table 1 for detailed data statistics.

Implementation details All experiments run on
a single NVIDIA 2080 Ti GPU. We use Faiss 5 for
vector retrieval. For CLKNN, the number of posi-
tive samples is M=2, and the number of negative
samples is N=32. We sample N negative samples
from K=128 nearest clusters. The training batch
size is 32. During training, we set T

′
=0.01, while

we vary T according to the validation set at test
time. The hidden state size df and output size do of
adapter is 4096 and 512, respectively. The output
dimension of PCA is 128. We train all models for
500k steps and select the best model on the vali-
dation set. We use a beam size of 5 and a length
penalty of 1.0 for all experiments for inference.
We measure case-sensitive detokenized BLEU by
SacreBLEU.

Experimental results Table 2 reports the Sacre-
BLEU scores in five domains. We can see that: (1)
CLKNN is robust about training data: using out-
domain or in-domain average improves 1+ points
than our kNN-MT; (2) The gap between in-domain
and out-domain is small (about 0.3 points), mean-

5https://github.com/facebookresearch/
faiss

M N BLEU M N BLEU
1 1 45.54 2 16 46.37
1 16 45.91 2 32 46.68
1 32 46.13 2 64 46.55
1 64 45.88 4 32 46.29

Table 3: The BLEU scores on IT test set against the
number of the positive (M) and negative (N) samples.

ing that our approach does not rely on in-domain
data and is more practical than Zheng et al. (2021);
Jiang et al. (2021); (3) using proposed λ∗ slightly
improve the performance across the board. These
results show that learning independent retrieval
representation is helpful for vanilla kNN-MT. Be-
sides, we also compare the inference speed between
CLKNN and kNN-MT through running five times
on IT test set. The results show that CLKNN has a
comparable speed (97%±2%) to that of kNN-MT
because the adapter in CLKNN is very lightweight.

5 Analysis

Effect of the number of contrastive samples
One of the main differences between Wang et al.
(2022) and us is that we use multiple positive and
negative samples in our training objective. We vary
the number of M and N and report the BLEU scores
in Table 3. As we can see, increasing M and N is
helpful for our method. However, large M can-
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Figure 2: Visualization of retrieval vector on different frequency words by t-SNE. We uniformly sample 10 classes
in each category, and each class contains ten random representations. The same color denotes the same class.
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Figure 3: Retrieval accuracy curve against top-k.

not befit more than increasing N. We attribute it to
positive samples that are too easy to learn because
most are close in embedding space. On the con-
trary, negative samples from different clusters can
provide a stronger learning signal. To further vali-
date the effectiveness of multiple samples, we also
conduct experiments on Medical. The results are
similar to that of IT: using M=2, N=32 is 1.64
BLEU points higher than using M=1, N=1 (56.52
vs. 54.88). It indicates that using multiple positive
and negative samples is necessary to achieve good
performance for contrastive learning.

Retrieval accuracy Intuitively, our approach can
learn more accurate retrieval representation than
vanilla kNN-MT. To validate this hypothesis, we
use IT validation as the datastore and plot the re-
trieval accuracy on top-k in Figure 3. We can see
that CLKNN has more robust retrieval accuracy than
kNN-MT no matter how k changes. It indicates that
the performance improvement comes from our bet-
ter retrieval representation.

Visualization We visually present the differences
between baseline and CLKNN on embedding space.
Specifically, we split three categories according to
the word frequency in IT training set: HIGH(the
first 1%), Middle(40%-60%) and LOW(the last
1%) 6. We uniformly sample 10 unique words
in each category and randomly sample 10 unique

6We filter words whose frequency is less than 10.

vector representations from the training datastore.
We use t-SNE to plot these representations, as il-
lustrated in Figure 2. We can see that: (1) high-
frequency words’ representations are prone to dis-
tinguish for both baseline and CLKNN; (2) CLKNN

has more close distances in the same vocabulary
than baseline; (3) CLKNN has more robust accuracy
for low-frequency words.

6 Conclusion

In this work, we proposed to use supervised con-
trastive learning to decouple the context representa-
tion from vanilla kNN-MT. Experimental results on
several tasks show that our approach outperforms
kNN-MT and learns a more accurate retrieval rep-
resentation.
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Abstract

This paper introduces a new data augmenta-
tion method for neural machine translation that
can enforce stronger semantic consistency both
within and across languages. Our method is
based on Conditional Masked Language Model
(CMLM) which is bi-directional and can be
conditional on both left and right context, as
well as the label. We demonstrate that CMLM
is a good technique for generating context-
dependent word distributions. In particular, we
show that CMLM is capable of enforcing se-
mantic consistency by conditioning on both
source and target during substitution. In addi-
tion, to enhance diversity, we incorporate the
idea of soft word substitution for data augmen-
tation which replaces a word with a probabilis-
tic distribution over the vocabulary. Experi-
ments on four translation datasets of different
scales show that the overall solution results
in more realistic data augmentation and better
translation quality. Our approach consistently
achieves the best performance in comparison
with strong and recent works and yields im-
provements of up to 1.90 BLEU points over the
baseline. 1

1 Introduction

Neural network models have achieved remarkable
results in many fields such as computer vision, nat-
ural language processing, and speech. In order to
obtain adequate expressivity, the models usually
come with a large number of parameters. How-
ever, such models are prone to overfitting if trained
with an insufficient amount of training data. Data
Augmentation (DA) is an effective technique that
has been used in many areas to augment existing
labeled data and boost the performance of machine
learning models. For example, in computer vision,
training data is often augmented by ways such as
horizontal flipping, random cropping, tilting, and

1Our code is available at https://github.com/
netease-youdao/cmlm_da.

color shifting (Krizhevsky et al., 2012; Cubuk et al.,
2018). While DA has become a standard technique
to train deep networks for image processing, it is
relatively under-explored in Natural Language Pro-
cessing (NLP).

The exact mechanisms and theoretical founda-
tions of data augmentation are still under investi-
gation. Most studies show empirically that data
augmentation is effective and provide some intu-
itive explanations. A recent work in the field of
vision (Gontijo-Lopes et al., 2020) demonstrates
that affinity (the distributional shift caused by DA)
and diversity (the complexity of the augmentation)
can predict the performance of data augmentation
methods. However, neither metric can be measured
without completing the entire DA process. There-
fore, it is still challenging to evaluate the goodness
of a DA technique without full-fledged experimen-
tation and it is not clear how the result can be used
to guide the design of data augmentation schemes.

Generally speaking, DA can be classified into
two categories. The first tries to produce realistic
samples that resemble the inherent semantics of
naturally generated data. In areas such as com-
puter vision, this is often achieved via heuristics
that mimic the intrinsic processes that could have
actually happened in the physical world, such as
photometric noise, flipping, and scaling, etc. The
second perturbs the data in a stochastic fashion, re-
sulting in unrealistic samples. Some (e.g., Bishop
(1995)) interpret this as a type of regularization that
boosts model performance by reducing overfitting.
Both are being exploited in NLP.

This paper focuses on lexical replacement meth-
ods that augment the training data by altering ex-
isting sentences in the parallel corpus of a neural
machine translation (NMT) system. We have ob-
served frequently in practice, as well as in literature
(Gao et al., 2019; Fadaee et al., 2017; Kobayashi,
2018; Wu et al., 2019; Dong et al., 2021; Liu et al.,
2021), that augmented data samples that preserve
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the semantics of the real labeled data increase the
effective training size and are beneficial for model
performance. We call this property semantic con-
sistency. In the case of NMT, the training data
comes in the form of a collection of <source,
target> sentence pairs where source is a sen-
tence in the source language and target its trans-
lation in the target language. Semantic consistency
requires that (1) both source and target are
fluent and grammatically correct in their respec-
tive languages; and (2) target is a high quality
translation of source.

German Es ist ja ganz angenehm, in
eine kleine Klasse zu kommen.

English You know, it’s very pleasant to
walk into a small class.

Case 1 You know, it’s very please to
walk into a small class.

Case 2 You know, it’s very uncomfort-
able to walk into a small class.

Case 3 You know, it’s very enjoy-
able/comfortable to walk into
a small class.

Table 1: Data augmentation examples with varying de-
grees of semantic consistency.

Existing methods augment the training data
using word swapping, removal or substitution
(Artetxe et al., 2017; Lample et al., 2017) on either
source or target, or both. Due to the discrete
nature of language, these transformations are not al-
ways semantic-preserving. Quite often they either
weaken the fluency of source or/and target, or
break their relationships. To illustrate, consider the
example given in Table 1 that shows a sentence pair
from an English-German parallel corpus. Case 1 to
3 are three synthetic English sentences generated
by some DA processes. Both Case 1 and 2 are un-
desirable because the former, although substituting
the word pleasant with a word close in meaning,
is grammatically incorrect, whereas the latter is not
a good translation of the German sentence. Case
3, on the other hand, is a good augmentation that
satisfies the two requirements of semantic consis-
tency.

1.1 Our Contributions

To achieve better augmentation, the generation
process must make better use of context and la-
bel. In this paper, we introduce Conditional

Masked Language Model (CMLM) (Wu et al.,
2019; Ghazvininejad et al., 2019; Chen et al., 2020)
to data augmentation for NMT. A Masked Lan-
guage Model can make use of both left and right
context, and a CMLM is an enhanced version that
can be conditional on more information. CMLM
has been used successfully in tasks such as text clas-
sification (Wu et al., 2019). However, to the best of
our knowledge, its application to text generation,
especially using deep bidirectional models such as
BERT (Devlin et al., 2019), has not been explored.
We demonstrate in this paper that CMLM is a good
technique for generating context-dependent word
distributions. In particular, we show that CMLM
is capable of enforcing semantic consistency by
conditioning on both source and target during sub-
stitution. In addition, to enhance diversity, we com-
bine the soft word substitution approach for DA,
which replaces a word with a probabilistic distri-
bution over the vocabulary (Gao et al., 2019). Ex-
periments on four translation datasets of different
scales show that the overall solution results in more
realistic data augmentation and better translation
quality. Our approach consistently achieves the
best performance in comparison with strong and re-
cent works and yields improvements of up to 1.90
BLEU points over the baseline.

In addition, we introduce an unsupervised
method to measure semantic consistency without
full-fledged training of NMT models, which may
take many days even on GPU clusters. This could
be used to provide an efficient early assessment of
a data augmentation scheme.

2 Related Work

From a technical perspective, previous work on
data augmentation for NLP can be classified as
either context-independent or context-dependent.
Context-independent approaches often apply pre-
determined, easy-to-compute transformations that
depend solely on the word or sentence to be altered.
Not surprisingly, most of them are not semantically
consistent. Wei and Zou (2019) improves perfor-
mance on many text classification tasks through a
set of word level random perturbation operations,
including random insertion, deletion, and swap-
ping. Similar ideas have been applied to NMT,
but the methods differ in how and what to alter.
Swap (Artetxe et al., 2017; Lample et al., 2017)
randomly swaps words in nearby positions within
a window size k and Drop (Iyyer et al., 2015;
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Lample et al., 2017) randomly drops word tokens.
Blank (Xie et al., 2017) replaces the candidate word
with a placeholder token and Smooth (Xie et al.,
2017) replaces it with a word sampled from the fre-
quency distribution of the vocabulary, showing that
data noising is an effective regularizer for NMT.
SwitchOut, introduced in (Wang et al., 2018), for-
mulates the design of a DA algorithm as an opti-
mization problem that maximizes an objective that
encourages two desired properties: smoothness and
diversity. SwitchOut independently replaces words
in both source and target by other words uni-
formly sampled from their respective vocabularies.
Others try to preserve a certain level of seman-
tic consistency by replacing words with their syn-
onyms selected from a handcrafted ontology such
as WordNet (Zhang et al., 2015) or words based on
similarity calculation (Wang and Yang, 2015).

These works do not make use of important con-
text and label information and, in practice, usually
cause a very small or even negative impact on per-
formance. Context-dependent approaches, on the
other hand, modify words, phrases, or the whole
sentence based on their contextual information that
is usually modeled using neural networks. We sum-
marize a few representative ones below.

Fadaee et al. (2017) propose a simple but effec-
tive approach to augment the training data of NMT
for low-resource language pairs. Their work uses
shallow LSTM language models (LM) trained on
large amounts of monolingual data to first substi-
tute a word in source, and then put the corre-
sponding translation in target, using automatic
word alignments and the traditional statistical MT
practice. LMsample (Kobayashi, 2018) proposes
contextual augmentation for text classification by
offering a wide range of substitute words, which
are predicted by a label-conditional bidirectional
language model. Wu et al. (2019) retrofit BERT to
conditional BERT that allows it to augment sen-
tences without breaking the label-compatibility.
The BERT-based solution brings two benefits. First,
BERT’s Transformer core provides a more struc-
tured memory for handling long-term dependen-
cies in text. Second, BERT, as a deep bidirectional
model, is strictly more powerful than the shallow
concatenation of left-to-right and right-to-left mod-
els.

A recent work (Liu et al., 2021) treats a trans-
lation language model as a causal model and per-
forms data augmentation by counterfactual-based

causal inference. Their DA replaces source phrases
according to a masked language model and the
aligned target phrase by a cross-lingual language
model (XLM) (Conneau and Lample, 2019) condi-
tional on the changed source phrase.

Different from their work, we use two separate
CMLMs to augment source and target respectively,
which means that, instead of model prediction,
the condition is always true information for both
CMLMs. We show its superiority in section 5.1.

The way we incorporate augmented data into the
NMT training is drawn from the idea of “soft” word
introduced by SCA (Gao et al., 2019). Basically,
the embedding of a chosen word in a sentence is
replaced by its probabilistic distribution predicted
by a language model. This brings in more diversity
to the DA process. However, Gao et al. (2019) as a
DA solution is based on a uni-directional language
model and is not label-conditional. As we show in
section 4.3 that this is less optimal.

3 Approach

In this section, we present our method in detail.
We first introduce conditional MLM, then we show
how to apply CMLM to data augmentation in neu-
ral machine translation tasks.

Let (X,Y ) be a pair of source and target sen-
tences where X = (x1, x2, . . . , xM ) and Y =
(y1, y2, . . . , yN ) are two sequences of tokens in
source and target languages, with lengths M
and N , respectively. A neural machine trans-
lation system learns the conditional probability
p(y1, y2, . . . , yN |x1, x2, . . . , xM ).

3.1 Conditional MLM
Recall that our goal is to augment NMT’s par-
allel corpus with synthesized data that preserves
the semantics within source and target sentences,
as well as their cross-lingual relations. To this
end, we resort to Conditional MLM for generating
context-dependent word distributions, with which
we then find the best substitutes for a given word.
CMLM is a variation of MLM, which allows fur-
ther fine-tuning of the pre-trained model. It makes
the strong assumption that the masked tokens are
conditionally independent of each other given the
context and predicts the probabilities individually
(Ghazvininejad et al., 2019).

In our case, we apply the following two practices
when instantiating our CMLMs:

• We condition the CMLM on both X and Y .
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Figure 1: The architecture of our CMLM-based soft contextual data augmentation approach.

• During the training of a CMLM, we only mask
out tokens in either X , or Y , but not both.

We call this approach “Conditioning on Both
but Predicting One”, referring to how it treats
the source and target sides in the NMT training.
Specifically, for each sentence pair (X,Y ), we first
concatenate X and Y , then randomly mask 15% of
the words in X , and then train a CMLM to predict
the masked words:

P (xm1 , . . . , x
m
i | Xu, Y ) (1)

where xmi denotes a masked token and Xu the
unmasked ones within X . For the tokens in the
target sentence, we train a separate CMLM to get
their distribution similarly:

P (ym1 , . . . , y
m
i | X,Y u) (2)

During the training of an NMT model, both X
and Y are available. Conditioning on the reference
sentence Y allows the model to enforce stronger
consistency between input and label, resulting in
meaningful translations when applied to DA in
NMT. We show in section 5.1, using metrics de-
veloped for translation quality estimation, that this
choice significantly improves the translation qual-
ity of the generated sentence pairs.

Changing X or Y but not both for DA is a de-
liberate choice. Typical modern languages have

diverse vocabularies, with synonyms and semanti-
cally equivalent or close expressions. This already
provides abundant opportunities for semantic-
preserving transformations. Therefore, it is not
necessary to alter X and Y simultaneously. In
section 5.1, we compare our choice with an XLM
(cross-lingual language model) (Conneau and Lam-
ple, 2019) approach which changesX and Y simul-
taneously. The empirical study shows that our ap-
proach can avoid introducing incorrect <source,
target> pairs and improve NMT performance.

3.2 Soft Conditional Contextual DA

Once a CMLM is trained, one could use it to
expand training data for NMT. This is typically
done by replacing words with others predicted
by the language model at the corresponding po-
sitions (e.g., Kobayashi (2018); Wu et al. (2019)).
In our case, since the probability distribution of
the masked words P (xm1 , . . . , x

m
i | Xu, Y ), or

P (ym1 , . . . , y
m
i | X,Y u) if we mask out words

in Y , contains information from both backward
and forward contexts, as well as target sentence,
sampling from such distribution could potentially
generate better substitutions for the word on the
masked position. However, such a method could
be expensive: to generate enough samples with
adequate variation, exponentially many candidates
have to be processed.

Instead, inspired by Gao et al. (2019), we take
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a soft approach. In essence, this method works
directly with the word embeddings and uses the ex-
pectation of a word’s embedding over the CMLM’s
output distribution to replace its original embed-
ding. Let w be a candidate word and P (w) its
distribution defined by the CMLM. Note that P (w)
is conditional on the context that we described ear-
lier and is over the entire vocabulary. Suppose E is
the embedding matrix of all the |V | words. We use
EW to denote the embedding vector of a word W .
The embedding of the soft word w is:

ew = EW∼P (w)[EW ] =

|V |∑

j=0

pj(w)Ej (3)

3.3 NMT Training with DA
In this section, we elaborate on the training process
of the NMT model with our DA method. Figure
1 shows the architecture of the scheme. There are
two independently trained CMLMs, one for aug-
menting the encoder, and the other the decoder. The
two CMLMs can be turned on/off independently
and we study the effects in section 5.2.

We use BERT (Devlin et al., 2019) as our
CMLM, for its deep bidirectional natural, and su-
perior capability for handling long-term dependen-
cies. We start by taking a pre-trained multilingual
BERT, and fine-tune it using the method described
in 3.1. The NMT training proceeds as usual, except
that, at each sentence pair (X,Y ), for each word
in X (or Y ), with probability γ we replace its em-
bedding by its soft version defined by Equation 3.
Notice that, our method does not generate any data
explicitly. Rather, we use embedding substitution
to incorporate augmentation directly into the train-
ing process. We study the effect of different values
of γ in section 5.3.

4 Experiments

In this section, we demonstrate the effectiveness of
our method on four datasets with diverse language
variation. They include three relatively small-scale
datasets, {German, Spanish, Hebrew} to English
({De, Es, He}-> En) from the well-known IWSLT
2014, and one large-scale English to German (En-
>De) dataset from WMT14 .

4.1 Data
For IWSLT14 De->En task we follow the same
pre-processing steps and the same train/dev/test
split as in Gao et al. (2019). The training dataset

and validation dataset contains about 160K and 7K
sentence pairs, respectively. Consistent with previ-
ous work, tst2010, tst2011, tst2012, dev2010, and
dev2012 are concatenated as our test data. For Es-
>En and He->En tasks, there are 181K and 151K
parallel sentence pairs in each training set. We
validate on tst2013 and test on tst2014 for these
two tasks. For all IWSLT translation tasks, we
use a joint source and target vocabulary with 10K
byte-pair-encoding (BPE) (Sennrich et al., 2016)
types. For the WMT2014 En-De translation task,
again, we follow Gao et al. (2019) to filter out 4.5M
sentence pairs for training. We concatenate new-
stest2012 and newstest2013 as the validation set
and use newstest2014 as the test set. We use a joint
source and target vocabulary built upon the BPE
with 40k sub-word types. For fair comparison to
previous work, we report tokenized BLEU (Pap-
ineni et al., 2002) scores computed with the multi-
bleu.perl script from Moses.2 To further boost
comparability, we also report detokenized BLEU
scores computed using sacreBLEU (Post, 2018).
(Post, 2018). For all experiments, we performed
significance tests based on bootstrap resampling
introduced by Koehn (2004).

4.2 Model
Our model uses the Transformer architecture,
which is solely based on attention mechanisms
and dominates most of the sequence-to-sequence
tasks. For all IWSLT tasks, we adopt the trans-
former_iwslt_de_en configuration for the NMT
model. Specifically, both the encoder and decoder
consist of 6 blocks, and the source and target word
embedding are shared for the language pair. The
dimensions of embedding and feed-forward sub-
layer are set to 512 and 1024, respectively. The
number of attention heads is set to 4. The default
dropout rate is 0.3. For WMT14 En-De, we use
the default transformer_big configuration for the
NMT model. Specifically, the dimensions of em-
bedding and feed-forward sub-layer are 1024 and
4096, respectively. The NMT models are trained
by Adam (Kingma and Ba, 2015) optimizer with
default learning rate schedule as Vaswani et al.
(2017).

For all tasks, we adopt the BERT-base configura-
tion for the CMLM model, except that the number
of hidden layers is set to 4 to speed up the train-

2https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl
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IWSLT WMT
De->En Es->En He->En En->De

Other Reported Results
Base∗ 34.79 41.58 33.64 28.40
Swap∗ 34.70 41.60 34.25 28.13
Drop∗ 35.13 41.62 34.29 28.29
Blank∗ 35.37 42.28 34.37 28.89
Smooth∗ 35.45 41.69 34.61 28.97
LMsample

∗ 35.40 42.09 34.31 28.73
SCA∗ 35.78 42.61 34.91 29.70
mixSeq† 35.78 41.39 - 29.61

Our Implementations
Base 34.37 41.67 33.76 28.25
CMLMhard 35.76 42.25 34.66 30.01
CMLMsoft 35.93(+1.56) 42.92(+1.25) 35.21(+1.45) 30.15(+1.9)

Table 2: BLEU scores over the test sets. (∗) from Gao et al. (2019). (†) from Wu et al. (2021)

IWSLT WMT
De->En Es->En He->En En->De

Base 33.62 40.87 33.15 27.49
CMLMhard 35.07 41.45 34.01 29.08
CMLMsoft 35.31(+1.69) 42.01(+1.14) 34.51(+1.36) 29.37(+1.88)

Table 3: SacreBLEU scores over the test sets.

ing process. We use the bottom 4 layers of the
pre-trained BERT-base-multilingual-cased model
as the starting point of CMLM fine-tuning. We also
experiment with an entirely randomly-initialized
CMLM model and find that the pre-trained weights
result in faster CMLM training. We follow Devlin
et al. (2019) for the CMLM fine-tuning and use a
triangular learning rate schedule with maximum
learning rate η. The CMLM parameters are also
updated with the Adam optimizer.

4.3 Main Results

We compare our method against several other
strong data augmentation methods, including sev-
eral context-independent approaches such as Swap
(Artetxe et al., 2017; Lample et al., 2017), Drop
(Iyyer et al., 2015; Lample et al., 2017), Blank (Xie
et al., 2017) and Smooth (Xie et al., 2017), and
two context-dependent ones, LMsample (Kobayashi,
2018) and SCA (Gao et al., 2019). We also compare
it against a sentence-level augmentation method,
mixSeq (Wu et al., 2021), which randomly selects
two sentence pairs, concatenates the source sen-
tences and the target sentences, respectively, with
a special label <sep> separating two samples, and
trains the model on such augmented dataset.

Our baseline is the vanilla transformer described
earlier without DA. For comparison, we performed
two sets of data augmentation experiments using
CMLM: (1) CMLMsoft uses the soft approach
described in section 3.2 and follows the training
framework in section 3.3. (2) CMLMhard uses the
conventional hard substitution approach, with the
substitution words generated by sampling from the
CMLMs. Both CMLMsoft and CMLMhard aug-
ment both the encoder and the decoder, and use the
same mask probability γ = 0.25, which we find to
be the optimal configuration. See sections 5.2 and
5.3.

The BLEU and SacreBLEU scores on four trans-
lation tasks are presented in Table 2 and 3, respec-
tively. Both CMLMsoft and CMLMhard are supe-
rior to the base system, with CMLMsoft consis-
tently achieves the best performance on all tasks
and across all comparisons. The CMLM (soft)
approach significantly outperformed the baseline
in Table 2 and Table 3 for all four tasks, with p-
values lower than 0.02. Most remarkably, our DA
improves the baseline by as much as 1.90 BLEU
points on the WMT14 En->De dataset.

In addition to experiments on publicly available
corpora, we also evaluate the scheme on Youdao’s
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production NMT engine, 3 a major multilingual
neural machine translation service that is trained
with data at least three orders of magnitudes larger
than the public corpora. The method achieves simi-
lar consistent improvements. Our DA mechanism
has been built into the production NMT engine,
serving billions of requests each day.

5 Analysis

Our method consists of multiple modules, and we
design several groups of comparative experiments
to analyze their effects.

5.1 Semantic Consistency

Recall that the “soft” substitution approach that we
use works directly with embeddings and does not
generate synthetic data explicitly. The quality of
the DA process depends on the distributions defined
by the two CMLMs (equations 1 and 2). There is no
straightforward metric to measure the distributions
in terms of semantic consistency. Here we propose
a simple sampling-based approach. The intuition
is: if the distribution is used for text generation,
the quality of resulting sentence pairs is a good
indicator of the effectiveness of its role in the DA
process.

Specifically, given a sentence pair (X,Y ), we
randomly replace some tokens from X (resp. Y )
with those sampled from the source (resp. target)
CMLM, resulting in (X ′, Y ) (resp. (X,Y ′)). We
manually inspect a small sample and find that our
method indeed produces sentence pairs that are
generally both fluent in their respective languages
and correct in terms of translation quality. However,
our goal is to have an automatic method that can
be used to assess semantic consistency at large
scale. To this end, we draw on the research in
Quality Estimation (QE) for Machine Translation.
Self-Supervised QE aims to evaluate the quality
of machine-translated sentences without human
labeling, which aligns perfectly with our goal.

Zheng et al. (2021) show that the conditional
probability computed by the CMLM in Equation
2 is a good indicator of translation quality (which
also implies fluency). Specifically, let ym be a word
in the target, the translation quality score of this
word is defined as P (ym | X,Y u) as computed
by the CMLM. The sentence-level quality score is
simply averaging the quality scores over all target
words.

3https://fanyi.youdao.com/

Our case is slightly different. Since we have both
X and Y , we can use the idea of Zheng et al. (2021)
but with a more direct approach: we can compare
the words in X ′ (resp. Y ′) against the original ones
in X (resp. Y ) and compute the accuracy. This
is equivalent to taking expectations over the test
sentences.

Source Acc Target Acc BLEU
MLM 53.5% 44.0% 35.56
XLM 74.8% 70.4% 35.65
CMLM 80.1% 75.5% 35.93

Table 4: The prediction accuracy of source and target,
and BLEU for IWSLT14 German-English translation.

We compare our CMLM-based approach against
the DA results from (1) an XLM-based scheme
in Liu et al. (2021), which alters both X and
Y by treating a translation language model as a
causal model and performing data augmentation
by counterfactual-based causal inference; and (2)
a simple MLM which does not condition on any
portion of Y . All implementations use models with
the same configuration as the CMLM described
in section 4.2, fine-tuned with the same training
data but their individual conditions and objectives.
Table 4 shows the prediction accuracy of masked
words on the 7K IWSLT14 German-English valida-
tion data set. Consistent with the mask probability
during CMLM training, we let the model predict
15% of the words in X or Y . For ease of compar-
ing the final effects on the machine translation task,
Table 4 also shows the BLEU scores measured on
IWSLT14 German-English dataset after applying
the DA method to the NMT engine.

Our CMLM-based solution achieves strong pre-
diction accuracy rates of 80.1% and 75.5% on
source and target sides, respectively, significantly
outperforming the MLM approach by near 30 per-
centage points. This shows that our method is ca-
pable of generating synthetic sentence pairs with
much better translation quality. The improvement
over XLM is milder but still significant, with 5+
percentage points. BLEU scores follow a similar
trend. Recall that we use independent CMLMs to
alter either X or Y but not both, while XLM uses
a single cross-lingual language model to change
both. The results confirm our conjecture that alter-
ing both X and Y simultaneously while preserving
semantic consistency may be too difficult for the
language models. Doing so may introduce too
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much noise and hurt translation quality.
This method also provides an efficient way to

assess a data augmentation scheme for NMT. It can
save days or even months of GPU time (for training
NMT models) since computing the word prediction
accuracy rates on a few thousands of sentence pairs
is very fast.

5.2 Encoder vs. Decoder

Our CMLM-based data augmentation method can
be applied to either encoder or decoder, or both. In
this section, we conduct experiments to study the
effects of these choices. We train two CMLMs inde-
pendently. The first is used to augment the encoder,
the latter the decoder. Note that, per our discussion
in section 3.1, the CMLMs, when activated, only
augment one side of the sentence pair. The encoder
(resp. decoder) CMLM mask out words only in X
(resp. Y ), thus replacing their embeddings by their
soft versions.

Table 5 shows the BLEU scores for different
augmentation configurations. It is clear that both
encoder and decoder augmentations are beneficial,
with encoder augmentation obtaining slightly more
gain. The maximum improvement can be achieved
when the method is applied to both.

IWSLT WMT
De-En Es-En He-En En-De

Base 34.37 41.67 33.76 28.25
+Encoder 35.23 42.31 34.66 29.57
+Decoder 34.93 42.13 34.41 29.34
+Both 35.93 42.92 35.21 30.15

Table 5: BLEU scores over the test sets.

5.3 Mask Probability

As mentioned in section 3.2, for each word in X
or Y , we replace its embedding by its soft version
with probability γ. This parameter controls the
extent to which the DA method will exert its ef-
fect. Intuitively, a small value of γ will preserve
the original semantics better while a large value
of γ can bring in more diversity. A balance must
be struck. We experiment with different values,
and Figure 2 shows their influence on BLEU on
the IWSLT14 De-En dataset. The strongest per-
formance is reached with a mask probability of
0.25.

0% 15% 25% 35%
Mask Probability

33.5

34.0

34.5

35.0

35.5

36.0

36.5

B
LE

U

Figure 2: BLEU score for IWSLT14 German-English
with difference mask probability.

5.4 Computation Overhead

Our DA method introduces two additional steps
into the NMT training process: fine-tuning the
CMLMs and augmenting the NMT model. The
actual overhead depends on the scale of the data
sets. In our experiments, IWSLT De-En and WMT
En-De corpora consist of 160K and 4.5M sentence
pairs, respectively. Fine-tuning the CMLMs on the
two corpora takes about 3 and 20 hours, respec-
tively, on a single A40 GPU.

Our training process has the same complexity
as that of SCA (Gao et al., 2019) so they should
have similar computation performance. From our
experiments, the training time on IWSLT dataset in-
creases about 84%, up from 2.5 hours to 4.6 hours,
again on a single A40. The overhead is less signifi-
cant for large corpora. The WMT tasks take 25%
more time to train, up from one day to roughly 32
hours on 4 A40 cards. We see only a 10% increase
in training time when we apply the DA method to
our production NMT engine.

6 Conclusion

In this paper, we advocate performing semantically
consistent data augmentation for neural machine
translation and propose a scheme based on Con-
ditional Masked Language Model and soft word
substitution. We show that a deep, bi-directional
CMLM is capable of enforcing semantic consis-
tency by conditioning on both source and target
during data augmentation. Experiments demon-
strate that the overall solution results in more real-
istic data augmentation and better translation qual-
ity. Our approach consistently achieves the best
performance in comparison with strong and re-
cent works and yields improvements of up to 1.90
BLEU points over baseline.
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Abstract

In a multilingual neural machine translation
model that fully shares parameters across all
languages, an artificial language token is usu-
ally used to guide translation into the desired
target language. However, recent studies show
that prepending language tokens sometimes
fails to navigate the multilingual neural ma-
chine translation models into right translation
directions, especially on zero-shot translation.
To mitigate this issue, we propose two meth-
ods, language embedding embodiment and
language-aware multi-head attention, to learn
informative language representations to chan-
nel translation into right directions. The former
embodies language embeddings into different
critical switching points along the information
flow from the source to the target, aiming at am-
plifying translation direction guiding signals.
The latter exploits a matrix, instead of a vec-
tor, to represent a language in the continuous
space. The matrix is chunked into multiple
heads so as to learn language representations
in multiple subspaces. Experiment results on
two datasets for massively multilingual neural
machine translation demonstrate that language-
aware multi-head attention benefits both super-
vised and zero-shot translation and significantly
alleviates the off-target translation issue. Fur-
ther linguistic typology prediction experiments
show that matrix-based language representa-
tions learned by our methods are capable of
capturing rich linguistic typology features.1

1 Introduction

Multilingual neural machine translation (MNMT)
(Johnson et al., 2017; Ha et al., 2016; Aharoni et al.,
2019; Arivazhagan et al., 2019b), unlike bilingual
machine translation with task-specific engineering
(language-specific features), uses a single learning
system for multiple language pairs, which is jointly

∗Corresponding author.
1The source code is publicly available at https://

github.com/cordercorder/nmt-multi.

trained in a mult-task learning formalism (Col-
lobert et al., 2011). Parameter sharing across dif-
ferent languages in MNMT models enables trans-
ferring of intermediate representations and knowl-
edge among languages, which makes it beneficial
to machine translation of low-resource and even
zero-resource languages (Firat et al., 2016b; Gu
et al., 2018; Neubig and Hu, 2018; Gu et al., 2019;
Zhang et al., 2020).

According to the degree of parameter sharing
across languages, multilingual neural machine
translation (MNMT) approaches can be categorized
into two strands: full parameter sharing and partial
parameter sharing (Sachan and Neubig, 2018). The
former uses a unified model where both the encoder
and decoder are shared for all languages. To guide
the translation direction, a special token is usually
prepended to the beginning of the source or target
sentence to indicate the target language (Johnson
et al., 2017; Fan et al., 2021). Instead of sharing
all model parameters for all translation directions,
the latter uses language-specific components, e.g.,
separate encoders (in many-to-one translation), sep-
arate decoders (in one-to-many translation), or sep-
arate cross-attention networks (Zoph and Knight,
2016; Firat et al., 2016a; Blackwood et al., 2018;
Vázquez et al., 2020; Kong et al., 2021).

The key for full sharing models to distinguish tar-
get languages lies in the prepended tokens.2 Prior
studies find that the embeddings of the prepended
tokens encode typological properties of languages
(Östling and Tiedemann, 2017; Malaviya et al.,
2017; Bjerva et al., 2019; Oncevay et al., 2020).
Hence the token embeddings are also referred to as
language representations or language embeddings,
guiding translation into different target languages
whose typological features varies a lot. While the

2When there are multiple languages on the targe side, full
sharing models cannot even converge during training if no
target language information is provided by the prepended
tokens (Wang et al., 2019).
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prepened tokens play a significant role in language-
specific knowledge learning, they are not usually
working appropriately, making MNMT models gen-
erate translations in wrong languages, especially
in zero-shot translation. Such off-target translation
issue (Zhang et al., 2020; Yang et al., 2021) implies
that prepending special tokens to sentence pairs in
full-sharing models is not adequate to learn suf-
ficient language-specific information to guide the
MNMT models to translate into right directions.

Partial sharing may be suitable for learning
language-specific properties. Nevertheless, it suf-
fers from a rapid growth in the number of parame-
ters with the increase in the number of languages.
Additionally, which modules should be language-
specific still remains to be further explored.

In this work, we attempt to learn more infor-
mative language representations (beyond language
embeddings) to improve translation quality of the
MNMT models with the full parameter sharing
strategy. We argue that the prepended token can-
not provide sufficient target language information
to guide the translation direction, which is detri-
mental to both supervised and zero-shot translation.
We conjecture that the direction control supervi-
sion provided by the prepended token is becom-
ing weaker as the translation information flows
to deeper layers. Therefore, instead of prepending
special tokens to sentences, we propose a Language
Embedding Embodiment (LEE) strategy that em-
bodies language embeddings at critical switching
points (e.g., in-between self-attention and FFN, or
self-attention and cross-attention) across layers in
both the encoder and decoder along the information
flow from the source to the target, so as to amplify
the translation direction guiding signal, shown in
Figure 1. Experiment results show a boosted trans-
lation performance compared with the standard full
sharing MNMT model (Johnson et al., 2017).

Inspired by the performance improvement,
we further propose Language-Aware Multi-Head
Attention (LAA) to model typological features of
languages. LAA estimates a matrix, instead of
a vector, as the language representation for each
language, which is able to encode more language
information than a single fixed-length vector that is
commonly adopted in previous studies. Motivated
by multi-head attention (Vaswani et al., 2017), we
split the matrix along the column to learn infor-
mation from different representation subspaces. In
order to probe the typological properties encoded in

language representations, we extract the language
representations from the trained MNMT model and
use them for linguistic typology prediction.

The main contributions of our work can be sum-
marized as follows:

• We empirically show that both the supervised
and zero-shot translation of the standard full-
sharing Transformer model are sensitive to the
ways of indicating the desired target language.

• We propose the language embedding embod-
iment and language-aware multi-head atten-
tion to learn informative language represen-
tations for MNMT. We verify our proposal
on two public datasets for massively MNMT
in the many-to-many setting. Experimental
results indicate that both the supervised and
zero-shot translation can significantly benefit
from LAA.

• We show that the language representations
learned by LAA are generalizable and infor-
mative, which suggests that a proper language
modeling strategy is crucial for MNMT.

2 Related Work

Multilingual Neural Machine Translation Pi-
oneering studies on multilingual neural machine
translation mostly favor to extend the standard bilin-
gual model to MNMT by designing language spe-
cific components (Dong et al., 2015; Luong et al.,
2016; Zoph and Knight, 2016; Firat et al., 2016a),
where the number of parameters grows rapidly with
the number of languages. Alternatively, Johnson
et al. (2017); Ha et al. (2016) propose to prepend
an artificial target language token to source sen-
tences without modifying the model architecture,
which is parameter efficient and eases model de-
sign. It hence becomes the dominant approach to
massively MNMT due to its simplicity and effec-
tiveness (Aharoni et al., 2019; Arivazhagan et al.,
2019b; Freitag and Firat, 2020; Rios et al., 2020;
Wu et al., 2021). Despite that, it usually lags behind
the bilingual counterpart on high-resource language
pairs and suffers from off-target translation issue
(Zhang et al., 2020) on zero-shot translation. To
alleviate these issues, subsequent studies propose
approaches such as increasing the model capacity
by deepening the model (Zhang et al., 2020), in-
creasing the model cardinality (Xu et al., 2021),
inserting mixture-of-experts (MoE) layers (Fedus
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et al., 2021), designing lightweight language spe-
cific modules (Wang et al., 2018, 2019; Blackwood
et al., 2018; Bapna and Firat, 2019; Philip et al.,
2020; Zhang et al., 2021; Zhu et al., 2021), re-
ducing negative interference by clustering similar
languages (Tan et al., 2019), resolving the gradient
conflicts (Wang et al., 2021), dividing the model
parameters into a shared part and language-specific
part (Lin et al., 2021; Xie et al., 2021; Gong et al.,
2021; Wang and Zhang, 2022), bridging the rep-
resentation gap by data argumentation (Lin et al.,
2020) and contrastive learning (Pan et al., 2021),
introducing language-agnostic regularization (Ari-
vazhagan et al., 2019a; Pham et al., 2019) and ex-
plicit word alignment supervision (Raganato et al.,
2021), to name a few. However, these studies ne-
glect the capacity bottleneck in language represen-
tations as they all resort to a language embedding
with the same dimension as word embeddings to
encode the information of languages whose typo-
logical features diverse a lot. In contrast, LAA
adopts the matrix as the language representation to
alleviate the bottleneck. Moreover, the number of
additional parameters brought by LAA is manage-
able thus it can adapt to massive MNMT settings.

Linguistic Typology Prediction Linguistic ty-
pology mainly studies the classification of lan-
guages based on their structural properties. Our
work is closely related to inferring typological
features with language representations from the
trained MNMT models. Previous studies demon-
strate that language representations in multilingual
neural models can capture cross-lingual similari-
ties between languages (Östling and Tiedemann,
2017; Malaviya et al., 2017; Bjerva and Augen-
stein, 2018; Bjerva et al., 2019; Yu et al., 2021),
which can potentially recover missing features in
typological databases. Oncevay et al. (2020) fuse
language representations in trained MNMT mod-
els with features from typological databases to en-
hance knowledge transfer in MNMT models. They
perform typological feature prediction to analyze
typological knowledge in the learned language rep-
resentations. Similarly, we conduct typological
feature prediction to evaluate the quality of the lan-
guage representations learned in LEE and LAA.

3 Language Embedding Embodiment

The central idea for the language embedding em-
bodiment strategy is shortening distance between
the language embedding and target translation in
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Figure 1: Illustration of the language embedding em-
bodiment strategy. Six switching points in the standard
Transformer are particularly marked to insert the lan-
guage embedding.

order to enable language-embodied translation gen-
eration. In Transformer-based MNMT models, in-
stead of only feeding the language embedding into
the first layer (Conneau and Lample, 2019), we
embody the language embedding into many differ-
ent layers along the translation information flow
from the source to the target, as illustrated in Fig-
ure 1. Since the prepended artificial token has been
already in vocabulary, feeding the language em-
bedding into other layers will not result in extra
parameters. As shown in Figure 1, six candidate
positions in the standard Transformer can be used
to embody the language embedding. Consider that
the language embedding is to be embodied in po-
sition 5. Let ylang = (ylang1 ,ylang2 , · · · ,ylangn )
denote the input of the target language lang into
position 5. WQ, WK and W V are parameter
matrices of self-attention. Elang is the language
embedding of language lang. We compute the
output zlang = (zlang1 , zlang2 , · · · , zlangn ) after the
language embedding is emodied as follows:

eij =
((ylangi +Elang)WQ)((ylangj +Elang)WK)T

√
d

(1)

zlangi =

n∑

j=1

exp(eij)∑n
k=1 exp(eik)

(ylangj +Elang)W V

(2)
The language embedding embodiment for other po-
sitions can be done in a similar way: the language
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Figure 2: The architecture of the language-aware multi-
head attention. W lang

i is the trainable language-specific
matrix of the i-th head.

embedding is added to either word embeddings or
hidden states fed into the corresponding position
so as to make them language-specific. The embod-
ied language embedding is helpful for the MNMT
model to distinguish words/subwords that occur in
different languages with different meanings.

4 Language-Aware Multi-Head Attention

LEE adopts a fixed-length language embedding to
guide the MNMT model to generate translations
of the target language. However, the fixed-length
language vector may not be sufficient to capture all
key linguistic features and diversities in languages,
which are important for translation, due to its lim-
ited representational capacity. Experiment results
of LEE on both zero-shot translation and linguistic
typology prediction in Section 5 have also empiri-
cally verified the capacity bottleneck in the fixed-
length language embedding. To alleviate the ca-
pacity bottleneck, we further propose the language
aware multi-head attention (shown in Figure 2),
representing a language with a matrix, rather than
a vector. We incorporate the language-specific ma-
trix into the attention modules (self-attention in the
encoder/decoder or cross-attention) since they are
the essential components in Transformer. Follow-
ing the strategy of multi-head attention (Vaswani
et al., 2017), we split the matrix along its column
to learn information from different representation
subspaces of languages.

In the standard multi-head attention, three pa-
rameter matrices WQ

i , WK
i , W V

i are used in
the i-th attention head to project Q (queries), K
(keys) and V (values). After projection, the scaled
dot-product attention is applied on each head.
The outputs from all heads are then concatenated
and multiplied with WO. WQ

i ∈ Rdmodel×dk ,
WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , WO ∈

Rhdv×dmodel and h is the number of heads. For sim-
plicity, we set dk = dv = d and dmodel = hd. In
practice, the parameter matrices of all heads from
Q, K, V are concatenated into WQ, WK , W V

respectively and the projected results are split into
h heads, thus benefiting parallel computation and
simplifying implementation.

In LAA, we use the matrix for language rep-
resentation to relax the capacity constraint. Let
matrix W lang be the representation of language
lang, where W lang ∈ Rdmodel×dmodel . W lang is
split into h heads along the column, which pro-
duces W lang

i ∈ Rdmodel×d for the i-th head. We
addW lang

i toWQ
i ,WK

i ,W V
i to inject the target

language information into MNMT models, which
can be formulated as follows:

qi = Q(WQ
i +W lang

i )

ki =K(WK
i +W lang

i )

vi = V (W V
i +W lang

i )

(3)

Let zi be the scaled dot-product attention output of
the i-th head. zi is computed as:

zi = softmax(
qik

T
i√
d
)vi (4)

We splitWO into h heads along the row and pack
the outputs from different heads together as follows:

Z =
h∑

i=1

zi(W
O
i + (W lang

i )T) (5)

where WO
i ∈ Rd×dmodel . As Eq. (3) and (5)

show, the language representation matrix can be
incorporated into the self-attention layer of the en-
coder/decoder or the cross-attention layer. It is op-
timized with other parameters to capture the typo-
logical properties of a given language. The MNMT
models with the matrix-based W lang learned in
this way, have sufficient representation capacity to
model both language-specific features (so as to al-
leviate the negative interference (Wang et al., 2021)
between dissimilar languages) and universal fea-
tures shared by all languages. Additionally, LAA
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Dataset Type #Languages #Supervised directions #Zero-shot directions #Training sentences

TED-59 English-centric 59 116 3306 5M

OPUS-100 English-centric 100 198 30 55M

Table 1: Statistics of the two datasets.

is able to scale to massively MNMT as there is
only one additional matrix for each language and
it introduces a very small extra computational cost
in training and inference. We show several tips to
implement LAA efficiently in Appendix A.

5 Experiments

We conducted two types of experiments, many-to-
many translation and linguistic typology prediction,
aiming at: (1) systematically evaluating the tradi-
tional language token prepending method and (2)
examing the effectiveness of the proposed language
embedding embodiment and language-aware multi-
head attention.

5.1 Experiment Settings for Many-to-Many
Translation

Dataset We used two publicly available MNMT
datasets TED-59 (Qi et al., 2018) and OPUS-100
(Zhang et al., 2020). Table 1 shows the statistics
of the two datasets. Due to the multi-way paral-
lel nature of the TED-59 dataset,3 we were able
to construct 3306 (58× 57) test sets for zero-shot
translation directions by pairing sentences of any
two languages via aligned English sentences in the
original test sets. To balance training data for vari-
ous language pairs, we employed the temperature-
based sampling strategy (Arivazhagan et al., 2019b)
with T = 5. More details are in Appendix B.

Model & Training We built our MNMT models
on the Transformer base. More detailed settings
are shown in Appendix C.

Evaluation We adopted case-sensitive de-
tokenized sacreBLEU4 (Post, 2018) as the
evaluation metric. BLEU scores were averaged
over test sets. Following Zhang et al. (2020), we

3Each English sentence may have multiple corresponding
translations in different languages.

4For TED-59, the signature is: BLEU+case.mixed+numre-
fs.1+smooth.exp+tok.{13a,zh,ja-mecab-0.996}+version.1.5-
.1, tok.zh and tok.ja-mecab-0.996 are only for Chinese and
Japanese respectively. For OPUS-100, We adopted the same
signature as previous work to be comparable with them:
BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+versio-
n.1.4.1

used LangAcc as a complementary evaluation
metric for zero-shot translation, which calculates
the proportion of the translations in the desired
target language. More details about the evaluation
settings are in Appendix D.

5.2 Experiment Settings for Linguistic
Typology Prediction

Dataset We employed typological features from
URIEL typological database (Littell et al., 2017)5

for experiments. We mainly used syntax, phonol-
ogy and phonetic inventory typological features in
our work. More details are in Appendix E.

Prediction Methods We adopted k-nearest
neighbors approach (k-NN) for linguistic typol-
ogy prediction. More details about the prediction
methods are in Appendix F.

5.3 Many-to-Many Translation Results
We conducted a series of experiments to evaluate
both LEE and LAA in many-to-many translation.

5.3.1 Language Embedding Embodiment
We mainly carried out experiments on the TED-59
dataset to examine the effectiveness of LEE. Ta-
ble 2 shows the experimental results. We further
evaluated LEE4,5 (the best system in terms of aver-
age BLEU on all supervised translation directions
on the TED-59 dataset) on the OPUS-100 dataset.
As shown in Table 2, poor LangAccs on zero-shot
translation directions suggest that the majority of
models suffer from the severe off-target transla-
tion issue (Zhang et al., 2020). Besides, LEE4,5

can slightly boost the average BLEU on supervised
translation directions on both datasets. Findings
from Table 2 can be summarized as follows:

• The ways to indicate the desired target lan-
guage to MNMT models can significantly af-
fect the translation performance, especially on
zero-shot translation directions.

• The performance gap between Tokensrc and
Tokentgt on zero-shot translation directions

5https://www.cs.cmu.edu/~dmortens/
projects/07_project
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ID Dataset Model #Param
En→ XX XX→ En All Zero-shot

BLEU WR BLEU WR BLEU WR BLEU LangAcc WR

1 TED-59 Tokentgt 77M 20.74 ref 24.08 ref 22.41 ref 2.42 37.62 ref
2 TED-59 Tokensrc 77M 21.24 91.38 23.77 15.52 22.50 53.45 10.50 71.82 98.91
3 TED-59 LEE2 77M 21.26 89.66 23.42 5.17 22.34 47.41 8.87 73.97 97.70
4 TED-59 LEE1,2 77M 20.92 65.52 23.75 32.76 22.33 49.14 8.99 73.97 97.58
5 TED-59 LEE5 77M 20.70 48.28 24.32 77.59 22.51 62.93 4.10 58.63 83.42
6 TED-59 LEE4,5 77M 20.83 65.52 24.49 84.48 22.66 75.00 3.94 59.60 75.05
7 TED-59 LEE3,4,5 77M 20.65 39.66 24.56 93.10 22.61 66.38 4.98 61.76 87.69
8 TED-59 LEE4,5,6 77M 20.71 51.72 24.39 89.66 22.55 70.69 6.17 64.83 94.65
9 TED-59 LEE2,5 77M 21.26 86.21 23.79 27.59 22.53 56.90 9.82 74.44 98.55

10 OPUS-100 Tokentgt 77M 23.46 ref 29.49 ref 26.47 ref 5.81 55.92 ref
11 OPUS-100 Tokensrc 77M 24.04 81.91 28.74 8.51 26.39 45.21 4.06 34.53 23.33
12 OPUS-100 LEE4,5 77M 23.38 50.00 29.64 47.87 26.51 48.94 7.37 65.84 56.67

Table 2: Experimental results of LEE on the two datasets. En→ XX and XX→ En: translation directions from
and to English respectively. All: all supervised translation directions. Zero-shot: zero-shot translation directions.
#Param: the number of trainable parameters in the model. WR (Win Rate): the proportion of translation directions
that outperform the ref system in terms of BLEU. LangAcc: the proportion of translations in the correct target
language among all translations. Tokentgt: prepending a target language tag to the target side. Tokensrc: prepending
a target language tag to the source side. The subscript of LEE denotes the positions to embody the language
embedding as shown in Figure 1. It’s worth noting that for supervised translation directions, the test sets in
OPUS-100 only cover 94 language pairs and BLEU for "All" is hence averaged on 188 translation directions.

varies substantially across different datasets.
We perform analysis to find the main reasons
behind the performance discrepancy and the
details are shown in Appendix G.

• Prepending a target language token to the
source side (Tokensrc) and to the target side
(Tokentgt) benefit En→ XX and XX→ En
translation directions respectively.

• Embodying the target language embedding
in the decoder is preferable for supervised
translation directions.

Please refer to Appendix G for an in-depth analysis
that supports these findings.

5.3.2 Language-Aware Multi-Head Attention
Baslines Since LAA enlarges the language repre-
sentation with a language-specific matrix, introduc-
ing additional parameters than LEE, we compared
it against two state-of-the-art MNMT baselines.
The first is the monolingual adapter (Philip et al.,
2020). We omit the bottleneck dimension and ac-
tivation function in the original adapter and adopt
a matrix as the adapter. The adapter is the same
size as the language representation in LAA. We
share the monolingual adapter across all layers to
keep the number of parameters identical to LAA
and jointly train it with the other components of
the MNMT model. In addition to the monolingual

adapter, we also compared against the combination
of LALN (Language-Aware Layer Normalization)
and LALT (Language-Aware Linear Transforma-
tion) proposed by Zhang et al. (2020).

Table 3 shows the detailed results. We observe
that incorporating LAA into the decoder benefits
both supervised and zero-shot translation ( 1 vs.
3 5 )( 2 vs. 4 )( 12 vs. 13 14 ), while incor-

porating LAA into the self-attention layer of the
encoder deteriorates translation performance ( 1
vs. 2 )( 3 vs. 4 ), which is consistent with the
finding in LEE (i.e., the incorporation into the the
decoder is better than the encoder). Similarly, incor-
porating the monolingual adapter into the decoder
is more effective than into the encoder ( 8 vs. 9 ).
Moreover, LAA outperforms all strong baselines
under the condition of using equal number of pa-
rameters ( 8 9 10 11 vs. 3 5 ), which demon-
strates that LAA can capture rich language infor-
mation to improve translation performance of mas-
sively MNMT model. To examine whether LAA
and LEE are complementary to each other, we com-
bine LAAdec.self and LEE4,5 and the results show
a slightly boosted translation performance ( 3 vs.
7 ) ( 13 vs. 15 ). However, adopting LAA while

prepending the language tag to the target side leads
to a slightly performance drop on supervised trans-
lation directions ( 3 vs. 6 ).

The experiments in Table 2 and 3 are conducted
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ID Dataset Model #Param
En→ XX XX→ En All Zero-shot

BLEU WR BLEU WR BLEU WR BLEU LangAcc WR

1 TED-59 Tokentgt 77M 20.74 ref 24.08 ref 22.41 ref 2.42 37.62 ref
2 TED-59 LAAenc.self 92M 20.11 17.24 21.13 1.72 20.62 9.48 6.30 71.92 92.77
3 TED-59 LAAdec.self 92M 21.29 84.48 25.14 96.55 23.21 90.52 8.94 74.68 98.58
4 TED-59 LAAenc.self,dec.self 92M 21.04 68.97 23.10 1.72 22.07 35.34 8.89 74.03 97.58
5 TED-59 LAAdec.self,cros 92M 21.47 89.66 24.79 94.83 23.13 92.24 12.69 74.57 99.15
6 TED-59 LAAdec.self + Tokentgt 92M 21.19 79.31 25.11 96.55 23.15 87.93 9.07 74.65 98.40
7 TED-59 LAAdec.self + LEE4,5 92M 21.28 87.93 25.29 100.00 23.28 93.97 9.48 74.69 99.09
8 TED-59 Adapterenc 92M 21.04 68.97 22.91 0.00 21.97 34.48 8.20 74.44 96.79
9 TED-59 Adapterdec 92M 21.43 91.38 24.14 62.07 22.79 76.72 10.61 75.36 98.97
10 TED-59 Adapterenc,dec 92M 21.10 79.31 22.95 1.72 22.03 40.52 9.17 75.10 98.09
11 TED-59 LALN + LALT 94M 21.37 75.86 22.85 1.72 22.11 38.79 7.69 73.18 95.58

12 OPUS-100 Tokentgt 77M 23.46 ref 29.49 ref 26.47 ref 5.81 55.92 ref
13 OPUS-100 LAAdec.self 103M 24.42 90.43 29.78 79.79 27.10 85.11 11.23 81.53 100.00
14 OPUS-100 LAAdec.self,cros 103M 24.42 89.36 29.58 68.09 27.00 78.72 12.13 87.65 100.00
15 OPUS-100 LAAdec.self + LEE4,5 103M 24.41 88.30 29.83 76.60 27.12 82.45 11.31 81.70 100.00

Table 3: Experiment results of LAA on the two datasets. The results of 1 and 12 are from Table 2. The subscript
of LAA denotes the layers where the language representation is incorporated. The subscript of the adapter denotes
the modules where the monolingual adapter is incorporated. enc/dec denote the encoder/decoder. self/cros denote
self-attention/cross-attention layer. Considering that both LAAdec.self and LAAdec.self + LEE4,5 achieve superior
average BLEU scores on supervised translation directions and LAAdec.self,cros obtains the best BLEU on zero-shot
translation, we verify them again on the OPUS-100 dataset.

under a temperature-based sampling setting of
T = 5, which oversamples training data of low-
resource language pairs. Oversampling usually
leads to improvements in average BLEU on super-
vised translation directions (Table 3 vs. Table 4).
To eliminate such effect and compare with previ-
ous work (Zhang et al., 2020; Xu et al., 2021),6

we carried out experiments without oversampling.
Table 4 summarizes our experimental results with-
out oversampling. The results suggest that LAA
yields larger BLEU improvements on supervised
translation directions when training on the raw data
distribution. e.g., ( 13 - 12 = +0.63 BLEU, Table 3)
vs. ( 12 - 9 = +1 BLEU, Table 4). Additionally,
the performance gain on zero-shot translation is
also retained mostly ( 13 - 12 = +5.42 BLEU, Ta-
ble 3) vs. ( 12 - 9 = +5.3 BLEU, Table 4). We
enlarge the MNMT model by increasing the num-
ber of layers in both the encoder and decoder to 24
so that the number of parameters in our models is
approximately the same as the largest model used
by Zhang et al. (2020) and Xu et al. (2021).7 As the
model deepens, we adjusted the dropout rate to 0.2.
Our methods outperform previous results (Zhang

6As the two studies are carried out on the OPUS-100
dataset without oversampling, we remove oversampling to
make a fair comparison with them.

7Although Xu et al. (2021) don’t report the exact number
of parameters, the number of parameters in their model is
approximately equal to that of Zhang et al. (2020) as stated in
paper.

et al., 2020; Xu et al., 2021) on both supervised and
zero-shot translation directions ( 6 7 8 vs. 14 ).8

5.4 Linguistic Typology Prediction Results
Similarly, we conducted experiments on the lin-
guistic typology prediction for both LEE and LAA
which are trained on the two datasets.

5.4.1 Language Embedding Embodiment
We selected language embeddings learned by
Tokensrc, Tokentgt and LEE4,5 to perform linguis-
tic typology prediction given that Tokensrc and
Tokentgt are the dominant practice in MNMT and
LEE4,5 achieves fairly good performance over all
supervised translation directions across the two
datasets. We present the experimental results in
Table 6 (Appendix H). Optimal ks for Tokensrc,
Tokentgt and LEE4,5 are not always consistent and
it is difficult to conclude the most superior one. We
therefore adopt the maximum accuracy under dif-
ferent settings of k as the evaluation metric. We
observe that there is no significant performance

8Yang et al. (2021) and Wang et al. (2022) report better
results than us. However, Yang et al. (2021) oversampled the
training data for low-resource language pairs and removed five
language pairs without test data. We removed oversampling
and used all training data of the OPUS-100 dataset, hence
the model in our work needs to schedule its capacity over the
extra ten translation directions. Wang et al. (2022) conducted
experiments with the MNMT model of up to 3.8B parameters,
which is several times larger than ours. To the best of our
knowledge, there are no other results superior to ours except
theirs.
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ID Dataset Model #Param
En→ XX XX→ En All Zero-shot

BLEU WR BLEU WR BLEU WR BLEU LangAcc WR

1 TED-59 Token−tgt 77M 19.54 ref 24.23 ref 21.89 ref 2.84 40.94 ref
2 TED-59 Token−src 77M 20.25 96.55 23.65 8.62 21.95 52.59 9.65 65.45 96.77
3 TED-59 LEE−4,5 77M 19.56 51.72 24.42 86.21 21.99 68.97 6.43 66.25 87.57
4 TED-59 LAA−dec.self 92M 20.64 96.55 25.16 98.28 22.90 97.41 9.93 75.04 97.67
5 TED-59 LAA−dec.self + LEE−4,5 92M 20.67 94.83 25.05 93.10 22.86 93.97 10.02 75.26 97.82

6 OPUS-100 Zhang et al. (2020) 254M 23.96 - 31.36 - 27.66 - 5.24 47.91 -
7 OPUS-100 Zhang et al. (2020) 254M 23.36 - 30.98 - 27.17 - 14.08 87.68 -
8 OPUS-100 Xu et al. (2021) - 24.17 - 32.19 - 28.18 - 14.71 - -

9 OPUS-100 Token−tgt 77M 21.82 ref 28.45 ref 25.14 ref 6.63 58.76 ref
10 OPUS-100 Token−src 77M 22.15 74.47 27.68 10.64 24.91 42.55 4.91 37.80 30.00
11 OPUS-100 LEE−4,5 77M 21.49 45.74 28.48 43.62 24.98 44.68 10.08 79.90 96.67
12 OPUS-100 LAA−dec.self 103M 23.57 91.49 28.71 70.21 26.14 80.85 11.93 80.39 100.00
13 OPUS-100 LAA−dec.self + LEE−4,5 103M 23.69 91.49 28.88 78.72 26.29 85.11 12.77 85.00 100.00
14 OPUS-100 13 + 24 layers 236M 26.82 98.94 32.31 100.00 29.56 99.47 15.08 84.59 100.00

Table 4: Experimental results without oversampling on the two datasets. The superscript "-" denotes that oversam-
pling is removed.
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(c) Phonetic inventory

Figure 3: Prediction accuracy on syntax, phonology and phonetic inventory features using the language embeddings
learned by Tokentgt, Tokensrc, LEE4,5 and LAAdec.self which are trained on the TED-59 dataset.

gap except inferring the phonology features with
the language embeddings trained on the TED-59
dataset ( 9 , Table 6 in Appendix H).

5.4.2 Language Aware Multi-Head Attention

Figure 3 and 5 (the latter shown in Appendix I)
show the prediction results of using the language
representation learned by LAA for linguistic ty-
pology probing. We observe that the language
representation learned in LAA achieves the best
accuracy on syntax feature inference across the
two datasets, which demonstrates its generaliza-
tion ability to some extent. For phonology and
phonetic inventory feature inference, there are no
significant differences among the language repre-
sentations learned in various MNMT models. We
hypothesize that typological properties encoded in
language representations are relied on the task that
learns language representations. The translation
task can force MNMT models to learn syntactic
information to accommodate syntactic divergences

across languages for better translation. Addition-
ally, the superior performance of LAA on many-to-
many translation and linguistic typology prediction
suggests that the language representations learned
in LAA can benefit multilingual translation.

5.5 Effect of the Increased Parameters
Introduced by LAA

We carried out experiments to study the effect of the
increased parameters introduced by LAA. Specifi-
cally, we removed the language-specific properties
of the introduced trainable matrices in LAA by ran-
domly activating them with equal probabilities dur-
ing training and inference. We denote the MNMT
models with the random matrices as LAAR. As
these matrices become random, there is no explicit
signal to guide the translation into the desired tar-
get languages. Hence we followed the prepending
token strategies of Tokentgt and Tokensrc to navi-
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ID Dataset Model #Param
En→ XX XX→ En All Zero-shot

BLEU WR BLEU WR BLEU WR BLEU LangAcc WR

1 TED-59 Tokentgt 77M 20.74 ref 24.08 ref 22.41 ref 2.42 37.62 ref
2 TED-59 Tokensrc 77M 21.24 91.38 23.77 15.52 22.50 53.45 10.50 71.82 98.91
3 TED-59 LAAdec.self 92M 21.29 84.48 25.14 96.55 23.21 90.52 8.94 74.68 98.58
4 TED-59 LAAdec.self + LEE4,5 92M 21.28 87.93 25.29 100.00 23.28 93.97 9.48 74.69 99.09
5 TED-59 LAAR

dec.self + Tokensrc 92M 20.74±0.02 44.14±3.78 25.94±0.01 98.28±0.00 23.34±0.01 71.21±1.89 7.08±0.00 55.73±0.01 95.50±0.09
6 TED-59 LAAR

dec.self + Tokentgt 92M 20.18±0.01 10.34±1.22 26.25±0.02 98.28±0.00 23.22±0.01 54.31±0.61 0.92±0.00 6.76±0.00 2.75±0.09

7 OPUS-100 Tokentgt 77M 23.46 ref 29.49 ref 26.47 ref 5.81 55.92 ref
8 OPUS-100 Tokensrc 77M 24.04 81.91 28.74 8.51 26.39 45.21 4.06 34.53 23.33
9 OPUS-100 LAAdec.self 103M 24.42 90.43 29.78 79.79 27.10 85.11 11.23 81.53 100.00
10 OPUS-100 LAAdec.self + LEE4,5 103M 24.41 88.30 29.83 76.60 27.12 82.45 11.31 81.70 100.00
11 OPUS-100 LAAR

dec.self + Tokensrc 103M 23.65±0.02 64.68±3.79 28.61±0.01 12.98±0.89 26.13±0.01 38.83±1.50 4.18±0.01 39.94±0.04 20.00±0.00
12 OPUS-100 LAAR

dec.self + Tokentgt 103M 22.80±0.02 16.81±1.39 29.27±0.01 22.13±2.43 26.04±0.01 19.47±1.22 6.16±0.01 68.00±0.11 50.00±2.36

Table 5: Experiment results of LAAR
dec.self on the two datasets. The superscript "R" denotes that the language-

specific matrices in LAAdec.self are stochastically activated during training and inference. We adopted Tokentgt

or Tokensrc with LAAR
dec.self to guide the MNMT models into the right translation directions. The results of

1 2 7 8 are from Table 2. The results of 3 4 9 10 are from Table 3.

gate the translation directions.9 We incorporated
the stochastic matrices into the self-attention mod-
ules of the decoder since LAAdec.self achieves supe-
rior performance on both supervised and zero-shot
translation directions as shown in Table 3 and 4.
For efficiency, the best checkpoint was selected ac-
cording to the average BLEU on the validation sets
with only one random seed. We evaluated models
on the test sets with the best checkpoint and re-
port the mean and standard deviation of the BLEU
score with 5 different random seeds. Results with
the temperature-based sampling strategy (T = 5)
on the two datasets are shown in Table 5. We also
conducted experiments on the raw data distribution
and results are presented in Table 7 of Appendix J.

We observe that the performance of LAAR
dec.self

with different random seeds is stable as the stan-
dard deviations on various metrics are small. Addi-
tionally, the performance gap between LAAdec.self

and LAAR
dec.self is small on supervised translation

directions on the TED-59 dataset. Despite that,
LAAdec.self outperforms LAAR

dec.self by a large
margin on the OPUS-100 dataset. We hypothe-
size that the TED-59 dataset covers more restrict
domains than the OPUS-100 dataset sampled from
OPUS collection (Tiedemann, 2012),10 which may
benefit LAAR

dec.self as the knowledge from simi-
lar domains can be easily transferred across the
stochastic matrices during training. Furthermore,

9We also attempted to make these stochastic matrices
language-specific by gradually increasing the sampling proba-
bility on a specific matrix for each language during training
but results are not satisfactory.

10There are various corpora in the OPUS collection, such as
Wikipedia corpus, Bible corpus, UN corpus and TED corpus,
etc. As the OPUS-100 dataset is constructed by randomly
sampling sentence pairs from the corpora of OPUS collection
for each language pair, it may cover more diverse domains.

LAAR
dec.self consistently lags behind LAAdec.self

on zero-shot translation directions on the two
datasets. Given the same number of parame-
ters in LAAR

dec.self and LAAdec.self , we can con-
clude that the performance improvement of
LAAdec.self is not only due to the parameter in-
creasement.

6 Conclusion

To improve massively MNMT, we have presented
two approaches to learning informative language
representations, language embedding embodiment
and language-aware multi-head attention. We find
that the ways to inject target language informa-
tion into MNMT models have a significant impact
on the translation performance, especially on zero-
shot translation. We validate the effectiveness of
the two approaches on two public datasets. We
probe the typological features encoded in language
representations learned by LEE and LAA through
linguistic typology feature prediction. The superior
prediction performance of the matrix-based lan-
guage representations learned by LAA on syntax
features demonstrates its informativeness.
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A Efficient Implementation of LAA

Suppose that the number of target languages is l
and the dimensions ofQ,K, V are b×n×dmodel,
where b is the batch size and n is the sequence
length. Since a minibatch usually contains sam-
ples from various language pairs during training,
each minibatch is required to be split into smaller
batches according to the target language so as
to compute Eq. (3) and (5). And the output of
Eq. (5) is required to be reorganized to preserve
the original order of samples within the minibatch,
which brings extra computational cost and is in-
efficient for computing on modern parallel hard-
ware like GPU. To avoid this, we maintain a ma-
trix W̃ ∈ Rl×dmodel×dmodel which consists of lan-
guage representations from all languages. We se-
lect W ∈ Rb×dmodel×dmodel from W̃ , which con-
tains all language representations for samples in
the minibatch. This selection can be efficiently ex-
ecuted by the Pytorch toolkit.11 To avoid broad-
casting12 WQ,WK ,W V ,WO into larger dimen-
sions when added withW , we reformulate Eq. (3)
and (5) as follows:

q = QWQ +QW

k =KWK +KW

v = VW V + VW

(6)

Z = zWO + zW
T (7)

Note that we omit the subscript for head index
in original formulas as all heads are computed in
parallel. As there are always duplicate elements in
{Q, K, V }, the second term (i.e. {Q,K,V }W )
in Eq. (6) can be computed first and then cached to
avoid redundant computation.

B Dataset for Many-to-Many Translation

We removed the __en__ tag prepended to non-
English sentences in the original TED-59 dataset.13

11https://pytorch.org/docs/stable/
generated/torch.index_select.html?
highlight=index_select#torch.index_
select

12https://pytorch.org/docs/stable/
notes/broadcasting.html?highlight=
broadcasting

13An artificial English tag __en__ is prepended to every
non-English sentence in the raw dataset, which may affect
model training and bias BLEU. Nevertheless, previous works
on this dataset usually do not elaborate this procedure, which
may make our results on this dataset not directly comparable
to theirs.

We trained BPE model (Sennrich et al., 2016) using
SentencePiece (Kudo and Richardson, 2018) to get
subword units with a joint vocabulary of size 64K.

C Model & Training for Many-to-Many
Translation

We implement our MNMT models based on
Fairseq (Ott et al., 2019). We set the dimension
of word embeddings and FFN layer to 512/2048.
Embeddings were shared for the encoder, decoder
and the output projection. To prevent overfitting,
we set dropout rate to 0.1 on the OPUS-100 dataset
and 0.2 on the TED-59 dataset due to its relatively
small data size. We adopted the cross-entropy loss
with a label smoothing of 0.1 as the training ob-
jective. We used Adam (β1 = 0.9, β2 = 0.98)
(Kingma and Ba, 2015) to optimize model pa-
rameters. We varied the learning rate accord-
ing to the inverse_square_root schedule
(Vaswani et al., 2017) with a warm-up step of 4000
and a peak learning rate of 0.0005. We trained all
MNMT models for 30 epochs and each minibatch
contains a maximum of 4096 tokens. The train-
ing data of each epoch is composed of the training
datasets from all translation directions. For the
OPUS-100 dataset, the number of total training
steps for the model with and without oversampling
are ∼ 933,000 and ∼ 617,000 respectively. For the
TED-59 dataset, the number of total training steps
with and without oversampling are ∼ 226,000 and
∼ 142,000 respectively.14 Parallel sentences in the
training data sets where the number of subwords
on either the source or target side exceeds 100 were
removed.

D Evaluation of MNMT Model

We performed beam search decoding with a beam
size of 5 and length penalty of 1.0 during inference.
As the TED-59 dataset has already been tokenized,
we detokenized reference and system translations
with sacremoses15 toolkit before computing
BLEU. We chose the best checkpoint according to

14To reduce the number of padding tokens in the minibatch,
Fairseq sorts the training data by comparing the target
sentence length first and then the source sentence length by
default. Additionally, the number of tokens in each training
sample is computed as the maximum of source and target
sentence length, which is used to enforce the minibatch size.
As a result, the language tag prepending strategy will affect
the number of minibatches. Because of this, we report the
approximate number of training steps.

15https://github.com/alvations/
sacremoses
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the average BLEU on the validation sets and then
evaluated it on the test sets. Considering that there
are no validation sets for zero-shot translation direc-
tions, we used the checkpoint selected on the super-
vised translation directions for zero-shot translation.
To be comparable with (Zhang et al., 2020), we em-
ployed langdetect16 toolkit for language iden-
tification on the OPUS-100 dataset. For TED-59
dataset, we used the langid.id toolkit17 instead
as it supports more languages than langdetect.
We disregarded languages that cannot be detected
by langid.id toolkit such as Canadian French
(fr-ca), Brazilian Portuguese (pt-br) and Burmese
(my).

E Dataset for Linguistic Typology
Prediction

URIEL is a typological compendium which accom-
modates diverse linguistic resources from several
typological databases such as WALS (Dryer and
Haspelmath, 2013), PHOIBLE (Moran and Mc-
Cloy, 2019) and Glottolog (Hammarström et al.,
2021). We used lang2vec18 library to query
URIEL database which provides uniform interface
to access various linguistic features.

F Prediction Method for Typology
Features

We inferred typology features of languages from
the language representations derived from the
trained MNMT model which achieves the best per-
formance on the validation sets. Some previous
works train logistic regression classifiers to perform
typology prediction (Malaviya et al., 2017; Once-
vay et al., 2020). Nevertheless, logistic regression
is a parameterized algorithm and the number of its
parameters increase with the feature dimensions
of input data, which makes it difficult to handle
data scarcity with high-dimensional inputs such
as matrix. We hence adopted k-nearest neighbors
approach (k-NN), a non-parametric method, for lin-
guistic typology prediction. We employed cosine
similarity as the distance measure for LEE. For the
language representations in LAA, we computed the
average cosine similarity for all rows in the matrix
as the distance metric. We set k as odd numbers
and varied k in {1, 3, 5, 7, 9}. We left one language

16https://github.com/Mimino666/
langdetect

17https://github.com/saffsd/langid.py
18https://github.com/antonisa/lang2vec
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Figure 4: The distribution of the numbers of translations
in other languages for each unique English sentence on
the TED-59 and OPUS-100 training data. The dashed
lines show the mean values.

out and took the remaining languages as training
examples to make predictions. This procedure was
repeated for each language and the average predic-
tion accuracies on all languages are reported.

G Detailed Many-to-Many Translation
Results for LEE

Our findings summarized from Table 2 can be
shown as follows:

The ways to indicate the desired target language
to MNMT models can significantly affect the
translation performance, especially on zero-shot
translation directions. There are 0.33 and 5.88
maximum average BLEU differences on supervised
( 4 vs. 6 ) and zero-shot ( 6 vs. 9 ) translation di-
rections respectively on the TED-59 dataset among
the variations of LEE with the same number of pa-
rameters. Similarly, although LEE does not use ex-
tra parameters compared to Tokensrc and Tokentgt,
the average BLEU difference on zero-shot transla-
tion directions between LEE and Tokensrc can be
significant on both datasets (6.56 on the TED-59,
6 vs. 2 ) (3.31 on the OPUS-100 dataset, 11 vs.
12 ). These indicate the importance of the effective
target language information injecting method for
MNMT models.

The performance gap between Tokensrc and
Tokentgt on zero-shot translation directions
varies substantially across different datasets.
Tokensrc obtains the best performance in terms
of both average BLEU and WR and outperforms
Tokentgt by 8.08 BLEU on zero-shot translation
directions on the TED-59 dataset ( 1 vs. 2 ). How-
ever, it lags behind Tokentgt on zero-shot transla-
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tion directions on the OPUS-100 dataset ( 10 vs.
11 ). In order to find the main reasons behind the
performance discrepancy between Tokensrc and
Tokentgt on different datasets, we analyzed the two
datasets from the perspective of their multi-way
alignment since TED talks have been translated
into many languages. Specifically, we counted the
numbers of translations in other languages for each
unique English sentence in the training data of the
two datasets.19 The results are visualized in Fig-
ure 4. Although both TED-59 and OPUS-100 are
English-centric datasets, the majority of English
sentences in the TED-59 dataset have more than
one translations in other languages. We hypothe-
size that identical English sentences on the source
side paired with distinct target sentences in differ-
ent languages may encourage MNMT models to
capture the correlations between the prepended to-
kens of Tokensrc and the target languages, which
benefits zero-shot translation and is consistent with
the finding of Wu et al. (2021).

Prepending a target language token to the
source side (Tokensrc) and to the target side
(Tokentgt) benefit En→XX and XX→ En trans-
lation directions respectively The average 0.5
BLEU gain and 91.38% WR on the TED-59 dataset
( 1 vs. 2 ) together with the average 0.58 BLEU
gain and 81.91% WR on the OPUS-100 dataset
( 10 vs. 11 ) on the En→ XX translation directions
indicate that Tokensrc is more preferable for En
→ XX language pairs than Tokentgt. Moreover,
Tokensrc achieves the highest WR on En → XX
translation directions across the two datasets. De-
spite the leading performance of Tokensrc on En→
XX translation directions, it suffers from inferior
average BLEU and WR on XX→ En translation
directions, which results in comparable average
BLEU with Tokentgt over all supervised transla-
tion directions. In contrast, Tokentgt achieves bet-
ter performance on XX→ En translation directions
than Tokensrc.

Embodying the target language embedding in
the decoder is preferable for supervised transla-
tion directions The candidate positions for em-
bodying language information are scattered across
the encoder (position 1, 2) and decoder (position
3, 4, 5, 6). Table 2 shows that embodying the
language embedding into positions in the decoder

19We collected English sentences by concatenating all par-
allel corpora of English and eliminating duplicate entries.

can achieve inprovements in average BLEU ( 1 2
vs. 5 6 7 8 , 10 11 vs. 12 ), while incorporat-
ing the language embedding to positions in the
encoder will cause performance drop ( 1 2 vs.
3 4 ). This suggests that embodying the language

embedding for the target language into positions
closer to target translations is the key ingredient to
improve model performance on supervised transla-
tion directions for LEE.

H Linguistic Typology Prediction Results
for LEE

ID Feature Dataset Model
k

Max
1 3 5 7 9

1

Syntax

TED-59 Tokentgt 81.56 82.15 82.81 81.18 80.79 82.81
2 TED-59 Tokensrc 86.11 86.14 85.15 83.92 82.63 86.14
3 TED-59 LEE4,5 82.40 84.70 85.59 84.45 83.42 85.59

4 OPUS-100 Tokentgt 82.66 83.97 83.49 83.25 82.98 83.97
5 OPUS-100 Tokensrc 84.80 84.32 83.70 83.93 83.12 84.80
6 OPUS-100 LEE4,5 84.42 83.43 83.80 82.34 82.07 84.42

7

Phonology

TED-59 Tokentgt 71.96 84.23 67.28 59.21 59.15 84.23
8 TED-59 Tokensrc 80.11 84.97 67.28 59.03 59.03 84.97
9 TED-59 LEE4,5 69.68 78.48 66.66 58.97 59.03 78.48

10 OPUS-100 Tokentgt 79.57 85.94 81.38 73.78 73.82 85.94
11 OPUS-100 Tokensrc 86.76 86.50 83.94 73.95 73.95 86.76
12 OPUS-100 LEE4,5 85.79 80.74 73.82 73.87 74.03 85.79

13

Phonetic
inventory

TED-59 Tokentgt 86.67 87.86 87.11 85.07 65.80 87.86
14 TED-59 Tokensrc 87.85 88.38 87.44 85.32 66.06 88.38
15 TED-59 LEE4,5 86.52 88.03 87.15 85.12 65.73 88.03

16 OPUS-100 Tokentgt 87.89 87.68 72.78 59.41 59.47 87.89
17 OPUS-100 Tokensrc 87.86 87.80 72.96 59.47 59.42 87.86
18 OPUS-100 LEE4,5 88.38 87.76 72.80 59.42 59.24 88.38

Table 6: Linguistic typology prediction accuracies on
syntax, phonology and phonetic inventory features using
the language embedding learned by Tokentgt, Tokensrc
and LEE4,5 which are trained on the TED-59 and OPUS-
100 datasets respectively. k denotes the number of near-
est neighbors in k-NN. Max denotes the maximum ac-
curacy when k varies in {1, 3, 5, 7, 9}.

I Linguistic Typology Prediction Results
for Models Trained on OPUS-100

Figure 5 shows the linguistic typology prediction
results for language representations extracted from
MNMT models which are trained on the OPUS-
100 dataset.

J Many-to-Many Translation Results of
LAAR

dec.self on Raw Data Distribution

Table 7 presents the many-to-many translation
results of LAAR

dec.self when oversampling is re-
moved.
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(c) Phonetic inventory

Figure 5: Prediction accuracy on syntax, phonology and phonetic inventory features using the language embeddings
learned by Tokentgt, Tokensrc, LEE4,5 and LAAdec.self which are trained on the OPUS-100 dataset.

ID Dataset Model #Param
En→ XX XX→ En All Zero-shot

BLEU WR BLEU WR BLEU WR BLEU LangAcc WR

1 TED-59 Token−tgt 77M 19.54 ref 24.23 ref 21.89 ref 2.84 40.94 ref
2 TED-59 Token−src 77M 20.25 96.55 23.65 8.62 21.95 52.59 9.65 65.45 96.77
3 TED-59 LAA−dec.self 92M 20.64 96.55 25.16 98.28 22.90 97.41 9.93 75.04 97.67
4 TED-59 LAA−dec.self + LEE−4,5 92M 20.67 94.83 25.05 93.10 22.86 93.97 10.02 75.26 97.82
5 TED-59 LAAR−

dec.self + Token−src 92M 19.65±0.01 61.38±2.61 25.75±0.01 90.34±1.54 22.70±0.01 75.86±0.86 9.89±0.00 73.30±0.02 95.91±0.06
6 TED-59 LAAR−

dec.self + Token−tgt 92M 18.53±0.01 1.03±0.94 26.30±0.02 93.10±0.00 22.41±0.01 47.07±0.47 1.02±0.00 11.37±0.01 1.06±0.07

7 OPUS-100 Token−tgt 77M 21.82 ref 28.45 ref 25.14 ref 6.63 58.76 ref
8 OPUS-100 Token−src 77M 22.15 74.47 27.68 10.64 24.91 42.55 4.91 37.80 30.00
9 OPUS-100 LAA−dec.self 103M 23.57 91.49 28.71 70.21 26.14 80.85 11.93 80.39 100.00
10 OPUS-100 LAA−dec.self + LEE−4,5 103M 23.69 91.49 28.88 78.72 26.29 85.11 12.77 85.00 100.00
11 OPUS-100 LAAR−

dec.self + Token−src 103M 21.63±0.01 50.21±1.39 27.07±0.02 0.64±0.58 24.35±0.01 25.43±0.69 4.96±0.02 41.21±0.05 31.33±1.83
12 OPUS-100 LAAR−

dec.self + Token−tgt 103M 20.75±0.02 9.15±1.61 28.11±0.03 20.00±1.75 24.43±0.02 14.57±0.97 6.80±0.02 66.74±0.07 52.00±1.83

Table 7: Experiment results of LAAR−
dec.self on the two datasets. The superscript "-" denotes that there is no

oversampling. The results of 1 2 3 4 7 8 9 10 are from Table 4.
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Abstract

We examine the inducement of rare but severe
errors in English-Chinese and Chinese-English
in-domain neural machine translation by mini-
mal deletion of the source text with character-
based models. By deleting a single character,
we can induce severe translation errors. We
categorize these errors and compare the results
of deleting single characters and single words.
We also examine the effect of training data size
on the number and types of pathological cases
induced by these minimal perturbations, find-
ing significant variation. We find that deleting a
word hurts overall translation score more than
deleting a character, but certain errors are more
likely to occur when deleting characters, with
language direction also influencing the effect.

1 Introduction

Pathological machine translation (MT) errors have
been a problem since the field’s inception, and they
have been analyzed and categorized in the context
of both statistical (SMT) and neural machine trans-
lation (NMT). Recent work examines pathologies
in NLP models on classification problems: cases
in which the models make wildly inaccurate pre-
dictions, often confidently, when input tokens are
removed (Feng et al., 2018). Identifying these en-
riches our understanding of neural models and their
points of failure. MT pathologies take the form of
severe translation errors, the worst being halluci-
nations (Lee et al., 2019). These rare errors are
difficult to study precisely because they are rare.
In this paper, we examine severe errors induced
by minimal deletions by automatically extracting
translations with severe errors and manually cate-
gorizing them.

Previous work taxonomizes SMT errors (Vilar
et al., 2006) and analyzes their effects on trans-
lation quality (Federico et al., 2014). More re-
cently, Guerreiro et al. (2022) propose a taxonomy
of MT pathologies, of which hallucinations are a

category.1 They note the shortcomings of current
automatic detection methods, e.g., those based on
quality estimation and heuristics, and look for crit-
ical errors in naturalistic settings. They also pro-
pose DEHALLUCINATOR, which flags problematic
translations and replaces them with re-ranking.

Other work on Chinese-English (Zh-En) SMT ex-
amines tense errors caused by incorrectly translat-
ing了 (le) (Liu et al., 2011) and syntactic failures
caused by 的 (de). More recent work uses input
perturbation to argue that NMT models, including
those based on transformers (Vaswani et al., 2017),
are brittle: Belinkov and Bisk (2018) examine the
effect on NMT systems of several kinds of random-
ized perturbations by adding tokens, and Niu et al.
(2020) study subword regularization to increase
robustness to randomized perturbations. Raunak
et al. (2021) argue that memorized training exam-
ples are more likely to hallucinate, and Voita et al.
(2020) examine the contribution of source and tar-
get tokens to errors. Also related, Sun et al. (2020)
suggest that BERT is less robust to misspellings
than other kinds of noise, which can occur natural-
istically or through other errors (e.g., encoding).

While we expect targeted adversarial examples—
those explicitly designed to cause a system to
fail (Jia and Liang, 2017; Ebrahimi et al., 2018)—
to cause serious errors, we focus on the ostensibly
more benign case of in-domain En↔Zh NMT with
minimal deletions. Adding valid words introduces
distractors with which the MT system must cope,
while deleting words more often removes informa-
tion without explicitly introducing lexical distrac-
tors. Both are noise, but the latter is more naturally
framed as requiring recovery from missing infor-
mation, while the former introduces irrelevant and
misleading information. At the character level, this
distinction is less clear, since both adding and re-

1Guerreiro et al. (2022) note that the term “hallucination”
is overloaded and inconsistent; for this reason, we generally
avoid the use of this term here.
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moving characters requires that the model translate
despite unseen input substrings—minimally cor-
rupted inputs. Are minimal word or character cor-
ruptions more harmful to a purely character-based
NMT model? The answer is not obvious.

While most prior work examines western Euro-
pean languages, we examine translation between
Chinese and English, building upon work identify-
ing errors by observing change in BLEU (Papineni
et al., 2002) after perturbation (Lee et al., 2019).
But in contrast this prior work, which adds tokens,
we focus exclusively on single deletions to examine
minimal conditions—i.e., a missing character or
word, as in a typo or corruption—under which se-
vere errors are newly induced. For our purposes, a
severe error leads to a translation in which the orig-
inal meaning is unrecoverable, but there are others,
as well (Vilar et al., 2006). For our purposes, we
use WORD CHANGING to cover these cases.

2 Finding Candidates

We now describe the training of our NMT model,
method for extracting severe error candidates
(enumerations), and the results of this extraction.
For our extraction experiments, we begin by exam-
ining character deletion before repeating the same
experiments with word deletion. All experiments
are done in both directions and for two different
training data sizes (1M and 10M sentences), allow-
ing us to observe the effect of training data size,
translation direction, and deletion type.

2.1 Data and Models

We train character-based En↔Zh models on the
UN Parallel Corpus 1.0 (Ziemski et al., 2016) of
sentence-aligned UN parliamentary documents.

We train two models in each direction with Sock-
eye 2 (Hieber et al., 2020)—the first on the first
1M sentences and the second on 10M—to observe
the effect of training data size on severe errors. We
use the final 8,041 sentences as validation and test
data; the first 2,000 are test data.2

2We use a six-layer transformer with eight attention heads
and a feed-forward network of 2,048 hidden units, trained on
one 16GB Quadro P5000. Batch size is 256 and learning rate
is .0002, reduced by a factor of .9 after 8 unimproving check-
points. Training ceases when validation perplexity quiesces
for 20 checkpoints of 4,000 updates. While BPE has been
shown to have higher BLEU on several datasets, this is not
always the case (Cherry et al., 2018), and it can sometimes
cause anomalies in translation itself (Ataman et al., 2017;
Huck et al., 2017). We want to analyze the effect of deletion
under simple conditions without this added complexity.

      Characters Removed

Figure 1: Zh-En BLEU as function of characters re-
moved on valid sentences with 95% confidence inter-
vals. There is a linear relationship, with average BLEU
converging as more tokens are removed.

2.2 Identifying Error Candidates

On translated test sentences, if sentence-level BLEU

is above 0.5, the translation is considered valid.3

We translate valid sentences with one token miss-
ing, exhaustively trying every possible deleted to-
ken in every sentence. Perturbed sentences’ transla-
tions are called enumerations. If an enumeration’s
sentence-level BLEU is less than .1, it is a candi-
date error, as these precipitous drops are outliers in
the linear decline in BLEU as tokens are removed
(Figure 1). For a more detailed specification of
this process, see Algorithm 1, which is written for
clarity rather than efficiency.4

3 Experiments and Results

We now discuss our experiments and the results of
our enumeration extraction and the errors contained
therein. All results are summarized in Table 2, with
results on the same 2,000 test sentences.

3.1 Error Categorization

We manually categorize errors into four types in our
analysis: WORD CHANGING, INABILITY, MISSING

PARTS, and IRRELEVANT. Examples and descrip-
tions are in Table 1.5 What they have in common is

3We choose this because it is well above average BLEU for
all models, resulting in an enumeration set with high average
BLEU (Table 2), and few perturbed sentences reach this score
(Figure 1).

4Code is hosted on GitHub.
5MISSING PARTS differs from INABILITY in that what

is translated for MISSING PARTS is correct. IRRELEVANT
translations are readable but unrelated to the source, while
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Error Type Example Description

WORD CHANGING Source: Occupational health and occupational risks.
Perturbed Source: Occupational heath and occupational risks
Reference: 职业

zhíyè
occupational

健康
jiànkāng
health

与
yǔ
and

职业
zhíyè
occupational

风险
fēngxiǎn
risks

Translation: 职业
zhíyè
occupational

道德
dàodé
ethics

和
hé
with

职业
zhíyè
occupational

危险
wéixiǎn
dangers

The model only mis-
translates the perturbed
word, leading to a sim-
ple error in which health
has been swapped with
the unrelated word
ethics (which is also
orthographically distant
in the source text).

INABILITY Source : Christian Peace Action Groups.
Perturbed Source: Christian PeaceAction Groups.
Reference: 基督教

jı̄dūjiào
Christian

和平
hépíng
Peace

行动
xíngdòng
Action

组织
zǔzhı̄
Groups

Translation: Christian Peaction Groups

Instead of outputting
Chinese, the model
copies English char-
acters, including the
nonsense word Peac-
tion.

MISSING PARTS Source: Residential institutions: services for children.
Perturbed Source: esidential institutions: services for children.
Reference: 寄宿

jìsù
Residential

机构
jı̄gòu
institutions

：
:
:

为
wèi
for

儿童
értóng
children

提供
tígōng
provide

服务
fúwù
services

Translation: 对
duì
for

儿童
er tóng
children

的
de
‘de’

服务
fúwù
services

Only some of the text
is translated. In this ex-
ample, though the trans-
lation is interpretable,
a substantial portion of
the text is entirely un-
translated.

IRRELEVANT Source: Maternal breastfeeding.
Perturbed Source: aternal breastfeeding.
Reference: 母乳

mǔrǔ
maternal

喂养
wèiyǎng
breastfeeding

Translation: 联合国
liánhéguó
UN

维持
wéichí
keep

和平
hépíng
peace

行动
xíngdòng
operation

经费
jı̄ngfèi
funding

的
de
‘de’

筹措
chóucuò
raise

This output is entirely
hallucinated and has no
apparent relationship to
the input.

Table 1: Examples and descriptions of triggers and error types found in low-scoring enumerations.

that the original meaning is unrecoverable, though
simple WORD CHANGING is not considered a pri-
ori severe in our analysis.

3.2 En-Zh 1M Training Sentence Results
There are 96 candidate severe errors among 14,722
enumerations: ten INABILITY, three IRRELEVANT

and five MISSING PARTS. The rest are WORD

CHANGING. We have 18 errors (.12%). 6

One possible reason for these errors is that the
model has insufficient training data to generalize.
We investigate by training on ten times the data.

INABILITY indicates a failure to generate readable output. It
is possible in principle to have many types of errors in one
bad translation, but we did not observe this.

6We also try removing sentences with English characters
on the Chinese side, leaving 831,941 sentences on which to
train. Translating these yields no INABILITY errors and leaves
BLEU largely unchanged, suggesting that the untranslated
named entities in the training data indeed cause INABILITY.
There are three MISSING PARTS and two IRRELEVANT out of
63 potential hallucinations. Test BLEU is largely unchanged,
and valid BLEU decreases only slightly.

3.3 En-Zh Model Trained on 10M Sentences

We use the same corpus and architecture but use
the first 10M instead of 1M parallel sentences to
train (En-Zh-10M). Validation perplexity is nearly
halved to 6.0 vs. the 1M model’s 11.5 Likewise,
BLEU on the test data increases by .08 to .4 (Ta-
ble 2), as expected. Unexpectedly, BLEU on enu-
merations drops by .16 with more training data,
much more than the .11 drop with 1M training
sentences, suggesting more training data counterin-
tuitively increases sensitivity to minimal character
deletions, despite initial BLEU being higher.

There are 119 candidates among the 30,079 enu-
merations: 33 INABILITY and no MISSING PARTS

or IRRELEVANT, giving a 0.11% probability of
severe errors, approximately the same as the 1M
model (0.12%).

The distribution of error types differs consid-
erably when training on more data: INABILITY

errors triple. We find that this is due to untranslated
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Model BLEU Deletion Valid BLEU
(Valid) Enum. BLEU

(Enum.) ∆BLEU In. MP Irr. Total Errors

En-Zh-1M .32 Char 351 .77 14,722 .66 -.11 (-14.2%) 10 5 3 18 (0.12%)
En-Zh-10M .40 Char 506 .80 30,079 .64 -.16 (-20.0%) 33 0 0 33 (0.11%)
Zh-En-1M .39 Char 602 .73 11,093 .62 -.11 (-15.0%) 0 5 1 6 (0.05%)
Zh-En-10M .42 Char 714 .78 14,031 .67 -.11 (-14.1%) 0 1 0 1 (0.007%)
En-Zh-1M .32 Word 351 .77 2,521 .48 -.29 (-37.6%) 3 0 5 8 (0.32%)
En-Zh-10M .40 Word 506 .80 4,945 .54 -.26 (-32.5%) 7 0 2 9 (0.18%)
Zh-En-1M .39 Word 602 .74 6,666 .54 -.20 (-27.0%) 0 2 6 8 (0.12%)
Zh-En-10M .42 Word 724 .78 8,461 .58 -.20 (-25.6%) 0 1 9 10 (0.11%)

Table 2: Results of candidate extraction for minimal deletion, BLEU for each extracted set of sentences, and error
statistics in models, broken down into INABILITY (In.), MISSING PARTS (MP), and IRRELEVANT (Irr.). Valid
sentences with BLEU > 0.5 are extracted to create minimally perturbed enumerations; from these candidates, bad
translations are extracted based on BLEU decline post-perturbation (∆BLEU). Despite character deletion introducing
nonsense words into the input, word removal causes more of these severe errors. Surprisingly, despite Chinese
characters containing more information, English deletion causes substantially higher decline in BLEU.

words in the training data, all of which are named
entities.7 Since more training data contains more
untranslated named entities, INABILITY is more
likely in models trained on more data. We there-
fore train a model on the data where no English
appears in the references.

3.4 Zh-En Experiments

We examine Zh-En MT under the same character
deletion conditions as En-Zh. Since Chinese char-
acters contain more information than English let-
ters, we expect greater sensitivity to deletions on
Zh-En, but we do not find this (Table 2). Perturb-
ing En-Zh leads to consistently steeper declines in
BLEU, as seen in the valid vs. enumeration scores.

On the Zh-En model trained on 1M sentences,
BLEU drops by .11, from .73 for the 602 sentences
to .62 for the enumerations, whereas when trained
on 10M sentences, we have .67 BLEU on enumer-
ations, which is higher than that of the smaller
model. This is, notably, the opposite of the En-Zh
results, where more data decreased enumeration
BLEU. Both Zh-En experiments decrease by .11
BLEU on enumerations, suggesting that the model
with more training data is similarly robust to this
perturbation as the smaller model, unlike the En-
Zh case, in which the model trained on more data
is more sensitive to character perturbations. As
before, training models with more data decreases
Zh-En errors: on Zh-En model trained on 1M sen-

7By convention, sometimes named entities from English
are not translated into Chinese. Ugawa et al. (2018) attempted
to improve NMT with named entity tags to better handle
compound and ambiguous words, and other previous work
showed that contamination by another language (Khayrallah
and Koehn, 2018) and copies of source sentences in the target
training data can degrade NMT performance.

tences, we have 1 IRRELEVANT and 5 MISSING

PARTS (.05%) errors, while on when trained on10M
sentences, we have 1 MISSING PARTS (.007%). The
remaining errors are WORD CHANGING.

There are no INABILITY errors in the two Zh-En
experiments, which accords with the results from
En-Zh, suggesting that INABILITY is due to the
untranslated words in the training data. Since there
are no untranslated Chinese words on the English
side in the training data, we expect no INABILITY

for a Zh-En model.

3.5 Minimal Word Deletion
We now examine word deletion as a basis of com-
parison. Does the character NMT model better han-
dle the corrupted words caused by minimal char-
acter deletion, or is it more robust to whole word
deletion, which leaves coherent words but removes
more characters?8 We find that, in all cases, delet-
ing words leads to substantially lower BLEU than
deleting characters, and though still rare, confirmed
severe error rates also increase.

For En-Zh trained on 1M sentences, for instance,
BLEU for enumerations drops to 0.48 in comparison
to 0.66 when deleting characters, and these stark
differences in BLEU persist.

On En-Zh trained on 1M sentences, we have 3
INABILITY and 5 IRRELEVANT (.32% severe er-
rors). As expected, error rate increases consider-
ably vs. character removal (.12%).

On En-Zh trained on 10M sentences, we have
7 INABILITY and 2 IRRELEVANT. .18% of 4,945
enumerations are severe errors, also more likely
than with character deletion.

8We use THULAC (Sun et al., 2016) fast for Chinese
tokenization.
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Algorithm 1 Algorithm for Finding Candidates.
We describe the logic in three distinct steps for
clarity, though there is obvious potential for opti-
mization.
1: function RUN(test_sents)
2: valid← find_valid(test_sents)

. Find valid sentences with BLEU ≥ 0.5.
3: generate_enumerations(valid)

. Iterate over every character in every
valid sentence and try removing one
character at a time. These perturbed sen-
tences are enumerations.

4: candidates← find_candidates(valid)
. Keep the enumerations that have

sentence-level BLEU ≤ 0.1. We then
manually identify those with actual se-
vere errors and categorize them.

5: end function
1: function FIND_VALID(test_sentences)
2: for each sentence s in test_sentences do
3: s.bleu← bleu(s)
4: if s.bleu ≥ 0.5 then
5: valid.add(s)
6: end if
7: end for
8: return valid
9: end function
1: function GENERATE_ENUMERATIONS(valid)
2: for each valid sentence s in valid do
3: for each char index i in s do
4: enum← s.delete_char(i)
5: s.enums.add(enum)
6: end for
7: end for
8: end function
1: function FIND_CANDIDATES(valid)
2: for each sentence s in valid do
3: for each enum in s.enums do
4: new_bleu ← bleu(enum)
5: if new_bleu ≤ 0.1 then
6: candidates.add(enum)
7: end if
8: end for
9: end for

10: return candidates
11: end function

As with character deletion, increasing training
size increases INABILITY errors but decreases over-
all error probability. There are no MISSING PARTS

errors when deleting words on En-Zh.

3.6 Summary

We see substantial variation in errors, depending
on the kind of deletion and translation direction,
with INABILITY occurring exclusively on En-Zh.
We expect more BLEU decline on Zh-En, since
Chinese characters contain more semantic content
and source sentences are shorter, but we find the
opposite of this with word deletion. We also find
that while the models are more sensitive to word
deletion in terms of overall BLEU, this does not

lead to drastic increases in severe errors, suggest-
ing that these severe errors are unrelated to typical
MT errors, in line with arguments that hallucina-
tions should be considered separately from the typ-
ical MT errors (Guerreiro et al., 2022), due to the
unique patterns of heuristic-based methods when
attempting to detect them.

4 Conclusion and Future Work

We examine the effect of minimal deletions on
rare but severe MT errors on Chinese and English,
using outlier changes in BLEU after deletion to find
candidates.

We find that the error rate for the model with a
larger dataset is always lower, suggesting more data
can improve models’ performance against severe
errors. Removing single words is more likely to
cause severe errors but less likely to cause MISSING

PARTS in our models, despite character deletion in-
troducing invalid words. On En→Zh, we observe
none when removing words. With the important
caveat that these errors are already rare, limiting
the conclusions we can make, this may suggest that
Zh↔En models are better able to recover when
characters are missing, even if the substrings them-
selves have never been observed, despite not having
been trained with such noise. This is not obvious
for a character-based model. Nor is it obvious that
Zh→En models will be more robust to perturba-
tions than En→Zh, but this is what we find, espe-
cially for words, perhaps because English words
are simply longer. Furthermore, that ∆BLEU is not
predictive of significantly more severe errors sug-
gests that these errors are a different phenomenon
from typical MT shortcomings.

Further research is needed to determine the ef-
fect various variables on robustness with targeted
probes; future work can also determine how find-
ings generalize across more language pairs (po-
tentially typologies), tokenization schemes, and
architectures. Training models with missing source
words may increase robustness. For detection, un-
usually large disparities in length between source
and target could signal INABILITY or MISSING

PARTS errors, and vocabulary or semantic distance
checks could flag bad translations (e.g., WORD

CHANGING, INABILITY). It would also be instruc-
tive to examine the extent to which NMT robustness
to noise mirrors that of humans.

5179



Acknowledgements

We thank John Dougherty and Sorelle Friedler for
their helpful feedback.

References
Duygu Ataman, Matteo Negri, Marco Turchi, and Mar-

cello Federico. 2017. Linguistically motivated vocab-
ulary reduction for neural machine translation from
Turkish to English. The Prague Bulletin of Mathe-
matical Linguistics, 108(1):331.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In Proceedings of ICLR.

Colin Cherry, George F. Foster, Ankur Bapna, Orhan
Firat, and Wolfgang Macherey. 2018. Revisiting
character-based neural machine translation with ca-
pacity and compression. In Proceedings of EMNLP.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018.
On adversarial examples for character-level neural
machine translation. In Proceedings of COLING,
pages 653–663.

Marcello Federico, Matteo Negri, Luisa Bentivogli, and
Marco Turchi. 2014. Assessing the impact of transla-
tion errors on machine translation quality with mixed-
effects models. In Proceedings of EMNLP, pages
1643–1653.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In Proceedings of EMNLP, pages 3719–
3728.

Nuno M Guerreiro, Elena Voita, and André FT Martins.
2022. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine
translation. arXiv preprint arXiv:2208.05309.

Felix Hieber, Tobias Domhan, Michael Denkowski, and
David Vilar. 2020. Sockeye 2: A toolkit for neural
machine translation. In Proceedings of EACL, pages
457–458, Lisboa, Portugal.

Matthias Huck, Simon Riess, and Alexander Fraser.
2017. Target-side word segmentation strategies for
neural machine translation. In Proceedings of the
Second Conference on Machine Translation, pages
56–67.

Robin Jia and Percy Liang. 2017. Adversarial examples
for evaluating reading comprehension systems. In
Proceedings of EMNLP, pages 2021–2031.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages
74–83, Melbourne, Australia. Association for Com-
putational Linguistics.

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fan-
njiang, and David Sussillo. 2019. Hallucinations in
neural machine translation. In Interpretability and
Robustness for Audio, Speech and Language Work-
shop. Proceedings of NeurIPS.

Feifan Liu, Fei Liu, and Yang Liu. 2011. Learning
from Chinese-English parallel data for Chinese tense
prediction. In Proceedings of IJCNLP, pages 1116–
1124.

Xing Niu, Prashant Mathur, Georgiana Dinu, and Yaser
Al-Onaizan. 2020. Evaluating robustness to input
perturbations for neural machine translation. In Pro-
ceedings of ACL, pages 8538–8544.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of
ACL, pages 311–318.

Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt. 2021. The curious case of hallucina-
tions in neural machine translation. Proceedings of
NAACL.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari
Asai, Jia Li, Philip Yu, and Caiming Xiong. 2020.
Adv-BERT: BERT is not robust on misspellings! gen-
erating nature adversarial samples on BERT. arXiv
preprint arXiv:2003.04985.

Maosong Sun, Xinxiong Chen, Kaixu Zhang, Zhipeng
Guo, and Zhiyuan Liu. 2016. THULAC: An efficient
lexical analyzer for Chinese.

Arata Ugawa, Akihiro Tamura, Takashi Ninomiya, Hi-
roya Takamura, and Manabu Okumura. 2018. Neural
machine translation incorporating named entity. In
Proceedings of COLING, pages 3240–3250.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Proceedings of NeurIPS, page
6000–6010.

David Vilar, Jia Xu, Luis Fernando D’Haro, and Her-
mann Ney. 2006. Error analysis of statistical machine
translation output. In Proceedings of LREC, Genoa,
Italy.

Elena Voita, Rico Sennrich, and Ivan Titov. 2020. Ana-
lyzing the source and target contributions to predic-
tions in neural machine translation. arXiv preprint
arXiv:2010.10907.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel corpus
v1.0. In Proceedings of LREC, pages 3530–3534.

5180



Proceedings of the 29th International Conference on Computational Linguistics, pages 5181–5190
October 12–17, 2022.

QUAK: A Synthetic Quality Estimation Dataset for Korean-English
Neural Machine Translation

Sugyeong Eo1, Chanjun Park1,2, Hyeonseok Moon1, Jaehyung Seo1,
Gyeongmin Kim1, Jungseob Lee1, Heuiseok Lim1∗

1Korea University, 2Upstage
{djtnrud,bcj1210,glee889,seojae777,totoro4007,omanma1928,limhseok}@korea.ac.kr

chanjun.park@upstage.ai

Abstract

With the recent advance in neural machine
translation demonstrating its importance, re-
search on quality estimation (QE) has been
steadily progressing. QE aims to automatically
predict the quality of machine translation (MT)
output without reference sentences. Despite its
high utility in the real world, there remain sev-
eral limitations concerning manual QE data cre-
ation: inevitably incurred non-trivial costs due
to the need for translation experts, and issues
with data scaling and language expansion. To
tackle these limitations, we present QUAK, a
Korean-English synthetic QE dataset generated
in a fully automatic manner. This consists of
three sub-QUAK datasets QUAK-M, QUAK-P,
and QUAK-H, produced through three strate-
gies that are relatively free from language con-
straints. Since each strategy requires no human
effort, which facilitates scalability, we scale our
data up to 1.58M for QUAK-P, H and 6.58M for
QUAK-M. As an experiment, we quantitatively
analyze word-level QE results in various ways
while performing statistical analysis. Moreover,
we show that datasets scaled in an efficient way
also contribute to performance improvements
by observing meaningful performance gains in
QUAK-M, P when adding data up to 1.58M.

1 Introduction

Quality estimation (QE) is the task of predicting
the translation quality as a continuous value or dis-
crete tags by referring to a source sentence and its
machine translation (MT) output (Blatz et al., 2004;
Specia et al., 2009, 2013). Since quality annotations
on MT output are applied in various ways accord-
ing to the granularity levels (word, sentence, docu-
ment, etc.), QE research has been constantly devel-
oping in recent years (Kim et al., 2017; Fomicheva
et al., 2020a; Alva-Manchego et al., 2021; Ding
et al., 2021b).

∗∗ Corresponding Author

MT output Given that the Chinese authorities do not deny it , it is highly likely .
pseudo-PE Given that the Chinese authorities do not deny it , chances are high .

MT output tags OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK
OK OK OK OK OK BAD OK BAD OK BAD OK BAD OK OK OK

Source 중국당국이부인하지않는것으로볼때가능성이높다 .
Source tags OK OK OK OK OK OK OK BAD BAD OK
Alignments 0-3 1-4 2-7 3-5 3-6 4-8 5-8 6-0 7-13 8-11 8-12 9-14

Edits (1) Insertion (‘ ’→ it) (2) Substitution (chances→is)
(3) Substitution (are→highly) (4) Substitution (high→likely)

Table 1: An example of QUAK dataset. For the correct
translation, one insertion and three substitutions are
required for the MT output. Although not included in
this example, if there is a missing word, a BAD tag is
attached to the location of the corresponding gap token.
We indicate the alignment information (Alignments) in
the form of {source index}-{aligned MT output index}.

Owing to this importance, datasets for training
QE systems are being released continuously. How-
ever, we highlight three limitations for the exist-
ing QE dataset. (1) First, non-trivial human labor
and time cost are required when constructing data.
Source sentences, MT output, and quality anno-
tations are dataset prerequisites for QE learning,
among which translation experts proficient in a
language pair are essential in the labeling process.
Employing experts is far more difficult especially
in low-resource languages.

(2) As an extension of the first limitation, man-
ual QE datasets are restricted in size regardless
of the data resource. The meticulous work of cre-
ating human post-edited sentences with minimal
modifications slows down the construction time,
which makes it difficult to scale. Most released QE
datasets, including those from the Conference on
Machine Translation (WMT) are composed of data
less than 10K in size (Fujita and Sumita, 2017;
Fomicheva et al., 2020b). This is a much rarer
amount compared with the large volumes of data
used by studies on GPT 3 (Brown et al., 2020) in
terms of data-hungry NLP.

(3) Available QE language pairs are limited. Al-
though the released WMT QE dataset considers
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high, medium, and low resources (Fomicheva et al.,
2020c), it still covers only a much smaller number
of language pairs compared with parallel corpora.
Since data construction in opposite directions for a
language pair requires an entirely different human
post-edited sentence, numerous language pairs and
directions are yet to be utilized.

To mitigate the above limitations, we introduce
QUAK 1, a large-scale Korean-English synthetic
QE dataset. This is built as an automated process
by taking the Eo et al. (2021a) approach and aims
to train word-level QE. Namely, the data genera-
tion process does not demand human post-editing,
allowing data to be built at scale than manual meth-
ods. In addition, language extension is relatively
free as it is language-agnostic within a language
pair in which Google translation is possible and a
corresponding corpus exists. Therefore, we adopt
Korean-English, one of the morphologically rich
languages rarely addressed in the QE field.

For constructing QUAK, A monolingual or paral-
lel corpus and an MT model are required. QUAK is
divided into three sub-QUAK datasets according to
data sources: (1) QUAK-Monolingual (QUAK-M)
leveraging a monolingual corpus of the target lan-
guage, (2) QUAK-Parallel (QUAK-P) leveraging a
parallel corpus, and (3) QUAK-Hybrid (QUAK-H)
jointly leveraging monolingual and parallel corpus.
The final QUAK training data size in QUAK-P and
QUAK-H is 1.58M and 6.58M in QUAK-M, which
is about 225 times and 940 times larger than the 7K
size of the WMT official dataset (Fomicheva et al.,
2020b).

Considering that QUAK is synthetic data, we
scrutinize the dataset with statistics and a quan-
titative analysis to provide reliability and quality
assurance. In the quantitative analysis, in particular,
we first compare the word-level QE model fine-
tuning performance based on multiple multilingual
pre-trained language models (mPLMs) using only
100K pieces from each sub-QUAK. Thereafter, we
use the best performing model to incrementally
scale the data size and track performance fluctua-
tions.

As a result of the experiment, the XLM-
RoBERTa (XLM-R) (Conneau et al., 2019) large
model is the most competitive, showing a differ-
ence of up to 0.12 MCC compared to other mPLMs
such as multilingual BART (mBART) (Liu et al.,

1Our QUAK dataset is publicly available at https://
bit.ly/3dqe2KE.

2020), XLM (Lample and Conneau, 2019). Fur-
thermore, scaling the data to 1.58M tends to im-
prove overall model performance. Based on the MT
output-side, QUAK-M obtains performance gain
of maximum 0.042, QUAK-P 0.037, and QUAK-H
0.029 MCC. Our contributions are as follows:

• To minimize the exorbitant human-demand
and time cost of QE, we construct and release
the QUAK dataset in a fully automatic man-
ner, exploiting three efficient data generation
strategies.

• To address the size limitation, we expand
the synthetic data to a large-scale. We scale
QUAK up to 940 times compared with the
WMT official dataset.

• As the language pair for QUAK, we choose
Korean-English, a low-resource language pair
that has never been released before. Language
coverages can be extended if only the transla-
tion model and its corpus are satisfied in the
generation process.

• We analyze the QE fine-tuning performance
according to various mPLMs, and analyze the
results of progressively expanding the data for
the best performing QE model.

2 Related Work

As QE research has increasingly been introduced
recently, human-labeled QE datasets are also being
released (Specia et al., 2010; Fujita and Sumita,
2017; Fomicheva et al., 2020c,b). However, data
construction processes have several limitations in
terms of time cost, data size, and available language
pairs.

Many studies have been conducted continuously
to handle these limitations. To name a few, Tuan
et al. (2021) propose a synthetic data construction
method that utilizes a parallel corpus to alleviate
the cost of human labor and time cost. In such
study, translation errors committed through a lan-
guage model or an NMT system are injected to
parallel sentences. A similar method of generating
synthetic data through parallel corpus has also been
leveraged in automatic post-editing research (Negri
et al., 2018).

To address data size restrictions caused by time
cost in human annotations, attempts have been
made using data augmentation (Lee, 2020; Wang
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Figure 1: Distribution of the data size according to the TER range for each sub-QUAK. We present the top three
scopes with the largest amount in bold lines.

et al., 2020; Gajbhiye et al., 2021; Ding et al.,
2021a) and unsupervised learning (Etchegoyhen
et al., 2018). In the study of Fomicheva et al.
(2020c), unsupervised quality indicators based on
uncertainty quantification are exploited to train the
QE model.

To tackle constraints about available language
pairs, cross-lingual zero-shot QE approaches are
constantly studied (Sun et al., 2020; Eo et al.,
2021b). Following this trend, WMT21 includes
zero-shot to their main interests, evaluating the
competence of a QE model on unseen languages
(Specia et al., 2021). This study addresses all of the
respective factors and presents QUAK.

3 QUAK

QUAK is a QE dataset for evaluating the quality of
Korean-English MT output, and includes three sub-
QUAKs according to the data selection. Each sub-
QUAK comprises (1) a source sentence, (2) its MT
output, and (3) OK/BAD quality annotation. Source
sentence and its MT output are utilized as model
input, allowing the model to classify the quality of
these sentences into OK/BAD tags on a token basis.
Quality annotations separately exists for source
sentence and MT output. When the model predicts
the translation quality, these are used as a ground-
truth for evaluation. With primary consideration of
efficiency and effectiveness, we construct data in
a fully-automatic manner, exploited method by Eo
et al. (2021a). We select existing monolingual or
parallel corpora for our data sources (detailed in
Section 3.1) and use them to each data production
process (detailed in Section 3.2).

3.1 Dataset Sources

QUAK is divided into three sub-QUAKs. The raw
dataset requirements to build each sub-QUAK are
as follows: QUAK-M requires a target language

monolingual corpus, QUAK-P requires a parallel
corpus, QUAK-H requires both corpora.

For a monolingual corpus, we adopt English
Wikipedia, which consists of documents on a wide
range of topics. We use it to handle the various
translation errors that the MT model may commit
to the diverse entities and expressions in Wikipedia.
We randomly extract 5M sentences to generate
QUAK-M. For a parallel corpus, we leverage AI
hub parallel corpus released by Korea National In-
formation Society Agency2. AI hub corpus also
covers various fields such as news, journals, law,
and culture, and is produced with high quality
through human inspection. The parallel corpus con-
tains 1,602,002 pairs.

For fair comparison with other sub-QUAKs, in
the case of QUAK-M, we combine both AI hub and
Wikipedia source. Namely, we configure 1.58M
of QUAK-M using the target-side text of the Ai
hub and the remaining 5M using Wikipedia. The
validation and test set is configured by randomly
selecting 12K pieces of AI hub data.

3.2 Dataset Construction Process

QUAK-M For QUAK-M, we utilize a target lan-
guage monolingual corpus. With the text, we first
conduct a round-trip translation. We translate the
English corpus into Korean sentences, where we
denote them as pseudo-source sentences. We once
again forward-translate the pseudo-source to gener-
ate the MT output.

When pseudo-source and its MT output have
been created, quality annotations are tagged. Prior
to label annotation, we pre-define target language
monolingual corpus to be a flawless sentence.
Based on this assumption, we consider this text
as a pseudo-post-edited (pseudo-PE) sentences for
which correction has been completed. By com-

2https://aihub.or.kr/

5183



paring the MT output and pseudo-PE in a token-
wise fashion, we measure the minimum substi-
tution/deletion/insertion errors needed based on
edit distance. The OK/BAD tag indicating cor-
rect/wrong translation for each token in the MT
output is further annotated. If the number of MT
output tokens in a sentence is N , the number of
OK/BAD tags for this is 2N + 1 because gap to-
kens are attached to the front and back of each
MT output token. If there are missing words, BAD
tags are added to the position of the corresponding
gap token, otherwise OK tags are labeled. Apart
from tagging the MT outputs, source tags are also
annotated according to the binary tags of the MT
outputs based on word alignment information. The
tag for the source sentence excludes the gap token
labeling.

QUAK-P The parallel corpus is leveraged in the
QUAK-P configuration. This has higher connectiv-
ity between the source and target sides and has an
intact source sentence compared with the pseudo-
source of QUAK-M. To obtain QUAK-P, we pro-
ceed a one-way translation from the source to target
language. In this case, source-side difference from
QUAK-M leads to various translation results for
the MT output. Similar to the QUAK-M generation
process, we consider the target-side text of the par-
allel corpus as a pseudo-PE. With source sentences,
its MT output, and pseudo-PE, we label the qual-
ity of the translation results. After calculating the
minimum edit operation between the MT output
and the pseudo-PE, BAD tags are attached to the
token where the modification occurred. For quality
annotations on source sentences, the same tags are
attached to the MT output index and the aligned
source index.

QUAK-H In QUAK-H, we combine the above
two previous sub-QUAKs to generate various trans-
lation results with a limited corpus. We compose
the source sentence and MT output by selectively
utilizing two approaches proposed in QUAK-P and
QUAK-M, respectively. Namely, we use the source-
side text and pseudo-PE text from QUAK-P, and
the MT output-side text from QUAK-M. By deal-
ing with two different MT outputs with the same
source-side text in QUAK-P, we induce the QE
model to learn by referring to various combina-
tions of the source sentence and MT output. For
the next step, we tag labels for quality annotation
as mentioned above.

Final constructed QUAK dataset After three
construction processes, we obtain a total of
1,578,002 training examples for QUAK-P and
QUAK-H, and 6,578,002 training examples for
QUAK-M. We present an example of QUAK in
Table 1. MT output for a source sentence “중국
당국이 부인하지 않는 것으로 볼 때 가능성이

높다 .” is mistranslated into “Given that the
Chinese authorities do not deny
it, it is highly likely .”. The MT
output should be corrected into “chances are
high”. This should perform a four minimum
correction, which will result in a four BAD tags
of the entire MT output tag. In addition, based
on the word alignment “가능성(7)–likely(13),
높다(8)–is(11),높다(8)–highly(12)”, the BAD
tag index of the MT output is also reflected in the
source-side index.

4 Experimental Setup

4.1 Experimental Design

In this section, we present the statistical and quanti-
tative analysis done on the QUAK. In the statistical
analysis, we measure the sentence length, token
length, and average token length per sentence for
each sub-QUAK. We also calculate the mean, me-
dian, standard deviation, and variance of the trans-
lation edit rate (TER) score. Regarding tags, we
count the total number of OK and BAD tags.

During the quantitative analysis, we experi-
ment three word-level QE fine-tuning to efficiently
achieve high performance and analyze large-scale
QUAK data. In the first experiment, we fine-tune
multiple mPLMs with 100K pieces of QUAK-M,
P, H to explore which model performs better for
QUAK.

Thereafter, we inspect the impact on the amount
of QUAK. We fine-tune the data for the previous
best performing model, scaling each sub-QUAK
exponentially from 100K to 1.58M. As mentioned
earlier, one consideration is that QUAK-M (1.58M)
consists of target-side text in a parallel corpus for
proper comparison with the data generated by other
strategies.

In the last experiment, we gradually increase the
size of QUAK-M. Our result includes the corre-
sponding performance while extending from the
previous size of 1.58M to 6.58M in 500K incre-
ments.
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Attributes Google Amazon Microsoft Systran

# of Source Sentences 12,000 12,000 12,000 12,000
# of MT Output 12,000 12,000 12,000 12,000
# of pseudo-PE 12,000 12,000 12,000 12,000

# of Source Tokens 199,413 199,413 199,413 199,413
# of MT Output Tokens 340,264 303,535 325,973 346,030
# of pseudo-PE Tokens 342,385 342,385 342,385 342,385

Average Token Per Source Sentence 16.62 16.62 16.62 16.62
Average Token Per MT Output 28.36 25.29 27.16 28.84
Average Token Per pseudo-PE 28.53 28.53 28.53 28.53

Mean TER 0.57 0.63 0.63 0.46
Median TER 0.57 0.64 0.64 0.44

STD TER 0.23 0.21 0.21 0.26
Variance TER 0.05 0.04 0.05 0.07

# Source OK tags 112,647 94,562 97,825 134,503
# Source BAD tags 86,766 104,851 101,588 64,910

# MT Output OK tags 510,085 429,775 465,441 560,221
# MT Output BAD tags 182,443 189,295 198,505 143,839

Table 2: Statistics for the four test sets. We denote the
target-side text of corpus as pseudo-PE.

4.2 Experimental Settings
Models In all experiments, we exploit the Micro-
TransQuest (Ranasinghe et al., 2021) framework.
While it only uses an XLM-R model, we utilize
additional mPLMs: In the QE model training, we
leverage XLM, XLM-R, and mBART.

From Huggingface (Wolf et al., 2019), we load
five mPLMs that have learned both Korean and
English: xlm-mlm-100-1280, xlm-roberta-base,
xlm-roberta-large, facebook/mbart-large-cc25, and
facebook/mbart-large-50.

Datasets For the data construction, the follow-
ing tools are used in this study. As monolingual
data we dump Wikipedia and use Wikiextractor3

to extract plain text. We train a Korean-English
and English-Korean MT model using the fairseq
(Ott et al., 2019) package with SentencePiece sub-
word tokenization (Kudo and Richardson, 2018) to
translate sentences. We train the word alignment be-
tween the source and target text using the FastAlign
(Dyer et al., 2013) toolkit and measure the edit dis-
tance using Tercom software (Snover et al., 2006).
Tag annotation is executed using the Unbabel cor-
pus builder4. We adopt Mosesdecoder (Koehn et al.,
2007) for additional data preprocessing.

Evaluation For constructing the test sets, we uti-
lize a publicly available external machine translator
to ensure the reliability and objectivity of the QE re-
sults. Four representative commercialized machine
translators are adopted, including Google5, Ama-

3https://github.com/attardi/
wikiextractor

4https://github.com/Unbabel/
word-level-qe-corpus-builder

5https://translate.google.co.kr/?hl=en

zon6, Microsoft7, and Systran8. Through these, the
test sets are established in the same manner as the
strategy used in QUAK-P. The test sets are based
on 12K sentence pairs randomly extracted from the
Ai hub parallel corpus without overlapping with the
training and validation sets. Matthews correlation
coefficient (MCC) (Chicco and Jurman, 2020) is
used as a metric for evaluating QE model perfor-
mance.

Table 2 provides the test set statistics. When ana-
lyzing the number of OK/BAD tags, the results vary
depending on the translator even when the same
source sentence is used. Systran differs the most
compared with other test sets: there are 143,839
MT output BAD tags with an average TER differ-
ence of 0.17 with the highest value of 0.63.

5 Analysis and Results

5.1 Data statistics and analysis

We report the statistics for QUAK in Table 3.
QUAK-M additionally uses the English Wikipedia
corpus consisting of 5M samples, and this yields
different data sizes in contrast to other sub-QUAKs.
Comparing training set of QUAK-M with other
sub-QUAKs, the most dominant part is the relation
between the average token length and TER score.
QUAK-P and QUAK-H show lower TER scores
even though their average tokens per sentence are
relatively higher. We interpret this result as a case
where the translation works well even if the av-
erage sentence length is long. As shown in Fig-
ure 1, comparing data sizes by TER range is also
consistent with this statistic. The data is mainly
concentrated in the 0.5–0.8 range for QUAK-M,
0.3–0.6 for QUAK-P, and 0.2–0.5 for QUAK-H.
From this, we speculate that Wikipedia may have
more noise in the text itself than the Ai hub, and
that a large number of errors are committed during
the translation process.

Next, for QUAK-P and QUAK-H, the number
of BAD tags of QUAK-P is greater than that of
QUAK-H in the MT output. It is noteworthy that
the MT output of QUAK-H is created based on a
round-trip translation, which is identical to that of
QUAK-M. These indicate that the pseudo-source
generated by the target language text of Ai hub is
adequately restored to the original sentence when

6https://aws.amazon.com/translate/
7https://www.microsoft.com/en-us/

translator/
8https://translate.systran.net/
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Train Valid

Attributes QUAK-M QUAK-P QUAK-H QUAK-M QUAK-P QUAK-H

# of Source Sentences 6,578,002 1,578,002 1,578,002 12,000 12,000 12,000
# of MT Output 6,578,002 1,578,002 1,578,002 12,000 12,000 12,000
# of pseudo-PE 6,578,002 1,578,002 1,578,002 12,000 12,000 12,000

# of Source Tokens 92,848,776 25,149,673 25,149,673 209,894 199,624 199,624
# of MT Output Tokens 139,620,328 42,051,001 39,850,492 318,959 340,855 318,921
# of pseudo-PE Tokens 148,922,086 42,103,966 42,103,966 342,021 341,996 341,996

Average Token Per Source Sentence 14.12 15.94 15.94 17.50 16.64 16.64
Average Token Per MT Output 21.23 26.65 25.25 26.58 28.40 26.58
Average Token Per pseudo-PE 22.64 26.68 26.68 28.50 28.50 28.50

Mean TER 0.61 0.50 0.42 0.45 0.57 0.45
Median TER 0.63 0.50 0.40 0.44 0.56 0.44

STD TER 0.24 0.25 0.23 0.21 0.23 0.21
Variance TER 0.06 0.06 0.05 0.04 0.05 0.04

# Source OK tags 50,421,860 15,600,416 16,269,784 84,873 113,192 121,700
# Source BAD tags 42,426,916 9,549,257 8,879,889 82,343 86,432 77,924

# MT Output OK tags 204,721,896 65,852,185 65,033,087 339,304 511,542 506,437
# MT Output BAD tags 81,096,762 19,827,819 16,245,899 157,308 182,168 143,405

Table 3: Statistics for three sub-QUAK training and validation set

translated back, even if it is different from the cor-
rectly translated source-side of the parallel corpus.

5.2 Experimental Results

Performance Comparison by mPLMs We pro-
vide the fine-tuning results for mPLMs by selecting
only 100K of the datasets in Table 4. From the ex-
perimental results, XLM-R-large model shows the
best performance. Based on the MT output-side
MCC (Target MCC) of the Google test set, XLM-
R-large reports 0.366, 0.401, and 0.324 for QUAK-
M,P,H, and outperforms the XLM-R-base model
by 0.023, 0.024, and 0.004, respectively. For the
source-side MCC (Source MCC), XLM-R-large
also achieves 0.285, 0.331, and 0.271 for QUAK-
M,P,H, which are the best competencies compared
to other models.

In all test sets, except for Systran, the Target
MCC and Source MCC of XLM-R-large performed
the best in all sub-QUAK datasets. XLM-R-large
differs from XLM-R-base in terms of the number
of parameters; the former contains 550M, whereas
the latter has 270M. Based on the Target MCC
of the Amazon test set, XLM-R-large generally
reports a higher performance than XLM-R-base,
achieving 0.035, 0.032, and 0.022 higher values
for QUAK-M, P, and H, respectively. These re-
sults demonstrate that the number of parameters in
mPLMs poses a positive effect on the QE model
learning.

Regarding mBART and mBART50, the latter
outperforms the former in general. This implies
the substantial impact of the number of pre-trained

Dataset XLM-R
-base

XLM-R
-large mBART mBART50 XLM

Google

Target MCC
QUAK-M 0.343 0.366 0.340 0.343 0.296
QUAK-P 0.377 0.401 0.376 0.382 0.339
QUAK-H 0.320 0.324 0.306 0.314 0.292

Source MCC
QUAK-M 0.279 0.285 0.275 0.276 0.231
QUAK-P 0.315 0.331 0.309 0.320 0.285
QUAK-H 0.266 0.271 0.258 0.267 0.249

Amazon

Target MCC
QUAK-M 0.389 0.424 0.388 0.385 0.328
QUAK-P 0.408 0.440 0.405 0.410 0.362
QUAK-H 0.362 0.384 0.264 0.359 0.322

Source MCC
QUAK-M 0.324 0.342 0.320 0.323 0.254
QUAK-P 0.353 0.377 0.341 0.354 0.304
QUAK-H 0.305 0.323 0.213 0.310 0.276

Microsoft

Target MCC
QUAK-M 0.380 0.415 0.382 0.380 0.315
QUAK-P 0.401 0.433 0.404 0.406 0.346
QUAK-H 0.353 0.372 0.253 0.355 0.316

Source MCC
QUAK-M 0.307 0.329 0.303 0.307 0.244
QUAK-P 0.338 0.363 0.327 0.338 0.287
QUAK-H 0.290 0.310 0.193 0.299 0.271

Systran

Target MCC
QUAK-M 0.261 0.277 0.255 0.253 0.206
QUAK-P 0.298 0.311 0.289 0.296 0.261
QUAK-H 0.226 0.217 0.122 0.221 0.196

Source MCC
QUAK-M 0.224 0.223 0.218 0.221 0.161
QUAK-P 0.247 0.250 0.228 0.242 0.210
QUAK-H 0.179 0.174 0.076 0.176 0.159

Table 4: Comparison of word-level Korean-English
QE performance by mPLMs fine-tuned with each sub-
QUAK dataset
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Figure 2: MCC variation of QUAK according to data scaling

Google Amazon Microsoft Systran

Data
Size

Target
MCC

Source
MCC

Target
MCC

Source
MCC

Target
MCC

Source
MCC

Target
MCC

Source
MCC

1.58M 0.397 0.324 0.459 0.386 0.454 0.376 0.319 0.273

2.08M 0.386 0.319 0.441 0.371 0.436 0.365 0.317 0.272

2.58M 0.384 0.316 0.442 0.372 0.436 0.364 0.308 0.264

3.08M 0.385 0.316 0.442 0.375 0.435 0.365 0.313 0.272

3.58M 0.381 0.314 0.443 0.374 0.437 0.365 0.311 0.269

4.08M 0.382 0.313 0.438 0.369 0.434 0.359 0.310 0.270

4.58M 0.376 0.310 0.433 0.368 0.426 0.357 0.307 0.267

5.08M 0.378 0.308 0.436 0.366 0.432 0.362 0.308 0.269

5.58M 0.377 0.319 0.439 0.374 0.432 0.364 0.307 0.274

6.08M 0.351 0.286 0.400 0.335 0.398 0.334 0.296 0.261

6.58M 0.387 0.325 0.451 0.379 0.441 0.369 0.313 0.274

Table 5: Performance variation of QUAK-M according
to data scaling

languages. It is noteworthy that mBART50 is pre-
trained for 50 languages, enabling more multilin-
gual support than mBART, which is learned on 25
languages. As Korean is regarded as a relatively
low-resource language and especially utilizes only
100K data, we infer that mBART50 has more in-
fluence on competence gain from high-resource
languages than mBART.

Performance Comparison for Scaling The pre-
viously obtained results show that the XLM-R-
large model is superior to all 100K sub-QUAK
datasets. For the next experiment, we explore the
performance fluctuation by constantly increasing
the size of the QUAK dataset to XLM-R-large. Fig-
ure 2 illustrates the variation of the performance
depending on the corpus size. The experimental
results demonstrate that the performance variation
tends to be similar for all test sets.

When we exponentially scale the data for
the three sub-QUAKs, QUAK-M had a notable
achievement. Furthermore, QUAK-P showed a
steady increase, except for the case of 900K. We
confirm that data scaling is one factor in increas-
ing the performance of the QE model. However,
in the case of QUAK-H, there is no clear trend in
terms of data expansion. We argue that although the
MT output is applied owing to various translations
for source sentences, the weakened connectivity
between two sentences might impede learning.

Performance of QUAK-M (6.58M) QUAK-M
requires only monolingual corpus in the data build-
ing process. This allows data size expansion over
other sub-QUAKs that utilize a parallel corpus. Ex-
ploiting these, we further extend the Wikipedia
corpus by 5M, comprising a total of 6.58M. We
gradually add data in 500K increments to check the
performance fluctuation.

The experimental result is presented in Table 5.
The target MCC performance on the Google test
set with 1.58M is lower by -0.016 at 3.58M(+2M)
and -0.020 at 5.58M(+4M). The performance of
Amazon, Microsoft, and Systran also degraded by
-0.016, -0.017, -0.008 at 3.58M and -0.02, -0.022,
and -0.012 at 5.58M compared to 1.58M, respec-
tively. We observe that the overall QE model per-
formance has deteriorated as more data is added.

We interpret this result in terms of data. QUAK-
H, P, and the test sets are extracted from the Ai
hub dataset. As observed in the previous statistics
(Table 3), this resulted in a difference in terms of
average TER in QUAK-M, which also contains
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TER Range

Data Size 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

QUAK-P

100K 0.214 0.323 0.361 0.398 0.410 0.382 0.374 0.338 0.308 0.262

1.58M 0.209 0.348 0.386 0.420 0.438 0.413 0.395 0.377 0.325 0.279

Diff -0.005 0.025 0.025 0.022 0.028 0.031 0.021 0.039 0.017 0.017

QUAK-H

100K 0.206 0.312 0.335 0.378 0.375 0.337 0.312 0.263 0.237 0.172

1.58M 0.192 0.316 0.330 0.366 0.374 0.337 0.309 0.275 0.249 0.192

Diff -0.014 0.004 -0.005 -0.012 -0.001 0.00 -0.003 0.012 0.012 0.020

QUAK-M (1.58M)

100K 0.210 0.295 0.342 0.380 0.393 0.361 0.339 0.303 0.269 0.223

1.58M 0.215 0.329 0.361 0.398 0.413 0.381 0.366 0.340 0.312 0.265

Diff 0.005 0.034 0.019 0.018 0.020 0.020 0.027 0.037 0.043 0.042

QUAK-M (6.58M)

100K 0.210 0.295 0.342 0.380 0.393 0.361 0.339 0.303 0.269 0.223

6.58M 0.184 0.308 0.352 0.400 0.399 0.377 0.364 0.339 0.298 0.261

Diff -0.026 0.013 0.010 0.020 0.006 0.016 0.025 0.036 0.029 0.038

Table 6: Target MCC performance difference (Diff) by TER range for Google test set. When we add data, we under-
line the three cases with the worst performance, and bold the three cases with the most performance improvement.

Wikipedia. QUAK-M is mainly distributed in a
range with a high TER score, while QUAK-H,
QUAK-P, and the test set are included in relatively
low scores. This indicates that the difference from
the test set in terms of data distribution also affected
the performance of QUAK-M.

Performance Comparison by TER Range In
addition to the previous results, we divide the
Google test set into units of 0.1 TER for more
precise comparison. We then verify the changes
in performance with the TER range. The experi-
mental result is present in Table 6, from which we
note that the performance on QUAK-M (6.58M)
shows an overall improvement compared with
those on QUAK-M (100K), and mainly improves
between 0.7–1.0. The highest increase for QUAK-
M (1.58M) is also seen between 0.7–1.0. As shown
in Figure 1, QUAK-M is mainly distributed in the
high TER range. Although both QUAK-M (1.58M)
and QUAK-M (6.58M) show performance gains
over 100K, QUAK-M (6.58M) reports that the per-
formance improvement is not significant at the rel-
atively low TER. We analyze that this in turn, leads
to performance degradation of the integrated score
compared with 1.58M. This is supported by the
fact that even in the TER range of 0.1–0.2, the
performance fluctuation of QUAK-M (6.58M) is
remarkably lower than that of QUAK-M (1.58M).

In QUAK-P, the amount of data is the lowest at
0.0–0.2 and 0.8–1.0. Therefore, when adding data,

the performance variation also shows a lower in-
crease compared with other scores in the range of
0.0–0.1 and 0.8–1.0. From the above results, we
conclude that the amount of data can be a contribut-
ing factor for performance improvement.

6 Conclusion

We expose three drawbacks in terms of manual
QE data construction: human labor and time cost,
resulting in limited amount of data and limited lan-
guage pairs. Taking this into account, we present
QUAK, a synthetic Korean-English QE dataset for
word-level QE. We automatically generated three
sub-QUAKs with three strategies and quantitatively
analyzed the trained QE models using them. First,
QUAK-P is generated based on parallel corpus and
induced the best performance among three sub-
QUAKs. Along with QUAK-P, an increase in the
data size of QUAK-M had a positive effect on per-
formance gain. However, in further expansion us-
ing Wikipedia, the improvement in the low TER
range was poor, so the overall performance fell.
The QE model trained with QUAK-H did not show
a steady performance gain.

This dataset was built in a fully automated man-
ner, eliminating human intervention while increas-
ing reusability and scalability. The QUAK dataset
generation process is language-agnostic if there is
an MT model and corresponding corpus (monolin-
gual or parallel).
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Abstract

We consider two problems of NMT domain
adaptation using meta-learning. First, we want
to reach domain robustness, i.e., we want to
reach high quality on both domains seen in the
training data and unseen domains. Second, we
want our systems to be adaptive, i.e., making it
possible to finetune systems with just hundreds
of in-domain parallel sentences. We study the
domain adaptability of meta-learning when im-
proving the domain robustness of the model. In
this paper, we propose a novel approach, RML-
NMT (Robust Meta-Learning Framework for
Neural Machine Translation Domain Adapta-
tion), which improves the robustness of ex-
isting meta-learning models. More specifi-
cally, we show how to use a domain classi-
fier in curriculum learning and we integrate the
word-level domain mixing model into the meta-
learning framework with a balanced sampling
strategy. Experiments on English→German
and English→Chinese translation show that
RMLNMT improves in terms of both domain
robustness and domain adaptability in seen and
unseen domains1.

1 Introduction

The success of Neural Machine Translation (NMT;
Bahdanau et al., 2015; Vaswani et al., 2017) heav-
ily relies on large-scale high-quality parallel data,
which is difficult to obtain in some domains. We
study two major problems in NMT domain adapta-
tion. First, models should work well on both seen
domains (the domains in the training data) and un-
seen domains (domains which do not occur in the
training data). We call this property domain ro-
bustness. Second, with just hundreds of in-domain
sentences, we want to be able to quickly adapt to a
new domain. We call this property domain adapt-
ability. Previous work on NMT domain adaptation
has usually focused on only one aspect of domain

1Our source code is available at https://github.com/lavine-
lmu/RMLNMT

adaptation at the expense of the other one, and our
motivation is to consider both of the two properties.

There are a few works attempting to solve do-
main adaptability. The most basic approach is
fine-tuning, in which an out-of-domain model is
continually trained on in-domain data (Freitag and
Al-Onaizan, 2016; Dakwale and Monz, 2017). Al-
though fine-tuning is effective, it can suffer from
so-called catastrophic forgetting (French, 1999),
resulting in deteriorated model performance in gen-
eral domains (Thompson et al., 2019). Another
efficient method is Meta-Learning (Hospedales
et al., 2021), which trains models which can be
later rapidly adapted to new scenarios using only
a small amount of data. It works for many natural
language processing (NLP) tasks (Gu et al., 2018;
Qian and Yu, 2019; Yu et al., 2020; Bansal et al.,
2020; Wang et al., 2021; Du et al., 2021), espe-
cially in low-resource scenarios (Dou et al., 2019;
Yin, 2020). As a result, meta-learning is often used
for NMT domain adaptation. For example, Sharaf
et al. (2020) and Li et al. (2020) fast adapt NMT
models to new domains with meta-learning using a
small amount of training data. Zhan et al. (2021)
improve meta-learning-based NMT models with a
curriculum-based (Bengio et al., 2009) sampling
strategy. Meta-learning works well for adapting
to new domains, however, previous work tends to
neglect the problem of robustness towards domains
unseen at training time.

Müller et al. (2020) defined the concept of do-
main robustness and propose to improve the do-
main robustness by subword regularization (Kudo,
2018), defensive distillation (Papernot et al., 2016),
reconstruction (Tu et al., 2017) and neural noisy
channel reranking (Yee et al., 2019). Jiang et al.
(2020) proposed using individual modules for each
domain with a word-level domain mixing strategy,
which they showed has domain robustness on seen
domains. The work on domain robustness, how-
ever, tends to neglect the adaptability of the models
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for new domains.
To address both domain adaptability and do-

main robustness at the same time, we propose
RMLNMT (robust meta-learning NMT), a more
robust meta-learning-based NMT domain adapta-
tion framework. We first train a word-level domain
mixing model to improve the robustness on seen
domains, and show that, surprisingly, this improves
robustness on unseen domains as well. Then, we
train a domain classifier based on BERT (Devlin
et al., 2019) to score training sentences; the score
measures similarity between out-of-domain and
general-domain sentences. This score is used to de-
termine a curriculum to improve the meta-learning
process. Finally, we improve domain adaptabil-
ity by integrating the domain-mixing model into a
meta-learning framework with the domain classi-
fier using a balanced sampling strategy.

In summary, we make the following contribu-
tions: i) we propose RMLNMT, which shows bet-
ter domain robustness and domain adaptability than
all previous baseline systems; ii) we show that un-
seen domains can be very effectively handled with
domain-robust models, even though post-hoc adap-
tation with domain-specific data still delivers the
best overall translation quality; iii) Experiments on
English→German and English→Chinese transla-
tion tasks show the effectiveness of RMLNMT. To
the best of our knowledge, this is the first work that
considers both domain adaptability and domain
robustness in NMT domain adaptation, a combina-
tion which we suggest the community pay more
attention to.

2 Preliminaries

Neural Machine Translation. The goal of the
NMT model is to model the conditional distribu-
tion of translated sentence y = (y1, ..., yn) given
a source sentence x = (x1, ..., xm). Current state-
of-art NMT models (Transformers; Vaswani et al.,
2017) model the multi-head attention mechanism
to focus on information in different representation
subspaces from different positions

MultiHead(Q,K, V ) = Concat (h1, . . . , hh)W
O

hi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
,

where WQ
i ,W

K
i ,W

V
i ∈ Rd×d/m and WO ∈

Rd×d. For the i-th head hi, m is the number of
heads, and d is the dimension of the model out-
put. In some of our experiments (see Section 3.1),

we modify the multihead attention to do domain
mixing (Jiang et al., 2020).

Meta-learning for NMT. The goal of Meta-
Learning is training a teacher model that using
previous experience can be better finetuned for
new tasks, including handling different domains
in NMT domain adaptation (Gu et al., 2018; Sharaf
et al., 2020; Zhan et al., 2021). The idea of NMT
domain adaptation with meta-learning is to use a
small set of source tasks {T1, . . . , Tn} (which cor-
respond to domains) to find the initialization of
model parameters θ from which finetuning for task
T0 would require only a small number of training
examples. These meta-learning algorithms consist
of three main steps: (i) split the seen domain cor-
pus into small tasks T containing a small amount
of data as Dmeta-train and Dmeta-test to simulate the
low-resource scenarios. Data for each task Ti is de-
composed into two sub-sets: a support set Tsupport
used for training the model and a query set Tquery
used for evaluating the model; (ii) leverage a meta-
learning policy to adapt model parameters to dif-
ferent small tasks using Dmeta-train datasets. We use
MAML, proposed by Finn et al. (2017), to create
adaptable NMT systems which will be useful for
different domains; (iii) finetune the model using
the support set of Dmeta-test.

3 Method

In our initial experiments, we observed that the
standard meta-learning approach for NMT domain
adaptation sacrifices the domain robustness on seen
domains in order to improve the domain adaptabil-
ity on unseen domains. To address these issues,
we propose a novel approach, RMLNMT, which
combines meta-learning with a word-level domain-
mixing system (for improving domain robustness)
in a single model. RMLNMT consists of three
parts: Word-Level Domain Mixing, Domain Clas-
sification, and Online Meta-Learning. Figure 1
illustrates RMLNMT.

3.1 Word-level Domain Mixing

In order to improve the robustness of NMT domain
adaptation, we follow the approach of Jiang et al.
(2020) and train a word-level layer-wise domain
mixing NMT model.

Domain Proportion. From a sentence-level per-
spective (i.e., the classifier-based curriculum step),
each sentence has a domain label. However, the
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Figure 1: Method overview. The whole procedure mainly consists of three parts: domain classification, word-level
domain mixing and online meta-learning.

domain of a word in the sentence is not necessar-
ily consistent with the sentence domain. E.g., the
word doctor can have a different meaning in the
medical domain and the academic domain. More
specifically, for k domains, the embedding w ∈ Rd
of a word, and a matrix R ∈ Rk×d, the domain pro-
portion of the word is represented by a smoothed
softmax function as:

Φ(w) = (1− ϵ) · softmax(Rw) + ϵ/k,

where ϵ ∈ (0, 1) is a smoothing parameter to pre-
vent the output of Φ(w) from collapsing towards 0
or 1.

Domain Mixing. Following Jiang et al. (2020),
each domain has its own multi-head attention mod-
ules. Therefore, we can integrate the domain pro-
portion of each word into its multi-head attention
module. Specifically, we take the weighted average
of the linear transformation based on the domain
proportion Φ. For example, we consider the point-
wise linear transformation {Wi,V,j}kj=1 on the t-th
word of the input, Vt, of all domains. The mixed
linear transformation can be written as

V̄i,t =

k∑

j=1

V ⊤t Wi,V,jΦV,j (Vt) ,

where ΦV,j (Vt) denotes the j-th entry of ΦV (Vt),
and ΦV is the domain proportion layer related to

V . For other linear transformations, we apply the
domain mixing scheme in the same way for all
attention layers and the fully-connected layers.

Training. The model can be efficiently trained
by minimizing a composite loss:

L∗ = Lgen(θ) + Lmix(θ),

where θ contains the parameter in encoder, de-
coder and domain proportion. Lgen (θ) denotes the
cross-entropy loss over training data {xi,yi}ni=1

and Lmix(θ) denotes the cross-entropy loss over
the words/domain labels. For Lmix(θ), we com-
pute the cross-entropy loss of its domain propor-
tion Φ(w) as − log (ΦJ(w)), which take J as the
domain label. Hence, Lmix(θ) is computed as the
sum of the cross-entropy loss over all such pairs of
word labels of the training data.

3.2 Domain Classification

Domain similarity has been successfully applied
in NMT domain adaptation. Moore and Lewis
(2010) calculate cross-entropy scores with a lan-
guage model to represent the domain similarity.
Rieß et al. (2021) leverage simple classifiers to
compute similarity scores; these scores are more ef-
fective than scores from language models for NMT
domain adaptation. Motivated by Rieß et al. (2021),
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we compute domain similarity using a sentence-
level classifier, but in contrast with previous work,
we based our classifier on a pre-trained language
model. Given k domain corpora (one general do-
main corpus and n out-of-domain corpora), we
trained a sentence classification model M based
on BERT (Devlin et al., 2019). For a sentence x
with a domain label Lx, a simple softmax is added
to the top of the model M to predict the domain
probability of sentence x:

P (x | h) = softmax(Wh),

where W is the parameter matrix of M and h is the
hidden state of M . P (x | h) is a probability set,
which contains k probability scores indicating the
similarity of sentence x to each domain. We finally
select the probability of the general domain (from
k probability scores) as the score of the sentence x
and use this score as the curriculum to split the task
in meta-learning (see more details in Section 3.3).
A higher score indicates that the sentence is more
similar to the general domain, so we will select it
earlier.

3.3 Online Meta-Learning

After training the word-level domain mixing NMT
model, we use it as a teacher model to initialize
the meta-learning process. Algorithm 1 shows the
complete algorithm.

Split Tasks. Zhan et al. (2021) propose a
curriculum-based task splitting strategy, which uses
divergence scores computed by a language model
as the curriculum to split the corpus into small
tasks. We follow a similar idea, but propose to use
predictions from a domain classifier as the criterion
for splitting the data. Concretely, we first train a
domain classifier with BERT; the classifier scores
sentences, indicating domain similarity between an
in-domain sentence and a general domain sentence
(see Section 3.2). The tasks are then split according
to the scores; sentences more similar to the general
domain sentences are selected in early tasks.

Balanced Sampling. Previous meta-learning ap-
proaches (Sharaf et al., 2020; Zhan et al., 2021) are
based on token-size based sampling, which uses
8k or 16k token sizes split into many small tasks.
However, the splitting process for the domain is not
balanced, since some tasks did not contain all seen
domains, especially in the early tasks. As we can
see in Figure 2, the token-based splitting methods
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Figure 2: The statistic of samples in the task for the
tokenization-based splitting strategy. More general do-
mains are on the left and the more distinctive domains
are on the right.

usually allocate more samples on domain-similar
domains (WMT, Globalvoices) and allocate small
samples on domain-distant domains (EMEA, JRC)
in the sampling of early tasks. This can cause prob-
lems in our method since the model architecture is
dynamically changing according to the number of
domains (see more details in Section 3.1).

To address these issues, we sample the data uni-
formly from the domains to compensate for im-
balanced domain distributions based on domain
classifier scores.

Meta-Training. Following the balanced sam-
pling, the process of meta-training is to update the
current model parameter on Tsupport from θ to θ′,
and then evaluate on Tquery. The model parameter
θ′ is updated to minimize the meta-learning loss
through MAML.

Given a pre-trained model fθ (initialized with
parameters θ trained on word-level domain mixing)
and the meta-train data Dmeta-train, for each task T ,
we learn to use one gradient update to update the
model parameters from θ to θ′ as follows:

θ′ = θ − α∇θLT (fθ)

where α is the learning rate and L is the loss func-
tion. In our methods, we consider both the tradi-
tional sentence-level meta-learning loss LT (fθ)
and the word-level loss ΓT (fθ) (L∗ of T ) cal-
culated from the word-level domain mixing pre-
trained model. More formally, the loss is updated
as follows:

LT (fθ) = LT (fθ) + ΓT (fθ) .
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Algorithm 1 RMLNMT (Robust Meta-Learning
NMT Domain Adaptation)

Require: Domain classifier model cls; Pretrained
domain-mixing model θ;

1: Score the sentence in Dmeta-train using cls
2: for N epochs do
3: Split corpus into n tasks based on step 1
4: Balance sample through all tasks
5: for task Ti, i = 1 . . . n do
6: Evaluate loss LT (fθ)

= LTi (fθ)+ΓTi (fθ) on support set
7: Update the gradient with parameters

θ′ = θ − α∇θLT (fθ)
8: end for
9: Update the gradient with parameters

θ = θ − β∇θLT (fθ′) on query set
10: end for
11: return RMLNMT model parameter θ

Note that the meta-training phase is not adapted
to a specific domain, so it can be used as a metric
to evaluate the domain robustness of the model.

Meta-Adaptation. After the meta-training phase,
the parameters are updated to adapt to each domain
using the small support set of Dmeta-test corpus to
simulate the low-resource scenarios. Then perfor-
mance is evaluated on the query set of Dmeta-test.

4 Experiments

Datasets. We experiment with English→German
(en2de) and English→Chinese (en2zh) translation
tasks. For the en2de task, we use the same corpora
as Zhan et al. (2021). The data consists of corpora
in nine domains (Bible, Books, ECB, EMEA, Glob-
alVoices, JRC, KDE, TED, WMT-News) publicly
available on OPUS2 (Tiedemann, 2012) and the
COVID-19 corpus3. For en2zh, we use UM-Corpus
(Tian et al., 2014) containing eight domains: Edu-
cation, Microblog, Science, Subtitles, Laws, News,
Spoken, Thesis. We use WMT14 (en2de) and
WMT18 (en2zh) corpus published on the WMT
website4 as our general domain corpora. We use
WMT19 English monolingual corpora to train the
LM model so that we can reproduce results from
previous work.

2opus.nlpl.eu
3github.com/NLP2CT/Meta-Curriculum
4http://www.statmt.org

Data Preprocessing. For English and German,
we preprocessed all data with the Moses tokenizer5

and use sentencepiece6 (Kudo and Richardson,
2018) to encode the corpus with a joint vocabu-
lary, with size 40,000. After that, we filter the
sentence longer than 175 tokens and deduplicate
the corpus. For Chinese, we perform word seg-
mentation using the Stanford Segmenter (Tseng
et al., 2005). To have a fair comparison with pre-
vious methods (Sharaf et al., 2020; Zhan et al.,
2021), we use the same setting, which randomly
sub-sampled Dmeta-train and Dmeta-test for each do-
main with fixed token sizes in order to simulate
domain adaptation tasks in low-resource scenar-
ios. More details for data used in this paper can be
found in Appendix A.1.

Baselines. We compare RMLNMT with the fol-
lowing baselines:

• Vanilla. A standard Transformer-based
NMT system trained on the general domains
(WMT14 for en2de, WMT18 for en2zh) and
Dmeta-train corpus in seen-domains. We use
the Dmeta-train corpus because meta-learning-
based methods also use the Dmeta-train corpus,
this is a more fair and stronger baseline.

• Plain fine-tuning. Fine-tune the vanilla sys-
tem on support set of Dmeta-test for each indi-
vidual domain.

• Tag. prepend a domain tag to each sentence
to indicate what domain it belongs to (Kobus
et al., 2017).

• Meta-MT. Standard meta-learning approach
on domain adaptation task (Sharaf et al.,
2020).

• Meta-Curriculum (LM). Meta-learning ap-
proach for domain adaptation using LM score
as the curriculum to sample the task (Zhan
et al., 2021).

• Meta-based w/o FT. This series of experi-
ments uses the meta-learning system prior to
adaptation to the specific domain. This can
be used to evaluate the domain robustness of
meta-based models (see more details in the
meta-training part of Section 3.3).

5github.com/moses-smt/mosesdecoder
6github.com/google/sentencepiece
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Models Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

1 Vanilla 24.34 12.08 12.61 29.96 27.89 37.27 24.19 39.84 27.75 27.38
2 Vanilla + tag 24.86 12.04 12.46 30.03 27.93 38.37 24.56 40.75 28.23 27.26
3 Meta-MT w/o FT 23.69 11.07 12.10 29.04 26.86 30.94 23.73 38.82 23.04 26.13
4 Meta-Curriculum (LM) w/o FT 23.70 11.16 12.24 28.22 27.21 33.49 24.27 39.21 27.60 25.83
5 RMLNMT w/o FT 25.48 11.48 13.11 31.42 28.05 47.00 26.35 51.13 32.80 28.37

Table 1: Domain Robustness: BLEU scores on the English → German translation task. w/o denotes the meta-
learning systems without fine-tuning, FT denotes fine-tuning. Best results are highlighted in bold.

Models Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

1 Plain FT 24.81 12.61 12.78 30.48 28.36 37.26 24.26 40.02 27.99 27.31
2 Plain FT + tag 25.31 12.57 12.83 30.57 28.39 39.54 24.91 41.51 29.14 27.58
3 Meta-MT + FT 25.83 14.20 13.39 30.36 28.57 34.69 24.64 39.15 27.47 26.38
4 Meta-Curriculum (LM) + FT 26.66 14.37 13.70 30.41 28.97 34.00 24.72 39.61 27.37 26.68
5 RMLNMT + FT 26.53 15.37 13.72 31.97 29.47 47.02 26.55 51.13 32.88 28.37

Table 2: Domain Adaptability: BLEU scores on the English→ German translation task.

Implementation. We use the Transformer
model (Vaswani et al., 2017) as implemented in
FairSeq7 (Ott et al., 2019). For our word-level
domain-mixing modules, we dynamically adjust
the network structure according to the number of
domains since every domain has its multi-head
layers. Hence, the number of model parameters in
the attentive sub-layers of RMLNMT is k times
the number in the standard transformer (k is the
number of seen domains in the training data).
Following Jiang et al. (2020), we enlarged the
baseline models to have

√
k times larger embed-

ding dimension, so the baseline has the same
number of parameters. This should rule out that
the improvements are due to increased parameter
count rather than modeling improvements. For
our meta-learning framework, we consider the
general meta loss and word-adaptive loss together
(as seen in Section 3.3). Following Zhan et al.
(2021), the fine-tuning process in each models is
strictly limited to 20 to simulate quick adaptation.
Note that the meta-train stage only uses the seen
domain corpus and the unseen domain corpus is
only used in the meta-test stage. More details on
hyper-parameters are listed in Appendix A.2.

Evaluation. For a fair comparison with previous
work, we use the same data from the support set of
Dmeta-test to finetune the model and the same data
from the query set of Dmeta-test to evaluate the mod-
els. We measure case-sensitive detokenized BLEU
with SacreBLEU8 (Post, 2018); beam search with a

7github.com/facebookresearch/fairseq
8github.com/mjpost/sacrebleu

beam of size five is used. Because of the recent crit-
icism of BLEU score (Mathur et al., 2020), we also
evaluate our models using chrF (Popović, 2015)
and COMET9 (Rei et al., 2020); the results are
listed in Appendix A.5.

Domain Robustness. Domain robustness shows
the effectiveness of the model both in seen and
unseen domains. Hence, we use the model without
fine-tuning to evaluate the domain robustness.

Domain Adaptability. We evaluate the domain
adaptability by testing that the model quickly
adapts to new domains using just hundreds of in-
domain parallel sentences. Therefore, we fine-tune
the models on a small amount of domain-specific
data.

Cross-Domain Robustness. To better show the
cross-domain robustness of RMLNMT, we use the
fine-tuned model of one specific domain to generate
the translation for other domains. More formally,
given k domains, we use the fine-tuned model MJ

with the domain label of J to generate the transla-
tion of k domains.

5 Results

Table 1 and Table 3 show the domain robustness
for English→German and English→Chinese re-
spectively. Table 2 and Table 4 show the domain
adaptability on both translation task.

Domain Robustness. As seen in Table 1 and Ta-
ble 3, RMLNMT shows the best domain robust-

9github.com/Unbabel/COMET
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Models Unseen Seen
Education Microblog Science Subtitles Laws News Spoken Thesis

1 Vanilla 27.52 26.05 31.58 18.32 46.69 28.67 26.44 29.00
2 Vanilla + tag 27.36 26.11 31.53 18.25 47.13 28.75 26.71 29.19
3 Meta-MT w/o FT 28.76 26.41 32.41 17.38 43.74 27.31 25.98 28.11
4 Meta-Curriculum (LM) w/o FT 28.53 26.14 32.25 17.45 43.87 27.25 27.57 28.23
5 RMLNMT w/o FT 30.17 28.42 34.20 19.89 57.54 30.39 28.11 33.20

Table 3: Domain Robustness: BLEU scores on English→ Chinese translation tasks.

Models Unseen Seen
Education Microblog Science Subtitles Laws News Spoken Thesis

1 Plain FT 27.05 26.31 32.09 17.77 47.64 28.28 25.73 28.47
2 Plain FT + tag 27.13 26.48 32.12 17.94 47.91 28.84 26.35 29.58
3 Meta-MT + FT 29.33 27.48 33.12 18.77 45.21 28.43 26.82 29.20
4 Meta-Curriculum (LM) + FT 28.91 27.20 33.19 18.93 45.46 28.17 27.84 29.47
5 RMLNMT + FT 30.91 28.52 34.51 20.13 57.58 30.42 28.03 32.25

Table 4: Domain Adaptability: BLEU scores on English→ Chinese translation tasks.

Methods Avg
Meta-MT -1.97
Meta-Curriculum (LM) -0.96
Meta-Curriculum (cls) -0.98
RMLNMT 2.64

Table 5: The average improvement over vanilla baseline.

ness compared with other models both in seen and
unseen domains. In addition, the traditional meta-
learning approach (Meta-MT, Meta-Curriculum)
without fine-tuning is even worse than the stan-
dard transformer model in seen domains. This
phenomenon is our motivation for improving the
robustness of traditional meta-learning based ap-
proach. In other words, we cannot be sure whether
the improvement of the meta-based method is due
to the domain adaptability of meta-learning or
the robustness of the teacher model. Note this
setup differs from the previous work (Sharaf et al.,
2020; Zhan et al., 2021) because we included the
Dmeta-train data to the vanilla system to insure all
systems in the table use the same training data.10

Interestingly, the translation quality in the WMT
domain is also improved which is different than
(Zhan et al., 2021). They explain that their methods
achieve maximum robustness on the WMT domain,
while our results demonstrate that our model can
further improve robustness even when trained on
the same domain as the pre-trained model.

10We also confirmed with Zhan et al. (2021) via email that
they did not deduplicate the corpus, which is another reason
for the difference between our results and their results.

Domain Adaptability. From Tables 2 and 4, we
observe that the traditional meta-learning approach
shows high adaptability to unseen domains but fails
on seen domains due to limited domain robustness.
In contrast, RMLNMT shows its domain adaptabil-
ity both in seen and unseen domains, and maintains
the domain robustness simultaneously. Compared
with RMLNMT, the traditional meta-learning ap-
proach show more improvement between the w/o
FT model and FT model. For example, Meta-MT
and Meta-Curriculum (LM) obtains 1.32 and 2.19
BLEU score improvement after finetuning on the
ECB domain; improvement from RMLNMT only
got 0.55. This phenomenon meets our expecta-
tions since RMLNMT without finetuning is already
strong enough due to the domain robustness of
word-level domain mixing. In other words, the
improvement of the traditional meta-learning ap-
proach is to some extent due to the unrobustness of
the model.

Cross-Domain Robustness. Table 5 reports the
average difference of k × k BLEU scores; a larger
positive value means a more robust model. We
observed that the plain meta-learning based meth-
ods have a negative value, which means the perfor-
mance gains in the specific domains come at the
cost of performance decreases in other domains.
In other words, the model is not domain robust
enough. In contrast, RMLNMT has a positive dif-
ference with the vanilla system, showing that the
model is robust. The specific BLEU scores are
shown in Figure 3 of Appendix A.4.

The results of both domain robustness and do-
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Classifier Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

CNN 24.12 13.57 12.74 30.31 28.14 46.12 25.17 50.52 31.15 26.34
BERT-many-labels 25.89 14.77 13.71 32.10 29.28 47.41 26.70 51.34 32.76 28.17
BERT-2-labels 26.10 14.85 13.58 31.99 29.17 46.80 26.46 51.56 32.83 28.37
mBERT-many-labels 26.10 14.73 13.69 31.93 29.11 47.02 26.33 51.13 32.69 27.91
mBERT-2-labels 26.53 15.37 13.71 31.97 29.47 47.02 26.55 51.13 32.88 28.37

Table 6: Different classifier: BLEU scores on the English→ German translation task.

Sampling Strategy Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

Token-based sampling 25.30 11.38 12.70 31.61 28.01 47.51 26.50 51.31 32.88 28.03
Balance sampling 25.47 11.51 12.79 32.08 28.98 47.64 26.58 51.25 32.91 28.07

Table 7: Different sampling strategy: BLEU scores on the English→ German translation task.

Finetune Strategy Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

FT-unseen 25.23 13.18 12.73 32.45 28.41 46.35 25.83 50.85 32.30 26.88
FT-seen 24.58 11.73 12.57 30.79 27.29 46.58 25.73 50.91 31.78 26.51
FT-all 15.00 7.77 9.06 21.33 16.98 24.69 14.63 27.59 12.77 15.75
FT-specific 26.53 15.37 13.71 31.97 29.47 47.02 26.33 51.13 32.83 28.37

Table 8: Different fine-tuning strategy: BLEU scores on the English→ German translation task.

main adaptability are consistent for the chrF and
COMET evaluation metrics (see more details in
Tables 13 and 14 of Appendix A.5).

6 Analysis

In this section, we conduct additional experiments
to better understand the strengths of RMLNMT. We
analyze the contribution of different components
in RMLNMT, through an ablation study.

Different classifiers. We evaluate the impact
of different classifiers on translation performance.
The main results are as shown in Table 6 (see more
details in Appendix A.3). We observed that the
performance of RMLNMT is not directly propor-
tional to the accuracy of the classifier. In other
words, slightly higher classification accuracy does
not lead to better BLEU scores. This is because the
accuracy of the classifier is close between BERT-
based models and the primary role of the classifier
is to construct the curriculum for splitting the tasks.
When we use a significantly worse classifier, i.e.,
the CNN in our experiments, the overall perfor-
mance of RMLNMT is worse than the BERT-based
classifier.

Balanced sampling vs. Token-based sampling.
Plain meta-learning uses a token-based sampling
strategy to split sentences into small tasks. How-

ever, the token-based strategy could cause unbal-
anced domain distribution in some tasks, especially
in the early stage of training due to domain mis-
matches (see the discussion of balanced sampling
in Section 3.3). To address this issue, we proposed
to balance the domain distribution after splitting
the task. Table 7 shows that our methods can re-
sult in small improvements in performance. For
example, in the TED domain, BLEU was 28.01
with token-based sampling, but with the balanced
sampling strategy BLEU was 28.98. We keep the
same number of tasks to have a fair comparison
with previous methods.

Different fine-tuning strategies. As described
in Section 3.1, the model for each domain has its
own multi-head and feed-forward layers. During
the fine-tuning stage of RMLNMT, we devise four
strategies: i) FT-unseen: fine-tuning using all un-
seen domain corpora; ii) FT-seen: fine-tuning us-
ing all seen domain corpora; iii) FT-all: fine-tuning
using all out-of-domain corpora (seen and unseen
domains); iv) FT-specific: using the specific do-
main corpus to fine-tune the specific models. The
results are shown in Table 8. FT-specific obtains
robust results among all the strategies. Although
other strategies outperform FT-specific in some
domains, FT-specific is robust across all domains.
Furthermore, FT-specific is the fairest comparison
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because it uses only a specific domain corpus to
fine-tune, which is the same as the baseline sys-
tems.

7 Related Work

Domain Adaptation for NMT. Current ap-
proaches can be categorized into two groups by
granularity: From a sentence-level perspective, re-
searchers either use data selection methods (Moore
and Lewis, 2010; Axelrod et al., 2011) to select the
training data that is similar to out-of-domain paral-
lel corpora or train a classifier (Rieß et al., 2021) or
utilize a language model (Wang et al., 2017; Zhan
et al., 2021) to better weight the sentences. From
a word-level perspective, researchers try to model
domain distribution at the word level, since a word
in a sentence can be related to more domains than
just the sentence domain (Zeng et al., 2018; Yan
et al., 2018; Hu et al., 2019; Sato et al., 2020; Jiang
et al., 2020).

Curriculum Learning for NMT. Curriculum
learning (Bengio et al., 2009) starts with easier
tasks and then progressively gain experience to pro-
cess more complex tasks, which has proved to be
useful in NMT domain adaptation. Stojanovski
and Fraser (2019) utilize curriculum learning to im-
prove anaphora resolution in NMT systems. Zhang
et al. (2019) and Zhan et al. (2021) use a language
model to compute a similarity score between do-
mains, from which a curriculum is devised for
adapting NMT systems to specific domains from
general domains.

Meta-Learning for NMT. Gu et al. (2018) ap-
ply model-agnostic meta-learning (MAML; Finn
et al., 2017) to NMT. They show that MAML effec-
tively improves low-resource NMT. Li et al. (2020),
Sharaf et al. (2020) and Zhan et al. (2021) propose
to formulate the problem of low-resource domain
adaptation in NMT as a meta-learning problem:
the model learns to quickly adapt to an unseen new
domain from a general domain.

8 Conclusion

We presented RMLNMT, a robust meta-learning
framework for low-resource NMT domain adap-
tation reaching both high domain adaptability and
domain robustness (both in the seen domains and
unseen domains). We found that domain robustness
dominates the results compared to domain adapt-
ability in meta-learning based approaches. The

results show that RMLNMT works best in setups
that require high robustness in low-resource scenar-
ios.
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A Appendix

A.1 Datasets
For the OPUS corpus used in the English→ Ger-
man translation task, we deduplicated the corpus,
which is different from (Zhan et al., 2021) and is the
main reason that we cannot reproduce the results
in the original paper. The statistics of the original
OPUS are shown in Table 9. The seen domains
(EMEA, Globalvoices, JRC, KDE, WMT) contain
a lot of duplicated sentences. The scores in the
original paper are too high because the Dmeta-train
dataset overlaps with some sentences in Dmeta-test.

For the meta-learning phase, to have a fair com-
parison with previous methods, we use the same
setting. We random split 160 tasks and 10 tasks
respectively in Dmeta-train and Dmeta-test to simulate
the low-resource scenarios. For each task, the to-
ken amount of support set and query set is a strict
limit to 8K and 16K. Dmeta-dev corpus is limited
to 5000 sentences for each domain. Table 10 and
Table 11 shows the detailed statistics of the English
→ German and English→ Chinese tasks.

Corpus Original Deduplicated
Covid 3,325 3,312
Bible 62,195 61,585
Books 51,467 51,106
ECB 113,116 113,081
TED 143,830 142,756

EMEA 1,103,807 360,833
Globalvoices 71,493 70,519

JRC 717,988 503,789
KDE 223,672 187,918
WMT 45,913 34,727

Table 9: Data statistic (sentences) of the original corpus
for English→German translation task

Dmeta-train Dmeta-test
Support Query Support Query

Covid / / 309 612
Bible / / 280 548
Books / / 304 637
ECB / / 295 573
TED / / 390 772

EMEA 14856 29668 456 975
Globalvoices 11686 23319 368 699

JRC 7863 15769 254 519
KDE 24078 48284 756 1510
WMT 10939 21874 334 704

Table 10: Data statistic (sentences) of the meta-learning
stage for English→German translation task

A.2 Model Configuration

We use the Transformer Base architecture
(Vaswani et al., 2017) as implemented in fairseq
(Ott et al., 2019). We use the standard Transformer
architecture with dimension 512, feed-forward
layer 2048, 8 attention heads, 6 encoder layers
and 6 decoder layers. For optimization, we use the
Adam optimizer with a learning rate of 5 ·10−5. To
prevent overfitting, we applied a dropout of 0.3 on
all layers. The number of warm-up steps was set
to 4000. At the time of inference, a beam search
of size 5 is used to balance the decoding time and
accuracy of the search.

For the word-level domain-mixing model, we
use the same setting as Jiang et al. (2020). The
number of parameters of our model is dynamically
adjusted with the domain numbers and k times
higher than standard model architecture, since ev-
ery domain has its multi-head attention layer and
feed-forward layer. To have a fair comparison be-
tween baselines, we enlarged the baseline models
to have

√
k times larger embedding dimension, so

5202



Dmeta-train Dmeta-test
Support Query Support Query

Education / / 395 785
Microblog / / 358 721

Science / / 392 852
Subtitles / / 612 1219

Laws 6379 13001 197 416
News 9004 18362 281 536

Spoken 18270 36569 571 1148
Thesis 8914 17883 298 547

Table 11: Data statistic (sentences) of the meta-learning
stage for English→Chinese translation task

Classifier Acc(%)
CNN 74.91%
BERT: many-labels 96.12%
BERT: 2-labels 95.35%
mBERT: many-labels 95.41%
mBERT: 2-labels 95.26%

Table 12: The accuracy of the different classifiers.

the baseline has the same number of parameters.

A.3 Different classifiers
With a general in-domain corpus and some out-
of-domain corpora, we train five classifiers. We
experiment with two different labeling schemes:
2-labels where we distinguish only two classes:
out-of-domain and in-domain; many-labels
where sentences are labeled with the respective
domain labels. Further, we experiment with two
variants of the BERT model: first, we use mono-
lingual English BERT on the source side only, and
second, we use multilingual BERT (mBERT) to
classify the parallel sentence pairs. For further
comparison, we include also a CNN-based classi-
fier (Kim, 2014). We present the accuracy of the
English-German domain classifier in Table 12.

A.4 Cross-Domain Robustness
In Figure 3 we show the detailed results (k × k
scores) of cross-domain robustness.

A.5 Evaluations
In addition to BLEU, we also use chrF (Popović,
2015) and COMET (Rei et al., 2020) as evaluation
metrics. Table 13 and Table 14 show the results.
Consistently with the BLEU score (Tables 1 and
Table 2), we observed that RMLNMT is more ef-
fective than all previous methods.
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Models Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

1
Vanilla 0.550 0.418 0.385 0.538 0.542 0.599 0.536 0.614 0.525 0.558
Plain FT 0.555 0.423 0.388 0.540 0.548 0.600 0.536 0.618 0.528 0.558

2
Vanilla + tag 0.555 0.418 0.384 0.540 0.544 0.657 0.545 0.627 0.531 0.558
Plain FT + tag 0.562 0.423 0.388 0.540 0.549 0.602 0.536 0.694 0.547 0.561

3
Meta-MT w/o FT 0.545 0.410 0.382 0.498 0.538 0.532 0.531 0.610 0.464 0.553
Meta-MT + FT 0.566 0.432 0.390 0.542 0.556 0.582 0.538 0.613 0.522 0.552

4
Meta-Curriculum (LM) w/o FT 0.548 0.412 0.384 0.523 0.543 0.560 0.536 0.611 0.521 0.554
Meta-Curriculum (LM) + FT 0.567 0.434 0.395 0.544 0.548 0.572 0.539 0.615 0.522 0.553

5
RMLNMT w/o FT 0.555 0.405 0.388 0.557 0.544 0.656 0.552 0.702 0.574 0.561
RMLNMT + FT 0.562 0.451 0.395 0.558 0.560 0.656 0.552 0.702 0.574 0.561

Table 13: chrF scores on the English→ German translation task.

Models Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

1
Vanilla 0.4967 -0.1250 -0.2225 0.3276 0.3400 0.3096 0.3199 0.5430 0.1836 0.4326
Plain FT 0.5066 -0.1105 -0.1985 0.3315 0.3553 0.3177 0.3276 0.5492 0.1813 0.4392

2
Vanilla + tag 0.4970 -0.1250 -0.2228 0.3277 0.3401 0.3176 0.3291 0.5495 0.1846 0.4311
Plain FT + tag 0.5078 -0.1105 -0.1981 0.3315 0.3553 0.3179 0.3341 0.5572 0.1973 0.4398

3
Meta-MT w/o FT 0.4850 -0.1454 -0.2228 0.0953 0.3506 0.0524 0.2985 0.5319 0.1304 0.4137
Meta-MT + FT 0.5175 -0.0650 -0.1878 0.3466 0.3824 0.2678 0.3189 0.5509 0.1316 0.4161

4
Meta-Curriculum (LM) w/o FT 0.4879 -0.1365 -0.2122 0.2568 0.3751 0.1968 0.3273 0.5246 0.0962 0.4206
Meta-Curriculum (LM) + FT 0.5347 -0.0604 -0.1773 0.3460 0.3729 0.2366 0.3141 0.5430 0.1467 0.4128

5
RMLNMT w/o FT 0.4943 -0.1956 -0.2179 0.3580 0.3394 0.4026 0.3769 0.6797 0.3014 0.4255
RMLNMT + FT 0.5302 -0.0543 -0.1610 0.3547 0.3867 0.4046 0.3771 0.6797 0.3015 0.4256

Table 14: COMET scores on the English→ German translation task.

CovidBible
Books ECB TED

EMEA

Globalvoices JRC KDE
WMT

Covid
Bible

Books
ECB
TED

EMEA
Globalvoices

JRC
KDE

WMT

1.02 -1.83 -1.09 -1.66 -1.52 -2.95 -0.24 -8.92 -1.27 -1.60

-2.76 1.59 -2.55 -4.58 -3.68 -6.23 -2.30 -11.73 -4.49 -4.73

-1.59 -1.01 0.61 -4.82 -1.67 -3.10 -1.03 -22.96 -1.48 -1.43

-1.13 -1.33 -0.65 -0.12 -0.28 -2.15 0.38 -0.34 0.00 -0.60

-0.85 -1.03 -0.42 -0.62 0.21 -2.14 0.59 -12.33 -0.63 -0.61

-1.04 -1.63 -0.47 -0.95 -0.40 -2.57 0.52 -0.47 -0.09 -0.22

-1.35 -0.86 -0.32 -1.99 -0.04 -2.25 0.38 -17.10 -0.76 -0.42

-0.84 -1.45 -0.53 -1.06 -0.55 -1.89 0.21 -0.87 -0.97 -0.72

-0.88 -1.40 -0.66 -1.03 -0.58 -2.44 0.28 -1.57 -0.52 -0.14

-1.27 -0.92 -0.39 -0.69 -0.07 -1.72 0.27 -16.65 -0.89 -0.93

CovidBible
Books ECB TED

EMEA

Globalvoices JRC KDE
WMT

Covid
Bible

Books
ECB
TED

EMEA
Globalvoices

JRC
KDE

WMT

1.28 -1.59 -0.97 -1.26 -1.49 -3.84 -0.52 -1.18 -0.84 -1.70

-2.42 1.76 -2.31 -2.63 -2.81 -4.44 -1.33 -2.36 -2.50 -3.40

-1.34 -0.92 0.96 -2.13 -1.22 -4.21 -0.79 -0.97 -0.74 -1.70

-0.71 -1.69 -0.68 -0.07 -0.15 -3.08 0.37 -0.34 -0.26 -0.58

-0.71 -0.88 -0.48 -0.57 0.61 -3.33 0.66 -0.75 -0.52 -0.22

-0.99 -1.35 -0.52 -0.86 -0.20 -3.26 0.33 -0.44 0.09 -0.56

-1.29 -0.83 -0.23 -0.85 0.56 -2.90 0.46 -0.75 -0.17 -0.75

-0.44 -1.03 -0.40 -0.91 -0.05 -2.77 0.65 -0.41 0.00 -0.62

-0.83 -1.27 -0.48 -0.95 -0.12 -2.64 0.42 -0.19 -0.62 -0.24

-1.47 -0.79 -0.50 -0.88 -0.09 -2.62 0.13 -0.52 -0.72 -0.63

CovidBible
Books ECB TED

EMEA

Globalvoices JRC KDE
WMT

Covid
Bible

Books
ECB
TED

EMEA
Globalvoices

JRC
KDE

WMT

1.33 -1.53 -0.80 -1.10 -1.44 -3.52 -0.51 -1.44 -1.00 -1.54

-2.51 2.55 -1.96 -3.30 -2.57 -5.10 -1.60 -2.76 -2.96 -3.34

-1.24 -1.04 0.75 -2.18 -1.54 -4.69 -0.47 -1.47 -0.91 -1.72

-0.71 -1.46 -0.49 0.24 -0.27 -3.35 0.14 -1.09 -0.50 -0.77

-1.10 -0.74 -0.38 -0.82 0.75 -3.40 0.57 -0.73 -0.05 -0.41

-0.38 -1.24 -0.51 -0.61 0.39 -3.30 0.34 -0.71 0.19 -0.52

-1.18 -0.71 -0.14 -1.21 0.54 -3.37 0.46 -0.96 0.25 -0.63

-0.39 -0.95 -0.35 -0.92 0.03 -2.80 0.50 -0.62 0.19 -0.40

-0.78 -1.14 -0.32 -1.04 0.27 -2.89 0.33 -0.99 -0.13 -0.35

-1.14 -0.90 -0.42 -1.40 0.45 -2.79 0.20 -0.77 -0.34 -0.86

CovidBible
Books ECB TED

EMEA

Globalvoices JRC KDE
WMT

Covid
Bible

Books
ECB
TED

EMEA
Globalvoices

JRC
KDE

WMT

1.72 -1.16 -0.38 0.10 -1.55 8.70 0.94 10.76 3.41 -0.15

-1.12 2.76 -1.24 -0.17 -2.32 8.01 0.11 9.05 3.49 -1.50

-0.25 -1.11 0.94 1.32 -0.65 9.21 1.11 10.29 4.33 0.48

0.09 -0.85 -0.35 1.49 -1.05 9.06 1.82 11.21 4.19 0.03

-0.36 -0.26 0.10 1.22 1.11 9.89 1.85 10.21 4.56 0.05

0.56 -1.12 0.14 1.45 -0.43 9.76 2.25 11.05 4.89 0.35

0.58 -1.19 0.09 1.47 -0.47 9.64 2.29 11.02 4.88 0.53

0.58 -1.23 0.10 1.47 -0.47 9.64 2.29 11.11 4.88 0.54

0.58 -1.23 0.10 1.47 -0.47 9.64 2.29 11.01 4.89 0.51

0.58 -1.19 0.09 1.47 -0.47 9.64 2.29 11.02 4.88 1.06
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Abstract

Cohesion devices, e.g., reiteration, corefer-
ence, are crucial for building cohesion links
across sentences. In this paper, we propose
a document-level neural machine translation
framework, CoDoNMT, which models cohe-
sion devices from two perspectives: Cohesion
Device Masking (CoDM) and Cohesion Atten-
tion Focusing (CoAF). In CoDM, we mask co-
hesion devices in the current sentence and force
NMT to predict them with inter-sentential con-
text information. A prediction task is also in-
troduced to be jointly trained with NMT. In
CoAF, we attempt to guide the model to pay
exclusive attention to relevant cohesion devices
in the context when translating cohesion de-
vices in the current sentence. Such a cohesion
attention focusing strategy is softly applied to
the self-attention layer. Experiments on three
benchmark datasets demonstrate that our ap-
proach outperforms state-of-the-art document-
level neural machine translation baselines. Fur-
ther linguistic evaluation validates the effec-
tiveness of the proposed model in producing
cohesive translations.

1 Introduction

Neural Machine Translation (NMT) has become
the dominant approach for machine translation and
achieved substantial progress in comparison to sta-
tistical machine translation. Some studies even
claim that NMT has reached human parity (Hassan
et al., 2018). Despite this, most NMT models are at
the sentence level, which translate documents sen-
tence by sentence, ignoring inter-sentential depen-
dencies. Documents translated in this way are usu-
ally incoherent and inconsistent across sentences.

In order to address this issue, a wide range
of efforts have been made to leverage inter-
sentential context information for document-level
NMT (Tiedemann and Scherrer, 2017; Zhang et al.,

∗corresponding author

2018; Voita et al., 2019; Tan et al., 2019; Maruf
et al., 2019; Xu et al., 2020b; Zhang et al., 2021).
Most efforts have been dedicated to modeling local
or global context via additional encoders, atten-
tion, cache, concatenating inputs, etc (Maruf et al.,
2021). However, these approaches normally focus
on the way of integrating context into translation,
rather than the context itself. The basic assumption
behind this is that models are able to detect rele-
vant contextual information. However, Kim et al.
(2019) and Li et al. (2020) find that most of the im-
provements obtained by these approaches cannot
be explained as leveraging the right context. We
suggest that it could be not a good choice to treat
contextual words equally and rely on models to
learn contextual clues in an implicit way. This is
because it is usually difficult for NMT to capture
key information from a long context through itself
(Yin et al., 2021). Hence, pinpointing semantically
or grammatically relevant context words in an ex-
plicit way is desirable for document-level NMT.

In this paper, different from the aforementioned
context modeling schemes, we model contextual
information for document-level NMT in an explicit
way via cohesion devices. Cohesion devices (e.g.,
reiteration, co-reference) are widely acknowledged
as important linguistic items that chain sentences
into cohesive discourse (Halliday and Hasan, 1976).
Moreover, the interpretation of one cohesion device
depends on the corresponding device that is paired
to it (Halliday and Hasan, 1976). Consider the
following text "Amy went to the party. She sat
with Sara.". The interpretation of the cohesion
device she is deeply related to the cohesion device
Amy. Therefore, explicitly modeling these cohesion
devices may guide document-level NMT to actively
explore contextual clues, so as to yield cohesive
translations.

Inspired by this, we propose CoDoNMT, as
shown in Fgiure 1, to explore Cohesion devices
for Document-level Neural Machine Translation.
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Figure 1: The diagram of CoDoNMT. We prepend the preceding three sentences to each current sentence as its
context on both the source and target side. CoDM is applied on the source side of the current sentence while CoAF
is softly used in each self-attention layer of the encoder. A masked token prediction task corresponding to CoDM
is employed as an auxiliary task to the primary translation task, where the concatenated input (source sentence
+ context) is translated into the target language. Exposure bias mitigation is applied during training: cy∗. and y∗.
indicate the predicted words in translations of the context and the current sentence, respectively.

Particularly, we present Cohesion Device Masking
(CoDM) and Cohesion Attention Focusing (CoAF)
as two essential components for CoDoNMT, in an
attempt to force NMT to explicitly predict masked
cohesion devices and to focus its attention exclu-
sively on related cohesion devices.

Cohesion Device Masking We concatenate the
previous context to the current sentence on both
the source and target side. Cohesion devices of
the current sentence on the source side are masked.
In doing so, we force NMT to actively explore
previous context to predict the masked cohesion
devices, which may teach document-level NMT to
pinpoint relevant linguistic context for translation.

Cohesion Attention Focusing As mentioned
above, in order to correctly interpret and translate
cohesion devices in the current sentence, we need
to capture their paired cohesion devices in the con-
catenated context. For this, we force NMT to pay
exclusive attention to previous cohesion clues in
the context with attention masks when translating
cohesion devices in the current sentence. In this
way, we narrow the range of context and enable the
model to evade irrelevant contextual information.

In a nutshell, our contributions are three-fold.

• We propose CoDoNMT for document-level
NMT, which explicitly explores cohesion de-
vices to capture context information.

• We introduce CoDM and CoAF in CoDoNMT
to force NMT to predict masked cohesion de-

vices with context information and to attend to
only cohesion devices in the context for trans-
lating cohesion devices in the current sentence,
respectively.

• We conduct experiments on three widely-used
datasets and a linguistic contrastive test set.
Results of both automatic and linguistic evalu-
ation demonstrate that our methods are able to
significantly improve translation quality over
previous state-of-the-art document-level NMT
models.

2 Cohesion Devices

A discourse is cohesive when sentences are prop-
erly linked by cohesion devices. From the linguis-
tic perspective, cohesion devices can be divided
into two categories: lexical cohesion devices and
grammatical cohesion devices (Halliday and Hasan,
1976). In this paper, we consider reiteration, syn-
onym and super-subordinate for lexical cohesion
devices, and co-reference for grammatical cohesion
devices. We choose these devices because they are
common and can be annotated automatically.

Reiteration: Reiteration refers to the repetition
of the same words in a discourse. This is a common
phenomenon in discourse (Church, 2000). And it
is easy to detect. Note that we exclude stop words
when detecting any type of cohesion devices.

Synonym: We use WordNet (Fellbaum, 2000) to
define synonyms, which is a large lexical database
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of English. Nouns, verbs, adjectives and adverbs
are grouped into sets of semantic groups called
synsets. We denote synset(w) as a set that in-
cludes synonyms grouped in the same synset as
word w in WordNet.

Super-subordinate: Superordinate and subor-
dinate are formed by words with an is-a semantic
relationship, such as apple and fruit (hypernym),
furniture and cupboard (hyponym), and so on. As
the super-subordinate relation is also encoded in
WordNet, we still use WordNet to detect hyper-
nyms and hyponyms. Let hypset(w) be a set that
includes both hypernyms and hyponyms in Word-
Net for word w.

Co-reference: Co-reference is a relationship be-
tween two words or phrases in which both refer to
the same person or thing and one is a linguistic an-
tecedent of the other. We use CoreNLP (Manning
et al., 2014) to parse co-reference relations between
the current sentence and its context sentences.

3 CoDoNMT

Figure 1 illustrates the diagram of the proposed
CoDoNMT, which uses the standard Transformer
(Vaswani et al., 2017) as its backbone. We prepend
the previous three sentences to the current sentence
on both the source and target side, separated by a
special token (i.e., <SEP>). We apply CoDM to the
source-side input and CoAF to the self-attention
layer of the encoder.

3.1 Cohesion Device Masking

The key of CoDM is to mask cohesion devices in
the current sentence and force the model to predict
those masked tokens using inter-sentential context.
Predicting cohesion devices might offer the model
the ability to establish cohesion links, so as to make
translation cohesive.

Obtaining Cohesion Devices We denote x as
the source side of the current sentence and cx as
the preceding context of x. |x| and |cx| denote the
length of x and cx, respectively. Correspondingly,
y indicates the target side of the current sentence
and its preceding context is cy. |y| and |cy| are the
length of y and cy, respectively.

For the ith word xi in x, we consider xi as a
lexical cohesion device if there exists a context
word that is the same as xi, or in the synset(xi) or
hypset(xi) in cx. We use CoreNLP to parse each
concatenated input to obtain co-reference links be-
tween x and cx, and refer to words occurring in

(a) Lexical Cohesion Device

(b) Grammatical Cohesion Device

Figure 2: Examples of cohesion device masking. The
same words "dog" in Figure 2(a) are reiteration devices.
"Amy" and "She" in Figure 2(b) are co-reference de-
vices.

the detected co-reference links as grammatical co-
hesion devices. We use D to denote the set of both
lexical and grammatical cohesion devices in x.

Masking Strategy We mask all cohesion de-
vices in D to explore contextual dependencies es-
tablished by these devices as many as possible. Fig-
ure 2 shows examples of CoDM.

As there are not many cohesion devices some-
times, only masking cohesion devices is not suffi-
cient. We hence use a masking ratio r as a thresh-
old to mask other words (randomly selected) in
addition to cohesion devices. The total number of
words being masked in x is ⌈|x| × r⌉ where ⌈�⌉ in-
dicates the upward rounding operation. We denote
the set of masked tokens asM and the masked ver-
sion of x as x́ where tokens inM are substituted
by a speical symbol (e.g., <M>). We concatenate
cx and x́ as the input fed into the encoder and use
the corresponding hidden states of the last encoder
layer to predict the masked tokens inM. The loss
of predicting the masked tokens is calculated as
follows:

Lmask(M|x́, cx) = −
|M|∑

i=1

logP (Mi|x́, cx) (1)

whereMi is the ith token inM and P (Mi|x́, cx)
represents the probability that the model predicts
Mi given the current sentence and its context.

3.2 Cohesion Attention Focusing
Not all information in the context is useful for trans-
lating the current sentence. We hence want to guide
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the model to attend to only cohesion devices in the
context when we translate cohesion devices in the
current sentence as they are linguistically linked to
each other. We achieve this via a cohesion attention
mask.

Constructing the Cohesion Attention Mask
We use a key-value pair (xi, lxi) to store cohesion
devices linked to xi, where lxi is a list whose ele-
ments are the cohesion devices related to xi. Specif-
ically, for xi, if the jth word cxj in cx is the same
as xi, or in the synset(xi) or hypset(xi), cxj is co-
hesively linked to xi. We hence add xi and cxj into
lcxj and lxi , respectively. Through CoreNLP, we are
able to directly obtain co-reference links between
xi and cx. For each word in each co-reference
link, we first find its corresponding cohesion de-
vice list l, and then add the remaining words in the
co-reference link to l. We denote the collection of
all key-value pairs as L.

After obtaining L, we construct a cohesion at-
tention mask M ∈ RN×N and initialize each item
with 0. N = |x|+ |xc| indicates the length of the
concatenated source input. We use L to set value
for each item in the cohesion attention mask ma-
trix. For each key-value pair (xi, lxi), we obtain
the positions of xi (pxi) and words in lxi (pw∈lxi )
in the concatenated source input. Then, at the pxi
row, we mask out all items whose column positions
are not ∈ {pw∈lxi} by setting their values to −∞.
This is similarly done for each column ∈ {pw∈lxi}.
Note that we do not mask out (inter/intra-sentential)
interactions between ordinary words that are not
cohesion devices and intra-sentential interactions
among words even when they are not cohesion
devices. We only force cohesion devices to exclu-
sively attend to cohesion devices that are linked to
them in other sentences.

Figure 3 illustrates the cohesion attention mask.
For words (e.g., "from", "home") that are not cohe-
sion devices, they can only attend to words in the
same sentence. For cohesion devices, they can at-
tend not only to their intra-sentential context words
but also to associated cohesion devices across sen-
tences.

Applying the Cohesion Attention Mask In or-
der to make the model not lose the ability to capture
important contextual information, we apply the con-
structed cohesion attention mask softly by using
a probability threshold Pm to control whether to
apply the cohesion attention mask to self-attention.
Thus the model is trained with and without the

Figure 3: An example of the cohesion attention mask.
For brevity, we omit some words in the sentence. The
complete sentence is "We were driving from our home
to a little farm . <SEP> Driving ourselves . </s>". White
positions are set to 0 while black positions are set to
−∞.

cohesion attention mask, and we assume that the
model is able to acquire the ability to capture cohe-
sion information autonomously with this training
strategy. The attentionAl in l-th self-attention can
be calculate as follows.

Al =





Softmax( QK
T√

d/h
+ M) , if ε > Pm

Softmax( QK
T√

d/h
) , otherwise

(2)

where the matrices Q,K represent queries and
keys in self-attention. d and h indicate the dimen-
sion of hidden states and the number of heads, re-
spectively. ε is sampled from U ∽ (0, 1). Only
when the sampled ε is larger than the threshold Pm,
the cohesion attention mask is applied.

3.3 Training

Our model performs both masking prediction and
translation in a multi-task learning fashion. Hence
the training objective of our model is composed of
the traditional negative log-likelihood (NLL) and
the masked token prediction loss Lmask.

During training, we use the ground-truth target
context (Teacher-Forcing) while we use the previ-
ously decoded output tokens as the target context
during inference. As a result, our model suffers
from exposure bias. Inspired by Zhang et al. (2019),
we mix the ground-truth words with the predicted
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words as the decoder input during training to allevi-
ate the exposure bias. We refer to a word predicted
by the model as the predicted word. For each word
in golden context sentences and current sentence,
we use the probability Po to control whether to
replace the ground-truth word with its correspond-
ing predicted word. Following Zhang et al. (2019),
we gradually decrease Po from 1 according to the
following decay function:

Po =
µ

µ+ exp (e/µ)
(3)

where µ is a hyper-parameter that controls the de-
cay rate. e is the index of training epochs starting
from 0.

For each step, the predicted words are obtained
through word-level greedy search. We denote the
mixed target context and current sentence as ćy

and ý, respectively. Thus, the NLL is reformulated
as follows:

LNLL(y|x́, cx, ćy) = −
∑

i

logP (yi|ý<i, x́, cx, ćy)

(4)
Please note that we feed the masked version of

the current sentence into the encoder for translation
during training. In order to correctly translate to-
kens in masked positions, our model has to utilize
previous context, not only for the masked token
prediction task, but also for the translation task.

The two loss functions are integrated as follows:

L = LNLL(y|x́, cx, ćy)+λLmask(M|x́, cx) (5)

where λ is a hyper-parameter that balances the con-
tribution from the masked token prediction task.

4 Experiments

To examine the effectiveness of our proposed ap-
proaches, we carried out experiments on three
widely-used datasets and linguistic evaluation on a
contrastive test set.

4.1 Data and Settings

Following previous work (Zhang et al., 2021), we
used three datasets on two different language pairs
as the benchmark datasets, which are TED (Cettolo
et al., 2012), Opensubtitles (Maruf et al., 2018) and
Europarl7 (Maruf et al., 2018).

Dataset Language #Sentences #Documents
train/dev/test train/dev/test

TED En-De 0.2M/09k/2.2k 1.7k/7/22
Opensubtitles En-Ru 0.3M/6k/9k 23k/461/693
Europarl7 En-De 0.1M/2k/3.3k 3.6k/69/107

Table 1: Statistics of the used datasets on different lan-
guage pairs.

• TED (English-German): The corpus con-
tains transcriptions of TED talks from IWSLT
2017. Each talk is used as a document, aligned
at the sentence level. dev2010 was used as our
development set and tst2016-tst2017 for test-
ing.

• Opensubtitles (English-Russian): This cor-
pus is extracted from the OpenSubtitles2016
corpus (Maruf et al., 2018), where sentences
are segmented and aligned using additional
information.

• Europarl7 (English-German): Following
(Maruf et al., 2018), we used the same method
to preprocess the raw Europarl v7 Corpus
(Koehn, 2005) and extract the parallel coprus.

The statistics of these corpora are shown in Ta-
ble 1. We used scripts from MOSES (Koehn et al.,
2007) to tokenize and truecase sentences. We ap-
plied BPE (Sennrich et al., 2016) with 30K merge
operations for each language in the datasets. Trans-
lation quality was evaluated by BLEU (Papineni
et al., 2002). 1

We followed the same Transformer base setting
used in (Vaswani et al., 2017) and trained all mod-
els on 4 GeForce RTX 2080 Ti GPU. The dropout
was set to 0.1. The masking ratio r was set to 0.15.
The weight of the masked token predction loss λ
was set to 0.5. The probability threshold Pm was
set to 0.5. For TED, we set µ as 10. For Europarl7
and Opensubtitles, we set µ as 12. For inference,
we set the beam size to 4. The source code is avail-
able at https://github.com/codeboy311/CoDoNMT.

4.2 Baselines
We used five baselines to compare against our
model. The sentence-level baseline Sent is the stan-
dard Transformer (Vaswani et al., 2017) trained on
sentence-level parallel data. The rest four baselines
are all document-level NMT, including: 1) DocT

1We use sacrebleu to calculate BLEU score for
each dataset, and the signature of sacrebleu we used is
“BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1”.
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Model TED Opensubtitles Europarl7 AVG #Param
En-De En-Ru En-De

Sent (Vaswani et al., 2017) 24.30 19.50 30.70 24.83 50M
DocT (Zhang et al., 2018) † 25.04 20.21 30.67 25.31 72M
HAN (Miculicich et al., 2018) † 25.70 20.08 26.61 24.13 70M
CADec (Voita et al., 2019) † 26.08 19.46 30.36 25.30 91M
MHT (Zhang et al., 2021) † 26.22 20.46 31.25 25.97 80M
Our Model 26.89 21.49 32.07 26.82 50M

Table 2: Overall results on the TED, OpenSubtitles and Europarl translation tasks. †indicates that the results of
baselines are reported from corresponding papers.

Model Deixis Lexical
Cohesion

Sent (Voita et al., 2019) 50.0% 45.9%
CADec (Voita et al., 2019) 81.6% 58.1%
Concat (Voita et al., 2019) 83.5% 47.5%
Our Model 89.4% 62.3%

Table 3: Linguistic evaluation results on the contrastive
test set (accuracy).

(Zhang et al., 2018) that employs an additional
encoder for context, 2) HAN (Miculicich et al.,
2018) which integrates document contextual infor-
mation from both the source and target side through
context-aware hierarchical attention networks, 3)
CADec (Voita et al., 2019) that explores contextual
information to refine sentence-level translation, and
4) MHT (Zhang et al., 2021) that applies a multi-
hop mechanism to imitate reasoning process.

4.3 Main Results

Results on the three translation benchmarks are
shown in Table 2. As can be seen, our model
achieves the highest BLEU scores on all tasks over
both sentence- and document-level baselines. Fur-
thermore, we gain improvements of 0.67, 1.03 and
0.82 BLEU points over the strongest document-
level baseline on TED, Opensubtitles and Eu-
roparl7, respectively, using fewer parameters. This
suggests that modeling cohesion devices is able
to benefit document-level NMT and could be bet-
ter than simply integrating full context into NMT
without showing relevant context information ex-
plicitly.

4.4 Linguistic Evaluation

To further investigate whether our method is able
to improve translation cohesion, we conducted lin-

guistic evaluation on Deixis and Lexical Cohesion
using a linguistic contrastive test set (Voita et al.,
2019). These two discourse phenomena are rel-
evant to the cohesion devices that we attempt to
capture (i.e. co-reference and lexical cohesion de-
vices) in our model.

To make a fair comparison, we follow Voita
et al. (2019) to use 6M sentence-level instances
to train the sentence-level baseline and then
use 1.5M document-level instances to train our
document-level model. Results are shown in Table
3. Our model achieves significant improvements
on Deixis and Lexical Cohesion compared with
sentence-level baseline Sent (Voita et al., 2019)
and document-level baselines CADec (Voita et al.,
2019) and Concat (Voita et al., 2019). This indi-
cates that our model can make better use of context
to deal with discourse phenomena.

4.5 Ablation Study

In order to take a deep look into the improvements
gained by our model, we further conducted abla-
tion study to investigate the contributions of the
three components in our model: 1) cohesion de-
vice masking, 2) cohesion attention focusing and
3) exposure bias mitigation introduced in Section
3.3. Results are shown in Table 4. Without us-
ing cohesion device masking, CoDoNMT drops
by 0.58, 0.62 and 0.55 BLEU on TED, Opensubti-
tles and Europarl7, respectively. This demonstrates
that forcing the model to predict masked cohesion
devices is beneficial for document-level NMT. Sim-
ilarly, without using the other two techniques, we
also see performance drops of 0.2 BLEU for the
exposure bias mitigation, 0.34 BLEU for cohesion
attention focusing. These results validate the effec-
tiveness of the three methods used in CoDoNMT.
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Ablation TED Opensubtitles Europarl7 AVG
BLEU ∆ BLEU ∆ BLEU ∆ BLEU ∆

Our 26.89 - 21.49 - 32.07 - 26.82 -
w/o Exposure Bias Mitigation 26.60 -0.29 21.38 -0.11 31.86 -0.21 26.62 -0.20
w/o CoAF 26.53 -0.36 21.16 -0.33 31.75 -0.32 26.48 -0.34
w/o CoDM 26.31 -0.58 20.87 -0.62 31.52 -0.55 26.23 -0.59

Table 4: Ablation study results.

Cohesion
Device TED Opensubtitles Europarl7 AVG Deixis Lexical

Cohesion
Lexical 26.58 21.24 31.99 26.60 84.1% 60.3%
Grammatical 26.64 21.21 31.86 26.57 87.4% 58.2%
Both 26.89 21.49 32.07 26.82 89.4% 62.3%

Table 5: Impact of different cohesion types modeled on translation quality on the TED, Opensubtitles and Europarl7
translation tasks (BLEU) and the constrastive test set (accuracy). "Lexical" and "Grammatical" denote the lexical
and grammatical cohesion devices.

5 Analysis

In this section, we analyzed three factors to exam-
ine their impact on the performance of the proposed
model, including: 1) cohesion device type, 2) mask-
ing strategy, 3) cohesion attention mask.

5.1 Cohesion Device Type
In CoDoNMT, we take into account both lexical
and grammatical cohesion devices. To further un-
derstand the effect of the type of cohesion devices
on the model performance, we conducted experi-
ments to model them separately during training.

Results on TED, Opensubtitles and Europarl7
are shown in Table 5. As can be seen, when
we model both lexical and grammatical cohesion
devices, CoDoNMT achieves the highest BLEU
scores over the three translation tasks. This indi-
cates that considering both lexical and grammatical
cohesion devices is more beneficial to document-
level NMT than only modeling one type of cohe-
sion devices.

The performance differences of "Lexical" and
"Grammatical" on the three translation tasks in
terms of BLEU are slight. We conjecture that it
may be because BLEU is not a good metric for
discourse phenomena (Xu et al., 2020a). There-
fore, we performed another linguistic evaluation
(Voita et al., 2019). As shown in Table 5, "Both"
continues to achieve the best performance on the
two discourse phenomena. This again suggests that
considering both lexical and grammatical cohesion
devices are more helpful for the model to deal with
discourse phenomena. In addition, the results of

different types of cohesion devices demonstrate
that modeling the corresponding type of cohesion
devices can better solve discourse phenomenon
relevant to these devices. In other words, lexical
cohesion devices can better solve Lexical Cohesion
than grammatical cohesion devices, but it is the
other way around on Deixis.

5.2 Masking Strategy

Due to the scarcity of cohesion devices, we mask
not only cohesion devices, but also a part of re-
maining tokens of the current sentence randomly.
In other words, if the current sentence does not
include any cohesion devices, CoDM degenerates
to random masking. In order to investigate the ef-
fect of masking cohesion devices against randomly
masking tokens, we conducted experiments to com-
pare our masking strategy with the random masking
strategy. We mask both lexical and grammatical co-
hesion devices in CoDM. For the random masking,
we randomly mask a set of tokens in the current
sentence according to the masking ratio r. Note
that we do not apply CoAF in this analysis for a fair
comparison as CoAF may further improve CoDM.

As shown in Table 6, in terms of BLEU, the dif-
ferences between the two masking strategies are
marginal. However, on the linguistic test, CoDM
significantly outperforms Random on both linguis-
tic phenomena. This suggests that predicting co-
hesion devices could be more efficient to produce
document cohesion than predicting other words and
reconfirms that BLEU is not sensitive on discourse
phenomena (Xu et al., 2020a).
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Masking
Strategy TED Opensubtitles Europarl7 AVG Deixis Lexical

Cohesion
CoDM 26.53 21.16 31.75 26.48 83.40% 55.70%
Random 26.48 21.26 31.67 26.47 79.08% 46.20%

Table 6: Comparison on masking strategies on the TED, Opensubtitles and Europarl7 translation tasks (BLEU) and
the constrastive test set (accuracy). "Random" denotes the random masking strategy that randomly masks a subset
of tokens in the current sentence according to the masking ratio r.

Figure 4: Impact of the probability threshold Pm on the TED, Opensubtitles and Europarl7 translation tasks.

5.3 Cohesion Attention Mask

As shown in Figure 4, we conducted experiments
with different probability threshold Pm to explore
its effect. As can be seen, when Pm is 0.5, our
model achieves the best BLEU score over the three
translation tasks. Furthermore, if we rigidly focus
the model on cohesion devices (i.e., Pm = 0.0, ap-
plying the cohesion attention mask in a hard way),
the model performance drops significantly. This
suggests that a soft application of the cohesion at-
tention mask allows the model to gain the ability
to capture cohesion information and maintain the
ability to explore other important contextual infor-
mation.

5.4 Case Study

To better illustrate how our model improves trans-
lation quality, we provide an example of Deixis
from the linguistic contrastive test set in Table
7, which is translated by both the document-level
baseline Concate and our model. The document-
level baseline Concate is a standard Transformer.
We trained Concate on the document-level cor-
pus where the current sentence is concatenated to
its corresponding previous context by a special
token (e.g., <SEP>) on both source- and target-
side. As shown in Table 7, according to the transla-
tion "tvo�" in previous context, the word "you" in
"Maybe you know." should be translated into "ty",
instead of "vy". Obviously, Concate fails to cap-
ture the co-reference information, while our model

is able to translate the word correctly.

6 Related Work

Document-level NMT aims to improve translation
quality with the aid of contextual information be-
yond the scope of current sentences. Most pre-
vious works focus on the integration of the inter-
sentential context into NMT. One typical approach
is introducing an addtional encoder to encode con-
text, and then integrate the context representation
into the primary encoder and/or the decoder (Zhang
et al., 2018; Voita et al., 2018; Kuang and Xiong,
2018; Xu et al., 2020a; Zheng et al., 2020). Miculi-
cich et al. (2018) propose a hierarchical attention
model to capture the contextual information from
both word and sentence level. Tan et al. (2019) pro-
pose a hierarchical model to learn global context for
document-level NMT. Voita et al. (2019) introduce
a two-pass framework that uses several previous
sentences as context to refine the translation gener-
ated by a strong sentence-level NMT. Zhang et al.
(2021) apply a multi-hop mechanism to document-
level NMT to simulate the human-like draft-editing
and reasoning process. Liu et al. (2020), Ma et al.
(2020) and Bao et al. (2021) combine pre-trained
models with document-level NMT. Zhang et al.
(2020) pretrain a source context prediction model
on a large-scale monolingual document corpus to
learn contextualized sentence embeddings.

Yet another research strand is to focus on context
selection. Maruf and Haffari (2018), Kuang et al.
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Source

cx

cx

cx

x

Like your boss said, might get you killed.
Well, that’s what I keep hearing.
Nobody wants to share this dangerous entity’s idea with me.
Maybe you know.

Reference

cx

cx

cx

x

Kak skazal tvo� boss, �to mo�et konqit~s� tvoe� smert~�.

Qto �, � �to � slyxu vse vrem�.

Nikto ne hoqet delit~s� so mno� liqnost~� to� opasno� suwnosti.

Mo�et, ty znaex~.

Concate

cx

cx

cx

x

Kak skazal tvo� boss, mo�et ubit~ teb�.

Nu, �to to, qto � prodol�a� slyxat~.

Nikto ne hoqet delit~s� so mno� idee� �to� opasno� suwnosti.

Mo�et byt~, vy znaete.

Our Model

cx

cx

cx

x

Kak skazal tvo� boss, teb� mogut ubit~.

nu, �to to, qto � vsegda slyxal.

nikto ne hoqet delit~s� so mno� mysl�mi ob �to� opasno� suwnosti.

mo�et byt~, ty znaex~.

Table 7: An example of Deixis translation in English-Russian. x and cx denote the current sentence and its
corresponding previous context, respectively. Blue words indicate the correct translations, while red words are the
opposite.

(2018) and Tu et al. (2018) use a cache-like mem-
ory network to memorize the translation history,
and treat it as context to translate future sentences.
Maruf et al. (2019) uses sparse attention to selec-
tively focus on relevant sentences in the document
context. Kang et al. (2020) adopt reinforcement
learning to select dynamic context for document-
level NMT.

Recently, approaches have been proposed to
leverage discourse information. Xu et al. (2020b)
build directed graphs of documents with intra-
sentential and inter-sentential relations and use
GCN to obtain the document representation. Lyu
et al. (2021) use word links to encourage the model
to generate more consistent translations.

Different from the above works, we attempt to
leverage cohesion devices to enhance the ability of
model to capture inter-sentential contextual infor-
mation to generate cohesive translations.

7 Conclusion

In this paper, we have presented CoDoNMT for
document-level NMT, which models cohesion de-
vices with two key methods, CoDM and CoAF.
CoDM masks cohesion devices in the current sen-
tence to force the model to actively explore inter-
sentential contextual information. CoAF softly
guides the model to focus attention on cohesion
devices. Both automatic and linguistic evalua-
tions show that our model can significantly im-

prove translation quality in terms of BLEU and
lexical and grammatical cohesion accuracy on a
discourse-oriented contrastive test set. Further anal-
yses demonstrate the impact of cohesion device
type and masking strategy on translation quality.
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Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Shaohui Kuang and Deyi Xiong. 2018. Fusing Re-
cency into Neural Machine Translation with an Inter-
Sentence Gate Model. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 607–617, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Shaohui Kuang, Deyi Xiong, Weihua Luo, and Guodong
Zhou. 2018. Modeling Coherence for Neural Ma-
chine Translation with Dynamic and Topic Caches.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 596–606, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Bei Li, Hui Liu, Ziyang Wang, Yufan Jiang, Tong Xiao,
Jingbo Zhu, Tongran Liu, and changliang Li. 2020.
Does Multi-Encoder Help? A Case Study on Context-
Aware Neural Machine Translation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 3512–3518, Online.
Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual Denoising
Pre-training for Neural Machine Translation. Trans-
actions of the Association for Computational Linguis-
tics, 8(0):726–742.

Xinglin Lyu, Junhui Li, Zhengxian Gong, and Min
Zhang. 2021. Encouraging Lexical Translation Con-
sistency for Document-Level Neural Machine Trans-
lation. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3265–3277, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Shuming Ma, Dongdong Zhang, and Ming Zhou.
2020. A Simple and Effective Unified Encoder for
Document-Level Machine Translation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3505–3511, On-
line. Association for Computational Linguistics.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In Proceedings of 52nd
annual meeting of the association for computational
linguistics: system demonstrations, pages 55–60.

Sameen Maruf and Gholamreza Haffari. 2018. Docu-
ment Context Neural Machine Translation with Mem-
ory Networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1275–1284,
Melbourne, Australia. Association for Computational
Linguistics.

Sameen Maruf, André F. T. Martins, and Gholamreza
Haffari. 2018. Contextual Neural Model for Translat-
ing Bilingual Multi-Speaker Conversations. In Pro-
ceedings of the Third Conference on Machine Trans-
lation: Research Papers, pages 101–112, Brussels,
Belgium. Association for Computational Linguistics.

Sameen Maruf, André F. T. Martins, and Gholamreza
Haffari. 2019. Selective Attention for Context-aware
Neural Machine Translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3092–3102, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Sameen Maruf, Fahimeh Saleh, and Gholamreza Haffari.
2021. A Survey on Document-level Neural Machine
Translation: Methods and Evaluation. ACM Comput-
ing Surveys, 54(2):1–36.

5214



Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas,
and James Henderson. 2018. Document-Level Neu-
ral Machine Translation with Hierarchical Attention
Networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2947–2954, Brussels, Belgium. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Xin Tan, Longyin Zhang, Deyi Xiong, and Guodong
Zhou. 2019. Hierarchical Modeling of Global Con-
text for Document-Level Neural Machine Translation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1576–
1585, Hong Kong, China. Association for Computa-
tional Linguistics.

Jörg Tiedemann and Yves Scherrer. 2017. Neural Ma-
chine Translation with Extended Context. In Pro-
ceedings of the Third Workshop on Discourse in Ma-
chine Translation, pages 82–92, Copenhagen, Den-
mark. Association for Computational Linguistics.

Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang.
2018. Learning to Remember Translation History
with a Continuous Cache. Transactions of the Asso-
ciation for Computational Linguistics, 6(0):407–420.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5998–6008. Curran
Associates, Inc.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. When
a Good Translation is Wrong in Context: Context-
Aware Machine Translation Improves on Deixis, El-
lipsis, and Lexical Cohesion. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1198–1212, Florence, Italy.
Association for Computational Linguistics.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-Aware Neural Machine Trans-
lation Learns Anaphora Resolution. In Proceedings

of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1264–1274, Melbourne, Australia. Association
for Computational Linguistics.

Hongfei Xu, Deyi Xiong, Josef van Genabith, and Qi-
uhui Liu. 2020a. Efficient Context-Aware Neural
Machine Translation with Layer-Wise Weighting and
Input-Aware Gating. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 3933–3940. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main track.

Mingzhou Xu, Liangyou Li, Derek F. Wai, Qun Liu,
and Lidia S. Chao. 2020b. Document Graph for
Neural Machine Translation. arXiv:2012.03477 [cs].
ArXiv: 2012.03477.

Kayo Yin, Patrick Fernandes, Danish Pruthi, Aditi
Chaudhary, André F. T. Martins, and Graham Neubig.
2021. Do Context-Aware Translation Models Pay
the Right Attention? In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 788–801, Online. Association
for Computational Linguistics.

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei
Zhai, Jingfang Xu, Min Zhang, and Yang Liu. 2018.
Improving the Transformer Translation Model with
Document-Level Context. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 533–542, Brussels, Bel-
gium. Association for Computational Linguistics.

Long Zhang, Tong Zhang, Haibo Zhang, Baosong Yang,
Wei Ye, and Shikun Zhang. 2021. Multi-Hop Trans-
former for Document-Level Machine Translation. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3953–3963, Online. Association for Computa-
tional Linguistics.

Pei Zhang, Xu Zhang, Wei Chen, Jian Yu, Yanfeng
Wang, and Deyi Xiong. 2020. Learning Contextual-
ized Sentence Representations for Document-Level
Neural Machine Translation. In ECAI 2020 - 24th
European Conference on Artificial Intelligence, 29
August-8 September 2020, Santiago de Compostela,
Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Arti-
ficial Intelligence (PAIS 2020), volume 325 of Fron-
tiers in Artificial Intelligence and Applications, pages
2298–2305. IOS Press.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019. Bridging the Gap between Training
and Inference for Neural Machine Translation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4334–
4343, Florence, Italy. Association for Computational
Linguistics.

5215



Zaixiang Zheng, Xiang Yue, Shujian Huang, Jiajun
Chen, and Alexandra Birch. 2020. Towards Mak-
ing the Most of Context in Neural Machine Trans-
lation. In Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence,
pages 3983–3989, Yokohama, Japan. International
Joint Conferences on Artificial Intelligence Organi-
zation.

5216



Proceedings of the 29th International Conference on Computational Linguistics, pages 5217–5226
October 12–17, 2022.

Improving Non-Autoregressive Neural Machine Translation
via Modeling Localness

Yong Wang†∗ Xinwei Geng
†Tencent Corporation, China

{seaywang,xwgeng2014}@gmail.com

Abstract

Non-autoregressive translation (NAT) models,
which eliminate the sequential dependencies
within the target sentence, have achieved re-
markable inference speed, but suffer from in-
ferior translation quality. Towards exploring
the underlying causes, we carry out a thor-
ough preliminary study on the attention mech-
anism, which demonstrates the serious weak-
ness in capturing localness compared with con-
ventional autoregressive translation (AT). In re-
sponse to this problem, we propose to improve
the localness of NAT models by explicitly in-
troducing the information about surrounding
words. Specifically, temporal convolutions
are incorporated into both encoder and de-
coder sides to obtain localness-aware represen-
tations. Extensive experiments on several typi-
cal translation datasets show that the proposed
method can achieve consistent and significant
improvements over strong NAT baselines. Fur-
ther analyses on the WMT14 En⇒De transla-
tion task reveal that compared with baselines,
our approach accelerates the convergence in
training and can achieve equivalent perfor-
mance with a reduction of 70% training steps.

1 Introduction

Based on the encoder-decoder framework (Cho
et al., 2014; Sutskever et al., 2014), neural machine
translation (NMT) (Bahdanau et al., 2015; Gehring
et al., 2017; Vaswani et al., 2017) has achieved
tremendous success in the past several years due
to its excellent performance. Currently, state-of-
the-art NMT systems are built in an autoregressive
manner, which generates target tokens one by one
from continuous representations summarized by
the encoder. However, with the constraint of output
tokens conditioned on previously generated ones,
autoregressive translation (AT) inevitably suffers
from serious latency during decoding, which be-
comes a bottleneck of inference speed.

∗ Work done while at Microsoft Corporation.

Towards accelerating the inference process,
non-autoregressive neural machine translation
(NAT) (Gu et al., 2018; Ghazvininejad et al., 2019;
Du et al., 2021; Huang et al., 2022) has been pro-
posed to break the above bottleneck. Instead of
sequential generation in autoregressive translation,
NAT models output the entire target sentence at
once. Unfortunately, removing sequential depen-
dencies within the target sentence brings NAT mod-
els with serious weakness in capturing the highly
multimodal distribution of target sentences (Gu
et al., 2018). Accordingly, NAT models suffer
from two kinds of incoherent translations, includ-
ing repetitive translations and incomplete transla-
tions (Wang et al., 2019), which leads to inferior
translation performance.

Since both types of translation errors do not com-
monly appear in AT models, several works (Li et al.,
2019; Wei et al., 2019) have proposed to leverage
a well-trained AT model to enhance the training of
NAT models. Inspired by this consideration, we
empirically carry out a thorough study to present
the weakness of NAT by investigating the distinc-
tion between NAT and AT models. Specifically,
we inspect the attention mechanism on two trans-
lation tasks and reveal that, in contrast to autore-
gressive models, NAT models lack the ability of
either modeling the localness (Yang et al., 2018;
Ding et al., 2020) or producing localness-aware
representations.

Motivated by this observation, we propose
to improve non-autoregressive machine transla-
tion via explicitly modeling localness. Specifi-
cally, we incorporate multi-layer temporal convolu-
tions (MTC) into both encoder and decoder sides to
enhance the ability to model localness-aware repre-
sentations in NAT models. To validate the effective-
ness of our approach, we implement this method
on two advanced NAT models, namely conditional
masked language model (CMLM) (Ghazvininejad
et al., 2019) and Vanilla-NAT (Gu et al., 2018).
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Extensive experiments on typical translation bench-
marks demonstrate that our proposed approach can
significantly and consistently improve the transla-
tion quality by up to 1.0 BLEU points over a series
of strong NAT baselines. Further analyses reveal
that our approach enhances the ability to generate
localness-aware representations. In addition, the
analysis on the WMT14 En⇒De task shows that
compared with the original CMLM model, our ap-
proach accelerates the convergence in training and
achieves comparable performance with a reduction
of 70% training steps.

In summary, the contributions of this work are
detailed as follows:

• Our study demonstrates the necessity of
explicitly modeling localness for non-
autoregressive machine translation models.

• We propose a simple yet effective approach
to enhance the ability to generate localness-
aware representations in NAT models and ex-
tensive experiments validate the effectiveness
and universality of our approach.

• Further analyses reveal that our approach ben-
efits the translation for long sentences and
accelerates the convergence in training.

2 Background

Autoregressive Neural Machine Translation
In recent years, autoregressive models, which pre-
dict the target sentence sequentially conditioned
on translation history, have achieved extraordinary
success on machine translation. Specifically, given
a source sentence x = {x1, . . . , xI}, a standard
encoder-decoder autoregressive framework (Cho
et al., 2014; Bahdanau et al., 2015) optimizes
the conditional probability of a target sentence
y = {y1, . . . , yJ}, namely:

P (y|x; θ) =
J∏

j=1

P (yj |y<j ,x; θ), (1)

where y<j indicates the partial translation and θ
is a set of trainable parameters. The encoder-
decoder framework can be implemented as differ-
ent choices of architectures, such as recurrent neu-
ral network (Bahdanau et al., 2015), convolutional
neural network (Gehring et al., 2017) and Trans-
former (Vaswani et al., 2017). The typical training
objective is to maximize log-likelihood on a set of

training examples D = {[xm,ym]}Mm=1:

L(θ) = arg max
θ

M∑

m=1

logP (ym|xm; θ). (2)

In the inference, the conditional dependency
on translation history produces the autoregressive
property, which predicts the token sequentially
based on previous output tokens in the target. This
nature of sequential processing results in high la-
tency in translation.

Non-Autoregressive Neural Machine Transla-
tion In contrast, Gu et al. (2018) proposed to ac-
celerate the decoding process by generating target
tokens in parallel. In practice, by breaking the prob-
abilistic factorization, the prediction is modeled as
a product of the probability, which is independent
for each token:

P (y|x; θ) = P (J |x)

J∏

j=1

P (yj |x; θ), (3)

where P (J |x) indicates an auxiliary length pre-
dictor, which is used to determine the translation
length. NAT models employ an identical encoder
as the conventional Transformer architecture, while
the decoder is distinct from the original one as it
avoids the utilization of causal masks in the self-
attention mechanism.

However, due to the lack of explicit dependency
within targets, NAT models suffer from serious
multi-modality problem (Gu et al., 2018) and sig-
nificantly degenerate the translation performance.
This issue inevitably causes NAT models to suffer
from repeated and incomplete translations.

3 Preliminary Study

In this section, we conduct a thorough empirical
study on the attention mechanism to observe the
distinction between AT and NAT models. In prac-
tice, a good probabilistic distribution of attention
weights suggests a good alignment between source
and target words, and usually leads to more accu-
rate translation (Bahdanau et al., 2015; Luong et al.,
2015; Li et al., 2019). Inspired by this observation,
we systematically investigate the cross-attention
weights on both WMT14 En⇒De and WMT16
En⇒Ro translation tasks.

Specifically, given a source sentence x =
{x1, . . . , xI}, for the j-th token in the target sen-
tence y = {y1, . . . , yJ}, the attention probability
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Figure 1: Mean local attention probability on WMT14
En-De and WMT16 En-Ro translation tasks, varied by
the window size.

is computed as pj = {pj1, pj2, . . . , pjI}. To quan-
tify the extent of centralization on a window, we
define a measure γj , termed as local attention prob-
ability (LAP):

γj = avg(pj(fk(arg maxpj))), (4)

where k is the window size, avg(·) is the aver-
age function, and fk(·) indicates choosing sur-
rounding indexes based on the central index
(i.e., arg maxpj). For instance, for pj =
[0.2, 0.5, 0.2, 0.1] and k = 3, fk(·) returns the in-
dexes [1, 2, 3] and γj = (0.2 + 0.5 + 0.2)/3 = 0.3.
Particularly noted that the number of surrounding
indexes involved is less than k when the window
exceeds the bounds of the sequence. For a target
sentence, LAP is computed as γm = 1

J

∑
j γ

m
j .

We average γm on all translated sentences to ob-
tain mean local attention probability (MLAP): γ̄ =
1
M

∑
m γ

m. As seen, MLAP evaluates attention
weights on a fixed window within source words,
which is considered as local information.

We conduct this study on top of the advanced
CMLM model and compare MLAP with the last
layer and all heads of the encoder on three mod-
els: 1) Transformer (AT model), 2) NAT, and 3)
NAT-MTC. As shown in Figure 1, the results re-
veal two key points. First of all, as the window
size increases, the computation of MLAP includes
more words. The decrease of MLAP indicates that
attentions between target and source words usually
focus on neighbor words within the source sen-
tence. Secondly, compared with Transformer, the
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Figure 2: The framework of the proposed model. The
left and right figures represent the encoder and decoder
respectively. Distinct from conventional NAT models,
our model incorporates multi-layer temporal convolu-
tions to model localness for both encoder and decoder.

NAT model holds a smaller MLAP, which demon-
strates that it lacks the ability of modeling localness
effectively. However, our approach corrects this
phenomenon effectively (shown by the bar with
color blue vs. the bar with color orange).

4 Approach

In this section, we elaborate the proposed frame-
work of improving NAT models via explicitly mod-
eling localness. First of all, convolutional neural
networks benefit from effectively capturing local in-
formation and have achieved remarkable success in
computer vision (Krizhevsky et al., 2012; He et al.,
2016). Inspired by this observation, we augment
NAT models with temporal convolutions to en-
hance localness-aware representations. As shown
in Figure 2, we stack temporal convolutions on
top of the representations of word embedding. Let
ε ∈ R|V |×d denote trainable word embedding. The
input sentence x = {x1, . . . , xI} is represented as
E = {E1, . . . ,EI} = {ε[x1]+p1, . . . , ε[xI ]+pI},
where pi is a learnable positional embedding. The
incorporated multi-layer temporal convolutions en-
code the localness-aware representations and the
representations of the localness-aware encoder are
calculated by:

HTC = ENCTC(E), (5)

HSAN = ENCSAN(HTC), (6)

where ENCTC(·) represents multi-layer tempo-
ral convolutions, and ENCSAN(·) indicates self-
attention networks.
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Figure 3: The architecture of temporal convolutions.
The add operation indicates the residual connection.
The sigmoid and multiplicative boxes demonstrate
gated linear units.

Temporal Convolutional Structure In this pa-
per, we employ gated temporal convolutional net-
works to modeling localness, which is shown in
Figure 3. Let hli:j refer to the concatenation of
words {hli, . . . ,hlj}. A temporal convolution op-
eration over a sequence involves a filter kernel
{W,Wg} ∈ Rd×kd and bias {b, bg} ∈ Rd. Fol-
lowing gated linear units (GLU) (Dauphin et al.,
2017), the feature h′l+1

(i+j)/2 is generated by map-
ping hli:j to a vector with dimension d:

h′l+1
(i+j)/2 = (W · hli:j + b)⊗ σ(Wg · hli:j + bg),

where (i + j)/2 is derived by i and j, and ⊗ de-
notes point-wise multiplication. The gate σ(·) is
the sigmoid function and it controls the relevance
of current context to the inputs.

Inspired by previous works (Dou et al., 2018;
Bapna and Firat, 2019), we propose to combine
the localness-aware representations with previous
representations. Specifically, conditioned on the
input latent representations, we employ a residual
connection (He et al., 2016) to generate representa-
tions: hl+1

i = (h′l+1
i + hli)× s, where we normal-

ize the output by a factor s =
√

0.5 to lower the
variance of the sum.

Incorporating into Transformer As a feature
extractor, the encoder in NAT models is dealing
with a more sophisticated task and takes a more
important role than the decoder regarding the trans-
lation quality (Guo et al., 2020b). Therefore, it is
natural to incorporate multi-layer temporal convo-
lutions into the encoder. Besides, compared with
the conventional decoder in autoregressive mod-
els, NAT models avoid the causal mask (Gu et al.,

2018) in self-attention networks (SAN). Therefore,
an identical temporal convolutional structure can be
introduced into the decoder accordingly. In our im-
plementation, we use multi-layer stacked temporal
convolutions to model localness-aware representa-
tions. The presented approach is model-agnostic
and can be applied in different NAT models. In this
paper, we mainly implement the proposed method
on top of advanced CMLM (Ghazvininejad et al.,
2019) and Vanilla-NAT (Gu et al., 2018) models.

5 Experiments

5.1 Setup

Datasets We conduct experiments on two typical
benchmark datasets: WMT14 English-German (En-
De)1 and WMT16 English-Romanian (En-Ro)2,
which consist of 4.0M and 610K sentence pairs re-
spectively. We strictly follow the dataset settings as
previous works (Gu et al., 2018; Lee et al., 2018).
Specifically, for the WMT14 En-De translation
task, we use newstest2013 and newstest2014 as the
validation and test set respectively. For the WMT16
En-Ro task, newsdev2016 and newstest2016 are
used as the validation and test set. We follow the
tokenization strategy from the translation example
of fairseq3. We preprocess our data using byte-pair
encoding (Sennrich et al., 2016) for both transla-
tion tasks, and learn the shared vocabulary with the
joint training corpus in both source and target sides.
For evaluation, we use 4-gram BLEU score (Pap-
ineni et al., 2002) as the evaluation metric for all
language pairs.

Knowledge Distillation As a key ingredient,
knowledge distillation (KD) (Zhou et al., 2020)
has been proven to reduce the complexity of target
data and benefits the training of NAT models effi-
ciently. Following previous works (Gu et al., 2018;
Lee et al., 2018), we apply sequence-level knowl-
edge distillation (Kim and Rush, 2016) to generate
the training data for NAT models. Specifically, for
each sentence pair in a parallel training corpus, we
replace the target sentence with the generated trans-
lation from a pre-trained autoregressive model. We
follow Ghazvininejad et al. (2019) to decode the
entire training set for both language pairs.

1https://www.statmt.org/wmt14/translation-task
2https://www.statmt.org/wmt16/translation-task
3https://github.com/pytorch/fairseq/blob/master/examples

/translation/prepare-wmt14en2de.sh
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# Model WMT14 WMT16
En⇒De De⇒En En⇒Ro Ro⇒En

Autoregressive models

1 Transformer (Vaswani et al., 2017) 27.74 31.09 34.28 33.99

Fully Non-Autoregressive models

2 Vanilla-NAT (Gu et al., 2018) 17.69 21.47 27.29 29.06
3 FCL-NAT (Guo et al., 2020a) 25.75 29.50 – –
4 ReorderNAT (Ran et al., 2021) 22.79 27.28 29.30 29.50
5 Flowseq (Ma et al., 2019) 23.72 28.39 29.73 30.72
6 AXE (Ghazvininejad et al., 2020) 23.53 27.90 30.75 31.54
7 Bag-of-ngrams (Shao et al., 2020) 20.90 24.60 28.30 29.30
8 EM+ODD (Sun and Yang, 2020) 24.54 27.93 – –
9 Imitate-NAT (Wei et al., 2019) 24.15 27.28 31.45 31.81
10 GLAT (Qian et al., 2021) 25.21 29.84 31.19 32.04

Iterative Non-Autoregressive models

11 Iter-NAT (Lee et al., 2018) 21.61 25.48 29.32 30.19
12 LaNMT (Shu et al., 2020) 26.30 – – 29.10
13 CMLM (Ghazvininejad et al., 2019) 27.03 30.53 33.08 33.31

Our work

14 CMLM (Reimp.) 26.73 30.33 33.02 33.39
15 + MTC 27.44 31.09 34.03 34.39

Table 1: Evaluation of translation performance on the test sets of WMT14 En-De and WMT16 En-Ro. “Reimp.”
indicates the results of corresponding models obtained by our implementation. “+” denotes appending new features
to the above row. “–” means not reported.

Model Configuration For model hyper-
parameters, we mainly follow the configurations in
(Lee et al., 2018; Gu et al., 2019). Specifically, for
both translation tasks, we use the hyper-parameters
of transformer-base (dmodel = 512, dhidden = 2048,
nlayer = 6, nhead = 8, pdropout = 0.3). We employ
twarmup = 10, 000 as the warm-up learning rate
schedule. In our implementation, the kernel size of
temporal convolution is set to 3. We use weight
decay 0.01 as well as label smoothing 0.1. We
implement our approach with the open-source
toolkit - fairseq (Ott et al., 2019)4. All the models
are trained for 300K updates on 8 NVIDIA Tesla
V100 GPUs with a batch size of 128K tokens
using Adam optimizer (Kingma and Ba, 2015).

5.2 Results

Overall Results We evaluate the proposed NAT-
MTC approach with the standard practice of knowl-
edge distillation on WMT14 En-De and WMT16
En-Ro datasets. Tabel 1 shows the results of

4https://github.com/pytorch/fairseq

our models and previous non-autoregressive base-
lines. As seen, our re-implementation (Row 14) of
CMLM model achieves comparable performance
with the original ones (Ghazvininejad et al., 2019)
across all translation tasks, which makes the evalua-
tion convincing in this work. Further, our approach
(Row 15) can outperform the strong baseline mod-
els (Row 14) by 0.71 and 0.76 BLEU points on
En⇒De and De⇒En respectively. Encouragingly,
on the En⇒Ro task, our model achieves a signif-
icant improvement by up to 1.01 BLEU points.
These results clearly demonstrate the effectiveness
of explicitly modeling localness for NAT models.

Effects of Model Capacity To rule out that the
improvement is due to higher modeling capacity,
we conduct experiments on matching the number
of parameters of our proposed model by adding
more self-attention layers to the original CMLM.
The results in Table 2 show that although adding
self-attention layers has more parameters than our
model (88.2M vs. 85.0M), our approach achieves
significant improvements (27.44 vs. 26.98). This
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Model #Enc #Dec #Para. BLEU

Transformer 6 6 64.9M 27.74

CMLM
6 6 66.1M 26.73
8 8 80.8M 26.87
9 9 88.2M 26.98

+ MTC 6 6 85.0M 27.44

Table 2: Effects of model capacity on the WMT14
En⇒De task. “#Enc” and “#Dec” indicates the number
of self-attention layers respectively. “#Para.” denotes
the number of trainable parameters.

clearly demonstrates that the improvement of trans-
lation quality is due to the inductive bias brought
by the architecture modification.

Different Model Architectures To verify the
universality of our approach, we also implement
our method on top of the non-iterative Vanilla-NAT
model (Gu et al., 2018) and the results on WMT14
En-De and WMT16 En-Ro are shown in Table 3.
For a fair comparison, we re-implement the Vanilla-
NAT model. As seen, our re-implementations
greatly outperform original Vanilla-NAT reported
by Gu et al. (2018), which makes our evaluation
convincing. For instance, compared with the origi-
nal implementation, our Vanilla-NAT achieves an
increase of 2.45 BLEU points on De⇒En task.
However, our approach shows a further improve-
ment by 0.91 BLEU points. In particular, on
Ro⇒En task, the presented method (+MTC) ob-
tains a significant improvement by 1.43 BLEU
scores. This demonstrates the effectiveness and
universality of our approach.

Model En⇒De De⇒En En⇒Ro Ro⇒En

Vanilla-NAT* 17.69 21.47 27.29 29.06

Vanilla-NAT (Reimp.) 19.05 23.92 29.65 28.88
+ MTC 20.02 24.83 30.43 30.31

Table 3: Translation performance on test sets of
WMT14 En-De and WMT16 En-Ro. “*” indicates that
the results are provided by Gu et al. (2018).

Effects of Decoding Speed To investigate the ef-
fects of our approach on decoding speed, we run
all models with one sentence at a time on a sin-
gle GPU and calculate the inference latency on the
WMT14 En-De task. The results are shown in Ta-
ble 4. In contrast to the respective backbone, our
model achieves a significant improvement with a
very small overhead (2.6× vs. 2.8× for CMLM,

Model BLEU Speed

Transformer 27.74 1.0×
CMLM 26.73 2.8×

+ MTC 27.44 2.6×
Vanilla-NAT 19.05 17.8×

+ MTC 20.02 17.4×

Table 4: Decoding speed on the WMT14 En⇒De task.

17.4× vs. 17.8× for Vanilla-NAT). This indicates
that our approach can efficiently improve the per-
formance of NAT models.

6 Analysis

In this section, we conduct extensive analyses on
the WMT14 En-De translation task to better un-
derstand our model in terms of: 1) effects of dif-
ferent strategies, 2) effects of the sentence length,
3) convergence speed, 4) effects of the number of
decoding iterations, 5) effects of predicted length
candidates, and 6) case study.

# Encoder Decoder BLEU ∆

1 × × 26.73 –

2 X X 27.44 +0.71
3 X × 27.37 +0.64
4 × X 26.87 +0.14

Table 5: Effects of different strategies of incorporating
MTC into NAT on the WMT14 En⇒De task.

Effects of Different Strategies We perform ex-
periments on WMT14 En⇒De to investigate the
effects of different incorporating strategies, which
are shown in Table 5. Specifically, we enumerate
the translation results of three strategies, namely
introducing MTC into: 1) encoder (Row 3), 2)
decoder (Row 4), and 3) both encoder and de-
coder (Row 2). As seen, augmenting the encoder
with MTC improves more BLEU scores than de-
coder (+0.64 vs. +0.14), and incorporating MTC
into both encoder and decoder sides accumulatively
achieves the best translation performance (+0.71
BLEU, Row 2). This demonstrates that augment-
ing encoder with generating localness-aware repre-
sentations is critical in NAT models and validates
the significance of encoder, which was also found
by Guo et al. (2020b).

Effects of Sentence Length We investigate the
translation results of CMLM and our approach on
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Figure 4: Translation performance on the WMT14
En⇒De test set with respect to different lengths of tar-
get sentences. The left axis denotes the BLEU scores
of NAT and NAT-MTC models, while the right axis in-
dicates the difference of BLEU scores for both models.

the WMT14 En⇒De task with respect to different
lengths of target sentences, which is shown in Fig-
ure 4. Specifically, the translations are allocated
into distinct buckets based on the respective lengths
of corresponding reference sentences and then we
evaluate the BLEU scores for each bucket. For
comparison, we also show the relative change of
BLEU score between NAT-MTC and NAT mod-
els. As expected, the presented approach achieves
improvements over the baseline system across all
buckets. In particular, for longer sentences (≥ 50),
our model improves by 1.72 BLEU points. This
clearly reveals that explicitly modeling localness
effectively benefits long-distance dependencies in
NAT models.
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Figure 5: Learning curves on the WMT14 En⇒De
translation task.

Convergence Speed We present the training pro-
cess to observe the effects of our approach on op-
timization, which is shown in Figure 5. As seen,
our approach converges faster concerning the train-
ing loss and validation BLEU score. In partic-
ular, the translation performance is significantly

boosted during training. Specifically, the NAT
model achieves the best BLEU score at 298K train-
ing step (indicated by a vertical line with the color
yellow in Figure 5b). However, our model achieves
an equivalent BLEU point at 92K training steps (in-
dicated by a vertical line with the color blue in
Figure 5b). Therefore, our approach largely bene-
fits convergence speed in training and can achieve
comparable translation accuracy with a reduction
of 70% training steps.

Iter. BLEU Rep.

NAT NAT-MTC ∆ NAT NAT-MTC ∆

2 23.12 24.39 +1.27 2.43% 2.08% -0.35%
4 25.62 26.69 +1.07 0.58% 0.45% -0.13%
6 26.43 27.16 +0.73 0.31% 0.24% -0.07%
8 26.45 27.21 +0.76 0.22% 0.16% -0.06%
10 26.73 27.44 +0.71 0.16% 0.13% -0.03%

Table 6: The translation performance and percentage of
repeating words on the WMT14 En⇒De task, varied
by the number of decoding iterations.

Effects of Iteration We study the translation per-
formance and repetitive words as the number of
decoding iterations changes, which is shown in
Table 6. Specifically, the percentage of repetitive
words is defined as β = Crep/C, where Crep enu-
merates the number of repetitive words (refer to
words, which are equivalent to adjacent words) and
C indicates the total number of words within de-
coding sentences. As seen, with the increase of
the number of iterations, our model improves the
translation performance, while reducing repetitive
words. Besides, our approach reduces more repeat-
ing words (-0.35%) while obtaining more improve-
ments in translation performance (+1.27 BLEU).
This clearly confirms that our approach benefits the
reduction of repetitive translations and alleviates
the multi-modality problem in NAT models.

#Cands. NAT NAT-MTC ∆

1 26.08 27.26 +1.18
2 26.04 27.32 +1.28
3 26.73 27.51 +0.78
4 26.50 27.40 +0.90
5 26.73 27.44 +0.71

Table 7: Translation performance on the WMT14
En⇒De task. “#Cands.” indicates the number of can-
didates with different predicted length.

Effects of Length Candidates We present the
translation performance with respect to the change
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Source Er selbst war im Jahr 2004 das erste Mal in Mauretanien im Cheijk-Zajed-Krankenhaus
in Nouakchott.

Target In 2004, he visited the Cheijk-Zajed Hospital in Nouakchott in Mauritania
for the first time.

NAT He himself was in Mauritania at the Cheijk Zajed Cheijk Hospital in Nouakchott in
2004.

NAT-MTC He himself was in Mauritania for the first time at the Cheijk-Zajed Hospital in
Nouakchott in 2004.

Table 8: A case study on the WMT14 De⇒En translation task. Phrases formatted as bold or underline indicate the
problem of repetitive and incomplete translations in the baseline but fixed by our model.

of predicted length candidates. As shown in Ta-
ble 7, when the number of candidates is reduced
to one, our model drops by fewer BLEU scores
compared with the NAT model (-0.18 vs. -0.65).
In addition, our model performs extremely stable
with the change of length candidates. These obser-
vations verify the robustness of our approach.

Case Study We further carry out a case study
to intuitively illustrate the performance of our ap-
proach and baseline. Table 8 shows an example
randomly selected from the test set on the WMT14
De⇒En translation task. As seen, introducing the
mechanism of generating localness-aware represen-
tations into NAT can produce more fluent and ade-
quate translations. For instance, the German words
“das erste Mal” are ignored by baseline, while the
NAT-MTC model accurately translates it into “for
the first time”. Besides, NAT tends to generate
repetitive words (e.g., “Cheijk Zajed Cheijk Hos-
pital”), while our model corrects this issue. This
demonstrates that our model can comprehensively
generate localness-aware representations in terms
of words, phrases and patterns.

7 Related Work

Fully Non-Autoregressive Models Gu et al.
(2018) first introduced non-autoregressive machine
translation, which enables the sequence genera-
tion in parallel and reduces the inference latency
significantly. Specifically, through sequence-level
knowledge distillation (Kim and Rush, 2016) and
modeling fertility as a latent variable, it maintains
a relatively competitive translation quality as op-
posed to the autoregressive Transformer. The idea
of modeling dependency as latent variables has
been investigated extensively (Kaiser et al., 2018;
Sun and Yang, 2020; Gu and Kong, 2021; Qian

et al., 2021; Du et al., 2021). Kaiser et al. (2018)
proposed to model a shorter sequence as discrete
latent variables, which are generated autoregres-
sively. Subsequently, this short latent sequence is
utilized to decode the output sequence in parallel.
In addition, a glancing mechanism with adaptively
sampling words from the reference (Qian et al.,
2021) was exploited to improve the translation per-
formance of non-iterative NAT.

Non-Autoregressive Models with Iterative Re-
finement To alleviate the multi-modality prob-
lem, a line of researches (Lee et al., 2018; Stern
et al., 2018; Ghazvininejad et al., 2019; Gu et al.,
2019; Saharia et al., 2020; Ding et al., 2021, 2022;
Huang et al., 2022) introduce an iterative refine-
ment process to maintain the translation accuracy.
Lee et al. (2018) first presented an iterative ap-
proach, which interprets the entire model as a latent
variable and each refinement step as a denoising
process. In addition, Stern et al. (2018) proposed
to make predictions for multiple time steps by in-
troducing a blockwise parallel decoding scheme.
Inspired by the pretraining approach (Devlin et al.,
2019; Lample and Conneau, 2019), Ghazvininejad
et al. (2019) utilized a masked language modeling
to predict any subset of the target sentence, which is
based on both the source sentence and a generated
translation with partially masking.

8 Conclusion

In this paper, we propose to improve NAT mod-
els via explicitly modeling localness. First of all,
we conduct a thorough empirical study on the at-
tention mechanism and reveal that compared with
autoregressive models, existing NAT models lack
the ability to effectively modeling local informa-
tion. Furthermore, we incorporate temporal con-
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volutions into both encoder and decoder sides to
enhance localness-aware representations in NAT
models. Empirical results on a variety of language
pairs and two advanced NAT models demonstrate
the effectiveness and universality of our approach.
Further analyses confirm that the proposed method
benefits translations for long sentences and acceler-
ates convergence during training.
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Abstract

Modern neural machine translation (NMT)
models have achieved competitive performance
in standard benchmarks. However, they have
recently been shown to suffer limitation in com-
positional generalization, failing to effectively
learn the translation of atoms (e.g., words) and
their semantic composition (e.g., modification)
from seen compounds (e.g., phrases), and thus
suffering from significantly weakened transla-
tion performance on unseen compounds dur-
ing inference. We address this issue by intro-
ducing categorization to the source contextu-
alized representations. The main idea is to en-
hance generalization by reducing sparsity and
overfitting, which is achieved by finding pro-
totypes of token representations over the train-
ing set and integrating their embeddings into
the source encoding. Experiments on a dedi-
cated MT dataset (i.e., CoGnition) show that
our method reduces compositional generaliza-
tion error rates by 24% error reduction. In ad-
dition, our conceptually simple method gives
consistently better results than the Transformer
baseline on a range of general MT datasets.

1 Introduction

Neural machine translation (NMT) has achieved
competitive performance on benchmark datasets
such as WMT (Vaswani et al., 2017; Edunov et al.,
2018; So et al., 2019). However, the generalizaiton
to low-resource domains (Bapna and Firat, 2019b;
Zeng et al., 2019; Bapna and Firat, 2019a; Khan-
delwal et al., 2021) and robustness to slight input
perturbations (Belinkov and Bisk, 2018; Xu et al.,
2021b) are relatively low for NMT models. In addi-
tion, recent studies show that NMT systems are vul-
nerable to compositional generalization (Lake and
Baroni, 2018; Raunak et al., 2019; Guo et al., 2020;
Li et al., 2021; Dankers et al., 2021; Chaabouni
et al., 2021), namely the ability to understand and

∗This work was done as an intern at Pattern Recognition
Center, WeChat AI, Tencent Inc, China.
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Novel Compounds

DT ADJ N

the large chair

the small car

… … …

Source Sentences with 

Novel Compounds

The park is near the small car.

……

For Pattern 1.2:

Compound Patterns

Pattern 1.1: DET+N

Pattern 1.2: DET+ADJ+N

Pattern 1.3: DET+N+MOD
……

Atoms

DET: the, a, any…

ADJ: small, large, red…

N: car, chair, doctor…

……

Figure 1: The novel compounds in the CoGnition test
set are constructed by composing a few basis semantic
atoms (e.g., determiners (DET), nouns (N), and adjec-
tives (ADJ)) according to the composition patterns. The
compounds are then put into corresponding source con-
texts extracted from the training data.

produce a potentially infinite (formally exponential
to the input size) number of novel combinations
of known atoms (Chomsky, 2009; Montague and
Thomason, 1975; Janssen and Partee, 1997; Lake
and Baroni, 2018; Keysers et al., 2020a).

Take CoGnition (Li et al., 2021), a dedicated
MT dataset, for example (Figure 1). Despite that
certain instances of translation atoms (e.g., small,
large, car, and chair) and their semantic composi-
tions (e.g., small chair and large car) are frequent
in training data, unseen compositions of the same
atoms (e.g., large chair) during testing can suffer
from large translation error rates. Composition-
ality is also a fundamental issue in language un-
derstanding and motivated for translation (Janssen
and Partee, 1997; Janssen, 1998), which has been
suggested as being essential for robust translation
(Raunak et al., 2019; Li et al., 2021) and efficient
low-resource learning (Chaabouni et al., 2021).

The current dominant method to NMT employs a
sequence-to-sequence architecture (Sutskever et al.,
2014; Vaswani et al., 2017), where an encoder is
used to find representations of each input token that
thoroughly integrates its sequence-level context in-
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formation, and a decoder refers to such contextu-
alized representations for generating a translation
sequence. A key reason of failure on composi-
tional generalization is that the correspondence
between pairs of token sequences is modeled as
a whole. Specifically, NMT models are trained
end-to-end over large parallel data without disen-
tangling the representation of individual words or
phrases from that of whole token sequences. At the
sequence level, the source input sample space is
highly sparse mainly due to semantic composition,
and small changes to a sentence can lead to out-of-
distribution issues (Sagawa et al., 2020; Conklin
et al., 2021; Liu et al., 2021).

Intuitively, one way to solve this problem is to
decouple token-level information from the source
sequence by injecting token-level translation distri-
bution (e.g., P (petit|small)) into the source rep-
resentation. Given the fact that the source-side
contextualized representations encode rich token-
level translation information (Kasai et al., 2021;
Xu et al., 2021a), we categorize sparse token-level
contextualized source representations into a few
representative prototypes over training instances,
and make use of them to enrich source encoding.
In this way, when encoding a sequence, the model
observes less sparse prototypes of each token, thus
alleviating excessively memorizing the sequence-
level information.

We propose a two-stage framework to train
prototype-based Transformer models (Proto-
Transformer). In the first stage, we warm up an
initial Transformer model which can generate rea-
sonable representations. In the second stage, for
each token, we run the trained model to extract all
contextualized representations over the training cor-
pus. Then, we perform clustering (e.g., K-Means)
to obtain the prototype representations for each to-
ken. Take Figure 2 as an example, for the token
“Toy”, we collect all the contextualized representa-
tions and cluster them into 3 prototypes. Finally,
we extend the base model by fusing the prototype
information back into the encoding process through
a prototype-attention module, and continue to train
the whole model until convergence.

Experimental results on CoGnition show that our
method significantly improves novel composition
translation by over 24% error reduction, demon-
strating the effectiveness for tackling the composi-
tional generalization problem. To further verify the
effectiveness on more datasets, we conduct experi-

ments on 10 commonly used MT benchmarks and
our method gives consistent BLEU improvement.
We also present empirical analysis for prototypes
and quantitative analysis on compositional gener-
alizaiton. The comparison between the one-pass
and the two-pass training procedure shows that the
one-pass method is both faster and more accurate
than the two-pass one, demonstrating that more
generalizable prototypes extracted from early train-
ing phrase are more beneficial to compositional
generalization. Additionally, quantitative analysis
demonstrates that our proposed model is better at
handling longer compounds and more difficult com-
position patterns. The code is publicly available at
https://github.com/ARIES-LM/CatMT4CG.git.

2 Related Work

Compositional Generalization Recent work
(Lake and Baroni, 2018; Keysers et al., 2020b)
has demonstrated weak compositionality of neural
models using dedicated datasets. Various methods
haven been proposed to solve the issue of composi-
tional generalization such as encoding more induc-
tive bias (Li et al., 2019; Korrel et al., 2019; Baan
et al., 2019; Chen et al., 2020a; Gordon et al., 2020;
Herzig and Berant, 2021), meta-learning (Lake,
2019; Conklin et al., 2021), and data augmentation
(Andreas, 2020; Akyürek et al., 2021). Recently,
Ontañón et al. (2021) and Csordás et al. (2021)
show that the Transformer architecture can per-
form better on compositional generalization with
some modifications. Although these methods have
demonstrated better generalization or interpretabil-
ity, most of them are limited small vocabulary and
limited samples semantic parsing datasets. In the
context of machine translation, Lake and Baroni
(2018) construct a small dataset where the training
data contains a word daxy along with its parallel
sentences of a single pattern (e.g., I am daxy, je
suis daxist) while the test set contains novel pat-
terns (e.g., He is daxy). However, the experiment
is limited in that the test set only consists of 8 sam-
ples. Different from existing work, Li et al. (2021)
propose a large dataset (CoGnition) and construct a
large-scale test set that contains newly constructed
constituents as novel compounds, so that general-
ization ability can be evaluated directly based on
compound translation error rate. We proposed a
method enhancing compositional generalization on
the dedicated dataset of Li et al. (2021), while at
the same time gives improvements to the machine
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She chose a cute style.

Taylor chose to get flowers.
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Figure 2: Architecture of Proto-Transformer. The dotted box denotes the prototype-attention introduced in stage 2.

translation quality at practical test cases.

Neural Machine Translation Recent research
on NMT has paid increasing attention to robustness
(Cheng et al., 2018, 2020; Xu et al., 2021b), domain
adaptation (Bapna and Firat, 2019b; Zeng et al.,
2019; Bapna and Firat, 2019a; Khandelwal et al.,
2021), and compositional generalization (Lake and
Baroni, 2018; Raunak et al., 2019; Fadaee and
Monz, 2020; Guo et al., 2020; Li et al., 2021). Lake
and Baroni (2018) propose a simple toy experiment
to first show the problem of compositionality. Rau-
nak et al. (2019) find that NMT models behave
poorly on recombining known parts and generaliz-
ing on samples beyond the observed length during
training, Fadaee and Monz (2020) find that NMT
models are vulnerable to modifications such as re-
moval of ad-verbs and number substitutions. More
recently, Li et al. (2021) observe significant com-
positional generalization issues on CoGnition, and
Dankers et al. (2021) argue that MT is a suitable
testing ground to ask how compositional models
trained on natural data are. Our work is in line with
the above methods, but we consider a method to
address the issue rather than analyse the problem.
Technically, Raunak et al. (2019) propose to use
bag-of-word regularization to refine encoder and
Guo et al. (2020) propose sequence-level mixup to
create synthetic samples. Different from them, we
propose to enhance models’ compositional gener-
alization by categorizing contextualized represen-
tations, which turns out more effective.

3 Method

3.1 Transformer Baseline
Given a sequence of source sentence X =
{x1, ..., xT }, where T denotes the number of to-

kens, the Transformer encoder (Vaswani et al.,
2017) first maps X to embeddings, packing them
as a matrix H0, and then takes H0 as input and
outputs a contextualized sequence representation
HL ∈ Rd×T , where d and L denote dimension size
and the number of layers respectively.

Attention. Formally, given a set of packed query,
key, and value matrices Q, K, and V , the dot prod-
uct attention mechanism are defined as

Attention(Q,K, V ) = Softmax(
QTK√

d
)V, (1)

where d is the dimension of the key vector.
A typical extension of the above is multi-head

attention (MHA), where multiple linear projections
are executed in parallel, and the outputs of all heads
are concatenated:

MHA(Q,K, V ) =WO[head1; ...;headh], (2)

headi = Attention(WQ
i Q,W

K
i K,W

V
i V ), (3)

where WO, WQ
i , WK

i , and W V
i are model param-

eters.

Layer Structure. The Transformer encoder has
L identical layers, each of which is composed of
two sublayers (i.e., self-attention and feed-forward
networks). In the l-th self-attention layer, the query,
key, and value matrices are all the hidden states
from the previous layer H l−1:

H l
a = MHA(H l−1, H l−1, H l−1). (4)

The feed-forward sublayer is a two-layer transfor-
mation with ReLU activation:

H l =W l
2ReLU(W l

1H
l
a + bl1) + bl2, (5)
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where W l
1, bl1, W l

2, and bl2 are trainable parameters.
The layer normalization and residual connection
are omitted for brevity.

3.2 Proto-Transformer

Our proposed Proto-Transformer extends the base
Transformer by introducing a prototype-attention
module on top of the self-attention module in each
encoder layer, which aggregates token-level proto-
type representations for each token.

3.2.1 Prototype-attention
Assuming that each token xt in the input sequence
is assigned a set of prototype vectors packed as
a matrix Cxt ∈ Rd×k where k is the number of
prototypes. The prototype attention aggregates the
global prototype information and refines the con-
textualized representations for each token by the
multi-head attention mechanism:

H l
p = MHA(H l

a, C, C), (6)

where C is all the prototype representations of the
sequence (i.e., {Cx1 , Cx1 , ..., CxT }), and the lo-
calness of prototype attention is implemented by
mask mechanisms. The output H l

p is fed into the
feed-forward network (Eq. 5).

The difference between the Proto-Transformer
encoder and the Transformer encoder is illustrated
by the dotted box in Figure 2. By stacking multi-
ple self-attention layers with prototype-attention,
the encoder is able to exploit less-sparse prototype
representations, preventing the model from over-
memorizing the local context.

3.2.2 Training
Proto-Transformer takes a two-stage training

process, which is summarized in Algorithm 1.
Here, D denotes a training corpus, V denotes the
vocabulary of D, θ(0) denotes initial parameters of
a Transformer model, θ+ denotes parameters of the
prototype-attention module, and k and N denote
the number of prototypes and training epochs of
stage 1 respectively.

Stage 1. We first train a base Transformer model
for N epochs until it is able to generate reason-
able translations. Given the training corpus D =
{(X,Y )}, where X and Y denote a source sen-
tence and target translation, respectively, the model
is optimized by minimizing cross-entropy loss. Af-
ter training for N epochs we obtain a model θ(N),
which has acquired some translation knowledge.

Algorithm 1 The training procedure of Proto-
Transformer

Input: Training set D = {(X,Y )}, vocabulary V , NMT
model θ(0), prototype-attention modules θ+, number of
prototype k, training epochs of stage one N , token-
representation lookup tableQ, token-prototype lookup table
P
Output: Trained NMT model θ∗

Initialize θ(0) and θ+
Stage 1
for i = 1 to N do
θ(i)← TrainModel(D, θ(i−1))

end for
Stage 2
for X ∈ D do

for each token xi in X do
Add Hi to the corresponding contextualized represen-

tation listQ[xi] for token xi
end for

end for
Apply K-Means to each token vj ∈ V to obtain prototype
representations Cvj and add (vj , C

vj ) to P
Introduce prototype-attention modules to the base model:
θ(N) ← θ(N) ∪ θ+
Continue training to convergence:
θ∗←TrainModel(D, θ(N),P)

Stage 2. We cluster the contextualized repre-
sentations of each token to obtain its prototype
representations. In particular, using the model
θ(N), we build a token-representation lookup ta-
ble Q. We iterate through the whole training cor-
pus and calculate contextualized representations
{Hvi

1 , ...,H
vi
R(vi)
} of each source token vi in the

vocabulary except punctuation, where R(vi) is the
number of contextualized representations of token
vi. Here we omit the superscript L for simplicity.
Next, for each token vi, we use K-Means (Lloyd,
1982) 1 to cluster the contextualized representations
due to its efficiency for large number of samples in
high dimensions:

Cvi = K-Means(Hvi
1 , ...,H

vi
R(vi)

). (7)

All token-prototype pairs are saved in a lookup
table P . Finally, we introduce the prototype-
attention modules with parameters θ+ to the Trans-
former encoder, and for each source sentence we
retrieve the prototype representations from table P .
We continue to optimize the whole parameter set
{θ(N) ∪ θ+} to obtain a final model θ∗.

As mentioned earlier in the introduction, we
compare the above one-pass method to a two-pass
method, where we train the base model to conver-
gence instead of for N iterations, before training

1https://scikit-learn.org/stable/modules/classes.html
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a Proto-Transformer from scratch which uses clus-
tered prototypes from the base model. The relative
advantage is that the prototypes are taken from a
fully trained NMT model, but the disadvantage is
that the training time doubles. In addition, it re-
mains a empirical question whether fully-trained
NMT models give prototypes that are more suitable
for guiding a final model. We discuss this in the
Section 5.1.

It is worth noting that a limitation of K-Means
is the pre-specification of cluster numbers, which
can be different for different tokens in practice.
Non-parametric clustering algorithms such as DB-
SCAN (Ester et al., 1996) can potentially solve
the problem. However, their runtime complexity is
typically O(n2) or worse, which prevents us from
choosing them for large-scale NMT data.

4 Experiments

4.1 Experimental Settings

Datasets. We use CoGnition (Li et al., 2021)
to systematically evaluate compositional gener-
alization in MT scenarios, an English→Chinese
(En→Zh) translation dataset. In consists of a train-
ing set of 196,246 sentence pairs, a valid set and
a test set of 10,000 samples. In particular, it has a
dedicated test set (i.e., CG-test set) consisting of
10,800 sentences containing novel compounds, so
that the model’s ability of compositional general-
ization can be measured by the ratio of compounds
that are correctly translated. In addition, we choose
9 machine translation tasks from IWSLT, WMT
and JRC-Acquis to verify the general effectiveness
of our methods. The dataset statistics are shown in
Appendix B.

Setup. We use Transformer (Vaswani et al., 2017)
as our baseline models implemented using the
Fairseq toolkit (Ott et al., 2019). For CoGnition
and IWSLT, we use the Transformer iwslt_de_en
setting while for the others we use the trans-
former_base setting. Following previous work, for
IWSLT and JRC-Acquis En↔Es, we use beam
search with width 5 and length penalty 0.6 for in-
ference, whereas for the other datasets we set the
beam width as 4. For CoGnition,N and k are set as
8 and 3 based on the validation set, andN and k for
the other datasets are shown in Appendix B. Empir-
ically, N is recommended to chosen from 10% to
25% of the total training epochs. We conduct cat-
egorization for all tokens except punctuation and

low-frequent words, and the token on CoGniton
is word and is subword on other datasets For re-
producibility and stability, we train 6 models with
seeds provided in (Li et al., 2021) for each method
and report the average performance.

Evaluation Metrics. We use compound transla-
tion error rate (CTER; (Li et al., 2021)) to measure
model performance on CoGnition. Specifically,
instance-level CTER denotes the ratio of samples
where the novel compounds are translated incor-
rectly, while aggregate-level CTER denotes the ra-
tio of compounds that suffer at least one incorrect
translation in corresponding contexts. To calcu-
late CTER, Li et al. (2021) provide a manually
collected dictionary for all the atoms based on the
training set, since each word may have different
translations. We also conduct human evaluation
(Appendix A) as a supplement. We conduct eval-
uation using BLEU (Papineni et al., 2002) for the
other datasets.

4.2 Baseline Methods

We compare our method with following baselines:
(1) Transformer (Vaswani et al., 2017), which
uses the same settings as Li et al. (2021); (2)
Transformer-Small, a more compact Transformer
model with 4 layers and 256 hidden size; (3)
Transformer-Deep, which increases the number
of encoder layers to 8 to take the same parame-
ters as Proto-Transformer; (4) Transformer-Rela,
which replaces absolute positional encoding with
a relative one, an important component for com-
positional generalizaiton demonstrated in (Csordás
et al., 2021; Ontañón et al., 2021); (5) Bow (Rau-
nak et al., 2019): which uses bag-of-words loss
to regularize the encoder based on the observation
that the encoder representations are much weaker
on unseen composition; and (6) SeqMix (Guo et al.,
2020): which synthesizes examples by interpolat-
ing embeddings2.

4.3 Results on CoGnition

The main results on CoGnition are shown in Table
1. Transformer gives instance-level and aggregate-
level CTERs of 28.42% and 62.88%, respectively.
In comparison, Proto-Transformer gives a score of
21.69% and 51.84%, respectively, with a significant
improvement of 6.73% and 11.04% accordingly.

2The performance is the best when the hyper-parameters
of Beta distribution are set to 1.0, which is consistent with
(Guo et al., 2020).
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Model Compound Translation Error Rate (CTER) ↓
NP VP PP Total

Transformer 24.74%/55.16% 24.82%/59.54% 35.71%/73.94% 28.42%/62.88%
Transformer-Deep 25.11%/54.11% 28.14%/60.43% 37.38%/75.24% 30.21%/63.26%
Transformer-Small 22.14%/47.21% 23.55%/53.60% 32.02%/69.64% 25.91%/56.82%

Bow 22.16%47.89% 24.83%/55.57% 35.04%/73.21% 27.34%/58.89%
SeqMix 24.52%/49.71% 26.88%/58.90% 34.36%/73.09% 28.59%/60.57%

Transformer-Rela 22.69%/51.20% 24.89%/57.17% 34.94%/71.73% 27.50%/60.03%
Proto-Transformer 14.07%/36.45% 22.13%/50.90% 28.85%/68.15% 21.69%/51.84%

Table 1: Compound translation error rate (CTER) on CoGnition. We report instance-level and aggregate-level
CTERs, separated by “/”. NP, VP, and PP denote noun phrases, verb phrases and positional phrases, respectively,
three compound types in the compositional generalization test set (CG-test set).

Moreover, Proto-Transformer outperforms all base-
line systems significantly, indicating that catego-
rization on the contextualized representations is
more beneficial to compositional generalization.
We also calculate the BLEU scores, and Proto-
Transformer and Transformer obtain 60.1 and 59.5,
respectively. The BLEU scores are all relatively
high since the sentences on the CG test set are simi-
lar to the sentences in training data except the novel
compounds. For CoGnition, CTER is more accu-
rate and suitable than BLEU because the translation
dictionary processes multiple accurate translations
of each compound better.

Since Proto-Transformer brings some extra
parameters (approximately 6M), we investigate
whether the performance improvement is derived
from the increase of model parameters. As
can be seen, Transformer-Deep performs poorly
on the CG-test set, indicating that only increas-
ing model capacity may be harmful since it
leads to worse over-fitting to sequence-level dis-
tributions. Besides, the more compact model
Transformer-Small yields better results than Trans-
former and Transformer-Deep but lags far behind
Proto-Transformer. This shows that model size is
useful but not sufficient for solving compositional
generalization.

Proto-Transformer performs better than Bow, in-
dicating that the encoder representations refined
by categorization are more adequate than the reg-
ularization technique. Compared to SeqMix, the
improvement of Proto-Transformer is more signif-
icant (2.31% vs 11.04% aggregate-level CTER).
SeqMix reduces representation sparsity via linear
interpolation in the input embedding space, and we
conjecture that the stochastically synthetic samples
may be unreasonable and harmful to model training.
Relative positional embedding (Shaw et al., 2018)
is demonstrated to be important for compositional

Dataset Direction BLEU
Transformer Proto-TF

IWSLT

En⇒De 28.44 28.96
En⇒It 28.24 28.87
En⇒Vi 30.19 30.96

WMT
En⇒Ro 32.46 33.37
Ro⇒En 32.49 33.27
En⇒Fi 21.39 22.11
En⇒De 27.95 28.49

JRC- En⇒Es 60.90/60.32 61.56/60.90
Acquis Es⇒En 63.21/62.59 63.73/63.10

Table 2: BLEU on commonly used MT datasets. For
JRC-Acquis, we follow previous work to report results
on both the valid and test sets, separated by “/”. The
performance of our model is significantly better than
Transformer (p < 0.05) (Koehn, 2004).

generalization. Specifically, Transformer-Rela re-
duces CTERs by 0.92% and 2.85% but is inferior
to ours, indicating that the prototypes bring more
than positional information.

4.4 Results on General MT Datasets

We conduct experiments on several general MT
benchmarks, where the translation compound error
rate (CTER) cannot be calculated directly. The per-
formances on IWSLT, WMT and JRC-Acquis are
presented in Table 2. Compared with Transformer,
our model achieves consistent improvement (0.67
BLEU), demonstrating its effectiveness under gen-
eral evaluation settings. Proto-Transformer outper-
forms Transformer by 0.91 and 0.78 BLEU scores
on WMT’16 En→Ro and Ro→En respectively.
For JRC-Acquis, our model achieves an average
improvement of 0.62 BLEU score on En→Es and
0.56 BLEU score on Es→En. On the largest dataset
WMT’16 En→De, our model also performs better
than Transformer by 0.54 BLEU score. In addi-
tion, the large datasets possibly benefit from the
additional parameters (about 6M). We run an exper-
iment of a model with 8 encoder layers on EN-DE,
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k CTER k CTER
0 28.42%/62.88% 3 21.69%/51.84%
1 23.60%/54.33% 4 23.04%/52.70%
2 22.58%/53.19% 5 24.98%/54.71%

Table 3: CTERs against different number of prototypes
on the CG-test set. “0” denotes to the Transformer
baseline.

and it achieves 28.02 BLEU, inferior to our model
with same number of parameters.

Note that the BLEU scores in the general
datasets can reflect translation quality, but has sev-
eral limitations in the measurement of generaliza-
tion or robustness. For example, when a sentence
is almost translated correctly but has few serious
errors, it can achieve a high BLEU score but suffers
severe semantic distortion. For instance, as shown
in (Li et al., 2021), the model mis-translates “He
became sick from eating all of the peanut butter
on the ball“ into “He became sick from eating all
of the peanut butter on the field“. With a minor
mistake on the compound “on the ball“, the model
achieves a sentence-level BLEU of 61.4, but the
full sentence meaning is largely affected.

5 Analysis

5.1 Prototypes

Effect of the Number of Prototypes. The num-
ber of prototypes k controls the granularity of con-
text used to refine the representation learning, and
is determined it based on the model loss on the de-
velopment set. In this experiment, we investigate its
influence on generalization performance. As shown
in Table 3, incorporating prototypes can reduce the
translation error caused by unseen compounds, and
the model obtains the best generalization perfor-
mance when k is 3. Intuitively, using too many
prototypes dilutes the concentration effect, leading
to overfitting again, while too few prototypes limits
the expressiveness for polysemous words, e.g., one
prototype represents a single sense.

Effect on Token-level Translation Consistency.
We hypothesize that token alignments induced by
Proto-Transformer are less ambiguous for tokens
having settled meaning. To verify it, we approxi-
mately measure the number of distinct translations
for 10 selected English tokens in the WMT Ro→En
dataset, by counting the number of Romanian to-
kens that are aligned to the English tokens in the
test set with the method of Chen et al. (2020b).

Tgt tokens PT TF Src tokens
yesterday 1 3 ieri,psd,victor
limited 2 5 limitata,limitat,comert,apel, ...

six 1 6 sase,procente,saptamani,din, ...
agriculture 1 4 agricultura,plasa, ...

culture 2 5 cultura,culturii, profesion...
republic 1 3 republica,liderului, ...
simply 1 3 simplu,nu,individuala, ...

november 1 6 noiembrie,propaganda,2008, ...
tomorrow 1 3 maine,dimineata,amiaza, ...
saturday 1 3 sambata,seara,dimineata, ...

Table 4: Word translation variations induced from
Transformer (TF) and Proto-Transformer (PT). The
columns PT and TF denote the number of aligned Roma-
nian tokens, and the bold characters display the tokens
induced from Proto-Transformer.
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Figure 3: CTERs of Proto-Transformer and Trans-
former over different compound and context lengths.

As can be seen in Table 4, Proto-Transformer at-
tends to much fewer token types than Transformer.
This shows that Proto-Transformer’s translations
are less prone to context changes, which indicates
the sparsity reduction of input sample space. The
finding also partly explains the improvement on the
Ro→En dataset. The above observations verify our
intuition in the introduction that adding prototypes
to the source representation enhances the model’s
knowledge on token-level translation consistency,
which leads to better compositional generalizaiton.

It is noteworthy that increase translation con-
sistency may increase translationese effects (Van-
massenhove et al., 2021). We argue that there can
be a trade-off between the consistency modeling
and translationese. Our approach does not force
the model to generate highly consistent translation,
but aims to alleviate the vulnerability to context
changes by introducing several prototypes.

One-pass vs Two-pass. The possible advantage
of the two-pass training procedure (Two-Pass)
mentioned in Introduction is that the quality of
the prototype representations generated by a con-
verged model may be better. Specifically, Two-
Pass achieves 24.36% instance-level and 55.69%
aggregate-level CTER, outperforming Transformer
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by 4.06% and 7.19%, respectively, but is notice-
ably inferior to Proto-Transformer (21.69% and
51.84%). This observation may relate to the obser-
vation that neural models learn more generalizable
features in the early phase before memorization
(Arpit et al., 2017; Stephenson et al., 2021). The
one-pass approach can not only reduce the train-
ing cost (11,103 seconds vs 6,286 seconds) but
also leverage more generalizable features to better
improve models’ compositional generalization. In
addition, the prototypes can be initialized randomly
and trained along with the model, and this variant
obtains 26.24% and 57.94% CTERs. It preforms
much worse than Proto-Transformer (21.69% and
51.84%) though they have identical number of pa-
rameters and architecture, indicating the effective-
ness of explicit categorization during training.

5.2 Effects on Compositional Generalization

Composition Length. Longer compounds are
harder to generalize as they contain richer seman-
tic information (Li et al., 2021). We classify
the test samples by compound length and con-
text length, and calculate the instance-level CTER.
In Figure 3, we can observe that the advantage
of Proto-Transformer grows larger in generalizing
longer compounds and context. In particular, Proto-
Transformer gives a lower CTER by 12.80% over
samples with context longer than 13 tokens. The
underlying reason can be that longer compounds or
contexts are more sparse in input space, and Proto-
Transformer alleviates sparseness by putting token
distributions into representations via prototypes.

Modifier. One challenging type of novel com-
pounds in CoGnition is the postpositive modifier
atom (MOD), which is constructed to enrich the
information of its preceding word (e.g., he liked
in the sentence he bought the car he liked). The
difficulty of translating compounds with MOD lies
in word reordering from English to Chinese. We
divide the test samples into two groups according
to compounds with or without MOD (Figure 4).
Proto-Transformer demonstrates larger advantage
in translating the compounds with MOD, show-
ing its superiority in processing complex semantic
composition. To further understand the effective-
ness, we choose the token liked, a core part of the
MOD atom he liked, and visualize its represen-
tations with t-SNE (van der Maaten and Hinton,
2008). In Figure 5, we can see that the representa-
tions of he liked serving as MOD are concentrated
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Figure 4: CTERs on compounds w/o and w/ MOD.

embedding
prototype
is_mod
not_mod

Figure 5: Visualization of contextualized embeddings
(grey tri-down markers) and 3 prototypes (black stars)
for the token liked. The blue diamonds and orange
circles denote the case where liked appear in the context
he liked, and the former one denotes the case where he
liked serves as MOD.

at the leftmost prototype, while the representations
of he liked not serving as MOD scatter on the other
prototypes. Through representation categorization,
Proto-Transformer finds a specialized prototype
which abstracts the knowledge of liked serving as
a part of MOD, and refers to the MOD prototype
when processing compounds with MOD.

Case Study We present 3 source samples contain-
ing a novel compound woke the silly boyfriend up
and 5 atoms, i.e., woke, the, silly, boyfriend and up,
and their translations in Table 5. For all samples,
correct translations should contain complete seman-
tic meaning of the compound. Proto-Transformer
correctly translates the compound along with dif-
ferent contexts across all samples, while Trans-
former suffers various mistakes. In the first sample,
the translation of something terrible is omitted by
Transformer. In the second sample, Transformer
omits silly boyfriend and mistranslates woke the
silly boyfriend up into a silly bird woke up. Simi-
lar mistake can be observed in the third example,
where Transformer mistranslates his dog woke the
silly boyfriend up into his dog woke up. Trans-
former overfits contexts and makes errors on un-
seen compositions, while our model is more stable.
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Source Transformer Proto-Transformer
然而，使她沮丧的是， 但令她沮丧的是，

Yet to her dismay something terrible 一个可怕的男友醒来了。 某种可怕的东西把那个傻男友吵醒了。
woke the silly boyfriend up. (Yet to her dismay (Yet to her dismay something terrible

a silly boyfriend woke up.) woke the silly boyfriend up.)
每天早上6点， 每天早上6点，一只鸟

Every morning , a bird woke the silly 一只愚蠢的鸟叫醒去上班。 叫醒那个愚蠢的男朋友去上班。
boyfriend up for work at 6 am. (every morning , a silly bird woke up (Every morning , a bird woke the silly

for work at 6 am.) boyfriend up for work at 6 am.)
His dog woke the silly boyfriend up 他的狗半夜醒来了那个傻男友。 他的狗半夜把那个傻男友吵醒了。

in the middle of the night. (His dog woke up in the middle of (His dog woke the silly boyfriend up
the night, the silly boyfriend.) in the middle of the night.)

Table 5: Example translations. The bold characters denoting the novel compounds and corresponding translations.

6 Conclusion

We investigated a conceptually simple method for
enhancing compositional generalizaiton of NMT
models, proposing a two-stage training framework
to fuse prototype representations into the encoding
process of Transformer. Experiments on CoGnition
show the effectiveness of our method on composi-
tional generalization, and extensive results over 9
translation tasks verify the generality of our method.
To our knowledge, we are the first to propose token-
level categorization for NMT, achieving promising
performance on both a large-scale compositional
generalization dataset and general datasets.
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A Human evaluation

Model Adequacy Fluency
Transformer 4.32 4.27

Proto-Transformer 4.51 4.54

Table 6: Human evaluation on adequacy and fluency.

We conduct the human evaluation for transla-
tions in terms of adequacy and fluency. We ran-
domly sample 100 sentences from the CG-test set
of CoGnition, and invite three annotators to eval-
uate the translation adequacy and fluency ranging
from one to five. The five point scale for adequacy
indicates how much of the meaning expressed in
the reference translation is also expressed in a hy-
pothesis translation: 5 = All, 4 = Most, 3 = Much,
2 = Little, and 1=None. The five point scale for
fluency indicates how fluent the translation is: 5 =
Flawless, 4 = Good, 3 = Non-native, 2 = Disfluent,
and 1 = Incomprehensible.

The average of the scores from the three anno-
tators is taken as the final score, and the results
of the baseline and our model are shown in Table
6. Compared with Transformer, Proto-Transformer
improves adequacy and fluency by 0.19 and 0.27,
respectively. Proto-Transformer achieves more ac-
curate translation of the novel compounds by allevi-
ating the problem of compositional generalization,
and possibly make the other part of the sentence to
be translated better.

B Dataset Statistics and
Hyper-parameters

We list the statistics and the introduced hyper-
parameters of all the datasets in Table 7.

For IWSLT’14 English↔German (En↔De),
IWSLT’14 English→Italian (En→It), and
IWSLT’15 English→Vietnamese (En→Vi), we
use Moses tokenizer3 and apply joint BPE (Sen-
nrich et al., 2016) with 10,000 merge operations.
For WMT’16 English↔Romanian (En↔Ro), we
use the processed data from Lee et al. (2018).
For WMT’16 English→German (En→De) and
WMT’17 English→Finnish (En→Fi), we ap-
ply joint BPE with 37,000 and 32,000 merge
operations, respectively. For JRC-Acquis
English↔Spanish (En↔Es) we use the datasets
processed by Gu et al. (2018). For WMT’17
En-Fi, we use the concatenation of newstest2015,

3https://github.com/moses-smt/

newsdev2015, newstest2016 and newstestB2016
as the development set, and the newstest2017 as
the test set.

C Target-side Prototypes.

Target-side prototypes possibly contain more bilin-
gual translation knowledge since the decoder pro-
cesses target sentences based on source repre-
sentations. We are interested in whether target-
side prototypes can be used to enhance composi-
tional generalization and/or further improve Proto-
Transformer. To answer this question, we first ex-
tract prototypes from the decoder and incorporate
them back to the decoder using the same mecha-
nism of Proto-Transformer. The model can reduce
CTERs to 25.93%/58.21%, largely inferior to us-
ing source-side prototypes (21.69%/51.84%). We
also try to incorporate target-side prototypes to the
decoder based on Proto-Transformer but it gives
no noticeable improvement, achieving 21.65% and
51.71% CTERs, respectively. The underlying rea-
son is connected a recent finding that translation
already happens in the source encoding and the
representations from encoders contain sufficient
translation knowledge (Kasai et al., 2021; Xu et al.,
2021a).

D Computational Cost

Our framework adds some computational over-
heads including extracting contextualized repre-
sentations and conducting the clustering algorithm.
The former only requires a single forward pass
over the training set, merely amounting to a frac-
tion of the cost of training for one epoch. Thanks
to pytorch implementation of K-means algorithms
which utilize GPU for faster matrix computations,
the clustering is friendly for the large-scale datasets
and it can be much faster with parallelization and
more powerful hardware. Since the number of pro-
totypes is a constant k, the complexity of prototype-
attention is O(kT ), linear with respect to sequence
length T .
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CoGnition IWSLT’14 IWSLT’15 WMT’16 WMT’17 JRC-Acquis
En-Zh En-De En-It En-Vi En-Ro En-Ro En-De En-Fi En-Es Es-En

#Train 196k 157k 175k 133k 608k 608k 4.5M 2.6M 679k 679k
#Valid 10k 7k 1k 1.6k 2k 2k 3k 9k 25k 25k
#Test 10k 7k 0.9k 1.3k 2k 2k 3k 3k 26k 26k
N 8 12 10 8 8 11 15 12 8 8
k 3 4 4 3 4 6 5 6 4 4

Table 7: Dataset statistics and hyper-parameters.
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Abstract

We propose a method to distill language-
agnostic meaning embeddings from multilin-
gual sentence encoders for unsupervised qual-
ity estimation of machine translation. Our
method facilitates that the meaning embed-
dings focus on semantics by adversarial train-
ing that attempts to eliminate language-specific
information. Experimental results on unsuper-
vised quality estimation reveal that our method
achieved higher correlations with human evalu-
ations.

1 Introduction

Quality Estimation (QE) is a task of estimat-
ing translation quality without reference sen-
tences (Specia et al., 2018). Reference-based au-
tomatic evaluation methods, such as BLEU (Pap-
ineni et al., 2002) and BLEURT (Sellam and Parikh,
2020), have contributed to research and develop-
ment of machine translation; however, end-users of
machine translation systems unlikely have such ref-
erence translations. Hence, the development of QE
methods that correlate well with human evaluation
is practically important.

Supervised QE models (Ranasinghe et al., 2020;
Fomicheva et al., 2020a; Nakamachi et al., 2020)
based on pre-trained multilingual sentence en-
coders (Conneau et al., 2020; Feng et al., 2022)
have been actively proposed in the QE competi-
tions (Specia et al., 2020). However, these mod-
els require bilingual sentence pairs with manually
labeled translation quality scores for fine-tuning.
Creating such a QE dataset is expensive because it
requires annotators who are fluent in both of source
and target languages. Therefore, supervised QE
models are limited to several major language pairs
included in the competitions.

In contrast, unsupervised QE allows quality es-
timation without human-assessed machine trans-
lation outputs. Instead of the annotated outputs,
unsupervised QE utilizes widely available parallel
corpora. Multilingual sentence encoders (Artetxe
and Schwenk, 2019a,b; Reimers and Gurevych,
2020; Conneau et al., 2020; Feng et al., 2022) are
promising for developing unsupervised QE models;
however, their sentence embeddings are dominated
by language-specific information. Due to this char-
acteristic, these sentence embeddings form clusters
by language rather than by meaning, which hinders
precise estimation of semantic similarity across
languages (Tiyajamorn et al., 2021). To address
this problem, DREAM (Tiyajamorn et al., 2021)
disentangles sentence embeddings to meaning and
language embeddings. It conducts self-supervised
learning using parallel sentence pairs in bilingual
corpora as positive examples and random pairs as
negative examples; meaning embeddings of posi-
tive pairs should be close while those of negative
pairs should be distant. However, DREAM lacks
direct supervision to eliminate language-specific
information from the meaning embeddings and its
architecture is complex.

We improve DREAM by introducing an adver-
sarial training that attempts to remove language-
specific information from the meaning embed-
dings.1 Our adversarial training eliminates the ran-
dom pairs that DREAM needs, which results in
a simpler architecture and lighter computational
costs for training. Experimental results on the
WMT20 QE task (Specia et al., 2020) revealed that
our method achieved higher correlations with hu-
man scores than previous unsupervised QE models
based on multilingual sentence encoders. Com-

1The source code for this paper is available at https:
//github.com/kuro961/MEAT.
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Figure 1: Multitask training for distilling meaning embeddings from multilingual sentence embeddings

pared to other approaches independent of multilin-
gual sentence encoders (Fomicheva et al., 2020b;
Thompson and Post, 2020), our method showed
higher correlations in low-resource language pairs.

2 Proposed Method

Our model is an autoencoder comprising two multi-
layer perceptrons, MLPM and MLPL, trained with
bilingual corpora as shown in Figure 1. The for-
mer is responsible for extracting meaning and the
latter for extracting language-specific information.
These outputs are summed to reconstruct the input
sentence embedding. We train these MLPs using
multilingual-multitask learning with the following
four loss functions.

L = LR + LC + LL + LA (1)

2.1 Reconstruction Loss LR
LR is the basis of the autoencoder training, which
ensures that a meaning embedding êM ∈ Rd and
language embedding êL ∈ Rd can reconstruct the
input sentence embedding e ∈ Rd. Here, d is the
dimension of the sentence embedding. We define
reconstruction loss with cosine similarity2 as:

LR = 1− cos(e, (êM + êL)). (2)

2.2 Cross Reconstruction Loss LC
Source and target sentences in Figure 1 are seman-
tically equivalent as they are a parallel pair. Hence,
their meaning embeddings should be interchange-
able, for which we design a cross reconstruction

2This constraint does not strictly reconstruct the input em-
bedding, because cos(·) does not take into account the vector
norm. We empirically employed cos(·) for its higher perfor-
mance than MSE used by Tiyajamorn et al. (2021).

loss LC as:

LC = 2−cos(s, (ŝL+ t̂M ))−cos(t, (t̂L+ ŝM )).
(3)

The sentence embedding in the source language s
should be reconstructed from its language embed-
ding ŝL and the meaning embedding of the target
language t̂M . Similarly, the sentence embedding
in the target language t should be reconstructed
from its language embedding t̂L and the meaning
embedding of the source language ŝM .

2.3 Language Embedding Loss LL
The source and target languages are different. To
ensure that language embeddings of source and tar-
get are distinctive each other, we design a language
embedding loss LL as:

LL = max(0, cos(ŝL, t̂L)). (4)

2.4 Adversarial Loss LA
We improve DREAM by giving direct supervision
that eliminates language-specific information from
the meaning embeddings. For this aim, we intro-
duce an adversarial loss LA that decrease language-
identifiability from the meaning embeddings.

First, as an adversarial model that attempts to
identify the language of the input sentence from its
meaning embedding, we use the following multi-
class classifier MLPD:

ŷ = softmax(MLPD(êM )). (5)

MLPD is trained using the cross-entropy loss:

LD = −
∑

j

yj log ŷj . (6)

Note that Equation (6) is the loss function for train-
ing MLPD, and is not included in Equation (1) for
training MLPM and MLPL.
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With the adversarial model, we define LA that
supervises MLPM to derive meaning embeddings
from which languages are unidentifiable. Specif-
ically, LA makes the distribution of ŷ close to a
uniform distribution:

LA = − 1

N

∑

j

log ŷj , (7)

where N is the number of language types in the
training data. Adversarial training is performed si-
multaneously with the model training; Equation (6)
trains the adversarial model to achieve higher lan-
guage identifiability from the meaning embeddings
while Equation (7) makes the meaning embeddings
less language-identifiable.

2.5 Application to QE
Once our model is trained, we can use MLPM to
disentangle meaning embeddings from sentence
representations generated by multilingual sentence
encoders. We compute a QE score by a cosine
similarity between meaning embeddings of source
sentence s and translation output t:

cos(ŝM , t̂M ). (8)

3 Evaluation

We evaluated the effectiveness of the proposed
method in an unsupervised QE task.

3.1 Setting
Dataset Following the previous work (Tiya-
jamorn et al., 2021), we used six language pairs
included in the WMT20 QE task3 (Specia et al.,
2020). For each language pair, the test set consists
of 1k pairs of source and machine-translated out-
put sentences manually labeled with a translation
quality score. The evaluation metric is Pearson cor-
relation coefficients between these human scores
and model predictions.

We trained our model on the publicly available
bilingual corpora that were used to train the tar-
get machine translation systems (Ott et al., 2019).
We used bilingual corpora of 1M sentence pairs
for high-resource (en-de and en-zh), 200k for
medium-resource (ro-en and et-en), and 50k for
low-resource (ne-en and si-en) language pairs.4

3https://github.com/facebookresearch/
mlqe

4We sampled the same numbers of parallel sentences as
in Tiyajamorn et al. (2021) from http://www.statmt.
org/wmt20/quality-estimation-task.html for
fair comparison.

Model All the MLPs in our model are single-
layer feedforward networks. As a multilingual sen-
tence encoder to disentangle meaning embeddings,
we used LaBSE5 (Feng et al., 2022) with Hug-
gingFace Transformers (Wolf et al., 2020), which
achieved the best performance in DREAM (Tiya-
jamorn et al., 2021). We used a [CLS] embed-
ding as a sentence embedding. The parameters of
LaBSE were frozen and only those of MLPs in
our method were updated during training using the
parallel corpora.

We used a batch size of 512, Adam (Kingma
and Ba, 2015) optimizer with a learning rate of
1e − 5. We employed early stopping for training
with a patience of 10 using a validation loss of
Equation (1). The validation set was created by
randomly sub-sampling 10% of the training set.

Comparison We compared our method to
DREAM.6 Besides, we compared to unsuper-
vised QE methods that compute cosine similari-
ties of original sentence embeddings of LaBSE,
LASER7 (Artetxe and Schwenk, 2019a,b), mS-
BERT8 (Reimers and Gurevych, 2020), and
BERTScore9 (Zhang et al., 2020). Following the
pre-training setup of each model, max-pooling of
final layer outputs of the BiLSTM was used as
a sentence embedding on LASER, and similarly,
mean-pooling was used on mSBERT.

We also compared to other approaches that do
not depend on multilingual sentence encoders as a
reference. D-TP (Fomicheva et al., 2020b) and
Prism (Thompson and Post, 2020) are unsuper-
vised QE methods based on an encoder-decoder
model. Predictor-Estimator10 (Kim et al., 2017;
Kepler et al., 2019) is a supervised method em-
ployed as the baseline for the WMT20 QE task.

3.2 Result

The first set of rows in Table 1 indicates the perfor-
mance of the original sentence embeddings from
LaBSE and their meaning embeddings derived by
DREAM and our method. While both DREAM

5https://huggingface.co/
sentence-transformers/LaBSE

6https://github.com/nattaptiy/qe_
disentangled

7https://github.com/facebookresearch/
LASER

8https://huggingface.
co/sentence-transformers/
stsb-xlm-r-multilingual

9https://github.com/Tiiiger/bert_score
10https://github.com/Unbabel/OpenKiwi
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High Resource Medium Resource Low Resource

Model en-de en-zh ro-en et-en ne-en si-en Avg.

LaBSE 0.084 0.036 0.705 0.550 0.545 0.455 0.396
DREAM 0.196 0.197 0.724‡ 0.578 0.636 0.568 0.483
Ours 0.215‡ 0.222‡ 0.717 0.587† 0.634 0.571 0.491

LASER 0.105 0.106 0.705 0.463 - 0.325 0.341
mSBERT 0.130 0.287 0.766 0.512 0.467 0.418 0.430
BERTScore 0.134 0.143 0.746 0.568 0.562 0.549 0.450

D-TP 0.259 0.321 0.693 0.642 0.558 0.460 0.489
Prism 0.464 0.303 0.829 0.694 - - 0.573
Predictor-Estimator 0.145 0.190 0.685 0.477 0.386 0.374 0.376

Table 1: Pearson correlation coefficients measured on WMT20 QE task (Superscripts of ‡ and † indicate statistically
significant differences of p < 0.01 and 0.05, respectively, compared to DREAM.)

and our method consistently outperformed LaBSE,
our method achieved larger improvements. These
results confirm that our method with adversarial
training further enhanced the ability of meaning
embedding distillation of DREAM.

The second set of rows shows the performance of
previous unsupervised methods based on multilin-
gual sentence encoders. Our method outperformed
these methods on most language pairs. Particularly,
it showed higher scores on low-resource language
pairs, and achieved the highest correlation with hu-
man scores on average for all language pairs. It is
notable that our method outperformed mSBERT on
four out of six language pairs, which had sentence
similarity estimation in its pre-training.

The last set of rows shows the performance of
other QE models independent of multilingual sen-
tence encoders. Our method achieved higher scores
than the supervised QE model, Predictor-Estimator,
for all language pairs.

D-TP and Prism achieved higher scores than ours
in high-resource language pairs, but our method
outperformed them in low-resource language pairs.
Although D-TP assumes that users can access to the
parameters of a machine translatioin model for QE,
such a situation is practically limited because in
general, machine translation systems are black-box
to end-users (e.g. online machine translation ser-
vices). Prism requires a large-scale bilingual corpus
for training its encoder and decoder from scratch,
which restricts its applicability to low-resource lan-
guage pairs.

LR LC LL LA Avg.

(a) ✓ 0.393
(b) ✓ ✓ 0.086
(c) ✓ ✓ 0.075
(d) ✓ ✓ 0.427

(e) ✓ ✓ ✓ 0.439
(f) ✓ ✓ ✓ 0.297
(g) ✓ ✓ ✓ 0.482
(h) ✓ ✓ ✓ 0.488

Table 2: Pearson correlation coefficients in ablation

3.3 Ablation Study

Table 2 shows the results of the ablation study. The
upper rows show the performance when LR is com-
bined with one other loss function, and the lower
rows show the performance when each loss func-
tion is excluded from the proposed method, mea-
sured on WMT20 QE task.

The first set of rows (rows (a) to (d)) shows that
adversarial loss LA has the largest contribution on
its own. In contrast, cross reconstruction loss LC
and language embedding loss LL largely deterio-
rated the performance of LR. However, interest-
ingly, the second set of rows (rows (e) to (h)) show
that the performance drop is largest when LL is
removed. These results indicate that LL is cru-
cial when combining different loss functions. We
presume that LL has an effect that meaning and
language information are separated into the corre-
sponding embeddings. In other words, it prevents
that meaning information leaks to language embed-
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dings. In summary, these analyses revealed two
loss functions that most contribute to the perfor-
mance of the proposed method: LL and LA, and
these should be used together.

4 Summary and Future Work

We introduced adversarial training to disentangle
meaning embeddings from sentence representa-
tions of multilingual sentence encoders for unsu-
pervised QE. Our method consistently improves
the performance of a state-of-the-art multilingual
sentence encoder.

Our future work includes exploring ways to uti-
lize language-specific embeddings for QE in terms
of fluency of sentences. Combined with the present
method of assessing the adequacy of sentences, a
better QE may be achieved. We will also apply our
method for disentangling styles and meanings of
sentences for the style-transfer research.
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Abstract

Recent studies show that the attention heads
in Transformer are not equal (Voita et al.,
2019; Michel et al., 2019). We relate this phe-
nomenon to the imbalance training of multi-
head attention and the model dependence on
specific heads. To tackle this problem, we pro-
pose a simple masking method: HeadMask,
in two specific ways. Experiments show that
translation improvements are achieved on mul-
tiple language pairs. Subsequent empirical
analyses also support our assumption and con-
firm the effectiveness of the method.

1 Introduction

Recently, more and more novel network structures
of neural machine translation(NMT) have been
proposed (Bahdanau et al., 2015; Barone et al.,
2017; Gehring et al., 2017; Vaswani et al., 2017),
among which Transformer (Vaswani et al., 2017)
achieves the best results. One important difference
between Transformer and other translation models
is its multi-head attention mechanism.

Some interesting phenomena of the attention
heads are discovered recently. Voita et al. (2019)
find that only a small subset of heads appear to
be important for the translation task and vast ma-
jority of heads can be removed without seriously
affecting performance. Michel et al. (2019) also
find that several heads can be removed from trained
transformer models without statistically significant
degradation in test performance. It turns out that
not all heads are equally important.

We speculate that this can be attributed to the im-
balanced training of multi-head attention, as some
heads are not trained adequately and contribute lit-
tle to the model. However, this can be turned into
the bottleneck for the whole model. For an analogy,
if a soccer player gets used to using the right foot
and spares more training opportunities for it, it will

∗* Work was done while at NJU

be stronger and stronger. As a result, the right foot
is further relied on, while the left foot receives less
training and gradually turns into the limitation.

In this paper, we firstly empirically confirm the
inequality in multi-head attention. Then a new
training method with two variants is proposed to
avoid the bottleneck and improve the translation
performance. Further analyses are also made to
verify the assumption.

2 Head Inequality

Following Michel et al. (2019), we define the im-
portance of an attention head h as

Ih = Ex∼X
∣∣∣∣
∂L(x)
∂ξh

∣∣∣∣ (1)

where L(x) is the loss on sample x and ξ is the
head mask variable with values in {0, 1}. Intu-
itively, if headh is important, switching ξh will
have a significant effect on the loss. Applying the
chain rule yields the final expression for Ih:

Ih = Ex∼X
∣∣∣∣Atth(x)T

∂L(x)
∂Atth(x)

∣∣∣∣ (2)

This is equivalent to the Taylor expansion
method from Molchanov et al. (2017). In Trans-
former base (Vaswani et al., 2017), there are 3
types of attention (encoder self attention, decoder
self attention, encoder-decoder attention) with 6
layers per type and 8 heads per layer. Therefore,
it amounts to 144 heads. We divide them into 8
groups with 18 heads (12.5%) each group accord-
ing to their importance Ih, among which, 1-18 are
the most important and so on.

We then mask different groups of the heads. As
is shown in Figure 1, masking a group of unimpor-
tant heads has little effect on the translation quality
while masking important heads leads to a signifi-
cant drop of performance. Surprisingly, almost half
of the heads are not important, as it makes almost
no difference whether they are masked or not.

5246



Non
e

12
7-1

44

10
9-1

26
91

-10
8

73
-90

55
-72

37
-54

19
-36 1~

18

Mask different groups of heads (sorted by importance)

20

25

30

35

40

45

50

BL
EU

BLEU with different head masks
Baseline

Figure 1: Mask the heads in the same group. Important
ones matter much more than unimportant ones.

We also gradually masking more heads group
by group in the ascending order and descending
order, respectively. As is shown in Figure 2, the
line starting with unimportant heads drops much
slower than the one starting with important ones. It
fully illustrates the inequality of different heads.
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Figure 2: Mask all heads in the ascending order and
descending order. The drop curves differ greatly.

Figure 1 and Figure 2 further demonstrates the
inequality of the importance of attention heads. A
simple assumption for explanation is that some
heads coincidentally get more updating opportu-
nities in the early stage, which makes the model
learning to depend on them gradually. As a re-
sult, the model increasingly draws a strong con-
nection with these specific heads while this local
dependence prevents the rest attention heads from
adequate training and restricts the overall capacity.

3 HeadMask

Since the problem refers to the unfair training of
attention heads, it is natural for us to explicitly
balance the training chances. We propose a simple
method: HeadMask, which masks certain heads
during training in two specific ways.

3.1 Mask Randomly

The first one is randomly picking heads and mask-
ing them in each batch. It ensures every head gets
relatively equal opportunities of training and avoid
partial dependence, as is shown in Algorithm 1.
For the soccer analogy, it is like training the feet
randomly, making both receive the same amount
of practice.

Algorithm 1 HeadMask: Mask Randomly

Input: q, k, v for attention, number of masks n
Output: masked context

1: for batch in datasets do
2: heads = random.sample(all_heads, n)
3: for head in heads do
4: ξhead = 0
5: end for
6: context = attn(ξ)
7: end for

3.2 Mask Important Ones

The second one is masking the most important
heads. By forcing the model neglects important
heads, we hope more training chances are assigned
to weaker heads. For the soccer analogy, it means
training the left foot more if the right foot domi-
nates. And once reversed, train contrarily. Its main
idea is about suppressing addicted training. Specif-
ically, the network firstly proceeds feed-forward
calculation and back propagation without updating
parameters to yield the importance of heads. And
after picking the most important heads by sorting,
mask them. During training, we only use the rest
part of networks to reach the final loss and update
parameters, as is shown in algorithm 2.

Algorithm 2 HeadMask: Mask Important Ones

Input: q, k, v for attention, number of masks n
Output: masked context

1: for batch in datasets do
2: calculate L by feed-forward
3: back propagation without updating params
4: calculate importance of all heads I
5: heads = argmaxn(I)
6: for head in heads do
7: ξhead = 0
8: end for
9: context = attn(ξ)

10: calculate L by feed-forward
11: back propagation and update params
12: end for
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4 Experiments

4.1 Datasets and Systems
We conduct experiments on four datasets, including
three low-resource ones (less than 1 million). We
use BPE (Sennrich et al., 2016) for Zh-En (Zheng
et al., 2018) and Ro-En, adopt the preprocessed
versions from Luong and Manning (2015) as well
as the settings of Huang et al. (2017) for Vi-En,
and follow the joint-BPE settings of Sennrich et al.
(2017) for Tr-EN. More information is in Table 1.

Datasets Scale Dev Test
NIST Zh-En 1.34M MT03 MT04/05/06
WMT16 Ro-En 608K newstest2015 newstest2016
IWSLT15 Vi-En 133K tst2012 tst2013
WMT17 Tr-En 207K newstest2016 newstest2017

Table 1: The information of our datasets

We follow Transformer base setting (Vaswani
et al., 2017; Sun et al., 2022). Parameters are op-
timized by Adam (Kingma and Ba, 2015), with
β1 = 0.9, β2 = 0.98, and ε = 10−9. The
learning rate is scheduled according to Vaswani
et al. (2017), with warmup_steps = 4000. Label
smoothing (Szegedy et al., 2016) of value=0.1 and
dropout (Srivastava et al., 2014) of value=0.1 are
also adopted.

Comparison We compare the baseline with
masking randomly (Random-N) and masking im-
portant ones (Impt-N), where N is the mask number.
In this paper, we mainly employ N = 18(12.5%).

4.2 Results
As is shown in Table 2,3,4, except for Vi-En ex-
periments, Impt-18 yields enhancement over all
language directions and reach the best result on the
experiment of Ro→ En. And Random-18 obtains
steady improvements over all pairs and is obviously
better than Impt-18. It seems the aggressive mask-
ing strategy at important heads can be too harsh

and reversely restrict the model. And the random
method is more expert in building a rational train-
ing pattern. In conclusion, reducing the unbalanced
training among attention heads can effectively im-
prove the translation quality.

Test sets MT04 MT05 MT06
Baseline 46.62 43.46 43.09
Impt-18 46.94 (+0.28) 44.19 (+0.73) 43.16 (+0.07)
Random-18 47.04 (+0.42) 44.33 (+0.87) 43.88 (+0.79)

Table 2: Results on Experiments of Zh→ En

Directions Ro→ En Vi→ En Tr→ En
Baseline 32.17 26.49 17.29
Impt-18 32.95 (+0.78) 26.36 (-0.13) 17.48 (+0.19)
Random-18 32.85 (+0.68) 26.85 (+0.36) 17.56 (+0.27)

Table 3: Results on Experiments of Ro/Vi/Tr→ En

Directions En→ Ro En→ Vi En→ Tr
Baseline 31.98 28.07 15.74
Impt-18 32.47 (+0.49) 28.06 (-0.01) 16.10 (+0.36)
Random-18 32.64 (+0.66) 28.46 (+0.39) 16.16 (+0.42)

Table 4: Results on Experiments of En→ Ro/Vi/Tr

4.3 Statistical Analysis

4.3.1 Flatter Distribution
To evaluate the adjusted training of heads, we check
the distribution of head importance. As is shown
in Figure 3, our methods make the importance dis-
tribution flatter. And the overall variance and mean
are also calculated, as is shown in Table 5,6. Com-
pared with Baseline, Impt-18 and Random-18 sig-
nificantly reduce the variance of attention heads,
achieving the goal of more equal training. And the
mean also decreases, which proves the decline of
dependence on every individual head. More specifi-
cally, Impt-18 can better resolve the imbalance, for
it well prevent the emergence of “super” heads.
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Figure 3: Distribution of importance of attention heads. Our methods make the whole distribution much flatter.
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Figure 4: Our methods significantly maintain the performance even if the important heads are masked.
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Figure 5: As the number of masked heads grows, the drop curves starting with important heads are moving up.

Directions Zh2En Ro2En Vi2En Tr2En
Baseline 77.28 552.93 100.73 1767.70
Random-18 33.21 255.98 48.28 900.70
Impt-18 9.13 72.73 14.13 188.87

Table 5: Our methods greatly reduce the Variance of the head
importance, illustrating the improved equality of heads.

Directions Zh2En Ro2En Vi2En Tr2En
Baseline 27.15 47.18 17.96 83.79
Random-18 19.62 39.96 14.86 74.05
Impt-18 18.95 37.30 18.96 85.12

Table 6: Our methods reduce the Mean of the head impor-
tance, illustrating the lessened dependence on each head.

4.3.2 Weaker Dependence
We repeat the experiments of masking different
groups of heads. As is shown in Figure 4, the
translation quality is still maintained even if impor-
tant heads are masked, proving the dependence on
them has decreased. And Impt-18 performs more
steadily since it is accustomed to such situations.

4.3.3 More Robust Models
We also repeat the experiments of masking all
heads, as is shown in Figure 5. The two middle
lines originally lie in the same place as the bottom
one. As the number of masked heads in training (N)
grows, they gradually move up and approach the
top line where unimportant heads are masked first.

It shows our methods make the model rely less on
the important heads and become more robust.

5 Related Works

Recently, many analytical works about multi-head
attention come out (Raganato and Tiedemann,
2018; Tang et al., 2018; Voita et al., 2019; Michel
et al., 2019; Sun et al., 2020; Behnke and Heafield,
2020). And for the inequality of the networks,
some studies focus on the model level (Frankle and
Carbin, 2019; Sun et al., 2021), layer level (Zhang
et al., 2019), and neuron level (Bau et al., 2019).
For the mask algorithm, there are also works on the
layer level (Fan et al., 2020), word level (Provilkov
et al., 2019), and neuron level (Srivastava et al.,
2014). Different from them, we mainly study the
attention level and conduct a statistical analysis.

6 Conclusion

In this paper, we empirically validate the inequal-
ity of attention heads in Transformer and come up
with an assumption of imbalanced training. Corre-
spondingly, we propose a specific method in two
ways to resolve the issue. Experiments show the
improvements on multiple language pairs. And de-
tailed analysis shows the alleviation of the problem
and the effectiveness of our techniques.
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Abstract

Multilingual neural machine translation can
translate unseen language pairs during training,
i.e. zero-shot translation. However, the zero-
shot translation is always unstable. Although
prior works attributed the instability to the dom-
ination of central language, e.g. English, we
supplement this viewpoint with the strict de-
pendence of non-centered languages. In this
work, we propose a simple, lightweight yet ef-
fective language-specific modeling method by
adapting to non-centered languages and com-
bining the shared information and the language-
specific information to counteract the instabil-
ity of zero-shot translation. Experiments with
Transformer on IWSLT17, Europarl, TED talks,
and OPUS-100 datasets show that our method
not only performs better than strong baselines
in centered data conditions but also can easily
fit non-centered data conditions. By further in-
vestigating the layer attribution, we show that
our proposed method can disentangle the cou-
pled representation in the correct direction.1

1 Introduction

Training multilingual neural machine translation
(MNMT) system requires enormous number of pa-
rameters and resources, but the zero-shot transla-
tion, namely translating unseen language pairs dur-
ing training, has shown the potential to simplify the
MNMT (Firat et al., 2017). Johnson et al. (2017)
has shown that adding language tokens, e.g. <en>,
at the beginning of a sentence allows the model to
build cross-linguistic representation by treating the
token as translation instruction specifying target
language. However, the zero-shot translation is al-
ways unstable. One possibility causing the instabil-
ity of zero-shot translation is spurious correlation
(Gu et al., 2019). The target linguistic representa-
tion captured by the model is directly and strictly

1Codes and detailed results are available in: https://
github.com/zhiqu22/AdapNonCenter

dependent on encoded source linguistic informa-
tion instead of learning specific representations for
source and target language, then combining inde-
pendent linguistic representations to generate re-
sults. Prior works (Lakew et al., 2019; Fan et al.,
2020; Rios et al., 2020; Freitag and Firat, 2020; Liu
et al., 2021) indicated that the spurious correlation
is caused by the centered data condition in which
multilingual data is constructed by bridging a cen-
tral language, e.g. English, to other non-centered
languages. The central language will dominate the
representation in the MNMT model to degenerate
the information specific to non-centered languages
since multilingual data comprises a set of bilin-
gual data constructed by coupling non-centered
languages with the central language. However, the
non-centered data condition without any central
language is also unstable in zero-shot translation.2

Therefore, simply attributing the instability of zero-
shot translation to the central language cannot fit
all cases of zero-shot translation.

We move the perspective from the domination
of the central language to the weakness of non-
centered languages. The problems of zero-shot
translation could be attributed to the strict depen-
dence of non-centered languages. Specifically, a
non-centered language would strictly depend on an-
other language as a strongly related language pair
to prohibit learning robust and independent trans-
lation instructions for zero-shot translation. Under
this hypothesis, the centered data condition is a
special case of this description, because all non-
centered languages depend on the central language.
In this light, a key to improving zero-shot transla-
tion is disentangling non-centered languages from
the strict dependence which is built in training.

Specifically, we model extra language-specific
(LS) components (Sachan and Neubig, 2018; Philip
et al., 2020; Escolano et al., 2021; Zhang et al.,
2021) adapting to non-centered languages in a

2We give specific examples in Section 4.1.
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mixing shared and LS information mode (Zhang
et al., 2021), our objective is to enhance the weak
representations for assisting the balance of cross-
linguistic representation in shared information con-
tainer to improve the quality of translation Cheng
et al. (2022); Shao and Feng (2022). Further-
more, the mixing mode can decrease the complex-
ity of LS modeling since we treat the representation
space of the MNMT model as the combination of
shared and LS information, and we no longer build
the independent representation space for each lan-
guage (Sachan and Neubig, 2018; Escolano et al.,
2021). In this motivation, we propose a simple,
lightweight yet effective method to augment feed-
forward network of Transformer (Vaswani et al.,
2017) by LS components adapting to non-centered
languages.

Our contributions are as follows:

• Our lightweight method achieves considerable
gains on multilingual and zero-shot translation
and performs stably in IWSLT17, Europarl,
TED talks and OPUS-100.

• We describe the strict dependence of non-
centered languages to supplement the prior
viewpoint of zero-shot translation, and verify
it by experiments under different data condi-
tions with and without the central language.

• Our work explores decreasing complexity in
LS modeling. We also through the analysis
via layer attribution (Dhamdhere et al., 2019)
to show the significance of our methods in
decoupling representations of MNMT.

2 Related Work

Initially, Johnson et al. (2017) laid the foundation
of zero-shot translation which endorses training the
MNMT model under the centered data condition
and put forward the thinking about the instability
of data conditions on zero-shot translation. On
this basis, Gu et al. (2019) also showed that the
performance of zero-shot translation is sensitive
to parameters for initialization, which is another
cause of instability. In this paper, we systematically
described this instability (Section 5.1) and tested it
experimentally.

In the early stages, Mattoni et al. (2017) pointed
out that increasing corpus size can effectively im-
prove zero-shot translation. However, the spuri-
ous correlation (Gu et al., 2019) means that unrea-
sonably increasing training data could degenerate

the zero-shot translation due to strict dependence.
Since then, the concern of the centered data con-
dition was started to be discussed by several dif-
ferent strategies. Fan et al. (2020); Freitag and
Firat (2020) augmented the training data to make
all languages interconnected, which will result in
an excessive increase in training costs. Lakew et al.
(2019) explored incrementally training the MNMT
model by monolingual data, and Gu et al. (2019);
Zhang et al. (2020) generated synthetic data for
the zero-shot directions by backtranslation. These
methods transformed the zero-shot task to zero-
resource task.

Another line of work on improving zero-shot
translation is to adjust the learning of represen-
tations in the MNMT model. Lu et al. (2018);
Pham et al. (2019); Zhang et al. (2020); Liu et al.
(2021) focused on restricting the representation of
encoder outputs to be language-agnostic, but the re-
striction may reduce the performance of the model
trained by large-scale datasets. Pan et al. (2021)
aligned representations from different languages
via contrastive learning and the additional dictio-
nary. Philip et al. (2020); Yang et al. (2021); Zhang
et al. (2021) explored to enhance the influence of
LS features in the translation. Our work continues
in this direction, but with a special focus on only
enhancing the decoding step and mixing shared and
LS information.

Our work is based on LS modeling which is
the heuristic variation of Mixture-of-Experts model
(Shazeer et al., 2017), because it aims to build extra
components as experts to directionally improve lin-
guistic features. Sachan and Neubig (2018) and Es-
colano et al. (2021) built LS encoder or decoder, but
multi-encoder/decoder architecture has too many
parameters. Wang et al. (2018) divided neural cells
into LS parts and Lin et al. (2021) divided LS sub-
nets from the model, but these methods limited
the learning capacity. Bapna and Firat (2019) and
Philip et al. (2020) added LS adapters on the end
of encoder and decoder and fine tuned for LS rep-
resentations. Zaremoodi et al. (2018); Zhang et al.
(2021) explored the paradigm of constructing LS
components to assist the shared information. How-
ever, extra components always increase the cost of
modeling significantly when languages existed too
much. The investigation about the importance of
LS information specified to target language (Lee
et al., 2017; Blackwood et al., 2018; Pham et al.,
2019; Wu et al., 2021) enlightens us to limit the
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improving LS information in the decoding process
to achieve lightweight LS modeling.

3 Central Language Aware Multilingual
Neural Machine Translation

We employ Transformer (Vaswani et al., 2017) as
the backbone to construct our architecture. Con-
sider a set of m languages L = {l1, l2, . . . , lm},
we assign the first language l1 as the central lan-
guage lc. The non-centered set is the subset of
L, that is L′ = {l2, l3, . . . , lm}. We follow prior
works (Zhang et al., 2020; Liu et al., 2021; Wu
et al., 2021) to assign English as the center of
multilingual data. Given the original input se-
quence of symbol representation to the encoder
x = x1, x2, ..., xi and the output sequence gener-
ated by decoder y = y1, y2, ..., yj , we follow the
method of Johnson et al. (2017) to insert the lan-
guage token at the beginning of x as translation
instruction. Therefore, the actual input sequence is
x′ = (l,x), and we model the translation of x′ to y
with Transformer. We only build LS layers (LSLs)
parallel with the Feed-Forward Network (FFN) lay-
ers in the decoder of Transformer, and keep the
self-attention and cross-attention mechanism fixed.

The FFN of transformer consists of two fully
connected neural networks with a ReLU activation
function in between:

FFN(h) = max(0,hW1 + b1)W2 + b2 (1)

Where h is the input vector, W indicates param-
eter matrices for projections, and b indicates bias
parameter matrices. LSLs are a series of neural
networks specified to L′. Each LSL is similar to
FFN in architecture but can be relatively light in
inner size:

LSLl(h) = max(0,hWl
1 + b

l
1)W

l
2 + b

l
2 (2)

where l ∈ L′. The trade-off between shared and LS
information is difficult (Zhang et al., 2021; Wang
and Zhang, 2021), because the information that
each language carries is not absolutely equal. To
balance the shared and LS information, we intro-
duce a set of learnable scalars in each decoder layer
T = {tl2 , tl3 , . . . , tlm}. Elements of T correspond
to languages of L′ one by one, then each t connects
LS information with the shared information. We
initialize t to 0.1, then parameters3 of T are updated
during training together with other parameters.

3we report the distribution of LS information weights for
large-scale dataset (99 languages) in the Appendix C.

Cross Attention

Embedding

Add & Norm

Encoder 

Outputs

× 𝑵
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Add & Norm
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Self Attention

Figure 1: Illustrations of our proposed architecture mod-
ified from the decoder of Transformer.

⊕
indicates

weighted plus, N is the number of decoder layers.

To differentiate the central language from non-
centered languages, the original FFN of Trans-
former’s decoder is used as the shared information
space for all languages of L, and we only con-
struct lightweight LSLs to learn independent lin-
guistic information for non-centered languages of
L′. Therefore, the complete architecture of Central
Language-aware Layer (CLL) is:

CLLl(h) =





FFN(h) + tl LSLl(h) l ∈ L′

FFN(h) l = lc
(3)

Based on the piecewise function Eq.(3), the role of
central language will be abandoned in non-centered
data conditions, namely the case of l = lc will not
be triggered. We illustrate the architecture of CLL
in Figure 1: The CLL is a component, including
lightweight LSLs and FFN, to replace the original
role of FFN in each decoder layer of Transformer.
Compared to the Mixture of Experts which is the
generalization of the gating mechanism (Shazeer
et al., 2017), a deterministic route specific to lan-
guage replaces the gate in CLL. For convenience,
we use FCLL (full CLL) to indicate that the model
in which all decoder layers are constructed in the
form of our proposed architecture.

We introduce a variation named SD that con-
structs CLL in a single decoder layer among all
layers of Transformer, namely Single-Disentangled
CLL. Inspired by the work of Liu et al. (2021), we
remove the residual connection of FFN in a middle
encoder layer to weaken the linguistic features of
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Method +Params Position
baseline None None
FCLL O(k) Decoder
SD O(k/N) Decoder
Philip et al. (2020) O(2k) All
Zhang et al. (2021) O(5k) All
Sachan and Neubig (2018) O(K) Decoder

Table 1: Number of parameters required for different
LS modeling methods. N , k and K denote the num-
ber of encoder/decoder layers, parameters per LS layer,
and parameters per encoder/decoder layer (k ≪ K),
respectively. Position indicates the position of a model
to construct LS components.

encoding. To keep the balance between weaken-
ing encoding and improving decoding, we empir-
ically build CLL in the middle decoder. Specifi-
cally, givenN encoder and decoder layers of Trans-
former, we remove the residual connection of the
FFN in the encoder and replace the FFN with CLL
in the decoder at N/2 + 1th layer of both net-
works. Our experiments (Section 4.3) empirically
show that SD has comparable performance with
FCLL in small-scale datasets, although SD is more
parameter-efficient than FCLL (Table 1).

4 Experiments

4.1 Dataset

We take IWSLT17 (Cettolo et al., 2017) and restrict
4 languages from MMCR4NLP (Dabre and Kuro-
hashi, 2019) to verify basic abilities of multilingual
and zero-shot translation. We follow Philip et al.
(2020) to experiment on TED talks (Qi et al., 2018)
and restrict top 20 languages. We also experiment
on OPUS-100 (Zhang et al., 2020) to exhaustively
explore the capacity of our proposed method in the
large-scale dataset. English is the central language
of those cases.

To show the strict dependence of non-centered
languages, we design two different cases without
central language, namely all languages in the set
are non-centered. We extract and reorganize Eu-
roparl v7 (Koehn et al., 2005) from MMCR4NLP:
1) Triangle case, where each language appears at
the target and source sides only once. Our moti-
vation is to build the strict dependence under the
non-centered data condition, and each language
pair has more training data than IWSLT. Figure 2a
shows its translation directions we designed. 2)
Square case, that is designed for avoiding strict
dependence as indicated in Figure 2b. Our moti-

it

de nl
(a)

Zero-Shot

Supervised

fr

de

it

es

(b)

Figure 2: Illustration supervised and zero-shot direc-
tions for Triangle and Square cases.

vation is to avoid completely interconnecting all
languages (Fan et al., 2020; Freitag and Firat, 2020)
while building balanced data conditions.

We list details of datasets in Appendix B. And
all cases are evaluated via official test sets.

4.2 Experimental Setup

We employ Fairseq (Ott et al., 2019), the open-
source implementation, of Transformer (Vaswani
et al., 2017) as backbone. Generally, we apply the
Moses tokenizer4 for tokenization and detokeniza-
tion, and use SentencePiece (Kudo and Richardson,
2018) to learn subword vocabulary. Although the
detail of training subword vocabulary for each case
has differences, we always train the joint vocabu-
lary including the source and target side, and set
share-all-embedding in Fairseq. To prevent the
unbalanced data size of English-centered datasets
from training subword vocabulary, the Sentence-
Piece model is trained by data aggregated from
monolingual resources rather than paired resources.
We use Adam (Kingma and Ba, 2017) optimizer
with the inverse square root schedule in all cases
and set different learning rates for different datasets.
For fair comparisons, we not only reproduce the
Transformer (Vaswani et al., 2017) as Baseline but
also reproduce the work of Liu et al. (2021) in all
cases, which is denoted by Residual. We always
adopt the same hyperparameters setting to prior
works and train corresponding subword vocabulary
via details described by these works. Specifically,
as for the settings for cases of IWSLT, Triangle and
Square, we follow the setting of Liu et al. (2021);
as for models trained by TED talks and OPUS-100,
we follow the setting of Philip et al. (2020) and
Zhang et al. (2020), respectively.

We experimented with IWSLT, Triangle, and
Square five runs with different random seeds
[1,2,3,4,5], to compute the variance for verifying
the instability caused by parameters, and other ex-

4https://github.com/moses-smt/
mosesdecoder
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Supervised: IWSLT Triangle Square TED OPUS-100
Method en→ →en sup. sup. en→ →en en→ →en
Baseline 31.51 32.93 25.75 32.04 24.23 28.92 19.50 27.60
Philip et al. (2020) 24.85 31.21
Zhang et al. (2020) 21.39 27.50
Residual 31.24 32.65 26.25 31.85 22.80 28.19 20.38 26.67
SD 31.63 32.51 26.50 31.97 23.94 28.33 23.60 28.01
FCLL 31.76 33.00 26.91 32.14 25.32 28.13 26.17 29.33

Table 2: Averaged BLEU scores on supervised directions. en→ denotes translating from en (lc) to L′ and→en
denotes translating to en from L′; sup. indicates supervised directions in non-centered cases. Residual follows Liu
et al. (2021) to modify residual connection.

Zero-Shot: IWSLT Triangle Square TED OPUS-100
Method Z.S. O.R. Z.S. O.R. Z.S. O.R. Z.S. O.R. Z.S. O.R. F.T. O.R.
Baseline 16.97 13.95 1.97 93.68 31.18 0.74 10.66 4.16 3.97 63.96 10.11 13.92
Philip et al. (2020) 12.94
Zhang et al. (2020) 4.02 54.57 11.98
Residual 20.37 1.80 16.60 4.95 30.30 0.77 12.54 3.85 5.14 38.54 11.38 18.30
SD 21.35 2.03 19.07 0.92 31.26 0.75 13.03 3.94 4.87 44.07 12.95 12.54
FCLL 21.15 2.05 20.56 0.13 31.49 0.74 14.14 3.74 6.31 34.46 13.65 11.09

Table 3: Averaged BLEU scores on zero-shot directions. Z.S. column indicates results of zero-shot translation; O.R.
denotes the off-target ratio measured by %; F.T. indicates results after fine-tuning, we follow Zhang et al. (2020) to
fine-tune 6 languages existing in zero-shot testing.

periments are trained with seed 1. To evaluate
results of all experiments, we translate the official
test set with beam size 4, and evaluate the transla-
tion results by sacreBLEU (Papineni et al., 2002;
Post, 2018). We also employ the langdetect5, which
can identify the language of one sentence, to count
the off-Target ratio, namely how many sentences
are not translated to the correct language. We list
detailed experimental settings in Appendix A.

4.3 Results

As described in Table 2, our proposed methods
achieve small improvements measured by averaged
BLEU scores on supervised directions of IWSLT
(+0.25/+0.07), Triangle (+1.16), Square (+0.1),
TED (+1.09/-0.79), and OPUS-100 (+6.67/+1.73)
compared to Baseline. Liu et al. (2021) specu-
lated that the basic Transformer would overfit more
on the supervised direction, and the improvement
of zero-shot could hurt supervised translation (Gu
et al., 2019; Zhang et al., 2020; Liu et al., 2021).
The performance of Residual (Liu et al., 2021)
degenerated in TED (-1.43/-0.73) and OPUS-100
(+0.88/-0.93), since the model weakened LS in-
formation by trading the generalization ability for

5The tool is not accurate, so, it is just for observing gen-
eral tendency. (https://github.com/Mimino666/
langdetect)

zero-shot translation. However, our proposed meth-
ods benefit from the additional improvement of de-
coding the target language by LS modeling (Sachan
and Neubig, 2018; Philip et al., 2020). This im-
provement can counteract the insufficiency of ty-
ing artificial language tokens to instruct translation
(Arivazhagan et al., 2019). The results of SD can
empirically prove the positive impact of CLL, since
the performance of SD, which only constructs one
CLL, is always between FCLL and Residual on
supervised directions. Moreover, the performance
of FCLL shows a marked difference (+1.09/-3.08)
from the work of Philip et al. (2020). We speculate
that the reason is lacking LS structure of lc and
benefiting from the mixture of shared and LS in-
formation in CLL. This hypothesis can explain the
stable improvements of CLL on Triangle (+1.16)
and Square (+0.1) where no lc exited in training
data. We conduct ablation experiments to show the
mechanism of CLL in Section 5.4.

Table 3 demonstrates that our methods always
give the best scores on zero-shot translations in
our experiments. Based on the gain of zero-shot
and gain of en→ (Table 2), CLL always positively
impacts non-centered languages. In IWSLT, SD
performs better than FCLL (+0.2) and performs
near FCLL in other cases. It indicates that stacking
LS structures is not always optimal for improv-
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Zero-Shot Supervised
Baseline Residual SD Baseline Residual SD

(1) 14.31 15.06 16.55 20.80 20.17 21.97
(2) 15.08 16.45 17.01 24.60 24.38 24.24

Table 4: Averaged BLEU scores of integrating de. Row
(1) and Row (2) shows results in Liwslt → de and de
→ Liwslt, respectively.

ing zero-shot translation. It also proves combining
tweaking encoding information and improving de-
coding information would be effective for zero-shot
translation. In Triangle, our methods perform sta-
bly in the extreme data condition where Baseline
totally failed. In Square, all cases have similar per-
formances since these languages do not have strict
dependence. Results in TED and OPUS-100 show
that our methods also run well in the large-scale
dataset. Moreover, we follow Zhang et al. (2020) to
fine tune the model by back-translation (Gu et al.,
2019) for 6 languages of zero-shot testing, and
FCLL achieves a gain of +3.54 BLEU scores to
Baseline. These two points show the proposed
CLL is orthogonal with other methods excluding
LS modeling.

We further noticed that, in Table 2, the perfor-
mances of all models on zero-shot directions in
Square are comparable with each other, and our
methods performed stably in Triangle where Base-
line is totally failed. The stability of Square case
shows the key to improving zero-shot translation is
not only large training data (Mattoni et al., 2017),
but also the balance of training (Shao and Feng,
2022). The results of Triangle prove CLL is stable
in zero-shot translation since it would not be in-
fluenced by different data conditions. This feature
ensured the effective utilization of shared infor-
mation. This feature can be proved by the value
of off-target rate in Table 3. Given the cost of
establishing consistent semantic representation in
shared information, confusion about different lin-
guistic features is an inevitable result because the
shared information container leads to coupling su-
pervised translation pairs both in theory and prac-
tice, however, our proposed methods are always at
a relatively lower rate.

4.4 Integrating a new language by few data

The ability to integrate a new language by few data
is crucial for low-resource languages when extend-
ing a trained MNMT model. To verify this ability
of CLL, we fine tune trained SD in IWSLT and
extend it to German (de) using bilingual language

IWSLT Triangle Square
sup. zero. sup. zero. sup. zero.

Baseline 0.021 5.280 0.220 0.210 0.001 0.016
Residual 0.067 0.270 0.004 0.900 0.003 0.055
SD 0.012 0.051 0.018 0.900 0.002 0.001
FCLL 0.025 0.074 0.018 0.140 0.004 0.014

Table 5: Variance computed from averaged BLEU
scores among five runs in IWSLT, Triangle, and Square
with different random seeds. sup. and zero. indicate
supervised translation and zero-shot translation, respec-
tively. Smaller variance means a more stable result.

pairs (en↔ de) with 15K sentences per direction,
we also fine tune Baseline and Residual as compari-
son. We follow Liu et al. (2021) to set hyperparam-
eters and update subword vocabulary, as described
in Appendix A. Table 4 shows that SD performs bet-
ter on zero-shot translation, which indicates CLL
contributes the cross-lingual knowledge transfer,
which indicates that our method is flexible in incor-
porating low-resource languages.

5 Discussion and Analyses

5.1 Instability of Zero-Shot Translation
In this paper, we describe the instability from two
related perspectives: 1) Instability of training; 2)
Instability of data conditions. For the first point,
Table 5 shows the variance for different models
counted from five experiments with different seeds
for initialization. The small value of variance on su-
pervised translation among the four models shows
that supervised training always is a relatively stable
process. However, the training process of zero-
shot translation is sensitive to initial parameters
(Gu et al., 2019), since the variance of zero-shot
translation is always higher than the variance of su-
pervised translation. Our methods always achieved
the lowest variance on zero-shot translation. For
the second point, Table 3 shows that Baseline has
completely lost its ability of zero-shot translation
in Triangle, although the amount of training sam-
ples of Triangle is relatively higher than IWSLT
that can result in a good performance on zero-shot
translation. On the other hand, Square performs
excellently on zero-shot translation and its perfor-
mance is even closing to the performance of su-
pervised translation (Table 3), although it is non-
centered data condition as same as Triangle and
it is not completely interconnecting all languages
(Fan et al., 2020; Freitag and Firat, 2020). These
comparisons proved that the data condition impacts
the learning of zero-shot translation.
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Condition it→nl ro→it nl→ro
(1) Baseline 18.69 16.43 14.13
(2) (1)+additional pairs 23.27 22.17 21.61
(3) (2)+reduce data 22.35 21.31 20.96

SD 22.13 20.27 20.42

Table 6: Variation of different conditions in IWSLT. SD
is the performance under original setting.

We further notice that Baseline has a high vari-
ance in IWSLT yet a small variance in Triangle.
We speculate that the strict dependence of non-
centered languages caused instability, and the de-
gree of dependence influences the expression of
instability. Specifically, Baseline tends to build
cross-linguistic representations in IWSLT, but the
strict dependence would couple representations of
non-centered languages to the central language to
lead to a high off-target ratio in testing zero-shot
translation (Table 3). And the higher variance of
Baseline in IWSLT means that the model may find
a special set of initial parameters to escape from the
negative influence of strict dependence. Moreover,
the small variance of Baseline in Triangle means
that the model completely cannot find a special set
among the five times experiments, since Triangle
has the most severe dependence of non-centered
languages.

To prove our speculation, we create two artifi-
cial setups based on IWSLT to re-train Baseline and
show results measured by BLEU in Table 6. Specif-
ically, for Row (2), we append three language pairs
(it→ ro, ro→ nl, nl→ it) with 30k sentences per
pair to balance the dependence (Rios et al., 2020);
for Row (3), we sample a random subset of 90K
sentences from training data of IWSLT of 145K
sentences per translation direction and we append
additional pairs as (2). These substantial gains (up
to +7.48) of Row (2) in Table 6 proved our view-
point that data conditions impact the performance
of zero-shot translation. Once the model disentan-
gled the strict dependence by appending additional
pairs, the model would achieve considerable gains
(up to +6.83), although the training samples have
been reduced to be smaller than the original setting
shown by Row (1). Moreover, the performance of
SD is comparable to these artificial cases.

So far we can conclude that the strict dependence
of non-centered languages closely influences the
zero-shot translation. And our motivation for dis-
entangling the dependence by improving the weak
representations of non-centered languages is effec-

Method Supervised Zero-Shot Off(%)
Residual 32.57 20.74 1.67
FCLL 32.95 21.00 1.52
SD 32.48 21.16 1.97
Residual w/o t 23.72 0.56
FCLL w/o t 32.88 20.85 1.35
SD w/o t 32.62 19.46 2.10

Table 7: Averaged BLEU scores of models training
without language tokens (w/o t) in IWSLT.

it→ ro→ nl→
ro nl it nl it ro

FCLL 21.14 21.92 20.43 22.12 19.45 20.98
Omitted -0.16 -0.08 -0.37 -0.21 -0.87 -0.74
SD 20.88 22.13 20.27 22.75 20.42 20.51
Omitted -1.79 -1.40 -2.13 -1.68 -2.41 -2.59

Table 8: Variation of BLEU scores after omitting lan-
guage tokens in testing.

tive. We will discuss the mechanism of CLL in
Section 5.4.

5.2 Translation Instructions

We re-train our models in IWSLT without language
tokens (Johnson et al., 2017), and Table 7 shows
the result. First, slight performance gains were
observed on supervised directions in FCLL and
SD. Figure 3 is a heat map showing self-attention
weights of FCLL with and without language to-
kens. Figure 3a shows one possibility is artificial
language tokens (Johnson et al., 2017) might dis-
turb the semantic representation for actual words,
since the language token <ro> dominated in self-
attention weights. Figure 3b shows the distribu-
tion of actual words weights by training without
language tokens. Figure 3c presents the attention
weights when omitting <ro> in testing the model
trained with language tokens, and we observed a
similar tendency with the plot in Figure 3b.

Second, Table 7 shows our methods stably main-
tain cross-linguistic representation although no lan-
guage tokens were inserted to instruct translation
directions both for supervised and zero-shot direc-
tions. On the contrary, other methods completely
lost their ability of zero-shot translation. These
analyses indicate that CLL has a strong capability
to instruct multilingual translation.

5.3 Full Layers vs. Single Layer

To verify whether the number of CLL affects the
performance of MNMT model, we translate the test
set omitting artificial language tokens by trained
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(a) CLL (b) CLL w/o token (c) CLL omitted token

Figure 3: Maps of Self-Attention in which translating one sentence of ro→ it.

Figure 4: Variation of BLEU scores in which training
on different CLL layers. (1) modified the residual con-
nection as SD; (2) did not modify it.

FCLL and SD in IWSLT. Table 8 demonstrates the
model with more CLL layers has stronger robust-
ness since scores of FCLL degenerated less than
SD. To further investigate the effect of the num-
ber of CLL layers, we re-train Transformer mod-
els with different numbers of CLL layers based
on IWSLT in two cases. Specifically, in case (1),
we modify the residual connection of models as
same as the operation of SD, but we do not mod-
ify any architecture in encoder of Transformer in
case (2). Then, we follow the idea of Liu et al.
(2021) to remove the CLL layers in the decoder
from the top-most and bottom-most positions until
the configuration in which only a single CLL layer
is preserved in the middle-position decoder among
all decoders of these models.

Figure 4 shows that the zero-shot performance
of models in (2) degenerated with the reduction of
the number of CLL layers, although the supervised
performance always kept in the same magnitude.
It proves that the increase in the number of CLL
layers has a positive impact on the zero-shot trans-
lation. However, almost no clear variations were
observed in (1) of Figure 4. One possibility of the

supervised zero-shot
it→ nl→ de→ it→ nl→ de→

(1) 26.80 26.28 26.00 18.44 19.80 16.36
(2) 25.19 25.77 25.56 0.64 0.75 1.02
(3) 24.85 24.46 25.49

Table 9: Averaged BLEU scores of ablation study. Row
(1) shows results in Triangle; Row (2) shows results after
ablation; Row (3) means to calculate scores of zero-shot
translation by treating the supervised translation results
as reference data.

it→de Ablated LSL of de from CLL

Input:
<de> la quarta priorità concerne l’attenzione
che occorre prestare ai nuovi rischi.

Expected
Output:

die vierte priorität gilt den neuen risiken.

Actual
Output:

de vierde prioriteit is de aandacht die moet
worden besteed aan nieuwe risico ’s.

Table 10: Ablated testing SD trained in Triangle. The
output of the model rolls back to nl (Dutch, the super-
vised direction).

lower supervised performance of (1) when com-
pared with (2) in Figure 4 is the weaken language
specific information in the encoder by removing
the residual connection (Liu et al., 2021). Likewise,
the zero-shot performance of (1) is not sensitive
to the variation of the number of CLL layers since
weakening the capacity of the encoder could par-
tially offset CLL’s gains in decoder. We conclude
that the architecture of SD is relatively-optimal in
small-scale dataset because it is lightweight yet
comparable with FCLL, and FCLL is more stable
where data condition is complex or large.

5.4 Disentangling Coupled Representation

Ablation Study To investigate the significance
of CLL, we ablate LSL from CLL of trained SD
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(a) IWSLT:it→ ro (b) IWSLT:en→ ro (c) Triangle:de→ nl

Figure 5: Visualization of layer attributions. ffn indicates FFN, lsl means LSLs, 1 or 2 means it is 1st or 2nd fully
connected neural network of this component. A higher absolute value indicates more contribution for result.

in Triangle, namely only use FFN, to re-translate
the test set. Row (2) of Table 9 show the degen-
eration of supervised translation is not significant,
but completely losing zero-shot translation capa-
bility. However, we observed that the zero-shot
translation rollbacks to supervised directions after
ablation via analyzing failure cases. As shown in
Table 10, the zero-shot translation of it→ de will
be biased to it → nl due to ablating the layer of
de6. Thus, we calculated the BLEU scores of zero-
shot translation by treating the test set of it→ nl as
reference data in testing Row (3) of Table 9. The
slight degeneration of Row (3) strongly proved that
FFN has built a consistent semantic representation
which has been coupled to supervised directions.

Layer Attributions The layer attribution7 can
quantify the contributions of one component by in-
tegrated gradients (Sundararajan et al., 2017). We
designed 3 scenarios to observe these attributions in
details: a) The zero-shot translation based on cen-
tered case; b) The supervised translation based on
centered case; c) The zero-shot translation based on
non-centered case. Figure 5 demonstrates: 1) FFN
always plays the main role in translation; 2) Gener-
ally, the contributions of CLL are on the contrary
of FFN in LS words, but they have similar contribu-
tions in common words, especially the punctuation.

These results proved our viewpoint in Section 5.1
again. Specifically, the shared representations built
in FFN potentially enable cross-linguistic trans-
ferring, but the strict dependence of non-centered
languages would hamper freely transferring since
cross-linguistic information is coupled with super-
vised translation directions. Therefore, the signif-

6we report more examples in Appendix D in which includ-
ing long and short sentences in different cases.

7We employ Captum (https://github.com/
pytorch/captum) for computing attributions.

icance of LSL in CLL practically is to provide
independent LS information to disentangle the cou-
pled representation, namely counteract the negative
influence of the dependence, to present a correct
LS representation in decoding.

6 Conclusion

In this work, we supplement the theory of zero-
shot translation with the strict dependence of non-
centered languages, and we describe the instability
of zero-shot translation. To counteract the influ-
ence of the dependence, we proposed a simple
yet effective method that employs LS modeling
by adapting to non-centered languages. Our anal-
ysis based on layer attribution demonstrated that
LS information is conducive to disentangling the
coupled model representation. Our experiments on
various datasets and different data conditions show
that our proposed method outperforms in perfor-
mance and complexity.

7 Ethical Considerations

The potential ethical risk of our work is the usage of
multilingual datasets including IWSLT, Europarl,
TED talks and OPUS-100, since these datasets
might contain social biases, especially in the Eu-
roparl, in which predominant European languages
might constitute stereotypes. Those biases would
be represented in the trained model and could be
amplified by integrating one new language out of
trained language families since no special treatment
is performed to mitigate the biases. Generally, this
method can be landed in the industry under suffi-
cient anti-prejudice measures.
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A Detailed Settings

IWSLT & Triangle & Square We follow Liu
et al. (2021) to set 5 encoder/decoder layers with 8
attention heads, embedding size of 512, inner size
of 2048, dropout rate of 0.3, dropout rate of CLL
layer of 0.3, maximum learning rate of 0.0005 and
label smoothing rate of 0.1. However, we decrease
dropout rate to 0.1 and dropout rate of CLL layer
to 0.2 in Square that is a bigger case than others.
The size of subword vocabulary is 40K for each
case. In training, we set the maximum batch size
per GPU to 4,000 tokens, and train on 4 GPUs.
We train for 100K steps for IWSLT and Triangle,
but train for 500K steps for Square. We sample
the supervised and zero-shot translation directions
from the dev set of MMCR4NLP as the validation
dataset in training.

TED talks We follow Philip et al. (2020) to set
6 encoder/decoder layers with 4 attention heads,
embedding size of 512, inner size of 1024, dropout
rate of CLL layer of 0.3, maximum learning rate of
0.0005 and label smoothing rate of 0.1. However,
we set the dropout rate to 0.2 to get better perfor-
mances. The size of subword vocabulary is 70K. In
training, we set the maximum batch size per GPU
to 4,000 tokens, and train on 4 GPUs. We train for
90 epochs to ensure models convergent. We only
sample dev sets of supervised directions translat-
ing as the validation dataset in training. We also
follow Philip et al. (2020) to use mixed-precision
(Ott et al., 2018) in training.

OPUS-100 We follow Zhang et al. (2020) to set
6 encoder/decoder layers with 8 attention heads,
embedding size of 512, inner size of 2048, dropout
rate to 0.1, dropout rate of CLL layer of 0.2, maxi-
mum learning rate of 0.0007 and label smoothing
rate of 0.1. We directly reuse their published sub-
word vocabulary8. In training, we set the maximum
batch size per GPU to 6,000 tokens, and train on
8 GPUs9 for 500K steps. We follow Zhang et al.
(2020) to sample top 200 sentences in dev sets of
supervised directions translating as the validation
dataset in training.

In fine-tuning, we follow Zhang et al. (2020)
to back-translate the training resource to get the
pseudo resource, then we merge real and pseudo re-
sources to train 4 epochs, and we update the pseudo

8https://github.com/bzhangGo/zero
9We use Fairseq command line of –update-freq 2 to simu-

late the efficiency of 8 GPUs by 4 GPUs.

training resource after each epoch in training. We
set 500 warm-up steps at the beginning of fine-
tuning, reset the optimizer, and training with maxi-
mum learning rate of 0.0003.

Integrating de in IWSLT Based on the trained
model in IWSLT, we learn a new SentencePiece
model with 10K vocabulary size to acquire a dic-
tionary for de. Then we append the new dictionary
to the end of the previously learned dictionary of
IWSLT, meanwhile, we keep the order of the previ-
ous part unchanged. Due to the increased number
of unique tokens, we resize token embedding and
initialize new vectors as the average of existing
embedding perturbed by random noise. When fine-
tuning, we set the learning rate as the value at the
end of the previous training, freeze parameters of
CLL layers of existing languages, initialize param-
eters of CLL layers for de by averaging existing
CLL layers, and include the original training data
of IWSLT to prevent the shared information from
tending to translate de.
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B Dataset Details
Dataset
case

Languages
# zero-shot
directions

# sent.
per direction

IWSLT {en, it, ro, nl} 6 145K
Europarl
Triangle

{ , it, nl, de} 3 200K

Europarl
Square

{ , fr, it, de, es} 4 1M

TED { en, ar, bg, de, es, fa, fr, he, hu, it, ja,
ko, nl, pl, pt-br, ro, ru, tr, vi, zh-cn }

342 140K ~210K

OPUS-100

{ en, an, as, be, bg, bn, br, bs, ca, cs, cy,
da, de, el, es, fa, fr, fy, ga, gd, gl, gu, hi,
hr, hy, is, it, ku, li, lt, lv, mk, mr, nb, ne,
nl, nn, no, oc, or, pa, pl, ps, pt, ro, ru, sh,
si, sk, sl, sq, sr, sv, tg, uk, ur, wa, yi, az,
kk, ky, tk, tr, tt, ug, uz, dz, my, zh, et, fi,
hu, se, id, km, mg, ms, vi, ig, rw, xh, yo,

zu, kn, ml, ta, te, eo, eu, ja, ko, ka, mn, th}

30 2K ~1M

Table 11: Overview of datasets. The underline denotes the lc, and the underline with blank represents non-centered
condition, i.e. no English.

C Distribution of Language-Specific Information Weights

Languages of OPUS-1000.0

0.1

0.2

0.3

0.4

0.5

Indo-European
Afro-Asiatic
Turkic

Sino-Tibetan
Uralic
Austronesian

Niger-Congo
Dravidian
Others

Figure 6: Averaged weights over all layers in FCLL model. The x-coordinate is sorted by languages showed in
Table 11. For languages with the same amount of training resources, languages from the same language family have
relatively similar weights.
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D Translation Examples of Ablation
Supervised: it→nl Ablated LSL of nl from CLL Language

Input:

<nl> parlo adesso per esperienza personale: da anni nell’industria dell’aviazione
civile e con la commissione siamo infarciti di deregolamentazione, eppure,in re-
lazione ai diritti aeroportuali, ci viene detto adesso che la risposta è la regolame-
ntazione.

it

Expected Output:

ik spreek nu namens mijzelf: al vele jaren wordt ons nu binnen de burgerlucht-
vaartindustrie en met de commissie een dieet voorgeschoteld van deregulatie en
toch, waar het gaat om luchthavenbelasting, wordt ons nu verteld dat regelgeving
het antwoord is.

nl

Actual Output:
ik spreek nu uit persoonlijke ervaring: al jaren in de burgerluchtvaartindustrie en
met de commissie zijn we gedwongen tot deregulering, maar wat de luchthaven-
gelden betreft, wordt ons nu gezegd dat het antwoord de regelgeving is.

nl

Input: <nl> tutte le cose importanti sono già state dette. it
Expected Output: al het belangrijke is reeds gezegd. nl
Actual Output: al het belangrijke is reeds gezegd. nl
Supervised: de→it Ablated LSL of it from CLL Language
Input: <it> der verbraucher hat ein recht darauf, das zu wissen. de
Expected Output: il consumatore ha il diritto di saperlo. it
Actual Output: il consumatore ha il diritto di saperlo. it
Zero-Shot: it→de Ablated LSL of de from CLL Language

Input:
<de> il recepimento di parte dell’acquis nel primo pilastro apre la strada alla co-
munitarizzazione di questa politica e consente di adottare anche rimedi in relaz-
ione alla nebulosa schengen, come amava chiamarla il mio predecessore.

it

Expected Output:
mit der teilweisen übernahme des acquis in den ersten pfeiler stehen uns nun alle
wege offen, diese politik zu vergemeinschaften und licht in la nébuleuse scheng-
en zu bringen, wie es mein vorredner beschrieb.

de

Actual Output:
de omzetting van een deel van het acquis in de eerste pijler maakt de weg vrij vo-
or de communautarisering van dit beleid en maakt het mogelijk dat er ook oplos-
singen worden gevonden voor de nebulosa schengen, zoals mijn voorganger zei.

nl

Input: <de> la quarta priorità concerne l’attenzione che occorre prestare ai nuovi rischi. it
Expected Output: die vierte priorität gilt den neuen risiken. de
Actual Output: de vierde prioriteit is de aandacht die moet worden besteed aan nieuwe risico ’s. nl
Zero-Shot: nl→it Ablated LSL of it from CLL Language

Input:
<it> die solidariteit en die noodzaak tot samenwerking geldt ook als zich in de
toekomst problemen voordoen, bijvoorbeeld bij interne migratiestromen.

nl

Expected Output:
questa sicurezza e la necessità di una collaborazione sono essi stessi potenziali
problemi futuri, ad esempio per quanto riguarda la migrazione interna.

it

Actual Output:
diese solidarität und die notwendigkeit der zusammenarbeit gelten auch in zu-
kunft, z. b. in bezug auf die migrationsströme.

de

Table 12: Some examples of translation by trained SD in the Triangle, in which ablating LS layers from CLL. The
long sentence of supervised translation has degeneration compared with short sentences but is kept in the correct
direction. These zero-shot translations are biased to supervised directions.
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Abstract

Most existing methods on robust neural ma-
chine translation (NMT) construct adversarial
examples by injecting noise into authentic ex-
amples and indiscriminately exploit two types
of examples. They require the model to trans-
late both the authentic source sentence and its
adversarial counterpart into the identical tar-
get sentence within the same training stage,
which may be a suboptimal choice to achieve
robust NMT. In this paper, we first conduct
a preliminary study to confirm this claim and
further propose an Iterative Scheduled Data-
switch Training Framework to mitigate this
problem. Specifically, we introduce two train-
ing stages, iteratively switching between au-
thentic and adversarial examples. Compared
with previous studies, our model focuses more
on just one type of examples at each single
stage, which can better exploit authentic and
adversarial examples, and thus obtaining a bet-
ter robust NMT model. Moreover, we intro-
duce an improved curriculum learning method
with a sampling strategy to better schedule
the process of noise injection. Experimental
results show that our model significantly sur-
passes several competitive baselines on four
translation benchmarks. Our source code
is available at https://github.com/
DeepLearnXMU/RobustNMT-ISDST.

1 Introduction

In recent years, neural machine translation (NMT)
has achieved great success (Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017). Usu-
ally, the NMT models are trained on clean parallel
corpus and thus achieve promising performance
under clean inputs. However, small perturbations,
such as replacing words in the input sentences, can
mislead the trained model to generate incorrect

∗Work was done when interning at Xiaomi AI Lab.
†Equal Contribution.
‡Corresponding Author.

translations (Belinkov and Bisk, 2018). In real-
world scenarios, it is often required to deal with
such sentences. Thus, it has important academic
value and application prospects to design a robust
NMT model for both clean and noisy inputs.

To reach this goal, some researchers explore
data-oriented approaches focusing on construct-
ing adversarial examples (Cheng et al., 2020; Zou
et al., 2020). Generally, adversarial examples are
used to augment the authentic dataset or fine-tune
an NMT model pre-trained on the authentic dataset
to improve robustness. Although data-oriented ap-
proaches are simple and efficient, they leverage ad-
versarial examples coarsely, as concluded by Wang
et al. (2021a) and Passban et al. (2021), which can
not reach the full potential of these examples.

Besides, researchers also study model-oriented
approaches. Some design additional model com-
ponents to correct noisy inputs (Zhou et al., 2019;
Qin et al., 2021; Wang et al., 2021a). There are
more studies exploring training strategies for ro-
bust NMT, including multi-task learning (Zhou
et al., 2019; Zhang et al., 2020), contrastive learn-
ing (Yang et al., 2019; Lee et al., 2021), and adver-
sarial training (Cheng et al., 2018, 2019).

Despite their success, there still exist two draw-
backs: 1) most existing methods indiscriminately
exploit authentic and adversarial examples within
the same training stage, which is a suboptimal
choice confirmed in our preliminary study; 2) previ-
ous studies on robust NMT adopt a constant noise
ratio to construct adversarial examples during train-
ing, while the determination of noise ratio is a sub-
tle process, i.e., too little noise may lead to poor
robustness and too much noise may also hurt the
model performance (Jiao et al., 2021). Therefore,
dealing with both clean and noisy inputs well for
NMT remains to be a significant but challenging
task.

In this paper, we first conduct a preliminary
study, which reveals that indiscriminately exploit-
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ing authentic and adversarial examples within the
same training stage is suboptimal. Concretely, we
find that this training strategy can not significantly
reduce the source sentence representation (SSR)
discrepancies1 between authentic examples and the
corresponding adversarial examples, resulting in
a suboptimal model training which is reflected by
lower model confidence2 on examples. Based on
this observation, we further propose an Iterative
Scheduled Data-Switch Training Framework for
robust NMT. Under this framework, we train the
model in a two-stage scheme, iteratively switching
between authentic and adversarial examples with
their individual modified training objectives. Dur-
ing training, we introduce an additional Kullback-
Leibler (KL) divergence loss, expecting the model
to make similar predictions on authentic and adver-
sarial datasets. By doing so, at each training stage,
the model not only focuses on one of authentic and
adversarial datasets but also avoids forgetting the
knowledge from the other. Therefore, our model is
able to handle both clean and noisy inputs well.

Furthermore, we introduce curriculum learning
(CL) to better schedule the process of noise in-
jection. Particularly, inspired by the Baby Step
strategy (Wang et al., 2021b) in CL that gradu-
ally exposes more difficult examples to the model
while still involving simple examples, we sample
the noise ratio from a uniform distribution, where
the sampling interval is progressively extended.
Compared with the naive CL strategy of contin-
uously increasing the noise ratio, our strategy is
re-sampling previous simple adversarial examples
which is beneficial to the model generalization.

In summary, our contributions are as follows:

• Through in-depth analyses, we expose the sub-
optimum of indiscriminately exploiting au-
thentic and adversarial examples within the
same training stage, and further propose an
iterative data-switch training framework for
robust NMT.

• Instead of using a constant noise ratio, we
introduce an improved curriculum learning

1We average the word representations from encoder out-
puts to obtain the SSRs. The SSR discrepancies represent the
difference of the source sentence representations between au-
thentic and adversarial examples, and the higher SSR discrep-
ancies correspond to more divergent translations for authentic
and adversarial examples.

2Model confidence represents the predicted probability for
the target ground-truth sentences (Briakou and Carpuat, 2021;
Zhou et al., 2022).

method with a sampling strategy to better
schedule the process of noise injection at each
training stage.

• Empirical evaluations on four translation
benchmarks validate the superiority of our
framework, and in-deep analyses also ver-
ify the effectiveness of various factors on our
framework.

2 Preliminary Study

Indiscriminately exploiting authentic examples and
their adversarial counterparts within the same train-
ing stage is an effective way to build a robust NMT
model. However, it requires the model to overcome
the SSR discrepancy between an authentic exam-
ple (x, y) and its adversarial counterpart (x′, y),
which increases the training difficulty to maximize
P(y|x;θ) and P(y|x′;θ) simultaneously. We argue
it may be a better choice to exploit authentic and
adversarial examples at two training stages, itera-
tively switching between two types of examples.
In such a data-switch training manner, the model
can better benefit from the knowledge of different
stages

To verify our hypothesis, we use Transformer
(Vaswani et al., 2017) as our NMT model and con-
duct a preliminary experiment on the IWSLT14
De⇒En dataset. To be specific, we train the three
models: 1) Transformer. We follow Vaswani et al.
(2017) to train this model on the authentic dataset;
2) Indisc-Model. It indiscriminately exploits au-
thentic and adversarial examples for training within
the same stage. Besides, following Passban et al.
(2021), we introduce a mean square error (MSE)
loss to enforce the corresponding encoder outputs
to be similar; 3) Switch-Model. This model is
trained at two training stages, iteratively switch-
ing between authentic and adversarial examples.
We make an investigation through the two metrics:
1) the Euclidean distances of the SSR between au-
thentic examples and their adversarial counterparts;
2) the model confidence, i.e., log-likelihood values
of target ground-truth sentences.

2.1 Source Sentence Representation
Discrepancy

Intuitively, to obtain high-quality translations, the
SSRs from authentic and adversarial examples are
expected to be similar. Therefore, we first calculate
the Euclidean distances of the SSRs between two
types of examples. As shown in Figure 1, the dis-
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Figure 1: The kernel density estimation visualization
of the SSR distances between authentic examples and
their adversarial counterparts. Here, we average word
representations from encoder outputs to obtain the SSRs.
The authentic examples are from the entire test set, and
the adversarial examples are constructed from them as
mentioned in Section 3.2.

Model SSR Distance Model Confidence
Adv. Aut.

Transformer 2.96 -43.0 -39.2
Indisc-Model 2.36 -41.5 -38.7
Switch-Model 1.69 -41.1 -38.4

Table 1: The averaged sentence-level SSR distances
between authentic examples (Aut.) and their adversarial
counterparts (Adv.), and the model confidence on exam-
ples.

tance distribution of Transformer is far from the Y-
axis, and the distance distribution of Switch-Model
is closer to the Y-axis, while the distribution of
Indisc-Model lies between the above distributions.
These results indicate Switch-Model reduces the
SSR discrepancies well. As reported in Table 1,
we also calculate the averaged sentence-level SSR
distances. Switch-Model achieves the lowest score.
These results, along with the SSR visualization
(See Appendix A.1), further support the above con-
clusion.

2.2 Model Confidence

Higher model confidence generally leads to high-
quality translations (Briakou and Carpuat, 2021;
Zhou et al., 2022). Herein, we calculate the av-
eraged sentence-level log-likelihood values for
authentic and adversarial examples, respectively.
As reported in Table 1, although Indisc-Model
achieves better model confidence than Transformer,
especially on adversarial examples, Switch-Model
still obtains the best scores on both authentic and
adversarial examples. These results indicate that
Switch-Model is trained better on authentic and ad-
versarial examples compared to Indisc-Model.

Figure 2: Diagram of the two training stages in our
framework, where the pink box and blue box denote
the training stages focusing on adversarial examples
(the k-th iteration) and authentic examples (the (k+1)-th
iteration), respectively. (x′, y) is an adversarial example
constructed from its authentic counterpart (x, y) with
curriculum learning mentioned in Section 3.2. Lkl and
Lce denote KL-divergence loss and cross-entropy loss.

3 Methodology

Based on the observations in Section 2, we further
propose an iterative scheduled data-switch training
framework for robust NMT.

3.1 Training Framework
In contrast to the previous work, our framework
introduces two iterative training stages to handle
authentic and adversarial examples, respectively.

As shown in Figure 2, at the training stage fo-
cusing on adversarial examples (the k-th iteration),
we first use the best model at the last training stage
(the (k-1)-th iteration) as initialization, and then
optimize the model on two types of examples using
a modified training objective. Specifically, we addi-
tionally introduce KL-divergence loss into the con-
ventional training objective, expecting the model
predictions on adversarial examples to be close to
those on authentic examples. Formally, the modi-
fied training objective Ladv at this stage is defined
as follows:

Ladv =
∑

(x,y)∈D
(x′,y)∈D′

[− logP(y|x′;θ)

+ αKL(P(y|x′;θ)||P(y|x;θ))],
(1)

where α is a weight factor, θ denotes the model
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parameters, (x, y) and (x′, y) denote an authentic
example and its adversarial counterpart, respec-
tively.

Likewise, at the training stage focusing on au-
thentic examples, the modified training objective
Laut is given by

Laut =
∑

(x,y)∈D
(x′,y)∈D′

[− logP(y|x;θ)

+ αKL(P(y|x;θ)||P(y|x′;θ))].
(2)

We conduct training stages for K iterations. In
such an iterative data-switch training manner, the
knowledge of different stages can continuously en-
hance the model in a collaborative way, which has
also been verified in previous studies (Zeng et al.,
2019; Liu et al., 2020b).

3.2 Generate Adversarial Examples with
Curriculum Learning

During training, we generate adversarial exam-
ples on the fly by injecting noise into the source
sentences of the corresponding authentic exam-
ples. Without loss of generality, we inject noise by
performing three common operations with equal
probability: delete, replace, and swap. Note that
our framework is also applicable to other types of
noise.

Previous work on robust NMT pays little atten-
tion to the noise ratio during training. In this work,
we introduce curriculum learning (CL) to schedule
the process of noise injection at each training stage.
Inspired by the Baby Step strategy in CL (Wang
et al., 2021b), at each training step, we sample the
noise ratio from a uniform distribution, where the
sampling interval is progressively extended. By do-
ing so, our sampling strategy re-samples previous
simple adversarial examples during training, which
is beneficial to the model generalization.

The procedure of generating adversarial exam-
ples is presented in Algorithm 1. At the train-
ing step t, we first load a batch of examples and
sample a noise ratio rt from a uniform distribu-
tion U(0, R(t)) (Lines 3-4). Intuitively, a sharp
increase of R(t) may hurt the model optimization.
Therefore, we expect that R(t) increases smoothly.
To this end, we define R(t) as follows:

R(t) =

√
R2
max ×

t

T
, (3)

where Rmax is the maximal noise ratio and T de-
notes the maximal training step number of each

Algorithm 1 Generate Adversarial Examples with
Curriculum Learning for Each Training Stage

Input: Training corpus D, maximal training step
number T , maximal noise ratio Rmax.

1: R(t)← 0
2: for t =1, 2, ..., T do
3: Load a mini-batch Bt from D
4: Sample a noise ratio rt ∼ U(0, R(t))
5: for each example (x, y) in Bt do
6: nt ← ⌈len(x)× rt⌉
7: Perturb nt words in x to generate its ad-

versarial counterpart x′
8: Using (x,y) and (x′,y) to train the model

according to the modified training objec-
tive defined in Equation 1 or Equation 2

9: end for
10: if t % 10K == 0 then
11: Update R(t) by Equation 3
12: end if
13: end for

training stage. Note that the derivative of R(t) de-
creases with the increase of t, which satisfies our
expectations that R(t) increases smoothly (See Ap-
pendix A.2). According to rt, we traverse each
authentic example (x, y) in the current mini-batch
(Line 5) and determine the number nt of perturbed
words in x (Line 6), and then perform three kinds
of operations with equal probability on them to gen-
erate adversarial examples (x′, y) (Line 7). Finally,
we train the model with our modified objective
based on two types of examples (Line 8). For ef-
ficiency, we update R(t) every 10K training step
(Lines 10-12).

4 Experiments

4.1 Setup

Datasets For the small-scale dataset, we use
IWSLT14 German⇒English (De⇒En) corpus,
where the training set comprises 160K sentence
pairs extracted from TED talks, the original vali-
dation set consists of dev2010 and dev2012, and
the clean test set consists of tst2010, tst2011 and
tst2012. For the middle-scale datasets, we use
MTNT3 French⇒English (Fr⇒En) (Michel and
Neubig, 2018) and WMT14 English⇒German
(En⇒De) datasets. The former consists of 2.2M
sentence pairs for training, newsdiscussdev2015 is

3https://pmichel31415.github.io/mtnt/
index.html#data
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used as the original validation set, newstest2014
(NT14) and newsdicusstest2015 (NT15) are used
as the clean test sets. The latter contains 4.5M sen-
tence pairs, and we choose newstest2013 as our
original validation set, and newstest2014 as our
clean test set. For the large-scale dataset, we use
WMT20 Chinese⇒English (Zh⇒En) dataset con-
taining 22M sentence pairs for training and new-
stest2019 (with 1,997 sentence pairs) for validating
and newstest2020 (with 1,418 sentence pairs) for
testing.

Note that in this work, we focus on the perfor-
mance on clean and noisy test sets. Thus we select
the best model according to the hybrid validation
sets, each of which contains the original validation
set and its disturbed counterpart. In addition to
the standard clean test sets, we also evaluate mod-
els on noisy test sets. For the De⇒En, En⇒De
and Zh⇒En translation tasks, we construct the syn-
thetic noisy test sets by performing operations (See
Section 3.2) on a certain ratio of source words in
the original test sets. For the Fr⇒En translation
task, we evaluate models on two social media test
sets with diverse noise: mtnt18 (Michel and Neu-
big, 2018) and mtnt19 (Li et al., 2019), both of
which have been widely used in robust NMT task
(Li et al., 2019).

We also employ BPE (Sennrich et al., 2016) to
split words into subwords. During this process,
the numbers of merge operations are separately set
to 10K, 16K, 32K and 32K for De⇒En, Fr⇒En,
En⇒De and Zh⇒En datasets. Finally, we report
case-sensitive tokenized BLEU (Papineni et al.,
2002) for the De⇒En, En⇒De and Zh⇒En trans-
lation tasks and sacreBLEU (Post, 2018) for the
Fr⇒En translation task.

Training Details We adopt the fairseq4 (Ott et al.,
2019) Transformer as our basic model. We use the
transformer_iwslt_de_en setting for the De⇒En
translation task, and the transformer_wmt_en_de
setting for the En⇒De, Fr⇒En and Zh⇒En trans-
lation tasks, respectively.

As for the model optimization, we use the
Adam optimizer (Kingma and Ba, 2015) with
β1=0.9, β2=0.98 and ϵ=10−9. All experiments
are done on NVIDIA V100 GPUs with mixed-
precision training, where batch sizes are roughly
set to 4K, 8K, 32K, and 32K tokens for the De⇒En,
Fr⇒En, En⇒De, and Zh⇒En translation tasks, re-
spectively. For all datasets, we set the maximal

4https://github.com/fairseq/fairseq

noise ratio Rmax as 0.1 and we tune the weight
factor α∈{0.5, 1.0, 1.5} on our validation sets at
the first training stage, then keep it unchanged in
subsequent stages for efficiency. We determine the
maximal training step number T through an em-
pirical study according to the convergence of the
model at each stage. Specifically, we set T for
the stages focusing on authentic and adversarial
examples to 150K and 200K, respectively.

Baselines In addition to the vanilla Transformer
model (Vaswani et al., 2017), we compare our
model with the following baselines:

• Transformer-FT . It is pre-trained on the au-
thentic dataset and then fine-tuned on the ad-
versarial dataset.

• Transformer-Mixed. This model is trained on
the dataset mixed with authentic and adversar-
ial examples.

• Transformer-Indisc. It indiscriminately ex-
ploits authentic and adversarial examples for
training. Besides, the model predictions be-
tween two types of examples are minimized
via a bidirectional KL-divergence loss (Liang
et al., 2021).

• MTNT (Michel and Neubig, 2018). It is the
first benchmark on the MTNT Fr⇒En dataset.

• AdvST (Cheng et al., 2018). This model is
trained using adversarial stability training
strategy, which enables the encoder and de-
coder to generate similar representations for
the original inputs and their perturbed coun-
terparts

• SwitchOut (Wang et al., 2018). It uses a data
augmentation strategy for training, where the
augmented data is constructed by randomly
replacing words in source and target sentences
with other words.

• DouAdv (Cheng et al., 2019). It generates
discrete adversarial examples with doubly ad-
versarial inputs according to the gradients of
word embeddings.

• MTL (Zhou et al., 2019). It introduces mul-
titask learning into robust NMT, where two
decoders are involved: one learns to denoise
the text and the other generates the final trans-
lations from the denoised text.
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Figure 3: BLUE (%) scores of our model on the Fr⇒En
validation set with different K. AdvFirst and AutFirst
denote we focus on adversarial and authentic examples
first, respectively.

• ContRec (Xu et al., 2021). This model reduces
the effect of noisy words through a context-
enhanced reconstruction component.

4.2 Effects of Data Order and Iteration
Number K

Under our framework, it should be determined
which type of examples we need to first focus on
and what the appropriate iteration number K is.
We explore their effects in this subsection. To this
end, we train the models focusing on authentic
and adversarial examples first with different K, re-
spectively. The results on the validation sets are
displayed in Figure 3.

Which Type of Examples to First Focus on? As
illustrated in Figure 3, we observe that the model
focusing on adversarial examples first reaches a
competitive result at the 6th iteration, while the
model focusing on authentic examples first needs
9 iterations to obtain a similar result, indicating the
former converges faster to a better result.

What Is the Appropriate Iteration Number K?
Overall, as iteration number K increases, we find
the model performance is improved, whether we
focus on authentic or adversarial examples first.

Based on these results on the validation sets, we
choose to first focus on adversarial examples and
set the iteration number K to 6 for the Fr⇒En
dataset. Similarly, we set K to 5 for all other
datasets.

4.3 Main Results
Results on Clean Test Sets Table 2 shows
the results on clean test sets for the De⇒En,
En⇒De, Zh⇒En tasks, and the results for the
Fr⇒En task are reported in the second and third

Model De⇒En En⇒De Zh⇒En
Transformer 34.82 27.78 26.83

Data-Oriented
Transformer-FT 34.90 27.75 25.76
Transformer-Mixed 34.85 27.72 24.07

Model-Oriented
AdvST (Cheng et al., 2018) — 25.26 —
DouAdv (Cheng et al., 2019) — 28.34 —
Transformer-Indisc 36.59 28.21 26.51
Ours 37.28∗† 28.93∗† 27.45∗†

Table 2: BLEU (%) scores on the clean test sets of four
translation tasks. ‘∗’ and ‘†’ mean the improvements
over Transformer-Indisc and Transformer are signifi-
cantly with p<0.01 (Koehn, 2004).

Model Clean Test Noisy Test

NT14 NT15 mtnt18 mtnt19
Transformer 31.76 31.14 25.67 29.74
MTNT (Michel and Neubig, 2018) 28.90 30.80 23.30 26.20

Data-Oriented
Transformer-FT 32.37 30.71 26.54 29.03
Transformer-Mixed 31.87 30.71 25.44 27.90
SwitchOut (Wang et al., 2018) 29.20 31.10 25.00 28.10

Model-Oriented
MTL (Zhou et al., 2019) — — 24.50 30.30
ConRec (Xu et al., 2021) 30.70 32.40 26.50 29.10
Transformer-Indisc 32.83 31.37 26.42 28.98
Ours 34.11∗† 32.67∗† 28.16∗† 30.77∗†

Table 3: BLEU (%) scores on the Fr⇒En transla-
tion task. ‘∗’ and ‘†’ mean the improvements over
Transformer-Indisc and Transformer are significantly
with p<0.01 (Koehn, 2004).

columns of Table 3. Data-oriented approaches
achieve comparable or worse results compared to
Transformer, indicating data-oriented approaches
may hurt the performance on the standard clean
test sets. Transformer-Indisc is a strong baseline
model. It performs better than Transformer and
achieves promising performance compared to other
baselines, except for the Zh⇒En task. Compared
with the data-oriented and model-oriented base-
lines, our model achieves the best performance
across all datasets. Concretely, our model achieves
+0.59 BLEU improvement than the most competi-
tive contrast model DouAdv on the En⇒De dataset.
For the large-scale Zh⇒En dataset, all related ap-
proaches fail and do not outperform Transformer,
while our model achieves +0.62 BLEU improve-
ment over Transformer. These results fully demon-
strate the superiority of our framework.

Results on Noisy Test Sets To verify the model
robustness, we evaluate models on the synthetic
noisy test sets and the social media test sets, respec-
tively.

The fourth and fifth columns of Table 3 report
the results on the social media test sets. It is worth
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Figure 4: BLEU (%) scores on the synthetic noisy test sets with different noise ratios.

noticing that although we inject finite types of noise
during training, our model still beats other base-
lines on both mtnt18 and mtnt19 test sets, which
shows the better generalization of our model.

For the synthetic noisy test sets, we compare
the performance of all models on the test sets
with different noise ratios. As shown in Figure 4,
Transformer suffers from performance drops un-
der noisy inputs, revealing the vulnerability of the
NMT model. By contrast, data-oriented approaches
perform slightly better than Transformer across
different noise ratios, except for the large-scale
Zh⇒En dataset. We argue the robustness achieved
by data-oriented approaches is restricted because
the Zh⇒En training set is large enough to cover
diverse noises. Additionally, Transformer-Indisc
performs better than data-oriented approaches and
Transformer, showing its strong robustness. Fi-
nally, we find our model consistently outperforms
other baselines across different noise ratios even
under the large-scale data configuration, which con-
firms again that our framework can significantly
enhance the model robustness.

4.4 Source Sentence Representation
Discrepancy and Model Confidence

Following the settings of the preliminary study in
Section 2, we evaluate models using two metrics:
the SSR distances and model confidence. As shown
in Figure 5, the distance distribution of our model is
significantly closer to the Y-axis compared to Trans-
former and Transformer-Indisc, indicating that our
model significantly reduces the SSR discrepancies.
Analogously, we report the averaged sentence-level
SSR distances in Table 4 and visualize the SSRs
for clear understanding (See Appendix A.1), all of
which demonstrate the effectiveness of our model.
Besides, the averaged sentence-level log-likelihood
values presented in Table 4 show that our model ob-

Figure 5: The kernel density estimation visualization of
the SSR distances.

Model SSR Distance Model Confidence
Adv. Aut.

Transformer 2.96 -43.0 -39.2
Transformer-Indisc 2.25 -38.3 -35.8
Ours 0.67 -38.0 -35.6

Table 4: The averaged sentence-level SSR distances
and the model confidence on examples.

tains the highest model confidence on two types of
examples. It implies our model is trained better on
authentic and adversarial examples. In summary,
the results of the two metrics show that our model
can deal with clean and noisy inputs well.

4.5 Effects of Different Types of Noise
To better understand the effects of different types of
noise, we inject only one type of noise into the train-
ing data and the test set respectively, and then in-
spect the performance change of our model. From
Table 5, we arrive at the following conclusions:

(1) The models injecting different types of noise
into the training set perform similarly on the clean
test set. From the first column of Table 5, we ob-
serve that adopting delete and replace operations
separately during training perform slightly better
than our hybrid noise strategy, while adopting swap
operation obtains the worst performance.

(2) When only one type of noise is injected, our
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Model Different Types of Noise

Clean Hybrid Swap Replace Delete
Ours-Hybrid 37.28 34.60 36.56 32.98 33.85
Ours-Swap 36.91 33.54 36.29 31.62 32.63
Ours-Replace 37.54 33.83 35.04 32.97 33.48
Ours-Delete 37.51 34.27 35.78 32.11 34.40

Table 5: The effects of different types of noise on the
IWSLT14 De⇒En dataset. Here, the noise ratios of all
noise test sets are set to 1% and bold indicates the best
result for each noise test set (each column).

model performs better if both training and test sets
are injected with the same type of noise. For ex-
ample, adopting swap operation during training
obtains 36.29 BLEU on the swap noise test set,
while adopting replace and delete operations ob-
tain 35.04 and 35.78 BLEU on the same test set,
respectively.

(3) The performance of the model on the test sets
with different types of noise differs greatly. Com-
paring each column in Table 5, the model performs
worst on the replace noise test set, while the swap
noise has relatively little damage to the model per-
formance.

(4) The hybrid noise strategy we adopt achieves
balanced results. Comparing each row in Table
5, we find that our model with the hybrid strategy
achieves the best results on the hybrid, swap and
replace noise test sets and competitive results on
the rest test sets.

4.6 Ablation Study

To verify the effectiveness of various factors on
our framework, we further compare our framework
with the following variants and present the results
in Table 6:

(1) w/ FNR. In this variant, we directly use a
Fixed Noise Ratio to schedule the process of noise
injection. As reported in Table 6, this variant de-
creases the performance dramatically on both clean
and noisy test sets. It reveals the importance of
scheduling the noise injection with CL.

(2) w/ FSI. In our improved CL method, the sam-
pling interval is progressively extended. In this
variant, we adopt a Fixed Sampling Interval and
the noise ratio is sampled uniformly from it. As
shown in Table 6, using a fixed sampling internal
also leads to the performance degradation.

(3) w/o SS. Inspired by the Baby Step (Wang
et al., 2021b) in CL, we equip CL with a Sampling
Strategy (See Section 3.2). Note that our CL strat-
egy degenerates into the naive CL strategy (the

Model Clean Test Noisy Test

NT14 NT15 mtnt18 mtnt19
Ours 34.11 32.67 28.16 30.77

w/ FNR 32.15 29.93 23.70 27.51
w/ FSI 33.77 31.21 26.25 29.44
w/o SS 33.47 31.37 26.22 30.43
w/o KL 33.09 30.28 25.84 29.05
KL⇒MSE 32.52 30.92 26.62 29.16

Table 6: Ablation study on the Fr⇒En translation task.

variant w/o SS) if we remove the SS component.
The results listed in Table 6 demonstrate the effec-
tiveness of our sampling strategy.

(4) w/o KL. We introduce a KL-divergence loss
to ensure that the model focuses more on one type
of examples at each stage while preventing forget-
ting the knowledge from another type. As shown
in Table 6, compared with the variant w/o KL, this
regularization term indeed enhances the model ca-
pability to cope with both clean and noisy inputs.

(5) KL⇒MSE. In this variant, we replace KL-
divergence loss with the MSE loss on decoder out-
put hidden states. From Table 6, we can observe
that this variant performs better than the framework
without KL-divergence loss (the variant w/o KL)
in 3 out of 4 test sets, showing the importance of
the regularization term. However, compared to the
MSE regularization, the KL-divergence regulariza-
tion is more suitable for our framework.

5 Related Work

To build robust NMT models, researchers have pro-
posed a range of methods, which can be mainly di-
vided into two categories: data-oriented and model-
oriented approaches.

In the first category, how to construct adversarial
examples is a non-trivial problem (Cheng et al.,
2020; Zou et al., 2020). Usually, adversarial ex-
amples are used in two ways: one is to directly
train a robust model using the dataset mixed with
authentic and adversarial examples (Belinkov and
Bisk, 2018; Karpukhin et al., 2019), and the other is
to use adversarial examples to fine-tune the NMT
model pre-trained on authentic examples (Helcl
et al., 2019; Dabre and Sumita, 2019; Berard et al.,
2019; Alam and Anastasopoulos, 2020).

In the second category, some researchers design
additional components for NMT model to correct
noisy inputs (Qin et al., 2021; Wang et al., 2021a;
Xu et al., 2021) or explore fault-tolerant neural
networks(Su et al., 2017; Tan et al., 2018). Mean-

5273



while, more researchers resort to exploring train-
ing strategies, including multi-task learning (Zhou
et al., 2019; Zhang et al., 2020), contrastive learn-
ing (Yang et al., 2019; Lee et al., 2021), and adver-
sarial training (Cheng et al., 2018, 2019; Liu et al.,
2020a).

In this work, the proposed framework belongs to
the second model-oriented category. In this regard,
most existing methods indiscriminately exploit au-
thentic and adversarial examples within the same
training stage, which are suboptimal confirmed in
our preliminary study. To mitigate this problem, we
propose an iterative scheduled data-switch training
framework for robust NMT, where we introduce
two training stages, iteratively switching between
authentic and adversarial examples. Besides, in-
spired by the successful applications of curriculum
learning (CL) in NMT (Platanios et al., 2019; Xu
et al., 2020; Zhou et al., 2020), we use CL to better
schedule the process of noise injection. Particu-
larly, we equip CL with a sampling strategy, which
is beneficial to the model generalization.

Finally, note that Jiao et al. (2021) introduce
an alternated training to alleviate the performance
drop caused by low-quality back-translation data.
Our work differs from theirs in three aspects: 1) we
aim at building a robust NMT model dealing with
clean and noisy inputs well, while Jiao et al. (2021)
try to prevent the model performance on clean test
sets from being disturbed by synthetic data; 2) we
introduce an improved CL method to better sched-
ule the process of noise injection, which is benefi-
cial to the model performance; 3) in addition to the
conventional cross-entropy objective (Jiao et al.,
2021), we introduce an additional regularization
term to cope with both clean and noisy inputs well.

6 Conclusion

In this paper, we first conduct a preliminary study
to reveal that indiscriminately exploiting authentic
and adversarial examples for robust NMT is sub-
optimal. To achieve better robust NMT, we further
propose an iterative scheduled data-switch train-
ing framework, where we train the model at two
training stages, iteratively switching between au-
thentic and adversarial examples. Moreover, we
introduce curriculum learning with a sampling strat-
egy to schedule the process of noise injection at
each training stage. Extensive experiments show
the superiority of our framework.

In the future, we will introduce more types of

real noise, such as ASR errors, into our framework.
Besides, we plan to apply our framework to other
natural language generation tasks, such as dialogue
generation, so as to verify the generality of our
framework.
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Figure 6: Visualization of the SSRs for authentic examples and the corresponding adversarial examples. Here, we
apply the PCA algorithm to reduce the source sentence representations to the 2-dim ones and visualize them. The
pink and blue dots denote adversarial and authentic examples, respectively.

A Appendix

A.1 Visualization of the Source Sentence
Representations

To understand the source sentence representations
(SSRs) clearly, we apply the PCA algorithm to the
SSRs of authentic and adversarial examples and
visualize the SSRs. Herein, following the settings
of the preliminary study (See Section 2), we aver-
age word representations to obtain the SSRs. The
authentic examples are obtained from the entire
test set of the IWSLT14 De⇒En dataset, and the
adversarial counterparts are constructed from them
as mentioned in Section 3.2.

From Figure 6(a), we observe the SSRs of au-
thentic and adversarial examples extracted from
Transformer scatter differently. The reason behind
this phenomenon is that Transformer is trained only
on the authentic dataset and thus fits bad to adver-
sarial examples, leading to huge SSR discrepancies
between two types of examples.

According to Figure 6(b) and Figure 6(c), which
correspond to the preliminary study in Section 2,
although Indisc-Model reduces the SSR discrep-
ancies between authentic and adversarial exam-
ples well compared to Transformer, Switch-Model,
can further reduce the SSR discrepancies, bring-
ing closer source sentence representations for two
types of examples.

Figure 6(d) and Figure 6(e) are correspond to
the analysis in Section 4.4. Transformer-Indisc
reduces the SSR discrepancies well compared to
Transformer and it achieves competitive results
(See Section 4.3). By contrast, our model can fur-
ther reduce the SSR discrepancies and achieve the
best performances across all datasets (See Section
4.3), which confirms the effectiveness of our frame-
work.

A.2 Definition of the function R(t)
Intuitively, a sharp increase of R(t) may hurt the
model optimization. We expect that R(t) increases

smoothly, hence we define the derivative of R(t)
as

dR(t)

dt
=

c1
R(t)

, (4)

for some constant c1≥0, and R(t) is a non-
decreasing function. The right side of Equation
4 decreases as the training processes, which indi-
cates the derivative of R(t) gradually decreases,
i.e., R(t) increases smoothly. Along with the con-
straint that R(t)≥0 for all t≥0, solving this simple
differential equation, we obtain:

∫
R(t)dR(t) =

∫
c1dt

⇒ R(t) =
√
c1t+ c2,

(5)

for some constants c1≥0 and c2≥0. Then, we con-
sider the following constraints:

{
R(0) = 0

R(T ) = Rmax,
(6)

where T denotes the maximal training step number
at each training stage, and Rmax denotes the maxi-
mal noise ratio. Combining Equation 5 and 6, the
final formula of R(t) is rewritten as:

R(t) =

√
R2
max ×

t

T
. (7)
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Abstract

Despite their progress in high-resource lan-
guage settings, unsupervised bilingual lexicon
induction (UBLI) models often fail on corpora
with low-resource distant language pairs due to
insufficient initialization. In this work, we pro-
pose a cross-lingual feature extraction (CFE)
method to learn the cross-lingual features from
monolingual corpora for low-resource UBLI,
enabling representations of words with the
same meaning leveraged by the initialization
step. By integrating cross-lingual representa-
tions with pre-trained word embeddings in a
fully unsupervised initialization on UBLI, the
proposed method outperforms existing state-of-
the-art methods on low-resource language pairs
(EN-VI, EN-TH, EN-ZH, EN-JA). The ablation
study also proves that the learned cross-lingual
features can enhance the representational abil-
ity and robustness of the existing embedding
model.

1 Introduction

Bilingual Lexicon Induction (BLI) has aroused
great interest in the NLP research frontier. BLI
aims to induce word translation pairs by align-
ing word embeddings trained independently from
monolingual corpora. BLI has contributed to many
NLP tasks, including unsupervised machine trans-
lation (Artetxe et al., 2018b), cross-lingual depen-
dency parsing (Guo et al., 2015) and cross-lingual
information retrieval.

Unsupervised BLI has achieved reasonable re-
sults compared with semi-supervised works in high-
resource language settings, in which adversarial
training were used in Lample et al. (2018); Zhang
et al. (2017). These methods focused their at-
tention on every single word, thus ignoring the
relevance between words. Artetxe et al. (2018a)
proposed a method (VecMap) using a similarity
matrix as an initial solution to learn the second-

∗*Corresponding author

order structural similarity of the embeddings. An-
other study directly leveraged an aligned similar-
ity matrix instead of using the embedding matrix
(Alvarez-Melis and Jaakkola, 2018). Recently,
Peng et al. (2021) proposed a robust refinement
technique based on the ℓ1 norm training objective.
The methods above learned bilingual spaces by or-
thogonally projecting one monolingual space to
another. Yet, evidence suggests that monolingual
spaces, especially those of etymologically and typo-
logically distant languages, are far from isomorphic
(Søgaard et al., 2018; Vulić et al., 2019; Patra et al.,
2019). Glavaš and Vulić (2020) relaxed the orthog-
onality constraint to improve the performance of
BLI further. Mohiuddin et al. (2020) depicted a
non-linear method using an encoder and decoder to
learn the mapping in the latent space. Wang et al.
(2019) proposed a joint training method using word
alignments from parallel corpora as the supervision
signals to align multilingual contextualized repre-
sentations. While the methods mentioned above
can leverage pre-trained embeddings in BLI, they
lack the means to incorporate richer information
like cross-lingual features from monolingual data.
When it comes to low-resource and non-cognate
language, the characterization capability of pre-
trained embeddings is limited, which leads to the
degeneration of these models.

On another strand of work, traditional works for
BLI used the statistical methods to search the cross-
lingual signals (Rapp, 1999; Koehn and Knight,
2002; Fung and Cheung, 2004; Gaussier et al.,
2004; Haghighi et al., 2008; Vulić et al., 2011;
Vulić and Moens, 2013). In recent years, E and
Zhou (2022) proposed a more robust method. They
formally defined the semantic embedding of words
in a mathematical way instead of machine learn-
ing. However, their method is limited to non-topic
words and requires high quality monolingual data
to achieve good results.

The methods mentioned above have been reliant
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on a high-resource language condition. Regard-
ing low-resource and non-cognate language pairs,
the characterization capability of pre-trained em-
beddings is limited, as only short-distance depen-
dencies are available. In this paper, we propose a
novel unsupervised method for BLI based on cross-
lingual feature extraction. Furthermore, we design
two ways to integrate the cross-lingual features
with the pre-trained embeddings, which show com-
plementary effects according to the experimental
results. In summary, this paper makes the following
contributions:

• We propose a method (CFE) to extract cross-
lingual feature of each word (In Section 3.1).
We expect the words with the same meaning
in different languages have the similar repre-
sentations and we can use it to initialize the
UBLI directly.

• We propose two combination methods, em-
bedding combination (ECB) and similarity
combination (SCB), to use cross-lingual fea-
ture and pre-trained embeddings together to
initialize the UBLI (In Section 3.2). The
ECB method concatenates two kinds of em-
beddings by row, the SCB method weights
the second-order similarity of pre-trained em-
beddings and the first-order similarity of the
cross-lingual feature.

• Extensive experiments show that our method
exceeds all previous unsupervised and state-
of-the-art approaches on low-resource and dis-
tant language pairs. The ablation study shows
that our cross-lingual feature is complemen-
tary to pre-trained embeddings. Our method
improves the representational ability of the
existing model (In Section 5).

2 Background

In this section, we describe the basic formulation
of related supervised and unsupervised BLI meth-
ods. Let X,Y ∈ Rn×d represent word embedding
matrices in two languages L1 and L2, where n is
the number of words and d is the dimension of the
word embedding.

The key to supervised BLI is the parallel lexi-
con between two languages. Let X∗, Y ∗ ∈ Rk×d
represent parallel embedding matrices, say x∗i in
X∗ is translated to y∗i in Y ∗. Mikolov et al. (2013)
pointed out that a linear transformation W ∗ could

be used to map two monolingual embeddings to a
shared space.

W ∗ = argmin
W∈Rd×d

∥X∗W − Y ∗∥2F (1)

Artetxe et al. (2016) solved Problem (1) by adding
an orthogonal constraint on W . Therefore, there
is a closed-form solution to this problem called
Procrutes: W = UV ⊤, where U and V are defined
by the SVD decomposition of Y ⊤X .

For unsupervised BLI, embedding matrices X
and Y are totally out of order. Therefore, unsuper-
vised BLI needs a permutation matrix P ∈ Pn =
{0, 1}n×n to shuffles the row of Y :

min
W∈Rd×d,P∈Pn

∥XW − PY ∥2F (2)

Problem (2) can be solved by minimizing W and
P in an iterative way. Grave et al. (2019) proposed
a stochastic algorithm to initialize W and P ran-
domly and estimate them in a joint way. However,
effectively minimizing P is hard. The key to unsu-
pervised BLI is how to solve P approximately.

Lample et al. (2018) proposed an adversarial
method to initialize the initial dictionary. Artetxe
et al. (2018a) has shown that two equivalent words
in different languages have a similar distribution.
Therefore, they initialized matrix P based on simi-
larity matrices of monolingual embeddings MX =
XX⊤ and MY = Y Y ⊤. They used the second-
order similarity of pre-trained embeddings to ob-
tain a better initial dictionary. Then they applied a
self-learning strategy to iteratively compute the op-
timal mapping and retrieve bilingual dictionary un-
til convergence. Very recently, Wang et al. (2019)
proposed a method to jointly train word embed-
dings on concatenated corpora of different lan-
guages and achieved good results.

In summary, the foundation for BLI is the paral-
lel lexicon for initialization, especially for unsuper-
vised BLI. Therefore, a high-quality initialization
is the key for unsupervised BLI.

3 Methodology

In this section, we propose a novel framework to
solve the problems of UBLI in low-resource sce-
narios. First and foremost, the CFE is used to
extract cross-lingual representations from monolin-
gual data. Then the ECB and the SCB are used to
integrate the cross-lingual features with pre-trained
embeddings, either by concatenation or similarity
weighting.
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…into revolutionary and evolutionary tactics … … descriptive . revolutionary tactics aim to … state , while evolutionary tactics aim to …

𝑳𝒊𝒋 = 𝟏𝟖 𝑳𝒊𝒋

𝑳𝒊𝒊

Figure 1: Counting character level distance between word patterns. In this case, Let xi be the word "revolutionary"
and xj be the word "evolutionary". For the first Lij in this example, we give the distance 18. Specifically, the
distance of it is added up with 13 (the length of word "revolutionary"), 3 (the length of word "and") and 2 (the length
of two space). The other Lij and Lii is calculated in the same way.

3.1 Cross-lingual Feature Extraction (CFE)

We propose a method to extract semantic informa-
tion from monolingual data in this section. We
think that although words have different symbolic
representations in different languages, they all have
the same language-independent textual features,
which we call semantic feature. Empirically, when
we are reading a novel, we understand a word based
on the contextual information we can remember.
So we define the semantic feature of a word based
on the semantic relevance between it and its con-
textual words. Numerically, the semantic relevance
between words are based on the character distance,
which means distance counted in characters be-
tween words in a sentence. Let xi, xj ∈ X rep-
resent two words in monolingual data. We define
Lij as the character distance between the first letter
of the word xi and xj . When the word xi is the
same as the word xj , the distance is defined as Lii.
Note that we only calculate the closest xj after xi.
Figure 1 shows an example of Lij . We count Lij
for each word pair in monolingual data and define
nij as the number of Lij (We only count those Lij
less than a certain threshold).

We find that semantic relevance is sensitive over
short distances but degrades over long distances.
For instance, when the word xi and xj is in differ-
ent paragraphs, their semantic relevance is weak
for all distances. So, we dropout some Lij through
a threshold and define Sij to represent the semantic
relevance between the word xi and xj :

Sij = e−
Lij
D (3)

Where D is the hyperparameter. For every word
pair, the number of their appearance also influences
semantic relevance. Therefore, we weigh every Sij
by nij :

⟨Sij⟩ =
nij × Sij∑n
k=1 nik × Sik

(4)

Here, ⟨Sij⟩ denotes the average of Sij weighted

by nij . Through this, we expect the ⟨Sij⟩ repre-
sents strong semantic relevance. At last, for each
word xi, we extract k words with the maximum se-
mantic relevance in set ⟨Si∗⟩ ∪ ⟨S∗i⟩, where ⟨Si∗⟩
represents all word pairs start with word xi, and
⟨S∗i⟩ is in the same way. In this way, we get the
cross-lingual feature (The representations of words
with same meaning in different languages are sim-
ilar) of each word in X and Y separately through
monolingual data:

Sem_vecxi = (⟨Si1⟩, ⟨Si2⟩, ..., ⟨Sik⟩) (5)

Equation (5) denotes the cross-lingual feature of
a specific word xi, where k is the hyperparameter,
denotes the dimension of semantic vector.

3.2 Unsupervised initialization
Previous works VecMap (Artetxe et al., 2018a) has
shown the effect of high-quality word pairs on un-
supervised BLI. In this method, Let Xsem, Ysem ∈
Rn×k denote the cross-lingual feature matrices ex-
tracted by using the method in Section 3.1. We
combine the cross-lingual feature to initialize unsu-
pervised BLI in two ways, Embedding combination
(ECB) and Similarity combination (SCB):
Embedding combination (ECB): We combine
the pre-trained embedding with the cross-lingual
feature as the initial embedding:

Xcom = X|Xsem

Ycom = Y |Ysem
(6)

Where | denotes concatenation by row, therefore
Xcom, Ycom ∈ Rn×(d+k). We follow the method
in VecMap to calculate second-order similarity ma-
trix as the initialization. In order to maintain the
process of vector alignment is comparable with the
other works. We only use Xcom and Ycom to do the
initialization step. We continually use X and Y to
do the iterative process.
Similarity combination (SCB): For our feature
Xsem and Ysem is cross-lingual, we consider to
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calculate the similarity of Xsem and Ysem directly.
We combine this similarity with second-order simi-
larity of X and Y :

λ∗[(XX⊤)(Y Y ⊤)⊤]+(1−λ)∗(XsemY
⊤
sem) (7)

Where λ controls the ratio of two kinds of simi-
larities. In this method, we can fully exploit the
advantages of both kinds of embeddings.

Our method guarantees to converge to a loacl
optimum base on the initial dictionary, so the qual-
ity of it is the key factor for our method. However,
simply concatenating two kinds of embeddings and
searching the nearest neighbor normally did not
work in our preliminary experiments. It cannot
guarantee to avoid our method getting stuck in poor
local optima. For this reason, we propose some key
improvements to make our initialization robust:

• Embedding normalization: The embeddings
we use to be combined are trained in dif-
ferent ways. So, their meanings are com-
pletely different. When we combine them
in a simple concatenation way, the representa-
tion ability of each embedding will be weak-
ened. For this reason, we use a linear method
( X−Mean(X)
Max(X)−Min(X) ) to map two kinds of em-

beddings to [−1, 1], then the combination
method is more significant than before.

• CSLS distance: To extract the lexicon, we
use the nearest neighbor for every word to
search transformed embeddings. This phe-
nomenon is known to occur the hubness prob-
lem (where one word is the nearest to many
words) (Radovanovic et al., 2010; Suzuki
et al., 2013). To avoid this hubness prob-
lem, Lample et al. (2018) modified it with
the Cross-domain Similarity Local Scaling
(CSLS). For two aligned embeddings x and
y, they denote the setNT (Wx) andNS(y) of
the embeddings’ k nearest neighbors in the
other language, respectively. Then compute
rT (x) and rS(y), the average cosine similarity
of NT (Wx) and NS(y). The CSLS score of
x and y can be computed as CSLS(x, y) =
2cos(x, y) − rT (x) − rS(y). Following the
authors, we set k = 10.

A high-level overview of our proposed method
is outlined in Algorithm 1.

Algorithm 1: CFE method for UBLI
Input: monolingual corpora L1 and L2

Output: parallel dictionary
1 X , Y ← pre-trained embeddings of L1, L2;
2 Xsem, Ysem← cross-lingual feature

extracted from L1, L2;
3 Sim← similarity matrix from ECB and

SCB methods;
4 D← initial word translation dictionary

using Sim;
5 while not convergence do
6 W ← linear mapping matrix calculated

by Procrustes on D;
7 D← CSLS(WX , Y );
8 end

4 Experimental settings

In this section, we first list the baselines we used
in Section 4.1, then we show the details of our own
dataset and compare them with the MUSE dataset
in Section 4.2. Finally, we show the hyperparame-
ter settings of our methods in Section 4.3.

4.1 Baselines
We take several representative works of unsuper-
vised BLI as our baselines. We choose the methods
using pre-trained embeddings (Lample et al., 2018;
Artetxe et al., 2018a; Li et al., 2020) and statisti-
cal method (E and Zhou, 2022) to be compared
with our method. Especially, the method (Li et al.,
2020) is the state-of-the-art model in low-resource
languages and Peng et al. (2021) achieves a good
results on high-resource language pairs using ℓ1
norm optimisation on refinement. Compared with
all the baselines, our method uses both two kinds of
features to initialize the BLI problem. We evaluate
all the baselines by using MUSE parallel data and
CSLS distance to do the nearest neighbor search.
We execute the publicly accessible code or repro-
duce the code on our own to acquire the baseline
findings due to the use of our own dataset.

EN VI TH ZH JA

words 2418 326 33 288 298
sentences 72494 10677 273 1908 9110

Table 1: Details of the dataset. We show the number (K)
of words and sentences in the monolingual corpus. For
the words, we count the number of different words.
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Dataset
EN-VI EN-TH EN-ZH EN-JA
→ ← → ← → ← → ←

MUSE 0.73 0.73 0 0.08 0.08 0 1.03 32.67
Our Dataset 0 0 0.11 0 0.08 0.28 43.80 31.64

Table 2: Results of VecMap on MUSE dataset (Lample et al., 2018) and our own dataset 4.2. We perform 10 runs
for each experiment and report the average score of the accuracies (%).

Model
EN-VI EN-TH EN-ZH EN-JA

avg→ ← → ← → ← → ←

Lample et al. (2018) (MUSE) 0 0.15 0.11 0 0 0 34.52 3.56 4.79
Artetxe et al. (2018a) (VecMap) 0 0 0.11 0 0.08 0.28 43.80 31.64 9.49
E and Zhou (2022) 0 0 0 0 0 0.08 0 0 0.01
Li et al. (2020) 46.82 53.41 13.01 3.54 0.15 26.87 42.39 29.90 27.01
Peng et al. (2021) 0 0.30 0.11 0 23.98 31.91 43.50 31.95 16.47

Proposed method (ECB best dim) 48.36 23.41 15.57 3.94 26.36 33.12 50.04 39.14 29.99
Proposed method (SCB dim 50) 46.46 53.86 0.22 3.54 27.05 32.20 44.02 33.31 30.08
Proposed method (SCB dim 100) 45.51 55.96 16.35 3.28 26.82 33.40 48.85 38.08 33.53
Proposed method (SCB dim 200) 45.88 49.06 15.57 6.72 26.59 32.55 43.13 32.25 31.47
Proposed method (SCB dim 300) 48.43 53.26 15.57 3.67 26.82 32.62 46.10 35.12 32.70

Table 3: Results of Unsupervised method on the low-resource dataset of Section 4.2. We do 10 runs for each
method and report the average score of the accuracies (%). For our proposed method, we use different dimensions
of cross-lingual feature to do experiment. We show the best score of Embedding combination (ECB) method, and
the score in four different dimensions of Similarity combination (SCB) method.

4.2 Datasets

We evaluate our method against baseline on the
latest Wikipedia corpora. The reason why we do
not use the famous dataset MUSE (Lample et al.,
2018) is that we cannot get the corpus they used
to train embeddings. So, we use FASTTEXT (Bo-
janowski et al., 2017) to train our own embeddings.
However, the latest Wikipedia corpora is not on
the same scale as the MUSE data. In order to en-
sure the comparability of models and dataset, and
simulate low-resource situations, we reduce the
size of corpus to match the results that the base-
lines on the MUSE dataset (For en:100%, vi:100%,
th:10%, zh:10%, ja:30%). Our embeddings are
trained based on this corpus. For the test dataset,
we use the 1500 parallel lexicon of MUSE data.

4.3 Hyperparameter setting

We train our embedding using FASTTEXT with 5
epochs and 300 dims. For the hyperparameter D
in Problem (3), we set D as 50. For the dimension
k in Problem (4), we experiment from 50 to 300 in
increments of 50. For each language pair, we chose
a different λ between 0 and 1 to get the best results

in Problem (7). When we do the initialization work,
we only initialize 4000 words with the highest fre-
quency in the monolingual corpus. For the iterative
process, we only align the first 200000 words. We
perform 10 runs for each language pair, and report
the average accuracies. All the experiments are
performed on a single Nvidia Titan X.

5 Experiment

In this section, we report the results obtained with
our method. We first evaluate the dataset we trained
in Section 5.1. Second, we present our main results
in Section 5.2, thirdly we test the performance our
cross-lingual feature in Section 5.3, then we do
ablation tests in Section 5.4 to measure the contri-
bution of each component and finally we compare
the different initialization methods (3.2) in Section
5.5.

5.1 Comparison with MUSE dataset and our
dataset

We compare the performance of our own trained
dataset with the MUSE dataset (Lample et al.,
2018). We use VecMap (Artetxe et al., 2018a) as
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an evaluation model. For each language pair, we
experiment both two datasets on VecMap and the
results are in Table 2. Our dataset restores MUSE
dataset as far as possible in all experimental lan-
guage pairs except for one direction of EN-JA (for
EN-JA pair, we have a better result than MUSE).
Our dataset offers the low-resource scenario and
guarantees that our model is comparable to previ-
ous models.

5.2 Main results

We report the results in the dataset of we introduced
in Section 4.2 in Table 3. As it can be seen, al-
though the baselines succeed in some high-resource
languages (EN-JA), they get the degradation in the
challenging low-resource language pairs. In this
case, our proposed method obtains the best results
in all the language pairs. For the three language
pairs on which the baselines are completely de-
graded (only 0.28% accuracy in the best pair), our
method has made significant improvements in five
experiments (16.13% at least and 54.23% at most).
Peng et al. (2021) perform well on some language
pairs (EN-ZH, EN-JA), but still fail on the low-
resource pairs. For the state-of-the-art method (Li
et al., 2020), we achieve the best score on every
experiment. The average score of our method is
6.52% more than SOTA.

These results confirm the robustness of the pro-
posed method. Our method converges to a good
solution in all the low-resource and distant lan-
guage pairs we experiment with. In addition to
being more robust, our method also obtains better
accuracies compared with the previous methods by
a significant improvement in all challenging lan-
guage pairs. Moreover, our method is not sensitive
to hyperparameters. We can get similar results in
different dimensions of cross-lingual features, and
most of them perform a better result than all the
baselines.

Meanwhile, our method is more efficient than
VecMap (Artetxe et al., 2018a). For the iterative
process of our method is based on VecMap, we
compare between our method with VecMap. When
we optimizing the initialization dictionary’s quality,
our method has a faster convergence rate (824 vs.
1346 iterations for EN-VI pair). It shows that a
good initialization not only leads to a better accu-
racy, but also speeds up convergence.

5.3 Evaluation on cross-lingual feature

We test the performance of our cross-lingual fea-
ture in this section. We first compare cross-lingual
features with pre-trained features and second-order
of pre-trained features. For each language pair, we
choose MUSE parallel dictionary (Lample et al.,
2018), which contains 5000 aligned words as our
dataset. We calculate the similarities between each
aligned word using three kinds of features men-
tioned before. The results are shown in Table 4. As
can be seen, the results of our cross-lingual features
are significantly better than the pre-trained feature.
For the second-order similarity, which represents a
cross-lingual representation, our method is 0.024
more than it. Besides, our method is more efficient
and not limited by computational complexity. The
results show that our feature is cross-lingual.

For the case study, we choose 8 parallel pairs of
high frequency words on EN-ZH language pair and
calculate the similarity of cross-lingual features
between each word pair. The results are shown
in Figure 2. These similarities conform to our ex-
pectations. The words having the same meaning
in different languages have similar representations
which are shown in Figure 2 that elements on the
main diagonal have a higher score of similarity of
most word pairs. In particular, our feature can ac-
curately distinguish four word pairs in all our eight
tests. On the other hand, our feature exhibit good
symmetry. For the similar meaning words <one,
first>, their similarity with all the other words is
similar which means the second and third rows
in Figure 2 have similar results (the same for the
second and third columns). Besides, for the word
pairs that have a high similarity, their correspond-
ing rows and columns have symmetry.

5.4 Ablation test

In order to better understand the role of each part
in our proposed method, we do the ablation test to
separately analyze the effect of cross-lingual fea-
tures, pre-trained embeddings and normalization
on initialization. We use the same setting with the
best score in Table 6 (SCB dim 100) for the abla-
tion test. The obtained results are shown in Table
5.

For our cross-lingual feature extraction method,
we observe that the characterization ability of our
feature is better than pre-trained embeddings, and
the average of it exceeds the pre-trained embed-
dings by 7.47%. Moreover, our feature can be used
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Model
EN-VI EN-TH EN-ZH EN-JA

avg
→ ← → ← → ← → ←

Pre-trained feature 0.014 0.001 0.014 0.016 0.002 0.004 0.018 0.016 0.011
Second-order similarity 0.853 0.895 0.594 0.772 0.763 0.803 0.767 0.754 0.775
Cross-lingual feature 0.872 0.882 0.661 0.803 0.758 0.827 0.798 0.792 0.799

Table 4: Results of similarities on parallel dictionary. We calculate the similarities for each parallel words and report
the average score of the similarities for each language pair. We experiment on pre-trained feature, second-order
similarity of pre-trained feature and cross-lingual feature.

Model
EN-VI EN-TH EN-ZH EN-JA

avg
→ ← → ← → ← → ←

Full system 45.51 55.96 16.35 3.28 26.82 33.40 48.85 38.08 33.53

- Cross-lingual feature 0.07 0.07 0.22 0.26 24.90 0.14 43.73 32.40 12.72
- Pre-trained feature 0 0 14.24 3.81 26.36 33.40 49.15 36.71 20.46

- Normalization 45.30 52.66 15.68 3.15 25.12 32.48 49.00 35.64 32.38

Table 5: Ablation test on the setting: SCB method, 100 dim of cross-lingual feature. We do 10 runs for each method
and report the average score of the accuracies (%) and the average accuracy score of all language pairs.

Figure 2: High frequency pairwise word similarity
based on cross-lingual feature.

directly to initialize the dictionary. We do not need
to calculate the second-order similarity, which re-
duces the problem size and computational complex-
ity. Besides, the results show the complementary of
these two kinds of features. They describe words
from different dimensions. When we combined
them using the two combination methods we pro-
posed (ECB and SCB), they produce better results
than either feature alone.

As for the normalization, the SCB method uses
two kinds of features to compute similarity sepa-
rately, and the results of regularization is not obvi-
ous. However, the ECB method uses concatenation,
which is more sensitive.

5.5 Comparison with ECB and SCB method

In this section, we compare different initialization
proposed in Section 3.2. As it can be seen in Table
6, the Similarity combination (SCB) method have
a better result in most dimensions than Embedding
combination (ECB) method. Besides, for each lan-
guage pair, the best score among each dimension
of SCB is better than ECB (expect EN-JA in Table
3). Especially, compared with ECB method, SCB
method improves 31.95% in the reverse direction
of EN-VI.

At the same time, the SCB method is less sensi-
tive to the dimension parameters of cross-lingual
features than ECB method. As we can see in Ta-
ble 6, the SCB method produces stable and good
results across different dimension settings, which
shows that SCB method is more robust and can be
adapted on more challenging problems.

5284



Model
EN-VI EN-TH
→ ← → ←

ECB dim 50 0 0.3 0 3.41
ECB dim 100 0 1.65 0.11 3.94
ECB dim 150 0.15 0.22 0.22 3.15
ECB dim 200 0.28 0.75 14.35 3.28
ECB dim 250 48.36 4.12 14.24 0.26
ECB dim 300 0.73 23.41 15.57 0

SCB dim 50 46.46 53.86 0.22 3.54
SCB dim 100 45.51 54.38 16.24 3.28
SCB dim 150 45.88 55.36 15.19 2.89
SCB dim 200 45.88 49.06 15.57 6.72
SCB dim 250 46.97 52.96 15.35 3.15
SCB dim 300 48.43 53.26 15.57 3.67

Table 6: Results of different initialization on VecMap
model. We do 10 runs for each method and report
the average score of the accuracies (%). For each lan-
guage pair, we initial VecMap with Embedding combi-
nation (ECB) method and Similarity combination (SCB)
method in 6 different cross-lingual feature dimensions.

6 Related Work

Unsupervised bilingual lexicon induction (UBLI)
is an important task of machine translation. The
existing methods for unsupervised bilingual lexi-
con induction are divided into two directions. The
first is based on statistic method, and the other is
based on the pre-trained embeddings. Most of the
methods follow the same procedure that is to find
an initial solutions and then learning a mapping
method between two embedding spaces. The key
of these methods is finding an initial solution.

For statistical methods, Haghighi et al. (2008)
induced translations for words by using a genera-
tive model based on canonical correlation analysis,
which explains the monolingual lexicons in terms
of latent matchings. Vulić et al. (2011) proposed
a bilingual Latent Dirichlet Allocation model for
finding translations of terms in comparable corpora
without using any linguistic resources. E and Zhou
(2022) proposed a method in a more mathematical
way. Their Markov semantic model characterized
the meaning of words with language-independent
numerical fingerprints.

In recent years, most methods initialized seed
dictionary based on pre-trained embeddings. These

methods can be divided into three categories. The
first category is using adversarial methods (Lam-
ple et al., 2018; Alvarez-Melis and Jaakkola, 2018;
Xu et al., 2018). They trained a generator to find
a mapping between two embedding spaces and a
discriminator to distinguish the mapped source em-
bedding from the target embedding. The second
category is based on the structure of embedding
space. Artetxe et al. (2018a) showed the fact that
two equivalent words in different languages should
have a similar distribution, and used the second-
order similarity of pre-trained embeddings as an
initialization of UBLI. The third category is based
on a non-linear mapping method. Glavaš and Vulić
(2020) removed the orthogonal constraint of the
mapping method. Glavaš and Vulić (2020) pro-
posed a non-linear mapping in the latent space of
two independently pre-trained autoencoders.

All these methods only use one kind of feature.
Different from their methods, we leverage both
monolingual corpus and word-level pre-trained em-
beddings to get richer information and achieve bet-
ter accuracy.

7 Conclusion

In this paper, we propose a method to extract cross-
lingual features through monolingual corpora, com-
bined with pre-trained embeddings in two kinds
to initial UBLI. The experiments show that our
method outperforms existing state-of-the-art meth-
ods on low-resource language pairs (EN-VI, EN-
TH, EN-ZH, EN-JA). The ablation study demon-
strates that the induced cross-lingual features have
a complementary effect to pre-trained embeddings.
Besides, we also offer a MUSE-equivalent dataset
with monolingual corpora.

In the future, we will develop a more robust
way of extracting cross-lingual features for lexicon
induction. Extending UBLI to the phrase level is
also a topic of interest.
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instance-based cross-lingual mapping for non-
isomorphic embedding spaces. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 7548–7555.

Edouard Grave, Armand Joulin, and Quentin Berthet.
2019. Unsupervised alignment of embeddings with
wasserstein procrustes. In The 22nd International
Conference on Artificial Intelligence and Statistics,
pages 1880–1890.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1234–1244.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proceedings of ACL-
08: Hlt, pages 771–779.

Philipp Koehn and Kevin Knight. 2002. Learning a
translation lexicon from monolingual corpora. In
Proceedings of the ACL-02 workshop on Unsuper-
vised lexical acquisition, pages 9–16.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Yanyang Li, Yingfeng Luo, Ye Lin, Quan Du, Huizhen
Wang, Shujian Huang, Tong Xiao, and Jingbo Zhu.
2020. A simple and effective approach to robust
unsupervised bilingual dictionary induction. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 5990–6001.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for machine
translation.

Muhammad Tasnim Mohiuddin, M Saiful Bari, and
Shafiq Joty. 2020. Lnmap: Departures from iso-
morphic assumption in bilingual lexicon induction
through non-linear mapping in latent space. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2712–2723.

Barun Patra, Joel Ruben Antony Moniz, Sarthak Garg,
Matthew R Gormley, and Graham Neubig. 2019.
Bilingual lexicon induction with semi-supervision
in non-isometric embedding spaces. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 184–193.

Xutan Peng, Chenghua Lin, and Mark Stevenson. 2021.
Cross-lingual word embedding refinement by ℓ1
norm optimisation. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2690–2701.

Milos Radovanovic, Alexandros Nanopoulos, and Mir-
jana Ivanovic. 2010. Hubs in space: Popular nearest
neighbors in high-dimensional data. Journal of Ma-
chine Learning Research, 11(sept):2487–2531.

Reinhard Rapp. 1999. Automatic identification of word
translations from unrelated english and german cor-
pora. In Proceedings of the 37th annual meeting of
the Association for Computational Linguistics, pages
519–526.

5286



Anders Søgaard, Sebastian Ruder, and Ivan Vulić. 2018.
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Abstract

This paper presents a language-independent
approach for morphological disambiguation
which has been regarded as extensions of POS
tagging, jointly predicting complex morpho-
logical tags. In the proposed approach, all
words, roots, POS and morpheme tags are em-
bedded into vectors, and contexts representa-
tions from surface word and morphological con-
texts are calculated. Then the inner products
between analyses and the context’s representa-
tions are computed to perform the disambigua-
tion. The underlying hypothesis is that the cor-
rect morphological analysis should be closer
to the context in a vector space. Experimental
results show that the proposed approach out-
performs the existing models on seven differ-
ent language datasets. Concretely, compared
with the baselines of MarMot and a sophisti-
cated neural model (Seq2Seq), the proposed
approach achieves around 6% improvement in
average accuracy for all languages while run-
ning about 6 and 33 times faster than MarMot
and Seq2Seq, respectively.

1 Introduction

Morphological disambiguation (MD) is the task
of jointly predicting lemma/root, part of speech
(POS)(Toleu et al., 2020), and morpheme tags.
For a Turkish word “yeni" (new), it can be
analyzed as: 1)yen+Noun+[A3sg, Pnon, Acc];
2)yen+Noun+[A3sg, P3sg, Nom]. If one counts
analyses as tags, MD can be cast as a tagging prob-
lem with an extremely large tagset. This fact dis-
courages direct application of the state of the art
approaches designed for small fixed tagsets.

For instance, many approaches treat each anal-
ysis as a tag, and apply sequence labeling mod-
els to perform tagging (Mueller et al., 2013;
Müller and Schütze, 2015; Malaviya et al., 2018).
Treating each analysis as a tag leads to an over-
sized tagset and corresponding data-sparsity is-
sues, which can be a concern for morphologically

complex languages such as Turkish and Kazakh,
where the number of morphological analyses is
theoretically unlimited (Yuret and Türe, 2006).
To address this problem, a sequence to sequence
(Seq2Seq)(Tkachenko and Sirts, 2018) based ap-
proach was proposed, which treated each mor-
phological analysis as a sequence of a composite
tags and explicitly modeled their internal structure.
This approach was inspired by the neural sequence-
to-sequence models for machine translation (Cho
et al., 2014). The LSTM networks were applied
to model morphological analyses and context as a
pair of sequences, which involves more sophisti-
cated architectures, namely using double layers of
biLSTM, one for characters and another for words.
This approach was almost challenging to simplify
the architecture if one wanted to keep the perfor-
mance as the original Seq2Seq has. Because all
types of architecture of recurrent neural networks
are more fit to the nature of sequence to sequence
problems (Sutskever et al., 2014).

This paper presents a language-independent MD
approach that applies an uncomplicated neural ar-
chitecture and obtains comparable results in accu-
racy and speed with the current best. A sequence of
morphological analysis is an expansion sequence
of its surface words with morphological informa-
tion. The idea of the approach is to measure the
distance between analyses and surface word con-
text by embedding each morphological analysis
and the surface word context into a single vector
space. The underlying hypothesis is that the vec-
tor representation of the correct analysis should be
closer to the context vector. Two types of contex-
tual embedding for words are presented: i) surface
word context; ii) morphological context, which im-
proves the model’s performance significantly. In
the following, the proposed approach is referred
to as language-independent morphological disam-
biguation (LIMD).

Our contribution amounts to the following: i) a
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general language-independent approach for MD, its
neural architecture is simple, decoding is fast and
can be implemented easily in practice. It achieves
comparable results with the current best. ii) two
types of context representation are explored: word
and morphological context representations.

2 Related Work

Morphological disambiguation/tagging has been
studied extensively for decades, and here we review
the work most relevant to this paper. We categorize
the common approaches into three groups:

i) Modeling the structure of complex morpho-
logical labels with structured prediction models
(Mueller et al., 2013; Müller and Schütze, 2015;
Malaviya et al., 2018). The work (Mueller et al.,
2013) presented a pruned CRF (PCRF) for tagging
and proposed to use coarse-to-fine decoding and
early updating to train the higher-order CRF. Ex-
periments on six languages show that the PCRF
gives significant improvements in accuracy. We
evaluate this model on our data-sets as one of the
baselines. (Müller and Schütze, 2015) compared
the performance of the most important representa-
tions that can be used for across-domain MT. One
of their findings is that the representations similar
to Brown clusters perform best for POS tagging and
that word representations based on linguistic mor-
phological analyzers perform best for tagging. The
study (Malaviya et al., 2018) combines neural net-
works and graphical models presented a framework
for cross-lingual tagging. Instead of predicting
full tag sets, the model predicts single tags sepa-
rately and modeling the dependencies between tags
over time steps. The model is able to generate tag
sets unseen in training data, and share information
between similar tag sets. This model is about cross-
lingual tagging and we do not make comparisons
with monolingual tagging models.

ii) Modeling complex morphological labels
as sequences of morphological feature values
through neural networks (NN) (Tkachenko and
Sirts, 2018) and statistical approaches (Hakkani-
Tur et al., 2000; Schmid and Laws, 2008). The
work (Tkachenko and Sirts, 2018) presented a se-
quence to sequence model for tagging. The model
learns the internal structure of morphological labels
by treating them as sequences of morphological fea-
ture values and applies a similar strategy of neural
sequence-to-sequence models commonly used for
machine translation (Sutskever et al., 2014) to do

tagging. The authors explored different neural ar-
chitectures and compare their performance with
PCRF (Mueller et al., 2013). Double layer of biL-
STMs were applied in those neural architectures as
Encoder (Ling et al., 2015; Labeau et al., 2015; Ma
and Hovy, 2016). The encoder uses one biLSTM to
compute character embedding and the second biL-
STM combine the obtained character embedding
along with pre-trained word embedding to generate
word context embeddings. The output of those neu-
ral networks are different: one of the baselines is to
use a single output layer to predict whole morpho-
logical labels. As the second baseline, the output
layer can be changed to predict the different mor-
phological value of tag with multi output layers.
An improved version of the second one is to use a
hierarchical multi output layers in order to capture
dependencies between tags.

iii) Modeling the output of morphological ana-
lyzer as candidates then use the different classifiers
to do disambiguation (Hakkani-Tur et al., 2000;
Zalmout and Habash, 2017; Toleu et al., 2017).
The work (Zalmout and Habash, 2017) presented
an improved tagging system for Arabic by using the
results of biLSTM output from words and charac-
ters and a character-aware MD model(Toleu et al.,
2017) was proposed for Kazakh and Turkish. A
voted-perceptron approach for Kazakh MD was
proposed in the work (Tolegen et al., 2020), and
explored many features impact on MD.

3 Approach

This section describes the proposed MD approach,
which embeds a context and its morphological anal-
ysis into a vector space, then calculates similarity
scores to rank them for performing disambiguation.

3.1 Notation

Given a sentence (w1, ...a1j), ..., (wn, ...anj) con-
sisting of n words with all possible morphological
analysis aij of each wordwi, we want to predict the
sequence a1∗, ..., an∗ of morphological analysis
which best fit to the context of the given sentence.
j ∈ Ni is the index of analyses for a word wi. We
treat a morphological analysis aij as a combina-
tion of three main constituents: root rj , POS pj
and morpheme chain mj . A morpheme chain mj

consists of several morphological tags, each of tags
is denoted as tjk, means the k-th tag in morpheme
chain mj . Vector representations of a context and
a morphological analysis aij are denoted as Si and
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Mij, respectively. [... ◦ ... ◦ ...] concatenation op-
eration of inside vectors.

3.2 Morphological Embedding

For the j-th analysis aij of given word wi, we em-
bed its root rj , POS pj and morpheme tags mj

into dense vector representation. In order to handle
the various length of morpheme tags, we define
a value maxT as the largest length of morpheme
tags in the dataset. Then a vector representation for
a analysis is calculated as follows1:

Mij = σ(Wa ∗ [rj ◦ pj ◦mj]) (1)

where Mij ∈ Rdh×1 is a vector represen-
tation of i-th word’s j-th morphological anal-
ysis. [rj ◦ pj ◦mj] ∈ R(dr+dp+maxT∗dm)×1

is the concatenation of corresponding vectors
of root, POS and morpheme tags. Wa ∈
Rdh×(dr+dp+maxT∗dm) is the model parameter.
dr, dp, dm is the dimension of root, POS and each
morpheme tag embeddings respectively. σ is a ac-
tivation function. The bias term was left out for
clarity. Representation for all Ni analyses of i-th
word is denoted as Mi ∈ Rdh×Ni

3.3 Contextual Embedding

A sentence is a sequence of surface words; its cor-
responding series of morphological analyses could
be considered its expansion with morphological
information. Two sequences are dissimilar in their
formation but are similar in the language meaning.
The former is made of a series of surface words,
and the latter is composed of morphological anal-
yses with certain ambiguities that depend on the
context. This subsection introduce two context
representations, and describe how to obtain vector
representations for them:surface word context and
averaged morphological context.

Surface word context. For a sentencew1, ..., wn,
consider its contextual information, we want to
compute surface word context representation to
each word. With the purpose of simplifying the
model architecture, we choose a window-based
feed forward neural network as the encoder. The en-
coder takes a window of words and embed them to
vector representation by one linear and non-linear

1only consider the the presence of each tag in a morpheme
chain. If the number of tags in a chain less than maxT , after
looking-up the existing tags, the remaining positions fill with
zero vector.

layers:

Ci = [wi−dwin/2
◦wi ◦wi+dwin/2

] (2)

where dwin is the window size and [... ◦wi ◦ ...] ∈
R(dwin∗dw)×1 is the concatenation of word embed-
dings. Here, to simplify the model architecture, we
did not apply a non-linear layer to generate surface
word context. It will be integrated with averaged
morphological context embeddings to capture the
interaction between pairs of sequences.

Averaged morphological context representation
A sequence of morphological analyses is another
ambiguous realization (each word has several anal-
yses) of word series. Regardless of the ambiguities,
we can compute averaged vector representations to
the morphological context and apply them to han-
dle better the dependencies issue among morpheme
tags and the dependencies among analyses located
in different positions of the sentence. Here, we
expect the averaged morphological context to im-
pact MD positively and will conduct corresponding
experiments to find it out.

More formally, instead of only using surface
word for a current wordwi, we can use the informa-
tion from the previous i ∈ (i−win, ..., i−1] words’
morphological analyses as well as the next i ∈ [i+
1, ..., i+ win) words’ analyses. Because there are
large dependencies in the morphological tags. Mor-
phological context Cpre ∈ R(dr+dp+maxT∗dm)×1

and Cnext ∈ R(dr+dp+maxT∗dm)×1 are defined
by:

Cpre =
∑

i

1

Ni

Ni∑

j=1

[rj ◦ pj ◦mj] (3)

where Ni is the number of morphological analyses
that i-th word has. win is the window size for a
morphological context. Similar calculation goes
for right side morphological context Cnext. The fi-
nal morphological context is obtained by averaging
the embedding of all analyses for the correspond-
ing side. After obtaining all context vectors, the
final vector representation for the context is cal-
culated by concatenating three (surface, left side,
and right side morphological context) and then go-
ing through a non-linear layer to extract interactive
features between these contexts.

Si = σ(Wc ∗ [Ci ◦Cpre ◦Cnext]) (4)

Where Wc ∈ Rdh×(dwin∗dw+2∗(dr+dp+maxT∗dm))

is the model parameter.
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3.4 Disambiguation
For disambiguation, we score each analysis by com-
puting the inner product between analyses and the
context’s representations:

a∗i = argmax(softmax(MT
i ⊙ Si)) (5)

where a∗i denotes the most probable analyses for a
word wi in a context. The underlying hypothesis is
that the embedding of the probable morphological
analysis should be most similar to the context. The
training procedure of the proposed method is given
in algorithm 1.

4 Experiments

4.1 Datasets
We run experiments on Arabic-PADT (ar) (Hajič
et al., 2009), Czech-PDT (cs)(Bejček et al., 2013),
Spanish-AnCora (es) (Taulé et al., 2008), German-
GSD (de)(McDonald et al., 2013), Russian-
SynTagRus (ru) (Droganova et al., 2018), Turkish-
IMST (tr)(Sulubacak et al., 2016) and Kazakh-
KTB (kk)(Tyers and Washington, 2015) from Uni-
versal Dependencies version 2.32. We use default
data splits except for Kazakh because the default
training set is significantly less than test set, we put
the larger set as the training set and the less one
for the test set. We tested the proposed language-
independent approach on various types of language:
Arabic is a Semitic language with nonconcatenative
morphology. We used default Arabic script without
any pre-processing. Czech and Russian are highly
inflecting Slavic languages. Spanish and German
belong to Romance and Germanic language groups,
respectively. Kazakh and Turkish are agglutinative
languages. Table 1 shows statistics of the corpora.
As given, German has large ambiguous data in
terms of analyses per word, it has 6.06 analyses
per word on average and the maximum number of
analyses reach to 51 for some certain words. It
should be noted that average analyses per word
are calculated based on all tokens (total number of
analyses of all tokens divided by the total number
of all tokens) not based on all unique tokens.

Figure 1 shows the percentage information about
the number of analyses in the corpora. It can be
seen that for Arabic and Russian, 20% ∼ 30%
tokens have two analyses and the remaining por-
tions of tokens have analyses in the range of [3,11].
Czech and German have long-tailed distributions

2https://universaldependencies.org

Algorithm 1: The training and prediction
process of the proposed method.
Input: (w1, ...a1j), ..., (wn, ...anj), a

sentence with its all possible
morphological analyses of each
word.

Output: a∗1, ..., a∗n, a sequence of correct
morphological analysis.

Parameter :θ, the set of the model
parameters.

for epoch← 1 to totalEpoch do
for i← 1 to n do

if Ni > 1 then
Cpre and Cnext← use
equation (3) to calculate
morphological context
embedding.

Si← use equation (4) to
compute contextual
embedding.

Define a matrix Mi ∈ Rdh×Ni .
for j ← 1 to Ni do

Mij ← use equation (1) to
calculate j-th
morphological embedding
for i-th word.

end
a∗i =
argmax(softmax(MT

i ⊙
Si))

if a∗i ̸= the correct analysis then
θ∗ ← use back-propagation
to compute the gradient of
the corresponding object
function with respect to the
model parameters.
θ ← θ + ηθ∗ update
parameters.

end
end
else

if i-word has only one analysis,
then treat it as the correct
analysis.

end
end
if epoch > totalEpoch or reach the

expected accuracy then
stop training;

end
epoch ++;

end
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Table 1: Corpora statistics. avg. denotes the average number of analyses per word. max. is the maximum number.
ambig. rate denotes the percentage of the ambiguous tokens (the words have more than one analysis).

Lang.
Training Set Test Set

tok.
label per word ambig. rate

(%)
tok.

label per word ambig. rate
avg. max. avg. max. (%)

ar 254340 2.69 12 64.88 32128 2.71 12 66.19
cs 1175374 2.65 25 48.18 174252 2.67 25 49.16
es 446145 2.80 11 53.69 52801 2.81 11 65.58
de 268414 6.06 51 62.54 16772 5.89 51 70.66
ru 871521 1.88 15 41.34 117523 1.86 15 40.60
tr 38871 1.24 5 17.40 10193 1.24 5 16.79
kk 10063 1.27 5 19.06 547 1.32 5 21.38
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Figure 1: Distribution about the number of per word analyses. x-axis is the number of analyses and y-axis is the
percentage of those analyses number in the corpus.

in the number of analyses. Kazakh and Turkish
have similar distributions, and the large portion
50% ∼ 80% of their analyses number are in the
range [1,3).

4.2 Baselines

We use two models as baselines, the CRF-based
MarMoT (Mueller et al., 2013) and Seq2Seq-based
model (Tkachenko and Sirts, 2018): i) MarMoT3

is the pruned CRF (PCRF)-based morphological
tagger which has been shown to achieve compet-
itive performance across several languages. The
model is based on coarse-to-fine decoding, which
means that the model first predicts POS and based
on that, constrains the morphological tags. We train
the second-order of MarMot following the result
of (Mueller et al., 2013). ii) Seq2Seq4 is a recent

3http://cistern.cis.lmu.de/marmot/
4https://github.com/AleksTk/seq-morph-tagger

new sophisticated neural model, which is inspired
from neural seq2seq models commonly used for
machine translation. Encoder models the context of
each word and decoder predicts morphological tags
in a analysis as a sequence of its category value.
Seq2Seq was trained with same hyper-parameters
reported in (Tkachenko and Sirts, 2018).

4.3 Model Setup

It can be seen from Table 1 and Figure 1 that
German has the most ambiguous test set, we op-
timize the hyper-parameters of LIMD on the Ger-
man development set and apply the resulting val-
ues to other languages. We set the embedding of
dr, dp, dm to 35; the hidden layer size dh is 100; the
word context size is set to dwin = 7 and morpho-
logical context uses leftmost and rightmost word
analyses. To compare the decoding times we run
all experiments on the same test environment: In-
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tel Core i7-8700 CPU with 6 cores and 16 GB of
memory.

5 Results

Table 2 presents the experimental results. We report
accuracy of Part-of-speech (POS), Morpheme and
POS+Morpheme for all tokens. POS+Morpheme
indicates that both POS and all morphological tags
are correctly predicted. It can be seen from Ta-
ble 2, LIMD performs comparable with MarMot
(Mueller et al., 2013) and the seq2seq-based model
(Seq2Seq) (Tkachenko and Sirts, 2018) in most
cases for all three types of tagging. As a state-
of-the-art, Seq2Seq outperforms MarMot that is a
CRF-based strong baseline.

For POS, Seq2Seq and MarMot yield similar
results (76.78% and 77.14%) for Kazakh such
small dataset (Table 1), in contrast, the proposed
approach significantly outperforms MarMot and
Seq2Seq by ≈ 18%. Also, similar results can be
observed for Turkish, the second smallest dataset in
this work. LIMD outperforms baselines by ≈ 4%.
For German and Arabic, LIMD gives above 1% im-
provement over baselines, and its results for Czech,
Russian and Spanish datasets are slightly better
than baselines.

For morpheme, LIMD gives comparable accu-
racy with MarMot and Seq for the most of the
languages. Again, it shows promising results for
the smallest (Kazakh, the improvement is ≈ 25%)
and the second smallest (Turkish, the improv. is
≈ 7.5%) datasets. For German morpheme predic-
tion, Seq2Seq (88.44%) gives 1.88% improvement
over MarMot (86.56%), and LIMD yields 92.23%
accuracy in this case. Compared to other languages,
LIMD achieves a larger improvement over the base-
lines on the German data that is highest ambiguous
among all datasets.

For POS+morpheme joint prediction, LIMD per-
forms much higher than Marmot and Seq2Seq
for the German, Turkish, Kazakh data, and for
other languages, they give very competitive ac-
curacies. Cross-task comparisons (morpheme vs.
POS+morpheme and POS vs. POS+morpheme)
reveal that the morpheme tagging is the most chal-
lenging part for all models, as it can be observed
that morpheme’s accuracies are much lower than
POS one. It worth noting that Seq2Seq applies
double-layer of biLSTM network as encoder to
model the character and word embeddings for con-
text. This architecture has been applied recently

to context representation learning for MD and
achieved the notable results (Heigold et al., 2017;
Tkachenko and Sirts, 2018; Yu et al., 2017).

6 Analysis And Discussion

Analysis of surface word context. To explore
the influence of different window-sized surface con-
texts, we fixed the morphological context with the
leftmost and rightmost ones and tuned the window
size only for the surface context. We choose the
German dataset for the exploration because it is
the most complex data in its ambiguous analysis in
this work. Table 3 shows the results for POS, Mor-
pheme and POS+Morpheme prediction. It can be
seen that the model’s accuracy grows gradually in
window size (1-9), then it starts to drop slightly at
window size 11, which indicates words outside of
window 7 become "noise" when performing joint
tagging. At window size (7,9), the model has minor
differences for POS+Morpheme. Thus, we choose
window size for word context to 7.

Analysis of averaged morphological context.
Figure 2 shows the error rate of the training and
test process for German data when incorporating
two types of context embeddings: leftmost and
rightmost analyses as morphological context. First,
make it clear that all training curves are without
markers in the figure. With markers are testing
curves. In which, we present the models’ perfor-
mance when applying the different contexts inde-
pendently: word context, left and right analyses as
morphological context.

It can be seen that compared to word context,
the left morphological context improves model’s
performance both in terms of the process for train-
ing and test. The error rate of training and test
curve has a fast decrease when the model uti-
lizes left+right morphological contexts compared
to other settings. The model yields 84.38% (word),
85.17% (left) and 87.50% (left+right) accuracy at
25 epochs. It indicates that the morphological con-
text plays an important role in MD. In other words,
it could improve the model’s performance and also
reduces the training time.

Error analysis. Figure 3 shows the largest er-
ror rates of the distinct morphological categories
for MarMot, Seq2Seq and LIMD models averaged
over all languages. It can be seen that all models
tend to have large errors for predicting the features
of Case, Number and Gender. Among all the mod-
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Table 2: Test accuracy results for POS, Morpheme and POS+Morpheme.

Lang.
POS Morpheme POS+Morpheme

Marmot Seq2Seq LIMD Marmot Seq2Seq LIMD Marmot Seq2Seq LIMD
ar 96.28 96.38 97.48 91.87 92.81 93.26 91.57 92.50 92.96
cs 98.56 98.67 98.95 93.24 94.57 94.82 92.97 94.40 94.45
es 98.25 98.17 98.40 97.79 97.56 98.00 97.11 96.83 97.30
de 92.96 93.34 94.76 86.56 88.44 92.23 81.75 83.67 88.11
ru 98.36 98.56 98.74 94.72 95.34 96.33 94.33 95.05 95.96
tr 92.99 93.66 97.66 88.42 90.47 97.04 86.20 88.15 96.03
kk 77.14 76.78 95.46 71.66 69.65 96.97 65.99 65.63 94.70
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Figure 2: Example of training and test run of LIMD with two types of contexts for German data. tr. and te denote
train and test. word - word context. left, right denote left and right morphological context.

Ca
se

Nu
m

be
r

Ge
nd

er

Pr
on

Ty
pe

As
pe

ct

Pe
rs

on

Vo
ice

Te
ns

e

Ve
rb

Fo
rm

De
fin

ite

M
oo

d

Fo
re

ig
n

Morphological category

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Av
er

ag
e 

er
ro

r r
at

e

MarMot
Seq

LIMD

Figure 3: Average error rates of distinct morphological categories for LIMD, MarMot and Seq2Seq models.

els, it seems Seq2Seq performs worse on modeling
Number and Gender features than others. It can

be seen that LIMD’s error rates are considerably
lower in these two categories. For Case features,
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Table 3: Test accuracy results for the German data using
different window-sized surface contexts.

win POS Morpheme POS+Morpheme

1 93.98 89.98 85.23
3 94.12 90.58 86.01
5 94.58 91.64 87.41
7 94.76 92.23 88.11
9 94.69 92.30 88.15

11 94.56 92.16 87.85

Table 4: Comparisons with previous work: Seq2Seq
(Tkachenko and Sirts, 2018), Heigold (Heigold et al.,
2017), Dozat(Dozat et al., 2017)

Lang. Seq2Seq Heigold Dozat LIMD

ar 93.84 93.78 92.85 92.96
cs 95.39 96.32 95.22 94.45
ru 96.67 96.45 96.20 95.96
tr 90.70 89.12 90.22 96.03

average 94.15 93.91 93.63 94.85

MarMot shows the largest error rates.

Comparison with previous work. It is difficult
to make a direct comparison of our results to pre-
viously published results since UD data sets have
various versions with differences. Here, we try to
provide a very rough comparison in Table 4 only
for reference. The original results were taken from
(Tkachenko and Sirts, 2018) (Seq2Seq), which is
obtained on UD2.1 version using a large pre-trained
word embeddings5 with sophisticated neural archi-
tecture and large well-tuned hyper-parameters. In
contrast, LIMD starts by random initialization of
parameters, then is tuned in the training process.
Another previous tagger was presented in the work
(Dozat et al., 2017), which used a more sophisti-
cated encoder than Seq2Seq. In addition, we com-
pare the results taken from (Heigold et al., 2017)
obtained on UDv1.3. As we can see, the results are
very competitive in most cases. For Turkish, LIMD
shows a significant improvement.

Decoding time and accuracy. In Table 5, we
report the final comparison to the baselines both
in terms of accuracy and decoding time. Compar-
ing with the baselines of MarMot and Seq2Seq,
LIMD achieves around 6% gains in average accu-

5https://github.com/facebookresearch/fastText

Table 5: Comparison with the state-of-the-arts.

Lang.
POS+Morpheme

MarMot Seq2Seq LIMD

ar 91.57 92.50 92.96
cs 92.97 94.40 94.45
es 97.11 96.83 97.30
de 81.75 83.67 88.11
ru 94.33 95.05 95.96
tr 86.20 88.15 96.03
kk 65.99 65.63 94.70

avg. 87.13 88.03 94.21

tokens/s 1372 tok/s 257 tok/s 8712 tok/s

racy for all languages, and running about 6 and
33 times faster than MarMot and Seq2Seq respec-
tively. It can be seen from Table 5 that LIMD gains
significant improvements on Kazakh, Turkish, and
German datasets. The former two are the small
datasets compared with other in this work, and the
German is the complex one (it has around 6 anal-
yses per word in average, see in Table 1). It may
indicate that LIMD works well on morphologically
complex languages with many analyses per token
and the approach suffers less from the issue of lack
of data.

7 Conclusion

This paper presents a language-independent mor-
phological disambiguation approach, LIMD. It em-
beds surface word and morphological context into
vector representations, then calculates cosine sim-
ilarly scores of two to perform disambiguation.
Experimental evaluations show that LIMD outper-
forms other sophisticated models in both accuracy
and speed. Results indicate that LIMD works well
on morphologically complex languages with many
analyses per token and the approach suffers less
from the issue of lack of data.

Possible future work in this direction is to apply
different methods to the model’s output instead
of a computing dot product for disambiguation.
Also, there is still room for the improvement in
the model’s architecture, such as better capturing
surface word context or modeling morphological
analyses with more advanced architectures.
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Çağrı Çöltekin, Joakim Nivre, and Gülşen Eryiğit.
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Abstract

This paper aims to improve the performance of
text-to-SQL parsing by exploring the intrinsic
uncertainties in the neural network based
approaches (called SUN). From the data
uncertainty perspective, it is indisputable that
a single SQL can be learned from multiple
semantically-equivalent questions. Different
from previous methods that are limited to
one-to-one mapping, we propose a data
uncertainty constraint to explore the under-
lying complementary semantic information
among multiple semantically-equivalent
questions (many-to-one) and learn the robust
feature representations with reduced spurious
associations. In this way, we can reduce the
sensitivity of the learned representations and
improve the robustness of the parser. From
the model uncertainty perspective, there is
often structural information (dependence)
among the weights of neural networks. To
improve the generalizability and stability
of neural text-to-SQL parsers, we propose
a model uncertainty constraint to refine the
query representations by enforcing the output
representations of different perturbed encoding
networks to be consistent with each other. Ex-
tensive experiments on five benchmark datasets
demonstrate that our method significantly
outperforms strong competitors and achieves
new state-of-the-art results. For reproducibility,
we release our code and data at https:
//github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/sunsql.

1 Introduction

Text-to-SQL parsing (Zettlemoyer and Collins,
2012; Liang et al., 2013; Zhong et al., 2017; Qin
et al., 2022) aims at converting a natural lan-
guage (NL) question to its corresponding structured
query language (SQL) in the context of a relational
database (Schema). Although relational databases

Equal contribution.
†Corresponding authors.

can be efficiently accessed by skilled professionals
via handcrafted SQLs, a natural language inter-
face, whose core component relies on text-to-SQL
parsing, would allow ubiquitous relational data to
be accessible to a broader range of non-technical
users. Therefore, text-to-SQL parsing has attracted
increasing attention from both academic and indus-
trial communities recently due to its broad applica-
tions in question answering, conversational search
interaction, and so on.

Although significant efforts have been devoted
to text-to-SQL parsing (Chen et al., 2021; Yu
et al., 2018a; Wang et al., 2020a; Cao et al., 2021;
Scholak et al., 2021) with advanced deep models
and architectures by learning black-box mappings
between input NL questions and output SQLs, there
are still several technical challenges for accurate
and robust text-to-SQL parsing. First, previous
models are generally learned to fit the simplified
one-to-one mapping relationship, where only one
NL question is used as the input, and the appro-
priate rest are ignored. However, there exists data
uncertainty (Ott et al., 2018; Wei et al., 2020) in
text-to-SQL parsing, i.e., one output SQL may cor-
respond to multiple semantically-equivalent NL
questions. At inference time, the semantic parser
trained on the one-to-one parallel data struggles
to deal with adequate variations of the training
queries. Second, there is often structural informa-
tion (dependence) (Xiao and Wang, 2019; Zhang
et al., 2022) among the weights of neural networks.
One challenge in training neural semantic parsers
is that such models may overfit the training data
since these models only seek a point estimate for
their weights, failing to quantify weight (model)
uncertainty. For text-to-SQL parsing, the model
uncertainty brings difficulty in obtaining the en-
coded representations that can best describe the
input data distribution and provide an robust map-
ping between NL questions and SQL queries.

To alleviate the aforementioned challenges, in
5298



this paper, we propose a generic training approach
SUN, which explores the data and model uncertain-
ties in text-to-SQL parsing. First, we propose a
data uncertainty constraint to explore the underly-
ing complementary semantic information among
multiple semantically-equivalent queries and learn
comprehensive feature representations with strong
expressive ability. In particular, we summarize
multiple semantically-equivalent source questions
into a closed semantic region which is then used
to complement the model to generate better SQL
queries with comprehensive semantics. Second, to
improve the generalizability and stability of neural
text-to-SQL parsers, we propose a model uncer-
tainty constraint to refine the query representations
by enforcing the output representations of different
perturbed encoding networks to be consistent with
each other. Concretely, we impose the consistency
on multiple networks perturbed with dropout for
the same input NL question.

We summarize our main contributions as fol-
lows. (1) We propose a data uncertainty constraint,
which aims to explicitly capture comprehensive se-
mantic information among multiple semantically-
equivalent NL questions, and enhance the hidden
representations with this complementary informa-
tion for generating better SQL, thus improving the
robustness of neural text-to-SQL parsers. (2) We
employ a model uncertainty constraint to encour-
age high similarity between the output representa-
tions of two perturbed encoding networks for the
same input NL question, improving the generaliz-
ability and stability of neural text-to-SQL parsers.
(3) Experiments on five benchmark datasets demon-
strate that the proposed SUN method outperforms
the strong competitors by a substantial margin. It is
noteworthy that our method is model-agnostic and
potentially applicable for any text-to-SQL parsers
with deep network architectures.

2 Related Work

Text-to-SQL Parsing Text-to-SQL parsing, a
subtask of semantic parsing, aims at converting
a NL question to its corresponding SQL query in
the context of a relational database (schema). In-
spired by the success of deep learning, neural text-
to-SQL models based on the sequence-to-sequence
(Seq2Seq) framework have dominated the research
field of text-to-SQL parsing (Guo et al., 2019;
Wang et al., 2020b; Zhong et al., 2020; Hui et al.,
2021a,b, 2022; Cao et al., 2021; Wang et al., 2022).

The general idea behind these methods is to con-
struct an encoder to encode the input question to-
gether with related table schema and leverage a
decoder to generate the target SQL based on the out-
put of the encoder. For example, IRNet (Guo et al.,
2019) is a representative neural text-to-SQL parser,
which leveraged two separate BiLSTMs with self-
attention mechanism (Vaswani et al., 2017) to en-
code the NL question and table schema. Subse-
quently, the graph-based approaches have been pro-
posed, which use relational graph attention net-
works to deal with the schema entities and ques-
tion words with structured reasoning. For instance,
RATSQL (Wang et al., 2020a), SMBOP (Rubin
and Berant, 2021) and RaSaP (Huang et al., 2021)
defined a question-schema graph and employed
the relation-aware self-attention mechanism (Shaw
et al., 2018) in the encoding process to jointly learn
representations of question words, schema items
and edge relations. LGESQL (Cao et al., 2021)
further constructed an edge-centric graph to update
the edge features and designed graph pruning to
determine the golden schema items related to the
NL question.

Recently, some methods have leveraged the
powerful pre-training capabilities of T5 (Raffel
et al., 2019) to generate SQL queries. Different
from graph-based methods, T5-based approaches
(Scholak et al., 2021) adopt the transformer-based
architecture for both encoder and decoder and
do not need pre-defined graphs, schema link-
ing relations, and grammar-based decoder. PI-
CARD (Scholak et al., 2021) is a representative T5-
based method which constrained auto-regressive
decoders of language models through incremental
parsing. The impressive experimental results verify
the ability of the T5-based methods for text-to-SQL
parsing.

Uncertainty Modeling in NLP Uncertainty
quantification is an important approach to building
robust AI systems. In the field of natural language
processing, there are several works (Kendall et al.,
2015; Xiao and Wang, 2019; Zhang et al., 2019;
Shen et al., 2019; Wei et al., 2020; Zhang et al.,
2021; Hu and Khan, 2021) which investigate the
effects of quantifying uncertainties in various NLP
tasks. For example, Zhang et al. (2019) applied
a dropout-entropy method to measure uncertainty
learning for text classification. Xiao and Wang
(2019) showed that explicitly modeling uncertain-
ties via Monte-Carlo dropout (Gal and Ghahramani,
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2016) could enhance model performances of sev-
eral NLP tasks. Su et al. (2018) introduced a series
of continuous latent variables to model underlying
semantics of source sentences in neural machine
translation. Wang et al. (2019) proposed to quantify
the confidence of NMT model predictions based
on model uncertainty to better cope with noise in
synthetic corpora. Wei et al. (2020) considered
the intrinsic uncertainty by representing multiple
source sentences into a closed semantic region. To
our best knowledge, our proposed method is the
first attempt to explore uncertainty in text-to-SQL
parsing.

3 Preliminaries

3.1 Problem Definition

Given a natural language question Q and the cor-
responding database schema S = ⟨T,C⟩, text-to-
SQL parsing aims to generate a SQL query Y based
on Q and S. More specifically, the question Q ={
q1, q2, · · · , q|Q|

}
is a sequence of tokens, and the

schema S consists of tables T =
{
t1, t2, · · · , t|T |

}

and columnsC =
{
c1, c2, · · · , c|C|

}
. Each table ti

contains mt words (ti,1, ti,2, · · · , ti,mt) and each
column name ctij in table ti contains mc words
(ctij,1, c

ti
j,2, · · · , ctij,mc). We use I = ⟨Q,T,C⟩ to

denote an input for the text-to-SQL parser.

3.2 Text-to-SQL parser

Currently, advanced text-to-SQL parsers are cen-
tred around two types of approaches: the graph-
based approaches (Wang et al., 2020a; Huang
et al., 2021; Cao et al., 2021) and the T5-based
approaches (Scholak et al., 2021; Xie et al., 2022),
both of which adopt the encoder-decoder frame-
work for implementation.

Graph-based Methods Formally, the input ques-
tion and database schema are constructed as a
single direct graph in the pre-processing phase:
G = ⟨V,E⟩, where V = Q ∪ T ∪ C denotes
the node set that contains three different node types
(question, table, and column) and E is the edge
set depicting pre-existing relations for question
tokens and schema items. To obtain the initial
representation for every node in the graph, the re-
cent graph-based methods, e.g., LGESQL (Cao
et al., 2021), first flatten all question words and
schema items into a sequence and feed the se-
quence I = ⟨Q,T,C⟩ into large-scale pre-trained
language models (PLMs) to learn word vectors.

The learned word vectors are then passed into a sub-
word attentive pooling layer and three Bi-LSTMs
according to the node types to get the node repre-
sentations for the graph G.

After that, the graph-based approaches adopt an
encoder, which consists of a stack of relational
graph attention network (RGAT) (Wang et al.,
2020b) layers, to learn complex interaction over
schema items as well as question words and output
the final contextual representation XI for input I .

In the decoding process, the graph-based meth-
ods usually adopt the grammar-based syntactic
neural decoder to generate the abstract syntax
tree (AST) of the target query Y in the depth-
first traversal order. The output at each decoding
timestep is either (i) an APPLYRULE action that
expands the current non-terminal node in the par-
tially generated AST, or (ii) an SELECTTABLE
or SELECTCOLUMN action that chooses certain
schema item. The readers can refer to (Wang et al.,
2020a) for more implementation details.

T5-based Methods The T5-based approaches
leverage the powerful pre-training capabilities of
T5 to generate SQL queries, which directly fine-
tune the downstream corpora with the standard ob-
jective for text generation without any specifically
designed modules. Specifically, they take the se-
quential concatenation of the question words and
schema item names as input to the T5 encoder and
generate the corresponding SQL using the T5 de-
coder. Both encoder and decoder are composed of
multi-layer Transformer blocks.

To ensure that the output SQL is grammati-
cally correct, T5-based approaches such as PICARD

(Scholak et al., 2021) implement rule-based con-
strained decoding, achieving competitive perfor-
mance with less invasiveness and better compatibil-
ity. PICARD is an incremental parsing method for
constrained decoding and can be compatible with
any existing auto-regressive language model de-
coder and vocabulary—including, but not limited
to, those of large pre-trained transformers. Differ-
ent from the graph-based approaches that generally
restrict the auto-regressive decoding process to to-
kens that can correctly parse to abstract syntax trees
during training, constrained decoding used in T5-
based approaches operates directly on the output of
the language model and applies the characteristic
of target SQL to help reject inadmissible tokens at
each decoding step at inference time.
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Figure 1: Overview of the proposed SUN method. There are many-to-one and one-to-one cases in the text-to-SQL
training data. For many-to-one samples, they are modelled by data uncertainty, and for one-to-one samples, they are
modelled by model uncertainty. The E means the encoder and D means the decoder of the graph-based or T5-based
methods.

4 Proposed Method

Intrinsic Uncertainty Previous works have fo-
cused on the inductive bias through model design,
while the intrinsic data uncertainty and model un-
certainty are underexplored. As shown in Figure 1,
many-to-one cases (multiple NL questions can cor-
respond to one SQL query) exist in the text-to-SQL
training data, which are caused by the inherent un-
certainty of natural language (Ott et al., 2018; Wei
et al., 2020). In such many-to-one scenario, each
input sample I has a semantically-equivalent sam-
ple I in the training set, where these two input in-
stances correspond to the same SQL query. In addi-
tion, there are also some instances in the training set
that do not have semantically-equivalent samples
(referred to one-to-one cases), where the model un-
certainty becomes critical (Xiao and Wang, 2019;
Zhang et al., 2019). In this work, we propose SUN,
a generic training approach for text-to-SQL parsing,
to mitigate the data uncertainty and model uncer-
tainty simultaneously. SUN consists of two primary
components: (i) a data uncertainty constraint that
summarizes multiple semantically-equivalent NL
questions into an abstract semantic region and (ii) a
model uncertainty constraint that encourages high
similarity between the output representations of
two perturbed encoding networks for the same NL
question.

Global Semantic Representation Learning
Without the loss of generality, we use the encoder
of the text-to-SQL parser to transform each input
I into a contextual representation XI . Then, we
pass the contextual representation XI to a convo-
lutional layer with a pooling operation to obtain
the final global semantic representation HI of the
input I . For Simplicity, we represent the whole
process of learning global semantic representations
as HI = Encode(I).

4.1 Data Uncertainty Constraint

For the many-to-one scenario, we expect to encour-
age high similarity between the representations of
two semantically-equivalent NL questions. To this
end, we propose a data uncertainty constraint to
summarize the semantically-equivalent input I and
I into a closed semantic region. We first obtain
global semantic representations HI = Encode(I)
and HI = Encode(I) for two semantically-
equivalent input samples I and I . To learn com-
pact and abstract representation without spurious
association, we assume that there are two latent
semantic variables z and z associated with HI and
HI respectively, which are sufficient for generat-
ing the target SQL query and eliminate the redun-
dant details, so as to reduce the sensitivity of the
learned representations. That is, both z and z main-
tains all information which is shared by HI and
HI , inspired by the intuition that two semantically-
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equivalent samples provide the same predictive in-
formation. Formally, we assume that P(z|HI) and
P(z|HI) are the distributions of the latent semantic
variables z and z, which are modeled by Normal
distributions parametrized with (µ,µ̄) and (σ, σ̄).
Formally, we define the two semantic distributions
as follows:

P(z | HI) ∼ N (µ(HI), σ
2(HI)I) (1)

P(z | HI) ∼ N
(
µ̄(HI), σ̄

2(HI)I
)

(2)

where I denotes the all-ones vector. µ (or µ̄) and σ
(or σ̄) are computed via fully-connected neural net-
works based on the global semantic representations
HI (or HI ) as:

µ(HI) = HI ·Wµ + bµ (3)

log σ2(HI) = HI ·Wσ + bσ (4)

µ̄(HI) = HI ·Wµ + bµ (5)

log σ̄2(HI) = HI ·Wσ + bσ (6)

where Wµ, Wσ denote the projection parameters
and bµ, bσ denote the bias terms.

Inspired by the reparameterization techniques
used in (Kingma et al., 2014; Zhang et al., 2016),
the sampled latent representations z and z for z and
z are then obtained as follows for efficient gradient
computation :

z = µ(HI) + σ(HI)⊙ ϵ (7)

z = µ̄(HI) + σ̄(HI)⊙ ϵ (8)

where ϵ ∼ N (0, I) is a parameter to introduce
noise and ⊙ denotes an element-wise product.

The goal of the data uncertainty constraint is
to summarize multiple source questions that share
the same meaning into a closed semantic region.
In order to enforce the distribution P(z|HI) to
be close to P(z|HI), we formulate the data un-
certainty constraint loss LDU by minimizing KL
divergence between P(z|HI) and P(z|HI) as:

LDU = KL
(
P(z | HI)||P(z | HI)

)
(9)

4.2 Model Uncertainty Constraint
To improve the robustness of text-to-SQL parsers,
we consider the model uncertainty for the one-
to-one questions which do not have semantically-
equivalent questions in training set by taking advan-
tage of the data augmentation technique. Specif-
ically, the input data I goes through the forward
pass of the encoding network twice with dropout

to produce two-view representations of the input
I . Since the dropout (Hinton et al., 2012) operator
randomly drops units from the model, the two for-
ward passes indeed produce two distinct semantic
representations of input I . Inspired by the model
uncertainty learning in text feature space (Zhang
et al., 2019), we then use contrastive learning (Gao
et al., 2021; Yan et al., 2021) to pull together the
two-view representations of the same input ques-
tion produced by dropout and push apart the se-
mantic representations of different questions in the
same batch. Formally, we formulate the model un-
certainty constraint loss LMU as:

LMU = − 1

N

N∑

i=1

log
es(z

1
i ,z

2
i )

es(z
1
i ,z

2
i ) +

∑N
j=1,j ̸=i e

s(z1i ,z
1
j )

(10)
where s denotes a cosine similarity function
s(z1i , z

2
i ) = z1i · z2i /∥z1i ∥∥z2i ∥, the superscript in

z1i and z2i indicates the view index, N indicates
the number of training samples in a mini-batch.
The model uncertainty constraint encourages the
consistency between different views of semantic
representation from the same input while enforcing
the discrepancy between unrelated question pairs.
By reducing the gap between the sub-models that
contain different weight correspondences due to
the randomness of the dropout mechanism, the ro-
bustness of the representation of the text-to-SQL
parsers can be further enhanced.

4.3 Uncertainty-aware Semantic
Representation

We further augment the contextual representation
XI of the input sample I obtained by the encoder
with the corresponding uncertainty-aware latent
representation z through the learnable gate g as:

g = sigmoid (z ·Wz +XI ·Wx) (11)

where Wz , Wx denote the projection parameters.
Then, we formulate the overall semantic represen-
tation U ∈ R|V n|×d by combining the contextual
representation XI and the uncertainty-aware latent
representation z with the corresponding gate g as:

U = LayerNorm (g · z + (1− g) ·XI) (12)

where U is used as the input to the decoder
(grammar-based decoder or T5 decoder) of the
text-to-SQL parser to output the target SQL as
Y = Decode(U). We define the standard train-
ing objective of the encoder-decoder framework as
LT2S.
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Model EM EX

IRNet + BERT 61.9 -
RAT-SQL + BERT 69.7 -
RAT-SQL + Grappa 73.4 -
GAZP + BERT 59.1 53.5
BRIDGE + BERT 65.5 59.9
BRIDGE v2 + BERT 70.0 68.3
SMBOP + GRAPPA 69.5 71.1
RAT-SQL+GAP+NatSQL 68.7 73.3

LGESQL + ELECTRA 75.1 -
w/ SUN 76.8 -

PICARD + T5-Large 69.1 72.9
w/ SUN 71.6 75.4

Table 1: Exact match (EM) and execution (EX) accuracy
(%) on SPIDER benchmark.

Model Dev. Test
EM EX EX

ETA + BERT 50.10 68.30 54.10

ALIGN 43.70 62.10 50.10
w/ BERT 48.40 67.70 54.30
w/ RoBERTa 50.93 70.92 58.37

w/ SUN 52.93 71.95 59.34

Table 2: Exact match (EM) and execution (EX) accuracy
(%) on SQUALL dataset.

Joint Training Finally, we combine the standard
negative likelihood loss LT2S for SQL generation
and the two uncertainty constraint loss functions
(LDU and LMU) to form the joint loss function
Ltotal as follows:

Ltotal = LT2S + LDU + LMU (13)

5 Experimental Setup

5.1 Datasets
We conduct extensive experiments on five bench-
mark datasets for text-to-SQL parsing. (1) SPIDER
(Yu et al., 2018b) is a large-scale cross-domain
zero-shot text-to-SQL benchmark. It originally con-
tains 8659 training examples across 146 databases
in total. We follow the common practice to re-
port the exact match accuracy and execution accu-
racy. (2) SYN (Gan et al., 2021a) is a challenging
variant of SPIDER, which consists of 1034 evalu-
ation examples. SYN is constructed by manually
modifying NL questions in SPIDER using synonym
substitution. (3) DK (Gan et al., 2021b) is con-
structed by selecting 535 samples from SPIDER

Model SYN DK REALISTIC

GNN 23.6 26.0 -
IRNet 28.4 33.1 -
RAT-SQL 33.6 35.8 -
RAT-SQL + BERT 48.2 40.9 58.1
RAT-SQL + Grappa 49.1 38.5 59.3

LGESQL + ELECTRA 64.6 48.4 69.2
w/ SUN 66.9 52.7 70.9

Table 3: Exact match accuracy (%) on SYN, DK and
REALISTIC benchmark.

dev set, where 270 pairs are the original SPIDER

samples while the rest 265 pairs are modified by
incorporating the domain knowledge. (4) REAL-
ISTIC (Deng et al., 2020) is a more realistic and
challenging evaluation setting with explicit men-
tions of column names being manually removed.
(5) SQUALL (Shi et al., 2020) is constructed by
generating SQL queries of the English-language
questions in WIKITABLEQUESTIONS (Pasupat
and Liang, 2015) and manually align questions
with corresponding SQLs. It consists of 15,622 ex-
amples which are split into training (9,032), devel-
opment (2,246) and test (4,344) sets. All datasets
employed in this paper are in English.

5.2 Baseline Methods

We compare SUN with several strong baseline
methods, including IRNet (Guo et al., 2019), RAT-
SQL (Wang et al., 2020a), GAZP (Zhong et al.,
2020), BRIDGE (Lin et al., 2020), SMBOP (Ru-
bin and Berant, 2021), LGESQL (Cao et al., 2021)
and PICARD (Scholak et al., 2021). Since SUN

is model-agnostic and potentially applicable for
any neural text-to-SQL parsers, we adopt LGESQL
and PICARD, which are the state-of-the-art graph-
based and T5-based methods respectively, as our
base models to verify the universality of SUN. In
addition, for SQUALL, we adopt the previous SOTA
model ALIGN (Shi et al., 2020) with RoBERTa
(Devlin et al., 2018) and ETA (Liu et al., 2021) as
our base model.

5.3 Implementation Details

For the LGESQL, following (Cao et al., 2021), the
hidden size of the graph attention network is set to
512 and the number of layers is set to 8. The num-
ber of heads in multi-head attention is 8 and the
dropout rate is set to 0.2 for both the encoder and
decoder. In the decoder, the dimension of hidden
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Model
SPIDER SYN

easy medium hard extra all easy medium hard extra all

LGESQL+ELECTRA 91.9 78.3 64.9 52.4 75.1 79.4 67.9 62.1 36.1 64.6
w/ SUN 92.3 80.3 70.7 50.6 76.8 79.8 72.3 59.9 41.4 66.9

Model
DK REALISTIC

easy medium hard extra all easy medium hard extra all

LGESQL+ELECTRA 74.5 46.7 41.9 29.5 48.4 86.2 77.8 60.6 41.2 69.2
w/ SUN 75.5 53.7 47.3 30.5 52.7 89.9 77.3 61.6 45.4 70.9

Table 4: Exact matching accuracy by varying the levels of difficulty of the inference data on the of SPIDER, SYN,
DK and REALISTIC.

Model SPIDER SYN DK REALISTIC

LGESQL+SUN 76.8 66.9 52.7 70.9
w/o LDU 75.8 65.8 51.2 69.5
w/o LMU 76.2 66.4 52.1 70.1

Table 5: Ablation results in terms of exact match accuracy on SPIDER, SYN, DK and REALISTIC.

state, action embedding and node type embedding
are set to 512, 128 and 128, respectively. We use
AdamW optimizer (Loshchilov and Hutter, 2017)
with linear warmup scheduler and the warmup ratio
of total training steps is 0.1. The learning rate is
1e-4 and the weight decay rate is 0.1. The batch
size is set to be 20 and the maximum gradient norm
is 5. The number of training epochs is 200. For the
PICARD (Scholak et al., 2021), we follow the offi-
cial implementation to fine-tune T5-large for 400
epochs. We use Adafactor optimizer (Shazeer and
Stern, 2018) with a learning rate of 1e-4. For the
ALIGN model, we employ SUN on the RoBERTa
setting. The representation size is 1024. The de-
coder is implemented with 2-layer LSTM and the
hidden size is set to 128. We adopt the Adam
optimizer (Kingma and Ba, 2014) with learning
rate of 0.001 and the dropout rate is set to be 0.3.
Specifically, we employ kernels with window sizes
ranging from 3 to 5 to obtain the global semantic
representations used in the uncertainty measure-
ment process in SUN.

6 Experimental Results

6.1 Main Results

Results on SPIDER Table 1 shows the exact
match accuracy (EM) and execution accuracy (EX)
scores of our method and compared baselines on
the SPIDER dataset. We observe that SUN can
bring substantial improvements, which achieves a

notable gain of 1.7% on the exact match accuracy
scores over the strongest baseline LGESQL. In ad-
dition, PICARD+SUN obtains significantly better
results than the compared baseline methods on SPI-
DER dataset in terms of exact match accuracy and
execution accuracy, which both achieve superior
results of 2.5% improvement.

Results on more challenging and realistic set-
tings To evaluate the effectiveness of SUN in
more challenging and realistic settings, Table 3 il-
lustrates the experimental results on SYN, DK and
REALISTIC datasets. We can observe that SUN con-
sistently and substantially surpasses the compared
models by a noticeable margin on three datasets in
terms of exact match accuracy. In particular, SUN

achieves considerable improvement over LGESQL
on all three datasets. For SYN, LGESQL with SUN

outperforms LGESQL by 2.3% EM score, demon-
strating that SUN can improve the robustness of
text-to-SQL parsers to synonym substitution. An
improvement of 4.3% EM score is observed on DK

benchmark, verifying that SUN contributes to the
generalization ability of text-to-SQL parsers to un-
seen domains. Furthermore, under the challenging
REALISTIC setting where all explicit mentions of
column names are removed, LGESQL+SUN also
achieves a strong performance (70.9%) which is
1.7% higher than LGESQL.

Results on SQUALL Table 2 shows the experi-
mental results on SQUALL. Since SQUALL does
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Case 1. (SPIDER)

Gold SELECT T1.template_type_code, count(*) FROM Templates AS T1 JOIN Documents AS T2 ON T1.template_id ✓
= T2.template_id GROUP BY T1.template_type_code

Question Show all template type codes and the number of documents using each type.
LGESQL SELECT T1.template_type_code, count(*) FROM Templates AS T1 JOIN Documents AS T2 ON T1.template_id ✓

= T2.template_id GROUP BY T1.template_type_code
w/ SUN SELECT T1.template_type_code, count(*) FROM Templates AS T1 JOIN Documents AS T2 ON T1.template_id ✓

= T2.template_id GROUP BY T1.template_type_code
SE_Question What are the different template type codes, and how many documents use each type?
LGESQL SELECT Templates.Template_Type_Code , COUNT(*) FROM Templates GROUP BY Templates.Template_Type_Code ✗

w/ SUN SELECT T1.template_type_code, count(*) FROM Templates AS T1 JOIN Documents AS T2 ON T1.template_id ✓
= T2.template_id GROUP BY T1.template_type_code

Case 2. (DK)

Gold SELECT count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = T3.petid
WHERE T1.sex = ’F’ AND T3.pettype = ’dog’

Question How many puppy pets are raised by female students?
LGESQL SELECT count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = T3.petid ✓

WHERE T1.sex = ’F’ AND T3.pettype = ’dog’
w/ SUN SELECT count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = T3.petid ✓

WHERE T1.sex = ’F’ AND T3.pettype = ’dog’
SE_Question Find the number of puppy pets that are raised by female students (with sex F).
LGESQL SELECT COUNT(*) FROM Pets JOIN Has_Pet JOIN Student WHERE Student.Sex = ’F’ ✗

w/ SUN SELECT count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = T3.petid ✓
WHERE T1.sex = ’F’ AND T3.pettype = ’dog’

Table 6: Case study: cases are sampled from SPIDER, and DK. SE indicates semantically-equivalent.

not contain target SQL queries in the test set, we
merely present the execution accuracy score on test
set. Overall, SUN significantly improves the per-
formance on both the dev and test sets of SQUALL,
achieving the gains of 2.0% EM score and 1.03%
EX score on dev set, and 1.97% EX score on test
set over the strongest baseline ALIGN+RoBERTa
on SQUALL.

6.2 Results on Complex Queries

We investigate the performance of SUN on differ-
ent queries. The SQL queries in the SPIDER, SYN,
DK and REALISTIC benchmarks are divided into
four levels (i.e., easy, medium, hard, extra hard)
based on their difficulty, where the difficulty is de-
fined based on the number of SQL components.
Table 4 summarizes the results of the four bench-
marks with four levels of difficulty. From the re-
sults, we can observe that SUN can boost the per-
formance of LGESQL across almost all different
difficulty levels on the four datasets. In particular,
LGESQL+SUN obtains much better performance
on the extremely hard samples than LGESQL by
a large margin. For example, LGESQL with SUN

shows 4.7%, 1.0% and 4.2% improvements on the
extra hard samples in SYN, DK and REALISTIC

respectively.

6.3 Ablation Study

To analyze the impact of two kinds of uncertain-
ties in SUN, we also conduct an ablation test by
discarding the data uncertainty constraint (denoted

as w/o LDU) and the model uncertainty constraint
(denoted as w/o LMU), respectively. The ablation
results are summarized in Table 5. As expected,
both uncertainty constraints contribute great im-
provements to SUN. For example, the performance
of SUN w/o LDU decreases by 1.1/1.0/1.5 points
on the SYN/SPIDER/DK dev sets, verifying that
the data uncertainty constraint is essential for im-
proving the model performance. In addition, the
performance of SUN decreases by 0.8/0.5 points on
REALISTIC/SYN evaluation sets when removing
the model uncertainty constraint.

6.4 Case Study

In this section, we present two cases sampled
from SPIDER and DK to demonstrate the effec-
tiveness of SUN qualitatively. As illustrated in
Table 6, we report the original questions, the
semantically-equivalent variant of the original
questions (SE-question), the gold SQL queries,
and the SQL queries generated by LGESQL and
LGESQL+SUN. From the results, we can ob-
serve that LGESQL+SUN can generate more accu-
rate SQL queries than LGESQL. Taking the first
case as an example, although both LGESQL and
LGESQL+SUN can generate accurate SQL queries
given the question, LGESQL fails to correctly un-
derstand its semantically-equivalent question and
thus generates inappropriate SQL where the neces-
sary mention of database schema “Document” is
ignored. In contrast, LGESQL+SUN generates the
same correct SQL for both the original question
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and its semantically-equivalent question by improv-
ing the robustness of the text-to-SQL parsers with
data and model uncertainty constraints. We ob-
serve similar trends on the DK dataset. Concretely,
LGESQL+SUN can generate consistent SQL for
two semantically-equivalent questions that have
very different expressions, while LGESQL cannot
handle such cases.

The effectiveness of SUN according to the ob-
served results illustrated in Table 6 demonstrates
that the exploration of underlying complementary
semantic information in SUN helps text-to-SQL
parsers understand the different variants of expres-
sions and generate better SQL queries with com-
prehensive semantics.

7 Conclusion

In this paper, we proposed a novel SUN method to
explore intrinsic uncertainties in text-to-SQL pars-
ing. First, we devised a data uncertainty constraint
to capture complementary semantic information
among multiple semantically-equivalent questions
and thus improve the robustness of the text-to-SQL
parsers. Second, a model uncertainty constraint
was leveraged to refine the representations by en-
couraging high similarity between the output repre-
sentations of two perturbed encoding networks for
the same input question. Experimental results on
five benchmark datasets showed that SUN signifi-
cantly outperformed the compared methods.

8 Acknowledges

My acknowledges: This work was partially
supported by National Natural Science Foun-
dation of China (No. 61906185), Youth
Innovation Promotion Association of CAS
China (No. 2020357), Shenzhen Science and
Technology Innovation Program (Grant No.
KQTD20190929172835662), Shenzhen Basic Re-
search Foundation (No. JCYJ20210324115614039
and No. JCYJ20200109113441941).

References
Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,

Su Zhu, and Kai Yu. 2021. Lgesql: Line graph en-
hanced text-to-sql model with mixed local and non-
local relations. In ACL.

Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zihan
Xu, Su Zhu, and Kai Yu. 2021. Shadowgnn: Graph
projection neural network for text-to-sql parser. In
Proc. of NAACL.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2020. Structure-grounded pretraining
for text-to-sql. arXiv preprint arXiv:2010.12773.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proc. of NAACL.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout
as a bayesian approximation: Representing model
uncertainty in deep learning. In Proc. of ICML.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John Robert Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-to-
sql models against synonym substitution. In ACL.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-sql generalization. In EMNLP.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-sql in cross-domain database
with intermediate representation. In ACL.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Yibo Hu and Latifur Khan. 2021. Uncertainty-aware
reliable text classification. In Proc. of KDD.

Junyang Huang, Yongbo Wang, Yongliang Wang, Yang
Dong, and Yanghua Xiao. 2021. Relation aware semi-
autoregressive semantic parsing for nl2sql. arXiv
preprint arXiv:2108.00804.

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei
Zhu, and Xiaodan Zhu. 2021a. Dynamic hybrid re-
lation exploration network for cross-domain context-
dependent semantic parsing. In AAAI.

Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin,
Bowen Li, Jian Sun, and Yongbin Li. 2022. S2SQL:
Injecting syntax to question-schema interaction graph
encoder for text-to-sql parsers. In ACL.

Binyuan Hui, Xiang Shi, Ruiying Geng, Binhua Li,
Yongbin Li, Jian Sun, and Xiaodan Zhu. 2021b. Im-
proving text-to-sql with schema dependency learning.
arXiv preprint arXiv:2103.04399.

Alex Kendall, Vijay Badrinarayanan, and Roberto
Cipolla. 2015. Bayesian segnet: Model uncer-
tainty in deep convolutional encoder-decoder archi-
tectures for scene understanding. arXiv preprint
arXiv:1511.02680.

5306



Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In Proc. of
NeurIPS.

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. arXiv preprint
arXiv:2012.12627.

Qian Liu, Dejian Yang, Jiahui Zhang, Jiaqi Guo, Bin
Zhou, and Jian-Guang Lou. 2021. Awakening la-
tent grounding from pretrained language models for
semantic parsing. In ACL.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncertainty
in neural machine translation. In ICML, pages 3956–
3965. PMLR.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql
parsing: Concepts, methods, and future directions.
arXiv preprint arXiv:2208.13629.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Ohad Rubin and Jonathan Berant. 2021. Smbop: Semi-
autoregressive bottom-up semantic parsing. In Proc.
of NAACL.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. In EMNLP.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proc. of ICML.

Aili Shen, Daniel Beck, Bahar Salehi, Jianzhong Qi,
and Timothy Baldwin. 2019. Modelling uncertainty
in collaborative document quality assessment. In
Proceedings of the 5th Workshop on Noisy User-
generated Text (W-NUT 2019).

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic parsing
to sql queries. arXiv preprint arXiv:2010.11246.

Jinsong Su, Shan Wu, Deyi Xiong, Yaojie Lu, Xianpei
Han, and Biao Zhang. 2018. Variational recurrent
neural machine translation. In Proc. of AAAI.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Proc. of NeurIPS.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. RAT-
SQL: relation-aware schema encoding and linking
for text-to-sql parsers. In ACL.

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan,
and Rui Wang. 2020b. Relational graph attention
network for aspect-based sentiment analysis. arXiv
preprint arXiv:2004.12362.

Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min
Yang, Bailin Wang, Binhua Li, Fei Huang, Luo Si,
and Yongbin Li. 2022. Proton: Probing schema link-
ing information from pre-trained language models
for text-to-sql parsing. In KDD.

Shuo Wang, Yang Liu, Chao Wang, Huanbo Luan, and
Maosong Sun. 2019. Improving back-translation
with uncertainty-based confidence estimation. arXiv
preprint arXiv:1909.00157.

Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng,
Luxi Xing, and Weihua Luo. 2020. Uncertainty-
aware semantic augmentation for neural machine
translation. arXiv preprint arXiv:2010.04411.

Yijun Xiao and William Yang Wang. 2019. Quantifying
uncertainties in natural language processing tasks. In
Proc. of AAAI.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. arXiv
preprint arXiv:2201.05966.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. Consert: A con-
trastive framework for self-supervised sentence repre-
sentation transfer. arXiv preprint arXiv:2105.11741.

5307



Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir R. Radev. 2018a. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In
Proc. of NAACL.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018b. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In EMNLP.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
arXiv preprint arXiv:1207.1420.

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and
Min Zhang. 2016. Variational neural machine trans-
lation. In EMNLP.

Chen Zhang, Lei Ren, Fang Ma, Jingang Wang, Wei
Wu, and Dawei Song. 2022. Structural bias for aspect
sentiment triplet extraction. In COLING.

Linhai Zhang, Chao Lin, Deyu Zhou, Yulan He, and
Meng Zhang. 2021. A bayesian end-to-end model
with estimated uncertainties for simple question an-
swering over knowledge bases. Computer Speech &
Language.

Xuchao Zhang, Fanglan Chen, Chang-Tien Lu, and
Naren Ramakrishnan. 2019. Mitigating uncer-
tainty in document classification. arXiv preprint
arXiv:1907.07590.

Victor Zhong, Mike Lewis, Sida I Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. arXiv preprint
arXiv:2009.07396.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

5308



Proceedings of the 29th International Conference on Computational Linguistics, pages 5309–5326
October 12–17, 2022.

Deciphering and Characterizing Out-of-Vocabulary Words
for Morphologically Rich Languages

Georgie Botev, Arya D. McCarthy, Winston Wu, and David Yarowsky
Johns Hopkins University

Abstract

This paper presents a detailed foundational
empirical case study of the nature of out-of-
vocabulary words encountered in modern text in
a moderate-resource language such as Bulgarian,
and a multi-faceted distributional analysis of
the underlying word-formation processes that
can aid in their compositional translation, tag-
ging, parsing, language modeling, and other
NLP tasks. Given that out-of-vocabulary (OOV)
words generally present a key open challenge to
NLP and machine translation systems, especially
toward the lower limit of resource availability,
there are useful practical insights, as well as
corpus-linguistic insights, from both a detailed
manual and automatic taxonomic analysis of the
types, multidimensional properties, and process-
ing potential for multiple representative OOV
data samples.

1 Introduction

Even in a familiar language, unfamiliar words cause
trouble for machine processing or comprehension
of text. Any dictionary is innately incomplete in
its coverage, unable to provide novel coinages and
exhaustive forms. Without finding the word in a
dictionary, the surface form and context afford only
weak evidence for its meaning. The situation is even
worse for languages other than English, especially
morphologically rich languages, for two reasons:
first, there is usually less annotated data available;
and second, the coverage of such data is much
lower due to the high number of different forms.
Moreover, many words not found in even a small
training corpus are in fact related to quite common
words by processes such as inflection, derivation,
compounding, or misspelling.

In the work described herein, we therefore con-
centrate on the problem of characterizing unknown
words in terms of the processes by which they arise,
and especially the relative frequencies at which such
processes occur. This informs us of the distribution
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Figure 1: Taxonomized distribution of out-of-vocabulary
types in Bulgarian Wikipedia, random sample of 100
types

of out-of-vocabulary (OOV) words with respect to
different dictionary sources.

To do so, we conduct a study on a sample of
two Bulgarian language corpora annotated by a na-
tive speaker. Rather than treat OOV tokens as a
monolithic and undifferentiated problem, we pro-
gressively apply multi-faceted linguistic analyses
to these corpora, characterizing both the words that
these analyses explain and words yet to be explained,
which we shall call the residual vocabulary. Our
methods are a mixture of the vintage and the vogue:
specialized edit distances, composition of finite-state
transducers, a noisy channel model for language
identification fitted with empirical Bayes, and neural
network–based part of speech taggers. Collectively,
our processes accurately explain more than two in
three (69%) unknown Bulgarian words in a held-out
set according to whether they are proper names, in-
flections, derivations, compounds, foreign words, or
misspellings (as illustrated in both Figures 1 and 3,
discussed in more depth in §5). We release our native
speaker–annotated lexicon, intermediate analyses,
and software at www.github.com/gbotev1/bg.
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Figure 2: OOV rate as a function of data size (Bulgarian
Wikipedia). Note the logarithmic horizontal axis.

2 Motivation and Related Work

Previously unseen words often represent a signif-
icant portion of the vocabulary, due in part to the
Zipfian nature of language. Figure 2 illustrates this
for various vocabulary sizes. Note that for the Bul-
garian training data, the OOV rate remains high for
both tokens (corpus instances of words) and types
(vocabulary words) as found in a held-out set of
20,000 tokens. The rates are computed ignoring
capitalization, punctuation, and numbers, so that
these do not skew the count of unknown words.

The frontier of natural language processing as
an engineering discipline has adopted information-
theoretic subword tokenization (Sennrich et al.,
2016; Kudo, 2018) to constrain the vocabulary size
and provide a representation of all words, preventing
any words from being out-of-vocabulary. Because
such models dominate so much of the field of NLP,
one may ask what value there is in analyzing the
residual vocabulary today. Foremost, there is the
corpus-linguistic and lexicographic value of charac-
terizing this aspect of text: it is instructive about the
patterns of lacunae in dictionaries or word forma-
tion processes in particular domains such as color
(McCarthy et al., 2019). There are engineering appli-
cations as well. In languages with insufficient data
for training large neural machine translation systems
(Mueller et al., 2020) (or even for fine-tuning to new
languages; see Lee et al., 2022), statistical methods
dominate (Koehn and Knowles, 2017). The methods
described in this paper are of value for populating
the phrase tables of statistical MT models beyond
what can be done with existing bilingual dictionaries,
as in Vilar et al. (2007) who address spelling variants
by online retokenization, or de Gispert (2006) who

aims to reduce morphological variety. Moreover, en-
tity linking and the use of gazetteers in named entity
recognition both benefit from exact word represen-
tations. We underscore the fact that resource-poor
languages are the norm, not the exception. Out of
the world’s roughly 7,000 languages, only 216 have
more than 1,000 gloss definitions in Wiktionary, a
popular multilingual dictionary.1 For the remaining
≈6,800 data-poor languages, unknown words are
not only neologisms and proper names; items of the
core vocabulary are regularly absent from bilingual
dictionaries or small but extant corpora.

Lexicon stratification, the splitting of the lexicon
based on words’ origin and degree of assimilation
into the language (Ito and Mester, 1995), is a power-
ful technique to hone the processing of OOV words
(Tsvetkov and Dyer, 2015). The four identified lev-
els are the core vocabulary, the partially assimilated
words, the fully assimilated words, and peripheral
lexemes. This paper proffers empirical relative fre-
quencies of these degrees and showcases a series of
models that roughly correspond to these degrees.

3 The Bulgarian Language

Bulgarian is a member of the South Slavic branch
of the Indo-European family, written in the Cyrillic
script. As a member of the Balkan sprachbund, its
lexis2 and grammar have been influenced by areal
effects. It thus displays several traits uncharacteris-
tic of other Slavic languages (except Macedonian)
which affect the apparent size of the lexicon: a post-
posed definite article marked for gender, the use
of clitic pronouns, a lack of verbal infinitive, and
limited case declension (Corbett and Comrie, 2003).

As a case study, Bulgarian is useful because it uses
several widespread strategies for word formation. Its
rich verbal morphology yields over 50 forms per verb
lexeme. Derivational affixation and compounding
are prevalent processes. In fact, derivation for nouns
is both productive and regular (Krushkov, 2001).
Finally, a significant fraction of the Bulgarian lexis is
borrowed from Russian, Greek, or other languages,
especially in technical contexts.

These properties have made Bulgarian a focus for
linguistic examination and an area of interest in nat-
ural language processing. For example, Slavcheva
(2003) devise a rich morphological tag set for Bul-
garian verbs. Koeva et al. (2020) build a richly anno-

1https://en.wiktionary.org/wiki/Wiktionary:
Statistics

2We distinguish between the lexis, i.e., the set of all words
in a language, and the lexicon, i.e., the set of all lexemes.
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tated corpus of web-crawled Bulgarian. Popov et al.
(2020) construct a battery of models for multi-stage
analysis of Bulgarian text, including lemmatization,
parsing, and named entity recognition. Notably, the
latter relies on a dictionary-based lemmatizer with a
statistical model for fallback.

In contrast to these works, which offer an en-
gineering approach to modeling Bulgarian, our
work relies on computational tools insofar as
they help characterize properties of Bulgarian text.
Namely, we explore the relative frequency of various
processes by which words—especially unknown
words—arise in naturally occurring Bulgarian text.

4 Data

For our study, we need a large and representative
corpus of Bulgarian text. We use the entirety of
Bulgarian Wikipedia, which contains 1.3 million
word types and 73.6 million word tokens (type–token
ratio 0.018) after tokenization; a random sample of
these is summarized in Figure 1.

We also must define the set of known words. We
merge three broad-coverage bilingual dictionaries:

LanguageNet. 364,327 entries covering 155,703
unique English words.3

PanLex. 180,023 entries covering 70,986 unique
English words (Baldwin et al., 2010).

Wiktionary. 51,537 entries covering 22,856 unique
English words. We extract these with Yawipa
(Wu and Yarowsky, 2020a,b).

In aggregate, these cover 165,644 unique Engish
words, with a median number of translations 1 and
mean approximately 2.360.4

To identify the residual vocabulary, we remove
from Bulgarian Wikipedia all entries in our dictionar-
ies as well as non-alphabetic entries, leaving 371,475
novel words—about one in every 200 tokens.5 A
random sample of 100 is summarized in Figure 3.
The complete word lists and analyses are given in
Appendix A. All annotations were validated or ad-
judicated by a non-author professional Bulgarian
translator who is a native speaker.

What becomes immediately apparent is that the
residual vocabulary after dictionary entries are re-

3uakari.ling.washington.edu/languagenet/
4The English pronoun we had the most translations: 306, due

largely to inappropriate Bulgarian translations in LanguageNet
which were first-person plural verb forms.

5This is approximately the same rate as Min and Wilson
(1998) observe; they report that at this rate an out-of-vocabulary
word occurs in 12% of sentences.
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Figure 3: Taxonomized distribution of out-of-vocabulary
types in Bulgarian Wikipedia that are unseen in Wik-
tionary, PanLex, and LanguageNet; random sample of
100 types. Compare with Figure 1.

moved comes from five major groups: morpholog-
ical variants of other words, foreign words, mis-
spellings, compound words, and proper names like
place names or people. We devise computational
approaches to tackle these five major categories.

Because we discovered an abundance of Russian
words interspersed in the Bulgarian text, we also
extract Russian–English bilingual entries from the
same three dictionaries. We find 232,094 entries in
Wiktionary covering 75,284 unique English words;
2,379,638 entries in PanLex covering 859,279
unique English words, and 1,633,709 unique entries
in LanguageNet covering 879,438 unique English
words. Their union covers 932,738 unique English
words, with potentially multiple Russian candidate
translations. The median number of translations
was one, and the mean was 1.888.

Preprocessing To identify Bulgarian tokens in
context, we first preprocess the text using the rule-
based spaCy sentence segmenter and tokenizer (Hon-
nibal and Montani, 2017). We found this to be faster
than the Stanza neural tokenizer (Qi et al., 2020).
We use Stanza for POS tagging, though its poor
performance motivates the ‘vintage’ models we in-
troduce below. In preliminary experiments, we also
explored TreeTagger (Schmid, 1994, 1999).6

6Several avenues exist to improve part-of-speech tagging
with minimal available resources. The most notable is projecting
part-of-speech annotations across unsupervised word alignments
into the language of interest, then using these silver annotations
to train a new tagger (Yarowsky and Ngai, 2001; Täckström
et al., 2013; Wang and Manning, 2014; Buys and Botha, 2016;
Nicolai and Yarowsky, 2019; Eskander et al., 2020). Such
methods could either complement a tagger such as Stanza
trained in the language of interest via classifier combination or
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We normalize all text to Unicode NFKD form to
increase coverage.7 This also allowed us to remove
accents, which were predominantly used to mark
stress. We subsequently remove tokens with any
letter not in the Bulgarian alphabet. While this
removes a few interesting cases like mp3-файлове
‘MP3 files’ and 2-то ‘the second [thing]’, on the
whole the eliminations were useful: filtering URLs,
email addresses, and also less structured non-words.

We found the need to preprocess the dictionaries
by hyphen flattening. If a dictionary entry begins or
ends with a hyphen, indicating that it is a prefix or
suffix, we associate it with its non-hyphenated trans-
lational counterpart. For instance, the nonsensical
English entry ‘pra’ is linked to the Bulgarian translit-
eration ‘пра’, and the Bulgarian prefix ‘пра-’ is
correctly (and uniquely) associated with the English
prefix ‘great-’. After flattening, the Bulgarian entry
‘пра’ would have both ‘pra’ and ‘great’ listed as can-
didate translations. This preprocessing both reduces
the dictionary’s size and is crucial to increasing the
impact of the compound analysis (§5.5).

Moreover, we define a heuristic to eliminate Old
Bulgarian words, based on a 1945 orthographic re-
form that forbids word-final ‘ь’. Inspecting a sample
of 50 words captured by this heuristic reveals that
while none of the words filtered here were modern
Bulgarian, 44% were in fact Old Bulgarian. The
remainder were transliterations (the “unassimilated
foreign words” of Tsvetkov and Dyer, 2015) from
disparate languages: Italian (18%), Turkish8 (16%),
Kazakh (6%), Chinese (6%), Albanian (4%), and sin-
gle exemplars of Irish, Portuguese, and Moldovan.9

5 Modeling and Analysis

This work by its nature differs from a great deal of
the empirical work in natural language processing.
The object of its inquiry is language itself, not com-
putational models, and so we do not evaluate in the
standard positivist paradigm of comparing scores
on standard benchmarks. Instead, we build compu-

annotate the language in the absence of in-language annotations.
7Kyle Gorman notes an increase of 0.3 in labeled attach-

ment score for dependency parsing of Hindi, purely from
normalization: http://www.wellformedness.com/blog/
text-encoding-issues-in-universal-dependencies/.

8Note that due to both areal effects in the Balkan sprachbund
and Bulgaria’s past as an Ottoman territory, many Turkish
lexemes have entered the Bulgarian lexicon as fully assimilated
lexical items (Ito and Mester, 1995).

9We will not engage with the question of whether Romanian
and Moldovan are dialects or separate languages; here, we use
this as a shorthand for the Daco-Romance language written
with the Cyrillic script.

tational models to help sift through the millions of
words in our corpus, study their distribution, and
discover what can be modeled about them. After
all, if we seek to tame the lexis, we must first under-
stand it. In this regard, we follow the guidance of
Hajič and Hajičová (2007) who recognize the value
of objective assessment of models or theories on
annotated corpora, grounded in linguistic intuition
about the phenomenon to be modeled. Our charac-
terization of the residual vocabulary helps to extend
the linguistic intuition in an empirical manner.

The modularity of our approach lets us leverage
prior tools and research in the language, and compo-
nents can be upgraded as better models are devised
(e.g., Nicolai et al., 2020 and Wiemerslage et al.,
2022 for morphological analysis, Lewis et al., 2020
for inferring cognates). Moreover, disparate models
for a single word formation process can be combined
in situ via classifier combination or meta learning.

While many of the tools we use are tailored to
the Bulgarian language, such as hand-crafted deriva-
tional rules from a grammar, in principle our ap-
proach makes minimal assumptions about the nature
of the language. It could easily be adapted to other
Slavic languages or, given sufficient prior typologi-
cal information, other written languages writ large.

The overall sequence of method application is
given in Figure 4. In the following sections, we elab-
orate on the most telling among these: language iden-
tification, then modeling morphology, misspellings,
and compounds. Table 1 gives complete analyses for
the held-out set of Wikipedia residual vocabulary,
coupled with computer-predicted analyses.

5.1 Russian language filtering

A substantial fraction of the residual vocabulary
is direct borrowings (loanwords) from other lan-
guages; cross-lingually this can be between 10% and
70% of the lexicon (Haspelmath and Tadmor, 2009).
While our preprocessing eliminates several directly
imported words that were not transliterated, a signif-
icant number of borrowings comes from Russian,
which largely shares an alphabet with Bulgarian.

Some words can be clearly identified as non-
Bulgarian by means of straightforward linguistic
heuristics. The filtered words were mostly Russian,
with a few exceptions that were Ukrainian or Serbian.
We employ the following heuristics:

1. A Bulgarian word cannot begin or end with the
soft sign ‘ь’.

2. If the soft sign ‘ь’ occurs in the middle of a
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Index Word Human Trans. Alg. Trans. Human Type Human Sub-Type Alg. Type Alg. Sub-Type Features POS

1 звероферма beast farm beast|@ Compound – Compound Partial FEM NOUN
2 неоспорван uncontested new|contested Compound – Compound – – ADJ
3 солокариера solo career solo|career Compound – Compound – FEM NOUN
4 битовофекални household faeces household faeces Compound – Compound – PL NOUN
5 светлооранжев light orange light|orange Compound – Compound – MASC ADJ
6 контрарзузнаване counter intelligence counter|intelligence Compound – Compound – NEUT NOUN
7 удавил drowned – Conjugation – Conjugation – – PART
8 завзели conquered – Conjugation – Conjugation – PL PART
9 далекомером distance meter – Foreign Russian Foreign Russian – NOUN

10 мацелумът Macellum kitten|noise Geography Italian Compound – – PROPN
11 койбалската Koybalska koybali|times Geography Russian Compound – FEM+DEF ADJ (Proper)
12 горнобродчани Inhabitants of Gorno Brod gorno|brod Geography Bulgarian Compound – PL NOUN
13 костойчиновият Kostoychinov kostov|new Geography Bulgarian Compound – DEF ADJ (Proper)
14 ашоташен Ashotashen ashot Geography Armenian Declension Fuzzy – PROPN
15 Уайя Huaya – Geography Mexican Proper Likely – PROPN
16 Бишина Bishina – Geography Serbian Proper Likely – PROPN
17 Кастей Castei – Geography Italian Proper Likely – PROPN
18 Бозовая Bozovaya – Geography Bulgarian Proper Likely – PROPN
19 Исаково Isakovo – Geography Russian Proper Likely – PROPN
20 Кеседжи Kesdji – Geography Greek Proper Likely – PROPN
21 Сигнора Signora – Geography Italian Proper Likely – PROPN
22 Соулънт Solent – Geography English Proper Likely – PROPN
23 Харагуа Jaragua – Geography Dominican Republic Proper Likely – PROPN
24 Ябълчице Yabaltchitse – Geography Bulgarian Proper Likely – PROPN
25 Байенбург Bayenburg – Geography German Proper Likely – PROPN
26 Петъчници Petachnitsi – Geography Bulgarian Proper Likely – PROPN
27 Валтотопион Valtotopion – Geography Greek Proper Likely – PROPN
28 Казакевичево Kazakevichevo – Geography Bulgarian Proper Likely – PROPN
29 енорияшкото parish parish|@ Declension – Compound – MAS+DEF ADJ
30 апоплектичната the apoplectic Apoel|Ethic Declension – Compound – DEF ADJ
31 будени awake awake Declension – Declension Simple PL ADJ
32 ашерова ashura ashur Declension – Declension Fuzzy FEM ADJ
33 подобия similarity similarity Declension – Declension – PL NOUN
34 потника tank top tank top Declension – Declension Simple MASC+DEF NOUN
35 пролози prologues mercury Declension – Declension Fuzzy PL NOUN
36 грацията The grace grace Declension – Declension Simple FEM+DEF NOUN
37 ослепяло became blind blindness Declension – Declension – NEUT PART
38 смутното turmoiled turmoil Declension – Declension Simple NEUT+DEF ADJ
39 сталинци stalinists stalin Declension – Declension Fuzzy PL NOUN
40 суглинки loams suli Declension – Declension Simple FEM+PL NOUN
41 тръбеста tubular tubular Declension – Declension Fuzzy FEM ADJ
42 записната pertaining to recording recording Declension – Declension Simple FEM+DEF ADJ
43 потурчено stamp down stamp down Declension – Declension Simple NEUT ADJ
44 неголямото not so big rare Declension – Declension Simple DEF ADJ
45 еклектиката eclecticism eclectic Declension – Declension Fuzzy FEM+DEF NOUN
46 съблечената The undressed undressed Declension – Declension Simple FEM+DEF ADJ
47 персистиращи persistent persistence Declension – Declension Fuzzy PL NOUN
48 превърналата the one that became became Declension – Declension Simple FEM+DEF ADJ
49 кибернетизация cybernetization cybernetics Declension – Declension Fuzzy FEM NOUN
50 мултиетническия the multiethnic multiethnic Declension – Declension Simple DEF ADJ
51 Шотландска Scotish – Declension – Proper Standard FEM ADJ (Proper)
52 кодокан Kodokan kodo|kan Name School Compound – – PROPN
53 айдънидите Aydin @|nit Name Dynasty Compound – – PROPN
54 аморейско Amorite – Name Ethnicity Foreign Russian NEUT ADJ (Proper)
55 себрите Ancestors of Serbians seri Name Tribe Declension Fuzzy PL+DEF PROPN
56 ЦТА Central Tibet Administration – Name Organization Proper Likely – PROPN
57 Азел Azel – Name Person Proper Likely – PROPN
58 Юджи Yuji – Name Person Proper Likely – PROPN
59 ЗЕЛПО ZELPO – Name Building Proper Likely – PROPN
60 Какаи Kakai – Name Person Proper Likely – PROPN
61 Лопов Lopov – Name Person Proper Likely – PROPN
62 Мусан Musan – Name Person Proper Likely – PROPN
63 Пийбо Peebo – Name Person Proper Likely – PROPN
64 Дарбес Darbez – Name Person Proper Likely – PROPN
65 Прицак Pritsak – Name Person Proper Likely – PROPN
66 Халиду Halidu – Name Person Proper Likely – PROPN
67 Бейтлър Beightler – Name Person Proper Likely – PROPN
68 Вигберт Witbert – Name Person Proper Likely – PROPN
69 Евтахий Evtahiy – Name Person Proper Likely – PROPN
70 Оливиър Olivier – Name Person Proper Likely – PROPN
71 Ризберг Rieseberg – Name Person Proper Likely – PROPN
72 Памтивек Pamtivek (colloquial for ancient) – Name Book Proper Likely – NOUN
73 Харелсън Harrelson – Name Person Proper Likely – PROPN
74 Цибисова Cybisowa – Name Person Proper Likely – PROPN
75 Гроновиус Gronovius – Name Person Proper Likely – PROPN
76 Орочимаро Orochimaro – Name Person Proper Likely – PROPN
77 Настоплиси Nastoplisi – Name Person Proper Likely – PROPN
78 Присовский Prisovskii – Name Person Proper Likely – PROPN
79 Гутомсдатер Gutomsdater – Name Person Proper Likely – PROPN
80 Хаджипопова Hadjipopova – Name Person Proper Likely – PROPN
81 Христодоров Christodorov – Name Person Proper Likely – PROPN
82 буганин gohst (archaic) buga|nin Target – Compound – MASC NOUN
83 реверсира reverse reversed Target – Declension Fuzzy – VERB
84 Фесенджан Fesenjan – Target Iranian Proper Standard – PROPN
85 баунс bounce – Transliteration English Misspelling Substitution MASC NOUN
86 потът the pot floor, sweat, sex Transliteration English Misspelling Substitution MASC+DEF NOUN
87 футуризмо futurism The futurism Transliteration Italian Misspelling Substitution – NOUN
88 Форматър formatter – Transliteration English Proper Likely – NOUN
89 фрагмет fragment fra|@, @|met Typo Omission Compound – MASC NOUN
90 денудаци akin to denudational day|odd person Typo Omission Compound – – NOUN
91 клавесинистикатегория category|harpsichordists category|harpsichordists Typo Concatenation Compound – PL NOUN
92 реакциии reactions reactions Typo Misspelling Declension – PL NOUN
93 същотото same same Typo Addition Declension – NEUT+DEF ADJ
94 домантите The Odomanti tomatoes Typo Omission Declension – PL+DEF NOUN
95 ренгеново x-ray reinette Typo Omission Declension Fuzzy – ADJ
96 дестващ acting – Typo Omission Misspelling – MASC PART
97 отркрили discovered discovered Typo Addition Misspelling – PL PART
98 юзозападна Southwestern Southwestern Typo substitution Misspelling – FEM ADJ
99 Памятник Monument – Typo Substitution Proper Standard MASC NOUN

100 ПашиКатегория Pasha Category – Typo Concatenation Proper Likely MASC NOUN

Table 1: Manual classification of 100 randomly sampled words after classifying all of Bulgarian Wikipedia.
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Figure 4: Sequence of methods applied to computationally analyze residual vocabulary

word, it must be followed by an ‘о’. This is
the only character that may follow the soft sign
in modern Bulgarian. In Russian, however,
many characters are attested following ‘ь’ (e.g.,
улыбаться ‘to smile’ and семья ‘a family’).

For words not covered by these heuristics, we
require a different approach to distinguish them.
Cognate identification and transliteration empiri-
cally identify borrowings poorly (Ciobanu and Dinu,
2015; Tsvetkov et al., 2015). We instead employ
language identification to disambiguate the remain-
der as Bulgarian or Russian words. We use a noisy
channel model of the language ℓ of word form ξ:

pθ(ℓ | ξ) ∝ pθ(ξ | ℓ)π(ℓ).

In factoring this generative model, we use character
5-gram models as the language models pθ(ξ | ℓ).
The Bulgarian model is trained on Bulgarian Par-
laMint 1.0, which comprises 10.5 million tokens
covering 123,000 word types. The Russian model
is trained on the Russian SynTagRus Universal De-
pendencies data, which comprises 496,000 tokens
and 94,000 word types. The prior probability π(ℓ)
is optimized on the data; that is, we use empirical
Bayes to infer a point estimate.

After this process, every one of 50 randomly
sampled non-Bulgarian words was filtered as foreign,
though some were Ukrainian or Slovenian instead
of Russian. We note that 15 of these words were
ambiguous; their character sequences could have
represented valid Bulgarian or Russian words.

5.2 Verbal morphology
While Bulgarian nominal declension is much sim-
pler than its Slavic sibling languages (presenting
only nominative and vocative cases) (Gribble, 1987;
Townsend and Janda, 1996), its verbal conjugation
system is rich, embodying “the morphologically rich-
est and most problematic part-of-speech category”
(Slavcheva, 2003). Bulgarian verbs reflect voice,
tense, mood, person, number, and evidentiality.

To analyze Bulgarian verbs, we construct a finite-
state transducer that builds on the UniMorph project
(Sylak-Glassman et al., 2015a,b; Kirov et al., 2016,
2018; McCarthy et al., 2020) and Apertium (For-
cada et al., 2011; Forcada and Tyers, 2016).10 This
enables fast, interpretable analysis by composition
and union of machines. Composition corresponds
to application of a morphological rule (Roark and
Sproat, 2007), and union collects alternative rules
(or candidate manifestations of a single rule) into
one machine. Our finite-state transducer is designed
to map inflected word forms to their citation forms
(their lemmas), if the word forms were tagged as
verbs by Stanza. We construct one finite-state trans-
ducer for each form–lemma pair in UniMorph and
Apertium, then take the union of these machines.

Transforming a word ξ to its citation form is
equivalent to composing a finite-state acceptor rep-
resenting ξ with the transducer. If the two cannot
compose (because ξ is not in the domain of defini-
tion (i.e., input language) of the transducer), then
we do not suppose that ξ is an inflected verb form.

When applied to identified verbs in the residual
vocabulary, a spot check of 50 supposed Bulgarian
verbs shows that 46 are correctly predicted. Of
the remaining four, two are Russian words that
passed through the filter from §5.1. The others
are охрени ‘ocher’ (a plural adjective) and *собе-
но, a misspelling of the Bulgarian adverb особено
‘specifically’.

5.3 Derivational morphology

Bulgarian has a productive set of derivational pro-
cesses. Following the efficacy of the transducer for
inflectional morphology, we introduce one for deriva-
tional morphology. We draw on the 22 derivational
rules in Manova (2010) which explored the parsabil-

10UniMorph is a collection of morphological lexica in 167
languages, annotated in a cross-lingually consistent schema.
Apertium is a rule-based machine translation system which
includes a finite-state morphological analyzer and generator.
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dx,y(i, j) = min





0 if i = j = 0,

dx,y(i− 1, j) + 1 if i > 0,

dx,y(i, j − 1) + 1 if j > 0,

dx,y(i− 1, j − 1) + 1(xi ̸=yj) if i, j > 0,

dx,y(i− 2, j − 2) + 1 if i, j > 1 and xi = yj−1 and xi−1 = yj ,

Figure 5: Recurrence relation the Damerau–Levenshtein distance between two strings x and y. The dynamic program
to tractably compute this is a modification of the Wagner–Fisher algorithm (1975) for Levenshtein distance.

ity hypothesis (Hay, 2001; Aronoff and Fuhrhop,
2002) for Bulgarian. Patseva (2017) was also a basis
for derivational rules.

Composing the finite-state transducer for deriva-
tional analysis with itself, or with a finite-state trans-
ducer for modeling inflections, expands the coverage
by capturing forms with multiple derivations, as
is the relationship between хиндуистките ‘the
Hinduistics’ and хинду ‘Hindu’:

хинду→ хиндуист (nominal derivation)
хиндуист→ хиндуистка (diminutive feminine)

хиндуистка→ хиндуистки (plural)
хиндуистки→ хиндуистките (definite article)

Such considerations are crucial because derived
forms may themselves be inflected. Moreover, cer-
tain forms are more amenable to derivation. For
instance, adverbs are often formed from the neuter
singular form of adjectives, except for adjectives
that end in -ки. These motivate a single transducer
to consider the two jointly (Fischer et al., 2016).

This model of morphology is 68% accurate on
a random sample. While some errors are due to
misspellings, it also ignores stem alterations which
may arise but are not encoded in the derivational
transformations. While fine-tuning the transduction
rules to handle cases like мед ‘copper’→ медникар
‘coppersmith’ or злато ‘gold’→ златар ‘goldsmith’
is possible based on prior knowledge, the approach
gives a reasonable grounding in using the available
linguistic resources for a language.

5.4 Misspelling

The analysis and recovery of misspellings has a long
history in the computational processing of language
(McIlroy, 1982; Kernighan et al., 1990; Kukich,
1992). Rather than simply identifying misspellings,
which can be easily done by checking against an

existing wordlist, we also seek to identify the cor-
rect spelling of the misspelled word. To do so, we
employ the Damerau-Levenshtein distance (Dam-
erau, 1964), a modification of Levenshtein’s edit
distance that also allows character transpositions
as an edit operation. It is well known that transpo-
sition errors (e.g.*langauge instead of language)
are common typing errors (Salthouse, 1984, 1986),
and the Damerau–Levenshtein distance gives a more
parsimonious backtrace for them.

In the residual space, we identify misspellings
as words with a Damerau–Levenshtein distance of
1 from an item in the vocabulary. Exactly comput-
ing the Damerau–Levenshtein distance requires a
nontrivial extension of the standard edit distance
(see Figure 5); however, the asymptotic complexity
remains proportional to the product of the string
pair’s lengths—as in the standard edit distance.

We find that one in six words from the residual
vocabulary of the Wikipedia corpus is a misspelling
of a word into a non-word (Figure 3). To deci-
pher the meanings of these words, we link them
to existing words in the Bulgarian vocabulary by
finding the in-vocabulary word with the smallest
Damerau–Levenshtein distance. On a random sam-
ple of 50 Bulgarian words classified as misspellings
(Table A.3), 35 of these were indeed misspellings
(for an accuracy of 70%). The remainder were
largely transliterations, inflected forms of verbs that
were not identified via the methods described in
§5.2, and some proper nouns.

Our approach targets correcting the spellings of
non-words into valid words. A context-driven model
could also identify misspellings of words into other
words which are valid but infelicitous.

5.5 Compounds

Finally, we consider the word formation process
of compounding. Unlike morphological derivation
(which affixes bound morphemes to a lexeme to
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create a new lexeme), compounding combines free
morphemes to create a lexeme, as with the English
word candlestick. We find it useful to process com-
pounds after inflections because compounds as novel
lexemes invite the same inflectional processes as
non-compound lexemes of their core part of speech.

Following Wu and Yarowsky (2018), we consider
compounds as words with two morphemes concate-
nated together, potentially with surface alterations.
(McCarthy et al. (2019) used this to find compound
color words in thousands of languages.) We split
a word into all possible morpheme pairs, such that
each morpheme has a length of at least 3 and at least
one component has an edit distance at most 2 from
some dictionary entry.11 Thus, this method also
identifies the decomposition of the compound word.
When only one component fits the edit distance
criterion, the decomposition omits the component
with high edit distance. To make detection of com-
pounds tractable, our implementation relies on fast
prefix and suffix tries. A related alternative is the
finite-state representation by Oflazer (1996).

We apply our compound analysis method to iden-
tify compounds in the residual words, and we man-
ually evaluate a random sample of 50 predicted
compounds Table A.4. Of these, 30 were correctly
identified as compounds, and 22 were correctly de-
composed. We observed a high number of false pos-
itives, which can be easily filtered out by examining
the total edit distance of the components to known
words. Every correctly identified compound has
components whose combined edit distance is ≤ 2
(note that earlier we consider a compound to be valid
if at least one component’s edit distance to a known
word is ≤ 2). Removing false positives with a total
edit distance greater than 2 removes 18 incorrectly
classified compounds, improving precision.

Many correctly identified compounds had a com-
bined edit distance of zero or one (e.g., джазфор-
мация as джаз ‘jazz’ + формация ‘formation’).
Some errors were particularly instructive. For exam-
ple, the word калейдоскопът ‘the kaleidoscope’, is
incorrectly identified as a compound word whose
second component is път ‘road’. In fact, this word is
a definite inflection of калейдоскоп ‘kaleidoscope’
using the suffix -ът. This reveals a transduction
missing from our list in §5.2. In fact, we found the
compound analysis to be quite helpful in identifying
new inflectional suffixes, with which we augmented
our FST for inflectional morphology.

11These values likely need to be adapted to new languages.

6 Discussion and Conclusion

We have investigated the space of unknown lexical
items in naturally occurring text. In a case study
on Bulgarian, a host of analytical models applied
sequentially characterize the residual space of out-
of-vocabulary words. Our models identify myriad
processes responsible for these unknown words
and map from such words to known words via
heuristic and probabilistic processes. In this way, it
complements Cucerzan and Yarowsky (2000) who
model unknown words based on affixal or contextual
similarity, and it affords means to improve machine
translation.

The complete results of the residual space analy-
ses are given in Table 1. Of the held-out set of 100
randomly sampled OOV words, our sequence of
analyses properly taxonomized 69 of these. To con-
firm the robustness of these findings, a parallel study
using the same series of techniques was conducted
on the BulTreeBank corpus (Simov et al., 2002).
In this case, 78% of a random sample of unknown
words was correctly classified (see Table A.5), af-
firming the validity of the approach.

Initially one might suspect the need for less ag-
gressive inflection and compounding models, given
that so many errors were typos. On balance, sig-
nificant fractions of the analyses were reasonable:
even if an inflected form is misspelled, it is useful
to reduce it to a lemma that can then reduce the
space of possible correct spellings to which it can be
mapped. While our annotation convention allows for
only a single category per word, several examples
show the benefit of using annotations as heuristics
with shades of nuance worthy of human validation.
For instance, several misspelled proper names are
identified as names rather than typos, and a case of
two words inadvertently joined by a deleted space
(i.e., a typo) is correctly decomposed into those
words by the compounding model.

In light of continued challenges in designing com-
putational tools that effectively serve the world’s
thousands of languages, and that ignoring the lin-
guistic traits of a language does not absolve the
designer but rather induces greater harm (Bender,
2009), a detailed and taxonomized understanding of
the behaviors of the language is vital. Our analysis
of the word formation processes in such a way that
can be grounded in the known lexicon affords both
broad-scale familiarity with the language and practi-
cal value: it can tailor the design of core NLP tools
to the residual vocabulary of a new language.
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A Supplemental Material

In the following pages, we provide specific analyses, both hand-crafted and computationally performed, of
the residual vocabulary. All tables are referred to in the main text.
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Index Word Translation Type Sub-Type Features POS

1 петминутни five minute Compound Declension N/A ADJ
2 кръглоскулови round-cheeked Compound Declension N/A ADJ
3 Неврофиброматоза Neurofibromatosis Compound N/A N/A NOUN
4 киноадаптация adapted for movie Compound N/A FEM NOUN
5 постулиращ postulating Conjugation N/A N/A PART
6 вселяват inspire Conjugation N/A PL VERB
7 осквернява desecrate Conjugation N/A N/A VERB
8 интерпретираща interpretating Conjugation N/A N/A PART
9 ϵκάστoυ each Foreign Ancient Greek N/A PRON

10 Fiyafi savannah Foreign Bashkir N/A NOUN
11 18bit 18-bit Foreign English N/A ADJ
12 World";<br World Foreign English N/A NOUN
13 goto goto Foreign English N/A VERB
14 nü nü Foreign English N/A NOUN
15 Darvin Darvin Foreign English N/A PROPN
16 ordinatorium ordinatorium Foreign Latin N/A NOUN
17 Branchinella Branchinella Foreign Latin N/A NOUN
18 vagrans vagrans Foreign Latin N/A NOUN
19 Genealogia genealogy Foreign Portuguese N/A NOUN
20 Obrero Workers’* Foreign Spanish N/A PROPADJ
21 Bilmeden without knowing Foreign Turkish N/A PART
22 Предарица Predaritsa Geography Bulgarian N/A PROPN
23 Устренският Ustrenskiat Geography Bulgarian DEF PROPADJ
24 Чиевци Chievtsi Geography Bulgarian N/A PROPN
25 еркечкия erkechki Geography Bulgarian DEF PROPADJ
26 харманлии Harmanlii Geography Bulgarian (Capital) N/A PROPN
27 Хетфилд Hatfield Geography English N/A PROPN
28 Чансълърсвилската Chancellorsville Geography English DEF PROPADJ
29 Норвич Norwich Geography English N/A PROPN
30 келия Kelia Geography Greek N/A PROPN
31 Карино Karino Geography Italian N/A PROPN
32 Креспано Crespano Geography Italian N/A PROPN
33 Триесткият Triest Geography Italian DEF PROPADJ
34 Колàца Colazza Geography Italian N/A PROPN
35 Майкубенския Maikuben Geography Kazakh DEF PROPADJ
36 Хайдаркан Khaidarkan Geography Kyrgyz N/A PROPN
37 Донданген Dondagen Geography Latvian N/A PROPN
38 джемат Djemat Geography Serbian (Capital) N/A PROPN
39 Пунтаренас Puntarenas Geography Spanish N/A PROPN
40 презаснемането retake Declension N/A DEF NOUN
41 сънародника compatriot Declension N/A DEF NOUN
42 хидропланът the hydroplane Declension N/A DEF NOUN
43 закалени hardened Declension N/A PL ADJ
44 амидразоните the amidrazones Declension N/A PL+DEF NOUN
45 умственото the mental Declension N/A DEF ADJ
46 прибоят the surf Declension N/A DEF NOUN
47 панкреатичната the pancreatic Declension N/A DEF ADJ
48 представителят the representative Declension N/A DEF ADJ
49 интригуваща intriguing Declension N/A FEM ADJ
50 алтъни gold coins Declension N/A PL NOUN
51 абонаментни subscription Declension N/A PL ADJ
52 ракетка small rocket Declension N/A DIM NOUN
53 Тежките the heavy Declension N/A PL+DEF ADJ
54 квесторското the quaestoring Declension N/A DEF NOUN
55 кармелитка Carmelite Declension N/A FEM PROPN
56 плутония plutonium Declension N/A DEF PROPN
57 Баритонът the baritone Declension N/A DEF NOUN
58 трактове tracts Declension N/A PL+DEF NOUN
59 тюрколожка turkologist Declension N/A FEM NOUN
60 лигандното the ligand Declension N/A NEUT+DEF ADJ
61 Мухльовци ninnies Declension N/A PL ADJ
62 Амфибио Amphibio Name Car N/A PROPN
63 Керуал Keroualle Name French N/A PROPN
64 Ерхфрид Erchanfried Name German N/A PROPN
65 Арагами Aragami Name Japanese N/A PROPN
66 Иродиади Herodias Name Latin N/A PROPN
67 Евто Evto Name Person N/A PROPN
68 Посълуайт Postlethwaite Name Person N/A PROPN
69 Вассалли Vassalli Name Person N/A PROPN
70 чихо Chiho Name Person N/A PROPN
71 Рисова Risova Name Person N/A PROPN
72 Фридлендър Friedlander Name Person N/A PROPN
73 Тремитус Tremitus Name Person N/A PROPN
74 Върчаковски Varchakovski Name Person N/A PROPN
75 Камбанийски Kambaniiski Name Person N/A PROPN
76 Адольф Adolf Name Russian N/A PROPN
77 Киспии Kaspii Name Tribe N/A PROPN
78 611.8 611.8 Number N/A N/A NUM
79 Ми34 Mi-34 Product Name N/A N/A PROPN
80 Турбина turbine Target N/A FEM NOUN
81 Настигайки catching up Target N/A N/A PART
82 Покосен Stricken Target N/A N/A PART
83 Студентство College experience Target N/A N/A NOUN
84 месинг brass Target N/A N/A NOUN
85 Питомен domesticated Target N/A N/A ADJ
86 Салкъм Offshoot Target N/A N/A NOUN
87 мерило measure Target N/A N/A NOUN
88 черничев mulberry Target N/A MASC ADJ
89 асимптотически asymptotic Target N/A MASC ADJ
90 нюзпейпър newspaper Transliteration English N/A NOUN
91 шейдъри shaders Transliteration English PL NOUN
92 стигнатдо reached up (to) Typo Concatenation N/A PART
93 1948.През 1948.Through Typo Concatenation N/A PRON
94 про\xadвеж\xadда\xadне N/A Typo Formatting N/A PRON
95 Алфсосо Alfonso Typo Mixed N/A PROPN
96 популярзират polularize Typo N/A PL VERB
97 прожа will continue Typo Omission N/A VERB
98 низинà valley Typo Punctuation N/A NOUN
99 блодове fruits Typo Substitution N/A NOUN

100 Ricochet.com Ricochet Web Address English N/A PROPN

Table A.1: Manual classification of 100 randomly sampled words from the tokenized Bulgarian Wikipedia corpus
before any further processing from our pipeline is performed. We use the UD part-of-speech tags from: https:
//universaldependencies.org/u/pos/. Table is summarized in Figure 1.
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Index Word Translation Type Sub-Type Features POS

1 овесопроизводител oat producer Compound N/A MASC NOUN
2 непорнографски non-pornographic Compound N/A MASC ADJ
3 бързоразрастващи fast growing Compound N/A PL ADJ
4 окомерни eye sketching Compound N/A PL ADJ
5 преформироването the reformatting Compound N/A NEU+DEF NOUN
6 метапознавателните the meta cognitive Compound N/A PL+DEF ADJ
7 трискатна of three gables Compound N/A FEM ADJ
8 бундестреньор coach of German national team Compound N/A MASC NOUN
9 многоцветниците nymphalidae Compound N/A PL+DEF NOUN

10 авиокосмическо (pertaining to) aerospace Compound N/A NEUT ADJ
11 геолокацията geolocation Compound N/A FEM+DEF NOUN
12 следамерикански post American Compound N/A MASC ADJ
13 китоловния whaling Compound N/A MASC+DEF ADJ
14 видеоизкуство videoart Compound N/A NEUT NOUN
15 новоизграденият the newly built Compound N/A MASC+DEF ADJ
16 първооснови primary basis Compound N/A PL NOUN
17 лейбгвардейците the life guards Compound N/A PL+DEF NOUN
18 сухолубиви drought-tolerant Compound N/A PL ADJ
19 наскоропоявилия appeared recently Compound N/A MASC+DEF ADJ
20 леководолазът the scuba diver Compound N/A MASC+DEF NOUN
21 косиха mowed Conjugation Bulgarian N/A VERB
22 разбъркаха mixed Conjugation N/A N/A VERB
23 обследвайки investigating, inquiring Conjugation N/A N/A PART
24 заобиколил go around, circumvent Conjugation N/A N/A PART
25 преместилите moved around Conjugation N/A PL+DEF PART
26 нарекъл called, named Conjugation N/A MASC PART
27 недостигнатия unattainable Conjugation N/A MASC+DEF PART
28 тероризиращ terrorizing Conjugation N/A MASC PART
29 досмила digesting, grinding Conjugation N/A N/A PART
30 руководителей leaders Foreign Russian PL NOUN
31 паутина spider web Foreign Russian FEM NOUN
32 питянтятяра Pitjantjatjara Geography Australian N/A PROPN
33 широколъшки (of) Shiroka Laka Geography Bulgarian PL ADJ
34 сетница Setnica Geography Bulgarian N/A PROPN
35 замфировска zamphyrovska Geography Bulgarian FEM ADJ (Proper)
36 гулянци Guliantsi Geography Bulgarian N/A PROPN
37 бенковската benkovska Geography Bulgarian FEM+DEF ADJ (Proper)
38 знеполското the znepolsko Geography Bulgarian NEUT+DEF ADJ (Proper)
39 алитуска the alitusk Geography Bulgarian FEM+DEF ADJ (Proper)
40 отроковице Otrokovice Geography Czech N/A PROPN
41 блекпулски Blackpool Geography English MASC ADJ (Proper)
42 пфалцски (pertaining to) Pfalz Geography German MASC ADJ (Proper)
43 сицилианска Sicilian Geography Italian FEM ADJ
44 няманоро Nyamanoro Geography Japan N/A PROPN
45 твърдишкото (pertaining to) Tvarditsa Geography Place NEUT+DEF ADJ
46 можайският Mojayska Geography Russian MASC+DEF ADJ (Proper)
47 саянската of the Sayan (Mountains) Geography Russian FEM+DEF ADJ
48 лядунския (of) Liaodong Geography Russian MASC+DEF ADJ
49 верхневилюйское Verkhnevilyuysk Geography Russian N/A ADJ (Proper)
50 болградското Bolgradski Geography Ukranian NEUT ADJ (Proper)
51 азраки Azraqi Georgraphy Persian N/A PROPN
52 купчето the small pile/bunch Declension N/A NEUT+DIM+DEF NOUN
53 естуарното the estuarine Declension N/A NEUT+DEF ADJ
54 сметачната the calculating Declension N/A FEM+DEF ADJ
55 просешката the beggary Declension N/A FEM+DEF ADJ
56 трахити trachytes Declension N/A PL NOUN
57 миллети millets Declension N/A PL NOUN
58 ротердамци inhabitants of Rotherdam Declension N/A PL NOUN
59 ресинтезът the resynthesis Declension N/A MASC+DEF NOUN
60 флуксетинът the Fluoxetine Declension N/A MASC+DEF NOUN
61 неосъзнаваното the unconsciously Declension N/A NEUT+DEF ADJ
62 изсечена set in stone, cut down Declension N/A FEM ADJ
63 сайгите the saiga anthlopes Declension N/A PL+DEF NOUN
64 смърчови (of) spruce Declension N/A PL ADJ
65 конецовидните thread-like Declension N/A PL+DEF ADJ
66 предлози prepositions Declension N/A PL NOUN
67 селяка peasant Declension N/A MASC+DEF NOUN
68 ленни land granted by Ottomans Declension N/A PL ADJ
69 екстрахепатичните extrahepatic Declension N/A PL+DEF ADJ
70 пуническото pertaining to Punics Declension N/A NEUT+DEF ADJ
71 владишкото of the bishop Declension N/A NEUT+DEF ADJ
72 кратовския (pertaining to) Kratovo Declension N/A MASC+DEF ADJ (Proper)
73 дудукът duduk Declension N/A MASC+DEF NOUN
74 пастафории pastophoria Declension Transliteration PL NOUN
75 създателю creator Declension Vocative MASC NOUN
76 костурчанка kosturchanka Name Inhabitants FEM PROPN
77 дъмбълдоров (pertaining to) Dumbledore Name Person MASC ADJ (proper)
78 северо Severo Name Person N/A PROPN
79 квинтерна gittern Target N/A FEM NOUN
80 назалност nasality Target N/A FEM NOUN
81 нелютив mild (not hot) Target N/A MASC ADJ
82 биткойн bitcoin Target Transliteration MASC NOUN
83 скакач springbok Target Zoology MASC NOUN
84 гюйсът the jack Transliteration Dutch MASC+DEF NOUN
85 дайнамикс dynamics Transliteration English N/A PROPN
86 обложака cover Typo Addition FEM NOUN
87 меджународната the international Typo Character Swap FEM+DEF ADJ
88 палеографикатегория paleography category Typo Concatenation FEM NOUN
89 юдеизма the judaism Typo Declension MASC+DEF NOUN
90 наташната the next Typo Omission FEM+DEF ADJ
91 широкоразпространеия the widespread Typo Omission MASC+DEF ADJ
92 низхождение descent Typo Omission NEUT NOUN
93 цитросуви (of) citrus Typo Substitution PL ADJ
94 оковчателното (of) the final result Typo Substitution NEUT+DEF ADJ
95 жинотните the animals Typo Substitution PL+DEF NOUN
96 татраедър tetrahedron Typo Substitution MASC NOUN
97 имплементзция implementation Typo Substitution FEM NOUN
98 принадлежът belong Typo Substitution PL VERB
99 оръсия weapons Typo Substitution PL NOUN

100 предозонова prednisone (therapy) Typo Transliteration FEM ADJ

Table A.2: Manual classification of 100 randomly sampled words from the tokenized Bulgarian Wikipedia Corpus
after eliminating entries from the union of dictionaries. We use the UD part-of-speech tags from: https://
universaldependencies.org/u/pos/. Table is summarized in Figure 3.

5323



Index Word Valid

1 витал Yes
2 втрху Yes
3 ихрам Yes
4 синут Yes
5 съкър Yes
6 витрал Yes
7 маквис Yes
8 пераун Yes
9 почест Yes

10 ревабш Yes
11 рененг Yes
12 живееяг Yes
13 модулин Yes
14 гутболни Yes
15 джутсуту Yes
16 камбоурн Yes
17 убеждавт Yes
18 читирима Yes
19 антатната Yes
20 вододпади Yes
21 наблядава Yes
22 присъствт Yes
23 художникт Yes
24 обстрикция Yes
25 преостъпва Yes
26 ассортимент Yes
27 монодрамата Yes
28 присътствал Yes
29 революциятс Yes
30 числиността Yes
31 продолжавало Yes
32 нараставащата Yes
33 пристрелването Yes
34 стандфордското Yes
35 модерницираните Yes
36 туид No
37 течащ No
38 тодас No
39 шейдър No
40 спомнящ No
41 връчващо No
42 кодеинът No
43 напомняш No
44 невиждащ No
45 струващо No
46 китобойци No
47 влайковите No
48 кварковото No
49 радиошоуто No
50 семинолско No

Table A.3: Human validation of random sample of misspelling classifications.
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Index Word Decomposition
Edit

Distance
Valid

Compound
Valid

Decomposition

1 калейдоскопът калейдоскоп|път 1 No No
2 дроидчето @|ридчето 2 No No
3 вазодилатиращ вазови|датиращ 2 Yes No
4 паналбанската пан|албанската 0 Yes Yes
5 трудноподвижност трудно|подвижност 0 Yes Yes
6 узункьопрюйския @|райския 9 No No
7 крайгълните крайгълен|ите 1 No No
8 епископалианците епископа|ливанците 1 No No
9 фотостареенето фото|стареенето 0 Yes Yes

10 тескерета тес|@/@|ета 6 No No
11 видеообмен видео|обмен 0 Yes Yes
12 дефтерхането дефтера|нето 1 Yes Yes
13 класфицира @|скицира 4 No No
14 несатнтименталното @|менталното 8 Yes No
15 предпубертетна пред|пубертетна 0 Yes Yes
16 екплозивни @|позивни 3 No No
17 сложноустроени сложно|устроени 0 Yes Yes
18 миникомикси мини|комикси 0 Yes Yes
19 бромалгин бром|олгин 1 Yes Yes
20 хиподермата хипо|дермата 0 Yes Yes
21 зогисткия зог|есткия 1 No Yes
22 колаборанти кол|лаборанти/кола|оранти 1 Yes No
23 древноеврейските древно|еврейските 0 Yes Yes
24 щалупьоненщалупьонен щало|@ 16 No No
25 нарамвали @|вали/нара|@ 5 No No
26 друмевите @|ите 6 No No
27 екстрабукалната @|калната 8 Yes No
28 дзайбацу дза|@ 5 Yes No
29 анасонлийките анасон|@ 7 No No
30 петокласно пето|класно 0 Yes Yes
31 джазформация джаз|формация 0 Yes Yes
32 крайдунавски край|дунавски 0 Yes Yes
33 елабуцки ела|@ 5 No No
34 ориксът ори|кът 1 No No
35 римокатолическа римо|католическа 0 Yes Yes
36 арондисмана @|имана 6 No No
37 истанбулчаникатегория истанбулчани|категория 0 Yes Yes
38 сподобиха спо|добиха 0 Yes Yes
39 прокомуникирана прокоп|@ 10 Yes No
40 леополдините леополд|дините 1 No No
41 детройтът детройт|@ 2 No Yes
42 шитл‘ивица @|вица 5 No No
43 премъдростната @|яростната 6 Yes No
44 шестмоторни шест|моторни 0 Yes Yes
45 филмографията фил|зографията/филм|зографията 1 Yes Yes
46 средногъстата средно|гъстата 0 Yes Yes
47 безкуполен без|куполен 0 Yes Yes
48 гоцезелчевската гоце|енчевската 2 Yes Yes
49 епскоп @|коп 3 No No
50 лопатовиднозъб лопатови|@ 6 Yes No

Table A.4: Human validation of random sample of compound analysis.
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Index Word Human Trans. Alg. Trans. Human Type Human Sub-Type Alg. Type Alg. Sub-Type Features POS

1 н-к manage (abbreviated) N/A Abbreviation N/A Foreign Russian MASC NOUN
2 полупансион half board semi board Compound N/A Compound N/A MASC NOUN
3 свръхелегантен overly well dressed svra|elegant Compound N/A Compound N/A MASC NOUN
4 по-нагъл more impudent N/A Compound N/A Foreign Russian MASC ADJ
5 търговско-промишлена Industrial-and-retail N/A Compound N/A Foreign Russian FEM ADJ
6 русокоси blond russian Compound N/A Declension Fuzzy PL ADJ
7 новооткритото the newly found openings Compound N/A Declension Fuzzy NEUT+DEF ADJ
8 мироопазващите peace-keeping peace|keeping Compound N/A Declension Simple PL+DEF ADJ
9 подплашил slightly scared tear off|beaten Conjugation N/A Compound N/A MASC PART

10 инспирирано inspired @|early Conjugation N/A Compound N/A NEUT PART
11 жужи buzz N/A Conjugation N/A Conjugation N/A N/A VERB
12 могли could N/A Conjugation N/A Conjugation N/A N/A PART
13 забиха poke N/A Conjugation N/A Conjugation N/A N/A VERB
14 карало driven N/A Conjugation N/A Conjugation N/A NEUT ADJ
15 плъзна slide N/A Conjugation N/A Conjugation N/A N/A VERB
16 изгонва expels N/A Conjugation N/A Conjugation N/A N/A VERB
17 изкъпем take a bath N/A Conjugation N/A Conjugation N/A N/A VERB
18 копнели longing N/A Conjugation N/A Conjugation N/A PL PART
19 работиш work N/A Conjugation N/A Conjugation N/A N/A VERB
20 сдобили obtained N/A Conjugation N/A Conjugation N/A N/A VERB
21 оставаме remaining remaining Conjugation N/A Conjugation N/A N/A VERB
22 отзовали responded N/A Conjugation N/A Conjugation N/A N/A VERB
23 обвиняват accuse N/A Conjugation N/A Conjugation N/A N/A VERB
24 познаваха recognized N/A Conjugation N/A Conjugation N/A N/A VERB
25 промъквал sneaked N/A Conjugation N/A Conjugation N/A N/A PART
26 дипломираш graduate N/A Conjugation N/A Conjugation N/A N/A VERB
27 започвайте begin N/A Conjugation N/A Conjugation N/A N/A VERB
28 проведохме carried out N/A Conjugation N/A Conjugation N/A N/A VERB
29 разчитайте rely N/A Conjugation N/A Conjugation N/A N/A VERB
30 поздравяват greet N/A Conjugation N/A Conjugation N/A N/A VERB
31 представяше represented N/A Conjugation N/A Conjugation N/A N/A VERB
32 претоварваш overload N/A Conjugation N/A Conjugation N/A N/A VERB
33 разстройваме disturb N/A Conjugation N/A Conjugation N/A N/A VERB
34 съсредоточиш concentrate (mentally) N/A Conjugation N/A Conjugation N/A N/A VERB
35 тръшна fall abbruptly trish Conjugation N/A Declension Fuzzy N/A VERB
36 наметна drape over document Conjugation N/A Declension Fuzzy N/A VERB
37 назначиха appointed N/A Conjugation N/A Declension Simple N/A VERB
38 озъртат look around N/A Conjugation N/A N/A N/A N/A VERB
39 поведох lead N/A Conjugation N/A Proper Likely N/A VERB
40 Дувър Dover N/A Geography English Proper Likely N/A PROPN
41 Козро Kozro N/A Geography Russian Proper Likely N/A PROPN
42 Ридсдейл Reedsdale N/A Geography English Proper Likely N/A PROPN
43 Апенините Appennini N/A Geography Italian Proper Likely PL PROPN
44 далавери deals given|friends Declension N/A Compound N/A FEM+PL NOUN
45 манталитетът the mentality mentality|@ Declension N/A Compound N/A MASC+DEF NOUN
46 клъвки beak click Declension N/A Declension Fuzzy FEM+PL NOUN
47 божиите godly godly Declension N/A Declension Fuzzy PL+DEF ADJ
48 болките the pains pains Declension N/A Declension Simple FEM+PL+DEF NOUN
49 гърмежи thunder report Declension N/A Declension Simple PL NOUN
50 епохата the epoch N/A Declension N/A Declension Simple FEM+DEF NOUN
51 великите The great veliki Declension N/A Declension Simple PL+DEF ADJ
52 депутата the congressman congressman Declension N/A Declension Simple MASC+DEF NOUN
53 детската the childish toy Declension N/A Declension Simple FEM+DEF ADJ
54 повелите the commands entrusted Declension N/A Declension Fuzzy FEM+PL+DEF NOUN
55 клетвения sworn sworn Declension N/A Declension Simple MASC+DEF ADJ
56 пазарлъци bargains bargain Declension N/A Declension Fuzzy MASC PL NOUN
57 погребите cellar, arms depot entomb, bury Declension N/A Declension Fuzzy MASC+PL+DEF NOUN
58 случилото occurred occurred Declension N/A Declension Simple NEUT+DEF PART
59 чехкините The Czech (females) Check (female) Declension N/A Declension Simple FEM+DEF ADJ (Proper)
60 заловеният captured captured Declension N/A Declension Simple MASC+DEF ADJ
61 известните famous famous Declension N/A Declension Simple PL+DEF ADJ
62 момченцето the little boy (demunitive) little boy Declension N/A Declension Simple NEUT+DEF NOUN
63 отдалечила distanced N/A Declension N/A Declension Simple FEM PART
64 премиерите the prime ministers premiers Declension N/A Declension Simple MASC+DEF NOUN
65 софийската Sofia Sofia Declension N/A Declension Simple FEM+DEF ADJ
66 тексасците the texans texan Declension N/A Declension Fuzzy PL+DEF NOUN
67 еврофондове european funds eurofor Declension N/A Declension Fuzzy MASC+PL NOUN
68 изпратените sent sent Declension N/A Declension Simple PL+DEF PART
69 позиционните positioning position Declension N/A Declension Simple PL+DEF ADJ
70 съвестността the conscience conscience Declension N/A Declension Fuzzy FEM+DEF NOUN
71 холивудските the hollywood hollywood Declension N/A Declension N/A PL+DEF ADJ
72 необмислените the thoughtless thoughtless Declension N/A Declension Fuzzy PL+DEF ADJ
73 вестникарските the newspaper newspaper Declension N/A Declension Simple PL+DEF ADJ
74 изразходваните consumed consumed Declension N/A Declension Simple PL+DEF ADJ
75 социалдемократически social democratic socialdemocrat Declension N/A Declension Simple PL ADJ
76 мъжът the man N/A Declension N/A N/A N/A MASC+DEF NOUN
77 студът the cold N/A Declension N/A N/A N/A MASC+DEF NOUN
78 провинилите the guilty N/A Declension N/A N/A N/A PL+DEF ADJ
79 БВ BV N/A N/A N/A Proper Likely N/A N/A
80 Жега Heat N/A Name Movie Proper Likely FEM NOUN
81 Клио Clio N/A Name Car Proper Likely N/A PROPN
82 ПАНОВ Panov N/A Name Person Proper Likely MASC PROPN
83 Симон Simon N/A Name Person Proper Likely N/A PROPN
84 Чейни Cheney N/A Name Person Proper Likely N/A PROPN
85 Ганева Ganeva N/A Name Person Proper Likely N/A PROPN
86 Емилия Emilia N/A Name Person Proper Likely FEM PROPN
87 Трифон Trifon N/A Name Person Proper Likely MASC PROPN
88 Централ Central N/A Name Hotel Proper Likely N/A PROPN
89 литерер Litteraire N/A Name Newspaper Proper Funky N/A PROPN
90 Елизабет Elizabeth N/A Name Person Proper Likely N/A PROPN
91 Компанис Companys N/A Name Person Proper Likely N/A PROPN
92 Лизаразу Lizarazu N/A Name Person Proper Likely N/A PROPN
93 Талейран Talleyrand N/A Name Person Proper Likely N/A PROPN
94 Анастасия Anastasia N/A Name Person Proper Likely FEM PROPN
95 налудничаво crazy @|chavo Target N/A Compound N/A NEUT ADJ
96 олелия commotion yikes Target N/A Declension Fuzzy FEM NOUN
97 разведряване détente clearing Target N/A Declension Fuzzy NEUT NOUN
98 Земя Earth N/A Target N/A N/A N/A FEM NOUN
99 навръх at the peak of N/A Target N/A N/A N/A N/A ADV

100 Даунтаун downtown N/A Transliteration English Proper Likely MASC NOUN

Table A.5: Manual classification of 100 randomly sampled words after classifying all of the BulTreeBank corpus, in
analogy with Table 1.
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Abstract

Most existing slot filling models tend to mem-
orize inherent patterns of entities and corre-
sponding contexts from training data. How-
ever, these models can lead to system failure
or undesirable outputs when being exposed
to spoken language perturbation or variation
in practice. We propose a perturbed seman-
tic structure awareness transferring method for
training perturbation-robust slot filling mod-
els. Specifically, we introduce two MLM-based
training strategies to respectively learn contex-
tual semantic structure and word distribution
from unsupervised language perturbation cor-
pus. Then, we transfer semantic knowledge
learned from upstream training procedure into
the original samples and filter generated data
by consistency processing. These procedures
aim to enhance the robustness of slot filling
models. Experimental results show that our
method consistently outperforms the previous
basic methods and gains strong generalization
while preventing the model from memorizing
inherent patterns of entities and contexts.

1 Introduction

The slot filling (SF) task in the goal-oriented dialog
system aims to identify task-related slot types in
certain domains for understanding user utterances.
Traditional supervised slot filling models and se-
quence labeling methods (Liu and Lane, 2015,
2016; Goo et al., 2018; Niu et al., 2019; He et al.,
2020a,b; Wang et al., 2022a) have shown remark-
able performance. However, these models tend to
memorize inherent patterns of entities and contexts
(Wang et al., 2022b; Lin et al., 2021). Faced with
uncertainty and diversity of human language ex-
pression, the perturbation of entities and contexts
will lead to a decrease in the generalization ability
of the SF model, which hinders its further applica-
tion in practical dialog scenarios.

∗The first four authors contribute equally. Weiran Xu is
the corresponding author. Email: dongguanting@bupt.edu.cn

Excuse me, could you tell me which hotel around is  cheap

O        O        O      O    O     O     O     B-TYPE   O      O B-PRICE 

Simplification

Original

I need a  cheap  hotel

O    O   O      O    B-TYPE 

Paraphrase

I want to proceed with the cheaper  hotel  

O    O    O      O          O      O       O      B-TYPE              

False True

Figure 1: The impact of diverse spoken language pertur-
bations on the slot filling system in real scenarios.

Due to the variety of expression habits, users
may not interact with the dialogue system abiding
by a rigid input mode in real dialog scenarios. In-
stead, the expression styles of users would be of
high lexical and syntactic diversity while users ex-
press their intentions. An interesting finding is that,
every expression retains the key semantic informa-
tion of the sentence to ensure consistency of the
intention, but it inevitably damages the semantic
structure of the context. As shown in Figure 1, the
original sentence comes from training data, while
the other two sentences are real queries of users
with different language habits. Firstly, paraphrase
and simplification perturb the contextual semantic
structure of the original sentence to various de-
grees. Secondly, some slot entities also suffer from
word perturbations. However, they all retain price-
related information to express the same intention.
We refer to the above two perturbations collectively
as Spoken Language Perturbation. The previous
slot filling model, which tends to memorize entity
patterns, has a significantly reduced generalization
ability when faced with these situations. Therefore,
it is necessary to train a robust slot filling model
against perturbations in practical application.

Recently, improving the robustness of NLP sys-
tems against input perturbations has attracted in-
creasing attention. Most existing studies (Wu et al.,
2021; Moradi and Samwald, 2021; Gui et al., 2021)
that explored the robustness problem are only about
rule-based synthetic datasets, which have certain
limitations. Further, Namysl et al. (2020) focused
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Augmentation 
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data

Semantic Structure Transferring Generation

LDA

John will <Mask> to the hotel on 

<Mask>.

John plans to go to hotel after 

this Saturday.

John will walk to the hotel on 

Monday.

perturbed

John will go to the hotel on Saturday.

B-PER    O     O   O   O   B-LOC  O    B-DAY

John <Mask> hotel <Mask> Saturday.

 B-PER                  B-LOC                   B-DAY

Slot entities

Random context masking Context infilling

Random word masking Word infilling

Training Predict

Mike <Mask> school <Mask> 

Monday.

Mike plans to <Mask> to school after 

this <Mask>.

Mike plans to walk to school after this Monday.

Mike plans to walk to school after this Monday.

LDA

Mike plans to walk to school after this Monday.

Keyword

Figure 2: The overall architecture of the PSSAT framework. Two dotted boxes show the specific processes of the
MLM-based strategies at pre-training and transferring generation stage, respectively.

on the robustness of the NER model against Optical
Character Recognition (OCR) disturbance and mis-
spellings. However, real-world dialogue systems
face more diverse perturbations due to frequent in-
teractions with users. Liu et al. (2020) proposed
Language understanding augmentation, which con-
tains four data augmentation methods, to simulate
natural perturbations. Nevertheless, each method is
designed for a specific perturbation, which cannot
generalize for other unknown perturbations.

To solve the above issues, in this paper, we pro-
pose a Perturbed Semantic Structure Awareness
Transferring method (PSSAT). It can generate aug-
mented data based on human diversity expressions.
In fact, it is not difficult to obtain unsupervised
corpora containing spoken language perturbations
in real-world scenarios (e.g. social media). There-
fore, we extract the texts from two multi-modal
datasets (Zhang et al., 2018; Lu et al., 2018) and
construct an unsupervised language perturbation
corpus, which helps the model learn the seman-
tic structure of perturbed data. To be specific, we
introduce a perturbed structure pre-training stage,
which guides the model to directly learn contextual
semantic structure and words distribution from un-
supervised language perturbation corpus through
two different MLM-based training strategies, re-
spectively. To better eliminate the distribution gap
between upstream and downstream data, we de-
sign a Semantic Structure Transferring Generation
stage to transfer the upstream learned semantic
structure knowledge to downstream original train-

ing samples. By doing so, the generated augmented
samples are more in line with the spoken language
perturbation. However, as there are mixed pertur-
bations existed in upstream corpus, the model may
generate some low-quality samples. To alleviate
this problem, we introduce Consistency Processing
to filter generated samples.

Our contributions are three-fold: (1) To the best
of our knowledge, this is the first work to inves-
tigate spoken language perturbation of slot filling
tasks and validate the vulnerability of existing rule-
based methods in the condition of diverse language
expressions. (2) We propose a perturbed seman-
tic structure awareness transferring method, which
transfers the learned contextual semantic structure
and word distribution into the original samples
through the MLM-based method. (3) Experiments
demonstrate that our method outperforms all base-
line methods and gains strong generalization while
preventing the model from memorizing inherent
patterns of entities and contexts.

2 Methodology

2.1 Problem Definition

Given a tokenized utterance 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁 }
and its corresponding BIO format label 𝑌 =
{𝑦1, 𝑦2, . . . , 𝑦𝑁 }, we formulate the spoken lan-
guage perturbation process in the real scenario as
𝑋 ′ = P𝑥 (𝑋), 𝑌 ′ = P𝑦 (𝑌 ) such that 𝑋 ′ ≠ 𝑋 but 𝑌 ′

may be identical with 𝑌 or not. The perturbation-
robust slot filling requires the model to be tested
on the perturbed test dataset {(𝑋 ′, 𝑌 ′)} but with no
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access to the spoken language perturbation process
P(·) or perturbed data during the training phase.

2.2 Perturbed Structure Pre-training

The perturbed structure pre-training stage guides
the model to learn the semantic structure from real-
istic perturbed data. We carefully collected several
spoken language perturbation datasets to build an
unsupervised language perturbation corpus1. In-
spired by the key idea of masked language model
(MLM) (Devlin et al., 2018), which randomly re-
places a few tokens in a sentence with the special
token [MASK] and recovers the original tokens by
a neural network, we introduce two augmentation
strategies, as shown in Figure 2.

Random Word Masking (RWM): words are ran-
domly selected for masking and infilling to simu-
late the word perturbation, which guides the model
to learn word distribution from real perturbed data.

Random Context Masking (RCM): we filter out
the keywords of each sentence through Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) to
keep the key information of the sentence. For non-
keyword parts, we regard them as context spans of
each sentence and conduct random masking and in-
filling. In this way, the model learns the contextual
semantic structure from realistic perturbed data.
Unlike word infilling, context infilling can generate
multiple tokens for each [MASK] position.
2.3 Semantic Structure Transferring

Generation

The Semantic Structure Transferring Generation
stage aims to transfer learned contextual seman-
tic structure and word distribution from upstream
pre-trained model to downstream training samples.
As shown in Figure 2, pre-trained models are sepa-
rately loaded to conduct RWM and RCM. A slight
difference from the pre-training stage is that slot
entities are filtered out as keywords. It is worth
noting that augmented data generated by two strate-
gies explicitly contain diverse human expressions,
which are learned from perturbed structure pre-
training. Besides, we also generate coarse labels
for two kinds of augmented data based on rules.
Specifically, we label the infilling tokens as O while
maintaining labels of other tokens. The case study
(See Appendix D) shows that samples generated by
semantic structure transferring generation can not
only better fit spoken language perturbation, but

1More details about the construction process of the per-
turbation corpus can be found at section 3.2

Clean train set
……

Data 

Augmentation 

Sequence labeling 

model

Clean test set

Noise test setClean valid set

Figure 3: The process of downstream perturbation-
robust slot filling task.

also be more in line with human language diversity
than those generated by rule-based methods.

Consistency Processing Due to mixed perturba-
tions in the upstream corpus, it is necessary to de-
sign a consistency processing to filter low-quality
samples. Specifically, we train a tagging model
with original training data and augmented samples.
Then the model is used to predict labels for each
augmented sentence. The labels which are consis-
tent with the coarse labels and original labels are
kept. The augmented samples filtered by consis-
tency processing are mixed and input to the main
task as the final augmented data.

Training and Inference As shown in figure 3,
during the training stage, we first perform perturbed
structure pre-training on the unsupervised language
perturbation corpus to learn the contextual seman-
tic structure and word distribution of perturbed data.
We use the pre-trained model to obtain augmented
data for the clean training dataset, and use all sam-
ples to train a perturbation-aware sequence labeling
model. During the testing stage, we test the se-
quence labeling model on both clean and perturbed
datasets.

3 Experiment

3.1 Dataset

RADDLE (Peng et al., 2020a) is a crowd-sourced
diagnostic dataset to cover a broad range of real-
world perturbations to study the robustness of end-
to-end dialog system. We extract four kinds of
realistic perturbed data from RADDLE and con-
struct the slot filling dataset. In particular, the orig-
inal dataset of the evaluation set in RADDLE is
extracted from MultiWOZ (Lu et al., 2021). To in-
troduce sufficient perturbed data for evaluating the
model robustness against multiple perturbations,
we extracted the clean user utterances and four
kinds of perturbed utterances (Homophone, Sim-
plify, Verbose and Paraphrase) from RADDLE. To
be specific, Homophone perturbation comes from
input text errors caused by recognition and synthe-
sis errors. Simplification is generated by concise-

5329



Methods Clean Homophone Paraphrase Verbose Simplification Overall

none 95.8 81.5 (-14.3) 87.5 (-8.3) 81.6 (-14.2) 85.3 (-10.5) 84 (-11.8)

Char-Random 96.0 (0.2) 84.1 (18.2%) 87.6 (1.2%) 83.2 (11.3%) 88.1 (26.7%) 85.8 (14.4%)
Word-Del 95.9 (0.1) 83.2 (11.9%) 89.3 (21.7%) 82.6 (7.0%) 87.5 (21.0%) 85.7 (15.4%)
Syn-Sub 96.1 (0.3) 83.5 (14.0%) 89.3 (21.7%) 82.2 (4.2%) 86.8 (14.3%) 85.5 (13.6%)
Word-Insert 95.8 (0.0) 81.2 (-2.1%) 88.2 (8.4%) 81.3 (-2.1%) 86.2 (8.6%) 84.2 (3.2%)
Hom-Sub 96.0 (0.2) 83.7 (15.4%) 89.3 (21.7%) 82.3 (4.9%) 87.7 (22.9%) 85.8 (16.3%)
NAT(Laug) 96.0 (0.2) 84.3 (19.6%) 87.7 (2.4%) 82.8 (8.5%) 87.3 (19.0%) 85.5 (12.4%)
NAT(Lstabil) 96.0 (0.2) 83.9 (16.8%) 87.4 (-1.2%) 83.0 (9.9%) 87.3 (19.0%) 85.4 (11.1%)

PSSAT 96.2 (0.4) 84.6 (21.7%) 90.1 (31.3%) 84.0 (16.9%) 89.3 (38.1%) 87.0 (27.0%)
− RCM 96.2 (0.4) 83.8 (16.1%) 89.6 (25.3%) 83.5 (13.4%) 87.4 (20.0%) 86.1 (18.7%)
− RWM 96.3 (0.5) 83.3 (12.6%) 89.9 (28.9%) 83.8 (15.5%) 88.9 (34.3%) 86.5 (22.8%)
− CP 96.3 (0.5) 84.0 (17.5%) 90.0 (30.1%) 83.4 (12.7%) 88.3 (28.6%) 86.4 (22.2%)
− Pre-training 95.9 (0.1) 83.1 (11.2%) 89.4 (22.9%) 83.0 (9.9%) 86.9 (15.2%) 85.6 (14.8%)

Table 1: The performance (F1 score) of the PSSAT on RADDLE. For cells in Baseline row and Clean test column,
the numbers in the parenthesis indicate the change of F1 score. For other cells, the numbers in the parenthesis
indicate 𝑝𝑟 . In Overall column, we calculate the average F1 and 𝑝𝑟 of the four Spoken language perturbations,
respectively. Both the best and the worst are marked, "−" denotes the model performance without a specific module.
RWM, RCM, CP denotes Random Word Masking, Random Context Masking and Consistency Processing.

Method Hom+App Hom+Con Con+App Hom+Con+App

Baseline (LSTM) 47.9 (-46.0) 54.2 (-39.7) 73.4 (-20.5) 45.7 (-48.2)

best baseline 53.6 (12.4%) 61.1 (17.4%) 71.6 (-8.8%) 47.2 (3.1%)

PSSAT 59.6 (25.4%) 61.8 (19.1%) 78.3 (23.9%) 53.9 (17.0%)

Table 2: The performance of the best baseline and
PSSAT on mixed perturbations.

word expression. On the contrary, Verbose refers
to redundant expression. Paraphrase noise widely
exists in our dataset, where users restate texts in
different ways of expression according to their per-
sonal speaking habits. The training dataset consists
of 61,117 clean data from four domains. We ran-
domly select 5,000 data as the validation set. Our
compared baselines and implementation details can
be found in Section 3.4 and A.

3.2 Unsupervised Language Perturbation
Corpus

In our perturbed structure pre-training stage, we
employ two multi-modal datasets: Twitter-2015
(Zhang et al., 2018), Twitter-2017 (Lu et al., 2018).
We only extract the corpus part and delete the use-
less details in sentences such as emoji and URL.
We consider that the data on social media contains
the real diversity of human expressions, and it is
beneficial for the downstream generation to learn
the knowledge of diverse human expressions in the
pre-training stage.

3.3 Evaluation Metrics

We use 𝐹1 score to measure the performance of the
model. 𝐹1

𝑐, 𝐹1
𝑝 denote the performance on the

clean and perturbed test set respectively. On this

basis, we define (1) as Perturbation Recovery Rate
(𝑃𝑟 ) of a given perturbation-robust method 𝑚:

𝑃𝑟 =
𝐹1
𝑝
𝑚 − 𝐹1

𝑝
baseline

𝐹1
𝑐
baseline − 𝐹1

𝑝
baseline

(1)

𝑃𝑟 indicates the improvement in performance of
the model using the robust approach over the base-
line model on the perturbed test set, as a percent-
age of the performance degradation of the baseline
model due to the introduction of perturbation.

3.4 Implementation Details
For the upstream work, our model PSSAT is based
on BART (Lewis et al., 2019), which is provided
by the Huggingface Transformers2. The reason
for choosing BART is that the pre-training tasks
of BART include token masking and text filling,
which is consistent with our PSSAT task. We set
the batch size of BART to 8 and the pre-training
takes an average of one hour for 10 epochs. The
corresponding learning rates are set to 1e-5.

For the downstream work, we use two set-
tings for perturbation-robust slot filling, Glove-Bi-
LSTM and BERT-Bi-LSTM. Glove-6B-300d, char
embedding and BERT-large-uncased are applied
as the embedding layer. We take Bi-LSTM as the
mainly analyzed model. The hidden size of Bi-
LSTM is set to 128 and the dropout rate is set to
0.2. The transform probability p is set to 0.3. For
all the experiments, we train and test our model on
the 2080Ti GPU. It takes an average of 1.5 hours
to run with 12 epochs on the training dataset.

2https://huggingface.co/docs/transformers
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All experiments are repeated three times with
different random seeds under the same settings. All
the models are implemented with PyTorch (Paszke
et al., 2019).

3.5 Main Results
Table 1 shows the main results of PSSAT compared
to different baselines on the language perturbation
dataset. The overall result of our PSSAT greatly
outperforms the baseline by 27.0%. Especially,
the 𝑃𝑟 of paraphrase and simplification is about
40%, which is a remarkable enhancement. What’s
more, our method is not designed for any specific
perturbation, but achieves the best results for vari-
ous perturbations, which proves that our model not
only improves the performance significantly, but
generalizes better.

Ablation Studies. To better prove the effective-
ness of the pre-training stage, we conduct ablation
experiments. Table 1 illustrates the results that the
model without RWM performs better than that with-
out RCM, which shows that the change of context
makes the semantic change more drastic. Mean-
while, all of RWM, RCM, CP and PSSAT without
pre-training have a performance drop, which sug-
gests that every part of design is necessary.

3.6 Mixed Perturbations Experiment
In real dialogue scenarios, mixed perturbations of-
ten appear in one input utterance at the same time.
To verify the effectiveness of our method in more
realistic scenarios, based on SNIPS (Coucke et al.,
2018), we utilize TextFlint3 (Gui et al., 2021) to in-
troduce Homophone(Hom), Appendirr(App), Con-
catSent(Con) and construct a mixed perturbations
evaluation dataset 4. As shown in Table 2 , the 𝑃𝑟
of our PSSAT is over 20% against three different
kinds of two-level perturbations, which far exceeds
the best baseline (Hom-Sub). The model maintains
an almost 17% 𝑃𝑟 even with the joint disturbances
from three-level perturbations, which shows the
effectiveness and stability of our methods in real
scenarios.

3.7 Error Analysis
We randomly selected 500 samples from all out-
puts and manually checking the error outputs for
error analysis. Table 3 investigates 5 error types the
model has made on the RADDLE. It can be seen
that the number of PSSAT error outputs is less than

3http://textflint.io/
4We conducted single perturbation experiment on SNIPS.

The results can be found in Appedix C

Error Type
Baseline PSSAT

Num % Num %

Entity Location 12 20.0 9 18.8
Contextual Perturbation 16 26.7 11 22.8

Entity Mention 23 38.3 19 39.6
Others 9 15.0 9 18.8

Mixed Perturbation 11 − 9 −

Table 3: Error analysis on RADDLE.

Clean are there any museums in the centre ?
Verbosity could you please search for any museums

in the town centre .
Baseline O O O O O O B-type O O O O O
PSSAT O O O O O O B-type O O O B-area O

Clean i ’d like a jamaican restaurant please .
Simplification find jamaican plz .
Baseline O B-name I-name O
PSSAT O B-food O O

Clean i need to leave after 12:00 .
Homophone i need to leave after twelve .
Baseline O O O O O O O
PSSAT O O O O O B-leave O

Clean i need a booking for 4 people .
Paraphrase i need seats for 4 .
Baseline O O O O B-time O
PSSAT O O O O B-people O

Clean could you tell me which hotel around is cheap ?
Paraphrase I want to proceed with the cheaper hotel .
Baseline O O O O O O O B-type O
PSSAT O O O O O O B-price B-type O

Table 4: The error cases. The bold texts are slot entities.
Both wrong and correct labels are marked in red and
green, respectively.

the baseline in each category. Table 4 illustrates
cases of each error type. Both the baseline model
and PSSAT can correctly label clean text, but only
PSSAT can correctly label texts with perturbation.
After comprehensive analysis, the result shows that
rote memorization of entity mention and contex-
tual perturbation accounts for a large portion of the
errors. Compared to the baseline, PSSAT can alle-
viate the problem of memorizing inherent patterns
of entities and contexts.

4 Conclusion
In this paper, we propose a perturbed seman-
tic structure awareness transferring method for
perturbation-robust slot filling task. Specifically,
we design the perturbed structure pre-training and
the semantic structure transferring generation to
transfer the upstream learned semantic structure
knowledge to downstream original training sam-
ples. Further, we filter low-quality samples through
a consistency processing module. Sufficient experi-
ments and error analysis demonstrate the effective-
ness and generalization of our methods, and also
prove that PSSAT alleviates the problem of memo-
rizing inherent patterns of entities and contexts.
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A Baselines

To simulate the input perturbation existing in re-
alistic scenarios, we introduce five well-designed
perturbation robust methods and a strong baseline:

Random Char Augmentation (Char-Random)
is a character-level augmentation method that ran-
domly adds, removes, and replaces characters in a
token with a transformation probability 𝑝.

Random Word Deletion (Word-Del) aims to
simulate the effect of simplification in input utter-
ances in real-world scenarios (Wei and Zou, 2019).
It randomly removes tokens with a probability 𝑝.

Random Word Insertion (Word-Insert) ran-
domly insert words with probability 𝑝 based on
contextual embedding (Peng et al., 2020b). The
method aims to model the effect of verbosity per-
turbation in input utterances.

Homophonic substitution (Hom-Sub) is de-
signed for simulating word-level perturbation. We
implement a homophone replacement dictionary,
where words in the utterance are replaced by ho-
mophones with probability 𝑝.

Synonymous Substitution (Syn-Sub) is imple-
mented based on WordNet’s (Miller, 1995) syn-
onymous thesaurus. We randomly select tokens
in utterance with probability 𝑝 for synonymous
substitution (Coulombe, 2018). Note that our aug-
mentations on training samples avoid slot words
and only operate on contextual words.

Noise-Aware Training is proposed by (Namysl
et al., 2020), which includes two Noise-Aware
Training (NAT) objectives that improve robustness
of sequence labeling performed on perturbed in-
put. The data augmentation method trains a neural
model using a mixture of clean and noisy samples,
whereas the stability training algorithm encourages
the model to create a noise-invariant latent repre-
sentation.

B BERT Result on RADDLE

Table 5 shows the BERT-version results of PSSAT.
Compared to several data augmentation methods,
PSSAT method makes a great improvement in each
field. The overall results are better than any type
of data augmentation results. Furthermore, the
whole PSSAT method outperforms the baseline by
18.8%. Similar to the results of LSTM, PSSAT also
achieves the best results on each spoken language
perturbation.

C SNIPS Single Perturbation Experiment

As shown in Table 6, we also explore the perfor-
mance of various denoising methods on SNIPS
dataset. Both entity mention and contextual se-
mantics are corrupted in mixed multiple noise sce-
narios, resulting in a catastrophic degradation of
model performance. The overall result combining
the single-noise and multi-noise results achieves a
33% improvement.

D Case Study

Table 7 shows some samples generated by PSSAT
in the way of RWM and RCM, respectively. It can
be seen that the generated augmented samples are
more in line with the Spoken language perturba-
tion, while preserving the semantics of the original
sentences.
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Methods Clean Homophone paraphrase verbose simplification Overall

none 96.2 82.8(-13.4) 90.4(-5.8) 84.4(-11.8) 87.7(-8.5) 82.6(-13.6)

Char-Random 96.0 (-0.2) 85.0 (16.4%) 89.9 (-8.6%) 84.9 (4.2%) 88.1 (4.7%) 86.9 (4.2%)
Word-Del 95.9 (-0.3) 84.5 (12.7%) 90.0 (-6.9%) 84.5 (0.8%) 88.0 (3.5%) 86.8 (2.5%)
Word-Sub 96.3 (0.1) 84.1 (9.7%) 90.2 (-3.4%) 84.1 (-2.5%) 88.2 (5.9%) 86.7 (2.4%)
Word-Insert 96.3 (0.1) 84.3 (9.7%) 90.5 (1.7%) 83.9 (-4.2%) 88.5 (9.4%) 86.8 (4.2%)
Homophone 95.8 (-0.4) 85.8 (22.4%) 90.2 (-3.4%) 82.4 (-16.9%) 87.5 (-2.4%) 86.5 (-0.1%)
NAT(Laug) 96.0 (0.2) 85.2 (17.7%) 90.5 (2.4%) 85.4 (8.3%) 88.0 (3.0%) 87.2 (7.9%)
NAT(Lstabil) 96.0 (0.2) 85.1 (16.8%) 90.3(-1.2%) 85.2 (6.6%) 88.0 (3.0%) 87.2 (6.3%)

PSSAT 96.4 (0.2) 85.6 (20.9%) 91.5(19.0%) 85.8(11.9%) 89.7(23.5%) 88.1(18.8%)
− RCM 96.6 (0.4) 84.7 (14.0%) 91.3 (15.5%) 85.1 (5.9%) 88.4 (8.2%) 87.4(10.9%)
− RWM 96.4 (0.2) 83.5(5.2%) 91.5(19.0%) 85.7(11.0%) 89.4(20.0%) 87.5(13.8%)
− Pre-training 95.9 (0.1) 83.1(2.2%) 90.7(4.9%) 84.9(4.4%) 88.2(5.6%) 86.7(4.3%)

Table 5: The performance (F1 score) of the PSSAT on RADDLE. For cells in Baseline row and Clean test column,
the numbers in the parenthesis indicate the change of F1 score over the baseline (96.2), while for other cells, the
numbers in the parenthesis indicate the perturbation recovery rate (𝑝𝑟 ). In Overall column, we calculate the average
F1 and 𝑝𝑟 of the four Spoken language perturbations respectively.

Method Clean Hom App Concat Overall
Baseline (LSTM) 93.9 62.2(-31.7) 71.2(-22.7) 85.0(-8.9) 72.8(-21.1)

Char-Random 93.7 75.8(42.9%) 74.0(12.3%) 85.2(2.2%) 78.3(19.1%)

Word-Del 93.8 61.6(-1.9%) 69.2(-8.8%) 85.3(3.4%) 72.0(-2.4%)

Word-Sub 93.8 65.7(11.0%) 73.3 (9.3%) 84.1 (-10.1%) 74.4(3.4%)

Word-Insert 92.8 63.9 (5.4%) 80.5 (41.0%) 82.1 (-32.6%) 75.5(4.6%)

Homephone 93.7 70.1 (24.9%) 72.8 (7.0%) 86.4 (15.7%) 76.4(15.9%)

NAT(Laug) 93.6 69.1 (21.8%) 74.7 (15.3%) 85.5 (5.5%) 76.4 (14.2%)

NAT(Lstabil) 93.6 68.4 (19.6%) 74.3 (13.8%) 85.4 (4.7%) 76.0 (12.7%)

PSSAT 94.14 71.5(29.3%) 82.7(50.7%) 86.7(19.1%) 80.3(33.0%)

Table 6: The performance of the best baseline and PSSAT on mixed perturbations. Con, APP and Home stand for
ConcatSent, Appendirr and Homophone, respectively.

Ori. Aug.

Text

can you please check for a turkish restaurant ? so can you show me some turkish restaurant ?
does it have 4 stars ? does that rated 4 stars ?
5 people for the train please . 5 tkts R needed please .
i ’ll be leaving kings lynn after 13:15 . i ’m gonna leave kings lynn @ 13:15 .

Word
ok , how about scudamores punting company then . @HeyandIfhey , how about scudamores punting company then .
how about a museum ? how is a museum ?
i am looking for a hotel please . i am sorry for a hotel please .

Table 7: Some raw data and the corresponding enhanced data.
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Abstract

Chinese Grammatical Error Diagnosis (CGED)
suffers the problems of numerous types of
grammatical errors and insufficiency of training
data. In this paper, we propose a string editing
based CGED model that requires less training
data by using a unified workflow to handle vari-
ous types of grammatical errors. Two measures
are proposed in our model to enhance the per-
formance of CGED. First, the detection and
correction of grammatical errors are divided
into different stages. In the stage of error de-
tection, the model only outputs the types of
grammatical errors so that the tag vocabulary
size is significantly reduced compared with
other string editing based models. Secondly,
the correction of some grammatical errors is
converted to the task of masked character in-
ference, which has plenty of training data and
mature solutions. Experiments on datasets of
NLPTEA-CGED demonstrate that our model
outperforms other CGED models in many as-
pects. The project of our approach is available
at https://github.com/xiebimsa/se-cged.

1 Introduction

The traditional methods of Grammatical Error Di-
agnosis (GED) are pipeline-based, which has three
main steps in series, including error detection, se-
lection of candidate corrections, and ranking of
candidate corrections (Lee et al., 2015). With the
wide application of seq2seq models, seq2seq based
GED models are designed to combine error detec-
tion and error correction (Wan et al., 2020; Kiyono
et al., 2019). Considering the low efficiency of
decoding in seq2seq and the uncontrollability of
the generated results, researchers tend to apply the
mode of sequence tagging for GED which outputs
the correction operations instead of direct correc-
tion results.

The sequence tagging based GED methods are
designed based on edit distance algorithms, such as
Levenshtein distance (Levenshtein, 1966), which

produces edit operations that are used to trans-
form one sentence to the other. Because the in-
tersection of an ungrammatical sentence and the
corrected sentence is often large, it is feasible to
transform them to each other based on a few edit
operations. Several string editing based GED meth-
ods for English have been recently proposed, such
as LaserTagger (Malmi et al., 2019), PIE (Awasthi
et al., 2019) and GECToR (Omelianchuk et al.,
2020).

The string editing based GED methods are
highly accurate, controllable and interpretable (Ro-
zovskaya and Roth, 2021; Parnow et al., 2021).
Fine-grained data processing and edit tags design-
ing are crucial. However, the size of the tag vocab-
ulary is generally very large, which makes the cur-
rent string editing based GED methods work better
on closed sets, but difficult to deal with the com-
plexities and long-tail problems on open datasets
(Omelianchuk et al., 2020).

The current string editing based GED methods
are mostly designed for processing English texts.
Compared with English, CGED has to deal with
more types of errors with less training samples (Li
and Shi, 2021). Furthermore, it is difficult to de-
tect Chinese grammatical errors based on explicit
linguistic features due to the complexity and ambi-
guity of Chinese grammars (Rao et al., 2018). Chi-
nese grammatical errors can be corrected by text
edit operations in theory, but there are currently no
papers detailing how to detect and correct Chinese
grammatical errors based on string editing.

In this paper, we propose a string editing based
CGED model, named SE-CGED, which detects
and corrects Chinese grammatical errors based on
text edit operations. The brief description of SE-
CGED and the contributions of our work are pre-
sented below.

1) In SE-CGED, the process of CGED is sep-
arated into three main stages, including
Seq2Edit, string editing, and masked charac-
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ter inference. Detection of grammatical errors,
and correction of different types of errors are
handled in different stages.

2) Because the detection and correction of gram-
matical errors are separated, the size of the
edit tag vocabulary is significantly smaller
than that of other string editing based mod-
els. The smaller size of the tag vocabulary
reduces the difficulty of sequence tagging and
requires less training samples.

3) Based on the difficulty of modification, the
correction of grammatical errors is separated
into two steps to deal with different types of
errors. The correction of some types of gram-
matical errors is uniformly converted to the
task of masked character inference.

4) The existing methods and training data of
masked language model are utilized for
masked character inference, which helps im-
prove the performance of CGED for certain
error types.

This paper is organized as follows: Section 2
briefly reviews the literature on grammatical error
diagnosis and CGED. Section 3 presents the basic
concepts and the workflow of string editing based
Chinese grammatical error diagnosis. Section 4
explains the model training and prediction of our
proposed approach. Section 5 demonstrates the ex-
perimental setting and the experiment results. Sec-
tion 6 discusses the limitations of our methodology
and potential speculations of our works.

2 Background and related works

The target of a GED system is to give a correc-
tion for a sentence with grammatical errors. The
seq2seq generative model is well suited for the
GED task. Models of machine translation have
been adopted in GED and achieved good results
(Hotate et al., 2020). Different from machine trans-
lation, the language of the source sentence and
the target sentence in GED is the same, and there
is a large intersection between the two sequences.
Therefore, the copy mechanism was applied for
GED to reduce the computation of text generation
(Zhao et al., 2019). Lack of training data is a ma-
jor bottleneck for GED systems. To supplement
training data, Ge et al., 2018 tried to use the n-
best results of the seq2seq model to produce more
pairs of correct and incorrect sentences, and Zhou

et al., 2020 constructs training samples based on
the uneven results of different translation models.
However, the man-made training samples are sig-
nificantly different from the real grammatical cases.

The mode of sequence tagging is recently pre-
vailing for GED because it is more efficient in
decoding and can produce more controllable re-
sults, compared with seq2seq models (Sun et al.,
2021). Malmi et al., 2019 proposes LaserTagger, a
general sequence tagging approach that casts text
generation as a text editing task. LaserTagger sets
three types of tags, including ‘keep’, ‘delete’ and
‘P’. ‘P’ can be a word or a phrase that should be
added before the current position. Awasthi et al.,
2019 proposes PIE, a sequence tagging based GED
model. In PIE, the types of edit operations include
‘copy’, ‘append’, ‘delete’ and ‘replacement’. In the
operations ‘append’ and ‘replacement’, the specific
words that used to append or replace should be
indicated. An iterative refinement sequence annota-
tion method is proposed to predict the token level
edit operations. Omelianchuk et al., 2020 proposes
GECToR, a simple and efficient GED sequence
tagger. GECToR specifically defines several tags
of grammatical edit operations. The tag vocabu-
lary size is 5000, including 4971 basic transfor-
mations (token-independent KEEP, DELETE and
1167 token-dependent APPEND, 3802 REPLACE)
and 29 token-independent g-transformations.

3 Introduction of the SE-CGED model

3.1 The workflow of SE-CGED

As shown in Figure 1, the workflow of SE-CGED
has the following main stages.

1) Seq2Edit. Seq2Edit is a sequence tagging
model that outputs a sequence of edit tags
for a sentence. Each edit tag indicates the
edit operation that should be performed on the
corresponding token in the input sentence.

2) String editing. This step is to perform string
editing based on the tag sequence output in
Seq2Edit. According to the types of tags (i.e.,
types of errors), different operations are per-
formed on the tokens. The tokens can be
deleted or transposed, and the tag ‘MASK’
may be added at certain positions.

3) Masked character inference. This step is to
infer what the masked characters should be.
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Figure 1: Workflow of SE-CGED

Grammar
Error

Edit Opera-
tion

Edit
Tags

Other
Tags

Character
redundancy

Deletion D /

Misuse
of character

Replacement R R2

Character
missing

Insertion I I2

Character
disorder

Transposition T1, T2,
I-T2

/

Table 1: Grammatical error types and the corresponding
edit operations in SE-CGED.

4) Iterative correction. In some cases, more than
one iteration of the above steps may be per-
formed to get the final corrections.

3.2 Error types and edit operations

The edit operations are critical for string editing
based methods. The types of edit operations in
SE-CGED are shown in Table 1. Because Chinese
character is the basic unit of Chinese sentences, we
use ‘character’ to represent Chinese character in
the following chapters unless otherwise specified.

Error types: Chinese grammatical errors are

categorized into four types.
1) Character redundancy.
In SE-CGED, redundant characters are labeled

with ‘D’. In the step of string editing, the characters
labeled with ‘D’ will be directly deleted.

2) Misuse of character.
A misused character should be replaced by an-

other character. In SE-CGED, misused characters
are labeled with ‘R’. In the step of string editing, a
character labeled with ‘R’ is converted to a ‘MASK’
tag. The correction of character misusing is per-
formed in the step of masked character inference.
In some cases, a character should be replaced by a
word consisting of more than one characters. How-
ever, the tag ‘R’ doesn’t indicate the number of
characters in the substitute. This problem is han-
dled in the stage of iterative correction.

3) Character missing.
The missing word should be inserted into the

sentence. The token before which a word should
be inserted is labeled with ‘I’. Similar to character
misusing, the correction of character missing is
performed in the step of string editing, masked
character inference and iterative correction.

4) Character disorder.
A character in a wrong position should be moved

to a right position. There are two types of character
disorder.
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a) Disorder of characters within a word or a
phrase, such as “特普朗” (disorder of “特
朗普” (‘Trump’)). A character with such type of
disorder is labeled with ‘T1’ (transposition type 1).

The corresponding correction is to swap the po-
sitions of the first half and the second half of the
sequence labeled with ‘T1’, and it is done in the
step of string editing. Therefore, the number of
consecutive tokens labeled with ‘T1’ is even.

b) Improper collocation between words.
Each character in a word with such type of disor-

der is labeled with ‘T2’ (transposition type 2). To
give a direct correction suggestion for such error,
a tag ‘I-T2’ is given to the token before which the
words labeled with ‘T2’ should be moved to. For
instance, the tagging sequence of“我去了公园
在中午。” (“I went to the park in the noon.”) is
‘O / I-T2 / O / O / O / T2 / T2 / T2 / O’.

In the step of string editing, the subsequence
labeled with ‘T2’ will be moved to the position
before the token labeled with ‘I-T2’.

In the training samples, the tag ‘T2’ and ‘I-T2’
always appear together or neither in a tag sequence.
To ensure that ‘T2’ and ‘I-T2’ also appear together
or neither in the tagging result of a trained Seq2Edit
model, the decoding module of Seq2Edit is de-
signed to output the top scoring tag sequence which
contains both of ‘T2’ and ‘I-T2’ or neither.

Separation of detection and correction: The
correction of character misusing and character
missing is not performed in the step of string edit-
ing. Instead, the character labeled with ‘R’ (or ‘I’)
is replaced (or added) with a ‘MASK’ tag. And in
the step of masked character inference, the replace-
ment of the misused character (or the character to
be inserted) will be given.

In the existing string editing based GED models,
the detection and correction of grammatical errors
are both performed in the step of generating edit
tags. If a misused word is detected, the edit tag
indicates the word that is used to replace it. There
are two main drawbacks of such mode.

• The size of the tag vocabulary is huge, thus a
large amount of training samples are required.

• The correction options are limited.

The above problems can be overcome in SE-
CGED. Because Seq2Edit only gives the types of
grammatical errors, the size of the tag vocabulary
is only 7. The masked character inference based

correction provides more options for correcting the
errors of character missing and misusing.

Iterative correction: Iterative correction is per-
formed for three reasons. 1) some errors may not
be detected in one iteration. 2) new errors may
occur after an iteration of correction. 3) charac-
ter replacement and character insertion may need
many iterations to obtain the result. A maximum
number of iterations can be set, such as 3.

The first two reasons are easy to understand. For
the third one, we take character misusing as an
example. In practical scenarios, a misused charac-
ter sometimes should be replaced by two or more
characters. For example,

• Incorrect: 跟两个方法的比较 (“With the
comparison of the two methods”).

• Correct: 通过两个方法的比较 (“Based on
the comparison of the two methods”).

“跟”(‘with’) is replaced by“通过” (‘based
on’). However, the tag ‘R’ doesn’t contain the
information of how many characters should be used
to replace the misused character. To deal with such
problem, a mechanism of iterative correction is
applied.

i. The token labeled with ‘R’ at the position p is
converted to ‘MASK’ in string editing.

ii. Masked character inference is performed, and
a corrected sentence is obtained.

iii. Seq2Edit is performed again on the corrected
sentence.

iv. If an error still occurs at the position p.

a. The character is labeled with ‘R2’.
b. The token labeled with ‘R2’ is converted

to ‘MASK MASK’ in string editing.
c. Masked character inference is performed,

and a new corrected sentence is obtained.

Based on the procedure of iterative correction,
if the first iteration gives a wrong correction (for
instance,‘跟’ is replaced by‘和’), a second
iteration is run to replace the character with two
characters. Replacing a character with one or two
characters can cover most of the cases of character
misusing. Thus, we do not try to replace a character
with more than two characters.
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Tag vocabulary: The tag vocabulary of
Seq2Edit in SE-CGED contains 7 main tags, in-
cluding ‘D’, ‘R’, ‘I’, ‘T1’, ‘T2’, ‘I-T2’ and ‘O’.
The other two tags, ‘R2’ and ‘I2’, are used in the
stage of iterative correction, and they are not con-
sidered in Seq2Edit. Compared with the previous
Seq2Edit models, such as GECToR (Omelianchuk
et al., 2020), the size of tag vocabulary of SE-
CGED is significantly reduced.

3.3 Converting the tags of Damerau
Levenshtein to the tags of Seq2Edit

Figure 2: Seq2Edit tag generation based on Damerau
Levenshtein distance.

Most of the training samples of CGED only con-
tain parallel pairs of incorrect and correct sentences.
Some training data (Rao et al., 2020) gives the steps
of corrections, but they are incompatible with the
tagging system of our approach.

To prepare the training samples of the Seq2Edit
module, we first apply the Damerau Levenshtein
algorithm (Brill and Moore, 2000) to analyze the
difference between ungrammatical sentences and

the corresponding correct sentences, and generates
DL tags which indicates the steps of modifying
the ungrammatical sentence to obtain the correct
one. Then we convert the DL tags to the tags of
Seq2Edit.

There are four types of Damerau Levenshtein
tags, which are ‘delete’, ‘replace’, ‘insert’ and
‘swap’. Some examples of these four tags are given
below (suppose the following operations are used
to transform sentence A to sentence B).

• (‘delete’, 5, 5), to delete the fifth token in A.

• (‘replace’, 5, 6), to replace the fifth token in
A with the sixth token in B.

• (‘insert’, 5, 6), to insert the sixth token in B
before the fifth token in A.

• (‘swap’, 5, 6), to swap the positions of the
fifth token and the sixth token in A.

The pseudo code of converting the DL tags to
the Seq2Edit tags is shown in Figure 2. In the
conversion process, a token may be given more
than one tags. However, in a training sample of
Seq2Edit, a token can only have one tag. To deal
with this problem, an intermediate transformation
is performed to split one parallel pair of incorrect
and correct sentences into two or more training
samples of Seq2Edit, to ensure there is only one tag
for each token. The following steps are performed
to generate the training samples of Seq2Edit based
on a parallel pair of incorrect and correct sentences.

For (x, y), an ungrammatical sentence x and the
corresponding correction y.

(1) Run the algorithm of Seq2Edit Tag Generation
based on x and y.

(2) If there is a token in x has more than one tags,

a. Generate a training sample (x, t1), t1 is
the set of first tags of each token,

b. Modify x based on tags in t1,
c. Rerun the process from step (1).

(3) Otherwise, let (x, t) be a training sample, t is
the set of tags of each token.

4 Training and application of SE-CGED

4.1 Generation of the training data
Training data of Seq2Edit: According to the de-
scription in the previous section, a part of training
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data of Seq2Edit can be generated based on the
Damerau Levenshtein distance of the existing train-
ing samples of CGED. The other part of training
data of Seq2Edit is generated through data augmen-
tation. Different types of synthetic ungrammatical
sentences are created based on our summarized
patterns of grammatical errors as shown in Table 2.

1) Character missing and character redundancy.
Several patterns of character missing and character
redundancy are summarized based on the real train-
ing samples. Table 2 gives three example patterns.
For instance, for the first example pattern of char-
acter missing, a synthetic ungrammatical sentence
is created by removing the character‘了’ after
a verb. Before creating a synthetic sentence, word
segmentation is performed on the original sentence.
We do not remove a character within a word for
creating an error of character missing.

2) For the type of character misusing, a part
of synthetic samples are created by replacing a
word with its synonyms, selected from a synonyms
toolkit which is based on word2vec (Mikolov et al.,
2013) similarity calculations, and the others are cre-
ated by replacing a character with another character
with the similar pronunciation or shape, selected
from a prepared confusion set.

3) For the type of character disorder, most of
the synthetic samples are created by changing the
position of one word, and the others are created by
swapping the positions of two adjacent characters
within a word.

Training data of masked character inference:
The training of masked character inference is per-
formed in the step of masked LM pretraining of
BERT (Devlin et al., 2019). The training samples
of word replacement and word insertion are used
here as part of training samples.

Other training samples are produced by ran-
domly masking words in sentences. One-character
words and two-character words are randomly se-
lected and masked. Besides, two consecutive words
with a high PMI value can also be masked together.
Given two tokens w1 and w2, the PMI of the bi-
gram ‘w1w2’ is:

PMI(w1w2) = log
p(w1w2)

p(w1)p(w2)
(1)

p(w) is the probability of the occurrences of
token w in the corpus.

4.2 Model training and model inference

Model of masked character inference: The task
of masked character inference is performed based
on the masked language model (MLM) of BERT.
During model pre-training of BERT, the task of
masked character inference is performed, but the
task of next sentence prediction is skipped.

MLM consists of a multi-layer transformer en-
coder and a feed-forward neural network. At
the stage of inference, the partially masked se-
quence is fed into MLM to produce a 1*V vector
{C1, C2, ..., CV−1, CV } at each position with to-
ken ‘[MASK]’. Ci is the confidence value of fitting
the ith character in the vocabulary to the targeted
position calculated in equation (2).

Conf(ei = c|x⃗) = softmax(W T
c hi) (2)

ei is a masked character in x⃗ and c is a character
in the vocabulary. hi is the multi-layer transformer
embedding of ei, and Wc is a matrix of parameters
regarding c in the feed-forward neural network.

Model of Seq2Edit: The Seq2Edit model is
built on BERT for sentence embedding and a CRF
layer for sequence tagging. The BERT model used
here is the same as that used in masked character
inference, and the CRF layer is trained based on
the training data of Seq2Edit to learn how to detect
and identify grammatical errors in a sentence.

Seq2Edit is to output a tag sequence L for the
input sentence S. Let S = {s1, s2, ..., sK} and
K is the length of S. U = {u1, u2, ..., uK} is the
embedding result of S from BERT, and ui is the
embedding of si. U is input into the CRF layer and
L = {l1, l2, ..., lK} is the tagging result. li is the
tag for si. The confidence of labeling U with L is
shown in the following equation.

P (L,U) =
K∑

k=1

(H(lk−1,lk) + φ(lk, uk)) (3)

H is the probability transition matrix of tags. H
is 7*7 matrix because there are seven tags in the tag
set. H(lk−1,lk) is the transition probability from tag
lk−1 to tag lk. Additionally, φ(lk, uk) is the score
of labeling uk as lk. φ is a 7*V matrix where V is
the size of the vocabulary and 7 is the size of the
tag set. Both H and φ are randomly initialized and
updated during the training process.
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Error Type Ratio in real
training data

Example patterns of grammatical errors

Character
missing

0.275
1) Missing‘了’ after a verb or at the end of a sentence
2) Missing pronoun at the beginning of a sentence
3) Missing a conjunction word

Character
redundancy

0.234
1) Reduplication of an adjective, verb, pronoun or preposition
2) Redundant‘是’ before an adjective or adverb
3) Redundant‘了’ after a verb

Misuse
of character

0.422
1) Misuse of synonyms
2) Misuse of characters with similar pronunciation or shape

Character
disorder

0.069
1) Wrong position of an adverb, conjunction or preposition
2) Wrong order of adjacent verbs and adverbs
3) Disorder of adjacent characters within a verb, adjective or noun

Table 2: Example patterns of synthetic grammatical errors.

Model FPR
Detection Level Identification Level Position Level Correction Level

(Top1 & Top3)
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Flying 0.3257 0.9101 0.8800 0.8948 0.7320 0.6011 0.6601 0.4715 0.3536 0.4041 0.2290
0.2290

0.1575
0.1575

0.1867
0.1867

YD-
NLP

0.2182 0.9357 0.8478 0.8896 0.7711 0.5577 0.6473 0.5011 0.2995 0.3749 0.3386
0.3217

0.1259
0.1333

0.1836
0.1885

Orange-
Plus

0.2606 0.9252 0.8600 0.8914 0.7230 0.6287 0.6726 0.4428 0.3610 0.3977 0.1780
0.0934

0.1536
0.2283

0.1649
0.1325

SE-
CGED

0.2769 0.9111 0.8962 0.9036 0.7059 0.6557 0.6799 0.5060 0.4645 0.4844 0.2331
0.2417

0.2077
0.2186

0.2197
0.2296

Table 3: Performance of different models for CGED.

5 Experiments and Analysis

5.1 Datasets in the experiment

The dataset of NLPTEA-CGED evaluations is used
in our experiment. The training sets and test sets of
NLPTEA-CGED evaluations in the year of 2014 to
2021 are collected. The NLPTEA-CGED data pro-
vides parallel pairs of ungrammatical and correct
sentences, and the ungrammatical samples are col-
lected from essays written by learners of Chinese
as a foreign language. A sentence in the dataset
may not have grammatical errors, or it may have
one or more errors.

In order to make a fair comparison with other
methods, our model was trained and tested based on
the training dataset and test dataset of the NLPTEA-
CGED 2020 evaluation (Rao et al., 2020), and the
performance was compared with the submitted re-
sults of the NLPTEA-CGED 2020 evaluation. Be-

cause the evaluation allows the participants to use
external data, we pretrained our model based on
the training data and test data in the NLPTEA-
CGED evaluation of other years. There are to-
tally 182,486 grammatical errors collected from
NLPTEA-CGED evaluations.

Meanwhile, 247,185 synthetic training samples
are created for Seq2Edit based on the data argumen-
tation method introduced in section 4.1. The source
sentences used for generating synthetic training
samples are collected from The People’s Daily1.
The ratios of different types of synthetic grammat-
ical errors are approximate to the ratios in real
data shown in Table 2. Besides, we took several
measures to make the distribution of synthetic data
close to that of real data. For instance, the errors of
character misusing in NLPTEA-CGED are signifi-
cantly different from those made by Chinese native

1http://paper.people.com.cn
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FPR
Detection Level Identification Level Position Level Correction Level

(Top1 & Top3)
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Itera-
tions

2 0.2704 0.8556 0.8415 0.8485 0.6471 0.6011 0.6233 0.4464 0.4098 0.2730 0.1840
0.1964

0.1639
0.1776

0.1734
0.1865

4 0.2834 0.9091 0.9016 0.9053 0.7051 0.6598 0.6817 0.5052 0.4672 0.4855 0.2340
0.2420

0.2090
0.2202

0.2208
0.2306

5 0.2899 0.9089 0.9021 0.9055 0.7021 0.6611 0.6810 0.5031 0.4689 0.4854 0.2324
0.2413

0.2115
0.2217

0.2215
0.2311

W/O
synthetic

data

0.2117 0.8958 0.8689 0.8821 0.7143 0.6284 0.6686 0.5161 0.4372 0.4734 0.2406
0.2443

0.1940
0.2036

0.2148
0.2221

Table 4: Performance of the ablation study.

speakers, which usually occur between characters
with the similar pronunciation or shape. Foreign-
ers learning Chinese often misuse synonyms or
relevant words. Thus, for the type of character mis-
using, 60% of the synthetic samples are created
by replacing a word with its synonyms, and 40%
are created by replacing a character with another
character with the similar pronunciation or shape,
selected from a prepared confusion set.

5.2 Evaluation metrics and comparison
methods

The performance of grammatical error diagnosis
systems is evaluated from the following aspects.

• Detection-level, to detect whether the state-
ment contains grammatical errors.

• Identification-level, to determine the types of
the grammatical errors.

• Position-level, to determine the position of the
grammatical errors.

• Correction-level, to give the correction of the
grammatical errors.

The measurement method of the above metrics
can be referred to (Rao et al., 2020). We select three
representative models with good performance in
the NLPTEA-CGED 2020 evaluation as the com-
parison models, including Flying, YD-NLP and
Orange-Plus. FLYing has the highest F1 score, YD-
NLP has the highest precision score, and Orange-
Plus are more balanced between the precision and
recall rate. The maximum numbers of iterations
in SE-CGED was set to 3. The performance of
different models is shown in Table 3.

Our proposed model, SE-CGED, achieves a bet-
ter performance in the identification level, and a
much better performance in the position level and
correction level. The performance of the position
level does not decay much compared with that of
the identification level because the Seq2Edit mod-
ule gives the type and position of the grammatical
errors at the same time. Meanwhile, our method
is more balanced in terms of accuracy and recall,
compared with the comparison methods, in which
the recall rates are significantly lower.

5.3 Ablation analysis

The structure of our method is pipeline based, and
all the stages are indispensable. Therefore, the ab-
lation analysis in our experiment was performed
by making minor adjustments to the model. Firstly,
the maximum numbers of iterations was set to 2, 4
and 5 respectively in the stage of iterative correc-
tion. Secondly, synthetic data was not used to train
the module of Seq2Edit. The results of ablation
analysis are shown in Table 4.

When the number of iterations is set to 2, the per-
formance is significantly reduced compared with
that when the number of iterations is 3. The rea-
son is that lots of errors have not been detected or
corrected after two iterations. On the other hand,
iterations more than 3 lead to a slight improvement
in performance, but the improvement is very lim-
ited. Thus, it is reasonable to set the number of
iterations to 3. Training the model without the syn-
thetic data leads to lower recall rates. Out synthetic
training data is helpful to detect errors that do not
appear in the real training corpus.
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6 Conclusions

In this paper, we proposed a phased string edit-
ing based approach for Chinese grammatical errors
diagnosis. The detection and correction of gram-
matical errors are performed based on edit tags and
masked character inference. In this way, differ-
ent types of grammatical errors can be handled in
the same way, and the training data is significantly
reduced. Experiments on the dataset of NLPTEA-
CGED evaluations show our proposed approach
performs better than the traditional methods in per-
formance and speed.

Because of the complexity of Chinese grammars,
there are still many deficiencies in our current work,
and the detection of error type and location is not
accurate. In future research, we will further im-
prove the rationality of data argumentation and
make the synthetic error samples more consistent
with practical grammatical errors. In addition, we
will try to import linguistic features to further im-
prove the detection and correction of Chinese gram-
matical errors.
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Abstract
Treebank selection for parsing evaluation and
the spurious effects that might arise from a bi-
ased choice have not been explored in detail.
This paper studies how evaluating on a single
subset of treebanks can lead to weak conclu-
sions. First, we take a few contrasting parsers,
and run them on subsets of treebanks proposed
in previous work, whose use was justified (or
not) on criteria such as typology or data scarcity.
Second, we run a large-scale version of this ex-
periment, create vast amounts of random sub-
sets of treebanks, and compare on them many
parsers whose scores are available. The results
show substantial variability across subsets and
that although establishing guidelines for good
treebank selection is hard, it is possible to de-
tect potentially harmful strategies.

1 Introduction

A limitation in NLP evaluation lies in the asso-
ciation between solving a dataset versus solving
a task. Datasets are domain-specific, their sizes
differ and they are only available for a handful of
languages and cultures (Hershcovich et al., 2022).
Yet, we often ignore that the chances that these re-
sults generalize in the real world are scarce. In this
context, the conclusions extracted from a single
dataset should be taken with caution.

For dependency parsing, the Universal Depen-
dencies framework (UD; Zeman et al., 2020) mit-
igates some of these issues. For instance, version
2.8 of UD includes 202 treebanks and 114 lan-
guages covering diverse linguistic typologies, tree-
banks with different amounts of data, and domains.
Paradoxically, this also complicates decisions when
it comes to comparing dependency parsers in mul-
tilingual environments, which can be summarized
as: how to choose a small but representative set
of treebanks? Although there are shared tasks (Ze-
man et al., 2017, 2018) that do consider experi-
ments over a wide set of treebanks and help under-
stand parsing models, such setups do not usually

stick when the shared tasks end, and authors often
run their models only in a handful of treebanks
(de Lhoneux and Nivre, 2016; Ma et al., 2018;
Kulmizev et al., 2019, inter alia). This mostly hap-
pens for justified reasons: lack of computational re-
sources to train the models in a reasonable amount
of time, energy usage concerns, difficulties to sum-
marize large experiments, or interest in specific
phenomena (e.g. non-projectivity). Thus, a good
treebank selection strategy is crucial to reduce the
chances of selecting an unrepresentative subset of
treebanks, which could lead to weak conclusions.
Furthermore, even when using the whole UD col-
lection is viable, treebank selection can still be
relevant as UD is not a representative sample of
languages (e.g., 62 out of the 114 languages in v2.8
are Indo-European), so coarse-grained measures
like averages over all treebanks may be misleading.

Contribution We hypothesize that using a single
subset of treebanks can be a weak approach to ex-
tract conclusions about the performance of parsers
and their rankings. To test so, we design two ex-
periments. First, we choose representative models
of different paradigms: a graph-based (Dozat et al.,
2017), a transition-based (Fernández-González and
Gómez-Rodríguez, 2019), and a sequence tagging
(Strzyz et al., 2019) parser; and evaluate them on
a few subsets defined in the literature, looking for
different trends. Then, we redefine the previous
experiment on a large scale. We take the output
of dozens of parsers on the treebanks used at the
UD CoNLL 2018 shared task (Zeman et al., 2018)
to study the variability of parsing rankings over a
million of fixed-size, randomly generated subsets.

2 Related work

The appropriateness of experimental setups for
parsing evaluation has been studied in recent years
from different perspectives.

Some authors have focused on determining what
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are the treebank particularities that make some of
them easier to parse than others. For instance, the
size of the training set is widely known to be an
important factor to obtain accurate results in depen-
dency parsing (Dehouck and Denis, 2019; Vania
et al., 2019). Other aspects such as domain simi-
larity (Wisniewski and Yvon, 2019) or annotation
similarity (Dredze et al., 2007; Cohen et al., 2012)
between the training and test sets have also been
studied, showing that they can greatly affect the per-
formance of parsers. Other particularities that can
also affect the performance on a treebank are lin-
guistic variation (Nivre et al., 2007), annotation cri-
teria (Kübler et al., 2008; Rosa, 2015), arc direction
(Rehbein et al., 2017), average dependency length
(Gulordava and Merlo, 2016), non-projectivity
(Kuhlmann and Nivre, 2010), morphological rich-
ness (Tsarfaty et al., 2013) or information-theoretic
metrics (Corazza et al., 2013), among other factors.

Although not specifically for parsing but NLP,
Gorman and Bedrick (2019) and Søgaard et al.
(2021) comment that the way data is split can play
a role on test results, and thus on conclusions. Ex-
trapolating this to parsing, it would suggest that
some parsers could obtain better results for certain
treebanks just due to data splitting decisions, and
not due to a linguistic motivation that would ex-
plain a given language being harder to parse than
other. Recently, Søgaard (2020) studied the influ-
ence of overlap between trees in training and test
sets in a given split, and concluded that (the amount
of) graph isomorphism between the training and
test set trees partially explains why some treebanks
are easier or harder to parse than others. However,
Anderson et al. (2021) replicated the study, control-
ling for covariants, and proved that much of this
observation is explained by relevant covariants like
treebank size and mean test sentence length.

Another line of research more related to our
work involves the studies that compare how dif-
ferent parsing algorithms behave on the same held-
out test sets. McDonald and Nivre (2007, 2011)
showed that non-neural transition-based and graph-
based parsers perform overall similarly, but pro-
duce different types of errors, with transition-based
parsers being weaker for long dependencies and
graph-based parsers weaker for shorter, more lo-
cal ones. Relatedly, de Lhoneux et al. (2017a)
compared a neural and non-neural transition based
parser, showing that the former is not only clearly
better at longer dependencies, but that it also needs

less training data to parse effectively. Kulmizev
et al. (2019) replicated the work by McDonald and
Nivre for neural versions of those parsers and, con-
trarily, demonstrated that the contextualization of
the input vectors with recurrent networks results
into both types of parsers showing a much more
homogeneous behavior. Also related to this, Ander-
son and Gómez-Rodríguez (2020b) showed how
different transition-based algorithms are prone to
outperform others on a specific treebank according
to their inherent dependency displacement biases.

To the best of our knowledge, there have been
only two papers in the literature that specifically
focus on presenting methodologies to choose a suit-
able set of treebanks for parsing evaluation, both
centered on UD and with the goal of obtaining a
small sample of treebanks that is representative
of the full UD collection (not necessarily of hu-
man languages as a whole). de Lhoneux and Nivre
(2016); de Lhoneux et al. (2017b) do so by manu-
ally selecting treebanks to enforce typological di-
versity as well as representativity in other relevant
aspects for parsing, like projectivity or treebank
size. In turn, Schluter and Agić (2017) take an au-
tomatic, quantitative approach, obtaining a sample
by clustering using delexicalized parsing perfor-
mance. While many other papers have presented
and used subsets of UD treebanks for evaluation,
they either do not focus on representativity (e.g. Ma
et al. (2018)) or follow one of these methodologies
(e.g. Anderson and Gómez-Rodríguez (2020a)).

3 Hyphothesis and methodology

As suggested above, parsing conclusions on multi-
lingual environments are usually drawn from empir-
ical research, which are prone to be parser-specific,
experiment-specific, as well as treebank dependent.

Hypothesis We delve into this problem and hy-
pothesize that parser comparisons based on running
experiments and taking accuracy metrics on a given
(reasonably-sized) subset of treebanks may lead to
weak conclusions on rankings or differences in per-
formance; as the magnitude and/or sign of the dif-
ferences between parsers can change substantially
depending on the choice of said subset.

3.1 Methodology

To test our hypothesis, we design two experiments:

Experiment 1: few controlled parsers, few pre-
existing subsets In §4, we choose three con-
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trasting parsers belonging to different parsing
paradigms. Then, we train and evaluate them on a
number of pre-defined (multilingual) subsets that
were proposed in previous work (and later adopted
by other authors as well). These existing subsets
present different particularities, such as a high Indo-
European bias (Ma et al., 2018), rich and diverse ty-
pologies (de Lhoneux et al., 2017b), or data scarcity
issues (Dehouck et al., 2021), among others. Our
aim is to see whether considering only a few ro-
bust parsers (treated as black boxes) and only a few
already established subsets of treebanks, we can
obtain different conclusions about their behaviors.

Experiment 2: many parsers, many randomized
subsets In §5, we design a large-scale variant of
the previous experiment. Assuming access to many
parsers and treebanks, we ask: could we obtain
(reasonably-sized) subsets of treebanks that show
very different behaviors?, or to state it differently,
can parsing rankings be sensitive to the subset of
treebanks where they are evaluated? To do so, we
use as a proxy the results from the CoNLLU Shared
Task 2018 (Zeman et al., 2018), where 26 parsers
participated and presented their experiments for 82
treebanks. We then create a random sample of 1
million subsets out of the ∼ 2.13× 1012 possible
(multilingual) subsets of size 10. If a parser is
cross-linguistically robust, then the variability of
its position in the ranking should be small across all
the studied subsets, while if their behavior is more
unstable it could change dramatically, indicating
that evaluating on a single subset of treebanks is
not desirable.

4 Experiment 1: few controlled parsers,
few pre-existing subsets

We take a few representative parsers (§4.1) and
pre-defined subsets from the literature (§4.2) based,
sometimes, on a careful treebank selection strategy.

4.1 The parsing models

We choose a graph-based (Dozat et al., 2017), a
transition-based (Fernández-González and Gómez-
Rodríguez, 2019), and a sequence labeling parser
(Strzyz et al., 2019). We review them briefly, but
we refer the reader to the papers for the details.

Bi-affine graph-based parser (gb-DM17;
Dozat et al., 2017) It first computes contextualized
vectors for each word using bidirectional LSTMs
(biLSTMs; Hochreiter and Schmidhuber, 1997).

After that, the model computes for each word a
head and a dependent representation, which are
sent through a bi-affine attention, determining for
each token which is the most likely head. Here,
we rely on the supar1 package, which has been
widely adopted by the community. We detail its
hyperparameters in Appendix A (Table 7).

Left-to-right, transition-based, pointer net-
work parser (tb-FG19; Fernández-González
and Gómez-Rodríguez, 2019) It is a transition-
based system, where at each time-step the pointer
network predicts the index of the head for the focus
token, and moves to the next one. The model uses
an encoder-decoder architecture that in the first
stage computes a hidden state representation for
each token using biLSTMs. After that, the decoder
predicts the tree left to right, computing a score
attention between the current focus word and the
encoder output sequence, excluding the own vec-
tor. We use the syntacticpointer2 package.
Appendix A (Table 8) details the hyperparameters.

Sequence labeling parser (sl-S+19; Strzyz
et al., 2019) It outputs a dependency tree for each
sentence of size n, using exactly n predictions and
biLSTM tagging models. There are different ways
to encode the trees (Spoustová and Spousta, 2010;
Lacroix, 2019; Gómez-Rodríguez et al., 2020), but
we will rely on the 2-planar bracketing encoding
(Strzyz et al., 2020), which encodes 99.9% of non-
projective trees and offers a robust behavior, includ-
ing low-resource setups (Muñoz-Ortiz et al., 2021).
We use the dep2labels3 package. The hyperpa-
rameters are indicated in Appendix A (Table 9).

Parser comparability Sequence labeling parsers
often underperform biaffine and pointer network
parsers (Anderson and Gómez-Rodríguez, 2021),
but we include them as a lower bound control
parser. We kept fundamental architectural de-
cisions of the parsers, e.g. how they compute
character-level vectors or the strategies for cycle
deletion, as it is not clear (or viable) that the same
setup is optimal for all models. Also, we value to
try these models as used by the community.

1https://github.com/yzhangcs/parser
2https://github.com/danifg/

SyntacticPointer
3https://github.com/mstrise/dep2label
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4.1.1 Experiment setup
The parsers are trained 3 times for each treebank,
to then take the average as the final result.4,5

Input For all parsers, the embedding for each
word is composed of a pre-trained word vector, a
character-based vector and a PoS tag vector. For
the word vectors, we use fastText (Bojanowski
et al., 2017).6 For PoS tags, we considered ex-
periments both with gold and predicted PoS tags -
using UDpipe (Straka et al., 2016)7.

4.2 Datasets
Now, we review subsets that have been proposed,
and summarize the criteria used to create them.
While the subsets were defined on different ver-
sions of UD depending on the moment in which
they were proposed, we use UD v2.8 for compara-
bility. In case different treebanks are available for
a given language and the authors did not specify
which one they used for any reason (e.g. because in
previous UD versions there was only one treebank,
and therefore it was not necessary to name it), we
chose the largest freely-available one. For space
reasons, we include the specific treebanks for each
subset in Appendix B (Table 10).

1. Ma et al. (2018) subset (Ma18): It has
been widely adopted (Fernández-González
and Gómez-Rodríguez, 2019; Li et al., 2020;
Yang and Tu, 2021, inter alia), but it presents
two weaknesses: (i) a high presence of Indo-
European treebanks, ignoring diverse typolo-
gies, and (ii) as reported in their paper, all
these treebanks are easy8 treebanks.

2. de Lhoneux and Nivre (2016); de Lhoneux
et al. (2017b) subset (Lh16): They were the

4Some treebanks (KazakhKTB, GalicianTreeGal and Old-East-
SlavicRNC) do not have an official dev set, so we used 20% of
the training set as the development set. Also, due to hardware
limitations, the longest sentence (682 tokens) in the test file
for the Old East Slavic (RNC) language was removed, since
syntacticpointer ran out of memory during evaluation.

5The tools used for the experiments are described at this
repository: https://github.com/MinionAttack/
fragility_coling_2022

6We use fastText vectors except for some language
treebanks that lacked embeddings. Particularly, for Ancient
Greek we use UD embeddings, and for Wolof we used random
initialized embeddings according to a uniform distribution in
the range [ −1

2×300
, 1
2×300

] (Goldberg, 2017).
7For Kazakh, Old East Slavic and Welsh there are no UD-

Pipe models, so we only include their results with gold tags.
8We use easy in an informal sense, referring to treebanks

where parsers obtain a higher performance. In no way we
relate this term with a language being easier than other.

first to address the problem of selecting a di-
verse sample of UD treebanks, establishing
the following requirements: (i) include only
one treebank from coarse-grained language
families, (ii) include treebanks with certain
morphological particularities, (iii) ensure dif-
ferent amounts of data, and (iv) include at
least a highly non-projective treebank.

3. Schluter and Agić (2017) subset (SA17):
Rather than manually choosing treebanks, this
subset was chosen by an empirical method
based on using delexicalized parsing perfor-
mance to construct a similarity network, clus-
ter it, and take one representative of each clus-
ter. They concluded that their subset overesti-
mates performance, while that of de Lhoneux
and Nivre (2016) underestimates it.

4. Smith et al. (2018) subset (Sm18): The selec-
tion criteria for this subset were inspired in
the criteria of de Lhoneux and Nivre (2016),
but in this case aiming to be representative of
different writing systems, character set sizes,
and morphological complexity.

5. Kulmizev et al. (2019) subset (Ku19): The
authors selected 13 treebanks, inspired in the
criteria by de Lhoneux and Nivre (2016) and
Smith et al. (2018). Apart from script, char-
acter set size and morphological complexity,
they also aimed to have a representation of dif-
ferent training sizes and domains, and selected
treebanks with good annotation quality.

6. Anderson and Gómez-Rodríguez (2020a) sub-
set (AG20): Highly inspired by de Lhoneux
et al. (2017b), but with a few changes. First,
they exchanged KazakhKTB for UyghurUDT,
as Kazakh lacked an official development set.
Second, they exchanged Ancient GreekPROIEL
for Ancient GreekPerseus, since it’s more non-
projective. Third, CzechPDT is swapped with
RussianGSD, as the Czech treebank took too
long to train. Finally, they included WolofWTB
since African languages were not present.
We included it to see if partial and justified
changes over a diverse treebank subset could
still lead to non-negligible changes.

7. Dehouck et al. (2021) subset (D21): This sub-
set is dedicated to true data scarce treebanks.
In the case of treebanks without a dev file, the
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Set
LAS E-LAS UAS E-UAS

gb-DM17 tb-FG19 sl-S+19
(tb-FG19,
gb-DM17)

(sl-S+19,
gb-DM17)

(sl-S+19,
tb-FG19) gb-DM17 tb-FG19 sl-S+19

(tb-FG19,
gb-DM17)

(sl-S+19,
gb-DM17)

(sl-S+19,
tb-FG19)

Ma18 87.74 87.77 83.96 -0.14 23.93 23.93 91.07 91.13 87.68 -0.33 27.98 28.16
Lh16 80.33 79.68 74.20 1.83 24.04 22.49 85.03 84.45 79.90 2.21 26.33 24.51
SA17 84.85 84.97 80.30 -1.03 22.97 23.48 89.11 89.25 85.22 -1.46 26.76 27.64
Sm18 83.78 83.61 78.55 1.11 24.21 23.35 87.38 87.31 83.19 0.45 25.12 24.82
Ku19 83.36 83.08 77.98 -0.29 24.79 24.50 87.43 87.03 83.19 0.94 24.89 23.72
AG20 76.14 75.26 69.36 3.01 23.01 20.48 82.49 81.69 76.83 3.83 25.04 21.95
D21 59.00 57.04 51.38 4.57 17.00 12.97 68.60 67.38 62.96 3.94 16.18 12.92
Easy 89.59 89.65 85.88 -0.63 25.90 26.42 92.42 92.55 89.33 -1.58 28.61 29.85

Table 1: Average LAS and UAS scores for each subset in the predicted PoS tags setup. E(M1,M2) stands for error
reduction between two models, where M1 is the reference system.

Set
LAS E-LAS UAS E-UAS

gb-DM17 tb-FG19 sl-S+19
(tb-FG19,
gb-DM17)

(sl-S+19,
gb-DM17)

(sl-S+19,
tb-FG19) gb-DM17 tb-FG19 sl-S+19

(tb-FG19,
gb-DM17)

(sl-S+19,
gb-DM17)

(sl-S+19,
tb-FG19)

Ma18 90.51 90.06 88.29 4.62 19.29 15.45 93.10 92.77 91.00 4.70 23.59 19.89
Lh16 78.89 76.71 74.44 7.20 19.94 13.55 84.30 83.13 80.84 6.10 21.24 16.13
SA17 85.52 84.57 81.92 5.71 20.79 15.89 89.52 88.83 86.65 5.32 23.40 19.00
Sm18 87.42 86.74 83.01 4.89 25.63 21.86 89.89 89.36 86.07 4.82 26.93 23.32
Ku19 87.18 86.14 82.99 6.22 24.65 19.58 89.82 89.04 86.18 5.87 26.13 21.52
AG20 81.04 79.54 77.53 7.17 14.08 7.35 85.77 84.82 82.72 6.46 16.26 10.50
D21 67.99 63.74 67.30 11.71 4.14 -8.82 75.26 72.61 75.52 9.92 2.14 -8.73
Easy 92.62 92.10 89.50 6.71 29.81 24.84 94.75 94.41 92.19 6.13 32.76 28.41

Table 2: Average LAS and UAS scores for each subset in the gold PoS tags setup.

training file was split in two, with a ratio of
80-20 for the training file and the dev file.

8. Easy subset: We propose an explicit easy
subset to compare against other easy ones
(e.g. Ma18). We used the results from the
CoNLL 2018 Shared Task9, and chose the
10 treebanks with the best LAS (no repeated
languages). We list them in Appendix B.

4.3 Results
Table 1 shows the macro-average LAS (Labeled
Attachment Score) and UAS (Unlabeled Attach-
ment Score) results, using predicted PoS tags, for
each subset, i.e. the subset, and not the treebank, is
considered as the atomic unit for evaluation. For
informative purposes, Table 2 shows the equivalent
evaluation with gold PoS tags, but we will focus on
the results with predicted PoS tags, unless stated
otherwise. We also show error reduction ratios on
LAS and UAS between parsers. This metric pro-
vides a better picture of differences between parsers
than absolute LAS/UAS differences would, as it
is less affected by treebank difficulty differences
(e.g., it is much harder to achieve a given absolute
LAS and UAS difference on easy treebanks than on
more difficult ones, due to less available room for
improvement and diminishing returns). The error
reduction shown for each subset is calculated by
first computing the error reduction for each tree-
bank in the subset, and then averaging these error

9https://universaldependencies.org/
conll18/results-las.html

reductions (rather than by averaging the LAS/UAS
for each treebank in the subset, and computing a
single error reduction on that average). While this
choice can cause some superficially counterintu-
itive phenomena like a parser having more average
LAS than another but negative LAS error reduction
(this happens with tb-FG19 and gb-DM17 on
Ku19 on Table 1), it provides the desired seman-
tics: for example, if a parser improves LAS from
98% to 99% in one treebank and from 50% to 90%
in another, on average it is removing 65% of errors
(50% of the errors in the first corpus, 80% in the
second) and not 78.8% which we would obtain if
we computed error reduction on average LAS.

Next, we discuss factors that seem to play a role
in the subset performance.

Influence of parsing difficulty From the results,
easier subsets tend to correspond to larger error
reductions when comparing the (state-of-the-art)
parsers gb-DM17 and tb-FG19 with respect to
sl-S+19 (the control parser). This is most evi-
dent for the Easy subset: all parsers obtain their
best performance across all subsets, and the error
reductions with respect to the control parser are
also the largest, for all setups. The opposite hap-
pens with the D21 subset, the hardest one. In this
context, when optimizing for other dimensions than
performance, such as speed, training efficiency or
architectural simplicity, relying (exclusively) on
easy treebanks could thus be a sub-optimal strategy.
The sense of the decrease in performance could
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be larger on these easy datasets than when eval-
uating on random treebanks, or on more difficult
cases as suggested by the results on the subsets of
Lh16, D21, or AG20 to a lesser extent. On the
contrary, dimensions such as the ones mentioned
above are often not expected to benefit more from
the particularities of easy treebanks. Also, there
are trends related to parsing difficulty between the
state-of-the-art parsers gb-DM17 and tb-FG19:
gb-DM17 seems to be superior to tb-FG19when
the subset becomes harder to parse, and vice versa.

Differences on representative subsets While
both the Lh16 and the SA17 subsets were designed
to enforce representativity, the ranking of the tested
parsers changes: tb-FG19 performs better (in
LAS error reduction terms) than gb-DM17 on
SA17 (automatically picked) and Ku19 (manu-
ally constructed), but worse on the (manually con-
structed) subsets of Lh16, Sm18 and AG20. This
highlights that even when treebanks are sampled
with attention to representativity, results can still
show instability - be it due to different possible
notions of representativity, or statistical variation.

Developing and testing on the same treebanks
While there is no clear performance difference be-
tween gb-DM17 and tb-FG19, as each of them
surpasses the other in some subsets; one of the
subsets where tb-FG19 takes the lead is Ma18,
where that parser was developed and reported its re-
sults. This leads to the question whether developing
and evaluating on a given subset of treebanks could
induce bias in favor of those treebanks. While the
available data is not enough to give an answer in
this specific instance, we can draw similar conclu-
sions either way. If this were the case, it would
mean that in the context of multilingual, language-
agnostic parsers, and when data for a wide range
of languages is available, it would be advisable to
go beyond separating development and test sets for
each language or treebank, and instead use differ-
ent languages for development than for evaluation
to avoid this kind of bias. Conversely, if this were
not the case, it would mean that we could choose
one of the human-defined subsets and obtain state-
of-the-art results for one parser or the other, purely
by chance. This makes us reflect about using a
single subset of treebanks to justify the superior
performance of a model, and might again make
advisable to develop and test on different subsets -
to reduce the element of chance.

Experimentation with data scarcity For the
D21 subset, centered exclusively on extremely low-
resource treebanks, the error reduction computed
between the best performing parser (gb-DM17)
and the control parser (sl-S+19) is the lowest
among all tested treebanks. As mentioned above,
the opposite happens for the easiest subsets. Yet,
we feel these type of subsets would not be optimal
either for evaluating parsers in a general sense, as
they might not capture how a given parser can fully
exploit its learning capabilities. Overall, the eval-
uation on this setup seems more volatile. We see
a few differences between the predicted and gold
PoS tags setups, causing even changes in the pars-
ing ranking. For instance, sl-S+19 outperforms
tb-FG19 in the gold setup by a clear margin, an
issue that does not arise in any other subset.

5 Experiment 2: many parsers, many
randomized subsets

This experiment can be seen as a re-definition of
Experiment 1 at a large scale. Above, we compared
a few competitive parsers only on a handful of sub-
sets of treebanks that were human-defined, and ob-
served different trends. Yet, this is a limited view
of the problem. If we take as reference the CoN-
LLU 2018 Shared Task (Zeman et al., 2018) and
the 82 treebanks that were evaluated, considering
subsets of size 10 (meaning that each is composed
of 10 different treebanks), we would obtain up to
∼ 2.13 × 1012 possible combinations. Many of
those subsets will not be a representative sample of
languages, but we already saw that there are sub-
sets that are used in parsing as a benchmark that are
not either, and that even when they are considered
representative, the criteria varies, and the parsing
performance, differences among parsers and error
reductions vary too. Here, we generate subsets,
similar in size to typical human-defined ones, and
see how subset differences affect parsing rankings.

Similarly to Experiment 1, we do not analyze
here algorithms and parsing architectures, or their
correctness, but the appropriateness of evaluation
procedures. In this context, some shared-task sys-
tems have reported bugs in their pipeline: this was
mostly evident for some systems that consistently
ranked in the last positions (see Table 3), but not so
noticeable for high-scoring ones, such as the Stan-
ford system (Qi et al., 2018), which later reported
a preprocessing bug that affected the low-resource
treebanks more. Thus, multi-treebank evaluation
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Parser Best rank Worst rank µ µ̃ σ
HIT-SCIR 1 6 1.14 1.00 0.54
UDPipe Future 1 12 4.38 4.00 1.65
TurkuNLP 1 12 3.97 4.00 1.53
LATTICE 1 13 4.99 5.00 2.27
ICS PAS 2 13 4.71 5.00 2.01
CEA LIST 1 13 6.12 6.00 2.28
Stanford 1 21 6.30 6.00 3.47
Uppsala 1 13 6.62 7.00 2.36
NLP-Cube 2 20 10.02 10.00 1.79
AntNLP 3 18 9.94 10.00 1.82
ParisNLP 4 20 10.39 11.00 1.62
SLT-Interactions 2 23 11.28 11.00 3.91
IBM NY 2 20 13.05 13.00 1.64
LeisureX 8 20 14.36 14.00 1.81
UniMelb 8 19 13.80 14.00 1.13
KParse 9 22 16.78 17.00 1.35
Fudan 10 22 17.16 17.00 1.60
BASELINE UDPipe 13 22 18.08 18.00 1.11
Phoenix 13 22 18.69 19.00 1.07
CUNI x-ling 2 22 19.24 20.00 2.21
BOUN 16 23 20.81 21.00 0.79
ONLP lab 20 25 22.57 23.00 0.62
iParse 9 25 22.36 23.00 2.76
HUJI 21 25 23.63 24.00 0.89
ArmParser 22 25 24.62 25.00 0.59
SParse 26 26 26.00 26.00 0.00

Table 3: Ranking stats for LAS and the parsers of the
Zeman et al. (2018) Shared task, over the 1 million
random subsets. Table sorted by µ̃ (the median).

Figure 1: Corresponding box plot for Table 3. For an
easy correspondence with the table, the x-axis (from left
to right) is sorted as the Table is (i.e. by µ̃).

procedures should also be robust for systems suf-
fering bugs that affect treebanks differently.

5.1 Experimental setup

We compare the available results of the 26 parsers10

that participated in the CoNLLU Shared Task (Ze-
man et al., 2018), sampling random subsets over
the 82 evaluated treebanks. We generate 1 mil-
lion random subsets made of size 10,11 and we do
not control the subsets’ content (e.g. subsets with
higher presence of a language or family).

10The parsers are not necessarily a diverse sample of parsing
models (many are based on gb-DM17) but they are a realistic
sample of a ranking of parsers made in a real shared task. For
model representativity, we refer the reader to Experiment 1.

11The subset size is in the range of those of Experiment 1.

Parser Best rank Worst rank µ µ̃ σ
TurkuNLP 1 7 1.51 1.00 0.78
HIT-SCIR 1 6 2.37 2.00 1.13
ICS PAS 1 13 3.83 4.00 1.37
UDPipe Future 1 8 3.62 4.00 0.98
Stanford 1 15 4.21 4.00 1.75
LATTICE 1 11 6.23 6.00 1.02
CEA LIST 2 12 6.58 6.00 0.99
ParisNLP 5 16 8.87 9.00 0.91
AntNLP 3 14 8.59 9.00 0.95
SLT-Interactions 2 20 10.09 10.00 2.25
LeisureX 7 18 11.54 11.00 1.21
UniMelb 7 16 11.27 11.00 0.82
BASELINE UDPipe 10 20 14.53 14.00 1.09
NLP-Cube 6 22 15.07 14.00 2.81
Phoenix 10 20 14.89 15.00 1.15
KParse 9 21 15.54 16.00 1.95
CUNI x-ling 4 21 17.43 18.00 1.60
BOUN 12 22 18.22 18.00 1.33
Fudan 9 22 17.34 18.00 1.94
iParse 9 25 19.12 20.00 3.19
HUJI 15 25 20.45 21.00 1.02
ArmParser 19 25 22.10 22.00 0.95
Uppsala 19 25 23.29 23.00 0.66
IBM NY 16 25 23.44 24.00 0.82
ONLP lab 22 25 24.88 25.00 0.37
SParse 26 26 26.00 26.00 0.00

Table 4: Ranking statistics for BLEX and the parsers
of the Zeman et al. (2018) Shared task, over 1 million
randomly generated subsets. Table sorted by µ̃.

Figure 2: Corresponding box plot for Table 4. For an
easy correspondence with the table, the x-axis (from left
to right) is sorted as the table is (i.e. by µ̃).

5.2 Results

The pair Table 3 - Figure 1 shows statistics about
the 26 parsers that participated in the shared task
and the 1 million randomly generated subsets.
Some (top) parsers show a stable performance. For
instance, the HIT-SCIR parser (Che et al., 2018)
mostly ranks at the first position, except for a
few outliers that show that the parser potentially
could go down as far as the 6th position. This ten-
dency is also observed in a few other - and worse-
performing - systems, such as Kparse (Kırnap et al.,
2018) or Phoenix (Wu et al., 2018).

However, for many other parsers the variability
is larger. The interquartile range of the UDpipe-
Future system (2nd place) (Straka, 2018) is small
(from 3rd to 6th), but its fourth quartile (excluding
outliers) ranges between the 6th and the 10th posi-
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Parser Avg. rank Best subset outliers Worst subset outliers
Rank Treebanks Rank Treebanks

UDPipe Future (Straka, 2018) 4.38±1.65 1 plsz, gaidt, frosrcmf, srset, kmrmg,
elgdt, enewt, frgsd, thpud, hyarmtdp

12 bxrbdt, laittb, hsbufal, pcmnsc, thpud,
rorrt, brkeb, nobokmaal, slssj, svpud

Stanford (Qi et al., 2018) 6.30±3.47 1 degsd, cscac, elgdt, hehtb, esancora,
svlines, jamodern, bgbtb, nobokmaal, cspud

21 hsbufal, ptbosque, gaidt, vivtb, kokaist,
svtalbanken, gltreegal, smegiella, hyarmtdp, thpud

SLT-Interactions (Bhat et al., 2018) 11.28±3.91 2 sksnk, hsbufal, ukiu, csfictree, svpud,
jagsd, ptbosque, hrset, faseraji, slssj

23 hrset, faseraji, pllfg, kmrmg, degsd,
hyarmtdp, nlalpino, thpud, smegiella, frosrcmf

Table 5: Qualitative results of subsets that cause anomalous rankings of parsers in Experiment 2.

tion. The situation is almost identical for the next
4 averaged best performing systems. Across the
board, there are even more severe examples, such
as Stanford (Qi et al., 2018) (7th place), whose
interquartile range spans from the 3rd to the 9th
position; or the SLT-Interactions parser (Bhat et al.,
2018) whose first quartile ranges from 2nd to 9th,
while its fourth quartile ranges from 14th to 21th.
Exemplifying it with the Stanford system, we will
also discuss below how randomized multi-treebank
evaluation would have been useful to detect the
anomalous performance on low-resource treebanks,
that later on turned out to be a bug, or on the other
hand how a weak subset selection could cause po-
tential anomalous performances or bugs to go un-
noticed.

Parser #Outliers Avg. size R(lr) R(Slavic)
UDPipe 10 best 168.87 0.30 0.17
Future 10 worst 157.51 0.39 0.21

Stanford 10 best 221.03 0.19 0.23
10 worst 124.44 0.61 0.18

SLT- 10 best 203.92 0.30 0.36
Interactions 10 worst 146.72 0.39 0.14

Table 6: Quantitative study expanding Table 5. R refers
to the average ratio across subsets of the presence of
low-resource (lr) and Slavic treebanks.

Subsets that cause anomalous results Table 5
shows a few examples of parsers and subsets that
caused atypical results. For each parser, we show
an advantageous and a disadvantageous subset, ran-
domly picked among those for which a parser ob-
tained its best and worst rankings.

A qualitative analysis of these results yields sev-
eral insights. For the first two parsers, the advan-
tageous and disadvantageous outliers are linguis-
tically diverse, but there is a clear trend that the
disadvantageous subsets are heavily biased towards
small treebanks: for both of the parsers, the favor-
able subset contains only 2 treebanks that are low-
resource according to the shared task criteria, while
the disfavorable one contains 6 and 5, respectively.
This is very unlikely to happen by chance: the prob-
ability of randomly drawing a subset with 6 or more
low-resource treebanks is 0.00214, and with 5 or

more, 0.01538 (this is calculated from a hyperge-
ometric distribution with parameters N = 82, the
total number of treebanks, K = 21, the number of
low-resource treebanks, and n = 10, the number of
treebanks per subset). Thus, this variability seems
to owe to the fact that the UDPipe Future (Straka,
2018) and Stanford (Qi et al., 2018) parsers strug-
gle (relatively to competitors) when training data is
scarce. The situation is different for the third parser
considered. In this case, there are no substantial dif-
ferences in treebank size (2 vs. 3 low-resource tree-
banks) but instead there is a clear linguistic pattern:
the advantageous subset has a heavy bias towards
Slavic languages (6 out of the 10 languages are
Slavic, compared to 2 in the disadvantageous sub-
set - and the probability of choosing a subset with
6 or more Slavic languages by chance is 0.00043,
from a hypergeometric distribution with parame-
ters N = 82,K = 17, n = 10). This seems to
reflect that the SLT-Interactions parser (Bhat et al.,
2018) is especially adequate for Slavic languages.
It is worth noting that the authors did not imple-
ment any language-specific adaptation or report
anything in the paper that suggests that they specif-
ically addressed these languages, so this serves as
an example that a parser can show linguistic bi-
ases towards certain language families even if it
has been developed in a language-agnostic way.

We propose a complementary quantitative anal-
ysis in Table 6. We randomly take 10 of the best
and worst performing subsets for the above studied
parsers and compute, across subsets, the average
size of treebanks, the presence of low-resource tree-
banks, and the presence of Slavic languages. The
analysis confirms the bias towards rich-resource
treebanks for the Stanford parser, and towards
Slavic languages for SLT-Interactions (while not be-
ing biased towards rich- or low-resouce treebanks).
On the other hand, the hypothesis of UDpipe Fu-
ture being biased towards rich-resource languages
is not clearly confirmed by this analysis.

To sum up, this reinforces the idea (hypothesized
in papers like de Lhoneux and Nivre (2016)) that
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both treebank sizes and linguistic factors are impor-
tant for a treebank subset to be representative; and
highlight that the latter can have a huge influence
even in parsers that have been developed without
specific language families in mind.

More robust metrics? LAS and UAS are the
most popular metrics to report dependency parsing
performance. Yet, there are other metrics, such as
CLAS12, MLAS13 or BLEX14, but they have not
been widely adopted (maybe because they have a
not so straightforward interpretation). Yet, from
Experiment 2 we observed that some of these met-
rics, especially BLEX, produced narrower standard
deviations and more stable rankings. We leave in-
terpretations of this phenomenon as an open ques-
tion for future work, but refer the reader to (Table
4, Figure 2) and (Table 3, Figure 1), which show
a summary of the ranking statistics for the BLEX
and LAS metrics, respectively, on the 26 parsers
that participated in the ConLLU Shared task 2018
(Zeman et al., 2018). Overall, but especially for
the top parsers, BLEX results produce more stable
rankings and narrower interquartile ranges.

6 Discussion

We have designed two experiments that revealed
issues of relying on a single subset of treebanks
for parsing evaluation. More particularly, we have
shown that: (i) existing human-defined subsets
show high variability in terms of rankings and per-
formance across parsers, (ii) parsers that have been
developed on a concrete subset might be biased
towards performing better on that subset, (iii) it is
relatively easy to come up with subsets that gen-
erate different parsing rankings, (iv) this can even
happen across subsets that have been purposefully
defined to be representative, (v) both linguistic ty-
pology and resource size have a large influence in
the variability of results between parsers, and (vi)
linguistic factors can be crucial even when parsers
are designed in a language-agnostic way.

Overall, some advice can be given: (a) claims
that “parser X is more accurate than parser Y” can
be weak even on carefully selected samples of UD
treebanks (and perhaps it is recommendable to con-
sider metrics that take into account dimensions

12CLAS: It ignores selected relations which attach function
words to content words.

13MLAS: It is inspired by the CLAS metric, and extended
with evaluation of POS tags and morphological features.

14BLEX (bi-lexical dependency score): it combines content-
word relations with lemmatization.

such as speed and efficiency), (b) for language-
agnostic parsers, it is worth noting that there can
still be biases towards certain linguistic families,
and (c) for such parsers, it can be advisable to
develop on one set of treebanks and evaluate on
another, to avoid bias in favor of the languages used
for development.

Finally, there are aspects that we did not study in
this piece of work, but that could affect the robust-
ness of parsing evaluation as well, e.g., automat-
ically versus manually annotated treebanks, and
interactions between language and treebank prop-
erties (e.g. morphological complexity, dependency
distance, . . . ) and parsing models.

7 Conclusion

Different subsets of treebanks have been proposed
to try to capture the essence of the whole set of
UD treebanks, so that the performance of parsers
in such subsets would be representative of that ob-
tained in the full set. We have empirically shown
limitations of this approach, and also how establish-
ing guidelines for good treebank selection can be
hard, although some bad practices can be avoided.
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A Experiment 1: models, resources, and
hyperparameters

To train the models, we used 2 NVIDIA GeForce
RTX 2080 Ti@11GB and an Intel® Core™ i7-
9700K@3.60GHz×8. Training times usually took
from 1 to 7 hours, depending on the parsing model
and the treebank training size. The three used
parsers and the UD treebanks have free software
licenses that allow free use and distribution.

Tables 7, 8 and 9 show the hyperparameters used
for the gb-DM17 (Dozat et al., 2017) (using the
supar software package), tb-FG19 (Fernández-
González and Gómez-Rodríguez, 2019) (us-
ing the syntacticpointer package) and
sl-S+19 parsers (Strzyz et al., 2019) (using the
dep2labels package), respectively.

Hyperparameter Value Hyperparameter Value
n_char_hidden 100 ν .9
n_feat_embed 100 ϵ 1−12

embed_dropout .33 weight_decay 0
n_lstm_hidden 400 clip 5.0
n_lstm_layers 3 min_freq 2
encoder_dropout .33 fix_len 20
n_arc_mlp 500 decay .75
n_rel_mlp 100 decay_steps 5000
mlp_dropout .33 update_steps 1
encoder lstm feats [’tag’, ’char’]

Table 7: Hyperparameters used to train the supar mod-
els. In the case of Ancient Greek the hyperparameter
n_embed is 100.

Hyperparameter Value Hyperparameter Value
model L2RPtr –learning_rate 0.001
word_dim 300 –lr_decay 0.999997
char_dim 100 –beta1 0.9
pos true –beta2 0.9
rnn_mode FastLSTM –grad_clip 5.0
encoder_layers 3 –loss_type token
decoder_layers 1 –warmup_steps 40
hidden_size 512 –reset 20
arc_space 512 –weight_decay 0.0
type_space 128 –unk_replace 0.5
p_in 0.33 –beam 5
p_out 0.33 –char_embedding random
p_rnn [0.33, 0.33] –opt adam
prior_order inside_out –batch_size 32
grandPar false –num_epochs 600
sibling false
activation elu

Table 8: Hyperparameters used to train the
syntacticpointer models. Parameters specified
from the configuration file on the left, and from the com-
mand line on the right.

Hyperparameter Value
cnn_layer 4
char_hidden_dim 100
hidden_dim 800
dropout 0.5
lstm_layer 3
bilstm True
learning_rate 0.02
lr_decay 0.05
momentum 0.9
l2 0
gpu True

Table 9: Hyperparameters used to train the
dep2labels models.

B Treebanks in each subset

In §4.2, we reviewed the related work and briefly
discussed several human-defined subsets that were
proposed in the past, according to a number of cri-
teria, and that we used to report the results from our
Experiment 1. Due to space reasons, we detail here
in this appendix (Table 10) the specific treebanks
that are part of each subset, and their sizes, for a
better understanding of the particularities of each
of them.
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Size Ma18 Lh16 AG20 D21 SA17 Sm18 Ku19 Easy
Ancient Greek (PROIEL) 213K ✓ ✓
Ancient Greek (Perseus) 202K ✓

Arabic (PADT) 282k ✓ ✓
Basque (BDT) 121K ✓

Belarusian (HSE) 305K ✓
Bulgarian (BTB) 156K ✓ ✓
Catalan (AnCora) 546K ✓ ✓
Chinese (GSD) 123K ✓ ✓ ✓ ✓

Coptic (Scriptorium) 48K ✓
Czetch (FicTree) 167K ✓

Czetch (PDT) 1509K ✓ ✓
Dutch (Alpino) 208K ✓ ✓
English (EWT) 254K ✓ ✓ ✓ ✓ ✓
Finnish (TDT) 202K ✓ ✓ ✓ ✓
French (GSD) 400K ✓

Galician (TreeGal) 25K ✓
German (GSD) 292K ✓
Hebrew (HTB) 161K ✓ ✓ ✓ ✓ ✓
Hindi (HDTB) 351K ✓ ✓

Indonesian (GSD) 120K ✓
Italian (ISDT) 298K ✓ ✓ ✓ ✓

Japanese (GSD) 193K ✓
Kazakh (KTB) 10K ✓
Korean (GSD) 80K ✓
Korean (Kaist) 350K ✓

Lithuanian (HSE) 5K ✓
Marathi (UFAL) 3K ✓

Norwegian (Bokmaal) 310K ✓ ✓ ✓
Old Church Slavonic (PROIEL) 57K ✓

Old East Slavic (RNC) 30K ✓
Polish (LFG) 130K ✓
Polish (PDB) 350K ✓

Romanian (RRT) 218K ✓
Russian (GSD) 98K ✓

Russian (SynTagRus) 1107K ✓ ✓ ✓ ✓
Sanskrit (Vedic) 27K ✓
Slovenian (SSJ) 140K ✓

Spanish (AnCora) 560K ✓ ✓
Swedish (Talbanken) 96K ✓ ✓

Tamil (TTB) 9K ✓ ✓ ✓
Turkish (IMST) 57K ✓
Uyghur (UDT) 40K ✓
Welsh (CCG) 36K ✓
Wolof (WTB) 44K ✓

Table 10: Treebanks per set
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Abstract
Few-shot Named Entity Recognition (NER)
is imperative for entity tagging in limited re-
source domains and thus received proper at-
tention in recent years. Existing approaches
for few-shot NER are evaluated mainly un-
der in-domain settings. In contrast, little is
known about how these inherently faithful mod-
els perform in cross-domain NER using a few
labeled in-domain examples. This paper pro-
poses a two-step rationale-centric data augmen-
tation method to improve the model’s gener-
alization ability. Results on several datasets
show that our model-agnostic method signif-
icantly improves the performance of cross-
domain NER tasks compared to previous state-
of-the-art methods, including the data aug-
mentation and prompt-tuning methods. Our
codes are available at https://github.
com/lifan-yuan/FactMix.

1 Introduction

Named Entity Recognition (NER) is a subtask of
natural language processing, which detects the
mentions of named entities in input text, such
as location, organization, and person (Sang and
De Meulder, 2003; Yang et al., 2017; Cui et al.,
2021). It has attracted research from academia and
industry due to its broadened usage in customer ser-
vices and document parsing as a core task in natural
language understanding (Nadeau and Sekine, 2007;
Ma and Hovy, 2016; Cui and Zhang, 2019; Yamada
et al., 2020). However, training data for NER is
available only for limited domains. It has been
shown that such labeled data introduces challenges
for a model to generalize to new domains (Snell
et al., 2017; Ma et al., 2021a; Lin et al., 2021).

To address this problem, a line of research con-
siders how to allow a model to effectively learn
from a few labeled examples in a new target do-
main (Zhang et al., 2021; Ma et al., 2021b; Das

∗Equal contribution. Random order of the authorship.
†Work done at Westlake University as an intern.

Input: Germany imported 47,600 sheep from 
Britain last year nearly half of total imports. London

Manchester
French

Ireland

Australia
Korea

Entity Set: Location

Context-level Semi-fact Examples:

Entity-level Replacement [Zeng et al., 2020] 
Examples:
Germany imported 47,600 sheep from Britain
last year nearly half of total imports.

Query PLM
[MASK]

…

Query PLM
[MASK]

Germany imported 3,000 beer from Britain last 
year nearly half of total imports.
Germany exported 47,600 pies from Britain last 
year nearly half of total imports.

…

Figure 1: The demonstration of two components of Fact-
Mix, namely context-level semi-fact and entity-level
semi-fact examples.

et al., 2021; Chen et al., 2022; Wang et al., 2022a,b).
However, such methods still require manual label-
ing for target domains, which makes them difficult
to generalize to zero-shot diverse domain settings.
A different line of research in NER considers data
augmentation, using automatically constructed la-
beled examples to enrich training data. Zeng et al.
(2020) consider using entity replacement to gener-
ate intervened new instances. We follow this line of
work and consider a new setting – how to generate
NER instances for data augmentations effectively –
so that a few labeled examples in a source domain
can generalize to arbitrary target domains.

Cross-domain NER poses unique challenges in
practice. First, as a structured learning problem,
it is essential to understand dependencies within
the labels instead of classifying each token inde-
pendently (Dai and Adel, 2020). While examples
from different domains usually have different de-
pendency patterns, which inevitably brings chal-
lenges for fine-tuning few-shot NER models to
cross-domain tasks (Liu et al., 2021). Second,
non-entity tokens in NER do not hold unified se-
mantic meanings, but they could become noisy
when combined with entity tokens in the training
set. Such compositional generalization challenges

5360



have proven to be manifest in performance decay
problems in various NLP tasks, such as sentiment
analysis (Kaushik et al., 2019) and machine trans-
lation (Li et al., 2021), especially when faced with
out-of-domain data.

As a consequence of the challenges above, spuri-
ous patterns between non-entity tokens and labels
learned by models could obstruct the generalization
of few-shot NER models in cross-domain settings.
For example, given that “Jane monitored the pa-
tient’s heart rate", ‘Jane’ is labeled as a person. The
NER model will learn the relationship between the
word ‘Jane’ and ‘monitor’ for the prediction. Sup-
pose a NER model is trained on a medical domain
and tested on the movie review. The correlation
between ‘Jane’ and ‘monitor’ could become the
‘spurious pattern’ (Kaushik et al., 2019; Yang et al.,
2021). From a causal perspective, spurious correla-
tions are caused by confounding factors rather than
a cause-effect relation.

To deal with these challenges and avoid spuri-
ous patterns, we present a novel model-agnostic,
two-step, rationale-enhanced approach called Fact-
Mix, where we care about the efficacy of data aug-
mentations for improving in-domain and out-of-
domain (OOD) performance. We aim to leverage
the contrast among – original, context-level semi-
fact, and entity-level semi-fact instances – for teach-
ing the model to capture more causal label depen-
dencies between entities and the context. As Fig-
ure 1 shows, FactMix consists of two parts, namely
context-level semi-fact generations and entity-level
semi-fact instances generations. It is motivated by
the natural intuition that models are much easier
to learn from two-step contrastive examples com-
pared to the one-step semi-fact augmentation (Zeng
et al., 2020) 1.

The semi-factual generation component aims to
alleviate the pitfall of non-entity tokens, which the
previous data augmentation approach has not con-
sidered. We conduct synonym substitutions for
non-entity tokens only. In particular, we mask
the non-entity tokens, leverage the masked lan-
guage models to predict the masked tokens, and
replace the original tokens with predicted tokens.
This replacement operation potentially introduces

1Zeng et al. (2020) use “counterfactual” to denote the
setting, where augmented data contains different entities with
the same type compared with the original data. However,
strictly speaking, “counterfactual” refers to augmented data
that contains different types of entities with a minimum change
of the input that can flip the predicted label. Hence, we use
semi-fact instead in our paper

out-of-context information produced by the pre-
trained masked language model when generating
augmented examples. The entity-level semi-fact
examples are generated by replacing the existing
entity words in the training set. Finally, the aug-
mented data generated by two steps will be mixed
up together for training models. FactMix is a fully
automatic method that does not require any addi-
tional hand-labeled data or human interventions
and can be plugged for any few-shot NER mod-
els with different tuning strategies, including the
standard fine-tuning and recent prompt-tuning.

Our method supoorts a new cross-domain NER
setting, which is difficult from existing work. In
particular, existing few-shot NER work considers
in-domain fine-tuning (Ma et al., 2021a) and in-
domain prompt-tuning (Cui et al., 2021). While our
method also considers using only a source domain
dataset for training models that generalize to target
domains. Experimental results show that FactMix
can achieve an average 3.16% performance gain
in the in-domain fine-tuning setting compared to
the state-of-the-art entity-level semi-fact genera-
tion approach (Zeng et al., 2020) and an average
6.85% improvement for prompt-tuning compared
to EntLM (Ma et al., 2021b). Improvements in
such a scale hint that FactMix builds a novel bench-
mark. To the best of our knowledge, we are the first
to explore the cross-domain few-shot NER setting
using fine-tuning and prompt-tuning methods.

2 Related Work

Cross-domain NER focuses on transferring NER
models across different text styles (Pan et al., 2013;
Xu et al., 2018; Liu et al., 2021; Chen et al.,
2021). Current NER models cannot guarantee well-
generalizing representation for out-of-domain data
and result in sub-optimal performance. To address
this issue, Lee et al. (2018) continue fine-tuning
the model trained on the source domain by using
the data from the target domain. Yang et al. (2017)
jointly train NER models in both the source do-
main and target domain. Jia et al. (2019) and Jia
and Zhang (2020) perform cross-domain knowl-
edge transfer by using the language model. These
methods rely on NER annotation or raw data in the
target domain. In contrast, we propose a data argu-
mentation method that only boosts cross-domain
performance by using the source-domain corpus.

Few-shot NER aims to recognize pre-defined
named entities by only using a few labeled ex-

5361



amples and is commonly used for evaluating
structured prediction models in recent (Ravi and
Larochelle, 2016; Snell et al., 2017; Das et al.,
2021). Wiseman and Stratos (2019) and Yang and
Katiyar (2020) propose distance-based methods,
which copy the label of nearest neighbors. Huang
et al. (2021) further investigates the efficacy of the
self-training method on external data based on the
distance-based methods. Cui et al. (2021) and Ma
et al. (2021a) adopt prompt-based methods by us-
ing BART and BERT, respectively. These methods
focus on designing few-shot-friendly models with-
out any external guidance. In contrast, we augment
both entity-level semi-fact and context-level semi-
fact examples to boost the model performance on
the new cross-domain few-sot setting.

The area of Few-shot Cross-domain Learning
is motivated by the ability of humans to learn ob-
ject categories from a few examples at a rapid pace,
which is called rationale-based learning. Induc-
tive bias (Baxter, 2000; Zhang et al., 2020) has
been identified for a long time as a critical compo-
nent. Benefits from the rapid development of large-
scale pre-trained language models, few-shot learn-
ing, and out-of-distribution generalization become
rapidly growing fields of NLP research (Brown
et al., 2020; Shen et al., 2021; Chen et al., 2022).
However, these two research directions have been
separately explored in down-streaming tasks but
rarely discussed together, except in the very recent
study of sentiment analysis (Lu et al., 2022). To the
best of our knowledge, we are the first to consider
this setting for NER.

Data Augmentation through deformation has
been known to be effective in various text classifi-
cation tasks (Feng et al., 2021; Li et al., 2022), such
as sentiment analysis (Yang et al., 2021; Lu et al.,
2022) and natural language inference (Kaushik
et al., 2021; Wu et al., 2022). In the task of NER,
self-training has been applied to automatically in-
crease the amount of training data (Wang et al.,
2020). Paul et al. (2019) propose to combine self-
training with noise handling on the self-labeled
data to increase the robustness of the NER model.
Bansal et al. (2020) and Wang et al. (2021) develop
self-training and meta-learning techniques for train-
ing NER models with few labels, respectively.

In addition to self-training methods, prompt-
based (Lee et al., 2021; Ma et al., 2021b) and
causal-enhanced (Zeng et al., 2020) approaches
have also surfaced in this domain, which are two

Standard Fine-tuning Prompt-tuningIn-dom
ain

O
ut-of-dom

ain

In-domain Fine-tuning 
NER (Sec. 5.3)

Out-of-domain Fine-
tuning NER (Sec. 5.3)

In-domain Prompt-
tuning NER (Sec. 5.4)

Out-of-domain 
Prompt-tuning NER 
(Sec. 5.4)

100-shot per class

Zero-shot Test Zero-shot Test

5-shot per class

Figure 2: The categorization of experiment settings.

important baselines for our work. Zeng et al. (2020)
consider using the human intervention to generate
the augmented data to improve few-shot NER mod-
els, and Ma et al. (2021b) aims to leverage the
template-free prompt for boosting the performance
of few-shot NER models. Nevertheless, both meth-
ods only focus on the in-domain accuracy while
ignoring the cross-domain generalization of few-
shot NER models.

3 Settings

We investigate the effectiveness of FactMix using
different methods under several settings. We first
introduce task settings in Section 3.1, then show
the standard fine-tuning method and prompt-based
method in Section 3.2 and Section 3.3, respectively.

3.1 Task Settings

The input of the NER system is a sentence x =
x1, . . . , xn, which is a sequence of n words and the
output is a sequence of NER tags y = y1, . . . , yn,
where yi ∈ Y for each word and Y is selected from
a pre-defined label set{B−X, I −X,S−X,E−
X...O}. B, I,E, S represent the beginning, mid-
dle, ending, and single-word entity, respectively.
X indicates the entity type, such like PER and
LOC, and O refers to the non-entity tokens. We
use Dori and Dood to represent the original dataset
and out-of-domain dataset, respectively.

Given small labelled instances of Dori, we first
train a model Mori through the standard fine-
tuning method. We test the performance ofMori

on Dood and Dood under In-domain Few-shot Set-
ting and Out-of-domain Zero-shot Setting, respec-
tively, which can be seen in Figure 2.

3.2 Standard Fine-tuning Methods

Following Devlin et al. (2018), we feed contextual-
ized word embeddings into a linear classification
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Figure 3: The pipeline of the two-step FactMix approach operated on the source domain, which consists with
entity-level semi-fact generations and context-level semi-fact generations.

with the softmax function to predict the probabil-
ity distribution of entity types. Formally, we first
feed the input x into the feature encoder PLMθ to
get the corresponding contextualized word embed-
dings h:

h = PLMθ(x), (1)

where h is the sequence of contextualized word
embeddings based on pre-trained language mod-
els (PLMs), i.e., BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019). We optimize the cross
entropy loss LNER by using AdamW (Loshchilov
and Hutter, 2018), which is formulated as:

LNER = −
N∑

c=1

yo,c log (po,c) , (2)

where N is the number of classes, y is the binary
indicator (0 or 1) depending on if the gold label c
is the correct prediction for observation o, and p is
the predicted probability for observation o of c.

3.3 Prompt-tuning Methods
Prompt-tuning NER reformulates classification
tasks by using the mask-and-infill technique based
on human-defined templates to generate label
words. We perform the template-based and
template-free prompt tuning as two additional ex-
perimental scenes to verify the validity of our
method. Unlike the standard fine-tuning, no new
parameters are introduced in this setting.

Template-based Approach Formally, we adopt
the prompt template function Fprompt(·) proposed
by a very recent work (Ma et al., 2021b) to converts
the input x to a prompt input xprompt = Fprompt(x),

and pre-defined label words P from the label set
Y are generated through a mapping functionM :
Y → P. In particular, two slots need to be infilled
for each instance: the input slot [X] is filled by
the original input x directly, and the prompt slot
[Z] is filled by the label word. To be note that
[Z] is predicted by the masked language model
(MLM) for prompt-based tuning in this work. The
probability distribution over the label set Y can be
optimized by the softmax function for predicting
masked tokens using pre-trained models.

Template-free Approach In order to reduce the
computational cost of the decoding process for
template-based prompt tuning, Ma et al. (2021b)
propose an entity-oriented LM (EntLM) objective
for fine-tuning NER. Following Ma et al. (2021b),
we first construct a label word set Pf by the la-
bel word engineering, which is also connected
with the label set through a mapping function
M : Y → Pf . Next, we replace entity tokens
at entity positions with corresponding label word
M(yi). Finally, the target input can be represented
as xRep = {x1, ...,M (yi) , ..., xn}. We train the
language model by maximizing the probability
P
(
xRep | x

)
. The loss function for generating

the prompt can be formulated as:

LRepLM = −
N∑

i=1

logP
(
xi = xRepi | x

)
, (3)

where N is the number of classes. Initial param-
eters of the predictive model are obtained from
pre-trained language models.
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4 Method

FactMix automatically generates semi-fact exam-
ples for both standard fine-tuning and prompt-
tuning. The pipeline of our approach is shown in
Figure 3 and is made up of three components: (1)
entity-level semi-fact generator; (2) context-level
semi-fact generator; (3) augmented data selection
and mixing. Briefly, a key innovation in this work
is using a mixed semi-fact generator to improve
the single entity-level data augmentation approach
by adding the intermediate thinking process in a
human-thinking manner.

4.1 Semi-factual Generation

We randomly remove one O token in each sen-
tence. Specifically, we introduce out-of-context
information by randomly masking an O word and
then filling the span using the Masked Language
Model (MLM), i.e., BERT (Devlin et al., 2018).
Intuitively, we can generate numerous semi-factual
samples because the MLM model can fill the
masked span with multiple predictions. More im-
portantly, choosing the number and order of the
selected words is a combinatorial permutation prob-
lem. However, in practice, we find that more aug-
mented data can not always lead to a better result;
and for each semi-factual sample, we only replace
one word or two-word phrase in a sentence using
the top one mask-and-infill prediction of MLM.

Formally, given an input of NER as x =
x1, ..., xi, ..., xn, where xi is the chosen O word.
We first mask xi by replacing it with the [MASK]
token, and thus get x = x1, ..., [MASK], ..., xn.
Then we fill the [MASK] token using BERT-base-
cased2 model and finally obtain a semi-factual ex-
ample xsemi = x1, ..., xi

′, ..., xn. For instance, as
seen in Fig. 3, sheep may first be masked and then
infilled by an out-of-context word coffee, which
can be generated by PLMs.

The intervention of the selected word may inflect
the entity tag of other words and introduce extra
noises into the dataset. Thus, we adopt a denoising
mechanism that can filter out noisy examples by
leveraging the predictive model trained on the orig-
inal dataset that contains prior knowledge for NER
tasks. Different from Zeng et al. (2020), who filter
only those samples whose replaced entities cannot
be predicted correctly, we use a stricter constraint
to preserve only those samples where all tokens are

2https://huggingface.co/
bert-base-cased

predicted accurately.

4.2 Entity-level Semi-fact Generation

We generate entity-level semi-fact examples by in-
terventions on the existing entity words. Specifi-
cally, for each training sample, we randomly select
one of its entity words and replace it with words
of the same type in a prepared Entity_Base. For
cases where data is not extremely scarce, e.g. in
the fine-tuning setting in our experiments, the
Entity_Base can be constructed by extracting and
categorizing all entity words in the original dataset.
Otherwise, e.g. in the 5-shot prompt-tuning setting
in our experiments, the Entity_Base should be
constructed from other available datasets.

Formally, given the input as x =
x1, . . . , xj , . . . , xn, and xj as the chosen en-
tity word. We assume that the label of xj is
B-LOC and extract all the B-LOC entities in the
Entity_Base and denote them as B-LOC Set.
Next, a word in B-LOC Set is chosen to replace
xj and denoted as xj ′. In this way, the generated
semi-fact sample is xcf = x1, . . . , xj

′, . . . , xn.
For example, as seen in Fig. 3, the B-LOC entity
word German is replaced by Israel in B-LOC Set.
All augmented samples are labeled as the same tag
with original ones for saving manual efforts.

4.3 Mix Up

In the last step, we combine two types of auto-
matically generated data by a mix-up strategy. Al-
though the FactMix method can generate an unlim-
ited amount of data theoretically, past experience
(Lu et al., 2022) suggests that more fact-based data
instances can not always bring performance bene-
fits accordingly.

Following Zeng et al. (2020), we set the max-
imum augmentation ratio as 1:8 for the entity-
level semi-fact data generation. While for context-
level semi-fact generations, we set the ratio as
1:5. The optimal augmentation ratios for these
two kinds of augmentations are jointly selected
by the grid search on the development set of in-
domain data. Finally, we obtain the final FactMix
augmented training data, which can be represented
as xmix = Concat{xsemi,xcf}.

5 Experiments

As shown in Table 2, we conduct experiments un-
der the scenarios of both fine-tuning and prompt-
tuning, using in-domain and out-of-domain evalua-
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Domain # Instances Entity TypesTrain Dev Test
Reuters 14,987 3,466 3,684

Person,
Location,

Organization,
Miscellaneous

TechNews - - 2000
AI - - 431

Literature - - 416
Music - - 456

Politics - - 651
Science - - 543

Table 1: Statistics of datasets used in experiments.

tions. We are also interested in better understanding
the contributions of the two-step data augmentation
approach when it comes to prediction performance.
Thus, we consider several ablation studies to bet-
ter the relative contributions of entity-level and
context-level semi-fact augmented data. Micro F1
is used as evaluation metric for all settings.

5.1 Methodology

Fine-tuning. Given that FactMix is a model-
agnostic data augmentation approach, we adopt
the standard fine-tuning method based on two
pre-trained models with different parameter sizes:
BERT-base, BERT-large, RoBERT-base, and
RoBERT-large. All backbone models are imple-
mented on the transformer package provided by
Huggingface 3. To fine-tune NER models in a few-
shot setting, we randomly sample 100 instances
per label from the original dataset to ensure that
the model converges. We report the average perfor-
mance of models trained by five-times training.

Prompt-tuning. We adopt the recent EntLM
model proposed by Ma et al. (2021b) as the bench-
mark for prompt-tuning. Following Ma et al.
(2021b), we conduct the prompt-based experiments
using the 5-shot training strategy. Again, we con-
duct a comparison between the state-of-the-art
prompt-tuning method and several variants of Fact-
Mix. We also analyze the separate contribution of
the counterfactual generator and semi-fact genera-
tor by providing an ablation study based on the the
base and large versions of the BERT-cased back-
bone. For the standard hold-out test, we report
results on both development and test sets. We also
select two representative datasets for the out-of-
domain test in terms of the highest (TechNews)
and lowest (Science) word overlap with the origi-
nal training domain (Reuters).

3https://huggingface.co/models

Dataset Backbone In-domain Fine-tuning Results
Ori CF Semi FactMix

CoNLL2003
(Dev)

BERT-base-cased 57.98 79.78 81.48 83.13*
BERT-large-cased 69.18 83.27 85.87 85.73*

RoBERTa-base 52.44 85.81 87.99 88.51*
RoBERTa-large 68.81 88.25 89.39 89.95*

CoNLL2003
(Test)

BERT-base-cased 54.03 77.71 78.70 80.10*
BERT-large-cased 65.38 81.11 83.04 82.65

RoBERTa-base 48.53 82.74 85.05 85.33*
RoBERTa-large 65.70 85.20 86.84 86.91*

Table 2: The Micro F1 score of different models by
using FactMix and related data augmentation meth-
ods – CF: Entity-level Semi-fact Generation (Zeng
et al., 2020); Semi: Context-level Semi-fact Generation
(Ours); FactMix (Ours) – using the in-domain few-shot
fine-tuning. ∗ indicates the statistically significant under
T-test, p<0.05.

5.2 Datasets

The statistics of both source domain and out-of-
domain datasets are introduced in Table 1. As a
common understanding, it is easy to collect a large
unlabeled corpus for one domain, while the cor-
pus size could be small for low-resource domains.
Then, we introduce datasets used in experiments
for in-domain tests and out-of-domain tests, respec-
tively, as follows.

In-domain Dataset. We conduct the in-domain
experiments on the widely used CoNLL2003 (Sang
and De Meulder, 2003) dataset with a text style of
Reuters News and categories of person, location,
organization, and others.

Out-of-domain Datasets. We adopt the cross-
domain dataset collected by Liu et al. (2021) with
new domains of AI, Literature, Music, Politics, and
Science. Vocabularies for each domain are created
by considering the top 5K most frequent words
(excluding stopwords). Liu et al. (2021) report that
vocabulary overlaps between domains are generally
small, which further illustrates that the overlaps
between domains are comparably small and out-
of-domain datasets are diverse. Notably, since the
model trained on CoNLL2003 can only predict
person, location, organization, and various entities,
we set all the unseen labels in OOD datasets to O.

5.3 Results on Few-shot Fine-tuning

In-domain experimental results on a widely used
CoNLL2003 dataset show that FactMix achieves an
average 3.16% performance gain in the in-domain
fine-tuning setting (100 instances per class) and an
average 2.81% improvement for prompt-tuning (5
instances per class) compared to the state-of-the-art
data augmentation approach. For OOD test results,
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Dataset Backbone Fine-tuning OOD Results Dataset Fine-tuning OOD Results
Ori CF Semi FactMix Ori CF Semi FactMix

TechNews

BERT-base-cased 41.46 61.20 65.20* 65.09*

Music

10.46 19.33 17.59 19.49
BERT-large-cased 52.63 67.51 69.98* 69.28 12.00 19.64 19.32 19.97*

RoBERTa-base 44.88 71.83 73.15 73.62* 11.78 22.24 21.37 23.75*
RoBERTa-large 51.76 73.11 74.89* 74.62 14.44 21.13 22.93* 20.96

AI

BERT-base-cased 15.88 22.49 23.66 24.67*

Politic

21.38 41.84 40.82 43.60*
BERT-large-cased 18.62 26.00 26.03 26.25* 29.77 43.37 42.57 43.84*

RoBERTa-base 18.63 32.03 29.79 32.09 26.81 44.12 44.09 44.66*
RoBERTa-large 23.27 28.76* 29.77* 30.06* 28.56 45.87 44.36 45.05

Literature

BERT-base-cased 12.85 22.89 23.05 25.70*

Science

12.41 25.67 28.26 29.72*
BERT-large-cased 17.53 24.96 26.25* 25.39 16.05 28.75 27.02 27.88

RoBERTa-base 15.05 28.21 27.90 28.89* 14.17 33.33 31.06 34.13*
RoBERTa-large 19.20 25.43 26.76* 26.30* 17.25 31.36 29.89 32.39*

Table 3: The average five times running results of Fine-tuning OOD over six datasets using various data augmentation
approaches compared to the original training method (Standard Fine-tuning). CF: Entity-level Semi-fact Generation
(Zeng et al., 2020); Semi: Context-level Semi-fact Generation (Ours); FactMix (Ours). ∗ indicates the statistically
significant under T-test, p<0.05, when compared to CF.

Dataset Backbone Prompt-tuning In-domain Results Dataset Prompt-tuning OOD Results
EntLM CF Semi FactMix EntLM CF Semi FactMix

CoNLL2003
(Dev)

BERT-base-cased 51.73 48.14 59.30 62.40* TechNews 47.16 52.36 50.96 52.44*
BERT-large-cased 60.95 58.42 49.53 61.64* 52.53 48.32 32.48 48.64

CoNLL2003
(Test)

BERT-base-cased 54.00 55.61 57.23 59.19* Science 15.70 18.32 17.28 18.62*
BERT-large-cased 60.37 56.49 58.37 60.80* 15.32 15.34 13.01 16.80*

Table 4: The comparison among our methods, counterfactual data augmentation, and EntLM (Ma et al., 2021b)
using prompt-tuning hold-out test and OOD test. ∗ indicates the statistically significant under T-test, p<0.05, when
compared to EntLM.

FactMix increases absolute 14.19% F1 score in av-
erage in fine-tuning compared to (Zeng et al., 2020)
and 1.45% increase in prompt-tuning compared to
(Ma et al., 2021b).

In-domain Fine-tuning results are presented
in Table 2 under the standard fine-tuning setting,
using each of the baselines (Ori) and several varia-
tions of our FactMix approach. All results average
five times running with randomly training instance
selections.

FactMix achieves the best performance on both
development and test sets, in terms of the high-
est Micro F1 score, excluding that the BERT-large
model can achieve the best performance using our
semi-fact augmentation approach only. Further-
more, we observe that improvements introduced by
variants of the data augmentation approach are rela-
tively significant when compared to models trained
without data augmentations (25.3% absolute F1
improvements on average). FactMix also shows
its superior performance compared to the previous
state-of-the-art data augmentation method (Zeng
et al., 2020) with a 2.1% absolute improvement in
average. Finally, FactMix establishes a new state-
of-the-art for the data augmentation approach in
the cross-domain few-shot NER.

Out-of-domain Fine-tuning. We consider the

performance of few-shot NER in the context of a
more challenging cross-domain setting. The micro-
f1 score of pre-trained models based on different
augmentation methods is shown in Table 3. We
find that the performance decay in technews is rela-
tively lower than other domains since the technews
domain also holds a relatively higher overlap with
the training set (Reuters News). Again, our semi-
factual generation and FactMix achieve the best
performance in most settings. For instance, the
RoBERTa-large model trained with Semi-fact Only
and FactMix can achieve 74.89% and 74.62% F1,
respectively, compared to only 51.76% F1 using
the original training set. We also notice that all
pre-trained methods manifest a significant drop in
accuracy on other datasets, which share fewer over-
laps with the training data than technews. For ex-
ample, the RoBERTa-base model gets an 11.78%
F1 by using the standard fine-tuning, while it can
be improved to 23.75% with FactMix. Moreover,
we can see that our methods, including Semi-fact
and FactMix, achieve a significantly consistent im-
provement over different datasets compared to stan-
dard fine-tuning and the previous state-of-the-art
method (Zeng et al., 2020), no matter the dataset
distribution gap between domains. Finally, the ab-
lation study shows that the mix-up strategy can
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effectively improve the performance of fine-tuning
methods in most scenarios, compared to the single
semi-fact augmentation method.

5.4 Results on Few-shot Prompt-tuning
To further understand the benefits of FactMix, in
what follows, we also consider several ablation
studies based on the few-shot prompt-tuning setting
(5 instances per class).

In-domain Prompt-tuning. The results are
shown in Table 4. We can see that FactMix achieves
the best performance in 5-shot prompt-tuning on
the development set and test set of CoNLL2003,
compared to EntLM (Ma et al., 2021b) and the ab-
lation part of FactMix. The overall Micro F1 score
of prompt-tuning with FactMix is relatively lower
than the results of 100-shot fine-tuning, i.e., 88.51
vs. 60.80 based on the BERT-large model. It is
noteworthy that our approach shows its superior for
all settings, while the previous data augmentation
approach (Zeng et al., 2020) hurts the performance
when using the BERT-large models, i.e., the F1
score decreases from 60.37 to 56.49 as shown in
the test set. The stable performance further proves
that two-step fact-based augmentations can signifi-
cantly benefit NER models for both fine-tuning and
prompt-tuning models.

Out-of-domain Prompt-tuning. The OOD re-
sults for prompt-tuning methods are also shown in
Table 4. In general, we observe that prompt-based
tuning methods have considerable potential for the
cross-domain few-shot NER. While cross-domain
results evaluated on the high-overlap dataset (Tech-
News) with the training domain are significantly
higher than the low-overlap dataset (Science), i.e.,
52.44 vs. 18.62 based on BERT-base. Furthermore,
FactMix provides the best performance based on
all of the pre-trained models, compared to EntLM
and its variants. In contrast, EntLM performs bet-
ter than FactMix on TechNews. It hints that our
method could be more useful in a low-resource set-
ting where the overlap between the original domain
and target domain is relatively low.

5.5 Discussion
Benefiting from the generalized ability of pre-
trained models, FactMix achieves much improved
results on the few-shot in-domain test – 86.91%.
More importantly, it shows decent scalability when
combined with fine-tuning and prompt-tuning
methods. To better understand the influence of
the number of initial training examples and aug-
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Figure 4: In-domain fine-tuning results are reported
based on the BERT-base-cased model.
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Figure 5: In-domain fine-tuning results based on BERT-
base-cased using different augmentation ratios.

mentation ratios, we illustrate the comparison of
in-domain fine-tuning as follows.

The Influence of Training Samples. The com-
parison of results based on the BERT-base-cased
model is shown in Figure 4. We present the results
of three different methods by using the different
number of training examples varying from 100 to
500. Results show that FactMix holds the best
performance when the size of training examples
has been set as 100, 300, and 500. We also notice
that the improvements introduced by FactMix de-
creased as the amount of raw training data per class
increased from 100 to 300 when compared to the
standard fine-tuning method. Finally, our method
shows its superior for all settings when compared
to the previous state-of-the-art data augmentation
method (Zeng et al., 2020) for Few-shot NER.

The Influence of Augmentation Ratios. In-
domain fine-tuning results using different augmen-
tation ratios are shown in Figure 5. We con-
sider three approaches in the evaluation, including
semi-factual generation, FactMix, and the baseline
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method (Zeng et al., 2020). FactMix shows its ab-
solute performance advantage using the augmenta-
tion ratio from one to eight. In particular, Micro-F1
scores of all methods increase with the increase of
the number of augmented training instances when
the augmentation ratio is less than 1:4, whereas
the trend of increase gradually slow down when
generating examples more than 1:4.

6 Conclusion

We proposed a joint context-level and entity-level
semi-fact generation framework, FactMix, for bet-
ter cross-domain NER using few labeled in-domain
examples. Experimental results show that our
method can not only boost the performance of
pre-trained backbones in in-distribution and OOD
datasets, but also show promising results combined
with template-free prompt-tuning methods. As a
single data augmentation method, FactMix can be
useful for different NLP tasks to enable fast general-
ization, i.e., relation extraction, question answering,
and sentiment analysis.
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Figure 6: The word overlap between NER datasets from
different domains.

A Appendix: Domain Distributions

The similarity between the dataset of source do-
main and six out-of-domain datasets is shown
in Figure 6. We find that the technical news
dataset shares the highest overlap ratio with the
CoNLL2003 dataset, while the science domain
shares the lowest overlap. Based on that, we
select TechNews and Science as two representa-
tive datasets in prompt-tuning experiments. Also,
the experimental results shown in Tables 3 and 4
demonstrate that cross-domain transfer between
low-overlap domains still be a challenge problem,
even for FactMix.
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Abstract

Discourse parsing on multi-party dialogues is
an important but difficult task in dialogue sys-
tems and conversational analysis. It is believed
that speaker interactions are helpful for this
task. However, most previous research ignores
speaker interactions between different speakers.
To this end, we present a speaker-aware model
for this task. Concretely, we propose a speaker-
context interaction joint encoding (SCIJE) ap-
proach, using the interaction features between
different speakers. In addition, we propose a
second-stage pre-training task, same speaker
prediction (SSP), enhancing the conversational
context representations by predicting whether
two utterances are from the same speaker. Ex-
periments on two standard benchmark datasets
show that the proposed model achieves the best-
reported performance in the literature. We will
release the codes of this paper to facilitate fu-
ture research1.

1 Introduction

Discourse parsing on multi-party dialogues aims
to identify the discourse relations between utter-
ances in dialogues, which has received increasing
attention in the natural language processing (NLP)
community (Shi and Huang, 2019; He et al., 2021;
Liu and Chen, 2021; Yang et al., 2021). Unlike
traditional text-level discourse parsing based on
the Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) and the Penn Discourse Tree-
Bank (PDTB) (Prasad et al., 2008), this task is per-
formed based on the Segmented Discourse Relation
Theory (SDRT) (Asher et al., 2003). It represents
a multi-party dialogue by a discourse dependency
tree (Afantenos et al., 2015). Figure 1 shows an
example. The leaf nodes are utterances, and the
arcs indicate the discourse relations between utter-
ances. Each utterance is referred as an elementary
discourse unit (EDU) in SDRT discourse parsing.

∗Corresponding author.
1https://github.com/yunan4nlp/SA-DPMD

u1[A: Anyone have wood?]

u2[A: I can spare sheep, ore or wheat?]

u3[B: I’ve got wood,]

u4[B: trade for ore?]

u5[C: Nope sry.]

u6[A: Deal.]

E
lab

Q
A

P
Q

-E
lab

Q
A

P

Q
A

P

Figure 1: An example of a discourse dependency tree.
u1, u2, u3, u4, u5 refer to EDUs. “Q-Elab”, “QAP”, “Q-
Elab”, and “Elab” refer to discourse relations. “A”, “B”,
and “C” are three speakers.

A multi-party dialogue has several aspects that
make its discourse parsing more challenging than
that of a written text created by one author. It in-
volves multiple speakers who interact with each
other in different roles during turn shifting and
make contributions to the interactions with multiple
potential threads (Afantenos et al., 2015). There-
fore, in addition to conversational contexts, speaker
interactions are also important cues in determining
the discourse structure of a multi-party dialogue.

Most current research for discourse parsing on
multi-party dialogues focuses on conversational
context modeling with different methods. A pio-
neer study by Afantenos et al. (2015) adopts a statis-
tical model for this task, using human-designed fea-
tures extracted from conversational contexts, while
an early neural research by Shi and Huang (2019)
proposes a deep sequential model, using hierarchi-
cal GRUs to learn conversational contextual cues
for discourse parsing. Recent research exerts more
efforts on integrating rich information with context
modeling and explores different techniques such
as domain adaptation (Liu and Chen, 2021), edge-
centric encoding (Wang et al., 2021), multi-task
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learning (He et al., 2021), and joint model (Yang
et al., 2021).

Although above approaches give competitive
performances on discourse parsing on multi-party
dialogues, only a few studies (Afantenos et al.,
2015; Shi and Huang, 2019; Wang et al., 2021) con-
sider speaker interactions. These studies use EDU
pair features to represent speaker interactions and
demonstrate that introducing speaker interactions
is beneficial to this task. However, the EDU pair
based speaker interaction modeling only represent
whether an EDU pair is from the same speaker. The
informative interaction between different speakers
remains unexplored. As shown in Figure 1, the
connected EDUs u1 and u5 are from two different
speakers, but the EDU pair features will not clearly
tell who said the EDUs. Since a general multi-
party dialogue involves more than two speakers,
the problem could be extremely serious.

To alleviate the above problem, we propose
a speaker-aware model for discourse parsing on
multi-party dialogues. Concretely, to handle the
interactive information between the same speaker
within a dialogue, we present SSP-BERT, a second-
stage pre-training method based on BERT that is
designed to predict whether two EDUs are from
the same speaker. Based on SSP-BERT, we inves-
tigate a speaker-context interactions joint encod-
ing (SCIJE) approach to handle the interactions
between different speakers. First, we follow the
node-centric based encoding approach (Shi and
Huang, 2019; Liu and Chen, 2021), adopting BERT
and BiGRU to represent conversational contexts.
Then we embed the speaker sequence of each di-
alogue to vectors and feed them into BiGRU to
further obtain speaker interaction representations.
We finally combine them and thus obtain speaker-
context interaction joint representations.

We conduct experiments on STAC (Asher et al.,
2016) and Molweni (Li et al., 2020) to evaluate our
proposed model. Experimental results show that
SSP-BERT is highly competitive for discourse pars-
ing on multi-party dialogues. When the speaker-
context interaction joint representations are inte-
grated, the proposed model is able to obtain fur-
ther improvements. Our proposed model achieves
the best performance among all the state-of-the-
art (SOTA) models reported in the literature.

In summary, we mainly make the following three
contributions in this paper:

• We propose SCIJE for discourse parsing on

multi-party dialogues, which is capable of
modeling the interactions between different
speakers.

• We propose a second-stage pre-training ap-
proach to integrate the interaction features be-
tween the same speaker into conversational
context representations.

• Our final model achieves the SOTA perfor-
mance on two benchmark datasets.

2 Related Work

Text-level discourse parsing can be categorized into
two types: the RST-style (Mann and Thompson,
1988) and the PDTB-style (Prasad et al., 2008) pars-
ing. Both tasks have been intensively investigated
since early (Lin et al., 2014; Li et al., 2014). Com-
pared with text-level discourse parsing, discourse
parsing on multi-party dialogues is still at its early
stage. The pioneer study (Afantenos et al., 2015)
mainly borrows the dependency parsing paradigm
from RST-style parsing (Li et al., 2014) for this
task, using human-designed features. Recently, in-
spired by the success of neural discourse parsing
models (Braud et al., 2016, 2017; Yu et al., 2018),
several neural discourse parsing models for multi-
party dialogues have been proposed as well (Shi
and Huang, 2019; He et al., 2021; Liu and Chen,
2021; Yang et al., 2021; Wang et al., 2021). In this
paper, we follow the line of the work using neural
models to this task.

It is believed that speaker interactions are helpful
for modeling multi-party dialogues, giving great
improvements on language modeling (Zhang and
Zhao, 2021), dialogue comprehension (Ma et al.,
2021, 2022). In discourse parsing, Afantenos et al.
(2015) extract hand-crafted features from the EDU
pair that have the same speaker, and feed them
into a statistical discourse parsing model. Shi
and Huang (2019) use a speaker highlight mecha-
nism to represent speaker interactions. Wang et al.
(2021) treat speaker interactions as edges of EDUs,
feeding them into graph neural network (GNN)
to obtain edge-centric representations. However,
these speaker interaction models based on EDU
pairs only indicate whether two EDUs are from the
same speaker, ignoring the interactions between
different speakers. In this paper, we investigate the
interaction features between different speakers, us-
ing them as a strong supplementary for the context
representations.

Recent research investigates pre-training on dia-
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Figure 2: Framework of the SSP task.

logues intensively (Henderson et al., 2020; Zhang
et al., 2020; Xu et al., 2021; Zhang and Zhao, 2021;
?). Almost all studies focus on capturing coherance
between utterances by using pre-training tasks such
as dialogue generation or response selection. In this
work, we enhance the conversational context rep-
resentations with interaction features between the
same speaker.

3 Our Proposed Model

3.1 SSP-BERT

In order to integrate same speaker interactions into
contextual representations, we present SSP-BERT,
a second stage pre-training method based on BERT.
The approach is mainly inspired by Yu et al. (2022),
which pre-train XLNet (?) with two EDU-level
tasks in the second stage. Here we change the origi-
nal approach of Yu et al. (2022) to match discourse
parsing on multi-party dialogues. As shown in Fig-
ure 2, we sample the EDU pair from dialogues, and
adopt SSP-BERT to predicts whether two EDUs
have the same speaker. Concretely, given an EDU
pair uj and ui, we exploit BERT to encode them
respectively, obtaining corresponding token embed-
dings.

ui = {[CLS], ti1, ..., tim}
uj = {[CLS], tj1, ..., tjn}
hi[CLS],h

i
1, ...,h

i
m = BERT(ui)

hj[CLS],h
j
1, ...,h

j
n = BERT(uj)

(1)

We choose the representation of “[CLS]” as the
corresponding EDU representation, and then con-
catenate these two EDU representations as the rep-
resentation of the EDU pair:

hp(j,i) = hi[CLS] ⊕ hj[CLS] (2)

When the EDU pair representation is ready, we
feed it into a feed forward layer (FFL):

yp = W php(j,i) (3)

whereW p is a learnable model parameter and yp

is the output scores.

3.2 Discourse Parsing Model
Our discourse parsing model follows an encoder-
decoder framework. As shown by the bottom of
Figure 3, the encoder represents the speakers and
the contexts to speaker-context interaction joint
representations. The top of Figure 3 shows the de-
coder. It predicts the links and their corresponding
relations between EDUs.

3.2.1 Encoder
Speaker Interaction Representation Here we
introduce the approach of obtaining the speaker
interaction representations. Given a dialogue with
n turn, we first gather the speaker sequence with n
length. For instance, we can obtain the correspond-
ing speaker sequence {A,A,B,B,C,A} from the
dialogue in Figure 1. Then we embed the speaker
sequence to the speaker vectors, and use BiGRU
to encode these speaker vectors, obtaining speaker
representations:

xsA, ...,x
s
C,x

s
A = A, ...,C,A

hs1, ...,h
s
n−1,h

s
n = BiGRU(xsA, ...,x

s
C,x

s
A)

(4)

We concatenate two speaker representations to fur-
ther obtain the speaker interaction representation:

hs(j,i) = hsj ⊕ hsi (5)

where ⊕ is a concatenate operation, hs(i,j) denotes
the speaker interaction representation.

Context Interaction Representation We bor-
row the node-centric encoding approaches (Shi and
Huang, 2019; Liu and Chen, 2021) to represent
the conversational contexts. It consists of BERT
and BiGRU. The BERT layer is used to represent
sequential tokens in EDUs, and the BiGRU layer
is used to represent sequential EDUs. Concretely,
for each input EDU ui, first we tokenize it by byte
pair encoding (BPE) and then place a [CLS] be-
fore it. By this way, the input tokens of the first
layer BERT are {[CLS], ti1, ..., t

i
m}. Thus we adopt

BERT to represent these input tokens:

ui = [CLS], ti1, ..., t
i
m

hi[CLS],h
i
1, ...,h

i
m = BERT(ui)

(6)
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Figure 3: Framework of our proposed speaker-aware discourse parsing model.

The second layer BiGRU is built over sequential
EDUs. We should first obtain a suitable representa-
tion for each EDU, which is composed of a span of
tokens inside a certain EDU. Assuming an EDU ui
with its tokens by {[CLS], ti1, ..., t

i
m}, after apply-

ing the first layer BERT, we obtain their represen-
tations by {hi[CLS],hi1...,him}, then we select the
representation of [CLS] as the EDU representa-
tions xu. When the EDU representations are ready,
we apply the BiGRU layer, resulting:

hu1 , ...,h
u
n = BiGRU(xu1 , ...,x

u
n) (7)

We concatenate hui , and huj to obtain the corre-
sponding context interaction representation.

hu(j,i) = huj ⊕ hui (8)

Speaker-Context Interaction Joint Encoding
When the speaker interaction and the context inter-
action representations are ready, we combine them
jointly to obtain the speaker-context interaction
joint representations.

hf(j,i) = αhs(j,i) + (1− α)hu(j,i) (9)

where the α is a learnable parameter, hf(j,i) denotes
the speaker-context interaction joint representation.

3.2.2 Decoder
The decoder performs the link prediction and the
relation classification. Concretely, given two EDUs

ui and uj (j < i), the link prediction task predicts
whether uj is the parent node of ui. If uj is the
parent node of ui, the relation classification task
would further predicts the discourse relation type
between ui and uj .

Link Prediction As mentioned before, the en-
coder represents ui and uj to corresponding
speaker-context interaction joint representations.
We gather the sequence of input representations of
{(u1, ui), ..., (u(i−1), ui)}, and thus apply a multi-
layer perceptron (MLP) layer to obtain link hidden
representations as inputs of the link prediction task:

Hi = hf(1,i), ...,h
f
(i−1,i)

H l = tanh (W l
2 tanh (W l

1Hi + bl1) + bl2)

(10)

where W l
1, W l

2, bl1, and bl2 are model parame-
ters, “tanh” is an activation function,H l denotes
the link hidden representations. Then we apply a
feed-forward layer (FFL) to obtain the parent EDU
scores:

ol = U lH l (11)

where ol is the parent EDU scores and U l is a
model parameter.
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Relation Classification We also apply a MLP
layer to obtain relation hidden representations:

hr = tanh (W r
2 tanh (W r

1h
f
(a,i) + br1) + br2)

(12)

whereW r
1 ,W r

2 , br1, and br2 are model parameters,
hr denotes the relation hidden representation. We
also apply a FFL to obtain discourse relation scores:

or = U rhr (13)

where or is the discourse relation scores and U r is
a model parameter.

3.3 Training
Following previous studies (Shi and Huang, 2019;
Wang et al., 2021), we use cross-entropy as the
optimization objectives of the link prediction and
the relation classification tasks. We add these two
objective terms together as the final optimization
objective of our discourse parser:

L(Θ) = −[log (pug) + log (prg)] (14)

where pug and prg are probabilities of the gold
parent EDU and the gold discourse relation, respec-
tively. Θ is the set of model parameters of our
discourse parser.

Given an EDU ui, its gold parent EDU ug, and
gold discourse relation rg, we first calculate the link
and the relation outputs using Equation 11 and 13,
respectively, and then apply softmax to obtain the

gold parent probability pug =
exp (olug )∑j
1 exp(o

l
uk

)
, and the

gold relation probability prg =
exp (orrg )∑q
1 exp (orrk

)
.

4 Experiment Settings

Data We evaluate our proposed model on
STAC2 (Asher et al., 2016) and Molweni3 (Li et al.,
2020). STAC has annotated 1,173 dialogues, where
1,062 for training and the remaining 111 dialogues
for testing. All dialogues are collected from an
online game trading corpus. To facilitate parameter
tuning, we randomly select 10% of the training di-
alogues as a development corpus. Molweni has an-
notated 10,000 dialogues, where 9,000 for training,
500 for development, and the remaining 500 dia-
logues for testing, respectively. All dialogues are

2https://www.irit.fr/STAC/corpus.html
3https://github.com/HIT-SCIR/Molweni

collected from the Ubuntu dialogue corpus (Lowe
et al., 2015). For fair comparison, we preprocess
two datasets following Shi and Huang (2019), and
all experiments are conducted based on manually
segmented EDUs.

We pre-train BERT on a large-scale unlabeled
dialogue corpus in the second stage. It is collected
from the Ubuntu dialogue corpus (Lowe et al.,
2015), containing 930,000 unlabeled dialogues.

Evaluation We adopt two standard metrics to
evaluate our proposed model, including Link and
Link&Rel metrics. The Link metric evaluates
the capability of link prediction only, and the
Link&Rel metric evaluates link prediction to-
gether with discourse relations. We follow Shi
and Huang (2019), reporting the micro F1 scores.

Hyper-Parameters There are several hyper-
parameters in our proposed speaker-aware dis-
course parsing model.

In the SSP-BERT model, we use Py-
Torch (Paszke et al., 2019) to implement
our neural modules, and BERT is implemented
by Transformers (Wolf et al., 2020). We use
bert-base-uncased4 to initialize the model pa-
rameters of BERT, and other model parameters
are initialized randomly. We optimize model
parameters by the Adam algorithm (Kingma and
Ba, 2015). The learning rate of BERT is set to 1e-7
and the learning rate of the linear layer is set to
1e-3. We train our SSP-BERT by online learning
with mini-batch, and the batch size is set to 8.
Several key hyper-parameters are set according
to the development experiments in Section 5. We
randomly sample 100,000 dialogues for the SSP
task with 4 epochs on Molweni, and 100,000
dialogues with 5 epochs on STAC.

In the discourse parsing model, most of hyper-
parameters are same on STAC and Molweni. The
hidden size of the BiGRU layer is set by 250, and
the hidden size of the MLP layer is set by 1,000.
The batch size is set to 8, and the maximum training
interaction is set to 5. The learning rate of BERT is
set differently on STAC and Molweni, 1e-5 and 2e-
5 respectively. The learning rate of BiGRU, MLP,
and FFL is set to 1e-3.

4https://huggingface.co/
bert-base-uncased
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Inputs Dev Test
Link Link&Rel Link Link&Rel

Molweni
EDUs 79.5 57.8 77.8 56.5
Texts 77.2 56.5 77.0 55.5

STAC
EDUs 71.4 52.2 72.4 55.4
Texts 71.1 52.4 72.1 54.4

Table 1: Influence of different input methods of BERT.

5 Development Experiments

In this section, we conduct development experi-
ments to examine the effectiveness of some impor-
tant factors on our proposed model.

Input Methods First, we investigate the influ-
ence of different input methods of BERT. There are
two different methods to encode the dialogues with
BERT. The first method inputs an EDU sequence
into BERT, encoding each EDU independently, It
is widely used in previous studies (Shi and Huang,
2019; Liu and Chen, 2021; Yang et al., 2021). The
second method treats a dialogue as a whole text,
and feeds it into BERT to obtain corresponding
EDU representations (He et al., 2021). Table 1
shows the comparisons. We can see that using
EDUs as inputs is better than using whole texts.

Pre-Trained Language Models Then we exam-
ine how different PLMs influence the performance
of our proposed model. It is believed that pre-
trained language models (PLMs) are promising for
discourse parsing on multi-party dialogues (Wang
et al., 2021; Liu and Chen, 2021; Yang et al., 2021).
As mentioned before, we use BERT to represent
conversational contexts. The BERT layer can be
replaced by other PLMs, such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), ELEC-
TRA (Clark et al., 2020), and XLM-R (Conneau
et al., 2020). Table 2 shows the development re-
sults. When we use SSP to enhance these PLMs,
these discourse parsing models are able to obtain
further improvements. We find that the SSP-BERT
discourse parsing model achieves the best perfor-
mance among these models on two development
sets. Thus we use SSP-BERT in our subsequent
experiments.

BiGRU vs Transformer As mentioned before,
we use BiGRU to obatin EDU representations in
Equation 7. Exploiting transformer (?) is an alter-
native method for obtaining EDU representation,
and it may capture the longer dependence in an

Models Dev Test
Link Link&Rel Link Link&Rel

Molweni
BERT 79.5 57.8 77.8 56.5

ELECTRA 79.9 57.7 77.3 55.5
RoBERTa 79.9 57.3 77.4 55.2
XLM-R 79.8 57.8 76.7 54.5
SSP-B 81.6 59.1 79.1 57.7
SSP-E 80.5 58.4 78.1 55.8
SSP-R 80.3 59.0 78.9 57.0
SSP-X 80.2 58.9 78.3 56.7

STAC
BERT 71.4 52.2 72.4 55.4

ELECTRA 70.7 50.3 72.5 55.4
RoBERTa 71.2 50.7 71.8 54.6
XLM-R 70.1 51.0 71.3 54.1
SSP-B 70.0 52.9 72.6 57.0
SSP-E 71.6 51.9 71.8 55.5
SSP-R 71.3 51.1 71.5 55.5
SSP-X 70.8 51.6 72.2 54.1

Table 2: Effect of different PLMs. “SSP-B”, “SSP-E”,
“SSP-R”, and “SSP-X” refer to “BERT”, “ELECTRA”,
“RoBERTa”, and “XLM-R” with SSP, respectively.
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Figure 4: Influence of pre-training iteration.

EDU sequence than BiGRU. Here we further in-
vestigate the influence of different EDU representa-
tions based on the BiGRU and transformer models.
As shown in Table 3, we find that the BiGRU mod-
els outperform the transformer models. It may due
to that the turn of dialogues in two corpora is short,
and BiGRU is enough for capturing the long depen-
dence in these dialogues.

Pre-Training Iteration Here we investigate the
influence of training iteration in second-stage pre-
training. Figure 4 shows the development perfor-
mances with respect to the training iteration. On
Molweni, the performance has been improving
when the iteration increases from 1 to 4. How-
ever the performance does not improve when the
iteration exceeds 4. The experiment over STAC
shows a similar trend but the critical iteration is 2.
Thus we use iteration 4 and 2 for the subsequent
experiments on Molweni and STAC, respectively.

Unlabeled Dialogue Size We also study the influ-
ence of the size of unlabeled dialogues in second-
stage pre-training. As shown in Figure 5, the
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Models Dev Test
Link Link&Rel Link Link&Rel

Molweni
BiGRU 81.6 59.1 79.1 57.7

Transformer 80.0 57.8 78.0 56.2
STAC

BiGRU 70.0 52.9 72.6 57.0
Transformer 71.2 52.4 70.7 53.9

Table 3: Influence of different EDU representations.
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Figure 5: Influence of unlabeled dialogue size.

Link&Rel F-measure of our discourse parsing
model increases apparently, when the size increases
from 100k to 400k, and more unlabeled dialogues
does not bring significant improvements. Thus we
use 400k dialogues in second-stage pre-training.

Speaker-Context Joint Representation There
are several choices for integrating speaker and con-
text interaction representations. Here we com-
pare three approaches with our SCIJE approach.
The first approach is simple, which adds speaker
tags (STs) with conversational texts as the con-
catenated texts and uses PLMs to model speaker
interaction. In the second approach, we use a graph
neural network (GNN) (Wang et al., 2021) to model
speaker interaction. In the third approach, we use
concatenation to replace the Equation 9. Table 4
shows the results. First, we find that the speaker
interaction information is effective for discourse
parsing on multi-party dialogues, which is consis-
tent with previous observations (Afantenos et al.,
2015; Shi and Huang, 2019; Wang et al., 2021).
Second, the SCIJE approach is slightly better than
applying GNN. Furthermore, SCIJE can achieve
the best performance using a learnable model pa-
rameter, better than using concatenation (SCIJEC).

6 Main Results and Analysis

Main Results Here we report the final results
of the proposed model over the Molweni and the
STAC test sets. As shown in Table 5, our discourse
parsing model achieves a Link F-measure of 77.8
and a Link&Rel F-measure of 56.5 on the Mol-
weni test set, and a Link F-measure of 72.4 and

Models Dev Test
Link Link&Rel Link Link&Rel

Molweni
BERT 79.5 57.8 77.8 56.5
+STs 81.8 59.2 79.6 57.6

+GNN 84.3 59.8 83.0 58.9
+SCIJEC 83.3 59.2 82.6 58.3
+SCIJE 82.9 59.9 83.3 59.4

STAC
BERT 71.4 52.2 72.4 55.4
+STs 71.2 52.7 72.4 56.4

+GNN 71.6 51.9 72.7 55.8
+SCIJEC 71.2 52.0 71.4 54.9
+SCIJE 72.8 53.0 73.1 56.1

Table 4: Influence of different speaker interaction repre-
sentation integration methods.

Models Link Link&Rel
Molweni

Li et al. (2020) 78.1 54.8
Wang et al. (2021) 81.6 58.5

Liu and Chen (2021) 80.2 56.9
He et al. (2021)* 80.0 57.0

BERT 77.8 56.5
SSP-BERT + SCIJE 83.7 59.4

STAC
Shi and Huang (2019) 73.2 55.7

Wang et al. (2021) 73.5 57.3
Yang et al. (2021) 74.1 57.0

Liu and Chen (2021) 75.5 57.2
BERT 72.4 55.4

SSP-BERT + SCIJE 73.0 57.4

Table 5: Main results on two test sets. “*” means that
we report the performance by rerunning their model.

a Link&Rel F-measure of 55.4 on the STAC test
set. We find that the performance of our discourse
parsing model on the Molweni test set outperforms
most performances of previous SOTA systems.
When both SSP-BERT and SCIJE are adopted, our
final model achieves a Link F-measure of 83.7 and
a Link&Rel F-measure of 59.4 in the Molweni
test set, resulting improvements 83.7 - 77.8 = 5.9
on Link and 59.4 - 56.5 = 2.9 on Link&Rel. On
STAC, our final model achieves a Link F-measure
of 73.0 and a Link&Rel F-measure of 57.4, re-
sulting improvements 73.0 - 72.4 = 0.6 on Link
and 57.4 - 55.4 = 2.0 on Link&Rel.

We compare our final model with previous SOTA
systems as well. Shi and Huang (2019) propose
a deep sequential discourse parsing model, using
local information of EDUs and global informa-
tion of predicted discourse structures. Yang et al.
(2021) propose a joint model for discourse pars-
ing and dropped pronoun recovery. Liu and Chen
(2021) propose a domain information enhanced dis-
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Figure 6: Link&Rel against dialogue length.
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Figure 7: Link&Rel against speaker number.

course parsing model. He et al. (2021)5 propose
a multi-task framework for performing discourse
parsing and dialogue comprehension jointly. As
shown in Table 5, we find that our proposed model
achieves the SOTA performances on two bench-
mark datasets.

Ablation Studies Here we investigate our pro-
posed model by ablation studies. Table 6 shows
the results of ablation studies on two test sets. On
Molweni, both SCIJE and SSP-BERT are effective
for this task. Without SCIJE, the Link&Rel F-
measure decreases by close to 1.7%. Without SSP-
BERT, the Link F-measure decreases by close to
0.4%. On STAC, the results have the same tenden-
cies. Without SCIJE, the Link&Rel F-measure
decreases by close to 0.4%. Without SSP-BERT,
the Link&Rel F-measure decreases by close to
1.3%. Based on above results, we find that our
proposed speaker-aware model are more effective
on Molweni. It may be due to that the dialogues in
Molweni involve more different speakers.

Influence of Dialogue Turn As mentioned be-
fore, the SSP task predicts whether two EDUs
are from the same speaker. It is able to integrate
the speaker interaction features between the same

5It should be noted that Molweni contains two datasets,
one for dialogue comprehension (100 dialogues) and other
for discourse parsing (500 dialogues). He et al. (2021) only
report their results on dialogue comprehension test set. For
fair comparison, here we rerun their model on the discourse
parsing test data .

Models Link Link&Rel
Molweni

SSP-BERT + SCIJE 83.7 59.4
SSP-BERT 79.1 57.7
BERT + SCIJE 83.4 59.4
BERT 77.8 56.5

STAC
SSP-BERT + SCIJE 73.0 57.4
SSP-BERT 72.6 57.0
BERT + SCIJE 73.1 56.1
BERT 72.4 55.4

Table 6: Ablation study on two test sets.
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Figure 8: Influence of SCIJE on connected EDU pairs
from different speakers.

speaker into BERT. Therefore, it is expected that
the introduce of SSP-BERT may bring better perfor-
mance for longer dialogues. As such, here we inves-
tigate the discourse parsing model with SSP-BERT
by the capability of modeling dialogue turns. Fig-
ure 6a shows the results on Molweni. The discourse
parser with SSP-BERT performs better when dia-
logue lengths are 9, 11, and 13. It performs slightly
worse when the dialogue lengths are 8 and 10. The
tendency is different on STAC. As shown in Fig-
ure 6b, the discourse parser with SSP-BERT consis-
tently outperforms the original parser for dialogues
of different lengths.

Influence of Speaker Number As mentioned be-
fore, our speaker-aware model exploits a SCIJE
approach to encode the speaker and the context in-
teractions of dialogues. We believe that it is able
to integrate the different speakers interaction infor-
mation into the discourse parsing model. There-
fore, it is expected that exploiting SCIJE may bring
better performance for multi-party dialogues with
more speakers. As such, here we plot Link&Rel
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Figure 9: Case studies of the proposed speaker-aware discourse parsing model.

F-measures with respect to speaker number of di-
alogues. As shown in Figure 7a, we find that the
discourse parsing model with speaker-context in-
teraction joint representations performs better on
dialogues with 3 to 5 speakers. The tendency is
different on STAC. As shown in Figure 7b, the
discourse parsing model with speaker-context inter-
action joint representations performs better appar-
ently when the speaker number is 3. It may be due
to that the dialogues in STAC have less connected
EDU pairs from different speakers.

EDU Pairs from Different Speakers Further-
more, we investigate the performances in the con-
nected EDU pairs from different speakers. We filter
the connected EDU pairs from the same speaker,
and only investigate the performances with respect
to the connected EDU pairs from different speak-
ers. As shown in Figure 8, we find that the BERT
discourse parsing with SCIJE performs better for
the EDU pairs from different speakers on both Mol-
weni and STAC. The findings indicate that SCIJE
could integrate the interaction information from
different speakers to discourse parsing model.

Case Studies Here we present several case stud-
ies to demonstrate the advantages of the proposed
speaker-aware discourse parsing model. As shown
in Figure 9, the first tree is the gold tree of the dia-
logue, and other predicted trees are provided by the
our proposed models. We find that the BERT-based
parser is incapable of handling the arc from differ-
ent speakers (i.e. u1 and u5) and the relation from
the same speakers (i.e. u3 and u4). In the third
tree, we show how the BERT-based parser benefits
from SCIJE. We find that the BERT-based parser
with SCIJE correctly recognizes the arc between u1

and u5, as SCIJE integrate the different speakers
interaction information for discourse parsing. In
the forth tree, we show how SSP further enhance
the proposed model. We find that the final model
corresponding recognizes the relation between u3
and u4, as SSP offers the same speaker interaction
information for this task.

7 Conclusion

In this paper, we proposed a speaker-aware model
for discourse parsing on multi-party dialogues, It
is able to better model the speaker interactions for
this task. First, we proposed SCIJE to incorporate
the interaction features between the different speak-
ers. Second, we integrated the interaction features
between the same speaker to the conversational
context representations by exploiting SSP-BERT.
We conducted experiments and analysis on two
standard benchmark datasets, namely STAC (Afan-
tenos et al., 2015) and Molweni (Li et al., 2020).
Results show that our proposed speaker-aware dis-
course parsing model significantly outperforms pre-
vious SOTA systems in the literature.
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Abstract

Semantic Role Labeling (SRL) is the task of
labeling semantic arguments for marked seman-
tic predicates. Semantic arguments and their
predicates are related in various distinct man-
ners, of which certain semantic arguments are
a necessity while others serve as an auxiliary
to their predicates. To consider such roles and
relations of the arguments in the labeling order,
we introduce iterative argument identification
(IAI), which combines global decoding and
iterative identification for the semantic argu-
ments. In experiments, we first realize that the
model with random argument labeling orders
outperforms other heuristic orders such as the
conventional left-to-right labeling order. Com-
bined with simple reinforcement learning, the
proposed model spontaneously learns the op-
timized labeling orders that are different from
existing heuristic orders. The proposed model
with the IAI algorithm achieves competitive or
outperforming results from the existing models
in the standard benchmark datasets of span-
based SRL: CoNLL-2005 and CoNLL-2012.

1 Introduction

Semantic role labeling (Carreras and Màrquez,
2004, 2005) is the task of identifying and resolv-
ing the relations between semantic predicates and
their arguments based on the PropBank (Kingsbury
and Palmer, 2002) predicate-argument structure.
In span-based SRL, semantic predicates comprise
several semantic arguments that are expressed as
spans of tokens in the sentence. Recent span-based
SRL models incorporate neural networks into a
global decoding approach. Here syntactic features
are injected into the neural network model (Strubell
et al., 2018), span-based scoring for semantic ar-
gument is adapted (Ouchi et al., 2018), and the
unified representations for both span-based and
dependency-based SRL are applied (Li et al., 2019;
Zhou et al., 2020). However, in these approaches,
the labeling order is not determined inside the neu-

They can directly look at the agreement with us because
                      (V)                      

They can directly look at the agreement with us because
  A0                  (V)         A1           

They can directly look at the agreement with us because
                      (V)         A1           

They can directly look at the agreement with us because
  A0         AM-NMR   (V)         A1             AM-LOC   AM-CAU

They can directly look at the agreement with us because
  A0  AM-MOD AM-NMR   (V)         A1            

τ = 0

τ = 1

τ = 2

τ = 4

τ = 6

AM-MOD

Figure 1: Example of the iterative argument identifi-
cation with the given predicate “look”. At the bottom
of the final state τ = 6, all semantic arguments are
presented with spans and labels. The time step τ corre-
sponds the iterative process of the proposed model.

ral network and hence models require some extrap-
olated graph decoding procedures, similar to the
graph-based approaches that rely on external graph
decoding (Lewis et al., 2015). Such external decod-
ing procedures are typically not trained during the
model training and hence hinder accurate decoding.

The sequential labeling approach is another ma-
jor branch of span-based SRL models (Màrquez
et al., 2005; Zhou and Xu, 2015; He et al., 2017;
Tan et al., 2018; Li et al., 2020), wherein the models
resolve sentences from the beginning to the end or
left-to-right ordering by attaching labels that repre-
sent both semantic spans and roles. Li et al. (2020)
proposed the BIO labeling-based model with prede-
fined regularizers of unique case roles, exclusively
overlapping roles and PropBank frame definitions.
However, sequential labeling approaches often suf-
fer from the error-propagation problem(Senge et al.,
2014; Dinarelli and Tellier, 2018). One reason is
that they are not able to arrange the argument iden-
tification orderings in decoding.

Thus, in this study, we explore an SRL model
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that combines global decoding and iterative label-
ing approaches: iterative argument identification
(IAI). Our model works iteratively: the model iden-
tifies one argument individually and stores it for
each time step. The stored semantic arguments are
used as “clues” for identifying other arguments in
later time steps. Moreover, our models can identify
semantic arguments from arbitrary orders because
our model identifies arguments from any part of
the sentence. This means that our model can con-
sider relations of predicates and arguments in the
decoding order. In SRL, semantic arguments have
various roles to their predicates. Figure 1 repre-
sents an example of attached semantic role labels
for the partial sentence of “They can directly look
at the agreement with us because...”. In this exam-
ple, both arguments “They” and “at the agreement”
represent crucial semantic roles to their predicate
“look.” However, other arguments such as “with
us” and the phrase following “because” represent
additional information to their predicate.

As identified arguments become clues in later
processes, choosing suitable decoding orderings af-
fects the final performance of the proposed model
because many clues become available to identify
a new argument in later time steps. Here we ask
the following question: Are there certain labeling
orderings that can identify arguments more accu-
rately than heuristic orderings? Empirical experi-
ments revealed that the traditional left-to-right or-
dering although strong, is not the best ordering,
e.g., simple random ordering in imitation learning
outperform the left-to-right ordering. Based on the
results obtained, we explored models that follow
better decoding orders than the heuristic orders. We
assume optimal transition paths are not generated
with heuristics or hand-engineering, and rather ex-
pect the self-emergence of the optimal transition
paths that are different from the existing heuristic
transition paths through the model training. We ap-
plied simple policy-gradient-based reinforcement-
learning for the IAI model and found that reinforce-
ment learning slightly leverages the model perfor-
mance thereby allowing models to arrange order-
ings resulting in different argument orderings from
existing heuristics, which was confirmed through
several analyses. Furthermore, our model achieved
competitive or better performances than the exist-
ing models in the standard benchmark datasets.1

1The code is available at https://github.com/
shuheikurita/iss_srl

2 Related Work

The idea of optimizing the labeling orders in decod-
ing is a branch of the easy-first strategy (Tsuruoka
and Tsujii, 2005; Goldberg and Elhadad, 2010; Ma
et al., 2013; Martins and Kreutzer, 2017). In SRL,
Wolfe et al. (2016) proposed the SRL model with
the pseudo teacher approaches for the processing
orders in SRL. They exploit violation fixing per-
ceptron and their parser explores the states of the
highest scored path along with the word frequency
ordering baseline. Since their proposed model of
“easy-first dynamic” follows the highest scoring ac-
tion, their model explores limited transition spaces
during training. Refinement of existing SRL is also
examined in dependency-based SRL (Lyu et al.,
2019; Chen et al., 2019). Reinforcement learning
is also applied in broad syntactic and semantic pars-
ing studies (Lê and Fokkens, 2017; Fried and Klein,
2018; Naseem et al., 2019; Kurita and Søgaard,
2019). Multi-task neural network is often applied
to such structured syntactic analyses (Søgaard and
Goldberg, 2016; Kurita et al., 2017). It is notable
that adversarial training is also applied to extract
knowledge from unannotated corpora in Japanese
predicate-argument structure analysis (Kurita et al.,
2018).

Lattice-based approach is also a promising ap-
proach for SRL in traditional (Täckström et al.,
2015) and neural models (FitzGerald et al., 2015).
However, they rely on external dynamic program-
ming decoding. Choi and Palmer (2011) proposed
the transition-based model for dependency-based
SRL. They applied a set of transition actions that
are similar to the shift-reduce parser (Nivre, 2008)
in syntactic parsing. They also adapted the self-
learning clustering technique for predicates that are
unseen in training. Blloshmi et al. (2021) address
a sequence-to-sequence labeling model which per-
forms competitive with sequence-labeling models.
Indeed, most of the recent SRL resolving studies
address the global-decoding approach (Ouchi et al.,
2018; Li et al., 2018, 2019; Zhou et al., 2020; Conia
and Navigli, 2020) or the sequential labeling ap-
proach (Shi and Lin, 2019; Li et al., 2020; Marcheg-
giani and Titov, 2020; Zhang et al., 2021; Kasai
et al., 2019) in both span-based and dependency-
based SRL. In this paper, we introduce the iterative
approach for the global argument selection and en-
able models to determine the ordering of resolving
semantic arguments with modern neural networks
and reinforcement learning for span-based SRL.
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3 Model

3.1 Iterative argument identification

The span-based SRL model predicts multiple spans
of tokens as semantic arguments for each marked
semantic predicate and attaches semantic role la-
bels to the arguments. Some semantic arguments
have crucial roles in the grammatical or semantic
structures of a sentence, whereas other arguments
have rather auxiliary roles to their predicates. Such
arguments are, therefore, more difficult to resolve
than others. In iterative span selection, our model
repeatedly predicts one semantic argument for each
semantic predicate in a single iteration. The pre-
viously predicted semantic arguments are stored
in a partial semantic arguments buffer. In later
time steps, our model is able to use the information
from the previously extracted semantic arguments
to effectively predict the remaining arguments.

For a given predicate p, the proposed model de-
termines the next argument boundary and its role
label in each iteration. Formally, let X is the input
sentence, p is a marked predicate and Yg

p be the set
of all annotated arguments of the marked predicate
p in the annotated data g. One semantic argument
yi,p ∈ Yg

p is represented by the span of tokens and
its semantic role label as yi,p = {ts, te, l}. Here,
ts is the beginning of the argument span, te is the
end of the span, and l is the attached semantic
role label. Then, we define a transition action ap
for each predicate p. The action ap includes the
decision of whether the predicate p has more un-
resolved arguments or not, and the detection of a
new single semantic argument yi,p = {ts, te, l}. In
each iteration, the model resolve a new semantic
role label of yi,p = {ts, te, l} by choosing ts, te

and l respectively, or decide that the predicate p
has no more semantic arguments. When the model
predicts semantic arguments for the marked pred-
icates, the resolved arguments are stored in the
partial SRL buffer of that predicate. The partial
SRL buffer contains the previously predicted argu-
ments Yτ

p for each predicate p in the iteration of
the time step τ . The partial SRL buffer is updated
after each transition and used as part of the model
input in the next step. Note that the transitions
are independently performed for each predicate.
Therefore, the model can stop transitions for some
predicates while the model continues transitions for
other predicates. The structure of the partial seman-
tic argument buffer is explained in Section 3.2.2.

3.2 Neural network
Our neural network model predicts the probabilities
of the transition action ap as p(ap|X, p,Yτ

p) for all
predicates in each iteration τ . Figure 2 represents
the neural network model. The network consists
of three parts: (i) the sentence encoder, (ii) the
partial SRL encoder, and (iii) the span selection
and labeling decoder.

3.2.1 Sentence encoder
For the sentence encoder, we use the self-attention
architecture of transformer (Vaswani et al., 2017),
which is compatible with the huge pretrained lan-
guage encoder models, such as BERT (Devlin et al.,
2019). Pretrained models often rely on sub-word
segmentations while SRL is a token-level task. For
a token with multiple sub-tokens, we use the be-
ginning sub-token for the entire representation of
the original token. We initially split the input
sentence into sub-tokens and add the special to-
kens of “[NULL]”, “[EOS]” and “[PAD]”. Here
“[NULL]” has the special meaning that the predi-
cate has no unresolved arguments. Following the
pretrained models, we apply wordpiece (Wu et al.,
2016) for the original tokens to obtain sub-words.
The phrase of “the amended filings”, for example,
becomes the sequence of sub-tokens as “[NULL]
the amended filing #s [EOS] [PAD] ... [PAD]”
where the token “filings” are split into two sub-
tokens “filing” and “#s”.

We apply transformer to encode a sequence of
sub-tokens in the sentence to obtain h(ti) ∈ Rd for
the representation of the i-th sub-token ti. d is the
output dimension of the transformer model. In con-
trast to the representations of the partial semantic
argument buffer, the obtained representations h(ti)
for the sentence are not altered during transitions.

3.2.2 Partial SRL encoder
We employ a special encoder that directly encodes
the partially-extracted semantic arguments of Yτ

p

that are resolved in the former transitions of the
iterative argument identification algorithm. We
present the partial SRL buffers Yτ

p which contain
the spans of previously extracted semantic argu-
ments in Figure 3. We prepare the same number
of the partial SRL buffers with the number of the
marked predicates in the sentence. During SRL re-
solving, partial SRL buffers are updated separately
for each predicate. Contents of the partial SRL
buffer for a predicate does not affect the arguments
identification for other predicates. This nature al-
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Figure 2: Overall network architecture: the sentence encoder, partial SRL encoder, and SRL decoder. The
sentence encoder takes inputs of the (sub)token representation of e(ti) and computes the time-independent sentence
representation of h(ti), for each sub-token t. The partial SRL encoder takes inputs of the label representation of
l(ti) and computes the time-dependent partial SRL buffer representation of m(ti). In the partial SRL buffer, (V)
represents the marked predicates and (N) represents the token does not have the attached labels yet. We depict the
time sequence τ = 0 and τ = 1 cases for the same example with Figure 1.

They  can   directly   look   at   the   agreementTime

τ = 0

τ = 1

τ = 2

τ = 3 AM-MNR(N) A1(V)A0 A1A1

(N)(N) A1(V)A0 A1A1

(N)(N) A1(V)(N) A1A1

(N)(N) (N)(V)(N) (N)(N)

Figure 3: Example of the partial SRL buffer updates for
the predicate “look” of the phrase “They can directly
look at the agreement”.

lows the parallelization of SRL resolving for each
predicate as discussed in the Appendix A.6.

At the initial transition of τ = 0, a partial SRL
buffer is filled with “(N)” labels for all sub-tokens
except the marked semantic predicate with a la-
bel of “(V)”. Here “(N)” label represents that
the token has no predicted role labels yet for the
predicate marked “(V)”. At the end of τ -th transi-
tion, the model updates the SRL buffers with new
predicted semantic arguments that are used for the
next transition of τ + 1.

We use a transformer-based encoder for the se-
quence of extracted SRL spans to obtain the partial
semantic argument representations ofmτ (ti) ∈ Rd
of the i-th sub-token ti. This transformer is differ-
ent from the sentence encoder transformer and it
is not pretrained. As the partial SRL buffers are
updated in transitions, the representations for them
are altered. Therefore the partial SRL representa-
tions contribute to changes in the SRL resolving
actions.

3.2.3 SRL decoder
We employ a decoder network for incrementally
predicting the beginning and end of the new ar-
gument span for each predicate in the sentence.

Name Sent. Enc. SRL Enc. SRL Dec.

Hidden size 1024 256 2560
Transformer layers 12 3 3 (Total)

Table 1: Hyper-parameters for transformers of sentence
encoder, SRL encoder and the SRL decoder. The other
hyperparameters are the same with those of BERT.

Argument prediction is performed by predicting
the beginning token ts, the span end token te and
the argument label l. To do so, the decoder net-
work predicts the probabilities of the next action
ap for each predicate p with the inputs of the sen-
tence, the predicate and partial semantic role label
buffer: p(ap|X, p,Yτ

p). The action ap consists of
three decisions: (i) choosing the beginning of the
span ts or deciding this predicate does not have
further semantic arguments e.g., the model selects
the “[NULL]” token as ts, (ii) choosing the end of
the span te and (iii) attaching a semantic role label
l for the predicted span [ts, te] of the argument.

The decoder network works as follows. First,
the model concatenates the representations of sub-
tokens h and the partial SRL buffer mτ for τ -th
transition and input it into transformer layers for
the scoring tokens as the beginning of the span ss(·)
with a softmax function over sub-tokens

p(ts = ti) =
exp

(
ss([h(ti),m

τ (ti)])
)

∑
t′ exp

(
ss([h(t′),mτ (t′)])

) (1)

to obtain the probability p(ts) for a sub-token ti
to become the beginning of the span ts. Sub-
tokens that are not the beginning of the original
tokens don’t become ts. Therefore the probabil-
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ity p(ts) is re-normalized for these beginning sub-
tokens while the probabilities of other sub-tokens
for ts are adjusted to 0. In the evaluation, we
choose the beginning of the next argument span
with argmaxt p(t

s). In imitation learning, we
choose the teacher label of the beginning of the
span tsg from the annotated arguments. In reinforce-
ment learning, we choose the teacher labels with
Gumbel-Softmax here. In the sampling and evalu-
ation, models are required to consider sub-tokens
that are the beginning of some original tokens as
the candidates of the next argument beginning ts.

Similarly, the model predicts the end of the span
te given the sub-token of the span beginning ts.
Similar to the beginning of the span, We prepare
transformer layers for se(·) with a softmax function
over sub-tokens

p(te = ti) =
exp

(
se([h(ti),m

τ (ti), h(t
s)])
)

∑
t′ exp

(
se([h(t′),mτ (t′), h(ts)])

)

to obtain the probability p(te) for a sub-token ti as
the end of the argument span te. Here the model
uses representations of the sub-tokens of the ar-
gument beginning ts that are resolved first. To
reduce the size of the concatenated vectors of the
three representations, we extract the first half val-
ues of the three vectors and concatenate them. The
model does the sampling from p(te) with Gumbel-
Softmax to obtain te similar to ts during reinforce-
ment learning. Finally, the model computes the
label distribution of the argument from the sen-
tence and the SRL representation h(t) and m(t) as
the beginning and end tokens representation of the
argument span, [h(ts),m(ts)] and [h(te),m(te)]
with a scoring function sl(·) of another transformer
layer:

p(l) =
exp

(
sl([h(t

s),mτ (ts), h(te),mτ (te)])
)

∑
l exp

(
sl([h(ts),mτ (ts), h(te),mτ (te)])

)

for the label l prediction.

3.3 Learning
The problem in training IAI is that there are no an-
notated orders for determining SRLs. In Figure 3,
we present an example of transitions for IAI. How-
ever, such teacher orders are not always available
during training models. For training models, there
are two possible approaches: imitation learning as
the teacher path is given by an oracle and reinforce-
ment learning as the model explores the transition
paths during training.

3.3.1 Imitation learning
We first define teacher transition paths. Given
all annotated arguments Yg

p for each predicate,
the transition path is the sequence of the anno-
tated arguments {y0, · · · , yT }. We prepare simple
heuristic transition paths: right-to-left, left-to-right,
close-to-distant, distant-to-close and random or-
ders. For each semantic predicate, the left-to-right
order teacher selects the annotated semantic argu-
ments from left to right. This is similar behaviour to
the transition-based models. The right-to-left order
teacher is the inverse of the left-to-right. The close-
to-distant and distant-to-close order teachers select
arguments based on the distance of sub-tokens from
the predicate.2 These four teacher transition paths
always yield the same transition paths, whereas the
random transition teacher yields different transition
paths in each epoch. Therefore, the random transi-
tion benefits from this de-facto data augmentation.3

We compare the results of those heuristic teachers
in imitation learning in Appendix A.4.

3.3.2 Reinforcement learning
In reinforcement learning, the model determines
the transition path during training. In particular,
we apply a policy gradient to explore the transi-
tion space that is uncommon during the imitation
training. A Gumbel-Softmax distribution (Jang
et al., 2017) has the essential property that it can be
smoothly annealed into a categorical distribution.
Thus we use Gumbel-Softmax for the sampling
from the next possible transitions.

3.3.3 Rewards for reinforcement learning
We exploit simple immediate rewards for reinforce-
ment learning. We apply the positive reward of
r = 1 for all transitions of the correct arguments
and the negative reward of r = −1 for all incorrect
transitions. In each transition, the model deter-
mines the beginning of the next span ts, the ending
of the span te and the label l incrementally. If the
model identifies one of the correct arguments from
the remaining unresolved arguments, it gets the
r = 3 positive rewards in total in a single transi-
tion. When the model makes a wrong prediction,
it receives the r = −1 negative reward at this time

2If two arguments are at the same distance in the number
of sub-tokens from the predicate, we regard the left argument
as close to the predicate for the convenience.

3The reinforcement learning can also benefits from this de-
facto data augmentation. However, it would be less effective
than those for random because of the limited transition paths.
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CoNLL-2005 CoNLL-2012
Model Dev WSJ Brown Dev Test

P R F1 P R F1 P R F1 P R F1 P R F1

Ouchi+2018 ELMo 87.4 86.3 86.9 88.2 87.0 87.6 79.9 77.5 78.7 87.2 85.5 86.3 87.1 85.3 86.2
Ouchi+2018 ELMo (E) 88.0 86.9 87.4 89.2 87.9 88.5 81.0 78.4 79.6 88.6 85.7 87.1 88.5 85.5 87.0
Li+ 2019 ELMo - - - 85.2 87.5 86.3 74.7 78.1 76.4 - - - 84.9 81.4 83.1
Shi+2019 BERT - - - 88.6 89.0 88.8 81.9 82.1 82.0 - - - 85.9 87.0 86.5
Zhou+2020 BERT - - - 89.04 88.79 88.91 81.89 80.98 81.43 - - - - - -
Li+2020 BERT∗ - - - - - - - - - 85.97 86.38 86.18 85.82 86.36 86.09
Li+2020 RoBERTa 87.24 87.26 87.25 88.05 88.00 88.03 80.04 79.56 79.80 86.60 86.89 86.74 86.40 86.83 86.61
Zhang+2021 BERT - - - 87.54 88.32 87.93 81.91 82.37 82.14 - - - 85.93 87.32 86.62

Left-to-right 87.70 88.16 87.93 88.76 88.94 88.85 82.40 82.59 82.50 87.28 87.83 87.55 87.35 87.89 87.62
Random 87.86 88.30 88.08 88.73 89.07 88.90 82.69 83.33 83.01 87.57 87.68 87.62 87.59 87.76 87.67
Random+RL 88.32 88.23 88.28 89.18 89.11 89.15† 83.63 83.13 83.37† 87.94 87.39 87.67 88.04 87.50 87.77

Table 2: The empirical results in CoNLL-2005 and CoNLL-2012 datasets in labeled attachment score (LAS).
Li+2020 uses the original BERT finetuned twice, marked as ∗. (E) denotes the result of the model ensemble. Bold
fonts for the best results. We present the averaged result of the three runs with different seeds for Random+RL. We
confirmed the statistical significance of the test set results in bootstrapped paired t-test in p < 0.05 denoted as †.

and it cannot obtain further rewards in this transi-
tion. Even if the model made wrong predictions for
some arguments in the past transitions, the model
is still allowed to obtain positive rewards when the
model identifies other correct arguments in later
transitions. For example, if a model makes a cor-
rect prediction of ts and an incorrect prediction of
te for an argument, the model obtains the r = 1
reward for the ts prediction and the r = −1 reward
for the te prediction. This model cannot obtain any
rewards regardless of the label l prediction for this
argument. However, this model is still allowed to
obtain further rewards when it predicts other argu-
ments in later transitions. When the model selects
the special token NULL which represents the stop
iteration, the model obtains the reward of r = 1 if
the model has resolved all the correct arguments;
otherwise, r = 0.

We summarize further reinforcement learning de-
tails and implementation details in Appendix A.1.

4 Experiments

We conducted experiments with the datasets pro-
vided from CoNLL-2005 and 2012 shared tasks
(Carreras and Màrquez, 2005; Pradhan et al., 2012).
We followed the standard splits of the datasets pro-
vided from CoNLL and used the official and stan-
dard evaluation script.4 In CoNLL-2005, sections
2nd-21st of the Wall Street Journal (WSJ) corpus
are for the training set and section 24th for the de-
velopment set. The WSJ section 23rd is for the

4This script is available at: https://www.cs.upc.
edu/~srlconll/soft.html

Figure 4: The transition step-wise F1 score in LAS
for the first to sixth transition on the development set
of CoNLL-2005. Navy (left) for Random model and
orange (right) for Random+RL model.

in-domain test set while Brown corpus 3rd sections
is for the out-of-domain test set. CoNLL-2012
dataset is from the OntoNotes v5.0 corpus. See
Pradhan et al. (2013) for more details of CoNLL-
2012. In the evaluation, the SRL labels of “V” are
omitted following the official evaluation script be-
cause they are obvious from the marked predicates.

4.1 Comparison with previous results

First, we compared our models of the iterative argu-
ment identification algorithm to the previous state-
of-the-art models, including the global decoding
model (Zhou et al., 2020) and the variants of se-
quence labeling-based model (Shi and Lin, 2019;
Li et al., 2020; Zhang et al., 2021). These mod-
els use the pretrained models of BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019). We
additionally included the two graph-based model
of Ouchi et al. (2018) and Li et al. (2019) with
ELMo (Peters et al., 2018) for reference. Note that
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Label A0 A1 A2 A3 AM-ADV AM-DIS AM-LOC AM-MNR AM-MOD AM-NEG AM-TMP R-A0 R-A1

F1
Random 93.93 90.25 82.96 81.40 67.90 80.11 70.69 70.74 98.07 94.14 88.38 96.10 92.26
Random+RL 94.03 90.46 82.79 83.16 69.12 79.39 72.22 70.88 98.27 93.66 88.28 96.83 93.07
∆ 0.10 0.21 -0.17 1.76 1.22 -0.72 1.53 0.14 0.20 -0.48 -0.10 0.73 0.81

Avg. Steps
Random 1.96 1.63 2.19 2.52 2.73 2.67 2.26 2.25 2.36 2.66 2.65 2.01 1.42
Random+RL 2.70 1.31 1.59 1.90 2.37 2.58 2.60 1.86 2.57 2.03 2.70 2.50 1.62
∆ 0.74 -0.32 -0.60 -0.62 -0.36 -0.09 0.34 -0.39 0.21 -0.63 0.05 0.49 0.20

Table 3: Top: label-wise performance by F1 score. Bottom: average step times when argument labels are accurately
attached. Results in the development set of CoNLL-2005. ∆ is the difference between Random and Random+RL
models. Here, we present 13 label types that appear most frequently in the dataset.

Zhou et al. (2020) also uses syntactic information
in the multi-task training and hence the results are
not directly comparable.5

Table 2 shows the performance of the two
heuristic order models of Left-to-right and
Random and the proposed Random+RL model
that determines the optimal parsing path during
training. We also compared results of these mod-
els with the performance of previous models. Our
model achieves better results than the model of
Zhou et al. (2020) that relies on the pretrained
model of BERT-large and syntactic information. Li
et al. (2020) also use the special BERT-large model
that is finetuned twice by the authors. Among
all models, the proposed Random+RL model
achieves the best performance in the F1 scores in
both the development set and test set of the CoNLL-
05 and CoNLL-12 datasets. We also confirm
that our Random+RL outperforms other heuristics
such as the model trained in Left-to-right
manner in F1 score as discussed in Appendix A.4.

Paolini et al. (2021) proposed a pre-trained T5-
base model (Raffel et al., 2020) for multiple tasks.
We noticed that TANL with a single dataset is com-
parable with our experimental setting even though
the pretrained model is quite different. Although
they achieved 89.3 in F1 score of WSJ of CoNLL-
05, our model out-performs their model perfor-
mance of 82.0 in F1 in Brown of CoNLL-05. Our
Random+RL model achieves competitive perfor-
mance with their 87.7 in F1 of CoNLL-12.

5In Zhou et al. (2020), they also reported scores with XL-
Net. However, we cannot reproduce their XLNet results in
any efforts. They didn’t release their codes for XLNet and
even didn’t reply our emails for asking training details. We
therefore decide not to include their XLNet results in Table 2.

4.2 Does Reinforcement learning help?

We apply reinforcement learning (RL) for the
model trained with the random ordering. In Table 2,
we confirm that reinforcement learning slightly im-
proves the performance in both CoNLL-05 and
CoNLL-12. We further investigate the reasons of
this performance gain and notice that reinforcement
learning surely changes the argument identifica-
tions in the later time steps of transitions. Figure 4
presents the comparisons of LAS scores for the
predicted arguments in each transition step. In first
to third transitions, there are no large differences
between the Random and Random+RL models.
However, the Random+RL model retains the per-
formance in the later transitions. Although this
result is contrary to the intuition of the existing
“easy-first” strategy, we assume this is one of the
reasons why reinforcement learning enhances the
final model performance.

We take a close look at the effect of reinforce-
ment learning on the label prediction accuracy. Ta-
ble 3 presents the two detailed results: the per-
formance comparison and the average transition
steps required to identify arguments for each label
type. We firstly notice that the Random+RL model
achieve better or competitive accuracy except of
A2, AM-DIS and AM-NEG. We also assume that
the Random+RL model follows some specific or-
ders in identifying arguments. For some labels such
as A3 and AM-ADV, the model chooses to label
them first. For some arguments, such as A0 and
AM-LOC, the model chooses to label them later.

4.3 How does RL affect SRL ordering?

Here we provide further analyses for the relation of
the semantic roles and the identification ordering of
labels. The semantic roles of arguments come from
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Figure 5: The ratio (%) of the label types identified
in from 1st to 5th transitions on the development set
of CoNLL-2005. Top: imitation learning (Random).
Bottom: reinforcement learning (Random+RL).

PropBank frames annnotation guidelines.6 A0 and
A1 labels correspond to external and internal argu-
ments in the government and binding theory. They
are either subject or object roles depending on the
transitive and intransitive verbs. AM-* arguments
are modifiers and other labels include referential
expressions. We analyze how the resolving orders
are affected by these label roles as a result of re-
inforcement learning. In Figure 5, we present the
ratio of the resolved transition steps for each label
class. For example, the sharp peak of 1st transition
for A1 with Random+RL at the bottom of Figure 5
means nearly 80% of A1 labels in the development
set are identified in the first transition.

Here we notice the Random+RL model has a
clear tendency of resolving A1 or A2 first if they
exist. It also seems that the Random+RL model
prefers to identify A0, A3, or AM-* arguments
in 2nd or 3rd transitions. We assume this corre-
sponds to the importance of such role labels for
predicates. Although the Random model has a
similar tendency in some labels, it is less obvious.

Figure 6 presents the details of modifier labels.
We present the seventh most frequent modifier ar-
gument roles in SRL here. TMP, LOC, DIS, NEG,
MOD, ADV and MNR labels correspond to tempo-
ral, locative, discourse markers, negation, modals,
adverbials, and manner markers respectively. We
cannot read strong preferences of resolving orders
for the Random model. There are several inconsis-

6https://verbs.colorado.edu/~mpalmer/
projects/ace/PBguidelines.pdf

Figure 6: The ratio (%) of the label types of the modi-
fiers (AM-*) identified in from 1st to 5th transitions on
the development set of CoNLL-2005. Top: imitation
learning (Random). Bottom: reinforcement learning
(Random+RL).

tent orders: AM-LOC in Random has a weak peak
at the 1st transition, while AM-TMP has a weak
peak at the 3rd transition. The Random+RL model
consistently identifies these arguments mostly in
the 2nd transition if they exist. It is also interest-
ing that manner markers have the preference to
be identified first and the negation has a strong
peak at 2nd transition. Other AM-* modifiers are
mostly processed in the 2nd or 3rd transitions by
the Random+RL model.

As seen in Figure 4, reinforcement learning
improves the labeling accuracy, especially in the
later transition steps. For later transition steps,
the model uses previously resolved arguments as
“clues” to identify the remaining arguments. There-
fore the model tunes which argument to identify
first and later via reinforcement learning as the
Random+RL model introduce specific orders in
labeling in Figure 5 and Figure 6. As a result,
the model retains the labeling performance in later
transitions and hence it outperforms the existing
heuristic approaches such as the left-to-right order
and random ordering in SRL.

5 Conclusion

We develop the iterative argument identification
(IAI) algorithm for the global decoding and iter-
ative resolving for span-based SRL. Our model
with IAI is capable of identifying semantic argu-
ments one by one in arbitrary orders. In empirical
experiments, we enhance our model with policy-

5390



gradient-based transition exploration. Our model
out-performs the existing models with the same pre-
trained model in both CoNLL-05 and CoNLL-12
datasets. In the analyses, we confirm that reinforce-
ment learning enable models to learn a different
resolving orders from existing heuristic orders and
slightly enhance the performance, which suggest
the emergence of the transition path through the
training.
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A Appendix

A.1 Details for reinforcement learning
We apply the cross-entropy loss for imitation learn-
ing and the policy gradient (Williams, 1992) for
reinforcement learning. For reinforcement learning,
we firstly train models with imitation learning until
the learning converges, and then finetune it with the
policy gradient. We select the best performance of
the models at the development set in both imitation
learning and reinforcement learning. The reinforce-
ment learning for the argument span is conducted
as follows. First, we compute a probability of each
(sub-)token becoming the beginning of the next
argument. We apply sampling over this probabil-
ity and determine the beginning (sub-)token of the
next argument span. With this sampled beginning
(sub-)token, our model similarly compute another
probability of each (sub-)token becoming the end
of the next argument span. Again we apply sam-
pling over the probability and determine the end
(sub-)token of the next argument span. Finally, the
model attaches the label to the sampled span.

We apply Gumbel-softmax for sampling of the
next argument to resolve from possible transition
paths during the training. For Gumbel-softmax, the
inverse temperature parameter β becomes a hyper-
parameter. If β is too large, the model samples
from very limited transition paths that are close
to the narrow path of argmax(πi). Thus it gets
stuck in the local optima. If β is too small, the
model samples from various transition paths that
include unrealistic arguments and hence hinder con-
vergence of the training. We perform experiments
of training SRL models with β ∈ {0.1, 0.5, 1, 2, 3}
and report the best performance result of β = 0.5
for CoNLL-05 and β = 0.1 for CoNLL-12.

A.2 Training Details
In terms of the batch size, we notice that the larger
batch size helps the training. We conducted exper-
iments with the batch size of [16, 32, 64, 128] and
obtained the best result at 128. We use the trans-
former implementation of Hugging Face (Wolf
et al., 2020). We apply the pretrained BERT-Large
model of Bert-large-cased-whole-word-masking
for the sentence encoder, and therefore the hyper-
parameters of the sentence encoder are the same
as those of the pretrained BERT-Large model with
capitalized tokens and whole-word masking. For
the partial SRL encoder and the SRL decoder mod-
els, we use the hyper-parameters in Table 1. We

train our model on machines with four NVIDIA
V100 GPU cards. We obtained similar results only
with a single NVIDIA V100 GPU card combined
with the gradient accumulation.

A.3 What order does the reinforcement
learning model prefer to follow?

We further investigate in what orders the models
prefer to identify arguments. Here, we analyze
which role label the model tends to identify first for
a pair of arguments that have the same predicate.
Figure 7 represents the heat-map for visualizing
the ratio for pairs of semantic role labels before
and after each transition. Given the number NX,Y

of pairs of arguments for the role label X (in the
horizontal axis) and Y (in the vertical axis), we
count the cases that role label X is processed after
the role label Y as nX,Y , and we plot nX,Y /NX,Y .

In the Random+RL, we easily notice that there
is a consistent tendency that the model identifies
the A0 labels later than any other labels. We check
the transition paths of the model processing outputs
and confirm that the model frequently identifies A0
labels at last. We also notice that, in Figure 5, A0
has the higher ratio for 3rd, 4th, and 5th transitions
than others in Random+RL. This might be related
to the position of A0 in syntactic trees. We also
confirm that the model chooses the A1, A2, and
A3 labels first and the AM-* labels later. Among
the AM-* labels, AM-NEG and AM-NEG are fre-
quently processed first, although they are mostly
processed later than A1 and A2. Overall, the pro-
posed Random+RL model identifies semantic role
labels and spans as follows: A1 and A2 first, AM-*
and other labels later, and A0 label at last. The
Random model doesn’t have such obvious tenden-
cies at a glance.

A.4 Is the traditional left-to-right resolving
good for the IAI algorithm?

Contrary to the intuition, we notice that the tra-
ditional left-to-right ordering doesn’t achieve the
best performance for the IAI algorithm among the
heuristic orderings. We train our models with five
different teacher orders: right-to-left, left-to-right,
close-to-distant, distant-to-close, and random as
Sec. 3.3.1. The results are shown in Table 4. We
notice that the model with the random order teacher
performs best in both the in-domain test set of WSJ
and the out-of-domain test set of Brown Corpus in
CoNLL-05. Similar tendency has observed in the
CoNLL-12 dataset. These experiments remind us
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CoNLL-2005 CoNLL-2012
Model Dev WSJ Brown Dev Test

P R F1 P R F1 P R F1 P R F1 P R F1

Left-to-right 87.70 88.16 87.93 88.76 88.94 88.85 82.40 82.59 82.50 87.28 87.83 87.55 87.35 87.89 87.62
Right-to-left 87.98 88.39 88.18 88.76 88.91 88.83 82.31 82.19 82.25 87.34 88.00 87.66 87.27 87.94 87.60
Close-to-dist. 87.69 88.44 88.06 88.50 88.92 88.71 81.95 82.78 82.36 87.25 87.90 87.57 87.18 87.90 87.53
Dist.-to-close 87.76 88.07 87.91 88.68 89.03 88.85 82.33 82.50 82.41 87.10 87.73 87.41 87.04 87.70 87.37
Random 87.86 88.30 88.08 88.73 89.07 88.90 82.69 83.33 83.01 87.57 87.68 87.62 87.59 87.76 87.67

Random+RL 88.32 88.23 88.28 89.18 89.11 89.15 83.63 83.13 83.37 87.94 87.39 87.67 88.04 87.50 87.77

Table 4: The empirical results in CoNLL-2005 and CoNLL-2012 datasets in LAS. We compare five model
with different teacher orders in the training: Left-to-right, Right-to-left, Close-to-dist.,
Dist.-to-close and Random and with reinforcement learning (Random+RL). “Dev” is the result in the
development set. Bold fonts for the best results. We present the averaged scores of the three runs with different
seeds.

Figure 7: The ratio for the role labels, on the horizontal axis, that are identified after the role labels on the vertical
axis. The bright color represents the labels on the horizontal axis is likely to be identified after the labels on the
vertical axis. Left: imitation learning (Random). Right: reinforcement learning (Random+RL). Analysis on the
development set of CoNLL-2005.

that adapting traditional heuristic ordering is not
the best way to train the IAI models. We explore
orderings that are better than these heuristics.

A.5 How reinforcement learning affects the
argument distance from the predicates?

Figure 8 presents the distribution of the distance
from predicates to their argument. We draw four
distribution lines that correspond to the 1st, 2nd,
3rd and 4th transitions. Here we count the num-
ber of sub-tokens between the predicates and their
arguments as the distance. Arguments at the right
of their predicates have the positive distance and
other arguments have the negative distance. In both
Random and Random+RL, models tend to choose
the arguments that are placed right after the pred-
icates. However, this tendency becomes clear in
Random+RL: the model firstly chooses the argu-
ments right after the predicates and later this model
chooses arguments that are placed before the predi-
cates. This suggests that the model learns the new
ordering of the argument identification during rein-

forcement learning.

A.6 Computation times and speed analysis

Iterative argument identifications requires O(PA)-
times transitions for a sentence that has P predi-
cates and the maximum number of arguments A in
theory. However, iterative argument identification
has two properties that make it possible to speed
up and parallelize the computation. First, the pre-
trained transformer-based sentence representations
are unchanged during the parsing. This reduce the
computation cost. Second, the transitions in iter-
ative argument identifications are independently
performed for each predicate. Therefore we can
paralleize the transitions for each predicate on the
same minibatch of the neural network. Thanks
to this predicate-parallelization, the computation
times for the overall neural network become the
number of argument A if they are on the same
minibatch. The average processing speed is 7.5
sentences per second when the minibatch size for
evaluation is 48 on a single GPU of NVIDIA V100.
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Figure 8: The relation of the argument resolving or-
ders and the distance of predicates and arguments. We
represent the first four transitions. Top: imitation learn-
ing (Random). Bottom: reinforcement learning (Ran-
dom+RL).

A.7 Limitations and potential risks
This work addresses the tools that are developed
with the dataset and pretrained models that are
widely shared in our community. If the origi-
nal datasets or pretrained models contain poten-
tial risks, our tool might be affected by them. We
will take careful looks to prevent our tools from
potential abuses.
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Abstract

Constituency Parse Extraction from Pre-trained
Language Models (CPE-PLM) is a recent
paradigm that attempts to induce constituency
parse trees relying only on the internal knowl-
edge of pre-trained language models. While
attractive in the perspective that similar to
in-context learning, it does not require task-
specific fine-tuning, the practical effectiveness
of such an approach still remains unclear, ex-
cept that it can function as a probe for in-
vestigating language models’ inner workings.
In this work, we mathematically reformulate
CPE-PLM and propose two advanced ensem-
ble methods tailored for it, demonstrating that
the new parsing paradigm can be competitive
with common unsupervised parsers by intro-
ducing a set of heterogeneous PLMs combined
using our techniques. Furthermore, we explore
some scenarios where the trees generated by
CPE-PLM are practically useful. Specifically,
we show that CPE-PLM is more effective than
typical supervised parsers in few-shot settings.

1 Introduction

With the increasing interest in the inner workings of
pre-trained language models (PLMs; Devlin et al.
(2019); Liu et al. (2019); Radford et al. (2019);
Conneau et al. (2020)),1 much work that attempts
to explore the inherent knowledge embedded in the
models has been recently proposed. One of the
main topics in this direction is to reveal whether
PLMs understand syntactic knowledge of human
language, usually represented as parse trees. While
a line of work (Hewitt and Manning (2019); Chi
et al. (2020)) has investigated the existence of syn-
tax in PLMs via structural probes with supervision
from gold-standard parse trees, some studies (Kim
et al., 2020, 2021; Wu et al., 2020) have found that

1We use the term pre-trained language models (PLMs) to
refer to the models that are based on Transformer (Vaswani
et al., 2017) and pre-trained in a self-supervised manner, e.g.,
BERT (Devlin et al., 2019) and its variants.

one can extract reasonable parse structures directly
from the patterns presented in PLMs’ hidden rep-
resentations or attention distributions even without
extra fine-tuning. In other words, the studies have
shown that PLMs implicitly store their understand-
ing of syntactic knowledge in their parameters, and
that such information can be easily reformulated
into syntactic trees with almost no additional cost.

Although the aforementioned approach, dubbed
Constituency Parse Extraction from Pre-trained
Language Models (CPE-PLM; Kim et al. (2021)),
is undoubtedly a useful tool with many analytic
uses (Rogers et al., 2020), it still remains a research
question whether this algorithm can also work for
practical purposes. For instance, as CPE-PLM is
free from fine-tuning of PLMs, it may be appealing
in few-shot settings, akin to in-context learning
for natural language understanding (Brown et al.,
2020). Moreover, there exists a potential that the
new parsing paradigm can substitute the role of
supervised or unsupervised parsers for the case
where an NLP model requires a parse tree as input.

In this work, we focus on revealing the practical
effectiveness of CPE-PLM. Specifically, we first
rewrite the procedure of CPE-PLM in a more rig-
orous form to clarify its working mechanism. We
then introduce two new ensemble algorithms tai-
lored for it, i.e., Greedy and Beam, making its
parsing performance competitive with that of un-
supervised parsers (Kim et al., 2019b; Zhu et al.,
2020). We show that it is crucial to combine syntac-
tic clues from heterogeneous PLMs for achieving
comparable performance, and that this trend holds
in not only English but also multilingual cases.

Equipped with the improved variants of CPE-
PLM, as the next step, we investigate some sce-
narios in which their outputs (i.e., generated trees)
can be practically utilized. We show that (1) it is
viable to introduce the trees from CPE-PLM as
auxiliary data for improving Recurrent Neural Net-
work Grammars (RNNG; Dyer et al. (2016); Kim
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et al. (2019c)), that (2) on classification with Tree
LSTMs (Tai et al., 2015), the induced trees can re-
place gold-standard parses with a minimal loss, and
that (3) CPE-PLM can be even more data-efficient
than supervised parsers in few-shot settings.

2 Background and Related Work

2.1 Constituency Parse Extraction from
Pre-trained Language Models

The term “Constituency Parse Extraction from Pre-
trained Language Models (CPE-PLM)” coined
by Kim et al. (2021) represents a range of pars-
ing methods (Mareček and Rosa, 2019; Rosa and
Mareček, 2019; Kim et al., 2020, 2021; Li et al.,
2020) that aim to infer the parse tree of an input sen-
tence by only exploiting the features obtained from
PLMs. In detail, the approaches belonging to this
paradigm attempt to directly (i.e., without training)
apply simple heuristics or existing parsing algo-
rithms, such as top-down (Shen et al., 2018a) and
chart-based (Kitaev and Klein, 2018) ones, on the
hidden representations or attention maps retrieved
from PLMs. In the following, we illustrate the
exact formulation of some representative methods.

As CPE-PLM does not demand more than frozen
PLMs as its ingredient, which means training-free,
it can be particularly useful when there are no re-
sources available for training supervised parsers in
terms of either (1) computing resources or (2) train-
ing data consisting of gold-standard annotations.
However, its use has been limited to analytic pur-
poses in the literature, utilized as a tool for probing
the inner workings of PLMs. Our goal in this paper
is therefore to investigate the utility of CPE-PLM
in practical scenarios. Among several options, we
select the chart-based variant (Kim et al., 2021) as
our baseline, which generally outperforms others.

Chart-based CPE-PLM. Kim et al. (2021) pro-
pose a method that combines PLMs with the chart
parsing algorithm without extra training. For-
mally, each tree candidate T for an input sentence,
w1, w2, . . . , wz , is assigned a score stree(T ) that
decomposes as stree(T ) =

∑
(i,j)∈T sspan(i, j),

where sspan(i, j) is a score for a constituent that is
located between positions i and j in the sentence.
sspan(i, j) is defined as follows:

sspan(i, j) =

{
scomp(i, j) + mini≤k<j ssplit(i, k, j) if i < j

0 if i = j
,

where ssplit(i, k, j) = sspan(i, k)+sspan(k+1, j).
In other words, scomp(i, j) measures the composi-

tionality of the span (i, j) itself while ssplit(i, k, j)
indicates how plausible it is to divide the span
(i, j) into two subspans (i, k) and (k + 1, j). Note
that every sspan(i, j) can be easily calculated in a
bottom-up fashion with the aid of the CKY algo-
rithm (Cocke, 1969; Kasami, 1966; Younger, 1967),
once scomp(i, j) is properly defined.

Although the authors suggest two derivations for
sspan(i, j), in this work, the pair score function
sp(·, ·) is chosen as the main target of our interest,
which is defined as follows:

sp(i, j) :=
(
j−i+1

2

)−1∑
(wx,wy)∈pair(i,j) f(g(wx), g(wy)),

where pair(i, j) returns a set consisting of all
combinations of two words from a span (i, j),
e.g., pair(1, 3) = {(w1, w2), (w1, w3), (w2, w3)},
while f(·, ·) and g(·) are a distance measure func-
tion and representation extractor function respec-
tively. To realize f(·, ·) and g(·), the authors con-
sider two sets of functions, F and G. Given l as
the number of layers in a PLM and a as the num-
ber of attention heads per layer, G refers to the set
of functions {g(m,n)|m = 1, . . . , l, n = 1, . . . , a},
each of which outputs the attention distribution of
an input word computed by the nth attention head
on the mth layer of the PLM. F is specified as
{JSD, HEL}, where JSD and HEL correspond to
the Jensen-Shannon and Hellinger distance. Here,
HEL is only considered for simplicity.

Intuitively, a series of the operations described
so far can be understood as (1) splitting an attention
map by rows (i.e., into attention distributions) for
representing each word and (2) comparing similari-
ties between the rows to gauge the syntactic prox-
imity of the corresponding words. Finally, chart-
based CPE-PLM outputs T̂ , the tree that requires
the lowest cost to build, as a prediction for the parse
tree of the input sentence: T̂ = argminT stree(T ).

2.2 Ensemble Methods for CPE-PLM

In Section 2.1, we merely mentioned the case
where only an element of G is adopted for com-
puting the scores used in CPE-PLM. However, it
is also feasible to employ more than just one, such
that the method is provided with diverse informa-
tion from different attention maps (i.e., g(m,n)) to
derive more reasonable parse trees. In fact, the pre-
vious work on CPE-PLM (Kim et al., 2020, 2021)
already exploits such ensemble strategies in an am-
biguous and implicit manner to boost its perfor-
mance. As the introduction of those techniques can
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Figure 1: Concept diagram explaining the procedure of CPE-PLM with various ensemble methods. Given a PLM
that has l = 5 Transformer layers, each of whose self-attention module consists of a = 5 individual attention
heads, an input sentence is inserted into the PLM to compute the model’s attention maps. Then, we construct parse
candidates using the information from each g(m,m) and the CKY algorithm. Here, the role of ensemble methods is
to determine which trees to be engaged in the final prediction of the resulting parse tree.

lead to a considerable gap in the final result, we
claim that it is essential to clarify which ensemble
method is employed and to develop more advanced
ones. Accordingly, we here explicitly formulate the
previous ensemble methods, which is one of our
contributions in this work.

Figure 1 explains the process of applying en-
semble methods to CPE-PLM. Formally, let τ :=
{T̂(m,n)|m = 1, . . . , l, n = 1, . . . , a} denote a
pool of all the possible tree predictions computed
with CPE-PLM using every g(m,n). The objective
of the ensemble methods is to derive the best parse
prediction from a subset of τ , denoted τ̃ , so that it
closely resembles the corresponding gold-standard
tree. Once τ̃ is decided, every T̂(m,n) from τ̃ is
converted into the form of syntactic distance (Shen
et al., 2018a) d(m,n) ∈ Rz−1. 2 Then, the result-
ing vectors are averaged to derive dfinal, which
is finally restored to the tree form T̂final.3 In the
following, we illustrate the characteristics of each
ensemble technique shown when determining τ̃ .

Naïve Baseline: Single Attention Head. The
simplest way of implementing CPE-PLM is to uti-
lize just a single attention head as a representative.
To be specific, this baseline constructs τ̃single :=
{T̂(m∗,n∗)|∀m∀n, val(g(m,n)) ≤ val(g(m∗,n∗))},
where val(g(m,n)) indicates the performance of
CPE-PLM on the validation set, given g(m,n). In
other words, it directly outputs the parse T̂(m∗,n∗)

2Note that z is the number of words in the input sentence.
3Refer to Kim et al. (2021) for the exact procedure of

converting a tree into a syntactic distance and vice versa.

generated by the best function g(m∗,n∗).

Layer-wise Ensemble. Kim et al. (2020) sug-
gest to merge a group of trees that originated from
the attention heads located in the same layer of a
PLM. Specifically, this ensemble method defines
τ̃mlayer := {T̂(m,n)|n = 1, . . . , a} to consider layer-
specific information. The best layer of the PLM
(i.e., m∗) is also determined by its performance on
the validation set. The intuition behind this heuris-
tic is that attention heads of the same layer might
be complementary cooperative in grasping a lin-
guistic concept, considering that particular layers
of a PLM seem specialized to capture a specific
aspect of linguistic knowledge (Tenney et al., 2019;
Jawahar et al., 2019; Jo and Myaeng, 2020).

Top-K Ensemble. Kim et al. (2021) propose uti-
lizing the top-K g(·) functions instead of only us-
ing the best, g(m∗,n∗). First, a sorted set τsorted :=
{T̂(mi,ni)|i, j ∈ {1, . . . , l× a} ∩ val(g(mi,ni)) ≥
val(g(mj ,nj)) whenever i ≤ j} is specified as a
variant of the set τ . That is, τsorted is identical to τ
except that the elements of τsorted are arranged in
descending order according to the validation perfor-
mance of their corresponding functions {g(mi,ni)}.
Then, the top-K ensemble method defines τ̃topK as
the set consisting of the first K elements of τsorted.

3 Proposed Methods

In this section, we additionally introduce two novel
ensemble methods for CPE-PLM, which are more
effective than the previous counterparts in improv-
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Filter attention heads by adding one at a time to the cluster and checking 
whether the final performance improves

(PLM_3, 2, 4): [0.0,-0.1,0.0,0.0,⋯, 0.7] → improved? O → preserve 
(PLM_5, 5, 5): [0.2,-0.3,0.2,0.1,⋯, 0.4] → improved? O → preserve
(PLM_1, 5, 1): [0.2,-0.2,0.2,0.9,⋯, 0.2] → improved? X → discard
(PLM_𝑷, 2, 2): [0.1,-0.3,0.4,0.1,⋯, 0.1] → improved? O → preserve
…

1 2 3 4 5

1

2

3

4

5

PLMs (𝟏~𝑷)

…

…
List of repr.s from 𝑷 different PLMs
(PLM_1, 5, 1): [0.2,-0.2,0.2,0.9,⋯, 0.2]
(PLM_1, 5, 5): [0.1,-0.4,0.3,0.1,⋯, 0.4]
…
(PLM_𝑷, 2, 2): [0.1,-0.3,0.4,0.1,⋯, 0.1]
(PLM_𝑷, 4, 1): [0.3,-0.1,0.2,0.6,⋯, 0.5]
(PLM_𝑷, 4, 4): [0.2,-0.1,0.1,0.2,⋯, 0.4]
(PLM_𝑷, 5, 3): [0.3,-0.1,0.2,0.1,⋯, 0.1]

↓ Sort
Repr.s sorted by their performance
(PLM_3, 2, 4): [0.0,-0.1,0.0,0.0,⋯, 0.7]
(PLM_5, 5, 5): [0.2,-0.3,0.2,0.1,⋯, 0.4]
(PLM_1, 5, 1): [0.2,-0.2,0.2,0.9,⋯, 0.2]
(PLM_𝑷, 2, 2): [0.1,-0.3,0.4,0.1,⋯, 0.1]
…

Representation Extraction & Sorting

Greedy Ensemble

Beam Ensemble

Select the most probable sequences of attention heads using beam search 
(already selected heads are not considered in the next step)

(PLM_3, 2, 4) (PLM_5, 5, 5)

(PLM_1, 5, 1)

(PLM_P, 2, 2)

(PLM_1, 5, 1)

(PLM_P, 2, 2)

(PLM_3, 3, 3)

(PLM_5, 5, 5)

(PLM_1, 5, 1)

Figure 2: Concept diagram explaining the operation of
Greedy and Beam in multi-PLM environments.

ing parsing performance. Furthermore, we propose
to allow several PLMs to collaborate with each
other to provide CPE-PLM with more diverse syn-
tactic information (Figure 2).

Greedy Ensemble. We first consider a method
that collects every helpful attention head in a greedy
fashion. Unlike the previous ensemble methods
which allow only a fixed number of attention heads
to be engaged in the ensemble process, this sets no
limit on the number of participants (i.e., attention
heads), diversifying the source of syntactic clues.

Sticking to the notations defined in Section 2.2,
we specify the Greedy ensemble algorithm in Al-
gorithm 1. Its core logic is to append one attention
head at a time to the cluster and test whether each
augmentation is beneficial for making progress in
the final (validation) performance (val(Ggreedy)).

Beam Ensemble. Even though the greedy en-
semble method is simple and effective, there still
exists a need for exploring more diverse groups
of attention heads that have the potential to show
better performance than the group chosen by the
greedy algorithm. To this end, inspired by the beam
search algorithm widely adopted in the natural lan-
guage generation (NLG) literature, we introduce
the Beam ensemble method in Algorithm 2.

Algorithm 1 Greedy Ensemble Algorithm
1: Gsorted := {g(mi,ni)|i, j∈{1, . . . , l×a}∩val(g(mi,ni))
≥ val(g(mj ,nj)) whenever i ≤ j}

2: g(mi,ni) := The ith element of Gsorted
3: T̂(mi,ni) := A tree prediction generated using g(mi,ni)

4: function GREEDY(Gsorted)
5: Ggreedy, τ̃greedy, µ← {}, {}, 0
6: for i = 1, . . . , l × a do
7: Ggreedy ← Ggreedy ∪ {g(mi,ni)}
8: ψ ← val(Ggreedy)
9: if ψ > µ then

10: µ← ψ

11: τ̃greedy ← τ̃greedy ∪ {T̂(mi,ni)}
12: else
13: Ggreedy ← Ggreedy\{g(mi,ni)}
14: end if
15: end for
16: return τ̃greedy
17: end function

Algorithm 2 Beam Ensemble Algorithm
1: b := beam size
2: Gsorted := {g(mi,ni)|i, j∈{1, . . . , l×a}∩val(g(mi,ni))
≥ val(g(mj ,nj)) whenever i ≤ j}

3: g(mi,ni) := The ith element of Gsorted
4: function BEAM(Gsorted, b)
5: Gbeam, e← {}, 0
6: for i = 1, . . . , b do
7: Gbeam ← Gbeam ∪ {{g(mi,ni)}}
8: end for
9: while e < b do

10: Ĝ, ψ, e← {}, {}, 0
11: for each H ∈ Gbeam do
12: µ← The largest index j given ∀g(mj ,nj)∈H .
13: for i = 1, . . . , b do
14: if µ+ i > l × a then
15: e← e+ 1
16: break
17: else
18: Hi ← H ∪ {g(mµ+i,nµ+i)}
19: Ĝ← Ĝ ∪ {Hi}
20: ψ ← ψ ∪ {val(Hi)}
21: end if
22: end for
23: end for
24: ψtopB ← The set consisting of the top b elements of ψ.
25: Gbeam ← {H|H ∈ Ĝ ∩ val(H) ∈ ψtopB}
26: end while
27: G∗

beam ← {H∗|∀H∈Gbeam, val(H∗) ≥ val(H)}
28: τ̃beam ← {T̂(mi,ni))|T̂(mi,ni) is predicted using

g(mi,ni) ∈ H∗ (H∗ is the sole element of G∗
beam)}

29: return τ̃beam
30: end function

Our beam ensemble algorithm is similar to one
for NLG (Graves, 2012; Sutskever et al., 2014) ex-
cept that the beam search procedure is not stochas-
tic, but determined by the order of the elements
of Gsorted. Furthermore, the already selected at-
tention heads are not considered in the next search
step, unlike NLG which allows the same word to be
generated twice or more (see Figure 2 for example).
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The merit of Beam is that it can explore a wider
range of potential paths that might not be covered
by the greedy algorithm.

Extension to Multi-PLM Settings. Until now,
we have assumed that CPE-PLM is only applica-
ble for only a single PLM. However, we propose
for the first time extending its usage to the sce-
nario in which multiple PLMs are available to-
gether. In other words, we expand τ to τmulti :=
{T̂(p,m,n)|p ∈ {1, . . . , P},m ∈ {1, . . . , l}, n ∈
{1, . . . , a}}, where P is the number of the PLMs
involved. By doing so, it is expected that CPE-PLM
can infer more accurate parse trees with the aid
of diverse perspectives from heterogeneous PLMs.
We show in Section 4.2 that this simple and intu-
itive extension leads to a significant improvement
in the final performance. It also has value in that
it is one of the initial attempts in the literature to
leverage different PLMs simultaneously.

4 Experiments on Parsing

In this chapter, we aim to validate the effective-
ness of the proposed ensemble algorithms, i.e.,
Greedy and Beam, which enable CLE-PLM to
have a higher potential of being properly adopted
for downstream tasks.

4.1 General Configurations

Datasets. To evaluate the parsing performance of
CPE-PLM and other related models, we utilize the
Penn Treebank dataset (PTB, Marcus et al. (1993))
for English and the SPMRL (Seddah et al., 2013)
dataset for eight other languages, following Kim
et al. (2021).4 We also adhere to the standard of
the previous work for preprocessing the datasets.

Evaluation Metrics. We utilize the unlabeled
sentence-level F1 score as a main metric to evalu-
ate the extent to which induced trees resemble cor-
responding gold-standard trees. It was originally
introduced by Shen et al. (2018b, 2019), becoming
the de-facto standard in unsupervised parsing.

Model Selection & Hyperparameters. As men-
tioned in Section 2.1, we build our approach upon
chart-based CPE-PLM (Kim et al., 2021). More-
over, we employ twelve English PLMs and four
multilingual PLMs to provide syntactic informa-

4We use national codes to represent languages, i.e., en:
English, eu: Basque, fr: French, de: German, he: Hebrew, hu:
Hungarian, ko: Korean, pl: Polish, and sv: Swedish.

PLMs / Methods Previous work Chart CPE-PLM w/ ensemble methods
Top-down† Chart‡ Single Layer Top-K Greedy Beam

Encoder-based
BERT-base 32.4 42.7 34.1 35.3 42.5 43.0 42.8
BERT-large 34.2 44.2 38.7 40.6 44.4 45.0 44.5
RoBERTa-base 33.8 44.9 40.9 39.2 44.2 45.4 45.4
RoBERTa-large 34.1 41.9 39.5 38.9 44.9 47.2 43.7
ELECTRA-base - - 40.2 41.2 43.3 46.9 43.2
ELECTRA-large - - 44.3 41.3 46.6 47.9 47.2

Decoder-based
GPT2 37.1 37.2 34.5 26.4 36.9 37.2 37.1
GPT2-medium 39.4 38.4 38.0 28.2 38.2 38.0 40.8
CTRL - - 35.7 28.7 44.4 45.8 44.9

Hybrid
BART-large - - 37.5 32.6 39.8 37.5 38.5
XLNet-base 40.1 46.4 36.7 39.7 46.0 47.0 46.7
XLNet-large 38.1 46.4 39.5 38.9 45.7 47.2 46.8

Multilingual
MBERT - 45.0 39.0 40.3 44.6 47.1 45.7
XLM - 47.7 41.9 42.1 47.1 47.5 47.1
XLM-R - 46.7 41.6 44.2 46.5 48.5 47.4
XLM-R-large - 44.6 40.7 36.7 44.3 46.8 46.9

Multiple PLMs
Only multilingual - - - - 49.6 51.9 49.8
All models - - - - 50.4 55.3 55.7

Table 1: F1 scores of CPE-PLM on the PTB test set
conditioned on the different combinations of PLMs and
ensemble methods. We show that Greedy and Beam
are more effective than baselines, and that we attain
much more competitive scores in multiple PLM settings.
The best score for each column is in bold. We also
report numbers from two previous studies for reference.
†: From Kim et al. (2020). ‡: From Kim et al. (2021).

tion.5 To handle various PLMs in an integrated
manner, we use the Transformers library de-
veloped by HuggingFace (Wolf et al., 2019). We de-
termine hyperparameters for the Top-K and Beam
ensemble methods using grid search. In conse-
quence, we use K=20 and b=5 for single PLM
cases and K=30 and b=30 in multi-PLM settings.

4.2 Verification of CPE-PLM’s Performance

We first conduct experiments on the English PTB
dataset using CPE-PLM, with the objective of com-
paring the effects of different PLMs and ensemble
methods on the paradigm. We also test the settings
in which multiple PLMs are employed at the same
time. From Table 1, we confirm that our Greedy
and Beam algorithms are more effective than other
techniques in most cases and that their impact is
amplified when combined with multiple PLMs. As
a result, we succeed in achieving the state-of-the-

5The list of PLMs we use is (1) English PLMs: BERT-
base/large (Devlin et al., 2019), RoBERTa-base/large (Liu
et al., 2019), ELECTRA-base/large (Clark et al., 2020),
GPT2(-medium) (Radford et al., 2019), CTRL (Keskar et al.,
2019), BART (Lewis et al., 2020), XLNet (Yang et al., 2019),
(2) multilingual PLMs: MBERT, XLM (Conneau and Lample,
2019), XLM-R(-large) (Conneau et al., 2020).
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Models F1 SBAR NP VP PP ADJP ADVP

Unsupervised parsers
PRPN† 47.3 50 59 46 57 44 32
ON-LSTM † 48.1 51 64 41 54 38 31
Neural PCFG† 50.8 52 71 33 58 32 45
Compound PCFG † 55.2 56 74 41 68 40 52
Neural L-PCFG‡ 55.3 53 67 48 65 49 58

CPE-PLM (Ours)
XLM-R + Greedy 48.5 46 69 29 62 48 73
All PLMs + Greedy 55.3 54 75 36 76 50 76
All PLMs + Beam 55.7 53 74 42 75 46 72

Table 2: Comparison of the best CPE-PLM variants
with unsupervised parsers. We show that with the aid of
Greedy and Beam, CPE-PLM becomes competitive
with unsupervised PCFGs. We also report recall scores
on six phrasal categories in addition to F1 scores. The
best result for each column is in bold. †: From Kim
et al. (2019b). ‡: From Zhu et al. (2020).

art F1 score (55.7) on PTB in the CPE-PLM liter-
ature, improving by up to eight points compared
against the previous best (47.7). We also observe
that Transformer encoder-based and multilingual
PLMs are more attractive options for CPE-PLM.

Second, we take the best instances of CPE-PLM
from Table 1 and compare them with a set of un-
supervised parsers on PTB. In particular, we con-
sider PRPN (Shen et al., 2018b), ON (Shen et al.,
2019), Neural PCFG, Compound PCFG (Kim et al.,
2019b), and Neural L-PCFG (Zhu et al., 2020) as
baselines. Note that all the models including CPE-
PLM are evaluated on the same condition where
we assume we have access to the validation set
(for tuning hyperparameters), following the prior
work (Kim et al., 2019b). From Table 2, we show
that with the introduction of Greedy and Beam,
CPE-PLM becomes comparable to off-the-shelf un-
supervised parsers in terms of F1. Specifically, our
CPE-PLM instance with Beam succeeds in achiev-
ing the best F1 score among all the candidates, and
the variant with Greedy accomplishes the best
recall scores on four phrasal categories (NP, PP,
ADJP, and ADVP). Based on these quantitative re-
sults, we claim that CPE-PLM is proper to be an
alternative for unsupervised parsers in some cases.

Finally, we extend the language domain of our
experiments from English to eight other languages.
We exploit four multilingual PLMs that are capa-
ble of processing all the languages we consider,
and each ensemble method is optimized for respec-
tive languages. In Table 3, we demonstrate that
our ensemble methods are universally more effec-
tive than the top-K algorithm across different lan-
guages. Furthermore, we confirm that CPE-PLM

Models / Language en eu fr de he hu ko pl sv Avg.

Single PLM
MBERT

Top-K ensemble 44.6 39.3 35.9 35.9 37.8 33.2 47.5 51.1 32.6 39.8
Greedy ensemble 47.1 40.2 36.9 37.5 38.6 30.2 49.1 52.4 31.9 40.4
Beam ensemble 45.7 41.2 36.1 37.6 38.0 33.8 49.1 51.4 32.6 40.6

XLM
Top-K ensemble 47.1 34.6 36.4 43.8 41.0 36.3 33.6 58.5 36.0 40.8
Greedy ensemble 47.5 38.4 37.0 45.4 41.5 36.4 35.1 58.0 36.4 41.7
Beam ensemble 47.1 38.7 36.8 43.6 41.9 36.3 35.2 56.8 36.2 41.4

XLM-R
Top-K ensemble 46.5 39.5 35.8 37.5 40.1 36.6 49.8 52.7 32.8 41.3
Greedy ensemble 48.5 39.4 36.1 39.0 40.3 36.5 50.8 53.5 33.1 41.9
Beam ensemble 47.4 39.0 35.3 37.9 39.7 37.0 50.2 53.9 32.7 41.5

XLM-R-large
Top-K ensemble 44.3 37.2 29.7 36.3 35.8 31.0 45.5 44.7 27.6 36.9
Greedy ensemble 46.8 39.5 32.9 40.1 37.0 34.0 46.4 47.1 31.0 39.4
Beam ensemble 46.9 39.2 33.0 39.2 36.1 33.4 45.8 50.7 29.0 39.3

Multiple PLMs
All models

Top-K ensemble 49.6 40.9 38.8 44.3 44.5 38.5 51.1 58.7 37.2 44.8
Greedy ensemble 51.9 44.0 41.9 47.3 48.1 40.1 53.7 61.4 39.0 47.5
Beam ensemble 49.8 42.7 40.4 47.0 45.9 39.4 53.4 60.8 38.2 46.4

Table 3: CPE-PLM with three ensemble methods for
nine languages. We observe that it is optimal for every
language to leverage Greedy on top of the integration
of all the four multilingual PLMs considered. The best
result for each column is in bold.

with Greedy attains the best performance in every
case when operated on the combination of all the
four PLMs and, showing 47.5 F1 score on average.

5 Experiments on Downstream Tasks

In the previous section, we demonstrated that CPE-
PLM’s performance can be significantly improved
by introducing the techniques proposed in this
work. We now turn our attention towards its out-
puts (i.e., generated parse trees) and investigate the
utility of such trees in two application scenarios
where tree structures are taken as input.

5.1 Training (U)RNNG with Induced Trees
Recurrent Neural Network Grammar (RNNG)
(Dyer et al., 2016) and its unsupervised variant
(URNNG, Kim et al. (2019c)) are neural architec-
tures which perform language modeling and pars-
ing together. In Kim et al. (2019b), the authors
showed that training (U)RNNG with the trees gen-
erated by other unsupervised parsers results in a
parsing model that is even better than the parsers
which provided the trees used in training. Follow-
ing the previous work, we here examine whether
the output trees from CPE-PLM can also function
as meaningful signals for training (U)RNNG. For
our experiments, we acquire the best two instances
from Table 1 (which accomplished 55.3 and 55.7
parsing F1 scores respectively) and use them as
our pseudo parsers. We employ Compound PCFG
(Kim et al., 2019b) as an unsupervised parser base-
line.
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From Kim et al. (2019b) (The best over trials) PPL (↓) F1 (↑)
LSTM LM 86.2 −
PRPN 87.1 47.9

Induced RNNG 95.3 47.8
Induced URNNG 90.1 51.6

ON 87.2 50.0
Induced RNNG 95.2 50.6
Induced URNNG 89.9 55.1

Neural PCFG 252.6 52.6
Induced RNNG 95.8 51.4
Induced URNNG 86.0 58.7

Compound PCFG (best) 196.3 60.1
Induced RNNG 89.8 58.1
Induced URNNG 83.7 66.9

Our results (Averaged over several trials) PPL (↓) F1 (↑)
Compound PCFG (re-experimented, average) − 54.0

Induced RNNG 91.5 54.7
Induced URNNG 85.4 57.8

CPE-PLM (All PLMs + Greedy) − 55.3
Induced RNNG 86.3 55.0
Induced URNNG 81.3 57.2

CPE-PLM (All PLMs + Beam) − 55.7
Induced RNNG 87.3 57.0
Induced URNNG 82.0 60.7

Table 4: Experiments on training (U)RNNG with the
trees induced by unsupervised parsers and CPE-PLM.
The upper section presents the results reported by Kim
et al. (2019c) while the bottom shows the outcomes from
our experiments. The best numbers for each column of
the respective sections are in bold. We show that the
(U)RNNGs trained with the trees induced by CPE-PLM
attain better language modeling and parsing abilities
compared to the cases of unsupervised parsers.

In Table 4, we present results from Kim et al.
(2019b) and our experiments on PTB. Note that
our results and ones from the previous study are
not directly comparable, because we report the
performance of each model averaged over 4 dif-
ferent runs while Kim et al. (2019b) utilize the
best instance. From the experimental results, we
confirm that the (U)RNNG models trained with
CPE-PLM have better language modeling capa-
bility than those trained with other unsupervised
parsers. In particular, we attain the perplexity of
81.3 when leveraging our greedy ensemble algo-
rithm for CPE-PLM, outperforming the strong base-
line (Compound PCFG: 85.4). Moreover, we suc-
ceed in obtaining a more powerful parsing model
by training (U)RNNG with the aid of CPE-PLM
(All PLMs + Beam). Using this, we achieve 60.7 in
F1, 5 points higher than that of the original (55.7).

5.2 Text Classification using Tree LSTM
Recursive neural network (RvNN; Socher et al.
(2013); Tai et al. (2015)) is a type of neural architec-
ture, whose composition order is determined by an
input tree structure. In spite of RvNNs’ strong per-
formance on several sentence-level tasks and robust
linguistic motivation on which they were invented,

Models / Tasks (Metric: Acc.) SST2 MR SUBJ TREC

Tree LSTM
+ Right-branching trees 85.72 83.37 94.80 94.50
+ CPE-PLM (All PLMs + Beam ensemble) 86.10 83.62 94.85 94.75
+ Supervised parser (Klein and Manning, 2003) 86.70 83.62 95.12 95.05

Table 5: Text classification with Tree LSTMs. We ob-
serve that CPE-PLM-oriented parses outperform right-
branching trees but are inferior to silver-standard trees.
All the results are averaged over four different runs.

the usage of RvNNs is generally restricted due to
their reliance on gold/silver-standard trees.6 We
here attempt to mitigate this limitation by taking
advantage of CPE-PLM. To this end, we conduct
experiments on four text classification tasks with
Tree LSTMs: the target tasks are SST2 (Socher
et al., 2013), MR (Pang and Lee, 2005), SUBJ
(Pang and Lee, 2004), and TREC (Li and Roth,
2002). We use a variant of Tree LSTM (Kim et al.,
2019a) whose leaf nodes are processed by a sep-
arate LSTM in advance. We inject three distinct
types of trees—right-branching trees, which are
a strong heuristic-based approach in English, the
trees induced by CPE-PLM (with Beam), and those
generated by a supervised parser—into the model
and evaluate their impact on the final performance.

In Table 5, we present the accuracy of diverse
Tree LSTM instances on four tasks. Although the
absolute difference in accuracy between the in-
stances is marginal, we discover a clear pattern that
silver-standard trees (ones from supervised parsers)
are always the most helpful while the parses in-
duced by CPE-PLM rank second, outperforming
right-branching trees. This outcome supports our
claim that CPE-PLM can be an attractive option
when supervised parsers are not available.

On the other hand, we find that the performance
of Tree LSTMs is not that sensitive to their tree
inputs, which was similarly observed by Shi et al.
(2018). However, we highlight that the trees closer
to their gold-standard counterparts are more benefi-
cial across all the tasks considered. We leave as fu-
ture work the application of CPE-PLM to advanced
tree models that are more input structure-sensitive.

6 Discussion

So far, we have focused on verifying the utility
of CPE-PLM through the lens of (1) its improved
parsing performance and (2) the effectiveness of its

6We use the term silver-standard trees to indicate parse
trees predicted by sophisticated supervised parsers.
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CPE-PLM configurations Used proportion of validation set
1% 2% 5% 10% 100%

All PLMs
+ Greedy 49.4 49.9 52.7 54.3 55.3

Relative loss (-) 5.9 5.3 2.5 0.9 -
+ Beam 51.3 49.8 51.8 52.9 55.7

Relative loss (-) 4.5 6.0 4.0 2.9 -

Table 6: Relative performance loss of CPE-PLM on
PTB with regard to the proportion of the validation set
used. We obtain reasonable performance only with 1%
(17 examples) of the validation set.

Models Number of used annotations
1 2 5 10 17 (1%) 2% 5% 10% 100%

CPE-PLM (All PLMs)
+ Greedy 46.2 48.4 49.9 49.1 49.4 49.9 52.7 54.3 55.3
+ Beam 45.4 45.9 47.7 49.6 51.3 49.8 51.8 52.9 55.7

Supervised (Benepar) - 11.6 12.5 14.0 17.0 31.1 50.2 71.4 92.2

Table 7: Comparison between CPE-PLM and a super-
vised parser (Benepar) in few-shot settings.

output trees for downstream tasks. In this section,
we conduct in-depth analysis on the limitations of
the current form of CPE-PLM and propose coun-
termeasures to alleviate the problems.

Reliance on the validation set. CPE-PLM is
training-free, but it exploits gold-standard trees
from the validation set to decide the best combina-
tion of attention heads (g(m,n)). Although we allow
this configuration in this work to have a fair com-
parison with some previous work on unsupervised
parsing (Kim et al., 2019b) that also made use of
the validation set to optimize hyperparameters, it
is always better to reduce such reliance as argued
in the few-shot classification literature (Perez et al.,
2021). Therefore, we here attempt to examine the
robustness of CPE-PLM with respect to the number
of data instances from the validation set. Specifi-
cally, we conduct a controlled experiment where
CPE-PLM is provided with only a limited propor-
tion of the validation set. In Table 6, we confirm
that CPE-PLM only loses roughly five points in
performance when just 17 (1%) gold standard trees
are available, implying that they work quite well
even with a limited number of validation trees.

Furthermore, to showcase the data-efficiency of
CPE-PLM in few-shot settings, we compare the
performance of CPE-PLM and an off-the-shelf su-
pervised parser (Benepar; Kitaev and Klein (2018))
in few-shot settings.7 From Table 7, we discover
that CPE-PLM shows much better performance

7Specification on training a supervised parser in few-shot
settings can be found in Appendix A.

Models F1 w/ ensemble (↑) Inference
Greedy Beam time (↓)

Unsupervised parsers/CPE-PLM
Compound PCFG (Kim et al., 2019b) 55.2 31 min.
CPE-PLM (All PLMs) 55.3 55.7 27 min.

Parsers trained with induced trees
Distance (Shen et al., 2018a) 53.8 55.0 36 sec.
Benepar (Kitaev and Klein, 2018) 56.6 59.3 32 sec.

Table 8: Training normal parsers with supervision from
the trees induced by CPE-PLM. We show that it is viable
to build a much faster parser while preserving (or even
boosting) the performance of CPE-PLM by relying on
existing techniques for supervised parsing.

than the normal parser in extreme cases where few
dozen trees are provided. When trees more than
10% of the validation set are available, the super-
vised parser starts to outperform CPE-PLM.

Issues on the execution time. As identified in
Table 8, where we estimate the accuracy and exe-
cution time of different approaches on PTB, CPE-
PLM and Compound PCFG are still too slow to
be readily utilized, compared to supervised coun-
terparts which are generally highly optimized. To
relieve this inefficiency, we propose to exploit nor-
mal parsers (Shen et al., 2018a; Kitaev and Klein,
2018) by training them with the trees generated by
CPE-PLM if a suitable amount of gold annotations
are not available for supervision. In Table 8, we
demonstrate that it is possible to transfer syntactic
knowledge from PLMs to supervised parsers with-
out loss of accuracy, while significantly reducing
the execution time at the same time. We even obtain
performance gain in some cases, achieving nearly
60 in F1 score. We expect that this direction can
be particularly useful for low-resource languages
for which it is hard to collect gold annotations.

7 Conclusion

In this paper, we introduce two ensemble methods
and multi-PLM configurations for Constituency
Parse Extraction from Pre-trained Language Mod-
els (CPE-PLM). We demonstrate that the perfor-
mance of CPE-PLM can be competitive with that
of unsupervised parsers with the aid of the pro-
posed approaches, and that the parses induced by
CPE-PLM are practically useful in several applica-
tions where parse trees are required as input. We
also propose solutions for mitigating some inher-
ent limitations of CPE-PLM. We anticipate that its
potential will be further greater in the near future
with the introduction of more sophisticated PLMs.
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David Mareček and Rudolf Rosa. 2019. From
balustrades to pierre vinken: Looking for syntax in
transformer self-attentions. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In ACL.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. TACL, 8:842–866.

Rudolf Rosa and David Mareček. 2019. Inducing syn-
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Alina Wróblewska, and Eric Villemonte de la Clerg-
erie. 2013. Overview of the SPMRL 2013 shared
task: A cross-framework evaluation of parsing
morphologically rich languages. In Proceedings
of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018a. Straight to the tree: Constituency parsing
with neural syntactic distance. In ACL.

Yikang Shen, Zhouhan Lin, Chin wei Huang, and Aaron
Courville. 2018b. Neural language modeling by
jointly learning syntax and lexicon. In ICLR.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
ICLR.

Haoyue Shi, Karen Livescu, and Kevin Gimpel. 2020.
On the role of supervision in unsupervised con-
stituency parsing. In EMNLP.

Haoyue Shi, Hao Zhou, Jiaze Chen, and Lei Li. 2018.
On tree-based neural sentence modeling. In EMNLP.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In NeurIPS.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
ACL-IJCNLP.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In ACL.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS.

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control.

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020. The
return of lexical dependencies: Neural lexicalized
pcfgs. In TACL.

5407



A Appendix: Details on Training
Few-shot Parsers

Following Shi et al. (2020), we train a su-
pervised parser (Benepar; Kitaev and Klein
(2018)) in few-show learning settings to pro-
vide a robust baseline for our experiments.
To be specific, we leverage the official code
and hyperparameters of the parser obtained
from https://github.com/nikitakit/
self-attentive-parser. Given a desig-
nated number of parses from the PTB validation set,
we utilize 90% of them as the training set while the
remaining 10% are used as the real validation set.
We train the parser for 100 epochs, similar to Shi
et al. (2020). Compared against the experimental
results reported from Shi et al. (2020), our few-shot
parsers show relatively weaker performance. We
conjecture this gap comes from the methods Shi
et al. (2020) exploited to boost their performance.
For instance, (1) they further pre-trained their word
embeddings on sentences from PTB and (2) utilized
data augmentation and self-training techniques, all
of which are not applied in our case.
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Abstract

We introduce a novel position offset label pre-
diction subtask to the encoder-decoder archi-
tecture for grammatical error correction (GEC)
task. To keep the meaning of the input sen-
tence unchanged, only a few words should be
inserted or deleted during correction, and most
of tokens in the erroneous sentence appear in
the paired correct sentence with limited posi-
tion movement. Inspired by this observation,
we design an auxiliary task to predict position
offset label (POL) of tokens, which is naturally
capable of integrating different correction edit-
ing operations into a unified framework. Based
on the predicted POL, we further propose a
new copy mechanism (P-copy) to replace the
vanilla copy module. Experimental results on
Chinese, English and Japanese datasets demon-
strate that our proposed POL-Pc framework ob-
viously improves the performance of baseline
models. Moreover, our model yields consistent
performance gain over various data augmenta-
tion methods. Especially, after incorporating
synthetic data, our model achieves a 38.95 F0.5

score on Chinese GEC dataset, which outper-
forms the previous state-of-the-art by a wide
margin of 1.98 points.

1 Introduction

Grammatical error correction (GEC) is to auto-
matically correct grammatical errors in the input
sequence, which is significant for both academic
research and practical applications. Comparing
with English grammatical error correction, Chinese
grammatical error correction (CGEC) is less ad-
dressed.

After convolutional neural network and recurrent
neural network, the Transformer based sequence-
to-sequence models have achieved remarkable per-
formance on GEC task (Junczys-Dowmunt et al.,
2018; Kaneko et al., 2020). To alleviate the
data sparsity problem, the method of generating

∗*Corresponding author.

(a) Example I: deletion and substitution

(b) Example II: re-ordering and insertion

Figure 1: Examples of error detection and correction for
CGEC task. Label @ represents a blank position.

pseudo data is intensively studied (Xie et al., 2018;
Lichtarge et al., 2019). Several models simplify
the GEC task from sequence generation to token-
level edit prediction. For example, LaserTagger
(Malmi et al., 2019) predicts three edit tags Keep,
Delete and Append_# for each token in the source
sentence, and GECToR (Omelianchuk et al., 2020)
designs ample English-specific tags to predict.

To keep the meaning of the erroneous sentence
unchanged, only a few words could be inserted or
deleted while most words remain the same. Taking
the CGEC task NLPCC data (Zhao et al., 2018) as
an example: (1) about 95.6% tokens in erroneous
sentences appear in their corresponding correct sen-
tences (namely "cue tokens" for brevity). (2) the
average lengths of erroneous sentences and the
longest common sub-sequence of error-corrected
sentence pairs are 29.65/27.55 tokens, indicating
that cue tokens are almost in the same order. (3)
the average lengths of inserted and deleted spans
are 1.46 and 1.49 tokens, respectively.

Unfortunately, there is no existing model which
takes all of these three characteristics into consid-
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eration. The copy mechanism (Zhao et al., 2019)
only considers the characteristic (1). The sequence
tagging models (Liang et al., 2020; Malmi et al.,
2019) take advantage of Characteristic (3) to build
a fixed-size vocabulary for Append_# label but fail
to explicitly model the first and the second points.

In our work, we merge these three characteristics
into one key point: most of tokens appear in both
erroneous and correct sentences, and their positions
in erroneous sentences (denoted as ith) are identi-
cal or close to their positions in the corresponding
correct sentences (denoted as jth). As shown in
Figure 2, this phenomenon could be observed in
GEC datasets of different languages. For instance,
on NLPCC dataset, 48.2% of cue tokens are ex-
actly in the same position (i = j), and about 90%
of them can be moved to the right position within a
length of 3 tokens (abs(i− j) ≤ 3).

Figure 2: Position movement of cue tokens from erro-
neous sentences to paired correct sentences in Chinese,
Japanese and English GEC datasets, which are described
in Section 5.1.

Inspired by the key point summarized above,
we propose a novel Position Offset Label (POL)
prediction task to determine which tokens in the
source sentence are error-free, as well as their po-
sition movement from the source sequence to the
target sentence. As illustrated in Figure 1, our
method could simultaneously model different kinds
of correction editing operations, including inser-
tion, substitution, deletion and re-ordering. At the
decoder, rather than using the conventional atten-
tion distribution, a new copy mechanism (P-copy)
is proposed to take advantage of the result of POL
prediction. Overall, we adopt a multi-task learning
framework named POL-Pc, where the detection
network is to perform POL prediction, and the cor-
rection network then generates words to fill in the
blank positions where no tokens in the source se-
quence are mapped to.

We conduct extensive experiments on CGEC
data NLPCC (Zhao et al., 2018). Experimental
results show that without data augmentation, our

pure model obtains the best result among all non-
pretrained models. After integrating data augmen-
tation methods, our method achieves a new state-of-
the-result for CGEC for single models, outperform-
ing the previous best result by 1.98 points. We also
conduct experiments on English dataset CoNLL-
2014 (Bryant et al., 2019) and Japanese TEC-JL
dataset (Koyama et al., 2020), our POL-Pc model
consistently improves the performance of the Trans-
former, validating the generalization ability of our
approach. We will make our code publicly avail-
able at the GitHub for further research.

To sum, our proposed model for GEC task enjoys
the following advantages:

• Comparing with traditional end-to-end meth-
ods, our model explicitly separates error de-
tection and error correction, bringing a good
interpretability of the neural network.

• Comparing with previous sequence tagging
approaches, our model is free to insert any
words or phrases without the need to build
a specific vocabulary. Moreover, our label
strategy is less affected by the imbalance of
tag number.

• Our model adopts multi-task learning instead
of a pipeline structure to avoid error accumu-
lation.

• Our model outperforms the baseline Trans-
former by a wide margin for Chinese,
Japanese and English GEC tasks. After in-
corporating data augmentation methods, it ob-
tains a new state-of-the-art result on CGEC
task for single models.

2 Related Work

Recently, Transformer-based sequence to sequence
models are introduced to GEC task and make great
progress (Junczys-Dowmunt et al., 2018; Kaneko
et al., 2020). To augment the error-corrected par-
allel corpus, synthetic data is generated from the
Wikipedia revision log (Lichtarge et al., 2019) or
generated by applying token-level insertion, substi-
tution, deletion or swapping on error-free corpus
(Zhao et al., 2019; Grundkiewicz et al., 2019).

Several models are proposed to simplify GEC
task from sequence generation to sequence tag-
ging. LaserTagger (Malmi et al., 2019) predicts
Keep, Delete or Append_# tags for each token in
the source sentence. PIE (Awasthi et al., 2019)
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and GECToR (Omelianchuk et al., 2020) manually
design detailed English-specific labels, regarding
case and tense, which is hard to adapt to other
languages like Chinese. TtT (Li and Shi, 2021)
adopts a non-autoregressive model to directly pre-
dict each token in the correct sentence. ESD-ESC
(Chen et al., 2020) detects erroneous spans and
then utilizes a seq2seq model to only produce cor-
rect text for those annotated spans. Different from
these previous works, we build a multi-task learn-
ing framework by treating the sequence tagging as
an auxiliary subtask, and more importantly, our tag
strategy is novel and effective.

For CGEC task, most of previous works (Wang
et al., 2018; Zhang et al., 2020) focus on the
spelling error correction task on SIGHAN (Tseng
et al., 2015) and Hybrid (Wang et al., 2018)
datasets. The NLPCC-2018 dataset (Zhao et al.,
2018) provides multiple types of grammatical er-
rors and attracts much attention from participated
teams, where the top-3 systems are Alibaba (Zhou
et al., 2018), YouDao (Fu et al., 2018) and BLCU
(Ren et al., 2018). HRG combines language model
base spelling checker, NMT-base model and se-
quence editing model (Hinson et al., 2020). Later,
Zhao and Wang proposes MaskGEC by adding
random noises to source sentences dynamically,
which achieves the state-of-the-art on NLPCC-
2018 dataset. This paper also conducts experiments
on NLPCC dataset and considers these methods as
comparing baselines.

3 Proposed Model

As shown in Figure 1, given an erroneous sen-
tence X = (x1, x2, ...xm) and its corresponding
corrected sentence Y = (y1, y2, ...yn), our model
firstly decides whether a source token xi should
be deleted and if not predicts its position chang-
ing from X to Y . There might exist some blank
positions where no source tokens are mapped to
(denoted as @ in Figure 1). A decoder with copy
mechanism is utilized to copy source tokens and
generate new tokens for blank positions, where the
copy operation is guided by the result of position
offset label prediction. The overview of our frame-
work is illustrated in Figure 3.

3.1 Position Offset Label Prediction

For each token xi in the erroneous sentence X , we
tag its offset (i.e., the distance between its position
in X and Y ) as:

oi =

{
j − i, xi = yj

null, xi /∈ Y
(1)

where oi denotes the position offset label. If there
exist more than one yj equaling to xi , xi will
match the nearest one.

In order to retain the original meaning of the
input sentence, the lengths of inserted or deleted
spans in correction editing should be as short as
possible, and cue tokens’ positions in corrected
sentences are usually close to their positions in er-
roneous sentences. Benefiting by this observation,
we limit the maximum absolute value of offset oi
by a constant k, to reduce the number of possible
categories:

oi =





j − i, xi = yj , abs(i− j) ≤ k
other, xi = yj , abs(i− j) > k

null, xi /∈ Y
(2)

According to the statistics in Figure 2, there are
over 90% of cue tokens whose offsets are less than
or equal to 3 for GEC dataset of any language. We
consistently set k = 3 for experiments on different
languages GEC dataset.

For a clear understanding of the operation of
position offset label, Figure 4 presents two exam-
ples. We can observe that our designed offset label
oi is able to simultaneously model different edit
operations in an elegant way, including insertion,
substitution, deletion and re-ordering.

We also carry a statistic comparison of our po-
sition offset label with previous sequence tagging
methods, as listed in Table 1. The edit label ap-
proach predicts Keep, Delete, Append_# or labels
representing form transformations of each token
(Malmi et al., 2019; Omelianchuk et al., 2020),
where one token might have multiple labels (for
example, one token might have Append_# and
tense transformation label simultaneously). The
right/wrong label (Zhao et al., 2019; Chen et al.,
2020) predicts whether each token in the erroneous
sentence should be kept in the correct sentence,
which suffers from data imbalance. Compared with
them, our strategy avoids all these problems.

We adopt the Transformer encoder to obtain the
sequence representation vectors, and then a linear
layer and softmax operation are utilized to generate
a probability distribution:
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Figure 3: Overview of our POL-Pc framework. For a clear display, we limit the position offset label to {−1, 0, 1},
which respectively means the source token should be moved to the previous position, be kept in the same position or
be moved to the next position.

(a) Example I: Deletion and substitution

(b) Example II: Insertion and reorder

Figure 4: Examples of position offset labels for different
types of operations. N represents null. @ represents a
blank position.

(hL1 , h
L
2 , ..., h

L
m) = Transformer(x1, x2, ..., xm)

(3)

Po(ot|X) = softmax(W T
o h

L
t + bo) (4)

where Wo and bo are learned parameters. The loss
function for label prediction is defined using log-
likelihood:

Lossoff = −
m∑

t=1

logPo(ot|X) (5)

3.2 Copying with Position Offset Label
Prediction

We employ a decoder with copy mechanism to
generate error-free sentences. Different from con-
ventional copy methods, we propose a new copy

Tag # Class Single label Maj. (%)

Edit ≥ 500 85.6
Right/Wrong 2 ✓ 90.2

Position Offset 9 ✓ 43.5

Table 1: Comparison of different tagging strategies.
Single label refers to whether each token in the erro-
neous sentence has only one label. Maj. refers to the
percentage of the major label that takes up the highest
proportion.

mechanism (P-copy) based on the prediction of
position offset label.

At timestep t, the generation distribution is com-
puted as:

P gent = softmax(W T
s st + bs) (6)

where st is the hidden state of decoder, Ws and bs
are parameters to learn.

The copy distribution of each token at timestep t
is computed by:

P copyt (yt) =





∑
i:xi=yt

Po(oi = t− i), yt ∈ X

0, otherwise
(7)

It means if the source token xi appears at the tth

position in the sequence Y with a probability of
Po(oi = t − i), the model will copy the token
xi at timestep t with the same probability. We
then utilize the softmax function to normalize copy
distribution P copyt . The copy rate αt is computed
using attention mechanism and sigmoid function:

Qt =Wqst,Ki =Wkh
L
i , Vi =Wvh

L
i (8)
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ai =
exp(QtK

T
i )∑

j exp(QtK
T
j )

(9)

hc =

m∑

i=1

aiVi (10)

αt = sigmoid(W T
c hc + bc) (11)

where Wq, Wk, Wv, Wc and bc are parameters to
learn.

We fuse the generation probability and copy
probability to get the final distribution:

Pv = (1− αt)P gent + αtP
copy
t (12)

Moreover, the loss function for generation is:

Lossgen = −
n∑

t=1

logPv(yt|yt−1, yt−2, ...y1, X)

(13)
Combing the generation loss with the loss of

POL prediction, the final optimization object of
our model is:

Loss = Lossgen + γLossoff (14)

where γ is a hyper-parameter to balance two loss
functions.

4 Data Augmentation

In order to provide more training samples for our
model, we do data augmentation by generating
synthetic data and introducing dynamic noises. We
introduce the following types of noises to produce
erroneous sentences.

Deletion: To discard each word with a probabil-
ity of Pdel.

Insertion: To insert a [UNK] symbol before
each word with a probability of Pins.

Substitution: To replace each word using
[UNK] symbol / random token / its homophone
with a probability of Psub.

We set Pins = Pdel = Psub = 0.25 in all experi-
ments.

4.1 Synthetic Data

We select THUCnews1 as the external data which
contains 740,000 news documents. We delete the
format information such as headlines and bylines
in the news corpus and cut the reserved text into

1http://thuctc.thunlp.org/

11.4 million single sentences, from which we ran-
domly select 5 million sentences. In our experi-
ment, we introduce only one type of noises into
each sentence. Since mixing up synthetic data with
training data might dilute human-made corpus and
degrade model performance, we only use synthetic
data to initialize the parameters of our model by
pre-training 10 epoches.

4.2 Dynamic Noise

Inspired by MaskGEC (Zhao and Wang, 2020), we
add dynamic noises to input sentences when train-
ing on NLPCC dataset to provide more instances.
For each human-made erroneous sentence, we ran-
domly choose to keep it unchanged or introduce
one type of noises described above.

5 Experimental Setup

5.1 Dataset

We conduct experiments for Chinese, English and
Japanese GEC tasks. The details of datasets of
different languages is listed in Table 2.

For CGEC task, we choose the dataset of
NLPCC 2018 Task 2 (Zhao et al., 2018) , where
the training data is collected from the language
learning platform Lang-82 while the test data is cre-
ated by teachers. Following the prior work (Zhao
and Wang, 2020), we randomly select 5,000 in-
stances from 1.09 million training samples as the
development set, and evaluate our model on the
official test set containing 2000 sentences. We use
BasicTokenizer from BERT project3 to tokenize
the Chinese texts and keep the non-Chinese words
unchanged. During evaluation, We tokenize texts
with PKUNLP4 toolkit, which has been used offi-
cially at the campaign.

To verify the generalization of our method, we
also conduct experiments on English and Japanese
GEC tasks. For English GEC task, following
Bryant et al. (2019), we use FCE (Yannakoudakis
et al., 2011), Lang-8 Corpus of Learner English
(Mizumoto et al., 2011), NUCLE (Dahlmeier et al.,
2013) and W&I+LOCNESS (Bryant et al., 2019)
as training data, CoNLL-2013 test set as dev set
and evaluate on CoNLL-2014 (Ng et al., 2014) test
set. For Japanese GEC task, we select 1.19 mil-
lion/5000 sentence pairs as training/dev set from

2https://lang-8.com/
3https://github.com/google-research/bert
4http://59.108.48.12/lcwm/pkunlp/downloads/libgrass-

ui.tar.gz
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corpora collected from Lang-8 website5, and evalu-
ate our model on TEC-JL dataset (Koyama et al.,
2020).

We adopt M2 scorer (Dahlmeier and Ng, 2012)
as the evaluation tool, where the value of precision,
recall and F0.5 score is computed.

Language Train Dev Test Dict Vocab

Chinese 1.09 M 5,000 2,000 char 13.8 K
Japanese 1.19 M 5,000 1,874 char 6.5 K
English 1.01 M 1,381 1,312 bpe 32 K

Table 2: Data statistics for Chinese, Japanese and En-
glish GEC tasks.

5.2 Comparing Methods

We compare our model with the top-3 participated
teams of the campaign.

AliGM combines rule-based, SMT-based and
NMT-based approaches (Zhou et al., 2018).

YouDao employs five different hybrid models
and the final result is selected via a language model
(Fu et al., 2018).

BLCU builds a mutli-layer convolutional model
with pre-trained embeddings (Ren et al., 2018).

Furthermore, we compare with some of main-
stream neural network models for text generation.

Transformer adopts a standard encoder-decoder
framework (Vaswani et al., 2017).

Levenshtein-Transformer takes insertion and
deletion as atomic operations (Gu et al., 2019).

LaserTagger predicts edit operations Keep,
Delete or Append_# for each token (Malmi et al.,
2019).

ESD-ESC adopts a pipeline structure to firstly
detect erroneous spans and then output the correct
text for annotated spans (Chen et al., 2020).

Pointer Generator decides to generate a token
or copy a token from the source sentence (See et al.,
2017), where Transformer is used as the encoder
and decoder.

Copy-Augmented introduces copy mechanism
into Transformer-based seq2seq framework and
employs multi-task learning by predicting whether
tokens in input sentence appear in target sentence
(Zhao et al., 2019).

HRG proposes a heterogeneous approach com-
posed of language model base spelling checker,
NMT-base model and sequence editing model (Hin-
son et al., 2020).

5https://sites.google.com/site/naistlang8corpora

BERT-fuse incorporates pre-trained BERT
model to enhance Transformer (Kaneko et al.,
2020).

MaskGEC (Zhao and Wang, 2020) adds random
noises to source sentences dynamically.

5.3 Training Details
Our model is implemented using Fairseq 6. The de-
tail of hyper-parameters of our model is described
in Table 3.

Hyper-parameter Value

encoder layers 6
decoder layers 6
encoder embedding dim 512
decoder embedding dim 512
encoder ffn dim 2048
decoder ffn dim 2048
dropout 0.2
attention dropout 0.1
learning rate 5e-4
Adam β1 0.9
Adam β2 0.998
Adam ϵ 1e-8
lr scheduler inverse_sqrt
warmup updates 8000
max tokens 4096
update-freq 2

loss function label smoothed cross entropy
label-smoothing=0.1

Table 3: Hyper-parameter values of our model.

We average parameters of the last 5 checkpoints.
In inference, the beam size is set as 12. In the final
loss of Equation 14, we set γ = 0.5.

6 Results and Discussion

6.1 Main Results for CGEC task
For Chinese GEC task, the overall results of differ-
ent models are reported in Table 4.

Our pure model POL-Pc yields a 30.64 F0.5

score, which beats all the pure models without data
augmentation or other extra resources. The Copy-
Augmented model reaches 29.85 F0.5 by employ-
ing the copy mechanism and predicting whether
each token in source sentence is kept in the target
sentence. Compared with it, our sub-task of POL
prediction suffers less from the data imbalance,
leading to an improvement of 0.79 F0.5 score.

After applying dynamic noises, our model gets
a 37.97 F0.5 score which outperforms the previ-
ous best model MaskGEC. After pretrained on the
synthetic data, our model achieves a new state-of-
the-art result of 38.95 F0.5.

6https://github.com/pytorch/fairseq
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Models Precision Recall F0.5

LaserTagger* 25.60 10.50 19.90
Lev-Transformer* 24.90 15.00 22.00
Transformer 34.02 15.44 27.42
Pointer Generator 33.51 16.45 27.75
ESD-ESC* 37.30 14.50 28.40
Copy-Augmented 35.03 18.75 29.85

AliGM*▲♢ 41.00 13.75 29.36
YouDao*▲♢ 35.24 18.64 29.91
BLCU*▲♢ 47.63 12.56 30.57
BERT-fuse♢ 35.16 23.32 31.92
HRG*▲♢ 36.79 27.82 34.56
MaskGEC*♡ 44.36 22.18 36.97

POL-Pc 36.75 18.39 30.64
POL-Pc + DN♡ 44.64 23.77 37.97
POL-Pc + DN + SD♡♢ 46.45 23.68 38.95

Table 4: Overall performance of different models on
NLPCC-2018 test dataset. The model performance with
* is from the original published paper and the result of
LaserTagger is from (Chen et al., 2020). Other models
are re-implemented on our data using the released codes
or Fairseq. SD and DN refer to synthetic data and dy-
namic noise described in Section 4. The symbols ▲ / ♡
/ ♢ denote ensemble / data augmentation / pre-training
approaches respectively.

6.2 Results for Various Language GEC tasks
In addition to Chinese, Table 5 reports the exper-
imental results on English and Japanese datasets.
Compared with the baseline Transformer, our pure
model brings a relative performance gain of 11.7%,
7.4% and 4.0% on Chinese, Japanese and English
datasets respectively, validating the effectiveness
of our approach for different language GEC tasks.

It also demonstrates that our model is more suit-
able for Chinese and Japanese GEC task. Both Chi-
nese and Japanese language utilize function words
instead of affixes to represent forms and tenses,
which leads to more insertion and deletion opera-
tion when correcting grammatical errors. In con-
trast, the substitution operation such as shifting of
tenses is the main operation for English GEC task.
As demonstrated in Figure 2, tokens in English
GEC dataset are more likely kept in the exactly
same position. Besides, English word are divided
into subwords by BPE, which makes POL predic-
tion module hard to train. As a result, the prediction
of token position movement is more beneficial for
Chinese and Japanese GEC tasks.

6.3 Results with Different Data Augmentation
Methods

Since data augmentation is intensively studied for
GEC, we implement our model trained on differ-

Models NLPCC TEC-JL CoNLL-14

Lev-Transformer 22.00 16.21 42.48
Pointer Generator 27.75 26.62 49.99
Transformer 27.42 26.11 48.63

POL-Pc 30.64 28.03 50.56
vs. Transformer +11.7% +7.4% +4.0%

Table 5: Performance on Chinese, Japanese and English
GEC datasets.

Data Augmentation Transformer POL-Pc Imp.

None 27.42 30.64 +3.22
MaskGEC 36.97 37.26 +0.29
Dynamic Noise 37.02 37.97 +0.95
Synthetic Data (SD) 32.81 33.37 +0.56
SD + MaskGEC 37.83 38.21 +0.38
SD + Dynamic Noise 37.71 38.95 +1.24

Table 6: Performance of our model after incorporating
different data augmentation methods on NLPCC-2018
dataset. Imp refers to improvement.

ent synthetic data, and the experimental results are
shown in Table 6. Our model consistently out-
performs Transformer utilizing different data aug-
mentation approaches. Compared with MaskGEC
which benefits both Transformer and our POL-Pc
model, our dynamic noise, as described in Section
4, brings more improvement to POL-Pc. It demon-
strates that providing more training samples with
different position movement generated by deletion
and insertion operations could further improve the
performance of our model.

6.4 Results of POL Prediction on Different
Model Architectures

To further evaluate the effectiveness of position off-
set label prediction for GEC task, we apply this
module to other model architectures, including
the standard Transformer, Pointer-Generator and
Copy-augmented models. We evaluate their perfor-
mance on NLPCC test dataset. As shown in Table
7, adding POL prediction as one of jointly-training
tasks consistently improves the performance of dif-
ferent baseline models.

It is noteworthy that combining the POL predic-
tion sub-task with Pointer Generator reaches 29.57
F0.5 score, which is lower than our pure model
(F0.5 = 30.64). Because our model adopts the
probability of POL prediction as the copy score,
which is more effective than making POL predic-
tion and copy mechanism work separately.
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Model Precision Recall F0.5 Imp.

Transformer 34.02 15.44 27.42 -
+ POL 32.59 18.14 28.11 +0.69

Pointer Generator 33.51 16.45 27.75 -
+ POL 36.22 17.05 29.57 +1.82

Copy-Augmented 35.03 18.75 29.85 -
+ POL 37.89 16.89 30.34 +0.49

Table 7: Experimental results of POL prediction based
on different model architectures NLPCC-2018 dataset.

Model Precision Recall F0.5 Imp.

POL-Pc 36.75 18.39 30.64 -
- P-copy 32.59 18.14 28.11 -2.53
- (POL + P-copy) 34.02 15.44 27.42 -3.22

POL-Pc+DN+SD 46.45 23.68 38.95 -
- P-copy 45.87 23.23 38.39 -0.56
- (POL + P-copy) 45.05 22.84 37.71 -1.24
- Synthetic Data 44.64 23.77 37.97 -0.98
- Dynamic Noise 43.43 17.32 33.37 -4.58

Table 8: Ablation study on NLPCC dataset. POL refers
to position offset label prediction, and P-copy refers to
our POL-based copy mechanism. DN refers to dynamic
noises and SD refers to synthetic data.

6.5 Ablation Study

We do ablation study on NLPCC dataset to evalu-
ate the effect of each module, and list the results
in Table 8. On the pure model, removing the POL-
based copy mechanism results in a 2.53 decrease,
and removing both POL prediction and copy mod-
ules leads to a sharp decrease of 3.22 points, which
proves that our proposed copy mechanism is a suit-
able way to take advantage of the results of POL
prediction.

Our full model greatly benefits from data aug-
mentation with a 8.31 increase in F0.5. For the
full model, removing the copy module causes a
decrease of 0.56 F0.5 score. Removing both POL
prediction and copy modules results in a drop of
1.24 F0.5 score, which shows that our proposed
module can improve model performance even after
a huge amount of pseudo data being incorporated.
Discarding the synthetic data, the performance de-
creases from 38.95 to 37.97, suggesting that using
synthetic data for pre-training provides the model
with better initial parameters.

6.6 Hyper-parameter Setting

In this section, we explore the effect of hyper-
parameter γ in Equation 14. As illustrated in Figure
5, F0.5 score shows a single-peaked pattern as γ

increases. In most cases, our pure model surpasses
the basic Transformer model and achieves the best
performance when γ is 0.5. When γ decreases, the
model fails to explicitly predict the position offset
label guided by ground-truth labels, making the
model gradually degrade to the vanilla copy mech-
anism, and when γ increases, the model pays less
attention to the generation ability of decoder which
also harms the performance.

Figure 5: The effect of hyper-parameter γ on multi-task
learning based on the standard Transformer model. The
red line refers to the performance of basic model on
NLPCC dataset.

6.7 Case Study
To investigate how POL prediction and the cor-
rection network work together, we select two ex-
amples from the NLPCC test data to visualize the
intermediate result and final output. As illustrated
in Figure 6, in both examples, most of tokens are
predicted to be moved to the right position. For
tokens which should be deleted or substituted, our
model predicts their probability of moving to any
position to be low, which means the probability of
deletion Po(oi = null) is high. Moreover, in the
first example, the copy rate of tokens not appear-
ing in the target sentence is low, which shows our
copy mechanism works effectively with respect to
different offset labels. These two modules in our
framework can accomplish their respective tasks
and cooperate smoothly with each other.

7 Conclusion

We introduce a detection network to predict POL
of tokens between source erroneous sentences and
target correct sentences. Based on the output of
POL, we design a new copy mechanism P-copy.
Our POL-Pc model exceeds both end-to-end mod-
els and sequence tagging approaches, achieving a
new state-of-the-art result on CGEC task for single
models. For English and Japanese GEC tasks, our
approach also obtains significant performance gain
over the baseline Transformer.

5416



Figure 6: Visualization of POL prediction and copy
mechanism. The color blue represents the probability
of POL, and the color red represents the copy rate αt

defined in Equation 11. The color becomes darker as the
value gets bigger. Label @ represents a blank position.
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Abstract

Semantic parsing converts natural language
utterances into structured logical expressions.
We consider two such formal representations:
Propositional Logic (PL) and First-order Logic
(FOL). The paucity of labeled data is a major
challenge in this field. In previous works, dual
reinforcement learning has been proposed as
an approach to reduce dependence on labeled
data. However, this method has the following
limitations: 1) The reward needs to be set man-
ually and is not applicable to all kinds of logical
expressions. 2) The training process easily col-
lapses when models are trained with only the re-
ward from dual reinforcement learning. In this
paper, we propose a scoring model to automati-
cally learn a model-based reward, and an effec-
tive training strategy based on curriculum learn-
ing is further proposed to stabilize the training
process. In addition to the technical contribu-
tion, a Chinese-PL/FOL dataset is constructed
to compensate for the paucity of labeled data
in this field. Experimental results show that the
proposed method outperforms competitors on
several datasets. Furthermore, by introducing
PL/FOL generated by our model, the perfor-
mance of existing Natural Language Inference
(NLI) models is further enhanced.

1 Introduction

Semantic parsing is the task of mapping natural lan-
guage utterances into logical expressions. As two
major logical forms of text representation, Proposi-
tional Logic (PL) and First-order Logic (FOL) play
an increasingly important role in a wide range of
downstream tasks including Inductive Logic Pro-
gramming (ILP) (Yang and Song, 2019), Question
Answering (QA) (Longo and Santoro, 2020) and
Interpretable Reinforcement Learning (Ma et al.,
2020; Kimura et al., 2021) because they are capable

∗ Corresponding Author

English-FOL
Natural Language Utterance
Some volunteers include executives and professionals.
Logical Expression
exists x1.(_volunteer(x1) & exists x2.
(_executive(x2) & _professional(x2) & _include(x1, x2)))

Table 1: Example of the English-FOL dataset. Text
in olive denotes quantifiers, and text in teal denotes
predicates. x1 and x2 denote variables, and & denotes
logical connectives.

of discovering and representing knowledge in an
explicit symbolic structure that can be understood
and examined by human (Evans and Grefenstette,
2018). It is worth noting that all of these tasks have
a prerequisite, i.e., parsing natural language utter-
ances into PL/FOL. The results of parsing directly
affect the performance of downstream tasks. Thus,
it is crucial to have a strong semantic parser for
PL/FOL.

Some solutions have been proposed to parse nat-
ural language into PL/FOL. One of the most typical
methods is to model the parsing task as a sequence-
to-sequence (Seq2seq) generation problem, includ-
ing using a character-level recurrent neural net-
work (Levkovskyi and Li, 2021) and introducing a
variable alignment mechanism (Singh et al., 2020).
However, these approaches have the following is-
sues. First, a large amount of labeled data is re-
quired for these approaches to achieve good results,
which inevitably suffers from the paucity of labeled
data in this field. One of the solutions is to gen-
erate labeled data by templates (Levkovskyi and
Li, 2021), but it leads to a lack of diversity in the
data which makes the model prone to overfitting
the training data. Second, previous works (Singh
et al., 2020; Levkovskyi and Li, 2021) only con-
sider unidirectional generation (from utterance to
PL/FOL), while intuitively bidirectional generation
can further enhance the performance of the models.
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Regarding these issues, we propose an effec-
tive framework for parsing natural language into
PL/FOL named Dual-(m)T5, and introduce unla-
beled data to alleviate the impact of insufficient
labeled data. Inspired by He et al. (2016); Cao
et al. (2019), we model the learning of logical ex-
pressions and natural language generation as dual
tasks. Both of the tasks are jointly trained via rein-
forcement learning (RL) since the training process
is non-differentiable. However, we encounter the
following challenges when applying dual reinforce-
ment learning to PL/FOL: 1) The validity reward
in dual reinforcement learning is rule-based (Cao
et al., 2019), which results in a lot of manual at-
tempts to get an effective one, and needs to be
redesigned when the type of logical expressions
changes (e.g. from lambda-calculus to FOL) since
it is customized for a specific type of logical expres-
sion. 2) The effectiveness of the validity reward
needs to be improved because it only considers
a lexical-level matching between utterances and
logical expressions, and cannot achieve deep se-
mantic matching. 3) An effective training strategy
needs to be explored since the training process eas-
ily collapses when the model is trained with only
the rewards from dual reinforcement learning.

To address the first two issues mentioned above,
we propose a scoring model to automatically learn
a model-based validity reward that is applicable to
various types of logical expressions. The scoring
model aims to evaluate whether the semantics of
utterances and logical expressions match. For is-
sue 3, we propose an effective training strategy to
stabilize the training process. Specifically, curricu-
lum learning (Bengio et al., 2009) is employed to
initialize the parameters of the model, aiming to
get the model in a good initial state, and unlabeled
data is introduced to prevent models from crashes
due to insufficient labeled data. Experimental re-
sults on different datasets show that our framework
effectively parses natural language into PL/FOL
and consistently improves performance compared
to competitors. To further demonstrate the value
of PL/FOL, we take Natural Language Inference
(NLI) as a downstream task, and the performance
of existing NLI models is further enhanced by in-
troducing PL/FOL generated by our model.

Our contributions are three-folds:

• We propose a dual reinforcement learning
framework called Dual-(m)T5 with a novel
model-based validity reward that fully con-

siders the semantics of utterances and logical
expressions and is applicable to all types of
logical expressions. We further propose an
effective training strategy to stabilize the train-
ing process of dual reinforcement learning.

• We release a new dataset called Chinese-
PL/FOL that contains 1,263 Chinese-PL pairs
and 1,464 Chinese-FOL pairs to compensate
for the paucity of labeled data in this field.

• Experimental results show that the proposed
method outperforms competitors on several
datasets. Furthermore, by introducing addi-
tional logical expressions generated by Dual-
(m)T5, the performance of existing NLI mod-
els is further enhanced.

2 Overview

In this section, we formalize the problem and out-
line our framework.

2.1 Problem Definition

As shown in Table 1, given a natural language
sentence s, the goal of this paper is to gener-
ate the corresponding logical expression e. For
example, given a sentence “Some volunteers in-
clude executives and professionals.”, an ideal
model would generate a logical expression “exists
x1.(_volunteer(x1) & exists x2. (_executive(x2) &
_professional(x2) & _include(x1, x2)))”.

2.2 Framework

The overview of our framework is shown in Figure
1. The backbone of the framework is dual reinforce-
ment learning, which consists of two sub-modules:
The prime module generates a logical expression
given a natural language sentence, while the dual
module produces a sentence given a logical ex-
pression. The scoring model is used to obtain the
validity reward, and the reconstruction reward is
used to force the generated sentence in the dual
module as similar to the original sentence as pos-
sible. To stabilize the training process, models are
pre-trained before dual reinforcement learning, and
curriculum learning is employed to get the model
in a good initial state.

3 Methodology

In this section, we first present the details of dual
reinforcement learning in § 3.1. The scoring model
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Figure 1: An overview of the framework. Dual reinforcement learning consists of NL2LE and LE2NL, and the
validity reward is learned by the scoring model. The (m)T5s used in the scoring model and dual reinforcement
learning are initialized by pre-training. The sentence s and expression e represent a ground truth pair.

is introduced in § 3.2, and the training strategy is
provided in § 3.3.

3.1 Backbone: Dual Reinforcement Learning

The backbone of our framework is dual reinforce-
ment learning which consists of two sub-modules:
Natural Language to Logical Expression (NL2LE)
and Logical Expression to Natural Language
(LE2NL). Both of the modules adopt T5 (Raffel
et al., 2019) / mT5 (Xue et al., 2021), a (multi-
lingual) pre-trained text-to-text transformer as the
backbone. These two modules in a closed-loop are
trained by a reinforcement learning (RL) method
based on policy gradient (Sutton et al., 2000). In
RL, the state is denoted by the input of the prime
module, i.e., sentence s. The action in the prime
and dual modules is defined as the logical expres-
sion and sentence generation, respectively. The
policy is denoted as the parameters of the (m)T5
models in the two modules.
Prime Module (NL2LE) aims to transform nat-
ural language into PL/FOL. Specifically, given a
sentence s, the NL2LE model could generate k pos-
sible logical expressions e1, e2, · · · , ek via nucleus
sampling (Holtzman et al., 2020). Then, the scor-
ing model scores the generated logical expressions
and obtains a validity reward Rval (ei | s) for each
logical expression ei. The details of the scoring
model will be introduced in § 3.2.
Dual Module (LE2NL) is an inverse of the prime
module, which aims to generate sentences given
PL/FOL. Formally, the input is the logical expres-
sion ei generated in the prime task, and the model is
expected to output the original sentence s. Recon-
struction reward is used to estimate the similarity
between the input of the prime model and the out-
put of the dual model. Let ΘNL2LE and ΘLE2NL

denote all the parameters of NL2LE and LE2NL,
respectively. The reconstruction reward is formu-
lated as:

Rrec (s | ei) = logP (s | ei; ΘLE2NL) (1)

Learning Algorithm By utilizing policy gradient
(Sutton et al., 2000), the stochastic gradients of
ΘNL2LE and ΘLE2NL are computed as:

∇ΘNL2LE
E[r] =

1

k

k∑

i=1

ri · gi (2)

ri = αRval (ei | s) + (1− α)Rrec (s | ei) (3)

gi = ∇ΘNL2LE
logP (ei | s; ΘNL2LE) (4)

∇ΘLE2NL
E[r] =

1− α
k

k∑

i=1

g′i (5)

g′i = ∇ΘLE2NL
logP (s | ei; ΘLE2NL) (6)

where a hyper-parameter α ∈ [0, 1] is exploited to
balance between Rval and Rrec.

3.2 Scoring Model

The scoring model is used to evaluate whether
the semantics of the generated logical expression
is consistent with the semantics of the input sen-
tence and calculate the validity reward Rval. For-
mally, given a ⟨s, e⟩ pair, the scoring model outputs
P (e | s) ∈ [0, 1], which represents the correlation
between s and e. Intuitively, we take {⟨si, ei⟩}
pairs from the supervised dataset L as positive
samples P to train such a scoring model. The
challenge is that off-the-shelf negative samples are
not available. Negative sampling, i.e., sampling
{⟨si, ej⟩}i ̸=j pairs from L as negative samples is
an optional solution, but the quality of negative
samples obtained in this way are not challenging
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for the scoring model. To get enough hard negative
samples to train the scoring model, we design the
following approach:

First, an NL2LE model is pre-trained with the
supervised dataset L (details in § 3.3.1). After that,
given a sentence s, the NL2LE model could gen-
erate k possible logical expressions ē1, ē2, · · · , ēk
via nucleus sampling (Holtzman et al., 2020). We
denote {⟨s, ēi⟩} as negative samples N , where the
logical expression ēi is not equal to ground truth e.
Since the NL2LE model has been pre-trained, ēi
will be similar to the ground truth e. These hard
negative samples will challenge the scoring model
and enable it to learn the effects of small differ-
ences in logical expressions. For each ⟨si, ei⟩ ∈
P ∪ N , we take the last layer hidden states of
the NL2LE model’s encoder henci1 , · · · , hencin and
decoder hdeci1 , · · · , hdecim as the feature of si and ei
respectively. Then, the scoring model is defined as
follows:

h
enc
i =

1

n

n∑

j=1

hencij , h
dec
i =

1

m

m∑

j=1

hdecij (7)

ui = h
enc
i ·W1 + b1, vi = h

dec
i ·W2 + b2 (8)

P (ei | si) = σ ([ui; vi; |ui − vi|] ·W3 + b3) (9)

where W1|2|3 and b1|2|3 are trainable parameters.
[·; ·] is the concatenation operation, and σ repre-
sents sigmoid function. The training loss L of the
scoring model is binary cross-entropy (BCE) loss
between the model’s output P (ei | si) and labels,

L =− 1

|P ∪ N |


 ∑

⟨si,ei⟩∈P
logP (ei | si)

+
∑

⟨si,ei⟩∈N
(1− logP (ei | si))




(10)

Note that the parameters of the NL2LE model are
fixed, and only the scoring model is updated during
the backpropagation. Finally, we take P (ei | s) as
the validity reward Rval(ei | s).

3.3 Training Strategy
In this section, we will introduce the training strat-
egy of our framework. The entire training process
consists of two stages: pre-training and dual rein-
forcement learning. For pre-training, we explore
how to integrate curriculum learning into the train-
ing phase in § 3.3.1. For dual reinforcement learn-
ing, we explore how to construct and introduce

unlabeled data in § 3.3.2, and make the training
stable in § 3.3.3.

3.3.1 Pre-training with Curriculum Learning
The pre-training of the NL2LE model aims to maxi-
mize the likelihood p(e|s) for each ⟨s, e⟩ pair from
the supervised dataset L. According to the learning
principle of human beings in the cognitive process,
we should start with simple samples and gradually
consider more complex samples. To this end, we
employ curriculum learning (Bengio et al., 2009)
to determine the training order. Here, we take the
length of logic expressions as an indicator of the
training order, i.e., the longer the logical expression,
the more difficult it is. We first sort the training
samples according to the length of the logical ex-
pressions. At each training step t, a batch of train-
ing samples is obtained from the top f(t) portions
of the entire sorted training samples. Following
Platanios et al. (2019), f(t) is defined as:

f(t) = min


1,

√
t
(
1− c20

)

T
+ c20


 (11)

where c0 represents the models start training using
the c0% easiest training samples, and T represents
the duration of curriculum learning.1

3.3.2 Introducing Unlabeled Data for Dual
Reinforcement Learning

Since the training process of dual reinforcement
learning only leverages natural language utterance
and does not need the corresponding logical ex-
pression, in addition to using utterances from the
supervised dataset L, we further improve the per-
formance of the models by introducing unlabeled
utterances U .

Different from the previous work (Cao et al.,
2019) where unlabeled data is constructed by man-
ually defined rules, we leverage off-the-shelf para-
phrase generation models (see in Appendix.D)
which generate synonymous sentences from ex-
isting utterances in the supervised dataset L. Ac-
cording to our observation, since the paraphrase
generation models are trained on paraphrase gen-
eration datasets that are different from the datasets
we use, the generated synonymous sentence is not
particularly similar to the original one, and the logi-
cal expressions corresponding to the two sentences
are different in most cases. Thus, it is reasonable

1In practice, curriculum learning has no effect on LE2NL,
so we only apply it to NL2LE.
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# PL # FOL TOTAL
Training 871 1,037 1,908
Validation 128 145 273
Test 264 282 546
Total 1,263 1,464 2,727

Table 2: Statistics of the Chinese-PL/FOL dataset.

to treat the generated sentences as unlabeled data.
The experiments in § 5 also demonstrate the effec-
tiveness of this method.

3.3.3 Stable Dual Reinforcement Learning
In practice, we find that the training process easily
collapses when the models are trained with only
the rewards from dual reinforcement learning. To
keep the training stable and prevent the models
from crashing, we adopt the following method:
Introducing Supervisor We pre-train both of the
models with the supervised dataset L before dual
reinforcement learning starts (the pre-training of
NL2LE refers to § 3.3.1). Moreover, after each
update according to Eq.(2) and Eq.(5), the models
are trained with the labeled data again, i.e., both
of the models are trained with dual reinforcement
learning and supervised learning alternately.
Reward Baseline To cope with high variance in
reward signals, we generate k intermediate outputs
as mentioned in § 3.1 and re-define reward signals
by introducing a reward baseline to stabilize the
training process. Here, we take the average of
rewards within samples per input as the reward
baseline. Thus, the final validity reward R′val and
reconstruction reward R′rec are as follows:

R′val(ei | s) = Rval(ei | s)−
1

k

k∑

i=1

Rval(ei | s)

R′rec(s | ei) = Rrec(s | ei)−
1

k

k∑

i=1

Rrec(s | ei)

4 Dataset Collection

To compensate for the paucity of labeled data in
this field and verify the effectiveness of our pro-
posed framework, we construct a dataset containing
natural language and PL/FOL pairs. In the previous
work (Levkovskyi and Li, 2021), the authors define
templates first and then obtain samples by filling
slots. However, the resulting dataset is limited by
the lack of diversity of templates. Crowdsourc-
ing is another option but is not applicable for this
task, since professional knowledge about PL/FOL

is required. Therefore, we use expert annotation to
ensure the quality and diversity of the dataset.

The annotation team consists of 8 Chinese grad-
uate students who are familiar with PL/FOL. If
the annotators are required to construct data with-
out any reference, this will introduce inevitable
troubles and labeling errors, since PL/FOL is not
intuitive to humans. Aiming to reduce nontrivial
human labor and ensure the quality of the dataset,
the data collection process consists of the follow-
ing steps: We first obtain PL/FOL exercise sets
and exam papers that require students to convert
natural language into PL/FOL from Baidu Wenku2.
Then, the annotators are asked to organize these ex-
ercises in a uniform format. Each sample consists
of three parts: natural language sentence s, sym-
bolic definition d, and logical expression e (see in
Table 7). This is slightly different from the English-
FOL dataset where the symbolic definition is not
included. We believe that the introduction of sym-
bolic definition is beneficial because it helps to
reach agreement among annotators. After that, the
annotators are encouraged to rewrite existing data
to obtain more challenging data, i.e., some sam-
ples have only slight differences in utterances, but
their corresponding logical expressions are totally
different.

In this way, we obtain a total of 2,727 samples
consisting of 1,263 PL and 1,464 FOL with the
corresponding utterances and symbolic definitions.
To establish human performance and conduct con-
sistency assessments, we ask an additional 3 un-
dergraduate and 2 graduate students who have ac-
quired basic knowledge of PL/FOL to provide log-
ical expressions given natural language sentences
and symbolic definitions from the entire test set.
The detailed statistics of the dataset are shown in
Table 2.

5 Experiments

In the experimental section, we investigate the fol-
lowing research questions: 1) How is the overall
performance of Dual-(m)T5 in comparison to com-
petitors? 2) How does Dual-(m)T5 perform on
other types of logical expressions? 3) What is the
optimal ratio of unlabeled data to labeled data? 4)
Are all the components in Dual-(m)T5 necessary?
5) Which samples are not yet well processed by the
model? 6) Can the logical expressions generated
by Dual-(m)T5 help downstream tasks?

2One of the largest online platforms for sharing documents.
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5.1 Setup

Datasets. 1) English-FOL (Levkovskyi and Li,
2021) is generated by pre-defined templates and
contains natural language utterances paired with
FOL. We follow the training/validation/test splits
as Levkovskyi and Li (2021). 2) Chinese-PL/FOL
The details of our dataset have been introduced in
§ 4. Since symbol definition only appears in this
dataset, we concatenate it with the original input,
i.e., natural language sentence in the prime module
and logical expression in the dual module. Due
to the small amount of training data, PL and FOL
are trained together. 3) ATIS (Dahl et al., 1994)
consists of queries about flight information and
logical expressions in lambda-calculus syntax. For
fairness in model comparison, we keep the same
preprocessing settings as (Dong and Lapata, 2018;
Cao et al., 2019).
Baselines. To verify the effectiveness of our ap-
proach on English-FOL and Chinese-PL/FOL, we
reproduce several strong baselines as there are not
many existing works on these two datasets. For
ATIS, we directly compare our method with state-
of-the-art works. Refer to Appendix.C for details.
Metrics. We follow the previous work (Levkovskyi
and Li, 2021) and take Exact Match (EM) as the
evaluation metric.

5.2 Overall Results

We compare our method with competitors on dif-
ferent datasets in Table 3. From the results, we
conclude that: 1) Our models outperform the com-
petitors on both of the datasets, and is not affected
by language, which shows the effectiveness and
robustness of our models. 2) Even without addi-
tional unlabeled data, our models outperform the
competitors only with the labeled data, which indi-
cates that our approach is also available in scenar-
ios without unlabeled data. 3) By introducing the
unlabeled data, the performance of the models is
further improved, and the improvement on Chinese-
PL/FOL is more obvious than that on English-FOL
as the amount of the labeled data in English-FOL
is enough for the training and the performance is
hardly improved by using the unlabeled data, while
the unlabeled data can be used to compensate for
the paucity of the labeled data on Chinese-PL/FOL.

5.3 Generalization on Lambda-Calculus

To verify that our framework is still effective on
other types of logical expressions, we compare our

method with previous works on ATIS without us-
ing unlabeled data in fairness. From the results
shown in Table 4, we see that our method has bet-
ter performance over the previous works on ATIS,
which demonstrates the generality of our approach
to other types of logical expressions. This is mainly
attributed to the model-based validity reward that
is not limited to the specific form of the logical
expression, and our framework is suitable for any
kind of logical expression without modification.

5.4 Experiments on Semi-supervised Setting

To investigate whether unlabeled data benefits the
framework and the optimal ratio of unlabeled data
to labeled data, we keep a part of the training set
as fully labeled data and leave the rest as unlabeled
data where only utterances are used. We change
the ratio of unlabeled data to labeled data, and the
results on English-FOL are shown in Table 5. The
results show that the performance of the models
does not improve constantly when the amount of
unlabeled data is increased. We conclude that a
proper ratio of unlabeled data is crucial and it is
related to the number of parameters in the model.
A model with more parameters tends to perform
better with more unlabeled data. On the contrary,
when a model with few parameters is trained with
a large amount of unlabeled data by dual reinforce-
ment learning, it may converge to a wrong equilib-
rium state to adapt to the unlabeled data and forget
what has been learned from the labeled data, which
leads to poor performance.

5.5 Ablation Study

To evaluate the effectiveness of each component in
Dual-(m)T5, we perform an ablation analysis on
English-FOL. From the results shown in Table 6,
we conclude that: 1) Dual reinforcement learning
without the validity reward even gets worse results
than the T5 baseline, which indicates that the va-
lidity reward is critical and indispensable in dual
reinforcement learning. 2) Curriculum learning
improves EM but not significantly. Therefore, the
value of curriculum learning is mainly to stabilize
the training process rather than improve the perfor-
mance. 3) The model-based validity reward in dual
reinforcement learning has certain advantages over
the rule-based validity reward (Cao et al., 2019),
which indicates the effectiveness of our approach.
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Method English-FOL Chinese-PL/FOL
PL FOL TOTAL

Human Performance - 87.94 79.92 84.07
ATT (Luong et al., 2015) 65.70 39.39 36.88 38.10
GPT-2 (Radford et al., 2019) 85.32 56.04 61.74 58.97
GPT-2-large (Radford et al., 2019) 90.03 - - -
Text2log (Levkovskyi and Li, 2021) 89.54 - - -
(m)T5-small (Raffel et al., 2019; Xue et al., 2021) 89.95 64.02 58.87 61.35
(m)T5-base (Raffel et al., 2019; Xue et al., 2021) 91.30 70.08 61.35 65.57
Dual-(m)T5-small (Ours) 90.98 64.77±0.47 61.70±0.58 63.19±0.52

+ generated unlabeled data 91.06 70.83±0.78 63.83±0.75 67.22±0.75
Dual-(m)T5-base (Ours) 92.65 70.45±0.31 63.12±0.29 66.67±0.15

+ generated unlabeled data 92.83 75.00±0.94 68.44±0.73 71.61±0.83

Table 3: EM on the test set of English-FOL and Chinese-PL/FOL. (Dual-)T5 and (Dual-)mT5 are used on English-
FOL and Chinese-PL/FOL, respectively. Generated unlabeled data represents the unlabeled data obtained by
paraphrase generation models in § 3.3.2.

Method EM
TISP (Zhao and Huang, 2015) 84.2
Seq2tree (Dong and Lapata, 2016) 84.6
ASN+SUPATT (Rabinovich et al., 2017) 85.9
Tranx (Yin and Neubig, 2018) 86.2
Coarse2fine (Dong and Lapata, 2018) 87.7
Transformer (Ge et al., 2019) 87.7
ATTPTR + Dual (Cao et al., 2019) 88.6
TreeGen (Sun et al., 2020) 89.1
Dual-T5-base (Ours) 89.5

Table 4: EM on the test set of ATIS.

Method Labeled:Unlabeled EM
Dual-T5-small - 78.32

+ unlabeled data 1:1 79.34
+ unlabeled data 1:2 79.27
+ unlabeled data 1:3 78.37
+ unlabeled data 1:4 77.93

Dual-T5-base - 87.01
+ unlabeled data 1:1 88.94
+ unlabeled data 1:2 89.22
+ unlabeled data 1:3 89.34
+ unlabeled data 1:4 88.76

Table 5: EM on the test set of English-FOL. It fixes the
number of labeled samples (20% of the training set) and
varies the ratio of unlabeled data to labeled data.

5.6 Error Analysis

For error analysis, we present three typical bad
cases of Chinese-PL/FOL in Table 7. In Case 1, the
model inverts cause and effect, indicating that the
ability of causal reasoning needs to be enhanced.
Case 2 requires the model to have the capability
of coreference resolution, while Dual-(m)T5 does
not have this ability yet. Case 3 shows that some
errors are due to one utterance may correspond to
multiple correct logical expressions, while there is
only one annotated ground truth3. Such a problem

3In Case3, the ground truth is closer to the meaning of the
utterance than the prediction, but the latter is an equivalent
representation of the ground truth.

Method EM
T5-small 89.95

w/ curriculum 90.09
w/ dual (w/o Rvale , w/ Rrecs ) 89.23
w/ dual (w/ rule-based Rvale , w/ Rrecs ) 90.44
w/ dual (w/ model-based Rvale , w/ Rrecs ) 90.88

T5-base 91.30
w/ curriculum 91.41
w/ dual (w/o Rvale , w/ Rrecs ) 90.87
w/ dual (w/ rule-based Rvale , w/ Rrecs ) 91.96
w/ dual (w/ model-based Rvale , w/ Rrecs ) 92.51

Table 6: Ablations on the test set of English-FOL.

exists in all three datasets and has been ignored by
previous works. To compensate for this, we per-
form manual statistics on the incorrect prediction
results of Dual-mT5-base on the test set of Chinese-
PL/FOL. About 5.2% of errors are due to the above.
We think this may be solved by defining a series of
equivalence transformation rules. We leave this for
future work.

5.7 Improvements to Downstream Tasks

To further demonstrate the value of the generated
logical expressions, we take Natural Language In-
ference (NLI) as a downstream task. NLI involves
reading a pair of sentences and judging the rela-
tionship between their meanings, such as entail-
ment, neutral and contradiction. We explore if
additional logical expressions improve the model’s
performance on the NLI task. We conduct experi-
ments on the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015). The back-
bone model is BERT (Devlin et al., 2019) which
concatenates two sentences (s1 and s2) with speci-
cal tokens as input, and uses the representation of
[CLS] token for text classification. In practice,
we concatenate the logical expressions (e1 and e2)
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Chinese-PL/FOL
Natural Language Utterance
Xiao Ming lives alone because he is not married.
Symbolic Definition
A(x): x lives alone; B(x): x is married; a: Xiao Ming
Ground Truth
¬B(a)→ A(a)
Prediction
A(a)→ ¬B(a)
Natural Language Utterance
The dark night has given me a pair of black eyes,
but I use them to find the light.
Symbolic Definition
A(x, y): x give me y; B(x, y): i use x to find y;
a: dark night; b: black eyes; c: light
Ground Truth
A(a, b) ∧B(b, c)
Prediction
A(a, b) ∧B(a, c)
Natural Language Utterance
Not everyone who can play football can play basketball.
Symbolic Definition
A(x): x can play football; B(x): x can play basketball;
x: person
Ground Truth
¬∀x(A(x)→ B(x))
Prediction
∃x(A(x) ∧ (¬B(x)))

Table 7: Case study of Dual-(m)T5-base on Chinese-
PL/FOL. Text in red and brown represents the difference
between the prediction and ground truth.

corresponding to the sentences (s1 and s2) on the
input, i.e, [CLS] s1 e1 [SEP ] s2 e2 [SEP ]. We
vary the amount of training data from 10k to 100k
and the results are shown in Fig.2.

As shown in the results, the model has better per-
formance by introducing logical expressions when
the amount of training data is not large. As the
amount of training data increases, the role of logi-
cal expressions gradually decreases. We conclude
that the generated logical expression explicitly rep-
resents the logical information contained in the
sentences and is suitable for the NLI task in low-
resource scenarios as a supplementary.

6 Related Works

Parsing Natural Language into PL/FOL Logic
expressions are commonly written in standard-
ized mathematical notation, and learning this no-
tation typically requires many years of experience.
Barker-Plummer et al. (2009) study why students
find translating natural language sentences into
FOL hard and systematically categorize the prob-
lems encountered by students. Bansal (2015) pro-
poses a rule-based framework that leverages the
Part-of-speech structure of natural language sen-
tences. Limited to the manually defined rules and

Figure 2: Accuracy on the dev and test set of the SNLI
dataset.

a small amount of experimental data, the system
only works under a specific setting. With the de-
velopment of deep learning, neural approaches al-
leviate the need for manually defining lexicons.
Singh et al. (2020) examine the capability of neural
models on parsing FOL from natural language sen-
tences. They propose to disentangle the representa-
tions of different token categories while generating
FOL and use category prediction as an auxiliary
task. Unfortunately, they do not release the dataset
they construct. Levkovskyi and Li (2021) release
a dataset containing English-FOL sentence pairs
and set up a baseline encoder-decoder model, but
the dataset is not challenging for it is generated by
templates, and vanilla models obtain high scores.
Dual Learning Dual learning is first proposed to
improve neural machine translation (NMT) (He
et al., 2016). The author makes full use of mono-
lingual corpus to improve the effectiveness of the
model through dual learning. Xia et al. (2017)
introduce a probabilistic duality term to serve as
a data-dependent regularizer to better guide the
dual supervised learning. Since then, the idea of
dual learning has been applied in various tasks,
such as Question Answering/Generation (Tang
et al., 2017), Open-domain Information Extrac-
tion/Narration (Sun et al., 2018), Semantic Parsing
with lambda calculus (Cao et al., 2019, 2020), and
Emotion-Controllable Response Generation (Shen
and Feng, 2020).

7 Conclusion

In this paper, we introduce Dual-(m)T5, an ef-
fective dual reinforcement learning framework for
parsing natural language into PL/FOL. A novel re-
ward mechanism is proposed to avoid manually
defining the validity reward in RL. An effective
training strategy is further proposed to stabilize the
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training process. Experimental results show that
the proposed method outperforms competitors on
several datasets. By introducing logical expres-
sions, we further enhance the existing NLI model.
In addition to the technical contribution, a new
dataset called Chinese-PL/FOL is constructed to
aid further research in this field.
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A Algorithm

Algorithm 1 Training Scoring Model
Input: Supervised dataset L = {⟨s, e⟩}; number
of nucleus sampling k; Fine-tuned NL2LE model
Output: scoring model

1: P ← {},N ← {}
2: for all ⟨s, e⟩ ∈ L do
3: P ← P ∪ {⟨s, e⟩}
4: Given s, fine-tuned NL2LE model gener-

ates k logical expressions {ei} via nucleus
sampling

5: for all ei ∈ {ei} do
6: if ei ̸= e then
7: N ← N ∪ {⟨s, ei⟩}
8: end if
9: end for

10: end for
11: repeat
12: Update scoring model w.r.t. Eq.(10)
13: until scoring model converges

B PL and FOL

FOL represents entities and actions in natural lan-
guage through quantified variables and consists of
predicates which take variables as arguments and
attach semantics to variables (Blackburn and Bos,
2005), while PL is a relatively simple logical ex-
pression and does not deal with quantified variables.
Formally, a predicate P (v1; v2; ...; vn) in PL/FOL
is an n-ary function of variables vi that are com-
bined through logical connectives: logical and (∧),
logical or (∨), logical not (¬), logical implication
(→), logical equivalent (↔). What’s more, there
are two types of quantifiers for FOL: universal (∀)
which specifies that sub-formula within its scope
is true for all instances of the variable and exis-
tential (∃) which asserts existence of at least one
instance represented by a variable under which the
sub-formula holds true.

C Baselines

English-FOL and Chinese-PL/FOL

• ATT (Luong et al., 2015). ATT represents
attention-based Seq2seq model.

• Text2log (Levkovskyi and Li, 2021). Text2log
is the latest work on converting natural lan-
guage to FOL. This approach is only appli-

Algorithm 2 Full Training Process
Input: Supervised dataset L = {⟨s, e⟩}; Unsuper-
vised dataset U = {s′}; number of nucleus sam-
pling k; hyper parameters α and β; curriculum
training batches T
Output: NL2LE model

1: // Pre-train NL2LE and LE2NL models
2: Fine-tune NL2LE model with ⟨s, e⟩ from L

and curriculum learning based on Eq.(11)
3: Fine-tune LE2NL model with ⟨e, s⟩ from L
4: repeat
5: // Dual reinforcement learning
6: Get mini-batch {s} from L ∪ U
7: for all s ∈ {s} do
8: NL2LE model generates k logical expres-

sions {ei} for s via nuclelus sampling
9: for all ei ∈ {ei} do

10: Obtain validity and reconstruction re-
ward for ei

11: end for
12: end for
13: Update ΘNL2LE and ΘLE2NL w.r.t. Eq.(2)

and Eq.(5) respectively
14: // Supervisor Guidance
15: Get mini-batch {⟨s, e⟩} from L
16: Fine-tune NL2LE model with {⟨s, e⟩}
17: Fine-tune LE2NL model with {⟨e, s⟩}
18: until NL2LE model converges

cable to English-FOL since a character-level
recurrent neural network is leveraged.

• GPT-2 (Radford et al., 2019). GPT-2 is a huge
transformer-based model trained on massive
datasets and achieves state-of-the-art results
on several language modeling datasets in a
zero-shot setting when it is proposed. We
experiment with different sizes of GPT. Since
there is no GPT-large for Chinese, it is vacant
in the experiment.

• T5 (Raffel et al., 2019) / mT5 (Xue et al.,
2021). T5 refers to the “Text-to-Text Trans-
fer Transformer” which converts several NLP
tasks to Text-to-Text task, and mT5 is a multi-
lingual version of T5.

ATIS

• TISP (Zhao and Huang, 2015) An incremental
semantic parser that is guided by subtyping
and polymorphism.
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• Seq2tree (Dong and Lapata, 2016) Seq2tree
is a method based on an attention-enhanced
encoder-decoder model.

• ASN+SUPATT (Rabinovich et al., 2017) This
work introduces abstract syntax networks, a
modeling framework for code generation and
semantic parsing.

• Tranx (Yin and Neubig, 2018) Tranx uses a
transition system based on the abstract syntax
description language for the target meaning
representations.

• Coarse2fine (Dong and Lapata, 2018)
Coarse2fine generates meaning sketches first
and then predicts missing details to obtain
full meaning representations.

• Transformer (Ge et al., 2019) Transformer is
a deep learning model that adopts the mech-
anism of self-attention and is originally pro-
posed for machine translation.

• ATTPTR + Dual (Cao et al., 2019) It is the
first work to propose the use of dual learning
for semantic parsing, and is the basis of our
work.

• TreeGen (Sun et al., 2020) TreeGen uses the
attention mechanism of Transformer to alle-
viate the long-dependency problem and intro-
duces an Abstract Syntax Tree (AST) reader
to combine grammar rules and the AST struc-
ture.

D Implemention Details

We use Pytorch4 library for implementing an auto-
differentiable graph of our computations. For pre-
training, (m)T5-small/base are trained with an
AdamW optimizer (Loshchilov and Hutter, 2018)
initialized with a learning rate of 1e-3/1e-4 with a
decay rate of 1e-3/1e-2 respectively. For dual re-
inforcement learning, models are trained with an
AdamW optimizer initialized with a learning rate of
1e-5 with a decay rate of 1e-3 for (m)T5-small/base.
The batch size is fixed to 8, and the max input and
output sentence length are set to 128. Since the
size of the test set for the Chinese-PL/FOL dataset
is small, we repeat each experiment using 3 dif-
ferent random seeds and report the median num-
ber and standard deviation to avoid small sample

4https://pytorch.org

instability in the results obtained. Training runs
until the performance on validation set does not
improve. We use PEGASUS (Zhang et al., 2020)
fine-tuned for paraphrasing5 for english paraphras-
ing, and RoFormer-Sim (Su, 2021) 6 for chinese
paraphrasing. For each natural language utterance
in the datasets, we generate one synonymous sen-
tence as unlabeled data.7 Our models run on a
computer with Intel(R) Xeon(R) Gold 6230R CPU,
4 GeForce RTX 3090, 64GB of RAM, and Ubuntu
20.04.

E Error Analysis on English-FOL and
ATIS

The bad cases of English-FOL and ATIS are pre-
sented in Table 8. We select two typical bad cases
from two datasets respectively. From case 1 of
English-FOL, we can find that there are some la-
beling errors in the dataset. The prediction is com-
pletely correct while the ground truth is wrong. The
error in case 2 is due to the fact that the English-
FOL dataset does not clearly indicate what the pred-
icate is, which leads to a slight difference between
the prediction and the ground truth.8 For ATIS,
the model makes a small mistake in case 1, which
indicates that the model is not good enough to han-
dle the details. The error in case 2 is also caused
by the predicate not explicitly indicating. If the
predicate can be unified, we believe that the model
can answer correctly.

5https://huggingface.co/tuner007/
pegasus_paraphrase

6https://github.com/ZhuiyiTechnology/
roformer-sim

7Generating top-k (k ≥ 1) synonymous sentences for each
natural language utterance leads to poor performance because
the unlabeled data is too similar to each other.

8In contrast, our dataset clearly points out what the predi-
cate is, effectively solving this problem.
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English-FOL
Natural Language Utterance
All people are welcome.
Ground Truth
exists x1.(_all(x1) & _people(x1) & _welcome(x1))
Prediction
all x1.(_people(x1)→ _welcome(x1))
Natural Language Utterance
Every database accepts parentheses.
Ground Truth
all x1.(_database(x1)→
exists x2.(_parenthesis(x2) & _accept(x1,x2)))
Prediction
all x1.(_database(x1)→
exists x2.(_parenthes(x2) & _accept(x1,x2)))

ATIS
Natural Language Utterance
What city does al0 fly out of?
Ground Truth
lambda $0 e ( and ( city $0 ) ( exists $1 ( and ( flight $1 )
( airline $1 al0 ) ( from $1 $0 ) ) ) )
Prediction
lambda $0 e ( and ( city $0 ) ( exists $1 ( and ( flight $1 )
( airline $1 al0 ) ( to $1 $0 ) ) ) )
Natural Language Utterance
List the st0 airport.
Ground Truth
lambda $0 e ( and ( airport $0 ) ( loc:t $0 st0 ) )
Prediction
lambda $0 e ( and ( airport $0 ) ( located at $0 st0 ) )

Table 8: Case study of Dual-(m)T5-base on English-
FOL and ATIS. Text in red and brown represents the
difference between the prediction and ground truth.
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Abstract

In this study, we propose a morpheme-based
scheme for Korean dependency parsing and
adopt the proposed scheme to Universal De-
pendencies. We present the linguistic rationale
that illustrates the motivation and the necessity
of adopting the morpheme-based format, and
develop scripts that convert between the orig-
inal format used by Universal Dependencies
and the proposed morpheme-based format au-
tomatically. The effectiveness of the proposed
format for Korean dependency parsing is then
testified by both statistical and neural models,
including UDPipe and Stanza, with our care-
fully constructed morpheme-based word em-
bedding for Korean. MORPHUD outperforms
parsing results for all Korean UD treebanks,
and we also present detailed error analyses.

1 Introduction

Dependency parsing is one of the tasks in nat-
ural language processing that have been investi-
gated extensively. Using the dependency gram-
mar, it finds the relations between the words in a
sentence, and forms an acyclic dependency graph
that explains the grammatical structure of the sen-
tence. With various machine learning techniques,
the current dependency parsers are able to ap-
proach human performances given English cor-
pora.1 Previous studies trying to probe or improve
Korean dependency parsers are lacking, especially
for those considering the underlying reason and
rationale based on the linguistic properties of Ko-
rean. The parsers do not perform as well as their
English counterparts, partly due to the fact that
Korean is a language that has more complicated
linguistic features that make parsing on the word
level difficult.

∗Yige Chen, Eunkyul Leah Jo, and Yundong Yao con-
tributed equally. ¶Corresponding author.

1https://ai.googleblog.com/2016/05/
announcing-syntaxnet-worlds-most.html

There have been previous studies trying to cope
with the word-level representation issues of Ko-
rean (Choi and Palmer, 2011; Park et al., 2013;
Kanayama et al., 2014). Given that Korean is
an agglutinative language that heavily relies on
morphemes, and the natural segmentation does
not correctly reflect either the words or the mor-
phemes of Korean texts, Park and Tyers (2019)
suggested an annotation scheme that decomposes
Korean texts into the morpheme level, and applied
the morpheme-based format to POS tagging.

In this study, we propose a morpheme-based
scheme for Korean dependency parsing that is
developed based on Park and Tyers (2019), and
adopt the proposed scheme to Universal Depen-
dencies (Nivre et al., 2016, 2020), which con-
tains two Korean dependency parsing treebanks,
namely the GSD treebank (McDonald et al., 2013)
and the Kaist treebank (Choi et al., 1994; Chun
et al., 2018). While the two Korean treebanks meet
the standards of Universal Dependencies and have
been studied for dependency parsing tasks exten-
sively (Kondratyuk and Straka, 2019; Qi et al.,
2020), the treebanks are formatted in a way that
the natural segmentations of Korean texts are pre-
served, and even with some morpheme-level infor-
mation, only the language-specific part-of-speech
tags on the morpheme level are included in the
treebanks, and both treebanks do not have any
morpheme-level parsing tags. Different from the
traditional scheme based on natural segmentation,
this scheme utilizes the inherent morphological
and typological features of the Korean language,
and the morpheme-level parsing tags can there-
fore be derived using a set of linguistically moti-
vated rules, which are further used to produce the
morpheme-level dependency parsing results and
automatic conversions between the morpheme-
based format and the traditional format.

The proposed morpheme-based representation
is examined using several dependency parsing
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models, including UDPipe (Straka et al., 2016;
Straka and Straková, 2017) and Stanza (Qi et al.,
2020). Compared to the baseline models trained
using the two treebanks without modification, our
proposed format makes statistically significant im-
provements in the performances of the parsing
models for the Korean language as reported in the
error analysis.

2 Representation of MORPHUD

In this study, we adopt a morpheme-based format
that captures the linguistic properties of the Ko-
rean language proposed by Park and Tyers (2019).
The natural segmentation of Korean is based on
eojeol, which does not necessarily reflect the ac-
tual word or morpheme boundaries of the lan-
guage. For example, an eojeol of Korean may con-
tain both a noun and its postposition, or both a
verb and its particles marking tense, aspect, hon-
orifics, etc. While this is typical for Korean as
an agglutinative language, it creates difficulties
and challenges for NLP tasks regarding the Ko-
rean language, including dependency parsing. It
is not ideal that the tokens dependency relations
are annotated on are sometimes words, and some-
times phrases as an eojeol may consist of more
than a word. Furthermore, Korean as an agglutina-
tive language has very regular conjugations, which
makes it easy and natural to split those words and
phrases into morphemes when analyzing the lan-
guage since nearly every piece of an eojeol can be
identified to be of a certain meaning or function.

The morpheme-based format aims at decom-
posing the Korean sentences further into mor-
phemes, which means that dependency relations
are no longer marked on the eojeol level. Instead,
they are marked on morphemes such that within
each eojeol that is not monomorphemic, a head of
that eojeol will be found and all other morphemes
will be attached directly to the head. As a result,
the head of a non-monomorphemic eojeol carries
the dependency relation this eojeol originally has,
and all other morphemes will be attached to it. In
order to find the head, we develop a script and ap-
ply some heuristics which include that the head of
an eojeol is usually a noun, a proper noun, or a
verb, and while there is no noun or verb in an eo-
jeol, the script we implemented continues to find
other morphemes such as pronouns, adjectives, ad-
verbs, numerals, etc. The script also excludes the
use of adpositions, conjunctions, and particles as

heads in most cases, unless these are the only part-
of-speeches in an eojeol except for punctuations.
While there are multiple morphemes that can be
heads in an eojeol, the script will decide which
one to take based on the part-of-speeches of the
morphemes. For instance, when there are multiple
nouns, the last one will carry the dependency rela-
tion of the eojeol, whereas when there are multiple
verbs, the first verb will carry the dependency re-
lation as Korean is a head-final language. Once the
head of a non-monomorphemic eojeol is found,
the other morphemes will be dependent on the
head and be assigned with other dependency rela-
tions such as compound, case, auxiliary depending
on their UPOS and XPOS.

3 Experiments and results

3.1 Data and systems

In this study, we deploy two parsers to evalu-
ate our proposed format, namely UDPipe (Straka
et al., 2016) as a baseline system and Stanza (Qi
et al., 2020) as one of the state-of-the-art depen-
dency parsers. UDPipe is a pipeline designed for
processing CoNLL-U formatted files, which per-
forms tokenization using Bi-LSTM, morpholog-
ical analysis, part-of-speech tagging, lemmatiza-
tion using MorphoDiTa (Straková et al., 2014),
and dependency parsing using slightly modified
Parsito (Straka et al., 2015). Since the whole
pipeline needs no language-specific knowledge,
which means that it can be trained using corpora
in a different scheme, we choose UDPipe as our
baseline. Stanza is another natural language pro-
cessing toolkit that includes Dozat’s biaffine at-
tention dependency parser (Dozat and Manning,
2017). Dozat’s dependency parser uses the mini-
mum spanning tree algorithm that can deal with
non-projectivity dependency relations, and more
importantly it excelled all of dependency parsers
during CoNLL 2017 and 2018 Shared Task (Ze-
man et al., 2017, 2018) In this study, the two de-
pendency parsing pipelines take both the origi-
nal word-based form2 (the current scheme adopted
by Universal Dependencies), which we denote as
WORDUD, and the morpheme-based form, which
we denote as MORPHUD, of the GSD and KAIST
treebanks as the input.

We develop the script to convert between

2While words and eojeols are not the same in Korean
based on their definitions, in this study, the terms “word-
based” and “eojeol-based” are interchangeable.
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프랑스 의 세계 적 이 ㄴ 의상 디자이너 엠마누엘 웅가로 가 실내 장식 용 직물 디자이너 로 나서 었 다 .
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Figure 1: Example of morpheme-based universal dependencies for Korean: while dependencies in top-side are the
original dependencies between words, dependencies in bottom-side are newly added dependencies for between
morphemes.

the WORDUD format and our proposed MOR-
PHUD format. The script consists of two ma-
jor components, which are WORDUD to MOR-
PHUD (Word2Morph) and MORPHUD to WOR-
DUD (Morph2Word). The Word2Morph compo-
nent splits the word tokens in the CoNLL-U tree-
bank of Korean into morphemes using the lemmas
already provided, and assigns dependency rela-
tions on the resegmented tokens based on the orig-
inal dependency relations annotated on the word
tokens. The Morph2Word component, on the other
hand, firstly pairs the tokens in the WORDUD
dataset and the MORPHUD dataset, and then as-
signs the dependency relations from morpheme to-
kens in MORPHUD to word tokens in WORDUD.
Within both components, a root detector for the
word is implemented in order to find the root (or
stem) of a word when the word is multimorphemic
(i.e., needs to be split into morphemes and at-
tach dependency relations on it correspondingly).
Evaluations of the conversion scripts are not con-
ducted in this study, since the morphemes are in-
herited from the lemmas in the treebanks, and the
part-of-speech tags, roots, and dependency rela-
tions are predicted and assigned to the morphemes
based on the linguistic features and the grammar
of Korean that are regular, as presented in Section
2.

3.2 Results

We report the labeled attachment score (LAS),
which is a standard evaluation metric in depen-
dency parsing, using the evaluation script (2018
version) provided by CoNLL 2018 Shared Task.3

Table 1 shows results of udpipe as a baseline sys-

3https://universaldependencies.org/
conll18/conll18_ud_eval.py

tem and stanza as one of the state-of-the-art sys-
tems. All results are reported in the WORDUD
format. That is, all experiments are trained and
predicted in the proposed MORPHUD format, and
then the result is converted back to the WOR-
DUD format for comparison purposes. We train
udpipe once because it can produce the same
parsing model if we train it on the same ma-
chine. For stanza, we provide average LAS and
its standard deviation after five training and eval-
uation. Both systems use the finely crafted 300d
embedding file by fastText (Bojanowski et al.,
2017): WORDUD and MORPHUD use words and
morphemes as their embedding entries, respec-
tively to make sure that their input representa-
tion would be correctly matched. For embeddings,
there are 9.6M sentences and 157M words (to-
kenized) based on WORDUD. The set of docu-
ments for embeddings includes all articles pub-
lished in The Hankyoreh during 2016 (1.2M sen-
tences), Sejong morphologically analyzed corpus
(3M), and Korean Wikipedia articles (20201101)
(5.3M). As expected, all results of MORPHUD out-
perform WORDUD in Table 1.

3.3 Error analysis and discussion

Figure 2 shows the confusion matrix between
WORDUD and MORPHUD, in which the column
and the row represent the arc direction of gold
and system, respectively. MORPHUD outper-
forms WORDUD in predicting all directions ex-
cept for right (gold) / left (system). The system
predicts the left arc instead of the correct right arc
(212 arc direction errors in WORDUD vs. 240 in
MORPHUD). This is because we spuriously added
left arcs for functional morphemes in MORPHUD
where the system learned more left arc instances
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ko gsd ko kaist
WORDUD +MORPHUD WORDUD +MORPHUD

udpipe 70.90 77.01 77.01 81.80
stanza 84.63 (±0.18) 84.98 (±0.20) 86.67 (±0.17) 88.46 (±0.14)

Table 1: Dependency parsing results: for the comparison purpose all MORPHUD results are converted back to
WORDUD after training and predicting with the format of MORPHUD

L R O
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(a) WORDUD

L R O
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O

(b) MORPHUD

Figure 2: Confusion matrix for the direction of arcs
where the column represents gold, and the row
system: Left, Right, and O for TO ROOT.
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Figure 3: Confusion matrix for the depth of arcs where
the column represents gold, and the row system.

during training.
Figure 3 presents the confusion matrix for the

arc depth. The most frequent arc depth error is
2 (gold) / 1 (system) (901 arc depth errors in
WORDUD vs. 855 in MORPHUD). Figure 4 shows
an example of parsing errors generated by Mal-
tEval (Nilsson and Nivre, 2008). The parsing er-
ror shows that whereas the gold’s arc requires the
depth 2, the system predicts the depth 1. This is
mainly because the analysis of compound nouns
for the NP modifier in the Korean treebank prefers
a left skewed tree as shown in Figure 5 where some
nouns are a verbal noun, and it plays a role as
a predicate of the precedent NP modifier. This is
a quite different from the English treebank where
the right skewed tree dominates: [NP [PRPS its] [N
[NN Micronite] [N [NN cigarette] [NNS filters]]]]].
This is a well-known problem when parsing the
Korean treebank because it requires the semantics
of the noun to distinguish between the right and
the left skewed trees. One possible remedy for this
problem was to build a fully lexicalized parsing

Figure 4: Example of the 2/1 error by MaltEval where
the gold’s arc depth is 2 and the system’s depth is
1. Note that MORPHUD results are converted back to
WORDUD: geuligo wang-ui chinjog-i byeoseul-eul hal
su issdolog jongchin gwageo jedo-leul silsihayeossda
‘And they introduced a clan system to make sure that
the king’s relatives can obtain the government position’

NP-AJT

NP

NP

NP

실내

silnae
(‘interior’)

NP

장식용

jangsik-yong
(‘ornamental’)

NP

직물

jikmul
(‘textile’)

NP

디자이너로

dijaineo-ro
(‘designer-AJT’)

Figure 5: Compound noun with a left-skewed tree for
NP modifiers in the Korean treebank

system (Park et al., 2013).

4 Conclusion

We proposed a new annotation scheme for Uni-
versal Dependencies for Korean. We have al-
ready worked on NER, in which we outperformed
the word-level representation dataset by using
the morphologically enhanced dataset, and we
are planning to extend our idea to the semantic
role labeling task. We are also trying to create
a consortium to develop the morphologically en-
hanced Universal Dependencies for other morpho-
logically rich languages such as Basque, Finnish,
French, German, Hungarian, Polish, and Swedish.
All conversion scripts (WORDUD to MORPHUD,
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and vice versa), and MORPHUD datasets for
ko gsd and ko kaist will be available through
author’s github at https://github.com/
jungyeul/morphUD-korean.
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Jr. 2015. Parsing Universal Dependency Treebanks
using Neural Networks and Search-Based Oracle.
In 14th International Workshop on Treebanks and
Linguistic Theories (TLT 2015), pages 208–220,
Warszawa, Poland. IPIPAN.

Milan Straka and Jana Straková. 2017. Tokenizing,
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Jana Straková, Milan Straka, and Jan Hajič. 2014.
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Abstract

Dependency parsing is an important funda-
mental natural language processing task which
analyzes the syntactic structure of an input sen-
tence by illustrating the syntactic relations be-
tween words. To improve dependency pars-
ing, leveraging existing dependency parsers
and extra data (e.g., through semi-supervised
learning) has been demonstrated to be effec-
tive, even though the final parsers are trained
on inaccurate (but massive) data. In this pa-
per, we propose a frustratingly easy approach
to improve graph-based dependency parsing,
where a structure-aware encoder is pre-trained
on auto-parsed data by predicting the word de-
pendencies and then fine-tuned on gold depen-
dency trees, which differs from the usual pre-
training process that aims to predict the con-
text words along dependency paths. Experi-
mental results and analyses demonstrate the
effectiveness and robustness of our approach
to benefit from the data (even with noise)
processed by different parsers, where our ap-
proach outperforms strong baselines under dif-
ferent settings with different dependency stan-
dards and model architectures used in pre-
training and fine-tuning. More importantly,
further analyses find that only 2K auto-parsed
sentences are required to obtain improvement
when pre-training vanilla BERT-large based
parser without requiring extra parameters.1

1 Introduction

Dependency parsing aims to produce the syntactic
structure of a sentence by illustrating the syntac-
tic relations between words, where the words with
dependency relations are connected by directed
and labeled arcs. It is an important fundamen-
tal natural language processing (NLP) task that
is widely used to enhance downstream NLP tasks
(Cai et al., 2009; Strubell et al., 2018; Huang and

†Corresponding author.
1Our code is available at https://github.com/

synlp/DMPar.

Carley, 2019; Zhang et al., 2019; Guo et al., 2019;
Nie et al., 2020; Zhou et al., 2020b; Chen et al.,
2020; Tian et al., 2022) such as coreference resolu-
tion, relation extraction, and sentiment analysis.

To produce the dependency structure of a sen-
tence, the contextual information is of great impor-
tance to achieve good model performance. Thus,
most recent studies (Dozat and Manning, 2017;
Zhou and Zhao, 2019; Zhou et al., 2020a,b; Mrini
et al., 2020; Zhang et al., 2021) leverage advanced
encoders (e.g., bi-LSTM, Transformer (Vaswani
et al., 2017)) to model the contextual information
of the input and obtain outstanding performance.
In addition, because leveraging different models to
obtain better results is an important technique for
many NLP tasks (Juraska et al., 2018; Kobayashi,
2018; Kuwabara et al., 2020; Qin et al., 2021),
many previous studies apply this technique to de-
pendency parsing to further improve model per-
formance. Under this paradigm, many studies uti-
lize semi-supervised methods (e.g., self-training)
to benefit from auto-processed extra data which is
used to extract useful features (Smith and Eisner,
2007; Koo et al., 2008; Bansal and Klein, 2011; Ma
and Xia, 2013; Kiperwasser and Goldberg, 2015;
Yu and Bohnet, 2017) or training data (Spreyer
and Kuhn, 2009; Rybak and Wróblewska, 2018;
Rotman and Reichart, 2019). However, since the
auto-generated parse tree is not always accurate,
semi-supervised methods need to handle the noise
with care to achieve better performance (Søgaard
and Rishøj, 2010; Chen et al., 2018).

To address the noise issue, in this paper, we
propose to apply pre-training and fine-tuning to en-
hance dependency parsing with the auto-parsed
data generated by existing parsers. Although
the effectiveness of pre-training and fine-tuning
paradigm has been demonstrated to leverage extra
data in many NLP tasks, it is still worth studying
whether this paradigm works well for dependency
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Figure 1: Our parser is trained in two stages: pre-training with auto-parsed data (Figure 1(a)) and fine-tuning with
gold dependency trees (Figure 1(b)). Fine-tuning uses the same encoder architecture as in pre-training but further
adjusts its weights. In contrast, the decoder for fine-tuning is different from the one in pre-training and its weights
are randomly initialized.

parsing. Specifically, we apply an auto-parser2 to
unlabeled data to obtain the auto-parsed dependen-
cies, and then use the resulting data (with noise) to
pre-train a structure-aware encoder, which is finally
fine-tuned with the gold labels. The pre-training
of the encoder follows exactly the same process of
training a dependency parser with the same input
and output, except that the labeled data are automat-
ically generated, which significantly differs from
the usual pre-training process that aims to predict
the context words along the dependency path. In
the fine-tuning stage, the weights (with structural
information learnt from noisy auto-parsed data) of
the pre-trained encoder is used to initialize the en-
coder of our final parser, whereas the final parser’s
decoder is initialized randomly before fine-tuning.
In doing so, the encoder is able to learn the de-
pendency information from large auto-parsed data
(with noise) through pre-training and then use the
information to enhance the performance of the fi-
nal parser when it is fine-tuned on the gold parse
trees. Compared with previous studies, our method
offers a more flexible way to selectively learn from
the auto-parsed data than the methods that take
dependency parses (with noise) as fixed extra in-
put features or training instances. Experimental
results and further analyses on English benchmark
datasets demonstrate the effectiveness and robust-
ness of the proposed approach, which outperforms
strong baselines under different settings with differ-
ent dependency standards and model architectures
used in pre-training and fine-tuning. The most
interesting finding from this study is that the pre-
training step only needs a small amount of data
(e.g., two thousand auto-parsed sentences for the
BERT-large encoder), to improve the performance
of the resulting parser.

2E.g., Stanford CoreNLP Toolkits (Manning et al., 2014).

2 Training the Dependency Parser

In this study, we use neural graph-based depen-
dency parsers, because they have achieved state-of-
the-art performance on this task (Dozat and Man-
ning, 2017; Zhou and Zhao, 2019; Mrini et al.,
2020). Specifically, training our graph-based parser
follows a two-stage procedure with pre-training
and fine-tuning, where pre-training is performed
on auto-parsed data with the same object to train
a dependency parser, and the fine-tuning is con-
ducted on the gold dependency trees with the pre-
trained encoder (other modules in the final parser
are freshly learned in fine-tuning).

Figure 1 shows the model architecture and the
two-stage procedure to train our final dependency
parser. In the following text, we firstly intro-
duce the neural graph-based dependency parser and
then illustrate the process to pre-train the structure-
aware encoder.

2.1 Neural Graph-based Dependency Parser

Given the input sentence X = x1x2 · · ·xi · · ·xn
(xi is the i-th word), conventional neural graph-
based dependency parsers firstly obtain the hid-
den vector hi for each word xi from the encoder.
Then, based on hi, for each word pair (xi, xj), the
decoder of the parser computes sarci,j and sreli,j in-
dicating the score for the directional dependency
connection (arc) between xi and xj and the score
for the dependency relation type rel ∈ R (R is the
dependency type set) between them, respectively.
Next, the parser applies the Eisner algorithm3 (Eis-
ner, 1996) to all sarci,j to predict the dependency tree
T̂0 and assigns the connection between xi and its

3The Eisner algorithm is only applied in inference. In
training, the parser is optimized by comparing sarci,j and sreli,j
with the gold standards using the cross-entropy loss function.
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head xj with the dependency type r̂i,j having the
highest score sreli,j .

It is worth noting that there are many ways to
obtain the dependency arc scores sarci,j and the de-
pendency relation scores sreli,j . In doing so, bi-affine
attentions (Dozat and Manning, 2017) (as illus-
trated in Figure 1(b)) is the most common and ef-
fective way to obtain sarci,j and sreli,j . Specifically,
for sarci,j , it is computed by

harc-di = MLP arc-d(hi) (1)

harc-hj = MLP arc-h(hj) (2)

sarci,j = (harc-di ⊕ [1])>Warc(harc-hj ⊕ [1]) (3)

where MLP arc-h and MLP arc-d denote multi-layer
perceptrons for the head and dependent represen-
tations, respectively; Warc is a trainable matrix;
⊕ is the vector concatenation operation; [1] is a
one-dimensional unit vector which serves as a bias
term for harc-di and harc-hj . Following the afore-
mentioned process, sreli,j for a particular dependency
type rel ∈ R is computed in a similar way.

2.2 Pre-training Structure-aware Encoder
To leverage existing parsers and unlabeled data, we
replace the original encoder with a structure-aware
encoder. The encoder is pre-trained with depen-
dency trees generated from an existing parser, fol-
lowing the same but simplified procedure (as shown
in Figure 1(a) without using bi-affine attentions)
of training a parser. That is, in the pre-training
procedure, we use

sarci,j = h>i W
archj , sri,j = Wrel(hi ⊕ hj) (4)

to compute the arc score sarci,j and the relation
score vector sri,j over all dependency relation types.
Herein, each dimension of sri,j corresponds to a par-
ticular dependency relation type in R and Warc

and Wrel denote two trainable matrices.
Once the model is pre-trained, we get rid of the

Warc and Wrel and combine the resulting encoder
with a new randomly initialized bi-affine attention
module to construct our final dependency parser
(illustrated in Figure 1(b)) for fine-tuning.

Through pre-training, the encoder is able to learn
dependency information from the auto-parsed data
(with noise). Meanwhile, because the decoder
(i.e., the bi-affine attentions) of the final parser
is changed and randomly initialized without us-
ing the decoder parameters (i.e., Warc and Wrel

in Eq. (4)) obtained from pre-training, our final

Datasets Sent. # Token # ASL

PTB
Train 40K 950K 23.9
Dev 2K 40K 23.6
Test 2K 57K 23.5

UD
Train 13K 205K 16.3
Dev 2K 25K 12.6
Test 2K 25K 12.1

Brown (Full) 24K 458K 19.0

English Wiki 92M 2,380M 22.3

Table 1: The number of sentences, tokens, and the aver-
aged sentence length (ASL) of PTB, UD, Brown, and
English Wiki used in our experiments.

parser is able to optimize its parameters based on
the gold standard trees. Therefore, by using the
auto-parsed and the gold training data in different
stages (i.e., pre-training and fine-tuning, respec-
tively), the noise in the auto-parsed data is carefully
addressed: errors learnt from the pre-training stage
can be “fixed” in the fine-tuning stage. In contrast,
many existing semi-supervised approaches train
the final parser on the combination of auto-parsed
and gold training data, which could be risky.

3 Experiments

3.1 Datasets

In the experiments, we use English Wiki (with
92M sentences and 2,380M tokens) as the raw
data for pre-training. We follow previous studies
(Dozat and Manning, 2017; Zhou and Zhao, 2019;
Mrini et al., 2020) to use English Penn Treebank
(PTB)4 (Marcus et al., 1993) converted by version
3.3.0 of the Stanford Dependency converter5 as
the benchmark dataset, which is further split into
train/dev/test sets. In addition, we use Brown cor-
pus (Marcus et al., 1993) and the English Web
Treebank of Universal Dependencies (UD)6 (Nivre
et al., 2016). Herein, the dependency parses of
Brown are obtained in the same process as PTB
and the dependency parsing standard used in PTB
and Brown is the Stanford typed dependencies
(the Stanford standard) (De Marneffe and Man-
ning, 2008); while UD follows a different standard
named the UD dependency parsing standard7. The
statistics (i.e., the number of sentences, tokens, and

4https://catalog.ldc.upenn.edu/
LDC99T42.

5https://stanfordnlp.github.io/CoreNLP.
6We use the version 2.9 of UD obtained from https:

//universaldependencies.org/
7https://universaldependencies.org/u/

overview/syntax.html
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Pre-training Fine-tuning Testing

Wiki
(SD)

PTB Training (SD) PTB Test (SD)
Brown (SD)

UD Training (UD) UD Test (UD)

Table 2: The datasets used in pre-training, fine-tuning,
and testing. The dependency standard used in the
datasets are illustrated in parentheses with SD and UD
referring to the Stanford dependency standard and the
UD standard, respectively.

the averaged sentence length (ASL)) of all datasets,
namely, PTB, Brown, UD, and English Wiki are
reported in Table 1.

3.2 Obtaining the Auto-parsed Data

In the experiments, we propose to use existing NLP
toolkits to obtain the auto-parsed Wiki data, be-
cause it not only allows us to benefit from existing
tookits, but also is a good approximate of real-
world applications where we want to build a good
parser with existing toolkits. In addition, given
PTB is one of the most widely used benchmark
datasets for English dependency parsing, we want
the auto-parsed data to follow exactly the same
dependency standard as PTB, so that we can ex-
plore the effect of our approach when there is no
gap between the standards in the auto-parsed and
training data. However, many well-known exist-
ing dependency parsers (e.g., Stanford CoreNLP
Toolkit (SCT) (Manning et al., 2014) and SpaCy8)
follow a different standard.9 Therefore, in the ex-
periments, we employ a parsing-conversion process
to obtain the dependency trees: we first use Berke-
ley Neural Parser10 (Kitaev and Klein, 2018) to
obtain the constituency trees of the Wiki text; then
we convert them into dependency trees following
the same process to obtain PTB (we denote this
process as BNP-SD). Since the Berkeley Neural
Parser is trained on the training set of PTB, this
process ensures that the off-the-shelf dependency
parser does not see the test data of PTB in training
and the auto-parsed dependency trees follow the
same dependency parsing standard as PTB.

8https://spacy.io/
9Specifically, the dependency parser of SCT is trained on

UD and follows the UD dependency parsing standard; SpaCy
is trained on OntoNotes 5 with the dependency trees converted
from the corresponding constituency trees through ClearNLP,
which does not exactly follow the Stanford standard.

10We use the model named “benepar_en2”, which is
downloaded from https://github.com/nikitakit/
self-attentive-parser.

Hyper-parameters Values

Learning Rate 5e-6, 1e-5, 3e-5
Warmup Rate 0.1, 0.2
Dropout Rate 0.33
Batch Size 16, 32

Table 3: The hyper-parameters tested in tuning our
models. The best ones used in our final experiments
are highlighted in boldface.

3.3 Settings

Table 2 summarizes the datasets used in pre-
training, fine-tuning, and testing, where the de-
pendency parsing standards for them are also il-
lustrated in parentheses (SD and UD stand for the
Stanford standard and the UD dependency parsing
standard, respectively). Herein, we denote the ex-
periments using Brown and UD in testing as cross-
domain and cross-standard experiments, respec-
tively, because Brown (for testing) and PTB (for
fine-tuning) come from different domains whereas
UD (for testing) and Wiki (for pre-training) use dif-
ferent dependency standards. Intuitively, the cross-
standard setting with UD as the test set is most
challenging as the auto-parsed Wiki data used for
pre-training and the UD data used for fine-tuning
and testing follow different dependency standards.

In addition, since our system design requires the
final parser to use a new randomly initialized de-
coder before fine-tuning, it is interesting to explore
the impact of the choice of the final parser decoder.
Therefore, in addition to our final parser with bi-
affine attentions (BF) following the architecture in
Figure 1(b) (we denote the final parsers as “+BF”),
we also try final parsers without BF and follow-
ing the architecture in Figure 1(a) (we denote it
as “-BF”). It is worth noting that, the architectures
used in pre-training and fine-tuning are different
under “+BF” whereas they are the same under “-
BF” (the parser used in pre-training does not use
BF). Intuitively, “+BF” setting is more challenging
because the patterns learned by the encoder from
pre-training may not fit into the new architecture
(i.e., the BF module) in the final parser and thus
result in noise in the final parser.

3.4 Implementation Details

Since pre-trained language models have achieved
outstanding performance in many NLP tasks (De-
vlin et al., 2019; Wu et al., 2019; Yang et al., 2019;
Raffel et al., 2019; Chen et al., 2020; Tian et al.,
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Models
PTB Brown UD

UAS LAS UAS LAS UAS

BERT-base 96.43 94.74 94.25 91.43 65.14
BERT-large 96.70 94.96 94.60 91.62 65.31
XLNet-base 96.81 95.02 94.74 91.70 65.57
XLNet-large 96.97 95.15 95.01 91.98 65.86

Table 4: The performance of different dependency
parsers obtained after pre-training, without fine-tuning.
We only report UAS (which does not evaluate the rela-
tion types associated with the dependency connections)
on UD because UD and the auto-parsed data use differ-
ent dependency parsing standard.

2020; Diao et al., 2020; Sun et al., 2020; Wang
and Tu, 2020; Song et al., 2021; Diao et al., 2021),
we use two of them, namely, BERT and XLNet,
as the encoder for pre-training. Specifically, we
use the base and large versions of them follow-
ing the default settings: the base models use 12
layers of self-attentions with 768 dimensional hid-
den vectors and the large models use 24 layers of
self-attentions with 1024 dimenstional hidden vec-
tors.11 We train the models on the auto-parsed Wiki
for one epoch (i.e., 2,800K steps in total) with the
batch size set to 32. It is worth noting that, since
English Wiki is used to train BERT and XLNet, it
could be considered that we do not use additional
data in experiments. In fine-tuning, we use the pa-
rameters in the encoder obtained from pre-training
to initialize the encoder in our approach and ran-
domly initialize all other trainable parameters. Fol-
lowing previous studies, we evaluate all models
based on unlabeled attachment score (UAS) and
labeled attachment score (LAS). Table 3 reports
the hyper-parameters tested in training our models.
We test all combinations of them for each model
and use the one achieving the highest LAS score in
our final experiments.

4 Results, Analyses, and Findings

4.1 Overall Performance
Since pre-training also follows the process to train
a dependency parser, we report the performance of
the dependency parsers obtained after pre-training
on the test set of PTB, Brown, and UD in Table 4
for reference. For the final parsers, we report the
mean and standard deviation12 of them on the test
set of all datasets in Table 5.

11We download the cased version of BERT from https:
//github.com/google-research/bert and XLNet
from https://github.com/zihangdai/xlnet.

12In experiments, we run (fine-tune) each model five times
with different random seeds.

Overall, results on PTB, Brown, and UD demon-
strate the effectiveness of our approach under dif-
ferent configurations (i.e., using the base and large
versions of BERT and XLNet encoders, with and
without BF), where consistent improvements are
observed in most cases, even though BERT and
XLNet baselines have already achieved good per-
formance. Particularly, it is promising to observe
that our approach works well on UD (i.e., the cross-
standard setting), where the pre-trained models has
rather low performance (e.g., according to Table 4,
BERT-large achieves 65.31% UAS on UD test set
after pre-training) before they are fine-tuned on the
gold standard. This observation demonstrates the
effectiveness of our approach in cases where other
approaches (e.g., training on the combination of the
auto-parsed data and the gold training data) may
not work well owing to the poor quality of auto-
parsed data. Besides, our final parser with BF also
works well in most cases with its architecture dif-
fering from the one used in pre-training. It shows
the effectiveness and robustness of our approach
to leverage the structure-aware encoder obtained
from a parser with a different architecture, where
the representation obtained from such encoder may
not fit into the final parser due to the differences of
the architectures in pre-training and fine-tuning.

In addition, we compare our best performing
model13 using BERT-large and XLNet-large and
BF with previous studies on the PTB test set and
report the results in Table 6. Overall, our approach
outperforms all previous graph-based approaches
(i.e., the ones without the “†” mark) except Mrini
et al. (2020) that leverage auto-generated part-
of-speech (POS) tags. Particularly, our model
outperforms Zhou and Zhao (2019) and Zhou
et al. (2020a) that perform constituency and de-
pendency parsing at the same time through head-
driven phrase structure grammar (HPSG) parsing.
Besides, compared with Mrini et al. (2020) who
proposed label attention layer to enhance the study
of Zhou and Zhao (2019) on HPSG parsing, our
approach obtain inferior performance because we
do not use the label attention layer or the auto-
generated POS tags. Given that our approach out-
performs Zhou and Zhao (2019) on the test set of
PTB, the effectiveness of our approach for depen-
dency parsing is still valid and promising.

13We follow previous studies to compare our best perform-
ing model with their models.
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Models
PTB Brown (cross-domain) UD (cross-standard)

-BF +BF -BF +BF -BF +BF
µ σ µ σ µ σ µ σ µ σ µ σ

BERT-base 94.65 0.06 94.70 0.05 91.26 0.07 91.46 0.08 89.78 0.08 89.09 0.09
+ Dep. Wiki 95.06 0.05 95.30 0.05 91.56 0.07 91.76 0.06 90.57 0.07 90.39 0.08

BERT-large 95.01 0.07 95.11 0.06 91.79 0.08 91.84 0.07 90.70 0.09 90.80 0.08
+ Dep. Wiki 95.25 0.06 95.50 0.09 92.00 0.07 92.40 0.08 91.22 0.07 91.01 0.09

XLNet-base 95.13 0.05 95.19 0.06 91.78 0.06 91.98 0.07 91.02 0.07 91.50 0.07
+ Dep. Wiki 95.49 0.04 95.50 0.05 92.35 0.05 92.38 0.08 91.51 0.06 91.39 0.07

XLNet-large 95.48 0.04 95.54 0.06 92.31 0.05 92.53 0.07 91.38 0.08 92.30 0.07
+ Dep. Wiki 95.71 0.05 95.86 0.05 92.45 0.06 92.54 0.07 91.94 0.07 91.70 0.08

Table 5: The mean µ and standard deviation σ of LAS of our approaches (with the fine-tuning of the
structure-aware encoder) and the baseline models with different configurations (i.e., the ones using base or large
BERT/XLNet with (+BF) and without (-BF) bi-affine attentions) on the test set of PTB, Brown, and UD.

Models UAS LAS

Dozat and Manning (2017) 95.74 94.08
*Dozat and Manning (2017) (BERT) 96.64 95.11
*Zhou and Zhao (2019) (BERT) 97.00 95.43
*Zhou and Zhao (2019) (XLNet) 97.20 95.72
*Zhou et al. (2020a) (XLNet) 97.23 95.65
*Zhou et al. (2020b) (LIMIT-BERT) 97.14 95.44
*Mrini et al. (2020) (XLNet + POS) 97.42 96.26
*Wang and Tu (2020) (BERT) 96.91 95.34
Zhang et al. (2021) (BERT) 96.64 95.09
Mohammadshahi and Henderson
(2021) (BERT) 96.66 95.01

*†Fernández-González and
Gómez-Rodríguez (2021) (BERT) 97.05 95.47

*†Yang and Tu (2021) (BERT) 97.24 95.73

BNP-SD (Kitaev and Klein, 2018) 96.03 94.03

*Ours (BERT-large) 97.06 95.60
*Ours (XLNet-large) 97.30 95.92

Table 6: Comparison (UAS and LAS) of our approach
with previous studies. “*” denotes the models using
the large version of BERT and XLNet; “†” marks the
parsers that do not use the graph-based approaches.

4.2 The Effect of System Design

Our parser is different from many of the previous
studies in two ways: (1) the auto-parsed data is
used for pre-training only, (2) the fine-tuning step
uses a different decoder from the one used in pre-
training, whose weights are initialized randomly.

To determine the impact of those decisions, we
build three more parsers for comparison. The first
one uses the architecture in Figure 1(a) and is
trained with the union of the auto-parsed and gold
standard data (we denote this approach as “Union”)
without the fine-tuning step. The second parser
(“Fine-tuning”) is pre-trained with the auto-parsed
data and fine-tuned with gold dependency trees, but
the two stages use the same decoder (as in Figure
1(a)) and the decoder’s weights for fine-tuning are
initialized with the weights from pre-training. The

third one (“Randomize”) is the same as the second
one but the weights of the decoder derived from pre-
training are thrown away before fine-tuning. The
"Randomize" system differs from our final parser
only in that our final parser uses a different decoder
in the fine-tuning stage.

All aforementioned three approaches use BERT-
base encoder. For auto-parsed data, we randomly
select sentences from English Wiki where the
number of selected sentences equals to the num-
ber of sentences in the training set of different
datasets (i.e., 40K auto-parsed sentences for PTB
and Brown, and 13K auto-parsed sentences for
UD).14 For each approach, we run it five times with
different random data and report the average results
(LAS for PTB and Brown, and UAS15 for UD) of
them, as well as the average results of BERT-base
baseline and our final parser, in Table 7.

It is observed that “Randomize” consistently out-
performs the other two approaches on the test set
of all datasets. Particularly, for cross-standard set-
tings on UD, because the auto-parsed data and the
UD data use different dependency standards, the
quality of the auto-parsed data can be considered
relatively low with respect to the UD standard (this
can be confirmed by the low model performance
of the parser pre-trained on auto-parsed data on the
test set of UD (see Table 4)). Under this setting,
the “Union” and “Fine-tuning” even achieve infe-
rior results (the results are underlined) compared
with the BERT-base baseline, because they suffer
from the gap between the dependency standards of
auto-parsed data and gold data. On the contrary,

14We also tested other numbers of selected auto-parsed
sentences and obtain similar observations.

15We report UAS (where the dependency type are ignored
in evaluation) for UD because the auto-parsed data and the
UD use different dependency standards.
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Approach PTB Brown UD

BERT-base 94.65 91.26 92.86

+ Union 94.69 91.30 83.51
+ Fine-tuning 94.76 91.38 92.14
+ Randomize 94.94 91.47 93.10

Our Final Parser 95.19 91.60 92.98

Table 7: The average performance (LAS for PTB and
Brown, UAS for UD) of different approaches using
BERT-base encoder with the scores lower than the base-
line highlighted by underlines. “Union” refers to the
model that is trained on the union of auto-parsed and
gold data; “Fine-tuning” denotes the model that is pre-
trained on auto-parsed data and then further fine-tuned
on the gold data; “Randomize” is the same as “Fine-
tuning” except that the weights of the decoder is ran-
domly initialized before fine-tuning. The best scores
among “Union”, “Fine-tuning”, and “Randomize” are
highlighted by boldface. All three models and the base-
line use the architecture in Figure 1(a) and the only dif-
ference between “Randomize” and our final parser is
the architecture of decoder in fine-tuning.

“Randomize” is able to carefully address the noise
in the auto-parsed data by using the auto-parsed
and the gold standard data in different stages and
getting rid of the pre-trained decoder (which may
learn the noise) and randomly initializing a new
one before fine-tuning.

4.3 The Size of Auto-parsed Data

An essential question for evaluating our approach
is that how many data (auto-parsed with noise) are
required to improve the parsers with various model
sizes. To answer its question, we pre-train four
models with variant sizes, i.e., 6-layer BERT-base
(55M parameters), 12-layer BERT-base (110M pa-
rameters), 18-layer BERT-large (252M parame-
ters), and 24-layer BERT-large (336M parameters),
on different amount of randomly selected auto-
parsed Wiki data. Figure 2 illustrates the aver-
aged16 improvement (LAS) of four different mod-
els over their corresponding baselines on three test
sets: (a) PTB, (b) Brown, and (c) UD, with respect
to the ratio of the pre-training sentence number to
the model size. It is interesting that, for the in-
domain setting (i.e., when both training and test
sets are from the PTB), the zero points of different
curves for all models are roughly the same, i.e.,
around 0.3, which means that the pre-training only

16We run the experiment for each model ten times with
different random data to guarantee the results are trustworthy.

Data Auto-parsed by PTB Brown UD

N/A 94.78 91.56 90.10

BNP-SD (94.03) 95.37 91.83 90.48
Parser I (94.78) 94.83 91.58 90.42
Parser II (95.26) 95.38 91.84 91.70

Table 8: Performance (LAS) comparison of a model
(using BERT-base with BF) pre-trained on auto-parsed
English Wiki from different parsers. N/A refers to no
pre-training, Parser I and Parser II are the parsers (with
BF) trained on PTB using BERT-base and XLNet-base,
respectively. The LAS from all parsers on the PTB test
set are reported in parentheses for reference.

needs a little bit over 300 sentences for every 50M
parameters in a parser to ensure an improvement
(e.g., for 24-layer BERT-large, it only requires two
thousand auto-parsed sentences to obtain a better-
than-original parser).

This finding is highly encouraging since it only
needs a small amount of auto-parsed data (com-
pared to 92M sentences in English Wiki) to im-
prove a large model. Similar observations can be
drawn for cross-domain and cross-standard settings
on Brown and UD datasets, where more (since
there are gaps between the pre-training and the
fine-tuning data) but still limited auto-parsed data
is required to ensure that improvement. Particularly,
for each dataset, we found there exists a rather sta-
ble ratio for different models, e.g., 0.3 for PTB, 0.6
for Brown, etc., which is a meaningful guidance
to improve parsers’ performance regarding to their
parameters. An explanation to this observation is
that structural data is useful to update representa-
tion models (Gubbins and Vlachos, 2013; Levy and
Goldberg, 2014; Zhou et al., 2020b) so that a lim-
ited amount (w.r.t. model size) could greatly affect
model performance especially when they are ap-
plied on structure-prediction tasks such as parsing.

4.4 The Choice of Existing Parsers

Another factor that may affect the performance
of our systems is the off-the-shelf parser used to
produce auto-parsed data. To assess the effect of
the parser on the performance of the final systems,
we experimented with two more parsers from our
baselines, i.e., the ones using BERT-base (Parser
I) and XLNet-base (Parser II) trained on PTB, in
addition to BNP-SD as described in Section 3.2:
Table 8 reports the LAS of models with or with-
out pre-training. While pre-training improves the
performance with auto-parsed data from all four
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Figure 2: The improvement (LAS) of four models over their baselines on three test sets. The X-axis is the number
of auto-parsed sentences used for pre-training divided by the number of model parameters, and then multiplied by
50,000 (to make the scale more readable).

Models PTB Brown UD

BERT-base 94.70 91.46 89.09
+ Dep. Wiki (-BF) 95.30 91.76 90.39
+ Dep. Wiki (+BF) 95.35 91.80 90.43

XLNet-base 95.19 91.98 91.50
+ Dep. Wiki (-BF) 95.50 92.38 91.39
+ Dep. Wiki (+BF) 95.54 92.40 91.97

Table 9: The average LAS of final parsers (with BF)
using BERT-base and XLNet-base encoders, with (+)
and without (-) using BF in pre-training.

parsers, the improvement with Parser I is less sig-
nificant than the other parsers because it is more
similar to the final parser in terms of the model
architecture.

This finding is quite intuitive and matches the
observation in Surdeanu and Manning (2010) that
the diversity between different parsers plays an
important role in improving model performance
when combining them. Specifically, when being
evaluated on PTB and Brown, Parser I tends to
make the same mistakes as our final parser since
they use exactly the same architecture (i.e., Trans-
former), which reduces the benefits of pre-training
with auto-parsed data. In contrast, BNP-SD (which
uses ELMo embeddings (Peters et al., 2018)) and
parser II (which is based on Transformer-XL (Dai
et al., 2019)) use different resources and architec-
tures so that our approach with BERT-base encoder
can learn from their auto-parsed data. In addition,
when our final parser is evaluated on UD, since
UD uses a different dependency standard, Parser
I and our final parser no longer make the “same”
mistakes, which results in more improvement on
UD.

4.5 The Decoder Used in Pre-training

In the main experiments, we pre-train the parser
without using BF. To explore its effect, we conduct
an ablation study where BF is used in pre-training.
Table 9 reports the average LAS of different final
parsers (with BF) using BERT-base and XLNet-
base encoders, where BF is used (i.e., “+BF”) or
not used (i.e., “-BF”) in pre-training. It is observed
that using BF in pre-training results in similar per-
formance compared with the settings where BF is
not used. It demonstrates the robustness of our
approach where the architecture of the final parser
(with BF) does not need necessary to be identical
to the one (without BF) in pre-training to obtain
promising improvement over the baselines. In ad-
dition, it is worth-noting that for experiments on
UD with XLNet-base, “+ Dep. Wiki (+BF)” out-
performs the baseline model whereas “+ Dep. Wiki
(-BF)” fails to do so. The explanation could be the
following. For “+ Dep. Wiki (+BF)”, the only gap
between pre-training and fine-tuning is the depen-
dency standard, whereas “+ Dep. Wiki (-BF)” faces
an additional gap that the architectures used in pre-
training and fine-tuning are different. Therefore, “+
Dep. Wiki (-BF)” fails to overcome the two gaps
and thus results in inferior results compared with
the XLNet baseline. On the other hand, when BF
is also used in pre-training, the gap between the
architectures does not exist, which allows our final
parser to obtain a higher performance.

5 Related Work

Recent studies for dependency parsing use ad-
vanced architectures (e.g., bi-LSTM, BERT) to
capture contextual information so as to achieve
outstanding performance (Shen et al., 2021; Zhang
et al., 2021; Yang and Tu, 2021; Li et al., 2021). To
further improve dependency parsing, approaches
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such as bi-affine attentions (Dozat and Manning,
2017; Attardi et al., 2021; Xu and Koehn, 2021),
HPSG parsing (Zhou and Zhao, 2019; Zhou et al.,
2020a; Mrini et al., 2020), TreeCRF (Zhang et al.,
2020) are further applied. Besides, to improve
model performance, there are studies that use ex-
isting dependency parsers and auto-parsed data
through model ensemble (Attardi and Dell’Orletta,
2009; Surdeanu and Manning, 2010; Che et al.,
2018) or semi-supervised approaches (Sagae and
Lavie, 2006; Chen et al., 2009; Prokopidis and Pa-
pageorgiou, 2014; Yu and Bohnet, 2017; Zhang
et al., 2021; Wagner and Foster, 2021).

Compared to previous studies that use auto-
parsed data, our approach differs in several ways.
First, our encoder is structure-aware as it is pre-
trained with dependency trees. Second, because
auto-parsed data is noisy and may use dependency
standard different from that of the test data (in the
cross-standard setting), it is used in pre-training
only. In contrast, training a parser on the union
of auto-parsed data and gold data would not work
well, especially in the cross-standard setting, as
shown in Table 7. Third, the decoder of the
fine-tuning stage starts with randomly initialized
weights, instead of with the weights learned from
the pre-training stage, thus ensuring that the de-
coder in the final parser will not be affected by the
noisy auto-parsed data.

6 Conclusion

In this study, we propose a simple and effective
solution to improve dependency parser through pre-
training on auto-parsed data. In doing so, the en-
coder is able to learn structural information from
the auto-parsed data in pre-training. During fine-
tuning, a different decoder is used and its weights
initialized randomly, thus reducing the impact of
errors in the auto-parsed data. We have run a
large number of experiments under different set-
tings (e.g., cross-domain vs. cross-standard, -BF
vs. +BF, different parsers used to parse Wiki) and
shown that our approach outperforms strong base-
lines and many previous studies under those set-
tings. Furthermore, pre-training needs only a small
amount of auto-parsed data (e.g., 2K sentences for
a BERT-large based parser on the PTB test set) to
ensure improvement over strong baselines.
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Abstract

Annotation conversion is an effective way to
construct datasets under new annotation guide-
lines based on existing datasets with little hu-
man labour. Previous work has been limited
in conversion between tree-structured datasets
and mainly focused on feature-based models
which are not easily applicable to new conver-
sions. In this paper, we propose two simple
and effective graph-to-graph annotation conver-
sion approaches, namely Label Switching and
Graph2Graph Linear Transformation, which
use pseudo data and inherit parameters to guide
graph conversions respectively. These methods
are able to deal with conversion between graph-
structured annotations and require no manually
designed features. To verify their effectiveness,
we manually construct a graph-structured par-
allel annotated dataset and evaluate the pro-
posed approaches on it as well as other exist-
ing parallel annotated datasets. Experimental
results show that the proposed approaches out-
perform strong baselines with higher conver-
sion score. To further validate the quality of
converted graphs, we utilize them to train the
target parser and find graphs generated by our
approaches lead to higher parsing score than
those generated by the baselines.1

1 Introduction

While tree-structured representations have domi-
nated parsing for the last decade, graph-structured
datasets are receiving growing interest in recent
years (Oepen et al., 2019, 2020). Over the last few
years, an increasing number of graph-structured
datasets have become available. Some of them,
such as DM corpora from the SemEval 2015 task
18 dataset (Oepen et al., 2015) and AMRBank (Ba-
narescu et al., 2013), are manually annotated. Some

∗Equal Contribution.
†Email Corresponding.

1Our code and dataset are available at https://
github.com/WangYuxuan93/G2GConversion.
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Figure 1: Example of annotation conversion from Uni-
versal Dependency Tree (bottom) to our Semantic De-
pendency Graph (top).

others, such as the Enhanced English Universal De-
pendencies dataset (Schuster and Manning, 2016),
are converted from existing dataset with manually
designed rules. As illustrated in Figure 1, the Se-
mantic Dependency Graph at the top is converted
from the Universal Dependecy Tree at the bottom.

Obviously, in the dataset construction process
under a new annotation guideline, it would be ex-
tremely expensive to annotate the whole dataset
manually. Although rule-based conversion needs
no human labour for annotation, it requires exper-
tise to design the rules, which could be difficult if
the new guideline is vastly different from the old
one. Therefore, it would be efficient and attractive
to exploit existing datasets and learn a transduc-
tion that converts them into a new guideline. The
converted dataset under the new guideline could be
used in model training or further refined by human
annotators to construct a high-quality dataset.

Such conversion has been studied in a line of
research that exploits heterogeneous treebanks to
boost parsing performance, where the approach
is typically referred to as treebank conversion (Li
et al., 2013; Jiang et al., 2018; Seddah et al., 2018).
In their cases, two existing heterogeneous tree-
banks (tree-structured datasets) on different texts
are available. The goal is to convert a source tree-
bank into annotation under a target guideline and
use the converted treebank as extra annotated data
for the training of the target model.
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Previous work for treebank conversion mainly
focused on rule-based and feature-based methods.
For the rule-based methods (Frank, 2001; Schuster
and Manning, 2016), treebank-specific rules are
designed by experts to convert one treebank to the
other one. For the feature-based methods, they first
construct parallel annotated data by manually anno-
tating part of the target treebank under the source
guideline (Jiang et al., 2015, 2018) or training a
parser on the source treebank and parsing the target
treebank with it (Zhu et al., 2011; Li et al., 2013).
Then they use the source annotation as extra guid-
ing features to train an augmented target parser that
parses the whole source treebank and generates the
expected target annotation. Such methods are not
easily applicable to new conversions, especially be-
tween graph-structured representations, since the
annotation guidelines are normally vastly differ-
ent from each other, and thus the rules or features
should be redesigned for every new guideline.

In this paper, we propose two pretrained model-
based graph-to-graph annotation conversion ap-
proaches, namely Label Switching (LS) and
Graph2Graph Linear Transformation (G2GLT),
which are able to deal with conversions between
graph-structured datasets and require no manually
designed features. Specifically, in the Label Switch-
ing approach, we first automatically construct large
scale pseudo target data by switching labels in
source data to target labels based on the alignment
information obtained from the parallel annotated
data. After that, a graph parser is first trained on
the pseudo data and then further fine-tuned on the
small set of gold target annotation. The parser
is eventually used to parse the source dataset to
generate the target annotation. While the G2GLT
approach directly inherits most of parameters from
the parser trained on the source annotation, then
linearly transform the biaffine attention matrix in a
biaffine graph parser (Dozat and Manning, 2018)
to adapt to the target annotation guideline.

We manually construct a graph-structured
dataset under the refined semantic dependency
graph (SDG) guideline (Che et al., 2016) on part
of the text from the English Web Treebank (EWT)
(Silveira et al., 2014) in the Universal Dependen-
cies (UD) Treebanks (v2.5) (Zeman et al., 2019).2

To verify the effectiveness of the proposed ap-
proaches, we evaluate them on conversions be-
tween 6 datasets including SDG, UD-EWT, the

2Referred to as UD-EWT in the rest of the paper.

Enhanced Universal Dependencies (UD-Enhanced)
dataset (Schuster and Manning, 2016) and three
types of annotations (i.e., DM, PAS and PSD) in
the SemEval 2015 task 18 dataset (Oepen et al.,
2015). We further validate the quality of the con-
verted annotations by utilizing them in the training
of the target parser. Experimental results show
that our approaches outperform strong baselines on
both conversion score and parsing score.

In this paper, we focus on graph-structured an-
notation conversion based on an existing source-
annotated dataset and a small set of parallel anno-
tated data. Our contributions are summarized as
follows.

• We propose two graph-to-graph conversion
approaches that require no manually designed
features.

• We verify the effectiveness of our proposed
approaches on 5 existing datasets and a graph-
structured dataset manually constructed by
ourselves.

• We validate the quality of the annotations con-
verted by our approaches by utilizing them to
train the target parser.

2 Background

2.1 Semantic Dependency Graph
Chinese semantic dependency graph (SDG) (Che
et al., 2016) is a framework for representing the
meaning of different semantic units within a sen-
tence (e.g., event chains, events, arguments, and
concepts). It is in the form of directed acyclic
graphs and focuses on investigating deeper seman-
tic relations within sentences rather than morpho-
syntactic patterns compared with traditional syn-
tactic dependency trees. With the benefits of the
graph’s reentrancies and the easy-to-understand
semantic labels, the tokens are connected more
closely, making it easier to directly answer ques-
tions like who did what to whom when and where.

This framework is designed for Chinese exclu-
sively. To take advantages of its properties, we
modified the original annotation guidelines to make
them applicable to English. We manually anno-
tated 1,000 English sentences from UD-EWT to
build a parallel annotated dataset to evaluate our
annotation conversion approaches. Please refer to
Appendix A.2 for the modifications we made to the
Chinese SDG guidelines.
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2.2 Biaffine Graph Parser
In this paper, we build all the approaches over the
state-of-the-art biaffine graph parser (Dozat and
Manning, 2018), which is a graph-based depen-
dency parser that employs biaffine classifiers to
predict arcs and labels in a graph. Firstly, it encodes
the input sentence with a multi-layer bidirectional
LSTM. Conventionally, the static word embeddings
are used as the input vector. To exploit the capa-
bility of pretrained models in capturing structural
information, we instead employ RoBERTa (Liu
et al., 2019) to obtain the contextual representation
as input. Secondly, the output of the LSTM of the
i-th word, denoted as hi, is fed to four single-layer
feed-forward networks (FFN) to get head and de-
pendent representations for arcs (Eq. 1) and labels
(Eq. 2).

h
(arc-head)
i = FFN(arc-head)(hi)

h
(arc-dep)
i = FFN(arc-dep)(hi)

(1)

h
(rel-head)
i = FFN(rel-head)(hi)

h
(rel-dep)
i = FFN(rel-dep)(hi)

(2)

Eventually, the scores for arcs (Eq. 4) and labels
(Eq. 5) are computed with biaffine classifiers:

Biaf(xi,xj) = x⊤i Uxj +W ([xi;xj ]) + b (3)

s
(arc)
i,j = Biaf(arc)(h

(arc-head)
i ,h

(arc-dep)
j ) (4)

s
(rel)
i,j = Biaf(rel)(h

(rel-head)
i ,h

(rel-dep)
j ) (5)

Where [xi;xj ] indicates the concatenation of the
two vectors. For the labeled parser, U ∈ Rd×c×d
and W ∈ Rc×2d where c is the number of rela-
tion labels and d is the dimension of hidden states.
While for the unlabeled parser, U ∈ Rd×1×d and
W ∈ R1×2d, so that s(arc)

i,j is a scalar. The predic-

tions of arcs and labels are y′(arc)
i,j = {s(arc)

i,j ≥ 0}
and y′(rel)

i,j = argmax s(rel)
i,j respectively. Where the

latter means that the label with the highest score is
the prediction.

3 Method

In this section, we first give a formal definition
of the task of supervised graph-to-graph annota-
tion conversion (Section 3.1). Then, we present
the proposed approaches, namely Label Switching
(Section 3.2) and Graph2Graph Linear Transforma-
tion (Section 3.3) for this task.

3.1 Problem Definition

Given a set of texts T , a graph-structured dataset
annotated following guideline s on it is denoted
by Ds(T ). In this paper, s is called the source
guideline and Ds(T ) the source dataset. Assume
we have a target guideline t as well as a small
set of texts T ′ ⊆ T annotated under t. In other
words, we have the annotations of T ′ following
both s (i.e., Ds(T ′)) and t (i.e., Dt(T ′)), which
consist the parallel annotated data. The goal of
supervised graph-to-graph annotation conversion
is to learn a transformation f : Ds(T ) → Dt(T )
based on Ds(T ′) and Dt(T ′), which converts the
whole source dataset Ds(T ) into annotation under
the target guideline, and thus obtain the annotated
target dataset Dt(T ).

3.2 Label Switching

The lack of training data under the target guideline
is a great challenge in supervised annotation con-
version, especially for models based on deep neural
networks. Data augmentation has been commonly
used in the NLP community to alleviate the prob-
lem. Recently, Qin et al. (2020) proposed a code-
switching data augmentation method, which gen-
erates pseudo multilingual corpus for the training
of the multilingual BERT by randomly replacing
words in a monolingual corpus based on bilingual
dictionaries.

Inspired by this work, we propose the Label
Switching approach that constructs pseudo target
annotations to help the training of the conversion
model by switching labels in source annotations to
labels in the target guideline based on the alignment
information obtained from the parallel annotated
data. Our Label Switching approach consists of
two steps: (i) label-switching data augmentation
and (ii) two-step fine-tuning, which are introduced
as follows.

Label-Switching Data Augmentation: To con-
struct pseudo training data under the target guide-
line, we first compute the label alignment-based
switching probabilities on the parallel annotations
Ds(T ′) and Dt(T ′). Specifically, for a text X ∈
T ′, its source and target annotations are denoted
by Ds(X) and Dt(X) respectively. Let (i, j, r) de-
note the arc from word i to word j with label r, we
count the number of the quadruples (rt, ph, pd, rs)
for all the arcs that exist in both source and
target annotations (i.e., (i, j, rs) ∈ Ds(X) and
(i, j, rt) ∈ Dt(X)), where ph and pd are the Part-
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Figure 2: Schematic diagram of Graph2Graph Linear Transformation which scores each relation label between the
head and the dependent. Embed refers to embedding layer. The parameters of a biaffine parser trained on source
data is inherited by another parser with a linear transformation function applied to its biaffine attention matrix. All
the inherited parameters and the linear transformation function are fine-tuned on target data except for the biaffine
attention matrix inherited from the source parser.

of-Speech (POS) tags for the head and dependent
words respectively.3 The switching probability is
thus computed as:

P (rt|ph, pd, rs) =
N(rt,ph,pd,rs)∑

r′∈Rt N(r′,ph,pd,rs)
, (6)

where N(rt,ph,pd,rs) is the number of the quadruples
in the parallel annotated data, andRt is the set of
all the labels in the target guideline. Eventually,
each label rs in the source dataset, with POS tags
ph and pd for the head and dependent respectively,
is switched to rt in the target guideline with the
probability P (rt|ph, pd, rs).4

Two-Step Fine-Tuning: The pseudo target data
generated in the last step is firstly used to train a
biaffine graph parser as described in Section 2.2.
Secondly, the model is further fine-tuned on the
manually annotated target dataDt(T ′). Eventually,
this parser is used to generate the annotation of the
whole dataset under the target guideline with only
texts as input.

3.3 Graph2Graph Linear Transformation

Compared with the Label Switching approach
which converts the annotation through data aug-
mentation and two-step fine-tuning, our second

3We use gold POS tags from the source dataset in our
experiments.

4Due to the limited number of parallel annotated data,
the switching probabilities can not cover all the labels in the
source data. For those not covered, we leave them as they are.

approach directly learns a linear function that trans-
forms the parser trained on the source-annotated
data to a parser that fits the target annotation guide-
line. Since the biaffine attention matrix is the core
of the biaffine parser and contains knowledge that
is significant for the prediction of the dependency
graph. A natural way to exploit source graph infor-
mation is to inherit such knowledge from a parser
trained on large-scale source-annotated data.

As illustrated in Figure 2, to exploit the infor-
mation in the source data, we firstly train a source
parser on it. Then a linear transformation is applied
to the biaffine attention matrix for relation predic-
tion so that the relational information learned on
the source annotation can be transformed to the
target annotation. To maintain the source relational
information, the corresponding biaffine attention
matrix is fixed during the fine-tuning stage on the
target data.

Specifically, let Us,Ws and bs be the param-
eters of a biaffine parser trained on large-scale
source-annotated data with Eq. 3. Let cs and ct
be the number of relation labels in the source and
target annotations respectively. Two linear transfor-
mation functions Vu ∈ Rct×cs and Vw ∈ Rct×cs
are applied to Us ∈ Rd×cs×d andWs ∈ Rcs×2d re-
spectively to obtain the parameters Ut ∈ Rd×ct×d
andWt ∈ Rct×2d for the target parser.

Ut = (VuU
⊤(1,2)
s )⊤(1,2) (7)
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Wt = VwWs (8)

Biaft(xi,xj) = x⊤i Utxj +Wt([xi;xj ]) + bs
(9)

where U⊤(1,2) means transposing the first and the
second dimensions of tensor U.

Briefly, our Graph2Graph Linear Transforma-
tion approach consists of two steps: (i) training a
source biaffine parser on the source-annotated data;
(ii) applying the linear transformation function on
the source parser and fine-tuning it on the target-
annotated data while freezing the parameters in the
biaffine attention matrix inherited from the source
parser.

4 Experimental Setup

4.1 Datasets and Experimental Settings

Dataset #Sent #Token #Arc (avg) #Label
UD-EWT 16,622 254,829 1.00 49
SDG 1,000 15,991 1.07 61
UD-En 16,622 254,829 1.05 398
DM 37,066 834,665 0.78 60
PAS 37,066 834,665 1.02 43
PSD 37,066 834,665 0.70 92

Table 1: Data statistics. #Sent and #Token denote the
number of sentences and tokens respectively for all the
annotated data in the dataset (including training, valid
and test sets). #Arc (avg) denotes the average number
of arcs per token, while #Label the number of label
types. UD-En denotes the UD-Enhanced dataset. For
DM/PAS/PSD, the out-of-domain test sets are excluded.

Dataset Source-Train Train Valid Test
UD2UD-En 10,508 1000 500 5,000
UD2SDG 16,369 800 - 200
D2D∗ 26,206 1,000 500 10,000

Table 2: Data split statistics. UD denotes UD-EWT.
D2D∗ denotes the 6 conversion tasks between DM, PAS
and PSD.

For the evaluation of the proposed approaches,
we manually construct the SDG dataset (on part
of texts from UD-EWT) and employ two groups
of existing parallel annotated datasets, namely
{UD-EWT, UD-Enhanced} and {DM, PAS, PSD},
whose statistics are shown in Table 1.

UD-EWT is a tree-structured syntactic dataset
under the Universal Dependencies (UD) guideline.
UD (Zeman et al., 2019) is a framework for consis-
tent annotation of grammar across languages. The

UD Treebanks (v2.5) consist of 157 treebanks in
90 languages,5 which could be a good source to ob-
tain source datasets for dataset construction under
a new guideline. Therefore, we use UD-EWT as
the source dataset in our experiments.

UD-Enhanced is a graph-structured syntactic
dataset converted from UD-EWT by adding rela-
tions and augmenting relation names (Schuster and
Manning, 2016).6

SDG is a graph-structured semantic dataset with
1,000 sentences annotated under the refined seman-
tic dependency graph guideline (Che et al., 2016).

DM, PAS and PSD are three types of graph-
structured semantic annotations in the SemEval
2015 task 18 dataset (Oepen et al., 2015).7

The approaches are evaluated on eight anno-
tation conversion tasks including UD-EWT to
UD-Enhanced (UD2UD-En), UD-EWT to SDG
(UD2SDG) as well as six conversion tasks be-
tween DM, PAS and PSD (PAS2DM, PSD2DM,
PAS2PSD, DM2PSD, DM2PAS, PSD2PAS). Re-
call that the goal of this paper is graph-structured
annotation conversion based on an existing source-
annotated dataset and a small set of parallel anno-
tated data. To fit the goal, we re-split the datasets
so that only a limited number of parallel anno-
tated examples are available while training. The
data split statistics are shown in Table 2, where
Train/Valid/Test are parallel annotated data and
Source-Train contains only the source-side annota-
tion that will be used in the experiment of utilizing
converted data in Section 5.2. We perform 5-fold
cross-validation on the 1,000 parallel annotated
sentences in the conversion task from UD-EWT to
SDG.

For all the approaches, we employ the biaffine
graph parser as described in Section 2.2 to pre-
dict the target graph, and use RoBERTa (Liu et al.,
2019) to obtain contextual representations as its
input. We set the learning rate of RoBERTa to 2e-5
and that of other parameters to 2e-2. Other hyper-
parameters are adopted from the paper of Dozat
and Manning (2018).

Existing graph banks can be broadly categorized
into two types, namely the bilexical graphs (where
dependencies are directly linked between surface
lexical units) and the conceptual graphs (where

5http://hdl.handle.net/11234/1-3105
6https://github.com/

UniversalDependencies/UD_English-EWT
7https://catalog.ldc.upenn.edu/

LDC2016T10
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Methods
UD2UD-En UD2SDG PAS2DM PSD2DM DM2PAS PSD2PAS DM2PSD PAS2PSD AVG.
UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF

DFT 89.92 82.04 86.47 74.07 90.07 87.53 90.07 87.53 93.76 91.56 93.76 91.56 90.87 75.32 90.87 75.32 90.72 83.12
TSFT 91.74 83.32 87.49 74.87 90.51 88.01 90.48 88.10 94.11 91.96 94.46 92.37 91.26 75.32 91.66 75.57 91.46 83.69
PE 99.41 95.82 87.68 74.93 89.79 87.33 90.11 87.68 93.93 91.75 94.20 91.90 89.69 74.03 91.81 76.54 92.08 85.00
G2GTr 96.63 89.16 87.85 74.91 90.11 87.62 90.58 88.20 93.81 91.63 94.42 92.28 90.53 74.21 91.88 75.73 91.98 84.22
LS 97.13 89.27 89.15 76.65 91.12 88.71 91.05 88.71 94.72 92.90 95.23 93.29 92.08 76.90 93.14 77.65 92.95 85.51
G2GLT 96.51 90.97 89.30 77.05 90.86 88.46 91.27 89.31 94.37 92.31 94.88 92.92 90.81 75.12 92.63 76.81 92.58 85.37
LS+G2GLT 97.27 91.47 89.81 77.81 91.33 89.05 91.87 90.05 94.86 93.01 95.80 94.10 92.77 79.36 93.29 78.42 93.38 86.66

Table 3: Conversion scores on test data.

dependencies are between virtual nodes that do
not need be explicitly mapped to surface linguistic
forms). DM, PAS and PSD fall into the former cat-
egory, while another popular graph bank Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013) belongs to the latter. We choose to conduct
experiments on DM, PAS and PSD because they
are annotated on the same corpus, which guaran-
tees the availability of parallel annotated data re-
quired by our approaches. While currently we have
no access to parallel annotated data for AMR and
any other graph bank. More importantly, since our
Label Switching approach exploits the overlapped
dependencies in source and target annotation for
label switching, it is not straightforwardly applica-
ble to conversion between conceptual graphs since
virtual nodes make it hard to identify overlapped
dependencies. Therefore, we leave as future work
to extend our approaches to conversion between
conceptual graphs.

4.2 Baselines and Evaluation Metrics
Our approaches, namely Label Switching (LS)
and Graph2Graph Linear Transformation
(G2GLT), are compared with four baselines in-
troduced as follows.

Direct Fine-Tuning (DFT) A RoBERTa-based
biaffine graph parser is directly trained on the small
set of target annotations Dt(T ′).

Two-Step Fine-Tuning (TSFT) A RoBERTa-
based biaffine graph parser is firstly trained on
the whole source dataset Ds(T ), and then further
fine-tuned on the small set of target annotations
Dt(T ′).8 It is only trained for 5 epochs in the first
step to avoid over-fitting to the source data.

Pattern Embedding (PE) This is a feature-
based method closely following the work of Jiang
et al. (2018) which takes advantage of source guid-
ing features. To adopt it in graph-to-graph an-
notation conversion, we average the label embed-

8In the second step, non-RoBERTa parameters are reinitial-
ized since the source and target guidelines have different label
sets, and thus only the RoBERTa parameters can be shared.

dings for structural information representation in
the reentrancy structure and add reverse sibling
pattern for the reentrancy structure in graphs.9 A
RoBERTa-based biaffine graph parser is employed
in the method.

Graph2Graph Transformer (G2GTr)
Graph2Graph Transformer is proposed by Moham-
madshahi and Henderson (2021) for dependency
parsing with iterative refinement, which encodes
dependency trees produced by the last step to
obtain structural enhanced representation that is
utilized to predict refined trees. In this method,
we employ Graph2Graph Transformer to obtain
each token’s representation infused with source
annotation information and feed them to a
RoBERTa-based biaffine graph parser that predicts
the target annotation.

Moreover, it is straightforward to combine the
two approaches we proposed (LS+G2GLT) by av-
eraging the scores they predicted for arcs (Eq. 4)
and labels (Eq. 5) respectively. This is also evalu-
ated in the experiments.

All the results are reported in terms of unlabelled
F1 score (UF) and labelled F1 score (LF) on the
target test set.

5 Results

5.1 Conversion Results

Table 3 shows the results of the eight conversion
tasks, which are the average over three runs.10 With
the help of the pretrained model, DFT achieves fair
results with limited data annotated under the target
guideline used for training. While TSFT improves
the results by training on the large-scale source-
annotated dataset firstly to capture the structural
information implicitly. The other two baselines,
which adopt previous methods for graph-to-graph
annotation conversion, yield better results. Specif-

9Reentrancy structure represent the structure of a word
with multiple heads, which only occurs in graphs but not in
trees.

10Please refer to Appendix A.3 for the standard deviation.
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Methods
UD2UD-En UD2SDG PAS2DM PSD2DM DM2PAS PSD2PAS DM2PSD PAS2PSD AVG.
UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF

Single 89.92 82.04 86.47 74.07 90.07 87.53 90.07 87.53 93.76 91.56 93.76 91.56 90.87 75.32 90.87 75.32 90.72 83.12
DFT 90.56 82.86 87.22 75.11 90.51 88.09 90.51 88.09 94.14 92.01 94.14 92.01 91.57 76.49 91.57 76.49 91.28 83.89
TSFT 91.63 83.60 87.98 75.74 91.02 88.66 90.78 88.49 94.51 92.52 94.88 92.83 91.79 76.44 91.89 76.57 91.81 84.36
PE 93.39 88.41 88.48 76.13 90.97 88.77 91.04 89.07 94.63 92.64 95.08 93.16 91.62 77.09 92.24 77.63 92.18 85.36
G2GTr 92.56 84.89 87.57 75.45 90.61 88.40 90.87 88.73 94.23 92.18 94.77 92.82 91.94 77.33 91.90 76.35 91.81 84.52
LS 93.52 85.77 88.86 76.82 91.27 88.86 91.19 88.96 94.92 93.04 95.17 93.32 92.51 77.92 92.90 78.02 92.54 85.34
G2GLT 93.23 87.36 88.92 76.92 91.28 88.92 91.63 89.81 94.85 92.90 95.40 93.56 92.42 78.34 92.69 77.58 92.55 85.67
LS+G2GLT 93.64 87.47 89.32 77.48 91.50 89.20 91.70 89.87 95.02 93.20 95.67 93.96 93.07 79.73 92.91 78.41 92.85 86.16

Table 4: Parsing scores on test data.

ically, G2GTr improves the performance by em-
ploying the Graph2Graph Transformer to encode
source-annotated information. As the only feature-
based method, PE achieves the best average results
in all the baselines.

As for our approaches, they achieve comparable
conversion scores, and both of them outperform
the baselines on average. Besides, they signifi-
cantly outperform all the baselines in almost all
the conversion tasks, except in the conversion from
UD-EWT to UD-Enhanced where PE yields the
best result. We assume that this is because UD-
Enhanced is converted from UD-EWT by adding
relations and augmenting relation names to make
implicit relations between content words more ex-
plicit. Therefore, UD-Enhanced shares some labels
with UD-EWT and they have the highest annotation
overlap among all the conversion tasks.11 While
in all the other conversion tasks, the two datasets
have completely different label sets, and thus their
overlap rate is much lower. Obviously, the feature-
based PE approach performs extremely good in
the case where the annotation overlap rate is high.
However, it is outperformed by our approaches in
all the other more complicated conversion tasks
where the annotation overlap rate is lower.

Furthermore, since our proposed approaches im-
prove the conversion score in two facets, namely
data augmentation and parameter transformation,
we assume that the improvements they brought are
orthogonal to each other. Therefore, we combine
them by simply averaging the arc and label scores
they predicted and find that the combined model
further significantly improves the performance on
all the conversion tasks.

5.2 Utilizing Converted Data

In order to evaluate the quality of the converted
data, we utilize them to train a target parser and
measure the quality with the parsing score. Specif-

11Please refer to Appendix A.1 for the annotation overlap
information in detail.

ically, following the data split in Table 2, we first
convert Source-Train into target-annotated data
with different conversion approaches, then train tar-
get parsers with the converted data. Eventually, the
target parsers are evaluated on the Test set.

Table 4 shows the empirical results. Besides
the methods in Table 3, we also include a Single
baseline without the annotation conversion process,
which is a target parser trained only on the target
annotation in the Train set in Table 2. Obviously,
utilizing the target data converted from the large-
scale source data during training can significantly
improve the performance. Moreover, both of our
approaches outperform all the baselines in almost
all parsing tasks. The result of PE is much higher
than that of our approaches for the UD-EWT to UD-
Enhanced task. We assume that this is due to the
high conversion score of PE on the conversion task
from UD-EWT to UD-Enhanced, whose reason
has been discussed in Section 5.1. Similar to the
case in conversion tasks, the combined model can
further improve the parsing performance.

5.3 Effect of Parallel Annotated Data Size

Recall that this paper aims at graph-structured an-
notation conversion based on an existing source-
annotated dataset and little human labour. There-
fore, the parallel annotated data size is of great
importance since the smaller it is, the less human
labour will be required. This section investigates
the effect of the parallel annotated data size on the
proposed conversion approaches. Specifically, we
evaluate the approaches on 200/500/1,000/2,000
randomly selected training sets respectively with
the same valid/test sets introduced in Section 4.1.12

Figure 3 shows the results with different parallel
annotated data sizes, where it is obvious that the
performances of all methods increase as the data
size increases in almost all the conversion tasks.

12We conduct experiments on all conversion tasks except
the conversion from UD-EWT to SDG since there are only
1,000 parallel annotated sentences. The results for conversion
from PAS to PSD is shown in Appendix A.4.
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Figure 3: Results for conversions with different parallel annotated data sizes (best viewed in color).

However, the performance of LS, G2GLT and the
combined approach is not apparently influenced by
the change of data size in the annotation conver-
sion from UD-EWT to UD-Enhanced. It can be ex-
plained by the high annotation overlap rate between
them. With the highly overlapped annotation, our
proposed approaches can easily obtain promising
results with only 200 parallel annotated sentences.
While since the PE method extracts features from
the source graph to predict the target graph, it also
benefits from the high annotation overlap rate. An-
other finding from Figure 3 is that the difference of
LF between our proposed approaches and the base-
lines shrinks as the data size increases, which may
indicates that our proposed approaches are most
suitable for cases where only limited parallel an-
notated data is available. And this exactly satisfies
the aim of this paper.

6 Conclusion

This paper aims at graph-structured annotation
conversion based on an existing source-annotated
dataset with little human labour. We propose two
graph-to-graph annotation conversion approaches,

namely Label Switching and Graph2Graph Linear
Transformation, and show their effectiveness on
eight annotation conversion tasks and converted
data utilizing tasks. Results show that 1) the two
approaches achieve comparable conversion scores;
2) our proposed approaches are most suitable for
cases where only limited parallel annotated data is
available; 3) the two approaches can be combined
to further improve the performance.

7 Ethical Considerations

The sentences in the Semantic Dependency Graph
(SDG) dataset we construct are collected from the
English Web Treebank (EWT) in the Universal De-
pendencies (UD) Treebanks (v2.5) (Zeman et al.,
2019) which is a publicly available dataset. The
detailed statistics of the SDG dataset are shown in
Table 1. All the annotators are voluntary partici-
pants who have given informed consent and been
fairly compensated during the annotation process.
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A Appendix

A.1 Annotation Overlap

In this section, we evaluate the annotation over-
lap between the datasets in our conversion tasks.
Specifically, for each of the eight conversion tasks
used in this paper, we directly evaluate the origi-
nal source dataset on the gold target dataset and
use the scores to measure the annotation overlap
between the two datasets. A higher score between
two datasets represents a higher annotation overlap
rate between them.

Source Target UF LF
UD-EWT UD-Enhanced 96.95 83.87
UD-EWT SDG 87.98 -
PAS DM 63.78 -
PSD DM 27.21 -
DM PAS 63.78 -
PSD PAS 30.24 -
DM PSD 27.21 -
PAS PSD 30.24 -

Table 5: Annotation overlap in terms of UF and LF.

Results are shown in Table 5, we only report
the LF for the dataset pair of {UD-EWT, UD-
Enhanced}. This is because UD-Enhanced is con-
verted from UD-EWT by adding relations and aug-
menting relation names to make implicit relations
between content words more explicit. Therefore,
UD-Enhanced shares some labels with UD-EWT.
While in all the other pairs, the two datasets have
completely different label sets. Thus we can not
compute the LF for them.

As for the UF which reflects the structural an-
notation overlap between datasets, we find that
UD-EWT is most similar to UD-Enhanced, which
can also be explained by the construction of UD-
Enhanced introduced above. The overlap between
UD-EWT and SDG is lower, indicating that the
conversion from UD-EWT to SDG is harder than
that from UD-EWT to UD-Enhanced. Moreover,
the overlap rate between DM, PAS and PSD are
much lower, with only 27.21% UF for PAS and
PSD, which suggests that the shared information
between them is much less than that for the other
pairs and conversion between them are even more
challenging.

A.2 Semantic Dependency Graph Annotation
Guidelines

We modified Chinese Semantic Dependency Graph
guidelines13 to make it applicable to English in two
ways: adding more semantic edges and reducing
more semantic labels.

We added more edges between predicates and
arguments. In the Chinese Semantic Dependency
Graph, it only considers omitted object and subject
which has been referred in previous clauses. We
also take omitted predicates into account, thus, en-
suring the semantic integrity of semantic units. An
example is shown in Figure 4. Here, the predicate
"cried" has been omitted and we added an extra
edge to connect "I" with "cried" which makes the
second clause more explicit.

She cried , and so did I .

ROOT

AGT mPUNC

eCOO

mDEPD
mDEPD AGT

mPUNC
AGT

Figure 4: Example of annotation for omitted predicates

Semantic Class Labels

Semantic roles AGT(Agent), EXP(Experiencer),
PAT(Patient), CONT(Content),
PROD(Product), BEL-
GONG(Belongings), PART,
MATL(Material), TOOL,
REAS(Reason), LOC(location),
TIME, SCO(Scope), FEAT,
QUAN(Quantity), STAT(State)

Reverse relations r+semantic roles

Nested relations d+semantic roles

Event relations eCOO(Coordination),
eRECT(Recount),
eSELT(Select),
ePROG(Progression),
eSUCC(Successor),
eRESU(Result),
eCOND(Condition),
eSUPP(Supposition),
eEFTT(Effect), eEQU(Equal),
eADVT(adversative)

Semantic markers mNEG(Negation),
mRELA(relation),
mPUNC(Punctuation), mDEPD,
mFIXED

Table 6: Label set of the semantic relation of EN-SDG

13https://csdp-doc.readthedocs.io/zh_
CN/latest/
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Methods
UD2UD-En UD2SDG PAS2DM PSD2DM DM2PAS PSD2PAS DM2PSD PAS2PSD AVG.
UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF

DFT 0.08 0.23 0.06 0.04 0.08 0.10 0.08 0.10 0.10 0.09 0.10 0.09 0.12 0.21 0.12 0.21 0.03 0.08
TSFT 0.13 0.06 0.12 0.17 0.10 0.13 0.15 0.21 0.11 0.16 0.10 0.06 0.1 0.30 0.18 0.32 0.06 0.11
PE 0.08 0.28 0.14 0.17 0.05 0.08 0.10 0.16 0.02 0.07 0.17 0.27 0.15 0.35 0.14 0.25 0.01 0.05
G2GTr 0.24 0.15 0.09 0.20 0.09 0.06 0.08 0.05 0.07 0.05 0.17 0.26 0.09 0.06 0.14 0.18 0.06 0.05
LS 0.35 0.39 0.04 0.05 0.09 0.17 0.16 0.21 0.06 0.10 0.10 0.09 0.03 0.18 0.07 0.05 0.07 0.05
G2GLT 0.13 0.10 0.12 0.17 0.08 0.06 0.07 0.08 0.26 0.32 0.10 0.09 0.28 0.25 0.09 0.36 0.11 0.10
LS+G2GLT 0.16 0.11 0.05 0.13 0.03 0.08 0.07 0.09 0.01 0.01 0.01 0.01 0.08 0.10 0.02 0.22 0.02 0.02

Table 7: Standard Deviation for conversion scores on test data.

As for semantic labels, we merged labels for
simplification. Specifically, in semantic roles, we
merged Aft into EXP, Orig and Comp into DATV,
Reas, Int into REAS, Host, Nmod, Tmod into
FEAT, Qp, Freq, Seq into QUAN. In event rela-
tions, we merged eInf, eCau into eRESU, eConc
and eAban into eSELT, eSUM into eRECT. In se-
mantic markers, we just kept mNEG, mRELA and
mPUNC and abandoned other markers because
they most designed for Chinese specifically. We
also create some new labels for unique usage in En-
glish: mFIXED for multi-word expressions(mwe)
and mDEPD for function words like articles. The
list of the semantic labels in our SDG guideline is
shown in Table 6.

A.3 Standard Deviation
Table 7 shows the standard deviation for the exper-
iments in Table 3.

A.4 Effect of Parallel Annotated Data Size
In this section, we report the result for conversion
from PAS to PSD with different parallel annotated
data sizes. The results are shown in Figure 5.

200 500 1000 2000
Parallel Annotated Data Size (PAS to PSD)

55

60

65

70

75

80

85

C
on

ve
rs

io
n 

Sc
or

e:
LF

 (%
)

DFT
TSFT
PE
G2GTr
LS
G2GLT
LS+G2GLT

Figure 5: Results for conversions from PAS to PSD with
different parallel annotated data sizes.
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Abstract

Abstract Meaning Representation (AMR) of-
fers a unified semantic representation for nat-
ural language sentences. Thus transformation
between AMR and text yields two transition
tasks in opposite directions, i.e., Text-to-AMR
parsing and AMR-to-Text generation. Existing
AMR studies only focus on one-side improve-
ments despite the duality of the two tasks, and
their improvements are greatly attributed to the
inclusion of large extra training data or complex
structure modifications which harm the infer-
ence speed. Instead, we propose data-efficient
Bidirectional Bayesian learning (BiBL) to fa-
cilitate bidirectional information transition by
adopting a single-stage multitasking strategy
so that the resulting model may enjoy much
lighter training at the same time. Evaluation on
benchmark datasets shows that our proposed
BiBL outperforms strong previous seq2seq re-
finements without the help of extra data which
is indispensable in existing counterpart mod-
els. We release the codes of BiBL at: https:
//github.com/KHAKhazeus/BiBL.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a formalism that could cap-
ture the semantic meaning of a natural language
sentence in a graph representation. An AMR graph
example is shown in Figure 1. Leaves in the AMR
graph denote concepts in the text sentence while
other nodes within the graph are entities. Two en-
tities could be connected with relations defined
under a common standard, and instance relations
connect entities and corresponding concepts. The
flexibility and semantic invariance characteristics
make AMR applicable to various natural language
processing (NLP) downstream tasks and achieve
solid performance.

∗Corresponding author. This work was supported by Key
Projects of National Natural Science Foundation of China
(U1836222 and 61733011).

The boy wants to play. 
Text Format

DFS-linearized Format
(<R0> want-01

:ARG0 (<R1> boy) 
:ARG1 (<R2> play-01

:ARG0 <R1>))

Graph Format

instance

want-01

boy

instance

ARG0

ARG1

ARG0
instance

play-01

Figure 1: AMR graph and DFS-linearized formats for
representing a text sentence “The boy wants to play". In-
stance relations are denoted with dotted red lines while
other relations are denoted with black lines. Concepts
in AMR graphs are enclosed by oval shapes. The inden-
tation in the DFS-linearized format is only for clarity
purposes.

The transformation between AMR graphs and
texts forms two basic tasks offering helpful AMR
information for the downstream tasks. Traditional
approaches treat AMR-to-Text generation and Text-
to-AMR parsing separately. However, utilizing
graph linearization and the power of pre-trained lan-
guage models, SPRING (Bevilacqua et al., 2021)
casts two tasks into a unified sequence-to-sequence
(seq2seq) structure and outperforms all traditional
approaches proposed before. Such progress consol-
idates the prevalent position of seq2seq approaches
tackling the AMR transition tasks.

Recently, many methods have been proposed to
further enhance the seq2seq model. In order to
improve the model performance on Text-to-AMR
parsing, Zhou et al. (2021) incorporates an action-
pointer mechanism. Yu and Gildea (2022) adds an-
cestor information of AMR graphs into the model.
Chen et al. (2022) introduces a data augmentation
approach by transforming data excerpted from se-
mantic role labeling and dependency parsing into
pseudo-AMR data, and then constructing extra
training tasks using these data. Hoang et al. (2021)
proposes graph ensembling to combine different
models in order to achieve better results. For the
AMR-to-Text generation task, Anonymous (2021)
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designs two auxiliary training objectives, i.e., re-
lationship prediction and distance prediction of
nodes in AMR graphs. Ribeiro et al. (2021) uti-
lizes data from the KG2Text task, which is trans-
forming knowledge graphs into texts, and masked
language modeling to pre-train the model. Bai
et al. (2022) proposes six graph pre-training tasks
to obtain a better pre-trained model. Though the
above-mentioned refinements are effective, apply-
ing auxiliary techniques, including ensembling and
adding graph information during training, could
greatly harm the training or inference speed. Mean-
while, obtaining a better pre-training model using
extra silver data or data augmentation techniques
greatly increases the time consumption and design
complexity of the whole model training phase.

Instead of using extra data or complicated tech-
niques which harm the training or inference speed,
we propose a novel solution for AMR transition
tasks. The solution consists of two auxiliary tasks
to help the model grasp the joint probability of
the AMR graphs and texts. By interweaving the
two auxiliary tasks with the main transduction task,
the extra knowledge learned in the two auxiliary
tasks could boost the model understanding of the
main task. Therefore, single-stage multitask learn-
ing without fine-tuning could be adopted for BiBL.
Based on our proposed BiBL, the training paradigm
could be greatly simplified, and under the same
model settings, our implemented models achieve
new state-of-the-art performances in AMR-to-Text
generation. Compared with previous refinements,
further comparison experiments show that BiBL is
more efficient both during the training and infer-
ence phases.

2 Related Work

There are two tasks when concerning the transfor-
mation between AMR graphs and texts. However,
it is not always that these two tasks are jointly con-
sidered.

2.1 Text-to-AMR Parsing

Graph-based approaches Many graph-based
approaches (Zhang et al., 2019a,b; Cai and Lam,
2020a,b; Zhou et al., 2020) have been proposed
to solve the transition from texts to AMR graphs.
These approaches merge graph structures into their
model design, and graph recategorization tech-
nique (Zhang et al., 2019a; Zhou et al., 2020; Cai
and Lam, 2020a) is introduced to unify different

graph representations that are identical in seman-
tics. Despite the complex graph structure design,
these models can achieve decent performances due
to the explicit incorporation of AMR graph fea-
tures.

Pure seq2seq approaches Pure seq2seq ap-
proaches for the Text-to-AMR task are data-hungry
in nature. Therefore, in previous works, several
methods have been explored to counter the data
sparsity problem (Konstas et al., 2017; van Noord
and Bos, 2017). However, these approaches ei-
ther introduce a large amount of data that is not
closely related to the parsing task or reduce the
capacity of the model by ignoring and recovering
fine-grained details through data pre-processing
and post-processing. Utilizing BART (Lewis et al.,
2020) as the model backbone, SPRING (Bevilac-
qua et al., 2021) provides a new seq2seq solution
for Text-to-AMR parsing without removing details
during the training process. Nonetheless, SPRING
obtains solid model performance gains compared
with previous methods and consequently becomes
the backbones of many recent refinements.

2.2 AMR-to-Text Generation

Graph2seq approaches AMR-to-Text genera-
tion is the reverse process of Text-to-AMR parsing.
Taking graph characteristics into consideration, sev-
eral graph2seq methods (Beck et al., 2018; Guo
et al., 2019; Wang et al., 2020a,b; Song et al., 2018;
Zhu et al., 2019) utilize graph neural networks to
tackle the problem. However, the performances
of graph2seq approaches are inferior to the state-
of-the-art approach, i.e., SPRING, which is purely
seq2seq.

Pure seq2seq approaches Similar to pure seq2seq
approaches in the Text-to-AMR parsing task, graph
linearization is the key to transforming the task
into a seq2seq formulation. Based on this formu-
lation, Mager et al. (2020) adapts a pre-trained
Transformer decoder to the generation task through
fine-tuning. SPRING (Bevilacqua et al., 2021) fine-
tunes BART on the generation task and proves that
the encoder-decoder structure of BART greatly con-
tributes to the final model performance. Since
SPRING is powerful for both transduction di-
rections, BiBL inherits the model backbone of
SPRING, which guarantees a solid basis of model
performance.
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3 Method

As the seq2seq model only receives and emits data
in sequential forms, we have to take the neces-
sary pre-processing and post-processing to perform
conversions between AMR graphs and their se-
quential forms. Then, the seq2seq transduction is
completed using sequence generation models of
encoder-decoder structure.

On top of the seq2seq model design, we enhance
bidirectional model performance through two aux-
iliary tasks which facilitate the model’s understand-
ing of the joint probability between texts and AMR
graphs.

3.1 Graph Linearization

For both AMR-to-Text generation and Text-to-
AMR parsing, graph linearization is a necessary
pre-processing task in seq2seq modeling. First,
we replace the variables in the AMR graphs with
specially designed tokens to avoid unnecessary to-
kenization. These tokens are added to the model as
special tokens. Then, we linearize the graphs fol-
lowing a depth-first search (DFS) fashion. We use
parentheses to indicate visit depth and use blank
spaces to separate variables and actual concepts. A
DFS-linearized example is shown in Figure 1.

Since the capacity of the model backbone is
fairly adequate and graph recategorization men-
tioned in Section 2.1 harms the model performance
in out-of-distribution settings, we do not incorpo-
rate graph recategorization into the pre-processing
procedures of BiBL.

3.2 Task Formulation

Following the design of graph linearization, the
bidirectional transition task could be transformed
into a seq2seq task formulation. Given a linearized
AMR graph Y = [y1, ..., yk] and the corresponding
sentence X = [x1, ..., xn] where the length of the
linearized graph is k and the length of the text sen-
tence is n, the goal of Text-to-AMR parsing is gen-
erating Y given X , and the goal of AMR-to-Text
generation is generating X given Y . Specifically,
the target of Text-to-AMR parsing is to maximize
P (Y |X), and the target of AMR-to-Text genera-
tion is to maximize P (X|Y ).

Sequence generation in NLP tasks is auto-
regressive in nature. Therefore, the two condi-
tional probabilities mentioned above could be de-
composed according to the following formulations:

P (Y |X) =

k∏

t=1

P (yt|X,Y<t)

P (X|Y ) =
n∏

t=1

P (xt|Y,X<t)

(1)

where t denotes the index of the decoding step,
Y<t and X<t denote the tokens before t position
in the linearized AMR graph and the text sentence,
respectively. P (yt|X,Y<t) and P (xt|Y,X<t) de-
note the probability distributions of each word in
the target vocabulary being the next candidate.

3.3 Post-processing
For the Text-to-AMR parsing task, post-processing
is required to ensure the validity of the generated
AMR sequences. We restore parenthesis parity,
remove tokens that are not possible descendants
of the previous token and remove tokens that are
obvious repetitions through the rule-based filter
mechanism proposed in SPRING. Moreover, since
each kind of wiki tag is sparse in the whole data
distribution, it is hard for the seq2seq model to
attach correct wiki concepts. Therefore, we use the
BLINK Entity Linker (Wu et al., 2020) to overwrite
the wiki tags generated by BiBL.

3.4 Encoder-Decoder for Sequence
Generation

To model the probability distribution P (yt|X,Y<t)
and P (xt|Y,X<t) in Equation 1, we adopt an
encoder-decoder model structure. In detail, the
encoder first turns the input tokens into embed-
dings, and then multi-head attention modules
transform the embeddings into hidden represen-
tations. For the simplicity of the formulation,
we ignore the begin-of-sentence [BOS], end-of-
sentence [EOS], and separation tokens [SEP] in
the input tokens. We could represent the process of
the encoder as follows:

He = Encoder(H i, θe) (2)

where θe denotes trainable parameters of the en-
coder module, H i ∈ Rl×d denotes the input em-
beddings of length l, He ∈ Rl×d denotes the out-
put embeddings of the encoder, and d denotes the
hidden size of the whole model.

Next, for the decoding step of t during training,
the decoder module takes the encoder output em-
beddings He and the ground truth tokens before
t position as inputs. Then, it generates a hidden
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Encoder

Decoder

I love games.

(<R0> love-01
:ARG0 (<R1> i)
:ARG1 (<R2> game))

[GEN]

I love games. 
(<R0> love-01

:ARG0 (<R1> i)
:ARG1 (<R2> game))

(b) Generation Task (c) Reconstruction Task

I love games. 
(<R0> love-01

:ARG0 (<R1> i) 
:ARG1 (<R2> game))

I [MASK] games. 
(<R0> [MASK]

[MASK] (<R1> [MASK]) 
:ARG1 ([MASK] game))

Encoder

Decoder

Encoder

Decoder

(a) Transduction Task

[ANS][ANS]

Figure 2: Visualization of the BiBL’s multitask learning paradigm. All texts and graphs are linearized in implemen-
tations. The indentation in the figure is only for understanding and clarity purposes. Words in the text sentence are
italicized, and special tokens are shown in bold.

vector as the output. The computation process of
the decoder could be represented as follows:

hdt = Decoder(He, T<t, θd) (3)

where θd denotes trainable parameters of the de-
coder module, He denotes the output embeddings
of the encoder, T<t denotes the tokens before t po-
sition in the target sequence, and hdt ∈ Rd denotes
the output hidden vector. During inference, T<t
is replaced with tokens generated by the decoder
module before t time step T̂<t.

The final step of sequence generation is to gen-
erate a probability distribution for the next candi-
date token utilizing the output hidden vector. Com-
bining the definitions of the encoder and decoder
module, the formulation of the whole process is as
follows:

SGt(H
i, θe, θd) = softmax(hdtW

LM ) (4)

where SGt(H
i, θe, θd) denotes the probability dis-

tribution vector output of t decoding step, WLM ∈
Rd×∥V ∥ denotes a trainable classification matrix
that turns the output hidden vector of the decoder
hdt into a probability distribution of size ∥V ∥, the
target vocabulary size.

3.5 Transduction Loss
Following the design of graph linearization and the
adoption of the encoder-decoder sequence gener-
ation model, we could model the paired transduc-
tion tasks between graphs and text sequences as
follows. Taking Text-to-AMR parsing as an exam-
ple, the encoder input should be the text sequence

X = [x1, ..., xn] and subsequently the encoder out-
puts a contextualized representation of X . For the
training step t, the decoder takes the linearized
graph before t position Y<t as the input and auto-
regressively generates the next graph token while
taking the contextualized output of the encoder into
account. Similarly, AMR-to-Text generation could
be modeled by swapping the text sequence and the
linearized graph. An example of the transduction
task is shown in Figure 2(a).

Given model parameters θ, two conditional prob-
abilities mentioned in Equation 1 could be for-
mulized as:

P (Y |X, θ) =
k∏

t=1

P (yt|X,Y<t, θ) =
k∏

t=1

SGt(H
i
X , θe, θd)

P (X|Y, θ) =
n∏

t=1

P (xt|Y,X<t, θ) =

n∏

t=1

SGt(H
i
Y , θe, θd)

(5)
where H i

X ∈ Rn×d and H i
Y ∈ Rk×d denote the

input embeddings of sequence X and sequence Y ,
respectively.

In order to maximize these two conditional prob-
abilities, transduction loss is defined as one of the
training objectives:

lA2Ttd = −
n∑

t=1

logP (xt|Y,X<t, θ)

lT2Atd = −
k∑

t=1

logP (yt|X,Y<t, θ)
(6)

where lA2Ttd and lT2Atd denote the sample-wise
transduction loss defined for AMR-to-Text gen-
eration and Text-to-AMR parsing, respectively.
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P (yt|X,Y<t, θ) and P (xt|Y,X<t, θ) denote the
probability of generating yt and xt, which are the
ground truth labels in respective transduction tasks.

3.6 Bidirectional Bayesian Learning

Inspecting previous refinements and other general
methods for bidirectional enhancement including
dual learning (He et al., 2016), their improvements
are mainly due to the inclusion of large pre-training
data or complex structure modifications. How-
ever, our proposed method is data-efficient and can
achieve great model improvements without extra
pre-training data and model structure changes.

According to the Bayesian rules, we could find
that two conditional probabilities in Equation 1 are
interconnected through a common factor P (X,Y ):

P (Y |X) = P (X,Y )/P (X)

P (X|Y ) = P (X,Y )/P (Y )
(7)

Therefore, our motivation is that the incorpora-
tion of joint probability P (X,Y ) could facilitate
the model’s understanding of the joint probabilistic
space of AMR graphs and texts. The model per-
formance could be enhanced on both sides of the
transduction task with proper design. The extra de-
sign should first clearly model the joint probability
P (X,Y ) and then should take measures to avoid
causing excessive confusion.

We propose two ways to model the joint probabil-
ity P (X,Y ), and two auxiliary loss functions are
included in our model design, i.e., generation loss
and reconstruction loss. Utilizing the concatena-
tion of text sentences and corresponding linearized
graphs, two tailored auxiliary tasks help the model
grasp the mutual information between two data
forms, which is beneficial for the basic transduc-
tion task. Meanwhile, various effective measures
are taken to avoid causing excessive confusion. Vi-
sualizations of the model input and output for these
two auxiliary tasks are shown in Figure 2(b,c).

Inspired by LAMOL (Sun et al., 2020), we
feed the model encoder with a specially designed
[GEN] token. Denoting the [GEN] token as sg,
the encoder input is represented as G = [sg]. Then
the encoder generates an output signal which the
decoder attends to, and the decoder would begin a
special generation process. For training step t, de-
noting the concatenation of a text sequence and the
corresponding linearized graph as Z = [X;Y ]. To
form the concatenation, we insert another special
[ANS] token between X and Y sequences to sepa-

rate them, creating discrimination from the original
task. The decoder is expected to re-generate Z
in an auto-regressive fashion. We adopt teacher
forcing for the training of the selected encoder-
decoder. For generation step t, the decoder is fed
with ground truth labels before the t position. Con-
sequently, it is possible for the model to re-generate
paired data without much information provided to
the encoder. The corresponding joint probability
and the sample-wise generation loss are defined as
follows:

P ([X;Y ]) =
n+k∏

t=1

P (zt|G,Z<t, θ) =
n+k∏

t=1

SGt(H
i
G, θe, θd)

lg = −
n+k∑

t=1

logP (zt|G,Z<t, θ)

(8)
where H i

G ∈ R1×d denotes the input embedding
of G, and lg denotes the auxiliary generation loss.
This auxiliary generation task could help the de-
coder grasp the underlying joint probability dis-
tribution of the graph-text data and facilitates the
model to gain more knowledge from the training
data. The [GEN] token input for the encoder
works as a special signal for the decoder to main-
tain clear discrimination between the generation of
the concatenated sequences in the generation task
and the target sequences in the original transduc-
tion task. Discriminated by [GEN] token, it would
not impede the learning of the encoder-decoder at-
tention mechanism in the main transduction task.
Therefore, the auxiliary generation task could facil-
itate the main transduction task and avoid causing
excessive confusion.

Besides having a thorough understanding of the
joint probability distribution of the training data
pairs, BiBL needs to learn a universal joint distri-
bution that is applicable to open-world data. In-
spired by masked language modeling (Devlin et al.,
2019), we adopt the following reconstruction task.
First, we concatenate the text sentence and the lin-
earized graph to get Z = [X;Y ]. Similar to the
generation auxiliary task, [ANS] token is inserted
between X and Y sequences, which could pre-
vent excessive confusion brought to the original
transduction task. Then we randomly mask 50%
of the concatenation to get a masked concatena-
tion M = [x1, ..., sm, ..., xn, sa, y1, ..., sm, ..., yk],
where sm denotes the [MASK] token and sa de-
notes the [ANS] token. Taking this masked con-
catenation as input, the encoder generates a con-
textualized masked representation. Attending to
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the representation generated by the encoder, the de-
coder is expected to auto-regressively reconstruct
the original concatenation Z. In this auxiliary task,
the reconstruction loss would be computed over all
tokens generated by the decoder. The correspond-
ing joint probability and the sample-wise recon-
struction loss are defined as follows:

P ([X;Y ]) =
n+k∏

t=1

P (zt|M,Z<t, θ) =
n+k∏

t=1

SGt(H
i
M , θe, θd)

lr = −
n+k∑

t=1

logP (zt|M,Z<t, θ)

(9)
where H i

M ∈ R(n+k)×d denotes the input embed-
ding of the masked input M and lr denotes the
auxiliary reconstruction loss. This auxiliary task
reinforces the decoder to understand the condensed
representation produced by the encoder. Mean-
while, since masks could be applied simultaneously
to texts and AMR graphs, the reconstruction of
masked tokens helps the model adapt to the special
structures of the graph linearization results while fa-
cilitating possible information alignment between
two forms of data. This knowledge could be ex-
tended to general situations and is applicable to
open-world data.

3.7 Single-stage Multitask Learning
A multitask learning paradigm is used in our train-
ing process to combine three loss functions men-
tioned above, i.e., transduction loss lA2Ttd or lT2Atd ,
generation loss lg and reconstruction loss lr. The
formulae are as follows:

lA2T = lA2Ttd + λglg + λrlr

lT2A = lT2Atd + λglg + λrlr
(10)

where lA2T and lT2A denote the loss functions of
AMR-to-Text generation and Text-to-AMR parsing,
respectively, λg is the weight of the generation loss,
and λr is the weight of the reconstruction loss. The
loss is computed for every sample while averaged
over a single batch. Moreover, the input sequences
in the transduction task are placed in front of the
target sequences for concatenation.

Since the joint probability distribution learned
in two auxiliary tasks is conducive to the under-
standing of the conditional probability that corre-
sponds to the original transduction task, it should
be better to interweave the auxiliary tasks with the
transduction task. Meanwhile, three measures are
taken to avoid causing disturbances over the main
transduction task. First, for the generation task,

the special [GEN] token input for the encoder cre-
ates discrimination between the generation task and
the original task. Second, for both auxiliary tasks,
we utilize another special [ANS] token to sepa-
rate two sequences, creating further discrimination
from the original task. Third, by choosing the best
loss weight configuration, the relationship among
the three tasks could be adjusted and unnecessary
confusion could be minimized. Therefore, differ-
ent from all previous refinements that adopt a two-
stage training paradigm of pre-training and fine-
tuning, a single-stage multitask learning paradigm
is explored. Results listed in the ablation studies 6
could show that this learning paradigm can greatly
simplify the training process while retaining the
extra performance boost by incorporating the extra
knowledge.

4 Experimental Setup

Based on the evaluation system of previous
works (Bevilacqua et al., 2021; Chen et al., 2022;
Hoang et al., 2021), we inspect the performance
of BiBL in two settings: In-Distribution and Out-
of-Distribution. The in-distribution setting shows
the power of BiBL on standard benchmarks. Since
the bidirectional transitions between AMR graphs
and texts should be modeled as a unified process
without dependence on language contexts, it is
also important to evaluate our model in out-of-
distribution settings. The experiment benchmark
system uses Nvidia Titan RTX as GPU and Intel
Xeon E5-2637@3.50Ghz as CPU. The system is
built with 256GB RAM.

4.1 Datasets

In-Distribution The data we use in the in-
distribution setting are AMR 2.0 (LDC2017T10)
and AMR 3.0 (LDC2020T02) corpora releases.
AMR 3.0 is an expanded version of AMR 2.0 with
additional AMR-text data to cover more general sit-
uations. AMR 3.0 contains 55, 635 pairs of graphs
and texts, and AMR 2.0 contains 36, 521 pairs.
Out-of-Distribution Following the benchmark
proposed in SPRING, we incorporate three eval-
uation datasets in the out-of-distribution setting:
i) TLP, an AMR-tagged dataset containing 1, 562
data pairs constructed from the famous children’s
novel The Little Prince.; ii) Bio, full data from
the Bio-AMR corpus (May and Priyadarshi, 2017)
containing 6, 952 data pairs. While in SPRING,
only the test data are used in the evaluation, we
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use all data splits to conduct a thorough evaluation;
iii) New3, a set of data excerpted from AMR 3.0
containing 527 data pairs, whose original source is
the LORELEI DARPA project.
Silver Data Silver data is generated according
to the following process. First, we obtain the best
Text-to-AMR parsing BiBL model trained on the
target dataset (AMR 2.0 or AMR 3.0). Then, we
choose English Gigaword (LDC2003T05) as an
unlabeled dataset. We use the previously trained
Text-to-AMR BiBL model to generate annotations
over randomly chosen sentences from the unlabeled
dataset. Finally, a newly annotated dataset for extra
training is acquired. For BiBL, the silver data we
generate contains 200k sentence-graph pairs.

4.2 Models

Model Setting BART with augmented vocabu-
lary is chosen as the pre-trained encoder-decoder
model for BiBL. We inherit the model hyper-
parameters from BART Large, defined in Hug-
gingface’s transformers library. For training-
related hyperparameters, our models are trained for
30 epochs using cross-entropy with a batch size of
500 graph linearization tokens, RAdam (Liu et al.,
2020) optimizer, and a learning rate of 1 × 10−5.
The gradient is accumulated for 10 batches. The
dropout is set to 0.25.
BiBL variants During experiments, we have done
an empirical study on the best weight configuration
for generation and reconstruction loss. Details are
shown in Appendix A. For Text-to-AMR parsing,
we set λg as 1.0 and λr as 0.5. For AMR-to-Text
generation, we set λg as 0.15 and λr as 0.5. Models
with λg or λr as 0 are included for ablation studies.
BiBL variants trained with extra silver data are also
included in the experiments. The silver data will
be directly included in the single-stage multitask
learning without further fine-tuning.

4.3 Evaluation Metrics

Text-to-AMR Parsing Fine-grained Smatch (Cai
and Knight, 2013) is chosen as the evaluation met-
ric for Text-to-AMR parsing since previous works
all use this metric, and it reports fine-grained scores
on different aspects of the parsed AMR graphs.
AMR-to-Text Generation Following previous
works, we evaluate BiBL with three common Natu-
ral Language Generation measures, i.e., BLEU (Pa-
pineni et al., 2002), chrF++ (Popović, 2017), and
METEOR (Banerjee and Lavie, 2005).

4.4 Comparison System

Text-to-AMR Parsing SPRING (Bevilacqua
et al., 2021), Ancestor (Yu and Gildea, 2022),
Graphene4S (Hoang et al., 2021), AMRize (Chen
et al., 2022) and GraphPre (Bai et al., 2022) men-
tioned in Section 1 are included.
AMR-to-Text Generation SPRING (Bevilac-
qua et al., 2021), ReconCov (Anonymous, 2021),
STA (Ribeiro et al., 2021) and GraphPre (Bai et al.,
2022) mentioned in Section 1 are included.

5 Results

Text-to-AMR parsing According to Tables 1
and 2, under the setting of no extra training data
and no complex ensembling techniques applied,
BiBL outperforms all other refinements on AMR
3.0. Moreover, for AMR 2.0 and AMR 3.0, BiBL
outperforms all previous refinements on the fine-
grained Named Entity Recognition (NER) metric
by a large margin. Especially for AMR 3.0, the per-
formance metric of NER is increased by 4.3 even
compared with AMRize. Besides, Wikification
and topology-related Unlabeled metrics are also
improved. This shows that the extra reconstruction
task helps the model grasp the alignment between
texts and AMR graphs. These alignments include
special entity mappings and structural mappings,
which are beneficial to NER and topology-related
unlabeled metrics.
AMR-to-Text generation According to Tables 3
and 4, outperforming all previous methods by a
significant margin (1.7 BLEU for AMR 2.0 and
1.5 BLEU for AMR 3.0), BiBL with silver data
achieves a new state-of-the-art performance on
AMR-to-Text generation. Meanwhile, BiBL with
no silver data also surpasses all previous refine-
ments under the same setting, proving that BiBL is
the most effective refinement without the need for
extra training data and the pre-training setting.
Out-of-Distribution Table 6 shows that BiBL out-
performs several models (Graphene and SPRING)
under the out-of-distribution setting without extra
training data or graph ensembling techniques. This
confirms that BiBL facilitates the model to grasp
the joint probability distribution of AMR graphs
and texts which is applicable to open-world data.
Bidirectional Performance Enhancement In-
specting BiBL on the more comprehensive AMR
3.0 dataset, under the setting of no extra data and
no ensembling techniques, BiBL achieves the best
results on Text-to-AMR parsing. For AMR-to-Text
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Model Extra Data Ensemble Smatch NoWSD Wiki. Conc. NER Neg. Unlab. Reent. SRL

SPRING (2021) N N 83.8 84.4 84.3 90.2 90.6 74.4 86.1 70.8 79.6
*Ancestor (2022) N N 84.8 85.3 84.1 90.5 91.8 74.0 88.1 75.1 83.4
BiBL (ours) N N 84.6 85.1 83.6 90.3 92.5 73.9 87.8 74.4 83.1

SPRING (2021) 200k N 84.3 84.8 83.1 90.8 90.5 73.6 86.7 72.4 80.5
Graphene4S (2021) 200k Y 84.8 85.3 83.9 90.6 92.2 75.2 88.0 71.4 83.5
*AMRize (2022) 40k Y 85.3 85.7 83.9 90.7 92.2 75.0 88.4 75.0 83.6
*GraphPre (2022) 200k N 85.4 85.8 81.4 91.2 91.5 74.0 88.3 73.5 81.5
BiBL (ours) 200k N 84.7 85.1 83.2 90.4 92.6 75.0 87.8 74.6 83.3

Table 1: Text-to-AMR parsing results on AMR 2.0 dataset. Row blocks: baseline + approaches without any extra
training data and ensembling techniques; approaches with extra training data or ensembling techniques. Columns:
Model; Smatch; Fine-grained scores. The best results within each block are shown in bold. Models with * denote
contemporary works.

Model Extra Data Ensemble Smatch NoWSD Wiki. Conc. NER Neg. Unlab. Reent. SRL

SPRING (2021) N N 83.0 83.5 82.7 89.8 87.2 73.0 85.4 70.4 78.9
*Ancestor (2022) N N 83.5 84.0 81.5 89.5 88.9 72.6 86.6 74.2 82.2
BiBL (ours) N N 83.9 84.3 83.7 89.8 93.2 68.1 87.2 73.8 81.9

SPRING (2021) 200k N 83.0 83.5 81.2 89.5 87.1 71.7 85.4 71.3 79.1
Graphene4S (2021) 200k Y 83.8 84.2 81.9 90.1 88.3 74.6 86.9 70.2 82.5
*AMRize (2022) 40k Y 84.0 84.5 80.7 90.0 88.9 73.1 87.1 73.9 82.6
*GraphPre (2022) 200k N 84.2 85.8 81.4 90.2 88.5 72.1 87.1 72.4 80.3
BiBL (ours) 200k N 83.5 84.0 82.1 89.6 88.9 73.3 86.7 73.7 82.2

Table 2: Text-to-AMR parsing results on AMR 3.0 dataset. Row blocks/Columns/Bold/* as in Table 1.

Model Extra Data BL CH++ MET

SPRING (2021) N 45.3 73.5 41.0
*ReconCov (2021) N 45.4 73.6 42.4
BiBL (ours) N 47.0 74.8 43.2

SPRING (2021) 200k 45.9 74.2 41.8
STA (2021) 2000k 49.7 - 45.4
*GraphPre (2022) 200k 49.8 76.2 42.6
BiBL (ours) 200k 51.5 77.6 45.2

Table 3: AMR-to-Text generation results on AMR 2.0
dataset. Row blocks: approaches without extra training
data; approaches with extra training data. Columns:
Model; BLEU; chrF++; METEOR. The best results
within each block are shown in bold. Models with *
denote contemporary works.

generation, BiBL with single-stage multitask learn-
ing surpasses the current state-of-the-art GraphPre
model. Since the two-stage training paradigm of
pre-training and fine-tuning is adopted by Graph-
Pre, the performance boost proves that the single-
stage multitask learning could not only simplify
the training process but also contribute to the fi-
nal model performance. For both transduction di-
rections, BiBL with no silver data even surpasses
several refinements that need extra training data
(SPRING, Graphene4S) in both in-distribution and
out-of-distribution settings. These results show

Model Extra Data BL CH++ MET

SPRING (2021) N 44.9 72.9 40.6
*ReconCov (2021) N 45.7 73.7 42.8
BiBL (ours) N 47.4 74.5 43.4

SPRING (2021) 200k 46.5 73.9 41.7
*GraphPre (2022) 200k 49.2 76.1 42.3
BiBL (ours) 200k 50.7 76.7 45.0

Table 4: AMR-to-Text generation results on AMR 3.0
dataset. Row blocks/Columns/Bold/* as in Table 3.

Model SMATCH BLEU

BiBL (silver)
- two-stage 84.70 51.49
- single-stage 84.65 51.45

Table 5: Experiments on training paradigms. AMR 2.0
is chosen as the dataset. The recorded results are the
best results achieved among all BiBL variants.

that our proposed method is data-efficient and ef-
fective on bidirectional transitions. A case study is
included in Appendix B for further examination.

We have also conducted experiments on model
efficiency. According to Table 8, the time spent
pre-training and fine-tuning GraphPre, which is the
current state-of-the-art refinement, is 8.6x of the
time spent training BiBL through single-phase mul-
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Model Extra Data Ensemble TLP Bio New3

Text-to-AMR
SPRING (2021) N N 77.3 59.7 73.7
Graphene4S (2021) 200k Y 77.9 61.5 74.8
*AMRize (2022) 40k N 78.9 61.2 75.4
*GraphPre (2022) 200k N 76.9 63.2 76.9
BiBL (ours) N N 78.6 61.0 75.4
BiBL (ours) 200k N 78.3 61.1 75.4

AMR-to-Text
SPRING (2021) N N 24.3 18.9 37.2
*GraphPre (2022) 200k N 29.1 20.7 44.8
BiBL (ours) N N 26.1 20.3 39.0
BiBL (ours) 200k N 28.2 24.4 45.0

Table 6: OOD evaluation on Text-to-AMR (Smatch)
and AMR-to-Text (BLEU). All models are trained on
the AMR 2.0 dataset. Bold/* as in Table 1.

Model Extra Data SMATCH NER BLEU

BiBL
- λg = 0.15 + λr = 0.5 N - - 47.4
- λg = 1.0 + λr = 0.5 N 83.9 93.2 -
- λg = 0.15 + λr = 0.5 200k - - 50.1
- λg = 1.0 + λr = 0.5 200k 83.5 88.9 -
- λg = 0 + λr = 0.5 N 83.7 89.1 47.3
- λg = 0.15 + λr = 0 N 82.8 88.2 45.2
- λg = 1.0 + λr = 0 N 83.0 88.3 45.5

Table 7: Ablation studies on Text-to-AMR (Smatch
and fine-grained NER) and AMR-to-Text (BLEU) using
AMR 3.0 as the benchmark. Bold denotes the best
results.

titask training under the same setting. According
to Table 9, since the ensembling of Graphene4S is
computed with CPUs, the time spent ensembling
four graphs generated by Graphene4S is 22.8x of
the time spent by BiBL for the inference of one
training sample when the beam size is set to 5.

6 Ablation Studies

Since AMR 3.0 is the superset of AMR 2.0, our ab-
lation studies are based on the AMR 3.0 dataset so
that a more comprehensive investigation could be
conducted. Through a thorough analysis of Table 7,
the following conclusions could be made:
• Inspecting all variants of BiBL for Text-to-

AMR parsing on both AMR 2.0 and AMR 3.0, if
the scope of the original dataset is limited, silver
data could have minor contributions to BiBL on the
Text-to-AMR parsing task. Otherwise, silver data
may hurt the model performance. For the oppo-
site AMR-to-Text generation task, the performance
boost of silver data on BiBL is distinct.
• The combination of the auxiliary reconstruc-

tion and generation tasks achieves the best model
performance, proving that both tasks are conducive
and indispensable to the main transduction task.

Model Extra Data Ensemble Time Multiplier

SPRING (2021) N N 35.63 1.0x
*GraphPre[pre] (2022) 200k N 267.23 7.5x
*GraphPre[fine] (2022) N N 38.73 1.1x
*GraphPre[total] (2022) 200k N 305.96 8.6x
BiBL (ours) 200k N 128.38 3.6x

Table 8: Training efficiency evaluation on different re-
finement approaches. Time is evaluated using the same
computation resource and averaged over three batches.
The unit of Time is a millisecond.

Model Ensemble Time Multiplier

BARTlarge-based models - 133.99 1.0x
SPRING (2021) N
*GraphPre (2022) N
BiBL (ours) N

Graphene4S (2021) Y 3050.13 22.8x

Table 9: Inference efficiency evaluation on different
refinement approaches. Time is evaluated using the
same computation resource and averaged over a single
batch. The unit of Time is a millisecond.

BiBL enables the model to effectively capture the
underlying information in the joint probabilistic
space of AMR graphs and texts.

BiBL is trained with single-stage multitask learn-
ing. Further experiments are conducted to compare
the chosen paradigm with the two-stage training
paradigm. For two-stage training, we pre-train
BiBL with auxiliary tasks and then fine-tune BiBL
without them. Results listed in Table 5 show that
the benefits brought by fine-tuning are rather trivial.
This proves that through proper loss weight config-
uration, auxiliary tasks could help BiBL to achieve
better performance on the main transduction task
without causing confusion. Therefore, the training
paradigm could be reduced to single-stage multi-
task learning without losing performance boost.

7 Conclusion

In this paper, we propose BiBL which is capable of
enhancing the seq2seq approach to tackle the bidi-
rectional transition task between AMR graphs and
texts. BiBL could learn the joint probability of two
data forms in a data-efficient way through single-
stage multitask learning with auxiliary generation
and reconstruction tasks. Eventually, model perfor-
mances are greatly improved in in-distribution and
out-of-distribution settings. Moreover, our model
outperforms all previous refinements with no extra
data on Text-to-AMR parsing and achieves the new
state-of-the-art result on AMR-to-Text generation.
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SMATCH

AMR 2.0 AMR 3.0

BiBL
- λg = 0.00 84.06 83.81
- λg = 0.15 83.98 83.92
- λg = 0.25 84.01 84.06
- λg = 0.50 83.92 83.83
- λg = 1.00 84.17 83.98

Table 10: Text-to-AMR parsing experiments on weight
configurations of the generation auxiliary task. Bold
denotes the best results. Underline denotes second-best
results. Results are reported on the validation set.

A Empirical Study on Weight
Configuration of Auxiliary Tasks

For the weight configuration of the auxiliary
tasks proposed for Bidirectional Bayesian Learning
(BiBL), we have experimented with several BiBL
variants of different λg and λr. All experimen-
tal models are trained without extra silver data in
order to discriminate the direct effect of different
parameters.

During experiments, we find that the magnitudes
of transduction, generation, and reconstruction loss
should be on the same level. Otherwise, the gener-
ation validity of BiBL will be greatly influenced by
auxiliary tasks constructed using the concatenation
of AMR graphs and texts. Therefore, reasonable
ranges of λg and λr could be roughly determined.
Moreover, we find that the weight sensitivity of the
generation task is relatively high compared with
the auxiliary reconstruction task. Therefore, it is
necessary to conduct a grid search over reasonable
ranges of λg. Since the weight sensitivity of the
reconstruction task is relatively low according to
our conclusion, 0.5 is chosen for λr.

According to the results presented in Ta-
bles 10, 11, 12, and 13, for Text-to-AMR parsing,
it is obvious that BiBL variant with λg = 1.00
is the best choice. However, for AMR-to-Text
generation, the effect of λg varies across datasets.
Focusing on achieving the best performance on in-
distribution datasets, BiBL variants with λg = 0.15
and λg = 1.00 are the best models. However, ac-
cording to Table 14, after inspecting the combina-
tion effect of generation and reconstruction tasks
on AMR-to-Text generation, BiBL variant with
λg = 0.15 and λr = 0.5 greatly outperforms the
model with λg = 1.00 and λr = 0.5.

BLEU

AMR 2.0 AMR 3.0

BiBL
- λg = 0.00 40.21 41.50
- λg = 0.15 40.34 41.72
- λg = 0.25 40.19 41.20
- λg = 0.50 39.89 41.24
- λg = 1.00 40.23 41.52

Table 11: AMR-to-Text generation experiments on
weight configurations of the generation auxiliary task.
Bold denotes the best results. Underline denotes second-
best results. Results are reported on the validation set.

SMATCH

AMR 2.0 AMR 3.0 TLP

BiBL
- λg = 0.00 83.80 83.00 77.30
- λg = 0.15 84.28 82.78 77.91
- λg = 0.25 83.97 82.93 77.88
- λg = 0.50 83.86 83.30 77.62
- λg = 1.00 84.23 83.00 77.94

Table 12: Text-to-AMR parsing experiments on weight
configurations of the generation auxiliary task. Bold
denotes the best results. Underline denotes second-best
results. Results are reported on the test set.

Therefore, according to the above analysis, re-
spectively for Text-to-AMR parsing and AMR-to-
Text generation, BiBL variants with λg = 1.0 and
λr = 0.5 and λg = 0.15 and λr = 0.5 are chosen
due to their excellent performances.

B Case Study

In section 5, we analyzed the performance of BiBL
according to chosen metrics. Here we present four
cases to further inspect the improvements of BiBL.
First, we inspect two representative cases for Text-
to-AMR parsing. Figure 3 shows a case where
BiBL correctly labels the named entity OCD as a
disease. However, in the output AMR graph of the
SPRING baseline, the named entity is falsely la-
beled as a medical condition, which is too general.
This proves that BiBL could better recognize and
understand the named entities included in the text
sentences, which leads to a large performance boost
of BiBL on the fine-grained NER metric. Figure 4
shows a case where BiBL correctly recognizes the
reentrancy that occurred in the text. Although the
short sentence provides limited semantic informa-
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BLEU

AMR 2.0 AMR 3.0 TLP

BiBL
- λg = 0.00 44.77 44.90 24.37
- λg = 0.15 44.65 45.18 23.83
- λg = 0.25 43.61 45.50 24.17
- λg = 0.50 44.30 45.35 25.11
- λg = 1.00 44.62 45.47 24.78

Table 13: AMR-to-Text generation experiments on
weight configurations of the generation auxiliary task.
Bold denotes the best results. Underline denotes second-
best results. Results are reported on the test set.

Model BLEU

BiBL
- λg = 0.15 + λr = 0.5 46.95
- λg = 1.00 + λr = 0.5 46.65

Table 14: Experiments on the combination effect of
generation and reconstruction tasks. AMR 2.0 is chosen
as the dataset.

tion and the speaker information is indicated by
a colon separation, BiBL still fully understands
the meaning of the sentence and generated the cor-
rect reentrancy relations in the AMR graph result.
However, in SPRING-generated AMR graphs, the
reentrancy information is missing. This proves that
BiBL could still understand the structures of text
sentences even with limited context provided.

Then, we inspect two representative cases for
AMR-to-Text generation. Figure 5 shows a case
where BiBL could understand the complex seman-
tic meaning indicated by the AMR graph. While
the SPRING baseline misrepresents the semantic
relation between sight and hope, BiBL could re-
store the correct meaning in the generated text by
using the same grammar structure in the gold label.
This proves that BiBL could accurately grasp the
underlying semantic meaning of texts and correctly
represent the information using proper grammar
structures. Figure 6 shows a case where a complex
AMR graph is involved. The relations between the
nouns in the AMR graphs are complicated, and
there are obvious overlaps between several nodes.
We could see that the text generated by SPRING
fails to reconstruct the word "Japan delegation",
misrepresents the relation between head and Tokyo
Handicapped Integrated Sports Center, and misses
the concept of director. However, BiBL could cor-
rectly generate all the concepts involved in the com-

plex graph and maintain the correct relations. This
proves that BiBL could deal with situations where
graph information is rather complicated.
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SPRING AMR

(s / sound-01
      [OMIT]
      :ARG2 (a / anxious
            [OMIT]
            :ARG1-of (i2 / instead-of-91
                  :ARG2 (h / have-03
                        :ARG0 y
                        :ARG1 (d / disease

        :name (n / name :op1 "OCD")
                                     [OMIT]))))
      [OMIT])

(z0 / sound-01
      [OMIT]
      :ARG2 (z2 / anxious
              [OMIT]
              :ARG1-of (z5 / instead-of-91
                    :ARG2 (z6 / have-03
                          :ARG0 z3
                          :ARG1 (z7 / disease
                                       :name (z8 / name :op1 "OCD")
                                       [OMIT]))))
      [OMIT])

GOLD AMR

BiBL AMR

(z0 / sound-01
      [OMIT]
      :ARG2 (z2 / anxious
              [OMIT]              
              :ARG1-of (z5 / instead-of-91
                    :ARG2 (z6 / have-03
                          :ARG0 z3
                          :ARG1 (z7 / medical-condition
                                        :name (z8 / name :op1 "OCD")
                                        [OMIT]))))
      [OMIT])

To me that just sounds like you being overly 
anxious, as opposed to having really bad OCD.

TEXT

Figure 3: Text-to-AMR parsing case study on NER.
The input text sentence is italicized. Wikification la-
bels are omitted on gold, SPRING, and BiBL generated
AMR graphs. The [OMIT] sign represents the omis-
sion of other graph nodes that are the same across gold,
SPRING, and BiBL generated AMR graphs. The under-
lined parts highlight the label generated for the "OCD"
named entity.

SPRING AMR

(s / say-01
      :ARG0 (i / i)
      :ARG1 (u / understand-01 :polarity -
                   :ARG0 i
                   :ARG1 (p2 / point-04
                                :ARG0 p))
      :ARG2 (p / person :wiki - 
                   :name (t / name 
                               :op1 "TMT")))

(z0 / say-01
       :ARG1 (z1 / understand-01 :polarity -
                    :ARG0 (z2 / i)
                    :ARG1 (z3 / point-04
                                 :ARG0 (z4 / you)))
       :ARG2 (z5 / person :wiki - 
                    :name (z6 / name 
                                :op1 "TMT")))

GOLD AMR

BiBL AMR
(z0 / say-01
       :ARG1 (z1 / understand-01 :polarity -
                    :ARG0 (z2 / i)
                    :ARG1 (z3 / point-04
                                 :ARG0 (z4 / person :wiki - 
                                              :name (z5 / name 
                                                          :op1 "TMT"))))
       :ARG2 z4)

TMT: I don't understand your point. 
TEXT

Figure 4: Text-to-AMR parsing case study on Reentran-
cies. The input text sentence is italicized. The underline
parts highlight the occurrence of a graph reentrancy.
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SPRING TEXT

(s / sight-01
      :ARG1 (h / hopeful-03
            :ARG0 (t / they)
            :ARG1 (e / enter-01
                  :ARG0 t
                  :ARG1 (h2 / heat)))
      :time (a / already)
      :condition (a2 / accident :polarity -))
GOLD TEXT
If accidents do not occur, their hopes of entering 
the heats are already insight.

AMR

If there is no accident, there is already a sight of 
them hoping to enter the heat.

BiBL TEXT
Without the accident, their hopes of entering the 
heat were already in sight.

Figure 5: AMR-to-Text generation case study on seman-
tic understanding. The text sentence output is italicized.
The underline parts highlight the main differences be-
tween gold, SPRING, and BiBL generated sentences.

SPRING TEXT

(h / hand-over-02
      :ARG0 (p3 / person :wiki -
            :name (n / name :op1 "Souya"))
      :ARG1 (f2 / flag
            :poss (d / delegation
                  :source (c2 / country :wiki "Japan"
                        :name (n2 / name :op1 "Japan")))
            :mod (d2 / delegation))
      :ARG2 (p / person :wiki -
            :name (n3 / name :op1 "Banminyan")
            :ARG0-of (h2 / head-01
                  :ARG1 d)
            :ARG0-of (h3 / have-org-role-91
                  :ARG1 (s2 / sports-facility :wiki -
                        :name (n4 / name :op1 "Tokyo" 
                              :op2 "Handicapped" 
                              :op3 "Integrated" 
                              :op4 "Sports" :op5 "Center"))
                  :ARG2 (d3 / director))))
GOLD TEXT

Souya handed over the delegation flag of the 
Japanese delegation to Banminyan, head of the 
delegation and director of the Tokyo Handicapped 
Integrated Sports Center .

AMR

Souya handed over the delegation flag of the 
Japanese delegation to the head of the delegation 
and Director of the Tokyo Handicapped Integrated 
Sports Center, Banminyan .

BiBL TEXT

Souya handed over the delegation flag of Japan to 
the head of the Tokyo Handicapped Integrated 
Sports Center Banminyan .

Figure 6: AMR-to-Text generation case study on com-
plex graph structures. The text sentence output is itali-
cized. The underline parts highlight the main differences
between gold, SPRING, and BiBL generated sentences.
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Abstract

Biaffine method is a strong and efficient method
for graph-based dependency parsing. However,
previous work only used the biaffine method at
the end of the dependency parser as a scorer,
and its application in multi-layer form is ig-
nored. In this paper, we propose a multi-layer
pseudo-Siamese biaffine model for neural de-
pendency parsing. In this model, we modify
the biaffine method so that it can be utilized
in multi-layer form, and use pseudo-Siamese
biaffine module to construct arc weight matrix
for final prediction. In our proposed multi-layer
architecture, the biaffine method plays impor-
tant roles in both scorer and attention mecha-
nism at the same time in each layer. We eval-
uate our model on PTB, CTB, and UD. The
model achieves state-of-the-art results on these
datasets. Further experiments show the benefits
of introducing multi-layer form and pseudo-
Siamese module into the biaffine method with
low efficiency loss.

1 Introduction

Dependency parsing is a fundamental task in NLP.
Given a input sequence s = w0w1...wn, the out-
put is a dependency tree t = {(h, d, l), 0 ≤ h ≤
n, 1 ≤ d ≤ n, l ∈ L}, where wi(1 ≤ i ≤ n) is
a word, w0 is a pseudo-word as root and (h, d, l)
is an arc from wh to wd with label l in a relation
set L. Due to the simplicity and effectiveness of
representing syntactic information by using the tree
structure, many works involve dependency parsing,
such as syntax-enhanced pre-trained model (Xu
et al., 2021).

There are two approaches to dependency parsing:
transition-based and graph-based methods. Graph-
based dependency parsing scores the components
of a sentence and selects the highest scoring tree.
Dozat and Manning (2017) for the first time intro-
duce biaffine method into the dependency parsing.
This strong and efficient biaffine first-order graph-
based parser consists of BiLSTM encoder and bi-

affine scorer. After the biaffine parser is proposed,
many works have focused on further improving
the performance of this parser. Since the biaffine
parser consists of two parts: BiLSTM encoder and
biaffine scorer, there are two main directions of im-
provement focusing on the two parts respectively.

One direction of improvement is modifying the
encoder. Straka (2018) introduce pre-trained model
in the embedding stage. Na et al. (2019) fuse
the hidden states of different layers of BiLSTM
to construct the input of the biaffine scorer. Ji et al.
(2019) add graph neural networks before the bi-
affine scorer to capture high-order information. Li
et al. (2019) apply the self-attention mechanism
as the replacement of BiLSTM encoder. Mrini
et al. (2020) introduce the Label Attention Layer,
a new form of self-attention where attention heads
represent labels, into the encoder. In these works,
although the encoder changes, the biaffine method
remains as a scorer at the end of dependency parser.

Another direction is extending the biaffine scorer
for second-order parser. Currently, there are rela-
tively few works in this direction due to its dif-
ficulty. Zhang et al. (2020) introduce efficient
TreeCRF. Wang and Tu (2020) introduce MFVI.
Both works extend the biaffine scorer to the tri-
affine scorer for scoring second-order subtrees. The
results show that introducing high-order informa-
tion is beneficial to the dependency parser in many
ways. In these works, the extended biaffine method
still plays the role of a scorer for high-order model-
ing.

We observe that biaffine method only plays the
role of a scorer in almost all graph-based depen-
dency parsers improved by the biaffine parser. The
ways and effects of making the method play more
roles remains to be explored. This leads us to a new
direction of improvement: how to make biaffine
method play more roles in dependency parser? We
notice that biaffine method is essentially an atten-
tion mechanism, so it can be utilized in a multi-
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layer architecture like Transformers (Vaswani et al.,
2017) to capture more information before the bi-
affine scorer. However, such an application of bi-
affine method is equivalent to adding Transformers
which uses biaffine attention upon BiLSTM en-
coder and keeping the biaffine scorer at the end of
the model unchanged, that is, the biaffine scorer is
independent of the multi-layer architecture, so it
cannot obtain more information, which limits the
performance gains. This raises a question: how to
fuse the biaffine scorer into the multi-layer archi-
tecture, which allows the biaffine scorer to make
use of more information?

To address this question, we propose a multi-
layer pseudo-Siamese biaffine model for graph-
based dependency parsing. Our multi-layer archi-
tecture consists of several connectable layers with
the same structure, and each layer contains two bi-
affine modules that are identical but have separate
parameters, namely pseudo-Siamese module. One
biaffine module is used as an attention mechanism
to obtain the attention weight to construct the to-
ken representation for the next layer; the other is
used as a scorer to obtain the arc weight matrix
that contributes to final prediction. Therefore, in
our proposed multi-layer architecture, the biaffine
method plays the role of a scorer and an attention
mechanism at the same time in each layer. The
biaffine scorer can obtain information from each
layer before, instead of only seeing the output of
the last layer, so it can make use of more informa-
tion captured by the multi-layer architecture.

We conduct experiments on PTB, CTB, and UD
to verify the effectiveness of our model. Since
the usage of pre-trained models like BERT (De-
vlin et al., 2019) and XLNet (Yang et al., 2019) in
the embedding stage is common for dependency
parsing, we evaluate our model with different pre-
trained models. We conduct the experiments in
three aspects: 1) compare our model with previous
state-of-the-art dependency parsers using the same
pre-trained model to show that our model achieves
state-of-the-art performance; 2) implement the orig-
inal biaffine model and compare it with our model
when using the same pre-trained model to show
that our modification based on biaffine model sig-
nificantly improves the performance; 3) compare
our multi-layer architecture with other multi-layer
architectures for dependency parsing to justify the
specific layers we propose.

We also conduct detailed analysis to illustrate

four aspects relevant to our model: 1) the impact
of the choice of number of layers and attention
function on our model; 2) the importance of fusing
the biaffine scorer into the multi-layer architecture;
3) the benefit of introducing multi-layer form and
pseudo-Siamese module into the biaffine method in
many ways, including the overall performance, the
performance on short and long sentences respec-
tively and the performance of label prediction; 4)
the low efficiency loss of introducing multi-layer
form and pseudo-Siamese module into the biaffine
method.

In summary, the major contributions of our work
are as follows:

• We introduce a multi-layer architecture using
biaffine attention mechanism into the biaffine
dependency parser, which makes the biaffine
method plays more than a role of a scorer in
graph-based dependency parsing.

• We introduce pseudo-Siamese module to fuse
the biaffine scorer into the multi-layer archi-
tecture. We show that fusing the biaffine
scorer into the multi-layer architecture is im-
portant for the performance gains.

• We conduct experiments and detailed analy-
sis on PTB, CTB, and UD. The results show
the benefits of introducing multi-layer form
and pseudo-Siamese module into the biaffine
method with low efficiency loss.

2 Model

Our graph-based dependency parser contains three
parts, i.e., encoder, multi-layer biaffine model, and
pseudo-Siamese module.

2.1 Encoder
Encoder consists of Embedding layer and BiLSTM
layer. In Embedding layer, input token wi with
Part-of-speech tag pi are used to construct input
vector ei:

ei = [emb(wi); posemb(pi)] (1)

Where emb is word embedding, posemb is
learned Part-of-speech tag embedding. We use
pre-trained model BERT or XLNet for word em-
bedding. Following Straka et al. (2019), we use the
linear combination of hidden states of the last four
layers as the embedding, and a word embedding is
the average of its subword embeddings. We project

5477



Figure 1: The architecture of the t-th layer biaffine model and its corresponding pseudo-Siamese module.

word embedding to a lower dimension. In BiLSTM
layer, e0e1...en is input into a three-layer BiLSTM
model. We arrange the output vectors of the last
layer h0,h1, ...,hn into the matrix X1 ∈ Rn×2h,
as the initial input of multi-layer biaffine model:

hi =BiLSTMi(e0e1...en) (2)

X1 =




h0

h1

...
hn


 (3)

2.2 Multi-layer Biaffine Model
Multi-layer biaffine model consists of T layers with
the same structure. The architecture of the t-th
layer is shown in Figure 1. The input matrix of the
t-th layer isXt. We use the same biaffine method
described in Dozat and Manning (2017) :

Ht =MLP (head)t(Xt) (4)

Dt =MLP (dep)t(Xt) (5)

Sti,j =H
t
jU

t(Dt
i)

T
+Ht

jb
t (6)

Where MLP (head)t and MLP (dep)t are 2h × d
(input dimension is 2h and output dimension is
d; similarly hereinafter); U t ∈ Rd×d and bt ∈
Rd are learned parameters. This biaffine module
corresponds to Biaffine 1 in Figure 1.

We scale and apply softmax function (Vaswani
et al., 2017) on St ∈ Rn×n to obtain attention
weight matrix, and use it to construct the arc-related
representation:

Rt =MLP (arc)t(Xt) (7)

V t = Softmax(
St√
2h

)Rt (8)

Where MLP (arc)t is 2h× d.
At the end of the layer, we apply projection and

Add & Norm (Vaswani et al., 2017) to obtain the
input matrix of the next layer:

Xt+1 = LayerNorm(Xt + V tW t) (9)

Where W t ∈ Rd×2h is learned matrix. Xt+1 ∈
Rn×2h is used as the input of (t+ 1)-th layer.

2.3 Pseudo-Siamese Module
We notice that attention weight matrix in each layer
and arc weight matrix for final prediction have the
same form. Based on this, we use pseudo-Siamese
module to construct the arc weight matrix. In the
t-th layer, we use another biaffine module to cal-
culate matrix At ∈ Rn×n. This biaffine module
corresponds to Biaffine 2 in Figure 1. Biaffine 1
and Biaffine 2 have the same structure but different
parameters. That is, At is calculated by Equa-
tions 4 ∼ 6 similar to St but using another set of
parameters. We use the linear combination of At

as the arc weight matrixA for final prediction:

A =

T∑

t=1

at · Softmax(
At

√
2h

) (10)

Where a ∈ RT is learned weight satisfying that∑T
t=1 at = 1.

2.4 Inference
We use A calculated by Equation 10 as the arc
weight matrix and apply the Eisner algorithm (Eis-
ner, 2000) or the Chu-Liu-Edmonds algorithm
(Chu and Liu, 1965; Edmonds et al., 1967) to ob-
tain the maximum spanning tree. After obtaining
the tree structure, following Dozat and Manning
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(2017), we use a biaffine classifier to obtain the
label score vector for each word wi given the pre-
dicted head hi:

Bi =HhiU
(1)(Di)

T + [Hhi ;Di]U
(2) + b

Li = Softmax(Bi) (11)

Where U (1) ∈ Rd×k×d, U (2) ∈ R2d×k and b ∈
Rk are learned parameters (k is the size of relation
set). H andD are calculated by Equations 4 ∼ 5
using XT as input. We select the label with the
maximum score for each arc to obtain the final
dependency tree.

2.5 Training
We calculate A by Equation 10, and calculate L
by Equation 11 using the gold head. We use the
cross-entropy loss for arc and label predictions:

L(arc) = −
n∑

i=1

log(Ai,hi) (12)

L(label) = −
n∑

i=1

log(Li,li) (13)

Where hi is the gold head of wi, and li is the gold
label of arc (hi, wi). The final loss is:

L = λL(arc) + (1− λ)L(label) (14)

Where λ is a hyper-parameter between 0 and 1.

3 Experiments

3.1 Datasets
We evaluate our method on PTB 3.0 (Marcus et al.,
1993), CTB 5.1 (Xue et al., 2005), and Univer-
sal Dependencies (UD) 2.2. Following Chen and
Manning (2014), we use Stanford parser v3.3.0
to convert PTB, and use Penn2Malt tool with the
head-finding rules of Zhang and Clark (2008) to
convert CTB. Following Fernández-González and
Gómez-Rodríguez (2021), we do not use POS tags
on PTB, and use gold POS tags on CTB. Following
Ma et al. (2018), we evaluate 12 languages selected
from UD 2.2 and use POS tags.

3.2 Evaluation
We use UAS and LAS as the metric. During the
evaluation, we ignore all punctuation. We use the
model after the last epoch of training for evaluation.
For all results reported, we run the training process
five times with different random seeds and average
the results to avoid contingency.

3.3 Implementation Details

We evaluate our model with different pre-trained
models, including BERT-uncased and XLNet
for PTB, BERT-Chinese for CTB, and BERT-
Multilingual-cased for UD. The dimension of word
embedding after projection is 300, and the dimen-
sion of POS embedding is 50. We set h = 512,
λ = 0.55, d = 512 for arc and d = 128 for label.
We set T = 5 on PTB and UD, and T = 6 on CTB.
We apply dropout after embedding and BiLSTM
layers with dropout rate 0.33. We apply gradient
clipping with max 2-norm value 1. We use Adam
(Kingma and Ba, 2015) optimizer with β1 = 0.9,
β2 = 0.999. The learning rate is 1e − 5 for pre-
trained model and 5e−4 for other components. We
train the model for 8 epochs on PTB and UD, and
20 epochs on CTB. We decay the learning rate lin-
early to 0 during training. We batch the sentences
of similar length for efficiency. The batch size is 24.
During training, we divide the loss by batch size on
CTB and UD but not on PTB. During inference, we
use the Eisner algorithm on PTB and CTB, and we
use the Chu-Liu-Edmonds algorithm on UD. More
discussions on inference algorithms are presented
in Section 4.6.

3.4 Baselines

We use nine strong baseline models for comparison
and divide them into five categories. All results of
baseline models are from the corresponding papers.
Biaffine. Dozat and Manning (2017) introduces
the biaffine method for first-order graph-based de-
pendency parsing.
Second-order. Zhang et al. (2020) introduces
TreeCRF and Wang and Tu (2020) introduces
MFVI. These parsers extend the biaffine method to
triaffine for modeling second-order information.
HPSG. Zhou and Zhao (2019) introduces head-
driven phrase structure grammar (HPSG) for joint
dependency and constituent parsing. Mrini et al.
(2020) uses HPSG and introduces label attention
layer. These parsers use additional constituency
information for training.
G2GTr. Mohammadshahi and Henderson (2020)
and Mohammadshahi and Henderson (2021) intro-
duces Graph-to-Graph Transformer (G2GTr) for
transition-based dependency parsing and graph-
based dependency parsing respectively.
Pointer Networks. Ma et al. (2018) introduces
stack-pointer networks and Fernández-González
and Gómez-Rodríguez (2021) introduces bottom-
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Pre-trained Model PTB
UAS LAS

w/o Doz. & Man. (2017) 95.74 94.08
Zhang et al. (2020) 96.14 94.49

BERT-base
Moh. & Hen. (2020) 96.11 94.33
Moh. & Hen. (2021) 96.66 95.01
Ours(BERT-base) 96.93 95.18

BERT-large
Wang & Tu (2020) 96.91 95.34
Fer. & Góm. (2021) 97.05 95.48
Ours(BERT-large) 97.17 95.50

XLNet-base Ours(XLNet-base) 97.17 95.49

XLNet-large
Zhou & Zhao (2019)† 97.20 95.72
Mrini et al. (2020)† 97.42 96.26
Ours(XLNet-large) 97.44 95.81

Pre-trained Model CTB
UAS LAS

w/o Doz. & Man. (2017) 89.30 88.23
Ma et al. (2018) 90.59 89.29

BERT-base

Mrini et al. (2020)† 94.56 89.28
Wang & Tu (2020) 92.78 91.69
Fer. & Góm. (2021) 92.75 91.62
Moh. & Hen. (2021) 92.98 91.18
Ours(BERT-base) 93.37 92.16

Pre-trained Model UD2.2
UAS LAS

w/o Ma et al. (2018) 93.53 89.75
Zhang et al. (2020) - 89.33

BERT-base Wang & Tu (2020) - 91.02
Ours(BERT-base) 94.68 91.82

Table 1: Comparison of dependency parsers on PTB,
CTB, and UD2.2. Pre-trained column indicates pre-
trained model used for word embedding. †:These ap-
proaches join the constituency parsing and use addi-
tional constituency information for training.

up hierarchical pointer networks for transition-
based dependency parsing.

3.5 Main Results

Table 1 shows the results of baselines and our
model on PTB and CTB. For intuitive comparison,
we divide the models according to the pre-trained
model used for word embedding. Overall, the rank-
ing of performance of our model with different
pre-trained models is XLNet-large > XLNet-base
≈ BERT-large > BERT-base.

On PTB, the previous state-of-the-art model
with BERT-base is Mohammadshahi and Hender-
son (2021) using Graph-to-Graph Transformer for
graph-based parsing, which outperforms Moham-
madshahi and Henderson (2020) for transition-
based parsing. Compared with it, our model with
BERT-base improves 0.27 UAS and 0.17 LAS. The
previous state-of-the-art model with BERT-large is
Fernández-González and Gómez-Rodríguez (2021)
using bottom-up hierarchical pointer networks

for transition-based parsing, which outperforms
second-order graph-based parser Wang and Tu
(2020) using MFVI. Compared with it, our model
with BERT-large improves 0.12 UAS and performs
similarly on LAS. Our model with XLNet-base
also outperforms previous models with BERT-large.
Our model with XLNet-large achieves 97.44 UAS
and 95.81 LAS, which is the state-of-the-art result
among dependency parsers without additional con-
stituency information for training. For previous
models with XLNet-large, Zhou and Zhao (2019)
and Mrini et al. (2020) both use HPSG, which join
the constituency parsing and use additional con-
stituency information for training. Our model with
XLNet-large outperforms Zhou and Zhao (2019),
and has a comparable performance on UAS com-
pared with Mrini et al. (2020).

On CTB, we only evalutate our model with
BERT-base-Chinese because it is the only pre-
trained model used for CTB in baseline mod-
els. Our model with BERT-base-Chinese achieves
93.37 UAS and 92.16 LAS, which is the state-of-
the-art result among dependency parsers without
additional constituency information for training.
Compared with the previous state-of-the-art model
on UAS which does not join the constituency pars-
ing (Mohammadshahi and Henderson, 2021), our
model improves 0.39 UAS. Compared with the pre-
vious state-of-the-art model on LAS (Wang and
Tu, 2020), our model improves 0.47 LAS. Com-
pared with Mrini et al. (2020) using additional con-
stituency information for training, our model has a
significant performance advantage on LAS.

On UD2.2, our model with BERT-Multilingual-
cased achieves 94.68 average UAS and 91.82 aver-
age LAS. Compared with the previous state-of-the-
art model (Wang and Tu, 2020) using MFVI, our
model improves 0.8 average LAS.

3.6 Comparison with Original Single-layer
Biaffine Model

We compare our model with the original biaffine
model when using the same pre-trained model.
When our model has only one layer, it degener-
ates to the original biaffine model, so we simply set
T = 1 and keep other hyperparameters unchanged
to implement the original biaffine model with dif-
ferent pre-trained models. The results on PTB and
CTB are shown in Table 2. It can be seen that
our model with each kind of pre-trained model per-
forms significantly better than the original single-
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Figure 2: Results of our model with T layers on PTB and CTB (T = 1 means the original biaffine model). For
T > 1, we perform significance test against T = 1. Triangle point means p < 0.05 and square point means
p < 0.005.

Pre-trained Model PTB
UAS LAS

BERT-base
Original 96.70 94.92
Ours 96.93‡ 95.18‡

BERT-large
Original 97.00 95.33
Ours 97.17‡ 95.50‡

XLNet-base
Original 97.01 95.26
Ours 97.17‡ 95.49‡

XLNet-large
Original 97.28 95.59
Ours 97.44‡ 95.81‡

Pre-trained Model CTB
UAS LAS

BERT-base
Original 93.18 91.93
Ours 93.37‡ 92.16‡

Table 2: Comparison of original biaffine model and
our model with different pre-trained models on PTB
and CTB. We perform significance test for each pair of
results. ‡ means p < 0.005.

layer biaffine model with the same pre-trained
model. Compared with the original single-layer bi-
affine model, our model improves 0.18 UAS, 0.22
LAS on average on PTB, and improves 0.19 UAS,
0.23 LAS on CTB. The results on UD2.2 are shown
in Table 3. It can be seen that our model outper-
forms the original single-layer biaffine model on
12 languages and improves 0.18 average UAS, 0.11
average LAS. The results show that our modifica-
tion based on the original biaffine model signif-
icantly improves the performance. As a supple-
ment, the results without gold POS tags on CTB
are shown in Appendix A.

3.7 Comparison with Other Multi-layer
Architectures

We compare our multi-layer architecture with other
multi-layer architectures to justify the specific lay-
ers we propose. We select two strong multi-layer
architectures which use BERT-base pre-trained

model and have been evaluated on PTB or CTB
for comparison: (1) Self-attentive parser proposed
by Li et al. (2019). This architecture uses stan-
dard multi-head self-attention mechanism in multi-
layer form. (2) Syntactic Transformer proposed
by Mohammadshahi and Henderson (2021). This
architecture uses the same architecture as BERT
(Devlin et al., 2019) but changes the functions used
by each attention head. For a fair comparison, we
remove BiLSTM from our model and use BERT-
base pre-trained model, so that the only difference
between the models is the multi-layer architecture.
The results are shown in Table 4. It can be seen that
our multi-layer architecture achieves better results
with fewer layers compared with other multi-layer
architectures on PTB and CTB, which justifies the
specific layers we propose.

4 Analysis

4.1 Number of Layers

We evaluate our model with number of layers
T ∈ {1, 2, 3, 4, 5, 6, 7} (T = 1 means the original
biaffine model). The pre-trained model is BERT-
base for PTB and BERT-base-Chinese for CTB,
and we use this setting in the whole section 4 un-
less otherwise specified. The results are shown in
Figure 2. It can be seen that: (1) Our model with
any T > 1 outperforms the original single-layer
biaffine model on both PTB and CTB. (2) With the
increase in the number of layers, the performance
of our model gradually improves and starts to be
significantly different from the original single-layer
model at T = 2 on PTB and T = 3 on CTB. (3)
From T = 2 on PTB and T = 3 on CTB, the
performance of our model improves with a similar
trend on both datasets. This continuous improve-
ment is due to more useful information captured by
more layers. (4) After three more layers on both
datasets, that is, at T = 5 on PTB and T = 6 on
CTB, our model achieves the optimal performance.
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Model UD2.2 (UAS)
bg ca cs de en es fr it nl no ro ru Avg.

Original 95.71 95.49 95.28 90.49 93.05 94.77 94.28 96.16 94.68 95.93 93.13 95.52 94.54
Ours 95.78 95.69‡ 95.31† 90.61 93.27† 94.83 94.42† 96.33 94.84 96.05† 93.36 95.65‡ 94.68‡

Model UD2.2 (LAS)
bg ca cs de en es fr it nl no ro ru Avg.

Original 91.87 93.77 92.30 85.89 90.90 92.69 91.34 94.43 91.88 94.46 86.95 94.03 91.71
Ours 92.00† 94.00‡ 92.34† 85.97 91.03 92.72 91.45 94.61 92.05 94.56 87.00 94.18‡ 91.82‡

Table 3: Comparison of original biaffine model and our model with BERT-base-Multilingual-cased on UD2.2. We
perform significance test for each pair of results. † means p < 0.05 and ‡ means p < 0.005.

Multi-layer Architecture PTB
UAS LAS

SelfAtt (8 Layers) 96.67 95.03
SynTr (12 Layers) 96.60 94.94
Ours (5 Layers) 96.75 95.05

Multi-layer Architecture CTB
UAS LAS

SynTr (12 Layers) 92.42 90.67
Ours (6 Layers) 92.91 91.80

Table 4: Comparison of different multi-layer architec-
tures for dependency parsing on PTB and CTB. SelfAtt:
Li et al. (2019); SynTr: Mohammadshahi and Hender-
son (2021).

Our optimal model improves 0.23 UAS, 0.26 LAS
on PTB and 0.19 UAS, 0.23 LAS on CTB com-
pared with the original single-layer biaffine model.
(5) The performance of our model starts to decline
after T = 5 on PTB and T = 6 on CTB. This in-
dicates that the use of more layers helps the model
to capture more information, but also makes the
model more prone to overfitting the training data,
which is consistent with previous works related to
multi-layer architecture for dependency parsing (Li
et al., 2019; Mrini et al., 2020).

4.2 Attention Function
We compare the biaffine attention function used in
Equation 6 with another three common attention
functions described in Luong et al. (2015):

Sti,j =
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j(D

t
i)

T Dot
Ht
jU

t(Dt
i)

T General
tanh([Dt

i ;H
t
j ]P

t)pt Concat

(15)

Where U t ∈ Rd×d, P t ∈ R2d×d and pt ∈ Rd
are learned parameters. The results are shown in
Table 5. It can be seen that biaffine attention func-
tion outperforms another three attention functions

Function PTB CTB
UAS LAS UAS LAS

Biaffine 96.93 95.18 93.37 92.16
Dot 96.87† 95.14 93.32 92.11

General 96.89 95.14 93.35 92.12
Concat 96.87† 95.09‡ 93.30 92.08

Table 5: Results of our model with four attention func-
tions used in Equation 6 on PTB and CTB. We per-
form significance test against Biaffine function for an-
other three functions. † means p < 0.05 and ‡ means
p < 0.005.

in our multi-layer architecture, although the differ-
ence is not significant in some cases. Our model
with any of another three attention functions still
significantly outperforms the original single-layer
biaffine model. The results show that our model
can achieve high performance using any common
attention function, and biaffine attention function
is the best choice for our model.

4.3 Effect of Pseudo-Siamese Module

In order to fuse the biaffine scorer into the multi-
layer architecture, we use pseudo-Siamese module
in our model to construct the arc weight matrix
for final prediction. To verify the effect of pseudo-
Siamese module, we compare it with two other
construction methods: (1) True-Siamese. Two bi-
affine modules in each layer share the parameters,
which means At = St. (2) Non-Siamese. The
biaffine module for prediction is removed, and the
final prediction is based on ST . The results are
shown in Table 6. It can be seen that either re-
placing pseudo-Siamese module with true-Siamese
module or removing pseudo-Siamese module, will
lead to a significant decrease in the performance of
our model. In particular, removing pseudo-Siamese
module, which means not fusing the biaffine scorer
into the multi-layer architecture, will make the per-
formance of our model not significantly different
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Method PTB CTB
UAS LAS UAS LAS

P-S 96.93 95.18 93.37 92.16
T-S 96.81‡ 95.06‡ 93.20† 91.99†

N-S 96.72‡ 94.91‡ 93.19† 91.98†

Table 6: Results of our model with three methods of
constructing arc weight matrix for final prediction on
PTB and CTB. P-S: pseudo-Siamese; T-S: true-Siamese;
N-S: non-Siamese. For T-S and N-S, we perform signif-
icance test against P-S. † means p < 0.01 and ‡ means
p < 0.005.

Model
PTB

UAS LAS
L < 24 L ≥ 24 L < 24 L ≥ 24

Original 96.89 96.61 95.17 94.80
Ours 97.14 96.83 95.40 95.07

Model
CTB

UAS LAS
L < 28 L ≥ 28 L < 28 L ≥ 28

Original 94.69 92.49 93.43 91.26
Ours 94.72 92.75 93.44 91.57

Table 7: Results of original biaffine model and our
model on sentences shorter or longer than average length
on PTB and CTB.

from the original single-layer biaffine model on
both PTB and CTB. The results show that using
pseudo-Siamese module to fuse the biaffine scorer
into the multi-layer architecture is important for
the performance gains of our model.

4.4 Sentence Length
We evaluate our model and original biaffine model
on sentences shorter or longer than average length
on PTB and CTB. The average length is 23.85
words on PTB and 27.22 words on CTB. The re-
sults are shown in Table 7. It can be seen that
our model outperforms the original single-layer bi-
affine model on both short and long sentences on
PTB and CTB.

4.5 Label Prediction
We evaluate the accuracy of label prediction of
our model and the original biaffine model when
the gold head is provided on CTB and PTB. Our
model achieves 97.79% on PTB and 98.30% on
CTB. The original biaffine model achieves 97.76%
on PTB and 98.26% on CTB. It can be seen that
when the influence of performance difference in

Pre-trained Algorithm PTB
UAS LAS

BERT-base
C-L-E 96.88 95.13
Eisner 96.93 95.18

BERT-large
C-L-E 97.13 95.48
Eisner 97.17 95.50

XLNet-base
C-L-E 97.13 95.46
Eisner 97.17 95.49

XLNet-large
C-L-E 97.41 95.79
Eisner 97.44 95.81

Pre-trained Model CTB
UAS LAS

BERT-base
C-L-E 93.28 92.07
Eisner 93.37 92.16

Table 8: Results of our model using two inference al-
gorithms with different pre-trained models on PTB and
CTB. C-L-E: the Chu-Liu-Edmonds algorithm.

head prediction is excluded, our model still per-
forms better in label prediction than the original
single-layer biaffine model.

4.6 Inference Algorithms

On PTB and CTB, we use the Eisner algorithm for
inference. The time complexity of the Eisner algo-
rithm is O(n3). Based on the code of Kiperwasser
and Goldberg (2016), we implement the Eisner al-
gorithm with Pytorch, which can obtain projective
maximum spanning trees on the entire PTB test
set in about 5 seconds on a single TITAN RTX
GPU. We compare the performance of the Eisner
algorithm and the Chu-Liu-Edmonds algorithm on
PTB and CTB. The results are shown in Table 8.
It can be seen that the Eisner algorithm slightly
outperforms the Chu-Liu-Edmonds algorithm on
PTB and CTB, because trees in PTB (99.9% pro-
jective) and CTB (100% projective) are almost all
projective, and the Eisner algorithm guarantees that
the obtained tree is projective. There are many non-
projective trees in UD, which the Eisner algorithm
cannot handle, so we use the Chu-Liu-Edmonds
algorithm with time complexity O(n3) on UD for
inference.

4.7 Efficiency Loss

We evaluate the parameter size and speed of the
original biaffine model and our model with 5 lay-
ers. Our speed evaluation is performed on a single
TITAN RTX GPU. Excluding the same encoder
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part, the original biaffine model has 2.34M param-
eters, and our model has 17.04M parameters. To
run one epoch of training with batch size 24 on
the entire PTB training set, the original biaffine
model takes 10.48 minutes, and our model takes
11.07 minutes. Compared with the original biaffine
model, our model uses 5.63% more time on train-
ing. For inference, the scoring process described
in Section 2.2 and 2.3 is the only process in which
there is an efficiency difference between the two
models. When only considering this process, to
parse the whole PTB test set, the original biaffine
model uses 0.06 seconds, and our model uses 0.51
seconds. Our model uses 0.45 seconds more in this
process, which has little effect on the entire parsing
time (17.5 seconds). The relatively low increase in
parameter size and time consumption on both train-
ing and parsing indicates the low efficiency loss of
introducing multi-layer form and pseudo-Siamese
module into the biaffine method.

5 Related Work

Transition-based method (Nivre, 2003; Yamada and
Matsumoto, 2003) and graph-based method (Mc-
Donald et al., 2005; McDonald and Pereira, 2006)
are two main approaches to dependency parsing.
Before the deep learning era, almost all dependency
parsers classify based on many sparse indicator fea-
tures. Titov and Henderson (2007) for the first time
introduce neural networks into transition-based de-
pendency parsing. Chen and Manning (2014) pro-
pose a fast and accurate transition-based depen-
dency parser using neural networks. Dyer et al.
(2015) introduce BiLSTM into transition-based de-
pendency parsing. Wang and Chang (2016) intro-
duce BiLSTM encoder into the graph-based depen-
dency parser. Kiperwasser and Goldberg (2016)
also introduce BiLSTM encoder into dependency
parsing and test it with both transition-based and
graph-based methods. Based on these works, Dozat
and Manning (2017) introduce biaffine method as
a scorer into the graph-based dependency parsing
and achieve significant performance improvement.

Multi-layer architecture is widely used to im-
prove the performance of the original biaffine
parser. Since the original biaffine parser uses multi-
layer BiLSTM, Na et al. (2019) propose to use
hidden states of different layers of BiLSTM to
construct role-dependent representations for each
layer, which are aggregated as the input of the
biaffine scorer. Li et al. (2019) propose to use

multi-layer self-attention at the encoder stage as
the replacement of BiLSTM. Ji et al. (2019) pro-
pose to add multi-layer graph neural networks be-
fore the biaffine scorer and apply layer-wise loss
to capture high-order information. Mohammad-
shahi and Henderson (2021) propose a recursive
non-autoregressive graph-to-graph transformer for
dependency parsing. They introduce a multi-layer
architecture similar to BERT but changing the atten-
tion function. In these models, the biaffine method
is used as a scorer after the multi-layer architec-
ture. Differently, our multi-layer architecture uses
the biaffine method in each layer as the role of an
attention mechanism and a scorer at the same time.

Pseudo-Siamese network architecture, which
means using two separate but identical networks
to process a pair of inputs and fusing the informa-
tion at a later stage, is widely used in the field of
computer vision (Hughes et al., 2018; Treible et al.,
2019). In our model, we use two separate but iden-
tical biaffine modules in each layer to process the
same input into two branches, which is a reversed
pseudo-Siamese network architecture.

6 Conclusions

In this paper, we propose a multi-layer biaffine
pseudo-Siamese model for neural dependency pars-
ing. In our proposed multi-layer architecture, bi-
affine method plays the role of a scorer and an
attention mechanism at the same time in each layer.
We conduct experiments and detailed analysis on
PTB, CTB, and UD, showing the benefit of intro-
ducing multi-layer form and pseudo-Siamese mod-
ule into the biaffine method. Compared with the
original single-layer biaffine model, our model has
a significant advantage in performance with low
efficiency loss. Our analysis shows that fusing the
biaffine scorer into the multi-layer architecture is
important for the performance gains of our model.
Compared with other multi-layer architectures for
dependency parsing, our multi-layer architecture
also has a performance advantage. Our model
achieves state-of-the-art results on PTB, CTB, and
UD. Our code is available at https://github.
com/xzy-xzy/MLPSB-Parser.
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A Supplementary Results

Previous works generally use gold POS tags on
CTB. To get a more realistic estimate of real per-
formance, we evaluate our model and the origi-
nal biaffine model without gold POS tags on CTB.
Our model achieves 91.45 UAS, 89.31 LAS. The
original biaffine model achieves 91.19 UAS, 89.07
LAS. Compared with the original biaffine model,
our model improves 0.26 UAS, 0.24 LAS. The sig-
nificance test shows that p < 0.005 on UAS and
p < 0.01 on LAS. It can be seen that our model
still outperforms the original biaffine model with-
out gold POS tags on CTB.
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Abstract

In this work, we focus on improving the cap-
tions generated by image-caption generation
systems. We propose a novel re-ranking ap-
proach that leverages visual-semantic measures
to identify the ideal caption that maximally cap-
tures the visual information in the image. Our
re-ranker utilizes the Belief Revision frame-
work (Blok et al., 2003) to calibrate the orig-
inal likelihood of the top-n captions by ex-
plicitly exploiting the semantic relatedness be-
tween the depicted caption and the visual con-
text. Our experiments demonstrate the utility
of our approach, where we observe that our re-
ranker can enhance the performance of a typical
image-captioning system without the necessity
of any additional training or fine-tuning.1

1 Introduction

Image caption generation is a task that predomi-
nantly lies at the intersection of the areas of com-
puter vision and natural language processing. The
task is primarily aimed at generating a natural lan-
guage description for a given image. Caption gener-
ation systems usually consist of an image encoder
that encodes a given image (usually by using a
CNN) whose encoding is fed to a decoder (usu-
ally by using a generative model such as RNN)
to generate a natural language sentence which de-
scribes the image succinctly. The most widely used
approaches include a CNN-RNN end-to-end sys-
tem (Vinyals et al., 2015; Anderson et al., 2018),
end-to-end systems with attention that attend to
specific regions of the image for generation (Xu
et al., 2015; You et al., 2016) and systems with re-
inforcement learning based methods (Rennie et al.,
2017; Ren et al., 2017). Furthermore, recent ad-
vances have resulted in end-to-end systems that use
Transformer based architecture for language gener-
ation and have become the current state-of-the-art

1https://github.com/ahmedssabir/
Belief-Revision-Score

IM  GENET
Visual: orange, lemon, apple

Visual B: a display of apples and 
oranges at a market 

Greedy: a fruit market with apple 
and orange 
B5: a fruit stand with apples 
and oranges 

re-ranking

Visual hypothesis revision

visual relatedness

hypothesis init

Language model

Beam search

Semantic similarity

Caption baseline

Figure 1: An overview of our hypothesis revision based
visual re-ranker. We use the visual context from the
image to revise and re-rank the most closely related
caption to its visual context. These semantic relatedness
measures are learned at the word-to-sentence level. In
this example, we showcase our visual re-ranker (Visual
Beam), a post-processing approach, which is able to
re-rank the most ‘descriptive caption’ from the 5-Best
Beam (Cornia et al., 2020).

(Herdade et al., 2019; Huang et al., 2019; Cornia
et al., 2020; Zhang et al., 2021b).

While the state-of-the-art models generate cap-
tions that are comparable to human level captions,
they are known to lack lexical diversity, are of-
ten not very distinct, and sound synthetic. We here
highlight a few recent approaches that have focused
on this problem, these include Dai et al. (2017) that
uses generative adversarial networks towards gen-
erating diverse and human like captions. Vedantam
et al. (2017) use a beam search with a distractor im-
age to force the model to produce diverse captions
by encouraging the models to be discriminative.
Other recent works use a beam search directly to
produce diverse captions by forcing richer lexical
word choices (Ippolito et al., 2019; Vijayakumar
et al., 2018; Wang and Chan, 2019; Wang et al.,
2020). In this work, we follow a similar line of
research and focus on the problem of improving
diversity and making captions natural and human
like and propose a novel re-ranking approach. In
this approach, we use n-best reranking with a given
beam that explicitly uses the semantic correlation
between the caption and the visual context through
belief revision (an approach inspired by human
logic). We refer the reader to Figure 1, where the
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approach results in a caption that is a) visually rel-
evant and b) the most natural and human like.

Our primary contributions in this paper are:

• We demonstrate the utility of the Belief Revi-
sion (Blok et al., 2003) framework, which has
been shown to correlate highly with human
judgment and has demonstrate its applicability
to the task of Image Captioning. We do this
by employing vision-language joint seman-
tic measures using state-of-the-art pre-trained
language models.

• Our approach is a post-processing method and
is devised to be a drop-in replacement for any
caption system.

• Through our experiments, we report that our
proposal selects better captions as reported
using automated metrics, as well as being val-
idated by human evaluations.

2 Belief Revision with SimProb Model

In this section, we briefly introduce SimProb,
which is based on the philosophical intuitions of
Belief Revision, an idea that helps to convert simi-
larity measures to probability estimates. Blok et al.
(2003) introduce a conditional probability model
that assumes that the preliminary probability re-
sult is updated or revised to the degree that the
hypothesis proof warrants. The range of revision is
based on the informativeness of the argument and
its degree of similarity. That is, the similarity to
probability conversion can be defined in terms of
Belief Revision. Belief Revision is a process of
forming a belief by taking into account a new piece
of information.

Let us consider the following statements:
1 Tigers can bite through wire,
therefore Jaguars can bite through
wire.

2 Kittens can bite through wire,
therefore Jaguars can bite through
wire.

In the first case, the statement seems logical be-
cause it matches our prior belief i.e. jaguars are
similar to tigers, so we expect them to be able to
do similar things. We hence consider that the state-
ment is consistent with our previous belief, and
there is no need to revise it. In the second case, the
statement is surprising because our prior belief is
that kittens are not as similar to jaguars, and thus,
not so strong. But if we assume the veracity of the
statement, then we need to revise and update our
prior belief about the strength of kittens.

This work formalizes belief as probabilities and
revised belief as conditional probabilities and pro-
vides a framework to compute them based on the
similarities of the involved objects. According to
the authors, belief revision should be proportional
to the similarity of the involved objects (i.e. in the
example, the statement about kittens and jaguars
would cause a stronger belief revision than e.g. the
same statement involving pigeons and jaguars be-
cause they are less similar). In our case, we use the
same rationale and the same formulas to convert
similarity (or relatedness) scores into probabilities
suitable for reranking.
SimProb Model To obtain the likelihood revi-
sions based on similarity scores, we need three
parameters: (1) Hypothesis: prior probabilities,
(2) Informativeness: conclusion events and (3)
Similarities: measuring the relatedness between
involved categories.The goal is to predict a condi-
tional probability of statements, given one or more
other statements. In order to predict the conditional
probability of the argument’s conclusion, given its
premise or hypothesis, we will need only the prior
probabilities of the statements, as well as the simi-
larities between the involved categories (e.g. kittens
and tigers).
Formulation of SimProb The conditional proba-
bility P(Qc|Qa) is expressed in terms of the prior
probability of the conclusion statement P(Qc), the
prior probability of the premise statement P(Qa),
and the similarity between the conclusion and the
premise categories sim(a, c).

P (Qc | Qa) = P (Qc)
α

where α =
[
1−sim(a,c)
1+sim(a,c)

]1−P(Qa)

Belief Revision Elements As we discussed above,
there are two factors that determine the hypothesis
probability revision: 1) the sufficient relatedness
to the category: as sim(a, c)→0, α→1, and thus
P(Qc|Qa) = P(Qc), i.e. no revision takes place, as
there are no changes in the original belief. While as
sim(a, c)→1, α→0, and the hypothesis probabil-
ity P(Qc) is revised and is raised closer to 1; 2) the
informativeness of the new information 1−P(Qa):
as P(Qa)→1 and in consequence is less informa-
tive, α→1, as there is no new information, and
hence no revision is required.

3 Visual Re-ranking for Image Caption

3.1 Problem Formulation
The beam search is the dominant method for ap-
proximate decoding in structured prediction tasks
such as machine translation, speech recognition
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and image captioning. A larger beam size allows
the model to perform a better exploration in the
search space compared to greedy decoding. The
main idea of the beam search is to explore all pos-
sible captions in the search space by keeping a set
of top candidates.

Our goal is to leverage the visual context infor-
mation of the image to re-rank the candidate se-
quences obtained through the beam search, thereby
moving the most visually relevant candidate up in
the list, as well as moving wrong candidates down.
For this purpose, we experiment with different re-
rankers, based on the relatedness between the can-
didate caption and the semantic context observed
in the image through the idea of Belief Revision.

Caption Extraction We employ two recent
Transformer based architectures for caption gener-
ation to extract the top candidate captions using
different beam sizes (B = 1 . . . 20) (Vijayaku-
mar et al., 2018). The first baseline is based on
a multi-task model for discriminative Vision and
Language BERT (Lu et al., 2020) that is fine-tuned
on 12 downstream tasks. The second baseline is the
vanilla Transformer (Vaswani et al., 2017) with the
Meshed-Memory based caption generator (Cornia
et al., 2020) with pre-computed top-down visual
features (Anderson et al., 2018).

3.2 Proposal
One approach of using word-level semantic re-
lations for scene text correction with the visual
context of an image was introduced in Sabir et al.
(2018), which allows for the establishment of learn-
ing semantic correlations between a visual context
and a text fragment. In our work, this semantic
relatedness is between a visual context and a given
candidate caption (i.e. beam search), and uses Be-
lief Revision (BR) via SimProb to re-visit and re-
rank the original beam search based on the similar-
ity to the image objects/labels c (a proxy for image
context). The BR in this scenario is a conditional
probability which assumes that the caption prelimi-
nary probability (hypothesis) P(w) is revised to the
degree approved by the semantic similarity with
visual context sim(w, c). The final output caption
w for a given visual context c is written as:

P(w | c) = P(w)α (1)

where the main components of visual based hypoth-
esis revision:
Hypothesis: P(w)

Informativeness: 1− P(c)

Similarities: α =
[
1−sim(w,c)
1+sim(w,c)

]1−P(c)

where P(w) is the hypothesis probability (beam
search candidate caption) and P(c) is the proba-
bility of the evidence that causes hypothesis prob-
ability revision (visual context from the image).
We next discuss the details of each component in
SimProb as visual based re-ranker.
Hypothesis: Prior probabilities of original belief.
As this approach is inspired by humans, the hypoth-
esis P(w) needs to be initialized by a common ob-
servation such as a Language Model (LM) trained
on a general text corpus. Therefore, we employ a
Generative Pre-trained Transformer (GPT-2) (Rad-
ford et al., 2019) a LM to initialize the hypothesis
probability. We set P(w) as the mean of LM token
probability.
Informativeness: Inversely related to the probabil-
ity of set P(c) information that causes hypothesis
revision. We leverage ResNet (He et al., 2016) and
an Inception-ResNet v2 based Faster R-CNN ob-
ject detector (Huang et al., 2017)2 to extract textual
visual context information from the image. We use
the classifier probability confidence with a thresh-
old to filter out non-existent objects in the image.
For each image, we extract visual information as
follows: (1) top-1 concept (2) multi concept top-3
(label class or object category) visual information.
For the single concept, we employ a unigram LM,
based on the 3M-token opensubtitles corpus (Lison
and Tiedemann, 2016), to initialize the informa-
tiveness of the visual information. For multiple
concepts, we take the mean probability of the three
concepts. Note that we are initializing the single
visual context with LM to maximize the visual con-
text score while computing the informativeness.
Similarities: Hypothesis revision is more likely if
there is a close relation between the hypothesis and
the new information (candidate caption and visual
context in our case). We rely on two of the most re-
cent state-of-the-art pre-trained Transformer-based
language models to compute the semantic simi-
larity between the caption and its visual context
information with contextual embedding. In particu-
lar, we utilize the visual as context for the sentence
(i.e. caption) to compute the cosine distance:

• BERT (Devlin et al., 2019): BERT achieves
remarkable results on many sentence level
tasks and especially in the textual semantic

2TensorFlow Object Detection API
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similarity task (STS-B) (Cer et al., 2017).
Therefore, we fine-tuned BERTbase on the
training dataset, (textual information, 460k
captions: 373k for training and 87k for valida-
tion) i.e. visual context, caption, label [seman-
tically related or not related]), with a binary
classification cross-entropy loss function [0,1]
where the target is the semantic similarity be-
tween the visual and the candidate caption,
with batch size 16 for two epochs with a learn-
ing rate 2e−5.

• RoBERTa (Liu et al., 2019): RoBERTa is
an improved version of BERT, trained on a
large amount of data, using dynamic masking
strategies to prevent overfitting. It achieves
a 2.4% improvement over BERTLarge in the
STS task. Since RoBERTaLarge is more robust,
we use an off-the-shelf model tuned on STS-B
task. In particular, we follow the traditional
approach to compute the semantic similarity
with a BERT based model with a mean pool,
over the last hidden layer, to extract a mean-
ingful vector to compute the cosine distance.

4 Experiments

4.1 Dataset

COCO-Caption (Lin et al., 2014): This dataset
contains around 120k images and each image is an-
notated with five different human-written captions.
We use the split provided by (Karpathy and Fei-Fei,
2015), where 5k images are used for testing, 5k for
validation, and the rest for model training.
Visual Context Enrichment: We enrich COCO-
Caption with textual visual context information. To
automate visual context generation and without the
need for a human label, for the training dataset, we
use only ResNet152, which has 1000 label classes,
to extract the top-k three label class visual context
information for each image in the caption dataset.
For testing, we rely only on the top-k visual in-
formation as a concept, and we also employ the
Inception-ResNet v2 based Faster R-CNN object
detector with 80 object classes. In particular, each
single annotated caption has three visual context
information.
Evaluation Metric: We use the official COCO
offline evaluation suite, producing several widely
used caption quality metrics: BLEU (Papineni
et al., 2002) METEOR (Banerjee and Lavie,
2005), ROUGE (Lin, 2004), CIDEr (Vedantam
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Figure 2: Visualization of top-k nine re-ranked Beam
search via SimProb with, Vil+VRRoBERTa (Right) mul-
tiple visual and (Left) one concept visual context. The
longer caption benefits from using multiple concepts.

et al., 2015), SPICE (Anderson et al., 2016) and
BERTscore (Zhang et al., 2020).

4.2 Results and Discussion

We use visual semantic information to re-rank can-
didate captions produced by out-of-the-box state-
of-the-art caption generators. We extract the top-20
beam search candidate captions from two state-of-
the-art models: VilBERT (Lu et al., 2020), fine-
tuned on a total of 12 different vision and language
datasets such as caption image retrieval and vi-
sual question answering, and a specialized caption-
based Transformer (Cornia et al., 2020).

Experiments applying different rerankers to the
each base system are shown in Table 1. The tested
rerankers are: (1) VRBERT using BERT similar-
ity between the candidate caption and the visual
context of the image, transforming it to a proba-
bility using Equation 1, and combines the result
with the original candidate probability to obtain
the reranked score. (2) VRRoBERTa carrying out
the same procedure using similarity produced by
RoBERTa. A simpler model is also tested –VRBERT
(only sim) in Table 1–, which replaces Equation 1
with P(w | c) = sim(w, c)P(c), that is, it does not
rely on the original caption probability.

First, we compare our work with the original
visual caption re-ranker with multiple word ob-
jects as concepts from the image, that are extracted
via Inception-ResNet v2 based Faster RCNN (i.e.
person, van, etc.), VRw-Object (Fang et al., 2015).
However, to make a fair comparison, we use the
Sentence-RoBERTaLarge for the sentence semantic
similarity model i.e. cosine(word objects, caption).
Secondly, we compare our model against two ap-
proaches that uses object information to improve
image captioning: First, Wang et al. (2018) inves-
tigates the benefit of object frequency counts for
generating a good captions. We train an LSTM
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Model B-1 B-4 M R C S BERTscore

VilBERT (Lu et al., 2020)
VilGreedy 0.751 0.330 0.272 0.554 1.104 0.207 0.9352
VilBeamS 0.752 0.351 0.274 0.557 1.115 0.205 0.9363
Vil+VRW-Object (Fang et al., 2015) 0.756 0.348 0.274 0.559 1.123 0.206 0.9365
Vil+VRObject (Wang et al., 2018) 0.756 0.348 0.274 0.559 1.120 0.206 0.9364
Vil+VRControl (Cornia et al., 2019) 0.753 0.345 0.274 0.557 1.116 0.206 0.9361
Vil+VRBERT (only sim) 0.753 0.343 0.273 0.556 1.112 0.206 0.9361
Vil+VRBERT 0.752 0.351 0.274 0.557 1.115 0.205 0.9365
Vil+VRBERT-Object 0.752 0.352 0.277 0.560 1.129 0.208 0.9365
Vil+VRRoBERTa 0.753 0.353 0.276 0.559 1.128 0.207 0.9366
Vil+VRRoBERTa-Object 0.758 0.344 0.262 0.555 1.234 0.206 0.9365
Vil+VRBERT-Multi-class 0.753 0.353 0.276 0.559 1.131 0.208 0.9365
Vil+VRBERT-Multi-object 0.752 0.351 0.276 0.558 1.123 0.208 0.9364
Vil+VRRoBERTa-Multi-class 0.751 0.351 0.277 0.561 1.137 0.208 0.9366
Vil+VRRoBERTa-Multi-object 0.752 0.353 0.277 0.559 1.131 0.208 0.9366

Transformer based caption generator (Cornia et al., 2020)
TransGreedy 0.787 0.368 0.276 0.574 1.211 0.215 0.9376
TransBeamS 0.793 0.387 0.281 0.582 1.247 0.220 0.9399
Trans+VRW-Object (Fang et al., 2015) 0.786 0.378 0.277 0.579 1.228 0.216 0.9388
Trans+VRObject (Wang et al., 2018) 0.790 0.383 0.280 0.580 1.237 0.219 0.9391
Trans+VRControl (Cornia et al., 2019) 0.791 0.388 0.281 0.583 1.248 0.220 0.9398
Trans+VRBERT (only sim) 0.789 0.380 0.279 0.579 1.234 0.219 0.9389
Trans+VRBERT 0.793 0.388 0.282 0.583 1.250 0.220 0.9399
Trans+VRBERT-Object 0.793 0.385 0.281 0.581 1.242 0.219 0.9396
Trans+VRRoBERTa 0.792 0.386 0.280 0.582 1.244 0.219 0.9395
Trans+VRRoBERTa-Object 0.792 0.386 0.281 0.582 1.242 0.219 0.9396
Trans+VRBERT-Multi-class 0.794 0.385 0.281 0.582 1.248 0.220 0.9395
Trans+VRBERT-Multi-object 0.792 0.385 0.281 0.582 1.244 0.220 0.9395
Trans+VRRoBERTa-Multi-class 0.791 0.385 0.280 0.581 1.244 0.219 0.9395
Trans+VRRoBERTa-Multi-object 0.791 0.385 0.281 0.582 1.243 0.219 0.9395

Table 1: Performance of compared baselines on the Karpathy test split with/without Visual semantic Re-ranking.
For each base system, we report performance using a greedy search and the best beam search. Re-ranking is applied
to the top-20 results of each system using BERT or RoBERTa for caption-context similarity. The visual contexts are
extracted using ResNet152 and Inception Resnet v2 based Faster R-CNN object detector. We also report results for
Bert-based similarity without a hypothesis probability (rows marked only sim).

decoder (i.e. language generation stage) with an
object frequency counts dictionary on the training
dataset. The dictionary is a Fully Connected layer,
concatenated with the LSTM and a dense layer,
that adds more weight to the most frequent counts
object that are seen by the caption and the visual
classifier. Second, Cornia et al. (2019) that intro-
duce a controllable grounded captions via a visual
context. We train the last stage (decoder), attention
and language model LSTM, on the training dataset
to visually ground the generated caption based on
the visual context.

One observation, shown in Table 1, is that the
benefit of using multiple visual contexts for longer
captions, which can increase the chance of re-
ranking the most visually related candidate cap-
tion, as shown in Figure 2 SimProb score with
VilBERT.

Also, we investigate the statistical significance,
using approximate randomization and bootstrap-
ping resampling (Koehn, 2004), to detect minute
differences in BLEU and METEOR, and NIST-
BLEU3 (Doddington, 2002) scores, as shown in

3An improved version of BLEU rewarded infrequently

Table 2, in which we observe the improvement with
our re-ranker over BLEU, METEOR4 and NIST-
BLEU. We would like to remark here that, with
regards to subtle variations, the statistical signifi-
cance of metrics such as BLEU, NIST-BLEU, and
SacreBLEU (Post, 2018) tend to disagree with hu-
man judgement (Mathur et al., 2020; Kocmi et al.,
2021). We therefore also conduct a human evalua-
tion study (Section 6).

Figure 4 shows SimProb distribution over 40k
samples with a pre-trained RoBERTaLarge similar-
ity score. (Left Figure) Before applying the revi-
sion, overall re-ranking scores are relatively low,
and (Right Figure) after the visual revision, overall
scores increased with more confident about each
selected caption. The SimProb score positively
shifts the distribution over all the samples.

4.3 Limitation

We note that, the quality of the Beam search in-
fluences our re-ranker, since non-diverse, repeated
captions or fewer novel ones, will make the re-

used words by giving greater weighting to rarer words.
4It has been previously observed that METEOR correlates

better with human judgments than BLEU.
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Visual: Minibus

VilBeamS: a group of people standing
around a white truck
Vil+VRBERT: a group of people
standing around a white van
Human: there is a white van that is
stopped on the road

Visual: trifle

VilBeamS: a close up of a plate of food
Vil+VRBERT: piece of food sitting on
top of a white plate
Human: a white plate and a piece of
white cake

Visual: baseball

VilBeamS: a group of men on a field
playing baseball
Vil+VRBERT: a batter catcher and
umpire during a baseball game
Human: batter catcher and umpire
anticipating the next pitch

Figure 3: Example of captions re-ranked by our Visual
Re-ranker and the original caption (Best-beam) from
the base system. Re-ranked captions are more precise,
have a higher lexical diversity, or provide more details.

ranking less effective, as shown in the Unique
words per caption in Table 2 with the Transformer
baseline.

5 Evaluation of Diversity

We follow the standard diversity evaluation metrics
(Shetty et al., 2017; Deshpande et al., 2019): (1)
Div-1 the ratio of unique unigram to the number
of words in caption (2) Div-2 the ratio of unique
bi-gram to the number of words in the caption, (3)
mBLEU is the BLEU score between the candidate
caption against all human captions (lower value
indicate diversity). However, since even though
we obtained the top-20 candidates from the base
systems, many of them are the same or have very
small differences (beam search drawback), which
will reflect in small performance differences be-
fore and after re-ranking. Therefore, some of the
standard metrics are not able to capture these small
changes, as shown in Table 2. Consequently, to
try to capture the changes and the effect of the re-
ranking, we also measured the lexical and semantic
diversity with the following metrics:
Type-Token Ratio (TTR): TTR (Brown, 2005) is
the number of unique words or types divided by
the total number of tokens in a text fragment.
Measure of Textual Lexical Diversity (MTLD):
MTLD (McCarthy and Jarvis, 2010) is based on
TTR, and measures the average length of subse-
quences in the text for which a certain TTR is main-
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Figure 4: Visualization of the distribution change in
re-rank scores on the 40k random sample from the test
set. (Left) the score distribution before applying Belief
Revision via SimProb with LM-GPT-2 initialization.
(Right) the score distribution after applying the revision
via similarity RoBERTaLarge with the visual context.

tained, thus, unlike TTR, being length-invariant.
For semantic diversity, we use the standard met-

ric (Wang and Chan, 2019) Self-CIDEr. Also, in-
spired by BERTscore and following (Song et al.,
2021) that introduce Sentence Semantic Seman-
tic (SSS) for machine translation, we use SBERT-
sts (fine-tuned on sts task) with a cosine score to
measure the sentence level semantic correlation
against all human references. We observe that the
SBERT-sts capture the semantic content better than
Self-CIDEr.

Table 2 shows that visual re-ranking selects
longer captions and with higher lexical diversity
than the base system beam search. Figure 3 shows
some examples where visual context re-ranking se-
lected captions with more precise lexica (van vs.
truck), higher diversity –i.e. adding details about
objects (white plate vs. plate)– and even selecting
a more specific abstraction level (batter, catcher
and umpire vs. a group of men).

6 Human Evaluation

We conducted a human study to investigate human
preferences over the visual re-ranked caption. We
randomly select 26 test images and give 12 reliable
human subjects the option to choose between two
captions: (1) Best-beam (BeamS)5 and (2) Visual
R-ranker. We obtain mixed results, as some re-
ranked captions are grammatically incorrect, such
as singulars instead of plurals and sitting on for
objects instead of subjects. Overall, we can observe
that 46% of native speakers agreed with our visual
re-ranker. Meanwhile, the result for non-native
speakers is 61%. In some details, we observe that
our model and the non-native human subjects chose
those re-ranked captions because they correlated
more closely with the visual information regarding

5The best result by the baseline in standard metrics.

5493



Lexical Diversity Vocabulary Accuracy 4-gram (p-value) mBLEU↓ n-gram Diversity Semantic Diversity

MTLD TTR Uniq WPC Dist Dist∗ BLEU p M p NIST p best-5 best Beam∗ Div-1 Div-2 Self-CIDEr SBERT-sts
Human 19.56 0.90 9.14 14.5 3425 3326
VilBERT
VilBeamS 17.28 0.87 8.05 10.5 894 842 0.337 - 0.265 - 0.755 - 0.899 0.454 0.38 0.44 0.661 0.7550
Vil+VRw-Object (Fang et al., 2015) 15.90 0.87 8.02 9.20 921 866 0.335 0.109 0.266 0.46 0.764 0.00 0.899 0.455 0.38 0.44 0.662 0.7605
Vil+VRObject (Wang et al., 2018) 15.77 0.87 8.03 9.19 911 854 0.335 0.131 0.266 0.57 0.761 0.043 0.899 0.455 0.38 0.44 0.661 0.7570
Vil+VRControl (Cornia et al., 2019) 15.69 0.87 8.07 9.21 935 878 0.331 0.016 0.266 0.46 0.758 0.118 0.899 0.452 0.38 0.44 0.661 0.7567
Vil+VRRoBERTa (ours) (Table 1 Best) 17.70 0.87 8.14 10.8 892 838 0.339 0.147 0.267 0.04 0.764 0.002 0.896 0.451 0.38 0.44 0.661 0.7562

Transformer based caption generator
TransBeamS 14.77 0.86 7.44 9.62 935 897 0.341 - 0.272 - 0.781 - 0.954 0.499 0.26 0.29 0.660 0.7707
Trans+VRw-Object (Fang et al., 2015) 13.14 0.85 7.37 8.62 965 923 0.364 0.00 0.272 0.10 0.789 0.001 0.958 0.498 0.25 0.29 0.660 0.7709
Trans+VRObject (Wang et al., 2018) 13.38 0.86 7.45 8.69 982 940 0.369 0.00 0.271 0.04 0.798 0.00 0.958 0.495 0.25 0.28 0.660 0.7700
Trans+VRControl (Cornia et al., 2019) 13.25 0.86 7.44 8.64 961 921 0.373 0.00 0.272 0.00 0.796 0.00 0.958 0.498 0.25 0.29 0.660 0.7716
Trans+VRBERT (ours) (Table 1 Best) 14.78 0.86 7.45 9.76 980 939 0.374 0.00 0.273 0.19 0.806 0.00 0.963 0.338 0.26 0.30 0.660 0.7711

Table 2: Diversity statistics and statistical tests. Measuring the diversity of caption before/after re-ranking. Uniq and
WPC columns indicate the average of unique/total words per caption, respectively. The BLEU, METEOR and NIST
are an average result, with an approximate randomization test with 1k trials, to estimate the statistically significant
improvement with/without our re-ranker. mBLEU and mBLEU∗ are computed with respect to the top 5-captions
and best-beam, respectively. We also report the Distinct vocabulary (Dist∗ filtering out common and stop words).

the grammatical error in the sentence and unlike
the native speaker.

7 Ablation study

Belief Revision relies on a different block (i.e. LM,
similarity and visual context) to make the final re-
vision. In this study, we perform an ablation study
over a random 100 samples from the test set to
investigate the effectiveness of the proposed setup.
Table 3 shows result with different settings.

Language Model Block: One of the principal in-
tentions in initializing the original hypothesis with
a LM is the ability to combine different models. We
experimented with product probability, although
the mean LM probability achieved better results.

Similarity Block: The degree of similarity be-
tween the caption and its visual context is ma-
jor factor in hypothesis revision. Thus, we ex-
perimented with a light model (Distil SBERT)
and unsupervised/supervised Simple Contrastive
Sentence Embedding (SimCSE) for learning sen-
tence similarity. The results show that unsuper-
vised, via dropout with the sentence itself, con-
trastive learning based similarity performs well in
the case of the longer captions, as shown in Vil-
BERT Table 3.

Visual Context Block: We experimented with the
most recent model of Contrastive Language-Image
Pre-Training (CLIP) (Radford et al., 2021) with
Zero-Shot Prediction to extract the visual context.
Although, CLIP can predict rare objects better,
there is no improvement over ResNet152 with a
huge computational cost.

8 Negative Evidence: an extension

Until now, following Blok et al. (2003), we consid-
ered only the cases when the visual context increase

Model B-4 M R C S

VilBERT-VR-GPT-2mean + ResNet
+ RoBERTa (Table 1 Best) 0.346 0.266 0.541 1.171 0.205
+ LM-GPT-2product 0.335 0.266 0.535 1.142 0.205
+ DistilSBERT 0.335 0.266 0.537 1.128 0.205
+ SimCSE (Gao et al., 2021) 0.324 0.263 0.529 1.122 0.207
+ SimCSE (unsupervised) 0.349 0.267 0.539 1.164 0.205
+ CLIP (Radford et al., 2021) 0.335 0.261 0.527 1.142 0.202

Trans - VR-GPT-2mean + ResNet
+ BERT (Table 1 Best) 0.363 0.268 0.565 1.281 0.207
+ LM-GPT-2product 0.360 0.261 0.561 1.254 0.205
+ DistilSBERT 0.355 0.260 0.557 1.249 0.205
+ SimCSE (Gao et al., 2021) 0.356 0.265 0.564 1.272 0.207
+ SimCSE (unsupervised) 0.356 0.263 0.560 1.253 0.208
+ CLIP (Radford et al., 2021) 0.349 0.260 0.555 1.243 0.203

Table 3: Ablation study using different information from
various baselines in each block (i.e. LM, similarity and
visual context). The (+) refers to the replaced block.

the belief of the hypothesis (Equation 1). Blok et al.
(2007) also propose Equation 2 for the case where
the absence of evidence leads to a decrease in the
probability of the hypothesis.

P(w | ¬c) = 1− (1− P(w))α (2)

In our case, we introduce negative evidence in
three ways:
False Positive Visual Context (VR−low): We em-
ploy the false-positives produced by the visual clas-
sifier as negative information to decrease the hy-
potheses. In this case, we have lower similarity
measures as the relation between the visual context
and caption are farther apart.
Absent Visual Context (VR−high): The negative
information here is a set of visual information ex-
tracted from the original visual context (i.e. from
the visual classifier) which does not exist in the
image. Thus, the visual context produced by the
classifier is used as a query on a pre-trained 840B
GloVe (Pennington et al., 2014), with cosine sim-
ilarity, to retrieve the closest visual context in the
same semantic space (e.g. visual: river, closest vi-
sual: valley).
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Model B-1 B-4 M R C S BERTscore

VilBERT (Lu et al., 2020)
VilGreedy 0.751 0.330 0.272 0.554 1.104 0.207 0.9352
VilBeamS 0.752 0.351 0.274 0.557 1.115 0.205 0.9363
Vil+VRW-Object (Fang et al., 2015) 0.756 0.348 0.274 0.559 1.123 0.206 0.9365
Vil+VRObject (Wang et al., 2018) 0.756 0.348 0.274 0.559 1.120 0.206 0.9364
Vil+VRControl (Cornia et al., 2019) 0.753 0.345 0.274 0.557 1.116 0.206 0.9361
Vil+VRRoBERTa Table 1 (positive) 0.753 0.353 0.276 0.559 1.128 0.207 0.9366
Vil+VR−low

RoBERTa 0.748 0.349 0.275 0.557 1.116 0.206 0.9362
Vil+VR−high

RoBERTa 0.748 0.349 0.275 0.557 1.116 0.206 0.9364
Vil+VR−pos

GloVe 0.751 0.351 0.276 0.558 1.123 0.207 0.9364
Vil+VR−joint

RoBERTa+GloVe 0.750 0.351 0.276 0.559 1.126 0.208 0.9365

Transformer based caption generator (Cornia et al., 2020)
TransGreedy 0.787 0.368 0.276 0.574 1.211 0.215 0.9376
TransBeamS 0.793 0.387 0.281 0.582 1.247 0.220 0.9399
Vil+VRW-Object (Fang et al., 2015) 0.786 0.348 0.274 0.559 1.123 0.206 0.9365
Trans+VRObject (Wang et al., 2018) 0.790 0.383 0.280 0.580 1.237 0.219 0.9391
Trans+VRControl (Cornia et al., 2019) 0.791 0.388 0.281 0.583 1.248 0.220 0.9398
Trans+VRBERT Table 1 (positive) 0.793 0.388 0.282 0.583 1.250 0.220 0.9399
Trans+VR−low

BERT 0.791 0.387 0.280 0.582 1.242 0.218 0.9396
Trans+VR−high

BERT 0.793 0.385 0.282 0.582 1.243 0.219 0.9397
Trans+VR−pos

GloVe 0.794 0.388 0.282 0.583 1.249 0.220 0.9399
Trans+VR−joint

BERT+GloVe 0.793 0.387 0.281 0.582 1.247 0.220 0.9398

Table 4: Comparison between positive (single concept VR) and Negative Belief Revision (NBR) on the Karpathy
split. The NBR uses a high similarity VR−high object related to the positive visual but not in the image, low
similarity VR−low false positive from the visual classifier, and positive visual via static word level similarity VR−pos.
Boldface fonts reflect improvement over the baseline.

Positive Visual Context (VR−pos): As the previ-
ous two-approaches produced unexpected results
with low and high similarities as shown in Table 4,
we approach this from a positive belief revision per-
spective but as negative evidence. Until now, all ap-
proaches use sentence-level semantic similarity, but
in this experiment, we convert the similarity from
sentence to word level. For this first, we employ an
LSTM based CopyRNN keyphrase extractor (Meng
et al., 2017), which is trained on a combined pre-
processed wikidump (i.e. keyword, short sentence)
and SemEval 2017 Task 10 (Keyphrases from sci-
entific publications) (Augenstein et al., 2017). Sec-
ondly, GloVe is used to compute the cosine similar-
ity with the visual context in a word-level manner.
We consider this as negative evidence for the fol-
lowing reasons: (1) the similarity is computed with-
out the context of the sentence and (2) the static
embedding is computed without knowing the sense
of the word. The advantage of VR−pos is that a
high similarity and confident visual information
are present and thus satisfies the revision.

Joint Evidence (VR−joint): Finally, we combined
the best model VR−pos with the best positive ev-
idence (baseline+VRBERT/RoBERTa) with a simple
multiplication.

Table 4 shows that there is some refinement re-
sults with the negative evidence over both baselines
with VR−pos and VR−joint. However, there is no
improvement over the original positive evidence.

9 Discussion: Limitations

Object Classifier Failure Cases: As the belief
revision approach relies heavily on the object in
the image for the likelihood revision, the quality of
the object classifier is critical for the final decision.
Here, we show some failure cases when the visual
classifier struggle with complex background (i.e.
wrong visual, object hallucination, etc.) as shown
in Figure 5. Note that, if no related visual is present
in the image the belief revision score will back off
to 1 (no revision needed).
Object-to-Caption Similarity Score: Another
limitation is the low/high cosine similarity score,
which unbalances the likelihood revision. For ex-
ample, a visual context paddle and the caption: a
man riding a surfboard on a wave have low cosine
scores when using a pre-trained model that is fine-
tuned on sentence-to-sentence semantic similarity
tasks (i.e. STS-B). Note that, we tackle this prob-
lem by adding multiple visual contexts as shown in
Figure 2.

Related work

Modern sophisticated image captioning systems
focus heavily on visual grounding to capture real-
world scenarios. Early work Fang et al. (2015)
builds a visual detector to guide and re-ranked im-
age captioning with global similarity. The work
of (Wang et al., 2018) investigates the informa-
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Visual: vacuum ✗

VilBeamS: a pile of trash sitting inside of
a building
Vil+VRBERT: a pile of trash sitting in
front of a building ✗
Human: an older floor light sits
deserted in an abandoned hospital

Visual: barbershop ✗

TransBeamS: a kitchen with black
counter tops and wooden cabinets
Tans+VRBERT: a kitchen counter with a
black counter top ✗
Human: a kitchen with a sink bottles
jars and a dishwasher

Figure 5: Failure cases of the object detectors. The ob-
ject classifier struggle with images with complex back-
ground and out-of-context object.

tiveness of visual or object information (e.g. ob-
ject frequency count, size and position) in an end-
to-end caption generation. Another work Cornia
et al. (2019) proposes controlled caption language
grounding through visual regions from the image.
More recently, Gupta et al. (2020) introduce weakly
supervised contrastive learning via object context
and language modeling (i.e. BERT) for caption
phrase grounding. Inspired by these works, (Fang
et al., 2015) carried out re-ranking via visual in-
formation, (Wang et al., 2018; Cornia et al., 2019;
Chen et al., 2020) explored the benefits of object in-
formation in image captioning, (Gupta et al., 2020)
exploited the benefits of language modeling to ex-
tract contextualized word representations and the
exploitation of the semantic coherency in caption
language grounding (Zhang et al., 2021a), we pur-
pose an object based re-ranker via human inspired
logic reasoning with Belief Revision to re-rank the
most closely related captions with contextualized
semantic similarity.

Unlike the earlier approaches, our methods em-
ploy state-of-the-art tools and pre-trained models.
Therefore, the system will keep improving in the
future as better systems become available. In addi-
tion, our model can be directly used as a drop-in
complement for any caption system that outputs a
list of candidate hypothesis.

Conclusion

In this work, we aim to demonstrate that the Be-
lief Revision approach that works well with hu-
man judgment can be applied to Image Captioning
by employing human-inspired reasoning via a pre-
trained model (i.e. GPT, BERT). Belief Revision
(BR) is an approach for obtaining the likelihood re-

visions based on similarity scores via human judg-
ment. We demonstrate the benefits of the approach
by showing that two state-of-the-art Transformer-
based image captioning results are improved via
simple language grounding with visual context in-
formation. In particular, we show the accuracy
gain in a benchmark dataset using two methods:
(1) BR with positive visual evidence (increase the
hypothesis) and (2) negative evidence (decrease the
hypothesis), with wrong visual i.e. false positive
by the classifier. However, this adaptation could
be applied to many re-ranking tasks in NLP (text
generation, multimodel MT, lexical selection, etc.),
as well as in Computer Vision applications such as
visual storytelling.

Ethical Considerations

The core contribution of our paper is algorithmic
for the task of image captioning. As such we do
not foresee any downstream harms propagated im-
mediately by our proposal. We however acknowl-
edge that due to the very nature of the data driven
processing, there could be an amplification or prop-
agation of potential biases existing in the datasets.
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A Appendix: Additional Result

SimProb with Two Visual Contexts. Until now,
we experimented with one or multiple visual con-
texts at the same time; however, when we have
more than one evidence supporting the revision, we
can reason and choose which one to use to revise
the hypothesis. In this scenario we begin with the
conditional probability that comes from the domi-
nant premise alone P (Qc|Qa) (let’s assume Qa is

dominant). Then we add a fraction of the remain-
ing lack of trust or confidence 1− P (Qc|Qa) that
the dominant conditional leaves behind. The simi-
larity between premise categories defines the size
of the portion or fraction sim(a, b) and separates
the influence of the nondominant premise on the
conclusion prior P (Qc|Qb)− P (Qc). The compo-
nent of similarity is designed to reduce the impact
of the non-dominant premise when the premises
are redundant. Note that the proposed method in
equation below guarantees an increase in strength
with additional premises. In addition, this prop-
erty, Pr(Qc|Qa,Qb) ≥ Pr(Qc|Qa),Pr(Qc|Qb),
is noncompetitive in the sense that one category
does not reduce the probability of concept for an-
other. Following the notation of Equation 1, we
write the two visual contexts SimProb as:

P(w | c1, c2) = βM + (1− β)S, where

β = max





sim(w, c1)
sim(w, c2)
sim(c1, c2)
1.0− sim(w, c1)
1.0− sim(w, c2)
P(c1)
P(c2)





M = max{P(w | c1),P(w | c2}, S =

P(w | c1) + P(w | c2)− P(w | c1)× P(w | c2)

where P(w | c1) and P(w | c2) are defined by
Equation 1, and the two visual contexts are: (1)
c1 ResNet is the label Class and (2) the c2 COCO
Object categories are from Inception-ResNet v2
based Faster RCNN. Note that β takes the max of
all models, and thus it is not breaking the forma-
tion if one of the similarities or probabilities is not
confident enough (i.e. if it is below the threshold).

The last rows in Table 8 show the result of the
SimProb selecting the best visual context of
the two visuals. However, although there is some
improvement over the other approaches (i.e. sin-
gle and multi-visual contexts), it is not significant
enough to justify the computational cost as a post-
processing approach.

Figure 7 shows the benefit of employing com-
mon observation via Unigram LM in comparison
to the classifier confident, (Left Figure) a denser
SimProb score caption re-ranking.
Additional Statistical Significance Analysis. Ta-
ble 5 shows the full results of the statistically sig-
nificant test via pair bootstrap resampling (Koehn,
2004)6 with BLEU and NIST. The NIST metric is

6https://github.com/moses-smt/
mosesdecoder/tree/master/scripts/
analysis
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BLEU (p-value) NIST (p-value)

Model B1 B2 B3 B4 N1 N2 N3 N4
VilBERT
VilBeamS 0.740 (0.019) 0.578 (0.019) 0.441 (0.019) 0.337 (0.019) 0.492 (0.019) 0.672 (0.019) 0.731 (0.019) 0.755 (0.019)

Vil+VRw-Object (Fang et al., 2015) 0.744 (0.019) 0.581 (0.063) 0.442 (0.371) 0.335 (0.109) 0.497 (0.00) 0 0.680 (0.00)0 0.740 (0.001) 0.764 (0.00)0

Vil+VRObject (Wang et al., 2018) 0.745 (0.01)0 0.581 (0.091) 0.441 (0.429) 0.335 (0.131) 0.496 (0.003) 0.677 (0.015) 0.737 (0.012) 0.761 (0.043)

Vil+VRControl (Cornia et al., 2019) 0.741 (0.233) 0.577 (0.29)0 0.439 (0.104) 0.331 (0.016) 0.494 (0.015) 0.676 (0.046) 0.735 (0.064) 0.758 (0.118)

Vil+VRRoBERTa (ours) (Table 1 Best) 0.741 (0.382) 0.580 (0.129) 0.443 (0.00)0 0.339 (0.147) 0.497 (0.00)0 0.680 (0.00)0 0.740 (0.00)0 0.764 (0.002)

Transformer based caption generator
TransBeamS 0.726 (0.019) 0.584 (0.019) 0.451 (0.019) 0.341 (0.019) 0.492 (0.019) 0.688 (0.019) 0.756 (0.019) 0.781 (0.019)

Trans+VRw-Object (Fang et al., 2015) 0.775 (0.00)0 0.625 (0.00)0 0.482 (0.00)0 0.364 (0.00)0 0.498 (0.00)0 0.696 (0.00)0 0.764 (0.001) 0.789 (0.001)

Trans+VRObject (Wang et al., 2018) 0.777 (0.00)0 0.628 (0.00)0 0.486 (0.00)0 0.369 (0.00)0 0.504 (0.00)0 0.703 (0.00)0 0.773 (0.00)0 0.798 (0.00)0

Trans+VRControl (Cornia et al., 2019) 0.780 (0.00)0 0.623 (0.00)0 0.490 (0.00)0 0.373 (0.00)0 0.502 (0.00)0 0.700 (0.00)0 0.771 (0.00)0 0.796 (0.00)0

Trans+VRBERT (ours) (Table 1 Best) 0.781 (0.00)0 0.631 (0.00)0 0.490 (0.00)0 0.374 (0.00)0 0.509 (0.00)0 0.710 (0.00)0 0.781 (0.00)0 0.806 (0.00)0

Table 5: Result with pair bootstrapping resampling test via 1k trial (Koehn, 2004) on the significant improvement
before and ranking with BLEU and NIST.

SacreBLEU

Model Baseline Avg New Avg delta Baseline better confidence % New better confidence %
VilBERT (Lu et al., 2020)
VilBeamS 9.10
Vil+VRW-Object (Fang et al., 2015) 9.18 0.08 27.60 72.40
Vil+VRObject (Wang et al., 2018) 8.89 -0.22 93.50 6.50
Vil+VRControl (Cornia et al., 2019) 9.01 -0.09 75.60 24.40
Vil+VRRoBERTa (ours) (Table 1 Best) 9.29 0.18 8.50 91.50
Transformer Caption Generator (Cornia et al., 2020)
TransBeamS 10.16
Trans+VRW-Object (Fang et al., 2015) 10.01 -0.16 93.80 6.20
Trans+VRObject (Wang et al., 2018) 10.18 0.02 43.40 56.60
Trans+VRControl (Cornia et al., 2019) 10.09 -0.07 83.80 16.20
Trans+VRBERT (ours) (Table 1 Best) 10.36 0.19 1.10 98.90

Table 6: Result with pair bootstrapping resampling test via 1k trial (Koehn, 2004) on the significant improvement
before and ranking with Sacrebleu (Post, 2018).

an improved version of BELU that rewards infre-
quently used words by giving greater weighting to
rarer words.

Also, we employ Sacrebleu7 (Post, 2018) to in-
vestigate the statistically significant improvement,
using delta, of our re-ranker with a BLEU score
using the same approach as that above. Table 6
shows that our method performs better as new bet-
ter confidence than the two baselines.
Additional Diversity Analysis. Table 7 shows part-
of-speech tagging (POS) results before and after
visual re-ranking. The proposed model VR yields
a richer output in all POS tags in both baselines.

Full Experimental Results. Table 8 and Table
10 show the full results of our experiments, with
the most common metrics used for image cap-
tioning, for positive and negative evidence, re-
spectively. Also, as we mentioned before, in-
spired by BERTscore and following (Song et al.,
2021) we employ sentence-to-sentence semantic
similarity score to compare candidate captions

7https://github.com/pytorch/translate/
blob/master/pytorch_translate/bleu_
significance.py

with human references with pre-trained Sentence-
RoBERTaLARGE (Reimers and Gurevych, 2019)
tuned for general STS task. Unlike BERTscore
which aligns word-to-word similarites, SBERT-sts
builds a semantic vector for the whole sentence,
which can be used to compare candidate captions
with human references.

Additional Ablation Study. Table 11 shows ad-
ditional ablation study experiments with different
information.
Training Dataset. As shown in Figure 6, we use
two approaches to match and filter out not related
visual context: 1) Threshold: to filter out the prob-
abilities prediction when the visual classifier is not
confident. 2) Semantic alignment: to match the
most related caption to its environmental context.
In more detail, we use cosine similarity with GloVe
to match the visual with its context. Table 9 illus-
trates samples of the enriched human annotation,
and caption dataset, with visual context informa-
tion.
Why Positive Visual as Negative Evidence ? As
we mentioned in the main script, we consider this
as negative evidence for the following reasons: (1)

5500



BERT

[0,1]

beer glass
object / class 

Visual 
classifier 

Human 
annotation

  labels 

 cosine sim 

 Textual  visual  

caption 
dataset

Prob ththreshold 

Caption 

Similarity score

FNN

….

Figure 6: Dataset preprocessing until training. We use
two methods to filter our non-related visual context (1)
probability threshold: to filter out the visual context,
and (2) semantic alignment with the caption via cosine
distance (semantic relation).

0 2 4 6 8

5

10

15

20

Beam search

C
ap
ti
on

ResNet LM initialization

0 2 4 6 8

5

10

15

20

Beam search

ResNet Classifier confident

0.2

0.4

0.6

0.8

1

Figure 7: SimProb score of top-8 Beam search caption
re-ranking (Right) with the visual classifier confidence
probability without any initialization, (Left) with visual
context that initialized by general common observation
i.e. LM.

Model Noun Verb Adj Conj
VilBERT
VilBeamS 14094 3586 3220 7914
Vil+VRRoBERTa 14403 3739 3325 8233
Transformer
TransBeamS 13961 3111 2004 7458
Trans+VRBERT 14203 3146 2056 7563

Table 7: Most frequent POS tag before and after vi-
sual re-ranking. The result shows that after Visual Re-
ranking both captions have more noun, verb, etc.

the similarity is computed without the context of
the sentence and (2) the static embedding (without
knowing the sense of the word, e.g. bar for alco-
holic drinking or rectangular solid piece of block).
Although this approach relies on positive informa-
tion, which is not the main intention of the negative
evidence, the results demonstrate that there is a
new direction of research that can be conducted
using positive information as negative evidence.
Figure 8 shows that the original hypothesis is de-
creased with the positive information. Note that,
we were surprised by the negative result when try-
ing this approach as negative evidence (i.e. false
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Figure 8: Visualization of Negative Evidence Neg-
SimProb distribution on random samples from the
test set (karpathy split). The negative visual information
VR−pos decreases the hypothesis that is initialized by
LM-GPT-2.

visual with low similarity), and the result is worse
than the baseline. Therefore, a BR with negative
evidence breaks the beam search, as there is not
enough positive evidence to support the revision.

0 20 40 60 80 100

BERTscore
SBERT-sts
Human-subject

%
Figure 9: Comparison results between native human
subject, BERTscore, and sentence level metric SBERT-
sts on the test set.

a city street at night with traffic light

Please select the caption that 
 

describes the image
you think most precisely

a city street at night with traffic light

a city street at night with car and a
traffic light 

Figure 10: Human Evaluation. The user interface
presented to our human subjects through the survey
website asking them to re-rank the most descriptive
caption candidates based on the visual information.

B Human Evaluation

We conducted a human study to investigate hu-
man preferences over the visual re-ranked caption.
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Model B-1 B-2 B-3 B-4 M R C S BERTscore SBERT-sts
VilBERT (Lu et al., 2020)
VilGreedy 0.751 0.587 0.441 0.330 0.272 0.554 1.104 0.207 0.9352 0.7550
VilBeamS 0.752 0.592 0.456 0.351 0.274 0.557 1.115 0.205 0.9363 0.7550
Vil+VRW-Object (Fang et al., 2015) 0.756 0.595 0.456 0.348 0.274 0.559 1.123 0.206 0.9365 0.7605

Vil+VRObject (Wang et al., 2018) 0.756 0.594 0.455 0.348 0.274 0.559 1.120 0.206 0.9364 0.7570
Vil+VRControl (Cornia et al., 2019) 0.753 0.591 0.453 0.345 0.274 0.557 1.116 0.206 0.9361 0.7565
Vil+GPT-2mean (only LM) 0.749 0.590 0.455 0.351 0.276 0.558 1.124 0.208 0.9364 0.7546

Vil+VRBERT (only sim) 0.753 0.591 0.452 0.343 0.273 0.556 1.112 0.206 0.9361 0.7562
Vil+VRBERT 0.752 0.592 0.456 0.351 0.274 0.557 1.115 0.205 0.9365 0.7567
Vil+VRBERT-Object 0.752 0.592 0.457 0.352 0.277 0.560 1.129 0.208 0.9365 0.7562
Vil+VRRoBERTa 0.753 0.594 0.458 0.353 0.276 0.559 1.128 0.207 0.9366 0.7562
Vil+VRRoBERTa-Object 0.758 0.611 0.465 0.344 0.262 0.555 1.234 0.206 0.9365 0.7554
Vil+VRBERT-Multi-class 0.753 0.593 0.458 0.353 0.276 0.559 1.131 0.208 0.9365 0.7586
Vil+VRBERT-Multi-object 0.752 0.592 0.456 0.351 0.276 0.558 1.123 0.208 0.9364 0.7566
Vil+VRRoBERTa-Multi-class 0.751 0.591 0.456 0.351 0.277 0.561 1.137 0.208 0.9366 0.7589
Vil+VRRoBERTa-Multi-object 0.753 0.593 0.458 0.353 0.276 0.559 1.131 0.208 0.9365 0.7586
Vil+VRBERT-Class+object 0.752 0.592 0.455 0.350 0.276 0.559 1.126 0.209 0.9365 0.7563
Vil+VRRoBERTa-class+object 0.752 0.592 0.457 0.352 0.277 0.559 1.127 0.208 0.9365 0.7558
Transformer Caption Generator (Cornia et al., 2020)
TransGreedy 0.787 0.634 0.488 0.368 0.276 0.574 1.211 0.215 0.9376 0.7649
TransBeamS 0.793 0.645 0.504 0.387 0.281 0.582 1.247 0.220 0.9399 0.7707

Trans+VRW-Object (Fang et al., 2015) 0.786 0.638 0.497 0.378 0.277 0.579 1.228 0.216 0.9388 0.7709
Trans+VRObject (Wang et al., 2018) 0.790 0.642 0.501 0.383 0.280 0.580 1.237 0.219 0.9391 0.7700
Trans+VRControl (Cornia et al., 2019) 0.791 0.644 0.505 0.388 0.281 0.583 1.248 0.220 0.9398 0.7716
Trans+GPT-2mean (only LM) 0.791 0.643 0.503 0.386 0.281 0.582 1.242 0.219 0.9396 0.7714

Trans+VRBERT (only sim) 0.789 0.640 0.498 0.380 0.279 0.579 1.234 0.219 0.9389 0.7693
Trans+VRBERT 0.793 0.646 0.505 0.388 0.282 0.583 1.250 0.220 0.9399 0.7711
Trans+VRBERT-Object 0.793 0.644 0.503 0.385 0.281 0.581 1.242 0.219 0.9396 0.7695
Trans+VRRoBERTa 0.792 0.644 0.504 0.386 0.280 0.582 1.244 0.219 0.9395 0.7705
Trans+VRRoBERTa-Object 0.792 0.644 0.503 0.386 0.281 0.582 1.242 0.219 0.9396 0.7701
Trans+VRBERT-Multi-class 0.794 0.645 0.503 0.385 0.281 0.582 1.248 0.220 0.9395 0.7717
Trans+VRBERT-Multi-object 0.792 0.644 0.502 0.385 0.281 0.582 1.244 0.220 0.9395 0.7693
Trans+VRRoBERTa-Multi-class 0.791 0.643 0.503 0.385 0.280 0.581 1.244 0.219 0.9395 0.7710
Trans+VRRoBERTa-Multi-object 0.791 0.643 0.502 0.385 0.281 0.582 1.243 0.219 0.9395 0.7712
Trans+VRRBERTa-Class+Object 0.793 0.645 0.504 0.387 0.281 0.582 1.247 0.220 0.9397 0.7705
Trans+VRBERT-Class+Object 0.793 0.645 0.505 0.388 0.282 0.583 1.251 0.220 0.9399 0.7695

Table 8: Positive Evidence: full result with all evaluation metrics. Performance of compared baselines on the
Karpathy test split with/without semantic re-ranking. For each base system, we report performance using a greedy
search and the best beam search. Re-ranking is applied to the top-20 results of each system using BERT or RoBERTa
for caption-context similarity. The visual contexts are extracted using ResNet152 and the Inception Resnet v2 based
Faster R-CNN object detector. We also report results for Bert-based similarity without a hypothesis probability
(rows marked only sim).

VC1 VC2 VC3 Caption
cheeseburger plate hotdog a plate with a hamburger fries and tomatoes

bakery dining table web site a table having tea and a cake on it
gown groom apron its time to cut the cake at this couples wedding
racket scoreboard tennis ball a crowd is watching a tennis game being played
laptop screen desktop computer a grey kitten laying on a windows laptop

washbasin toilet seat tub a bathroom toilet sitting on a stand next to a tub and sink

Table 9: Training Dataset. The visual context (VC) is from a pre-trained visual classifier (i.e. ResNet152) and the
caption is from COCO-Caption dataset (human-annotated).

We randomly selected 26 test images and gave 12
reliable human subjects the option to choose be-
tween two captions: (1) Best-beam (BeamS) and
(2) Visual R-ranker as shown in Figure 10.

Also, inspired by BERTscore and following
(Song et al., 2021) that introduce Sentence Se-
mantic Semantic (SSS) for machine translation,
we employ a sentence-to-sentence semantic sim-
ilarity score to compare candidate captions with
human references. We use pre-trained Sentence-

RoBERTaLARGE tuned for general STS-B task.
Consequently, the embedding will be more robust
semantically than lexically for the STS tasks. Fig-
ure 9 shows that our results with SBERT-sts agrees
more with human judgment than the BERTscore.
Figure 11 and Figure 12 show some examples of
when humans agree/disagree with our re-ranker.
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Model B-1 B-2 B-3 B-4 M R C S BERTscore SBERT-sts
VilBERT (Lu et al., 2020)
VilGreedy 0.751 0.587 0.441 0.330 0.272 0.554 1.104 0.207 0.9352 0.7550
VilBeamS 0.752 0.592 0.456 0.351 0.274 0.557 1.115 0.205 0.9363 0.7550

Vil+VRW-Object (Fang et al., 2015) 0.756 0.595 0.456 0.348 0.274 0.559 1.123 0.206 0.9365 0.7605
Vil+VRObject (Wang et al., 2018) 0.756 0.594 0.455 0.348 0.274 0.559 1.120 0.206 0.9364 0.7570
Vil+VRControl (Cornia et al., 2019) 0.753 0.591 0.453 0.345 0.274 0.557 1.116 0.206 0.9361 0.7565
Vil+VRRoBERTa Table 1 (positive) 0.753 0.594 0.458 0.353 0.276 0.559 1.128 0.207 0.9366 0.7562
Vil+VR−low

RoBERTa 0.748 0.588 0.453 0.349 0.275 0.557 1.116 0.206 0.9362 0.7531
Vil+VR−high

RoBERTa 0.748 0.588 0.453 0.349 0.275 0.557 1.116 0.206 0.9364 0.7546
Vil+VR−pos

GloVe 0.751 0.591 0.455 0.351 0.276 0.558 1.123 0.207 0.9364 0.7556
Vil+VR−joint

RoBERTa+GloVe 0.750 0.591 0.455 0.351 0.276 0.559 1.126 0.208 0.9365 0.7548
Transformer Caption Generator (Cornia et al., 2020)
TransGreedy 0.787 0.634 0.488 0.368 0.276 0.574 1.211 0.215 0.9376 0.7649
TransBeamS 0.793 0.645 0.504 0.387 0.281 0.582 1.247 0.220 0.9399 0.7707

Trans+VRW-Object (Fang et al., 2015) 0.786 0.638 0.497 0.378 0.277 0.579 1.228 0.216 0.9388 0.7709
Trans+VRObject (Wang et al., 2018) 0.790 0.642 0.501 0.383 0.280 0.580 1.237 0.219 0.9391 0.7700
Trans+VRControl (Cornia et al., 2019) 0.791 0.644 0.505 0.388 0.281 0.583 1.248 0.220 0.9398 0.7716
Trans+VRBERT Table 1 (positive) 0.793 0.646 0.505 0.388 0.282 0.583 1.250 0.220 0.9399 0.7711

Trans+VR−low
BERT 0.791 0.643 0.504 0.387 0.280 0.582 1.242 0.218 0.9396 0.7682

Trans+VR−high
BERT 0.793 0.644 0.503 0.385 0.282 0.582 1.243 0.219 0.9397 0.7686

Trans+VR−pos
GloVe 0.794 0.646 0.506 0.388 0.282 0.583 1.249 0.220 0.9399 0.7702

Trans+VR−joint
BERT+GloVe 0.793 0.645 0.504 0.387 0.281 0.582 1.247 0.220 0.9398 0.7704

Table 10: Negative Evidence: full result with all evaluation metrics. Comparison results between positive Belief
Revision (single concept VR) (gray color) and Negative Belief Revision (NBR) on the Karpathy test split. The NBR
uses a high similarity VR−high object related to the positive visual but not in the image, low similarity VR−low uses
false positive from the visual classifier, and positive visual via static word level similarity VR−pos. Boldface fonts
reflect the improvement over the baseline.

Model B-1 B-2 B-3 B-4 M R C S BERTscore SBERT-sts
VilBERT-VR-GPT-2mean + ResNet
+ RoBERTa (Table 1 Best) 0.753 0.594 0.458 0.353 0.276 0.559 1.128 0.207 0.9366 0.7562
+ LM-GPT-2product 0.749 0.590 0.455 0.351 0.276 0.558 1.124 0.208 0.9364 0.7486
+ DistilSBERT 0.751 0.591 0.456 0.352 0.277 0.559 1.130 0.209 0.9365 0.7567
+ SimCSE-BERT (Gao et al., 2021) 0.752 0.593 0.457 0.352 0.276 0.559 1.130 0.209 0.9365 0.7558
+ SimCSE-RoBERTa 0.750 0.590 0.455 0.351 0.276 0.558 1.125 0.208 0.9365 0.7549
+ SimCSE-BERT-V1 (unspervised) 0.750 0.591 0.455 0.351 0.276 0.558 1.128 0.207 0.9365 0.7560
+ SimCSE-BERT-V2 (unspervised) 0.752 0.593 0.457 0.353 0.277 0.559 1.132 0.208 0.9365 0.7560
+ CLIP-V (Radford et al., 2021) 0.753 0.594 0.458 0.353 0.276 0.561 1.131 0.208 0.9367 0.7579
Trans - VR-GPT-2mean + ResNet
+ BERT (Table 1 Best) 0.793 0.646 0.505 0.388 0.282 0.583 1.250 0.220 0.9399 0.7711
+ LM-GPT-2product 0.787 0.642 0.503 0.386 0.279 0.581 1.236 0.219 0.9398 0.7683
+ DistilSBERT 0.794 0.646 0.505 0.387 0.282 0.583 1.247 0.220 0.9396 0.7704
+ SimCSE-BERT (Gao et al., 2021) 0.792 0.644 0.503 0.386 0.281 0.581 1.243 0.219 0.9394 0.7694
+ SimCSE-RoBERTa 0.794 0.645 0.504 0.387 0.281 0.582 1.244 0.219 0.9395 0.7698
+ SimCSE-V1 (unspervised) 0.792 0.645 0.504 0.386 0.281 0.582 1.244 0.219 0.9397 0.7705
+ SimCSE-V2 (unspervised) 0.792 0.645 0.505 0.387 0.281 0.582 1.247 0.219 0.9396 0.7703
+ CLIP (Radford et al., 2021) 0.791 0.643 0.503 0.386 0.280 0.581 1.242 0.219 0.9395 0.7703

Table 11: Full Ablation Study. We experimented using different information from various baselines on the
Karpathy test split. Also, with the unsupervised BERT similarity, we tried with the top-2 visual context from the
classifier.

C Hyperparameters and Setting

All training and the beam search are implemented
with PyTorch 1.7.1 (Paszke et al., 2019). VR based
BERTbase is fine-tuned on the training dataset us-
ing the original BERT implementation, Tensorflow
version 1.15 with Cuda 8 (Abadi et al., 2016) (hard-
ware: GPU GTX 1070Ti and 32 RAM and 8-cores
i7 CPU). The textual information dataset consists
of 460k captions, 373k for training, and 87k for
validation i.e. visual, caption, label ([semantically

related or not related]). We use a batch size of 16
for two epochs with a learning rate 2e−5, we kept
the rest of hyperparameters settings as the original
implementation.

D Additional Examples

We provide more comparison results with exam-
ples, including sentence-level evaluation SBERT-
sts and BERTscore in Table 12. Also, in Figure
11, and Figure 12, we also evaluated our re-ranker
using human subjects.
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Table 12: Examples show caption re-ranked by our Visual Re-ranker with different evaluation metrics including the
semantic-similarity based metrics. Note that, we only report B-1 and B-2, from BLEU, to measure the word level
changes before and after re-ranking.

Model caption B1 B2 M R-L S BERTscore SBERT-sts
BeamS a woman holding a tennis racquet on a tennis court 0.54 0.40 0.26 0.47 0 0.89 0.73
VR a woman standing on a tennis court holding a racque 0.53 0.32 0.27 0.49 0.30 0.93 0.68
Refe a woman in a short bisque skirt holding a tennis racque
BeamS a white train is at a train station 0.29 0.18 0.11 0.32 0.22 0.90 0.57
VR a train on the tracks at a train station 0.49 0.40 0.23 0.52 0.53 0.91 0.78
Refe a train that is sitting on the tracks under wires
BeamS a pair of black scissors on a white wall ✗ 0.31 0 0.12 0.37 0 0.87 0.23
VR a flower in a vase next to a pair of scissors ✗ 0.41 0.19 0.15 0.43 0.42 0.89 0.27
Refe a dried black flower in a long tall black and white vase
BeamS a man sitting on a bench 0.43 0.43 0.32 0.67 0.50 0.96 0.66
VR a man sitting on a bench talking on a cell phone 0.90 0.85 0.95 0.90 0.90 0.98 0.99
Refe a man sitting on a bench talking on his cell phone
BeamS a woman standing in an airport with luggage 0.42 0.35 0.25 0.51 0.30 0.92 0.67
VR a woman standing in a luggage carousel at an airport ✗ 0.54 0.40 0.25 0.56 0.50 0.89 0.68
Refe a woman standing in front of a bench covered in luggage
BeamS an airplane sitting on a runway behind a fence 0.39 0.29 0.22 0.41 0.40 0.92 0.69
VR an airplane is parked behind a fence 0.37 0.28 0.25 0.45 0.50 0.94 0.85
Refe the airplane has landed behind a fence with barbed wire
BeamS a plate with a sandwich on a table 0.55 0.26 0.19 0.46 0.40 0.91 0.86
VR a white plate with a sandwich on a table 0.66 0.40 0.24 0.44 0.54 0.92 0.90
Refe a small sandwich sitting on a white china plate
BeamS three giraffes standing in a field under a tree 0.26 0 0.14 0.29 0.26 0.91 0.62
VR a group of giraffes standing in a field 0.17 0 0.10 0.20 0 0.90 0.64
Refe two tall giraffe standing next to a green leaf filled tree
BeamS two parking meters in front of a brick wall 0.33 0.20 0.15 0.22 0.25 0.47 0.87
VR a row of parking meters in front of a building 0.30 0.25 0.17 0.31 0.25 0.60 0.88
Refe different types and sizes of parking meters on display
BeamS a bathroom with a toilet and a mirror 0.33 0 0.10 0.34 0 0.89 0.69
VR a variety of items on display in a bathroom 0.44 0 0.12 0.33 0.14 0.90 0.70
Refe a view of a couple types of toilet items
BeamS two bulls with horns standing next to each other 0.44 0.23 0.16 0.47 0.66 0.89 0.76
VR two long horn bulls standing next to each other 0.33 0 0.18 0.23 0.25 0.88 0.81
Refe closeup of two red-haired bulls with long horns
BeamS a laptop computer sitting on top of a desk 0.44 0.21 0.20 0.29 0.18 0.91 0.69
VR a desk with a laptop and a computer monitor 0.53 0.51 0.31 0.58 0.46 0.95 0.77
Refe an office desk with a laptop and a phone on it
BeamS a busy highway with cars and a train 0.33 0.20 0.12 0.34 0.18 0.90 0.43
VR cars are driving on a highway under a bridge ✗ 0.22 0 0.04 0.22 0 0.88 0.21
Refe a photo of a train heading down the tracks
BeamS a baby sitting in front of a cake 0.44 0.23 0.18 0.46 0.36 0.90 0.81
VR a baby sitting in front of a birthday cake 0.44 0.23 0.18 0.44 0.33 0.90 0.77
Refe a baby in high chair with bib and cake
BeamS a dog sitting on a bed with clothes 0.58 0.44 0.29 0.65 0.40 0.93 0.57
VR a dog sitting on a bed next to clothes 0.49 0.33 0.25 0.52 0.40 0.91 0.61
Refe a dog is sitting on an unmade bed with pillows
BeamS a group of boats docked in the water 0.19 0 0.07 0.21 0.22 0.88 0.58
VR a group of boats are docked in the water 0.19 0 0.07 0.20 0.22 0.88 0.59
Refe looking out over a bay with many tourist boats moored
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Model Caption BERTscore SBERT-sts Human% Visual

BeamS a close up of a plate of food 0.89 0.27 40 trifle

VR piece of food sitting on top of a white plate 0.91 0.53 60

Human refe a white plate and a piece of white cake

BeamS a group of men on a field playing baseball 0.88 0.58 33.3 baseball

VR a batter catcher and umpire during a baseball game 0.91 0.84 66.7

Human refe batter catcher and umpire anticipating the next pitch

BeamS a couple of airplanes that are flying in the sky 0.88 0.03 000 traffic light

VR a group of traffic lights at an airport 0.95 0.71 100

Human refe a group of traffic lights sitting above an intersection

BeamS two bulls with horns standing next to each other 0.89 0.76 16.7 ox

VR two long horn bulls standing next to each other 0.88 0.81 83.3

Human refe closeup of two red-haired bulls with long horns

BeamS a woman holding a tennis racquet on a tennis court 0.89 0.73 85.3 racket

VR a woman standing on a tennis court holding a racquet 0.93 0.68 16.7

Human refe a woman in a short bisque skirt holding a tennis racquet

BeamS a white train is at a train station 0.90 0.57 50 � locomotive

VR a train on the tracks at a train station 0.91 0.78 50

Human refe a train that is sitting on the tracks under wires

BeamS two men cutting a cake at ceremony 0.94 0.98 66.7 ≈ mortarboard

VR a group of military men cutting a cake 0.80 0.91 33.3

Human refe two men are cutting a cake at a function

BeamS a little girl wearing a tie and pants 0.94 0.80 66.7 ≈ feather boa

VR a little girl wearing a tie standing in a room 0.93 0.77 33.3

Human refe a young girl wearing a tie that matches her skirt

BeamS a man laying on the ground with many animals 0.88 0.14 000 ✗ trilobite

VR a man kneeling down in front of a herd of sheep 0.89 0.56 100

Human refe a view of a bunch of sheep lined up with a behind them

BeamS a kitchen with black counter tops and wooden cabinets 0.88 0.44 100 ✗ barbershop

VR a kitchen counter with a black counter top 0.88 0.40 000

Human refe a kitchen with a sink bottles jars and a dishwasher

Figure 11: Examples show caption re-ranked by our Visual Re-ranker and the original baseline Best beam. An
evaluation metrics comparison between semantic-similarity based SBERT-sts, BERTscore, and the human subject.
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Model Caption BERTscore SBERT-sts Human% Visual

BeamS a red and white boat in the water 0.94 0.78 87.5 fireboat

VR a red and white boat is in the water 0.93 0.79 12.5

Human refe a red and white boat floating along a river

BeamS a dog sitting on a bed with cloths 0.93 0.57 50 dog/Irish terrier

VR a dog sitting on a bed next to clothes 0.91 0.61 50

Human refe a dog is sitting on an unmade bed with pillows

BeamS a laptop computer sitting on top of a desk 0.91 0.69 25 desk

VR a desk with a laptop and computer monitor 0.95 0.77 75

Human refe an office desk with a laptop and computer monitor

BeamS a bathroom with a toilet and a mirror 0.89 0.69 12.5 washbasin

VR a variety of item on display in a bathroom 0.90 0.70 83.3

Human refe a view of a couple types of toilet items

BeamS a couple of pizzas that are on a table 0.88 0.75 100 pizza

VR a couple of pizzas are sitting on a table 0.87 0.77 000

Human refe pizza on a table with a cup and a fork

BeamS a group of people in a living room playing a video game 0.93 0.47 62.5 television

VR a group of people sitting in a living room playing a video game 0.94 0.50 37.5

Human refe a group of friends sitting inside their living room

BeamS a city street at night with traffic lights 0.97 0.81 33.3 traffic light

VR a city street at night with cars and a traffic light 0.94 0.85 66.7

Human refe a city street at night filled with lots of traffic

BeamS a close up of a cat eating a doughnut 0.83 0.90 100 pretzel

VR a close up of a person holding a doughnut 0.60 0.88 000

Human refe a cat bites into a doughnut offered by a persons hand

BeamS two men standing next to a group of people 0.88 0.20 87.5 groom

VR a group of men standing next to each other 0.86 0.30 12.5

Human refe the man is holding his tie with his right hand

BeamS a pile of trash sitting inside of a building 0.88 0.38 100 ✗ vacuum

VR a pile of trash sitting in front of a building 0.88 0.27 000

Human refe an older floor light sits deserted in an abandoned hospital

Figure 12: Examples show caption re-ranked by our Visual Re-ranker and the original baseline Best beam. An
evaluation metrics comparison between semantic-similarity based SBERT-sts, BERTscore, and the human subject.
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Abstract

In this paper, we explore the relation between
gestures and language. Using a multimodal
dataset, consisting of TED talks where the lan-
guage is aligned with the gestures made by
the speakers, we adapt a semi-supervised mul-
timodal model to learn gesture embeddings.
We show that gestures are predictive of the
native language of the speaker, and that ges-
ture embeddings further improve language pre-
diction result. In addition, gesture embed-
dings might contain some linguistic informa-
tion, as we show by probing embeddings for
psycholinguistic categories. Finally, we ana-
lyze the words that lead to the most expres-
sive gestures and find that function words
drive the expressiveness of gestures. Our code
is available at https://github.com/
MichiganNLP/gestures-language.

1 Introduction

Gestures are often referred to as “non-verbal lan-
guage” and extensive studies in psychology, sociol-
ogy, and anthropology have demonstrated the im-
portant role they play in communication (McNeill,
1992; Iverson and Goldin-Meadow, 1998; Alibali
et al., 2000). While language and gesture can occur
independently, people often use them together to
communicate, suggesting that multimodality plays
an important role in understanding gestures. In this
work, we consider human gestures together with
their corresponding utterances. We jointly learn
gesture and word embeddings, and attempt to pre-
dict psycholinguistic categories and the language
of the speaker from their gesture embeddings.

Even for humans it is very challenging to pre-
dict words from gestures alone (or vice versa), due
to the many-to-many relationship between words
and gestures. Therefore, instead of directly predict-
ing one modality from the other (Desai and John-
son, 2021), we use contrastive pre-training learning
to learn a joint embedding space that aligns both

modalities (Kiros et al., 2014; Tian et al., 2020;
Radford et al., 2021). This allows our model to
learn an association between language and gestures,
despite a large amount of uncertainty inherent in
the task.
The main contributions of this work are as follows:
• First, we explore a multimodal approach to learn

gesture embeddings through contrastive learn-
ing. Through validation experiments relying on
these embeddings, we demonstrate that there is
an association between gestures and languages
representations.

• Second, we probe gesture embeddings for vari-
ous psychological and linguistic categories and
show that gestures can be predictive of several
categories with better-than-random accuracy. We
find that function words, such as pronouns, prepo-
sition or modal verbs, can be predicted from the
gestures. We also show that gesture embeddings
can be used to predict discourse markers.

• Third, we show that it is possible to predict the
language of a speaker from our learned gestures
embeddings. Our findings indicate that the dif-
ference in gestures across the languages may be
driven by the function words.

• Finally, we conduct several analyses to better
understand the learned gesture representations.

2 Related Work

Semi-supervised Multimodal Learning. Our
work builds on the idea of multimodal learning,
where a model is trained to represent several modal-
ities in a shared embedding space (Chen et al.,
2019; Li et al., 2019; Lu et al., 2019; Tan and
Bansal, 2019). In particular, we focus on semi-
supervised multimodal learning (Yuan et al., 2021;
Wu et al., 2021; Zhai et al., 2021), which is effec-
tive and useful training strategy for settings where
obtaining labeled training data is laborious or pro-
hibitive. We base our model on CLIP (Radford
et al., 2021), which uses a large amount of (multi-

5507



modal) unlabeled data combined with efficient pre-
training objective leading to strong zero-shot per-
formance in both language and vision tasks.
Pose Estimation and Gesture Understanding.
While most of the recent multimodal work has fo-
cused on modalities such as vision (Morency et al.,
2007), language, or speech (Levine et al., 2009;
Ginosar et al., 2019), there are also studies that
highlight the importance of gestures for various
aspects of human activities; see Kelly et al. (2008)
for an overview.

Work in this space has addressed, among other
tasks, gesture recognition (Zhang et al., 2020), ges-
ture generation (Kucherenko et al., 2020b; Fer-
stl et al., 2021; Yoon et al., 2020; Kucherenko
et al., 2020a; Alexanderson et al., 2020), gesture-
to-gesture generation (Tang et al., 2019). All of
these tasks, while close to our problem space, are
not directly applicable for gesture representation.

Another line of work focuses on the temporal
alignment and interaction of speech and gestures.
Loehr (2007), shows that speech and gestures oc-
cur synchronously. (Rieser, 2015) shows that ut-
terances and gestures are not always synchronous
and suggests using λ-π calculus to model them.
(Saint-Amand et al., 2013) provide a comprehen-
sive study of the alignment of speech and gestures
in a constraint-based grammar, while (Lücking
et al., 2013) show that gestures follow the language
but the opposite does not hold.

An important question is how to obtain labels
that describe gesture. We use pseudo ground-truth
pose estimates from OPENPOSE (Cao et al., 2019).
While even state-of-the-art gesture recognition sys-
tems can be noisy, this noise is significantly re-
duced on videos such as TED talks (Yoon et al.,
2018) given that there is only one speaker and
have good light conditions. For a comprehensive
overview of recent progress in the field of pose
estimation see Munea et al. (2020).

3 Data

Our primary source of data is the YouTube Ges-
ture Dataset (Yoon et al., 2018). The dataset con-
sists of over 1,500 TED talk videos of English
speakers addressing various topics like science,
medicine, society, and others. The camera is usu-
ally in front of the speaker, so the gestures are visi-
ble. The dataset contains precomputed key points
for the head, neck, shoulders, elbows, and wrists,
with each pose represented as a 16-dimension vec-

Radio can help stimulate
interest and demand ...

... by playing Kenyan music
done in English, Kiswahili

... voy a hablar de
infarto cardíaco ...

Un hombre entra a
una guardia con un infarto ...

(I’m going to talk
about heart attack)

(A man enters a guard
with a heart attack)

Figure 1: Examples of gestures aligned with the corre-
sponding language. All videos and corresponding ut-
terances are one second in length. Top row: English
speaker. Bottom row: Spanish speaker.

tor, with x and y coordinates for each key point.
The dataset includes subtitles, auto-generated by
YouTube and aligned by gentle 1.We also use an ad-
ditional dataset that we compiled ourselves, consist-
ing of 600 videos of Spanish speakers. We process
videos from the TEDx channel using the playlist
“TEDx talks en Español." Subtitles for Spanish data
are auto-generated and aligned by YouTube, so we
just download the appropriate subtitle file. Figure
1 shows an example of gestures aligned with the
corresponding language.

We split each video into several clips using
PySceneDetect,2 which detects changes in the cam-
era angle during the talk and splits a single video
into several sub-clips. This is necessary so that
the pose movements remain continuous during the
short clips, even if the camera angle is changed.

Table 1 shows the summary statistics of the
dataset. The numbers differ from those reported
in Yoon et al. (2018) because we used a more ag-

1https://github.com/lowerquality/
gentle

2https://github.com/Breakthrough/
PySceneDetect
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English Spanish
Videos train 1,349 543
Videos val 167 64
Clips train 127,003 61,810
Clips val 16,813 9,299
Average # words val 3.74 3.4
Average # words train 3.75 3.37
Duration train 35.27h 17.16h
Duration val 4.67h 2.58h

Table 1: Dataset statistics

gressive video filtering strategy,3 to make sure that
only clips with enough gesture variety remain in
the dataset.

4 Model

4.1 Input Representation

One of the key considerations for our approach is
how to represent gestures and language as input
to our model. We start by dividing each clip into
a series of gestures using the sliding window ap-
proach of Yoon et al. (2018). We cut every clip
into 1 second sequences of frames; with 15 frames
per second, our input becomes 15 frames. Detailed
per-millisecond word alignments are available in
our datasets.

We align each one second interval with the cor-
responding phrase. Our method requires that ges-
tures and language are timely-aligned within some
interval of t seconds, where we use t=1 second.
It does not require them to be aligned exactly, as
the pose encoder and gesture encoder use differ-
ent positional embeddings. One limitation of such
an approach is that longer gestures are truncated,
and very short gestures are collapsed together. We
experimented with several lengths of the sliding
window and found out that the choice of the time
interval does not affect the overall performance.

Another possibility would be to split the ut-
terances by word and take all the corresponding
frames that fall within the given time interval. For
instance, we can take the word ‘hello’ from the sub-
titles, and get all the corresponding frames while
the word is pronounced. This way we guarantee
that there is no overlap between the gestures, and a
single word corresponds to a single series of ges-
tures. However, previous results in the literature

3We used a threshold of 250 for circular variance, com-
pared to the original value of 150

McNeill (2005) indicate that there are different ges-
ture phases, and they are not necessarily timely
aligned with the words. In such a case this ap-
proach would be limited. We experimented with
such a setting as well, but the resulting performance
is only marginally better than random.

4.2 Approach

Figure 2 shows the overview of our approach. Af-
ter preprocessing, poses and phrases are passed
through two separate encoders. We use a trans-
former architecture to separately encode the text
and the poses. The pose encoder model very closely
follows the CLIP’s base image encoder: it is a 12-
layer 768-wide model with 12 attention heads. We
have to adjust the width from 512 to 768 to match
the size of the text model, which is necessary for
cosine similarity. The pose encoder is randomly ini-
tialized and takes as input a tensor of size (15, 16)
where 15 is the number of frames in a 1 sec. clip
and 16 is the joint dimension. This input gets trans-
formed to (15, 768) with the fully connected layer
and is passed directly to the attention block, by-
passing the input embedding layer. This is possible
because the pose is already represented as a vec-
tor, and does not have to be embedded. We use
the last frame as an end-of-sentence token for the
prediction. On top of the transformer, there is a
768 × 768 projection layer. We use the multilin-
gual XLM-RoBERTa (Conneau et al., 2019) as a
pre-trained encoder for language with another pro-
jection layer on top of the encoder.

After encoding the pose and language into vec-
tors of fixed length, they are normalized and the dot
product is taken separately for each modality. The
Multi-class N-pair loss (Sohn, 2016) objective is
used to learn the match between the poses and the
corresponding utterances in a single batch. We se-
lected a batch of size two to make the training task
easier. While contrastive learning benefits from
large batch sizes (Newcombe, 2018), we found that
in our case the higher the batch size, the harder it is
for the model to learn. We tried batch sizes 8, 16,
and 32, and the results were worse. We hypothesize
this is due to a large amount of noise in the data.
We use AdamW with a learning rate of 1e− 5 as
an optimizer, and cosine schedule as a learning rate
schedule.

One possible concern for our approach is the
size of the training dataset. CLIP uses more than
350 million image-text pairs, while our dataset in-
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Figure 2: Overview of our approach: we train joint pose and language encoders on training data and produce
embeddings. We show we can predict the native language of the speaker and several linguistic categories from the
gesture embeddings alone.

cludes only 180,000 1-second clips. To mitigate
this, we first conduct an experiment where we show
that the proposed pose encoder can predict whether
the source of motion was left or right hand. Sec-
ond, we use a pre-trained text encoder, namely
XLMRoberta, as a text encoder. This is in con-
trast to CLIP, where the authors train the model
from scratch. This way we only train a pose en-
coder, while the text encoder is only fine-tuned.
Third, contrary to images that are represented as
a 336x336 matrix, poses have much lower dimen-
sionality, namely, our input has a dimension of
15x16. Our intuition is that these factors combined
can substantially reduce the required amount of
training data.

4.3 Alignment Validation

To make sure that the model is capable of learning
gesture–language alignments, we conduct two sim-
ple experiments. We aim to verify whether a pose
encoder can associate many similar (but with a sub-
stantial degree of variety) gestures with a single
word/phrase, given the limited amount of training
data and proposed model architecture. In other
words, before learning a many-to-many mapping
(many possible gestures can correspond to the same
word, and many possible words can correspond to
the same gesture), we want to verify that one-to-

many mapping is even possible.
In the first validation experiment, from our

dataset, we select only the poses where the source
of motion is either the left or the right hand. We do
this by calculating the circular variance (Pedregosa
et al., 2011) of the angles between joints on the
right side and the left side. Only the clips where
the circular variance is above 750 on one side and
less than 100 on the other side are selected. For
these clips, we artificially insert the words ‘left’ or
‘right’ at random position in the existing utterance,
depending on which side has is a high variance.
This process resulted in 12,287 pose sequences
with right-hand movement and 11,846 with left-
hand movements.

We set the batch size equal to two and include
only one left and one right pose in each batch so
that it can be matched with the corresponding text
in only one correct way. The resulting accuracy on
the validation set is 99.93% and 100% for poses and
language respectively. This experiment suggests
that learning gesture-text alignments is possible
when the gestures have sufficient expressiveness.

In the second validation experiment, given an
input gesture and its embedding, we use a simple
cosine similarity measure to find the closest text
embedding. For each (gesture, text) pair from the
validation set, we pick another random pair and
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Class Embeddings Raw poses # Observations Description and Examples
PREPS 51.8 (±2.31) 51.1 (±2.18) 12978.4 Prepositions: to, with, above
PRONOUN 52.5 (±2.94) 52.3 (±2.83) 10235.0 Pronouns: I, them, itself
DISCREP 52.8 (±6.16) 51.6 (±5.79) 2343.2 Discrepancy: should, would, could

Table 2: Accuracy on the LIWC category prediction task for English. The accuracy of the majority baseline is
50%. We show the categories where the accuracy of the embeddings model is significantly larger than the majority
model at a 0.05 significance level. We use Wilcoxon signed-rank test for significance testing. ± denotes standard
deviation

Class Embeddings Raw poses # Observations Description and Examples
PREPS 52.2 (±3.51) 51.2 (±3.29) 6308.4 Prepositions: sin, con, acerca

Table 3: Accuracy on the LIWC category prediction task for Spanish. The accuracy of majority baseline is 50%.
We show the categories where the accuracy of the embeddings model is significantly larger than the majority model
at a 0.05 significance level, using a Wilcoxon signed-rank test for significance testing.

Figure 3: Representation of the input. The main diago-
nal represents the ground truth.

calculate the cosine similarity between each gesture
and text, so we end up with 4 similarity scores, 2
for each gesture (or correspondingly 2 for each
text). For each gesture, we take the text with the
highest score as a prediction and compare the text
we find using the similarity against the correct text
paired with the gesture in the data. Figure 3 shows
an example.

On the validation dataset, this experiment leads
to 65.4% accuracy. When reversed, i.e., starting
with a text embedding, we find the most similar ges-
ture embedding according to a cosine similarity and
compare it against the gold standard, we achieve
64.9% accuracy. This performance significantly
higher than the random baseline indicates that the
learned representations contain useful information.

5 Experiments and Results

To evaluate the strength of the connection between
gestures and language, we perform two types of
experiments. First, we perform experiments within
one single language only, i.e. how gestures and
language interact in either English or Spanish. The
second type is cross-language, how gestures are
different among English and Spanish speakers.

5.1 Single Language Experiments

We aim to predict a psycholinguistic category of
utterance from the gesture embeddings obtained
with the model described in Section 4. The mo-
tivation for this type of analysis is that humans
might be able to understand that the person is, for
instance, angry from the pose alone. We used Lin-
guistic Inquiry and Word Count (LIWC) lexicon
(Pennebaker et al., 2007) and General Inquirer cat-
egories (Stone et al., 1966) to map the utterances
to their categories. Namely, if the text contained
any word from LIWC or General Inquirer category,
we considered the whole utterance to belong to this
category, i.e. label y=1, and y=0 otherwise. Some
utterances can have more than one category. In
total, we run 146 binary classification problems
(65 LIWC categories and 81 General Inquirer cate-
gories).4 We compare our results with a majority
baseline, as well as a raw pose baseline, where we
fit the logistic classifier on the vector of joints (15
frames with a 16-dimensional vector on each, flat-
tened into the 240-dimensional vector). We use

4We discard all the categories that have less than 30 obser-
vations in the validation dataset.
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30-fold5 cross-validation on the validation dataset,
stratified by the language variable, and grouped by
the video id (i.e., several clips from the same video
should only be in either the training data or the
validation data, to exclude the possibility of data
contamination). At each training and test fold, we
additionally sub-sample English clips to make the
number of English and Spanish clips equal. There-
fore the accuracy of the majority baseline is always
50%. For the prediction, we use the same model as
Conneau and Kiela (2018), a logistic classifier with
the default parameters. To verify that the accuracy
of one model is larger, we performed a one-sided
Wilcoxon paired signed-rank test (Wilcoxon, 1945)
on the accuracy scores from cross-validation. We
decided to use this test based on the results from
Demšar (2006). The null hypothesis is that the ac-
curacies of two classifiers are the same, and the
alternative hypothesis is that the embeddings/raw
model is larger than the raw/majority.

We rerun our experiment with 30 different ran-
dom seeds. Table 2 shows the LIWC categories
where the embeddings model significantly outper-
forms the baseline (majority) model for a 90% of
the 30 runs. 6 Interestingly, the resulting categories
belong to function words. This finding indicates
that gestures accompanying function words may
have a more apparent visual appearance, compared
to the other words. This finding extends previous
work from psychology pointing to the importance
of function words in communication (Chung and
Pennebaker, 2007). Table 3 shows the same type
of analysis for Spanish language. There is only
one category overall, prepositions, also part of the
function words. Table 4 presents the results for
the General Inquirer categories. In addition to the
pronouns, active verbs show a strong connection
with gestures.

Another type of analysis we conducted is pre-
dicting the use of discourse markers in speech from
the gestures. We use a list of words from Disc-
sense (Sileo et al., 2020). Table 5 shows the results.
The embedding model is significantly better than
both the raw poses model and the majority model,
suggesting that joint language-vision learning is
beneficial for this task. We also attempt to predict
Valence-Arousal-Dominance states from (Moham-

5We use more folds than typical in the literature to have
more observations for significance testing.

6Since such a setting is rather restrictive, we also run
Fisher’s combined probability test to combine p-values from
all the 30 runs. We present these results in the Appendix.

mad, 2018), but neither raw poses nor embedding
model could predict better than the majority base-
line.

These results are in line with the findings re-
ported in Lücking et al. (2013), where authors con-
ducted the experiments using a dataset with man-
ually annotated alignments between gestures and
phrases, and found that prepositional phrases are
associated with gestures as well.

An important observation from these results is
that in many cases a classifier relying only on the
raw poses significantly outperforms the majority
baseline, suggesting that gestures by themselves
contain information about language. Addition-
ally, this finding is further supported by the im-
provements obtained with the gesture embeddings,
which show that the joint learning of gestures and
language is beneficial.

5.2 Experiments with English and Spanish

If gestures are indeed closely related to the corre-
sponding language, we hypothesize that we should
be able to predict the language of a speaker (e.g.,
English or Spanish) from the gestures alone. Table
7 shows the language prediction results using the
gesture embeddings. We use the identical cross-
validation with the sub-sampling scheme as de-
scribed in Section 5.1.

To further investigate which gestures lead to
better-than-random accuracy on the language pre-
diction task, we use the LIWC lexicon to identify
the word categories that have the highest improve-
ment with respect to the majority baseline. This
analysis can be interpreted as follows: “While a
person is using word category X, the gestures of an
English speaker can be more easily distinguished
from those of a Spanish speaker.” Table 6 shows
the accuracy of the language prediction task split by
the LIWC categories. We select the poses that have
the highest probability to be predicted correctly,
and extract their corresponding utterances. From
these utterances, we extract the LIWC category for
the words, and calculate the accuracy separately for
each word category. There are eleven categories
where the embedding model outperforms the raw
poses model and the raw poses model is better than
the majority.

Additionally, we identify the words with the
highest mutual information between the occurrence
of the word in the utterance and the probability to
be predicted correctly. Table 8 shows the top 10
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Class Embeddings Raw poses # Observations Description and Examples
PRONOUN 52.6 (±2.50) 52.2 (±2.54) 10034.0 Pronouns: you, nobody, us
ACTIVE 51.3 (±2.66) 50.0 (±2.76) 9533.2 Active verbs: do, develop, learn

Table 4: Accuracy on the General Inquirer category prediction task, where the accuracy of the embeddings model
is significantly larger than the majority model at a 0.05 significance level, using a Wilcoxon signed-rank test for
significance testing.

Accuracy
Majority 50.0 (± 0.0)
Raw Poses 51.7 (± 3.04)
Embeddings 52.7 (± 3.01)

Table 5: Accuracy on the discourse marker prediction
task for raw poses and gesture embeddings. Some ex-
amples of discourse markers include: actually, anyway,
so.

unigrams (top row) and bigrams (bottom row) with
the highest mutual information. These words can
be interpreted as the most expressive, as the corre-
sponding gestures are more clearly distinctive from
the other gestures. Once again, it appears that the
majority of the expressive unigrams and bigrams
represent function words, which further supports
the strength of the connection between these groups
of words and gestures.

Figure 4: Results from fitting Logistic Classifier on sin-
gle joint only on language prediction task.

One potential concern is to confirm that there
is not any unseen bias (e.g., channel information)
that is helping the system to recognize the language
of the speaker. We manually inspected a random
sample of 100 poses and could not see any differ-
ences, such as data artifacts from pose extraction,
or any other data processing issues. In addition, we
conducted several analyses:

• We analyzed the distribution of the joints’ co-
ordinates for the poses that were matched cor-
rectly versus incorrect ones. Similarly, we
also analyzed the distribution of the joints’ co-
ordinates between English and Spanish videos.
Maybe some joints are at the very specific po-
sition for English/Spanish videos that it makes
very easy for the model to distinguish? We
could not see any direct difference.

• We analyzed the coefficients of the logistic
classifier for the embeddings model. We
looked at the magnitude of the coefficients,
i.e., whether some features drive the predic-
tion. The motivation for this analysis is the
following: if the logistic classifier relies on
only a small number of features, instead of the
learned representation as a whole, the gesture
representation might be suboptimal.

• We fit the model on a single joint only. The
motivation is the following: can we predict
the language of the speaker from the neck
(e.g., nose, shoulder) alone. Figure 4 shows
the performance with the standard error bars
(using 10 fold cross-validation). While the re-
sults are still worse than our proposed model,
sometimes even one simple joint can lead to
very strong performance.

6 Conclusions and Lessons Learned

In this paper, we explored the relation between
gestures and language. Using a CLIP-style joint
embedding model for gestures and language, ap-
plied on a bilingual multimodal dataset consisting
of TED talks in English and Spanish, we report
several findings:

First, we found that gestures can be used to in-
fer the corresponding language and conversely that
language can be used to infer the corresponding
gesture. Our proposed model can predict the match-
ing between language and gesture with 65.4% ac-
curacy, compared to the random 50.0% baseline.
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Class Embeddings Raw poses Majority # Observations Description and Examples
SENSES 65.5 (13.66) 60.6 (16.90) 58.9 (6.62) 47.2 Sensory processes: see, touch, listen
PRESENT 64.6 (11.1) 59.6 (14.63) 54.5 (3.40) 176.0 Present focus: today, now
ARTICLE 64.0 (11.99) 59.3 (14.86) 58.2 (4.59) 161.9 Articles: a, an, the
COGMECH 63.8 (10.84) 59.7 (15.78) 58.1 (4.01) 152.6 Cognitive Processes: cause, know, ought
OTHREF 63.2 (11.86) 59.2 (15.16) 55.6 (4.40) 112.5 Other references: anyone, everyone
SOCIAL 63.6 (11.86) 59.6 (15.40) 58.1 (5.37) 148.6 Social Processes: talk, us, friend
PREPS 63.6 (11.36) 59.6 (14.61) 54.2 (3.57) 231.9 Prepositions: to, with, above
PRONOUN 63.5 (11.56) 59.7 (15.34) 56.4 (4.61) 177.6 Pronouns: you, nobody, us
AFFECT 65.3 (12.94) 62.0 (16.46) 61.0 (7.49) 49.5 Affective Processes: happy, ugly, bitter
INCL 62.9 (11.14) 60.2 (14.97) 58.5 (5.89) 124.9 Inclusive words: and, with, include
COMM 62.8 (14.44) 60.3 (17.42) 59.9 (6.57) 29.8 Common verbs: walk, went, see

Table 6: LIWC categories that drive better-than-random accuracy on the language prediction task.

Accuracy
Majority 50.0 (± 0.0)
Raw Poses 60.1 (± 14.28)
Embeddings 63.8 (± 11.00)

Table 7: Accuracy on the language prediction task for
raw poses and gesture embeddings

Unigrams si, ade, y, asking, mas, here, life, po,
medicine, ti

Bigrams ade mas, from the, so that, and it, is to,
y con, if your, we just, we can, we ’ve

Table 8: Top 10 unigrams and bigrams in English and
Spanish, with the highest mutual information between
the occurrence of the ngram in the utterance and the
probability to be predicted correct.

Second, we showed that it is possible to predict
several social or psycholinguistic word categories
from the gestures with better than random proba-
bility. Through extensive probing of gesture em-
beddings for LIWC and General Inquirer linguistic
categories, we were able to identify the categories
where gesture embeddings significantly outperform
random baselines: the majority of these categories
consist of function words, which is a finding that
aligns with previous social science findings. We re-
port the results separately for English and Spanish.

In a similar vein, we showed that gestures can be
also predictive of discourse markers. Our results
indicate that gesture embeddings contain useful in-
formation about discourse structure, outperforming
both majority and joint-only baselines.

Finally, we reported that gestures by themselves
are predictive of the native language of the speaker,
and that gesture embeddings further improve this
result. Through several analyses, we found that
function words are most strongly associated with

gestures, which aligns with theories of language
evolution that posit that function words are closely
connected to the body.

There are several limitations of this work. First,
this work focuses on hands and head gestures only,
ignoring whole body movements and facial expres-
sions. We also assume that two active hands/arms
perform a single gesture, while it is also possible
to have two separate gestures for two hands. The
gestures are also specific for public presentations.

For future work, we plan to include hand ges-
tures in our dataset. We also consider compiling an
’in-the-wild’ gestures dataset, to extend our find-
ings to more forms of communication, and expand
beyond the gestures and language for TED talks.
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A Appendix

Here we present the results for LIWC/General In-
quirer category prediction task, but instead of se-
lecting categories that were significant at least 90%
out of 30 runs with different random seeds, we
run Fisher’s combined probability test to merge
p-values from all the 30 runs into single p-value.

Accuracy on the General Inquirer category pre-
diction task, where the accuracy of the embeddings
model is significantly larger at a 0.05 significance
level than the majority model.
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Class Embeddings Raw poses # Observations Description and examples
AFFECT 51.6 (5.22) 51.9 (4.93) 3014.1 Affective Processes: happy, ugly, bitter
ANX 51.3 (24.35) 52.7 (24.95) 146.9 Anxiety: nervous, afraid, tense
ARTICLE 50.8 (3.07) 50.5 (2.95) 7197.8 Articles: a, an, the
BODY 51.2 (11.73) 50.1 (11.84) 572.3 ache, heart, cough 1
CAUSE 51.3 (8.04) 50.4 (7.42) 1281.8 Causation: because, effect, hence
CERTAIN 51.4 (7.72) 49.1 (7.82) 1279.9 Certainty always, never
COGMECH 51.6 (3.64) 51.3 (3.23) 6801.5 Cognitive Processes: cause, know, ought
COMM 50.7 (6.82) 49.9 (6.92) 1616.3 Common verbs: walk, went see
DISCREP 52.9 (6.17) 51.7 (5.8) 2343.2 Discrepancy: should, would, could
EXCL 51.5 (3.99) 50.0 (3.84) 4510.5 Exclusive: but, except, without
FAMILY 53.5 (22.04) 53.1 (22.45) 261.0 mom, brother, cousin
FEEL 50.6 (15.66) 49.4 (15.04) 319.0 Feeling: touch, hold, felt
HEAR 50.9 (8.25) 50.7 (7.93) 1098.1 Hearing: heard, listen, sound
HUMANS 51.6 (7.4) 51.5 (7.12) 1451.9 boy, woman, group
I 52.5 (6.19) 51.1 (6.19) 2679.6 I, me, mine
INCL 51.1 (3.08) 50.4 (2.95) 7574.8 Inclusive: with, and, include
INHIB 52.5 (17.33) 50.1 (17.93) 247.5 Inhibition: block, constrain
INSIGHT 50.6 (5.87) 50.2 (5.79) 2339.3 Insight: think, know, consider
JOB 52.2 (9.81) 50.7 (10.06) 784.9 benefits, work, board
METAPH 51.4 (19.83) 51.7 (19.39) 253.3 Metaphysical issues: God, heaven, coffin
MOTION 51.0 (7.58) 49.9 (7.65) 1318.5 Motion: walk, move, go
NEGATE 51.9 (8.67) 51.0 (8.27) 1053.7 Negations: no, never, not
NEGEMO 51.3 (8.95) 50.2 (9.15) 914.5 Negative Emotions: hate, worthless, enemy
NUMBER 51.2 (8.36) 50.7 (8.08) 1150.3 Numbers: one, thirty, million
OCCUP 50.7 (6.29) 49.4 (5.95) 2062.9 Occupation: work, class, boss
OPTIM 50.7 (14.0) 49.1 (13.7) 421.5 Optimism and energy: certainty, pride, win
OTHER 50.8 (6.32) 49.7 (6.37) 1946.9 Total third person: she, their, them
OTHREF 51.4 (3.37) 51.3 (3.31) 6134.5 Other references: anyone, everyone
PAST 51.0 (4.66) 51.8 (4.57) 4272.7 Past tense verb: walked, were, had
POSEMO 50.8 (6.16) 51.1 (5.97) 2115.1 Positive Emotions: happy, pretty, good
POSFEEL 50.8 (11.37) 52.6 (10.97) 624.5 Positive feelings: happy, joy, love
PREPS 51.9 (2.32) 51.2 (2.19) 12978.5 Prepositions: on, to, from
PRESENT 51.1 (2.62) 50.2 (2.6) 9455.9 Present tense verb: walk, is, be
PRONOUN 52.5 (2.95) 52.3 (2.83) 10235.1 Total pronouns: I, our, they, you’re
SCHOOL 52.4 (14.34) 49.1 (14.07) 409.9 School: class, student, college
SEE 51.0 (10.1) 49.4 (9.45) 769.5 Seeing: view, saw, look
SELF 52.0 (3.99) 52.5 (3.96) 5223.9 Total first person: I, we, me
SIMILES 51.7 (13.45) 51.0 (14.01) 407.9 like
SOCIAL 50.7 (3.21) 51.0 (2.83) 8872.1 Social Processes: talk, us, friend
SPACE 51.8 (5.53) 51.5 (5.17) 2571.3 Space: around, over, up
TENTAT 51.7 (5.95) 50.8 (5.69) 2318.1 Tentative: maybe, perhaps, guess
UP 52.2 (8.31) 51.4 (7.76) 1131.0 up, above, over
WE 52.5 (5.3) 52.8 (5.56) 2567.5 1st person plural: we, our, us
YOU 53.4 (6.47) 50.5 (6.79) 1591.1 Total second person: you, you’ll

Table 9: Accuracy on the LIWC category prediction task for English. The accuracy of the majority baseline is
50%. We show the categories where the accuracy of the embeddings model is significantly larger than the majority
model at a 0.05 significance level. We highlight in bold the categories where the embeddings model is significantly
larger than raw poses model. ± denotes standard deviation
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Class Embeddings Raw poses # Observations Description and examples
ANX 53.4 (25.29) 55.0 (25.38) 94.4 Anxiety: turba, miserable, temer
ARTICLE 51.1 (3.5) 50.4 (3.83) 5442.3 Article: los, la, una
ASSENT 52.3 (26.08) 49.0 (26.52) 156.6 bien, assent, ok
CAUSE 51.3 (10.79) 48.8 (10.84) 740.5 Causation: porque, dependo, recuperaron
COGMECH 50.9 (4.06) 49.9 (3.48) 5119.5 Cognitive Processes: conceder, asombra, pone
EXCL 51.2 (8.76) 50.7 (8.98) 1073.0 Exclusive: sacar, sin, menos
FRIENDS 52.8 (26.9) 48.0 (25.86) 63.5 examiga, comadre*, macho*
FUTURE 52.3 (17.37) 48.5 (17.88) 320.9 empezare*, frotare*, seremos
I 51.0 (8.36) 50.4 (8.36) 1243.1 mi, tuve, yo
INCL 50.6 (4.75) 49.4 (4.86) 3058.5 Inclusive: con, y, junto
LEISURE 52.8 (19.15) 50.9 (20.1) 262.9 trotar, compac, vives
NUMBER 52.7 (14.89) 52.9 (14.59) 365.4 mitad, once, nueve
PHYSCAL 51.0 (10.42) 50.9 (10.51) 736.6 Physical states: cruda, violar, patas
PREPS 52.2 (3.52) 51.1 (3.29) 6308.5 con, para, sobre
PRESENT 51.0 (4.18) 50.8 (3.89) 5028.6 Present tense: coge, entrego, desean
SOCIAL 50.8 (4.61) 49.3 (4.47) 3692.7 entrego, primo, oyes
YOU 51.3 (14.73) 50.8 (13.76) 475.6 estas, vos, tu

Table 10: Accuracy on the LIWC category prediction task for Spanish. The accuracy of the majority baseline is
50%. We show the categories where the accuracy of the embeddings model is significantly larger than the majority
model at a 0.05 significance level. We highlight in bold the categories where the embeddings model is significantly
larger than raw poses model. ± denotes standard deviation

5519



Class Embeddings Raw poses # Observations Description and Examples
ACADEMIC 50.8 (8.68) 50.6 (8.39) 1015.0 academy, dean, coach
ACTIVE 51.3 (2.66) 50.1 (2.76) 9533.3 accost, actor, alarm
BEGIN 50.7 (9.67) 50.3 (9.73) 781.1 bloom, dawn, first
CAUSAL 52.2 (5.17) 52.1 (5.39) 2646.7 order, premise, odds
COLLECTIVITIES 52.1 (6.37) 49.5 (6.04) 2049.3 crowd, cult, family
COMMUNICATION FORM 50.8 (4.27) 50.5 (3.95) 4096.7 ask, assign, discuss
DESCRIPTIVE VERBS 50.7 (3.07) 50.5 (3.49) 6793.7 moan, mumble, pinch
FALL 53.5 (33.31) 57.9 (30.73) 61.4 sunk, drop, collapse
FINISH 51.4 (11.24) 50.2 (10.48) 665.1 cease, expire, lost
FREQUENCY 52.1 (9.4) 49.5 (9.06) 802.3 repeat, weekly, rare
HUMAN’S ROLES 50.5 (4.4) 50.8 (4.42) 3893.7 antagonist, cook, genius
INCREASE 51.0 (8.79) 50.2 (8.94) 1022.7 quicken, run, elaborate
INTERJECTION 51.9 (5.67) 50.0 (5.59) 2339.3 okay, damn, well
INTERPERSONAL 50.5 (4.28) 50.8 (4.2) 4234.0 adversary, hug, recruit
INTERPRETATIVE VERBS 51.0 (2.58) 50.3 (2.77) 10376.2 control, define, educate
KIN 53.3 (18.12) 48.8 (17.87) 297.7 mother, uncle, ma
LEGAL 51.2 (7.46) 50.4 (7.21) 1308.9 convict, crime, unjust
MALE ROLES 52.6 (12.74) 50.5 (12.52) 587.7 salesman, pope, husband
MEANS 50.9 (4.68) 50.0 (4.56) 3393.0 wage, utility, consideration
NEGATION 51.5 (7.09) 50.7 (7.23) 1357.2 aint́, disapprove, no
NEGATIVE 50.8 (4.81) 50.7 (4.93) 2927.1 break, deviation, furious
NUMBER CARDINAL 52.6 (9.21) 51.3 (8.84) 957.0 seven, zero, two
PLACE AQUATIC 54.8 (29.82) 51.3 (31.38) 125.4 bay, swamp, water
PLACE LAND 53.9 (15.02) 53.9 (15.03) 328.7 hilly, desert, cave
PRONOUN 52.7 (2.5) 52.2 (2.55) 10034.0 you, us, those
QUALITY ASSESSMENT 51.3 (6.43) 48.8 (6.18) 1828.9 modesty, hilarious, curve
QUANTITY ASSESSMENT 51.1 (3.46) 49.6 (3.05) 8094.9 considerable, all, another
RELATIONSHIPS 50.8 (5.41) 49.2 (5.37) 2594.5 tie, coherent, unlike
RISE 52.5 (14.33) 48.3 (14.2) 367.3 raise, jump, peak
ROLE 50.9 (6.07) 49.7 (6.39) 2066.7 alcoholic, buddy, mentor
SELF 52.7 (6.66) 51.2 (6.32) 2679.6 me, mine, I
SELF EXPRESSION 50.9 (8.59) 52.8 (8.69) 1121.3 vacation, paint, actor
SPACE 51.9 (4.57) 51.4 (4.8) 3060.5 way, on, nearby
STATE VERBS 50.6 (3.58) 50.9 (3.39) 5919.9 feel, seem, am
STAY 52.2 (17.24) 49.6 (16.45) 282.3 await, locate, set
STRONG 51.0 (2.5) 50.1 (3.03) 10066.9 aptitude, autocratic, defense
SUBMISSION 51.1 (7.55) 51.0 (7.44) 1374.6 respect, kneel, honor
TOOL 52.4 (7.2) 49.8 (7.19) 1341.7 Fork, stove, wheel
TRAVEL 51.1 (6.13) 50.8 (6.15) 1902.4 walk, leave, away
TRY 51.1 (7.92) 51.4 (7.15) 1293.4 bring, attempt, seek
UNDERSTATED 51.2 (3.78) 50.3 (3.93) 4877.8 caution, gamble, rare
VARY 52.1 (9.05) 51.1 (9.1) 887.4 turn, divert, amenable
VICE 51.6 (6.74) 50.9 (6.3) 1784.5 bore, damage, loss
VIRTUE 50.9 (3.92) 50.3 (3.71) 4568.5 invulnerable, free, admirable
WE 53.0 (5.36) 53.0 (5.18) 2488.2 ours, ourselves, we
WEAK 51.7 (5.0) 50.3 (4.76) 3271.2 addict, cheap, sunken
YES 51.9 (10.89) 51.2 (11.04) 665.1 yeah, okay, definitely
YOU 52.9 (6.9) 50.1 (6.5) 1610.5 your, thy, thou

Table 11: Accuracy on the General Inquirer category prediction task. The accuracy of the majority baseline is
50%. We show the categories where the accuracy of the embeddings model is significantly larger than the majority
model at a 0.05 significance level. We highlight in bold the categories where the embeddings model is significantly
larger than raw poses model. ± denotes standard deviation
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Abstract

Attention based methods for image-text gen-
eration often focus on visual features individ-
ually, while ignoring relationship information
among image features that provides important
guidance for generating sentences. To alleviate
this issue, in this work we propose the Joint
Relationship Attention Network (JRAN) that
novelly explores the relationships among the
features. Specifically, different from the pre-
vious relationship based approaches that only
explore the single relationship in the image, our
JRAN can effectively learn two relationships,
the visual relationships among region features
and the visual-semantic relationships between
region features and semantic features, and fur-
ther make a dynamic trade-off between them
during outputting the relationship representa-
tion. Moreover, we devise a new relationship
based attention, which can adaptively focus
on the output relationship representation when
predicting different words. Extensive experi-
ments on large-scale MSCOCO and small-scale
Flickr30k datasets show that JRAN achieves
state-of-the-art performance. More remarkably,
JRAN achieves new 28.3% and 58.2% perfor-
mance in terms of BLEU4 and CIDEr metric
on Flickr30k dataset.

1 Introduction

Image-text generation (i.e., image captioning) is
a typical cross-modal task that connects Natural
Language Processing (NLP) and Computer Vision
(CV) (Tahvili et al., 2020). Its core goal is to auto-
matically predict a meaningful and grammatically
correct sentence, which can accurately describe
the main content of images. Practical applications
for this task mainly include injecting visual intelli-
gence into the chatbots, searching semantic image,
and helping people with visual impairments to un-
derstand the visual world. However, image-text
generation is still a challenging task. The main

∗Corresponding author.

Figure 1: Illustration of different schemes. (a) is an
example predicted by SC (base) baselines (Chen et al.,
2017) that mainly uses visual features to generate sen-
tence. (b) presents a more accurate sentence generated
by our JRAN method which learns two relationship, i.e.,
visual relationship between region features and visual-
semantic relationship between region features and se-
mantic features (i.e., background and environment).

difficulties originate from two aspect: 1) The noise
and complex background in the image are likely
to interfere with the generation of correct caption;
2) The interaction between features in the image
is often overlooked.

For difficulty 1), encouraging by the method
(Wu et al., 2021b), the noise can be injected into
RNN hidden states to predict the mean and stan-
dard deviation, and manipulate the RNN transition
states. In this way, the network robustness can be
significantly enhanced and the issue can be well
solved. However for difficulty 2), although some
related visual attention based methods (Xu et al.,
2015; Wang et al., 2016; Song et al., 2018) achieve
remarkable progress, they usually focus on the im-
age visual features while ignoring the relationships
between them. This makes the model often difficult
to generate an accurate or appropriate description
that can correctly describe the relationships among
objects in the image. For example, as illustrated in
Figure 1, only using the detected visual features in
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the image, SC (base) method (Chen et al., 2017)
predicts a description “Three boys are playing near
the ocean.", where the verb phrase “playing near"
indicates the relationship between the objects “boy"
and “ocean". Obviously, this description cannot ac-
curately reflect the main scene of the image. Con-
trarily, our JRAN accurately describes the main
content of image by effectively learn the visual re-
lationship between object region features and the
visual-semantic relationship between region fea-
tures and semantic features, generating a more rel-
evant sentence “Three children are flying a box
kite on the beach." The word “flying" appropriately
describes the relationship between the two region
features “children" and “kite", and the word “on"
accurately represents the relationship between re-
gion information “children" and semantic informa-
tion “beach" (i.e., background/surrounding). Thus,
learning the relationship between image features
is of crucial importance for generating accurate
sentence description for image.

Based on the above observations, different from
previous relationship based approaches (Wang
et al., 2020; Kipf and Welling, 2017; Li and Jiang,
2020) (See Figure 2(top)) that only explore the sin-
gle feature relationship in the image, we present a
new Joint Relationship Attention Network (JRAN)
that novelly learns the joint relationship between re-
gion features and semantic features in Figure 2(bot-
tom).

Figure 2: The illustration of existing relationship based
methods (top) and our JRAN method (bottom). (a)
Relationship based methods usually use Graph/GNN
(Graph Neural Network) to explore single (visual or
semantic) feature relationship; (b) Our JRAN method
can learn the joint relationship between visual features
and semantic features.

Specifically, we first utilize the object detec-
tor Faster R-CNN and CNN to extract region fea-
tures and complementary semantic features from

the input image. Then, JRAN builds two types
of relationship, i.e., visual relationship and visual-
semantic relationship. The former is solely based
on the detected region features in the image, and
encodes the visual relationship between region fea-
tures. Instead, the latter takes the region features
and semantic features of the image into account
to fully explore the visual-semantic relationship
between them. As shown in Figure 3, to obtain
the image representation containing joint relation-
ship features, we devise a core competition module
called joint relationship learning network, which
can effectively learn the visual relationship and
visual-semantic relationship while dynamically bal-
ancing the different contributions between them.
After that, we introduce the relationship based at-
tention module, which can adaptively focus on the
obtained most relevant joint relationship features
during generating words. The whole framework
of JRAN could be jointly learnt and optimized in
an end-to-end way. Our JRAN method achieves
significant improvement compared with the related
relationship based methods. More remarkably, it
can be integrated into a better baseline model to
achieve better performance.

Our contributions mainly include: firstly, we pro-
pose a novel image-text generation network that
utilizes the complementary region and semantic
features in the image for enriching feature repre-
sentations. Secondly, we devise a joint relationship
learning network, which can fully learn both visual
relationship and visual-semantic relationship in the
image, and further balance their contributions dur-
ing predicting different words. Finally, exhaustive
experiments indicate that our JRAN is not only
effective on large-scale but also achieves superior
performance on small-scale datasets.

2 Related Works

2.1 Image-Text Generation

Image-text generation can be treated as a sequence-
to-sequence task, which converts the data from
a raw image to a sentence description. For ex-
ample, Wang et al. (2016) presented an end-to-
end architecture to generate the sentence where
visual embedding is encoded with CNN and sen-
tence embedding is encoded using Bi-LSTM. Xu
et al. (2015) presented the first model based on vi-
sual attention, where it extracts visual features of
each region from the raw image, and then assigns
different weights for them. Chen et al. (2017) in-

5522



tegrated the spatial and channel attention features
extracted from a CNN, and uses the channel at-
tention to focus on different semantic information.
Similarly, Song et al. (2018) integrated the spatial
and channel attentions into salient object regions,
and effectively improved the performance of Vi-
sual Question Answering (VQA) task. Although
the above approaches have well performance, they
ignore the relationships among image features. In
our work, on one hand, we take full advantage of
the two complementary region features and seman-
tic features in the image. On the other hand, we
learn the visual relationships among region features
while exploring the visual-semantic relationships
between region features and semantic features.

2.2 Relationship Based Approaches

Recently, relationship based methods have been
proposed to boost the performance for image-text
generation task. It mainly uses Graph Convolu-
tion Network (GCN) and Graph Attention neTwork
(GAT) to learn the single relationship between local
features or global features. For instances, Li et al.
(2018b) took the data of arbitrary graphic struc-
ture as the input and introduced a flexible and gen-
eral GCN. Kipf and Welling (2017) presented the
GCN, which can be directly used to process graph
structure data. Wang et al. (2020) utilized GAT
to learn the relationship between image features.
It directly inputs the extracted region features and
semantic features into the GAT, and then follows
the self-attention strategy to calculate the relation-
ship between each feature node. Different from
previous relationship based methods, we devise a
new joint relationship attention network, which can
capture the visual relationship and visual-semantic
relationship in the image, and then further balance
their different contributions during generating dif-
ferent words. This effectively promotes the model
performance.

3 Our approach

The main purpose of this work is to explore the re-
lationship between different features in the image,
so as to generate a sentence description contain-
ing accurate interaction information for the input
image. The overall architecture of the proposed
JRAN is shown in Figure 3. The critical elements
in the architecture are described in detail as follows.

3.1 Problem Formulation
Formally, a sentence model receives a source im-
age I as the input and is required to output a tar-
get text sentence S to describe the image main
content. S is a sequence of sentence generated
word by word, which can be presented as S =
{x1, x2.., xT }, where T denotes the length of the
sequence, and xt, t ∈ [1, T ] is the t-th word. Dur-
ing the training, given a training dataset with a
set of image-sentence pairs (Ii, Si), and sentence
model is trained to minimize the cross entropy loss
which is equivalent to maximizing the likelihood,

Lloss(θ) = −
M∑

i=1

T∑

t=1

(logp(xi,t|Ii, xi,1:t−1, θ)),

(1)
where θ is the model parameters needed to train,
M is the total number of training samples, and xi,t
denotes the t word of ground-truth caption Si.

3.2 Feature Extraction
We extract the two complementary features from
the raw image: region features Vr and semantic
features Vs. For region features Vr ∈ RD×K , the
raw image is first fed into Faster R-CNN to de-
tect the top K candidate visual regions. For each
selected region k, we take the mean-pooled con-
volutional feature from the image region as Vk

r ,
which has D dimensions. Thus, the region fea-
tures Vr = [V1

r , ...,V
K
r ], Vk

r ∈ RD. For seman-
tic features Vs ∈ RL×D, since last convolutional
layer (Conv5_3) of ResNet usually contains the
context (or background) information around ob-
jects (Li et al., 2018a), thus, it is extracted as the
image semantic features. Then, the extracted fea-
ture map Vl ∈ RW×H×D is further flattened into
Vs ∈ RL×D, L =W ×H ,

Vs = {V1
s , ...,V

D
s } = flatten(Conv(I)), (2)

where Vi
s ∈ RL,i ∈ {1, 2, .., D} represents the

i-th semantic feature of the feature map Vs.

3.3 Joint Relationship Learning Network
We devise the Joint Relationship Learning Network
(JRLN) in Figure 4. It is consists of some stacked
feature relationship network, and each feature re-
lationship network is composed of a multi-head
Relationship Computation (RC) module. On one
hand, JRLN learns the visual relationship between
region features, which can unfold the inherent ac-
tion/interaction between different region objects.
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Figure 3: An overall framework of our proposed JRAN which consists of four modules: Feature Extractor module,
Joint Relationship Learning Network, Relationship Based Attention module and LSTM Based Language module.
We first use Feature Extractor module to extract region features Vr and complementary semantic features Vs for
image feature representation. Then, these features are input into the joint relationship learning network respectively,
and the balanced relationship feature VJ are output. After that, VJ is fed into relationship based attention module to
obtain the final context representation CF

t . Finally, CF
t is input into the LSTM Based Language module for word

generation.

On the other hand, JRLN utilizes the image seman-
tic features as guide to learn the visual-semantic re-
lationship between the semantic features and com-
plementary region features, which effectively con-
nects isolated region objects with their background
(or environment) information. Importantly, JRLN
further balances the different contributions between
the two relationships during generating words.

Now, we describe our competitive joint relation-
ship learning network. It consists of some Relation-
ship Attention (RA) and Feed-Forward Network
(FFN) modules, in which RA includes Nr RC mod-
ules. And the RC is able to learn two kinds of
relationships: (I) Visual relationships among re-
gion features, (II) Visual-semantic relationships
between region features and semantic features.

I) Visual relationships among region features:
Considering that the region features in the image
do not exist independently of each other, we learn
the visual relationship among region features by
using a multi-head RC, as illustrated in Figure 4
(b)-(I). Given the input set of N region features
{Vi

r}, the output visual relationship feature Vi
v of

the whole region feature with respect to the i-th
region feature is calculated as follows

Vi
v =

∑

j

ϕij · (WvV
j
r), (3)

where Wv is the model learnable matrix. Further,
the visual relationship weight ϕij is calculated by

measuring the correlation between the i-th region
feature and the j-th region feature,

ϕij = softmax(
WqV

i
r · (WkV

j
r)T√

dk
), (4)

where Wq and Wk are the projection matrices of
the i-th and j-th region features. dk is the matrix
dimension after projection (i.e., scaling factor). Eq.
(4) reflects how much every region is affected by
other regions, where semantically more correspond-
ing regions may have higher relationship weight
values in the image.

II) Visual-semantic relationships between re-
gion features and semantic features: Since region
features and semantic features are related to some
extent, how to learn the relationship between them
is important for image-text generation. Generally,
to effectively organize the region features guided
by the image semantic features, a common and
straightforward idea is to concatenate the guided
semantic features and all region features (i.e., Fig-
ure 5(b)). However, such a scheme is too naive to
model the relative importance of the region and se-
mantic features, i.e., the discrimination introduced
by semantic guiding features and region features
are different and should be distinguished. Thus,
we propose to utilize an attention mechanism to
weight the relative relationship between region fea-
tures and semantic features, as illustrated in Figure
4 (d)-(II). Given the input region features Vr and
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Figure 4: The illustration of our Joint Relationship Learning Network. It consists of a stack of Feature Relationship
Network, and each feature relationship network includes a Feed-Forward Network (FFN) and a Relationship
Attention (RA) module (a). Further, each RA consists of Nr Relation Computation (RC) modules (b). In addition,
in RC module (b), the broken red line part (I) indicates the visual relationships among region features; the broken
blue line part (II) is the visual-semantic relationships between region features and semantic features, and the broken
pink line part (III) denotes our designed Relationship Gate.

semantic features Vs of the raw image, the output
visual-semantic relationship feature Vi

v−s is,

Vi
v−s =

∑

j

βij · (WhV
j
s), (5)

where Vi
v−s denotes the i-th visual-semantic re-

lationship feature between region features and se-
mantic features. Further, the visual-semantic rela-
tionship weight βij between the i-th region feature
and j-th semantic feature is computed according to

βij = softmax(
WsV

j
s · (WrV

i
r)
T

√
dk

), (6)

where βij reflects the influence of image semantic
features on region features. Ws and Wr are the
model learnable matrices, which project the orig-
inal semantic features Vj

s and region features Vi
r

into the subspaces to measure how well they match,
and dk is the feature dimension after projection.

III) Relationship gate: As described in Section
introduction, relationships are of crucial important
for accurately describing the main content of the
input images. Considering that visual relationships
Vi
v and visual-semantic relationships Vi

v−s play
different roles during generating different words.
Thus, we introduce a relationship gate, which can
dynamically balance their different contributions
to obtain the image feature representation Vi

o con-

taining different relationship information,

Vi
o = σ ·WvsV

i
v + (1− σ) ·WvbV

i
v−s, (7)

where σ is the relationship gate coefficient, as,

σ = sigmoid(Concat(UvrV
i
r,UvsV

i
s) + bσ),

(8)
where W and U are the learnable matrixes, and
bσ is a bias.

Further, to comprehensively learn visual rela-
tionship while capturing visual-semantic relation-
ship, in our model we devise the multi-head RC in
which each head can focus on different relationship
attributes. Specifically, the relationship attention
module aggregates in total Nr RC modules,

Vi
J = SrV

i
r +Concat(Vi

o(1), ...,V
i
o(Nr))Sn,

(9)
where Sr is learnable parameter, and Sn is the out-
put projection matrix that aggregates the informa-
tion from different heads, and Vi

o(n), n ∈ (1, Nr)
denotes the n-th relationship feature.

Finally, a basic feed-forward network is comple-
mented to increase the model non-linearity, which
takes V i

J as its input and outputs as follows

Vi
J = Vi

JSJ + bJ . (10)

where SJ and bJ are the learnable parameters. Vi
J

denotes the i-th joint relationship feature obtained
by relationship attention module.
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3.4 Relationship Based Attention
Although the obtained joint relationship feature
Vi
J have provided a full relationship representation

for the image, in many cases, a word/phrase in the
generated sentence is only related to some of the
specific information containing in the feature repre-
sentation. Thus, we further develop a relationship
based attention module to automatically attend to
the corresponding relationship feature during gen-
erating words. The final attention context vector
CFt is obtained by the following updates,

zi,t = WT
r tanh(WJV

i
J+Whht−1+bh), (11)

ηt = softmax(zt), (12)

CF
t =

∑
ηtV

i
J , (13)

where W and bh are the model learnable param-
eters. Next, CF

t will be fed into the LSTM based
language module to predict word.

4 Experiments

4.1 Experiment Setting
Datasets and Evaluation Metrics: We extend
the experiment from large-scale MSCOCO (Lin
et al., 2014) to small-scale Flickr30k (Plummer
et al., 2015) datasets to verify the effectiveness
of our model. Further, several popular evaluation
metrics: BLEU (Papineni et al., 2002), ROUGE-
L (R) (Lin, 2004), METEOR (M) (Banerjee and
Lavie, 2005), CIDEr (C) (Vedantam et al., 2015)
and SPICE (S) (Anderson et al., 2016) are used to
evaluate the model performance, and coco-caption
code1 is utilized to compute these metrics.

Implementation Details: The LSTM hidden
state dimension is set to 512, and the number of
hidden cells and the embedded size of input words
are also set to 512. Further, the bottom-up features
provided by UD (Anderson et al., 2018) is also
used. We use the gradient clipping strategy during
back propagation to alleviate the problem of gra-
dients explosion. The initial learning rate of CNN
is 1e-5 and that of language model is 5e-4. When
fine-tuning the image model, the learning rate we
used is considerably smaller than that originally
used for the training model. In 24 training epochs,
the model stops training if its performance is not
improved. In addition, these experiments are im-
plemented via PyTorch, and we use Beam Search
(BS) strategy for predicting caption.

1Available: https://github.com/tylin/coco-caption

4.2 Ablation Studies

Firstly, some ablation experiments are performed
to clarify the effectiveness of following modules:
1) Region Features (R Fea.), 2) Semantic Features
(S Fea.), 3) Joint Relationship Learning Network
(JRLN), 4) Relationship based Attention (R-Att.)
module. Then, the effects of different relationship
fusion schemes are further analyzed in detail.

a. Effectiveness of Each Module: As shown
in Table 1, 1) in lines 1 and 2, “R Fea." or “S
Fea.", “JRLN" means that model only uses the
separate region features or semantic features to
build the relationship; 2) “R Fea." and “S Fea."
means that region features and semantic features
are directly concatenated, and then directly input
into LSTM to generate sentence; 3) “R Fea.", “S
Fea." and “JRLN" means that model learns visual
relationship and visual-semantic relationship, but
it does not introduce relationship attention to focus
on them; 4) “R Fea.", “S Fea." and “R-Att" denotes
that a relationship attention module is directly used
to focus on the concatenated region and semantic
features; 5) in line 6, “R Fea.", “S Fea.", “JRLN"
and “R-Att" is our full model, which explores the
two relationships among image features, and then
exploits relationship attention to dynamically focus
on the obtained relationship representation.

Num. Model Settings Model Metrics

R Fea. S Fea. JRLN R-Att. B-1 B-4 M R C

1 X X 77.9 36.1 26.2 56.3 120.8
2 X X 77.4 35.6 25.7 56.0 120.6
3 X X 78.8 37.1 26.8 56.8 121.4
4 X X X 80.6 38.2 28.1 58.1 127.9
5 X X X 79.1 37.4 27.1 57.1 123.2
6 X X X X 81.0 38.6 28.3 58.3 128.4

Table 1: Ablation performance of JRAN model on
MSCOCO dataset. ‘X’ means that the model only uses
the module for image-text generation.

We have the following conclusions from Table
1: 1) The metric scores line 4 is higher than line
3, which shows that the designed JRLN can ef-
fectively learn the visual-semantic relationship be-
tween region features and semantic features. 2)
Line 4 outperforms separate lines 2 and 1, it indi-
cates that visual relationship and visual-semantic
relationship can complement each other. 3) The per-
formance of model line 6 is better than line 4, it in-
dicates that relationship based attention module can
boost the model performance. 4) Our full model in
line 6 obtains the best score, which demonstrates
the overall effectiveness of the proposed model.
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b. Effectiveness of Relationship Fusion
Scheme:

(a) None (b) Concat (c) No-gate (d) RC (Ours)

Figure 5: Different schemes for exploring the relation-
ship between image features. (a) None and (b) Concat
utilize scaled dot-product attention; (c) No-gate directly
concatenates the two relationships. (d) RC (Ours) is our
designed relationship computation (RC) scheme.

There are generally four directions for deeply
exploring the relationship among features in the
image, as shown in Figure 5. (a) None denotes that
model only learns the visual relationship among
region features by using scaled dot-product atten-
tion model (Vaswani et al., 2017). Similarly, (b)
Concat follows the recent methods (Vaswani et al.,
2017; Duan et al., 2017), i.e., region features and
semantic features are directly concatenated, and
then directly fed into scaled dot-product attention
model to learn the visual-semantic relationships.
(c) No-gate does not use our designed relationship
gate, ignoring the different contributions between
visual relationships and visual-semantic relation-
ships during generating different words. (d) RC
(Ours) is our full competitive RC module, which
fully learns the two types of relationships, and fur-
ther takes into account that different relationships
contribute different during generating words.

We compare the performances of the RC variants
in the four schemes. The results are 36.3%, 37.9%,
38.4% and 38.6% in BLUE4 metric and 120.9%,
122.2%, 128.1% and 128.4% in CIDEr metric for
(a), (b), (c) and (d) schemes, respectively. It in-
dicates that our designed RC scheme outperforms
other learning relationship schemes.

5 Experimental Results

5.1 Comparison with State-of-The-Arts

Note that, for fair comparison, these models (Cor-
nia et al., 2020; Yao et al., 2019) are not included
in the comparison since the former (Cornia et al.,
2020) uses the extra dataset nocaps (Kuznetsova
et al., 2018), and the latter (Yao et al., 2019) uti-

lizes the extra COCO-detect to segment the whole
object.

a. Results on MSCOCO Dataset: The com-
parison results on MSCOCO are shown in the left
part of Table 2. It can be observed that our JRAN
achieves promising results. Compared with the
typical baselines (Li et al., 2018a), our newly pro-
posed JRAN can significantly improve BLEU 4
score from 36.4 to 38.6 (6.04%) and CIDEr score
from 122.2 to 128.4 (5.07%), which is a significant
improvement.

b. Results on Flickr30k Dataset: To further
evaluate the model generalization ability, we con-
duct experiments on small-scale Flickr30k dataset.
As shown in the right part of Table 3, JRAN
achieves the superior performance. This further
demonstrates that our model still maintains good
generalization ability even on small-scale dataset.

5.2 Comparison with Similar Relationship
Based Methods

More importantly, relationship based methods
also explore the visual relationships among im-
age features by using the graph/GCN. For example,
method “KMSL" (Li and Jiang, 2020) explicitly uti-
lizes the semantic relationship triples (scene graph)
as additional inputs to explores the visual relation-
ship. Similarly, “ARL" (Wang et al., 2020) explores
the visual relationship among image regions by
using GNN/GCN. As showed in Table 3, the per-
formance of our JRAN is significantly better than
these relationship based methods across all metrics,
which quantitatively demonstrates the potentials of
our joint relationship attention network.

5.3 Comparison with Transformer Based
Baselines

In particular, to demonstrate that our JRAN can be
integrated into the current mainstream transformer
based baselines to achieve a better performance, we
upgraded our baselines with a plain model “Sim-
plistic Transformer architecture (Sim-Trans)2" as
new baselines. The model doesn’t use transformer
encoder and the projected visual features are di-
rectly processed by the transformer decoder. There-
fore, to see the real performance gain contributed
by our JRAN model, we feed the final attention
context features CFt from the relationship based
attention module into the transformer decoder. In
Table 4, the last few rows show the results of our

2https://github.com/krasserm/fairseq-image-captioning

5527



Methods MSCOCO Flickr30k

B-1 B-2 B-3 B-4 M R C S B-1 B-2 B-3 B-4 M R C

ALT-ALTM (Ye et al., 2018) 75.1 59.0 45.7 35.5 27.4 55.9 110.7 20.3 68.5 50.7 37.0 27.0 21.2 48.0 56.2
SCST (Gao et al., 2019) 77.9 61.5 46.8 35.0 26.9 56.3 115.2 20.42 - - - - - - -

VD-SAN (He et al., 2019) 73.4 56.6 42.8 32.2 25.4 - 99.9 - 65.2 47.1 33.6 23.9 19.9 - -
Up-Down (Anderson et al., 2018) 79.8 - - 36.3 27.7 56.9 120.1 21.4 - - - - - - -

GLA (Li et al., 2018a) 72.5 55.6 41.7 31.2 24.9 53.3 96.4 - 56.8 37.2 23.2 14.6 16.6 41.9 36.2
HAN (Wang et al., 2019) 80.9 64.6 49.8 37.6 27.8 58.1 121.7 21.5 - - - - - - -

Trans+KG (Zhang et al., 2021) 76.24 - - 34.39 27.71 - 112.60 21.12 68.36 - - 26.55 21.71 - 56.62
TDA+GLD (Wu et al., 2021a) 78.8 62.6 48.0 36.1 27.8 57.1 121.1 21.6 - - - - - - -
cLSTM-RA (Yang et al., 2020) 81.7 64.5 49.4 37.2 28.0 57.9 121.5 - 70.5 52.5 37.6 27.1 21.9 49.4 57.7

Baselines 79.8 63.1 48.2 36.4 27.8 57.1 122.2 21.5 69.2 51.3 37.6 27.7 22.1 49.6 57.2

JRAN (BS=3) (ours) 80.8 64.4 49.6 38.3 28.4 58.2 128.0 21.8 69.9 53.0 37.9 27.9 24.8 52.6 57.9
JRAN (BS=4) (ours) 80.9 64.6 49.7 38.5 28.5 58.4 128.2 22.0 71.0 53.1 38.1 28.1 24.8 52.7 58.0
JRAN (BS=5) (ours) 81.0 64.7 49.8 38.6 28.3 58.3 128.4 22.1 71.2 53.3 38.3 28.3 25.0 52.9 58.2

Table 2: Performance of JRAN and related state-of-the-arts on two datesets. “BS" denotes the Beam Search strategy.

Methods B-1 B-2 B-3 B-4 M R C S

ARL (Wang et al., 2020) 75.9 60.3 46.5 35.8 27.8 56.4 111.3 -
KMSL (Li and Jiang, 2020) 79.2 63.2 48.3 36.3 27.6 56.8 120.2 21.4

JRAN (ours) 81.0 64.7 49.8 38.6 28.3 58.3 128.4 22.1

Table 3: Performance comparision of our JRAN with
the similar relationship based methods on MSCOCO.

Methods B-1 B-2 B-3 B-4 M R C S

Transformer (Sharma et al., 2018) 80.2 64.8 50.5 38.6 28.8 58.5 128.3 22.6
VORN (Herdade et al., 2019) 80.5 - - 38.6 28.7 58.4 128.3 22.6

LBPF (Qin et al., 2019) 80.5 - - 38.3 28.5 58.4 127.6 22.0
Sim-Trans ] 79.4 64.5 49.1 38.5 28.0 58.1 125.5 21.7

JRAN-Trans (ours) (BS=3) 81.2 65.3 50.1 39.2 28.9 58.7 129.4 22.6
JRAN-Trans (ours) (BS=4) 81.1 65.2 50.0 39.1 28.8 58.6 129.6 22.5
JRAN-Trans (ours) (BS=5) 80.9 65.0 49.8 39.0 28.5 58.5 129.3 22.2

Table 4: Performance comparisons with transformer
based baseline model on MSCOCO dataset. ‘]’ is the
current mainstream transformer based baseline model.

upgraded model “JRAN-Trans" under different BS.
Since the BLEU4 score of the original baselines
“Sim-Trans " is 38.5, our upgraded transformer vari-
ation based model can effectively boost the score
by 0.7. In addition, the CIDEr score is significantly
increased from 125.5 to 129.6, which is clearly
a meaningful improvement. Moreover, compared
with the other current mainstream methods, our
method still achieves very competitive performance
across most metrics.

5.4 Model Accuracy and Efficiency

We further conduct an experimental computational
cost analysis for comparing our updated model
“JRAN-Trans" with some typical models (i.e., “SC
(base) (Chen et al., 2017)", “Sim-Trans", and “X-
Transformer" (Pan et al., 2020)). Figure 6 presents
the computational cost in terms of the training time
and parameters of the model.

As can be seen from Figure 6, the baseline model
“SC (base)" has the less parameters and training

(a)

(b)

Figure 6: Illustration of the model computational cost
(a) and model accuracy (b).

time, but the model accuracy is the lowest. One
main reason is that it ignores the potential relation-
ship between features in the image. In addition, the
evaluation metric scores of the transformer based
model “X-Transformer" are relatively high, while
the parameter and training time are also relatively
high.

Compared with the “X-Transformer" model, ob-
viously, our “JRAN-Trans" does not significantly
increase the computational cost of the model while
achieving promising accuracy. This clearly indi-
cates that our method displays a trade-off between
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model accuracy and computational cost.

5.5 Qualitative Results
a. Comparison of Generating Sentences with
Different Approaches: Establishing the interac-
tion between visual and semantic information by
learning the relationship among image features, our
JRAN can generate comprehensive sentences more
consistent with the image theme scene. Figure 7
shows some examples of sentence description gen-
erated by different baseline methods, namely Base-
line (Li et al., 2018a), Sim-Trans and our JRAN-
Trans.

Figure 7: Examples of generating sentences. Blue is
region objects, purple is the background or environment
information of the object in the image, the red is the
corresponding visual relationship, and the underline in-
dicates the corresponding visual-semantic relationship.

From these exemplar results, it is clearly see that
the three methods can generate somewhat relevant
and logically correct sentences, while our JRAN
based method “JRAN-Trans" generates more con-
sistent sentences with image theme scene. It ef-
fectively improves the quality of generated text
by enriching visual-semantic relationships. For in-
stance, for image (a), compared to the relationship
words/phrases “playing" and “playing with" gen-
erated by methods “baselines" and “Sim-Trans"
respectively. Our “JRAN-Trans" not only accu-
rately generates the relationship phrase “staring at"
between region objects “dogs", but also enrichs the
relationship between region object “dog" and its
background word “road", and generates an appro-
priate interactive word “on" between them, which
significantly improves the model overall perfor-
mance.

b. Effectiveness of Relationship Gate: Figure
8 visualizes the weight of relationship gate during
generating different words. It can be seen that vi-
sual relationship and visual-semantic relationship
contribute differently to the generation of differ-
ent words. Specifically, the visual relationship has

Figure 8: Visualization of relationship gate weight. The
first column is original image, and the second column
are the values of visual relationship weight (purple) and
visual-semantic relationship weight (green).

a larger value when generating the visual words
“kite" and “sky" (red boxes). Contrarily, when
non-visual words (like “Two", “and", “flying" etc.)
are generated, the visual-semantic relationship has
greater value. This indicates that the two relation-
ships complement each other and jointly boost the
performance of image-text generation.

6 Conclusion

In the paper, a simple and effective model that
makes full use of the complementary region and
semantic features in the image, Joint Relationship
Attention Network (JRAN) is proposed. It explores
the relationship among the features to enrich the
relationship-level representation for finally boost-
ing image-text generation. To verify our claim,
we propose a new joint relationship learning net-
work, which is able to learn two kinds of feature
relationships. Considering the different contribu-
tions of these two relationships during generat-
ing words, we further devise a relationship gate
to finally obtain a feature representation contain-
ing different-level relationship information. Impor-
tantly, our model has made remarkable progress in
deeply exploring the relationship between features
for image-text generation. Extensive experiments
demonstrate that the effectiveness of our proposed
model on larger-scale and smaller-scale datasets.
More remarkably, we obtain new state-of-the-art
performances on popular Flickr30k dataset.
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Abstract

Temporal sentence grounding (TSG) is crucial
and fundamental for video understanding. Pre-
vious works typically model the target activ-
ity referred to the sentence query in a video
by extracting the appearance information from
each whole frame. However, these methods
fail to distinguish visually similar background
noise and capture subtle details of small ob-
jects. Although a few recent works additionally
adopt a detection model to filter out the back-
ground contents and capture local appearances
of foreground objects, they rely on the quality
of the detection model and suffer from the time-
consuming detection process. To this end, we
propose a novel detection-free framework for
TSG—Grounding with Learnable Foreground
(GLF), which efficiently learns to locate the
foreground regions related to the query in con-
secutive frames for better modelling the tar-
get activity. Specifically, we first split each
video frame into multiple patch candidates of
equal size, and reformulate the foreground de-
tection problem as a patch localization task.
Then, we develop a self-supervised coarse-
to-fine paradigm to learn to locate the most
query-relevant patch in each frame and aggre-
gate them among the video for final ground-
ing. Further, we employ a multi-scale patch
reasoning strategy to capture more fine-grained
foreground information. Extensive experiments
on three challenging datasets (Charades-STA,
TACoS, ActivityNet) show that the proposed
GLF outperforms state-of-the-art methods.

1 Introduction

Temporal sentence grounding (TSG) (Gao et al.,
2017; Anne Hendricks et al., 2017) is an impor-
tant yet challenging topic of video understanding
in computer vision. Given an untrimmed video,

*Corresponding author.

Sentence Query: The person opens a bottle of wine and drinks it.

Ground Truth | |12.8s 26.3s

(a) An illustration of the Temporal Sentence Grounding  (TSG).

... ...

Ours:

Detection
-based:

Without 
Detection: ... ...

... ...... ...

... ...... ...

Reasoning Reasoning

Reasoning Reasoning

Reasoning Reasoning

(b) Motivation of our proposed method.

Figure 1: (a) An illustrative example of the TSG task.
(b) The Illustration of our motivation: we learn to se-
lectively focus on the foreground patch in each frame
in a detection-free manner, which alleviates the prob-
lems of redundant backgrounds in most previous works
(without detection) and the low detection quality in time-
consuming detection-based methods. The green box
marks the focused region.

it aims to retrieve a temporal segment that seman-
tically corresponds to a given sentence query, as
shown in Figure 1 (a). Compared to other video-
and-language tasks like video captioning (Song
et al., 2015; Chu et al., 2015) and video action
localization (Shou et al., 2016; Zhao et al., 2017;
Xiong et al., 2022), TSG is substantially more chal-
lenging as it need not only capture the complicated
visual and textual information, but also learn the
complex multi-modal interactions among them for
modelling the target activity.

To localize the target segment, most previous
works either pre-define abundant segment propos-
als (Chen et al., 2018; Zhang et al., 2019; Yuan
et al., 2019; Liu et al., 2021b; Zhang et al., 2020b;
Zeng et al., 2020; Mo et al., 2022; Liu et al., 2022a)
to match the query semantic for ranking and selec-
tion, or employ proposal-free frameworks (Chen
et al., 2020; Zhang et al., 2020a; Mun et al., 2020)
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to directly regress the start/end timestamps of the
segment. Although these methods have made sig-
nificant progress in recent years, they extract the ap-
pearance information of each whole frame among
the entire video, thus limiting the effective inte-
gration of the foreground contexts for modelling
the target activity due to the visually similar back-
grounds and the missing subtle details of small
objects. To alleviate such limitations, a few recent
works (Zeng et al., 2021; Liu et al., 2022e) attempt
to additionally adopt a pre-processing detection
model (i.e., Faster R-CNN (Ren et al., 2015)) that
detects the foreground objects for filtering out the
background noise. However, they rely on the qual-
ity of the detection model while suffering from the
time-consuming detection process.

Based on the above considerations, this paper
aims to develop a detection-free grounding net-
work, which efficiently selects the most query-
relevant region in each frame to represent the frame-
level features among the entire video for better
modelling the target activity. As illustrated in Fig-
ure 1(b), in order to effectively represent different
local regions in each frame, we divide it into mul-
tiple patches that serve as the region candidates to
be selected according to their semantic similarity
with the query. Once the best patch is determined
in each frame during the network learning, they are
extracted to model the activity by spatial-temporal
correlation reasoning. Compared to previous meth-
ods, such detection-free network provides more
fine-grained foreground details by filtering out the
background regions and capturing the local con-
texts in an efficient and end-to-end manner, leading
to better grounding results.

To this end, we propose a novel TSG model,
called Grounding with Learnable Foreground
(GLF), which learns to focus on the query-relevant
foreground regions among video frames to model
the fine-grained target activity for more accurate
grounding. Specifically, we reformulate the fore-
ground detection problem as a patch localization
task. Considering the spatial-temporal information
within the video, we extract 3D spatial-temporal
patches instead of 2D spatial ones on the video
clips (i.e., several consecutive frames). We first
introduce a 3D patch embedding layer to encode
the local information of each patch candidate, and
concatenate it with an additional global represen-
tation extracted from its current video clip. Then,
we interact the patch candidates in each clip with

the query semantic to learn their matching scores
for distinguishing the foreground and background
patches. Particularly, we develop a two-level
coarse-to-fine paradigm to gradually localize the
most relevant (foreground) patch in each clip. At
last, we aggregate the representations of the most
relevant patches among the entire video to model
the target activity. In addition, considering the
sizes of the foreground regions may vary in dif-
ferent videos, we further extend the GLF model
with multi-scale patch design to capture more fine-
grained and complete foreground information for
better grounding.

Our main contributions are summarized as fol-
lows:

• To the best of our knowledge, we are the first
to propose a detection-free grounding frame-
work with the foreground learned for the TSG
task. To learn to determine the foreground
region in each clip, we split the clip into multi-
ple patch candidates and reformulate the fore-
ground detection problem as a patch localiza-
tion task.

• We propose a coarse-to-fine self-supervised
paradigm to localize the most query-relevant
region in each clip for final grounding. We
further extend the paradigm with multi-scale
patch reasoning in a parallel manner to capture
more fine-grained foreground details.

• Comprehensive evaluations on three challeng-
ing TSG benchmarks (Charades-STA, TACoS,
ActivityNet) demonstrate that our GLF out-
performs the state-of-the-art performance.

2 Related Work

Temporal sentence grounding (TSG) is a new task
introduced recently (Gao et al., 2017; Anne Hen-
dricks et al., 2017), which aims to localize the
most relevant video segment from a video with
sentence descriptions. Most previous works (Chen
et al., 2018; Zhang et al., 2019; Yuan et al., 2019;
Liu et al., 2021b, 2020b, 2021a,c, 2022b; Liu and
Hu, 2022) generate multiple segment proposals
and then rank them according to the similarity be-
tween proposals and the query for selecting the
best matching one. Instead of generating complex
proposals, some works (Zhang et al., 2020a; Chen
et al., 2020; Mun et al., 2020; Liu et al., 2022d,c)
directly regress the temporal locations of the target
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Figure 2: Overview of the proposed GLF model. It consists of the multi-modal encoders and the self-supervised
patch localization.

segment by either regressing the start/end times-
tamps based on the entire video representation or
predicting at each frame to determine whether this
frame is a start or end boundary. Although the
above two types of methods achieve outstanding
performance, they all extract the appearance infor-
mation of each whole frame among the entire video
for activity modelling, which fails to capture fine-
grained local object details for semantic composing
and may suffer from visually similar background
contents. A few recent works (Zeng et al., 2021;
Liu et al., 2022e) attempt to alleviate such limi-
tations by detecting and learning the correlations
between the foreground objects for reasoning the
multi-modal semantics. These methods can well
filter out the background noise and focus more on
local details of small objects. However, they rely on
the quality of the time-consuming detection model.
In this paper, we propose a detection-free ground-
ing network to learn to focus on the foreground
region in each frame for activity composing, which
is more efficient than the detection-based methods
since our model is trained end-to-end with a learn-
able foreground attention mechanism. Besides, our
model is also more effective than previous proposal-
based and proposal-free methods by filtering out
the background appearances and capturing more
fine-grained subtle details.

3 Our Method

Given an untrimmed video V and a sentence query
Q, the TSG task aims to determine the start and end
timestamps of a specific video segment referring
to the sentence query. Formally, we represent the
video as V = {ct}Tt=1 clip-by-clip, where ct is the
t-th clip and T is the total clip number. We also
denote the query as Q = {ws}Ss=1 word-by-word,

where S is the length of the sentence.
In this section, we introduce the overall archi-

tecture of our proposed GLF model. As shown
in Figure 2, the model consists of two main parts:
multi-modal encoders and self-supervised patch lo-
calization. First of all, GLF splits each video clip
into multiple spatial-temporal patch candidates of
equal size and encodes them with a shared 3D em-
bedding layer. Then, the model extracts the query
embeddings and interact them with all patch candi-
dates. After that, a coarse-to-fine patch localization
paradigm is proposed to gradually score the patches
in each clip according to their query-relevant sim-
ilarity. At last, a single best patch in each clip
is selected by a learned policy module to repre-
sent the current query-guided clip feature for final
grounding. Considering the sizes of the foreground
regions may vary in different videos, we further
extend the model with a multi-scale patch design to
aggregate different-level foreground contexts. We
elaborate on each module below.

3.1 Multi-Modal Encoders

Video encoder. For the input video V , to extract
different regional local information in the t-th clip
ct, we first split ct into spatial-temporal patch can-
didates with the same temporal dimension as ct
and no spatial overlap, where the total number of
spatial-temporal patches is Np = K ×K and K
is the patch number in each column/row. Then,
we take a shared-weight 3D kernel with a further
projection layer as the patch embedding module to
encode all Np patches of ct into {pt,i}Npi=1, where
pt,i ∈ Rdv1 and i denotes the patch index, and dv1
is the feature dimension. Considering the global
feature of the whole clip contains the non-local in-
formation across different patches, we also utilize
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the pre-trained C3D model (Tran et al., 2015) to
extract clip-level feature vt ∈ Rdv2 of each clip ct.

Since it is necessary to consider both spatial
and temporal locations of each patch for reasoning
patch-wise relations, we follow (Dosovitskiy et al.,
2021) to encode the spatial position embeddings
of each patch pt,i as espai , and follow (Mun et al.,
2020) to define its temporal position embeddings as
etemt . The final patch-wise feature is concatenated
as:

(pt,i)
′ = [pt,i;vt; e

spa
i ; etemt ]. (1)

We further employ a plain Transformer en-
coder (Vaswani et al., 2017) on all patches
{(pt,i)′}t=T,i=Npt=1,i=1 to model their intra-modality
contexts, and obtain corresponding contextual-
ized representations as P̂ = {p̂t,i}t=T,i=Npt=1,i=1 ∈
RT×Np×dv3 .
Query encoder. For the query Q, following pre-
vious works (Chen et al., 2018; Liu et al., 2021b),
we first utilize the Glove model (Pennington et al.,
2014) to embed each word into a dense vector, and
then employ a Bi-GRU (Chung et al., 2014) to
encode its sequential information. The encoded
features can be denoted asQ = {qs}Ss=1 ∈ RS×d

q
1 .

We also employ another plain Transformer encoder
to model the contextual textual representations as
Q̂ = {q̂s}Ss=1 ∈ RS×d

q
2 .

3.2 Self-Supervised Patch Localization
Since there is only temporal-level annotation of
the target segment and no spatial-level annota-
tion of the foreground regions, we develop a self-
supervised learning paradigm to guide the GLF
learn to focus on the potential foreground patches.
Specifically, we first interact video and query fea-
tures to align their relevant semantics, and then im-
pose two cooperated modules on the multi-modal
features to compute the clip-query matching scores
by scoring and weighting different patches in the
same clip. We further propose a coarse-to-fine
patch localization strategy to gradually select a
patch in each clip to effectively represent the clip-
level query-relevant semantic for more fine-grained
and accurate grounding.
Multi-modal interaction. To capture the relation-
ship between each patch and the query, we employ
a multi-modal interaction module that selectively
injects textual evidences into the visual patches.
We first utilize an attention mechanism to aggre-
gate the word features for each patch. For the patch
p̂t,i, we calculate the attention weights over word

features {q̂s}Ss=1 and aggregate them as:

αt,i,s = w⊤tanh(Wα
1 p̂t,i + Wα

2 q̂s + bα),

rt,i =
S∑

s=1

softmax(αt,i,s) · q̂s,
(2)

where Wα
1 ,Wα

2 are projection matrices, bα is the
bias and w⊤ is the row vector (Zhang et al., 2019).
rt,i is the patch-aware textual feature for each patch
i in the t-th clip. Next, we build the textual gate
that takes language information as the guidance to
weaken the text-irrelevant patches, and generate
the cross-modal patch features as:

gt,i = σ(Wgrt,i + Wb), p̃t,i = [p̂t,i ⊙ gt,i; rt,i],
(3)

where σ is the sigmoid function, ⊙ is the element-
wise multiplication, gt,i means the textual gate for
patch i. P̃ = {p̃t,i}t=T,i=Npt=1,i=1 is the query-guided
patch features.
Learning to focus on the foreground. We propose
a self-supervised learning paradigm to estimate the
potential foreground patches by learning to selec-
tively aggregate the patch information within each
clip for clip-query matching. Considering patches
of the same clip have different semantic similar-
ities with the query and their contribution to the
query-guided clip-level semantic is often quite dif-
ferent, we develop two separate scoring and weight-
ing modules to evaluate the patch-query similarity
and patch-to-clip weight, respectively. Both mod-
ules are implemented by two linear layers. For
the patches in the t-th clip, we formulate the self-
supervised learning process as:

β1t,i = scoring(p̃t,i), β2t,i = weighting(p̃t,i),

γt =

Np∑

i=1

softmax(β2t,i) · σ(β1t,i),
(4)

where β1t,i represents the score whether the i-th
patch in the t-th clip is the query-relevant one, β2t,i
is the predicted weight for aggregating all patches
within the current clip. γt denotes the final clip-
query matching score, which represents whether
the t-th clip is in the ground-truth segment or not.
To prevent the two modules merging into the simi-
lar or identical parameters, we utilize the sigmoid
function following the scoring module to force it
to learn the score whether the patch matches the
query, and we utilize the softmax function follow-
ing the weighting module to predict the weights for
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aggregating all patches within the current frame.
Once the clip-level scores are well-trained, the scor-
ing module can best predict the similarity between
each patch and the query, and guide the model to
focus more on the foreground patches.

To supervise the above two modules, we use
the clips falling into the ground-truth segment as
positive samples and the others as negative samples,
and formulate a balanced binary cross-entropy loss
as:

Lmatch =−
Tpos∑

t=1

Tneg
T

yt log(γt)

−
Tneg∑

t=1

Tpos
T

(1− yt) log(1− γt),
(5)

where Tpos, Tneg are the numbers of positive and
negative clips. Since most videos are long while
the lengths of annotated target segments is short,
the numbers of positive and negative clips are un-
balance. Therefore, we utilize Tneg/T and Tpos/T
to balance their losses. yt is the ground-truth la-
bel that equals to 1 for positive samples and 0 for
negative samples.
Coarse-to-fine patch localization. Equation (4)
is a vanilla solution to aggregate the potential fore-
ground contexts by patch-wise scoring and weight-
ing. Since the query-related activity mainly appears
in one small region of each clip, based on the above
coarse foreground localization operation, we fur-
ther design a fine-level localization module to only
select one patch feature to represent its clip-level
query-guided semantic for grounding. Specifically,
we develop a selection policy module to choose a
single patch from a Gaussian distribution which
is transformed from the previous predicted patch-
wise scores in each clip. There is no learnable
parameter for this module, and the patch with a
higher patch-wise score will get a larger probability
to represent the frame. We denote such generated
clip-level representations as F = {ft}Tt=1, where
ft is the feature of the selected patch in the t-th clip.
After that, we apply the effective grounding heads
following (Zhang et al., 2019; Liu et al., 2020b,a)
on F to generate NΦ fine-grained segment propos-
als for ranking via both confidence scoring loss
Liou and boundary adjustment loss Lb as:

Liou = − 1

NΦ

NΦ∑

i=1

(IoUilog(csi)+(1−IoUi)log(1−csi)),

(6)
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Figure 3: Illustration of the multi-scale patch reasoning
strategy.

Lb =
1

Npos

Npos∑

j

R1(δ̂
s
j − δsj )+R1(δ̂

e
j − δej ), (7)

where csi is the predicted confidence score of each
segment proposal, IoUt,i is corresponding ground-
truth. Npos denotes the number of the positive
proposals, and R1 is the smooth L1 loss. There-
fore, the grounding loss can be formulated with a
balanced parameter λ as follows:

Lground = Liou + λLb. (8)

Let ϕt,i denote the probability of patch p̃t,i being
selected, the goal of this selection policy module
is to minimize

∑
ϕt,i · Lground, where Lground is

the reward to enforce it to select the patch that
enables the network to produce correct grounding
in high confidence. In this manner, the coarse-level
localization module gradually finds the important
patches of each clip and yields a better clip-wise
feature representation. Meanwhile, the selected
foreground patch and corresponding representation
can further lead to more precise grounding results
in the fine-level localization module that in turn
provides better supervisions for patch-wise scoring
at the coarse level.

3.3 Multi-Scale Patch Aggregation
In order to obtain more reliable foreground infor-
mation among video clips for final grounding, we
exploit the multi-scale property to fuse the contents
of the best patch with multiple scales in each clip.
Specifically, we split the same video clip into dif-
ferent numbers of patch, and then separately train
different patch localization modules for different
patch scales. Since a patch with a smaller scale cap-
tures major local details and a patch with a larger
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scale preserves more global contexts, fusing the
information from multi-scale best patches in the
same clip leads to more representative foreground
features. However, directly fusing the multi-scale
results cannot take full advantage of the comple-
mentary information in different scales. Therefore,
we propose a gate-based multi-scale aggregation
module to distill each scale patch information for
better fusion. Details are illustrated in Figure 3.

For coarse-level patch localization, we ex-
tend the multi-scale strategy by learning the self-
supervised process in Equation (4) with different
patch scales, respectively. For fine-level patch lo-
calization, we first separately select one patch in
each clip t with multiple scales as f jt , where j
denotes the scale index and j ∈ J which is em-
pirically defined. Then, we generate a distilled
gate gj1,t and a reset gate gj2,t which play a simi-
lar role to the gates in LSTM. The gates at each
scale control how much the feature at each scale
contributes to the final fused feature. This process
can be formulated as:

(f jt )
′ = (1− gj1,t)⊙ f jt +

∑

j′∈J ,j′ ̸=j
ηj

′,jgj1,t ⊙ f j
′
t ,

f̂ jt = gj2,t ⊙ tanh((f jt )
′) + (1− gj2,t)⊙ f jt , j ∈ J ,

(9)
where ηj

′,j is a learnable parameter to adjust the
relative ratio of the distilled gate which controls
information flow of features from a different scale
j′ combined with the current scale j. f̂ jt is the up-
dated patch feature at scale index j, and we concate-
nate {f̂ jt }Jj=1 of all scales as the fused features f̃t
and send it to the grounding heads in Equation (8).

3.4 Training and Testing
Training. To ensure our proposed GLF is trained
properly, we propose a three-stage training scheme.
At the first stage, we do not integrate the fine-level
patch localization module into GLF. Instead, we
train the coarse-level one with multi-scale patch
definition by minimizing the loss Lmatch in Equa-
tion (5). In this stage, the network is trained to
score the foreground patches. At the second stage,
we fix the trained network obtained from stage-1,
and evoke the fine-level patch localization mod-
ule with the multi-scale strategy to focus on the
selected patch in each clip by minimizing the loss
Lground in Equation (8). At last, we fine-tune the
whole GLF model.
Testing. During testing, we select patches of high-
est scores in the fine-level patch localization mod-

ule for grounding.

4 Experiments

4.1 Datasets and Evaluation

Charades-STA. This dataset (Gao et al., 2017) con-
sists of 9848 videos of daily life indoor activities.
There are 12408 sentence-video pairs for training
and 3720 pairs for testing.
TACoS. This dataset (Regneri et al., 2013) collects
127 long videos, which are mainly about cooking
scenarios, thus lacking the diversity. We use the
same split as [Gao et al., 2017], which has 10146,
4589 and 4083 sentence-video pairs for training,
validation, and testing, respectively.
ActivityNet. It is a large dataset (Krishna et al.,
2017) which contains 20k videos with 100k lan-
guage descriptions. This dataset pays attention to
more complicated human activities in daily life.
Following public split, we use 37417, 17505, and
17031 sentence-video pairs for training, validation,
and testing, respectively.
Evaluation. We adopt “R@n, IoU=m” as our eval-
uation metric, which is defined as the percentage
of at least one of top-n selected moments having
IoU larger than m.

4.2 Implementation Details

For each video input, we adopt 112 × 112 pixels
of every frame. We define consecutive 16 frames
as a clip and each clip overlaps 8 frames with ad-
jacent clips. The kernel size of the 3D patch em-
bedding layer is adaptive to the defined patch size.
We extract clip-level global features from a pre-
trained C3D (Tran et al., 2015) or I3D (Carreira
and Zisserman, 2017) model. Since some videos
are overlong, we uniformly downsample clip se-
quences to T = 200 for TACoS, ActivityNet, and
T = 64 for Charades-STA. For each sentence in-
put, we set the length of word feature sequences
to S = 20, and utilize Glove (Pennington et al.,
2014) to embed each word to 300 dimension fea-
tures. The hidden dimension of Bi-GRU is 512,
and the hyper-parameter λ is set to 0.005. The
numbers Np = K × K of the split multi-scale
patches in each clip are set to 3× 3, 5× 5, 7× 7.
We train the whole model with batch size of 64
and early stopping strategy. Parameter optimiza-
tion is performed by Adam optimizer with leaning
rate 4× 10−4 for Charades-STA and 3× 10−4 for
TACoS, ActivityNet, and linear decay of learning
rate and gradient clipping of 1.0.
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Method
Charades-STA TACoS

Feature R@1, R@1, R@5, R@5, Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL C3D 23.63 8.89 58.92 29.57 C3D 18.32 13.30 36.69 25.42
QSPN C3D 35.60 15.80 79.40 45.50 C3D 20.15 15.32 36.72 25.30
CBP C3D 36.80 18.87 70.94 50.19 C3D 27.31 24.79 43.64 37.40
GDP C3D 39.47 18.49 - - C3D 24.14 - - -

VSLNet I3D 47.31 30.19 - - C3D 29.61 24.27 - -
IVG-DCL I3D 50.24 32.88 - - C3D 38.84 29.07 - -

DRN I3D 53.09 31.75 89.06 60.05 C3D - 23.17 - 33.36
CBLN I3D 61.13 38.22 90.33 61.69 C3D 38.98 27.65 59.96 46.24

MARN* C3D+Object 62.08 41.46 91.65 70.03 C3D+Object 43.24 32.70 61.33 51.59
MARN* I3D+Object 64.31 42.82 93.30 71.76 I3D+Object 45.57 34.06 62.64 52.92

GLF C3D+Patch 63.60 42.75 92.91 71.49 C3D+Patch 44.82 34.38 62.75 52.26
I3D+Patch 65.57 44.32 94.86 73.07 I3D+Patch 47.14 35.63 65.24 53.77

Table 1: Overall performance comparison among our method with proposal-based and proposal-free methods on the
Charades-STA and TACoS datasets under the official train/test splits. * denotes that we remove MARN’s additional
ResNet feature for fair comparison.

Method
Charades-STA TACoS

Feature R@1, R@1, R@5, R@5, Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

MMRG Object 44.25 - 60.22 - Object 57.83 39.28 78.38 56.34
MARN* C3D+Object 46.19 32.01 63.25 39.88 C3D+Object 59.56 40.47 80.30 58.74
MARN* I3D+Object 47.67 33.49 65.02 40.51 I3D+Object 61.16 42.33 82.75 59.90

GLF C3D+Patch 47.85 33.68 64.54 41.20 C3D+Patch 61.37 41.72 81.96 59.45
I3D+Patch 49.59 35.01 66.34 42.79 I3D+Patch 62.98 43.11 83.52 60.13

Table 2: Comparison with detection-based method MMRG on Charades-STA and TACoS datasets under MMRG’s
train/test splits.

Method
ActivityNet

Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL C3D 29.01 10.34 59.17 37.54
QSPN C3D 33.26 13.43 62.39 40.78
CBP C3D 35.76 17.80 65.89 46.20
GDP C3D 39.27 - - -

VSLNet C3D 43.22 26.16 - -
IVG-DCL C3D 43.84 27.10 - -

DRN C3D 45.45 24.36 77.97 50.30
CBLN C3D 48.12 27.60 79.32 63.41

Ours C3D+Patch 51.35 30.97 83.26 67.32
I3D+Patch 53.48 32.15 85.02 68.81

Table 3: Overall performance comparison on the Activi-
tyNet dataset under the official train/test splits.

4.3 Comparisons with the State-of-the-art

Compared Methods. To demonstrate the effec-
tiveness of GLF, we compared it with several
state-of-the-art methods: Traditional: CTRL (Gao
et al., 2017), QSPN (Xu et al., 2019), DRN (Zeng
et al., 2020), CBLN (Liu et al., 2021b), CBP
(Wang et al., 2020), GDP (Chen et al., 2020),
VSLNet (Zhang et al., 2020a), IVG-DCL (Nan
et al., 2021); Detection-based: MMRG (Zeng et al.,
2021), MARN (Liu et al., 2022e). In particular,
the MARN model relies on many types of feature

CTRL DRN CBLN MARN (+detection) GLF
Speed 2.23s 0.15s 0.18s 0.13s (+19.64s) 0.17s

Table 4: Seconds per video on TACoS dataset.

inputs (i.e., C3D, Object, ResNet) for better repre-
sentation learning. Specifically, their object feature
is extracted by detection model, and their ResNet
model is utilized to encode such object contexts.
Compared to MARN, we only feed single C3D
feature as input. Since our method is proposal-free,
we re-implement and remove their detector and
ResNet models as a new variant MARN* to make
a fair comparison with our method.
Comparison on Charades-STA. As shown in Ta-
ble 1, we reach the highest results over all evalu-
ation metrics on the Charades-STA dataset. Par-
ticularly, our C3D+Patch variant outperforms the
best detection-based method MARN* by 1.29%
and 1.46% in terms of R@1, IoU=0.7 and R@5,
IoU=0.7, respectively. Compared to I3D+Patch
variant of MARN*, our model also outperforms it
by 1.50% and 1.31% in terms of R@1, IoU=0.7
and R@5, IoU=0.7, respectively. We also compare
our model following the same data splits of MMRG
in Table 2 for fair comparison. It shows that our
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Multi-modal
Encoders

Self-supervised Patch
Localization Multi-scale

Strategy
R@1,

IoU=0.7
R@5,

IoU=0.7Lmatch Lground
✓ × × × 33.71 62.35
✓ ✓ × × 37.28 65.86
✓ ✓ × ✓ 40.44 69.17
✓ ✓ ✓ × 39.53 68.20
✓ ✓ ✓ ✓ 42.75 71.49

Table 5: Main ablation study on Charades-STA dataset.

Components Variants R@1, R@5,
IoU=0.7 IoU=0.7

Video
Encoder

w/o global feature 40.47 70.13
w/ global feature 42.75 71.49

w/o position encoding 39.86 68.94
w/ position encoding 42.75 71.49

w/o transformer 40.38 69.82
w/ transformer 42.75 71.49

Query
Encoder

w/o Bi-GRU 41.64 70.71
w/ Bi-GRU 42.75 71.49

w/o transformer 41.53 70.70
w/ transformer 42.75 71.49

Table 6: Ablation study on the multi-modal encoders.

GLF leads to large improvement.
Comparison on TACoS. Table 1 and 2 also show
that our GLF achieves the best grounding results
on TACoS dataset. Table 1 and 2 also report the
grounding results on TACoS dataset. Compared to
MARN*, our C3D+Patch model outperforms it by
1.58%, 1.58%, 1.42%, and 0.67% in terms of all
metrics. Our I3D+Patch model also outperforms
MARN* by a large margin.
Comparison on ActivityNet. Since both MMRG
and MARN methods are not implemented on the
ActivityNet dataset, we only report the perfor-
mances on this dataset under official splits as shown
in Table 3. Compared to previous best method
CBLN, our C3D+Patch model outperforms it by
3.23%, 3.37%, 3.94%, and 3.91% in terms of all
metrics. Our I3D+Patch model also outperforms
CBLN by a large margin.
Efficiency Comparison. As shown in Table 4, we
evaluate the efficiency of our GLF model, by fairly
comparing its running time with existing methods
on TACoS dataset. It shows that our GLF is more
efficient than the detection-based method MARN
while on par with the other common methods DRN
and CBLN.

4.4 Ablation Study

We perform in-depth ablation studies to evaluate
the effectiveness of each component in GLF on
Charades-STA dataset. We utilize the C3D+Patch
variant as our backbone here.

Components Variants R@1, R@5,
IoU=0.7 IoU=0.7

Multi-scale
Aggregation

w/o gate 41.33 70.16
w/ gate 42.75 71.49

Patch
Definition

overlap 42.84 71.21
unoverlap 42.75 71.49

Scale Size Np

{9} 40.45 69.27
{25} 40.72 69.50
{49} 40.57 69.48
{81} 40.13 69.06

{9,25} 42.04 70.79
{25,49,81} 42.25 70.98
{9,25,49} 42.75 71.49

{9,25,49,81} 42.81 71.64

Table 7: Ablation study on the multi-scale strategy,
where scale sizes 9, 25, 49, 81 denote 3× 3, 5× 5, 7×
7, 9× 9, respectively.

Main ablation. As shown in Table 5, we verify
the contribution of each part in our GLF. We first
implement the baseline model by directly applying
the grounding heads on the interacted multi-modal
features of all patches without both self-supervised
patch localization and multi-scale strategy modules.
The baseline model achieves 33.71% and 62.35%
in terms of R@1, IoU=0.7 and R@5, IoU=0.7, re-
spectively. By adding the coarse-level patch local-
ization module Lmatch to the baseline, the model
brings the improvement of 3.57% and 3.51% since
it selectively focuses on the important foreground
regions. After further adding the fine-level Lground
for filtering out the redundant patches, the model
achieves better results. Besides, the multi-scale
strategy also brings a significant improvement to
the full model.
Ablation on multi-modal encoders. We also con-
duct the investigation on different variants of multi-
modal encoders in Table 6. We find that the full
model performs worse if we remove the global fea-
ture that helps to better explore the non-local infor-
mation among the patches. Besides, it also presents
the effectiveness of the position encoding in identi-
fying spatial-temporal knowledge. The transformer
modules in both video and query encoders and the
Bi-GRU module also bring additional performance
to the full model.
Ablation on the multi-scale strategy. We fur-
ther perform ablation study on our proposed multi-
scale patch strategy in Table 7. It shows that our
gate-based multi-scale aggregation module brings
the improvement of 1.42% and 1.33% in terms of
R@1, IoU=0.7 and R@5, IoU=0.7, respectively.
Besides, the overlapped and unoverlapped patches
have little impact on the final grounding perfor-
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Sentence Query: The person opens a bottle of wine and drinks it.

3 3u
Scale

Scale
5 5u

Scale
7 7u

Ground Truth | |12.8s 26.3sGround Truth | |12.8s 26.3s

Our Prediction | |12.7s 26.3sOur Prediction | |12.7s 26.3s

Figure 4: Visualization results on the predicted scores
of patches.

mance. Therefore, we choose the unpverlapped
one in all our experiments. Moreover, with more
various patch scales, the model usually performs
better than an individual scale. The variant with
four scales {9, 25, 49, 81} achieves the best result
but only performs marginally better than the three-
scale one {9, 25, 49} at the expense of a signif-
icantly larger cost of GPU memory. Thus, we
choose Np = {9, 25, 49} in our all experiments.

4.5 Visualization

We show the visualization on the scored multi-scale
patches in Figure 4, where the patches with highest
scores contain the most query-related visual appear-
ances. From this figure, we can find that our scoring
function can well learn the patch-query similarities
among different grains. By jointly combing the
contexts from different attended patches, our GLF
model performs accurate grounding result.

5 Conclusion

In this paper, we make the first attempt to pro-
pose a novel detection-free framework for tempo-
ral sentence grounding (TSG), called Grounding
with Learnable Foreground (GLF). In particular, we
split each video frame into patches with multiple
scales, and reformulate the foreground detection
problem as a patch localization task. In detail, we
interact each patch with the query semantic to learn
their matching scores supervised by our newly de-
signed self-supervised losses. Further, we develop
a two-level coarse-to-fine paradigm to gradually lo-
calize the most query-relevant (foreground) patch
in each clip. Moreover, considering the sizes of the
foreground regions may vary in different videos,

we extend the GLF model with multi-scale patch
design to capture more fine-grained and complete
foreground information for better grounding. Ex-
perimental results on three challenging datasets
(Charades-STA, TACoS, ActivityNet) validate the
effectiveness of our proposed model.
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Abstract

Despite the recent success of pretrained lan-
guage models as on-the-fly knowledge sources
for various downstream tasks, they have been
shown to inadequately represent trivial com-
mon facts that vision typically captures. This
limits their application to natural language un-
derstanding tasks that require commonsense
knowledge. We seek to determine the capa-
bility of pretrained visual–linguistic models as
knowledge sources on demand. To this end,
we systematically compare language-only and
visual–linguistic models in a zero-shot com-
monsense question answering inference task.
We find that visual–linguistic models are highly
promising regarding their benefit for text-only
tasks on certain types of commonsense knowl-
edge associated with the visual world. Sur-
prisingly, this knowledge can be activated even
when no visual input is given during inference,
suggesting effective multimodal fusion during
pretraining. However, we also reveal that there
is still a huge scope for improvements towards
better cross-modal reasoning abilities and pre-
training strategies for event understanding.1

1 Introduction

Commonsense knowledge is essential in human
life for task solving and communication. Being
aggregated knowledge acquired from past experi-
ences and communications, it is usually left im-
plicit in human communication, and used sub-
consciously for reasoning and drawing inferences.
This puts a challenge on natural language under-
standing systems, and a large body of work has
put forward approaches to provide commonsense
knowledge to models for downstream tasks (Yang
et al., 2019; Chen et al., 2018; Mihaylov and Frank,
2018). While knowledge bases have been a pop-
ular way to provide relevant knowledge for a task

1Our datasets, CWWVImg and CWWVClip, are provided
at https://github.com/Mallory24/CS_Probing

at hand, more recently, pretrained language mod-
els (PTLMs) have become a popular mechanism
to extract knowledge in free-form text on demand.
Tasks range from, e.g., persona-grounded dialog
(Majumder et al., 2020), narrative story generation
(Ammanabrolu et al., 2020), to metaphor genera-
tion (Stowe et al., 2021). Shwartz and Choi (2020)
and Bisk et al. (2020), however, suggest that text
corpora alone may be insufficient for knowledge ac-
quisition due to reporting bias found in them (Gor-
don and Durme, 2013). This has led to analyzing
the knowledge that PTLMs possess through dedi-
cated probing studies (Petroni et al., 2019; Singh
et al., 2021; Zhou et al., 2020b)

Existing works on probing PTLMs have used a
loose categorization of commonsense, which lim-
its a comprehensive understanding of the types of
commonsense they possess and lack, respectively.
At the same time, the literature proposes vision as a
promising knowledge source (Izadinia et al., 2015;
Bagherinezhad et al., 2016; Sadeghi et al., 2015). It
seems therefore straightforward to leverage visual–
linguistic (VL) models for knowledge extraction
on demand—these representation models are ex-
tensions of PTLMs to the visual–linguistic domain
by pretraining LMs and image recognition models
jointly on multimodal data (Tan and Bansal, 2019;
Chen et al., 2020; Lu et al., 2019). Yet, the ques-
tion on their capability to capture commonsense
knowledge that can be activated through language
only (Yun et al., 2021) is yet to be explored system-
atically.

In this work, we address this research gap by
conducting a controlled comparison of text-only
and VL models. Specifically, we extend a synthetic
commonsense question answering (QA) dataset
based on Ma et al. (2021)’s work, which structures
knowledge relations into abstract types (called di-
mensions henceforth), and transform it to a QA
inference task. We use the task to compare the
models by applying them in a zero-shot manner,
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and in their natural setting—masked language mod-
eling.

The overarching question of our study is:

Do VL models learn to encode commonsense
knowledge through multimodal pretraining,
that can be activated during inference from

textual input only?

In particular, we seek to empirically answer:
(Q1) Which dimensions of commonsense do VL

models possess compared against text-only
PTLMs?

(Q2) During pretraining, does explicit visual infor-
mation (i.e., images) benefit commonsense
knowledge encoding?

(Q3) During inference, is explicit visual observa-
tion (i.e., images) necessary for recalling com-
monsense knowledge?

(Q4) Do commonsense acquisition and retrieval de-
pend on the architecture of VL models?

We address the questions by performing a range
of experiments using various pretrained models and
ablated variants. We find that existing VL models
do complement PTLMs on certain commonsense
dimensions, which are related to the visual world
(part-whole, spatial , i.a.), and that they can be ac-
tivated through language input only, making them
promising for their use in natural language tasks
that do not require explicit visual context. We also
identify a range of limitations opening up several
avenues for future work, including enhanced pre-
training and modality integration strategies, and
improved multimodal prompting (Shin et al., 2020;
Zhong et al., 2021; Liu et al., 2021).

2 Related Work

Commonsense Knowledge Mining from Vision
Although recent interest in commonsense knowl-
edge mining remains text-based (Jastrzębski et al.,
2018; Zhou et al., 2020b; Liang and McGuinness,
2021; Bosselut et al., 2019), several studies have
explored the visual world: Chen et al. (2013) ex-
tract commonsense relationships from the web to
improve visual understanding, while Zellers et al.
(2018) exploit commonsense priors from visual
resources (Krishna et al., 2017) for scene graph
generation. Several works learnt specific types of
commonsense, including object affordances (Goyal
et al., 2017) and temporal causal knowledge (Zhang
et al., 2020a). Only few works used VL models
for purely text-based tasks (Cui et al., 2020; Tang

et al., 2021) in a pipeline approach to extract com-
monsense from them.

The works above focus on explicit visual com-
monsense extraction. We, in contrast, seek to study
the extent and types of commonsense knowledge
that pretrained VL models implicitly capture and
that complement pretrained text-based models.

Machine Commonsense Evaluation Common-
sense knowledge evaluation is usually conducted
with dedicated benchmarks specific for selected
knowledge types. Existing formulations range from
multiple choice question answering (Zellers et al.,
2019; Zhou et al., 2019; Bisk et al., 2020; Richard-
son and Sabharwal, 2020) and machine reading
comprehension (Huang et al., 2019) to knowledge
base completion tasks (Petroni et al., 2019; Davi-
son et al., 2019), which makes a systematic and
comprehensive commonsense knowledge evalua-
tion even more challenging (Santos et al., 2020).
Recent works assess model consistency in common-
sense reasoning by introducing linguistic perturba-
tions, complementary counterparts, and logically-
equivalent rephrased sentences (Zhou et al., 2020b;
Singh et al., 2021; Zhou et al., 2020a). Akin to
Ilievski et al. (2021), our goal is to present a com-
prehensive comparison of the commonsense knowl-
edge resided in pretrained models. While previous
research dominantly employs pretrained language-
only models (PTLMs), we are not aware of any
work like ours—a structured analysis of the types
of commonsense knowledge implicitly encoded in
pretrained VL models.

3 The QA Dataset CWWVImg

To compare VL models against purely textual mod-
els with respect to the commonsense knowledge
they capture, we extend Ma et al. (2021)’s pro-
cedure for creating a synthetic dataset of prompt–
answer candidate instances (CWWV) to that of a
multimodal commonsense dataset (CWWVImg).

It provides a set of QA instances for various
knowledge relations, structured into 10 dimensions
of commonsense knowledge (e.g., spatial ). Ques-
tions are in the form of filled prompts (Le Scao
and Rush, 2021; Liu et al., 2021): an instance in
CWWVImg has three natural language statements,
each associated with a set of images. Each state-
ment is a pair of a prompt (e.g., Shade is not) and
one of three candidate answers (e.g., sunny). Ta-
ble 1 shows an example for each dimension (asso-
ciated images are omitted for space reasons).
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CS dimension Starting prompt Answer candidates # Instances

part-whole Furry animals have A1: effect of chilling innovation. A2: millions of hair. A3: hole in. 1,165
taxonomic Recruit is a way to A1: rate. A2: enlist. A3: slope. 1,323
distinctness Shade is not A1: flat. A2: postal worker. A3: sunny. 828
similarity Throw up is a synonym of A1: rutinic acid. A2: random. A3: vomit. 644
quality A wet floor is A1: slippery. A2: light brown. A3: abbreviated to unido. 1,840
utility A fork is used for A1: speed of transit. A2: confuse voters. A3: picking up food. 2,090
creation Music is created by A1: olive oil mill. A2: mapping process. A3: instruments. 100
temporal Going for a haircut requires A1: finding barber. A2: hard examinations. A3: write persuasively. 1,889
spatial You are likely to find a document folder in A1: file drawer. A2: madagascar jungle. A3: minerals. 1,599
desire You would thank someone because you want to A1: accomplish mutual goal. A2: feel good. A3: cool off. 1,781

Table 1: CWWVImg: examples and their number per dimension (13, 259 in total). Correct answers are in bold.
Topic words with retrieved images are underlined (images not shown for space reasons).

CSKG

Q. You are likely to find a mouse in

A. attic. B. beach. C. forest.

(mouse,  /r/AtLocation ,  attic)

Lexicalization

Selecting Negative Examples

Bad Negatives Good Negatives

You are likely to find a mouse in ...

Retrieve Images

Topic-Image
 Lookup 
Table

(mouse,  /r/IsA ,  animal)

(spider,  /r/AtLocation , attic)

(mouse,  /r/AtLocation ,  desktop)

(pond,  /r/AtLocation ,  beach)

(lizard,  /r/AtLocation ,  forest)

Figure 1: CWWVImg construction pipeline.

In §3.1, we first describe Ma et al.’s (2021)
pipeline, shown in Figure 1, to create the purely
textual CWWV.2 Then, to build our QA dataset
CWWVImg, we retrieve images for CWWV’s in-
stances through a topic-lookup table (Zhang et al.,
2020b), as we explain in §3.2.

3.1 Generation of CWWV
The Commonsense QA data CWWV is auto-
matically generated from a consolidated com-
monsense knowledge graph (Ilievski et al., 2020,
CSKG). CSKG is an aggregation of 7 knowl-
edge bases that represents knowledge state-
ments as structured triples (h, r, t) of their start
node h, relation label r, and end node t, as
in (mouse,/r/AtLocation, attic). All knowledge
relations are categorized into one of 13 abstract
dimensions, e.g., spatial , similarity, temporal . To
create CWWV from CSKG, we only consider the
knowledge bases ConceptNet (Speer et al., 2017),
WordNet (Miller, 1995), Visual Genome (Krishna
et al., 2017) and Wikidata (Vrandecic and Krötzsch,
2014), and 10 dimensions (30 knowledge relations,
see App. A, Tab. 5 for the mapping).

Ground-Truth QA Generation Given a
knowledge triple (h, r, t) in CSKG, a ground-

2We use Ma et al.’s 2021 script provided at
https://github.com/Mayer123/HyKAS-CSKG.

truth prompt–answer pair is generated by
treating the start node h and the end node t
as prompt and correct answer, respectively,
and applying pre-defined sentence templates
to lexicalize them into a sentence. For exam-
ple, the triple (mouse,/r/AtLocation, attic)
in Figure 1 is transformed into a sentence
“You are likely to find a mouse in an attic”.
To prevent models from applying shortcuts,
triples with overlapping content words be-
tween the start and end nodes are discarded;
e.g., (bread slicer,/r/UsedFor, slicing bread)
won’t be included. Uncommon concepts or named
entities are also filtered out.3

Selecting Negative Candidates For each gen-
erated QA instance, Ma et al. (2021) select two
negative answer candidates according to two prin-
ciples: (i) the negative candidate is related to the
prompt, and thus remains informative for decision,
and (ii) it can be clearly discriminated from the
correct one, and thus maintains fairness for the
model.

To satisfy informativeness, negative candidates
are randomly chosen from a pool of relation
triples (h′, r′, t′) with r′ = r, i.e., the relation is
the same as the original one. In this sense, a bad
negative would be, e.g., (mouse,/r/IsA, animal)
(Fig. 1). To ensure fairness, the end node
must not be the ground-truth one, t′ ̸= t,
and h′ must not share any overlapping tokens
with h; e.g., (spider,/r/AtLocation, attic) and
(mouse,/r/AtLocation, desktop) (Fig. 1) are dis-
carded for violating these two heuristics.

We create CWWV by randomly sampling
2, 500 QA instances for each dimension (creation
only has 141 samples), totalling 22, 641 instances.

3Uncommon concepts are determined by low word
frequency in a corpus https://pypi.org/project/
wordfreq/ (accessed 9 September 2020) and named enti-
ties are identified through the capital letter.

5544



3.2 Generation of CWWVImg

Retrieving Images from Conceptual Captions
The VL models we use in our experiments are pre-
trained on the training set of Conceptual Captions
(Sharma et al., 2018, CC), a widely adopted dataset
of weakly-associated image–text pairs collected
from the web which may be regarded as a model’s
visual experience. We hence use the training set
of CC as image retrieval pool to augment CWWV
with images. As an efficient way to provide a vi-
sual environment, as realistic as possible, for a
purely linguistic task, we perform an efficient re-
trieval method inspired by Zhang et al. (2020b):
We first transform CC’s image–caption pairs into
a topic–image lookup table T . Given a prompt–
answer candidate pair (statement) of CWWV, we
then select several topic words based on TF–IDF
weights, QAtopic = {t1, t2, ..., tq}, and use them
to query T for associated images; for example,
“A wet floor is slippery” has a set of topic words
{wet,floor, slippery} (Further details can be found
in Appendix. B.1). Recall that each QA instance
has three statements. As shown in Figure 1, by
querying T for the three candidate answers “attic”,
“beach”, “forest”, we retrieve their corresponding
images. If no image can be retrieved for a statement
of an instance, the instance is discarded altogether.
The resulting image-grounded commonsense QA
dataset, CWWVImg, has 13, 259 QA instances in
total with the image grounding rate of 58.6%.1

Quality of Retrieved Images We assessed the
effectiveness of our simple retrieval approach
through a human annotation study on Amazon Me-
chanical Turk (AMT), in which we asked workers
to judge the association of image–word pairs. We
sampled 1, 000 pairs from CWWVImg uniformly
across the 10 commonsense dimensions, and asked
AMT workers to judge each pair as either “associ-
ated” or “not associated”. Details on the annotation
methodology and data analyses are given in Ap-
pendix B.2. According to majority vote (2 out of 3
judges per pair), 64.2% of the pairs are associated,
among which part-whole and spatial have more
than average associated pairs (74.3% and 70.2%,
respectively). The inter-annotator agreement under
Fleiss’ Kappa coefficient (Fleiss, 1971) is between
0.21− 0.44 across dimensions, which is only a fair
to moderate agreement, indicating the high subjec-
tivity of this task. We also found, unsurprisingly,
that concrete words and nouns tend to get higher
scores with their paired images.

4 Experiments: QA Task and Inference

Our goal is to assess the benefit of pretrained VL
models for purely linguistic tasks underlying com-
monsense (CS) knowledge. Specifically, we seek
to answer the questions (Q1) – (Q4) that we put
forward in §1. To this end, we use our derived
image-grounded dataset, CWWVImg, and evalu-
ate pretrained VL models against language-only
PTLMs in a prompt-based QA task setting (§4.1).
We stress that in order to solve CWWVImg, only
natural language understanding and commonsense
knowledge is required, but no explicit visual input
(images).

We perform our experiments in a zero-shot set-
ting, i.e., without fine-tuning the models on the task,
since our goal is to study the ability of task-agnostic
pretrained models to capture commonsense knowl-
edge (Tamborrino et al., 2020; Ma et al., 2021).

4.1 Task: Prompt-based Zero-Shot QA

Given an instance T ∈ T of CWWVImg, compris-
ing three natural language statements (and associ-
ated images Ii), Ti = (Q||Ai), i = 1, . . . , 3, where
Q is the prompt, and Ai a candidate answer. Let
tj ∈ Ti, j = 1, . . . , |Ti| denote the sequence of to-
kens in Ti. Then, the task is to determine which
of the three statements is a true assertion (given
visual context Ii or not). To mitigate the bias that
some template prompts can favor one model over
the other in terms of knowledge retrieval (Jiang
et al., 2020), we use a two-stage inference pro-
cedure, namely a generative and a discriminative
setting. During the generative stage, we test rep-
resentative PTLMs and VL models, respectively,
under their natural setting—masked language mod-
eling (MLM) (as detailed in §4.3). Later in the
discriminative stage, the ranking of the candidate
answers Ai is determined by how well the model
can reconstruct the masked tokens of the respective
statement Ti by comparing the MLM loss.

4.2 Tested Models

Pretrained Language Models (PTLMs) We use
BERT (Devlin et al., 2019) for our comparison,
since this model serves as the linguistic backbone
of the VL models that we study. We also compare
against RoBERTa (Liu et al., 2019), which was pre-
trained on ten times more data than BERT (160GB
vs. 16GB of text, resp.). We use the BASE models
of the HuggingFace library (Wolf et al., 2019).
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VL Models We select the single-stream model,
UNITER (Chen et al., 2020), and the dual-stream
variant, VILBERT (Lu et al., 2019), as the re-
spective representative models of the two common
VL architectures. UNITER is built to have un-
constrained inter-modal and intra-modal attentions
across all attention blocks, whereas VILBERT has
certain attention blocks specifically constrained to
perform inter-modal attention only.

We use the pretrained models of VOLTA

(Bugliarello et al., 2021), which provides both
architectures in an unified framework and under
a controlled setup to allow a fair comparison.4

The models were initialized with the pretrained
BERTBASE , and further trained on the training set
of Conceptual Captions (CC) under three objec-
tives: masked language modeling (MLM), masked
object classification and image–text matching.

The visual input is preprocessed into a se-
quence form of visual tokens v ∈ V consisting of
an [IMG] feature and 36 object region features.5

Each visual token is accompanied with its corre-
sponding spatial encodings in a 5-d vector.6

4.3 Inference Variants

Common to all models is that they are queried
with each of the three statements Ti = (Q||Ai)
of an instance T ∈ CWWVImg, and the Ti that
receives the lowest mean MLM loss S(Ti) will
be returned as answer. We explain the respective
precise formulations of S(Ti) that the textual and
VL models apply in the following.

Inference in Language Models To com-
pute S(Ti) in the case of the language-only
LMs, we sequentially mask out each token qj
in Ti’s prompt Q of length LQ, and compute its
log-likelihood, conditioning on the remaining to-
kens Ti\j7:

S(Ti) = −
1

LQ

LQ∑

j=1

logP (qj |Ti\j), qj ∈ Q

4We choose UNITER and VILBERT since they perform
the best among each respective variant on a wide range of VL
benchmarks (Bugliarello et al., 2021).

5Region features are extracted by a Faster R-CNN with
a ResNet-101 backbone (Anderson et al., 2018) trained on
Visual Genome with 36 regions of interest; [IMG] is the
mean-pooling of the 36 features (Bugliarello et al., 2021).

6(x1, y1, x2, y2, w ∗ h): normalized left/top/right/bottom
coordinates and the area.

7For convenience, we use the notation Xi\j to refer to a
sequence of elements (x1, . . . , xj−1, xj+1, . . . , x|X|).

Figure 2: Different inference modes in the VL models
(dual-stream shown here): Retrieved (TV ), Text-Only
(T ), Vision-Only (V ) Modes.

This way, the statement score is not affected by
the internal bias of the answer’s tokens, e.g., word
frequency (Tamborrino et al., 2020).

Inference in VL Models Recall that
CWWVImg provides multiple images to
serve as visual context for each statement (§4.1).
Apart from examining the behavior of the VL
models when they get exactly the same input as
the textual LMs (Text-Only), we further analyse
them on modes differing in their input (Fig. 2):
(i) their natural setting with multimodal input
(Retrieved), (ii) Vision-Only, and (iii) visual
noise with random images (Dummy).

Text-Only Mode To examine Q3 (see §1), if ex-
plicit, situated visual input is required for using
VL models for purely language-based tasks un-
derlying CS knowledge, we apply inter-modal at-
tention masks on the models’ visual input. This
way only the representations of the linguistic en-
coder affect the model decision. Hence, we can
test if the VL models encode aggregated visual ex-
posures which they can activate through language
only input. Models under this mode are suffixed
∗T , e.g., UNITERT .

Retrieved Mode Given a statement in sequence
form, Ti = (t1, t2, . . . , t|Ti|), with its associated
images Ii = {e1, . . . , eq} based on the q topic
tokens tl identified in Ti (see §3.2). Instead of
testing the models under a situated context like the
standard VQA task, our goal is to examine their
effectiveness in activating world knowledge from
explicit visual input during inference. We thus
deviate from the conventional setup and do not
provide a single, but multiple images that represent
general visual concepts to the models. We apply a
threshold τ on the object detection score to choose
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row part-whole taxonomic distinctness similarity quality utility creation temporal spatial desire All

1 RoBERTa 68.5 61.8 80.2 67.4 69.7 74.2 72.0 60.9 54.8 65.9 67.5
2 BERT 62.8 71.2 80.1 54.8 68.1 72.4 74.0 53.7 52.4 60.4 65.0
3 BERTCC 68.4 62.0 66.6 51.1 66.0 65.4 62.0 53.6 63.7 58.3 61.9
4 UNITERT 70.9 59.8 71.3 51.2 69.9 71.5 71.0 52.7 61.5 62.5 64.0
5 VILBERTT 63.9 60.3 64.9 46.7 66.1 71.2 58.0 52.2 61.0 62.8 60.7

Table 2: Accuracy on CWWVImg under Text-Only inference mode (The full table can be seen in App. C, Tab.7).

a set of salient regions from each individual image8,
resulting in a set of extracted visual tokens Vei ∪
{[IMG]} which we feed into the model. Now,
during MLM inference, we need to ensure fairness
to the LMs by avoiding information leakage from
the visual modality. Hence, when masking out
token qj in Ti’s prompt Q, we also mask out the
subset of visual tokens Vqj associated to qj ∈ Q:

S(Ti) = −
1

LQ

LQ∑

j=1

logP (qj |(Ti\qj∥Vei\Vqj )

To reconstruct qj , it is conditioned on the concate-
nation of the unmasked textual tokens Ti\qj and the
remaining visual tokens Vei\Vqj that are not associ-
ated to qj . Models evaluated under this mode are
denoted as UNITERTV and VILBERTTV .

Vision-Only Mode We ablate the textual modal-
ity via inter-modal attention masking, the VL mod-
els can hence rely only on visual observation to
reconstruct masked tokens in the prompt Q of a
candidate statement. For example, to reconstruct
the masked “vegetables” token in prompt “You are
likely to find [MASK] in” (Fig. 2), answer candi-
dateA3 (“garden”) is not given as observable input,
but only its respective associated image I3. Note
that also the visual tokens associated to “vegetables”
are masked:

S(Ti) = −
1

LQ

LQ∑

j=1

logP (qj |(Qi\qj∥Vei\Vqj )

This posits a challenging task on testing the mod-
els’ cross-modal integration ability of non-aligned
concepts without the help of the corresponding tex-
tual part as a bridge (e.g., relate the appearance
of “garden” to the concept of “vegetables”). The
variants are suffixed ∗V , e.g., VILBERTV .

Dummy Mode We sample 3 images from the CC
image pool that are not in CWWVImg to serve as
random visual input for each QA instance. During
inference, we allow the VL models to fully observe

8Starting at τ ≥ 0.7, we decrease τ by 0.1 steps until at
least one region is found.

this visual input Ṽei since it is not or barely related
to any textual token qj ∈ Q:

S(Ti) = −
1

LQ

LQ∑

j=1

logP (qj |Xi\qj∥Ṽei)

, whereX = T in the Retrieved Mode, andX = Q
for Vision-Only. This is an adversarial test of the
cross-modal reasoning ability of the VL models
and we expect a lower performance. In addition,
it enables us to assess in how far the VL mod-
els can deal with noise. These variants are suf-
fixed ∗(T )Ṽ , e.g., UNITERT Ṽ .

5 Results

To address the overarching question we put forward
in §1, namely if VL models can serve as common-
sense knowledge base, and to what extent they com-
plement pure linguistic model, we first examine the
encoded knowledge of the VL models on individ-
ual commonsense dimensions, i.e., (Q1) in §1. We
report the models’ effectiveness by measuring their
mean accuracy in selecting the correct answer out
of the three statement candidates of each QA in-
stance in CWWVImg. We declare outperformance
if p < 0.05 according to the paired student’s t-test
(Fisher, 1949) for statistical significant differences
between any two accuracy scores.9

Table 2 shows the effectiveness of all models per
commonsense dimension and overall when they are
given the exact same input, i.e., natural language
statements. Comparing the VL models, UNITERT
and VILBERTT , against their linguistic backbone
BERT, we see that both are more effective on the
part-whole, spatial, and desire dimensions.10

On spatial, both UNITERT and VILBERTT
even outperform RoBERTa, which was pretrained
on an order of magnitude more data than BERT

9We used Anderson-Darling’s (Anderson and Darling,
1954) method to test for normal distribution.

10We also evaluate UNITER initialized with BERT weights,
without further pretraining on CC, called UNITER_BERTT .
It yields similar results as BERT (see App. C, Tab. 7+8) and
indicates pretraining on visual data may lead to a catastrophic
forgetting on some CS dimensions that require linguistics.
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row part-whole spatial taxonomic distinctness
CWWVImg CWWVClip CWWVImg CWWVClip CWWVImg CWWVClip CWWVImg CWWVClip

1 UNITERT 70.9 76.6 61.5 59.4 59.8 58.0 71.3 72.5
2 VILBERTT 63.9 70.7 61.0 58.8 60.3 59.4 64.9 62.6
3 UNITERTV 63.0 68.1 57.4 54.1 54.0 55.9 65.9 68.1
4 VILBERTTV 55.0 58.0 52.9 59.4 49.9 58.0 55.9 62.6

Table 3: Model accuracy on CWWVImg and CWWVClip. Bold represents the highest score per commonsense
dimension.

and the VL models (§4.2). The benefit of visual–
linguistic pretraining for spatial (and concrete part–
whole) relations is in accordance with what we
would expect, and in line with existing work on the
spatial dimension (Yatskar et al., 2016; Cui et al.,
2020). UNITERT is also on par with RoBERTA
on part–whole and quality. On the other hand, the
VL models failed to retain knowledge associated
with other dimensions during VL pretraining, per-
forming significantly worse (p < .05) than BERT
in particular on taxonomic and distinctness. Re-
garding taxonomic (and similarity), we observe
that the VL models tend to struggle with visually
non-depictable concepts (e.g., speculate, remem-
ber). And contemplating distinctness (e.g., flood
vs. drought) may be challenging for the VL models
due to the unnatural, simultaneous co-occurence of
opposite concepts in a single image.

Regarding temporal, where events are expressed
as verbal phrases (e.g., checking vital signs, wait on
tables), the ability of the VL models to leverage the
potential benefit of visual information is limited
by their pretraining on isolated images (and re-
gions) instead of, e.g., videos, and with objectives
(§4.2) which essentially stipulate the models to
learn modality alignments, and in particular region-
level recognition (Chen et al., 2020), which limits
their ability to capture inter-object interactions, rel-
evant for verb-centric and event understanding (see
also Hendricks and Nematzadeh 2021).

6 Analysis

To answer our questions (Q2)-(Q4) we put forward
in §1, we first examine (Q2), the benefit of visual
information during pretraining. We then investi-
gate (Q3), the role of explicit visual input during
inference. Lastly, we look into (Q4), whether the
process of knowledge acquisition and retrieval act
consistently across VL models.

6.1 Role of Visual Input during Pretraining

The VL models show the ability to learn certain
types of commonsense knowledge that comple-

ments that in text-based models by leveraging infor-
mation during visual–linguistic pretraining (cf. Cui
et al. 2020), which they can activate even when
no visual information is given during inference.
While we found that this does not attribute to the
mere size of the training data, it is not clear if the
models benefit from the explicit visual information
(i.e., visual features), or from the weakly associated
verbalizations (i.e., captions) of its visual data. The
latter would just be an effect of the domain shift
to the visual world, providing information that is
typically not found in text corpora.

To examine the contribution of visual features,
we further pretrained BERT on the textual part
of the VL models’ training data (CC captions)11,
referred to as BERTCC . The model’s effective-
ness drops on all dimensions except part–whole
and spatial (rows 2+3, Tab. 2), so the verbaliza-
tions are indeed beneficial for these dimensions,
but detrimental for the others. Notably, UNITERT ,
being pretrained additionally on images, overall
obtains a higher accuracy than BERTCC , and out-
performs it on part–whole. For spatial, though,
the captions seem to serve as sufficient surrogate
of visual spatial relationships, while explicit visual
information is of less benefit for UNITERT . We
see these effects only for single-stream UNITERT ,
while double-stream VILBERTT falls short against
BERTCC . We will return to the aspect of the archi-
tecture differences in the following section. With
regard to (Q2), our results indicate that pretrain-
ing on explicit visual input is indeed crucial for
encoding certain commonsense dimensions.

6.2 Role of Visual Input during Inference
§5 showed promising results regarding the benefit
of VL models for text-based tasks underlying cer-
tain types of CS knowledge. The fact that the VL
models were designed to receive multimodal input
raises the question if their inference ability bene-
fits from being fed both, textual and visual input.
We analyse the VL models when we feed in the

11Code from Frank et al. (2021), with MLM and 5 epochs.
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dim.: spatial dim.: part-whole dim.: quality

You are likely to A boat has: A hill can be:
find vegetables in:
A. workplace. A. reached legal age. A. steep.
B. stationary shop. B. sails B. about to change.
C. garden. C. different rules. C. important for

normal living.

Table 4: Positive examples of VILBERTV ’s inference with visual answer tokens only. Images correspond to the
visual input for the correct textual answer tokens (i.e., “garden”, “sails”, “steep”). The bounding boxes mark the
highly attended (> 0.3) visual tokens of VILBERTV on the last inter-modal layer.

images along the textual prompts of CWWVImg.
We also compare against a subset of CWWVImg,
CWWVClip, to study how the strength of image–
text association may affect the models. To obtain
CWWVClip, we estimate the association quality
of the image–word pairs of every QA instance in
CWWVImg by measuring their CLIPScore (Hes-
sel et al., 2021), and keep those instances with an
average score of > 0.6.12 The proportion of con-
crete words (concreteness scores > 4, Brysbaert
et al., 2014) in CWWVClip vs. CWWVImg are
35% vs. 27%, respectively.

Table 3 provides results for selected CS dimen-
sions (we refer to Tab. 7+8 in App. C for all results).
We see that while the retrieval-based multimodal
models, UNITERTV and VILBERTTV , do inte-
grate information from the visual input, they both
perform noticeably worse than their text-only coun-
terparts, UNITERT and VILBERTT , that do not
get visual input during inference. Partially, this
seems to be an effect of noise in the visual stream
in the form of weakly-associated or abstract words.
For some dimensions, including part–whole, taxo-
nomic and distinctness, both UNITERTV and
VILBERTTV yield higher accuracy scores on
CWWVClip which has more strongly associated
and concrete image–text pairs than on CWWVImg

(see Tab. 3). These performance gains cannot
solely be attributed to a differing intrinsic diffi-
culty level of CWWVClip, since the purely text-
based models, in contrast, consistently perform
worse on CWWVClip than on CWWVImg (with
a mean accuracy drop on CWWVClip of -4.7pp
and -1.5pp for RoBERTa and BERT, respectively;
results shown in App. C, Tab. 7+8). In sum, our
findings support our hypothesis that abstract con-
cepts and weak cross-modal associations affect the
inference ability of VL models, an issue we ob-
served for taxonomic and distinctness.

12We determined this threshold with the mean CLIPScore
under the image–word pair group that has absolute association
according to human evaluation (§3.2).

Does Visual Input Alone Activate CS Knowl-
edge? We address the question of whether visual
context alone can provide substantial and informa-
tive cues with the Vision-Only mode, which disen-
tangles the contribution of the visual from the tex-
tual modality. Both, UNITERV and VILBERTV
perform much worse than when being also fed tex-
tual input (results not shown, see App. C). Yet, we
find that visual context does play a beneficial role
in some cases as opposed to under Ṽ -only mode,
where the accuracy drops to random (UNITER)
or close above random (VILBERT). Table 4 illus-
trates several cases for which visual cues alone can
provide reasonable and sufficient information.

Regarding (Q3), the visual stream of the VL
models does not seem to play a dominant role dur-
ing inference; nevertheless, in the extreme case
where of missing textual information, the VL mod-
els rely on visual input for decision making.

6.3 Role of VL Model Architectures

If visual noise is indeed the reason for low in-
ference abilities, then the models should fail
when they receive only noisy, non-sensible vi-
sual input. We observe this effect in the single-
stream UNITERT Ṽ , where we see slight effec-
tiveness drops when we feed in a set of un-
related (dummy) images Ṽe along the textual
prompt Q (§4.3) (−1.3pp/−2.4pp for All on
CWWVImg/CWWVClip, resp.; results shown in
App. C, Tab. 7+8). Noise is only part of the reason,
though, since overall, UNITERTV yields lower
scores on CWWVClip than on CWWVImg (-.6pp,
see Tab. 7+8, App. C for all scores). Unexpectedly,
the difference between T and TV is even larger on
CWWVClip than on CWWVImg, this amplifica-
tion may be explained by a higher distribution of
concrete concepts in CWWVClip: It may be in
particular the visual information of concrete con-
cepts that the model can most effectively learn to
ground better in the linguistic encoder, and then
activate textually even if no visual inputs are given
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during inference (Park and Myaeng, 2017). So,
as can be assumed in a linguistic task, the textual
stream seems to be the driving force for successful
inference. An analysis of the Modality Importance
(MI) score (Cao et al., 2020) of UNITERTV fur-
ther supports this. The MI measures the average
attention traces of the masked tokens in prompt Q
during inference to determine the relevance of tex-
tual input vs. visual input (see App. D, Fig. 5 for
visualizations and calculation details). The visual-
ization of the average MI scores clearly shows a
higher attention density on the textual than on the
visual modality.

VILBERT, in turn, which fell short against
BERT and BERTCC , behaves differently: On
CWWVClip, VILBERTTV more effectively in-
cludes visual input for decision making, with an
overall accuracy that is closer to UNITERTV

than it is on CWWVImg (+2.5pp, see Tab. 7+8).
And on taxonomic and spatial, VILBERTTV ’s
accuracy is even higher than UNITERTV ’s
(Tab. 3; the proportion of concrete concepts in
CWWVClip is 32% for taxonomic, 47% for
spatial, and 34% for part-whole vs. 25%, 44%,
and 32%, resp., in CWWVImg). Finally, Dummy-
Mode VILBERTT Ṽ remarkably outperforms VIL-
BERTTV across all commonsense dimensions on
CWWVImg (+4.9pp on All) and notably on taxo-
nomic, spatial and part–whole, but is on par on
CWWVClip (p < .05). We examine the aspect
of noise further with samples where VILBERTT Ṽ
predicts correctly but VILBERTTV fails. We con-
stantly find VILBERTT Ṽ to only pay substantial
attentions (> 0.3) to the same single visual token
across all samples as well as in all CS dimensions
(see App. E).

In summary, regarding (Q4), in the case of single
stream UNITER, it indicates that (explicit) visual
input is beneficial for pretraining, but not for infer-
ence. In contrast, double-stream VILBERT seems
to be more dependent on receiving signals from
both, text and vision, during inference, but also on
a strong semantic image–text association, which
it can more effectively use if provided. In case of
noise, it relies on textual input for decision-making.

7 Conclusion

Regarding our research questions put forward in
§1, our findings strongly suggest that the VL mod-
els learn to encode certain visual knowledge in
their textual streams during multimodal pretrain-

ing, in particular for concrete concepts (see also
Kiela et al., 2018), which they can activate from
purely textual input during inference, i.e., visual
information is not required, or not even beneficial.
The fact that the textual stream is the driving force
for inference is promising, given that we examined
the benefit of VL models for a purely linguistic
task.

Regarding the dependence of the architecture
for commonsense acquisition and activation, we
conclude that the examined single-stream seems
to be better suited for text-only QA tasks, while
double-stream seems to require some form of signal
in the visual stream during inference (but cannot
leverage it properly to the extent that it would be
better than text-only input).

In summary, we find VL models to be promis-
ing regarding their potential use for natural lan-
guage tasks requiring commonsense knowledge.
We also identified a range of limitations for future
work: The ability to handle visual noise, to under-
stand events and verbs, and to integrate inconsistent
modalities towards metaphorical, rather than situ-
ated understanding. Future work lies also on mul-
timodal prompt-engineering for improved knowl-
edge retrieval on commonsense intensive tasks.
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Stanislaw Jastrzębski, Dzmitry Bahdanau, Seyedarian
Hosseini, Michael Noukhovitch, Yoshua Bengio, and
Jackie Cheung. 2018. Commonsense mining as
knowledge base completion? a study on the impact
of novelty. In Proceedings of the Workshop on Gen-
eralization in the Age of Deep Learning, pages 8–16,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Douwe Kiela, Alexis Conneau, Allan Jabri, and Max-
imilian Nickel. 2018. Learning visually grounded
sentence representations. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 408–418, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. 2017. Vi-
sual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. Int. J.
Comput. Vis., 123(1):32–73.

Teven Le Scao and Alexander Rush. 2021. How many
data points is a prompt worth? In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2627–2636,
Online. Association for Computational Linguistics.

Zhicheng Liang and Deborah L. McGuinness. 2021.
Commonsense knowledge mining from term defini-
tions. CoRR, abs/2102.00651.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing.
CoRR, abs/2107.13586.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. In
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada, pages 13–23.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan
Bisk, Eric Nyberg, and Alessandro Oltramari. 2021.
Knowledge-driven data construction for zero-shot
evaluation in commonsense question answering.
AAAI, 35(15):13507–13515.

Bodhisattwa Prasad Majumder, Harsh Jhamtani, Tay-
lor Berg-Kirkpatrick, and Julian McAuley. 2020.
Like hiking? you probably enjoy nature: Persona-
grounded dialog with commonsense expansions. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9194–9206, Online. Association for Computa-
tional Linguistics.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 821–832, Melbourne, Australia.
Association for Computational Linguistics.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Joohee Park and Sung-hyon Myaeng. 2017. A computa-
tional study on word meanings and their distributed
representations via polymodal embedding. In Pro-
ceedings of the Eighth International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 214–223, Taipei, Taiwan. Asian Fed-
eration of Natural Language Processing.

5552



Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Kyle Richardson and Ashish Sabharwal. 2020. What
does my QA model know? devising controlled
probes using expert knowledge. Transactions of the
Association for Computational Linguistics, 8:572–
588.

Fereshteh Sadeghi, Santosh Kumar Divvala, and Ali
Farhadi. 2015. Viske: Visual knowledge extraction
and question answering by visual verification of re-
lation phrases. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 1456–1464. IEEE
Computer Society.

Henrique Santos, Minor Gordon, Zhicheng Liang,
Gretchen Forbush, and Deborah L. McGuinness.
2020. Exploring and analyzing machine common-
sense benchmarks. CoRR, abs/2012.11634.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2556–2565,
Melbourne, Australia. Association for Computational
Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Vered Shwartz and Yejin Choi. 2020. Do neural lan-
guage models overcome reporting bias? In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 6863–6870, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Shikhar Singh, Nuan Wen, Yu Hou, Pegah Alipoormo-
labashi, Te-lin Wu, Xuezhe Ma, and Nanyun Peng.
2021. COM2SENSE: A commonsense reasoning
benchmark with complementary sentences. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 883–898, Online. Associa-
tion for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February

4-9, 2017, San Francisco, California, USA, pages
4444–4451. AAAI Press.

Kevin Stowe, Tuhin Chakrabarty, Nanyun Peng,
Smaranda Muresan, and Iryna Gurevych. 2021.
Metaphor generation with conceptual mappings. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6724–
6736, Online. Association for Computational Lin-
guistics.

Alexandre Tamborrino, Nicola Pellicanò, Baptiste Pan-
nier, Pascal Voitot, and Louise Naudin. 2020. Pre-
training is (almost) all you need: An application to
commonsense reasoning. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 3878–3887, Online. Association
for Computational Linguistics.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100–5111, Hong Kong, China. Association for Com-
putational Linguistics.

Zineng Tang, Jaemin Cho, Hao Tan, and Mohit Bansal.
2021. Vidlankd: Improving language understand-
ing via video-distilled knowledge transfer. CoRR,
abs/2107.02681.

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu,
Hua Wu, Qiaoqiao She, and Sujian Li. 2019. Enhanc-
ing pre-trained language representations with rich
knowledge for machine reading comprehension. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2346–
2357, Florence, Italy. Association for Computational
Linguistics.

Mark Yatskar, Vicente Ordonez, and Ali Farhadi. 2016.
Stating the obvious: Extracting visual common sense
knowledge. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 193–198, San Diego, California.
Association for Computational Linguistics.

Tian Yun, Chen Sun, and Ellie Pavlick. 2021. Does
vision-and-language pretraining improve lexical

5553



grounding? In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 4357–
4366, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin
Choi. 2018. Neural motifs: Scene graph parsing
with global context. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 5831–5840. IEEE Computer Society.

Hongming Zhang, Yintong Huo, Xinran Zhao, Yangqiu
Song, and Dan Roth. 2020a. Learning contextual
causality from time-consecutive images. CoRR,
abs/2012.07138.

Zhuosheng Zhang, Kehai Chen, Rui Wang, Masao
Utiyama, Eiichiro Sumita, Zuchao Li, and Hai Zhao.
2020b. Neural machine translation with universal
visual representation. In International Conference
on Learning Representations.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017–5033, Online. Association
for Computational Linguistics.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth.
2019. “going on a vacation” takes longer than “go-
ing for a walk”: A study of temporal commonsense
understanding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3363–3369, Hong Kong, China. Association
for Computational Linguistics.

Pei Zhou, Rahul Khanna, Bill Yuchen Lin, Daniel Ho,
Xiang Ren, and Jay Pujara. 2020a. Can BERT rea-
son? logically equivalent probes for evaluating the
inference capabilities of language models. CoRR,
abs/2005.00782.

Xuhui Zhou, Yue Zhang, Leyang Cui, and Dandan
Huang. 2020b. Evaluating commonsense in pre-
trained language models. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 9733–9740. AAAI Press.

A Details to the Creation of CWWV

A.1 Data Sources
Following Ma et al. (2021), we use the knowledge
sources whose relations can be mapped to Concept-
Net relation labels, viz. ConceptNet (Speer et al.,
2017), WordNet (Miller, 1995), Visual Genome
(Krishna et al., 2017) and Wikidata (Vrandecic and
Krötzsch, 2014). ConceptNet represents common-
sense knowledge in a graph structure of concept
nodes connected by relational edges. WordNet
focuses on lexical taxonomic knowledge. Visual
Genome is a resource of images densely anno-
tated with region descriptions that describe the de-
picted objects, their attributes and relationships,
and which can be represented as scene graphs.
Wikidata is a relational knowledge base of entities.

A.2 Relations
Since, in contrast to Ma et al. (2021), our goal is
not to pretrain models on selected knowledge re-
lations, but to reach a high coverage of relations
for model evaluation, we consider more relations
(30 in total), covered by 10 dimensions (Ma et al.
(2021) used 14 and 7, resp., refer to Table 5 for the
mappings between the commonsense dimensions
and knowledge relations evaluated here). We do
not consider the relations lexical , comparative , and
relational-other. According to (Ma et al., 2021)’s
categorization, ConceptNet does not support any
relation type that can be mapped to comparative.
Relational-other clusters noisier relations, which
may counteract a clean evaluation. Lexical re-
quires understanding of formal linguistic knowl-
edge, which is not our target here.

B Retrieving Images of CWWVImg

B.1 Topic-Image Lookup Table
Topic words are identified through term frequency-
inverse document frequency (TF-IDF) weight. For
a preprocessed caption containing non-stop words
only Cj = {w1, w2, ..., wl}. The TF-IDF weight
wi,j of each word wi in a caption Cj is computed:

wi,j =
ni,j∑
k nk,j

× log
|C|

1 + |Cj : wi ∈ Cj |
where the term frequency of wi in Cj is calcu-

lated by dividing its appearances ni,j by the to-
tal number of words in Cj ; inverse document fre-
quency is computed by taking the inverse propor-
tion of the number of captions in which wi occurs
|Cj : wi ∈ Cj | within a batch of captions |C|.
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Dimension Relation Type Template

part-whole /r/PartOf h is a part of t
/r/HasA h has a t
/r/MadeOf h can be made of t

taxonomic /r/IsA h is a t
/r/InstanceOf h has an instance of t
/r/MannerOf h is a way to t

distinctness /r/Antonym h is the opposite of t
/r/DistinctFrom h is not t

similarity /r/Synonym h is a synonym of t
/r/SimilarTo h is similar to t
/r/DefinedAs h is the t

quality /r/HasProperty h is/are t
/r/NotHasProperty h is/are not t
/r/SymbolOf h is a symbol of t

utility /r/ReceivesAction h can be t
/r/UsedFor h is/are for t
/r/CapableOf h can t
/r/NotCapableOf h do not t

creation /r/CreatedBy h is created by t
temporal /r/HasFirstSubevent The first thing you do when you h is t

/r/HasLastSubevent The last thing you do when you h is t
/r/HasSubevent Something that might happen when you h is t
/r/HasPrerequisite h requires t
/r/Causes The effect of h is t

spatial /r/AtLocation You are likely to find h in t
desire /r/CausesDesire h would make you want to t

/r/MotivatedByGoal You would h because you want t
/r/Desires h wants to t
/r/NotDesires h doesn’t want t
/r/ObstructedBy h is obstructed by t

Table 5: Knowledge dimensions with their clustered
knowledge relation types and the corresponding lexical-
ized templates evaluated in this work.

Each caption is now a sequence of topic words
sorted according to their TF-IDF weights, we take
the top-k topic words to represent the new caption
C ′j = {t1, t2, ..., tk}. We save the lemma form of
ti and its paired image Ij accompanied by its com-
puted TF-IDF weight into the topic-image lookup
table T , where each topic is mapped to several im-
ages because of its multiple occurrences in differ-
ent image-caption pairs. Under the assumption that
there exists alignment between each image-caption
pair, the TF-IDF weights can be further treated as
an approximation of how relevant the paired image
depicts the topic. The higher the TF-IDF weight,
the better the paired image captures the theme of a
topic.

B.2 Image-word Pair Association Analysis

We assess the effectiveness of our simple retrieval
approach through a human annotation study on
Amazon Mechanical Turk (AMT) in which we ask
workers to judge the association of image–word
pairs. To this end, we sample 1, 000 pairs from
CWWVImg uniformly across the 10 commonsense
dimensions. Each HIT comprises a random se-
quence of 10 image–words pairs, one for each di-
mension. For each HIT, we ask 3 AMT workers
to judge each pair as either “associated” or “not

associated”. We define an image as “associated”
to its paired word when it can “successfully cap-
ture the word’s meaning by either containing the
object, picturing the event, depicting the action, or
characterizing the appearance, emotion, or manner
that the word can describe". For polysemous words
(e.g., clean can refer to an action or appearance),
the workers are encouraged to judge whether the
image can capture at least one sense of the word.

In total, 37 workers13 participated; we paid 0.20
per HIT with an hourly wage of $12. According to
majority vote (2 out of 3), 64.2% of the pairs are
associated, among which part-whole and spatial
have more than average associated pairs (74.3%
and 70.2% respectively). The inter-annotator agree-
ment under Fleiss’ Kappa coefficient (Fleiss, 1971)
is between 0.21− 0.44 across dimensions, which
is only a fair to moderate agreement, indicating the
high subjectivity of this task.

Since some words are inherently more visualiz-
able, we further analyze the pair association score
from different facets, such as POS tags and word
concreteness (Brysbaert et al., 2014). Table 6
shows the analysis of majority association score
and Fleiss Kappa score, broke down into three cat-
egories: commonsense dimensions, POS tags and
word concreteness. POS tags are recognized us-
ing spacy-nlp package while word concreteness is
categorized based on the concreteness ratings (5
point scale from abstract to concrete) provided by
Brysbaert et al. (2014). Brysbaert et al. (2014) de-
fined concrete words as those that can be directly
experienced through senses (e.g. sweetness can
be experienced through tasting) whereas abstract
words can only be inferred from the linguistic con-
text; they surveyed at least 25 annotations for each
word in the list (37,058 words and 2,896 two-words
expressions). To obtain a categorical analysis, we
define words that receive mean concreteness rating
above 4 as concrete.

Figure 3 and Figure 4 display concrete words
distribution and POS tags distribution over each
commonsense dimension respectively, where we
see that both spatial and part-whole dimensions
contain more concrete words.

C Results of CWWVImg and CWWVClip

The full results of CWWVImg and CWWVClip

can be found in Tables 7 and 8, respectively.

13Workers must reside in the UK, USA, CA, NZ, or AU.
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Majority Association Fleiss Kappa
(Absolute Association)

Commonsense Dimensions
part-whole 70.3% 0.32

(42.9%)
taxonomic 64.9% 0.21

(31.6%)
distinctness 63.2% 0.38

(33.7%)
similarity 61.1% 0.27

(35.8%)
quality 51.5% 0.23

(24.7%)
utility 63.2% 0.27

(32.6%)
creation 59.4% 0.44

(40.6%)
temporal 64.9% 0.33

(39.4%)
spatial 74.2% 0.25

(44.3%)
desire 69.1% 0.21

(41.5%)

POS tags
NOUN 68.6% 0.33

(42.9%)
VERB 58.4% 0.24

(27.9%)
ADJ 62.1% 0.24

(30.1%)

Word Concreteness
Conc. 81.2% 0.30

(57.0%)
Non-Conc. 58.5% 0.28

(29.9%) 0.28

All 64.2% 0.30
(36.7%)

Table 6: Majority association measures how often the
image-word pair is annotated as “ associated” by the
majority of the annotators (2 out of 3) whereas absolute
association refers to the whole agreement. Fleiss Kappa
score is the inter-annotator agreement.

Figure 3: concrete words distribution across common-
sense dimensions

Figure 4: POS tags distribution across commonsense
dimensions

D Modality Importance Scores

Following Cao et al. (2020), we analyze which
modality of single-stream model (textual v.s. vi-
sual) is more dominant during inference by exam-
ining the modality importance score (MI score). In
particular, we are interested in the average atten-
tion traces on the [MASK] tokens that refer to the
head h of the original knowledge triple (h, r, t)
before it is transformed into a QA statement
(i.e., [MASK] tokens that represent the prompt
template, e.g., “You are likely to find X in’, are
not considered). Similar to Cao et al. (2020), for
the textual modality we disregard the attention val-
ues spent on the two special tokens [CLS] and
[SEP]; analogously, for the visual modality, the
attention value paid to the [IMG] is also ignored.
Therefore, the MI scores of the modalities do not
sum up to 1.

For a sequence of bimodal tokens,
S = ([CLS], t1, ..., tm,[SEP], v1, ..., vn),
where t1, ..., tm refer to the textual tokens, and
v1, ..., vn denote the visual ones, the average MI
score IM,j for each attention head j is calculated
as follows:

IM,j =
1

Lh

Lh∑∑

i∈S
1(i ∈M) · αi,j

αi,j refers to the attention score of the [MASK]
token spends on the token i at head j The MI score
of each respective commonsense dimension can
be seen in Figure 6; Figure 5 gives the mean MI
scores across all dimensions.

The visualization of the average MI scores shows
a clearly higher attention density on the textual than
on the visual modality (Fig. 6). We also observe
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Figure 5: Visualization of MI scores of UNITERTV

across 144 attention heads for the cases where
UNITERTV is correct and BERT incorrect. Left: tex-
tual MI; right: visual MI.

that the MI scores vary across commonsense di-
mensions. We see a higher attention density on
the lower textual layers, and a low density on the
visual parts on spatial, temporal, desire; on the
other dimensions, we see a higher density on the
upper textual layers and overall a higher density
on the intermediate visual layers.

E Results with Dummy Images

The visualization of attention traces of VIL-
BERTT Ṽ is displayed in Figure. 7.
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row Images part-whole taxonomic distinctness similarity quality utility creation temporal spatial desire All
1, 165 1, 323 828 644 1, 840 2, 090 100 1, 189 1, 599 1, 781 13, 259

1 RoBERTa – 68.5 61.8 80.2 67.4 69.7 74.2 72.0 60.9 54.8 65.9 67.5
2 BERT – 62.8 71.2 80.1 54.8 68.1 72.4 74.0 53.7 52.4 60.4 65.0
3 BERTCC – 68.4 62.0 66.6 51.1 66.0 65.4 62.0 53.6 63.7 58.3 61.9
4 UNITER_BERTT – 70.1 74.5 81.4 62.4 72.0 73.8 79.0 54.5 53.9 61.5 66.5
5 UNITERT – 70.9 59.8 71.3 51.2 69.9 71.5 71.0 52.7 61.5 62.5 64.0
6 VILBERTT – 63.9 60.3 64.9 46.7 66.1 71.2 58.0 52.2 61.0 62.8 60.7

7 UNITERTV retrieved 63.0 54.0 65.9 46.4 62.4 65.4 62.0 49.2 57.4 58.5 58.4
8 VILBERTTV retrieved 55.0 49.9 55.9 42.2 57.4 60.5 52.0 47.2 52.9 56.6 53.0
9 UNITERTṼ dummy 61.5 51.6 63.4 42.2 63.6 66.4 55.0 49.4 58.2 59.7 57.1

10 VILBERTTṼ dummy 60.4 58.9 64.9 43.9 63.4 65.5 55.0 48.4 56.8 62.0 57.9

11 UNITERV retrieved 36.4 36.6 40.1 38.5 34.2 36.6 32.0 34.8 36.2 34.3 36.0
12 VILBERTV retrieved 37.8 35.1 37.7 39.8 36.8 35.7 41.0 33.0 37.6 34.0 36.8
13 UNITERṼ dummy 30.8 26.3 45.7 28.6 29.2 28.7 19.0 28.7 29.6 30.7 29.7
14 VILBERTṼ dummy 34.8 35.8 50.5 40.4 30.4 31.1 30.0 29.4 33.5 30.1 34.6

Table 7: Model accuracy on CWWVImg . Bold represents the highest score per commonsense dimension across all
models and settings; underlined scores denote the best model under the same setting per commonsense dimension.

row Images part-whole taxonomic distinctness similarity quality utility creation temporal spatial desire All
170 85 86 188 143 120 8 154 144 91 1, 189

1 RoBERTa – 70.2 60.1 75.8 61.6 64.3 68.3 75.0 56.5 52.4 57.6 62.8
2 BERT – 61.2 70.6 73.6 45.3 69.5 65.8 87.5 52.9 48.2 57.6 63.2
3 BERTCC – 71.8 61.5 65.9 44.2 66.9 64.2 75.0 42.4 61.8 52.1 60.6
4 UNITER_BERTT – 69.6 72.7 75.8 55.8 70.8 68.3 87.5 56.5 47.7 59.0 64.3
5 UNITERT – 76.6 58.0 72.5 52.3 66.9 70.0 75.0 44.7 59.4 54.9 63.0
6 VILBERTT – 70.7 59.4 62.6 53.5 63.6 70.0 62.5 43.5 58.8 59.7 60.5

7 UNITERTV retrieved 68.1 55.9 68.1 43.0 61.0 64.2 62.5 42.4 54.1 58.3 57.8
8 VILBERTTV retrieved 58.0 58.0 62.6 38.4 57.8 56.7 62.5 41.2 59.4 54.2 54.9
9 UNITERTṼ dummy 66.0 51.7 62.6 45.3 62.3 69.2 37.5 42.4 59.4 57.6 55.4

10 VILBERTTṼ dummy 62.8 54.5 63.7 41.9 58.4 63.3 50.0 44.7 56.5 59.0 55.5

11 UNITERV retrieved 33.5 38.5 45.1 40.7 37.0 31.7 37.5 35.3 35.3 34.0 36.9
12 VILBERTV retrieved 39.4 34.3 41.8 37.2 35.1 40.0 25.0 31.8 40.6 31.2 35.6
13 UNITERṼ dummy 29.3 19.6 48.4 36.0 23.4 26.7 25.0 34.1 28.2 27.8 29.8
14 VILBERTṼ dummy 38.8 30.8 49.5 38.4 29.9 30.0 25.0 28.2 34.1 29.2 33.4

Table 8: Model accuracy on CWWVClip. Bold represents the highest score per commonsense dimension across all
models and settings; underlined scores denote the best model under the same setting per commonsense dimension.
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Figure 6: Visualization of the average modality importance scores of UNITERTV across 144 attention heads and
across commonsense dimensions under the cases where UNITERTV predicts correctly whereas BERT predicts
incorrectly. The order (from top to bottom and from left to right) of commonsense dimension is: part-whole,
taxonomic, distinctness, similarity, quality, utility, creations, temporal, spatial, desire.

(a) Dummy Image 1 (b) Dummy Image 2 (c) Dummy Image 3

Figure 7: Attention traces of VILBERTT Ṽ last inter-modal layer averaged across cases where VILBERTT Ṽ

predicts correctly. The bounding boxes represent salient visual tokens of each dummy image and the values in
yellow boxes refer to the averaged attention scores. VILBERTT Ṽ overly pays attention (0.35) to one single visual
token in the second dummy image (7b).
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Abstract

Deploying large-scale pre-trained models in
the prompt-tuning paradigm has demonstrated
promising performance in few-shot learn-
ing. Particularly, vision-language pre-training
models (VL-PTMs) have been intensively ex-
plored in various few-shot downstream tasks.
However, most existing works only apply VL-
PTMs to visual tasks like image classifica-
tion, with few attempts being made on lan-
guage tasks like text classification. In few-
shot text classification, a feasible paradigm
for deploying VL-PTMs is to align the input
samples and their category names via the text
encoders. However, it leads to the waste of
visual information learned by the image en-
coders of VL-PTMs. To overcome this draw-
back, we propose a novel method named Vi-
sual Prompt Tuning (VPT). To our best knowl-
edge, this method is the first attempt to de-
ploy VL-PTM in few-shot text classification
task. The main idea is to generate the im-
age embeddings w.r.t. category names as vi-
sual prompt and then add them to the aligning
process. Extensive experiments show that our
VPT can achieve significant improvements un-
der both zero-shot and few-shot settings. Im-
portantly, our VPT even outperforms the most
recent prompt-tuning methods on five public
text classification datasets.

1 Introduction

Pre-training models have achieved great success
across a variety of tasks in recent years. Pre-
training language models (PLMs) like BERT (De-
vlin et al., 2019), GPT (Radford et al., 2018) and
their variants (Liu et al., 2019; Raffel et al., 2020;
Yang et al., 2019; Lewis et al., 2020) firstly ap-
peared as the milestones in the AI field. They
brought huge boost to natural language process-
ing (NLP) tasks, such as text classification (Devlin
et al., 2019), named entity recognition (NER) (Jia

*Zhiwu Lu is the corresponding author.

et al., 2020), and text generation (Chan and Fan,
2019). In computer vision, large-scale pre-training
models (e.g., BiT (Kolesnikov et al., 2020) and
ViT (Dosovitskiy et al., 2021)) became popular
as in NLP. With convolutional neural networks
or Transformers (Vaswani et al., 2017) as the
backbones, they were shown to be effective on a
wide range of visual downstream tasks (e.g., im-
age classification, object detection, and semantic
segmentation). More recently, inspired by these
pre-training models in NLP and computer vision,
vision-language pre-training models (VL-PTMs)
have been intensively explored (Su et al., 2020; Li
et al., 2020; Huo et al., 2021; Lu et al., 2022; Fei
et al., 2022). They achieve excellent performance
in cross-modal tasks like image-text retrieval, vi-
sual question answering (VQA), and image cap-
tion. Besides, they also show great potential in
single-modal tasks (Lin et al., 2021; Yuan et al.,
2021). These achievements clearly declare the
power of large-scale pre-training models.

With GPT-3 (Brown et al., 2020) demonstrat-
ing astonishing zero-shot and few-shot ability, re-
searchers are encouraged to explore the poten-
tial of large-scale pre-training models in few-
shot learning. Recently, prompt-tuning has been
widely used in few-shot tasks as a paradigm
for deploying pre-training models. Compared
with prompt-tuning, the performance of the tra-
ditional fine-tuning paradigm has apparent draw-
backs when only few training samples are avail-
able (Schick and Schütze, 2021). PLM based
prompt-tuning methods (e.g. Prefix-tuning (Li
and Liang, 2021), P-tuning (Liu et al., 2021b),
ADAPET (Tam et al., 2021)) have shown their ef-
fectiveness and robustness on NLP tasks. Mean-
while, VL-PTM based prompt-tuning methods
like CoOp (Zhou et al., 2021), Clip-Adapter (Gao
et al., 2021a) and CPT (Yao et al., 2021) ap-
ply VL-PTMs to few-shot visual tasks including
few-shot image classification and visual ground-
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Figure 1: Zero-shot results on five public text datasets.
The cross-modal model BriVL (Fei et al., 2022) is
shown to outperform the comparably-sized single-
modal model RoBERTa-large, indicating that the visual
information may bring benefits to textual tasks.

ing. These successes reveal that textual informa-
tion is beneficial for visual tasks. However, there
still lacks a method to utilize VL-PTMs in few-
shot NLP tasks like few-shot text classification.
Importantly, we notice that the cross-modal model
BriVL (Fei et al., 2022) achieves better zero-shot
results than the comparably-sized single-modal
model RoBERTa-large on five public text classifi-
cation datasets (see Figure 1), indicating that the
visual information may bring benefits to textual
tasks. This thus motivates us to introduce VL-
PTM into few-shot text classification.

In this work, we propose a novel method named
Visual Prompt Tuning (VPT) for few-shot text
classification. It is a prompt-tuning method de-
signed to apply VL-PTM in few-shot text classi-
fication. To make use of the visual understand-
ing ability of VL-PTM, we design a visual prompt
generation module based on model inversion (see
Figure 2), which can obtain sound visual represen-
tations of the categories offline as visual prompts.
In the classification process, we still adopt the
standard prompt-tuning pipeline, using the text en-
coder of VL-PTM as backbone. Specifically, we
append learnable soft prompt to the front of cate-
gory names’ text embeddings. We then add visual
prompts to the obtained embeddings of the corre-
sponding categories and conduct the text classifi-
cation by computing the cosine similarity scores
between the input embeddings and the summed
(both visual and textual) category embeddings. In
addition, to make extensive evaluation, we collect
five public available datasets for Chinese text clas-
sification, which cover a diverse set of data do-
mains including news, emotions, types of app, and
specialized subjects.

Our main contributions are three-fold: (1) To
the best of our knowledge, this is the first work
on introducing VL-PTM into few-shot NLP tasks.

Particularly, the importance of VL-PTM has been
successfully shown in few-shot text classification.
(2) We devise a novel VPT method for VL-PTM,
which can utilize the visual information to boost
the text classification performance. (3) Exten-
sive experiments are conducted on five benchmark
datasets to show that our proposed VPT outper-
forms the state-of-the-art approaches.

2 Related Work

2.1 Vision-Language Pre-Training Models

We first deliver an overview of Vision-Language
Pre-Training Models (VL-PTMs). Note that ex-
isting VL-PTMs can be broadly divided into two
groups according to their network architectures:
single-tower models (Su et al., 2020; Li et al.,
2020) and two-tower ones (Radford et al., 2021;
Jia et al., 2021; Yuan et al., 2021).

Single-tower models appear as the pioneers of
VL-PTMs, using a joint network (mostly multi-
layer Transformers) to encode the image and text
pair. (Su et al., 2020) employs BERT-like objec-
tives to learn cross-modal representations from a
concatenated sequence of visual region features
and language token embeddings. (Li et al., 2020)
makes use of object tags as anchor points for align-
ing elements in two modalities. This method is
motivated by the observation that the salient ob-
jects in an image can be accurately detected, and
are often mentioned in the paired text. Single-
tower models have strong ability to fuse visual and
linguistic information. However, they still have a
lot of limitations due to the model structure, such
as limited understanding ability of high-level se-
mantics, long inference time, etc.

As the successors of VL-PTMs, two-tower
models demonstrate greater potential in cross-
modal pre-training. They adopt separate image
and text encoders, typically taking image-text re-
trieval as the pre-training task. (Radford et al.,
2021; Jia et al., 2021) introduces contrastive learn-
ing with SimCLR-based loss for visual-language
pre-training. The training goal is to learn power-
ful encoders that can embed image and paired text
samples into the same latent space for effective
image-text retrieval. With acceptable inference
time and ideal comprehension skill in both cross-
modal and single-modal tasks, two-tower models
are deployed in various of application scenarios.
To expand the learned representations to more vi-
sual tasks, (Yuan et al., 2021) concurrently uses
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self-attention and cross-attention in their network,
enhancing the understanding ability in both single-
modal and cross-modal tasks.

In this work, we devise our VPT based on the
latest BriVL (Fei et al., 2022), which is a two-
tower large-scale Chinese VL-PTM (see Sec. 3.1
for more details). Theoretically, our VPT can be
extended to other VL-PTMs in the same way.

2.2 Prompt-Tuning of VL-PTMs

With the recent rapid development of VL-PTMs,
there is a growing interest in prompt-tuning with
VL-PTMs for various downstream tasks. As a
representative model of VL-PTMs, CLIP (Rad-
ford et al., 2021) employs prompt template like “A
photo of a {label}.” in image classification task
without further training, which shows the competi-
tive performance against linear probe on ResNet50
(He et al., 2019) (a fully supervised baseline).
This success declares the potential of the combi-
nation of prompt-tuning and VL-PTM. To allevi-
ate the instability and manpower cost of manual
hard prompt, (Zhou et al., 2021) introduces learn-
able prompt for few-shot image classification. In
addition to automated prompt engineering, (Gao
et al., 2021a) proposes to insert lightweight learn-
able module named adapter into VL-PTM, which
is a simpler alternative than soft prompt.

Beside image classification, recent works have
applied visual-language pre-training to more
downstream tasks with prompt-tuning. For ex-
ample, (Yao et al., 2021) reformulates the visual
grounding task into a fill-in-the-blank problem.
This recent work creatively uses the RGB value
of different colors to build the CLIP-like image
sub-prompt. (Tsimpoukelli et al., 2021) designs
a unified framework for multi-modal conditional
text generation. The proposed pipeline is compat-
ible with seven cross-modal tasks including Refer-
ring Expression Comprehension (REC) and Visual
Commonsense Reasoning (VCR).

Note that VL-PTMs are generally deployed for
visual or cross-modal tasks in the previous works
mentioned above. Differently, our proposed VPT
extends the application scenarios of VL-PTMs,
and forms the first prompt-tuning method that in-
duces VL-PTM into few-shot text classification.

2.3 Prompt-Tuning Methods in NLP Tasks

“Pre-train, prompt, and predict” paradigm is a sea
change in NLP (Liu et al., 2021a). Instead of

adapting PLMs to downstream tasks through ob-
jective engineering, the downstream problems are
reformed with the use of a textual prompt to seem
more like those solved during the original PLM
training. For instance, (Schick and Schütze, 2021)
maps each class into a masked token and inserts
it into cloze-style phrases, then predicting it us-
ing the pre-trained masked language model. This
method ensembles multiple models trained with
several manual prompts. To get better prompt
templates, (Gao et al., 2021b) adopts a T5 model
to automatically generate prompts in cloze-style.
Then another PLM like RoBERTa is deployed
to conduct the label name generation process.
(Liu et al., 2021b) introduces trainable continuous
prompt embeddings as a better choice than manual
prompts, which significantly improves the under-
standing ability of generative PLMs like GPT. Un-
like cloze question-based methods, (Devlin et al.,
2019) reformulates the classification task into tex-
tual entailment task. This setting can be used as
a unified approach to modelling different kinds
of classification tasks. Different from the above-
mentioned PLM based methods, we introduce VL-
PTM to few-shot text classification and propose a
novel Visual Prompt Tuning (VPT) method, which
blazes a new trail for few-shot NLP tasks.

3 Methodology

In this section, we give the details of the proposed
VPT. The overall architecture is shown in Figure
2. Our main idea is to improve the performance
of text classification by utilizing visual informa-
tion in help of VL-PTM. Specifically, VPT de-
ploys model inversion of VL-PTM to generate vi-
sual representations of category names and then
add them to the text embeddings of the corre-
sponding category names. We first describe the
overall framework of VPT in Sec. 3.1, followed
by a detailed description of visual prompt genera-
tion in Sec. 3.2. Finally, the training objective is
presented in Sec. 3.3.

3.1 Overall Framework

We employ BriVL as the backbone of VPT. To
learn better cross-modal representations, the rep-
resentative contrastive learning algorithm MoCo
(He et al., 2020) is adopted in the pre-training
stage of BriVL. The text encoder of BriVL con-
sists of RoBERTa-large (Cui et al., 2020) and a
successive self-attention block. The self-attention
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Figure 2: A schematic illustration of the proposed VPT
model for few-shot text classification. The bottom
panel presents the visual prompt generation module,
and the top panel presents the prompt-tuning module
for few-shot text classification.

block with four layers of Transformers is designed
for keeping RoBERTa from catastrophic forget-
ting. To perform few-shot text classification with
BriVL, we adopt similar paradigm used in few-
shot image classification. In particular, given a
text classification dataset with M categories, we
have natural language expressions {C1, · · · , CM}
for all categories. For the m-th class Cm, we ap-
pend learnable soft prompts to the front of its word
embedding. That is, the total input embedding se-
quence tm for Cm is designed as:

tm = [CLS][V ]1 · · · [V ]N [CLASS]m[SEP ],
(1)

where [V ]n (n = 1, · · · , N ) denotes a learnable
vector with the same dimension as the word em-
bedding of BriVL, N is the hyperparameter speci-
fying the number of learnable tokens, [CLASS]m
is the word embedding of the m-th class name
Cm, and [CLS] (or [SEP ]) is the word embed-
ding of the special token CLS (or SEP). Note that
we adopt class-specific soft prompts and use word
embeddings of sampled tokens from the vocabu-
lary as the initialization of [V ]n.

With the text encoder of BriVL fixed during the
training stage, our training goal is to optimize the
soft prompts. We first get the visual prompts of
all categories offline from the visual prompt gen-

Algorithm 1 Pseudocode of Visual Prompt Generation in a
PyTorch-like style.

# text_list: list of all class names
# Shape: shape of pseudo image ([C, H, W])
# VP: list of visual prompts corresponding

to all class names
# f_image, f_text: image encoder and text

encoder of the adopted VL-PTM

VP = []
for text in text_list:
pseudo_image = random_tensor(*Shape)
pseudo_image.requires_grad_(True)
for i in range(max_iteration):
imageFea = f_image.forward(pseudo_image)
textFea = f_text.forward(text)

# Eqn.(2)
loss = -mm(imageFea, textFea.t()).mean()

# Adam update: pseudo_image
loss.backward()
update(pseudo_image.params)

VP.append(imageFea)
save(VP)

Notations: mm – matrix multiplication.

eration module. We then encode the tokenized in-
put sequence xi and class prompt tm into text em-
beddings ri and rCm via the text encoder of BriVL,
respectively. For cross-modal information fusion,
we thus adopt a simple operation-based method:
adding visual prompt to its corresponding class
name embedding rCm with the weight of α. Classi-
fication is finally conducted by computing cosine
similarity scores between the input embedding ri
and fused class embeddings.

3.2 Visual Prompt Generation
The bottom panel of Figure 2 illustrates the
pipeline of our visual prompt generation. Given
a text classification task, we choose to generate
a series of pseudo images according to the class
names. In this work, we take the embeddings of
pseudo images as the visual representations of the
class names, namely visual prompts.

For each class name Cm, we can obtain its text
embedding rCm through the text encoder of BriVL.
Then we randomly initialize a noisy image and
also compute its image embedding rIm through
the image encoder of BriVL. Since there should
be a one-to-one correspondence between pseudo
images and class names, we compute the inner
product similarity score between the image em-
bedding and the class embedding and maximize
it for model inversion. The loss function for the
m-th class can be written as follows:

Linversion = − < rCm, r
I
m >, (2)

where < ·, · > is the dot product of two vectors.
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Algorithm 2 Pseudocode of VPT in a PyTorch-like style.

# VP: output from visual prompt generation
# prompt_tokens: N tokens from vocabulary
# alpha: weight of visual prompt
# f_text: text encoder of the adopted VL-PTM
# f_text.emb: word embedding layer of f_text
# class_names: tokenized class names in the

following form: [CLS][CLASS][SEP]

load(VP)
C = f_text.emb(class_names)
# initialize soft prompt
soft_prompt = f_text.emb(prompt_tokens)
soft_prompt.requires_grad_(True)
for input_text in loader: # load a minibatch
# Eqn.(1)
t = cat([C[:,0,:], soft_prompt, C[:,1:,:])

inputFea = f_text.forward(input_text)
labelFea = f_text.forward(input_embs=t)
labelFea += alpha * VP.ToTensor() # Eqn.(3)

logits = bmm(inputFea, labelFea)
# Eqn.(5)
loss = CrossEntropyLoss(logits, labels)

# Adam update: soft prompt
loss.backward()
update(soft_prompt.params)

Notations: bmm – batch matrix multiplication; cat – concatenation.

Because both encoders of BriVL are frozen during
pseudo image generation, only the noisy image is
set to be learnable, i.e., it can be updated through
back propagation. After a number of iterations,
we obtain the pseudo image that depicts a picture
of what BriVL knows about the category.

We take the image embedding rCm of the pseudo
image as our “visual prompt”, which can supple-
ment the insufficient information in rCm. Because
the generation process is done offline, there is no
extra time for classification, ensuring VPT’s effi-
ciency. The details of the visual prompt generation
pipeline are presented in Algorithm 1.

3.3 Training Objective
In this subsection, we describe our training objec-
tive and explain the role of visual prompt. The
similarity between the i-th input text xi and the
m-th class name Cm is calculated as follows:

sim =< ri, r
C
m + αrCm >, (3)

where ri and rCm are respectively the text embed-
ding of xi and class prompt tm, rCm is the vi-
sual prompt of Cm, and α is the weight of visual
prompt. A softmax function is then used to define
the probability value:

P (yi = m|xi) =
exp(sim/τ)∑M
j=1 exp(sij/τ)

, (4)

where P (yi = m|xi) means the chance of the i-th
input text xi belonging to the m-th class (yi is the

Table 1: Statistics of five text classification datasets.

Dataset Classes Train Val Test
THUCNews 14 661,785 83,000 83,000
Toutiao News 15 306,688 38,000 38,000
Inews 3 3,356 1,000 1,000
Iflytex 119 6,935 2,599 2,599
CSLDCP 67 536 536 1,784

predicted label), and τ is the temperature. Given
k shots per class, model training is performed by
minimizing the cross-entropy loss:

LC =
−1
k ∗M

∑

i

M∑

m

yim logP (yi = m|xi),

(5)
where yim = 1 if yi = m, otherwise yim = 0.

Note that Equation (3) indicates the core idea
of our proposed VPT for few-shot text classifica-
tion. That is, each input sentence is forced to be
matched with not only textual but also visual se-
mantics of class names. From this perspective, vi-
sual prompts act as augmentations of text embed-
dings of class names. They provide extra infor-
mation when searching the nearest class name in
the latent space for the input sentence. The full
VPT algorithm for few-shot text classification is
outlined in Algorithm 2.

4 Experiments

4.1 Datasets

We collect five public available datasets for text
classification in Chinese: THUCNews (Li et al.,
2006), Toutiao News1, Inews2, Iflytex (Xu et al.,
2020) and CSLDCP (Xu et al., 2021). Diverse
textual tasks are covered, including classifica-
tion on news (THUCNews, Toutiao News), emo-
tions (Inews), types of app (Iflytex), and special-
ized subjects (CSLDCP). We follow the origi-
nal dataset split from public benchmarks (Inews,
CSLDCP) and randomly split the others (THUC-
News, Toutiao News) with the train/validation/test
ratio 8:1:1. Particularly, for THUCNews, we only
use titles of the news in our experiments. Since the
test set of Iflytex is not labeled, we use the public
validation set as the test set, and split the public
training set into the training and validation sets.
The details of datasets are shown in Table 1.

1https://github.com/aceimnorstuvwxz/toutiao-text-
classfication-dataset

2https://github.com/ChineseGLUE/ChineseGLUE
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Table 2: Comparative results for few-shot text classification on five public datasets. We report the mean (and
standard deviation) performance over 5 repeated trials. The best performance and the second best performance are
denoted in bold and underlined fonts, separately.

Method THUCNews Toutiao News Inews Iflytex CSLDCP
Soft Prompt 64.70 (3.64) 71.98 (1.15) 51.76 (1.90) 28.92 (1.67) 37.24 (1.40)
PET 66.33 (1.70) 75.75 (3.31) 62.10 (0.96) 33.49 (2.44) 41.87 (0.95)
LM-BFF 71.56 (0.99) 76.67 (1.24) 63.72 (2.25) 29.70 (1.68) 38.23 (2.71)
EFL 70.17 (2.12) 71.03 (2.89) 60.20 (5.83) 22.80 (5.06) 42.80 (1.45)
P-tuning 73.46 (2.29) 76.56 (1.02) 65.96 (2.18) 32.36 (2.63) 44.03 (1.59)
VPT (ours) 74.73 (0.90) 79.24 (1.44) 67.20 (2.85) 34.24 (1.35) 47.03 (0.84)

In our few-shot experiments, we set k = 16
shots per class for THUCNews, Toutiao News, and
Inews, but only k = 1 shot per class for Iflytex and
CSLDCP (given their large number of classes).

4.2 Implementation Details

For the visual prompt generation process, the total
iteration number is set to 2,000. The noisy im-
age is optimized by Adam with a learning rate of
0.02. The size of generated pseudo image is set
to 600*600, and the dimension of VP is 2,560 ac-
cording to the image encoder of BriVL.

For the classification process, the weight of vi-
sual prompt is set as α = 1, and the prompt length
is set as N = [15, 20, 40, 10, 5] for THUCNews,
Toutiao News, Inews, Iflytex, and CSLDCP, re-
spectively. We optimize the soft prompts using
Adam with the learning rate 1e-5.

4.3 Evaluation and Training Protocol

It is commonly accepted that fine-tuning on small
datasets can suffer from instability and results may
change dramatically given a new split of data. To
obtain a robust measure of the model performance,
we follow the setting of existing works (Gao et al.,
2021b; Devlin et al., 2019). Concretely, on each
dataset, we randomly sample k ∗M labeled train-
ing samples from the training set and k∗M labeled
validation samples from the validation set for few-
shot fine-tuning, which is repeated five times. The
average performance across five repeated trials is
reported. Note that the number of validation sam-
ples is set the same as the number of training sam-
ples during few-shot fine-tuning on each dataset.
Although few-shot fine-tuning using a larger set
of validation samples leads to significant improve-
ments (Gao et al., 2021b), its initial goal of learn-
ing from limited data is subverted.

4.4 Main Results

We compare our proposed VPT with a series of
few-shot learning methods based on PLMs, in-
cluding PET (Schick and Schütze, 2021), LM-
BFF (Gao et al., 2021b), P-tuning (Liu et al.,
2021b) and EFL (Devlin et al., 2019). The widely-
used RoBERTa-large is adopted as the backbone
for these methods. In addition, we apply our
framework without visual prompt generation to
the original RoBERTa-large as a baseline, denoted
as “soft prompt”. The comparative results are
shown in Table 2. We compare methods based
on VL-PTM and PLM, with two backbones (text
encoders) of similar sizes: BriVL and RoBERTa-
large, respectively. Note that the four PLM-based
baselines typically adopt the pre-trained masked
language modeling (MLM) head for prompt learn-
ing and thus we cannot apply BriVL (without
the MLM head) as their backbone. Moreover,
since the text embedding of RoBERTa-large is not
aligned with the visual prompt, it is unreasonable
to apply RoBERTa-large as the backbone to our
proposed VPT model.

We can clearly observe from Table 2 that our
proposed VPT consistently outperforms the recent
state-of-the-art methods for few-shot text clas-
sification on all five datasets. Particularly, our
proposed VPT yields more than 2.5% improve-
ments over the second best on Toutiao News and
CSLDCP. These observations indeed identify the
important role of our proposed VPT as a bet-
ter approach to few-shot text classification. Al-
though two different text backbones (i.e., BriVL
and RoBERTa-large) of similar sizes have been
employed, these observations are still remarkable
since the pre-training data of BriVL does not bring
benefits as expected (see Table 3). Moreover,
PLM-based prompt methods demonstrate unsta-
ble performance across text classification datasets
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(a) ‘Zero-Shot’

(b) ‘Few-Shot’

Figure 3: Ablation study results of the proposed VPT
with the large-scale pre-training model BriVL as the
backbone. Average accuracy (%) on 5 repeated trials is
reported. VP stands for visual prompt.

with different data distributions, while our pro-
posed VPT demonstrates great robustness in few-
shot text classification.

4.5 Ablation Study Results

We conduct ablation studies to show the contri-
bution of the visual prompt. We run experiments
with and without visual prompt in both zero-shot
and few-shot scenarios, using the large-scale pre-
training model BriVL as the backbone. The ab-
lation results are shown in Figure 3. We have
two main observations. Firstly, after adding visual
prompt into few-shot prompt-tuning (see the com-
parison VPT vs. VPT w/o VP in Figure 3(b)), the
few-shot performance increases by 1.7% in aver-
age, as compared with that using standard prompt-
tuning alone (i.e., VPT w/o VP). Secondly, by di-
rectly adding visual prompt into zero-shot classi-
fication, the zero-shot performance of BriVL can
be improved by 4.0% in average (see the compari-
son Zero-shot w/ VP vs. Zero-shot w/o VP in Fig-
ure 3(a)). These evidences clearly show that the
visual prompt is indeed beneficial for deploying
BriVL in few-shot text classification.

Note that the usage of visual prompt at test
time is clearly shown in the experiments in Fig-
ure 3(a). Our visual prompt brings considerable
boost in zero-shot scenario, and only the infer-

Table 3: Results obtained by base models using differ-
ent pre-training data. The average accuracy (%) over
all five datasets is reported for each model.

Model Zero-shot Soft Prompt
RoBERTa-base 30.39 51.48
RoBERTa-base (finetune) 28.88 51.92
BriVL w/ RoBERTa-base 38.85 55.45

ence process is included. That is, we conduct
the classification by directly computing the co-
sine similarity scores between the embeddings of
input sentences and the embeddings of category
names. After adding visual prompts to the em-
beddings of category names, each input sentence
is forced to be matched with not only textual but
also visual semantics of class names. Therefore,
visual prompts serve as augmentations of text em-
beddings of class names at test time.

Furthermore, we notice that the pre-training
data of BriVL is different from that of RoBERTa,
which may cause a bit of unfairness in the compar-
ison of our experiments in Table 2. Therefore, we
make comparison among the following three mod-
els: (1) RoBERTa-base; (2) RoBERTa-base (fine-
tune): we finetune the pre-trained RoBERTa-base
on the text data of 22 million image-text pairs,
which is the same pre-training dataset of BriVL w/
RoBERTa-base; (3) BriVL w/ RoBERTa-base: it
is a smaller version (using RoBERTa-base as back-
bone instead) of the standard BriVL, which is pre-
trained with the aforementioned 22 million image-
text pairs. Due to the limited GPU resource, only
the base models are considered here. The ablation
results in Table 3 show that RoBERTa-base (fine-
tune) yields only slight improvements (or even
performance drops) over RoBERTa-base, while
BriVL w/ RoBERTa-base outperforms RoBERTa-
base by large margins. This is mainly due to
that the text data from large-scale image-text pairs
has not been filtered (without any reprocessing),
and PLMs like RoBERTa can hardly benefit from
this noisy data. Therefore, the observations/con-
clusions from Table 2 can still be drawn, even if
RoBERTa-large is first finetuned for the baselines
with the pre-training data of BriVL.

Finally, it would be easier to demonstrate the
advantages of our VPT by examining the impact
of visual prompt on accuracy when alternative
image representations are used for generating vi-
sual prompt. Concretely, we consider three im-
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Table 4: Results obtained by using different image rep-
resentations for generating visual prompt. Results of
few-shot text classification are reported only on Iflytex.

Image Representation Accuracy
Random Noise 7.81
Visual Prompt (1K iterations) 30.94
Visual Prompt (2K iterations) 34.24

age representations for generating visual prompt:
(1) Random Noise: visual prompt initialized by
random noise (without optimization); (2) Visual
Prompt (1K iterations): low-quality visual prompt
obtained only with 1K iterations of optimization;
(3) Visual Prompt (2K iterations): standard visual
prompt obtained with 2K iterations of optimiza-
tion. Note that the results of few-shot text clas-
sification are reported only on the small dataset
Iflytex for quick evaluation. Two observations
can be drawn from the ablation results in Table 4.
Firstly, the visual prompt initialized by random
noise (without optimization) causes serious dam-
age to the performance of our VPT for few-shot
text classification. Secondly, the visual prompt ob-
tained with 2K iterations of optimization leads to
3.3% improvements over that obtained with 1K it-
erations of optimization, showing that the visual
prompt of higher quality brings larger benefits to
our VPT for few-shot text classification.

4.6 Influence of Hyperparameters

In this subsection, we discuss the influence of
two crucial hyperparameters on the performance
of VPT: prompt length – N , and weight of VP –
α. The detailed results are provided in Figure 4.
Only two small datasets Iflytex and CSLDCP are
considered for quick evaluation.

We first conduct experiments by varying the
prompt length in {1; 5; 20; 40; 60; 80; 100}, while
fixing the rest hyperparameters. Figure 4(a) and
Figure 4(c) show that increasing prompt length is
beneficial for better performance when the prompt
length is modest. When the prompt length is
further increased (e.g., more than 5), the perfor-
mance tends to gradually deteriorate. Notably,
VPT has a strong performance even with a sin-
gle prompt token. This indicates that VPT inher-
its the advantages of high efficiency of prompt-
tuning. Increasing the token count above 20 leads
to marginal gains (or even drops). Going above
60 tokens appears to be consistently damaging on

(a) (b)

(c) (d)

Figure 4: Effect of hyperparameters on the perfor-
mance of VPT. Results on two small datasets (Iflytex,
CSLDCP) are reported. The orange line refers to Ifly-
tex ((a), (b)) and the blue one refers to CSLDCP ((c),
(d)). (Left) On prompt length: employing more tokens
for VPT leads to improvements when the number of
prompt tokens is small. (Right) On weight of VP: VPT
performs the best on both datasets when α = 1.

both datasets. (Lester et al., 2021) discovered a
similar pattern of declining performance beyond
a particular prompt length. In addition, in Figure
4(a) and Figure 4(c), the minimum prompt length
is 1. If we set the prompt length to 0 (i.e., the soft
prompt is not used), the performance drops signif-
icantly. This means that the soft prompt does lead
to significant improvements in text classification.

Further, the influence of weight of VP is ex-
plored in the range from 0.1 to 100, while the
other hyperparameters are fixed. As shown in Fig-
ure 4(b) and Figure 4(d), increasing the weight α
yields performance improvements when α < 1
and causes negative effects when α > 1. Notably,
when α >> 1, the performance of VPT still out-
performs the baselines like Soft Prompt. This ob-
servation demonstrates that the generated VP in-
deed contains rich semantic information inherited
from the class name. However, VP can only play
an auxiliary role, i.e., it cannot take the place of
the textual class name.

4.7 Visualization Results

To directly figure out the effect of visual prompt,
we visualize the obtained pseudo images in the vi-
sual prompt generation process in Figure 5. Note
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(a) "automobile" (b) "furniture" (c) "camera" (d) "machinery" (e) "gardening"

(f) "culture" (g) "art" (h) "military" (i) "technology" (j) "positive emotion"

Figure 5: Visualizations of generated images for different class names.

that the input texts of class names are originally
in Chinese and translated into English for illustra-
tion purpose. For text descriptions with concrete
meanings, the generated visualizations provide in-
tuitive pictures (e.g., “automobile”: a car; “furni-
ture”: table, chair and vase; “camera”: a telecam-
era; “machinery”: some gears and pipes; “garden-
ing”: morning glories). For text descriptions with
abstract meanings, the generated visualizations are
able to show concrete embodiment of these con-
cepts (e.g., “culture”: a figure in traditional Chi-
nese clothing with Chinese “culture” in the upper
right corner; “art”: geometric figures and abstract
portraits; “military”: soldiers, a military aircraft
and an armored vehicle; “technology”: monitors
and consoles; “positive emotion”: a smiling face
in the bottom left). Overall, these visualization re-
sults clearly demonstrate that our visual prompts
have actually be learned to well represent the se-
mantic content of the corresponding class names.

5 Conclusion

We propose a novel prompt-based method termed
Visual Prompt Tuning (VPT) for deploying VL-
PTM like BriVL in few-shot text classification.
The main component of our proposed VPT is a
visual prompt generation module based on model
inversion of VL-PTM. Extensive experimental re-
sults on five benchmark datasets demonstrate that
our proposed VPT achieves the new state-of-the-
art in few-shot text classification. The ablation
study and visualization results further show the ef-

fectiveness of our proposed VPT. In our ongoing
research, we will apply our proposed VPT to other
few-shot NLP tasks.
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Abstract

In embodied cognition, physical experiences
are believed to shape abstract cognition, such
as natural language and reasoning. Image
schemas were introduced as spatio-temporal
cognitive building blocks that capture these re-
curring sensorimotor experiences. The few ex-
isting approaches for automatic detection of
image schemas in natural language rely on spe-
cific assumptions about word classes as indi-
cators of spatio-temporal events. Furthermore,
the lack of sufficiently large, annotated datasets
makes evaluation and supervised learning diffi-
cult. We propose to build on the recent success
of large multilingual pretrained language mod-
els and a small dataset of examples from image
schema literature to train a supervised classi-
fier that classifies natural language expressions
of varying lengths into image schemas. De-
spite most of the training data being in English
with few examples for German, the model per-
forms best in German. Additionally, we anal-
yse the model’s zero-shot performance in Rus-
sian, French, and Mandarin. To further inves-
tigate the model’s behaviour, we utilize local
linear approximations for prediction probabili-
ties that indicate which words in a sentence the
model relies on for its final classification deci-
sion. Code and dataset are publicly available1.

1 Introduction

In the tradition of embodied cognition, image
schemas have been proposed by Lakoff (1987) and
Johnson (1987) as spatio-temporal cognitive build-
ing blocks that capture recurring sensorimotor ex-
periences. For instance, in early infancy we expe-
rience many objects with the properties of a CON-
TAINER, i.e., having an inside and an outside sepa-
rated by a boundary. The image schema CONTAIN-
MENT captures this experience and is subsequently
used to make sense of new experiences while at the
same time also influencing how we think and talk

1https://tinyurl.com/24haedv5

Figure 1: Example of the image schema CONTAIN-
MENT: From experiencing different types of a CON-
TAINER in early infancy (left); to the development of
the schema (middle); and the usage in language on ab-
stract topics (right)

about abstract concepts, such as thinking, emotions,
or life (see Figure 1).

In order to systematically analyse the occurrence
of image schemas in natural language, we pro-
pose to build on the recent success of multilin-
gual pretrained language models and a small set
of examples from image schema literature (Hurti-
enne, 2017) to train a supervised classifier based on
XLM RoBERTa (XLM-R) (Conneau et al., 2020)
to classify natural language expressions into image
schemas. An image schema detection model as
ours could help linguists to explore the use of im-
age schemas efficiently and effectively in large text
corpora. It can guide researchers who, for instance,
investigate how the use of image schemas differs
across languages and cultures (e.g., Choi and Bow-
erman, 1991; Papafragou et al., 2006), how the lan-
guage of children with spatial impairments differs
(e.g., Lakusta and Landau, 2005) or which image
schemas occur in various literary works (e.g., Free-
man, 2002). Moreover, we hope that analysing
image schemas in large text corpora allows us to
contribute to image schema theory directly and to
investigate how we think and talk about abstract
concepts.

Our proposed method has significant advan-
tages over previously proposed methods. Sev-
eral corpus linguistic studies (e.g., Dodge and
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Lakoff, 2005) and unsupervised machine learning
approaches (e.g., Gromann and Hedblom, 2017)
for image schema extraction rely on specific parts-
of-speech (POS) as indicators of spatio-temporal
events. These approaches using POS-tags con-
ventionally portray prepositions as excellent spa-
tial indicators and verbs as movement indica-
tors (e.g., Gromann and Hedblom, 2017; Kord-
jamshidi et al., 2011). However, spatial language
might be expressed with prepositions (He walked
across the room) or without (He crossed the room)
(Dodge and Lakoff, 2005). In both examples, the
underlying image-schematic structure is that of
SOURCE-PATH-GOAL, i.e., the way through the
room. Since not all spatial expressions in language
rely on prepositions, a more general, word class-
independent method is needed, which we propose
in form of a supervised training procedure based
on a multilingual pretrained language model.

In contrast to these previous methods, we make
use of a small annotated image schema corpus that
not only allows us to extract image schemas in
different languages without relying on manually
created patterns, but also provides a gold standard
to evaluate our model. Natural language exam-
ples of image schemas in literature have been col-
lected in a repository (Hurtienne, 2017). However,
this database is rather inconsistent in its formatting
and image schema annotation. Thus, we cleaned
and complemented it with other examples from
MetaNet (Dodge et al., 2015). Our classification
method is trained and primarily evaluated in En-
glish and German. We also analyse the model’s
zero-shot performance on a small set of sentences
in French, Russian, and Mandarin, representing
different language families. To further investigate
the model’s behaviour, we utilize the explainable
artificial intelligence model LIME (Ribeiro et al.,
2016) that provides local linear approximations for
prediction probabilities for each word in the input
expression in relation to each available target class,
i.e., image schema. Thereby, we can provide an
analysis of which words in the input sequence the
model primarily relies on to make its predictions.

2 Related Work

Most previous automated approaches for image
schema extraction rely on handwritten rules and
pattern matching to annotate natural text with im-
age schemas (e.g., Bennett and Cialone, 2014).
However, such rules and patterns have to be spec-

ified for each image schema as well as for each
language resulting in a substantial manual effort.
Moreover, such patterns lead to low recall and
have no mechanisms to handle polysemous words.
The only existing machine learning approach clus-
ters triples of syntactically dependent nouns, verbs,
and prepositions in order to group them by image
schema in an unsupervised manner (Gromann and
Hedblom, 2017; Wachowiak, 2020). Since this ap-
proach relies on assumptions about word classes,
especially preposition, the range of expressions that
can be considered is limited. Fields with themat-
ically related objectives are metaphor extraction
and spatial role labeling, where recent state-of-the-
art approaches rely on pretrained neural language
models (e.g., Dankers et al., 2020; Leong et al.,
2020) and on contextualized embeddings created
for trajector, landmark, and preposition candidates
(Ramrakhiyani et al., 2019).

3 Foundation

Embodied cognition, a field that builds on the hy-
pothesis that cognitive processes are grounded in
perception and sensorimotor interactions with the
world, has experienced significant traction in cogni-
tive linguistics. In this tradition, Lakoff (1987) and
Johnson (1987) introduce image schemas as cogni-
tive concepts that are firmly rooted in sensorimotor
experiences that eventually shape higher-level cog-
nition, including natural language.

3.1 Image Schemas

An image schema according to Johnson (1987, p.
xiv) “is a recurring, dynamic pattern of our per-
ceptual interactions and motor programs that gives
coherence and structure to our experience.” Schema
here follows the notion of Langacker (1987) to ab-
stract away from less important details to core com-
monalities of experiences. Image relates to imag-
istic in the sense of sensory experiences building
on information from different perceptual modali-
ties (Talmy, 2005). They are directly meaningful,
preconceptual structures that represent experien-
tial gestalts, i.e., parts that flexibly organize expe-
riences into coherent wholes. Repeated physical
experiences starting in early infancy form concepts
that manifest themselves in language. For instance,
we learn early on that many objects function as
CONTAINER, for instance, a glass, a fridge, or a
basket, while other objects, such as tables, do not
show the same properties. Having learned the im-
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Image Schema Definition Conceptual
Metaphor

Example

CENTER-
PERIPHERY

Experience of objects or events as central,
while others are peripheral or even outside
(Gibbs Jr et al., 1994, p. 237). The pe-
riphery depends on the center but not vice
versa (Lakoff, 1987, p. 274).

AFFECTION IS
PHYSICAL CLOSE-
NESS

He keeps everyone at arms
length. (Lakoff et al.,
1991, p. 155)

CONTACT Relates to two entities physically touching
without depending on each other (Cienki,
2008, p. 36).

COMMUNICATION
IS ESTABLISHED
BY PHYSICAL
CONTACT

She’s in touch with him.
(Hurtienne, 2017)

CONTAINMENT Experience of boundedness, entailing an
interior, exterior, and a boundary (Johnson,
1987).

MIND AS CON-
TAINER FOR
IDEAS

Who put that idea in your
head? (Jäkel, 2003, pp.
156-157)

FORCE Implies the exertion of physical strengths
in one or more directions (Cienki, 2008, p.
431).

HAPPINESS IS A
NATURAL FORCE

He was swept off his feet.
(Kövecses, 2010, p. 100)

PART-WHOLE Wholes consisting of parts and a configu-
ration of parts (Lakoff, 1987, p. 273).

COHERENT IS
WHOLE

His thoughts are scattered.
(Lakoff et al., 1991, p.
138)

SCALE Quantitatively it refers to the grouping of
discrete objects and substances that can be
increased and decreased in amount; quali-
tatively it refers to the degree of intensity
(Johnson, 1987, p. 122).

IMPORTANT IS
BIG

Maslow is a towering fig-
ure in humanistic psychol-
ogy. (Tolaas, 1991, p.
207)

SOURCE-
PATH-GOAL

Source or starting point, goal or endpoint,
a series of contiguous locations connect-
ing both, and movement (Johnson, 1987,
p.113).

PURPOSES ARE
DESTINATIONS

He finally reached his
goals. (Kövecses, 2010, p.
163)

VERTICALITY A tendency to employ an UP-DOWN ori-
entation (Johnson, 1987, p. xiv).

LIFE IS UP He’s at the peak of health.
(Lakoff and Johnson,
1980, p. 15)

Table 1: Image Schema Definitions and Examples

age schema CONTAINMENT, it is later on reflected
in our language about physical objects; but also
about abstract concepts, for example, in expres-
sions such as He’s gone out of his mind. The image
schemas we consider in this work, selected based
on available natural language examples in litera-
ture, are defined, related to conceptual metaphors,
and exemplified in Table 1.

3.2 Image Schemas and Natural Language

Instead of only pertaining to the physical realm,
image schemas are metaphorically projected onto
abstract target domains (Lakoff, 1987). In
other words, conceptual metaphors map structures
learned in the physical source domain, i.e., spatial
in the case of image-schematic metaphors, to an ab-
stract target domain. To take up a previous example,
the expression He’s gone out of his mind relates to
the conceptual metaphor MIND AS CONTAINER

in which the physical properties of CONTAINMENT

in the sense of having an inside, outside and a
boundary are transferred to the abstract concept
of “mind” assigning it similar properties. Thus,
image schemas function as structuring devices for
language and thought (Kimmel, 2009). Similarities
in underlying image-schematic structures across ex-
pressions and even across languages can help guide
the analysis of language. For instance, the same
metaphor and image schema can be observed in
the Russian expression ...стереотипах, которые
нам вбивались в голову в советское время...2

(stereotypes that were hammered into our heads
during Soviet times). The image schema CON-
TAINMENT is frequently used to talk about emo-
tions, for example in French, Je suis cachée au
bord des larmes3 (I’m hiding on the verge of tears),

2In VTimes on 31 October 2020.
3Part of lyrics of anxiété by Pomme.
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German, ...nicht aus der Ruhe bringen (not be up-
set; literally: not get out of one’s calm) (Baldauf,
1997, p. 135) or Chinese, 他怒火中烧 (Ta nu-huo
zhong shao; He has angry fire burning inside him)
(Yu, 1995, p. 62).

Linguistic analyses of image schemas have been
criticized to suffer from circularity in the sense that
language analysis represents a means for forming
inferences about the mind, body and their interre-
lations, the results of which then motivate differ-
ent arguments on linguistic phenomena (Gibbs and
Colston, 1995, pp. 245-246). Natural language
might not provide evidence on the origin of im-
age schemas, however, its analysis can foster an
understanding of image schema usage in natural
languages (Dodge and Lakoff, 2005). This idea
is further supported by neuroscientific evidence.
For instance, Durand et al. (2018) found that mo-
tor areas in the brain are activated when process-
ing action words. Their research focuses on verb
anomia, described as difficulty to retrieve words,
and showed an added value of combining language
and sensorimotor strategies to effectively foster re-
covery from verb anomia.

3.3 Language Models

Many of the recent successes in natural language
processing can be accredited to deep neural lan-
guage models. Such models learn rich, contextual-
ized language representations during a pretraining
stage, in which they learn to predict a masked word
given its context, a task for which large amounts
of training data are readily available. In a second
stage, these models can be finetuned for specific
tasks like classification or question answering by
adding additional layers on top of the output of
the language model, thus, utilizing the previously
learned representations. Such a model is then op-
timized end-to-end, i.e., no additional manually
created feature extraction pipeline is needed, but
the neural network takes in text as it is and learns
by itself to pay attention to the features important
for a specific task. One of the most prominent
language models is BERT (Devlin et al., 2019),
which is based on the now ubiquitous Transformer
architecture (Vaswani et al., 2017). Multilingual
variants of BERT use multiple languages in the
pretraining phase, for instance multilingual BERT
and XLM-R (Conneau et al., 2020), which was pre-
trained on text in 100 different languages and uses
an improved training paradigm. Depending on the

Image Schema EN DE
CENTER-PERIPHERY 96 40
CONTACT 30 0
CONTAINMENT 451 154
FORCE 273 26
PART-WHOLE 30 0
SCALE 52 10
SOURCE-PATH-GOAL 367 99
VERTICALITY 236 85
Total 1,535 414

Table 2: Sample distribution across languages and im-
age schemas

task, multilingual models show decent zero-shot
performances on languages they were originally
pretrained on, but that were not part of the training
set in the finetuning stage.

4 Data

The data combined from the image schema reposi-
tory (Hurtienne, 2017) and MetaNet (Dodge et al.,
2015) consist of a total of 1,949 samples: 1,535
in English and 414 in German. The exact distri-
bution per image schema can be seen in Table 2.
The cleaning of the image schema repository con-
sisted in deduplicating and ensuring a consistent
processable format and annotation. Additionally,
the authors of this paper and Chao Xu for Man-
darin manually curated small test datasets of image
schematic language in Russian, French, and Man-
darin, consisting of 35, 40, and 55 samples respec-
tively, for evaluating the zero-shot performance of
the classifier. Sources for the additional language
samples consisted of image schema literature, nov-
els, and online news articles.

5 Method

5.1 Supervised Classification Model
We use the English and German data described in
Section 4 for finetuning XLM-R in order to classify
natural language sequences into image schemas.
The model input consists of natural language ex-
pressions, which are classified into one of the eight
image schemas described in Section 3.1 by adding
a fully connected layer on top of XLM-R’s output
with one output-neuron representing each class. We
train the model with 80% of the available data leav-
ing the other 20% for testing. We use a stratified
train-test split guaranteeing the same distribution of
labels in training and test set. In order to see if the
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model achieves consistent results we cross-validate
it by training it on five different stratified random
splits and report the averaged results for accuracy
and F1 scores. All Russian, French, and Mandarin
samples are only in the test data and never seen
during training. XLM-R exists in different sizes
depending on their number of parameters. For our
experiments we choose the variant called XLM-
RBase. This model is trained for 12 epochs utilizing
the Adam optimizer with a learning rate of 3e-5
and a batch size of 16.

5.2 Unsupervised Baseline Classifier

To see how our model compares to other image
schema extraction methods, we re-implement a
recent approach that clusters instances of spatial
language based on the underlying image schema
(Gromann and Hedblom, 2017; Wachowiak, 2020).
This approach uses the neural dependency parser
Stanza (Qi et al., 2020) to find prepositions as mark-
ers of spatial language as well as their connected
verbs and nouns. Examples of resulting triples
are: <fell, from, power> or <stir, in, ingredient>.
In a second step, each word of the triple is rep-
resented by their GloVe embedding (Pennington
et al., 2014). These embeddings are averaged or
summed, resulting in a 300-dimensional vector for
each triple. Lastly, similar vectors are grouped us-
ing spectral clustering (Ng et al., 2001) based on
the implementation made available by scikit-learn
(Pedregosa et al., 2011). Since we have a labeled
dataset, we simply annotate each cluster with the
label that is the most frequent among the contained
triples. We, thus, can compute accuracy and F1
score telling us how well the clusters separate dif-
ferent image schemas compared to the novel super-
vised approach. If the unsupervised method were
to be applied to a new and unlabelled dataset, this
annotation would have to be made manually. We
compute the clusters and their respective scores for
different hyper-parameter combinations and report
the best resulting score:

• Triple representation: summed vectors, aver-
aged vectors

• Number of clusters: 8, 16

• Affinity matrix construction: nearest neigh-
bors, radial basis function

• Label assignment: k-means, discretization

The data used for clustering consists of all En-
glish samples, including both training and test data,
as the unsupervised approach does not require any
training.

5.3 LIME Explanations

For a detailed analysis of the model’s decisions, we
use LIME (Ribeiro et al., 2016), which is a method
for interpreting machine learning models by ap-
proximating local decisions with an interpretable
model that assigns weights to the different input
features. A local decision refers to a classifica-
tion of a single input instance, whose features, in
our case, are the words that make up the sequence.
Such an interpretable model is build for a specific
input sample by being trained on perturbations of
that sample and the corresponding outputs of the
original model. A perturbed text sample, for in-
stance, leaves out one or more words contained
in the original sample. The thus generated expla-
nations indicate which words the classifier based
its decision on, i.e., which words indicate an im-
age schema. Looking at the explanations of wrong
model decisions can show us for which cases the
model requires additional training data or which
dataset samples are faulty, thus, leading to insights
that lie beyond the power of strictly numerical met-
rics, such as accuracy.

Additionally, we utilize LIME in order to gather
global statistics about typical indicators for a spe-
cific image schema class. For each sample in the
test set we look at the classification made by our
model and add the words of the input sequence
as well as the corresponding feature weights com-
puted by LIME to a list for this image schema class.
After iterating over all test samples, we rank the
words for each image schema class by their average
feature weight, thus, obtaining a list of words that
are strong indicators for a specific image schema
according to the model.

6 Results

6.1 Scores Supervised Classifier

The cross-validated results for the test sets in En-
glish, German, Russian, French, and Mandarin can
be seen in Table 3. The highest scores are achieved
in German with an average accuracy of 79.8%, fol-
lowed by the accuracy in English with 68.6%, Man-
darin with 63.2%, Russian with 61.2% and French
with 56.6%. The macro F1 score, which gives equal
importance to all classes, is consistently lower than
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Language Accuracy Macro Avg. Weighted Avg.
Precision Recall F1 Precision Recall F1

English 68.6 0.690 0.606 0.630 0.694 0.686 0.682
German 79.8 0.728 0.736 0.724 0.816 0.798 0.802
Russian 61.2 0.636 0.592 0.574 0.660 0.612 0.598
French 56.6 0.636 0.538 0.518 0.662 0.566 0.542
Mandarin 63.2 0.772 0.632 0.690 0.772 0.632 0.690

Table 3: Cross-validated test results in different languages

Relation Type Precision Recall F1 Test samples
CENTER-PERIPHERY 0.63 0.56 0.59 27
CONTACT 0.75 0.50 0.60 6
CONTAINMENT 0.77 0.82 0.79 121
FORCE 0.60 0.50 0.55 60
PART-WHOLE 0.75 0.50 0.60 6
SCALE 0.71 0.38 0.50 13
SOURCE-PATH-GOAL 0.72 0.80 0.76 93
VERTICALITY 0.78 0.84 0.81 64

Table 4: F1 scores for the individual classes of the test set (English and German)

the accuracy and the weighted F1 score showing
that the classes having more training data were
learned better. In comparison, a simple majority
classifier always predicting CONTAINMENT would
only achieve an accuracy of 31.0%, a weighted F1
score of 0.147, and a macro F1 score of 0.059 on
the combined English and German test set.

In order to further detail the results, we present
the class F1 scores in Table 4 as well as the confu-
sion matrix in Figure 2, which were computed for
one of the trained models for a mixed test set con-
sisting of the German and English samples. The
model performs best for the classes backed by the
most training data, i.e., CONTAINMENT, SOURCE-
PATH-GOAL, and VERTICALITY. Although a lot
of data samples belong to the image schema FORCE

it only has a class F1 score of 0.55, which is due
to the high confusion with SOURCE-PATH-GOAL.
For the classes with very little training data the
model achieves a lower F1 score, although never
below 0.5.

6.2 Scores Unsupervised Baseline

From all English samples in the dataset, only
36.5% contained a verb–preposition–noun triple.
This low percentage highlights how important a
word class-independent approach is. After cluster-
ing the resulting 613 triples, the highest score is
achieved with 16 clusters, averaged triple embed-
dings, nearest-neighbors for computing the affinity

matrix, and discretization. From the resulting clus-
ters, 7 are labeled as CONTAINMENT, 4 as FORCE,
4 as SOURCE-PATH-GOAL, and 1 as VERTICAL-
ITY. The obtained accuracy is 43.5%, thus, much
lower than the results obtained by XLM-R. The
low macro-averaged F1 score of 0.20 shows the
methods inability to properly deal with the class
imbalance.

Choosing a higher number of output clusters, the
scores can be increased, however, also requires a
lot of manual analysis if being applied to unlabeled
real world data. For example, with 32 clusters, the
accuracy increases to 49.8%.

6.3 LIME Explanations

Looking at the LIME explanations for some
wrongly classified samples, especially for those
belonging to classes regularly confused according
to the confusion matrix in Figure 2, we gained cru-
cial insights regarding the inner workings of the
model and issues in the dataset. Firstly, some of
the salient points of the confusion matrix are due
to common image schema collocations, i.e., two
or more image schemas occurring together in the
same sentence. An example of this are the four
expressions with the gold label SCALE which were
classified as VERTICALITY by the model. In all
samples the two image schemas are collocated, e.g.,
in the expression He’s head and shoulders above
everyone in the industry, where LIME correctly
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Figure 2: Confusion matrix for the image schema extraction model on the test set (English and German)

(a) VERTICALITY (b) CONTAINMENT

Figure 3: Words LIME finds as strong indicators for specific image schema class
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identifies the word above as strong indicator for
the image schema VERTICALITY. However, due to
its quantitative, comparing nature, the phrase also
belongs to the image schema SCALE as stated in
the gold standard. Interestingly, the confusion is
never the other way around, i.e., samples belong-
ing to VERTICALITY are never classified as SCALE,
which is most likely due to VERTICALITY being
supported by more training data so that the model
develops a certain bias towards that class. Other
samples show some unintended learned behavior
exhibited by the model. The expression to have an
open marriage, having the gold label CONTAIN-
MENT, is classified as SOURCE-PATH-GOAL by
the model although LIME identifies open as an
indicator for CONTAINMENT. However, LIME’s
output suggests that the model identified marriage
as a concept that is often talked about in terms re-
lating to the image schema SOURCE-PATH-GOAL,
such as in conceptual metaphors like LOVE IS A
JOURNEY. However, as this is not the case in the
given context, the classifier takes a wrong decision.

Figure 3 shows the features with the highest indi-
cator scores for the image schemas VERTICALITY

and CONTAINMENT averaged over all samples in
the test set. The words shown for VERTICALITY

are all correctly identified as strong markers. Only
looking further down the list, not shown in the fig-
ure anymore, one finds false positives, for instance,
wings which only is related to themes were VERTI-
CALITY plays a role. The words identified as strong
indicators for CONTAINMENT contain more clear
false positives, such as white or answer. The word
white occurs in two natural language expressions
labeled as CONTAINMENT in the dataset, while
answer occurs four times, however, surprisingly
never in a phrase labeled as CONTAINMENT.

7 Discussion

Task Design. A shortcoming of the current
model and dataset is not considering multiple labels
for one natural language expression. Thus, the task
should be changed to a multi-label classification
task supported by a corresponding dataset, which
could be created by manually adapting the current
annotations.

Moreover, instead of relying on additional expla-
nations to identify constituents of image schematic
language, one could try to approach image schema
extraction as a token-level classification task, in
which a label is not attributed to a full sentence but

to each word or continuation of a word in a sen-
tence individually. The classifier’s output would
then directly indicate which words of a sentence are
used in an image-schematic way. However, one has
to be careful not to treat words, especially prepo-
sitions, in isolation of their context. For instance,
the word on often indicates spatial languages as in
the phrase on the path to, but it can also be used
in non-spatial contexts, e.g., the book on biology.
When creating labels on a token-level, words need
to be carefully and consistently annotated with im-
age schemas, ideally following very explicit and
clear annotation guidelines.

Figure 4: Learning curve computed in decimal intervals
from 10% to 100% of training data and showing the av-
erage score and 95% confidence interval of three trained
models

Dataset Improvements. Moreover, the dataset
is missing data for some common image schemas,
e.g. SUPPORT or BALANCE. In general, more data-
points, especially for CONTACT and PART-WHOLE

as the two classes with the fewest datapoints and
the lowest class F1 scores, would likely lead to an
increase in the model’s performance. This is also
indicated by the learning curve in Figure 4 which
still shows an increasing weighted F1 score given
a higher number of overall training samples. For
the model to function in the wild, it additionally
requires training samples which are labeled as non-
image-schematic language as it otherwise will label
every sentence as image-schematic language. Fur-
thermore, LIME revealed certain samples where
the model made the correct decisions based on rel-
evant features, but the gold standard had erroneous
labels, which led to some corrections made on the
dataset.
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Global Explanations. To gain first insights into
the global behavior of the model we introduced
a simple algorithm for averaging LIME results
over multiple samples. However, changing the
procedure to rank words by taking into account
how often they indicate a specific image schema
class would also allow to gather information of
which parts-of-speech are most commonly used in
natural language expressions of a specific image
schema. Such improved forms of global aggre-
gations of local explanations were, for instance,
designed and evaluated in form of the Submodular
Pick algorithm proposed by Ribeiro et al. (2016)
or the Global Average and Global Homogeneity-
Weighted Importance proposed by van der Linden
et al. (2019), which we, in the future, plan to im-
plement and test in the context of image schema
extraction.

8 Conclusion

We introduce a novel approach to perform image
schema extraction from natural languages based
on multilingual, pretrained neural language models.
Thereby, a supervised training procedure can be
implemented by finetuning the pretrained model
with only a few training samples without making
any prior assumptions about word classes. The
model shows a strong cross-validated performance
in English and German, and even shows the ability
to generalize to languages unseen during finetun-
ing. Explanations generated by the explainable
AI approach show insights and shortcomings re-
garding the model behavior as well as the dataset
annotation. To further improve the differentiation
between image-schematic classes, a more equal
distribution of training data would be beneficial. In
terms of future work, we intend to add non-image-
schematic samples to further enable the trained
classifier to distinguish image-schematic from non-
image-schematic expressions. In addition, the task
should be devised as a multi-label classification
task to account for the frequent phenomenon of im-
age schema collocations. Lastly, we would like to
improve the aggregation of local explanations and
utilize it in order to systematically analyse image
schematic language in a text corpus.
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Abstract

Current language models have been criticised
for learning language from text alone without
connection between words and their meaning.
Consequently, multimodal training has been
proposed as a way for creating models with
better language understanding by providing the
lacking connection. We focus on pre-trained
multimodal vision-and-language (VL) models
for which there already are some results on
their language understanding capabilities. An
unresolved issue with evaluating the linguistic
skills of these models, however, is that there
is no established method for adapting them to
text-only input without out-of-distribution un-
certainty. To find the best approach, we investi-
gate and compare seven possible methods for
adapting three different pre-trained VL mod-
els to text-only input. Our evaluations on both
GLUE and Visual Property Norms (VPN) show
that care should be put into adapting VL mod-
els to zero-shot text-only tasks, while the mod-
els are less sensitive to how we adapt them to
non-zero-shot tasks. We also find that the adap-
tation methods perform differently for different
models and that unimodal model counterparts
perform on par with the VL models regard-
less of adaptation, indicating that current VL
models do not necessarily gain better language
understanding from their multimodal training.

1 Introduction

Having models learn language from text alone has
been criticised based on several aspects, from fun-
damental arguments about how language works
(Bender and Koller, 2020) to findings on lack of
certain information in text (Gordon and Van Durme,
2013; Paik et al., 2021). To train language mod-
els on more sources than text is therefore a pro-
posed direction for creating language models with
better language understanding (Bisk et al., 2020).
These models would then become multimodal, with
the capability to process both text and information
from other modalities.

Figure 1: An overview of different ways to adapt a
multimodal model to text-only input. It showcases three
of the seven adaptations evaluated in this work.

The multimodal models of interest in this work
are vision-and-language (VL) models that have
been trained on images and their corresponding
captions or visual questions (Lu et al., 2019; Tan
and Bansal, 2019; Su et al., 2020; Li et al., 2019;
Chen et al., 2020). These models are performant on
several image-text tasks such as image captioning
and VQA, while there also is an increased interest
for evaluating how their natural language under-
standing is influenced by their multimodal training
(Iki and Aizawa, 2021; Yun et al., 2021).

It is however tricky to investigate the pure natural
language understanding of the aforementioned VL
models, since their language processing is condi-
tioned on visual features. For certain investigations,
we may simply wish to evaluate the models on text-
only domains, while these models have not been
developed for this purpose. If we do not attend
to the issue of accurately adapting VL models to
text-only domains we risk evaluating them out-of-
distribution and fail to accurately measure their
natural language understanding capabilities.
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Different methods for adapting VL models to a
text-only input have already been tried and we have
some results on the natural language understanding
capabilities of these models (Iki and Aizawa, 2021;
Yun et al., 2021). However, no systematic search
for the best way to adapt VL models to a text-
only input has been performed and it is unclear
how well the VL models work with the previously
proposed adaptations. If we wish to continue the
search for better natural language understanding
in multimodal models, we should ensure that we
evaluate them in the best way possible. In this work,
we search for the best method for adapting existing
VL models to a text-only input, as illustrated in
Figure 1.1

With the adaptations in place, we can then com-
pare the VL models to their unimodal text-only
counterparts. This will complement already exist-
ing results on the natural language understanding
capabilities of VL models and the effect of multi-
modal training.

The contributions of our work are as follows:

• We investigate and compare seven meth-
ods for adapting LXMERT (Tan and Bansal,
2019), VisualBERT (Li et al., 2019) and CLIP-
BERT (Norlund et al., 2021) to a text-only in-
put (Section 3). Two of these adaptations have
already been used in previous investigations
of the linguistic capabilities of VL models
(Frank et al., 2021; Iki and Aizawa, 2021).

• We evaluate these adaptations on the GLUE
benchmark (Wang et al., 2018) (Section 4.1).
This gives us results on how well the adap-
tations work for tasks that aim to evaluate
general natural language understanding.

• We also evaluate the adaptations on the Vi-
sual Property Norms (VPN) (Hagström and
Johansson, 2022) (Section 4.2). This gives
us results on how well the adaptations work
for zero-shot tasks that aim to evaluate visual
conceptual knowledge in the models.

• We compare the adapted VL models to their
unimodal BERT-base (Devlin et al., 2019)
counterparts on the aforementioned evalua-
tion tasks. The ensuing results should provide
additional clarity on the natural language un-
derstanding of VL models.

1Code available at https://github.com/lovhag/
adapt-pre-trained-VL-models-to-text

• We also compare the adapted VL models to
the multimodal FLAVA model (Singh et al.,
2022) that requires no adaptation to text-only
tasks.

2 Models

We investigate adaptations to text-only input for the
three multimodal models CLIP-BERT, LXMERT
and VisualBERT. We also compare their results
with those of a baseline BERT-base model and
FLAVA. The models are further described below
and an overview of them can be found in Table 1.

For each of the multimodal models, we also de-
scribe how to make the model function without
visual input. This is later used in some of the adap-
tations we evaluate, described in Section 3.

All models evaluated in this work except for
CLIP-BERT are provided by the Huggingface li-
brary (Wolf et al., 2020). The pre-trained model
weights for all models except for CLIP-BERT are
also provided by this library. The CLIP-BERT
weights are found in our public repository.

2.1 VisualBERT

VisualBERT is a single-stream model that has been
initialized from pre-trained BERT-base weights and
then further trained on MS COCO as well as VQA
(Lin et al., 2014; Goyal et al., 2017). As a result, it
has been trained on 1.27M more texts and 0.12M
more images than BERT-base. It utilizes a Faster R-
CNN detector (Anderson et al., 2018) as backbone,
for which it has been trained on the features of the
36 first detections, meaning that it expects visual
input features with shape (36, 2048).

Usage without visual input The single-stream
architecture of this model implies that it simply con-
catenates the embeddings from the visual features
with the word embeddings from the text input and
then forwards this to the BERT encoder. Therefore,
this model can be queried with text only without
changing anything in the model architecture, since
it simply means that only the word embeddings are
fed to the BERT encoder.

2.2 LXMERT

LXMERT is a dual-stream model trained on MS
COCO, VQA, VG, GQA and VG-QA (Hudson and
Manning, 2019; Zhu et al., 2016). It has not been
initialized from BERT-base weights. In total, it
has been trained on 9.18M visual texts and 0.18M
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Model Size Pre-train data Backbone

BERT-base 110M English Wiki, BookCorpus -
FLAVA 86M CCNews, BookCorpus, PMD -
CLIP-BERT 110M English Wiki, BookCorpus, CLIP-BERT V+L CLIP
LXMERT 230M LXMERT V+L Faster R-CNN
VisualBERT 110M English Wiki, BookCorpus, VisualBERT V+L Faster R-CNN

Table 1: The models evaluated with details on their pre-training data. The V+L datasets refer to model-specific VL
datasets. With ‘FLAVA‘ we refer to the text encoder.

images. Similarly to VisualBERT, this model ex-
pects visual features of the shape (36, 2048) from
36 Faster R-CNN detections.

Usage without visual input The dual-stream ar-
chitecture of this model implies that it processes
the visual embeddings and word embeddings in
separate encoders before it fuses the information
from them in a so called Cross-Modality Encoder.
For this model it does not suffice to simply omit
the visual input since it is expected by a separate
visual encoder. However, the language output of
the model is only affected by the visual input at
a set of cross-attention sub-layers with residual
connections in the Cross-Modality Encoder. Con-
sequently, we can set the added residual from the
cross-attention layer to zero and remove the visual
encoder of the model.

2.3 CLIP-BERT
CLIP-BERT is a single-stream VL model that is
architecturally very similar to VisualBERT. The
main differences this model introduces are two, 1)
it has a CLIP (Radford et al., 2021) backbone that
generates visual features of dimension (512, ) for
each image, and 2) it has been trained on 4.72M
visual texts and 2.91M images, a vision-language
dataset approximately four times larger than that of
VisualBERT, in addition to having been initialized
from BERT-base weights.

Usage without visual input Similarly to Visual-
BERT, the single-stream architecture of this model
implies that it can be queried with text only without
changing anything in the model architecture, since
it simply means that only the word embeddings are
fed to the BERT encoder.

2.4 BERT-base
Since all VL models we evaluate to some extent are
based on BERT-base, we use this unimodal model
as a baseline in our evaluations seen in Section 4.

We also create two additional baseline versions
of BERT-base by further training the pre-trained
model on LXMERT text data2 and a subset of the
English Wikipedia corpus from the Huggingface
Datasets library (Lhoest et al., 2021) sampled to
match the LXMERT text data in size, respectively.
We do this to enable more fair comparisons to the
evaluated VL models, since they have received ad-
ditional training on text and images. These model
versions are denoted by trained-LXMERT and
trained-Wikipedia. The unchanged BERT-
base model is denoted by default.

Since the original LXMERT model developed
by Tan and Bansal (2019) was not initialized
from BERT weights, we also develop a third
baseline version of BERT that has been trained
from scratch on LXMERT text data for com-
parison. This model version is denoted by
trained-LXMERT-scratch.

More information about the datasets used to train
the BERT-base baselines and training procedures
can be found in Appendices A and B respectively.

2.5 FLAVA

FLAVA is a multimodal model that works for all
combinations of VL modalities without any need
for adaptation (Singh et al., 2022). It sidesteps
all issues related to the aforementioned VL mod-
els and can directly be evaluated for its linguis-
tic capabilities. It consists of three separate parts:
an image encoder, a text encoder, and a multi-
modal encoder that combines the input from the
unimodal encoders. The unimodal encoders are
pretrained on unimodal datasets and the full model
is then trained end-to-end on the Public Multimodal
Datasets (PMD) corpus (Singh et al., 2022). We
use the text encoder of this model as a baseline in
our evaluations.

2The data is described in https://github.com/
airsplay/lxmert.

5584



3 Adaptations to text-only input

There are several ways to adapt a VL model to a
text-only input. In this work we investigate and
compare seven possible adaptations, as described
below. Two of the adaptations described here have
already been used for investigating the linguistic ca-
pabilities of VL models (Frank et al., 2021; Iki and
Aizawa, 2021). Common for all adaptations is that
their intended use is for evaluation of a pre-trained
VL model (encoder) on text-only input. When we
refer to the word adaptation we refer to the adapta-
tion of a VL model to text-only input.

The adaptions can be grouped into three differ-
ent categories based on how they are implemented.
For the first category, we simply remove the visual
input to the VL model (Sections 3.1 and 3.2). For
the second category, we provide the model with
visual features that are constant and can be viewed
as fillers, (Sections 3.3 to 3.6). For the third cat-
egory, we provide the model with visual features
predicted from text (Section 3.7).

3.1 Using model as-is without visual input

All VL models considered in this work can be
queried with text only, or after performing a small
set of alterations to the model architecture with-
out changing any pre-trained model weights, as
described in Section 2. Thus, we can directly eval-
uate the pre-trained models on the text-only task of
interest. This adaptation is denoted by default.

This adaptation is very simple to apply and does
not require any additional computations, while it
assumes that the VL model can be queried without
visual input. It is also not certain that the mod-
els will function as intended due to the imposed
train/test shift of this adaptation. To our knowledge,
this approach has not been tested before.

3.2 Fine-tuning model on text-only input

Before evaluating the pre-trained VL model we
fine-tune it on a small text-only fine-tuning task,
similarly to how several natural language under-
standing tasks are performed (Wang et al., 2018,
2019). The idea is that this will acclimatize the
model to the aforementioned domain shift. Simi-
larly to the default adaptation, this also relies
on being able to use the model without visual input.

We create two separate fine-tuning sets for this
adaptation. The sets have been extracted from the
text part of the LXMERT training data and from
English Wikipedia. Their sizes have been adapted

to match those of typical fine-tuning sets for e.g.
SuperGLUE (Wang et al., 2019) and we have en-
sured that the number of tokens in each fine-tuning
set is roughly equal. More information about the
datasets can be found in Appendix A.

Finetuning the VL models on each of these sets
should give us results on both the performance of
the method, and on how dependent it is on the cho-
sen fine-tuning set. These adaptations are denoted
by no-visual-features-finetuned-
LXMERT and no-visual-features-fine-
tuned-Wikipedia respectively.

This method avoids having to work with image
feature extractors and image data. However, it
requires setting up a training algorithm and ad-
ditional computations. Moreover, since the full
model needs to be trained for this adaptation, it
is more sensitive to hyperparameter choices. It is
also not certain whether it is sufficient to perform
fine-tuning on text to acclimatize VL models to a
text-only input. More information on tuning proce-
dures can be found in Appendix B.

3.3 Using averaged visual features from the
training dataset

In this method we give the VL model a constant
visual feature input together with the text of in-
terest at evaluation, where the visual features are
the average of all the visual features in the train or
evaluation data of the model. The provided visual-
features should then be kept in-distribution, while
they also are uninformative. This adaptation has
already been used by Frank et al. (2021) for ablat-
ing visual input to VL models. We denote it by
avg-visual-features.

No assumptions or changes to the model archi-
tecture are necessary for this method. However,
it requires access to the datasets used to train the
model of interest and the computation of the aver-
aged visual feature vector.

We calculate the averaged visual feature vector
for CLIP-BERT based on the CLIP features of its
training data. We also calculate the averaged visual
features and position vectors for LXMERT from
its corresponding training data. We take the aver-
age across training samples per detection for the
LXMERT visual features such that we get one av-
erage feature vector for the first detection, another
for the second detection and so forth up to the 36th.

The original released VisualBERT visual fea-
tures are not compatible with the Huggingface im-
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plementation of the model used in this work. We
instead provide VisualBERT with the LXMERT
averaged visual features, since they are compatible.

3.4 Using visual features from a black image

The idea is yet again to give the VL model a con-
stant visual feature input together with the text of in-
terest. In this case, the visual features are extracted
from a black image using the model backbone. The
model then receives a visual input similar to what
it has been trained on, while it does not contain
any information. This adaptation has already been
used by Iki and Aizawa (2021) for evaluating e.g.
VisualBERT and LXMERT on GLUE. We denote
it by zero-image-visual-features.

Similarly to the averaged features adaptation,
this adaptation makes no assumptions about the
model of interest. However, it requires access to
the backbone of the model and the computation of
the visual features from a black image.

We use the LXMERT feature extractor to ex-
tract 36 detections with their visual features and
bounding boxes from a black image. The extrac-
tor is a Faster R-CNN model developed by Ander-
son et al. (2018). These features are then given to
LXMERT and VisualBERT during evaluation. For
CLIP-BERT we use CLIP to extract visual features
from the same black image.

3.5 Using constant zero vector visual features

We give the model of interest constant visual fea-
tures, and the positions of bounding boxes in the
case of LXMERT, that are zeros. There are no
guarantees that this method will work well for
adapting VL models to a text-only input. It is
however easy to implement and can be seen as
a baseline to be compared with the other adapta-
tions. To the knowledge of the authors, this method
has not been used previously. We denote it by
zeroed-visual-features.

3.6 Using tuned visual features

We tune the visual features to a frozen version of
the model of interest, and then use these constant
features at evaluation together with the text of inter-
est. To the knowledge of the authors, this method
has not been used previously to adapt VL models to
a text-only input. However, the key idea of tuning
the input to the model has been used in previous
works (Qin and Eisner, 2021; Tsimpoukelli et al.,
2021).

We tune visual features to frozen and pre-
trained versions of CLIP-BERT, VisualBERT and
LXMERT respectively. We tune on the same
LXMERT and Wikipedia sets used for the adapta-
tion described in Section 3.2. More information on
tuning procedures can be found in Appendix B.

This method offers more flexibility for find-
ing the most suitable constant visual features
for a VL model evaluated on text-only tasks.
However, it also requires setting up the train-
ing, more computations and is more sensitive
to hyperparameter tuning. We denote these
adaptations on the different fine-tuning sets by
finetuned-LXMERT-visual-features
and finetuned-Wikipedia-visual-
features respectively.

3.7 Predicting visual features from text

Some feature extractors map text representations
and visual representations to the same parametric
space. Consequently, they can be used to “imagine”
visual features from text. The CLIP model serving
as a backbone for the CLIP-BERT model has this
capability and can be used to generate visual fea-
tures from text during evaluation on text-only tasks.
We implement it for the CLIP-BERT model and
denote it by imagined-visual-features.

This method is quite simple to implement, while
it requires access to CLIP and computing the visual
features from the evaluation corpus. It is also not
clear how well CLIP representations work for text
that is not specifically related to visual concepts.

4 Evaluation methods

To assess the performance of our text-only adap-
tations, we firstly evaluate them on the GLUE
benchmark, described in Section 4.1. These evalu-
ations will give us results on how well the models
and their adaptations work for general natural lan-
guage understanding tasks. This benchmark has
been used by both Devlin et al. (2019) and Iki and
Aizawa (2021) to evaluate natural language under-
standing capabilities of BERT and VL models.

Furthermore, to assess the performance of the
adaptations on text domains that are more focused
on visual concepts, we perform evaluations on
VPN, further described in Section 4.2. This will
provide us with results on tasks the VL models po-
tentially are more attuned to, complementing the
general GLUE results.
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MLM query Gold labels

a cow usually is [...] black, white
a mug has a [...] handle
q: a greeting card has? a: [...] pictures

Table 2: Query samples from the VPN dataset for the
concepts cow, mug and greeting card using three out
of nine possible query templates. The [...] is typically
replaced with a [MASK] token.

4.1 GLUE
The General Language Understanding Evaluation
(GLUE) benchmark has the aim to evaluate model
performance across several NLU tasks. It was de-
veloped by Wang et al. (2018) and has since then
been used to evaluate the natural language under-
standing of several LMs, including BERT.

GLUE contains nine different tasks testing for
grammatical correctness understanding (CoLA),
sentiment classification (SST-2), semantic equiva-
lence detection on different text domains (MRPC,
QQP, STS-B), textual entailment (MNLI, RTE), an-
swer extraction from text (QNLI) and reading com-
prehension (WNLI). All tasks are sentence clas-
sification tasks and have corresponding train and
validation sets for fine-tuning.

VL models have already been evaluated on
GLUE by Iki and Aizawa (2021) using the black
image adaptation method listed in Section 3.4. We
extend the GLUE evaluation to include all alterna-
tive adaptation approaches listed in Section 3.

To evaluate the performance of our adaptations
on GLUE, we first fine-tune our selected multi-
modal models with each adaptation on the training
sets of the GLUE tasks. We then report the vali-
dation scores of the models and their adaptations.
More information about the fine-tuning procedures
can be found in Appendix B.

4.2 Visual Property Norms
Our current VL models are not necessarily the best
fit for general NLU tasks such as GLUE (Iki and
Aizawa, 2021; Yun et al., 2021). Therefore, we also
evaluate them on a task we assume they are more
suitable to. Visual Property Norms (VPN) essen-
tially queries a model for the basic visual proper-
ties of a set of concepts (Hagström and Johansson,
2022). It is a text-only task, while it explicitly fo-
cuses on visual properties and concepts. Thus, if
the VL models should perform particularly well on
any text-only task, this would be the one. Table 2

displays examples of queries from the VPN dataset.
The VPN dataset is a zero-shot evaluation task

that evaluates a model using masked language mod-
elling (MLM), an objective our models already
have been trained on. To mitigate issues with
prompt-sensitivity of LMs, nine different query
templates are applied during evaluation.

VPN is a version of the CSLB concept property
norms dataset (Devereux et al., 2014) filtered to
only contain visual conceptual features. The orig-
inal property norms dataset was created with the
help of 123 human participants asked to list the
features of a set of concepts. Each concept has in
total been exposed to 30 humans and the maximum
frequency of a feature reported for a concept is then
30 and the minimum 2. This frequency is referred
to as Production Frequency (PF).

VPN has been segmented into five partitions
based on thresholding of PFs. We evaluate our
adaptations on the segment for which PF ≥ 10,
such that ten or more annotators jointly have pro-
duced the visual features in this set. It consists of
2,001 feature entries for 621 different concepts.

5 Results

We report the evaluation results for CLIP-BERT,
LXMERT and VisualBERT with the seven poten-
tial adaptions to text-only input in Figure 2. We
also report the results for our four BERT-base base-
lines. For GLUE we report the macro-averaged
score over the GLUE tasks. The score for each
task is measured using its corresponding prede-
fined metric described by Wang et al. (2018). For
VPN evaluation we report the mean average preci-
sion (mAP) score averaged over each concept and
relation per query template.

We also report the evaluation results on GLUE
for each task and model for the best performing
adaptation measured by average GLUE score in
Table 3. Table 4 similarly reports the model scores
on VPN for the best adaptation on average. We
compare these results to those of the FLAVA text
encoder that requires no adaptation. Complete nu-
merical results can be found in Appendix C.

We format our discussion around a set of state-
ments that can be made with respect to the results
of this work, as follows.

Model performance on GLUE is more sensitive
to pre-training than to adaptation Model per-
formance on GLUE varies insignificantly between
different adaptations for each model in Figure 2a.
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Figure 2: Results on GLUE and VPN from evaluating different adaptations to text-only input. The GLUE results
are given by the mean of the scores for the development sets of all tasks, excluding WNLI. The metric used for
each task is F1 score for QQP and MRPC, Matthews correlation for CoLA, Spearman correlation for STS-B, and
accuracy for the remaining tasks. For VPN the box length indicates prompt sensitivity over nine different query
templates.

The CLIP-BERT performance varies with less than
0.01 score points between adaptations and the Visu-
alBERT performance with at most 0.02 score points
between ’no-visual-features-finetuned-Wikipedia’
and ’zeroed-visual-features’. The LXMERT per-
formance also has a performance difference of at
most 0.02 score points between ’default’ and ’zero-
image-visual-features’.

The largest performance difference on the GLUE
benchmark can be observed between models,
where LXMERT and BERT-base trained from
scratch on LXMERT data perform significantly
worse in comparison to the other models. Most
likely, this is due to that the models were not initial-
ized from BERT weights and consequently were
not tuned to more general language usage.

A possible explanation for why the adaptation
methods seem to matter so little for the GLUE
results is that the benchmark is not zero-shot. The
fine-tuning performed on each task might provide
a sufficient of signal to the model for it to adapt to
the unimodal domain.

Lastly, our results on GLUE for LXMERT and
VisualBERT differ from those obtained by Iki
and Aizawa (2021). Especially with respect to
LXMERT for which we observe a significant per-
formance difference compared to the other VL
models, while the same cannot be observed in the
results by Iki and Aizawa (2021). However, this
should not raise any concerns about the robust-
ness of the results, since we evaluated the original
released models, while Iki and Aizawa (2021) eval-
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CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

BERT-base 61.1 84.6 87.3/91.2 91.9 91.1/88.0 70.4 93.7 88.2
FLAVA 50.1 81.6 83.6/88.3 87.8 90.4/87.2 55.6 92.4 87.1
CLIP-BERT 55.4 83.2 75.5/84.1 89.8 91.1/88.0 58.1 92.0 87.8
LXMERT 15.9 68.1 69.9/81.6 68.0 84.1/76.8 58.5 86.6 40.1
VisualBERT 53.3 83.7 80.4/86.4 90.7 90.9/87.6 67.5 91.7 89.6

Table 3: GLUE development set results per task for the best performing adaptation on average. The best performing
adaptation for each model is ‘default‘ for BERT-base, ‘avg-visual-features‘ for CLIP-BERT, ‘no-visual-features-
finetuned-Wikipedia‘ for LXMERT and ‘no-visual-features-finetuned-Wikipedia‘ for VisualBERT . We report
Matthew’s correlation for CoLA, average accuracy for MNLI, accuracy/F1 score for MRPC, accuracy for QNLI,
accuracy/F1 for QQP and accuracy for RTE and SST-2 and Spearman correlation for STS-B.

VPN Score

BERT-base 49.1 ± 13.2
FLAVA 30.7 ± 6.9
CLIP-BERT 48.2 ± 4.2
LXMERT 42.8 ± 10.8
VisualBERT 38.1 ± 9.1

Table 4: VPN results for the best performing adap-
tations. The best performing adaptation for each
model is ‘trained-LXMERT‘ for BERT-base, ‘finetuned-
LXMERT-visual-features‘ for CLIP-BERT, ‘default‘ for
LXMERT and ‘no-visual-features-finetuned-LXMERT‘
for VisualBERT. We report the results as median± stan-
dard deviation over the nine query templates.

uated models that had been unified and trained on
the same data by Bugliarello et al. (2021). And as
we observed previously, GLUE results are sensitive
to pre-training process.

Performance on Visual Property Norms is sensi-
tive to adaptation In contrast to the observations
made for GLUE, performance on VPN differs sig-
nificantly between different adaptions in Figure 2b.
In contrast to GLUE, this task is zero-shot and may
provide a greater challenge for models that are not
sufficiently tuned to the unimodal text domain.

Additionally, it is worth noting that the model
performance is quite sensitive to the choice of
query template. However, this is not entirely un-
expected since it has been shown that LMs are
prompt-sensitive in prompt-based retrieval evalua-
tions (Cao et al., 2021; Jiang et al., 2020).

Different adaptations perform differently for
different models on Visual Property Norms
For CLIP-BERT, the most suitable adaptation for
evaluation on VPN is to provide the model with
visual features that have been tuned on LXMERT

text data. For LXMERT, the best approach is to
use the model as-is without visual input, and for
VisualBERT the best adaptation is to fine-tune the
model on LXMERT data without visual features.
Common for all of these adaptations is that they
involve some kind of prior tuning on LXMERT
text data. A potential explanation for this is that the
LXMERT data is more similar to VPN and results
in a smaller domain shift.

An explanation for the varying adaptation fits be-
tween VL models is potentially found by looking
at the different pre-training datasets and architec-
tures of the models. VisualBERT has been tuned on
much less data compared to the other models, and
may therefore benefit from more training in general.
Additionally, the single-stream CLIP-BERT and Vi-
sualBERT models process all linguistic and visual
information in a joint manner, without the same
ability to disentangle signals as the dual-stream
LXMERT model.

FLAVA does not outperform adapted VL models
On both GLUE and especially VPN, FLAVA is not
better than the adapted VL models. This contrasts
the GLUE results reported for FLAVA and other
VL models by Singh et al. (2022). The difference
in results may arise from differences in fine-tuning
methods for GLUE and that we do not evaluate
unified VL models.

Based on our results, adapting VL models to
text-only input works better or equal to developing
a model to work for all modalities from the start, as
was done for FLAVA. However, since all models
evaluated have been trained on different datasets
with different objectives we cannot draw certain
conclusions related to model design.

BERT-base baselines outperform vision-and-
language models regardless of adaptation
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Lastly, we can observe in Figure 2 how default
BERT-base and BERT-base trained on LXMERT
text data each have among the best performances
on GLUE and VPN respectively. For GLUE it is
expected: Iki and Aizawa (2021) have already ob-
served that VL models on average perform worse
on GLUE. Yun et al. (2021) also found similar
results when they compared the quality of the lin-
guistic representations of VisualBERT to those of
BERT-base. The general natural language under-
standing capabilities evaluated in GLUE are po-
tentially not easy to learn from a visual modality,
explaining why the VL models did not perform
better on this task. Our results on VPN are perhaps
more surprising.

From their visual training, the VL models should
more easily have gained natural language under-
standing capabilities necessary for better perfor-
mance on VPN. Three potential explanations for
why a LM still outperforms a VL model on VPN
are 1) BERT-base is better tuned and therefore has
a better overall performance, 2) the VL models
evaluated in this work do not learn more about vi-
sual concepts from images compared to text that
has been curated to contain visual information, or
3) the VPN task does not accurately measure the
visual conceptual information we have in mind.
More investigations are necessary to accurately de-
termine the reason. In support of explanation (2),
Abdou et al. (2021) found that there are similarities
between color representations in LMs and actual
perceptual color spaces, indicating that visual per-
ceptual information may be found in text.

We should also note that none of the models
evaluated in this work were developed with the goal
of achieving better natural language understanding
by multimodal training. This potentially explains
some of our results, and provides an interesting
avenue for future research in developing models
that have a better performance on both unimodal
and multimodal tasks.

6 Related Work

As previously mentioned, Iki and Aizawa (2021)
have already looked at the language understand-
ing capabilities of VL models, while they only
looked at one way of adapting these models to a
text-only input and only evaluated on GLUE. Yun
et al. (2021) also look at the language understand-
ing capabilities of VL models by evaluating the
linguistic representations of VisualBERT and com-

pare them to a BERT-base model that has been
trained on the same text data. In contrast to their
work, we investigate several VL models and evalu-
ate their performance on language generation tasks.

Bugliarello et al. (2021), Hessel and Lee (2020),
Thrush et al. (2022) and Frank et al. (2021) also
perform extensive evaluations of several VL mod-
els such as LXMERT and VisualBERT. In contrast
to our work, they primarily focus on the VL per-
formance of the models, and do not consider the
model performance on text-only input.

Tan and Bansal (2020) introduce a new method
for enriching the textual representations of a model
by training on visual information. Their method
results in a model that can be directly applied to
text-only tasks and outperforms its standard BERT
model counterpart on GLUE. This method provides
a parallel research avenue compared to adapting
VL models to text-only input.

7 Conclusions

We have investigated and compared seven pos-
sible adaptations of CLIP-BERT, LXMERT and
VisualBERT to text-only input by evaluation on
GLUE and Visual Property Norms. We can con-
clude that care should be put into adapting these
pre-trained VL models to text-only input for better
performance on zero-shot tasks, while the choice
of adaptation method seems to be less impactful on
tasks coupled with fine-tuning sets.

Finally, we have observed that a unimodal LM
has a performance on text-only tasks that is better
or comparative to that of its VL model counterparts,
regardless of how these counterparts were adapted
to text-only input. Seemingly, improved pure text
capabilities are not guaranteed from simply training
a model on arbitrary multimodal tasks. This agrees
with and solidifies previous research results on VL
models.
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A Datasets for training and tuning

More detailed information on the datasets used for
training and fine-tuning the models investigated in
this work can be found here.

A.1 Training of BERT baselines
More information about the LXMERT and
Wikipedia training datasets used for the BERT-base
baselines can be found in Table 5. By training the
BERT model on LXMERT text data, it will have
seen the same textual information as LXMERT.
And by training it on the Wikipedia data, it will
have seen the same amount of text as LXMERT.

A.2 Fine-tuning model on text-only input
The LXMERT and Wikipedia datasets used for
fine-tuning text-only versions of VL models are
further described in Table 6. The two fine-tuning
sets cover quite different domains. This is already
visible from the tokens/sample count in the table,
in which the Wikipedia corpus generally contains
long sentences and the LXMERT corpus generally
contains shorter sentences more suitable for image
captions.

B Training procedures

More detailed information on our training proce-
dures can be found here.

B.1 Training BERT-base baselines
For the training of BERT-base on both the
LXMERT and Wikipedia datasets we use an MLM
objective, a batch size of 16,384 and learning rate
5× 10−5 until the model performance on the dev
set had converged. The maximum training time
was at most 23 hours on 32 Tesla T4 GPUs.

B.2 Fine-tuning model on text-only input
We fine-tune the models using an MLM objective,
batch size of 256 and learning rate 5× 10−5 until
the model performance on the dev set had con-
verged. The maximum training time was two hours
on eight Tesla T4 GPUs.

B.3 Using tuned visual features
We tune the visual features using an MLM objec-
tive, batch size 64 and a learning rate of 0.05 until
the model performance had converged on the dev
set. The maximum training time was 18 hours on
one Tesla T4 GPU.

B.4 Fine-tuning on GLUE
For the GLUE fine-tuning, we tune our models
for four epochs with a learning rate of 3× 10−5 ,
weight decay of 0.01 and batch size of 32. The
longest tuning time was four hours on two A100
GPUs. We then pick the model checkpoint with the
best validation score during training for evaluation.

C Complete numerical results

The complete numerical results on GLUE and VPN
can be viewed in Tables 7 and 8 respectively.
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Corpus Partition # of samples # of tokens # of tokens/sample

LXMERT train 9.0M 59.0M 6.6
dev 0.2M 1.4M 6.8

Wikipedia train 4.4M 59.0M 13.4
dev 0.1M 1.3M 13.4

Table 5: The two text datasets used for developing two additional BERT-base baselines. The number of samples are
roughly equal to the number of sentences for these datasets. The LXMERT data is the text part of the LXMERT
training data. Wikipedia is a subset of general English Wikipedia texts that has been adapted to match the LXMERT
data in total number of tokens.

Corpus Partition # of samples # of tokens # of tokens/sample

LXMERT-f train 9,500 63,000 6.6
dev 3,300 22,000 6.6

Wikipedia-f train 4,600 63,000 13.7
dev 1,600 22,000 13.5

Table 6: The two text datasets used for fine-tuning, denoted by the “-f” ending. The number of samples are roughly
equal to the number of sentences for these datasets.
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Model Adaptation Score

BERT-base trained-LXMERT 80.7
trained-LXMERT-scratch 64.1
trained-Wikipedia 81.1
default 83.7

FLAVA default 78.8

CLIP-BERT default 79.6
no-visual-features-finetuned-LXMERT 79.0
no-visual-features-finetuned-Wikipedia 79.7
avg-visual-features 79.8
zero-image-visual-features 79.4
zeroed-visual-features 79.7
finetuned-LXMERT-visual-features 79.5
finetuned-Wikipedia-visual-features 79.6
imagined-visual-features 79.6

LXMERT default 61.9
no-visual-features-finetuned-LXMERT 59.7
no-visual-features-finetuned-Wikipedia 61.9
avg-visual-features 61.3
zero-image-visual-features 59.9
zeroed-visual-features 61.8
finetuned-LXMERT-visual-features 61.5
finetuned-Wikipedia-visual-features 61.6

VisualBERT default 80.6
no-visual-features-finetuned-LXMERT 80.1
no-visual-features-finetuned-Wikipedia 81.3
avg-visual-features 80.9
zero-image-visual-features 80.6
zeroed-visual-features 79.0
finetuned-LXMERT-visual-features 79.9
finetuned-Wikipedia-visual-features 80.5

Table 7: The adaptation and baseline results for GLUE seen in Figure 2a.
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Score
Model Adaptation Median Standard deviation

BERT-base trained-LXMERT 49.1 13.2
trained-LXMERT-scratch 44.3 13.2
trained-Wikipedia 35.5 9.5
default 39.0 12.4

FLAVA default 30.7 6.9

CLIP-BERT default 44.3 4.7
no-visual-features-finetuned-LXMERT 44.5 7.0
no-visual-features-finetuned-Wikipedia 41.5 5.4
avg-visual-features 33.1 5.0
zero-image-visual-features 41.8 5.8
zeroed-visual-features 39.3 4.9
finetuned-LXMERT-visual-features 48.2 4.2
finetuned-Wikipedia-visual-features 33.3 4.8
imagined-visual-features 31.4 10.2

LXMERT default 42.8 10.8
no-visual-features-finetuned-LXMERT 41.0 7.5
no-visual-features-finetuned-Wikipedia 34.6 10.0
avg-visual-features 37.3 12.9
zero-image-visual-features 42.1 11.0
zeroed-visual-features 35.2 12.0
finetuned-LXMERT-visual-features 37.2 13.9
finetuned-Wikipedia-visual-features 28.5 11.7

VisualBERT default 29.0 10.9
no-visual-features-finetuned-LXMERT 38.1 9.1
no-visual-features-finetuned-Wikipedia 21.6 9.0
avg-visual-features 29.8 11.0
zero-image-visual-features 25.6 10.2
zeroed-visual-features 7.1 3.1
finetuned-LXMERT-visual-features 34.5 10.3
finetuned-Wikipedia-visual-features 20.1 9.9

Table 8: The adaptation and baseline results for VPN.
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Abstract

Artificial agents are nowadays challenged to
perform embodied AI tasks. To succeed, agents
must understand the meaning of verbs and how
their corresponding actions transform the sur-
rounding world. In this work, we propose
ACT-Thor, a novel controlled benchmark for
embodied action understanding. We use the
AI2-THOR simulated environment to produce
a controlled setup in which an agent, given
a before-image and an associated action com-
mand, has to determine what the correct after-
image is among a set of possible candidates.
First, we assess the feasibility of the task via a
human evaluation that resulted in 81.4% accu-
racy, and very high inter-annotator agreement
(84.9%). Second, we design both unimodal
and multimodal baselines, using state-of-the-
art visual feature extractors. Our evaluation
and error analysis suggest that only models that
have a very structured representation of the ac-
tions together with powerful visual features can
perform well on the task. However, they still
fall behind human performance in a zero-shot
scenario where the model is exposed to unseen
(action, object) pairs. This paves the way for
a systematic way of evaluating embodied AI
agents that understand grounded actions.

1 Introduction

Recently, embodied agents have been increasingly
proposed and evaluated on their capacity to nav-
igate virtual environments, and execute actions
within them according to instructions (Suhr et al.,
2019; Hahn et al., 2020; Shridhar et al., 2020;
Padmakumar et al., 2022). Action execution as
a means of evaluating language understanding is a
long-standing idea (e.g. (Winograd, 1972)) which
has now become feasible thanks to the release

*Equal contribution
†Work performed while at the University of Trento

Figure 1: The image on the left (before-image) is the
view the robot has while holding a plate or a cup; the
image on the right is the view the robot has after having
executed the command of picking up that plate/cup.

of various virtual environment platforms (Kolve
et al., 2017; Savva et al., 2019; Yan et al., 2018).
Thus, the study of embodied agents is an interesting
venue to push forward due its both theoretical and
practical appeal. However, fully embodied tasks
involve a variety of issues, making it hard to under-
stand where we stand with respect to the challenges
posed. Here, we focus on one core aspect of such
embodied tasks: action grounding.

Tamari et al. (2020) advocate for embodied
language understanding as a necessary step to
overcome the limitations of the mainstream deep-
learning paradigm. Among the priorities of their
agenda is evaluating models’ ability to simulate
the effects of actions. Evidence from neuroscience
favors an embodied meaning of words and specif-
ically of verbs; for instance, the natural theory of

5597



language (Feldman and Narayanan, 2004) is based
on the assumption that people understand language
by imagining (or simulating) the situation being
described.

In this paper, we focus on grounded verb under-
standing and predicting the visual transformation
their corresponding action causes. More specif-
ically, we consider the idea of verbs as func-
tions (Frege, 1892), and see them as transforma-
tions of an object within a scene before and after
the verb/action is executed. To achieve this, we
create a dataset combining ideas and methods from
two main papers about learning physical common-
sense knowledge (Gao et al., 2018; Zellers et al.,
2021). As in Gao et al. (2018), we focus on the
action-effect relation, namely the physical change
that an action causes when executed on an object.
And, as in Zellers et al. (2021), we leverage a vir-
tual environment, AI2-THOR (Kolve et al., 2017),
to generate transitions between object states.

In sum, we propose ACT-Thor, a dataset for
learning the effects of actions, generated using a
virtual environment.1 For each example in our
dataset, we collect an image of an object, a la-
bel describing an action performed on the object,
and an after-image resulting from executing the
action (Figure 1). Thus, unlike in Gao et al. (2018)
and Zellers et al. (2021), both the before and after
world states are images; the linking action acts as
a function transforming the former into the latter.
Then, via the use of images whose generation is
carefully controlled, we design a task that intends
to capture a challenge embodied AI agents will
face in a real setting.

Out of this collection of image pairs and their
corresponding action-label, we design a prediction
task based on carefully selected contrast sets con-
taining candidate images representing the effect of
other actions performed on the very same object in
the same scene (Figure 2). Agents that truly ground
verbs, given the before-image and the action label,
should be able to select the after-image out of the
contrast set. We also evaluate human performance
on a sample of the dataset. Annotators achieve high
accuracy and inter-annotator agreement, evidenc-
ing the quality of the design method we propose,
and setting an upper bound for multimodal models.

We evaluate baseline models based on state-of-
the-art visual features (Singh et al., 2021; Radford

1The dataset and all relevant code are available at https:
//github.com/hannamw/ACT-Thor.

et al., 2021). We put together ideas and results
from different disciplines to shed light on different
ways to study action in neural models and pave
the way for future research on action grounding.
From formal semantics and computational seman-
tics, we take the view of verbs as functions (Frege,
1892), and therefore as matrices (Baroni and Zam-
parelli, 2010) and learn, for each action, a matrix
able to transform the before-image, into the corre-
sponding after-image. We compare this model with
multimodal neural network models of increasing
complexity. Our experiments show that

• virtual environment platforms can be used
to generate interesting diagnostic datasets of
static images having certain properties and
satisfying certain constraints;

• the task we propose is easy for humans despite
the use of virtual environments they are not
familiar with;

• though the baseline models we have evaluated
succeed on the task when evaluated on un-
seen scenes, they have difficulties when gen-
eralizing the learned action transformations to
unseen objects.

2 Related Work

Actions/verbs have been studied from a variety
of perspectives. They have been the subject of
thorough investigation in formal semantics (Fill-
more, 1982; Beth, 1993), and have been the focus
of widely-used annotated resources (Fillmore et al.,
2002; Schuler, 2005).

Multimodal approaches to action/verb learning
have been especially fruitful. Misra et al. (2015)
learn to ground visual representations of actions to
formal semantic representations thereof. Prior stud-
ies have connected visual action representations to
concepts such as intention (Pezzelle et al., 2020; Ig-
nat et al., 2021) and causality (Gao et al., 2016; She
and Chai, 2017; Yoo et al., 2021). Moreover, text-
based models of similarity between actions have
been shown to substantially improve when text is
combined with visual information (Regneri et al.,
2013). The breadth of these works suggests the im-
portance of verbs and actions for the development
of embodied agents and natural language under-
standing more broadly. We contribute to this line
of research by presenting a new technique for cre-
ating datasets that evaluate computational models

5598



for action grounding. We build on ideas introduced
in (Gao et al., 2018; Wang et al., 2016) by lever-
aging a virtual environment platform: rather than
filtering and annotating images from the web via
crowdsourcing, we generate a controlled dataset
using an agent in a virtual environment.

Within the NLP community, predicting the con-
sequences of actions is often framed as part of
learning commonsense knowledge. We share with
Gao et al. (2018) a focus on what they call naive
physical action-effect relations, namely the causal
relation between an action (verb) and the change
in physical world state caused by that action. Sim-
ilarly, we propose an “effect prediction” task in
which the model predicts an effect (an image) given
the action and the object on which the action is per-
formed. In their task, the action and object pair
are expressed as verbs and nouns, whereas in our
case the noun is presented as a (before) image;
hence the model is challenged to learn the visual
transformation objects undergo through the action
execution.

Zellers et al. (2021) use AI2-THOR to build
the PIGPeN dataset, from which models can learn
world dynamics. They do so by letting a virtual
agent navigate and interact with its environment
to solve certain tasks. However, when building
these trajectories, the robot’s visual perspective (an
image) is ignored in favor of a symbolic represen-
tation of the world state (i.e., as a set of visual
attributes). Hence, models trained on PIGPeN re-
ceive symbolic and natural language inputs repre-
senting world information, and produce outputs in
the same modality. To achieve our goal, we propose
studying the physical action-effect relation high-
lighted by Gao et al. (2018), utilizing the image
generation approach used in Zellers et al. (2021).

Finally, as in (Gao et al., 2018), we implement
this concept as a classification task. However, in-
spired by Gardner et al. (2020), we adopt a con-
trastive setup. Our use of a virtual environment
and its metadata allows us to build carefully con-
trolled sets of candidates in which the very same
object in the very same scene depicted in the before-
image has undergone different visual transforma-
tions/different actions.

Statistic ACT-Thor
action-object pairs 403
before-i, action, after-i 11154
unique before-i 3746
unique after-i 11154
scenes 120
objects 62
actions 12

Table 1: Statistics of the ACT-Thor collection.

3 Datasets

To build our dataset, we generated images using
AI2-THOR2, the virtual environment platform in-
troduced in (Kolve et al., 2017). In AI2-THOR, the
user controls a robot as it navigates a room of a
virtual house environment, filled with household
objects. While navigating the rooms, the robot can
interact with objects it encounters by performing
actions on them. Position and state metadata are
available for the robot and all objects in the scene.

We use the robot to generate an image represent-
ing a scene before and after an action is taken. In
the following section, we describe the image gener-
ation process, which led to the collection of triples
consisting of before and after-images and their
linking action. Then, we describe ACT-Thor,
a dataset built out of this collection to evaluate
models’ abilities to simulate the consequences of
actions on objects situated in virtual scenes.

3.1 Image Generation
AI2-THOR provides a rich environment for im-
age generation. It allows an agent to traverse 120
distinct virtual rooms (scenes), equally distributed
among the following four categories: kitchen, bath-
room, living room, or bedroom. These scenes con-
tain 125 distinct objects, from large, static objects
such as desks or sinks, to smaller objects like pots
or cups. Crucially for the creation of an action-
oriented dataset, the robot can execute 24 actions,
21 of which act directly on objects.

In this virtual world, as in reality, each object has
a certain number of affordances (Gibson, 1977), in
other words, not all actions can be performed on
all objects. Moreover, the state of an object affects
these affordances as well; for example, objects can
only be put down or thrown if they are currently
held. We are interested in studying actions as visual

2We used version v4.2.0 of AI2-THOR, https://
ai2thor.allenai.org/.
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transformations, but not all actions result in clearly
visible changes. A preliminary analysis showed
that pickupable objects, those that can be picked up,
could be the target of a greater variety of actions
compared to static objects, or objects that could
be moved but not picked up. Thus, we focused
on these, as our dataset requires objects to be the
targets of multiple, diverse actions.

Selecting pickupable objects and filtering out
the rest, we consider 62 object types across all
120 scenes; each object type occurs in on aver-
age 28.5 scenes (SD: 14.65). Of the 21 actions
affecting objects, we focused on 15 actions. We
prioritized actions that cause visible state changes
in their target objects, while also including some
that physically move objects (some of the physi-
cal actions are similar in character, and not very
visually distinct).

Based on these observations, our image gener-
ation procedure was as follows. For each of AI2-
THOR’s scenes, we generated the list of pickupable
objects by selecting those on which the action “pick
up” could be executed and identified a surface on
which objects could be placed. Then for each scene,
we performed two sets of trials with each picku-
pable object at the predetermined location. In the
first set of trials, the object started in the robot’s
grasp (held object) while in the second set, the
object started on the surface (placed object). For
each object and set of trials, one before-image was
recorded, and for each action performed, one after-
image was recorded.

In the first trial (held object), all objects could
have at least 3 distinct actions performed on them:
they could all be dropped, thrown, and put down.
Some objects permitted additional actions: dirtying,
toggling, filling, breaking, cooking, and opening.
In the second trial (placed object), all objects could
be pushed, pulled, and picked up. Again, some
objects allowed additional actions, the same as for
held objects, plus slicing. We executed all possible
actions for each object to generate the after-images,
making sure that every before-action-after triple in
a given scene takes place in the same location. This
approach yielded 13958 before-action-after triples
(6979 for each trial). There were 412 object-action
pairs, across 15 actions and 62 objects, across all
120 scenes.

We then cleaned the data, removing from the
dataset any triples whose associated actions failed;
for example, placing an object can fail if there is

no space in which to place it. We also removed any
triples where the object was no longer visible in
the after-image, as well as those whose after-image
was not visibly different from the before-image,
as determined by pixel-wise distance between im-
ages. Finally, we removed actions that could be
executed on only one object. This filtering removed
3 actions: “use up”, “slice”, and “cook”.

As summarized in Table 1, after filtering, our col-
lection contained 11154 triples, built out of 12 ac-
tions, 62 object types, and 403 action-object pairs,
across 120 scenes. It contained in total 3746 unique
before-images and 11154 unique after-images.3

Note also that while this collection is not large,
it can also be expanded, as it was collected from a
virtual environment. Specifically, by randomizing
object color, scene lighting, agent perspective, and
other aspects of the virtual environment, it would
be possible to increase visual diversity while not
compromising the controlled nature of the image
generation.

In the next section, we focus on building a
dataset for a contrast set task; however, we note that
this collection could be assembled into datasets for
other tasks as well. For example, an action infer-
ence task could be created by presenting a matching
before- and after-image, and training a model to
predict the action connecting the two images.

3.2 Dataset Creation
We converted our collection of triples described
above into contrast sets consisting of 4 images.
For each (before-image, action, after-image) triple,
the corresponding contrast set consists of the true
after-image, and 2 after-images generated starting
from the same before-image by executing different
actions on the same object. In addition, we include
1 image that is the result of executing the same
action on the same object type situated in a scene
distinct from the one depicted in the before-image.
The inclusion of this image ensures that a model
cannot simply pick images that are consistent with
the given action; they must also correspond to the
scene of the before-image. Below we provide the
details of the dataset creation to highlight its fine-
grained design.

Some before-images had fewer than 3 after-
images (same object, same scene, different action);
thus, triples containing this before-image could not

3The list of actions, together with the number of object
types on which they have been executed, is provided in the
Supplementary Material (Table 5)
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Action # Objs. Action # Objs.
Push 20 Pull 20
Pick Up 20 Put Down 20
Throw 20 Drop 20
Break 11 Fill 7
Dirty 7 Toggle 3
Open 2 Close 2

Table 2: Task: Number of object types per action
(before-image-action pair) in the filtered contrast set
dataset.

Figure 2: Simulation task: given a before-image and an
action label, select from a contrast image set the one
that represents the action simulation (after-image).

be converted into contrast sets. We also discarded
examples where certain action pairs occur in the
same contrast set, as their outcomes are too visually
similar. For example, the outcome of putting any
given object down is not consistently distinguish-
able from the outcome of throwing it; similarly,
pushing and pulling objects can be visually similar.
This particular filtering step results in significant
cuts to the dataset size. This approach yields 4451
datapoints, 152 object-action pairs over 12 actions
and 20 objects, across 109 scenes. The object-
action distribution is given in Table 2.

Task Figure 2 illustrates the task: given the
before-image (the robot is in a kitchen, holding
a plate) and the action label, the model has to select
the corresponding after-image (image 3) from the
given contrast set, whose candidates are generated
from the before-image by having the robot dirty
(image 0), throw (image 1), and break (image 3)
the plate. Finally, image 2 results from the robot
breaking the plate in a different kitchen.

Human experiment To determine how challeng-
ing this task was for humans, we also solicited an-

notations from students. Each of the 7 annotators
was randomly assigned 60 contrast sets to annotate
using the makesense.ai platform. Annotators
saw images like Figure 2 but without the red box
indicating the correct response. They were told
to select the index of the image corresponding to
performing the listed action on the object in the
before-image.

As each contrast set was annotated by two anno-
tators, this yielded annotations for 210 contrast sets.
Overall, annotators achieved high accuracy (81.4%)
and annotator agreement (84.9%), compared to ran-
dom chance (25% for both). This evidences the
quality of the data and generation process, as well
as the feasibility of the task.

4 Models

In this section, we describe baseline models de-
signed to assess the role of the embeddings in-
volved: those of the action-label, before- and after-
images. We compare models using frozen visual
features extracted from various state-of-the-art fea-
ture extractors.4

Training method Considering the contrastive
nature of our task, inspired by CLIP’s loss func-
tion (Radford et al., 2021), we use the InfoNCE
loss proposed by van den Oord et al. (2018). This
loss minimizes the distance with the ground-truth
vector while jointly maximizing distances from
the “negative” elements in the contrast set (i.e.
the ones generated from different actions). Let
C = ({c1, c2, ..., cn} , k) be a contrast set where
ci are the vector representations for each image,
and k is the index of the true after-image. Further-
more, let ã be the predicted after-image representa-
tion. Then we compute the probability that image i
is the true after-image as follows:

p(i|C, ã) = eci·ã
⊤

∑n
j=1 e

cj ·ã⊤

The training loss is L(C, ã) = − log(p(k|C, ã)),
cross-entropy loss. At test time, our model predicts
the true after -mage index as argmaxi p(i|C, ã).
The models presented in the following paragraphs
all use the approach described above, with the ex-
ception of the visual-only model, for which
there is no training time.

4Details regarding model architectures and parameter
counts can be found in the Supplementary Material (Figure 6,
Table 8)
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Unimodal Baselines Inspired by Thomason et al.
(2019), we verify the impact of visual and language
input by considering unimodal baselines. First, we
evaluate a model that learns to select as after-image
an image of the contrast set whose visual vector is
closer to the before-image, based on cosine simi-
larity (Hence, visual-only.) In this work, we
explore two different visual extractors: 1) MOCA:
we rely on the visual encoder pretrained using AL-
FRED data by Singh et al. (2021); 2) CLIP: we
use the visual features extracted by the CLIP image
encoder (Radford et al., 2021). We use the for-
mer because it has been extensively used for other
Embodied AI tasks (e.g., (Pashevich et al., 2021))
while we use the latter because Khandelwal et al.
(2022) showed that CLIP provides very effective
representations for Embodied AI tasks.

Second, we evaluate a model that learns to se-
lect the after-image simply based on the action
name (action-name). The model architecture
is simple: first, the action label is converted into
a (learned) embedding. Next, each of the after-
images is turned into a feature vector using one of
the aforementioned frozen pre-trained feature ex-
tractors. Then, both the action embedding and each
of the after-image feature vectors are projected into
a shared space via linear projections. The pro-
jected action embedding is taken to be ã, and the
appropriate projected image representations to be
c1, . . . , cn. Then training and prediction are per-
formed as described above.

Multimodal Baselines We design three multi-
modal baseline models. The first of them departs
from the mainstream end-to-end approach used
in Embodied AI, implementing the formal seman-
tics view of “verbs as functions”. Following Ba-
roni and Zamparelli (2010), we represent each ac-
tion as a matrix that is learned from its before-
and after-images. Unlike Baroni and Zamparelli
(2010), we rely on a feed-forward network with a
single linear layer, with no bias vector or activation
function (hence, Action-Matrix). Given the
before-image representation (derived from either
MOCA or CLIP), we use the action identifier to
extract the associated action matrix, which is com-
posed with the before-image vector through matrix
multiplication to return the predicted after-image
vector.5

5The model we implemented is quite close to the Siamese
Network proposed in (Wang et al., 2016) which we discovered
while writing the paper. The code is not available; hence, we

In addition, we design two models trained end-
to-end to select the after-image given the before-
image representation and the action name repre-
sented as a vector that belongs to a learned em-
bedding matrix. The two variants of this archi-
tecture are: Concat-Linear: a single matrix,
acting as a linear layer, which is multiplied by the
concatenation of before vector and action vector;
and Concat-Multi: a 2-layer, feed-forward net-
work, including batch-normalization, dropout and
activation layers, taking as input the same concate-
nated vector as above.

5 Experiments

It is important that embodied AI agents be capable
of making sound predictions in unseen scenarios is
a very important requirement for real-world appli-
cations. For this reason, we carefully design two
hold-out procedures when splitting the dataset into
train, validation and test data, in order to estimate
the generalization capabilities of the baselines

Unseen Scenes. Following the standard practice
in AI2-THOR6, we split the set of scenes S into
seen scenes Ss and unseen scenes Su and use the
former to create the training and validation sets
(2856 and 684 datapoints, resp.) and the latter for
the test set (820 datapoints); in other words, at
test time the models will receive images illustrat-
ing one of the four possible types of virtual rooms
(e.g. a bathroom) in a configuration that they have
not seen during training/validation.7 This method
allows us to test for generalization at the scene
level, in order to see if the models’ visual features
are fine-grained enough to generalize across differ-
ent configurations of objects appearing in different
rooms.

Unseen Objects. Given the set of object classes
O, we split it into a seen subset Os, and an unseen
subset Ou. We define the training and validation
splits so that they contain objects that belong to Os

only. On the other hand, we define the test split so
that it contains only objects belonging to Ou. We
manually selected the unseen objects (laptop, cup,
and book) so as to guarantee the complete coverage
of actions at test time. The test set contains 908
datapoints, the training and validation sets amount
to 2762 and 690 datapoints, respectively.8 This

could not evaluate it.
6The standard practice in AI2-THOR is reported in the

official documentation.
7Detailed statistics in Supplementary Material (Table 7)
8Detailed statistics in Supplementary Material (Table 6)
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procedure will help showing how well models can
understand the effect of known actions on novel
objects.

6 Results

6.1 Accuracy

As illustrated in Figure 3, the unimodal baseline
models are close to chance levels both in the un-
seen scenes and unseen objects setting. In both
cases, the visual-only model performs better than
the action-name one, independently of the visual
features used. In general, for the visual-only base-
line, CLIP features seem to be better than MOCA
ones, possibly due to their higher expressiveness
when used for visual similarity, as is the case
here. The drop in performance for the model
action-name on unseen scenes is justified by
the fact that the model is learning to make pre-
dictions based on the action embeddings only. At
training time, the model is exposed to seen scenes
only; therefore, the action embeddings are likely
to encode patterns associated with these scenes
only. Such representations do not truly consider
other context-specific information and therefore do
not allow the model to generalize well on unseen
scenes.

In both splits, all models perform better when
based on the MOCA visual features than CLIP. In
particular, MOCA-based models generalize better
across scenes. This could be associated with the
fact that our task requires very fine-grained infor-
mation that a CLIP model may not be able to retain.
Thanks to the embodied nature of the task solved by
MOCA, its visual features learn more fine-grained
representations of the AI2-THOR environment.

The Action Matrix and Concat-Multi
models reach a similar accuracy in both settings;
however, the latter suffers less from the coarser-
grained representation provided by the CLIP fea-
tures in the holding out scene setup. When com-
paring model and human performance, it is clear
that the weak point of these models is the crucial
ability to generalize their action grounding to un-
seen objects. Although the images are not fully
naturalistic, humans reach 83% accuracy, whereas
the best models are around 70% in the unseen ob-
jects split when given the MOCA features that are
specifically fine-tuned on AI2-THOR, and lower
than 60% with CLIP.

Another important consideration is that, follow-
ing previous work on affordance prediction (Deng

et al., 2021), our baselines benefit from the gold
information of the action being performed. The
Action-Matrix model is designed to learn a
transformation matrix for each action in the dataset
as in Wang et al. (2016). This demonstrates that
having a way to learn “verb” related information
is useful to match human performance and gener-
alize better. We believe that this represents a very
interesting challenge for embodied AI models that
are fully end-to-end (e.g. (Suglia et al., 2021)).
Introducing models that can reason over time by
“simulating” the action being performed represents
a potentially interesting avenue for future work.

6.2 Error Analysis

In order to understand models’ performance,
we completed a detailed analysis of the best
performing models, Action Matrix and
Contact-Multi, focusing on the unseen object
split. First, we computed accuracy by action.
Looking at Table 3, the most successful action is
by far “drop” for all models: this could be due
to the change of perspective that happens after
dropping an object. Moreover, this action can be
applied to all the objects in the dataset, thus we
can assume that the model has more data to learn
from and generalizes better.

While the MOCA-based Concat-Multi
model holds the majority of the best values, it can
be noted that the CLIP-based version scores better
on actions for which there are fewer datapoints in
the training set (“close”, “open”, “toggle”). We
hypothesize this is due to the larger pretraining
dataset that is used by CLIP, whose higher capacity
might lead to better generalization with less data.

Second, we computed the accuracy by objects.
This analysis shows that of the three objects unseen
during training, “cup” is the one with highest scores
across actions. We hypothesize that this is due to
the presence of other visually similar objects in the
training set, for instance “mug” and “bowl”.9

Finally, we exploited the directly interpretable
action representations computed by the Action
Matrix MOCA-based model, and computed the
nearest neighbors of each verb. As reported in
Table 4, the model groups together actions that
cause a change of position (e.g., “drop”, “push”,
“pull”), and actions that cause a change in object
appearance (e.g. “break”, “dirty”, “toggle”.) This
is a first promising step towards grounded verb

9Details in Table 9 of the Supplementary Material
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Figure 3: Results for contrast-task accuracy, training with contrastive-loss (average over 5 random initializations).
Dashed lines represent baselines: gray for chance, orange for visual-similarity, purple for the action-name after-
image-only model. The red line represents human accuracy averaged over all procedures.

Model break close dirty drop fill open pickUp pull push put throw toggle
AM-CLIP 0.406 0.516 0.553 0.907 0.495 0.348 0.540 0.439 0.572 0.628 0.619 0.447
CM-CLIP 0.576 0.573 0.502 0.627 0.546 0.722 0.593 0.521 0.546 0.607 0.622 0.630

AM-MOCA 0.580 0.541 0.678 0.991 0.814 0.409 0.772 0.449 0.675 0.782 0.769 0.567
CM-MOCA 0.651 0.482 0.719 0.964 0.848 0.426 0.805 0.536 0.668 0.855 0.670 0.573

Table 3: Accuracy per action of the best scoring models; results for the test set of the object split. Best values on
columns in bold.

Action Nearest neighbors (sorted)
break dirty open toggle
close break dirty put
dirty break pull open
drop push pull pickUp
fill put pull throw

open dirty break fill
pickUp dirty fill break

pull put push throw
push pull throw put
put throw pull push

throw put push pull
toggle dirty break pull

Table 4: 3 nearest action neighbor actions for each
action, using action representations from the MOCA
Action-Matrix model (trained on the object split).

representations. We believe much could be learned
by combining formal semantics findings on verbs
and the embodied AI literature.

7 Conclusion

In this work, we define ACT-Thor, a controlled
benchmark for embodied action understanding in

simulated environments. Compared to similar
benchmarks presented in the literature, we propose
a more systematic benchmark for studying the ca-
pability of multimodal machine learning models
to understand the effects of actions on the objects.
Additionally, our contrast set formulation allows
us to precisely pinpoint the distinctions that mod-
els should learn, providing a robust and reliable
benchmark for studying action grounding.

To assess the quality of our dataset, we first com-
pleted a human evaluation demonstrating that hu-
mans can complete this task with 83% accuracy.
Then, we evaluated several unimodal models, and
multimodal models using several state-of-the-art
visual feature extractors such as CLIP (Radford
et al., 2021). By inspecting models that learn a
matrix for each action, we show that the represen-
tations learned via our dataset favor the emergence
of clusters of actions associated with a change of
position, and actions that cause a change in object
appearance. These are two salient visual transfor-
mations objects undergo, but more could be learned
by extending the dataset with other actions or other
objects, and by proposing controlled settings in-
spired by the theoretical view on verb semantics.
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Our work demonstrates the potential of virtual en-
vironments to pursue this line of research.

We argue that ACT-Thor represents an exper-
imental benchmark for studying the action under-
standing capabilities of machine learning models,
an important skill for embodied AI agents. This is
especially important moving forward for studying
the capabilities of generalist agents that can solve
multiple tasks (Reed et al., 2022).
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A Probing visual features

For the purpose of our experiments, we require
visual representations that are expressive and fine-
grained so that it is possible to distinguish both
object-dependent and scene-dependent features.
Therefore, we rely on the object detection task—
similar to the one performed in the ImageNet
setup (Deng et al., 2009)—as a diagnostic task for
the quality of the visual features. Particularly, we
assume that high quality visual features will yield
high performance in the selected diagnostic task.
Furthermore, implementing this sanity check is
important because most of our visual feature ex-
tractors are pretrained on real-world images, and
we do not know how well they will perform on
AI2Thor synthetic images.

Borrowing from the literature in Computer
Vision, we define our task as the combina-
tion of object classification and bounding-box
regression: given an input image, the model
should produce a tuple (x0, y0, x1, y1) of
coordinates representing the top-left and
bottom-right corners of the rectangular bounding-
box, where xi ∈ [0,max-image-width] and
yi ∈ [0,max-image-height], coupled with the
hypothesized object label l ∈ {0, 1, ..., C − 1}
where C is the number of unique objects in
the dataset. Performance over these two tasks
can be measured the Mean Average Precision
(MAP) metric, which includes information of both
intersection-over-union of the predicted boxes with

the ground-truth and object class precision.

We use the TorchVision10 implementation of
an end-to-end object detection architecture, Faster
RCNN (Ren et al., 2015): this is composed of a
CNN backbone, coupled with a Region Proposal
Network that gets trained in parallel and two dis-
tinct fully connected heads to predict bounding
boxes (of size 4) and object class label (of size 62).
This architecture is trained to predict both bounding
box and object location of the only relevant object
in the image, which is the one subject to the current
action in the contrast set from which it comes; for
the bounding box regression it is used an MSE loss,
while for object detection it is used a Cross Entropy
loss. In order to match the data distributions of the
training set of these models, we normalize AI2Thor
images channel-wise, by computing the mean and
standard deviation for each channel over the whole
dataset. We also crop inputs to size 224× 224 for
compatibility reasons.
Crucially, for evaluating our models as feature ex-
tractors we need to keep the convolutional back-
bone fixed to its initial weights: in this way, the
better the visual features extracted, the easier it
will be for the classification head to learn this diag-
nostic task. Nonetheless, for comparison we train
also object detection models where the backbone is
fine-tuned, and test if their performance is different
from the frozen versions.

The TorchVision reference implementation is
based on a ResNet50 backbone, which is the most
similar to the models in our experiments, and it
reaches a mAP value of 37.0 over COCO val2017
(Lin et al., 2014).

For frozen models, we obtain results that are
lower than the baseline. We hypothesize this is
due firstly to dataset size, which does not reach
hundreds of thousands of samples as for other
object detection benchmarks. However, it must be
taken into account also the difference in our object
detection task compared to more general ones:
while in this work we assume just one interesting
object with a single bounding box per sample, in
works focused on object detection it is common to
have a high number of boxes per image, spanning
several different categories. This variation in
the task framing could explain, at least in part,
the differences in performance from broader works.

10https://pytorch.org/vision/stable/models.html#object-
detection-instance-segmentation-and-person-keypoint-
detection
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Figure 4: Object Detection: MAP on validation set per
epoch.

Both MOCA and CLIP based models reach satis-
fying performances, therefore we consider their fea-
tures to be good enough to be used in other exper-
iments; we will include also the ImageNet model
for comparison, despite its poor performance on
this task. Additionally, this choice is also supported
by previous work that shows that both MOCA and
CLIP are appropriate vision models for AI2Thor
synthetic scenes, as demonstrated by (Singh et al.,
2021) and (Khandelwal et al., 2022), respectively.

B Additional Dataset, Model, and Results
Information

Action # Objs. Action # Objs.
Push 62 Pull 62
Pick Up 62 Put Down 62
Throw 62 Drop 62
Break 11 Fill 8
Dirty 8 Toggle 3
Open 2 Close 2

Table 5: List of the 12 actions used to generate after
images and the number of object types per action.

Split Object # Actions # Samples Tot.

Test
Book 7 92

908Cup 9 316
Laptop 9 500

Train

Bottle 8 52

2762

Bowl 9 393
Box 7 188

Candle 7 115
CellPhone 8 128

Cloth 7 104
Egg 7 77

Kettle 8 98
Mug 9 350
Pan 7 151

Plate 8 278
Pot 8 221

Potato 6 65
Statue 7 290
Vase 7 259

WateringCan 6 23
WineBottle 7 35

Valid

Bottle 8 14

690

Bowl 9 92
Box 7 40

Candle 7 25
CellPhone 7 32

Cloth 6 32
Egg 4 11

Kettle 7 16
Mug 9 113
Pan 7 41

Plate 8 66
Pot 8 49

Potato 6 16
Statue 7 74
Vase 7 71

WateringCan 4 5
WineBottle 4 9

4360

Table 6: Action and sample counts for the Object split.
’Actions’ column represents the number of unique ac-
tions performed on that object.
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Split Envt. # Configs # Samples Total

Test

bathroom 3 36

820
bedroom 5 158
kitchen 5 367

living room 5 277

Train

bathroom 20 152

2856
bedroom 20 472
kitchen 20 1513
living 20 773

Valid

bathroom 5 44

693
bedroom 5 117
kitchen 5 337
living 5 195

4360

Table 7: Environment information for the scene split.

Figure 5: Distribution of actions between seen and unseen items per splitting procedure.
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Figure 6: Schema of model architecture. Note: the arrow linking before-vector and vector transformation models
represents, respectively: the dot product with the correct action matrix, for the Action-Matrix model; feedforwarding
the vector as network input for the Concat-Multi model. We omit the Concat-Linear model since it uses the same
procedure of the Concat-Multi.

VF Embedding? Model Params

MOCA

No
Action-Matrix 259,308
Concat-linear 23,520
Concat-Multi 36,680

Yes
Action-Matrix 259,308
Concat-linear 375,296
Concat-multi 539,520

CLIP

No
Action-Matrix 12,582,912
Concat-linear 1,061,888
Concat-Multi 1,602,421

Yes
Action-Matrix 12,582,912
Concat-linear 599,808
Concat-multi 764,032

Table 8: Summary of model parameter counts. ’VF’ is the visual feature extractor used, while ’Embedding’ denotes
whether the model uses an embedding space of the same dimension (256) for both actions and visual vectors instead
of the 1-hot-vector action encoding (and raw visual vectors).

Object break close dirty drop fill open pickUp pull push put throw toggle
Book // // // 1.000 // 0.426 0.508 0.538 0.646 0.780 0.420 //
Cup 0.726 // 0.719 0.993 0.847 // 0.966 0.620 0.711 0.931 0.727 //

Laptop 0.603 0.482 // 0.942 // // 0.787 0.498 0.649 0.825 0.694 0.573

Table 9: Action-wise accuracies for the Concat-Multi MOCA model, computed for each object in the test set
(’//’ used when the action is not available for that object). Best values for columns in bold.
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Figure 7: Results for accuracy of the least-squares regression model (average over 5 random splits).

Figure 8: Comparison of L2 training procedure (top) and contrastive loss (bottom). Average over 5 random
initializations. Dashed lines represent baselines (gray for chance, red for visual-similarity)
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Figure 9: Action confusion matrix for the MOCA model with action embedding layer (row is ground truth, column
represents prediction).

Figure 10: Action confusion matrix for the CLIP model with action embedding layer (row is ground truth, column
represents prediction).
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Q: What is the man using as tools?
A: A saw and handaxe
E: 

00:00 00:37 00:51

Figure 1: An example from our WildQA dataset, showing a question (Q), an answer (A), and evidence (E) that
supports the answer. The corresponding part of the videos is provided as evidence for the question.

Abstract

Existing video understanding datasets mostly
focus on human interactions, with little at-
tention being paid to the "in the wild" set-
tings, where the videos are recorded outdoors.
We propose WILDQA, a video understanding
dataset of videos recorded in outside settings.
In addition to video question answering (Video
QA), we also introduce the new task of identi-
fying visual support for a given question and
answer (Video Evidence Selection). Through
evaluations using a wide range of baseline mod-
els, we show that WILDQA poses new chal-
lenges to the vision and language research com-
munities. The dataset is available at https:
//lit.eecs.umich.edu/wildqa/.

1 Introduction

Video understanding plays an important role in the
development of intelligent AI systems, as it enables
the effective processing of different modalities of
information (Li et al., 2021a). Various tasks have
been proposed to examine the ability of models’
to understand videos, including video question an-
swering (Video QA), video captioning, and fill-in-
the-blank tasks (Xu et al., 2017; Tran et al., 2016;

*: Equal contribution

Castro et al., 2022). Recent years have witnessed
significant progress in video understanding, includ-
ing new benchmarks (Tapaswi et al., 2016; Grau-
man et al., 2021) as well as advanced sophisticated
benchmarksmodels (Jin et al., 2019; Radford et al.,
2021).

There are however several drawbacks associated
with existing video understanding research. First,
existing video understanding benchmarks focus
on common human activities as typically appear-
ing in cooking videos (Zhu et al., 2017) or in
movies (Tapaswi et al., 2016), leading to a lim-
ited set of video domains. Second, most video
understanding benchmarks adopt a multiple-choice
format, where models select an answer from a set
of candidates (Jang et al., 2017; Castro et al., 2020).
Models trained under such a setting cannot be
used in real-life applications because candidate an-
swers are not provided (Castro et al., 2022). Third,
videos included in existing benchmarks are typi-
cally short (Kim et al., 2016), and the performance
of models on longer videos is not well studied.

We address these challenges in our dataset con-
struction process. First, we propose the WILDQA
dataset in which we collect “in the wild” videos that
are recorded in the outside world, going beyond
daily human activities. Figure 2 shows the differ-
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Example from MovieQA (multiple-choice)
Q: How does E.T. show his happiness that he 
is finally returning home?
A: His heart lights up.

Example from WildQAours (open-ended)
Q: What sort of environment is it based on the 
landscape and plant life?
A: Temperate mountain environment.

Example from TVQA (multiple-choice)
Q: Why does Joey want Chandler to kiss 
Janice when they are in the kitchen?
A: Because then she will leave.

Figure 2: Examples from MovieQA (Tapaswi et al., 2016), TVQA (Lei et al., 2018), and our WildQA dataset.
The previous datasets mostly focus on human interactions in a multiple-choice setting, while ours focus on scenes
recorded in the outside world in an open-ended setting. We only list a single answer here for illustration purposes.

ence between the WILDQA dataset and previous
question answering datasets. Second, we adopt the
challenging answer generation approach, aiming
to build a system that can answer questions with
an open-ended answer, rather than selecting from
a predefined set of candidate answers. Third, the
average video length in our dataset is one minute,
longer than the video clips in most of the existing
datasets in Table 3, which presents a novel chal-
lenge for video understanding algorithms.

Using the WILDQA dataset, we address two
main tasks. First, we address the task of video
question answering (Video QA), aiming to gen-
erate open-ended answers. Second, we introduce
the task of retrieving visual support for a given
question and answer (Video Evidence Selection).
Finding the relevant frames in a video for a given
question-answer pair can help a system in its rea-
soning process, and is in line with ongoing efforts
to build interpretable models (Jacovi and Goldberg,
2020). For each of these two tasks, we evaluate sev-
eral baseline models, including multi-task models
that combine the two tasks together. Figure 1 shows
an example from our dataset, including an exam-
ple of a question, answer, and supporting video
evidence.

To summarize, the main contributions of this
paper are:

1. We propose WILDQA, a multimodal video
understanding dataset where video scenes are
recorded in the outside world.

2. We propose two tasks for WILDQA: Video
QA and Video Evidence Selection, aiming to
build more interpretable systems.

3. We test several baseline models; experimental
results show that our dataset poses new chal-
lenges to the vision and language research
communities.

2 Related Work

Multimodal Question Answering. Two popular
and representative tasks are Visual Question An-
swering (Visual QA) on images, and Video Ques-
tion Answering (Video QA) on videos. Visual
QA has attracted attention for a long time (Ma-
linowski and Fritz, 2014; Zhang et al., 2016; Ren
et al., 2015; Zhu et al., 2016). Recently, much
progress has been made in Video QA. Researchers
proposed various datasets such as TVQA that con-
tain videos from movies or TV series (Tapaswi
et al., 2016; Lei et al., 2018, 2020a) or videos from
the Internet spanning from YouTube videos to Tum-
blr GIFs (Zeng et al., 2017; Ye et al., 2017; Jang
et al., 2017; Yu et al., 2019b). Other datasets such
as MSVD-QA (Xu et al., 2017) contain videos
from the existing corpus (Chen and Dolan, 2011)
or cartoon videos (Kim et al., 2016). Recent Video
QA datasets have stronger focuses such as tem-
poral relations (Mun et al., 2017), multi-step and
non-factoid answers (Colas et al., 2020), natural
interactions (Zadeh et al., 2019), characters in the
video (Choi et al., 2021), question answering in
real life (Castro et al., 2020), incorporating exter-
nal knowledge (Garcia et al., 2020), and videos
recorded from the egocentric view (Fan, 2019;
Grauman et al., 2021). To the best of our knowl-
edge, we are the first to collect videos from the
outside world.

Researchers have also developed various meth-
ods to handle the Video QA task, including joint
reasoning of the spatial and temporal structure of a
video (Zhao et al., 2017; Gao et al., 2019; Huang
et al., 2020; Jiang et al., 2020), integrating mem-
ory to keep track of past and future frames (Kim
et al., 2017; Gao et al., 2018a; Zhao et al., 2018;
Fan et al., 2019; Yu et al., 2020), various attention
mechanisms (Zhu et al., 2017; Zhang et al., 2019;
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Li et al., 2019; Yu et al., 2019a; Kim et al., 2018;
Jin et al., 2019), and others. Recently, pre-trained
models have proved to be useful in various visual
and language tasks (Radford et al., 2021; Chen
et al., 2020; Zellers et al., 2021). However, the pre-
trained visual and language models are typically
encoder-only and cannot generate an answer in nat-
ural language on their own. Thus, such pre-trained
encoder-only models do not fit into the open-end
video question answering setting in our task.

Additionally, previous work has also investi-
gated various reasoning tasks in a multimodal set-
ting (Gao et al., 2016; Yang et al., 2018; Gao et al.,
2018b; Zellers et al., 2019). Although it is not
our focus, some questions in our dataset require a
certain level of reasoning ability. Moreover, since
our dataset is created by domain experts, there is
domain knowledge involved in the questions as
well.

Moment Retrieval. Moment Retrieval is the task
of retrieving a short moment from a large video cor-
pus given a natural language query (Escorcia et al.,
2019; Lei et al., 2020b). Researchers have pro-
posed or adapted various datasets for this task (Kr-
ishna et al., 2017; Hendricks et al., 2017; Gao et al.,
2017; Lei et al., 2020b). The task of retrieving rel-
evant parts in the video given the question (Video
Evidence Selection) in our proposed dataset is akin
to Moment Retrieval. However, moment retrieval
focuses on retrieving the part of videos that the
question describes, while Video Evidence Selec-
tion is to find parts of videos that can support the
answer to the questions as shown in Figure 1. Prior
work such as Tutorial-VQA (Colas et al., 2020) also
adopt the setting of providing parts of the videos
as answers to the question, but they did not include
any text answers in their dataset.

Few-shot Learning. Recently, there is a trend
to evaluate neural models in a few-shot learning
setting (Huang et al., 2018; Mukherjee and Awadal-
lah, 2020; Sun et al., 2020; Li et al., 2021b; Lee
et al., 2021; Pfeiffer et al., 2022), where the model
is tuned with a small portion of the data and tested
against the rest. We adopt the few-shot learning set-
ting for our dataset for both Video QA and Video
Evidence Selection.

3 WildQA Dataset

Video Selection and Processing. Follow-
ing Zadeh et al. (2019); Castro et al. (2020), we

start by collecting videos from YouTube. First,
we identify five domains that primarily consist
of outdoor scenes and are representative for the
outside world, namely, Agriculture, Geography,
Human Survival, Natural Disasters, and Military.
We then manually collected videos from relevant
YouTube channels for each domain.

Because the raw videos can be as long as an
hour, we split the raw videos into short clips us-
ing PySceneDetect,1 and concatenate these short
clips so that the output video is approximately one
minute. We use the output videos for the annotation
process described below. More details for the video
selection and video processing steps are discussed
in Appendix A.1.

Question, Answer, and Evidence Annotation.
There are two phases in our annotation process,
as shown in Figure 3. In Phase 1, annotators watch
the video clips and come up with a hypothetical
motivation. They ask one or more questions and
provide an answer to each of the questions they
ask. Annotators are also instructed to provide all
the relevant parts in videos as pieces of evidence
to support the answer to their question. After this
step in the data collection, three of the authors of
this paper manually review all the question-answer
pairs for quality purposes. Next, in Phase 2, we
collect more answers and evidences for each ques-
tion from Phase 1. Over the entire annotation pro-
cess, annotators spent a total of 556.81 annotation
hours, split into 77.05 hours in Phase 1 and 479.76
in Phase 2. Appendices A.2, A.3, and A.5 present
the annotation instructions, annotation interfaces,
and reviewing process for question-answer pairs,
respectively.

Because we want to collect questions that do-
main experts are interested, as opposed to arbitrary
questions, domain experts carry out the Phase 1
annotations. To demonstrate the quality difference
of questions collected from domain experts ver-
sus non-experts, we conduct a pilot study. Appen-
dices A.4 and A.6 discuss the pilot study and the
annotators’ expertise, respectively.

Dataset Statistics. Tables 1 and 2 present statis-
tics of the videos and associated questions for each
of the five domains, along with other relevant statis-
tics. Figure 4 shows the distribution of question
types. Appendix A.7 discusses more statistics.

1PySceneDetect uses the OpenCV (Bradski, 2000) to find
scene changes in video clips (py.scenedetect.com).
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Expert question 
annotation Manual review

Expert answer 
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answer, evidences, etc

answers, evidences, etc

Figure 3: The two phases of data annotation.

Domain video count question count

Agriculture 85 109
Human Survival 95 309
Natural Disaster 70 187
Geography 46 110
Military 73 201
Total 369 916

Table 1: Video and question count for each domain.

Videos 369
Duration (in seconds) 71.22 ± 26.47

Questions 916
Question per video 2.48 ± 1.38
Question length (#tokens) 7.09 ± 2.60

Answer per question 2.22 ± 0.69
Answer length (#tokens) 9.08 ± 8.15

Evidence per answer 1.18 ± 0.80
Evidence length (s) 9.64 ± 10.96

Table 2: Dataset statistics for WildQA.
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Figure 4: Percentage distribution of question types. Be-
cause one question might be classified into multiple
categories, the scale summation is larger than 100%.

Q: What type of weather is happening?
A: Flooding and rain.
     The weather is rain and flood.

Q: Where is the road at?
A: It is in a tundra environment
     The road zig-zags across the landscape.
     The road winds through a mountainous landscape.
     The road is in an elevated area.

Figure 5: Examples of questions (Q) and answers (A)
from WildQA. The first answer is collected during Phase
1 of the annotation process; all remaining answers are
collected in Phase 2. More analyses in Appendix A.7.

Dataset Comparison. Table 3 shows the compar-
ison between WILDQA and other existing datasets.

4 Video Question Answering

Following Xue et al. (2017), we adopt free-form
open-ended video question answering for our
video question answering (Video QA) task. Given
a question q and a video v, the task is to generate
an answer a in natural language.

We adopt a few-shot learning setting on our
dataset, where models are fine-tuned on question-
answer pairs corresponding to 30% of the videos
for each domain. The tuned models are tested on
data for the remaining 70% videos. The reason
is that the time to annotate 30% of the data is
around 23 hours, during which there are around
50 data points annotated for each domain, which
is acceptable. We hypothesize that it is realistic
to have such a setting because the potential end-
users could spend around a day or two collecting
data, and we can then quickly tune a model using
it. Moreover, no repeated videos appear in differ-
ent splits, following Lei et al. (2018). We end up
having 264 question-answer pairs for 108 videos
in our dev set and 652 pairs for 261 videos in the
test set. We adopt BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) as the metrics to measure
the quality of the generated answer. We run each
model 3 times and report the scores of mean ±
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Dataset Domain VE? #Videos # Q Avg
dur. (s) Annotation QA Task

MovieQA (Tapaswi et al., 2016) Movies
√

6.7K 6.4K 203 Manual MC
VideoQA (FiB) (Zhu et al., 2017) Cooking, movies, web 109K 390K 33 Automatic MC
MSRVTT-QA (Xu et al., 2017) General life videos 10K 243K 15 Automatic OE
MovieFIB (Maharaj et al., 2017) Movies 128K 348K 5 Automatic OE
TVQA (Lei et al., 2018) TV shows

√
21.8K 152K 76 Manual MC

ActivityNet-QA (Yu et al., 2019b) Human activity 5.8K 58K 180 Manual OE
TVQA+ (Lei et al., 2020a) TV shows

√
4.2K 29.4K 60 Manual MC, ES

KnowIT VQA (Garcia et al., 2020) TV shows 12K 24K 20 Manual MC
LifeQA (Castro et al., 2020) Daily life 275 2.3K 74 Manual MC
TutorialVQA (Colas et al., 2020) Instructions

√
76 6.2K – Manual ES

NExT-QA (Xiao et al., 2021) Daily life 5.4K 52K 44 Manual MC, OE
FIBER (Castro et al., 2022) Human actions 28K 2K 10 Manual OE

WildQA In-the-wild
√

369 916 71.2 Manual OE, ES

Table 3: Comparison between our WILDQA and other existing datasets. VE?: Whether the dataset provides “Video
Evidences”?; MC: “Multiple Choice” question answering; OE: “Open Ended” question answering; ES: “Evidence
Selection”. We adapt the comparison table from Zhong et al. (2022).

standard deviation in Table 4.

4.1 Baselines
Human Baselines. We report the average BLEU
and ROUGE scores by leaving one annotator out
in Table 4 (Human).

Text-only Models. We implement several base-
lines that only use the question-answer pairs in
the dev set. Random randomly chooses answers
from the dev set. Common always predicts the
most common answer in the dev set; Closest
employs embedding produced by a pretrained
roberta-base model (Liu et al., 2019). In the
inference, Closest retrieves the answers for the
dev set question whose embedding has the highest
cosine similarity to the test question. We also fine-
tune T5 (Raffel et al., 2020) using question-answer
pairs from the dev set (T5 T).

Text + Visual Models. Following Castro et al.
(2022), we concatenate the text features with the
visual features and input the concatenated features
to the T5 model (T5 T+V). We extract I3D (Car-
reira and Zisserman, 2017) video features and take
one feature per second.

Multi-task Learning. Multi-task learning has
proved to be successful in various domains (Col-
lobert and Weston, 2008; Deng et al., 2013; Gir-
shick, 2015). Following Caruana (1993), we train
MultiT+V,SE which combines T5 T+V and T5
SE (the Video Evidence Selection model described
in Section 5) with a shared T5 encoder between
the tasks of Video Question Answering and Video
Evidence Selection. We also train MultiT+V,IO

Model name ROUGE-1 ROUGE-2 ROUGE-L

Random 5.0 ± 0.2 0.5 ± 0.1 4.9 ± 0.2
Common 10.6 ± 0.0 0.0 ± 0.0 10.6 ± 0.0
Closest 19.5 ± 0.0 6.2 ± 0.0 18.7 ± 0.0
T5 T0-shot 0.8 ± 0.0 0.0 ± 0.0 0.8 ± 0.0
T5 T 33.8 ± 0.2 17.7 ± 0.1 32.4 ± 0.3
T5 T+V 33.1 ± 0.3 17.3 ± 0.4 31.9 ± 0.2
MultiT+V,IO 34.0 ± 0.5 18.8 ± 0.7 32.8 ± 0.6
MultiT+V,SE 33.8 ± 0.8 18.5 ± 0.7 32.5 ± 0.8

Human 40.8 ± 0.0 18.1 ± 0.0 36.3 ± 0.0

Table 4: ROUGE scores for the task of Video Question
Answering. For comparison, we test the out-of-box T5
model under the zero-shot setting (T5 T0-shot).

which combines T5 T+V and T5 IO (another
Video Evidence Selection model described in Sec-
tion 5) in a similar way. The loss function during
the fine-tuning is:

L = αL1 + βL2 (1)

where L1, L2 are the losses for Video Question
Answering and Video Evidence Selection, respec-
tively; α, β are the weights for the two tasks. The
selection process behind the values of α and β are
presented in Appendix C.

4.2 Results

Table 4 reports F1 scores of ROUGE-1 (R1),
ROUGE-2 (R2), and ROUGE-L (RL) for our base-
line models. For comparison, we also test the out-
of-box T5 model on our test split under the zero-
shot setting (T5 Text0-shot in Table 5).

T5-based models significantly outperform the
random baselines as well as the out-of-box T5
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model, which suggests that the T5-based models
acquire certain levels of question-answering ability
in the tuning stage. However, adding visual fea-
tures does not improve the model’s performance.
This might be due to the challenges of attending to
the visual features at the corresponding parts in the
video, because both models under multi-task learn-
ing outperform the text-only baseline, suggesting
that attending to the correct part of the video helps
the answer generation process.

All baseline models underperform human base-
lines on ROUGE scores, especially on ROUGE-
1 and ROUGE-L scores, suggesting that there is
room for improvement. However, the ROUGE-2
score for human annotators is low because although
human annotators tend to use the same word to de-
scribe the object that appears in the video, there are
large variations in terms of expressing the ideas of
their answers. More discussions on the diversity of
the answers are in Appendix A.7.

5 Video Evidence Selection

Similar to Colas et al. (2020), given a video v and
a question q, the video evidence selection task con-
sists of predicting {(s1, e1), (s2, e2), . . .}, where
(si, ei) represents the time for start s and end e of
a singles span within the video v. We also adopt
the few-shot learning setting as described in Sec-
tion 4 for the task of Video Evidence Selection.
Similar to DeYoung et al. (2020), we design an
Intersection-Over-Union (IOU) metric borrowed
from Everingham et al. (2010). We define IOU as
follows: given two time spans in the video, IOU is
defined as the length of their intersection divided by
the length of their union. The prediction is counted
as a match if it overlaps with any of the ground
truth spans by more than the threshold (0.5, follow-
ing DeYoung et al., 2020). We use these partial
matches to calculate an F1 score (IOU-F1 scores).
As described in Section 4, we run each model three
times and report the scores of mean ± standard
deviation in Table 5.

5.1 Baselines

As described in Section 4, we compute the average
IOU-F1 score on the annotations from one anno-
tator against the remaining annotators; we denote
this metric as Human. The Random baseline con-
sists of randomly choosing the start and end of a
part within the original video as evidence. Simi-
lar to the structure Devlin et al. (2019) experiment

Model name IOU-F1

Random 2.5 ± 0.3
T5 IO 1.1 ± 0.2
T5 SE 4.5 ± 0.8
MultiT+V,IO 1.4 ± 0.3
MultiT+V,SE 3.7 ± 2.4
Human 18.37 ± 0.0

Table 5: IOU-F1 scores for Video Evidence Selection.

on SQuAD (Rajpurkar et al., 2016), we build T5
SE; here, we feed the concatenated question embed-
dings and I3D visual features to the T5 encoder, and
the T5 encoder outputs a sequence of the encoded
states. We treat the subsequence corresponding to
the visual features as the encoded hidden sequence
Tm ∈ RH for the video frames (H denotes the di-
mension of the hidden sequence). We then multiply
the sequence with two vectors S,E ∈ RH . The Ti
and Tj that maximize the likelihood are predicted
as the start and the end of the evidence, respec-
tively. During the training, we maximize their joint
probability:

PiPj =
eS·Ti∑
m e

S·Tm
eE·Tj∑
m e

E·Tm

where Pi and Pj are the probability for the i
being the start and j the end of the evidence, re-
spectively.

Inspired by the Inside-Outside-Beginning
(“IOB”) tagging scheme (Ramshaw and Marcus,
1995), we also formulate the evidence finding as
a task of tagging whether a video frame is inside
(“I”) the evidence, or outside (“O”) the evidence.
We then build T5 IO by feeding the concatenated
features to a T5 encoder. Similar to T5 Start
End, we have an encoded sequence of Tm ∈ RH
corresponding to the video frames. We then
multiply the sequence with a vector L ∈ RH and
apply a sigmoid function to the multiplication
result. The model predicts the frame as “I” if the
value at the corresponding position is greater than
or equal to 0.5, otherwise it predicts “O”. We
test MultiT+V,IO and MultiT+V,SE described in
Section 4 on Video Evidence Selection as well.

5.2 Results

Table 5 shows the performance of the baseline mod-
els on the Video Evidence Selection task. All the
baseline models perform significantly worse than
the human annotators, and sometimes worse than
the random baseline. This is understandable be-
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Type R1 IOU-F1

Existence 33.3 ± 0.3 5.3 ± 0.3
Motion 32.8 ± 0.6 3.1 ± 2.0
Reasoning 33.3 ± 0.4 3.1 ± 1.3
Location 26.2 ± 10.7 4.4 ± 1.4
Entity 33.2 ± 0.7 5.2 ± 0.7
Spatial 32.2 ± 0.6 2.4 ± 1.7
Number 33.8 ± 0.4 4.5 ± 0.7
Temporal 33.8 ± 0.6 3.8 ± 0.5
Time 33.1 ± 0.8 5.7 ± 1.0
Other 33.2 ± 0.6 5.3 ± 0.9

Table 6: MultiT+V,SE performance on different ques-
tion types for Video QA (ROUGE-1) and for Video
Evidence Selection (IOU-F1).

cause selecting evidence from a long video can be
difficult. Additionally, multi-task learning makes
the model’s performance worse. However, this
could be due to the fact that the Video Evidence Se-
lection itself is a hard task, and all the baseline mod-
els struggle with such a task. Although multi-task
learning does not help Video Evidence Selection,
as mentioned in Section 4, training with Video Evi-
dence Selection does help Video QA. Thus, Video
Evidence Selection is still an important task to im-
prove a model’s ability to answer questions. We
include more ablation studies in Appendix D.1.

6 Analysis and Discussion

Model Performance v.s. Question Types. Ta-
ble 6 shows MultiT+V,SE’s performance on dif-
ferent question types for Video QA and Video Evi-
dence Selection respectively. Other ROUGE scores
for Video QA follow similar trends as shown in Fig-
ure 14. According to Table 6, the model achieves
good ROUGE-1 scores for Video QA when the
model has a good IOU-F1 score for Video Evi-
dence Selection such as its performance on Exis-
tence. The model has the highest ROUGE-1 varia-
tion on Location question types, with a relatively
large variation for IOU-F1. The model’s ROUGE-1
score on Spatial questions is relatively low, with the
lowest IOU-F1 score. MultiT+V,SE excels at ques-
tion type Entity and Existence with relatively high
IOU-F1 scores. One possible explanation could be
that the average length of the answers generated
for Entity and Existence are around eight tokens,
which might be easier for the model to ground to
the relevant part in the video.

Interestingly, even if the answers have similar
lengths, the model struggles on Motion questions
(with a relatively low IOU-F1 score). A possible

Model name R1 R2 RL

T5 T0-shot 0.8 ± 0.0 0.0 ± 0.0 0.8 ± 0.0
T5 T0-shot

TVQA 9.1 ± 0.0 1.2 ± 0.0 8.8 ± 0.0
T5 TTVQA,ours 32.4 ± 0.2 17.5 ± 0.2 31.6 ± 0.2
T5 Tours 33.8 ± 0.2 17.7 ± 0.1 32.4 ± 0.3
T5 T+V0-shot

TVQA 20.3 ± 0.0 8.1 ± 0.0 20.1 ± 0.0
T5 T+Vours 33.1 ± 0.3 17.3 ± 0.4 31.9 ± 0.2
T5 T+VTVQA,ours 33.7 ± 0.2 18.3 ± 0.1 32.6 ± 0.1

Table 7: ROUGE scores for the task of Video Question
Answering for few-shot learning setting (the standard
setting in our WildQA dataset introduced in Section 4)
and zero-shot learning setting (“0-shot” in the super-
script). Subscript “TVQA” means pre-training on the
TVQA (Lei et al., 2018) dataset; subscript “TVQA,ours”
means first pre-training the model on TVQA, then tun-
ing the model on our WildQA dataset; subscript “ours”
means tuning the model directly on our WildQA dataset.

reason could be that this type of questions provide
a very abstract description of the action, which
makes the model hard to attend to the relevant part
of the video. For instance, an example of a Mo-
tion question is “Are there any structure or natural
features being affected?”. To attend to the corre-
sponding period in the video, the model needs to
understand the word “affected” and the objects that
are actually affected, which can be very difficult.
The model also struggles to attend to the correct
places in the video for the Spatial type of ques-
tion. This might be because there is more than one
entity in Spatial type of questions, and the model
needs to locate all the objects appearing in vari-
ous parts of the video, which is similarly complex.
For instance, for the question “What effects did
the weather have?”, the model needs to attend to

“debris in the air”, “truck turnover” and “destruc-
tion of buildings”. For Location type of questions
such as “What sorts of terrain is the vegetation
present in?”, it might be difficult to attend to all
the terrains of “forest”, “plateaus”, “mountain-
ous”, “valleys”, and “arboreal” and to include
them in the answer.

Domain Adaptation. Furthermore, we tune the
MultiT+V,SE model on the dev set data from a
single domain, and test it against data from other
domains. Figures 6 and 7 show the model’s per-
formance in different tuning and testing domains.
Interestingly, the diagonal cells do not always
have the darkest color, which indicates that inter-
relations exist across domains. For instance, the
model tuned on Geography performs relatively bet-
ter for Video QA on Human Survival and Agri-

5619



Natural Disaster

Human Survival
Milita

ry

Agriculture

Geography

Natural Disaster

Human Survival

Military

Agriculture

Geography

18.5 14.9 16.7 17.9 16.8

28.7 29.6 28.8 29.1 28.8

31.0 30.7 29.8 30.2 30.2

22.7 23.6 24.4 23.7 24.3

7.9 22.0 18.0 19.2 6.9

10 15 20 25 30

Figure 6: MultiT+V,SE performance (ROUGE-1) for
Video QA when tuned on a single domain (y-axis) and
tested against each domain (x-axis). The performances
by the rest metrics for Video QA resemble the pattern
here and are reported in Appendix D.

culture rather than itself. This suggests that the
questions and videos from Geography, Agricul-
ture, and Human Survival exhibit some similarity
so that the model tuned on one domain can an-
swer questions from the other domains relatively
well. But answering questions from Geography
can introduce the domain knowledge, an example
of the answer is “Mountainous, temperate
forest.”, where “temperate forest” is
one of the terminologies specific to Geography
domain. Training on these terminologies might
confuse the model and hurt the performance. Thus,
future research might be needed to study how to
better incorporate domain knowledge into multi-
modal question answering.

As for Video Evidence Selection, the patterns
generally resemble the pattern in Figure 6, which
means that in general, the model answers a question
better if it can attend to the relevant part in the
video. However, when tuned on Human Survival
and tested on Natural Disaster the model performs
relatively well on Video QA (with a 28.7 ROUGE-
1 score) but less well on Video Evidence Selection
(with a 0.7 IOU-F1 score). This might indicate that
the model picks up some common patterns in the
text rather than reasoning about the video and the
question in an expected manner.

Pre-training on Other Datasets. We also pre-
train the T5 T and T5 T+V using TVQA (Lei
et al., 2018), a large-scale multimodal question an-

Natural Disaster

Human Survival
Milita

ry
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Natural Disaster

Human Survival

Military

Agriculture

Geography

2.9 2.6 1.8 0.5 2.6

0.7 2.0 3.4 4.7 4.5

2.3 5.2 3.5 5.3 3.2

1.9 2.2 2.7 2.2 2.7

2.1 3.5 2.0 3.3 2.1

1 2 3 4 5

Figure 7: MultiT+V,SE performance (IOU-F1) for
Video Evidence Selection when tuned on a single do-
main (y-axis) and tested against each domain (x-axis).

swering dataset with videos from TV series. We re-
port the zero-shot learning performances as well as
the few-shot learning performances for T5 T and
T5 T+V in Table 7. We can see that pre-training
on TVQA for text-only T5 T does not help, which
shows that the question styles in our dataset might
be different from TVQA. For T5 T+V which uses
both text and visual features, pre-training on TVQA
does help the model, which suggests that the pre-
training helps the model take advantage of the
visual features. T5 T+V pre-trained on TVQA
underperforms T5 T+V trained together with T5
IO (the MultiT+V,SE model) according to Table 4
and Table 7, suggesting that attending to the rele-
vant part in the video helps the model better than
training the model on more data. However, pre-
training the model on the TVQA dataset reduces
the variance of model performance, which suggests
that training the model with more data helps the
model perform consistently.

7 Conclusion

In this paper, we introduced a new and challeng-
ing benchmark, WILDQA, to promote domain di-
versity for video understanding. Specifically, we
focused on five domains that involve long videos
recorded in the outside world, which can be useful
for applications in these domains. Instead of the tra-
ditional multiple-choice setting for Video Question
Answering, we proposed to generate open-ended
answers. We believe open-end answer generation
can help construct systems that can answer end
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users’ questions in a more natural way. To help the
model attend to the relevant parts in the videos, we
also proposed the task of Video Evidence Selection.
Through experiments, we showed the feasibility
of these tasks, and also showed that jointly train-
ing for both Video Question Answering and Video
Evidence Selection can improve the models’ per-
formance. In addition, we found it is easier to
understand models’ behavior by knowing which
part of the video the model attends to when answer-
ing a question. We believe that this is an impor-
tant step towards a trustworthy, explainable multi-
modal system. The dataset is available at https:
//lit.eecs.umich.edu/wildqa/.
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A Annotation Details

A.1 Video Selection and Processing

Video Selection. For the video selection part, as
mentioned in Section 3, first, we identify 5 do-
mains, Agriculture, Geography, Human Survival,
Natural Disasters, and Military, to collect videos
recorded in the outside world. We then identify
eight (8) YouTube channels and crawl videos from
those channels. During crawling, we manually
substitute irrelevant videos such as advertisements
with videos that contain scenes mostly recorded in
the outside world from the same channel.

Video Processing. As mentioned in Section 3,
we clip the raw videos into short clips by
PySceneDetect because the raw videos can be as
long as an hour. We then concatenate these short
clips so that the output video will be around 1
minute. The output videos are used for the fol-
lowing annotation process. We want to include
longer videos because the videos recorded in the
outside world usually contain less information com-
pared to the videos about human interactions. Be-
sides, if the concatenated video is at the end of
the original video, it is allowed to be shorter than
1 minute. We select the concatenated videos that
only contain scenes recorded in the outside world.
If none of the concatenated videos satisfies, we
manually clip the original videos to get an output
video.

A.2 Annotation Instructions

As mentioned in Section 3, we have 2 phases in
our annotation process as shown in Figure 3. In
Phase 1, annotators come up with a hypothetical
motivation, ask questions, and provide the corre-
sponding answers with relevant parts of the video
as evidence. Phase 2 is to collect answers and ev-
idence for questions we collect in Phase 1. The
following are the instructions for these two phases.

Instructions for Phase 1

We need help for this Video QA task based on
video content (including the audio).
In this task, we suppose you can hypothetically
send a robot to a place that you want, for many
hours, so as to collect information that you need.
In this hypothetical scenario, you have an objec-
tive that you want the robot to learn about. This
robot can chart territory and is able to answer
questions based on recorded videos. Therefore,

after it comes back, you can ask questions to
help you satisfy your objective, then this robot
will provide you with answers, as well as video
evidence clips to support the answers.
In this task, to simplify, the provided videos
represent places where you could potentially
have sent the robot and are much shorter (a
few minutes). Given a recorded video, please
help us provide one hypothetical objective that
makes sense with it, along with questions, an-
swers, and evidence. Specifically, you should
pretend to be both the information-seeker and
the robot, which means that as the robot, you
could watch the recorded video, and you should
provide answers and video evidence clips; as
the information-seeker, you have an objective,
not watch the whole video (because of practi-
cal reasons), and you can only ask questions
and receive answers and video evidence clips as
feedback.

1. Basic Instructions

• You will need to propose a hypothetical
objective (or topic, intention, motivation),
to motivate the questions, that makes sense
for the given video.

• You will need to provide as many ques-
tions as you need (to satisfy your objective)
with regard to the content in the videos and
that seek to understand more about the pro-
posed objective.

• You will first watch the video, but when
you are providing the objective and ques-
tions, please pretend you haven’t seen it
before.

• You will need to provide at least one ques-
tion for each video. The more the better.

• You will need to identify the source of your
question (whether it is based on the visual
scene or the audio) and classify your ques-
tion accordingly.

• You will need to provide the correct answer
to the question you asked, as supported by
the content in the video.

• You will need to provide video evidence
(video clip) to support your question and
answer.

• If one video doesn’t make sense at all, or
there’s no possible objective for this video
that makes sense, please comment at the
bottom of this annotation page (and fill in
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the mandatory fields for the corresponding
video with placeholder values).

2. How To Propose Hypothetical Objective

• For each video, you need to come up with
a hypothetical objective (or intention, mo-
tivation, topic) that makes sense for this
video, and briefly explain it.

• Your questions should all relate to this ob-
jective.

• Example 1:
– Objective: I want to learn about the

water in the territory.
– Question 1: How big is the lake?
– Question 2: Are there any boats in the

lake?
– Question 3: Where is the river?
– ...

• Example 2:
– Objective: people/life movement
– Question 1: Is there any sign that

wildlife has passed this area?
– Question 2: How much traffic is there

on the road?
– ...

3. How To Ask Your Question

• Your question should relate to your pro-
posed objective.

• For each video, after you finish one ques-
tion, you could click the Add one more
question for this video button to continue
to provide another question for this video.
On the contrary, if you want to delete one
question, you could click the Delete this
Question button.

• Ask one question at a time.
– E.g., "Are there any people? What are

they doing?" is not appropriate.
• When you provide multiple questions for

the same video, make sure these questions
are independently asked.

– E.g., "What is growing on pine trees?"
and "What is their color?" are not inde-
pendent.

• The answer should be derived from the
video (visual or audio).

– E.g., "Why do they run every morn-
ing?" is not a good question.

• Ask from the 3rd person point of view.
– E.g., "What do we have on this farm?"

-> "What do They have on this farm?"
• Try to balance the questions such that the

answers are not too repetitive (E.g., too
many ’yes’ answers).

• Ask questions matter-of-factly (as objec-
tively as possible). Stick to what you can
see or hear from the video.

– E.g., "Does it make people feel good
here?" is somehow subjective.

• Don’t ask questions about how’s the video
being recorded, the camera-person or the
camera itself. Ask about the content itself.
Ignore what the camera-person is doing.

– E.g., "What’s the cameraman doing?" /
"How fast is the camera moving?" are
not good questions.

4. How to identity the Question Category

We have some basic categories: Motion,
Spatial Relationship, Temporal Relation-
ship, Reasoning, Number, Entity, Exis-
tence, Time, Location, Other.
If your questions fall into multiple cate-
gories, please check all categories that ap-
ply.
Here are some example questions under
each category:

• Motion: What is the group of soldiers do-
ing?

• Spatial Relationship: What is driving be-
side the motorcycle?

• Temporal Relationship: What happens
before the black smoke rises?

• Reasoning: What makes changing be-
tween targets possible for the missile?

• Number: How many fighters are flying?
• Entity: What is the target of the bullet?
• Existence: Is there a lake by the mountain?
• Time: How long can the missile fly?
• Location: Where is the tank?
• Others

5. How To Provide Correct Answer

• Your answer should be written as full sen-
tences (at least one).

– E.g., "Left" -> "The landspout bends
toward the left."
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• The answer should be derived from the
video (visual or audio).

– E.g., "These plants are green because
they contain chlorophyll." is not a good
answer.

• Provide answers matter-of-factly (as objec-
tively as possible). Stick to what you can
see or hear from the video.

– E.g., "beautiful" is likely not a good
word to use within an answer.

– E.g., "This takes some bravery to do."
is somehow subjective.

• Don’t answer about how’s the video being
recorded, the camera-person, or the cam-
era itself. Answer about the content itself.
Ignore what the camera-person is doing.

– E.g., "There are two people, i.e. a run-
ning child, and the cameraman." is not
a good answer.

• When you enter numbers, please enter dig-
its instead of text.

– "Seventeen" -> "17"

6. How to provide video evidence

• The video evidence consists of all the parts
of the video that support the answer to your
given question.

• You need to provide at least one video evi-
dence clip (intervals within the video) for
each question.

• You need to provide both the start point
and end point for all the video evidence
you identify in the video;

• You could use your mouse or ←/→ key
to click or drag the process bars of start
point and end point. When you click or
drag the bar, the above video will change
accordingly, so you could locate the points
according to the video screen.

• For each video evidence clip, the end point
should be greater than zero, and the end
point should be greater or equal to the start
point.

• The video evidence clips (the time gap be-
tween the start point and the end point)
should be as short as possible.

Instructions for Phase 2

We need help for this Video Question Answer-
ing task based on video content (including the
audio).

1. Basic Instructions

• You will first watch the video, then answer the
questions, each question in turn.

• You will need to provide at least one answer
for each question (ignoring differences such
as upper/lower case, or the article). The more
answers the better, but every answer should
be correct.

• You will need to identify the source of your
answer (whether it is based on the visual scene
or the audio).

• For each answer, you will need to provide
video evidence (video clip) to support your
answers. See below for additional informa-
tion.

• If one video or question is not available,
please comment at the bottom of this anno-
tation page (and fill the mandatory fields for
this video/question with placeholder values).

• There are five questions, you need to finish all
five questions according to the content in the
video (including audio).

2. How To Answer

• Provide one or more answers for each ques-
tion.

• Each answer should be written as full sen-
tences (at least one).
– E.g., "Left" -> "The landspout bends toward

the left."
• The answer should be derived from the video

(visual or audio).
– E.g., "These plants are green because they

contain chlorophyll." is not a good answer.
• Respond matter-of-factly (as objectively as

possible). Stick to what you can see or hear
from the video.
– E.g., "beautiful" is likely not a good word

to use within an answer.
– E.g., "This takes some bravery to do." is

somehow subjective.
• Answer in 3rd person point of view.

– E.g.,"We raise cattle on this farm." -> "They
raise cattle on this farm."

• Don’t answer about how’s the video being
recorded, the camera-person, or the camera
itself. Answer about the content itself. Ignore
what the camera-person is doing.
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– E.g., "There are two people, i.e. a running
child, and the cameraman." / "The camera
is moving fast." are not good answers.

• When you enter numbers, please enter digits
instead of text.
– "Seventeen" -> "17"

• Use your best judgment.

3. How to provide video evidence

• The video evidence consists of all the frame
intervals of the video that support the answer
to your given question.

• You need to provide at least one video evi-
dence clip (interval within the video) for each
question.

• You need to provide both the start point and
end point for all the video evidence you iden-
tify in the video;

• You can use your mouse or ←/→ key to click
or drag the process bars of the start point and
end point. When you click or drag the bar, the
above video will change accordingly, so you
could locate the points according to the video
screen.

• For each video evidence clip, the end point
should be greater than zero, and the end point
should be greater or equal to the start point.

• The video evidence clips (the time gap be-
tween the start point and the end point) should
only cover the actual evidence and not more
(in other words, it should be as short as possi-
ble).

A.3 Annotation Interface

Figure 8 shows the annotation interface for Phase 1.
Figure 9 shows the annotation interface for Phase
2.

A.4 Pilot Study Comparison between
Annotations from Experts v.s.
Non-Expert

Before the formal annotation, we compare the non-
experts and experts’ annotations for both phases.
For Phase 1, we randomly selected 45 videos from
each domain to be annotated by both the experts
and crowdworkers. Following Castro et al. (2022),
we set the AWS annotation qualification as HIT
approve rate >92%, the number of HITs approved
>1000, the location is either Canada or U.S., and
the reward as $6/HIT (around $9/h).

Figure 8: Interface for Phase 1 annotation. After watch-
ing the video, annotators provide a motivation, ask
questions and provide corresponding answers by filling
the blank. They provide parts of the videos as evidence
to support each of the question-answer pairs by drag-
ging the moving bar.
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Figure 9: Interface for Phase 2 annotation. After watch-
ing the video and given the question from Phase 1, an-
notators provide answers with the corresponding evi-
dence.

R I P Overall

expert 2.7 2.5 2.1 2.4
crowd 0.8 0.7 0.5 0.7

Table 8: Average scores of the pilot study for Phase
1 (from 0 to 3). R: Relevance; I: Interestingness; P:
Professionality; Overall:Overall Score

After annotation, two authors of this paper who
do not know the source of annotation evaluate and
score in terms of Relevance, Interestingness, and
Professionality for each annotation from 0 to 3. We
define Relevance, Interestingness, and Profession-
ality as follows:

• Relevance: how relevant a question and an an-
swer are to the video. Good relevance indicates
that the question is related to the video and fo-
cuses on the major events, objects, or people in
the video. A relevant answer should address the
question and can be derived from this video.

• Interestingness: whether the question interests
you. In other words, whether you are interested
in the question and answer, given a video.

• Professionality: how detailed and precise the
question and answer are. Good professionality
can be demonstrated by the precise usage of ter-
minologies and numbers, and accurate descrip-
tion in the answer.

• Overall Score: the average score of the score for
Relevance, Interestingness, and Professionality.

For each category, the higher score indicates the
better the annotation demonstrates that character-
istic. Table 8 lists the scores and Table 9 presents
some annotation examples. From both the empir-
ical and numerical results, we could see there is
a significant quality gap for the annotation from
experts versus from crowdworkers. Therefore, we
decide to employ domain experts for Phase 1.

For Phase 2, we randomly select 104 Geography
videos and questions from the questions annotated
in Phase 1 to be annotated by both experts and
crowdworkers. Moreover, we set the reward as
$3/HIT(around $9/h) and employ the AWS Mas-
ter2 as the crowdworkers. Table 10 lists the results
of the pilot study for Phase 2. According to Ta-
ble 10, crowdworkers perform similarly to experts

2https://www.mturk.com/worker/help#
what_is_master_worker
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Objective Question Answer

E Precipitation What types of precipitation are occurring? Rain and hail.
C Very like Nice Nice

E I want to learn about the people What type of weapons are they carrying? M4’s
C The soldiers are caught on the ship. What they are doing in this video? They caught the ship.

E Storm Where is the storm? In a field.
C Motivation 5 Very amazing

Table 9: Examples in pilot study for Phase 1. E: Expert; C: Crowd

Annotator R1 R2 RL IOU-F1

Expert 23.63 8.05 21.22 12.24
Crowd 20.03 3.24 17.69 8.50

Table 10: ROUGE and IOU-F1 scores for the pilot study
in Phase 2. Note that the scores here are lower than
the scores for the human baselines in Tables 4 and 5.
This is because we only compare the collected answers
to a single answer here, while in Tables 4 and 5 we
calculate the average scores of one annotator against the
remaining as described in Section 4.

in Phase 2. Considering the annotation efficiency,
we decide to employ both experts and crowdwork-
ers to annotate more diversified answers for each
question in Phase 2. Note that the ROUGE scores
in Table 10 are lower than the scores for the hu-
man baselines in Tables 4 and 5. This is because
we only compare the collected answers to a single
answer in Table 10, while in Tables 4 and 5, we cal-
culate the average scores of one annotator against
the remaining as described in Section 4.

A.5 Question and Answer Correction

After we collect annotation from Phase 1, the au-
thors of this paper check the quality of the collected
question and answers and modify the question and
answers accordingly. Specifically, we:

• Delete the questions that can be answered
without watching the video (e.g. Q: “If
water can get through the hut’s
roof; can the wind go through
the hut’s roof?”, A: “Yes the
wind can go through the hut’s
roof.”)

• Modify the question or the answer to 3rd
person view (e.g. change Q: “Do we
have aircraft that we can do
a touch and go landing like a
helicopter?” to Q: “Do they have

Annotator ID Expertise Assigned Domains (# Q)

0 Geography Geography (94) ; Natural
Disaster (187)

1 Geography Geography (16) ; Human
Survival (74)

2 Veteran Military (26) ; Human
Survival (146)

3 Veteran Military (70) ; Human
Survival (89)

4 Veteran Military (12)
5 Veteran Military (8)
6 Veteran Military (85)
7 Biology Agriculture (88)
8 Biology Agriculture (21)

Table 11: Information for expert annotators who anno-
tate the questions, together with their assigned domains
and number of questions (# Q) in the parentheses.

aircraft that can do a touch and
go landing like a helicopter.”)

• Exclude the man holding the camera in the an-
swer if it is a first-person view video.

• Modify questions that are not independently
asked (e.g.“Where are they?”, where
“they” refers to the “paved and unpaved roads” in
the previous question. Therefore, we change the
question to “Where are the roads?” )

• Split questions that include multiple sub-
questions into several questions.

Some of the annotators from Phase 2 do not an-
notate any evidence (leaving the evidence from the
start to the end of the video). Thus, we empirically
filter out evidence longer than 1/4 of the video.

A.6 Annotator Information

Table 11 shows the expertise of each expert, to-
gether with their assigned domains of annotation
and the number of questions they annotate in their
assigned domains in Phase 1.
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Figure 10: Distribution of questions by the first four tokens. The ordering of words starts from the center to outside.

Domain top1 top2 top3

Agriculture farm agricultural understand
Natural Disaster weather people flooding
Human Survival man determine human
Geography people topography water
Military military aircraft determine

Table 12: Most common 3 words for each domain after
removing stop-words.

A.7 Dataset Analysis

Figure 10 presents question distributions in terms
of words.

Questions Types. Table 12 examines the fre-
quent words for each domain, which demonstrates
the characteristics of the domain. Take Natural
Disaster as an example, the 3 most frequent words
are used in 20.63% of sentences. Besides, Fig-
ure 4 in Section 3 lists the annotators’ self-reported
question types. One thing we observe is that
questions that start with “What” possess a large
proportion of all the questions. Such questions
might be hard to classify into certain question
typs (Castro et al., 2020), so we allow annotators
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Figure 11: Venn diagrams showing whether the question
depends on visual (scene) or audio from the original
video. The left is for the entire dataset, while the right
is for the Agriculture domain.

to choose multiple question types for a single ques-
tion. Empirically speaking, questions that start
with “is(are)”/“where”/“how many” are commonly
relevant to "Existence"/"Location"/"Number" ques-
tions. In our dataset, their distribution trend
(“is(are)”: 24.13% > “where”: 7.21% > “how
many”: 4.48%) is akin to the trend of the dis-
tribution of the reported question types (“Exis-
tence”: 45.20% > “Location”: 12.23% > “Num-
ber”: 4.59%). Moreover, although we have “hu-
man”, “man” and “people” as the most frequent
words in some domains, the most frequent words
in domains such as Military are “military”, and
“aircraft”, which demonstrates that our dataset does
not only focus on human interactions as most of
the existing datasets do.

Information Needed. As shown in the left Venn
figure in Figure 11, generally, most questions are
based on the visual (scene). Such a distribution
is also justified by the distribution of the question
types. The dominant question types we have in
Figure 4 are Motion, Spatial, Existence and En-
tity, which typically focus on visual information.
However, in Agriculture (the right Venn figure in
Figure 11), the audio-based questions take more
portion, because videos in Agriculture usually fo-
cus on farming tips, instructions for using tools, etc.
In this paper, we do not experiment with models
that use audio or transcripts from the video. Future
research might look into letting models use audio
and transcripts on our dataset.

Answer Similarity/Diversity. We have similar
and diversified answers collected in our dataset.
Figure 5 gives 2 examples: answers from the upper
example are similar to each other; for the lower
example, answers diverse a lot between Phase 1
and Phase 2 annotations or even within Phase 2.
However, all of the answers are acceptable given
the video. The similarity demonstrates the relia-

Videos 369
Duration (s) 71.22 ± 26.47

Questions 916
Question per video 2.48 ± 1.38
Question length (#tokens) 7.09 ± 2.60
Answer length (#tokens) 8.62 ± 8.90

Evidence per answer 1.53 ± 0.76
Evidence length (s) 9.09 ± 13.45

Table 13: Annotation statistics for Phase 1. “#tokens”
represent the number of tokens.

Crowd annotated answers 932
Expert annotated answers 182
Total 1114

Answer per question 1.22 ± 0.69
Answer length (#tokens) 9.45 ± 7.46

Evidence per answer 0.89 ± 0.72
Evidence length (s) 10.43 ± 5.81

Table 14: Annotation statistics for Phase 2. “#okens”
represents the number of tokens.

bility of the Phase 2 annotation. Meanwhile, the
diversified answers help to better evaluate models.

B Annotation Statistics

Tables 13 and 14 list the statistics for annotation in
Phase 1 and Phase 2, respectively.

C Details of Multi-task Learning

Tables 15 and 16 report the model performances un-
der different sets of α, β for Equation (1). We high-
light the rows we report in Table 4 in Section 4.2,
Table 4 in Section 4.2, Table 5 in Section 5.2, and
Table 5 in Section 5.2.

D Experiment Results

Figures 12 and 13 report Multi-Task model’s
performance on Video QA by ROUGE-2, and
ROUGE-L, respectively. Figure 14 demonstrates
that ROUGE scores follow a similar trend as men-
tioned in Section 6.

D.1 Ablation Study on Video Evidence
Selection

To investigate whether the vision part is indeed
needed by the baseline models for the Video Evi-
dence Selection task, we conduct an ablation study
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β R1 R2 RL IOU-F1

0.5 33.8 ± 0.8 18.5 ± 0.7 32.5 ± 0.8 3.7 ± 2.4
1.0 32.2 ± 0.7 17.6 ± 0.5 31.0 ± 0.6 1.9 ± 1.7
1.5 33.8 ± 0.3 18.0 ± 0.9 32.5 ± 0.3 1.5 ± 0.1

Table 15: We set α = 1 throughout all the experiments, and report the corresponding MultiT+V,SE performances
on Video QA (ROUGE scores) and Video Evidence Selection (IOU-F1 scores). We highlight the row we report in
Table 4 in Section 4.2 and Table 4 in Section 4.2.

β R1 R2 RL IOU-F1

0.5 34.0 ± 0.5 18.8 ± 0.7 32.8 ± 0.6 1.2 ± 0.1
1.0 33.4 ± 0.6 18.4 ± 0.2 32.1 ± 0.6 1.4 ± 0.3
1.5 32.8 ± 0.3 18.3 ± 0.3 31.7 ± 0.2 1.0 ± 0.2

Table 16: We set α = 1 throughout all the experiments, and report the corresponding MultiT+V,IO performances on
Video QA (ROUGE scores) and Video Evidence Selection (IOU-F1 scores). We highlight the row we report in
Table 5 in Section 5.2 and Table 5 in Section 5.2.

Model name IOU-F1

T5 IOrandom 1.1 ± 0.3
T5 IO 1.1 ± 0.2
T5 SErandom 2.7 ± 1.9
T5 SE 4.5 ± 0.8

Table 17: Ablation study on Video Evidence Selection.
We feed T5 IOrandom and T5 SErandom the question
concatenated with a random sequence, while we feed
T5 IO and T5 SE the question with the actual video
sequence.

using T5 IO and T5 SE (introduced in Section 5).
We take a random sequence of the same length as
the original video sequence and feed the random
sequence instead of the original video sequence
to the model. Table 17 shows the results of the
comparison between these different settings. T5
IO performs roughly the same as T5 IOrandom,
which indicates that the model struggles to utilize
visual information. T5 IO even underperforms
the random baseline which can achieve an IOU-
F1 score of 2.5 ± 0.3 (as shown in Table tab:few-
shot-evidence-results-10-epochs). However, T5
SE outperforms T5 SErandom, suggesting that T5
SE uses visual features to locate the evidence of
the question.
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Figure 12: Multi-Task ROUGE-2 scores for Video
QA when tuned on a single domain (y-axis) and tested
against each domain (x-axis).
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Abstract

Improving the accessibility and automation ca-
pabilities of mobile devices can have a signifi-
cant positive impact on the daily lives of count-
less users. To stimulate research in this di-
rection, we release a human-annotated dataset
with approximately 500k unique annotations
aimed at increasing the understanding of the
functionality of UI elements. This dataset
augments images and view hierarchies from
RICO, a large dataset of mobile UIs, with
annotations for icons based on their shapes
and semantics, and associations between dif-
ferent elements and their corresponding text la-
bels, resulting in a significant increase in the
number of UI elements and the categories as-
signed to them. We also release models us-
ing image-only and multimodal inputs; we ex-
periment with various architectures and study
the benefits of using multimodal inputs on the
new dataset. Our models demonstrate strong
performance on an evaluation set of unseen
apps, indicating their generalizability to newer
screens. These models, combined with the
new dataset, can enable innovative functional-
ities like referring to UI elements by their la-
bels, improved coverage and better semantics
for icons etc., which would go a long way in
making UIs more usable for everyone.

1 Introduction

Mobile devices like phones and tablets have be-
come ubiquitous and indispensable to carry out
our daily activities. It is not an exaggeration to
say that usage of mobile devices is becoming a re-
quirement for full participation in society. Recent
reports from the WHO and others (Organization,
2021; Peter Ackland and Bourne, 2017) estimate
that around 2.2 billion people across the world have
some form of vision impairment, out of which 36
million people are blind. Accessibility of mobile

*Equal contribution, correspondence: {srini-
vasksun,mariawang}@google.com

devices is necessary for these visually impaired
users to carry out their daily tasks and is an impor-
tant tool for their social integration (Ladner, 2015).

Accessibility of mobile apps has improved sig-
nificantly over the past few years aided by develop-
ments on two main fronts: Firstly, the development
of screen readers, like VoiceOver (Apple, 2021c)
on iOS and TalkBack (Accessibility, 2021e) on
Android, enable visually impaired users to con-
trol their phone in an eyes-free manner. Secondly,
development tools and standards to enhance ac-
cessibility, such as the Accessibility guidelines
for iOS and Android (Accessibility, 2021a; Apple,
2021b), Android Accessibility Scanner (Accessibil-
ity, 2021b), and iOS Accessibility Inspector (Apple,
2021a), have helped developers identify and fix ac-
cessibility issues for applications. Among most of
these utilities, the main source of accessibility data
is the accessibility labels (Accessibility, 2021d)
provided by app developers. These labels are speci-
fied as attributes on a structured representation such
as View Hierarchy, for the different UI elements
on the screen and are available to screen readers
(Accessibility, 2021c; Apple, 2018). Despite the
growth in accessibility tools, recent studies (Ross
et al., 2020, 2017; Chen et al., 2020a) have found
that even the most widely used apps have large gaps
in accessibility. For instance, a study by Chen et al.
(2020a) of more than 7k apps and 279k screens re-
vealed that around 77% of the apps and 60% of the
screens had at least one element without explicit
labels. Similarly, Ross et al. (2020) found that, in a
population of 10k apps, 53% of the Image Button
elements were missing labels.

In this paper, we attempt to encourage further
research into improving mobile device accessibil-
ity and increasing device automation by releasing
an enhanced version of the RICO dataset (Deka
et al., 2017) with high-quality human annotations
aimed at semantic understanding of various UI el-
ements. Firstly, following a study by Ross et al.
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(2020) where missing labels for Image Button in-
stances was found to be the primary accessibility
barrier, we focus on creating annotations useful for
identifying icons. In particular, we annotated the
most frequent 77 classes of icons based on their
appearance. We refer to this task as the Icon Shape
task. Secondly, we identified icon shapes which
can have multiple semantic meanings and anno-
tated each such icon with its semantic label. This
task is called Icon Semantics. Some examples of
such icons can be seen in Figure 1b. Finally, we
annotate UI elements, like icons, text inputs, check-
boxes etc., and associate them with their text labels.
These associations can help us identify meaningful
labels for the long tail of icons and UI elements not
present in our schema, but having a textual label
associated with them. We refer to this task as the
Label Association task. The main contributions of
this paper are as follows:

• A large scale dataset1 of human annotations
for 1) Icon Shape 2) Icon Semantics and 3) se-
lected general UI Elements (icons, form fields,
radio buttons, text fields) and their associated
text labels on the RICO dataset.

• Strong benchmark models2 based on state of
the art models (He et al., 2016; Carion et al.,
2020; Vaswani et al., 2017) using image-only
and multimodal inputs with different architec-
tures. We present an analysis of these models
evaluating the benefits of using View Hierar-
chy attributes and optical character recogni-
tion (OCR) along with the image pixels.

2 Related Work

2.1 Datasets

Large scale datasets like ImageNet (Deng et al.,
2009) played a crucial part in the development of
Deep Learning models (Krizhevsky et al., 2012; He
et al., 2016) for Image Understanding. Similarly,
the release of the RICO dataset (Deka et al., 2017)
enabled data driven modeling for understanding
user interfaces of mobile apps. RICO is, to the best
of our knowledge, the largest public repository of
mobile app data, containing 72k UI screenshots
and their View Hierarchies from 9.7k Android apps

1The datasets are released at https://github.com/google-
research-datasets/rico-semantics.

2Benchmark models and code are released at
https://https://github.com/google-research/google-
research/tree/master/rico-semantics

spanning 27 categories. Apart from RICO, other
datasets include ERICA (Deka et al., 2016) with
sequences of user interactions with mobile UIs and
LabelDROID (Chen et al., 2020a) which contains
13.1k mobile UI screenshots and View Hierarchies.

There have been a few efforts to provide addi-
tional annotations on RICO. SWIRE (Huang et al.,
2019) and VINS (Bunian et al., 2021) added anno-
tations for UI retrieval, Enrico (Leiva et al., 2020)
added annotations for 20 design topics. Liu et al.
(2018) automatically generated semantic annota-
tions for UI elements using a convolutional neural
network trained on a subset of the data. Recently Li
et al. (2022) released UI element labels on view hi-
erarchy boxes including identifying boxes which do
not match to any elements in the UI. Even though
some of these works are similar in spirit to the
dataset presented in this paper, there are two ma-
jor differences: 1) The icon and UI element labels
are inferred on the boxes extracted from the View
Hierarchy, whereas, in our work, we add human
annotated bounding boxes directly on the image.
Due to noise in the view hierarchies like missing
and misaligned bounding boxes for UI elements (Li
et al., 2020a, 2022), we observe that human annota-
tion increases the number of icons labelled by 47%.
2) The semantic icon labels in Liu et al. (2018)
conflate appearance and functionality. For exam-
ple “close” and “delete,” “undo” and “back,” “add”
and “expand” are mapped to the same class, even
though they represent different functionalities. The
Icon Semantics annotations in our dataset specifi-
cally try to distinguish between icons with the same
appearance but differences in functionality.

2.2 Models

Pixel based methods for UI understanding have
been studied for a long time. They have been used
for a variety of applications like GUI testing (Yeh
et al., 2009; Chang et al., 2010), identifying similar
products across screens (Bell and Bala, 2015), find-
ing similar designs and UIs (Behrang et al., 2018;
Bunian et al., 2021), detecting issues in UIs (Liu,
2020), generating accessibility metadata (Zhang
et al., 2021) and generating descriptions of ele-
ments (Chen et al., 2020a). A recent study by
Chen et al. (2020b) compares traditional image
processing methods and Deep Learning methods
to identify different UI elements. The image-only
baseline models studied in this paper are based on
Object Detection methods presented in Chen et al.

5637



(a) Examples of 76 icon shape annotations. We include classes that reflect the social
aspects of app usage, e.g., "person" for profile and community, share via popular apps
such as Facebook and Twitter, etc.

(b) Examples of 38 icon semantics annotations, in the format of <shape>:<semantics>.
Note that a single shape may represent multiple semantics, depending on the context. E.g.,
"X" shape may mean "close", "delete text", or "multiply". We use an umbrella semantic
class "OTHER" to cover the semantics not covered in our proposed set of classes

Figure 1: In this paper, we annotated the RICO dataset with both icon shapes and their semantics, to encourage
further research on app automation and accessibility. The existing icon annotations from Liu et al. (2018) were
algorithmically generated with 10% of them verified. However, we observed∼ 32% were missing labels compared
to our full human annotations. We release our annotations in the hope to contribute back to the community.

(2020b), Zhang et al. (2021), Chen et al. (2020a),
and Carion et al. (2020).

Extending to other modalities beyond pixels,
Banovic et al. (2012) use video tutorials to un-
derstand UIs and annotate them with additional
information. Li et al. (2021) use only the screen
information for identifying embeddings of UI ele-
ments. Hurst et al. (2010) use both the screen and
accessibility API information to identify interaction
targets in UIs and Chang et al. (2011) use similar
inputs to detect and identify certain UI elements
and Nguyen et al. (2018) use it for identifying sim-
ilar UI designs. Multimodal inputs have also been
used for understanding screen contents like generat-
ing element descriptions (Li et al., 2020b), training

UI embeddings for multiple downstream tasks (He
et al., 2021; Bai et al., 2021) and, denoising data,
predicting bounding box types (Li et al., 2022).

3 Datasets, taxonomy and annotation

To enable accessible hands-free experience for mo-
bile users, it is necessary for the system to under-
stand the functionality of the different screen UI
elements. For learning data driven models to en-
able these functionalities, we use the RICO dataset
(Deka et al., 2017). RICO spans >9K apps and
>72K UIs, each with a screenshot and information
regarding the structure of the UI in the form of a
View Hierarchy (VH). Besides the bounding boxes
of the different UI elements, the VH contains useful
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attributes like the content description and resource
id which provide information regarding the func-
tionality of the different UI elements. However, Li
et al. (2020a) found that only 35% of the unique
screens in RICO contain a matching View Hierar-
chy and screenshot. In the next few sections, we
describe how we overcome the mismtach issue and
describe the different type of annotations.

3.1 Icon Shape
As the study by Ross et al. (2020) found that one of
the main accessibility barriers on mobile devices
are missing labels for ImageButton elements, in the
icon shape and semantics tasks we focus on creat-
ing annotations useful for identifying icons. Liu
et al. (2018) attempted to provide semantic labels
for the icons in the RICO dataset by identifying
different concepts represented by the ImageBut-
ton elements on a subset of the data. Using these
concepts and models trained on a subset of the
data they identified semantic labels over the entire
dataset. They inferred labels for more than 100
icons types, 25 UI element types and 197 text but-
ton types. However, due to the presence of view
hierarchies with bounding boxes missing and mis-
aligned for UI elements (Li et al., 2020a, 2022),
these labels miss several UI elements. By com-
paring with manually labeled data, we found that
the annotations in Liu et al. (2018) did not identify
around 32% of all icon instances captured by man-
ual labeling. For improving the coverage of icons,
in our dataset we asked raters to manually annotate
all the bounding boxes. We created a schema of the
77 most commonly used icon classes, reusing many
of the classes identified in Liu et al. (2018). Exam-
ples of these icon classes and images are shown in
Figure 1a.

3.2 Icon Semantics
To support voice driven usage of mobile devices,
we identify icons not only based on their shape
and appearance but also functionality and se-
mantic meaning. For example, an “X” shaped
icon can mean “close,” “remove an option/entry,”
“delete/clear text,” or “multiply.” One way to enable
users to refer to the various semantics is to map
the multiple semantics to the same class in the Icon
Shape schema. This approach has two limitations:
1) Mapping each icon shape to multiple semantics
can lead to confusion for applications like Screen
Readers. 2) We noticed that there are many in-
stances of icons with different semantics but same

shape occurring in the same screen. In particular
11% of all images with ICON_PLAY, 4.9% with
ICON_X and 4.8% with ICON_CHAT have icons
with multiple semantics.

We identified a list of common icons which have
more than one semantic meaning associated with
them by the following steps: 1) Manually inspect a
variety of the icon annotations and list the function-
ality of each icon instance, 2) Use the plurality of
words matching to the same icon shape in the RICO
icon labels in (Liu et al., 2018) as an indicator of
multiple semantics, and 3) Recognize confusing
app logos. For example, the logo for WhatsApp
contains a Phone icon but it is most natural for a
user to say, “open WhatsApp”.

After these steps, we arrived at a list of 12 shape
icons which were further classified into 38 semantic
shapes. For icons with semantic meanings not cov-
ered by our schema, we assign the semantic type
OTHER as the default label. Out of the 101,625 an-
notated icons 15,640 (around 15%) are labeled as
OTHER. We observed that it is difficult to cover all
of the tail semantics classes with a schema. Thus,
we also obtained annotations for the text labels as-
sociated with UI elements, described in the section
below.

3.3 Label Association

Many UI elements have an associated text labels
that best describes UI elements. Our data analy-
sis showed that 24.6% of icons, form fields, check
boxes and radio buttons have an associated label.
However, we found that these labels are commonly
neither syntactically associated within view hier-
archies nor visually aligned in screenshot pixels.
First, we attempted to identify labels associated
with UI elements by using heuristics relying on the
View Hierarchy, like searching the siblings and par-
ent node’s siblings for axis aligned text elements for
each of the UI elements. We found that only 40%
of UI elements with labels could be correctly as-
sociated using such heuristics with a significant
number of false positive associations. Next, we at-
tempted to match UI element bounding boxes with
line boxes detected by OCR. We matched each UI
element bounding box with the OCR text box near-
est to the top left corner with a maximum distance
threshold. This method achieved 29.5% accuracy.
These empirical studies indicated that, like many
machine perception tasks, this Label Association
task may in fact be non-trivial despite appearing

5639



straightforward to humans. Some examples can be
seen in figure 2. We believe this novel task can
help address the limitation of annotations with a
fixed set of classes by making use of the text label
information present in the UI.

3.4 Annotation Procedure
For the three tasks described above, we follow the
annotation procedure below to collect annotated
data. We used a team of 40 trained human raters
with single replication to annotate the screenshots.
The raters were initially provided with example
image patches for each icon or UI element type
similar to Figure 1a and then followed the annota-
tion procedure below:

• Round 1: Each rater is presented with a screen-
shot and is asked to draw a bounding box
around every icon and UI element on the
screen. For each icon box, they can spec-
ify an icon shape class if it is included in the
schema and otherwise they classify it as a gen-
eral icon class. Once an icon shape class is
identified, if there are multiple semantics as-
sociated with that shape, the raters choose one
semantic class among the different options
for that class. These options also include the
OTHER class to capture semantics not in the
icon semantics schema. For the label associa-
tion task, we ask raters to identify the icons,
form fields, radio buttons, and check boxes
first, followed by the text labels, by drawing
their bounding boxes and assigning the re-
spective classes. Then the raters group the
text labels with their associated UI element if
it exists.

• Round 2: To improve the annotation qual-
ity, we send the datasets for a second round
of cleaning where the raters can adjust the
bounding box or the classes assigned.

• Round 3: After round 2, if we still find some
classes are poorly labeled by manual inspec-
tion, we use trained models to identify poten-
tial incorrect labels. We train Object Detec-
tion models on the entire dataset, and use the
model to predict labels for the train, valida-
tion and test sets. If there are any differences
between the model predictions and the human
annotations, we identify these instances as po-
tentially error-prone and send these images
back to the raters to re-annotate them.

Using the above procedure, we annotated all of
the screenshots in RICO with icon shape, seman-
tics and label association classes. The distribution
of top labels for the icon tasks can be seen in fig-
ures 3, 4. The entire taxonomy and exact counts
are in Appendix A.

4 Baseline Models

We conducted several experiments to investigate
the effectiveness of various deep learning ap-
proaches for solving the tasks presented in Sec-
tion 3. The overall goal of these experiments is
to: 1) provide good baseline models to be used
for image-only and image+VH settings 2) study
the effect of using multi-modal inputs v/s only the
screenshot for these tasks.

4.1 Problem Setup
For the three tasks, we distinguish two different ap-
proaches: 1) the Object Detection (OD) approach
using only the image and, 2) the bounding box clas-
sification (BB-CLS) approach using image, OCR
and view hierarchy. We describe these two ap-
proaches in the following sections. We split the
data into 80% train, 10% validation and 10% test
by package name to avoid data leakage and use the
same split for all experiments.

4.1.1 Object Detection (OD)
In this setup, the models take the screenshot as in-
put and output bounding box, class label and score
for each object found. We used object detection
models based on the widely used and better per-
forming (Chen et al., 2020b) Faster R-CNN (Ren
et al., 2015) and Centernet (Zhou et al., 2019) ar-
chitectures. We train these models with various
backbones (Szegedy et al., 2017; He et al., 2016;
Lin et al., 2017; Newell et al., 2016) and report
results for the best performing ones. Finally, we
experimented with Object Detection models based
on Transformer (Vaswani et al., 2017) architecture
like DETR (Carion et al., 2020; Zhu et al., 2020)
to verify the hypothesis that for the Icon Semantics
and the Label Association tasks, the models need
more information from their context compared to
the Icon Shape task. We use standard Object De-
tection metrics like mAP@0.5IOU to compare the
model performance.

4.1.2 Bounding box classification (BB-CLS)
For this setup, we train models to classify bound-
ing boxes extracted from the view hierarchy (VH)
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Figure 2: When an associated text label appears with a UI element, it is natural to refer to the icon using the
text directly. 24.6% of icons, form fields, check boxes and radio buttons have an associated text label. Label
Association examples are provided in the figure in red. However, rule-based approaches using view hierarchies
or OCR can only achieve 40% and 29.5% accuracies respectively. These annotations enable us to identify the
elements to interact with for voice commands like “Enter User Name as test user” or “Request Coins”.

Figure 3: Distribution of the top 14 icon shape classes.
These classes account for 72% of the total icons cov-
ered by the icon shape labels.

and assign them labels among the candidate classes.
The groundtruth (GT) set contains boxes that have
been created and labeled by crowd workers. These
two sets of boxes are greedily matched as follows.
1) Each GT box is matched to at most one VH box
and vice versa. 2) For every GT box, we find the
VH box with maximum Intersection over Union
(IoU). Only the matches for which the IoU value
is greater than the threshold of 0.5 are kept. 3)
Once a VH box is matched with a GT, it is not
considered for future matches. After this match-
ing procedure is complete, we assign a background
class to the unmatched VH boxes. We use a Trans-
former (Vaswani et al., 2017) based network as
described in UIBert (Bai et al., 2021) for the Icon
Shape, Semantics tasks framed as a classification
problem and compare models based on Macro F-1

Figure 4: Distribution of the top 10 icon semantics
classes. These classes account for 76% of the total
icons covered by the icon semantics labels.

score.
For the Label Association task, we compute an

embedding of each UI element following Bai et al.
(2021) and perform clustering on projected embed-
dings to identify UI elements which belong to a
group. We use F-1 score of the associated elements
as the metric of comparison. For every set of el-
ements predicted to be a group, it is considered a
True Positive if the same group is present in the
groundtruth, and considered a False Positive if it
is not. All groundtruth groups which are not in
predictions count as False Negatives and the F-1
score is computed based on these counts.

Compared to OD models the BB-CLS models
have an advantage as they do not need to predict
the bounding boxes for UI elements. To enable a
comparison between the two approaches, we add
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the unmatched GT boxes as inputs by setting all the
other VH attributes to be empty values. To use this
in a real-world setting, this procedure assumes the
existence of a good VH without missing boxes. We
study BB-CLS models here as it helps us validate
the potential benefit of using VH attributes from
the UI elements on the screen and consequently
can motivate improving the view hierarchies for
various apps and web-sites.

4.2 Model Configurations and Training
Details

For the Centernet model, we used the hourglass-
104 backbone (Zhou et al., 2019) with an input size
of 1024×1024. For the DETR model (Carion et al.,
2020), each image is proportionally resized and
padded to the shape 1280×1280. We use a ResNet-
50 (He et al., 2016) pretrained on ImageNet (Deng
et al., 2009) as the backbone with frozen batch nor-
malization layers for training stability. We add po-
sition embedding and object queries to each layer.
The DETR models are trained on cloud TPUs with
a batch size of 256 and reduce learning rate from
1× 10−4 to 1× 10−5 after 120k steps.

For classification and clustering models based on
UIBert (Bai et al., 2021), we use an EfficientNet-B0
(Tan and Le, 2019) model for encoding the image
patches and use ALBERT text encoder (Lan et al.,
2019) for encoding OCR and VH attributes. We
use a Transformer layer with 6 layers, 16 heads and
a intermediate size of 512. We train these models
on cloud TPUs with a batch size of 128 using the
Adam optimizer (Kingma and Ba, 2014) with a
warmup over 10k steps and reduce learning rate
from 1× 10−4 by a factor of 3 for every 50k steps .
All the models were implemented using Tensorflow
(Abadi et al., 2015) and converged within two days.

4.3 Results and Analysis
In this section, we report our model performance
for each problem setup. For all model variants,
we choose the model with the best performance
on the validation set and report the numbers on
the test set. Overall, we observe that for BB-CLS
models using Image + VH + OCR perform better
than models using Image + OCR and Image only.
For OD models, we report the results from the best
performing Faster R-CNN model, the best perform-
ing CenterNet model, and DETR, the overall best
model for each task. We report both these results
as it allows us to compare the performance of CNN

based architectures with Transformer based ones.
Also CenterNet models enable fast inference (Duan
et al., 2019) on mobile phones compared to DETR
models, making the baseline models directly usable
on mobile phones. Results for all the different ar-
chitectures we experimented with can be found in
the Appendix A. For BB-CLS models, we estimate
the 95% Confidence Intervals based on 5 model
runs with the same configuration.

4.3.1 Icon Shape and Semantics

Among OD models, we observe that models based
on DETR (Carion et al., 2020) which uses Trans-
formers + Convolutions outperform CNN-based
object detection models. DETR models achieve
an mAP@0.5IOU of 77.94% on the test set vs
72.50% for CenterNet models on Icon Shape task
and achieve an mAP@0.5IOU of 55.74% vs 54%
for CenterNet models for Icon Semantics task. The
performance of all of the models is weaker for
Icon Semantics vs Icon Shape task. We believe
this is due to Icon Semantics being a harder task
as objects of similar shape can belong to different
classes based on the rest of the screenshot or other
assumptions. Additionally, since semantic labels
are a sub-classification of shape labels, this dataset
has fewer labeled examples per class.

For the BB-CLS models, we observe that mod-
els which take the VH as input outperform models
without VH for both tasks. Models with Image +
VH + OCR outperform models with Image + OCR
by 0.63% and 2.6% for the Shape and Semantics
tasks respectively. We believe this could be a re-
sult of information regarding the elements being
present in VH attributes like content description.
However, adding OCR does not seem to improve
model performance significantly over using only
the image as input. Detailed results for these tasks
can be found in Tables 1, 2.

4.3.2 Label Association

For the Label Association task, DETR-based mod-
els also outperform CenterNet models in terms of
F-1 score of 79.17% vs 75.65%. For BB-CLS mod-
els, we observe that models using VH attributes
outperform models not using VH with an F-1 score
of 87.23% vs 85.29%. Detailed results can be
found in Table 3. We observe a significant gap
in the F1-score achieved by BB-CLS models v/s
OD models.
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Model Type mAP mAP@0.5IOU
Faster R-CNN 34.60 70.24
CenterNet Hourglass 37.50 72.50
DETR 39.28 77.94

(a) Object Detection

Inputs F-1 score 95% CI
Image + OCR + VH 83.38 [83.23 - 83.53]
Image + OCR 82.75 [82.54 - 82.95]
Image only 82.08 [81.71 - 82.44]

(b) Bounding box Classification

Table 1: Baseline model performance on Icon Shape task. For the object detection models, DETR outperforms
CenterNet and Faster R-CNN architectures. For bounding box classification, models using the image OCR and
view hierarchy outperform ones not using all modalities.

Model Type mAP mAP@0.5IOU
Faster R-CNN 25.33 53.59
CenterNet Hourglass 25.70 54.00
DETR 26.69 55.74

(a) Object Detection

Inputs F-1 score 95% CI
Image + OCR + VH 67.16 [66.74 - 67.58]
Image + OCR 64.52 [63.98 - 65.05]
Image only 63.66 [63.15 - 64.16]

(b) Bounding box Classification

Table 2: Baseline model performance on Icon Semantics task. Similar to the For the Icon Shape task DETR is
the best performing object detection model and models using image, OCR and view hierarchy perform the best.
However, there is no statistically significant improvement between image only and image + OCR models.

Model Type mAP F-1 score
Faster R-CNN 36.90 75.75
CenterNet Hourglass 38.00 75.65
DETR 40.71 79.17

(a) Object Detection

Inputs F-1 score 95% CI
Image + OCR + VH 87.23 [86.40 - 88.05]
Image + OCR 85.29 [84.78 - 85.79]
Image only 84.33 [83.30 - 85.36]

(b) Bounding box Classification

Table 3: Baseline model performance on Label Association task. The model performance characteristics are very
similar to those observed for the Icon Semantics task.

5 Applications and Future Work

This dataset and models built on it to predict the
icon and text association labels can be used to im-
prove the label coverage for various accessibility
applications like VoiceOver (Apple, 2021c), Talk-
Back (Accessibility, 2021e), Voice Access (Acces-
sibility, 2022) etc. In addition, these labels can be
used to improve the accessibility labels for various
other platforms like web browsers and desktop ap-
plications. The models can also be used to automat-
ically suggest accessibility labels for UI elements
based on their appearance in various developer plat-
forms (XCode, 2022; AndroidStudio, 2021) so that
developers can improve the accessibility of their
apps easily. Along with improving accessibility, we
believe this dataset is a step towards enabling new
features like voice control, screen summarization
and others.

The baseline models presented in this paper can
be improved in a number of ways like training
multitask models for a single model to output the
different labels, bridge the gap between the models

which use only the image and models which use
view hierarchy, improve the ability of multimodal
models to handle missing view hierarchy elements
and their attributes. Other directions of research
include inferring labels for the long tail icon classes
using the ICON class annotations from the label
association task, inferring semantic labels for gen-
eral UI elements. This supervised data can also be
used to improve the performance of self-supervised
methods for UI elements like ActionBert (He et al.,
2021), UIBert (Bai et al., 2021) etc.

6 Conclusions

In this paper, we presented an enhanced version of
the RICO dataset with three new sets of annotations
aimed at improving the semantic understanding of
mobile screens, namely icon shape, icon semantics,
and label association. We outlined the benefits of
human annotated data over automatically labeled
data and released strong baseline models using im-
age and view hierarchy for each of these tasks.
Our dataset, benchmark models and experiments
lay the groundwork for future research on build-
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ing better models for semantic understanding of
UIs. We observe that using pre-trained models and
view hierarchy attributes is a promising direction
for improving these models. These models can be
combined with other techniques like heuristic rules
to infer the multitude of labels useful for driving
improvements in accessibility and automation of
mobile devices.
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A Appendix: Data distribution and
experiment results

This section contains more details on the datasets.
Section A.1 contains the definitions used for at-
tributing the detailed data distribution for each of
the tasks. Table 4 contains the data distribution
for the 76 icon shape classes. Table 5 contains
the shape classes and their semantic classification
along with counts for each class and table 6 con-
tains the data distribution for the label association
classes.

In addition Table 7 contains results for object
detection models based on Faster R-CNN on the 3
tasks discussed in the paper.

A.1 Semantic class definitions

As mentioned in section 3.2 the shape icons are
further sub-divided into various categories based
on their functionality. The definitions of the various
semantic types are given below. Each semantic icon
name is prefixed by the corresponding shape name.
We exclude the OTHER category for each icon
shape as it is used to capture all other functionalities
not covered by the mentioned semantics.
• ICON_X:CLOSE Close windows or tabs or

exit a window.
• ICON_X:DELETE TEXT Delete entries,

items, text, suggestions etc.
• ICON_X:MULTIPLY Mathematical opera-

tion of multiplication.
• ICON_ARROW_UPWARD:CAPITALIZE

Caps Lock icon to toggle upper case and
lower case letters in the keyboard.
• ICON_MAGNIFYING_GLASS:SEARCH

Search in the current app or website.
• ICON_MAGNIFYING_GLASS:ZOOM IN

Zoom-in to a picture, document etc.
• ICON_MAGNIFYING_GLASS:ZOOM

OUT Zoom-out of a picture, document etc.
• ICON_UNDO:REPLY Reply to a message,

mail etc.
• ICON_UNDO:UNDO Undo the previous ac-

tion.
• ICON_UNDO:BACK Go back to the previous

screen or state.
• ICON_REDO:SHARE Share this item.
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• ICON_REDO:REDO Redo the previous ac-
tion.
• ICON_THREE_BARS:MENU Icon to dis-

play menu options.
• ICON_PHONE:CALL Start a phone call.
• ICON_PHONE:CHAT APP Icon for a chat

app.
• ICON_PHONE:PHONE APP Open the phone

app.
• ICON_PHONE:END CALL End a phone or

video call.
• ICON_PLAY:PLAY Playing video, audio,

games, etc.
• ICON_PLAY:PLAY STORE Icon for the

Google Play Store.
• ICON_PLAY:YOUTUBE Icon for the

YouTube app.
• ICON_CHAT:CHAT Send a message to some-

one or view comments.
• ICON_CHAT:WHATSAPP Icon for the What-

sApp app.
• ICON_CHAT:FACEBOOK MESSENGER

Icon for the Facebook Messenger app.
• ICON_TAKE_PHOTO:INSTAGRAM Icon

for the Instagram app.
• ICON_THREE_DOTS:MORE For “more”

options, contents, etc. It could also refer to
menu.
• ICON_PLUS:ADD ITEM Add a new item to

an existing list.
• ICON_PLUS:EXPAND Expand a UI element

to show more details.
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Shape Class Count
ICON V BACKWARD 46,431
ICON NAV BAR CIRCLE 41,551
ICON NAV BAR RECT 41,449
ICON STAR 17,890
ICON THREE DOTS 15,194
ICON V FORWARD 14,131
ICON ARROW BACKWARD 13,767
ICON THREE BARS 13,659
ICON X 11,058
ICON MAGNIFYING GLASS 10,911
ICON PLUS 9,971
ICON PLAY 7,576
ICON V DOWNWARD 7,447
ICON PERSON 6,648
ICON CHECK 6,583
ICON HEART 6,274
ICON CHAT 5,483
ICON SETTINGS 4,909
ICON SHARE 4,871
ICON ARROW FORWARD 3,463
ICON LOCATION 3,398
ICON INFO 3,287
ICON HOME 3,172
ICON TIME 3,123
ICON REFRESH 2,987
ICON CLOUD 2,436
ICON EDIT 2,280
ICON QUESTION 2,263
ICON TAKE PHOTO 2,110
ICON SHOPPING CART 1,900
ICON CALENDAR 1,851
ICON NOTIFICATIONS 1,817
ICON CLOUD 2,436
ICON EDIT 2,280
ICON QUESTION 2,263
ICON TAKE PHOTO 2,110
ICON SHOPPING CART 1,900
ICON CALENDAR 1,851
ICON NOTIFICATIONS 1,817
ICON FACEBOOK 1,700
ICON ENVELOPE 1,659
ICON PEOPLE 1,658

Shape Class Count
ICON LOCK 1,622
ICON GALLERY 1,535
ICON CALL 1,488
ICON V UPWARD 1,392
ICON VOLUME STATE 1,359
ICON LIST 1,346
ICON DOWNLOAD 1,344
ICON THUMBS UP 1,335
ICON SUN 1,327
ICON ARROW DOWNWARD 1,317
ICON LAUNCH APPS 1,136
ICON ARROW UPWARD 1,094
ICON MIC 1,016
ICON HAPPY FACE 955
ICON PAUSE 864
ICON TWITTER 860
ICON SHOPPING BAG 776
ICON MOON 719
ICON SEND 711
ICON COMPASS 691
ICON DELETE 665
ICON REDO 546
ICON VIDEOCAM 521
ICON HISTORY 447
ICON UNDO 441
ICON HEADSET 412
ICON THUMBS DOWN 382
ICON EXPAND 356
ICON GOOGLE 334
ICON UPLOAD 328
ICON SAD FACE 239
ICON STOP 204
ICON CAST 150
ICON PAPERCLIP 139
ICON VOLUME MUTE 77
ICON END CALL 65
ICON VOLUME DOWN 21
ICON CONTRACT 19
ICON VOLUME UP 14
ICON MIC MUTE 13
ICON ASSISTANT 4
TOTAL 353,171

Table 4: Number of instances for each icon class for the Icon Shape annotations.
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Shape Class Semantic Class Count

ICON X

CLOSE 8,899
DELETE TEXT 1,163
MULTIPLY 50
OTHER 840

ICON ARROW UPWARD
CAPITALIZE 154
OTHER 915

ICON MAGNIFYING GLASS

SEARCH 10,243
ZOOM IN 142
ZOOM OUT 92
OTHER 331

ICON UNDO

REPLY 113
UNDO 109
BACK 101
OTHER 115

ICON REDO
SHARE 354
REDO 63
OTHER 117

ICON THREE BARS
MENU 11,929
OTHER 1,329

ICON PHONE

CALL 729
CHAT APP 530
PHONE APP 89
END CALL 12
OTHER 571

ICON CHAT

CHAT APP 530
WHATSAPP 120
FACEBOOK MESSENGER 61
OTHER 4,663

ICON CAMERA
INSTAGRAM 192
OTHER 1,884

ICON PLAY

PLAY 4,452
PLAY STORE 782
YOUTUBE 356
OTHER 1,846

ICON THREE DOTS
MORE 14,285
OTHER 785

ICON PLUS

ADD ITEM 7,170
EXPAND 396
OTHER 2,244

TOTAL - 78,756

Table 5: Classification of Icon Shape classes into semantic classes.
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Class name Count # with text labels % with text labels
Icon 252,342 57,716 22.87%
Text Field 16,131 3,292 20.41%
Check Box 5,958 3,723 62.49%
Radio Button 2,558 1,659 64.86%
Total 276,989 66,390 23.96%

Table 6: Label Association task statistics indicating the overall counts of the different classes and the frequency
with which text labels are associated with them.

Icon Shape Icon Semantics Label Association

Backbone mAP mAP@0.5IOU mAP mAP@0.5IOU mAP mAP@0.5IOU
ResNet-101 32.07 65.72 25.33 53.59 34.70 73.37
Inception ResNet 31.61 70.14 25.17 53.36 36.63 75.19
ResNet-101 with FPN 34.60 70.24 25.34 53.17 36.90 75.75

Table 7: Object Detection model performance for Faster R-CNN based models with different backbone networks.
The numbers in bold indicate the backbone with the best mAP@0.5IOU for the task.
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Abstract

Dense video captioning aims to identify the
events of interest in an input video, and gen-
erate descriptive captions for each event. Pre-
vious approaches usually follow a two-stage
generative process, which first proposes a seg-
ment for each event, then renders a caption
for each identified segment. Recent advances
in large-scale sequence generation pretraining
have seen great success in unifying task for-
mulation for a great variety of tasks, but so
far, more complex tasks such as dense video
captioning are not able to fully utilize this pow-
erful paradigm. In this work, we show how
to model the two subtasks of dense video cap-
tioning jointly as one sequence generation task,
and simultaneously predict the events and the
corresponding descriptions. Experiments on
YouCook2 and ViTT show encouraging results
and indicate the feasibility of training complex
tasks such as end-to-end dense video caption-
ing integrated into large-scale pretrained mod-
els.

1 Introduction

Online videos have become an important source of
knowledge and skills (O’Neil-Hart, 2017). In order
to help users locate information of interest, search
engines and video platforms often show anchors at
“key moments”, usually accompanied by descrip-
tions of the segment’s content (Baheti, 2019). This
is a direct application of the dense video caption-
ing task (Krishna et al., 2017), thus methods for
improving performance on this task are relevant to
any video platform.

Intuitively, dense video captioning can be de-
composed into two subtasks: event localization
and segment-level video captioning. Following this
approach, prior work (Krishna et al., 2017; Zhou
et al., 2018a; Li et al., 2018; Wang et al., 2018;
Zhou et al., 2018c; Mun et al., 2019; Iashin and
Rahtu, 2020) has used a two-stage, “localize-then-
describe” pipeline. Such methods usually involve

two separate modules with different underlying
model architectures for event localization and event
captioning, with captions for dense events rendered
based on the predicted event spans.

Recently, with the advance of large-scale
datasets and model architectures, there has been an
explosion of pretrained multimodal (for text, im-
age, video) Transformer models (Tan and Bansal,
2019; Sun et al., 2019; Li et al., 2019; Luo et al.,
2020; Li et al., 2020a,b; Gan et al., 2020; Kim
et al., 2021). Such models have proved to be
highly effective when fine-tuned for a wide range
of downstream tasks, such as visual question an-
swering (Agrawal et al., 2015), image caption-
ing (Chen et al., 2015), visual common sense rea-
soning (Zellers et al., 2019), visual entailment (Xie
et al., 2019), etc. These end-tasks can be expressed
as sequence generation tasks in a straightforward
manner. In contrast, this is non-trivial for dense
video captioning, as the segmentation subtask does
not lend itself naturally to such a formulation. Does
this mean more complex tasks cannot benefit from
the pretraining paradigm in an end-to-end fashion?
In this work, we study dense video captioning as
an example of a complex task that can be cast as
sequence generation and, as a result, can benefit
from large-scale pretraining.

More specifically, we propose to solve the dense
video captioning task as a single sequence-to-
sequence modeling task using a multimodal Trans-
former. To this end, we design several task for-
mulations to encode both segmentation and cap-
tion prediction in one target string. Thus, our task
formulations allow the model to simultaneously
predict event locations and corresponding captions
in one pass, using one decoder. This opens the
door to leveraging large-scale pretrained models,
as well as the option of participating in large-scale
multi-task training more easily by reusing existing
infrastructure.

We evaluate our model on two dense video
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captioning benchmarks, YouCook2 (Zhou et al.,
2018a) and ViTT (Huang et al., 2020a). Our se-
quence generation formulations provide a feasible
path forward – we obtain encouraging results com-
pared to prior work that used a two-stage scheme
with specialized architectures for each step. On
the pretraining front: (a) we are able to benefit
from models pretrained on very different data and
tasks, such as T5 (Raffel et al., 2020), (b) pretrain-
ing on more domain-specific data (WikiHow) and
pretraining tasks (predicting headings for how-to
steps) lead to a similar amount of gain, but (c) hav-
ing the domain-specific pretraining start from a
T5 checkpoint (T5 + WikiHow) provides a signif-
icantly larger gain. The noteworthy result is that,
even in the presence of large-scale domain- and
task-specific pretraining (WikiHow), one can still
observe measurable benefits from a task-agnostic
general-purpose pretrained model (T5).

While the primary motivation for modeling the
two tasks jointly is to be able to utilize the pretrain-
ing paradigm, the segmentation subtask (finding
event boundaries) and the captioning subtask (de-
scribing what happens in an event) are related tasks,
and intuitively stand to benefit from being modeled
jointly. Our experimental results are aligned with
this intuition: a model that does both segmenta-
tion and captioning simultaneously, outperforms
(in terms of segmentation accuracy) a variant that
focuses only on the segmentation task.

Overall, our results point to a viable alternative
direction for modeling complex tasks such as end-
to-end dense video captioning, in which we can
leverage the large-scale pretraining paradigm to
achieve modeling improvements.

2 Related Work

2.1 Multimodal Transformer

Recently, vision-and-language pre-training has at-
tracted a lot of attention for jointly learning from vi-
sual and textual inputs in order to better solve mul-
timodal tasks. Following the success of BERT (De-
vlin et al., 2019), multimodal pre-training usually
adopts the Transformer (Vaswani et al., 2017) en-
coder structure to encode both the visual features
and textual features. The late-fusion approaches
first process visual and textual information sepa-
rately and subsequently fuse them using another
Transformer layer (Tan and Bansal, 2019; Lu et al.,
2019). The early-fusion approaches jointly encode
visual and texual representations (Chen et al., 2020;

Sun et al., 2019; Li et al., 2019; Luo et al., 2020; Li
et al., 2020a; Qi et al., 2020; Huang et al., 2020b;
Li et al., 2020b; Lin et al., 2020; Gan et al., 2020;
Kim et al., 2021). During pre-training, tasks such
as masked language modeling, masked region mod-
eling, and image-text matching are used to learn a
cross-modal encoding which benefits downstream
multimodal tasks.

2.2 Dense Video Captioning

Krishna et al. (2017) introduced the dense video
captioning (DVC) task and proposed a solution
based on two separate modules: one for propos-
ing events, and another for captioning them. Re-
cent work (Zhou et al., 2018a; Li et al., 2018;
Wang et al., 2018; Zhou et al., 2018c; Mun et al.,
2019; Iashin and Rahtu, 2020) follows the two-
stage “detect-then-describe” framework, in which
the event proposal module first predicts a set of
event segments, then the captioning module con-
structs captions for each candidate event segment.
Another line of work (Deng et al., 2021; Wang
et al., 2021) removes the explicit event proposing
process. Deng et al. (2021) tackles the DVC task
from a top-down perspective, in which they first
generate a video-level story, then ground each sen-
tence in the story into a video segment. Wang et al.
(2021) considers the DVC task as a set prediction
problem, and applies two parallel prediction heads
for event localization and captioning. To the best
of our knowledge, our work is the first to simulta-
neously conduct event localization and captioning
in a single run1 within the same prediction head for
the dense video captioning task.

3 Task Definition

The DVC task consists of annotating each input
video into multiple segments, where each segment
corresponds to an event of interest accompanied by
a short description (caption). Figure 1 shows an
example from the YouCook2 dataset.

Modified dense video captioning In YouCook2,
each segment is marked by a start and an end time,
often with gaps between segments. The burden
of identifying not just the right start-time but also
the right end-time increases the difficulty of the

1Note that on a different task (object detection), contem-
poraneous work (Chen et al., 2022) has combined spatial
localization and object description via a sequence generation
formulation by predicting bounding box coordinates and ob-
ject labels in sequence.
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Welcome to videoculinary. Today we're making shrimp tempura. To make the shrimp straight, make a 
few shallow horizontal cuts on the stomach side of the shrimp. Gently press and massage it. This will 
prevent the shrimp from curling up during ...

Video Stream

ASR

Segment Prediction 
+ Dense Caption Cut the shrimp to straighten it. Dip the shrimp in the batter.

Drop the shrimp into the oil.Add sesame oil to the batter.

Multimodal 
Input

Target 
Output

Figure 1: An example of the input video and output segmentations and captions from the YouCook2 dataset.

Welcome to videoculinary. Today we're making shrimp tempura. To make the shrimp straight, make a 
few shallow horizontal cuts on the stomach side of the shrimp. Gently press and massage it. This will 
prevent the shrimp from curling up during ...

Video Stream

ASR

ASR Timestamp [0, 1, 2, 3, ...]

Dense Caption
Cut the shrimp to straighten it. Dip the shrimp in the batter.

Drop the shrimp into the oil.Add sesame oil to the batter.

Modified Input:

Multimodal 
Input

Figure 2: Modified dense video captioning: a simplified
setting where the segments are concatenated to form
the modified input with gaps removed. Table 1, 5, 6
show our preliminary experiments using this set up; all
other results reported in the paper are carried out in the
original setting as depicted in Figure 1.

segmentation task. Thus, we start our exploration
with a simpler task where we introduce a variant of
the YouCook2 dataset as shown in Fig. 2: all the
annotated segments in a given video are concate-
nated to form a modified input, leaving out the gaps
between segments. We refer to this setting as the
modified dense video captioning: given an input
from Fig. 2, the model only needs to predict n start
times to fully define n segments. In this setting, the
segmentation subtask becomes a partition task for
identifying the set of start times of segments.

4 Method

As noted earlier, prior work often decomposes
dense video captioning into two subtasks, (a) a
segmentation subtask, and (b) a segment-level cap-
tioning subtask. These two subtasks are often ad-
dressed with different model architectures. In con-
trast, our approach solves both subtasks simultane-
ously with one single model.

We first describe how we jointly model segmen-
tation and captioning subtasks as one single se-
quence generation task. To this end, we need to
formulate target strings in ways that encode both
segmentation and captioning predictions.

The typical input to a DVC task includes both
visual information and speech in textual form – Au-
tomatic Speech Recognition (ASR) tokens. We
start by introducing our target string formulations
assuming only textual input, with segmentation in-
formation expressed in terms of the positions of

the corresponding ASR tokens2. We then describe
multi-modal models where the visual information
is added to the input while retaining the aforemen-
tioned scheme to represent segmentation informa-
tion.

4.1 Target string formulations

We describe two approaches to formulate the tar-
get strings. We refer to a model that encodes only
segmentation information in the target strings as
a Seg-only model, and one that encodes both seg-
mentation and captioning as a Seg+Cap model.

Tagging-based target formulation We encode
the segmentation subtask in a manner similar to the
encoding of the chunking task as tagging tokens
in the IOB format (Ramshaw and Marcus, 1995).
Fig. 3 illustrates how we model the segmentation
task with two tags (in the modified setting): the
ASR token at the start of a segment receives a spe-
cial token ⟨sep⟩ as the start-of-segment tag, and the
rest of the tokens in the segment receive a continu-
ation tag (we reuse the ⟨pad⟩ token). This can be
extended to cover the original setting (with gaps be-
tween segments) with an additional end-of-segment
tag. In this formulation, the ground-truth target out-
put string has the exact same length as the input
ASR string. To model the captioning annotation,
the ⟨sep⟩ token is followed by the corresponding
ground-truth caption, which is then padded till the
next ⟨sep⟩ token.

While treating the segmentation task as a tagging
task seems natural, the tagging-based formulation
enforces equal lengths between predicted output
and the input ASR tokens, which leads to potential
inefficiencies: the input ASR string is usually much
longer than all the descriptive captions combined,
which results in many padding tokens in the tar-
get output, and leads to an unnecessary slow-down

2Our motivation for treating DVC as a sequence genera-
tion task is to take advantage of existing pretrained sequence
generation models, currently dominated by text models; thus,
we take a text-centric view in this work.
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welcome  to          our         channel     we     will          start    by      preparing  the      lamb   chops     ...

<sep>      <pad>   <pad>     <pad>        <sep>  <pad>     <pad> <pad> <pad>        <pad> <pad> <pad>    …
<sep>     opening sentence <pad>        <sep>  prepare   the       lamb    chops       <pad> <pad> <pad>    …

<sep>     4                                             <sep>   8                                                                                          …
<sep>     4  opening sentence               <sep>   8  prepare  the     lamb   chops                                           …

event 0 event 1( #token=4 ) ( #token=8 )

Partition-only:
Partition+Captioning:

Partition-only:
Partition+Captioning:

ASR Input:

Target Output with the Length-based Formulation

Target Output with the Tagging-based Formulation

Figure 3: The tagging-based and length-based target formulations for modified dense video captioning.

in training and prediction time. Additionally, the
longer-form target strings are markedly different
from the usual generative pattern of the pretrained
text decoder, which can reduce the effectiveness
of the pretrained checkpoints. Furthermore, this
formulation also assumes that captions are shorter
than the ASR string for each segment; while this is
mostly true, for segments where little is being ex-
plained (short ASR string), this formulation leaves
insufficient capacity in the target string between
the two consecutive ⟨sep⟩ tags to encode the corre-
sponding caption, resulting in caption truncation.

Length-based target formulation To cope with
the limitations of the tagging-based formulation,
we predict the length of each segment explicitly.

Let li be the number of ASR tokens in the i-th
segment. In the modified setting, the segmentation
information for an input string with n segments
is fully specified by the sequence {l1, l2, ..., ln}.
Fig. 3 provides an example of this length-based
formulation. The ground-truth target string in a
Seg-only model is simply a sequence of numbers
corresponding to segment lengths (measured by
the number of tokens); in a Seg+Cap model, each
number is followed by the caption for that segment.

In the original setting with gaps between seg-
ments, let gi be the offset from the last ASR token
in the previous segment to the start of segment i.
The target string will now aim to predict both (gi,
li) instead of just li for each segment. The sequence
of all (gi, li) will fully specify all segment bound-
aries and can be used to compute the index of the
start and end ASR tokens for each segment.

This formulation has the advantage of a more ef-
ficient representation of the segmentation informa-
tion, and thus a much shorter target length. The seg-
mentation information is now explicitly expressed
as numbers in the target strings, so the model needs
to both figure out segmentation boundaries and be
able to count appropriately. We explicitly want to

empirically measure the ability of our models to do
the latter.

4.2 Input formulation for multimodal signals

Simple Concatenation (SimpleConcat) Visual
information for a given video is represented as a
fixed-length sequence of pre-computed frame-level
features. These features are projected to the token
embedding space via a fully connected layer. We
simply concatenate the sequence of ASR token em-
beddings and the sequence of projected visual fea-
tures to form the multimodal input to the encoder.
There’s one potential caveat: while the visual fea-
tures are extracted at a fixed frame rate, the ASR
tokens are often not spoken at a fixed speed; thus
positions in this multimodal input sequence do not
provide straightforward information on which vi-
sual frames are temporally aligned with a certain
ASR span. Since segmentation prediction is ex-
pressed relative to the ASR-token position index, it
is not clear whether the model is able to take full
advantage of visual information, absent how these
two modalities align temporally.

Prior work on multimodal pretraining has found
visual-textual information alignment to be a reason-
ably solvable task. Huang et al. (2020a) reported
87% accuracy for aligning video segments and
ASR spans in HowTo100M (Miech et al., 2019),
so it is possible that the decoder can learn to attend
to appropriate visual information while “counting”
the ASR tokens.

Temporal embedding (EmbTIME) We can also
express the temporal alignment more explicitly in
the input by adding temporal embeddings to both
ASR tokens and visual frames. In this formulation,
we learn a temporal embedder shared between the
text modality and the visual modality, which maps
timestamps to temporal embeddings. Embeddings
computed from token timestamps are then added to
ASR token embeddings, and embeddings computed
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from frame timestamps are added to projected vi-
sual frame features. This way, ASR tokens and
frames that are temporally close to each other re-
ceive similar temporal embeddings, making their
representations closer to each other.

For more explorations on explicitly expressing
temporal alignment in the input, see Appendix A.1
for an additional method to insert explicit times-
tamp markers into the input text sequence.

5 Experiments

5.1 Datasets
Dense Video Captioning Datasets We use two
publicly available datasets to verify the effective-
ness of our model formulations: YouCook2 (Zhou
et al., 2018a) and ViTT (Huang et al., 2020a).3

The YouCook2 dataset is restricted to videos re-
trieved from YouTube from the cooking domain,
targeting 89 recipes; each event segment is manu-
ally marked with a start and end time, along with a
human-generated caption for each tightly-bounded
segment. The ViTT dataset contains instructional
videos from YouTube-8M (Abu-El-Haija et al.,
2016) and covers a broader range of topics. Its
segment annotation focuses on event start time and
rater-provided captions for the corresponding seg-
ment (spanning two consecutive start-time annota-
tions). Both datasets are annotated with captions
written in English.

Note that while the YouCook2 data release con-
tains training, dev, and test sets, its test set does
not come with human annotations. Thus, we split
the original validation set into validation and test
splits for our experiments. For ViTT, we use the
original train/val/test splits provided with the data.
The number of videos available for use at the time
of our work4 for Youcook2 is 925 for train, 206
for validation and 105 for test. For ViTT there are
4736 train, 932 validation and 932 test videos.

Domain-specific pretraining with WikiHow In
addition to general-purpose pre-trained models
like T5, we also experiment with domain-specific
pretraining. To this end, we use the WikiHow
dataset (Koupaee and Wang, 2018). WikiHow con-
sists of instructional (how-to) articles, which makes
it in-domain data for the two dense video caption-
ing datasets considered here, while being much

3YouCook2 released under an MIT license; ViTT released
under an “AS IS” license.

4As of 2021; note that YouTube videos are subject to user
deletion.

Ground Truth:

Prediction:

ASR Token Index:   2                                                                        10 
       Timestamps:    1s                                                                       8s

ASR Token Index:   1                                                                    8 
       Timestamps:    0s                                                                  6s

Intersection

Union

Token Index-based IoU 
• GT: [2, 10], Prediction: [1, 8] 

• Intersection: [2, 8] → 7 tokens 
• Union: [1, 10] → 10 tokens 

• IoU = 7 / 10

Timestamp-based IoU 
• GT: [1s, 8s], Prediction: [0s, 6s] 

• Intersection: [1s, 6s] → 5s 
• Union (8s): [0s, 8s] → 8s 

• IoU = 5 / 8

Figure 4: Comparisons between the token index-based
and timestamp-based IoU used in our study.

larger in size5. In addition, WikiHow articles con-
tain detailed step-by-step instructions. Each step
comes with a summary, which usually serves as
the section title. Both the step boundaries and sum-
maries are easily extracted according to the page
meta-data. This provides the ground-truth annota-
tion for a “dense document caption” task: given the
full article as a sequence of text tokens, predict the
step boundaries and summaries. This enables us to
also include a domain-specific pretraining task that
closely resembles our task. For each formulation
described in Sec. 4, we experiment with a check-
point pre-trained on the WikiHow data using the
corresponding target string formulation.

5.2 Evaluation Metrics

Segmentation Performance Following previous
works (Zhou et al., 2018b; Shi et al., 2019), we use
the mean Intersection-over-Union (mIoU) metric
to evaluate the segmentation performance. Recall
that the ground-truth segments are marked by start
(and end) times, whereas the predicted segments
are expressed according to the position of the corre-
sponding ASR token. For the modified dense video
captioning task, we compute the token index-based
IoU: each ground-truth segment is defined by the
start and end ASR token index, and will be com-
pared against the predicted index. For the original
task, we compute the timestamp-based IoU: pre-
dicted indices are mapped into the corresponding
ASR token timestamps and compared against the
segment’s ground-truth start and end timestamps.
Fig. 4 provides an example of the two types of IoU
used in this study.

An IoU score can be computed for each (ground-
truth, predicted) segment pair. The mIoU measure
provides a summary score for segmentation perfor-
mance over the entire video. For each ground-truth
segment, we take its maximal IoU to predicted

5WikiHow has 157,116 articles in its training set, and 5,593
articles in its validation set.
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* Target
Formulation Checkpoint Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

0 Random Partition 37.74 26.13 24.88 23.52 - - - - - -

1
Tagging-based

- 33.59 23.04 29.37 24.46 19.72 17.09 0.07 0.91 0.03 2.07
2 T5 12.06 1.78 7.46 2.81 6.73 0.24 0.00 0.01 0.00 0.03

3
Length-based

- 36.30 26.23 28.79 25.81 33.62 24.69 0.24 1.62 0.04 4.03
4 T5 42.71 31.85 33.04 31.21 42.82 32.16 1.83 4.17 0.21 8.74

Table 1: Preliminary experiments comparing the tagging-based and the length-based formulation on YouCook2
modified dense video captioning. We report the evaluation results on the validation set (one run per setting) with
models initialized from random weights or from T5 checkpoints.

segments as the IoU score for this ground-truth seg-
ment, and mIoU is the average of this value across
all ground-truth segments. The individual mIoU
for each video is then averaged across the test data
and reported as the overall mIoU.

For diagnostic purposes, we also compute: 1) the
percentage of predicted segments which have an
IoU score with at least one ground-truth segment
above a certain threshold t (precision@t); 2) the
percentage of ground-truth segments which have
an IoU score with at least one predicted segment,
above a certain threshold t (recall@t), as well as
their geometric mean as F1. Following prior work,
we compute these scores for a set of IoU thresholds
t={0.3, 0.5, 0.7, 0.9}, and report the average over
these thresholds.

Captioning Performance We compute BLEU-
4 (Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), CIDEr (Vedantam et al., 2015), and
ROUGE (Lin, 2004) scores between generated cap-
tions and the ground truth when the predicted and
ground-truth segment “match” (i.e., with IoU score
above a given threshold t); if a ground truth seg-
ment does not have a matching prediction, it con-
tributes a zero to the average score for the corre-
sponding threshold. Again, we compute this for a
set of IoU thresholds of {0.3, 0.5, 0.7, 0.9}, and
report the average over these thresholds.

5.3 Implementation Details

Models were trained on 4x4 TPUs, and we used
about 180k GPU hours for around 1380 training
runs, including pretraining the WikiHow check-
point, pilot studies with toy examples, debugging,
and hyperparameter tuning. The models have ap-
proximately 70 million parameters. We used the
Adafactor (Shazeer and Stern, 2018) optimizer and
a learning rate schedule of 1000 warmup steps fol-
lowed by square-root decay. We did a few initial

exploratory runs over base learning rates of {0.001,
0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1, 2, 5} to determine
that a base learning rate of 1 worked well and used
it for all the experiments reported.

For our visual representations, we computed 3D
CNN features pre-trained on the Kinetics (Carreira
and Zisserman, 2017; Kay et al., 2017) dataset for
frames sampled at 30 fps, resulting in one feature
for each 1 second clip.

5.4 Experiments in the modified setting

Experimental setup We conduct comparisons
of the two different target formulations, tagging-
based and length-based, in the modified setting,
using the following experimental setup: (a) max
input text length and target length are set to 1024,
and max input visual feature length is set to 800;
this can truncate longer ASR sequences, but allow
us to quickly iterate through different settings with
fewer computational resources; (b) only one run
for each setting. We report results on the validation
set in Table 1.

Target formulations The best performing model
(row #4 in Table 1: length-based with T5 check-
point) outperforms a random partition baseline6

(row #0 in Table 1), which indicates our target for-
mulation approach to the segmentation task is cap-
turing some segmentation information effectively.

When trained from scratch, the length-based
formulation achieves higher performance across
the board (#3 vs #1), with a smaller gap for the
Seg-only model, and a more marked lead for the
Seg+Cap model. We hypothesize that while treat-
ing the segmentation task as a tagging task is more
or less feasible on its own, combining segmentation
tags and captions is not a suitable formulation for

6For the random partition baseline, a video is randomly
partitioned into n segments, with n sampled uniformly from 1
to 15 (The mean number of segments in the ground-truth is 8).
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Dataset * Input
Formulation Checkpoint? Seg-only model Seg+Cap model

mIoU mIoU B@4 METEOR CIDEr ROUGE-L

Youcook2

0 Random Segmentation 20.61 ± 1.04 - - - - -

1

SimpleConcat

- 12.99 ± 1.55 16.45 ± 8.72 0.17 ± 0.11 0.66 ± 0.04 0.02 ± 0.01 1.99 ± 0.20
2 T5 24.14 ± 1.07 24.21 ± 1.64 0.88 ± 0.04 1.50 ± 0.12 0.09 ± 0.01 3.34 ± 0.27
3 WikiHow 22.58 ± 1.09 23.33 ± 0.79 0.67 ± 0.15 1.47 ± 0.05 0.08 ± 0.01 3.51 ± 0.13
4 WikiHow T5 27.77 ± 0.09 30.26 ± 1.24 2.96 ± 0.28 3.49 ± 0.30 0.25 ± 0.03 7.00 ± 0.42

5

+ EmbTIME

- 18.51 ± 1.95 18.71 ± 0.17 0.12 ± 0.07 0.48 ± 0.08 0.02 ± 0.01 1.41 ± 0.22
6 T5 23.02 ± 1.05 23.96 ± 0.08 1.32 ± 0.08 1.91 ± 0.07 0.11 ± 0.01 4.20 ± 0.13
7 WikiHow 21.68 ± 1.93 21.88 ± 0.86 0.69 ± 0.19 1.30 ± 0.07 0.07 ± 0.01 3.06 ± 0.13
8 WikiHow T5 26.51 ± 0.45 28.70 ± 0.92 2.58 ± 0.19 3.23 ± 0.10 0.22 ± 0.01 6.45 ± 0.17

ViTT

9 Random Segmentation 21.90 ± 0.15 - - - - -

10

SimpleConcat

- 33.85 ± 0.70 32.69 ± 0.71 0.11 ± 0.01 3.76 ± 0.35 0.08 ± 0.01 3.86 ± 0.28
11 T5 37.89 ± 0.10 38.07 ± 0.65 0.57 ± 0.03 5.92 ± 0.37 0.16 ± 0.02 6.59 ± 0.69
12 WikiHow 38.20 ± 0.27 37.80 ± 0.62 0.40 ± 0.07 5.48 ± 0.18 0.14 ± 0.01 6.02 ± 0.34
13 WikiHow T5 41.87 ± 0.26 42.40 ± 0.30 1.29 ± 0.07 8.10 ± 0.34 0.25 ± 0.01 9.26 ± 0.39

14

+ EmbTIME

- 33.89 ± 0.21 35.37 ± 3.18 0.04 ± 0.03 3.42 ± 0.61 0.07 ± 0.01 3.28 ± 0.83
15 T5 37.78 ± 0.15 38.50 ± 0.55 0.75 ± 0.10 6.37 ± 0.39 0.18 ± 0.01 7.19 ± 0.48
16 WikiHow 37.27 ± 0.08 36.97 ± 0.48 0.38 ± 0.06 5.31 ± 0.06 0.13 ± 0.01 5.82 ± 0.23
17 WikiHow T5 41.64 ± 0.12 43.22 ± 0.72 1.22 ± 0.08 8.05 ± 0.20 0.25 ± 0.01 9.18 ± 0.45

Table 2: Dense video captioning performance on YouCook2 and ViTT test sets with the length-based formulation.
We ran 3 trials for each setting, and report the evaluation results (mean ± std) with models initialized from random
weights, T5 checkpoints, WikiHow checkpoints, and T5 checkpoints further pretrained on WikiHow. Note: Seg
stands for the segmentation task, and Cap stands for the captioning task.

the combined task – to the point that the Seg+Cap
model underperforms Seg-only model in segmenta-
tion metrics (mIoU of 19.72 vs. 33.59 in #1).

The length-based formulation overall benefits
from the T5 checkpoint (#3 vs #4 in Table 1) across
different sub-tasks. Note that for the Seg-only
model, the target strings (sequences of numbers)
are not typically seen in T5 pretraining, but the
T5 checkpoint still boosts its performance. In con-
trast, the tagging-based formulation is not able to
benefit from the T5 checkpoint in our experiments.
One possible explanation is that the target strings
in tagging-based (with large chunks of padding to-
kens) are just too different from the T5 pretraining
targets.

Given the results obtained in the modified setting,
we focus our efforts on using length-based target
formulation in the more challenging original setting
in the following section.

Ablation studies We conducted ablation stud-
ies on input modalities, and find models that take
text-only inputs stand to benefit more from the pre-
trained checkpoints than the models that only take
visual inputs. We also conducted ablation studies
on partial parameter initialization, and found that
partially loading checkpoints from pre-trained mod-
els does not work as well as fully loading check-
points for both the encoder and the decoder. See
Appendix (A.2) for more details.

5.5 Experiments in the original setting

Experimental setup Using the length-based tar-
get formulation, we conduct a more extensive com-
parison of the effect of different pretraining strate-
gies, as well as different input formulations on
the original dense video captioning task on both
YouCook2 and ViTT. Maximum sequence lengths
are set to ensure no truncation happens in either
dataset – input text: 4096; visual feature: 800
(YouCook2) / 500 (ViTT); target: 512 (YouCook2)
/ 256 (ViTT). We ran each experiment with differ-
ent seeds three times to account for performance
variance from random initializations. We report
the mean and standard deviation (using 3 runs) for
each metric in Table 2. We choose the best check-
point based on performance on the validation set
and report the performance on the test set.

Effects of Pretraining For both datasets, there
are significant performance improvements from uti-
lizing pre-trained checkpoints in terms of both seg-
mentation metrics and captioning metrics. Interest-
ingly, training from the WikiHow checkpoint (us-
ing in-domain task over in-domain data) provides
similar performance improvement to T5 alone (see,
for instance, #2 vs #3, or #11 vs #12 in Table 2).
However, starting from the generic-language T5
checkpoint and adding in-domain WikiHow pre-
training (WikiHow T5, e.g., #4 and #13) boosts all
metrics by a large and significant margin.
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Model mIoU Prec. Rec. B@4 M

vsLSTM (Zhang et al., 2016) 32.2 24.1 22.1 - -
SCNN-prop (Shou et al., 2016) 26.7 23.2 28.2 - -
ProcNet (Zhou et al., 2018b) 37.0 30.4 37.1 - -
Bi-LSTM + TempoAttn (Zhou et al., 2018c) - - - 0.08 4.62
End2end Transformer (Zhou et al., 2018c) - - - 0.30 6.58
Context-aware Fusion (Shi et al., 2019) 41.4 - - 2.61 17.43

End2end Sequence Generation (Ours) 30.3 24.5 24.2 2.96 3.49

Table 3: Dense video captioning performance on
YouCook2 in the context of prior work. Following prior
work, the segmentation performance is measured by the
mIoU, the precision (Prec.) and recall (Rec.) at IoU
threshold t=0.5. Captioning performance is measured
by the average BLEU-4 (B@4) and METEOR (M) at
IoU thresholds t ∈{0.3, 0.5, 0.7, 0.9}.

Effects of Joint Modeling If we compare the
mIoU score achieved by the Seg+Cap model to
the mIoU score achieved by the Seg-only model in
Table 2, across different settings, we observe a gen-
eral trend where the Seg+Cap model outperforms
the Seg-only model on this segmentation metric.
This indicates that with the right formulation, the
segmentation subtask (predicting event boundary)
can indeed benefit from joint learning with a related
captioning subtask (summarizing event content).

Input formulations Results using SimpleConcat
compared to their counterparts using EmbTIME in
Table 2, are mixed. While EmbTIME seems to bring
non-trivial improvement to models trained from
scratch, the training from scratch settings also has
the largest variance in our experiments7. That said,
the Seg+Cap model did achieve its best mIoU score
on ViTT using EmbTIME. More work is needed to
fully understand the potential of EmbTIME.

Comparison against prior work for YouCook28

Table 3 provides a summary of dense video cap-
tioning performance on YouCook2 reported in prior
work. Some of the prior work (Zhang et al., 2016;
Shou et al., 2016; Zhou et al., 2018b) focused only
on the segmentation subtask, while some (Zhou
et al., 2018c; Shi et al., 2019) approached the end-
to-end task as a two-stage task and solved the two
subtasks separately. In this context, we find the

7To the extent that the Seg+Cap model performance in #1
can be considered an outlier: its mIoU scores for the three
runs are (11, 11, 26), which resulted in a large std value not
seen anywhere else in the table. We looked into these three
runs in more details, and our best guess was that one of them
incidentally got an advantageous random initialization.

8ViTT is a relatively newer dataset and past work has
only reported performance of the segment-level captioning
subtask using ground-truth segments; we are not aware of
existing work reporting end-to-end dense video captioning
performance.

results from our simple end-to-end sequence gener-
ation based approach quite encouraging, and hope
this inspires future studies to fully realize the po-
tential of this alternative approach.

Qualitative Analysis We provide a few example
model outputs from our Seg+Cap model. More
examples can be found in the Appendix A.4.

Figure 5 presents example segmentation results.
As reflected in Figure 5(a), a segmentation pre-
diction that is largely correct for a few segments,
but is missing out on some ground-truth segments
and contains over-segmentation of others can re-
sult in a relatively low mIoU score. For examples
with relatively high mIoU scores, see Figure 5(b)
(taken from the more challenging YouCook2 set-
ting, with gaps between ground-truth segments),
and Figure 5(c) (taken from ViTT, with no gaps
between segments).

Next, we observe that caption quality is good
when the segment boundary prediction is highly ac-
curate: if we restrict to segments with IoU ≥ 90%
between the prediction and the target, the aver-
age ROUGE-L score for corresponding captions is
30.18 for YouCook2 and 44.33 for ViTT. Table 4
presents qualitative examples.

6 Conclusion

In this paper, we describe different task formula-
tions for solving the dense video captioning task
using an end-to-end sequence generation approach,
which allows us to leverage pre-trained text-only
encoder-decoder models. We conduct experiments
on YouCook2 and ViTT in several pretraining set-
tings. Experimental results show that general (T5)
and in-domain (WikiHow) text-only pre-trained
models both improve video partitioning and seg-
mentation performance, and the gains are cumula-
tive. Also, the segmentation subtask benefits from
joint modeling with the captioning subtask. We
hope our work can inspire future studies on lever-
aging pre-trained models, large-scale text corpora
and language generation formulations to solve mul-
timodal tasks such as dense video captioning.

Ethical Statement

Our experiments are conducted only on videos with
available English ASR annotations, as we inherit
this limitation from the available data for this task.
We use existing datasets based on public YouTube
videos. As a consequence, any videos that are
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(b) mIoU = 69.79%  [YouCook2]

Target:
Prediction:
Timestamp (ms):

(a) mIoU = 38.01%  [YouCook2]

Target:
Prediction:
Timestamp (ms):

 

(c) mIoU = 91.22%  [ViTT]

Target:
Prediction:
Timestamp (ms):

Figure 5: Example segmentation predictions corresponding to different mIoU scores.

IoU Segment Border (ms) Caption

Tgt.
90.0%

[58000.0, 77000.0] whisk eggs and season with salt
Pred. [57309.0, 78429.5] whisk the eggs in the deep plate

Tgt.
99.3%

[28000.0, 45000.0] chop up the garlic in the food processer
Pred. [28005.0, 44894.0] chop garlic and place in the food processor

Tgt.
94.7%

[64199.0, 98080.0] Preparining remaining ingredients
Pred. [65710.0, 98380.0] Chopping the remaining ingredients

Tgt.
97.0%

[65100.0, 124729.0] Blow-drying the roots
Pred. [63239.5, 124714.5] Blow-drying hair

Table 4: Example caption predictions where the IoU ≥ 90% between the target (Tgt.) and the predicted (Pred.)
segments. The first two examples are from YouCook2, the last two examples are from ViTT.

no longer publicly available on YouTube (e.g., re-
moved by the user) at the time of the study needed
to be excluded from our experimental setup.
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A Appendix

A.1 Timestamp markers (T-marker)

Here we describe an alternative way to encode tem-
poral alignment between textual and visual input.
Since the frames are extracted at a fixed rate, we
can explicitly add time markers to the text input
to “mark” out tokens spoken at the corresponding
time points. The video features are extracted with
a frame rate of 1 frame per second in our work. We
insert a time marker for each frame after the last
ASR token spoke before the corresponding times-
tamp. A time marker consists of a special anchor
token, followed by the timestamp token (an integer
corresponding to the timestamp in seconds).

Performance using this input formuation can be
found in the T-marker rows in Table 7. For models
trained from scratch, including the timestamp mark-
ers can positively impact model performance, indi-
cating that these markers do indeed provide helpful
information. However, adding these markers only
hurt the performance of any model trained from an
existing checkpoint. We hypothesize that this is
because the text sequence with frequent markers
is too different from the pre-trained datasets, leav-
ing the pre-trained checkpoints less effective for
models using this input formulation.

A.2 Ablation studies

Ablation on Input Data Table 5 shows compar-
isons of different input sources on YouCook2 dense
video captioning task. For all three settings (text-
only, video-only, text+video), pre-training on Wik-
iHow has the best performance on both subtasks,
and using the T5 checkpoint has better performance
than training from scratch. With the pre-trained
WikiHow checkpoint, the “Text-only” setting has
comparable performance as the “Text+Video” set-
ting that takes both the ASR transcript and the
video features as input. Using the video features
alone results in worse performance, indicating the
high value of text transcripts to the captioning task.

Ablation on T5 Checkpoint Table 6 compares
performances when using different pre-trained
checkpoints on YouCook2 modified dense video
captioning. Using either the T5 or the WikiHow T5
checkpoints outperforms the model initialized from
random weights, which verifies the effectiveness
of pre-training. Since the targets in the end task are
markedly different from, say, T5 pretraining targets,
we also experimented with loading partial check-

points (e.g., only encoder weights). Interestingly,
using the full checkpoint has better performance
than loading only encoder or only decoder weights.

A.3 Comprehensive experimental results
Table 7 provides a more comprehensive summary
of our experimental results in the original setting.
It is the same experimental setting as Table 2, but
we also report additional performance metrics for
the segmentation tasks, as well as performance for
the T-marker input formulation. Table 8 is again
under the same experimental setting, but reports
median instead of (mean, std) to summarize the 3
repeats for each setting, so that the metrics are less
affected by occasional outliers.

A.4 Qualitative examples
Here we provide more examples for the segmenta-
tion subtask and the captioning subtask.

Figure 6 and Figure 7 illustrate several sets of
segmentation results predicted by our Seg+Cap
model on YouCook2 and ViTT. We can see that
the predicted segmentation predictions on ViTT
(Figure 7) are relatively more aligned with the
ground-truth. This is because ViTT has a com-
parably simpler formulation with no gaps between
video segments. In the more challenging setup on
YouCook2 (Figure 6) where the model needs to pre-
dict both the start and end point for each segment,
the listed examples show that when predictions are
mostly correct for a few segments, the IoU scores
can be relatively low. Common types of segmenta-
tion misalignment include:

• “over-segmentation”: the prediction splits a
ground-truth span into several sub-chunks
(Figure 6 (a)(b)(c));

• “under-segmentation”: one predicted segment
covers several ground-truth events (Figure 6
(c)(f));

• “prediction-not-covered”: the predicted event
is not labeled by the ground-truth annotation
(Figure 6 (b)(d)(e)).

Table 9 shows examples of the jointly predicted
segments and corresponding captions. We have
similar findings as in the main paper that when the
segment boundary prediction is well aligned with
the ground truth, the corresponding captions are
often high-quality as well.
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Input Checkpoint Segmentation Segmentation + Captioning

Precision Recall F1 F1 B@4 METEOR CIDEr ROUGE-L

Text-only
- 31.86 30.66 31.25 30.39 0.55 1.88 0.07 5.23
T5 36.22 37.06 36.64 37.89 3.36 4.76 0.28 10.61
WikiHow T5 71.13 63.77 67.25 58.71 9.57 11.99 0.85 23.21

Video-only
- 28.02 19.48 22.98 27.5 0.52 1.89 0.07 4.82
T5 27.43 27.25 27.34 27.86 0.40 1.65 0.05 4.11
WikiHow T5 25.45 24.93 25.19 23.19 0.42 1.48 0.05 3.84

Text + Video
- 32.53 30.90 31.69 29.09 0.34 1.68 0.06 4.78
T5 36.96 37.99 37.47 32.58 2.99 4.22 0.26 9.20
WikiHow T5 71.07 62.76 66.66 57.84 9.87 11.96 0.86 23.25

Table 5: Ablation on input modalities. Performance using length-based target formulation on YouCook2 dense
video captioning task with IoU threshold=50%. Results are reported on three ablated input settings: “Text-only”
feeds in the ASR tokens, “Video-only” reveals the video features, while “Text+Video” provides both the ASR and
the video features as input.

Checkpoint F1 B@4 METEOR CIDEr ROUGE-L

- 30.39 0.55 1.88 0.07 5.23

T5 (full) 37.89 3.36 4.76 0.28 10.61
T5 (enc-only) 31.00 0.28 1.93 0.07 4.88
T5 (dec-only) 32.37 1.39 3.02 0.14 7.73

WikiHow T5 (full) 58.71 9.57 11.99 0.85 23.21
WikiHow T5 (enc-only) 59.30 8.44 11.72 0.80 22.89
WikiHow T5 (dec-only) 36.88 0.99 3.19 0.15 8.00

Table 6: Ablation on pretrained checkpoints. Performance using length-based target formulation on YouCook2
modified dense video captioning with IoU threshold=50%. Results are reported on three settings: “full” loads the
complete checkpoint, “enc-only” loads the Transformer encoder weights, while “dec-only” loads the Transformer
decoder weights.

* Input
Formulation Checkpoint? Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

YouCook2

0 Random Segmentation 20.61 ± 1.04 11.25 ± 0.61 12.49 ± 0.36 10.49 ± 0.59 - - - - - -

1

SimpleConcat

- 12.99 ± 1.55 12.24 ± 1.08 8.60 ± 0.90 9.39 ± 0.75 16.45 ± 8.72 11.23 ± 5.16 0.17 ± 0.11 0.66 ± 0.04 0.02 ± 0.01 1.99 ± 0.20
2 T5 24.14 ± 1.07 14.22 ± 0.16 15.09 ± 0.85 14.10 ± 0.44 24.21 ± 1.64 14.20 ± 1.35 0.88 ± 0.04 1.50 ± 0.12 0.09 ± 0.01 3.34 ± 0.27
3 WikiHow 22.58 ± 1.09 13.39 ± 0.96 14.57 ± 1.19 13.27 ± 1.00 23.33 ± 0.79 14.22 ± 0.94 0.67 ± 0.15 1.47 ± 0.05 0.08 ± 0.01 3.51 ± 0.13
4 WikiHow T5 27.77 ± 0.09 16.68 ± 1.04 18.43 ± 0.75 16.87 ± 0.62 30.26 ± 1.24 20.24 ± 1.06 2.96 ± 0.28 3.49 ± 0.30 0.25 ± 0.03 7.00 ± 0.42

5

+ T-marker

- 20.13 ± 2.59 13.68 ± 1.78 12.18 ± 1.88 12.01 ± 1.91 18.41 ± 2.65 9.99 ± 1.55 0.08 ± 0.02 0.44 ± 0.04 0.01 ± 0.00 1.33 ± 0.15
6 T5 20.29 ± 1.30 12.13 ± 2.52 11.43 ± 0.64 11.09 ± 1.38 22.12 ± 1.29 12.56 ± 0.74 0.88 ± 0.23 1.38 ± 0.22 0.08 ± 0.02 3.07 ± 0.39
7 WikiHow 19.98 ± 0.55 10.54 ± 1.36 12.11 ± 1.29 10.68 ± 1.32 20.84 ± 1.02 11.82 ± 0.64 0.39 ± 0.05 0.99 ± 0.09 0.05 ± 0.00 2.44 ± 0.18
8 WikiHow T5 20.98 ± 0.69 11.99 ± 1.07 12.49 ± 0.60 11.86 ± 0.82 20.22 ± 0.70 11.20 ± 0.70 0.38 ± 0.08 0.92 ± 0.05 0.05 ± 0.00 2.27 ± 0.13

9

+ EmbTIME

- 18.51 ± 1.95 10.85 ± 0.59 11.42 ± 1.16 10.29 ± 0.58 18.71 ± 0.17 9.80 ± 0.80 0.12 ± 0.07 0.48 ± 0.08 0.02 ± 0.01 1.41 ± 0.22
10 T5 23.02 ± 1.05 13.52 ± 0.76 14.15 ± 0.94 13.23 ± 0.77 23.96 ± 0.08 15.44 ± 0.67 1.32 ± 0.08 1.91 ± 0.07 0.11 ± 0.01 4.20 ± 0.13
11 WikiHow 21.68 ± 1.93 13.13 ± 1.42 13.88 ± 1.60 12.83 ± 1.41 21.88 ± 0.86 13.15 ± 0.74 0.69 ± 0.19 1.30 ± 0.07 0.07 ± 0.01 3.06 ± 0.13
12 WikiHow T5 26.51 ± 0.45 15.61 ± 0.61 17.08 ± 0.58 15.82 ± 0.62 28.70 ± 0.92 18.71 ± 0.94 2.58 ± 0.19 3.23 ± 0.10 0.22 ± 0.01 6.45 ± 0.17

ViTT

13 Random Segmentation 21.90 ± 0.15 12.22 ± 0.09 16.12 ± 0.25 12.48 ± 0.10 - - - - - -

14

SimpleConcat

- 33.85 ± 0.70 23.54 ± 0.36 24.04 ± 0.40 22.98 ± 0.22 32.69 ± 0.71 22.49 ± 0.36 0.11 ± 0.01 3.76 ± 0.35 0.08 ± 0.01 3.86 ± 0.28
15 T5 37.89 ± 0.10 28.16 ± 1.18 27.15 ± 0.19 27.15 ± 0.53 38.07 ± 0.65 27.39 ± 0.91 0.57 ± 0.03 5.92 ± 0.37 0.16 ± 0.02 6.59 ± 0.69
16 WikiHow 38.20 ± 0.27 26.95 ± 0.67 27.71 ± 0.25 26.85 ± 0.41 37.80 ± 0.62 26.74 ± 0.81 0.40 ± 0.07 5.48 ± 0.18 0.14 ± 0.01 6.02 ± 0.34
17 WikiHow T5 41.87 ± 0.26 31.75 ± 1.94 31.74 ± 0.34 31.26 ± 1.10 42.40 ± 0.30 32.01 ± 0.50 1.29 ± 0.07 8.10 ± 0.34 0.25 ± 0.01 9.26 ± 0.39

18

+ T-marker

- 32.19 ± 1.17 20.05 ± 1.89 21.62 ± 0.82 20.04 ± 0.48 32.03 ± 0.14 20.89 ± 0.28 0.05 ± 0.00 2.96 ± 0.13 0.06 ± 0.00 2.93 ± 0.07
19 T5 34.94 ± 0.37 21.24 ± 0.11 23.95 ± 0.41 22.07 ± 0.21 37.56 ± 0.78 27.50 ± 0.69 0.59 ± 0.09 5.11 ± 0.52 0.16 ± 0.01 6.26 ± 0.56
20 WikiHow 33.00 ± 0.10 19.13 ± 0.87 22.02 ± 0.13 20.05 ± 0.54 35.14 ± 0.99 22.88 ± 0.41 0.23 ± 0.04 3.51 ± 0.14 0.09 ± 0.01 4.12 ± 0.37
21 WikiHow T5 34.23 ± 0.55 21.01 ± 1.34 23.26 ± 0.51 21.62 ± 0.94 33.20 ± 1.65 19.63 ± 0.98 0.16 ± 0.02 3.01 ± 0.22 0.08 ± 0.01 3.40 ± 0.36

22

+ EmbTIME

- 33.89 ± 0.21 20.75 ± 2.37 23.69 ± 0.08 21.27 ± 1.49 35.37 ± 3.18 22.28 ± 0.49 0.04 ± 0.03 3.42 ± 0.61 0.07 ± 0.01 3.28 ± 0.83
23 T5 37.78 ± 0.15 25.98 ± 0.20 27.12 ± 0.16 26.05 ± 0.16 38.50 ± 0.55 27.95 ± 0.46 0.75 ± 0.10 6.37 ± 0.39 0.18 ± 0.01 7.19 ± 0.48
24 WikiHow 37.27 ± 0.08 25.96 ± 0.38 26.87 ± 0.04 25.91 ± 0.21 36.97 ± 0.48 26.37 ± 0.36 0.38 ± 0.06 5.31 ± 0.06 0.13 ± 0.01 5.82 ± 0.23
25 WikiHow T5 41.64 ± 0.12 31.07 ± 0.67 31.53 ± 0.12 30.84 ± 0.33 43.22 ± 0.72 32.49 ± 0.25 1.22 ± 0.08 8.05 ± 0.20 0.25 ± 0.01 9.18 ± 0.45

Table 7: Dense video captioning performance on YouCook2 and ViTT test sets with the length-based and the
Timestamp markers formulations. We report the evaluation results (mean ± std) with models initialized from
random weights, T5 checkpoints, WikiHow checkpoints, and T5 checkpoints further pretrained on WikiHow.

5663



(e)

(d)

(c)

(b)

(a)

(f)

(g)

Figure 6: Examples of our Seg+Cap model’s segmentation performance on YouCook2.
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Figure 7: Examples of our Seg+Cap model’s segmentation performance on ViTT.
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* Dataset Input
Formulation Checkpoint Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

0

YouCook2

Random Segmentation 20.10 11.14 12.53 10.69 - - - - - -

1
SimpleConcat

- 12.83 12.80 8.62 9.07 11.47 8.78 0.22 0.64 0.03 1.95
2 T5 24.18 14.19 14.83 13.89 25.13 14.09 0.86 1.47 0.09 3.39
3 WikiHow 22.36 13.11 14.42 12.99 23.00 14.16 0.66 1.50 0.08 3.48
4 WikiHow T5 27.81 17.21 18.16 17.01 30.97 20.57 2.85 3.48 0.24 7.02

5

+ T-marker

- 18.82 14.42 11.28 11.38 17.18 9.53 0.06 0.45 0.01 1.34
6 T5 20.91 13.21 11.48 11.65 22.75 12.87 0.90 1.42 0.08 3.19
7 WikiHow 19.76 10.17 11.52 10.19 21.09 11.79 0.37 0.94 0.05 2.35
8 WikiHow T5 21.26 12.34 12.83 12.24 20.56 11.35 0.38 0.89 0.05 2.31

9

+ EmbTIME

- 19.52 10.99 11.70 10.26 18.77 9.83 0.11 0.52 0.02 1.46
10 T5 22.93 13.84 13.78 13.30 24.00 15.70 1.34 1.90 0.11 4.24
11 WikiHow 21.41 13.11 13.88 12.76 22.08 13.18 0.79 1.30 0.07 3.09
12 WikiHow T5 26.61 15.86 17.28 16.08 28.80 18.41 2.67 3.18 0.23 6.41

13

ViTT

Random Segmentation 21.93 12.22 16.07 12.41 - - - - - -

14
SimpleConcat

- 33.74 23.71 23.95 23.10 33.10 22.59 0.12 3.78 0.08 3.87
15 T5 37.90 28.28 27.14 27.13 38.35 27.66 0.57 5.85 0.15 6.36
16 WikiHow 38.23 26.82 27.78 26.89 37.75 26.92 0.44 5.58 0.14 6.06
17 WikiHow T5 41.78 31.00 31.62 30.78 42.25 31.85 1.34 7.97 0.25 9.21

18

+ T-marker

- 32.62 19.94 22.02 20.27 32.01 20.90 0.05 2.96 0.06 2.95
19 T5 34.83 21.20 23.89 22.08 37.36 27.80 0.57 5.31 0.16 6.46
20 WikiHow 33.00 19.12 22.09 20.09 35.54 23.09 0.23 3.43 0.09 4.03
21 WikiHow T5 33.92 21.12 23.01 21.52 34.04 19.46 0.16 2.96 0.07 3.23

22

+ EmbTIME

- 33.79 21.21 23.68 21.61 34.56 22.37 0.05 3.12 0.06 2.92
23 T5 37.75 25.97 27.13 26.13 38.44 27.94 0.69 6.18 0.18 7.15
24 WikiHow 37.22 25.85 26.86 25.84 37.07 26.39 0.37 5.28 0.13 5.73
25 WikiHow T5 41.62 30.76 31.52 30.68 43.51 32.50 1.19 8.05 0.25 9.02

Table 8: Performance on the dense video captioning on YouCook2 and ViTT test set with the length-based and the
Timestamp markers formulations. We report the evaluation results with models initialized from random weights, T5
checkpoints, WikiHow checkpoints, and T5 checkpoints further pretrained on WikiHow. We ran 3 sets of repeating
experiments for each setting, and report the median value on each metric in this Table.

Dataset IoU Segment Border (ms) Caption

Youcook2

Tgt.
82.2%

[49000.0, 67000.0] chop 2 garlic cloves grate ginger about 2 tsp and green onions finely
Pred. [47114.0, 65354.5] chop some garlic ginger and green onions and put them in a bowl

Tgt.
82.4%

[73000.0, 117000.0] mix an egg milk and the mashed potatoes
Pred. [72194.0, 109904.5] mix the egg and milk with the potato

Tgt.
81.1%

[89000.0, 101000.0] mix and boil the ingredients
Pred. [90424.5, 102034.0] add miso paste soy sauce diced vegetables and mushrooms to boiling water

Tgt.
82.1%

[18000.0, 48000.0] heat butter in a pan and cook bacon in it
Pred. [18224.0, 54254.0] fry pancetta in a pan with bacon

ViTT

Tgt.
90.5%

[147890.0, 189680.0] Dipping sticks then cake balls
Pred. [148905.0, 192934.0] Dipping cake balls in candy melts

Tgt.
90.2%

[209050.0, 253460.0] Buttering in between baking, baking continues
Pred. [211445.0, 255634.5] Brushing the dough with butter

Tgt.
90.6%

[209630.0, 272000.0] Stretching the hamstrings
Pred. [213230.0, 269750.0] Performing the hamstring stretch

Tgt.
92.3%

[104000.0, 144000.0] Adding more layers
Pred. [105404.0, 145815.0] Repeating the same process

Table 9: Examples of the jointly predicted segments and corresponding captions for YouCook2 and ViTT generated
by our Seg+Cap model. Tgt.: Target. Pred.: Prediction.
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Abstract

With the boom of e-commerce, Multimodal Re-
view Helpfulness Prediction (MRHP), which
aims to sort product reviews according to the
predicted helpfulness scores has become a re-
search hotspot. Previous work on this task fo-
cuses on attention-based modality fusion, in-
formation integration, and relation modeling,
which primarily exposes the following draw-
backs: 1) the model may fail to capture the
really essential information due to its indiscrim-
inate attention formulation; 2) lack appropriate
modeling methods that take full advantage of
correlation among provided data. In this pa-
per, we propose SANCL: Selective Attention
and Natural Contrastive Learning for MRHP.
SANCL adopts a probe-based strategy to en-
force high attention weights on the regions of
greater significance. It also constructs a con-
trastive learning framework based on natural
matching properties in the dataset. Experimen-
tal results on two benchmark datasets with three
categories show that SANCL achieves state-
of-the-art baseline performance with lower
memory consumption. Our implementation
code for this paper can be found at https:
//github.com/declare-lab/SANCL.

1 Introduction

It is unbelievable to witness an e-commerce
boom that has transpired over the past decades
(Vulkan, 2020; Poria et al., 2020). In the virtual
bazaar, countless deals are made between mutu-
ally invisible sellers and customers from time to
time, under the administrator’s supervision. For
customers, it may be their biggest headache to de-
termine whether they should pay for a good when
being overwhelmed by tempting advertisements, as
they know quite a little information about a prod-
uct in face of the seller’s meticulous promotions

∗ This work was done when Wei was an intern at Alibaba
DAMO Academy.
⋄ Corresponding author.

without any external references. In this situation,
reviews in e-shops that can provide justification
information, are thus of great value to customers.
However, the quality of reviews under a certain
product page can be disparate—many customers
are willing to leave informative feedback on the
product, while many others arbitrarily write a few
words and even paste irrelevant messages in their
comments. Therefore, from the perspective of on-
line shopping platforms, they would be welcome
and attractive to customers if they provide a ser-
vice that can intelligently filter and place the most
helpful reviews at the top position. The task in
the machine learning field to solve this problem is
Review Helpfulness Prediction (RHP) (Tang et al.,
2013).

With the thriving of multimodal learning (Uppal
et al., 2022; Hazarika et al., 2022) research and
the handy accessibility of multimodal data in this
Internet era, the latest progress incorporated image
(vision modality) information into the review help-
fulness prediction (RHP) (Liu et al., 2021) as Mul-
timodal RHP (MRHP). Although previous work
attained excellent results in MRHP, there are still
some drawbacks. First, the attention mechanism
in these works for representation learning follows
the most basic setting—it directly computes out
the attention scores based on the representation
vectors of tokens or sentences, without any further
intervention on the obtained weights (Fan et al.,
2019). Generally, the amount of task-related in-
formation in each sentence in a given piece of re-
view may vary greatly—since customers usually
casually write these reviews and may insert some
meaningless words, such as emotional appreciation
or complaints that can not benefit the viewers. We
observed that due to dataset characteristics in the
MRHP task, there are cues to help locate those key
sentences in the review text. Therefore, we pro-
posed a probe-based selective attention mechanism
to employ them for better attention results.
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Secondly, it has been revealed that the correla-
tion, e.g., the similarity of feature vectors, among
multimodal and multi-field data is an essential fac-
tor for task modeling (Xu et al., 2020; Chen et al.,
2019). Nevertheless, existing studies (Xu et al.,
2020; Liu et al., 2021) simply quantified them by
similarity metrics, such as cosine value or neg-
ative Euclidean distance, and conduct the main
tasks based on these similarity scores as features.
Though gained appreciative results, we believe they
can be better utilized through the contrastive learn-
ing scheme to refine the learned representations,
which enables the output layer to make more accu-
rate predictions.

In this paper, we propose a novel framework,
SANCL, which incorporates these two basic ideas.
We first generate a special “probe” mask that high-
lights the key sentences from the product and re-
view text. Thereafter, these masks are inserted into
the computation attention modules to help focus
more on task-related sentences. Then we construct
a contrastive learning framework, which harnesses
the internal correlations within multimodal data
and the fundamental contrastive predictive cod-
ing (CPC) model (Oord et al., 2018), to learn bet-
ter multimodal representations for the main task.
The framework is composed of two feature spaces,
dubbed domains. Each domain takes a specific
combination of projected representations as input,
according to their relation types through semantic
analysis. By minimizing the auxiliary contrastive
loss, the multimodal and multi-domain represen-
tations can be refined with the inherent relations.
Our contribution can be summarized as follows:

• We design a selective attention approach, in-
cluding probe mask generation and mask-
based attention computation, for the informa-
tion aggregation in MRHP tasks.

• We analyze the characteristics and relations
in multimodal reviews and formulate a con-
trastive learning framework to refine the
learned representations.

• Extensive experiments on three publicly avail-
able datasets show our approach achieves
state-of-the-art performance with lower mem-
ory consumption.

2 Related Work

In this section, we briefly recap some relevant work
in the field of review helpfulness prediction and

multimodal contrastive learning.

Review Helpfulness Prediction Customer re-
views play an important role in helping customers
investigate products before determining whether to
purchase (Zhu and Zhang, 2010; Bing et al., 2016;
Diaz and Ng, 2018; Yu et al., 2020; Gamzu et al.,
2021). Support vector machine (SVM) was first
employed to automatically judge the review help-
fulness (Kim et al., 2006; Zhang and Varadarajan,
2006; Tsur and Rappoport, 2009). Later, linear
regression (Lu et al., 2010; Ghose and Ipeirotis,
2010), extended tensor factorization (Moghaddam
et al., 2012), and probabilistic matrix factorization
models (Tang et al., 2013) have been applied to
integrate complicated constraints into the learning
process. With the development of deep learning,
deep neural networks (Lee and Choeh, 2014; Fan
et al., 2018; Chen et al., 2018) have been utilized
to model the sophisticated elements in this task.
Recently, Qu et al. (2020) proposed a graph neural
network to capture the intrinsic relationship be-
tween the products and their reviews. However,
most existing studies only focus on the text of re-
views, neglecting the images that usually exist in
online reviews. This paper takes advantage of the
images and proposes a novel contrastive learning
framework with a selective attention mechanism to
learn expressive multimodal features.

Multimodal Representation Learning The fore-
most problem of multimodal tasks lies in multi-
modal representation learning (Baltrušaitis et al.,
2018). The concept of multimodal representation
learning covers many techniques, such as multi-
modal fusion (Vielzeuf et al., 2018; Wang et al.,
2020; Mai et al., 2020; Han et al., 2021a), multi-
modal contrastive learning (Yuan et al., 2021; Han
et al., 2021b), etc. Attention-based architectures
are the basic routine in multimodal fusion, but the
formulations are similar. In this paper, knowing
about the particularity of MRHP and its dataset,
we devise a novel attention mechanism to better
aggregate information in textual data. Addition-
ally, we also upgrade the application of contrastive
learning. Unlike the ordinary treatment that divides
samples into positive and negative groups accord-
ing to “from myself” or “not from myself” (Cui
et al., 2020; Liang et al., 2020), we extract con-
trastive pairs according to the natural correlation
in the dataset and construct the framework of two
feature spaces termed as domains.
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3 Method

In this section, we first introduce the problem defi-
nition of Multimodal Review Helpfulness Predic-
tion (MRHP). Then we elaborate on the model ar-
chitecture and processing pipeline of our method.

3.1 Problem Definition

Given a collection of product descriptions P =
{P1, P2, ..., PN} and associated reviews R =
{R1, R2, ..., RN} gleaned from an e-shopping
website. Each product description Pi ∈ P con-
tains the product name npi plus the text and image
descriptions Tpi and Ipi . The underlying review
collection Ri associated with product i contains
m review pieces Ri = {ri1, ri2, ..., rim}. Each re-
view data frame is composed of images Irij and
text Trij as well. We exhibit an example of input
data at the model’s input position in Figure 1. All
review pieces are annotated with helpfulness scores
sij ∈ {0, 1, 2, 3, 4}. Multimodal review helpful-
ness prediction can be formulated as a regression
task that aims to predict the helpfulness score of
each review piece, and a ranking task to sort these
reviews by their scores in descending order. For
the convenience of description, we call product de-
scription and review contents as fields, while the
data of text and image are termed as modalities in
the following sections.

3.2 Overview

The overall architecture of SANCL is depicted
in Figure 1. We first generate a probe mask for
each review according to the corresponding prod-
uct name and review text as shown in Figure 2.
The probe mask highlights the sentences that men-
tion the product, which then participates in the
computation of selective attention to produce text
representations. For images, we feed the features
extracted by pre-trained visual neural networks to
two self-attention modules to produce image repre-
sentations. Then we project these representations
of each modality in both product description and
customer review into two shared spaces (domains).
We finally develop a contrastive learning module
to compute the cross-modality and review-product
contrastive scores, which further improves the qual-
ity of representations output from attention mod-
ules.

3.3 Input Encoding

Context-aware Textual Representation For
both review and product text, we initialize their
token representations with GloVe (Pennington
et al., 2014)1 or pre-trained models as Et =
{et1, et2, ..., etl} ∈ Rl×dte , where l is the length (num-
ber of tokens) of a given sentence and dte is the
embedding dimension. We then send these em-
beddings to a uni-directional Gated Recurrent Unit
(GRU) (Cho et al., 2014), yielding token-wise and
sequence representations Ht = {ht1, ..., htl} and
hseqt :

Ht, h
seq
t = GRU(E; θt). (1)

where θt is the parameters in GRU.

Visual Feature Extraction We apply Faster R-
CNN (Ren et al., 2015) on raw images and yield
the hidden representations Ev = {ev1, ev2, ..., evn} ∈
Rn×dve in the last layer ahead of the classifier to
map the Regions of Interest (RoI) in an image to
a hidden space, where n is the number of hot re-
gions detected in the image and dve is the vector
lengths of hidden representations. Same as Liu
et al. (2021), we feed them into a self-attention
module that outputs the encoded image representa-
tions Hv = {hv1, hv2, ..., hvn}.

3.4 Probe-based Selective Attention (PSA)

Previous work primarily formulated text atten-
tion as token-wise description–review attention
which fails to differentiate the relative importance
among sentences and missing really task-related
information. Previous work fully relies on back-
propagation to enforce the model to focus on those
important token spans, but it is far from sufficient
in this task—we desire to highlight valuable sen-
tences which share the task-related information.
Intuitively, task-related information is more likely
to exist in the sentences where a product or its prop-
erties, prices, etc., are mentioned. To this end, we
generate a customized ’probe mask’ for the review
text to highlight sentence-level relevance.

Probe Mask Generation The probe mask should
reflect the position (i.e., in which sentence) where
the product is mentioned in a review. An example
of the generation process is displayed in Figure 2.
We first retrieve the core words from the product

1We used glove.840B.300d in our experiments
(https://nlp.stanford.edu/data/glove.
840B.300d.zip).
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Our high quality, handmade, 100%…

I would rate zero stars if possible. 
The product I received was nothing 
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Figure 1: The overview of SANCL. The output layer is omitted. Features in red boxes (Sii
v,r, S

ii
t,r, S

pr
v,r, S

pr
t,r) are

used in final helpfulness score prediction.

name by looking up its dependency tree and pick-
ing the lemmatized form of the words around the
root. Next, we leverage an open-sourced corefer-
ence resolution package to identify all coreference
clusters in the review.

Coreference clusters: [it, set], [they, them]

I have read some of other reviews .... 
It was poor quality …
I bought plates to be my thanksgiving plate 
set and ….

Review

Euro Ceramica Inc. …. Dinnerware Set, 16 
Piece, …

Product Name

[0, 0, 0, 0, 0, 0, 0, ….,
1, 1, 1 ,1, 1, 1, 1, …,
1, 1, 1, 1, 1, 1, 1, ….]

Probe Mask

Match

Search

Assign

Figure 2: An example of mask generation

There are three possible resolution results: (1)
A cluster containing the core word of the product
name; (2) At least one cluster exists but the core
word is missing in all clusters; (3) No coreference
cluster exists. For (1) and (3), we do not require
extra steps as the existence of entity clusters can be
confirmed. For (2), we are still uncertain whether
an entity cluster is in the text. We devise a sim-
ple rule to tackle this situation—we regard the first
cluster as the product name mention cluster, based
on our observation that the first repeatedly men-
tioned pronouns in a review are more likely to refer
to the product. After locating these product name

mentions, we create the probe mask M ∈ R1×l

by assigning 1 to the positions of those mention-
found sentences and 0 to others. The process is
summarized in Algorithm 1.

Algorithm 1: Probe Mask Generation
Input: Review sentences R, product name P
Output: Probe mask M

# core words and coreference clusters extraction:
R̂← Lemmatise(R), P̂ ← Lemmatise(P);
# core words extraction:
T ← DependencyParse(P̂ );
W ← FindWordsNearRoot(T);
clusters← FindCoreferenceCluster(R̂)

# mask generation:
M ← ZeroInit(R.size)
if C = ∅ then

return M
end
foreach c in clusters do

if any w ∈W in c then
gold_cluster = c

end
end
if gold_cluster = ∅ then

gold_cluster = clusters[0]
end
foreach sent ∈ R̂ do

if any w ∈ gold_cluster in sent then
M [sent.start : sent.end]← True

end
end
return M

Selective Attention with Probe Mask There
are three steps to acquire product-aware review
representations—self-attention, cross-field text at-
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tention (attention between product and review text),
and pooling, among which the first and last steps
take advantage of probe masks generated in the last
step. We transform the binary probe masks into the
real-value format:

M ′ = αM + β(1−M), (2)

where 1 > α > β > 0, since we expect the mask
could focus more on the sentences where the prod-
uct is mentioned. This effect embodies in the self-
attention computation of the review text Hr

t , where
the fundamental attention weights are computed as:

A = softmax(WHr
t ), (3)

We renew the original attention matrix A ∈ Rl×l:

A′ = (M ′)TM ′ ⊙A, (4)

In this process, the attention weights are actually
re-weighted as:

a′ij =





α2aij , if mi = mj = 1

αβaij , if mi = 1,mj = 0

β2aij , if mi = mj = 0

, (5)

An intuitive explanation for this would be that a
token receives more information from hot regions
(whose mask value is 1) than non-hot regions, and
the relative impact power of these two regions is
α/β. Naturally, we set α to 1.0 while generating
β individually for each review from its sequence
representation:

β = sigmoid(Wgenh
seq
t,r + bgen), (6)

where W ∈ Rdh×1 is the weight matrix and b ∈ R
is the bias. The sigmoid function ensures that β ∈
(0, 1). Then we acquire the self-attention results as
in common practice:

Hr′
t = Hr

t +A′Hr
t , (7)

In cross-field text attention (i.e., the attention be-
tween product and review text), since weighted-
sum is performed on the product text, we do not
utilize probe masks in this stage and obtain Hr′′

t .
Finally, we average the result with the probe mask
by a weighted sum to aggregate these sentence rep-
resentations:

Srt = weighted_sum(Hr′′
t ,M

′). (8)

Note that for image representations there are only
cross-image attention and average pooling to yield
Srv .

3.5 Multi-domain Natural Contrastive
Learning (MNCL)

From the theory of mutual information, training to
split positive samples from negative ones by their
similarity can enrich the learned representations
and enhance downstream tasks’ performance. In
our work, we are concerned about natural relations
and split them into two domains: the inner-instance
domain (ii) and the product (introduction)-review
(pr) domain. Before forwarding the input represen-
tations into the MNCL module, all pooled represen-
tations are projected to the shared representation
spaces of each domain through a projection net-
work, which is composed of two linear layers with
an activation layer in between. We denote them
as Sdm,f , where m ∈ {t, v} is the modality type,
f ∈ {r, p} is the field (review or product descrip-
tion) and d ∈ {ii, pr} is the domain name:

Sdm,f =W d
m,f,2Tanh(W

d
m,f,1S

d
m+b

d
m,f,1)+b

d
m,f,2

(9)
where W d

m,∗,i and bdm,∗,i are weights and biases in
the i-th layer of the projection network. Note that
the data in the same modality and domain share
the same network parameters. In the succeeding
content, we are going to describe details of the
two contrastive-learning domains, mainly concern-
ing how to pick positive and negative samples for
contrastive learning and training.

Inner Instance (II) Domain In the inner instance
domain, we separate positive and negative pairs ac-
cording to how similar the representations between
image and text are in a single training instance.
First, from the sellers’ perspective, the text and
image of a product should match well so as to at-
tract customers. Thus we mark text-image pairs
of product descriptions as positive ones (the set of
these pairs is denoted as Spii). Besides, from our
observation, reviews that achieve high helpfulness
scores possess a high similarity between their text
and the attached image. Therefore, we mark the
former as positive (the set is denoted as S+ii ) and
the latter as negative (the collection is denoted as
S−ii ).

Product-Review (PR) Domain The semantic
matching property also exists between product de-
scriptions and their associated reviews. As help-
fulness is dependent on how well a review is perti-
nent to the theme of the product, we argue that re-
view pieces of high helpfulness scores (S+pr) should
match the product introduction both visually and
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literally, while those low-score pieces (S−pr) match
the introduction poorly in both modalities.

Multi-domain Contrastive Predictive Coding
(MCPC) In contrastive predictive coding (Oord
et al., 2018), we need to compute contrastive scores
for every sample pair. According to the common
approach (Yuan et al., 2021; Han et al., 2021b), an
exponential function is chosen as the score func-
tion:

φ(A,B) = exp

(
norm(AT )norm(B)

τ

)
,

(10)
where norm(∗) is the l2-norm function, τ is the
temperature hyper-parameter, for simplicity we
keep its value 1.0 in our experiments. By noise
contrastive estimation (Gutmann and Hyvärinen,
2010), in the inner instance domain, the score is
computed as:

cpcii = −
∑

(St,j ,Sv,j)∈(S+ii∪SPii)

log
φ(St,j , Sv,j)∑

Sk∈(S+ii∪S
−
ii∪SPii)

φ(St,k, Sv,k)
, (11)

where (St,j , Sv,j) are the text-image pair from the
instance, i.e., a review piece or product descrip-
tion. The summation is over S+ii and SPii because in-
stances counted here are from both product descrip-
tions and review pieces. Similarly in the product–
review domain the score is:

cpcmpr = −
∑

Srm,j∈S
+
pr

log
φ(Srm,j , S

p
m,j)∑

Sk∈(S+pr∪S−pr) φ(S
r
m,k, S

p
m,k)

. (12)

cpcpr = cpctpr + cpcvpr (13)

where Srm,j is the representation of modality m in
review r from the positive review set S+pr and Spm,j
is the counterpart of the corresponding product.

3.6 Prediction and Training
We select all review-related representations
from the common spaces of two domains
(Siit,r, S

pr
t,r, S

ii
v,r, S

pr
v,r) and concatenate them as fea-

ture vectors for prediction (F). A linear layer takes
these feature vectors as input and outputs the help-
fulness score predictions ξr:

F = concat([Siit,r, S
pr
t,r, S

ii
v,r, S

pr
v,r]) (14)

ξr = WoF+ bo, (15)

where Wo and bo are the weight matrix and bias
in the output layer. Same as Liu et al. (2021), we
adopt the standard pairwise ranking loss as the
main task loss:

Ltask =
∑

i

max(0, γ − ξr+,i + ξr−,i), (16)

where r+, r− are an arbitrary positive/negative pair
of review pieces under product Pi, γ is a scaling
factor. Contrastive losses make up the auxiliary
loss:

Laux = cpcii + cpcpr (17)

The total loss for training is

L = Ltask + κLaux (18)

where κ is a hyper-parameter to adjust the effect of
auxiliary loss.

4 Experimental Settings

This section presents the datasets, baseline models,
and metrics used and compared in our experiments.

4.1 Datasets
We conduct experiments on three MRHP datasets
(Liu et al., 2021) in different categories: Clothing,
Shoes & Jewelry, Home & Kitchen and Electronics.
The text and images in these datasets are crawled
from a number of Amazon online shops under cor-
responding categories from the year 2017 to 2019.
The helpfulness scores equal to ⌊log2 nvotes⌋ and
are then clipped into [0, 4]. More details of datasets
are provided in Appendix.

4.2 Baseline Models
Following previous work, we first compare our
model with a bunch of baselines on the text-only
setting, which examines the effect of our selec-
tive attention mechanism and text-related con-
trastive learning modules. The baseline candidates
contain Multi-Perspective Matching (BiMPM)
network (Wang et al., 2017), Embedding-gated
CNN (EG-CNN) (Chen et al., 2018), Convolu-
tional Kernel-based Neural Ranking Model (Conv-
KNRM) (Dai et al., 2018) and Product-aware Help-
fulness Prediction Network (PRHNet) (Fan et al.,
2019). In multimodal settings, we pick a collection
of state-of-the-art multimodal helpfulness predic-
tion models for comparison:
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Setting Model Cloth. & Jew Electronics Home & Kitchen
MAP N-3 N-5 MAP N-3 N-5 MAP N-3 N-5

Text-only

BiMPM∗ (Wang et al., 2017) 57.7 41.8 46.0 52.3 40.5 44.1 56.6 43.6 47.6
EG-CNN∗ (Chen et al., 2018) 56.4 40.6 44.7 51.5 39.4 42.1 55.3 42.4 46.7
Conv-KNRM∗ (Dai et al., 2018) 57.2 41.2 45.6 52.6 40.5 44.2 57.4 44.5 48.4
PRHNet† (Fan et al., 2019) 58.23 43.36 47.21 52.31 40.43 43.88 57.11 44.46 48.27
SANCL (Ours) 58.98♮ 44.75♮ 48.57♮ 53.03♮ 41.03♮ 44.77♮ 58.03♮ 45.59♮ 49.31♮
BERT (Devlin et al., 2018) 56.47 42.98 46.84 51.95 39.77 43.11 56.62 42.12 46.87
PRHNet+BERT† (Fan et al., 2019) 57.51 43.65 47.74 52.28 40.66 44.02 57.32 44.74 48.42
SANCL+BERT (Ours) 58.49♮ 44.91♮ 48.69♮ 53.13♮ 41.77♮ 45.01♮ 58.20♮ 45.83♮ 49.65♮

Multimodal

SSE-Cross∗ (Abavisani et al., 2020) 65.0 56.0 59.1 53.7 43.8 47.2 60.8 51.0 54.0
D&R Net∗ (Xu et al., 2020) 65.2 56.1 59.2 53.9 44.2 47.5 61.2 51.8 54.6
MCR† (Liu et al., 2021) 66.96 58.03 61.06 55.86 46.32 49.45 63.17 53.85 57.14
SANCL (Ours) 67.26 58.61♮ 61.48♮ 56.19 46.98♮ 49.92♮ 63.35 54.28♮ 57.40
MCR+BERT (Liu et al., 2021) 65.81 55.94 58.75 55.15 45.67 48.62 62.39 52.91 56.09
SANCL+BERT (Ours) 66.52♮ 56.73♮ 59.90♮ 56.04♮ 46.77♮ 49.95♮ 62.74 53.65♮ 56.91♮

Table 1: Results on three datasets; all reported metrics are the average of five runs; “∗” are from Liu et al. (2021) and
“†” are from the open-source code in Liu et al. (2021); “♮" represent the results significantly outperforms PRHNet
and MCR with p-value < 0.05 based on paired t-test.

• SSE-Cross (Abavisani et al., 2020): The
Stochastic Shared Embeddings (SSE) Cross-
modal Attention Network introduces a novel
cross-attention mechanism that can filter noise
components from weak modalities which may
mislead the model to make wrong predictions
on a sample. SSE is adopted as the regulariza-
tion technique to alleviate over-fitting in the
fusion process to further prompt the prediction
accuracy.

• D&R Net (Xu et al., 2020): The Decomposi-
tion and Relation Network learns the common-
ality and discrepancy between image and text
in the decomposition network and the multi-
view semantic association information in the
relation network.

• MCR (Liu et al., 2021): The Multi-
perspective Coherent reasoning method in-
corporates the joint reasoning across textual
and visual modalities from both the product
and the review. Three types of coherence are
modeled to learn effective modality represen-
tations for helpfulness prediction.

In both settings, we also test our method with
BERT (Devlin et al., 2018) as the text encoder. In
addition, we test and record the BERT-with-head
performance (BERT+a double linear layers) as the
blank comparison experiment.

4.3 Metrics
We utilize several metrics for ranking tasks to eval-
uate the performance of these models. After sorting
all prediction scores by their corresponding truth

scores in descending order, the Mean Average Pre-
cision (MAP) computes the mean precision till the
sample with the k-th highest score. K is usually
large enough to encompass the entire collection
of reviews under every product. The Normalized
Discounted Cumulative Gain (NDCG-N) (Järvelin
and Kekäläinen, 2017; Diaz and Ng, 2018) purely
reckons the gain value over top-N predictions (N
is 3 and 5 in our experiments), which simulates
the real circumstances of a typical customer who
would always read the topmost reviews.

5 Results and Analysis

In this section, we will compare our approach with
several advanced baselines and explore how it im-
proves the multimodal helpfulness prediction task.

5.1 Performance Comparison

We list the performance of our model and base-
lines in Table 1. Notably, SANCL consistently
outperforms all the baselines in both text-only and
multimodal settings and under both BERT and
Glove initialization methods. These outcomes ini-
tially demonstrate the efficacy of our method in
MRHP tasks. It is surprising that we cannot gain a
significant performance boost by replacing Glove
with BERT as the text encoder. We speculate the
reason is that Glove embeddings are expressive
enough for this task.

Moreover, it can be claimed that SANCL is a
lightweight model compared to the multimodal
SOTA since the model size and GPU memory con-
sumption of SANCL are much lower than MCR.
The total number of parameters is 2.63M in MCR
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and 1.41M (excluding the embedding layer) in
SANCL respectively, which indicates a double
efficiency. The average GPU memory usage of
SANCL during the training on Amazon-MRHP
Home & Kitchen is around 2.4G, while MCR oc-
cupies an average of 13.7G GPU memory during
training, which is 4.7 times higher than SANCL.

Description MAP N-3 N-5

SANCL 56.19 46.98 49.92

Attention
w/o learned β (fixed at 0.5) 55.61 46.37 49.58
w/o probe mask 55.43 46.11 49.45

Contrastive learning
w/o cpcii 55.54 46.29 49.23
w/o cpcpr 55.81 46.40 49.47
w/o cpcii and cpcpr 55.35 46.28 49.09

Table 2: Ablation study of SANCL on the Electronics
dataset.

5.2 Ablation Study

To verify the benefits of our proposed method, we
carry out comprehensive ablation experiments on
the Amazon electronics dataset, including the selec-
tive attention and contrastive learning components.
In selective attention, we first replace learned β
with a fixed value of 0.5, since we find most β val-
ues in our experiments are around 0.5. Next, we
remove the entire selective attention module and
only preserve the primitive attention computation.
The decline in the outcome of both situations man-
ifests that probe-based selective attention amends
the cross-text information exchange between text
fields. For multi-domain contrastive learning, we
delete the CPC losses of a single or both domains
in training. The results indicate that both domains
have a positive impact on performance. Moreover,
the effect of the two domains does not counter-
act their collaboration, as we observe accumulated
benefits when they operate together.

5.3 Case Study

To understand how our model deals with sam-
ples in-depth, we randomly pick up a test product-
review instance from the test set of Amazon Home
& Kitchen to explain how SANCL works, as shown
in Table 3.

In this example, the customer bought the pins
to fix the edge of his sofa. Instead of photoing
pins themselves, the customer only presented the

tidy sofa after installing the pins. We first visu-
alize the attention weights in test time, as shown
in Fig. 3. Note that only the first sentence in the
review contains the elements in the coreference
clusters, which we have emphasized with italics
and underlined in Table 3. Consistently, we ob-
serve the significantly larger weights in the region
of the first sentence (row/column 1-19) while the
rest region’s weights are much smaller. We also
ran MCR and collect its prediction on this example,
and it is clear that MCR commits a severe error
here, probably caused by the direct classification
of the unimodal cosine similarity. In our approach,
as we carefully analyze and classify the positive
and negative pairs in the multi-domain contrastive
learning framework, the huge semantic similarity
between review text and image and between prod-
uct description and review text, indicated by the
high CPC scores Siiv,r, assists the model to correctly
predict the score.

Product Name: Twisty Pins for Upholstery, Slipcovers, and
Bedskirts 50/pkg

Product description: Package of 50 Clear Twisty Pins for
securing fabrics and accent trims. Nickel-plated steel pin 1/2"
in diameter clear top, wire twist 3/8" long. Perfect for Medium
to lightweight fabrics, bed skirts, bed ruffles, slipcovers, and
upholstery.

Review (Helpfulness Score: 4): I bought these to pin the
loose material on a sofa cover and they worked like a charm.
The sofa cover definitely looks form fitting now.

Predictions: SANCL: 4.5291 MCR: -1.0832

CPC score: cpcii = 0.82, cpctpr = 0.76, cpcvpr = 0.21

Table 3: Examples from the Amazon Home & Kitchen
test set.

6 Conclusion

We propose a novel framework, SANCL, for the
task of multimodal review helpfulness prediction
(MRHP) in this paper. We first present a selective
attention mechanism, which purposefully aggre-
gates information from these crucial sentences in
the review text by generating the probe mask that
exerts re-normalization on the attention weights
and pooling stage. We then build up a multi-
domain natural contrastive learning framework in
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Figure 3: The self-attention weights of the review text
in the given example at test time (β=0.57).

our model. It exploits the natural relations among
the data from different fields and modalities in the
dataset to enhance the model’s capacity for mul-
timodal representation learning. Results of com-
prehensive experiments and analyses demonstrate
the superiority of our model over the comparable
baselines and the efficacy of the novel components.
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A Dataset Specification

Specifications of Amazon-MRHP are listed below.

Amazon-MRHP (Products/Reviews)
Category Cloth. & Jew. Elec. Home & Kitch.

Train 12074/277308 10564/240505 14570/369518
Dev 3019/122148 2641/84402 3616/92707
Test 3966/87492 3327/79750 4529/111593

Table 4: Statistics of the Amazon-MRHP dataset.

B Hyperparameter Search

The optimal hyperparameter settings are provided
in Table 5 and 6.

Glove Hyperparameters
Cloth. & Jew. Elec. Home & Kitch.

learning rate 1e−4 5e−5 1e−4

text embedding dim 300 300 300
text embedding dropout 0.5 0.5 0.2
image embedding dim 128 128 128
LSTM hidden dim 128 128 128
shared space hidden 64 64 64
κ 0.25 0.1 0.1
batch size 32 32 32

Table 5: Hyperparameters for all categories using glove-
300d embeddings.

Amazon-MRHP Hyperparameters
Cloth. & Jew. Elec. Home & Kitch.

learning rate 2e−5 2e−5 2e−5

text embedding dim 768 768 768
text embedding dropout 0.5 0.5 0.5
LSTM hidden dim 128 128 128
image embedding dim 128 128 128
shared space hidden 64 64 64
κ 0.3 0.25 0.25
batch size 32 32 32

Table 6: Hyperparameters for all categories using BERT
as encoder

We use the same set of settings for text-only and
multimodal modes for the same category dataset.
The search space of these hyperparameters are:
learning rate in {1e−4, 2e−5}, text embedding
dropout in {0.2, 0.5}, κ in {0.1, 0.25, 0.3, 0.5},
shared space hidden dimension in {64, 128}. We
train and test each dataset on a single Tesla V100
GPU. In BERT experiments, we use shared a BERT
encoder for both product description and review
text. To balance the computation cost and model
performance, following Sun et al. (2019), we fine-
tune the last four layers of the BERT encoder.
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C Language Tools

For coreference resolution, we use neuralcoref2,
an extension that can be placed on SpaCy proces-
sors. For BERT model, we use the huggingface3

transformers package to load.

2https://github.com/huggingface/
neuralcoref

3https://huggingface.co/docs/
transformers/model_doc/bert
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Abstract

A Visual Question Answering (VQA) model
processes images and questions simultaneously
with rich semantic information. The attention
mechanism can highlight fine-grained features
with critical information, thus ensuring that
feature extraction emphasizes the objects re-
lated to the questions. However, unattended
coarse-grained information is also essential for
questions involving global elements. We be-
lieve that global coarse-grained information
and local fine-grained information can com-
plement each other to provide richer compre-
hensive information. In this paper, we propose
a dual capsule attention mask network with
mutual learning for VQA. Specifically, it con-
tains two branches processing coarse-grained
features and fine-grained features, respectively.
We also design a novel stackable dual capsule
attention module to fuse features and locate
evidence. The two branches are combined to
make final predictions for VQA. Experimental
results show that our method outperforms the
baselines in terms of VQA performance and
interpretability and achieves new SOTA perfor-
mance on the VQA-v2 dataset.

1 Introduction

In recent years, visual question answering (VQA)
has received extensive research attention in the
fields of computer vision and multimedia comput-
ing. The goal of VQA is to answer questions re-
lated to the content of images correctly (Antol et al.,
2015). It has a wide range of practice applications,
such as helping people with visual impairment and
human-computer Q&A.

In the early stage, most VQA models ex-
tract features from images and questions indepen-
dently (Malinowski et al., 2015; Gao et al., 2015;
Ren et al., 2015). These methods fail to capture
the fine-grained key features and include much un-
necessary information. Afterward, the attention
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Q:What is on the little girls head ? 
A:helmet 

Q:Could this be a multi-purpose room?
A:yes

Figure 1: Samples in the VQA-v2 dataset. (Left): The
fine-grained features with attention have the critical in-
formation required for the answer inference, which can
help the model generate the correct answer by elimi-
nating the interference of irrelevant factors. (Right):
Unattended coarse-grained features have richer seman-
tic information, which can help the answer inference
when the attention mechanism is of limited use.

mechanism becomes popular and is introduced in
many fields (Lu et al., 2016; Cai and Hu, 2020).
The VQA models with the attention mechanism ex-
tract critical information from one modality guided
by another modality (Lu et al., 2016; Anderson
et al., 2018; Yu et al., 2019). Consider the question
related to Figure 1 (Left) “What is on the little girl’s
head?” The attention method needs to encourage
the model to focus on the "girls head" in the ques-
tion and related regions in the image to produce
the correct answer as “helmet.” In this case, local
fine-grained input(features which have critical in-
formation with attention processing) can help the
model eliminate distractions and generate correct
answers. However, the attention mechanism is not
a panacea. Some questions may mislead visual at-
tention and lead to wrong answers. For example,
in Figure 6 (line 3, left), the question word "boxes"
makes the model focus on the printer(which looks
like a box) in the picture and leads to the wrong
answer. Also, in some scenarios, the model needs
to focus on multiple objects for reasoning, but the
question cannot explicitly remind which object re-
quire its attention. For example, consider the ques-
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tion related to Figure 1 (Right) “Could this be a
multi-purpose room?” The model needs to take
the bed, chair, computer, and printer into account
for reasoning, but there are no words in the ques-
tion that can help identify the relevant objects. In
these cases, global coarse-grained input(features
that have all information without attention process-
ing) can provide more comprehensive information
for generating answers. The challenge is to make
the model focus on key features while maintaining
a reference to the global information.

To overcome the above limitations, we propose
a novel Dual Capsule Attention Mask Network
(DCAMN) with mutual learning to process multi-
modal information at different granularities. We
believe that coarse-grained information and fine-
grained information can complement each other
to provide richer comprehensive information for
answer reasoning. Inspired by mutual learning and
its variants (Zhang et al., 2018; Song and Chai,
2018), we design a two-branch network. The first
branch processes the entire features of visual and
language, analyzes global information at the coarse-
grained level and fuses the features to produce pre-
dictions. We also design a Stackable Dual Capsule
Attention Module (SDCAM) to model cross-modal
deep interactions between the image and the ques-
tion. The second branch masks visual features and
language features with the attention weights gen-
erated by the SDCAM of the first branch to get
fine-grained features, which enables the network
to focus on key regions of the image and keywords
of the question. Finally, we combine results from
two branches to get final predictions. In contrast to
other multi-granularity work (Nguyen et al., 2021),
our DCAMN does not introduce additional infor-
mation such as predicates, while utilizes the atten-
tion weights from the first branch to filter features
for the second branch.

As a novel method of multi-modal fusion, SD-
CAM can output precise attention weights, which
not only mask fine-grained features but also help
locate evidence(grounds for the answer). By an-
alyzing evidence, we can learn what information
the network concerns more and how it makes deci-
sions. Also, the stacking strategy for SDCAM im-
proves attention accuracy and the fusion of visual
and language representations. In DCAMN, there is
only one language module to encode the questions,
while images are presented to the two branches for
processing separately. Compared with using two

independent peer networks, sharing the language
module between two branches can reduce the bur-
den of parameters and calculation. Moreover, early
blocks acquire gradients from both branches during
backpropagation, which reduces the risk of gradi-
ent vanishing (Song and Chai, 2018). The knowl-
edge of two branches at different perspectives and
granularities is learned by another branch for infor-
mation supplement and regularization, which can
improve the generalization capability and VQA
performance of DCAMN.

The main contributions of this paper are as fol-
lows: (1) A novel dual capsule attention mask net-
work with mutual learning is proposed, which can
process coarse-grained features and fine-grained
features separately. Two branches can learn from
each other, and their combination can improve the
VQA performance. (2) A stackable dual capsule
attention module is proposed, which provides pre-
cise co-attention weights for masking out features
and locating evidence. (3) We propose to share
the language module between two branches of dif-
ferent granularities, which can reduce parameter
requirements and the risk of gradient vanishing.
(4) Extensive experiments are conducted to eval-
uate the proposed method. Our method has sig-
nificant advantages over the baselines in terms of
interpretability and accuracy and achieves state-of-
the-art performance on the VQA-v2 dataset.

2 Related Work

2.1 Visual Question Answering

The rapid development of VQA has benefited
from many aspects. The latest studies in visual
and language feature representation are applied
to VQA to improve the ability to extract and pro-
cess features (Jiang et al., 2020; Devlin et al.,
2019). Better multimodal fusion methods, such
as MCB (Fukui et al., 2016), MLB (Kim et al.,
2017), MUTAN (Ben-younes et al., 2017), etc.,
are proposed to capture the high-level interactions
between visual and language features. The trans-
former significantly contributes to the improvement
of VQA (Yu et al., 2019; Zhou et al., 2021) and
makes large-scale pre-training possible (Chen et al.,
2020; Li et al., 2020). To extract useful information
from the cumbersome features, many approaches
introduce the attention mechanism to refine key
information (Lu et al., 2016; Anderson et al., 2018;
Gao et al., 2019; Yu et al., 2019). However, The
attention mechanism may perform poorly on ques-
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tions involving background. (Sharma and Jalal,
2022). Moreover, some words in the questions
may mislead the question-based attention. These
situations indicate that the attention mechanism
is not a panacea, and a method that can integrate
attention features and global features is necessary.

2.2 Mutual Learning

Most distillation-based model compression meth-
ods distill large and powerful networks into smaller
and efficient networks (Romero et al., 2015; Zhang
and Ma, 2021). However, its two-step strategy(train
the teacher first and then train students) is time-
consuming. So mutual learning is proposed (Zhang
et al., 2018), which enables networks to be trained
in parallel. In Zhang et al. (2018), each student
model learns from the predictions of the other mem-
bers, and the whole network requires complex asyn-
chronous updates among different students. An-
other approach (Song and Chai, 2018) advocates
that all students share the same early module, ag-
gregating the gradient flow from all branches. This
strategy reduces the training computational com-
plexity and facilitates the supervision of the shared
layers. Our network is based on the latter.

2.3 Capsule Network

The idea of grouping neurons is proposed early
in Hinton et al. (2011). Following this, the dy-
namic routing method with capsules is formally
introduced in Sabour et al. (2017). After dy-
namic routing, Hinton et al. (2018) implement
EM routing of matrix capsules. The applications
in other domains prove the universality of capsule
networks (Duarte et al., 2018; Jaiswal et al., 2018;
Zhao et al., 2019). Zhou et al. (2019), inspired by
dynamic-routing implementation of capsule net-
works (Sabour et al., 2017), proposed CapsAtt
model replacing the previously multi-level atten-
tions.

3 Method

Given an image I and a question Q, the purpose of
VQA is to output the correct answer a ∈ A, where
A indicates the candidate word list for answers. We
follow the transformer design of MCAN (Yu et al.,
2019) and TRAR (Zhou et al., 2021) and use them
as our backbones with their encoder-decoder units.
The overall framework of DCAMN is shown in
Figure 2.

3.1 Question Representation and Image
Representation

DCAMN models language features and visual fea-
tures by encoding layers and decoding layers, re-
spectively. The question Q is first processed by
Glove word embedding (Pennington et al., 2014)
accompanied by LSTM (Hochreiter and Schmid-
huber, 1997) and then is presented to the encoding
layers to get the question feature matrix Y ∈ Rk×d,
where d is the latent dimensionality in multi-head
attention of encoder-decoder units, and k denotes
the number of words in the question. Following
BUTD (Anderson et al., 2018), we extract the
salient region features X0 ∈ Rm×d from the im-
age I as the visual input by a pre-trained Faster R-
CNN. X0 are then fed into two independent decod-
ing structures to obtain the visual feature matrices
X1
t ∈ Rm×d and X2

t ∈ Rm×d (t = [1, 2, · · · , T ]),
where Xb

t represents the output of the t-th decoder
block of branch b (b ∈ [1, 2]); T denotes the num-
ber of decoding layers; m is the number of bound-
ing boxes.

3.2 Stackable Dual Capsule Attention Module
and Decoder Block

We design an efficient multi-modal fusion method
SDCAM. The attention of SDCAM is transformed
from capsule dynamic routing, and the stack-
ing strategy is also employed to improve visual-
language co-attention performance. The details of
SDCAM are shown in Figure 3. Specifically, it
alternately performs attention and fusion on visual
features and language features. The visual input X
of SDCAM is X1

t or X2
t and the language input is Y,

where X = [x1,x2,· · · ,xm], Y = [y1,y2,· · · ,yk]. In
SDCAM, xi(i = 1, · · · ,m) denotes the image fea-
ture of the i-th bounding box and yi(i = 1, · · · , k)
denotes the language feature of the i-th word, and
they are considered as the underlying capsules
which need to be routed.

First, the high-level capsule St of the visual at-
tention module is initialized by the fusion feature
Ft−1. When t = 1, F0 is a language feature pro-
cessed by the reduction model, which is a simple
self-attention module proposed in Yu et al. (2019).
The high-level capsule for the visual attention mod-
ule is calculated by:

Sp+1
t = Spt +

m∑

i=1

cixwi , (1)

xwi = σ(Wxxi), i ∈ [1,m], (2)
5680
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Figure 2: The overall framework of DCAMN. Coarse-grained branch 1 and fine-grained branch 2 handle coarse-
grained features and fine-grained features, respectively. The fine-grained features are obtained by masking with
attention weights provided by the last SDCAM of branch 1. AR, EU, and DU indicate reduction model, encoder
unit, and decoder unit, respectively. We combine the two predictions P1 and P2 to get the final prediction.

where Spt denotes the high-level capsule of the vi-
sual attention module in the t-th SDCAM unit after
p ∈ [0, R− 1] routing iterations, R represents the
total number of routing iterations, ci is the coupling
coefficient between the underlying capsule xi and
high-level capsule St, which can be interpreted as
the contribution to the high-level capsule, xi is mul-
tiplied by the projection matrix Wx ∈ Rd×d and
passed through the activation function σ to get xwi .

The value of the coupling coefficient ci depends
on bi. In the routing algorithm, the value of bi is
used to measure the similarity between the under-
lying capsule xi and the high-level capsule St, and
is obtained by:

bi = bi + (xwi )
T · Spt , i ∈ [1,m]. (3)

We initialize bi to be 0. In each routing iteration,
bi is added with the dot product of the high-level
capsule and the underlying capsule for updating,
and then softmax is applied to obtain the coupling
coefficient ci as follows:

ci = softmax(bi), i ∈ [1,m]. (4)

When the processing of the visual attention mod-
ule finishes, the fusion feature St will be used to
initialize the high-level capsule St

′
of the language

attention module. The language attention module is
similar to the visual one, except that the input of the
language attention module is Y = [y1,y2,· · · ,yk].

After the language attention module, St
′
, which

is also denoted as the fusion feature output Ft of the
SDCAM, is fed to the next SDCAM for initializing
its high-level feature St+1. The whole procedure is
defined as:

Ft,Ft
′
= SDCAMt(X,Y,Ft−1), t ∈ [1, T ]. (5)

In decoder block t, visual features and language
features are fed to a DU and a SDCAM for process-
ing:

Xt = DUt(Xt−1,Y), (6)

Ft,Ft
′
= SDCAMt(Xt,Y,Ft−1), t ∈ [1, T ], (7)

where DUt is the t-th decoder unit and denotes a
Guided-Attention Unit (Yu et al., 2019). The DUt
takes Xt−1 and Y as inputs. Its output Xt is fed to
SDCAMt and the next decoder block. The whole
procedure of decoder block t is defined as:

Ft,Ft
′
, c, c

′
,Xt =

DecoderBlockt(Xt−1,Y,Ft−1), t ∈ [1, T ],
(8)

where c and c′
are coupling coefficients generated

from the SDCAM, which can be used to label the
weights of bounding boxes and question words,
respectively. In this way, we can learn what the
model concerns in the inference process.
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from SDCAM, and the importance of each word in the
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′
.

3.3 Double Branches with Coarse and Fine
Granularities

In coarse-grained branch 1, coarse-grained visual
feature X0 and language feature Y are sent to T
decoder blocks to obtain FT , F

′
T and X1

T . Note that
we let all SDCAMs in decoder blocks of branch 1
share parameters to reduce the parameter burden.
After this, X1

T and Y pass through the attentional
reduction model and are summed. The result is
then concatenated with the sum of FT and F

′
T to

get the fused feature U1 ∈ Rdf , where df is the
dimension of the fused feature. Afterward, U1 is
passed through a linear layer to get the vector O1 ∈
RN , where N indicates the number of candidate
answers.

The fine-grained visual features and language
features are processed in fine-grained branch 2
which has independent decoder blocks. To obtain
critical features with visual-language relevance, we
mask X0 and Y with the attention weights from the
last SDCAM of coarse-grained branch 1. Specif-
ically, in the visual attention module of SDCAM,
the coupling coefficient ci(i = [1, 2, · · · ,m]) cor-
responds to the visual feature xi ∈ X0(i =
[1, 2, · · · ,m]). We sort xi from large to small ac-

cording to the coupling coefficient ci. The bottom
p% of xi are selected to be multiplied by the mask
coefficient γ(< 1) while the rest remain unchanged.
The language feature Y is processed in the same
way. Mask enables the network to focus on critical
information. For example, in Figure 2, the word
"dog" in the question and the bounding boxes about
the dog are more significant after masking.

In fine-grained branch 2, the masked features
XM
0 and YM are processed in the same way as

branch 1. They are sent to T decoder blocks and
fused to obtain U2 ∈ Rdf and the vector O2 ∈ RN .

We apply a softmax function on O1 and O2 to
obtain predictions of branch 1 and branch 2:

Pi = softmax(Oi), i ∈ [1, 2], (9)

where P1 and P2 are predictions of branch 1 and
branch 2, respectively. We sum P1 and P2 and
take the candidate answer that has the maximum
probability in their results as the final answer a.

3.4 Mutual Learning and Loss Function
For each branch, we utilize the prediction from the
other branch to supervise. The Kullback Leibler
(KL) Divergence is used to calculate the loss of
mutual learning:

LM = Dkl(P2∥P1) +Dkl(P1∥P2). (10)

LM forces the two branches to match the prob-
ability distribution of each other and learn from
each other. In addition to LM , binary cross-entropy
(BCE) is employed to compute the loss between
predictions and labels:

LBCE = BCE(sigmoid(O1), label)
+BCE(sigmoid(O2), label).

(11)

The two branches independently compute their
BCE losses. The total loss is the sum of LM and
LBCE .

In contrast to the tedious training method of tra-
ditional mutual learning (Zhang et al., 2018) that
performs asynchronous updates among different
sub-networks, DCAMN only has a total loss L,
which means that parameter optimization in differ-
ent branches can be performed simultaneously and
training efficiency can be improved.

4 Experiments

4.1 Datasets
We use the VQA-v2 dataset (Goyal et al., 2017) to
evaluate our model. The dataset is split into three
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subsets: train, val, and test, which contain 80k,
40k, and 80k images and 444k, 214k, and 448k QA
pairs, respectively. It has three types of questions:
yes/no, number, and other. test-std and test-dev, as
the subsets of the test set, are provided to evaluate
model performance online. In addition, we also
use the VQA-CPv2 dataset (Agrawal et al., 2018)
to test models’ robustness for the question biases.
The VQA-CPv2 dataset is a VQA dataset with a
particular answer distribution used to evaluate the
ability of the model against language priors.

4.2 Implementation Details

The hyperparameter setting of our method is de-
scribed in this subsection. We set the hidden layer
dimension of LSTM to be 512. The dimension
df of the fused feature is 1024. The latent dimen-
sionality d in multi-head attention is set to be 512.
Features in the multi-head attention are split into 8
heads with 64 dimensions for each head. We set the
number of candidate answers N and the number of
decoding layers T to 3129 and 6. Following Sabour
et al. (2017), the number of routing iterations R is
set to 3. We set mask coefficient γ and mask prob-
ability p to 0.5 and 30, which are experimentally
selected.

We set the number of epochs to 15. The batch
size is 64. The learning rate is initialized to 2.5e−5,
gradually grows to 1e−4, and is decayed by 0.2 in
the last three epochs. We use the adam optimizer
and set the parameters β1 and β2 to be 0.9 and
0.98, respectively. We use the train and val sets for
training and a subset of Visual Genome (Krishna
et al., 2017) for data augmentation, and test for
online evaluation on test-dev and test-std.

4.3 Ablation Studies

We use MCAN (Yu et al., 2019) and TRAR (Zhou
et al., 2021) as the baselines. SDCAM-last-layer-n
represents that the final output of encoder-decoder
is processed by n SDCAMs in a single branch, as
illustrated in Figure 4. Table 1 shows that SDCAM-
last outperforms the baseline MCAN, which vali-
dates the effectiveness of SDCAM as a novel fusion

Model All Other Yes/No Num.

MCAN(baseline) 67.2 58.7 84.84 48.69
SDCAM-last-layer-3 67.34 58.81 85.15 48.42
SDCAM-mid-layer-6 67.43 58.89 85.15 48.78
SDCAM-mid+Mutual 68.05 59.63 85.60 49.43
SDCAM-mid+Mutua+Mask 68.14 59.66 85.74 49.65

Table 1: Ablation studies using MCAN as the backbone
on VQA-v2 val set. Mutual means using the two-branch
mutual learning strategy. Mask means using our mask-
ing mechanism.

SA TD SDCAM Mutual Mask KLloss Accuracy

67.6
✓ 67.48

✓ 67.55
✓ 67.76

✓ ✓ 68.27
✓ ✓ ✓ 68.30

✓ ✓ ✓ ✓ 68.09
✓ ✓ ✓ ✓ 68.19

✓ ✓ ✓ 68.00

✓ ✓ ✓ ✓ 68.40

Table 2: Ablation studies using TRAR as the backbone
on VQA-v2 val set. SA and TD mean using the Self-
Attention in MCAN and the Top-Down mechanism in
BUTD for co-attention to replace SDCAM, respectively.
KLloss means the loss LM .

method. SDCAM-mid indicates that the interme-
diate features from decoder units are processed
by SDCAM, which is similar to coarse-grained
branch 1 of Figure 2. SDCAM-mid outperforms
SDCAM-last, which demonstrates the effective-
ness of reusing intermediate information. Besides
improving VQA performance, SDCAM has a fur-
ther contribution to enhancing the interpretability
of DCAMN. From the result of Table 1 and Table 2,
we can see that each component (mutual learning,
SDCAM, and the masking strategy) contributes to
performance improvement. Moreover, The mutual
learning in DCAMN will degenerate into the mod-
ules ensemble if the additional loss LM is removed.
By comparing the performance of DCAMN with
or without KLloss, we can determine that DCAMN
is not just a model simply using the modules en-
semble because it enables branches to learn from
each other to improve effectiveness.

Figure 5(a) shows that the VQA accuracy of
SDCAM-last and SDCAM-mid grows and satu-
rates as the number of stacks increases. This proves
that stacking can improve the performance of SD-
CAM and enable it to perform a better fusion.
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4.4 Qualitative Analysis

To explore the inference process of the model and
determine whether the correct answer is obtained
by reasoning based on features rather than exploit-
ing the statistics of the dataset, we visualize the
attention weights of SDCAM in Figure 6.

From the first row, we can see that SDCAM
achieves more accurate attention both on visual re-
gions and on question words. In the first question,
SDCAM locates the "drainage" in the image accu-
rately and gets the correct answer. By analyzing
examples of MCAN and BUTD, we can see that the
models usually get the wrong answers when they
focus on the incorrect visual regions and words.
This demonstrates the ability of SDCAM to find
evidence and help analyze the reasoning process.

Moreover, from the second row, we can observe
that as the number of stacked layers increases, the
interest regions of SDCAM tend to be more ac-
curate, and the distribution of weights tends to be
more focused. In the question "What is being cel-
ebrated?" SDCAM focuses on the people at first,
but after several iterations, the center of attention
shifts to the cake, and the model finally gets the
correct answer. The next question is similar to this
one. These cases prove that SDCAM can focus on
different objects exactly as reasoning requires.

In the third row, we show some examples of
wrong predictions. With the attention map of SD-
CAM, we can know the reason for wrong predic-
tions. For example, in the question "Are there any
boxes in the room?" SDCAM focuses on the printer
that looks like a box and incorrectly answers yes.

4.5 Analysis of the Attention Accuracy

We quantify the accuracy of visual attention of
SDCAM and other methods, as shown in Table 3.
VQS is a dataset in which for each triad (image,

Method B=1 B=2 B=3 B=AU

DFAF (2019) 5.07 11.27 14.18 17.55
MCAN (2019) 15.43 18.77 20.01 23.91
BUTD (2018) 26.46 27.80 26.92 33.97

SDCAM-mid-layer-6 27.72 29.94 29.12 37.15
DCAMN-branch-1 28.05 30.26 29.21 37.38
DCAMN-branch-2 28.29 30.25 28.98 37.18
DCAMN-branch-sum 28.78 30.68 29.45 37.80
SDCAM-mid-layer-4 29.04 30.94 29.79 37.93

Table 3: Attention accuracy comparison of various meth-
ods. B is the number of candidate bounding boxes.
DCAMN-branch-b denotes the attention accuracy of
the last SDCAM in branch b of DCAMN. branch-sum
means attention weights of two branches are added to-
gether. We evaluate methods on the VQS validation set.

question, and answer), there is a corresponding
image segmentation mask depicting the contours
which need attention in the image (Gan et al., 2017).
We calculate the Intersection of Union (IOU) be-
tween the VQS segmentation mask and the atten-
tion mask of DCAMN as the metric to evaluate
the attention accuracy, where the attention mask
of SDCAM is the union of top B bounding boxes
in terms of the attention weights rank. B=AU (au-
tomatically) indicates that the optimal result for
different bounding box numbers is incorporated
into the overall IOU statistics. From Table 3, we
can see that SDCAM has higher attention accuracy
than other methods. The results of two-branches
DCAMN are not better than those of single branch
SDCAM, which indicates that SDCAM attention
accuracy is hardly influenced by mutual learning.

In Figure 5(b), we show the performance of
SDCAM-mid with different stacking numbers n.
With increasing n, the attention accuracy becomes
higher and reaches a maximum at n = 4. This con-
firms that the stacking strategy can help SDCAM
focus on the correct regions.

4.6 Comparison with SOTAs

We compare our DCAMN 1 with the state-of-the-
art methods on the VQA-v2 dataset, and the results
are shown in Table 4. We can see that DCAMN
outperforms other methods and DCAMNmcan and
DCAMNtrar have higher performance than the
baseline MCAN and TRAR, respectively, which
proves the validity of the proposed method. It is
worth noting that for the baseline TRAR, the im-
provement on the number type question is particu-

1Code is available at https://github.com/
HFUTLHD/DCAMN-VQA-master.
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DCAMN MCAN BUTD DCAMN MCAN BUTD

Q: What is being celebrated? Predict: birthday✓ G.T: birthday Q: Is he going to land? Predict: yes✓ G.T: yes

Q: Are there any boxes in the room?
Predict: yes ×

G.T: no

Q: Is the seagull in danger of getting 
entangled in these boat sails?

Predict: yes ×
G.T: no

Q: What color is the truck?
Predict: white ×

G.T: red and white

Predict: yes✓ G.T: yes Predict: no × G.T: yes Predict:no × G.T: yes Predict: 3✓ G.T: 3 Predict: 1 × G.T: 3 Predict: 3✓ G.T: 3

Figure 6: Visualization of attention weights for DCAMN, MCAN and BUTD on visual regions and question words.
We mark the top three bounding boxes based on attention weights rank and label their weights above. The second
row shows the visual attention distribution of the image in the 1st, 3rd, and 6th SDCAM of DCAMN. The third row
shows some incorrect samples.

Test-dev Test-std

Method All Yes/no Num. Others All

BUTD (2018) 65.32 81.82 44.21 56.05 65.67
DFAF (2019) 70.22 86.09 53.32 60.49 70.34
CFR (2021) 72.5 - - - -
MCAN (2019) 70.63 86.82 53.26 60.72 70.90
TRAR (2021) 72.62 88.11 55.33 63.31 72.93

DCAMNmcan 71.77 87.80 53.96 62.12 72.19
DCAMNtrar* 73.67 88.86 58.02 64.22 74.05

Table 4: VQA performance comparison with
state-of-the-art approaches on the VQA-v2 dataset.
DCAMNmcan and DCAMNtrar denote DCAMNs us-
ing MCAN and TRAR as the backbone, respectively. *
means using the 16 × 16 grid features.

larly significant, with a 2.7 point gain. We attribute
such a marked improvement to the fact that the
objects which require counting are more promi-
nent after masking, which facilitates more accurate
modeling in the second branch. From the results
in Table 5, we can see that DCAMN outperforms
the baselines and other methods on the VQA-CPv2
dataset, which proves the effectiveness of DCAMN
against the language priors.

Method Accuracy

BUTD (2018) 39.06
QCG (2018) 39.32
BAN (2018) 40.06
MCAN (2019) 43.29
TRAR (2021) 42.30

DCAMNtrar 43.03
DCAMNmcan 44.09

Table 5: VQA performance comparison with other meth-
ods on VQA-CPv2 test.

5 Conclusion

In this paper, we propose a dual capsule attention
mask network for VQA. DCAMN can process fea-
tures at different granularities to take global infor-
mation into account and focus on critical informa-
tion. Combining the views of the two branches
at different perspectives and granularities can im-
prove the generalization capability of the model
and make more accurate predictions. In addition,
the proposed SDCAM can effectively fuse multi-
modal features and locate evidence, which also en-
hances the interpretation capability of the network.
Experiments show that DCAMN outperforms other
methods in terms of interpretability and accuracy
and achieves new SOTA performance for VQA.
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Abstract

In natural language, referencing objects at dif-
ferent levels of specificity is a fundamental
pragmatic mechanism for efficient communica-
tion in context. We develop a novel communica-
tion game, the hierarchical reference game, to
study the emergence of such reference systems
in artificial agents. We consider a simplified
world, in which concepts are abstractions over
a set of primitive attributes (e.g., color, style,
shape). Depending on how many attributes are
combined, concepts are more general (“circle”)
or more specific (“red dotted circle”). Based
on the context, the agents have to communi-
cate at different levels of this hierarchy. Our
results show that the agents learn to play the
game successfully and can even generalize to
novel concepts. To achieve abstraction, they
use implicit (omitting irrelevant information)
and explicit (indicating that attributes are irrele-
vant) strategies. In addition, the compositional
structure underlying the concept hierarchy is
reflected in the emergent protocols, indicating
that the need to develop hierarchical reference
systems supports the emergence of composi-
tionality.

1 Introduction

Humans excel at using language to convey informa-
tion efficiently in context. A speaker does not have
to communicate every detail. Rather, a listener can
infer the intended meaning of an utterance by as-
suming that sufficient information was provided.
This idea was first explicitly formulated by Grice
(1975) in his conversational maxims, in particular
the Maxim of Quantity: “1. Make your contribu-
tion as informative as is required (for the current
purposes of the exchange). 2. Do not make your
contribution more informative than is required.” An
illustration of this mechanism can be given in the
form of a simple referential context. In a scene with
a red circle and a green triangle, “circle” is enough
information to identify the referent, whereas more

complex scenes may require the speaker to name
both object attributes—shape and color—to allow
for an unambiguous interpretation. The Maxim of
Quantity requires a hierarchical reference system,
that allows the selection of the most appropriate
level of specificity for a given context.

In this paper, we follow the proposal by Higgins
et al. (2018) and define concepts as compositional
abstractions over a set of primitive attributes (e.g.,
color, style, shape), see Figure 1a. The concepts
are maximally specific at the leaf nodes, where all
attribute values are determined. Moving from the
subordinate levels up to the superordinate levels,
the number of concept-defining attribute values de-
creases. Thus, each parent concept is an abstraction
(i.e. a subset) over its children and over the original
set of attribute values. Given this definition of a
concept hierarchy, we use a language emergence
paradigm with artificial agents to study whether a
corresponding reference system can emerge given
a structured perception of the world.

In most language emergence simulations, a
sender and a receiver agent are trained on a refer-
ence game (e.g., Havrylov and Titov, 2017; Lazari-
dou et al., 2018; Rodríguez Luna et al., 2020; Da-
gan et al., 2021), based on the signaling game orig-
inally developed by Lewis (1969). The sender sees
a target object and sends a message to the receiver.
Using that message, the receiver tries to identify the
target among a set of distractor objects. Crucially,
in the current form, reference games completely
ignore that different contexts may require referen-
tial expressions at different levels of abstraction.
Having no access to the distractors, the sender can-
not choose relevant object attributes in a context-
dependent way. Moreover, random sampling of
the distractors typically encourages the sender to
communicate all object attributes. Therefore, the
standard reference game cannot account for the
emergence of hierarchical concepts in communica-
tion.
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Figure 1: a) Example of a concept hierarchy. Shown are all attribute values and the concept hierarchy constructed
from the concept “red filled circle”. b) Example languages for the concept hierarchy in part a). Possible abstraction
strategies include holistic and compositional languages. In compositional languages, abstraction can further be
indicated implicitly or explicitly.

We develop a hierarchical reference game to ad-
dress this shortcoming. Instead of an object, the
sender receives a concept as input. The concept
is defined by an attribute vector (object) and a rel-
evance vector (context). The relevance vector in-
dicates for each attribute whether it is relevant in
the current context or not. Based on the sender’s
message, the receiver must identify an object that
instantiates the target concept among a set of dis-
tractors. The input concepts have a compositional
and hierarchical structure. While the game is de-
signed to encourage communication at different
levels of abstraction, it does not regulate how this
abstraction is realized; in particular, there is no ex-
plicit pressure on the emergent language to reflect
the compositional input structure.

First, we evaluate if the agents can successfully
play the game, i.e. communicate specific contextu-
ally relevant object attributes. Second, to measure
whether the agents’ strategies are systematic, we
test whether they can generalize to novel concepts,
and also whether they consistently use the same
expressions for the same concepts at all levels of
abstraction. Third, we investigate the emerging
protocols to study the mechanisms by which sys-
tematic abstraction is achieved, see Figure 1b. In
natural language, there is holistic abstraction as in
“Dalmatian” ⊆ “dog” ⊆ “animal”; but also compo-
sitional abstraction as in “filled red circle” ⊆ “red
circle” ⊆ “circle”. Abstraction can further be im-
plicit, by omitting irrelevant attributes, and explicit,
by indicating that certain attributes are irrelevant
(as in saying “a circle of any color”). We evaluate
which, if any, of these abstraction strategies are
used by the agents.

Our work makes several contributions. We de-
velop the hierarchical reference game and show
that it can be used to model the emergence of ref-

erential expressions at different levels of abstrac-
tion. We also provide novel metrics to examine
how the agents achieve abstraction. Working with
different data sets, i.e. different concept hierar-
chies, allows us to disentangle data set specific and
general effects. Not least, our results suggest that
communication about concept hierarchies supports
the emergence of compositionality.

2 Related work

Referring expression generation (REG). There
has been a long history of research on understand-
ing how people generate referring expressions, dat-
ing back to Winograd (1972). The most influential
work on REG in both the eighties (Appelt, 1985;
Appelt and Kronfeld, 1987) and nineties (Reiter
and Dale, 1992; Dale and Reiter, 1995) integrated
the Gricean maxims into their systems. The latter
developed the iterative algorithm, which was used
and extended to model various aspects of REG
(Krahmer and van Deemter, 2012). Like Dale and
Reiter (1995), we define objects as sets of attribute-
value pairs and consider the subset of referring
expressions whose single purpose is to identify an
object. However, our main focus is not to generate
human-like referring expressions but rather to build
artificial agents capable of hierarchical reference.
Hence, we ignore many effects that play a role in
human REG, for example basic level categories
(Rosch and Mervis, 1975; Rosch et al., 1976).

By now, several large-scale data sets of refer-
ring expressions for complex real-world images
have been collected and are used to train deep
neural networks (DNNs) (e.g., Kazemzadeh et al.,
2014; Mao et al., 2016; Yu et al., 2016; Luo and
Shakhnarovich, 2017; Yu et al., 2018; Luo et al.,
2020). The data sets are collected in a reference
game setup: one participant has to refer to a target
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entity in a given image, and the other participant
has to identify the target. Models are often trained
on both components, expression generation and
comprehension (e.g. Mao et al., 2016; Luo and
Shakhnarovich, 2017). Several REG models try
to integrate deep learning with computational ac-
counts of pragmatic reasoning (e.g., Monroe and
Potts, 2015; Andreas and Klein, 2016; Le et al.,
2022), such as the Rational Speech Act framework
(Frank and Goodman, 2012). Our model also im-
plements expression generation (sender) and com-
prehension (receiver) using DNNs but hard codes
pragmatic inferences in the relevance vector. Most
importantly, the agents are not trained on a labeled
data set but develop their own referring expressions
in a language emergence game.

Emergent multi-agent communication. Lan-
guage emergence simulations are popular in evo-
lutionary linguistics as well as AI research. In
evolutionary linguistics, they are used to study the
origins and evolution of human and animal commu-
nication (e.g., Cangelosi and Parisi, 2002; Kirby,
2002; Wagner et al., 2003). In AI research, they
are used with the aim of building artificial agents
capable of flexible and goal-directed language use,
which arguably relies on grounding language in
interaction (e.g., Steels, 2001, 2003; Lazaridou and
Baroni, 2020).

Starting with Foerster et al. (2016) and Lazari-
dou et al. (2017), there has been an increasing inter-
est in language emergence simulations with DNN
agents (for a review, see Lazaridou and Baroni,
2020). These approaches stand in contrast to the
currently dominant DNN models in NLP, which
learn passively by being exposed to large amounts
of text (Bisk et al., 2020). As discussed above, in
many implementations, hierarchical reference sys-
tems cannot emerge because the sender does not
have access to information about the context. Even
in the rare cases where it does (e.g., Lazaridou
et al., 2017; Dessi et al., 2021), the emergence of
hierarchical reference has not yet been investigated.

3 General setup

3.1 Concept representation

We use symbolic, disentangled input representa-
tions. A concept is composed of an object vector
and a relevance vector. Objects have n attributes

and each attribute can take on k values.1 The rele-
vance vector r ∈ {0, 1}n indicates which attributes
are relevant (1) and which ones are irrelevant (0).
E.g., if the sender’s input is (4, 3, 1)(1, 0, 0), the
concept in question is (4, _, _) := {(4, x, y)|x, y ∈
N, 1 ≤ x, y ≤ k}. Object (4, 3, 1) could instanti-
ate the attributes shape, color, and style with spe-
cific values such as circle, red, and filled (see Figure
1a). Relevance vector (1, 0, 0) would then indicate
that only the first attribute value, circle, is relevant
and must be communicated.

3.2 Hierarchical reference game

Like the classical reference game, the hierarchical
reference game is played by a sender, S, and a
receiver, R. However, rather than communicating
the input object as it is, the sender must abstract
a concept from this object based on the relevance
vector. One round of the hierarchical reference
game proceeds as follows (see Figure 2):

1. An object, o, and a relevance vector, r, are
sampled randomly and passed to S.

2. Based on this input, S generates a message,m.
The message is a concatenation of symbols
from vocabulary V , si ∈ V , and has maximal
length L, such that m = (si)i≤L.

3. R receives the message m, as well as a set of
objects containing one target, t, and several
distractors. t has the same attribute values
as the input object o for relevant attributes
(as defined by r), while the values of irrel-
evant attributes are sampled randomly. The
distractors are constructed by sampling object
instances of concepts that would arise from o
in combination with other relevance vectors
than r.

4. Based on m, R selects one object among tar-
get and distractors.

By our choice of distractors, we simulate an en-
vironment in which the relevance vector matches
pragmatic needs: the speaker tries to be as spe-
cific as necessary in a given context. To further
discourage communication of irrelevant attributes,
we choose distractors that are more abstract than
the target concept but still similar, by replacing ex-
actly one 1 (relevant) in the relevance vector with
a 0 (irrelevant). Additional experiments, where we
sample distractors with equal probability from all

1We present objects as n-hot encodings to the agents, such
that each object o ∈ {0, 1}nk.
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Figure 2: Schematic illustration of the hierarchical ref-
erence game.

levels of the concept hierarchy, can be found in
Appendix A.2

3.3 Architecture
Both agents are implemented as single-layer GRUs.
The sender input is processed by two dense layers,
one receiving the object vector and one the rele-
vance vector, followed by a dense layer mapping
a concatenation of these two representations to the
sender’s initial hidden state. The message is pro-
duced incrementally. At each time step, the sender
generates a probability distribution over the vocab-
ulary which is used to sample a symbol from the
Gumbel-softmax distribution (Jang et al., 2017).
The GS distribution is a continuous distribution
that approximates categorical samples, and whose
parameter gradients can be easily computed via a
reparameterization trick. The receiver processes
the incoming message. An additional dense layer
maps target and distractor objects onto embeddings.
These embeddings have the same dimensionality as
the receiver’s hidden state. The receiver’s selection
probabilities are determined by applying a softmax
function to the dot products between object embed-
dings and hidden state.

4 Experiments

Our implementation is based on PyTorch,
and uses the EGG toolkit (Kharitonov et al.,
2019).3 Our code and results are available
at https://github.com/XeniaOhmer/
hierarchical_reference_game.

4.1 Data sets
In order to investigate how the number of attributes
and the number of values per attribute influence

2In that case, the agents still learn to play the game success-
fully and to form abstract concepts but they have a stronger
tendency to convey also irrelevant information.

3https://github.com/facebookresearch/
EGG

the formation of abstract concepts, we use a set of
different data sets, D(n, k) := {(m1, . . . ,mn) |
mi ∈ Nk} with Nk = {1, ..., k} (see Table 1).

k = 4 k = 8 k = 16

n = 3 D(3, 4) D(3, 8) D(3, 16)
n = 4 D(4, 4) D(4, 8)
n = 5 D(5, 4)

Table 1: Input data sets with n attributes and k values.
Data sets are labeled as D(n, k).

We sample relevance vectors with equal prob-
ability from each level of the concept hierarchy.4

We repeat that procedure until there are 10 samples
for each input object and each number of relevant
attributes in the data set. In addition, we create
10 distractors per sample. We reserve 20% of the
data for zero-shot testing (see Section 4.3), and
split the remaining data randomly into training and
validation sets at a ratio of 0.75/0.25.

4.2 Hyperparameter selection and training
In our simulations there is always exactly one target
object for the receiver, i.e. only that object—and
none of the distractors—is an instance of the target
concept. The agents minimize the cross-entropy
loss between target and selection. During training,
a message is given by the GS distributions across
symbols, whereas during testing the argmax values
are used. Hence, it is possible to jointly update the
weights of sender and receiver by backpropagating
through the approximated “discrete” messages.

We conducted a hyperparameter search to iden-
tify model and training parameters leading to high
performance on the validation set for the range of
different data sets we use (for details see Appendix
B). Agents have an embedding layer with 128 units
and a hidden layer with 256 units. The discrete mes-
sages are approximated using GS with an initial
temperature of 1.5, decaying exponentially at a rate
of 0.99. We train for 300 epochs using Adam opti-
mizer with batch size 32 and learning rate 0.0005.
For all data sets, we use the number of attributes as
maximal message length L. The minimal vocabu-
lary sizes in Table 2 allow the sender to generate
a distinct message for each input concept. They
correspond to the number of attribute values plus

4If relevance vectors are sampled uniformly from the set of
all relevance vectors, the amount of 0 and 1 entries follows a
binomial distribution. Sampling relevance vectors with equal
probability from each level of the hierarchy ensures that all
abstraction levels occur equally often.
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one additional symbol to indicate irrelevance. The
agents have an additional end-of-sequence symbol
to terminate the messages before L is reached. We
run our experiments with a factor f = 3 of the
minimal vocabulary size. Additional experiments
with other values for f be found in Appendix A.5

We conduct 5 runs per data set.

k = 4 k = 8 k = 16

n = 3 5 9 17
n = 4 5 9
n = 5 5

Table 2: Minimal vocab size for each data set.

4.3 Evaluation

We are interested in different aspects of the emer-
gent language, and use existing as well as novel
metrics to evaluate these.

Zero-shot evaluation. We generate two differ-
ent zero-shot test sets. The first test set is used
to evaluate whether the agents can generalize to
novel objects. It contains combinations of attribute
values that do not occur in the training and vali-
dation data, and is reserved for testing after the
data generation process. The second test set is used
to evaluate whether the agents can generalize to
novel abstractions. We withhold abstractions from
one value per attribute from the training data. The
agents are trained from scratch on the remaining
data and evaluated on the held-out data.

Message consistency and effectiveness. To mea-
sure whether agents consistently use the same
messages for the same concepts we employ
information-theoretic metrics. Let C be the set
of concepts, and M be the set of messages. The
conditional entropy of messages given concepts,

H(M | C) = −
∑

c∈C,m∈M
p(c,m) log

p(c,m)

p(c)
,

measures how much uncertainty about the mes-
sages remains after knowing the concepts. Low
values indicate that the agents consistently use the
same messages for the same concepts, i.e. the lan-
guage does not contain many synonymous expres-
sions. H(C | M), in turn, measures how much

5Smaller factors make the task more difficult and perfor-
mance decreases, while larger factors do not yield any further
improvements.

uncertainty about the concepts remains after know-
ing the messages and should therefore negatively
correlate with the agents’ performance. Low val-
ues indicate that agents effectively use messages
that uniquely identify the target concept, i.e. the
language does not contain many polysemous ex-
pressions. On this basis, we define a consistency
an effectiveness score, using the marginal entropies
H(C) andH(M) for normalization:

consistency(C,M) = 1− H(M | C)H(M)

effectiveness(C,M) = 1− H(C |M)

H(C) .

Finally, the normalized mutual information,

NI(C,M) =
I(C,M)

0.5 ·
(
H(C) +H(M)

)

=
H(M)−H(M | C)

0.5 ·
(
H(C) +H(M)

) ,

is a symmetric measure that combines the two con-
ditional entropies into one score.

Symbol redundancy. We develop this metric to
approximate whether agents repeat information
about attribute values in their messages. It assumes
that each attribute value, av (e.g a=color, av=red),
is encoded by a specific symbol and counts how
often that symbol is repeated given that av is being
encoded. The preferred symbol for each attribute
value is defined sav := argmaxs I(av, s), where
we code for each message whether s occurs at least
once (the position of s is irrelevant). Symbol re-
dundancy is defined as the average number of oc-
currences of sav per message given that av is part of
the target concept.

Topographic similarity. Topographic similarity
(topsim) measures to what degree similar inputs
are described by similar messages and is frequently
used as a measure of compositionality. The metric
calculates the pairwise distances between the in-
puts, as well as the pairwise distances between the
corresponding messages, and then correlates the
two distance vectors (Brighton and Kirby, 2006).
In the hierarchical reference game, we need to cal-
culate the topographic similarity between messages
and concepts. We use an n-hot encoding of the con-
cepts (n being the number of attributes) and treat
abstraction from each attribute as an additional at-
tribute value. If an attribute is relevant, that value
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is zero (no abstraction), if an attribute is irrelevant
this value is one (abstraction) and overwrites the
original attribute value. Assuming that each at-
tribute can take on k = 4 different values, the input
encoding for the example in Figure 2 becomes:

sender input : [ 4 3 1 ] [ 1 0 0 ] (object + relevance)

encoding : [ 0 0 0 1 0 0 0 0 0 1 0 0 0 01 ]

Analogously to Lazaridou et al. (2018), we calcu-
late the pairwise distances of the inputs using the
cosine distance, and the pairwise distances between
the messages using the edit distance. The topsim
score is calculated as the Spearman correlation be-
tween the two resulting distance vectors.

Disentanglement. Positional disentanglement
(posdis) and bag-of-symbols disentanglement (bos-
dis) are used to measure different types of com-
positionality (Chaabouni et al., 2020). For both
metrics, concepts are encoded as for the topsim
score. Posdis measures whether symbols in spe-
cific positions encode the values of a specific at-
tribute, i.e. whether the compositional structure is
order-dependent. Let sj be the j-th symbol of a
message, then posdis is defined as

posdis =
1

L

L∑

j=1

I(sj , aj1)− I(sj , aj2)
H(s) ,

where L is the maximal message length, and aj1 and
aj2 are the attributes that achieve the highest and
second-highest mutual information with sj (aj1 =
argmaxa I(sj , a); aj2 = argmax

a̸=aj1
I(sj , a)).

Bosdis measures whether symbols refer to specific
attribute values independent of their position. In
that case, the language is permutation-invariant and
only symbol counts matter. Let nj be a counter of
the j-th symbol in a message, then bosdis is defined
as

bosdis =
1

|V |

|V |∑

j=1

I(nj , aj1)− I(nj , aj2)
H(nj)

,

where V is the vocabulary size, and aj1 and aj2
achieve the highest and the second-highest mutual
information with nj .

5 Results

In this section, quantitative and aggregated results
will be presented. Random examples of concepts

and messages, together with a qualitative analysis
can be found in Appendix D. Appendix D.1 shows
example mappings between abstract concepts and
messages and Appendix D.2 highlights different
abstraction strategies.

5.1 Performance and generalization

Figure 3 shows the mean accuracies on training,
validation, and zero-shot test sets for all data sets.
Training accuracies (top left) and validation accu-
racies (top right) are very high for each data set,
considering that chance performance is < 10%.
Thus, the agents learn to refer to objects at differ-
ent levels of abstraction, and their strategies do not
overfit the training data.

Figure 3: Mean accuracies across five runs for each
of the training data sets. Shown are accuracies on the
training set, the validation set, and the two zero-shot test
sets.

Accuracies for novel combinations of attribute
values (bottom left) are consistently higher than ac-
curacies for novel combinations of abstraction and
attribute value (bottom right), except for D(3, 8).
Accordingly, generalizing to novel abstractions of
attribute values is harder than generalizing to novel
objects. Both types of generalization tend to im-
prove with the number of attributes as well as the
number of values, which may be due to an increase
in input space size (Chaabouni et al., 2020). Similar
to training and validation accuracies, generalization
to novel objects reaches almost perfect accuracies,
if there are many attributes. While generalization
to novel abstractions is more difficult, accuracies
strongly exceed chance performance and are still
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very high for D(3, 16) with 84.76% and D(4, 8)
with 94.38%. A large number of attribute values
seems to be more important for generalizing to
novel abstractions than for generalizing to novel
objects, possibly because it is more useful to learn
systematic abstraction if there are many attribute
values. A strategy that abstracts from a certain
attribute can be applied to more concepts if that at-
tribute has many values (i.e. has more children on
the concept hierarchy). Overall, the agents develop
hierarchical reference systems and, with enough
attributes and values, these systems generalize well
to novel objects and novel abstractions.

5.2 Mapping between concepts and messages

We determine the structure of correspondences be-
tween messages and concepts. Figure 4 shows the
mean effectiveness and consistency scores. The ef-
fectiveness score measures how much information
about the target concept is contained in the mes-
sage. It follows that the agents can only achieve
high performance if the language is effective. The
results show this interrelation, in that the pattern
of effectiveness scores matches the pattern of train-
ing and validation accuracies across the different
data sets. The consistency score, on the other hand,
measures whether a concept is consistently mapped
onto the same message, and high consistency is not
necessary to achieve high performance. The score
is higher for a larger number of attribute values,
supporting the finding above that many values per
attribute increase the pressure to develop system-
atic abstraction strategies.

Figure 4: Mean effectiveness and consistency scores.
We display the mean scores across five runs for each of
the training data sets.

For each data set, the normalized mutual infor-
mation lies between the effectiveness and the con-
sistency score. It is generally high (0.902 ≤ NI ≤
0.945), indicating that messages and concepts are
strongly predictive of each other. A one-to-one cor-

respondence between words and messages is not
enforced by the setup because the message space is
far larger than the concept space. The high entropy
scores mean that a systematic mapping between
concepts and messages, and therefore also system-
atic abstraction emerge nonetheless.

To analyze where the languages deviate from a
one-to-one correspondence between concepts and
messages, we consider the relation between en-
tropy scores and level of abstraction (see Figure 5).
The mutual information between messages and con-
cepts is higher for more concrete concepts. This ef-
fect is largely driven by an increase in consistency,
while effectiveness is relatively constant across all
levels of abstraction. Thus, deviations from the
one-to-one correspondence between concepts and
messages occur mostly for abstract concepts. These
deviations arise because different messages map to
the same concept, not vice versa. In other words,
the languages contain synonymy but no polysemy.

Figure 5: Mean entropy scores across all data sets for
different numbers of relevant attributes: from left to
right concepts become more concrete. Error bars indi-
cate bootstrapped 95% confidence intervals.

5.3 Linguistic abstraction strategies
Here, we look more closely at the types of internal
message structures used to create a hierarchical
reference system.

Implicit versus explicit abstraction. In natural
language, there are implicit and explicit ways of
communicating that attributes are irrelevant. A
commonplace implicit strategy is to simply omit in-
formation about irrelevant attributes, e.g. one might
say “car” rather than “red car” if sufficient. Since
the maximal message length corresponds to the
maximal number of relevant attributes, the agents
could achieve a similar effect by using shorter mes-
sages for more abstract concepts or by using mes-
sages that contain more redundancies. Figure 6
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shows message length and symbol redundancy av-
eraged across data sets for each level of abstraction.
The agents indeed use implicit abstraction strate-
gies and this is captured by both metrics. The mes-
sage length decreases for more abstract concepts
while symbol redundancy increases. For abstract
concepts, symbols that encode irrelevant attributes
are either omitted or replaced by repetitions of sym-
bols encoding relevant information.

Figure 6: Average message length and symbol redun-
dancy across data sets for different numbers of relevant
attributes: from left to right concepts become more con-
crete.

Explicit abstraction would mean that the agents
dedicate symbols to express that information is
irrelevant. Such abstraction operators should co-
occur frequently with abstract concepts. We calcu-
late the average number of symbol occurrences per
message for each level of abstraction. We rank the
symbols by their occurrences for the most abstract
concepts to identify candidate symbols. Figure 7
shows the results for the top ten candidates, aver-
aging multiple runs for each ranked symbol. The
ranking is visible in the left-most columns, where
the number of occurrences per message decreases
monotonously from the highest to the lowest rank.
Strikingly, for all data sets except D(3, 4) only 1–3
symbols occur very frequently together with very
abstract concepts and the occurrence values de-
crease rapidly when going further down the ranks.
Importantly, these symbols do not occur frequently
at every level of the concept hierarchy. Rather, their
usage decreases continuously as concepts become
more concrete, as indicated by the gradient from
left to right in the top rows. Thus, it seems likely
that the agents use one or a few symbols to explic-
itly communicate information about the irrelevance
of one or more attributes. The formation of ab-
straction operators is surprising since the message
space is large enough to encode irrelevance differ-
ently, for example by combining symbols or using

different symbols for different attributes.

Figure 7: Average number of symbol occurrences per
message for each level of abstraction. Symbols are
ranked based on their occurrences for the most abstract
concepts (i.e. with the fewest relevant attributes). Re-
sults are averaged across runs based on ranked symbols
and shown only for the top ten ranks.

Compositional versus holistic abstraction. The
hierarchical reference game requires the agents to
repeatedly communicate the same attribute values
but for different concepts—different because of the
values of other attributes (traversing the hierarchy
horizontally) or because of the level of abstrac-
tion (traversing the hierarchy vertically). Although
the agents could develop holistic protocols, this
repeated reference across contexts might encour-
age them to develop “reusable” mappings from
attribute values to symbols, i.e. compositional ex-
pressions.

We use the different compositionality metrics to
quantify the degree and nature of compositionality
in the messages. Mean scores for each metric and
data set can be found in Appendix C. The mean
topsim score across data sets is 0.424. The score is
even higher, with 0.501, if only concrete concepts
are taken into account (as in a standard reference
game). The mean posdis score across data sets is
0.115 and the mean bosdis score 0.406. So, there
is compositional structure in the messages, and
the agents prefer to use specific symbols per at-
tribute value, independent of their position in the
messages.

In additional experiments (see Appendix A), we
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trained the agents on D(4, 8) with different vocab-
ulary sizes, using factors f ∈ {1, 2, 3, 4} of the
minimal vocab size in Table 2. While a fully po-
sitional encoding can be achieved with a smaller
vocabulary (f = 1), a fully position-independent
encoding requires a larger vocabulary. Mean train-
ing accuracies for f = 1 are 0.936, and for all other
factors > 0.99. Figure 8 shows the compositional-
ity scores for each factor. Surprisingly, all scores
tend to increase with the vocabulary size, regard-
less of whether the corresponding type of compo-
sitionality requires a large vocabulary size or not.
Usually, vocabulary size is reduced to increase the
pressure for compositional solutions (Kottur et al.,
2017). In our case, compositionality probably in-
creases with vocabulary size because the emerging
compositional structure is largely non-positional.

Figure 8: Boxplots of the compositionality scores for
D(4, 8) and different vocabulary sizes.

6 Conclusion

In this work, we developed a hierarchical reference
game to study the emergence of hierarchical refer-
ence systems. In the game, concepts are defined
as abstractions over a set of attributes. To refer
to these concepts, our agents developed abstract
terms and used these terms systematically, in the
sense that they could generalize to novel objects
and novel abstractions. It seems that, aside from
more obvious strategies such as leaving out irrele-
vant information, the agents developed abstraction
operators to explicitly indicate the irrelevance of
certain attributes. Even more surprisingly, for some
data sets, they used the same few symbols to indi-
cate irrelevance across attributes, rather than a ded-
icated symbol per attribute. While the game design
encourages the emergence of abstract concepts, the
use of specific abstraction operators emerged with-
out any explicit pressure.

In addition, our results suggest that composi-
tional language may emerge as part of a hierar-
chical reference strategy. In the classical reference
game, the sender typically tries to communicate the
union of all object attributes. Without additional
pressures, the emerging languages are not composi-
tional (Kottur et al., 2017; van der Wal et al., 2020;
Dagan et al., 2021). In the hierarchical reference
game, in contrast, the sender must pick out specific
attributes for communication, which potentially
stimulates disentanglement. This interpretation is
in line with the finding that the emergence of com-
positionality is supported by an increasing number
of relevant events that can be referred to (Nowak
et al., 2000). In the hierarchical reference game,
cross-situational reuse is increased, as reference to
attribute values occurs not only across objects but
also across levels of abstraction.

We envision two main directions for future work.
First, we would like to implement a hierarchical
reference game with raw visual inputs instead of
symbolic input vectors. Higgins et al. (2018) have
developed a neural network (SCAN) that not only
learns disentangled visual primitives in an unsuper-
vised manner but also abstractions over such primi-
tives from very few symbol-image pairs that apply
to a particular concept. Combining our language
emergence game with such a network would allow
us to study the simultaneous emergence of abstract
visual and linguistic concepts, as well as interac-
tions between these two processes. Second, instead
of hard-coding the relevance vector, the relevance
of certain attributes should arise from the agents’
intentions. Ideally, the agents would play a more
complex game and determine themselves which
properties of the environment are relevant for their
objectives in the current context. Besides, sender
and receiver could use pragmatic reasoning (as for
example in Choi et al., 2018; Kang et al., 2020;
Yuan et al., 2020) to encode and decode which
attributes should be emphasized to communicate
certain concepts.
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A Varying distractor sampling and vocab
size

A.1 Setup
We conduct control experiments, changing the vo-
cabulary size, and changing the distractor sampling
strategy. In the original experiments, the message
space is much larger than the space of concepts
that need to be communicated. By reducing the
vocabulary size, we aim to test whether a smaller
message space increases the probability of one-to-
one associations between concepts and messages.
In addition, the distractors are sampled from con-
cepts that are one level more abstract than the target
concept on the concept hierarchy. Here, we relax
this assumption by sampling distractors from all
levels of the concept hierarchy with equal probabil-
ity. Together, these additional experiments allow us
to extend our results to different vocabulary sizes,
and more general distractor distributions.

We focus on a single data set. We use the data set
with four attributes and eight values per attribute,
D(4, 8), which achieved the highest mean valida-
tion accuracies and normalized mutual information
scores in the original setup. In the original ex-
periments, we used a factor of 3 of the minimal
vocabulary size 9 (8 for each value plus 1 for cod-
ing irrelevance). Now, we run the same experiment
for factors of 1, 2, and 4; and in addition, we repeat
the experiment for each factor with the alternative
sampling strategy. Again, we conduct five runs for
each factor and sampling strategy.

A.2 Results
Figure 9 shows the accuracy scores for the different
vocabulary size factors, and the different distractor
sampling strategies, where unbalanced refers to
the original strategy of selecting distractors from
more abstract concepts, and balanced refers to the
control strategy of sampling distractors with equal
probability from all levels of abstraction. For both
sampling strategies, performance is higher if the vo-
cabulary size is large, likely because having a larger
message space increases the number of solutions.
A larger vocabulary size seems to be particularly
important if distractor sampling is balanced.

The original, unbalanced sampling strategy
achieves higher performance than the control strat-
egy on all data sets. So, choosing distractors very
similar to the target facilitates learning, and proba-
bly also abstraction as suggested by the zero-shot
evaluation with new abstractions. To make sure that

Figure 9: Mean accuracies for the control experiments
across five runs, on the training data, the validation
data, and the two zero-shot test sets. The y-axis gives
the factor used to determine the vocabulary size, vocab
size = factor × minimal vocab size, and the x-axis in-
dicates whether distractors are sampled from concepts
that are one level more abstract than the target concept
(unbalanced), or sampled from all levels of the concept
hierarchy with equal probability (balanced).

the unbalanced sampling strategy only facilitates
learning but does not make the task easier, we run
an ablation test. We evaluate each sender-receiver
pair on the validation set of the sampling strategy
that was not used for training. For all vocabulary
sizes and runs, the agents perform better on the bal-
anced validation set compared to the unbalanced
validation set, regardless of the sampling method
used during training. In conclusion, sampling dis-
tractor concepts that are very similar to the target
concept makes the task more difficult but improves
learning by increasing the pressure to communi-
cate only relevant aspects, and thereby to develop
abstract concepts.

These results are confirmed by the entropy-based
evaluation metrics shown in Figure 10. Effective-
ness and consistency are consistently lower for the
balanced distractor sampling strategy. However,
while the level of abstraction does not have a strong
effect on the difference in effectiveness scores, the
difference in consistency scores decreases contin-
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uously with the level of specificity. In line with
the generalization ability, this suggests that the un-
balanced sampling strategy supports the formation
of abstract concepts by reducing the probability of
successful target selection if irrelevant attributes
are communicated.

Figure 10: Effectiveness and consistency scores for
balanced and unbalanced distractor sampling, separated
for each level of abstraction. Distributions show the
results across the different vocabulary sizes and runs.
The level of abstraction is given on the x-axis: from left
to right the concepts become more concrete.

B Hyperparameter search

We ran our hyperparameter search for the three data
sets spanning up the space of all data sets we use,
D(3, 4), D(5, 4), and D(3, 16) (see Table 1). We
expected that hyperparameters working across all
these extreme cases should also work for interpola-
tions between them. Certain hyperparameters were
fixed across the search. We used GRUs with Adam
optimizer, and a GS temperature of 1.5 with an
exponential decay rate. Message length cost was
0, and vocab size factor 3. We varied the following
hyperparameters:

• batch size: {32, 64, 128}

• learning rate: {0.0005, 0.001}

• hidden layer dimension: {128, 256}

• embedding layer dimension:
always half of the hidden layer dimension

• GS temperature decay rate: {0.97, 0.99}

For the grid search we stopped the training process
after 60 epochs. All results can be found in our
repository.

C Compositionality scores

Figure 11: Mean compositionality scores per data set.

D Qualitative examples

This section provides qualitative examples of
concept-message pairs. Examples were randomly
selected from the first run of each data set. Interest-
ingly, this microcosm of random examples reflects
all communication patterns that were identified in
the quantitative analyses.

D.1 Mappings between concepts and messages

We are interested in whether the agents use the
same message to refer to abstract concepts regard-
less of how these concepts are instantiated. Figure
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12 shows the messages for a randomly selected con-
cept at the highest level of abstraction (only one
attribute is relevant), instantiated by different at-
tribute vectors for each data set. Shown are twenty
randomly selected instances each, and the exam-
ples are sorted by message.

Abstraction is relatively systematic. For all data
sets, the agents group together different concept
instances in their messages. For some data sets,
the instances are grouped under very few mes-
sages. For example, the sender trained on D(4, 4)
groups together all example instances of the con-
cept (_, 1, _, _) under just two different messages
((2, 1, 2, 0) and (2, 2, 1, 2)). Across data sets, 2, 3,
5, or 7 different messages are used to describe the
20 example instances. In line with the quantitative
results, there is no perfect one-to-one correspon-
dence between abstract concepts and messages.
How many different messages are used also de-
pends on the abstraction strategy (see Appendix
D.2).

D.2 Abstraction strategies

To visualize the agents’ abstraction strategies, we
randomly selected an object (i.e. attribute vector)
for each data set, and show the messages for that
object across the concept hierarchy, so for each
abstraction in the training set. Because of their
large number the examples are split into two figures,
Figure 13 (D(3, 4), D(3, 8), and D(3, 16)) and
Figure 14 (D(4, 4), D(4, 8), and D(5, 4)), which
will be analyzed together. The messages will first
be analyzed for compositional structure, and then
for implicit versus explicit abstraction.

Compositional versus holistic abstraction. For
some data sets, the agents seem to use trivially com-
positional messages, i.e. messages whose meaning
corresponds to the intersection of meanings of their
constituents. An unambiguous pattern can be iden-
tified for D(3, 4) and D(4, 8), where a mapping
between each attribute value and a specific symbol
can be established (color-coded in orange, green,
blue, and purple). In the case of data set D(4, 8),
the number of additional “filler” symbols increases
with the level of abstraction (color-coded in red).
These might serve as abstraction operators (see
below). For other data sets, like D(5, 4), such map-
pings can only be identified for specific attribute
values (color-coded in purple). Here, symbol 1 oc-
curs if and only if the third attribute has the value 3.
For all identified mappings, the symbols are used to

encode specific attribute values relatively indepen-
dent of their position, which is in line with the high
bosdis and low posdis scores in our quantitative
analyses.

For the remaining data sets, the messages are not
unstructured but no one-to-one correspondences
can be identified. For example, looking at the mes-
sages for D(3, 16), symbol 26 might encode value
5 at position 1 for the most concrete and most ab-
stract concepts but is not used at the intermediate
level of abstraction. So, while the abstraction strate-
gies are almost perfectly compositional in some
cases, there are large variations between data sets,
and potentially also runs and concepts.

Implicit versus explicit abstraction. The exam-
ples show instances of implicit and explicit abstrac-
tion strategies. Implicit abstraction is identified
through shorter messages and more symbol redun-
dancy for higher levels of abstraction; explicit ab-
straction through the use of abstraction operators.
At least for some data sets, the messages tend to be-
come shorter with increasing abstraction. E.g. mes-
sages become shorter in the case of D(3, 16) and
D(4, 4) (the end-of-sequence symbol 0 is color-
coded in gray).

Symbol redundancy and abstraction operators
can best be identified in reference systems with
compositional structure. D(3, 4) is a perfect exam-
ple of increasing symbol redundancy. Each symbol
corresponds to a specific attribute value, and sym-
bols are repeated to fill up the messages for more
abstract concepts. E.g., the concept (1, 2, 2) is en-
coded as (5, 12, 11), the concept (1, _, 2) as (5, 12,
12), and the concept (1, _, _) as (12, 12, 12).
D(4, 8), on the other hand, is a perfect exam-

ple of explicit abstraction. As messages become
more abstract the frequency of symbols that do not
encode an attribute value ({3, 10, 11, 13, 14, 16},
marked in red) increases. Note that symbol 3 seems
to serve both roles, encoding an attribute value as
well as encoding abstractions. To confirm the intu-
ition that these additional symbols serve as abstrac-
tion operators, we look at other abstract concepts
for D(4, 8). Figure 15 shows the messages for 20
random examples. Indeed, at least two of the ab-
straction operators occur in each message. Only
symbol 11 does not occur and might serve a dif-
ferent function. The quantitative analyses suggest
that usually less abstraction operators are used than
in this specific example. Less compositional pro-
tocols may also use explicit abstraction operators
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Figure 12: Example messages for one abstract concept per data set. For each data set, we randomly select a concept
at the highest level of abstraction. We then randomly select 20 instances of that concept in the training data and
display these instances together with the corresponding messages (from the first run). The same messages are
grouped together in colored boxes.

or symbol redundancy but these cannot easily be
identified in a qualitative analysis.
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Figure 13: Messages for a random object at each level of abstraction available in the training data. The corresponding
messages are shown for the first run of each data set: D(3, 4), D(3, 8), and D(3, 16). The highlighted patterns are
explained in the text.
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Figure 14: Messages for a random object at each level of abstraction available in the training data. The corresponding
messages are shown for the first run of each data set: D(4, 4), D(4, 8), and D(5, 4). The highlighted patterns are
explained in the text.
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Figure 15: Messages for 20 randomly selected concepts
at the highest level of abstraction, for the first run of
D(4, 8). The highlighted patterns are explained in the
text.
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Abstract

A scene graph is a semantic representation that
expresses the objects, attributes, and relation-
ships between objects in a scene. Scene graphs
play an important role in many cross modality
tasks, as they are able to capture the interac-
tions between images and texts. In this paper,
we focus on scene graph modification (SGM),
where the system is required to learn how to up-
date an existing scene graph based on a natural
language query. Unlike previous approaches
that rebuilt the entire scene graph, we frame
SGM as a graph expansion task by introducing
the incremental structure expanding (ISE). ISE
constructs the target graph by incrementally
expanding the source graph without changing
the unmodified structure. Based on ISE, we
further propose a model that iterates between
nodes prediction and edges prediction, infer-
ring more accurate and harmonious expansion
decisions progressively. In addition, we con-
struct a challenging dataset that contains more
complicated queries and larger scene graphs
than existing datasets. Experiments on four
benchmarks demonstrate the effectiveness of
our approach, which surpasses the previous
state-of-the-art model by large margins. Source
code and data are available1.

1 Introduction

A scene graph is a structural representation that cap-
tures the semantics of visual scenes by encoding
object instances, attributes of objects, and relation-
ships between objects. (Johnson et al., 2015). As
shown in Figure 1, the scene graph encodes ob-
jects (e.g. “Boy”, “Racket”), attributes (e.g. “Girl
is standing”), and relations (“Boy holding racket”).
Scene graphs are able to capture the interactions
between text and images by associating objects in
the graph with regions of an image and modeling
the relations between objects. Therefore, it has

1https://github.com/THU-BPM/SGM
∗ Equally Contributed.
† Corresponding Author.

I would like to see a 
girl holding racket.

Holding

Racket

Standing

Blue

Holding

Girl

Racket

Standing

Blue

Boy

Objects Relations Attributes

Figure 1: Example images and their corresponding
scene graphs. Given the query, the original scene graph
(left) is modified to be the target scene graph (right).

been used in the cross modality task such as im-
age retrieval, image captioning, and visual question
answering (Schuster et al., 2015; Shi et al., 2019;
Yang et al., 2019; Wang et al., 2020b).

Recently, modifying the scene graph based on
the input becomes an emerging research direction
as cross-modal systems may need to resort to an in-
teractive process through multiple iterations (Ram-
nath et al., 2019; He et al., 2020). Take text-based
image retrieval as an example, users start with a
query describing the main objects or topics they
are looking for, then modify the query to add more
constraints or provide additional information based
on previous search results. Instead of directly ma-
nipulating images, scene graphs can be used to
convert the image-editing problem into a graph-
editing problem, conditioned on the textual query.
As shown in Figure 1, given a retrieved image from
the last turn, if the user wants to see a girl rather
than a boy holding a racket, he will enter the query
“I would like to see a girl holding racket” to the
system. According to the query, the object “Boy”
in the original scene graph will be substituted with
the object “Girl”. The target image can be retrieved
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(a) INSERT

Holding

Standing
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Racket
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Racket
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Holding

GT
Q: I would like to see a boy 
holding a racket and a ball.
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Boy

Blue

Boy

Boy

(b) DELETE

Holding

Standing

Racket

Standing

Racket

StandingHolding

Racket

GS

GI

Holding

GT
Q: I would like to see a boy 
holding a racket not in blue.

Delete

Figure 2: Examples of basic operations INSERT and DELETE for scene graph modification. Q denotes the textual
query, GS denotes the source scene graph, GT denotes the target scene graph and GI is the extended graph.

given the updated scene graph. The key challenge
in this process is how to modify the corresponding
partial structure in the original scene graph based
on understanding the natural language query.

Prior effort framed this scene graph modification
(SGM) task as conditional graph generation (He
et al., 2020), where the scene graph is generated
from the scratch condition on the original graph and
query (You et al., 2018; Guo et al., 2019; Cai and
Lam, 2020b). However, rebuilding the entire scene
graph may not be an optimal solution, as the model
has to generate the partial structure of the origi-
nal graph that should be unmodified. Moreover,
nodes and edges of the scene graph are constructed
separately in their proposed framework, which gen-
erates all the nodes first then attaches edges be-
tween generated nodes in the second pass. Such
an approach may lead to the lack of the modeling
capability of interactions between node prediction
and edge prediction.

Instead of rebuilding the whole scene graph, we
introduce a novel formulation for SGM – incremen-
tal structure expanding (ISE), which is able to build
the target graph by gradually expanding the original
structure. At each step, ISE generates the connect-
ing edges between the existing nodes and the newly
generated node, upon which the type of the new
node is jointly decided. Based on the formalism,
our proposed model is able to iterate between find-
ing the relevant part in the query and reading the
partially constructed scene graph, inferring more
accurate and harmonious expansion decisions pro-
gressively. Experiments on three SGM benchmarks
demonstrate the effectiveness of the proposed ap-
proach, which is able to outperform previous state-
of-the-art models by large margins. To test the
ability of a model under a complex scenario, we
further construct a more challenging dataset from
the remote sensing domain (Lu et al., 2017), which
has much more modification operations based on

the more complicated queries compared with the
existing scene graph modification datasets. Our
key contributions are summarized as follows:

• We propose a novel formulation for scene
graph modification, allowing incremental ex-
pansion of the source scene graph rather than
the regeneration of the target graph.

• We further construct a challenging dataset that
contains more complicated queries and larger
scene graphs. Extensive experiments on four
SGM datasets show the effectiveness of our
proposed approach.

• Experiments on four benchmarks demonstrate
the effectiveness of our approach, which sur-
passes the previous state-of-the-art model by
large margins.

2 Incremental Structure Expanding

In scene graph modification, a node or multiple
nodes can be inserted to, deleted from or replaced
with other nodes in the scene graph. He et al. (2020)
defined the scene graph modification task as a con-
ditional graph generation problem. Formally, given
the source scene graph GS and the natural lan-
guage query Q, the target scene graph GT is gen-
erated by maximizing the conditional probability
p(GT |GS , Q).

Instead of generating the entire target graph GT ,
we frame the task as an incremental structure ex-
panding, which extends the source scene graph GS
one node at a time, as well as the edges associated
with the node. Such a formulation does not require
the model to rebuild the unmodified structure of
the source scene graph.

Under this formulation, we first define two basic
operations: INSERT and DELETE. Scene graph
modification can be viewed as combining and ap-
plying these two operations multiple times. For-
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Figure 3: Overview of the model architecture.

mally, given the query Q, a sequence of n opera-
tions a1, a2, ..., an are selected from a set of graph
modification operations A = {INSERT, DELETE}.
After applying the operations to the source scene
graph Gs, the target scene graph Gt is derived.
Each operation is defined as:

• INSERT: A new node o is added to Gs, and
edges are attached between o and existing
nodes in Gs. As shown in Figure 2 (a), the
node “Ball” is added to Gs and an edge be-
tween “Ball” and “Holding” is attached, ac-
cording to the query “holding a racket and a
ball”.

• DELETE: As shown in Figure 2 (b). A node
o is removed from Gs, as well as its associ-
ated edges. As shown in Figure 2 (b), the node
“Blue” is removed from Gs and the edge be-
tween “Racket” and “Blue” is removed either,
according to the query “a racket not a blue”.

Inspired by incremental parsing (Nivre, 2004;
Dyer et al., 2015; Cai and Lam, 2020a; Zhang
et al., 2021, 2022), we design a data structure called
extended graph GI , which can be used to model
INSERT and DELETE under the graph expansion
setting. As shown in Figure 2 (a), the extended
graph GT is identical with the target graph GT
after applying INSERT. As for DELETE, we intro-
duce a dummy node “Delete”, which is attached to
the node in the source graph GS that should be re-
moved. For example, the dummy node “Delete” is
attached to the node “Blue” in GT . In the postpro-
cessing stage, nodes attached with the dummy node
“Delete” will be removed. Using this formulation,
we are able to model scene graph modification by
incrementally expanding the source graph GS to

the extended graph GI , which can be converted to
the target graph GT without any losses.

If the modification requires multiple operations,
there will exist multiple node orderings. Take node
substitution as an example, replacing a node oi with
oj in Gs can be viewed as DELETE the node oi
first, then INSERT the node oj , or vice versa. In
practice, we impose that the DELETE operation
always comes before INSERT, then the breadth-
first search is used to define a deterministic node
ordering.

3 Model Architecture

In this section, we will present the model based
on the incremental structure expanding formula-
tion. Figure 3 gives an overview of the proposed
model, which consists of five components includ-
ing query encoder, graph encoder, feature fusion,
edge decoder and node decoder.

Query Encoder This module is used to encode
the query Q by generating the representation of
each token of it.

Graph Encoder This module is used to encode
the graph by generating the representation of each
node of it. Note that the representations of the
graph are constructed incrementally during the ex-
panding progresses based on the updated graph of
the last time step. The graph is the source graph
GS at the first timestep.

Feature Fusion this module aims to combine
the representations from query and graph encoder,
then served as a writable memory, which is up-
dated based on the information from edge and node
decoder during the incremental expansion.
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Edge Decoder this module is used to predict the
edges between the newly generated node and exist-
ing nodes of the graph, then update the memory of
the feature fusion module with edge information.

Node Decoder this module is used to generate a
new node of the graph, then update the memory of
the feature fusion module with node information.

3.1 Query Encoder & Graph Encoder
For fair comparisons with the previous work (He
et al., 2020), our query encoder and graph encoder
are based on the vanilla transformer (Vaswani et al.,
2017), which consists of multi-head self attention
(MSA) and position-wise feed-forward network
(FFN) blocks. The FFN contains two layers with a
ReLU non-linearity. Layer normalization (Ba et al.
2016) is applied before every block, and residual
connections (He et al., 2016) after every block.

Formally, given an input query Q with n tokens,
each token embedding is randomly initialized and
positional encoding is added to the token embed-
ding to retain positional information. The resulted
embeddings are denotes as x = {x0, x1, ..., xn}.
Similar to BERT (Devlin et al., 2019), a special
token is appended to the query as x0 for sentence
encoding. Transformations in the query encoder
can be denoted as:

xl
′
= LN(MSA(xl−1) + xl−1), (1)

xl = LN(FFN(xl
′
) + xl

′
). (2)

After stacking L blocks, we obtained the con-
textualized token representations from the query
encoder, denoted as {xL0 , xL1 , ..., xLn}. The first vec-
tor x0 is treated as the sentence-level representation
of the query and will be used as the initial state dur-
ing expansion. For clarity, we denote the vectors
as x∈R(n+1)×d, where d is the dimension.

As for the graph encoder, we treat the input
graph as a sequence of nodes in the chronological
order of when they are inserted into the graph as
discussed in Section 2. Formally, given the graph
Gt at the time step t, we take its node sequence
{o1, o2, ..., ot−1} as the input. A transformer ar-
chitecture is also applied to obtain the contextual-
ized node embeddings. Notice that the contextu-
alized representation of the graph is constructed
incrementally as the expanding progress. There-
fore, we apply the vanilla transformer with masked
self-attention as the graph encoder, which only al-
lows each position in the node sequence to attend

to all positions up to and including that position.
For brevity, we denoted the resulted contextualized
node representations as y∈Rm×d.

3.2 Feature Fusion

Unlike the conventional sequence-to-sequence
model that only has one encoder, our model con-
tains two encoders. Previous work (He et al., 2020)
proposed to use gating mechanism and cross at-
tention to combine the representations of resulted
representations from query and graph encoders. We
choose to use vanilla multi-head attention mech-
anism (Vaswani et al., 2017) to fuse the features
from these encoders. Formally, at each time step t,
the feature fusion component combines the query
and graph representations for gradually locating
and collecting the most relevant information for the
next expansion:

zlt = LN(MSA(hl−1t ,x) + hl−1t ), (3)

zl
′
t = LN(MSA(zlt,y) + zlt), (4)

hlt = LN(FFN(zl
′
t ) + zl

′
t ). (5)

The initial expansion state of h0t is initialized
with x0. For clarity, we denote the last hidden state
hLt as ht, which is the expansion state at the time
step t. We now proceed to present the details of
each decision stage of one expansion step.

3.3 Edge Decoder

At the t-th time step, the edge decoder takes the
expansion state ht from the feature fusion module
and the contextualized representation y from the
graph encoder as the inputs, and predicts which
nodes in the current graph should be attached to the
new node. Inspired by Cai and Lam (2019) and Cai
and Lam (2020a), we leverage multi-head attention
and take the maximum over different heads as the
final edge probabilities. Formally, given ht and
y, a set of attention weights can be obtained by
using multi-head attention mechanism: {αgit }ki=1,
where k is the number of attention heads and αgit
is the i-th probability vector. The probability of
the edge between the new node and the node oj
is then computed by αgt = maxi(α

gi
t ). Intuitively,

each head is in charge of a set of possible relations
(though not explicitly specified). The maximum
pooling reflects that the edge should be built once
one relation is activated.
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Finally, the edge decoder passes the edge infor-
mation to the feature fusion module by updating
the expansion state ht+1 as follows:

ht+1 = LN(MSA(ht,y) + ht). (6)

3.4 Node Decoder
The node decoder needs to look at the input query
and determine which tokens are the most impor-
tant ones. This choice is a weighted matrix that
gives an attention probability between each token
in the query and generated nodes in the target graph.
Concretely, a single-head attention αst is computed
based on the state ht and the sentence representa-
tion s1:n, where αst denotes the attention weight of
the word wi in the current time step. This compo-
nent then updates the parser state with the align-
ment information via the following equation:

ht+1 = LN(MSA(ht,x) + ht). (7)

We then compute the probability distribution of
the new node through a hybrid of two channels.
The new node can either be a DELETE node or a
token copied from the input query. First, ht is fed
through a softmax to obtain a probability distribu-
tion over a pre-defined vocabulary, which contains
the DELETE node and other dummy nodes such as
EOS. The probability of the new node is calculated
as P vocab = softmax(W vocabht + bvocab).

Second, we used the attention scores αst as the
probability to copy a token from the input query
as a node label similar to the copy mechanism (Gu
et al., 2016; See et al., 2017). Therefore, the final
prediction probability of a node o is defined as:

P (o) = pgen · Pvocab(o) + pcopy ·
∑

i∈T (c)
αst [i],

(8)

where [i] indexes the i-th element, and T (c) are
index sets of tokens respectively that have the sur-
face form as o. P (gen) and P (copy) are the prob-
abilities of generating and copying a node, respec-
tively. They are computed by using a single layer
neural network with softmax activation as:

[pgen, pcopy] = softmax(W gateht). (9)

The whole expanding procedure is terminated if
the newly generated node is the special node EOS.

Statistics User Generated MSCOCO GCC RSICD

Splits 30/1/1 196/2/2 400/7/7 8/1/1

Avg. Source Nodes 2.0 2.9 3.8 5.9
Avg. Target Nodes 2.0 2.9 3.7 5.9
Avg. Source Edges 1.0 1.9 2.8 3.7
Avg. Targe Edges 1.0 1.9 2.8 3.6

OOV Nodes 10 4 3 12
OOV Edges 8 4 4 8

Table 1: Statistics of four SGM datasets.

4 Dataset Construction

Existing SGM datasets are synthetically
constructed based on scene graphs from
MSCOCO (Lin et al., 2014) and GCC (Sharma
et al., 2018a), and via crowd sourcing. To construct
scene graphs, He et al. (2020) used an in-house
scene graph parser to parse a random subset of
MSCOCO description data and GCC captions,
thus the constructed scene graph is relatively
simple. In Table 1, the average numbers of nodes
and edges for each graph are limited to 2.9 and
1.9 respectively. GCC is more complicated than
MSCOCO with a larger graph, but the percentage
of nodes and edges from the development/test
set that does not appear in the training set (OOV
Nodes, OOV Edges) are still low, which will cause
the model easily overfit to the dataset. To verify
the generalization ability and the scalability of the
model to handle more complex scene graphs, we
constructed our own Scene Graph Modification
dataset based on the Remote Sensing Image
Captioning Dataset (RSICD) (Lu et al., 2017) in
the remote sensing field for remote sensing image
captioning task.

Inspired by the modification methods pro-
posed by He et al. (2020). First, we adopt the
parser (Schuster et al., 2015) to parse the caption
for each graph and generate the original scene
graph x. Then we define three types of graph modi-
fication operations A = {INSERT, DELETE, SUB-
STITUTE}, and randomly apply them to the origi-
nal scene graph to generate query (q) and modified
scene graph (y). The data in RSICD consists of the
triples (x, y, q).2

Compared with the existing SGM dataset, each
graph of RSICD has more nodes and edges, with an
average of 5.9 and 3.7 on the training/developmen-
t/test set, which is almost twice that of User Gener-
ated and MSCOCO. In addition, the dataset comes
from the field of remote sensing. Due to the large

2We give three detailed operations and examples in the
Appendix A.1.
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Models
User Generated MSCOCO GCC

Node F1 Edge F1 GAcc Node F1 Edge F1 GAcc Node F1 Edge F1 GAcc

CopyGraph (He et al., 2020) 66.17 31.42 — 78.41 64.62 — 79.46 66.32 —
Text2Text (He et al., 2020) 78.59 52.68 52.15 91.47 72.74 64.42 — — —
GRNN (You et al., 2018) 80.68 57.17 56.75 80.64 55.76 50.72 — — —
DCGCN (Guo et al., 2019) 79.05 54.23 52.67 89.08 72.47 68.89 — — —
GTran (Cai and Lam, 2020b) 81.47 59.43 58.23 91.21 75.68 71.38 — — —
STran (He et al., 2020) 83.69 62.10 60.90 95.40 86.52 82.97 93.84 57.68 52.50
EGraph (Weber et al., 2021) 97.62 88.26 87.60 99.52 98.40 96.15 98.62 91.64 75.01

ISE 98.74±0.12 91.37±0.14 89.41±0.47 99.68±0.14 98.96±0.21 97.26±0.37 99.53±0.13 93.06±0.22 76.34±0.47

ISE (w/o BERT) 94.39±0.11 79.53±0.18 75.72±0.47 98.17±0.13 97.25±0.14 89.61±0.45 96.91±0.16 85.50±0.21 58.40±0.56

Table 2: Results of User Generated, MSCOCO and GCC datasets. GAcc denotes the graph-level accuracy. Both of
our models are statistically significantly outperform (p<0.0001) previous best-reported model (Weber et al., 2021).

number of geographical terms, the OOV Nodes of
the development/test sets compared with the train-
ing set reach 12%/11%, and the OOV Edges reach
8%/8%, which are much higher than the MSCOCO
and GCC datasets. Considering the complexity
of RSICD, we construct it apart from User Gener-
ated, MSCOCO and GCC to further analysis the
generalization and scalability of ISE.

5 Experiments and Analyses

5.1 Data

We evaluated our model on four benchmarks, in-
cluding User Generated, MSCOCO and GCC pro-
posed by He et al. (2020), and RSICD dataset pro-
posed in this work. MSCOCO, GCC and RSICD
are constructed synthetically from publicly avail-
able datasets (Lin et al., 2014; Sharma et al., 2018b;
Lu et al., 2017), while the User Generated dataset
is created via crowd sourcing. Detailed statistics of
datasets are shown in Table 1.

5.2 Setup

For fair comparisons, we used the same data splits
for User Generated, MSCOCO and GCC datasets
as in Weber et al. (2021). For RSICD, we ran-
domly split the data into 8K/1K/1K for training/de-
velopment/test. Following Weber et al. (2021), we
use three automatic metrics for the evaluation, in-
cluding node-level and edge-level F1 score, and
graph-level accuracy. Graph-level accuracy is com-
puted based on exact string match, which requires
the generated scene graph to be identical to the
target scene graph for a correct prediction. We re-
ported the mean score and standard deviation by
using 5 models from independent runs. We refer to
the Appendix A.2 for the detailed implementation.

5.3 Baselines

For comprehensive comparisons, we include six
baselines as follows. Except for the CopyGraph,
all of them aim to rebuild the target scene graph.

CopyGraph This baseline directly copies the
source scene graph as the target scene graph, which
can be viewed as the lower bound.

Text2Text This baseline is introduced by He
et al. (2020). They used the standard sequence-
to-sequence architecture by linearizing the scene
graph based on depth-first search.

GRNN Graph RNN (You et al., 2018) is used as
the graph encoder and edge decoder. Specifically,
the edges are represented by an adjacency matrix,
which is then generated in an auto-regressive man-
ner. Both the query encoder and node decoder are
based on Gated Recurrent Units (Cho et al., 2014).

DCGCN Densely-Connected Graph Convolu-
tional Networks (Guo et al., 2019) are used as
the graph encoder. Other components are kept the
same as the GRNN.

GTran Graph Transformer (Cai and Lam, 2020b)
is used as the graph encoder, while other modules
are the same as GRNN and DCGCN.

STran The sparsely-connected transformer (He
et al., 2020) is used to encode the source graph. In
addition, a cross-attention mechanism is applied
to fuse the features from graph encoder and query
encoder. Node decoder and edge decoder are the
same as GRNN.

EGraph This is the state-of-the-art model on
graph modification task. Concretely, Weber et al.
(2021) considerably increases performance on the
graph modification by phrasing it as a sequence
labelling task.
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Models
RSICD

Node F1 Edge F1 GAcc

CopyGraph 66.35 58.68 —
EGraph (Weber et al., 2021) 72.09±0.12 53.96±0.31 23.93±0.74

ISE 81.78±0.13 67.01±0.25 44.20±0.59

Table 3: Results of the RSICD dataset. Results of STran
is reproduced from the implementation of Weber et al.
(2021). Both of our models are statistically signifi-
cantly outperform (p<0.0001) previous best-reported
model (Weber et al., 2021).

5.4 Main Results

According to Table 2, our proposed approach
(ISE) significantly outperforms the state-of-the-
art model (Weber et al., 2021) on three datasets.
Specifically, ISE outperforms EGraph 1.81, 1.11
and 1.33 percentage points in terms of graph ac-
curacy on User Generated, MSCOCO and GCC
datasets, respectively. We observe that the improve-
ment is especially prominent on the User Generated
dataset, which is more challenging than the other
two synthetic datasets in terms of the diversity in
graph semantics and natural language expressions.
All baseline models suffer from performance degra-
dation as it is much harder to rebuild the entire tar-
get scene graph on this dataset. On the other hand,
ISE constructs the target scene graph by incremen-
tally expanding the source scene graph without
changing the unmodified structure. We believe this
formulation is able to effectively cope with this
difficulty.

We also observe that both EGraph and ISE
achieve lower graph accuracy on the GCC dataset.
The main reason is the difficulty of predicting the
correct edges between generated nodes. For exam-
ple, EGraph achieves 98.62 Node F1 score on GCC,
higher than 97.62 Node F1 score on the User Gener-
ated dataset. However, EGraph only achieves 75.01
Edge F1 score on GCC, while it can attain 88.26
Edge F1 score on User Generated. Our proposed
model has larger improvements upon EGraph in
terms of Edge F1 score on the same dataset (93.06
vs. 91.64). We attribute this stronger improvement
to iterations between nodes prediction and edge
prediction, which allows more accurate and harmo-
nious expansion decisions progressively. On the
other hand, EGraph predicts nodes and edges at two
independent stages. Such an approach may lead to
the lack of the modeling capability of interactions
between node prediction and edge prediction.

We further compare our model with EGraph on

Datast/Model Node F1 Edge F1 GAcc

User Generated
ISE 94.58 79.61 76.23
ISE Rebuild 82.97 66.74 63.47
ISE - Copy 88.38 74.95 71.64

MSCOCO
ISE 98.60 97.99 92.24
ISE Rebuild 92.90 87.61 83.23
ISE - Copy 95.58 91.87 88.09

GCC
ISE 96.87 85.50 58.90
ISE Rebuild 89.48 62.59 51.67
ISE - Copy 92.74 76.89 53.91

Table 4: An ablation study for ISE. Rebuild denotes that
we regenerate the scene graph rather than extend it. -
Copy denotes model without using the copy mechanism

the newly constructed dataset RSICD as shown in
Table 3. ISE is able to achieve a graph accuracy
of 44.20% and improves upon the EGraph model
by 21 percentage points. However, the graph accu-
racy of all the models is much lower than the one
attained on the previous three SGM datasets. One
reason is that RSICD has more complex queries
paired with larger scene graph, which brings a chal-
lenge to existing models. The RSICD dataset also
suffers from the data sparsity issue where many
words (39%) and nodes (42%) only appear once
in the training data. Incorrect node prediction will
further propagate the errors to edge prediction. Our
iterative node and edge prediction paradigm help
to alleviate this issue. Specifically, ISE only outper-
forms EGraph 9.69 percentage points on Node F1
score, while the improvement on Edge F1 score is
13.05%. Therefore, ISE is able to achieve a higher
accuracy. In order to further address this data spar-
sity issue, one potential solution is transfer learning,
where the model is pretrained on User Generated
dataset first then fine-tuned on RSICD. However,
this approach may suffer from a domain-shift prob-
lem, as RSICD is constructed based on the remote
sensing domain. We leave this direction as future
works.

5.5 Analysis and Discussion

In this section, we provided a fine-grained analysis
of our proposed model. We reported all the results
on the development set by using the ISE model
without contextualized embeddings from BERT.

Ablation Study As shown in Table 4, we ex-
amine the contributions of two main components
used in our model. The first one is the incremental
structure expanding. We use the same model ar-
chitecture but try to rebuild the target scene graph
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% of Training Set Node F1 Edge F1 GAcc

20%
STran 87.92 71.35 68.15
ISE 95.46 92.22 79.12

40%
STran 93.94 81.11 78.55
ISE 97.50 96.12 88.64

60%
STran 95.32 82.70 80.65
ISE 98.09 97.17 89.29

80%
STran 95.92 86.36 83.90
ISE 98.37 97.48 90.69

100%
STran 96.24 87.88 85.20
ISE 98.60 97.99 92.24

Table 5: Comparison of STran and ISE against different
training data sizes on the dev set of MSCOCO. Results
of STran are reproduced from He et al. (2020).

Query Length Node F1 Edge F1 Graph Acc

<5
STran 51.68 91.38 40.98
ISE 96.02 92.36 57.38

5∼10
STran 92.73 57.01 50.39
ISE 97.32 86.84 60.18

≥10
STran 91.38 51.68 40.98
ISE 98.42 84.62 58.64

Table 6: Comparison of STran and ISE against different
lengths of queries.

similar to previous efforts. We can observe signif-
icant drops on three SGM datasets, which further
confirms the effectiveness of the extending strategy.
The second one is the copy mechanism, which di-
rectly copies the token from the query as nodes in
the target scene graph. It plays a significant role in
predicting nodes especially when the training data
is limited (User Generated).

Performance against Training Data Size Ta-
ble 5 shows the performance of STran and ISE
against different training settings on MSCOCO
dataset. We considered four training settings (20%,
40%, 60%, 80%, 100% training data). ISE consis-
tently outperforms STran under the same amount
of training data. When the size of training data de-
creases, we can observe that the performance gap
becomes more obvious. Particularly, using 40% of
the training data, ISE is able to achieve a graph ac-
curacy of 88.64%, higher than STran trained on the
whole dataset. These results demonstrate that our
model is more effective in terms of using training
resources and more robust when the training data
is limited.

Graph Size Node F1 Edge F1 Graph Acc

<5
STran 94.04 62.77 58.74
ISE 96.73 81.25 62.54

5∼10
STran 91.61 51.40 37.73
ISE 97.22 88.82 49.06

≥10
STran 79.12 30.13 24.62
ISE 95.44 90.95 35.38

Table 7: Comparison of STran and ISE against different
target scene graph sizes.

Performance against Query Length Table 6
shows the results of STran and ISE under different
query lengths on GCC dataset. We partitioned the
sentence length into three classes (<5, [5, 10),≥10).
In general, ISE outperforms STran against various
sentence lengths. When the length of the query
increases, we can observe that the performance gap
becomes more obvious in terms of graph accuracy.
Intuitively, with the increase of the query length,
it is more challenging for the model to compre-
hend the sentence. This suggests that ISE is able to
handle more complex instructions.

Performance against Graph Size Table 7 shows
the results of STran and ISE against different tar-
get scene graph sizes on GCC dataset. We par-
titioned the scene into three classes (<5, [5, 10),
≥10). Based on the formulation of extending the
source scene graph, our model is required to deal
with larger graphs. For example, deleting a node in
the scene graph becomes adding a special “Delete”
node in the extended graph. However, ISE is able
to consistently outperform STran against various
target graph sizes, even when the target scene graph
is large. This result suggests the superiority of the
proposed formulation.3

Case Study We give two cases in Figure 4. STran
generates scene graph from the scratch conditioned
on the original graph and query may lead to the lack
of the modeling capability of interactions between
node prediction and edge prediction. For example,
in Figure 4 (a), STran omitted the attribute: “Velvet”
during the node prediction. In addition, during the
edge prediction, STran redundantly generated the
relation: “Of” in Figure 4 (b). However, these
structures do not need to be modified in the source
scene graph. ISE can infer more accurate target
graph by incrementally expanding the source graph
without changing the unmodified structure.

3We give an error analysis in the Appendix A.4.
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Q: I want to see the 
orange chair instead of 
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Figure 4: Two cases of STran and ISE for scene graph modification on User Generated. Q denotes the textual query,
GS denotes the source scene graph, GT denotes the target scene graph generated by STran and ISE.

6 Related Work

We refer to the Appendix A.3 for the detailed re-
lated work of scene graph. Scene graph builds
a bridge between image domain and text domain.
Vision and natural language are all tremendously
promoted by studying into scene graphs. Recently,
scene graph modification becomes an emerging re-
search direction. Chen et al. (2020) proposed a
framework based on scene graph editing for text-
based image retrieval. On the other hand, He et al.
(2020) took the scene graph and the textual query
as inputs and modified the source graph according
to the query. They viewed the task as conditional
graph generation, which is further decomposed into
node prediction and edge prediction. For node
prediction, all the nodes in the target scene graph
is generated based on a graph-to-sequence model
with dual encoder (Song et al., 2018; Beck et al.,
2018; Zhang et al., 2020), then a graph RNN is
adopted to predict the edges between generated
nodes (You et al., 2018). More recently, Weber
et al. (2021) developed an alternative formulation
of this problem in which they model the modifica-
tion as an auto-regressive sequence labelling task.

Instead of rebuilding the entire target graph, we
framed the scene graph modification task as in-
cremental graph expansion. This formulation is
related to incremental parsing, where a sentence
is scanned from left-to-right and the structured is
built incrementally by inserting a node or attaching
an edge. Incremental parsers are widely used in
semantic parsing (Zhou et al., 2016; Cheng et al.,
2017; Guo and Lu, 2018; Naseem et al., 2019; Liu

et al., 2022a) and syntactic parsing (Huang and
Sagae, 2010; Dyer et al., 2015; Liu and Zhang,
2017), as they are computationally efficient, and
can use machine learning to predict actions based
on partially generated structures. Our feature fu-
sion module can be viewed as the parser state as
it carries the structural information and serves as a
writable memory during the expansion step. Unlike
Weber et al. (2021) linearize the scene graph and
label it in an auto-regressive manner, our model it-
erates between finding the relevant part in the query
and reading the partially constructed scene graph,
inferring more accurate and harmonious expansion
decisions progressively.

7 Conclusion

In this paper, we designed a novel formulation for
scene graph modification, which allows us to in-
crementally expand the source scene graph instead
of rebuilding the entire graph. Based on the for-
malism, we further propose a model that is able to
leverage the mutual causalities between node pre-
diction and edge prediction. Experiments on three
SGM benchmarks demonstrate the effectiveness.
To test our model under a complex scenario, we
constructed a more challenging dataset from the re-
mote sensing domain, which has more modification
operations based on the more complicated queries
compared with existing SGM datasets. For future
work, we would like to explore how to integrate the
model into the text-based image retrieval task.
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Graph Modification Operation: DELETE
Original Scene Graph: Some trees are in a medium residential area.
Query: Remove trees.
Modified Scene Graph: Some are in a medium residential area.

Graph Modification Operation: INSERT
Original Scene Graph: A bridge built on a river.
Query: Show me a red bridge.
Modified Scene Graph:A red bridge built on a river.

Graph Modification Operation: SUBSTITUTE
Original Scene Graph: Some gray and green mountains are together.
Query: I prefer red to green, modify red to green.
Modified Scene Graph: Some gray and red mountains are together.

Table 8: Examples on the three types of graph modifi-
cation operations A = {INSERT, DELETE, SUBSTI-
TUTE}

A Appendix

A.1 Operations in RSICD
We introduce three operations in RSICD in details:

• DELETE: The original scece graph is x. We
randomly select a node o in x, and delete it
both with related edges. The deleted graph is
defined as y. We choose a random sentence
from the DELETE Template (Manuvinakurike
et al., 2018), for example, “ I do not want
**.” We replace ** with o to get modification
operation q.

• INSERT: It is the reverse process of DELETE.
The graph before deleting the node is regarded
as y, and the corresponding graph after dele-
tion is treated as x. The modification opera-
tion is randomly selected from the INSERT
Template (Manuvinakurike et al., 2018), for
example, “ Show me **.” We replace ** with
o to obtain query q.

• SUBSTITUTE: We randomly select a node
o, use the AllenNLP toolkit (Gardner et al.,
2018) to find the three most similar seman-
tics nodes compared with o. We randomly
choose a node m, and select a sentence from
the SUBSTITUTE Template (Manuvinakurike
et al., 2018), for example, “ I prefer @@ to **,
modify ** to @@.” We replace ** and @@
with o and m, and get modification operation
q. Note that SUBSTITUTE operation could
be viewed as DELETE the node o first and
then INSERT the node m, or vice versa.

In Table 8, we give the simple examples in
RSICD to better understand three types of graph
modification operations.

Embeddings

concept 300
word 300
relation 100

Query Encoder
transformer layers 4

Graph Encoder
transformer layers 2

Feature Fusion
heads 8
hidden size 512
feed-forward hidden size 1024

Node Decoder/ Edge Decoder
heads 8
feed-forward hidden size 1024

Table 9: Hyper-parameters settings for ISE.

A.2 Implementation Details

Hyper-parameters of the model are tuned on the
development set. All transformer (Vaswani et al.,
2017) layers share the same hyper-parameter set-
tings. Following He et al. (2020), we randomly
initialized the word and node embeddings. We also
report results with contextualized embeddings from
BERT (Devlin et al., 2019). Specifically, we used
the BERT-base-uncased implemented by (Wolf
et al., 2020). The parameters in BERT are fixed
during training. To mitigate over-fitting, we apply
dropout (Srivastava et al., 2014) with the drop rate
0.2 between different layers. Following Cai and
Lam (2020a), we use a special UNK token to re-
place the out-of-vocabulary lemmas of the input
query and remove the UNK token in the generated
graph. Parameter optimization is performed with
the ADAM optimizer (Kingma and Ba, 2015) with
β1 = 0.9 and β2 = 0.999. The learning rate schedule
is similar to that in Vaswani et al. (2017), where
warm-up steps being set to 2K. We used early stop-
ping on the development set for choosing the best
model. Please refer to Table 9 for the detailed
hyper-parameters settings for ISE.

A.3 Scene Graph and Application

Deep learning has significantly promoted the ad-
vancement of computer vision (Liang et al., 2017;
Ren et al., 2021). Simple visual understanding
tasks such as object detection and recognition are
no longer sufficient. To depict the relationship
between objects in the scene as a driving force,
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Q: I want to see the 
plants that are growing 
over the surface.
GS

GG

ISE GT

(a)

Plants

Plants

Surface

in growing over

Plants

Surface

on

Gold

Tree

behind

Head

Giraffe

Tree

behind

Head

Giraffe

Q: I prefer to see 
images of giraffe head 
behind tree.

GS Head

Giraffe

(b)

GG

ISE GT

Gold

Figure 5: Two errors of ISE for scene graph modification on User Generated. Q denotes the textual query, GS

denotes the source scene graph, GT denotes the target scene graph generated by ISE. GG denotes the gold target
scene graph.

higher-level visual understanding and reasoning
skills are frequently necessary. Scene graphs were
created specifically to address this issue. Scene
graph was first proposed by Johnson et al. (2015)
for image retrieval, which describes objects, their
attributes, and relationships in images with a graph.
A complete scene graph could represent the seman-
tics of a dataset’s scenes, not just a single image or
video; additionally, it contains powerful represen-
tations that encode 2D/3D images (Johnson et al.,
2015; Armeni et al., 2019), and videos (Qi et al.,
2018; Wang et al., 2020a) into their abstract seman-
tic elements. Scene graph is beneficial for various
downstream tasks, such as information extraction
(Hu et al., 2020, 2021a,b; Liu et al., 2022b), natural
language summarization (Liu et al., 2022c), and
natural language inference (Li et al., 2022).

Following the graph representation paradigm,
different methods have been proposed to generate
scene graphs from images (Xu et al., 2017; Wang
et al., 2018; Zellers et al., 2018). Many cross-modal
tasks that require understanding and reasoning on
image and text are able to benefit from incorporat-
ing scene graphs, such as visual question answer-
ing (Teney et al., 2017; Shi et al., 2019), grounding
referring expressions (Wang et al.), image caption-
ing (Yang et al., 2019; Yao et al., 2018), and image
retrieval (Wang et al., 2020b; Schroeder and Tri-
pathi, 2020).

A.4 Error Analysis
We give two wrong scene graphs generated by ISE
in Figure 5. We can observe in Figure 5 (a) that
although ISE successfully predicts the need to in-
sert a relation between object “Plants” and attribute
“Surface”, since the User Generated dataset con-
tains a total of 2078 relations and the relations have
serious long-tail effects. It is difficult for ISE to
learn sparseness relations with few occurrences,
leading to incorrectly predicting relation “in grow-
ing over” as “on”. We attempt to address the long-
tail effects of relations in future work. Since a node
can be attached to multiple nodes, when Edge De-
coder determines which nodes in the current graph
should be attached to the new node, a common er-
ror is predicting the wrong node that needs to be
attached. As shown in Figure 5 (b), ISE incorrectly
connects relation “behind” between “Giraffe” and
“Tree” instead of “Head” and “Tree”.
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Abstract
Despite the great progress of Visual Question
Answering (VQA), current VQA models heav-
ily rely on the superficial correlation between
the question type and its corresponding fre-
quent answers (i.e., language priors) to make
predictions, without really understanding the
input. In this work, we define the training in-
stances with the same question type but differ-
ent answers as superficially similar instances,
and attribute the language priors to the con-
fusion of VQA model on such instances. To
solve this problem, we propose a novel training
framework that explicitly encourages the VQA
model to distinguish between the superficially
similar instances. Specifically, for each training
instance, we first construct a set that contains
its superficially similar counterparts. Then we
exploit the proposed distinguishing module to
increase the distance between the instance and
its counterparts in the answer space. In this
way, the VQA model is forced to further fo-
cus on the other parts of the input beyond the
question type, which helps to overcome the lan-
guage priors. Experimental results show that
our method achieves the state-of-the-art perfor-
mance on VQA-CP v2. Codes are available at
Distinguishing-VQA.

1 Introduction

Recent years have witnessed great progress in VQA
based on deep learning. However, some researchers
reveal that most existing VQA models heavily rely
on the superficial correlation between the ques-
tion type and its corresponding frequent answers
to make predictions, instead of really understand-
ing the input (Agrawal et al., 2016, 2018; Goyal
et al., 2017; Zhang et al., 2016). For example, once
a VQA model detects that a question begins with
“how many”, it tends to blindly output the most
common answer “2” to the “how many” questions
in the training data without looking at other parts
of the input.

∗Corresponding author.

How many animals are in the picture?  
GT: 2 

How many buses are there?  
GT: 1

(a) An example of superficially similar instances
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(b) Superficially similar instances in the answer space

Figure 1: (a) displays an example of superficially similar
instances, which have the same question type (“How
many”) but different ground-truth answers (“1” and “2”).
(b) visualizes the projection of such instances in the
answer space obtained by SAN (Yang et al., 2016) and
UpDn (Anderson et al., 2018) respectively. We observe
that both models could not distinguish well between the
mixed superficially similar instances.

We argue that the language priors arise from that
the VQA model only captures the question type
and ignores other information in the input image-
question pair. On the one hand, the datasets which
they are built upon are usually biased. For the ques-
tions of the same question type, the distribution
of answers is severely biased to some frequent an-
swers. On the other hand, deep learning methods
tend to memorize some simple and salient patterns
(e.g., frequency) in the training data, and easily
exploit a shortcut to make predictions. Therefore,
given an instance for testing, they prefer to directly
look at the question type and leverage the superfi-
cial correlation rather than also analyze other infor-
mation and further understand the whole input.

For solving the above problem, we introduce
the concept of superficially similar instances, and
propose to overcome the language priors via dis-
tinguishing between such instances. As shown in
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Figure 1a, the superficially similar instances refer
to the instances that have the same question type
but different answers. By distinguishing such in-
stances, the VQA model is forced to focus on other
information besides the question type in the input
image-question pair when making predictions.

Unfortunately, it is not trivial to perform the dis-
tinguishing task, since a classical VQA paradigm
does not have such a mechanism to support this.
Given a training instance, the paradigm usually
adopts the (binary) cross-entropy loss to reduce the
distance between the projection of image-question
pair in the answer space and the ground-truth, with-
out explicitly encouraging the differentiation of
superficially similar instances. As shown in Figure
1b, the superficially similar instances are mixed up
in the answer space, which indicates that both two
widely-used VQA models (Anderson et al., 2018;
Yang et al., 2016) could not distinguish between
them well.

In this work, we propose a novel training frame-
work that explicitly encourages the VQA model
to distinguish between the superficially similar in-
stances. Specifically, for each training instance,
we first construct a superficially similar set. The
set consists of two kinds of superficially similar
counterparts for the instance, which are collected
in different ways and complement each other. Then
we exploit the designed distinguishing module to in-
crease the distance between a training instance and
its superficially similar counterparts in the answer
space. Given a training instance, the distinguishing
module urges the VQA model to give a higher prob-
ability on its ground-truth answer to itself than its
superficially similar counterparts. Finally, consid-
ering the cost of time and space, we implement our
method in a resource-efficient way by manipulating
the high-level features to construct the superficially
similar set and sampling from the set.

In summary, the main contributions of this paper
are as follows:

• We are the first to introduce the concept of
superficially similar instances and analyze the
problem of language priors from this perspec-
tive. We also provide two different ways to
collect superficially similar counterparts for a
given instance.

• We propose a distinguishing module to explic-
itly encourage the differentiation between a
training instance and its superficially similar

counterparts, which forces the VQA model to
further focus on other information in the input
besides the question type.

• Extensive experimental results demonstrate
our approach successfully alleviates the lan-
guage priors and really understands the input.
Our method achieves the state-of-the-art re-
sults on the benchmark dataset VQA-CP v2,
while maintaining competitive performance
on the standard VQA v2 dataset.

2 Related Works

Despite the great progress in visual question an-
swering(Anderson et al., 2018; Yang et al., 2016),
some researchers observe that most existing VQA
models heavily rely on the language priors to make
decisions (Agrawal et al., 2016; Goyal et al., 2017;
Zhang et al., 2016). Recently, Agrawal et al. (2018)
propose a new split of the VQA v1 and VQA v2
datasets (VQA-CP v1 and VQA-CP v2 respec-
tively), which makes the answer distribution of
each question type different between the train and
test splits. They find that the performance of exist-
ing VQA models drops significantly on their new
splits compared to the original splits. This fully
demonstrates the necessity of overcoming the lan-
guage priors in VQA.

Previous works on overcoming the language pri-
ors in VQA, which is called debiasing VQA meth-
ods, can be roughly divided into four categories.

Methods modifying model architecture. They
usually design a specific model architecture to de-
compose the process of VQA into several steps. For
instance, Agrawal et al. (2018) propose a Grounded
Visual Question Answering (GVQA) model to dis-
entangle the recognition of visual concepts from
the identification of plausible answers. Similarly,
Jing et al. (2020) leverage the decomposed linguis-
tic representations of different kinds of information
in the question to decouple the discovery and veri-
fication of visual concepts.

Methods strengthening visual attention. They
usually leverage the human explanations (e.g., at-
tention maps) to identify the important regions that
are needed to answer the question correctly, and
train a VQA model to focus on them. Selvaraju
et al. (2019) optimize the alignment between the
human attention maps and the gradient-based im-
portance of image regions from the VQA model.
Wu and Mooney (2019) criticize the sensitivity of
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incorrect answers to the important regions that are
identified based on human explanations.

Methods reducing unimodal bias. They usu-
ally capture the unimodal biases from the language
side with a question-only model, and propose strate-
gies to reduce them. Ramakrishnan et al. (2018)
train a VQA model and a question-only model that
shares the same question encoder in an adversar-
ial way. Cadene et al. (2019) generate a 0-1 mask
from the question-only model to modify the pre-
dictions of the VQA model, which modulates the
importance of training instances with different lev-
els of biases. Moreover, Clark et al. (2019) train
an ensemble of a VQA model and a pretrained
question-only model, which prevents the VQA
model from predicting answers in the way learned
by the question-only model. Han et al. (2021) cap-
ture different biases with multiple biased models
in an ensemble manner, and reduce them step by
step. Recently, some works also try to reduce the
unimodal bias from a cause-effect perspective (Niu
et al., 2021; Niu and Zhang, 2021).

Methods balancing the dataset. They usually
make efforts to balance the dataset before train-
ing, which reduces the bias of the dataset itself.
Zhu et al. (2020) propose to balance the biased
data without external annotations, and introduces
an auxiliary task upon the balanced data to over-
come the language priors. Additionally, Chen et al.
(2020) propose the CSS method to synthesize nu-
merous counterfactual samples by masking critical
objects in images or words in questions, and trains
the VQA model on them to improve its visual-
explainable and question-sensitive ability. More-
over, Liang et al. (2020) further improve the CSS
method with a contrastive learning strategy.

Our approach shares the similar spirit with the
methods balancing the dataset. However, previous
works in this category only manipulate a single
instance in different ways for data generation, while
our method also considers the relationship between
different instances in the dataset. And the proposed
concept superficially similar instances in this work
is more general with wider coverage.

3 Methodology

The whole framework of our method is depicted
in Figure 2. In the training phase, we optimize the
whole framework with the loss Lvqa of a classical
VQA paradigm and the proposed distinguishing
loss Ldis in a multi-task manner, and the total loss

offline 
construct

Input
VQA Model ℒ𝑣𝑞𝑎

the same 
model

Distinguishing
Module

ℒ𝑐𝑜𝑛

Superficially Similar Set

…

VQA Model
How many 

buses are there?  
GT: 1

How many animals 
are in the picture?  

GT: 2 

How many plants 
can you see?

GT: 3  

Figure 2: The framework of our method. The pink
part at the bottom shows the addition of our method
compared to a classical VQA paradigm.

L is defined as follows:

L = λ1 · Lvqa + λ2 · Ldis (1)

where λ1 and λ2 are coefficients tuning the influ-
ence of two losses. The distinguishing loss Ldis
explicitly encourages the model to distinguish be-
tween the superficially similar instances. In the
inference phase, we just utilize the trained VQA
model to make decisions in a classical way.

Given a training instance, we compute its distin-
guishing loss Ldis in two steps. First, we offline
construct a superficially similar set for the instance,
which consists of its superficially similar counter-
parts. Second, when online training, we input the
given instance with its superficially similar set into
the VQA model, and further exploit the distinguish-
ing module to compute Ldis.

3.1 Classical VQA Paradigm
Given a VQA dataset D = {(vi, qi, ai)}Ni=1 in
which each instance is a triplet of an image vi ∈ V ,
a question qi ∈ Q, and the corresponding answer
ai ∈ R|A|, a VQA paradigm typically learns a
mapping from an image-question pair to its answer
F : V ×Q → R|A|, where A is the set of possible
answers and each dimension of ai represents the
confidence score of an answer in A. The VQA
paradigm can be instantiated with various models
(e.g., the UpDn model (Anderson et al., 2018)).

We follow the common formulation of the VQA
task, which considers it as a multi-label clas-
sification problem. Given a training instance
(vi, qi, ai) ∈ D, the VQA model takes the image-
question pair (vi, qi) as input, and output a vector
of probabilities pi ∈ R|A| over the answer set:

pi = σ(F(vi, qi)), (2)
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where σ(·) denotes the sigmoid function. The
training objective is to minimize the binary cross-
entropy loss between pi and ai for all instances in
the dataset D:

Lvqa =−
1

N

N∑

i=1

|A|∑

k=1

(aik · logpik

+ (1− aik) · log(1− pik)).
(3)

The classical training objective only forces pi to
approach ai, but does not explicitly encourage the
differentiation of superficially similar instances in
the answer space.

3.2 Superficially Similar Set

Before the VQA model learns to distinguish be-
tween superficially similar instances, we first con-
struct a superficially similar set S for each training
instance in the dataset D. The set S is composed
of two kinds of superficially similar counterparts
for a given instance.

Real counterparts. For the first kind, we di-
rectly select the existing instances in the training
data with the same question type as the given in-
stance but different answers, which we call real
counterparts.

Synthetic counterparts. However, since the
size of training data is limited, the real counterparts
may be not sufficient for a VQA model to acquire
satisfactory distinguishing ability. Therefore, we
introduce the second kind of superficially similar
counterparts as the complement, inspired by the
previous work (Zhu et al., 2020). We randomly
select images from the training data, and combine
them with the question of the given instance to
construct new instances, which we call synthetic
counterparts. Obviously, these new instances and
the given instance have the same question type
(their questions are the same) but different answers1

(their images are different). In this way, we can
obtain much more superficially similar counterparts
than the real counterparts.

Set construction. The construction process
of S is elaborated in Algorithm 1, which is au-
tomatic and requires no additional annotation.
Given a training instance (vi, qi, ai) ∈ D, we
sequentially process all other training instances
{(vj , qj , aj)j ̸=i ∈ D} in two steps. First, we com-
bine qi with vj to generate a synthetic counterpart

1We ignore the rare case that the randomly selected image
coincides with the information needed to get the same answer.

Algorithm 1 Superficially Similar Set Construction
Input: The VQA dataset D; An instance (vi, qi, ai) ∈ D
Output: The superficially similar set S of (vi, qi, ai)
1: initialize an empty set S
2: for each training instance (vj , qj , aj)j ̸=i ∈ D do
3: add (vj , qi) into S � Synthetic counterpart
4: if type(qi) = type(qj) then � The same question type
5: m← argmaxl∈A ail
6: n← argmaxl∈A ajl
7: if m ̸= n then � Different answers
8: add (vj , qj) into S � Real counterpart
9: return S

superficially similar counterpart (vj , qi), which
have the same question type with qi but cannot
be answered by ai. Second, if the questions qi, qj
have the same question type and the correspond-
ing answers ai, aj are different, we also obtain a
superficially similar real counterparts (vj , qj).

3.3 Distinguishing Module

Once the superficially similar set of the training
instance is constructed, we exploit the distinguish-
ing module to explicitly encourage the distinction
between the training instance and its superficially
similar counterparts. Specifically, given a training
instance (vi, qi, ai) ∈ D with its superficially simi-
lar set S, we first input them into the VQA model
to get their projection in the answer space, i.e., a
vector of probabilities pi ∈ R|A| and a set of such
vectors {pj} respectively. Next, the distinguishing
module tries to increase the distance between pi
and each element pj in {pj}.

A naive solution is to directly increase the Eu-
clidean distance between the two vectors pi and
pj . However, this is unreasonable in two folds.
First, the direction along which the distance in-
creases should be constrained. As pi keeps moving
away from pj in the answer space, the value of its
dimension corresponding with the ground-truth an-
swer should increase simultaneously, which guaran-
tees that the question qi can be answered correctly
when the distance increases. Second, it doesn’t
make sense to increase the distance between pi
and pj along other dimensions except the ones cor-
responding with their ground-truth answers. For
example, if the answers to a training instance and
its superficially similar counterpart is “2” and “3”
respectively, it is meaningless to compare these two
instances on other dimensions such as “yes”, “red”.

Distinguishing loss. Considering the above two
constraints, we design the distinguishing loss in
Equation 4. For each training instance (vi, qi, ai),
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the VQA model is encouraged to give higher prob-
ability on its ground-truth answer to itself than its
superficially similar counterpart, and vice versa:

Ldis =−
1

N

N∑

i=1

∑

j

(logσ(pim − pjm)

+ logσ(pjn − pin)),
(4)

where m, n are the ground-truth answer of
(vi, qi, ai) and that of its superficially similar coun-
terpart respectively. This training objective satisfies
the mentioned two constraints. First, the direction
of increasing the distance complies with the goal
of answering the question correctly, e.g., the value
of pim gets larger progressively. Second, the dis-
tance between pi and pj increases only along the
dimensions corresponding with their ground-truth
answers, e.g., raising the value of (pim−pjm) only
increases the distance between pi and pj along the
m-th dimension.

Note that the superficially similar relationship
is symmetrical. The training instance (vi, qi, ai) is
also the superficially similar counterpart of each
instance in S. Therefore, for the real counterparts
from the datasetD, the second term logσ(pjn−pin)
in Equation 4 can be omitted, since it has been
included in Ldis. On the other hand, the synthetic
counterparts usually have no meaningful answer
to define the second term. Thus we can simplify
Equation 4 to:

Ldis = −
1

N

N∑

i=1

∑

j

logσ(pim − pjm). (5)

Modulating factor. However, we observe that
the improvement of performance is limited if we
train the VQA model as Equation 5. We deduce that
this is mainly because we treat each superficially
similar counterpart equally and do not distinguish
between hard and easy ones. More specifically,
the superficially similar counterparts which yield
a larger pjm are more difficult to distinguish from
the training instance (vi, qi, ai), and should be pe-
nalized more in Ldis. Therefore, inspired by the
work (Lin et al., 2017), we finally define the distin-
guishing loss as follows:

Ldis = −
1

N

N∑

i=1

∑

j

pjm · logσ(pim − pjm), (6)

where we add pjm as a modulating factor. Conse-
quently, Ldis will focus more on the hard superfi-
cially similar counterparts with larger pjm than the
easy ones.

3.4 Resource-Efficient Implementation
For the implementation of the proposed framework,
we need to consider the efficiency of both time and
space. On the one hand, given a batch of train-
ing data, it is time-consuming to run two respec-
tive passes in the VQA model to compute Lvqa
and Ldis. In practice, we only run one pass to ex-
tract the high-level features from a batch of image-
question pairs, and share them during the compu-
tation of Lvqa and Ldis. On the other hand, for a
training instance, the GPU memory is always too
limited to accommodate all the instances in its su-
perficially similar set S. In practice, we randomly
sample N1 the real counterparts and N2 the syn-
thetic counterparts from the intersection of S and
the current batch of data when online training. Note
that the sampling process is also at the feature level
and the time cost is negligible. The selection of N1

and N2 is discussed in Section 4.5.

4 Experiments

4.1 Experimental Setup
Datasets and evaluation. We evaluate the perfor-
mance of the proposed method on the benchmark
dataset VQA-CP v2 (Agrawal et al., 2018). For
completeness, we also evaluate our method on the
standard VQA v2(Goyal et al., 2017). We use the
standard VQA accuracy as the evaluation metric.

Implementation details. We employ the UpDn
model (Anderson et al., 2018) as the base archi-
tecture of our approach. The coefficient λ1 and
λ2 are set to 0.05 and 0.6 respectively. The values
of N1 and N2 are both set to 1. Additionally, we
categorize the questions into 65 question types as
in VQA v2 (Goyal et al., 2017).

4.2 Quantitative Analysis
Baselines. We compare the proposed method
UpDn+DM with two classical methods SAN (Yang
et al., 2016) and UpDn (Anderson et al., 2018),
and other debiasing methods2: (1) single-model
methods: GVQA (Agrawal et al., 2018), AdvReg
(Ramakrishnan et al., 2018), RUBi (Cadene et al.,
2019), HINT (Selvaraju et al., 2019), SCR (Wu
and Mooney, 2019), DLR (Jing et al., 2020), SSL

2Methods designed to overcome language priors.
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Model
VQA-CP v2 test set VQA v2 val set

Overall Yes/No Num Other Overall Yes/No Num Other

classical methods

SAN 24.96 38.35 11.14 21.74 52.02 68.89 34.55 43.80
UpDn 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66

single-model debiasing methods

GVQA 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
AdvReg 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
RUBi 47.11 68.65 20.28 43.18 61.16 - - -
HINT 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56
SCR 49.45 72.36 10.93 48.02 62.20 78.80 41.60 54.50
DLR 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54
SSL 57.59 86.53 29.87 50.03 63.73 - - -
Re-scaling 47.09 68.42 21.71 42.88 55.50 64.22 39.61 53.09
CF-VQA 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30
UpDn+DM (Ours) 61.13±0.17 88.13±0.31 45.98±0.63 51.13±0.04 63.53±0.09 81.09±0.21 39.61±0.24 56.52±0.05

ensemble debiasing methods

LMH 52.45 69.81 44.46 45.54 61.64 77.85 40.03 55.04
CSS 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11
CSS+CL 59.18 86.99 49.89 47.16 57.29 67.27 38.40 54.71
CSS+LMH+Re-scaling 56.55 83.95 47.81 44.59 55.96 70.52 33.56 50.83
GGE-DQ-tog 57.32 87.04 27.75 49.59 59.11 73.27 39.99 54.39
CSS+IntroD 60.17 89.17 46.91 48.62 62.57 78.57 41.42 56.00

Table 1: Performance (%) on VQA-CP v2 test set and VQA v2 val set. For fairness, we mainly compare our
approach with single-model methods, and highlight the obtained best and second best results in each column. We
report the average with the standard variation of results with 5 random seeds.

(Zhu et al., 2020), Re-scaling (Guo et al., 2021),
CF-VQA (Niu et al., 2021); (2) ensemble methods:
LMH (Clark et al., 2019), CSS (Chen et al., 2020),
CSS+CL (Liang et al., 2020), CSS+LMH+Re-
scaling (Guo et al., 2021), GGE-DQ-tog (Han et al.,
2021), CSS+IntroD (Niu and Zhang, 2021). How-
ever, the latter methods are based on stronger en-
semble architecture. For fairness, we mainly com-
pare with single-model methods.

Performance on VQA-CP v2 test set. The re-
sults on VQA-CP v2 are reported in Table 1. First,
we observe that our approach outperforms classical
methods by a large margin. Second, our method
performs best among single-model methods on
the accuracies of “Overall”, “Yes/No” and “Other”
categories, and second-best on the accuracy of
"Yes/No". Moreover, even compared with stronger
ensemble methods, our method also achieves com-
petitive results. For example, our method outper-
forms the second-best single-model method SSL
by 3.54% and the best ensemble-model method
CSS-IntroD by 0.96% on the overall accuracy. It
demonstrates the effectiveness of our approach at
overcoming language priors.

Performance on VQA v2 val set. The results
on VQA v2 val set are reported in Table 1. The
debiasing VQA methods usually lead to a decline
in the performance over VQA v2 val set, since they
tend to penalize the superficial correlation exces-
sively and over-correct the language priors. It is
worth noting that our method maintains the com-
petitive performance on VQA v2 with significant
improvement on VQA-CP v2, which indicates the
robustness of our method.

4.3 Qualitative Analysis

Qualitative examples. We display qualitative ex-
amples in Figure 3 to compare our method with
its base model UpDn. We observe that UpDn+DM
predicts the correct answers while UpDn does not,
which shows the effectiveness of our method. For
example, as shown in Figure 4b, "white" is the most
frequent answer in the training set with respect to
the question type "what color is the". While UpDn
utilizes the language priors to locate the first man
with a "white" shirt by mistake, our method is able
to capture the right region "the last man’s pants"
in the question and find the corresponding region
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UpDn+DM (Ours): grayUpDn: white 

What color is the last man pants?

How many plugins are being used?

GT: gray 

GT: 1 UpDn: 3 UpDn+DM (Ours): 1

Is this kitchen a bit messy?

Is this picture in color?

UpDn: no GT: yes  UpDn+DM (Ours): yes 

UpDn: no GT: yes  UpDn+DM (Ours): yes

Figure 3: Qualitative examples in VQA-CP v2 test set. We display the ground-truth answer and predicted answers
from UpDn and our method respectively. The best scoring region in the attention map when the model makes the
prediction is highlighted in the image.
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(b) question type: “what color is the”

train_gt UpDn UpDn+DM test_gt
0

20

40

60

80

100

An
sw

er
 D

ist
rib

ut
io

n 
(%

)

no
yes
outdoors
outside
indoors

(c) question type: “is this”

Figure 4: The answer distributions in percentage (%) of specific question types on VQA-CP v2 dataset. For each
question type, we display the answer distributions for the ground-truth answers from the training set (“train-gt”), the
baseline UpDn evaluated on the test set (“UpDn”), our method UpDn+DM evaluated on the test set (“UpDn+DM”)
and the ground-truth answers from the test set (“test-gt”). Note that for readability, we only display the most frequent
answers of the question type in VQA-CP v2 dataset and omit the others.
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Figure 5: Visualization of the distance between superfi-
cially similar instances in the answer space using t-SNE.
Each point denotes an instance with the same question
type “how many”. Different colors denote different
ground-truth answers.

in the image to make the right prediction. This
indicates that our method can reduce the language
priors, and make predictions by understanding the
critical parts in the image-question pairs.

Answer distribution. To intuitively understand
that our method overcomes the language priors
effectively, we compare the answer distributions
of some specific question types on VQA-CP v2
dataset in Figure 4. We observe that the answer dis-
tribution of our method UpDn+DM is much closer
to that of ground-truth answers from the test set

than the baseline UpDn, while the answer distribu-
tion of UpDn mimics that of ground-truth answers
from the training set to a greater extent. It indi-
cates that UpDn+DM does not rely on the language
priors in the training set that UpDn suffers from,
but really understands the input to give answers on
the test set. For instance, in the question type “is
this”, “yes” makes the majority of answers given
by UpDn+DM, as ground-truth answers from the
test set; while UpDn mostly outputs the answer
“no”, as ground-truth answers from the training set.

Distance in the answer space. As shown in
Figure 5, we also visualize the distance between
superficially similar instances in the answer space
with t-SNE. We observe that with our method, su-
perficially similar instances with the same question
type and different ground-truth are separated more
clearly in the answer space. It intuitively verifies
that our approach successfully teaches the VQA
model to distinguish between the superficially sim-
ilar instances. To complement the t-SNE visual-
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Model Overall Yes/No Num Other

Model Ablation

Ours w/o DM 41.44 43.10 13.24 48.30
Ours w/o MF 44.62 48.73 14.46 50.74

Data Ablation

Ours w/o SC 42.58 43.37 15.32 49.64
Ours w/o RC 60.47 89.19 39.39 51.21

Ours 61.13 88.13 45.98 51.13

Table 2: Accuracies (%) on VQA-CP v2 test set. "Ours
w/o DM" denotes our model variant without the distin-
guishing module. "Ours w/o MF" denotes our model
variant without the modulating factor pjm in Equation
6. "Ours w/o SC" and "Ours w/o RC" denote our model
without using the synthetic counterparts and the real
counterparts for training, respectively.

Model Overall Yes/No Num Other

SAN† 28.60 37.64 11.51 28.54
+DM 34.98 50.89 17.75 31.37

UpDn† 41.44 43.10 13.24 48.30
+DM 61.13 88.13 45.98 51.13

Table 3: Accuracies (%) on VQA-CP v2 test set based
on the architecture of SAN and UpDn model.† repre-
sents re-implementation results.

ization, we also compute inter-class and intra-class
Euclidean distances on answer classes with the
same question type. The results for UpDn are 0.47
(intra-class distance in blue), 0.40 (intra-class dis-
tance in red), 0.52 (inter-class distance), and that
for UpDn+DM are 0.32, 0.33, 0.50 respectively. It
further demonstrates that our method’s remarkable
distinguishing ability is achieved by compressing
the distance between intra-class data points.

4.4 Ablation Study

Model ablation. In the first part of Table 2, we
compare our method with its variant without the
whole distinguishing module and the variant with-
out the modulating factor pjm in Equation 6. We
observe that the model performance drops violently
if we remove the whole distinguishing module or
the modulating factor, which demonstrates that
both of them are indispensable.

Data ablation. As shown in the second part
of Table 2, we observe that both the real counter-
parts and synthetic counterparts contribute to the
improvement, and the synthetic kind contributes
much more. This is reasonable since the real coun-
terparts are far less than the synthetic counterparts

N1 N2 Overall Yes/No Num Other

1 1 61.17 88.15 46.08 51.16
1 2 61.20 88.55 45.82 51.08
2 1 60.91 88.18 45.28 50.91
1 3 61.22 88.35 46.21 51.13
3 1 60.94 88.05 45.56 50.96

Average 61.09±0.15 88.26±0.20 45.79±0.38 51.05±0.11

Table 4: Accuracies (%) on VQA-CP v2 test set with
different N1 and N2.
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Figure 6: Overall accuracy (%) on VQA-CP v2 train-
ing/test set when λ2/λ1 varies.

in both quantity and diversity. The real counter-
parts only come from the VQA dataset itself with
a limited size; while within the synthetic counter-
parts, a question can be combined with different
images in different batches, which yields a large
amount of diverse superficially similar instances.

4.5 Discussion

Model generalizability. We further conduct ex-
periments on different base models to validate
the generalizability of our model. Besides the
UpDn model, we also apply our method to the
base model Stack Attention Networks (SAN) (Yang
et al., 2016). As shown in Table 3, SAN+DM also
achieves significant improvement in the accuracies
of all categories compared to the original SAN,
which shows our method can be generalized to
other model architectures.

Varying N1 and N2. To investigate the influ-
ence of the sampled number of superficially similar
counterparts in the resource-efficient implementa-
tion, we fix N1 = 1 or N2 = 1 and vary the other
from 1 to 3. As shown in Table 4, the results are
stable with different N1 and N2. We set both pa-
rameters as 1 as default.

Tuning the influence of Ldis. We adjust the
ratio λ2/λ1 to tune the influence of Ldis. The re-
sults are shown in Figure 6. As the ratio of Ldis
increases, the performance on the training set drops
constantly, which demonstrates the model is less
dependent on language priors to make predictions.
Moreover, the performance on the test set first in-
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creases in the range of small λ2/λ1 values, and
then decreases when λ becomes too large. We de-
duce that if the ratio is too large, the influence of
Ldis would overwhelmingly exceed that of Lvqa
and make the VQA model underfit. Overall, we
should set λ2/λ1 in a reasonable range to alleviate
language priors as well as prevent underfit.

5 Conclusion

In this paper, we introduce the concept superfi-
cially similar instances and propose a novel training
framework for overcoming language priors by ex-
plicitly encouraging the VQA model to distinguish
between such instances. Extensive experiments
show that our approach achieves the state-of-the-art
results on VQA-CP v2, while maintaining compet-
itive performance on VQA v2. Qualitative analysis
also demonstrates that our method alleviates the
language priors effectively and really understands
the input.
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Abstract

Learning visual and textual representations
in the shared space from web-scale image-
text pairs improves the performance of diverse
vision-and-language tasks, as well as modality-
specific tasks. Many attempts in this framework
have been made to connect English-only texts
and images, and only a few works have been
proposed to extend this framework in multilin-
gual settings with the help of many translation
pairs. In this multilingual approach, a typical
setup is to use pairs of (image and English-text)
and translation pairs. The major limitation of
this approach is that the learning signal of align-
ing visual representation with under-resourced
language representation is not strong, achiev-
ing a sub-optimal performance of vision-and-
language tasks. In this work, we propose a sim-
ple yet effective enhancement scheme for pre-
vious multilingual multi-modal representation
methods by using a limited number of pairs of
images and non-English texts. In specific, our
scheme fine-tunes a pre-trained multilingual
model by minimizing a triple contrastive loss
on triplets of image and two different language
texts with the same meaning, improving the
connection between images and non-English
texts. Experiments confirm that our enhance-
ment strategy achieves performance gains in
image-text retrieval, zero-shot image classifica-
tion, and sentence embedding tasks.

1 Introduction

Transferring visual representations learned from
a large annotated set into downstream tasks of in-
terest (Deng et al., 2009; Zhai et al., 2019) is the
standard approach to achieve the state-of-the-art
performance (Kuznetsova et al., 2020; Kolesnikov
et al., 2020). However, due to the labeling cost,
the scalability of this approach is rather limited. In
contrast, self-supervised learning with contrastive
losses (He et al., 2020; Chen et al., 2020) has
proven to learn semantic representations without
using the explicit labels, which becomes a promis-

ing solution to obtaining general visual represen-
tations. In addition, this paradigm combined with
billion-scale unlabeled samples is competitive with
the annotation-based transfer learning approaches
in multiple tasks (Goyal et al., 2021).

In natural language processing (NLP), pre-
training with billions of corpus and transferring
to downstream tasks has likewise achieved tremen-
dous success. And it has been a de facto standard
for a recent decade (Devlin et al., 2019; Radford
et al., 2019; Brown et al., 2020). Witnessing suc-
cesses in two domains, researchers have been ac-
tively attempting to find visual-and-language (VL)
representations by combining supervisions that
come from billions of both images and languages.
(Li et al., 2019; Lu et al., 2019, 2020; Kim et al.,
2021) have attempted to utilize highly curated VL
datasets such as MS-COCO (Lin et al., 2014) or
Visual Genome (Krishna et al., 2016). However,
the non-trivial collection process is the major limi-
tation in scaling up these datasets. CLIP (Radford
et al., 2021) overcame the limitation by learning
VL representations from web-scale 400M image-to-
text pairs on both visual and VL downstream tasks,
even with a simple contrastive loss. ALIGN (Jia
et al., 2021) extended this approach by scaling up
image-text pairs to 1.8B with simple filtering com-
pared to CLIP and showed state-of-the-art scores
on both visual and visual-language tasks.

Such web-scale approaches as well as the ear-
liest attempts have focused on connecting images
to English texts. Using a separate translator might
be a practical solution to match images and multi-
lingual texts, but this resorts to sub-optimal results
because the effect of translation errors is not ex-
plicitly considered in the VL representation learn-
ing process, and translating every text into dozens
of languages is inefficient. In language models,
many attempts have been successfully made to de-
velop language-agnostic representations, improv-
ing the performance of downstream tasks on under-
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resourced languages. In order to achieve this goal,
Pires et al. (2019); Liu et al. (2020); Xue et al.
(2021) pre-train language models over a multilin-
gual corpus for transferring knowledge across lan-
guages. Chi et al. (2021); Feng et al. (2020) utilize
bilingual translation pairs to transfer the informa-
tion from common languages to under-resourced
ones in a more efficient way.

Following this research direction in language
models, MURAL (Jain et al., 2021) suggests the
efficient multilingual VL modeling that leverages
both the alignments of (a) monolingual image-to-
text and (b) multilingual text-to-text on the training
dataset simultaneously. However, since English is
the only language that has a direct connection with
images, the performance of non-English languages
on several multi-modal tasks is relatively weaker
than that of English. Linking all languages directly
to images would be the easiest and ideal solution,
but obtaining billions of image-text datasets for
all languages is nearly impossible, especially for
low-resourced languages.

To tackle the data-scarcity problem, we propose
a simple but efficient enhancement via triplet con-
trastive learning (ETCL) that utilizes multi-modal
zero-shot transfer through relatively small amounts
of image-text datasets in non-English languages
through a triplet contrastive loss. In ETCL, we fur-
ther train the pre-trained multilingual VL model
with a new limited number of pairs of image and
non-English texts to strengthen the weak alignment
of the pre-trained model. In order to fully lever-
age multi-modal cross-lingual zero-shot transfer,
we introduce a triplet contrastive learning which
considers (a) image-textA, (b) textA-textB and (c)
textB-image, where textA and textB are multilin-
gual translation pairs.

Through various experiments, we show that our
framework provides significant performance im-
provement for various languages in multi-modal re-
trieval tasks and zero-shot image classification and
sentence embedding tasks. Interestingly, the large
performances gains also occur in some languages
which are not included in the training dataset for
ETCL. Through ablation study, we prove that the
phenomenon comes from the multi-modal cross-
lingual zero-shot transfer with regard to gram-
matical and geographic relationships between lan-
guages. And we show that ETCL leverages the
relationships efficiently. In summary, our contribu-
tions to the multilingual VL representation are:

• We propose the ETCL framework that lever-
ages multi-modal cross-lingual zero-shot
transfer to train VL model efficiently.

• We show that ETCL gives the large perfor-
mance gains on various downstream tasks
such as image-text retrieval, zero-shot image
classification and language tasks.

• We provide the empirical analysis that ETCL
utilizes the geographical and grammatical re-
lationships between languages efficiently.

2 Related works

We briefly review the research areas and key refer-
ences most relevant to our approach.

2.1 Multilingual representation learning

Multilingual language models have shown that a
single large model improves diverse multilingual
NLP tasks, removing the need for maintaining
language-specific models (Pires et al., 2019; Liu
et al., 2020; Xue et al., 2021; Feng et al., 2020;
Chi et al., 2021). Multilingual BERT (Pires et al.,
2019), dubbed as mBERT, is a multilingual vari-
ant of BERT (Devlin et al., 2019), which is pre-
trained with the masked language modeling ob-
jective over about 100 languages. LaBSE (Feng
et al., 2020) adapts mBERT to learn language-
agnostic sentence embedding over bilingual trans-
lation pairs, improving cross-lingual retrieval tasks
significantly. mBART (Liu et al., 2020) trains
an encoder-decoder architecture on a large cor-
pus composed of multiple languages using BART
objective (Lewis et al., 2019). Considering mul-
tilingual variants to newly proposed models has
still been actively studied. For instance, T5 (Raf-
fel et al., 2020) is also extended to a multilingual
model, which is named mT5 (Xue et al., 2021), by
training a sequence-to-sequence model over 101
languages. Recently, mT6 (Chi et al., 2021) further
improves mT5 by proposing a novel objective for
text-to-text pre-training.

2.2 Vision-and-Language representation
learning

Learning VL representations in a self-supervised
fashion is a promising approach to solving many vi-
sually grounded language understanding tasks (Li
et al., 2019; Lu et al., 2019, 2020; Kim et al.,
2021). ViLBERT (Lu et al., 2019) and Visual-
BERT (Li et al., 2019) try to align patches in an
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(a) Image-to-Text (I2T) Contrastive Loss (b) Text-to-Text (T2T) Contrastive Loss
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Figure 1: Illustration on English-only image-to-text
and multilingual text-to-text matching, where the text
encoder is shared across languages.

image into (sub-)words through a sequence of self-
attention layers, generating transferable representa-
tions on many VL downstream tasks. ViLT (Kim
et al., 2021) advances the model architecture and
training procedure to achieve comparable perfor-
mance without using the region proposal network.
Since these works rely on highly curated multi-
modal datasets, the scalability of these approaches
is rather limited. CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) have shown that it is pos-
sible to learn transferrable visual and VL repre-
sentations from noisy web-scale datasets. Very re-
cently, MURAL (Jain et al., 2021) extends ALIGN
in a multilingual setting by leveraging billion-scale
translation pairs. However, the performance of
under-resourced languages on various VL tasks
is still weaker than that of English. Otherwise,
KELIP(Ko and Gu, 2022), a CLIP-style bilingual
VL model trained using 708M Korean and 476M
English image-text pairs, has been proposed, show-
ing strong representations on Korean VL tasks.
However, the approach is not an optimal solution
for multilingual VL modeling because gathering
image-text pairs for more than a hundred languages
is practically impossible. Our work suggests a sim-
ple but effective solution to boost the performance
of under-resourced languages.

3 Approach

This section describes the details of conventional
multilingual VL modeling, the proposed ETCL
scheme, and training details.

Image encoder

Text encoder

Text encoder

shared

Der Welpe schläft auf 
der Bettdecke.

小狗睡在羽绒被上。

Trip
let co

ntrastive lo
ss

Figure 2: Illustration on a triple contrastive loss using
(1) image-textA, (2) textA-textB and (3) textB-image,
where the text encoder is shared across languages.

3.1 Background: Multilingual VL pretraining

MURAL (Jain et al., 2021) suggests large-scale
multilingual VL modeling using pairs of (image
and English-text) and translation pairs. (see Fig-
ure.1). For training VL representations, the system
requires capturing the meaning of images and texts
at the same time. In this context, contrastive loss
is a suitable objective since it places semantically
similar images and sentences in the same latent
vector space as follows:

Li2t = −
1

N

N∑

i=1

eϕ(xi,yi)
∑N

n=1 e
ϕ(xi,yi)

,

Lt2i = −
1

N

N∑

i=1

eϕ(yi,xi)
∑N

n=1 e
ϕ(yi,xi)

,

(1)

Limage-text = Li2t + Lt2i, (2)

where Li2t and Lt2i represent the image-to-text and
text-to-image losses respectively and ϕ denotes
scoring function x⊤y. Also, xi and yi denote the
image and text features in the i-th pair, N is the
batch size, σ is a learnable softmax temperature.
The loss function for text-to-text matching from
translation pairs is similarly defined and denoted
by LtextA-textB and LtextB-textA, and Ltext-text is de-
fined as the sum of two losses. The final objective
of MURAL is followed by:

LMURAL =
1

2

(
Limage-text + Ltext-text

)
, (3)

In addition to this, MURAL adds an addictive
margin (Yang et al., 2019) to LMURAL.
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3.2 Enhancement via triple contrastive loss
Although MURAL trains a multilingual VL repre-
sentation efficiently, the alignment of visual rep-
resentation with under-resourced language repre-
sentation is still weaker than that of English. To
tackle this limitation, we suggest an enhancement
scheme that conducts training by adding a small
amount of non-English image-text dataset to im-
prove weak alignment between image and non-
English languages. As with (Ruan et al., 2022),
we introduce a triple contrastive loss that takes
into account all pair possibilities rather than simply
training with L image−text between images and non-
English captions to take full advantage of zero-shot
transfers across multi-modal cross-lingual in the
training dataset (see Figure 2). Before defining the
proposed triple contrastive loss, we prepare image,
and two pairs of text in different languages with the
same meaning. Since we have prepared three differ-
ent representations of training data with the same
semantic, we can simply apply contrastive loss to
the three inputs(image, textA, textB) as follows:

LETCL =
1

3
(Limage-textA + LtextA-textB + LtextB-image) . (4)

Here, we refer to our enhancement scheme as
ETCL, abbreviated version of Enhancement via
Triplet Contrastive Learning. Combined with
MURAL, we name it as MURAL+ETCL.

3.3 Model details
Since there is no publicly available MURAL model,
we reproduce the MURAL using the architecture
and training method as proposed in MURAL (Jain
et al., 2021). The image-text pairs required are
created by ourselves, and the publicly available
CCMatrix is used for text-text pairs.

Model architecture Our model is composed of
an image encoder and three text encoders to align
image-text and text-text pairs (see Figure 1), where
the parameters of all text encoders are shared. For
the image encoder, we follow the same protocol of
ALIGN (Jia et al., 2021) by using EfficientNet (Tan
and Le, 2019) with global averaging pooling to
obtain the embedding of an image. For the text
encoder, we choose BERT (Devlin et al., 2019)
and use the hidden representation of [CLS] token
as the embedding of a text. To make sure that the
embeddings have the same dimension, we add an
additional fully-connected layer on the top of the
text encoder.

Pre-processing For a fair comparison, we try to
follow the data pre-processing and augmentation
used in ALIGN and MURAL as much as possible.
For training, we resize images of arbitrary resolu-
tions into 346 × 346 resolution regardless of the
aspect ratio. Then, we randomly crop the image to
289 × 289, and apply the horizontal flip of proba-
bility 0.5. For evaluation, we resize the image to
346× 346, and apply the center crop of 289× 289.
For both training and evaluation, we use the same
pre-processing for the texts. We use the tokenizer
having 550K vocabulary provided by the official
repository of LaBSE 1, and truncate the sequence
to have the maximum length of 64.

Training details For MURAL optimization, we
use LAMB optimizer (You et al., 2020) with a
weight decay ratio of 1e-5. The learning rate is
linearly increased from zero to 1e-3 in 10k steps,
and then linearly decays to zero in 800k steps. We
use the label smoothing of 0.1. The temperature is
initialized as 1.0, and the margin m is 0.3 same as
to LaBSE (Feng et al., 2020). We train the model
with a batch size of 16,384 on 128 Cloud TPU V3
cores with 128 positive pairs on each core. Since
a large number of negative samples is critical in
contrastive learning, we adopt the cross-accelerator
negative sampling as used in LaBSE. This enables
the large batch training by collecting samples in all
synchronized cores and treating them as negative
samples. For ETCL, we use a 32,768 batch size
with a learning rate of 1e-4, which decreases from
1e-4 to zero linearly in 3k steps.

3.4 Data collection

Image-text pairs We follow the data collection
process of ALIGN to create our in-house 1B image-
text pairs dataset from Common crawl 2. The raw
descriptions are gathered from the Alt-text HTML
attribute associated with web images. We only ap-
ply minimal rule-based filtering as detailed below.
For image-based filtering, we only keep images
whose shorter dimension is larger than 200 pixels
and set the aspect ratio as 3. We discard images
with more than 100 associated alt-text. For text-
filtering, we exclude alt-texts that are shared by
more than 10 images. We also discard either too
short (<3 unigrams) or too long (>100 unigrams
or >1000 characters). These filters include discard-
ing instances that are classified as non-English by

1https://tfhub.dev/google/LaBSE/2
2https://commoncrawl.org/the-data/
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cld3 (compact language detector v3) 3. Addition-
ally, we also include CC3M (Sharma et al., 2018)
and CC12M (Changpinyo et al., 2021) in our 1B
image-text pairs dataset.

Text-text pairs We use all 10.8B text-text pairs
in CCMatrix dataset (Schwenk et al., 2021) for the
text-test alignment, which covers 90 languages and
have 1,197 bitexts across multiple languages. All
pairs are publicly available on the OPUS website 4.

Multilingual image-text pairs We use multilin-
gual CC3M datasets which consist of translated
versions of original CC3M in 5 languages (de, fr,
cs, zh and ja), which are provided (Zhou et al.,
2021). After generating 15 language pairs in 6 lan-
guages without duplicates, image-textA-textB 45M
triple dataset was created and used for ETCL. In
this dataset, the number of unique images is 3M,
and the captions are 18M.

4 Experiments

In this section, we present experiment settings to
evaluate our proposed model over VL, visual, and
language tasks.

4.1 Task description

Image-text retrieval The image-text retrieval is
the most suitable task to evaluate the VL model be-
cause this task uses the representation of language
and image simultaneously. Following (Jain et al.,
2021; Jia et al., 2021; Li et al., 2019), we validate
the ability of our VL representation on multilingual
Flickr30K (Young et al., 2014; Elliott et al., 2016,
2017; Barrault et al., 2018) and MS-COCO (Lin
et al., 2014; Yoshikawa et al., 2017) in image-to-
text and text-to-image retrieval tasks with zero-shot
and fine-tuning scenarios. In this experiment, we
use multilingual Flickr30K having English, Ger-
man, French, and Czech captions, where and Ger-
man captions are provided by Multi30K (Elliott
et al., 2016) and French and Czech captions are
obtained by the translation (Elliott et al., 2017; Bar-
rault et al., 2018). Multi30K contains five captions
per image in English and German, and one de-
scription per image in French and Czech. We use
29K, 1K, and 1K images for the train, validation,
and test sets, respectively as used in the original
dataset (Young et al., 2014). In addition to English
MS-COCO, Japanese (Yoshikawa et al., 2017) and

3https://github.com/google/cld3
4https://opus.nlpl.eu/CCMatrix.php

Korean MS-COCO 5 are also used for the VL eval-
uation. We follow the split protocol used in (Karpa-
thy and Fei-Fei, 2015), resulting in 82K training
and 5K test sample. For evaluation, we measure
Recall@K with respect to K = 1, 5, 10 on two
retrieval tasks. We report the performance of each
model by Average Recall (AR), taking the mean
over these six scores.

During fine-tuning, we follow the same proto-
col used in ALIGN for a fair comparison. The
pre-trained model is fine-tuned by the image-text
contrastive loss (without text-text matching loss).
We use the batch size of 2,048 and set the learning
rate to 1e-5 with a linear decay scheduler, and fine-
tune the model over 3K and 6K steps on Flickr30K
and MS-COCO, respectively. All the other hyper-
parameters are consistent with the ones in pre-
training.

Zero-shot image classification Performance on
the zero-shot image classification has been consid-
ered one of the important evaluation tasks for the
large-scale multi-modal pre-training model since
it represents the generalization ability of a model.
Following previously proposed studies(Jain et al.,
2021; Jia et al., 2021), we validate the visual
representation power of our method on multilin-
gual zero-shot classification tasks based on text
prompts. Furthermore, an additional result on
ImageNet K-Nearest-neighbor (KNN) tasks with-
out text prompts is provided in Appendix A.3.
Our models are evaluated on diverse classification
datasets, including ImageNet (Deng et al., 2009),
CIFAR100 (Krizhevsky, 2009), SUN397 (Xiao
et al., 2010), and Fool101 (Bossard et al., 2014).
We conduct the zero-shot image classification
based on text prompts (Radford et al., 2021) over
83 languages, where prompts are translated by
Google Translator. We remark that the transla-
tor supports 83 languages among 90 languages
covered in CCMatrix. For a fair comparison, we
adopt the text prompt engineering used in CLIP.
For instance, in the case of Food101, a context
prompt is inserted, so the final prompt is “A photo
of a {label}, a type of food", and the context
prompt is also translated over 83 languages. Sim-
ilar to MURAL, we compare models on three
groups, All-languages, well-resourced
and under-resourced to deeply investigate
our model in different resource conditions. The

5Korean COCO is from https://aihub.or.kr/
keti_data_board/visual_intelligence.
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Type Model Backbone
Image-text Text-text Flickr30K MSCOCO 5K

pairs pairs en de fr cs avg. en ja ko avg.

Zero-shot

ALIGN-BASE B5+BERT-Base
1.8B -

83.3 75.0 74.2 47.9 70.1 59.6 53.9 - -
ALIGN-L2 L2+BERT-Large 92.2 - - - - 70.9 - - -
MURAL-BASE B5+BERT-Base

1.8B 6B
82.4 76.2 75.0 64.6 74.6 59.5 54.4 - -

MURAL-LARGE B7+BERT-Large 89.2 83.5 83.1 77.0 83.2 67.7 64.6 - -
MURAL(reprod.) B7+BERT-Base 1B 10.8B 90.1 70.5 70.1 63.7 73.6 67.8 40.6 31.5 46.6
MURAL(reprod.) + ETCL B7+BERT-Base 1B + 45M 10.8B + 45M 90.6 85.6 85.8 82.2 86.0 69.1 62.1 49.3 60.2

Fine-tune

ALIGN-BASE B5+BERT-Base
1.8B -

92.2 88.5 88.1 84.5 88.3 74.8 72.5 - -
ALIGN-L2 L2+BERT-Large 96.0 - - - - 83.4 - - -
MURAL-BASE B5+BERT-Base

1.8B 6B
92.2 88.6 87.6 84.2 88.2 75.4 74.9 - -

MURAL-LARGE B7+BERT-Large 93.8 90.4 89.9 87.1 90.3 81.2 81.3 - -
MURAL(reprod.) B7+BERT-Base 1B 10.8B 94.5 89.8 90.2 87.8 90.6 79.3 77.9 73.3 76.9
MURAL(reprod.) + ETCL B7+BERT-Base 1B + 45M 10.8B +45M 94.8 91.0 91.3 89.7 91.7 79.8 79.2 77.0 77.8

Table 1: Average Recall of image-to-text and text-to-image retrieval tasks on multilingual Flickr30K and MS-COCO
in zero-shot and fine-tuning scenarios for English (en); German (de); French (fr); Czech (cs); Japanese (ja). The
numbers of ALIGN and MURAL are taken from (Jain et al., 2021). The last column for each dataset means the
average score over all languages.

groups are below:

• well-resourced: English (en), German(de),
French (fr), Czech (cs), Japanese (ja), Chi-
nese (zh), Russian (ru), Polish (pl), Turkish
(tr)

• under-resourced: Uzbek (uz), Irish (ga), Be-
larusian (be), Malagasy (mg), Cebuano (ceb)

Sentence similarity & retrieval For the multi-
lingual VL model, one important question is still
remaining: what does the model learn from lan-
guages and how can we assess its ability to NLP
tasks? As previous VL studies proposed (Jain
et al., 2021), we validate the performance of sen-
tence embeddings from our approach in (multilin-
gual and monolingual) sentence similarity com-
parison (Cer et al., 2017) and cross-language sen-
tence retrieval tasks (Artetxe and Schwenk, 2019).
For the sentence similarity comparison, we choose
STS 2017 (Cer et al., 2017) and its extended ver-
sion (Reimers and Gurevych, 2020). Both datasets
contain human-annotated labels of the similarity
from 0 (no meaning overlapping) to 5 (equivalent
meaning) for every pair of sentences. We com-
pute the Spearman rank correlation between the
cosine similarity of two sentence embeddings and
the ground-truth label in both 3 monolingual and
7 multilingual settings. We also evaluate ETCL on
a multilingual sentence retrieval task with Tatoeba
dataset (Artetxe and Schwenk, 2019). In this ex-
periment, we observe that ETCL have decent per-
formance compared to other language models, and
more details could be found in Appendix A.5.

5 Results

As presented in our contributions in Section 1, our
study has different goals: (1) investigate the per-
formance gains based on the proposed method on
various downstream tasks including image-text re-
trieval, zero-shot image classification and sentence
retrieval (2) study the effect of ETCL in related
languages (geographically and grammatically), (3)
check whether ETCL activates information sharing
in multilingual training. By taking into account
the proposed goals, in this section, we report our
experimental results in various tasks.

5.1 Downstream Task Results on Image-Text
Retrieval

To investigate the effectiveness of the proposed
model, we conducted experiments on the Image-
Text Retrieval task. Table 1 shows the average
recall over three different Ks of two retrieval tasks
in zero-shot and fine-tuning scenarios. We note that
the reproduction of MURAL is successful because
MURAL(reprod.) performs comparably to ALIGN-
BASE and MURAL-LARGE in all languages of
the two datasets.

First, for Flickr30K, ALIGN-L2 performs bet-
ter than MURAL(reprod.)+ETCL in both zero-
shot and fine-tuning cases (92.2 vs. 90.1 and
96.0 vs. 94.5) in the case of English, because
the capacity of the image encoder of ALIGN-
L2 is larger than MURAL(reprod.)+ETCL.
In the case of non-English, we observe that
MURAL(reprod.)+ETCL model shows better
performance compared to MURAL-LARGE and
ALIGN-L2 on German, French in zero-shot and
German, French, and Czech in fine-tune setting
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even if the model capacity is smaller than that of
two models.

For MS-COCO, MURAL(reprod.)+ETCL
also shows competitive performance for all lan-
guages in both zero-shot and fine-tune cases
with the relatively small size of model com-
pared to MURAL-LARGE and ALIGN-L2. Es-
pecially for Korean, which is not included
in languages of new image-text pairs for
ETCL, MURAL(reprod.)+ETCL outperforms
MURAL(reprod.) in both zero-shot and fine-
tuning cases by 17.8 and 3.7, respectively. These
results confirm that multi-modal cross-lingual zero-
shot transfer occurs effectively for languages not in
training data after ETCL. In other words, zero-shot
transfer strengthens the weak connection between
image and non-English text after indirect alignment
training. A more in-depth study of the phenomenon
will be discussed in Section 5.4.

In Appendix A.1, all Recall@K with respect
to K = 1, 5, 10 on two retrieval tasks for all lan-
guages are provided.

5.2 Downstream Task Results on Zero-Shot
Image Classification

Language Model ImageNet SUN397 Food101 CIFAR100

All languages
MURAL(reprod.) 18.4 29.6 29.1 16.6
MURAL(reprod.) + ETCL 26.9 37.1 45.1 19.6

Well-resourced
MURAL(reprod.) 26.4 40.4 29.1 16.6
MURAL(reprod.) + ETCL 38.1 50.7 45.1 19.6

Under-resourced
MURAL(reprod.) 15.2 23.0 29.4 16.7
MURAL(reprod.) + ETCL 23.6 29.2 45.5 19.8

Table 2: Classification accuracy (%) on multilingual
zero-shot image classification on 4 datasets. Languages
are grouped as followed (1) All languages, (2) well-
resourced languages and (3) under-resourced languages
group. All values are the average of 100 × Acc@1
across languages.

As presented in Section 4.1, we conduct
zero-shot image classification and languages are
grouped to see general trends depending on lan-
guage resources. Table 2 shows the zero-shot
classification performance on four datasets. All
detailed results are illustrated in Appendix A.4.
We note that all results are reliable to compare
the trends because MURAL(reprod.)+ETCL
shows comparable performance compared to CLIP-
ViT/32 (62.6 vs 64.6). For all three groups,
MURAL(reprod.)+ETCL shows better perfor-
mance on four datasets. For the well-resourced
group, the performance of ru, pl and tr improves al-
though those languages are not in the newly added

languages. Above all, the performance of the under-
resourced group which does not include any newly
added languages also improves largely over all
datasets, which confirms that ETCL gives effec-
tive multi-modal zero-shot cross-lingual transfer
over low-resourced languages as well.

5.3 Results on language tasks
To answer the raised question about assessing our
model in NLP tasks in Section 4.1, we conduct
NLP-oriented experiments. The goal of this exper-
iment is to verify how well sentence embeddings
obtained from pre-trained models can solve sen-
tence similarities and search tasks.

en-en es-es ar-ar Avg.

LaBSE 79.4 80.8 69.1 76.4
MURAL(reprod.) 84.8 80.5 69.2 78.1
MURAL(reprod.) + ETCL 87.3 83.3 76.2 82.3

Table 3: Performance on extended STS 2017 similarity
comparison task in the monolingual setting. Scores are
calculated by 100 × Spearman rank correlation between
the cosine similarity of sentence embeddings and the
gold labels.

en-ar en-de en-tr en-es en-fr en-it en-nl Avg.

LaBSE 74.5 73.8 72.0 65.5 77.0 76.9 75.1 73.5
MURAL(reprod.) 70.7 70.4 69.8 69.1 72.9 71.8 72.4 71.0
MURAL(reprod.) + ETCL 75.7 84.1 76.3 79.5 85.3 82.1 82.3 80.7

Table 4: Performance on extended STS 2017 similarity
comparison task in the multilingual setting. Scores are
calculated by 100× Spearman rank correlation between
the cosine similarity of sentence embeddings and the
gold labels.

Semantic Textual Similarity To evaluate the
sentence embedding performance of the text en-
coder, the STS task was performed with the
same evaluation protocol as done in (Reimers
and Gurevych, 2019). Since the text encoder is
trained with a contrastive loss, we set LaBSE, a
text-encoder-only language model trained in the
same way, as a baseline. As shown in Table 3
and 4, the performance of the text encoder of
MURAL(reprod.) is similar to that of LaBSE.
This is because the two text encoders are trained
using text-text alignment based on the parallel text
pairs. Interestingly, we can see that the perfor-
mance of MURAL(reprod.)+ETCL increases
significantly by 4.2 and 9.7 in STS 2017 mono-
lingual and multilingual settings respectively. We
conjecture that this performance improvement is
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due to the synergy caused by the image domain
because the multi-modal model is trained with both
images and text simultaneously. In summary, these
results reveal that since the text encoder of the
VL model is trained along with the image encoder,
there is room for improvement in the performance
of the text encoder by using the image encoder,
unlike the text encoder-only language model. a

Model Avg Gain over baseline

MURAL(reprod.) baseline 31.5 -
MURAL(reprod.) + cs 47.1 15.6
MURAL(reprod.) + fr 45.4 13.9
MURAL(reprod.) + ja 47.6 16.0
MURAL(reprod.) + zh 47.1 15.6
MURAL(reprod.) + de 46.1 14.6

Table 5: Performance on Korean MS-COCO image-text
and text-image retrieval tasks. Scores are the average of
T2I and I2T R@1,5,10.

Model Avg Gain over baseline

MURAL(reprod.) baseline 40.6 -
MURAL(reprod.) + cs 54.3 13.7
MURAL(reprod.) + fr 53.2 12.6
MURAL(reprod.) + ja 52.5 11.9
MURAL(reprod.) + zh 52.3 11.7
MURAL(reprod.) + de 52.4 11.8

Table 6: Performance on Ukraine MS-COCO image-text
and text-image retrieval tasks. Scores are the average of
T2I and I2T R@1,5,10.

Model 3 COCO datasets 4 Flickr30K datasets

MURAL(reprod.) 139.9 294.4
MURAL(reprod.) + 6 lang 179.3 343.9
MURAL(reprod.) + ETCL 180.5 344.2

Table 7: Performance on MS-COCO(en, ja, ko) and
Flickr30K(en, de, fr, cs) in zero-shot image-text retrieval
tasks. Scores are the summation of averages of 6 scores
(T2I and I2T R@1,5,10).

5.4 Analysis and ablation study
Observing the overall performance in Table 1, one
could be convinced that adding more multilingual
image-text pairs during ETCL will bring better per-
formance. Then, one can ask some questions (1)
does our model really transfer VL knowledge even
for unseen language?, (2) how does zero-shot trans-
fer differ depending on linguistic context?. Further
experiments and analyses are performed to gain
a better understanding of multi-modal zero-shot

transfer. In addition, we investigate the effective-
ness of triple contrastive loss. Another ablation
study on VL pre-training steps is described in Ap-
pendix A.3.

Effect of the multi-modal zeroshot-transfer In
order to answer questions (1) and (2), we fine-
tune MURAL(reprod.) with L image−text using
one language pairs from multilingual CC3M and
compare models on the Korean and Ukraine 6

COCO image-text retrieval. As shown in rows 2-6
in both Table 5 and Table 6, additional training us-
ing (L image−text) brings zero-shot transfer gain over
both unseen Korean and Ukraine. Interestingly, ad-
ditional training using Japanese image-text pairs
shows the largest gain over other languages for
Korean COCO. We conjecture that Japanese is a
language very similar to Korean grammatically, re-
sulting in enhanced zero-shot transfer. Likewise,
Czech, similar to Ukraine geographically, also
has the largest zero-shot transfer gain in Ukraine
COCO. Another ablation study is included in Ap-
pendix A.5.

Effectiveness of triple contrastive loss One
can expect that the cross-lingual zero-shot
transfer effect can sufficiently occur with
only the L image−text. To investigate the effect
of the triple contrastive loss, we fine-tune
MURAL(reprod.) with L image−text us-
ing all six multilingual CC3M (we name it
MURAL(reprod.)+6lang). Furthermore, we
compare it with MURAL(reprod.)+ETCL on
zero-shot image-text retrieval for multilingual
MS-COCO (en, ja, ko) and Flickr30K (en, de,
fr, cs). As shown in Table 7, row 1-2 show
that cross-lingual zero-shot transfer also occurs
in MURAL(reprod.)+6lang as expected.
However, MURAL(reprod.)+ETCL still show
the best performance, proving the effectiveness of
triple contrastive loss.

6 Conclusion

VL modeling using large-scale web-crawled
datasets has shown great success but cannot be
easily utilized for low-resourced languages due to
the lack of data. Although a method to efficiently
create a multilingual VL model through indirect
text-text alignment has been proposed, the VL rep-
resentations of low-resourced languages are still

6We translate MS-COCO into Ukraine using google trans-
lator.
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weaker than that of English. This work proposes
a new approach to solve the limitation based on
the observation that multi-modal zero-shot transfer
occurs with regard to grammatical and geographi-
cal relationships between languages. Our proposed
method can be easily adapted to multilingual multi-
modal models trained similarly to MURAL.

7 Ethical consideration

It is likely that our model has unwanted social bias
from the majority of English in our dataset. If an
objective or a dataset that strongly increases the
contribution of low-resource language is comple-
mented, the bias can be alleviated.

In our approach, a larger model size, more data,
and longer training steps lead to better models.
However, these lead to an environmental impact
inevitably. Therefore, more research is required
to develop a large-scale multilingual multi-modal
model with fewer steps and a small backbone to
alleviate tremendous computing resources harming
our environment.
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A Appendix

A.1 Image-text retrieval

Fine-tuning on Flickr30K and MSCOCO took
about 3 and 6 hours, respectively using 32 Cloud
TPU V3 cores. All scores of both image-text and
text-image retrieval are listed in Table 8 and 9.

A.2 Validation of visual embedding

To validate the visual embedding only, we con-
duct the ImagenetKNN retrieval task using visual
features from our pre-trained model as done in
ALIGN. In ImageNet KNN retrieval, we retrieve
their nearest neighbors from the training set using
pre-trained visual embeddings to find the class of

Language
image→ text text→ image

Type R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot

en 84.9 97.7 99.5 73.5 92.2 96.0
de 77.5 96.0 98.4 63.0 86.6 91.9
fr 70.8 90.6 95.0 72.0 91.2 95.3
cs 62.8 87.8 93.0 67.2 88.8 93.5

Fine-tune

en 93.5 99.4 99.8 81.8 95.9 98.2
de 88.1 98.7 99.7 72.1 91.6 95.7
fr 80.1 96.3 97.9 80.0 95.9 97.8
cs 77.1 95.0 97.0 77.1 94.5 97.3

Table 8: Image-text retrieval on Flickr30K in multiple
languages.

Language
image→ text text→ image

Type R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot
en 56.1 80.2 87.5 43.5 69.1 78.4
ja 35.3 59.9 70.9 25.0 47.3 57.5
ko 47.1 72.5 82.1 36.8 62.0 72.0

Fine-tune
en 70.2 91.0 95.3 54.9 80.0 87.7
ja 62.9 87.0 93.2 46.8 73.9 82.9
ko 69.8 90.8 95.1 53.1 79.1 87.1

Table 9: Image-text retrieval on COCO in multiple lan-
guages.

each image in the validation set of ILSVRC-2012.
Recall@K metric is obtained using the appearance
of the found label of the query image in the top-
K retrieved images. We compare our model with
ALIGN as shown in Table 10. Because we use
image-text pair datasets less than ALIGN by 0.8B
pairs, our model shows a score of 67.8 which is
still comparable, indicating that our model trained
using two alignment task learning ensures power-
ful visual embedding like ALIGN which is trained
with only image-text alignment.

Model Data Backbone
ImageNet KNN
R@1

ALIGN 1.8B B7 + BERT-base 69.3
MURAL(reprod.) + ETCL 1.0B + 15M B7 + BERT-base 67.8

Table 10: Performance on ImagenetKNN retrieval task.

A.3 Ablation study
We investigate the effect of VL pre-training steps
with regard to three domain tasks including visual,
VL, and language. We select ImageNetKNN and
Multi30K(en, de) and STS tasks for three domain
respectively.

Performance dependency on VL pre-training
steps Table 11 shows the ablation study of VL
pre-training steps on three domain tasks. Generally,
the longer VL pre-training steps give the stronger
performance after ETCL. Interestingly, in the case
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Row
VL pre-training ETCL ImageNetKNN MS-COCO (zero-shot) STS

steps steps R@1 en(Avg.) ja(Avg.) ko(Avg.) Meta avg

1 100K - 60.5 61.5 29.6 24.0 68.1
2 200K - 64.0 65.1 34.1 29.1 71.5
3 400K - 66.0 67.2 37.0 30.1 73.7
4 600K - 67.5 68.4 40.1 34.1 73.2
5 800K - 66.9 67.8 40.6 31.5 74.6

6 100K 3K 60.7 61.5 53.2 35.7 78.9
7 200K 3K 64.1 65.2 57.2 42.8 79.9
8 400K 3K 65.6 67.5 57.2 45.7 81.9
9 600K 3K 67.7 69.1 60.3 51.9 81.6
10 800K 3K 67.8 69.1 62.1 49.3 81.5

Table 11: Performance on visual, VL and language domain tasks with regard to VL pre-training steps.

of Korean MS-COCO, the model after VL pre-
training 100K + ETCL has a higher performance
by 4.2 than when the model trained after VL pre-
training 800K steps. When considering that there
is no image and Korean sentence pair in the ad-
ditional datasets used in ETCL, the result shows
that ECTL learns multilingual VL representations
very effectively. Likewise, a similar phenomenon
is shown in the STS sentence embedding task. This
is a good example showing that the visual repre-
sentation obtained from VL training can be used to
improve the performance of text representation.

Model 14 langs 36 langs 82 langs All langs

LASER 95.3 84.4 75.9 65.5
m-USE 93.0 44.3 38.5 36.6
LaBSE 95.3 95.0 87.3 83.7
(Reimers and Gurevych, 2019) 94.8 86.2 75.6 67.0
(Ham and Kim, 2021) 95.4 89.1 79.4 72.9
MURAL(reprod.) + ETCL 88.4 81.5 72.4 63.6

Table 12: Performance on Tatoeba sentence retrieval
task. Scores are reported by 100 × accuracy. We follow
the grouping ‘14 langs’, ’36 langs’, and ’82 langs’ as
used in m-USE, XTREME and LASER respectively.

A.4 Zero-shot image classification

Text prompts engineering We use 80 text tem-
plates as used in CLIP 7. For fine-grained datasets,

“a type of food" are appended to the initial template
for adding context information. All multilingual
zero-shot ext prompts image classification results
in various visual datasets are shown in Table 14.

7https://github.com/openai/CLIP

A.5 Multi-modal zero-shot transfer

To further investigate the effect of multi-modal
zero-shot transfer, we calculate the performance
of fine-tuned MURAL(reprod.) with one lan-
guage pair from multilingual CC3M on Italian MS-
COCO. Interestingly, the performance gains via
ETCL using the image and regionally closer lan-
guages (cs, fr, de) pairs are larger than that of Asian
languages (zh, ja), which are regionally far from
Italian (See Table 13).

Model Avg Gain over baseline

MURAL(reprod.) baseline 40.6 -
MURAL(reprod.) + cs 60.3 19.7
MURAL(reprod.) + fr 60.2 19.6
MURAL(reprod.) + ja 59.7 19.1
MURAL(reprod.) + zh 59.3 18.7
MURAL(reprod.) + de 60.1 19.5

Table 13: Performance on Italian MS-COCO image-text
and text-image retrieval tasks. Scores are the average of
T2I and I2T R@1,5,10.

A.6 Additional NLP task

Tatoeba For the multilingual sentence retrieval
task, we use Tatoeba dataset composed of
1,000 English-aligned sentence pairs for 112 lan-
guages (Artetxe and Schwenk, 2019). This task
is to find the nearest neighbor for each sentence
in another language using the cosine similarity.
We conduct an evaluation on three groupings of
languages for fair-comparison: the first 14 lan-
guage groups are selected for m-USE (Yang et al.,
2020). The second language group with 36 lan-
guages follows the XTREME benchmarks (Hu
et al., 2020). The third 82 language group that
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LASER proposed covers high-resourced to low-
resourced languages. Table 12 shows the average
accuracy of languages according to different group-
ings. Our model generally has similar performance
compared to LASER, and lower performance than
LaBSE. That is because compared to LaBSE and
LASER which learns 109 and 93 languages respec-
tively, our model learns 90 languages, and then
our model does not support several languages in
Tatoeba dataset. For example, Thai language is
included in the 14 languages group while the lan-
guage is not included in the CCMatrix we learned,
which leads to a poor performance of 89.2%. The
average of 13 languages excluding the language is
94.2%, which is comparable to the top language
models. This poor performance from data scarcity
also appears for 36 langs groups. The average accu-
racy of the 36 langs group except for Swahili, Tel-
ugu, and Thai is 86.7%, which is better than other
models except for LaBSE. Performance degrada-
tion due to lack of data in some languages is not
relevant to our methodology itself, so it does not
impair the novelty of this work. Rather, it is likely
that supplementing from other datasets in opus can
boost our model. The results for all languages can
be found in Table 15, 16.
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af am ar az be bg bn ca ceb cs cy da de

ImageNet 16.5 2.5 18.7 12.9 14.3 21.6 16.3 20.0 21.9 24.6 14.0 30.0 29.3
SUN397 39.0 6.1 43.3 30.9 30.9 46.9 40.2 46.5 33.0 57.2 27.6 56.4 59.5
Food101 51.2 9.6 34.7 47.7 48.9 43.3 47.6 49.6 50.5 62.0 42.6 61.2 66.6

CIFAR100 19.8 6.8 23.7 17.2 15.2 26.0 21.7 23.2 14.9 31.3 10.6 27.2 31.6

el en eo es et eu fa fi fr fy ga gd gl

ImageNet 18.3 62.6 23.2 25.5 20.2 15.3 15.7 19.7 26.5 24.5 10.4 16.7 28.7
SUN397 45.5 67.2 43.7 48.9 43.5 37.1 40.1 43.3 59.9 37.7 21.0 27.4 58.5
Food101 37.9 74.2 63.8 53.7 40.6 49.4 42.1 47.4 64.6 49.3 45.1 47.2 64.3

CIFAR100 23.8 33.6 25.2 27.6 19.6 19.3 22.7 25.6 32.3 18.0 7.3 14.1 31.1

ha he hl hr hu hy id ig is it ja jv ka

ImageNet 13.9 14.2 9.8 22.1 20.2 5.8 26.3 12.9 23.4 28.3 17.6 28.2 9.0
SUN397 23.5 35.8 28.9 47.4 46.9 21.3 45.9 21.4 42.8 51.4 52.0 44.0 19.6
Food101 53.5 31.7 31.9 46.4 52.3 33.7 58.3 43.2 54.6 59.4 40.0 51.8 39.4

CIFAR100 13.4 13.7 20.4 23.5 24.7 10.1 26.7 11.1 19.3 25.8 29.8 22.4 9.1

kk km ko la lb lt lv mg mk ml mr ms my

ImageNet 9.7 5.8 14.1 29.1 20.0 22.8 20.8 20.4 21.8 6.0 8.1 30.3 5.8
SUN397 20.5 12.7 40.0 36.5 36.2 45.1 34.8 40.1 38.3 18.4 23.0 53.6 13.8
Food101 33.4 32.0 33.9 58.9 50.6 52.3 47.8 62.8 51.6 19.8 35.1 60.8 25.1

CIFAR100 14.2 4.8 21.8 20.9 18.6 24.2 19.4 17.5 24.3 12.9 16.9 28.3 4.5

ne nl no or pl pt ro ru sd si sk sl so

ImageNet 6.2 27.9 28.8 1.1 23.4 26.3 25.9 22.6 2.8 11.0 23.1 28.5 10.2
SUN397 15.4 53.6 54.5 6.3 48.6 50.1 50.5 47.1 8.3 24.7 53.7 50.5 14.1
Food101 15.6 60.9 60.8 10.6 54.3 59.0 53.6 38.3 10.2 29.1 51.1 53.8 38.4

CIFAR100 11.0 26.5 26.5 4.4 25.0 27.3 24.7 26.6 8.6 18.6 28.2 25.7 8.6

sq sr su sv sw ta tl tr tt uk ur uz vi

ImageNet 21.3 17.0 17.7 25.5 22.5 6.9 36.3 19.7 9.4 18.1 9.8 9.1 23.6
SUN397 39.1 35.7 30.2 53.1 45.2 24.0 53.5 44.1 24.1 46.0 31.5 21.0 49.1
Food101 52.1 17.5 44.7 54.7 65.5 45.7 66.3 50.8 25.0 40.1 46.7 25.1 50.5

CIFAR100 20.6 23.4 18.5 25.9 24.9 10.4 24.8 22.2 13.6 24.5 16.3 12.3 24.8

xh yi yo zh zu

ImageNet 12.1 1.8 7.4 21.8 11.5
SUN397 17.3 8.6 13.9 56.0 20.9
Food101 36.9 17.7 35.7 44.7 36.3

CIFAR100 10.3 4.1 5.1 30.9 6.7

Table 14: Zero-shot image classification on ImageNet, SUN397 Food101 and CIFAR100. Scores are 100 × Acc@1.
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Model ar (ara) bg (bul) ca (cat) cs (ces) cmn da (dan) de (deu) el (ell) et (est) fi (fin) fr (fra) gl (glg) he (heb)

LASER 92.0 95.0 95.9 96.5 95.4 96.0 99.0 95.0 96.7 96.3 95.6 95.5 92.2
m-USE 81.0 54.0 66.3 17.8 94.3 25.9 98.2 1.6 8.4 8.2 93.5 82.2 1.8
LaBSE 91.0 95.7 96.5 97.5 96.2 96.4 99.4 96.6 97.7 97.0 96.0 97.2 93.0
MURAL(reprod.) + ETCL 89.8 95.1 96.6 96.6 95.6 96.7 98.8 96.2 96.3 96.4 95.5 95.4 91.5

Model hi (hin) hr (hrv) hu (hun) hy (hye) id (ind) it (ita) ja (jpn) ka (kat) ko (kor) lt (lit) lvs mr (mar) mk (mkd)

LASER 94.7 97.2 96.0 36.1 94.5 95.3 90.7 35.9 88.9 96.2 95.4 91.5 94.7
m-USE 1.2 23.9 10.2 1.7 93.3 94.3 93.8 2.6 86.0 10.2 11.1 1.8 33.1
LaBSE 97.7 97.8 97.2 95.0 95.3 94.6 96.4 95.9 93.5 97.3 96.8 94.8 94.8
MURAL(reprod.) + ETCL 95.9 97.6 95.7 82.2 94.5 94.3 95.6 66.8 91.7 96.5 93.9 91.8 92.8

Model mn (mon) nl (nld) nb (nob) pes pl (pol) pt (por) ro (ron) ru (rus) sk (slk) sl (slv) es (spa) sq (sqi) sr (srp)

LASER 8.2 96.3 98.8 93.4 97.8 95.2 97.4 94.6 96.6 95.9 98.0 98.0 95.3
m-USE 16.9 94.0 23.9 12.7 93.7 94.9 30.0 93.7 21.1 20.9 95.4 19.9 27.7
LaBSE 96.6 97.2 98.9 96.0 97.8 95.6 97.8 95.3 97.3 96.7 98.4 97.6 96.2
MURAL(reprod.) + ETCL 18.2 96.5 98.3 95.8 96.7 95.7 96.6 94.6 96.3 96.4 97.5 97.4 94.5

Model sv (swe) th (tha) tr (tur) uk (ukr) ur (urd) vi (vie) yue zsm

LASER 96.6 95.4 97.5 94.5 81.9 96.8 90.0 96.4
m-USE 18.8 96.0 94.0 51.0 6.4 10.4 84.2 89.1
LaBSE 96.5 97.1 98.4 95.2 95.3 97.8 92.1 96.9
MURAL(reprod.) + ETCL 96.4 8.6 98.0 94.9 86.6 97.5 88.2 96.5

Table 15: Performance on Tatoeba sentence retrieval task for languages. Scores are reported by 100 × accuracy. To
make comparisons to other works easily, language abbreviations are expressed using ISO 639-1/639-2/639-3.

Model af (afr) am (amh) ang arq arz ast awa az (aze) be (bel) bn (ben) ber bs (bos) br (bre)

LASER 89.5 42.0 37.7 39.5 68.9 86.2 36.1 66.0 66.1 89.6 68.2 96.5 15.8
m-USE 63.5 2.1 38.1 28.2 59.6 81.5 2.4 42.2 40.3 0.7 8.3 30.1 10.2
LaBSE 97.4 94.0 64.2 46.2 78.4 90.6 73.2 96.1 96.2 91.3 10.4 96.2 17.3
MURAL(reprod.) + ETCL 92.5 45.2 50.0 42.3 74.2 86.6 44.2 81.6 74.1 89.5 9.6 97.5 12.0

Model cbk ceb ch (cha) kw (cor) csb cy (cym) dsb dtp eo (epo) eu (eus) fo (fao) fy (fry) gd (gla)

LASER 77.0 15.7 29.2 7.5 43.3 8.6 48.0 7.2 97.2 94.6 71.6 51.7 3.7
m-USE 76.1 13.7 33.6 6.4 37.4 13.1 35.1 8.4 36.8 19.4 18.7 52.3 6.9
LaBSE 82.5 70.9 39.8 12.8 56.1 93.6 69.3 13.3 98.4 95.8 90.6 89.9 88.8
MURAL(reprod.) + ETCL 77.9 22.0 32.9 7.4 45.5 13.7 59.7 11.2 97.4 94.0 72.1 61.9 6.0

Model ga (gle) gsw hsb io (ido) ie (ile) ia (ina) is (isl) jv (jav) kab kaz km (khm) ku (kur) kzj

LASER 5.2 44.4 54.5 83.7 86.2 95.2 95.6 22.9 58.1 18.6 20.6 17.2 7.2
m-USE 7.7 39.3 33.3 55.5 73.3 86.7 10.3 38.3 3.7 15.3 1.5 21.7 10.2
LaBSE 95.0 52.1 71.2 90.9 87.1 95.8 96.2 84.4 6.2 90.5 83.2 87.1 14.2
MURAL(reprod.) + ETCL 7.2 45.3 65.0 82.7 86.1 93.6 94.9 39.0 4.6 56.0 58.2 21.0 10.6

Model la (lat) lfn ml (mal) max mhr nds nn (nno) nov oc (oci) orv pam pms swg

LASER 58.5 64.5 96.9 50.9 10.4 82.9 88.3 66.0 61.2 28.1 6.0 49.6 46.0
m-USE 36.7 60.5 1.2 65.0 14.3 57.5 21.2 66.1 42.9 28.3 8.4 48.8 48.7
LaBSE 82.0 71.2 98.9 71.1 19.2 81.2 95.9 78.2 69.9 46.8 13.6 67.0 65.2
MURAL(reprod.) + ETCL 61.2 68.5 97.4 59.9 15.0 68.6 88.8 73.2 63.9 38.9 8.9 56.6 59.8

Model swh ta (tam) tt (tat) te (tel) tl (tgl) tk (tuk) tzl ug (uig) uz (uzb) war wuu xh (xho) yjd

LASER 57.6 69.4 31.1 79.7 50.6 20.7 44.7 45.2 18.7 13.6 87.7 8.5 5.7
m-USE 13.7 2.8 15.7 2.4 16.2 20.9 46.6 4.0 15.9 15.6 82.2 14.8 1.9
LaBSE 88.6 90.7 97.9 98.3 97.4 80.0 63.0 93.7 86.8 65.3 90.3 91.9 91.0
MURAL(reprod.) + ETCL 71.3 77.2 27.8 4.3 62.3 27.6 52.9 6.0 29.7 24.9 87.3 10.6 8.7

Table 16: Performance on Tatoeba sentence retrieval task for languages. Scores are reported by 100 × accuracy. To
make comparisons to other works easily, language abbreviations are expressed using ISO 639-1/639-2/639-3.
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Abstract
Understanding spatial and visual information
is essential for a navigation agent who fol-
lows natural language instructions. The cur-
rent Transformer-based VLN agents entangle
the orientation and vision information, which
limits the gain from the learning of each in-
formation source. In this paper, we design a
neural agent with explicit Orientation and Vi-
sion modules. Those modules learn to ground
spatial information and landmark mentions in
the instructions to the visual environment more
effectively. To strengthen the spatial reasoning
and visual perception of the agent, we design
specific pre-training tasks to feed and better
utilize the corresponding modules in our final
navigation model. We evaluate our approach
on both Room2room (R2R) and Room4room
(R4R) datasets and achieve the state of the art
results on both benchmarks.

1 Introduction

Vision and Language Navigation (VLN) prob-
lem (Anderson et al., 2018) has attracted increasing
attention from the communities of computer vision,
natural language processing, and robotics because
of its broad real-world applications. In this prob-
lem setting, the goal of a navigation agent is to
move to a target location in a photo-realistic simu-
lated environment by following a detailed natural
language instruction, e.g., “Walk into the bedroom.
Walk past the bedroom door. Wait at the laundry
room door.”. Two kinds of simulators are used
to create the dataset and the corresponding prob-
lem formulation: discrete trajectories (Anderson
et al., 2018) and continuous navigation trajecto-
ries (Krantz et al., 2020). In this paper, we work
on the discrete one, that an agent traverses a pre-
defined connectivity graph by selecting the adjacent
viewpoint with a higher probability of correspond-
ing to the instruction at each step.

The earlier research in the VLN area can be di-
vided into two categories. The first category of

left,
right,
90 degree left turn, 
forward …

go to table,
walk to sofa,
…

candidate
viewpoint1 candidate

viewpoint2

candidate
viewpoint3

Spatial reasoning ability Vision perception ability

Pass through the blue chair on
your left, and then go upstairs.

Instruction

Figure 1: Spatial reasoning helps leveraging orientation clues,
such as left and 90 degree; visual perception ability grounds
mentioned landmarks, such as table, sofa, and chair. With
these two abilities, the agent selects the candidate viewpoint
corresponding to the instruction at each navigation step. The
green arrow shows the ground-truth viewpoint.

models mostly depends on the encoder-decoder
framework for encoding the text and visual in-
formation, establishing the connections between
them with the attention mechanism, and decod-
ing the actions (Anderson et al., 2018; Ma et al.,
2019; Fried et al., 2018). The second category
of works learns to model the semantic structure
which implicitly or explicitly enhances the textual-
visual matching (Hong et al., 2020a,b; Qi et al.,
2020; Zhang et al., 2021; Li et al., 2021; Zhang
and Kordjamshidi, 2022). However, these prior
research are surpassed by the most recently pro-
posed Transformer-based VLN agents (Hong et al.,
2021; Hao et al., 2020; Guhur et al., 2021; Chen
et al., 2021) which capture the cross-modality infor-
mation and demonstrate an outstanding navigation
performance.

As shown in the example of Figure 1, two ma-
jor abilities are important to the navigation agent:
spatial reasoning and visual perception. While
navigation seems to require both of these abilities,
there are cases where understanding even one of
these is sufficient. For example, spatial reasoning
guides the agent towards the correct direction when
the instruction is “90-degree left-turn” or “on your
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right”, regardless of the surrounding visual scene
or objects. In some other cases, visual perception is
sufficient to recognize the mentioned landmarks in
the visual environment after receiving instructions
without any auxiliary signals of orientation, such
as “walk to the sofa” or “pass the table”.

The current Transformer-based agents tend to
intertwine the learning of these two abilities, which
we argue may impede developing a more effective
navigation model. In the light of this, we propose
a new navigation agent with different modules to
select actions based on orientation and vision per-
spectives separately. Moreover, we design specific
pre-training tasks to distil more explicit spatial and
visual knowledge, which is better utilized in the
corresponding modules in our navigation agent.
This is different from the majority of methods em-
ploying pre-training tasks without considering the
needs of the target downstream tasks. Our modular
design interacts with modular pre-training, guiding
the agents to generate specialized features which
can be better adapted to the downstream tasks.

Specifically, in the downstream navigation task,
in order to utilize the learnt spatial and visual in-
formation, we design a framework, called LOViS.
It contains three modules, namely, history mod-
ule, orientation module, and vision module. In the
history module, the agent uses the previous step’s
information to determine which tokens in the in-
struction it should pay attention to. And then, the
agent learns to connect such attended tokens to the
corresponding visual information to finally make
a history-based action decision. In the orientation
module, the agent only focuses on orientation infor-
mation in the instruction (e.g., left and 90 degree),
and then grounds them to the vision environment
to make an orientation-based action. Likewise, in
the vision module, the agent is encouraged to focus
on the mentioned landmarks in the instruction (e.g.,
table, lamp and chair), and ground them into the
vision to obtain a vision-based action decision. Fi-
nally, the agent combines the action decisions of
three modules to make the final decision.

In the pre-training process, we propose two spe-
cific pre-training tasks, namely Orientation Match-
ing (OM) and Vision Matching (VM), to learn ori-
entation and vision information, respectively. Be-
sides, we modify two commonly used pre-training
tasks for navigation: Masked Language Modeling
(MLM) and Single Step Action Prediction (SSAP),
to obtain better cross-modal representations for the

downstream navigation model.
In summary, our contributions are as follows:

1. Unlike previous models, our novel Transformer-
based agent includes two new modules to capture
the orientation and visual information signals
separately. This benefits the agent from both of
these information sources to select an action more
effectively.
2. We design new pre-training tasks to empha-
size (a) learning spatial reasoning and grounding
the orientation information in the environment; (b)
learning visual perception and grounding landmark
mentions in the environment. These pre-training
representations are utilized in the corresponding
modules in the navigation model.
3. Our method exceeds the current SOTA results
on both Room2room and Room4Room benchmarks.

2 Related Work

Vision-and-Language Navigation Many deep
learning methods (Tan et al., 2019; Hong et al.,
2021, 2020a) for VLN tasks have been proposed in
the past few years. For example, Anderson et al.
(2018) firstly proposed a Sequence-to-Sequence
baseline model to encode the instructions and de-
code the embeddings to the low-level action se-
quence with the observed images. SF (Fried et al.,
2018) generates the augmented samples to address
the generalization issues and extends the low-level
space to panoramic action space. RelGraph (Hong
et al., 2020a) builds an implicit language-visual en-
tity relation graph to learn the connection between
the text and vision modalities. EXOR (Zhang and
Kordjamshidi, 2022) first splits the long instruc-
tions into spatial configurations (Dan et al., 2020;
Zhang et al., 2021; Kordjamshidi et al., 2010).
Then they explicitly align the landmarks and spatial
relations in the spatial configuration to the corre-
sponding information in the visual modality. In
terms of learning spatial and vision information
separately, OAAM (Qi et al., 2020) is the earliest
attempt that decomposes the instruction into action
and object phrases and related them to the visual en-
vironment to make the final decisions. NvEM (An
et al., 2021) extends OAAM to divide object mod-
ule to subject and reference modules and fuse the
information from the neighbor views. However, to
our best knowledge, there is no work investigating
how to model spatial and visual information in the
Transformer-based VLN agent.
Transformer-based Navigation Agent Compared
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Figure 2: Our proposed LOViS contains three modules: history module, orientation module and vision module. Each module
can generate action decision based on different reasoning, then three actions are combined to determine the final action selection.

with conventional methods, the Transformer-based
model in VL tasks show great improvements (Tan
and Bansal, 2019; Chen et al., 2019; Lu et al.,
2019; Li et al., 2020). However, different from
conventional VL tasks (i.e., image captioning), the
VLN task requires learned representation to fa-
cilitate the action selection, which is a Markov
Decision Process. Therefore, the VLN needs to
learn the correspondence between language and
dynamic visual observation by interacting with
the environment. In the past few years, the VLN
task has been formulated as a dynamic grounding
problem between texts and images. PRESS (Li
et al., 2021) firstly fine-tunes a pre-trained lan-
guage model BERT to obtain the text represen-
tation. PREVALENT (Hao et al., 2020) trains a
VL Transformer with a large amount of image-text-
action triplets to learn cross representations for the
navigation task. RecBERT (Hong et al., 2021) de-
signs a state unit to store history information and
train Transformer recurrently for the direct nav-
igation. HAMT (Chen et al., 2021) proposes to
explicitly encode all past observations and actions
as history. Also, they improve the performance
by changing the fixed vision features to the Vi-
sion Transformer, ViT (Dosovitskiy et al., 2020).
However, all of those transformer-based models en-
tangle the learning of spatial information and visual
information. Furthermore, prior works (Chen et al.,
2021; Qiao et al., 2022) design the pre-training
tasks without considering the adaption to the down-
stream model. Our work designs different modules
to better utilize the learnt spatial and visual infor-

mation from the pre-training.

3 Method

3.1 Problem Description

In this task, formally, the agent is given an instruc-
tionW = {w1, w2, · · · , wL}, where w represents
tokens and L is the number of tokens. At each
time step t, the agent observes a panorama which
consists of 36 discrete images 1, which are denoted
as Ip = {Ip1 , Ip2 , · · · , Ip36}. There are k navigable
viewpoints in those panoramic views that the agent
can navigate to. We denote the navigable view-
points as Ic = {Ic1, Ic2, · · · , Ick}. In our model, to
focus on the relevant observations in the visual en-
vironment, we only use the navigable viewpoints
rather than all 36 images in the whole panoramic
view.

The goal of the task is to select the next view-
point among navigable viewpoints which forms a
trajectory that takes the agent close to a goal des-
tination. The agent terminates when the current
viewpoint is selected or a pre-defined maximum
number of navigation steps have been reached.

3.2 Background

Following (Hong et al., 2021), we design text en-
coder, vision features, and a recurrent state unit.
Text Encoder We first apply BERT tokenizer to
split the text instruction to a sequence of tokens:
{[CLS], w1, w2, · · · , wL, [SEP ]}, where L is the
number of tokens, and [CLS] and [SEP ] are the

112 headings and 3 elevations with 30 degree intervals.
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special tokens. Text embedding of each token is
obtained by summing up the token embedding,
position embedding and type embedding of text.
Then the text embedding is passed through a text
encoder, a standard multi-layer Transformer with
self-attention, to obtain the contextual representa-
tion, represented as X = {x1, x2, · · · , xL}.
Vision Features For each navigable viewpoint,
we consider its vision and relative orientation
features. Specifically, we use ResNet-152 (He
et al., 2016) pre-trained on ImageNet (Russakovsky
et al., 2015) as 2048-d vision representation. We
repeat relative heading α and elevation β fea-
tures [sinα; cosα; sinβ, cosβ] 32 times to con-
stitute a 128-d orientation feature as Op. For-
mally, we denote the vision and orientation rep-
resentations for the the navigable viewpoints as
V = {v1, v2, · · · , vk} and O = {o1, o2, · · · , ok},
respectively.
Recurrent State Unit The recurrent state unit
stores the history information from the previous
steps. At each time step, the navigation agent takes
three inputs: the state representation st, the lan-
guage representation X , and the vision represen-
tation Vt. For the next navigation step, the state is
refined using the text information and the current
observations in the visual environment as follows,

st+1 = NAV (st, X, Vt), (1)

whereNAV is the navigation model. In three mod-
ules from our model, state representation are ini-
tialized with the [CLS] representation in the text
encoder. In our model, we assign the state rep-
resentation to three different modules to consider
different information.

3.3 Our Model: LOViS
Our proposed model (LOViS) has three main mod-
ules: history module, orientation module, and vi-
sion module, as depicted in Figure 2.
History Module The History Module receives
three types of inputs: state representation st (see
“state” in Figure 2), text representation X , and
“vision-orientation” representations. To obtain
“vision-orientation” representation, we feed the con-
catenation of vision and orientation representations
to a “vision-orientation encoder" (see Figure 2).
We denote “vision-orientation” representation as
˜V O = {ṽo1, ṽo2, · · · , ṽok}. Then we use cross-

modal attention layers and self-attention layers to
obtain the cross representation. In cross-modality
attention Transformer layers, one modality is used

as a query and the other as the key to exchange
information as follows,

X̂, ŝt, ˆV Ot = Cross_Attn(X, [st;V Ot]), (2)

where X̂ , ŝt, and ˆV Ot are respectively updated
state, text and “vision-orientation” representations
after cross modality attention layers. Then state and
“vision-orientation” representations are fed into self-
attention Transformer layers:

st+1, p
h
t = Self_Attn([ŝt; ˆV Ot]) (3)

where st+1 is the updated state after self-attention
layers. pht is the self attention score between state
representations and “vision-orientation” represen-
tations. Note that the refinement of the state repre-
sentation only happens in the history module.
Orientation Module Orientation information is
vital for the navigation task. For example, the
instruction, “turn left" can assist the agent to ig-
nore the navigable viewpoints on the right side. In
our work, we build an orientation module specif-
ically to encourage the agent to learn the spatial
information from the instructions and ground it in
the visual environment. Specifically, we linearly
project the orientation features O (refer to the nota-
tions in Section 3.2) via the “Orientation Encoder”
(see Figure 2) to obtain its projected representation,
denoted as Õ. Then we input the state represen-
tation st, text representation X , and the projected
orientation representation Õ to the cross-modality
attention Transformer layer. The orientation mod-
ule learns a new state representation, denoted as
sot , for orientation information (see “State-O’ in
Figure 2). For cross-model attention layers, we
have:

X̂o, ŝot , Ôt = Cross_Attn(X, [sot ; Õt]) (4)

where X̂o, ŝot , Ôt are updated state, text, orienta-
tion representations after cross modality attention
layers in the orientation module. Then we use the
state representation enriched with the orientation
information to perform self-attention with orienta-
tion representations as follows.

pot = Self_Attn([ŝot ; Ôt]) (5)

where pot is the attention score between state repre-
sentation and orientation feature.
Vision Module Connecting mentioned landmarks
in the instruction to the scene and objects in the
visual environment is also important to the nav-
igation task. In the instruction, “enter into the
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bedroom and move close to TV.”, The mentioned
landmarks, such as “bedroom” and “TV”, provide
apparent clues for the navigation actions. Like the
orientation module, we build a vision module to
ground the text landmarks in the visual scene and
objects. Specifically, we first project vision repre-
sentations V (refer to the notations in Section 3.2)
using “Vision Encoder” (see Figure 2) to obtain
the projected visual representation, denoted as Ṽ .
Then we input the state representation st, text rep-
resentation X , and projected vision representation
Ṽ to the cross-modal attention and self-attention
layers as follows,

X̂v, ŝvt , V̂t = Cross_Attn(X, [svt ; Ṽt]), (6)

pvt = Self_Attn([ŝvt ; V̂t]), (7)

where svt is the new state representation consider-
ing visual information (see “State-V” in Figure 2).
X̂v, ŝvt , V̂t are updated state, text, vision represen-
tations after cross modality attention layers in the
vision module. pvt is the attention score between
state representation and vision representations.
Action Selection For each navigable viewpoint, we
obtain the self-attention scores from 1) orientation
state representation to its orientation representation
(orientation module), 2) vision state representation
to the vision representation (vision module), 3)
state representation to the combined orientation
and visual representations (history module). We
combine these scores as follows:

pt = Softmax(Wa[p
h
t ; p

o
t ; p

v
t ]) (8)

where wa is the trainable parameter, and pt denote
the action probability which weights different mod-
ule scores.

4 Training and Inference

We train our model with the mixture of Imitation
Learning (IL) and Reinforcement Learning (RL)
following (Tan et al., 2019). It minimizes the cross-
entropy loss of the prediction and ground-truth tra-
jectories by following teacher actions for each nav-
igation step. RL samples an action from the action
probability pat and learns from the rewards. The
loss function is the following:

l = −
∑

t

ast log(p
a
t )− λ

∑

t

a∗t log(p
a
t ) (9)

where a∗t is the teacher action, ast is the sampled
action from RL, and λ is the coefficient to balance
two training goals. During inference, we use the
greedy search to select the viewpoint with highest
probability and finally generate the trajectory.

Text Encoder V-O
Encoder

CLS

Transformer

CLS

MLM
SSAP

[CLS] Turn [MAS] to the [MASK][SEP]

…

…

-180 0 180-90 -90

Orientation
Encoder

Vision
Encoder

OM VMCLS CLS CLS

Figure 3: Pre-training Model with Specific Pre-training Tasks.
V-O is the encoder considering both orientation and vision
representations. MLM: Masked Language Modeling; SSAP:
Singe Step Action Prediction; OM: Orientation Matching;
VM:Vision Matching.

5 Pre-training

We follow the model architecture of PREVA-
LENT (Hao et al., 2020) to obtain the joint
cross representations trained on text-image-action
triplets, as shown in Figure 3. However, the nov-
elty of our pre-training is that we design new tasks
named Vision Matching (VM) and Orientation
Matching (OM) to pretrain for the vision module
and orientation module designed in our navigation
agent, as shown in Figure 2. Moreover, we improve
the existing pre-training tasks of the PREVALENT,
Masked Language Modeling (MLM) and Single
Step Action Prediction (SSAP), to obtain a more ef-
fective initialization of our new architecture. Here,
we describe the details of all the pre-training tasks
while their effects is described in Section 6.5.1. In
the following tasks, we denote each instruction-
trajectory pair in training set D as < w, τ >.
Masked Language Modeling (MLM) Different
from PREVALENT (Hao et al., 2020) masking of
random tokens, we mask direction and landmark
tokens with 8% probability and replace them with
special token [MASK]. The goal is to recover
landmark or orientation tokens wm by reasoning
over the surrounding words w\m, and the orienta-
tion and visual observation at the each navigation
step. We denote the combination of orientation and
vision features of panorama views as V Op. Land-
mark tokens are usually the token related to scene
or objects in the visual environment, such as “ ta-
ble”, “sofa”, and “bedroom”. We extract nouns as
landmark tokens based on their pos-tag. The di-
rection tokens usually convey spatial information,
such as “left”, “right”, and “forward”. We obtain
direction tokens using a direction dictionary built
upon R2R training dataset. The loss of MLM is
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calculated as follows,

LMLM = −EV Op˜P (τ),(w,τ)˜D logP (wm|w\m, V Op),
(10)

Single Step Action Prediction (SSAP) PREVA-
LENT (Hao et al., 2020) selects actions by mapping
the [CLS] representations to the 36 classes directly,
which may cause the loose connection between
cross-modal representations of the viewpoints and
the action space. To address this issue, we use the
cross attention distribution from the [CLS] repre-
sentation to the images in the panoramic view to
select an action. We use the cross-entropy loss to
compute the loss of SSAP, as follows,

LSSAP = −EOV p˜P (τ),(w,τ)˜D logP (a|w[CLS], V Op),
(11)

where a is the ground-truth action.
Vision Matching (VM) VM is our novel pre-
training specific for initializing our vision module.
It predicts whether the current vision information
can match with the instruction. In this task, to en-
courage the agent to focus on learning the connec-
tion between landmarks in the instruction and the
scene objects in the visual environment, we only
use the vision representation (i.e. excluding the
heading and elevation) of viewpoint as the input,
denoted as vp. We generate the negative samples by
replacing the ground-truth images with an images
from another environment. We use the output rep-
resentation of the [CLS] as the joint representation
of textual and visual features to feed to a fully con-
nected layer with a sigmoid function. This layer
predicts the matching score s(w, vp). The loss of
SSAP is computed as follows,

LVM = −Evp˜τ,(w,τ)˜D[y logP + (1− y) logP )], (12)

where P = s(w, vp), and y ∈ {0, 1} indicates
whether the sampled viewpoint-instruction pair is
matching.
Orientation Matching (OM) Our second novel
pre-training task is designed to learn the orientation
representations. We propose to predict the current
orientation based on the instruction and the initial
orientation. As described before, the orientation
feature Op is the combination of the heading α and
elevation β. We use the output representation of
[CLS] as the joint representation of instruction and
orientation. Then we feed this to a fully connected
layer to predict 4-bits of orientation features. The
loss of OM is computed as follows,

LOM = −Eop˜τ,(w,τ)˜D
log p(O′|w[CLS], Op), (13)

where O′ is the ground-truth orientation feature.
The full pre-training objective is

Lpre−train = LMLM + LSSAP + LVM + LOM . (14)

6 Experiments

6.1 Dataset

Two VLN datasets are used in evaluation: R2R (An-
derson et al., 2018) and R4R (Jain et al., 2019).
R2R builds upon the Matterport3D dataset. This
dataset has 7198 paths and 21567 instructions with
an average length of 29 words. The whole dataset
is partitioned into training, seen validation, unseen
validation, and unseen test set. The seen set shares
the same visual environments with the training set,
while unseen sets contain different environments.
R4R extends the R2R dataset with longer instruc-
tions and trajectories by concatenating two adja-
cent tail-to-head trajectories in R2R. Different from
R2R, the trajectories in R4R are less biased as they
are not necessarily the shortest path from the start
viewpoint to the destination.

6.2 Evaluation Metrics

We mainly report three evaluation metrics for R2R.
(1) Navigation Error (NE): the mean of the shortest
path distance between the agent’s final position
and the goal location. (2) Success Rate (SR): the
percentage of the cases where the predicted final
position is close within 3 meters from the goal
location. (3) Success rate weighted by normalized
inverse Path Length (SPL) (Anderson et al., 2018):
normalizes Success Rate by trajectory length. It
considers both the effectiveness and efficiency of
navigation performance.

In terms of the metrics for the R4R benchmark,
besides the basic metrics same as R2R, NE, SR,
and SPL, R4R includes additional metrics: the Cov-
erage Weighted by Length Score (CLS), the Nor-
malized Dynamic Time Warping and the nDTW
weighted by Success Rate (sDTW). In R4R, SR
and SPL measure the performance of the naviga-
tion, while CLS, nDTW and sDTW measure the
fidelity of the predicted paths.

6.3 Implementation Details

Please check our code 2 for the implementation.
Pre-training We use 4 GeForce RTX 2080 GPUs
for pre-training. The batch size for each GPU is
28, and the training time is around 22 hours. The

2https://github.com/HLR/LOViS
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Val seen Val Unseen Test(Unseen)
Method NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL ↑

1 Speaker-Follower (Fried et al., 2018) 3.36 0.66 - 6.62 0.35 - 6.62 0.35 0.28
2 Env-Drop (Tan et al., 2019) 3.99 0.62 0.59 5.22 0.47 0.43 5.23 0.51 0.47
3 OAAM (Qi et al., 2020) - 0.65 0.62 - 0.54 0.50 5.30 0.53 0.50
4 RelGraph (Hong et al., 2020a) 3.47 0.67 0.65 4.73 0.57 0.53 4.75 0.55 0.52
5 NvEM (An et al., 2021) 3.44 0.69 0.65 4.27 0.60 0.55 4.37 0.58 0.54
6 PRESS (Li et al., 2019) 4.39 0.58 0.55 5.28 0.49 0.45 5.49 0.49 0.45
7 PREVALENT (Hao et al., 2020) 3.67 0.69 0.65 4.71 0.58 0.53 5.30 0.54 0.51
8 AirBERT (Guhur et al., 2021) 2.68 0.75 0.70 4.01 0.62 0.56 4.13 0.62 0.57
9 RecBERT (Hong et al., 2021) 2.90 0.72 0.68 3.93 0.63 0.57 4.09 0.63 0.57
10 HAMT (Chen et al., 2021) - 0.69 0.65 - 0.64 0.58 - - -
11 RecBERT* 2.99 0.71 0.66 4.03 0.61 0.56 4.35 0.61 0.57
12 Our pretrain + RecBERT 2.90 0.74 0.69 3.75 0.63 0.58 4.20 0.63 0.57
13 Our pretrain + LOViS (our model) 2.40 0.77 0.72 3.71 0.65 0.59 4.07 0.63 0.58

Table 1: Experimental Results Comparing with Baseline Models on R2R Benchmarks in a single-run setting. The best results
are in bold font. * denotes our reproduced R2R results.

Val Seen Val Unseen
Method NE↑ SR↑ SPL↑ CLS↑ nDTW↑ sDTW↑ NE↓ SR↑ SPL↑ CLS↑ nDTW↑ sDTW↑

EnvDrop* (Tan et al., 2019) - 0.52 0.41 0.53 - 0.27 - 0.29 0.18 0.34 - 0.09
OAAM (Qi et al., 2020) - 0.56 0.49 0.54 - 0.32 - 0.29 0.18 0.34 - 0.11
NvEM (An et al., 2021) 5.38 0.54 0.47 0.51 0.48 0.35 6.80 0.38 0.28 0.41 0.36 0.20

RecBERT* (Hong et al., 2021) 4.82 0.56 0.46 0.50 0.56 0.38 6.48 0.43 0.32 0.41 0.42 0.21
LOViS (our model) 4.16 0.67 0.58 0.56 0.58 0.43 6.07 0.45 0.35 0.45 0.43 0.23

Table 2: Experimental Results for comparing LOViS with the Baseline Models on R4R dataset in a single-run setting. The best
results are in bold font. * denotes our reproduced R4R results.

learning rate is 5e− 5, and the AdamW optimizer
is adopted. The language Transformer has nine lay-
ers, and the cross-modality Transformer has four
layers. The models’ parameters are initialized with
the weights of PREVALENT (Hao et al., 2020).
Fine-tuning We directly adapt different encoders
and Transformer layers from our pre-training
model to our navigation model. The navigation
model is further trained in 30k iterations with learn-
ing rate 1e − 5. The batch size is 28. The best
performance is selected according to the best SPL
of the validation unseen set. For R2R, we use the
same augmented data as in (Hong et al., 2021) for
a fair comparison.

6.4 Comparisons with SoTA

Table 1 shows the experimental results of different
VLN methods on R2R benchmarks in a single-run
setting. In this table, row#1 to row#5 show the re-
sults of the LSTM-based navigation agents. From
row#6 to row#10 are Transformer-based navigation
agents that largely have improved the performance
of the LSTM-based agents. PREVALENT (Hao
et al., 2020) pre-trains the cross-modal representa-
tions with text-image-action triplets and replaces
the encoder of Env-Drop (Tan et al., 2019) to im-
prove its performance. AirBERT (Guhur et al.,
2021) is one of the SOTA methods that train a
model on a large scale and diverse in-domain de-
tests. RecBERT(Hong et al., 2021) , our baseline,

is also a SOTA method that uses the attention dis-
tribution of the history information on navigation
candidates to determine the next action. Row#10
is their own reported results in their paper, and
row#11 shows our best reproduced results which
is consistent with the reported results in (Liu et al.,
2021). Row#12 and row#13 are the performance
of our LOViS model. We first show the effective-
ness of our pre-training on the baseline model. Our
pre-training setting can improve the SR and SPL
of baseline by about 2% in the unseen validation
environment. Moreover, we further improve the
performance of the baseline with our designed nav-
igation model and the pre-training setting. The
improvement is about 3% of SR and SPL in the
seen environment and 2% of SR in the unseen vali-
dation and test environment. This result indicates
our pre-training tasks are more suitable for our de-
signed navigation model. We also obtain a lower
NE showing that our agent navigates closer to the
destination. For HAMT (Chen et al., 2021), we re-
port their results with ResNet-152 as the vision en-
coder for a fair comparison. Among those methods,
only OAAM (Qi et al., 2020) and NvEM (An et al.,
2021) consider the semantics of spatial information
and visual perception, but their results have a large
performance gap compared to our Transformer-
based navigation model.

Table 2 shows the performance of various mod-
els on R4R benchmark in a single-run setting.
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Baseline Model LOViS (Our Model)
Val Seen Val Unseen Val Seen Val Unseen

Tasks SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑
1 MLM 0.712 0.662 0.613 0.562 0.724 0.673 0.621 0.564
2 MLM+SSAP 0.731 0.675 0.619 0.575 0.747 0.695 0.649 0.585
3 MLM+SSAP+VM 0.737 0.683 0.622 0.577 0.755 0.711 0.637 0.581
4 MLM+SSAP+OM 0.730 0.672 0.617 0.574 0.766 0.724 0.629 0.579
5 MLM+SSAP+VM+OM 0.743 0.691 0.632 0.583 0.774 0.722 0.653 0.592

Table 3: Ablation Study for Different Tasks of Pre-training on the Baseline and LOViS.

Val Seen Val Unseen
Modules SR↑ SPL↑ SR↑ SPL↑

1 H 0.743 0.691 0.632 0.583
2 H+O 0.756 0.712 0.629 0.576
3 H+V 0.762 0.718 0.642 0.588
4 H+O+V 0.774 0.722 0.653 0.592

Table 4: Ablation Study for Different Modules in Model. H:
History Module; O: Orientation Module; V: Vision Module.

Same as R2R, we can better perform in all eval-
uation metrics. Compared to the our reproduced
results of the RecBERT (Hong et al., 2020a), we
can improve 4% of CLS, 1% of nDTW, and 2%
of sDTW in the unseen validation environment,
which indicates the significantly better fidelity of
our model.

6.5 Ablation Study

6.5.1 Ablation Study of Different Tasks
In Table 1, we already observe that our pre-training
strategy improved the RecBERT baseline. In Ta-
ble 3, we show the influence of each pre-training
task on both RecBERT and LOViS. For RecBERT
baseline model, SSAP shows about 2% of improve-
ment on both seen and unseen environments. Al-
though the tasks of VM and OM independently
do not change the performance of MLM+SSAP,
the combination of two tasks improves the perfor-
mance by about 1%. The same phenomenon hap-
pens in LOViS. SSAP improves the performance by
a large margin. Although VM and OM do not show
significant improvement when used separately in
the unseen environment, they improve both SR and
SPL in the seen environment. The combination
of VM and OM improves the performance signifi-
cantly, especially in the seen environment.

6.5.2 Ablation Study of Different Modules
Table 4 shows the ablation of different modules.
Based on row#1, the history module with our pre-
training strategy has already improved its perfor-
mance. Comparing row#2 and row#3, we can see
that vision module affects the results more than
the Orientation module. The combination of two
modules with our pre-training strategy achieves

V1
(1.74, -0.19)

V3
(3.30, -0.08)

V4
(4.17, 0.54)

V5
(5.06, -0.07)

V6
(4.95, 0.20)

Instruction: Continue down the stairs, and take a left. 

Orientation Module

Vision Module

History Module

V2
(2.44, -1.05)

Final Decision

Figure 4: Qualitative Example. The ground-truth viewpoint
is v1. The word “down” and “left” are the orientation signals.
The word “stairs” is the vision signal. The attention map
shows the score of different candidate viewpoints in each mod-
ule. The darker color means the higher score. The numbers
below each viewpoint show the orientation information with
the format of <relative heading, relative elevation>. The lower
value of each number means the orientation is more towards
left and down respectively.

the best performance (row#4). This indicates that
our designed explicit modules can assist the agent
in choosing the correct action based on different
information.

6.6 Qualitative Example

Figure 4 shows a qualitative example that demon-
strates the performance of each module of LOViS
navigation agent. It is evident that the orientation
module gives a higher score to the viewpoints that
are left, and their elevation is down. The vision
module gives a higher score to the viewpoints that
“stairs” can be seen. The history module also gives
a relatively higher score to the viewpoints on the
right side. The final decision is v1 with its weights
of [0.02,−0.03,−0.04] to the three modules. The
example shows that our designed orientation and
vision modules can attend to the viewpoint with the
corresponding information.

7 Conclusion

The main idea of this paper is to design explicit
vision and orientation modules in the neural archi-
tecture of a navigating agent. These modules can
effectively learn to ground the landmark mentions
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and spatial information related to the orientation
of the agent expressed in the natural language in-
struction into the visual environment. To make the
designed modules more effective, we design new
pre-training tasks accordingly to equip the agent
with spatial reasoning and visual perception abili-
ties before navigation. We evaluate our model on
R2R and R4R datasets and achieve state-of-the-art
results. Our ablation study shows the effectiveness
of our designed modules and pre-training tasks.
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Abstract

Recent improvements in KG-to-text genera-
tion are due to additional auxiliary pre-training
tasks designed to give the fine-tune task a boost
in performance. These tasks require extensive
computational resources while only suggesting
marginal improvements. Here, we demonstrate
that by fusing graph-aware elements into exist-
ing pre-trained language models, we are able to
outperform state-of-the-art models and close
the gap imposed by additional pre-training
tasks. We do so by proposing a mask struc-
ture to capture neighborhood information and a
novel type encoder that adds a bias to the graph-
attention weights depending on the connection
type. Experiments on two KG-to-text bench-
mark datasets show our models are competitive
while involving fewer parameters and no addi-
tional pre-training tasks. By formulating the
problem as a framework, we can interchange
the various proposed components and begin in-
terpreting KG-to-text generative models based
on the topological and type information found
in a graph.

1 Introduction

Due to the amount of data stored in Knowledge
Graphs (KGs) (Auer et al., 2007; Vrandečić and
Krötzsch, 2014; Bollacker et al., 2008; Yates et al.,
2007; Bodenreider, 2004; Wishart et al., 2018),
they are important to properly transcribe into nat-
ural language sentences, making them more eas-
ily comprehensible to a larger audience. This
task, termed KG-to-text, has found recent suc-
cess in generating knowledge-grounded dialog re-
sponses (Wen et al., 2016; Zhou et al., 2018), ques-
tion answering (He et al., 2017; Bhowmik and
de Melo, 2018; Pal et al., 2019; Agarwal et al.,
2021), story generation (Guan et al., 2019; Ji et al.,
2020), and event narration (Colas et al., 2021). KG-
to-text involves encoding a KG, often sparse, in

∗∗These authors contributed equally.

The Great Debate, also called the Shapley - Curtis Debate, was held on
26 April 1920 at the National Museum of Natural History, between the
astronomers Harlow Shapley and Heber Doust Curtis. The format of the
Great Debate has been used subsequently to argue the nature of
fundamental questions in astronomy.

alternative

participant

participantlocation

instance of

Harlow
Shapley

Heber Doust
Curtis

topic

 Shapley–
Curtis Debate

National
Museum of

Natural
History

Debate

 26 April 1920 

point in time

start time end time

Astronomy

Great
Debate 

Figure 1: Given a graph, KG-to-text generation aims to
describe the entities, relations, and its inherent structure
via natural language text (grey callout). Corresponding
graph-text components are color-coded.

order to generate a coherent and representative tex-
tual description of the KG as shown in Figure 1. In
contrast, Abstract Meaning Representation (AMR)-
to-text deals with a more restrictive space, where
graphs follow a predefined dense, connected tem-
plate (Ribeiro et al., 2021; Koncel-Kedziorski et al.,
2019). Thus, when encoding a KG, one should
carefully consider the graph’s structure to properly
generate its corresponding text.

Recently, pre-trained language models (LMs)
have produced state-of-the-art results on the KG-
to-text generation task (Ribeiro et al., 2020a; Chen
et al., 2020). These models tend to first linearize
a graph into a sequence of tokens, and fine-tune
on pre-trained LMs such as BART (Lewis et al.,
2020), GPT (Radford et al., 2019), or T5 (Raffel
et al., 2020), treating the task similarly to a text-to-
text task. Because of the performance gains caused
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by the self-supervised pre-training tasks, current
work on KG-to-text has focused on developing pre-
trained tasks and large-scale unlabeled graph-text
corpora, replicating the success in the text-to-text
domain (Chen et al., 2020; Ke et al., 2021). How-
ever, these works particularly focus on leveraging
large amounts of pre-trained data for graph-to-text
specific pre-trained tasks, e.g., recovering a masked
text sequence based on a given complete KG.

Although recent work in KG-to-text has begun
to combine LMs with a graph-aware approach (Ke
et al., 2021), they do not adequately perform a
graph-aware encoding, overlooking the KG’s topo-
logical information. Similarly, recent work in
AMR-to-text has begun to observe the role of
graph adaptors in dense, highly parallel data, using
a Graph Convolutional Network (GCN) (Ribeiro
et al., 2021). Instead, our framework leverages a
topological attention mechanism, better adhering
to the language model paradigm and giving room
for interpretation.

We argue and show empirically that without ad-
ditional pre-trained tasks, a fully graph-aware en-
coding combined with the coverage of pre-trained
LMs such as BART (Lewis et al., 2020), can com-
pete with and in some cases outperform those ap-
proaches which rely on additional pre-training. By
doing so, we unload the burden of requiring vast
amounts of data and computational resources re-
quired for pre-training.

We propose GAP, a KG-to-text framework
which fuses graph-aware elements into existing
pre-trained LMs, capturing the advantages brought
forth by both model types. Our framework has two
main components: (i) Global Attention: A graph’s
components are first encoded using an LM to cap-
ture their global semantic information, allowing the
model to utilize the lexical coverage of pre-trained
LMs (Davison et al., 2019; Gururangan et al., 2020;
Vulić et al., 2020). (ii) Graph-aware Attention:
Next, we devise a topological-aware graph atten-
tion mechanism, with entity/relation type encoding.
Our framework attends to and updates entity, rela-
tion, or both representations. By proposing such a
framework, where graph-aware components can be
interchanged, we can begin exploring explainable
generative models for the KG-to-text task.

We evaluate GAP on two publicly available KG-
to-text datasets: WebNLG v2.0 (Shimorina and
Gardent, 2018) and EventNarrative (Colas et al.,
2021), achieving state-of-the-art results on various

natural language generation (NLG) metrics and
demonstrate the value of our fully graph-aware
based approach. Our contributions are as follows:

1. We propose a novel graph-aware framework
for KG-to-text by introducing neighborhood-
masked attention and connection type encod-
ing into pre-trained LMs, capturing both local
structural and global contextual information.

2. We provide more interpretable insights on KG-
to-text generative models by drawing upon
our framework and interchanging the various
masking and type schemes, evaluating the out-
put based on the variable graph topology.

3. We demonstrate on two datasets that by sim-
ply finetuning our models, which infuse graph-
aware elements into existing LMs, one can
even marginally outperform current state-of-
the-art models which rely on several computa-
tionally expensive pre-training tasks.

We make our code publically available to motivate
future research.

2 Related Work

2.1 KG-to-Text with Graph Transformers
Graph Neural Networks (GNNs) (Veličković et al.,
2018) have shown to be effective at encoding graph
data. For the KG-to-text task, recent works have
leveraged GNNs to encode a graph’s neighbor-
hood information (Koncel-Kedziorski et al., 2019;
Marcheggiani and Perez-Beltrachini, 2018; Ribeiro
et al., 2020b; Schmitt et al., 2021; Guo et al., 2019;
Jin et al., 2020) before decoding its corresponding
textual representation. Other work instead choose
a more global approach and base their encoder on
a Transformer-based architecture (Vaswani et al.,
2017), calculating self-attention from all the nodes
in a graph (Zhu et al., 2019; Cai and Lam, 2020;
Ke et al., 2021). Like previous work, we encode
neighborhood information in the Graph-aware At-
tention module. Recently, graph convolution-based
adaptors have been explored for Abstract Mean-
ing Representation-to-text (Ribeiro et al., 2021).
Unlike previous work, GAP is a framework for
KG-to-text, where the KG’s topology and masking
scheme are not set. While there has been work
examining the effect of encoding a node’s relative
position (Shaw et al., 2018; Schmitt et al., 2021),
we instead encode type, arguing that a KG’s textual
description is weighted based on its different types
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of connections, and empirically show its effect on
KG-to-text generation.

2.2 KG-to-Text with Pre-trained LM
With the advent of pre-trained LMs such as
BART (Lewis et al., 2020), T5 (Raffel et al., 2020),
and GPT (Radford et al., 2019), these models have
been directly adapted and fine-tuned for the KG-
to-text task and in some cases outperformed GNN-
based models (Ribeiro et al., 2020a; Kale and Ras-
togi, 2020; Chen et al., 2020; Mager et al., 2020).
While work has begun to explore combining such
pre-trained models with transformer-based archi-
tectures which encode node information (Ke et al.,
2021), they assume connectivity between all nodes
and do not leverage updating relation informa-
tion. Instead, here we propose a framework which
combines pre-trained models with graph-aware en-
coders which are specifically neighborhood-based
and dependent on a given graph’s topology.

3 Problem Statement

We aim to generate texts that describe a given KG.
We define a KG to be a multi-relational graph G =
(V, E), where V is the set of entity vertices and
E ⊂ V × R × V is the set of edges that connect
entities with a relation fromR.

4 Proposed Framework

As our model is built on top of LMs such as BART,
we first linearize the knowledge graph into a text
string (Distiawan et al., 2018; Moryossef et al.,
2019; Su et al., 2021). The linearization is a se-
quence of all triples in the KG, interleaved with
tokens that separate each triple and the triple’s com-
ponents (head, relation, and tail). Figure 2 shows
an example linearization for a small knowledge
graph, along with its labeled components.

4.1 Global Attention
We then use a transformer encoder to contextual-
ize the vector representations. The first module in
each transformer layer is a self-attention over the
linearized graph, which acts as a Global Attention
and captures the semantic relationships between
all tokens. The Global Attention can be initial-
ized with a pre-trained LM. At the l-th layer, the
self-attention is formulated as:

Xl = Attn(Q,K, V ) = softmax

(
QK⊤√
dk

)
V

(1)

Query, key, and value are computed via Q =
Xl−1W

Q
l ,K = Xl−1WK

l , and V = Xl−1W V
l−1.

Xl−1 ∈ Rn×d denotes the collection of vectors
corresponding to the graph’s tokens. The model’s
parameters are denoted by W with size dk × dk,
where dk is the dimension of word vectors.

4.2 Graph Aware Attention

While the Global Attention assumes connectivity
between all graph components, KG adjacencies are
sparse in nature. To capture this, we propose a
Graph-aware Attention module, by first retrieving
entity/relation vectors from the word vectors. Some
entities or relations contain several words or repeat
several times in the linearized graph. To get a single
vector for each entity/relation, we add a pooling
layer, which takes the average of the corresponding
word vectors for each entity/relation. Hence, we
get the graph representation matrix Xg

l ∈ Rm×d:

Xg
l = pooling(Xl) (2)

Note, m < n, where m and n denote the number
of graph components and number of tokens, re-
spectively. In practice and for parallelization m
will be a fixed number larger than this sum for all
graphs in the dataset, and the graph representation
can be accessed via masking. We propose a novel
graph-aware attention on the graph representation
Xg
l by introducing a neighborhood-based masking

scheme and novel type encoder:

X̃g
l = AttnM,T (Q,K, V ) =

softmax

(
QK⊤√
dk

+M + γ(T )

)
V.

(3)

Here Q,K, V are constructed from Xg
l by multi-

plying it with their corresponding learnable param-
eter W . While M ∈ Rm×m is a mask that encodes
the desired graph structure, and γ(T ) ∈ Rm×m is
the type encoding matrix. Note, each row of Q,
K, and V correspond to an element from the graph
(an entity or a relation), and before applying a soft-
max in each row ofQK⊤, we can mask/modify the
scores based on the graph topology. For instance,
Mij = −∞ forces the item i to not attend to item
j or the value at γ(T )ij can add a bias to the atten-
tion score based on the type of connection between
items i and j. We exploit this capacity to inject
graph-awareness by adding a masking matrix M
and type encoding matrix γ(T ).
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A) Input Module B) Encoder

Global Attention
(LM)

Graph-aware
Attention

Graph Linearization

Graph
Representation

<head> <relation> <tail><relation> <tail>

Decoder

[TOKEN SCORES]

C) Decoder

Figure 2: Overview of the Graph-aware framework for graph-to-text generation. Given a KG, we first transform the
graph into its appropriate representation before linearizing the graph. Next, each node of the KG is encoded via a
global attention, followed by a graph-aware attention, ultimately being decoded into a sequence of tokens.
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Figure 3: Two masking approaches. Left: Me,r
e mask,

where E1 attends to its neighboring entities and rela-
tions, while R1 only attends to its neighboring entities.
Right: Me

e mask, where E1 and R1 only attend to their
neighboring entities.

4.2.1 Graph Topology Encoding

The proposed matrix M ∈ Rm×m encodes the
graph topology by assigning −∞ where attention
is blocked and 0 otherwise. M can be thought of as
a generalized adjacency matrix for graph G, which
has both nodes and edges as its rows and columns.
Hence, to encode neighborhood information for
an entity, we can modify its corresponding row in
M to have the value 0 for its neighbors, and −∞
otherwise. As the rows and columns of M contain
relations, we also have the capacity to let relations
attend to their neighboring entity or relations.

From a graph topology perspective, we have sev-
eral design choices for the matrix M . We can let
entities attend to neighboring entities, neighboring
relations, or both. We also have these same op-
tions for when relations are playing the query role;
that is, when choosing which components should
relations attend to. For ease of reference and dis-
cussion, superscript denotes neighborhood types

for entities, while subscript for relations, e.g. M e,r
e,r .

For instance, when entities attend to neighboring
entities and relations, but relations only attend to
entities, we denote the masking matrix by M e,r

e .
Figure 3 illustrates two such matrices via a graph
and its attending components.

4.2.2 Connection Type Encoding
In contrast to M which encodes the general graph
topology, we also introduce a new type encoding
T ∈ Rm×m, designed for biasing the attention val-
ues between the different graph components based
on their connection type. For instance, when an
entity e is attending to its neighbor entities {ei}
and relations {ri}, we encode the two connection
types and bias their attention scores. Type infor-
mation is stored in a matrix T , and we then use
an embedding lookup γ : Z → R to learn scalar
embeddings for the types in T .

We define type Tij between query i and key j
based on two factors: (i) whether the two items
are connected and (ii) the type of each item, i.e.
whether the connection is entity–entity, entity–
relation, relation–entity, or relation–relation:

Tij =





0 if there’s no connection,
1 if i and j are neighboring entities,
2 if {i, j} is an {entity,edge} pair,
3 if i and j are adjacent relations.

(4)
The model then has the capacity to modify its

attention scores based on the graph’s connection
types. Intuitively, this capacity would allow us
to interpolate between different choices of M , or
in the extreme case it can push model M e,r

e,r , to
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Dataset #KG-text pairs (Train/Valid/Test)
WebNLG 34,352 / 4,316 / 4,224
EventNarrative 179,543 / 1,000 / 22,441

Table 1: Statistics of the supervised KG-to-Text datasets
used for experimenting.

simulate any of the other more restrictive masks.
For ease of reference, we explicitly state the type
encoding whenever used.

Finally, after producing the new graph repre-
sentation X̃g

l with equation (3), we gather the
word representations from the graph representa-
tion, adding the new representations as a residual
to Xl, and generate the output from the l-th layer:

X̃l = gather(X̃g
l ) +Xl (5)

5 Experiments

5.1 Datasets
We experiment on two KG-to-text supervised
datasets: WebNLG v2.0 (Gardent et al., 2017; Shi-
morina and Gardent, 2018) and EventNarrative (Co-
las et al., 2021). We experiment with different con-
figurations on the graph representation, attention
mask, and type encoding on the WebNLG dataset,
taking the best performing models to experiment
further on EventNarrative. This is because of com-
putational constraints caused by the size of Event-
Narrative. Table 1 outlines the statistical differ-
ences between the two datasets. We use the official
data split for both.
WebNLG is a crowd-sourced RDF triple-to-text
dataset manually crafted by human annotators. The
dataset contains graphs from DBpedia (Auer et al.,
2007) with up to 7 triples paired with one or more
reference texts. As in Chen et al. (2020) and Ke
et al. (2021), we evaluate on the 2.0 release 1.
EventNarrative is an automatically generated
large-scale event-centric KG-to-text supervised
dataset. Event KGs are extracted from Wiki-
data (Vrandečić and Krötzsch, 2014) and Even-
tKG (Gottschalk and Demidova, 2018), which are
then matched to Wikipedia sentences. EventNarra-
tive contains a larger number of unique KG com-
ponents compared to WebNLG.

5.2 Implementation and training details
We chose to use BART as our pre-trained
LM (Lewis et al., 2020), and initialize its respective

1https://gitlab.com/shimorina/webnlg-dataset

parameters with the Hugging Face’s pre-trained
bart-base checkpoint 2. We left the default hyperpa-
rameters on the Global Attention module (BART)
due to limited computational resources, instead ex-
perimenting on the Graph-aware attention module.

When evaluating, we follow the existing work
for KG-to-text and report the model’s perfor-
mance with BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), and ROUGE-
L (Lin, 2004) scores as the automatic NLG metrics.

5.3 Baselines

Fine-tuned LM. To evaluate the effect of the
graph-aware attention module in our framework,
we compare with a vanilla fine-tuned BART LM,
which is not additionally pre-trained on any graph-
text specific task. We do so for both WebNLG
and EventNarrative, noting that for EventNarrative
such a baseline is the state-of-the-art.

Pre-trained KG-to-Text Models. We fur-
ther compare our framework with models which
have pre-trained LMs on additional tasks, includ-
ing KGPT (Chen et al., 2020) and JointGT (Ke
et al., 2021). KGPT performs an additional
KG-to-text generation pre-training task on KGText,
a loosely-supervised large-scale KG-to-text
dataset, before finetuning. JointGT performs three
additional pre-training tasks for KG reconstruction,
text reconstruction, and KG-text alignment on
the KGText dataset before finetuning. For a
fair comparison with JointGT, we also compare
our results to JointGT’s BART pre-trained task,
where they perform an additional text infilling and
sentence permutation task on KGText.

5.4 Main results

Table 2 and Table 3 show our results on the
WebNLG and EventNarrative datasets, respectively.
On both datasets, we observe improvements over
existing LM-based models with GAP. For BLEU
score on WebNLG, we observe a +5.20% im-
provement over the state-of-the-art without any
pre-training (Shimorina and Gardent, 2018) and
a +1.65% improvement over BART. This improve-
ment suggests that the graph-aware component of
GAP makes use of the local neighborhood informa-
tion when encoding graph components.

We outperform both KGPT and JointGT (on
WebNLG), which rely on additional pre-training

2https://huggingface.co/facebook/bart-base
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Model Pre+ #Param BLEU METEOR ROUGE
GCN (Marcheggiani and Perez-Beltrachini, 2018) No - 60.80‡ 42.76 ‡ 71.13‡

Shimorina and Gardent (2018) No - 61.00♯ 42.00♯ 71.00♯

KGPT w/o pretrain No 177M 62.30 ‡ 44.33 ‡ 73.00‡

KGPT Yes 177M 64.11‡ 46.3‡ 74.57‡

BART Yes 140M 64.55 46.51 75.13
JointGT (BART) - w/ BARTPretrain Yes 160M 64.60† 46.78† 75.74†

JointGT (BART) - w/ JointGTPretrain Yes 160M 65.92† 47.15† 76.1†

GAP (Ours) - M e,r
e No 153M 65.92 46.81 76.22

GAP (Ours) - M e,r + γ No 153M 66.20 46.77 76.36

Table 2: Performance comparison on WebNLG. KGPT and JointGT, marked with † and ‡, re-printed from Chen
et al. (2020) and Ke et al. (2021), have been pre-trained on one and three additional tasks, where Pre+ denotes if
additional pre-training was performed. We mark results from Shimorina and Gardent (2018) with ♯. We report our
best models with and without type encoding, which have approximately the same number of parameters.

Model BLEU METEOR ROUGE BERTScore
BART 31.38 26.68 62.65 93.12
T5 12.8 22.77 52.06 89.59
JointGT 31.19 26.58 64.91 93.68
M e,r
e 34.02 26.93 62.90 93.13

M e,r + γ 35.08 27.50 64.28 93.38

Table 3: Performance comparison on EventNarra-
tive. We compare to the pretrained baselines, T5 and
BART, reprinted from (Colas et al., 2021), and adapt
JointGT (Ke et al., 2021) to the dataset.

tasks for graph-text reconstruction and alignment.
On BLEU score, we observe an improvement of
+1.81% and 2.09% over KGPT, and +1.32% and
1.6% over JointGT (with BARTPretrain). Further,
our M e,r with Type Encoding model outperforms
JointGT (with JointGTPretrain) by 0.28% with-
out the need for any additional pre-training. Joint-
GTPretrain refers to all three pre-trained tasks de-
scribed in Ke et al. (2021). Instead of pre-training,
we fill the gap with a modification to the encoder
structure such that the model adapts to the graph
structure. To summarize, we have shown that
when adapting pre-trained language models such
as BART, a careful modification of the encoder
structure can better align the LM with the new task.

On EventNarrative, for model M e,r
e we achieve

an improvement of +3.70%, +0.82%, +1.63% on
BLEU, METEOR, and ROUGE, relative to BART,
further demonstrating that the graph-aware struc-
ture and type encoder can perform comparatively
well on large and more complex graphs. We note a
similar trend to WebNLG, where the type encoder
can give an additional performance improvement
to the graph-structure component of the model. For
comparison, we adapt JointGT to EventNarrative,

GAP BLEU METEOR ROUGE
M e,r
e 65.92 46.81 76.22

M e,r 65.86 46.86 76.28
M e
e 65.11 46.33 75.62

M e,r
e,r 64.64 46.17 75.04

Table 4: Experimental results of the different masks
applied to the WebNLG v2.0 test set.

using the hyperparameters from Ke et al. (2021).
We note all models have similar BERTScores.

6 Analysis

6.1 Ablation Studies

We explore different maskings and type encodings
for the graph-aware attention module on WebNLG.
summarized on Table 4 and Table 5.

Masking Scheme. From bottom to top on
Table 4, our first observation is that when relations
directly attend to the neighboring relations, the
performance drops by 1.28%, the largest difference.
In fact, the results significantly improve when
we completely block attention on relations (M e

e ).
However, for the entities, it is always best to attend
to their edges (relations) as well as their neighbor-
ing entities. The top two results are comparable
(0.06% difference in BLEU score), and each one
could be considered the best performing model
depending on the evaluation metric. For relations,
it might be somewhat helpful to not attend to
neighboring relations, while for entities, attending
to the relations will lead to better results (+0.81%).
Type Encoder. Table 5 shows the effect of type
encoding on the results on WebNLG. To better un-
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GAP w/ γ BLEU METEOR ROUGE
M e,r
e 65.34 46.31 75.59

M e,r 66.20 46.77 76.36
M e
e 65.24 46.49 75.44

M e,r
e,r 65.43 46.54 75.75

Table 5: The results of different variations of our model
with type encoding on the WebNLG v2.0 test set.

derstand the effect of type encoding on each of the
models, we compare Table 4 with Table 5. Recall
that the type encoding γ(T ) for each model de-
pends on the connections that exists in the model
graph structure. For instance, the most general
model M e,r

e,r has all four possible connection types
encoded by equation (4), while the model with
M = M e,r only has two types, which can be en-
coded by a restriction of equation (4). According
to Table 4, the model M e,r

e,r performs worst without
type encoding. However, because of its general-
ity, i.e. having all the possible connection types,
it is possible for this model to drift toward better
configurations with the help of γ(T ). The results
in Table 5 help support these insights for model
M e,r
e,r . Type encoding allows this model to simulate

what we observed is best in the previous section,
i.e. relations are better off not to attend to relations,
whereas entities can attend to both while paying
less attention to relations. This nuanced behavior
seems to be achievable only via type encoding. Re-
sults for model with M = M e,r and type encoding
also point towards this; type encoding seems to fa-
cilitate a non-uniform attention distribution based
on the type and produces a better result.

6.2 Few-Shot Learning

To further reinforce our claims that our model al-
leviates the need for pre-training in the KG-to-text
task, we consider various few-shot learning settings
where only a small percentage of training instances
were used for finetuning. As highlighted in Table 6,
GAP outperforms all state-of-the-art pretrained-
based approaches, without needing to pre-train, in-
dicating that our fully graph-aware framework is
more appropriate than established pre-trained tasks,
especially when such data is not avialable.

6.3 KG Size

As in Ke et al. (2021), we divide the WebNLG test
set into two subsets (1-3 and 4-7 triples) to compare
the performance of our different masking configu-

Model Data Proportion
0.5% 1% 5% 10%

BART 33.92 39.08 52.24 56.58
JointGT 37.18 42.26 54.41 57.73
M e,r + γ 39.50 44.03 55.68 58.30

Table 6: BLEU scores of various pre-trained models
compared to GAP for few-shot learning on WebNLG.

GAP
#Triples

1-3 4-7
M e,r
e 71.48 61.53

M e,r 71.28 61.59
M e
e 70.18 61.05

M e,r
e,r 69.74 60.57

Table 7: BLEU scores for the different masks applied
to the WebNLG v2.0 test set for different graph sizes.

rations. Table 7 shows that while all configurations
perform similarly for larger graphs, the difference
in performance is clearer on smaller graphs, where
M e,r
e performs +1.74% better than M e,r

e,r , suggest-
ing that relations paying attention to relations can
add too much complexity to the model, especially
on simpler graph structures.

6.4 Interpretability

We begin to interpret KG-to-text models by ana-
lyzing the graph-attention weights induced by each
graph structure on a per-sample basis, analogous
to analyzing node-to-node attention weights in the
KG question-answering domain (Yasunaga et al.,
2021). By introducing a framework to the KG-to-
text task, we can condition the changes in the out-
put text on the different components of the frame-
work, including the masking and type encoder. We
can then observe the differences in the output text
based on the graph’s topological structure or what
relations and entities attend to.

In Figure 4 we show an example KG represent-
ing Aenir, an Australian fantasy novel, with its
relations (orange) and entities (blue) along with
the attention heatmaps and outputs from two of
our framework decisions. The left (a) heatmap and
output corresponds to our best performing model
without type encoding, M e,r

e , while the right (b)
corresponds to M e

e . We choose these two mask-
ing configurations, because the attention-weight
differences are apparent.

From (a), entities attend to both entities and re-
lations, whereas relations only attend to entities.
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Output:  Aenir is written in English and was followed by
Above the Veil which is from the country of Australia. 

Output: Aenir, written in English, was followed by
Above the Veil, which is written in the English language.  

a) b)
fo

llo
wed

 by
Aenir

English 
language

Above the
Veil

Australians

language

co
un

try
e,r
e

e
e

Figure 4: Interpreting KG-to-text models via analyzing graph attention weights, which the graph-aware encoder
activates. We show each model’s output for further emphasis.

Output:  Above the Veil was the sequel to  Aenir which
is written in English and was published in Australia. 

Figure 5: An additional case study of the graph attention
weights for model Me,r

e,r with type encoding.

Interestingly, the attention distribution appears uni-
form across all graph components (both for entities
and relations). From (b) we see a similar uniform
distribution across entities and relation attending
to only entities. Thus, in (a), while relation ‘coun-
try’ attends to ‘Australians’ and vice-versa, in (b)
‘Australians’ does not attend to ‘country’, perhaps
giving a difference in the output, as the final out-
put in (a) contains ‘from the country of Australia’
while the text in (b) does not. Moreover, in both
(a) and (b) ‘Above the Veil’ is the subject of the
second clause. However, ‘Above the Veil’ attends
to ‘country’ only in (a), therefore influencing (a)’s
output of ‘Above the Veil which is from the country
of Australia’. Instead, (b) introduces some redun-
dancy in its second clause instead of transcribing
new information from the KG.

Figure 5 shows the output sentence, and the atten-
tion heatmap produced by our most general model
with M = M e,r

e,r and type encoding, on the graph
shown in Figure 4. We examine the differences
between this model, referred to as model (1), and
the model with M = M e,r

e and no type encoding,
referred to as model (2). First, note that in terms of
BLEU score (1) performs slightly worse than (2),
however a human annotator may rank (1) over (2),
as (1) is more concise while communicating the
same information. For example, (1) uses the word
‘sequel to’ rather than ‘followed by’ and ‘published
in’ instead of ‘from the country’, which can sound
more natural to humans. Particularly, Australians
pays less attention to country, compared to model
(2), perhaps hinting at this result. Our framework
provides a first step in interpreting this result by al-
lowing one to compare different attention-weights
across multiple models. With this in mind, we call
upon future work to design more specific evalua-
tion metrics for the KG-to-text task.

7 Conclusion

We presented GAP, a graph-aware language model
framework for KG-to-text generation. Our frame-
work instills the local information captured by
graph attention into the global contextualized word
vector representation within pre-trained LMs. We
demonstrated multiple configurations of our frame-
work by introducing a graph-aware attention mask-
ing scheme and novel type encoder module, and
through qualitative analysis showed that GAP out-
performs existing KG-to-text models, including
those that rely on additional auxiliary pre-training
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tasks. By closely examining the different frame-
work configurations, we introduce the capacity to
interpret KG-to-text outputs through a graph’s at-
tention structure and topology.

8 Broader Impacts

GAP provides researchers with a state-of-the-art
framework for KG-to-text models. Though we ex-
periment with supervised baselines which include
a handcrafted dataset, WebNLG, and an automati-
cally generated dataset, EventNarrative, reposito-
ries of structured data exist in the clinical (John-
son et al., 2016), medical (Bodenreider, 2004),
and news crises (Leetaru and Schrodt, 2013; Ward
et al., 2013) domains. By transforming clinical data
into natural language narratives, patients with low
health-literacy can benefit by more easily under-
standing their electronic medical records (EMRs),
and doctors can more easily transcribe patient data
for future use cases, i.e. connecting such data to
the medical literature. Such models can also help
analysts more easily understand crises data from
various news sources, in turn helping them evaluate
cause-effect relationships and detect misinforma-
tion. While malicious actors can exploit generative
models for disinformation, we discourage the use
of GAP in generating such data and openly release
our model to help combat such efforts.
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A Hyperparameter Details

As followed by Ke et al. (2021) and BART, we used
a Byte-Pair Encoding (BPE) vocabulary (Radford
et al., 2019) with a size of 50,265. The model’s
parameters were optimized via Adam (Kingma and
Ba, 2015), with a batch size of 16, a learning rate
of 3e-5, and a maximum graph size of 50 and 60
for WebNLG and EventNarrative, respectively. Ta-
ble 8 provides the model hyperparameter settings
used for experimenting on both the WebNLG and
EventNarrative datasets. We keep all listed hy-
perparameters constant with respect to the GAP
configurations. We increase num nodes for the
EventNarrative dataset due to the properties of the
dataset, i.e. the possibility of having graphs com-
posed of more than seven triples. We also set the
eval period to 5,000 for EventNarrative due to its
size, containing approximately 22,000 samples in
its test set. As in (Colas et al., 2021), we set the max
output size to 512 for all experiments on EventNar-
rative BLEU score on the validation set was used
for model selection. Each model was trained on
two NVIDIA RTX 2080 Ti GPUs.

Hyperparameter WebNLG EventNarrative
Learning Rate 2.00E-05 2.00E-05
Warmup Steps 1600 1600
Eval Period 500 5000
Beam Size 5 5
Length Penalty 1 1
Optimizer Adam Adam
ϵ 1.00E-08 1.00E-08
Num Nodes 50 60
Num Relations 60 60
Embedding Size 128 128
Num Global Layers 6 6
Num Graph-aware Layers 6 6
Batch Size 16 16

Table 8: Hyperparameters for GAP on both the
WebNLG and EventNarrative datasets.

B Additional Experimental Results

We provide additional experimental results on both
WebNLG v2.0 and EventNarrative for the proposed
GAP framework for reference and further analysis.

B.1 Graph Length
Here we examine a comparative study to that of
Table 7 for the EventNarrative dataset. Table 9
reveals an exponential decay in BLEU score, with
lengths 1-3, 4-7, and 7+ having 44.48%, 23.86%,
11.47%, respectively. Compared to WebNLG, the
BLEU scores are significantly lower, suggesting

that EventNarrative is a more challenging dataset.
Table 10 gives a brief synopsis of the dataset sizes
with respect to the number of triples. Compared
to WebNLG which has no KGs greater than length
7, EventKG contains over 1,000 KGs larger than
length 7, making the dataset more diverse.

GAP
#Triples

1-3 4-7 7+
M e,r
e 44.48 23.86 11.47

Table 9: BLEU scores for the EventNarrative test set
for different graph sizes.

Datasets
#Triples

1-3 4-7 7+
WebNLG 1,017 583 0
EventNarrative 16,103 5,152 1,184

Table 10: Distribution for number of triples in both the
WebNLG and EventNarrative datasets.

B.2 Entity Accuracy
To give more insight into KG-to-text generation
with GAP, we provide the results for entity accu-
racy. We define entity accuracy to be the number
of entities from the KG that appear in the generated
text over those that appear in the reference text. Ta-
ble 11 shows that all models perform exceedingly
well in generating the correct entities from their
respective KGs, suggesting that future KG-to-text
research should focus on sentence structure and
descriptors, i.e. quantifiers and determiners.

Datasets
Accuracy

w/o γ(T ) w/ γ(T )
M e,r
e 94.06 94.04

M e,r 93.99 94.48
M e
e 93.64 94.50

M e,r
e,r 93.82 94.28

Table 11: Entity accuracy on the WebNLG test set.

C Additional Examples and Error
Analysis

We now present example outputs generated by GAP
both on the WebNLG and EventNarrative dataset
in Tables 12 and 13 below.

C.1 WebNLG
We showcase five different examples from the
WebNLG test set output by our M e,r + γ(T ) (Pre-
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diction 1) and M e,r
e,r + γ(T ) (Prediction 2) models.

As can be seen in all the examples, GAP is able
to generate fluent and complete sentences. In the
first two examples, the output from both models
are identical. The outputs from the third exam-
ple can be viewed as paraphrases of one another,
where Prediction 1 mentions ‘US national’ while
Prediction 2 instead uses the adjective ‘American’
to convey the same information. Furthermore, in
both predictions we learn that ‘Alan Bean’ was a

‘test pilot’ and ‘selected by NASA’ but in slightly
different formats. In the fourth example, Prediction
2 is missing the name of the rock band, ‘NRBQ’,
while maintaining the rest of the information. Like
the third example, the predictions in the fifth exam-
ple are paraphrases.

C.2 EventNarrative
Because of the length of output in EventNarrative,
we present four different types of examples to elab-
orate on the limitations of KG-to-text models. Here,
we show example outputs from our M e,r

e (Predic-
tion 1) and M e,r + γ(T ) (Prediction 2) models.
In the first example, we observe a contradiction
in both Prediction 1 and 2: the gubernatorial can-
didate was a democratic nominee, while our pre-
dictions conveyed otherwise. The second example
shows two predictions which are identical, both
missing information, specifically ‘ozone park’ and

‘for three - year - olds and up’. Upon further inspec-
tion, these two pieces of information are not within
the KG. Similarly, in the third example the only
piece of information missing from the predictions,
namely ‘cork county board’, is not part of the KG.
This example also contains invalid information,
‘112th’ instead of ‘103rd’. The last example also
contains invalid information regarding the dates in
both predictions. Additionally, Prediction 2 is miss-
ing information about the ‘village of ignacewo’.
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Prediction 1 Amsterdam Airport Schiphol serves the city of Amsterdam and is -3.3528 above sea
level . The runway name is 18L/36R Aalsmeerbaan and it has a length of 2014.0 .

Prediction 2 Amsterdam Airport Schiphol serves the city of Amsterdam and is -3.3528 above sea
level . The runway name is 18L/36R Aalsmeerbaan and it has a length of 2014.0 .

Reference Amsterdam Airport Schiphol is -3.3528 above sea level , has a runway name
18L/36R’Aalsmeerbaan which is 2014.0 in length and serves the city of Amster-
dam .

Prediction 1 Baked Alaska is from Hong Kong and the United States . The main ingredients are
meringue , ice cream , sponge cake or Christmas pudding .

Prediction 2 Baked Alaska is from Hong Kong and the United States . The main ingredients are
meringue , ice cream , sponge cake or Christmas pudding .

Reference Baked Alaska comes from both Hong Kong and the United States . The main ingredi-
ents are Meringue , ice cream , sponge cake or Christmas pudding .

Prediction 1 Alan Bean is a US national who was born in Wheeler , Texas . He served as a test
pilot before being selected by NASA in 1963 . He is now retired .

Prediction 2 Alan Bean is an American test pilot who was born in Wheeler , Texas . He was
selected by NASA in 1963 . He is now retired .

Reference The American test pilot Alan Bean ( born in Wheeler , Texas ) was selected by NASA
in 1963 . He is now retired .

Prediction 1 Al Anderson is a member of rock band NRBQ . Rock music originated from country
music which originated from blues music . A musical fusion of rock music is bhangra
music .

Prediction 2 Al Anderson plays rock music which originated from blues and country music .
Bhangra music is part of the fusion genre , partly coming from Rock music which
uses the banjo .

Reference Al Anderson plays with the rock band NRBQ . Rock has its origins in the blues and
country music , where the banjo is played , and Bhangra is a rock fusion .

Prediction 1 Paulo Sousa is the manager of ACF Fiorentina . He has played for Inter Milan ,
Juventus FC and Maccabi Tel Aviv F.C .

Prediction 2 Paulo Sousa is the manager of ACF Fiorentina . He has played for Inter Milan ,
Maccabi Tel Aviv FC and Juventus FC .

Reference Paulo Sousa once played for Inter Milan and Juventus FC . He now manages ACF
Fiorentina and plays for Maccabi Tel Aviv F.C .

Table 12: Examples of output texts generated from Me,r + γ(T ) (Prediction 1) and Me,r
e,r + γ(T ) (Prediction 2)

on the WebNLG test set.
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Prediction 1 the 1971 mississippi gubernatorial election was held on 02 november 1971 . incumbent
governor bill waller won re - election to a second term , defeating the democratic
nominee , former speaker of the chamber of deputies thomas h . williams , by a wide
margin .

Prediction 2 the 1971 mississippi gubernatorial election took place on 02 november 1971 , in order
to elect the governor of mississipp . incumbent governor bill waller , who was first
elected in 1972 , faced no opposition from democrats and avoided a runoff .

Reference the 1971 mississippi gubernatorial election took place on 02 november 1971 for the
post of governor of mississippi. democrat bill waller was elected into office and served
as governor of mississippi from 1972 to 1976.

Prediction 1 the sport page handicap is an american thoroughbred horse race run annually at
aqueduct racetrack in queens , new york .

Prediction 2 the sport page handicap is an american thoroughbred horse race run annually at
aqueduct racetrack in queens , new york .

Reference the sport page handicap was an american thoroughbred horse race run annually at
aqueduct racetrack in ozone park, queens, new york for three - year - olds and up.

Prediction 1 the 1991 cork senior hurling championship was the 112th staging of the cork premier
hurling competition , and the 86th staging by a team from cork .

Prediction 2 the 1991 cork senior hurling championship was the 112th staging of the cork premier
club hurling competition since its establishment in 1887 .

Reference the 1991 cork senior hurling championship was the 103rd staging of the cork senior
hurling championship since its establishment by the cork county board in 1887.

Prediction 1 the first battle of ignacewo was one of the first battles of the january uprising . it
took place on january 28 , 1863 , near the village of ignakewo , konin county in
southwestern corner of russian - controlled congress poland .

Prediction 2 the first battle of ignacewo was one of the first battles of the january uprising . it took
place on january 6 , 1863 , near the village of konin , in congress poland .

Reference the first battle of ignacewo was one of many clashes of the january uprising. it took
place on may 8, 1863, near the village of ignacewo, konin county, which at that time
belonged to russian empire’s congress poland.

Table 13: Examples of output texts generated from Me,r
e (Prediction 1) and Me,r + γ(T ) (Prediction 2) on the

EventNarrative test set.
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Abstract

Data-to-Text Generation (D2T) problems can
be considered as a stream of time-stamped
events with a text summary being produced
for each. The problem becomes more challeng-
ing when event summaries contain complex
insights derived from multiple records either
within an event, or across several events from
the event stream. It is important to understand
the different types of content present in the sum-
mary to help us better define the system require-
ments so that we can build better systems. In
this paper, we propose a novel typology of con-
tent types, that we use to classify the contents
of event summaries. Using the typology, a pro-
file of a dataset is generated as the distribution
of the aggregated content types which captures
the specific characteristics of the dataset and
gives a measure of the complexity present in
the problem. Through extensive experiments
on different D2T datasets we demonstrate that
neural generative systems specifically struggle
to generate contents of complex types, high-
lighting the need for improved D2T techniques.

1 Introduction

An ecologically valid task requires the automated
systems to resemble the real-world scenario as
closely as possible in its output (de Vries et al.,
2020). Accordingly, a Data-to-Text Generation
(D2T) system needs to convey important insights
extracted from the data in the textual summaries
(Reiter, 2007; Gatt and Krahmer, 2018). Most D2T
problems can be seen as a stream of time-stamped
events with a textual summary of each event pre-
senting the insights. An event is the time-period of
interest for which the textual summary is written.
For example, in sports reporting - a game played
between two teams can be an event; whereas in
weather forecasting - the time period and location
for which the forecast is written can be considered
one full event. The summaries can contain different
types of facts with information sometimes coming

The Bucks (10-10) handled the Heat (9-9)
109-85 on Friday night in Milwaukee. It
was the second victory over Miami for the
Bucks this season after emerging victorious
in Miami 91-84 on Nov. 16. Milwaukee fell
behind early but clawed back into the game
in the second quarter and held a four-point
advantage at half. The Bucks were led by an
unlikely face in Kendall Marshall, who scored
a season-high 20 points (7-8 FG, 4-5 3Pt) in
24 minutes.

Figure 1: Part of a basketball summary showing dif-
ferent types of content. Information in “bold” such as
Bucks’ points in the game (109) can be directly copied
from input data, while the ones in “italics” needs to be
derived from multiple records such as the fact - Kendall
Marshall leading the Bucks team. Finally, the infor-
mation in “bold & italics” such as ‘this was Miami’s
second victory against Bucks’ are derived using records
from multiple events in the stream.

from multiple events in the stream. In most cases,
the facts in an event summary are verbatim of in-
put records. Other times, these facts are derived
from multiple records of either the same or multi-
ple events in the stream. As an example, we show
a part of baseball summary with multiple types of
content in Figure 1.

A distribution of different content types in the
summaries of a dataset can be used to generate its
profile that can capture the specific characteristics
of the dataset and provide a measure of complex-
ity present in the problem. The dataset profile can
help us better define the D2T system requirements,
such as: the type of system to build - is a complex
domain-specific system required or can a general
system be effective; or any information gap (Thom-
son et al., 2020b) that needs to be bridged at the
data level. Generally a problem’s complexity is
identified with the evaluation of systems built for
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the task. There are several methods to evaluate
the D2T systems, mostly by measuring the factual
accuracy of generated texts (Thomson and Reiter,
2020; Wiseman et al., 2017; Garneau and Lamon-
tagne, 2021; Kasner et al., 2021) or lexical simi-
larity of generated texts with reference texts (Pap-
ineni et al., 2002; Lin, 2004; Zhang et al., 2020b).
These, whilst being promising are reactive mea-
sures where a full cycle of system development is
needed to evaluate both the dataset and D2T sys-
tem together. Whereas dataset profiling can be a
proactive measure to gain important insights about
the task before even starting system development.
There are other utilities of dataset profiling method
as well, most notably, it can be used as a measure
of dataset’s complexity in datasheets for dataset
(Gebru et al., 2021).

There are other type of datasets in D2T as well
such as E2E (Dušek et al., 2020) or WebNLG
(Colin et al., 2016) that do not follow the event
based time-series setting. These datasets mostly
focus on improving general ability of generation
models such as transcribing a set of records, possi-
bly in a domain-agonist setting. In this work, we
do not address such datasets and rather focus on
those which follow a time-series structure, where
summaries may contain facts derived from across
several event records, and also may require content
selection on input data. In this paper, we propose
a typology of different content types in D2T sum-
maries based on the source of their information
in the event stream. Our key contributions are as
follows 1:

• we propose a novel typology of content types
in D2T summaries;

• we use the proposed typology to profile
datasets and understand their characteristics;

• we demonstrate the challenge facing genera-
tion systems in producing complex contents.

The rest of the paper is organised as follows:
in Section 2 we formally define the D2T task and
discuss our proposed content type typology. We
then go on to describe our experimental set up
in Section 3, and discuss the results in Section 4.
Some related works are discussed in Section 5,
before concluding the paper in Section 6.

1code, data, and results are at https://github.com/
ashishu007/Content-Type-Profiling

2 Methodology

The idea proposed in this paper is that we can cre-
ate a profile capturing the specific characteristics of
a dataset by looking at the distribution of content
types present in its summaries. The first step to-
wards achieving this is to formally define the main
concepts (Section 2.1). Then, in second step, the
content typology is defined by identifying the dif-
ferent types of facts that can be included in an event
summary (Section 2.2).

2.1 Formalisation of D2T Generation Task
We start with formalising the concepts in a time-
stamped D2T dataset. A data instance in such D2T
dataset (DB) is an event (Ei) with a data structure
(Di) for which a textual summary (Si) is written
summarising the insights and information of the
event. A data structure consists of multiple entities
(O) that are the objects involved in the event, and
each entity is described by multiple features (F)
which are the attributes of those entities; such that:

DB = [Ei−e, · · · , Ei, · · · , Ei+e]
Ei = {Di,Si}

Di = {O1,O2, · · · ,Oo}
Oo = {F1,F2, · · · ,Ff}

When building a text generation system g for a
D2T task, the summary of an event is the function
of current event as well as other events in stream:

Si = g(Di,DB)

A value R will be recorded for each feature F
of an entity O which is considered a record in the
data structure. So, an input data structure flattened
into a sequence of records (mostly for training a
neural generation system) will be:

Di = {(R1,1,R1,2, · · · ,R1,f ), · · ·
(R2,1,R2,2, · · · ,R2,f ), · · ·

(Ro,1,Ro,2, · · · ,Ro,f )}

2.2 Content Type Typology
The textual summary in a D2T dataset may contain
facts derived from different sources. To begin with,
a fact can be derived from either the same event or
from the records of different events. For example,
a basketball game summary generally mentions
different stats scored by players in the game. Such
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information is explicitly present in the input data of
the game and can be directly copied to the output
summary. Most times, summaries also mentions
the average stats recorded by a player in past few
games. To derive such facts, the generation system
needs to consider the records from previous games
as well. So based on the event source, a fact can
be categorised as either intra-event (derived from
the current event’s records) or inter-event (derived
from across-event records).

The intra-event category can be further granu-
lated to identify the difficulty of generating a fact
within the same event. Again, taking an example
from a basketball summary, among many things,
the summary could either mention some specific
stat (points or rebounds) scored by a player in the
game, or mention if the player has scored a double-
double 2. The information of specific stat of players
is explicitly present in the input data, which can
be directly copied to the output summary. While
the information that the player scored a double-
double is not explicitly present in the input data,
which needs to be derived from several records
of the player. So, within intra-event, there can be
two different types of facts: basic, that can be just
copied directly from the input data; and complex,
that needs to be derived from the multiple records
of the same event.

Considering the following notations: each sum-
mary Si is a combination of multiple sentences T ,
which will contain at-least one or more fact L.

Si = {T1, T2, · · · , Tj}
Tj = {L1,L2, · · · ,Lk}

Thus, a Content Type typology of three classes
is proposed based on the types of facts an event
summary can contain:

Intra-Event Basic (B): a fact that is copied from
the input record set of the same event.

B ⇐⇒ Lk = Ri,o,f
Intra-Event Complex (C): a fact that is derived
from multiple records of the same event.

C ⇐⇒ Lk = Ri,o,f ⊗Ri,o±l,f±m ⊗ · · ·

Inter-Event (A): a fact that is either copied or
derived from the records of multiple events.

A ⇐⇒ Lk = Ri,r ⊗Ri−n,o±l,f±m ⊗ · · ·
2https://en.wikipedia.org/wiki/

Double-double

Figure 2: Different content types in a D2T summary.
The Intra-Event Basic content is taken from only one
record, while the Intra-Event Complex content is de-
rived from multiple records of the same event. Finally,
the Inter-Event content is derived from the records of
multiple events.

where, i, j, & k denote an event, an object, and
a feature respectively. l, m,n are positive integers
and ⊗ is an operation that requires inference be-
tween more than one records. Thus, a sentence T
can be assigned into one or more content type if it
contains at-least one fact of that type.

Taking the example from Figure 1, the last sen-
tence in the summary: “The Bucks were led by
an unlikely face in Kendall Marshall, who scored
a season-high 20 points (7-8 FG, 4-5 3Pt) in 24
minutes” has multiple facts. To calculate the fact
that Kendall Marshall led the Bucks, the generation
system should be able to analyse the records of all
players in Bucks team, which is Intra-Event Com-
plex (C) type of fact. Then the fact that he scored
season-high 20 points, will only be calculated by
analysing the records of all games in which Kendall
Marshall played, which is Inter-Event (A) type of
fact. And finally, the shot-breakdown (7-8 FG, 4-5
3Pt) and number of minutes he played are the facts
that can be directly copied from the input, which
are Intra-Event Basic (B) type of facts. Thus this
sentence will be classified into all three content
types (B, C, A). Whereas the second sentence (It
was the second victory ...) will be classified as
inter-event type (A) as it only contains information
from multiple games (also see Figure 2).

It is also possible to extend the Inter-Event cat-
egory into Basic and Complex categories. But, it
is left for the future work mainly because of two
reasons: first, both inter-event basic and inter-event
complex will pose similar challenge to a genera-
tion system, which is, having access to data from
other events during run-time; and second, the oc-
currence of inter-event basic facts will be rare, as
often records from multiple events is used to derive
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a new fact rather than being used as a single fact.

2.3 Building Content Type Classifier

With the Content Type typology defined for a D2T
task, the next step is to use this typology in gen-
erating the dataset profile. However, the datasets
can be large with sometimes more than 20k event
summaries, each containing 15-20 sentences. Thus
manually annotating these summaries to generate
the dataset profile will be difficult. In this work, a
Multi-Label Classifier is used for generating the
dataset profile by classifying the sentences of event
summaries into their content types. More specifi-
cally, a multi-label classifier function f is learned
to map a sentence T to its content types y as:

yj = f(Tj)

where yj ⊆ Y , and Y = {B, C,A}

More detail on building the content type classi-
fier is given in Appendix A. A pictorial representa-
tion of the process of creating a dataset’s profile is
shown in Figure 3.

3 Experimental Setup

The experiments are performed in three phases. In
first phase, the aim is to understand the character-
istics of human authored summaries, for which,
dataset profiles are generated based on human au-
thored summaries using the proposed content type
typology (Section 4.1). The second phase aims to
demonstrate the challenge state-of-the-art genera-
tion systems face in attempting to generate complex
(inter-event and intra-event complex) content (Sec-
tion 4.2). This is evaluated by comparing the errors
made by the generation systems for each content
types. Finally, the proposed methodology is used
to understand the concept-drift issue in a problem
domain which can help in building better systems
capable of handling such domain-specific issues
(Section 4.3).

3.1 Datasets

Four datasets from different domains are used for
profiling: MLB (Puduppully et al., 2019b) and
SportSett (Thomson et al., 2020a) datasets from
sports domain; SumTime (Sripada et al., 2003)
dataset from weather forecasting; and Obituary
(Upadhyay et al., 2020) from Obituary genera-
tion domain. These datasets contain events’ struc-

tured data on the input side parallelly aligned with
human-authored textual summaries of each event.

• MLB dataset contains stats from MLB games
aligned with their summaries written by hu-
man authors. Each sample in the dataset con-
tains the box score and play-by-play record
of the of the game on the input side, which
is aligned with a textual summary of around
20 sentences long. In this dataset, games are
considered as the events; players, teams and
the plays as entities of the event; and differ-
ent stat-types as the features of an entity. The
dataset is split for train/valid/test sets, contain-
ing 22821/1739/1744 samples each.

• SportSett dataset contains box- & line- scores
from NBA (basketball) games aligned with
human-written summaries describing the re-
spective game. The games are from sea-
son 2014 to 2018, out of which 2014, 2015
& 2016 are used as train split, 2017 for
valid split, and 2018 for test split. The
number of samples in train/valid/test sets
is 4745/1228/1229 respectively. Similar to
MLB, each game in the dataset is an event;
the players teams from the game are entities;
and stat-types are the features.

• SumTime dataset contains human written
weather forecasts for a day written for oil and
gas offshore engineers in Aberdeen, UK. The
forecasts are usually written from two types of
NWP data: wave data; and mmo data (please
refer to Sripada et al. (2003) for a detailed
discussion on the data organisation). The rep-
resentation of SumTime on different dimen-
sions is as follows: each sample in the dataset
covers a forecast during 12-hours time-period
(AM forecast or PM forecast). The time pe-
riod for which the forecast is written is consid-
ered an event; the different entities are the ele-
ments described in the forecast such as wind
or wave; and the hours of the day for which
the readings are taken for those elements are
the features. The total number of samples in
train/valid/test sets are 793/99/100.

• Obituary dataset contains a sample of 850
obituaries aligned with their personal informa-
tion. In this dataset, an Obituary (or a death)
is the event; where the deceased person is
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Figure 3: Generating the Content Type Profile of a dataset

the entity; and information related to their per-
sonal life and funeral are the different features.
The dataset contains 800/20/20 obituaries in
train/valid/test set respectively.

3.2 Generation Systems

Phase two of the experiments analyses the ability
of state-of-the-art generation systems in producing
different types of content. For this, several state-
of-the-art generation systems are used to produce
summaries on the held-out test-set of datasets men-
tioned above. For MLB and SportSett, two bench-
mark neural systems from literature are used: first,
the macro-planning model (Plan) from Puduppully
and Lapata (2021); and second, the entity-based
model (Ent) from Puduppully et al. (2019b) are
used on both datasets. In addition, the hierarchi-
cal transformer model (Hir) from Rebuffel et al.
(2020) is used as a third model for SportSett. For
Obituary and SumTime, we are not aware of any
existing neural benchmarks, therefore we develop
our own generation systems by fine-tuing T5-base
(T5) from Raffel et al. (2020), BART-base (BART)
from Lewis et al. (2020), and Pegasus (Peg) from
Zhang et al. (2020a) on each dataset respectively.
Different metric evaluation scores of these devel-
oped systems are shown in Appendix B.

3.3 Generation Systems’ Accuracy Evaluation

The generation systems’ ability of generating com-
plex content is evaluated by measuring the accuracy
error-rate of generation systems within each con-
tent type category. We calculate the error rate
of generation systems by manually annotating 10
randomly selected summaries from each system
following a pre-established gold standard annota-
tion scheme of D2T systems evaluation developed

by Thomson and Reiter (2020). Within each sum-
mary, all the generated claims (whether correct or
incorrect) within each category are identified and
then the error rate is calculated as the ratio of total
incorrect claims to total claims generated. The
error-rate ratio of each content type category is
calculated separately. The length of summaries
vary from 15-20 sentences each summary in MLB
and SportSett to 4-5 sentences in SumTime and
Obituary. The annotations are done by the authors
themselves and are available on the GitHub reposi-
tory. The distribution of sentences across different
content types from all the evaluated system gener-
ated summaries is shown in Table 1.

4 Results and Discussions

In this section, we use the Content Type classi-
fiers build for different datasets using method de-
scribed in Section 2.2 for generating their profiles.
The performance of best classifier for each dataset
with its Macro-F1 score and the number of sam-
ples used for training is shown in Appendix A.
As discussed in the previous section, the dataset
profiles will be used for: first, analysing the human-
authored summaries from different datasets (Sec-
tion 4.1); second, analysing the system generated
summaries from several state-of-the-art neural gen-
erative systems (Section 4.2); and third, character-
ising the concept-drift issue in SportSett dataset
(Section 4.3).

4.1 Analysing Human Authored Summaries

The content type distribution found in human au-
thored summaries from different datasets is shown
in Figure 4. On the x-axis, the different content
type categories are shown, while the y-axis displays
the percentage of sentences belonging to that cate-
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Dataset MLB SportSett SumTime Obituary
System Ent Plan Ent Plan Hir T5 BART Peg T5 BART Peg
Intra-Event Basic (B) 83 94 71 84 82 20 20 20 35 30 33
Intra-Event Complex (C) 119 193 71 53 84 10 10 10 11 10 10
Inter-Event (A) 55 47 44 33 46 0 0 0 0 0 0

Table 1: Number of sentences from different categories manually annotated for error-rate evaluation
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Figure 4: Profile of various datasets based on their hu-
man authored summaries

gory. It is noted here that one sentence can be as-
signed more than one category since a sentence can
contain multiple facts of different categories. We
can see that MLB has the highest amount of inter-
event sentences (48%) with 55% intra-event com-
plex, and 45% intra-event basic sentences. Sport-
Sett has 29% inter-event sentences with 65% intra-
event complex and 63% intra-event basic sentences.
In SumTime, although there are no inter-event sen-
tences, 87% sentences are intra-event complex with
99% of them also being intra-event basic. Obituary
has 91% intra-event basic sentences as well as the
least percentage of intra-event complex sentences
(36%). Obituary also doesn’t have any inter-event
type sentence in the summaries.

These numbers suggest that humans written sum-
maries do not contain just information copied from
input data. Rather, they are full of complex insights
derived from multiple records, and possibly mul-
tiple events in the stream. This demonstrates that
while designing a D2T system, two requirements
are necessary: first, in most D2T tasks, an event
cannot be considered independent, as it’s solution
might depend on the data from multiple events in
the stream; and second, a system developed for
D2T task should be capable of performing complex
analytical operations in order to derive implicit in-

formation from the given records. Ignoring these
requirements will lead to building systems capable
of generating only the easier contents and missing
the interesting complex insights. Similar issues are
observed in other language generation tasks as well
where systems try to generate less complex content
in order to be safe (Feng et al., 2021; Du and Black,
2019).

4.2 Analysing System Generated Summaries

After analysing the dataset profiles generated us-
ing human-authored summaries, we investigate
if current state-of-the-art generation systems can
produce content with similar profile of human-
authored summaries. We show the content type
distribution in the system generated along with hu-
man reference test-set summaries from different
datasets in Figure 5. It can be observed that sys-
tems on SumTime and Obituary are able to gener-
ate similar amount of intra-event basic & complex
sentences as in human written summaries, how-
ever, with inaccuracies (will be discussed later in
this section). These two datasets do not have any
inter-event content in human reference summaries,
and thus no such content in system generations as
well. MLB and SportSett generated texts have dif-
ferent content type distribution compared to their
human reference summaries. If we look at the
the generations of Plan system in both datasets, it
has the lowest inter-event sentences in MLB and
lowest inter-event & intra-event complex sentences
in SportSett. This can be attributed to the macro-
planning design of the system which restricts the
system for producing only information explicitly
available in input data. Another pattern can be ob-
served in SportSett, where the system generated
summaries have relatively more inter-event sen-
tences than human written summaries, which we
explore in the next section.

We also show the error-rate across categories
of different systems from different datasets (along
with mean and standard deviation of error-rates
across systems) in Table 2. The error-rates demon-
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Figure 5: Profile of various datasets based on summaries generated from different generation systems

strate that generation systems struggle to produce
the contents of complex types. Generation systems
across all datasets have low error-rates in intra-
event basic category while higher error-rates in
intra-event complex and highest error-rates in the
inter-event categories.

Mean error-rate in intra-event basic category
ranges from 5.5% in Obituary, around 12.5% in
MLB and SportSett, to over 38% in SumTime.
SumTime has the higest error in this category,
which may be due to the lack of training data and a
highly domain-specific problem that requires iden-
tification of multiple relationships to generate sum-
maries. The systems used for SumTime are not
custom designed for the task as with MLB and
SportSett, and employs general NLG models, thus
having higher error-rate in SumTime than other
datasets. Overall, error-rate across all datasets in
intra-event basic category is lower than intra-event
complex or inter-event (where present) categories.

In the case of intra-event complex, almost all
the datasets have around 40-50% mean error-rate.
This shows systems struggle to learn the domain
specific relationships required to derive complex in-
formation from the supplied data. Only Ent system

in MLB and Plan system in SportSett have notably
lower error-rate. However, these systems are gener-
ating comparatively lesser intra-event complex con-
tent compared to other systems in order to improve
the accuracy (reducing error-rate) by producing less
complex content which is easier to generate. All
the inter-event facts in MLB are incorrect (100%
error-rate) while the error-rate in SportSett for inter-
event category is also very high. This is not surpris-
ing as the input to these systems doesn’t take data
from across the event stream into account during
run-time. SportSett has actually produced some
accurate inter-event facts by producing standard
phrases learnt from the training data (e.g. “team
X has won four out of last five games”) that turns
out to be correct sometimes. These results clearly
demonstrate the difficulty generation systems have
in producing content of complex types. Similar
observations have been made in literature as well
showing the struggle of current state-of-the-art gen-
eration systems in producing content that needs to
be derived from multiple records or sources (Thom-
son and Reiter, 2021; Thomson et al., 2020b). The
main difference between these works and our pro-
posed content type profiling approach is that in
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Systems Intra-Event Basic (B) Intra-Event Complex (C) Inter-Event (A)
MLB

Ent 13.98 38.6 100
Plan 10.84 45.27 100
Total 12.4 ± 1.5 41.9 ± 3.3 100 ± 0

SportSett
Ent 13.64 61.29 86.96
Plan 6.72 27.54 77.66
Hir 16.72 51.79 91.59
Total 12.3 ± 4.1 46.8 ± 14.2 85.4 ± 5.7

SumTime
T5 38.1 50.57 -
BART 39.19 51.85 -
Peg 35.95 48.45 -
Total 37.7 ± 1.3 50.2 ± 1.4 -

Obituary
T5 2.74 41.67 -
BART 4.86 52.27 -
Peg 9.09 48.39 -
Total 5.5 ± 2.6 47.4 ± 4.3 -

Table 2: System-wise error-rates of generation systems developed for various datasets categorised by content types
(lower is better; ↓)

previous works, the insights are drawn by evaluat-
ing the summaries generated from systems whereas
with our method many such insights can be drawn
proactively before going into system development.

4.3 Concept Drift in SportSett

We further apply our proposed content type profil-
ing methodology to capture the concept drift issue
in SportSett dataset. This dataset contains NBA
games from season 2014 to 2018 and follows a sea-
sonal partition to generate the train/test/valid splits.
Seasons 2014, 2015 and 2016 are used for train
set while 2017 and 2018 are used for validation
and test sets respectively (please refer to Thom-
son et al. (2020a) for more details). In Figure 6,
the content type distribution of summaries by year
is shown. The summaries from earlier years con-
tain greater amount of inter-event sentences while
comparatively little in later years. Even with intra-
event sentences, there are lesser intra-event basic
sentences in summaries from earlier years than
later ones, indicating that summaries in the training
set are more complex than in the validation and
test sets. This discrepancy explains the observed
distribution of summaries generated from the dif-
ferent systems as shown in Figure 5b. We can
see the system generations have more inter-event
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Figure 6: SportSett dataset profile by NBA seasons

sentences because the training data has more inter-
event sentences. Concept drift in this D2T problem
is captured by our dataset profiling method. This
concept-drift can also be explained with the change
in authors in different years writing the summaries.
In Figure 7, we also show two authors who wrote
summaries in different years: ‘Auth1’ in 2014-15;
and ‘Auth2’ in 2017-18. It is clear that different
authors from different years have different distribu-
tion which may explain the concept-drift problem
in the dataset.
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5 Related Works

Evaluation of texts produced from generation sys-
tems is widely used to identify the complexity
of a dataset and improve the systems afterwards.
There are two main approaches taken for evalu-
ations: automated metrics, such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), chrF++
(Popović, 2017), borrowed from machine transla-
tion research, or RG (Wiseman et al., 2017), spe-
cific to the D2T task; and human evaluations, where
users are asked to rate the generations on a Likert
scale (Dušek et al., 2020; Chen et al., 2020; Pudup-
pully et al., 2019a). While automated metrics are
easier to use, they often correlate poorly with the
human evaluation (Reiter, 2018). Human evalua-
tion is considered to be the gold standard for NLG
evaluations, however Likert scale based evaluation
of single sentences doesn’t give a lot of information
about the quality of generation. Recent works have
proposed to take a more task-oriented evaluation of
generated texts that give more insights into the kind
of error generation systems make (Thomson and
Reiter, 2020, 2021; Kasner et al., 2021; Garneau
and Lamontagne, 2021).

There have been few notable works that try to
improve the dataset in order to build better genera-
tion systems. SportSett dataset by Thomson et al.
(2020a) presented an improved resource with better
modelling of the dataset to increase the overlap be-
tween input data and output text. Gong et al. (2019)
and Thomson et al. (2020b) acknowledge the event
stream behaviour of D2T tasks by incorporating ad-
ditional information (both within-event as well as
across-event) to improve the quality of generations.
In this work, we do not yet try to solve the prob-
lem of handling complex or across-event content
in summaries. Rather our aim is to profile a dataset

through the typology of content types which can
be used to identify the complexity of the dataset.

6 Conclusion

In this paper, we presented a typology of different
content types in D2T summaries. The proposed
typology is used to profile multiple datasets, which
captures their characteristics and provide a measure
of complexity present in the datasets. Extensive
experimentation is performed to demonstrate the
challenge facing generation systems in producing
complex types of content. We further use the pro-
filing method to identify the concept drift problem
in a dataset. Through this work, we argue that a
dataset’s content type profile can help us define
system requirements for building better generation
systems.

In future, we plan to employ insights gained
from this work in building better D2T generation
systems capable of producing accurate complex
content for event summaries. This will require
a system to be able to: understand the domain-
specific rules, for deriving implicit information
from the input data: and able to operate in huge
search space, to select important content from vast
possibility of across-event information. The dataset
profiling method will help in identifying any infor-
mation gap between input data and output summary
and characterise the domain-specific rules in differ-
ent categories based on their information source.
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A Building a Content Type Classifier for
Each Dataset

To build the content type classifier for a dataset,
some training (ranging from 200 to 600 samples)
and testing (250 samples) samples are created by
manually annotating the sentences from the train
and valid set of that D2T dataset’s summaries. Sev-
eral learning methods (Random Forest, SVM, Lo-
gistic Regression) with several features (TF, TF-
IDF, dense embeddings from Roberta model from
Liu et al. 2019 (RobEmb)) along with a fine-tuned
Roberta model are used for building multiple clas-
sifiers. A query-by-committee (active learning)
approach is used to build the clssifiers’ training
dataset. The classifier with best Macro-F1 score on
held-out test-set of a given dataset is used as the
Content Type classifier of that dataset. The perfor-
mance of Content Type classifiers used for each
dataset is shown in Table 3. The table shows the
Macro-F1 score of each classifier and the number
of samples used for training the classifier. All the
trained classifiers with their training and testing
samples is shared on the GitHub repo.

B Evaluation Scores of Neural
Generation Systems Developed for
Different Datasets

Table 4 shows the automated metric scores of dif-
ferent neural systems build for each dataset. The
following metrics are used: BLEU (Papineni et al.,
2002); ROUGE-L (Lin, 2004); METEOR (Baner-
jee and Lavie, 2005); chrF++ (Popović, 2017); and
BERT-Score (Zhang et al., 2020b). For all metrics,
higher score is better (↑).

We also show the results from Extractive Evalu-
ation (EE) metrics (Wiseman et al., 2017) on sys-
tems developed for MLB and SportSett datasets
in Table 5. These metrics are: Relation Genera-
tion (RG); Content Selection (CS); and Content
Ordering (CO). The EE scores for systems build on
MLB dataset are taken from Puduppully and Lap-
ata (2021) while the EE scores for systems build
on SportSett dataset are calculated using Informa-
tion Extraction system described by Thomson et al.
(2020b).
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Dataset MLB SportSett SumTime Obituary
Classifier RobFT RobFT SVM w/ RobEmb SVM w/ RobEmb
# Train Samples 600 600 200 200
Macro F1 85.64 91.0 98.66 98.46

Table 3: Content Type classifiers performance on various datasets

Systems BLEU ROUGE-L METEOR chrF++ BERTScore
MLB

Ent 11.51 22.08 27 32 85.03
Plan 13.99 21.71 32 39 84.6

SportSett
Ent 18.19 26.19 33 42 86.95
Plan 17.6 26.29 32 40 86.45
Hir 12.18 22.65 33 41 85.74

SumTime
T5 24.67 52.92 38 47 89.66
BART 18.77 47.61 33 46 88.82
Peg 23.54 51.06 39 48 89.68

Obituary
T5 47.3 65.38 64 67 94.04
BART 50.88 65.99 66 69 94.29
Peg 45.03 66.4 61 65 93.73

Table 4: Automated metric scores of different systems developed for various datasets (↑, higher is better)

Systems RG CS-Precision CS-Recall CO
MLB

Ent 81.1 40.9 49.5 20.7
Plan 94.4 40.8 54.9 21.8

SportSett
Ent 72.77 45.35 38.12 19.13
Plan 86.48 53.95 33.09 14.84
Hir 73.77 45.42 30.15 10.59

Table 5: Extractive Evaluation results of systems developed for MLB and SportSett dataset (↑, higher is better)
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Abstract

Traditional training paradigms for extractive
and abstractive summarization systems always
only use token-level or sentence-level training
objectives. However, the output summary is
always evaluated from summary-level which
leads to the inconsistency in training and evalu-
ation. In this paper, we propose a Contrastive
Learning based re-ranking framework for one-
stage summarization called COLO. By mod-
eling a contrastive objective, we show that the
summarization model is able to directly gener-
ate summaries according to the summary-level
score without additional modules and parame-
ters. Extensive experiments demonstrate that
COLO boosts the extractive and abstractive re-
sults of one-stage systems on CNN/DailyMail
benchmark to 44.58 and 46.33 ROUGE-1 score
while preserving the parameter efficiency and
inference efficiency. Compared with state-of-
the-art multi-stage systems, we save more than
100 GPU training hours and obtaining 3⇥ ⇠
8⇥ speed-up ratio during inference while main-
taining comparable results.

1 Introduction

In general, there are two main paradigms to do
text summarization: abstractive (Rush et al., 2015;
Nallapati et al., 2016; Gehrmann et al., 2018) and
extractive (Cheng and Lapata, 2016; Narayan et al.,
2018b; Zhong et al., 2019, 2022) methods.

For extractive summarization, previous stud-
ies (Nallapati et al., 2017; Liu and Lapata, 2019)
formulate it as a sentence-level sequence labeling
task. However, there is an inherent gap between
the sentence-level scoring and the summary-level
evaluation (Zhong et al., 2020).This means that
some high-scoring sentences may share the same
meaning, making them not a qualified summary
when combined. Similarly, the previous training
paradigm for abstractive summarization models
can be viewed as a token-level scoring process

⇤Corresponding author.

upon the decoder of sequence-to-sequence model.
There also exists the issue of exposure bias (Ben-
gio et al., 2015; Paulus et al., 2017) in the teacher-
forcing framework leading to the error accumula-
tion during auto-regressive decoding. Therefore,
previous frameworks for both extractive and ab-
stractive methods did not perform summary-level
optimization.

To tackle this problem, state-of-the-art summa-
rization systems (Zhong et al., 2020; Liu and Liu,
2021) are enhanced with an additional module
(called re-ranker) and follow a two-stage paradigm.
They first train a summarizer to model the con-
ditional distribution p(Y |X) where X is the doc-
ument and Y is the output summary. Then the
re-ranker is trained to re-score candidates sam-
pled from the pre-trained summarizer in the second
stage. However, this paradigm trades efficiency for
accuracy, the auxiliary re-ranking greatly harms
the inference efficiency especially for the highly
efficient extractive systems. Experimentally, the
decoding speed of two-stage re-ranking models is
only ~7.0 samples/s while removing the re-ranker
module will greatly boost the decoding speed to
~42.0 samples/s1. This makes two-stage summa-
rization systems may be unacceptable in real-world
scenarios that require timely feedback.

The limitations of the existing work motivate
us to build a one-stage summarization system that
can 1) replace previous naive sentence/token-level
score with a summary-level score and 2) do not sac-
rifice the parameter and inference efficiency. In this
paper, we propose a Contrastive Learning based
re-ranking framework for one-stage summarization
called COLO for both extractive and abstractive ap-
proach. Contrastive learning has been explored in
summarization (Sun and Li, 2021; An et al., 2021b)
and generation (Lee et al., 2020; An et al., 2022).

1We run these two models on the test set of
CNN/DailyMail using single GeForce GTX TITAN XP GPU
for 3 times and report the average speed.
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COLO uses a contrastive re-ranking training objec-
tive. We first present a novel sampling method that
can be equipped to any one-stage summarization
systems so that it can re-score candidates without
the second stage. The existing two-stage models
use offline sampling to preprocess samples for
training of re-ranker where candidate samples are
drawn from a fixed model distribution. This is a
huge obstacle to turning summarize-then-rerank
two-stage framework into an efficient end-to-end
model. To solve this issue, we propose an online
sampling approach. Concretely, instead of sam-
pling from a fixed distribution, we draw positive
and negative samples from a dynamic distribution
of model outputs during training, which ultimately
eliminates the requirement for additional modules
in the overall framework. We then introduce a
summary-level optimization strategy in addition
to the traditional sentence-level (for extractive sys-
tems) or token-level loss (for abstractive systems).
As a result, as a one-stage model, COLO achieves
comparable performance to two-stage systems, and
greatly improves decoding speed to meet the needs
of real-world applications.

We summarize our contributions as follows:

• We are the first to propose a one-stage re-
ranking framework COLO for both extractive
and abstractive summarization systems.

• Results on the popular CNN/DailyMail bench-
mark show that both the extractive and ab-
stractive versions of COLO outperform pre-
vious state-of-the-art one-stage systems by
a large margin. Compared to the two-stage
systems, COLO achieves comparable perfor-
mance without additional pre-trained model.
More importantly, COLO do not sacrifice in-
ference speed and thus can be more widely
used in real-world scenarios.

2 Background

2.1 Preliminary about Two-Stage Systems
Two-stage paradigms (Zhong et al., 2020; Liu
and Liu, 2021) improve summarization quality
by re-ranking and selecting a candidate from a
given set of candidates. MatchSum (Zhong et al.,
2020) forms a contrastive learning based re-ranking
framework where they first generate a set of can-
didates summaries by a extractive summarization
model and then feed them to a re-ranker. The re-
ranker is trained to optimize a summary-level score

and it can evaluate the candidate summaries holis-
tically. SimCLS (Liu and Liu, 2021) is the ab-
stractive version which replaces the extractive sum-
marizer in Zhong et al. (2020) with a abstractive
summarizer.

The training objective for summarization models
is to estimate a conditional probability distribution
p(Y |X), where X is the document and Y is the
output summary. Given a summarization model
M that has already tuned under the conventional
framework with loss function Lsum where Lsum

could be binary cross entropy loss (BCELoss) or
negative log likelihood loss (NLLLoss). The two-
stage systems should first use a sampling algo-
rithm e.g. beam search to sample a candidate set
C = {C1, C2, . . . , Cm} of size m from the fixed
model distribution Ci ⇠ pM(Y |X). Candidates
in C are sort by their ROUGE score in descending
order. Then the they further train a separate re-
ranker,e.g., BERT , with a contrastive-style ranking
loss Lrank to select the the best candidate from C
as the final output. The ranking loss used in the
best re-ranking system for summarization is the
triplet margin loss (Kingma and Ba, 2014). For
a candidate pair (Ci, Cj) where i < j, if Ci has
higher ROUGE score and it will be treated as the
positive sample:

Li,j = max{0, cos(zX , zCi)�cos(zX , zCj )+⇢},
(1)

where zX , zCi , zCj are the vector feature represen-
tation of X, Ci, Cj output by the re-ranker, and ⇢ is
the margin value. The final ranking loss is obtained
by summing up all pairs: Lrank =

P
j

P
i<j Li,j .

The ranking loss ensures that candidates with
higher ROUGE score is closer to the document
in the embedding space.

2.2 A Comparison between Two-Stage
Systems and COLO

Figure 1 illustrates the difference between the archi-
tecture of two-stage systems and COLO. Although
MatchSum and SimCLS significantly outperform
all one-stage models, they mainly suffer from three
drawbacks which strongly emphasize the necessity
of designing an one-stage model:

(1) Training/inference inefficiency. Building the
training set of the re-ranker and the second training
stage consumes large amounts of GPU and CPU
time (see details in Section 5.3). Moreover, the
need of re-feeding generation results to another
module also requires unaffordable computational
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resources.
(2) Coupling between the summarizer and re-

ranker. Each improvement to one of these modules
requires simultaneous updating or retraining of an-
other module, which limits the use of such systems
in the real world. For example, to try a larger candi-
date set or a different decoding method, we have to
prepare the training set again for the second stage.
In addition, how to tune the hyperparameters to
be optimal in both modules at the same time is
another tricky issue. Compared with two-stage sys-
tems, our one-stage system has a simple and clean
implementation.

(3) Two-stage systems also face difficulties in
long document summarization, because the input
length of the re-ranker will drastically increase as
the length of candidates increasing (see detailed
analysis in Appendix A). Correspondingly, COLO

is not easily affected by length variance.

3 Method

3.1 A Naive One-Stage Re-ranking Model

The goal of one-stage re-ranking systems is to en-
able both training and inference to score candidate
summaries holistically without requiring a second
stage of computation by a separate model. Ide-
ally, an one-stage summarization model should
both function as a summarizer and a re-ranker. A
straightforward solution is multi-task learning. The
naive training pipeline can be formulated as fol-
lows: (i) tuning M with Lsum. (ii) Getting positive
and negative samples from pM(Y |X) via offline
sampling for each datapoint X in the training set.
(iii) Building the ranking loss with these candidates
and further tuning M with Lrank + Lsum. How-
ever, in practice, such training method is always
suboptimal compared to the state-of-the-art two-
stage models. We denote the model after multi-task
learning as M0. There is a serious generalization
error in the naive methods: via multi-task learn-
ing, M0 is only able to rank candidates drawn from
the original model distribution pM(Y |X) but not
candidates from the new distribution pM0(Y |X).
This error makes the naive approach unable to di-
rectly output a good summary in sequence-level
generated by itself.

3.2 Our approach: COLO

The first step of CoLo is also to train the summa-
rization model with Lsum like the naive approach.

In CoLo, we discard using positive-negative sam-
ples that from a fixed model distribution, instead,
we sample these candidates from a constantly shift-
ing model distribution during multi-task learning.
By doing so, we can mitigate the above mentioned
generalization error as much as possible because
candidates are dynamically changing with the pa-
rameters of the model distribution pM(Y |X) up-
dated by gradient descent. To implement this pro-
cess, at each training step, we sample the newest
candidates along with their feature presentations
from the summarization model and calculate the
ranking loss. We will give a detailed description
about how we performing the online sampling pro-
cess on mainstream extractive and abstractive sum-
marization models in the following parts.

Online Sampling for Extractive Model The
task of extractive summarization is to assign a la-
bel yi 2 {0, 1} for each sentence senti from the
source document X = (sent1, sent2, . . . , sentn)
consisting of n sentences. Figure 2 gives an ex-
ample of our one-stage extractive summarization
model. Extractive candidates can be viewed as a
subset of sentences from the document. In this
figure, we sample sent1, sent2 to form the first
candidate C1 = {sent1, sent2}, and C2 is con-
sisting of {sent2, sent3}. After constructing these
candidates, the next step is to represent them in
the embedding space. In our one-stage model, we
employ a heuristic way to obtain the feature pre-
sentations of candidates: pooling results of the sen-
tence embedding from the extractive model. Con-
cretely, we denote the sentence embedding for the
i-th sentence as hi. The hidden representation of a
candidate is created by pooling the sentence repre-
sentations belong to it. For example zC1 is the av-
erage pooling result of h1 and h2. Suppose C2 has
higher ROUGE score than C1, then C2 is treated
as a positive sample and C1 is treated as a negative
sample for this pair. Finally, the whole system is
trained by the sum of Lrank and Lsum.

Sampling informative candidates is essential in
re-ranking systems. The first step of the sampling
method is to determine N which represents the
number of candidate sentences. N is set depend-
ing on the number of summary sentences of down-
stream datasets. Take CNN/DailyMail as an exam-
ple, we set N to {2, 3} because most gold sum-
maries consist of 2⇠3 sentences. At each training
step, we iterate over N by combination and form m
different candidates C = {C1, C2, . . . , Cm}. m is
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comparision

Reranker

Summarizer
Training object: BCELoss
(ext) or NLLLoss (abs) 

Building pos-neg pairs:
Offline sampling

Training object:
Contrastive Loss

Time-consuming 
preprocess for the 
next training stage 

Training object:  
BCELoss or NLLLoss + Contrastive 
Loss

Building pos-neg pairs:
Online sampling

Summarizer

(a) Two-stage models: MatchSum and SimCLS

comparision

Reranker

Summarizer
Training object: BCELoss
(ext) or NLLLoss (abs) 

Building pos-neg pairs:
Offline sampling

Training object:
Contrastive Loss

Time-consuming 
preprocess for the 
next training stage 

Training object:  
BCELoss or NLLLoss + Contrastive 
Loss

Building pos-neg pairs:
Online sampling

Summarizer

(b) CoLo (this work)

Figure 1: A comparison between two-stage models and COLO. The two-stage models including two training stages
and a time-consuming preprocess while COLO is trained in an end-to-end fashion. (GPU and CPU hours cost in
each stage are shown in Table 6). Two-stage models use offline sampling to build positive-negative pairs while
COLO builds positive-negative pairs with online sampling where we directly get theses pairs from a changing model
distribution.

equal to
P

i C
numi
n where numi is the i-th element

in N and n is number of sentences of the document.
For CNN/DailyMail whose N is set to {2, 3}, we
can sample C2

n + C3
n different candidates.

However, in practice, we always face the com-
bination explosion problem when the number of
sentences n grows larger. The two-stage sys-
tem (Zhong et al., 2020) pre-trained an extractive
model to clip the origin number of sentences to an
acceptable size. Notice that our extractive summa-
rizer is also supervised with the BCELoss, so that
we can clip the sampling space to n0 (a hyperparam-
eter) with the output distribution over the sentences
at each training step. Then the total size of the
final candidate set decreases to m0 =

P
i C

numi
n0 .

For CNN/DailyMail, n0 is set to 5, and we can get
C2

5 + C3
5 = 20 different extractive candidates. De-

tails about the setting of N and n0 can be found in
Table 1 in Appendix.

Notably, the offline sampling needs to feed each
candidate into the pre-trained encoder. In real-life
setting, when summarizing some long documents,
the number of sentences in the input document and
output summary will increase significantly. It will
bring a polynomial level increase to the compu-
tation and GPU overhead of the two-stage model.
But our one-stage system with online sampling is
robust to the length variance.

Inference Stage of Extractive Model Since we
have modeled a summary-level score during train-
ing, it is easy to directly generate summaries ac-
cording to the summary-level semantic score. Con-
cretely, given a candidate set C built by the combi-
nation strategy, we calculate the cosine similarity
between each candidate presentation zCi and the

Input
sequence

Encoder
output

[doc] …

Encoder

!!

[sep]sent1

pooling

[sep]sent2 [sep]sent3 sent4

!" !# !$

"% "&! "&"

#$%&'()&*+, -,('%*%.
!"#$%

&'(

Figure 2: Architecture of our extractive model. Input
sequence: The ‘[doc]’ token is used to get vector rep-
resentation zX of the document X , ‘[sep]’ is used as
separator for sentences. We omit the classifier and the
BCELoss. hi is the sentence embedding the i-th sen-
tence in X . zCi means the feature representation of the
i-th candidate.

document representation zX :

Ĉ = max
Ci2C

cos(zX , zCi). (2)

The final output is the candidate with highest cosine
similarity score.

Online Sampling for Abstractive Model Our
method can also be easily adapted in abstractive
summarization. Selecting a generated summary
maximum a posteriori (MAP) usually result in poor
performance (Stahlberg and Byrne, 2019), thus
most state-of-the-art generation model usually use
the beam search algorithm at inference stage. The
online sampling for the abstractive version is much
simpler than the extractive version. We use beam
search as sampling algorithm and get the feature
representations from the encoder/decoder output.
We denote the encoder output of source document
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CNN/DM Reddit XSum SSN PubMed

n0 5 5 5 8 8

N 2,3 1,2 1,2 6 6,7

|C| 20 15 15 28 36

Table 1: candidate size |C| of each datasets (extractive).
|n0| is the clipped candidate size, N is a set containing
all number of possible sentence.

X as Henc and the decoder hidden states of the tar-
get summary as Hdec. We get the document repre-
sentation from the encoder output of the 0-th token
zX = H0

enc. The feature representation of the i-th
candidate Ci with length = |Ci| is derived from the
last step of the decoder output zCi = H

|Ci|�1
dec . Hid-

den states of other steps can not represent the entire
sequence because of the sequence mask in trans-
former decoder. finally we formulate the ranking
loss following Eq. 1.

Inference Stage of Abstractive Model The in-
ference stage of our abstractive version is similar
to the extractive version. We save the feature rep-
resentation of the document and each beam during
beam search. The final output is determind by the
cosine distance between zX and zCi .

4 Experimental Setup

4.1 Datasets

We conduct experiments on five mainstream
datasets to evaluate the effectiveness of our
approach.
CNN/DailyMail (Hermann et al., 2015) is a
classic benchmark which contains articles from the
CNN/Daily Mail newspapers. We use the cased
version from datasets2

XSum (Narayan et al., 2018a) is a one-sentence
summary dataset from BBC News. Gold sum-
maries are professionally written by the authors of
documents.
Reddit (Kim et al., 2019) is collected from social
media platform and we use the TIFU-long version.
PubMed (Cohan et al., 2018) is a long document
summarization dataset from scientific domain
whose avg summary length is about 4 times longer
than CNN/DM.
SSN (An et al., 2021a) consists of papers mainly
from math, physics and computer science with the

2https://github.com/huggingface/
datasets

abstract section as gold reference.

4.2 Implementation Details

For the simplity of experimental settings, both ex-
tractive model and abstractive mode are based on
BART. We use the encoder of BART (170M) as
the backbone and a 3-layer MLP as the classifier
to implement the extractor. We add two special
token ‘<cls>’ to generate the sentence representa-
tion and ‘<sep>’ as sentence separator. ‘<doc>’
token is used to generate the document feature rep-
resentation. candidate size for each dataset can be
found in 1 We use adam optimizer (Kingma and
Ba, 2014) learning rate schedule follows the setting
in transformer (Vaswani et al., 2017). We train our
model for 15000 steps with BCELoss and 32000
steps with BCELoss and RankingLoss where each
step has a batch size of 36. The margin parameter
� is set to 0.01. The size of generated candidates
|C| is set to 20 for CNN/DM. We report the re-
sults. Other settings follow the default setting in
Liu and Lapata (2019). Our model is trained on sin-
gle GeForce RTX 3090 GPU for 8 hours. Both our
abstractive model and extractive model are trained
on 24G GeForce RTX 3090 GPUs and the infer-
ence process is on 12G GeForce GTX TITAN XP
GPUs.

For abstractive model, we choose BART ini-
tialized with facebook/bart-large-cnn from trans-
formers3 as the basic summarizer. We further fin-
tune this model by NLLLoss and RankingLoss for
15000 steps where each step with a batch size of
8. Other setting is the same with our extractive
version. To encourage diversity, we use the diverse
beam search (Vijayakumar et al., 2016) to generate
the candidates with beam size set to 16 and diver-
sity penalty set to 1.0. Our model is trained on 8
GeForce RTX 3090 GPUs for about 18 hours.

4.3 Evaluation Metrics

We examine our approach with 4 metrics that mea-
sure the distance between generated summaries
against the gold reference. ROUGE (Lin, 2004)
where R-1 and R-2 measure informativeness based
on n-gram overlapping and R-L represents flu-
ency. JS-2 Divergence (Louis and Nenkova,
2013) measures Jensen-Shannon divergence be-
tween the bigram distributions of two input texts.

3https://github.com/huggingface/
transformers
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BERTScore (Zhang et al., 2019) measures soft
overlap between BERT embeddings of two texts
instead of using lexical matching methods. Mover-
Score (Zhao et al., 2019) is also based on the neural
model but applies a earth mover distance measure
to contextualized BERT embeddings.

5 Results

We denote the model without contrastive learn-
ing as the baseline system. Since the backbone
of our extractive model is BART encoder so that
we call the baseline model BARTEXT. The baseline
model for abstractive system is BART. Our extrac-
tive model is called COLOExt and its abstractive
version is denoted as COLOAbs.

5.1 Extractive Results

We compare our models with baseline models
which has similar amount of parameters and de-
coding speed of our models in this section. Our
extractive results on CNN/DM are shown in Table 2
We compare our model with previous strong extrac-
tive baseline built on pre-trained model (Zhong
et al., 2019; Bae et al., 2019; Liu and Lapata, 2019)
and strong multi-stage systems (Zhong et al., 2020).
From the third section of Table 2, we can see that
our model COLOExt beats the baseline model by
1.49 ROUGE-1 score and achieve the state-of-the-
art among all end-to-end systems when input length
set to 512 and the results can be further improved
while extending the input length to 1024. Even
compared with the BERTSUM-large (340M) (Liu
and Lapata, 2019) which is built on large PTM, We
still have an improvement of 0.42 with only the half
number of parameters of theirs. Though RL-based
methods hold the motivation of optimizing towards
the evaluation metric, but it does not gain much
improvement on performance in practice.

To verify whether our model is effective on
datasets of various lengths, we also evaluate our
model on datasets with short summaries (Reddit
and XSum) and long document dataset PubMed
and results are shown in Table 3. On reddit and
XSum, we achieve the advantage of more than 1.0
point ROUGE-1 than baseline systems and close
performance with the upper bound ORACLE. We
also gain improvements when tested on the long
document summarzation dataset PubMed. Detailed
results on long document dataset can be found in
Appendix A.

Model R-1 R-2 R-L

LEAD 40.43 17.62 36.67
ORACLE 52.59 31.23 48.87

Transformer(Vaswani et al., 2017) 40.90 18.02 37.17
BERT-EXT(Bae et al., 2019) 42.29 19.38 38.63
BERT-EXT + RL 42.76 19.87 39.11
BertSum (Liu and Lapata, 2019) 42.57 19.96 39.04
BertSum-large 43.85 20.34 39.90

BARTEXT 42.78 20.24 39.24
BARTEXT (len = 1024) 43.65 20.88 40.19

Naive one-stage 43.53 20.54 39.62
COLOExt 44.10 20.97 40.19
COLOExt + BERTScore 44.27 21.01 40.34
COLOExt (len = 1024) 44.58 21.25 40.65

Table 2: Extractive results on CNN/DM test set. len
means the input length of the document, results without
the marker using 512 tokens as input. +RL means the
addition of reinforcement learning. +BERTScore means
we use BERTScore to determine positive-negative sam-
ples. COLO clearly outperform all previous one-stage
summarization systems. The best results are in bold and
the second best ones are underlined.

5.2 Abstractive results

Early work also successfully applies reinforcement
learning on abstractive summarization (Paulus
et al., 2017; Li et al., 2019). But we do not
find related works that successfully combine rein-
forcement learning with strong pre-trained models.
Therefore, most of our baselines are strong per-
trained model finetuned with NLLLoss. Our results
is shown in Table 4, due to the huge cost of using
large pre-trained model with length set to 1024,
we also report results with 512 input tokens and it
is able to significantly outperform other baselines
which has longer input length (1024). COLOAbs

has an improvement of 2.17 R-1 socre on the very
strong BART-large baseline without adding addi-
tional parameters or modules. Additionally, our
method is able to outperform all one-stage baseline
systems by a large margin. We also conduct exper-
iments on long document summarzation datasets
(see in Table 11 in Appendix).

5.3 Comparison with Multi-stage Systems

Apart from the one-stage systems, we also compare
our model with these powerful multi-stage systems:
CTRLSum, multi-stage re-ranking models. CTRL-
Sum needs other systems to previously produce a
control signal.
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Model
Reddit XSum PubMed

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEAD 12.38 2.17 10.12 14.40 1.46 10.59 37.58 12.22. 33.44
ORACLE 29.10 11.08 23.10 25.62 7.62 18.72 45.12 20.33 40.19

BERTSUM 23.86 5.85 19.11 22.86 4.48 17.16 41.05 14.88 36.57
BARTEXT 23.97 5.68 19.24 22.96 4.70 17.29 41.40 16.18 37.89
COLOExt 25.06 5.90 19.52 24.51 5.04 18.21 41.93 16.51 38.28

Table 3: Results on test sets of reddit, XSum and PubMed. Our model achieve significant improvement on the
baseline model BARTEXT. LEAD means we select the first k sentences from the source document as the output
summary and ORACLE is the upper bound of extractive methods.

Model R-1 R-2 R-L

BertSumAbs(Liu and Lapata, 2019) 41.72 19.39 38.76
Pegasus(Zhang et al., 2020) 44.17 21.47 41.11
BART(Lewis et al., 2020) 44.16 21.28 40.90
BART+R3F(Aghajanyan et al., 2020) 44.38 21.53 41.17
BART (len = 512) 43.82 20.96 40.63

ConSum (Sun and Li, 2021) 44.53 21.54 41.57
SeqCo (Xu et al., 2021) 45.02 21.80 41.75

Naive one-stage (ROUGE, len = 512) 43.90 20.88 40.69
COLOAbs (ROUGE, len = 512) 45.45 21.53 42.35
COLOAbs(ROUGE) 46.33 22.15 43.08

Table 4: Abstractive results on CNN/DM test set. len
means the maximum input length of the encoder, results
without the marker using 1024 tokens as the input. Con-
Sum (Sun and Li, 2021) and SeqCo (Xu et al., 2021) in
the second block are also previous contrastive learning
based methods without re-ranking.

performance The addition of another pre-trained
model implicitly introduces more parameters and
knowledge, thus it is usually unfair to directly com-
pare one-stage systems with the two-stage systems.
But we show that COLO is able to achieve com-
parable performance with the multi-stage systems.
As is shown in the first part of Table 5, compared
with the multi-stage models that ensembles another
pre-trained encoder as a re-ranker, COLOExt still
performs better than their BERT+BERTR version
without the need to re-feed the generated candi-
dates to another model meanwhile we obtain a
~⇥5 speed up over the multi-stage systems. We
also try concatenating a re-ranker RoBERTa for
our model, results shows that COLOExt can be
further improved by combing another pre-trained
re-ranker reaching new extractive SOTA on the test
set of CNN/DM. For abstractive models, our end-
to-end model still legs behind multi-stage systems
but we do not need training another model and keep

Model R-1 R-2 R-L

extractive systems

COLOExt 44.27 21.01 40.34
BERT+BERTR (Zhong et al., 2020) 44.22 20.62 40.38
BERT+RoBERTaR (Zhong et al., 2020) 44.41 20.86 40.55
COLOExt +RoBERTaR 44.70 21.03 40.74

abstractive systems

COLOAbs 46.33 22.15 43.08
CTRLSum(He et al., 2020) 45.65 22.35 42.50
BART+RoBERTaR (Liu and Liu, 2021) 46.67 22.15 43.54

Table 5: Comparision with the multi-stage systems.
RoBERTaR means a RoBERTa re-ranker is is added
to the summarization model.

similar inference speed with baseline models.

Inference Efficiency Despite the fact that multi-
stage models outperform all end-to-end systems,
they frequently suffer from inefficiency. In this part
we mainly focus on analysing the efficiency of 3
kinds of systems: 1) baseline, which is trained only
with BCELoss or NLLLoss, 2) COLO, our end-to-
end constrastive learning framework, 3) Rerank,
which means the multi-stage re-ranking systems.
it has more 110M parameters than baseline model
and COLO. The efficiency experiments for train-
ing and inference are respectively conducted on
24G RTX 3090 GPUs and 12G TITAN XP GPUs.
For extractve summarization, figures 3(a),3(b) give
a detailed comparison of the inference speed be-
tween the three models. Y-axis represents the num-
ber of samples processed per second. To give a fair
comparison, we test the inference efficiency in two
settings: i) all models are tested with batch size
fixed to 1. ii) all models are tested with the max-
imum batch size allowed by the GPU. While the
candidate size varies from 4⇠32, both our model
have a 3⇥ ⇠ 8⇥ speed-up ratio over the multi-
stage re-ranking model. When the candidate size
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Systems Stage1 Preprocess Stage2 Total hours

Ext+RoBERTaR 4 5 (+20) 128 137 (+20)
COLOExt 7 – – 7 (# 130)

Abs+RoBERTaR 80 132 (+18) 128 340 (+18)
COLOAbs 224 – – 224 (# 116)

Table 6: GPU hours spent on training for each
process on the training set of CNN/DM(reported
results are rounded down after the decimal point.
Ext+RoBERTaR/Abs+RoBERTaR denotes the multi-
stage re-ranking systems with an extracitve/abstrastive
summarizer. (+18)/(+20) means 18/20 CPU hours are
spent on calculate ROUGE score for each candidate
with 32 threads.

is set to 20, the baseline model is able to process
~31.2/41.9 (batch = 1/MAX) samples per second,
the decoding speed of COLOExt is ~30.4/38.9 sam-
ples/s (batch=1/MAX) and the decoding speed of
the multi-stage re-ranking model is only ~4.9/7.0
samples/s(batch=1/MAX). Our model almost does
no harm on inference speed while the candidate
size |C| is less than 16. However, when the can-
didate size grows larger there is more time spent
on generating the representations of the candidates.
Figure 4 show the comparison of inference time
of the abstractive models. While the bottleneck of
abstractive models is the auto-regressive generation
process. Our abstractive model generally save ~0.5
GPU hours compared to the re-ranking model.
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Figure 3: Inference speed on CNN/DM (extractive). we
use the candidate size |C| as the X-axis. The Y-axis
represents the number of samples processed per second.
batch=MAX means we use the maximum batch size
allowed by GPU memory.

Training Efficiency Table 6 gives an overview
of the training time of our system and the multi-
stage models on the training set of CNN/DM. The
general pipeline for the multi-stage models is: i)
training a generator (Stage1), ii) Preprocess, ii)
training a re-ranker (Stage2). The preprocess in-
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Figure 4: Test inference time with beam size for abstrac-
tive model. We use the maximum batch size allowed by
GPU memory.

Metric Used R-1 R-2 R-L JS-2 BS MS

Baseline 42.78 20.24 39.23 54.24 43.52 58.27
ROUGE-1,2 44.10 20.97 40.19 54.07 44.26 58.63
ROUGE-L 44.09 20.93 40.34 54.06 44.32 58.60
JS-2 43.85 21.13 39.98 53.92 44.19 58.60
BERTScore 44.27 21.01 40.34 54.08 44.85 58.71
MoverScore 44.21 20.81 40.25 54.33 44.47 58.78

Table 7: Extractive results of using different evaluation
metrics as the discriminator on CNN/DM test set.

cludes generating the training/dev/test set for train-
ing re-ranker and sorting candidates by ROUGE.
For extractive system we save 130 GPU hours com-
pared to the multi-stage systems whose bottleneck
is training the re-ranking model. For abstractive
model, apart from the 128 GPU hours spent on
training the ranker, using beam search to generate
the training set for re-ranker model is also very time
consuming, generally we obtain 116 GPU hours
and 18 CPU hours saved.

5.4 Ablation for Different Discriminators

In addition to ROUGE, we also select other metrics
as the discriminator (shown in Table 7). ROUGE
and JS-2 is based on lexical matching while
BERTScore and MoverScore are based on the con-
textualized embedding from BERT. Our model gen-
erally obtains the best results on the metric used
in training. Because these metrics are not actually
separated, using one of these metrics as the discrim-
inator can also gain significant improvements on
other metrics. Overall, the neural evaluation metric
BERTScore and MoverScore bring more improve-
ments compared with metrics that based on the
lexical matching. But incorporating neural model
based metrics in training will obviously increase
the training time.
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5.5 Visualization Experiment

We conduct a visualization experiment on our ex-
tractive model to get a close look on the distri-
bution of candidates in semantic space. We ran-
domly sample 100 documents with more than 10
sentences from the test set of CNN/DM. We first
select the top 10 sentences based on the predicted
score from the classifier. We set the possible num-
ber of sentences to {2, 3} resulting a candidate size
of C2

10 + C3
10 = 165 for each sample. We visual-

ize the learned embedding of these candidates and
the anchor in a two-dimensional space by apply-
ing the t-SNE algorithm. As shown in Figure 5,
there is an obvious cluster of the top 50 candidates
(colored in purple) and the candidates with higher
score are closer to the anchor while the distribution
of uninformative candidates (gray,cyan points) is
relatively random.

Figure 5: T-SNE Visualization of two examples from
CNN/DM test set. We divide the candidates into 3
groups based on ROUGE score: candidates ranking
1~50, candidates ranking 51~100, candidate ranking
101~150. The red point denotes the anchor and the
purple/cyan/gray points respectively denote the top
50/100/150 candidates.

5.6 Human Evaluation

We also conduct a human evaluation on our mod-
els to get more accurate results . We randomly
select 30 articles from the test set of CNN/DM, and
each articles have 5 candidate summaries 4 from
automatic systems and 1 is the gold reference. We
recruit 2 PhD students majoring in computer sci-
ence and ask them to rank the candidate summries
based on the fluency, informativeness. If two of
these systems generate the same summary for the
source document, this sample will be filtered out.
As we can see from Table 8, the COLOExt with the
discriminator as BERTScore achieve the best re-
sult among all automatic systems. However, using
BERTScore will bring much training time. We also
suggest taking JS-2 divergence as the discriminator
which also does a good job in human evaluation.

Metric Used 1st 2nd 3rd 4th 5th Avg R.

Baseline 0% 8.3% 8.3% 23.3% 60% 4.33
JS2 6.7% 25% 33.3% 21.7% 13.3% 3.10
R1+R2 5% 20% 28.3% 30.3% 16.7% 3.35
BERTScore 10% 35% 20% 25% 10% 2.90
Gold label 78.3% 11.7% 10% 0% 0% 1.32

Table 8: Results of human evaluation results. Base-
line means the BARTEXT model, Gold-label means the
means the human written summary. Avg R. denotes the
average ranking of the system.

6 Limitations and Future Work

Compared with the most well-known contrastive
learning framework simCLR (Chen et al., 2020)
which propose to construct positive and negative
pairs from training samples in the same batch,
Drawing negative-positive pairs from the summa-
rization model requires more training time. Ideally,
providing more positive and negative samples will
benefit the performance of COLO . However, de-
coding with very large beam size in training mode
will cost more GPU memory and training time.
Future work can search for an efficient way to con-
struct these positive-negative pairs to perform re-
ranking during training.

7 Conclusion

We introduce COLO, a contrastive learning based
summarization framework for one-stage summa-
rization where positive-negative pairs are generated
directly from the summaizer with online sampling.
COLO can be both easily applied on extractive and
abstractive methods. Results show that we greatly
exceed previous stage-of-the art one-stage systems
with no additional parameters and obivious decline
of the inference efficiency.
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Abstract

Research on Automatic Story Generation
(ASG) relies heavily on human and automatic
evaluation. However, there is no consensus on
which human evaluation criteria to use, and no
analysis of how well automatic criteria corre-
late with them. In this paper, we propose to
re-evaluate ASG evaluation. We introduce a
set of 6 orthogonal and comprehensive human
criteria, carefully motivated by the social sci-
ences literature. We also present HANNA, an
annotated dataset of 1,056 stories produced by
10 different ASG systems. HANNA allows us to
quantitatively evaluate the correlations of 72 au-
tomatic metrics with human criteria. Our analy-
sis highlights the weaknesses of current metrics
for ASG and allows us to formulate practical
recommendations for ASG evaluation.

1 Introduction

Storytelling is at the heart of human societies: skill-
ful storytelling allows a narrator to connect more
authentically with their audience and listeners, and
to understand the essence of complex concepts
better (Suzuki et al., 2018). Numerous applica-
tions could benefit from strong automatic story
generation systems, including gaming (Hartsook
et al., 2011), communication (Alhussain and Azmi,
2021), and education (Aylett et al., 2007). Sev-
eral approaches have been explored to generate
stories automatically or with minimum editing ef-
forts (Alabdulkarim et al., 2021). Automatic story
generation (ASG) takes as input a short sentence
(a prompt) and aims at generating a narrative from
it (Cavazza and Pizzi, 2006; Lebowitz, 1985). Ad-
vances in neural language models (Radford et al.,
2018, 2019; Brown et al., 2020) have allowed sub-
stantial progress in ASG.
To further improve the quality of generated stories,
it is indispensable to systematically evaluate ASG

∗Previously from Laboratoire des Signaux et Systèmes
(L2S), CentraleSupélec, CNRS, Université Paris-Saclay.

models. However, there is little work that specifi-
cally studies ASG evaluation. Most research works
rely on human criteria such as coherence (Xu et al.,
2018; Colombo et al., 2019; Jalalzai et al., 2020),
relevance (Jhamtani and Berg-Kirkpatrick, 2020),
overall quality (Brahman and Chaturvedi, 2020),
narrative flow (Rashkin et al., 2020), and creativity
(Pascual et al., 2021). However, taken individually,
these criteria fail to encompass all aspects of the
task, and there is no consensus on a set of crite-
ria that would cover those aspects in a complete
and non-redundant fashion. Due to the high cost
of human annotation, system quality is also often
evaluated using automatic metrics. However, it is
not clear how these metrics correlate with human
judgment in ASG, and thus how suitable they are
at all for the evaluation of ASG.
Contributions. In this work, we revisit both hu-
man and automatic evaluation of ASG. We believe
that this meta-evaluation is a missing piece in the
ASG literature and a crucial step to strengthening
the foundations of ASG. Formally, our contribu-
tions to the ASG field are:

1. A comprehensive set of non-redundant hu-
man criteria for ASG evaluation. Motivated by
the social sciences literature (McCabe and Peter-
son, 1984; Dickman, 2003; Bae et al., 2021), we
introduce six human criteria: relevance, coherence,
empathy, surprise, engagement and complexity.

2. HANNA1, a large annotated dataset of Human-
ANnotated NArratives for ASG evaluation,
which contains 1,056 stories generated from 96
prompts. Each prompt is linked to a human story
and stories generated by 10 different ASG gen-
eration systems. Each story was annotated by 3
different human raters along our 6 proposed human
criteria.

1The HANNA dataset and corresponding code are
available on https://github.com/dig-team/
hanna-benchmark-asg.

5794



3. A meta-evaluation of ASG with fine-grained
recommendations. Relying on HANNA, we per-
form an extensive study of the performance of the
ASG systems and we analyze the correlations of 72
existing automatic metrics with our proposed hu-
man criteria. The obtained results demonstrate the
limitations of current automatic evaluation methods
and allow us to make recommendations on which
metrics to use for ASG evaluation.

2 Related work

2.1 Human evaluation

van der Lee et al. (2019) advise to define separate
and precise criteria for human evaluation to make
it as accurate as possible. However, in ASG, there
is no consensus on the criteria to be used: among
others, we find a pairing task (Fan et al., 2018),
fluency and coherence (Xu et al., 2018), creativ-
ity (Pascual et al., 2021), faithfulness (Peng et al.,
2018; Wang et al., 2020), fidelity (Yao et al., 2019),
grammar and logicality (Guan et al., 2019, 2020),
overall quality and relevance (Jhamtani and Berg-
Kirkpatrick, 2020; Goldfarb-Tarrant et al., 2020;
Guan et al., 2021b), outline utilisation and narrative
flow (Rashkin et al., 2020), emotion faithfulness
(Witon et al., 2018), and content quality (Brah-
man and Chaturvedi, 2020). Many of these criteria
are not specific to ASG (fluency, grammar, overall
quality, content quality), overlap with one another
(pairing task, faithfulness, and fidelity are varia-
tions of relevance; logicality and narrative flow, of
coherence) or are ascribed to a specific setting (out-
line utilisation, emotion faithfulness). Furthermore,
evaluation protocols mostly use only two or three
criteria, which is not enough to grasp all aspects
of a task as complex as ASG. They also do not
associate Likert scales with explicit descriptions,
even though such descriptions could reduce the
subjectivity of the labelling process.

2.2 Automatic evaluation

Although most of the research work in ASG relies
on BLEU and ROUGE, there exists a plethora of
automatic metrics to evaluate ASG. These can be
classified into two categories: reference-based (Ξ)
metrics evaluate a candidate text by comparing it
to a reference text (in our case, the human story),
and reference-free (¤) metrics rely only on the can-
didate story (and, possibly, on the prompt). In both
categories, we find string-based (§), embedding-
based (ε) and model-based (∆) metrics. String-

based metrics evaluate the textual representation of
the inputs; they cannot handle synonyms or para-
phrases. By contrast, embedding-based metrics
rely on word embeddings, e.g. word2vec (Mikolov
et al., 2013a,b), or contextualized embeddings, e.g.
obtained from BERT (Devlin et al., 2019). Finally,
model-based metrics leverage regression or pre-
trained language models to return a score. A syn-
optic classification can be found in Tab. 12.

Reference-based (Ξ) Reference-free (¤)

String-
based
(§)

BLEU (Papineni et al., 2002) Coverage (Grusky et al., 2018)
ROUGE (Lin, 2004) Density (Grusky et al., 2018)
METEOR (Banerjee and Lavie, 2005) Compression (Grusky et al., 2018)
CHRF (Popović, 2015) Text length (Fabbri et al., 2021)
CIDEr (Vedantam et al., 2015) Novelty (Fabbri et al., 2021)

Repetition (Fabbri et al., 2021)

Embed-
ding-
based
(ε)

ROUGE-WE (Ng and Abrecht, 2015)
BERTScore (Zhang et al., 2020)
MoverScore (Zhao et al., 2019) SUPERT (Gao et al., 2020)
BaryScore (Colombo et al., 2021d)
DepthScore (Staerman et al., 2021)

Model-
based
(∆)

S3 (Peyrard et al., 2017)
SummaQA (Scialom et al., 2019) BLANC (Vasilyev et al., 2020)
InfoLM (Colombo et al., 2022c)

BARTScore (Yuan et al., 2021)

Tab. 1: Classification of the automatic metrics consid-
ered in our study with symbols for easier identification.

2.3 Meta-evaluation

Several previous works have studied the relation-
ship between automatic metrics and human judg-
ment (Zhang et al., 2004; Ma et al., 2019), report-
ing weak correlation (Novikova et al., 2017; Stent
et al., 2005; Mathur et al., 2020) and strong bias
towards specific systems (Callison-Burch et al.,
2006). Meta-evaluation has been done in image
description (Elliott and Keller, 2014), dialogue re-
sponse generation (Liu et al., 2016), question gener-
ation (Nema and Khapra, 2018), table-to-text gen-
eration (Dhingra et al., 2019), question answering
(Chen et al., 2019), and summarization (Bhandari
et al., 2020). In ASG, Guan et al. (2021b) intro-
duced the OpenMEVA benchmark which compares
the overall quality of human and generated stories;
their work especially focused on the textual fea-
tures of stories. We build upon it and perform a
comprehensive analysis of the correlations between
72 automatic metrics and 6 human criteria specifi-
cally tailored for ASG.

2BARTScore was designed to be either reference-based
or reference-free depending on the setting.
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3 HANNA for ASG evaluation

3.1 ASG datasets

Story evaluation has been widely studied in differ-
ent scenarii. ROCStories (Mostafazadeh et al.,
2016), a corpus of 50k 5-sentence stories with ti-
tles, was designed for the Story Cloze Test: the
prediction of the final sentence of a story given
the four others. Huang et al. (2016) developed
the VisualStorytelling dataset, which con-
tains sequences of images with corresponding de-
scriptions divided in three tiers of temporal con-
text. More recently, Ammanabrolu et al. (2020)
proposed the WorldGeneration dataset which
adapts story generation to adventure games by guid-
ing the generation process with location, character
and object triplets. The WritingPrompts (WP)
dataset (Fan et al., 2018) contains stories generated
from short sentences called prompts. For our work,
we chose the WP dataset, because it has been ex-
tensively used in previous literature for the design
of ASG models (Rashkin et al., 2020; Goldfarb-
Tarrant et al., 2020; Fang et al., 2021; Wilmot
and Keller, 2021; Guan et al., 2021a). While
ROCStories has also been used in several works,
the shortness of the stories made it less suited for
our evaluation. An example prompt and story from
WP is shown in Tab. 2 (Fan et al., 2018).

3.2 Chosen setting

HANNA, our annotated dataset for ASG, contains
outputs from 10 different systems aligned on 96
common prompts with human stories from the WP
dataset, for 1,056 stories in total, with 3 human an-
notations per story (19,008 annotations in total) and
automatic metric scores, allowing for an analysis
of the correlations between these metrics (Sec. 4).

3.3 Chosen ASG sytems

We directly contacted the authors of articles that
introduced ASG systems and asked for the outputs
of their systems. We managed to collect the outputs
of 3 ASG systems3 on the WP dataset: Fusion
(Fan et al., 2018), HINT (Guan et al., 2021a), and
TD-VAE (Wilmot and Keller, 2021). We extracted
96 stories aligned on common prompts. We then
fine-tuned 7 pre-trained language models for
ASG on a causal language modeling task on WP
to generate stories on the same 96 prompts, using

3We also collected outputs from two other systems
(Goldfarb-Tarrant et al., 2020; Bai et al., 2021); unfortunately,
these were not aligned with the others.

the Transformers library (Wolf et al., 2020)4. We
trained BertGeneration (Rothe et al., 2020),
CTRL (Keskar et al., 2019), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019), GPT (Rad-
ford et al., 2018), GPT-2 (Radford et al., 2019),
and GPT-2 (tag), another instance of GPT-2
trained with <EOP> (End Of Prompt) tags, as in-
spired by Bai et al. (2021), who argued that such
tags could improve generation.

3.4 Proposed human criteria
As mentioned in Ssec. 2.1, there is no consensus
on human criteria for ASG evaluation. At the same
time, work in social sciences has looked exten-
sively at the features that make for a “good” story
(McCabe and Peterson, 1984; Dickman, 2003; Bae
et al., 2021). We condense them as follows into a
new, comprehensive set of criteria:

1. Relevance (RE): how well the story matches
its prompt, used in Jhamtani and Berg-Kirkpatrick
(2020); Goldfarb-Tarrant et al. (2020);

2. Coherence (CH): how much the story makes
sense, used in Xu et al. (2018); Peng et al. (2018);
Yao et al. (2019); Pascual et al. (2021);

3. Empathy (EM): how well the reader understood
the character’s emotions, derived from the impor-
tance of emotional commentary (McCabe and Pe-
terson, 1984), passion (Dickman, 2003), and empa-
thy (Keen et al., 2007; Bae et al., 2021);

4. Surprise (SU): how surprising the end of the
story was, derived from the importance of schema
violation, or unexpectedness (Schank, 1978; Bae
et al., 2021), postdictability (Behrooz et al., 2019),
and novelty (Randall, 1999);

5. Engagement (EG): how much the reader en-
gaged with the story; a more subjective criterion
associated with projecting volitive modality (mak-
ing the reader formulate a subjective judgment and
express a desire to see something accomplished)
(Toolan, 2012) and story outcome, which is an un-
derlying cause of story liking (Iran-Nejad, 1987);

6. Complexity (CX): how elaborate the story is; de-
rived from the importance of detailed descriptions
and sophisticated problem-solving (McCabe and
Peterson, 1984) and good world-building (Roine,
2016).

4https://github.com/huggingface/
transformers
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The four last criteria are an original contribution
and were designed to evaluate story features that
are different from the first two criteria (RE and CH),
which are currently most used in the ASG literature.
Examples of annotations w.r.t. those criteria are
shown in Tab. 2.

3.5 Annotation Protocol
To evaluate our human criteria on the 1,056 sto-
ries of HANNA, we conducted an annotation cam-
paign on Amazon Mechanical Turk. As advised
by Karpinska et al. (2021), for each task, we pro-
vided the human story alongside the story to be
annotated, so that the workers could calibrate their
judgment. Each of the stories was evaluated by
three workers on our six proposed criteria. For this
evaluation, we chose a 5-point Likert scale rather
than a rank-based comparison because we reckoned
that it would be tedious to order the large number of
evaluated systems. We estimated that a HIT should
take between 90 and 120 seconds, so we set the
remuneration at $0.28 per HIT, or between $8.40
and $11.40 per hour. To ensure that annotators
spoke fluent English, we restricted access to the
experiment to workers located in the UK, the US,
Canada, Australia and New Zealand. We further
required them to have the Masters Qualification. To
remove noisy annotations and ensure that the work-
ers read the stories, we chose to reject judgments
that were made in fewer than 30 seconds. We addi-
tionally asked workers to write down the name of
the first-mentioned fictional character of the story.
The detailed instructions of the experiment and the
inter-annotator agreement analysis can be found in
the appendix (see Ap. A and Ssec. 4.1). Finally,
following the recommendations of Shapira et al.
(2019), we obtained the human score of a story by
averaging the results of the three workers.

3.6 Meta-evaluation strategies
Notations. Let yji be the story generated by system
j ∈ {1, . . . , S} for prompt i ∈ {1, . . . , N}, and
m(yji ) the score associated to yji by a (human or au-
tomatic) metric m. Given a correlation coefficient
K (e.g. Pearson’s r (?), Spearman’s ρ (Melamed
et al., 2003) or Kendall’s τ (Kendall, 1938)), two
meta-evaluation strategies are commonly used to
evaluate metric quality.
Story-level correlation (Kstory

m1,m2) measures how
suitedm1 is w.r.t.m2 if used as a loss or reward for
a model. The correlation is applied to each story
among all system outputs and the mean is taken.

Formally:

Kstory
m1,m2

≜ 1

N

N∑

i=1

K(C
story
m1,i

,C
story
m2,i

), (1)

where C
story
m,i ≜

[
m(y1i ), · · · ,m(ySi )

]
.

System-level correlation (Ksys
m1,m2) measures how

suitedm1 is w.r.t.m2 if used to compare the perfor-
mance of two systems. The correlation is applied
to the mean values over all stories for all systems
for both metrics. Formally:

Ksys
m1,m2

≜ K

(
1

N
Csys
m1
,
1

N
Csys
m2

)
, (2)

where Csys
m ≜

[
N∑

i=1

m(y1i ), . . . ,

N∑

i=1

m(ySi )

]
.

Statistical significance. Correlations computed
for two automatic metrics on the same annotated
dataset are not independent. We follow Graham
and Baldwin (2014) and use the Williams test
(Williams, 1959; Moon, 2019)5 to evaluate the sig-
nificance of an increase in dependent correlations
(Steiger, 1980).

4 HANNA Analysis

In this section, we analyse the scores of HANNA
in detail. Tab. 4 shows that human stories achieve
significantly higher scores than generated stories.
Following Mathur et al. (2020), who advise to re-
move outliers, we compute correlations with hu-
man stories removed6.

4.1 Inter-annotator agreement
To estimate the reliability of the annotations, we
computed an intra-class coefficient for each crite-
rion. Among the annotators which took part in the
experiment, three of them covered 2490 stories,
i.e., more than 78% of the dataset, but no annotator
graded the same story twice. Since the reliabil-
ity is to be estimated for the average of the three
ratings, the ICC2k coefficient (ICC for average
random raters) is the most relevant one, according
to Hallgren (2012). In particular, it accounts for
the systematic errors of raters and random residual
errors. The results are shown in Tab. 3.

Coefficients are dispersed between 29% and 56%
with relatively small confidence intervals (except
for RE and CH), which can be considered between

5https://github.com/inmoonlight/
nlp-williams

6The same applies for Sec. 5.
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Prompt: When you die, the afterlife is an arena
where you face every insect and animal you killed
in your life. If you win you go to heaven, lose you
go to hell. Your job was an exterminator on earth.

Human: 3,000 years have I been fighting.
Every morning, the raccoons scratch at my eyes.
Every evening, the skunks spray me while the
opossums chew at my feet. I have never had any
tools. I have only my hands. I don’t remember the
place I came from before this. [...]

Story #1: First of all, not everyone was enti-
tled to be an exterminator. But the ones that were –
maybe were, like, genius, because, yes, I had once
belonged to a less fortunate class of people – had
all the opportunity to work for the damn plant killer,
and it’s hard work. [...]

Story #2: It was hell. Not exactly a place
of torture. There were no guards in prison and you
couldn’t just walk through it, either, because you
would get killed regardless. hell was a young man,
and he was lying on his floor. He was unconscious.
[...]

Story RE CH EM SU EG CX

Human
5 5 1 3 4 1
2 2 3 2 2 3
4 4 3 2 4 4

Story #1
2 4 3 1 1 1
2 2 2 1 2 2
2 3 2 3 3 3

Story #2
5 5 3 3 3 2
3 2 3 2 2 3
3 4 3 4 4 3

Metric Human Story #1 Story #2

BLEUΞ§ (%) 1.00 0.01 0.01
ROUGE-1Ξ§ 1.00 0.24 0.33
chrFΞ§ (%) 1.00 0.32 0.39
BERTScoreΞε 1.00 0.50 0.52
MoverScoreΞε 1.00 0.51 0.51
BaryScoreΞε 0.00 0.92 0.92
S3Ξ∆ 1.39 0.07 0.15
BARTScoreΞ∆ -0.98 -3.97 -4.03
SUPERT¤ε 0.94 0.37 0.36

Tab. 2: Example prompt, human and generated stories from HANNA with human annotations and metric scores

“fair” and “moderate” according to Landis and
Koch (1977). These values are in tune with ex-
isting literature (Karpinska et al., 2021; Habernal
and Gurevych, 2017; Spooren and Degand, 2010;
Ritter et al., 2011; Graham et al., 2017) and show
the difficulty of evaluating natural language gen-
eration. Therefore, we follow the methodology of
Craggs and Wood (2005) and Artstein and Poe-
sio (2008), who argue against setting a specific
agreement threshold as long as there is a detailed
reporting of the methodology (see Ssec. 3.5 and
Tab. 7) and confidence intervals (Tab. 3).

Criterion LB ICC2k UB

RE 0.18 0.48 0.65
CH 0.10 0.29 0.48
EM 0.25 0.34 0.41
SU 0.16 0.28 0.37
EG 0.34 0.46 0.55
CX 0.48 0.56 0.63

Tab. 3: Intra-class coefficient per criterion. LB and UB
are the lower- and upper-bounds of the 95% confidence
interval

4.2 Evaluating our human criteria
In this experiment, we study the relationship be-
tween the proposed human criteria. To compute
story-level (Fig. 1) and system-level (Fig. 2) corre-

Fig. 1: Story-level
Kendall correlations (%)
between human criteria

Fig. 2: System-level
Kendall correlations (%)
between human criteria

lations, we average the human ratings.
Story-level analysis (Fig. 1). Kendall correlations
range from 16% (RE–SU) to 62% (CH–EG), aver-
aging at 40.7%. In the appendix, we also show
correlations with Spearman’s ρ (Fig. 10) and Pear-
son’s r (Fig. 12). EG correlates slightly more with
CH and CX; this could confirm that coherent and
intricate plots make readers more likely to connect
with a story. In contrast, RE is poorly correlated
to the other criteria, which makes sense: an excel-
lent story in every other aspect can be completely
unrelated to a prompt, and vice versa. Overall,
moderate to weak correlations suggest that our cri-
teria evaluate distinct aspects of storytelling which
cannot be regrouped in fewer criteria.
System-level analysis (Fig. 2). Compared to story-
level correlations, system level correlations are
higher. Spearman (Fig. 11) and Pearson (Fig. 13)
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Model RE CH EM SU EG CX Average

Human 4.17 ±0.14 4.43 ±0.10 3.22 ±0.14 3.15 ±0.15 3.88 ±0.12 3.73 ±0.13 3.76 ±0.06

BertGeneration 2.46 ±0.16 3.14 ±0.16 2.28 ±0.13 2.09 ±0.13 2.67 ±0.12 2.41 ±0.11 2.51 ±0.06
CTRL 2.54 ±0.16 2.93 ±0.16 2.26 ±0.13 1.93 ±0.12 2.53 ±0.12 2.23 ±0.10 2.40 ±0.06
GPT 2.40 ±0.16 3.22 ±0.15 2.37 ±0.12 2.13 ±0.13 2.76 ±0.13 2.49 ±0.12 2.56 ±0.06
GPT-2 * 2.81 ±0.16 3.29 ±0.14 * 2.47 ±0.12 2.21 ±0.13 2.86 ±0.12 2.68 ±0.10 2.72 ±0.06
GPT-2 (tag) 2.67 ±0.16 * 3.31 ±0.15 * 2.47 ±0.12 * 2.22 ±0.13 * 2.92 ±0.12 * 2.80 ±0.11 * 2.73 ±0.06
RoBERTa 2.54 ±0.16 3.22 ±0.16 2.27 ±0.12 2.12 ±0.13 2.74 ±0.12 2.41 ±0.11 2.55 ±0.06
XLNet 2.39 ±0.17 2.88 ±0.16 2.10 ±0.12 1.95 ±0.12 2.46 ±0.13 2.36 ±0.11 2.36 ±0.06
Fusion 2.09 ±0.16 2.86 ±0.16 1.99 ±0.12 1.72 ±0.12 2.27 ±0.14 1.92 ±0.11 2.14 ±0.06
HINT 2.29 ±0.16 2.38 ±0.16 1.74 ±0.13 1.56 ±0.11 1.75 ±0.12 1.45 ±0.10 1.86 ±0.06
TD-VAE 2.51 ±0.16 2.99 ±0.15 2.07 ±0.11 2.10 ±0.12 2.59 ±0.12 2.49 ±0.11 2.46 ±0.06

Tab. 4: Average system ratings per criterion with 95% confidence interval. Best value in bold marked with an
asterisk (*), values in the confidence interval of the best value in bold without asterisk

correlations are also higher than their story-level
counterparts. This suggests that a given system
tends to be uniformly better or worse than other
systems across all criteria.

4.3 Finding the best systems
On Tab. 4, we observe that generic fine-tuned mod-
els perform better than ASG systems according
to human annotators. The best system is GPT-2,
which scores better than all other systems on all cri-
teria. The GPT-2 variant trained with <EOP> tags
shows marginal improvement compared to GPT-2,
as reported in Bai et al. (2021). It is worth noting
that all models are still noticeably below human
performance, which emphasizes that current sys-
tems are still a long way from human-like narrative
intelligence.

5 Evaluation of automatic metrics using
HANNA

In this section we evaluate how suitable existing
automatic metrics are for ASG evaluation, using
the SummEval library (Fabbri et al., 2021)7. Due
to space constraints, in each figure, we selected
representative metrics from each of the categories
introduced in Ssec. 2.2. Full figures can be found
in the appendix.

5.1 Correlations with human judgement
Story-level analysis (Fig. 3). Most metrics have
either a moderate (between 30% and 50%) or weak
(below 30%) correlation with human criteria. RE
is particularly elusive, except for the SUPERT¤ε

metric, which is reference-free and compares the
prompt and the story. This corroborates Novikova
et al. (2017), who argue that automatic metrics

7https://github.com/Yale-LILY/SummEval

do not accurately reflect human judgment when
comparing instances despite performing reliably at
the system level. We also observe vertical “color
stripes”: metric performance is consistent across
criteria. A weak metric will correlate poorly with
all criteria, whereas a more robust metric will be
uniformly better.
System-level analysis (Fig. 4). Correlations are in-
deed higher at the system-level, hovering between
40% and 70% for most metrics. Therefore, while
metrics are poor estimators of human criteria at the
story level, they can be used to compare systems
with reasonable accuracy.
Best metrics per criterion (Tab. 5). We
observe that a few metrics are heavily rep-
resented in the top 3 for each level. Pre-
trained transformer-based metrics achieve strong
results. The metrics that correlate best with
human criteria at the system level are all
reference-based: ROUGE-S*Ξ§, BaryScoreΞε,
DepthScoreΞε, and BARTScoreΞ∆1 . At
the story level, BARTScore¤∆

2 , Novelty-1¤§

and Repetition-3¤§ are reference-free while
chrFΞ§, BERTScoreΞε, S3Ξ∆ are reference-
based. As Novelty-1 and Repetition-3 are
simple data statistics, their outperforming all met-
rics for SU and CH respectively highlights the short-
comings of current metrics.

5.2 Correlations between automatic metrics

Story-level analysis (Fig. 5). Reference-based
metrics are moderately to highly correlated with
one another. By contrast, embedding- and model-
based reference-free metrics such as SUPERT¤ε

and BLANC¤∆ are almost independent from all
other metrics, even other reference-free metrics.
System-level analysis (Fig. 6). Previous obser-
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Fig. 3: Story-level absolute Kendall correlations (%)
between metrics and criteria. Full version: Fig. 14.

Fig. 4: System-level absolute Kendall correlations (%)
between metrics and criteria. Full version: Fig. 15.

Level Criterion Metric #1 |r| (%) Metric #2 |r| (%) Metric #3 |r| (%)

Story

RE BARTScore¤∆
2 42.6 SUPERT¤ε

1 41.2 SUPERT¤ε
2 40.2

CH Repetition-3¤§ 38.1 BERTScoreΞε
R 37.1 S3Ξ∆ 37.1

EM S3Ξ∆ 32.8 chrFΞ§ 32.4 BERTScoreΞε
R 32.1

SU Novelty-1¤§ 32.9 chrFΞ§ 32.7 ROUGE-1Ξ§ 31.3
EG BERTScoreΞε

R 43.0 Novelty-1¤§ 42.3 chrFΞ§ 41.1
CX chrFΞ§ 58.8 BERTScoreΞε

R 55.8 ROUGE-1Ξ§ 55.0

System

RE ROUGE-S*
Ξ§
F 80.4 ROUGE-SU*

Ξ§
F 80.3 ROUGE-S*

Ξ§
R 80.2

CH BaryScoreΞε
1 88.2 BaryScoreΞε

2 88.0 BERTScoreΞε
F 87.9

EM BaryScoreΞε
1 90.0 BaryScoreΞε

2 90.0 BERTScoreΞε
F 88.7

SU BARTScoreΞ∆
1 92.7 BERTScoreΞε

R 91.1 DepthScoreΞε 90.7
EG DepthScoreΞε 93.4 BARTScoreΞ∆

1 92.4 SUPERT¤ε
2 92.2

CX DepthScoreΞε 95.6 BERTScoreΞε
R 95.5 Compression¤§ 94.3

Tab. 5: Top 3 metrics per criterion per level (story or system) of absolute Pearson (r) correlation. Indices denote
different variants.

Fig. 5: Story-level absolute Kendall correlations (%)
between metrics. Full version: Fig. 20.

Fig. 6: System-level absolute Kendall correlations (%)
between metrics. Full version: Fig. 21.

vations at the story level remain mostly valid, al-
though correlations are overall higher. Reference-
based metrics form a large group of very highly
correlated metrics, with a majority of correlations

surpassing 70%. Embedding- and model-based
reference-free metrics remain weakly correlated to
other metrics.
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Fig. 7: Weighted macro F1-scores of paired bootstrap
resampling. Full version: Fig. 26.

5.3 Fine-grained analysis

Top-k systems (Fig. 8). Here, we evaluate whether
automatic metrics can reliably quantify differences
between systems of competitive performances. For
all criteria except RE and CX, correlations follow
a convex curve between k = 10 and k = 4, sug-
gesting that metrics should not be used to compare
systems of high variance in quality unless there
are enough of them. Indeed, removing a few sys-
tems causes correlations to worsen significantly,
until the remaining systems are few enough and of
competitive performance. RE correlations interest-
ingly increase as k decreases, which indicates that
system quantity is a lesser concern for RE.
Pairwise system comparison (Fig. 7). Here, we
evaluate the pairwise discrimative power of auto-
matic metrics. Following Bhandari et al. (2020),
we take all system pairs (s1, s2) and compute their
average ratings per criterion using paired bootstrap
resampling (Koehn, 2004; Dror et al., 2018). We
assign a label ytrue = 1 if s1 is better than s2
with 95% confidence, ytrue = 2 if s2 is better, and
ytrue = 0 if confidence is below 95%. We then
repeat the procedure for each metric m, getting
y
(m)
pred labels, and calculate the weighted macro F1-

scores (Goutte and Gaussier, 2005) between ytrue
and y(m)

pred to evaluate if m is a good proxy for hu-
man criteria. We observe that reference-based met-
rics again perform better than reference-free met-
rics, with S3Ξ∆ and ROUGE-WE-3Ξε at the top.
DepthScoreΞε and BaryScoreΞε prove to be
very unsuited for pairwise system comparisons, de-
spite showing high system-level correlations (see
Fig. 3). Finally, SU appears to be the most trou-
blesome criterion for this task, suggesting that the
surprise factor is especially difficult to evaluate.
Statistical significance. Using the Williams test

(Ap. B), we found that increases in correlation with
human criteria between top 3 metrics per criterion
(Tab. 5) are not statistically significant, which sug-
gests that best-scoring metrics are of similar per-
formance. However, except for the RE criterion,
we notably find that the increases in correlation of
chrFΞ§ and BERTScoreΞε compared to BLEUΞ§

and ROUGEΞ§ variants are statistically significant.

5.4 Aggregated rankings of metrics

To aggregate the scores obtained by the three corre-
lation measures (Kendall, Pearson and Spearman),
we use the work of Colombo et al. (2022a)8, who
rely on the Kemeny consensus (Kemeny, 1959;
Myerson, 1996) and recommend to use the Borda
Count (BC) as an efficient approximation (Sibony,
2014). They experimentally show that Kemeny
consensus has more desirable properties than a
ranking obtained through a mean-aggregation pro-
cedure. We report the results in Tab. 6. To compare
system performance, model- or embedding-based
metrics (e.g.. BARTScoreΞε or BERTScoreΞε)
seem most adapted. However, at the story level,
chrFΞ§ and BERTScoreΞε are among the best
metrics, while BLEUΞ§ is completely absent from
the top spots. ROUGEΞ§ does appear in the ranking,
albeit below chrFΞ§.

Level Metric BC

Story

chrFΞ§ 1237
S3Ξ∆

p 1198
ROUGE-1Ξ§ 1186
S3Ξ∆

r 1177
BERTScoreΞε

R 1158

System

BARTScoreΞ∆ 1120
BaryScoreΞε

5 1110
BERTScoreΞε

F 1095
MoverScoreΞε 1070
DepthScoreΞε 1069

Tab. 6: Top 5 metrics computed by one-level ranking
per aggregation level, higher Borda count is better

6 Conclusions

Our analysis yields the following conclusions:

1. Large pre-trained language models seem to
produce the best results for ASG. Our benchmark
shows that GPT-2 performed better than systems
specifically tailored for ASG despite being older

8https://github.com/PierreColombo/
RankingNLPSystems
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Fig. 8: System-level absolute Pearson correlations (%) between automatic metrics and our proposed human criteria
on top-k systems

than some of them. Overall, all systems remain
significantly inferior to human output, illustrating
that ASG remains a challenging task for current
language models.
2. Stronger metrics, tailored explicitly for spe-
cific criteria of ASG, are desperately needed.
The weak correlations of automatic metrics with
human criteria still leave much to be desired. Ide-
ally, we would have automatic metrics which reflect
each of our proposed criteria.
3. Awaiting specific ASG metrics, researchers
should use better metrics than BLEUΞ§ and
ROUGEΞ§. chrFΞ§ and BARTScoreΞε are the
best performers at the story- and system-level re-
spectively. Given the overall weak results, however,
we strongly advise to rely on human annotations
for ASG evaluation.
4. Our new set of human criteria allows for a
standardized and extensive human evaluation.
The criteria are overall weakly correlated with one
another, which shows that they are non-redundant,
and produce coherent system rankings.

Future directions. Motivated by our search for
human criteria from the social science literature,
we reckon more collaboration between the NLP
and social science communities may yield valuable
insights into the question of how to computationally
capture good indicators of story quality. In this
spirit, we hope that HANNA will pave the way for
further progress in the evaluation of ASG.
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A Amazon Mechanical Turk experiment
details

To complement section 3.5, the details of the in-
structions we gave in our Amazon Mechanical Turk
experiment can be found in Tab. 7 below.

B Names of metric variants

Here we define the names we give to some variants
of the automatic metrics we used.
SUPERT and BLANC are summarization metrics
which normally require a source document and a
summary. In our setting, we have a prompt and a
generated story. The suffix PS means we used the
“Prompt as the Summary”, and SSmeans the “Story
as the Summary”. The Golden suffix means we
used the reference human story as the source docu-
ment and the generated story as the summary.
Given a couple of texts (x, y), BARTScore com-
putes a score based on the log probability of y given
x. We used the suffixes SH for (Story, Human), HS
for (Human, Story), SP for (Story, Prompt) and PS
for (Prompt, Story).

All other names are defined in their respective pa-
pers.
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Amazon Mechanical Turk example task
Please read the prompt, the human story and the subject story (both stories might be the same). The story
you will have to rate is the subject story.
Important: we will reject HITs which were done in fewer than 30 seconds (unless both stories are
exceptionally short). Please rest assured: if you take the work seriously, we have no reason to reject it.
Disclaimer: some stories have been automatically generated and might contain explicit or offensive
content.
Note: some stories have been abruptly cut in the middle of a sentence. Please rate them as if they ended
just before the unfinished sentence.
Note: if the story is not relevant with respect to the prompt, it only affects the Relevance criterion! Do
not rate 1 everywhere, or we will reject!
Then, please write down the name of the first character that is mentioned in the subject story; if no
name is mentioned, write “None”. Only proper nouns count as names.
Then, please rate the subject story on a scale from 1 (worst) to 5 (best) on the following criteria: relevance,
coherence, empathy, surprise, engagement, and complexity.

Prompt When you die the afterlife is an arena where you face every insect and animal
you killed in your life. If you win you go to heaven, lose you go to hell. Your
job was an exterminator on earth.

Human story 3,000 years have I been fighting. Every morning, the raccoons scratch at my
eyes. Every evening, the skunks spray me while the opossums chew at my feet.
I have never had any tools. I have only my hands. I don’t remember the place I
came from before this. All I remember is the daily fight between me and these
animals. No matter how many times I kill them, they come back the next day.
[...]

Subject story First of all, not everyone was entitled to be an exterminator. But the ones that
were – maybe were, like, *genius*, because, yes, I had once belonged to a less
fortunate class of people – had all the opportunity to work for the damn plant
killer, and it’s hard work. And the horrifying truth is, once you die, and the
entire planet turns into a glade that contains a golden fish that would’ve been
crushed by a million million goldfish just moments ago, you’re not really good
enough for heaven. Why? [...]

Name of the first
mentioned character
in the subject story

[Area to fill]

Relevance — mea-
sures how well the
story matches its
prompt

1 — The story has no relationship with the prompt at all.
2 — The story only has a weak relationship with the prompt.
3 — The story roughly matches the prompt.
4 — The story matches the prompt, except for one or two small aspects.
5 — The story matches the prompt exactly.
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Coherence — mea-
sures whether the
story makes sense

1 — The story does not make sense at all. For instance, the setting and/or
characters keep changing, and/or there is no understandable plot.
2 — Most of the story does not make sense.
3 — The story mostly makes sense but has some incoherences.
4 — The story almost makes sense overall, except for one or two small incoher-
ences.
5 — The story makes sense from beginning to end.

Empathy — mea-
sures how well
you understood the
characters’ emo-
tions (regardless of
whether you agreed
with them)

1 — The characters seemed apathetic to you.
2 — At least one character slightly related to you on an emotional level.
3 — You recognized specific, but not necessarily strong, emotions (eg sadness,
joy, fear. . . ) in at least one character.
4 — At least one character emotionally involved you, but minor details pre-
vented you from completely relating to them.
5 — At least one character completely involved you on an emotional level.

Surprise — measures
how surprising the
end of the story was

1 — The ending seemed completely obvious from the start, or doesn’t make
any sense at all.
2 — The ending was easily predictable after a few sentences.
3 — The ending was predictable after half of the story.
4 — The ending surprised you, but would have been difficult to predict.
5 — The ending surprised you, and still seemed as if it could very reasonably
have been predicted, ie, there were enough clues in the story.

Engagement —
measures how much
you engaged with
the story

1 — You found the story boring and were glad it was over.
2 — You found one or two things interesting in the story, but no more.
3 — The story was mildly interesting.
4 — The story almost kept you engaged until the end.
5 — You were so engaged that you wished there was a sequel.

Complexity — mea-
sures how elaborate
the story is

1 — The setting of the story is extremely simple; it only involves one or two
characters or concepts.
2 — The setting of the story is simple; one or two characters, a simple plot,
maybe an indication of time or location.
3 — The story is somewhat developed: it involves at least one of the following:
complex concepts, realistic characters, an intricate plot, an underlying history
or circumstances, precise descriptions.
4 — The story is developed: it involves at least two of the following: com-
plex concepts, realistic characters, an intricate plot, an underlying history or
circumstances, precise descriptions.
5 — The story is well thought-out: it involves at least three of the following:
complex concepts, realistic characters, an intricate plot, an underlying history
or circumstances, precise descriptions.

Tab. 7: Example task from our Amazon Mechanical Turk experiment
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C Distributions of human annotations
per system

Here we report the violin plots of the distribu-
tions of human annotations per system. Human
output scores visibly better than language mod-
els. Note that for our generation, we do not
use beam search (Colombo et al., 2021b, 2020;
Pichler et al., 2022; Colombo, 2021; Colombo
et al., 2022b; Garcia et al., 2019; Colombo et al.,
2021c). To further improve the generation a do-
main pre-trained language model could be con-
sidered (Chapuis et al., 2020; Colombo et al.,
2021a).

Fig. 9: Violin plots of the distributions of human annotations per system
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D Correlations between human
criteria

Here we report the story-level and system-level
absolute correlations between human criteria
with Spearman’s ρ (Fig. 10 and Fig. 11) and
Pearson’s r (Fig. 12 and Fig. 13).

Fig. 10: Story-level Spearman correlations (%) be-
tween our proposed human criteria

Fig. 11: System-level Spearman correlations (%)
between our proposed human criteria

Fig. 12: Story-level Pearson correlations (%) be-
tween our proposed human criteria

Fig. 13: System-level Pearson correlations (%) be-
tween our proposed human criteria

5813



E Correlations between human
criteria and automatic metrics

Here we report the full figures of story-level
and system-level absolute correlations between
human criteria and automatic metrics with all
three correlation coefficients.

Fig. 14: Story-level absolute Kendall correlations (%) between automatic metrics and our proposed human criteria

Fig. 15: System-level absolute Kendall correlations (%) between automatic metrics and our proposed human criteria

Fig. 16: Story-level absolute Spearman correlations (%) between automatic metrics and our proposed human criteria

Fig. 17: System-level absolute Spearman correlations (%) between automatic metrics and our proposed human
criteria
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Fig. 18: Story-level absolute Pearson correlations (%) between automatic metrics and our proposed human criteria

Fig. 19: System-level absolute Pearson correlations (%) between automatic metrics and our proposed human criteria

5815



F Correlations between automatic
metrics

Here we report the full figures of story-level
and system-level absolute correlations between
automatic metrics with all three correlation co-
efficients.

Fig. 20: Story-level absolute Kendall correlations (%) between automatic metrics
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Fig. 21: System-level absolute Kendall correlations (%) between automatic metrics

5817



Fig. 22: Story-level absolute Spearman correlations (%) between automatic metrics
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Fig. 23: System-level absolute Spearman correlations (%) between automatic metrics
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Fig. 24: Story-level absolute Pearson correlations (%) between automatic metrics
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Fig. 25: System-level absolute Pearson correlations (%) between automatic metrics
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G Best metrics per criterion per level
of correlation per correlation
coefficient

Here we report the top 5 metrics per criterion
per story-level and system-level absolute corre-
lation coefficient.

Criterion |τ | (%) |ρ| (%) |r| (%)

RE

SUPERT-SSΞε 29.95 SUPERT-SSΞε 38.58 BARTScore-SP¤∆ 42.55
BARTScore-SP¤∆ 29.61 BARTScore-SP¤∆ 37.98 SUPERT-SSΞε 41.16

SUPERT-PSΞε 28.59 SUPERT-PSΞε 36.40 SUPERT-PSΞε 40.15
BARTScore-SHΞ∆ 22.32 BARTScore-SHΞ∆ 28.53 BARTScore-SHΞ∆ 28.98

MoverScoreΞε 19.12 MoverScoreΞε 23.67 SUPERT-GoldenΞε 24.72

CH

ROUGE-WE-3 RecallΞε 25.29 ROUGE-WE-3 RecallΞε 32.22 Repetition-3¤§ 38.12
BARTScore-SHΞ∆ 25.06 CHRFΞ§ 32.03 BERTScore RecallΞε 37.12

CHRFΞ§ 24.61 BARTScore-SHΞ∆ 31.38 S3-PyramidΞ∆ 37.05
S3-PyramidΞ∆ 24.39 S3-ResponsivenessΞ∆ 31.31 CHRFΞ§ 36.99

S3-ResponsivenessΞ∆ 24.28 S3-PyramidΞ∆ 31.14 Repetition-2¤§ 36.54

EM

ROUGE-WE-3 RecallΞε 23.58 ROUGE-WE-3 RecallΞε 29.85 S3-PyramidΞ∆ 32.78
CHRFΞ§ 23.33 CHRFΞ§ 29.81 CHRFΞ§ 32.43

S3-PyramidΞ∆ 23.19 S3-PyramidΞ∆ 29.68 BERTScore RecallΞε 32.06
ROUGE-SU* RecallΞ§ 23.13 ROUGE-SU* RecallΞ§ 29.38 S3-ResponsivenessΞ∆ 31.78

ROUGE-S* RecallΞ§ 23.08 ROUGE-S* RecallΞ§ 29.32 BARTScore-SHΞ∆ 31.66

SU

CHRFΞ§ 24.45 CHRFΞ§ 31.55 Novelty-1¤§ 32.86
ROUGE-1 RecallΞ§ 23.67 ROUGE-1 RecallΞ§ 30.86 CHRFΞ§ 32.65

S3-ResponsivenessΞ∆ 23.35 S3-ResponsivenessΞ∆ 30.41 ROUGE-1 RecallΞ§ 31.32
Novelty-1¤§ 23.11 ROUGE-SU* RecallΞ§ 30.30 S3-PyramidΞ∆ 31.07

ROUGE-SU* RecallΞ§ 22.85 ROUGE-S* RecallΞ§ 30.25 BERTScore RecallΞε 30.98

EG

CHRFΞ§ 30.77 CHRFΞ§ 39.03 BERTScore RecallΞε 42.95
S3-PyramidΞ∆ 29.62 S3-PyramidΞ∆ 37.74 Novelty-1¤§ 42.27

ROUGE-1 RecallΞ§ 29.19 ROUGE-1 RecallΞ§ 37.02 CHRFΞ§ 41.07
S3-ResponsivenessΞ∆ 29.01 S3-ResponsivenessΞ∆ 36.85 S3-PyramidΞ∆ 40.34
BERTScore RecallΞε 28.93 ROUGE-S* RecallΞ§ 36.60 Repetition-3¤§ 39.53

CX

CHRFΞ§ 43.31 CHRFΞ§ 54.11 CHRFΞ§ 58.76
ROUGE-1 RecallΞ§ 40.65 ROUGE-1 RecallΞ§ 50.60 BERTScore RecallΞε 55.83

ROUGE-SU* RecallΞ§ 39.83 Text length¤§ 50.19 ROUGE-1 RecallΞ§ 55.01
Text length¤§ 39.82 Compression¤§ 50.19 METEORΞ§ 54.41

Compression¤§ 39.82 ROUGE-SU* RecallΞ§ 50.10 Compression¤§ 54.38

Tab. 8: Top 5 metrics per criterion per story-level correlation coefficient
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Criterion |τ | (%) |ρ| (%) |r| (%)

RE

S3-PyramidΞ∆ 60.00 MoverScoreΞε 78.18 ROUGE-S* F-ScoreΞ§ 80.39
CHRFΞ§ 60.00 S3-PyramidΞ∆ 75.76 ROUGE-SU* F-ScoreΞ§ 80.29

ROUGE-SU* RecallΞ§ 60.00 ROUGE-S* RecallΞ§ 75.76 ROUGE-S* RecallΞ§ 80.24
ROUGE-S* RecallΞ§ 60.00 ROUGE-SU* RecallΞ§ 75.76 ROUGE-SU* RecallΞ§ 80.23

ROUGE-W-1.2 F-ScoreΞ§ 60.00 CHRFΞ§ 74.55 BLEUΞ§ 79.89

CH

BaryScore-SD-0.001Ξε 77.78 BaryScore-SD-0.001Ξε 92.73 BaryScore-SD-0.01Ξε 88.15
BaryScore-SD-5Ξε 68.89 BaryScore-SD-5Ξε 78.18 BaryScore-WΞε 87.99

BaryScore-SD-10Ξε 68.89 BaryScore-SD-10Ξε 78.18 BERTScore F1Ξε 87.91
BaryScore-SD-1Ξε 64.44 BaryScore-SD-1Ξε 75.76 DepthScoreΞε 87.38

BaryScore-SD-0.5Ξε 60.00 BERTScore F1Ξε 74.55 MoverScoreΞε 86.95

EM

BaryScore-SD-0.001Ξε 77.78 BaryScore-SD-0.001Ξε 92.73 BaryScore-SD-0.01Ξε 90.01
BERTScore F1Ξε 73.33 BERTScore F1Ξε 84.24 BaryScore-WΞε 89.96

BaryScore-SD-0.01Ξε 73.33 BaryScore-SD-0.01Ξε 84.24 BERTScore F1Ξε 88.67
MoverScoreΞε 73.33 MoverScoreΞε 81.82 SUPERT-GoldenΞ∆ 88.10

BaryScore-WΞε 68.89 BaryScore-WΞε 80.61 ROUGE-WE-3 F-ScoreΞε 87.93

SU

BaryScore-SD-0.001Ξε 77.78 BaryScore-SD-0.001Ξε 90.30 BARTScore-SHΞ∆ 92.65
BaryScore-SD-5Ξε 68.89 BaryScore-SD-5Ξε 83.03 BERTScore RecallΞε 91.09

BaryScore-SD-10Ξε 68.89 BaryScore-SD-10Ξε 83.03 DepthScorΞεe 90.71
BaryScore-SD-1Ξε 64.44 BaryScore-SD-1Ξε 79.39 SUPERT-GoldenΞ∆ 89.83

BaryScore-SD-0.5Ξε 60.00 BaryScore-SD-0.5Ξε 76.97 Compression¤§ 89.24

EG

BaryScore-SD-0.001Ξε 77.78 BaryScore-SD-0.001Ξε 92.73 DepthScoreΞε 93.44
BaryScore-SD-5Ξε 68.89 BaryScore-SD-5Ξε 78.18 BARTScore-SHΞ∆ 92.44

BaryScore-SD-10Ξε 68.89 BaryScore-SD-10Ξε 78.18 SUPERT-GoldenΞ∆ 92.21
BaryScore-SD-1Ξε 64.44 BaryScore-SD-1Ξε 75.76 MoverScoreΞε 92.07

BaryScore-SD-0.5Ξε 60.00 BERTScore F1Ξε 74.55 BERTScore F1Ξε 91.74

CX

BaryScore-SD-10Ξε 76.41 BaryScore-SD-10Ξε 91.19 DepthScoreΞε 95.63
BaryScore-SD-5Ξε 76.41 BaryScore-SD-5Ξε 91.19 BERTScore RecallΞε 95.49
BaryScore-SD-1Ξε 71.91 BaryScore-SD-1Ξε 87.54 Compression¤§ 94.31

CHRFΞ§ 67.42 Novelty-1¤§ 87.54 BARTScore-SHΞ∆ 93.83
Novelty-1¤§ 67.42 BaryScore-SD-0.5Ξε 85.11 ROUGE-1 F-ScoreΞ§ 93.35

Tab. 9: Top 5 metrics per criterion per system-level correlation coefficient.
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H Weighted macro F1-scores between
automatic metrics and human
criteria

Here we report the weighted macro F1-scores
between automatic metrics and human criteria
obtained through the paired bootstrap resam-
pling test.

Fig. 26: Weighted macro F1-scores of paired bootstrap resampling
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I Williams tests between automatic
metrics

Here we report the p-values of the Williams
tests between automatic metrics for each crite-
rion with story-level and system-level Pearson
correlations.

Fig. 27: p-values (%) of the Williams tests between automatic metrics for the RE criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 28: p-values (%) of the Williams tests between automatic metrics for the CH criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 29: p-values (%) of the Williams tests between automatic metrics for the EM criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 30: p-values (%) of the Williams tests between automatic metrics for the SU criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 31: p-values (%) of the Williams tests between automatic metrics for the EG criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 32: p-values (%) of the Williams tests between automatic metrics for the CX criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 33: p-values (%) of the Williams tests between automatic metrics for the RE criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 34: p-values (%) of the Williams tests between automatic metrics for the CH criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 35: p-values (%) of the Williams tests between automatic metrics for the EM criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 36: p-values (%) of the Williams tests between automatic metrics for the SU criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 37: p-values (%) of the Williams tests between automatic metrics for the EG criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 38: p-values (%) of the Williams tests between automatic metrics for the CX criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Abstract
Natural language modeling with limited train-
ing data is a challenging problem, and many
algorithms make use of large-scale pretrained
language models (PLMs) for this due to its
great generalization ability. Among them, ad-
ditive learning that incorporates a task-specific
adapter on top of the fixed large-scale PLM
has been popularly used in the few-shot setting.
However, this added adapter is still easy to dis-
regard the knowledge of the PLM especially for
few-shot natural language generation (NLG)
since an entire sequence is usually generated
by only the newly trained adapter. Therefore,
in this work, we develop a novel additive learn-
ing algorithm based on reinforcement learning
(RL) that selectively outputs language tokens
between the task-general PLM and the task-
specific adapter during both training and infer-
ence. This output token selection over the two
generators allows the adapter to take into ac-
count solely the task-relevant parts in sequence
generation, and therefore makes it more robust
to overfitting as well as more stable in RL train-
ing. In addition, to obtain the complementary
adapter from the PLM for each few-shot task,
we exploit a separate selecting module that is
also simultaneously trained using RL. Experi-
mental results on various few-shot NLG tasks
including question answering, data-to-text gen-
eration and text summarization demonstrate
that the proposed selective token generation
significantly outperforms the previous additive
learning algorithms based on the PLMs.

1 Introduction

Recently, pretrained language models (PLMs) have
shown great generalization ability when combined
with large-scale data and big transformer-based
models (Devlin et al., 2019; Radford et al., 2019;
Lewis et al., 2020; Brown et al., 2020; Subra-
manyam Kalyan et al., 2021; Petroni et al., 2019;
Wang et al., 2020). Therefore, transfer learn-
ing from PLMs has been popularly used for few-
shot natural language generation (NLG) tasks with

promising results. In specific, the use of PLM
for few-shot NLG can be categorized into three ap-
proaches: 1) prompt-based, 2) finetuning, and 3) ad-
ditive learning. Prompt-based approaches encode a
task description and task-specific examples as a nat-
ural language prompt for few-shot text generation
(Radford et al., 2019; Brown et al., 2020; Zheng
and Huang, 2021; Schick and Schütze, 2020; Li
and Liang, 2021a). These approaches can take full
advantage of the universal natural language under-
standing and generation capabilities of large-scale
PLMs without further training of the main model,
however, they have some limitations in dealing with
a large domain shift from the pretraining corpus
data, tuning suitable task-specific prompts, and cov-
ering an increased size of conditioning examples.
On the other hand, finetuning of the PLM is able
to explicitly impart task-specific knowledge to the
model and hence lift the above limitations (Ziegler
et al., 2019; Xu et al., 2021; Chen et al., 2020).
However, these finetuned models are prone to over-
fitting when only a small amount of training data is
available. In order to alleviate such an overfitting
problem, additive learning has been extensively ex-
ploited by incorporating task-specific adapters into
the PLM (Stickland and Murray, 2019; Houlsby
et al., 2019; Zeldes et al., 2020).

In general, task-specialized adapters for few-shot
NLG are trained by maximum likelihood estima-
tion (MLE) or reinforcement learning (RL). While
MLE is efficient in learning, it suffers from the
exposure bias problem due to the difference in
the training and inference mechanisms (He et al.,
2019), and this problem can be severe with limited
training data. One solution is RL, capable of resolv-
ing this exposure bias problem by sequential output
sampling during training (Ranzato et al., 2015; Ke-
neshloo et al., 2019; Shi et al., 2021). However, the
exponentially large space of output sequences re-
stricts the use of RL since it leads to high variance
and unstable training which is more serious in the
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Passage three types of conflicts are : 1. intrapersonal conflicts , 2. interpersonal
conflicts and 3. unconscious conflicts . the word conflict has been derived
from a latin word “conflicts” which means “strike two things at the same
time” . conflict is 1)an opposition or a tug-of-war between contradictory
impulses . according to colman "a conflict is 2)the anticipated frustration
entailed in the choice of either alternative".

Query conflict definition psychology

Ground-truth the anticipated frustration entailed in the choice of either alternative.

PLM conflict definition psychology.

Adapter conflict is an opposition or a tug-of-war between contradictory impulses.

PLM with Condition the meaning of conflict is (provided condition) the anticipated frustration entailed
in the choice of either alternative.

Proposed STG conflict is the anticipated frustration entailed in the choice of either alternative.

Table 1: Generated answers from an instance of MS-MARCO QA dataset. Two definitions about conflict are
presented in bold text in the passage. The answers are sampled from the models trained on 0.5% few-shot subset
data. The proposed selective token generation (STG) produces the first two words (highlighted in red) by the
task-specific adapter while the others by the PLM.

few-shot setting.
More importantly, the existing additive learning

generally produces the whole output sequence by
its own task-specific adapter, which leads to a fun-
damental limitation in maintaining the knowledge
of the PLM and the strong generation ability. An
example of this limitation from our empirical ob-
servation on the task of question and answering is
shown in Table 1. In this case, a passage that con-
tains two definitions (super-scripted and bolded)
about conflict is given with a query that asks about
the psychological meaning of conflict. Without the
knowledge of who Colman1 is, it can be hard to an-
swer since the word psychology in the query does
not appear in the passage. Here, the PLM repeats
the given query as its generated answer due to the
lack of domain adaptation while the added adapter
incorrectly outputs not the psychological meaning
but the general meaning of conflict. This is because
most queries in this few-shot training data ask a
general meaning of a concept, and therefore the
adapter is overfitted to this pattern (more examples
are described in Section 4.6). Note that the PLM
generates the correct answer if the proper condi-
tioning text (the meaning of conflict is) is provided.

Motivated by these observations, in this work,
we propose a novel RL-based selective token gen-

1A psychologist, https://en.wikipedia.org/
wiki/Peter_T._Coleman_(academic)

eration (STG) between the task-general PLM and
the task-specific adapter. The selection of this out-
put token generator enables to explicitly maintain a
general prior knowledge from the frozen PLM and
the adapter to focus only on the task-relevant parts
in sequence generation. Note that the proposed
algorithm is different from previous selective gen-
eration algorithms such as copy mechanism (Gu
et al., 2016) in that STG selects a generator rather
than existing tokens in a given passage. In few-
shot learning, the proposed partial token generation
makes the task-specific adapter more resilient to
overfitting and furthermore reduces the overall out-
put space which leads to stable RL training. Here,
in order to make the two token generators (poli-
cies) complement each other as well as to realize
the robust output selection at the token level on
the fly, we exploit a separate token-level policy se-
lector. Note that both the policy selector and the
task-specific adapter are simultaneously learned by
the RL algorithm. Experimental results on various
few-shot NLG tasks show that the proposed se-
lective token generation outperforms the previous
PLM-based additive learning algorithms with the
comprehensive (non-selective) token generation.

Our main contributions can be summarized as
follows.

• A novel selective token generation between
the PLM and the task-specific adapter is pro-
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posed for few-shot NLG.

• RL is applied to train both the policy selector
and the task-specific adapter that is comple-
mentary to the PLM in text generation.

• Extensive empirical validation on few-shot
NLG tasks demonstrates that the proposed
selective token generation performs better in
comparison to the previous PLM-based addi-
tive learning algorithms.

2 Background

2.1 Natural Language Generation

The goal of NLG is to generate a text sequence
y = [y0, ..., yT ] for a given task, where yt is the
tth output token from a vocabulary V , and T is the
output sequence length. For this generation, we
aims to model the distribution of y that is autore-
gressively factorized as pθ(y) =

∏T
t=0 pθ(yt|y<t),

where θ denotes the model parameters and y<t =
[y0, ..., yt−1]. Here, the conditional distribution to
sample a token for each step, pθ(yt|y<t), is de-
fined by the softmax function on the output logits
fθ(yt|y<t). Note that in general, the language gen-
eration is conditioned on input context according
to a given task. Here, we encode the conditioning
context by the same sequential model for generat-
ing an output sequence, and for simplicity we omit
it.

2.2 Additive Learning for Few-shot
Generation

To effectively leverage the general linguistic knowl-
edge, θ is first initialized by the PLM parame-
ters, θLM , for NLG. Given N task-specific train-
ing instances, D = {yn∗}Nn=1, where yn∗ is the
nth ground-truth output sequence, directly finetun-
ing θLM using D can incur the severe overfitting
problem when N is small in the few-shot scenario.
Therefore, we add the task-specific adapter, gθa pa-
rameterized by θa, on top of the PLM, and optimize
only θa (Zeldes et al., 2020; Stickland and Murray,
2019). In specific, we reformulate f(·|y<t; θ) =
W Th(y<t; θh) where W ∈ RH×|V| and h ∈ RH
denote the weight matrix and the penultimate rep-
resentations, respectively, and θ = {W, θh}. Then,
we define the task-specific conditional distribution

as follows:

p(yt|y<t; θLM , θa) = σ

(
WLM

ThLM (y<t)

+Wa
T g
(
hLM (y<t); θg

))
, (1)

where hLM (y<t) = h(y<t; θh,LM ), θa =
{Wa, θg} and σ is the softmax function. Here,
the summation of the PLM logits and the adapter
logits is motivated by auxiliary training2 (Zeldes
et al., 2020). It is noted that in our additive
learning θa is updated while θLM is kept frozen.
Hence, in the following we omit θLM such that
pθa(yt|y<t) = p(yt|y<t; θLM , θa) for simplicity.

2.3 Reinforcement Learning (RL)
As an alternative to MLE, RL is able to overcome
the exposure bias problem of MLE by sequence-
level sampling from the model distribution dur-
ing training (Ranzato et al., 2015) and allows to
leverage the target-specific sequence-level objec-
tives such as BLEU (Wu et al., 2018; Guo et al.,
2021). In order to use RL for our additive learn-
ing, we reformulate our text generation as an RL
problem: at each time step t, the agent takes the
current state st = y<t as an input and performs
an action at that outputs a token yt by a policy
πθ(at|st) corresponding to pθ(yt|y<t). Then, the
agent receives a reward rt = r(st, at) and de-
terministically transitions to the next state st+1.
Here, note that the token-level intermediate re-
ward rt = 0,∀t < T when we use the delayed
reward associated with the sequence-level evalu-
ation metric between the two full sequences, y
and y∗. Let τ = {(st, at, rt)}Tt=0 be the trajec-
tory generated by πθ. The RL objective for the
optimal agent is to maximize the expected sum
of future discounted rewards Eτ∼πθ [

∑T
t=0 γ

trt],
where γ ∈ [0, 1] is the discount factor. We em-
ploy an actor-critic algorithm (Bahdanau et al.,
2017) which requires the additional critic net-
work to estimate the value of a state, V π(st) =
Eπ[
∑T

t′=t γ
t′−trt′ |st] =

∑
at
π(at|st)Qπ(st, at)

where the state-action value function Qπ(st, at) =
Eπ[
∑T

t′=t γ
t′−trt′ |st, at] = rt+V

π(st+1). We use
the policy gradient loss to learn the policy param-
eters θ: L = −∑T

t=0A
πθ(st, at) log πθ(at|st),

2Although the auxiliary training is particularly designed
for maximizing the likelihood of the target task output, it
also can take an advantage for RL since the adapter logits are
nearly zero before training is advanced. Namely, it lets the
task-specific conditional distribution start learning from the
distribution of PLM, not a uniform distribution.

5839



Figure 1: Text generation processes of Non-STG and STG are described. In the Non-STG, every token is sampled
from the task-specific policy πa (Left). On the other hand, in the proposed STG, each token is selectively sampled
from either the PLM policy πLM or the test-specific policy πa where the selection is performed by the selection
policy πs (Right). Symbols with dashed line represent learnable models.

where Aπθ(st, at) = Qπθ(st, at)− V πθ(st) is the
advantage function.

3 Selective Token Generation

Instead of generating all tokens in an output se-
quence from the single task-specific policy, πa =
πθa(at|st), at each time step t, we sample an out-
put token yt selectively from either the PLM policy
πLM = πθLM (at|st) or the task-specific policy πa:

yt = at ∼
(
1t[πLM is selected]πLM (at|st)

+ (1− 1t[πLM is selected])πa(at|st)
)
, (2)

where 1t[·] is the indicator function (at t) that
equals 1 if it is true and 0 otherwise. This output
token selection allows to explicitly utilize a gen-
eral linguistic knowledge from the PLM without
catastrophic forgetting in few-shot learning. Also,
the task-specific policy can focus on generating
only the task-relevant parts, which enables more
effective few-shot training with a reduced search
space.

Now we need to determine how to select the
proper policy at each step on the fly as well as to
make the task-specific policy complementary to
the PLM policy. For this, we exploit a separate
token-level policy selector. The proposed policy
selector πs(it|st; θs) with the parameters θs, where
it ∈ {0, 1}, is an another policy that stochastically
decides a policy to generate at for st. Namely,
a token sample yt is generated by the following
process:

it ∼ πs(it|st), (3)

yt =

{
at ∼ πLM (at|st) if it = 0,

at ∼ πa(at|st) if it = 1.
(4)

This process can be considered as a to-
ken generation from a hierarchical policy
πh(at|st; θs, θLM , θa) where the policy selector
represents the upper-level prior for the preference
of the low-level policy. Therefore, the value func-
tion of this hierarchical policy can be formulated
as

V πh = Eπh [
T∑

t′=t

γt
′−trt′ |st]

= πs(0t|st)
∑

at

πLM (at|st)Qπh(st, at)

+ πs(1t|st)
∑

at

πa(at|st)Qπh(st, at),

and Aπh(st, at) = Qπh(st, at)− V πh(st). We de-
note it = 0 and it = 1 as 0t and 1t respectively.
Here, it is noted that a single critic network is used
for the hierarchical policy since it does not affect
st. Given a sample trajectory {(st, it, at, rt)}Tt=0,
the loss for optimizing θs and θa is

L = −
T∑

t=0

Aπh(st, at)

(
1[0t]LLM + 1[1t]La

)
, (5)

where

LLM = log sg[πLM (at|st)] + log πs(it|st),
La = log πa(at|st) + log πs(it|st)

and sg stands for the stop-gradient operator. Similar
to πa, πs makes use of the PLM representations and
the task-specific adapter such that

πs(it|st; θs) = σ

(
m
(
g
(
hLM (st)

)
; θs

))
, (6)
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where σ is the softmax function and m is the se-
lector module. Figure 1 depicts the overall text
generation process by the proposed selective token
generation (STG) in comparison to the previous
non-selective token generation (Non-STG). Here,
note that since all policies in STG share the same
PLM representations, the increased computational
cost by STG over Non-STG is negligible.

The use of the separated policy selector that is
simultaneously trained with the task-specific policy
allows the task-specific policy to be complemen-
tary to the PLM policy. Especially, this cooperative
ensemble learning can be realized by our RL algo-
rithm that performs sequential sampling from the
model during training.

The advantages of STG are as follows: (1) STG
makes use of the PLM not at the feature level but
the output distribution level in text generation. In
our few-shot learning this is beneficial in explic-
itly retaining strong linguistic and world knowl-
edge from the PLM. (2) STG resolves the exponen-
tially large search space |V|T since the frozen PLM
chooses a token when it is selected, and therefore
the search space of the generator is approximately
decreased from |V|T to |V|T−TPLM where TPLM
is the average length of sequences generated by
PLM. (3) STG is efficient in credit assignment.
The loss function of STG (Equation 5) intuitively
shows that the gradient to the task-specific policy
πa associated with producing at will depend on the
selector’s action (i.e. it = 1). Hence, unlike Non-
STG, πa of STG knows which token is used as a
task-specific token and contributed to the reward
(see Figure 2 for an illustration).

It is noted that although the STG also can be
trained by MLE, it can be easily collapsed to select
only a task-specific policy irrespective of a given
content. We analyze the MLE version of STG in
Appendix B.

4 Experiments

We evaluate our method against additive learning
baselines on Data-to-Text, Question Answering
and Text Summarization tasks which are widely
used in few-shot NLG.

4.1 Baseline

PLM. In our experiments, we assume that the PLM
works to some extent for a given task. However, the
naive PLM usually does not satisfy it for a new task
unseen during training. Hence, we finetuned GPT-

Figure 2: A simple schematic illustration of Non-
STG and STG. Non-STG(RL): the whole sequence
of target is generated from the task-specific policy
πa so the right sub-sequence AB is also penalized
from the delayed feedback. STG: the third token
is sampled from πa and the model lets the other
tokens (highlighted with cyan) generated from the
PLM’s policy πLM which generates a next letter
of the previous alphabet input. Here, πa will be
penalized at the third token.

23 (Radford et al., 2019) with MLE for few epochs
and used it as the PLM. Fine-tuning the PLM with
MLE is most commonly used for task adaptation
and thus it can also be a strong baseline. This fine-
tuning phase accelerates the learning of the adapter.
This is particularly when the adaptation requires to
cover the large domain shift. Severe performance
degradation was observed for all the tasks when we
skipped this fine-tuning.
Non-STG. This method stands for Non-Selective
Token Generation which uses the above the PLM
as an encoder (frozen) and the adapter (additional
layer to be trained). We use two objectives, MLE
and RL, for additive learning. These will be de-
noted as Non-STG-MLE and Non-STG-RL, respec-
tively.
STG-Naive Ensemble. We believe that the pro-
posed generation encourages the task-specific pol-
icy (πa) to complement the PLM’s policy (πLM )
with a proper selection of the selector through the
joint training. To investigate this, we evaluate
against two different naive ensembles of the poli-
cies, πa trained from Non-STG and πLM of the
PLM. These ensemble schemes are as follows:

3We make use of GPT-2 with 345M parameters as the ini-
tial checkpoint. We follow the training details in the previous
works (Peng et al., 2020; Khandelwal et al., 2019) for each
task.
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Restaurant Hotel TV Laptop
Model BLEU ↑ ERR ↓ BLEU ↑ ERR ↓ BLEU ↑ ERR ↓ BLEU ↑ ERR ↓

PLM 19.42 12.57 35.84 13.74 29.0 9.15 28.27 9.31
Non-STG-MLE 17.21 15.87 28.42 12.64 29.83 10.05 26.76 10.52
Non-STG-RL 18.01 11.98 36.72 12.64 28.66 9.19 28.59 9.21
NE(max)-MLE 14.12 15.27 31.32 14.29 28.23 10.21 26.93 10.02
NE(mix)-MLE 25.27 14.97 37.13 15.93 32.85 16.31 32.91 14.77
NE(max)-RL 15.2 11.68 32.68 16.48 28.91 9.24 28.66 9.51
NE(mix)-RL 24.1 19.16 38.07 18.68 32.84 18.06 32.53 17.14
STG 21.28 10.78 38.09 11.54 30.24 9.03 30.41 8.91

Table 2: Data-to-Text performance on FewShotWOZ dataset.

• NE(max): πmax = σ(Max(πa, πLM ))

• NE(mix): πmix = (πa + πLM )/2

We also evaluate another naive ensemble strategy
NE(random) that randomly selects a token policy
at each step between πa and πLM , however it shows
lower performances than the others.

4.2 Implementation

Adapter. The task-specific adapter g in Section 2.2
is implemented by a LSTM to encode the dynam-
ics of the representation vector hLM . We found
that the use of MLP was not good in the sense of
performance.
Selector. We use a 2-layer MLP with ReLU activa-
tion for m of Equation 6.
Reinforcement Learning. We employ Actor-
Critic method (Konda and Tsitsiklis, 2000; Fedus
et al., 2018) for RL. The agents (i.e. selector and
generator) receive a reward after generating a sen-
tence. Here, we use different reward functions
according to tasks. We use delexicalised BLEU for
Data-to-Text following (Peng et al., 2020), Aver-
aged score of BLEU and ROUGE-L for Question
Answering and ROUGE-L for Text Summariza-
tion following (Paulus et al., 2017) as the reward
function.
Token Sampling. During the training, it ∈
{0, 1} ∼ πs is first sampled, and then we use either
πLM of the PLM for it = 0 or the task-specific
policy πa for it = 1 to sample the tth token. Dur-
ing the evaluation, any decoding strategy, such as
a beam search, can be used with the mixture of
policies πh(·) = πs(0t)πLM (·) + πs(1t)πa(·). We
use the beam search decoding with a sample size
of k = 3 for Text Summarization and topp = 0.9
decoding for both Data-to-Text (k = 10) and Ques-
tion Answering (k = 3).

4.3 Data-to-Text

Data-to-Text is a task that transforms structured
data such as graphs or tables into natural language.
Recent works (Mager et al., 2020; Peng et al., 2020;
Kale, 2020) show that the PLM can be adapted suc-
cessfully to this task by taking a serialized form
of data as an input without a carefully designed
model to encode the structured data. Here, we per-
form experiments on FewShotWOZ (Peng et al.,
2020) dataset. The evaluation is conducted on the
topics which are available4. Only 50 instances for
each topic are available for training and 129, 78,
1379, and 680 testing instances for Restaurant, Ho-
tel, Laptop, and TV, respectively. The models are
evaluated by measuring fluency and informative-
ness using BLEU score and ERR (slot ERror Rate),
respectively. Table 2 shows the obtained results.

4.4 Long Answer Question Answering

We consider Long Answer Question Answering
(QA) task on MS-MARCO (Nguyen et al., 2016)
dataset. In this task, a passage and a query are
given, and the model generates an answer with
respect to the query by referring to the passage.
Here, we randomly sample various sizes of (50,
100, 500, 1,000 ≈ 1%, and 2,000) subset data
from the train dataset. We also sample a valida-
tion and a test set, which contains 500 and 12,000
instances, respectively, from the dev dataset. We
repeat this test three times with different random
seeds and thus perform experiments on total nine
subsets. The models are evaluated by measuring
BLEU and ROUGE-L (denoted as R-L). We report
averaged performances over the three runs and av-
eraged performance gain against the PLM in Table
3 and Figure 3, respectively.

4https://github.com/pengbaolin/SC-GPT

5842



50 shot
Model BLEU R-L

PLM 19.99 29.01
Non-STG-MLE 27.46 35.08
Non-STG-RL 20.07 28.94
NE(max)-MLE 27.21 34.95
NE(mix)-MLE 26.97 35.1
NE(max)-RL 20.05 28.9
NE(mix)-RL 20.69 29.62
STG 33.33 39.59

100 shot
BLEU R-L
34.93 41.27
34.08 40.93
35.08 41.28
34.76 41.87
35.31 41.82
35.0 41.16
35.11 41.33
36.3 43.24

500 shot
BLEU R-L
35.64 43.10
34.53 43.08
35.08 42.78
34.69 43.93
36.26 44.43
35.14 42.94
35.93 43.52
37.37 44.53

1, 000 shot
BLEU R-L
41.49 49.76
41.02 50.14
41.25 49.97
41.11 50.77
42.26 51.14
41.51 50.54
42.29 50.84
42.76 51.19

2, 000 shot
BLEU R-L
47.72 56.02
47.85 56.81
48.00 56.83
47.65 57.22
48.44 57.3
47.58 57.06
48.28 57.02
48.42 57.3

Table 3: Averaged performances for Question Answering on various few-shot subset data of MS-MARCO.

Figure 3: Averaged performance gains against the PLM for Question Answering on various few-shot subset data of
MS-MARCO. The x-axis represents the size of the subset data and the shaded area represents a range of standard
deviation over 3 randomly sampled subset data with different random seeds. STG provides significantly larger gains
compared to Non-STGs on BLEU (Left) and ROUGE-L (Right).

4.5 Text Summarization

We consider the problem of abstractive summa-
rization for long text generation. Here, we ran-
domly sample various sizes of (50, 100, 300, 1,500,
and 3,000 ≈ 1%) subset data from CNN/Daily
Mail (See et al., 2017). We repeat this test three
times for each size of few-shot as in above QA
task. ROUGE (Lin, 2004) is commonly used to
evaluate n-grams recall of the summaries with gold
references. The models are evaluated by measuring
ROUGE-1, ROUGE-2, and ROUGE-L (denoted as
R1, R2, and R-L, respectively). We report aver-
aged performances over the three runs and aver-
aged performance gain against the PLM in Table 4
and Figure 4, respectively.

4.6 Result

In most cases, additive learning improves the per-
formances over the PLM. However, they do not
always guarantee a performance improvement. For
example, the ERR score of the PLM on Laptop
shows a better result except for STG and NE(mix)-
RL (see Table 2) and the Non-STGs trained on
1, 000 ≈ 1% few-shot subset of MS-MARCO do
not outperform the PLM (see Table 3).
Data-to-Text. As shown in Table 2, we can ob-

serve that the Non-STGs do not outperform the
PLM even though it has more neural units and takes
more training time. The models trained on the RL
objective show better performances for the ERR
(lower is better). Interestingly, NE(mix) methods
show strong improvements for the BLEU which
measures the fluency of sentence but obvious de-
generation for the ERR which measures the rate of
missing information from the given data. These re-
sults suggest that the PLM is much more capable of
task-general knowledge than the task-specific gen-
erator (i.e. πa) trained on few-shot dataset, which
ensures our motivation of jointly training the pol-
icy selector and the task-specific generator is valid.
Note that while other methods show some trade-off
between BLEU and ERR, only STG shows im-
provements on both metrics for all topics in the
dataset.

Question Answering. As shown in Table 3, STG
shows significantly better performances than the
other methods. Notably, NE(mix) show good per-
formances as much as STG especially where the
training data size ≥ 1, 000. It obviously suggests
that the PLM can be a complementary model to the
additional model. Therefore, in this context, it can
be lost of the prior knowledge of the PLM even if

5843



50 shot
Model R1 R2 R-L

PLM 14.67 4.57 10.69
Non-STG-MLE 15.39 4.81 11.09
Non-STG-RL 15.22 4.76 11.08
NE(max)-MLE 15.52 4.89 11.24
NE(mix)-MLE 15.4 4.83 11.16
NE(max)-RL 15.14 4.73 11.02
NE(mix)-RL 14.95 4.67 10.89
STG 17.4 5.33 12.42

100 shot
R1 R2 R-L

16.58 5.28 12.05
17.09 5.41 12.3
16.55 5.25 12.0
16.98 5.43 12.26
16.88 5.4 12.22
16.52 5.27 11.99
16.6 5.29 12.04

17.96 5.73 12.94

300 shot
R1 R2 R-L

19.38 7.08 13.74
18.9 6.87 13.36

19.61 7.11 13.83
19.19 7.0 13.56
19.45 7.07 13.75
19.47 7.1 13.76
19.58 7.14 13.84
23.27 8.32 16.29

1, 500 shot
R1 R2 R-L

30.19 11.27 21.21
30.34 11.32 21.2
30.35 11.34 21.22
30.33 11.31 21.2
30.32 11.31 21.23
30.37 11.35 21.26
30.28 11.3 21.22
30.47 11.37 21.36

3, 000 shot
R1 R2 R-L

33.05 12.96 23.39
33.19 12.98 23.39
33.22 12.99 23.4
33.19 12.99 23.4
33.11 12.99 23.41
33.21 12.99 23.41
33.14 13.0 23.42
33.45 13.14 23.66

Table 4: Averaged performances for Text Summarization on various few-shot subset data of CNN/DM.

Figure 4: Averaged performance gains against the PLM for Text Summarization on various few-shot subset data
of CNN/DM. The x-axis represents the size of the subset data and the shaded area represents a range of standard
deviation over 3 randomly sampled subset data with different random seeds. STG provides significantly larger gains
compared to Non-STGs on ROUGE-1 (Left), ROUGE-1 (Middle), and ROUGE-L (Right).

the additional model has been built over the feature
space of the PLM. In addition, we can expect that
STG would be more beneficial on the small number
of samples for this kind of tasks which depend on
the PLM’s ability like common sense knowledge.
As shown in Figure 3, STG shows strong improve-
ments compared to Non-STG-RL especially where
the training data size ≤ 500.

Summarization. As shown in Table 4, STG shows
significantly larger gains than Non-STGs, and their
naive ensembles with the PLM in every score met-
ric and training data size. Similar to QA, STG
shows improvements compared to Non-STGs espe-
cially where the training data size ≤ 300 as shown
in Figure 4. However in contrast to the QA task,
the improvement may seem limited for all models
including STG. We think that the adapters used in
this study may not be suitable for this particular
task which requires to understand the long context
and compress it into a summary. It may need the
use of lower-level features or more parameters to
adapt to such tasks. We discuss this limitation in
Section 6.

Overfitting in Non-STGs. In the example as
shown in Table 1 the answer of STG, which is close
to the ground truth, is generated by the PLM policy
πLM after some sequence of tokens (conflict is)
that are sampled from the task-specific policy πa.

The Non-STGs generate general meaning which
is not intended. We can find such examples for
the other tasks in Appendix C: In Data-To-Text, as
shown in the last example of Table 6, Non-STG
generates nicam stereo which is not appeared in
the given data. This is due to that nicam stereo was
appeared 7 times (7/50, 14%) in training data. In
Summarization, as shown in the first example of
Table 10, Non-STGs only consider the forepart of
the given article. Since the most of the major in-
formation is appeared in the forepart in News data,
Non-STGs can be easily overfitted to generate the
text according to such a pattern. Hence, we claim
that Non-STG is easily exposed to learning patterns
of typical answering, but STG resolves this issue
since it can be fully accessible to the knowledge of
the PLM.

5 Related Work

Recently, prompt-based in-context learning with
an extremely large PLM shows impressive few-
shot generation performances (Radford et al., 2019;
Brown et al., 2020). Schick and Schütze (2020) pro-
pose manually designed natural language prompts
for improved few-shot text summarization and
headline generation. Elsahar et al. (2018) conduct
zero-shot learning for question generation from
knowledge graphs, however they require a large
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amount of in-domain training data for their transfer
learning. Chen et al. (2020) directly finetune the
pretrained GPT-2 with a small amount of serialized
attribute-value pairs for table-to-text generation.
Gong et al. (2020) further apply multiple tasks to
effectively leverage the structured information of
tables. In contrast to these approaches, our pro-
posed method utilizes RL-based additive learning
for few-shot text generation.

Applying RL for text generation has been widely
used to mitigate the exposure bias problem of MLE
as well as to directly optimize task-relevant eval-
uation metrics. Ranzato et al. (2015) use the RE-
INFORCE algorithm for text summarization and
machine translation while Bahdanau et al. (2017)
use the actor-critic algorithm for machine trans-
lation. However, they require pretraining using
MLE. Ding and Soricut (2017) propose softmax
policy gradient to remove the MLE-based pretrain-
ing. However, it requires various techniques for
effective training. Tan et al. (2018) propose an
entropy-regularized policy optimization that sub-
sumes many of the previous training algorithms.
Our proposed method is different from these meth-
ods in that we apply RL for more difficult few-shot
generative modeling.

The use of RL training in PLM has been explored
in many works. Dathathri et al. (2020) propose a
controllable text generation which uses discrimina-
tors to guide generation of the PLM. This approach
assumes that constant classes like topics or pref-
erences are available. Lazaridou et al. (2020) use
a PLM as a caption generator for given image. In
their referential game, the generator is rewarded by
a kind of discriminator that responses a signal to
the generator whether the corresponding caption is
correct or not.

Various methods take into account the RL tasks
with large action spaces like NLG. Dulac-Arnold
et al. (2015) consider only actions in a cluster
around the latent state of action obtained from a
given state. Chandak et al. (2019) define the action
embedding as a distribution with semantic of ac-
tion and use a deterministic policy to take an action.
Even-Dar et al. (2003); Zahavy et al. (2018) devise
a method of incorporating the process of directly re-
moving unnecessary actions according to the state
in the RL problem. Unlike these approaches, we
use the hierarchical policy that reduces the sequen-
tial action space.

6 Limitations & Future work

Adapter. In this study, we aim to propose a new
generation framework for few-shot natural lan-
guage generation tasks. In particular, a relatively
naive neural adapter which utilizes only the top
layer of the PLM is used in this paper, and thus
it may lead to limited improvements as shown in
the experimental results on the summarization task.
Fortunately, there are several neural architectures
(Houlsby et al., 2019; Li and Liang, 2021b; Alayrac
et al., 2022) for efficient task adaptation, and we
believe that such adapters also make STG more ef-
ficient for covering a large domain shift and scaling.
The study on the architectures of the adapters will
be conducted in future works.
Efficient exploration. The fundamental limitation
in STG is a high dependency on PLM; When STG
has a sufficient powerful PLM, the selector does not
select the additional adapter and it is thus nothing
more than the PLM. We can find such phenomenon
in some examples in Table 7 and 8 in Appendix.
On the other hand, when STG has an extremely
poor PLM, the selector selects the adapter always
and it is thus equivalent to Non-STG. Therefore,
in the perspective of exploration of RL the STG
needs balanced selections between the PLM and
the adapter. Furthermore, the use of RL objective
requires more training time than the methods which
use MLE objective such as Prefix-Tuning (Li and
Liang, 2021b) due to the auto-regressive sequence
sampling during training. Therefore, an analysis on
efficient exploration of STG is important for future
works.

7 Conclusion

In this work, we propose to exploit a selective to-
ken generation between the pretrained language
model and the task-specific adapter with RL-based
additive learning for the tasks of few-shot natu-
ral language generation. In particular, we devise
a trainable policy selector at the token level and
jointly learn it with the task-specific policy. The
proposed policy selector and RL algorithm make
the two policies complementary to each other and
lead to robust few-shot generative modeling. Ex-
perimental results on various tasks of few-shot text
generation show that the proposed selective token
generation along with RL-based additive learning
consistently and significantly improves the perfor-
mances with less overfitting.
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A Training Settings

In our experiments all the models of additive learn-
ing, Non-STG and STG, are used the same archi-
tecture and hyper-parameters (except whether to
use pre-training) for training as described in Table
5. We found that pre-training the addtional layer
of Non-STG-RL with MLE helps the performance
improvements. On the other hand, STG without
pre-training shows better performances. We use
the training data for each topic of the task of Data-
to-Text as their validation data.

B Additonal Study

B.1 STG-MLE

Here, we evaluate the MLE version of STG (de-
noted as STG-MLE) which is trained by MLE for
the mixture policy πh(·) = πs(it = 0)πLM (·) +
πs(it = 1)πa(·) similar to copy mechanism (Gu
et al., 2016). In few-shot training, the explicit use
of PLM logits can efficiently reduce the fine-tuning
loss especially when the adapter is light since the
adapter can focus only on the task-relevant part in
generation. STG-RL5 learns to do this naturally by
stochastic policy sampling if the policy selector is
initialized to perform uniform sampling. On the
other hand, STG-MLE can be easily collapsed to
select only a task-specific policy (i.e. it = 1). This
is because the gradient flows the additional model
only and, unlike STG-RL, there is no chance to
exploit diverse paths during training in the teacher
forcing manner. As shown in Figure 6, the score of
STG-MLE starts from the same point of STG-RL
but it collapsed to Non-STG-MLE.

B.2 Learning Curve

It is well known that the RL-tuning resolves the
exposure bias of MLE-tuning. We can expect that
an additive learner of MLE would be affected by
the exposure bias as well, and the RL objective
for additive learning resolves it. Here, we present
some learning curves6 obtained from training in
our experiments. As shown in Figure 6, the learn-
ers of MLE seem to have overfitting (in terms of
Perplexity, PPL) and exposure bias (in terms of
Score). On the other hand, the learners of RL were
less effected by the problems. We can find that the

5We add "-RL" to the STG to distinguish with STG-MLE
in this context.

6The curve for Data-to-Text is not presented since there is
no actual validation set.

STGs (denoted STG-RL) are superior to the others
from the perspective of the score.

B.3 Effectiveness of Selector
Here, we investigate the effectiveness of the selec-
tor πs of the STG. We compare Fixed Selection
against the Dynamic selection. In the fixed selec-
tion, the probability of selecting the PLM’s policy
πLM is fixed to πs(it = 0|st) = 1 − πs(it =
1|st). We measure the performance with respect to
πs(it = 1|st) = c where c is a constant. The selec-
tion will be uniformly random when c = 0.5, and
when c = 0, the performance will be equivalent
to the performance of the PLM without additive
learning. Figure 5 shows that the input-dependent
dynamic selection by our STG outperforms the
fixed selection with any c. We can find that how
πs works for each task. For instance, in QA task,
the first few tokens of an answer may decide the
quality of generation (i.e. "yes" or "no" in binary
QA). Therefore, an optimal strategy of the STG
might be producing the first few tokens sampled
from the task-specific πa and the remaining tokens
from the PLM πLM . The curve supports this inter-
pretation since the score is decreased as c is close
to 1. Our STG learns such a strategy as shown
from the generated answers in Table 7 and 8. In
Data-to-Text, the BLEU score is increased as c is
close to 1 while the ERR score is decreased. This
fact supports the results of NE(mix) models as dis-
cussed in Section 4.6. The πs learns to balance
between the BLEU and ERR.

C Generated Sentence Examples

Here, we show generated sentence examples for
each task (see Table 6 for Data-to-Text, Table 7 and
Table 8 for Question Answering and Table 9 and
Table 10 for Summarization.). The tokens sampled
from the task-specific policy πa are presented in
red.
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Hyper-parameter Summarization Data-to-Text Question Answering
Num layer 2
RNN hidden size 512 256 256
γ 1
Optimizer AdamW with betas = (0.9, 0.999), eps = 10−8

Learning rate 2e-5 5e-5
Pre-train epoch 1 0 1
(Non-STG-RL)
Validation data size 500 50 500
Train epochs 25 (50 shot), 20 (100 shot), 15 (300 shot), 30 50 (50 shot), 40 (100 shot), 20 (300 shot),

8 (1,500 shot), 4 (3,000 shot) 10 (1,000 shot), 5 (2,000 shot)
Batch size 16 10 16

Table 5: Hyper-parameters used for experiments

Figure 5: Dynamic selection vs Fixed selection.
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Figure 6: The learning curve. The Perplexity (PPL) and Score of each task (e.g. Rouge-L for Summarization) are
measured on the 0.5% few-shot train set and the valid set.
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Data recommend(name=kratos 31; type=television; powerconsumption=31.4 watt; ac-
cessories=remote control and european warranty; color=mat black bezel with mat
black frame stand)

Ground-truth the kratos 31 is a great television . it only consumes 31.4 watts , comes with a
remote control and european warranty and has a stylish mat black bezel with mat
black frame stand .

PLM the kratos 31 features a mat black bezel with mat black frame stand and european
warranty.

Non-STG-MLE the kratos 31 features a mat black bezel with mat black frame stand and european
warranty

NE(mix)-MLE the kratos 31 television has 31.4 watt power consumption, remote control and
european warranty.

STG the kratos 31 television has 31 watt power consumption. it comes with a remote
control and european warranty with a color of mat black bezel with mat black frame
stand.

Data inform(name=triton 52; type=television; family=l7; audio=cevo stereo; screen-
size=47 inch)

Ground-truth the triton 52 47 inch screen television from the l7 product family and has cevo
stereo audio.

PLM the triton 52 television is a 47 inch television in the l7 family and with a cevo stereo.

Non-STG-MLE the triton 52 television is in the l7 family, it has 47 inches of screen, and uses cevo
stereo sound capabilities.

NE(mix)-MLE the triton 52 television is in the l7 family, it has 47 inches of screen, and a 47 euro
price,

STG the triton 52 television is a 47 inch television in the l7 family and has a cevo stereo.

Data inform(name=attis 65; type=television; resolution=1080p; pricerange=cheap)

Ground-truth the attis 65 television is in the cheap price range and has a nice resolution of 1080p.

PLM the attis 65 television in the cheap price range has a 1080p resolution and a
pricerange of cheap.

Non-STG-MLE the attis 65 television has a 1080p resolution, is in the cheap price range and has a
nicam stereo.

NE(mix)-MLE the attis 65 television is a 1080p television in the cheap price range and in the cheap
price range with a nicam stereo.

STG the attis 65 television is in the cheap price range and has a 1080p resolution.

Table 6: Data-to-Text examples from TV of FewShotWOZ dataset.
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Passage zygote : this cell results from the union of an oocyte and a sperm . a zygote is the
beginning of a new human being ( i.e. , an embryo ) . the expression fertilized ovum
refers to a secondary oocyte that is impregnated by a sperm ; when fertilization is
complete , the oocyte becomes a zygote.10 ( emphasis added . )

Query what is a human zygote

Ground-truth the beginning of a new human being .

PLM the expression fertilized ovum refers to a secondary oocyte that is impregnated by a
sperm ;

NE(mix)-MLE the expression fertilized ovum refers to a secondary oocyte that is impregnated by a
sperm ; when fertilization is complete , the oocyte becomes a zygote .

NE(mix)-RL the expression fertilized ovum refers to a secondary oocyte that is impregnated by a
sperm ; when fertilization is complete , the oocyte becomes a zygote .

STG it is the beginning of a new human being .

Passage sometimes the terms reactive airway disease and asthma are used interchangeably ,
but they are not the same thing . often , the term reactive airway disease is used when
asthma is suspected , but not yet confirmed . reactive airway disease in children is a
general term that does n’t indicate a specific diagnosis . it may be used to describe a
history of coughing , wheezing or shortness of breath triggered by infection . these
signs and symptoms may or may not be caused by asthma .

Query symptoms of reactive airway disease in adults

Ground-truth coughing , wheezing or shortness of breath triggered by infection .

PLM symptoms of reactive airway disease in children is a general term that does nt́
indicate a specific diagnosis .

NE(mix)-MLE symptoms of reactive airway disease in adults are a general term that does nt́ indicate
a specific diagnosis .

NE(mix)-RL yes , reactive airway disease in children is a general term that does nt́ indicate a
specific diagnosis .

STG coughing , wheezing or shortness of breath triggered by infection .

Passage sulfate is an anion , composed of a sulfur atom and four oxygen atoms . the overall
charge of this anion is -2. the molecular formula for sulfate is so 4 2-. there , two
oxygen atoms are bonded to the sulfur atom through double bonds and other two are
bonded to sulfur through single bonds . the oxidation state of sulfur in sulfate is +6 .

Query is sulfate sulfur and oxygen bonded

Ground-truth yes , sulfate is sulfur and oxygen bonded .

PLM no answer present .

NE(mix)-MLE yes , sulfate is sulfur and oxygen bonded to the sulfur atom through double bonds
and other two are bonded to sulfur through single bonds .

NE(mix)-RL yes , sulfate sulfur and oxygen bonded to the sulfur atom through double bonds and
other two are bonded to sulfur through single bonds .

STG yes , sulfate is sulfur and oxygen bonded to each other through double bonds and
other two are bonded to sulfur through single bonds .

Table 7: Question Answering examples.5853



Passage gryffindor house is one of the four houses at hogwart into which the students are
sorted when they start their first year . gryffindor is the hogwarts house of founder
godric gryffindor . gryffindor house places high value on traits such as courage ,
chivalry , and nerve . during harry ’ s time at hogwarts , the head of gryffindor house
was minerva [ . . . ]

Query what kind of house is a gryffindor

Ground-truth gryffindor house is one of the four houses at hogwart into which the students are
sorted when they start their first year .

PLM gryffindor house is one of the four houses at hogwart into which the students are
sorted when they start their first year .

NE(mix)-MLE no answer present .

NE(mix)-RL no answer present .

STG gryffindor house is one of the four houses at hogwarts into which the students are
sorted when they start their first year .

Passage the median home value in louisville is $ 119,500 . louisville home values have gone
up 1.8 % over the past year and zillow predicts they will rise 3.0 % within the next
year . the median list price per square foot in louisville is $ 125 . the median price of
homes currently listed in louisville is $ 180,000 . the median rent price in louisville
is $ 1,050 . foreclosures will be a factor impacting home values in the next several
years . in louisville 0.1 homes are foreclosed ( per 10,000 ) .

Query average per therm price in louisville ky

Ground-truth the median home value in louisville is $ 119,500 .

PLM the average per therm price in louisville is $ 119,500 .

NE(mix)-MLE $ 125 per square foot

NE(mix)-RL the average per square foot in louisville is $ 125 .

STG the median home value in louisville is $ 119,500 .

Passage the brain is made up of more than just nerve cells ( neurons ) . although there are
about 100 billion neurons in the brain , there may be about 10 to 50 times that many
glial cells in the brain . neurons have two processes called axons and dendrites ....
glial cells have only one . 2 neurons can generate action potentials ... glial cells can
not . 3 however , glial cells do have a resting potential . 4 neurons have synapses
that use neurotransmitters ... glial cells do not have chemical synapses .

Query number of glial cells vs neurons

Ground-truth 10 to 50 times .

PLM no answer present .

NE(mix)-MLE $ 10 to 50 times that many glial cells in the brain .

NE(mix)-RL no answer present .

STG 10 to 50 times

Table 8: Question Answering examples.
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Article -lrb- cnn -rrb- – three runners died sunday during the detroit free press/flagstar
marathon in detroit, michigan, police told cnn. an emt vehicle is at the scene sunday
in detroit after three runners collapsed at a marathon. all three deaths occurred
between 9 and 9:20 a.m. et, second deputy chief john roach said. a man in his 60s
fell and hit his head, roach said. the cause of the fall was unknown. the man was
transported to detroit receiving hospital, where he was pronounced dead. two other
men, ages 36 and 26, also collapsed during the race and were pronounced dead at
the hospital, roach said. all three collapsed near the end of the race, [...]

Ground-truth second deputy chief john roach : all three deaths occurred between 9 and 9:20 a.m.
man in his 60s fell hit his head ; two men others , ages 36 and 26 , collapsed . race
was detroit free press/flagstar marathon in detroit , michigan .

PLM three runners collapsed at a marathon in detroit , police say . the cause of the fall is
unknown .

Non-STG-MLE three runners collapsed at a marathon sunday , police say . the cause of the fall is
unknown , police say .

Non-STG-RL three runners collapsed at a marathon sunday , police say . the cause of the fall is
unknown , police say .

STG three runners collapsed at a marathon in detroit , michigan . all three deaths
occurred between 9 and 9:20 a.m. et . a man in his 60s fell and hit his head , police
say .

Article london, england -lrb- cnn -rrb- – up to 1,000 human rights campaigners demon-
strated saturday in front of no. 10 downing street, the official residence of british
prime minister gordon brown, calling on the british government to demand that
full democracy be restored in pakistan. jemima khan, center, ex-wife for former
pakistani cricket star imran khan, joins protesters in london. protesters waved
placards and chanted in support of the resignation of pakistani president pervez
musharraf, a week after he imposed a state of emergency in the country. the crowd
of demonstrators massed behind barriers and included jemima khan, the ex-wife
of former pakistani cricket star turned politician imran khan. the demonstrators
carried placards saying “ free the innocent ” and “ end musharraf’s regime ” and
waved pakistani flags. imran khan, who heads the the movement for justice party,
has been under house arrest since the emergency declaration. his ex-wife delivered
a petition to a doorman at downing street, [...]

Ground-truth human rights campaigners demonstrate in front of no . 10 downing street . protests
urged uk government to demand full democracy restored in pakistan . cricketer
turned politician imran khan ś ex wife jemima among protesters .

PLM pakistani president pervez musharraf has been under house arrest since the emer-
gency declaration . his ex-wife delivered a petition to a doorman at downing street
.

Non-STG-MLE pakistani president pervez musharraf has imposed a state of emergency in the
country . he has been under house arrest since the emergency declaration .

Non-STG-RL pakistani president pervez musharraf has imposed a state of emergency in the
country . he has imposed a state of emergency in the country since last week .

STG the official residence of british prime minister gordon brown . hundreds of protesters
demonstrate in front of no . 10 downing street . the petition calls for full democracy
in pakistan .

Table 9: Text Summarization examples.
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Article -lrb- cnn -rrb- spoiler alert! it’s not just women getting cloned. that was the big
twist at the end of “ orphan black’s ” second season. the kickoff to the new season
leads the list of six things to watch in the week ahead. 1. “ orphan black, ” 9 p.m.
et, saturday, april 18, bbc america. the cloning cult sci-fi series remains one of the
most critically acclaimed shows on tv, thanks in large part to the performance of
tatiana maslany, who has taken on at least six roles on the show so far, [...] 2. “ turn
: washington’s spies, ” 9 p.m. et, monday, amc. the series about spies in the early
days of the revolutionary war returns with a new subtitle, “ washington’s spies, ”
and a new monday night time slot. [...] 3. “ game of thrones, ” 9 p.m. et, sunday,
hbo. the world of westeros returns for a fifth season in one of the biggest season
premieres of the year. click here for more on what to expect. [...]

Ground-truth critically acclaimed series “ orphan black “ returns . “ turn : washington ś spies “
starts a second season . “ game of thrones “ is back for season five .

PLM series returns with a new subtitle , “ washington ś spies , “ and a new monday night
time slot . series star jamie bell told cnn what we can expect in the second season .

Non-STG-MLE “ orphan black “ returns with a new subtitle and a new monday night time slot .
series star tatiana maslany is blown away by the response to the series so far .

Non-STG-RL “ orphan black “ returns with a new subtitle and a new monday night time slot .
series star jamie bell says the series will bring more recognition to the culper spy
ring .

STG the new season of “ orphan black “ premieres on saturday the 18th . “ game of
thrones “ returns for a fifth season .

Article energy drinks can pose a real problem for children, according to a new study from
the american heart association. researchers found that 40 % of the 5,156 calls to
poison centers for “ energy drink exposure ” involved children under age 6. in most
of the cases, the parents didn’t know the children had gotten hold of an energy drink.
many of the calls reported the children were experiencing serious side effects, such
as an abnormal heart rhythm, or they were having a seizure. the study is being
presented at the american heart association’s scientific sessions this week. study :
caffeine affects teen boys more. study author dr. steven lipshultz has handled cases
involving children who became sick after consuming energy drinks. while studies
about the impact of caffeine on children are limited, lipshultz, [...]

Ground-truth 40 % of “ energy drink exposure “ calls to poison control centers are for children
under 6. study authors believe the number is under-counted . the fda does not set a
caffeine limit for children .

PLM drug calls to poison centers for “ energy drink exposure “ in most cases , the parents
did n’t know the children had gotten hold of an energy drink . many of the calls
reported the children were experiencing serious side effects , such as an abnormal
heart rhythm .

Non-STG-MLE drug calls to poison centers for “ energy drink exposure “ in most cases , the parents
did n’t know the children had gotten hold of an energy drink . many of the calls
reported the children were experiencing serious side effects , such as an abnormal
heart rhythm .

Non-STG-RL “ this is a very concerning finding , “ dr. laurence sperling says . the american
academy of pediatrics recommends children consume no caffeine .

STG drug calls to poison centers for “ energy drink exposure “ nearly 40 % of calls to
poison centers for “ energy drink exposure “ involved children under age 6. study :
caffeine affects teens more .

Table 10: Text Summarization examples.5856
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Abstract

Text infilling aims to restore incomplete texts
by filling in blanks, which has attracted more at-
tention recently because of its wide application
in ancient text restoration and text rewriting.
However, attribute-aware text infilling is yet
to be explored, and existing methods seldom
focus on the infilling length of each blank or
the number/location of blanks. In this paper,
we propose an Attribute-aware Text Infilling
method via a Pre-trained language model (A-
TIP), which contains a text infilling component
and a plug-and-play discriminator. Specifically,
we first design a unified text infilling compo-
nent with modified attention mechanisms and
intra- and inter-blank positional encoding to
better perceive the number of blanks and the
infilling length for each blank. Then, we pro-
pose a plug-and-play discriminator to guide
generation towards the direction of improving
attribute relevance without decreasing text flu-
ency. Finally, automatic and human evaluations
on three open-source datasets indicate that A-
TIP achieves state-of-the-art performance com-
pared with all baselines.

1 Introduction

Originating from Cloze tests (Taylor, 1953), text
infilling aims to fill in missing blanks in a sentence
or paragraph by making use of the preceding and
subsequent texts. For example, given two infilling
tasks E1 and E2 in Fig.1, text infilling models are
supposed to provide fine-grained control over the
location of any number of blanks and infill a vari-
able number of missing tokens for each blank. Text
infilling has been gaining increasing attention in
a number of prevailing research fields, including
ancient text restoration (Lazar et al., 2021), text
editing and rewriting (Su et al., 2021), and conver-
sation generation (Ou et al., 2021).

However, current text infilling methods are based
only on bidirectional semantic constraints (Ou
et al., 2021), and other abundant attribute-based

E1: Sentiment Infilling  

SST-5 Dataset    Watching these [Mask] is both [Mask] and [Mask].
Roberta
BLK

Watching these kids is both funny and heartbreaking too. 
Watching these teams is both inspiring and the action.

A-TIP with  Positive  Relevance Infilling.      Attribute set:  c = {Positive}     
Watching these performances is both inspiring and artfully mesmerizing. 
A-TIP with Negative Relevance Infilling.      Attribute set: c = {Negative}
Watching these shows is both boring and disgusting me much.

E2: Expert Knowledge Infilling

Abstract Dataset     [Mask] of [Mask] and [Mask] of their [Mask].
TIGS Systems of and control and capability of their distance.
BERT One of her friends and one of their friends.
A-TIP with Computer Science Relevance Infilling. Attribute set:  c = {CS}
Analysis of data sources and functions of their programs.
A-TIP with Math Relevance Infilling.                  Attribute set:  c = {Math}
Introduction of randomness matrices and decomposition of their method.

Figure 1: A-TIP can generate more fluent, diverse and
attribute relevant infilling content in two examples.

constraints, e.g., sentiment and topics, remain to
be studied. In reality, infilling attribute-aware con-
tent can better satisfy human needs and introduce
more diversity. For instance, as shown in Fig.1,
A-TIP can fill in blanks under the guidance of an
attribute to satisfy sentiment or expert knowledge
infilling, while current text infilling models mainly
focus on fluency, which leads to meaningless and
monotonous infilling contents (Sun et al., 2021).

Designing a simple but efficient attribute-aware
text infilling model is a challenging task. First,
to achieve attribute awareness, simply modify-
ing a text infilling model architecture or fine-
tuning with attribute-specific data will destroy the
model’s ability to infill blanks or require a signifi-
cant cost for re-training (Dathathri et al., 2020).
Second, if the model infills blanks towards the
direction of improving text attributes, avoiding
ill-formedness between infilling content and its
bidirectional context becomes a challenge. For
instance, “The movie interesting and perfect us”
with _ as blanks. Finally, current methods lack
fine-grained control over automatic determination
of the number/location of blanks or the infilling
length for each blank. For example, Markov
assumption-based models (Liu et al., 2019; Zaidi
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et al., 2020) hardly adapt to variable infilling
lengths, while masked language model (MLM)-
based methods (Devlin et al., 2019; Liu et al., 2020)
are incapable of generating more than one word
per blank, and generative LM-based methods (Don-
ahue et al., 2020) cannot guarantee the output will
match the number of missing blanks in the input.

To circumvent the above dilemma, in this pa-
per, we propose an Attribute-aware Text Infilling
method based on a Pre-trained LM (A-TIP), in
which a plug-and-play discriminator provides fine-
grained control over bidirectional well-formed flu-
ency and attribute relevance.1 Specifically, 1) we
first propose a general text filling framework that
fine-tunes a standard LM with many artificially-
masked examples in an auto-regressive manner.
Moreover, to ensure that the number of infilling
contents equals the number of blanks, we design a
new attention mechanism, where unmasked tokens
can attend to each other but masked tokens can at-
tend only to the preceding context (Fig.2 (A)). We
also adopt two-level positional encoding to com-
bine inter- and intra-blank positional information
to automatically learn the length of blanks. 2) To
achieve attribute-aware generation without modify-
ing LM’s architecture or re-training, we propose a
plug-and-play discriminator that shifts the output
distribution of the text infilling model towards the
semantic space of given guide attributes. We also
design two additional strategies to ensure the in-
filling content is well-formed with its bidirectional
context without decreasing attribute relevance. The
main contributions are summarized as follows:
•We propose a unified text infilling model that

adopts a new attention mechanism and two-level
positional encoding to enable our model to learn
the number/location of blanks and infilling length
for each blank automatically.
• To the best of our knowledge, A-TIP is the first

attribute-aware text infilling model that does not re-
quire any modification of the language model’s
architecture or re-training on specific attributed
datasets. Further, our plug-and-play discrimina-
tor can provide fine-grained control over fluency
and attribute relevance, and can be applied to any
transformer decoder-based text infilling model.
• The experimental results on three open datasets

show that A-TIP achieves state-of-the-art perfor-
mance compared with all baselines.

1Sentences with higher accuracy of attribute-based classi-
fication are said to have higher attribute relevance (Dathathri
et al., 2020).

2 Related Work

In this section, we briefly review the most rele-
vant studies to our work on pre-trained LMs, text
infilling, and constrained text generation.

2.1 Pre-trained Language Models

Pre-trained LMs have made significant improve-
ments in many natural language processing tasks
by adopting self-supervised learning with abun-
dant web texts (Chay-intr et al., 2021; You et al.,
2022). They can be classified into three types. The
first uses an auto-encoding model. For example,
BERT (Devlin et al., 2019) and its variations are
pre-trained as masked LMs to obtain bidirectional
contextualized word representations. The second
adopts an encoder-decoder architecture, which is
pre-trained for seq2seq tasks, such as MASS (Song
et al., 2019) and T5 (Raffel et al., 2020). The third
adopts an auto-regressive model, which follows a
left-to-right manner for text generation, such as
GPT-2 (Radford et al., 2019) and XLNet (Yang
et al., 2019). While we adopt GPT-2 as the LM in
this paper, our method can be easily migrated to
any type of pre-trained LMs.

2.2 Text Infilling Approaches

Current text infilling algorithms can be classified
into four categories. Generative adversarial net-
works (GAN)-based methods train GANs to ensure
that the generator can generate highly reliable in-
filling content to fool the discriminator (Guo et al.,
2018; Fedus et al., 2018). Intricate inference-based
methods adopt dynamic programming or gradient
search to find infilling content that has a high like-
lihood within its surrounding context (Liu et al.,
2019; Zaidi et al., 2020). Masked LM-based meth-
ods generate infilling content on the basis of its
bidirectional contextual word embedding (Devlin
et al., 2019; Shen et al., 2020). LM-based methods
fine-tune off-the-shelf LMs in an auto-regressive
manner, and a number of methods change the in-
put format by putting an infilling answer after the
masked input (Donahue et al., 2020), while others
do not change the input format (Zhu et al., 2019).
Unlike the aforementioned methods, we solve a
more complex task: attribute-aware text infilling.

2.3 Constrained Text Generation

Traditional controlled generation models involve ei-
ther fine-tuning existing models (He, 2021) or train-
ing conditional generative models (Keskar et al.,

5858



2019). Dathathri et al. (2020) proposed a plug-
and-play controlled generation model (PPLM),
which does not modify or re-train the parameters
of the original LM but can achieve comparable
performance to fine-tuning methods. For example,
PPCM (Madotto et al., 2020) updates the hidden
state towards the direction of attribute enhancement
to generate attribute-aware conversations. Pascual
et al. (2021) designed a complex plug-and-play
architecture to ensure that the generated content
contains specific keywords. While GeDi (Krause
et al., 2021) and its extension (Lin and Riedl, 2021)
can accelerate the decoding process of PPLM, they
assume the model is trained by large-scale labeled
datasets, which is unrealizable for text infilling.
Unlike the previous work, we should also consider
the generated infilling content is well-formed with
its corresponding bidirectional context, ensuring
PPLM is suitable for text infilling.

3 Preliminaries

To clarify our method, we first introduce some es-
sential background knowledge and then define the
task of attribute-aware text infilling.

Language Models reveal the degree of how
much a sentence (a sequence of words) is likely
to be a realistic sequence of a human language.
Formally, letW be the vocabulary set and w1:n =
{w1, . . . , wn} is a sentence with n words, where
wi ∈ W . An LM measures the joint probability by
decomposing the sequence one by one:

p(w1:n) =

n∏

i=1

p(wi|w<i), (1)

where w<i = {w1, . . . , wi−1}.
Constrained Text Generation: Given k explicit

constraints c = {c1, . . . , ck}, our goal is to gener-
ate a sentence w that maximizes the conditional
probability p(w|c):

p(w|c) =
n∏

i=1

p(wi|w<i, c). (2)

Task Definition: Attribute-aware text infilling
is to take incomplete text w̃, containing one or
more missing blanks, and return completed text
w under the constraints of c. As in Fig.1, several
attributes are listed in c. Specifically, let [Mask]
be a placeholder for a contiguous sequence of one
or more missing tokens. Then, w̃ is a sequence
of tokens in which a number of them are [Mask].

To map w̃ to w, constrained with attribute c, an
infilling strategy must specify both how many and
which tokens to generate for each [Mask]. Note
that there may be many logical w for a given w̃.
Hence, we are interested in learning a distribution
p(w|w̃, c). Specifically, in accordance with Bayes’
theorem, we formulate the probability of predicting
the token wi for its corresponding [Mask] as:

p(wi|w<i, c) ∝ p(wi|w<i) · p(c|w1:i), (3)

where p(wi|w<i, c) can be decomposed into two
parts that deal with the LM for p(wi|w<i) and
the discriminator for p(c|w1:i). In Section 4, we
introduce these two parts in detail. We assume that
any two constraints are independent: p(c|w1:i) =∏k
j=1 p(cj |w1:i).

4 Methodology

The overall framework of A-TIP is shown in Fig.2.
A-TIP contains two components: a text infilling
model and a plug-and-play attribute-aware con-
troller.

4.1 Text Infilling Model
Given a corpus consisting of complete text exam-
ples, we first create infilling examples and then
train the GPT-2 with these examples. Specifically,
given an input example w1:n with n tokens, we
first randomly replace m non-overlapping word
spans S = {s1, . . . , sm} in w with [Mask] to-
kens to form a corrupted text w̃. We also as-
sume each span si contains ni consecutive tokens
[s(i,1), . . . , s(i,ni)]. Then, we concatenate the spans
S separated by [Answer] tokens to form a training
target S̃ = {[Answer], s(1,1), . . . , s(1,n1), [Answer],
. . . , [Answer], s(m,1), . . . , s(m,nm) }. Finally, we
construct a complete infilling example by concate-
nating w̃ and S̃ (see Token Embedding in Fig.2).

There are two advantages of designing such an
input format. First, we add only 2m additional
tokens (one [Mask] and one [Answer] per blank as
shown in Fig.2 “Token Embedding” add 4 tokens
for two spans). Although memory usage for GPT-2
grows quadratically with sequence length, as m
is small, additional training time complexity will
be minimal. Second, we can apply two different
attention strategies for the corrupted text w̃ and
training target text S̃. As shown in Fig.2 (A), while
tokens in the corrupted text have attentions on all
other tokens in w̃, tokens in the training target can
have attentions only on its previous tokens. By
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Figure 2: Model overview. We first fine-tune an off-the-shelf GPT-2 by adopting a new attention mechanism and
two-level positional encoding to infill blanks. Then, we design a plug-and-play discriminator to guide generation
in the direction of improving attribute relevance. We also adopt KL divergence and a threshold-based strategy to
provide fine-grained control over fluency and attribute relevance.

adopting such an attention mechanism, when A-
TIP infills the i-th blank si, it will focus on the
bidirectional context of the i-th blank, which can
ensure the well-formedness and rationality of the
whole sentence.

Current methods hardly perceive the num-
ber/location and infilling length for each blank. We
design two-level positional encoding, which can
provide fine-grained control over them. Specifi-
cally, each token is encoded with two position IDs.
The first position ID represents the inter-position
in the corrupted text w̃ and the second position ID
represents the intra-position in each span.

Finally, A-TIP trains the GPT-2 with the infill-
ing examples in an auto-regressive manner. When
predicting missing tokens in each blank, A-TIP
has access to the corrupted text w̃ and the previ-
ously predicted blanks. Formally, the probability
of generating the i-th blank si is

pθ(si|w̃, s<i) =
ni∏

j=1

p(si,j |w̃, s<i, si,<j), (4)

where θ are parameters for the GPT-2, ni represents
the number of tokens in si, si,j represents the j-
th token in the span si, s<i represents previously
predicted blanks, and si,<j = {si,1, · · · , si,j−1}.

4.2 Plug-and-play Attribute-aware Controller
To clarify our approach, we follow the nota-
tion of Dathathri et al. (2020) and define the
GPT-2 decoding process (Eq.(4)) in a recur-
sive manner. Specifically, we first define Ht,
that contains all historical key-value pairs, i.e.,
Ht = [(K

(1)
t ,V

(1)
t ), . . . , (K

(l)
t ,V

(l)
t )], where

(K
(l)
t ,V

(l)
t ) stores all key-value pairs of t tokens in

the l-th layer. Then, we formally define the recur-
rent decoding process to generate the i-th token as:

oi,Hi = GPT-2(w<i,Hi−1), (5)

where oi is the hidden state of the input at i-th
time-step. Then, we sample the i-th generated
token from the following distribution by beam
search (Hokamp and Liu, 2017):

wi ∼ pi = Softmax(Woi), (6)

where W is a parameter matrix that maps the hid-
den state oi to a vector of the vocabulary size.

In accordance with Bayes’ theorem in Eq.(3),
we have p(wi|w<i, c) ∝ p(wi|w<i) · p(c|w1:i).
To achieve attribute-aware text infilling, when we
infill the i-th blank, we shift history matrix Hi−1 to-
wards the direction of the sum of two gradients: 1)
To maximize the log-likelihood of the attribute c un-
der the conditional attribute model p(c|w1:i) and 2)
To ensure high fluency of text infilling p(wt|w<i).
We update only Hi−1 and fix other model parame-
ters unchanged since next-token prediction depends
only on the past key-value pairs via Hi−1. Thus,
we propose to gradually update Hi−1 to guide fu-
ture generation in the desired direction.

Let ∆Hi−1 be the update to Hi−1 to shift the
generation infilling content towards the desired at-
tribute direction c. At the beginning of the gen-
eration, ∆Hi−1 is initialized to zero, and we can
obtain the unmodified distribution as pi. Then, we
update ∆Hi−1 with gradients from the attribute
model that measures the extent to which the gener-
ated text possesses the desired attribute. Following
Dathathri et al. (2020), we rewrite p(c|w1:i) as Pb
= p(c|Hi−1 +∆Hi−1) and define the gradient up-
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date for ∆Hi−1 as

∆Hi−1 ← ∆Hi−1 + α
∇∆Hi−1Pb

∥∇∆Hi−1Pb∥γ
, (7)

where α is the learning rate and γ is the scaling
coefficient for the normalization term to control the
relevance of the attribute. We repeat Eq.(7) less
than 10 times to generate attribute-aware tokens.
Subsequently, the new H̃i−1 = Hi−1 + ∆Hi−1
is computed, and a new token is generated using
õi,Hi = GPT-2(w<i, H̃i−1). The described opti-
mization process is repeated for every token in the
generated sequence. Compared with the uncondi-
tional LM-based text generation task, this process
will not take much time (see detail in experiments).

Although we can generate attribute-aware infill-
ing content, we can easily generate low-quality,
repetitive, and low-fluency text. Thus, we add two
additional components to ensure the fluency and
quality of generated infilling content with its bidi-
rectional context. First, we minimize the KL diver-
gence between the unmodified distribution pi and
modified distribution p̃i for the i-th token:

min DKL(p̃i || pi). (8)

Our objective function can be reformulated as

Loss = p(c|H̃i−1) + λDKL(p̃i || pi), (9)

where λ is a parameter to balance the fluency and
attribute relevance. Then, we update ∆Hi−1 as:

∆Hi−1 ← ∆Hi−1 + α
∂∆Hi−1Loss

∥∂∆Hi−1Loss∥γ
. (10)

Intuitively, we can generally find many words
that have different levels of correlations with the
specific attribute (Mohammad, 2018). For example,
{perfect, good, bad, like} can mainly determine the
sentiment of a sentence. Thus, we define Gain
from the attribute to determine whether to change a
generated word. As shown in Fig.2, two candidate
words are sampled from the unmodified distribu-
tion (before back propagation) and modified distri-
bution (after back propagation), respectively. Gain
between two candidate words in the conditional
model can be formulated as

Gain = p(c|w<i, w̃i)− p(c|w<i, wi), (11)

where w̃i and wi are samples from the modified
and unmodified distributions, respectively.

To better control the relevance of the attribute,
we define a threshold δ to determine whether to
generate a word from the modified distribution.
Specifically, Gain >δ represents that the word gen-
erated from the modified distribution can have a rel-
atively remarkable effect on attributes. Otherwise,
if the discriminator does not guide well at certain
steps (Gain <δ), we select the word generated from
the unmodified distribution to maintain the fluency
to be the same as the original unconditional text
infilling model to the greatest extent.

Discriminator Construction: As shown in
Fig.2 (B), for simplicity, we train a linear classifier
f as a discriminator with annotated datasets, indi-
cating a sentence and label pair as (w,y). Specifi-
cally, for each sentencew of length t, we compute
the set of hidden states o = {o1, . . . , ot} from the
GPT-2. Then, we compute the mean of o as ō and
train f using the cross-entropy between the true
label distribution y and predicted label distribu-
tion f(ō). The number of parameters in this layer
is (embedding dimension × number of attributes
+ number of attributes), which is negligible com-
pared with the number of parameters in the text
infilling model itself.

5 Experimentation

As shown in Table 1, we evaluated the proposed
methods on three tasks to demonstrate that our
framework is not custom tailored to a single do-
main: sentiment-aware, domain knowledge-aware,
and topic-aware text infilling. We also show a case
study for these tasks. We determined whether A-
TIP can generate infilling text that satisfies the de-
sired attribute and whether it can infill high-quality
text in blanks by using both automated methods
and human annotators.

Dataset Examples Words Attributes

SST-5 11,855 215,154 5
Abstracts 200K 30M 8

ROCStories 100K 5M 13

Table 1: Descriptive statistics of three datasets.

5.1 Experimental Settings

Datasets In addition to using the datasets in Ta-
ble 1 to train our text infilling model, we also
adopted sentiment labels in SST-5 (Pang and Lee,
2005) for sentiment-aware text infilling, research
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Figure 3: Based on the validation data of SST-5, we evaluated the parameter effect for Perplexity (A), Dist1 (B), and
Accuracy (C). We draw the effect of mask rate on performance of text infilling for Perplexity (D) and Accuracy (E).

area labels in Abstracts (Donahue et al., 2020) for
domain knowledge-aware text infilling, and topic
labels in ROCStories (Mostafazadeh et al., 2016)
for topic-aware text infilling. For the datasets with
attribute labels like SST-5 and Abstracts, we can di-
rectly use their labels to train our plug-and-play
discriminator. However, considering that most
datasets do not have attribute labels, we adopted
COMBINETM (Bianchi et al., 2021) to detect at-
tributes for them (details in Appendix A). For ex-
ample, for ROCStories, we can detect thirteen at-
tributes and prove that A-TIP can generate a rele-
vant topic in human evaluation (Table 3).

We split the datasets into 80%/10%/10% as
training/validation/test data, respectively. Follow-
ing TIGS (Liu et al., 2019) and BLM (Shen et al.,
2020), we randomly masked r% tokens in each
document. To ensure that all experiments are per-
formed on the same data, we removed infilling
examples that exceed our training sequence length
of 256 tokens.

Evaluation Metrics In automated evaluation,
perplexity is a measure for fluency in open-domain
text generation.2 We measured it using GPT-2. The
diversity of text was measured using the number

2Overlap-based metrics such as BLEU scores (Papineni
et al., 2002) are not appropriate for evaluating infilling as there
are many realistic infills that have no word-level overlap with
the original.

of distinct n-grams (normalized by text length) as
in Li et al. (2016). We reported Dist1, Dist2, and
Dist3 scores for the distinct 1, 2, 3-grams. Follow-
ing Dathathri et al. (2020), we used an external
classifier to evaluate Accuracy (macro-average F-
score) for sentence attribute labels. We evaluated
the attribute control for sentiment (SST-5) with
an external sentiment classifier with XLNet (Yang
et al., 2019), which was trained with the IMDB
dataset. We chose a BERT-based classifier (Lopes
et al., 2021) for the Abstracts dataset. The t-test
was used to evaluate the significant performance
difference between two approaches (Yang and Liu,
1999) for both automated and human evaluations.

Baselines We compared A-TIP with six baselines
that can be classified in four classes (Section 2.2):
1) Inference-based: We trained TIGS (Liu et al.,
2019), an RNN-based seq2seq model. At infer-
ence time, we iteratively searched tokens in con-
tinuous space and projected their vectors to real
words. 2) GAN-based: We trained the gener-
ator of MaskGan (Fedus et al., 2018) on PLM
with a seq2seq architecture. The discriminator can
make word distributions of the generator closer to
those of the real word distribution. 3) Masked
LM-based: We used representations of blanks
as seeds to fine-tune BERT (Devlin et al., 2019)
and Roberta (Liu et al., 2020). At inference time,
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Datasets SST-5 Abstracts ROCStories

Metrics PPL Dist1 Dist2 Dist3 ACC PPL Dist1 Dist2 Dist3 ACC PPL Dist1 Dist2 Dist3

TIGS 73.23 0.475 0.424 0.425 0.237 49.70 0.659 0.657 0.644 0.453 63.30 0.672 0.675 0.691
MaskGan 68.83 0.385 0.758 0.728 0.288 48.82 0.652 0.662 0.642 0.494 63.32 0.677 0.671 0.701

BERT 51.76 0.773 0.732 0.732 0.302 28.86 0.683 0.656 0.624 0.508 64.16 0.673 0.636 0.560
Roberta 56.34 0.392 0.745 0.745 0.291 26.22 0.710 0.710 0.700 0.528 42.96 0.666 0.659 0.540
BLM 58.90 0.548 0.329 0.345 0.257 50.34 0.512 0.431 0.356 0.568 45.69 0.591 0.594 0.614
ILM 48.14 0.805 0.792 0.801 0.305 21.30 0.710 0.710 0.706 0.634 37.53 0.678 0.692 0.709

A-TIP/Dis 40.26 0.789 0.765 0.742 0.301 18.82 0.708 0.708 0.698 0.614 30.35 0.662 0.653 0.688
A-TIP/KL 51.22 0.797 0.788 0.782 0.421 28.97 0.711 0.711 0.706 0.752 47.35 0.685 0.693 0.718

A-TIP 42.21† 0.805† 0.807† 0.808† 0.386† 20.36† 0.711† 0.711† 0.707† 0.694† 32.13† 0.685† 0.693† 0.721†

Table 2: Overall performance comparison. PPL is perplexity, Dist scores measure divergence, and ACC is
classification accuracy. † shows our results significantly surpass all baselines using t-test with p <0.005. Underlines
mean our ablation algorithm can achieve better results than A-TIP for a metric.

blanks are infilled one after another and are con-
ditioned on the previous generation. We trained
BLM (Shen et al., 2020) with a seq2seq architec-
ture, where the encoder module is a transformer
(base) and the decoder process adopts beam search.
4) LM-based: We trained ILM (Donahue et al.,
2020) by fine-tuning GPT-2 to output a full docu-
ment from a masked input. Note that it may have
invalid outputs that do not match the input format.

Implementation Details In our experiments, we
set the learning rate α = 1e − 4 and the scaling
coefficient γ = 0.5 for Eq. (10). Sequence repre-
sentations were obtained by the GPT-2 module (12
layers, 12 heads, nembd = 768, nctx = 1024, batch
size = 24). We applied the Adam (Kingma and
Ba, 2015) optimizer with an initial learning rate
of 1e-4, and the weight decay and dropout were
turned based on the loss on the validation data. Our
discriminator has a linear layer on the head of GPT-
2. For a fair comparison, we followed the default
parameter settings of the baselines and repeated all
experiments 10 times to report the average accu-
racy. The unpaired t-test was used to evaluate the
significant difference between any two approaches
as multiple comparisons (details in Appendix B) for
both automated and human evaluations. We trained
models with early stopping. Following Dathathri
et al. (2020), we evaluated the attribute control for
sentiment with an external sentiment classifier.

Parameter Sensitivity A-TIP uses two hyper-
parameters. λ dominates the attribute relevance
of generated text and δ can control the fluency of
infilling content. We analyzed the parameter sensi-
tivity on all three validation data and selected the

validation data of SST-5 as an example to deter-
mine the parameter sensitivity of A-TIP. As shown
in Figs.3 (A-C), we observed how λ and δ affect
the performance of A-TIP by varying λ from 0.2
to 0.6 in 0.1 intervals and δ from 0.008 to 0.012 in
0.001 intervals. The results indicated that A-TIP
obtain the best performance when λ ∈ [0.4, 0.5]
and δ ∈ [0.010, 0.011]. The reason why these pa-
rameters can affect the results is that when λ < 0.4,
the attribute relevance becomes stronger and the
fluency gets destroyed. λ > 0.5 weakens both the at-
tribute relevance and text diversity. When δ < 0.01,
A-TIP tends to preserve modified words, which
leads to low fluency. When δ > 0.012, A-TIP
preserves the original unmodified words, which
causes low attribute relevance and diversity of text.
To achieve a balanced performance, we set λ=0.4
and δ=0.01 on all datasets in our experiments.

Considering that the mask rate r is also a hyper-
parameter, we analyzed its effect on the results by
varying it from 10% to 70%. We found the same
trend on all datasets and took SST-5 as an example.
As shown in Fig.3 (D), the fluency decreased when
r varies from 10% to 40% because infilling content
may be well-formed with its bidirectional context.
As r increased from 40% to 70%, the fluency of
text mainly depends on the baselines’ original gen-
eration ability, which is stable. Fig.3 (E) shows
that when r increases, the baselines cannot recover
the attributes of infilling content well. However,
A-TIP can generate attribute-aware text to improve
the classification accuracy. All baselines can obtain
stable fluency and classification accuracy when r =
50%, we fixed r= 50% to show numerical experi-
mental results in the later experiments.
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Dataset SST-5 Abstracts ROCStories

Metrics Fluency Attri-Rele Fluency Attri-Rele Fluency Attri-Rele

TIGS 4.076 4.008 4.072 3.920 4.080 3.960
MaskGan 3.982 3.892 3.962 3.921 4.002 3.861

BERT 4.320 4.196 4.180 4.120 4.076 3.988
Roberta 4.168 4.132 4.068 3.892 4.016 4.032
BLM 4.084 3.956 3.856 3.968 4.072 3.992
ILM 4.236 4.076 4.104 3.964 4.048 3.992

A-TIP 4.476† 4.320† 4.396† 4.296† 4.452† 4.348†

Table 3: Human evaluation on three datasets. † indicates the results significantly surpass others.

5.2 Automated Evaluation

We evaluated the performance of A-TIP on
attribute-aware text infilling by measuring PPL,
Dist1, Dist2, Dist3, and ACC on the test data. Ta-
ble 2 shows, A-TIP outperformed other baselines,
indicating that our proposed framework can take
advantage of the bidirectional context and attribute
information. Additionally, ILM can achieve good
results on PPL because it also adopts GPT-2 for
text infilling. However, compared to one-layer
positional encoding and auto-regression attention
mechanism in ILM, A-Tip/Dis (A-Tip without dis-
criminator) achieves better fluency (PPL) because
it adopts the modifies attention mechanism (Fig.2
(A)) to effectively learn the length for each blank,
and focus on the number/location of blanks by two-
level positional encoding (intra- and inter-blank).

A-TIP obtained more accurate sentence at-
tributes than other baselines, which demonstrates
A-TIP can generate text that satisfies the desired
attribute. While the accuracy was improved by 8%
compared with the baselines, we observed ILM and
BERT also yield high classification accuracy. This
is because we randomly masked 50% of tokens in
the original input without considering whether the
token has a specific attribute. We did not generally
mask attribute relevant tokens, that helps the sen-
tence maintain its original attribute. If all attribute
relevant tokens are masked, we can obtain better re-
sults. For a fair comparison, we randomly masked
tokens instead of masking specific tokens.

5.3 Ablation Study

To verify the effect of each component in A-TIP, we
conducted an ablation study. In specific, A-TIP/Dis
does not include the plug-and-play discriminator,
and the text infilling part remains unchanged. A-
TIP/KL does not include the KL loss and threshold-

based strategy. Table 2 shows A-TIP/Dis can im-
prove text fluency while reducing attribute rele-
vance. A-TIP/KL increases attribute relevance and
decreases text fluency. Since the discriminator can
guide generation towards the attribute-aware direc-
tion, while losing the fluency to a certain extent. By
incorporating KL and a threshold, A-TIP achieves
a better balanced performance.

5.4 Human Evaluation

We considered two types of human annotation: flu-
ency and attribute relevance (Attri-Rele). Anno-
tators were asked to evaluate the fluency/attribute
relevance of each individual sample on a scale of
1∼5, with 1 being Not fluent/Not relevant at all and
5 being Very fluent/Very relevant, as in (Lample
et al., 2019). We randomly selected 100 samples
for each baseline from each test data and asked
ten people on Amazon Mechanical Turk to identify
the fluency and attribute relevance for each sample.
We then used the average scores of ten annotations
as final scores (see more detail in Appendix C).

As shown in Table 3, A-TIP achieved the high-
est score compared with the baselines, indicating
that sentences infilled by A-TIP can be not only
more fluent but also more attribute relevant. Some-
what surprisingly, we observed that BERT, TIGS,
and MaskGan yield the worst performance. BERT
performed poorly due to the intrinsic difficulty of
finding convincing infilling content with a suitable
length. TIGS and MaskGan may have performed
poorly because, unlike ILM and A-TIP, they were
not initialized from a large-scale pre-trained LM.

5.5 Running Time Comparison

To generate attribute-aware tokens, we update the
Eq.(10) less than 10 times for each token. As
shown in Fig.5, we compare the running time be-
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Figure 4: Case study for sentiment content infilling and expert knowledge infilling.

tween A-TIP/Dis and A-TIP to ensure that we have
less additional time-consuming. Specifically, we
randomly select 30 samples from SST-5 and ROC-
Stories datasets, where SST-5 contains short sen-
tences and ROCStories contains almost long sen-
tences. Then, we changed the mask rate from 30%
to 70% for each selected sample to make our results
more reliable. As shown in Fig.5, compared with
the unconditional LM-based text generation task,
updating the hidden state towards attribute-relevant
direction will take less additional time.

Figure 5: Running time comparison between A-TIP/Dis
and A-TIP on SST-5 and ROCStories. We change the
mask rate from 30% to 70%.

5.6 Case Study

We conducted a case study to show the infilling
ability of A-TIP. Specifically, as shown in Fig.4,
we first propose to infill the blanks with sentimental
words. We choose Roberta and BLK as our com-
pared examples. Because these two methods get
the best result in this case. We can see Roberta in-
fill the blanks with two contradictory words (funny
and heartbreaking), where humans do not have such
contradictory and complex emotional expressions.

BLK can unify the expression of emotion, but it can
not ensure the fluency of the generated sentence. In
contrast, we can control A-TIP to generate positive
or negative infilling contents with high fluency.

We want to explore if A-TIP can generate do-
main knowledge for a specific area for the second
case. We choose BERT and TIGS as our com-
pared examples. Since these two methods get the
best result in domain knowledge infilling. We find
that they cannot generate expert knowledge infill-
ing content. And they tend to generate correct
and high-frequency infilling content, while they are
generally meaningless and monotonous (Sun et al.,
2021; Lazar et al., 2021; Su et al., 2021). However,
we can control A-TIP to generate both CS-related
and Math-related infilling content by constraining
the attribute as CS and Math.

6 Conclusion

In this paper, we presented a simple strategy for text
infilling A-TIP that leverages an LM by proposing
new attention mechanisms and two-level positional
encoding to effectively improve the quality of gen-
eration in limited data settings. Furthermore, our
plug-and-play discriminator can guide the gener-
ation towards the direction of improving text at-
tribute relevance. In future work, we plan to incor-
porate the plug-and-play discriminator into more
systems that assist humans in the writing process,
where we hope that our work encourages more in-
vestigation of text infilling.
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A Detail Information for Datasets

As shown in Table 4, we give the number of ex-
amples, the total number of words and the detail
attributes label for three widely used datasets, SST-
5, ROCStories and Attributes, respectively. We
selected these three datasets since we would like to
check if A-TIP can infill the blanks with sentiment
words, domain knowledge and topics.

We can directly use their labels to train our plug-
and-play discriminator for datasets with attribute
labels like SST-5 (sentiment labels) and Abstract
(domain knowledge labels).

Figure 6: Topic similarity graph.

However, considering most datasets like ROC-
Stories have no labels, we extend our method to
deal with this situation. Intuitively, we can con-
struct a general attribute-based plug-and-play dis-
criminator to guide different datasets to generate
different infilling content. However, in practical
operation, it is unrealistic to build such an available
attribute-based discriminator to guide the infilling
generation because the downstream datasets have a
variety of different attribute requirements. There-
fore, we need to generate specific category labels
for different downstream datasets to satisfy their
specif attribute-related needs and use them to guide
the infilling generation.

Specifically, we extend our model to more ap-
plications by combining our model with any topic
exploration algorithms to mine topic labels on un-
labeled datasets. For instance, we adopt COM-
BINETM (Bianchi et al., 2021) to detect topic at-
tributes for ROCStories dataset by two methods
Contextual and Combined. As shown in Table 5,
we adopt three metrics to evaluate the quality of the
attributes of ROCStories dataset: Topic Coherence,

Inverted RBO and NPMI. And we choose 13 topics
as our final labels since it has the best performance
on average of all metrics.

As shown in Fig.6, we draw a topic similarity
graph among thirteen topics. We find the similarity
within topics is high, and the similarity between
topics is low, demonstrating that the detected topics
have high quality and low redundancy. We adopt
13 topic labels to train discriminators for ROCSto-
ries datasets, and we achieve the best performance
about topic-relevant on human evaluation.

B Benjamini-Hochberg procedure

The Benjamini-Hochberg (B-H) Procedure is a
powerful tool that decreases the false discovery
rate (Benjamini and Hochberg, 1995). Considering
the reproducibility of multiple significant test, we
introduce how we adopt the B-H procedure and
give the hyper-parameter values that we used.

Specifically, we first adopt t-test (Yang and Liu,
1999) with default parameters3 to calculate p-value
between each compared algorithm with A-TIP.
Then, we put the individual p-values in ascend-
ing order as input to calculate p-value corrected
by B-H. We directly use the “multipletests(*args)”
function from python package4 and set the hyper-
parameter of false discover rate Q = 0.05 which
is the widely used default value (Puoliväli et al.,
2020). Finally, we get cut-off value as the output
of “multipletests(*args)” function, where cut-off
is a dividing line that distinguishes whether two
groups of data are significant or not. Specifically,
if the p-value is smaller than the cut-off value, we
can get the conclusion that two groups of data are
significant different.

C Detail Information for Human
Evaluation

We show the human evaluation in Fig.7. We adopt
fluency and attribute relevance as our evaluation
metrics. We use their label as their attribute for
labelled datasets SST-5 and Abstract. For unlabeled
datasets like ROCStories, we manufacture labels
as their attributes. And we list detailed scores from
1 to 5 for each metric.

3https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.ttest_
ind.html

4https://www.statsmodels.org/dev/
generated/statsmodels.stats.multitest.
multipletests.html
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Dataset Examples Words Attributes

SST-5 11,855 215,154 Negative/ Somewhat negative/ Neutral/ Somewhat positive/ Positive
ROCStories 100K 5M Sport/ Shop/ School/ Food/ Family/ Hospital/ Work/ Car/ Vacation/ House/ Music/ Pet/ Other

Abstracts 200K 30M Condensed Matter/ CS/ Math/ Nonlinear Sciences/ Physics/ Bio/ Quant-Phy/ Statistics

Table 4: Descriptive statistics of datasets and their attributes.

Contextual Combined
Topic Number Coherence RBO NPMI Coherence RBO NPMI

10 0.490 0.160 0.150 0.348 0.079 0.232
11 0.981 1.000 0.007 0.981 1.000 -0.008
12 0.986 1.000 0.030 0.933 1.000 -0.004
13 0.993 1.000 0.053 0.972 1.000 0.061
14 0.951 1.000 0.048 0.971 1.000 0.060
15 0.936 1.000 0.042 0.946 1.000 0.059
16 0.935 1.000 0.044 0.921 1.000 -0.008
17 0.905 0.998 0.042 0.922 0.992 0.037
18 0.906 0.982 0.045 0.868 0.989 0.038
19 0.892 0.977 0.043 0.822 0.982 0.021
20 0.882 0.972 0.040 0.802 0.978 0.022

Table 5: Contextual-based and Combined-based topic detection algorithms evaluate three widely used metrics:
Topic Coherence, Inverted RBO, and NPMI.

Figure 7: Human evaluations on Amazonmturk.
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Abstract

Heterogeneous Graph Neural Networks (Het-
erGNN) have been recently introduced as an
emergent approach for extracting document
summarization (EDS) by exploiting the cross-
relations between words and sentences. How-
ever, applying HeterGNN for long documents
is still an open research issue. One of the main
majors is the lacking of inter-sentence connec-
tions. In this regard, this paper exploits how to
apply HeterGNN for long documents by build-
ing a graph on sentence-level nodes (homoge-
neous graph) and combine with HeterGNN for
capturing the semantic information in terms of
both inter and intra-sentence connections. Ex-
periments on two benchmark datasets of long
documents such as PubMed and ArXiv show
that our method is able to achieve state-of-the-
art results in this research field.

1 Introduction

Extractive Document summarization aims to auto-
matically extract a set of sentences, which repre-
sents information for the whole document, by rank-
ing the importance of sentence features. Recent
works focus on GNN, a Deep learning-based ap-
proach that operates on graph domain (Zhou et al.,
2020), to achieve remarkable results in this research
field. Specifically, GNN-based models are able to
encode the complicated pairwise relationships be-
tween entity tokens for better informative represen-
tations (Wu et al., 2021). Cui et al. (2020) uses
information of topic-aware to change the represen-
tation of words to a new representation. Then, a
GNN-based model is presented for capturing re-
lationships efficiently via graph-structured docu-
ment representation between sentences. Sequen-
tially, HeterGNN, a special kind of GNN (Zhang
et al., 2019), has been proposed as a promising ap-
proach to enrich the relationships between words
and sentences. Wang et al. (2020) introduced HSG,

∗Corresponding author

a heterogeneous graph-based neural network for ex-
tractive summarization by using more fine-grained
semantic units in the summarization graph to ex-
tract the complex relationships between words and
sentences. Accordingly, the model has achieved the
top performance in CNN/DailyMail and NYT50
datasets in terms of the non-BERT-based approach.
In order to utilize the capability of BERT-based
models (Devlin et al., 2019), Jia et al. (2020) pro-
posed a hierarchical attentive heterogeneous graph
(HAHSum) to improve the redundant phrases prob-
lem between extracted sentences of the summariza-
tion, which has achieved promising results on news
article datasets such as CNN/DailyMail, NYT, and
Newsroom. Nevertheless, the model requires exter-
nal analysis for modeling long-range dependencies.
Intuitively, transformer-based language models are
not able to process long pieces of text. Several
works have provided promising results (Cui and
Hu, 2021), however, the input length limitation and
encoding of long texts are still open challenges in
this research field (Zhong et al., 2020).

In this study, we take an investigation on im-
proving the performance of the EDS problem for
long documents in which the core idea is to ex-
ploit the complex relationship in terms of both inter
and intra-sentence connections using graph-based
methods. Specifically, HeterGNN-based models
are able to enrich the cross-sentence relations by
adding a word node as the intermediary to connect
sentences. However, the inter-sentence connec-
tions are not considered. Specifically, only sen-
tences with common words can have a connection,
which might influence the performance, especially
in terms of long-form document representation.
Therefore, we present a novel method for enriching
the inter-sentences relations by proposing a homo-
geneous graph neural network (HomoGNN) and
incorporating the HeterGNN for final sentence rep-
resentations. In particular, inspired by recent state-
of-the-art models for long-form document represen-
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Figure 1: Overview pipeline of the proposed model which is executed simultaneously in two phases (a). The first
phase encodes the sentences with pre-trained BERT and uses [CLS] information as the input of a graph attention
layer (b). The second phase encodes the word and sentence nodes as the inputs of a heterogeneous graph layer (c).
The output of the two phases is concatenated and put into an MLP layer in order to classify labels for each sentence.

tations such as Longformer (Beltagy et al., 2020),
Big-Bird (Zaheer et al., 2020), and Poolingformer
(Zhang et al., 2021), we use the information at the
beginning of the sentence [CLS] representation for
the inputs of the graph attention layer. Sequentially,
the combination of HomoGNN and HeterGNN is
able to capture the semantic information for both
inter and intra-sentence connections. Figure 1 il-
lustrates the overview of the proposed model. To
the best of our knowledge, our method is the first
study to incorporate two types of graph structures
for the EDS task. Our source code is available for
further investigation on Github1.

2 Methodology

Given an arbitrary document D = {s1, .., sn} con-
sisting n sentences, the objective of EDS problem
is to predict a sequence of a set of binary label
{y1, .., yn}. Specifically, yj ∈ [0, 1] represents the
jth sentence, which should be included in the sum-
mary. Our proposed model for the EDS problem
includes two learning layers, which execute simul-
taneously, such as the homogeneous graph layer

1https://github.com/dungdx34/MTGNN-SUM

and the heterogeneous graph layer.

2.1 Homogeneous Graph Neural Network

Graph Construction: Let G1 = {V1, E1} denotes
an arbitrary graph, where V1 and E1 represent the
set of node and edge, respectively. Consequentially,
the homogeneous graph for an input document can
be defined as a set of node V1 = s1, ..., sn where
n is the number of sentence in the document. For
initialized encoder process, BERT (Devlin et al.,
2019) is used to generate the local hidden represen-
tations between sentences. Specifically, we adopt
the concept of BERTSUM(Liu and Lapata, 2019)
with multiple CLS for sentence representation. Se-
quentially, CLS and SEP tokens are inserted at the
beginning and end of each sentence, respectively.
Then, all tokens are fed into BERT to learn the
hidden state, which can be denoted as follows:

h1,0, h1,1, ..., hn,0, ..., hn,∗ =

BERT (w1,0, w1,1, ..., wn,0, ..., wn,∗)
(1)

where wi,j is the vector embedding of the sentence
ith and word jth. wi,0 and wi,∗ represents the CLS
and SEP tokens of the ith sentence, respectively.
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hi,j stands for the hidden state of the correspond-
ing token. After BERT encoding, we select the
hidden state of CLS to represent sentence contex-
tual representation, which is formulated as follows:

HB = h1,0, ..., hN,0 (2)

Sequentially, the initialized embedding is put into a
GAT model for enriching the sentence connections.
Graph Propagation: Regarding the message pass-
ing process, we adopt GAT model (Velickovic et al.,
2018) to learn the hidden representation of each
node by aggregating the information from its neigh-
bors. Specifically, the updated node with GAT can
be calculated as follows:

zij = LeakyReLU(Wa[Wqhi;Wehj ]) (3)

where hi represents the node representation of the
ith sentence. Wa, Wq, We, and Wv are trainable
weights. Subsequently, the attention score between
two sentence nodes is formulated as follows:

αij = softmax(zij) =
exp(zij)∑
l∈Ni exp(zil)

µi = σ(
∑

j∈Ni
αijWvhj)

(4)

where σ denotes an activation function, and Ni

stand for neighbor nodes. Consequentially, the
output with multi-head attention can be calculated
as follows:

h′i = ||Kk=1σ(
∑

j∈Ni
αkijW

k
v hj) (5)

where ||∗ represents multi-heads concatenation.
Furthermore, a residual connection is adopted to
avoid gradient vanishing after iterations. Conse-
quentially, the final output can be updated as fol-
lows:

HG1
s = h′i + hi (6)

Generally, we use GAT forHB to learn the relation-
ship between sentences in a document. The output
includes the representation of sentences, which is
concatenated with the output of the heterogeneous
graph layer for the final representation of the sen-
tences.

2.2 Heterogeneous Graph Neural Network
Graph Construction: Let G2 = {V2, E2} de-
notes an undirected graph for representing the input
document. The heterogeneous graph for an input

document can be defined as V2 = Vw ∪ Vs and
E2 = {e11, ..., emn}, where Vw = {w1, ..., wm}
and Vs = {s1, ..., sn} represents m unique words
and n sentences of a document, respectively. eij
denotes the edge between the i-th word and j-th sen-
tence. Following the concept of HeterSumGraph
(Wang et al., 2020), sentence node features are cal-
culated by combining CNN for extracting the local
n-gram feature of each sentence and bidirectional
Long Short-Term Memory (BiLSTM) for extract-
ing the sentence-level feature.
Graph Propagation: The heterogeneous graph
layer is also updated using GAT, which is defined
from Equation 3 to Equation 6. However, the
vanilla GAT has been designed for homogeneous
graphs. Therefore, Wang et al. (2020) has pre-
sented a modified GAT and an iterative updating
mechanism for heterogeneous graph updated layer.
Specifically, the Equation 3 can be re-formulated
as follows:

zij = LeakyReLU(Wa[Wqhi;Wehj ; eij ]) (7)

where eij denotes the multi-dimensional embed-
ding space (eij ∈ Rmn×de), which is mapped from
edge weight eij . Sequentially, an iterative updat-
ing mechanism is adopted to obtain a new word
node and sentence node. In particular, in order to
pass messages between word and sentence nodes,
the sentences with their neighbor word nodes are
updated via modified-GAT and Position-Wise Feed-
Forward (FFN) layer, which can be formulated as
follows:

U1
s←w = GAT (H0

s , H
0
w, H

0
w)

H1
s = FFN(U1

s←w +H0
s )

(8)

where H0
w (H1

w) and H0
s are the node features

of word Xw (Xw ∈ Rm×dw ) and sentence Xs

(Xs ∈ Rn×ds), respectively. Note that H0
s is used

as the attention query and H0
w is regarded as key

and value. Sequentially, the new representations of
word nodes can be obtained using the updated sen-
tence nodes and further updated sentence or query
nodes, iteratively. Specifically, each iteration con-
tains a sentence-to-word and a word-to-sentence
update process, which is formulated as follows:

U t+1
w←s = GAT (Ht

w, H
t
s, H

t
s)

Ht+1
w = FFN(U t+1

w←s +Ht
w)

U t+1
s←w = GAT (Ht

s, H
t+1
w , Ht+1

w )

Ht+1
s = FFN(U t+1

s←w +Ht
s)

(9)

5872



Model PubMed arXiv
R-1 R-2 R-L R-1 R-2 R-L

Oracle (Xiao and Carenini, 2020) 55.05 27.48 49.11 53.89 23.07 46.54
SummaRuNNer+ 43.89 18.78 30.36 42.91 16.65 28.53
Seq2seq-attentive+ 44.81 19.74 31.48 43.58 17.37 29.30
Cheng&Lapata (2016)+ 43.89 18.53 30.17 42.24 15.97 27.88
Discourse-aware∗ 38.93 15.37 35.21 35.80 11.05 31.80
ExtSum-LG (Xiao and Carenini, 2020) 45.39 20.37 40.99 44.01 17.79 39.09
Match-Sum (Zhong et al., 2020) 41.21 19.41 36.75 40.59 12.98 32.64
Topic-GraphSum (Cui and Hu, 2021) 45.95 20.81 33.97 44.03 18.52 32.41
SSN-DM (Cui and Hu, 2021) 46.73 21.00 34.10 45.03 19.03 32.58
MTGNN-SUM 48.42 22.26 43.66 46.39 18.58 40.50

Table 1: Results on PubMed and arXiv datasets. Report results with * are from Cohan et al. (2018), and results
with + are from Xiao and Carenini (2019). Other results are obtained from respective papers. Oracle indicates the
ground truth results by using the greedy algorithm, which is regarded as the upper bound. Our results are reported
by averaging values of 3 runs.

2.3 Multi Graph Neural Network for EDS

The outputs of sentence features from the two afore-
mentioned layers are then concatenated for the final
representation, which is formulated as follows:

H = HG1
s ⊕HG2

s (10)

Observably, by concatenating the outputs of the
two aforementioned graph layers, the final repre-
sentation includes the information of both inter and
intra-sentence relations. Sequentially, the output of
the concatenation is put into a sentence classifier
for ranking the classification.

3 Experiments

3.1 Datasets

Two long document datasets are taken into account
for the evaluation. Specifically, PubMed and arXiv
are standard datasets for long documents, which
are scientific papers. For the data processing, we
use the same split as the work in Cohan et al.
(2018) to process the arXiv and PubMed datasets
for the evaluation and follow Liu and Lapata
(2019) to get ground-truth labels.

3.2 Hyperparameter Setting

Regarding the encoding, the vocabulary is limited
to 50,000 and the tokens are initialized with 300-
dimensional with Glove embedding. The dimen-
sion of sentence node and edge features are set to
128 and 50, respectively. The number of multi-head
in each GAT layer is set to 8. For the document

encoder, we use the bert-base-uncased version of
BERT and fine-tune for the experiments. In the
case of the decoding process, we select top-6 and
top-5 for PubMed and arXiv datasets, respectively,
according to the best performance of the validation
set. Due to the limited computational resources,
the maximum number of sentences in each doc-
ument is set to 150, which means only the first
150 sentences in each document are taken into ac-
count. More analysis of the length of sentences
is presented in the following section. The model
is trained with the Adam optimizer. The learning
rate is set to 1e-3 and use early stop with every
three epochs. Moreover, learning rate decay is
used after each epoch to improve performance. All
models are trained on a single Tesla V100 32GB
GPU, which has completed the training process
with around 10 epochs. The total time for each
epoch with the best model is around 6 hours and 3
hours for PubMed and arXiv datasets, respectively.

3.3 Experimental Results
Table 1 shows the results of our method compared
with state-of-the-art models on PubMed and arXiv,
respectively. The comparison models are divided
into different parts. The first part reports the re-
sults of Oracle, which is regarded as ground truth
extracted sentences. The second part shows the re-
sults of the approach without pre-trained language
models. The third approach includes BERT-based
models. The next section presents the result of the
graph-based approach including the models with
the document-level approach, which requires differ-
ent levels of information such as words, sentences,
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latent topics, and spotlights redundancy dependen-
cies between sentences. The last section is our
model, which is named MTGNN-SUM.

Accordingly, our results outperform state-of-the-
art models in this research field. In particular, only
R-2 of SSN-DM, the lasted state-of-the-art model is
slightly better than our method in the case of arXiv
datasets. However, the R-L metric of our method is
much higher than the SSN-DM model. The results
indicate the advantage of the proposed method by
integrating both inter and intra-sentence relations.
Specifically, inter-sentence allows information to
flow for all sentence nodes and intra-sentence en-
riches the information of sentence nodes that con-
tain common words. This issue especially is able
to deal with the long-range dependency problem
because the sentences, which are far from each
other (e.g., by the distance of sentence positions),
are able to share the information by using com-
mon words. Notably, our model does not need to
consider any external semantic nodes for enriching
global information (e.g., latent topic).

4 Quality Analysis

Ablation Study. In our model, we enrich the com-
plex relationships by exploring both heterogeneous
graph and homogeneous graph operations for sen-
tence connection. In order to explore the effec-
tiveness of each component, we design different
variants of the proposed model as follows:

• HomoGraph-SUM: contains a graph atten-
tion layer for document encoding to extract
inter-sentence relationships. The model is con-
structed following the description in Section
2.1 of Homogeneous Graph Neural Network.

• HeterGraph-SUM: contains a heterogeneous
graph layer that contains semantic nodes to
enrich the cross-sentence relations. Specifi-
cally, HeterGraph-Sum is designed following
the description in Section 2.2.

The results of those aforementioned variants of
our model on benchmark datasets are presented in
Tab. 2. Accordingly, MTGNN-SUM outperforms
all variants, which proves that executing message
passing across sentences in the proposed model
by incorporating both graph structures can achieve
better results.
Length of Document. In this study, we set the
maximum number of sentences in each document
to equal 150 due to our limited computational re-
sources. Though, we are able to improve the perfor-

Dataset Model R-1 R-2 R-L
PubMed HomoGraph-SUM 39.29 13.74 34.49

HeterGraph-SUM 46.03 19.79 41.48
MTGNN-SUM 48.42 22.26 43.66

arXiv
HomoGraph-SUM 41.13 13.11 35.84
HeterGraph-SUM 45.06 16.97 39.38
MTGNN-SUM 46.39 18.58 40.50

Table 2: Ablation study results on two datasets.

mance by learning whole-length sentences of the
datasets, which include many documents with more
than 200 sentences. In order to evaluate the impor-
tance of the document length value, we tested our
model with the maximum number of sentences be-
ing 50 and 100 sentences, respectively. The results
of the test models on different values of maximum
document sizes are shown in Table 3. Accordingly,

Dataset Model R-1 R-2 R-L

PubMed
MTGNN-SUM-50 46.20 20.04 41.58
MTGNN-SUM-100 47.85 21.64 43.13
MTGNN-SUM-150 48.42 22.26 43.66

arXiv MTGNN-SUM-50 44.91 16.89 39.14
MTGNN-SUM-100 46.09 17.98 40.29
MTGNN-SUM-150 46.39 18.58 40.50

Table 3: Results of the proposed model with different
lengths of sentences.

by increasing the maximum length of sentences,
the performances are improved. In particular, the
results indicated that tuning the max length of sen-
tence value is able to enhance the performance.
Specifically, we take this issue into account for the
future work of this study by executing our model
with a longer maximum size of documents.

5 Conclusion

This paper presents a novel graph-based method
for the EDS task, which focuses on exploiting
the complex relationship in terms of both inter
and intra-sentence relations of the long-form docu-
ments. Specifically, two types of graph structures
are developed for enriching sentence representa-
tions. The experiments on two benchmark datasets
show promising results of the proposed method.
Regarding future work, segmentation methods are
taken into account for dividing long documents into
paragraphs. Specifically, analyzing the complex
relationships between paragraphs and integrating
them into graphs as an additional node is able to
enrich the information for the representation.
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Abstract

The demand for multilingual dialogue systems
often requires a costly labeling process, where
human translators derive utterances in low re-
source languages from resource rich language
annotation. To this end, we explore leverag-
ing the inductive biases for target languages
learned by numerous pretrained teacher mod-
els by transferring them to student models via
sequence-level knowledge distillation. By as-
suming no target language text, both the teacher
and student models need to learn from the tar-
get distribution in a few/zero-shot manner. On
the MultiATIS++ benchmark, we explore the
effectiveness of our proposed technique to de-
rive the multilingual text for 6 languages, using
only the monolingual English data and the pre-
trained models. We show that training on the
synthetic multilingual generation outputs yields
close performance to training on human anno-
tations in both slot F1 and intent accuracy; the
synthetic text also scores high in naturalness
and correctness based on human evaluation.

1 Introduction

In multilingual dialogue systems, natural language
generation is used to generate utterances in various
languages, using as input semantic frames, which
contain a representation of the user intent together
with relevant information or entities related to said
intent (Tur et al., 2010). Past works that general-
ize dialogue systems to multilingual settings often
made two unrealistic assumptions about the data
availability of any new dialogue domain (Liu et al.,
2019; Xu et al., 2020; Schuster et al., 2019; Chang
et al., 2020, 2022): (1) First assumption is that a
large set of monolingual data has already been an-
notated. (2) Some in-domain text or annotated data
in the target languages are already available for the
purpose of transfer learning. Neither assumption
holds in all cases (Upadhyay et al., 2018).

To overcome these challenges, we utilize
knowledge-grounded pre-training (KGPT) (Chen

MT Model

E-Step

mBART

M-Step

teacher

student

Frames

KGPT

English Text
 x   

 x    x    x   
 x    x   

 x   

 x  x   
De

Multilingual Data

Figure 1: Annotation scenario: Each × represents a labeled
data instance. The goal is to generalize from few-shot human-
labeled instances in one language (left) to large synthetic
multilingual data (right).

et al., 2020) – a pretrained data-to-text generation
model that was shown to be effective in overcom-
ing data scarcity, as the model is capable of rep-
resenting the inductive biases required to encode
structured data such as the slot-value pairs (frames).
In few-shot settings, we can exploit KGPT’s pre-
trained knowledge to obtain in-domain text la-
bels for a large set of unlabeled frame sequences.
These text labels are then converted to multiple lan-
guages with the use of bilingual translation mod-
els as teacher models, as inspired by past works
on sequence-level knowledge distillation (Wang
et al., 2020; Kim and Rush, 2016; Gordon and
Duh, 2019). In this way, we perform zero-shot
cross-lingual transfer for all 6 languages. We use
mBART (Liu et al., 2020) as the multilingual stu-
dent model to acquire stronger bilingual knowledge
from the translation teacher models from Tiede-
mann and Thottingal (2020).

We leverage a two-step distillation process
where we first derive a large synthetic English dia-
logue data from the English seed data, then gener-
alize it to multilingual data by using the bilingual
translation models to produce synthetic text labels.
Finally, we perform rounds of iterative knowledge
distillation following the process of the expectation-
maximization algorithm for further improvements.
This work makes the following contributions:

• We introduce a simple and effective technique
in constructing a synthetic multilingual dia-
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logue corpus using the iterative knowledge
distillation.

• We demonstrate the efficacy of the technique
by showing that its outputs display high natu-
ralness and correctness.

2 Approach Summary

In our setting, we have (1) a seed English dataset S
which consists of k labeled pairs, and (2) the full
set of unlabeled frame sequences U where |U | ≫
k > 0. The goal is to create labeled samples in all
target languages consisting of the frame sequences
(X ) with their corresponding texts (Y).

Monolingual Text Generation. We first obtain
the full synthetic English dataset (XEn,YEn) from
the k labeled pairs and the unlabeled semantic
frame sequences. This is achieved by finetuning
KGPT on the k samples and then labeling each
semantic frame sequence with a corresponding En-
glish utterance.

Multilingual Text Generation. To create multi-
lingual data, we perform the iterative knowledge
distillation (see §3) to derive target language utter-
ance from the source English utterance. Specif-
ically, we update both the bilingual translation
model (teacher) and mBART (student) iteratively
following the expectation-maximization algorithm
via likelihood maximization over parallel data
(X ,Y) and parameters ϕ and θ of the teacher and
student models.

3 The Iterative Distillation Procedure

The iterative distillation procedure alternatively op-
timizes the student and teacher models until conver-
gence. We generate the parallel synthetic data from
pretrained bilingual models pteacher(y|x;ϕ1)1, and
use the EM algorithm (Dempster et al., 1977) to
optimize the process (see Figure 2). The intuition is
that while the student model learns from the teacher,
the teacher model also needs to discard some out-
of-domain knowledge by learning from the student
feedback. The iterative procedure alternates be-
tween the teacher model learning some knowledge
from the target distribution, and then the student
model is updated based on the new teacher model.
In this way, both models are improved in training.
As such, we use the following high-level strategy.

1Note that ϕ1 is used to indicate the initial pretrained
model at iteration 1.

E-Step: KL
M-Step: MLE

Teacher Model (En-XX)

Target (XX)

Figure 2: Iterative Knowledge Distillation: Each circle
represents a labeled data instance from the student where M-
step moves the output distribution towards that of the teacher
model’s; and E-step measures the distributional difference
and makes further adjustment towards the target language
domain.

In the E-step (multilingual labeling), we fix the
pstudent and update the posterior distribution:

qt+1 = argminKL(Ŷ∥pstudent(Y|X ; θt)),
Conversely, in the M-step (training), we fix q(Y)
and update θ to maximize the expected log-
likelihood:

θt+1 = argmaxθEqt+1 [log pstudent(Y|X ; θ)],
In what follows we introduce the details of the

E-step and the M-step in our framework.

Expectation Step. The E-step aims to compute
the posterior distribution q(Y) that minimizes the
KL divergence between q(Y) and pstudent(Y|X ).
This step basically brings the teacher model closer
to the target distribution without having seen the
distribution itself. Importantly, we also estimate
the gradient of L(·) w.r.t. teacher model’s pa-
rameter ϕ by applying the REINFORCE algo-
rithm (Williams, 1992) to compute the loss, which
is then weighted by log pstudent(y|x;θt)

pteacher(y|x;ϕ) under the
KL divergence equation. Overall, this constructs a
weighted synthetic training dataset that intuitively
adjusts the outputs to be more in-domain, as the
original teacher model is general-domain.

Maximization Step. In the M-step, we update
the student model to be closer to the teacher
model. To do so, we optimize the parameters
θt+1 with the parameterized posterior distribution
pteacher(Y|X ;ϕt+1) so as to optimize the student
model to generate target language text. We apply
sequence-level knowledge distillation (Kim and
Rush, 2016) and use the targets with maximum
likelihood in the teacher model to train the student
model.
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Semantic frame sequence:
[B-fromloc.city_name] toronto, [B-toloc.city_name] newark, [B-round_trip] one, [I-round_trip] way, [B-depart_date.day_name]
wednesday, [B-depart_time.period_of_day] evening, [B-depart_date.day_name] thursday, [B-depart_time.period_of_day] morn-
ing
English reference: i need a flight from toronto to newark one way leaving wednesday evening or thursday morning
English (En): I need a flight from Toronto to Newark, one way is to leave from Wednesday night or Thursday morning
German (De): Ich brauche einen Flug von Toronto nach Newark in eine Richtung ab Mittwochabend oder Donnerstagmorgen
Spanish (Es): Necesito un vuelo de Toronto a Newark solo ida y salida el miércoles por la noche o el jueves por la mañana
French (Fr): Besoin d’un vol de toronto à newark aller simple partant mercredi soir ou jeudi matin
Chinese (Zh): 需要一种从多伦多到纽瓦克的航班，从星期三晚上或星期四早上离开
Japanese (Ja): 水曜日の夕方または木曜日の朝を出して、トロントからニュアクへの片道のフライトが必要です
Portuguese (Pt): preciso de um voo de toronto para newark só de ida saindo na quarta à noite ou quinta de manhã

Figure 3: Table showing the labeled examples in all seven languages. The upper portion shows the monolingual (English)
semantic frame sequence and utterance pair. The bottom region displays all seven languages.

Quality-Based Text Filtering. To ensure that
only target data with high semantic correctness
quality is used for training, we impose a filter-
ing operation on the generated samples for quality
control. In the process of multilingual labeling,
we assume to only have the access to monolin-
gual (English) frame sequence, and so we rely
on the likelihood score of a pre-trained teacher
model (bilingual MT models) as the quality metric
Qxi(y

i) = log pteacher(yi|xi;ϕ). where ϕ denotes
the initial teacher model trained on the original
ground-truth dataset. In practice, we use nuclear
sampling (Holtzman et al., 2019) (which has a re-
sizable beam size) as the heuristic sampling on
pteacher(y|x;ϕt), and then filter out the candidates
which do not satisfy the condition Qx(y) ≥ b,
where b is set to be 0.5 based on our empirical
findings. In this way, we control the quality of
pteacher(y|x;ϕt+1) by manipulating the quality of
its training data.

4 Experimental Settings

Training Configurations For mBART training,
we use the same vocabulary of subword units as Liu
et al. (2020); this vocabulary includes a sentence-
piece model (Kudo and Richardson, 2018) with
250, 000 subword tokens. The mBART model con-
sists of the standard sequence-to-sequence Trans-
former architecture with 6 encoder and 6 de-
coder layers; each layer consists of a 1024-dim
model on 8 heads (∼ 144M parameters altogether).
Our model is trained on 256 Nvidia V100 GPUs
(32GB). The final models are selected based on
BLEU (Papineni et al., 2002) scores on the valida-
tion set.

Testing Scenarios We evaluate our technique on
the MultiATIS++ corpus (Xu et al., 2020), which

consists of re-annotated ATIS dataset in six ad-
ditional languages: German (De), Spanish (Es),
French (Fr), Chinese (Zh), Japanese (Ja), and Por-
tuguese (Pt). The test sets are based on the released
human-labeled set consisting of 893 instances. Par-
ticularly, we report the results on both intent clas-
sification and slot filling F1 scores for NLU infer-
ence; and evaluate the surface-level overlap with
BLEU-4 for text generation. The reason for this
is so that we could get a sense of the correlation
between text quality and its usefulness for NLU
inference. For our experiments, we assume that
semantic frames corresponding to all target lan-
guages are present. For semantic frame sequence
predictions, we employ Fairseq (Ott et al., 2019)
and train it on the synthetic multilingual corpus
for all targeted language pairs. We adopt several
ways of generating the synthetic corpus (En-XX)
from the English seed data consisting of 50-shot,
100-shot, and all English ATIS data:

MT: The baseline is the direct translation of the
seed English utterances into target language utter-
ance (XX), then training mBERT on the synthetic
data consisting of target language utterance and its
semantic frames.

KGPT+MT: We use KGPT to create the full
synthetic English corpus, then perform MT.

mBART: On top of KGPT+MT, we finetune
mBART on the synthetic En-XX corpus, then cre-
ate (En-XX) via translation.

mBART+EM: Building on top of mBART, we
perform the proposed EM algorithm and allowing
both the bilingual model (teacher) and mBART
(student) to be updated.
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En Fr De Zh Es Ja Pt
NLU (Slot %F-1 Intent %Acc)

50-shot
MT 67.15 72.34 66.61 71.66 63.66 78.54 58.41 74.42 58.83 71.53 70.55 68.83 66.72 75.51
KGPT+MT 70.19 77.28 70.99 75.37 66.73 82.88 61.56 80.65 61.92 76.83 75.22 73.18 70.20 78.22
mBART 72.43 79.32 72.68 79.66 68.27 84.78 66.29 83.21 64.19 77.52 75.61 77.43 72.01 80.33
mBART+EM (Ours) 75.48 82.15 75.37 71.24 71.75 85.34 67.31 84.20 64.88 77.63 76.38 78.72 71.28 80.29
100-shot
MT 65.24 71.73 56.53 72.48 64.62 79.51 63.55 74.48 60.37 72.61 71.47 71.52 68.48 75.41
KGPT+MT 74.37 85.54 65.84 84.17 80.33 83.43 76.32 83.11 63.53 78.54 76.57 79.34 77.63 80.74
mBART 78.52 87.82 66.38 83.43 72.28 85.80 77.81 84.33 67.42 81.37 79.16 80.26 77.13 82.61
mBART+EM (Ours) 82.22 88.14 67.44 83.82 74.29 88.32 77.92 85.32 68.39 81.98 79.89 81.12 77.45 84.50
All
MT 85.15 89.88 70.33 87.42 75.72 91.42 77.72 92.26 72.41 84.35 81.71 83.25 80.35 87.74
mBART 87.42 89.73 81.74 88.33 76.62 92.93 78.73 92.15 74.42 84.63 81.74 83.83 80.62 87.12
mBART+EM (Ours) 88.97 90.10 82.35 90.02 76.93 93.66 79.01 92.89 74.25 84.19 82.55 84.30 80.60 87.28

NLG (BLEU-4)
MT 9.22 7.58 9.71 7.82 8.63 9.33 8.88
Ours (50-shot) 10.37 8.29 10.21 7.67 8.45 9.72 8.23
Ours (100-shot) 11.23 9.38 11.87 9.44 9.90 10.91 9.58
Ours (All) 12.67 10.32 12.43 9.33 9.80 10.99 9.11

Table 1: Benchmark comparison on all seven languages reporting both NLU (slot(%) intent(%)) and NLG
(BLEU-4). KGPT (Chen et al., 2020) is the pretrained data-to-text generation model; and MT refers to the use of
Helsinki bilingual translation model (Tiedemann and Thottingal, 2020).

Model
Spanish (Es) Chinese (Zh)

Naturalness Miss Wrong Naturalness Miss Wrong
Reference 4.00 - - 5.00 - -
MT 3.66 57 24 3.33 28 33
KGPT+MT 3.33 45 22 4.33 24 32
mBART 3.33 37 17 3.33 23 28
Ours 3.66 23 12 4.33 18 21

Table 2: Human Evaluation on the sampled outputs (100
instances) for all models on the 100-shot scenario. Three
annotators were asked to evaluate the Naturalness (0-5), Miss
(i.e. # missed slots), and Wrong (i.e. # hallucinated slots).

5 Results and Analysis

Here we first present two forms of analysis for both
monolingual and multilingual data, then analyze
the synthetic data with human evaluation.

Analysis of Monolingual Data. In table 1, we
first observe that the use of KGPT (KGPT+MT) in
the few-shot settings helps to produce high quality
synthetic English (En) data that allows the mBART
models to achieve decent NLU performance. We
also see that the difference between 50-shot and
100-shot is minor, which we think is highly depen-
dent on the random sampling process of the few-
shot data. The improvement for Ours is slightly
more drastic when all data is used (All), where the
performance (82.22 to 91.97) approaches that of
the system using the real full English data.

Analysis of Multilingual Data. In the multilin-
gual setting, we observe that finetuning mBART
on the translated data (mBART) brings about no-
ticeable improvements generating high quality text

over some language pairs (e.g. En-Fr, En-De); the
improvement is limited for some languages (e.g.
Ja). We attribute this to the cross-lingual similar-
ity that allows some language pairs to obtain more
useful inductive biases than in cases of more dissim-
ilar language pairs. Further, we observe consistent
improvements that mBART+EM has over the base
models, suggesting that the iterative knowledge dis-
tillation process is crucial to draw both the teacher
and student models to the in-domain region. This
can be seen across most languages. As such, we
conclude that the proposed technique does indeed
help to create useful synthetic data, even in zero-
or few-shot cross-lingual settings.

On Generation Quality. In Table 1, we also no-
tice the limited BLEU-4 scores, which means that
the multilingual human annotation has rephrased
the utterance quite drastically different from the
original English text. To examine further, we per-
form human evaluation (See Table 2) on the Span-
ish and Chinese generation outputs based on 100-
shot data, to look for evidence of naturalness and
high fidelity. We observe that the human evaluation
is consistent with that of the intent classification
and slot filling scores, while having high natural-
ness and fidelity as defined by Miss and Wrong.

6 Limitations

We also recognize that the approach gradually loses
its effectiveness as the size of the data increases.
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Moreover, in some language pairs such as Por-
tuguese and Chinese, the improvement with EM
steps remain largely limited. We attribute this to
the linguistic gap across language pairs, which is
the biggest limitation of our approach, since the
approach’s effectiveness hinges upon the proximity
between source-side high resource language (i.e.
English) and the target-side languages. Therefore
we postulate that the approach would be very lim-
ited for extremely low resource languages such as
many of the African languages.

7 Conclusion and Future Work

In this paper, we show the effectiveness of the pro-
posed technique in constructing synthetic multilin-
gual data from few-shot monolingual samples. Sur-
prisingly, training on the synthetic outputs yields
decent performance in terms of slot F1, intent ac-
curacy, and human evaluation. We hope to extend
the work in the future to low resource languages –
applying it to additional tasks beyond NLU such as
coreference resolution.
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Abstract
Large pretrained language models offer pow-
erful generation capabilities, but cannot be re-
liably controlled at a sub-sentential level. We
propose to make such fine-grained control pos-
sible in pretrained LMs by generating text di-
rectly from a semantic representation, Abstract
Meaning Representation (AMR), which is aug-
mented at the node level with syntactic control
tags. We experiment with English-language
generation of three modes of syntax relevant
to the framing of a sentence - verb voice, verb
tense, and realization of human entities - and
demonstrate that they can be reliably controlled,
even in settings that diverge drastically from
the training distribution. These syntactic as-
pects contribute to how information is framed
in text, something that is important for appli-
cations such as summarization which aim to
highlight salient information.

1 Introduction

Language models pretrained on enormous corpora
have become a staple in natural language process-
ing because of their power and adaptability (Devlin
et al., 2019; Lewis et al., 2020; Raffel et al., 2020).
These models exhibit strong performance across a
range of applications, but are not inherently control-
lable beyond the choice of input. To enforce spe-
cific constraints on their output, we must introduce
an additional mechanism for control, whether by
inserting control codes during pretraining (Keskar
et al., 2019) or by adding components to the model
(Dathathri et al., 2020). These prior methods allow
specification of high-level attributes (e.g., topic or
sentiment) but leave the specifics of sub-sentential
realization to the model.

In contrast, we present a method for controlling
generation of specific verbs and entities within a
sentence. We investigate the setting in which a
pretrained language model is used not as an end-
to-end solution, but rather to directly generate text
from a predefined content plan. Such a content plan

may be created at an intermediate stage in a given
task (e.g., as the product of content selection over
a document graph in AMR-based summarization)
but is not inherently task-specific.

Specifically, we focus on the controllability of
BART when it is fine-tuned to generate text from
an intermediate Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), a form of graphi-
cal semantic representation. We choose AMR be-
cause it is relatively widely used, including as an
intermediate representation in summarization (Liu
et al., 2015; Hardy and Vlachos, 2018) and machine
translation (Song et al., 2019), and the problem of
AMR-to-text generation is well-studied (Konstas
et al., 2017; Wang et al., 2020; Bai et al., 2020;
Zhang et al., 2020). We focus on BART because
of its competitive performance in summarization, a
task where we feel our work is particularly appli-
cable, as document-level content graphs have been
shown to be useful intermediate representations
in long-context summarization settings (Wu et al.,
2021).

Our setting makes use of the powerful genera-
tion abilities of a pretrained language model while
also exposing a direct graphical representation of
the content, which allows us to target control tags
to specific nodes in order to impose fine-grained
control (i.e., constrain the text-level realization of
specific verbs or entities). This is not possible in
an end-to-end approach to some tasks, such as in
summarization: although high-level attributes can
be controlled during generation, there is no pre-
existing syntactic or content plan, and so verbs
and entities in the summary cannot be directly con-
trolled as they have not been determined yet. In
cases where we desire such control - e.g., in query-
focused summarization, or when highlighting im-
portant entities (Nenkova et al., 2005) - it is thus
useful to have a representation that specifies syn-
tactic aspects at the level of individual verbs or
entities.
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In our experiments, we augment the AMR in-
put to our generator with tags which we automati-
cally infer for three modes of fine-grained syntax,
which we choose for their relevance to summariza-
tion: verb voice (active or passive), verb tense, and
syntactic realization of human entities (i.e., names
and pronouns). Controlling voice and entities con-
tributes to the model’s ability to use syntax to high-
light a specific topic or focus, following centering
theory (Grosz et al., 1995), which is important in
cases where the focus of the summary may dif-
fer from the focus of sentences in the document.
As plain AMR does not contain information about
tense, which is important for maintaining faithful
summaries, we also consider controlling verb tense
to avoid generating hallucinations about when an
event took place.

We find that finetuning BART to generate from
AMR augmented with these syntax tags makes it
largely controllable across all three types of syntax.
Importantly, this holds true even when the fine-
tuned models are evaluated on a test set designed
to have a radically different class distribution than
the training set, without any tradeoff as to the flu-
ency of the generated output. We further find that
training the same model with control on multiple
syntactic modes improves performance on voice
controllability, though not on tense. Our experi-
ments show that our tagged models are far better at
controlling voice, tense and entity realization than
a model without tags.

In summary, our contributions are:

• A method of automatically extracting labels
for each of three modes of fine-grained syntac-
tic information for relevant AMR nodes (verb
voice, verb tense, and entity realization), al-
lowing us to create high-quality fine-tuning
data at scale;

• Experiments demonstrating controllability in
pretrained BART models finetuned for gen-
eration from tag-augmented AMR in both in-
distribution and off-distribution settings;

• Ablation analyses and experiments on interac-
tions between modes of syntax demonstrating
which modes work well together.

Our code will be made available at
https://github.com/feitzin/amr-controlled-
generation.

2 Related Work

Controllable generation. Most prior work on con-
trollable generation focuses on global attributes
that apply to the entire output (Hu et al., 2017;
Shen et al., 2017; Chawla and Yang, 2020), rather
than fine-grained control of the realization of in-
dividual units of content, as we do. This includes
work on controllable generation with pretrained
language models (Keskar et al., 2019; Dathathri
et al., 2020).

Work on controllable summary generation also
shares this focus on global attributes. Fan et al.
(2018) trains a convolutional model to generate
summaries controlled by attribute markers for
length, entities to focus upon, domain, and sub-
set of the text. He et al. (2020) fine-tunes a BART
model to generate output summaries that are con-
trolled using keywords or prompts, allowing the
model to focus on specific entities or desired infor-
mation. This approach addresses a similar prob-
lem to our work, but focuses on global rather than
fine-grained control, does not necessarily frame
a summary around selected relevant content, and
is applicable to classic single-document summa-
rization, whereas our approach is generalizable to
multi-document and long-document settings due to
its use of a content selection model

Pipelines in surface realization. Elder et al.
(2019) demonstrate that a symbolic intermediate
representation (based on a dependency graph) used
as input to a neural generator can yield improve-
ments on the surface realization task. Castro Fer-
reira et al. (2019) find that a pipeline of discrete
modules can yield improvements over end-to-end
neural models for data-to-text generation. How-
ever, Farahnak et al. (2020) find that a pretrained
language model (BART) can outperform previous
state-of-the-art modular pipelines on surface real-
ization. We aim to take the best of both by using
BART as our generator, but leaving the choice of
content selector free.

AMR-to-text generation. There is an active
body of work on AMR-to-text generation (Konstas
et al., 2017; Wang et al., 2020; Bai et al., 2020;
Zhang et al., 2020), but most of this work uses ar-
chitectures specialized for the AMR-to-text setting.
In contrast, our work focuses on adapting this set-
ting to controllable generation with pretrained lan-
guage models. To our knowledge, the most closely
related work to ours is that of Ribeiro et al. (2020),
who investigate the use of pretrained language mod-
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els for multiple graph-to-text generation settings,
and whose finetuning setup we follow closely.

3 Data and Methodology

The AMR Bank (Knight et al., 2020) is the largest
gold standard corpus for AMR, but it contains only
around 60,000 annotated sentences in total, which
is a relatively small amount of data for finetuning
a large model such as BART. Thus, for finetuning,
we instead use a much larger text corpus which we
parse automatically using the published code for
the AMR parser of Cai and Lam (2020). As the
application we are interested in is summarization,
we use the multidocument summarization corpus
of Gholipour Ghalandari et al. (2020), which con-
sists of 10,200 clusters containing on average 235
documents each. We refer to this as the reservoir
corpus. Although we do not use the AMR Bank for
finetuning, we do use its proxy subset, which con-
tains news documents and summaries, as a second
evaluation set.

Due to constraints on time and processing power,
we do not use the entire reservoir corpus for fine-
tuning, but rather finetune our models primarily
on the reservoir validation set, which contains
580,787 sentences in total. We split the reservoir
corpus’ validation set into a training set of 500,000
sentences and validation set of 80,000 sentences,
which we use for finetuning. For evaluation, we
sample 10,000 sentences from the reservoir training
set to use for model analysis, and sample 10,000
sentences from the reservoir test set for final per-
formance numbers. We reserve the remainder of
the reservoir training set for experiments that re-
quire filtering out a portion of the data. We give
an overview of the reservoir corpus’ split sizes and
partitioning in Table 2.

3.1 AMR Linearization

We use finetuned BART models for AMR-to-text
generation, but BART takes sequences as input
rather than arbitrary directed graphs. Thus, follow-
ing the methodology of Ribeiro et al. (2020), we lin-
earize AMR graphs into a modified version of PEN-
MAN format (Kasper, 1989) that omits identifying
handles for each node: for each AMR graph, we
perform a depth-first traversal of the graph, adding
node and edge labels to the linearized sequence in
order, as well as parentheses indicating depth levels
(see Table 1 for an example).

3.2 Syntax labeling

In overview, our labeling procedure involves three
steps: (1) extract syntactic labels from the raw
text; (2) use the extracted labels to augment the
linearized AMR for input to our generation mod-
els; (3) extract syntactic labels a second time from
the models’ output to evaluate against the origi-
nal tags. We use spaCy (Honnibal et al., 2020)
for dependency parsing and part-of-speech tagging
to extract syntactic labels. When augmenting lin-
earized AMR, we insert syntactic tags as a modifier
directly following the relevant node (see Table 1).

We provide class distributions for each mode of
syntax in Appendix A. We note that the voice and
entity classes are highly imbalanced, while tense is
relatively more evenly distributed across classes.

Voice. To extract passive/active labels from a
sentence, we examine the automatically extracted
dependency parse for the sentence and individually
label each verb as active or passive according to its
edge labels. We verify the reliability of this method
in §6.4.

Given these labels, we identify corresponding
nodes in the AMR graph by performing exact string
matching between the lemmas of each labeled verb
and the concept labels of all AMR nodes repre-
senting a verb. Verb nodes that are not matched to
any labeled verb lemma are not assigned a label.
In linearization, the label appears as an additional
modifier after the concept string of the verb: either
:active or :passive.

Tense. We use the fine-grained part-of-speech
tag under the Penn Treebank labeling scheme (Mar-
cus et al., 1993) as the tense tag for each verb. We
obtain these tags directly from the part-of-speech
tagger.

Entity realization. We filter the data in our
entity realization experiments to consider only sen-
tences that fulfill two requirements. First, there
must be at most one person node in the AMR.
Second, the sentence must contain at most one of
the pronouns {she, he, they} or their associated
forms (i.e., a sentence containing “he" and “him-
self" would be acceptable; a sentence containing
“her" and “their" would be discarded). This elimi-
nates the possibility of introducing additional error
using automatic coreference.

We assume that if one of these pronouns
occurs in such a sentence, it is associated
with the single person node in the AMR,
and give that node the appropriate tag among
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Sentence They had received a call to conduct a background check about 6:15 p.m.

Linearized AMR
(voice tags)

( receive :active :ARG0 ( they ) :ARG1 ( call :ARG0 they :ARG1 ( conduct :active
:ARG0 they :ARG1 ( check :ARG0 they :ARG1 ( background ) ) ) :ARG1 ( rate-
entity-91 :ARG2 ( temporal-quantity :quant 1 :unit ( minute ) ) :ARG4 ( temporal-
quantity :quant 1 :unit ( hour ) ) ) ) )

Table 1: An example sentence and linearized AMR with voice tags inserted. The verbs tagged for voice in the
second example are “receive" (active) and “conduct" (active). Tags are bolded for readability.

Split Sentences Usage

Train 4.38M Held in reserve. (10k
split for analysis.)

Val 581k Finetuning data (500k
train, 80k validation).

Test 543k 10k sampled from test
set.

Table 2: Partitioning of the larger reservoir corpus.

:pronoun-{he/she/they}. If the person
node is named in the AMR, we give it the tag
:named. Otherwise, we assume that the person in
question is described in some other way, such as
by profession (e.g. “scientist") or by an action they
perform (e.g. “visitor") and give it the :desc tag.
We remove the :desc class from our experiments
because it encompasses both generic and specific
references, while we are interested only in specific
references (for details, see Appendix B).

In our entity realization experiments, we thus
filter out sentences with :desc tags or multiple
person nodes from the reservoir training set until
we have an equivalent amount of data to that used
in the other experiments, giving us alternate train-
ing and validation sets of equal size. To obtain our
entity test set, we filter out sentences with :desc
tags or multiple person nodes, as well as sentences
with no person nodes, until we have 10,000 sen-
tences.

3.3 Finetuning
We closely follow the methodology of Ribeiro
et al. (2020) for finetuning. We finetune multi-
ple pretrained BART-large models on AMR graph-
sentence pairs to produce the sentence text given
different variations of a linearized AMR graph.
Specifically, once we have the base linearized
AMR, we insert our syntactic tags into the AMR as
metadata tags for the appropriate nodes, and train
a family of models to generate text with each of

these types of augmentations (and without control
tags, for comparison).

4 Experiments

In our experiments, we compare three types of
models in total: first, a baseline “untagged" BART
model finetuned on pure AMR-to-text generation
with no control tags; second, BART models fine-
tuned to produce text from linearized AMR with
syntax tags for each mode of syntax individually;
and finally, a set of models finetuned with control
tags for multiple modes of syntax. For both voice
and tense, we report results both on our own test set
(10k sentences) as well as the test set of the proxy
subset of the AMR Bank (approximately 800 sen-
tences) for comparison on gold AMR parses. For
entity, we report results only on our own test set,
as after filtering the proxy test set to remove sen-
tences with :desc tags and sentences with greater
or fewer than one person node, only 16 sentences
remained.

4.1 Hyperparameter settings
We use Fairseq (Ott et al., 2019) for finetuning.
Based on preliminary experimental results, we eval-
uate all models after four epochs. We train all
models using the Adam (Kingma and Ba, 2014)
optimizer with a learning rate of 3 × 10−5 and
polynomial learning rate decay. (For full hyperpa-
rameter settings, see Appendix C.)

4.2 Syntactic control
To investigate the effect of finetuning with our syn-
tax tags, we automatically extract syntactic labels
from each verb in the output from each model using
our automatic labeling procedure. For each mode
of syntax, we measure performance on generation
with the corresponding labels as a classification
task using macro F1. As person nodes may have
both a :named tag and a pronoun tag attached, we
measure entity realization performance on two sep-
arate tasks: whether our model generated a name
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or not, and whether our model used the correct pro-
noun (if it used a pronoun at all). For tense and
pronouns, we additionally provide breakdowns of
F1 per class on our test set.

As we only measure F1 over the set of labeled
nodes from the original sentence that are repro-
duced in the generated text (see §3.2), we addi-
tionally recorded the percentage of such nodes, i.e.
the node retention, which indicates the proportion
of labels that are kept for evaluation, rather than
dropped because the corresponding nodes are not
realized as the same lemma in the generated output.
Across all models for all settings, node retention is
upward of .8 on our test set.

Evaluating directly on the test set measures how
well our finetuned models can reproduce the de-
sired syntax in a setting where syntactic labels fol-
low a similar distribution to the training set, as
they are both drawn from the same base corpus. In
order to isolate the effect that using control tags
gives us, we also report performance in an off-
distribution setting. For each mode of syntax, we
create a flipped evaluation set by perturbing the con-
trol tags inserted into the evaluation inputs, which
directs BART to generate less distributionally plau-
sible voices: for voice, we swap active and passive
tags; for tense, we swap between past and present,
and for entities, we use a two-stage strategy for ran-
domizing name and pronoun tags. For full details,
see Appendix D.

4.3 Sentence quality

To measure fluency, we compute BLEU score (Pa-
pineni et al., 2002) of the generated text against the
original sentence. While smatch (Cai and Knight,
2013) could be used to compare automatic AMR
parses of the generated text against the input AMR,
that would also inherently evaluate the AMR parser
used, which is not our focus.

5 Results

5.1 Voice

We report performance of each model on the ac-
tive/passive reproduction task in Table 3. The
‘flipped’ statistics (the second column in each pair)
are on the flipped evaluation set, i.e. with all voice
tags flipped, which forces the model to generate
against the regular voice distribution.

The model finetuned with control tags performs
noticeably better than the untagged model on the
regular evaluation set, but its controllability truly

Test set Proxy test set
Model F1 Flip F1 Flip

Untagged 0.833 0.048 0.630 0.086
Voice 0.965 0.498 0.909 0.516
v + t 0.957 0.500 0.934 0.546
v + e 0.972 0.463 0.941 0.541

v + t + e 0.965 0.499 0.979 0.581

Table 3: F1 of finetuned BART variants for verb voice,
in original and flipped settings, on our test set and the
proxy test set. Components of combined models are
abbreviated: voice (v), tense (t), entity (e).

shows through on the flipped set, where it outper-
forms the uncontrolled model by an order of magni-
tude. Though there is a sharp drop in performance
from the original setting, it still manages to repro-
duce a nontrivial proportion of verbs in the speci-
fied voice even when the tags are flipped, indicating
that it is indeed able to some extent to disregard
whatever signal may be present in the raw AMR.
We note that, although we naïvely flip all tags in
the flipped setting, some verbs cannot appear in
the passive (e.g., intransitive verbs such as “sleep"),
which lowers the maximum possible score.1

Interestingly, even the untagged model achieves
impressive performance on the evaluation set, sug-
gesting that the model does receive some signal
as to verb voice. We hypothesize that it is pick-
ing up on the highly skewed verb distribution (see
Appendix A), as the active voice is about an order
of magnitude more prevalent in the data than the
passive. However, its performance on the flipped
evaluation set is trivially far worse, as the untagged
model does not see the control tags at test time and
produces exactly the same output either way.

We note that results on the proxy set are slightly
lower in the original setting but slightly higher in
the flipped setting compared to our original test set.

5.2 Tense
We report performance on tense in Table 4. We
have a much more dramatic improvement for tense
than for voice when comparing the model fine-
tuned with tags to the model fine-tuned without;
the untagged model does poorly even on the in-
distribution evaluation set, whereas the tagged
model does quite well on both. This may indicate
that the distinctions between the multiple types
of verb tense are more difficult for the model to

1See Appendix E for more detail.
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Model Flipping Macro F1 Proxy F1 VB VBD VBG VBN VBP VBZ

Untagged None 0.691 0.448 0.830 0.747 0.687 0.757 0.562 0.564
Tense None 0.979 0.961 0.990 0.981 0.994 0.979 0.949 0.982
v + t None 0.978 0.953 0.988 0.976 0.992 0.974 0.953 0.986

v + t + e None 0.971 0.941 0.986 0.968 0.991 0.967 0.933 0.983
Untagged Flipped 0.185 0.196 0.826 0.114 0.035 0.075 0.006 0.055

Tense Flipped 0.784 0.806 0.986 0.909 0.871 0.830 0.143 0.964
v + t Flipped 0.786 0.899 0.983 0.902 0.859 0.800 0.207 0.966

v + t + e Flipped 0.760 0.736 0.981 0.891 0.818 0.736 0.173 0.959

Table 4: Performance of finetuned BART models for verb tense. F1 is reported on both our test set and the proxy
test set; individual class F1 scores are on our test set.

Model Flipping Name F1 Pronoun F1 she he they

Untagged None 0.399 0.720 0.473 0.782 0.906
Entity None 0.407 0.996 0.993 0.998 0.998
v + e None 0.395 0.995 0.992 0.997 0.996

v + t + e None 0.403 0.999 1.000 0.998 0.998
Untagged Flipped 0.401 0.204 0.083 0.283 0.245

Entity Flipped 0.399 0.980 0.986 0.985 0.970
v + e Flipped 0.426 0.976 0.978 0.988 0.961

v + t + e Flipped 0.433 0.967 0.974 0.975 0.953

Table 5: Performance of finetuned BART models for entity realization. F1 is reported for the binary named - not
named task as well as for the pronoun generation task. Numbers here are only on our test set, as there were only 16
sentences remaining in the proxy set after filtering.

learn without supervision than the active/passive
distinction. One note is that the VBP class seems
to be more difficult to accurately reproduce than
the others, perhaps due to its relatively small size
(approximately 5% of all verbs).

5.3 Entity realization

We report performance on entity realization, our
final syntactic task, in Table 5. Interestingly, it
seems that names are quite difficult to learn - our
scores simply measure whether the model gener-
ated a name or not, regardless of whether it was the
correct name, and even in that case, F1 is quite low.

A second observation is that flipping does not
seem to have a large effect on pronouns, which
suggests that the model has learned to generalize
across different types of pronouns quite well - there
is not a noticeable difference between performance
across pronoun classes, even though there is a mod-
erate imbalance in the distribution.

In the case of names, scores for some models ac-
tually go up slightly in the flipped setting. This may
indicate that the models have a tendency to guess

something closer to the randomized distribution of
name labels in the flipped evaluation sets.

5.4 Sentence quality

Model Syntax mode BLEU

Untagged Voice 0.679
Voice Voice 0.688

Untagged Tense 0.679
Tense Tense 0.703

Untagged Entity 0.670
Entity Entity 0.707

Table 6: BLEU scores for generated outputs from base
tagged and untagged models against original sentences.

We report BLEU scores in the original (not-
flipped) setting in Table 6. Adding tags in fine-
tuning slightly improves BLEU, suggesting that
the additional signal is helpful. At minimum, this
indicates that we can finetune BART to use syntax
control tags without having to worry about interfer-
ing with the content of its generated output.
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Generator Example sentence

Input ( lead :passive :ARG0 ( this ) :ARG0 ( chief :ARG0-of ( act :active ) ) :ARG1 ( organiza-
tion :name ( Pentagon ) ) :frequency 3 :time ( history ) )

Untagged This is the third time in history that an acting chief has led the Pentagon.
Voice This is the third time in history that the Pentagon has been led by an acting chief.
Input ( see :passive :ARG0 ( shrine ) :ARG1 ( person :ARG0-of ( visit ) :source ( religion :mod

( all ) ) ) :duration ( multiple :op1 ( temporal-quantity :quant 1 :unit ( century ) ) ) )
Untagged For centuries, the shrine has seen visitors from all religions.
Voice The shrine has been seen by visitors from all religions for centuries.
Input ( change :VBG :ARG1 ( intensity :mod ( forecast ) ) :mod ( also ) )
Untagged There will also be changes in forecast intensity.
Tense The forecast intensity is also changing.
Input ( announce :ARG1 ( include :ARG1 ( person :named :name ( Jim ) :wiki - ) :ARG2 (

honoree ) ) :time ( previous ) )
Untagged It was previously announced that Jim O’Brien would be included as an honoree.
Entity It had previously been announced that Jim Hightower would be among the honorees.

Table 7: Example inputs and outputs from tagged and untagged models, with correct syntactic realizations in bold
and incorrect underlined. Control tags in the input are italicized; these tags are not present in the version of the
input passed to the untagged model.

6 Analysis

6.1 Syntax interactions

In order to investigate the interaction between
the different modes of syntax, we additionally
train a set of models that incorporate multiple
types of tags. These are reported in the results
tables as the “voice+tense", “voice+entity", and
“voice+tense+entity" models.

Interestingly, adding tense seems to improve per-
formance on voice, whereas the converse does not
hold, while entity realization seems to be an or-
thogonal task: the “voice+tense" model achieves
better performance on voice but not on tense in the
more difficult flipped setting, whereas combining
entity realization with other types of syntax leads
to a drop in performance.

6.2 Qualitative analysis

We provide some examples of generated output
in Table 7. A number of further examples are
available in Appendix F. The first example is a
case from the original evaluation set where the
tagged voice model correctly generates the main
verb (“lead") in the passive, whereas the untagged
model incorrectly guesses it to be active. In such
cases where a verb is generated in an unusual voice,
the untagged model seems to make its guess based
on the verb’s more common voice, whereas the
tagged model is able to adjust its output based on

the control tag. The third example illustrates a
comparable situation with tense generation.

The second example, from the flipped evaluation
set, illustrates a different phenomenon we observed
in some cases. The untagged model generates the
voice that was correct in the original setting (but is
incorrect here). The tagged model correctly gen-
erates the main verb (“seen") in the passive tense,
but it makes a semantic error in doing so, changing
the shrine to the object rather than the subject of
the seeing - in a sense seeming to overcorrect for
the change in voice.

Finally, we observed across models a tendency
to hallucinate occasionally, particularly on numbers
and on person and country names; while the tagged
entity model usually correctly uses the name of a
person when given in the input, even this model
still sometimes hallucinates information that isn’t
there, such as the surname in the fourth example.

6.3 Structural ablation
We have now seen that we can successfully use
tagged AMR as input to give us fine-grained con-
trollability. However, it remains unclear exactly
how much information from the tags the model is
using, or how much it is able to infer on its own.
In order to investigate precisely which parts of the
AMR are necessary, we train a series of ablation
models on the voice control task by gradually re-
moving components of the input AMR.
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Components removed F1 Flipped F1

None (untagged) 0.838 0.047
None (voice tags) 0.953 0.431

Edges 0.964 0.438
Edges + structure 0.964 0.462

Edges + structure + tags 0.796 0.052

Table 8: Performance of full and ablated BART models
on the analysis set for verb voice.

Ablation BLEU

None (untagged) 0.717
None (voice tags) 0.731

Edges 0.713
Edges + structure 0.666

Edges + structure + tags 0.642

Table 9: BLEU scores for base and ablated models on
the analysis set for voice.

We train three ablated AMR-to-text models: a
model where we remove relation tags (i.e., edge
labels); a model where we remove relations and
graph structure (i.e., parentheses); and a model
where we remove relations, structure, and the syn-
tax control tags themselves.

We present results on ablated models alongside
the original tagged model in Table 8, and include
the ablated models’ content metrics in Table 9. Sur-
prisingly, our first two ablations (removing edge
labels and parentheses) both yield slight improve-
ments in voice controllability. However, this comes
at the expense of BLEU score, which drops 2 points
when edges are removed and 7 points when both
edges and structure are removed. This suggests that
removing edge and structural information somehow
makes it easier for the models to focus on the corre-
spondence between tags and syntax in the training
data, but at the cost of information about content.

6.4 Voice tagging accuracy

As our voice labels are derived from automatic de-
pendency parses, we check that our tagging method
is giving us reasonable labels by evaluating it sepa-
rately. We compare the voice tags from our tagging
method against the gold voice labels from two Uni-
versal Dependencies treebanks in English (GUM
and LinEs) and present the results in Table 10. Both
treebanks present a similar active/passive skew to
our data. On both treebanks, performance on the

Treebank True voice Prec. Recall F1

GUM Passive 0.982 0.885 0.931
GUM Active 0.993 0.936 0.964
LinEs Passive 0.937 0.468 0.625
LinEs Active 0.941 0.918 0.930

Table 10: Our automatic voice tagging on the develop-
ment sets of Universal Dependencies treebanks. Preci-
sion, recall and F1 are evaluated against gold labels.

majority active class is very high, whereas perfor-
mance on passive verbs differs between the two:
on GUM, our tagging method still picks up pas-
sive verbs quite well, whereas on LinEs, recall on
the passive class is much lower. Given the GUM
results, in our experiments, we assume that our tag-
ging method is reliable enough to use as gold stan-
dard, but in future research, further work on picking
up the missing passive instances from LinEs-like
sentences may thus prove valuable.

7 Conclusion and future directions

In this paper, we investigate the controllability of
three modes of syntax - verb voice, verb tense, and
syntactic entity realization - when using BART to
generate text from AMR input augmented with
automatically extracted syntactic labels. We find
that all three modes of syntax are more reliably
reproduced when these augmentations are added,
yielding more accurate and more faithful outputs.
Further, even when we artificially engineer the dis-
tribution of tags to be as far from training as pos-
sible, the models with tags still far outperform the
model without, without sacrificing fluency.

Ultimately, our labeling strategy allows us to
automatically create data at good enough quality
and scale that we can successfully finetune a pre-
trained LM generator to reliably follow a content
plan augmented with fine-grained syntactic tags.
This setting is particularly useful in tasks such as
summarization, where there is no one-to-one map-
ping between input and output content, and thus no
appropriate place to insert fine-grained tags in the
original input.

There are many avenues of possible future study
with our method of controllable generation; one
natural future direction would be an expansion of
the setting from individual sentence AMRs to a
collection of AMRs forming a contiguous passage
or document, as is the ultimate goal of this work.
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A Data Imbalance

We provide the breakdown of label distributions
within each class in Table 11.

Mode Classes

Voice
Active (0.926)
Passive (0.074)

Tense

VB (0.216)
VBD (0.259)
VBG (0.165)
VBN (0.230)
VBP (0.053)
VBZ (0.078)

Entity

desc (0.770)
named (0.109)
pronoun-she (0.010)
pronoun-he (0.041)
pronoun-they (0.070)

Table 11: Class distributions for each syntax mode.

B The description class

As mentioned in §3.2, the description class con-
tains not only cases where the entity described is
a specific reference (i.e., a particular identifiable
person), but also generic references (i.e., terms de-
scribing classes of people, such as “visitors to the
location"). Our focus in this paper is on realiza-
tion of specific entities and not generics; we thus
omit sentences containing the :desc class from
our experiments. This has the incidental benefit
of leaving us with much more balanced data, as
descriptions originally made up the majority class
(approximately 80% of all person instances).

C Finetuning details

In our experiments, we use Fairseq to finetune from
a pretrained bart-large model for four epochs using
Adam; we use a learning rate of 3e-05, dropout of
0.1, and polynomial learning rate decay with 500
warmup updates and 2,000,000 total updates.

D Label flipping

To create our flipped data, we use the following
strategies to perturb labels:

• Voice. Swap active and passive tags.

• Tense. Flip between past and present, i.e.,
VBG and VBN are swapped, and VBD is

swapped with VBP and VBZ. (VB is left un-
changed.)

• Entities. If the node has only a pronoun tag,
we replace it with a random pronoun tag that
differs from the original, and with 0.5 prob-
ability we add a dummy name node (drawn
from a list of the top 100 most common unisex
names in the United States2) and a :named
tag. If the node originally had a :named tag,
with 0.5 probability we remove it and add a
random pronoun tag that differs from the one
it had, if any.

E Feasibility of voice flipping

We performed a hand analysis of 50 sentences to
estimate the proportion of sentences in which it
was possible to flip the voice of the main verb. For
sentences where it was possible to flip the voice, we
also judged whether that would result in an undesir-
ably awkward sentence (e.g., “they clinked glasses"
versus “glasses were clinked by them") and whether
it would have required significant modification of
sentence structure (e.g., reordering clauses).

We found that in 12 sentences the main verb
could not be flipped. Of those sentences where
the main verb could be flipped, in 6 it would have
resulted in an awkward sentence and in 10 it would
have required some modification of sentence struc-
ture to preserve the meaning of the sentence.

This suggests that the effective ceiling on pos-
sible performance on voice controllability in the
flipped setting is somewhere between approxi-
mately 64% and 76% (depending on whether awk-
ward sentences are considered infeasible), and
achieving performance higher than approximately
44% may be particularly difficult, as perfectly flip-
ping the voice would require learning to modify
the structure of the entire sentence.

F Further examples

We provide further examples of generated output
in Table 12.

One observation is that correct syntactic realiza-
tion does not necessarily entail correct semantics
or freedom from hallucination, as evidenced in the
third example, where both models hallucinate an
update frequency of every 15 minutes rather than
every 10 minutes. Hallucinations about person and

2https://github.com/fivethirtyeight/data/tree/master/unisex-
names
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country names are particularly common, as demon-
strated in the fourth example, where both models
hallucinate different country names for the coun-
try entities in the input, whereas the names are not
explicitly provided.

Sometimes it seems that the tagged models pro-
vide improvements over the untagged model that
we do not directly measure in our syntactic evalua-
tion; the final two examples illustrate cases where
the entity model correctly names an entity that the
untagged model gave an incorrect name derived
from its wiki tag (rather than its name tag), al-
though both would have been considered correct in
our evaluation as a name was produced for both.
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Generator Example sentence

Input ( contrast :ARG1 ( welcome :passive :ARG0 ( person :ARG0-of ( criticize ) :quant ( many
) ) :ARG1 ( move ) ) :ARG2 ( say :active :ARG0 ( some ) :ARG1 ( and :op1 ( enough
:ARG0 move ) :op2 ( come :active :ARG1 move :time ( late :degree ( too ) ) ) ) ) )

Untagged Many welcomed the move, but some said it wasn’t enough and came too late.
Voice The move was welcomed by many critics, but some said it wasn’t enough and came too

late.
Input ( make :VBN :ARG0 ( country :name ( France ) :wiki "France" ) :ARG1 ( point :topic

( reduce :VBG :ARG0 country :ARG1 ( impact :ARG0 ( environment ) :ARG0 ( meal
:ARG1-of ( serve :VBN :time ( summit ) ) ) ) ) ) :mod ( also ) )

Untagged France will also make a point of reducing the environmental impact of the meals served
during the summit.

Tense France has also made a point of reducing the environmental impact of the meals served at
the summit.

Input ( update :VBZ :ARG1 ( map :mod ( interactive ) ) :frequency ( rate-entity-91 :ARG3 (
temporal-quantity :quant 10 :unit ( minute ) ) ) )

Untagged The interactive map will be updated every 15 minutes.
Tense The interactive map updates every 15 minutes.
Input ( and :op1 ( effect :ARG1 ( watch :ARG1 ( hurricane ) :ARG1 ( island ) ) ) :op2 ( post

:VBN :ARG1 ( warn :ARG1 ( storm ) ) :ARG2 ( and :op1 ( country ) :op3 ( country ) ) ) )
Untagged A hurricane watch is in effect for the islands, and storm warnings have been posted for

Curaçao, Aruba, Bonaire and Curacao del Sur.
Tense A hurricane watch is in effect for the islands, and storm warnings have been posted for

Guam, Malawi and the island of Curaçao.
Input ( sit-down-02 :ARG1 ( gauntlet :part-of ( negotiate :ARG2 ( and :op1 ( crisis :mod (

international ) ) :op2 ( war :topic ( trade ) ) ) ) ) :ARG2 ( person :named :name ( Putin )
:wiki "Vladimir_Putin" ) )

Untagged the gauntlet of negotiations over international crises and trade wars will be sat down with
Vladimir_Putin.

Entity the gauntlet of negotiations on international crises and trade wars is a sit-down with Putin.
Input ( say :ARG0 ( person :named :name ( Trump ) :wiki "Donald_Trump" ) :ARG1 ( pressure

:ARG0 ( time ) :degree ( absolute ) ) )
Untagged “Time is absolutely under pressure,” said Donald_Trump Jr.
Entity “Time is absolutely under pressure,” Trump said.

Table 12: Example inputs and outputs from tagged and untagged models, with correct syntactic realizations in bold
and incorrect underlined. Control tags in the input are italicized; these tags are not present in the version of the
input passed to the untagged model.
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Abstract

Evaluating machine-generated summaries with-
out a human-written reference summary has
been a need for a long time. Inspired by pref-
erence labeling in existing work of summariza-
tion evaluation, we propose to judge summary
quality by learning the preference rank of sum-
maries using the Bradley-Terry power ranking
model from inferior summaries generated by
corrupting base summaries. Extensive experi-
ments on several datasets show that our weakly
supervised scheme can produce scores highly
correlated with human ratings.

1 Introduction

Summarization is a task in natural language pro-
cessing in which automatic systems generate sum-
maries from documents. To judge the quality of
system-generated summaries, human evaluation
is the best option, but it is non-trivial and labori-
ous. Hence, many automatic metrics have been
developed. They can be categorized as reference-
based ones and reference-free ones, depending on
whether reference summaries are needed in the
evaluation stage.

Reference-based metrics include ROUGE (Lin,
2004), BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015), METEOR (Baner-
jee and Lavie, 2005), S3 (Peyrard et al., 2017),
MoverScore (Zhao et al., 2019), BertScore (Zhang
et al., 2020), etc. Calculating the lexical over-
lap or the embedding similarity between a
system-generated summary and its corresponding
human-written reference summary, they reportedly
have high correlations with human assessments.

Because creating human-written reference sum-
maries is laborious and expensive, recent works
are shifting to reference-free metrics. Sum-
maQA (Scialom et al., 2019) and BLANC (Vasi-
lyev et al., 2020) leverage pretrained language mod-
els to carry out text understanding tasks to evaluate
the helpfulness of a summary for understanding

its source document. SUPERT (Gao et al., 2020b)
measures the semantic similarity against a pseudo
reference summary in a multi-document summa-
rization setting. However, reference-free metrics
may show a lower correlation (Fabbri et al., 2021)
with human evaluation scores than some of the
reference-based metrics.

To trade off between the human effort needed
and the quality of the evaluation, some work pur-
sues a pairwise preference approach which collects
preference labels over sentences in documents or
over summaries from a human assessor as it re-
quires less cognitive effort than writing a reference
summary or manually scoring a machine-generated
summary. Zopf (2018) proposes a reference-free
evaluation approach by estimating sentence-level
preferences on source documents rather than di-
rectly on the generated summaries. Gao et al.
(2020a) train a linear model to estimate a summary
preference utility function via active preference
learning to guide a reinforcement learning based
summarization system. But they do not examine
the learned preference model as a metric for sum-
marization evaluation.

Inspired by human-involved pairwise preference
in summarization evaluation (Zopf, 2018; Gao
et al., 2020b) and simple NLP data augmentation
methods like EDA (Wei and Zou, 2019), in this
work, we explore reference-free summary quality
assessment via pairwise preference learning using
negative sampling. A pre-trained text embedding
model is used in a siamese network to learn the pref-
erence utility in an end-to-end, weakly supervised
fashion. The closest work to ours is LS_Score (Wu
et al., 2020). We achieve improved performance
by using a better-attended model, a loss function
based on preference learning, and introducing a
mixed transitive negative sampling strategy. In ad-
dition, we promote our work to cross-domain and
multi-document settings.

We show that the learned models are competitive
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Figure 1: Model architecture.

compared to the state-of-the-art reference-free met-
rics. Our code is at https://github.com/
NKWBTB/PrefScore.

2 Method

2.1 Model Architecture

The goal of a reference-free evaluation system is
to learn a regressor f which takes a document d
and its summary s as the input to produce a score
f(d, s) which represents the quality of the sum-
mary s. Learning such a regressor via supervised
learning is very difficult because existing human-
rated summary evaluation datasets (NIST, 2010;
Grusky et al., 2018; Bhandari et al., 2020) contain
too few samples, around 100 samples each, to train
a generalizable model.

Therefore, we use pairwise preference learning
as a weakly supervised workaround. By corrupting
a summary into an inferior one, existing summa-
rization datasets containing no human ratings as
training labels but only gold, reference summaries
can be transformed into massive training data for
preference learning.

The training label is designed based on the
Bradly-Terry (BT) model (Bradley and Terry,
1952). Given a reference summary s and a per-
turbed summary s′ of the document d, the BT
model estimates f(d, s) and f(d, s′) such that the
probability of s being superior than s′ is:

p(s ≻ s′|d) = exp(f(d, s))

exp(f(d, s)) + exp(f(d, s′))
.

(1)
This leads to our model design (Figure 1) us-

ing a siamese network. Leveraging the recent
work of BERT-like (Devlin et al., 2019) contex-
tualized embedding, a document d and a sum-
mary s are viewed as two sequence of tokens
Td and Ts. The input sequence are constructed
as ([CLS], Td, [SEP], Ts, [SEP]), then the output of
the [CLS] token containing both information from

document and summary are sent to a linear layer
to produce the final score f(d, s). During the train-
ing, a pair of summaries will be sent to the siamese
network. It can be seen as training a classifier to
determine which summary is better. The loss is
therefore:

LBT = −
∑

d

∑

s′∈S′
[log(p(s ≻ s′|d))] (2)

where S′ is a set of inferior summaries deviated
from s in methods to be discussed below in § 2.2.
The learned ranking utility f is used as our sum-
mary evaluator and does not require a reference
summary in the test/evaluation stage.

2.2 Mixed Transitive Negative Sampling

Given a reference summary s, we can obtain the
set S′ = {s′1, s′2, . . . , s′n} of inferior summaries
by mutating the reference summary s iteratively:
s′1 is mutated from s, s′2 from s′1, and so on. We
can obtain a preference sequence of summaries
s ≻ s′1 ≻ · · · ≻ s′n. The process is illustrated in
Figure 2. In each iteration, unmodified tokens in
s′i is randomly selected and mutated to generate
summary s′i+1. The process continues until all
tokens are mutated.

Summary:

S Token 1 Token 2 Token 3 ... Token m
⇓ word deletion                 

S'1 Token 1 Token 2 Token 3 ... Token m
⇓ word deletion

S'2 Token 1 Token 2 Token 3 ... Token m
⇓ sentence replacement   

⋮ ⋮
S'n-1 Token 1 Token 2 Token 3 ... Token m

⇓ sentence reordering
S'n Token 1 Token 2 Token 3 ... Token m

Figure 2: An example of the mixed transitive negative
sampling process. The original part is in white, while
the modified part is indicated as grey blocks.

Four mutation methods are employed: 1) delet-
ing a sentence from the summary, resulting in in-
formation loss in the summary. 2) replacing a sen-
tence in the summary with a sentence from other
summaries, introducing extra information and re-
dundancy in the summary. 3) deleting a word from
the summary, influencing the sentence structure
and readability. 4) reorder sentences or words,
aggravating the coherence in the summary.

In each iteration, one of the four mutation meth-
ods is randomly chosen. Unlike plain negative
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sampling that mutates samples in only one way or
in only one iteration, our mixed transitive negative
sampling accumulates the effects of different muta-
tions into samples, enabling a model trained upon
to learn different aspects of summaries.

3 Experiments

3.1 Test Sets

There are not many datasets with human evalua-
tions to machine-generated summaries. Unfortu-
nately, they are almost all in the news article do-
mains. We use three established ones:

TAC2010 (NIST, 2010) is a multi-document
summarization dataset which reports three scores:
content, fluency and overall. It consists of 46 topics,
each of which is associated with a set of 10 doc-
uments. We evaluate the metrics over summaries
generated by 43 systems. For a summary, we calcu-
late the mean score for all documents paired with
the summary as an extension for our metric in the
multi-document scenario. Only Set A for the regu-
lar summarization task is used here.

Newsroom (Grusky et al., 2018) is a single-
document summarization dataset reporting four
scores: INFormativeness, RELevance, COHer-
ence and FLUence. It contains human-rated sum-
maries generated by 7 systems for 60 documents.
Each document-summary pair is rated by three hu-
man annotators. We use their mean score as the
groundtruth score.

RealSumm (Bhandari et al., 2020), a recent
single-document dataset reporting the LitePyra-
mid (Shapira et al., 2019) score which is also
content-focused. It sampled 100 documents from
the CNN/DailyMail (See et al., 2017) test set, and
collected human ratings for summaries generated
by 11 extractive systems and 14 abstractive sys-
tems.

3.2 Training Sets (documents and reference
summaries only, no human evaluations)

Because the test sets are all in the news domain, we
select one training set from the news domain for in-
domain analysis: CNN/DailyMail (CNNDM) (See
et al., 2017). For cross-domain analysis, three train-
ing sets from different non-news domains are se-
lected: Billsum (Kornilova and Eidelman, 2019)
from legislative bills, Scientific papers-ArXiv (Co-
han et al., 2018) from papers on arXiv, and Big-
Patent (Sharma et al., 2019) from patent applica-
tions.

The train splits of the four datasets are used sep-
arately to train our model. For Billsum, we used all
18,949 samples in the train split. For the other three
datasets, the first 40,000 samples in the train split
are used for training. For every original reference
summary in the training sets, 3 negative samples
(inferior summaries) are generated.

3.3 Baselines and Upperbounds

We compare our work with both reference-free and
reference-based metrics. The recently developed
SummaQA (Scialom et al., 2019), BLANC (Vasi-
lyev et al., 2020), SUPERT (Gao et al., 2020b)
and LS_Score (Wu et al., 2020) are our baselines
because they are reference-free. 1

Reference-based metrics serve as soft upper
bounds because they are provided with extra
human guides which are reference summaries.
ROUGE (Lin, 2004), BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), S3 (Peyrard
et al., 2017), MoverScore (Zhao et al., 2019),
BertScore (recall) (Zhang et al., 2020) are included
in this study.

Results for LS_Score (Wu et al., 2020) are only
reported for Newsroom, which is copied from
their paper, as we have not succeeded in repro-
ducing their model using their code to test on other
datasets2. Despite the difficulty, we implemented
our own version of LS_Score.

3.4 Settings

For a fair comparison, we use the same pre-trained
language model BERT used by the baselines.
Specifically, we use the bert-base-uncased
variant of the BERT model in HuggingFace Trans-
former’s Pytorch implementation. An input se-
quence is padded to 512 tokens with [PAD] or trun-
cated to 512 tokens using longer input truncate first
strategy and then round robin trimmer. We fine
tune the model on NVIDIA RTX 3090 for fixed
16,000 steps using the Adam optimizer with the
learning rate of 1e-5 and the batch size of 7.

3.5 Results

We use the summary-level (Peyrard et al., 2017)
meta evaluation strategy to report an approach’s

1By “reference-free”, we mean that a reference summary
is not needed to judge a machine-generated summary.

2Several other researchers reported the same issue https:
//github.com/whl97/LS-Score/issues. We
never heard back from the authors in Email and GitHub.
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Table 1: Spearman’s Correlation on TAC2010.

Content Fluency Overall

Our approach

Trained w/CNNDM 0.5865 0.4311 0.5531
Trained w/Billsum 0.4586 0.4324 0.4518
Trained w/ArXiv 0.4727 0.4026 0.4437
Trained w/BigPatent 0.4184 0.3695 0.4007

Reference-free Baselines

BLANC-tune 0.4272 0.2943 0.3966
SummaQA-F1 0.3007 0.2431 0.2864
SummaQA-CFD 0.2905 0.1516 0.2620
SUPERT 0.4794 0.3241 0.4266

Reference-based upper bounds

R-1 0.5597 0.2570 0.5025
R-2 0.6448 0.3490 0.5894
R-L 0.5032 0.1772 0.4463
MoverScore 0.7213 0.3522 0.6453
BertScore 0.6769 0.3634 0.6162
BLEU 0.6018 0.3462 0.5636
METEOR 0.6682 0.3371 0.6184
S3_pyr 0.7257 0.3628 0.6562
S3_resp 0.7258 0.3578 0.6520

Table 2: Spearman’s Correlation on Newsroom.

COH INF FLU REL

Our approach

Trained w/ CNNDM 0.6507 0.7509 0.6079 0.6645
Trained w/ Billsum 0.6665 0.7169 0.6557 0.6469
Trained w/ ArXiv 0.6758 0.7345 0.6408 0.6657
Trained w/ BigPatent 0.6729 0.7309 0.6498 0.6356

Reference-free Baselines

BLANC-tune 0.5862 0.6881 0.5310 0.6078
SummaQA-F1 0.4895 0.5690 0.4664 0.5163
SummaQA-CFD 0.4195 0.5449 0.3719 0.4405
SUPERT 0.6171 0.6929 0.5391 0.6046
LS_Score 0.6271 0.7008 0.5852 0.6381

Reference-based Upper bounds

R-1 0.2310 0.3231 0.2150 0.2775
R-2 0.0861 0.1534 0.1015 0.1336
R-L 0.2055 0.3005 0.2006 0.2629
MoverScore 0.1743 0.2186 0.1431 0.2163
BertScore 0.2705 0.3156 0.2390 0.2815
BLEU -0.0556 -0.0782 -0.0422 -0.0071
METEOR 0.1740 0.2364 0.1690 0.2437
S3_pyr 0.1929 0.2680 0.1782 0.2450
S3_resp 0.1716 0.2519 0.1717 0.2226

average correlation with human ratings over sum-
maries. Since our method is based on preference
ranking, we report the Spearman’s correlation (Ta-
bles 1, 2 and 3). The best scores in the reference-
free class are bold while top 2 and 3 are underlined.
Due to the page limit, we put the extra results of
significance tests in the Appendix.

On TAC2010 (Table 1), our models beat all base-
lines on all aspects with only one exception. In
particular, our model trained with CNNDM beats
all baselines on all aspects. It even further outper-
forms ROUGE-1 and ROUGE-L.

On Newsroom (Table 2), our models beat all
baselines on all aspects with only one excep-

Table 3: Spearman’s Correlation on RealSumm†.

On abstractive systems On extractive systems

Our approach

Trained w/ CNNDM 0.3842 0.1143
Trained w/ Billsum 0.3083 0.0857
Trained w/ ArXiv 0.3204 0.0929
Trained w/ BigPatent 0.3163 0.1152

Reference-free Baselines

BLANC-tune 0.3067 0.1139
SummaQA-F1 0.2173 0.0837
SummaQA-CFD 0.2433 0.0494
SUPERT 0.2532 0.0748

Reference-based Upper bounds

R-1 0.6266 0.2182
R-2 0.5623 0.2206
R-L 0.6035 0.2140
MoverScore 0.4951 0.1899
BertScore 0.5682 0.1920
BLEU 0.3023 0.1639
METEOR 0.6270 0.2502
S3_pyr 0.6426 0.2369
S3_resp 0.6264 0.2369

† RealSumm has only one aspect which is content-focused.

tion. All reference-free approaches, including ours
and baselines, outperform reference-based upper
bounds. This counter-intuitive result is probably
due to that a reference summary mostly has only
one sentence in Newsroom.

On RealSumm (Table 3), results are reported
separately for abstractive and extractive systems.
Our models beat all baselines on abstractive sys-
tems. All approaches perform better for abstractive
summarizers than for extractive ones. Bhandari
et al. (2020) ascribe this to the low inter agreement
among human annotators for the extractive group.

3.6 Discussion: Domain Impact

Because our approach is training based, in-domain
models which are trained with CNNDM have ad-
vantages over cross-domain models. But the advan-
tages are only for fact-based aspects (Content for
TAC2010, INF and REL for Newsroom, the whole
RealSumm), not for linguistic aspects.

Among cross-domain models, which are trained
with Billsum, ArXiv, and BigPatent, no one is al-
ways the best on all test sets and on all aspects.
Despite the domain difference, these models still
beat the baselines in nearly all cases. Such cross-
domain performances suggest that our approach is
domain robust.

One potential use of our approach is to train a
summary quality evaluation model for a domain
with no or limited summarization data.
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Table 4: Experiments on Model Architectures. Spearman’s correlation.

Training Model TAC 2010 Newsroom RealSumm
Set Arch. Modified Linguistic Overall COH INF FLU REL Abstractive Extractive

CNNDM
PrefScore 0.5865 0.4311 0.5531 0.6507 0.7509 0.6079 0.6645 0.3842 0.1143
S_Score 0.4567 0.3034 0.4159 0.6204 0.7404 0.5809 0.6426 0.2785 0.1104
L+S_Score 0.4077 0.3436 0.3784 0.6338 0.7234 0.6058 0.6374 0.3085 0.1070

BigPatent
PrefScore 0.4184 0.3695 0.4007 0.6729 0.7309 0.6498 0.6356 0.3163 0.1152
S_Score 0.3499 0.2160 0.3155 0.5578 0.5992 0.5326 0.5374 0.2042 0.0958
L+S_Score 0.3663 0.2984 0.3305 0.6605 0.7020 0.6138 0.6081 0.2589 0.1074

Billsum
PrefScore 0.4586 0.4324 0.4518 0.6665 0.7169 0.6557 0.6469 0.3083 0.0857
S_Score 0.3689 0.3368 0.3483 0.4652 0.4280 0.4577 0.3996 0.2157 0.0568
L+S_Score 0.3518 0.3475 0.3256 0.6199 0.6956 0.5844 0.5979 0.2790 0.1052

Arxiv
PrefScore 0.4727 0.4026 0.4437 0.6758 0.7345 0.6408 0.6657 0.3204 0.0929
S_Score 0.3791 0.2511 0.3511 0.5972 0.5918 0.5804 0.5078 0.2331 0.0890
L+S_Score 0.3792 0.2591 0.3405 0.6613 0.7330 0.5963 0.6382 0.3050 0.1109

3.7 Bi-Encoder vs. Cross-Encoder

We further conduct experiments to analyze the im-
pact of the model architecture on performance.
LS_Score (Wu et al., 2020) uses cosine similar-
ity of the embeddings between a document and its
summary as the semantic score (S_Score) which
forms a Bi-Encoder architecture. And it computes
a perplexity-like score based on the summary’s
embedding as linguistic score (L_Score), resulting
in the final score as 0.01 ∗ L_Score + S_Score.
In contrast, we jointly attend a document and a
summary and produce the score after a linear layer
which forms a Cross-Encoder architecture.

We implement the S_Score and L+S_Score3 of
our own version. The reason for our reimplementa-
tion is not only the reproducibility issues mentioned
earlier but also that we want to do an apple-to-apple
comparison by using the same loss function and
the negative sampling strategy.

The results of the study are shown in Ta-
ble 4. PrefScore outperforms both S_Score and
L+S_Score on nearly all test sets and all aspects. It
is common to use the cosine similarity in the em-
bedding space as an indicator of semantic similarity.
However, it fails to fully utilize the self-attention
mechanism of the transformers. By jointly attend-
ing the document and the summary, our approach
(Fig. 1) can better match information in the sum-
mary to that in the document. This could be one
of the reasons that PrefScore outperforms S_Score
and L+S_Score under the same setting.

4 Conclusion and Future Work

In this paper, we propose to evaluate summariza-
tion quality via preference learning and transitive

3We denote our version as L+S_Score to discriminate from
the original LS_Score.

negative sampling. The learned models outper-
form other reference-free based methods in in-
domain experiments and are still competitive in
cross-domain experiments.

There are some possible future study directions.
The negative sampling methods used in this study
are rough and simple. More careful inspection can
be done to observe what kind of mistakes are likely
made by summarizer models and design mutation
methods accordingly. Moreover, our framework
uses mean scores as a workaround for the multi-
document scenario; it remains an open research
problem to promote our work to optimize directly
for multi-document summarization evaluation. Fi-
nally, we would like to extend our method for the
evaluation of other NLG tasks.
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A Appendix

A.1 Evaluation Settings
We utilize the SummEval (Fabbri et al., 2021) eval-
uation toolkit to calculate scores for metrics whose
scores are not reported by a test dataset. For all
metrics, we use the batch evaluation API with de-
fault parameters provided by the package. The
results of the SummEval dataset are not included in
this study as SummEval and RealSumm are similar
datasets whose documents are both sampled from
CNN/DailyMail (See et al., 2017).

A.2 Significance Tests
We perform significance tests to see if the improve-
ment of our method over the reference-free base-
lines is significant. Because applying a direct test
on the summary-level evaluation results is difficult,
we use a bootstrap-based method to sample the doc-
uments in the test sets 1000 times to compute the
p-values.

Tables 5, 6 and 7 show the p-values of the hy-
pothesis test that "Is the PrefScore trained using the

training sets in the leftmost column significantly
better than the baselines at the bottom?" Numbers
smaller than the significant level of 0.05 are bold.

Our in-domain models trained using CNNDM
are significantly better than the baselines. Mean-
while, the three cross-domain models, trained with
Billsum, ArXiv, and BigPatent, are significantly
better than SummaQA. They are also nearly sig-
nificantly better than SUPERT. No significant re-
sults are observed on extractive systems from Re-
alSumm. We believe this is due to the low inter
agreement in the extractive group as described ear-
lier (Bhandari et al., 2020).
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Table 5: p-value of Significance Test on TAC2010 Dataset.

Training Set Content Fluency Overall

CNNDM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BillSum 0.17 - 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.20 0.00 0.00

BigPatent - - 0.00 0.00 0.00 0.07 0.00 0.00 0.44 - 0.00 0.00
ArXiv 0.09 - 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.30 0.00 0.00
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Table 6: p-value of Significance Test on Newsroom Dataset.

Training Set COH INF FLU REL

CNNDM 0.02 0.10 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00
BillSum 0.01 0.08 0.00 0.00 0.19 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00

BigPatent 0.01 0.06 0.00 0.00 0.07 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.19 0.00 0.00
ArXiv 0.00 0.07 0.00 0.00 0.09 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.00
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Table 7: p-value of Significance Test on RealSumm Dataset.

Training Set Abstractive Extractive

CNNDM 0.00 0.00 0.00 0.00 0.49 0.08 0.21 0.07
BigPatent 0.38 0.01 0.01 0.05 0.51 0.08 0.22 0.08
BillSum 0.47 0.02 0.01 0.06 - 0.37 0.49 0.20
ArXiv 0.31 0.01 0.01 0.03 - 0.29 0.41 0.17
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Abstract

Though existing researches have achieved im-
pressive results in controlled text generation,
they focus mainly on single-attribute control.
However, in applications like automatic com-
ments, the topic and sentiment need to be con-
trolled simultaneously. In this work, we pro-
pose a new framework for multi-attribute con-
trolled text generation. To achieve this, we
design a contrastive-generator that can effec-
tively generate texts with more attributes. In
order to increase the convergence of the text
on the desired attributes, we adopt an external-
discriminator to distinguish whether the gen-
erated text holds the desired attributes. More-
over, we propose top-n weighted decoding to
further improve the relevance of texts to at-
tributes. Automated evaluations and human
evaluations show that our framework achieves
remarkable controllability in multi-attribute
generation while keeping the text fluent and
diverse. It also yields promising performance
on zero-shot generation.

1 Introduction

Large pre-trained language models (LM) have
achieved impressive performance in natural lan-
guage generation tasks (Radford et al., 2018; Yang
et al., 2019; Radford et al., 2019; Lewis et al.,
2020). However, they suffer from the limitation
of lacking controllability in practical applications,
for their generated texts may have toxic meanings
or undesired topics. Hence how to control the text
generation with desired attributes as topic, senti-
ment, style, etc., has been further studied.

To effectively control the desired attribute of the
generated text, class-conditional language models
(CC-LM) such as Conditional Transformer Lan-
guage (CTRL) model (Keskar et al., 2019) gen-
erate texts conditioned on control codes. But the
controlled ability are restricted since the control

∗Corresponding author

movie positive: In the end Hitchcock brings
one of those rare Hollywood thrillers that I
have been craving for a long time: the sus-
pense thriller. It is one of my favorite genres
and movies because you can always be sure
that something exciting will happen in the end-
ing (and sometimes it does!). I think it is also
a classic Hitchcock masterpiece.
automobile negative: In the past sixty years,
GM cars have gotten worse, because GM en-
gineers were worse. Now they are just as bad
as Ford’s. But GM still makes good cars. I’m
sorry but car makers need to go back to mak-
ing things people want, like lawnmowers.It’s
a big step backwards.

Table 1: Examples of the text generated by our frame-
work. The boldfaced words indicate the desired topic
and sentiment. The underlined words are the prompts.
The words related to the topic are highlighted in blue,
and the words related to the sentiment are highlighted
in red.

codes are only used at the beginning of the genera-
tion process. The Plug and Play Language Models
(Dathathri et al., 2020) directly update the gradient
of a classifier to generate the conditioned text with-
out retraining or finetuning the language model.
While being flexible, this kind of method is compu-
tationally expensive and leads to less fluent texts.
Recently, (Yu et al., 2021) introduces an alignment
function to the language model so that it can gen-
erate texts with target attributes. Future Discrimi-
nator for Generation (Yang and Klein, 2021) trains
a classifier to predict the probability of the desired
attribute. However, all these methods are aimed at
single-attribute control, making them insufficient
to deal with application scenarios that need multi-
attribute control. Taking the automatic comment
system as an instance, it requires to control the
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Figure 1: Illustration of our framework. Three negative samples and one positive sample are used to calculate the
classification probability in CC-LM. The probability multiplies with unconditioned probability that is generated by
a pre-trained language model. Through our proposed top-n weighted decoding, the external-discriminator (on the
right) is used to discriminate the desired attribute of the text.

generated text with topic as well as sentiment to
encourage user engagement and interactions.

In light of the problem, we propose a multi-
attribute controlled framework that can effectively
control topic and sentiment of the text at the same
time. Although there are previous researches
(Dathathri et al., 2020; Yu et al., 2021; Goswamy
et al., 2020) about multi-attribute controlled text
generation, they only conceptually raise the task
but focus mainly on single-attribute control. The
challenges of multi-attribute control lie in 1) the fu-
sion of attributes and 2) the increased categories to
be generated. To generate texts with desired topic
and sentiment, we design a contrastive-generator
with three negative samples in contrast to one pos-
itive sample. Since the generator may generate
texts with different categories, we train an external-
discriminator to increase the convergence of texts
on desired attributes. In the decoding phase, a top-
n weighted decoding is proposed to improve the
ability of controlled text generation.

Table 1 shows the texts generated by our frame-
work, where the texts achieve desired attributes
control without losing its fluency. Zero-shot gen-
eration, which is a more challenging task, aims
at generating unseen text from the seen text. Due
to the top-n weighted decoding and contrastive-
generator trained with external-discriminator, our
framework can generate texts with other desired
attributes besides the training attributes, accom-
plishing zero-shot generation.

We summarize the contributions of this work as
follows:

• Different from existing works, we aim at
multi-attribute controlled text generation,

which is not only more challenging but also
more practical in real-life applications as the
automatic comment system.

• We propose a contrastive-generator trained
with an external-discriminator to effectively
generate texts with desired attributes. A top-n
weighted decoding is also designed to further
improve the relevance between the texts and
the desired attributes.

• We conduct extensive experiments to show
that our method can generate texts with de-
sired sentiment and topic without sacrificing
the linguistic quality. In addition, our frame-
work can be generalized to new control codes
and achieve promising performance on zero-
shot generation.

2 Related Work

Given a control code a, the purpose of controlled
text generation is to generate text x by calculating
the probability of p(x|a). There are mainly two
categories: the first retrains language model with
control codes, while the second changes the weight
of the specific words for controlled text generation.

Models trained or fine-tuned (Keskar et al., 2019;
Xu et al., 2020; Fang et al., 2021) on a large num-
ber of conditioned codes can achieve remarkable
effectiveness for controlled text generation. How-
ever, the large training data and the computation
cost are the heavy burdens. Methods with a smaller
LM (Krause et al., 2021; Yang and Klein, 2021;
Liu et al., 2021) to guide generation from large
LM can generate text for sentiment control or topic
control. GeDi (Krause et al., 2021) uses Bayes rule
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to compute classification likelihoods of tokens, and
its generative discriminator performs well on con-
trolled text generation. Similarly, a future discrimi-
nator (Yang and Klein, 2021) is used to determine
whether the desired attribute will appear in the fu-
ture text. Expert LM and anti-expert LM (Liu et al.,
2021) are utilized to reweight the predictions of
the large LM. Considering the promising results of
the discriminator, a semantic discriminator (Betti
et al., 2020) is used to discriminate the coherence
with external conditioning. To get a better attribute
representation, (Yu et al., 2021; Xie et al., 2022)
introduces a new alignment function for sentiment
control. A sentence-level emotion classifier (Zhang
and Wang, 2021) is adopted to generate comments
with the target emotion. The methods of retraining
language models tend to produce fluent texts, but
they need large labeled datasets for training.

Weighted decoding is also a useful method
to control text generation with language models.
These methods (Hu et al., 2019; Pascual et al., 2020,
2021), which increase the probability of tokens that
are similar to the target keyword or topic, control
the desired attributes of texts flexibly. Metropolis-
Hastings sampling is used to generate texts with
more keywords (Miao et al., 2019). But since
these methods do not update LM, it will decrease
the fluency of the generated texts. The following
works (Dathathri et al., 2020; Sha, 2020; Duan
et al., 2020; Lin and Riedl, 2021; Madotto et al.,
2020) conduct constrained generation under gra-
dient guidance. To control the sentiment better,
the method in (Goswamy et al., 2020) focuses on
controlling more emotion categories and emotion
intensity. However, gradient-based methods may
lead to more computation to calculate the word’s
probability. Although modifying the distribution
of language models is a flexible way for controlled
text generation, it will sacrifice the texts quality.

Our method draws on the above two thoughts.
We design a contrastive-generator and an external-
discriminator by retraining the language model to
control text generation while keeping the text flu-
ency. And we also propose top-n weighted decod-
ing to increase the correlation of attributes.

3 Methodology

As is illustrated in Figure 1, our method is com-
posed of three main modules. We use CTRL as CC-
LM to generate one positive sample and three neg-
ative samples for the contrastive-generator. Then

the contrastive-generator (subsection 3.1) outputs
classification probabilities that guide the genera-
tion of the pre-trained LM. Since there are multi-
ple attributes to be considered in multi-attribute
controlled text generation, we use an external-
discriminator (subsection 3.2) to estimate whether
the generated text achieves the target attributes. To
ensure the text fluency, the top-n weighted decod-
ing (subsection 3.3) recalculates the probabilities
of the n most probable words. The details of these
modules are described in the following subsections.

3.1 Contrastive-Generator

The fusion of different attributes is one of the chal-
lenges for multi-attribute controlled text generation.
To deal with the issue, we propose a contrastive-
generator to generate texts with the desired topic
and sentiment.

Given the desired attribute at and as, our
task is to learn the probability distribution
P (x1:N | at, as) where x1:N denotes a complete
text (x1, . . . , xN ). In particular, we use at to
present the desired topic control code while as for
the desired sentiment control code. The CC-LM
generates a completed text x1:N by the following
equation:

P (x1:N | at, as) =
N∏

i=1

P (xi | x<i, at, as) . (1)

Then we refer Lg as the conditioned language
model loss:

Lg = −
N∑

i=1

log P (xi | x<i, at, as). (2)

The contrastive-generator aims to learn the ef-
fective representation by pulling the positive sam-
ples close and pushing apart negative samples.
We use āt as the undesired topic control code
and use ās as the undesired sentiment control
code. A class-conditioned language model is
adopted to get a positive sample P (x1:N | at, as)
and three negative samples P (x1:N | ā) where
ā ∈ {(āt, as) , (at, ās) (āt, ās)}. Obeying Bayes
rule, we compute P (at, as | x1:N ) as the classifi-
cation probability that guides the generation of the
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pre-trained LM:

P (at, as | x1:N ) =
P (at, as)P (x1:N | at, as)∑

a
P (a)P (x1:N | a)

=
P (at, as)

∏N
i=1 P (xi | x<i, at, as)∑

a
P (a)

∏N
i=1 P (xi | x<i, a)

(3)

where a ∈ {(at, as) , (āt, as) , (at, ās) (āt, ās)} .
The loss function of the contrastive-generator is

Lc = − log P (at, as | x1:N ). (4)

Then we use P (at, as | x1:N ) to guide the gen-
eration of the large pre-trained LM. For the genera-
tion on attribute at and as, we have:

P (xN | x<N , at, as) =
P (xN , at, as | x<N )
P (at, as | x<N )

=
P (xN | x<N )P (at, as | x1:N )

P (at, as | x<N )
. (5)

Since at and as are given and the sentence x1:N−1
has been calculated, we can draw the conclusion
that P (at, as | x<N ) is a constant. So we simplify
the Equation 5 by the following:

P (xN | x<N , at, as) ∝
P (xN | x<N )P (at, as | x1:N )α (6)

where α is a a hyper-parameter that controls the
weight of the desired attribute. On the right, the
first part is essentially a language model. The sec-
ond part can be calculated by Equation 3, which is
essentially the desired attribute probability of the
text calculated by the contrastive-generator.

3.2 External-Discriminator

Since our work aims at multi-attribute controlled
text generation, it requires to take more than
one category into consideration. We propose an
external-discriminator to distinguish whether the
text holds the desired attributes, which further in-
creases the convergence of the text on the desired
attributes.

The external-discriminator transforms its input
into an embedding matrix and outputs a probability.
To alleviate the computation burden, we use multi-
layer bi-directional GRU as external-discriminator.
Here we implement Dϕ as the classifier to distin-
guish between the texts with the desired attributes

and with the undesired attributes. The external-
discriminator loss can be defined as:

Lexternal = −{(at, as) logDϕ (at, as | x1:N )
+ (1− (at, as)) log (1−Dϕ (at, as | x1:N ))}

(7)

where Dϕ (at, as | x1:N ) is the probability pre-
dicted by Dϕ indicating that the text x1:N belongs
to the desired topic at and the desired sentiment
as. In order to achieve a better performance on the
desired attribute control, the external-discriminator
tries to guide the sentence towards the desired at-
tributes with decreasing the external-discriminator
loss.

In the end, the overall loss function for our frame-
work is a weighted sum of three loss terms:

Ltotal =
λg
τ
Lg +

λc
τ
Lc +

λe
τ
Lexternal (8)

where λ∗ are the hyper-parameters that reflect the
strength of each loss and τ is calculated by the
following equation:

τ = λg + λc + λe. (9)

3.3 Top-n Weighted Decoding
Recent researches have made impressive progress
in weighted decoding (Fan et al., 2018; Holtzman
et al., 2019; Pascual et al., 2020, 2021). In the de-
coding time, we propose a top-n weighted decoding
to increase the topic relevance while generating flu-
ent texts. Through LM, we get the probabilities of
all lexical words. Different from previous methods,
we modify the probabilities of the n most probable
choices, instead of changing each of the words.

Utilizing the vectors of words, we calculate the
cosine similarity between the topic words and the
n most probable candidate words. And we use the
max function to increase the weight of the related
words while keeping the weight of unrelated words
as it is. The reason is to increase the fluency of
the texts as much as possible. Let ν (ωtopic) ∈ Rd

denote the topic vector, and ν
(
ω

′
top−n

)
∈ Rn×d

be the n vectors of n most probable words, where
d is the dimension of the vector. The modified
probability ltop−n is calculated as:

ltop−n = l
′
top−n+

γ ·max
(
0, cos

(
ν (ωtopic) , ν

(
ω

′
top−n

)))

(10)
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Method Diversity Fluency Sentiment Topic

Dist-1 ↑ Dist-2 ↑ Dist-3 ↑ Perplexity ↓ Prob. ↑ Prob. ↑ Acc. ↑
GPT-2 Medium 0.20 0.64 0.86 30.75 0.47 0.09 0.29
GeDi-sentiment 0.23 0.71 0.91 64.10 0.90 \ \
DAPT-sentiment 0.14 0.50 0.74 33.74 0.75 \ \
PPLM-sentiment 0.17 0.58 0.86 44.02 0.70 \ \
DEXPERTS 0.15 0.45 0.62 36.66 0.89 \ \
GeDi-topic 0.19 0.58 0.80 59.48 \ 0.46 0.85
DAPT-topic 0.14 0.50 0.72 54.68 \ 0.55 0.90
PPLM-topic 0.18 0.59 0.86 39.02 \ 0.33 0.76
Plug-and-Blend 0.29 0.67 0.76 74.99 \ 0.39 0.80
PPLM 0.17 0.57 0.81 80.67 0.66 0.47 0.87
CATG 0.18 0.54 0.72 51.74 0.66 0.26 0.51
Ours 0.17 0.58 0.83 32.58 0.90 0.60 0.92

Table 2: The result of multi-attribute controlled text generation. We use boldface to indicate the best performance.
For methods of GeDi, DAPT and PPLM-sentiment(topic), we train and evaluate its topic model and sentiment
model respectively.

where l
′
top−n refers to the original probabilities and

γ is a hyper-parameter that controls the weight
of the modification. As γ → 0, the effect of the
weighted decoding decreases. In our experiments,
we find that the value of γ works well in the range
2 - 5.

Furthermore, since the top-n weighted decoding
merely adjusts n probabilities, it not only keeps the
generated texts fluent but also decreases the compu-
tation cost while controlling the desired attributes.

4 Experiment

We conduct experiments on the task of multi-
attribute controlled text generation (subsection 4.1)
and zero-shot generation (subsection 4.2) to eval-
uate the performance of our framework. The abla-
tion experiments (subsection 4.3) are also presented
to analyze the importance of each module.

4.1 Multi-Attribute Controlled Text
Generation

4.1.1 Evaluation
To avoid the influence of the pre-trained language
model, we use GPT-2 Medium (Radford et al.,
2019) as the basic language model both in our
method and in the baselines. In order to evalu-
ate the topic and the sentiment control ability of
our method, we collect 500 neutral prompts that
are irrelevant to the trained topics.

We use IMDb (Maas et al., 2011), OpeNER
(Agerri et al., 2013) and SenTube(Uryupina et al.,

Figure 2: The analysis of sentiment and topic con-
trol. We take the sentiment mean probability as the
abscissa and topic mean probability as the ordinate. The
top right corner lies the best result. GeDi, DAPT and
PPLM-single (showed with triangle) generate topic and
sentiment texts separately. PPLM and CATG (showed
with square) generate texts with topic and sentiment
attributes. Our method (showed with red rhombus) sur-
passes both single-attribute control and multi-attribute
control models.

2014) as the datasets for multi-attribute controlled
generation. The IMDb dataset is about movie re-
views with positive and negative sentiments. The
OpeNER dataset is about hotel reviews that have
the same two sentiments as IMDb. The SenTube
dataset contains reviews in tablet and automobile
domains, and for each domain we take positive and
negative texts. In summary, there are four topics
(movie, hotel, tablet, automobile) and two senti-
ments (positive and negative) during training.
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Method Fluency Sentiment Topic
GeDi-sentiment 3.46 4.06 \
DAPT-sentiment 4.05 3.26 \
PPLM-sentiment 3.56 3.34 \
DEXPERTS 3.88 3.94 \
GeDi-topic 3.53 \ 4.02
DAPT-topic 3.67 \ 3.96
PPLM-topic 3.56 \ 3.20
Plug-and-Blend 3.40 \ 3.66
PPLM 2.98 2.84 3.84
CATG 3.34 3.12 2.66
Ours 4.10 4.14 4.26

Table 3: Human evaluation of fluency and texts rele-
vancy on the desired sentiment and topic.

In this paper, we adopt automatic evaluation as
well as human evaluation to appraise the generated
texts. For the automatic evaluation, we take the
following four metrics into account.

• diversity. Diversity (Li et al., 2016) is a metric
that evaluates the the diversity of the gener-
ated sentences. We report Dist-1, Dist-2 and
Dist-3 by measuring the diversity of unigrams,
bigrams and trigrams in the generation. A
higher value indicates better diversity.

• perplexity. Perplexity is an automated mea-
sure of sentence fluency, lower being better.
We utilize GPT-2 XL (Radford et al., 2019)
to compute the perplexity of the generated
text, because we use GPT-2 Medium as the
pre-trained language model.

• sentiment. We evaluate the generations by
HuggingFace’s sentiment analysis classifier.
The classifier achieves the accuracy of over
98% on the test data. And we obtain the mean
probability from the classifier.

• topic. We train a topic classifier to determine
whether the generated text has the desired
topic attribute. The accuracy of the topic clas-
sifier is above 98%. We also report the topic
accuracy and the mean probability that the
text has the desired topic attribute.

4.1.2 Baseline
We compare our framework with the competitive
baselines:

GPT-2 Medium: (Radford et al., 2019) To ex-
plore the influence of the pre-trained language

animal positive: In the past sixty years, ani-
mal welfare has increased in many countries
around the world. It is an ongoing process,
and we are all part of it. We can all be a part of
it! And that’s what I’m doing with my blog!
I want to share with you my thoughts on ani-
mals, and help you make decisions about how
to treat your own household animals as well
as other animals.
school negative: In a shocking finding that
raises serious questions about school safety
and security, researchers found that at least
seven schools have experienced incidents in-
volving armed guards or police. A report from
SafeSchools.org says that between 2007 and
2014 there have been five incidents involving
armed guards or police at more than 20 schools
across the United States, with three resulting
in fatalities. In all but two cases, it says, there
was no immediate threat to students or staff.

Table 4: Zero-shot generation by our framework. Bold-
faced words indicate the desired topic and sentiment.
We use underlined words to show the prompts. Words
related to the topic are highlighted in blue, and words
related to the sentiment are highlighted in red.

model, we generate sentences by GPT-2 Medium
as an original baseline.

PPLM: (Dathathri et al., 2020) PPLM uses gra-
dient update to guide GPT-2 model. We retrain
its discriminator to control the sentiment and topic
of the text. And we evaluate its performance on
single-attribute control and multi-attribute control
respectively.

GeDi: (Krause et al., 2021) GeDi uses small
LM as the generative discriminator to guide the
generation of large LM. We separately train its
topic model and sentiment model on our dataset
with only topic labels or sentiment labels.

DEXPERTS: (Liu et al., 2021) DEXPERTS
reweights the predictions of LM by the expert and
anti-expert model. We use DEXPERTS to control
the sentiment of texts for comparison.

DAPT: (Gururangan et al., 2020) DAPT shows
the importance of pretraining the model towards
a specific task. We use the method to generate
sentiment text and topic text via training on our
dataset.

CATG: (Goswamy et al., 2020) CATG controls
the sentiment of sentences with a knob to influence
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Desired
topic Method Diversity Fluency Sentiment Topic

Dist-1 ↑ Dist-2 ↑ Dist-3 ↑ Ppl. ↓ Prob. ↑ Prob. ↑ Acc. ↑

School

GeDi-topic 0.17 0.63 0.89 67.68 \ 0.20 0.45
Plug-and-Blend 0.27 0.63 0.76 67.57 \ 0.18 0.50
Ours (positive) 0.18 0.63 0.86 35.45 0.85 0.49 0.84
Ours (negative) 0.16 0.60 0.86 25.23 0.87 0.47 0.83

Animal

GeDi-topic 0.19 0.65 0.90 67.15 \ 0.29 0.73
Plug-and-Blend 0.28 0.64 0.76 57.59 \ 0.24 0.68
Ours (positive) 0.17 0.62 0.87 30.09 0.78 0.38 0.88
Ours (negative) 0.16 0.62 0.87 23.07 0.84 0.39 0.92

Table 5: The result of zero-shot generation. We use boldface to indicate the best performance.

the sentiment intensity. All the hyper-parameters
are set following its original paper.

Plug-and-Blend: (Lin and Riedl, 2021) Plug-
and-Blend allows multiple topic codes to generate
texts. We use the model as a topic control baseline.

For all baseline methods, we generate 500 sen-
tences for each category of topics and sentiments by
our collected prompts. All the experiments are run
on NVIDIA Tesla V100 GPUs. And in our frame-
work, we configure the top-n weighted decoding
with γ = 4 and n = 50. The values of the hyper-
parameters λ∗: λg = 0.8, λc = 0.2, λe = 1.0.

4.1.3 Automatic Evaluation
The results are shown in Table 2. Our framework
outperforms all baselines on sentiment metrics and
topic metrics. It demonstrates the effectiveness of
our framework on simultaneous control of both
sentiment and topic. Concretely, our contrastive-
generator can generate texts with multi-attribute
excellently. The external-discriminator, which dis-
tinguishes the text with the desired sentiment and
topic, increases the convergence of the text on the
desired attributes. As is shown in Figure 2, though
DAPT and GeDi train its topic and sentiment mod-
els separately, our method produces comparable
or even better results in merely one model. Our
framework obtains the highest mean probability
and mean accuracy on the topic metrics, indicat-
ing that the top-n weighted decoding fertilizes the
relevance between the texts and the desired topic
effectively.

Meanwhile, texts generated by our framework
acquire qualified fluency. This is because the
contrastive-generator guides the basic LM with-
out losing fluency. On the other hand, the top-n
weighted decoding only modifies n words with
high probability, which guarantees the maximum

consistency with LM. Sentiment results on GPT-2
Medium show that our collected prompts are nearly
neutral prompts that have little effects on the sen-
timent control. Similarly, the low topic metrics of
it verify that our collected prompts are unrelated
with topic. The reason why our framework is not
outstanding on the diversity metrics is that our gen-
eration is under the control of sentiment and topic.
And the more control leads to more limitations for
generation that would hinder the diversity inher-
ently.

Table 1 shows the texts generated by our frame-
work. We can observe that the generated texts
focus on the desired topic closely while keeping
the desired sentiment. Since our training dataset
are comments, our generated texts are more likely
to comment on something.

4.1.4 Human Evaluation
We also conduct a human evaluation to compare
the performance of baselines and our framework
comprehensively. We randomly selected 20 sam-
ples from the generated texts for each method. All
samples are randomly shuffled and the generation
methods are completely hidden. We ask 50 annota-
tors to evaluate the texts by the following criteria:
fluency, sentiment and topic. Every criterion is
evaluated on a scale of 1-5, where a higher score
indicates better quality.

Table 3 presents the average scores of human
evaluation, from which we can draw similar con-
clusions with the automatic evaluation. Our frame-
work outperforms the baselines in topic and senti-
ment controlling while holding better fluency. We
observe that GeDi has good performance on at-
tribute control, but it can not control sentiment
and topic in one sentence. Comparing with PPLM
which directly updates the gradients of the pre-
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Method Diversity Fluency Sentiment Topic

Dist-1 ↑ Dist-2 ↑ Dist-3 ↑ Perplexity ↓ Prob. ↑ Prob. ↑ Acc. ↑
Full framework 0.17 0.58 0.83 32.58 0.90 0.60 0.92
Without W 0.18 0.62 0.86 35.29 0.86 0.47 0.80
Without D 0.16 0.59 0.85 30.19 0.76 0.55 0.90
Without W,D 0.17 0.61 0.86 28.46 0.77 0.44 0.79

Table 6: Automatic evaluations of ablation study. "Without W" means that we not use top-n weighted decoding.
"Without D" means that we not use external-discriminator.

trained LM, our framework has better performance
on the fluency. This is because the top-n weighted
decoding only changes the probabilities of the most
likely nwords, avoiding decreasing the text fluency
significantly.

4.2 Zero-Shot Generation

We train four topics (movie, hotel, tablet, auto-
mobile) with two sentiments (positive, negative).
Topics such as "school" or "animal" not appearing
in the training dataset, our framework is able to gen-
erate texts with these unseen attributes. We show
two examples in Table 4. Although we do not train
on the two topics, our framework can effectively
generate texts with the desired topic and sentiment.

We evaluate the zero-shot generation with the
same metrics as the multi-attribute control. In addi-
tion, we train a topic classifier on DBPedia dataset
(Zhang et al., 2015) to determine whether the gener-
ation has the desired topic attribute. The classifier
achieves the accuracy of 99% on the test data.

We run experiments with zero-shot generation
on the topic of "school" and "animal". For each
topic, our framework generates 500 sentences with
the collected 500 prompts. And we compare
competitive models with Plug-and-Blend (Lin and
Riedl, 2021) and GeDi (Krause et al., 2021).

The results are listed in Table 5. Our method
gains better topic controlling metrics than the oth-
ers while keeping the desired sentiment. It implies
that the contrastive-generator generates texts effec-
tively with unseen attributes due to its training with
the external-discriminator. In addition, the top-n
weighted decoding improves the relevance of the
texts to the desired topic without losing the text
fluency. We observe that our framework shows
mediocre performance on diversity, because our
framework generates texts under the control of sen-
timent and topic at the same time, which brings
barrier to generating diverse texts. Considering

that the topics are not trained, our proposed frame-
work generalizes the pre-trained LM to generate
texts with unseen categories.

4.3 Ablation

To understand the importance of each module in
our framework, we perform an ablation study by
training the following ablated versions: without
external-discriminator, without top-n weighted de-
coding, without external-discriminator and top-n
weighted decoding.

Table 6 presents the automatic evaluation of the
ablation study. Results show that all three ablation
operations will result in the decrease in attribute
control performance. But since our contrastive-
generator can effectively guide conditional gener-
ation by the large LM, the results about topic and
sentiment still yields high values. From the result
of without external-discriminator version, we ob-
serve that the topic metrics obtain relatively good
results. The reason is that the top-n weighted de-
coding significantly improves the topic coherence.
Compared to the removal of top-n weighted de-
coding, the full framework shows higher results
of the topic and sentiment. Because the signals of
the discriminator in training not only evaluate the
desired attribute, but also enhance the relation be-
tween attributes and texts. In detail, from the result
of without top-n weighted decoding and external-
discriminator version, we notice that the average
probabilities of sentiment and topic are reduced by
0.13 and 0.16 respectively. This indicates that both
external-discriminator and top-n weighted decod-
ing can effectively improve the control of sentiment
and topic.

5 Conclusion and Future Work

In this paper, we propose an effective frame-
work for multi-attribute controlled text genera-
tion. Experiments and further analysis demonstrate
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that the contrastive-generator and the external-
discriminator perform essentially on multi-attribute
generation and zero-shot generation. And the con-
trollability of the desired attributes is further im-
proved by our proposed top-n weighted decoding
without losing the quality of texts. We also conduct
the ablation experiment, showing the importance of
each module. In addition to the topic and sentiment
control, our framework is capable of applying to
other multi-attribute control. In the future, we will
generalize our model to generate texts with other
attributes, e.g. writing styles and toxicity, making
the generation more safer and more qualified.

6 Ethical Consideration

Since the proposed framework can be used to gener-
ate texts with more desired attributes, its generation
is more like human-generated. It would benefit lan-
guage generation applications on downstream tasks,
such as automatic comments and chatting robots.
Although automatic comments can encourage user
interactions, it may mislead public opinions when
it is used for malicious purposes. Moreover, we ob-
serve that the work may generate toxic texts when
a negative attribute is given. Hence in the future,
we will investigate how to detect toxic texts and
replace the offensive words without changing the
meaning of the text.
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Abstract

Generating synthetic data for supervised learn-
ing from large-scale pre-trained language mod-
els has enhanced performances across several
NLP tasks, especially in low-resource scenar-
ios. In particular, many studies of data aug-
mentation employ masked language models to
replace words with other words in a sentence.
However, most of them are evaluated on sen-
tence classification tasks and cannot immedi-
ately be applied to tasks related to the sentence
structure. In this paper, we propose a simple yet
effective approach to generating sentences with
a coordinate structure in which the boundaries
of its conjuncts are explicitly specified. For a
given span in a sentence, our method embeds
a mask with a coordinating conjunction in two
ways (“X and <mask>”, “<mask> and X”)
and forces masked language models to fill the
two blanks with an identical text. To achieve
this, we introduce decoding methods for BERT
and T5 models with the constraint that predic-
tions for different masks are synchronized. Fur-
thermore, we develop a training framework that
effectively selects synthetic examples for the su-
pervised coordination disambiguation task. We
demonstrate that our method produces promis-
ing coordination instances that provide gains
for the task in low-resource settings.

1 Introduction

Pre-trained language models (LMs) have brought
a large shift from preparing a substantial number
of training examples and learning task-specific rep-
resentations to collecting tons of unlabeled text
and learning task-agnostic representations. For
instance, fine-tuning LMs, such as BERT (De-
vlin et al., 2019) and BART (Lewis et al., 2020),
has improved performances of many natural lan-
guage processing (NLP) tasks, even when us-
ing a small amount of training data. This
paradigm shift has led to many challenges to ex-
ploit knowledge of LMs rather than manually an-
notated data, including zero- or few-shot learning

(Radford et al., 2019; Brown et al., 2020; Shin
et al., 2020; Gao et al., 2021) and data augmenta-
tion (Wu et al., 2019; Gao et al., 2019; Anaby-Tavor
et al., 2020; Kumar et al., 2020). However, many of
these studies focus on sentence classification tasks,
such as question answering and sentiment analysis,
and thus are not applicable to structured prediction
tasks, such as syntactic parsing. Although some
studies propose data augmentation methods that
manipulate the structure of a sentence (Şahin and
Steedman, 2018; Shi et al., 2021), producing syn-
tactic structures using recent pre-trained LMs has
not been explored.

As an attempt to produce syntactic structures
using LMs, we explore approaches to generating
coordinate structures, in which two or more ele-
ments, known as conjuncts, are linked by a coor-
dinating conjunction (coordinator), and yielding
the corresponding annotation that explicitly marks
which elements in the sentence are coordinated. Co-
ordination frequently appears in natural language
sentences and causes ambiguities, leading to er-
rors in many NLP tasks (Hara et al., 2009; Chae
et al., 2014; Ficler and Goldberg, 2017). We ex-
pect that performances of supervised methods for
coordination disambiguation (e.g., Ficler and Gold-
berg, 2016b; Teranishi et al., 2017, 2019) would be
improved if we can generate good-quality coordi-
nate structures with annotation.

In this paper, we present a method that exploits
large-scale pre-trained LMs to inject a coordinate
structure into a given sentence with the correspond-
ing annotation of coordination boundaries. Specif-
ically, we use masked language models (MLMs)
to generate text that seems to be in parallel with
a given reference span in a sentence. To enhance
MLMs to make use of the similarity and replace-
ability properties of conjuncts described by Ficler
and Goldberg (2016b) and Teranishi et al. (2017),
our method utilizes a pair of sentences, each of
which embeds a mask with a conjunction differ-
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Figure 1: Overview of our approach. An input sentence with a reference span (“retain its gains”) is masked in
two ways. Then, an MLM fills the masks with an identical text (“rise further”) according to the constraint that
predictions for different masks are synchronized.

ently, and forces the models to fill the masks with
an identical text (Figure 1). For BERT and T5
(Raffel et al., 2020) as instantiations of MLMs,
we introduce decoding techniques that follow the
constraint that predictions for different masks are
made to be synchronized, which can be potentially
applied to other generation tasks, such as paraphras-
ing and summarization. We also describe a training
framework to effectively select synthetic examples
for supervised models, where a classifier is em-
ployed to filter out erroneous samples as similarly
used in self-training. Experimental results of the
coordination disambiguation task in low-resource
settings show that synthetic coordinate structures
with annotation provide gains and indicate that our
method yields promising instances of coordination.

The contributions of this work are summarized
as follows:

• We propose a method for generating a sentence
with a coordinate structure and the correspond-
ing annotation that indicates the boundaries of
coordination.

• We demonstrate simple decoding techniques for
BERT and T5 to fill different masks with an iden-
tical text, which can be potentially used for other
types of text generation.

• We integrate the generation process into a train-
ing framework for supervised methods where
synthetic examples are effectively examined and
selected.

• Our method produces promising coordination in-
stances that facilitate the supervised coordination
disambiguation task in low-resource settings.

2 Related Work

Data augmentation using language models.
Data augmentation is a widely used technique to in-

crease the amount of training data by creating syn-
thetic examples from existing ones. In NLP, many
replacement-based methods have been explored,
which typically generate new sentences by replac-
ing words in sentences with other words. Wei and
Zou (2019) demonstrated that a simple synonym re-
placement using WordNet (Miller, 1995) improves
the performance of sentence classification tasks.
As synonym-based augmentation can be applied to
only a small percentage of the vocabulary covered
by a hand-crafted ontology, Kobayashi (2018) in-
stead exploited a recurrent neural network-based
LM to produce replacement words that fit in the
context. This LM-based method was later extended
by Wu et al. (2019). They instead used BERT
(Devlin et al., 2019) for replacing words, which is
a Transformer-based LM trained on an objective
where the model has to predict a token for a masked
token in a sentence. Anaby-Tavor et al. (2020) pro-
posed a method to generate a sentence for a cate-
gory by providing the class label to GPT-2 (Radford
et al., 2019). Kumar et al. (2020) further general-
ized data augmentation methods that exploit pre-
trained LMs. Our work is similar to these studies in
that we employ a pre-trained LM to generate a new
sentence by filling masks with words, but differs in
that it does not require a human-annotated label for
an input sentence.

Self-training. Self-training is a semi-supervised
approach to effectively utilize unlabeled data. Self-
training employs a model (teacher) trained on a
limited amount of labeled data to assign synthetic
labels to unlabeled data, which are later used to
train another model (student). Self-training has
been successfully applied to a wide variety of
NLP tasks, such as word sense disambiguation
(Yarowsky, 1995), syntactic parsing (McClosky
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et al., 2006), and machine translation (Zhang and
Zong, 2016). The training framework used in our
method is inspired by self-training, but unlike gen-
eral settings of self-training, it employs a trained
model only for inspecting synthetic examples that
are generated by another model.

Coordination disambiguation. The task of co-
ordination disambiguation is to identify the con-
juncts for a given coordinator. Prior to the re-
cent advancement of neural networks, many efforts
have been made to explore a range of approaches
to this task: rule-based methods (Agarwal and
Boggess, 1992; Kurohashi and Nagao, 1992), statis-
tical methods (Resnik, 1999; Chantree et al., 2005),
and machine learning-based methods using hand-
crafted rules (Buyko et al., 2007; Hara et al., 2009).
Recently, Ficler and Goldberg (2016b) proposed
a neural network-based method that considers the
similarity and replaceability between conjuncts. As
opposed to the pipeline approach of Ficler and
Goldberg (2016b), Teranishi et al. (2017) devel-
oped an end-to-end approach using neural net-
works, which was further extended by Teranishi
et al. (2019).

3 Method

This section describes our approach to coordina-
tion generation exploiting LMs pre-trained with
the objectives for text-infilling. Figure 1 shows
the overview of our approach. Formally, for a
given sentence S1:N = w1, . . . , wN , the goal
of our method is to embed a coordinate struc-
ture with annotation indicating a set of conjunct
spans {(i(1), j(1)), . . .} together with a coordinator
wk. We currently restrict each generated coordina-
tion instance to have two conjuncts linked by the
conjunctive coordinator “and”. To this end, our
method first selects a reference span (i, j) in S and
generates text homologous to the span using an LM.
The produced text is then inserted with a coordi-
nating conjunction after the reference span, which
results in a coordinate structure {(i, j), (i′, j′)} ac-
companied by the coordinator. We explain the de-
tails of the method in the following sections.

3.1 Text generation for a span
To generate an alternative candidate for a reference
span, a simple approach is to replace the reference
span with a mask and use an MLM to fill it, regard-
ing the infilling text as paired with the reference.
We initially tested this approach, but found that it

is not suitable for coordination generation because
the model cannot see the reference span, and thus
a produced span could be considerably different
from the reference even if the resulting sentence is
grammatically correct. Alternatively, we transform
a sentence S into a twin of masked sentences S′(1)

and S′(2), each of which embeds a mask with a con-
junction differently, but the masks must be filled
with an identical text. Concretely, we insert a con-
junction followed by a mask (e.g. “and <mask>”)
after a reference span to obtain S′(1) and insert
the same conjunction preceded by the same mask
before the reference for S′(2), as depicted in Fig-
ure 1. This treatment enables the model to exploit
the reference as well as the context for producing
conjuncts that are similar and exchangeable (Ficler
and Goldberg, 2016b; Teranishi et al., 2017).

3.2 Text infilling using MLM
This section describes how we can force an MLM
to fill masks in different sentences with an identical
text.

3.2.1 Non-autoregressive LM
We explain a synchronized text-infilling method
using BERT (Devlin et al., 2019) as an instance of
non-autoregressive LMs. To prepare an input se-
quence for BERT, we replace each masked span in
S′(1) and S′(2) with a sequence of [MASK] tokens
whose length is equal to the number of the tokens
in the reference span, and concatenate S′(1) and
S′(2) with a [SEP] token, as shown in Figure 2.
Feeding the resulting sequence to BERT, the model
emits the score vector (i.e., logit) ut ∈ RV for each
mask token, where V is the vocabulary size. When
two masked spans start at l-th and m-th tokens in
an input sequence respectively, infilling sequences
T ′(1) and T ′(2) for the two spans are predicted as
follows:

u′l+t = u′m+t = f(ul+t,um+t)

T
′(1)
t+1 =argmax(u′l+t)

T
′(2)
t+1 =argmax(u′m+t)

(1)

where t (≥ 0) is an offset from the beginning
of the masked spans. Consequently, predicted to-
kens T ′(1)t+1 and T ′(2)t+1 become the same under the
restriction of the function f . As a synchronization
function f , we choose the element-wise min func-
tion rather than the element-wise mean function to
avoid picking a token that overfits in either S′(1) or
S′(2) context, which happens when the value for
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Figure 2: Synchronized decoding on BERT.

a token is extremely high in one logit but is not
very high in the other logit. Intuitively, for the two
masked sentences “<X> primarily designed the Ap-
ple II.” and “<X> is a founder of Apple Inc.”, syn-
chronized decoding with the mean function would
predict “Steve Jobs” for <X> by mistake when it
overestimates the value of “Steve Jobs” in the sec-
ond sentence even though the model knows “Steve
Wozniak” fits adequately in both sentences.

3.2.2 Sequence-to-sequence LM
We adopt T5 (Raffel et al., 2020) as a sequence-to-
sequence LM for our method. In the pre-training
scheme of T5, the model consisting of a Trans-
former encoder and decoder (Vaswani et al., 2017)
is trained to generate infilling texts for masked
spans. For example, “Thank you <X> me to your
party <Y> week.” is recovered by generating “<X>
for inviting <Y> last <Z>”, where the last extra
token <Z> indicates the end of the sequence. Fol-
lowing this, we feed S′(1) and S′(2) into the encoder
independently, but, for each decoding step, the de-
coder is constrained to output identical tokens for
the two inputs (as illustrated in Figure 3):

u
′(1)
t = u

′(2)
t = f(u

(1)
t ,u

(2)
t )

T
′(1)
t =argmax(u

′(1)
t )

T
′(2)
t =argmax(u

′(2)
t )

(2)

where f is the element-wise min function and u
(1)
t

and u
(2)
t are logits for S′(1) and S′(2) at a decod-

ing step t, respectively. Unlike text infilling by
BERT, the decoder in T5 can produce a longer or
shorter sequence than the reference span; however,
we restrict the number of produced tokens between
one-third and three times of the length of the refer-
ence span.

3.3 Span selection
Choosing a promising reference span is crucial
for our coordination generation method because it

Figure 3: Synchronized decoding on T5.

becomes one of the conjuncts in a resulting coor-
dinate structure. Ideally, choosing reference spans
manually is preferable, which is a similar setting
to active learning, but it is laborious. As an alter-
native, one strategy for automatic span selection is
to randomly choose a sequence of tokens, as done
in SpanBERT (Joshi et al., 2020). However, such a
sequence is readily disqualified as a conjunct when
it appears across two constituents. Alternatively,
we can apply a constituency parser to a sentence
and randomly pick one constituent from the parse
tree. The constituency-based span selection is par-
ticularly suitable for our method because we can
also restrict reference spans with their constituent
labels1.

4 Training Framework for Coordination
Disambiguation

A synthetic example generated by the method de-
scribed in Section 3 can be immediately seen as an
annotated sentence, but the resulting sentence can
be inconsistent with its coordination boundary. For
example, we expect a sentential conjunct for the
reference “He said Mary had dinner with John.”,
but an MLM can produce “Bill” rather than a sen-
tence because both “John and Bill” as objects in
S′(1) and “Bill and Mary” as subjects in S′(2) are

1Other than constituency, coordination involving lexical
compounds can be created using hand-crafted rules based on
part-of-speech. We tried this for the supervised task described
in Section 5 for preliminary experiments, but it did not lead to
a significant performance gain.
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Algorithm 1 Training with generation and filtering

Input: labeled sentences L; unlabeled sentences
U ; predictor M ; generator G

Constants: batch size Nbatch; number of gen-
erated examples in a batch K (≤ Nbatch);
maximum number of generation trials Kmax;
threshold for filtering δ

Output: trained model M
1: train M on L
2: repeat
3: B ← {}
4: k ← 0
5: while |B| < K and k < Kmax do
6: x← SAMPLE(U, 1)
7: (x′, y′)← G(x)
8: if CALCSCORE((x′, y′),M) ≥ δ then
9: B ← B ∪ {(x′, y′)}

10: end if
11: k ← k + 1
12: end while
13: B ← B ∪ SAMPLE(L,Nbatch −K)
14: update M on B
15: until convergence
16: return M

coincidentally valid coordination. However, the
resulting boundary annotation “He said [Mary had
dinner with John] and [Bill].” is not considered to
be correct. Although we can remove such exam-
ples by employing a filtering method that ensures
the consistency between conjuncts, for example, us-
ing part-of-speech tags, developing such rule-based
methods requires much effort.

For the purpose of improving supervised meth-
ods for the coordination disambiguation task, we
instead propose a training framework inspired by
self-training. The algorithm of our training method
is described in Algorithm 1. At the first step of
the procedure, a supervised model M for the task
is trained on a limited amount of labeled exam-
ples L. In the following steps, the model is further
trained on labeled examples L and synthetic exam-
ples generated from a large number of unlabeled
sentences U . Concretely, in each training iteration,
we pick one unlabeled sentence x that contains
no coordination from U and feed it to an LM G
(that encapsulates a span selection mechanism) to
obtain a sentence x′ that has a coordinate struc-
ture with the corresponding annotation y′ using the
method explained in Section 3. After generation,
we employ the model M to assign a score to the ex-

PTB GENIA
# train sentences 39,832 (15,481) 14,326 (8,101)
# train instances 19,890 11,596
# dev sentences 1,700 (673) 1,361 (777)
# dev instances 848 1,146
# test sentences 2,416 (873) 1,360 (773)
# test instances 1,099 1,166

Table 1: Statistics of the Penn Treebank and the GENIA
Treebank. Numbers in parentheses represent the number
of sentences that have coordination instances2.

ample (x′, y′) for inspection. If the score is greater
than or equal to a predefined threshold δ, the ex-
ample is verified as legitimate and then added to a
mini-batch. We repeat this generation–inspection
process until we obtain K examples or until the
process is repeated Kmax times, which could hap-
pen when the generator G does not give promising
examples. For the rest of Nbatch − K examples,
we sample labeled examples from L. Note that we
sample an unlabeled sentence x from U with re-
placement to reuse it because different coordinate
structures can be created in it by choosing different
reference spans.

5 Experiments

We evaluate our method using generated examples
to train supervised models for the coordination dis-
ambiguation task.

5.1 Experimental settings

Data construction. We perform experiments on
the coordination-annotated Penn Treebank (PTB)
(Ficler and Goldberg, 2016a) and the GENIA Tree-
bank (GENIA) (Tateisi et al., 2005). The statistics
of the corpora are shown in Table 1. To simu-
late low-resource situations, where additional train-
ing examples could improve performance, we ran-
domly sample 300 (250 for training and 50 for
validation) and 600 (500 for training and 100 for
validation) sentences containing coordination with
annotation from the training set; the rest of sen-
tences in the training set can be used as unlabeled
seed data for generation. Specifically, the PTB
training set consists of 39,832 sentences, 15,481
of which have coordinate structures. A random
subset of them is used as a set of labeled sentences
L, while 24,351 sentences with no coordination

2Following the previous studies (Ficler and Gold-
berg, 2016b; Teranishi et al., 2019), we focus on coordinate
structures formed by “and”, “or”, “and/or”, or “but”.
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# Model NP, NX ADJP, ADVP VP PP S, SBAR Overall
Penn Treebank

250 baseline (no generation) 66.21 64.72 65.42 52.30 51.69 62.83 ± 2.36
250 + generation by BERT 68.56 71.63 64.22 52.30 51.94 64.49 ± 2.42
250 + generation by T5 71.17 74.54 68.54 80.00 59.37 68.68 ± 1.51
500 baseline (no generation) 73.34 80.72 71.35 69.23 62.51 71.04 ± 1.59
500 + generation by BERT 73.24 76.72 72.96 76.92 62.13 71.44 ± 1.57
500 + generation by T5 75.09 81.81 73.56 84.61 63.64 73.17 ± 1.56

GENIA Treebank
250 baseline (no generation) 48.39 69.50 62.96 57.46 32.65 50.49 ± 2.37
250 + generation by BERT 54.81 71.00 62.45 65.35 41.77 56.07 ± 1.95
250 + generation by T5 57.26 73.50 65.41 66.47 42.53 58.39 ± 2.07
500 baseline (no generation) 54.71 69.50 65.93 64.50 53.16 57.11 ± 0.86
500 + generation by BERT 57.60 75.00 69.03 65.63 54.93 59.87 ± 1.08
500 + generation by T5 58.10 78.50 69.29 67.32 57.46 60.70 ± 0.78

Table 2: Fine-tuning results with synthetic data on the PTB and GENIA test sets5. The first column indicates the
number of annotated examples taken from the training set. We report accuracy averaged across five runs (with
standard deviation) throughout sampling, generation, and fine-tuning.

are used to construct a set of unlabeled sentences
U3. The same operation is also performed for the
GENIA training set. We use the validation sets
constructed from the training sets for model selec-
tion and the test sets for evaluation. The original
development sets in the corpora are reserved for
extensive analyses.

Evaluation and model. We evaluate models on
the basis of their abilities to predict the correct
beginning and ending positions of the coordinate
structure for a given coordinating conjunction. As
a supervised model for the task, we employ the pre-
trained BERT-base-cased model combined with a
coordination prediction module used in Teranishi
et al. (2019), which gives scores to all possible
endpoint pairs for a conjunction. The score of an
endpoint pair (i, j) for the conjunction at the k-th
position in a sentence is computed as follows:

SCOREθ(i, j, k) = MLP(Fθ(i, j, k))

Fθ(i, j, k) = [hi − hk+1;hj − hk−1]
(3)

where MLP is a network consisting of two linear
transformations with a ReLU activation, and ht is
a representation vector for the t-th token produced
from the last layer of the Transformer in the BERT
model. All scores for possible pairs are normalized
by the softmax function and thus each score takes
a value between 0 and 1.

3In practice, to give sufficient context information for gen-
eration, we exclude sentences from U that consist of less than
10 words.

Training methodology. The entire network is
updated for 10,000 steps and the best-performing
model on the constructed validation set is selected
for evaluation on the test set. We regard the model
trained only on L as a baseline, whereas the pro-
posed model is trained first on L for 1,000 steps
(line 1 in Algorithm 1) and later on L together
with generated examples using U for the rest of
9,000 steps (line 2–15 in Algorithm 1). We set
Nbatch = 16, K = 8, Kmax = 16 and δ = 0.7 for
the proposed training framework in all experiments.
We use BERT-large-cased and T5-large models for
coordination generation. For span selection, we
use the Berkeley neural parser (Kitaev et al., 2019)
as the constituency-based span selection instead
of conducting the manual selection for an active
learning setting. Targeted spans are limited to non-
terminals of a parse tree labeled with NP, VP, ADJP,
ADVP, PP, SBAR, or S as they are typical types of
conjuncts4. We use the AdamW optimizer with a
learning rate of 2e-5, which is linearly decreased
with no warm-up, gradient clip with the threshold
of 1.0, and weight decay of 0.01. We evaluate mod-
els every 100 steps and apply early stopping when
the performance is not improved for 1,000 steps af-
ter the initial 1,000 steps. An MLP in Eq. 3 has one
hidden layer of 256 units with dropout (p = 0.5).
We use the last token of each word when computing
scores for word-level boundaries of coordination.

4We exclude the root constituent that covers an entire sen-
tence.
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Setting Overall
baseline 64.74
+ generation by BERT 66.98
− filtering 64.43
− sync + self-train 65.77

+ generation by T5 69.38
− filtering 66.13
− sync + self-train 65.37

Table 3: Results of the ablation study conducted on the
PTB development set. We report accuracy averaged
across five runs.

5.2 Results and analysis

5.2.1 Performance

Table 2 shows the experimental results on the PTB
and GENIA test sets. Trained with coordination
generation by our proposed method, the coordi-
nation disambiguation model generally achieves
better performances than the baseline, which is
trained only on a limited amount of manually an-
notated data. This indicates that both of the BERT
and T5 models used with the proposed method
yield promising examples that provide performance
gains for the task on the PTB as well as on the
GENIA, although the underlying parser and LMs
for generation are not particularly adapted to the
biomedical domain. A comparison between differ-
ent LMs for generation shows that the T5 models
produce better-quality examples than those pro-
duced by the BERT models for all types of co-
ordination. This is because BERT is pre-trained
to predict a single token for each mask indepen-
dently, whereas T5 is pre-trained through sequence-
to-sequence learning to generate consecutive to-
kens for masked spans. Thus, the BERT models
only work when generating conjuncts each consist-
ing of a few tokens; however, this would be miti-
gated by fine-tuning for span prediction, as used
in the training of SpanBERT (Joshi et al., 2020)6.
Surprisingly, the performances on clause-level co-
ordination (labeled as S or SBAR) are improved by
generation with T5, although T5 models are pre-
trained to fill relatively small masks and thus the
out-of-the-box models should have poor ability to
generate text for a long masked span.

5Overall includes other minor categories, such as UCP and
QP.

6We intended to use a SpanBERT model as a variant of
BERT for generation, but the weights of the LM heads for
masked span prediction are not officially provided.
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Figure 4: Influence of training dataset size evaluated on
the PTB development set.

5.2.2 Ablation study
We conduct additional experiments for ablation
study on the PTB development set. We report per-
formances of models trained using 250 labeled ex-
amples and synthetic examples without filtering by
setting δ = 0 or without synchronized decoding
for generation. Specifically in the latter setting, we
use only one masked sentence where a mask token
and conjunction are inserted only after a reference
(equivalent to S′(1)) and employ an LM to fill a
mask without synchronized decoding. However,
because the LM has no clue about the boundaries
of a reference span in the masked sentence, it likely
produces a text that does not seem to be coordinated
with the reference (e.g., “I had lunch and <mask>
with Mary.” → “I [had lunch] and [dinner] with
Mary.”). Such an example is easily rejected by
filtering during training, which results in that train-
ing without synchronization is no longer different
from training only on L. Therefore, when not in
use of the synchronized decoding, we discard the
corresponding boundary annotation y′ produced
by G for the resulting sentence x′ and instead use
a predictor model M to assign the most probable
endpoint pair y′′ to the sentence x′. The example
(x′, y′′) is then added if its score is greater than or
equal to the threshold δ. This setting can be seen
as typical self-training.

Table 3 shows the results of the ablation study.
Without filtering synthetic examples in the training,
the performances are substantially degraded, which
indicates that the proposed generation method pro-
duces erroneous examples, but also that the influ-
ence of noisy examples for supervised learning is
effectively mitigated by filtering. However, the
proposed generation method combined with T5
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1. Accepted We’re sorry to report that on Monday President Bush
accepted the resignation of William Allen as chairman
[of the U.S. Civil Rights Commission] and [of the U.S. Depart-
ment of Justice].

2. Accepted The opposition charged that the money was used
[to bribe Indian government officials] and [to support the
Congress], an allegation denied by Mr. Gandhi’s administration.

3. Rejected “[I wouldn’t say it’s quite a veto] and [it’s not a veto],” Mr.
Boren demurs.

4. Rejected Most analysts had expected a sharper decline
[after the steep rise in August] and [earlier in this year].

Table 4: Synthetic labeled examples generated using the proposed method with T5. The underlined text indicates
the reference span used in generation. The first column indicates whether the instance is considered valid or not by
the predictor model.

without filtering still leads to performance gain,
whereas generation with BERT without filtering
slightly impairs the performance. This result sup-
ports the superiority of the T5 model over the
BERT model for the proposed method. The mod-
els self-trained on sentences generated by LMs
without the synchronized decoding outperform the
baseline, demonstrating the effectiveness of self-
training. However, they underperform the models
trained with the proposed method that employs
the synchronized decoding. This indicates that the
boundary annotations assigned by the predictor it-
self become noises for training and would be ampli-
fied as training progresses, whereas the annotations
produced by the synchronized decoding are more
consistent regardless of the training progress.

5.2.3 Influence of the size of labeled examples

We further investigate the performance improve-
ment for the cases in which the size of human-
annotated labeled examples is increased. We sam-
ple 250, 500, 1,000, and 2,000 labeled examples
from the PTB training set to construct L and report
performances on the PTB development set. Fig-
ure 4 shows results. The models trained with the
proposed generation method with BERT and T5
enhance performances for low-resource settings, as
demonstrated in Table 2. However, the improve-
ment is no longer observed when preparing suffi-
cient labeled examples. Note that when using the
full training set (15,481 sentences) for L, the base-
line model and the model with generation using T5
achieve 86.36% and 86.24% accuracy on the PTB

development set, respectively. Thus, employing
the proposed method with many hand-annotated
examples does not degrade the performance signif-
icantly.

5.2.4 Qualitative analysis
Table 4 shows synthetic examples generated by
the proposed method using the T5 model. For Ex-
amples 1 and 2, the LM successfully captures the
boundary of the prepositional phrase and the verb
phrase, respectively, and generates the texts that
are coordinated with the reference spans with the
help of the proposed masking strategy and the syn-
chronized decoding. For Example 3, the model
produces a clause that corresponds to the reference,
but the resulting boundary annotation does not ap-
pear to be a valid conjunct for the reference span
due to the generator model’s misunderstanding of
the coordination boundary. This malformed exam-
ple is effectively rejected for training by the pre-
dictor model. The adverbial coordinate structure
in Example 4 generated by the LM seems to have
the correct boundary, but is mistakenly rejected be-
cause the predictor model is not sure whether it is
correct or not.

6 Limitations

The main weakness of the proposed approach is
its dependence on a pre-trained large LM, which
may not be available in an extremely low-resource
setting in terms of the amount of unlabeled text or
computational resources. Furthermore, the effec-
tiveness of our method has been examined for gen-
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erating a limited form of coordination in English
(i.e., two conjuncts joined by “and”). Thus, addi-
tional treatments for other forms of coordination in
English or for coordination in other languages us-
ing multilingual LMs would need to be developed
and tested with more thorough qualitative analyses
through human evaluation.

7 Conclusion

We present a method that exploits pre-trained LMs
for generating coordination with boundary anno-
tation. Synchronized decoding by BERT and T5
for two masked sentences with conjunctions leads
to coordinate structures that are consistent with
synthetic annotation. The experimental results for
coordination disambiguation show that examples
generated by our method provide gains to super-
vised methods. The extensive study also supports
the effectiveness of the proposed training frame-
work for removing erroneous examples. As future
work, we intend to develop a fine-tuning method on
LMs specialized for coordination generation and
apply synchronized decoding to other LMs and to
other generation tasks.
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Abstract

Designing in-depth educational questions is
a time-consuming and cognitively demanding
task. Therefore, it is intriguing to study how
to build Question Generation (QG) models to
automate the question creation process. How-
ever, existing QG datasets are not suitable for
educational question generation because the
questions are not real questions asked by hu-
mans during learning and can be solved by
simply searching for information.

To bridge this gap, we present KHANQ, a chal-
lenging dataset for educational question gen-
eration, containing 1,034 high-quality learner-
generated questions seeking an in-depth under-
standing of the taught online courses in Khan
Academy. Each data sample is carefully para-
phrased and annotated as a triple of 1) Con-
text: an independent paragraph on which the
question is based; 2) Prompt: a text prompt
for the question (e.g., the learner’s background
knowledge); 3) Question: a deep question
based on Context and coherent with Prompt.
By conducting a human evaluation on the as-
pects of appropriateness, coverage, coherence,
and complexity, we show that state-of-the-art
QG models which perform well on shallow
question generation datasets have difficulty in
generating useful educational questions. This
makes KHANQ a challenging testbed for edu-
cational question generation for further inves-
tigation.

1 Introduction

Question asking has long been considered a fun-
damental cognitive process in learning. An ideal
learner should be an active, self-motivated, creative,
inquisitive person who asks deep questions and
searches for answers to thought-provoking ques-
tions, usually in the form of Why, Why-not, How,
What-if, etc (Otero and Graesser, 2001). For exam-
ple, Figure 1 shows a question raised by a learner
after learning “allosteric regulation and feedback

The learner 4 years ago 

Allosteric regulation confuses me a lot. I don't really get it even after I read the 

article on Khan Academy . Can anyone explain it to me briefly? 

Reply Comment (8 votes) l:::,,. Upvote V Downvote J:] Flag more v 

00 The instructor 4 years ago 

I'll try an analogy - let me know if this helps. 

Imagine that an enzyme is like tiny sculpture made from a wire twisted 

into a very complicated, but somewhat loose structure. 

The substrate is another much smaller sculpture that fits into a gap in the 

first sculpture - let's say it fits perfectly. 

Now think of hanging a weight off another part of the sculpture - the 

whole structure shifts a bit under the strain and now the substrate 

sculpture doesn't fit! In this situation the weight would be analogous to 

an allosteric inhibitor. 

You could also imagine a similar scenario, but with the substrate fitting 

poorly until you added a weight - in this case the weight would be 

analogous to an allosteric activator. 

2 comments (39 votes) l:::,,. Upvote V Downvote J:] Flag more v 

See 1 more reply 

Enzyme regulation (article) | Khan Academy

Allosteric regulation, 
broadly speaking, is just 
any form of regulation 
where the regulatory 
molecule (an activator or 
inhibitor) binds to an 
enzyme someplace other 
than the active site. The 
place where the regulator 
binds is called the 
allosteric site.

Allosteric regulation

Figure 1: A real human-raised question after learning
the “allosteric regulation and feedback loops” course in
Khan Academy.

loops” in Khan Academy1, a well-known online
education platform. Given that question-asking is
a hallmark of human intelligence, it is intriguing
to study whether we can endow machines with the
ability to ask deep and to-the-point questions.

While there have been considerable advances
made in the field of Question Generation (QG), the
current research is still far from achieving human-
like question-asking. One major obstacle is the lack
of a suitable and clean dataset that can represent

1https://www.khanacademy.org/
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real-life human-raised questions, such as the ques-
tion shown in Figure 1. Existing QG works (Duan
et al., 2017; Zhao et al., 2018; Pan et al., 2020;
Back et al., 2021) typically focus on generating fac-
toid questions relevant to one fact obtainable from
a single sentence. They are shallow because they
do not reflect the creative human cognitive process
in question-asking such as inferences, multi-step
reasoning, synthesis, critical evaluation, and gener-
alization.

To bridge this gap, we desire a new dataset with
questions that satisfy two conditions: 1) they are
real questions asked by humans during learning,
and 2) they are deep questions that require high-
level cognitive skills to raise. We choose to collect
data from Khan Academy, where the questions are
raised by real learners after watching course videos
or reading course materials, as shown in Figure 1.
These questions represent what learners are nat-
urally interested in, and they are rarely shallow
questions confined to a narrow scope of context.

We collect the question-answer pairs from Khan
Academy and rewrite them as a triple of 1) Context:
an independent paragraph on which the question
is based; 2) Prompt: a text prompt for the ques-
tion (e.g., the learner’s background knowledge); 3)
Question: a deep question based on Context and co-
herent with Prompt. Following the common setting
of question generation, questions are based on the
information in the context. However, many valid
questions can be asked from the given context. To
facilitate the evaluation and to guide the genera-
tion, we also provide Prompt which describes the
questioner’s background knowledge (e.g., “In my
understanding, ...”) or certain conditions for the
question (e.g., “When ... happens, ...”). Given both
Context and Prompt as inputs, we test the model’s
ability to generate a consistent question with both
the context and the prompt. We design a rigor-
ous data annotation procedure to ensure that each
sample in KHANQ satisfies the following condi-
tions: 1) Question involves deep reasoning instead
of simply searching for information; 2) Context
contains enough information to derive Question;
3) Question is coherent with Prompt. After care-
ful annotation, we collect 1,034 (Context, Prompt,
Question) triples to form the KHANQ. An example
is given in Figure 2.

We further evaluate the depth of the questions
in KHANQ. We find that KHANQ is dominated by
deep questions that are represented in the form of

Context: The molecules in the water have a range
of kinetic energies, from low to high. Some of the
molecules have sufficient kinetic energy to break
out and to enter the air. In coastal areas there are
also factors. For example, waves churn up the
water and give rise to very fine droplets that can
get carried in the wind.
Prompt: Water have strong cohesion
Question: How does water evaporate?

Figure 2: A data sample in our KHANQ dataset.

Why, and How. In contrast, SQuAD 2.0 (Rajpurkar
et al., 2018) and HotpotQA (Yang et al., 2018) are
dominated by shallow questions represented in the
form of what. We further classify these questions
based on their reasoning type following the crite-
ria in (Cao and Wang, 2021). The results show
that 51.58% of questions in KHANQ involve deep
reasoning.

We evaluate the performance of five text genera-
tion models, which have achieved state-of-the-art
question generation performance on the SQuAD
dataset: BertGeneration (Rothe et al., 2020), GPT-
2 (Radford et al., 2019), BART (Lewis et al., 2020),
Google-T5 (Raffel et al., 2020), UniLM (Dong
et al., 2019). By conducting both automatic and hu-
man evaluation, we find that although the abilities
of BART and Google-T5 to reason in settings and
ask deep questions are better than other models,
the question quality is still much lower than the
human level. The results show that the KHANQ
is a challenging testbed for generating human-like
deep questions in education.

2 Related Work

Question Generation (QG) aims to automatically
generate questions from textual input. Earlier
work relied on syntactic transformations to con-
vert declarative sentences into questions (Chali
and Hasan, 2015; Heilman and Smith, 2010). Re-
cent neural models (Zhou et al., 2019; Krishna and
Iyyer, 2019; Sun et al., 2018) rely on sequence-
to-sequence models to generate questions from a
given sentence or paragraph by considering the
focus, type, and general specific relations of the
question. However, these approaches only involves
generating shallow factoid questions, which are
typically trained and evaluated on the SQuAD (Ra-
jpurkar et al., 2016) dataset. SQuAD is insufficient
to evaluate deep QG because more than 80% of its
questions are only relevant to information confined
to a single sentence (Du et al., 2017).

5926



With the advent of pretraining language models,
the challenge of generating single-hop questions
similar to SQuAD have largely been addressed. QG
research has started to generate more complex ques-
tions that require multi-hop reasoning (Tuan et al.,
2020; Pan et al., 2020; Xie et al., 2020; Yu et al.,
2020), benchmarking on the HotpotQA (Yang et al.,
2018) dataset. However, for questions in Hot-
potQA, the reasoning is often evident from the
surface form of the question, simplifying the QG
task. For example, Pan et al. (2021) show that
HotpotQA-style multi-hop questions can be gener-
ated by composing single-hop questions through
templates. Different from SQuAD and HotpotQA,
questions in our KHANQ dataset are asked by real
course learners, thus having a wider variety in both
question forms and reasoning types.

Recently, a few works started to work on gen-
erating real human-raised questions. For example,
Cao and Wang (2021) collect real questions from
online forums (Reddit and Yahoo). Gupta et al.
(2019) collect questions posted by customers on
Amazon product pages. However, questions col-
lected in above works are noisy, with few in-depth
questions, since they fail to carefully filter and vali-
date the questions. Compared to them, questions in
KHANQ are carefully filtered and annotated, pro-
viding a more clean testbed for deep question gener-
ation. Among these works, LearningQ (Chen et al.,
2018) is closest to us, which also collects questions
from Khan Academy. However, our work has three
key differences. First, LearningQ is more focused
on the educational nature of the questions. They
filter questions based on whether they are useful
for learning, whereas we focus more on the depth
of the question, keeping only the questions that
involve deep reasoning. Second, we use prompts
to give the models additional guidance on what
information to focus on when generating. Third,
the contexts used by LearningQ are entire articles
or videos, causing most of the sentences in the
contexts being irrelevant to the target question. In
contrast, the contexts we use are answers that con-
tain comprehensive explanations of the knowledge
points relevant to the question.

3 Data Collection and Annotation

3.1 Text Sources

Khan Academy is an online education institution
that provides free teaching materials. Online course
learners are encouraged to ask questions in the cor-

responding forum to clarify their confusions after
they learned each section of the course, as shown in
the example in Figure 1. Therefore, these questions
usually reflect a high-level comprehension and cog-
nition of the course contents, which makes them a
suitable data source for building a dataset for deep
question generation. We chose to collect data from
the courses in the science domain because question-
asking is more active in the science-related courses
than others. Learners asked more questions and
most of them have been answered by tutors.

As shown in Table 1, we collected a total number
of 1,284 course sections from 11 different areas
under the science domain. Each course section
consists of the course material (an article) written
by the tutor and a discussion forum. We filtered out
those course sections that have no question in their
discussion forums. In total, we collected 100,908
question-answer pairs.

area number
High school biology 209
AP/College Biology 296
High school chemistry beta 4
AP/College Chemistry 307
Organic chemistry 290
High school physics 82
AP/College Physics 1 4
AP/College Physics 2 19
AP/College Environmental science 18
Cosmology and astronomy 2
Electrical engineering 53

Table 1: The number of collected course sections for
each area in the science domain.

3.2 Data Annotation

To build a clean and high-quality dataset for deep
question generation, we then designed a rigorous
data annotation procedure to filter out noisy data
in our collected question-answer pairs. After filtra-
tion and annotation, each data sample is annotated
as a triple of: 1) Context: an independent para-
graph which the question is based on; 2) Prompt:
a text prompt for the question (e.g., the learner’s
background knowledge); 3) Question: a deep ques-
tion based on Context and Prompt. Compared with
the original noisy question-answer pairs collected
from forums, data annotation provides a standard-
ized and clean benchmark to train and evaluate the
question generation models.
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Figure 3 summarizes the major steps of our
data annotation. First, the Context of the ques-
tion should cover the knowledge points that the
question are based on. To provide the context, we
ask annotators to revise the answer provided by the
tutors of the course. We find that most answers
contain comprehensive explanations of the knowl-
edge points relevant to the question from the course.
Therefore, they are suitable to serve as the context
for the question. We asked the annotators to re-
move the answer-tone phrases (e.g., “yes”, “this is
because”) and conversational language (e.g., “good
question”, “hope it helps”) to make the answer
context-independent and self-contained.

For the original questions raised by learners, they
often contain conditional clauses, prepositional
phrases, and other conditions to limit the scope
of the question or to provide some background
information that expresses the learner’s own un-
derstanding or opinions. As shown in Figure 3,
we ask human annotators to separate out this in-
formation from the original question to serve as
Prompt of the question. The prompt provides addi-
tional guidance for the question generation model
in knowing which information to focus on when
generating; otherwise, the QG model tend to gen-
erate questions without specific target (e.g., “Can
you explain this part again?”). The Question then
comes from the remaining part of the original ques-
tion that seeks for new information based on the
prompt. Appendix A gives detailed data filtration
criteria, specific data annotation guidelines for each
step, and examples of annotation.

3.3 Quality Control

To control the quality of the annotation, we require
that annotators have a US high school diploma or
equivalent to demonstrate sufficient background
knowledge to understand the questions. To en-
sure that annotators understand the annotation pro-
cedure, we check those works and give feedback
when an annotator has completed the first 10% of
the tasks. The annotator needs to redo those an-
notations based on the feedback. This process is
repeated until all 10% of the tasks are approved.
During the annotation process, we also spot-check
the work submitted by the annotators. If the pass
rate does not reach 85%, the annotator needs to
be retrained to prevent them from deviating from
the task definition. Based on the above criteria, we
hired a total of six annotators. The whole anno-

Question: a car travels the first half 
distance between two places at 40kmph 
and the other half at 60kmph . what will 
be the average speed of the car?
• velocity=2*v_1*v_2/v_1+v_2*

here,v_1=40 and v_2=60 so, we get
average
velocity=2*40*60/40+60=4800/100=*
48 km/h*

Question: During radioactive decay, can 
the neutron be kicked out of the 
nucleus? 
• Answer: Alpha radiation consists of

2x Neutrons and 2x Protons, e.g. a
helium nucleus.

• Answer: Absolutely. Neutron
emission is a common form of decay.
I'm not sure why it is regularly left out
when people discuss the various
forms of decay. It may be because it
typically occurs in high neutron count
isotopes, which don't occur very
often in nature.

1. Filter
Questions

Prompt

Question

2. Rewrite
Question

into Prompt 
+ Question

3. Filter
Answers

4. Rewrite
Answers

into 
Context

Context

Figure 3: Data annotation pipeline, consisting of four
steps: 1) Filter Questions; 2) Rewrite Question into
Prompt + Question, 3) Filter Answers, and 4) Rewrite
Answers into Contexts.

tation process took two months. 30,000 original
question-answer pairs are examined and 1,217 of
them are annotated as valid samples.

After the annotation, we hired two workers to
validate the quality of annotation. We find that: in
140 data samples, the context cannot provide the
information needed to drive the question. In 19 data
samples, the prompt cannot constrain the direction
of the question. In 25 data samples, The question is
incomplete, incomprehensible, not even a question
at all. 85% of the annotated data samples meet all
the requirements, which gives us 1,034 samples to
form our final KHANQ dataset.

4 Data Analysis

4.1 Dataset Statistics

The final dataset consists of 1,034 high-quality data
samples, in which 515 samples come from the field
of Biology, 401 from the field of chemistry, 88 from
the field of physics, 19 from the field of electrical-
engineering, 7 from the field of environmental-
science, and 4 from the field of cosmology-and-
astronomy. The average length of Context, Prompt,
and Question are 84.62 words, 14.12 words, and
10.74 words, respectively.
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4.2 Question types by words
To investigate the depth and diversity of questions
in KHANQ, we classify questions based on the first
two words in the question and compare them to
other commonly-used question generation datasets:
SQuAD 2.0 (Rajpurkar et al., 2018) and HotpotQA
(Yang et al., 2018), as shown in Table 2.

KHANQ % SQuAD % HotpotQA %
Why does 3.8 what is 8.5 What is 5.0
How does 3.6 what was 5.3 Who was 2.1
Why is 3.4 how many 4.9 What was 2.0
Does the 3.0 when did 3.1 In what 1.8
Why do 2.8 in what 2.9 When was 1.7
What is 2.8 what did 2.8 Who is 1.6
How do 2.3 when was 2.1 How many 1.0
How to 2.2 who was 2.1 In which 0.9
How is 2.2 what does 1.7 What year 0.9
Is it 2.2 what are 1.7 Are both 0.9

Table 2: Most frequent leading bigrams in SQuAD 2.0,
HotpotQA and KHANQ

According to (Craig et al., 2000), questions that
are represented in the form of Why, and How are
likely to be deep questions. Table 2 shows that
KHANQ is dominated by these questions. In con-
trast, SQuAD 2.0, and HotpotQA are dominated by
shallow questions represented in the form of what.

4.3 Question types by reasoning
To gain a better insight of the characteristics of the
questions, we manually analyzed a sample of 95
different questions from KHANQ. We classify these
questions following the criteria in (Cao and Wang,
2021). We summarize the most common types
of questions in KHANQ and their corresponding
examples as follows.

PROCEDURAL questions In 21.05% of the
questions we inspected, the questioners asked for
the procedures, tools, or methods by which a partic-
ular outcome is achieved. Most of these questions
begin with How, followed by an auxiliary verb, a
modal verb, or to, which indicates that the ques-
tioner is reasoning about the steps of action.

• How to determine the oxidation state of oxygen?

• How does the body know what to send down the
esophagus and what to send down the trachea?

CAUSE questions In 18.95% of the questions
we inspected, the questioners are asking for the
cause or reason for an event or a concept. Most
of these questions begin with Why, followed by an
auxiliary verb, a modal verb, or their negative form,

which indicates that the questioner is seeking the
reason behind a phenomenon.

• Why are the electrons mapped out in such an
orderly way?

•Why don’t the oxygen atoms in the air bond to the
water molecules on the surface and pull on water
molecules?

VERIFICATION questions In 15.79% of the
questions we inspected, the questioners asked for
the truthfulness of an event or a concept. Most
of these questions are general questions that be-
gin with be verbs, auxiliary verbs, or modal verbs.
This indicates that the questioner wants to verify
the truth of an idea when he or she already has a
specific idea.

• Does the oxygen bonded with another oxygen
don’t count as another oxidation state?

• Are the cranial nerves part of the CNS and the
spinal nerves part of the PNS?

CONSEQUENCE questions In 11.58% of the
questions we inspected, the questioners asked for
the consequences or results of an event. Most of
the questions include What happen, How affect
and so on. This indicates that the questioner is
trying to draw a conclusion about the effects or
consequences of an action.

• What happens to the water at the bottom of the
container?

• How will the viscosity of liquid be affected by
increase in temperature?

According to (Craig et al., 2000), six ques-
tion categories involve deep reasoning: causal
antecedent, causal consequence, goal-orientation,
enablement, instrumental/procedural, and expec-
tational. Connecting it to KHANQ, PROCEDU-
RAL questions, CAUSE questions, and CONSE-
QUENCE questions are three categories that in-
volve deep reasoning, accounting for 51.58%.

4.4 Prompt types
We further analyzed the prompts of these questions
and divided the prompts into four major types:

• Condition (36.94%): Prompt is a conditional
clause (trigger word: “if”, “when”, etc.);

• Preposition (8.32%): Prompt is a preposi-
tional phrase (trigger word: “in”, “for”, etc.);
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Context:
Passive transport basically does not require any form of energy compared to active transport. In the case of
osmosis,the water moves from areas of HIGH WATER concentration to areas of LOW WATER concentration,
which makes it a form of passive transport. It uses no energy to move, it just drifts into lower concentrations
of WATER. WATER not other materials, only WATER. Osmosis deals with water.

Prompt: Question:
Condition If water moves from areas where solutes are less con-

centrated to areas where they are more concentrated
Why would osmosis be a form of Passive
Transport?

Preposition In the case of osmosis How molecules move from areas of high
concentration to low concentration?

Citation Passive transport is when molecules move from areas
of high concentration to low concentration

Shouldn’t osmosis technically be classified
as a form of active transport?

Question Are the modes of transport that move molecules from
high to low concentrations all passive transport?

Is osmosis also passive transport for water?

Table 3: Different questions raised by learners for the same context with different types of prompts.

• Citation (33.95%): Prompt is a complete sen-
tence expressing some known information or
the learner’s own understanding;

• Question (20.79%) - Prompt is an initial ques-
tion which leads to the followup question.

Given the same context, different prompts trig-
ger different questions. In Table 3, we show a
typical example in KHANQ in which four different
types of prompts lead to different questions. We
observe a strong correlation between the prompt
type and the question type, which reveals how the
prompt affects the question: 1) Most of the ques-
tions asked under the condition-type prompt aim
to seek for new information based on the condi-
tion set by the questioner. The questions generally
ask for causes or consequences. There is a strong
logical connection between the question and the
prompt, but the question rarely repeats the words in
the prompt; 2) Most of the questions asked under
the preposition-type prompt are about a specific
object or phase. They generally ask for procedures
or methods. These questions are general and often
do not stand alone without the prompt; 3) Most of
the questions asked under the citation-type prompt
are to verify what the questioner already knows
or to doubt the newly learned content based on
what the learner is already known. They are mainly
VERIFICATION questions. The questions tend to
repeat the keywords in the prompt; 4) Most of the
questions asked under the question-type prompt are
specifications of the previous question asked by the
questioner. The types of the question in Prompt
and Question are usually the same.

5 Experiments

We evaluate the performance of state-of-the-art
question generation models on KHANQ, focusing
on the following:
• Exploring whether existing models can generate
reasonable educational questions by conducting
both automatic evaluation (Section 5.3) and human
evaluation (Section 5.4).
• Analyzing whether the model needs to actually
understand a certain type of prompts when generat-
ing questions. (Section 5.5).

5.1 Experimental Settings
We formulate the question generation task as
predicting the Question given both Context and
Prompt as inputs. Through preliminary experi-
ments, we find both context and prompt are neces-
sary to form a well-defined QG setting because 1)
if the prompt is not given, many possible questions
can be asked for the context paragraph. The model
does not have any guidance on what to ask, leading
to simple trivial questions in most cases; 2) if the
context is not given, the problem becomes a simple
language modeling task which aims to generate the
missing part of an incomplete question. In our ex-
periment, 90% of the data in KHANQ are used for
training while the remaining are used for testing.

5.2 Models
We choose five generation models based on pre-
training language models (PLMs) that perform well
on QG tasks for evaluation. We also tried QG-
specific models without pretraining such as Info-
HCVAE (Lee et al., 2020), but we found that they
fail to generate meaningful questions in KHANQ.
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Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L
Human Baseline 31.29 16.74 10.72 7.47 15.60 30.83

BertGeneration (Rothe et al., 2020) 17.83 5.75 2.52 1.15 8.07 17.80
GPT-2 (Radford et al., 2019) 17.01 5.59 2.29 1.31 7.79 18.78
BART (Lewis et al., 2020) 25.10 11.22 6.20 3.41 12.71 26.14

Google-T5 (Raffel et al., 2020) 25.62 12.93 7.25 4.32 12.66 27.62
UniLM (Dong et al., 2019) 20.15 8.83 4.65 2.76 10.76 22.02

Table 4: Automatic evaluation results for different models in KHANQ with BLEU1-4, METEOR and ROUGE-L

Appro. Cov. Coh. Comp.
Human 4.32 4.44 4.13 3.83
BertGeneration 2.63 2.12 2.35 3.47
GPT-2 2.87 2.69 3.07 2.40
BART 4.28 3.65 3.37 3.41
Google-T5 3.90 3.74 3.31 3.75
UniLM 3.35 3.26 2.96 3.37

Table 5: Human evaluation results for different mod-
els in KHANQ on appropriateness (Appro.), coverage
(Cov.), coherence (Coh.) and complexity (Comp.)

BertGeneration (Rothe et al., 2020) This is a
Transformer-based sequence-to-sequence model in
which the parameters of both encoder and decoder
are initialized with BERT (Devlin et al., 2019). We
use the implementation from Huggingface2.

GPT-2 (Radford et al., 2019) GPT-2 is a large
transformer-based language model with 1.5 billion
parameters, trained on a dataset of 8 million web
pages. We fine-tune GPT-2 on our training data,
by formatting the input sequence as: Context
[PRT] Prompt [QUE] Question. During
test time, Context [PRT] Prompt [QUE]
is given to predict the question.

BART (Lewis et al., 2020) BART is consists of
a bidirectional encoder and a left-to-right decoder.
The pretraining task involves randomly shuffling
the order of the original sentences and a novel in-
filling scheme, where spans of text are replaced
with a single mask token. We fine-tune BART
on KHANQ by predicting the question given the
context and the prompt.

Google-T5 (Raffel et al., 2020) Google-T5 is
another state-of-the-art language generation model
which pretrains the Transformer with the fill-in-
the-blank-style denoising objectives. The model is

2https://huggingface.co/transformers/
model_doc/bertgeneration.html

trained to recover missing words in the input. We
use the t5-base model provided by Huggingface
and fine-tune it on the training data of KHANQ.

UniLM (Dong et al., 2019) UniLM uses three
types of language modeling tasks for pretraining:
one-way, two-way, and sequence-to-sequence pre-
diction. We initialize UniLM with the parameters
of BERT-base (Turc et al., 2019) and then fine-tune
it on KHANQ and predict the question.

5.3 Automatic Evaluation

We evaluate the generated questions using
BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007) and ROUGE-L (Lin, 2004).

To compare with human performance, we re-
cruited two high school graduates who were not
involved in the annotation process and asked them
to perform the same task as models. We took a sam-
ple of 80 data and asked them to generate questions
based on the context and the prompt. To reduce sub-
jective differences, they were required to develop
the results after discussion.

Table 4 shows that BART and Google-T5 per-
form the best on KHANQ, with similar perfor-
mance. BART achieves the best METEOR score,
while Google-T5 achieves the best BLEU1-4 and
ROUGE-L. Both these two models perform signifi-
cantly better than other models. This observation is
consistent with other language generation tasks in
which BART and Google-T5 also show strong per-
formance in generation. However, although BART
and Google-T5 have achieved super-human perfor-
mance in generating shallow questions in SQuAD,
in our KHANQ dataset, all models perform worse
than the human baseline in all metrics, indicating
that KHANQ is a more challenging benchmark for
SOTA models. In Appendix B, we show examples
of generated questions by different models.
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Model prompt type BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L

BART

condition +0.06 -0.26 -0.61 -1.17 -0.55 +0.80
preposition -2.33 -1.35 -1.06 -0.39 -1.56 -0.92

citation -0.56 -0.16 +0.09 +0.63 -0.10 +1.26
question -0.60 +1.43 +1.71 +1.92 -0.34 +2.36

Google-T5

condition -1.13 -1.67 -1.29 -1.04 -1.53 -2.73
preposition -4.33 -4.90 -4.23 -2.96 -2.42 -2.87

citation -2.52 -2.45 -1.07 -0.36 -0.18 -1.69
question -0.36 -0.66 -0.08 +0.16 -0.96 -1.23

Table 6: Changes in the automatic evaluation scores of BART and Google-T5 when data samples from different
type of prompts are used as the test set.

5.4 Human Evaluation

We conduct human evaluation on same sets of test
samples used in Section 5.3. Each set consists of
the human written question and five questions gen-
erated by five different models. We hired three
annotators who participated in our data annotation
to rate the total 480 questions with the best being a
5 and the worst being a 1 on four criteria: (1) Ap-
propriateness: whether the question is semantically
correct, regardless of the context and the prompt;
(2) Coverage: whether the question is derived from
the context and covers most of the information in
the context; (3) Coherent: whether the question is
coherent with the prompt; (4) Complexity: whether
the question involves deep reasoning. We further
asked them to give what the best and worst scores
should be for each aspect to adjust the absolute
difference between the best and worst outputs.

As shown in Table 5, BART and Google-T5
also perform better than other models in human
evaluation, which is consistent with the automatic
evaluation. Human reference still achieve the high-
est scores on all four aspects, indicating that QG
models still fail to reach the human level. BART
generates questions with the best appropriateness,
and Google-T5 generates questions with the best
complexity. In both aspects, they are very close to
the human baseline. This suggests that BART and
Google-T5 have the ability to ask fluent and com-
plex questions similar to humans. However, the
scores of coverage and coherence have a large gap
with the human reference for all models, indicating
that although the generated questions look fluent
by themselves, they often do not cover the essential
knowledge covered in the context or they fail to be
coherent with the given prompt. This shows that al-
though pretraining models are powerful in generat-
ing fluent-looking questions, generating questions

that require a deep understanding of the context
and the prompt is still challenging.

5.5 Analysis of the effects of prompt

In this section, we analyze whether the model needs
to actually understand a certain type of prompts
when generating questions. We take turns using
data samples from one type of prompts as the test
set and the other three as the training set. We
choose to analyze BART and Google-T5, which
perform well in the previous evaluations.

As shown in Table 6, when the training and test-
ing sets are divided by prompt type instead of ran-
domly, the generation effect of Google-T5 will be
much worse, while the generation effect of BART
will not change much, which indicates that BART
has a better transfer learning ability under different
prompt types than Google-T5. It also shows that
the questions under different prompt types have
some commonality. It is worth noting that if the
training set does not contain data samples with
the preposition-type prompt, both models perform
worse when generating questions under this type
of prompt. This can be attributed to the fact that
preposition-type prompt tends to contain very lim-
ited amount of information, and most of the ques-
tions under those prompts are in-depth questions
asking about processes or methods. Generating
such questions requires a very accurate understand-
ing of the prompts, which cannot be achieved by a
model that has not been trained with these samples.

6 Conclusions and Future Works

In this paper, we propose KHANQ, a dataset for
generating in-depth educational questions. Each
sample in KHANQ is carefully annotated as Con-
text, Prompt, and Question to form a clean dataset.
We evaluate the performance of state-of-the-art
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question generation models on KHANQ. We find
that although it is feasible for the model to generate
fluent and complex questions, the ability to under-
stand and reason over the context and the prompt
is still far from reaching the human level.

There are several future directions that are worth
investigating: (1) what different results the models
will produce in terms of different types of ques-
tions; (2) how to enable models to obtain informa-
tion from the context and the prompt separately and
then make the inference, to enhance their ability to
seek information under the given conditions.
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A Data Annotation Procedure

A.1 Filter Questions
Purpose: Questions should: 1. be deep enough;
2. contain no external information that requires a
deep query; 3. be able to be rewritten as prompt +
question.

Filtering out:

• Question cannot be rewritten as prompt +
question
Question: what about names from 16-19?

• Questions that require mathematical cal-
culations but do not provide formulas (trig-
ger word: number, units)
Question: a car travels the first half distance
between two places at 40kmph and the other
half at 60kmph. what will be the average
speed of the car?

• Questions that cite unavailable timestamp
or figure without specifying the corre-
sponding text (trigger word: "at 0:40", "in
figure 1 below")
Question: When the instructor refers to
"Lesser Apes" at 0:40, what characteristics
classify these "Lesser Apes"?

• Simple questions that ask for definitions
(trigger word: "What is")
Question: what is fasciculus

• Questions that are not understood by the
answerer (trigger word: "Do you mean" in
the answer)
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Question: how do i know whether specific
molecules will undergo active or passive dif-
fusion by just looking at the molecule?
Answer: There is no ’active’ diffusion. Dif-
fusion is passive transport. Do you mean
diffusion or facilitated diffusion? It depends
what ’liquid’ is moving through your semi-
permeable membrane.

A.2 Rewrite Question into Prompt +
Question

Purpose: Generate Prompt and Question
* Highlighted part is Prompt, other part is Ques-
tion

• The original question is a conditional
clause + question, and the conditional
clause can be used as prompt (trigger word:
"if", "when")
If there is bacteria in our blood and there is
only 1% of white blood cells, wouldn’t that
take a long time to dispose of the bacteria?

• The original question is prepositional
phrase + question, and prepositional
phrase can be used as prompt (trigger word:
"in", "on", "for")
Does binary fission occur in the same way for
ALL bacteria?

• A sentence that quotes a part of the article
can be used as a prompt (trigger word: "in
. . . th paragraph", "in . . . th section")
In the first section you mention a graph
of cyclin levels over the expression cycle
throughout mitosis. Why is G1 Cyclin required
throughout the entire cyclin expression cycle
of mitosis?

• Questions that cite their own knowledge,
the cited knowledge can be used as prompt
(trigger word: "I understand", "I thought", "I
know")
It took me a while to figure out that DNA
isn’t just one molecule, but a collection of
molecules, one per chromosome in humans.
Why do people still call DNA a molecule?

• The question consists of multiple sen-
tences, using the preceding declarative sen-
tence as the prompt (trigger word: "." ",")
There are four phases in one cell cycle (G1, S,
G2 and M). Apoptosis occurs in which phase?

Special cases:

• If there are multiple consecutive questions
(trigger word: ?) First generate Prompt
and Question for each question according
to the above standards, then if the later
question is asked on the basis of the earlier
question, the earlier question is used as the
Prompt of the later question
Is autism a genetic disorder? If so, which
chromosome determines the mutation?
⇒ (The first question cannot be written as
prompt + question, filter out. There is no ques-
tion before, no further processing. The second
question cannot be written as prompt + ques-
tion, filter out. Further processing:)
Prompt: Is autism a genetic disorder? If so.
Question: which chromosome determines the
mutation?

• For the question that can generate multi-
ple Prompt, combine multiple Prompts
into one Prompt
how bonds require energy in order to be bro-
ken and vice versa, why is it opposite for ATP
bonds? Because when ATP bonds are broken,
energy is released
⇒
Prompt: Because when ATP bonds are broken,
energy is released, how bonds require energy
in order to be broken and vice versa,
Question: why is it opposite for ATP bonds?

• For the choice question (trigger word: "or")
if one option does not contain information,
delete it. if the two choices contain differ-
ent information, split it into two questions
During radioactive decay, can the neutron be
kicked out of the nucleus? Or is it only the
proton which gets kicked out?
⇒
1 Prompt: During radioactive decay,

Question: can the neutron be kicked out of
the nucleus?

2 Prompt: During radioactive decay,
Question: is it only the proton which gets
kicked out?

A.3 Filter Answers
Purpose: Answers should: 1. be able to be rewrit-
ten into independent contexts; 2. contains enough
information to ask the corresponding questions.

Filtering out:
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• Answers contains too little information
Answer: The H zone is the space in the middle
of the sarcomere where only myosin proteins
are found.

• Answers that cannot stand alone as a para-
graph
Answer: Experimentation. It is not deter-
mined from an equation. In a similar way
to how you cannot solve for the specific heat
of a substance, you can conduct and experi-
ment to find it, or use an accepted value from
a table.

• Answers that cannot answer the question
Question: I thought an energy-releasing reac-
tion was called an exothermic reaction and a
reaction that takes in energy is endothermic.
In the article, it defines them as exergonic and
endergonic. Are they the same?
Answer: Exothermic and endothermic refer to
specifically heat. Exergonic and endergonic
refer to energy in general.

• Answers including background knowledge
that are not mentioned
Answer: Not all ions are reactive (think of dis-
solving salt in water to give Na+ and Cl- ions)
- it depends on the circumstances. H+ ions
are more reactive than H3O+ ions, so when
an acid dissociates in the water, the protons
immediately latch on to water molecules to
give H3O+ ions which are more stable than
H+ ions.

Special cases:

• If a usable question has multiple answers,
first filter according to the above stan-
dards. For the filtered-out answers, first
join them together and keep the joined an-
swers if they meet the requirements after
joining. Finally, each kept answer can be
used as a context for a data
Answer: The clouds keep our temperature reg-
ulated. If we didn’t have clouds, it would be
extremely hot at night and extremely cold at
night. Aren’t you glad God created clouds?
He really thought it out well when he created
the earth. Hope this helps. (The answer is
not good enough, but a good context can be
generated after joined)
Answer: It would be both hot and cold (bit
like the moon). When the planet faces the sun,

it would be really hot and when it faces away
from the sun, it would be really cold. (The an-
swer is not good enough, but a good context
can be generated after joined)
Answer: If you just mean a place hardly has
clouds. I think hotter? For there are no rain-
ing. Whatever, the climate will become very
hard. But if you mean that there wasn’t a state
called cloud, then I don’t know.... What do
you actually mean about no clouds? Because
clouds are the basic state for water. If there
aren’t any clouds, what will water become?
(The answer is not good enough, contains too
much information that is invalid or even con-
tradictory to other answers, and a good context
cannot be generated after splicing, so discard
it directly)
⇒
Answer: The clouds keep our temperature reg-
ulated. If we didn’t have clouds, it would be
extremely hot at night and extremely cold at
night. Aren’t you glad God created clouds?
He really thought it out well when he created
the earth. Hope this helps. Answer: It would
be both hot and cold ( bit like the moon).
When the planet faces the sun, It would be
really hot and when it faces away from the
sun, It would be really cold.

A.4 Rewrite Answers into Contexts
Purpose: Generate Contexts
*Before deletion is the answer, after deletion is the
context

• Remove answer-tone phrases for the ques-
tion (trigger word: "yes", "no", "short an-
swer:" , "this is because")
Answer: Short answer: a photon is a parti-
cle of light. Longer answer: light is energy.
Sometimes we think of light as being a wave
in the form of an electro-magnetic wave but
other times it can be described as a particle.
A photon in this case, is 1 unit of light with a
variable amount of energy which depends on
its frequency.

• Remove external information from the
subject irrelevant(need for deep query)
content (trigger word: Url, email, phone, etc)
Answer: *Oncogene* are mutated genes
that switch from G1 to S phase, (even when
there is no need for cell division). So they
are accečerators of the process. You know
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that is a checkpoint of a cell. However, there
are also *tumor suppressor* genes and they
act a brake. So whilst the tumor suppressor
is sitting there in the cell, it’s stopping the
cell from going around the cell cycle. If we,
again, trigger the cell cycle or attempt to by
instructing the cell with a signal initiating the
relay, one of the jobs of that relay is to remove
that block, that brake. As long as a tumor
suppressor is working, cancer will not arise.
If you remove tumor suppressor (mutation)
the cell is free to move from G1 to S phase. If
they are both in mutant form, cancer arises.
https://www.ncbi.nlm.nih.gov/books/NBK21662/
https://www.futurelearn.com/courses/inside-
cancer/14/steps/579660a

• Remove questions that were asked but not
answered (trigger word: "?")
Answer: DNA is DNA it is universal in all
organisms. However, combinations of nu-
cleotides (codons) are different and code for
different amino acids. Why do you think it
should be tested in other organisms?! Se-
quencing whole genomes have already been
done. If it is not enough, what it is?

A.5 Paraphrasing
Purpose: 1. Delete words that do not contain infor-
mation; 2. Rewrite to formal tone.

• Fix grammar and spelling problems
Mathematically, sphere or ana circle has more
area compared to other geometric shapes. so,
we cant consider*can we consider neopentane
as spherical?

• Delete daily terms (trigger word: "okay")
Okay,where do the single protons, the hydro-
gens come from? How do we add them to our
equation?

• Delete the conversational language be-
tween the questioner and the answerer
(trigger word: "Hello", "good question",
"hope it helps", "sincerely", "remember")
Remember, velocity and acceleration are vec-
tor quantities, which have both magnitude and
direction (+/-). Hope that helps

• Delete the conjunctions that appear at the
beginning of the sentence (trigger word:
"So", "But")
so we evolve from apes, so if one mated with a

human could you see the "half-way" of human
evolution?

• Delete subjective prompt words (trigger
word: "I believe")
I thought red blood cells are already larger in
diameter than the smallest capillaries, so that
they have to squeeze through.

• Delete quote cues and quotation marks
(trigger word: "From the video, it says that")
In the third paragraph under "Ionic Bonds",
it says that there is no such thing as a single
NaCl molecule. Why can’t you have a single
molecule of NaCl?

• Delete timestamp (trigger word: "At 3:40")
At 3:40, the speaker says that enthalpy of a re-
action can be calculated using Hess’s law or
by using the Delta H of formation. I thought
Hess’s law uses the Delta H of formation, but
she seems to be saying those are two differ-
ent ways. is there a difference between using
Hess’s law and using the Delta H of formation,
and if so, what is it?

• Revise the personal pronouns referring to
the questioner or answerer (trigger word:
"you", "I")
How can Ito figure out the extent of branching
for a molecule?

• If the specific noun referred to by the pro-
noun is in another part, change the pro-
noun to the specific noun it refers to (trigger
word: "it", "they", "this", "that")
Condition: isn’t there a sulfur cycle as well as
all the others and if so
Question: how does ita sulfur cycle as well as
all the others work

• Rewrite the symbols that will be recog-
nized as garbled (trigger word: "°C")
Having its boiling point at °C degree Celsius?

A.6 Mark source

Purpose: source should: 1. contains enough infor-
mation to identify the origin of the data; 2. unaf-
fected by website URL changes.

Use the title of the text as the source
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B Case study

Context:
Superfluid means the substance is at the point between liquid and gas (equilibrium)at very high tempera-

ture and pressure. helium becomes a superfluid at extremely low temperatures. superfluid is strange in
the way that it seems to have a viscosity of zero, it can flow up the sides of a container, and many other
creepy things.
Prompt:
helium can become a ’superfluid’ . while helium in its liquid state

Question:
Human⇒ Under what conditions does helium become superfluid ?

BertGeneration⇒ why does hydrogen need to dissolve in water?
GPT-2 ⇒ helium can never make a superfluid . Does the helium in its liquid state always have
viscosity of zero?
BART⇒Why does helium become a ’superfluid’ ?

Google-T5⇒ How can helium become a superfluid ?

UniLM⇒ how can helium become a superfluid ?

Context:
The efficiency of the respiratory system is very very efficient. Imagine a system of pipes; one pulls the

air , another transfers it. Since pipes are rounded and therefore ’closed’ air cannot escape through the
piping. Take for example your hand. Curl it, and blow through it. Almost none or if any air escapes,
except through the other side. Because of this, the only path for the air to take is to the lungs. In which the
lungs work/use the air and the entire cycle happens again. When a biological system is working many
other dependent systems are working too.
Prompt:
As the air keeps moving down the throat to the lungs, does some air leak or escape?

Question:
Human⇒ A. Where is the path of air passage through breathing space and where the working place is?

BertGeneration⇒ Does something like a hydroxylation change the oxygen species?
GPT-2⇒ how does the oxygen diffuse in or would it go in or can the same pressure?
BART⇒Why does the respiratory system work?

Google-T5⇒Why is the respiratory system so efficient?

UniLM⇒ how does the air move in a system ?

Table 7: Examples of questions generated on KHANQ: 1) States of matter 2) The lungs and pulmonary system.
Colored Text indicates key words and Italics indicate inappropriate words
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Abstract
Figurative language generation is the task of
reformulating a given text in the desired figure
of speech while still being faithful to the orig-
inal context. We take the first step towards
multi-figurative language modelling by pro-
viding a benchmark for the automatic gener-
ation of five common figurative forms in En-
glish. We train mFLAG employing a scheme
for multi-figurative language pre-training on
top of BART, and a mechanism for injecting
the target figurative information into the en-
coder; this enables the generation of text with
the target figurative form from another figura-
tive form without parallel figurative-figurative
sentence pairs. Our approach outperforms all
strong baselines. We also offer some qualita-
tive analysis and reflections on the relationship
between the different figures of speech.

1 Introduction

Figurative language is commonly used in speak-
ing and writing to accomplish a constellation of
communicative goals (Roberts and Kreuz, 1994).
Figures of speech, such as metaphors, or idiomatic
expressions, can make an expression stand out by
making it more interesting and captivating, and can
evoke stronger emotions than more factual, literal
phrases thereby making the text more engaging.

Automatic figurative language generation has
received growing attention with the progress of
neural networks, especially the emergence of large
pre-trained models (Raffel et al., 2020; Lewis et al.,
2020). We see there are two core values for this
task: (i) computational approaches can be em-
ployed to provide a better understanding of lin-
guistic phenomena and more specifically in this
case different figures of speech; (ii) we can explore
how much models can handle creativity and devise
ways to employ them in the support of creative
writing, so as to yield more varied and human-like
generated text, including in the context of machine
translation (Guerberof-Arenas and Toral, 2022).

Forms Sentences
Literal Old Mr. Smith has been teaching here for a very long time.
Hyperbole Old Mr. Smith has been teaching here since the Stone Age.
Literal My niece will babysit for you for a little bit of money.
Idiom My niece will babysit for you for pin money.
Literal I hate it when they run the same commercial twice in a row.
Sarcasm I love when they run the same commercial twice in a row.
Literal He remembers a road of my broken works.
Metaphor He made a road of my broken works.
Literal You can publish the whole thing old.
Simile You can publish the whole thing like a diary.

Table 1: Examples of figurative language generation
from literal texts.

There are many related tasks that have been
proposed and studied by NLP researchers, in-
cluding the generation of hyperbole (Tian et al.,
2021; Zhang and Wan, 2022), idiom (Zhou et al.,
2021), sarcasm (Zhu et al., 2019; Chakrabarty et al.,
2020a), metaphor (Abe et al., 2006; Stowe et al.,
2021b), and simile (Chakrabarty et al., 2020b;
Zhang et al., 2021). Table 1 shows examples of
figurative language generation from literal texts.

Previous works focus on modelling single figu-
rative forms, generally rewriting a literal sentence
into one with a specific figure of speech. This re-
sults in having to train separate models, one for
each figure of speech, and in not exploiting knowl-
edge transfer across figurative forms. However,
since different figures of speech can share some fea-
tures related to non-literality, and a text may also
contain and combine multiple figures of speech at
the same time, it is possible that substantial knowl-
edge gains can be transferred from one figure to
another. Moreover, the generation between differ-
ent figures of speech (e.g. generating an idiomatic
text from the hyperbolic one) is under-explored.

In this work we suggest to model multiple fig-
ures of speech jointly, with the ultimate goal of
having a single model that can handle the genera-
tion of multiple figurative forms from both literal
and figurative inputs.

Intuitively, multi-task learning (Collobert and
Weston, 2008) and the usage of a domain la-
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bel (Kobus et al., 2017) could be a good method
for multi-figurative language modelling, adding a
special token to the beginning of the sentence to
guide text generation. Such a method requires par-
allel data (i.e. aligned texts with the same context
but different figures of speech) for training; this is
usually unavailable, especially between different
figures of speech, and costly to produce.

We rely on existing parallel data between literal
sentences and single figures of speech and propose
mFLAG (Multi-Figurative Language Generation),
an approach which is applicable to the generation
between different forms, both literal and figurative.
In a nutshell, mFLAG is trained in two stages, in
both of which we also exploit the contribution of
generic paraphrase data: (i) a specifically designed
pre-training for multi-figurative language, where
a special label is added at the beginning of each
sentence to indicate its figure of speech; (ii) a super-
vised training where the parallel literal-figurative
sentence pairs for all figurative languages are com-
bined to achieve multi-figurative language gener-
ation. For (ii), we introduce an innovative mecha-
nism that allows the form labels to leak their own
figurative information into the input embedding,
thus guiding the encoder to represent the source
sentence. This mechanism makes it possible to
generate between different figures of speech with-
out parallel figurative-figurative data. For com-
parison, and to allow for wider flexibility in gen-
eration choices as well as linguistic analysis, we
also use the literal form corresponding to each fig-
ure of speech, which is available through the sep-
arate parallel datasets, as pivot to run figurative-
to-figurative transformation. We expect that with
the direct figurative-figurative transformation the
source figurative form might still be maintained
in the generated sentence, with the addition of the
target figurative form, while this should not be the
case when using the literal form as pivot.

Contributions Considering five common figures
of speech in English, (i) we propose a novel task of
multi-figurative language generation, and explore
the potential of its computational modelling; (ii) we
introduce a pre-training scheme for multi-figurative
language modelling, which boosts performance
substantially by leveraging paraphrase data and
cross-figurative language knowledge transfer; (iii)
we design a mechanism for injecting the desired fig-
urative information into the encoder to achieve the
generation between different figures of speech with-

out parallel figurative-figurative sentence pairs; this
mechanisms could be applied to other tasks, too;
(iv) we compare figurative-figurative and figurative-
literal-figurative generation, thereby assessing the
feasibility, the limits, and the characteristics of di-
rect multi-figurative language generation; and (v)
we provide a benchmark for multi-figurative lan-
guage generation, which can hopefully foster the
progress of figurative language processing. 1

2 Background

Transforming text involving a figure of speech, ei-
ther in source or in target or both, is closely related
to three other NLP tasks, namely paraphrasing, text
style transfer, and figurative language detection.
We discuss relevant background on such tasks, and
why and how they play a role in our work.

Paraphrasing Paraphrasing is the task of gen-
erating a text semantically (almost) identical to a
given input, but with variations in wording or syn-
tax (Prakash et al., 2016; Cao et al., 2017). The
large amount of parallel paraphrase data available
can be used to teach models a general rewriting
task in the context of various downstream NLP
tasks, such as semantic parsing (Berant and Liang,
2014), machine translation (Callison-Burch et al.,
2006), question answering (Dong et al., 2017), and
text style transfer (Lai et al., 2021). As figurative
generation can be viewed as a special paraphrasing
task, where texts are expected to include specific
figurative forms, we also leverage paraphrase data
for figurative generation modelling.

Text Style Transfer The goal of text style trans-
fer is to transform a given text of one style into an-
other while preserving the style-independent con-
tent. A common task, for example, is formality
transfer, where an informal sentence is turned into
formal, or viceversa (Rao and Tetreault, 2018).
Generally speaking, both text style transfer and
figurative language generation aim to achieve the
generation of text with specific attributes. Regard-
ing sentence changes, for text style transfer, often
multiple parts of the sentence might be modified at
the same time, such as capitalization at the begin-
ning of the sentence, punctuation at the end, and
some phrasing in the middle. Figurative language
generation, instead, often concerns the rewriting
of some specific expressions, while other (possi-

1Data, code, and model are available at https://
github.com/laihuiyuan/mflag.
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bly large) portions of the input sentence could be
retained (Zhou et al., 2021). Also, in figurative
language generation, the original figurative form
could be still present in the transformed sentence,
while text style transfer aims to alter the original
style fully.

It should also be pointed out that addressing
multi-figurative language generation is particularly
challenging since not all figures of speech consid-
ered require the same kinds of alterations in text.

Figurative Language Detection Most past work
on figurative language processing focuses on de-
tection rather than generation. The detection of
figurative language generally involves two levels:
sentence-level and word-level. At sentence-level,
the task is usually formulated as a binary clas-
sification problem, namely automatically detect-
ing whether a given sentence is literal or non-
literal (Troiano et al., 2018). At word-level, the
task is concerned with identifying the exact words
within a sentence which trigger the figurative read-
ing (Beigman Klebanov et al., 2016; Mao et al.,
2018). This task is a crucial component in retrieval-
based approaches to figurative language generation,
which usually require first the identification of trig-
gering words in a sentence, followed then by other
operations such as replacement and generation (see
next paragraph).

Figurative Language Generation Early work
on figurative language generation is mainly
template-based. Abe et al. (2006) employ sim-
ple expressions “A is like B” for metaphor gener-
ation. Veale (2016) use template-like structures to
generate metaphoric tweets. These methods usually
lack the flexibility to cope with the variability intrin-
sic to (creative) natural language. In recent years,
figurative language modelling has mostly shifted to
neural-based end-to-end approaches, showing good
degrees of creativity, for example in the generation
of puns and metaphors (Yu et al., 2018; Yu and
Wan, 2019). To provide better explainability, Zhou
et al. (2021) propose a neural-based pipeline for
idiom generation that contains three explicit steps:
retrieve, extract, and generate. Most recently, and
as in most NLP tasks, impressive results for figura-
tive language generation have been achieved lever-
aging pre-trained models. For example, Stowe
et al. (2021a) and Chakrabarty et al. (2021) suc-
cessfully generate metaphors fine-tuning T5 (Raf-
fel et al., 2020) and BART (Lewis et al., 2020),

Forms Task Train Valid Test
Hyperbole Literal Form↔Hyperbole 509(+668) 50 150
Idiom Literal Form↔Idiom 3,784 876 876
Sarcasm Literal Form↔Sarcasm 16,762 1,500 1,470
Metaphor Literal Form↔Metaphor 118,807 6,254 150
Simile Literal Form↔Simile 82,687 5,145 150

Table 2: Dataset statistics.

respectively. Fine-tuning BART is successful for
the generation of simile (Chakrabarty et al., 2020b),
and hyperbole (Zhang and Wan, 2022), too. Stowe
et al. (2021b) also propose to control the metaphor
generation process by encoding conceptual map-
pings in the form of FrameNet frames. All these
works focus on single figurative forms, modelling
generation between literal and figurative. Instead,
while still leveraging parallel literal-figurative data
for single forms, we aim to model multiple figures
of speech jointly thereby also generative between
different figurative forms.

3 Task and Dataset

We define the task of figurative language genera-
tion as the transformation of a text written in (or
with) a given form (literal or figurative) to a text in
(or containing) another form, while preserving the
original general context.

We use five existing datasets for the figures of
speech we consider in this paper; Table 2 shows
sizes and splits.

• Hyperbole Troiano et al. (2018) introduce
HYPO, a corpus of 709 hyperbolic sentences
with their non-hyperbolic formulations. We boost
this small dataset with some automatically ob-
tained pairs. We fine-tune BART with HYPO,
and use this model to transform into literal the
hyperbolic texts contained in the non-parallel
dataset HYPO-Red (Tian et al., 2021). We then
select literal generations with a low hyperbolic
score σ as predicted by a binary classifier based
on BERT (Devlin et al., 2019) trained on HYPO,
for an additional 668 training pairs.2

• Idiom Zhou et al. (2021) use the existing MAG-
PIE corpus (Haagsma et al., 2020) to create a
parallel dataset of literal and idiomatic pairs.

• Sarcasm Peled and Reichart (2017) release a
dataset of 3,000 pairs of sarcastic tweets each
augmented with five interpretations. We com-
plement this by adding to the training set 4,762

2Generated literal texts with σ < 0.5 are selected.

5941



BART Encoder BART Decoder

<Idiom> My heart skipped few 
beats while waiting for the result.

<Idiom> My heart _ few 
beats while _ for _ result. <Idiom> My heart skipped few 

beats while waiting for the result.

<Literal> I was nervously 
waiting for the result.

BART Encoder BART Decoder

(a) Multi-figurative language denoising pre-training and fine-
tuning.

Transformer Layer

<Literal> I was nervously 
waiting for the result.

Input
Embedding

Figure
Embedding

<Idiom>

Cross Attention

⨁

(b) An overview of the mechanism for injecting the figurative
information into the Encoder.

Figure 1: Overview of multi-figurative language modelling. In 1(a), there is the framework for our multi-figurative
language denoising pre-training (top) where word masking as the injected noise, and fine-tuning on downstream
task of figurative language generation (down); in 1(b), the figurative information is injected into the encoder using
cross-attention and residual learning.

sentence pairs from a sarcasm dataset (Ghosh
et al., 2020).

• Metaphor Stowe et al. (2021b) build a literal-
metaphor dataset exploiting the Gutenberg Po-
etry corpus (Jacobs, 2018): metaphoric verbs are
identified, masked, and eventually replaced with
infilling from a language model.

• Simile Chakrabarty et al. (2020b) automatically
collect a set of self-labelled similes via distant
supervision, using the phrase like a; similes are
converted into their literal versions leveraging the
structured common sense knowledge obtained
from COMET (Bosselut et al., 2019).

Pre-Training Data Given that figurative gener-
ation is a special paraphrasing task, we use the
available paraphrase data from PARABANK 2 (Hu
et al., 2019) for multi-figurative language mod-
elling, but only selecting more relevant pairs for the
pre-training phase. To do so, we fine-tune BERT
with the above figurative data to obtain five binary
classifiers (each one literal vs figurative). With
them, we do figurative language detection on para-
phrase data, and only retain pairs where the prob-
ability that the source and target sentences are in
literal form and figurative form, respectively, is
greater than a threshold σ.3

4 Multi-figurative Language Modelling

We propose an approach to model multi-figurative
language on top of the large pre-trained sequence-
to-sequence model BART (Lewis et al., 2020),

3More details about the pre-training data for each figure of
speech are in Appendix A.1.

by performing further, figurative language-specific
pre-training, and then fine-tuning.

BART is a seq2seq model trained as a denoising
autoencoder, and to reconstruct the original text T
given g(T ) where g is a noising function that is
used to corrupt text:

Lθ = −
∑

log(T | g(T ); θ) (1)

with θ being the parameters of BART.

4.1 Multi-figurative Language Pre-training

We further pre-train BART for multi-figurative lan-
guage modelling with a procedure that creates one
model capable of modelling multiple figurative lan-
guages at once, so that (i) only one model needs to
be maintained, and (ii) the model can benefit from
cross-figurative knowledge transfer.

Inspired by Tang et al. (2020), we use a special
token as a prefix in both the source and target text.
That is, the text format is [form code] T [eos] with
T being the text and the [form code] represents the
form of the sentence. In the pre-training stage, we
incorporate all the pre-training data of five figures
of speech (Section 3) by concatenating data: D =
{D1, ..., Di} where each Di is a collection of texts
in a figurative form. Following Liu et al. (2020),
our model is trained on a denoising task, where it is
asked to reconstruct text from a version corrupted
with a noise function that randomly masks 35%
of the words in the sentence. The [form code] is
used as the initial token to predict the sentence
(Figure 1(a) (top)).
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4.2 Literal↔Figurative Form Generation

In Literal↔Figurative generation, the model gen-
erates a text with the desired figure of speech given
a literal text, or viceversa. First, following Lai
et al. (2021), we use the parallel paraphrase pre-
training data to make the model learn the basic task
of rewriting. In practice, we incorporate all the
data and add the corresponding form code at the
beginning of each sentence to train the model in a
supervised regime. Second, we fine-tune the model
with the literal↔figurative parallel data (Table 2)
in the same way (PT-to-FT; Figure 1(a) (down)).
Since hyperbole and idiom datasets are too small,
we upsample them by replication obtaining training
sets of 10,000 sentence pairs.

4.3 Figurative↔Figurative Form Generation

In Figurative↔Figurative generation, the model
takes a text with a given figurative form, and gen-
erates a text with the target figurative form. It is
important to note that this procedure can have two
outcomes: the target figure of speech substitutes
the original one, or it is added to it, yielding a
text that contains both the original and the target
figurative forms.

Specifically, given a sentence of tokens x =
{x1, · · · , xn} with the figure of speech s, the
model is asked to generate the corresponding se-
quence y = {y1, · · · , ym} with the target figure of
speech t. To overcome the lack of parallel data in
different figures of speech which would be neces-
sary to train such a model, we design a mechanism
which can leak the information of the desired fig-
ure of speech to the encoder with a figurative em-
bedding as additional input. Formally, we employ
cross attention to inject the figurative information
into word embedding of the input in the fine-tuning
process (mFLAG; Figure 1(b)).

CrossAttn(W,F) = softmax(
WFT
√
d

)F (2)

where W ∈ Rm×d represents the embedding of the
source sentence. F ∈ R1×d is the embedding of
the target form code T . To avoid introducing new
parameters and catastrophic forgetting, we do not
use the commonly used feed-forward block here.
We also employ a residual connection (He et al.,
2016) for the word embedding:

C = CrossAttn(W,F) +W (3)

Forms Precision Score Recall Score F1 Score

Hyperbole 0.858 0.967 0.909
Idiom 0.897 0.961 0.928
Sarcasm 0.763 0.847 0.803
Metaphor 0.716 0.707 0.711
Simile 1.000 0.700 0.824

Table 3: Accuracy of classifiers for different forms.

The probability of the output can be computed con-
ditioned both on the input sentence x and the target
form code T . It can be formulated as:

pθ(y|x, T ) =
m∏

t=1

pθ(yt|y1,...,t−1;C)) (4)

We also first use the pre-training data to enhance
model’s rewriting ability, and employ upsampling
to augment the gold training data for hyperbole
and idiom. We use two settings for generation:
(i) the model generates text in the target form di-
rectly from the source form (mFLAG-DR), mean-
ing that direct figurative-figurative transformation
is achieved; (ii) the model uses literal forms as
pivot: it first transforms the source text back into
its literal form, and then uses this obtained literal
form to generate in the target form (mFLAG-BT).
Comparing these two models will contribute to
better understand the benefits of modelling multi-
figurative language generation directly.

5 Experiments

All experiments are implemented atop Transform-
ers (Wolf et al., 2020) using BART-large (Lewis
et al., 2020). We train models with batch size 32,
accumulating gradients over 8 update steps, using
the Adam optimiser (Kingma and Ba, 2015) with
learning rate 1e-5. We use early stopping (patience
5) if validation performance does not improve.

5.1 Evaluation Method
To assess the model performance we use automatic
metrics commonly used in figurative language gen-
eration and text style transfer, which focus on form
strength and context preservation.

Form Strength To evaluate the form accuracy of
the generated text, we reuse the binary classifiers
trained for selecting pre-training data. High confi-
dence for the target figurative form, suggests high
accuracy in the generation. The performance of the
classifiers on the test set (Table 3), suggests that
they are very reliable for Simile, Idiom, and Hyper-
bole, and slightly less for Metaphor and Sarcasm.
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TGT BLEU BERT BLEURT COMET HM TGT BLEU BERT BLEURT COMET HM
Literal Form→Hyperbole Literal Form→Idiom

BART-Single 0.627 0.513 0.693 0.280 0.461 0.564 0.711 0.791 0.855 0.595 0.808 0.749
BART-Multi 0.707 0.541 0.698 0.260 0.352 0.613 0.637 0.747 0.829 0.498 0.706 0.688
PT-to-FT 0.833 0.582 0.733 0.379 0.490 0.686 0.769 0.765 0.841 0.536 0.738 0.767
mFLAG 0.844 0.556 0.726 0.349 0.463 0.670 0.764 0.761 0.839 0.539 0.735 0.762

Literal Form→Sarcasm Literal Form→Metaphor

BART-Single 0.679 0.491 0.611 0.052 0.188 0.570 0.720 0.595 0.771 0.364 0.720 0.652
BART-Multi 0.743 0.483 0.598 0.011 0.137 0.585 0.767 0.577 0.780 0.434 0.785 0.659
PT-to-FT 0.765 0.485 0.609 0.040 0.162 0.594 0.867 0.643 0.812 0.493 0.842 0.738
mFLAG 0.762 0.487 0.609 0.043 0.169 0.594 0.880 0.628 0.809 0.490 0.844 0.733

Literal Form→Simile Figurative→Literal Form

BART-Single 0.647 0.724 0.720 0.017 0.321 0.683 0.733 0.606 0.742 0.284 0.455 0.663
BART-Multi 0.420 0.658 0.681 -0.025 0.178 0.513 0.725 0.622 0.762 0.364 0.522 0.670
PT-to-FT 0.907 0.729 0.722 -0.021 0.219 0.808 0.801 0.634 0.766 0.542 0.544 0.708
mFLAG 0.953 0.745 0.727 -0.021 0.220 0.836 0.796 0.637 0.769 0.375 0.681 0.707

Table 4: Results of literal↔figurative form generation. TGT represents the accuracy of output labeled as the target
form by the classifier; the results of figurative→literal form generation are averaged across all figures of speech.

Context Preservation To assess this aspect, we
adopt BLEU and BERTScore (F1-Score) (Zhang
et al., 2020) following previous work (Chakrabarty
et al., 2020b; Zhang and Wan, 2022; Zhou et al.,
2021; Tian et al., 2021). In addition, we employ
BLEURT (Sellam et al., 2020) and COMET (Rei
et al., 2020), two learnable metrics that have shown
promising results in the evaluation of formality
transfer (Lai et al., 2022). For all metrics, we calcu-
late scores between model outputs and references
for the literal↔figurative generation, and between
outputs and source sentences (and literal sentences)
for figurative↔figurative generation as the latter
has no parallel data available. 4

Overall Score We compute the harmonic mean
(HM) of figurative accuracy and BLEU score for a
direct comparison to baselines.

5.2 Baselines

We compare our systems to two strong baselines.

BART-Single For each figure of speech, we fine-
tune BART on the corresponding parallel data.
For figurative→figurative generation, we use each
figurative-to-literal model to generate the literal
text, and then feed it into the model of the target
form to generate the output.

BART-Multi We concatenate the five paral-
lel training sets and fine-tune BART for multi-
figurative language modelling, thereby enabling

4In our evaluation, we take multi-bleu.perl to cal-
culate BLEU score, and models bleurt-large-512 and
wmt-large-da-estimator-1719 for BLEURT and
COMET, respectively.

the generation between different forms.

5.3 Literal↔Figurative Generation

Table 4 presents the results of literal↔figurative
form generation. BART-Multi outperforms BART-
Single on most generation directions, except literal-
to-idiom and literal-to-simile. This suggests that
the model does benefit from multi-figurative lan-
guage modelling with cross-figurative knowledge
transfer. Compared to BART-Single and BART-
Multi, both of our proposed models PT-to-FT and
mFLAG have consistently stronger results. Specifi-
cally, we observe that BART-Single has the best per-
formance only on context preservation for literal-
to-idiom and literal-to-sarcasm generation, while
our models are better for the rest, especially with
a good balance between form strength and con-
text preservation. The results confirm that our
pre-training scheme and strategies significantly im-
prove performances for multi-figurative language
modelling. When looking at PT-to-FT and mFLAG,
we see that these two models’ performances are
very close on all tasks and do not show a clear and
consistent trend. The main reason for this is most
likely that the settings of the two models are almost
identical except that mFLAG has a figurative in-
jection mechanism, and they are both trained with
parallel literal↔figurative sentence pairs.

5.4 Figurative↔Figurative Generation

Table 5 reports results of figurative↔figurative
form generation.5 We see that both BART-Multi
and PT-to-FT perform poorly on the form strength

5Complete results are in Appendix A.2.
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Form Strength Source Text Literal Text
SRC TGT BLEU BERT BLEURT COMET HM BLEU BERT BLEURT COMET HM

Hyperbole→Others

BART-Single 0.470 0.425 0.665 0.782 0.459 0.472 0.519 0.488 0.700 0.294 0.248 0.454
BART-Multi 0.328 0.242 0.602 0.761 0.455 0.443 0.345 0.505 0.731 0.427 0.385 0.327
PT-to-FT 0.252 0.258 0.590 0.749 0.437 0.420 0.359 0.507 0.732 0.438 0.407 0.342
mFLAG-DR 0.922 0.608 0.815 0.893 0.753 0.836 0.696 0.411 0.633 0.036 -0.105 0.490
mFLAG-BT 0.482 0.644 0.539 0.702 0.253 0.246 0.586 0.421 0.662 0.169 0.093 0.509

Idiom→Others

BART-Single 0.290 0.309 0.783 0.864 0.575 0.646 0.443 0.749 0.844 0.578 0.659 0.438
BART-Multi 0.273 0.204 0.785 0.873 0.602 0.674 0.324 0.758 0.859 0.630 0.701 0.408
PT-to-FT 0.204 0.207 0.771 0.867 0.594 0.662 0.326 0.760 0.860 0.646 0.715 0.325
mFLAG-DR 0.910 0.400 0.901 0.940 0.822 0.869 0.554 0.694 0.799 0.328 0.375 0.507
mFLAG-BT 0.328 0.409 0.724 0.831 0.491 0.566 0.523 0.703 0.816 0.490 0.569 0.517

Sarcasm→Others

BART-Single 0.577 0.370 0.877 0.899 0.650 0.792 0.520 0.454 0.579 -0.088 -0.051 0.408
BART-Multi 0.569 0.247 0.903 0.923 0.701 0.838 0.388 0.471 0.593 -0.049 -0.014 0.324
PT-to-FT 0.464 0.252 0.863 0.891 0.613 0.774 0.390 0.468 0.592 -0.031 0.000 0.328
mFLAG-DR 0.840 0.438 0.907 0.928 0.813 0.872 0.591 0.442 0.563 -0.198 -0.143 0.440
mFLAG-BT 0.583 0.481 0.808 0.831 0.460 0.604 0.605 0.430 0.554 -0.164 -0.133 0.454

Metaphor→Others

BART-Single 0.163 0.314 0.603 0.776 0.412 0.555 0.413 0.575 0.773 0.381 0.486 0.406
BART-Multi 0.255 0.249 0.647 0.825 0.554 0.723 0.360 0.632 0.820 0.550 0.689 0.357
PT-to-FT 0.147 0.254 0.671 0.832 0.599 0.763 0.369 0.648 0.824 0.507 0.665 0.365
mFLAG-DR 0.795 0.518 0.697 0.846 0.614 0.706 0.594 0.516 0.758 0.320 0.410 0.517
mFLAG-BT 0.387 0.557 0.502 0.734 0.329 0.434 0.528 0.496 0.743 0.317 0.417 0.525

Simile→Others

BART-Single 0.057 0.607 0.469 0.559 -0.406 -0.429 0.529 0.588 0.667 0.160 -0.102 0.597
BART-Multi 0.007 0.272 0.629 0.686 -0.043 -0.051 0.380 0.765 0.818 0.262 0.415 0.401
PT-to-FT 0.000 0.314 0.622 0.671 -0.031 -0.067 0.417 0.754 0.804 0.244 0.394 0.443
mFLAG-DR 0.440 0.685 0.849 0.884 0.637 0.690 0.758 0.589 0.698 -0.016 -0.057 0.633
mFLAG-BT 0.132 0.687 0.606 0.670 -0.069 -0.064 0.644 0.672 0.766 0.163 0.250 0.679

Table 5: Results of figurative↔figurative form generation. Notes: (i) SRC (TGT) represents the accuracy of output
labeled as the source (target) form by the classifier of the source (target) form; (ii) results for each block are averaged
for all generations from one figurative language to others.

and the context preservation computed against the
source text. The low form strength (SRC and TGT,
see table’s caption) and high scores of context
preservation (using literal text) suggest that these
two models transform the source text into the literal
form. BART-Single, interestingly, shows a better
performance on both form strength and context
preservation. For mFLAG-DR and mFLAG-BT,
we see that they show the best performance across
the board: (i) mFLAG-DR shows a significant im-
provement in target figurative form (TGT) while
maintaining the original form (SRC) very much;
it also achieves the best performance on context
preservation; (ii) mFLAG-BT achieves the highest
form accuracy in the target figure of speech while
reducing the original form strength.

It is interesting to note that the direct generation
method might allow for the source figure of speech
to be retained in the generated sentence, as we
do not explicitly remove it by transforming the
sentence to its literal form first. For example, with

hyperbolic input “I am not happy that he urged
me to finish all the hard task in the world”, one of
our sarcastic transformations reads “Thank you for
encouraging me to finish all the hardest tasks in the
world", where the hyperbolic part (“all the hardest
tasks in the world") is preserved unchanged (see
Table 6).

Overall, the results show that mFLAG with the
mechanism for injecting the figurative information
into the encoder can generate from one figure of
speech to another even without task-specific paral-
lel data.

6 Analysis and Discussion

Case Study Table 6 shows a group of example
outputs for hyperbole→others generated by vari-
ous models.6 From the results of hyperbole→literal
generation, we see that mFLAG generates the lit-
eral sentence from the hyperbolic one very well,

6More example outputs of mFLAG are in Appendix A.3.
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Forms Models Sentences Suc.

Hyperbole Input I am not happy that he urged me to finish all the hardest tasks in the world. -

Literal

BART-Single I am not happy that he urged me to finish all the hard tasks in the world. %

BART-Multi I am glad that he urged me to finish all the hardest tasks in the world. %

PT-to-FT I am not happy that he urged me to complete all the difficult tasks in the world. %

mFLAG I am not happy that he urged me to finish all the difficult tasks. "

Idiom

BART-Single I am not happy that he urged me to finish all the hard tasks in the world. %

BART-Multi I am so glad that he urged me to finish all the hardest tasks in the world. %

PT-to-FT I am not happy that he urged me to complete all the difficult tasks. %

mFLAG-DR I am not happy that he urged me to tick off all the hardest tasks in the world. "

mFLAG-BT I am not happy that he urged me to get cracking on all the difficult tasks. "

Sarcasm

BART-Single I’m so glad my dad encouraged me to finish all the hard tasks in the world. "

BART-Multi Thank you for encouraging me to finish all the hardest tasks in the world. "

PT-to-FT I am happy that he urged me to finish all the hardest tasks in the world. "

mFLAG-DR Glad he urged me to finish all the hardest tasks in the world. "

mFLAG-BT Glad he urged me to finish all the difficult tasks. "

Metaphor

BART-Single I am not happy that he urged me to bear all the difficult tasks. "

BART-Multi I am so glad that he urged me to finish all the hardest tasks in the world. %

PT-to-FT I am not happy that he urged me to complete all the difficult tasks in the world. %

mFLAG-DR I am not happy that he urged me to bear all the hardest tasks in the world. "

mFLAG-BT I am not happy that he pressed me to finish all the difficult tasks. %

Simile

BART-Single I am not happy that he urged me to finish all the difficult tasks. %

BART-Multi I am so glad that he urged me to finish all the hardest tasks in the world. %

PT-to-FT I am not happy that he urged me to complete all the difficult tasks in the world. %

mFLAG-DR I am not happy that he urged me to finish all the like a million things. "

mFLAG-BT I am not happy that he urged me to finish all the difficult tasks. %

Table 6: Examples outputs generated by various models from hyperbolic text, where red denotes appropriate
words/phrases for desired forms. Suc.==Successful.

confirming that texts generated by mFLAG-BT
tend to contain less the source form by substituting
it with the target form. In figurative↔figurative
generation, all models nicely generate sarcastic
text while all baselines usually fail at generating
the other forms. Since the metaphor generation
dataset we used focuses on metaphorical verb as-
pect, we consider the outputs of BART-Single and
mFLAG-DR to be successful. Overall, our pro-
posed mFLAG based models perform better on all
generation directions.

Probing Figurative Information for Encoder
To measure the distribution of source and target
sentences encoded by the Encoder with/without
the mechanism of injecting figurative information,
we apply Principal Component Analysis (PCA) to
reduce the dimensionality of the Encoder outputs
and visualise relations between tokens in a two-
dimensional space. Fig. 2(a) and 2(b) show the
results of a source literal text “He was nervous

waiting for the result.” and a target hyperbolic text
“He was on pins and needles waiting for the result.”.
We see the word “He” and ’was” of the two sen-
tences are not in the same cluster in 2(a) while it is
interesting to see that all distances between token
pairs of 2(b) are closer, especially the phrase “on
pins and needles”, and “nervous” are almost in the
same cluster in 2(b). Fig. 2(c) and 2(d) show the
results of a source idiomatic text “I felt like I had
a feather in my cap after I aced that exam.” and a
target hyperbolic text “I felt like I was a star after I
aced that exam.”. We observe that the token pairs
like “I”, “like” and ’felt” of mFLAG are closer
than those of PT-to-FT. It is also interesting to see
that the phrase “a feather in my cap” and the token
“star” make more of a cluster in 2(d). We believe
this benefits the decoder, especially decoding into
the target figurative form.

How similar are different forms? To analyze
the connection between literal and figurative forms,
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Figure 2: PCA token representations of encoder out-
puts for literal→hyperbole (top) and idiom→hyperbole
(down).

and between different figures of speech, we evalu-
ate each figurative classifier on the test sets of the
other figurative forms (Figure 3). We first see that
the overall model (literal vs figurative) achieves F1
scores of over 0.69 for each figure of speech, con-
firming the feasibility of multi-figurative modelling.
For each figure of speech, we observe: (i) classi-
fiers for hyperbole and idiom have high F1 scores
on the test set of simile (0.79 and 0.84), suggesting
that sentences with similes may also be hyperbolic
or idiomatic; (ii) for sarcasm and metaphor, clas-
sifiers have medium scores on other forms; (iii)
the classifier of simile achieves F1 scores of less
than 0.11 on other figures of speech; this is due
to the fact that the simile dataset was created us-
ing the format like a, which is easy for the model
to learn. Different figurative forms are related to
each other, confirming that models can benefit from
cross-figurative knowledge transfer. Further (com-
putational) analysis of similarities and differences
will help to even better leverage such transfer.

7 Conclusion and Outlook

We have proposed a novel task of multi-figurative
language generation, and shown that our models
do benefit from cross-figurative knowledge transfer.
Paraphrasing data can be leveraged in further pre-
training to enhance both form strength and context

Hyperbole

Idiom

Sarcasm

Metaphor

Simile

Overall

Figure 3: Performances (F1 score) of classifiers on dif-
ferent figurative forms. Each row represents results of a
classifier tested on each/all figurative form(s).

preservation in figurative language generation. We
have also proposed a mechanism for injecting the
target figurative information into the encoder, so
that we can achieve generation between different
figures of speech even without parallel figurative-
figurative pairs.

While we innovatively explore multi-figurative
language generation across literal and five figura-
tive forms, and our model achieves the best perfor-
mances compared to baselines, there is still substan-
tial room for improvement and further extensions.

The current lack of human references for au-
tomating the evaluation of figurative-to-figurative
generation is surely a limitation in terms of better
understanding of the models’ behaviour and po-
tential improvements. More in general, figurative
language generation is a relatively new task, which
still lacks standardised evaluation methods, both
in terms of automatic metrics and human-based
evaluation.

Also, we introduce for the first time generation
across literal expressions and five figurative forms,
but there are many more forms of creative writing
that could be modelled. Moreover, we only limited
our attention to English, due to data availability,
but are convinced that datasets in other languages
would greatly benefit research in this area. Indeed,
multilingual modelling would make it possible to
make connections across different languages, thus
shedding more light on cross-lingual regularities
in figurative language use, and thus also open up
potential avenues to tackle this task better.

5947



Acknowledgments

This work was partly funded by the China Schol-
arship Council (CSC). The COLING anonymous
reviewers provided us with useful comments which
contributed to improving this paper and its pre-
sentation, so we’re grateful to them. We would
also like to thank the Center for Information Tech-
nology of the University of Groningen for their
support and for providing access to the Peregrine
high performance computing cluster.

References
Keiga Abe, Kayo Sakamoto, and Masanori Nakagawa.

2006. A computational model of the metaphor gen-
eration process. In Proceedings of the 28th Annual
Meeting of the Cognitive Science Society.

Beata Beigman Klebanov, Chee Wee Leong, E. Dario
Gutierrez, Ekaterina Shutova, and Michael Flor.
2016. Semantic classifications for detection of verb
metaphors. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 101–106, Berlin,
Germany. Association for Computational Linguis-
tics.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–
1425, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762–4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine translation
using paraphrases. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Main
Conference, pages 17–24, New York City, USA. As-
sociation for Computational Linguistics.

Ziqiang Cao, Chuwei Luo, Wenjie Li, and Sujian Li.
2017. Joint copying and restricted generation for
paraphrase. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17, page
3152–3158. AAAI Press.

Tuhin Chakrabarty, Debanjan Ghosh, Smaranda Mure-
san, and Nanyun Peng. 2020a. Rˆ3: Reverse, retrieve,
and rank for sarcasm generation with commonsense
knowledge. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 7976–7986, Online. Association for Computa-
tional Linguistics.

Tuhin Chakrabarty, Smaranda Muresan, and Nanyun
Peng. 2020b. Generating similes effortlessly like a
pro: A style transfer approach for simile generation.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6455–6469, Online. Association for Computa-
tional Linguistics.

Tuhin Chakrabarty, Xurui Zhang, Smaranda Muresan,
and Nanyun Peng. 2021. MERMAID: Metaphor gen-
eration with symbolism and discriminative decoding.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4250–4261, Online. Association for Computa-
tional Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine
learning, page 160–167, New York, NY, USA. Asso-
ciation for Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question an-
swering. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 875–886, Copenhagen, Denmark. Association
for Computational Linguistics.

Debanjan Ghosh, Elena Musi, and Smaranda Muresan.
2020. Interpreting verbal irony: Linguistic strategies
and the connection to theType of semantic incon-
gruity. In Proceedings of the Society for Computa-
tion in Linguistics 2020, pages 82–93, New York,
New York. Association for Computational Linguis-
tics.

Ana Guerberof-Arenas and Antonio Toral. 2022. Cre-
ativity in translation: Machine translation as a con-
straint for literary texts. Translation Spaces.

Hessel Haagsma, Johan Bos, and Malvina Nissim. 2020.
MAGPIE: A large corpus of potentially idiomatic ex-
pressions. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 279–287,
Marseille, France. European Language Resources
Association.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

5948



J. Edward Hu, Abhinav Singh, Nils Holzenberger, Matt
Post, and Benjamin Van Durme. 2019. Large-scale,
diverse, paraphrastic bitexts via sampling and clus-
tering. In Proceedings of the 23rd Conference on
Computational Natural Language Learning (CoNLL),
pages 44–54, Hong Kong, China. Association for
Computational Linguistics.

Arthur M. Jacobs. 2018. The gutenberg english poetry
corpus: Exemplary quantitative narrative analyses.
Frontiers Digit. Humanit., 5:5.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Catherine Kobus, Josep Crego, and Jean Senellart. 2017.
Domain control for neural machine translation. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing, RANLP
2017, pages 372–378, Varna, Bulgaria. INCOMA
Ltd.

Huiyuan Lai, Jiali Mao, Antonio Toral, and Malvina
Nissim. 2022. Human judgement as a compass to
navigate automatic metrics for formality transfer. In
Proceedings of the 2nd Workshop on Human Eval-
uation of NLP Systems (HumEval), pages 102–115,
Dublin, Ireland. Association for Computational Lin-
guistics.

Huiyuan Lai, Antonio Toral, and Malvina Nissim. 2021.
Generic resources are what you need: Style trans-
fer tasks without task-specific parallel training data.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4241–4254, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Rui Mao, Chenghua Lin, and Frank Guerin. 2018. Word
embedding and WordNet based metaphor identifica-
tion and interpretation. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1222–
1231, Melbourne, Australia. Association for Compu-
tational Linguistics.

Lotem Peled and Roi Reichart. 2017. Sarcasm SIGN:
Interpreting sarcasm with sentiment based monolin-
gual machine translation. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1690–
1700, Vancouver, Canada. Association for Computa-
tional Linguistics.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. In Proceedings of COL-
ING 2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers, pages 2923–
2934, Osaka, Japan. The COLING 2016 Organizing
Committee.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Sudha Rao and Joel Tetreault. 2018. Dear sir or madam,
may I introduce the GYAFC dataset: Corpus, bench-
marks and metrics for formality style transfer. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 129–140, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Richard M. Roberts and Roger J. Kreuz. 1994. Why
do people use figurative language? Psychological
Science, 5(3):159–163.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Kevin Stowe, Nils Beck, and Iryna Gurevych. 2021a.
Exploring metaphoric paraphrase generation. In Pro-
ceedings of the 25th Conference on Computational
Natural Language Learning, pages 323–336, Online.
Association for Computational Linguistics.

Kevin Stowe, Tuhin Chakrabarty, Nanyun Peng,
Smaranda Muresan, and Iryna Gurevych. 2021b.
Metaphor generation with conceptual mappings. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language

5949



Processing (Volume 1: Long Papers), pages 6724–
6736, Online. Association for Computational Lin-
guistics.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint, arXiv: 2008.00401.

Yufei Tian, Arvind krishna Sridhar, and Nanyun Peng.
2021. HypoGen: Hyperbole generation with com-
monsense and counterfactual knowledge. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 1583–1593, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Enrica Troiano, Carlo Strapparava, Gözde Özbal, and
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A Appendices:

This appendices include: (i) Dataset statistics of pre-training data (A.1); (ii) Detailed results for
figurative↔figurative generation (A.2); (iii) Example outputs of mFLAG (A.3) .

A.1 Pre-Training Data

Forms Task σ Train Valid
Hyperbole Literal text↔Hyperbole 0.94 102,887 5,000
Idiom Literal text↔idiom 0.95 133,285 5,000
Sarcasm Literal text↔Sarcasm 0.70 22,550 5,000
Metaphor Literal text↔Metaphor 0.95 206,554 5,000
Simile Literal text↔Simile 0.76 57,566 5,000

Table A.1: Dataset statistics for generic pre-training data. Note that σ is the threshold used to select sentence pairs.

A.2 Detailed Results for Figurative↔Figurative Generation

Form Strength Source Text Literal Text
SRC TGT BLEU BERT BLEURT COMET HM BLEU BERT BLEURT COMET HM

Hyperbole→Idiom
BART-Single 0.513 0.513 0.653 0.781 0.469 0.466 0.575 0.471 0.692 0.294 0.240 0.491
BART-Multi 0.313 0.233 0.595 0.755 0.439 0.425 0.335 0.505 0.730 0.429 0.385 0.386
PT-to-FT 0.240 0.200 0.587 0.747 0.445 0.422 0.298 0.506 0.729 0.442 0.402 0.287
mFLAG-DR 0.900 0.733 0.766 0.876 0.729 0.758 0.749 0.401 0.637 0.063 -0.089 0.518
mFLAG-BT 0.653 0.707 0.599 0.743 0.368 0.380 0.649 0.409 0.650 0.136 -0.011 0.518

Hyperbole→Sarcasm
BART-Single 0.407 0.387 0.673 0.785 0.464 0.595 0.491 0.499 0.710 0.300 0.298 0.436
BART-Multi 0.333 0.313 0.601 0.760 0.464 0.447 0.412 0.500 0.730 0.427 0.386 0.385
PT-to-FT 0.267 0.373 0.587 0.744 0.400 0.399 0.456 0.505 0.728 0.392 0.385 0.429
mFLAG-DR 0.900 0.447 0.873 0.922 0.883 0.947 0.591 0.431 0.645 0.073 -0.006 0.439
mFLAG-BT 0.373 0.507 0.545 0.699 0.283 0.265 0.525 0.442 0.678 0.233 0.233 0.472

Hyperbole→Metaphor
BART-Single 0.407 0.533 0.653 0.784 0.501 0.509 0.587 0.499 0.712 0.369 0.331 0.515
BART-Multi 0.320 0.407 0.597 0.758 0.439 0.432 0.484 0.505 0.730 0.422 0.383 0.451
PT-to-FT 0.253 0.447 0.592 0.756 0.450 0.432 0.509 0.513 0.736 0.451 0.423 0.478
mFLAG-DR 0.927 0.773 0.823 0.902 0.762 0.870 0.797 0.412 0.634 0.033 -0.081 0.538
mFLAG-BT 0.300 0.753 0.495 0.692 0.227 0.235 0.597 0.433 0.686 0.252 0.226 0.550

Hyperbole→Simile
BART-Single 0.553 0.267 0.680 0.779 0.402 0.416 0.383 0.481 0.687 0.214 0.123 0.342
BART-Multi 0.347 0.013 0.616 0.771 0.476 0.467 0.025 0.511 0.733 0.431 0.387 0.025
PT-to-FT 0.247 0.013 0.595 0.747 0.451 0.424 0.025 0.505 0.732 0.465 0.418 0.332
mFLAG-DR 0.960 0.480 0.798 0.873 0.639 0.709 0.599 0.400 0.616 -0.026 -0.242 0.436
mFLAG-BT 0.600 0.607 0.525 0.674 0.135 0.105 0.551 0.401 0.634 0.055 -0.077 0.563

Table A.2: Results of hyperbole→others generation.
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Form Strength Source Text Literal Text
SRC TGT BLEU BERT BLEURT COMET HM BLEU BERT BLEURT COMET HM

Idiom→Hyperbole
BART-Single 0.311 0.103 0.788 0.867 0.585 0.653 0.182 0.751 0.844 0.575 0.651 0.181
BART-Multi 0.269 0.031 0.784 0.872 0.600 0.671 0.059 0.758 0.859 0.632 0.702 0.059
PT-to-FT 0.232 0.041 0.782 0.874 0.614 0.681 0.078 0.763 0.862 0.647 0.717 0.078
mFLAG-DR 0.929 0.232 0.847 0.908 0.716 0.769 0.364 0.667 0.783 0.286 0.317 0.344
mFLAG-BT 0.564 0.172 0.728 0.836 0.523 0.574 0.278 0.679 0.799 0.415 0.477 0.274

Idiom→Sarcasm
BART-Single 0.277 0.335 0.795 0.872 0.602 0.671 0.471 0.761 0.853 0.609 0.692 0.465
BART-Multi 0.281 0.292 0.785 0.875 0.608 0.679 0.426 0.756 0.857 0.623 0.693 0.421
PT-to-FT 0.230 0.319 0.773 0.866 0.587 0.657 0.452 0.755 0.854 0.620 0.690 0.449
mFLAG-DR 0.924 0.376 0.927 0.955 0.871 0.919 0.535 0.711 0.804 0.345 0.395 0.492
mFLAG-BT 0.233 0.405 0.721 0.828 0.485 0.570 0.519 0.710 0.821 0.515 0.613 0.516

Idiom→Metaphor
BART-Single 0.280 0.692 0.768 0.858 0.561 0.643 0.728 0.734 0.840 0.571 0.667 0.728
BART-Multi 0.268 0.485 0.784 0.872 0.600 0.671 0.599 0.759 0.859 0.633 0.703 0.592
PT-to-FT 0.170 0.467 0.762 0.862 0.581 0.656 0.579 0.760 0.862 0.656 0.728 0.579
mFLAG-DR 0.866 0.798 0.879 0.938 0.821 0.876 0.837 0.687 0.803 0.359 0.420 0.739
mFLAG-BT 0.247 0.798 0.703 0.828 0.482 0.580 0.747 0.688 0.820 0.515 0.620 0.739

Idiom→Simile
BART-Single 0.293 0.106 0.782 0.859 0.550 0.616 0.187 0.748 0.839 0.557 0.627 0.186
BART-Multi 0.274 0.007 0.786 0.874 0.601 0.673 0.014 0.759 0.860 0.633 0.704 0.014
PT-to-FT 0.184 0.000 0.766 0.864 0.592 0.655 0.000 0.762 0.862 0.662 0.726 0.000
mFLAG-DR 0.920 0.193 0.949 0.959 0.878 0.909 0.321 0.712 0.805 0.322 0.368 0.304
mFLAG-BT 0.266 0.259 0.744 0.832 0.475 0.539 0.384 0.736 0.825 0.514 0.566 0.383

Table A.3: Results of idiom→others generation.

Form Strength Source Text Literal Text
SRC TGT BLEU BERT BLEURT COMET HM BLEU BERT BLEURT COMET HM

Sarcasm→Hyperbole
BART-Single 0.568 0.405 0.907 0.921 0.727 0.855 0.560 0.470 0.590 -0.050 -0.010 0.435
BART-Multi 0.558 0.347 0.898 0.918 0.690 0.828 0.501 0.471 0.592 -0.048 -0.013 0.400
PT-to-FT 0.459 0.384 0.878 0.901 0.635 0.799 0.534 0.473 0.595 -0.022 0.010 0.349
mFLAG-DR 0.823 0.466 0.914 0.936 0.862 0.904 0.617 0.449 0.569 -0.169 -0.114 0.457
mFLAG-BT 0.612 0.473 0.821 0.849 0.548 0.675 0.595 0.438 0.562 -0.123 -0.095 0.455

Sarcasm→Idiom
BART-Single 0.582 0.429 0.853 0.889 0.615 0.730 0.571 0.441 0.575 -0.098 -0.090 0.435
BART-Multi 0.568 0.299 0.901 0.921 0.697 0.836 0.449 0.472 0.593 -0.051 -0.017 0.366
PT-to-FT 0.422 0.276 0.862 0.886 0.599 0.700 0.418 0.462 0.594 -0.024 0.006 0.394
mFLAG-DR 0.847 0.517 0.875 0.911 0.749 0.808 0.650 0.426 0.554 -0.229 -0.193 0.467
mFLAG-BT 0.599 0.527 0.791 0.825 0.442 0.570 0.633 0.417 0.550 -0.176 -0.166 0.466

Sarcasm→Metaphor
BART-Single 0.571 0.483 0.851 0.881 0.591 0.788 0.616 0.445 0.571 -0.112 -0.049 0.463
BART-Multi 0.561 0.337 0.900 0.919 0.693 0.830 0.490 0.471 0.592 -0.046 -0.014 0.393
PT-to-FT 0.514 0.344 0.870 0.901 0.654 0.796 0.493 0.472 0.592 -0.037 -0.007 0.398
mFLAG-DR 0.833 0.534 0.907 0.928 0.805 0.906 0.672 0.439 0.563 -0.203 -0.119 0.482
mFLAG-BT 0.520 0.578 0.790 0.827 0.424 0.627 0.668 0.431 0.556 -0.166 -0.100 0.494

Sarcasm→Simile
BART-Single 0.585 0.163 0.897 0.906 0.666 0.793 0.276 0.460 0.581 -0.091 -0.056 0.241
BART-Multi 0.588 0.003 0.911 0.932 0.725 0.857 0.006 0.471 0.594 -0.050 -0.013 0.005
PT-to-FT 0.459 0.003 0.842 0.874 0.565 0.730 0.006 0.465 0.587 -0.042 -0.008 0.006
mFLAG-DR 0.857 0.235 0.932 0.937 0.835 0.870 0.375 0.452 0.566 -0.191 -0.144 0.309
mFLAG-BT 0.599 0.344 0.821 0.822 0.424 0.544 0.485 0.433 0.547 -0.189 -0.171 0.383

Table A.4: Results of sarcasm→others generation.
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Form Strength Source Text Literal Text
SRC TGT BLEU BERT BLEURT COMET HM BLEU BERT BLEURT COMET HM

Metaphor→Hyperbole
BART-Single 0.173 0.480 0.617 0.786 0.446 0.582 0.540 0.588 0.779 0.399 0.511 0.529
BART-Multi 0.260 0.427 0.643 0.826 0.562 0.722 0.513 0.635 0.825 0.561 0.700 0.511
PT-to-FT 0.233 0.480 0.711 0.870 0.709 0.832 0.573 0.639 0.827 0.508 0.667 0.548
mFLAG-DR 0.827 0.653 0.662 0.846 0.634 0.717 0.657 0.516 0.769 0.359 0.450 0.576
mFLAG-BT 0.453 0.620 0.511 0.755 0.438 0.511 0.560 0.496 0.762 0.404 0.492 0.551

Metaphor→Idiom
BART-Single 0.240 0.447 0.542 0.744 0.361 0.459 0.490 0.518 0.748 0.350 0.411 0.480
BART-Multi 0.253 0.280 0.643 0.825 0.559 0.724 0.390 0.633 0.822 0.550 0.694 0.388
PT-to-FT 0.113 0.260 0.646 0.819 0.573 0.748 0.371 0.657 0.834 0.554 0.683 0.373
mFLAG-DR 0.887 0.547 0.640 0.829 0.582 0.708 0.590 0.542 0.787 0.444 0.561 0.544
mFLAG-BT 0.653 0.547 0.557 0.771 0.453 0.586 0.552 0.524 0.774 0.416 0.541 0.536

Metaphor→Sarcasm
BART-Single 0.133 0.240 0.623 0.788 0.424 0.604 0.347 0.597 0.782 0.391 0.532 0.347
BART-Multi 0.233 0.280 0.654 0.820 0.527 0.712 0.392 0.621 0.807 0.510 0.652 0.386
PT-to-FT 0.153 0.267 0.683 0.832 0.574 0.761 0.384 0.645 0.812 0.462 0.650 0.378
mFLAG-DR 0.720 0.347 0.788 0.883 0.760 0.843 0.482 0.557 0.767 0.377 0.486 0.428
mFLAG-BT 0.273 0.427 0.511 0.732 0.322 0.496 0.465 0.516 0.742 0.334 0.500 0.467

Metaphor→Simile
BART-Single 0.107 0.087 0.631 0.785 0.418 0.574 0.153 0.598 0.775 0.384 0.489 0.152
BART-Multi 0.273 0.007 0.647 0.828 0.569 0.733 0.014 0.637 0.826 0.579 0.710 0.014
PT-to-FT 0.087 0.007 0.643 0.808 0.540 0.711 0.014 0.650 0.822 0.503 0.661 0.014
mFLAG-DR 0.747 0.500 0.696 0.827 0.479 0.554 0.581 0.450 0.710 0.099 0.142 0.474
mFLAG-BT 0.167 0.633 0.428 0.679 0.102 0.142 0.511 0.447 0.695 0.115 0.135 0.524

Table A.5: Results of metaphor→others generation.

Form Strength Source Text Literal Text
SRC TGT BLEU BERT BLEURT COMET HM BLEU BERT BLEURT COMET HM

Simile→Hyperbole
BART-Single 0.093 0.713 0.492 0.575 -0.358 -0.358 0.582 0.603 0.656 -0.135 -0.127 0.653
BART-Multi 0.007 0.293 0.634 0.689 -0.040 -0.045 0.401 0.770 0.821 0.261 0.418 0.424
PT-to-FT 0.000 0.327 0.649 0.692 0.003 -0.012 0.435 0.777 0.818 0.261 0.417 0.460
mFLAG-DR 0.527 0.893 0.895 0.918 0.772 0.811 0.894 0.583 0.685 -0.041 -0.090 0.705
mFLAG-BT 0.240 0.820 0.640 0.687 -0.035 -0.022 0.719 0.657 0.756 0.162 0.171 0.730

Simile→Idiom
BART-Single 0.127 0.627 0.488 0.554 -0.367 -0.440 0.549 0.589 0.646 -0.169 -0.204 0.607
BART-Multi 0.007 0.207 0.634 0.689 -0.040 -0.045 0.273 0.770 0.821 0.261 0.418 0.326
PT-to-FT 0.000 0.173 0.644 0.684 0.007 -0.038 0.273 0.781 0.830 0.307 0.470 0.283
mFLAG-DR 0.420 0.800 0.810 0.848 0.508 0.554 0.805 0.600 0.710 0.013 -0.025 0.686
mFLAG-BT 0.200 0.773 0.617 0.683 -0.018 -0.009 0.686 0.636 0.761 0.170 0.212 0.698

Simile→Sarcasm
BART-Single 0.007 0.440 0.479 0.572 -0.402 -0.420 0.459 0.618 0.704 -0.113 0.001 0.514
BART-Multi 0.007 0.233 0.611 0.671 -0.070 -0.086 0.337 0.748 0.806 0.252 0.396 0.355
PT-to-FT 0.000 0.387 0.551 0.623 -0.128 -0.178 0.455 0.677 0.743 0.117 0.242 0.492
mFLAG-DR 0.373 0.367 0.877 0.892 0.671 0.692 0.517 0.619 0.714 0.001 -0.014 0.598
mFLAG-BT 0.073 0.380 0.618 0.672 -0.057 -0.057 0.471 0.726 0.792 0.241 0.362 0.499

Simile→Metaphor
BART-Single 0.000 0.647 0.418 0.536 -0.497 -0.499 0.508 0.541 0.660 -0.222 -0.083 0.589
BART-Multi 0.007 0.353 0.638 0.694 -0.022 -0.026 0.455 0.772 0.824 0.273 0.429 0.484
PT-to-FT 0.000 0.367 0.643 0.685 -0.007 -0.041 0.467 0.782 0.825 0.289 0.445 0.500
mFLAG-DR 0.440 0.680 0.815 0.878 0.595 0.702 0.741 0.552 0.681 -0.036 -0.099 0.609
mFLAG-BT 0.013 0.773 0.550 0.638 -0.167 -0.166 0.643 0.668 0.757 0.079 0.256 0.717

Table A.6: Results of simile→others generation.
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A.3 Example Outputs of mFLAG

Forms Sentences Suc.

Literal [Input] Old mr. smith has been teaching here for a very long time. -
Hyperbole Old mr. smith has been teaching here since the stone age. "

Literal [Input] I like your new haircut! -
Hyperbole I love your new haircut! %

Hyperbole [Input] I am not happy that he urged me to finish all the hardest tasks in the world. -
Idiom I am not happy that he urged me to tick off all the hardest tasks in the world. "

Sarcasm Glad he urged me to finish all the hardest tasks in the world. "

Metaphor I am not happy that he urged me to bear all the hardest tasks in the world. "

Simile I am not happy that he urged me to finish all the like a million things. "

Idiom [Input] Your exam results this term were not up to the mark.
Hyperbole Your exam results this term were way over the top. "

Sarcasm Your exam results this term were up to the mark. "

Metaphor Your exam results this term were not up to the mark. %

Simile Your exam results this term were not up to the mark. %

Sarcasm [Input] Being stuck in an airport is fun. -
Hyperbole Being stuck in an airport is the best. "

Idiom Being stuck in an airport is always fun. %

Metaphor Being stuck in an airport is no fun. %

Simile Being stuck in an airport is like a rollercoaster. "

Metaphor The bad news rocked her hopes. -
Hyperbole The bad news crushed her hopes. "

Idiom The bad news crushed her hopes. %

Sarcasm The good news just keeps on getting better. "

Simile The bad news rocked her like a rock. "

Simile [Input] One day you decide to test it out and what you experience is like a magic trick. -
Hyperbole One day you decide to test it out and what you experience is magic. "

Sarcasm One day you decide to test it out and what you experience is awesome. "

Idiom One day you decide to test it out and what you experience is dangerous. %

Metaphor One day you decide to test it out and what you experience is dangerous. %

Table A.7: Example outputs generated by mFLAG-DR, where red denotes appropriate words for desired forms.
Suc.==Successful.
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Abstract

Large-scale pretrained language models have
led to significant improvements in Natural Lan-
guage Processing. Unfortunately, they come
at the cost of high computational and storage
requirements that complicate their deployment
on low-resource devices. This issue can be
addressed by distilling knowledge from larger
models to smaller ones through pseudo-labels
on task-specific datasets. However, this can be
difficult for tasks with very limited data. To
overcome this challenge, we present a novel ap-
proach where knowledge can be distilled from
a teacher model to a student model through the
generation of synthetic data. For this to be done,
we first fine-tune the teacher and student mod-
els, as well as a Natural Language Generation
(NLG) model, on the target task dataset. We
then let both student and teacher work together
to condition the NLG model to generate exam-
ples that can enhance the performance of the
student. We tested our approach on two data
generation methods: a) Targeted generation us-
ing the Monte Carlo Tree Search (MCTS) algo-
rithm, and b) A Non-Targeted Text Generation
(NTTG) method. We evaluate the effectiveness
of our approaches against a baseline that uses
the BERT model for data augmentation through
random word replacement. By testing this ap-
proach on the SST-2, MRPC, YELP-2, DB-
pedia, and TREC-6 datasets, we consistently
witnessed considerable improvements over the
word-replacement baseline.

1 Introduction

Transformer-based models have shown wide suc-
cess over a variety of Natural Language Processing
(NLP) tasks. Their ability to scale up to trillions of

∗ Corresponding author

parameters made it possible to acquire and trans-
fer generalized knowledge from large collections
of data to downstream tasks. While these mod-
els can lead to significant improvements in per-
formance, the increasing size of their learning pa-
rameters results in greater complexity and storage
requirements. This can be challenging in real-time
applications, especially on devices with limited
computational resources (Gou et al., 2021). Hence,
reducing the size of these language models without
sacrificing too much of their performance has be-
come the focus of many works in Knowledge Dis-
tillation (KD). Instead of optimizing compressed
models for hard-labeled data, Hinton et al. (2015)
proposed to train a smaller model (the student)
with the task of predicting the probability distribu-
tion outputs (soft labels) from a larger model (the
teacher). This approach has been shown to produce
comparable results between the student and teacher
models, but usually relies on a large enough dataset
through which knowledge can be transferred. To
help improve the student’s learning in KD, large
unlabeled datasets are required (Tang et al., 2019).
Although unlabeled data is cheaper to obtain and
is widespread when compared to labeled data, it
may not be available for every task and application.
We therefore propose to generate synthetic exam-
ples that can be used to transfer knowledge to the
student in downstream tasks.

To overcome the challenges that come with un-
availability of large unlabeled datasets required for
the distillation process, we build a data generation
framework where the Monte Carlo Tree Search
(MCTS) algorithm is applied to help generate ex-
amples that, if added to the student’s training data,
will increase its performance. By taking the dif-
ference between the student’s and the teacher’s
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uncertainty for a generated example, we are able
to force the language generation model to create
examples that can be pseudo-labeled by the teacher
with higher confidence than its student. We make
the assumption that the wider the gap between the
student’s and teacher’s uncertainty for a particular
example, the more likely it is that this example
is correctly pseudo-labeled by the teacher and the
less likely that it is known to the student model.
By training the student on the generated data with
the teacher’s pseudo labels, it is able to improve
its performance by mimicking its teacher’s behav-
ior. To generate examples that meet this condition,
we take advantage of MCTS’s tendency to search
for paths that maximize the reward value, hence,
the uncertainty gap. The intuition here is that the
larger the positive difference in the uncertainty, the
greater the contradiction is between the student
and its teacher, and the more likely that the gener-
ated example is important for the student’s learning
stage. We also show that strong results can still be
obtained with a random generation approach that
does not optimize for a reward function during the
generation process. Instead, it first generates data,
then selects samples that meet the conditions that
are set in the reward function. The contributions of
the paper are:

• We propose Monte Carlo Text Generation
(MCTG), a novel method in KD which uses
MCTS to generate synthetic examples.

• We present Non-Targeted Text Generation
(NTTG), in which data is first generated with
top-k sampling, then filtered on the conditions
of the reward function.

• We show that even when starting with a few
examples per label, we can massively improve
the student’s performance.

The remainder of the paper is structured as fol-
lows: Section 2 provides a background and an
overview of related literature. Section 3 describes
the proposed approach. Section 4 presents the ex-
periments which were carried out. Section 5 gives
conclusions and plans for future work.

2 Background

In the pursuit of improving performance for natural
language processing, pretraining large-scale mod-
els on increasing amounts of unlabeled data has
become a common approach (Devlin et al., 2018;

Peters et al., 2018; Yang et al., 2019). By leverag-
ing the knowledge gained from the pretraining step,
these models have shown impressive performance
on many downstream text tasks, e.g. GLUE and
SuperGLUE benchmarks (Wang et al., 2018, 2019).
However, such improvements are accompanied by
an increasing number of learning parameters, cre-
ating a need for more computational and storage
requirements. To alleviate the aforementioned com-
plexity issues, many have suggested approaches for
efficient training through model optimization e.g.
removal of inefficient or redundant parameters (Lan
et al., 2020; Sajjad et al., 2020), and knowledge
distillation (Gou et al., 2021; Sun et al., 2019, 2020;
Sanh et al., 2019). In knowledge distillation, the
unlabeled data plays an intermediary role, which
allows the teacher to transfer its knowledge through
its predictions. When this data lacks the compo-
nents for a meaningful knowledge transfer, e.g. lim-
itations in size or textual variations, augmentation
techniques can be applied to create additional ex-
amples. For instance, Tang et al. (2019); Jiao et al.
(2019) apply task-agnostic heuristics like word re-
placements, to improve distillation on downstream
tasks. The concept of augmenting training exam-
ples has been successfully shown to improve train-
ing in computer vision (Shorten and Khoshgoftaar,
2019), and has been gaining traction in the NLP
domain as well. This includes word manipulations
such as the deletion, insertion, or addition of ran-
dom words in text (Wei and Zou, 2019), paraphras-
ing or back-translation (Sennrich et al., 2015), and
most recently the application of language models
to predict alternative words (Kobayashi, 2018).

In this work, instead of relying on the above
augmentation techniques, we propose to improve
knowledge transfer by involving the student and
the teacher in the creation of useful examples. We
achieve this through a framework that uses an NLG
model to create examples that are deemed useful
for knowledge distillation. The steps taken to deter-
mine the usefulness of an example are summarized
in Figure 1. In MCTG, we achieve this by explor-
ing MCTS’s ability for finding optimal solutions
which are rewarded by the usefulness of the exam-
ples they represent, as explained in section 3.2.

2.1 Knowledge Distillation (KD)

Knowledge distillation is typically aimed at train-
ing a student model to mimic the behavior of a
larger teacher model. The student can either have
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YES

NOCan teacher 
confidently label?

 Example is useful

YES

NO Can Student
confidently label?

Example is less
useful

Figure 1: An example is deemed more useful if the
teacher can confidently label it, but not the student.

the same architecture as its teacher or be completely
different from it, but in either case, it usually has
fewer learning parameters. Hinton et al. (2015)
achieve knowledge distillation by training the stu-
dent model on the softmax probabilities of the
teacher model. Other KD approaches have also
been proposed, which include the distillation of the
activations or weights of the intermediate layers
(Romero et al., 2014; Tarvainen and Valpola, 2017;
Yim et al., 2017; Heo et al., 2019; Cho and Hari-
haran, 2019). In contrast to much work in KD, we
deny both the teacher and its student access to the
full training datasets and only train them on a small
sample of seed data. Hence, our approach does
not depend on pre-existing large datasets for distill-
ing knowledge. Instead, our work focuses on very
small data settings. Hence, we make the propo-
sition that fine-tuning compact models on small
datasets can be aided by the participation of larger
models in a) generating additional training exam-
ples, and b) finding informative examples while
providing pseudo labels.

2.2 Language Models

Traditional context-independent word vectors like
GLOVE (Pennington et al., 2014) and Word2Vec
(Mikolov et al., 2013) were popular choices for
initializing embedding layers for task-specific net-
works. Later works focused on contextualizing
representations by leveraging recurrent neural net-
works (Peters et al., 2018; Howard and Ruder,
2018); most recently, the fine-tuning of pretrained
transformer-based models (Vaswani et al., 2017)
like BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019) and GPT-2 (Radford et al., 2019), has
become a common approach for domain-specific
tasks. In our experiments, we generate language
with GPT-2, a unidirectional language model, pre-
trained on large textual datasets with a probabilis-
tic function to estimate the probability distribution
over the vocabulary for a given context. For a

sequence of tokens t1, t2, t3, ..., tn, the joint proba-
bility can be modeled as:

p(t) =
i=n∏

i=1

p(t(i)|t(1), . . . , t(i−1)) (1)

The conditional probability of a token
p(ti|t1:i−1) can be estimated by the probability
distribution over the model’s vocabulary given a
context t1:i−1. Thus, we can generate candidates
for every next token with top-k sampling (Fan
et al., 2018). When a token is selected, and the
process is repeated enough times, a properly
trained model can generate a meaningful sequence
of text. Even though we restrict our approach to
small datasets, our experiments show that GPT-2 is
still able to generate relevant examples.

2.3 Monte Carlo Tree Search (MCTS)
MCTS has been widely applied to gaming theory
(Kocsis and Szepesvári, 2006; Browne et al., 2012).
Its ability to solve decision-making problems in
games with large combinatorial search spaces (Sil-
ver et al., 2016; Arneson et al., 2010; Chung et al.,
2005), has made its application appealing even for
non-gaming problems as well (Nguyen et al., 2016;
Edelkamp et al., 2016). In our previous work, we
showed that MCTS can also be applied to create
synthetic data for text classification tasks (Quteineh
et al., 2020).

MCTS incrementally constructs a tree as it
searches for possible solutions that satisfy the con-
ditions set by its reward function. In computer
games, paths that lead to winning states are more
likely to have higher reward values than paths that
lead to losing states. While any of the winning
paths could be equally desirable, some paths could
have a higher probability of reaching a winning
state than others. By keeping track of the number
of visits MCTS makes with every path it takes, we
can safely assume that winning paths with a higher
number of visits are more likely to reach a winning
state. However, if the path selection criterion fo-
cuses only on maximizing the reward value, it can
repeatedly revisit the same paths while failing to
discover new ones. To account for this, a selec-
tion policy must balance between exploration of
new paths and exploitation of already visited paths.
A common policy that can achieve this balance
is the Upper Confidence Bound (UCB), proposed
by Auer et al. (2002) for solving the multi-armed
bandit problems, as shown in equation 2:
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UCB =
Wi

Si
+ C

√
2× lnSp

Si
(2)

Where for a given state i, Wi represents the num-
ber of paths leading to a winning state, and Si
records the total number of paths from i. The first
part of the equation, Wi

Si
, favors paths that have on

average led to a winning state, whereas the sec-

ond part of the UCB policy, C
√

2×lnSp
Si

, favors
unexplored paths. Sp is the total number of paths
taken from the parent node, and C is an exploration
hyperparameter. A higher C would increase explo-
ration. UCB combined with MCTS is commonly
known as the Upper Confidence Bound for Trees
(UCT) (Browne et al., 2012). The final MCTS
algorithm can be divided into four main stages:

1. Selection: Starting from a root node Sr, the
UCB function from eq. 2 is recursively ap-
plied to select the next node to visit, until an
unexpanded node is reached.

2. Expansion: A non-terminal leaf node is ex-
panded by adding its immediate children. This
corresponds to all the immediate actions that
are possible from that state.

3. Simulation: From the current state, a random
path ending with a terminal state is generated.

4. Backpropagation: Once a terminal node is
reached, statistics including the reward value
and the number of visits are backpropagated
to the nodes of the current path.

Typically, MCTS runs until a predefined crite-
rion is satisfied, e.g. a user-specified time or a
maximum number of iterations. We adapt MCTS
so that each node represents a token generated by
GPT-2, where the possible actions k from a par-
ticular node Si are from a top-k sampling process.
Each full path represents a complete text example
that is rewarded by equation 6.

3 Approach

In this work, we propose the Monte Carlo Text Gen-
eration (MCTG) method (section 3.2), alongside
the Non-Targeted Text Generation (NTTG) method
(section 3.4). In MCTG, we combine MCTS, a
language generation model, a teacher, and a stu-
dent classifier to create synthetic examples that can
enhance the performance of the student in a KD

Generated
Examples

GPT-2

Data Generation
Components 

Reward
Function

Reference
 Model

Target
Model

tk3

BOS

tk3tk1

EOS

tk1

MCTS

tk1 tk2

tk2

Figure 2: MCTS builds a tree from token sequences gen-
erated by GPT-2. Meanwhile, the teacher and student
models work together to reward for completed paths.

setting. Here, the language model is conditioned to
generate examples for which the predictions of the
teacher and its student are as divergent as possible.
The main components of our framework, as shown
in Figure 2, include the language generation model
(GPT-2), a teacher model, a student model, and the
MCTS algorithm. Below we discuss the role of
each component.

3.1 Language Generation Model

Because the search tree is constructed by travers-
ing from top to bottom, a unidirectional generative
model can take tokens of parent nodes as input to
predict candidates for the next node. This unidirec-
tional behavior makes GPT-2 a good choice for our
experiments1. To generate relevant data, GPT-2 is
first fine-tuned on the initial training dataset. We
prepare the data by first dropping the target labels,
then merging the text examples, split by <|endof-
text|>. The fine-tuned GTP-2 is then used to gen-
erate a token for each node, tk, in the constructed
tree, as shown in Figure 2.

3.2 Monte Carlo Text Generation (MCTG)

We refer to the application of MCTS for text gen-
eration as MCTG. Starting from a root node, rep-
resented by a special token, < |endoftext| >, we
sample the top k most probable tokens that come
next in sequence. Having only started from a single
root node, the tree is first expanded by adding the
top k tokens as immediate children, making the
depth of the tree equal to 2. Since at this stage all
child nodes have equal weight, any one of them is
selected. The next step is to start a simulation by

1We use Huggingface https://huggingface.co/
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first concatenating the token of the selected node
with those of its ancestor nodes. The resulting text
is then passed to GPT-2 to obtain the probability
distribution over the vocabulary, where the top k
tokens are sampled. Given that this process takes
place in the simulation stage, the UCB selection
strategy is not applied; instead, we select a random
token from the non-uniform distribution of the k
tokens. In a standard MCTS implementation, the
path that is navigated in the simulation phase is not
necessarily recorded, but rather the statistics of it
are, e.g. result and number of visits. However, to
account for computational costs, we also track the
generated text at the end of every simulation. It is
important to note that the tokens generated during
a simulation are not added as nodes to the tree, but
are recorded separately. In this way we guarantee
that while the growth of the tree is not affected
during a simulation, we nevertheless retain the gen-
erated text examples with positive rewards. After a
number of iterations, the statistics of the tree nodes
will have changed, allowing higher impact of the
UCB policy (e.q 2) in searching for paths that lead
to examples with the higher reward values.

3.3 Reward Function

This component plays a key role in our approach
as it dictates the usefulness of the generated data.
In a student-teacher KD application, the aim is to
find examples that the teacher model can label with
higher certainty than its student. As entropy mea-
sures the uncertainty of a model’s prediction for
a particular example, the higher the entropy, the
lower the confidence of the classifier in its predic-
tion. This motivates us to generate examples that
can be predicted with low entropy by the teacher,
but high entropy by the student. Hence, when the
difference in entropy between the two models is in-
creased, the more important the generated example
becomes for training the student. Given a gener-
ated text example xu, the predicted probabilities
from a model m are outputs of its softmax layer:

Pm(y) = softmax(f(xu)) (3)

The entropy is thus:

Hn(Pm) = −
n∑

i=1

pi logb pi ·
1

logb n
(4)

where the predicted probabilities Pm = {pi; i =
1, ..., n} for n labels. We take the difference in

entropy between the student s, and the teacher t:

∆ent = ents − entt (5)

The teacher’s confidence and the student’s lack
of confidence in labeling an example are reflected
in ∆ent. For predictions where the teacher’s confi-
dence is at its highest, and the student confidence
at its lowest, ∆ent is maximized. Hence, exam-
ples with high ∆ent are more useful for distilling
knowledge to the student model. For this reason,
we only consider examples where ∆ent is positive.
By finding paths that maximize ∆ent, GPT-2 is
conditioned to generate examples that can be pre-
dicted with the lowest uncertainty by model t, but
with the highest possible uncertainty by model s.
Here we make the following assumptions: a) Exam-
ples that maximize the gap between entropy values
are those most informative to the student model, yet
can be confidently labeled by the teacher model; b)
Training the student on informative examples can
increase its performance. Since the objective is to
find solutions that maximize the reward value, each
generated path is rewarded by ∆ent. To further
optimize the search process, we add the following
refinements to the reward value.

reward =





0, if #tokens < x, x ∈ Z≥0
0, if ∆ent < 0

−1, if task specific condition

∆ent, otherwise
(6)

Condition 1 in equation 6 is a heuristic that penal-
izes examples below a user-defined minimum num-
ber of tokens. Condition 2 minimizes the penalty
for examples where the student model is more cer-
tain in its prediction than its teacher. Condition 3
eliminates cases based on a task-specific condition,
see TREC-6 configuration in section 4.4. Finally,
the fourth condition results in a positive reward
when the teacher is more certain than the student.

3.4 Non-Targeted Text Generation (NTTG)
In NTTG, examples are generated without condi-
tioning GPT-2 on the predictions of the student and
the teacher classifiers. Instead, examples are gener-
ated purely on the probability distributions for the
candidate tokens from GPT-2, then filtered on the
conditions from equation 6. As in the MCTS simu-
lation phase, examples are generated by applying
top-k sampling on the outputs of GPT-2. In top-k
sampling, the probability mass is redistributed over
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the top k most probable choices. At each timestep,
k candidate tokens are sampled based on the previ-
ously generated tokens. A token is then randomly
selected from the k most likely candidates. A se-
quence is completed when a symbol indicating the
end-of-sequence is selected, or when a user defined
maximum sequence length is reached. Due to the
randomness in selecting the next token, a different
sequence can be produced whenever the generation
process is repeated. Once enough examples are
generated, the result data is cleaned by removing
duplicates and short sequences, e.g. less than 3 to-
kens. Next, The entropy, e.q. 4, of both the teacher
and student models is then computed for each re-
maining sample. We denote the student’s entropy
by ents and the teacher’s entropy by entt. With
equation 5, for each sample, we compute the differ-
ence of entropy between the teacher and its student,
∆ent. We then apply equation 6, and select the
examples with ∆ent > 0.

4 Experiments

4.1 Baseline: Conditional BERT (C-BERT)

C-BERT baseline augments the training data by
applying the 12-layer pretrained BERT model to
predict a substitute word for a masked token (Wu
et al., 2019). Each token in an input has a 10%
probability of being masked, i.e., replaced by a
BERT prediction (Kobayashi, 2018). Similar to our
GPT-2 generation for the MCTG and NTTG exper-
iments, the replacement token is selected from the
top-20 tokens given BERT’s probabilities.

4.2 Classification Models

We based our experiments on the pre-trained lan-
guage models provided by Huggingface (Wolf
et al., 2020). For the teacher, we used the 24-layer
RoBERTa, and 2 variants of DistilRoBERTa (Sanh
et al., 2019) for the student; the original 6-layer
DistilRoBERTa, and a 3-layer DistilRoBERTa with
half the layers removed. While 24-layer RoBERTa
has 355 parameters, this is reduced to 82.1 million
in 6-layer DistilRoBERTa, and then to 60.8 mil-
lion in our 3-layer version. For each model, we
appended a linear layer followed by a ReLU activa-
tion, a 0.1 dropout layer, and a linear output layer.
We stabilized training by following the configura-
tions suggested by Mosbach et al. (2020). That is,
we applied the ADAM optimizer (Kingma and Ba,
2014) with a bias correction to avoid vanishing gra-
dients in early training steps. We then trained for

40 epochs with a learning rate of 2× 10−5 that lin-
early increases in the first 10% of the total training
steps and linearly decays to zero afterward.

4.3 Datasets
In an attempt to evaluate our approach under dif-
ferent settings, we considered datasets of multiple
sequence classification tasks. We simulate scarce
data settings by artificially creating an initial train-
ing set of randomly selected seed examples from
the available training data. The language genera-
tion model, and the student and teacher classifiers,
are then fine-tuned on the sampled training data.
The SST-2 (Socher et al., 2013), and Yelp-2 (Zhang
et al., 2015) datasets are for binary sentiment clas-
sification. TREC-6 (Li and Roth, 2002) is a 6-
label question classification dataset, and DBpedia
(Zhang et al., 2015) is a 14-label topic classifica-
tion dataset. Finally, the Microsoft Research Para-
phrase Corpus (MRPC), is for a sentence-pair clas-
sification task (Dolan and Brockett, 2005), where
a model has to predict if the two sentences are se-
mantically equivalent or not. We note that other
data augmentation works have fine-tuned GPT-2
on SST-2, Yelp and TREC (Kumar et al., 2020;
Anaby-Tavor et al., 2020; Feng et al., 2020). For
the SST-2 experiments, from a total of 67,349 sam-
ples, we randomly sampled 30 examples per label
from the GLUE SST training data (Wang et al.,
2018), and evaluated on the provided development
set. The full training dataset for Yelp-2 contains
560K samples. Here, we sampled 20 examples per
label, making a total of 40 training samples. We
then evaluated on the 25,000 test samples. TREC-6
contains 5,452 training examples and 500 testing
examples; as this training dataset is not balanced,
we randomly sampled less than 1.5 percent of the
data for each class, giving us a total of 76 examples.
For DBpedia, we sampled just 3 examples per la-
bel, from a total of 560K instances, making a seed
dataset of 42 training examples. We then evaluated
on the 70,000 test samples. Finally, MRPC consists
of 3,668 training examples of which we sampled
600 per label, making a total of 1,200 training sam-
ples. Our evaluations were on the 1,725 samples
test set.

4.4 Configurations
We configured both MCTG and NTTG to 5k itera-
tions, and the top-k sampling to k = 20 in all our
experiments. We also added a pruning criterion
to limit the maximum length of any sequence to
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Task Teacher
Student Student (Post Distillation) Student

layers Start MCTG NTTG C-BERT Upper-Bounds

SST-2
# Samples

89.9
(60)

6-layers
78.2
(60)

86.1
(1508)

85.3
(402)

83.1
(4718)

91.4
(67349)

3-layers
68.2
(60)

82.3
(3104)

80.7
(734)

75.5
(4718)

89.4
(67349)

DBpedia-2
# Samples

92.3
(42)

6-layers
80.4
(42)

92
(3976)

93.1
(1602)

88.8
(5029)

99.3
(560K)

3-layers
41.1
(42)

91.6
(3940)

90.6
(3271)

84.1
(5029)

99.2
(560K)

TREC-6
# Samples

89
(76)

6-layers
80

(76)
88

(2508)
83.4
(537)

80
(4874)

96.8
(5452)

3-layers
62

(76)
82

(3133)
81

(594)
78.4

(4874)
95.8

(5452)

MRPC
# Samples

84.5
(1200)

6-layers
77.9

(1200)
81.5

(4252)
81.6

(3599)
82.2

(6200)
85.6

(3668)

3-layers
69

(1200)
77.9

(3118)
77.4

(4156)
73.3

(6200)
78

(3668)

YELP-2
# Samples

82.6
(40)

6-layers
85.2
(40)

80.7
(3124)

81.1
(2074)

81.8
(5040)

95.9
(560K)

3-layers
73.9
(40)

78.9
(4278)

77.6
(2828)

76.9
(5040)

94.9
(560K)

Table 1: Teacher-Student Results (in percent, numbers of added examples in parentheses below). The Upper-Bounds
are computed after training the student models on the full training datasets without synthetic data.

Figure 3: Student’s test accuracy after 100, 500, 1k, 2.5k, 5k, 10k, and 20k iterations.
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120 tokens. For MCTG, we set the UCB constant
from eq. 2 to C = 3. As for the reward func-
tion, only for the TREC-6 experiments, we added a
heuristic (see ‘task specific condition’ in eq. 6) to
condition the first token to be a question word by
returning −1 if it was not ‘what’, ‘where’, ‘when’,
‘who’, ‘which’, ‘why’, or ‘how’. For each task, we
made sure the generated text is of appropriate for-
mat for the RoBERTa classification models. This
meant, reward = 0 for GPT-2 outputs that were not
in the format <|endoftext|>x1, . . . xN <|endoftext|>
for single input sentence tasks; TREC-6, SST-2,
Yelp, and DBpedia. As for MRPC, where the in-
put is 2 sentences, the generated data has to be of
format <|endoftext|> x1, . . . xN , [SEP], y1, . . . yN
<|endoftext|>. Where x1 . . . xN and y1 . . . yN are
sequences of tokens. After data was generated, we
selected the examples with a positive reward, see
section 3.3. To avoid high imbalance for the binary
datasets, we limited the number of added examples
to the size of the minority class. For the multiclass
datasets, we limited the selection over the median
from the distribution of generated examples per
label. We then added the selected data to the initial
training data, to form a transfer set. This new trans-
fer set consists of the initial training samples with
the generated data pseudo-labeled by the teacher.

4.5 Results

Results for the teacher-student knowledge trans-
fer experiments are in Table 1. We show the
test accuracy of both the teacher and student (Pre-
Distillation) on the sampled data from section 4.3,
and the student after it has been trained on the sam-
pled data combined with the generated data (Post-
Distillation). We also compute an upper bound
performance by training the 3-layer and 6-layer
DistilRoBERTa models on the full training datasets,
mentioned in section 4.3. This is to give us an es-
timate of the performance that can be achieved
with as much non-synthetic data as possible. Un-
derneath each accuracy score, in parentheses, is
the size of the training data (# Training examples).
For the teacher and the student prior to distillation
(labeled Start in the table), the data sizes are of
the initial training sets, described in section 4.3.
As explained in section 4.2, the teacher model is
a 24-layer RoBERTa, and the student model, is
either a 6-layer DistilRoBERTa, or a 3-layer Distil-
RoBERTa. The “Start” accuracy is achieved after
training only on the initial dataset. For example,

the 24-layer RoBERTa trained on the SST-2 dataset,
of 60 examples, produced a test score of 89.9. This
is a much higher result compared to the accuracies
of the 6-layers and 3-layers DistilRoBERTa mod-
els that were trained on the same dataset, scoring
only 78.2 and 68.2 respectively. We then applied
MCTG, from section 3.2, and NTTG, from section
3.4 to generate distillation data. We fixed the total
number of iterations to 5k. After each iteration, a
sample is generated and only becomes a candidate
for distillation if its ∆ent (equation 5) is positive,
and receives a positive reward as per the conditions
in equation 6. This means less samples are added
to the transfer set from the total generated data.

4.6 Discussion

Overall, results in Table 1 show that our approach
works well with either MCTG or NTTG. It is ev-
ident that a good teacher can always increase the
performance of its student, provided that enough ex-
amples achieve a positive ∆ent (equation 5). This
shows that regardless of the generation method,
equation 5 remains a key component to our ap-
proach. Overall, our approaches, NNTG and
MCTG, lead to better performance improvements
over the C-BERT baseline. Only in MRPC, the
results are similar for the 6-layer student, which
could be attributed to a lower performance gap be-
tween the student and the teacher. Overall, when
compared to the upper-bound results from training
the distilled models on the full training datasets,
the performances we achieve with distillation are
not far off. This might indicate that there is po-
tential room for improvement. With this in mind,
the distilled models only utilized a fraction of the
full training datasets under each task, as explained
in section 4.3. In Figure 3 for each task, we plot
the student’s performance after iterations 100, 500,
2.5k, 5k, 10k, and 20k. As the number of itera-
tions increase, more examples are generated and
thus better performance can be achieved. However,
we notice that at a certain point, the increase in
performance plateaus. To show the importance of
a good teacher, we selected a dataset (Yelp-2), in
which the 6-layer student outperforms its teacher.
Here, the teacher’s overconfidence in incorrect pre-
dictions resulted in noisy data, that degraded its
student’s performance. This shows that the student
can only improve as much as its teacher is able to
provide good labels. We investigate the stability
of the student model, pre- and post-distillation, by
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Task Approach 3-Layers 6-Layers
Start 20K Start 20K

SST-2 MCTG 68.2(±1.67) 83.7(±0.32) 81.85(±1.26) 86.89(±0.396)
NTTG 67.7(±1) 82(±0.69) 81.3(±0.869) 86.9(±0.4)

TREC-6 MCTG 59.86(±4.97) 83(±0.7) 78.6(±1.77) 88(±0.51)
NTTG 60.15(±4.68) 82.6(±0.84) 79.08(±1.65) 86.3(±0.8)

MRPC MCTG 68.5(±2.28) 77.5(±0.55) 79.7(±0.91) 82.7(±0.4)
NTTG 68.2(±2.69) 77.6(±0.49) 79.5(±0.71) 81.5(±0.7)

DBpedia MCTG 52.18(±5.06) 91.3(±0.16) 86(±3.7) 92.3(±0.059)
NTTG 55.7(±4.7) 91.7(±0.13) 85.9(±3.8) 92.8(±0.08)

Yelp-2 MCTG 72.27(±2.84) 79.2(±0.183) 83.29(±1.34) 79.4(±0.175)
NTTG 72.4(±2.3) 78.5(±0.167) 83.95(±1.07) 79.9(±0.22)

Table 2: Mean(± standard deviation), of test accuracy for 10 student model (3-layers and 6-layers) instances, trained
on the initially sampled data and the pseudo-labeled data from the 20k MCTG and NTTG runs.

TREC-6 Examples Teacher Student
What is virtual reality? DESC ENTY
What language was originally
spoken by the Indians?

ENTY LOC

Where is your favourite golf
course?

LOC DESC

SST-2 Examples
a trip from good to bad NEG POS
the kind of script worth watch-
ing

POS NEG

a step down from her best years. NEG POS

Table 3: Examples of data generated for TREC-6 and
SST-2. Wrongly predicted labels are colored in red.

running 10 training instances on the initial data and
on the transfer set from the 20k run. In Table 2, we
show the mean of the test accuracy of 10 trained
instances of the student model. These results are
consistent with Table 1. Overall, the augmented
data leads to better and more stable models, indi-
cated by the higher accuracy and lower variance.
Finally, in Table 3, we show some generated data
from the TREC-6 and SST-2 experiments. All four
examples are remarkably grammatical, natural, and
well-formed.

5 Conclusion

In this paper, we presented an approach for gener-
ating text data in order to improve knowledge dis-
tillation on small datasets. By selecting examples
predicted with the lowest uncertainty by the teacher
and the highest uncertainty by the student, we were
able to improve the student’s performance, some-
times almost to the level of the teacher. Consider-
ing the results, we could argue that reward-based

language generation can complement or even sub-
stitute for heuristic data augmentation approaches
in knowledge distillation. We believe that our ap-
proach can serve as a baseline for reward-based
textual data generation in small data settings. This
will hopefully motivate future research to further
explore reward-based generation methods.
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Abstract

Recent research on code summarization relies
on the structural information from the abstract
syntax tree (AST) of source codes. It is, how-
ever, questionable whether it is the most effec-
tive to use AST for expressing the structural
information. We find that a program depen-
dency graph (PDG) can represent the structure
of a code more effectively. We propose PDG
Boosting Module (PBM) that encodes PDG
into graph embedding and the framework to
implement the proposed PBM with the existing
models. PBM achieves improvements of 6.67%
(BLEU) and 7.47% (ROUGE) on average.

We then analyze the experimental results, and
examine how PBM helps the training of base-
line models and its performance robustness. For
the validation of robustness, we measure the
performance of an out-of-domain benchmark
dataset, and confirm its robustness. In addition,
we apply a new evaluation measure, SBERT
score, to evaluate the semantic performance.
The models implemented with PBM improve
the performance of SBERT score. This implies
that they generate summaries that are semanti-
cally more similar to the reference summary.

1 Introduction

In the early stage of generating code summaries,
researchers adopted information retrieval tech-
niques (Marcus et al., 2004; Poshyvanyk and Mar-
cus, 2007; Haiduc et al., 2010) to capture source
code semantics. However, code summaries pro-
duced by such techniques are often inaccurate to
use in practice (Wong et al., 2015). With the help of
deep learning, researchers proposed the neural ma-
chine translation (NMT) frameworks that automat-
ically produce summaries from source code (Iyer
et al., 2016; LeClair et al., 2019; Liang and Zhu,
2018; Sridhara et al., 2010). Rather than using code
sequence as a sole input, several models built upon
the Transformer (Vaswani et al., 2017) used addi-
tional data structures and information (Lin et al.,

2021; Shi et al., 2021; Choi et al., 2021) to learn
obscure features that otherwise would be discarded.

Recent studies use pretrained models and im-
plementations of graph structures to improve the
performance of code summarization. Pretrained
models are built upon training a huge quantity of
benchmark datasets within a long period. Code-
BERT (Feng et al., 2020) and CodeT5 (Wang et al.,
2021) are popular pretrained models for various
code-related tasks. The graph embedding is re-
garded as effective on providing code semantics;
especially abstract syntax tree (AST) is the most
popular supplement types for reflecting the hierar-
chical structure of codes. Several researchers used
ASTs and improved the performance of source
code summarization (Alon et al., 2019; Zhang
et al., 2019; Shido et al., 2019; LeClair et al.,
2020). Furthermore, combining with the Trans-
former, there are a few improved models including
mAST+GCN (Choi et al., 2021), BASTS (Lin et al.,
2021), CAST (Shi et al., 2021) and SiT (Wu et al.,
2021).

While ASTs are widely used to capture code
structure information, they cannot capture global
information between tokens well due to the deep
depths (Lin et al., 2021; Shi et al., 2021; Zhang
et al., 2019). Thus, recent researches consider
graphs other than ASTs to capture structural infor-
mation. Lin et al. (2021) pretrain the model after di-
viding the code based on control flow graph (CFG),
and Gao et al. (2021) proposed a method of captur-
ing the global structure by learning the data flow
relationship between variables. Liu et al. (2021)
utilize a new type of graph called code property
graph (CPG), which combines CFG and AST, and
propose a hybrid GNN using CPG.

When models utilize AST as auxiliary informa-
tion, structural information is treated and delivered
by token level representation. Many researchers are
performed through extracting structural informa-
tion from the token representations. However, such
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token representations of ASTs fail to provide se-
mantics of statements and predicates (Zhang et al.,
2019). We perform code summarization by captur-
ing the structural information through a program
dependency graph (PDG) to solve such problem.

We implement the encoder module that takes
PDGs of source codes as inputs to several baseline
models, and evaluate the improvement from our
graph module for the summary generation perfor-
mance of each model. Baseline models we perform
experiments are SiT (Wu et al., 2021) that applies
AST on a transformer and CodeBERT (Feng et al.,
2020), including the Transformer (Ahmad et al.,
2020).

The experimental results of our implementa-
tion show the performance improvements of av-
erage corpus-BLEU 6.67% and Rouge-L 7.47%.
However, these improvements are not sufficient
to demonstrate that our implementation accurately
captures structural information. Thus, we further
ask the following questions based on the initial
experimental results.
RQ1: Is the structural code information such as
graph embedding indeed helpful for generating a
code summary?
RQ2: What difference does the proposed graph
structure have compared to the popularly used AST
and what is better between two graph structures?
RQ3: Does the proposed model show the robust
performance for out-of-domain data?

Our code is available at https://github.
com/sjk0825/coling2022.

2 Related Works

2.1 Sequential-based Approach

Iyer et al. (2016) first proposed a method using a
neural network for code summarization. Wei et al.
(2019) proposed a dual framework that uses the
correlation between code summarization and code
generation tasks. Hu et al. (2018b) proposed a sum-
mary method using API information as well as
sequence information. Ahmad (Ahmad et al., 2020)
proposed a method to effectively capture the long-
range dependency of a code sequence using the
Transformer.

2.2 Graph-based Approach

Wan et al. (2018) applied reinforcement learning
for code summarization after giving AST as se-
quenced information. LeClair et al. (2019) pro-
posed a method that provides sequential and AST

to independent GRUs. Hu et al. (2018a) proposed
traversing the AST in a structure-based traver-
sal method for code summarization. Transformer-
based method for learning has also been proposed.
Choi et al. (2021) proposed AST representing
through GCN based on the Transformer. Wu et al.
(2021) also suggested using a transformer-based
multiview graph.

For other graph types such as CFG and PDG,
the nodes are in a statement level varying from
AST’s nodes in a token level. Such graphs are used
for a code representation method in several studies.
Lin et al. (2021) proposed a method of pretraining
syntax information after splitting based on a control
flow of CFG. Yamaguchi et al. (2014) showed CPG
combined with CFG and AST. Liu et al. (2021)
performed code summarization of CPG through
Hybrid GNN. We also use PDG for code structural
representation to obtain the structure information
of the code.

2.3 Pretrained Model-based Approach

CodeBERT is a bimodal pretrained model that per-
forms the NL-PL task. It is a model for Masked
Language Modeling and Replaced Token Detec-
tion tasks, pretrained with the dataset CodeSearch-
Net (Husain et al., 2019). GraphCodeBERT (Guo
et al., 2021) is the first pretrained model using data
flow. The model was constructed through Masked
Language Modeling, Edge Prediction, and Node
Alignment, and the dataset is CodeSearchNet like
CodeBERT. CodeT5 (Wang et al., 2021) is also an
integrated model of encoder-decoder pretrained for
code related tasks. It was pretrained on tasks such
as Identifier-aware Denoising Pretraining, Identifier
Tagging, and Masked Identifier Prediction through
CodeSearchNet and BigQuery dataset.

3 Methodology

We propose PBM (PDG Boosting Module) which
improves the capability of capturing the structure
information by embedding PDG to the encoder. In
this section, we explain what PDG is and then,
show how our PBM embeds PDG. Finally, we
demonstrate the implementation of our PBM with
the baseline models of the code summarization
task. We illustrate the overview of the framework
implementation of PBM in Figure 2. Our module
applies the PDG to improve the baseline models
but for better analysis, we also develop a module
for ASTs that act the same as our PBM and show
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the experimental results in Section 4.

return
Math.log10(val)

return 
HUGE_NEGATIVE

log10
public static double log10(double val){    

if (val > 0.0){
return Math.log10(val);

}
return HUGE_NEGATIVE;

}

control

data

val > 0.0

double 
val

truefalse

Figure 1: An example of PDG corresponding to the
JAVA code instance. We represent control flow of the
code with red colored edges and data flow with blue
colored edges.

3.1 Program Dependency Graph

PDG is a type of graph to represent the depen-
dency flow of code in statement level, proposed by
Ferrante et al. (1987). The graph consists of state-
ment nodes and predicated nodes, which express
operators and operands of a source code, respec-
tively. Edges between nodes express dependencies
including data dependency and control dependency.
Depicted in Figure 1, edges in blue color show a
data flow among variables and represent data de-
pendency. Similarly, edges in red color represent
control dependency that corresponds to the depen-
dency influenced by the values of predicate nodes.
In Figure 1, control dependencies starting from a
conditional statement ‘val > 0.0’ depend on
the value of ‘val’. Unlike AST, each node of PDG
contains the partial semantics of a source code in
statement level and each edge shows a connection
between statements. We suspect that such tendency
can express the structural information of the source
code effectively and helps the models to train bet-
ter for generating code summaries. The AST of the
source code in Figure 1 is in Appendix A.

3.2 Graph Embedding

Formally, we represent the input graph as
G(N,Ec, Ed), where N is the set of PDG nodes,
Ec is the set of edges for control dependency
and Ed is the set of edges for data dependency.
An edge (u, v) ∈ Ei for i ∈ {c, d} denotes an
edge from u to v, where u and v are nodes of G.
Given a PDG G(V,E), where E = Ec ∪ Ed, each
edge is represented as an embedding matrix M of
size |N | × |N |. Each node is also represented with

an embedding matrix of the same size to M .
We propose a graph embedding module that

takes an extracted PDG from source codes as inputs.
The extracted PDGs divide codes into statement
level that are embedded as nodes and edges from
the PDGs express the control and data dependen-
cies between nodes. Then, the output of our module
is concatenated with the output of a baseline model
encoder. The detailed implementation is provided
in Section 3.3.

Node Encoder A node encoder extracts struc-
tural information from the input graph. The encoder
follows the structure of a baseline model encoder
and takes the same approach of a baseline for en-
coding inputs. The difference from the encoder of
baselines is that our node encoder calculates the
attention of Key (K), Query (Q) and Value (V ) that
comes from the program dependency.

We present an attention equation for learning
structural information from the graph embeddings.
Given a sequence, letN be the set of nodes that con-
sists of PDG of the sequence. Then, node ∈ N is a
node from the PDG and nodee is an embedding of
node. The following equation ofN -Att is the atten-
tion function of the node encoder. Note thatKe,Qe,
and Ve are pooled node representations of nodee
and dK is the dimension of Ke. The node encoder
encodes each nodee asNodee. When the size ofN
is n, the node encoder outputs node representations
Ne, where Ne = (Node1e , . . . , Nodene).

N -Att(Qe,Ke, Ve) = softmax(
E ∗QeK⊤e√

dk
)Ve,

E = Ec + Ed.

Node Pooler The node pooler is the process
of pooling tokens within the same node through
a given sequence and statement mask. The se-
quence of token embedding is represented as seqe.
The node pooler takes seqe as an input and out-
puts its corresponding node embedding, nodee.
MASK |seqe| consists of one hot vector and W
is a trainable weight. t is a token in sequence and
k is a sequence length. The following equation
demonstrates the procedure of node pooler.

nodee = ReLU((MASK ∗ seqe) ∗W ),

MASK =

{
1 if tj ∈ node for j = 1, . . . , k

0 otherwise.
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public static double log10( double val ){

if ( val > 0.0  ){

return Math.log10( val );

}

return HUGE_NEGATIVE;

}
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Figure 2: An architecture of PBM. Dashed boxes from the code snippet represent nodes.

3.3 PDG Boosting Module (PBM)

Our PBM module improves the performance of
generating source code summaries by combining
with baseline models. We use the Transformer (Ah-
mad et al., 2020), SiT (Wu et al., 2021), Code-
BERT (Feng et al., 2020) as baseline models. The
encoder of each baseline model is based on a trans-
former and emits token level output. We show how
the separate embeddings of a sequence and graph
for a code instance proceeds and combines in PBM.

Combine Encoder The input sequence consists
of (t1, . . . , tk) tokens. The token passes through
the base encoder (B-encoder) with the embed-
ding vector (t1e , . . . , tke) of tokens and output
Ce = (c1e , . . . , cke) containing sequence informa-
tion. Token representations are concatenated with
Ne = (Node1e , . . . , Nodene) of the PDG module.
Let k be the length of code sequence and n be the
length of node sequence.

Ce = B-encoder(t1e , . . . , tke),

PBM = Concat([Ce;Ne]).

Decoder The decoder for PBM is dependent on
baseline models we combine with. As the encoder
of PBM combines both the sequential information
and node information, the decoder takes the atten-
tion for both information to the target summaries.
Figure 2 illustrates the full architecture of the PBM
module and how PBM is connected to a baseline
model.

4 Experiments and Analysis

Our experiment uses two benchmark datasets
for the code summarization task. The first is
CCSD (Liu et al., 2021) which is the dataset of
C programs and the next is TL-CodeSum (Hu et al.,
2018b) which is the dataset for JAVA programs.
The details of each dataset are illustrated in Ta-
ble 1.

Dataset TL-CodeSum CCSD
Train 69,708 84,316
Valid 8,714 4,432
Test 8,714 4,093

Out-domain Test - 2,440

Table 1: Statistics on the number of data for the bench-
mark datasets.

The evaluation metrics are corpus-BLEU (Pa-
pineni et al., 2002) and ROUGE-L (Lin, 2004)
score that are widely used for the verification
of code summarization performance. We denote
them as BLEU and ROUGE. Additionally, we use
SBERT (Reimers and Gurevych, 2019) score to
address the semantic performance that cannot be
measured by the prior two metrics.

As we apply PBM to baseline models, one exper-
iment is to compare the performance improvements
by adding PBM to baseline models. Another exper-
iment is to check which graph type is more suitable
for our task. For the second question, we consider
two graph types, AST and PDG, each of which is
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constructed from data via joern1 and srcml2.

4.1 Baselines
PBM compare with four code summarization mod-
els that have neural network archtecture. Our base-
line models include models based on the architec-
ture of an RNN and a transformer. We also take a
pretrained model as one of the baseline models.
Seq2Seq is based on the recurrent neural network
architecture. Iyer et al. (2016) proposed a code
summarization using Seq2Seq.
Transformer (Ahmad et al., 2020) is consturcted
from a transformer (Vaswani et al., 2017)-based
model using copy mechanism and relative posi-
tional encoding. Through self-attention of a trans-
former, the long-range dependency of code is effec-
tively captured.
CodeBERT (Feng et al., 2020) is a pretrained en-
coder model with PL-NL bimodal. CodeBERT sup-
ports code-related downstream tasks including the
code documentation generation task. We reproduce
the CodeBERT-base model.
SiT (Wu et al., 2021) is a model trained with multi-
view on the structure of codes. Multiview includes
AST, data dependency and statement. Multiview
is trained through weighted attention at the token
level.

4.2 Evaluation Metrics
Our analysis relies on BLEU and ROUGE as eval-
uation metrics that are popularly used in recent
studies. These metrics check how the summaries
capture the actual words that are used in the refer-
ence summaries. As the metrics only check whether
a token or a sequence of tokens are the same, re-
searchers argue about their reliability (Reiter, 2018;
Mathur et al., 2020). Therefore, we also use another
metric, SBERT (Reimers and Gurevych, 2019)
score, to measure how the generated summaries
capture the semantics of the source code.
BLEU (Papineni et al., 2002) measures the per-
formance of predicted summaries through n-gram
comparison with reference. The average perfor-
mance is measured for the range of n to 1-4.
ROUGE (Lin, 2004) is an n-gram measurement
method based on recall. The Rouge-L we use is the
F-measure of prediction and reference based on the
longest common sequence.
SBERT (Reimers and Gurevych, 2019) is a
siamese network using pretrained BERT and

1https://github.com/joernio/joern
2https://www.srcml.org/

measures the similarity between two sentences
with a fixed sentence representation. We use the
checkpoint, all-mpnet-base-v2 mode for
the evaluation.

4.3 Experimental Setup

Hyperparameter Generally, we follow the same
hyperparameter settings of baseline models to re-
produce performance of the considered models. For
adding our PBM to the baseline models, we set the
size of the PBM layer as the size of an encoder of
the corresponding baseline encoder. However, as
we run experiments with multiple baseline models
and the models attached with PBM, we regulate
some hyperparameters such as batch size, number
of epochs, and learning rate for fair performance
comparison.

Device We conduct experiments on a workstation
on Ubuntu 18.04 with two RTX3090 GPUs. The
version of CUDA and cuDNN for GPU usage are
11.0.3 and 8, respectively.

4.4 Analysis

RQ1: Effectiveness of graph embedding We
implement PBM to baselines for the code sum-
marization task and the performance improved as
shown in Table 2.

Table 2 shows the overall performance of the
experimental models. PBM raises the BLEU and
ROUGE performance of the Transformer, SiT and
CodeBERT. The BLEU performance of the CCSD
benchmark dataset of the three models increases by
7.67% on average after PBM, and the ROUGE is
improved by 10.37%. The BLEU performance of
the TL benchmark dataset is improved by 5.67% on
average after PBM, and the ROUGE is improved
by 4.57%.

Figure 3 shows the generated summaries by base-
line models and the models implemented with PBM
for a given source code instance. Implementation
of PBM captures a word ‘gap’ of the reference
that was not captured in the baseline Transformer
and SiT models. The Transformer captures sequen-
tial information such as ‘calculate’ and ‘true’. But
the model does not capture the objective for the
‘calculate’ word. After PBM application, the Trans-
former captures the object for the calculation. How-
ever, it does not capture the information of cells
being rectangle. The SiT also inferences that the
source code instance is a calculation. In addition,
the SiT captures the information in if-statement of

5970



TL-CodeSum CCSD
BLEU ROUGE-L SBERT BLEU ROUGE-L SBERT

Seq2Seq 39.12 50.33 0.6333 20.81 23.12 0.3619
Transformer 44.34 53.74 0.6352 24.26 26.50 0.3965
CodeBERT 36.82 50.07 0.6824 22.98 29.06 0.5256

SiT 45.76 55.58 0.6694 25.00 26.83 0.4289
Transformer+PDG ( w/o data dependency ) 45.93 55.21 0.6557 25.38 28.64 0.4326

Transformer+PDG ( w/o control dependency ) 45.91 55.39 0.6580 26.00 29.04 0.4307
Transformer+PDG 46.07 56.68 0.6608 26.83 30.14 0.4419

CodeBERT+PDG ( w/o data dependency ) 40.96 52.59 0.6897 23.73 29.78 0.5235
CodeBERT+PDG ( w/o control dependency ) 41.17 52.91 0.6960 23.37 30.03 0.5241

CodeBERT+PDG 40.75 52.85 0.6968 23.41 29.45 0.5252
SiT+PDG (w/o data dependency ) 45.93 56.66 0.6728 27.30 30.83 0.4452

SiT+PDG ( w/o control dependency ) 46.71 56.50 0.6719 27.26 27.26 0.4417
SiT+PDG 46.86 56.69 0.6752 27.63 31.15 0.4898

Table 2: Our result for Java and C dataset. The best scores for each metric are in bold.

the code that the Transformer omitted. The if state-
ment, however, does not catch the gap of the two
rectangles. On the other hand, after applying PBM,
the SiT captures the semantics of calculating the
gap between two rectangles.

BLEU and ROUGE are performance measures
based on word overlap. These methods consider
the importance of capturing the exact words that
are used in the reference summaries. Even though
widely used, the metrics still have drawbacks that
they cannot capture the semantics of the generated
sequences (Haque et al., 2022). For instance, a code
instance given in Figure 3 has a reference summary
of ‘calculate the gap rectangle between two rect-
angles’. If the model generates a summary such as
‘calculate the gap between rectangles ( a | b ( b )’,
it does not have any defects in semantics. However,
the BLEU and ROUGE score metrics conclude that
the generated summary is not perfect. On the other
hand, summaries illustrated in Figure 3 show the
similar or better BLEU performance to ‘calculate
the gap between rectangles ( a | b ( b )’ even though
the sentence does not make sense.

Therefore, moving forward from only checking
whether the models generate summaries that cap-
ture the words used in the reference, we also imple-
ment an auxiliary evaluation metric SBERT score
to measure the performance in semantics. SBERT
is pretrained from a large corpus of natural lan-
guage sentence pairs and can measure the simi-
larity between sentences. The result of the seman-
tic measurement is depicted in Table 2. SBERT
score increases by 8.53% and 2.30% in CCSD and
TL-CodeSum, respectively. When applied to Code-
BERT, PBM shows weaker performance, but as the

score difference is not critical and as the average
performance compared with other models increases
significantly, we find PBM effective.

RQ2: Comparison with graph types What dif-
ference does the proposed graph structure have
compared to the popularly used AST and what is
better between two graph structures?

We propose the approach that implements a
graph embeddings to capture the structural infor-
mation and semantics by combining both structural
and sequential sequences of a source code instance.
The approach shows that the graph embeddings
and the structural information improves the per-
formance of code summarization. It is, however,
questionable which graph structure is suitable for
generating summaries. Based on the characteristics
of graph structure, we implement AST, a frequently
used graph type and PDG, which we find the most
effective in code summarization.

AST represents auxiliary structural information
widely used in code summarization. AST is a tree
representing the code structure as an abstract syn-
tax and consists of syntax nodes for the grammar
structure of program and syntax tokens for the code
sequence. Each node of AST consists of a single
token used in the source code. The AST for the
source code instance in Figure 3 is in Appendix A.
AST captures the grammar of source code which
is different from that of natural language sequence.
On the other hand, PDG expresses the program
structure with control and data dependency infor-
mation and each node of PDG consists of a segment
of source code in a statement level. In that sense,
the module helps the model to train the code infor-

5971



private static boolean calculateGap(Rectangle a,Rectangle b,Rectangle gap){
if (a.intersects(b)) {

gap.width=0;
return false;}

int ax1=a.x;
int ax2=a.x + a.width;
int ay1=a.y;
int ay2=a.y + a.height;
int bx1=b.x;
int bx2=b.x + b.width;
int by1=b.y;
int by2=b.y + b.height;
int xOverlap=Math.min(ax2,bx2) - Math.max(ax1,bx1);
int yOverlap=Math.min(ay2,by2) - Math.max(ay1,by1);
if (xOverlap <= 0 && yOverlap <= 0) {

gap.width=0;
return false;

}
if (xOverlap > 0) {

gap.x=Math.max(ax1,bx1);
gap.y=(ay1 > by1) ? by2 : ay2;
gap.width=xOverlap;
gap.height=-yOverlap;

}
if (yOverlap > 0) {

gap.x=(ax1 > bx1) ? bx2 : ax2;
gap.y=Math.max(ay1,by1);
gap.width=-xOverlap;
gap.height=yOverlap;

}
return true;}

Transformer       : calculates true if the rectangle rectangle ( square into keyqualifier so that are drawn in the specified rectangle 
Transformer + PDG : calculate the minimum of the two cells that are equal .

SiT               : calculates true if two rectangles are equal . the rectangles . the bounds .
SiT + PDG         : calculates the gap between two rectangles ( a | b ( b ) .

CodeBERT          : calculates the gap between two rectangles .
CodeBERT + PDG    : calculates the gap between two boxes . returns the size of the gap that is the gap , which is the only valid for a bounding box .

reference         : calculate the gap rectangle between two rectangles

calulateGap

xOverlap = 
Math.min(ax2, bx2) –
Math.max(ax1, bx1)

yOverlap =
Math.min(ay2, by2) -
Math.max(ay1, by1))

xOverlap > 0 yOverlap > 0

gap.width = xOverlap

gap.height = -yOverlap

gap.width = -xOverlap

gap.height = yOverlapreturn true

a. Source code

data depedency

control depedency

b. Subgraph of PDG

Figure 3: An illustrated example of PDG and generated summaries from the baseline models and the ones imple-
mented with PBM.

TL-CodeSum CCSD
BLEU ROUGE-L SBERT BLEU ROUGE-L SBERT

Transformer+AST 45.57 54.86 0.6480 26.51 29.62 0.4413
CodeBERT+AST 40.54 52.41 0.6877 23.36 29.55 0.5222

Table 3: Peformance of AST module.

mation in statement and predicate level.

We analyze the difference between the AST and
PDG modules by comparing the performance of
both implementations. The result is shown in Ta-
ble 3 and by the performance, we confirm that the
implementation of the PDG module is superior in
both capturing the exact words used in the refer-
ence and the semantic similarity.

For a fair comparison, we use the same graph
embedding implementation of PBM and perform
experiments for baseline models, Transformer, SiT
and CodeBERT. Table 3 shows the overall scores
of BLEU, ROUGE and SBERT score of both mod-
ules. For each baseline model, PBM shows the av-
erage of TL-CodeSum performance of BLEU and
ROUGE respectively by 0.8% and 2.1% better than
that of the AST module and the average of CCSD
performance of BLEU and ROUGE respectively
by 0.9% and 0.8% better than that of the AST mod-
ule depicted in Table 3. In addition to this, SBERT

shows that PBM achieves better semantic similarity
than the AST module in TL-CodeSum and shows
similar performance in CCSD.

Aside from the Transformer and CodeBERT, SiT
already uses structural information in the AST. Im-
plementation of AST module results in adding over-
lapped the same information of AST, so we do not
perform additional experiments implementing the
AST module for SiT. We still can confirm that the
usage of PDG information is better than AST im-
plicitly, as the performance of SiT improves when
implementing PBM.

The AST and PDG both use the graph informa-
tion extracted from the same source code but the
performance varies. We find that each node of AST
corresponds to the token of source code sequence
and the structure of a graph is too complex com-
pared to its corresponding source code sequence
to capture a valid structure information. Each node
of the PDG, however, consists of statements rep-
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Figure 4: The performance on CCSD and TL-CodeSum. Regardless of BLEU, the higher the in-domain similarity
is, the higher the out-domain similarity tends to be. Compared with AST, PBM shows a high overall performance
improvement in the three category model.

resenting a relationship between statements in the
form of control and data flow. This makes the PDG
relatively simple and by the results shown in Ta-
ble 3, we find applying PBM more effective than
applying the AST module.

We evaluate the summarization ability of our
module by the ablation study of edges in the PDG.
Edges for PDG represent data and control depen-
dency and we present how our module applying
only one edge type performs on generating sum-
maries in Table 2. The performance of PBM mod-
ules with one dependency edge type shows de-
creased performance compared to the performance
of PBM module with both edge types. So we can
derive that all edge types, control and data depen-
dencies help the model to learn the structural infor-
mation.

RQ3: Robustness of our framework Source
code summarization is a task to generate a sum-
mary sequence for a given source code instance.
Benchmark datasets are important in such research
as the data to train is critical for the model. Most
summaries of datasets are brought from the com-
ments of source codes. In that sense, there is no
specific guideline or tendency of summaries. Sum-
maries can vary depending on the purpose of source
codes and even the users who wrote the source

codes and comments. This is why no model can be
always satisfied for every source code even if the
evaluation result shows good performance. On the
other hand, when source codes and summaries are
brought from the same repository, the data would
have a similar tendency. In such cases, even the test
dataset shares the same tendency and the result is
not reliable as the performance score cannot verify
the model to have such performance in general data.

CCSD Out-Domain
BLEU ROUGE-L SBERT

Seq2Seq 18.70 18.91 0.3619
Transformer 20.16 17.90 0.2974
CodeBERT 20.12 24.95 0.4843

SiT 22.16 20.58 0.3470
Transformer+PDG 21.54 20.58 0.3328
CodeBERT+PDG 20.13 25.08 0.4819

SiT+PDG 23.09 22.93 0.3611

Table 4: Performance of CCSD out-domain dataset. The
best scores for each metric are in bold.

Considering such a problem, there is a need to
evaluate the model with a dataset that has a differ-
ent tendency compared to the train dataset. Such
aspect is called out-of-domain (OOD) and we use
CCSD, the benchmark dataset for C program as
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it contains both an in-domain and out-domain test
dataset. The in-domain test dataset is an original
dataset and the out-domain test dataset is for the
OOD measurement.

Referring to the result of Table 4, performance of
baseline models for the out-domain dataset is lower
than that from Table 2. Such performance decrease
can be up to 10% which is a critical loss. Even for
this case, PBM has a robust performance improve-
ment as Table 4 shows that it can still improve the
performance of baseline models for out-domain
test dataset. The performance of baseline models
improves by 3.63% in average for BLEU score, by
8.97% in average for ROUGE score and by 5.17%
in average for SBERT score after the implementa-
tion of PBM.

5 Conclusions

Recently, there have been several researches for
improving the code summarization (Iyer et al.,
2016; Feng et al., 2020; Ahmad et al., 2020). One
approach is to use the structural information of
source code by extracting its AST (Abstract Syntax
Tree) (LeClair et al., 2020; Shi et al., 2021; Choi
et al., 2021; Wu et al., 2021). While this approach
works better than the one without ASTs, it turns out
that a model with ASTs cannot capture the global
structure owing to deep depth structure (Lin et al.,
2021; Shi et al., 2021; Zhang et al., 2019).

We have studied the limit of this approach and
suggested a new module PBM that utilize PDGs
containing the information of control and data de-
pendencies. We have observed that PBM improves
the performance of baseline models; PBM captures
the structural information of source codes in a state-
ment level. Since BLEU and ROUGE are computed
by matching tokens of the reference summary, we
have considered another metric, SBERT score, for
measuring the semantic difference to fully analyze
the effectiveness of PBM; SBERT score evaluates
the semantic similarity between sentences. The ex-
perimental results have showed that PBM achieves
the performance increase in capturing the seman-
tics of source code in the SBERT score as well. We
noticed that the benchmark dataset of source codes
and summaries can be vulnerable in generalization
of a model. Thus, we have ran additional experi-
ments using an out-domain test dataset of CCSD,
and confirmed that our PBM is effective for the
OOD case as well.

For future directions, we aim to evaluate the

generalizability of the code summarization mod-
els more precisely. In addition to the out-domain
dataset of CCSD, we plan to evaluate PBM with
other benchmark datasets for the OOD measure-
ments. Furthermore, we plan to design a model
that has a consistently good performance on gener-
ating code summaries for different programming
languages.
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A Abstract Syntax tree

We present also the ASTs that are omitted in the main part of the paper. Figure 5 and Figure 6 each
illustrate the AST for the java code instance that was shown in Figure 1 and Figure 3 respectively.
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Figure 5: Graph of AST example of source code in Figure 1.
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Abstract
With the rapid growth of scientific papers, un-
derstanding the changes and trends in a re-
search area is rather time-consuming. The first
challenge is to find related and comparable ar-
ticles for the research. Comparative citations
compare co-cited papers in a citation sentence
and can serve as good guidance for researchers
to track a research area. We thus go through
comparative citations to find comparable ob-
jects and build a comparative scientific summa-
rization corpus (CSSC). And then, we propose
the comparative graph-based summarization
(CGSUM) method to create comparative sum-
maries using citations as guidance. The com-
parative graph is constructed using sentences as
nodes and three different relationships of sen-
tences as edges. The relationship that sentences
occur in the same paper is used to calculate the
salience of sentences, the relationship that sen-
tences occur in two different papers is used to
calculate the difference between sentences, and
the relationship that sentences are related to ci-
tations is used to calculate the commonality of
sentences. Experiments show that CGSUM out-
performs comparative baselines on CSSC and
performs well on DUC2006 and DUC2007.

1 Introduction

Today, the transient and rapidly evolving research
areas and the numerous published research articles
require researchers to orient themselves and dis-
cover the changes of the research area (Marrone,
2020). In order to reduce the burden of researchers,
a solution is to find and compare related articles
in the research area, and automatically create com-
parative summaries showing commonalities and
differences of the articles where differences mean
changes. The first problem is how to find related
and comparable articles, and the second problem is
how to create comparative summaries.

† The authors have contributed equally to this work.
∗ Jingqiang Chen is the corresponding author.

Comparative citation from BERT (Devlin et al., 2018): 
Unlike recent language representation models (Peters et al., 2018; Radford et al., 2018), 
BERT is designed to pre-train deep bidirectional representations from unlabeled text 
by jointly conditioning on both left and right context in all layers.

[Devlin et al., 2018];
[Peters et al., 2018; Radford et al., 2018];
language representation models.

Citing paper:
Cited papers:

Comparable topic:

①We introduce a new type of deep contextualized word representation ... use vectors 
derived from a bidirectional LSTM ... [Peters et al., 2018]②We introduced a 
framework for achieving strong natural language understanding ... pre-training on a 
diverse corpus with long stretches of contiguous text ... [Radford et al., 2018]③We 
introduce a new language representation model ... uses masked language models ... 
[Devlin et al., 2018]

Comparative summary based on the comparative citation: 

Figure 1: An example from our dataset. The compar-
ative citation appears in the citing paper (Devlin et al.,
2018) and cites two cited papers (Peters et al., 2018;
Radford et al., 2018). The comparative summary is gen-
erated by summarizing the commonality (italicized) and
difference (underlined) between three papers regarding
to the comparable topic mentioned in the citation.

Fortunately, comparative citations can serve as
good guidance in finding related and comparable
articles and common topics. According to previ-
ous works (Teufel et al., 2006a; Hernandez-Alvarez
et al., 2017), the function of comparative citations
is to include shared topics between papers in the
same field and reflects the comparative intent, i.e.,
the author intends to compare his own work with
cited works. Citation function has been widely in-
vestigated. Teufel et al. (2006b) analyzed citation
functions based on empirical works, and classi-
fied functions as Contrast, Neutral, Weakness, etc.
Among all citation functions, the comparative ci-
tation is most suitable for comparative summariza-
tion as it contains most comparative information.

Given a set of comparable articles guided by
comparative citations, we aim to summarize com-
monalities and differences between the articles and
related to the comparable topics mentioned in cita-
tions. As the Figure 1 shows, the comparative cita-
tion in the upper part is captured by “unlike”, where
the citing and the cited papers share the comparable
topic. Also, the bottom part shows a comparative
summary based on mentioned comparative citation.
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The summary accommodates the commonality and
difference between the citing and the cited papers.

Our task is different from traditional survey gen-
eration and related work generation (Chen and
Zhuge, 2016, 2019; Wang et al., 2020; Chen et al.,
2021; Yuan et al., 2021) in that 1) our task utilizes
the citing and the cited papers guided by compar-
ative citations, and 2) related work and surveys
focus on shared information while comparative
summaries capture commonalities and differences.

We build a comparative scientific summariza-
tion corpus (CSSC) based on comparative citations.
Three annotators are asked to annotate and collect
comparative citations in 32 papers in the AI area
using the citation function annotation scheme. We
get 40 comparative citations with the correspond-
ing citing and cited papers. For each comparative
citation, annotators read through papers to generate
a draft comparative summary for the comparative
topic mentioned in the citation. After that, five
postgraduates students specializing in works on
selected 32 papers read and revise the draft com-
parison summary to create the ground truth.

Since our dataset is small-scaled, we propose
a simple yet effective unsupervised comparative
graph-based scientific summarization method (CG-
SUM). A comparative graph is built to represent
the citation texts and papers. Each paper or cita-
tion text corresponds to a subgraph, where nodes
represent sentences and weights of edges denote
similarities between sentences. The salience of a
sentence is computed by considering the position of
the sentence within the paper. The commonality of
a sentence is computed on its subgraph and the cita-
tion texts subgraph. The difference of a sentence is
captured by adding negative edges between nodes
from different paper subgraphs. Finally, salience,
commonality and difference are linearly combined
to rank and select sentences. Experiments show
that CGSUM outperforms baselines on CSSC and
also performs well on DUC2006 and DUC2007.

Our contributions are summarized as follows:

• We propose the task of comparative citation-
guided summarization of scientific papers.

• We construct the comparative summarization
dataset CSSC for scientific papers.

• We propose the comparative graph-based sum-
marization method that considers three rela-
tionships between sentences. Experiments
show the efficacy of the proposed model.

2 Related Work

Citations throughout scientific papers help un-
derstand the frontiers and trends in diverse re-
search fields. Teufel et al. (2006b) analyzed cita-
tion functions based on empirical works, which
is similar to (Su et al., 2019). Whereas Dong
and Schäfer (2011); Abu-Jbara et al. (2013);
Hernandez-Alvarez et al. (2017); Su et al. (2019) fo-
cused on the dimensions of organic and perfunctory
as well as intentions and sentiments respectively.

Generic scientific summarization uses extrac-
tive(Yang et al., 2016; An et al., 2021; Dong et al.,
2021), abstractive(See et al., 2017; Cachola et al.,
2020; Dangovski et al., 2021) and other (Teufel and
Moens, 2002; Cohan et al., 2018; Sharma et al.,
2019) methods to summarize a document. Cita-
tion generation has also been studied (Xing et al.,
2020; Ge et al., 2021). Early studies were based
on keywords (Hoang and Kan, 2010; Chen and
Zhuge, 2016). Xing et al. (2020) considered the ab-
stract of cited papers to generate citations. Citation
generation concerns semantics, while comparative
summarization concerns citation function. The ci-
tation text is often too short to describe in detail.

Related work generation and survey generation
generates from multiple documents. He et al.
(2016) captured hot topics in fields. Chen and
Zhuge (2019); AbuRa’ed et al. (2020); AbuRa’ed
and Saggion (2021) took citations into account
to mine information. What’s more, Wang et al.
(2020); Yuan et al. (2021) generated reviews that
cover more aspects. Chen et al. (2021) took ab-
stractive method. Related work generation places
emphasis on shared content in cited papers and
summarizes the common information. However, it
is different from our task of comparative summa-
rization, which is guided by comparative citations
and summarizes commonalities and differences.

3 Task Definition

Given the comparative citation (Cit), the citing pa-
per (CP) where the Cit appears, and a set of refer-
ence papers (RPs) that the Cit cites, the task aims to
create the comparative summary containing com-
monalities and differences between CP and RPs
with regard to the comparable topic mentioned in
the Cit. Taking the case in Figure 1, Cit refers to the
comparative citation, CP refers to the (Devlin et al.,
2018) and RPs refers to (Peters et al., 2018; Rad-
ford et al., 2018). The comparable topic mentioned
in the Cit is language representation models.
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(three annotators; 32 papers)
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(40 summaries; 124 source papers)
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Figure 2: Overview of the dataset construction process.

Since there are no existing datasets and meth-
ods for the task, we build a comparative citation-
guided dataset and propose a comparative graph-
based method. To create the dataset, we annotate
the function of citations of 32 papers in the AI
area, and manually create comparative summaries
for 40 annotated comparative citations. Then we
create the comparative summary, the proposed sum-
marization method leverages different relationships
between sentences to construct a comparative graph
and extract sentences from papers.

4 Dataset Construction

This section mainly contains citation annotating
as well as data processing. Figure 2 depicts an
overview of the data construction process.

4.1 Comparative Citation Annotating

Comparative citations provide comparable infor-
mation such as related and comparable articles and
comparable topics for comparative summary gen-
eration. However, previous studies (Teufel et al.,
2006a; Dong and Schäfer, 2011; Jha et al., 2015;
Jurgens et al., 2018; Su et al., 2019) showed that
the proportion of comparative citations in scientific
articles are minimal (See Appendix A.1 for details).
In their annotation schemes, the comparisons are
scattered in different categories and are not easily
distinguished. Therefore, we propose our own an-
notation guideline (See Appendix A.2 for details)
that is sensitive to finding comparative citations.
Using the guideline, three annotators are asked
to annotate comparative citations in 32 papers se-
lected from the AI area. Each paper contains 21 to
30 citations. Each citation consists of one to five
sentences and cites two to six cited papers. Finally,
we obtain 40 comparative citations for building the
comparative citation-guided dataset.

4.2 Data Processing and Summaries Writing

With the comparative citations we get, we collect
the citing and the cited papers associated with each

citation from the web. The abstract, introduction,
conclusion, etc. sections from papers are used for
summarizing as these sections contain dense and
essential information about papers. Firstly, annota-
tors are asked to read through papers and manually
write a draft comparative summary for the same
topic mentioned in each comparative citation based
on the crucial sentences in the papers. Secondly,
five other graduate students who are professionals
in the works of selected 32 papers read and mod-
ify the draft comparative summaries until they all
agree that complete information such as the com-
monalities and differences and the salience within
papers are included. The generated comparative
summaries serve as the ground truth. We end up
with a dataset that includes comparative citations,
the citing paper, the cited papers, and the reference
summaries for each citation.

5 Comparative Graph-based Scientific
Summarization

We propose the comparative graph-based summa-
rization method (CGSUM for short). The overview
of the method is shown in Figure 3. The core idea
of the method is to select sentences by calculating
the salience of the sentences and estimating the
degrees to which the sentences reflect the common-
alities and differences between papers.

5.1 Construction of Comparative Graph

In the same document, a sentence receives posi-
tive influence from sentences that correlate to it,
whereas in the different documents, a sentence re-
ceives negative influence from sentences that cor-
relate to it (Li et al., 2008). And citations contain
common topics between papers. For our task, there
are three different relationships between two sen-
tences: two sentences occurring in a same paper
(Intra-paper Relationship); two sentences occurring
in two different papers (Inter-papers Relationship);
and the sentence related to citation texts (Citation-
text Relationship). All three relationships are used.
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Figure 3: Overview of the comparative graph-based scientific summarization method CGSUM.
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Figure 4: Example of a comparative graph that consid-
ers three different relationships between sentences. In
this example, the graph contains five subgraphs {CIT,
CP, RP1, RP2, DS}, where CIT denotes a comparative
citation, CP denotes a citing paper, RP1 and RP2 denote
two reference papers, and DS denotes the dynamic sum-
mary which consists of summary sentences generated
so far and is initially empty and updated iteratively.

The above three relationships are used to con-
struct the comparative graph for papers and cita-
tions. As is shown in Figure 4, the graph consists
of the citing paper subgraph (the right part of the
figure), the reference paper subgraphs (the left part
of the figure) and the citation subgraph (the blue
circle in the right part). To avoid redundancy, we
introduce the dynamic summary subgraph (the cir-
cle in the middle part) which consists of summary
sentences generated so far, and compare candidate
sentences with the dynamic summary.

Intra-paper edges (directed solid edges) cor-
respond to Intra-paper relationships. These edges
are directed because sentences in a paper are se-
quentially ordered. If one sentence occurs before
another sentence in a paper, the direction of the
Intra-paper edge is from the former to the latter.
The weights of these edges are set as similarities
between sentences. These edges can be used to
compute the salience of sentences.

Inter-paper edges (undirected solid edges) cor-
respond to Inter-paper relationships. The weights
of these edges are set as negative similarities be-
tween sentences. These edges can be used to com-
pute differences between sentences.

Citation-text edges (undirected dotted edges)
correspond to Citation-text relationships. Weights
of these edges are similarities between the sen-

tences in the citation and papers, reflecting the
common topic in papers and citation.

5.2 Sentence Ranking and Selecting

The ranking scores of sentences are supposed to
reflect the salience of sentences within papers, the
degree to which sentences capture commonalities
between the papers and citation, and the degree
to which sentences capture differences between
papers and between papers and the dynamic sum-
mary. As is shown in Task Definition, each paper
is extracted to produce the comparative summary,
where the sentences are salient within the paper
that they belong. Sentences extracted from each
paper are related to citation and reflect the common-
ality between papers. Besides, the extracted sen-
tences are different from those extracted from other
papers, which captures the difference between pa-
pers. Three estimators that calculate the scores
of salience, commonalities and differences of sen-
tences, are proposed on the comparative graph.

Salience estimator calculates the salience score
of a sentence node by summing up the weights
of its outcoming Intra-paper edges and subtract-
ing the weights of its incoming Intra-paper edges.
The contributions of any two sentences to their re-
spective centrality are influenced by their relative
positions in a document. The sentences before are
central, while the sentences after supplementing
them. Specifically, a sentence is salient if it has
many similar sentences after the sentence. Other-
wise, a sentence is redundant if it has many sim-
ilar sentences before it. In the constructed graph,
Intra-paper edges are directed from the sentences
before (OUT ) to the sentences after (IN ). There-
fore, for a sentence sp, the outcoming Intra-paper
edges contribute positively to its salience while the
incoming Intra-paper edges contribute negatively
to its salience. Equation 1 is for calculation of the
salience score, where α, β ∈[0,1], and α+β=1.

SAL(sp) = α
∑

so∈OUT
simp,o − β

∑

si∈IN
simp,i, (1)
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Commonality estimator calculates the com-
monality score of a sentence node by summing
up the weights of its Citation-text edges. The ci-
tation bridges the citing paper and the reference
papers and contains the commonality of the topic
shared by the papers. It is reasonable to believe
that the more similar the sentences with the citation,
the more common information the sentences con-
tain. Equation 2 is for calculations of commonality
scores, where the sentences sp are in papers and
the sentences scit are in citation.

COM(sp) =
∑

scit∈CIT
simp,cit, (2)

Difference estimator calculates the difference
score of a sentence node by summing up the
weights of Inter-paper edges of the sentences. Sen-
tences from different papers introduce the common
topic from different aspects. Avoiding redundancy
brings more differences. Our extractive method
is iterative, which generates summaries by select-
ing sentences from papers in order of publication
time. To avoid redundancy, we add an extra paper
named dynamic summary. Dynamic summary is a
dynamic paper consisting of the sentences of sum-
mary generated so far. It is initially empty and ends
up being a comparative summary. The negative
influence between the dynamic summary and pa-
pers waiting to be summarized is used to calculate
the difference score of a sentence. Equation 3 is
for calculations of difference scores, where scp is
a sentence in the citing paper, srp is a sentence in
the reference papers and sds is a sentence in the dy-
namic summary. Weights of Inter-paper edges are
set as negative similarity values, and the difference
scores are also of negative values. The higher dif-
ference score of the sentence is, the more different
the sentence is from sentences in other papers.

DIF (scp) = −simcp,ds−
∑

srp∈RPs
simcp,rp, (3)

The salience score of a sentence reflects the
salience of the sentence within the paper, the com-
monality score reflects the commonality of topic in-
formation contained in the sentence, and the differ-
ence score reflects different aspects of knowledge
of the topic discussed in the citation. Equation 4 lin-
early interpolates the three scores as the final rank-
ing score of the sentence, where λ1, λ2, λ3 ∈[0,1],
and λ1 + λ2 + λ3=1.

Score(s) = λ1SAL(s) + λ2COM(s) + λ3DIF (s), (4)

Algorithm 1 CGSUM
Require: RPs, CIT, CP
Ensure: Comparative Summary

for RP in RPs do
for sent in RP do

score = λ1SAL(sent)+λ2COM(sent)+λ3DIF(sent)
Add (sent, score) into SenScore

end for
Rank and select sent into Comparative Summary
Clear SenScore

end for
Select CIT into Summary
for sent in CP do

score = λ1SAL(sent)+λ2COM(sent)+λ3DIF(sent)
Add (sent, score) into SenScore

end for
Rank and select sent into Summary
Return Comparative Summary

With the sentences of each paper ranked by the
final ranking scores, we select sentences to generate
summaries. As is shown in the Pseudo code. To
ensure that every papers can be summarized, we
select from each and use the citation to bridge the
reference papers and citing paper.

6 Experiments

6.1 Datasets

Dataset CSSC DUC2006 DUC2007

Domain Sci News News
Query Long Long Short
Clusters 40 50 45
Documents 3-5 25 25

Table 1: Statistics of the three datasets.

Experiments on comparative scientific summa-
rization are carried out on CSSC. Additional exper-
iments are carried out on DUC2006 and DUC2007
to show the generalization of the proposed method
to multi-document summarization. As is shown in
Table 1, CSSC contains citations over 40 clusters
with three to five scientific papers each. DUC2006
and DUC2007 contain long queries over 50 clusters
and short queries over 45 clusters, respectively.

6.2 Comparing methods

There are four kinds of comparing methods:
The first four methods: (1) ORACLE returns

a extractive sentences subset with the highest
ROUGE scores. (2) SIM2GOLD and (3) SIM2CIT,
respectively, select three sentences which are most
similar to the reference summary and the citation
texts from each paper. (4) LEAD returns lead sen-
tences (up to three) of each paper.
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Models CSSC CSSC (concatenated)

R-1 R-2 R-L R-SU4 R-1 R-2 R-L R-SU4
ORACLE (extractive) 57.4 39.1 55.3 40.7 57.4 39.1 55.3 40.7
SIM2GOLD 54.1 36.9 52.6 35.9 53.4 36.5 50.1 33.8
SIM2CIT 43.9 22.3 41.1 24.2 38.0 19.5 40.4 23.0
LEAD 43.5 21.7 40.7 23.6 33.3 14.4 30.9 16.3

Heuristic
RANDOM (motivated by (Xing et al., 2020)) 22.7 4.1 15.6 4.0 23.3 4.8 15.8 3.9
COPY-CIT (motivated by (Xing et al., 2020)) 33.6 18.0 30.1 18.3 33.6 18.0 30.1 18.3

Multi-document
Summpip (Zhao et al., 2020) (reproduce) 43.4 18.6 38.6 21.3 36.4 15.6 31.6 18.4
QUERYSUM (Xu and Lapata, 2020) (reproduce) 42.2 18.5 38.4 21.7 — — — —
TIF-IDF-Sum (Lamsiyah et al., 2021) 42.8 19.2 38.1 22.3 — — — —

Graph-based
TextRank (Mihalcea and Tarau, 2004) (reproduce) 41.2 15.0 37.4 16.6 32.4 12.3 31.2 13.2
LexRank (Erkan and Radev, 2004) (reproduce) 42.1 18.0 37.5 18.9 36.3 11.5 31.8 15.0
PACSUM (Zheng and Lapata, 2019) (reproduce) 42.3 19.1 37.5 21.6 37.9 14.2 33.3 17.3
HIPORANK (Dong et al., 2021) (reproduce) 42.0 17.9 37.5 15.3 — — — —

Ours
CGSUM-TF-IDF 47.2 25.5 43.5 27.1 41.6 17.6 36.4 19.9
CGSUM-BERT 48.6 28.5 45.3 28.7 42.1 20.4 40.8 21.3

Table 2: Automatic evaluation results on CSSC and CSSC(concatenated). Bold indicates the best result.

Heuristic: (1) RANDOM randomly selects three
sentences of each paper. (2) COPY-CIT treats the
citation texts as the output.

Multi-document: (1) Summpip (Zhao et al.,
2020) is an unsupervised graph-based method for
multi-document summarization. (2) QUERYSUM
(Xu and Lapata, 2020) is a query-focused frame-
work for estimating relevant text segments, and (3)
TF-IDF-Sum (Lamsiyah et al., 2021), which esti-
mates relevant sentences for query-focused multi-
document summarization.

Graph-based: (1) TextRank (Mihalcea and Ta-
rau, 2004) and (2) LexRank (Erkan and Radev,
2004) are unsupervised methods based on Markov
random walks. (3) PACSUM (Zheng and Lapata,
2019) and (4) HIPORANK (Dong et al., 2021) are
directional graph-based methods considering the
relative position and the hierarchy, respectively.

6.3 Results on CSSC

6.3.1 Automatic evaluations
We evaluate our models with ROUGE (Lin, 2004),
reporting the F1 scores for ROUGE-1, ROUGE-
2, ROUGE-L, and ROUGE-SU4. The test results
are shown in Table 2, where CSSC (concatenated)
concatenates the citing and the cited papers into one
for each. The test results on CSSC (concatenated)
are used to verify the hypothesis that it is necessary
to select from each document.

Our models outperform comparative baselines
on CSSC. The results of COPY-CIT show the par-
ticularity of the task in this paper and deduct that

citation generation does not match our task. Our
proposed models, CGSUM-TF-IDF and CGSUM-
BERT, obviously outperform the baseline models.
This result proves the effectiveness of our com-
parative graph-based summarizer, which considers
different relationships between sentences. It re-
quires the model to capture the critical content of
the cited paper and to capture the attitude of the
citing paper to the cited paper. The model not only
needs to generate fluent and informative text but
also needs to ensure contextual coherence. The
results on CSSC are all higher than the results on
CSSC (concatenated), which means it is necessary
to select from each document because it ensures
that the generated summary can reflect the salience,
commonality, and difference of each document,
which avoids information miss.

6.3.2 Human evaluations

We adopt the QA paradigm and the similarity be-
tween the gold summaries and system summaries to
evaluate summaries quality. For the QA paradigm,
reviewers create questions (e.g. salient content of
each paper, common topic in the citation, and differ-
ent aspects concerning the common topics) based
on gold summaries. They examine whether system
summaries can answer these questions. The more
detailed questions the system summaries can an-
swer, the better they are. For the similarity, review-
ers assess the degree to which system summaries
retain the salience of papers and the commonality
and difference between papers. Specifically, the
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Models CSSC

SAL COM DIF COH ALL
ORACLE 4.50 4.78 4.36 4.06 4.44
SIM2GOLD 4.38 4.36 4.20 3.96 4.24
LEAD 3.56 3.16 3.68 3.24 3.42
Summpip (2020) 3.68 3.80 3.58 3.42 3.68
QUERYSUM (2020) 3.58 4.06 3.36 3.24 3.56
PACSUM(2019) 3.62 3.82 3.50 3.38 3.58
HIPORANK(2021) 3.72 3.78 3.52 3.28 3.58
CGSUM-BERT 4.12 4.02 3.98 3.86 4.00

Table 3: Human evaluation results on CSSC. SALience,
COMmonality, DIFference, COHerence, ALL is the
average across all scores. Bold indicates the best result.

salience score is assessed by comparing the simi-
larities between system summaries and abstracts of
each paper. The commonality is assessed by com-
paring the similarities between system summaries
and citations. The difference is assessed by com-
paring the dissimilarity between system summaries
and abstracts of each paper on the common topic.
The coherence of system summaries is also taken
by assessing their readability. After two stages of
review, each reviewer gives each human evaluation
metric a score of 0.0-5.0 based on the questions
they created and the similarity they assessed. These
scores will be averaged to obtain a final score for
the system summary.

As is shown in Table 3, our models outperform
the baseline models. The COH score and the ALL
score of our models are especially higher than that
of the baselines. This result further demonstrates
the efficacy of our proposed models. Using the
salience, commonality and difference estimators,
CGSUM captures salience within papers and com-
monalities and differences between papers. Sum-
maries created by CGSUM are also more coherent
by using citations to join the contents of papers.

6.4 Results on DUC2006 and DUC2007

The results on DUC2006 and DUC2007 are sum-
marized in Table 4. GRSum (Wan, 2008) inte-
grated query-relevance into a Graph Ranking al-
gorithm. C-Attention (Li et al., 2017) compresses
multi-document summarization. The results show
that our models perform well on the DUC2006 and
DUC2007 datasets. Compared to the results ORA-
CLE gets, the results our models get mean that our
extractive models are almost close to the mostly
perfect extractive summaries at the sentence level.
The exciting conclusion shows that our compara-
tive graph-based models are promising to be ap-
plied for the multi-document summarization task.

Models DUC2006 DUC2007

R-1 R-2 R-SU4 R-1 R-2 R-SU4
ORACLE 40.6 9.1 14.8 41.8 10.4 16.0
LEAD 32.1 5.3 10.4 33.4 6.5 11.3

Graph-based
LexRank 34.2 6.4 11.4 35.8 7.7 12.7
GRSUM 38.4 7.0 12.8 42.0 10.3 15.6
TF-IDF-Sum 39.0 7.9 13.8 40.1 10.1 15.2

Compress-based
C-Attention 39.3 8.7 14.1 42.3 10.7 16.1
QUERYSUM 41.1 9.6 15.1 42.9 11.6 16.7

Ours
CGSUM-TF-IDF 39.8 8.2 14.0 41.0 9.8 15.5
CGSUM-BERT 40.1 8.4 14.3 41.2 10.3 15.7

Table 4: Automatic evaluation results on DUC2006
and DUC2007. Bold indicates the best result overall.
Underline denotes the best sentence-extractive results.

Models CSSC

R-1 R-2 R-L R-SU4
CGSUM-TF-IDF 47.2 25.5 43.5 27.1
w/o Salience ↓43.7 ↓19.8 ↓39.5 ↓22.4
w/o Commonality ↓41.5 ↓17.8 ↓37.8 ↓20.7
w/o Difference ↓45.3 ↓23.4 ↓41.3 ↓25.3
CGSUM-BERT 48.6 28.5 45.3 28.7
w/o Salience ↓42.2 ↓18.4 ↓38.6 ↓20.9
w/o Commonality ↓44.8 ↓22.3 ↓41.5 ↓24.3
w/o Difference ↓43.7 ↓19.8 ↓40.0 ↓22.3

Table 5: Ablation results on CSSC. ↓ denotes decrease.

6.5 Ablation Studies
Ablation studies in Table 5 are carried out to show
effects of two representations and three estimators.

• Representations include TF-IDF and BERT.
BERT performs better than TF-IDF.

• w/o Salience represents CGSUM without the
salience estimator, and it performs worse than
CGSUM with the salience estimator, indicat-
ing that salience estimator is effective in cap-
turing salient information within papers.

• w/o Commonality represents CGSUM with-
out the commonality estimator, and it per-
forms worse than CGSUM with the common-
ality estimator, indicating that commonality
estimator is effective because the estimator
can find the commonality between papers.

• w/o Difference represents CGSUM without
the difference estimator, and it performs not as
well as CGSUM with the difference estimator,
implying that difference estimator is effective.

Removing each estimator leads to a drop of the
performance of CGSUM. Meaning estimators cap-
ture different information to produce summaries.
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GOLD:
All three works belong to the field of Natural Language Processing and are all about language representation models. [Peters et al., 2018] introduced a type of 
deep contextualized word representation that models both complex characteristics of word use, and how these uses vary across linguistic contexts. The vectors 
are derived from a bidirectional LSTM that is trained with a coupled language model objective on a large text corpus. [Radford et al., 2018] explored a semi-
supervised approach for language understanding tasks using a combination of unsupervised pre-training and supervised fine-tuning. The approach introduces a 
framework for achieving strong natural language understanding with a single task-agnostic model through generative pre-training and discriminative fine-tuning. 
[Devlin et al., 2018] introduced a language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers and 
is designed to pre-train deep bidirectional representations from the unlabeled text by jointly conditioning on both left and right context in all layers.

Comparative Citation from (Devlin et al., 2018):
Unlike recent language representation models (Peters et al., 2018; Radford et al., 2018), BERT is designed to pre-train deep bidirectional 
representations from unlabeled text by jointly conditioning on both left and right context in all layers.

CGSUM:
[Peters et al., 2018]: We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use, and (2) 
how these uses vary across linguistic contexts. We use vectors derived from a bidirectional LSTM that is trained with a coupled language model objective on a 
large text corpus. Unlike previous approaches for learning contextualized word vectors (Peters et al., 2017; McCann et al., 2017), ELMo representations are 
deep, in the sense that they are a function of all of the internal layers of the biLM. [Radford et al., 2018]: We demonstrate that large gains on these tasks can 
be realized by generative pre-training of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. 
We introduced a framework for achieving strong natural language understanding with a single task-agnostic model through generative pre-training and 
discriminative fine-tuning. By pre-training on a diverse corpus with long stretches of contiguous text our model acquires significant world knowledge and 
ability to process long-range dependencies which are then successfully transferred to solving discriminative tasks such as question answering. [Devlin et al., 
2018]: Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional 
representations from unlabeled text by jointly conditioning on both left and right context in all layers. The major limitation is that standard language models 
are unidirectional, and this limits the choice of architectures that can be used during pre-training. We introduce a new language representation model called 
BERT, which uses masked language models to enable pre-trained deep bidirectional representations.

Comparative Citation from (Tran et al., 2020):
To encode the article text we use RoBERTa. Unlike GloVe (Pennington et al., 2014) and word2vec (Mikolov et al., 2013) embeddings, 
RoBERTa uses BPE which can encode any word made from Unicode characters.

GOLD:
All three studies are about embeddings for text. By subsampling of the frequent words. [Mikolov et al., 2013] obtained significant speedup and also learn more 
regular word representations. The training objective of the Skip-gram model is to find word representations that are useful for predicting the surrounding words 
in a sentence or a document. [Pennington et al., 2014] used their insights to construct a new model for word representation which they called GloVe. They 
constructed a model that utilizes the benefit of count data while simultaneously capturing the meaningful linear substructures prevalent in recent log-bilinear 
prediction-based methods like word2vec. To encode the article text, [Tran et al., 2020] used RoBERTa, a recent improvement over the popular BERT model.
RoBERTa is a pre-trained language representation model providing contextual embeddings for text. It consists of 24 layers of bidirectional transformer blocks.

CGSUM:
[Mikolov et al., 2013]: The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations
that capture a large number of precise syntactic and semantic word relationships. By subsampling of the frequent words we obtain significant speedup and also 
learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling, and show how to train 
distributed representations of words and phrases with the Skip-gram model and demonstrate that these representations exhibit linear structure that makes 
precise analogical reasoning possible. [Pennington et al., 2014]: Our model efficiently leverages statistical information by training only on the nonzero elements 
in a word-word co-occurrence matrix, rather than on the entire sparse matrix or on individual context windows in a large corpus. The model produces a word 
vector space with meaningful sub-structure utilizes the main benefit of count data while simultaneously capturing the meaningful linear substructures prevalent 
in recent log-bilinear prediction-based methods like word2vec. The result, GloVe, is a new global log-bilinear regression model for the unsupervised learning of 
word representations that outperforms other models on word analogy, word similarity, and named entity recognition tasks. [Tran et al., 2020]: Unlike GloVe
(Pennington et al., 2014) and word2vec (Mikolov et al., 2013) embeddings, RoBERTa uses BPE which can encode any word made from Unicode characters. In 
BPE, each word is first broken down into a sequence of bytes. Common byte sequences are then merged using a greedy algorithm.

Figure 5: Case studies on examples taken from the CSSC dataset.

6.6 Case Study
Case studies in Figure 5 are carried out on examples
taken from CSSC. All comparable works related to
the corresponding comparative citation are marked
as [author, year]. The commonality is marked in
green and italicized while difference is marked in
green and underlined. As the Figure 5 shows, sum-
maries created by CGSUM cover detailed salience
within papers and commonalities and differences
between papers, and are also quite coherent.

7 Conclusion

This paper proposes the novel task of comparative
citation-guided summarization of scientific papers,
which aims to summarize commonalities and differ-
ences between the articles and related to the compa-
rable topic mentioned in comparative citations. The

CSSC dataset for the task is constructed, which con-
tains 40 groups of comparable scientific papers and
corresponding reference summaries by annotating
and collecting comparative citations. The unsuper-
vised comparative graph-based summarization CG-
SUM method is proposed to generate comparative
summaries. It utilizes three different relationships
of sentences to build a comparative graph and cal-
culates the scores of salience, commonality and
difference without large-scaled data. Experiments
on CSSC show that CGSUM outperforms base-
lines. Experiments on DUC2006 and DUC2007
demonstrate that CGSUM can be generalized to
multi-document summarization tasks. In the future,
we would like to study more types of relationships
between documents and research the comparative
scientific summarization cross the fields.
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A Appendix

A.1 Citation Function Annotation Proportion
of Scientific Papers

Table 6 shows the proportions of Neutral and Com-
parative citations annotated by some annotation
schemes (Teufel et al., 2006a; Dong and Schäfer,
2011; Jha et al., 2017; Jurgens et al., 2018; Su et al.,
2019). From the results, we can find that Neutral
always has the highest percentage, while Compar-
ative always has a low percentage. In conclusion,
comparative citations are always challenging to
discover.

Schemes Key Categories Proportion

Teufel et al. (2006a)

Neut 59.62%
CoCoGM 4.65%
CoCoR0 1.27%

CoCo- 1.54%
CoCoXY 3.11%

Dong and Schäfer (2011) Background 65.04%
Comparison 3.97%

Jha et al. (2017) Neutral 61.15%
Comparison 5.82%

Jurgens et al. (2018) BACKGROUND 51.13%
COMPARISON 18.07%

Su et al. (2019) Neutral 70.83%
Compare 6.42%

Table 6: The proportions of key citations.

A.2 Guideline for Annotating Citation

Our guideline is similar to the scheme of (Teufel
et al., 2006a) but with different classifications. Tak-
ing the functions of PModi and PBas as examples,
they belong to Positive in Teufel’s. However, al-
terations accompany modifications and bases and
we thus classify them as Comparative. Besides, we
add the Future function for it is also crucial and
unique in researches.

A.3 Annotating Citations of Surveys

We annotate citations in surveys. Specifically, we
collect eight scientific surveys from the Artificial
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(a) Annotations between A&B.

(b) Annotations between A&C.

(c) Annotations between B&C.

Figure 5: Consistency of annotations of surveys between
three annotators. Neu, Pos, Neg, Fut, and Com stand for
the Neural, Positive, Negative, Future, and Comparative,
respectively.

Categories Description

Neutral Normal descriptions of the cited works, or not
enough textual evidence for other categories.

Positive Authors agree with the cited works, their
work and the cited works support each other.

Negative Authors disagree with the cited works, their
work is the opposite of the cited works.

Future Authors show some hypothesis or feasible
future works based on the cited works.

Comparative Comparisons/Alterations between the works.

Table 7: Our annotating guideline.

Neutral Positive Negative Future Comparative

A 73.81% 15.82% 7.25% 1.15% 1.98%
B 72.32% 15.98% 7.41% 0.99% 3.29%
C 71.33% 16.31% 7.91% 1.32% 3.13%

Kappa(n=5; N=607; k=3)=0.8353; Macro-F=0.7868

Table 8: Citations proportions with Kappa and Macro-F.

Intelligence area and extract 607 citations from sur-
veys. Three graduate students use our guideline
to annotate 607 citations. The annotation results
are shown in Table 8. Figure 5 and the values of
Kappa and Macro-F in Table 8 also indicate that
the annotations are of high consistency. It can be
seen from Table 8 that in scientific surveys, the
proportion of citations in the Comparative is much
lower than that in other categories and is close to
Future, which rarely appears. In comparison, the
proportion of citations in the Neutral function is
the highest. In conclusion, there are usually lit-
tle comparisons in surveys. Therefore, the tasks
of related work generation and survey generation
are not suitable for generating differences in scien-
tific papers, while comparative summaries capture
commonalities and differences.

A.4 Implementation Details
We utilize TF-IDF and BERT (Devlin et al.,
2018) to get sentence representation. The hyper-
parameters (α, β) are set as (0.9, 0.1), (λ1, λ2, λ3)
are set as (0.33, 0.33, 0.33).

https://github.com/google-research/bert
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Abstract
Automated radiology report generation aims to
generate paragraphs that describe fine-grained
visual differences among cases, especially
those between the normal and the diseased.
Existing methods seldom consider the cross-
modal alignment between textual and visual
features and tend to ignore disease tags as an
auxiliary for report generation. To bridge the
gap between textual and visual information,
in this study, we propose a “Jointly learning
framework for automated disease Prediction
and radiology report Generation (JPG)” to im-
prove the quality of reports through the interac-
tion between the main task (report generation)
and two auxiliary tasks (feature alignment and
disease prediction). The feature alignment and
disease prediction help the model learn text-
correlated visual features and record diseases
as keywords so that it can output high-quality
reports. Besides, the improved reports in turn
provide additional harder samples for feature
alignment and disease prediction to learn more
precise visual and textual representations and
improve prediction accuracy. All components
are jointly trained in a manner that helps im-
prove them iteratively and progressively. Exper-
imental results demonstrate the effectiveness
of JPG on the most commonly used IU X-RAY
dataset, showing its superior performance over
multiple state-of-the-art image captioning and
medical report generation methods with regard
to BLEU, METEOR, and ROUGE metrics.

1 Introduction

Writing radiology reports and predicting disease
labels are two essential procedures in clinical prac-
tice. However, manually creating them by radiolo-
gists is laborious and time-consuming (Jing et al.,
2018; Chen et al., 2021b). Therefore, automated
radiology report generation and disease prediction,
which aim to generate formal-format descriptive
texts (Fig. 1 Findings) and clinical conclusive ter-
minologies (Fig. 1 MeSH), have received increas-
ing attention recently (Chen et al., 2020; Miura

Findings:  
The	XXXX examination consists of frontal and	lateral	radiographs	
of	the	chest. The cardiac silhouette is not enlarged. Calcified	gran-
uloma is	again	seen	in	the	right	upper	lobe.	There	has been	apparent	
interval	increase in low density	convexity	at	the	left	cardiophrenic
XXXX.	There	is	no	consolidation,	pleural	effusion	or	pneumothorax.		
MeSH:  
Calcified	Granuloma/lung/upper	lobe/right;	
Density/	cardiophrenic angle/left.

Figure 1: Chest X-ray images and an accompanying
report, including Findings and MeSH labels, from the
IU X-RAY dataset. We marked the aligned visual and
textual features in different colors for better illustration.

et al., 2021; Liu et al., 2021b; Nguyen et al., 2021;
Liu et al., 2021c; You et al., 2021a). In particular,
they not only improve the efficiency of the entire
procedure and liberate people from burdensome
workloads, but also maintain the high quality of
healthcare.

In spite of substantial improvements (Zhang
et al., 2020; Wang et al., 2022; Liu et al., 2021a;
Shao et al., 2021) have been achieved in the au-
tomatic radiology report generation and disease
prediction, several challenges remain unsolved.
Firstly, following traditional image captioning
paradigms (Bhattacharya et al., 2022), current
methods mainly adopt a standard encoder-decoder
framework with convolutional neural networks
(CNNs) encoding radiographs and recurrent neu-
ral networks (e.g., LSTM/GRU) or non-recurrent
neural networks (e.g., Transformer) decoding re-
ports. As a result, visual and textual information
are represented by different encoding methods in
their own specific embedding spaces, so that the
features are misaligned (e.g., the visual represen-
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tation of the regions circled in yellow in Fig. 1 is
significantly different from the textual representa-
tion of “right upper lobe” in Findings). Therefore,
directly applying these visual features to the down-
stream task will lead to low-quality reports (Chen
et al., 2021a,b; Lu et al., 2017).

Furthermore, most existing disease prediction
models (Bhattacharya et al., 2022; Sun et al., 2021;
Gheflati and Rivaz, 2021; Park et al., 2022) at-
tach a single disease label to each image, where
its context (e.g., location, severity, and affected
organs) is seldom considered. Automatically min-
ing context-aware disease labels can thus make it
easier to understand the disease. Finally, current ap-
proaches take only visual information as the input
of the downstream report generation, which ignores
context-aware disease tags as auxiliary textual in-
formation. Intuitively, as high-level conclusive fea-
tures, disease tags can more effectively guide the
text generation and alleviate missing keywords.

To overcome the aforementioned problems, we
propose to integrate radiology report generation
and context-aware disease prediction into an over-
all framework (JPG), where context-aware disease
labels serve as high-level auxiliary information
for facilitating the report with the lesion location.
Specifically, both visual and textual features are
first projected into a shared subspace via a shared
base matrix to learn new visual and textual rep-
resentations. The shared base matrix acts as an
intermediate medium, which enables visual and
textual information to sufficiently interact and fuse
in a manner that relieves misalignment between
the features. As for the second issue, we train a
CNN-RNN architecture to automatically search for
context-aware disease labels. Instead of directly
using the output of the CNN, the aligned visual fea-
tures are applied to initialize the RNN hidden state
for context-aware disease label prediction. Conse-
quently, the model can improve the classification
accuracy and disease label quality. Finally, we
incorporate context-aware disease labels as high-
level auxiliary features together with aligned visual
features into the decoder, so that the comprehensive
disease tags can better guide the report generation.

We highlight the contributions as follows:
•We propose to learn visual and textual repre-

sentations through a shared subspace to relieve the
misalignment across modalities, which can also be
easily transplanted to other multi-modal tasks.
• Instead of directly using single labels in the

disease prediction task, we propose a strategy to
mine context-aware labels to provide a more de-
tailed textual conclusion for lesions in radiographs.
• As far as we know, we are the first to use

predicted disease contextual labels as high-level
auxiliary information for facilitating and guiding
the report generation process. Empirical results
demonstrate that this scheme proposal outperforms
state-of-the-art competitors in terms of the auto-
mated radiology report generation.

2 Related Work

2.1 Image Captioning

Image captioning aims to generate sentences that
describe images, and it has achieved great success
in the cross-modal area (Cornia et al., 2020; Zhou
et al., 2020; Shi et al., 2021). Inspired by encoder-
decoder architectures used in machine translation,
most existing image captioning approaches typ-
ically adopt the CNN-RNN framework (Huang
et al., 2019; Yan et al., 2021; You et al., 2021b),
where a CNN is used to extract visual features from
a given image, and a recurrent or non-recurrent
network is used to generate the caption. To align
visual features with textual features, existing meth-
ods adopt a memory network (Chen et al., 2020,
2021b), a relation/consensus graph (Wang et al.,
2021a; Bhattacharya et al., 2022), a Transformer
network (Ji et al., 2021) or a language model (Sariy-
ildiz et al., 2020; Gupta et al., 2020) to help vi-
sual features learn new semantic representations.
Among those studies, the most related ones (You
et al., 2018; Akbari et al., 2019) directly project vi-
sual features to a textual space and consider textual
features as basis vectors to learn new representa-
tions for visual features. In contrast, in the present
study, we design a shared subspace and a base
matrix as an intermediate medium to learn new rep-
resentations for both visual and textual features,
which can thereby be better aligned.

2.2 Radiology Report Generation

As one of the applications and extensions of image
captioning (Cornia et al., 2020; Zhou et al., 2020;
Shi et al., 2021; Huang et al., 2019; Yan et al., 2021)
(Appendix 2.1) to the medical domain, radiology
report generation aims to annotate radiolographs
with much more detailed professional reports. Ac-
cording to the strategies for aligning radiological
visual and textual features, current methods can be
generally classified into three categories: 1) vari-
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ant attention mechanism-based methods seek to
integrate and fuse visual and textual features via
advanced attention (Jing et al., 2019; Wang et al.,
2018; Liu et al., 2019), among which Jing et al.
(2018) propose a multi-task hierarchical model
with a co-attention mechanism to combine visual
and textual features to generate reports. 2) cross-
modal memory network-based approaches record
the alignment between images and texts through a
shared matrix to facilitate the information interac-
tion across modalities (Yin et al., 2019; Chen et al.,
2020, 2021b; Wang et al., 2021b). 3) graph convo-
lution network-based models aggregate visual and
textual features on pre-trained knowledge graphs or
newly constructed multi-modal networks (Zhang
et al., 2020; Hu et al., 2019). JPG offers a new
way beyond the above studies to generate radiol-
ogy reports, since a shared subspace is provided
to learn new representations for both visual and
textual features in a manner that produces more
accurate descriptions for report generation.

2.3 Medical Image Classification

Existing methods have achieved remarkable suc-
cess at predicting single disease labels for medical
images (Bhattacharya et al., 2022; Sun et al., 2021;
Gheflati and Rivaz, 2021; You et al., 2022). In par-
ticular, informative disease labels have been mined
with context information. For example, Shin et al.
(2016) predicts disease labels by leveraging a vari-
ant of the CNN-RNN framework. Moreover, PP-
KED (Liu et al., 2021b) examines abnormal regions
and assigns disease topic tags to the abnormali-
ties. Differing from the above-mentioned methods,
our JPG adopts a shared base metric for learning
new visual representations and takes it as input for
context-aware disease prediction to improve the flu-
ency of disease labels and classification accuracy.

3 Methodology

Figure 2 exhibits an overview of JPG, which con-
sists of three chief components: (A) shared sub-
space representation learning, (B) context-aware
disease prediction, and (C) radiology report gener-
ation. Hereafter, we will give formal notations of
variables and task definitions concerning JPG, and
introduce each component subsequently in detail.

3.1 Notations and Task Definition

Given an X-ray image I as input, JPG is designed
to automatically generate a sequence of context-

aware disease labels c and a radiology report Y.
Specifically, we divide I into p patches, and apply
pre-trained CNN-based ResNet (He et al., 2016)
as the visual extractor to learn its patch features
as X = {x1, x2, . . . , xp}, where xp ∈ Rdx with dx
representing the dimensionality of patch features.
The target output is the corresponding radiology
report Y = {y1, y2, . . . , yn}, where yn ∈ Rdy is
the word embedding of the n-th generated token,
and n denotes the length of the report. Formally,
the entire task can be defined as two parts according
to Bayes’ theorem as follows:

p(Y, c|X) ∝ p(Y|c,X) · p(c|X), (1)

where the radiology report generation process
p(Y|c,X) can be formalized as a recursive appli-
cation of the chain rule as

p(Y|c,X) =

n∏

i=1

p(yi|y<i, c,X), (2)

where y<i = {y1, . . . , yi−1} represents the previ-
ously generated tokens so far, and n is the total
amount of tokens in target sequence Y.

As described in Eq. 1, jointly learning to align di-
agnostic disease prediction and radiological report
generation can be classified as two subtasks in or-
der. In detail, we first train the model to maximize
the probability of producing context-aware disease
labels for an X-ray image p(c|X), then maximize
the probability of generating a corresponding ra-
diology report p(Y|c,X) conditioned on context-
aware disease labels c and visual features X.

3.2 Visual Extractor
As shown in Fig. 2, given a radiology image I orga-
nized in 2-dimension format as input, we employ
ResNet (He et al., 2016) as a pre-trained visual
extractor. Normally, it first decomposes the image
into regions of equal size, i.e., patches, and then
extracts visual features of each patch from the out-
put of its last convolutional layer. Afterwards, the
extracted patch representations x1, x2, . . . , xp are
concatenated to constitute the source input for all
subsequent modules with the form of visual feature
sequence X ∈ Rp×dx as

{x1, x2, . . . , xp} = fv(I). (3)

Note that any type of pre-trained CNNs, e.g.,
VGG (Simonyan and Zisserman, 2015) or
DenseNet (Huang et al., 2017), can be used for
the purpose.
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The XXXX examination consists of frontal 
and lateral radiographs of the chest. The 
cardiac silhouette is not enlarged. There has 
been apparent interval increase in low density
convexity at the left cardio phrenic XXXX. 
Calcified granuloma  is again seen in the 
right upper lobe.  There is no consolidation,
pleural  effusion or pneum.
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Chest X-ray Image (B) Context-aware Disease Prediction

Figure 2: Model overview. JPG first captures textual and visual features through word embeddings and a visual
extractor. Those features are then projected onto a shared subspace ((A) as a 3-dimension example) to learn new
representations based on shared basis vectors. Finally, a RNN decoder (B) and a Transformer-based encoder-decoder
architecture (C) are employed to generate context-aware disease labels and radiology reports, respectively.

3.3 Shared Subspace Representation

Considering that visual and textual features are
extracted by different encoding methods (Kim et al.,
2020; Huang et al., 2020), directly applying patch
features generated by the visual extractor as the
input for the downstream text generation task will
lead to non-fluent, low-quality reports with missing
keywords. To solve this problem, as shown in Fig. 2
(A), both visual and textual features are projected
into a shared subspace, and a trainable shared base
matrix is designed to learn new representations for
them. Therefore, textual and visual features can be
fully integrated and interacted to relieve the feature
discontinuity across modalities.

Specifically, we define a shared base matrix B
with m basis vectors as B = {b1,b2, . . . ,bm},
where B ∈ Rm×db with db representing the dimen-
sionality of each basis vector. Besides, based on
the assumption that the dimension of the shared
subspace is ds, visual features X, textual features
Y, and shared base matrix B are projected into the
shared subspace respectively as

x̃i = Wx · xi & X̃ = X ·Wx, (4)

ỹi = Wy · yi & Ỹ = Y ·Wy, (5)

b̃i = Wb · bi & B̃ = B ·Wb, (6)

where Wx ∈ Rdx×ds , Wy ∈ Rdy×ds , and Wb ∈
Rdb×ds are trainable parameters.

To learn new visual and textual representations
given base matrix B, we calculate the consine sim-
ilarity between the previous visual and textual fea-
tures with B as

Sij = x̃Ti · b̃j & Gij = ỹTi · b̃j (7)

where T represents matrix transpose, Sij denotes
the similarity between the i-th visual feature x̃i and
the j-th basis vector representation b̃j . Similarly,
Gij is the similarity between the i-th textual feature
ỹi and b̃j . To prevent inaccurate representation
learning caused by an excessive weight of a certain
item, the similarities are further normalized by

Sij =
exp (Sij)∑m
k=1 exp (Sik)

(8)

Gij =
exp (Gij)∑m
k=1 exp (Gik)

. (9)

Finally, the new visual and textual representa-
tions are obtained as

rxi =
m∑

k=1

Sik · b̃k & ryi =
m∑

k=1

Gik · b̃k (10)

where rxi and ryi are the i-th new visual feature
and textual feature, respectively.

The above process guarantees the full integra-
tion between textual and visual information; that
is, the visual features of a certain patch and its
corresponding descriptive textual features maintain
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DATASET IMAGE REPORT PATIENT AVG. LEN.

TRAIN 5,226 2,770 2,770 37.56
VALID 748 395 395 36.78
TEST 1,496 790 790 33.62

Table 1: Basic statistics of IU X-RAY with respect
to its training, validation, and test sets. “AVG. LEN.”
represents the averaged word-based length of reports.

similar representations in the shared subspace. For
example, as shown in Fig. 2, the green solid line
and dotted line represent the visual and textual fea-
tures of left cardiophrenic, respectively, of which
ones with similar representations are gathered in
the 3D shared subspace as illustrated in Fig. 2 (A).

3.4 Context-aware Disease Prediction
Considering that a single disease label cannot fully
account for the context of an X-Ray image, in-
cluding location, severity, and organs affected by
a disease, mining context-aware labels for radio-
graphs and using them to train a classification layer
for disease prediction are proposed hereafter.

Mining and pre-training on single labels. In
accordance with Shin et al. (2016), we find 17 sim-
plest unique disease annotation patterns through
statistical analysis to label the images and retain
40% of the full dataset. GoogLeNet (Szegedy
et al., 2015) is used as the classification layer to
train the model on the retained cases. We addi-
tionally apply mini-batch normalization (Ioffe and
Szegedy, 2015) and random data dropout (Hinton
et al., 2012) to alleviate result deviation caused
by an unbalanced distribution between normal and
pathological cases. Since the majority of disease-
related MeSH terms contain up to 5 words, we con-
strain the GRU decoder to unroll up to 5 timesteps.
Specifically, we initialize the first decoder hidden
state as the output embedding of the classification
layer. The GRU decoder is then trained by minimiz-
ing the negative log likelihood between the output
sequence and the ground-truth:

LLoss = −
N∑

t=1

{ct = st|rx1 , . . . , rxp} (11)

where ct is the token output on the t-th timestep,
st is the t-th reference MeSH term, and N = 5.

Re-training on context-aware labels. The afore-
mentioned classification layer and GRU decoder
are considered as a pre-training procedure to mine

the context for previous primary disease labels in
the whole dataset. And 57 unique context-aware
disease labels on the side of the output of the GRU
decoder are obtained. The context-aware labels
summarize both the context information and textual
semantic information of the image. For example,
the coarse-grained label “calcified granuloma” can
be attached by more informative and detailed con-
text as “calcified granuloma in right upper lobe” or
“small calcified granuloma in left lung base”. This
additional labelling procedure improves the qual-
ity of clinical practice concerning X-ray diagnosis.
As shown in Fig. 2 (B), we re-train the classifica-
tion layer with 57 context-aware labeled cases, and
initialize the GRU hidden state with the output of
the classification layer. Eq. 11 is again used as an
objective function for the re-training process.

3.5 Automated Radiology Report Generation
As shown in Fig. 2 (C), we employ a Transformer-
based encoder-decoder architecture for automated
radiology report generation. New visual and textual
representations are functionalized as the input for
the Transformer encoder and decoder, respectively.

Since considering context-aware disease labels
as macro-level features also benefits clinical report
generation, we concatenate macro-level context-
aware labels with micro-level visual features as the
input for the Transformer encoder. Specifically, the
new representation of micro-level visual features
{rx1 , . . . , rxp} and macro-level context-aware la-
bel features c are first fed into the encoder as

{z1, . . . , zp, zc} = fe(rx1 , . . . , rxp , c), (12)

where fe(·) represents the Transformer encoder.
Then, resulting intermediate state {z1, . . . , zp, zc}
are fed into the decoder at each decoding step with
aligned textual representation of the previously gen-
erated sequence {ry1 , . . . , ryi−1}. The output at the
i-th timestep can thus be generated by using

yi = fd(z1, . . . , zp, zc, ry1 , . . . , ryi−1), (13)

where fd(·) refers to the Transformer decoder.

4 Experiments

4.1 Dataset
We carried out our experiments on the most widely-
used and conventional benchmark dataset, namely,
Indiana University Chest X-Ray Collection1 (IU X-
RAY) (Demner-Fushman et al., 2016). It contains

1https://openi.nlm.nih.gov/
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3, 955 fully de-identified handwritten radiology re-
ports from the Indiana Network for Patient Care
and 7, 470 corresponding chest X-ray images from
the hospitals’ picture archiving systems. As shown
in Fig. 1, each sample is associated with a frontal
and/or a lateral chest X-ray image, and each report
is comprised of several sections: MeSH2, Indica-
tion, Findings, and Impression, etc. In this work,
we use the Findings and MeSH sections as ground-
truth reports and disease labels, respectively.

Following the dataset preprocessing procedure
of previous studies (Li et al., 2018), we preprocess
the reports by tokenizing, converting tokens into
lower cases, and removing non-alphabetic tokens.
Samples without MeSH or Findings sections in the
dataset were excluded. We apply the same split,
i.e., 70%/10%/20% for the training/validation/test
set, as that stated in Li et al. (2018). The basic
statistics of IU X-RAY, in terms of numbers of
images, reports, patients, and average length of
reports with respect to each split set, are listed in
Table 1.

4.2 Baselines

The following excellent baselines are used to exam-
ine the effectiveness of the proposed approach on
radiology report generation: conventional image
captioning methods including NIC (Vinyals et al.,
2015), ADAATT (Lu et al., 2017), ATT2IN (Rennie
et al., 2017), and VisualGPT (Chen et al., 2021a);
and the ones proposed for the medical domain, e.g.,
COATT (Jing et al., 2018), HRGR (Li et al., 2018),
CMAS-RL (Jing et al., 2019), R2GEN (Chen et al.,
2020), and CMN (Chen et al., 2021b). In addi-
tion, BASE is a vanilla Transformer (Vaswani et al.,
2017) used as the backbone encoder-decoder archi-
tecture in our full model. We further implement
several ablated versions of JPG with the aim of
evaluating the different components in it.

4.3 Evaluation Metrics

The performance of the aforementioned baselines,
as well as our proposed method, was evaluated by
conventional natural language generation (NLG)
metrics, including BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2011), and
ROUGE-L (Lin, 2004), which compare model-
generated reports with ground-truth by referring
to the overlap of n-grams (BLEU-n), explicit word-
to-word matches (METEOR), and longest common

2https://www.nlm.nih.gov/mesh/meshhome.html

subsequence (ROUGE-L). The results based on
these metrics were obtained by the standard image
captioning evaluation tool3. We further measured
the disease prediction subtask as a multi-label clas-
sification problem by the micro-averaged F1 score.

4.4 Implementation Details

Two X-Ray images of a patient were used as the
input for both the report generation and disease
annotation subtasks to ensure consistency with pre-
vious studies (Li et al., 2018; Chen et al., 2021b),
where all the CNN input images were rescaled to a
size of 256× 256. We employed ResNet101 (He
et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) as the visual extractor to extract patch fea-
tures with a 7× 7× 2048-dimension feature map.
The maximum decoding sequence lengths are lim-
ited to 60 and 5 tokens for report generation and
disease annotation respectively by truncating and
zero-padding. 512-dimension word embeddings
with random initialization were fine-tuned during
training. We randomly initialized the shared sub-
space as a 512 × 2048 memory matrix, where
ds = 512, and 2048 is the number of shared ba-
sis vectors. We adopted GoogLeNet as the clas-
sification layer, and a single-layer GRU unrolling
up to five timesteps for context-aware disease la-
bel prediction. A 3-layer Transformer structure
with 8 attention heads and 512-dimension hidden
states was used in randomly initialized states as the
encoder-decoder backbone.

Our model is trained under a cross entropy loss.
As for the optimizer, Adam (Kingma and Ba, 2015)
with a learning rate of 1e−4 and an initial accumu-
lator value of 0.1 was used. We set the batch size
to 16, whereas the target sequences were decoded
through beam search with a beam size of 3 at test
time to balance the effectiveness and efficiency.

5 Results and Discussion

5.1 Performance of JPG

Table 2 lists the main results on the radiology report
generation task. Symbol † indicates statistically
significant differences of JPG from BASE using
T-test (Yang and Liu, 1999). The results for the
conventional image captioning methods are shown
at the top, with the ones proposed for the medical
domain in the middle, and those for our methods
at the bottom. According to Table 2, JPG can gen-

3https://github.com/tylin/coco-caption
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METHOD BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

NIC (Vinyals et al., 2015) 0.216 0.124 0.087 0.066 - 0.306
ADAATT (Lu et al., 2017) 0.220 0.127 0.089 0.068 - 0.308
ATT2IN (Rennie et al., 2017) 0.224 0.129 0.089 0.068 - 0.308
VisualGPT (Chen et al., 2021a) 0.482 0.314 0.221 0.158 0.204 0.375

COATT (Jing et al., 2018) 0.455 0.288 0.205 0.154 - 0.369
HRGR (Li et al., 2018) 0.438 0.298 0.208 0.151 - 0.322
CMAS-RL (Jing et al., 2019) 0.464 0.301 0.210 0.154 - 0.362
R2GEN (Chen et al., 2020) 0.470 0.304 0.219 0.165 0.187 0.371
CMN (Chen et al., 2021b) 0.475 0.309 0.222 0.170 0.191 0.375

BASE 0.369 0.254 0.179 0.135 0.164 0.342
JPG-projection 0.458 0.291 0.212 0.159 0.177 0.371
JPG-auxiliary 0.472 0.308 0.218 0.168 0.188 0.373
JPG 0.479† 0.319† 0.222† 0.174† 0.193† 0.377†

Table 2: Comparison of the proposed model with those of previous studies for Findings generation on the test set
of IU X-RAY with respect to various NLG metrics, where BLEU-n denotes BLEU scores using up to 4-grams. †
marked results significantly surpass BASE using T-test (Yang and Liu, 1999) with p < 0.05.
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Figure 3: Classification accuracy of AlexNet, NIN, and
GoogLeNet on the test set of IU X-RAY.

erate more accurate and fluent radiology reports
compared with the baselines.

We consider three possible reasons for the supe-
rior performance of JPG. First, the shared subspace
is configured to make up for the gap between dif-
ferent information extracted by word and image
embeddings. Compared to simply merging word
embeddings of disease tags into patch features as
complementary textual information, the additional
shared subspace projection makes the aligned vi-
sual and textual features much more understand-
able to each other, so that information is better inter-
acted, and the quality of reports is improved. Sec-
ond, regarding the improvement of BLEU scores,

the introduction of context-aware disease labels
provides the report generation process with explicit
lesion textual prompts, which prevents our model
from generating irrelevant diseases and enables
JPG to effectively capture the disease-related key-
words. Third, conclusive disease prediction and
descriptive report generation are jointly trained and
optimized in an overall framework to obtain a glob-
ally optimal solution for both subtasks.

As shown in Fig. 3, the three most effec-
tive classification networks, AlexNet (Krizhevsky
et al., 2012), NIN (Lin et al., 2014), and
GoogLeNet (Szegedy et al., 2015) were employed
for classification with context-aware disease labels.
Compared with adopting patch features directly
extracted from the visual extractor, learning new
visual representations from a shared subspace can
dramatically improve classification accuracy, be-
cause new visual representations contain more use-
ful semantic features in regard to the classifica-
tion task. Therefore, many inspiring context-aware
disease labels, such as <opacity lung bilateral in-
terstitial diffuse> and <opacity lung lower_lobe
bilateral>, can be obtained.

5.2 Ablation Study

JPG-projection To verify the alignment be-
tween visual and textual representations within the
encoder-decoder architecture, we show the ablation
performance in Table 2 by removing the shared
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Original Image

Ground truth: The lungs are clear. The 
cardiomediastinal silhouette is within 
normal limits. No pleural effusion is 
identified.

heart normal mediastinum lungs

BASE: the heart is normal in size. the mediastinum is unremarkable. the lungs are clear.

heart lungs pneumothorax osseous structures

JPG: the heart size and cardiomediastinal silhouette are normal. the lungs are clear without focal 
airspace opacity pleural effusion or pneumothorax. the osseous structures are intact.

Figure 4: Visualization of image-text mappings between particular regions (indicated by colored weights) of a chest
X-ray image and tokens from its reports generated by BASE and JPG, respectively.

subspace projection and simply using the raw vi-
sual extractor and word embedding outputs to both
predict disease labels and generate reports, which
obviously degrades the model performance with
respect to all evaluation metrics. This proves that
the shared base matrix plays a critical role in fa-
cilitating disease prediction and report generation
with sufficient understandable visual representa-
tions with semantic meanings, which cannot be
replaced by straightforward visual and textual fea-
tures. Besides, instead of using hard attention to
match visual features with textual features, the pro-
posed shared subspace acts as a soft alignment
medium to offset the gap between those features; it
thus unifies cross-modal features within the same
representation space. Furthermore, the shared sub-
space also provides further fusion patterns for dis-
ease tags and chest X-Ray images to communicate
with each other and pass both compatible visual
and textual information for more accurate reports.

JPG-auxiliary Based on the assumption that the
remarkable improvement of JPG from baselines is
due to jointly training disease prediction and report
generation and employing the predicted disease
tags as auxiliary information when generating re-
ports, we would like to experimentally evaluate the
performance of JPG in terms of a separate learning
pattern. In this experiment, the disease prediction
and report generation subtasks were treated as two
parallel procedures. Specifically, visual and textual
features were first projected into a shared subspace
to overcome the misalignment of features across

modalities. Then, we independently employed a
Transformer encoder-decoder structure for report
generation without adding context-aware disease
labels as auxiliary information on the input side.

According to the last block in Table 2, imple-
menting the subtasks individually degrades the
model performance and the quality of generated
reports to a certain extent. We consider that in
our complimentary interactive learning framework,
reports can receive more discriminative lesion lo-
cations and semantic features under the guidance
and constraint of predicted diseases. And in turn
disease prediction accuracy is improved by report
generation via visual feature extraction and fusion
in a manner that cannot be imitated by separate
learning. This result indicates the superiority of
JPG over the conventional methods, implying the
usage of auxiliary disease tags in the report gener-
ation process is promising for identifying salient
keywords.

5.3 Alignment Visualization and Case Study

To further qualitatively investigate the ability of
JPG to overcome the misalignment of features
across modalities, Fig. 4 visualizes how the pro-
posed model focuses on the image when generat-
ing a certain word or phrase; i.e., it learns from
the alignments between visual and textual features.
We randomly select an example from the IU-XRAY

dataset, and list its original chest X-Ray image
with the corresponding ground-truth report for ref-
erence. Fig. 4 shows image-text mappings between
particular regions (highlighted by colored weights)
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Frontal Lateral Ground-truth BASE JPG

Low lung volumes. Stable ectasia
of the thoracic aorta. Stable right
upper mediastinal Bilateral small
pleural effusions and bibasilar air-
space opacities. The heart size and
mediastinal silhouette are within
normal limits for contour. No pne-
umothorax. Stable wedging of the
anterior thoracic vertebral bodies.

Cardio mediastinal silhouette is
unremarkable. Visualized osseous
structures of the thorax are with-
out acute abnormality. Low lung
volumes bilaterally. The lungs are
clear bilaterally. Specifically no evi-
dence of focal consolidation pneu-
mothorax or pleural effusion.

There are low lung volumes with
bibasilar opacities xxxx represent-
ing subsegmental atelectasis. The
cardio the cardiac silhouette is of
the xxxx of normal in size and con-
tour. There is no pneumothorax or
large pleural effusion.

The lungs are clear. The cardiome-
diastinal silhouette is within norm-
al limits. No pleural effusion is ide-
ntified.

The lungs are clear bilaterally. Car-
dio mediastinal silhouette is unre-
markable. Visualized osseous stru-
ctures of the thorax are without
acute abnormality.

The heart size and cardiomedia-
stinal silhouette are normal. The
lungs are clear without focal air-
space opacity pleural effusion or
pneumothorax. The osseous struc-
tures are intact.

Figure 5: Example reports of BASE and JPG.

of an X-Ray image and words/phrases from its re-
ports generated by BASE and JPG. In detail, we
utilize the cross attention weight from the first de-
coder layer to show the alignment between visual
and textual features, since the latter decoder layers
couple the textual and visual information, mak-
ing it difficult to distinguish the most primitive
alignment weights. In general, JPG is able to pay
attention to relatively accurate patches when gener-
ating a word (especially disease terminologies), so
it brings about descriptions of higher quality than
those produced by BASE.

Fig. 5 exhibits two examples with both front
and lateral CXR images and their corresponding
reports obtained by ground-truth, BASE, and JPG,
where different colors on the texts indicate different
clinical terms. These examples indicate that JPG

can produce accurate terms and well-aligned de-
scriptions, which abide by a similar content flow as
radiologists follow, while BASE sometimes makes
factual errors. For example, in both cases, patterns
in the ground-truth and generated reports follow the
sequence of starting from observations (e.g., “lung
volumes” and “cardiomediastinal silhouette”) and
concluding with potential diseases (e.g., “pleural
effusion” and “pneumothorax”). In addition, JPG-
generated reports cover almost all of the necessary
clinical terminologies in the ground-truth reports.
On the contrary, BASE cannot keep abreast with the
description order of the ground-truth, so it gener-
ates misaligned and out-of-order sentences. More-
over, several phrases go against fact; e.g., “small
pleural effusions” is mistakenly ignored. By lon-
gitudinally viewing the reports produced by BASE

corresponding to two cases, we can also find that

the vanilla Transformer tends to iteratively generate
similar sentences.

6 Conclusion

We addressed several fundamental issues concern-
ing clinical disease prediction and radiology report
generation in an overall framework, where context-
aware disease terminologies act as complementary
textual features coupled with visual features of im-
ages to guide and facilitate the report generation
process. Meanwhile, these explicit clues of lesion
location effectively prevent the report generation
model from generating factual erroneous texts. The
proposed shared subspace provides an interaction
platform for different representations extracted by
image and word embeddings to overcome the mis-
alignment of information across modalities. Em-
pirical results acquired with the most widely used
dataset, including those of ablation studies, demon-
strate the effectiveness of the proposed JPG, which
achieves the state-of-the-art performance.
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Abstract

Nominalization re-writes a clause as a noun
phrase. It requires the transformation of the
head verb of the clause into a deverbal noun,
and the verb’s modifiers into nominal modifiers.
Past research has focused on the selection of
deverbal nouns, but has paid less attention to
the word order and word forms for the nominal
modifiers. We propose using a textual entail-
ment model for clause nominalization. Exper-
imental results show that a textual entailment
model fine-tuned on this task outperforms a
number of unsupervised approaches using lan-
guage model scores.

1 Introduction

Many textbooks on academic writing devote sig-
nificant attention to nominalization, which lends
a more abstract, concise and objective tone to a
text (Kamler and Thomson, 2006; Bailey, 2011).
Since nominalization requires careful lexical selec-
tion and clause restructuring, it demands advanced
vocabulary knowledge and grammatical skills, mak-
ing it challenging even for many human writers.
Table 1 outlines the steps in nominalizing a sen-
tence: extraction of target clauses; nominalization
of a target clause through word re-ordering and
re-generating the POS and prepositions; and the
re-writing of the sentence to incorporate the nomi-
nalized clauses. This paper focuses on the clause
nominalization step.

Past research on clause nominalization has con-
centrated on replacement of the head verb with a
deverbal noun (e.g. ‘omits’ → ‘omission’) and
resource development to support the task (Mey-
ers et al., 1998; Habash and Dorr, 2003; Saberi
and Lee, 2019). Less attention has been paid to
the clause restructuring that is required for trans-
forming the verb’s modifiers in the clause to nom-
inal arguments, including word reordering (e.g.,
postposing the subject ‘Arabic’, Table 1i); POS re-
generation of the verb’s modifiers (‘frequently’→

Extract Since [Arabic frequently omits
clause vowels], the surname is often spelt ...
Nomin- (i) Word-order edits:
alize [frequently vowels omits Arabic]
clause (ii) POS Re-generation:

[frequent vowels omission Arabic]
(iii) Preposition generation:
[frequent vowel omissions in Arabic]

Re-write Due to [frequent vowel omissions
sentence in Arabic], the surname is often spelt ...

Table 1: Main steps in nominalizing a sentence, focusing
on the target clause enclosed in [...].

‘frequent’, Table 1ii); and preposition generation
(Table 1iii).

This paper investigates methods for clause nomi-
nalization that optimize the position and POS of the
nominal arguments. We focus on clauses headed by
a verb with up to three syntactic arguments, includ-
ing subjects, objects, adjectival phrases or preposi-
tional phrases. The output is a nominalized form
of the clause that preserves its original meaning.
Experimental results show that a textual entailment
model that is fine-tuned on this task can outperform
unsupervised approaches based on neural language
model scores.

The rest of the paper is organized as follows.
After a review of previous work (Section 2), we
present our two-step algorithm: candidate gener-
ation (Section 3) followed by candidate ranking
(Section 4). Finally, we report experimental results
(Section 6).

2 Previous Work

Shinyama et al. (2002) explored automatic acqui-
sition of paraphrase templates, which included
nominalizations. Lee et al. (2018) evaluated the
template-based approach specifically on nominal-
ization, but relied on heuristics for word order, POS
and preposition selection. Fujita and Sato (2008)
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Edit Rewrite Example input Gold nominalization
¬V V→ ∅ (a) sheS makesV a decisionO1 her decision

(b) Aunt LellaS fellV illO1 Aunt Lella’s illness
S⇒ SVO1→ (c) citizensS initiateV plebiscitesO1 initiation of plebiscites by citizens

VO1S (d) MexicoS suffersV high casualtiesO1 high casualties for Mexico
(e) resultsS wereV inconclusiveO1 inconclusive results

SV→ VS (f) tensionS increasesV in the regionO1 an increase in tension in the region
O⇐1 VO1→ (g) transferV moneyO1 to the hijackersO2 money transfer to the hijackers

O1V (h) MubarakS raisesV taxesO1 Mubarak’s tax raise
O⇐2 VO1O2→ (i) useV animalsO1 for researchO2 research use of animals

O2VO1 (j) useV the parkO1 for recreationO2 recreational use of the park

Table 2: Word-order edits on example target clauses towards the generation of the gold nominalization

automatically generated syntactic variants of predi-
cate phrases, using n-gram models and distribu-
tional similarity measures to estimate semantic
equivalence and syntactic substitutability.

Our task is distinct from semantic role label-
ing (Lapata, 2002; Padó et al., 2008), since it must
take into account both the fluency of the nominal-
ization and its semantic equivalence to the orig-
inal clause. Another related task, the paraphras-
ing of nominalizations, can be viewed as the re-
verse of ours. In an unsupervised approach, Lee
et al. (2021) selected the best clausal paraphrase
of a nominalization using a language model and
a textual entailment model, which has also been
applied to other NLP tasks such as question answer-
ing (Trivedi et al., 2019), summarization (Kryś-
ciński et al., 2020), and relation extraction (Sainz
et al., 2021). However, the candidate generation
algorithm for our task is significantly different. We
also address a wider range of nominalization pat-
terns in our evaluation, and show that a supervised
approach can improve performance.

3 Nominalization Generation

As shown in Table 2, the input is a sentence with a
target clause consisting of the head verb (V) with
up to three syntactic arguments, which may be its
subject (S) or other arguments in object position
(O1, O2).1 Candidate nominalizations are gener-
ated with the following steps:

3.1 Word-order edits
Table 2 lists all edit operations for re-positioning S
and Oi in relation to the verb V, including:

1The clauses would need to be automatically extracted in
actual deployment. We assume accurate extraction of these
strings to avoid confounding the experimental results with
parsing errors.

Delete verb (¬V) Nominalizations may omit the
support verb or light verb in the clause (Ta-
ble 2a). The copula or a semantically blanched
verb can also be omitted, typically when O1

is an adjective (Table 2b).

Postpose subject (S⇒) The subject can be posi-
tioned after the verb to serve as a postnominal
modifier of the deverbal noun (Table 2c), or of
O1 when V is deleted (Table 2d). It may also
head the nominalized clause, typically when
O1 is an adjective and V is deleted (Table 2e).

Prepose object (O⇐i ) The O1 (Table 2g-h) or O2

(Table 2i-j) can be moved in front of V to
become a prenominal modifier of the deverbal
noun.

3.2 POS Re-generation
Head noun generation. The verb V can be sub-
stituted with the deverbal noun (e.g. ‘omits’ →
‘omission’ in Table 1ii) to head the nominalized
clause. If V is deleted, an O1 adjective can be sub-
stituted with a deadjectival noun (e.g., ‘ill’→ ‘ill-
ness’ in Table 2b). All nouns that are derivationally
related to the verb or adjective in WordNet (Fell-
baum, 2010) are considered candidates.

Prenominal modifier generation. The most flu-
ent nominalization may require different POS for
the prenominal modifier depending on context. It
may be an adjectival form of the S (Table 3a), of the
preposed Oi (Table 3b), or of the adverb (Table 3c).
All adjectives listed in WordNet as its pertainyms
or derivationally related forms are considered can-
didates. The prenominal modifier may also be an
s-genitive (Table 3d), a possessive pronoun (Ta-
ble 3e), or the singular form of the original noun
(e.g. ‘vowels’→ ‘vowel’ in Table 1ii).
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Rewrite Example input Gold nominalization
Adjective (a) Americans immigrate American immigration

(b) control the diet of the patient dietary control of the patient
(c) the member leaves suddenly the sudden departure of the member

Genitive (d) the city emerges from default the city’s emergence from default
Poss. Pron. (e) it experiences a mild climate its mild climate

Table 3: Part-of-speech (POS) edits that re-write a noun in the input as an adjective, s-genitive or possessive pronoun
to serve as prenominal modifier in the nominalization

3.3 Preposition and determiner generation

Prepositions and determiners can be inserted in
front of postmodifiers (Table 1iii), and a deter-
miner may be inserted at the front of the nomi-
nalized clause. We enumerate the permutations of
all choices of determiners (‘a’, ‘an’, ‘the’), and use
the masked language model BERT (Devlin et al.,
2019) to predict the most likely preposition.2

4 Candidate ranking

A pool of candidate nominalizations are generated
for each target clause using all permutations de-
scribed in Section 3. We evaluated the following
methods to select the best candidate from the pool:

Language Model (LM) Select the candidate that
yields the highest-scoring sentence, according
to the log-probability score based on GPT-
2 (Salazar et al., 2020).3

Majority Same as the above but consider only
those candidates of the majority pattern, i.e.,
retain the original word order SVO1O2 and
use the s-genitive as the prenominal modifier.

Pre-trained TE Model The premise is the input
sentence, and the hypothesis is the sentence
re-written using the candidate nominalization
(Table 1). The TE model predicts whether
the premise implies the hypothesis. We used
AllenNLP’s pre-trained TE model on SNLI
based on RoBERTa (Liu et al., 2019).4 Similar
to the approach proposed by Lee et al. (2021),

2Downloaded from https://storage.googleapis.com/allennlp-
public-models/bert-masked-lm-2020-10-07.tar.gz

3We used the 345M version of GPT-2 from
https://github.com/awslabs/mlm-scoring

4Downloaded from https://storage.googleapis.com/allennlp-
public-models/snli-roberta.2021-03-11.tar.gz. We
also tried pre-trained TE models based on DeBERTa
(https://huggingface.co/microsoft/deberta-v2-xlarge-mnli)
and those provided by Nie et al. (2020) but achieved lower
accuracy than our best model.

we identify the two candidates with the high-
est TE model score, and select the one with
the higher LM score.

Fine-tuned TE Model Same as above, except
that the pre-trained model was fine-tuned on
our dataset (Section 5).5 For each premise,
the gold outputs served as the ‘entailment’
hypotheses. There were on average 252 can-
didate nominalizations in the candidate pool.
For each non-gold word order (Section 3), we
selected the candidate with the highest LM
score to serve as a ‘neutral’ hypothesis. There
were on average 7.8 ‘neutral’ hypotheses for
each premise.

5 Data

Since our research focus is at the clause level
rather than the re-writing of the entire sentence,
we targeted sentences that permit straightforward
alternation between a clause and a noun phrase
through: (1) a change of conjunction, e.g., “al-
though ⟨clause⟩”↔ “despite ⟨NP⟩”; (2) a verb that
can take both clause or noun phrase as argument,
e.g., “report that ⟨clause⟩”↔ “report ⟨NP⟩”; and
(3) a clause that can replace a discourse deixis as
a noun phrase, e.g., “⟨clause⟩. That ⟨verb⟩ ... ” ↔
“⟨NP⟩ ⟨verb⟩ ...”.

Our dataset contains 319 unique inputs and 751
nominalizations (Table 4).6 Among the inputs, 202
were extracted from Wikipedia (Section 5.1) and
117 from an existing dataset (Section 5.2).

5.1 Nominalization annotation
We retrieved sentences with the above three pat-
terns from Wikipedia. For efficient annotation, we
collected sentences with at least one clause headed
by a verb with a derivationally related noun in
WordNet. Four annotators, all university students

5We used default values for all parameters during fine-
tuning.

6Accessible at https://github.com/NominalizationParaphrase
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Initial word in Pre. modifier Total
gold nominalization N G A
Nominalized verb n/a n/a n/a 221
Subject (S) 70 140 92 302
Object (O1 or O2) 123 18 87 228

Table 4: Distribution of different word orders and POS
of the prenominal modifier, as noun (N), adjective (A),
s-genitive or possessive pronoun (G) in the gold nomi-
nalizations in our dataset

who were native speakers of English, composed
possible nominalizations, if any, for each sentence.
The annotators were asked to favor derivationally
related forms over free paraphrases. Only those
nominalizations produced by at least two annota-
tors were included in the dataset.

5.2 Conversion from paraphrase dataset

The nominalization-clause pairs in the dataset pro-
duced by Lee et al. (2021) are not directly usable,
since the clause paraphrases only the nominaliza-
tion but not the rest of the sentence. We identified
the sentences in this dataset with the three patterns
described above, and then replaced the nominaliza-
tion with their gold clause according to the alterna-
tion templates above to produce an input sentence
for our task.7

Since the nominalization inputs in this dataset
all have one prenominal modifier and one prepo-
sitional phrase, they would lead to an imbalanced
output in our dataset. We asked a native speaker of
English, a PhD candidate in linguistics, to enumer-
ate other acceptable nominalizations, which were
then reviewed by a professor of linguistics who was
a near-native speaker of English.

6 Experiments

6.1 Set-up

All models were evaluated on the full dataset (Sec-
tion 5), with 10-fold cross-validation used for the
Fine-tuned TE Model. In the Gold setting, the
gold forms of the prenominal modifier and dever-
bal noun were always included as one of the can-
didates along with other candidates retrieved from
WordNet. The Auto setting was fully automatic.

We report three evaluation metrics in ascending
strictness. For word order accuracy, the output

7e.g., the sentence “Due to frequent vowel omissions in
Arabic ...” is re-written as “Since Arabic frequently omits
vowels ...” to serve as the input in our dataset.

Set- Metric→ WO POS Nom
ting ↓Model acc. acc. acc.
Gold Majority 0.467 0.429 0.376

LM 0.586 0.536 0.476
Pre-trained TE 0.639 0.524 0.439
Fine-tuned TE 0.812 0.743 0.630

Auto Majority 0.429 0.395 0.323
LM 0.514 0.476 0.389
Pre-trained TE 0.586 0.470 0.326
Fine-tuned TE 0.724 0.655 0.511

Table 5: Model performance in the Gold and Auto set-
tings in terms of word order (WO) accuracy, POS accu-
racy and nominalization accuracy

is considered correct if it matches the gold word
order (Section 3.1). POS accuracy, in addition,
requires all prenominal modifiers to have the gold
POS (Section 3.2). Nominalization accuracy re-
quires the lemmatized form of the output to match
exactly with the gold, except determiners.

6.2 Results

As expected, system performance was higher in the
Gold setting than Auto (Table 5). In both settings,
the use of LM scores yielded improvement over the
Majority baseline.

Pre-trained model. The Pre-trained TE Model
slightly outperformed the LM on the word-order
metric, suggesting its ability in determining seman-
tic equivalence of the nominalization with the input
sentence, a factor that is not considered by the LM.
However, it is less sensitive to the choice of POS,
prepositions and determiners to optimize fluency,
as reflected by its lower POS and nominalization
accuracy.

Fine-tuned model. Despite the limited size of
our dataset, fine-tuning resulted in the strongest
performance. In both settings and in terms of
all three metrics, it produced statistically signif-
icant improvement over all other models.8 The
improvement over the pre-trained version suggests
that the semantic nuances that distinguish between
the nominalization candidates are more subtle than
the premises and hypotheses in general domains.

The performance was slightly lower if the TE
model was used in the reverse direction, i.e., with
the input sentence as hypothesis and its nominal-
ized form as premise. This might be attributable to

8p < 0.05 according to McNemar’s Test in both settings
and all three metrics
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the fact that the nominalized form is usually less
specific in terms of tense and aspect.

7 Conclusion

This paper has reported the first quantitative evalu-
ation on automatic clause nominalization and con-
tributed the first dataset for this task. We have
shown that a fine-tuned textual entailment model,
followed with reranking with a language model,
outperforms a number of competitive unsupervised
approaches. In future work, we plan to extend our
algorithm to determine whether a target clause can
or should be nominalized, and to explore a richer
variety of nominalization types.
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Abstract
Recombining known primitive concepts into
larger novel combinations is a quintessentially
human cognitive capability. Whether large
neural models in NLP can acquire this abil-
ity while learning from data is an open ques-
tion. In this paper, we investigate this prob-
lem from the perspective of formal languages.
We use deterministic finite-state transducers to
make an unbounded number of datasets with
controllable properties governing composition-
ality. By randomly sampling over many trans-
ducers, we explore which of their properties
contribute to learnability of a compositional re-
lation by a neural network. We find that the
models either learn the relations completely or
not at all. The key is transition coverage, set-
ting a soft learnability limit at 400 examples
per transition.

https://github.com/valvoda/

neuralTransducer

1 Introduction

Compositionality is a hallmark of human language
(Montague, 1970; Partee, 1995; Fodor, 1998). It
is arguably a requirement for any model to count
as a model of language, or to achieve human-like
natural language understanding. Compositionality
seems to be such a deep property of language
that speakers draw conclusions about the overall
meaning of sentences even when the meanings
of individual words are not known. For instance,
English speakers reading the Jabberwocky (Carroll,
1871) comprehend that the noun phrase slithy
toves is built from the composition of the adjective
slithy with the plural noun toves, despite lacking
a clear understanding of what slithy or toves—let
alone their composition—could mean. In cognitive
science, whether neural networks can learn to
combine a limited number of primitives (in the case
of language, word or morphemes) to describe a
complex environment has been debated for over 30
years (Fodor and Pylyshyn, 1988; Marcus, 1998).

In recent work, researchers have explored
the inherent limitations of neural models to
exhibit compositionality by analyzing sequence-to-
sequence model performance on small, controlled
datasets (Lake and Baroni, 2018; Hewitt et al.,
2020; Hupkes et al., 2020a; White and Cotterell,
2021; Dankers et al., 2022; White and Cotterell,
2022). However, the conclusions of these studies
are often murky. For instance, Lake and Baroni
(2018) cast doubt on neural models’ ability to do
compositional generalization using their toy SCAN
dataset, but shortly thereafter, Bastings et al. (2018)
demonstrated that an out-of-the-box sequence-to-
sequence model could indeed fully master the task.

Instead of hand-crafting small challenge
datasets, we propose to test for compositionality by
randomly sampling from a whole class of string-
to-string functions. In doing so, we draw on two
linguistic traditions. On the one hand, we follow
Montague’s assertion that no important theoretical
difference exists between natural and artificial
languages (Montague, 1970). Following this logic,
the question of whether neural networks composi-
tionally process human language is fundamentally
equivalent to asking whether they compositionally
process artificial languages. On the other hand,
we draw lessons from the field of grammatical
inference (de la Higuera, 2010; Rawski and Heinz,
2019), and evaluate neural sequence-to-sequence
models on many automatically generated artificial
languages sampled from particular classes of
functions—as is standard practice at grammatical
inference competitions (Balle et al., 2017).

In this paper, we study the class of string
functions encoded by subsequential finite-state
transducers (SFSTs), a restricted class of general
finite-state transducers (Mohri, 1997). We sample
arbitrary SFSTs to generate many different
string-to-string datasets and evaluate the behavior
of neural sequence-to-sequence models when
learning them. By controlling the formal properties
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of the SFSTs we sample from, we are able to
make precise statements about the learnability of
systematic phenomena.

Empirically, we find that neural sequence-to-
sequence models are, in many cases, capable of per-
fectly learning SFSTs from finite data. Moreover,
we observe an interesting tendency for neural mod-
els to either generalize correctly or to fail outright—
with little middle ground. Our analysis reveals
a possible explanation for this—generalization
seems to be possible when the training data has
sufficient coverage, i.e., when every transition in a
given transducer is crossed in a minimum number
of training examples (≈ 400 in our experiments).

We then turn to analyze a popular hand-crafted
dataset, SCAN, through the lens of an SFST that
encodes it. We find that SCAN is peculiar in that
it seems to serve as a counterexample to our transi-
tion coverage finding. This suggests that there is a
more nuanced story to tell: We predict the learnabil-
ity of a language based on a notion of complexity
native to subregular languages, but it may be that
a more consistently predictive complexity metric
would come from a higher point on the Chomsky
hierarchy. Future work might seek to limit the
number of outlier languages like SCAN in order to
identify a notion of complexity that is native to the
architecture of the model itself. Such a notion of
complexity would identify the level of abstraction
that best reflects the representations learned by the
model. A fruitful avenue towards this goal might
lie in exploring more complex formalisms.

2 Finite-State Transducers

This section provides a short technical overview of
finite-state transducers and motivates our choice to
learn this class of relations.

2.1 Why Learn Finite-State Transductions?

Our study focuses on learning a particular kind of
transduction. Specifically, we focus on restricted
classes of regular relations, which are those rela-
tions computable by finite-state transducers. We be-
lieve this is a natural starting point since this class
of formal languages is mathematically well-studied,
has provable learning guarantees, and has a long
use history in linguistics and NLP (Mohri, 1997).

Finite-state transducers also encompass most
previous work on compositionality: many datasets,
e.g., SCAN (Lake and Baroni, 2018) and gSCAN
(Ruis et al., 2020), describe finite string relations

and are, therefore, finite-state by definition. These
handcrafted datasets have many advantages,
like easy interpretability and domain specificity
since they directly encode particular relevant
relationships like movement over a grid or specific
linguistic phenomena. However, this realism pays
the price of diminished robustness of any findings
over such datasets (Rogers and Pullum, 2011), see
White and Cotterell (2021) for more discussion of
this point. By removing the ability to simply adjust
properties of the underlying function class, and the
transducers which compute it, one loses the possi-
bility to experiment more robustly over a function
type, rather than just one token instantiation of it.

Rather than manually designing individual
datasets ourselves, we generate unboundedly many
new datasets via randomly sampled SFSTs. This
offers a principled view of the problem of learn-
ing artificial languages by simply varying proper-
ties of the class of transducers that generate them.
Furthermore, as we will see in §6, one may view
existing compositionality tasks as learning a spe-
cific SFST. We contend this view enables a deeper
understanding of modeling results. Both specific
artificial languages, such as the compositionality
datasets mentioned above, and those randomly sam-
pled from a particular function class such as the
work presented in this paper, are worth studying.
However, our approach has been missing from the
compositionality discourse.

2.2 Basic Theory

Now we will overview the basic elements of
finite-state theory that will be necessary for the
rest of the paper; we start with some definitions.

Definition 1. A finite-state automaton (FSA) is a
5-tuple A = 〈Σ, Q, q0, F, δ〉 where

• Σ is an input alphabet whose elements are
denoted σ;

• Q is a finite set of states whose elements are
denoted q;

• q0 ∈ Q is the unique start state;

• F ⊆ Q is the set of final states;

• δ : Q×Σ∪{ε} → Q is the transition relation
and ε is an empty string.

We denote transitions, i.e., when q′ ∈ δ(q, σ), with
the more suggestive notation q σ−→ q′. We say that
the automaton A accepts a string σ ∈ Σ∗ iff there
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exists a path1 through the automaton states q0
σ1−→

q1
σ2−→ q2 · · · σN−−→ qN where q0 is the initial state

and qN ∈ F and σ1 · · ·σN = σ. In our notation
σn can be the empty string ε. We call σ the yield
of the path q0

σ1−→ q1
σ2−→ q2 · · · σN−−→ qN .

Furthermore, we call an automaton complete
when one may transition from every state to every
symbol, i.e., δ(q, σ) is defined for all q ∈ Q and
σ ∈ Σ. And, we say an automaton is determinis-
tic, if, given a state q and an alphabet symbol σ ∈
Σ, there is at most one transition for σ from q, i.e.,
|δ(q, σ)| ≤ 1. We have that |δ(q, σ)| = 1 for all
q ∈ Q and σ ∈ Σ if the automaton is both complete
and deterministic. In our examples below we de-
note the final state as a circle with a double border.

Example 1. Below we exhibit a complete deter-
ministic finite-state automaton.

0 1

a

b

b a

The above finite-state automaton accepts the lan-
guage {(biaj)n | i, j, n ∈ Z+}.
Definition 2. A finite-state transducer (FST) is a
6-tuple T = 〈Σ,Γ, Q, q0, F, δ〉:

• Σ is an input alphabet whose elements are
denoted σ;

• Γ is an output alphabet whose elements are
denoted γ;

• Q is a finite set of states whose elements are
denoted q;

• q0 ∈ Q is the unique start state;

• F ⊆ Q is the set of final states;

• δ : Q×Σ∪{ε} → Q×Γ∪{ε} is the transition
relation.

We denote transitions, i.e., when (q′, γ) ∈ δ(q, σ),

with the more suggestive notation q
σ/γ−−→ q′. We

say that the transducer T transduces a string
σ ∈ Σ∗ to a string γ ∈ Γ∗ iff there exists a path

q0
σ1/γ1−−−→ q1

σ2/γ2−−−→ q2 · · ·
σN/γN−−−−→ qN where q0 is

the initial state and qN ∈ F , σ1 · · ·σN = σ and
γ1 · · · γN = γ. In our notation either σn or γn can
be the empty string ε, from which it follows that
the length |σ| must not equal |γ|. We call σ the

1A path is a sequence of transitions.

input yield and γ the output yield, respectively, of

the path q0
σ1/γ1−−−→ q1

σ2/γ2−−−→ q2 · · ·
σN/γN−−−−→ qN .

As in the case of an FSA, we say an FST is
complete if δ is defined for all states and all
symbols, i.e., |δ(q, σ)| > 0 for q ∈ Q and σ ∈ Σ.
Furthermore, we say an FST is subsequential
if it is deterministic with respect to the input,
i.e., if |δ(q, σ)| ≤ 1 for all q ∈ Q and σ ∈ Σ
and the FST does not have transitions of the
form q

ε/γ−−→ q′. By construction, subsequential
transducers (SFSTs) are functional, i.e., the
string-to-string relations they encode are functions
rather than relations. Indeed, it is this functionality
that makes them a useful tool for the analysis of
neural sequence-to-sequence models. The class
of subsequential functions are those describable
with SFSTs.2 They are a subclass of the regular
relations, but a superclass of the finite relations.

Example 2. Below is an example of a non-
deterministic finite-state transducer:

0 1 2
a/b b/ε

ε/b

The above transducer only has two paths

q0
a/b−−→ q1

b/ε−−→ q2 and q0
ε/b−−→ q2. The first

transduces ab 7→ b and the second ε 7→ b.

Example 3. Below is an example of a complete
subsequential transducer over the input alphabet
Σ = {a, b} and output alphabet Γ = {a, b}.

0 1b/b

a/ε

b/ε

a/a

Note the absence of ε on the input side; however,
we do have ε on the output side.

3 Compositionality Formalized

It is widely held that compositionality is a cor-
nerstone of human language. However, language
researchers use the term compositionality to refer
to a variety of different concepts (Hupkes et al.,
2020b). Here, we discuss the specific definition we
employ throughout the paper and give a theoretical
justification for the use of finite-state transducers
as an instantiation of that definition.

2Note there are other algebraic and logical characterisa-
tions (Oncina et al., 1993; Bhaskar et al., 2020).
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3.1 Montague’s Compositionality
Montague famously gave a mathematical definition
of what it means for a language to be compositional
(Montague, 1970)—specifically, he proposed that
a relation, e.g., the mapping from syntax to seman-
tics, be called compositional if and only if it is a
homomorphism, i.e., if it is a structure-preserving
map between an input and an output algebra (An-
dreas, 2019). To make this notion more formal, we
have to be specific about what structure we hope
our function preserves. In this paper, we will exclu-
sively focus on monoidal structure. We emphasize,
however, that the notion of a homomorphism is not
restricted to monoids.

Definition 3. A monoid is a set A equipped with
a binary operation • such that

• For f, g ∈ A, f • g ∈ A (closure);

• For f, g, h ∈ A, f • (g • h) = (f • g) • h
(associativity);

• There exists a unique element e such that for
every g ∈ A, we have that g • e = e • g = g
(identity).

Definition 4. A free monoid over strings is the
structure (Σ∗, ◦) where Σ∗ is the Kleene closure of
the alphabet Σ and ◦ is string concatenation.3 The
empty string ε is the identity element as ε ◦ σ =
σ ◦ ε = σ for any σ ∈ Σ∗.

Definition 5. Let (A, •A) and (B, •B) be two
monoids with unique identity elements eA and eB .
We call a function f : A→ B a homomorphism if
it obeys the following two properties:

• f(eA) = eB;

• f(x •A y) = f(x) •B f(y), ∀x, y ∈ A

We call a homomorphism between two free
monoids a string homomorphism. As it turns out,
there is a precise connection between string homo-
morphisms and finite-state theory.

Proposition 1. Let Σ and Γ be two alphabets.
The function f is a string homomorphism between
(Σ∗, ◦) and (Γ∗, ◦) iff it is a non-empty complete
subsequential finite-state transducer with one state.

Proof. See App. A. �

Proposition 1 starts to shed light on the connec-
tion between Montague’s notion of composition-
ality and finite-state transducers. However, this

3When clear from context, we write σ ◦ σ′ as σσ′.

connection is quite weak because multi-state trans-
ducers are not covered. We remedy this disparity
in the subsequent section.

3.2 Transducers as Homomorphisms

Now we offer a more formal treatment of the exact
sense in which SFSTs may be considered homo-
morphism and thus fall under Montague’s defini-
tion of compositionality. As shown by Proposi-
tion 1, in general, SFSTs do not encode string ho-
momorphisms. Indeed, it is straightforward to find
a counterexample that hammers this point home.

Example 4. Below we exhibit a two-state subse-
quential finite-state transducer that is not a string
homomorphism.

0 1 2
a/a b/b

b/a

In the above example, we have ab 7→ ab, but also
a 7→ a and b 7→ a. Thus, it is not a homomorphism.

Example 4 is dissatisfying; it contradicts the
intuition that an SFST encodes some notion of
Montague-esque compositionality. Luckily, as it
turns out, we can find a precise sense in which an
SFST is indeed a homomorphism. The idea is to
lift the free monoid into a matrix. Given a complete
SFSA A = 〈Σ, Q, q0, F, δ〉 over |Q| = N states,
for every symbol σ ∈ Σ define an N ×N symbol
transition matrixMσ whose entries are

Mσ
ik

def
=

{
σ, if qi

σ−→ qk ∈ δ
0, otherwise

(1)

where 0 is a distinguished symbol, which is not
in Σ, called the zero string. The zero string
is an anhilitator, i.e., it has the property that
0 ◦ σ = σ ◦ 0 = 0 for any σ ∈ Σ.

Importantly, because A is complete and deter-
ministic, there is exactly one non-0 entry in every
row of Mσ. Now, we define an operation ⊗ be-
tween two such matrices. Since the automaton is
complete and deterministic, we know there exists a
unique j′ such thatMσ

ij′ 6= 0 and, by the same argu-
ment, there exists a unique k′ such that Mσ

j′k′ 6= 0.
Then, in terms of j′ and k′, we define

(Mσ ⊗Mσ′
)ik

def
=

{
Mσ
ij′ ◦Mσ

j′k′ , if k = k′

0, otherwise
(2)
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Clearly, Mσ ⊗Mσ′
, for any σ, σ′ ∈ Σ, enforces

that the resulting product still has the property
that there is exactly one element of every row
that is not equal to 0.4 With Mσ, where
σ = σ1 · · ·σK ∈ Σ∗ is a string of length K, we
denote the product of matricesMσ1 ⊗· · ·⊗MσK .

Proposition 2. Let A = 〈Σ, Q, q0, F, δ〉 be a
complete deterministic finite-state automaton. Let
M def

=
{
Mσ | σ ∈ Σ

}
be the set of A’s symbol

transition matrices. Then (M∗,⊗) with ⊗ defined
in Eq. (2) is a transition monoid with E as a
distinguished identity element.

Proof. See App. A. �

Now we are in a position to discuss the precise
sense in which subsequential finite-state transduc-
ers are homomorphisms. In the case of a finite-state
transducer T = 〈Σ,Γ, Q, q0, F, δ〉, there are two
symbol transition matrices. The input symbol tran-
sition matrix is defined analogously to that of a
finite-state acceptor. However, the output symbol
transition matrix is defined slightly differently:

Mσ
ik

def
=

{
γ, if qi

σ/γ−−→ qk ∈ δ
0, otherwise

(3)

Indeed, for any product of K output symbol tran-
sition matrices Mσ = Mσ1 ⊗ · · · ⊗MσK , the
entries of σ have a clear interpretation. Let σ =
σ1 · · ·σK and suppose Mσ

ik = γ 6= 0. Then, we
know that if we start in state qi and read in input
string σ we end up in state qk and output string
γ. There are exactly |Q| non-zero entries in Mσ.
Thus, for any given finite-state transducer there is
both an input and output transition monoid, which
we denote as (M∗Σ,⊗) and (M∗Γ,⊗), respectively.
Then, the intuition is that SFSTs constitute a homo-
morphism over the closure of the symbol transition
matrices. We state the more formal result below.

Proposition 3. Let T = 〈Σ,Γ, Q, q0, F, δ〉 be
a complete subsequential finite-state transducer.
Let (M∗Σ,⊗) be the transition monoid associated
with the input alphabet Σ and let (M∗Γ,⊗) be
the transition monoid associated with the output
alphabet Γ. Then there exists a homomorphism
f :M∗Σ →M∗Γ.

Proof. See App. A. �
4This property is reminiscent of the “tails” of a subsequen-

tial function (Oncina et al., 1993)

At a higher level, Proposition 3 simply fixes the
bug present in Example 4 by incorporating the state
into the values. Moreover, Proposition 3 is a clear
generalization of Proposition 1 in that if we have a
single-state SFST, we have 1× 1 matrices that may
be viewed as single symbols and the operation ⊗
defined in Eq. (2) reduces to string concatenation.

Briefly back to Montague. To put the above
theory in context, we have now shown by
Proposition 3 that arbitrary complete SFSTs
are compositional in the sense of Montague.
This gives us a theoretical underpinning to use
learning from finite data SFSTs as a benchmark for
compositionality, and motivates our experiments
and analysis in the coming sections.

4 Experimental Methods

Next we introduce the methodology for generating
our datasets as well as the neural and symbolic mod-
els employed in the empirical portion of our paper.

4.1 Generating Random SFSTs

We generate random SFSTs using the following
stochastic process. We first generate random
unlabeled directed graphs that correspond to the
symbol-specific transition matrices. Given a set
of states Q (let N = |Q|) and an input alphabet Σ,
we sample a matrixBσ ∈ BN×N for every σ ∈ Σ
where B = {0, 1}. During sampling, we enforce
the constraint that there be at most one non-zero
entry in every row vector bσi . This constraint
ensures that the resulting SFST is subsequential
by construction. To achieve this, we sample from
{1, . . . , N} uniformly at random for each of the
N rows to determine the location of the non-zero
entry in each of the N rows. In terms of the SFST,
if the entry bσik = 1, then our generated SFST has
a transition from state qi

σ−→ qk with input symbol
σ. Then, for every transition qi

σ−→ qk in our gen-
erated SFST, we sample its output symbol γ from
a uniform distribution over the output alphabet Γ.

This results in a transition qi
σ/γ−→ qk. Finally, to

get a canonical representation for particular SFSTs,
we perform finite-state minimization (Choffrut,
2003). Minimization also ensures that our sampled
SFSTs are canonicalized SFSTs which allows us
to check duplicates and ensure the same SFST is
not sampled more than once.
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Figure 1: Accuracy versus frequency of transition cov-
erage, with an inflection point at 400.

4.2 Generating the Datasets

Next we discuss the creation of the datasets we
use to investigate the learnability of our sampled
SFSTs. We start by sampling 1000 unique SFSTs
using the process described in §4.1. All SFSTs
have an input alphabet Σ of 10 symbols and output
alphabet of 30 symbols. We consider SFSTs with
states numbering from 10 to 100 in increments of
10, and we sample 100 unique SFSTs for each num-
ber. Additionally, we sample extra SFSTs with 21
to 39 states because it was at this point that we em-
pirically observed performance drop-off during a
preliminary investigation. In total, our experiments
use 2800 unique SFSTs.

Sampling Input–output Pairs. To generate the
input–output pairs to train and evaluate a neural
model, we perform a random walk through the
SFST where we select a transition (including the
option to halt if we are in a final state) uniformly
at random. Following Lake and Baroni (2018), the
maximum length of an input string is capped at
50, i.e., we reject walks with more than 50 steps
during sampling. Using this process, we collect
20, 000 unique input–output pairs from each SFST.
We considered larger dataset sizes (40, 000) for the
SFSTs with 29 to 39 states since we observe an
accuracy drop-off in this region. All datasets are
randomly split 80–20 into training and test sets.

4.3 Neural Sequence-to-Sequence Models

Our experiments make use of Wu and Cot-
terell’s (2019) open-source neural transduction
library.5 Our experiments consider an LSTM

5The code is available at https://github.com/
shijie-wu/neural-transducer.

encoder–decoder with attention in the style of
Bahdanau et al. (2015). We use the following
hyperparameters: 200-dimensional hidden states
in the encoder and decoder, each of which have 2
layers, maximum gradient clipping normalization
of 5, dropout set to 0.5, and a batch size of 64.
Additionally, our alphabet tokens are embedded
as 100-dimensional vectors. We train the model
for 100, 000 epochs using the Adam optimizer
(Kingma and Ba, 2015) with the default learning
rate of 0.001. To determine the effect of model
capacity, we also consider a neural sequence-to-
sequence model with 300-dimensional hidden
states and all other hyperparameters kept the same.

4.4 OSTIA

The onward subsequential transducer inference
algorithm (OSTIA; Oncina et al., 1993) learns
the class of subsequential functions from positive
presentations of input–output strings. OSTIA
works by first building a prefix-tree transducer
of the training data, which is then transformed
through a series of state-merging operations into
the SFST encoding the function the data is drawn
from. If a characteristic sample is contained in the
learning data, OSTIA finds a correct transducer in
polynomial (cubic) time. Since OSTIA is designed
specifically to learn subsequential relations, it
provides a useful baseline. Unfortunately, due to its
cubic runtime, OSTIA is too slow to use on larger
datasets. To give a practical speed-up, we limit
the number of samples we provide to OSTIA to
1000, which is only 5% to 10% of what the neural
transducers train on. This keeps OSTIA’s run time
roughly equivalent to its neural counterparts, but
unlevels the playing field, as it were.

5 Results and Discussion

We train a neural network, as described in §4.3, on
the datasets taken from our sampled SFSTs. We
discuss and analyze the results below.

Minimum Transition Coverage. We define
transition coverage of a given transition as the per-
centage of samples in the training dataset that cross
that transition. The results reported in Fig. 1 reveal
a threshold on the number of samples per transition
required to comfortably learn the transducer: 400
samples. This may seem unsurprising given neural
networks’ “notorious thirst” for data (Lake and Ba-
roni, 2018). In the vast majority of the cases when
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Figure 2: As the number of states in SFST increases,
accuracy drops to nearly zero percent between 20 and
40 states.

we train on a dataset that does not meet our transi-
tion coverage threshold, the neural network does
not generalize to held-out data. And, indeed, in
the few cases where they manage to have non-zero
accuracy, we observe that early transitions in such
SFSTs have attained sufficient coverage, and are
responsible for the above zero performance. These
findings give credence to the idea that there is a
relatively simple complexity metric on the SFSTs,
i.e., transition coverage, that determines whether
or not the neural model will generalize.

Bigger Models Generalize Better. Additionally,
we find that our discovered transition coverage
threshold is not constant across all network sizes.
For instance, when we increase the size of the
hidden layers in the encoder and decoder from
200 to 300 dimensions, the sequence-to-sequence
models are able to generalize on datasets where
the transition coverage is lower; see Fig. 3, where
the purple line is the average accuracy of the larger
model. With the exception of the higher transition
coverage threshold, these models follow the same
trend as their lower dimensional counterparts.

OSTIA is Slow. In terms of wallclock time,
we find that an open-source implementation of
OSTIA6 does not scale to dataset sizes above
1000. This makes it impossible to perform
an apples-to-apples comparison of our neural
sequence-to-sequence models against OSTIA. On
the one hand, reducing the size of the training
dataset disadvantages OSTIA. On the other hand,
providing OSTIA with the full 20, 000 samples
did not terminate after 3 days on a single dataset.

6The code is available at github.com/alenaks/OSTIA.

Figure 3: As SFST state size increases, average ac-
curacy (blue line) decreases. Increasing the neural
model’s size improves accuracy (purple line).

OSTIA provably halts after a finite number of
steps, but given the above, a proper comparison
with neural models is not possible.

6 What about SCAN?

We now turn to the SCAN dataset and examine it in
light of our findings above. First, we encode SCAN
as an SFST. In so doing, we find it to be an outlier
in terms of the number of states it requires, which
far exceeds the 100 states of our largest SFST.
In fact, we calculate that the full SFST encoding
SCAN has 7, 728 states; see a small example
in Fig. 4. With a finite dataset size of 20, 000
input–output pairs, it should not be possible to
learn SCAN with high accuracy. However, unlike
other datasets of a similar size, SCAN turns out to
be nearly perfectly learnable in our (random-split)
experiments. This result stands in contrast to
our randomly generated SFSTs, which exhibit a
consistent relationship between the complexity of
a formal language and its learnability.

We offer a possible theoretical behavior for
SCAN’s surprising learnability. The class of
subregular relations has a native complexity metric
built into the formalism: The size of the SFST itself,
as measured by the number of transitions. However,
the results on the SCAN dataset indicate that the
number of transitions in an SFST is not the native
complexity metric of neural networks under consid-
eration. This should not come as a surprise because
neural networks can learn context-free transduc-
tions, which are not even representable by an SFST.
While it is interesting that we empirically identify
a scaling law that consistently applies to our
randomly sampled SFSTs, it is not the whole story.
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Figure 4: A part of the SFST encoding SCAN; in its entirety, it has > 7000 states.

Indeed, SCAN is not a randomly sampled dataset
from the class of SFSTs: It is generated by a hand-
crafted synchronous context-free grammar (Lake
and Baroni, 2018, Figure 6). While SCAN is a com-
plex SFST, requiring thousands of transitions, it can
be encoded by a very small synchronous context-
free grammar. Casting SCAN as an SFST therefore
misrepresents its native complexity. Thus, it is
left for future work to identify a class of automata
whose native complexity metric can consistently
predict the learnability of arbitrary language tasks;
such a class will surely be higher than SFSTs on
the Chomsky hierarchy given our reported results.

7 Related Work

Our paper builds on two common strains of re-
search: The construction of datasets to benchmark
compositional behavior in neural networks and
research in grammatical inference.

7.1 Compositionality Datasets

There is a growing number of artificial language
datasets focused on compositionality. Lake and
Baroni (2018) introduced a SCAN dataset, made
up of simple navigational text commands. The task
is to translate the command in the simple natural
language into sequences of actions. One succes-
sor to SCAN is the NACS dataset (Bastings et al.,
2018), which is comparable to SCAN, but instead
of mapping multiple input signals to a single du-
plicated output symbol (e.g., walk twice→ WALK

WALK), NACS does the opposite (WALK WALK →
walk twice). Since SCAN is a finite language, its
inverse NACS is also a finite language, and it can,
thus, also be encoded as an SFST. However, this
does not hold true for general SFSTs. Inverting an
SFST often results in non-subsequential transducer
because the output tape of SFSTs is, in general, not
deterministic. Another successor is gSCAN (Ruis
et al., 2020) focuses on grounding SCAN-like com-
mands in states of a grid world. This makes gSCAN
closer to Mikolov et al.’s (2016) grid world ground-
ing for their agents. In contrast to SCAN, gSCAN
requires the agent to learn differences between
sizes and colours of different geometric shapes
and interact with them, by moving them around
the grid world. Executing a gSCAN command is
therefore much more difficult than to execute its
SCAN counterpart. As Ruis et al. (2020) assert,
the gSCAN dataset removes artefacts in SCAN
which are not central to the compositional gener-
alization. They find that models perform worse on
gSCAN than on SCAN. More recently, Bogin et al.
(2022) identify that unobserved “local structures”
in compositionality datasets are harder to learn if
no similar structures are observed during training.

7.2 Grammatical Inference

Grammatical inference studies the ability to
learning classes of formal language from data. Our
work focuses on the learning of a restricted class of
functions generated by a correspondingly restricted
class of finite-state transducers. This allows us to
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synthesize our study of compositionality in neural
models as rule-based inference by neural models,
which we can restrict in principled ways. Finite-
state machines generalise many techniques in NLP:
probabilistic finite-state automata, hidden Markov
models, Markov chains, n-grams, probabilistic
suffix trees, deterministic stochastic probabilistic
automata, weighted automata, and other syntactic
objects which generate distributions over sets of
possible infinite cardinality of strings, sequences,
words, trees, and graphs (Vidal et al., 2005).
Many grammatical inference studies of neural
networks test them on samples drawn from some
deterministic finite-state acceptors (Cleeremans
et al., 1989). See Jacobsson (2005) for a review.

Others experiment with neural networks to see
if they can learn languages higher up the Chom-
sky hierarchy. LSTMs (Hochreiter and Schmid-
huber, 1997) can perform dynamic counting and
variably learn simple counter languages such as
some k-Dyck languages and anbn patterns (Weiss
et al., 2018; Suzgun et al., 2019; Bhattamishra et al.,
2020; Hewitt et al., 2020), which are generated
by a finite-state machine with a counter on top
(Schützenberger, 1962). In contrast, Avcu et al.
(2017) show that LSTM and other RNN architec-
tures often fail to learn long-distance dependencies
drawn from simpler subregular language classes,
even on large benchmarks (Mahalunkar and Kelle-
her, 2019). Nelson et al. (2020) study the inference
of sequence-to-sequence networks, showing that
RNN, LSTM, and GRU (Cho et al., 2014) sys-
tematically fail to learn a wide range of regular
string copying functions generated from a family
of two-way transducers, which characterize reg-
ular string-to-string functions. When augmented
with attention, they reliably learn every function,
and the attention history mirrors the derivations
of the corresponding two-way transducers. These
independently productive strands of work in com-
positionality and inference suggest that our work is
a reasonable starting point for future interactions.

8 Conclusion

We study whether neural sequence-to-sequence
models are capable of learning string-to-string
transductions with Montague-style composition-
ality, i.e., where compositional behavior is defined
to be homomorphic. To execute our study, we first
provide a theoretical justification of why SFSTs
meet Montague’s definition. In the empirical

portion of the paper, we randomly sample 2800
SFSTs using the process described in §4.1, and,
then, sample input–output pairs from each SFST
to create our unique string-to-string transduction
datasets. We find that neural networks tend to
either generalize completely or fail miserably—
with little middle ground. Moreover, we identify
a simple complexity metric, transition coverage,
that seems to reliably allow us to predict when an
SFST in our randomly sampled dataset is learnable
from the dataset sampled from it.

Finally, our paper discusses how analyzing
SCAN as an SFST provides a counterexample to
our contention that transtion coverages reliably
predicts the learnability of an SFST from a given
dataset. It seems that while transition coverage
is a good metric for subregular languages, there
are datasets generated by synchronous context-free
grammars that are learnable despite requiring a
large number of transitions when encoded as an
SFST. For example, SCAN’s learnability is likely
due to the fact that the synchronous context-free
grammar used to generate it is relatively small and,
thus, under a metric such as production coverage
it would be considered simple. In conclusion, to
get a more complete view of the factors underlying
learnability, it may be fruitful to consider not
only SFSTs, but other formalisms that describe
more complex formal relations. We hypothesize
that there might yet be a class of automata whose
native complexity will more consistently predict
the learnability of a language task.
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Borja Balle, Rémi Eyraud, Franco M. Luque, Ariadna
Quattoni, and Sicco Verwer. 2017. Results of the
sequence prediction challenge (SPiCe): a competi-
tion on learning the next symbol in a sequence. In
Proceedings of The 13th International Conference
on Grammatical Inference, volume 57 of Proceed-
ings of Machine Learning Research, pages 132–136,
Delft, The Netherlands. PMLR.

Jasmijn Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump
to better conclusions: SCAN both left and right.
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 47–55.

Siddharth Bhaskar, Jane Chandlee, Adam Jardine, and
Christopher Oakden. 2020. Boolean monadic re-
cursive schemes as a logical characterization of
the subsequential functions. In Language and Au-
tomata Theory and Applications - LATA 2020, Lec-
ture Notes in Computer Science, pages 157–169.
Springer.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the practical ability of recurrent neural
networks to recognize hierarchical languages. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 1481–1494,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make composi-
tional generalization hard. arXiv.

Lewis Carroll. 1871. Through the Looking Glass.
Macmillan London.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
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A Proofs

Proposition 1. Let Σ and Γ be two alphabets. The function f is a string homomorphism between (Σ∗, ◦)
and (Γ∗, ◦) iff it is a non-empty complete subsequential finite-state transducer with one state.

Proof. ⇒ Assume a homomorphism f and an alphabet Σ are given. Construct a finite-state transducer

with Q = F = {q0}. Let Γ = {f(σ) | σ ∈ Σ}. Create a transition q0
σ/f(σ)−−−−→ q0 for every σ ∈ Σ.

⇐ Since T = 〈Σ,Γ, Q, q0, F, δ〉 is non-empty, we know that its only state q0 is also a final state. Thus, T
maps ε 7→ ε, i.e., the identity element to the identity element. Let σ ∈ Σ∗ and suppose that under T we
have σ 7→ γ. Suppose σ = σ′σ′′. Since T is subsequential, there is a unique path in T that transduces
σ 7→ γ with exactly |σ| transitions. Let γ ′ be the output yield of the first |σ′| transitions and let γ ′′ be
the output yield of the next |σ′′| transitions. Thus, we have that σ′ 7→ γ ′ and σ′′ 7→ γ ′′ which shows
that T is a homomorphism because we have that γ = γ ′γ ′′ . Finally, we assumed completeness so that
f is a total function over Σ∗. �

Proposition 2. Let A = 〈Σ, Q, q0, F, δ〉 be a complete deterministic finite-state automaton. Let
M def

=
{
Mσ | σ ∈ Σ

}
be the set of A’s symbol transition matrices. Then (M∗,⊗) with ⊗ defined in

Eq. (2) is a transition monoid with E as a distinguished identity element.

Proof. We defineE to be the identity element, i.e., for anyA ∈M∗, we defineE⊗A def
= A

def
= A⊗E =

A. Closure follows from the fact forA,B ∈M+, we have thatA⊗B has by construction exactly one
non-zero entry in every row, as elaborated upon in the main text. To check associativity, consider

(
Mσ ⊗Mσ′ ⊗Mσ′′

)
ik

= Mσ
ijM

σ′
jj′M

σ′′
j′k (4)

for some i, j, j′, k. By the associativity of string concatenation (including when it is augmented to include
the zero string), we have that

(Mσ
ijM

σ′
jj′)M

σ′′′
j′k = Mσ

ij (M
σ′
jj′M

σ′′′
j′k ) (5)

which in turn implies that
(

(Mσ ⊗Mσ′
)⊗Mσ′′

)
ik

=
(
Mσ ⊗ (Mσ′ ⊗Mσ′′

)
)
ik

(6)

Thus, we have that (M∗,⊗) is a monoid. �

Proposition 3. Let T = 〈Σ,Γ, Q, q0, F, δ〉 be a complete subsequential finite-state transducer. Let
(M∗Σ,⊗) be the transition monoid associated with the input alphabet Σ and let (M∗Γ,⊗) be the transition
monoid associated with the output alphabet Γ. Then there exists a homomorphism f :M∗Σ →M∗Γ.

Proof. We define f as follows. First, we define f(E)
def
= E. Next, consider an arbitrary elementM∗Σ.

BecauseM∗Σ is a Kleene closure, we may write this arbitrary element asMσ1
Σ ⊗ · · · ⊗M

σK
Σ . Now we

define f(Mσ1
Σ ⊗ · · · ⊗M

σK
Σ )

def
= Mσ1

Γ ⊗ · · · ⊗M
σK
Γ . Thus,

f(Mσ1
Σ ⊗ · · · ⊗M

σK
Σ )

= f
(
(Mσ1

Σ ⊗ · · · ⊗M
σk
Σ )⊗ (M

σk+1

Σ ⊗ · · · ⊗MσK
Σ )
)

=
(
Mσ1

Γ ⊗ · · · ⊗M
σk
Γ

)
⊗
(
M

σk+1

Γ ⊗ · · · ⊗MσK
Γ

)

= Mσ1
Γ ⊗ · · · ⊗M

σK
Γ

This proves f is a homomorphism. �
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Abstract
In a text, entities mentioned earlier can be re-
ferred to in later discourse by a more general
description. For example, Celine Dion and
Justin Bieber can be referred to by Canadian
singers or celebrities. In this work, we study
this phenomenon in the context of summariza-
tion, where entities from a source text are gen-
eralized in the summary. We call such instances
source-summary entity aggregations. We cat-
egorize these aggregations into two types and
analyze them in the CNN/DAILYMAIL corpus,
showing that they are reasonably frequent. We
then examine how well three state-of-the-art
summarization systems can generate such ag-
gregations within summaries. We also develop
techniques to encourage them to generate more
aggregations. Our results show that there is
significant room for improvement in producing
semantically correct aggregations.

1 Introduction

The quality of abstractive summarization systems
has improved substantially in the past few years.
An important next research question is to better
understand the specific linguistic and semantic op-
erations which can lead to high-quality abstractive
text. In this work, we focus on how entities can
be referred to in summaries, especially with an
expression more general than in the source. For ex-
ample, Table 1 demonstrates how three comic book
characters mentioned in the source document are
aggregated in a reference summary by the expres-
sion, “three of the most well-known comic book
characters of all time”. Such referring expressions
are interesting for abstractive summarization, since
they are novel summary n-grams that result from
semantic inference from the source.

There are few existing studies about the seman-
tics of text generated by current abstractive systems.
Some have focused on summary n-grams that are
not found in the source text (Kryściński et al., 2018;
Song et al., 2020), and others that look at problems

Document

(CNN) Comic books of the past few years have
seen a lot of changes (a female Thor, anyone?)
but not quite so many at one time. Three major
characters – Superman, Wonder Woman (both of
DC Comics, a Time Warner company, like CNN)
and Archie Andrews – came out with new looks
(...)

Summary

Superman, Wonder Woman and Archie all de-
buted new looks Thursday. Three of the most
well-known comic book characters of all time look
radically different.

Table 1: An example of source-summary entity aggre-
gation. The aggregation “Three of the most well-known
comic book characters of all time” is used in the sum-
mary to aggregate the entities “Superman”, “Wonder
Woman”, and “Archie Andrews” named in the document.

resulting from undesirable summary content, e.g.,
hallucinations (Maynez et al., 2020; Kryściński
et al., 2020).

We focus on a specific semantic operation that
summary writers can perform in order to change
the level of detail in a summary: the semantic ag-
gregation of named entities in context, as in Table 1.
We estimate the prevalence of such aggregations
in the CNN/DAILYMAIL corpus (Hermann et al.,
2015). We also categorize the aggregations that we
find into those (i) where the models can copy the
aggregations from the source document, and (ii)
those cases where the models are required to gen-
erate novel aggregations not found in the source.

We then explore how well existing systems can
generate copy and novel aggregations that match
those found in reference summaries. Specifically,
given a document, the models must generate a sum-
mary, and the aggregations within the generated
summary are evaluated against the aggregations in
the reference summary.

We evaluate three state-of-the-art Transformer-
based abstractive summarization systems: BART

(Lewis et al., 2020), PEGASUS (Zhang et al., 2020),
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and T5 (Raffel et al., 2020). The experimental
results show that the task is hard, especially for
generating novel aggregations. We also explore
how to fine-tune BART (Lewis et al., 2020) to gen-
erate more summary-worthy aggregations without
compromising the overall summary quality. The
performance of all the summarization models is
still far below the upper bounds posed by our ora-
cles, showing that there is room for improvement.

2 Related work

Semantic generalization in automatic summariza-
tion is receiving increasing interest, both in terms of
the data and the models. In Belkebir and Guessoum
(2016), the authors fuse concepts within sentences
using hypernymy relations from taxonomies such
as WordNet. Kouris et al. (2019) focuses on ab-
stracting single concepts. Roughly, they train an
encoder-decoder architecture on documents where
single nouns are replaced with hypernyms, to pro-
duce more general summaries. Contrary to these
approaches based on taxonomies, Kryściński et al.
(2018) use a mixed objective for training encoder-
decoder architectures to encourage abstraction in
summaries. The level of abstraction was defined in
terms of novel n-grams.

The surface-level novel n-grams definition of
abstractiveness has also been used in recent sum-
marization datasets (Grusky et al., 2018; Narayan
et al., 2018). This approximation is convenient for
generation since it measures any kind of rewrit-
ing. However, being able to explicitly measure
different types of abstraction is important for track-
ing progress. Our work is based on this motiva-
tion. The closest idea towards entity aggregation is
Jumel et al. (2020) and we draw heavily from their
work. They introduce a dataset and task (TESA)
which consists of producing a non-enumerating
noun phrase (‘former US presidents’) that aggre-
gates a set of entities (‘Clinton’, ‘Bush’) in a tex-
tual context (a New York Times article). Their data
was collected using crowd annotators and does not
specifically focus on any task. Our work explores
entity aggregations in the context of abstractive
summarization.

Our task can be seen as a referring expression
generation problem (Stone, 2000; Krahmer and van
Deemter, 2012) where a general phrase in the sum-
mary stands in for a set of entities in the source.
The task is also related to multi-antecedent corefer-
ence resolution and split-antecedent anaphora (Yu

et al., 2020; Burga et al., 2016; Vala et al., 2016),
but most resources and approaches here are aimed
at pronominal coreference. Some studies address
entity-driven summarization (Zhou et al., 2021;
Sharma et al., 2019), with the aim of focusing the
summaries on the most salient entities. Differently
to our work, this work does not focus explicitly on
the aggregation expressions in the summaries.

Currently, abstractive summarization systems
have vastly improved generation capabilities,
achieved by using pre-trained Transformers
(Vaswani et al., 2017) as a backbone. Among the
state of the art of text summarization benchmarks,
BART (Lewis et al., 2020), PEGASUS (Zhang et al.,
2020), PROPHETNET (Qi et al., 2020) and T5 (Raf-
fel et al., 2020) stand out in terms of ROUGE.
Some challenges with these models, such as mit-
igating hallucinations or ensuring factual consis-
tency, are of great interest. Different methods have
been proposed here (Zhao et al., 2020; Nan et al.,
2021b). Of these Narayan et al. (2021); Nan et al.
(2021a) incorporate text planning using a sequence
of entities to prompt faithful generation. We use
such ideas to encourage systems to produce more
aggregations by jointly training the models to iden-
tify summary-worthy aggregations while learning
to generate summaries.

3 Corpus Study

3.1 Defining source-summary entity
aggregations

We categorize source-summary entity aggregation
into two types: a) copy aggregations found in the
source and b) novel aggregations that must be
generated. In copy aggregations, an aggregating
expression for entities is present in the source and
the same expression is also in the summary. In
the novel case, entities from the source are aggre-
gated by a new expression not found in the source.
Table 2 shows examples of the two types.

This distinction is useful for summarization sys-
tems since a system will understandably find it
easier to copy an expression from the source. Gen-
erating novel aggregations is likely more difficult,
in theory requiring deeper semantic understanding
of the source content.

3.2 Data Source

One would like to understand how often aggre-
gations are used in human summaries and also
how well systems currently handle them. However,
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Document Summary Type

Through the process of elimination (...), our guess as to which
five states. White will play on the brief acoustic run: South
and North Dakota, Wyoming, Vermont and ... Puerto Rico?

Jack White taking a hiatus from touring after brief acoustic
jaunt . He’ll play five states he has yet to get to, charge just
$3 . Places and times of shows are currently a mystery. Copy

Aggregation
Camuti and Rakes were longtime business associates, and
Camuti allegedly poisoned Rakes at a time when Camuti
owed money to Rakes. (...)

William Camuti, 69, is charged with attempted murder and
misleading police. Camuti and victim Stephen Rakes were
longtime business associates.

Sometime in the not-too-distant future, Kanye West can once
again (...) The rapper and his reality TV star girlfriend, Kim
Kardashian, are having a girl.

News comes the same day Kardashian has a baby shower.
The couple has been dating since last year . The baby is due
next month. Novel

Aggregation
After a youth rally in the Bahamas National Stadium Monday,
Harry travels to Jamaica and then on to Brazil to complete his
10-day tour (...)

The Bahamas is Prince Harry’s second stop in a 10-day
Caribbean tour . The 27-year-old prince is celebrating the
Diamond Jubilee of Queen Elizabeth II . Jamaica and Brazil
are Harry’s next two destinations.

Table 2: Examples from the CNN/DAILYMAIL for the different cases of source-summary entity aggregation.
Aggregations are in green and entities are in blue.

doing so requires a dataset with entities marked
together with their aggregations, also aligned be-
tween source and summary texts. Such annotations
are costly to produce in practice. So, we approxi-
mate counts using heuristics which we will outline
in this section.

We use the TESA (Jumel et al., 2020) dataset,
where sets of entities are paired with human-written
aggregation expressions. We briefly describe this
dataset and then how we designed our heuristics.

The TESA corpus comprises 1,718 ‘aggregatable
instances’, each one consisting of (a) a set of named
entities of the same type (person, location, and or-
ganization), (b) a context (excerpt) from an article
in the NEW YORK TIMES corpus (Sandhaus, Evan,
2008) involving the entities, (c) background knowl-
edge of the entities from Wikipedia, and (d) at least
one human-written aggregation. An example of an
aggregatable instance is shown in Table 3.

Background
Microsoft: Microsoft Corporation is an American multina-
tional technology company (...)
Sony: Sony Corporation is a Japanese multinational conglom-
erate corporation (...)

Context

Battleground For Consoles Moves Online: Over all, though,
it is Microsoft that has had the steeper mountain to climb.
In the last generation of video game consoles, Sony had a
roughly 60 percent market share, compared to 20 percent for
each Microsoft and Nintendo.

Aggregations technology companies, multinational corporations

Table 3: Example of an aggregatable instance from
TESA. The entities of the set are in blue and the anno-
tated aggregations are in green.

Table 4 shows several basic statistics of TESA.
Table 9 in Appendix A shows some of the most fre-
quent entity aggregations. Note that these examples
are not specific to summarization, and they show
entity aggregation in the context of a news article.

In addition, the corpus only contains named entities
which are persons, organizations, or locations. So,
this set is only a small subset of possible source-
summary relations. However, given the difficulty
of defining and identifying such aggregations, we
similarly limit our work to the same types of named
entities.

Entity
Sets Entities Aggregations

Person 941 (801) 2228 (1201) 2900 (951)
Location 629 (412) 1606 (278) 2041 (505)
Organization 148 (123) 310 (196) 456 (239)

Table 4: Statistics of each type in the TESA corpus. We
indicate the total count of occurrences, and in parenthe-
ses the count of unique occurrences.

3.3 Prevalence in the CNN/DailyMail corpus
To determine the prevalence of source-summary en-
tity aggregations in the CNN/DAILYMAIL corpus,
we computed the percentage of document-summary
pairs containing each type of aggregation. We do
this heuristically due to the difficulty of labeling.
This process consists of the following steps:

1. Identify sets of entities in a source document
that could be aggregated.

2. Identify the possible aggregations in the
source and summary documents that could
be matched with each source entity set.

3.3.1 Detecting aggregatable entity tuples
We used four lexico-syntactic patterns to detect
tuples of entities in source documents which could
potentially be aggregated. Entities1 in a tuple must

1We used the Spacy pipeline (Montani et al., 2022) with
RoBERTa-base (Liu et al., 2019) to extract named entities and
noun phrases.
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be of the same entity type (person, location, or
organization). These patterns are:

• Coordinating conjunctions: list of entities
separated by , or ; ending with a conjunction
(and/or), e.g., John, Peter, and Mary.

• In sentence: entities mentioned at any posi-
tion within the same sentence, excluding the
Coordinating conjunctions pattern, e.g., To-
day John meets Mary.

• Contiguous sentences: entities used to begin
contiguous sentences, e.g., John went to the
beach. Mary went to the mountain.

• Shared nouns: entities mentioned at any po-
sition that are preceded by the same singular
noun phrase, e.g., Rock climber John prefers
a change of scenery. In contrast, rock climber
Mary prefers the mountain.

This step gives us aggregatable entity tuples
from a source document.

3.3.2 Identifying possible aggregations
This step identifies likely aggregation expressions.
First, we find likely expressions for these entity tu-
ples in the source, where possible. For that, we use
a collection of heuristics to pick candidate expres-
sions within close proximity to the entities. We will
then explain how we align these aggregations to
those in the summary (to identify if they are novel
or copied from the source).

The following heuristics identify aggregations
in close proximity to entity tuples in the source:

• Previous sentence: a noun phrase in the sen-
tence that precedes the span of sentences con-
taining the entities, e.g., The rock climbers are
traveling by the world. Some of them are John
and Mary.

• In span: a noun phrase in the span of sen-
tences containing the entities, e.g., John went
to the beach, he is one of the traveling rock
climbers. Mary went to the mountain.

• Next sentence: a noun phrase in the sentence
that follows the span of sentences contain-
ing the entities, e.g., Today John meets Mary.
Both rock climbers will have a virtual meeting.

• Preceding a list: a noun phrase which intro-
duces a list, with phrases such as (like, such

as, including), whitespaces, commas, semi-
colons, and ‘—’, e.g., Young rock climbers
such as John and Mary are traveling today.
This pattern can only be used to get aggre-
gations of entities obtained by Coordinating
Conjunctions.

• Preceding entities: the plural form of a sin-
gular noun phrase that precedes all the enti-
ties, e.g., Rock climber John prefers a change
of scenery. In contrast, rock climber Mary
prefers the mountain. This pattern can only
be used with Shared nouns.

Note that these candidate aggregations may be
noisy. So, we only select a noun phrase if it con-
tains an aggregation expression from the TESA cor-
pus. For example, ‘young rock climbers’ would
be selected if any of ‘young rock climbers’, ‘rock
climbers’ or ‘climbers’ is present in TESA.

At the end of this step, we have tuples of entities
in a source document. Each tuple may be mapped
to a list of possible aggregation expressions in the
source or no aggregation at all. We show one exam-
ple of an entity tuple and an associated identified
aggregation from the CNN/DAILYMAIL: “He is
the first Western leader to visit one of the three
worst affected west African countries - Liberia,
Sierra Leone and Guinea.”. Table 10 in Appendix
A shows more examples.

We now use these sets to identify copy aggrega-
tions and novel aggregations in summaries of these
documents.

Copy aggregations: are source aggregations
which are also present in the summary. When an
entity tuple does not have a source aggregation
from the previous step, we drop it. For the re-
maining tuples, we check whether one of its ag-
gregations is present in the summary. That entity
tuple-aggregation pair is a copy aggregation.

Novel aggregations: Here, the aggregation must
appear in the summary and not in the source. So
the extracted entity tuples and their ‘source’ aggre-
gations are used differently here.

We create an overall map to be used across the
whole set of documents. For each aggregation ex-
pression, we aim to create a list of entities, any sub-
set of which can be aggregated by that expression.
We do this by merging the aggregation expressions
and entity tuples identified in CNN/DAILYMAIL us-
ing the heuristics in this section. For example, sup-
pose the corpus contains two documents A and B.
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Document A has the source tuple-aggregation pair
{‘Biden’, ‘Harris’}→ ‘politicians’ and document
B contains {‘Modi’, ‘Johnson’} → ‘politicians’,
then the overall map will contain ’politicians’→
{‘Bush’, ‘Clinton’, ‘Johnson’, ‘Modi’}. Note that
this step merges the entities for the same expres-
sion across all of the CNN/DailyMail corpus. To
increase the coverage of this overall map, we also
add aggregation-entity pairs from the TESA cor-
pus. i.e. If TESA contains the annotation {‘Modi’,
‘Johnson’}→ ‘prime ministers’, the entry ’prime
ministers’→ {‘Johnson’, ‘Modi’} is also added to
our table.

This map is now a broad list of aggregations and
possible candidate entities. To identify novel aggre-
gations, we find those cases where an aggregation
expression from the table is in the summary but not
in the source, and any subset of entities from its
entity list is present in the source. Note that this
subset may be {’Modi’, ’Biden’} which matches a
new document C now.

Because our heuristics differ in terms of preci-
sion and recall, we computed low and high esti-
mates of the percentage of documents containing
each case. For the low estimates, we only used Co-
ordinating conjunctions+Preceding a list since it
showed almost 100% precision in our preliminary
evaluation (but a very low recall). For the high
estimates, all the heuristics are used.

We found that up to 15% of all document-
summary pairs in the CNN/DAILYMAIL corpus
could contain some type of source-summary ag-
gregation, being thus a reasonably frequent phe-
nomenon even in such an extractive dataset. Fol-
lowing the low estimate, novel aggregations are
more frequent than copy aggregations from the
source (1.13% vs. 0.64%). However, following
the high estimate, it seems that copy aggregations
are more frequent (10.95% vs. 4.99%).

Note that to reduce noise, we filtered our ex-
pressions using the manual expressions from TESA

which covers New York Times articles mostly from
an earlier time period, and only entities which are
salient and of fixed named entity types. Conse-
quently, we are likely underestimating the preva-
lence of source-summary entity aggregation in the
CNN/DAILYMAIL corpus.

4 Experimental setup

Our experiments aim to evaluate the capabilities of
state-of-the-art summarization models to generate

summary-worthy aggregations. In this section, we
describe the task, our oracles, models and evalua-
tion measures.

4.1 Task definition

Given a document, the models must generate a
summary, and the aggregations within the gener-
ated summary must match or be close to those in
the reference summary.

We built two test sets from the development and
test partitions of the CNN/DAILYMAIL corpus: the
COPY and NOVEL sets. We make this distinction
to independently evaluate copy and novel aggrega-
tions. To create these sets, we use a broad heuristic
compared to our corpus study. Here we gather all
noun phrases in the summary and check if their
span contains a TESA aggregation. If so, we call
it an aggregation and check it against the source
to separate into copy and novel sets. Note that
here we do not obtain an alignment with entity tu-
ples in the source as in our corpus study. Such
alignments would have lower coverage and greater
noise, hence we opt for this simple heuristic here.

Therefore each sample in these sets is a triple
(D, S, A), where D is a document, S its summary,
and A is the set of aggregation expressions in S.
All our samples have non-empty A sets. In the
COPY set, A only contains aggregations that also
appear verbatim in the document. In the NOVEL

set, the aggregations A do not appear verbatim in
the document.

Basic statistics of both test sets are shown in
Table 5. Table 6 shows the most frequent aggre-
gations. We show some examples of source and
references in Table 12 of Appendix A.

COPY NOVEL

Examples 4156 2905
Avg words (document) 754.74 (351.70) 750.72 (365.52)
Avg words (summary) 61.44 (31.63) 61.53 (39.22)
Avg words (aggregations) 1.78 (0.82) 1.12 (0.38)
Unique aggregations 1744 2120
Avg of aggregations 1.22 (0.51) 1.12 (0.38)
%CNN/DAILYMAIL val+test 16.71% 11.69%

Table 5: Statistics of the COPY and NOVEL sets. Stan-
dard deviations are in parentheses.

4.2 Evaluation measures

We evaluate the performance of the models from
two points of view: at the aggregation level (how
well do the aggregations of the generated sum-
maries match those of the reference summaries?)
and at the summary level (how good are the gener-
ated summaries compared to the references?).
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COPY

Person
women (257), friends (173), family (160), men
(136), his family (113)

Location
countries (17), cities (14), locations (6), communi-
ties (6), states (4)

Org.
schools (33), companies (17), businesses (15),
teams (13), groups (11)

NOVEL

Person
the pair (117), his family (49), the couple (29), the
men (24), officials (20)

Location
other countries (4), countries (4), other cities (3),
communities (3), cities(3)

Org.
schools (6), the two teams (4), both teams (4),
other teams (3), record labels (3)

Table 6: The five most frequent aggregations per en-
tity type in COPY and NOVEL test sets. We indicate in
parentheses the count of occurrences.

For the aggregation-level evaluation, we con-
sider three metrics. Two are based on over-
laps (Aggregation exact match and Token exact
match) and the third relies on similarities among
aggregations (Aggregation relaxed match).

Aggregation exact match: LetAref andAgen be
the aggregations in the reference and the generated
summary respectively. Precision is defined as P =
|Aref∩Agen|
|Agen| and recall as R =

|Aref∩Agen|
|Aref| .

Token exact match: Let Tref and Tgen be the
sets of words in the aggregations of the reference
and the generated summary respectively. Preci-
sion is defined as P =

|Tref∩Tgen|
|Tgen| and recall as

R =
|Tref∩Tgen|
|Tref| . This score does not constrain the

expression phrases to match exactly.

Aggregation relaxed match: This variant also
measures matches when the generated aggrega-
tions do not have word overlap with the reference
aggregations, e.g., Aref = {news websites} and
Agen = {online newspapers}. In those cases, the
two previous measures are too restrictive. So, we
propose a measure based on similarities among
the aggregations, computed by using BERTSCORE

(BS) (Zhang et al., 2019). The precision and recall
of this measure are defined as follows:

P =
1

|Agen|
∑

agen∈Agen

max
aref∈Aref

BS(agen, aref) (1)

R =
1

|Aref|
∑

aref∈Aref

max
agen∈Agen

BS(agen, aref) (2)

For the summary-level evaluation, we re-
port both ROUGE-F1 scores (Lin, 2004) and

BERTSCORE to assess the generated summaries.
We do not perform human evaluations of content
quality because we only want to check that it has
not dropped drastically.

4.3 Models

We used three state-of-the-art abstractive sum-
marization models as the main systems: BART2

(Lewis et al., 2020), PEGASUS3 (Zhang et al.,
2020) and T54 (Raffel et al., 2020). All these sys-
tems are fine-tuned using the training set of the
CNN/DAILYMAIL, and evaluated on the COPY and
NOVEL sets. All models were implemented using
HuggingFace Transformers (Wolf et al., 2020).

Early findings showed that BART generates bet-
ter aggregations than the other two. So, we also
explored how to fine-tune BART to generate more
summary-worthy aggregations. These new ap-
proaches were fine-tuned for summarization using
the same BART hyper-parameters reported in Lewis
et al. (2020).

4.3.1 BART+PretrainingAggregations
This approach tailors the pre-trained BART5 to-
wards aggregations before fine-tuning it on sum-
marization. To do so, we further pre-train BART to
reconstruct documents with masked aggregations.
We expect this reconstruction knowledge to transfer
to summarization.

The pre-training dataset comprises all the docu-
ments from the training set of CNN/DAILYMAIL.
For each document, we mask aggregations (noun
phrases filtered by TESA), plural noun phrases, and
random spans until 30% of the tokens are masked.
The BART checkpoint is further pre-trained during
two epochs with batches of 64 samples to optimize
the cross-entropy between the decoder’s output and
the original document.

4.3.2 BART+AggregationChains
Recent works have shown that jointly learning to
generate a sequence of summary-worthy entities
followed by the summary can steer summaries to-
wards those entities and also reduce hallucinations
(Nan et al., 2021a; Narayan et al., 2021). We use a
similar approach to encourage aggregations.

We fine-tune BART5 to jointly generate the
sequence of aggregations of the summary, fol-

2https://bit.ly/3fK3ZxU
3https://bit.ly/3tIHbXC
4https://bit.ly/3fFKXbV
5https://bit.ly/3AjKl5C
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lowed by the summary. We built the dataset for
fine-tuning BART from the training set of the
CNN/DAILYMAIL corpus, discarding those sam-
ples whose summary has no aggregations. We fine-
tuned the model during 20k steps with batches of
80 samples, as in (Lewis et al., 2020).

The target sequences for fine-tuning follow the
format of Narayan et al. (2021), e.g., “[CHAIN]
rock climbers | friends ||| rivals [SUMMARY] John
and Mary are rock climbers and friends. They are
also rivals.”. During evaluation, the generated ag-
gregation chain is removed.

4.3.3 Gating BARTs
We found that improvements in aggregation pro-
duction were typically accompanied with a deterio-
ration in the summary content quality metrics. This
difference is pronounced when evaluating on the
whole CNN/DAILYMAIL test set (since our aggre-
gation models are trained only on the subset which
has aggregations). We aim to alleviate this inverse
correlation by combining the best model at each
evaluation level: BART+AggregationChains (ag-
gregation level: the joint model just described) and
BART2 (summary level: a baseline summarization
model).

We use BART+AggregationChains for sum-
maries which contain aggregations, and BART2

otherwise. We use a binary classifier to deter-
mine these cases. This classifier is a DEBERTA-
LARGE6 model, fine-tuned on the training set of
the CNN/DAILYMAIL, to determine, given a docu-
ment, if the reference summary has aggregations.
We fine-tuned the classifier for six epochs using
batches of 64 samples. This binary task can be
done with an accuracy of 76% and an average F-
score of 70.5. Table 11 of Appendix A shows the
detailed results.

4.4 Oracles
We determine the upper bounds for our models
using oracles of the above models. They were fine-
tuned as described above for summarization. But
during inference, essential information involving
the aggregations of the reference summaries is dis-
closed as an input.

4.4.1 BART+PerfectAggregationChains
This oracle observes how
BART+AggregationChains would perform
if it generated perfect aggregation chains.

6https://bit.ly/3sOh7cQ

BART+AggregationChains first generates an
aggregation chain, that is attended through decoder
self-attention to condition the generation of the
summary. Therefore, an upper bound on its
performance is obtained by using as prefix for the
decoder the chain with the oracle aggregations of
the reference summary.

4.4.2 Copy Sentence Oracles
BART, PEGASUS, and T5 exhibit a strong behavior
toward copying content from the source due to the
high degree of extractivity in the CNN/DAILYMAIL

corpus. We observe how these systems would be-
have if they could copy entire sentences with ag-
gregations from the source into the summary.

We build three copy sentence oracles: Copy
BART, Copy PEGASUS, and Copy T5. Each sen-
tence with aggregations in the reference summary
is copied into the source document, and placed af-
ter the most similar sentence in the document in
terms of averaged ROUGE scores. Then, each sys-
tem is used to summarize the enriched document.
Note that these oracles are much more informed
than BART+PerfectAggregationChains since full
sentences of the reference summary are disclosed.

5 Results

The results of the models and the oracles, at aggre-
gation and summary levels, are presented in Tables
7 and 8 respectively. Note that COPY and NOVEL

results are on a subset of the CNN/DAILYMAIL test
set where aggregations are present in the summary.
The full test set results are also reported separately.

All the models struggle at aggregation-level with
the NOVEL test set, especially when they are evalu-
ated using the most restrictive metric (Aggregation
exact match). In this case, the models obtain ap-
proximately 10 times lower performance than with
the COPY test set. Even with the COPY test set,
where the models can copy the aggregations from
the source to the summary, the results are almost al-
ways lower than 50 precision, recall, and F1, which
shows the difficulty of the task for current summa-
rization approaches.

At the aggregation-level,
BART+AggregationChains systematically
outperforms all the other systems, showing that
content planning with aggregation chains is an
appropriate strategy to generate more summary-
worthy aggregations. However, its performance
at the summary-level is worse than that of BART,
especially on the CNN/DAILYMAIL test set. This
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COPY NOVEL
Aggregation
Exact Match

Token
Exact Match

Aggregation
Relaxed Match

Aggregation
Exact Match

Token
Exact Match

Aggregation
Relaxed Match

Main Systems
BART 31.35 40.86 45.97 3.87 17.58 24.47
PEGASUS 29.32 38.25 42.97 3.71 16.40 22.15
T5 28.12 37.36 43.39 3.79 16.20 22.67

Fine-tuned on Aggregations
BART+PretrainingAggregations 31.07 40.69 45.89 3.69 16.88 24.38
BART+AggregationChains 37.65 51.32 58.49 5.39 23.44 35.11
Gating BARTs 35.15 47.69 54.41 4.55 20.01 29.55

Oracles
Copy BART 44.11 51.41 55.71 22.17 34.18 39.25
Copy PEGASUS 43.18 50.36 54.30 18.64 30.72 34.94
Copy T5 38.87 46.64 51.80 15.31 28.12 33.25
BART+PerfectAggregationChains 59.73 67.95 71.85 39.23 54.80 58.97

Table 7: Aggregation-level results of each model (F1 scores) for each test set.

COPY NOVEL CNN/DailyMail test set
R-1 R-2 R-L BS R-1 R-2 R-L BS R-1 R-2 R-L BS

Main systems
BART 46.11 22.89 43.03 31.73 42.95 18.70 39.60 28.19 44.06 21.07 41.00 30.53
PEGASUS 46.00 23.17 43.06 36.35 43.14 19.20 39.99 33.31 44.60 21.65 41.64 35.84
T5 43.21 20.36 40.27 27.74 40.25 16.68 37.15 24.30 41.57 18.92 38.68 25.58

Fine-tuned on Aggregations
BART+PretrainingAggregations 46.04 22.73 43.06 35.21 43.10 18.85 39.99 32.18 44.05 20.96 41.13 34.25
BART+AggregationChains 45.14 21.94 42.12 34.71 41.96 18.00 38.86 31.25 42.02 19.05 38.93 31.95
Gating BARTs 45.08 21.84 42.06 34.20 42.19 18.22 39.03 30.56 43.32 20.37 40.30 31.57

Oracles
Copy BART 48.92 27.32 46.05 34.74 46.20 23.66 43.16 31.67 44.90 22.36 41.89 31.41
Copy PEGASUS 49.17 27.91 46.41 39.71 46.16 23.68 43.24 36.49 45.48 22.96 42.55 36.79
Copy T5 45.54 23.86 42.82 29.97 42.57 19.83 39.71 26.49 42.22 19.88 39.40 26.22
BART+PerfectAggregationChains 46.22 23.97 43.42 33.35 43.41 19.98 40.53 30.76 43.87 20.97 41.02 33.76

Table 8: Summary-level results of each model (F1 scores) for each test set, along with the CNN/DAILYMAIL test
set. R stands for ROUGE and BS for BERTSCORE.

inverse correlation is alleviated by Gating BARTs,
which trades off the aggregation-level and the
summary-level performance better than BART and
BART+AggregationChains. In this way, Gating
BARTs represents an intermediate point between
BART and BART+AggregationChains, that gener-
ally obtains better aggregation-level performance
than BART and better summary-level performance
than BART+AggregationChains. Regarding
BART+PretrainingAggregations, its performance
does not significantly differ from BART neither at
aggregation-level nor at summary-level.

The upper bounds of the performance at ag-
gregation and summary levels are posed by
BART+PerfectAggregationChains and Copy PE-
GASUS oracles respectively. At the aggrega-
tion level, the performance of all the mod-
els is far below the upper bound posed by
BART+PerfectAggregationChains, which suggests
that there is great room for improvement of sum-
marization systems. In addition, although the copy
sentence oracles also have access to the reference
aggregations, they obtain significantly worse re-
sults than the BART+PerfectAggregationChains.
It suggests that summarization systems that have

not been trained to consider aggregations prop-
erly will struggle in the aggregation-level evalu-
ation. At the summary-level, the performance of
the models is more similar to the oracles than in
the aggregation-level evaluation, which suggests
that there is smaller room for improvement here
compared to aggregation-level.

Table 12 of Appendix A illustrates sample out-
puts from BART and BART+AggregationChains
systems.

6 Conclusion and future work

We studied source-summary entity aggregation, a
frequent phenomenon in the CNN/DAILYMAIL cor-
pus. We analyzed the capabilities of state-of-the-
art summarization systems to generate summary-
worthy aggregations, and explored different ways
of fine-tuning BART to generate more aggregations.
Our results suggest that summarization models can
improve greatly along these lines.

In future work, we would like to explore how to
leverage knowledge about the entities to generate
better aggregations. Another important direction
is other types of semantic generalization, such as
aggregations of sequences of events. Also, we plan
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to explore source-summary entity aggregation on
more abstractive summarization datasets such as
XSUM and WIKIHOW, which could reflect better
the aggregation phenomenon. Finally, we would
like to investigate deeper questions about semantic
aggregation in summarization, e.g., when is gener-
ality preferred over specificity in summaries?

7 Ethical considerations

The TESA dataset centers around specific topics
found in the NEW YORK TIMES corpus during
2006-2007. They are skewed towards the male gen-
der, and newsworthy entities involved in politics,
business, etc. This selection limits the diversity of
the aggregations used in our work. Even though
models trained on the data learn semantic abstrac-
tions which aids generalization, we need further
studies to explore how they differ in performance
for different classes of entities.

Our models also share the same research issues
as other abstractive systems and further work on
reducing hallucinations, and factual inconsistencies
will improve our approaches as well.
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Appendix A Aggregations and system output

Person Location Organization
(Joseph Lieberman, Ned Lamont) –> politicians (Israel, Lebanon) –> middle eastern countries (Airbus, Boeing) –> transportation companies
(Ehud Olmert, Mahmoud Abbas) –> politicians (Iran, Iraq) –> neighboring countries (London Stock, Nasdaq Stock) –> stock markets
(Charlie McDermott, Kris Kristofferson) –> actors (Ethiopia, Somalia) –> african countries (Microsoft, Google) –> technology companies
(Barry Diller, Frank Gehry) –> americans (China, North Korea) –> asian countries (Altimo, Telenor) –> companies

Table 9: Several examples among the most frequent (entities, aggregation) pairs for each type in TESA.

CC+PS CC+IS CC+NS

Internet giants signed up Tuesday to a "zero toler-
ance" approach to images of child sexual abuse as
the British government announced a new, tougher
strategy to find and block illegal content. Google,
Yahoo, Microsoft, Twitter and Facebook were
among the firms summoned to a meeting on the
issue at 10 Downing Street, the prime minister’s
residence, by the UK government’s Department
for Culture, Media and Sport.

Internet giants signed up Tuesday to a "zero toler-
ance" approach to images of child sexual abuse as
the British government announced a new, tougher
strategy to find and block illegal content. Google,
Yahoo, Microsoft, Twitter and Facebook were
among the firms summoned to a meeting on the
issue at 10 Downing Street, the prime minister’s
residence, by the UK government’s Department
for Culture, Media and Sport.

The launch of the lifeboat by William and Cather-
ine and, at the same time, the launch of William
and Catherine into this celebrity saturated world
they are going to be living in. Despite the modest
nature of the event, hundreds of people turned out
to watch the royal couple conduct their first official
duty together.

CC+PL IS+PS IS+IS

Last month, Inter was fined $65,500 by the Italian
football authorities after its fans were found guilty
of racially abusing former players Mario Balotelli
and Sulley Muntari, who now play for rival AC
Milan.

Some of the candidates have watched the video.
Vazquez Mota, of the ruling National Action Party,
said the video’s message can’t go unnoticed, while
Institutional Revolutionary Party candidate Pena
Nieto expressed that now is the time for change,
as the video suggests.

As advertising losses and new reader habits af-
flicted newspapers nationwide, The Times began
looking to shed The Globe and even threatened to
close the paper in 2009 amid disputes with unions.

IS+NS CS+PS CS+IS

When asked what would happen if he rapped his
anti-regime lyrics prior to Libyaś uprising, MC
Swat said, "I would be shot to death like Tupac,"
referring to the American rapper killed in 1996.But
here in Benghazi, the oppositionś de facto capital,
thereś no sign of Gadhafiś loyalists anymore – or
the fear that kept artists like MC Swat quiet for so
long.

All three suspects are facing a charge of capital
murder with the intent to sell a controlled sub-
stance, Lindley said. Trent Deundra Crump turned
himself in to authorities of Alachua County Sher-
iff’s Department in Gainesville, Florida, Lindley
said. Duntae Harvey, 21, was arrested Monday
and was being transferred Tuesday from Rankin
County, where he has been held, university offi-
cials said. Mason Perry Jones, 21, of Jackson was
arrested Monday in Memphis by members of the
U.S. Marshal’s Fugitive Task Force, Lindley said.

South Dakota, which has sent one inmate to death
in three decades, has scheduled a lethal injection
in October. Nebraska is the only state that does not
use lethal injection, but its use of the electric chair
was ruled unconstitutional in February. Texas and
Mississippi are among the states that use 2 grams
of sodium thiopental, the anesthetic used to render
condemned inmates unconscious.

CS+NS SN+PE

Alexis was not the first mass killer to have an ob-
session with violent video games. Adam Lanza,
who killed 26 children in an elementary school in
Newtown, Connecticut, was also said to be a fan
of first-person shooting games. Other killers have
been found to be avid players.

Ivanovic’s new team includes coach and hitting
partner Nemanja Kontic – who represented Mon-
tenegro in the Davis Cup – fitness coach[es] Zlatko
Novkovic and physio Branko Penic. They have
all been part of her entourage since her split with
British coach[es] Nigel Sears in July, following a
second-round exit at Wimbledon.

Table 10: Alignments extracted by the heuristics in different examples from CNN/DAILYMAIL. The names are the
acronyms of the patterns used to detect entities and aggregations.

P R F1 #samples
Aggregation 51.31 66.58 57.96 2855
Not aggregation 87.75 79.11 83.29 8635
Macro-Avg 69.53 72.85 70.58 11490
Accuracy - - 76.00 11490

Table 11: Results of the classifier of Gating BARTs, per class and macro-averaged, on the test set of
CNN/DAILYMAIL.
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Table 12: Six examples of summarization using BART and BART+AggregationChains on the NOVEL and COPY
test sets. The aggregations of the summaries are in green. They are also marked in the source if they are COPY
aggregations. The entities of the document being aggregated (blue) are also shown, if they appear in the source, for
visualization purposes.

Example 1 (NOVEL)

Document: (CNN)That sound you just heard was the crash of hearts breaking all over the world. Zayn Malik is
leaving One Direction. "After five incredible years Zayn Malik has decided to leave One Direction," the band said
on its Facebook page and tweeted out to its 22.9 million Twitter followers. "Niall, Harry, Liam and Louis will
continue as a four-piece and look forward to the forthcoming concerts of their world tour and recording their
fifth album, due to be released later this year." Rumors about such a move had started since Malik left the band’s
tour last week. At the time, a rep told Rolling Stone he had "been signed off with stress" after a scandal erupted
following the publication of a photo showing Malik holding hands with someone other than his fiancee. Fans on
Twitter immediately responded with teary Vine videos and the #AlwaysInOurHeartsZaynMalik hashtag. Even
the Girl Scouts got in on the act with a sweet tribute to the singer. The band’s Wikipedia page was also quickly
updated with a sentence, "Zayn Malik was formerly a member." And Spotify said that global streams of One
Direction songs were up 330% Wednesday in the hour after the news was announced – a "spike of sadness," as
the music service called it. In the U.S. alone, streams of the band’s music were up 769%. To mark the occasion,
Spotify created a special playlist of 1D songs. Malik, 22, has been part of the very popular British boy band since
it was formed (at the urging of Simon Cowell, according to some stories) in 2010 after members auditioned
separately for the UK version of "The X Factor." Cowell became a mentor and signed them to his label. The group
has put out four albums, and its hits include "Best Song Ever" and "Story of My Life." Their latest album, "Four,"
came out in November.

Reference summary: Malik had left the band’s tour last week, citing "stress" One Direction is one of the most
popular bands in the world .

BART: Zayn Malik is leaving One Direction. Rumors about such a move had started since Malik left the band’s tour
last week. Fans on Twitter immediately responded with teary Vine videos and the #AlwaysInOurHeartsZaynMalik
hashtag. Spotify said that global streams of One Direction songs were up 330% Wednesday.

BART+AggregationChains: Zayn Malik is leaving One Direction . He has been part of the british boy band since
it was formed . Spotify says global streams of One Direction songs were up 330% Wednesday in the hour after the
news was announced .

Example 2 (NOVEL)

Document: (CNN)Comic books of the past few years have seen a lot of changes (a female Thor, anyone?) but
not quite so many at one time. Three major characters – Superman, Wonder Woman (both of DC Comics, a
Time Warner company, like CNN) and Archie Andrews – came out with new looks (and costumes in two cases)
Thursday. Superman and Wonder Woman are no stranger to change over time, but these are pretty different from
what we’re used to. Wonder Woman is back to wearing pants (similar to her style circa 2010, not to mention a
brief time in the 1970s) along with something of a turtleneck and body armor. Superman looks the most casual
that we’ve ever seen him, simply in a t-shirt and jeans, and decidedly shorter hair. He also looks like someone you
might not want to come across in a dark alley. As for Archie (who never really died, by the way), he’s getting
ready for his promised TV show by debuting a modern look – one that makes it much easier to see why Betty and
Veronica have been fighting for his affections all of these years. It’s been a whirlwind time for comic book fans,
and there will be a lot to get used to.

Reference summary: Superman, Wonder Woman and Archie all debuted new looks Thursday . Three of the most
well-known comic book characters of all time look radically different .

BART: Superman, Wonder Woman and Archie Andrews have new looks . It’s been a whirlwind time for comic
book fans, and there will be a lot to get used to . For more comic book news, visit CNN.com/comic-book .

BART+AggregationChains: Three major characters – Superman, Wonder Woman and Archie Andrews – came
out with new looks (and costumes in two cases) Superman looks the most casual that we’ve ever seen him, simply
in a t-shirt and jeans. Archie (who never really died, by the way) is getting ready for his promised TV show.
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Example 3 (NOVEL)

Document: (CNN)Italian authorities have arrested 42 people suspected of belonging to a mafia network in
southern Italy, some of whom are accused of extorting tens of thousands of euros from businesses monthly, police
said Tuesday. Among the evidence: A piece of paper, hidden in a bicycle handlebar, that listed businesses that the
crime syndicate was extorting, according to the Carabinieri, Italy’s military police. The Carabinieri said they made
the arrests while raiding homes in 11 provinces. The crime network is based in Casal di Principe, a village roughly
20 kilometers (12 miles) northwest of Naples, police said. The mafia network extorted shop owners to the tune
of 200,000 euros a month and extorted operators of slot machines and online gambling a further 100,000 euros
monthly, the Carabinieri said. The arrests stem from an investigation that started in October 2012. Investigators
also found notebooks with the group’s organizational chart and names of jailed associates who still were on the
mafia payroll, according to the Carabinieri. The note in the bicycle handlebar was among other "pizzini," or little
pieces of paper allegedly used by mafia members to exchange information, that investigators discovered in the
probe, the military police said. In Villa Literno, close to Casal di Principe, investigators discovered a bunker that
allegedly was used to hide fugitive affiliates of the mafia, the Carabinieri said. An anti-mafia prosecutor in Naples
filed charges against the 42, including mafia association, extortion and illegal possession of weapons.

Reference summary: Police say a note hidden in a bike’s handlebar listed extorted businesses . The crime
network is based in Casal di Principe, a village near Naples, police say . Arrests stemmed from investigation that
began in 2012 .

BART: Italian authorities arrest 42 people suspected of belonging to a mafia network in southern Italy. A piece of
paper, hidden in a bicycle handlebar, listed businesses that the crime syndicate was extorting. The crime network
is based in Casal di Principe, a village roughly 12 miles northwest of Naples.

BART+AggregationChains: A piece of paper, hidden in a bicycle handlebar, listed businesses that the crime
syndicate was extorting . The crime network is based in Casal di Principe, a village roughly 20 kilometers (12
miles) northwest of Naples .

Example 4 (COPY)

Document: A game of cat and mouse has been captured in a series of striking images as the pair battle it out on a
shed rooftop like a real life version of much-loved cartoon duo Tom and Jerry. It is an age-old rivalry that rarely
ends well for one of its parties and so it proved in this remarkable set of photos. The snaps of a cat playing with a
mouse on a roof in Shepton Mallet, Somerset, illustrate the perils the tiny rodents face in the town. Ironically the
pet cat’s name is Mouse. Unfortunately for this mouse that’s where all similarities between the moggy and its
namesakes end. The pictures were taken by the cat’s owner Jason Bryant who confirmed the inevitable outcome of
the encounter. ’My cat is a very good mouser,’ he said. ’She’s done it before. She often brings them into the house
at 3am and then I can rescue them. But she took this poor little thing on to the shed roof where I couldn’t reach it.’
Ready to pounce: The mouse flies through the air as its feline nemesis looks to bring it back down to earth with a
bang . Eeek: A mouse tries to escape the clutches of a pet cat named Mouse as the pair engage in the age-old game
of cat and mouse . In flight: The mouse, unable to evade its moggy hunter, is thrown into the air on the roof of a
shed in Shepton Mallet in Somerset . Somersaulting away: The snaps illustrate the perils that tiny rodents face
in the town with cats like Mouse around . Cartoon characters: The pair battle it out on a rooftop like a real life
version of much-loved cartoon duo Tom and Jerry . Let’s play: The pictures were taken by the cat’s owner Jason
Bryant who confirmed the inevitable outcome of the encounter . Reaching out: The mouse is flung high in the sky
as it finally admits defeat in the game of cat and mouse .

Reference summary: Age-old game of cat and mouse is brought to life in these quirky pictures taken in Shepton
Mallet in Somerset . The pair are seen battling it out on the roof of a shed in a real life take on an episode of Tom
and Jerry . Ironically, the cat’s name is Mouse. The pictures show the dangers small rodents have to be aware of in
the area .

BART: The snaps of a cat playing with a mouse on a roof in Shepton Mallet, Somerset, illustrate the perils the tiny
rodents face in the town. Ironically the pet cat’s name is Mouse. The pictures were taken by the cat’s owner Jason
Bryant who confirmed the inevitable outcome of the encounter.

BART+AggregationChains: The snaps of a cat playing with a mouse on a roof in Shepton Mallet, Somerset,
illustrate the perils the tiny rodents face in the town . Unfortunately for this mouse that’s where all similarities
between the moggy and its namesakes end . The pictures were taken by the cat’s owner who confirmed the
inevitable outcome of the encounter .
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Example 5 (COPY)

Document: (Billboard)Fresh off his scorching performance at Coachella Saturday night (and days before his next
one on the festival’s second weekend), rocker Jack White announced he’ll take a hiatus from touring. White will
wrap his touring efforts in support of "Lazeretto" with a brief, first-ever acoustic tour that will hit "the only five
states left in the U.S. that he has yet to play," according to White’s website. Rounding out the acoustic quartet on
tour will be Fats Kaplin, Lillie Mae Rische and Dominic Davis. The shows will be unannounced until day-of-show,
with tickets priced at $3 and limited to one ticket per person, to be purchased only at the venue on a first-come,
first-served basis. Billboard: Jack White on Not Being a ’Sound-Bite Artist,’ Living in the Wrong Era and Why
Vinyl Records Are ’Hypnotic’ The purposely vague announcement surely has fans (and journalists) scouring the
Internet for White’s touring history. Unclear is whether White includes his work with The White Stripes, The
Raconteurs and Dead Weather in his touring history, or just his solo road work. Presumably, he’s including all of
his touring, with all bands, as Billboard could find only 29 states in which he has performed as Jack White. Tour
dates with White Stripes add another 12 states. That leaves nine states for which we could not find a show for
White: Hawaii (where a show is scheduled for tomorrow, April 15), Arkansas, Idaho, Utah, Wyoming, Vermont,
Iowa, and North and South Dakota. Billboard: Jack White Plays The Hits, Declares ’Music Is Sacred’ at Coachella
. Through the process of elimination (surely he has played Boise, Little Rock, and Salt Lake?), our guess as to
which five states White will play on the brief acoustic run: South and North Dakota, Wyoming, Vermont and ...
Puerto Rico? If that’s the case, this tour is in for some long jumps, with Puerto Rico to Vermont being a potential
beast. (Though shipping acoustic instruments and ribbon mics will be a lot less taxing than a full electrified stage
setup.) ©2015 Billboard. All Rights Reserved.

Reference summary: Jack White taking a hiatus from touring after brief acoustic jaunt . He’ll play five states he
has yet to get to, charge just $3 . Places and times of shows are currently a mystery .

BART: Jack White announced he’ll take a hiatus from touring. White will wrap his touring efforts in support of
"Lazeretto" with a brief, first-ever acoustic tour. The shows will be unannounced until day-of-show, with tickets
priced at $3.

BART+AggregationChains: White will wrap his touring efforts in support of "Lazeretto" with a brief, first-ever
acoustic tour . He will hit "the only 5 states left in the U.S. that he has yet to play," according to White’s website .
The shows will be unannounced until day-of-show, with tickets priced at $3 .

Example 6 (COPY)

Document: Boss Nigel Pearson has urged Leicester to keep their cool and ignore their relegation rivals.
The Foxes host Swansea on Saturday just three points from safety in the Barclays Premier League after
back-to-back wins. Last week’s 3-2 win at West Brom handed them a survival lifeline, although they remain
bottom of the table. Jamie Vardy scored an injury-time winner against West Bromwich Albion on Saturday
to improve his side’s slim chance of Premier League survival . Vardy celebrates in front of the travelling
away fans after hitting the winner against West Brom . But after their mini-revival, Pearson wants his side to
remain focused on their own jobs. ’I’m very wary of people flipping the emphasis,’ he said. ’Our future is
in our own hands and if we go into the last game with that we have given ourselves a realistic chance. ’We
need to make sure our own run-in is what we want it to be. Leicester manager Nigel Pearson has urged his
players to focus on their own job and not worry about their relegation rivals during run-in . ’It’s helpful that
other teams are being dragged into it. People are continually adjusting the form table and their predictions.
’We can’t get involved in anything apart from being involved in our own games that may change people’s
perceptions. ’It’s great when results go your way but they only help if you’ve done your own job. ’It’s im-
portant for us to be in touch. One of the potential problems we have to deal with is people are now overly optimistic.’

Reference summary: Leicester have won back-to-back league games to boost survival hopes . Nigel Pearson has
urged his players to focus on their own run-in . Leicester now just three points from safety heading into final six
games .

BART: Nigel Pearson has urged Leicester to ignore their relegation rivals. The Foxes host Swansea on Saturday
just three points from safety. Last week’s 3-2 win at West Brom handed them a survival lifeline. But Pearson
wants his side to remain focused on their own jobs.

BART+AggregationChains: Nigel Pearson has urged Leicester to keep their cool . The Foxes host Swansea on
Saturday just three points from safety in the Barclays Premier League after back-to-back wins . But after their
mini-revival, Pearson wants his side to remain focused on their own jobs .
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Appendix B Notes on the heuristics

Through a preliminary evaluation, we observed that Coordinating Conjunction+Preceding a list
(CC+PL) and Shared noun+Preceding Entities (SN+PE) stand out in terms of precision. Especially,
CC+PL has almost 100% precision and appears in 3.87% of the documents in the CNN/DAILYMAIL

corpus (13,959 alignments). SN+PE is less frequent than CC+PL (1.27% of documents and 4125
alignments). The other heuristics ranges from 20% to 80% of precision, and some of them such as In
Sentence+In span seems to have a high recall (25.74% of documents and 132,922 alignments).
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Abstract
Automatically evaluating the coherence of sum-
maries is of great significance both to enable
cost-efficient summarizer evaluation and as a
tool for improving coherence by selecting high-
scoring candidate summaries. While many
different approaches have been suggested to
model summary coherence, they are often eval-
uated using disparate datasets and metrics. This
makes it difficult to understand their relative
performance and identify ways forward to-
wards better summary coherence modelling. In
this work, we conduct a large-scale investiga-
tion of various methods for summary coherence
modelling on an even playing field. Addition-
ally, we introduce two novel analysis measures,
intra-system correlation and bias matrices, that
help identify biases in coherence measures and
provide robustness against system-level con-
founders. While none of the currently available
automatic coherence measures are able to as-
sign reliable coherence scores to system sum-
maries across all evaluation metrics, large-scale
language models fine-tuned on self-supervised
tasks show promising results, as long as fine-
tuning takes into account that they need to gen-
eralize across different summary lengths.

1 Introduction

Automatically generated summaries should not
only be informative, but also well-written and co-
herent. While informativeness is routinely evalu-
ated automatically with ROUGE (Lin, 2004), there
is no agreement on how to evaluate summary co-
herence. However, automatic evaluation is highly
desirable to reduce evaluation costs and as a tool
for improving summarizer output, e.g. as reranker.

Many coherence measures (CMs) have been
suggested for automatically assigning a coher-
ence score to a summary, including learning from
human judgements (Barzilay and Lapata, 2008;
Tien Nguyen and Joty, 2017; Xenouleas et al.,
2019; Mesgar et al., 2021), learning from the shuf-
fle task (Mohiuddin et al., 2021; Jwalapuram et al.,

2022), where models are trained to discriminate
original documents from documents with random-
ized sentence order (Barzilay and Lapata, 2008), us-
ing next sentence prediction as a proxy task (Koto
et al., 2022), and finally unsupervised measures
that exploit heuristics (Pitler et al., 2010; Zhu and
Bhat, 2020) or large-scale LMs (Yuan et al., 2021).
CM performance is then evaluated by comparing
the automatic scores to human coherence scores on
a set of system summaries.

However, this evaluation is often conducted on
disparate datasets. It also often uses system out-
puts from DUC conferences (Barzilay and Lap-
ata, 2008; Tien Nguyen and Joty, 2017; Xenouleas
et al., 2019; Mesgar et al., 2021), which do not
necessarily represent recent advances in text sum-
marizers. In addition, there is no agreement on
how the CM scores should be compared to human
scores. System-level correlation (Xenouleas et al.,
2019; Fabbri et al., 2021), pairwise ranking accu-
racy (Barzilay and Lapata, 2008; Tien Nguyen and
Joty, 2017; Mesgar et al., 2021) and summary-level
correlation (Yuan et al., 2021) have all been sug-
gested as evaluation metrics (EMs).

This makes it hard to ascertain the state of sum-
mary coherence modelling and to identify promis-
ing directions for future research. We attack this
problem by making the following contributions:

• We show that current EMs provide an incom-
plete picture of CM performance as they focus
on comparing summaries generated by differ-
ent summarizers, which includes many easy
decisions due to the large performance gaps
between them. Additionally, they are vulner-
able to CMs exploiting confounding system
properties to correctly rank systems without
modelling coherence.

• We introduce a new EM, intra-system corre-
lation, that measures performance within the
summaries generated by a single summarizer
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and is both more challenging and more re-
silient against system-level confounders.

• We introduce bias matrices as a novel analysis
tool that allow to easily detect when CMs are
biased towards specific summarizers.

Using these insights, we conduct a large-scale com-
parison of CMs on the recent SummEval dataset
(Fabbri et al., 2021). We find that:

• All investigated CMs exhibit significant weak-
nesses under evaluation regimes other than
system-level correlation.

• Even relatively strong CMs are biased towards
outputs of certain summarizers, which raises
concern about their generalizability.

• SummEval is not conducive to entity-based
modelling, which has been successful on
many other coherence tasks (Barzilay and
Lapata, 2008; Elsner and Charniak, 2011;
Tien Nguyen and Joty, 2017; Mesgar et al.,
2021).

• While most of the shuffle-based models trans-
fer poorly to summaries, which is in line with
prior results by Mohiuddin et al. (2021), the
most promising performance is achieved by
fine-tuning a masked language model (MLM)
on the shuffle task as a classifier. We present
evidence that this allows the model to adapt
more easily to comparing documents of differ-
ent content and lengths, highlighting a possi-
ble avenue for future work.

Code and data for our experiments are avail-
able at https://github.com/julmaxi/
summary_coherence_evaluation.

2 Related Work

2.1 Coherence Measures for Summarization
Automatic coherence assessment for summariza-
tion has been studied in a variety of settings. Barzi-
lay and Lapata (2008) establish summary coher-
ence as an evaluation task to assess CMs similarly
to other downstream tasks such as essay scoring
(Jeon and Strube, 2020, among others) and readabil-
ity assessment (Mesgar and Strube, 2015, among
others). Specifically, Barzilay and Lapata acquire
coherence labels for human and system summaries
from DUC 20031. The same dataset has been used

1https://duc.nist.gov

for evaluating subsequent CMs (Tien Nguyen and
Joty, 2017; Mesgar et al., 2021).

As a part of automatic linguistic quality estima-
tion, summary coherence is modelled alongside
other aspects of text quality such as grammaticality,
with the direct goal of aiding automatic summary
evaluation. Approaches include regression mod-
els learned from human annotations (Xenouleas
et al., 2019) as well as unsupervised approaches
(Pitler et al., 2010; Zhu and Bhat, 2020; Yuan et al.,
2021). Datasets used for evaluation include the
recent SummEval dataset (Fabbri et al., 2021), as-
sessor judgements from DUC05-07, and the small-
scale manually annotated summaries of newsroom
(Grusky et al., 2018). In parallel work, Koto et al.
(2022) introduce a coherence measure based on
a next sentence prediction task as part of a wider
set of measures for summary evaluation that also
include focus, coverage and faithfulness. For eval-
uation, they introduce a novel small-scale dataset
based on outputs from BART (Lewis et al., 2020)
and the pointer generator model (See et al., 2017).
CMs have also been applied in a related setting
to improve summarizer quality by explicitly mod-
elling coherence during the summary optimization
process (Parveen et al., 2017; Sharma et al., 2019).

Finally, summary coherence is also sometimes
modelled using measures that make use of human-
written reference summaries (Fabbri et al., 2021;
Zhao et al., 2022). We do not focus on these CMs
in our evaluation since they are fundamentally less
flexible than reference-free CMs, especially when
used in non-evaluation contexts such as reranking.

We provide a detailed description of the CMs
used in our study in Section 5.

2.2 Meta-Evaluation

In terms of evaluation studies, Mohiuddin et al.
(2021) conduct a comparative study of five CMs.
Their evaluation is conducted on 10 summaries
each from 4 recent summarizers as well as the
DUC03 data. Unlike our study, their investigation
only encompasses CMs trained via the shuffle task
and includes only a small number of summaries.

In concurrent work on assessing system-level
correlation, Deutsch et al. (2022) propose to mod-
ify correlation computation by focusing on diffi-
cult system comparisons only and computing mea-
sure scores on a larger set of summaries. Their
approaches are complimentary to our analysis in
that they look at informativeness instead of co-
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Figure 1: Distribution of human coherence scores for
the 17 systems in the SummEval dataset. The red dots
indicate the mean score of each system.

herence and do not address the shortcomings of
system-level correlation in the presence of system
level confounders. Also concurrently, Durmus et al.
(2022) identify spurious correlates in faithfulness
datasets, which suggests that our methods might be
useful beyond coherence evaluation.

3 Dataset

We evaluate CMs on the expert annotations in the
SummEval dataset2 (Fabbri et al., 2021) which is,
to the best of our knowledge, the largest dataset that
includes such coherence annotations for a variety
of state-of-the-art summarizers. It contains annota-
tions on a 1-5 scale for outputs of 17 systems for
100 documents from the CNN/DM dataset (Her-
mann et al., 2015) by three annotators each. Fig-
ure 1 highlights two important properties. Firstly,
there is a large gap in average performance between
different summarizers, and secondly, most summa-
rizers exhibit considerable variance in scores.

4 Evaluating CMs

CM performance is typically assessed on a set of
summaries generated on document set D by a set
of summarizers S using the agreement of predicted
scores P = {P(d,s)|s ∈ S, d ∈ D} with human
judgements H = {H(d,s)|s ∈ S, d ∈ D}. How-
ever, this agreement can be computed in different
ways. We identify the following common EMs:

System-level Correlation τsys assesses CM
performance by correlating the mean human and
mean CM scores of the individual summarizers.

Pairwise Accuracy Accpair assesses CM per-
formance by comparing scores on outputs of two
different systems on the same document.

Summary-level Correlation τsum compares
scores on all generated summaries.

2https://github.com/Yale-LILY/SummEval

The correlation function used is usually3

Kendall’s τ , while the pairwise metric is usually
reported as accuracy. However, we can also de-
fine the latter in terms of average τ over all docu-
ments. This is equivalent to accuracy when there
are no tied scores, with the only difference being
the range shift from [0, 1] to [−1, 1]. As both τ and
accuracy are based on pairwise rankings, we can
specify all three EMs in terms of the set of pairwise
comparisons C they consider, where Csys ⊂ 2S×S

considers comparisons between averaged system
scores and Cpair, Csum ⊂ 2(D×S)×(D×S) consider
comparisons between individual summary scores.

Csys = {(si, sj)|si ̸= sj}
Cpair = {((d, si), (d, sj))|si ̸= sj}

Csum = {((dk, si), (dl, sj))|(dk, si) ̸= (dl, sj)}

The EMs pose different demands to CMs: system-
level correlation requires a correct ranking of sys-
tems according to their average score. Pairwise ac-
curacy requires correct ranking of summaries from
different systems but only between summaries pro-
duced on the same document. Finally, summary-
level correlation requires the correct ranking of any
pair of summaries.

4.1 A new EM: Intra-System Correlation
All three EMs focus on comparisons between sum-
maries generated by different summarizers. For
system-level and pairwise evaluation this arises by
construction, whereas for summary-level correla-
tion it is contingent on the dataset structure: On
SummEval, less than 6% of comparisons for τsum
are between summaries of the same summarizer.
We argue that this gives an incomplete view of CM
performance for the following reasons:

1. SummEval covers summarizers with widely
different performance levels (see Figure 1),
leading current EMs to include many easy de-
cisions. This is unlikely to reflect real-world
evaluation of competitive summarizers.

2. While system-level evaluation is often the pri-
mary use case, CMs can also be used in a
reranking or ensembling context to select the
most coherent summary from a set of candi-
dates. In these situations, summaries are likely

3While Spearmans ρ is also sometimes used (Yuan et al.,
2021), the τ variant we use, τ -b, is more robust to ties, which
are common on the five-point rating scale in SummEval.
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to be generated either by a the same sum-
marizer or a set of similarly (high) perform-
ing summarization systems. In these cases,
system-level EMs offer only limited insight
into likely CM performance, since they pri-
marily measure the ability to discriminate be-
tween different systems with potentially large
performance gaps.

3. EMs might not correlate with coherence per-
se but instead with features that happen to
identify good summarizers on a particular
dataset. Such system-level confounders are
unlikely to generalize to new systems and set-
tings. We elaborate on this in Section 4.2.

We thus suggest adding a new EM Intra-system
Correlation τintra, which we define on compar-
isons between summaries generated by the same
system. This corresponds to considering the fol-
lowing pairs Cintra ⊂ 2(D×S)×(D×S):

Cintra = {((dk, s), (dl, s))|dk ̸= dl}

It neatly complements pairwise accuracy, as it is
essentially the same computation but keeping the
summarizer constant instead of the document. Intu-
itively, this measure both contains far fewer ”easy”
decisions and is much more resilient to any system-
level confounders in the data. We use the average
of the intra-system correlation of all systems as the
correlation measure.

4.2 System-level Confounders
To assess how EMs behave in the presence of
system-level confounders, we investigate two sum-
mary features that are unlikely to be generalizable
CMs but lead to surprisingly strong correlations:
Capitalization and summarizer architecture.

For capitalization, we count the number of up-
percase letters in each summary. This is a purely
system-level heuristics, since only three of the 17
summarizers in SummEval produce capital letters4.
For architecture, we assign a score of 1 to each
summary from one of the five summarizers that
are derived from pretrained transformers in some
fashion5 and 0 to all others. Neither of the two con-
founders can, by construction, be a reasonable and
generalizable CM. Additionally, we compute an
”upper-bound” (UB) that assigns to each summary

4BART, GPT-2 (zero shot) and Pegasus (dynamic mix)
5BART, Pegasus, Pegasus dynamic Mix, T5 and GPT-2

Cap. Cap. (r) Arch. Arch. (r) UB UB (r)
τsys 0.42 0.23 0.58 0.37 1.00 1.00
τsum 0.19 0.11 0.31 0.20 0.39 0.39
τpair 0.21 0.14 0.33 0.22 0.44 0.44
Accpair 0.23 0.57 0.34 0.62 0.73 0.73
τintra - -0.03 - 0.01 - 0.00

Table 1: Results for the confounders and upper bound.
τintra for the non-random variants is undefined, as
scores within each system are constant. Scores for the
random variants (r) are averaged over 100 runs.

the mean human score of the system that produced
the summary. It simulates perfect system ranking,
but no ability to correctly rank summaries within
each system. Since these procedures result in many
ties, we also compute a second variant of each con-
founder where we add small noise to each score.
This prevents τ -b from profiting from these ties,
while preventing accuracy from unfairly suffering.

Table 1 shows the resulting correlations. Con-
founders achieve noticeable correlation with hu-
man scores. In particular, system-level correlation
comes close to or exceeds the best CM reported
originally for SummEval (CHRF (Popović, 2017),
0.40). In contrast, using intra-system correlation,
the problems of these pseudo-measures become
easily apparent. In practical scenarios, system-level
correlation might be a mix of modelling coherence
and reliance on confounders. Intra-system evalu-
ation is an important tool in this context as it is
robust to system-level confounders.

5 Coherence Measures

We identify the following families of reference-free
CMs for summarization and include representa-
tives of each in our study: supervised CMs trained
on human coherence ratings of summaries, self-
supervised CMs trained on the shuffle task and
unsupervised CMs. For the supervised setting, we
investigate measures trained on data from DUC03
(Barzilay and Lapata, 2008) as well as the DUC05-
07 dataset used by Xenouleas et al. (2019). While
the DUC03 dataset is set up as a pairwise ranking
dataset, the DUC05-07 dataset is used in a regres-
sion setting. Table 2 indicates the configurations
available for the different CMs.

The Extended Entity Grid (EEG) (Elsner and
Charniak, 2011) is an extension of the Entity Grid
of Barzilay and Lapata (2008). It represents texts
using occurrence patterns of the mentioned entities
across sentences. The model uses a generative
approach that models the probability of an entity
appearing in a specific role in a sentence, given its
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EEG EGR NEG UNF GRA CCL SQE GRU BAS
Unsupervised (a)

Shuffle (b)

Supervised (DUC03)
Supervised (DUC05-07)

Table 2: Training settings for the CMs under investigation. (a) The extended entity grid estimates the multinomial
distribution of an entity’s role given its prior occurrences. While this needs a dataset to estimate the distribution, it
can not be trained as a classifier. (b) BART includes shuffling as a pretraining task.

role in the two preceding sentences.
The Entity Graph (EGR) (Guinaudeau and

Strube, 2013) constructs a sentence graph of a doc-
ument by identifying entity overlap between sen-
tences. Two sentences are connected if they share
at least one entity, with edge weights decreasing
when they are further apart. The score of a docu-
ment is the average outdegree of sentences, with
higher outdegree indicating better coherence.

The Neural Entity Grid (NEG) (Tien Nguyen
and Joty, 2017) applies a convolutional network to
the entity grid. The model is trained on a pairwise
ranking loss.

The Unified Model (UNF) (Moon et al., 2019)
is a lexical CM that uses a convolutional network
to build sentence representations from raw text.
The model uses an adapted version of the ranking
loss for the shuffle task that is computed only for
three sentence windows in which shuffled and orig-
inal documents differ. We use the model based on
ELMo (Peters et al., 2018), as it performs best in
the original paper.

The Graph-based Neural Coherence Model
(GRA) (Mesgar et al., 2021) is a recent CM that
combines entity-based representation with lexical
information in a graph NN. Like the previous two
models, it employs a pairwise ranking loss.

Recently, Laban et al. (2021) have shown that a
RoBERTa-based (Liu et al., 2019) classifier can eas-
ily achieve near-perfect results on the shuffling task
on WSJ. However, they did not test whether this
model can predict coherence on non-artificial tasks.
We thus include a simple RoBERTa model that
is trained to classify shuffled vs. unshuffled sum-
maries, naming it Coherence Classifier (CCL).6

SumQE (SQE) (Xenouleas et al., 2019) predicts
five linguistic quality scores via multi-head regres-
sion on human scores. We use the coherence head
of the model trained on all three DUC datasets.7

6We found that the original WSJ-model does not perform
well on SummEval. Thus, we retrained our own model, using
the same RoBERTA checkpoint as a basis.

7https://archive.org/download/sum-

GRUEN (GRN) (Zhu and Bhat, 2020) is a collec-
tion of unsupervised measures for linguistic quality
that combines multiple unsupervised heuristics.

BARTScore (BAS) (Yuan et al., 2021) uses the
probability of a summary under a pre-trained BART
model as a score. We use the variant fine-tuned on
CNN/DM summaries in the source-to-summary
configuration, as suggested by the authors.

Finally, we include an upper and lower bound:
RND assigns each summary a uniformly chosen
score between 0 and 1. For HUM, we use the Summ-
Eval human annotations and select the annotator
with the worst overall correlation to the remaining
annotators and use their scores as predictions.8

We train all shuffling models on the WSJ corpus
of newswire articles, which is frequently used in
coherence modelling (Elsner and Charniak, 2011;
Guinaudeau and Strube, 2013; Moon et al., 2019;
Mohiuddin et al., 2021). We also train models us-
ing the same technique on reference summaries
from the train portion of CNN/DM. For EEG we
also estimate model parameters on both datasets.
For WSJ, we follow the original implementations
regarding the number of shuffled samples. For
CNN/DM, we only use a single shuffled instance
per summary, as it is larger by two orders of magni-
tude (WSJ: 1,400; CNN/DM: 287,113 documents
before shuffling). Detailed accounts of our experi-
ments with each CM are found in Appendix A.

6 Results

We present the correlation of all CMs with human
coherence ratings in Table 3. We report (average)
Kendalls τ for all EMs introduced in Section 4. For
Cpair we additionally report accuracy. Per-system
scores for intra-system correlation can be found in
Appendix B.

Focusing on τsys first, we find that CCL, BAS,
GRN and to a lesser extent SQE achieve relatively

qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
8We note that unlike automatic measures, humans may

only differentiate among five classes. We might thus underes-
timate actual human performance.
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Metric τintra τpair τsum τsys Acc.pair
HUM +0.75 (+0.70 +0.79) +0.81 (0.76, 0.85) +0.81 (+0.77 +0.84) +0.91 (+0.71 +1.00) +0.77 (+0.71 +0.81)

RND -0.00 (-0.06 +0.05) -0.00 (-0.07 +0.06) +0.00 (-0.05 +0.05) +0.09 (-0.41 +0.53) +0.50 (+0.46 +0.54)

EGR -0.04 (-0.12 +0.04) -0.11 (-0.19, -0.02) -0.09 (-0.16 -0.01) -0.25 (-0.59 +0.10) +0.40 (+0.36 +0.44)

EEG C/D +0.02 (-0.07 +0.10) +0.04 (-0.10 +0.18) +0.06 (-0.06 +0.17) -0.19 (-0.68 +0.26) +0.52 (+0.45 +0.59)

EEG WSJ +0.02 (-0.06 +0.10) +0.00 (-0.09 +0.11) +0.03 (-0.06 +0.11) -0.19 (-0.60 +0.26) +0.50 (+0.44 +0.55)

NEG C/D -0.07 (-0.14 -0.00) -0.05 (-0.14 +0.07) -0.06 (-0.15 +0.03) -0.15 (-0.61 +0.32) +0.47 (+0.42 +0.53)

NEG DUC -0.08 (-0.16 +0.01) -0.06 (-0.18 +0.06) -0.07 (-0.17 +0.04) -0.06 (-0.49 +0.31) +0.47 (+0.40 +0.53)

NEG WSJ -0.02 (-0.08 +0.05) -0.08 (-0.17 +0.00) -0.07 (-0.15 +0.02) -0.43 (-0.69 -0.05) +0.45 (+0.41 +0.50)

UNF C/D +0.04 (-0.03 +0.11) +0.05 (-0.05 +0.14) +0.06 (-0.01 +0.13) +0.13 (-0.33 +0.59) +0.53 (+0.48 +0.57)

UNF WSJ +0.02 (-0.05 +0.09) -0.11 (-0.26 +0.03) -0.04 (-0.15 +0.05) -0.09 (-0.51 +0.39) +0.44 (+0.36 +0.52)

GRA DUC -0.04 (-0.12 +0.03) -0.05 (-0.16 +0.03) -0.06 (-0.13 +0.01) -0.19 (-0.65 +0.25) +0.47 (+0.43 +0.52)

GRA C/D +0.08 (+0.02 +0.15) +0.09 (-0.02 +0.19) +0.11 (+0.01 +0.18) +0.37 (-0.07 +0.69) +0.55 (+0.49 +0.60)

GRA WSJ +0.08 (+0.01 +0.15) -0.01 (-0.11 +0.10) +0.02 (-0.06 +0.12) -0.09 (-0.47 +0.37) +0.49 (+0.44 +0.55)

CCL C/D +0.26 (+0.19 +0.33) +0.40 (+0.31 +0.49) +0.39 (+0.31 +0.44) +0.62 (+0.30 +0.86) +0.71 (+0.66 +0.76)

CCL WSJ +0.20 (+0.12 +0.26) +0.35 (+0.25 +0.46) +0.33 (+0.24 +0.41) +0.74 (+0.40 +0.92) +0.69 (+0.63 +0.74)

BAS +0.17 (+0.08 +0.26) +0.37 (+0.23 +0.51) +0.32 (+0.20 +0.42) +0.72 (+0.42 +0.89) +0.69 (+0.62 +0.77)

GRN +0.18 (+0.12 +0.25) +0.26 (+0.17 +0.35) +0.27 (+0.19 +0.34) +0.72 (+0.38 +0.89) +0.63 (+0.58 +0.69)

SQE +0.19 (+0.13 +0.26) +0.26 (+0.15 +0.36) +0.24 (+0.15 +0.32) +0.51 (+0.05 +0.80) +0.64 (+0.58 +0.69)

Table 3: Results on SummEval for all CMs. Correlation is expressed in Kendall’s τ . Numbers in brackets indicated
95% CIs computed using bootstrap resampling (Deutsch et al., 2021) with 1000 samples. Highest are bold.

high scores while the remaining CMs fail to out-
perform even the random baseline. However, in-
spection of τsum, τpair/Accpair and τintra reveals
that even these apparently strong CMs struggle to
reliably assess coherence of individual summaries,
with τintra being the most challenging regime.
Comparing CMs, CCL C/D is most promising
across all EMs except τsys, where scores are near
indistinguishable due to high uncertainty. Inter-
estingly, we find that its advantage is greatest
on τintra, where its competitors exhibit particu-
lar weakness compared to other EMs. These sharp
score drops might suggest other EMs reflect some
system-level confounders. In combination with the
observation that confounder scores as reported in
Table 1 fall within the 95% CI of most CMs on all
EMs except τintra this prompts us to investigate
CMs for potential biases in the following section.

6.1 Detecting Biases of CMs

We have shown in Section 4.2 that CMs can appear
to correlate with human coherence judgements by
exploiting system-level confounders. However, it
is unclear to which extent this just holds for our
artificial confounders or is also an issue in realistic
CM evaluation. We therefore introduce bias ma-
trices, a tool that allows us to easily inspect the
decisions made by a CM by separately analyzing
consistent and inverted pairs of summaries from
different summarizers. Based on human scores, we
call a summary pair consistent if the higher-scoring
summary is produced by the summarizer with the
higher average score, whereas we call a pair in-

verted if the overall worse summarizer produces a
stronger summary. We are specifically interested
in finding instances where a CM ranks consistent
pairs for a strong summarizer correctly, but fails to
correctly rank its inverted pairs. This is indicative
of a CM having a bias towards outputs of this partic-
ular summarizer, instead of measuring coherence.
Since for strong systems, most pairs are consistent,
this can still result in many correct comparisons.

Given predicted and human scores P,H as in
Section 4 and systems s1, s2 with s1 having a
higher average human score than s2, we define
two new metrics. τ+ indicates the ability of a CM
to rank consistent pairs, whereas τ− indicates the
same for inconsistent pairs. For τ+ we define:

H+ := {(di, dj)|H(di,s1) > H(dj ,s2)}
P+ := {(di, dj)|P(di,s1) > P(dj ,s2)}

τ+ :=
2|H+ ∩ P+| − |H+|

|H+|
For τ− we invert the comparisons.9 Both τ+ and

τ− are bounded between -1 and 1. If the ranking is
-1, this indicates the ranking is always incorrect, 1
always correct. To derive the |S| × |S| bias matrix
T, we order systems s1 . . . sn in descending order
of their average human score. We then have:

Tij :=





τ+(si, sj) i < j

τ−(sj , si) i > j

0 i = j

9If s1 is better than s2 on every document, τ− is undefined.
In this case, biased and unbiased CMs are indistinguishable.
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Figure 2: Bias Matrices for the best CMs. We also show the bias matrix for the architecture confounder for reference.
See Figure 3 for a brief tutorial to bias matrix analysis.

We visualize T for the most promising CMs
in Figure 2. To aid interpretation, we provide an
annotated version for scores generated by BAS
in Figure 3. We find that GRN and BAS show a
very strong preference for summaries generated
by BART, ranking them almost universally higher
even when this disagrees with human judgements.
In case of BAS this is unsurprising, since BART and
BAS use the same underlying model. For GRN the
reason is less clear, though analysis in Section 7.2
suggests that it might rely on the higher grammati-
cality of BART output. For the other CMs, biases
are less evident, though CCL C/D shows a slight
preference for BART and Pegasus and CCL WSJ
has a slight bias towards LEAD and GPT-2.

7 CM Analysis

7.1 Correlation with Shuffle-Performance

Mohiuddin et al. (2021) have shown that the perfor-
mance of CMs on the shuffle task is not predictive
for performance on summary coherence evaluation.
However, at the same time, the shuffling-based
CCL shows comparatively strong performance in
our experiments. To better understand the rela-
tion between shuffling and summary coherence, we
test the ability of all CMs to discriminate shuffled

and non-shuffled reference summaries from the test
split of CNN/DM. Results are in Table 4.

Of the CMs that perform best on coherence eval-
uation (see Table 3), most also perform well on the
shuffling task (CCL, BAS, SQE). Only GRN fails
on this task. This is troubling as we would expect
any CM that is able to identify coherent summaries
on SummEval to be able to identify at least some
shuffled reference summaries. This suggests that
GRN models coherence only indirectly via proxy
variables, which we elaborate on in Section 7.2.

For the entity-based measures EGR, EEG and
NEG, their difficulties on the SummEval dataset are
also reflected in the shuffle task. This suggests that
these CMs struggle generally on CNN/DM-style
summaries. In Section 7.3 we demonstrate that this
is due to the overall lack of entity overlap in this
dataset. Finally, UNF C/D and GRA are outliers in
that they show shuffle performance on CNN/DM
that is similar or better than SQE but still perform
near random on SummEval coherence modelling.
We investigate this in Section 7.4.

7.2 GRUEN

GRN works well for system-level correlation yet is
incapable of solving the shuffle task. This prompts
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Figure 3: Bias matrix for BAS with specific analysis for BART and Pegasus. The upper triangular matrix indicates
τ+ for the given summarizer pair, the lower τ−. The area of each circle is proportional to the number of pairs
in H+/H− for the cell. To read off the behaviour of the CM on a specific summarizer, we follow both the
corresponding row and column. A high score in the row, combined with a low score in the corresponding cell in the
column implies the CM is biased towards generations by this particular summarizer.

Corpus EGR EEG NEG GRA UNF CCL BAS GRN SQE

C/D 0.426 0.523(c)
0.498(w)

0.524(c)
0.603(w)

0.522(d)

0.838(c)
0.623(w)

0.439(d)

0.803(c)
0.589(w)

0.929(c)
0.862(w)

0.896 0.504 0.707

WSJ (orig.) 0.889 0.840 0.855 0.924 0.93 0.97 - - -

Table 4: Shuffle accuracies on CNN/DM for 1000 randomly sampled reference summaries. (c) means that the model
was trained on CNN/DM (w) on WSJ and (d) on DUC03. Baseline accuracy would be 50%. For reference, we also
list originally reported shuffle results on full WSJ articles as originally reported where applicable.

Cola Redun. LM Focus
Cola 0.57 0.71 0.59 0.63
Redun. 0.51 0.57 0.51
LM 0.15 0.35
Focus 0.49

Table 5: Performance of GRN constituent measures.
Cells indicate system-level correlation of the combi-
nation of the respective measures. Individual measure
performance is indicated on the diagonal.

us to investigate its individual components. In the
reference implementation, GRN computes the sum
of three scores to determine the overall score.10

Grammaticality is assessed per sentence by a
classifier trained on the CoLA corpus (Warstadt
et al., 2019) and the average log probability under
a BERT model. Redundancy is estimated by a
fixed penalty whenever any sentence pair has token
overlap above a predetermined threshold. Focus

10The coherence score reported in the paper is not part of
the reference implementation. We have confirmed that this is
intentional in personal communication with the authors.

is scored by word-mover-similarity (Kusner et al.,
2015) of neighbouring sentences.

Table 5 shows the system-level correlation of
the individual scores and all pairwise combinations.
CoLA plus redundancy alone account for almost
the full system-level correlation of 0.72. Since nei-
ther score is dependent on sentence order, they can
by design not fully account for summary coherence,
raising considerable doubt about the generalizabil-
ity of GRNs performance on this task.

7.3 Entity Driven Measures

To explain why EEG, EGR and NEG perform poorly
even on the shuffle task, we investigate the role
of entity (re-)occurrences in CNN/DM summaries.
Table 6 shows that both reference summaries and
SummEval data have very little lexical entity over-
lap in between sentences.11 A considerable number
of summaries in both SummEval and CNN/DM
show no entity overlap between any of their sen-
tences. Therefore entity-based models are inher-

11As determined by the Brown Coherence Toolkit. See
Appendix A.
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Corpus Docs Sents
CNN/DM Ref. 0.287 0.458
SummEval 0.178 0.301
DUC03 0.014 0.121

Table 6: Proportion of documents without any entity
overlap, as well as average ratio of sentences without
entity links per document for various datasets.

ently limited, at least when using lexical overlap
to determine entity re-occurrence. We leave a thor-
ough investigation of solutions like better corefer-
ence resolution or using embedding based methods
as in Mesgar and Strube (2016) to future work.

7.4 Global Training vs. Pairwise Ranking

While CMs that fail the in-domain shuffling task
are likely to be unsuitable for CNN/DM summaries,
it is less clear why CMs with reasonable shuffle
performance fail on SummEval like UNF C/D and
GRA C/D. We theorize that one reason is that both
UNF and GRA are trained on a margin-based rank-
ing loss between shuffled and non-shuffled vari-
ants of the same document, which implies that both
have the same tokens and number of sentences. The
training loss thus does not impose constraints on
the behaviour of the function between inputs of dif-
ferent lengths and tokens. Since SummEval, unlike
e.g. DUC, has no agreed upon length constraint,
this is problematic.12 In contrast, the classifica-
tion objective of CCL enforces a globally correct
ranking of shuffled vs. unshuffled documents.

Verifying this hypothesis on SummEval directly
is difficult, since summary length is deeply con-
founded with the generating summarizer. However,
we can investigate the ability of CMs to correctly
rank documents of different lengths and content
by modifying the shuffle test to compare reference
summaries to shuffled variants of different refer-
ence summaries. Figure 4 shows the relation be-
tween the difference in length between the shuffled
and unshuffled summaries and the ranking accu-
racy of the CMs. UNF performs very poorly on
the task, especially if the original summary is long.
GRA, on the other hand, prefers longer documents,
even if they are shuffled. In contrast, CCL is consis-
tently able to correctly rank summaries regardless
of length difference. Thus, for both UNF and GRA
comparing documents of different lengths and con-
tent is a major obstacle. The stability of CCL sug-

12Summarizer length statistics are in Appendix C.

Figure 4: Ranking accuracy between shuffled and origi-
nal summaries of different lengths (in characters). We
sample 10,000 pairs and group them in buckets of 20
characters and clamp differences between -200 and 200.

gests that replacing pairwise ranking with a classi-
fication objective is a direct fix to this issue. These
results are also consistent with parallel work by
Jwalapuram et al. (2022) who extend the pairwise
shuffle-task to consider multiple negative examples.
They find that including negative samples from dif-
ferent documents in the negative set during training
improves model performance on downstream tasks.

8 Conclusion

We have investigated the performance of a wide
array of CMs for summary evaluation that have
not been previously systematically compared. Our
investigations show that CMs must be carefully
evaluated in order to avoid rewarding the mod-
elling of shallow, system-level confounders, that
are unlikely to generalize. We thus recommend re-
searchers report our newly suggested intra-system
correlation alongside other EMs and use bias ma-
trices to understand unexpected drops when going
from system-level to intra-system correlation.

There is considerable need to improve CMs be-
fore they become practical for summary coherence
modelling. Our results point towards the following
lessons for future work. Firstly, CNN/DM sum-
maries are not amenable to entity-based analysis
without considerable additional work to improve
entity detection. Secondly, self-supervised training
via the shuffle task shows the greatest promise for
future improvements. However, we show that good
shuffle performance does not naturally transfer to
coherence evaluation for settings with documents
of different lengths and contents. Training in a
classification setup instead of the more common
pairwise setup provides an effective fix for this.
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A Implementation Details

A.1 Extended Entity Grid (EEG)

We use the original implementation that is part of
the Brown Coherence Toolkit13. For preprocessing,
we use the Stanford parser14. We identify entities
using OpenNLP as suggested in the README.

For WSJ we used the pretrained f-wsj model
provided in the toolkit. For CNN/DM we trained
our own model. We found that the implementation
ran out of memory on the 287,011 instances in
CNN/DM on our machine with 32GB of RAM. We
thus limited the instances considered for CNN/DM
to 10% of the original dataset (28,701).

A.2 Entity Graph (EGR)

Since there is no reference implementation of the
Entity Graph, we implement our own version based
on the grid created by the Brown Coherence Toolkit.
We use the PAcc measure with distance penalty
which performed best in the original paper.

A.3 Neural Entity Grid (NEG)

Since no models are publicly available, we train
new models for all settings using the reference im-
plementation15.

For DUC03 and WSJ we use the entity grids and
training pairs provided by the authors in the repos-
itory. These were also created using the Brown
Coherence Toolkit. For CNN/DM we create our
own examples, following the original settings. We
found that the original implementation of the shuf-
fling procedure leaves artifacts in the data since the
row order is unchanged between shuffled and un-
shuffled documents. However, for unshuffled docu-
ments the order of rows in the entity grid roughly
corresponds to the order of entities in the sentences,
whereas for shuffled documents this is not the case.
Since this can be picked up by the convolutional
network for short documents, we modify the in-

13https://web.archive.org/web/
20200505174052/https://bitbucket.org/
melsner/browncoherence

14https://nlp.stanford.edu/software/
lex-parser.shtml

15https://github.com/datienguyen/cnn_
coherence

Embedding Size 100
Batch Size 64
Pool Length 6
Window Size 6
Number of Filters 150
Hidden Size 250

Table 7: Best hyperparameters for the neural entity grid
on DUC03.

put data to randomly shuffle row order for each
instance.

For the shuffling tasks on WSJ we use the re-
ported hyperparameters, which we also use for
CNN/DM. For DUC, no hyperparameters were
reported, so we use the built-in hyperparameter
search. We achieve the best results using the pa-
rameters reported in Table 7.

A.4 Graph-based Model (GRA)

We use the original implementation.16 For WSJ, we
use the provided pretrained model. For DUC and
CNN/DM we train the model using default settings,
which includes an ELMo embedding layer. The
graph-representation is created from an entity grid
representation as provided by the Brown Coherence
Toolkit.

A.5 Unified Coherence Model (UNF)

We use the original implementation.17 We train
new models for CNN/DM and WSJ using default
settings. In the original implementation, scores
are computed using a sum over coherence scores
for windows of three sentences each, since in their
pairwise evaluation, samples always have the same
length. In our experiments, we use the mean over
the windows instead to normalize for length. For
completeness, we also conducted experiments us-
ing the original setting, which did not lead to any
improvement.

A.6 Coherence Classifier (CCL)

We originally experimented with the pretrained
WSJ model provided by the authors of (Laban
et al., 2021).18 However, we found that the model
achieved near-random scores when evaluated on

16https://github.com/UKPLab/emnlp2021-
neural-graph-based-coherence-model

17https://github.com/taasnim/unified-
coherence-model

18https://github.com/tingofurro/
shuffle_test
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SummEval for reasons that are difficult to as-
certain as the original training code is unavail-
able. We thus train our own coherence classifier
models for both CNN/DM and WSJ. We use the
roberta-large model as implemented in the
huggingface library (Wolf et al., 2020) in a se-
quence classification setup. We use a learning rate
of 2e− 6 and train for a maximum of six epochs.
We select the best model using f1-score on the vali-
dation set.

A.7 BARTScore (BAS)

We reimplement the finetuned BARTScore variant
using the bart-large-cnn checkpoint from
the huggingface library. Since the original model
is evaluated using Spearman’s ρ, we separately ver-
ified that it exactly reproduces the reported results.

A.8 GRUEN (GRN)

We use the scores provided by the official reference
implementation.19

A.9 SumQE (SQE)

We use the scores provided by the official refer-
ence implementation.20 We use the Q5 head of the
model jointly trained on all three DUC datasets.21

A.10 Hardware

All experiments that include neural network train-
ing (i.e. NEG, GRA, UNF, CCL) were run on a single
node with four Quadro RTX 6000 GPUs.

B Detailed Intra-System Correlation
Results

Figure 5 shows the individual intra-system corre-
lations for all summarizers in SummEval for the
best CMs and the human upper bound. We find that
CMs struggle across the whole range of summa-
rizers, including summarizers with high variance
in coherence scores, where we would expect the
task to be easier. Furthermore, we find none of the
available CMs can consistently outperform all oth-
ers. For example, BAS outperforms other CMs on
Bottom-Up and Improve-Abs, but performs signifi-
cantly worse on the top systems, including BART
itself.

19https://github.com/WanzhengZhu/GRUEN
20https://github.com/nlpaueb/SumQE
21https://archive.org/download/sum-

qe/BERT_DUC_all_Q5_Multi%20Task-5.h5

C Length Statistics

We present the length distribution of summarizer
outputs on SummEval in Figure 6.
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Figure 5: Intra-system correlations of the best CMs as well as the human upper bound on the SummEval dataset.
Bars indicate 95% confidence intervals determined by bootstrap resampling with 1000 samples.
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Figure 6: Histograms of the lengths of summaries generated by the summarizers in SummEval and their mean
lengths. Both in characters.
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Abstract

Abstractive dialogue summarization aims to
convert a long dialogue content into its short
form where the salient information is preserved,
while the redundant pieces are ignored. Dif-
ferent from the well-structured text, such as
news and scientific articles, dialogues often
consist of utterances coming from two or more
interlocutors, where the conversations are of-
ten informal, verbose, and repetitive, sprinkled
with false-starts, backchanneling, reconfirma-
tions, hesitations, speaker interruptions and the
salient information is often scattered across the
whole chat. The above properties of conversa-
tions make it difficult to directly concentrate
on scattered outstanding utterances and thus
present new challenges of summarizing dia-
logues. In this work, we propose to explicitly
have the model perceive the redundant parts of
an input dialogue history, so that the model is
able to pay more attention to the salient pieces.
To be specific, we design two strategies to con-
struct examples without salient pieces as nega-
tive cues. Then, the sequence-to-sequence like-
lihood loss is cooperated with the unlikelihood
objective to drive the model focus less on the
unimportant information as well as pay more
attention to the salient pieces. Extensive exper-
iments on the benchmark dataset demonstrate
that our simple method outperforms baselines
with regard to both semantic matching and fac-
tual consistent based metrics. The human eval-
uation also proves the performance gains led
by our approach.

1 Introduction

Online conversations have become an indispens-
able manner of communication in our daily work
and life, where people tend to exchange their ideas,
share information, consult via textual messages.
Especially in the era of information explosion, it is

∗Work done during internship at JD.com.
†The first two authors made equal contributions. Corre-

sponding to Yanyan Zou.

Molly: Guys, do you think it’s a very bad idea to go to
Sweden for a week in January?

Margaret: We bought some cheep tickets half a year ago and
now we’re hesitating.

Peter: Haha, no but it will be just dark and cold.
Margaret: Rainy?
Kal: Possibly. But if you stay in Stockholm, there are

always nice things to do. Museums, bars etc
Kal: Not so much nature though which is truly stunning

around Stockholm.
Margaret: Yes, but it’s January, one would have to go to

Argentina to enjoy nature.
Kal: Exactly.
Peter: Visit the Vasa Museum, it’s really fun.
Molly: We will:) Thanks :)
Peter: Enjoy!

Summary: Molly and Margaret are going to Sweden in Jan-
uary. Kal and Peter advise them to stay in Stock-
holm and visit Vasa Museum.

Figure 1: An example of dialogue with its summary.
Green: nouns, italic: salient utterances.

much more challenging and time-consuming to go
through all the conversation content and catch key
ideas (Gao et al., 2020). Thus, it is paramount to
present the most salient facts, instead of the whole
lengthy dialogue history, which is beneficial to var-
ious scenarios and applications, such as online cus-
tomer service (Liu et al., 2019a), meeting and email
thread summary (Zhao et al., 2019). Therefore, this
work focuses on the abstractive dialogue summa-
rization task, aiming to automatically convert the
long dialogue history into its shorter form retain-
ing the most essential and informative content yet
getting rid of the dispensable pieces, exemplified
by a dialogue-summary instance in Figure 1.

One intuitive solution to summarizing dialogue
content is to directly adopt existing summariza-
tion systems (Gehrmann et al., 2018; Zhang
et al., 2020a; Zou et al., 2020) designed for well-
structured text, such as news and scientific articles
(Shang et al., 2018; Gliwa et al., 2019) or to employ
hierarchical models to capture features from differ-
ent turns of different speakers (Zhao et al., 2019;
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Zhu et al., 2020). Unfortunately, succinctly sum-
marizing dialogue content presents new challenges
due to intrinsic properties of conversations. Unlike
the field of well-organized text merely from a sin-
gle person, dialogues often consist of utterances
coming from two or more interlocutors, where
the conversations are often informal, verbose and
repetitive, sprinkled with false-starts, backchan-
nels, reconfirmations, hesitations, speaker interrup-
tions (Sacks et al., 1978) and the key information
is often scattered throughout the whole chat. The
above properties of conversations make it difficult
to concentrate on the scattered salient utterances.

Recent studies incorporate intrinsic information
of dialogues to handle the challenges for summa-
rizing dialogues, such as topic features (Liu et al.,
2019b; Li et al., 2019; Chen and Yang, 2020; Liu
et al., 2021a), dialogue acts (Goo and Chen, 2018),
conversation stages (Chen and Yang, 2020) and
coreference information (Liu et al., 2021b). The
main idea of such existing summarization systems
is to directly learn the salient information of the
input dialogues with various architecture designed
or extra knowledge added. Differently, this work
proposes to train a dialogue summarization sys-
tem by explicitly telling the model the unimpor-
tant/redundant pieces of an input dialogue, so that
the model is able to focus less on the given negative
hints and pay more attention to the salient informa-
tion. To be specific, we design two strategies to
construct negative examples, namely Noun Drop,
and Salient Utterance Drop. Then, we design an
unlikelihood objective to model the probability of
producing the gold summary given a negative ex-
ample. The model is then trained based on the sum-
mation of likelihood and unlikelihood objectives.
Extensive experiments on the SAMSum dataset
demonstrate that our proposed method outperforms
baselines on both semantic matching and factual
consistent based metrics. The human evaluation
also proves the performance improvements of our
simple yet effective method.

2 Method

2.1 Sequence-to-Sequence Learning

We consider the abstractive dialogue summariza-
tion task as a sequence-to-sequence learning prob-
lem. We use the Transformer (Vaswani et al.,
2017) as our backbone architecture, where the
model takes as input the dialogue utterances and
generates a corresponding summary in an end-

to-end fashion. To be specific, for a dialogue
D = (u1, u2, ..., u|D|), consisting of |D| utter-
ances, coupled with its corresponding summary
Y = (y1, y2, ..., y|Y |) in the length of |Y |, the goal
is to learn the optimal model parameters θ and to
estimate the conditional probability:

Pθ(Y |D) =

|Y |∏

i=1

pθ(yi|y1:i−1, D) (1)

where y1:i−1 denotes the first i − 1 tokens of the
output sequence (i.e., y1:i−1 = (y1, y2, ..., yi−1)).
Given the whole training set (D,Y), this model
can be trained to maximize the log-likelihood by
minimizing:

LMLE(θ;D,Y) = −
∑

(D,Y )∈(D,Y)
logPθ(Y |D)

2.2 Unlikelihood Objective
We first introduce two strategies for constructing
negative examples:

• Noun Drop: We simply remove all the nouns
(e.g., named entities) appearing in dialogue D
since most fact details (i.e., salient informa-
tion) are presented in nouns, highlighted by
green color in Figure 1.

• Salient Utterance Drop: An utterance is
defined as a salient one when the ROUGE-
2 (Lin, 2004) recall score between it and
the gold summary is larger than zero. This
strategy removes all the salient utterances on
which the gold summary is grounded and the
remaining utterances are concatenated in or-
der to form a new dialogue content. The utter-
ances marked in italic in Figure 1 are salient
ones and removed from the dialogue to con-
struct a negative example.

For each dialogue D ∈ D, each strategy results in
a single negative example, denoted as D′, yielding
a new set D′. The unlikelihood objective is then
calculated as:

LUNL(θ;D′,Y) =
−

∑

(D′,Y )∈(D′,Y)
log (1− Pθ(Y |D′))

Different from the unlikelihood training (Welleck
et al., 2019) whose key idea behind is to decrease
the model’s generation probability of certain neg-
ative candidates conditioned on the original input
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text, our unlikelihood objective aims to decrease
the probability of producing the target summary
given the negative input D′. The final loss for the
sequence-to-sequence learning is then defined as:

L = LMLE + LUNL
= −

∑

(D,D′Y )∈(D,D′,Y)
[logPθ(Y |D)

+ log (1− Pθ(Y |D′))]

The goal is to minimize the loss L, i.e., maximiz-
ing the probability of generating the summary Y
given the original dialogue D, while minimizing
the probability of producing Y given D′, which is
similar to the idea of contrastive learning. In this
scenario, the negative examples D′ can be consid-
ered as explicit negative cues to drive the model
focus more on the salient information.

3 Experiments

3.1 Datasets

We evaluate our model on the widely-used dialogue
summarization datasets, SAMSum. Such a dataset
comprises of natural message-like conversations ex-
pressed in English written by two or more linguists,
each of which is annotated with summary created
by language experts (Gliwa et al., 2019). The train-
ing set consists of 14,732 dialogue-summary pairs,
while the validation and test set contain 818 and
819 instances individually. We list the detailed
data statistics of each split (i.e., training, validation,
test) with regard to average tokens, utterances and
speakers in Table 1.

3.2 Implementation Details

We adopted the sequence-to-sequence Transformer
model as our backbone architecture, which is im-
plemented using Fairseq toolkit1 (Ott et al., 2019).
To be specific, our model is initialized with a pre-
trained sequence-to-sequence, i.e., BART (Lewis
et al., 2020), . Thus they share the same archi-
tectures, a 12-layer encoder-decoder Transformer.
Each layer has 16 attention heads, and the hidden
size and feed-forward filter size is 1024 and 4096,
respectively, resulting in 400M trainable parame-
ters. The dropout rates for all layers are set to 0.1.
The optimizer is Adam (Kingma and Ba, 2015)
with β1 = 0.9 and β2 = 0.999. The peak learning

1We empirically observed that different frameworks (e.g.
Fairseq and Huggingface Transformer) may obtain different
results even under the same hyperparameter settings.

rates for all experiments are set to 4e− 5 with 200
warmup steps. We also adopted the same learning
rate schedule strategies as in Vaswani et al. (2017).
The maximum number of tokens in each batch is
800. The model is trained for 4 or 5 epochs for
different perturbation methods. Each epoch takes
around 0.7 hours on single Tesla P40 GPU. To ob-
tain all nouns in a dialogue, we applied the spaCy
toolkit2 to obtain the part-of-speech and named en-
tities tags. When constructing negative examples
where salient utterances are dropped, we simply
adopt the ROUGE scores. All hyperparameters are
set based on the performance of the validation set.

3.3 Baseline
• Lead3 is a commonly adopted method in

the extractive document summarization task,
which simply takes the first three leading sen-
tences of an input text as its summary.

• PTGen (See et al., 2017) modifies a sequence-
to-sequence generation model with the copy
and coverage mechanisms to copy words orig-
inated from the input text.

• FastAbs-RL (Chen and Bansal, 2018) first se-
lects pivot sentences and then generates ab-
stract summary with reinforcement learning.

• DynamicConv + GPT-2/News (Wu et al.,
2019) proposes a lightweight dynamic con-
volutions to replace the self-attention modules
in the Transformer layers.

• BART (Lewis et al., 2020) is a pre-trained
encoder-decoder Transformer model.

• MultiView BART (Chen and Yang, 2020) uses
multi-view features to summarize dialogues.

3.4 Automatic Evaluation
To evaluate the effectiveness of the proposed model
and compare it with other baselines, we adopted the
full-length F1-based ROUGE scores (Lin, 2004)
to measure the quality of summary output gen-
erated by different systems. Specifically, we
used the files2rouge3 package based on the of-
ficial ROUGE-1.5.5.pl perl script to get the
full-length ROUGE-1, ROUGE-2 and ROUGE-L F-
measure scores. The recent popular automatic eval-
uation metric for text generation, BERTSCORE

2https://spacy.io/
3https://github.com/pltrdy/files2rouge Note that the

ROUGE scores might vary with different ROUGE tookits.
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Split #Dial #Speaker #Turns #Words (Dial) #Words (Summary)

Train 14,732 2.40 11.17 83.90 20.35
Valid 818 2.39 10.83 83.26 20.14
Test 819 2.36 11.25 83.87 20.43

Table 1: Data statistics of the dialogue summarization dataset, SAMSum, including the total number of dialogues
(#Dial), the average number of participants (#Speaker), the average number of turns (# Turns), the average number
of words in the dialogue (# Words (Dial)) and in the summary (# Words (Summary)).

Model ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE QUESTEVAL

Lead3 31.4 8.7 29.4 - -
PTGen 40.1 15.3 36.6 - -
DynamicConv + GPT-2 41.8 16.4 37.6 -
FastAbs-RL 42.0 18.1 39.2 - -
DynamicConv + News 45.4 20.7 41.5 - -
Multiview BART 53.9 28.4 44.4 53.0 40.3

BART 52.6 27.0 42.1 52.1 39.8
w/o+ Noun Drop 53.4∗ 28.4∗ 44.7∗ 53.5 41.6
w/o+ Salient Utterance Drop 53.2∗ 28.7∗ 44.6∗ 53.2 40.5

Table 2: Results on SAMSum test split. ∗ indicates the results are significantly different from BART baseline in
terms of ROUGE scores (p < 0.05, according to the ROUGE script). The highest score is highlighted with bold,
while the second highest is marked with underline.

(Zhang et al., 2020b), is also presented for com-
parisons. The above metrics mainly focus on the
semantic similarity between the generated output
and the ground truth, based on either string match
or meaning similarity. Moreover, we also consider
the QUESTEVAL (Scialom et al., 2021) to evalu-
ate the summary’s factual consistency. To be spe-
cific, given an input text (e.g., dialogue content
in this paper) and a summary, QuestEval first ex-
tracts question answers (considering all the named
entities and nouns) from either the input text or
the generated summary, and then generates natu-
ral language questions from the input text or the
summary correspondingly conditioned on the gen-
erated answers. A Question Answering (in short,
QA) model is employed to consume the input text
to answer the questions derived from the summary,
resulting in a score, denoted as the PRECISION

score. Such a score implies that a summary should
contain only factual information consistent to the
input text. Similarly, the QA model is also applied
to address the questions generated from the input
text, producing another score, namely the RECALL

score, showing that the summary should contain the
most important information from the source text.
The final QuestEval score is the harmonic mean of
the precision and recall, i.e., the F1-measure score.

We adopted the version with learned weights for
questions, which has proved high correlation with
human judged consistency and relevance (Scialom
et al., 2021).

As listed in Table 2, in terms of the seman-
tic similarity-based metrics (i.e., ROUGE and
BERTSCORE), the Noun Drop achieves highest
ROUGE-L and BERTSCORE, while the Salient Ut-
terance Drop obtains the highest ROUGE-2, demon-
strating the effectiveness of negative cues with the
unlikelihood objective. With regard to the fac-
tual consistency metric QUESTEVAL, the variant
with Noun Drop obtained the highest score, which
demonstrates its effectiveness to generate the fac-
tual consistent summaries since detailed fact are
mainly presented in the form of named entities and
nouns residing in the source input.

Overall, the variant with Noun Drop works the
best for the three of five metrics. It is also wor-
thy noting that MultiView BART requires extra
topic segmentation algorithms to obtain the multi-
view features, while our method only needs part-
of-speech tags and ROUGE scores to construct
negative examples which are easier to achieve.

We have also tried to combine the Noun Drop
and Salient Utterance Drop. It is interesting that we
did not obtained consistently improvement. One
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Systems 1st 2nd 3rd 4th MR

BART 0.04 0.12 0.34 0.51 3.34
MultiView BART 0.22 0.24 0.31 0.23 2.55
Ours 0.28 0.30 0.23 0.19 2.33
Gold 0.46 0.34 0.13 0.07 1.98

Table 3: Human evaluation on SAMSum: proportions
of rankings. MR: mean rank (the lower the better).

possible reason is that the negative examples might
lose too much information so that the negative sig-
nals become weaker.

3.5 Human Evaluation
We also elicit feedback from human efforts to eval-
uate the generated summaries from different sum-
marization systems. We compared our best per-
forming model (i.e. +Noun Drop) with the human
references, as well as two baselines, BART (Lewis
et al., 2020) and MultiView BART (Chen and Yang,
2020). We randomly select 100 dialogues from the
test split of SAMSum dataset. To ensure fairness,
for each dialogue, we list its candidate outputs in
a random order, including human references (de-
noted as Gold), and outputs generated by three
models. 10 participants are presented with a dia-
logue and its paired candidate summaries, where
all participants are shown the same candidate order.
For each selected dialogue, they are asked to rank
the candidate output from the best to worst with
regard to three criteria:

• Fluency: Is the summary fluent and grammat-
ically correct?

• Informativeness: Does the summary contains
the most informative pieces of the dialogue?

• Succinctness: Does the summary express in
an abstractive way (e.g., without repetitions)?

Table 3 listed the proportions of different system
rankings and mean rank (lower is better). The out-
put of our proposed method is ranked as the most
appropriate summary for 28% of all cases. Overall,
we obtain lower mean rank than the other two sys-
tems but still lags behind the Gold one. The Fleiss’
Kappa score (Fleiss, 1971) among participants is
0.527 that demonstrates fair inter-rater agreement.

4 Conclusion

Recent studies involved dialogue studies (e.g., top-
ical information, coreference information, and dia-

logue acts) to make the model directly pay more at-
tention to salient parts. However, the characteristics
of dialogue content make it challenging to concen-
trate on scattered outstanding utterances. Rather,
in this work, we propose a simple yet effective
approach to explicitly tell a model the redundant
pieces of a dialogue and thus focus more on the
salient ones. We proposed two strategies to con-
struct negative samples with redundant information
and designed an unlikelihood objective to force the
model learn less from redundant information, in
other words, learning more from the salient pieces.
Experiments on the benchmark dataset demonstrate
the efficacy of the proposed model. In the future,
we plan to investigate other strategies for construct-
ing negative examples and replace the unlikelihood
objective with the ranking loss.

5 Broader Impact Statement

Our simple yet effective abstractive dialogue sum-
marization system could be used where there exists
dialogue systems (two or multi-party dialogues).
For example, it could be used for grasping the key
points quickly or recapping on the salient infor-
mation of online office meeting. In addition, the
system can also be used for customer service, re-
quiring employees to summarize the conversation
records of customers’ inquiries, complaints and
suggestions.

The daily dialogue dataset used in this work is
publicly available, and only for research purpose.
There may exist biased views in them, and the
content of them should be viewed with discretion.
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Abstract

Lexical simplification (LS) is the task of
automatically replacing complex words for
easier ones making texts more accessible to
various target populations (e.g. individuals
with low literacy, individuals with learning
disabilities, second language learners). To
train and test models, LS systems usually
require corpora that feature complex words in
context along with their candidate substitutions.
To continue improving the performance
of LS systems we introduce ALEXSIS-
PT, a novel multi-candidate dataset for
Brazilian Portuguese LS containing 9,605
candidate substitutions for 387 complex
words. ALEXSIS-PT has been compiled
following the ALEXSIS protocol for Spanish
opening exciting new avenues for cross-
lingual models. ALEXSIS-PT is the first LS
multi-candidate dataset that contains Brazilian
newspaper articles. We evaluated four models
for substitute generation on this dataset,
namely mDistilBERT, mBERT, XLM-R, and
BERTimbau. BERTimbau achieved the highest
performance across all evaluation metrics.

1 Introduction

The development of lexical simplification (LS)
systems provides a cost-effective means of
making texts accessible to individuals with
reading disabilities or low-literacy who are at
an economic and social disadvantage (Nogueira
et al., 2022). LS systems aim to replace difficult
to understand (complex) words or phrases with
simpler alternatives (North et al., 2022). Consider
the examples in Table 2. An LS system would
firstly identify the word shown in bold as being
complex (Paetzold and Specia, 2016). It would then
generate top-k number of candidate substitutions
that preserve the meaning of the original complex
word in the provided context, yet are easier to
understand or are more familiar to the user. These
top-k candidate substitutions are then filtered based

on their appropriateness, referred to as substitute
generation, and finally ranked in accordance to
their suitability, known as substitute ranking.

Various studies have been published on Brazilian
Portuguese (pt-BR) LS (Aluísio and Gasperin,
2010; Leal et al., 2018; de Lima et al., 2021; Leal
et al., 2022). Brazil is a country with important
literacy challenges where only 1% of its population
working in the agricultural sector are proficient
readers (Leal et al., 2018). These educational
challenges motivate the development of technology
to assist readers and the creation of resources for
pt-BR. One of the most popular pt-BR LS datasets
is SIMPLEX-PB 2.0 (Hartmann et al., 2020b,a)
featuring substitutions for over 1,500 complex
words. However, in SIMPLEX-PB 2.0 only 5
ranked candidate substitutions are available for 730
of its complex words making the dataset less useful
as a benchmark for state-of-the-art large pre-trained
language models. Moreover, it contains texts from
children’s books which makes it domain-specific
and therefore not a great fit for general LS.

To address these gaps we introduce ALEXSIS-
PT, a pt-BR LS dataset featuring excerpts of
newspaper articles containing a larger number of
candidate substitutions per target word (up to 25).
To the best of our knowledge, ALEXSIS-PT has the
highest average number of pt-BR ranked candidate
substitutions per complex word. ALEXSIS-PT
has been compiled according to the ALEXSIS
protocol for Spanish (Ferres and Saggion, 2022),
henceforth ALEXSIS-ES, opening the possibility
of using cross-lingual models for these languages.
ALEXSIS-PT is one of the official datasets of the
TSAR shared task (Saggion et al., 2022).

The main contributions of this paper are:
1. ALEXSIS-PT, the first multi-candidate

dataset for the development and evaluation of
LS systems for pt-BR newspaper articles.

2. An evaluation of multiple state-of-the-art
models for LS substitute generation (SG).
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SIMPLEX-PB 3.0 ALEXSIS-PT ALEXSIS-ES
Source children’s books newspapers newspapers
Complex words 730 387 381
Unique complex words 730 348 356
Annotators 5 25 25
Total candidate substitutions 3,650 9,605 9,524
Avg. # of total substitutions per complex word 5 22 23
Avg. # of unique substitutions per complex word 0 0 0

Table 1: Comparison of ranked candidate substitutions in ALEXSIS-PT, SIMPLEX-PB 3.0, and ALEXSIS-ES.

2 Related Work

Datasets and Models The English Simple
Wikipedia is an important resource that served
as training material for a number of LS systems.
Examples include Yatskar et al. (2010) who
used Simple Wikipedia’s edit history to train
an unsupervised model to identify candidate
substitutions for complex words and Biran et al.
(2011) who trained unsupervised models on a
parallel corpus with texts from Wikipedia and
Simple Wikipedia texts likewise for substitute
generation. Other data sources have been explored
such as the Newsela corpus used in Paetzold
and Specia (2017) who relied on neural networks
together with a retrofitted context-aware word
embeddings model to learn candidate substitutions.
In terms of architectures, more recent LS systems
use transformer-based models. Qiang et al. (2020)
trained a BERT-based model to generate top-k
candidate substitutions for their English dataset
using masked language modelling (MLM). Others
have used various transformer-based models for
substitute ranking as well as precursor tasks,
such as complex word identification or lexical
complexity prediction (North et al., 2022).

Portuguese LS The PorSimples project (Aluísio
et al., 2018; Aluísio and Gasperin, 2010) sought
to make online news articles more accessible
in Brazil. It created the first well-known
dataset for pt-BR text simplification (TS). The
dataset contains excerpts of texts from a Brazilian
newspaper and it is divided into 9 sub-corpora
separated on degree of simplification and source
text. However, unlike SIMPLEX-PB 2.0, this
dataset only contained full simplified sentences
and did not contain candidate substitutions for
complex words needed for LS. The PorSimplesSent
dataset (Leal et al., 2018) was developed to train
readability classifiers to automatically predict the
level of readability (complexity) of a given pt-

BR sentence. This dataset was adapted from the
previous PorSimples dataset (Aluísio and Gasperin,
2010) but instead of presenting 9 sub-corpora with
differing degrees of simplification, it combines
each sentence-level simplification into pair and
triple instances corresponding to original plus
one or two simplifications (strong or natural).
Finally, SIMPLEX-PB 3.0 (Hartmann and Aluísio,
2020) is an extension of the previous SIMPLEX-
PB 2.0 dataset (Hartmann et al., 2020b,a). It
added a selection of feature representations to
the candidate substitutions of each complex word
within SIMPLEX-PB 2.0.

3 ALEXSIS-PT

We created a new dataset for pt-BR LS containing
newspaper articles, referred to as ALEXSIS-PT.
We did this since previous pt-BR TS datasets are
either not of the newspaper genre (SIMPLEX-
PB 2.0 and 3.0) or do not contain pre-identified
candidate substitutions for LS (PortSimple or
PorSimplesSent). ALEXSIS-PT contains a total of
387 instances with 348 of these instances having
unique complex words. Each instance is taken from
the PorSimplesSent dataset (Leal et al., 2018) and
is retrieved from newspapers. PorSimplesSent is
essentially a collection of original and simplified
sentences thus not containing individual complex
word annotations. Therefore, we had to carry
out word alignment between the original and
complex instances to identify complex words. This
alignment was manually checked by a linguist and
only the instances containing complex words that
were deemed to be correctly identified were later
included in the crowdsourcing platform, MTurk,
for annotators to provide candidate substitutions.

As show in Table 1, the choice of a relatively
low number of instances but a large number of
candidates (25) follows the ALEXSIS-ES protocol
(Ferres and Saggion, 2022). The large number of
total ranked candidate substitutions (9,605 against
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Context Suggestions
Os sedimentos são arrastados para a parte baixa do rio. resíduos [waste] (9), detritos [debris] (6), lixos [garbage] (2), ...
EN: Sediments are carried to the lower part of the river. fragmentos [fragments] (2), camadas [layers] (1), ...
Simpatizantes foram arregimentados. agrupados [grouped] (10), reunidos [gathered] (7), ...
EN: Supporters were enlisted. convocados [summoned] (2), arrebanhados [herded] (1), ...
Neste ano ocorrerão quatro ações simultâneas conjuntas [joint] (7), ao mesmo tempo [at the same time] (7), ...
EN: This year four simultaneous actions will occur. juntas [together] (4), paralelas [parallel] (3), ...
Os partidos estão mais cautelosos cuidadosos [careful] (12), prudentes [prudent] (3), ...
EN: The parties are more cautious and careful. precavidos [cautious] (3), comedidos [restrained] (1), ...
As testemunhas contrariam esta versão negam [deny] (15), desmentem [deny] (2), ...
EN: The witnesses contradict this version. discordam [disagree] (2), desdizem [unsay] (1), ...

Table 2: Example instances from ALEXSIS-PT. Complex words in bold, translations shown in [...], and suggestion
frequency provided in (...).

3,650 from SIMPLEX-PB 3.0) aims to create a
reliable benchmark test set for systems based on
state-of-the-art large pre-trained language models.
The dataset has the following format: (1) context,
(2) the complex word, and (3) n number of
candidate substitutions (see Table 2). Akin to the
ALEXSIS-ES dataset, the candidate substitutions
were provided by 25 Amazon MTurk annotators
located in Brazil (rather than Spain) and then
a careful linguistic analysis of the annotations
was carried out by a linguist. In this step, 70
candidate substitutions that were either (a) equal
to the complex word, (b) not pt-BR, or (c) deemed
as being completely inappropriate (e.g. words
that did not accurately preserve the meaning of
the sentence or the original complex word) were
excluded. This resulted in a final total of 9,605
candidate substitutions for the 387 complex words.
These steps were also carried out by Ferres and
Saggion (2022) in their creation of ALEXSIS-ES.

4 Substitute Generation

We developed and evaluated four transformer
models for substitute generation, the first step in
LS pipelines. The four models are available at
Hugging Face. Three of them are multilingual,
being multilingual mDistilBERT (mDistilBERT)
(Sanh et al., 2019), multilingual BERT (mBERT)
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020), while one model is pre-trained solely on pt-
BR, BERTimbau (Souza et al., 2020). We followed
a similar MLM strategy to Qiang et al. (2020)
where we masked the complex word of the original
sentence and fed both the original sentence and the
masked sentence separated by a [SEP] token to
predict the masked token. The parameters of these
models are displayed in Table 3.

We evaluated each models’ ability at predicting

the candidate substitutions provided by ALEXSIS-
PT. Our models’ were set to produce varying
numbers of candidate substitutions (k) =
[1, 3, 10, 50] and [1...100]. Performance was
evaluated in terms of potential, precision, recall,
and F1-score where potential is the ratio of
predicted candidate substitutions for which at
least one of the candidate substitutions generated
was among the ground truth labels. These
evaluation metrics were chosen as they allowed
for a comparison with Ferres and Saggion (2022).
Štajner et al. (2022) has since conducted their
own comparison between ALEXSIS-PT and
ALEXSIS-ES as well as a third English dataset
for LS. Their model’s performance on these three
datasets is described in Section 5.

The appropriateness of each models’ top-
k=1 candidate substitution was also evaluated
by obtaining each models’ average weighted
frequency rank (AWFR) across all instances.
AWFR shows how appropriate each top-k=1
candidate substitution is by evaluating whether it
is among the top ground truth labels in terms of
frequency. We calculate AWFR as follows:

AWFR =

∑n
n=i fi + ...+ fn∑n
n=1 f1 + ...+ fn

(1)

where i is the index of the matching ground
truth label and f is each ground truth labels’
corresponding frequency.

5 Results and Discussion

SG Performance BERTimbau generated the
most appropriate candidate substitutions for
replacing a pt-BR complex word in any given
instance. When set to generate top-k = [1, 3, 10, 50]
candidate substitutions, BERTimbau outperformed
our mDistilBERT, mBERT and XLM-R models
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mDistilBERT mBERT XLMR BERTimbau
type BERT-base BERT-base RoBERTa-base BERT-base

corpus Wikipedia Wikipedia CC data BWaC
size 30522 Tokens 3.3B (102 lang.) 2.5TB (100 lang.) 2.7B (pt-BR)

#layers 6 12 12 12
#heads 12 12 16 12

#lay.size 768 768 768 768
#para 66M 110M 250M 110M

Table 3: Comparison of mDistilBERT, mBERT, XLM-R, and BERTimbau models. Lang is short for languages. CC
data refers to CommonCrawl data, whereas BWaC refers to the Brazilian Web as Corpus.

SIMPLEX-PB 3.0 ALEXSIS-PT Lemmatized
Model Potential Prec. Recall F1 Potential Prec. Recall F1 Potential Prec. Recall F1

top-k=1
mDistilBERT 0.029 0.029 0.029 0.029 0.028 0.028 0.028 0.028 0.045 0.045 0.045 0.045

mBERT 0.045 0.045 0.045 0.045 0.056 0.056 0.056 0.056 0.045 0.045 0.045 0.045
XLM-R 0.058 0.058 0.058 0.058 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069

BERTimbau 0.104 0.104 0.104 0.104 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126
top-k=3

mDistilBERT 0.120 0.041 0.045 0.043 0.101 0.035 0.035 0.035 0.159 0.060 0.060 0.060
mBERT 0.152 0.055 0.059 0.057 0.183 0.065 0.066 0.065 0.227 0.090 0.090 0.090
XLM-R 0.205 0.074 0.080 0.077 0.295 0.112 0.112 0.112 0.295 0.113 0.114 0.114

BERTimbau 0.330 0.121 0.131 0.126 0.536 0.212 0.213 0.213 0.541 0.215 0.216 0.215
top-k=10

mDistilBERT 0.196 0.022 0.060 0.033 0.264 0.033 0.044 0.038 0.318 0.047 0.061 0.053
mBERT 0.239 0.028 0.073 0.040 0.370 0.050 0.066 0.057 0.386 0.052 0.067 0.058
XLM-R 0.316 0.040 0.105 0.058 0.549 0.093 0.123 0.106 0.564 0.095 0.125 0.108

BERTimbau 0.476 0.069 0.184 0.101 0.831 0.169 0.223 0.192 0.831 0.169 0.224 0.193
top-k=50

mDistilBERT 0.266 0.007 0.099 0.014 0.422 0.013 0.089 0.023 0.431 0.015 0.102 0.027
mBERT 0.299 0.008 0.109 0.015 0.512 0.018 0.120 0.031 0.500 0.020 0.129 0.034
XLM-R 0.387 0.012 0.148 0.021 0.673 0.030 0.198 0.052 0.678 0.030 0.200 0.052

BERTimbau 0.545 0.018 0.237 0.033 0.888 0.052 0.346 0.091 0.888 0.052 0.346 0.091

Table 4: Substitute generation performances on the SIMPLEX-PB 3.0 and ALEXSIS-PT dataset from top-k=1 to
top-k=50 candidate substitutions. Best performances are in bold.

on all of our evaluation metrics. This is due to
BERTimbau being pretrained on a single large pt-
BR dataset rather than on multiple languages like
mDistilBERT, mBERT and XLM-R which were
found to produce candidate substitutions that were
either in European Portuguese or another language
entirely.

Generating top-k = 3 candidate substitutions
resulted in all of our models producing the highest
ratio of appropriate to non-appropriate candidate
substitutions. The BERTimbau model achieved a
precision of 0.212 when tasked with supplying top-
k=3, yet attained an inferior precision when set to
return top-k= 1, 10, or 50 (Figure 1). This showed
that our models were successful at predicting
ground truth labels when producing a small number
of candidate substitutions.

As we increase the number of top-k candidate
substitutions generated we saw an increase in
all models’ potential and recall scores (Figure

Figure 1: A plot of the BERTimbau model’s potential,
precision, recall, and F1-score from top-k=1 to top-
k=100 candidate substitutions.

1). Unsurprisingly, this indicates that with a
greater pool of candidate substitutions, it was more
likely that our models’ would successfully predict
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multiple ground truth labels. Our BERTimbau
model achieved the highest potential and recall
scores of 0.888 and 0.346 respectively (Table 4).

Comparing models performances across datasets,
we can see that all models achieved better
performances on ALEXSIS-PT in comparison
to SIMPLEX-PB 3.0, with the exception of
mDistilBERT when set to generate top-k = [1, 3]
candidate substitutions. There are two likely
explanations: (1). SIMPLEX-PB 3.0 is domain
specific and therefore pretrained language models
may be unable to simplify vocabulary or jargon
related to its genre of children’s texts, and/or (2).
SIMPLEX-PB 3.0 contains only 5 ranked candidate
substitutions, thus the prediction of 10 or more
candidate substitutions is less rewarding in regards
to improving overall performance.

ALEXSIS-ES Performance A recent study by
Štajner et al. (2022) compares the performances
of LSBert (Qiang et al., 2020) on ALEXSIS-PT,
ALEXSIS-ES (Ferres and Saggion, 2022), as well
as a third English dataset akin to the other two
datasets. All three datasets consist of a similar
number of instances (complex words in context)
being 386 instances, and candidate substitutions per
complex word. It was found that LSBert achieved
the greatest accuracy of 30.8 on the English dataset,
with ALEXSIS-PT achieving the second greatest
accuracy of 15.5. In comparison, ALEXSIS-ES
produced an inferior accuracy of 9.7.

Lemmatization To minimize the impact of pt-
BR’s fairly rich morphology and inflectional
system in the evaluation, we reduce each candidate
substitution and ground truth label to their
lemmas. We use a Portuguese lemmatizer from
SpaCy trained on the Universal Dependencies
(UD) Portuguese treebank (Rademaker et al.,
2017). Our models’ performances increased across
all evaluation metrics when taking lemmatized
words. BERTimbau’s performance increase was
0.002 F1-score when set to produce top-k=3
candidate substitutions. These results suggest that
pt-BR SG systems benefit from lemmatization
prior to substitute selection. Derivational or
inflectional morpheme(s) can be added further
down-stream aiming to produce appropriate lexical
simplification given a particular context.

AWFR As shown in Table 5, the BERTimbau
model achieves the highest AWFR across all
instances after lemmatization, 0.185. This indicates

AWFR
Model Original Lemmatized

mDistilBERT 0.037 0.076
mBERT 0.090 0.106
XLM-R 0.114 0.115

BERTimbau 0.183 0.185

Table 5: The average weighted frequency rank (AWFR)
of the top-k=1 candidate substitution generated by each
model.

that the order that our BERTimbau predicts its
substitutions is the most alike to the frequency of
the suggestions provided by the annotators. This is
likely due to BERTimbau being trained on pt-BR
data rather than multiple languages.

6 Conclusion and Future Work

This paper introduces ALEXSIS-PT. The dataset
fills two important gaps in current LS literature:
(1) it serves as a general benchmark dataset for pt-
BR LS as it contains newspaper articles and (2)
it provides a large number of ranked candidate
substitutions making it well-suited to evaluate
state-of-the-art large pre-trained language models.
ALEXSIS-PT is currently the largest ranked multi-
candidate pt-BR LS dataset that is accessible to the
research community, consisting of 9,605 candidate
substitutions.

We tested multiple models on the dataset and
we report that BERTimbau achieved the best
performance at SG on this new dataset. We
hypothesize that this is because BERTimbau is
trained only on pt-BR data while the other models
were trained using multilingual data containing
multiple varieties of Portuguese. Models also
achieved greater performances on our new dataset
in comparison to SIMPLEX-PB 3.0. We believed
this to be a consequence of SIMPLEX-PB 3.0’s
domain specificity and its small number of ranked
candidate substitutions. Lastly, we evaluated the
impact of morphology in SG. Our results suggest
that future SG systems developed for pt-BR should
lemmatize their output prior to substitute selection
and ranking.

We are in the process of implementing a full LS
pipeline on the ALEXSIS-PT dataset, including
substitute selection and ranking. We also plan to
explore transfer learning and develop multilingual
LS systems upon the release of ALEXSIS-ES.
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Abstract

Using style-transfer models to reduce offensive-
ness of social media comments can help foster
a more inclusive environment. However, there
are no sizable datasets that contain offensive
texts and their inoffensive counterparts, and
fine-tuning pretrained models with limited la-
beled data can lead to the loss of original mean-
ing in the style-transferred text. To address
this issue, we provide two major contributions.
First, we release the first publicly-available, par-
allel corpus of offensive Reddit comments and
their style-transferred counterparts annotated
by expert sociolinguists. Then, we introduce
the first discourse-aware style-transfer mod-
els that can effectively reduce offensiveness in
Reddit text while preserving the meaning of
the original text. These models are the first
to examine inferential links between the com-
ment and the text it is replying to when trans-
ferring the style of offensive Reddit text. We
propose two different methods of integrating
discourse relations with pretrained transformer
models and evaluate them on our dataset of
offensive comments from Reddit and their in-
offensive counterparts. Improvements over the
baseline with respect to both automatic met-
rics and human evaluation indicate that our
discourse-aware models are better at preserv-
ing meaning in style-transferred text when com-
pared to the state-of-the-art discourse-agnostic
models.

1 Introduction

Disclaimer: Due to the nature of this work, figures
and examples may contain offensive phrases.

The spread of offensive and hateful content on
social media can be detrimental to users’ psycho-
logical well-being (Waldron, 2012; Gülaçtı, 2010).
Anonymity on platforms such as Reddit can fur-
ther embolden users to post such hateful content
(Ascher, 2019). Further, the sheer volume of con-
tent on popular social media platforms can render
the human moderation process ineffective (Hassan

Figure 1: Example of instances where pretrained
language models either fail to remove offensiveness
(BART/T5) or drastically alter the intended meaning
(DialoGPT) when fine-tuned on our style transfer task

et al., 2022) or psychologically damaging for mod-
erators (Dosono and Semaan, 2019) and calls for
AI systems that can mitigate this problem.

AI moderation of social media by simply remov-
ing content classified as offensive (Zampieri et al.,
2020; Hassan et al., 2021) may reduce diversity in
online conversations and deter users from using the
platform (Jhaver et al., 2019). Our exploration re-
veals that many comments removed by moderators
on Reddit contain contributions to the discourse
beyond their offensive content. Rather than sim-
ply removing these comments from social media
platforms, they can be turned into inoffensive state-
ments by using alternative words, removing profan-
ity, or paraphrasing certain parts, while preserving
the overall semantic content.

We approach the problem of eliminating offen-
siveness from text while preserving original se-
mantic content as a supervised style-transfer task,
where offensive text is transferred to inoffensive
text. As a first step towards this goal, we create
the first publicly-available, expert-annotated style
transfer corpus for Reddit data, which contains
offensive comments that include certain lexical
items and more subtle instances that are implicit
and grounded in context. This differentiates our
work from unsupervised approaches are mostly
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good at handling instances with explicit lexical
cues (Nogueira dos Santos et al., 2018).

Although large pretrained transformer models
have been successfully deployed for generation
tasks, these models come with the risk of either
failing to generate desired output or obfuscating
the source passage’s meaning while still producing
coherent text (Bender et al., 2021). In our work, we
target the issue of content preservation using dis-
course frameworks, which have been successfully
employed for various generation tasks (Maskha-
rashvili et al., 2021; Xu et al., 2022; Bosselut et al.,
2018), but have not been employed in style transfer
models. We hypothesize that integrating discourse
coherence frameworks within transformer-based
style transfer models can contribute to better preser-
vation of semantic content, specifically for short
social media comments.

We study our hypothesis with a small pilot an-
notation of style-transferred text produced by pre-
trained transformer models. Figure 1 shows ex-
amples of the issues described above in our style
transfer task, where BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020) do not remove offensiveness
from the original comment, but DialoGPT (Zhang
et al., 2020b) significantly alters the original seman-
tic content. We observe that coherence relations
between a comment and its reply are not preserved
under style transfer in cases where offensiveness
is removed. For instance, the removed comment
refers to "emotionally manipulative behavior" in
the parent comment with "This is evil", exhibit-
ing the behavior of "Same-Unit" discourse relation,
which is not preserved in the style-transferred text
generated by DialoGPT.

To test our hypothesis, we provide the following
contributions:

• Collect a dataset1 of ~2K offensive comments
from Reddit that are annotated by expert soci-
olinguists with inoffensive counterparts. Our
data also contains parent comments/posts and
are tagged with discourse relations, making it the
first publicly available dataset of its kind.

• Propose two approaches for integrating discourse
relation frameworks with pretrained transformer
models: i) using Penn Discourse Treebank (Milt-
sakaki et al., 2004; Prasad et al., 2008; Webber
et al., 2019) relations within a single comment,

1https://github.com/sabithsn/
APPDIA-Discourse-Style-Transfer

and ii) parsing a comment and the text it is re-
sponding to using the Rhetorical Structure The-
ory Discourse Treebank (Mann and Thompson,
1988).

The results for both discourse-aware approaches
indicate improvement in content preservation over
the pretrained baselines, providing support for our
hypothesis and for the use of discourse frameworks
to preserve meaning in style-transfer tasks.

2 Related Work

Paraphrase generation is a well-studied problem
that has yielded large datasets such as the PDTB
paraphrase database (Ganitkevitch et al., 2013),
WikiAnswer (Fader et al., 2013), ParaNMT (Wiet-
ing and Gimpel, 2018), and the MSCOCO dataset
(Lin et al., 2014a). Recent works in the related
but relatively new field of style transfer primar-
ily target sentiment transfer (Li et al., 2018b; Yu
et al., 2021), formality transfer (Chawla and Yang,
2020) or expertise transfer (Cao et al., 2020). Very
few works have targeted transferring style from
offensive to inoffensive text, with Nogueira dos
Santos et al. (2018) and Cheng et al. (2020) be-
ing notable exceptions. Our dataset differs from
the aforementioned works in multiple ways. Ours
is the first publicly available dataset that contains
offensive Reddit comments that are rewritten by
experts, paired with parent comment/post, and au-
tomatically tagged with discourse relations. Fur-
ther, both Nogueira dos Santos et al. (2018) and
Cheng et al. (2020) derive their datasets from po-
litical subreddits (Serban et al., 2017), while our
data encompasses subreddits on personal views,
question-answer discussions, and gender rights in
addition to political subreddits.

Development of pretrained language models
(PLM) such as BART (Lewis et al., 2020) has
changed the landscape of natural language genera-
tion research and we are witnessing a shift toward
controllable text generation (Zhang et al., 2022;
Zeldes et al., 2020; Ribeiro et al., 2021; Ziegler
et al., 2019). Discourse relations have been pro-
posed as a possible controlled generation method,
shown to aid extractive and abstractive summa-
rization (Cohan et al., 2018; Xu et al., 2020), text
generation from meaning representations (Maskha-
rashvili et al., 2021), and question answering with
logical reasoning or complex answers (Huang et al.,
2021; Xu et al., 2022). Discourse-aware models
have also been shown to generate more coherent

6064



Figure 2: Our data collection pipeline for obtaining removed comments from Reddit that are offensive.

texts (Bosselut et al., 2018) within a reinforcement
learning setting. Our work integrates both RST-DT
and PDTB frameworks with pretrained transformer
models and provides a comparison of the relative ef-
ficacy of the two frameworks for a generation task.
Within the context of style transfer, recent works
have focused on classification and reconstruction
loss (Nogueira dos Santos et al., 2018; Chawla and
Yang, 2020) in semi-supervised/unsupervised set-
ting, use of copy mechanism (Jhamtani et al., 2017),
and coherence classifier (Cheng et al., 2020) to
guide the style transferred text. To our knowledge,
our work is the first to utilize discourse coherence
frameworks for style transfer.

3 Data Collection and Annotation

In order to reduce offensiveness in text, we create
an expert-annotated dataset of offensive comments
and their style-transferred counterparts. In this sec-
tion, we first describe our pipeline for collecting
and curating a set of offensive comments from Red-
dit. Then, we describe our annotation process for
reducing offensiveness in these comments.

3.1 Data Collection Pipeline
First, we stream 14 subreddits spanning topics
of politics, personal views, question-answer dis-
cussions, and gender rights for new comments
using PRAW2. The streamed comments are then
tagged for offensiveness using a BERT model (De-
vlin et al., 2019) fine-tuned on the OLID dataset
(Zampieri et al., 2019a), which consists of 14K
tweets annotated for offensiveness and was used for
the SemEval 2019 (Zampieri et al., 2019b) shared
task. If a comment is tagged as inoffensive by the
classifier, we remove it from our data. As our ini-
tial exploration revealed that a large portion of the
removed comments on Reddit (> 60%) may not
be offensive and may have been removed due to
violation of subreddit-specific rules, the exclusion

2https://praw.readthedocs.io/en/stable/

of inoffensive comments from the data is essential
for a feasible annotation process. Our manual anno-
tation, as described in the next section, eliminates
any false positive bias that the classifier may have.
More details about the classifier can be found in
the Appendix.

After running the classifier, the body and meta-
data of comments that are tagged as offensive, are
stored locally. We then periodically check the ac-
cessibility status of these comments on Reddit. If it
has been removed by moderators, we query Reddit
for the parent comment or post that it is in response
to. If the comment is a reply to another comment,
then the comment it is replying to is considered the
parent, and if the comment is a top-level comment,
i.e, a direct reply to a post, then the post is con-
sidered the parent. If the parent has been deleted
or removed, the comment is discarded. Otherwise,
we add the comment, along with the parent, to our
dataset. Our data collection pipeline is summarized
in Figure 2. After filtering out very long comments,
we end up with a pool of 5.8K comments for anno-
tation.

3.2 Data Annotation

The 5.8K comments obtained from our data col-
lection pipeline are annotated by three expert so-
ciolinguists. The annotators are paid 30 USD per
hour and the Institutional Review Board (IRB) pro-
tocol, as defined by our institution, the University
of Pittsburgh, was followed for recruitment and
annotation.

The primary goal of our annotation is to remove
offensiveness from a comment while retaining the
intent of the comment. Similar to the SemEval
2019 shared task (Zampieri et al., 2019b), we de-
fine offensiveness as consisting of insults, profane
words, hate speech, or threats of violence for our
purposes. We observe that some comments can be
made inoffensive by the removal or substitution of
offensive words. We call such changes localized
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Original Comment Rewritten Comment Global/ Local Reason for paraphrasing

You can’t do s*** because you’re an
idiot.

You can’t do anything because
you’re not competent.

Local Cursing, Insults

So you s**k as person. Got it So you’re not a great person.
Got it

Local Cursing, Insults

What backward b*****k nowhere coun-
try do you live in?

What country do you live in? Local Xenophobia, Cursing

Keep my phone gallery secrets out your
f***** MOUTH

Don’t talk about my phone
gallery secrets

Global Cursing, Rudeness

F*** off. Sick of people like you think-
ing everything is propaganda

Please go away. Tired of people
like you thinking everything has
a hidden plan

Global Cursing, Rudeness

To hell with peaceful protest. Protesters
should drag DeathSantis out of his home
and have a public trial

Peaceful protest won’t work.
Protesters should go for a public
trial

Global Threats of Violence

Table 1: Examples of applying local and global changes to the comments for different types of offensive speech, as
per our annotation protocol.

changes. For other comments, however, the text
needs to be altered/paraphrased substantially to re-
duce offensiveness. We refer to this type of change
as global change. With these principles in mind,
the annotators are provided with an annotation pro-
tocol, whose key points are listed below:

• Each comment has to be manually inspected. If
a comment is already inoffensive, or cannot be
translated into inoffensive text without altering
the original intent, it is discarded.

• If applying localized changes is not possible or
doesn’t rid the comment of offensiveness, then
global changes are made.

Examples of our manual annotation can be found
in Table 1. The first three rows of Table 1 show
examples of localized changes and the last three
rows show examples of globalized changes in our
data. Further details about the distribution of data
and subreddits can be found in Appendix A.

To assess the meaning preservation of annota-
tion, we compute the BLEU score (Papineni et al.,
2002) between the annotated text and the original
text. We use the BLEU score to measure similarity
due to the open-endedness of the task (the inter-
rater agreement, for instance, cannot be calculated
here). Since BLEU compares the overlap between
reference and candidate sentences, it can serve as a
metric for measuring content preservation. Our an-
notations achieve a BLEU score of 60.06 with the
original text as reference. Since a BLEU score of
60 generally indicates a high overlap with the refer-
ence sentences, we can deduce that our annotation
process successfully preserved the original mean-
ing. Further, the offensiveness classifier is used

to tag the annotated text, showing that annotators
eliminated offensiveness from 68% of the com-
ments. In reality, however, this number is likely to
be higher, as the classifier may tag inoffensive com-
ments about sensitive subjects as offensive. For
example, "a rape victim should not be the one to
blame" is tagged as offensive. This highlights the
limitations of existing offensiveness classifiers.

4 Discourse-Aware Models

We propose two approaches for integrating the
PDTB and RST-DT discourse frameworks into pre-
trained transformer models, as described below.

Figure 3: PDTB-augmented style transfer model. Spe-
cial tokens represent the beginning and end of each
argument, as well as the relation between each argu-
ment pair, are passed to the encoder.

PDTB Within-Comment Relations To extract
PDTB relations at the comment level, we parse the
comment text in isolation, first using the Lin et al.
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Figure 4: RST-augmented style transfer model. A spe-
cial token representing the relation at the root of the RST
tree is prepended to the tokenized text of the removed
comment, which is then passed to the encoder.

(2014b) end-to-end discourse parser to extract ex-
plicit discourse relations (signaled by a discourse
connective), then running the Kim et al. (2020)
XLNet-large model to extract implicit discourse
relations (not signaled by a discourse connective)
from adjacent sentence pairs. Because there is
no PDTB-tagged Reddit corpus available, we run
these models trained on the PDTB-2 corpus. For
the L2 classification task (the more difficult of the
tasks we run), Lin et al. (2014b) report an F-1 score
of 80.61, and Kim et al. (2020) report an accuracy
of 57.74 (they do not report F-1 for the L2 clas-
sification task) on the PDTB-2. We then use the
positions of the argument pairs, and their discourse
relations, in our input.

RST-DT Context-Based Relations To obtain a
representation of the RST-DT relation between a
comment and its parent, we concatenate the con-
tents of the comment and the parent, separating
them out as paragraphs. We then run the Li et al.
(2018a) EDU segmenter on this text, and run the
model in Wang et al. (2017) on the resulting EDUs.
We train and test this parser on the RST-DT and
GUM corpus Zeldes (2017) combined, and report
the F-1 scores on the test set in Appendix C. We
use the relation at the root of the RST tree as input
to our style-transfer model.

Integration with transformer model To inte-
grate the RST-DT and PDTB relations within pre-
trained transformer models, we first generate spe-
cial tokens representing each relation for RST-DT
and for the start and end of each relation for PDTB.
We update the tokenizer with these additional to-

kens, insert the tokens in the input text, and pass
the modified text to the encoder of the model, as
shown in Figures 3 (PDTB) and 4 (RST-DT). We
resize the model embedding to accommodate for
this additional vocabulary.

5 Experiments

In this section, we first describe the experiments
with pretrained transformer models, followed by
the experiments with discourse-aware models.

5.1 Pretrained Transformer Models
We experiment with three different pretrained trans-
former models, namely: i) BART-base (Lewis et al.,
2020), ii) T5-base (Raffel et al., 2020), and iii)
DialoGPT-medium (Zhang et al., 2020b). While
BART and T5 are pretrained on formal data such
as Wikipedia or web data such as C43, DialoGPT
is pretrained on Reddit data for the response gener-
ation task.

5.2 Discourse-aware Transformer Models
Due to its higher potential in removing offensive-
ness, we integrate our discourse-aware approaches
with DialoGPT. To integrate PDTB relations, we
experiment with the following variations: i) Level 1
and Level 2 explicit PDTB relations, ii) Level 1 and
Level 2 implicit PDTB relations, and iii) combining
level 2 explicit and implicit relations. To incorpo-
rate RST-DT, we use our proposed approach with
the top-level RST-DT classes. We limit our scope
to only top-level RST-DT classes because we are
unlikely to encounter lower-level classes frequently
in our dataset.

We also experiment with combining both of
our approaches. Under this setting, a comment
is prepended with root-level RST-DT relation be-
tween itself and its parent, and PDTB relations
(both implicit and explicit) are inserted in the body
of the text. Since PDTB implicit and RST parsers
have low accuracy scores, we propose setting a
threshold α for the inclusion of a discourse relation.
If the confidence score for a given relation falls
below α, the relation is discarded. This is done
to account for higher likelihood of misclassifica-
tion on instances the discourse classifiers have low
confidence on. We experiment on three different α
values as follows:

1. We set α = 0, and thus all predicted RST-DT
and PDTB relations are taken

3https://www.tensorflow.org/datasets/catalog/c4
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2. We compute the mean (µ) and standard devia-
tion (σ) of the classifier score for the predicted
class and set α = µ− σ

3. We compute the interquartile range of the clas-
sifier scores and set α = Q1, where Q1 is the
value of first quartile.

6 Results

Below, we describe the results of our experiments.
We split our dataset into an 80-10-10 split for
training, development, and test sets respectively.
We first calculate automatic metrics, reporting
the BLEU (Papineni et al., 2002) and rescaled
BERTScore (Zhang et al., 2020a) on our test set. In
addition, we compute the SafeScore —percentage
of style transferred comments predicted as inof-
fensive by the BERT classifier that was initially
used to identify potential candidates. Further, we
ask a human annotator to compare style-transferred
text generated by baseline model and our proposed
discourse-aware model.

6.1 Automatic Evaluation
Using our automated metrics, we compare seman-
tic similiarity between: i) the manual annotation
and style transferred text, and ii) the original com-
ment and style-transferred text.

6.1.1 Pretrained Models
While BART and T5 are seen to achieve very high
BLEU and BERT scores in Table 2, these num-
bers hide critical failures of the models: staying
too close to the original comment and not reducing
offensiveness. The goal of an ideal style trans-
fer model would be to have a good SafeScore,
while also achieving a good BLEU and BERTScore.
A good point of reference for this ideal scenario
would be the BLEU, BERTScore, and SafeScore
achieved by human annotators. DialoGPT, in con-
trast to BART and T5, has a lower BLEU and
BERTScore, but is notably better at reducing of-
fensiveness and achieves SafeScore comparable to
that of human annotators. This could be attributed
to the fact that unlike BART and T5, which are
pretrained on out-of-domain web or formal data,
DialoGPT is specifically pretrained on Reddit data,
making it suitable for our task. For the rest of the
paper, we refer to DialoGPT as the baseline model.

6.1.2 Discourse-Aware Models
Table 3 shows improvement in automated metrics
achieved by our discourse aware models in com-

Compared Against Annotated Text
Model BLEU BERTScore SafeScore
BART 65.1 68.1 44.7
T5 65.3 69.2 51.3
DialoGPT 42.5 47.2 66.3

Compared Against Original Text
Model BLEU BERTScore SafeScore
BART 76.2 78.4 44.7
T5 74.8 78.0 51.3
DialoGPT 45.3 49.4 66.3

Table 2: Results of finetuning pretrained models on
our dataset. While BART and T5 outputs have a high
similarity to the original and annotated text, they do not
drastically reduce offensiveness, while the reverse is
true for DialoGPT.

parison to the baseline DialoGPT, providing strong
evidence in favor of our hypothesis. In addition to
this overarching takeaway, we make the following
observations from our experiments:

The choice of framework impacts performance
Although discourse models yield improvements on
the baseline for each automatic metric, the extent
of improvement over the baseline varies depending
on the discourse framework used. Most notably,
the RST-DT relation between the comment and its
parent has the highest individual impact on BLEU
and BERTScore, suggesting that the context of a
comment is important for models to retain semantic
meaning in generated text. While we do not see
any major difference between Level 1 and Level
2 PDTB relations, implicit PDTB relations have a
higher impact on the BLEU and BERTScore than
explicit PDTB relations. Although implicit relation
parsers have a lower accuracy, the improvement can
be attributed to the fact that implicit relations oc-
cur more frequently in our dataset (41% instances)
compared to explicit relations that occur in 25%
of the instances. Further, explicit relations are lex-
ically signalled by discourse connectives already
present in the text, while implicit relations do not
have connectives present in the text. Combining
implicit and explicit relations does not change the
performance notably.

Combining discourse frameworks yields
the highest improvement Combining our
approaches for PDTB and RST-DT relations has
the greatest impact on the BLEU score, with an
absolute improvement of 4.3 over the baseline. The
BLEU score, in this case, is a measure of overlap
with the original content, while the SafeScore
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Discourse Framework Discourse Relations BLEU BERTScore SafeScore

Compared Against Annotated Text

None (Baseline) - 42.5 (0.0) 47.2 (0.0) 66.3 (0.0)
Lvl 1 - Explicit 42.6 (0.0) 46.5 (-0.7) 63.3 (-3.0)
Lvl 1 - Implicit 44.3 (1.8) 48.9 (1.7) 65.8 (-0.5)

PDTB (α = 0) Lvl 2 - Explicit 42.5 (0.0) 47.1 (-0.1) 64.3 (-2.0)
Lvl 2 - Implicit 43.9 (1.3) 48.9 (1.7) 65.0 (-1.3)
Lvl 2 - Explicit + Implicit 44.4 (1.8) 48.7 (1.5) 65.3 (-1.0)

RST (α = 0) Top-level 45.2 (2.6) 50.6 (3.4) 65.7 (-0.7)
RST + PDTB (α = 0) Lvl 2 - Explicit + Implicit (PDTB), Top-level (RST) 46.7 (4.2) 50.3 (3.1) 67.7 (1.3)
RST + PDTB (α = µ− σ) Lvl 2 - Explicit + Implicit (PDTB), Top-level (RST) 46.5 (4.0) 50.6 (3.4) 66.0 (-0.3)
RST + PDTB (α = Q1) Lvl 2 - Explicit + Implicit (PDTB), Top-level (RST) 45.6 (3.1) 50.2 (3.0) 64.3 (-2.0)

Compared Against Original Text

None (Baseline) - 45.3 (0.0) 49.4 (0.0) 66.3 (0.0)
Lvl 1 - Explicit 46.1 (0.8) 49.0 (-0.4) 63.3 (-3.0)
Lvl 1 - Implicit 46.7 (1.4) 50.3 (0.9) 65.8 (-0.5)

PDTB (α = 0) Lvl 2 - Explicit 46.2 (0.0) 49.6 (0.2) 63.5 (-2.8)
Lvl 2 - Implicit 46.9 (1.6) 51.0 (1.6) 65.0 (-1.3)
Lvl 2 - Explicit + Implicit 47.2 (1.9) 50.8 (1.4) 65.3 (-1.0)

RST (α = 0) Top-level 47.9 (2.5) 52.8 (3.4) 65.7 (-0.7)
RST + PDTB (α = 0) Lvl 2 - Explicit + Implicit (PDTB), Top-level (RST) 49.6 (4.3) 52.6 (3.2) 67.7 (1.3)
RST + PDTB (α = µ− σ) Lvl 2 - Explicit + Implicit (PDTB), Top-level (RST) 49.4 (4.1) 51.5 (2.0) 66.0 (-0.3)
RST + PDTB (α = Q1) Lvl 2 - Explicit + Implicit (PDTB), Top-level (RST) 47.8 (2.5) 51.5 (2.0) 64.3 (-2.0)

Table 3: Results from running our discourse-aware style transfer models, where the average numbers across
three runs are reported and the best numbers for each metric are bolded. Improvement over baseline is shown in
parenthesis. As the above tables demonstrate, incorporating discourse relations improves model results by a wide
margin, with RST root-level relations yielding the best BERTScore results and the combined RST + PDTB model
yielding the best offensiveness score and BLEU score results.

measures the efficacy of offensiveness removal.
The better BLEU score with the highest SafeScore
of 67.7 indicates that incorporating both discourse
frameworks enables the model to preserve original
content better while effectively removing offen-
siveness compared to other approaches. Although
the BERTScore is slightly lower than that achieved
by RST-augmented model, the improvement of 3.2
over baseline supports the use of both frameworks.

Low-confidence relations are important Our
last observation is that dropping low-confidence
relations (α = µ − σ) can negatively impact
SafeScore, while BLEU and BERTscore remains
relatively unchanged. We notice that, if value of
α is increased (α = Q1), then the BLEU and
BERTScore begin to degrade. This suggests, while
classifier accuracy is a concern for implicit PDTB
and RST-DT relations, the classifiers still capture
valuable information that can aid the preservation
of semantic content and reduction of offensiveness.

6.2 Human Evaluation

Although automated metrics such as BLEU and
BertScore can be good indicators of preservation of
original content, they have certain limitations. For
example, they do not take into account cases where
deviating from the original comment is the cor-
rect approach for offensiveness reduction. We also
observe that, in certain cases, the models may gen-
erate text that has a high overlap in words but their
coherence may be affected by out-of-place words.
Thus, human evaluation is required for a complete
understanding of limitations and strengths of our
proposed model.

To this end, we presented one of our expert an-
notators with 100 randomly selected examples and
style transferred text generated by both the baseline
and our best discourse-aware model. The order of
the text generated by the two models was randomly
shuffled so that the human evaluation was free from
any potential bias. Table 4 shows examples of style-
transferred text generated by the different models.
The expert annotator was asked to judge each pair
from three angles: i) which of the generated texts
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Original Comment Really bad stance. What an unbelievable moron you are.
Manual Rewrite This is a really bad stance.
Baseline That is a bad stance, you are
Discourse-aware That’s a bad stance, and you are being unbelievable.

Original Comment Just like Republicans creating themselves narratives to fuel their persecution complex to
justify their hatred for everyone that isn’t on the Jesus c***

Manual Rewrite Just like Republicans creating themselves narratives as fuel to justify their hatred for everyone
that isn’t on their side.

Baseline Just like Democrats creating themselves a narrative to justify themselves’s hatred for
people that aren’t on their side.

Discourse-aware Republicans create their own narratives to justify themselves.

Original Comment Youre soft as baby s***
Manual Rewrite Youre really soft
Baseline Youre being so rude
Discourse-aware Youre quite soft

Original Comment Yeah that dude is a punk a**
Manual Rewrite Yeah that dude is awful
Baseline Yeah that guy is not cool.
Discourse-aware Yeah that dude has issues

Original Comment This is so cringe. What a f*****g loser.
Manual Rewrite This is so cringe.
Baseline This is not cool at all.
Discourse-aware This is so sad. Such a loser.

Table 4: Examples of style-transferred text generated by the different models. The discourse-aware model refers to
our best-performing discourse-aware model, the RST-PDTB model (α = 0). The top three examples are ones in
which our model performed better than the baseline, while in the fourth example both performed well and in the
bottom example the baseline performed better than the discourse-aware model.

preserves the original semantic content most, ii)
which of the generated texts is more coherent, and
iii) which of the generated text is preferred overall.

We report the results of the human evaluation in
two different dimensions. First, we analyze all 100
samples to get an overall picture of improvement.
Next, we exclude comments that do not contain any
discourse relation. This allows us to understand
how much effect discourse relations may have on
the overall results. From the evaluation results
reported in Table 5, we make the following key
observations described below.

Discourse improves both coherence and content
preservation While we see a large preference
for our discourse-aware model overall (40% as
opposed to 29%), the difference is more prominent
in terms of content preservation (48% vs 36%)
compared to coherence (37% vs 32%). This further
supports our hypothesis that, while the baseline
model can generate coherent texts, a discourse-
aware model is necessary for content preservation.

Improvements are larger for comments contain-
ing discourse relations For the subset of data

Full human evaluation set
Preferred Model Content- Coherence Overall

Preservation
Baseline 36% 32% 29 %
Discourse-aware 48% 37% 40%
No preference 16% 31% 31%

Subset with discourse relations
Preferred Model Content- Coherence Overall

Preservation
Baseline 30% 34% 26 %
Discourse-aware 56% 46% 46%
No preference 14% 20% 28%

Table 5: Results of human evaluation

where discourse relations are present, we see an
even larger improvement of our discourse model
compared to the baseline. Our model is preferred
in 56% of cases for content preservation (com-
pared to 30% for the baseline), 46% for coherence
(compared to the baseline’s 34%) and 46% overall
(compared to 26% for the baseline). This implies
that the difference between our model and the base-
line becomes more important for comments that
have discourse structure within them.
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7 Conclusion and Future Work

In this paper, we have demonstrated that utilizing
discourse frameworks and parsing models can help
pretrained transformer models preserve original
content when transferring style from offensive to
inoffensive. We have shown that combining differ-
ent discourse frameworks can further improve con-
tent preservations. The improvements we observe
in this paper are significant; however, we hypothe-
size that utilizing discourse relations for these tasks
can be even more impactful if the performance of
existing discourse parsers is improved. Discourse
parsing is a very challenging task (Atwell et al.,
2021, 2022), and the largest and most widely-used
corpora are composed of news texts over a short
time span. Thus, there is a need for further research
(and additional annotated corpora) on discourse re-
lations within the context of social media. We hope
our publicly available code and data will motivate
other researchers to build on the groundwork laid
out in this paper.

Further research is also necessary in the context
of style-transferring for offensive text. After further
improving these language models and evaluating
their safety, future systems that are proven to be ro-
bust and effective can potentially help social media
moderators or be deployed in a human-in-the-loop
or assistive technology capacity. We expect these
models to have the potential to not only improve
the psychological well-being of users but also to
motivate healthy engagement on social media.

8 Ethical Considerations

We acknowledge that our models can not eliminate
offensiveness completely from a given text. Thus,
deploying our model to display style-transferred
text requires taking future safety measures. We
also acknowledge that our use of pretrained models
can induce biases in certain scenarios, as pretrained
models have been shown to be susceptible to bias
in the data used for pretraining (Li et al., 2021).
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A Data Annotation

Group Subreddits Counts
r/Conservative 457

r/PoliticalCompassMemes 69
r/politics 241

Politics r/PoliticalHumor 315
r/conspiracy 167
r/socialism 21

r/Anarcho_Capitalism 29
Subtotal 1299

r/unpopularopinion 181
Personal r/ChangeMyView 131

views r/AmITheAsshole 73
r/offmychest 81

Subtotal 466
r/AskReddit 66

Question- r/askscience 11
Answer r/AskHistorians 7

r/explainlikeimfive 95
Subtotal 179

Gender r/MensRights 23
Rights r/FemaleDatingStrategy 14

Subtotal 37

Total 1981

Table 6: Distribution of annotated data

Annotation Distribution Following the annota-
tion process, we obtain a labeled set of ~2K com-
ments with their corresponding rewrites. Table 6
shows the distribution of the annotated data. From
this distribution, we observe that frequency of of-
fensive comments are high in political subreddits
such as r/Conservative compared to popular sub-
reddits such as r/AskReddit. Subreddits such as
r/MensRights did not yield a substantial number of
rewrites. Analyzing our data revealed two reasons
for the low frequency: i) the traffic on these subs is
low compared to other subreddits, and ii) removed
comments from these subreddits frequently contain
extremely toxic content that cannot be rewritten
into non-offensive versions while preserving origi-
nal intent. These particular subreddits need to be
streamed for a longer period to obtain a substantial
number of offensive comments that can be rewrit-
ten as non-offensive.

B Pretrained Model Hyperparameters

Offensiveness classifier: We fine-tune bert-base-
cased (Devlin et al., 2019) for 3 epochs on the
OLID training set (Zampieri et al., 2019a). We use
learning rate of 8e-5, batch size of 8 and maximum

length of 100. The model achieved an F1 score of
80.2 on the OLID test set.

Style transfer models: For all style transfer mod-
els, we use the same set of hyperparameters: block
size of 512, batch size of 2, learning rate of 5e-5.
All models were fine-tuned for 10 epochs. During
generation, we again use set of parameters: maxi-
mum length of 200, top_p of 0.7 and temperature
of 0.8.

C Performance of RST parser

Relation F1

Attribution 0.8214
Background 0.2121

Cause 0.0769
Comparison 0.0870
Condition 0.5714
Contrast 0.3059

Elaboration 0.4753
Enablement 0.5263
Evaluation 0.0000

Explanation 0.1728
Joint 0.3769

Manner-Means 0.3636
Same-Unit 0.7417
Summary 0.3704
Temporal 0.1047

Textual-Organization 0.2105
Topic-Change 0.0250

Topic-Comment 0.0000
span 0.6656

Table 7: F-1 scores for RST parser trained on RST and
GUM data and tested on an evaluation set from each
(details in text)
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Abstract
Existing works on dialogue summarization of-
ten follow the common practice in document
summarization and view the dialogue, which
comprises utterances of different speakers, as a
single utterance stream ordered by time. How-
ever, this single-stream approach without spe-
cific attention to the speaker-centered points
has limitations in fully understanding the di-
alogue. To better capture the dialogue infor-
mation, we propose a 2D view of dialogue
based on a time-speaker perspective, where the
time and speaker streams of dialogue can be ob-
tained as strengthened input. Based on this 2D
view, we present an effective two-stream model
called ATM to combine the two streams. Ex-
tensive experiments on various summarization
datasets demonstrate that ATM significantly
surpasses other models regarding diverse met-
rics and beats the state-of-the-art models on
the QMSum dataset in ROUGE scores. Be-
sides, ATM achieves great improvements in
summary faithfulness and human evaluation.
Moreover, results on machine reading compre-
hension datasets show the generalization ability
of the proposed methods and shed light on other
dialogue-based tasks. Our code will be publicly
available online.1

1 Introduction

Dialogue summarization is a task aiming to gener-
ate a succinct and coherent summary of the given
dialogue, which has been explored in many appli-
cations, such as automatic meeting summarization,
and drawn the attention of many researchers.

With the development of Transformer-based pre-
trained models (Vaswani et al., 2017; Lewis et al.,
2020; Zhang et al., 2020a), remarkable progress
has been made in text summarization, especially in
document summarization (El-Kassas et al., 2021).
However, dialogue summarization is still quite chal-
lenging partly due to the structural characteristics

∗ Corresponding author
1https://github.com/shakeley/View2dSum

of dialogue text (Feng et al., 2021a). A major dif-
ference is that a document is often organized with
a unified narrative perspective, while a dialogue
includes many speakers that bring diversity and
switches of narrative perspectives (Kryscinski et al.,
2021). Moreover, the information from different
speakers is scattered (Liu et al., 2021), which poses
a challenge to the summarizer as the dialogue sum-
mary is often speaker-centered that focuses on the
speaker’s actions and opinions (Xu and Lapata,
2021; Zhong et al., 2021b).

Current works on dialogue summarization usu-
ally view the dialogue as a single utterance stream
ordered by time (Zhong et al., 2021a), like prior
studies on document summarization do (Lin and
Ng, 2019). This single-stream approach, however,
has limitations in fully using the information about
dialogue (Lei et al., 2021b). Firstly, the utterances
of different speakers are interlaced in the single
stream, which may weaken the semantic continuity
from each speaker’s perspective. Besides, to obtain
a concise summary instead of a laundry list, we
need to both notice the development in time order
and sum up information about each speaker (Zhao
et al., 2022). The single-stream approach may not
be enough since it mainly focuses on the former.
Furthermore, the summarizer needs to deal with the
frequent switches of multiple narrative perspectives
in the single stream. The generated summaries are
consequently often accompanied by unfaithfulness
problems, such as coreference error and missing
information (Maynez et al., 2020), which hinder
the practical applications of dialogue summarizers.

To tackle these challenges, we propose a 2D
view that restructures the dialogue text to make
the most of dialogue information. Inspired by how
humans summarize, we arrange the dialogue in a
time-speaker view as Figure 1 shows, where time
and speaker streams can be obtained by project-
ing the dialogue. Intuitively, the two streams are
two directions for humans to summarize a dialogue.
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Time streamTime streamTime stream Speaker streamSpeaker streamSpeaker stream

#Person1#: Welcome to Garden 

Restaurant. Would you like to order? 

#Person2#: Yes please. 

#Person1#: What would you like to drink? 

#Person3#: A bottle of water.  

#Person4#: A bottle of juice.  

#Person2#: Coke.

#Person1#: What would you like to eat? 

#Person3#: We'll have a fish pizza. 

#Person2#: And vegetable soup. 

#Person1#: Welcome to Garden 

Restaurant. Would you like to order? 

What would you like to drink? What 

would you like to eat? 

#Person2#: Yes please. Coke. And 

vegetable soup. 

#Person3#: A bottle of water.  We'll 

have a fish pizza. 

#Person4#: A bottle of juice.  
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Figure 1: Overview of our methods. ui indicates the i-th utterance in the dialogue. The two streams can be seen as
projections onto time and speaker dimensions, respectively, which complement each other. The speaker stream can
help align with the summary as the dialogue summary is often speaker-centered (shown in different colors).

The time stream is the same as the dialogue in the
1D view that helps understand the development of
the dialogue. The speaker stream comprises utter-
ances grouped by speaker, which is beneficial for
summing up information about different speakers
and improving the faithfulness as it reduces the
switches of narrators. Besides, the speaker stream
is resource-friendly, for it is automatically gener-
ated without any resource-consuming annotations
by humans or big models (Feng et al., 2021c).

The two streams focus on two complementary
aspects of dialogue. To combine these two streams,
we present a two-stream model called ATM based
on Transformer. The ATM encoder consists of a
trunk-branch network to catch the salient common-
ality and individuality of the two streams. Then we
leverage two cross-attention modules in each ATM
decoder layer to capture the information of both
time and speaker streams. The approach can be
easily applied to other Transformer-based models.

Extensive experimental results on three dialogue
summarization datasets show that ATM signifi-
cantly surpasses other baseline models by a large
margin regarding various automatic metrics and
achieves new state-of-the-art results on QMSum
dataset, to the best of our knowledge. ATM also
mitigates unfaithfulness problems and achieves
higher scores in our human evaluation.

Moreover, to test the generalization ability of the
proposed methods, we conduct experiments on two
Machine Reading Comprehension (MRC) datasets.
The results demonstrate that ATM also outperforms
the single time-stream model in MRC task.

Our main contributions are three-fold. 1) We
propose a novel 2D view for better representing
dialogue. 2) A two-stream model is presented for
dialogue called ATM to make the most of dialogue
information. 3) We conduct extensive experiments
to demonstrate the effectiveness and insights of the
proposed methods in two dialogue-based tasks.

2 Related Work

Abstractive Dialogue Summarization has at-
tracted much attention recently since abstractive
methods can produce more coherent and Read-
abie summaries than extractive methods. In early
stage, Banerjee et al. (2015) utilize the depen-
dency graph. Oya et al. (2014) and Singla et al.
(2017) explore template-based methods. With the
development of deep learning and publicly avail-
able datasets (Zhong et al., 2021b; Chen et al.,
2021, 2022), plenty of related works have been
conducted. To utilize the interactive characteris-
tic of dialogue, graph-based methods are used in
(Shang et al., 2018; Zhao et al., 2020; Feng et al.,
2021b). For capturing the acts in dialogue, Goo
and Chen (2018) propose a sentence-gated mech-
anism and Di et al. (2020) use dialogue acts as an
interactive pattern. Chen and Yang (2021) incor-
porate discourse relations. Unsupervised strategies
are explored in (Zou et al., 2021; Fu et al., 2021;
Zhang et al., 2021). Feng et al. (2021c) and Yuan
and Yu (2019) leverage annotators to dig up more
information. A specialized pre-training framework
is proposed in (Zhong et al., 2021a). As dialogue
is composed of multiple turns, HMNet (Zhu et al.,
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2020), Manakul et al. (2020) and Qi et al. (2021)
use a hierarchical network to model multi-level rep-
resentations of dialogue. Chen and Yang (2020)
propose a multi-view approach. A major limitation
of these works is that they view the dialogue from a
1D perspective, while we arrange the dialogue in a
time-speaker view. They also lack enough attention
to the semantic continuity that we focus on.
Speaker-aware Methods for Improving Faith-
fulness focus on the speakers in the dialogue.
The multiple speakers contain helpful information
while posing a challenge for the model to generate
faithful summaries (Maynez et al., 2020). To re-
lieve the confusion of personal pronouns, Lei et al.
(2021a) propose a from-coarse-to-fine procedure.
FinDS (Lei et al., 2021b) utilizes finer-grain seman-
tic structures to clarify the speaker relationships.
Lee et al. (2021) propose a self-supervised strat-
egy to do post-correction for speakers. Zhao et al.
(2022) leverage a speaker-aware structure to model
the interaction process in dialogue.
Two-stream Architectures have been utilized
in several areas, including Computer Vision (Si-
monyan and Zisserman, 2014; Chen et al., 2018;
Sevilla-Lara et al., 2018; Kwon, 2021), Natural
Language Processing including XLNet (Yang et al.,
2019) and ERNIE-Gram (Xiao et al., 2021), and
Multimodal applications including LXMERT (Tan
and Bansal, 2019), ViLBERT (Lu et al., 2019) and
ERNIE-ViL (Yu et al., 2021). Other works include
adding extra modules for specific purposes, such as
adaptive computing (Wang et al., 2022; Xie et al.,
2021). Our originality lies in applying the two-
stream idea to dialogue text based on the proposed
time-speaker view.

3 Methodology

In this section, we first introduce the time-speaker
view of dialogue and present the problem formu-
lation of the two-stream summarization based on
this view. Then details of ATM are presented.

3.1 Time-speaker View of Dialogue

Motivated by the significance of speakers in dia-
logue, we propose a novel time-speaker view as
shown in Figure 1 to better represent the dialogue.
Unlike the traditional 1D view with only the time
stream of dialogue, the 2D view highlights the
speaker of each utterance. From this viewpoint,
the time stream can be seen as the projection of di-
alogue onto the time dimension. Meanwhile, some

Algorithm 1 Speaker Stream xs

Input: xt =
{
ut1, ..., u

t
n

}

Output: xs

S, T ⇐ {S1, ..., Sm} , {T1, ..., Tm}
Initialize Tj ∈ T with Sj ∈ S
for uti =

{
sti, c

t
i

}
∈ xt do

for Sj ∈ S do
if sti = Sj then
Tj ⇐ concat(Tj , c

t
i)

end if
end for

end for
return xs ⇐ concat(T1, ..., Tm)

information from the speaker dimension is missing
due to projection. The common practice is to add
the corresponding speaker in the front of each utter-
ance as a supplement. However, this approach still
leaves the problems of scattered information about
speakers, frequent switches of narrative perspec-
tives, and unfaithfulness in generated summaries.

To address these issues, we obtain the speaker
stream from the projection onto the speaker dimen-
sion. The purpose of summarization is to get the
main points that often focus on the actions and
opinions of speakers when it comes to dialogue.
The speaker stream gathers each speaker’s utter-
ances, thus providing a simple way for the model
to capture the information about speakers. Addi-
tionally, the speaker stream can help the model
align with the summary as the dialogue summary is
often speaker-centered. Our method of generating
the speaker stream serves as a baseline method in
the two-stream scheme, which is easy to follow
and generalize to other tasks. Researchers can also
use other methods to generate the speaker stream,
which can be explored in future work.

In general, the two streams complement each
other as the time stream helps understand the devel-
opment of dialogue and the speaker stream is use-
ful for catching speaker-centered information and
improving faithfulness of the generated text. There-
fore, we combine the time and speaker streams in
a two-stream model described in Section 3.3.

3.2 Problem Formulation

Given a dialogue source example d that comprises
n utterances, the time stream can be denoted as
xt =

{
ut1, ..., u

t
n

}
, where uti indicates the i-th ut-

terance of d in time order. Each uti consists of
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Figure 2: Main architecture of ATM with one branch
layer. Colors in two streams indicate different speakers.

speaker sti and content cti. The speaker stream xs

can be obtained with Algorithm 1, where S con-
tains m speakers in the order they appear in d and
concat(·) denotes string concatenation function.

Then xt and xs are sent to a two-stream model
to generate summaries. The training objective is to
maximize the conditional likelihood of the outputs
y, which can be represented as:

max
θ

|D|∑

k=1

log pθ(yk|xtk,xsk), (1)

where θ denotes the model parameters and D indi-
cates the training examples. Teacher-forcing strat-
egy(Williams and Zipser, 1989) is used in training.

3.3 ATM Architecture

Figure 2 illustrates the main architecture of the pro-
posed two-stream model ATM inspired by Ding
and Tao (2018). ATM’s backbone is based on
Transformer (Vaswani et al., 2017). To combine the
two streams, we introduce a Two-stream Encoder
and a Two-stream Decoder.

3.3.1 Two-stream Encoder
The two-stream encoder is a trunk-branch network
with a trunk depth Nt and a branch depth Nb. The
original depth of encoder Ne = Nt + Nb. The
encoder mainly includes self-attention layers, layer
normalization modules, and feed-forward layers.
The time stream xt and speaker stream xs are sent

to the encoder to get the contextual representations
of each stream.

Specifically, xt and xs go through the embed-
ding layers and the same Nt trunk layers for ob-
taining basic representations E

′t and E
′s. Then

we adopt Nb branch layers to further encode each
stream separately and get the encoder outputs Eto
and Eso. The encoding process can be denoted as:

et; es = Embedding(xt;xs)

E
′t;E

′s = Trunk(et; es)

Eto = TimeBranch(E
′t)

Eso = SpeakerBranch(E
′s).

(2)

Using this trunk-branch structure, we expect the
encoder to capture the salient commonality and
individuality of the two streams with trunk and
branch layers, respectively. Also, we can save addi-
tional parameters compared with using two individ-
ual encoders by this approach. We set Nb = 1 and
Ne = 12 while adopting the pre-trained parameters
of BART-large (Lewis et al., 2020) in both trunk
and branch layers.

3.3.2 Two-stream Decoder

The two-stream decoder inherits the structure of
Transformer decoder with Nd = 12. The critical
difference is that we adopt two cross-attention mod-
ules to capture information from both the time and
speaker streams.

As Figure 2 shows, the former cross-attention
module attends to the encoder output of speaker
stream Eso in each decoder layer. Next, the encoder
output of time stream Eto is utilized in the latter
cross-attention module. In this way, the decoder
will first have general impressions of each speaker
and focus on the details in time order. This arrange-
ment is inspired by reading novels. If we first get
general information like each character’s experi-
ence and then read the story’s development in time
order, our understanding will be more comprehen-
sive and faithful. We believe that this approach is
also helpful in understanding the dialogue. Note
that pre-trained parameters of BART are employed
in the cross-attention modules for Eto, while those
for Eso are randomly initialized. The impact of dif-
ferent ways to use pre-trained parameters will be
discussed in Section 5.3.
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Dataset Task Domain Size # Avg Tokens # Speakers
Train Valid Test Src Ref Avg / Max

QMSum Summ Meetings 1,257 272 279 8,263 70 9.2 / 105.0
SummScreen Summ TV series 18,915 1,795 1,793 6,613 337 25.5 / 92.0
DialogSum Summ Daily life 12,460 500 500 131 24 2.0 / 7.0

QAConv MRC Conversations 27,287 3,414 3,505 233 3 3.2 / 14.0
Molweni MRC Chat 8,771 883 100 104 4 3.5 / 9.0

Table 1: Datasets evaluated from various domains. Summ indicates summarization. Avg denotes average number.

4 Experiment

4.1 Datasets

We conduct extensive experiments on datasets from
various domains as Table 1 shows.
QMSum (Zhong et al., 2021b) is a query-based
summarization dataset from meetings including
AMI (Carletta et al., 2005) and ICSI (Janin et al.,
2003). We use the version with gold spans selected
by experts.
SummScreen (Chen et al., 2022) is a summariza-
tion dataset of TV series transcripts. We use its
TMS version for it provides the official recaps.
DialogSum (Chen et al., 2021) is a dialogue sum-
marization dataset from real-life scenarios.
QAConv (Wu et al., 2021) is an MRC dataset
that uses conversations as a knowledge source and
includes extractive and abstractive answer types.
Molweni (Li et al., 2020) is an MRC dataset that
derives from Ubuntu Chat Corpus (Lowe et al.,
2015) which consists of multi-party dialogues.

4.2 Baseline Models

Transformer (Vaswani et al., 2017) is a seq-to-
seq model relying on an attention mechanism.
Longformer (Beltagy et al., 2020) is a scalable
Transformer for processing long documents.
UNILM (Dong et al., 2019) is a unified pre-trained
language model. UNILM-CP is further trained on
MediaSum (Zhu et al., 2021) and OpenSubtitles
(Lison and Tiedemann, 2016) corpora.
HMNet (Zhu et al., 2020) is a hierarchical net-
work for abstractive dialogue summarization with
cross-domain pre-training.
BART (Lewis et al., 2020) is an effective pre-
trained model with a Transformer architecture for
various tasks including summarization.
SUMMN (Zhang et al., 2022) is a multi-stage net-
work using BART for long text summarization.

4.3 Evaluation Metrics

Various metrics are adopted for a rigorous evalua-
tion, including n-gram overlap, model-based, and
faithfulness-aware methods.
ROUGE (Lin, 2004) is a widely used automatic
metric for summarization, based on lexical over-
laps between a reference and the generated text.
BERTScore (Zhang et al., 2020b) is a metric for
text generation based on semantic similarity.
BARTScore (Yuan et al., 2021) is a new evalua-
tion metric, which can evaluate generated text as
text generation from different perspectives.
FactCC (Kryscinski et al., 2020) is a factual con-
sistency checking model for text summarization.
SUMMAC (Laban et al., 2022) is a novel NLI-
based (Natural Language Inference) model for
summary inconsistency detection. We use the
SUMMACConv version for our evaluation as it per-
forms well in the original paper.
MRC Evaluation Metrics For MRC datasets,
we report exact match (EM), F1 scores, and FZ-R
scores following the common practice. The EM
means that predicted answers must be the same as
the ground truth. The F1 score is calculated by to-
kens overlapping. We also present the FZ-R scores,
which use the Levenshtein distance to calculate the
differences between two sequences.

4.4 Implementation Details

Training & Generation We use the fairseq2

(Ott et al., 2019) implementation for BART-large.
The experiments are done on a single NVIDIA
RTX 3090 GPU with a 24GB memory. The total
number of parameters of ATM is 469M and that
of BART-large is 406M. The max number of input
tokens is set to 2048 by default. The dropout rate
is 0.1. An early stop patience of 3 is used in our

2https://github.com/pytorch/fairseq
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Model QMSum SummScreen DialogSum

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Transformer - - - - - - 35.91 8.74 33.50
Longformer 31.60 7.80 20.50 42.90 11.90 41.60 - - -
UNILM-base 29.14 6.25 25.46 43.42 9.62 41.19 - - -
UNILM-CP 29.19 6.73 25.52 44.07 9.96 41.73 - - -

HMNet 36.06 11.36 31.27 - - - - - -
SUMMN 40.20 15.32 35.62 44.64 11.87 42.53 - - -
BART 37.02 14.23 27.49 43.59 10.37 41.43 46.01 20.78 41.06

ATM (Ours) 40.43 16.27 36.08 44.69 12.82 43.11 46.49 21.12 41.56

Table 2: Main results on QMSum, SummScreen, and DialogSum summarization datasets. R is short for ROUGE.
The results of BART are from our tests and other results are from the corresponding papers of models or datasets.

experiments. We do grid searching for some hy-
perparameters, such as learning rate, warmup step,
and gradient accumulation step for BART, making
our best efforts for a fair comparison. The detailed
settings are included in Appendix A.
Evaluation We adopt files2rouge3 library
for ROUGE scores. For other metrics, we use the
officially released codes described in Appendix B.
MRC Setting BART can be seen as a free-form
model to generate predicted answers given the dia-
logues and questions. The question is added at the
front of each dialogue separated by a special token.

5 Results and Analysis

5.1 Main Results on Summarization

Effectiveness of ATM Table 2 shows the main
results of ROUGE scores. The proposed ATM
achieves the best performances among other base-
lines on various datasets. Compared with BART,
the original single-stream model, ATM improves
the scores by a large margin, which shows the ef-
fectiveness of the proposed methods.

Concretely, ATM achieves new state-of-the-art
results on QMSum, to the best of our knowledge.
The improvements are 3.41, 2.04, and 8.59 for
ROUGE-1, ROUGE-2, and ROUGE-L, respectively.
As for SummScreen, ATM boosts by 1.10, 2.45,
and 1.68 for ROUGE-1, ROUGE-2, and ROUGE-L
compared to BART. For DialogSum, ATM brings
improvements as well.

ATM also achieves broadly better results than
BART in two model-based metrics, BERTScore
and BARTScore, as Table 3 shows4. The above
results of various metrics show the effectiveness of

3https://github.com/pltrdy/files2rouge
4The comparison is mainly between ATM and BART since

ATM is initialized with BART.

Model QMSum SummScreen DialogSum
ES AS ES AS ES AS

BART 86.11 -3.68 84.01 -3.61 91.53 -2.08
ATM 87.48 -3.14 84.25 -3.48 91.84 -2.09

Table 3: ES (BERTScore) and AS (BARTScore) scores.

the proposed methods.
Advantages over the Strong Baseline SUMMN

(Zhang et al., 2022) uses multiple BARTs for multi-
stage summarization. Table 2 shows that ATM
achieves better results than this powerful base-
line. Besides, SUMMN contains at least 812M pa-
rameters compared to 469M of ATM and brings
huge computation costs. Another difference is that
BART further trained on CNN/DM (Hermann et al.,
2015) dataset is used in SUMMN , while we choose
the original checkpoint for a more transparent com-
parison of the methods themselves.
Dramatic Boost on Query-based Dataset
Among these experimental datasets, the results of
QMSum show the most considerable improvement.
We attribute this to the match between the two-
stream model and the characteristics of QMSum.
The examples in QMSum include many questions
on specific speakers, such as What does the
Manager say about the plan. This char-
acteristic echoes the speaker-centered feature of
the dialogue summary. It also sets a higher bar
for the summary quality that we can tell from the
relatively low ROUGE scores. Hence ATM may
benefit from the speaker stream that helps focus on
the utterances of certain speakers.

5.2 Faithfulness Evaluation

Besides ROUGE scores, the improvement of faith-
fulness is another critical topic to help summariza-
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Model QMSum SummScreen DialogSum
FC SC FC SC FC SC

BART 78.23 43.12 96.13 20.01 88.18 20.12
ATM 80.02 48.13 96.01 20.11 89.04 20.32

Table 4: Results of faithfulness evaluation. FC and SC
indicate FactCC and SUMMAC, respectively.

tion models be applied in practice. We conduct
faithfulness evaluation across classifier-based and
NLI-based methods as shown in Table 4. By and
large, ATM achieves better results on selected faith-
fulness metrics compared with BART. The results
demonstrate the effectiveness of ATM in improv-
ing the faithfulness of generated summaries as it
reduces narrator switches. The concrete case study
is presented in Appendix C for illustration.

5.3 Ablation Study

To investigate the effect of the proposed methods,
we make ablation experiments on QMSum from
the perspectives of model input and structure.

5.3.1 Input-wise Ablations
Effectiveness of Using Two Streams for ATM
For ATM, feeding a single stream to both time and
speaker branches leads to much lower scores than
using two streams, as Table 5 shows. This observa-
tion indicates that the two streams bring additional
improvements. We attribute this to their comple-
mentary feature as mentioned in Section 3.1.
What if Only Using Speaker Stream As Ta-
ble 5 shows, we feed the speaker stream alone to
ATM and BART. Although the results are not as
good as those of using single time stream input,
the model still achieves comparable performance.
This finding indicates that the model can indeed uti-
lize the semantic information of the speaker stream.
Meanwhile, the comparative advantage of the time
stream may partly come from the speaker added in
front of each utterance as a soft prompt for infor-
mation in the speaker dimension, while it is hard
for the single speaker stream to do so.
Can We Just Concat Two Streams Admittedly,
ATM incorporates extra modules to implement a
two-stream model. Hence we use BART to process
a concatenated input of the two streams as a sim-
pler model. As shown in Table 5, the performance
is even worse than that of using the single time
stream. We attribute this to the confusion caused by
the concatenated input, i.e., it is hard for the model

Methods R-1 R-2 R-L
Input-wise

ATM
- time stream 38.68 14.53 34.02
- speaker stream 37.86 13.93 33.95
- two streams 40.43 16.27 36.08

BART
- time stream 37.02 14.23 27.49
- speaker stream 36.53 13.78 26.99
- concat two streams 36.77 13.95 27.38

Structure-wise
# Branch layers in ATM

- with 0 branch layer 37.88 14.36 34.19
- with 1 branch layer 40.43 16.27 36.08
- with 2 branch layers 39.73 15.61 35.19

Use of pre-trained param
- not ptr. speaker branch 39.45 14.82 34.73
- ptr. speaker cross-attn 39.56 15.36 34.99

Order of cross-attn
- t.s. cross-attn 39.65 14.91 35.18

Table 5: Ablations on QMSum. time/speaker stream for
ATM denotes feeding the same stream to the time and
speaker branches. concat represents concatenate. ptr.
indicates using pre-trained parameters. t.s. means the
decoder attends to time stream first then speaker stream.

to understand the two-stream input organized in
different ways with the same structure. Besides,
ATM processing single stream still achieves higher
scores than BART. The above results demonstrate
the necessity and effectiveness of ATM.

5.3.2 Structure-wise Ablations

A Balanced Trunk-branch is Needed in Encoder
We test with different numbers of branch layers Nb

while the encoder depth Ne remains the same. As
shown in Table 5, the model sharing all the encoder
layers achieves the lowest scores. As Nb grows,
the ROUGE scores first increase and then decrease.
This observation indicates that the encoder needs
a balanced trunk-branch structure to combine the
commonality and individuality of the two streams,
thus achieving stronger performance.
Effect of Pre-trained Parameters We can tell
from Table 5 that both using pre-trained parameters
in cross-attention for speaker stream and randomly
initializing speaker branch achieve lower scores
than ATM. We attribute this to the different fea-
tures of the encoder and decoder. For the encoder,
the purpose of encoding for both two streams is
similar: to get contextual representations. Hence
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Figure 3: Impact of number of speakers. Delta indicates
the performance gap between BART and ATM.

the pre-trained parameters are compatible with both
branches. For the decoder, the pre-trained parame-
ters are obtained based on an autoregressive decod-
ing process following the time order. There may
be a mismatch between pre-trained parameters and
cross-attention modules for the speaker stream as
it is not in time order.
Order of Two Cross-attention Modules We
change the order of cross-attention modules from
speaker-time to time-speaker and get worse perfor-
mance. This gap may also result from the autore-
gressive feature of decoding. There is a chance that
the model fails to see the wood for the trees if we
first attend to the time stream.

5.4 Impact of Number of Speakers

We report experimental results on QMSum dataset
in Figure 3 to examine how the number of speakers
affects the model performance. Interestingly, ATM
generally achieves more significant improvements
with more speakers. The fluctuation may come
from the number and complexity of evaluation ex-
amples. This finding is in line with one mentioned
feature of dialogue, i.e., the multiple speakers pose
challenges for summarizers. With more speakers,
the speaker information is more scattered. Due to
the speaker stream that groups utterances by differ-
ent speakers, ATM has an advantage in gathering
speaker information and achieves a greater boost.

5.5 Ability of Abstraction

To compare the model ability of abstraction, we
calculate the percentage of novel n-grams (i.e., n-
grams that do not appear in the source text) in
the generated summaries. As Figure 4 shows, the
percentage of ATM is higher than BART, which in-
dicates that ATM is good at generating abstractive
summaries. We attribute this to the speaker stream
that provides a direction for abstraction precisely.
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Figure 4: Percentage of novel n-grams in the generated
summaries and REFerence summary on DialogSum.

Model Complt. Readabi. Faith.
BART 3.51 4.14 3.21
ATM 3.78 4.52 3.54

Table 6: Human evaluation results. Complt., Readabi.,
and Faith. denote completeness, readability and faith-
fulness, respectively.

5.6 Human Evaluation
We perform a human evaluation by three human
evaluators to assess the completeness, readability
and faithfulness of the generated summaries. The
evaluators are asked to rate the different summaries
on a Likert Scale from 1 to 5. Completeness mea-
sures how well the summary includes key informa-
tion. Readability measures how well the summary
is coherent and concise. Faithfulness measures
how well the summary includes reliable informa-
tion. We take a random 10% sample of the Dialog-
Sum test set. The two generated summaries are
randomly ordered for each dialogue for reducing
bias. The evaluators read both the dialogue script
and the corresponding summaries to score from 1
to 5 (higher is better). As Table 6 shows, ATM
achieves higher scores among three metrics than
BART, which indicate the advantage of ATM. Be-
sides, we compute the Fleiss’s Kappa scores (k)
(Fleiss, 1971) to assess the agreement among the
raters. The scores all lie in (0.6 ≤ k ≤ 0.8), which
show substantial agreement among the evaluators.

5.7 Beyond Dialogue Summarization
To show the potential of ATM as a universal ap-
proach to improving the performance on dialogue-
based tasks, we conduct experiments on two MRC
datasets in dialogue domain. As shown in Table
7, compared to BART, ATM significantly boosts
the EM to 71.57 by 2.12 on QAConv dataset. The
improvements in F1 and FZ-R are remarkable as
well. For Molweni dataset, ATM achieves about
1.6 higher scores than BART for all three metrics.
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Model QAConv Molweni

EM F1 FZ-R EM F1 FZ-R

BERT-base† 66.4 76.3 81.3 / 58.0 /
BERT-large† 72.9 81.7 85.6 / 65.5 /

T5-base† 71.2 80.9 84.7 / / /
T5-large† 73.5 83.0 86.6 / / /

BART 69.4 78.7 83.4 45.1 65.2 73.3
ATM 71.6 79.6 84.3 46.8 66.8 74.8

Table 7: MRC evaluation on QAConv and Molweni.
The metrics are described in Section 4.3. †The results on
QAConv of BERT (Devlin et al., 2019) and T5 (Raffel
et al., 2020) come from Wu et al. (2021). BERT and T5
are further trained on SQuAD (Rajpurkar et al., 2016)
and UnifiedQA (Khashabi et al., 2020), respectively.
The BERT results on Molweni are from Li et al. (2020).

The results demonstrate the generalization ability
of the proposed methods on MRC and shine a light
on other dialogue-based tasks. Meanwhile, the
score gap between BART and other models may
result from the different architectures and usages
of additional in-domain data as shown in Table 7.

6 Conclusion

To make the most of dialogue information, we pro-
pose a novel 2D view highlighting the speakers
based on time-speaker space, which provides a
new inspiring perspective on modelling dialogue.
Then a simple and effective two-stream summa-
rization model ATM is presented to utilize the in-
formation from both the time and speaker streams
obtained from this view. Empirical results demon-
strate that the proposed methods surpass other mod-
els on three summarization datasets regarding vari-
ous metrics, faithfulness and human evaluation. We
also show the significant improvements on MRC, a
representative of other dialogue-based tasks.

This work leaves several open directions that can
be explored, including 1) applying the proposed
methods to other models and tasks, 2) exploring the
2D view from other directions, and 3) establishing
a general framework for dialogue-based tasks.
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Dataset LR MT GStep WStep
QMSum 3e-05 2048 4 100

SummScreen 7e-05 1024 16 200
DialogSum 3e-05 1024 2 200

QAConv 3e-05 2048 4 200
Molweni 3e-05 2048 4 200

Table 8: Main hyperparameters used for training in our
experiments. LR denotes learning rate. MT indicates
max tokens. GStep represents gradient accumulation
step. WStep stands for warmup step.

Dataset BeamSize LenP MinLen MaxLen
QMSum 4 1.0 55 140

SummScreen 10 2.0 256 450
DialogSum 5 0.5 1 100

QAConv 3 0.1 1 20
Molweni 3 0.1 1 20

Table 9: Main settings used for generation in our exper-
iments. LenP denotes length penalty.

A Model Settings

We list the hyperparameters used for training BART
and ATM in our experiments in Table 8. The set-
tings of generation are shown in Table 9.

B Evaluation Metrics

For BERTScore (Zhang et al., 2020b)5, FactCC
(Kryscinski et al., 2020)6, and SUMMAC (Laban
et al., 2022)7, we all use the official implemen-
tations to evaluate our models. For BARTScore
(Yuan et al., 2021)8, we employ BART finetuned
on CNN/DM (Hermann et al., 2015) to evaluate
our models.

C Case Study

As shown in Table 10, we sample several cases
of the generated summaries to illustrate the advan-
tages of ATM. The comparison shows that ATM
generates more coherent summaries than BART
and mitigates unfaithfulness problems, such as
coreference error and missing information.

5https://github.com/Tiiiger/bert_score
6https://github.com/salesforce/factCC
7https://github.com/tingofurro/summac
8https://github.com/neulab/BARTScore
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Dialogue Person1: Sally,here is a letter for us. It’s from Tom. Person2: Can you read it, please? My
hands are wet with all this washing. Person1: Well, OK. Dear Sally and John. Thanks for
your letter. It was good to hear from you. Just a short note in reply. Please do call me when
you arrive so that I can pick you up at the station.

BART Person1 gives Sally and John a letter from Tom who will be in town in January.
ATM Tom writes a letter to Sally and John and tells them he will pick them up when they arrive in

town in January.
Dialogue Person1: Good afternoon, what can I do for you? Person2: Yes, please. I would like to know

something about the driving courses. Person1: Well, We have short full time courses during
the summer. Are you interested in them? Person2: No, I am free only at weekends. Person1:
Then there are weekend courses. The course starts at 8:00 ... Person2: Sounds fine. What
about the coaches? Person1: We have very excellent coaches here ... Person2: Good. How
many hours of training should I have each day? Person1: 3 hours in the morning and 2 in the
afternoon. (...)

BART Person2 wants to know something about the driving courses. Person1 introduces the short
full-time courses, weekend courses, and the coaches.

ATM Person2 wants to know something about the driving courses. Person1 introduces the short
full-time courses and the weekend courses and introduces the coaches and the training time.

Dialogue (...) Person2: This next one is from Betty. Person1: A highchair and car seat! Wow Betty,
thank you so much! I really appreciate it! Person2: One more from Carla. Person1:A
playpen and crib! Thanks Carla! This is just what I needed! (...) Person1: Umm. I think my
water just broke! Get me to a hospital!

BART Person1 thanks Person2 for organizing a great baby shower. Person1 Person 1 opens some
presents from Betty, Carla, Betty, and Carla and feels like having a baby.

ATM Person1 thanks Person2 for organizing the baby shower and opening some presents, including
a bib, a stroller, a highchair, and a car seat from Betty and Carla. Person1’s water breaks and
asks Person2 to take her to a hospital.

Table 10: ATM and BART outputs for DialogSum dataset. The outputs reflect three main problems based on the
corresponding dialogue: (1) coreference error; (2) missing information; (3) redundancy. ATM generates more
coherent summaries which avoid these problems effectively and achieves better performance than BART.

6088



Proceedings of the 29th International Conference on Computational Linguistics, pages 6089–6104
October 12–17, 2022.

Denoising Large-Scale Image Captioning from
Alt-text Data using Content Selection Models

Khyathi Raghavi Chandu♦ 1, Piyush Sharma♣ 2,
Soravit Changpinyo♠, Ashish Thapliyal♠, Radu Soricut♠

♦ Meta AI, ♣ Uber, ♠ Google Research
khyathi.research@gmail.com, {schangpi, asht, rsoricut}@google.com

Abstract

Training large-scale image captioning (IC)
models demands access to a rich and diverse
set of training examples that are expensive to
curate both in terms of time and man-power.
Instead, using alt-text based captions gathered
from the web is a far cheaper alternative for
scaling with the downside being that the data
is noisy. Recent modeling approaches to IC
often fall short in terms of performance in
leveraging these noisy datasets as compared
to datasets with clean annotations. We ad-
dress this problem with a simple yet effective
technique of breaking down the task into two
smaller, more controllable tasks – skeleton pre-
diction and skeleton-based caption generation.
Specifically, we show that sub-selecting con-
tent words as skeletons helps in generating im-
proved and denoised captions when leveraging
rich yet noisy alt-text–based uncurated datasets.
We also show that the predicted English skele-
tons can further cross-lingually be leveraged
to generate non-English captions, by present-
ing experimental results in French, Italian, Ger-
man, Spanish and Hindi. We also show that
skeleton-based prediction allows for better con-
trol of caption properties, such as length, con-
tent, and gender expression, providing a han-
dle to perform human-in-the-loop interpretable
semi-automatic corrections.

1 Introduction

In the last demi-decade, NLP fields have ven-
tured into reaping the benefits of utilizing large
scale raw (uncurated) data from web-crawls. This
trend aligned with new uncurated image-captioning
datasets like Conceptual Captions (Sharma et al.,
2018). While these uncurated datasets are supe-
rior in terms of size and diversity, they are inferior
to well curated datasets (Lin et al., 2014; Wang
et al., 2019b) in terms of noise in the captions. The

1 Work done during internship at Google Research
2 Work done while employed at Google Research

En: custom posters for a wedding .

Hi: यह लेख शीषर्षक के लए छव है 
(Translation: This is the image for the article 
title)

It: persona ha creato un nuovo libro  
(Translation: person created a new book)

En: collection of books on display

Hi: पुस्तक का चयन 
(Translation: selection of books)

It: una raccolta di alcuni libri 
(Translation: a collection of some books)

Baseline Image 
Captioning

Skeleton Prediction

“collection”
“book”

Skeleton Based 
Image Captioning

Proposed Approach

Figure 1: Overview of our approach: (1) skeleton prediction
& (2) skeleton based IC; compared to conventional IC. Output
captions shown in English (En), Hindi (Hi) and Italian (It).

content in the alt-text for the image is often dis-
torted by the intent or context in which the image
is presented. For example, the ground truth alt-text
caption for a house is ‘house for sale’ instead of

‘front view of a house’. This hinders the use of these
large noisy datasets to the fullest extent.

We present a simple two-staged approach by
separating the content selection from caption gen-
eration as illustrated in Figure 1. In contrast to
most IC approaches (Hossain et al., 2018; Sharma
et al., 2020), which hallucinate incorrect content
from noisy training data (i.e ‘custom posters’ and
‘wedding’), our approach first focuses on denoising
the content words (i.e ‘collection’ and ‘book’) that
are further used to generate a relevant caption. We
refer to this sequence of concept words that are key
pieces of information consistent with the image as
a skeleton. Sub-selecting skeleton words that curb
noisiness are automatically extracted from the alt-
text captions. We focus on language-based skele-
tons that are derived from captions (Kuznetsova
et al., 2014; Fang et al., 2015; Dai et al., 2018),
rather than expensive visual-based skeletons de-
rived from image, e.g., scene graphs, (Wang et al.,
2019a; Yang et al., 2019), which are hard to scale.
More concretely, we introduce an intermediate task
of distantly supervised skeleton prediction in the
end to end IC pipeline: The end-to-end task of IC
(fθ : I→ C) is broken down into a two-staged
pipeline: skeleton prediction (fθ : I→ S) and
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skeleton based captioning (fϕ : I,S→ C), where
I is the image, S is the skeleton, and C is the cap-
tion (Kulkarni et al., 2013; Li et al., 2011; Elliott
and Keller, 2013; Fang et al., 2015). We present a
comparison between encoding, decoding and au-
toencoding these skeletons. As such, our skele-
ton prediction solution addresses the semantic gap
problem (Li and Chen, 2018; Yao et al., 2018).

We illustrate the effectiveness of this approach
on uncurated noisy datasets in the following ways.
(1) We demonstrate that sub-selecting content
words with an intermediate skeleton prediction task
denoises content thereby leading to better human
evaluation results on captioning. We also conduct
an extensive analysis on multimodal discourse rela-
tions and find that the reason for this improvement
is the generation of more visible captions (Alikhani
et al., 2020). (2) Scaling large uncurated datasets
to other languages is still a bottleneck. We show
the transferability of learning English skeletons
to improve caption generation in other languages
– English, French, Italian, German, Spanish and
Hindi. (3) The predicted skeletons qualitatively
demonstrate other potential benefits, such as con-
trollability of content, length, and gender via a nat-
ural language–based interpretable interface, which
enables one to additionally interact with the gener-
ation process.

2 Related Work

Content selection from vision: There is a rich
body of work in improving content selection for IC
(Feng et al., 2019), mainly focused on scene graph
based skeletons (Gu et al., 2019; Kim et al., 2019;
Chen et al., 2020a; Yang et al., 2019). However,
these annotations with objects and relations are
expensive, thereby constraining the scaling up to
multiple languages and diverse concepts. Our work
delegates this responsibility of identifying content
to the language modality by using inexpensive off
the shelf tools for weak supervision.
Content selection from language: An orthogo-
nal body of work relies on skeletons derived from
language using hierarchical phrase modeling (Tan
and Chan, 2016; Dai et al., 2018), semantic at-
tention (You et al., 2016), attribute LSTM (Yao
et al., 2017), skeleton based attribute filling (Wang
et al., 2017), adaptively merging topic and visual
information (Liu et al., 2018), multimodal flow
(Li et al., 2019a) and concept guided attention (Li
et al., 2019b). Note that all these prior works uti-

lize human curated gold datasets such as COCO
(Lin et al., 2014) and Flickr30k (Plummer et al.,
2015) with clean coupling between captions and
images. However, scaling them to large and diverse
concepts is expensive. We utilize uncurated silver
standard datasets with the advantages of richness
and diversity at the cost of noisy text. Hence we
show the effectiveness of a dual staged approach
that denoises the captions by skeleton prediction.

Cross-lingual and controllable captions: Past
work on cross-lingual captioning focused on trans-
lation (Barrault et al., 2018), fluency guidance (Lan
et al., 2017), using large datasets (Yoshikawa et al.,
2017) and more recently by pivoting on source lan-
guage captions (Thapliyal and Soricut, 2020; Gu
et al., 2018). We go a step further and pivot on
the predicted English skeleton to improve multi-
lingual captions due to the dearth of similar off
the shelf tools in other languages. We qualitatively
explore controlling length via skeletons which was
explored before via adding length to decoder (Luo
and Shakhnarovich, 2020; Cornia et al., 2019).
Other controllable aspects include stylistic captions
(Guo et al., 2019; Mathews et al., 2018) language
(Tsutsui and Crandall, 2017) which are potential
extensions to our work.

Interpretable Natural language skeletons: De-
spite remarkable advancements of large scale end-
to-end models, recent work identifies spurious cor-
relations in datasets that potentially lead to high
performance (Geva et al., 2019; Tsuchiya, 2018).
To mitigate this, researchers began to dissect in-
termediate components of models with the goal of
interpretability to humans (Wiegreffe and Pinter,
2019; Thorne et al., 2019; Lipton, 2018) as op-
posed to implicit explanation (Xu et al., 2015). Our
work is an instance of explaining captions through
skeleton predictions similar to recent work on ratio-
nalizing answer predictions for question answering
(Latcinnik and Berant, 2020). We view the inter-
mediate skeleton layer as an interpretable model
prediction that helps us study key subtle dataset
attributes, such as gender bias.

3 Our Approach

IC requires paired examples of images and cap-
tions (I, C), where c ∈ C correspond to tokens in a
caption (c1, c2, ..., cm), which are often expensive
to gather. Under this paradigm, end-to-end model
training attempts to perform a match between the
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Figure 2: Model architecture of our skeleton based captioning along with text as side attention mechanism between visual (v)
and textual (w) modalities. The skeleton is present optionally in the encoder, decoder or both based on our three approaches.

semantic concepts present in I and C, starting from
image, region, and object level features and map-
ping them to various cis. In contrast, our approach
uses intermediate skeletons as an effective way to
leverage noisy, uncurated alt-text based captions to
train a model to generate more visually informa-
tive captions. An overview of both the stages is
presented in Fig. 1.

3.1 Distantly Supervised Skeletons

Since gold standard skeleton words are usually not
available, we use distant supervision to get these
labels. We retrieve syntax annotations (POS tags
and word lemmas), using the Google Cloud Natural
Language API 1 of caption texts. We use these an-
notations to experiment with skeleton variants. The
ground-truth skeletons are selected by analyzing
the syntax of the automatically curated web-scaled
captions through combinations of nouns, verbs, ad-
jectives and adverbs in their condensed forms. In
addition, we also ignore tokens with a frequency
of less than 50 in our training data to reduce noise
while selecting the skeleton words. This subselec-
tion of content based on POS tags and downscaling
of vocabulary helps in retaining important words
as skeletons resulting in a label size of 5k. Since
automatic n-gram based metrics cannot be evalu-
ated against noisy ground-truths, manual evalua-
tion is conducted to understand the denoising of
sub-selection.
1. Nouns & Verbs: This includes a sequence of
lemmas of all the nouns and verbs in a caption.
2. Salient Nouns & Verbs: Saliency of nouns and
verbs is determined using tf-idf scores, treating
1https://cloud.google.com/natural-language

each caption as a document. For each caption, the
top 2 highest scoring noun and verb tokens (lemma)
are selected. This examines if saliency contributes
towards effectiveness of the skeleton.
3. Nouns: This includes lemmas of all the nouns.
This helps us untangle the roles of nouns vs verbs
in the effectiveness of the skeleton.
4. Iteratively refined captions: Under this condi-
tion, the output of the baseline Img2Cap model
serves as the ‘skeleton’ for the next skeleton-based
captioning stage. The rationale behind this skeleton
is to compare the utility of sub-selecting skeleton
words based on POS in denoising caption content,
compared to a full caption prediction.

3.2 Model

Baseline (Img2Cap): We adopt an encoder-
decoder (fθ : I→ C) IC model based on Trans-
formers (Vaswani et al., 2017) following recent
state-of-the-art approaches (Sharma et al., 2018;
Yu et al., 2019; Changpinyo et al., 2019; Huang
et al., 2019; Cornia et al., 2020). Our model uses
the IC framework introduced in (Changpinyo et al.,
2019). Inspired by the bottom-up and top-down
approach (Anderson et al., 2018), the input image I
is represented as a bag of features, containing one
global and 16 regional, fine-grained feature vectors.
The regional features correspond to the top 16 box
proposals from a Faster-RCNN (Ren et al., 2015)
object detector trained on Visual Genome (Krishna
et al., 2017), with a ResNet101 (He et al., 2016)
that is trained on JFT (Hinton et al., 2015) and
fine-tuned on ImageNet (Russakovsky et al., 2015).
We featurize both global and regional boxes using
Graph-RISE (Juan et al., 2019, 2020). We make
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the following changes to the state of the art model
(Changpinyo et al., 2019), leading to a 9-point im-
provement on the dev CIDEr on CC (1.00 vs. 0.91)
(improved baseline): 1) encode the corners and the
area of the bounding boxes to fuse positional infor-
mation with visual features, (Lu et al., 2019a), and
2) encode each feature vector with a Linear-ReLU-
LayerNorm-Linear instead of Linear embedding
layer, where LayerNorm is layer normalization (Ba
et al., 2016).

Dual Staged Modeling: In this approach, we
introduce an intermediate natural-language inter-
pretable skeleton S between I and C. This S is
composed of a sequence of lemmas, using a sub-
set of content words (s1, s2, ...sn) from c, where
n < m. This reduces the output complexity of
fθ : I→ C by simplifying and denoising the noisy
C to S. Hence, the task of IC is decomposed into
the first stage of predicting skeleton concepts and
the second stage of caption generation using the
intermediate skeleton.

Stage 1: Skeleton Prediction (Img2Ske): The
first stage (fθ : I→ S) is to predict one of the 4
variants of the skeleton words (from §3.1) from
the images. We experiment with both classification
and generation paradigm that respectively do not
possess and possess linear conditioning of the pre-
dicted skeleton word on the following words. We
observe that the generation based skeleton predic-
tion results in skeleton words that co-occur in a sen-
tence. In contrast, the classification approach pre-
dicts skeleton words relevant to an image like per-
son, man, singer that do not necessarily co-occur
in a caption. This is detailed in §D of Appendix.

To improve co-occurrence of the predicted skele-
ton words, we generate the skeleton words Ŝ au-
toregressively where each word is conditioned on
the previously predicted skeleton word. This con-
ditional dependence models word co-occurrence
more tightly as p(ŝj |I, ŝ<j), making the skeleton a
sequence of words. The model is optimized with
cross-entropy loss, trained using teacher forcing.
An attractive property is that the same architecture
can be used to decode both the skeleton S and the
caption C. Moreover, the output tokens predicted
in this stage are interpretable, and they are used to
condition the second stage of our model.

Stage 2: Skeleton-based Caption Generation:
The second stage of training uses images and skele-
tons to generate captions fϕ : I,S→ C. We ex-

Stage 1 Stage 2 ConditioningInput Output Input Output
SkeEnc I S′ I+S′ C′ ĉτ ∼∏t Pr(ĉ

t|ĉ<t, g(zI, Ŝ))
SkeAE I S′ I + S′ S′ + C′ ĉτ ∼∏t Pr(ĉ

t
k|[Ŝ; ĉ<t], g(zI; Ŝ))

SkeDec (no Stage 1) I S′ + C′ ĉτ ∼∏t Pr(ĉ
t
k|[Ŝ; ĉ<t], zI)

Table 1: The inputs and outputs of the different models.
In iterative refinement, S′ is replaced by C′.

periment with 3 variants of conditioning predicted
skeletons via encoding, decoding and autoencoding
as shown in the model architecture in Fig. 2. The
inputs, outputs and decoder attention conditioning
for each stage are compared in Table 1.

2a. SkeEncoding: The predicted skeleton from
the previous stage is used as input to the encoder.
The image encoding and skeleton embeddings are
fused with a unidirectional attention mechanism,
called text-as-side (notated as g). In other words,
we use the text representation as “side information”
— each transformed image feature unit can attend to
other image feature units (self-attention) and text
(cross-attention), but text cannot attend to image.
As shown in Fig. 2, this model has the dotted box
in the Transformer encoder side, with the textual
query, key, value (Qw, Kw, Vw) and the visual
counterpart attending to textual or visual key and
value (Kv+Kw, Vv+Vw) with a visual query (Qv).
We focus on the text-as-side attention mechanism
as our preliminary results indicate that it leads to
qualitatively better captions than image-text co-
attention (Lu et al., 2019b).

2b. SkeDecoding: The skeleton and caption are
concatenated and predicted by the same decoder.
This is not a two-staged model, as the model is
trained to predict both skeleton and caption auto-
regressively. The model first predicts the skele-
ton words conditioned on the previously generated
skeleton words, and then every token in the de-
coded caption attends to the entire predicted skele-
ton as well as the tokens of the caption decoded
until that time step. The dotted box in Transformer
decoder of Fig. 2 depicts this approach.

2c. SkeAE: To bring both the above models to-
gether, we simultaneously encode and decode the
predicted skeleton. This brings the benefits of bidi-
rectional attention on the input features (image and
predicted skeleton words) and autoregressive at-
tention on the re-predicted skeleton words while
generating the caption. In this case, both the dot-
ted boxes on encoder and decoder sides in Fig. 2
are active. The encoding mechanism follows the
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g function and the decoder prepends the caption
generation task with the predicted skeleton.

4 Experiments and Results

Hyperparameters: Our transformer model uses
6 encoder and 6 decoder layers (unless specified
otherwise), with 8 heads for multiheaded attention.
Captions are subword-tokenized with a vocab size
of 8,300. The models are optimized with Adam
and an initial learning rate of 3.2e−5. We use mini-
batches of size 128, and train for 1M steps. The to-
ken embedding and filter sizes are both 512. We ex-
perimented with several values for both frequency
thresholding for skeleton words at 20, 50, 100 and
k at 2, 4, 8, 16 for top-k selection for multilabel
classification model. We manually selected the val-
ues that optimize the model performance based on
manual examination as conducting human evalua-
tions with more hyperparameters is very expensive
especially with unreliable automatic metrics.

4.1 Datasets

Conceptual Captions (CC): CC (Sharma et al.,
2018) is a large-scale dataset of 3.3M image-
caption pairs covering a large variety of processed
alt-texts from the web. The focus of this work is
on denoising noisy captioning datasets (web-scale,
not human verified). Hence our experiments are fo-
cused on CC, which is a step closer to having large
and diverse alt-texts from the web at the cost of
being noisy. In contrast, other popular datasets like
COCO (size 120K) (Lin et al., 2014) and Multi30k
(Elliott et al., 2016) are hand-annotated by humans
and contain high quality images/captions. As a re-
source, CC is useful both for measuring progress
on large-scale automatic captioning (Sharma et al.,
2018; Changpinyo et al., 2019; Alikhani et al.,
2020; Thapliyal and Soricut, 2020), as well as pre-
training data for a variety of vision-and-language
tasks (Lu et al., 2019b; Chen et al., 2020c; Tan and
Bansal, 2019; Su et al., 2020; Li et al., 2020).

Pre-processing: CC might contain a long tail of
spelling errors and other typos due to the automatic
curation of the data. Therefore, we perform fre-
quency based thresholding of the skeleton words
to abate this noise. We experimented with sev-
eral values for this hyperparameter and selected a
minimum occurrence count as 50 that provides the
desired balance between noise and vocabulary size.

Iterative Refinement Classification Generation
Precision 35.75 23.22 36.66
Recall 24.29 41.31 24.30
F-score 28.92 29.73 29.23

Table 2: Performance of skeleton prediction stage. Note that
for classification and generation, the skeleton type used is
‘nouns & verbs’.

Multilingual CC: To demonstrate the cross lin-
gual transferability of our skeletons, we use auto-
matic caption translations2 for CC, similar to the
approach in (Thapliyal and Soricut, 2020). Note
that the skeletons are learned from, and predicted
in, English (not in the final target language), mak-
ing English skeleton act as an interlingua. Since
multilingual captions are all pivoted on English
skeletons, this nullifies the requirement to 1) collect
large-scale image-caption pairs in various language,
and 2) have access to linguistic tools to analyze cap-
tions in each language. We perform experiments
on 5 languages – French, Italian, German, Spanish
and Hindi – which vary in word orders and token
overlap with the English skeletons.

Conceptual Captions T2 test set: For human
evaluations across all languages, we use T2 test
set used in the Conceptual Captions Challenge3. It
comprises of 1K out of domain images from the
Open Images Dataset (Kuznetsova et al., 2020).

4.2 Automatic Evaluation

Skeleton Prediction: The goal of this stage is
to extract key skeleton words from the image. We
compute precision, recall and F-score as shown in
Table 2. With the same labels (skeleton: nouns
& verbs), both classification and generation ap-
proaches have similar F-scores. However, preci-
sion is higher for generation and recall is higher
for classification based predictions. Based on both
qualitative observations and human judgements,
we note that generation approach was better, which
shows that a higher precision is favorable in com-
parison to recall for this stage. The label size (of
skeletons) in Table 2 is approximately 5K.
Skeleton-based Caption Generation: We report
multilingual IC performance of baseline and our
dual-stage models using CIDEr in Table 3 (English)
and Table 4 (multilingual). Automatic metrics for
captioning are based on surface n-grams, and are
not suitable to evaluate when the ground truth cap-

2We use the Google Cloud Translate API.
3http://www.conceptualcaptions.com/
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Model CIDEr
Baseline (SOTA model) 0.91 (Changpinyo et al., 2019)
Impr. Img2Cap 1.00
Impr. Img2Cap (large) 0.99

Skeleton-based Skeleton Type
Nouns & Verbs Nouns only Sal. Nouns & Verbs

SkeEncoding 0.99 0.97 0.94
SkeDecoding 0.99 0.99 0.96
SkeAE 0.99 0.96 0.94

Table 3: Automatic metrics to compare various skeleton
forms. Img2Cap is the baseline (large version refers to 12
encoder and decoder layers). Note that these results use
generation-based skeleton prediction.

tions themselves are noisy. In addition, we find that
CIDEr is misleading (Alikhani et al., 2020; Sharma
et al., 2018; Seo et al., 2020) and does not correlate
with human evaluations (§4.3). All the 4 proposed
skeleton variants are evaluated systematically for
automatic metrics, as shown in the last column
of Table 3. However, since the automatic scores
are compared against a gold standard of noisy cap-
tions, they are not reliable. Hence we conducted
manual evaluation to select the best performing
skeleton variant. Out of the 4 skeleton variants,
nouns and verbs performed better in denoising and
hence we demonstrated results for this variant for
the remainder of the paper. We conducted further
experimentation on nouns and verbs on the three
models of dual staged captioning, controllability
and cross-lingual transferability.

Multilingual captioning: Note that the skele-
tons are always in English, trained using annota-
tions over the original English CC dataset. Cross-
lingual results on val data of Multilingual CC are
presented in Table 4. In addition to the data nois-
iness, a reason for slightly lower performance for
non-English captions is probably noisy translation
artifacts. For example, corresponding caption in
the Hindi dataset for English caption ‘She is gaz-
ing at the fall colors’ is ‘vh Egrt� r\go\ kF aor
d�K rhF h{’ (translation: She is looking at the
falling colors.) Translation errors (such as ‘fall’
colors to ‘falling’ colors) introduce noise in the
non-English datasets. Figure 3 presents an exam-
ple of output multilingual captions for the baseline
and our SkeAE approach.

Unpaired Image Captioning: A natural exten-
sion to our approach is for the caption generator
to rely purely on predicted skeleton, and not use
image features. This is a harder problem, but elimi-
nates altogether, the need for image-caption pairs
because the second stage (skeleton to caption) can
be trained on a large text-only corpus. In this direc-
tion, within the scope of CC dataset, we investigate

Language Baseline SkeEncoding SkeDecoding SkeAE
French 0.91 0.90 0.89 0.90
Italian 0.90 0.88 0.86 0.87
German 0.74 0.72 0.72 0.73
Spanish 0.92 0.91 0.89 0.91
Hindi 0.85 0.83 0.82 0.82

Table 4: CIDEr scores for skeleton (form: Nouns & Verbs,
prediction approach: generation) conditioned caption genera-
tion for multiple languages.

Model Enc Input CIDEr
PredSke + Img (Paired) 0.99
PredSke (Unpaired) 0.91
GtSke + Img (Paired Headroom) 4.62
GtSke (Unpaired Headroom) 4.48

Table 5: Ablations on val data for unpaired captioning.

Approach Skeleton Wins Losses Gains
SkeEncoding Nouns & Verbs 39.34 28.33 +11.0
SkeAE Nouns & Verbs 39.34 32.63 +6.7
SkeDecoding Nouns & Verbs 34.83 34.53 +0.3
SkeEncoding Iterative Refinement 19.62 20.52 -1.1

Table 6: Human evaluation scores of different approaches
and skeletons on English (vs the Img2Cap baseline).

1) with and without using image features in the sec-
ond stage, 2) using ground truth skeleton (GTSke)
to get an estimate of the upper bound on unpaired
captioning 3) comparing the upper bound to the
predicted skeleton (PredSke). These results are
presented in Table 5. When image features are ig-
nored, CIDEr drops by only 8 points when only
predicted skeletons are used for caption generation
compared to the baseline. This initial result shows
that skeletons are a promising direction towards
unpaired captioning.

4.3 Human Evaluations

Automatic metrics often have been found not to
correlate well with human scores (Kilickaya et al.,
2017; Alikhani et al., 2020) and do not fare well
when ground truth text is noisy. So we conduct ex-
tensive human evaluations where captions for each
image are evaluated both in relative preferences
and absolute scale (Thapliyal and Soricut, 2020).
As mentioned above, we use the T2 test set of 1000
images, each rated by 3 distinct annotators. The
interface of this evaluation is displayed in Figure
4. While comparing two models side-by-side, they
are randomly assigned ‘A’ or ‘B’ in the interface
for each image to avoid any rater bias.

Relative Ratings: For each image we ask the
raters to choose the most relevant caption. Com-
paring Caption A to Caption B, raters can select
relative options as shown in the third column in
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Image Model English French Italian German Spanish Hindi

Baseline

spring is in 
the air

fleurs les plus chères du 
monde
(meaning: most expensive 
flowers in the world)

un campo di tulipani in 
primavera
(meaning: a field of tulips in 
spring)

Frühling ist in der Luft
(meaning: spring is in the 
air)

La primavera está en el aire
(meaning: spring is in the air)

वसंत हवा में है
(meaning: spring is in 
the air)

SkeAE
pred skeleton: 
‘tulip field’

pink tulips 
in a field

tulipes roses dans les jardins
(meaning: pink tulips in the 
garden)

genere biologico in un campo
(meaning: biological genus in 
a field)

ein Feld von rosa Tulpen
(meaning: a field of pink 
tulips)

tulipán en un mar de tulipanes
(meaning: tulip in a sea of 
tulips)

गुलाबी ट्यूलप का एक 
क्षेत्र
(meaning: a field of 
pink tulips)

Figure 3: Captions generated by baseline and our dual staged approach in 6 languages and their corresponding translations.

Caption A: 

a city from the 
trails

Caption B: 

a view of the 
mountains

    A is much better than B

    A is better than B

    A is slightly better than B

    A is about the same as B

    B is slightly better than A

    B is better than A

    B is much better than A

Image Captions Please compare Caption A 
to Caption B

Please select individual ratings 
for each cation

How does Caption A describe 
the image?

     Excellent
     Good
     Acceptable
     Bad
     Not enough information

How does Caption B describe 
the image?

     Excellent
     Good
     Acceptable
     Bad
     Not enough information

Figure 4: Human evaluation interface: We ask raters to: 1)
compare the two captions (relative), 2) give ratings for each
caption (absolute). Human annotators are asked to indicate
the better caption relevant to the image.

Language Wins Losses Gains
French 31.43 29.53 +1.9
Italian 26.13 24.93 +1.2
German 35.23 33.93 +1.3
Spanish 34.03 34.33 -0.3
Hindi 33.13 28.63 +4.5

Table 7: Human evaluation results for skeleton (form: nouns
& verbs, prediction approach: generation with SKeEnc) con-
ditioned caption generation for multiple languages.

Figure 4. Wins are the percentage of images where
at least 2 out of 3 annotators voted for caption gen-
erated with our approach. Losses are percentage of
images where at least 2 out of 3 annotators voted
for caption generated with Img2Cap approach. We
compute gains in this side by side relative evalua-
tion as Gainsrelative = Wins - Losses.

Absolute Ratings: We also gather absolute rat-
ing for each of the 2 captions per image. Each
caption is rated as acceptable if at least 2 out of
3 annotators rate it as acceptable, good or ex-
cellent. Gainsabsolute = Acceptour_approach −
Acceptbaseline. We use them only to validate the
ratings such that, for example, an “Excellent” rated
caption is not annotated as inferior to a “Bad” rated
caption for the same image. These ratings are col-
lected to double check the results of the relative
rating as well.

These scores are presented in Table 8. The top
part of the table indicate the absolute ratings in
terms of Good and OK performance for multilin-

gual captions. The second part of the table show the
same scores when baseline model is compared with
the corresponding model and skeleton combination.
Each model i.e baseline and the proposed model
in each row are rated individually (not relative to
one another). The last two columns indicate the
performance shift of the corresponding proposed
model with respect to the baseline in each of the
Good and OK categories.

Results: Table 6 presents the human ratings for
English captions using different skeletons. From
this, we observe the following:

(a) Dual Staging helps: Our dual staged mod-
els with skeletons (SkeEnc, SkeDec, SkeAE) show
gains compared to the improved baseline Img2Cap
model. Most notably, it shows that the ‘Nouns
& Verbs’ skeletons significantly improves SkeEn-
coding model attaining the most significant gain,
followed by SkeAE and then SkeDecoding.

(b) Subselecting content words helps: Using the
same dual staged SkeEnc model without subse-
lecting content words in the form of iterative re-
finement does not show any improvement in perfor-
mance, supporting the hypothesis that sub-selecting
content skeleton from noisy captions improves the
overall caption quality.

(c) Cross-lingual skeleton transfer: Table 7
presents our human evaluation scores for captions
in other target languages. We observe gains from
the skeleton-based approach for 4 out of 5 lan-
guages, and only a slight loss for the fifth language
i.e., Spanish, showing the effectiveness of cross-
lingual transferability of the skeleton words. Our
speculation for this is probably due to the dialect
differences. The translation model that we used
for Spanish is a mix of Spain Spanish and Latin
American Spanish, with Latin American Spanish
dominating. The evaluation was done by raters
from Spain. The dialects are sufficiently different
that it would impact the absolute scores.
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Row no. Language Good Baseline Good SkeAE OK Baseline OK SkeAE Gains in Good Gains in OK
1 French 34.63 35.04 61.36 60.66 +0.40 -0.70
2 Italian 35.14 35.44 60.86 62.56 +0.30 +1.70
3 German 43.64 41.04 67.27 68.07 -2.60 0.80
4 Spanish 48.15 46.55 74.37 74.67 -1.60 +0.30
5 Hindi 59.96 66.17 85.99 87.99 +6.21 +2.00
Row no. Model Good Baseline Good Model OK Baseline OK Model Gains in Good Gains in OK
6 Unpaired 57.36 55.06 86.48 84.28 -2.30 -2.20
7 SkeEnc (Iterative Refinement) 63.76 62.36 87.89 87.49 -1.40 -0.40
8 Nouns and Verbs (SkeEnc) 66.47 63.66 89.39 88.89 +2.81 +0.50
9 Nouns and Verbs (SkeAE) 51.55 56.66 79.68 83.18 + 5.01 +3.40

Table 8: Absolute ratings in percentages in Human Evaluations.

Baseline
caption

magic peace harbour 
heaven

view mountain storm 
darkness

house nest valley 
mountain

property image # 
apartment for people in 
a picturesque village

the magic of 
the colours

the peace of the 
glorious 
landscape

the view from 
the mountains

a dark storm in 
the darkness

a house nestled 
in the valley of 
mountains

a view from the water the magic of 
the lakes

the peace of the 
river

the view from 
the mountains

a dark storm 
on the horizon

the house nestled 
in the valley of 
mountains

Figure 5: Controllability: Effect of guiding the information through skeleton. As observed, the caption incorporates information
from the skeleton that is consistent with the image. For example, in the second column of the top row, we see that peace is
incorporated while harbor and heaven are not. The relevant skeleton words in other columns guide the captions accordingly.

Figure 6: Quantitative relationship between the number of
skeleton words and caption length.

4.4 Cross-modal Discourse Coherence

To understand where the improvements quantified
in Table 6 come from, we turn to the notion of dis-
course coherence. Alikhani et al. (2020) introduce
multimodal discourse coherence relationships be-
tween image-caption pairs. For instance, a caption
describing visually recognizable aspects of the im-
age, such as ‘people’ or ‘cake’, is annotated using
a Visible relation; in contrast, a Meta relation cor-
responds to a caption containing details regarding
how/when/where the image was captured, such as
in ‘warm summer afternoon’, while a Story relation
implies that the caption describes some potentially
non-visible context behind the scene depicted in
the image, such as ‘fifth anniversary’.

We hypothesize that our multi-stage approach of
skeleton-based IC results in the generation of more
captions of Visible type, as the intermediate skele-
ton predictor is trained to predict nouns and verbs
from the image. As observed in §4.3, as SkeAE

Counts Human EvalsBaseline Ours Change
Visible 605 640 +5.79% +10.93%
Meta 245 226 -7.76% +13.06%
Story 129 108 -16.28% +10.08%

Table 9: Analysis of multimodal discourse coherence re-
lations for baseline and our model on T2 dataset. The last
column shows the relative human evaluation gains over base-
line caption of each type. Other relations with small counts
are ignored in the above analysis.

model performs better compared to the SkeEncod-
ing and SkeDecoding models, we analyze the down-
stream captions based on SkeAE architecture. To
assess this effect, we train the relation classifier de-
scribed in Sec. 4 of (Alikhani et al., 2020), and ob-
tain discourse relation labels for captions generated
on T2-test images, by both the baseline Img2Cap
and our SkeAE models. Table 9 (Counts columns)
quantifies the shift of relation label distribution to-
wards the Visible coherence relation, confirming
our hypothesis. We also study the breakdown by
coherence relations using the results from our hu-
man evaluations on the English captions. Table 9
(Human Evals column) reports this breakdown, in-
dicating that, of the 11.01% gains on human evals
from Table 6, the shift from non-Visible to Visi-
ble discourse captions is associated with clear in-
creases in preference from the human raters. This
is attributable to the fact that human raters are more
likely to prefer captions that are in a Visible rela-
tion with the image, and therefore the shift towards
generating Visible-type captions can be positively
quantified in terms of human preference.
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Figure 7: Controllability: Effect of varying the number of
words in the skeleton on the generated caption length.

5 Controllability: Qualitative Discussion

The dual-stage modeling using skeelton decompo-
sition can be a double-edged sword: it can be an
information bottleneck, limiting the ability to train
the model in an end-to-end manner; but, it brings
forth the advantage of increased interpretability
and thereby the ability to use the intermediate stage
results to control the final caption. We present
aspects of caption controllability by altering the
skeleton to explore effects on caption length, in-
formativeness, and gender specificity. This section
discusses the utility of this dual staged model for
controllability qualitatively with SkeAE architec-
ture. Automatic intervention at the skeleton level
involves non-trivially selecting related concepts for
each image, and we leave this for follow-up work.
Instead, we present an empirical study only to semi-
automatically control gender specificity in two of
the languages. We plan to conduct experiments
to compare with other models (Zheng et al., 2019;
Chen et al., 2020b) focused on controllability for
follow-up work.
Effect of length of skeletons on captions: For
applications that limit the caption lengths due to
UI restrictions, the ability to control the length is
important. The length of the skeleton correlates
with the number of caption words, as shown in
Figure 6. For 2 or 3 skeleton words, the percent-
age of captions monotonically decreases with the
number of caption words, with the mode at 4-word
captions. Thus, for skeletons of size 2, captions of
length 4 are much more frequent than captions of
length 6 or 8. For longer skeletons, we see that the
mode shifts to the right: with skeletons of size 5,
the caption length peaks between 8 and 10 words.
Fig 7 illustrates this qualitatively.
Effect on gender specificity: Current models of-
ten make embarrassing mistakes when generating
captions that mention gender. The availability of
a skeleton provides a direct handle for human-in-
the-loop correction of such biases, at a pre-caption-
generation stage. This is more robust compared
to caption post-processing, especially for highly
inflected languages. To illustrate this, we compare

the number of times ‘man’ appears in the captions
generated by our baseline versus our dual-stage
model after automatically modifying the skeleton
(replacing ‘man’ to the gender-neutral word ‘per-
son’ in the skeleton). Over the T2 dataset, the
baseline caption generates ‘man’ 13 times, and the
automatic control mechanism via our model re-
duces this by 46% (to 7 occurrences) in English. In
Hindi, the equivalent of ‘man’ (aAdmF) is gener-
ated 10 times, and it is reduced to a gender neutral
word (&yEkt) by 70% (to 3 occurrences).
Effect of guiding information through skeleton:
The skeleton acts as a knob enabling the model
to describe different attributes of the image in the
caption. Figure 5 presents an example of how vary-
ing the skeletons for two different images affect
their captions. The words highlighted in green are
derived from the skeleton and the ones highlighted
in blue are image-related words.

6 Conclusions

Scaling image captioning models practically man-
dates training on noisy and uncurated data avail-
able on web. Our work presents an approach
that denoises learning from such large yet diverse
web-scaled data with alt-text annotations by sub-
selecting content as intermediate skeletons. We
experimentally demonstrate that this approach im-
proves the captions significantly in human evalua-
tions on out-of-domain test data by converting meta
and story like captions to more visually informative
captions. We also demonstrate the transferability
of English skeleton words to improving captions
in five other languages. Additionally, the natural-
language interpretable skeleton layer gives us a
way to better control and perform human-in-the-
loop corrections of model predictions. We believe
that this is a promising direction towards unpaired
IC and also has potential for semi-automatic inter-
ventions to correct or interact with the skeletons to
guide the final captions.

In this work, our main focus is denoising alt-text
captions using skeletons and using them for cross-
lingual captioning. In future, we plan to explore the
effect of denoising in pretraining large multimodal
models (BLIP (Li et al., 2022), UNITER (Chen
et al., 2020d), ViLBERT (Lu et al., 2019c)) as base
architectures by automatically cleaning captions,
similar to how BLIP has an additional classifier to
subselect captions that are not noisy. Appendix H
presents a broader impact of our work.
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A Comparison of SkeEnc and SkeAE on
multilingual captions

We have discussed the human evaluation scores
of the SkeAE model by using nouns and verbs
as skeletons in Table 7 in the main paper. In ad-
dition to this, we also conducted human evalua-
tion to compare the SkeEnc model with the nouns
and verbs skeletons in comparison to the baseline.
We present this in Table 10. While there are im-
provements in 3 languages, the performance is also
hurt in two languages. However, as we see, by
comparing the performances in Table 7 and Table
10, we observe that SkeAE has a clear advantage
when leveraging the English caption to improve
multilingual captions. This clearly indicates that
channelling the prediction of the skeleton words in
conjuction with the caption itself is enabling the
model decoder to attend to the previously predicted
skeleton words in the same decoder.

Language Wins Losses Gains
French 31.93 31.43 +0.50
Italian 33.13 28.32 +4.81
German 29.43 29.72 -0.30
Spanish 30.53 34.43 -3.90
Hindi 29.93 26.03 +3.90

Table 10: Human evaluation results on SkeEnc model for
skeleton (form: nouns & verbs, prediction approach: genera-
tion) conditioned caption generation for multiple languages.

B Comparison of Classification and
Generation based Skeleton Prediction

From a preliminary manual analysis, we observed
that the classification based approach to skeleton
prediction faces the problem of predicting words
that are related but are not likely to co-occur within
the same sentence in the caption. This is described
in detail in points 1a and 1b of §3. To validate this
observation, we conducted human evaluation of the
captions generated from classification and genera-
tion based approaches relative to one another. This
setup is different from the rest of the experiments in
human evaluation in the paper which compare any
given model relative to the baseline model. In con-
trast, this study is to compare the generation and
classification approaches with one another. These
results are presented in Table 11.

The top-8 highest scoring content words are cho-
sen to reduce input noise for the caption generator
while improving the recall of concepts. We experi-
mented with different values for this and selected

8 to be an optimal balance between the content in
the skeleton words and the noise.

Approach Wins Losses Gains
Generation 39.14 30.23 +8.91

Table 11: Human evaluation results of comparison between
the generation and classification based approaches

We observe that the generation based approach
has significant gains of +8.91 over the classification
based approach. Most of the prior literature uses
the classification based approach to predict content
or bag of concepts to assist caption generation. Our
hypothesis is that this classification based model
helps in end-to-end approaches where the loss from
caption generation backpropagates to the classifier
model as well. As opposed to this, our model de-
couples the prediction of the skeleton or concept
words that are further used for caption generation.
Hence we believe that suppressing the words that
do not co-occur is important in the skeleton pre-
diction task and the generation based approach is
addressing this problem.

C Absolute Ratings

Here are some of the observations from these re-
sults:

• Better results of Dual Staged Approach: As
we can see in the last two rows (rows 8 and 9),
our proposed SkeEnc and SkeAE show abso-
lute improvements in both the categories. This
further demonstrates that the proposed dual
staged approach is generating better denoised
captions when trained on noisy uncurated alt-
text–based captions.

• Sub-selecting content words is better: Now
that we saw the improvements with the dual
staged approach, we now investigate whether
sub-selecting content words is important. For
this, we present comparison between rows 7
and 8. Both these models are dual staged with
SkeEnc i.e encoding the predicted skeleton
in the second stage. The only difference is
that row 8 sub-selects all nouns and verbs to
predict the skeletons whereas row 8 includes
all the words from the captions to predict the
skeletons. Row 8 shows better performance
compared to row 7. This means that sub-
selecting content words contribute to the cap-
tion generation in the second stage.
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Please note that we focus on alt-text based cap-
tions, so we experiment on Conceptual Captions
instead of cleaner alternatives such as MSCOCO
and Multi30k. The latter do not include as noisy
captions as they are hand-annotated (refer Section
4.1)

D Img2Ske: Classification based
prediction

Skeleton prediction is posed as a multilabel clas-
sification problem where the prediction of a skele-
ton word si is not conditionally dependent on the
prediction of another skeleton word sj . Our goal
is to evaluate the effectiveness of simple genera-
tion and classification models to predict skeletons,
and naturally generation based approach reduces
redundancies due to conditional dependence of la-
bel/skeleton prediction. The encoder part remains
the same as the baseline followed by optimization
with sigmoid cross entropy between the skeleton
words S and image encoding zI, which is the rep-
resentation of the image from the encoder.

Accuracy, A =
1

N

N∑

i=1

∣∣∣Si ∩ Ŝi
∣∣∣

∣∣∣Si ∪ Ŝi
∣∣∣

(1)

The skeleton for the second stage is chosen as the
ordered list of top-8 (experimentally selected) high
scoring words after the softmax layer. However,
conditional independence of skeleton words with
one another ignores the co-occurrences of words
capable of composing a sentence or a final caption.
For instance, classification predictions are com-
posed of words and their synonyms that are highly
correlated like {person, man, singer}. These words
definitely are relevant to an image but do not all
necessarily co-occur in a sentence.

Table 2 presents the precision, recall and f-
scores of the generation and classification based
approaches for skeleton prediction. These metrics,
however are misleading because they do not ac-
count for synonyms or semantic similarity. For
example, ‘food’, ‘meal’, ‘lunch’ and ‘dinner’ are
all distinct labels while computing these metrics,
and predicting one instead of the other get heavily
penalized even though the effect on downstream
caption quality would be minimal. This issue gets
amplified by the fact that with CC that has a rich
vocabulary with words such as electricity ‘pylon’
and ‘tower’ referring to the same concept.

E Performance drop for Spanish

While we have seen improvements in the perfor-
mance on multiple languages in human evaluation
(Table 6), we observed a drop in the preference for
Spanish captions when we use skeletons. Given
the similarity in word order between Spanish and
English in comparison to Hindi, the lower perfor-
mance of Spanish is an interesting result indeed.
Our speculation for this is probably due to the di-
alect differences. The translation model that we
used for Spanish is a mix of ‘Spain Spanish’ and
‘Latin American Spanish’, with Latin American
Spanish dominating. The evaluation was done by
raters from Spain. The dialects are sufficiently dif-
ferent that it would impact the absolute scores.

F Intuition for skeleton words:

The alt-text captions are silver standard and har-
bor a lot of diversity. Hence filtering frequently
occurring words based on a frequency cutoff as the
skeletons helps balance between conditioning on
the frequent words (not noise) and diverse concepts.
Qualitatively, consider an image of a house with
the caption ‘apartment for rent’ and ‘apartment for
sale’. With the frequency based skeleton selection,
the noun word ‘apartment’ is selected as skeleton
ignoring the rest. In this way, we are denoising
alt-text captions to generate captions with visible
concepts.

G Hyperparameters:

This section lists the hyperparameters used for
training our models. We used BERT embeddings
(Devlin et al., 2019) to initialize the words in skele-
tons in the SkeEnc and SkeAE models.

• Learning rate: We experimented with 3.2e−5,
0.5, 1, 1.5 and 2 as the learning rate. The
experiments presented in the paper have the
learning rate of 1. The learning rate is decayed
at 0.95 decay rate with staircase strategy.

• Number of layers: All our models have 6
layers for encoder and decoder. We also con-
ducted an additional experiment to check if
the model complexity of the end-to-end base-
line can improve the performance in compari-
son to our dual staged approach. To evaluate
this, we doubled the number of layers where
the number of transformer encoder and de-
coder layers are 12 each as presented in the
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paper as Impr Img2Cap (large) in Table 3 in
Section 4.2.

• Subtoken Vocabulary: We experimented with
4000 and 8300 sub-token vocabularies. The
experiments in the paper all have 8,300 as
subtoken vocabulary size.

• Batch size: All our experiments include
batchsize of 128 only.

• Number of steps: We train for a maximum of
1 million update steps.

• Maximum Caption Length: In the baseline
and the SkeEnc models, our decoder generates
a maximum words of length 36. In the SkeAE
and SkeDec model, the skeleton words are
prepended to the caption. So we allow the
decoder to generate 72 words in these two
models.

• Warm up and decay steps: The model is
warmed up for 20 epochs and decayed for 25
epochs.

• Embedding size: We use embedding dimen-
sion of 512.

• Beam size: We perform beam search in the
decoder with a beam size of 5.

Here are some of the configuration and modeling
choices for training the models:

• Attention type: Our experiments include at-
tention types of cross-attention and text-as-
side as described along with point 2a in Sec-
tion 3.

• FRCNN Tokens: We use 1601 tokens from
the trained FRCNN.

H Broader Impact

We believe that this work has extensive impact
in scaling captioning models to large and noisy
datasets thereby exploiting web data and reduce
manual annotation efforts. We do not foresee any
immediate concerns ethically directly from our
work. However, while applying this to datasets
crawled from the web, offensive content should
be removed. In general, we envisage researchers
and practitioners to benefit from our approach es-
pecially, when expensive human annotations are
not available. More broadly speaking, we also
strongly believe that our approach laid blocks for
future work on cross-lingually leveraging English
skeletons and automatic translations to generate
captions for various languages. Hence, when com-
bined with unpaired captioning, this can especially
benefit captioning in low resource languages.
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Abstract
Complex question generation over knowledge
bases (KB) aims to generate natural language
questions involving multiple KB relations or
functional constraints. Existing methods train
one encoder-decoder-based model to fit all
questions. However, such a one-size-fits-all
strategy may not perform well since complex
questions exhibit an uneven distribution in
many dimensions, such as question types, in-
volved KB relations, and query structures, re-
sulting in insufficient learning for long-tailed
samples under different dimensions. To ad-
dress this problem, we propose a meta-learning
framework for complex question generation.
The meta-trained generator can acquire uni-
versal and transferable meta-knowledge and
quickly adapt to long-tailed samples through a
few most related training samples. To retrieve
similar samples for each input query, we de-
sign a self-supervised graph retriever to learn
distributed representations for samples, and
contrastive learning is leveraged to improve
the learned representations. We conduct ex-
periments on both WebQuestionsSP and Com-
plexWebQuestion, and results on long-tailed
samples of different dimensions have been sig-
nificantly improved, which demonstrates the
effectiveness of the proposed framework.

1 Introduction

Question generation (QG) over knowledge base
(KB) aims to generate natural language questions
with structured KB queries, which has been widely
used to improve the performance of question an-
swering (QA) by data augmentation for the training
corpora. It can also help chatbots ask questions dur-
ing human-computer interaction.

Traditional methods (Jia and Liang, 2016; Seyler
et al., 2017) rely on hand-crafted rules and tem-
plates to convert KB queries into questions, lead-
ing to poor generalization. Recently, neural ap-
proaches (Kumar et al., 2019; Chen et al., 2020)

∗*Corresponding author.
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Figure 1: The distribution of question type (Typ-Con as
type constraint, Ent-Con as entity constraint, Com-con
as comparative constraint), relation type (the involved
KB relation in the query) and query structure in training
set of WebQSP. We also give the illustration of three
types of query structure

leveraged one encoder-decoder-based model to fit
the entire training set, then used the trained model
to generate questions in the testing phase. However,
such a one-size-fits-all strategy may not perform
well for generating complex questions which con-
tain multiple KB relations or functional constraints,
such as comparison and sorting, and have com-
plex semantic structures. This is due to the uneven
distribution of the training set.

Take a widely used dataset WebQuestionsSP
(WebQSP) (Yih et al., 2016) as an example, ques-
tions are unevenly distributed across multiple di-
mensions, including question types, involved KB
relations, and query structures. As illustrated in
Figure 1, single-hop questions are the most com-
mon type of questions in the dataset, e.g., the ques-
tion “What kind of money to take to Bahamas?”
relies on a single-hop KB query “(Bahamas, cur-
rency_used, ?x)”. In contrast, questions with com-
parative or sorting constraints are the long-tailed
samples, e.g., the question “ What was the first
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character actor
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Which is the longest river in American?
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1?x

[attr]
?num

argmax
1?x

Figure 2: An example of meta-knowledge transferring.

book Charles Dickens wrote?” requires sorting
over the copyright date of Dickens’ books. The
same situation occurs in the dimensions of involved
KB relations and query structures. Existing neural
approaches can be easily biased towards dominant
samples and perform poorly on long-tailed ones.

To deal with the problem of data imbalance, we
resort to the process of human cognition. As shown
in Figure 2, when faced with a rare query, humans
can write the corresponding question according to
the previously learned query patterns. In this paper,
we collectively refer to these universal and trans-
ferable query patterns as meta-knowledge, which
can help generate long-tailed questions. To learn
such meta-knowledge, we propose a meta-learning
framework for KBQG, namely Meta-CQG. During
model training, each sample in the training set is
viewed as a query set, and its similar samples are
retrieved to form the support set. Our generator
adapts to each query set by trials and the supervi-
sion signals on the support set. Through the model-
agnostic meta-learning (MaML) (Finn et al., 2017)
algorithm, the QG model can learn to generalize
over varied samples to acquire the meta-knowledge,
instead of fitting all samples.

To select similar samples and construct the sup-
port sets, we design a self-supervised graph re-
triever that takes into account the similarity be-
tween different samples in different dimensions,
including question types, involved KB relations,
and query structures. Specifically, the graph re-
triever encodes the input queries into distributed
representations, and the cosine similarities between
these vectors denote the similarities between differ-
ent queries. Due to lack of supervision, we train
the graph retriever in a self-supervised way, and
contrastive learning is leveraged to improve the
learned representations. To demonstrate the effec-
tiveness of the proposed framework, we conduct

New 

Delhi

Sri 

Lanka

adjoins_s adjoins capital

Country 
type

?a?x

SELECT  ?a WHERE {
Sri Lanka location.location.adjoin_s ?x .
?x ns:location.adjoining_relationship.adjoins ?a . 
?a ns:common.topic.notable_types Country .
?a ns:location.country.capital New Delhi . }

Figure 3: An example of SPARQL query and its corre-
sponding query graph.

extensive experiments and ablation studies on two
widely-used datasets, and the results on long-tailed
samples under different dimensions have been sig-
nificantly improved.

In general, our main contributions are listed as
follows:

• We propose a meta-learning framework for
complex question generation over knowledge
bases, overcoming the challenge of data im-
balance.

• We design a self-supervised graph retriever to
select the most similar samples to construct
support set during the phase of meta-learning
and help the generator better acquire meta-
knowledge.

• We demonstrate the effectiveness of the pro-
posed framework on two widely-used datasets
and achieve state-of-the-art performance.

2 Preliminary

We aim to generate complex questions from
queries, which can be executed on the knowledge
base to get the answers to the generated questions.
As the query is always displayed in the form of
graph, we represent the queryQwith a query graph
G. Then we translate the G to the corresponding
complex question.

Knowledge Base. A knowledge base K is a col-
lection of triples in the form of (s, r, o), where s,
r, and o denote subject, relation, and object respec-
tively.

Query Graph. As described in (Qiu et al.,
2020), query graph G is a graph representation
of SPARQL query. As shown in Figure 3, Our
query graph consists of two types of nodes: vari-
able nodes and non-variable nodes. Variable nodes
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represent ungrounded KB nodes or values. A non-
variable node can be a grounded KB entity or KB
type, such as Sri Lanka and Country.

Complex Question. While a simple question
can be answered by a single KB triple, complex
questions require more information and even func-
tional operations, such as comparison, aggregation,
and sorting.

3 Methodology

In this section, we will describe the proposed frame-
work, Meta-CQG. Figure 4 gives an overview of
our framework, which mainly consists of two parts:
Query-agnostic Meta Learning (QaML) and the
graph retriever. QaML trains a unique generator for
each target query by learning the potential features
of retrieved similar samples. The graph retriever
selects a few most similar samples and construct
the support set.

3.1 Query-agnostic Meta Learning
Considering the adaption cost, QaML adopts the
MAML algorithm, which can be adapted to the tar-
get query via a few training samples in a few train-
ing steps. QaML contains two components, the
meta learner and the adapted learner. The adapted
learner is the adaptive question generator and the
meta learner allocates initial parameters for the
adapted learner. The meta-learning process can
be divided into meta-training process and meta-
testing process. In the meta-training process, the
meta learner is trained on the support set data to
get the adapted learner. Then, we update the meta
learner through evaluating on the query set data by
the adapted learner. In the meta-testing process, the
meta learner is fixed and we leverage the adapted
learner to encode the query set data and generate
the question. We will describe the meta learner and
the adapted learner in detail below.

3.1.1 Meta Learner
In this section, we will describe the meta learner,
which aims to learn an initial set of parameters
that can quickly adapt to a task-specific learner via
similar samples.

In the meta learning setting, a task consists of
a support set and a query set. The query set only
contains one sample to be generated, and the sup-
port set contains the training samples which are
most similar to the query set. Take a sample q
as an example, the query set squery = {q}. We
denote the top-N similar samples selected by the

graph retriever to form the support set ssupport =
{xq,1, ..., xq,N}. We denote the query and the ques-
tion in the support set as gsupport and qsupport, the
query set as gquery and qquery.

In the meta-training process, the meta learner
allocates initial parameters for the adapted learner
and is updated through evaluating on the query
set data by the adapted learner. We denote the
parameter of the meta learner as θ and the adapted
learner as θ′.

During the training phase, the model will be ini-
tialized with the parameters of the meta learner. Af-
ter t iterations of training on ssupport, the model up-
dates the parameter θ and gets the adapted learner
for the query set. In other words, the model param-
eterized by θ, is updated to θ′ by standard gradient
descent,

θ′ ← θ − η1∇θL(gsupport, qsupport;θ), (1)

where L is the loss function.
Then, we leverage the adapted learner to obtain

the loss on the query set. We apply stochastic gra-
dient descent on the initial parameter θ, i.e. the
parameter of the meta learner, by minimizing the
loss from query set,

θ ← θ − η2∇θL(gquery, qquery;θ′) (2)

where η2 is meta-learning rate. The pseudo code
of meta training process is shown in Algorithm 1.

In the meta-testing process, the meta learner is
fixed. We initialize the adapted learner by the pa-
rameter of the meta learner.

3.1.2 Adapted Learner
In our task, the adapted learner is the question gen-
erator, which translates the generated query graph
into a natural language question. Based on the
query graph constructed above, we adopt a novel
graph-to-sequence model to generate sequences.

Inspired by (Guo et al., 2019), we leverage
Densely Connected Graph Convolutional Network
(DCGCN) as the graph encoder. It applies dense
connectivity among Graph Convolutional Network
(GCN) layers. Each DCGCN block consists of two
sub-blocks to capture graph structure at different
abstract levels. Each sub-block consists of several
GCN layers, where each GCN layer is connected
to all previous layers. The input of layer l for node
u is defined as,

g(l)u =
[
xu;h

(1)
u ; . . . ;h(l−1)

u

]
, (3)
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Figure 4: The overall architecture of our framework for question generation over knowledge bases. It can be divided
into two parts, i.e., the graph retriever and QaML are shown on the left and right respectively. (i) Graph Retriever
(left): from top to bottom, we first pre-train the graph encoder with the task of link prediction. Then we used
Similarity-based Contrastive Learning (SCL) to fine-tune the pre-trained graph encoder as the graph retriever. (ii)
QaML(right): Given a target query (as query set) in the training set, we retrieve similar samples to construct a
support set for the target query. The blue square (above) describes the training process on the support set, while the
pink square(below) describes the testing process on the query set.

Algorithm 1 Meta-training process

Require: Dataset: Strain ; step hyper parameters:
η1, η2;

1: start training:
2: Randomly initialize θ
3: for Si in Strain do
4: Expand Si→Di

5:
(
Ssupport
i ,Squery

i

)
∼ Taski.

6: Evaluate ∇θL(gsupport, qsupport;θ) using
Ssupport
i

7: Compute adapted parameters with gradient
descent:

8: θ′ ← θ − η1∇θL(gsupport, qsupport;θ)
9: Evaluate ∇θL(gquery, qquery;θ′) using
Squery
i

10: θ ← θ − η2∇θL(gquery, qquery;θ′)
11: end for
12: end training

where [·; ·] denotes the concatenation of vectors; xu
denotes the node embedding of u ; and h

(i)
u denotes

the output of layer i for node u. We randomly
initialize the embedding of nodes.

In our case, the edge information is crucial as
it corresponds to important tokens in the gener-
ated question. In order to model both the node
and edge information with GNNs, we utilize Levi
graph transformation method to transform the in-
put query graph into its equivalent Levi graph(Levi,
1942), which views the predicates as nodes in the

graph. Following (Beck et al., 2018), we add re-
verse and self-loop edges to the Levi graph. To
compute the graph-level embedding, we leverage
the pooling-based method, which feeds the output
node embedding into a fully-connected neural net-
work and applies the element-wise max-pooling
operation on all node embeddings to derive the
graph embedding hG ∈ Rd.

We adopt an attention-based LSTM de-
coder (Bahdanau et al., 2014) that generates the
output sequence one word at a time. The graph
embedding hG is used as the initial input of the
decoder. We carefully follow the attention mecha-
nism used in (Tu et al., 2016).

3.2 Graph Retriever

To construct the support set, we retrieve samples
that are most similar to the target KB query from
training set. As queries are always be represented
by graphs, this problem is defined as a graph re-
trieval problem. The core and most challenging
part is to measure similarity between two graphs.

Considering both the structure and content in-
formation of the query graph, we adopt the neural-
based method to measure graph similarity. Most
neural-based models only focus on homogeneous
graphs and require large-scale annotated data. How-
ever, our task lacks gold label about the similarity
between graphs. Thus, we train the graph retriever
in an unsupervised way. To pre-train the graph, we
utilize DCGCN to encode the graph and the link
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predication task as downstream task.
Take (g1, q1) and (g2, q2) as an example. The

query representation is calculated as:

hg1 = DCGCN(g1),

hg2 = DCGCN(g2),
(4)

where hg1 and hg2 is the graph embedding of g1
and g2. And we adopt cosine function to calculate
the query similarity:

δg = cos(hg1,hg2) (5)

where δg is the similarity score between g1 and
g2

Only focusing on the query graph itself is hard
to learn the mapping relation between query graph
and question, leading to many false samples which
have similar query graphs but quite different ques-
tions. Thus, we propose a Similarity-based Con-
trastive Learning (SCL) method to fine-tune the
pre-trained graph encoder, which utilizes question
semantic to emphasize some easily overlooked but
crucial information on the query graph.

3.2.1 Contrastive Samples Construction
Each sample contains one query and one question,
which is in the form of a graph and a sequence.
We construct contrastive samples according to the
similarity between queries and questions. We use
fixed Bert (Devlin et al., 2018) to encode question
and get its representation,

hq1 = Bert(q1),

hq2 = Bert(q2),
(6)

where hq1 and hq2 is denoted as the representation
of q1 and q2. We adopt cosine function to calculate
question similarity δs as follow,

δq = cos(hq1,hq2) (7)

The query similarity between two sample has been
presented above. Then, we define positive and
negative sample selection score λpos, λneg as:

λpos = (δg − δgpos)(δq − δqpos),
λneg = (δg − δgneg)(δqneg − δq),

(8)

where δgpos , δqpos, δgneg, δqneg is a series of thresh-
olds we set according to the similarity distribution.

If both the two similarities are larger than the
thresholds, i.e., δg > δgpos and δq > δqpos, the pair
of the two samples is positive.

If either δq < δqneg or δg < δgneg, the sample
pair is negative.

3.2.2 Contrastive Training

Our goal is to encourage the graph encoder E to
learn discriminative query representations. After
pre-training, We denote the node features in pos-
itive samples and negative samples as X and X̃,
the adjacency matrix as A and Ã, the query rep-
resentation in target, positive and negative sample
as hg, hgp and hgn. We leverage the discrimina-
tor D to maxmize the mutual information, such
that D (hg,hgn) represents the probability scores
assigned to this pair.

For the objective, we follow the intuitions from
Deep Graph InfoMax (Velickovic et al., 2019) and
introduce a contrastive objective LCL with a stan-
dard binary corss-entropy (BCE) loss. The LCL is
defined as:

LCL =
N∑

i=1

E(X,A) [logD (hg,hgp)] +

N∑

j=1

E
(X̃,Ã)

[log (1−D (hg,hgn))] ,

(9)

where N is denoted as the number of positive and
negative samples sampled.

After fine-tuning with above loss, we use average
pooling to compute the query representation, and
retrieve the most similar samples through cosine
similarity function.

4 Experiments

In this section, we evaluate Meta-CQG on two
widely-used benchmark datasets and show the ef-
fectiveness of our method. We first introduce
datasets and training settings. Then, we evaluate
the proposed model with the state-of-the-art mod-
els on both datasets. In addition, we investigate
the performance on different dimensions and the
influence of different sampling strategies. Finally,
we conduct human evaluation to verify the effec-
tiveness of our method.

4.1 Datasets and Preprocessing

We conduct experiments on two widely-used
datasets.

WebQSP (Yih et al., 2016) consists of 4,737
question-answer pairs. All the questions are col-
lected through Google Suggest API, and the an-
swers are fetched from Freebase.
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Method
CWQ WebQSP

BLEU-4 METEOR Rouge-L BLEU-4 METEOR Rouge-L

L2A 4.01 13.78 30.59 8.01 19.45 32.58
Zero-shot 6.37 16.32 32.10 9.45 21.52 34.78
MHQG 9.35 19.42 35.78 13.34 24.88 39.14
BiGraph2seq 26.01 28.12 53.58 27.86 30.24 62.77
DCGCN 27.36 29.53 54.11 29.82 31.28 63.93
DCGCN+ROS 28.15 30.13 54.69 30.68 32.19 64.56
DCGCN+Finetune 28.43 30.51 55.07 31.37 32.44 64.92

Meta-CQG 29.52 31.72 56.03 32.87 32.92 65.09
w/o Graph Retriever 27.66 29.68 53.88 29.75 31.45 64.08
w/o SCL 28.51 30.63 55.08 31.83 31.73 64.27

Table 1: Experimental results of automatic metrics on two benchmark datasets.

CWQ (Talmor and Berant, 2018) contains
34,689 questions in total. It modified the SPAR-
QLs in WebQSP by including more constraints,
and then generated corresponding natural language
questions.

Each question in both datasets has a correspond-
ing SPARQL query. We design transformation
rules to convert SPARQL query into query graph
as our input. For each dataset, we randomly select
80% of the examples for training, 10% for valida-
tion, and 10% for testing.

4.2 Baseline Methods

We compare the proposed model with several base-
line methods, including the current state-of-the-art
model over the two benchmark datasets. L2A (Du
et al., 2017) is an attention-based Seq-to-Seq model
to generate natural language questions from con-
text in open domain conversational systems. Zero-
shot (Elsahar et al., 2018) is an RNN-based Seq-to-
Seq model paired with an original part-of-speech
copy action mechanism to generate questions.
MHQG (Kumar et al., 2019) is a Transformer-
based model for automatic generation of multi-hop
questions over knowledge bases. BiGraph2seq
(Chen et al., 2020) is a graph-to-sequence model
which leverages Bidirectional Gated Graph Neu-
ral Network (Bi-GNN) as the graph encoder to
encode the KB subgraphs, and enhance the RNN
decoder with copying mechanism. DCGCN ap-
plys DCGCN as graph encoder and LSTM as de-
coder. DCGCN+ROS leverages DCGCN as the
basic model and adopt the Random Over Sampling
(ROS) strategy on question type to solve the data

imbalance problem. DCGCN+Finetune leverages
DCGCN to pre-train the training set. When testing,
for each sample, we use the graph retriever to build
an adaption and finetune the pre-trained model on
it.

4.3 Implementation Details

We implement our method on PyTorch platform.
The parameters with the best performance on the
validation set are selected. For both datasets, the
KB embeddings were randomly initialized and up-
dated in the process of training. In meta-learning,
we set N=5 when forming the support set. We set
η1 = 1e − 4 (Equation 1) and η2 = 0.2 (Equa-
tion 2). For SCL, we random select three posi-
tive and negative samples for each sample. We
set δqpos = 0.8, δspos = 0.8, δqneg = 0.6 and
δqneg = 0.4.

We set the number of DCGCN as 3 and 6 for the
two sub-block respectively with an initial learning
rate of 0.0003 is adopted as the optimizer. Dur-
ing decoding, beam search with beam size 10 is
leveraged.

4.4 Results and Discussion

Following previous studies, we evaluate the perfor-
mance by a set of N-grams-based metrics for ques-
tion generation: BLEU-4(Papineni et al., 2002)(B-
4.), METEOR(Banerjee and Lavie, 2005), and
ROUGE-L(Lin, 2004).

Table 1 shows the results of Meta-CQG and the
adopted baselines. Meta-CQG outperforms all the
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Dimesion Categories
BiGraph2Seq DCGCN Meta-CQG

B-4. ME. R-L. B-4. ME. R-L. B-4. ME. R-L.

Question
Type

Single-hop(>40%) 28.56 31.38 63.89 30.56 31.79 64.30 33.21 33.15 65.83
Multi-hop(>20%) 27.60 29.76 63.01 28.86 31.05 64.08 32.03 31.86 64.07

Type Constraint(<10%) 26.53 28.76 60.23 28.27 30.19 62.76 31.23 31.77 63.38
Ordinal(<5%) 23.43 27.01 53.99 24.73 27.53 57.07 29.04 30.69 63.25

Query
Structure

Chain-Style(>75%) 29.38 31.23 63.65 31.45 32.96 64.45 33.18 33.42 65.79
Tree-Style(<20%) 23.53 23.46 58.17 25.77 26.08 59.39 32.16 31.93 64.92
Ring-Style(<5%) 6.78 17.01 48.65 9.48 20.57 50.78 23.23 30.79 56.79

Relation
Type

Notable Types(>30%) 28.77 30.94 60.17 31.27 32.48 62.59 33.02 34.08 65.28
Inventor(<10%) 17.53 22.96 47.47 20.29 24.57 51.86 27.33 31.88 62.13

Award Honor(<1%) 4.58 14.77 33.58 7.33 15.45 37.54 20.29 24.11 52.77

Table 2: Experimental results of automatic metrics on different dimensions.

baselines on the two benchmark datasets. Specifi-
cally, Meta-CQG improves the BLEU-4 score by
3.51 on CWQ, 5.01 on WebQSP compared with
BiGraph2seq. Meanwhile, Meta-CQG exceeds the
baselines by a larger margin on METEOR and
ROUGE-L.

Graph-to-Seq models (BiGraph2seq, DCGCN,
DCGCN+ROS, DCGCN+Finetune and Meta-
CQG) outperform the Seq-to-Seq models (L2A,
Zero-shot and MHQG) on both datasets, which
indicates the advantages of GNN-based encoders
for modeling query graphs, since the RNN-
based model and the transformer-based model
ignores the explicit graph structure of query
graphs. In addition, DCGCN-based models
(DCGCN, DCGCN+ROS, DCGCN+Finetune and
Meta-CQG) outperform BiGraph2seq, which in-
dicates that DCGCN better captures the non-local
interactions between the nodes compared with Bi-
GNN.

Meta-CQG outperforms DCGCN+ROS by more
than 1.37 on BLEU-4, which indicates that the pro-
posed model is more effective in reducing the data
imbalance problem compared with existing data
re-balancing approaches. Moreover, it outperforms
DCGCN+Finetune by more than 1.09 on BLEU-4,
which indicates that the meta-learning framework
is better at transferring meta-knowledge compared
with the pretrain-finetune framwork.

4.5 Ablation study

To further analyze the effectiveness of different
components, we conduct ablation studies which
remove the graph retriever and SCL in Meta-CQG.

The results are shown in Table 1.
Graph Retriever. To evaluate the effectiveness

of graph retriever, we remove it and randomly se-
lect samples for each training sample (w/o Graph
Retriever). The performance has dropped by more
than 1.86 on BLEU-4. This indicates that random
select samples cannot provide task-specific knowl-
edge for the training sample, and they may intro-
duce noise during training.

SCL. To evaluate the effectiveness of SCL, we
remove the contrastive learning loss (w/o SCL).
The performance has dropped by more than 1.01 on
BLEU-4. This indicates that SCL utilizes question
semantic to enhance query graph information.

4.6 Analyses on Different Dimensions

As mentioned above, complex questions are im-
balanced in multiple dimensions. We divide the
questions in the WebQSP according to each dimen-
sion and evaluate the performance of BiGraph2Seq,
DCGCN, and Meta-CQG. We sample some cat-
egories from majority types and minority types
respectively for each dimension. The proportion of
each type in the training set is also listed after the
categories.

As shown in Table 2, Meta-CQG achieves the
best performance in all three dimensions.

In each dimension, Meta-CQG outperforms the
other two baselines on minority types (i.e., <10%
in training set), which shows the learning ability of
Meta-CQG on imbalanced data. The poor perfor-
mance of BiGraph2Seq and DCGCN on minority
types also verifies that the data imbalance problem
greatly affects the model performance.
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Strategies B-4. ME. R-L.

Question Type 31.07 32.87 64.97
Relation Type 31.22 32.39 64.43
Query Structure 30.09 31.53 64.27
Our Model 32.87 32.92 65.09

Table 3: Experimental results of different sampling
strategies.

In addition, Meta-CQG outperforms the base-
lines on majority types (i.e., >30% in training set).
This may be some samples in a majority type may
be in minority type of another dimension. For ex-
ample, a single-hop question may contain relation
of Award Honor. Therefore, Meta-CQG is able to
find similar samples across multiple dimensions.

4.7 Analyses on Different Sampling Strategies
We design different sampling strategies to verify
the effectiveness of our graph retriever. First, we
devise different retrievers according to the three
dimensions we mentioned above. For each dimen-
sion, the retriever randomly selects a few samples
that belong to the same category with the sample to
be generated. The results shown in Table 3 demon-
strate the effectiveness of our model and verify that
our model is able to comprehensively consider the
imbalance in all dimensions.

4.8 Human Evaluation
We randomly choose 100 questions from the test
set of each dataset. We pair the questions generated
by our model and BiGraph2seq. Two human an-
notators are asked to judge which is better in pairs
from three aspects: naturalness, correctness, and
semantic. Results are shown in Table 4. Our model
outperforms BiGraph2seq as it has more winning
instances than losing instances on all two datasets.
These results indicate that our model improves the
quality of questions from the three aspects.

5 Related Work

Question Generation over Knowledge Bases
Most recent works for KBQG mainly adopt
encoder-decoder models, and focus on enriching
the input information. In (Serban et al., 2016)
and (Indurthi et al., 2017), recurrent neural net-
works are introduced for generating natural lan-
guage questions from KB facts. To address the
challenge of unseen predicates and entity types,

Results
CWQ WebQSP

Nat. Sem. Cor. Nat. Sem. Cor.

Win 19 37 28 35 35 29
Tie 79 59 69 59 59 64
Lose 2 4 3 6 6 7

Table 4: Wins, losses, and ties of Meta-CQG against
the current SOAT (BiGraph2seq) based on the manual
evaluation.

(Elsahar et al., 2018) leverages auxiliary contexts
in the WiKidata corpus in an encoder-decoder archi-
tecture. However, the context cannot cover all pred-
icates. Thus, (Liu et al., 2019) presents a neural
encoder-decoder model that integrates diversified
off-the-shelf contexts. To tackle the semantic drift
problem, (Bi et al., 2020) presents a knowledge-
enriched, type-constrained, and grammar-guided
model. (Kumar et al., 2019) proposes a model
for generating complex multi-hop and difficulty-
controllable questions over knowledge bases. To
model the graph-structured data, (Chen et al., 2020)
applied a bidirectional Gated Graph Neural Net-
work model to encode the KB subgraph. However,
existing methods train one model to fit all questions,
ignoring the data imbalance in the real world.

Meta-Learning Meta-Learning, i.e.learning-to-
learn, aims to build efficient algorithms that can
learn the new task quickly. In pursuing this prob-
lem, there are three categories of meta-learning
methods: learning a metric space to compare low-
resource testing samples and rich training samples
(Snell et al., 2017; Koch et al., 2015), using an ad-
ditional meta-learner to update the original learner
with a few training examples (Ravi and Larochelle,
2016) and learning a good initialization parame-
ter for fast adaptation(Finn et al., 2017). In this
work, we follow the third idea and propose a meta-
learning framework based on MaML to solve the
data imbalance problem in complex question gen-
eration tasks.

6 Conclusion

In this paper, we focus on the task of complex
question generation over knowledge bases. We
propose a meta-learning framework for complex
question generation, namely Meta-CQG, to deal
with the data imbalance problem. To consider the
imbalance of all dimensions, we adopt the MaML
method to train a unique generator for each sam-
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ple to be generated via a few most similar training
samples. Specially, we design a self supervised
graph retriever to flexibly retrieve most similar sam-
ples. We evaluate the effectiveness of Meta-CQG
on two widely-used benchmark datasets, and it out-
performs all the baselines.
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Abstract

Most graph-to-text works are built on
the encoder-decoder framework with cross-
attention mechanism. Recent studies have
shown that explicitly modeling the input graph
structure can significantly improve the perfor-
mance. However, the vanilla structural encoder
cannot capture all specialized information in a
single forward pass for all decoding steps, re-
sulting in inaccurate semantic representations.
Meanwhile, the input graph is flatted as an
unordered sequence in the cross attention, ig-
noring the original graph structure. As a re-
sult, the obtained input graph context vector in
the decoder may be flawed. To address these
issues, we propose a Structure-Aware Cross-
Attention (SACA) mechanism to re-encode
the input graph representation conditioning on
the newly generated context at each decoding
step in a structure aware manner. We further
adapt SACA and introduce its variant Dynamic
Graph Pruning (DGP) mechanism to dynami-
cally drop irrelevant nodes in the decoding pro-
cess. We achieve new state-of-the-art results
on two graph-to-text datasets, LDC2020T02
and ENT-DESC, with only minor increase on
computational cost.

1 Introduction

Data-to-text task aims to generate a natural lan-
guage description from structural or semi-structural
data, such as tables (Wiseman et al., 2017), Ab-
stract Meaning Representation (AMR) graphs (Ba-
narescu et al., 2013), and Knowledge Graphs (KG)
(Cheng et al., 2020). It helps people get the key
points of the input data and makes the stored in-
formation accessible to a broader audience of end-
users. There have been several practical application
scenarios in this field, such as biography generation
(Lebret et al., 2016), basketball news generation
(Wiseman et al., 2017), and advertising text gen-
eration (Shao et al., 2019). This paper focuses on

∗∗Corresponding authors: Can Ma, Yongbin Li
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Figure 1: (a) denotes an encoder-decoder framework
with the cross-attention mechanism where IG and GT
contexts denote the input graph and generated text graph
contexts, respectively. (b) is an example of Structure-
Aware Cross-Attention. The dotted lines in (c) denote
the pruned edges and nodes.

generation from graph structures in AMR and KG,
referred to as graph-to-text.

In recent years, encoder-decoder with the cross-
attention mechanism has been the de facto frame-
work for graph-to-text tasks (shown in Figure 1(a)).
Given an input graph, the encoder first computes
vector representations for the graph nodes. On the
decoding side, Input Graph (IG) context vector is
obtained via cross-attention based on the partially
Generated Text (GT) at each time step, then the
next target token is finally predicted. Unlike con-
ventional text-to-text tasks, the structural nature of
the input graph makes it unsuitable to naively ap-
ply sequential encoder-decoder architecture to the
graph-to-text task. To alleviate this issue, recent
studies (Song et al., 2018; Damonte and Cohen,
2019; Cai and Lam, 2020) proposed to utilize the
graph encoder to capture the input graph structure.
These works have demonstrated that explicitly mod-
eling the graph structure can bring benefits to the
model performance.
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Although equipped with the structure-aware
modeling, it is still hard for the encoder to cap-
ture all specialized information for graph-to-text
generation. It is evidenced by recent studies (Liu
et al., 2019; Li et al., 2021) that a vanilla structural
encoder cannot capture the accurate semantic rep-
resentation of the input structural data effectively.
Auxiliary supervision has been shown to be helpful,
but effective auxiliary tasks are not easy to design
and may not generalize well to different datasets.
We suspect that it is challenging for the encoder to
encode all relevant information into node represen-
tations in a single forward pass for all the decoding
steps, especially if the input graph structure is com-
plex. Besides the encoder side, few works have
focused on the decoder side for graph-to-text tasks.
Considering the ordinary cross-attention mecha-
nism, the representations of input data obtained
from the encoder are still treated as an unordered
node representation sequence. We conjuncture that
this plain cross-attention does not take full advan-
tage of the input graph structure and therefore may
harm the model performance.

Current models with graph encoder and cross-
attention may yield inaccurate input graph con-
text representation due to the deficiency on both
encoder and decoder as we discussed before.
To tackle the above problems and avoid in-
troducing auxiliary tasks, we propose a novel
Structure-Aware Cross-Attention (SACA) mech-
anism. Apart from the plain cross-attention, our
SACA re-encodes the input graph conditioning on
the newly generated context in a structure-aware
fashion. Other than a single forward pass, special-
ized representations from the source side are built
adaptively at each decoding step, which makes the
decoder easily exploit relevant-only information
for prediction. More specifically, as shown in Fig-
ure 1(b), we construct a joint graph, in which we
explicitly treat the generated text context vector as
an additional node and connect it with nodes in the
input graph at each decoding step. We implement
SACA using the relational graph attention network
(RGAT, Shaw et al. 2018). Furthermore, we stack
multiple layers of SACAs to perform deep inter-
actions between the generated text context vector
and input node representations. Finally, we fetch
the node representation corresponding to the newly
added node as the structure-enhanced input graph
context to predict the target token.

In practice, we notice that some nodes become ir-

relevant and uninformative as the decoding goes on.
These nodes are distracting and can disturb the gen-
eration process. Intuitively, the decoder should dy-
namically discard the unrelated parts of the graph at
different decoding steps. In other words, the joint
graph structure should be dynamically adjusted.
To this end, we adapt SACA and propose its vari-
ant Dynamic Graph Pruning (DGP) mechanism
(shown in Figure 1(c)). DGP prunes the structure of
the joint graph via the gate mechanism to achieve
sparse connections between the nodes based on the
generated text context.

We conduct experiments on two graph-to-text
datasets, LDC2020T021 and ENT-DESC (Cheng
et al., 2020), to verify the effectiveness of the pro-
posed approach. Empirical results show that our
proposed methods achieve new state-of-the-art re-
sults on the two datasets. Further experiments in-
dicate that SACA and DGP do not reduce the di-
versity of the generated text and can better handle
complex graphs. Meanwhile, additional investiga-
tion reveals that SACA and DGP only bring minor
increase on the model size and inference time.

2 Related Works

Graph-to-text is a challenging task which aims at
generating a descriptive text from the structured
knowledge, such Knowledge Graph (KG), and Ab-
stract Meaning Representation (AMR) graphs. It
is helpful for interpretability of KGs in general
(Schmitt et al., 2020) and knowledge-based ques-
tion answering (Hui et al., 2022; Wang et al., 2022;
Fu et al., 2020; Qin et al., 2022).

In recent years, most graph-to-text methods have
been built based on the encoder-decoder architec-
ture. This kind of method usually consists of a
structural encoder and a decoder. The structural
encoder aims to model the structure information
into the representation of the input graph. Song
et al. (2018) first propose the graph recurrent net-
works (GRNs) to encode the AMR node directly.
And then, some works (Shi et al., 2020; Chen
et al., 2020) introduce the Graph Neural Networks
(GNNs) as the structural encoder, which updates
the representations of nodes based on their immedi-
ate neighbors. To integrate both local and non-local
features and learn a better structural representation
of a graph, Guo et al. (2019) introduce the dense
connection, allowing deeper GCNs. Unlike the
local information aggregation scheme, Zhu et al.

1https://catalog.ldc.upenn.edu/LDC2020T02
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(2019); Cai and Lam (2020) propose the Graph
Transformer that uses explicit relation encoding
and allows direct communication between two dis-
tant nodes.

A recently proposed neural abstractive Multi-
Document Summarization (MDS) model, Graph-
Summ (Li et al., 2020), also considers the input
graph structure during decoding. The biggest differ-
ence between Graphsum and our proposed SACA
is that the former only introduces one graph atten-
tion layer in each decoder layer. SACA, on the
other hand, injects graph structure into decoding
by re-encoding the input graph. Specifically, it
re-computes the input graph representation by con-
ditioning it on the newly generated text at each
decoding step.

Recent approaches try to apply the Pre-trained
Language Models (PLMs) (Kenton and Toutanova,
2019; Raffel et al., 2019) into the graph-to-text gen-
eration. Particularly, Ribeiro et al. (2021) propose
to utilize the adapter method (Pfeiffer et al., 2020)
to encode graph structure into PLMs and only train
graph structure-aware adapter parameters. In this
way, they avoid catastrophic forgetting while main-
taining the topological structure of the graph.

3 Approach

We expect that developing graph-to-text genera-
tion should benefit from the recent advance on
pre-trained language models (PLMs) (Lewis et al.,
2020; Raffel et al., 2019). To explicitly encode the
input graph structure into PLMs while alleviating
the catastrophic forgetting problem, we consider
SA-RGCN (Ribeiro et al., 2021) as our baseline
model. SA-RGCN is an adapter method to encode
graph structure into PLMs. The overall illustra-
tion of our model architecture is shown in Figure
2(a). In this section, we first introduce how to
represent the input graph and the architecture of
our baseline SA-RGCN. Then, we depict our pro-
posed Structure-Aware Cross-Attention (SACA) in
details. Lastly, we adapt SACA and propose its
variant Dynamic Graph Pruning (DGP).

3.1 Graph Representation

Let G0 = (V0, E0,R0) denote a multi-relational
and directed graph with nodes vi ∈ V0 and labeled
edges (vi, r, vj) ∈ E0, where r ∈ R0 is the rela-
tion type. Following previous work (Beck et al.,
2018), we convert each input graph into a Levi
graph Gl = (Vl, El), which is an unlabeled and con-

nected bipartite graph. Specifically, each labeled
edge (vi, r, vj) ∈ E0 is transformed into two unla-
beled edges (vi, r), (r, vj) ∈ El. In addition, we
add a reverse edge (vj , vi) for each default edge
(vi, vj). Therefore, each Levi graph Gl contains
two type relationsRl = {d, r}, where d and r de-
note the default and reverse edge, respectively. To
better take advantage of the PLMs, we convert each
Gl into a new token graph G = (V, E ,R), where
each token of a node in Vl becomes a node v ∈ V .

3.2 Pretrained LMs with Structural Adapters
To inject graph structural bias into PLMs, we incor-
porate the structural adapter (Ribeiro et al., 2021)
into the PLMs encoder. As shown in Figure 2
(a), we add a structural adapter after each trans-
former encoder block on the encoder. Figure 2 (b)
illustrates the architecture of a structural adapter,
in where a relational GCN (RGCN) (Schlichtkrull
et al., 2018) layer computes the node representation
based on the local neighborhood of node v ∈ V .
Formally, at each layer l, given the encoder layer
representation hlv, a structural adapter computes
the representation for v by the following:

glv =
∑

r∈R

∑

u∈Nr(v)

1

|Nr(v)|
W l
rLN(hlv), (1)

zlv =W l
e(σ(g

l
v)) + hlv, (2)

where LN(·) denotes layer normalization. Nr(v)
is the sef of immediate neighbors under relation
r ∈ R. W l

r encodes the edge type between the
nodes u and v. σ is the activation function.

We add an FNN adapter after each transformer
decoder block to adapt the language model to the
graph-to-text task. Given the output ĥlv of the l th
transformer decoder block, the adapter representa-
tion is computed as:

ẑlv =W l
o(σ(W

l
pLN(ĥlv))) + ĥlv, (3)

where W l
o and W l

d denote learnable parameters.

3.3 Structure-Aware Cross-Attention
We argue that the input graph context representa-
tion obtained by the plain cross-attention may be
inaccurate. The reason is twofold. First, it is not
easy for the graph encoder to capture all special-
ized information required for generation in a single
forward pass. Therefore, a single encoder without
any auxiliary assistant may not be effective in cap-
turing the accurate semantic representation (Liu
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Figure 2: Illustration of the proposed model architecture. (a) is an overview of our model. (b) is the architecture of a
structural adapter. (c) is an example of Dynamic Graph Pruning, where r1 ∼ r4 denote the relations: “country of
citizenship", “occupation”, “sibling”, and “cast member”, respectively. The dummy lines in (c) denote the pruned
edges.

et al., 2019; Li et al., 2021). In other words, the
graph representation encoded by the graph encoder
may be inaccurate. Second, during decoding, the
decoder treats structural data as an unordered node
sequence, which ignores the input graph structure.
However, the graph structure has been proven to
play an essential role in the graph representation
and may offer clues about which nodes are more
related to the generated text context.

To tackle the above challenge, we propose a
Structure-Aware Cross-Attention (SACA) mecha-
nism, which re-encodes the input graph representa-
tion by conditioning on the newly generated con-
text. Specifically, we first build a joint graph, in
which we view the generated text (GT) context as
a new node vd and explicitly connect it to each
node in the input graph G at each decoding step.
The corresponding reverse edges are also added.
The joint graph can be formulated as Gjoint =
(Vjoint, Ejoint,R), where Vjoint = {vd} ∪ V and
Ejoint = {(vi, vd), (vd, vi); vi ∈ V} ∪ E . We use
the representations from the encoder for the node
from V and the hidden state from the last trans-
former decoder block as the representation for the
GT context node.

To induce the representations for the nodes in
the joint graph Gjoint and facilitate introducing Dy-
namic Graph Pruning (in Section 3.4), we con-
sider graph neural network built on graph attention
framework (GAT) (Shaw et al., 2018). Moreover,
we employ the relational graph attention network
(RGAT) implemented by Shaw et al. (2018) to
model the relation between neighbor nodes. Specif-
ically, at each RGAT layer l, we update the repre-

sentation hlv of each node v ∈ Gjoint by:

sv,u =
W qhlv

T
(W khlu + ErR(v,u))√

m
, (4)

αv,u =
esv,u∑

u′∈Nv e
sv,u′

, (5)

hl+1
v = σ(

∑

u∈Nv
αv,uWvh

l
u), (6)

where ErR(v,u) means the embedding of the rela-
tion between node v and u. m denotes the hidden
dimension of RGAT. Finally, the representation
vector hLvd corresponding to the GT context node
vd is fetched and used as the structure-enhanced
input graph context vector for token prediction.

In conclusion, SACA provides two advantages.
First, it re-encodes the input graph by conditioning
its representation on the newly generated context.
As a result, we build specialized representations
which make it easier for the decoder to exploit
relevant-only information for prediction at each
decoding step. Second, the re-encoding explicitly
injects structural bias into input graph context mod-
eling, helping the decoder obtain a more accurate
input graph context vector. The proposed SACA
can be plugged after the last transformer decoder
block as shown in Figure 2 (a).

3.4 Dynamic Graph Pruning
In practice, we notice that some nodes become ir-
relevant and uninformative as the decoding goes
on. These unrelated nodes are distracting and can
even disturb the subsequent generation. Intuitively,
the decoder should dynamically prune the joint
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graph at different decoding steps. For this purpose,
we adapt SACA and propose its variant Dynamic
Graph Pruning (DGP) mechanism, which aims to
dynamically drop the redundant nodes in the joint
graph according to the generated text during de-
coding. The DGP employs the gate mechanism
to sparse the connection between a node and its
immediate neighbors in the joint graph to achieve
graph pruning. Specifically, at each decoding step
t, for each node v in the joint graph, we formulate
its gate as bellow:

gv = sigmoid(W T
g tanh(Wehv +Wdh

d
t )), (7)

where Wg, We, and Wd are learnable parameters.
And hv is the representation of node v and hdt is
the decoder hidden state at decoding step t, which
is usually considered as the representation of the
generated text context. The value of gate gv ∈ R
decides whether the node vi should be dropped or
not. Correspondingly, we apply the gate value to
multiple SACA layers invariably by modifying the
attention weights in SACA (Equation 5) as follows:

αv,u =
gu ⊙ esv,u∑

u′∈Nv gu′ ⊙ e
sv,u′

. (8)

Intuitively, if the value of gate gu is close to 0,
the connections between node u with all its imme-
diate neighbors will be largely weaken. That is, the
node is removed from the joint graph. Specifically,
the attention score αv,u measures the relevance be-
tween any two nodes, v and u, in the joint graph,
while the gate gv models the relevance between the
node v and the generated text context ht.

As a shown example in Figure 2 (c), the red
node represents the main entity. Initially, the main
entity connects with all its neighbor nodes. As the
decoding goes on, some nodes are redundant for
the subsequent generation. For example, the nodes
“actor“ has been described, and node “voice actor“
is also covered by the generated text. Therefore,
DGP discards these nodes by giving them gates
with small values.

We observed that the values of the gates calcu-
lated by Equation 7 are almost equal to 1, indicat-
ing that the model does not actively learn to prune
a graph. Inspired by Xue et al. (2020), we fur-
ther introduce a regularization item, encouraging
the network to turn off more gates and generate
more sparse connections between nodes in the in-

ENT-DESC LDC2020T02
#train/dev/test 88,650/11,081/11,081 55,635/1,722/1,898
#relations 967 157
Avg #nodes 18.0 14.2
Avg #triples 27.4 14.8
Avg length 31.0 95.0

Table 1: Dataset statistics of ENT-DESC and
LDC2020T02.

put graph. We formulate it as follows:

LDGP =

∑|y|
t=1 ∥Gatet∥1
|y| , (9)

whereGatet = {gv|v ∈ V}. ∥∗∥1 means L1 norm
regularizer.

3.5 Training
Given a reference output y = {y1, y2, ..., yT } and
an input graph G, we use the cross-entropy loss as
the objective function of graph-to-text generation:

Llm =

|y|∑

t=1

log p(yt|y1:t−1,G, θ). (10)

Finally, the overall objective function consists of
two parts:

L = Llm + λLDGP , (11)

where λ is a tunable hyper-parameter and is used
to make a trade-off between the cross-entropy loss
and the regularization item. Intuitively, the LDGP
object encourages the model to learn how to prune
the graph, and the Llm trains the model to generate
the text according to the graph and restrains DGP
from pruning too much.

4 Experiments

4.1 Datasets
We demonstrate the effectiveness of our models on
two graph-to-text datasets: LDC2020T02 and ENT-
DESC (Cheng et al., 2020) LDC2020T02 is an
AMR-to-Text dataset and has 55,635/1,722/1,898
instances for training, development, and testing.
We follow Ribeiro et al. (2021) to preprocess the
AMR graphs and tokenize the sentences. Each
instance contains a sentence and an AMR graph.
ENT-DESC is a large-scale and challenging dataset
generating text from the Knowledge Graph (KG-to-
Text). Each instance contains a KG consisting of
a main entity and a few topic-related entities. The
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LDC2020T02Models BLEU METEOR ChRF++ M BERTScore
LDGCN (Zhang et al., 2020b) 34.3 38.2 63.7 - -
SPRING (Bevilacqua et al., 2021) 44.9 - 72.9 - -
FINETUNE (Ribeiro et al., 2021) 41.6±0.6 - 70.4±0.5 78.5±0.2 96.0±0.1

ADAPT (Ribeiro et al., 2021) 43.0±0.2 - 71.3±0.1 79.3±0.1 96.2±0.1

SA-RGCN (Ribeiro et al., 2021) 48.0±0.2 - 73.2±0.1 80.1±0.3 96.3±0.1

FINETUNE‡ 41.55±0.58 42.06±0.21 70.62±0.34 78.30±0.32 96.02±0.12

SA-RGCN‡ 47.85±0.22 45.11±0.16 73.53±0.19 80.31±0.24 96.41±0.03

Ours 48.78±0.08 46.12±0.12 74.35±0.09 80.69±0.41 96.62±0.02

ENT-DESCModels BLEU METEOR ChRF++ ROUGE-L PARENT
S2S (Bahdanau et al., 2015) 6.8 10.8 - 40.7 10.0
GraphTransformer (Koncel-Kedziorski et al., 2019) 19.1 16.1 - 54.3 21.4
GRN (Beck et al., 2018) 24.4 18.9 - 55.5 21.3
GCN (Marcheggiani and Perez-Beltrachini, 2018) 24.8 19.3 - 56.2 21.8
DeepGCN (Guo et al., 2019) 24.9 19.3 - 56.2 21.8
MGCN + CNN (Cheng et al., 2020) 26.4 20.4 - 57.4 24.2
FINETUNE‡ 32.39±0.12 30.39±0.02 53.87±0.06 56.27±0.05 42.35±0.18

SA-RGCN‡ 34.06±0.31 31.54±0.04 57.78±0.06 58.42±0.04 43.32±0.18

Ours 34.87±0.36 32.37±0.11 58.41±0.22 58.97±0.14 43.70±0.12

Table 2: Main results of models on LDC2020T02 and ENT-DESC test datasets. ‡ means our reimplementation. The
other results are copied from the original paper. Mean (±s.d.) over 4 seeds.

target text consists of sentences that verbalize the
main entity in KG. ENT-DESC lacks explicit align-
ment between the input and the output. Therefore,
some knowledge in the input graph may be noise.
We follow official training, development, and test
splits of 88,650/11,081/11,081 instances. Table 1
summarizes the detailed statistics of LDC2020T02
and ENT-DESC.

4.2 Settings

Our implementation is based on Hugging Face
(Wolf et al., 2019). The RGCN and RGAT are
implemented based on PyTorch Geometric (Fey
and Lenssen, 2019). We initialize our models by
T5 (Raffel et al., 2019). To make a fair comparision,
we following the same experimental setting with
SA-RGCN (Ribeiro et al., 2021). We set the hidden
dimensions of both Structural Adapter and SACA
to 256. And we use T5base for all experiments on
ENT-DESC and T5large on LDC2020T02 for a fair
comparison with baselines. We use the AdamW op-
timizer (Loshchilov and Hutter, 2018) and employ
a linearly decreasing learning rate schedule without
warm-up. The learning rate is fixed as 10−4. We
set the training batch size as 4 for all experiments.
We freeze the T5 parameters and only update the
newly added parameters during training. We tune
the hyper-parameter λ in Equation 11 from the set
[1−2, 5−3, 1−3, 5−4], and select the best one on the
development set. We stack L = 2 RGAT layers
in Structure-Aware Cross-Attention. During de-

coding, we use beam search with a beam size 5.
We use BLEU (Papineni et al., 2002) for the early
stopping criterion. All experiments are trained on
Nvidia Tesla V100 32GB GPUs.

Following previous works, on both datasets, we
evaluate the results with BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011),
and ChRF++ (Popović, 2015) on both datasets.
On LDC2020T02, following Ribeiro et al. (2021),
we utilize the meaning (M) component of the
MF-score (Opitz and Frank, 2021) to measure
how well the source AMR graph can be recon-
structed from the generated sentence (refer to A.1
for more details). We use BERTScore (Zhang et al.,
2020a) allowing a semantic evaluation that depends
less on the surface forms. On ENT-DESC, We
add ROUGE-L (Lin, 2004) and employ PARENT
(Dhingra et al., 2019) for evaluating the faithful-
ness. We conduct experiments over 4 different
seeds and report the average scores on them.

4.3 Main Results

We compare our method with recent state-of-the-
art methods (please refer to A.4 for more details).
Table 2 summarizes the results on LDC2020T02
and ENT-DESC test sets. FINETUNE is a method
that transforms the input graph into a sequence
and finetunes T5 directly. It does not consider
the input graph structure. For LDC2020T02, our
method outperforms the previous state-of-the-art
model by 0.78 BLEU and 1.15 ChRF++. Com-
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Models BLEU METEOR M Dis-1 Dis-2
GOLD - - 81.00 23.82 71.76
ADAPT 45.22 43.28 79.56 23.20 71.40
Ours 47.85 45.80 80.37 23.46 71.75
w/o DGP 47.68 45.51 80.21 23.51 72.08
w/o SACA & DGP 47.20 45.05 80.01 23.38 71.69
w/o StrucAdapt 45.43 43.54 79.75 23.32 71.65

Table 3: Ablation study of models on LDC2020T02
development dataset. GOLD indicates the ground-truth
sentences. Dis-1 and Dis-2 denote Distinct1 and Dis-
tinct2, respectively.

pared with our implemented SA-RGCN, we im-
prove 1.01 METEOR. Moreover, our method raises
0.38 M, which indicates that it can generate more
faithful sentences to the input graphs. The improve-
ment on BERTScore shows that the sentence gener-
ated by our method is more similar to the ground
truth on the semantic level. For ENT-DESC, we
notice FINETUNE performs better than all previ-
ous methods. SA-RGCN, which encodes graph
structure into T5, furtherly improves the perfor-
mance. And our model exceeds all previous works
and achieves new state-of-the-art results on all met-
rics. The above results indicate that our proposed
methods can improve the model on fluency and
faithfulness.

4.4 Analysis and Discussion

Ablation Study The overall performance on the
two datasets shows the superiority of our proposed
Structure-Aware Cross-Attention (SACA) and Dy-
namic Graph Pruning (DGP). To demonstrate the
effectiveness of each component, we conduct ab-
lation studies on LDC2020T02 development sets
and minus one particular component at a time to
understand its impact on the performance. Espe-
cially, w/o DGP denotes we remove the dynamic
graph pruning module and the training objective
LDGP . ADAPT and w/o StrucAdapt denote re-
placing each structural adapter in SA-RGCN’s and
our encoders with an FNN adapter, respectively.
W/o StrucAdapt means that the model only con-
siders the structural information during decoding.
The results are summarized in Table 3. Particularly,
we observe the performance drops after remov-
ing SACA or DGP. This indicates that injecting
the structural information into input graph context
modeling (SACA) and dynamically removing the
redundant nodes (DPG) are beneficial. Regarding
theM score, our model and ADAPT are close to
GOLD. The AMR parser utilized byM, ADAPT

Models # Additional Params (million) Latency (s)
ADAPT 28.72 (3.3%) 1.41
SA-RGCN 37.80 (4.9%) 1.49

+ SACA 39.21 (5.0%) 1.54
+ SACA & DGP 41.31 (5.0%) 1.55

Table 4: Impact on parameter and speed.

as well as our method are all initialized by T5. And
the AMR paring and AMR-to-Text are dual tasks
actually. Therefore, theM score is biased and the
results of our model and ADAPT are somehow
inflated. Additionally, we utilize Distinct-1 and
Distinct-2 (Li et al., 2016) to evaluate the diversity
of the output text. We observe that SACA and DGP
have little effect on Distinct-1 and Distinct-2. This
implies that they will not reduce the diversity of
the output text.

We notice that, compared with ADAPT, w/o
StrucAdapt shows a slight improvement. This in-
dicates it is necessary to explicitly model the graph
structure in the encoder, even though structural bias
has been injected into the input graph context mod-
eling during decoding. We believe this may be
attributed to SACA relying on the input graph rep-
resentation encoded by the encoder. Because our
SACA is designed to exploit the relevant-only infor-
mation for prediction, it re-encodes the input graph
by conditioning its representation on the newly gen-
erated context. Therefore, the initial representation
for the input graph is important.

Impact on the parameter and speed Further-
more, we investigate the impact of SACA and DPG
on the model parameters and inference speed on
LDC2020T02 development. Specifically, we calcu-
late the additional parameters of each model with
respect to T5large. And we set the batch size to 1 to
calculate the average decoding time for generating
all examples. The results summarized in Table 4
indicate that SACA and DGP only bring minor
increase on the model size and inference time.

Impact on the Graph Properties To examine
the robustness of our proposed methods, we in-
vestigate the model’s performance concerning dif-
ferent graph properties (graph size, graph diame-
ter, and reentrancies) on LDC2020T02 and ENT-
DESC. Following previous works (Cheng et al.,
2020; Ribeiro et al., 2021), we use BLEU as the
metric. The results are summarized in Table 5
and Table 6, respectively. For LDC2020T02, we
firstly note that the BLEU scores decrease as the
graph size increases since the larger graph is often
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Graph Size 1-30 31-60 >60
# Examples 840 678 380
SA-RGCN 54.10 44.89 46.12
Ours 54.55+0.45 45.88+0.99 46.72+0.60

Graph Diameter 1-8 9-12 >12
# Examples 824 603 471
SA-RGCN 56.98 43.12 46.07
Ours 57.01+0.03 43.59+0.47 46.99+0.92

Reentrancies <= 1 2 >2
# Examples 913 549 436
SA-RGCN 53.60 44.03 43.30
Ours 54.16+0.56 44.55+0.52 44.53+1.23

Table 5: BLEU scores with respect to graph size, graph
diameter and number of reentrancies on LDC2020T02
test set.

complex. Our method achieves a clear improve-
ment when handling graphs with > 30 nodes. And
then we observe that the BLEU gap between our
method and SA-RGCN becomes larger for a rela-
tively larger graph diameter. Reentrancies are the
nodes with multiple parents. A graph with more
reentrancies is typically more complex (Wang et al.,
2020). As shown in the last section in Table 5,
our method has an improvement of +1.23 BLEU
points compared to SA-RGCN when graphs con-
tain > 2 reentrancies. To sum up, the results on the
LDC2020T02 dataset show the advantage of our
model in dealing with the AMR graph with more
complex structures.

As shown in Table 6, both models perform differ-
ently on ENT-DESC than on LDC2020T02. First,
we notice that both models perform the best when
the graph size is between 31 and 50, and they per-
form poorly when the graph size is too small or too
large. Cheng et al. (2020) also observed the finding,
and they believe this is due to the insufficient or
very noisy input information for generation. Addi-
tionally, both models perform better when graph
diameter or number of the reentrancies increase.
The reason is that, in the ENT-DESC, the knowl-
edge graph with a small diameter or number of
the reentrancies contains more noisy information
for the generation. Please refer to A.2 for more
details. The BLEU gap between our method and
SA-RGCN is the largest when the graph diame-
ter > 5 or the number of reentrancies > 10. The
above results demonstrate that our approach makes
SA-RGCN better at handling complex knowledge
graphs.

We investigate how the model behaves on dif-
ferent types of graphs (AMR and KG). And the re-
sults demonstrate that our model deals better with

Graph Size 1-20 21-40 >40
# Examples 3,559 5,069 2,453
SA-RGCN 33.01 38.86 28.54
Ours 33.67 +0.66 39.44+0.58 29.02 +0.48

Graph Diameter 1-3 4-5 >5
# Examples 2,227 5,017 3,787
SA-RGCN 30.52 34.41 35.83
Ours 31.14+0.62 34.83+0.45 36.55+0.72

Reentrancies < 6 6-10 >10
# Examples 2,277 5,017 3,787
SA-RGCN 27.57 36.58 37.17
Ours 28.03 +0.46 37.17 +0.59 37.81+0.64

Table 6: BLEU scores with respect to graph size, graph
diameter and number of reentrancies on ENT-DEST test
set.

Models BLEU METEOR ROUGE-L
GraphWriter 14.30 18.80 -
GraphWriter‡ 14.13 ± 0.10 18.92 ± 0.28 27.61 ± 0.16
Ours 15.59 ±0.35 19.70 ±0.21 28.47 ±0.14

Table 7: Generalization Study on AGENDA test dataset.
‡ means our reimplementation.

complex structures. We believe the improvement
comes from two aspects. First, on the one hand, it is
challenging for an encoder to encode all relevant in-
formation into node representations in a single for-
ward pass, especially if the graph structure is com-
plex. On the other hand, the re-encoding in SACA
makes the decoder easily exploit the relevant-only
information for prediction and explicitly injects the
structural information at each decoding step. Sec-
ond, DGP dynamically removes the nodes which
are redundant for the subsequent generation, which
makes the decoder pay more attention to the rele-
vant nodes.

4.5 Generalization Study

Institutionally, our proposed methods can not only
be applied to PLMs but also RNN based models.
In other words, we can easily combine the SACA
and DGP with previous RNN based works. To
examine the generalization of SACA and DGP,
we choose GraphWriter (Koncel-Kedziorski et al.,
2019) as the baseline, which consists of a multi-
layer graph transformer encoder and an attention-
based decoder with a copy mechanism. Further, to
make a fair comparison, we conduct the general-
ization experiment on AGENDA dataset (Koncel-
Kedziorski et al., 2019). We simply replace the
plain cross-attention in GraphWriter with our pro-
posed SACA. Additionally, we add the DGP layer
before the SACA. The experiments are under the
same settings as described in GraphWriter. As
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Figure 3: Human evaluation results on ENT-DESC test
set.

shown in Table 7, we observe that our proposed
model significantly improves the performance of
GraphWriter. The results indicate that SACA and
DGP are not only effective well on PLMs-based
models but also potent for RNN-based models.

4.6 Human Evaluation

Considering that the knowledge graph is more read-
able than AMR, we do human evaluations on the
ENT-DESC test set to examine whether human
judgments corroborate improvements in automatic
evaluation metrics. Following Cheng et al. (2020),
from outputs generated by the baseline model SA-
RGCN and our final model (Ours). We distribute
the outputs of different systems to three annotators
with linguistic backgrounds. The annotators have
no knowledge in advance about which model the
generated text comes from. Specifically, we give
each participant all main entities’ neighbors, 1-hop
and 2-hop connections between main entities, and
topic-related entities as references. They are re-
quired to score the generated text from 1 to 5 in
terms of three criteria: Fluency (is the sentence
fluent?), Grammar (is the sentence grammatical?),
and Authenticity (is the sentence more related to
the input graph?). For each criterion, we calcu-
late the final score by averaging the scores from
all annotators. As shown in Figure 3, our model
outperforms the baseline SA-RGCN on Fluency
and Grammar metrics. For Authenticity, the im-
provement is more significant. The performance
validates the benefit of our proposed SACA and
DGP modules in capturing more accurate input
graph context representations. We supply a case
study in A.3.

5 Conclusions

In this work, we make two main contributions.
First, we propose Structure-Aware Cross-Attention
(SACA) to make decoder easily exploit relevant-

only information for prediction. Apart from the
plain cross-attention, SACA re-encodes the input
graph conditioning on the newly generated context
while explicitly considering the input graph struc-
ture. The second one is that we adapt SACA and
propose its variant Dynamic Graph Pruning (DGP)
mechanism. In detail, the DGP dynamically prunes
the structure of the joint graph at different decoding
steps according to the generated text. Experimen-
tal results conducted on two graph-to-text datasets,
LDC2020T02 and ENT-DESC, show the effective-
ness of our method. The empirical and analysis
results on both datasets show that the proposed
methods can improve the model’s performance on
complex graphs while only bringing minor increase
on the model size and inference time.
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A Appendix

A.1 MF-score
TheM (Meaning Preservation) component of the
MF-score (Opitz and Frank, 2021) is utilized to
measure how well the source AMR graph can be
reconstructed from the generated sentence. It recon-
structs the AMR with a SOTA parser and computes
the relative graph overlap of the reconstruction and
the source AMR using graph matching. M em-
ploys the python library amrlib2 (version 0.5.0) to
make AMR parse, where the parser is a T5-based
model.

A.2 Distribution on Graph Size
On the ENT-DESC test set, previous study (Cheng
et al., 2020) and our experimental results (in Ta-
ble 6) suggest that the model performs the best
when the graph size lies in the range of 21 − 40
and has a poorer performance when the number of
triples is too small or too large. It should be due
to the fact that the input information is insufficient
or very noisy. However, we find that the model
performance increases as the graph diameter and
reentrancies increase. For further investigation, we
calculate the distribution of graph diameter and
reentrancies broken down by graph size, respec-
tively. The results are summarized in Figure 4. As
shown in Figure 4(a), the proportion of graphs with
size 21 − 40 increases as the graph diameter in-
creases. As shown in Figure 4(b), the results on
graph reentrancy follow a pattern similar to graph
diameter. In a word, in ENT-DESC, the noise de-
creases as the graph diameter and reentrancies in-
crease, so the model performs better.

A.3 Case Study
As shown in Figure 5, we further take a typical ex-
ample from our human study to better understand
how our method improves the mode’s performance.
Given the Knowledge Graph containing the main
entity “Andrew Lawrence" and all its related en-
tities, we aim to generate a description about the
main entity. We notice that both the baseline and
our model can identify the main entity. However,
the baseline outputs a sentence describing the re-
lation between “Andrew Lawrence" and “Matthew
Lawrence". The relation is not existing in the input
graph. Moreover, it repeatedly generates the entity
“Brotherly Love" and misses the related entity “Re-
cess". Compared with it, our model generates the

2https://github.com/bjascob/amrlib/tree/0.5.0

sentences faithful to the input graph and correctly
covers the main entity and most topic-related enti-
ties. We consider this is because the SACA helps
the decoder obtain a more accurate input graph con-
text, and the DGP removes the redundant nodes as
the decoding stage progresses.

A.4 Baseline Models
On the AMR-to-Text task LDC2020T02, we com-
pare our method with several baselines including:

• LDGCN (Zhang et al., 2020b) is a a dynamic
fusion mechanism, which captures richer non-
local interactions by synthesizing higher order
information from the input graphs. A weight
tied convolutions to reduce memory usage is
applied.

• SPRING (Bevilacqua et al., 2021) casts Text-
to-AMR and AMR-to-Text as a symmetric
transduction task and proposes a graph lin-
earization and extending a pretrained encoder-
decoder model.

On the KG-to-Text task ENT-DESC, we com-
pare our method with several baselines including:

• s2s (Bahdanau et al., 2015) is a encoder-
decoder based model, which allows a model
to automatically (soft-)search for parts of a
source sentence that are relevant to predicting
a target word, without having to form these
parts as a hard segment explicitly.

• GraphTransformer (Koncel-Kedziorski
et al., 2019) introduces a novel graph
transforming encoder which can leverage the
relational structure of such knowledge graphs
without imposing linearization or hierarchical
constraints.

• GRN (Beck et al., 2018) couples the recently
proposed Gated Graph Neural Networks with
an input transformation that allows nodes and
edges to have their own hidden representa-
tions.

• GCN (Marcheggiani and Perez-Beltrachini,
2018) proposes an alternative encoder based
on graph convolutional networks that directly
exploits the input structure.

• DeepGCN (Guo et al., 2019) introduces a
dense connection strategy, which is able to
integrate both local and non-local features to
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Figure 4: The clustered column charts of graph diameter and reentrancies by graph size.

Gold Andrew James Lawrence (born January 12, 1988) is an American
actor and singer. He is known for his roles as Andy Roman in 
"Brotherly Love"  and T.J. Detweiler in "Recess".

SA-RGAT Andrew Lawrence (born January 12, 1988) is an American actor, 
voice actor, and singer. He is best known for his roles in the films 
"Brotherly Love" and "Brotherly Love". He is the younger brother of 
Matthew Lawrence.

Ours Andrew Lawrence (born January 12, 1988) is an American actor and 
singer. He is best known for his roles in "Recess" and "Brotherly 
Love".

Figure 5: An example of generated sentences. The main
entity is highlighted in red, topic-related entities are
highlighted in blue, and the sentence that is not faithful
to the input graph is in green.

learn a better structural representation of a
graph.

• MGCN + CNN (Cheng et al., 2020) is a
multi-graph structure that is able to represent
the original graph information more compre-
hensively. We do not report the results of
MGCN + CNN + delex. Because it applies the
delexicalization technique on the ENT-DESC
dataset, which delexicalizes the main entity
and topic-related entities by replacing these
entities with tokens indicating the entity types
and indices. The delexicalization technique
greatly boosts their performance on ROUGE-
L. They do not release the code about delexi-
calization, and we can not reproduce it.

What’s more, FINETUNE, ADAPT and SA-RGCN
are T5-based models proposed in (Ribeiro et al.,

2021).
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Abstract

This paper presents a novel multi-perspective
document revision task. In conventional stud-
ies on document revision, tasks such as gram-
matical error correction, sentence reorder-
ing, and discourse relation classification have
been performed individually; however, these
tasks simultaneously should be revised to im-
prove the readability and clarity of a whole
document. Thus, our study defines multi-
perspective document revision as a task that
simultaneously revises multiple perspectives.
To model the task, we design a novel Japanese
multi-perspective document revision dataset
that simultaneously handles seven perspec-
tives to improve the readability and clarity
of a document. Although a large amount of
data that simultaneously handles multiple per-
spectives is needed to model multi-perspective
document revision elaborately, it is difficult
to prepare such a large amount of this data.
Therefore, our study offers a multi-perspective
document revision modeling method that can
use a limited amount of matched data (i.e.,
data for the multi-perspective document revi-
sion task) and external partially-matched data
(e.g., data for the grammatical error correction
task). Experiments using our created dataset
demonstrate the effectiveness of using multiple
partially-matched datasets to model the multi-
perspective document revision task.

1 Introduction

With the advance of natural language processing
technology using deep learning, applications for
writing support systems have been developed (Tsai
et al., 2020; Ito et al., 2020). Such systems often
implement a grammatical error correction task that
corrects errors such as typos and mistakes in in-
flected verb forms (Rothe et al., 2021). It is easy
for the reader to understand an error-free docu-
ment, and the lack of errors can allow for smooth
text communication. In addition, it is crucial to

revise a document automatically because it is dif-
ficult to read one’s writing objectively, and it is
time-consuming for a third party to revise the doc-
ument.

The document revision task has been studied
in the natural language processing field by being
broken down into partial tasks. Grammatical error
correction tasks have been studied actively (Sawai
et al., 2013; Mizumoto and Matsumoto, 2016;
Junczys-Dowmunt and Grundkiewicz, 2016), and
modeling with the sequence-to-sequence (seq2seq)
model has achieved high performance with the ad-
vance of deep learning (Yuan and Briscoe, 2016;
Junczys-Dowmunt et al., 2018; Rothe et al., 2021).
In addition, tasks considering the relationship be-
tween sentences in a document are sentence order-
ing (Yin et al., 2019; Wang and Wan, 2019) and
discourse relation classification (Liu et al., 2016;
Dai and Huang, 2018). These tasks have achieved
high performance using deep learning, as with the
grammatical error correction task.

However, studies that simultaneously revise mul-
tiple perspectives have not been well considered.
To advance writing support, it is important not only
to correct grammatical errors in a single sentence
but also to improve the readability and clarity of
a whole document. For example, when we man-
ually perform document revision, we attempt to
correct grammatical errors, split a long sentence
into shorter sentences, and consider the relation-
ships between sentences, such as by reordering
them to obtain a consistent order and by perform-
ing conjunction insertion. Accordingly, this paper
addresses a novel multi-perspective document re-
vision task that simultaneously considers various
perspectives such as grammatical error correction,
long sentence splitting, sentence reordering, and
conjunction insertion, as shown in Figure 1.

To address the multi-perspective document re-
vision task, we need to define this task and de-
sign a suitable dataset. In this paper, we define
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Post-revision document:

Word unificationSentence splitting Grammatical error correction Sentence deletion

Conjunction insertion

Sentence reordering

Until now, the mainstream of educationhas focused on grammar and formal aspects, but this is somewhat counterproductive for 
elementary school students who has not yet formed the ability to think logically and that it is more effective for them to learn practical 
English. I believe that studying English in Japan should be practical. Arithmetic is also crucial in elementary school. I should review English 
education in elementary schools.

Pre-revision document:

I should review English education in elementary schools. Until now, the mainstream of English education has focused on grammar and 
formal aspects. However, this is somewhat counterproductive for elementary school students who have not yet formed the ability to think 
logically. It is effective for them to learn practical English. Therefore, I believe that English education in Japan should be practical.

Figure 1: Example of multi-perspective document revision task.

multi-perspective document revision as revising a
document to improve its readability and clarity by
considering multiple perspectives simultaneously.
However, there is no dataset that simultaneously
handles multiple perspectives because datasets in
conventional studies handled only one perspective
(Dahlmeier et al., 2013; Tanaka et al., 2020; Chen
et al., 2016; Webber et al., 2019). Thus, we make a
new Japanese multi-perspective document revision
dataset that can simultaneously handle seven per-
spectives of readability and clarity of documents.
To the best of our knowledge, this is the first at-
tempt to construct a multi-perspective document
revision dataset. This paper details how we con-
structed our dataset (see section 3).

To model the multi-perspective document revi-
sion task, it is necessary to consider long-range con-
texts of multiple sentences because some perspec-
tives address the relationships between sentences.
For example, sentence reordering and conjunction
insertion tasks cannot be revised without consid-
ering the relationship between multiple sentences.
Thus, we use the seq2seq model for modeling the
multi-perspective document revision task by con-
sidering document-level information. Although our
study uses the seq2seq model as with the grammat-
ical error correction task, one difference is that we
handle not a single sentence but a set of sentences.

The main difficulty in modeling the multi-
perspective document revision task is simultane-
ously considering multiple perspectives. To ad-
dress the multiple perspectives simultaneously and
robustly, we should prepare a large amount of
matched data (i.e., data for the multi-perspective
document revision task). However, it is diffi-
cult to prepare such a large amount of data be-
cause manually writing and revising documents is
time-consuming. Thus, we use a limited amount
of matched data and a large amount of partially-
matched data that handles individual partial tasks

to model a multi-perspective document revision
task because this task is composed of multiple par-
tial tasks. Preparing a large amount of partially-
matched data is easy because some datasets exist,
and others can be generated heuristically (e.g., for
the conjunction insertion task, we can construct
paired data by deleting and restoring conjunctions
from existing documents). To effectively model
the multi-perspective document revision task us-
ing both a matched dataset and multiple partially-
matched datasets, we use seq2seq modeling with
switching tokens (Ihori et al., 2021b). In our study,
the switching tokens are used for distinguishing
individual partial tasks in our multi-perspective
document revision task. For example, when the
grammatical error correction dataset is trained, we
can use this dataset as the partially-matched dataset
by switching the grammatical error correction task
“on” and other tasks “off”. Although the method
using switching tokens is not new, applying the
switching tokens for the task that can improve
the performance of a matched task from multiple
partially-matched tasks is new.

In our experiments using our created dataset, we
use the grammatical error correction dataset and the
conjunction insertion dataset as partially-matched
datasets. Our results demonstrate that our mod-
eling method can simultaneously revise multiple
perspectives and effectively improve performance
by using a matched dataset and multiple partially-
matched datasets. Our main contributions are as
follows:

• We define a novel multi-perspective document
revision task that simultaneously considers
multiple perspectives for writing support.

• We create a novel Japanese multi-perspective
document revision dataset that can simulta-
neously handle seven perspectives and detail
how we make it.
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• We present a multi-perspective document revi-
sion modeling method that takes advantage of
the fact that this task is composed of multiple
partial tasks and uses both a matched dataset
and multiple partially-matched datasets.

2 Related Work

2.1 Modeling of partial task in document
revision task

The partial tasks that compose a document revi-
sion task have been studied as individual tasks.
First, grammatical error correction is the most typ-
ical task, and it corrects the errors in input text
by deleting, inserting, and replacing words. For
this task, studies have focused on sentence-level
errors and performed error correction by using a
seq2seq model to achieve high-performance (Yuan
and Briscoe, 2016; Junczys-Dowmunt et al., 2018;
Rothe et al., 2021). Also, synthetic training data
generation is introduced to deal with paired-data
scarcity in recently (Grundkiewicz et al., 2019; Kiy-
ono et al., 2020; Rothe et al., 2021). However, it
is difficult to generate synthetic data for the multi-
perspective document revision task because it in-
volves multiple partial tasks such as grammatical
error correction, sentence reordering, and conjunc-
tion insertion. Next, there are the tasks that handle
a set of sentences like the discourse relation clas-
sification task (Liu et al., 2016; Dai and Huang,
2018). This task predicts the relation class (e.g.,
contrast and causality) of two arguments and can
help in writing coherent text by suggesting rela-
tionships between sentences. Our study adopts a
conjunction insertion task similar to the discourse
relation classification task but directly completes
conjunctions in accordance with the relationship
between sentences.

2.2 Modeling of multiple perspectives
simultaneously

There are few studies to perform multiple perspec-
tives using the seq2seq model. Lin et al. (2021) pro-
posed document-level paraphrase generation task
that simultaneously performs the sentence reorder-
ing and sentence paraphrasing tasks. In this con-
ventional study, a pseudo dataset for a document-
level paraphrase generation task was created, and
the task was performed with a task-specific model
architecture. Ihori et al. (2021b) proposed the
method to perform disfluency deletion and punctu-
ation restoration tasks simultaneously. To execute

(1) Correct the following mistakes.
erroneous substitution, deletion, insertion,
and kanji-conversion, syntactic errors,
redundant expressions, style normalization,
punctuation errors

(2) Split long sentences containing more than 60
characters.

(3) Unify words with different expressions that have
the same meaning.

(4) If there is no subject, restore the subject
by using words that have already been mentioned.

(5) Change the sentence order if it is not appropriate.
(6) Delete sentences that describe unrelated topics.
(7) Insert correct conjunctions by considering the

relationships between sentences.

Table 1: Perspectives for Japanese multi-perspective
document revision.

these two tasks simultaneously without preparing a
matched dataset, switching tokens have been intro-
duced into the seq2seq model. These conventional
studies handle limited tasks in the document revi-
sion task, and this paper is the first study to con-
sider more perspectives simultaneously than these
studies.

3 Japanese Multi-perspective Document
Revision Dataset

This section details a new dataset for a Japanese
multi-perspective document revision task. The
dataset contains paired data consisting of source
and revised documents in Japanese. The source
documents were written by Japanese crowd work-
ers, and the reference documents were revised by
two Japanese labelers. To revise documents, we de-
fined seven perspectives that have been individually
used in general document revision problems. Table
1 summarizes all perspectives, and Figure 2 shows
an example of multi-perspective document revi-
sion that simultaneously uses several perspectives,
correction of erroneous insertion and punctuation
error, splitting of sentences, and conjunction inser-
tion. To the best of our knowledge, this is the first
dataset to address such multiple perspectives of the
document revision task.

3.1 Perspectives

(1) Error correction This perspective includes
the grammatical error correction task (Tanaka et al.,
2020). Mistakes in a document need to be corrected
because it is difficult to understand the document
with errors. In this paper, we define eight Japanese-
specific errors, erroneous substitution, deletion, in-
sertion, and kanji-conversion, syntactic errors, re-
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Source
document

Revised
document

Translation

The development of social media has made it easier to get information. On the other hand, there can be 
difficulties in handling vast amounts of information. Also, in most cases, we only use social media to access our 
favorite types and sources of information. Previously, many people got the same information from newspapers 
and television, and thus, they could talk on an equal footing. Now, however, some people unknowingly treat 
their closely held opinions as complete information, so their information is biased. Therefore, social media 
seems to be a treasure trove of information, but it may also be a tool for maintaining biased information.

Figure 2: Example of Japanese multi-perspective document revision dataset. The colors of characters correspond to
perspectives in Figure 1.

dundant expressions, text style normalization, and
punctuation errors. For example, in revising redun-
dant expressions, we remove expressions with the
same meaning or words that make sense without
them (e.g., 一番最後→最後 # last, することが
できる→できる # can).

(2) Sentence splitting Sentences more extended
than 60 characters, which is the length of a typical
sentence in Japanese, should be divided because
long sentences decrease readability. We defined
this by using specific numerical values to prevent
different labelers from having other divisions.

(3) Word unification To avoid confusion for the
reader, words that have the same meaning in a
document should be expressed in the same way.
In addition, in Japanese documents, expressions
“desu, masu” or “da, dearu,” are used at the end of
sentences, and these expressions need to be unified
within the same document.

(4) Subject restoration Throughout Japanese
documents, the subject is often omitted; however,
subject restoration may be necessary because a
sentence without a subject may not correctly con-
vey the intent of the writer to the reader. Thus,
we restore the subject in sentences without a sub-
ject. Note that subject restoration should not be
performed when the subject is clearly recognizable
because consecutive occurrences of the same sub-
ject may reduce readability.

(5) Sentence reordering This perspective in-
cludes the sentence ordering task (Barzilay and
Lapata, 2008). A well-organized document with a
logical structure is much easier for people to read
and understand. Also, sentence order is important

in constructing logical structures. Thus, we reorder
sentences, in order for a document to have a logical
order.

(6) Sentences deletion A coherent document
consists of multiple sentences describing a single
topic, but a document that mixes multiple topics
can inhibit the understanding of the reader. Thus,
we delete sentences that describe distinctly differ-
ent topics from a document.

(7) Conjunction insertion This perspective in-
cludes the discourse relation classification task (Liu
et al., 2016). Discourse relations support a set of
sentences to form a coherent document. Also, the
conjunction has a role in showing these relations
and serves as a natural means to connect sentences.
Thus, we restore the conjunction in documents to
improve readability. We created a list of conjunc-
tions that show their kinds and roles, and we asked
labelers to select from this list.

3.2 Dataset specifications
Source documents: To make the source docu-
ments, we hired 161 Japanese workers through a
crowdsourcing service and asked them to write
paragraph-level documents in Japanese. The
documents had an essay-style structure because
Japanese schools teach how to write essays; thus,
we expected that many workers could write essays
at the same level. First, we showed the workers 48
themes, and they each selected 1-15 themes. The
48 themes were chosen by the crowdsourcing com-
pany from actual themes that were used for exam
essays in Japan. Next, the workers wrote paragraph-
level documents, each of which contained 200-300
characters and four or more sentences. We could
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# of documents # of sentences

Training Input 5,000 26,477
Output 5,000 28,158

Validation Input 554 2,922
Output 554 3,128

Test Input 1,121 6,054
Output 2,242 12, 831

Table 2: Details of multi-perspective document revision
dataset.

revise these source documents with multiple per-
spectives including the relationship between sen-
tences by using this source document because they
consisted of multiple sentences and had a coherent
topic. Each worker wrote 1-15 documents, and the
time limit for writing each one was 15 minutes. Al-
though we asked workers to be careful about typos,
we also asked them not to strive for perfection.

Revised documents: To revise the source docu-
ments, we hired two Japanese labelers. One labeler
had a license as a Japanese language teacher, while
the other labeler received guidance on revising the
document. For the multi-perspective document re-
vision task, we should simultaneously handle mul-
tiple perspectives to improve the readability and
clarity of a document. Thus, we asked them to
follow the revision guidelines listed in Table 1 to
ensure that they could consider revising from mul-
tiple perspectives. We expected that the labelers
would be able to revise documents with equivalent
quality by following the guidelines. Note that they
did not necessarily have to consider all perspectives
simultaneously but were only to make these revi-
sions if there were any mistakes or unnatural points.
The collected data was divided into a training set,
a validation set, and a test set. Table 2 details the
resulting dataset for the Japanese multi-perspective
document revision task.

3.3 Analysis
We investigate how much of the source documents
were revised. To investigate the revision, we em-
ploy and measure Levenshtein distance (Leven-
shtein et al., 1966), which can measure the edit
distance between the source and revised documents.
Figure 3 shows the distribution of Levenshtein
distance for all paired data in our created multi-
perspective document revision dataset. In Figure 3,
the Levenshtein distance of 17 was the most com-
mon, and the paired data with the distance were re-
vised by correcting punctuation errors and inserting
one or two conjunctions. In addition, as the Leven-
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Figure 3: Distribution of Levenshtein distance for paired
data in multi-perspective document revision dataset.

shtein distance increased, many perspectives were
corrected simultaneously, such as reordering sen-
tences, restoring subjects, and splitting sentences.
However, the distribution of the various perspec-
tives is unbalanced because this dataset contains
more conjunction insertion and error correction
than other perspectives.

4 Multi-perspective Document Revision
Models

4.1 Strategy

To build a multi-perspective document revision
model, we use the matched dataset created in sec-
tion 3 and multiple partially-matched datasets that
handle the partial tasks of the multi-perspective
document revision task. Our strategy in using these
datasets jointly is to incorporate multiple “on-off”
switches into the seq2seq model. These switches
can be implemented by using switching tokens
(Ihori et al., 2021b). A switching token represents
the “on” state (the target task) or “off” state (not
the target task) for each task. In addition, a model
that introduces switching tokens can explicitly dis-
tinguish the multi-perspective document revision
task and each partial task.

Figure 4 shows an example of training and de-
coding the multi-perspective document revision
model using switching tokens. In the figure, we use
three datasets, a matched dataset, a grammatical
error correction (gec) dataset, and a conjunction
insertion (ci) dataset, to train the multi-perspective
document revision model. In addition, we use
three switching tokens, s1 ∈{[gec_on], [gec_off]},
s2 ∈{[ci_on], [ci_off]}, and s3 ∈{[other_on],
[other_off]}. We specify the “other” task because
the multi-perspective document revision task han-
dles other perspectives in addition to the grammati-
cal error correction and conjunction insertion tasks,
as listed in Table 1. These switching tokens are
used as inputs of the decoder network in given
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Figure 4: Example of training and decoding multi-perspective document revision model using switching tokens.

contexts. In the training phase, all three datasets
are trained jointly by distinguishing each task with
three switching tokens. In the decoding phase, the
model performs the multi-perspective document re-
vision task by feeding switching tokens, [gec_on],
[ci_on], and [other_on]. Note that we can also per-
form the grammatical error correction or conjunc-
tion insertion tasks by feeding appropriate switch-
ing tokens.

4.2 Modeling method
We define a source document as X = {x1, · · · ,
xm, · · · , xM} and a revised document as Y =
{y1, · · · , yn, · · · , yN}, where M and N are the
amount of tokens in source and revised documents,
respectively. xm and yn are tokens that include
not only characters or words but also punctuation
marks. In this paper, we handle a set of sentences,
soX and Y have multiple sentences. Thus, we in-
troduce [CLS] token at the beginning of sentences
into all datasets to distinguish each sentence in doc-
uments.

The multi-perspective document revision model
predicts the generation probabilities of a revised
document Y given a source document X and
switching tokens s1:T = {s1, · · · , st, · · · , sT },
where T is the total number of partial tasks that
are included in each partially-matched dataset. The
generation probability of Y is defined as

P (Y |X, s1:T ;Θ) (1)

=

N∏

n=1

P (yn|y1:n−1,X, s1:T ;Θ),

where y1:n−1 = {y1, · · · , yn−1}, and Θ represents
the trainable parameters. st is the t-th switching
token represented as

st ∈ {[t−th task_on], [t−th task_off]}. (2)

In this paper, we use Transformer pointer-
generator networks (Deaton, 2019) for this model-

ing. These networks are effective for monolingual
translation tasks because they contain a copy mech-
anism that copies tokens from a source text to help
generate infrequent tokens. Note that our method
does not change the architecture of a transformer
pointer-generator network but merely adds switch-
ing tokens to the model input.

Pre-training: In this paper, we use a MAsked
Pointer-Generator Network (MAPGN) (Ihori et al.,
2021a) as self-supervised pre-training for the
seq2seq model because it is a suitable pre-
training method for pointer-generator networks.
In MAPGN, the pointer-generator network is pre-
trained by predicting a sentence fragment ya:b given
a masked sequence Y/a:b. Here, Y/a:b denotes a
fragment in which positions a to b are masked, and
ya:b denotes a sentence fragment of Y from a to
b. The model parameter set can be optimized from
unpaired dataset Du that is consisted of a set of
sentences. The training loss function L is defined
as

L=−
∑

Y ∈Du

logP (ya:b|ya−1,Y/a:b;Θ), (3)

=−
∑

Y ∈Du

b∑

t=a

logP (yt|ya−1:t−1,Y/a:b;Θ).

Note that all switching tokens have to be included
in the vocabulary during pre-training.

Fine-tuning: During fine-tuning, the matched
datasetDm, and multiple partially-matched datasets
{D1

pm, · · · ,Dppm, · · · ,DPpm} are trained jointly in a
single model. P is the number of partially-matched
datasets. The training loss function L is defined as

L = Lm +
P∑

p=1

Lppm, (4)
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where Lm is the loss function against the main task
and it is computed from

Lm =−
∑

(X0,Y 0)∈Dm

logP (Y 0|X0, s01:T ;Θ),

(5)

where s01:T = {s01, · · · , s0T } are switching tokens
and s0t is represented as

s0t = [t−th task_on]. (6)

Lppm is the loss function against the p-th partially-
matched dataset and it is computed from

Lppm =−
∑

(Xp,Y p)∈Dppm

logP (Y p|Xp, sp1:T ;Θ),

(7)

where sp1:T = {sp1, · · · , spT } are switching tokens
and spt is represented as

spt =

{
[t−th task_on] if t-th task in Dppm,
[t−th task_off] otherwise.

(8)

Decoding: The decoding problem using switch-
ing tokens is defined as

Ŷ = arg max
Y

P (Y |X, s1:T ;Θ). (9)

The model can perform the multi-perspective doc-
ument revision task or each partial task in accor-
dance with the given switching tokens.

5 Experiments

We experimentally evaluated the effectiveness of
this modeling method that can use both a matched
dataset and multiple partially-matched datasets.

5.1 Dataset
In this paper, we use two partial tasks, the grammat-
ical error correction (gec) and conjunction insertion
(ci) tasks, to build a multi-perspective document
revision model. Accordingly, we use three datasets,
a multi-perspective document revision dataset de-
scribed in section 3, a Japanese grammatical er-
ror correction dataset (Tanaka et al., 2020), and a
conjunction insertion dataset. We made the con-
junction insertion dataset by deleting and restoring
conjunctions from the Japanese Wiki-40b dataset
(Guo et al., 2020), which is a high-quality pro-
cessed Wikipedia dataset. To make this dataset

# of documents # of sentences

Training
a 5,000 26,477
b - 506,786
c 90,000 533,422

Validation
a 554 2,922
b - 8,542
c 10,000 59,396

Test
a 1,121 6,054
b - 8,542
c 1,000 6,026

switch
a [gec_on][ci_on][other_on]
b [gec_on][ci_off][other_off]
c [gec_off][ci_on][other_off]

a. Multi-perspective document revision dataset
b. Japanese grammatical error correction dataset
c. Conjunction insertion dataset

Table 3: Details of a matched dataset and two partially-
matched datasets.

from paragraph-level documents, we divided the
dataset into paragraphs and extracted the docu-
ments that contained conjunctions. In addition,
we use unpaired 880k paragraph-level documents
for self-supervised pre-training, and these docu-
ments, which were prepared from the Wiki-40B
dataset, were not used in the conjunction insertion
dataset. The details of these datasets are listed in
Table 3, where “switch” refers to switching tokens.
For training and decoding, we use three switching
tokens for the gec task, the ci task, and other tasks.
The multi-perspective document revision model
can also perform the gec and ci tasks by feeding
appropriate switching tokens, so we evaluate the
performance of each partial task using each test set.
Note that the Japanese grammatical error correc-
tion dataset does not have documents because this
dataset consists of single sentences.

5.2 Setup

For evaluation purposes, we constructed 11
Transformer-based pointer-generator networks. We
use the three datasets combined in different ways,
each dataset only, a matched dataset and each
partially-matched dataset, and the three datasets
jointly. Then, we construct the models with and
without switching tokens. In addition, we apply
the pre-training to the models that use a matched
dataset only and the three datasets jointly with
switching tokens.

We used the following configurations. The en-
coder and decoder had a 4-layer and 2-layer trans-
former block with 512 units. The output unit
size (corresponding to the number of tokens in the
pre-training data) was set to 12,773. To train the
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Dataset GLEU F0.5 C-F1
Source - 0.886 0 0
Baseline (1) a 0.857 0.198 0.193

(2) + PT 0.884 0.321 0.211
+ Datasets (3) a + b 0.863 0.189 0.164

(4) a + c 0.881 0.155 0.101
(5) a + b + c 0.883 0.236 0.205

+ Switch (6) a + b 0.887 0.278 0.163
(7) a + c 0.888 0.234 0.214
(8) a + b + c 0.889 0.282 0.270
(9) + PT 0.892 0.333 0.274

Table 4: Results of multi-perspective document revi-
sion task. “Source” row indicates results for source
documents in multi-perspective document revision task
dataset.

Task Dataset GLEU F0.5 C-F1
gec b 0.943 0.635 -

a + b + c 0.932 0.613 -
+ switch 0.943 0.630 -

ci c 0.964 0.198 0.230
a + b + c 0.966 0.207 0.222
+ switch 0.967 0.239 0.263

Table 5: Results of grammatical error correction (gec)
and conjunction insertion (ci) tasks.

Transformer pointer-generator networks, we used
the RAdam optimizer (Liu et al., 2019) and label
smoothing (Lukasik et al., 2020) with a smoothing
parameter of 0.1. We set the mini-batch size to
32 documents and the dropout rate in each Trans-
former block to 0.1. All trainable parameters were
initialized randomly, and we used characters as
tokens. In the pre-training, we set the number
of masked tokens to roughly 50% of an input se-
quence. For decoding, we used the beam search
algorithm with a beam size of 4.

5.3 Results
Tables 4 and 5 show the results for the 11 Trans-
former pointer-generator networks. In these tables,
a, b, and c represent the multi-perspective docu-
ment revision dataset, the Japanese grammatical
error correction dataset, and the conjunction in-
sertion dataset. Also, “switch” and “PT” indicate
switching tokens and pre-training, respectively. We
used automatic evaluation scores in terms of two
metrics: GLEU (Napoles et al., 2015) and F0.5.
Specifically, we calculated these metrics for char-
acters in generated documents and used 4-grams
for GLEU. In addition, we also calculated the F1
score for conjunction insertion, denoted as C-F1, to
evaluate the performance of the conjunction inser-
tion task. We evaluated whether the system could
insert conjunctions with the correct meaning be-

cause multiple conjunctions have the same sense
(e.g., “but” and “however”).

Results of multi-perspective document revision
task: In Table 4, when the number of partially-
matched datasets increased, the performance im-
proved. This indicated that switching-token-based
joint modeling that trains a matched dataset and
multiple partially-matched datasets using switch-
ing tokens is effective for modeling the multi-
perspective document revision task. Therefore, it
is important for switching-token-based joint mod-
eling to distinguish tasks because the scores with
switching tokens were higher than those without
switching tokens. In addition, when we com-
pared the results of lines (8) with (9), the results
with pre-training outperformed those without pre-
training. This indicates that switching-token-based
joint modeling can be effectively applied after per-
forming self-supervised pre-training.

Figure 5 shows that the generation examples of
lines (2), (5), and (8) in Table 4. In the figure, the
generation example in (2) shows that conversion
errors were decreased, but task-specific generation,
like a conjunction insertion, was not performed
well. On the other hand, the generation example in
(8) shows that task-specific generation performed
better than (2). Thus, we suppose it is difficult to
improve the performance of the multi-perspective
document revision task by applying pre-training
alone. Here, the generation example in (5) shows
it has more errors than (8) in a task-specific genera-
tion. These facts indicate that the switching tokens
are important for joint training of the matched and
multiple partially-matched tasks.

Results of partial tasks: Table 5 shows that in
grammatical error correction, the performance of
individual modeling and switching-token-based
joint modeling were not significantly different.
However, the performance of joint modeling with-
out switching tokens under-performed that of the
individual modeling. For the conjunction insertion
task, the results of joint modeling outperformed
those of individual modeling. Also, the results
of joint modeling with switching tokens outper-
formed those without switching tokens. Therefore,
these results indicated that switching-token-based
joint modeling could improve the performance of
the multi-perspective document revision task with-
out impairing the performance of each task. Note
that this study aims to improve the performance
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(I understand you) (disconnect) achieve success

(... In today's society, ... "co-dependent relationships" have become a problem. In ancient times and in an environment full of enemies, 
one's life was one's own ... a sign of adulthood. To be dependent on someone else was to risk the lives of many.)

(... In today's society, ... "co-dependent relationships" have become a problem. In ancient times and in an environment full of enemies, 
one's life was one's own ... a sign of adulthood. In other words, to be dependent on someone else was to risk the lives of many.)

(... In today's society, ... "co-dependent relationships" have become a problem. In ancient times and in an environment full of enemies, 
one's life was one's own ... a sign of adulthood. Thus, to be dependent on someone else was to risk the lives of many.)

(... In today's society, ... "co-dependent relationships" have become a problem. Since in ancient times and in an environment full of 
enemies, one's life was one's own ... a sign of adulthood. Therefore, to be dependent on someone else was to risk the lives of many.)

(... In today's society, ... "co-dependent relationships" have become a problem. In ancient times and in an environment full of enemies, 
one's life was one's own ... a sign of adulthood. In other woeds, to be dependent on someone else was to risk the lives of many.)

i: Correction focused on grammatical error correction, ii: Correction focused on conjunction insertion

Figure 5: Generation examples of lines (2), (5), and (8) in Table 4.

of the matched task by simultaneously training the
matched task and multiple partially-matched tasks,
so we do not aim to improve the performance of
individual partially-matched tasks.

Conflict results in Tables 4 and 5: The results
of lines (4), (5), (7), and (8) in Table 4 show irrele-
vant dataset b brings more prominent improvement
on C-F1. However, In Table 5, after introducing
dataset b in ci task, C-F1 shows an obvious down-
ward trend. We suppose these results are dependent
on the target tasks. First, we focus on the results
of the multi-perspective document revision task in
Table 4. Since this task requires multiple tasks to
map simultaneously from a source document to a
revised document, this task is more complex than
handling a single task and requires a large amount
of training data. We think the results of each task
in the multi-perspective document revision task are
improved by simultaneously training the dataset
for different tasks included in this task. This reason
is that the performance of the seq2seq mapping is
improved due to increasing the amount of train-
ing data that partially handles the multi-perspective
document revision task. Next, we focus on the re-
sults of a single task in Table 5. Here, the ci and
gec tasks are related tasks for the multi-perspective
document revision task, but each task is unrelated.
Thus, in the ci task, adding datasets for unrelated
tasks without switching tokens may have degraded
performance for this task because data from unre-
lated tasks may have become noise.

6 Conclusion

In this paper, we proposed a novel multi-
perspective document revision task that revises
multiple perspectives simultaneously to improve
the readability and clarity of a document. We
created a dataset that simultaneously addresses
seven perspectives by using a crowdsourcing ser-
vice. In addition, to model the multi-perspective
document revision task, we presented a seq2seq
modeling method with multiple “on-off” switches.
This method allowed us to effectively use a multi-
perspective document revision dataset and partially-
matched datasets, the grammatical error correction
and the conjunction insertion datasets. The exper-
imental results obtained using our created dataset
demonstrated that using switches is important for
modeling the multi-perspective document revision
task. In our future work, we will increase the num-
ber of partial tasks (e.g., sentence reordering) and
develop a model architecture that is suitable for
handling much longer documents.
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Abstract

Although automatic text summarization (ATS)
has been researched for several decades, the
application of graph neural networks (GNNs)
to this task started relatively recently. In this
survey we provide an overview on the rapidly
evolving approach of using GNNs for the task
of automatic text summarization. In particular
we provide detailed information on the func-
tionality of GNNs in the context of ATS, and
a comprehensive overview of models utilizing
this approach.

1 Introduction

The advent of the internet has led to an explosion in
the amount of textual information available online.
The extensive availability of textual information
paired with a need to quickly understand it has
led to major efforts in the field of automatic text
summarization (ATS). For a comprehensive review
and survey of ATS as a task we recommend a recent
survey by El-Kassas et al. (2021).

The goal of ATS is to produce a concise, correct
and fluent summary of a given text. Although this
definition is intuitively understandable, there is no
commonly agreed upon formal definition for these
qualities. This is in part due to the difficulty of the
task itself as producing a summary with the above
properties is challenging, even for humans.

Although the field of ATS has made major steps
forward, generally, we differentiate between two
basic approaches to the task of ATS. The first being
extractive ATS and the second being abstractive
ATS. Extractive ATS involves extracting text spans
from the original document such that a summary
is generated. Thus the main challenge consists in
identifying useful spans of text from the original
document. This approach is popular as it elimi-
nates the non-trivial task of generating factually
correct and coherent sentences. Abstractive ATS
on the other hand involves the challenging task of
generating novel sentences for a summary. Despite

impressive advancements, generating factually cor-
rect and fluent sentences is still a major challenge
in ATS (Kryściński et al., 2020). In addition to the
above, one differentiates between the task of single-
document and multi-document summarization.

1.1 Why graph neural networks ?
Contemporary solutions to the task of ATS suf-
fer from a number of issues, chiefly an inconsis-
tent evaluation protocol and, somewhat, a lack of
progress, as noted by Kryściński et al. (2019). In
recent years GNNs have been successfully applied
to a number of downstream NLP tasks such as clas-
sification (Liu et al., 2020b) (Zhang et al., 2020b)
and translation (Xu et al., 2021) (Yin et al., 2020).
Although GNNs may not be able to solve all prob-
lems related to the task of ATS, we believe that
they can at least give a new perspective to this task.
Generally GNNs bring a number of advantages to
ATS which we believe to be significant enough to
warrant further research, and this survey. In partic-
ular we want to highlight the following aspects of
GNNs:

• Scalability and Flexibility. A vast number of
ATS models are based on BERT (Devlin et al.,
2019). However, the computational com-
plexity of BERT-based ATS models grows
quadratic with the input length; due to the self-
attention operation. This fact renders them im-
practical for long, or even medium sized text
documents. Recently some work has been
done in order to circumvent this limiting fac-
tor (Ding et al., 2020) (Zhang et al., 2021). In
contrast, GNNs can scale by their nature to
graphs of thousands of nodes and more. This
is in part due to the linear scaling of the mem-
ory cost with regards to the input size. The
total memory cost of a GNN model depends
on the size of the graph, the number of lay-
ers and the feature vector size of the nodes
present. Formally, for L layers and an input
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of N nodes with each node’s feature vector
being of size H the memory complexity is
O(LNH). But even for very large graphs on
the scale of millions of nodes one can utilize
GNNs. This can be achieved using methods
such as neighbour sampling or distributing the
graph over multiple GPUs, as done for exam-
ple by Jia et al. (2020b). We recommend the
paper by Li et al. (2021) for insights as to how
one can train large and very deep GNNs. As
the input of a GNN is a graph, the input can
vary in size, therefore GNNs are also able to
cope with changing text sizes and structures.
Both of these aspects combined allow GNNs
to produce summaries which are not restricted
by hard-coded limits related to input or output
size.

• Understanding and Explainability. It is of-
ten difficult to understand why a model arrived
at a certain conclusion. Additionally it is of-
ten difficult to see how the model aggregates
information. This is not the case with GNNs,
as with the help of methods such as GNN Ex-
plainer (Ying et al., 2019) one can understand
which nodes were used by the model to reach
its output. This removes a layer of the black-
box magic present in many current non-GNN
models. We recommend the survey by Yuan
et al. (2020) for an overview of methods for
generating explanations for GNNs.

1.2 Related Surveys

As the application of GNNs to ATS is rather novel,
to the best of our knowledge there is only one sur-
vey on the topic. The survey by Luo et al. (2020)
gives an introduction to the topic. However, it does
not provide much detail on GNNs in the context of
ATS, nor does it cover all models in the space with
a taxonomy.

As for GNNs themselves, there exists a large
number of surveys on GNNs as a technology. In
particular, we want to highlight the surveys by Wu
et al. (2020b) and Zhou et al. (2020) which provide
a general overview on GNNs and their applications
in different fields. The survey by Abadal et al.
(2021) provides more technical and theoretical de-
tails on GNNs. The survey by Wu et al. (2021a) is
of particular interest as it focuses on the usage of
GNNs for NLP as a domain. Additionally, we want
to note here the survey by Wu et al. (2020a) on the
usage of GNNs in recommender systems and the

review by Malekzadeh et al. (2021) on the usage of
GNNs for text classification.

For a more theoretical approach we point the
reader to the analysis by Xu et al. (2018) which
establishes a number of important theoretical
properties for GNNs. An analysis of the Vap-
nik–Chervonenkis (VC) dimension of GNNs was
performed by Veličković et al. (2018).

In general, the contributions of our survey are as
follows:

1. We provide a detailed explanation of GNNs
in the context of ATS.

2. We introduce a simple taxonomy for GNN
models used for ATS.

3. We provide a comprehensive overview of in-
novative GNN models for ATS and discuss
further directions for future research.

The rest of survey is structured as follows. First
we will give a comprehensive explanation of GNNs
in the context of ATS. Next, we will explore a num-
ber of interesting and innovative models. Finally,
we will finish with a conclusion and an outlook on
the future usage of GNNs for ATS.

2 Graph Neural Networks

Graph based methods for ATS are not a new inno-
vation, with methods such as TextRank (Mihalcea
and Tarau, 2004) being first presented in the early
2000s. In fact, the core idea of early graph-based
approaches such as TextRank is similar to the one
used by GNNs designed for the ATS task. The
idea is to encode the structural and semantic infor-
mation contained within a text document into an
explicit form with the help of a graph.

Deep learning has by now become a com-
mon tool for solving tasks throughout many
domains, with various end-to-end paradigms
such as recurrent-neural-networks (RNNs) or
convolutional-neural-networks (CNNs) emerging
as versatile and powerful tools. In particular deep
learning has shown extraordinary power for data
which is Euclidean in nature. As an example, im-
ages can be represented as regular grids in Eu-
clidean space. Using such a representation CNNs
are able to extract meaningful local representations
with the help of convolution. However, for many
domains and applications such a representation is
often either inconvenient or not even directly possi-
ble. The most obvious example being the field of
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chemistry in which molecules should be modeled
as graphs. The complexity of translating such com-
plex data into existing deep learning paradigms has
led, in part, to the development of GNNs which
attempt to leverage the power of deep learning for
non-Euclidean data.

2.1 Defining the Graph

The first step of developing a GNN involves defin-
ing and designing the graph structure to be used.
Formally a graph is defined as G = (V,E) where
V is a set of nodes, and E a set of edges. Let
vi ∈ V denote a node; then each edge e ∈ E is
defined as ei,j = (vi, vj), that is pointing from
node vi to node vj . In addition to that for a graph
with n = |V | nodes and m = |E| edges a feature
matrix X ∈ Rn×d is defined where each node i
carries a feature vector xi ∈ Rd. Note that d de-
notes the dimension of the feature vector. This
encodes the information for the structure repre-
sented by the node. Often it is also important to
encode specific information for the edge of two
nodes. For this we additionally define an edge fea-
ture matrix Xe where Xe ∈ Rm×c with each edge
e between nodes i and j carrying an edge feature
vector wi,j ∈ Rc where c denotes the dimension of
the edge feature vector.

Using the above definitions there are two com-
mon scenarios, either the data is inherently struc-
tured or inherently unstructured. In the first case,
a direct translation into the above structure is pos-
sible, although additional information may be en-
coded by the designer. For example in knowledge
graphs or molecule simulations such a direct trans-
lation would be possible, as the data itself already
forms a valid graph, only the feature vectors would
have to be engineered in an appropriate way. In
the second scenario the data implicitly contains a
graph-like structure, as is the case for ATS. Natural
language text contains structure but that structure
is not directly available as a graph. Simplistically
one could consider text as a linear graph, that is
each sentence is a node and all sentences following
each other are connected with edges. However, this
would not expose all the possible information hid-
den, as text implicitly contains much structural and
semantic information, both of which can explicitly
be modeled with the help of a graph.

A common scenario for ATS is that the text
is encoded into the graph using word nodes and
sentence nodes. The above definition does not al-

low such an option as it assumes an homogeneous
graph, that is each node’s feature vector is equal in
dimension. However, for ATS and many other tasks
heterogeneous graphs are more common. This is
due to the fact that heterogeneous graphs allow
to include different types of structures within the
same graph. However, all of this is not an issue
as one can define a feature matrix X for each type
of node that exists within the graph. In the case
of ATS with word and sentence type nodes one
would define Xw ∈ Rm×dw as the feature matrix
for all word nodes and Xs ∈ Rn×ds as the feature
matrix for all sentence nodes with dw being the
dimension of the word node feature vectors, and
ds representing the dimension of sentence node
feature vectors.

For ATS it is also sometimes useful to utilize
the design space of directed vs. undirected edges.
The choice of directed vs. undirected edges allows
to explicitly encode structural information. For
instance, one can explicitly encode the order of
words or sentences with directed edges.

2.2 Defining the Neural Network

There are three ways in which GNNs differ from
more conventional neural networks, the input, the
output and the way information is aggregated
within the network. The input is the above de-
scribed graph.

The output and associated loss function are in
the case of GNNs bound to the structure of the data
i.e. the graph. Generally there are three levels of
output possible, namely, on the node level, on the
edge level and on the graph level. Both node and
edge level output involve predictions or classifica-
tions on their respective components of the graph;
additionally, in the case of edge level output, one
can pose the task of predicting the edge itself. On
the graph level one can pose the task of predicting
subgraphs or perform graph segmentation. In the
context of ATS, the most direct output and loss
formulation consist in predicting binary inclusion
labels on nodes representing sentences, or phrases,
using a cross-entropy loss.

The way information is aggregated is usually
done through either spatial convolution or spectral
convolution. The basic idea of spatial convolu-
tion involves extending the well-known convolu-
tion operator to graph structures, whereas spectral
convolution is based on graph signal processing.
In recent years spatial convolution has become a
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Figure 1: Comparison of spatial convolution (above)
and GAT (below) over the node zero with feature vector
x0. In particular, the attention scores α in the GAT
attenuate the messages received and are obtained by a
learnable linear layer of the two nodes involved in the
message exchange.

popular approach and is the preferred approach for
GNNs for ATS due to the flexibility and efficiency
it offers. More specifically, in terms of efficiency,
spectral convolution involves either computations
over the entire graph or eigenvector computations.
None of which are necessary for spatial convo-
lution; additionally, spatial convolution does not
assume a fixed graph structure, allowing better gen-
eralization. In addition to this the locality of the
spatial convolution operation also allows it to be
performed in batches of nodes, instead of the entire
graph. This is especially relevant for large graphs,
or, in the context of this paper, large input texts.

The setup described thus far implicitly assumes
that the GNN performs extractive summarization.
This is in fact the case and for what we will later
define as standalone GNNs i.e. GNNs that are
not part of a larger system. No purely abstractive
approaches have so far been developed, to the best
of our knowledge.

2.3 Spatial Convolution and Message Passing

One can view spatial convolution as used in GNNs
as a generalization of the convolution used in neu-

ral networks such as CNNs. As an example, in the
case of images, one can imagine 2D convolution as
being applied to a regular grid of nodes where each
node represents a pixel in the image. The resulting
2D convolution applied to one target node is then
the weighted average of node (pixel) values of the
neighbours of the target node. Generalizing this
idea to a non-regular grids leads to spatial convo-
lution. However, different to images and regular
grids, in graphs, the neighbours of each target node
are unordered and can vary in number and their
feature vector representation. The major challenge
with this extension consists therefore in dealing
with the unordered and inconsistent neighbourhood
sizes inherent to homogeneous and heterogeneous
graphs, with an additional challenge being posed
by the differing feature vector representations in
heterogeneous graphs.

Directly translating the above description of con-
volution into a mathematical formulation leads to
a valid information propagation scheme. However,
such a description suffers from scalability issues
due to it directly operating over the entire graph.
As such modern GNNs use, what is commonly
referred to as, message passing. In practice, this
means that nodes within the graph exchange mes-
sages (perform convolutions) with their neighbours
for a number of iterations. Thereby the network is
able to diffuse information throughout the graph.
Consequently, the more iterations, the further out-
wards information is propagated throughout the
graph. In the terminology of CNNs one would say
that the more message passing iterations, the larger
the receptive field of the convolution. Formally,
one can define message passing (Grattarola and
Alippi, 2021) for each time step t as two equations:

mt+1
i,j = ϕ(xti, x

t
j , w

t
i,j), ei,j ∈ E (1)

This first equation describes how messages are
generated. A differentiable function ϕ generates
messages m for each edge which connects nodes
using the node features and edge feature present.

xt+1
i = ψ(xti, ρ({mt+1

i,j : ei,j ∈ E})) (2)

The above equation is the core of the message
passing framework and describes how each node
feature is updated. The first part consists in the
application of a permutation-invariant reduction
function ρ. This function aggregates all incom-
ing messages to a node. Then another differen-
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tiable function ψ combines the reduced messages
received with the previous state. Using these two
equations one can utilize message passing for learn-
able layers.

The convolution layer for a GNN is then de-
fined with a learnable weight W such that the
message per edge is mt+1

i,j = xtj and the aggre-
gation is the normalized sum of messages, i.e.
xt+1
i = σ(bt +

∑
mi,j∈M(i)

1
cj,i
mt+1
i,j W

t) where
M(i) represents the set of messages received by
node i, σ is the activation function, b is the bias,
and cj,i is an appropriate scaling factor, e.g., the
square root of the node degree. Note how it is im-
portant for the reduction function, in this case a
sum function, to be permutation-invariant as other-
wise GNNs could not handle the unordered nature
of graphs.

The above presented convolution layer does
not allow the model to filter unimportant neigh-
bours. Inspired by the attention mechanism pop-
ularized by transformer networks (Vaswani et al.,
2017), graph attention networks (GAT) (Veličković
et al., 2018) assign attention scores to each neigh-
bour. A schematic depiction of the two variants
of spatial convolution can be seen in Figure 1
with GAT depicted on the lower part of the fig-
ure. The introduction of attention scores to the
spatial convolution allows the model to explicitly
assign importance to certain nodes and their mes-
sages. Just as in transformers GAT is formulated
with multi-head attention. The modification to
the previously presented convolution layer follows
closely the common attention formulation. For-
mally, xt+1

i =∥K σ(bt+
∑
mi,j∈M(i) αi,jm

t+1
i,j W

t)
where αi,j is the attention score between node i
and node j and K denotes the number of concate-
nated heads. The attention scores are computed
with ri,j = LeakyReLU(aT [Wxti ∥Wxtj ]). This
score is then normalized to obtain the attention
score per edge αi,j = softmaxi(ri,j). We want to
highlight here a recent development which Brody
et al. (2021) simply denote as GATv2. Their main
improvement aims at the fact that in the above
calculation both learnable parameters a and W ef-
fectively fold into a single linear layer, thus the
expressive power of the layer is less than what
it could be. The fix introduced by GATv2 pulls
the two parameters apart, thus achieving more ex-
pressive power while not increasing computational
complexity. Taking the above description the at-
tention score for GATv2 is modified as follows

ri,j = aTLeakyReLU([Wxi ∥ Wxtj ]). In both
synthetic and real datasets this modification shows
superior performance, which is supported by a the-
oretical analysis of the authors.

There are numerous modifications and exten-
sions to the basic convolution presented here. How-
ever, for ATS models, GAT layers are dominating
as the workhorse for most models. The reasoning
for their dominance can be explained by the similar
success that attention transformers have had in con-
ventional neural networks for AST. We expect that
GATv2 will continue this trend as it is an attractive
and simple improvement for the currently domi-
nating GAT. Although the authors of GATv2 note
that it is not yet entirely clear which tasks would
benefit the most from the usage of GATv2 over
GAT, which will require more research and models
to use GATv2.

In ATS the graphs used are in nearly all cases
not homogeneous. However, the equations pre-
sented here do not work for heterogeneous graphs.
The solution for this problem involves defining
one convolution layer for each node type combina-
tion occurring within the graph. In the case of the
already discussed sentence and word node graph
there would be four possible combinations of types,
and four convolution layers which would have to
be defined if the graph were fully connected.

Convolution is a central aspect of GNNs, but
pooling also presents an important and common op-
eration, especially whenever GNNs are used jointly
with other models. Pooling in GNNs is achieved by
generating a global representation of the graph, or
a subset of the graph, by pooling together features
of nodes. This is usually done with some function
f where f is commonly the mean, max or sum.

We want to explicitly point out to the reader that
the construction of GNNs does not require spe-
cial datasets. All GNN models for ATS use the
common benchmark single-document and multi-
document summarization datasets such as DUC
2004 or CNN/Dailymail. The only requirement
for any ATS, or textual dataset, is for the designer
to find an appropriate way of encoding sentences,
words, subwords etc. into feature vectors, and find-
ing a sensible way of connecting them.

3 Graph Neural Network Models For
Automatic Text Summarization

The current state of research clearly shows that the
usage of GNNs for ATS follows one of two patterns,
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Figure 2: Taxonomy of GNN models used for ATS.

either the GNN is used directly for the ATS task or
it is used to support a larger system. These trends
justify the taxonomy as seen in Figure 2. More
precisely, we classify standalone ATS GNNs as
GNN models which are directly responsible for
generating a summary. Embedded GNNs on the
other hand are used to support a larger system, and
are not directly or solely responsible for producing
the summary. In addition to this difference, we
further differentiate between embedded GNNs used
in an encoder-decoder setting and other embedded
GNNs.

Note that we do not specifically differentiate be-
tween single and multi-document GNN summariza-
tion models as some models are by design capable
of handling both tasks. Additionally, we do not
make a distinction between abstractive and extrac-
tive approaches, since embedded GNNs can be part
of either approach, while abstractive approaches
have not yet been developed for standalone GNNs,
to the best of our knowledge.

3.1 Standalone GNNs

We will start our discussion of standalone GNN
models with HeterSumGraph (HSG), a model
proposed by Wang et al. (2020). We will do so due
to the fact that this model illustrates concepts and
ideas seen throughout GNNs models used for ATS.
An illustration of the general concepts presented
here can be seen in Figure 3.

The HSG model encodes each text into a graph
with three node types, sentence nodes, word nodes
and document nodes. The connection between
these nodes is decided by inclusion i.e. if the word
represented by a word node occurs in a sentence
then their respective nodes are connected by an
edge. The same principle applies to document
nodes which are connected depending on whether
a word, represented by a word node, occurs within
the document. This is a flexible structure, as it
can be used in a single-document but also multi-
document setting.

Word 1

Word 2

Word  
Embedding 
Generator 

Sentence 1

Sentence 2

Sentence 3

Sentence
Embedding
Generator 

Sentence  
Selection 

Figure 3: General architecture of standalone GNNs with
word nodes and sentence nodes, encoders for both node
types and a sentence selection mechanism. Inspired by
HSG.

The feature vectors for all nodes are obtained
by encoders and the edge weights are obtained by
computing the TF-IDF score for each word. The
neural network consists of a modified GAT layer.
The GAT is modified to consider the TF-IDF value
of the connecting edge. Additionally a position-
wise feed-forward (FFN) layer consisting of two
linear transformations is applied to the hidden state
after the convolution. In total three convolution
layers are used, word-sentence, sentence-word and
word-document. The model is then trained on a
node-based binary classification task that is predict-
ing whether a sentence node is to be included for
the summary or not.

The classification itself is done by a single linear
layer. The model then does not directly use the
predicted nodes to produce the summary. Instead
trigram blocking (Paulus et al., 2018) is used during
sentence selection in order to ensure sparsity of the
generated summary.

The results for this model are quite impressive
as it outperforms non-BERT based models on both
single-document and multi-document summariza-
tion for the CNN/DailyMail dataset. One should
especially note the flexibility and ability to use this
model for two tasks.

An older model by Muratore et al. (2010) can
be considered a precursor to this architecture. A
simple extension to the HSG model is proposed
by Ya et al. (2021). In their extension they modify
the model for query constraints for the summary.
This is achieved by adding a query node to the
graph structure. Additionally, they introduce a mu-
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tual information maximization mechanism during
training.

A model which further follows this structure is
the one by Linmei et al. (2019). The authors there
extend the attention mechanism by adding another
layer of attention, allowing it to include informa-
tion about the type of the node during convolution.
The GNN model by Jing et al. (2021) encodes even
more information into the graph by considering the
relation between sentences on a number of different
levels. In particular, they encode the semantic and
syntactical relationship between sentences within
the graph.

This idea of encoding additional information into
the graph is also followed by Antognini and Falt-
ings (2019). They introduce an additional univer-
sal feature vector which is added to each sentence
node embedding. This universal feature vector is
learned from a large unrelated and general corpus.
This model is also unique in that it focuses on the
summarization of very small texts, on average less
than 100 words.

Taking this basic structure and idea even further
is the model called HAHSum by Jia et al. (2020a).
The construction of the input graph for HAHSum
is more involved as it aims to significantly reduce
semantic sparsity by utilizing named entities. The
model uses three types of nodes, named entity
nodes, word nodes and sentence nodes, with the
named entity nodes being anonymized tokens. The
graph is then built as follows, word nodes are con-
nected with a directed edge to a sentence node if
they occur within the sentence. Two named entities
are connected with an undirected edge if they rep-
resent the same entity and two sentence nodes are
connected with an undirected edge if they share
a trigram. Additionally, sequentially occurring
words and entities are connected with a directed
edge. This setup shows how one can encode a
substantial amount of implicit information in an
explicit manner.

HAHSum uses a GAT for each of the five node
type combinations found within the graph. Just
as in HSG, a FFN is applied after the multi-head
attention and again as in the previous model a linear
layer is used to perform the binary classification of
the sentence nodes.

The results for HAHSum show that GNNs can
perform very well. The authors of the paper tested
the model on the CNN/Daily Mail, Newsroom and
NYT dataset. The model outperforms very pow-

Encoder Decoder

GNN Encoder

Input Output

Figure 4: Typical setup for embedded GNNs in the
encoder-decoder category. The GNN is used to encode
part of the input and then the resulting encodings are
forwarded to the decoder.

erful models such as MATCHSUM (Zhong et al.,
2020) and is even able to compete in some metrics
with leading abstractive models such as PEGASUS
(Zhang et al., 2020a). The results of an Amazon
Mechanical Turk experiment corroborate these re-
sults and show that for human readers HAHSum
produce summaries with superior fluency and con-
ciseness.

Another recent GNN model which has achieved
great performance in the task of multi-document
summarization is the SgSum model by Chen et al.
(2021). Different to the approaches outlined above,
the SgSum model uses graph pooling to extract
sub-graphs from encoded documents. That is, it
first transforms the documents into a large graph,
then generates a number of sub-graphs via pooling
and convolution. These sub-graphs are then ranked
and thereby selected for a summary. This is quite
an innovative approach as it casts the problem of
multi-document summarization as a simple sub-
graph selection problem. Additionally, it outputs
an integral summary, that is the entire summary is
output by the model in the form of the sub-graph
of sentences.

3.2 Embedded GNNs

The first embedded GNN model we will present is
the GRU-GCN model by Yasunaga et al. (2017).
Despite being an older model it provides an il-
lustrative introduction as to how one can effec-
tively incorporate GNNs into established deep
learning methods. As this model utilizes GNNs
within a sequence-sequence architecture it falls into
the encoder-decoder category of embedded GNNs.
The model works exclusively with multi-document
summarization. We want to note that due to the
age of this model the GNN uses spectral-based
convolution instead of spatial-based convolution.

As the model is an encoding-decoding embedded
GNN it features three parts: the encoding part, the
GNN and a decoding part. The encoding and decod-

6145



GNN CNN/DailyMail Performance Overview
Model Name Type Description R-1 R-2 R-L
BERTSUMEXT (Liu and Lap-
ata, 2019)

Extractive BERT baseline BERT-based 43.85 20.34 39.90

Topic-Graphsum (Cui et al.,
2020)

Extractive (Embedded) NTM + GNN 44.02 20.81 40.55

DSGSUM (Bi et al., 2021) Abstractive (Embedded) Seq-Seq with GNN 41.96 19.29 38.98
Syntactic-Graph (Xu et al.,
2020a)

Abstractive (Embedded) Syntactic graph 41.79 19.06 38.56

HAHSUM (Jia et al., 2020a) Extractive (Standalone) Entity-relations + words and sentences 44.68 21.30 40.75
Multi-Gras (Jing et al., 2021) Extractive (Standalone) Sentence information encoding 43.16 20.14 39.49
HSG (Wang et al., 2020) Extractive (Standalone) Multi-layer encoding of documents 42.95 19.76 39.23
DISCOBERT (Xu et al.,
2020b)

Extractive (Embedded) BERT+GNN 43.77 20.85 40.67

GNN DUC-2004 Performance Overview
GRU-GCN (Yasunaga et al.,
2017)

Extractive (Embedded) GRU+GNN 38.23 9.48 NA

SGSum (Chen et al., 2021) Extractive (Standalone) Subgraph extraction 39.41 10.42 35.41

Table 1: Combined results as reported in their respective papers. We only report the best performing model type
and only ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-L (R-L) scores. We show results on the CNN/Dailymail
dataset for single-document summarization and results on the DUC-2004 dataset for multi-document summarization.
NA denotes that the authors have not reported this score. Best results marked with boldface.

ing are done by gated recurrent networks (GRUs).
More specifically, sentence encodings are produced
by the encoding GRU network. These sentence
encodings are then used by the GNN whose in-
put graph consists solely of sentence nodes. The
edges are determined by semantic relatedness of
the sentences. The resulting sentence node feature
vectors produced by the GNN are passed to the
decoding GRU which computes salience scores for
each sentence. The results for this model have been
surpassed by other models.

Similar to the GRU-GCN model, the Topic-
GraphSum model by Cui et al. (2020) combines
an established deep neural network method with a
GNN. In it a variational autoencoder is utilized for
modeling topics within a given text, that is, it learns
latent topics via encoding-decoding. The GNN is
fed a graph consisting of topic nodes and sentence
nodes. The topic node embeddings are produced
by the autoencoder and the sentence node embed-
dings are produced by BERT. The GNN utilizes a
GAT for the prediction of sentences to be used for
the summary. Note that the autoencoder and the
GNN are trained jointly, which is why this model
is classified as an embedded model. However, as it
does not utilize the encoder-decoder architecture it
falls into the category of other embedded GNNs.

Another embedded GNN which does not follow
the encoder-decoder schema is the model by Xu
et al. (2020b). Their DISCOBERT model incorpo-
rates a GNN into a BERTSUM (Liu and Lapata,
2019) like architecture.

The DSGSum model developed by Bi et al.
(2021) utilizes a GNN to enhance the semantic
information provided to the model. DSGSum uses

the GNN mainly for encoding entity information.
The input to the GNN consists of an entity graph
which has been enriched with a knowledge graph
(KG); specifically, the entities and their relations as
defined in the KG are encoded into the graph. The
GNN then utilizes GAT to produce entity embed-
dings which are directly used by the decoder part
of the architecture. Hence DSGSum is an embed-
ded encoder-decoder model. All of the following
embedded GNN ATS models follow the ATS GNN
encoder-decoder pattern. The general principle of
these models is illustrated by Figure 4. This prin-
ciple being the usage of the GNN to supplement
the information provided to the decoder, while also
utilizing an encoder for generating the input to the
GNN.

The authors of (Wu et al., 2021b) produce a
graph based on the semantics of each sentence.
The encoding produced by the GNN and a textual
encoding of each sentence are then passed to a
decoder. Similarly, the model by Xu et al. (2020a)
uses a GNN as an encoding component. Their
model utilizes the dependency tree of the input as
a graph input to the GNN. It also uses a modified
attention mechanism which is used to decode the
attention of the GAT directly into the decoder part
of the architecture. Another model in this category
is the model by Liang et al. (2021). Following this
idea even further is the model by Li et al. (2020).
However, in contrast to DSGSum or others, their
model uses a GNN directly within the transformer
based encoder and decoder blocks, and not as an
outside component providing additional encodings.

Another area where GNNs have found some
usage is in the abstractive summarization of di-
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alogues, which although a niche area, is still part of
the ATS task. The model by Zhao et al. (2020) uses
a GNN to encode the structure of the conversation
into their sequence-to-sequence architecture. This
is also done by Feng et al. (2020). Also for dia-
logue summarization Feng et al. (2021) introduce
a special type of graph encoding to a sequence-
to-sequence architecture. They utilize a GNN as
an encoder and their input graph links information
about the speaker, the spoken sentences and other
information together.

At this point we also want to shortly mention a
few models which do not perform classical ATS
but do perform a specialized form of summariza-
tion with the help of a GNN. The models by Liu
et al. (2020a) and LeClair et al. (2020) both per-
form code summarization, that is they generate
a natural language description/summarization of
code written in a programming language. They
both utilize a GNN, and also both leverage the ab-
stract syntax tree of the program given. Another
interesting model is the model by Wu et al. (2019).
Their model performs multi-video summarization
with the help of a GNN.

4 Conclusions and Outlook for Future

We have surveyed in this paper the main devel-
opments in the area of GNNs applied to the au-
tomatic text summarization task, first describing
how GNNs work and then discussing the promi-
nent models used for ATS. We have also provided
simple categories of the models. Finally, in Table
1 we have combined results from the models men-
tioned in our survey. Note that this is just a simple
enumeration of the best ROUGE scores reported,
which does not fully capture other important as-
pects of summaries such as fluency, conciseness,
relevancy and in the case of abstractive summariza-
tion, factual accuracy.

We have already highlighted some general ad-
vantages of GNNs for ATS. Now considering the
models presented and the results shown in Table 1
we want to give some pointers towards the future
of GNNs for ATS.

• Outside the Box. Models such as SGSum
and HAHSUM show how one can achieve
great performance by rethinking parts of the
ATS task. GNNs provide with their direct
acceptance of graphs a lot of freedom with
regards to the design of the input as well as

the output. The idea of reconsidering multi-
document ATS as a subgraph ranking task is
a worthwhile approach to consider further.

• Encoding and Enhancing. GNNs are able
to efficiently and effectively produce encod-
ings of graph structures, which are prevalent
throughout texts. Models like DISCOBERT
show how one can enhance the performance
of traditional models by incorporating GNNs
and leveraging their encoding ability. We be-
lieve many models can be improved by in-
corporating GNNs in ways presented in the
survey.

• Text Length. GNNs are capable of scaling
to very large graph sizes. Summarizing large
texts is an important task, but one which has
been neglected in the literature. GNNs are in
our estimation in a position to perform very
well on large text summarization.

• Explainability. No GNN ATS model so
far has leveraged the explainability aspect of
GNNs. We believe that this is a very unique
and unexplored research avenue that could
reveal valuable insights into ATS and GNNs
used for ATS.
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Abstract

Although the fluency of automatically gener-
ated abstractive summaries has improved sig-
nificantly with advanced methods, the incon-
sistency that remains in summarization is rec-
ognized as an issue to be addressed. In this
study, we propose a methodology for localiz-
ing inconsistency errors in summarization. A
synthetic dataset that contains a variety of fac-
tual errors likely to be produced by a common
summarizer is created by applying sentence
fusion, compression, and paraphrasing opera-
tions. In creating the dataset, we automatically
label erroneous phrases and the dependency re-
lations between them as “inconsistent,” which
can contribute to detecting errors more ade-
quately than existing models that rely only on
dependency arc-level labels. Subsequently, this
synthetic dataset is employed as weak supervi-
sion to train a model called SumPhrase, which
jointly localizes errors in a summary and their
corresponding sentences in the source docu-
ment. The empirical results demonstrate that
our SumPhrase model can detect factual errors
in summarization more effectively than exist-
ing weakly supervised methods owing to the
phrase-level labeling. Moreover, the joint iden-
tification of error-corresponding original sen-
tences is proven to be effective in improving
error detection accuracy.

1 Introduction

The quality, particularly the fluency, of automat-
ically generated abstractive summaries has im-
proved significantly (Lewis et al., 2020; Zhang
et al., 2020; Raffel et al., 2020) with methods that
benefit from large-scale pre-trained language mod-
els. However, recent studies (Cao et al., 2018;
Maynez et al., 2020) have pointed out that more
than 30% of the generated summaries are inconsis-
tent with the source documents owing to uninten-
tionally introduced factual errors, which affect the
reliability and usability of summarization systems.

Figure 1: Overview of proposal. A synthetic dataset
is created and used as weak supervision to train the
SumPhrase error localization model.

Existing approaches for evaluating inconsistency
in summarization can be roughly divided into two
categories. One is the unsupervised approach that
relies on an external natural language understand-
ing (NLU) system, such as natural language in-
ference (NLI) (Falke et al., 2019; Mishra et al.,
2021; Laban et al., 2022) or question answering
(QA) (Durmus et al., 2020; Wang et al., 2020;
Scialom et al., 2021) systems, to validate a sum-
mary. Although this approach can benefit from the
ever-progressing NLU technologies, the configura-
tion and performance of an inconsistency detection
system would be inevitably constrained by the un-
derlying systems.

Therefore, we adopt another approach, namely
the weakly supervised approach, which employs a
synthetic dataset that contains automatically gener-
ated errors (Kryscinski et al., 2020; Goyal and Dur-
rett, 2020). The key to the success of this approach
lies in the quality and quantity of the synthetic
dataset. It is necessary for such a dataset to contain
a variety of errors that are likely to be produced
by a common summarization system. However,
as argued by Goyal and Durrett (2021), the error
distributions that are produced by existing methods
are considerably different from those produced by
actual summarization models.
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Figure 1 overviews our proposal for the local-
ization of factual inconsistency errors in summa-
rization. We propose to create a synthetic dataset
by applying sentence fusion and compression op-
erations in addition to paraphrasing. Thus, recur-
ring summarization errors are expected to be repro-
duced. The resulting synthetic dataset is then used
as weak supervision to train an error localization
model called SumPhrase. This model jointly local-
izes errors in a summary and their corresponding
sentences in the source document1.

In the dataset creation process, a single sentence
or a pair of sentences is first selected from a source
document. A hypothesis sentence is then gener-
ated from the selected sentence or sentence pair,
which is expected to contain various intrinsic fac-
tual errors. Thereafter, the hypothesis sentence is
labeled at the phrase level, where each label is com-
puted from dependency arc-level labels. Finally,
the dataset for training the SumPhrase model is
created by organizing the phrase-level labeled data.

Furthermore, the detection of factual errors in a
summary can be combined with the identification
of their corresponding sentences in the source doc-
ument. This joint approach not only improves the
usability of the error detection system but also im-
proves the error detection performance in a multi-
task learning setting (Kryscinski et al., 2020).

The contributions of this study are as follows:

• We present an improved method for generat-
ing a dataset by incorporating common means
of summary generation, such as sentence fu-
sion and compression, in addition to para-
phrasing. We empirically investigate the ef-
fectiveness of these types of operations.

• We propose a model that jointly detects errors
in a summary by fully using the phrase-level
labels and identifies their corresponding sen-
tences in the source document.

• We empirically demonstrate that the proposed
method can localize the inconsistencies be-
tween a source document and the summary
more effectively than existing weakly super-
vised methods.

2 Related Work

We review the approaches for inconsistency detec-
tion in summarization by classifying them into the

1The dataset and code are available at https://
github.com/taka2946/sumphrase

following two categories.

2.1 Unsupervised Approach
We classify studies that exploit an external NLU
system/model into this category.

A system that uses an NLI model determines
that a summary is inconsistent if it cannot be en-
tailed from the input document (Falke et al., 2019;
Mishra et al., 2021). This method tends to suf-
fer from a mismatch between the lengths of input
texts: the documents to be summarized are gen-
erally longer than the usual premises collected in
an NLI dataset, which makes inconsistency detec-
tion difficult (Mishra et al., 2021). Laban et al.
(2022) addressed this issue by aggregating entail-
ment scores measured between sentence pairs in
the segments rendered from a source document. In
contrast, a system that relies on a QA model con-
siders a summary to be inconsistent if an external
QA system fails to answer the questions related
to a source document (Durmus et al., 2020; Wang
et al., 2020; Scialom et al., 2021). The adequacy
of a generated question, as well as the performance
of the QA model, may affect the error detection
performance.

2.2 Weakly Supervised Approach
We classify inconsistency detection systems that
rely on supervised learning with artificially devel-
oped datasets into this category. In this approach,
a dataset must reproduce the error distribution of
a common summarizer as effectively as possible.
Systems that use this method can be further clas-
sified according to how they generate errors for a
summary.

Rule-based text transformation systems were de-
veloped to generate errors in (Kryscinski et al.,
2020; Zhao et al., 2020; Zhang et al., 2021; Cao
et al., 2020). For example, in FactCCX (Kryscinski
et al., 2020), errors were generated by replacing an
entity name and negating a sentence. Zeng et al.
(2021) further enhanced the dataset with a data
augmentation technique that applies an adversarial
attack mechanism.

Generative models were employed in (Goyal and
Durrett, 2021, 2020) to generate erroneous texts.
In particular, Goyal and Durrett (2020) proposed
using a sentence with a lower posterior probability
as a potentially erroneous sentence. These gener-
ated sentences were then dependency-parsed, and
the dependency arcs that were only found in the
hypothesis sentence were annotated as erroneous.
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Figure 2: Process for dataset creation. In this example, two source sentences, s1 and s2, are selected, and the
hypothesis sentence is generated by a sentence fusion operation. The selected sentences are considered error-
originating if the hypothesis sentence poses an error. These source sentences are referred to as corresponding
sentences.

We used the generative model approach, assum-
ing that errors should be contained in the sentences
generated with lower probabilities. However, this
study differs from (Goyal and Durrett, 2021) in
that we generate sentences not only by paraphras-
ing operations but also by means of sentence fusion
and compression operations. This decision can be
supported by the insights provided in (Lebanoff
et al., 2019b) and (Lebanoff et al., 2019a). The
former notes that most sentences in the reference
summaries of the CNN/DailyMail dataset (Nalla-
pati et al., 2016) are derived from sentence fusion
and compression operations. The latter argues that
sentence fusion tends to produce factual errors. Fur-
thermore, we propose raising the error detection
level from the dependency-arc level to the phrase
level such that we can detect errors that would be
overlooked by narrowly focused inspection with
dependency-arc level labeling.

We jointly detect errors in summarization and
localize their corresponding parts in the input doc-
ument using multi-task learning, similar to the
method presented in (Kryscinski et al., 2020). How-
ever, unlike their method, our method can localize
more than one corresponding sentence, resolving
the limitation of the method in (Kryscinski et al.,
2020), which associates only single spans in the
input document. This functionality is achieved by
formulating the latter task as a multi-label classifi-
cation problem such that an error in a summary sen-
tence can be associated with multiple correspond-
ing sentences in the source document.

3 Methodology

This section first details the process for creating
a synthetic dataset that intentionally accommo-
dates erroneous sentences. Our proposed model
for jointly detecting errors in a summary and iden-
tifying corresponding sentences in the source docu-
ment is then described.

3.1 Creation of Synthetic Dataset

3.1.1 Overview of the Creation Process
Figure 2 depicts the proposed process for creating
a synthetic dataset that is employed as weak super-
vision. Sentence pairs ((s1, s2) in the example) are
first selected from the document, and then each of
them is fused into a sentence (indicated as hypoth-
esis) by the generation model. The dependency
arcs in the resulting hypothesis sentence are subse-
quently labeled as either “consistent” (blue), “in-
consistent” (red), or unlabeled by comparing them
with the arcs from the top-ranked hypothesis sen-
tence, selected source sentences, and reference sen-
tences. Thereafter, phrase-level labels (intra- or
inter-phrases) are annotated by merging the arc-
level labels. Although Figure 2 exemplifies the
sentence fusion operation as a means of hypothesis-
sentence generation, we also apply the sentence
compression and paraphrasing. However, in the
experiments, instead of actually applying sentence
selection and paraphrasing, we used ready-made
datasets. We performed the phrase-label annota-
tion.
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In the following, the dataset is represented as
{D,h, (pi, yei )pi∈h, (pn, pm, yenm)pn,pm∈h, (sj , y

s
j )sj∈D},

where D and h denote the input document and
generated hypothesis sentence, respectively.
Moreover, yei denotes the intra-phrase consistency
label for the i-th phrase pi in h, whereas yenm
dictates the inter-phrase consistency label between
pn and pm. Furthermore, ysj is a label that indicates
whether the j-th sentence in D is a corresponding
sentence of h.

3.1.2 Sentence Selection
One or two sentences in the input document D =
[s1, s2, ..., sn] are selected and fed to each genera-
tive model to generate a hypothesis sentence, which
is expected to contain factual errors. A pair of sen-
tences is used for sentence fusion, whereas a single
sentence undergoes compression and paraphrasing.

In the experiments, we used ready-made datasets
instead of the actual sentence selection opera-
tion: the sentence fusion dataset (Lebanoff et al.,
2020b) and sentence compression dataset (Desai
et al., 2020). These datasets were created for
the CNN/DailyMail dataset by pairing a refer-
ence sentence with the corresponding sentences
in a source document that measured the highest
ROUGE scores.

3.1.3 Sentence Fusion
We used the Transformer-based Trans-
LINKING (Lebanoff et al., 2020a) model to
generate a hypothesis sentence. The model
employed in the experiments was pre-trained on
the same sentence fusion dataset used for sentence
selection. As in (Lebanoff et al., 2020a), we adopt
only a hypothesis sentence that shared two or more
words in both of the originating sentences. In the
experiments, we generated hypothesis sentences
with a beam size of 10. The most probable and
improbable sentences were used in the labeling
process.

3.1.4 Sentence Compression
We employed CUPS (Desai et al., 2020) for sen-
tence compression. In the experiments, we used the
pre-trained model provided by the authors of CUPS.
In general, sentence compression removes redun-
dant or unimportant portions from an input sen-
tence; that is, factual errors rarely emerge. There-
fore, we annotated the dependency arcs in the com-
pressed sentence as consistent, provided that they
also existed in the input to this model.

3.1.5 Paraphrasing
Any paraphrasing model can be employed for our
purpose. In the experiments, we used the dataset
made available by (Goyal and Durrett, 2021),
which contains paraphrased versions of the selected
reference sentences in the CNN/DailyMail dataset.
We computed phrase-level labels by referring to
the arc-level labels already provided in this dataset.

3.1.6 Labeling
Each generated hypothesis sentence was analyzed
using the Stanford CoreNLP (Manning et al., 2014)
dependency parser and subsequently underwent the
labeling process. The labeling process first exam-
ines each of the dependency arcs and assigns ei-
ther “consistent” or “inconsistent” labels or leaves
them unlabeled. This arc-level annotation step is
followed by the phrase-level annotation step that
assigns labels to phrases and inter-phrase depen-
dency relations. Note that our labeling process is
inspired by the method proposed in (Goyal and Dur-
rett, 2020), which assumes that the sentence with
the lowest posterior probability may contain more
factual errors than sentences with higher probabili-
ties.

We denote an input sentence2 to the generation
model as x and the set of output sentences sorted
by posterior probabilities as H = [h1, h2, ..., hk].
Furthermore, d(h) denotes a set of dependency
arcs of a sentence h. A reference sentence is rep-
resented by h∗, and ai denotes the i-th arc in the
corresponding set of dependency arcs.

Arc-level labeling: We follow the method pro-
posed in (Goyal and Durrett, 2020). We select
sentence hk with the lowest probability and assign
a label to each arc ai in hk as follows.

yai =





“consistent” if ai ∈ d(x) ∪ d(h∗)

“unlabeled” if ai ∈ d(h1) \ d(x) ∪ d(h∗)

“inconsistent” otherwise

(1)

Note that h1, the sentence with the highest proba-
bility, is used as a presumably error-free sentence.

If ai appears in the arc set of the corresponding
original sentence x or that of the reference sentence
h∗, we consider it consistent. If ai appears in d(h1)
but not in x or h∗, we do not assign any labels
to the arc, as it is less reliable to determine it as

2Remember that the sentence x originates from the source
document.
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Figure 3: Motivating example for phrase-level labeling.

Figure 4: Example of phrase-level labels. The blue
and red edges denote consistent and inconsistent labels,
respectively, whereas the green edge indicates that the
inter-phrase relation is unlabeled.

error-free. As arc ai not matching either of these
conditions may represent a factual error, we assign
an inconsistent label to the arc.

We remind the reader that for a compressed sen-
tence, we assign the labels as follows.

yai =

{
“consistent” if ai ∈ d(x)
“unlabeled” otherwise

(2)

Note that we did not assign the “inconsistent”
label because a compressed sentence usually does
not pose any factual error.

As in (Goyal and Durrett, 2020), we exclude par-
ticular dependency labels, such as det and case,
from the annotation process, as these do not carry
significant meanings.

Phrase-level labeling: Before describing the
phrase-level labeling process, we explain its mo-
tivation using Figure 3. In this example, the hy-
pothesis sentence contains a factual error because
the agent of the verb “looking forward” is “Karen
Langhart” and not “Erika Langhart.” This error
may be difficult to localize with a model that only
considers arc-level labels. Therefore, we assign
intra-phrase labels as well as inter-phrase labels,
as illustrated in Figure 2, such that factual errors
beyond the word-to-word dependency relations can
be detected. To initiate the phrase-level labeling

process3, we first recognize phrases by applying a
set of heuristic rules that investigate the dependency
structure of a sentence. This procedure recognizes
a sequence of “phrases” covering the input token
sequence without overlaps, where each phrase prin-
cipally represents a base syntactic phrase.

Figure 4 depicts the intra-and inter-phrase labels,
which are computed as follows. If all the depen-
dency arcs that are closed in a phrase are marked
as consistent, the intra-phrase label of the phrase
is “consistent;” if any is marked as inconsistent,
the label is “inconsistent.” An inter-phrase label
is computed similarly, but by looking at each of
the dependency arcs connecting a word in the head
phrase and that in the dependent phrase. Note that
the inter-phrase label is “inconsistent” if either of
the connected phrases is marked inconsistent. In
this example, the phrase “new prosthetic leg” is
labeled as “inconsistent” because the particular de-
pendency arc between “new” and “leg” is labeled
as “inconsistent.”

3.2 SumPhrase: Proposed Model

Figure 5 illustrates the network architecture of the
proposed SumPhrase model. The model consists
of three parts: the detection of intra-phrase errors
(blue), the detection of inter-phrase errors (red),
and the localization of the corresponding sentences
in the source document (green).

Training: The inputs to the model are twofold:
the source document D and hypothesis sentence h.
Tokenized tokens from each input are concatenated
using the [CLS] token as the separator and fed to
the pre-trained encoder, which enables a contextu-
alized representation for each token along with the
special [CLS] token that is expected to represent
the hypothesis sentence. Thereafter, the represen-
tation of each sentence in D and each phrase pi is
generated using the span attention mechanism (Lee
et al., 2017)4. The intra- and inter-phrase detection
parts are trained by referring to the intra-phrase
labels (yei ) and inter-phrase labels (yeij). The proba-
bility of a phrase pi being consistent is computed
as follows, using its representation hpi :

p(yei |pi) = softmax(FFNintra(h
p
i )). (3)

3Refer to Appendix A for details of the phrase-level label-
ing process.

4The effectiveness of the span attention mechanism was
experimentally confirmed, as described in Appendix B.
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Figure 5: SumPhrase model. The blue and red frames display the intra-phrase and inter-phrase detection parts,
respectively, and the green frame indicates the corresponding sentence localization part.

Similarly, the inter-phrase consistency probability
is computed as follows:

p(yeij |pi, pj) = softmax(FFNinter([h
p
i ;h

p
j ])). (4)

The probability of sentence si being a correspond-
ing sentence of the hypothesis sentence is calcu-
lated as follows, where hsi and hcls denote the rep-
resentation of si and CLS token, respectively.

p(ysi |si) = softmax(FFNs([h
s
i ;h

cls])) (5)

These logits are subsequently converted into losses
(Lossintra, Lossinter, and Losss) using binary
cross-entropy loss. Finally, the entire loss is de-
fined as follows by incorporating a hyperparame-
ter α that adjusts the impact of the corresponding
sentence localization (Losss), which is, in a sense,
introduced as an auxiliary task in the multi-task
learning setting.

Loss = Lossintra + Lossinter + α ∗ Losss (6)

Inference: The source documentD and each sen-
tence h in the target summary are fed to the model
during the inference time. Note that each sentence
in a target summary is dependency-parsed in ad-
vance. The intra- and inter-phrase consistencies are
assessed using the model for phrases and phrase
pairs that were extracted from the summary sen-
tence. We flag a summary sentence as consistent
only if it is predicted to exhibit no errors at any

Source # of data
Paraphrasing (para) 46,925
Sentence fusion (fusion) 72,093
Sentence compression (comp) 47,296
Reference sentences (ref) 107,278

Table 1: Statistics of created synthetic dataset.

level. The corresponding sentences for a hypothesis
sentence were identified using multi-label classifi-
cation. Consequently, the corresponding sentences
of a factual error are localized.

4 Experimental Setup

The CNN/DailyMail dataset (Nallapati et al., 2016)
was used in the experiments.

4.1 Training Dataset
We created a synthetic dataset to train the
SumPhrase model based on the methodology de-
scribed in the previous section. Table 1 lists the
number of data instances classified according to the
provenance of the data. Note that “paraphrasing”
refers to paraphrased data provided by (Goyal and
Durrett, 2021), and “Reference sentences” means
reference summary sentences obtained from the
CNN/DailyMail dataset, which were added to in-
crease the phrases labeled as consistent.

In total, this dataset contains 2,021,592 consis-
tent labels and 191,553 inconsistency labels. More-
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Model Training data K2020 (BA) K2020 (F1) Reranking (% correct)
[Sentence level]
FactCC text transformations 72.7 0.706 70.0%
FactCCX text transformations 72.9 0.711 -
SumFC text transformations 80.4 - 78.7%
FactAdv text transformations 73.3 0.701 -
[Arc level]
Electra-DAE text transformations 76.7 - -
Electra-DAE para 72.1 - -
Electra-DAE (ours) para+fusion+comp+ref 82.7 0.754 85.9%
[Phrase level (ours)]
SumPhrase para+fusion+comp+ref 85.3 0.765 86.0%
SumPhrase (-multi) para+fusion+comp+ref 85.2 0.759 84.7%

Table 2: Results of error detection. FactCC, FactCCX (Kryscinski et al., 2020), SumFC (Zhang et al., 2021), and
FactAdv (Zeng et al., 2021) employ sentence-level labeling using rule-based text transformations. The Electra-DAE
models (Goyal and Durrett, 2021) adopt dependency arc-level labeling. Our SumPhrase models uses phrase-level
labeling, where "-multi" dictates the model trained without the auxiliary task of corresponding sentence localization.
Refer to Table 1 for para, fusion, comp, and ref in the Training data column.

over, 186,028 source sentences were marked as one
of the corresponding sentences of a hypothesis sen-
tence, whereas 3,389,275 other sentences were not
labeled as corresponding sentences.

4.2 Training the SumPhrase Model

The Electra-base model (Clark et al., 2020) pre-
trained on 3.3 billion tokens from Wikipedia and
BooksCorpus (the same as the BERT-base) was em-
ployed as the encoder of the SumPhrase model in
the experiments. We trained the SumPhrase model
under the following conditions: number of epochs:
3, batch size: 10, optimizer: AdamW, and initial
learning rate: 3e-5. The α parameter in equation-
(6) was set to 0.5. We saved the checkpoint that
achieved the highest BA on the validation portion
of the K2020 dataset. Appendix C provides addi-
tional details of the experimental setup.

4.3 Test Datasets and Evaluation Metrics

We used two human-annotated datasets in the evalu-
ation, which are known as K2020 (Kryscinski et al.,
2020) and Reranking (Falke et al., 2019).

The K2020 dataset contains 441 consistent sen-
tences and 62 inconsistent sentences. We measured
the balanced accuracy (BA) and Macro-F1 for com-
parisons.

The Reranking dataset includes 373 instances,
each containing a source document and two similar
sentences: one is a consistent summary sentence ex-
tracted by an extractive summarizer, and the other

is a potentially inconsistent summary sentence gen-
erated by an abstractive summarizer. That is, the
reranking task is to correctly (re)rank consistent
summary sentences higher. Thus, the portion of
correctly ranked data instances is used as the eval-
uation metric. We also note that the Reranking
dataset was used to measure the accuracy of the
corresponding sentence localization task that was
incorporated as an auxiliary task.

4.4 Compared Existing Models

We primarily compared our phrase-level mod-
els with dependency-arc-level Electra DAE mod-
els (Goyal and Durrett, 2021), both trained with
the proposed dataset. In addition, we compared
these models with existing sentence-level mod-
els including FactCC/FactCCX (Kryscinski et al.,
2020), SumFC (Zhang et al., 2021), and Fac-
tAdv (Zeng et al., 2021). These models rely on
text-transforming operations to generate erroneous
sentences. Among these models, SumFC achieved
the best results on both K2020 and Reranking5.

5 Results and Discussion

This section discusses the efficacy of the proposed
method by referring to the results. Appendix D
presents and discusses some detection results.

5The performance of this model could be further improved
by training it with our proposed dataset.
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5.1 Detection of Sentence Inconsistency
Table 2 lists the results of inconsistency detection,
where existing weakly supervised models that rely
on a synthetic dataset are compared.

These results demonstrate that our SumPhrase
model outperformed the other models in all met-
rics. The insights obtained from the results can be
summarized as follows:

• The automatically generated training data sig-
nificantly improved the detection performance
(from comparisons of the Electra-DAE (ours)
and SumPhrase models with other models).

• The phrase-level labeling was effective (from
comparisons of the SumPhrase models with
the Electra-DAE models).

• The multi-task learning strategy contributed
to improving the performances (from com-
parisons of the SumPhrase model with the
SumPhrase (-multi) model). In principle, the
incrrectly localized corresponding sentences
could affect the inconsistency detection per-
formance6. However, the auxiliary task was
accomplished with high accuracy, as shown in
Table 3, and the multi-task learning strategy
is assessed as adequate.

• Even without multi-task learning, the
SumPhrase model exhibited better perfor-
mances than most models. The exception was
the result on Reranking, which was slightly
inferior to that of Electra-DAE (ours).

5.2 Localization of Corresponding Sentences
We incorporated this task as an auxiliary task, as-
suming it would improve the performance of the
main task. As shown in Table 2, this assumption is
confirmed.

Table 3 summarizes the results of this auxil-
iary task, where BA and Macro F1 are used as
the evaluation metrics. The table shows that our
SumPhrase model achieved better results than the
FactCCX (Kryscinski et al., 2020) and SumFC (tf-
idf) (Zhang et al., 2021) models. The FactCCX
model identifies evident spans in a document for
a summary sentence, readily enabling the local-
ization of the corresponding sentences. For the
SumFC (tf-idf) model, we selected the original sen-
tence that was most similar to a summary sentence

6See the second example presented in Appendix D, where
extrinsic hallucination errors arise.

Model BA F1
FactCCX 95.9 0.945
SumFC (tf-idf) 97.0 0.970
SumPhrase 99.2 0.980

Table 3: Results of corresponding sentence localization.

K2020 Reranking
Training data BA F1 %Correct
fusion 81.1 0.663 83.4%
comp 50.0 0.467 54.9%
para 73.4 0.708 78.4%
fusion+comp 82.5 0.687 84.3%
fusion+para 82.8 0.681 84.4%
fusion+comp+para 83.7 0.700 85.1%
ALL 85.2 0.759 84.7%

Table 4: Results of dataset ablation. “ALL” indicates
the “fusion+comp+para+ref” condition.

by measuring the cosine similarity of the tf-idf vec-
tors.

An intriguing insight appears when we compare
the SumFC results in Tables 2 and 3. Although
the SumFC model achieved almost a level of accu-
racy (97.0 to 99.2 in BA) in this experiment close
to that of our SumPhrase model, there was a sig-
nificant gap in the inconsistency detection accu-
racy (78.7% to 86.0% with Reranking). This result
indicates that the task of inconsistency detection
requires a greater variety of errors in the training
dataset, which cannot be achieved with the sim-
ple rule-based text transformation approach taken
by SumFC and FactCCX, again demonstrating the
superiority of our synthetic dataset.

5.3 Data Ablation

Table 4 presents the main results of the dataset abla-
tion study conducted to investigate the contribution
of each portion of the dataset or their combinations.
Table 7 (Appendix E) provides further details of
the ablation results. The SumPhrase model used
in these experiments was trained with a single-task
learning regime, that is, the SumPhrase (-multi)
model.

The first block of Table 4 compares the results
with the individual data, showing that sentence fu-
sion data is the most promising for achieving good
performances. Even with this dataset portion, our
SumPhrase model achieved better results than the
other models on K2020 (BA) and Reranking. In
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contrast, sentence compression data alone is al-
most useless, as it contains only consistent labels
and rarely introduces factual errors7.

Based on the effectiveness of the sentence fu-
sion data, the second block of the table presents
the results obtained by incrementally adding other
dataset portions. Apart from the performance on
Reranking, the initial performance with sentence
fusion data constantly improved with the addition
of data, thereby demonstrating that increasing the
variety of data in training is vital.

Also note that the accuracy of K2020 signifi-
cantly improved by adding reference summary sen-
tences (ALL). This result suggests that the addi-
tion of phrases labeled as “consistent” is effective.
However , a careful reader may, notice that the
ALL model performance on Reranking was slightly
inferior to that of the fusion+comp+para model.
Although a detailed investigation is required, this
could be attributed to the quality of the Rerank-
ing dataset. In particular, positive and negative
examples required in Reranking were generated
using the FAS summarization model (Chen and
Bansal, 2018). We suspect that the quality of these
examples is not high compared with those gen-
erated by humans or SOTA models. Therefore,
the ALL setting, which additionally incorporates
human-generated reference summaries in the train-
ing data, did not yield a better result than the fu-
sion+comp+para setting.

5.4 Limitations of the Present Work

Although the proposed method exhibits excellent
performance, it focuses on intrinsic factual errors.
Extrinsic hallucination errors, readily introduced
with a dataset such as XSum (Narayan et al., 2018;
Maynez et al., 2020), are another acute issue to be
addressed. A manner of detecting extrinsic hallu-
cination errors is to train a model using generated
examples, as proposed by Utama et al. (2022). An
alternative would be to incorporate another source
of information, such as world knowledge, to vali-
date the content of a summary. Before exploring
this method, however, we would identify issues
inherent to our approach using the XSum dataset.

6 Conclusions

We propose a neural model called SumPhrase for
detecting errors in an abstractive summary. The

7Although not present in the table, the ref data exhibited
almost the same results for the same reason.

model was empirically proven to be effective as
it outperformed other weakly supervised models.
This significant performance is primarily attributed
to the dataset on which the model was trained. We
created a synthetic dataset that contains factual
errors likely to be produced by a common summa-
rizer. These errors are labeled at the phrase level,
as opposed to the dependency arc-level labels em-
ployed by existing models. The synthetic training
dataset can also contribute to improving models
that rely on an external NLI or QA system (Laban
et al., 2022; Fabbri et al., 2021). It can also be used
to fine-tune these models or to post-edit errors (Cao
et al., 2020).

The model exhibited improved performance
when jointly trained with the sub-task of localizing
corresponding sentences in a summary sentence.
This functionality may contribute to enhancing the
explainability of an inconsistency error-detection
system. Our method can also contribute to generat-
ing negative samples required to train a summariza-
tion model that relies on contrastive learning (Cao
and Wang, 2021).
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A Details of Phrase-Level Labeling

The phrase-level labels in a hypothesis sentence
h = {w1, ..., wH} are automatically annotated us-
ing the algorithm detailed in Algorithm 1. The first
half of the algorithm creates “phrases” by inspect-
ing particular dependency labels L = {la1 , ..., laK},
as shown in Table 5. The second half of the algo-
rithm assigns intra- and inter-phrase labels to each
created phrase.

The inputs to the algorithm are a set of de-
pendency labels Y a = {a1, ..., aN} and an =
{wi, wj , lan, yan}. In this case, lan denotes the de-
pendency relation between words wi and wj , and
yan represents the corresponding dependency arc-
level label assigned by the method proposed by
(Goyal and Durrett, 2020).

advmod, amod, aux, compound
det, fixed, flat, goeswith, nummod

reparandum, nmod:poss, nmod:tmod

Table 5: Dependency labels used in phrase creation.

B Effectiveness of Span Attention
Mechanism

Table 6 compares the performances of the
SumPhrase models with and without the span at-
tention mechanism (Lee et al., 2017) on the K2020
dataset. We used the averaged token vectors to rep-
resent phrases for the “without” condition. Given
this result, we preferred the span attention mecha-
nism over conventional average pooling, because
it better captures the meaning of a semantically
significant word.

Model BA F1
SumPhrase 85.2 0.759
SumPhrase (average) 83.8 0.746

Table 6: Effectiveness of span attention.

C Details of Experimental Setup

We used Stanford CoreNLP8 (Manning et al.,
2014) with “EnhancedDependenciesAnnotation” to
dependency-parse hypothesis sentences. As the
encoder for the SumPhrase model, we employed

8https://nlp.stanford.edu/software/stanford-corenlp-
4.1.0.zip

the electra-base-discriminator9, implemented in
the Huggingface Transformers library (Wolf et al.,
2020). All experiments were conducted using an
NVIDIA GeForce GTX TITAN X GPU with 12
GB of memory. The time required to train the
SumPhrase model was approximately 40 h. For
reliability, each number reported from our imple-
mentations in the present study is the average of
three runs with different random seeds.

D Case Study

Figure 6 shows the results of the inconsistency
detection using SumPhrase and FactCCX.

Document #1 shows a case in which the
SumPhrase model correctly detects an inconsistent
sentence and localizes the corresponding sentences.
FactCCX failed to detect the inconsistency in the
summary, although it identifyied the corresponding
spans in the input. This result demonstrates that
inconsistency detection is generally more compli-
cated than sentence alignment.

Document #2 presents a typical case in which
even the SumPhrase model cannot detect the in-
consistency in a summary. This example poses the
issue of extrinsic hallucination errors, which are
difficult to detect using only the proposed method-
ology.

E More on Data Ablation

Table 7 lists the results for other data combinations.
Again, the effectiveness of sentence fusion data
compared with paraphrasing data is shown. Note
that adding reference data to fusion or paraphras-
ing dataset portions degrades the BA, highlighting
the efficacy of the ALL (fusion+comp+para+ref)
combination.

K2020 Reranking
Training data BA F1 %Correct
fusion+comp 82.5 0.687 84.3%
fusion+ref 79.5 0.716 85.2%
para+comp 69.3 0.702 80.3%
para+ref 65.5 0.691 77.7%
ALL 85.2 0.759 84.7%

Table 7: Additional results of dataset ablation.

9https://huggingface.co/google/electra-base-
discriminator
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Algorithm 1 Phrase-level labeling

Require: (1) The set of dependency arcs and dependency arc-level labels Y a = {a1, ..., aN}, an =
{wi, wj , lan, yan} from a hypothesis sentence h; (2) a set of dependency labels L = {la1 , ..., laK}.

Ensure: A set of phrase-level labels Y e.
1: ▷ create phrases
2: P ← {{w1}, ..., {wH}}
3: for ai ∈ Y a do
4: if lai ∈ L then
5: pn, pm ← GET_PHRASE(P, ai)
6: if pn ̸= pm then
7: P ← MERGE_PHRASES(P, pn, pm)
8: end if
9: end if

10: end for
11: ▷ assign phrase-level labels by merging arc-level labels
12: Y e ← ∅
13: for ai ∈ Y a do
14: pn, pm ← GET_PHRASE(P, ai)
15: if pn == pm then
16: yen ← GET_LABEL(Y e, {pn})
17: yen ← UPDATE_LABEL(yen, y

a
i )

18: Y e ← UPDATE(Y e, {{pn}, yen})
19: else
20: yenm ← GET_LABEL(Y e, {pn, pm})
21: yenm ← UPDATE_LABEL(yenm, y

a
i )

22: Y e ← UPDATE(Y e, {{pn, pm}, yenm})
23: end if
24: end for
25: for {p, ye} ∈ Y e do
26: if LEN(p) == 2 then
27: yei ← GET_LABEL(Y e, {p[0]})
28: yej ← GET_LABEL(Y e, {p[1]})
29: if yei == inconsistent or yej == inconsistent then
30: Y e ← UPDATE(Y e, {p, inconsistent})
31: end if
32: end if
33: end for

Creating phrases: The algorithm initially assumes that each word in h individually forms a phrase and
passes through the elements ai in Y a. If the dependency relation of arc ai is an element presented in L,
phrases pn and pm are retrieved by GET_PHRASE for the words in this dependency relation. If pn differs
from pm, these phrases are merged using MERGE_PHRASES.

Assigning phrase-level labels: The algorithm passes through elements ai in Y a to accumulate the
phrase-level labels in Y e. First, the phrases of the words in the corresponding dependency relation, that is,
pn and pm, are retrieved by GET_PHRASE. If these phrases denote identical phrases, an intra-phrase
label yen is assigned to pn. Otherwise, the inter-phrase label yenm is assigned to the pair pn and pm. Y e is
updated accordingly. Finally, the inter-phrase label is “inconsistent” if either of the connected phrases is
markedly inconsistent.

The GET _LABEL, UPDATE _LABEL, and UPDATE procedures employed in the algorithm are
summarized as follows:
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GET_LABEL: This procedure returns the intra- or inter-phrase label from Y e, depending on the second
argument. None of the labels is returned if the corresponding label is not in Y e.

UPDATE_LABEL: This updates and returns the label of pn in Y e with yai if yai is ranked higher than pn
in the designated priority order: inconsistent > unlabeled > consistent > None.

UPDATE: This procedure updates the set of phrase-level labels ye with the result of UPDATE_LABEL.

Figure 6: Comparison of FactCCX and SumPhrase outputs. The sentence with a blue underline was identified as an
error-corresponding sentence by SumPhrase, whereas the span with a red underline was localized by FactCCX. The
dependency relation between the red phrases was determined as erroneous by SumPhrase.
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Abstract

The interaction between a consumer and the
customer service representative greatly con-
tributes to the overall customer experience.
Therefore, to ensure customers’ comfort and
retention, it is important that customer service
agents and chatbots connect with users on so-
cial, cordial and empathetic planes. In the cur-
rent work, we automatically identify the sen-
timent of the user and transform the neutral
responses into polite responses conforming to
the sentiment and the conversational history.
Our technique is basically a reinforced multi-
task network- the primary task being ’polite
response generation’ and the secondary task
being ’sentiment analysis’- that uses a Trans-
former based encoder-decoder. We use sen-
timent annotated conversations from Twitter
as the training data. The detailed evaluation
shows that our proposed approach attains su-
perior performance compared to the baseline
models.

1 Introduction

Human-machine interactions have increased
rapidly assisting humans in their everyday lives.
With the growth in Artificial Intelligence (AI) and
Natural Language Processing (NLP), chatbots and
personal assistants, such as Microsoft’s Cortana,
Apple’s Siri, etc., have predominantly become a
part of our daily lives. Thus, research in recent
years has been on modulating biases, styles,
and control in text generation to enhance these
interactions.

Customer care is an essential tool used by com-
panies to provide guidance, and assistance and in
building stable customer relations. The ease of ac-
cess, ease of following up, and immediacy of social
media has made it a strong platform for companies

∗The work was done while the author was in IIT Patna
†This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/

and applications to interact with their customers. In
this regard, conversational agents such as shopping
agents, customer service agents, and personal assis-
tants have become extremely famous for handling
the various queries of a customer and providing
suitable responses to them.

Assisting the customer through social media
channels is attaining high popularity. The main
reason behind this is the fact that the important
elements of social media are its immediacy, trans-
parency, ease of following up, and providing a
human-like feel to the company/brand. In this plat-
form, we see the usage of polite and emphatic lan-
guage, which is the center of our current study.

For the growth of any company or application,
customer care agents must be cordial and amicable
to the customer. Thus along with handling queries,
the agents need to provide customer satisfaction
by greeting, empathizing, appreciating feedback,
apologizing at the right time, and thus building a
strong relationship with the customer.

Recently, incorporating politeness in responses
has been investigated (Golchha et al., 2019;
Madaan et al., 2020; Niu and Bansal, 2018) to make
the dialogue agent more human-like and interac-
tive. Also, the sentiments of the user are important
for properly addressing the customer needs (Shi
and Yu, 2018; Firdaus et al., 2022b, 2021) to as-
sist in creating smooth and cordial conversations.
Therefore, for politely responding to the user it is
important to have knowledge about user sentiment
to avoid frustrating experiences and help build bet-
ter systems.

The usage of the user feedback in the form of
sentiments is crucial to get contextually correct po-
lite responses as presented in Table 1. For example,
if the user has a negative sentiment towards the
customer care system, then the possible polite re-
sponse should be towards apology, assurance, and
empathy rather than greet or appreciation. For the
first example, the sentiment of the user is negative,
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Dialog
Context

User
Sentiment

Generic
Response

Polite
Response

Polite
Behaviour

Hey, i got food poisoning from
your inflight meal on sunday

Negative Send us a dm
That’s disappointing to hear, we are

sorry please send us a dm.
Apology

I need the software update urgently,
the battery lasts literally half a day

Negative How can we help?
Don’t worry, we are here for you,

please say how can we help?
Assurance

Dear this new update is awesome,
got great new apps!

Positive
The update has many

features.
Thank you very much, please checkout

the exciting features in the update.
Appreciation

Order 2 zinger box meals n got
free popcorn chicken, yayyyy

Positive Enjoy your meal. That’s nice to hear, enjoy your meal. Acknowledge

How do i go about getting a
monthly ride pass ?

Neutral We have send the link
Hello, good morning we have send

the link.
Greet

Table 1: Examples of polite responses in accordance to the user sentiments

therefore politeness in the form of appreciation,
greeting or acknowledgment could lead to a wrong
response making the customer angrier towards the
customer care agent.

Similarly, if the user has a positive sentiment
towards the customer care application, then the cus-
tomer care agent should be able to converse politely
showing appreciation and greeting. Previously, re-
searchers focused on changing the sentiment of a
given sentence (Li et al., 2018) using style transfer
techniques. Here, we use sentiment as feedback for
generating polite responses. Therefore, we propose
the task of sentiment-guided polite response gen-
eration. To the best of our knowledge, this is one
of the first works that jointly predict the sentiments
from the user utterances and uses the predicted sen-
timent as feedback for generating polite responses.

Due to the unavailability of sentiment-annotated
customer care conversations, we annotate the Cour-
teously Yours Customer Care Dataset (CYCCD)
(Golchha et al., 2019) with sentiment labels. To ad-
dress the task of sentiment-guided polite response
generation we design an end-to-end framework that
identifies the sentiment of the user and uses the sen-
timent knowledge for generating polite responses.

We employ a hierarchical transformer network
that captures the utterance as well as contextual
information for generating responses. While we
utilize a BERT-based classifier for predicting the
sentiments. For incorporating politeness we use
task-specific rewards that reinforce polite behavior
in the generated customer care responses.
The key contributions of our current work are:

• We propose the task of generating polite re-
sponses in accordance with user sentiments.

• We develop a multi-task end-to-end hierarchi-
cal network to identify the sentiments and use
the predicted information for generating the

contextually correct polite responses.

• We design task-specific rewards that assist in
the proposed task and ensure that the content
is preserved while incorporating correct and
interactive polite responses.

2 Related Work

Natural language generation (NLG) module has
been gaining importance in several applications
such as dialogue systems (Vinyals and Le, 2015;
Shen et al., 2018; Wu et al., 2018; Serban et al.,
2017a; Zhang et al., 2018; Li et al., 2016), ques-
tion answering systems (Reddy et al., 2017; Duan
et al., 2017), and many other natural language in-
terfaces. To help the users achieve their desired
goals, response generation provides the medium
through which a conversational agent can commu-
nicate with its user.

In (Serban et al., 2017b), the authors have pro-
posed a hierarchical encoder-decoder model for
capturing the dependencies in the utterances of a di-
alogue. Emotion classification and analysis (Herzig
et al., 2016) in customer support dialogue is impor-
tant for a better understanding of the customer and
to provide better customer support. Lately, sev-
eral works have been carried out on controlled text
generation (Hu et al., 2017; Li et al., 2017; Subra-
manian et al., 2017; Fedus et al., 2018; Peng et al.,
2018) to generate responses with desired attributes.

Style transfer has been an emerging field in
natural language processing (NLP). In (Rao and
Tetreault, 2018), a dataset has been introduced for
formality style transfer. Unsupervised text style
transfer has encouraged in transforming a given
text without parallel data (Shen et al., 2017; Carl-
son et al., 2017; Fu et al., 2018; Li et al., 2018;
Niu and Bansal, 2018). One of the early works
in politeness (Gupta et al., 2007) was based upon
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making the conversational agents more affective
and socially intelligent by incorporating different
politeness strategies in the responses.

Recently in (Niu and Bansal, 2018), the authors
proposed a neural framework that could induce po-
liteness in chit-chat conversations in the absence
of parallel data. Lately, (Golchha et al., 2019) pre-
sented a method for increasing user satisfaction by
inducing courteous phrases in the customer-care re-
sponses by exploiting reinforced pointer networks.

One of the recent studies presented in (Madaan
et al., 2020) devised a tag and generate frame-
work for converting non-polite sentences into polite
ones. Recent works on politeness focuses on mod-
eling politeness across languages (Firdaus et al.,
2020), gender and age group (Firdaus et al., 2022a),
predicting variations in politeness (Mishra et al.,
2022b) and building a politeness adaptive system
(Mishra et al., 2022a).

From the existing literature on politeness, we can
conclude that politeness in conversational agents
is essential for increasing the social and affective
understanding of conversational agents. Our cur-
rent work differs from the existing baselines as we
include user feedback in the form of sentiment in-
formation to enhance the quality of generation and
to make the responses contextually coherent with
the dialog.

3 Methodology

In this section, we formally define the problem
statement and give a detailed description of our
proposed methodology.

3.1 Problem Formulation

In our current work, we address the task of iden-
tifying the sentiments from the user utterances
and using the sentiment information to transform
the generic customer care responses into polite re-
sponses which are contextually appropriate to the
dialog history and the user sentiments.

Precisely, given the dialog history D having a
sequence of sentences (s1, s2, . . . , sN ) where each
sentence sn is a sequence of words u1, u2, . . . , uM ,
the task is to simultaneously identify the sentiments
from the user sentence s(N−1) and utilize the de-
tected sentiment to transform the generic customer
care sN response into a polite response s′N .

Figure 1: Architectural diagram of our proposed multi-
task framework that simultaneously identifies the sen-
timent and generates the polite response in accordance
with the predicted sentiment

3.2 Methodology

Our proposed network is based upon the
Transformer Encoder-Decoder (TED) architecture
(Vaswani et al., 2017) as shown in Figure 1. We uti-
lize a hierarchical transformer having two encoders:
one of which is used to encode the sentences named
as sentence encoder while we use another Trans-
former to encode the output of the sentence encoder
to capture the dialog context. We apply the soft-
max activation function on the sentence encoder to
capture the sentiment information from the user ut-
terance. The predicted sentiment information along
with the contextual information is used to initialize
the Transformer decoder.

We design task-specific rewards to ensure that
the users’ sentiments and politeness are induced
appropriately in the generated responses. In our
present work, we focus on the sentiment of the user
and the way it affects the politeness quotient of
the customer care agent/bot response. For this, we
consider the emotional information of the user that,
in turn, helps in identifying the correct sentiment
of the user. As we predict the sentiment of the user,
the customer care agent’s emotional information is
provided as shown in Figure 1 for generating con-
sistent politeness, emotion, and sentiment-aware
responses.

Sentence Encoder. As the transformer encoder
has multiple layers and each layer is composed
of a multi-head self attentive sub-layer followed
by a feed-forward sub-layer with residual connec-
tions (He et al., 2016) and layer normalization (Ba
et al., 2016), we use it to encode the sentences in
a given dialog. For intricate details on the Trans-
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former network, we refer the interested readers to
(Vaswani et al., 2017). To learn the representation
of sn, sn = (uk,1, uk,2, ..., uk,n′) is first mapped
into continuous space

Tu = (ti1, t
i
2, . . . , t

i
|sn|);where[T

i
j = e(wij) + pj ]

(1)
where e(uij) and pj are the word and positional
embedding of every word uij in an utterance, re-
spectively. For words, we use Glove embeddings
and adopt the sine-cosine positional embedding
(Vaswani et al., 2017) as it performs better and
does not introduce additional trainable parameters.

The utterance encoder (a Transformer) con-
verts Tu into a list of hidden representations
hi1, h

i
2, . . . , h

i
|sn|. We use the last hidden represen-

tation hi|sn| (i.e. the representation at the EOS to-
ken) as the textual representation of the utterance
sn. Similarly, to the representation of each word in
sn, we also take into account the utterance position.
Therefore, the final textual representation of the
utterance sn is:

hsi = hi|sn| + pi (2)

Note that the words and sentences share the same
positional embedding matrix. We also capture the
emotional embeddings of every sentences using the
output distribution from DeepMoji (Felbo et al.,
2017) which is pre-trained on the emoji prediction
task in a similar manner as (Golchha et al., 2019).

The emotional embedding of every sentence is
represented as es,n. The final representation of
any sentence is given by the concatenation of the
emotional representation as well as the last hidden
representation of the sentence.

hseni = hsi + es,n (3)

Context Encoder. The context encoder is
yet another Transformer, but it is applied on
the utterance level. After running the trans-
former on the sequence of sentence representation
hsen1 ,sen2 , . . . , hsen|D| , we obtain the context-sensitive

utterance representations D̂ = (d̂1, d̂2, . . . , d̂|D|).
After achieving the representation of a given di-

alogue using a hierarchical transformer network,
we employ a transformer decoder to generate the
polite response in accordance to the contextual in-
formation and the sentiment information.

Sentiment Classification Network. For identi-
fying sentiments, we propose a sentiment classifica-
tion network. The input to this network is the user

utterance and the output is a predicted sentiment
for this utterance. A BERT classifier is applied on
the user utterance followed by a softmax output
layer which gives the sentiment prediction. The
sentiment classifier is trained by minimizing the
negative log-likelihood

LSE = −
N∑

se=1

yse log ỹse (4)

Decoder: To generate the polite response with
the predicted sentiment, we employ a Transformer
decoder (Vaswani et al., 2017) as shown in Figure
1. The Transformer decoder used in our current
work is slightly different from the original in which
two multi-head attention layers were employed to
incorporate both the contexts in encoder and de-
coder.

But in our case, we only need one to learn the
decoder context, since the context in encoder is a
vector (i.e., d̂i). We predict the polite responses
Yk = (yk0 , y

k
1 , y

k
2 , . . . , y

k
|Yk|) one word per step

(yk0 ) is an artificially added BOS (beginning of
sentence token). At the jth step, we predict ykj
given yk0 , . . . , y

k
j−1, predicted sentiment SEi and

the context representation D̂. By applying word
and positional embeddings to (yk0 , . . . , y

k
j−1), we

obtain Ẽk1:j−1 = (ẽk0, . . . ,
˜ekj−1). Then, we apply

multi-head attention sub-layer to Ẽk1:j−1:

˜hj−1 =MultiHead(qj−1,Kj−1, Vj−1);

qj−1 =WQ ˜ekj−1;

Kj−1 =WKẼk1:j−1;

Vj−1 =W V Ẽk1:j−1

(5)

where qj−1, Kj−1, Vj−1 are the input query, key
and value matrices of the multi-head attention func-
tion (Vaswani et al., 2017), respectively. Also,WQ,
WK and W V are the weight matrices. To attain
polite responses in accordance to the sentiment, we
include the information of D̂ and sentiment SEi
by addition:

˜xj−1 = ˜hj−1 + d̂k + SEi (6)

We also apply a feedforward sub-layer (one hidden
layer with ReLU (Glorot et al., 2011) activation
function) after ˜xj−1 in a similar manner as (?):

˜gj−1 =W ff
2 max(0,W ff

1 ˜xj−1 + b1) + b2 (7)
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Note that the transformer decoder can have multi-
ple layers by applying Equation (4) to (6) multiple
times but we show only the computation of one
layer for the simplicity. The probability of ykj given
yk0 , . . . , y

k
j−1, SEi and the context representation

D̂ is:

p(ykj |yk0 , . . . , ykj−1, d̂k, SEi) = softmax(WO ˜gj−1)
(8)

Model Training: As used in (Paulus et al.,
2017), we jointly use reinforcement learning (RL)
and machine learning (ML) to train our model in
a similar manner as (Golchha et al., 2019). If
ỹ = {ỹ1, ỹ2, . . . , ỹn′} is the gold output tokens
for the given generic response tokens hseni and con-
versation history D̂, the maximum-likelihood ob-
jective using teacher forcing is given by:

LMLE = −
n′∑

t=1

log p(ỹt|ỹ1, . . . , ỹt−1, hseni , D̂)

(9)
In addition to maximum likelihood error training,

we also use RL to learn from maximising discrete
metrics that are task-specific (which we design as
the rewards). We use the self-critical policy gradi-
ent algorithm suggested in (Rennie et al., 2017) for
training the network.

The reward obtained by the inference time algo-
rithm (which performs greedy decoding) is base-
lined for the REINFORCE (Williams, 1992) al-
gorithm, without the need for training a “critic”
network for estimating the value functions. During
training, two output sequences are produced: ys,
obtained by sampling p(yst |ys1, . . . , yst−1, x) prob-
ability distribution, and yg, the baseline output,
obtained by greedily maximizing the output proba-
bility distribution at each time step.

LRL = (r(yg)− r(ys))
n′∑

t=1

log p(yst |ys1,

. . . , yst−1, h
sen
i , D̂)

(10)

Our reward function r(y), used for evaluating y
against the gold standard output is

r(y, ỹ) = λ1 ·r1(y, ỹ)+λ2 ·r2(y, ỹ)+λ3 ·r3(y, ỹ)
(11)

The final reward function is the weighted mean
of the three terms as given below:

(i). BLEU metric r1: Ensures the content matching
between the generated response and the ground-
truth response.

(ii). Sentiment consistency r2: Measured by
the cosine similarity of the sentiment prediction
distributions of the user utterance and generated
responses (using pre-trained BERT classifier). It
ensures that the sentiment states of the generated
polite response is consistent with the user senti-
ment.

(iii). Politeness accuracy r3: The politeness ac-
curacy of the generated response is computed using
the pre-trained BERT based politeness classifier
(trained on Stanford Politeness Corpus (Danescu-
Niculescu-Mizil et al., 2013)). The responses hav-
ing scores greater than 0.7 are considered as polite.

We first pre-train using the maximum likelihood
(ML) objective and then using a mixed objective
function with a reduced learning rate:

Lgen = ηLRL + (1− η)LMLE , (12)

Joint Training (JT): We jointly train the entire
model by simultaneously minimizing the sentiment
classification loss and generation loss. The final
loss of the model is:

LJoint = LSE + Lgen (13)

3.3 Baseline Models:
To demonstrate the effectiveness of our proposed
model, we compare with the previous state-of-the-
art (SoTA) models:
Seq2Seq: It is the standard encoder-decoder frame-
work with attention mechanism that has been
widely used in generation, machine translation etc.
(Sutskever et al., 2014).
HRED: It is a hierarchical encoder-decoder model
proposed for text based dialogue systems (Serban
et al., 2015).
Polite-RL: We implement the Polite-RL frame-
work to induce politeness in responses in a similar
manner as (Niu and Bansal, 2018).
PT-TGA: We implement the politeness transfer
framework presented in (Madaan et al., 2020) that
uses a tag and generate approach to incorporate
politeness.
PG-RL: We also take the reinforced pointer gener-
ator network employed in (Golchha et al., 2019) as
one of the baselines to infuse politeness in generic
responses.

To demonstrate the effectiveness of each of the
components in the proposed model, we experiment
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with different model variants.
HT: In this model, we use the hierarchical trans-
formers to induce politeness in responses without
the RL rewards and sentiment information.
HT + RL: In this framework, we include the RL
based rewards in the hierarchical model for polite
response generation.
HT + RL + SE: In this framework, we provide
the sentiment information to the hierarchical Trans-
former encoder-decoder model along with RL re-
wards without jointly training for both the tasks.

For sentiment classification, we train several
classifiers such as CNN, LSTM, Bi-LSTM on the
CYCCD dataset for predicting sentiments into 3
classes. We also employ RoBERTa (Liu et al.,
2019) as one of the baselines.

Train Valid Test
# Conversation 130898 19762 39665

# Utterances 168534 24724 49788

Table 2: CYCCD Dataset Statistics

4 Datasets and Experiments

In this section we explain the dataset used for exper-
imentation and briefly provide the implementation
details and evaluation metrics.

4.1 Dataset:
For our current work, we use the CYCCD dataset
(Golchha et al., 2019)1 having interactions between
customers and professional customer care agents
of companies on their Twitter handles. The CY-
CCD Twitter data was taken from the dataset made
available on Kaggle by Thought vector. We use
the generic and polite annotated version of the CY-
CCD dataset in a similar manner as (Golchha et al.,
2019). As the CYCCD dataset was not annotated
for sentiment, therefore we do the sentiment anno-
tations for the dataset.

To annotate the CYCCD dataset with sentiments,
we employ crowd-workers from Amazon Mechan-
ical Turk (AMT) that labels every utterance with
the provided set of sentiment labels (i.e., positive,
negative, neutral). For labeling the utterances, the
workers were asked to follow the instructions and
guidelines provided for annotation. Some of the
significant guidelines for annotation were as fol-
lows: (i). Every utterance of a given dialogue was
to be marked with the provided sentiment labels;

1https://github.com/Mauajama/Courteously-Yours

(ii) In addition, the workers were asked to provide
the overall sentiment for every sentence in an utter-
ance as well. For cases where we found different
annotations in sentiment for a particular sentence,
we remove them from the dataset, and we also
drop the entire conversation to maintain coherence
among the utterances.

A majority voting scheme was used for selecting
the final sentiment for every sentence. We observe
a multi-rater Kappa (McHugh, 2012) agreement ra-
tio of approximately 75% for the sentiment, which
can be considered as reliable. The final CYCCD
data statistics is provided in Table 2. The sentiment
distribution of the CYCCD dataset is provided in
Figure 2.

Figure 2: Sentiment distribution in the CYCCD dataset

4.2 Implementation Details:

All the implementations were done using the Py-
Torch2 framework. We use the dropout (Srivastava
et al., 2014) with probability 0.45. We initialize
the model parameters randomly using a Gaussian
distribution with the Xavier scheme (Glorot and
Bengio, 2010). The hidden size for all the layers
is 512. We employ AMSGrad (Reddi et al., 2019)
as the optimizer for model training to mitigate the
slow convergence issues.

We use uniform label smoothing with ϵ = 0.1
and perform gradient clipping when the gradi-
ent norm is above 5. We use 300-dimensional
word-embedding initialized with Glove (Penning-
ton et al., 2014) embedding pre-trained on Twitter.
We train with batches of size 16, and use the same
size for beam search decoding. We use η = 0.99
(similar to (Paulus et al., 2017)) for the joint loss.
For the reward function, the values of λ1, λ2 and
λ3 are 0.34, 0.33 and 0.33, respectively.

2https://pytorch.org/
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4.3 Automatic Evaluation Metrics:

To evaluate the model at the relevance and gram-
matical level, we report the results using the stan-
dard metrics like Perplexity (Chen et al., 1998),
Rouge-L (Lin, 2004) and BLEU-4 (Papineni et al.,
2002). We also report the Politeness Accuracy as
a metric to measure the degree of politeness in the
responses.

We compute the politeness score using a pre-
trained classifier, BERT (Devlin et al., 2018)3 for
measuring the degree of politeness in the gener-
ated responses similar to (Niu and Bansal, 2018).
The classifier takes as input the generated response
and generates a probability value giving us the po-
liteness accuracy of the generated response. To
evaluate the sentiment classification performance,
we use the traditional metrics such as F1 score.

4.4 Manual Evaluation Metrics:

We recruit six annotators (in a similar manner as
(Shang et al., 2015; Tian et al., 2019)) from a third
party company, having high-level language skills.
We sampled 250 responses per model for evalua-
tion with the utterance and the conversational his-
tory provided for generation. First, we evaluate
the quality of the response on two conventional
criteria: Fluency and Relevance. These are rated
on a five-scale, where 1, 3, 5 indicate unacceptable,
moderate, and excellent performance, respectively,
while 2 and 4 are used for unsure.

Secondly, we evaluate the politeness quotient
of a response in terms of Politeness Appropriate-
ness metric that measures whether the politeness
induced in the response is in accordance with the
user sentiment and the dialogue history. Here, 0 in-
dicates irrelevant or contradictory, and 1 indicates
consistent with the provided persona and dialogue
context.

We compute Fleiss’ kappa (Fleiss, 1971) to mea-
sure inter-rater consistency. The Fleiss’ kappa for
fluency and relevance are 0.53 and 0.49, indicating
moderate agreement. For politeness appropriate-
ness, we obtain 0.65 as the kappa score indicating
substantial agreement.

5 Result and Analysis

In this section, we provide the experimental re-
sults for both sentiment classification and polite re-

3The classifier is trained on the Stanford Politeness Cor-
pus (Danescu-Niculescu-Mizil et al., 2013) and achieves an
accuracy of 92%.

sponse generation. The proposed model performs
significantly better than the other baselines for all
the evaluation metrics and the improvement in each
model is statistically significant compared to the
other models for both the tasks4.

The sentiment classification results are provided
in Table 3. From the results, it is evident that the
BERT based classifier outperforms all the other
models for sentiment classification task with an
improvement of more than 15 points compared to
the Bi-LSTM. Hence, it can be concluded that the
BERT classifier correctly identifies the sentiment
of a sentence.

Model S-F1
LSTM 71.06
CNN 69.90

Bi-LSTM 74.87
BERT (Devlin et al., 2018) 89.74
RoBERTa (Liu et al., 2019) 88.89

Table 3: Classification scores of sentiment on CYCCD
data. Here, S-F1 denotes the weighted average F1 score
of sentiment.

Model Description PPL BLEU-4 Rouge-L PA

Existing
Approaches

Seq2Seq (Sutskever et al., 2014) 1.112 0.145 0.278 0.38
HRED (Serban et al., 2015) 1.085 0.198 0.308 0.45

Polite-RL (Niu and Bansal, 2018) 1.028 0.224 0.321 0.69
PT-TGA (Madaan et al., 2020) 1.032 0.251 0.332 0.68
PG-RL (Golchha et al., 2019) 1.018 0.264 0.339 0.73

Proposed
Approach

HT + RL + SE
(Joint Training) 1.004 0.275 0.352 0.77

Ablation
Study

HT 1.015 0.269 0.343 0.70
HT + RL 1.008 0.272 0.349 0.74

HT + RL + SE 1.006 0.273 0.350 0.75

Table 4: Automatic evaluation results. Here, PPL: Per-
plexity, PA: Politeness accuracy, HT: Hierarchical trans-
former, SE: Sentiment, RL: Reinforcement learning

In Table 4, we provide the automatic evaluation
results for the proposed framework and the existing
baselines. From the table, it is evident that the pro-
posed network outperforms the Seq2Seq and HRED
frameworks in terms of all the metrics. In the case
of politeness, there is an enormous improvement in
comparison to the Seq2Seq and HRED frameworks
with more than 30% accuracy.

In comparison to the Polite-RL framework, our
proposed network is capable of preserving the in-
formation and generating correct responses as the
BLEU-4 score is significantly higher. It can be
concluded that the generation of polite responses
does not comprise the information present in the

4we perform statistical significance tests (Welch, 1947)
and it is conducted at 5% (0.05) significance level
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Dialogue Context Sentiment
Information Generic Response Generated Polite Examples

My order doesnot have fries in it, that sucks! Negative we’ll follow up with the store

HT: We will check
HT + RL: Please, wait we’ll follow up with the store.
HT + RL + SE: Sorry, we’ll follow the order with the store
Proposed: Sorry for the inconvenience, please wait while
we follow with the store.

The new iphone has awesome display Positive enjoy your new iphone!

HT: Ohh ur new phone, great
HT + RL: That’s nice about your iphone
HT + RL + SE: Thanks and enjoy your phone.
Proposed: Thanks for your kind words
and enjoy your new phone!

Table 5: Examples of polite responses generated by different models according to the sentiment information

Model Description F R PA

Existing
Approaches

Seq2Seq (Sutskever et al., 2014) 3.82 3.73 48%
HRED (Serban et al., 2015) 3.86 3.78 52%

Polite-RL (Niu and Bansal, 2018) 3.91 3.79 61%
PT-TGA (Madaan et al., 2020) 4.03 3.85 64%
PG-RL (Golchha et al., 2019) 4.11 4.06 67%

Proposed
Approach

HT + RL + SE
(Joint Training) 4.23 4.17 75%

Ablation
Study

HT 4.09 4.03 65%
HT + RL 4.16 4.09 71%

HT + RL + SE 4.19 4.12 73%

Table 6: Human evaluation results. Here, PA: Polite-
ness Appropriateness, HT: Hierarchical Transformer,
SE: Sentiment, RL: Reinforcement Learning

ground-truth generic response. In the case of auto-
matic evaluation in Table 4, our method shows a
notable drop in the perplexity scores, thereby en-
suring grammatically correct responses generated
by the framework. By introducing sentiment in-
formation in our proposed framework, we see the
growth in the performance compared to the PG-RL
network establishing the importance of sentiment
information for generating polite responses.

In Table 4, we provide the ablation study of our
proposed network. From the table, it is visible that
the Hierarchical Transformer network performs bet-
ter than the Seq2Seq and HRED frameworks, but
lacks politeness in comparison to the existing PG-
RL baseline. This is because the model is trained
without politeness and sentiment rewards.

On adding the RL training to the hierarchical
network, we see that there is an improvement in
terms of all the metrics. An increase in BLEU-4,
Rouge-L, and politeness accuracy scores signifies
that the rewards used for training the framework
contribute towards better generation.

Finally, in HT + RL + SE adding the sentiment
information of the user helps in improving the per-
formance of the overall network. Joint training
helps in simultaneously improving the performance
of the end-to-end network for generating sentiment-
guided polite responses.

From Table 6, it is evident that the proposed
method generates grammatically correct responses
as the fluency score is the highest. Similarly, the
relevance score in the case of our proposed net-
work is greater than all the existing and baseline
approaches signifying that the generated responses
are contextually correct according to the dialogue
history.

As the primary aim of our current work is to
generate politeness according to the sentiment in-
formation, the politeness appropriateness metric
helps evaluate the proposed task for all the net-
works. The proposed framework has the highest
politeness score compared to all the existing and
baseline frameworks. Also, through ablation study
in case of manual evaluation, it can be established
that the proposed framework having joint training
and RL rewards helps the overall architecture to
generate polite responses according to the users’
sentiments.

In Table 5, we provide a few examples and their
corresponding generated responses by the differ-
ent models. It exhibits that while the existing
Seq2Seq framework generates shorter and less po-
lite responses, the HRED framework can generate
more complete and informative responses. The re-
sponses generated by the proposed model exhibit
different variations in politeness according to the
user sentiments. The variation following the differ-
ent sentiments is visible in the responses, thereby
achieving the desired task.

After performing a detailed quantitative and qual-
itative analysis of the generated responses, we came
across a few mistakes committed by the baselines
and the proposed frameworks.
Some of the commonly occurring errors are:
(i) Repetition: The responses generated by the base-
lines and the proposed framework sometimes re-
peat the information or generate < unk > tokens.
For example, in the following generated response,
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there is a repetition: “Thanks, could you dm us
more info info info...”
. (ii) Loss of information: In some cases, the mod-
els generate responses that, though having polite-
ness factor in them, yet is incapable of providing
the complete information in accordance to the on-
going conversation. For example: Gold:“We appre-
ciate the concern regarding the new update, how
could I help”; Predicted: “Hello, good afternoon!
How may I help?”.
(iii) Sentiment inconsistency: The generated re-
sponses having politeness in them at times do not
correspond to the specified user sentiment. For
example: the user sentiment is negative and the
Predicted: “Thank you ma’am, we love it...” re-
sponse is not consistent to it. This is due to the
fact that the multi-task framework has wrongly pre-
dicted the sentiment of the user therefore causing
the agent to respond incorrectly.

6 Conclusion

In our current work, we propose the task of trans-
forming a generic customer care response into a
polite response according to the sentiment infor-
mation of the user and consistent to the context
history. For the proposed task, we design a hi-
erarchical Transformer network that captures the
user and dialog context simultaneously. We create
a multi-task network that identifies the sentiment
information and uses the predicted sentiment in-
formation for generating the corresponding polite
response. We use reinforcement learning based
rewards to incorporate politeness in the customer
care responses.

Experiments on the sentiment annotated CY-
CCD dataset proves that the proposed network not
only identifies the sentiment information but also
generate the contextually correct polite responses
in accordance to the user sentiments. Hence, it can
be concluded that the polite generation of responses
is dependent on the sentiments of the user to ensure
that the generation is correct and relevant.
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Abstract

Automatic medical question summarization
can significantly help the system to understand
consumer health questions and retrieve correct
answers. The Seq2Seq model based on max-
imum likelihood estimation (MLE) has been
applied in this task, which faces two general
problems: the model can not capture well ques-
tion focus and and the traditional MLE strategy
lacks the ability to understand sentence-level
semantics. To alleviate these problems, we pro-
pose a novel question focus-driven contrastive
learning framework (QFCL). Specially, we pro-
pose an easy and effective approach to generate
hard negative samples based on the question
focus, and exploit contrastive learning at both
encoder and decoder to obtain better sentence-
level representations. On three medical bench-
mark datasets, our proposed model achieves
new state-of-the-art results, and obtains a per-
formance gain of 5.33, 12.85 and 3.81 points
over the baseline BART model on three datasets
respectively. Further human judgement and
detailed analysis prove that our QFCL model
learns better sentence representations with the
ability to distinguish different sentence mean-
ings, and generates high-quality summaries by
capturing question focus.

1 Introduction

A growing number of health questions are raised by
consumers on websites nowadays, which are usu-
ally written in natural language and including de-
tailed and peripheral information not related to the
answers. Summaries of such questions can greatly
improve the performance in retrieving relevant an-
swers (Ben Abacha and Demner-Fushman, 2019).
Accordingly, the medical question summarization
task is defined as summarizing the consumer health
questions (CHQ) into frequently asked questions
(FAQ), which are shorter but remain essential in-
formation of the original question to get correct

∗*Corresponding author.

Input question: consumer health question (CHQ)
subject: gender dysphoria message: no health care on
my son suffering from gender dysphoria what can we
do to help him he worked out of high school no problems
now not working and about shutting himself in his room
24/7 theres nothing this condition in our area we live in
[location].no help in area what can we do he has had bad
thoughts already please help us with some sort of info
thank yuo [name] [location]
Golden summary: frequently asked question (FAQ):
Where can I find information on treatment and resources
for gender dysphoria?
Summary by BART (baseline):
What are the treatments for weight loss?
Summary by our model:
What are the treatments for gender dysphoria?

Table 1: An example of medical question summariza-
tion in MeqSum dataset, where the question focus is
highlighted in green. Summaries generated by BART
and our model are also listed.

answers. An example of medical question summa-
rization is shown in Table 1.

The Seq2Seq neural models have been widely
used in abstractive summarization (Nallapati et al.,
2016; Lewis et al., 2020; Zhang et al., 2020) and
show promising potentials, and they have also been
applied in medical question summarization and
achieve current state-of-the-art results. Ben Abacha
and Demner-Fushman (2019) apply the pointer-
generator model for this task. Yadav et al. (2021a)
present a reinforcement learning framework with
question-type identification reward and question-
focus recognition reward. Mrini et al. (2021b) pro-
pose a multitask learning method by treating recog-
nizing question entailment as an auxiliary task.

In the medical question summarization task, the
input question CHQ is always lengthy and contains
redundant information, where some salient medical
entities and the semantic focus of question are vital
to understand users’ intention. But it still remains a
challenging task for the existing methods to capture
the question focus. As described in the example
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Figure 1: Sketch of our proposed contrastive learning
framework. Ms,Mh represents the memory bank that
contains simple negative samples and hard negative sam-
ples respectively. Rf , Rc, Rg denotes the sentence
representation of FAQ, CHQ and generated summary.
LctrS and LctrH are contrastive learning loss on simple
negative samples and hard negative samples respectively.
+ indicates the positive sample, and − indicates the neg-
ative sample.

.

1, the focus "gender dysphoria" is mis-replaced by
"weight loss" in the summary generated by the fine-
tuned BART, resulting in a completely different
meaning from the original sentence.

For the medical question summarization task,
the generated question summary is required to se-
mantically close to the reference question. How-
ever, in most of current pre-trained models such
as BART (Lewis et al., 2020), the model adopts
maximum likelihood estimation (MLE) and mainly
focuses on the accuracy of the prediction of masked
tokens, but does not guarantee to the semantic sim-
ilarity or dissimilarity of the whole sentences. To
address this issue, some previous works adopt re-
inforcement learning (RL) in text summarization
task (Li et al., 2019; Paulus et al., 2018), but RL
suffers from the noise gradient estimation problem
(Greensmith et al., 2004), which makes the training
process unstable and sensitive to hyper-parameters.

To alleviate these problems, we propose a novel
question focus-driven contrastive learning (QFCL)
framework for medical question summarization,
as illustrated in Figure 1. In our model, we intro-
duce a "double anchors" strategy for contrastive
learning, by utilizing the sentence representation
of CHQ as an anchor and the generated summary
as another anchor, and regarding the golden refer-

ence FAQ as the positive sample. In addition, we
present a "focus-driven hard negatives generator"
to construct hard negative samples, by replacing
the focus phrases with other phrases sharing the
same attribute.

Through contrastive learning, we minimize the
distance between CHQ/generated summary and
golden reference, and maximize the distance be-
tween CHQ/generated summary and other negative
samples. By using the double anchors, our model
is able to extract sentence-level semantic features
to alleviate the problem of MLE. With the help of
hard negatives generator, the model learns to pay
more attention to question focus and thus produces
high quality summary.

We conduct extensive experiments on three med-
ical question summarization datasets: Meqsum
(Ben Abacha and Demner-Fushman, 2019), Health-
CareMagic and iCliniq (Zeng et al., 2020). Our
proposed model outperforms previous best results
by a wide margin, achieving new state-of-the-art
results on all three datasets. Compared with the
baseline BART, our model brings a relative per-
formance gain of 12.2%, 28.7% and 9.6% on
Meqsum, Cliniq and HealthcareMagic respectively.
Through analysis, we prove that our model sig-
nificantly gains the power of distinguishing the
semantics between generated summaries and nega-
tive samples, and our model generates high-quality
summaries capturing more question focuses.

2 Ralated Work

2.1 Medical Question Summarization

The medical question summarization task is de-
fined by Ben Abacha and Demner-Fushman (2019).
They construct a benchmark dataset Meqsum, and
apply a pointer-generator model to generate ques-
tion summary. At the question summarization cam-
paign of MEDIQA-21 organized by Ben Abacha
et al. (2021), almost all approaches rely on the fine-
tuning of pre-trained transformer models. Trans-
fer learning, knowledge-base, and ensemble meth-
ods are widely utilized by participanting teams to
achieve better performance (He et al., 2021; Ya-
dav et al., 2021b; Mrini et al., 2021c; Sänger et al.,
2021). In this paper, we also base our method on
the strong pre-trained BART model.

Recently, Yadav et al. (2021a) propose a RL
framework with two question-aware semantic re-
wards: question-type identification reward (QTR)
and question-focus recognition reward (QFR).
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Figure 2: The overall framework of QFCL. LctrC and LctrG are contrastive learning loss on the two anchors
respectively.

QTR is to identify whether the question types
are consistent with the gold question, and QFR
is designed to capture question focus. But in
their work, the question types and question fo-
cuses in the dataset should be manually labeled,
which is both time-consuming and labor-intensive
for large-scale datasets such as HealthcareMagic
and iCliniq. Moreover, the RL training process is
unstable. Mrini et al. (2021b) claim an equivalence
between medical question summary and recogniz-
ing question entailment(RQE), and employ multi-
task learning to train the model to not only per-
form next-word-prediction but also carry question
entailment recognition. These two studies demon-
strate that the pre-trained models achieve better
performance after capturing the underlying sen-
tence semantics of generated questions. Different
from these works, we exploit contrastive learning
to obtain focus-aware question representations.

2.2 Contrastive Learning

Different from the traditional methods which learn
representations in pixel-level for computer vi-
sion tasks, contrastive learning encodes high-level
features to distinguish different objects and has
achieved great success (Henaff, 2020; Chen et al.,
2020; Misra and van der Maaten, 2020; He et al.,
2020), and it has also been applied in several NLP
tasks such as machine translation (Pan et al., 2021),
pre-training (Chi et al., 2021) and question answer-
ing (Yang et al., 2021). In the field of summa-

rization, Liu and Liu (2021) present a contrastive
framework to bridge the gap between the learning
objective and evaluation metrics, Cao and Wang
(2021) design several negative sample construction
strategies to solve the factual inconsistency prob-
lem. In contrast, we use the MoCo structure to
handle with the large volume of negative samples,
and propose a new negative sample construction
method.

Chen et al. (2020) prove that large size of nega-
tive samples can improve the performance of con-
trastive learning, but it also brings heavy burden on
computation cost. To address this issue, He et al.
(2020) propose MoCo, which maintains a queue as
the memory bank to store negative samples. MoCo
adopts two encoders with the same structure: key
encoder and query encoder, where the key encoder
is momentum updated from the query encoder.

3 Model

Given an input question CHQ, which is written by
consumers and contains lengthy and complex infor-
mation, the medical question summarization task
aims to automatically generate a question summary
that is a frequently asked question (FAQ), capturing
the essential information to help efficiently retrieve
correct answers. A more detailed structure of our
proposed QFCL model is presented in Figure 2.
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3.1 Contrastive Learning Architecture

We employ the pre-trained BART (Lewis et al.,
2020) as our basic model to generate question sum-
maries. For contrastive learning, we adopt the
MoCo architecure (He et al., 2020), which con-
tains a key encoder Ek with the same structure as
the BART encoder Eq, and a queue to store simple
negative samples with large volume. The simple
negative samples in the queue are progressively
replaced by current mini-batch of representations
extracted from the key encoder. All samples in the
queue will be used as negative samples in the next
batch. In addition, QFCL employs a hard negatives
generator to generate hard negative samples.

In our model, the BART encoder Eq and the
decoder are updated via back propagation by com-
bining three types of loss functions, as described in
the subsequent sections. The parameters of Ek are
frozen and updated slowly towards that of Eq:

θk ← mθk + (1−m)θq (1)

where m is a momentum coefficient.
At the inference, only the BART encoder and

decoder are retained, other parts such as the key en-
coder, the queue, and the hard negatives generator
are all discarded.

3.2 Simple Negative Samples

In the medical question summarization task, the
input question CHQ should be semantically close
to its reference summary FAQ but different from
other question summaries. Therefore, we regard
the CHQ ci in the i-th pair as the anchor, FAQ fi
in the same pair as the positive sample and ran-
domly select fj from other different pairs to serve
as simple negative samples.

LetRs denote the average decoded output of an
arbitrary sentence s, the objective function of the
simple contrastive learning is defined as:

LctrCS = −log esim(Rci,Rfi)/τ
∑
Rfj∈Ms

esim(Rci,Rfj)/τ (2)

where Rci indicates the sentence representation
of the i-th CHQ extracted from Eq, and Rfi and
Rfj are extracted from the key encoder Ek for
the i-th and j-th FAQ respectively. The operation
sim is to calculate the cosine similarity, τ is a
temperature hyper-parameter. Ms is the memory
bank which contains one positive sample and K

simple negative samples in the queue with respect
to an anchor.

3.3 Focus-Driven Hard Negative Samples

CHQ

FAQ

tinnitis
prednisone
meningitis
handicap
diabetes

NP�Dict

Hard�Negative�Sample
Is�Prednisone�a�treatment�for�diabetes?

NP NP

SUBJECT:My�sister�was�told�she�has�Breast�
cancer� MESSAGE:Hello,My� name� is�
[NAME].My�sister�has�been�told�that�she�has�
breast�cancer�.And�I�want�to�no�if�she�could�
use�Salinomycin�to�kill�the�breast�cancer�.

Is�Salinomycin�a�treatment�for�breast�cancer?

Figure 3: The method of hard negative samples genera-
tion.

The above simple negative samples are randomly
selected. As claimed by (Kalantidis et al., 2020),
hard negative samples that are more similar to pos-
itive samples can facilitate the model to get better
performance. Inspired by this, we build a bridge
between hard sample generation and question focus
prediction.

3.3.1 Question Focus Identification
As mentioned before, the question focus is essen-
tial to understand a consumer health question. If
some focus phrases are missing in the generated
summary, the semantic will drift far away from the
original user’s intention. So we construct difficult
negative samples based on the question focus to
enhance contrastive learning. Specially, we replace
the focus phrases with some other phrases of the
same attribution, and keep other words of the sen-
tence unchanged. An example of hard negative
sample generation is shown in Figure 3.

One issue for our method is how to automati-
cally annotate question focus. Yadav et al. (2021a)
manually labeled the question focus in MeqSum
dataset. However, this is quite time-consuming and
labor-intensive, driving us to find a method which
can automatically mark the question focus in larger
datasets, such as HealthcareMagic and iCliniq. We
analyzed the manually labeled MeqSum dataset,
and found that in 340 of the total 500 records (up to
68%), the question focuses are the overlap phrases
between CHQ and FAQ. Accordingly, we hypoth-
esize that the same phrases appearing both in the
source question and the golden summary have a
high probability to be key-phrases. This idea is
also proved to be effective in (Li et al., 2020).

Since the question focus is usually a phrase
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rather than a single word, we need to split one
sentence into phrases. We apply the chunker (Ak-
bik et al., 2018) to the CHQ and FAQ text, and
record the chunk label of each phrase. Then the
consistent phrases appearing both in CHQ and FAQ
are labeled as the question focuses.

3.3.2 Hard Negative Sample Generation
We constructed a dictionary by concatenating all
phrases of the FAQ sentences in the train set. To
generate hard negative samples, the question fo-
cuses are randomly replaced by other phrases of the
same chunk label from the dictionary. As shown in
Figure 2, “breast cancer” is replaced by “diabetes”
since they share the same label “NP”. We repeat
this process Nh times to construct Nh different
hard negative samples for each CHQ-FAQ pair.

3.3.3 Contrastive Learning on Hard Negative
Samples

The sentence representation of hard sampleRh is
extracted from the key encoder Ek. We define the
hard loss function of contrastive learning as:

LctrCH = −log esim(Rci,Rfi)/τ
∑
Rh∈Mh

esim(Rci,Rh)/τ (3)

where Mh denotes the memory bank containing
one positive sample and Nh hard negative samples.

This loss function forces the model to not only
shorten the distance between CHQ and FAQ, but
also expand the gap between the CHQ and hard
negative samples. In this way, we achieve the goal
of making the model pay more attention to the ques-
tion focus, and obtain a focus-aware representation.

3.4 Contrastive Learning at Decoder

An imbalance existing in the above method is that
contrastive learning is only utilized at the encoder.
We fine-tuned BART on iCliniq dataset, and found
that the decoder lacks the ability to distinguish the
representations between the generated summary
and the positive samples/unrelated negative sam-
ples, as s+g_faq, s−g_sim, s−g_hard shown in Figure 4.
Therefore, we try to improve the similarity between
the generated summary and its reference FAQ, and
at the same time enlarge the dis-similarity between
the generated summary and other unrelated ques-
tions.

Specially, we regard the generated summary as
an extra anchor, and denote the representation of

the generated summary as gi. Since the output sum-
mary should be semantically consistent with the
corresponding FAQ, we consider the representa-
tion of the FAQ fi in the same pair as the positive
sample, and select the simple negative samples
randomly from the queue and generate hard neg-
ative samples using the hard negatives generator.
The object functions of contrast loss LctrGS and
LctrGH at the decoder end are defined in a similar
style as Equation 2 and 3, except that the anchor ci
is replaced by another anchor gi.

3.5 Overall Objective Function
For predicting next tokens in the generated sum-
mary, we use the cross entropy loss Lce:

Lce = −
1

|T |
∑

t∈T
log(p(yt|x, y1:t−1, θ)) (4)

In our model, the overall loss function consists of
five parts: the cross entropy lossLce and four differ-
ent loss functions of contrastive learning: LctrCS ,
LctrCH for the anchor at the encoder end, LctrGS ,
LctrGH for the anchor at the decoder end. We de-
fine the contrastive learning loss with respect to
these two anchors as:

LctrC = αLctrCS + βLctrCH
LctrG = αLctrGS + βLctrGH

(5)

where α, β are hyper-parameters to control the bal-
ance between simple negatives and hard ones. The
weights of contrastive learning loss at the encoder
and decoder are considered as equal, and the over-
all loss is defined as:

L = Lce +
1

2
LctrC +

1

2
LctrG (6)

4 Experiments

4.1 Datasets
We conduct experiments on three English bench-
mark medical question summarization datasets, in-
cluding Meqsum, HealthcareMagic and iCliniq.
Meqsum is a high-quality dataset from NIH 1, con-
structed by Ben Abacha and Demner-Fushman
(2019). Mrini et al. (2021a) extracted Health-
CareMagic and iCliniq datasets from MedDialog
(Zeng et al., 2020) , which are collected automati-
cally from the online healthcare service platforms

1www.nlm.nih.gov/medlineplus
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2 3. MeqSum’s and HealthcareMagic’s summaries
are written by medical experts in formal style,
while iCliniq’s are patient-written. We list some
statistics of these datasets in table 2. Following
previous works, we adopt ROUGE (Lin, 2004)4 as
the evaluation metric.

Dataset Train Dev Test Length
MeqSum 400 100 500 60.8/10.1
HealthCareMagic 181,122 22,641 22,642 82.8/9.7
iCliniq 24,851 3,105 3,106 89.7/12.3

Table 2: Statistics of three medical question summariza-
tion datasets. Length indicates the average length of
CHQ/FAQ.

4.2 Training Details
We utilize BART-large (Lewis et al., 2020) in hug-
gingface5 as our pre-trained model. The learning
rate of BART baseline is set to 3e-5 as the same
with Mrini et al. (2021b). For contrastive learning
in QFCL, the learning rate is optimized to 1e-5.
Betas of Adam optimizer is set to 0.9 and 0.999.
Batch size is set to 16. The number of hard negative
samples nh is set to 64. For Moco, the queue size
K is set to 4096, temperature τ is 0.07, and the mo-
mentum coefficient m is 0.999. In Equation 5, α
and β are set to 1 and 0.5 respectively through grid
search on MeqSum development set. Experiments
were all performed on a single NVIDIA RTX 3090
GPU. The average runtimes of each epoch for Meq-
Sum, iCliniq and HealthcareMagic are 4.2h, 0.6h
and 0.1h respectively.

4.3 Overall Performance
We report our experimental results in Table 3. Our
model achieves new state-of-the-art results on all
three datasets. Compared with the previous best
results, we obtain an improvement of 0.99 ROUGE-
L score on MeqSum, 8.44 on iCliniq, and 0.51 on
HealthcareMagic, respectively.

MTL+Data augmentation (Mrini et al., 2021b)
obtains the previous state-of-the-art results on
iCliniq and HealthcareMagic, which utilizes the
question entailment data to augment summarization
data. In contrast, our method doesn’t need other
classification models or external data. The work
of ProphetNet+QTR+QFR (Yadav et al., 2021a)
gets the previous best result on MeqSum, which

2www.healthcaremagic.com
3www.icliniq.com
4https://pypi.org/project/py-rouge
5huggingface.co/facebook/bart-large

presents a reinforcement learning-based framework
with question-aware rewards. Comparing with this
competitive model, our method obtains consistent
better performance on all metrics, with 2.28 im-
provement on R1, 4.66 improvement on R2 and
0.89 improvement on RL. We did not compare the
results of (Yadav et al., 2021a) on the other two
datasets, since their method requires manually la-
beled question focuses and question types.

4.4 Ablation Study
We perform ablation study to evaluate the impacts
of different components employed in QFCL, and
report the results in Table 3. In particular, for Meq-
sum dataset, due to the small size which may cause
the training unstable, we conducted five separate
experiments and computed the average ROUGE
score of these five checkpoints as the final result.
Compared with the base BART model, we obtain
an absolute improvement of 5.33 points on aver-
age. T-test is implemented on such five ROUGE
scores and the p-value is less than 1e-2, validat-
ing that this improvement is significant. On Cliniq
the absolute improvement is 12.85 points and on
HealthcareMagic 3.81 points. In comparison to
BART, the relative improvements of our model are
12.2%, 28.7% and 9.6% on Meqsum, Cliniq and
HealthcareMagic respectively.

The results demonstrate that each component
of our model is helpful. On MeqSum, there is an
increase of 3.15 points for BART+S compared to
the baseline, indicating that the contrastive learn-
ing on simple negative samples largely improves
model performance. It shows an continuous in-
crease of 0.77 points for BART+S+H, and the high-
est ROUGE-L score is obtained when three parts
are all implemented in our model. It suggests that
each component in QFCL contributes positively,
and metrics like ROUGE evaluating the similar-
ity between whole sentences benefit from our con-
trastive learning strategy.

4.5 Human Evaluation
To quantitatively assess the results, we compare
our method with the baseline BART through hu-
man judgement. We randomly selected 50 samples
from each of three datasets, and hired 3 graduate
students to categorize each generated summary into
one of the following categories: ’Incorrect’, ’Ac-
ceptable’, and ’Perfect’. We compute the average
number of each category, and report the result in
Table 4. The average Spearman correlation co-
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Model MeqSum iCliniq HealthCareMagic
R1 R2 RL R1 R2 RL R1 R2 RL

ProphetNet + QTR + QFR(Yadav et al., 2021a) 45.52 27.54 48.19 - - - - - -
MTL+Data augmentation(Mrini et al., 2021b) 49.20 29.50 44.80 54.20 36.90 49.10 45.90 24.30 42.90
BART (Lewis et al., 2020) 46.17 28.05 43.75 48.79 25.47 44.69 42.33 23.07 39.60
BART + S 49.30 31.78 46.89 56.58 36.43 52.06 44.35 24.73 41.46
BART + S + H 49.96 32.72 47.66 58.26 40.08 55.34 45.52 25.71 42.51
BART + S + H + D (QFCL) 51.48 34.16 49.08 60.09 43.22 57.54 46.42 26.47 43.41

Table 3: Experimental results on three medical question summarization datasets. S denotes the contrastive learning
on simple negative samples at the encoder end; H denotes the contrastive learning on hard negative samples at
the encoder end; D denotes the decoder end’s contrastive learning. The top group lists the existing state-of-the-art
results on three datasets, and the bottom group shows our ablation study on different components.

efficient between three annotators is 0.68, which
guarantees a high quality of our annotation data.
The evaluation results show that our model gener-
ates a higher proportion of perfect samples and a
lower proportion of incorrect ones, by enhancing
the model’s ability of capturing sentence semantics
and question focuses.

Model MeqSum iCliniq HealthCareMagic
I A P I A P I A P

BART 28.7 17.3 4.0 12.3 17.0 20.7 20.7 20.3 9.0
QFCL 12.0 18.0 20.0 6.3 17.7 26.0 5.7 16.3 28.0

Table 4: Human evaluation of the summaries generated
by BART and QFCL respectively. The metric I means
the number of incorrect samples, A means acceptable,
P means perfect.

4.6 Case Study

To clearly show the output question summary, we
list two samples to compare our model with BART
in Table 5. In Case 1, BART captures the question
focus "Ampicillin" but misses "drink alcohol", and
in Case 2 it misses the question focus "breast milk".
In contrast, our model successfully extract multiple
question focuses from the lengthy CHQ, and gener-
ate summaries which more conform to the meaning
of original questions.

5 Model Analysis

5.1 Correlation of Sentence Representations

Since the auxiliary structures are discarded at the
inference stage, we make further analysis to check
that whether the retained model has the ability to
distinguish different sentence-level semantics when
facing unknown data. We train QFCL and BART
on the training set for 20 epochs and save each
checkpoint, and evaluate these checkpoints on the
development set.

Case1

CHQ
MESSAGE: Is it okay to drink alcohol in
moderation when taking Ampicillin. I was
told it negates any medical effect of the drug

FAQ Can I drink alcohol while taking Amoxicillin?
BART What are the side effects of Ampicillin?
QFCL Is it okay to drink alcohol with Ampicillin?

Case2

CHQ

Hi..... I have 3 month old baby girl...... I don t
have breast milk from the beginning due to
some reason. I can not give formula milk to
baby...... So right now i m giving buffelo milk
........ What else i should give her for better
nourishment????? ....... She has constipation
problem may be due to milk but i cant give her
breastmilk or formula ....... How to overcome
it?????......... Please help me

FAQ Suggest ways to feed newborn other than
breast milk

BART Suggest treatment for constipation in a child

QFCL Suggest better nourishment for baby other
than breast milk

Table 5: Examples of generated question summaries by
BART and our QFCL model. The question focuses are
highlighted.

Four types of sentence representations are ex-
tracted from these checkpoints: CHQ’s representa-
tionRc, FAQ’s representationRf , hard negatives’
representation Rh, and the generated summary’s
representation at decoder endRg. Then we calcu-
late the cosine similarity between them, and draw
the relationship between these similarity scores and
the epoch numbers, as shown in Figure 4.

Regarding the anchor CHQ in the curve of
iCliniq, s+c_faq, s−c_sim and s−c_hard are very close to
each other at epoch 0, suggesting that the initial
encoder lacks the ability to capture different se-
mantics. With the increase of training steps, s+c_faq

changes smoothly, while s−c_sim decreases sharply to
near zero and s−c_hard decreases gradually and con-
verges at a middle level between s+c_faq and s−c_sim.
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Figure 4: Correlation between sentence representation
similarities and epoch numbers on dev set. The red lines
are about the anchor CHQ. s+c_faq is the average cosine
similarity between CHQ and related FAQ, s−c_sim is be-
tween CHQ and simple negative samples (other FAQs),
s−c_hard is between CHQ and hard negative samples. The
green lines are about the anchor of generated summary.
s+g_faq is the average cosine similarity between the gen-
erated summary and FAQ, s−g_sim is between generated
summary and simple negatives, s−g_hard is between gen-
erated summary and hard negatives. The epoch number
equaling 0 denotes the initial pre-trained model.

This suggests that, powered by contrastive learning,
our model has learned to distinguish sentences of
different meanings at the encoder end.

With the generated summary as another anchor,
we find out that s+g_faq, s−g_sim, s−g_hard are all near to 0
initially, which depict that the decoder is also weak
in representing sentence-level semantics. After
training, s+g_faq increases significantly, s−g_hard con-
verges between s+g_faq and s−g_sim, and s−g_sim keeps
very low all the time. It suggests that the decoder
has strengthened its power to distinguish different
semantics as the same to the encoder end.

Another chart is drawn to show this relationship

Model C1 C2 C3 C4 C5 Mean
BART 33.37 40.76 39.78 35.34 36.21 37.09
QFCL 47.41 42.24 45.20 45.20 47.17 45.44

Table 6: Accuracy of question focuses in generated sum-
maries. C1-C5 means 5 different checkpoints trained by
each model.

for BART baseline in Figure 4. The similarities
between the anchor and the positive samples, neg-
ative samples are very close, and never improve
significantly with the progress of training. This
situation suggesting that the BART baseline has a
relatively weaker performance to distinguish the
sentences of different meanings at both encoder
and decode, since it only focuses on the prediction
of next tokens.

We also draw this correlation curve on Meq-
Sum and HealthcareMagic. The curve of Health-
careMagic is similar to iCliniq. On MeqSum, our
model can still distinguish sentences with different
semantics better than the baseline, but the signal
is not as significant as iCliniq or HealthcareMagic
due to the limited size of training set.

5.2 Capturing Question Focus
To study whether our model pays more attention
to the question focus, we evaluate the accuracy of
question focuses in generated summaries. We use
the sequence labeling model trained by Yadav et al.
(2021a) to predict question focuses on the Meq-
Sum dataset, and regard the 812 predicted question
focuses in test set as the gold-standard. For QFCL
and BART, we train five checkpoints and gener-
ate summaries on these checkpoints, and compute
the accuracy of question focuses on test set. As
shown in Table 6, the average accuracy is 37.09%
for BART and 45.44% for QFCL. Our model ex-
ceeds the baseline by 8.35 points for question focus
generation. P-value of t-test on these two sets of
results is 1.04e-3, indicating that this improvement
is statistically significant.

6 Conclusion

In this paper, we introduce a novel question focus-
based contrastive learning framework QFCL for
medical question summarization. In the proposed
model, we adopt a "double anchor" strategy, by
considering both the input question CHQ and the
generated summary as comparing anchors. And
we exploit a "hard negatives generator" to generate
hard negative samples based on the question focus.
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Our model significantly improves the performance
on three medical question summarization datasets,
and achieves new state-of-the-art results. In the
future, we would like to find a more effective way
to do question focus recognition.
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A Ethical Consideration

The datasets used in our work are all publicly avail-
able. We used BART as our basic model which
follows the apache-2.0 license. The datasets and
the method should only be used for research pur-
poses, not in the commercial field.

The personal information in the datasets has
been hidden through preprocessing. For example,
the name of the consumer was converted to an
placeholder [name] and the address was converted
to [location], as shown in Table 1.

As the current models could not guarantee to
generate summaries fully conforms to the intention
of the consumers, the method in our paper can
only be used as an auxiliary tool to avoid further
misleading suggestions.
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Abstract

A challenging task when generating summaries
of legal documents is the ability to address their
argumentative nature. We introduce a simple
technique to capture the argumentative struc-
ture of legal documents by integrating argu-
ment role labeling into the summarization pro-
cess. Experiments with pretrained language
models show that our proposed approach im-
proves performance over strong baselines.

1 Introduction

Abstractive summarization has made great progress
by leveraging large pretrained language models
such as BART (Lewis et al., 2020), T5 (Raffel et al.,
2020), Pegasus (Zhang et al., 2020), and Long-
former (Beltagy et al., 2020). These models lever-
age large scale datasets such as CNN-DailyMail
(Hermann et al., 2015), PubMed (Cohan et al.,
2018), and New York Times (Sandhaus, 2008).
Unlike news and scientific texts, which contain
specific formatting such as topic sentences and ab-
stracts, legal cases contain implicit argument struc-
ture spreading across long texts (Xu et al., 2021).
Current abstractive summarization models do not
take into account the argumentative structure of
the text, which poses a challenge towards effective
abstractive summarization of legal documents.

In this work, we bridge the gap between prior
research focusing on summarizing legal documents
through extracting argument roles of legal text
(Grover et al., 2003; Xu et al., 2021; Saravanan
and Ravindran, 2010), and prior research focused
on producing abstractive summaries of legal text
(Feijo and Moreira, 2019; Bajaj et al., 2021). Our
work proposes a technique that blends argument
role mining and abstractive summarization, which
hasn’t been explored extensively in the literature.

Figure 1 describes the main flow of our approach,
which decomposes the summarization process into
two tasks. First, each sentence in the document is

Figure 1: Overview of our approach.

assigned an argument role by using an independent
model. Then, the predicted roles are blended with
the original document’s sentences and fed into a se-
quence to sequence-based abstractive summarizer.

Our contributions are as follows: (a) We propose
a simple technique to create an argument-aware
neural abstractive summarizer. (b) We show the
effectiveness of this technique in improving legal
document summarization. (c) We make our code 1

and argument role annotations freely available2.

2 Related Work

Legal Document Summarization. Prior research
has mainly focused on extractive techniques (Gal-
gani et al., 2015; Anand and Wagh, 2019; Jain et al.,
2021), exploiting features such as the document
structure and prior knowledge of legal terms to ex-
tract salient sentences that represent the summary
of the legal text. Recent research has also shifted
gears to abstractive techniques due to their superi-
ority to extractive methods on automatic measures
such as ROUGE (Feijo and Moreira, 2019). These
abstractive techniques benefited from neural mod-
els such as pointer generator networks (See et al.,
2017) (utilized in legal public opinion summariza-
tion (Huang et al., 2020)) and transformer-based se-

1https://github.com/EngSalem/
arglegalsumm

2The data was obtained through an agreement with the
Canadian Legal Information Institute (CanLII) (https://
www.canlii.org/en/)
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quence to sequence encoder-decoder architectures
such as BART (Lewis et al., 2020) and Longformer
(Beltagy et al., 2020) (employed to summarize long
legal documents (Moro and Ragazzi, 2022)). How-
ever, the current abstractive approaches ignore the
argumentative structure of the legal text. In our
work, we combine both the rich argumentative
structure of legal documents and state-of-the-art
abstractive summarization models.

Argument Mining. Argument mining aims to
represent the argumentative structure of a text in
a graph structure that contains the argument roles
and their relationship to each other. Constructing
the graphs usually involves several steps: extract-
ing argument units, classifying the argument roles
of the units, and detecting the relationship between
different argument roles. Recently, contextualized
embeddings were employed to improve argument
role labeling (Reimers et al., 2019; Elaraby and Lit-
man, 2021). In many domains, argument roles are
classified into claims, major claims, and premises
as proposed in Stab and Gurevych (2014). Alterna-
tively, Xu et al. (2021) proposed to classify the ar-
gument roles in legal documents to Issues, Reasons,
and Conclusions which fits the legal text structure.
We use the same set of legal argument role labels
in our work, and use contextualized embeddings to
automatically predict them.

Argument Mining and Summarization. Prior
research integrating argument mining and summa-
rization has mainly focused on extracting chunks of
text that contain key argument units (Barker et al.;
Bar-Haim et al., 2020; Friedman et al., 2021). Com-
bining argument mining and abstractive summa-
rization has received less attention in the literature.
Recently, Fabbri et al. (2021) proposed a dialogue
summarization dataset with argument information.
In their work, the authors included argument infor-
mation in abstractive summarization by linearizing
the argument graph to a textual format, which is
used to train an encoder-decoder summarization
model. However, their proposed approach didn’t
improve over encoder-decoder baselines. We pro-
pose an alternative method that relies on argument
roles only, which shows higher improvements over
encoder-decoder baselines.

3 Dataset and Methods

3.1 Dataset 3

Texts. Our dataset is composed of 1262 legal cases
3See Appendix A for more detailed statistics.

Figure 2: Argumentative sentence % in dataset.

and summary pairs, obtained through an agreement
with the Canadian Legal Information Institute. We
split these pairs into training (1006 pairs, about
80%), validation (132 pairs, about 10%) and testing
(124 pairs, about 10%) datasets.

Document Lengths. The maximum length of
our input documents is 26k words, which motivates
us to include encoder-decoder architectures like
Longformer that can encode long documents.

Argument Role Annotations. The dataset was
annotated prior to our study, using the IRC taxon-
omy of three legal argument roles described in Xu
et al. (2021): Issues (legal questions which a court
addressed in the document), Reasons (pieces of
text which indicate why the court reached the spe-
cific conclusions) , and Conclusions (court’s deci-
sions for the corresponding issues). Figure 2 shows
the distribution of the percentage of sentences anno-
tated with an argumentative role across the articles
and reference human summaries. We can see that
while only a small percent of the sentences in the
original articles are annotated as argument units,
argumentative units dominate the reference sum-
maries. Thus, we hypothesize that augmenting the
summarization model with argument roles in the
input text should improve the generated summaries.

3.2 Methods
Special Tokens Approach. We designate
special marker tokens to distinguish between
different argument roles. In prior research,
DeYoung et al. (2021) used markers such as
<evidence>,</evidence> to highlight evi-
dence sentences in summarizing medical scien-
tific documents, while Khalifa et al. (2021) used
<neg>,</neg> to mark negation phrases in dia-
logue summarization. However, we explore the
impact of changing token granularity by exper-
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Example
<IRC> He also found “on the strong balance
of probabilities,” that the late Mrs. Scott in-
tended to make an inter vivos gift to Ms. Aker-
ley. </IRC>
<Issue> [6] Mr. Comeau appeals, arguing that
the probate court judge erred: </Issue>

Table 1: Different special tokens for argument roles.

imenting with two sets of special tokens. First,
we introduce <IRC>,</IRC> to distinguish be-
tween argumentative and non-argumentative sen-
tences. Second, we broaden the list of the pro-
posed special tokens to differentiate between the
three argument roles mentioned in Section 3.1. We
assign each argument role two unique tokens to
highlight its boundaries in the text, e.g., we use
<Reason>,</Reason> to highlight the reason
roles. Table 1 shows examples using tokens to
highlight an argumentative sentence (top) versus a
specific argumentative role (bottom).

Sentence-level Argument Role Mining. Our
data’s argument role annotation is at the sentence
level, thus, we perform sentence-level classification
experiments using the same data splits employed
in summarization to detect argument roles.4 We
experiment with several contextualized embedding-
based techniques, namely BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and legalBERT
(Zheng et al., 2021). We employ these models
to predict sentences’ argument roles (issues, rea-
sons, conclusions, or non-argumentative). Figure
3 shows that legalBERT achieved the best classi-
fication results. We achieved a macro average F1
of 63.4% in argument role classification and 71%
in binary classification using legalBERT. Thus, we
rely on its predictions to integrate argument roles
into summarization below.

4 Experiments and Results

Our experiments are conducted in two settings:
assuming argument roles are manually labeled
(which we refer to as oracle) versus predicting
argument role labels (referred to as predicted).

4.1 Baselines

We compare our proposed argument-aware summa-
rization method to two sets of baselines5:

4See Appendix B for argument mining training details.
5See Appendix B for summarization training details.

Figure 3: Argument role detection results.

Extractive Baseline. We employ the unsuper-
vised method of Miller (2019). The model lever-
ages BERT embeddings and k-means to extract
salient sentences based on their proximity to clus-
ter centroids.

Abstractive Baselines. Vanilla BART-Large
refers to finetuning BART-large on our dataset. For
Vanilla LED-base, similarly to BART, the model
is finetuned using Longformer-base checkpoint.

4.2 Results and Discussion
Table 2 evaluates the results of the different sum-
marization models using Rouge-1, Rouge-2, and
Rouge-L scores.6 We refer to BART and Long-
former augmented with argument roles as arg-
BART-Large and arg-LED-base, respectively. We
use 2 markers to denote the use of binary special
tokens (i.e; <IRC>,</IRC>) and 6 markers to
refer to the full set of argument role tokens. We
include two markers sets to examine whether it’s
necessary to include explicit argument roles or if
it’s sufficient to highlight argumentative text only.

We first evaluate the models augmented with
the manually labeled argument roles to examine
whether adding argument information has the po-
tential to improve over the baselines. The oracle re-
sults in Table 2 show that arg-LED-base improves
performance in terms of Rouge-1, Rouge-2, and
Rouge-L (Lin, 2004) by approximately 1, 4, and
1.5 points, respectively, over the vanilla LED-base
baseline when using the 6 markers. The 2 mark-
ers set showed marginal improvements on Rouge-1
and Rouge-L, but showed 4 Rouge-2 points im-
provement over the baseline. These results indi-

6See Appendix C for example generated summaries.
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Setting Experiment Model Rouge-1 Rouge-2 Rouge-L
Unsupervised Extractive BERT 37.71 14.77 36.41
Vanilla BART-Large 47.93 22.34 44.74

Baselines Vanilla LED-base 49.56 22.75 46.48
arg-BART-
Large

BART-Large + 2 markers 47.11 21.77 43.12

Oracle BART-Large + 6 markers 46.80 22.14 44.14
LED-base + 2 markers 49.64 26.81 46.70

arg-LED-base LED-base + 6 markers 50.53 26.31 47.90
LED-base + 2 markers 49.50 26.46 46.60

Predicted arg-LED-base LED-base + 6 markers 50.23 26.29 47.49

Table 2: Summarization results on the test set. Best results bolded. Best results using predicted roles italicized.

Model Rouge-1 Rouge-2 Rouge-L Mean Summary Length
Vanilla LED-base 48.25 21.60 44.88 267

arg-LED-base + 2 markers 50.43 27.76 47.05 156
arg-LED-base + 6 markers 50.73 27.29 47.30 174

Table 3: Comparing Longformer (LED) summaries with sentences labeled as argumentative in reference summary.

cate that representing argument roles using fine-
grained labels is the most effective in improving
LED model output. In contrast, arg-BART-Large
didn’t show improvements over the vanilla BART-
Large baseline. We hypothesize that this is due
to the sparsity of the argumentative sentences in
the input documents (recall Figure 2). Since Long-
former can encode more words, it was likely able to
capture more argument markers added to the input,
increasing the model’s ability to grasp the argument
structure of the legal text. To validate this hypoth-
esis, we analyze the positions of each argument
role across the input articles. Figure 4 shows that
the argument roles are distributed across the article
and not centered around a unique position. This
aligns with our hypothesis that the Longformer’s
encoding limit (blue dashed line) can cover signifi-
cantly more roles when compared to the BART’s
encoding limit (red dashed line).

Next, we evaluate the summarization using pre-
dicted argument roles obtained from our classifier
(Section 3.2). We evaluate the Longformer sum-
marization model only, since BART didn’t show
oracle improvements. The last two rows of Table
2 (the predicted results) show that including pre-
dicted argument roles showed consistent improve-
ments with the manually labeled ones (oracle). The
results showed a minimal drop in Rouge scores
ranging from 0.02 − 0.41 points when using the

predicted argument roles both in the 6 markers and
2 markers cases, which indicates the effectiveness
of our approach in practical scenarios.

Finally, to estimate the argumentativeness of the
LED-based (oracle) summaries, we evaluate them
against a summary containing only the sentences
manually annotated as an IRC sentence in the ref-
erence summary.

Table 3 shows that adding argument role mark-
ers increases the overlap between the generated
summaries and the argumentative sentence subset
from the reference summaries, suggesting that our
proposed model’s gains are mainly obtained from
an increase in argumentativeness of the generated
summaries. The generated summaries from our
arg-LED-base are lower in length compared to the
baseline. We hypothesize that this is due to the
focus on argument roles mainly, discarding some
of the non-argumentative content. 7

5 Conclusion and Future Work

We proposed to utilize argument roles in the ab-
stractive summarization of legal documents to ac-
commodate their argumentative structure. Our
experiments with state-of-the-art encoder-decoder
models showed that including argument role in-
formation can improve the ROUGE scores of
summarization models capable of handling long

7See Appendix C for an illustrative example.
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Figure 4: Argument position distribution in the input.

documents. Specifically, improved results were
achieved using Longformer with input documents
augmented with argument roles (highlighted using
special marker tokens), and this finding was robust
across two special token schemes. We also showed
that using predicted argument roles showed consis-
tent improvements to using the manually labeled
ones. In future work, we plan to explore methods
to unify argument mining and summarization to
reduce the computational resources necessary to
host two models.
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A Data statistics

A.1 Length statistics

Figure 5: Distribution of article and summary length.

Figure 5 shows the distribution of document and
summary lengths. The summaries’ lengths are cen-
tered around a mean of 255 words, with a max-
imum length of 850 words. The 90th percentile
of summary length is 490 words. Thus we chose
the maximum length of generated summary in our
hyperparameters to be set to 512 words. Unlike the
summaries, the documents are more spread across
the distribution. In our analysis, we found that the
mean document length is 4180 words, while the
maximum document length is 26235 words.

A.2 Argument role distribution
While they are essential to legal cases, argument
roles represent a small percentage of the document.
Figure 6 shows the high imbalance of the manually
annotated argumentative versus non-argumentative
sentences in our training set, which poses a chal-
lenge in building a sentence level classifier of argu-
ment roles. In our analysis we found that the non-
argumentative sentences count is approximately
1000× the argumentative sentences, which we use
to adjust class weights in our learning objective.

B Training details and hyperparameters

All experiments use the model implementations
provided in the Huggingface library (Wolf et al.,
2019). We initialize all our models with the same
learning rate of 2e−5. We train both our summariza-
tion and argument role classification models for 10
epochs with early stopping with 3 epoch patience.
For training summarization models, we set the max-
imum summary length to 512 words. We truncate

Figure 6: Count of argument roles across training set.
non_IRC refers to non-argumentative sentences.

the input length to 1024 words for the BART model
while truncating the input length to 6144 words for
the Longformer due to our GPU limitation 8. We
pick our best model based on its ROUGE-2 (Lin,
2004) score on the validation set. For the classi-
fication models introduced in Section 3.2, due to
the high imbalance of our argumentative labels, we
introduce fixed class weights to our cross-entropy
loss. For argumentative sentences, we modify the
cross-entropy weight to be 1000 compared to 1
for non-argumentative sentences. We chose these
weights based on label distribution in our training
set described in Figure 6. Our best model is chosen
based on the F1 score on the validation set.

C Effect of argument roles on generated
summaries

Table 4 shows an example of generated summaries
with adding special tokens and without the special
tokens.

8We use Quadro RTX 5000 which has 16 GB RAM.
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Reference summary Vanilla LED-base arg-LED-base "6 markers"
The plaintiffs claim for crop
damage caused by the defen-
dant’s cattle entering the plain-
tiff’s canola field. The defen-
dant denies he is responsible or
negligent, but admits his cattle
were in the field. HELD: Dam-
ages were awarded in the amount
of $2,533.45. The court valued
the loss at $3,052.36. It then de-
ducted 2% attributed to wild ani-
mal damage, 5% for the plain-
tiffs failure to calculate actual
yield from the rest of the crop,
5% that the plaintiffs would have
paid in dockage and 5% for the
cost of production. Civil liability
for crop damage caused by cat-
tle flows from the Stray Animals
Act. A cattle owner is strictly li-
able for damages caused by his
straying cattle. This liability may
possibly even be absolute and
only an act of god may serve as
a defence. The issue here is the
quantum of the damage. The fact
that the defendant was refused
access to the plaintiff’s property
to repair the fence has no bearing
on liability in this case. An in-
dependent adjuster assessed the
damage at 557 bushels. The
court found on the facts that the
damage was caused exclusively
by the defendant’s cattle on sev-
eral occasions.

The plaintiff’s claim against the
defendant is for crop damage
sustained as a result of the de-
fendant’s cattle getting into the
plaintiff’s canola field in late July
1999. The plaintiff admits that
his cattle were in the Plaintiff’s
crop on one occasion, but says
that there is no evidence that
their cattle are in the canola on
any other occasion, and that such
loss as was caused by his cattle
is minimal. HELD: Judgment
in the amount of $2,533.45 was
granted in favour of the plaintiffs,
together with pre-judgment inter-
est from January 2000 and costs.
The present s.27 (1) has been
in the Act since 1977, when the
Act was substantially re-written,
apparently in response to the
increasing urbanization of the
province. Under both the present
and pre-1977 statutes, the legal
situation was the same – the cat-
tle owner is strictly liable for
damage caused by the straying
cattle. The fact remains that the
cattle did move onto the field un-
beknownst to the defendant, his
spouse, his brother, or his hired
help. The Carrot River did not
impede the cattle from moving
into the field on more than one
occasion and other cattle were
not in the field.

The plaintiff’s claim against the
defendant was for crop damage
sustained as a result of his cattle
getting into the plaintiff’s canola
field in late July 1999. The defen-
dant admits that his cattle were
in the Plaintiff’s crop on one
occasion, but says that there is
no evidence that any other cat-
tle were there. HELD: Judgment
in the amount of $2,533.45 was
granted in favour of the plaintiffs,
together with pre-judgment inter-
est from January 2000 and costs.
Under both the present s.27 (1)
and the pre-1977 statutes, the le-
gal situation was the same – the
cattle owner is strictly liable for
damage caused by his straying
cattle.

Table 4: Example of generated summaries with Vanilla LED-base and arg-LED-base versus reference summary.
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Abstract
In this paper, we introduce an important yet rel-
atively unexplored NLP task called Semantic
Overlap Summarization (SOS), which entails
generating a single summary from multiple al-
ternative narratives which can convey the com-
mon information provided by those narratives.
As no benchmark dataset is readily available for
this task, we created one by collecting 2, 925 al-
ternative narrative pairs from the web and then,
went through the tedious process of manually
creating 411 different reference summaries by
engaging human annotators. As a way to evalu-
ate this novel task, we first conducted a system-
atic study by borrowing the popular ROUGE
metric from text-summarization literature and
discovered that ROUGE is not suitable for our
task. Subsequently, we conducted further hu-
man annotations to create 200 document-level
and 1, 518 sentence-level ground-truth overlap
labels. Our experiments show that the sentence-
wise annotation technique with three overlap
labels, i.e., {Absent (A), Partially-Present (PP),
and Present (P)}, yields a higher correlation
with human judgment and higher inter-rater
agreement compared to the ROUGE metric.

1 Introduction

In this paper, we look deeper into the challeng-
ing yet relatively under-explored area of automatic
summarization of multiple alternative narratives
with different perspectives. To be more specific, we
formally introduce a new NLP task called Semantic
Overlap Summarization (SOS) from multiple alter-
native narratives and conduct a systematic study of
this task by creating a benchmark dataset as well
as exploring how to accurately evaluate this task.
SOS essentially means the task of summarizing the
overlapping information present in multiple alter-
nate narratives by cross-verifying their information
contents against each other. Computationally, our
research question is the following:

Given two distinct narratives N1 and N2 of an
event e, how can we automatically generate a sin-

gle summary about e which conveys the common
information provided by both N1 and N2?

Multiple alternative narratives appear frequently
in a variety of domains, including education (So-
masundaran et al., 2018), the health sector (Bijoy
et al., 2021), businesses intelligence (Azeroual and
Theel, 2018), content analysis (Hassan et al., 2020;
Karmaker Santu et al., 2018b) and privacy (Wil-
son et al., 2018). Therefore, automatic summariza-
tion of multiple-perspective narratives has become
a pressing need in this information explosion era
and can be highly useful for digesting such multi-
narratives at scale and speed.

Figure 1 shows a toy example of the SOS task,
where both articles cover the same event related to
“abortion”. However, they report from different po-
litical perspectives, i.e., one from the left wing and
the other from the right wing. For greater visibility,
“Left” and “Right” wing reporting biases are rep-
resented by blue and red text, respectively. Green
text denotes the common information in both news
articles. The goal of the SOS task is to generate
a summary that conveys the common/overlapping
information provided by the green text.

At first glance, the SOS task may appear similar
to a traditional multi-document summarization task
where the goal is to provide an overall summary
of the (multiple) input documents. However, the
difference is that, for SOS, the goal is to provide
summarized content with an additional constraint,
i.e., the commonality criteria. There is no current
baseline method or an existing dataset that exactly
matches our task; more importantly, it is unclear
which one is the right evaluation metric to properly
evaluate this task. As a starting point, we frame
SOS as a constrained seq-to-seq task where the goal
is to generate a summary from two input documents
that conveys the overlapping information present
in both input text documents. However, the bigger
challenge we need to address first is the following:
1) How can we evaluate this task? and 2) How
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Figure 1: A toy example of Semantic Overlap Summarization (SOS) Task (from multiple alternative narratives).
Here, an abortion issue-related event has been reported by two news media (left-wing and right-wing). “Green”
Text denotes the common information from both news media, while “Blue” and “Red” text denotes the unique
perspectives of left and right wing. Some real examples from the benchmark dataset are provided in the Table 3.

to create a benchmark dataset for this task? To
address these challenges, we make the following
contributions in this paper.

1. We formally introduce Semantic Overlap Sum-
marization (SOS) (from multiple alternative nar-
ratives) as a new NLP task and conduct a sys-
tematic study by formulating it as a constrained
summarization problem.

2. We create and release the first benchmark
dataset consisting of 2, 925 alternative narra-
tive pairs for facilitating research on the SOS
task. Also, we went through the tedious process
of manually creating 411 different ground-truth
reference summaries and conducted further hu-
man annotations to create 200 document-level
and 1, 518 sentence-level ground-truth overlap
labels to construct the benchmark dataset.

3. As a starting point, we experiment with ROUGE,
a widely popular metric for evaluating text sum-
marization tasks, and demonstrate that ROUGE
is NOT suitable for the evaluation of SOS task.

4. We do further human experiments, which show
that sentence-level evaluation is the proper way
to evaluate the SOS task. It also improves the
inter-rater agreement compared to the traditional
ROUGE metric and shows a higher correlation
with human judgments.

2 Related Works

As SOS can be viewed as a multi-document sum-
marization task with additional commonality con-
straints, text summarization literature is the most
relevant to our work. Over the years, many
paradigms for document summarization have been

explored (Zhong et al., 2019). The two most pop-
ular among them are extractive approaches (Cao
et al., 2018; Narayan et al., 2018; Wu and Hu, 2018;
Zhong et al., 2020) and abstractive approaches
(Bae et al., 2019; Hsu et al., 2018; Liu et al., 2017;
Nallapati et al., 2016). Some researchers have
also tried combining extractive and abstractive ap-
proaches (Chen and Bansal, 2018; Hsu et al., 2018;
Zhang et al., 2019).

Recently, encoder-decoder-based neural models
have become really popular for abstractive sum-
marization (Rush et al., 2015; Chopra et al., 2016;
Zhou et al., 2017; Paulus et al., 2017). It has be-
come even more prevalent to train a general lan-
guage model on a huge corpus of data and then
transfer/fine-tune it for the summarization task
(Radford et al., 2019; Devlin et al., 2019; Lewis
et al., 2019; Xiao et al., 2020; Yan et al., 2020;
Zhang et al., 2019; Raffel et al., 2019). Summary
length control for abstractive summarization has
also been studied (Kikuchi et al., 2016; Fan et al.,
2017; Liu et al., 2018; Fevry and Phang, 2018;
Schumann, 2018; Makino et al., 2019). In general,
multiple document summarization (Goldstein et al.,
2000; Yasunaga et al., 2017; Zhao et al., 2020; Ma
et al., 2020; Meena et al., 2014) is more challeng-
ing than single document summarization. However,
the SOS task is different from traditional multi-
document summarization tasks in that the goal here
is to summarize content with an overlap constraint,
i.e., the output should only contain the common
information from both input narratives.

Alternatively, one could aim to recover verb-
predicate alignment structure (Roth and Frank,
2012; Xie et al., 2008; Wolfe et al., 2013) from
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a sentence and further, use this structure to com-
pute the overlapping information (Wang and Zhang,
2009; Shibata and Kurohashi, 2012). Sentence Fu-
sion is another related area that aims to combine the
information from two given sentences with some
additional constraints (Barzilay et al., 1999; Marsi
and Krahmer, 2005; Krahmer et al., 2008; Thadani
and McKeown, 2011). A related but simpler task is
to retrieve parallel sentences (Cardon and Grabar,
2019; Nie et al., 1999; Murdock and Croft, 2005)
without performing an actual overlap summary gen-
eration. However, these approaches are more tar-
geted toward individual sentences and do not di-
rectly translate to arbitrarily long documents. Thus,
the SOS task is still an open problem and there is
no existing dataset, method, or evaluation metric
that has been systematically studied.

Along the evaluation dimension, ROUGE (Lin,
2004) is perhaps the most commonly used metric
today for evaluating automated summarization tech-
niques; due to its simplicity and automation. How-
ever, ROUGE has been criticized a lot for primarily
relying on lexical overlap (Nenkova, 2006; Zhou
et al., 2006; Cohan and Goharian, 2016; Akter et al.,
2022) of n-grams. As of today, around 192 variants
of ROUGE are available (Graham, 2015) including
ROUGE with word embedding (Ng and Abrecht,
2015) and synonym (Ganesan, 2018), graph-based
lexical measurement (ShafieiBavani et al., 2018),
Vanilla ROUGE (Yang et al., 2018) and highlight-
based ROUGE (Hardy et al., 2019). However, there
has been no study yet as to whether the ROUGE
metric is appropriate for evaluating the SOS task,
which is one of the central goals of our work.

3 Motivation and Applications

Multiple alternative narratives are frequent in a va-
riety of domains and, therefore, have direct impli-
cations in technical areas such as Information Re-
trieval/Search Engines, Question Answering, Ma-
chine Translation, etc. Below are a few examples
of use cases.

Peer-Reviewing: Given two peer-review narratives
for an article, the SOS task can generate a sum-
mary of portions of the narratives that agree with
each other, which can help prepare a meta-review
quickly.

Security and Privacy: SOS task can enable real-
world users to quickly conduct a comparative anal-
ysis of multiple privacy policies by mining and
summarizing overlapping clauses from those poli-

cies. Thus, it can help users make informed deci-
sions while choosing from various alternative web
services.

Health Sector: SOS can be used to compare clini-
cal notes in patient records to perform a compar-
ative analysis of patients with the same diagno-
sis/treatment. For example, SOS can be applied to
the clinical notes of two (or more) patients who
went through the same treatments to assess the ef-
fectiveness of the treatment.

Military Intelligence: If A and B are two intelli-
gence reports related to a mission coming from two
human agents, the SOS task can help cross-verify
the claims in each report w.r.t. the other, thus, SOS
can be used as an automated claim-verification tool.

Computational Social Science and Journalism:
Assume that two news agencies (with different
political biases) are reporting the same real-world
event and their bias is somewhat reflected in the
articles they write. If A and B are two such news
articles, then the SOS output will likely surface the
facts (common information) about the event.

Below are some of the potential applications of
the SOS task in various technical areas.

Information Retrieval/Search Engines: One could
summarize the common information in the multiple
results fetched by a search engine for a given query
and show it in a separate box to the user. This
would immensely help them to quickly parse the
desired information rather than going through each
article individually. If they wish, they could further
explore the specific articles for more details.

Question Answering: One could apply SOS to sum-
marize the common information/answer from mul-
tiple documents pertinent to a given question. This
will help formulate a more accurate answer by con-
sulting multiple sources.

Robust Translation: Suppose you have multiple
machine translator models which translate a given
document from language A to language B. One
could further apply the SOS to different translated
documents and get a more robust translation by
summarizing their semantic overlap.

In general, SOS task could be employed in any
setting where we require comparative text analysis.

4 Problem Formulation

What is Semantic Overlap Summarization? This
is indeed an open question and there is no single
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AllSides Dataset: Statistics

Split #words (per docs) #sents (per docs) #words (per reference) #sents (per reference)

Train 1613.69 66.70 67.30 2.82
Test 959.80 44.73 65.46/38.06/21.72/32.82 3.65/2.15/1.39/1.52

Table 1: Statistics for the Training and Testing dataset. Two input narratives are concatenated to compute the
statistics. Four numbers for reference (#words/#sents) in the Test split correspond to the 4 reference overlap
summaries. Our test dataset contains 137 samples, wherein each sample has 4 ground truth references. Out of these
4 references, one summary is provided by AllSides, and 3 of them were manually written by 3 human annotators.
Thus, we generated 3*137 = 411 references in total.

correct answer. To simplify notations, let us stick
to having only two documents DA and DB as our
input since it can easily be generalized in case of
more documents using SOS repeatedly. Also, let us
define the output as DO ← DA ∩O DB . A human
would mostly express the output in the form of natu-
ral language, and this is why we frame the SOS task
as a constrained multi-seq-to-seq (text generation)
task, where the output text only contains informa-
tion that is present in both the input documents. We
also argue that brevity (minimal repetition) is a de-
sired property of Semantic Overlap Summarization.
For example, if a particular piece of information
or quote is repeated twice in both the documents,
we don’t necessarily want it to be present in output
overlap summary two times. The output can either
be extractive summary or abstractive summary or
a mixture of both, as per the use case. This task is
inspired by the set-like intersection operator as en-
visioned by (Karmaker Santu et al., 2018a) and the
aim of this work is to summarize the overlapping
information in an abstract fashion. Additionally,
SOS should follow the commutative property, i.e.
DA ∩O DB = DB ∩O DA.

5 The Benchmark Dataset

As mentioned in section 1, there is no existing
dataset that we could readily use to evaluate the
SOS task1. To address this challenge, we collected
data from AllSides.com. AllSides is a third-party
online news forum that exposes people to news
and information from all sides of the political spec-
trum so that the general people can get an “unbi-
ased” view of the world. To achieve this, AllSides
displays each day’s top news stories from news
media widely-known to be affiliated with differ-

1Multi-document summarization datasets can not be uti-
lized in this scenario as their reference summaries do not
follow the semantic overlap constraint.

ent sides of the political spectrum including “Left”
(e.g., New York Times, NBC News), and “Right”
(e.g., Townhall, Fox News) wing media. AllSides
also provides its own factual description of the
reading material, labelled as “Theme” so that read-
ers can see the so-called “neutral” point-of-view.
Table 1 gives an overview of the dataset statistics
created by crawling from AllSides.com, which con-
sists of news articles (from at least one “Left” and
one “Right” wing media) covering 2, 925 events in
total and also having a minimum length of “theme-
description” to be 15 words. Given two narratives
(“Left” and “Right”), we used the theme descrip-
tion as a proxy for ground-truth reference sum-
maries. We divided this dataset into testing data
(described next) and training data (remaining sam-
ples) [see Table 1]. Table 2 shows the different
attributes of the same AllSides dataset.

Feature Description

theme headlines by AllSides
theme-description news description by AllSides
right/left head right/left news headline
right/left context right/left news description

Table 2: Overview of dataset scraped from AllSides. All-
Sides is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.

Testing Dataset and Human Annotations2: We
engaged human volunteers to thoroughly annotate
our testing samples (narrative pairs) in order to
create multiple reference overlap summaries for
each pair. This helped in creating a comprehensive
testing benchmark for more rigorous evaluation.
Specifically, we randomly sampled 150 narrative
pairs describing 150 unique events (each pair con-
sists of one narrative from the “Left” wing and one

2Dataset and manual annotations can be found at:
https://karmake2.github.io/publications/
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Narrative Pair Example # 1
Narrative 1: N1 Narrative 2: N2

WASHINGTON – U.S. intelligence and law enforcement
agencies have confirmed that President Donald Trump’s
campaign aides and associates had constant contact with
Russian intelligence officials before the election, directly

contradicting public statements made by top administration
officials. On Jan. 15, shortly before Trump took office, Vice
President Mike Pence repeatedly said on television that there

were zero contacts between the campaign and Russian officials.
. . . Pence also answered "of course not" when asked a similar
question that day by "Fox News Sunday" host Chris Wallace . . .

Trump himself also denied these interactions . . . "There’s
nothing that would conclude me that anything different has
changed with respect to that time period," Spicer said. . . .

President Trump said Wednesday that new reports saying his
associates had contact with Russian officials during last year’s
campaign are "non-sense" and accused the U.S. intelligence
community of illegally leaking information to news outlets.
"This Russian connection non-sense is merely an attempt to
cover-up the many mistakes made in Hillary Clinton’s losing
campaign," Mr. Trump tweeted. . . . Among those supposedly

communicating with Russian nationals was former Trump
campaign chairman Paul Manafort, the report said. Mr.
Manafort denied that he ever knowingly talked to any

intelligence official "or anyone

Reference Overlap Summaries
A1 A2 A3 AllSides

President Trump and the
Trump administration deny

allegations that advisers
close to Trump were in

constant communication
during the campaign with

Russians known to US
intelligence.

Trump denied climas that
advisers close to him were
in "constant communication
during the campaign with

Russians known to US
intelligence.

Donald Trump and his
group claimed that there is

no contact with Russian
officials during his last

year’s campaign.

Russian intelligence officials made repeated
contact with members of President Trump’s

campaign staff, according to new reports
that cite anonymous U.S. officials.

American agencies were concerned about
the contacts but haven’t seen proof of

collusion between the campaign and the
Russian security apparatus.

Narrative Pair Example # 2
Narrative 1: N1 Narrative 2: N2

John McCain is out of McConnell’s clutches for a week or two.
While Sen. John McCain remains in Arizona recovering from
Friday’s craniotomy, surgery to remove a 5 cm blood clot from

above his left eye, business will not go on as usual in
Washington. Majority Leader Mitch McConnell, who has to

have every Republican senator voting to have a prayer of
passing Trumpcare, has postponed the vote for the week or two
(more likely two) that McCain’s recovery will take. That means
there’s more time for opponents to fight this thing, from the side

of all of us trying to keep 22 million people from losing
insurance and from the other side. . . . With both Paul and Sen.
Susan Collins (R-ME) solid "no" votes on the bill, opponents
only need one more out of the eight or so who’ve expressed

reservations about the bill and the secretive, exclusive process
McConnell

WASHINGTON - The Republican effort to repeal and replace
Obamacare faces a major setback as Sen. John McCain, R-Ariz.,

left the nation’s capital for surgery on his eye. Over the
weekend, Senate Majority Leader Mitch McConnell, R-Ky.,

announced the scheduled Better Care Act vote would be delayed
indefinitely because of McCain’s absence. Subsequently, the

Congressional Budget Office (CBO) also delayed its analysis of
the bill. With two Republican senators opposed to the measure,
McConnell needs as least 50 "yes" votes to pass it. Sen. Rand

Paul, R-Ky., says the bill, which keeps taxes on investments and
other pieces of Obamacare, doesn’t go far enough. Moderate
Sen. Susan Collins, R-Maine, is also withholding her support

because it would slow the rate of growth in spending on
Medicaid. . . .

Reference Overlap Summaries
A1 A2 A3 AllSides

Sen. John McCain remains
in Arizona recovering from

eye surgery. Senate
Majority Leader Mitch

McConnell postponed the
vote due to McCain’s

absence. Two Republican
senators opposed to the bill.

Possibility of bill failing.

Sen. John McCain remains
unavailable because of the
surgery on his eye. Senate

Majority Leader Mitch
McConnell delayed the vote
in his absence. Sen. Rand

Paul and Sen. Susan Collins
said "no" votes on the bill.

Senate Majority Leader
Mitch McConnell, R-Ky.,
announced the scheduled
health care vote would be

delayed indefinitely
because of McCain’s

absence.

Senate Majority Leader Mitch McConnell,
R-Ky., announced the scheduled Better Care

Act vote would be delayed indefinitely
because of McCain’s absence.

Table 3: Some examples of SOS references from 3 human annotators (Ai) and the AllSides “theme-description” for
a given narrative pair {N1, N2}. (. . .) denotes some sentences which for not shown for brevity. More examples can
be found over here. Having multiple human annotators is critical to perform robust evaluation, but it is laborious
and time-consuming on humans’ part. This also shows that the lack of available datasets is a huge challenge for the
SOS task.

from the “Right” wing, thus 300 narratives in to-
tal) and then asked 3 humans to write a summary
of common information present in both narratives
describing each of the 150 events.

After the first round of annotations, we im-
mediately observed a discrepancy among the
three annotators in terms of the real definition of

“common/overlapping information”. For example,
one annotator argued that the reference summary
should be non-empty as long as there is an over-
lap between two narratives along at least one of the
5W1H facets (Who, What, When, Where, Why, and
How), while another annotator argued that overlap
in only one facet is not enough to decide whether
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there is indeed enough semantic overlap between
the two narratives and reference summary should
be left empty in such cases. As an example, one of
the annotators wrote only “Donald Trump” as the
reference summary for a couple of cases where the
actual narratives were substantially different except
for “Donald Trump” being the only common entity,
while others had those cases marked as “empty”.

To mitigate this issue, we only retained the narra-
tive pairs where at least two of the annotators wrote
a minimum of 15 words as their reference sum-
maries, assuming that a human-written summary
will contain 15 words or more only in cases where
there is indeed a significant overlap between the
two original narratives. This filtering step gave us a
test set with 137 narrative pairs where each sample
had 4 reference summaries, one from AllSides and
three from human annotators, resulting in a total
of 548 reference summaries. A couple of sample
narrative pairs are shown in Table 3 along with the
human annotations.

6 Evaluating SOS Task using ROUGE

As ROUGE (Lin, 2004) is the most popular met-
ric used today for evaluating summarization tasks,
we first conducted a case study with ROUGE as
the evaluation metric for the SOS task. For meth-
ods, we experimented with multiple SoTA pre-
trained abstractive summarization models as naive
baselines for Semantic-Overlap Summarizer (SOS).
These models are: 1) BART (Lewis et al., 2019),
fine-tuned on CNN and multi-English Wiki news
datasets, 2) Pegasus (Zhang et al., 2019), fine-
tuned on CNN and Daily Mail dataset, and 3) T5
(Raffel et al., 2019), fine-tuned on multi-English
Wiki news dataset. As our primary goal is to con-
struct a benchmark dataset for the SOS task and
explore how to accurately evaluate this task, ex-
perimenting with only 3 abstractive summarization
models is not a barrier to our work. Proposing a cus-
tom method fine-tuned for the Semantic-Overlap
task is an orthogonal goal to this work and we
leave it as future work. Also, we shall use the
phrases “summary” and “overlap-summary” inter-
changeably from here. To generate the summary,
we concatenate a narrative pair and feed it directly
to the model.

For evaluation, we first evaluated the machine-
generated overlap summaries for the 137 manually
annotated testing samples using the ROUGE met-
ric by following the procedure mentioned in Lin

(2004) to compute the ROUGE-F1 scores against
multiple reference summaries. More precisely,
since we have 4 reference summaries, we got 4
precision, recall pairs which are used to compute
the corresponding F1 scores. For each sample, we
took the max of these four F1 scores and averaged
them out across the test dataset (see Table 4).

Model R1 R2 RL

BART 40.73 25.97 29.95
T5 38.50 24.63 27.73

Pegasus 46.36 29.12 37.41

Table 4: Average ROUGE-F1 Scores for all the test
models across test dataset. For a particular sample,
we take the maximum value out of the 4 F1 scores
corresponding to the 4 reference summaries.

Implementation Details: For generating sum-
maries, we used off-the-shelf models in our ex-
periments with default settings for summarization
task following the Huggingface repo. Apart from
this, we set the min and max length parameters to
10 and 300, respectively, based on our dataset. All
the models are publicly available with details of
the source. For ROUGE computation, we followed
the implementation from the HuggingFace repo
with the following parameters: {use_stemmer =
True, bootstrap_aggregation = False}. Apart
from this, we just used a sentence tokenizer from
nltk library with English to create the input tokens.
So, most of the method and ROUGE implementa-
tions are already publicly available. As such, there
was no training involved in our experiments, but
we still made use of the GPU (NVIDIA Quadro
RTX 5000 with 16 GB of memory) to generate
summaries using these models. Table 5 shows the
summarization models and the number of parame-
ters used in our experiments.

Model #Parameters

BART ∼ 406 M
T5 ∼ 223 M

Pegasus ∼ 571 M

Table 5: Models and their corresponding number of
parameters used in our experiments.

Results and Findings: We computed Pearson’s
correlation coefficients (using the scipy package)
between each pair of ROUGE-F1 scores obtained
using all of the 4 reference overlap summaries (3
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Pearson’s Correlation Coefficients

R1 R2 RL

I1 I2 I3 I1 I2 I3 I1 I2 I3

I2 0.62 — 0.65 — 0.69 —
I3 0.3 0.38 — 0.27 0.37 — 0.27 0.44 —
I4 0.17 0.34 0.34 0.14 0.33 0.21 0.18 0.35 0.33

Average 0.36 0.33 0.38

Table 6: Max (across 3 models) Pearson’s correlation between the F1 ROUGE scores corresponding to different
annotators. Here Ii refers to the ith annotator where i ∈ {1, 2, 3, 4} and the “Average” row represents the average
correlation of the max values across annotators. Boldface values are statistically significant at p-value < 0.05.
For 5 out of 6 annotator pairs, the correlation values are quite small (≤ 0.50), thus, implying the poor inter-rated
agreement with regards to the ROUGE metric.

human written summaries and 1 AllSides theme de-
scription) to test the robustness of ROUGE metric
for evaluating the SOS task. The corresponding cor-
relations are shown in table 6. For each annotator
pair, we report their maximum (across 3 models)
correlation value. The average correlation value
across annotators is 0.36, 0.33 and 0.38 for R1, R2
and RL, respectively, suggesting that the ROUGE
metric demonstrates high variance across multiple
human-written overlap-summaries and thus, unreli-
able.

7 Can We Do Better than ROUGE?

Section 6 shows that the ROUGE metric is unsta-
ble across multiple reference overlap-summaries.
Therefore, an immediate question is: Can we come
up with a better metric than ROUGE? To investi-
gate this question, we started by manually assessing
the machine-generated overlap summaries to check
first whether humans agree among themselves or
not, i.e., whether human annotators can reach a
consensus or not.

7.1 Different trials of Human Judgement

Assigning a Single Numeric Score: As an initial
trial, we decided to first label 25 testing samples
using two human annotators (we refer to them as
label annotators, L1 and L2). Both label annota-
tors read each of the 25 narrative pairs as well as
the corresponding system-generated overlap sum-
mary (generated by fine-tuned BART) and assigned
a numeric score between 1-10 (inclusive). This
number reflects their judgment/confidence about
how accurately the system-generated summary cap-
tures the actual overlap of the two input narratives.
Note that, the reference overlap summaries were

not included in this label annotation process and
the label-annotators judged the system-generated
summary exclusively with respect to the input nar-
ratives. To quantify the agreement between hu-
man scores, we computed the Kendall rank corre-
lation coefficient (or Kendall’s Tau) between two
annotator labels since these are ordinal values. We
used an open-source scipy package for computing
Kendall’s Tau correlation. However, to our disap-
pointment, the correlation value was 0.20 with the
p-value being 0.223. This shows that even human
annotators are disagreeing among themselves and
we need to come up with a better labelling guide-
line to reach a reasonable agreement among the
human annotators.

On further discussions among annotators, we
realized that one annotator only focused on the
precision of the output overlap summaries, whereas
the other annotator took both precision and recall
into consideration. Therefore, subsequently, we
decided to assign two separate scores for precision
and recall.

Precision-Recall Inspired Double Scoring: This
time, three label annotators (L1, L2 and L3) as-
signed two numeric scores between 1-10 (inclu-
sive) for the same set of 25 system-generated sum-
maries. These numbers represented their belief
about how precise the system-generated summaries
were (the precision score) and how much of the ac-
tual ground-truth overlap information was covered
by the same (the recall score). Also, note that labels
were assigned exclusively with respect to the input
narratives only. As the assigned numbers represent
ordinal values (i.e. can’t be directly used to com-

3The higher p-value means that the correlation value is
insignificant because of the small number of samples.
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Human agreement in terms of Kendall’s Tau
for Double Scoring

Precision Recall

L1 L2 L1 L2

L2 0.52 — 0.37 —
L3 0.18 0.29 0.31 0.54

Average 0.33 0.41

Table 7: Kendall’s rank correlation coefficients among
the precision and recall scores for pairs of human anno-
tators (25 samples). Li refers to the ith label annotator.

pute the F1 score), we computed Kendall’s rank
correlation coefficient among the precision scores
and recall scores separately for all the annotator
pairs. The corresponding correlation values can be
seen in table 7. As we notice, there is definitely
some improvement in agreement among annota-
tors compared to the one-number annotation in sec-
tion 7.1. However, the average correlation is still
0.33 and 0.41 for precision and recall, respectively,
much lower than 0.5 (the random baseline).

Human agreement in terms of Kendall’s Tau
Sentence-wise Scoring

Precision Recall

L1 L2 L1 L2

L2 0.68 — 0.75 —
L3 0.59 0.64 0.69 0.71

Average 0.64 0.72

Table 8: Average precision and recall Kendall rank cor-
relation coefficients between sentence-wise annotation
for different annotators. Li refers to the ith label anno-
tator. All values are statistically significant (p<0.05).

7.2 Sentence-wise Scoring

From the previous trials, we realized the downsides
of assigning one/two numeric scores to judge an
entire system-generated overlap summary. There-
fore, as a next step, we decided to assign overlap
labels (defined below) to each sentence within the
system-generated overlap summary and use those
labels to compute the overall precision and recall.

Overlap Labels: Label annotators (L1, L2 and
L3) were asked to look at each machine-generated
sentence separately and determine if the core in-
formation conveyed by it is absent (A), partially
present (PP) or present (P) in any of the four refer-

ence summaries (provided by I1, I2, I3 and I4) and
respectively, assign the label A, PP or P. More pre-
cisely, annotators were provided with the following
instructions: if the human feels that there is more
than 75% overlap (between each system-generated
sentence and any reference-summary sentence), as-
sign label P, else if the human feels there is less
than 25% overlap, assign label A, otherwise, assign
label PP. This sentence-wise labelling was done
for 50 different samples (with 506 sentences in
total for system and reference summary), which re-
sulted in a total of 3× 506 = 1, 518 sentence-level
ground-truth labels.

To create the overlap labels (A, PP or P) for
precision, we concatenated all 4 reference sum-
maries to make one big reference summary and
asked label-annotators (L1, L2, and L3) to use it as
a single reference for assigning the overlap labels
to each sentence within machine generated sum-
mary. We argue that if the system could generate a
sentence conveying information that is present in
any of the references, it should be considered a hit.
For recall, label-annotators were asked to assign
labels to each sentence in each of the 4 reference
summaries separately (provided by (I1, I2, I3 and
I4)), with respect to the machine summary.
Inter-Rater-Agreement: After annotating each
system-generated sentence (for precision) and ref-
erence sentence (for recall) with the labels (A, PP
or P), we used the Kendall rank correlation coef-
ficient to compute the pairwise annotator agree-
ments among these ordinal labels. Table 8 shows
that the correlations for both precision and recall
are≥ 0.50, signifying higher inter-annotator agree-
ment.

Label from Annotator B P PP A

Label from
Annotator
A

P 1 0.5 0
PP 0.5 1 0
A 0 0 1

Table 9: Reward matrix used to compare the labels as-
signed by two label annotators for a given sentence and
helps to compute the agreement between the annotator
pairs.

Reward-based Inter-Rater-Agreement: Alterna-
tively, we defined a reward matrix (Table 9) which
is used to compare the label of one annotator (say
annotator A) against the label of another annotator
(say annotator B) for a given sentence. This reward
matrix acts as a form of correlation between two
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Human agreement in terms of Reward function

Precision Recall

L1 L2 L1 L2

L2 0.81± 0.26 — 0.85± 0.11 —
L3 0.79± 0.26 0.70± 0.31 0.80± 0.16 0.77± 0.17

Average 0.77 0.81

Table 10: Average precision and recall reward scores (mean ± std) between sentence-wise annotation for different
annotators. Li refers to the ith label-annotator.

annotators. Once the reward has been computed
for each sentence, one can compute the average
precision and recall rewards for a given sample and
accordingly, for the entire test dataset. The corre-
sponding reward scores can be seen in Table 10.
Both precision and recall reward scores are high
(≥ 0.70) for all the different annotator pairs, thus
signifying, a high inter-label-annotator agreement.

We believe, one of the reasons for higher re-
ward/Kendall scores could be that sentence-wise
labelling puts a lesser cognitive load on the human
mind allowing them to be more consistent in con-
trast to the single or double score(s) for the entire
overlap summary and, therefore, shows high agree-
ment in terms of human interpretation. A similar
observation was noted in Harman and Over (2004).

8 Limitations and Future Work

One particular limitation of this work is that we
have used pre-trained abstractive summarization
models as naive baselines / proxies for semantic
overlap summarizer and did not attempt to develop
a custom method that optimizes for the overlap con-
straint. However, the primary focus of this paper
is to define the SOS task, as well as establish the
first benchmark dataset and a suitable evaluation
approach for the task. Therefore, the design and
optimization of methods is an orthogonal task to
this paper, which we will pursue as our immediate
future work.

Another limitation of our work is that the test set
is not big (∼ 150 examples), which makes it diffi-
cult to do a rigorous evaluation. However, while
the number 150 may initially appear to be small;
cleaning and annotating the dataset required sig-
nificant time and resources. To elaborate further,
our test dataset contains 137 samples, where each
sample consists of two alternative narratives along
with 4 ground truth references. Out of these 4

references, 3 of them were manually written by
3 human annotators. Thus, we manually created
3 ∗ 137 = 411 reference summaries in total. Ad-
ditionally, for each sample (narrative pair), each
annotator first had to carefully read through two
alternative narratives several times, digest the se-
mantic overlap between them and then summarize
the overlap in their own words. This process took
on average 40 minutes per annotator per sample,
which means we spent around 411 ∗ 40 = 16, 440
minutes of human efforts in one round of the an-
notation process. Next, we had to resolve conflicts
among annotators by going through each of their
annotated summaries (a very painstaking process)
and figuring out the reasons for the conflicts. Based
on follow-up discussions, we revised the guidelines
for annotation and went through the entire annota-
tion process again. In total, we needed 4 iterations
(16, 440 ∗ 4 =∼ 65, 760 minutes) to resolve most
of the conflicts. The whole process took more than
8 months for us. Finally, we agree that having more
samples in the test dataset would definitely help.
But this is both time and money-consuming. We
are working towards it and would like to increase
the sample size in the future.

9 Conclusion

In this work, we introduced a new NLP task, called
Semantic Overlap Summarization (SOS) and cre-
ated a benchmark dataset through meticulous hu-
man efforts to initiate a new research direction.
As a starting point, we framed the problem as a
constrained summarization task and showed that
ROUGE is not a reliable evaluation metric for
this task. Further human experiments show that
sentence-wise evaluation leads to higher agreement
with human judgment, therefore, an evaluation met-
ric that aggregates sentence-wise overlap labels
should be used while evaluating the SOS task.
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Abstract

Social media posts provide a compelling, yet
challenging source of data of diverse perspec-
tives from many socially salient groups. Au-
tomatic text summarization algorithms make
this data accessible at scale by compressing
large collections of documents into short sum-
maries that preserve salient information from
the source text. In this work, we take a comple-
mentary approach to analyzing and improving
the quality of summaries generated from social
media data in terms of their ability to represent
salient as well as diverse perspectives. We in-
troduce a novel dataset, DivSumm, of dialect di-
verse tweets and human-written extractive and
abstractive summaries1. Then, we study the
extent of dialect diversity reflected in human-
written reference summaries as well as system-
generated summaries. The results of our ex-
tensive experiments suggest that humans anno-
tate fairly well-balanced dialect diverse sum-
maries, and that cluster-based pre-processing
approaches seem beneficial in improving the
overall quality of the system-generated sum-
maries without loss in diversity.

1 Introduction

Since the launch of Twitter, its short, informal,
creative, albeit noisy, social media posts called
tweets, have been collected, labeled, and studied in
numerous natural language processing (NLP) tasks,
ranging from identifying topics and places of rising
interest to sentiment analysis, and more. These
easily accessible user-generated tweets, produced
contemporaneously as world and private events un-
fold, provide insights into the perspective of diverse
social groups but are too manifold for humans to
interpret at scale. In response, automatic text sum-
marization algorithms aim to compress long pieces
of text into short, fluent, and consistent summaries
while preserving the most salient information from

1DivSumm dataset is available at https://github.
com/PortNLP/DivSumm

the source text (Meng et al., 2012; Lin et al., 2021a;
Amplayo et al., 2021).

Like other NLP models, summarization algo-
rithms run the risk of perpetuating unintentional
social biases against diverse groups (e.g., race or
gender) and promoting structures and practices
that systematically limit some groups’ access to
resources and decision-making power (Blodgett
et al., 2020). This is because the collections of
online texts such as news or Wikipedia articles,
typically used for developing NLP algorithms, re-
flect the interests, language patterns, and structured
writing style of their author demographics, which
differ from those of other communities. Algorithms
trained on such datasets may produce synopses in
which diverse perspectives are systematically ex-
cluded. This means that groups who manage to
overcome existing barriers to participation, for in-
stance, via social media posts, and who speak up
and offer their perspectives may still not be heard.

Fairness definitions for NLP models are gen-
erally based on the notion of equal treatment –
an algorithm is considered fair when it performs
the same for mainstream and underrepresented
groups (i.e., group fairness) or delivers the same
conclusions about an individual, regardless of the
group they belong to (i.e., individual fairness)
(Czarnowska et al., 2021). Recent works have
demonstrated the disparate performance of tools on
sensitive subpopulations in domains (Tatman, 2017;
Buolamwini and Gebru, 2018). In this work, we
consider the notion of group fairness and interpret
it in terms of representation distribution of some
socially salient attribute (dialect) in the summary.

Our goal is to investigate the ability of existing
models of summarization to reflect the diversity
of input text in the generated summaries, and pro-
pose a simple yet effective approach for improving
the group-level diversity of summaries generated
from noisy social media tweets, for which very
little prior work exists to date (Dash et al., 2019;
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Dataset domain attribute (#groups) #topics #summ/topic #docs/input #sent/summ Ext? Abs?

MeToo (Dash et al., 2019) tweets gender (2) 1 3 488 - Y N
Claritin (Dash et al., 2019) tweets gender (2) 1 3 4037 100 Y N
US-Election (Dash et al., 2019) tweets political leaning (3) 1 3 2120 - Y N
DivSumm (ours) tweets dialect (3) 25 2 90 5 Y Y

Table 1: Statistics of some social multi-document extractive summarization datasets with socially salient user group
attributes and human written summaries.

Keswani and Celis, 2021). To this end, we seek
to answer two specific questions with respect to
summarization of dialect diverse tweets: (Q1) how
diverse are summaries generated by humans? and,
(Q2) how diverse are summaries generated by auto-
matic summarization models with and without the
proposed fairness interventions?

Our work makes several contributions:

• we introduce and comprehensively analyze
a novel dataset, DivSumm, of diverse dialect
tweets across several topics and correspond-
ing extractive and abstractive human-written
reference summaries;

• we study the group diversity of reference sum-
maries and investigate two simple yet effec-
tive approaches for applying diversity inter-
ventions at the pre-processing stage of the
summarization process;

• we conduct an extensive set of experiments
using six existing extractive as well as abstrac-
tive summarization models as black-boxes,
and report the results in terms of three types of
metrics (reference-less, reference-based, and
representation).

2 Related Work

In this section we discuss two relevant areas of
prior work: multi-document summarization for so-
cial media data, and an overview of existing sum-
marization datasets.

Multi-document social media summarization

Summarizing of social media data remains an inter-
esting area of research with numerous approaches
focused on optimizing the textual quality, factu-
ality, fluency, and many other properties of the
summaries (Li and Zhang, 2020; He et al., 2020;
Dusart et al., 2021). However, unlike other text in-
put (e.g., news articles), data from social media are
also incredibly diverse consisting of opinions and
perspectives from people from many walks of life,
and while reflecting this richness of diversity in the

summaries generated from them is an important
goal, there have been few notable efforts in this
direction.

One of the early works to study the notion of
fairness in summaries generated from social me-
dia data used extractive summarization models and
noted that the generated summary is not always a
fair representation of the input data, even though
the tweets written by different social groups (gen-
der and political leaning in this case) are of com-
parable quality (Shandilya et al., 2018; Dash et al.,
2019). Following these assertions, they proposed
three fairness-preserving algorithms that can be ap-
plied during the pre-processing, in-processing, and
post-processing stages. Keswani and Celis (2021)
investigated the role of extractive summarization
models in the context of dialect diversity of sum-
maries, but did so without access to manually an-
notated summaries and proposed a bias mitigation
model at the post-processing stage.

Summarization datasets

Developing summarization datasets is a challeng-
ing task and as such, researchers often utilize cre-
ative methods for automatically obtaining sum-
maries of documents (Nallapati et al., 2016; Xu
et al., 2021; Perez-Beltrachini and Lapata, 2021;
Varab and Schluter, 2021). In cases where auto-
matic document/summary pairings cannot be ob-
tained, human annotation, usually through crowd-
sourcing, is often used (Khalman et al., 2021; Lin
et al., 2021b). Specifically in the domain of so-
cial media data, many multi-document datasets
have been recently introduced, some with extrac-
tive summaries, others with abstractive summaries,
including TSix (Nguyen et al., 2018), Amazon and
Yelp (He and McAuley, 2016; Bražinskas et al.,
2020), SPACE (Angelidis et al., 2021), and ISSum-
Set (Dusart et al., 2021), to name just a few, but as
none of these contain explicit markers of diverse
social groups, we are motivated to develop a novel
dataset of dialect diverse summaries.
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3 Problem Description

For the task of multi-document summarization of
social media data, the input typically consists of
dozens to hundreds of documents (e.g., tweets)
about the same topic that are all considered in gen-
erating a single summary. Formally, the input is
a set of documents further split into n sentences,
D = {d1, ..., dn}. Given the sentences in D, the
goal of a multi-document summarization model is
to generate a summary S = {s1, . . . , sk} consist-
ing of k sentences, where k << n is usually a
hyper-parameter. There are two types of summa-
rization models, extractive models where S ⊂ D,
and abstractive models which extract and rewrite
salient pieces of text.

In multi-user settings where users belong to mul-
tiple social groups, each sentence di may be addi-
tionally accompanied by social attribute gj , gj ∈ G,
where G is a set of attributes of a demographic
group such as gender, race, or dialect. To ade-
quately accommodate the variety of perspectives
expressed by multiple diverse groups, the goal of
a diversity-preserving multi-document summariza-
tion algorithm then is to generate a summary S
with the goal of not only optimizing textual quality
but also satisfying some fairness constraint such as
group fairness, which compare quantities at group
level (Czarnowska et al., 2021). In the context of
summarization, this problem formulation naturally
lends itself well to extractive models where sen-
tences from the final summaries can be traced back
to source documents and their user group labels
more so than to abstractive models where text usu-
ally gets rewritten making group label attribution
challenging to ascertain.

One simple approach of computing group rep-
resentation distribution in extractive summaries,
which we denote as R(S), is by calculating the
number of tweets belonging to each user group in
the summary. Assuming m distinct and disjoint
groups,R(S) = { |S1|k , . . . , |Sm|k } where |Sj | is the
number of sentences within the summary S from
group j, and k is the total number of sentences in
the summary.

Under the notion of equal representation, where
the representation of all groups should be equal, re-
gardless of their distribution in the input data, one
can compute an aggregate diversity score. For in-
stance, we can compute the Representation Gap,
where a lower gap score would imply a more bal-
anced distribution. Several metrics can be used to

estimate the level of dispersion2, and we choose
the range,Rrg(S) = max{R(S)} −min{R(S)}.
In other words, for well-balanced group distribu-
tions, a smallerRrg(S) score indicates a more di-
verse summary. As an example, if a summary of
5 lines contains 3 sentences from group A, and
a sentence each from group B and group C, then
R(S) = {0.6, 0.2, 0.2}, andRrg(S) = 0.4.

4 Dialect Diverse Summarization Dataset
(DivSumm)

In order to study the diversity-preserving capabili-
ties of summarization algorithms, we need a suit-
able dataset, and although numerous summariza-
tion datasets have become available in recent years,
only a handful of them contain explicit diverse
social group information (see Table 1), which mo-
tivates us to develop and contribute a novel dataset
– DivSumm. Our dataset consists of input-summary
pairs on a set of 25 topics of tweets written in three
different dialects. We obtain their corresponding
human-generated extractive and abstractive sum-
maries. Table 2 presents an instance from Div-
Summ, while the following subsections outline our
process of creating and exploring this dataset.

4.1 Obtaining human-written reference
summaries

To obtain a large number of tweets of diverse di-
alectal language for annotating and creating Di-
vSumm, we turn to a corpus of English tweets
automatically labeled with dialect information by
inferring three demographic dialect proportions,
namely, African-American (AA) English, Hispanic
English, and White English, using a model trained
with census data (Blodgett et al., 2016). All the
preprocessing details are included in Appendix A.

Our annotation study was designed to obtain
both extractive as well as abstractive summaries,
with the input consisting of multiple documents
(randomly selected and shuffled 90 tweets on a
given topic, with 30 tweets per dialect group) to
generate topic-wise summaries (e.g., summary for
NBA, Netflix, Beyonce, and so on). In other
words, we feature all dialects with equal propor-
tion, an approach typical of datasets that are meant
to be evaluation benchmarks (Fabris et al., 2022).
For generating the summaries, we invited a diverse
group of ten volunteers familiar with tweets and

2We also computed the standard deviation ofR(S) which
showed a high correlation with range.
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Input Documents (Tweets)
G3: If Lakers play like that every game no chance for anyone else in the NBA #NoExceptions
G2: The Fan Fictions and Imagines other Beliebers come up with , OMFG I LOVE THIS FANBASE !
G2: Remember when they the NBA play-offs were boring and disappointing-not so much anymore #nbafantastic
G1: NBATV shittin on u niggas.lol. Melo and Monroe doing work doe.
G3: Going to take in some NBA tonight. Pacers/Knicks. NBA games are much better in person.
G2: Just fast forward to the trophy presentation and the sucking off of LeBron by your company. NBA is garbage
G1: No point guard in the NBA can hold Russell Westbrook
G1: The Black Mamba 81 point showcase in showing now on NBATV !!
G2: NBA reffs.. Responsible for half of Miami heats points since 2010. -.-t #refsforMVP
G3: And te NBA was in a lockout last year too.......NOBODY complained about that last year. Bc frankly, nobody cares.
...
...
...
G3: Is it possible that boozer is the worst player in the NBA? #GETOUT
G3: NBA rule change I’m shocked has never happened: An assist if the player you passed to makes both free throws.
G3: If this was an NBA game, Michael Carrera would be walking away from it with a $100,000 fine. #flopcity
G1: Lakers??? Is that even a NBA team? I thought they were D-League.....

Extractive Summaries
Annotator 1 Annotator 2

Going to take in some NBA tonight. Pacers/Knicks. NBA games
are much better in person. There’s a difference btw NBA ready
talent & NBA prospects. UK has a ton of prospects this yr. Seeing
the difference this yr. And the #Lakers get back in the game by
slowing it down, grinding on ’D’, and going at the basket. Who
knew? 0_0 #NBA. It’s pathetic that everyone thinks that the
NBA is better than the NHL... Free NBA League Pass Preview
till tomorrow, Dam I’m sure I’m staying in this Saturday night!

Remember when they the NBA play-offs were boring and
disappointing-not so much anymore #nbafantastic. Lebron is
still the best player in the NBA. Put your mouth on it.”. Bucks
vs Sixers. This is why I love NBA TV. #FanNight. Looks like I’m
watching the sugar bowl game cz its halftime for the NBA. It’s
pathetic that everyone thinks that the NBA is better than the
NHL...

Abstractive Summaries
Annotator 1 Annotator 2

It’s an NBA game night. Many people are tuned in because
it’s the first game of the season. There are different reactions
to the game because some think it’s awesome and some think
it’s whack. It would greatly have to do with fans(the team they
support). Viewers also gave opinions of different players they
consider to be the best and Lebron is thought to be overhyped.

All Tweets seem to contain ‘NBA’ regardless of placement or
context, often even including tweets where NBA is part of a word
such as “FANBASE”. Overall the majority of tweets seem to
be in-regards to the National Basketball Association, NBA, and
include more often critiques or ‘insults’ of competing teams.
It is also evident that the ‘NBA’, as a brand, include different
ancillary businesses such as ‘NBA League Pass’, NBATV, and
NBA2K13 (video game) in conjunction with the obvious bas-
ketball games themselves. A portion of the sample includes a
notable use of racial epitaphs or slurs that may or may not be
used in derision. The overwhelming bulk of the tweets is of a
negative (critiquing, admonishing) nature as opposed to a posi-
tive (hopeful, cheering) message.

Table 2: Example instance from our DivSumm dataset showing input documents with corresponding reference
extractive and abstractive summaries generated by two annotators. For the extractive summaries, overlapping text
between the annotators is denoted in red text and bold font.

their idiosyncrasies, and more importantly, span-
ning a range of diversity across dialects, gender,
and ethnicity. Note that we did not mention any-
thing about the dialects of the tweets before sharing
the files for annotation, so the annotators had no
background information about the goals of this
study other than the fact that we seek to summarize
the tweets – this was done to mitigate any form
of potential bias. We provided concise and clear
guidelines for generating the summaries, along
with an example set of tweets and corresponding
extractive and abstractive summaries. For the ex-
tractive summaries, the annotators were requested
to select 5 tweets that they believe to capture the
salient points from the set of documents, while

for the abstractive summaries, the annotators were
asked to write 5 sentences in their own words to
summarize the important points across all the doc-
uments. Every set of input tweets was summa-
rized by two annotators, thus helping us develop a
dataset of 25 topics, with a total of 100 pairs of in-
put (sets of documents) and output (human-written
summaries).

It is worth mentioning that the diversity of the
annotator pool will undoubtedly have an impact
on the ultimate annotations (summaries) obtained.
The inherent subjective nature of summarization
process suggests that different annotators will ap-
proach it from different perspectives, which is a
strength but also a weakness of this process and
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R1 RL

S1, random 0.234 0.210
S2, random 0.220 0.193
S1, S2 0.315 0.301

Table 3: ROUGE scores comparing human-human sum-
maries (S1 and S2) and human-random summaries.

(a) (b)

Figure 1: Diversity Analysis of Human-written Refer-
ence Extractive Summaries in DivSumm. The plot (a)
displays the average representation R(S) of each di-
alect with each dialect’s R(S) in the range of 29.5 -
37.4%, indicating a fairly balanced representation. In
plot (b), we present the violin plots of the distribution
scores noting few outliers.

has been extensively studied in recent literature
(Clark et al., 2021; Gehrmann et al., 2022). To help
account for these limitations, during evaluation we
report the results using not only metrics that rely
on these reference summaries, but also those that
do not require reference summaries.

As summarizing informal user-generated data
is a particularly challenging task, we also com-
pute the inter-annotator agreement to measure the
lexical overlap of extractive reference summaries
written by both annotators. As shown in Table 3,
the average ROUGE-1 and ROUGE-L F1 scores
for pairs of human annotated summaries was much
higher (∼0.31) than that of a randomly generated
summary compared against the human-generated
summaries (∼0.21), suggesting that the human-
written summaries are more similar, and arguably
reliable.

4.2 Analyzing diversity in human-written
summaries

Before studying how well automatic summariza-
tion models reflect diversity in system summaries,
a natural question to ask is how well do humans
summarize such diverse data. To answer this ques-
tion, we conduct a thorough analysis of the ref-
erence summaries of DivSumm dataset in an at-

tempt to uncover any interesting insights into the
way that humans (specifically, our annotators) ap-
proach dialect-diverse summarization process. Im-
portantly, our answers to these analyses will serve
as a principled baseline when we later evaluate the
model-generated summaries.

The extractive summaries provide a uniquely
interesting opportunity to explore the question of
how diverse human-written summaries are by al-
lowing us to compare the proportion of represen-
tation of each dialect group within the summaries.
Recall that our dataset features an equal number of
tweets for each of the three dialect groups in the
input, and, therefore, for equal or proportional rep-
resentation in the output summary, a well-balanced
summary would contain equal number of tweets
from each group. As the plots in Figure 1 show, we
found a fairly balanced representation for each di-
alect group in the summary (R(S) ranges between
29.5% to 37.4%).

5 Modeling Diversity in System
Summaries

In this section, we explore the diversity-preserving
qualities of recently proposed summarization algo-
rithms using three approaches described below and
visualized in Figure 2.

VANILLA: This standard baseline approach of sum-
marizing uses a single aggregated set of random-
ized documents from all the dialect groups, e.g., a
total of 90 tweets, as the input to the summarization
model without any pre-processing.

CLUSTER-HEURISTIC (CLUSTER-H) : Simi-
lar to the pre-processing approach of Dash et al.
(2019), this method first heuristically partitions
the set of input documents into group-based sub-
sets (D = {D1 ∪ ... ∪ Dm}, each Dj containing
a set of documents from group j) before passing
them to the summarization model to generate sep-
arate group summaries (S = {S1, ...,Sm}) – one
for each of the three group-specific tweets. How-
ever, instead of concatenating these summaries to
generate the final summary, we shuffle and com-
bine these m group-level summaries into a single
document and pass that again to the summariza-
tion model to generate a new, combined summary.
In doing so, we seek to first preserve group-level
salient information before aggregating the most in-
formative units from such individual summaries
into a unified summary.
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Figure 2: Illustration showing the overview of VANILLA, CLUSTER-HEURISTIC and CLUSTER-AUTOMATIC.

CLUSTER-AUTOMATIC (CLUSTER-A): Con-
versely, in a more pragmatic scenario, the sensi-
tive group attribute may not be reliably observ-
able, or inferring it is not possible due to some
reason, including ethical reason. In such a case,
we also investigate an attribute-agnostic approach
based on automatic clustering, as follows: (i) Gen-
erate p clusters of D via some clustering algo-
rithm (e.g., k-means) with the optimal value of
p determined through silhouette score, yielding
D = {D1 ∪ ... ∪ Dp}. (ii) Generate a set of corre-
sponding summaries S = {S1, ...,Sp}. (iii) Con-
catenate all the p summaries into a single document
and pass it again to the summarization algorithm to
generate a final summary.

6 Experiments

The three approaches are studied in the context of
recently proposed summarization models, both ex-
tractive and abstractive, and the quality of the sum-
maries is evaluated using reference-based metrics,
reference-less metrics, and representation metric.

6.1 Summarization models

We explore six recent extractive and abstractive
summarization models described below (we refer
to Appendix B for full implementation details).

Extractive methods: TEXTRANK (Mihalcea and
Tarau, 2004), an unsupervised graph-based ranking
method, determines the most important sentences
in a document based on information extracted from
the document itself, and therefore performs well
even without any form of domain knowledge or pre-

training. BERT-EXT (Miller, 2019), an extractive
summarization model, uses pretrained embeddings
from BERT (Devlin et al., 2018) and k-means clus-
tering to select sentences closest to the centroid
as the summaries, and similarly, LONGFORMER-
EXT (Miller, 2019) which uses pretrained embed-
dings from LongFormer (Beltagy et al., 2020).

Abstractive methods: BART (Lewis et al., 2019)
is a sequence-to-sequence model combining a bidi-
rectional encoder with an auto-regressive decoder
and trained by corrupting the document with an ar-
bitrary noisy function. T5 (Raffel et al., 2019), an
encoder-decoder model trained using teacher forc-
ing, modifies the original transformer architecture
to convert language problems into a text-to-text for-
mat. LED (Longformer Encoder-Decoder) (Belt-
agy et al., 2020), a variant of the Longformer model
with both encoder and decoder transformer stacks,
has shown to improve modeling long sequences for
sequence-to-sequence learning.

6.2 Evaluation metrics

To evaluate the quality of the system-generated
summaries, we consider three types of metrics.

Reference-based: ROUGE (Lin, 2004) calculates
the lexical overlap between the machine-generated
output and the human-written reference summaries.
For our experiments, we report the F1 scores of
ROUGE-1 (overlapping unigrams) and ROUGE-L
(longest common subsequences). To compute the
final scores, a system-generated summary is com-
pared with each of the two reference summaries,
and their average score is reproted.
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Extractive Models

Model TextRank BERT-EXT LONGFORMER-EXT

R1 RL SQA B Rrg↓ R1 RL SQA B Rrg↓ R1 RL SQA B Rrg↓
VANILLA 0.25 0.23 0.06 0.11 0.15 0.22 0.21 0.04 0.13 0.04 0.22 0.20 0.04 0.12 0.17
CLUSTER-H 0.26 0.24 0.06 0.10 0.18 0.22 0.21 0.05 0.12 0.07 0.22 0.20 0.05 0.11 0.20
CLUSTER-A 0.25 0.23 0.07 0.10 0.16 0.22 0.20 0.05 0.12 0.06 0.23 0.21 0.05 0.11 0.16

Abstractive Models

Model BART T5 LED

R1 RL SQA B Rrg↓ R1 RL SQA B Rrg↓ R1 RL SQA B Rrg↓
VANILLA 0.16 0.14 0.06 0.09 - 0.15 0.13 0.07 0.08 - 0.13 0.12 0.06 0.07 -
CLUSTER-H 0.16 0.15 0.06 0.09 - 0.14 0.13 0.05 0.07 - 0.14 0.13 0.05 0.08 -
CLUSTER-A 0.17 0.15 0.06 0.09 - 0.12 0.11 0.06 0.06 - 0.14 0.14 0.05 0.07 -

Table 4: Results of the three approaches (VANILLA, CLUSTER-H, and CLUSTER-A) across three extractive
summarization models (TextRank, BERT-Ext, LongFormer-Ext) and three abstractive summarization models (BART,
T5, LED) using the DivSumm summarization dataset. The metrics reported include ROUGE-1 (R1), ROUGE-L
(RL), SummaQA (SQA), BLANC (B), and for the extractive summariesRrg(S) denoting the Representation Gap.
All scores are averaged over two runs. The best scores per model and per metric have been underlined. For reference,
the Representation Gap in human summariesRrg(S) = 0.08.

Figure 3: Violin plots ofR(S) per dialect and per approach for TEXTRANK over DivSumm dataset. It is noticed
that the violins for both AA and Hispanic tweets are considerably thinner as compared to the human summaries
indicating many outliers on both ends of the spectrum.

Reference-less: SummaQA (Scialom et al., 2019)
evaluates the quality of a text summary without
relying on reference summaries, making it a prac-
tical choice for assessing summaries generated
from large collections of tweets. Instead, it uses
a question-answering model based on BERT to
answer cloze-style questions using the system-
generated summaries. BLANC (Vasilyev et al.,
2020), another reference-less metric, measures how
the performance of a pretrained language model im-
proves during language understanding tasks when
the model is given access to a summary, and corre-
lates with informativeness (Iskender et al., 2021).

Representation Gap: Finally, we also report the
Rrg(S) of the extractive summaries by calculating
the range of the representation distribution in the
summary.

7 Results and Discussion

Table 4 presents the detailed results of our experi-
ments across extractive and abstractive models, and
some samples of system-generated summaries are
included in Appendix C. In looking at the represen-
tation gap scores of extractive models, we note that
the VANILLA approach without any intervention
does well in terms of Rrg on 2 out of 3 datasets,
while in the case of CLUSTER-H performance is
strictly worse despite that model being designed to
consider group-level information. In terms of sum-
mary quality, all three approaches perform com-
parably. Of note, however, is the performance of
BERT-Ext model which yields impressive represen-
tation gap scores, suggesting that centroid-based
approaches in particular could be effective as unsu-
pervised diversity-preserving models.
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Model Extractive AVERAGE Abstractive AVERAGE

R1 RL SQA B Rrg↓ R1 RL SQA B

VANILLA 0.232 0.217 0.053 0.123 0.12 0.147 0.136 0.068 0.083
CLUSTER-H 0.236 0.218 0.057 0.117 0.15 0.151 0.140 0.059 0.083
CLUSTER-A 0.237 0.219 0.062 0.115 0.13 0.150 0.139 0.061 0.080

Table 5: Averaged results of the three approaches (VANILLA, CLUSTER-H, and CLUSTER-A) across three extractive
summarization models and three abstractive summarization models evaluated using the DivSumm summarization
dataset. The metrics reported include ROUGE-1 (R1), ROUGE-L (RL), SummaQA (SQA), BLANC (B), and for
the extractive summaries,Rrg(S).

(a)

(b)

Figure 4: Pairwise Kendall’s Tau correlations for sum-
mary evaluation metrics, (a) extractive models, and (b)
abstractive models. A higher score (shown in lighter
color) indicates higher correlation between the rankings
provided by a pair of metrics, whereas a smaller score
(shown in darker color) indicates weaker correlation.

Figure 3 presents the violin plots for one of the
summarization models, TEXTRANK, to allow us
to further investigate the differences between the
three approaches (please see Appendix D for anal-
ysis of the other two extractive models). For all the
approaches, the violins for both AA and Hispanic
summaries are noticeably thinner than the corre-
sponding human summaries, suggesting that the
R(S) representation distribution of system sum-
maries contains many outliers on either end of the
spectrum.

Table 5 presents the averaged results of all the

extractive methods and abstractive methods, which
confirm that VANILLA generates more diverse sum-
maries, while CLUSTER-A does generally better
on the other metrics related to summary quality,
hinting at a plausible trade off between the two
dimensions (Celis et al., 2018). Considering the re-
sults of extractive and abstractive models together,
it appears that some sort of clustering of documents
before passing them to the summarization model
remains beneficial in improving the overall quality
of summaries.

Next, given the multiple evaluation metrics along
dimensions of quality and representation, we fur-
ther study the correlations between these metrics
and present some heatmap visualizations generated
using the pairwise Kendall’s Tau correlation values.
Figure 4 summarizes the correlations computed us-
ing the average results. Each approach was first
sorted from best to worst based on the scores pro-
vided by each metric, and these rankings were then
used to calculate Kendall’s Tau to represent how
well the rankings correlate between metrics. A
score closer to 1.0 indicates high correlation (that
is, the metrics ranked approaches in similar order),
while a score closer to -1.0 indicates poor correla-
tion (the metrics ranked approaches in a different
order).

We observe that in the case of extractive sum-
maries, metrics R1, RL, and SummaQA have high
to moderate inter-correlation, while BLANC and
Rrg(S) do not correlate with any other metrics.
For the abstractive models, R1 shows moderate
correlation with RL and BLANC, but SummaQA
shows poor correlation with all the other three
metrics. Overall, we conclude that (i) both the
reference-based metrics R1 and RL correlate well
as expected, (ii) R1 correlates well with reference-
less metric SummaQA for extractive summaries,
and with BLANC for abstractive summaries, (iii)
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Model BART T5 LED

R1 RL SQA B R1 RL SQA B R1 RL SQA B

VANILLA 0.202 0.184 0.212 0.201 0.194 0.181 0.269 0.281 0.160 0.148 0.181 0.172
CLUSTER-A 0.172 0.157 0.229 0.270 0.170 0.158 0.185 0.224 0.176 0.161 0.217 0.271

Table 6: Results of VANILLA and CLUSTER-A as applied to another dataset, DialogSumm (Chen et al., 2021)

the two reference-less metrics (SummaQA and
BLANC) do not correlate with each other, and
(iv) finally, no metrics seem to be correlating well
with the representation metric (Rrg), suggesting
the need for new metrics that can measure represen-
tation of diversity in addition to other dimensions
of quality.

Finally, since clustering-based approaches im-
proved over the baseline approach in terms of sum-
mary quality, we conduct one more investigation
to evaluate whether CLUSTER-A generalizes to an-
other dataset involving multiple users such as Di-
alogSumm dataset (Chen et al., 2021). The results
presented in Table 6 indicate that VANILLA per-
forms better when using T5 model, CLUSTER-A
brings additional gains to LED model, while re-
maining comparable on the third model.

8 Conclusions

In this work, we investigate whether, and to what
extent, do system-generated summaries reflect the
diversity of socially salient groups present in the in-
put data. To answer this question, we first develop a
novel summarization dataset, DivSumm, by obtain-
ing human-written reference summaries, of both
extractive and abstractive sort, for dialect diverse
tweets. In analyzing the human-written reference
summaries, we were encouraged to note that on av-
erage humans generated reasonably well-balanced
dialect diverse summaries. This was followed by
an extensive evaluation exploring the diversity re-
flected in system summaries by experimenting with
three approaches as applied to six summarization
algorithms, and evaluated using multiple metrics
of summary quality and representation. Future av-
enues of work include expanding our dataset to
consider other diverse social attributes and improv-
ing the summarization models along dimensions of
both quality as well as representation.

9 Ethical Considerations

Tweets provide a rich and diverse source of natural
language data but in working with unfiltered social

media data, we also run the risk of encountering
unconventional or in some cases what may be con-
sidered as offensive language. Being sensitive to
these limitations, before undertaking the annotation
process, we carefully informed the annotators of
some of the inherent risks of annotating tweets and
provided them with the option of withdrawing from
the annotation process should they feel uncomfort-
able at any point of time (it is worth noting that no
annotator withdrew from the study). Similarly, our
discussions related to the representation of dialect
diversity in summaries are based solely on the sum-
maries that were developed during this study and
the summarization models that were adopted in our
experiments. It remains to be seen whether these
conclusions generalize to other social groups.
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A Preprocessing Documents

Raw tweets can be notoriously noisy and challeng-
ing for summarization purposes3. Our preprocess-
ing steps are as follows: (i) we considered a tweet
as belonging to one of the three dialect groups if it
had a dialect confidence score greater than 0.7 for
a given dialect and less than 0.3 for all the other
dialects, (ii) we removed any duplicate tweets, any
mentions (i.e., @username), and any tweets shorter
than seven tokens in length, and (iii) finally, since
emojis may provide useful indicators during sum-
mary generation, we converted the Unicode emoji
characters with their corresponding images.

After the initial preprocessing, we extracted a list
of hashtags present in the remaining tweets with
the goal of identifying the most frequent topics
of at least thirty tweets per dialect. This consid-
erably filtered down the set of tweets because of
unbalanced distribution of dialect groups in the
corpus, with significantly more White tweets than
AA or Hispanic tweets. Finally, we found and
settled on a set of twenty five topics that we hy-
pothesize encompass tweets from a diverse set of
users. These include: 49ers, Amazon, Beyonce,
Chicago, Christmas, Eagles, Facebook, Flu, Gradu-
ation, Grammys, Iphone, Kobe, McDonalds, NBA,
Netflix, NYC, Obama, Paris, Patriots, Seahawks,
Superbowl, Thanksgiving, VMA, WWE, Xbox.

B Implementation Details

TEXTRANK model4 was initiated with the word
count set to 70 - which is the average number of to-
kens for 5 sentences in our dataset. BERT-EXT and
LONGFORMER-EXT models were initiated from
the extractive summarization model5, with the num-
ber of output sentences set to 5. For the abstractive
models BART, T5, and LED, we used pretrained
model checkpoints BART_base6, T5_base7,and Al-

3And not to mention, potentially offensive. However, other
than these preprocessing steps, we intentionally did not filter
out any further tweets, neither automatically nor manually, in
order to avoid inserting any biases. Given the nature of social
media posts, it is possible that the dataset may thus uninten-
tionally contain some offensive content. The annotators were
carefully informed about the risks of participating in such a
study.

4https://github.com/RaRe-Technologies/
gensim

5https://pypi.org/project/
bert-extractive-summarizer/

6https://huggingface.co/facebook/
bart-base

7https://huggingface.co/t5-base

lenAI LED_base_163848, respectively, with beam
size set to 3 and minimum length of tokens set to
70. The model checkpoints were accessed from
the HuggingFace library (Wolf et al., 2019) and
further fine-tuned using the TWEETSUMM dataset
(Feigenblat et al., 2021) which was chosen as it
is one of the most similar tweet datasets to ours
that was large enough to serve as a training set for
fine-tuning purposes. For automatic clustering, we
used k-means clustering with tf-idf vector represen-
tation, and set k = 2 for all our experiments after
assessing it to generate reasonable results using
silhouette coefficient scores9. The reference-based
and reference-less evaluation metrics were com-
puted using the SummEval toolkit10 (Fabbri et al.,
2021).

C Example System Summaries

Tables 7 and 8 present some system summaries as
generated by an extractive model and an abstractive
model, respectively.

D Representation Distribution

Figure 5 displays the violin plots for R(S) per
dialect and approach for (a) BERT-Ext, and (b)
LongFormer-Ext.

8https://huggingface.co/allenai/
led-base-16384

9https://scikit-learn.org/stable/index.
html

10https://github.com/Yale-LILY/SummEval
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Approach Summary

REFERENCE Looks like I’m watching the sugar bowl game cz its halftime for the NBA. And the Lakers get back in the game by
slowing it down, grinding on ‘D’, and going at the basket, Who knew? 0_0 #NBA. Aha best team in the NBA they
by far better then your Celtics y’all lost last night btw to the grizzlies. NBA basketball n packing for the rest of my
night. Miami comin out the east & Clippers comin out the west #NBA #FinalsPrediction.

VANILLA Looks like I’m watching the sugar bowl game cz its halftime for the NBA. yea on NBA TV, they PLAYN n London”
Oh Aite Thanks. Watching and NBA game live &gt; Watching the play by play on an iPhone.. As I sit here lowkey
buzzed playing NBA 2k13 thinking I’m actually in the tv screen. I love explaining the NBA to my mom &amp;
telling her which players are good &amp; stuff like that.. Tim Duncan is always on my make believe NBA teams
cause he’s my favorite PF,. When girls actually know what they’re talking about the NBA.

CLUSTER-H When girls actually know what they’re talking about the NBA. Any subliminal pics I post on IG will now be hash
tagged #HNBAF. to comeback and do commentary on some Joker episodes? # West is actually good 1-8.. Tim
Duncan is always on my make believe NBA teams cause he’s my favorite PF,. NFL, NBA, and NHL were lockouts
by owners.. Diandre doesn’t understand there isn’t really parity in NBA.

CLUSTER-A The #Memphisgrizzlies just made the stupidest trade in NBA history trading Rudy gay at this point in the season
#wow. NBA games are much better in person.. Looks like I’m watching the sugar bowl game cz its halftime for the
NBA. Up watching NBA TV... He need to stick to coaching or being a GM or some shit.... @ The Black Mamba 81
point showcase in showing now on NBATV !!. Tim Duncan is always on my make believe NBA teams cause he’s
my favorite PF,.. he has a higher ceiling than granger but gotta hold off on calling him better, PG has never been top
5 in NBA in scoring. The Heat get every call to go their way...the NBA should be ashamed of this BS.

Table 7: An example of system summaries (along with human-generated reference summary) using BERT-Ext
model

Approach Summary

REFERENCE It’s an NBA game night. Many people are tuned in because it’s the first game of the season. There are different
reactions to the game because some think it’s awesome and some think it’s whack. It would greatly have to do with
fans(the team they support). Viewers also gave opinions of different players they consider to be the best and Lebron
is thought to be overhyped.

VANILLA Looks like I’m watching the sugar bowl game and its halftime for the NBA.

CLUSTER-H And the #Lakers get back in the game by slowing it down, grinding on ’D’, and going at the basket. And the #Lakers
get back in the game by slowing it down, grinding on ’D’, and going at the basket. And the #Lakers get back in the
game by slowing it down, grinding on ’D’, and going at the basket.

CLUSTER-A @ RobHall their are truly more lakers haters then Miami haters.. Who knew? he has a higher ceiling than granger
but gotta hold off on calling him better, PG has never been top 5 in scoring. @robhall their are truly more lakers
haters then Miami haters.. Who knew? he has a higher ceiling than granger but gotta hold off on calling him better,
PG has never been top 5 in scoring. And the #Lakers get back in the game by slowing it down, grinding on ’D’, and
going at the basket. Looks like I’m watching the sugar bowl game and its halftime for the NBA

Table 8: An example of system summaries (along with human-generated reference summary) using LED model
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(a)

(b)

Figure 5: Violin plots of R(S) per dialect and approach, with (a) BERT-Ext, and (b) LongFormer-Ext models.
The values for R were determined across two runs and averaged. Of interest is how the models compare to the
human-generated summaries. For BERT-Ext, the White dialect contains the consistently widest violins, indicating a
more consistentR(S) average around ∼0.33. The violins for the AA and Hispanic dialects are skinnier, suggesting
that they contain more outliers above and below the ∼0.33 mark. For LongFormer-Ext, once again the White dialect
contains consistently wide violins, whereas the AA violins are wide for both VANILLA and CLUSTER-H approaches,
but contain more outliers for the Cluster-A approach. The Hispanic dialect violins contain more outliers for both
CLUSTER-H and CLUSTER-A approaches. More outliers is indicative of less consistent representation that deviates
from the desired equalR value of 0.33 in the case of our equally represented groups.
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Abstract

Multi-Document Scientific Summarization
(MDSS) aims to produce coherent and concise
summaries for clusters of topic-relevant
scientific papers. This task requires precise
understanding of paper content and accurate
modeling of cross-paper relationships. Knowl-
edge graphs convey compact and interpretable
structured information for documents, which
makes them ideal for content modeling and
relationship modeling. In this paper, we
present KGSum1, an MDSS model centred on
knowledge graphs during both the encoding
and decoding process. Specifically, in the
encoding process, two graph-based modules
are proposed to incorporate knowledge graph
information into paper encoding, while in the
decoding process, we propose a two-stage
decoder by first generating knowledge graph
information of summary in the form of
descriptive sentences, followed by generating
the final summary. Empirical results show
that the proposed architecture brings sub-
stantial improvements over baselines on the
Multi-Xscience dataset.

1 Introduction

Nowadays, the exponential increasing publication
rate of scientific papers makes it difficult and
time-consuming for researchers to keep track of
the latest advances. Multi-Document Scientific
Summarization (MDSS) is therefore introduced to
alleviate this information overload problem by gen-
erating succinct and comprehensive summary from
clusters of topic-relevant scientific papers (Chen
et al., 2021; Shah and Barzilay, 2021).

In MDSS, paper content modeling and cross-
paper relationship modeling are two main issues.
(1) Scientific papers contain complex concepts,
technical terms, and abbreviations that convey im-
portant information about paper content. However,

†Corresponding authors.
1https://github.com/muguruzawang/KGSum

some previous works (Wang et al., 2018; Jiang
et al., 2019) treat all text units equally, which in-
evitably ignore the salient information of some less
frequent technical terms and abbreviations. (2)
Furthermore, there exist intricate relationships be-
tween papers in MDSS, such as sequential, paral-
lel, complementary and contradictory (Luu et al.,
2021), which play a vital role in guiding the se-
lection and organization of different contents. The
latest work (Chen et al., 2021) attempt to capture
cross-paper relationships via seq2seq model with-
out considering any links between fine-grained text
units. Failure to take into account explicit relation-
ships between papers prevents their model from
learning cross-paper relationships effectively.

To address the two aforementioned issues, we
consider leveraging salient text units, namely enti-
ties, and their relations for MDSS. Scientific papers
contain multiple domain-specific entities and rela-
tions between them. These entities and relations
succinctly capture important information about the
main content of papers. Knowledge graphs based
on these scientific entities and relations can be in-
herently used for content modeling of scientific pa-
pers. Take Figure 1 as an example. The knowledge
graph at the top left illustrates the main content
of paper 1, which can be formulated as: Paper 1
uses memory augmented networks method to solve
the life-long one-shot learning task, the evalua-
tion is based on image classification benchmark
datasets. Furthermore, knowledge graphs can ef-
fectively capture cross-paper relationships through
entity interactions and information aggregation. In
Figure 1, paper 1, 2 and 3 adopt the same method
memory networks to solve different tasks. This
relationship is demonstrated in the graph of gold
summary by sharing the method node memory net-
works.

In this paper, we develop a Transformer-
based (Vaswani et al., 2017) abstractive MDSS
model, which can leverage knowledge graphs to
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more recently, memory networks have been
employed for one-shot learning @paper1, few-shot
learning @paper2 , and semi-supervised learning
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@paper1 designed a memory augmented network
that could do life-long one-shot learning. 
CMN @paper2 encoded videos into fixed-size
features via a multi-saliency embedding algorithm. 
MA-DNN @paper3 leveraged the assimilation-
accommodation interaction in memory networks
for semi-supervised learning.

Figure 1: Knowledge graphs constructed from abstract of input scientific papers and gold summary.

guide paper representation and summary genera-
tion. Specifically, in the encoding part, we fuse the
knowledge graphs of multiple input papers into a
unified graph and design a graph updater to capture
cross-paper relationships and global information.
Besides, we build another graph based on the in-
teraction between entities and sentences, and then
apply an entity-sentence updater to enable infor-
mation flow between nodes and update sentence
representations.

In the decoding part, knowledge graphs are uti-
lized to guide the summary generation process via
two approaches. The first is to incorporate the
graph structure into the decoder by graph atten-
tion, and the second is inspired by deliberation
mechanism (Xia et al., 2017; Li et al., 2019). Con-
cretely, we introduce a two-stage decoder to make
better use of the guidance information of knowl-
edge graphs. The first-stage decoder concentrates
on generating the knowledge graph of gold sum-
mary, while the second-stage decoder generates
the summary based on the output of the first stage
and the input papers. Since the knowledge graph
of gold summary is in the form of graph struc-
ture, we translate the graph into equivalent descrip-
tive sentences containing corresponding entities
and relations, called KGtext. KGtext serves as
an information-intact alternative to the knowledge
graph of gold summary and is generated in the first-
stage decoder, which we call the KGtext generator.

We test the effectiveness of our proposed model
on Multi-XScience (Lu et al., 2020), a large-

scale dataset for MDSS. Experimental results show
that our proposed knowledge graph-centric model
achieves considerable improvement compared with
the baselines, indicating that knowledge graphs can
exert a positive impact on paper representation and
summary generation.

The main contribution is threefold: (i) We lever-
age knowledge graphs to model content of scien-
tific papers and cross-paper relationships, and pro-
pose a novel knowledge graph-centric model for
MDSS. (ii) We propose a two-stage decoder that
introduces KGtext as intermediate output when de-
coding, which plays an important guiding role in
the final summary generation. (iii) Automatic and
human evaluation results on the Multi-Xscience
dataset show the superiority of our model.

2 Approach

2.1 Problem Formulation

We first introduce the problem formulation and
used notations for MDSS. Given a set of query-
focused scientific papers D = {d1, d2, ..., dN},
where N denotes the number of input pa-
pers. Each paper di consists of Mi sentences
{si,1, si,2, ...si,Mi}, while each sentence si,j con-
sists of Ki,j words {wi,j,1, wi,j,2, ..., wi,j,Ki,j}.
The gold summary S = {w1, w2, ...wNs}, Ns is
the number of words in the gold summary. The tar-
get is to generate a summary Ŝ = {ŵ1, ŵ2, ...ŵNŝ}
that is close enough to the gold summary S.

In our two-stage decoder framework, the gold
KGtext T = {wt1 , wt2 , ..., wtN̂ } is also attached
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Figure 2: The overall framework of our proposed model.

as input. Hence, the probability of generating the
gold summary S is

P (S|D) = PθD→T
(T |D) ∗ Pθ(D,T )→S

(S|D, T )
(1)

where θD→T and θ(D,T )→S are the parameters for
the first-stage KGtext generator and the second-
stage summary generator, respectively.

2.2 Graph Construction

To construct the knowledge graphs for input papers,
we first employ the SciIE system DYGIE++ (Wad-
den et al., 2019), a well-performed science-domain
information extraction system, to extract entities,
relations and co-references from papers. Entities
are classified into six types (Task, Method, Metric,
Material, Generic, and OtherScientificTerm), and
relations are classified into seven types (Compare,
Used-for, Feature-of, Hyponym-of, Evaluate-for,
Part-of, and Conjunction). Besides, we collapse co-
referential entity clusters into a single node based
on the annotation result.

After obtaining the knowledge graphs of multi-
ple input papers, we fuse them into a unified graph.
Then we follow the Levi transformation (Levi,
1942) to treat each entity and relation equally. Con-
cretely, each labeled edge is represented as two
vertices: one denoting the forward relation and
another denoting the reverse relation. Formally,
given an entity-relation tuple (e1, r, e2), we cre-
ate nodes e1, e2, r1 and r2, and add directed edges
e1 → r1, r1 → e2 and e2 → r2, r2 → e1. In this
way, the original knowledge graph is reconstructed

as an unlabeled directed graph without information
loss. Besides, to guarantee the connectivity of Levi
graph, we add a global vertex that connects all the
entity vertices. We also add entity type nodes and
connect all the entities to their corresponding types.

2.3 Model Description

Our model follows a Transformer-based encoder-
decoder architecture, shown in Figure 2. The en-
coder includes a stack of L1 token-level Trans-
former encoding layers to encode contextual in-
formation for tokens within each sentence and each
entity. The Transformer encoding layer follows the
Transformer architecture introduced in Vaswani
et al. (2017). The encoder also includes a Graph
Updater to learn the graph representation of the
knowledge graph and an Entity-Sentence Up-
dater to update entity representation and sentence
representation based on their interaction. The de-
coder consists of a KGtext Generator, which pro-
duces the descriptive sentences of the graph of gold
summary, and a Summary Generator, which pro-
duces the final summary.

2.4 Graph Updater

As shown in Figure 2, based on the output of token-
level Transformer encoding layers, the graph up-
dater is used to encode the knowledge graphs to
obtain graph representations of input papers.

Node Initialization The vertices of the con-
structed graph correspond to entities, relations and
entity types from the SciIE annotations. Entities
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representations are produced using the aforemen-
tioned Transformer-based encoding method. For a
given entity co-reference cluster, we first remove
pronouns and stopwords and then obtain the entity
representation by using the average embedding of
entities in the cluster. For relation representation,
since each relation is represented as both forward
and backward vertices, we learn two embeddings
per relation. We also randomly initialize the types
embeddings and the global vertex embedding.

Contextualized Node Encoding We follow
Koncel-Kedziorski et al. (2019) and use a Graph
Transformer to compute the hidden representa-
tions of each node in the graph. Graph Trans-
former encodes each vertex vi using the multi-head
self-attention mechanism similar to Vaswani et al.
(2017), where each vertex representation vi is con-
textualized by attending over the other vertices to
which vi is connected in the graph.

v̂i = vi+ ‖Nn=1

∑

vj∈Ni
αni,jW

n
V vj (2)

αni,j = softmax((Wn
Kvj)

T (Wn
Qvi)) (3)

where ‖Nn=1 means the concatenation of N heads.
Ni denotes the neighbors of vi, and Wn

Q, Wn
K ,

and Wn
V are trainable parameters of query, key and

value of head n, respectively.

2.5 Entity-Sentence Updater
After getting the contextualized node embeddings
for the knowledge graph, we construct an entity-
sentence heterogeneous graph to update sentence
representations based on the interaction between
entities and sentences. The entity-sentence graph is
denoted as G = {V,E}, where V stands for nodes
set and E stands for edges set. In the graph G, V
includes entity nodes Ve and sentence nodes Vs,
and E is a real-value edge weight matrix, where
ei,j 6= 0 indicates the j-th sentence contains the
i-th entity.

We apply the same Graph Transformer module
as the graph updater. It takes as input the entities
representations from the graph updater and the sen-
tence representations from the Transformer encod-
ing layer, then learns the representations of nodes
based on the information flow through the graph
G.

2.6 KGtext Generator
In the decoding stage, we also adopt the knowledge
graph-centric view and introduce the KGtext gener-

the entities and types are :  <method> memory networks ,  <task> one-shot
learning ,  <task> few-shot learning  ,  <task> semi-supervised learning ,  ...
the relations are :  memory networks <used-for> one-shot learning , memory
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Figure 3: An example of graph of gold summary and
the translated KGtext.

ator before the final summary generator. Here, KG-
text is defined as descriptive sentences containing
entities and relations translated from the knowledge
graph of gold summary. An example of KGtext is
shown in Figure 3.

KGtext Construction To construct KGtext, we
first use DYGIE++ (Wadden et al., 2019) to ex-
tract entities and relations from the human-written
gold summary of the training set. Then we fill the
KGtext with the prefix The entities and types are:
followed by each entity type and entity pair like
<TYPE> ENT. We also add another prompt the re-
lations are: to introduce the relations, in the form
of ENT_1 <REL> ENT_2.

KGtext serves as an information-intact alterna-
tive to the knowledge graph of gold summary,
which is generated by the KGtext generator and
can provide knowledge graphs information for the
final summary generation.

Decoding Since the knowledge graph of gold
summary is obtained by synthesizing and simplify-
ing the knowledge graphs of input papers via the
interaction of nodes, the graph structure plays an
important role in KGtext generation. Hence during
decoding, we leverage source token representations
as well as graph representations during KGtext de-
coding process.

We apply a stack of L2 Transformer decoding
layers as the decoder. The cross-attention sub-layer
of each decoding layer computes two multi-head
attention to capture both textual and graph context.
Let g̃li denotes the i-th token output representation
by the l-th self-attention sub-layer. For the textual
context, we use g̃li as query and token represen-
tations HW from entity-sentence updater as keys
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and values.

cli,w = MHAtt(g̃li,HW,HW) (4)

where MHAtt denotes the multi-head attention
module proposed in Vaswani et al. (2017).

For the graph context, we use g̃li as query and en-
tity nodes representations HE from entity-sentence
updater as keys and values. Considering that dif-
ferent entities of the input have different impor-
tance, we apply the unsupervised phrase scoring
algorithm RAKE (Rose et al., 2010) to score the
salience of entities, and incorporate entity salience
into graph context computation. Given the RAKE
scores S = {sj} for entity nodes representations
HE, we modify MHAtt module by multiplying S
with the attention weights.

cli,g = MHAtt_Mod(g̃li,HE,HE, S) (5)

where MHAtt_Mod denotes the modified MHAtt
module. And the modified attention weight αnt of
head n is calculated as

αni =
(Wn

KHE)
T (Wn

Qg̃
l
i)√

dhead
∗ S (6)

where Wn
K and Wn

Q are parameter weights, dhead
denotes the dimension of each attention head.

We then add a fusion gate to merge both the
textual context and the graph context.

cli = z ∗ cli,w + (1− z) ∗ cli,g (7)

z = sigmoid([cli,w; c
l
i,g]Wf + bf ) (8)

where Wf and bf are the linear transformation pa-
rameter. The feed-forward network is used to fur-
ther transform the output.

gli = LayerNorm(cli + FFN(cli)) (9)

The generation distribution pgt over the target
vocabulary is calculated by feeding the output gL2

t

to a softmax layer.

pgi = softmax(gL2
i Wg+bg) (10)

where Wg and bg are learnable linear transforma-
tion parameter.

Furthermore, we also employ the copy mech-
anism (See et al., 2017) to alleviate the out-of-
vocabulary (OOV) problem. The final generation
distribution pti is the "mixture" of both pgi and the
copy probability over source words pci .

The loss is the negative log likelihood of the gold
KGtext wti :

LT = − 1

N̂

∑N̂

i=1
log pti(wti) (11)

2.7 Summary Generator
The final summary generator has a similar decoding
architecture to the KGtext generator, but differs in
that the summary generator utilizes the generated
KGtext to guide summary generation.

Given the KGtext generative distribution {pti},
we obtain the decoding sequence of KGtext T̂ by
greedy search during training. Then we add an
encoder similar to the aforementioned sentence
encoder to get the KGtext representations HT. Be-
sides attending to textual and graph context, we
use the same multi-head attention as equation (4)
to compute KGtext context ĉli,t to capture KGtext
influence.

Together with the textual context ĉli,w and the
graph context ĉli,g, we apply a hierarchical fusion
mechanism to combine the three contexts, by first
merging the textual context and the graph context,
and then the KGtext context.

ĉli = z1 ∗ ĉli,w + (1− z1) ∗ ĉli,g (12)

z1 = sigmoid([ĉli,w; ĉ
l
i,g]W1,f + b1,f ) (13)

cli = z2 ∗ ĉli + (1− z2) ∗ ĉli,t (14)

z2 = sigmoid([ĉli; ĉ
l
i,t]W2,f + b2,f ) (15)

where W1,f , b1,f , W2,f and b2,f are the linear
transformation parameter.

Given the final summary generation distribution
psi , the loss is the negative log likelihood of the
gold summary wi:

LS = − 1

Ns

∑Ns

i=1
log psi (wi) (16)

2.8 Training Strategy
We train the KGtext generator and the summary
generator in a unified architecture in an end-to-
end manner. Furthermore, in practice, we find the
KGtext generated from greedy search has a strong
influence on the summary generation. The low-
quality KGtext greatly impairs the performance
of the model. Hence, we train another auxiliary
decoder on top of PθD→S

(S|D), which uses a one-
stage decoder without generating KGtext. It has the
same architecture as the summary generator except
for the cross-attention on KGtext.

Given the final summary generation distribution
of the auxiliary decoder p̃si , the loss is the negative
log likelihood of the gold summary wi:

LA = − 1

Ns

∑Ns

i=1
log p̃si (wi) (17)
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The final loss function is:

L = LS + λLT + ηLA (18)

where λ and η are both hyper parameters. In this
way, we can reduce the effect of some low-quality
generated KGtext and improve the stability of our
model.

3 Experiments

3.1 Dataset

We conduct experiments on the recently released
Multi-Xscience dataset (Lu et al., 2020), which is
the first large-scale and open MDSS dataset. It con-
tains 30,369 instances for training, 5,066 for valida-
tion and 5,093 for test. On average, each source pa-
per cluster contains 4.42 papers and 778.08 words,
and each gold summary contains 116.44 words.

3.2 Implementation Details

We set our model parameters based on prelimi-
nary experiments on the validation set. We prune
the vocabulary to 50K. The number of encoding
layer L1 and the number of decoding layer L2 are
both 6. We set the dimension of word embeddings
and hidden size to 256, feed-forward size to 1,024.
We set 8 heads for multi-head attention. For the
Graph Transformer of the graph updater and the
entity-sentence updater, we set the number of iter-
ations to 3. We set dropout rate to 0.1 and label
smoothing (Szegedy et al., 2016) factor to 0.1. We
use Adam optimizer with learning rate α = 0.02,
β1 = 0.9, β2 = 0.998; we also apply learning
rate warmup over the first 8000 steps, and decay as
in Vaswani et al. (2017). The batch size is set to 8.
λ and η are both set to 1.0. The model is trained
on 1 GPU (NVIDIA Tesla V100, 32G) for 100,000
steps. We select the top-3 best checkpoints based
on performance on the validation set and report
averaged results on the test set.

For KGtext decoding, we use greedy search with
the minimal generation length 100, while for sum-
mary decoding, we use beam search with beam
size 5 and the minimal generation length is 110,
consistent with Lu et al. (2020). The length penalty
factor is set to 0.4.

3.3 Metrics and Baselines

We use ROUGE F1 (Lin, 2004) to evaluate the
summarization quality. Following previous work,

Model R-1 R-2 R-L
Extractive
LexRank (Erkan and Radev, 2004) 30.19 5.53 26.19
TextRank (Mihalcea and Tarau, 2004) 31.51 5.83 26.58
HeterSumGraph∗ (Wang et al., 2020) 31.36 5.82 27.41
Ext-Oracle 38.45 9.93 27.11
Abstractive
GraphSum∗ (Li et al., 2020) 29.58 5.54 26.52
Hiersumm (Liu and Lapata, 2019a) 30.02 5.04 27.6
HiMAP (Fabbri et al., 2019) 31.66 5.91 28.43
BertABS (Liu and Lapata, 2019b) 31.56 5.02 28.05
BART (Lewis et al., 2020) 32.83 6.36 26.61
SciBertABS (Lu et al., 2020) 32.12 5.59 29.01
MGSum∗ (Jin et al., 2020) 33.11 6.75 29.43
Pointer-Generator (See et al., 2017) 34.11 6.76 30.63
KGSum 35.77 7.51 31.43

Table 1: ROUGE F1 evaluation results on the test set
of Multi-Xscience. The results marked with * are ob-
tained by running the released code using the same
beam size and decoding length. Other results without *
are from Lu et al. (2020).

we report unigram and bigram overlap (ROUGE-
1 and ROUGE-2) as a means of assessing infor-
mativeness and the longest common subsequence
(ROUGE-L) as a means of assessing fluency.

We compare our model with several typical
extractive and abstractive summarization models.
Due to space limitations, we put the introduction
of these models in appendix A.

3.4 Automatic Evaluation

Table 1 summarizes the evaluation results on the
Multi-Xscience dataset.

As can be seen, abstractive models generally out-
perform extractive models, especially on ROUGE-
L, showing that abstractive models can generate
more fluent summaries. Among the abstractive
baselines, Pointer-Generator (See et al., 2017) sur-
prisingly outperforms other newer models. We
partially attribute this result to Pointer-Generator
designing an additional coverage mechanism (Tu
et al., 2016) to effectively reduce redundancy. This
result also illustrates that MDSS is challenging
and requires domain-specific solutions for paper
content representation and cross-paper relationship
modeling.

The last block reports the result of our model
KGSum. KGSum outperforms any other models,
achieving scores of 35.77, 7.51, and 31.43 on the
three ROUGE metrics. Our model surpasses other
models by a remarkable large margin (at least im-
proving 1.66%, 0.75%, and 0.80%). The result
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Model Overall Inf Fluency Succ
GraphSum -1.42∗ -1.47∗ -1.08∗ -1.23∗

MGSum -0.38∗ 0.60 -0.20∗ -0.55∗

Pointer-Generator 0.62∗ 0.31∗ 0.17∗ 0.60∗

KGSum 1.30 0.68 1.17 1.22

Table 2: Human evaluation of system summaries on
Multi-Xscience test set. Inf stands for informativeness
and Succ stands for succinctness. The larger rating de-
notes better summary quality. * indicates the ratings of
the corresponding model are significantly (by Welch’s
t-test with p < 0.05) outperformed by our model. The
inter-annotator agreement score (Fleiss Kappa) is 0.63,
which indicates substantial agreement between annota-
tors.

Model R-1 R-2 R-L
KGSum 35.77 7.51 31.43
- KGG 35.34 7.28 30.91
- KGG - RAKE 35.17 7.18 30.75
- KGG - RAKE - GU 34.97 7.08 30.63
- KGG - RAKE - GU - ESU 34.79 6.90 30.36

Table 3: Ablation studies on Multi-Xscience test set.
We remove various modules and explore their influence
on our model. ’-’ means the removal operation from
KGSum. The last row (-KGG-RAKE-GU-ESU) is the
clean baseline without any module we propose.

demonstrates that our model can generate more
informative and more coherent summaries, indicat-
ing the effectiveness of our proposed knowledge
graph-centric encoder and decoder framework.

3.5 Human Evaluation

We further access the linguistic quality of generated
summaries by human evaluation. We randomly se-
lect 30 test instances from the Multi-Xscience test
set, and invite three graduate students as annotators
to evaluate the outputs of different models inde-
pendently. Annotators assess the overall quality of
summaries by ranking them considering the follow-
ing criteria:: (1) Informativeness: does the sum-
mary convey important facts of the input papers?
(2) Fluency: is the summary fluent and grammati-
cal? (3) Succinctness: whether the summary con-
tains repeated information? Annotators are asked
to rank all systems from 1 (best) to 4 (worst). All
systems get score 2, 1, -1, -2 for ranking 1, 2, 3, 4
respectively. The rating of each system is computed
by averaging the scores on all test instances.

The result is shown in Table 2. The overall rat-
ing and the ratings for the above three aspects are
reported. We can see that KGSum performs much
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Figure 4: Recall of EW and CW for different mod-
els on Multi-Xscience test set. PG stands for Pointer-
Generator, Baseline is our Transformer-based model
without any module we propose.

better than other models. The overall rating of
KGSum achieves 1.2, which is much higher than
0.62, -0.38, and -1.42 of Pointer-Generator, MG-
Sum, and GraphSum. The results on informative-
ness indicate our model can effectively capture the
salient information of papers and generate more
informative summaries. The results on fluency and
succinctness indicate that KGSum is able to gen-
erate more fluent and concise summaries. Further-
more, Pointer-Generator achieves a much higher
score on succinctness than MGSum, which further
proves that Pointer-Generator generates less redun-
dant summaries and thus has better performance.

3.6 Model Analysis

For a thorough understanding of KGSum, we con-
duct several experiments on Multi-Xscience test
set.

Ablation Study Firstly, we perform an ablation
study to validate the effectiveness of individual
components. Here, KGG stands for KGtext genera-
tor, RAKE refers to the RAKE algorithm that mea-
sures entity salience, GU stands for graph updater,
ESU stands for entity-sentence updater. We re-
move KGG, RAKE, GU, ESU one by one in order
from decoder to encoder. The result is illustrated
in Table 3. We find that the GU and ESU module
in the encoder can effectively encode knowledge
graph information and utilize knowledge graphs
to enable better information flowing between text
nodes, which is conducive to content modeling and
relationship modeling. Using RAKE to measure
entity salience also benefits a lot for graph context
computation when decoding. Further, the KGG
module also brings significant improvement, indi-
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KGtext Variants R-1 R-2 R-L
Ent 35.61 7.43 31.24
Ent+Type 35.67 7.42 31.29
Ent+Type+Rel 35.77 7.51 31.43

Table 4: Analysis of the impact of different KGtext con-
tents on summarization.

cating our proposed two-stage decoder with KGtext
generator is effective in generating summary under
the guidance of knowledge graphs.

Recall of Entity Words In order to intuitively
demonstrate the impact of knowledge graphs, we
investigate the recall of gold summary entities in
the generated summary. The exact match of entities
is difficult because entities have different mentions.
Therefore, we count recall of entity words instead.
We classify the words in papers into two categories:
Entity Words (EW) and Context Words (CW).
EW are defined as words in papers that are rec-
ognized as entities by SciIE tools, while CW are
words other than EW. We exclude stopwords when
calculating EW and CW, because stopwords have
no practical meaning. Then, we define Recall of
EW as:

RecallEW =

∑
S∈{Ref}

∑
NEW∈S

Countmatch(NEW )

∑
S∈{Ref}

∑
NEW∈S

Count(NEW )

(19)
where {Ref} denotes the gold summaries,
Countmatch(NEW ) denotes the number of over-
lapped EW in the gold summaries and the gener-
ated summaries. Count(NEW ) denotes the num-
ber of EW in the gold summaries. Recall of CW is
defined in a similar manner.

The results are shown in Figure 4. We find that
KGSum achieves the highest recall of EW, com-
pared with the baseline model and other models.
The result proves that our model focuses on more
entity information under the guidance of knowl-
edge graphs. Conversely, in Figure 4b, MGSum
achieves the highest recall of CW, but ROUGE-
1/2/L scores of MGSum are only 33.11/6.75/29.43,
falling behind KGSum. The result indicates that
recall of CW has limited effect on model perfor-
mance, which is in line with our intuition since CW
do not contain important semantic information.

Influence of KGtext Contents We also conduct
experiments to analyze the impact of different KG-
text contents on MDSS. We consider the follow-

ing three variants: (1) only entities (Ent), (2) en-
tities + types (Ent+Type), (3) entities + types +
relations (Ent+Type+Rel), to construct the KGtext
using the same strategy in section 2.6. Result in
Table 4 demonstrates MDSS can benefit from dif-
ferent components of knowledge graph, including
entities, types and relations.

4 Related Work

Early MDSS works are mainly based on artificially
constructed small-scale datasets, using unsuper-
vised extractive methods to extract sentences from
multiple papers. Mohammad et al. (2009) take cita-
tion texts, paper abstracts and full paper texts as in-
put for survey generation. They conduct the experi-
ment with just two instances. Jha et al. (2015a) con-
struct 15 instances and combine a content model
with a discourse model to generate coherent scien-
tific summarizations. Hoang and Kan (2010) con-
struct 20 instances, each with an annotated topic
hierarchy tree, to generate summarization for mul-
tiple scientific papers. Similar works also exist
in (Jha et al., 2015b; Hu and Wan, 2014; Yang et al.,
2017). These unsupervised works are crude in both
content modeling and relationship modeling and
fail to generate high-quality summaries.

Some subsequent efforts apply deep learning-
based methods to MDSS using large-scale datasets
(Wang et al., 2018; Jiang et al., 2019; Chen et al.,
2021). Wang et al. (2018) build a dataset with 8080
instances and construct a heterogeneous bibliog-
raphy graph, and then utilize a CNN and RNN-
based model for extractive summarization. Jiang
et al. (2019) collect 390,000 instances, and use
a hierarchical encoder and a two-step decoder to
generate summary in an abstractive manner for the
first time. Chen et al. (2021) collect two large-scale
datasets with 136,655 and 80,927 instances, respec-
tively. They apply a Transformer-based model to
capture the relevance between papers for abstrac-
tive summarization. However, all the above works
neglect salient semantic units to capture seman-
tic information and relationships between papers.
In this paper, based on Mutli-Xscience (Lu et al.,
2020), we use knowledge graph information to
model content and relationships between papers.

5 Conclusion

In this work, we propose a knowledge graph-centric
Transformer-based model for MDSS. Our model is
able to incorporate knowledge graph information
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into the paper encoding process with a graph up-
dater and an entity-sentence updater, and introduce
a two-stage decoder including a KGtext generator
and a summary generator to guide the summary de-
coding with knowledge graph information. Experi-
ments show that the proposed model significantly
outperforms all strong baselines and achieves the
best result on the Multi-Xscience dataset.

In the future, we will explore other more intuitive
and effective methods to incorporate graph infor-
mation in both the encoding and decoding phase of
summary generation.

Acknowledgements

This work was supported by the National Key Re-
search and Development Project of China (No.
2021ZD0110700) and Hunan Provincial Natural
Science Foundation (Grant Nos. 2022JJ30668).
The authors would like to thank the anonynous
reviewers for their valuable comments and sugges-
tions to improve this paper.

References
Xiuying Chen, Hind Alamro, Mingzhe Li, Shen Gao,

Xiangliang Zhang, Dongyan Zhao, and Rui Yan.
2021. Capturing relations between scientific papers:
An abstractive model for related work section gen-
eration. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 6068–6077.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-
search, 22:457–479.

Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi
Li, and Dragomir Radev. 2019. Multi-news: A large-
scale multi-document summarization dataset and ab-
stractive hierarchical model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1074–1084.

Cong Duy Vu Hoang and Min-Yen Kan. 2010. To-
wards automated related work summarization. In
Proceedings of the 23rd International Conference on

Computational Linguistics: Posters, pages 427–435.
Association for Computational Linguistics.

Yue Hu and Xiaojun Wan. 2014. Automatic generation
of related work sections in scientific papers: an opti-
mization approach. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1624–1633.

Rahul Jha, Reed Coke, and Dragomir Radev. 2015a.
Surveyor: A system for generating coherent survey
articles for scientific topics. In Twenty-Ninth AAAI
conference on artificial intelligence.

Rahul Jha, Catherine Finegan-Dollak, Ben King, Reed
Coke, and Dragomir Radev. 2015b. Content mod-
els for survey generation: a factoid-based evalua-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol-
ume 1, pages 441–450.

Xiao-Jian Jiang, Xian-Ling Mao, Bo-Si Feng, Xiaochi
Wei, Bin-Bin Bian, and Heyan Huang. 2019. Hsds:
An abstractive model for automatic survey gener-
ation. In International Conference on Database
Systems for Advanced Applications, pages 70–86.
Springer.

Hanqi Jin, Tianming Wang, and Xiaojun Wan. 2020.
Multi-granularity interaction network for extractive
and abstractive multi-document summarization. In
Proceedings of the 58th annual meeting of the as-
sociation for computational linguistics, pages 6244–
6254.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text generation from knowledge graphs with graph
transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2284–2293.

Friedrich Wilhelm Levi. 1942. Finite geometrical sys-
tems.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng
Wang, and Junping Du. 2020. Leveraging graph
to improve abstractive multi-document summariza-
tion. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 6232–6243.

6230



Zekang Li, Cheng Niu, Fandong Meng, Yang Feng,
Qian Li, and Jie Zhou. 2019. Incremental trans-
former with deliberation decoder for document
grounded conversations. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 12–21.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yang Liu and Mirella Lapata. 2019a. Hierarchi-
cal transformers for multi-document summarization.
arXiv preprint arXiv:1905.13164.

Yang Liu and Mirella Lapata. 2019b. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740.

Yao Lu, Yue Dong, and Laurent Charlin. 2020. Multi-
xscience: A large-scale dataset for extreme multi-
document summarization of scientific articles. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8068–8074.

Kelvin Luu, Xinyi Wu, Rik Koncel-Kedziorski, Kyle
Lo, Isabel Cachola, and Noah A Smith. 2021. Ex-
plaining relationships between scientific documents.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2130–2144.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Saif Mohammad, Bonnie Dorr, Melissa Egan, Ahmed
Hassan, Pradeep Muthukrishnan, Vahed Qazvinian,
Dragomir Radev, and David Zajic. 2009. Using cita-
tions to generate surveys of scientific paradigms. In
Proceedings of human language technologies: The
2009 annual conference of the North American chap-
ter of the association for computational linguistics,
pages 584–592.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1:1–20.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083.

Darsh J Shah and Regina Barzilay. 2021. Generating
related work. arXiv preprint arXiv:2104.08668.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2818–2826.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–85.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789.

Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng
Qiu, and Xuan-Jing Huang. 2020. Heterogeneous
graph neural networks for extractive document sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6209–6219.

Yongzhen Wang, Xiaozhong Liu, and Zheng Gao.
2018. Neural related work summarization with a
joint context-driven attention mechanism. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1776–
1786.

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin,
Nenghai Yu, and Tie-Yan Liu. 2017. Deliberation
networks: Sequence generation beyond one-pass de-
coding. Advances in neural information processing
systems, 30.

Shansong Yang, Weiming Lu, Dezhi Yang, Xi Li, Chao
Wu, and Baogang Wei. 2017. Keyphraseds: Auto-
matic generation of survey by exploiting keyphrase
information. Neurocomputing, 224:58–70.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

A Baselines

LexRank (Erkan and Radev, 2004) and Tex-
tRank (Mihalcea and Tarau, 2004) are two un-
supervised graph based extractive summariza-
tion models. HeterSumGraph (Wang et al.,

6231



2020) is a heterogeneous graph-based extractive
model with semantic nodes of different granularity.
HiMAP (Fabbri et al., 2019) expands the pointer-
generator network (See et al., 2017) into a hier-
archical network and integrates an MMR module.
HierSumm (Liu and Lapata, 2019a) is a Trans-
former based model with an attention mechanism
to share information cross-document for abstrac-
tive multi-document summarization. MGSum (Jin
et al., 2020) is a multi-granularity interaction net-
work for abstractive multi-document summariza-
tion. We also consider evaluating on single docu-
ment summarization models by concatenating mul-
tiple papers into a long sequence. GraphSum (Li
et al., 2020) is a neural multi-document summa-
rization model that leverages well-known graphs
to produce abstractive summaries. We use TF-IDF
graph as the input graph. PEGASUS (Zhang et al.,
2020) is a sequence-to-sequence model with gap-
sentences generation as a pre-training objective
tailored for abstractive summarization. Pointer-
Generator (See et al., 2017) is an RNN based
model with an attention mechanism and allows
the system to copy words from the source via point-
ing for abstractive summarization. BertABS (Liu
and Lapata, 2019b) uses a pretrained BERT (De-
vlin et al., 2019) as the encoder for abstractive
summarization. We also report the performance
of BertABS with an encoder (SciBertABS) pre-
trained on scientific articles. BART (Lewis et al.,
2020) is a pretrained text generation model.

B Case Study

In Figure 5, we present several example summaries
to show the generating quality of different models.
In the figure, there are five blocks, which are the ref-
erence summary (Reference Summary), the sys-
tem summaries generated by Pointer-Generator,
GraphSum, MGSum and our model KGSum.
We highlight the salient contents from system sum-
maries that can be find in the reference summary.
We could find our model KGSum possesses the
most salient contents and the highest overlap with
the reference summary. Pointer-Generator and MG-
Sum have the same amount of salient contents, but
MGSum contains more repeated information, lead-
ing to worse performance. GraphSum contains the
least salient contents, resulting in the worst perfor-
mance.
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Reference Summary: 
most recent approaches rely on convolutional neural networks (cnns). @cite , the work in @cite is
extended by adding a cnn to describe the posterior density of an object pose. a combination of using a
cnn for object segmentation and geometry-based pose estimation is proposed in @cite . posecnn @cite
uses a similar two-stage network, in which the first stage extracts feature maps from rgb input and the
second stage uses the generated maps for object segmentation, 3d translation estimation and 3d rotation
regression in quaternion format. depth data and icp are used for geometry refinement. @cite propose a
three-stage, instance-aware approach for 6d object pose estimation. an instance segmentation network is
first applied, followed by an encoder-decoder network which estimates the 3d object coordinates for each
segment. the 6d pose is recovered with a geometric pose optimization step similar to @cite .  

Pointer-Generator:  
our work is also related to the work in @cite , where the authors use a convolutional neural networks
(cnns) to predict the 6d pose of specific objects in a single rgb - d image . @cite proposed a new loss
function for 6d pose estimation of object pose estimation . @cite , the authors propose a method to
directly regress a pose vector from raw point cloud segments using a quaternion neural network . they
then applied a quaternion representation to a quaternion model , which can be used to learn the pose of
the object pose . in contrast to our work , our method is able to learn pose estimation from a single image

GraphSum:  
3d object pose estimation has been a long-standing research topic in computer vision and computer
vision @cite @cite @cite . in recent years, there has been significant interest in object reconstruction
from a single image @cite @cite or 3d object @cite @cite , and many of them have been trying to
recover from single images @cite . however, most of these methods rely on the availability of a large
number of training images. in contrast, our approach does not require a large amount of labeled training
data. in addition, our approach is able to estimate the 3d pose of a single object.

MGSum:  
posecnn @cite is a flexible approach for 6d object pose estimation. it uses a cnn to predict 6d pose from
a single image. posecnn @cite predicts 6d pose by regressing the 3d rotation of a 3d object by regressing
a quaternion representation. posecnn @cite uses a quaternion network to predict the 6d pose using a
quaternion network, and learns a quaternion representation of the object representation. posecnn @cite
proposes a "learns approach for estimating 6d object pixels in an image using quaternion
representation. posecnn and posecnn @cite propose an approach approach to regressing the object pixels
from a particular object representation. however, these methods require a large amount of training data,
which is difficult to obtain. in contrast, our method does not rely on a large number of objects in the
scene. 

KGSum:  
6d pose estimation has been widely used in computer vision @cite @cite . in @cite , the authors propose
a cnn for 6d object pose estimation. the first step is to use a quaternion to handle the 6d pose of an object
in a single image. the second stage is based on the idea of using a convolutional neural networks to learn
a 3d rotation  of the object and the appearance of a 6d pose. the proposed method is also used for object
segmentation @cite and pose estimation, which is used to refine the geometry of object proposals.  @cite
used an encoder-decoder network to handle the 6d pose of known objects in a rgb-d image by regressing
the 3d rotation of an object with a 3d representation.

Figure 5: Case study from the Multi-Xscience test set. We first highlight the salient contents in the reference
summary in different colors. Then the overlapped salient contents of system summaries are annotated in the same
colors.
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Abstract

An after-visit summary (AVS) is a summary
note given to patients after their clinical visit. It
recaps what happened during their clinical visit
and guides patients’ disease self-management.
Studies have shown that a majority of patients
found after-visit summaries useful. However,
many physicians face excessive workloads and
do not have time to write clear and informative
summaries. In this paper, we study the prob-
lem of automatic generation of after-visit sum-
maries and examine whether those summaries
can convey the gist of clinical visits. We report
our findings on a new clinical dataset that con-
tains a large number of electronic health record
(EHR) notes and their associated summaries.
Our results suggest that generation of lay lan-
guage after-visit summaries remains a challeng-
ing task. Crucially, we introduce a feedback
mechanism that alerts physicians when an au-
tomatic summary fails to capture the important
details of the clinical notes or when it contains
hallucinated facts that are potentially detrimen-
tal to the summary quality. Automatic and hu-
man evaluation demonstrates the effectiveness
of our approach in providing writing feedback
and supporting physicians.1

1 Introduction

Studies have shown that the majority of patients do
not understand their clinical visits (O’Leary et al.,
2010). After-visit summary note (AVS) is a sum-
mary given to patients after their clinical visit, it
is intended to summarize patients’ clinical visits
and help their disease self-management (Federman
et al., 2018). Compared to clinical notes, an after-
visit summary has the following characteristics: 1)
it is written in lay person language thus is easy
for patients to read and comprehend; 2) it only
contains information that patients should be aware
of, leaving out redundant details, e.g. unimportant

1Our project page is available at: https://github.com/
pengshancai/AVS_gen

lab results, etc. Studies have shown that around
36% of American adults have limited health liter-
acy (Kutner et al., 2006), and 94.4% of patients
found that lay language after-visit summary helps
them understand their clinical visits (Pathak et al.,
2020). However, the implementation of after-visit
summary is challenging. Many physicians face ex-
cessive workloads (West et al., 2018) and do not
have time to complete the summaries in a timely
manner (Hong et al., 2013). Thus, there is a real
need for—and this study contributes to—automatic
generation of after-visit summaries to unburdening
physicians with complex information workflows.

We explore best-performing neural abstractive
summarizers to generate after-visit summaries from
EHR notes. The summaries are rated by physicians
as concise and easy to read. However, they can not
be presented directly to patients, as they frequently
contain two types of errors: 1) Missing content. A
summary often leaves out important details such as
medication dosage and route, undermining patients’
medical self-management. 2) Hallucination. Sum-
maries contain hallucinated content or content not
supported by the input documents. For example, an
abstractive summary on kidney infection was gen-
erated from an input document that describes urine
infection. These types of errors are not uncommon
in abstractive summarization (Lebanoff et al., 2019;
Maynez et al., 2020; Pagnoni et al., 2021), but they
could be disastrous to patients.

In this study, we build systems to facilitate detec-
tion and correction of those types of errors, allow-
ing physicians to correct or edit system generated
summaries. As illustrated in Figure 1, Summa-
rization produces a system summary; Error Alert-
ing automatically detects errors from the generated
after-visit summary. Crucially, we build effective
detectors with self-supervision on unlabeled data
for error alerting. A novel dataset is constructed by
synthesizing summaries containing medical events
that are inconsistent with their source documents.
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[…]-year-old female with past medical history of diabetes chronic back 
pain presented with acute onset of low back pain 9/10 in severity with 
radiation to back of left lower extremity numbness or tingling […]

Patient was evaluated by neurosurgery and neurology while in the 
emergency room and recommended no surgical intervention and to 
continue conservative management […] 

Patient was continued on metformin thousand milligrams twice daily 
with insulin sliding scale and her glucose ranged from 179-308 […]

Clinical Notes

You were admitted for evaluation of worsening lower 
back pain and weakness. MRI scan of your spine was 
reported unremarkable. You were seen by neurosurgery 
and neurology in the emergency room who 
recommended surgical intervention. You were given 
Tylenol muscle relaxant and anti-inflammatories 
medication […] Please continue to take your medication. 
Your blood glucose was high on presentation. Please 
follow-up with your PCP in 7 to 10 days.

After-Visit Summary

Type I Error 
(Hallucination)

Error Alerting

Summarization

Type II Error 
(Missing Content)

Figure 1: An example after-visit summary generated from EHR notes associated with a patient. A novel alerting mechanism is
proposed in this work to report errors found in the summary, including missing medical events and hallucinated facts. We aim to
build effective detectors with self-supervision on unlabeled data for error alerting.

Using this simulated dataset, we train a hallucina-
tion detection model, which alerts physicians of po-
tential hallucination content. Further, by aligning
medical events in EHR notes to those in after-visit
summaries using MetaMap (Aronson, 2001), we
identify key events important to patients, and alert
physicians of salient medical events not covered in
the generated summaries as missing content. The
contributions of our research are as follows:

• We propose a new task that generates lay lan-
guage AVS from EHR notes, build and evalu-
ate state-of-the-art NLP models for this task. A
novel alerting mechanism is proposed to report
errors, including missing medical events and hal-
lucinations. The training of our error detectors is
self-supervised, using only unlabelled text.

• Clinical applications demand high performance.
Existing automatic metrics are not adequate for
evaluating the quality of generated AVS. There-
fore, we conduct a qualitative assessment of sys-
tem outputs with medical practitioners. Our find-
ings show that the alerting mechanism could pro-
vide a promising avenue towards making the writ-
ing process easier for physicians.

2 Related Work

Recently there has been a lot of work on automatic
summarization in the clinical domain: Zhang et
al. (2018) propose to generate the impression sec-
tion of a radiology report using seq2seq models.
Miura et al. (2021) perform image-to-text radiol-
ogy report generation by optimizing entity-based
rewards with reinforcement learning. Studies are
also performed for summarizing doctor-patient di-
alogues (Joshi et al., 2020; Krishna et al., 2021)
and evaluating system generated notes (Moramarco
et al., 2022).

Early work has explored generation of hospital
visit summaries using non-neural methods (Di Eu-

genio et al., 2014; Hirsch et al., 2015; Acharya
et al., 2018). Recently, Adams et al. (2021) present
the task of hospital-course summarization with the
goal of generating a text to synthesize the hospital
course. A crucial difference between our work and
that of Adams et al. (2021) is we investigate a deep
learning solution, whose primary focus is expos-
ing neural abstractive summarizers to clinical notes
and explicitly highlighting regions of a summary
which need attention. This is in principle similar to
Checklist in (Ribeiro et al., 2020).

It is important for an after-visit summary gen-
erated from EHR notes to avoid type I and type
II errors. A type I error (false positive) suggests
that there is false or inaccurate information in the
summary, due to hallucinations, incorrect ground-
ing, etc. It is a challenging and lingering problem
facing natural language generation (Falke et al.,
2019; Lebanoff et al., 2020; Kryscinski et al., 2020;
Matsumaru et al., 2020; Pagnoni et al., 2021; van
Miltenburg et al., 2021), despite remarkable recent
progress (Gehrmann et al., 2018; Liu and Lapata,
2019; Fabbri et al., 2019; Zhong et al., 2020; Lewis
et al., 2020; Ni et al., 2021, inter alia).

A more surprising observation is that the type II
error (false negative) is deemed particularly harm-
ful to patients. When salient medical events such as
diagnoses or treatments are left out of the after-visit
summaries, it could have a detrimental effect on
patients’ self-care after being discharged from hos-
pitals (Raghavan et al., 2012; Sotudeh Gharebagh
et al., 2020). This empirically motivates our work,
where we seek to effectively identify salient medi-
cal events in EHR notes and alert physicians of any
missing events to help them avoid those errors.

A distinguishing characteristic of after-visit sum-
maries is that they are patient-oriented. The sum-
maries provide relevant and actionable information
to patients, such as reasons for visit, diagnoses and
procedures, etc. Differing from physician-oriented
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Abstractive Summarization Model Extractive Summarization Model

• BART (Lewis et al., 2020) uses the standard encoder-decoder archi-
tecture. It was pretrained as a denoising autoencoder to learn to re-
construct the original text. Our input to the BART model consists of
a clinical document and its output is an abstractive summary.

• PEGASUS (Zhang et al., 2020a) explores a new pretraining objec-
tive tailored for abstractive summarization. Important sentences are
masked out from the input document and the model learns to gener-
ate the sentences as an output sequence, akin to an extractive model.
The system has been shown to perform well in a low-resource sce-
nario where few examples are available for fine-tuning.

• LED (Beltagy et al., 2020) is the Longformer-Encoder-Decoder model.
It is an extension to Longformer to support text generation. LED uses
a local windowed attention which makes it computational feasible
to encode a long input document. We favor the LED model because,
compared to news articles, there is more risk involved in truncating
long clinical documents to a certain length.

• BertSum (Liu and Lapata, 2019) employs the BERT model to iden-
tify summary-worthy sentences. It uses a flat architecture to encode
the input document, then adds a Transformer layer on top of the sen-
tence representations to model inter-sentence relationship. The final
output layer is a sigmoid classifier used to predict if the sentence is
to be included in the summary.

• TextRank (Mihalcea and Tarau, 2004) and LexRank (Erkan and
Radev, 2004) are graph-based models that extract relevant sentences
based on eigenvector centrality.

• Oracle Top-K (Adams et al., 2021) is a method introduced by Adams
et al. which represents the upper bound for sentence extraction. It
ranks all document sentences according to their averaged R-1 and R-
2 scores with respect to the reference summary. It then continues to
add sentences yielding the highest scores to the summary until the
target token count is reached.

Table 1: State-of-the-art summarization models investigated in this work for generation of patient after-visit summaries.

clinical notes, these summaries are written in an
easy-to-understand language, and they remain un-
derstudied in NLP. Existing research on text simpli-
fication focuses primarily on Wikipedia and news
articles (Zhu et al., 2010; Xu et al., 2015; Vu et al.,
2018; Kriz et al., 2019; Dong et al., 2019; Kriz
et al., 2020). Chandrasekaran et al. (2020) propose
to generate lay summaries to describe scientific
papers for non-experts. In a similar fashion, after-
visit summaries are intended for a lay audience:
translating sophisticated medical events into plain
language that is understandable by patients.

In what follows, we investigate generation of
patient after-visit summaries, closely examine the
language used by clinicians, and develop automatic
methods to spot errors in summaries to better sup-
port clinicians with this challenging task.

3 Summarization

Our method generates an after-visit summary from
EHR notes concerning a patient. It is modelled as
a single-document summarization task as the EHR
notes were collapsed into a single document by the
hospital and we were unable to recover individual
EHR notes. We use S={w1, ..., wnS} to denote to-
kens of the source document and T ={w1, ..., wnT }
tokens of the target summary, nS and nT are length
of the sequences.

We explore a variety of summarization models
to generate after-visit summaries. They are detailed
in Table 1. Particularly, an abstractive summarizer
employs the standard Transformer-based encoder-
decoder model to generate a summary P (T |S). An
extractive summarizer selects important sentences
to add to the summary until a length threshold has
been reached. These systems are used off-the-shelf
and have achieved some of the highest reported

ENTITY TYPE EVENT TYPE

Anatomical Abnormality Diagnostic Procedure
Medical Device Therapeutic or Preventive Procedure
Clinical Drug Pathologic Function
Pharmacologic Substance Disease or Syndrome
Organic Chemical Mental or Behavioral Dysfunction
Body Substance Injury or Poisoning
Finding
Sign or Symptom

Table 2: Semantic types used in this study.

scores on summarization. We assess their ability to
navigate complex medical terrain for generation of
after-visit summaries.

Clinical notes are complex and full of references
to medical events. However, the summary given to
the patient is simple and clear. We are thus curious
to know how medical events manifest themselves in
the context of summarization. Events are especially
important for this task, as salient events happening
at each medical encounter must be included in the
after-visit summary.

We define event nugget as a word or multi-word
phrase that clearly expresses the occurrence of a
medical event. Event nuggets are identified by
MetaMap (Aronson, 2001), an open-source soft-
ware tool designed to discover medical concepts
referred to in a text. Each occurrence of the con-
cept is assigned a concept unique identifier (CUI)
and its associated words are tagged in the text. In
Figure 3, we show an example of medical concepts
identified by MetaMap. Further, those medical con-
cepts are categorized into various semantic types.
We focus on concepts pertaining to a selected set of
entity and event types (Table 2), which are deemed
relevant by medical experts. The other types are
excluded from consideration.
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4 Error Detection and Alerting

Event nuggets are associated with type I and type
II errors frequently found in the summary. A type I
error indicates a summary contains a hallucinated
fact or event that is not present in the source doc-
ument. A type II error suggests that an important
medical event has been mistakenly left out of the
summary, hampering its usability. In this section,
we describe novel methods to detect likely errors
and flag them in the text to alert clinicians.

4.1 Type I Error: Hallucination

A hallucination detector aims to recognize any hal-
lucinated content in a summary. Flagging errors is
helpful because physicians can be alerted about any
anomalies and it is especially appreciated in medi-
cal domain (Singh et al., 2014). Our detector uses
the BigBird model (Zaheer et al., 2020), which is
an encoder-only architecture equipped with sparse
attention to reduce Transformer’s quadratic com-
plexity to linear, and capable of encoding thousands
of tokens. The model takes as input a source docu-
ment (S) and its system summary (T ), and outputs
a sequence of binary labels, one for each summary
token, where 1 represents the token is considered
hallucinated and 0 otherwise.

A key factor to the success of our model is its
self-supervised training, where a large number of
training instances are constructed from unlabeled
data. Each training instance is a synthesized sum-
mary whose hallucinated tokens are flagged. We
adapt the model of Zhou et al. (2021), initially pro-
posed for MT, to create our training instances. Our
method differs from theirs in that, synthesized sum-
maries are required to contain hallucinated medical
events that are inconsistent with or unjustified by
the source document.

Synthesizing Erroneous Summaries. The proce-
dure for generating synthesized summaries is illus-
trated in Figure 2. Given a summary sentence, we
mask out one or two of its event nuggets. It is then
fed to a denoising auto-encoder (Lewis et al., 2020)
to produce an output sentence, whose masked-out
positions are refilled with medical events that are
“hallucinated” by the model. If the output is substan-
tially different from the input, e.g., with <50% to-
ken overlap, it is called a synthesized sentence with
hallucinations. Tokens of the synthesized sentence,
which cannot be aligned to the original sentence
using an edit-distance-style algorithm, are flagged.
E.g., “cardiac catheterization” and “abnormalities”

Bidirectional 
Encoder

Autoregressive 
Decoder

You underwent MASK that showed no MASK

You underwent cardiac catheterization 
that showed no abnormalities

(b) Medical Events
      Masked Out

(c) Synthesized Sentence 
w/ Hallucinated Facts

You underwent MRI imaging that showed no 
obstruction in your GI tract

(a) Original Sentence
      from AVS

Figure 2: One or two event nuggets are randomly masked out
from a summary sentence (a). The masked sequence (b) is fed
to a denoising auto-encoder to produce a synthesized sentence
that may contain hallucinated medical events (c).

in our example are clearly hallucinated facts. This
procedure is repeated for all sentences2 of the ref-
erence summary to create a synthesized summary.
We provide examples of synthesized sentences in
the Supplementary.

Importantly, the model is fine-tuned to enable it
to produce plausible synthesized summaries. We
partition the training data into K folds (K=5) of
roughly equal size. The BART model is fine-tuned
on the union of the K-1 folds, then applied to the
remaining fold to generate synthesized summaries.
The method transforms each reference summary of
the dataset to a synthesize summary, which together
with the source document, is used to train and test
our type I error detector.

4.2 Type II Error: Missing Content

Our missing content detector seeks to accomplish
two objectives: 1) to detect salient medical events
on a clinical document, and 2) to flag salient events
that are missed by the summary. It is a non-trivial
task to fulfill these objectives. Even though clinical
notes are full of references to medical events, only
a selective portion of them (≈18%) are included in
after-visit summaries. As such, we formulate the
problem as a classification task. An event nugget
is assigned a label of 1 if it is salient, 0 otherwise.
Our detector leverages self-supervised learning to
identify salient events on EHR notes. It then alerts
clinicians if the summary fails to include any of the
salient events.

Pseudo-Annotations for Salient Events.
We create pseudo-annotations for salient events by
aligning each source event with one of the target
events. As shown in Figure 3, the medial events
are identified by MetaMap (Aronson, 2001). Each

2If a summary sentence does not contain any medical event,
it is left as-is in the synthesized summary. The original sum-
mary sentence is otherwise replaced by a synthesized sentence.
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CUI: C0000737

Term: Abdominal Pain

Term: Nausea and vomiting

Term: Nausea

[...]-year-old male with past medical history significant for 
hyperlipidemia presents to the emergency room with 3-day 
history of abdominal pain [...] Patient has poor appetite 
and has been feeling nauseous and minimal p.o. intake [...]

Clinical Document

You were hospitalized because of abdominal pain and 
nausea vomiting […]

After-Visit Summary

is
_a

 r
el

at
io

n CUI: C0027497 

CUI: C0027498 

Figure 3: “abdominal pain” appears in both the clinical doc-
ument and after-visit summary, with the same CUI. “nausea
vomiting” and “nauseous” are aligned because there is an is-a
relation between the two concepts.

occurrence of the event is associated with a concept
unique identifier (CUI). Under the strict matching
criterion, an event of the clinical document is la-
beled as 1 if an exact match (with the same CUI) is
found in the summary. However, a large number of
events are not well-aligned under this criterion due
to distinct expressions used in clinical notes and
summaries. This discrepancy in language use has
its origin—clinical notes are physician-oriented,
whereas after-visit summaries are patient-oriented.
We explore lenient matching to alleviate mismatch.
If a source event can reach any of the target event
via a single hop on the UMLS semantic graph,3

the source event is labeled as salient. In Figure 3,
source event “nauseous” is leniently matched to tar-
get event “nausea vomiting,” because there exists
an “is_a relation” between the two events.

We fine-tune the BigBird model (Zaheer et al.,
2020) to detect salient events. Being an encoder-
only model, BigBird constructs contextualized rep-
resentations for all tokens of a clinical document. It
does not directly produce event representations. To
address this issue, we let the model predict salient
tokens during training. If a token is part of a salient
source event, its gold-standard label is 1. At test
time, the model generates token-level predictions.
A source event is considered salient if any of its
tokens is labeled as 1.

We explore two variants of the model to allow
it to better capture events. Both variants aim to
inform the model about the occurrences of event
nuggets identified by MetaMap. The first variant,
+POS, modifies the source sequence by inserting
special tokens respectively at the beginning and end

3
https://www.nlm.nih.gov/research/umls/META3_current_

relations.html

BASE
+POS

[E] CT scan [/E] showed worsening of his [E] diverticulitis
[/E] with a 5.6 x 3.9cm multiloculated fluid collection in his
abdomen.

BASE
+TYPE

[Type1] CT scan [/Type1] showed worsening of his [Type2]
diverticulitis [/Type2] with a 5.6 x 3.9cm multiloculated fluid
collection in his abdomen.

Table 3: Model variants +POS and +TYPE aim to inform the
model about the occurrences of events identified by MetaMap.

of a candidate event. The second variant, +TYPE,
inserts different special tokens such that they cor-
respond to the semantic types of the events. We
conjecture that certain event types, e.g., body sub-
stance, are more likely be considered insignificant.
In Table 3, we provide examples comparing the
source sequences used by model variants.

5 Experiments

In this section, we describe our dataset, perform in-
depth analyses on our models, and discuss feedback
from physicians who participated in our qualitative
evaluation.4

5.1 Dataset

Through a collaboration with University of Mas-
sachusetts Chan Medical School, we are able to use
their electronic health record database, which gives
us access to 31,895 EHR notes and their physician-
written summaries. All medical records are de-
identified to protect patient privacy. These patients
were admitted to the medical and surgical services
of the hospital from October 2017 to March 2020.

Table 4 summarizes the statistics of our dataset.
It is divided into train, validation, and test sets con-
taining 28,157, 1,884 and 1,854 instances, respec-
tively. The dataset has unique characteristics. We
observe that the source documents are substantially
longer and contain more medical events than their
summaries. This is because most hospitalization
details are omitted for patients. In addition, the
length of clinical documents varies considerably,
so is the case for summaries. A long clinical doc-
ument could be the result of an extended hospital
stay. An after-visit summary could be long or short
depending on the patient’s medical conditions. In
contrast, variation in length is less significant in
other genres such as news and scientific articles.

We find that an average summary contains 12.3
medical events, yet only 7.9 of them can be linked

4Implementation details, including hidden state sizes, com-
putational infrastructure used, hyperparameter configurations,
etc. are provided in the Supplementary for reproducibility.
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Train / Validation / Test Split 28,157 / 1,884 / 1,854

Number of words per clinical document 523.6 ± 464.3
Number of words per after-visit summary 153.5 ± 166.7

per clinical document 42.8 ± 32.0
Event per after-visit summary 12.3 ± 9.0
Nuggets occurring in both (lenient match) 7.9 ± 6.1

occurring in both (strict match) 4.0 ± 3.9

Table 4: Statistics of our dataset.

to events of the clinical document. The gap is
partially due to using MetaMap for medical event
identification (Reátegui and Ratté, 2018), which
has a reported F-Score of 0.88 and may miss out-of-
vocabulary event tokens. Additionally, physicians
may add their instructions directly to patient’s after-
visit summaries, and such content is not grounded
in clinical documents.

5.2 Evaluation Metrics

Quantitative Measures. We evaluate the perfor-
mance of our summarization and error alert models
with a variety of quantitative measures.

• ROUGE (Lin, 2004) is the standard measure for
summarization evaluation. It assigns a high score
to a system summary if it has lexical overlap with
the reference summary.

• BERTScore (Zhang et al., 2020b) is one of the
new evaluation metrics for natural language gen-
eration that are built on contextualized represen-
tations produced by BERT and similar models.

• SARI (Xu et al., 2016) is widely used for simpli-
fication. It counts how often a system summary
correctly keeps, deletes, and adds n-grams.

• DaleChall (Dale and Chall, 1948) calculates the
readability of the summary based on its sentence
length and number of difficult words in it. It is an
improvement upon Flesch’s reading ease score.

• P/R/F scores are reported for error alert models
on successful detection of missing medical events
and detection of hallucinated summary tokens.

Qualitative Measures. In high-stake scenarios,
automatic metrics alone cannot guarantee a good
system. Thus, we need expert assessments by medi-
cal practitioners in this study. We recruit six human
evaluators: five of them are physicians with M.D.,
one is a M.D. student. Owing to budget constraints,
we select a random set of 18 clinical documents and
their best system summaries for qualitative assess-
ment. The system summaries are produced by the

Adequacy
3 AVS contains all the information the patient needs to know
2 AVS misses some (1-3) points the patient needs to know
1 AVS misses more than 3 points

Faithfulness
3 AVS contains no or only a few errors that are ignorable
2 AVS contains some (1-3) factual errors
1 AVS contains more than 3 factual errors

Readability
3 AVS is easy to read for a lay person
2 AVS has some (1-3) points hard to be understood by the patient
1 AVS has more than 3 points hard to be understood by the patient

Ease of Revision
3 Physician may spend <=2 minutes to revise the AVS
2 Physician may spend >2 minutes to revise the AVS
1 Physician prefers to not revise the AVS but rewrite from scratch

Table 5: Instructions provided to physicians. The scoring scale
for summary evaluation is from 1 (worst) to 3 (best).

LED model, they are abstractive. Each summary is
judged by two human evaluators, who perform two
tasks on a summary:

• Scoring. A summary is rated along four dimen-
sions. Adequacy: Does the summary contain all
necessary information for the patient to know?
Faithfulness: Does the summary faithfully con-
vey the content of the clinical document? Read-
ability: Is the summary easy to read for a lay per-
son? Ease of Revision: How long might it take
for a physician to revise the summary to meet the
expectations of standard AVS? The scoring scale
is from 1 (worst) to 3 (best). Their interpretations
are provided in Table 5.

• Revision. We ask human evaluators to edit the
summary until it meets the expectations of stan-
dard after-visit summaries. We report the edit dis-
tance between the original and edited summaries,
the amount of editing applied to the raw system
summary is a good indicator of its utility (Snover
et al., 2006).

For alert evaluation, we ask the evaluators to first
label missing medical events on the clinical docu-
ment, and hallucinations on the system summary.
The evaluators are then given the alerts produced
by our models, and they proceed to judging the
correctness of each alert. This allows us to report
precision, recall and F1 scores of our error alert
models with human judgment.

5.3 Summarization Results

Quantitative. Table 6 provides a quantitative
evaluation of after-visit summaries produced by
state-of-the-art models. Our aim in this work is not
to present new methods, but rather to thoroughly
evaluate state-of-the-art models on this challenging
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Model R-1 R-2 R-3 R-4 R-L BertS SARI DaleC.↓ Length

EXT

TEXTRANK (Mihalcea and Tarau, 2004) 25.71 7.36 3.92 2.64 13.83 54.37 34.33 12.56 150.01
LEXRANK (Erkan and Radev, 2004) 25.57 7.26 4.01 2.71 12.81 54.31 34.91 12.38 153.21
BERTSUM (Liu and Lapata, 2019) 26.22 7.42 4.43 2.90 14.56 55.62 35.57 11.21 149.73
ORACLE (Adams et al., 2021) 36.84 13.55 6.86 4.45 19.47 58.50 39.74 11.07 99.61

ABS
BART (Lewis et al., 2020) 41.67 21.05 14.20 10.80 30.20 62.80 44.36 9.97 144.29
PEGASUS (Zhang et al., 2020a) 37.02 19.68 14.02 10.93 28.44 60.91 41.89 10.53 134.26
LED (Beltagy et al., 2020) 41.96 21.80† 15.01† 11.58† 31.49† 63.31† 45.06 9.58 148.03

Table 6: Quantitative evaluation of patient after-visit summaries produced by state-of-the-art summarization models. LED shows
best performance among all tested abstractive models. It significantly outperforms all other systems for all metrics (p<0.05),
with the exception of BART in terms of R-1, according to a non-parametric Wilcoxon signed rank test.

task to identify areas for improvement. We observe
that BERTSUM achieves the highest scores among
all extractive models. Further gain is provided by
an oracle model developed by Adams et al. (2021)
that improves R-2 F-score from 7.42% to 13.55%
by greedily extracting sentences yielding highest
similarity scores with the reference summary. The
method gives an upper bound on ROUGE scores
obtainable by an extractive model.

We find all abstractive models to perform sub-
stantially better than their extractive counterparts.
LED has shown best performance among all tested
abstractive models, possibly due to its exceptional
ability to encode long documents. With regards to
evaluation metrics, we include less commonly used
R-3 and R-4 F-scores, as they have been shown to
correlate better with human judgment than other
variants (Graham, 2015; Kryscinski et al., 2019).
Our results suggest that generation of patient after-
visit summaries is highly abstractive. For this rea-
son, an abstractive model would suit our task best.
Extractive summaries are verbose and they may
potentially overwhelm patients with unnecessary
detail.

Expert Scoring. Two medical experts are asked
to rate each summary produced by our best abstrac-
tive model (LED) along the dimensions of ade-
quacy, faithfulness, readability and ease of revision.
Their ratings are averaged for each summary 5 and
results are presented in Figure 4. All summaries
are divided into five bins, their average ratings are
1/1.5/2/2.5/3, respectively. We observe that gener-
ating adequate summaries remains a challenge for
the abstractive model. Only 5.5% of the summaries
obtain a full score (3 points). Per our physicians,
the remaining summaries have, to a varying degree,
missed important medical events that patients need

5We provide inter-annotator analysis among physicians in
the supplementary materials.

Ease of
Revision

Readability

Faithfulness

Adequacy

0% 20% 40% 60% 80% 100%

1 point 1.5 points 2 points 2.5 points 3 points

Figure 4: Summaries are rated by medical practitioners along
the dimensions of adequacy, faithfulness, readability and ease
of revision. Their ratings are averaged for each summary.

to know. Our findings suggest that future studies
should incorporate expert knowledge in selecting
medical events to add to the summary.

Efforts could be made to also improve the read-
ability and understandability of abstractive sum-
maries. We observe that 38.8% of the summaries
obtain a full score on readability. A closer analy-
sis reveals that a portion of the summaries contain
abbreviated medical terminology or jargon that are
familiar to physicians but may be difficult for non-
experts. E.g., in “minimal PO intake,” PO is from
the Latin “per os” and means “by mouth.” The sum-
maries are also believed to have less hallucination
issues when comparing to missing medical events.
72.2% of the summaries obtain 2.5 points or higher.
Further, >75% of the summaries receive an aver-
age score of 2.5 or higher on ease-of-revision. The
results indicate that, physicians may be guided to
revise system-produced summaries to meet the stan-
dards of medical practice, as opposed to starting
from scratch.

Expert Revision. Table 8 shows a direct com-
parison of summaries before and after expert re-
vision (more examples are in the supplementary).
Our physicians have revised 43.5 words on aver-
age for each summary, corresponding to 47.2% of
the summary length. Even though there is still
room for improvement, the results are positive. For
4 out of 18 cases, physicians only minimally re-
vised the summaries, with less than 15% of the
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Model P(%) R(%) F1(%)
Ty

pe
I Baseline-RAND 6.52 3.22 3.82

Baseline-MOSTFREQ5 17.80 46.04 21.79
Baseline-MOSTFREQ10 20.86 76.31 29.19
H-Alert (Ours) 44.96 71.66 55.25

Ty
pe

II

Baseline-RAND 3.99 13.56 6.06
Baseline-MOSTFREQ5 9.74 34.72 13.70
Baseline-MOSTFREQ10 9.71 49.14 15.04
M-Alert (Ours) 49.22 43.65 41.71
M-Alert +POS (Ours) 51.03 45.98 43.80
M-Alert +TYPE (Ours) 50.69 49.88 45.51

Table 7: Automatic evaluation of our hallucination detector (H-
Alert) and missing event detector (M-Alert). Both detectors
strongly outperform their baselines.

words edited. For 3 out of 18 cases, the summaries
are nearly rewritten, where 90% of the words are
edited. The results suggest that certain noisy clini-
cal documents can cause disastrous summaries. It
is crucial for summarizers to degrade gracefully as
noise increases.

5.4 Error Detection Results

Our detectors are evaluated using both automatic
metrics and human judgment. Results are reported
in Table 7. H-Alert is our hallucination detector. It
is evaluated on the test set with synthesized halluci-
nations (§4.1). Baseline-RAND samples a label for
each summary token from a Bernoulli distribution
tj∼Bernoulli(p). Here, p is the probability that an
average summary token is hallucinated, computed
on training data. MOSTFREQ5 and MOSTFREQ10
examine the semantic types of events (Table 2). If
an event type is frequently hallucinated, all of its to-
kens are labeled as 1. As seen in the table, we find
our H-Alert can not only outperform the baselines,
but it obtains a high recall score (71.66%).

M-Alert is our missing event detector. It pre-
dicts source medical events that are missed by the
summary. Baseline-RAND samples a label for each
source event, ei∼Bernoulli(q), where q is the prob-
ability an average event is missed, computed on
training data. We find that M-Alert produces better
precision scores than all baselines. The best per-
formance is achieved by the model variant +TYPE,
which injects event types to the BigBird model to
help detection of missing events. We note that iden-
tifying key medical events remains a challenging
task and graph neural networks may help model
inter-event relations.

Expert P/R/F. On expert-annotated summaries,
we report scores for both detectors. System alerts

have been manually verified. The micro-averaged
P/R/F scores for H-Alert is 17.24/58.82/26.66, and
the scores for M-Alert is 30.65/53.84/39.06. These
results are positive because both detectors are able
to attain high recall scores, indicating errors could
be effectively flagged and passed on to physicians
for further review.

6 Discussion

We discuss our findings from interviewing physi-
cians and underline some of the key areas that are
indispensable for further progress on this task.

• Medical jargon. Owing to time constraints and
the literacy of physicians who create the clinical
notes, the data we received are of varying quality.
It is not uncommon to find jargon or ambiguous
information, e.g., “Patient presents w/ < 24 hours
abdominal pain nausea and non-bloody V/D,”
here, “V/D” refers to “vomit and diarrhea.”

• Style difference in clinical notes. The notes
could be: 1) procedure-oriented, i.e., they are nar-
ratives describing medical procedures performed
on the patient, including treatment, medication,
care plans and etc. 2) disease-oriented, i.e., each
of the patient’s diseases is addressed in a separa-
ble section, or 3) organ-oriented, i.e., each organ
is addressed in a separable section.

• Improper grounding. An after-visit summary
states “We did test you for the coronavirus which
was negative.” However, the “coronavirus test”
was nowhere to be found in the source document.
Similar grounding issue was identified in 5 out
of 18 summaries during expert revision. Some-
times physicians directly include their knowledge
about the patients into after-visit summaries with-
out referring to clinical notes, causing a summa-
rizer fine-tuned on such data to also “hallucinate”
content.

• High variance in length. It would be unwise
to truncate clinical notes, despite that most neu-
ral models use a fixed maximum length. E.g., a
patient who underwent a heart transplant has a
high risk of multiple medical comorbidities. It
can lead to a large volume of EHR notes. Interest-
ingly, physicians tend to include more content in
after-visit summaries if they believe patients have
high medical literacy and are able to understand
and act upon complex instructions. This indicates
that future systems may produce summaries of
varying length per patients’ needs.
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A System Generated Summary:
You were admitted for dizziness. You had a CT scan of your head
which showed some thickening in the sinuses of your sinuses. You
were seen by the ear nose and throat doctor who recommended
that you take an antibiotic called Unasyn while you are in the
hospital. You also had an MRI of your brain which did not show
any stroke. You are doing better and can go home today.

After Physician’s Revision:
You were admitted for dizziness. You had a CT scan of your head
which showed some thickening in your sinuses and mastoid. This
could be suggestive of an infection but your white cells and
temperature were normal. You were seen by the ear nose and
throat doctor who recommended that you take an antibiotic called
Unasyn while you are in the hospital. You also had an MRI of
your brain which did not show any stroke. You are doing better
and can go home today.

Table 8: A direct comparison of summaries before and after
physician revision. A post-study interview with physicians
reveals that most revisions are related to missing key medical
events (colored orange). They also spend substantial efforts
explaining medical jargon to patients and fixing hallucinations
(colored red).

7 Conclusion

We tackle the problem of generation of patient after-
visit summaries. We compared state-of-the-art sum-
marization models for this task and introduced a
novel alerting mechanism to predict two types of
errors, including missing medical events and hal-
lucinations in summaries. Extensive experiments
using automatic metrics and expert evaluation show
the effectiveness of our proposed approach.

8 Ethical Considerations

Data. Data used in this study are obtained from a
comprehensive inpatient medical facility. They are
electronic dismissal notes created by physicians to
record a patient’s hospital stay or a series of treat-
ments performed on a patient. These EHR notes
are information-dense and full of technical terms.
They need to be rewritten and summarized to gen-
erate after-visit summaries. The purpose of using
patient medical records is to fine-tune abstractive
summarization systems and quantitatively evaluate
the truthfulness and adequacy of system summaries.
These medical records are not for non-academic
uses and intents. All medical records are deidenti-
fied by the hospital to protect patient privacy.

Summarization Models. Models for abstractive
summarization have a tendency to hallucinate infor-
mation that is not present in the input documents.
This is because abstractive models carry inductive
biases rooted in the data they are pretrained on. The
data encode prior knowledge of natural language,
they may also contain a non-negligible amount of
toxic and abusive content. Despite our best efforts

to alert clinicians of potential errors, some of them
could be almost unnoticeable by non-physicians.
We thus caution our users to carefully consider the
ethical issues specific to abstractive summarization
and natural language generation models.
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A Appendix

A.1 Implementation Details
Extractive Summarizers:

• A extractive summary contains 8 sentences, they
are generated by LexRank, TextRank, BertSum.

• LexRank/TextRank source code: SummerTime

• We use default settings of BertSum for training.
The source code and configs are available here.

Abtractive Summarizers:

• We implement our models based on Huggingface
Transformers

• Configurations of our abstractive models:
num train epochs: 6; max target length: 256;
max source length: 1024; batch size: 2;
beam size: 1; topK: 50.

• The models we explored: facebook/bart-large;
google/pegasus-large; allenai/led-large-16384

Type I Error Detector (Hallucination):
• We implement Big-Bird based on Huggingface

Transformers’s BigBird implementation

• Key parameters of the model are - max sequence
length: 1536; num train epochs 3; batch size: 4.
For other hyper-parameters we use the system’s
default setting.

• The model is: google/bigbird-roberta-base

Type II Error Detector (Missing Content):
• We implement Big-Bird based on Huggingface

Transformers’s BigBird implementation

• Key parameters of the model are - max sequence
length: 1024; num train epochs 3; batch size: 4.
For other hyper-parameters we use the system’s
default setting.

• The model is: google/bigbird-roberta-base

• MetaMap-2020 version is used for medical event
identification.

Summarization Evaluation:

• We use rouge-score to obtain ROUGE scores.

• We use SummerTime to obtain BertScores.

• We use this script for SARI evaluation.

• We use py-readability-metrics to compute Dale
Chall readability scores.

All Huggingface models could be downloaded
from the Huggingface website. All the models are
trained and tested on a NVIDIA-V100 GPU. The
average training time for our generation models is

Original Nuclear stress test which was negative for any dam-
age to the heart.

Synthesized CT scan of the head which was negative for any
damage to the brain.

Original During hospitalization you underwent
endovascular repair of your thoracoabdominal
aortic aneurysm with Dr [**NAME**]

Synthesized During hospitalization you underwent a biopsy of
your liver with Dr [**NAME**]

Original You underwent MRI imaging that showed no
obstruction in your GI tract.

Synthesized You underwent cardiac catheterization that showed
no abnormalities.

Original You were found to have decreased levels of oxygen
in your blood.

Synthesized You were found to have bacteria in your blood.

Original You were admitted for high calcium levels in your
blood.

Synthesized You were admitted for pain in your left leg.

Table 9: Example synthesized summary sentences that contain
hallucinations (underlined).

around 6-8 hours, the average training time for our
error alerting models is around 3-5 hours.

A.2 Example Outputs
We present example source documents, system and
reference summaries, and physician-edited system
summaries in Tables 8 and 10.

A.3 Human Evaluation Details
The mean Pearson’s r of human evaluation scores
is 0.282, suggesting a moderate correlation. While
the human score correlation is not strong, it is not
surprising as studies have revealed that physicians
often have vastly different ways of seeing and treat-
ing patients, as differences in profession, specialty,
experience, or background lead them to pay atten-
tion to particular signals or cues and influence how
they approach problems (Frimpong et al., 2017).
Specifically, we observe when scoring the readabil-
ity of generated AVS notes, some physician think
some complicated phrases (e.g. CT Scan, mental
status) would impact patients’ understanding, other
physicians would think these phrases would be ac-
ceptable to be contained in an after-visit summary.
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Example 1

Source Document: [** MISC **]y o female with history and exam consistent with left pyelonephritis. RENAL/ID: Patient
presented to ED with fever left CVA tenderness and UA consistent with pyelonephritis. During her hospital stay she was treated
with IV fluids zofran toradol tylenol and given 2 dose of ceftriaxone. She was discharged on Bactrim 400 mg BID for a total of
14 days. As she already had 2 doses prior to admission she will continue with Bactrim for 12 more days. She was instructed to
follow up with PCP within 1 week. FEN/GI: Patient with some nausea on presentation. Will continue with regular diet and
discharged with PO Zofran for nausea as needed. NEURO: Patient with back pain secondary to pyelonephritis. She will continue
with Tylenol and Ibuprofen as needed. [...]

After-Visit Summary (Reference): You were admitted because you were having abdominal pain. This was initially thought to
be due to a kidney infection but an ultrasound showed that you had a cyst in your left ovary. You went to the operating room for
a diagnostic laparoscopy and cystectomy. After the operation you had a couple of fainting episodes and your blood levels were
decreasing. Your abdominal exam was also concerning. You were taken back to the operating room and were found to have
bleeding in your abdomen; the blood was removed and no active bleeding was noted. You tolerated the second procedure well
and were able to eat void and your pain was controlled. You will be discharged home in stable condition with follow up with Dr.
[** PERSON **].

After-Visit Summary (System): You came to the hospital because you were having fevers and back pain. You were found to
have a kidney infection that spread up to your kidneys. We gave you IV fluids and antibiotics and your symptoms improved. You
are being discharged with instructions to continue to take oral antibiotics for 12 more days. Please follow up with your PCP
within 1 week.

After-Visit Summary (System w/ Physician Edits): You came to the hospital because you were having fevers and back pain.
You were found to have a urine infection that spread up to your kidneys. We gave you IV fluids and antibiotics and your
symptoms improved. You are being discharged with instructions to continue to take oral antibiotics for 12 more days and PO
Zofran for nausea as needed. Please follow up with your PCP within 1 week.

Example 2

Source Document: Mastoiditis Patient presents with symptoms of vertigo. CT head showed that there is mucosal thickening at
the bilateral maxillary sinuses and minimal fluid in the bilateral mastoid air cells. Unclear if this is acute or chronic. Patient
describes feeling of fullness in head and decrease in hearing over one month. No fever no leukocytosis. Concern for infection
and possible mastoiditis. Dr. [** PERSON **] from [anonymized] was consulted by ED recommends Unasyn while inpatient
Augmentin as an outpatient for 1 week and will follow up as outpatient. Vertigo History of vertigo and on meclizine as outpatient.
No improvement with home dose of meclizine. CT scan findings as detailed above. No intracranial mass bleed. Given IVF in ED.
given antiemetics and meclizine and treat for possible mastoiditis /mastoid effusions. Neurology dr. [** PERSON **] consulted.
Doubt TIA. Likely peripheral nystagmus and MRI head showed no CVA. Essential (primary) hypertension Controlled. Continue
atenolol at 25mg nightly and amlodipine 5mg daily. [...]

After-Visit Summary (Reference): You were admitted with vertigo. The head CT showed no acute abnormalities of the
brain. The MRi of brain showed only chronic changes. No acute abnormalities. Your head CT showed possible mastoidit is
and thickening of the lining of your maxillary sinuses which could be sinusitis related. ENT was called and recommended iv
antibiotics for one day and to transition over to oral antibiotics to complete a total course of one week and you will follow up
with [** PERSON **] in one week. You were seen by neurology as well. You are doing much better and can go home today.

After-Visit Summary (System): You were admitted for dizziness. You had a CT scan of your head which showed some
thickening in the sinuses of your sinuses. You were seen by the ear nose and throat doctor who recommended that you take an
antibiotic called Unasyn while you are in the hospital. You also had an MRI of your brain which did not show any stroke. You
are doing better and can go home today.

After-Visit Summary (System w/ Physician Edits): You were admitted for dizziness. You had a CT scan of your head
which showed some thickening in your sinuses and mastoid. This could be suggestive of an infection but your white cells and
temperature were normal. You were seen by the ear nose and throat doctor who recommended that you take an antibiotic called
Unasyn while you are in the hospital. You also had an MRI of your brain which did not show any stroke. You are doing better
and can go home today.

Table 10: Example input documents, system and reference summaries, as well as physician-edited system summaries.

6247



Proceedings of the 29th International Conference on Computational Linguistics, pages 6248–6258
October 12–17, 2022.

HeterGraphLongSum: Heterogeneous Graph Neural Network with
Passage Aggregation for Extractive Long Document Summarization

Tuan-Anh Phan and Ngoc-Dung Nguyen and Khac-Hoai Nam Bui∗
Viettel Cyperspace Center, Viettel Group, Vietnam

{anhpt161,dungnn7,nambkh}@viettel.com.vn

Abstract

Graph Neural Network (GNN)-based models
have proven effective in various Natural Lan-
guage Processing (NLP) tasks in recent years.
Specifically, in the case of the Extractive Doc-
ument Summarization (EDS) task, modeling
documents under graph structure is able to an-
alyze the complex relations between seman-
tic units (e.g., word-to-word, word-to-sentence,
sentence-to-sentence) and enrich valuable infor-
mation for the sentence representation. How-
ever, long-form document summarization us-
ing graph-based approaches is still an open re-
search issue. The main challenge is to represent
long documents in a graph structure in an effec-
tive way. In this regard, this paper proposes a
new heterogeneous graph neural network (Het-
erGNN) model to improve the performance
of long document summarization (HeterGraph-
LongSum). Specifically, the main idea is to
add the passage nodes into the heterogeneous
graph structure of word and sentence nodes
for enriching the final representation of sen-
tences. In this regard, HeterGraphLongSum
includes three types of semantic units such as
word, sentence, and passage. Experiments on
two benchmark datasets for long documents
such as Pubmed and Arxiv indicate promising
results of the proposed model for the extractive
long document summarization problem. Espe-
cially, HeterGraphLongSum is able to achieve
state-of-the-art performance without relying on
any pre-trained language models (e.g., BERT).
The source code is available for further exploita-
tion on the Github1.

1 Introduction

Document summarization is one of the central
problems in NLP, which aims to rewrite a single
document or multi documents under a shorter ver-
sion with preserving the main information. There
are two major approaches such as extractive and

∗corresponding author
1https://github.com/tuananhphan97vn/HeterGraphLongSum

abstractive summarization. Abstractive models
are more sophisticated abilities that require well-
comprehensive reading text and generating high-
quality text. Specifically, most of the existing ar-
chitectures have been built based on sequence-to-
sequence (Seq2Seq) techniques in different ways
such as Recurrent Neural Network (RNN) (Nalla-
pati et al., 2017), Pointer-Generator-Network(See
et al., 2017), or Transformer-based models(Zhang
et al., 2020; Xiao and Carenini, 2020). Further-
more, the external information, for instance, pre-
trained model BERTSum(Liu and Lapata, 2019)
and topic modeling (Wang et al., 2020b; Nguyen
et al., 2021)) are incorporated to improve perfor-
mances. Nevertheless, this approach requires a
complicated neural network that consists of mil-
lions of learnable parameters, which is the cause
of raising significant costs in both terms of com-
putation time perplexity and resources. Therefore,
extractive models still gain much attention. Partic-
ularly, extractive document summarization (EDS)
takes a document in the form list of sentences and
chooses several best candidates from the original
document, then combine them to create the sum-
marization. Recent models trend to turn EDS into
the sequential binary-labeling task (Nallapati et al.,
2017; Cheng and Lapata, 2016; Zhou et al., 2018).

Graph neural network (GNN) has recently been
exploited as an emerging line of deep learn-
ing architectures, which has powered various do-
mains, including NLP tasks (Vashishth et al.,
2020). Specifically, GNN models are able to model
complex structural data containing semantic units
(node) with relationships (edge) between them (Xu
et al., 2019). For the EDS task, each document
is represented as a graph structure in which the
nodes are the semantic units of the document such
as words and sentences. Sequentially, developing
edges among sentence nodes are capable to model
the cross-sentence relations, which is able to handle
the limitation of traditional Seq2Seq-based meth-
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Figure 1: Overview of HeterGraphLongSum model. Passages of each document are defined as a set of sentences in
sequence with a fixed number of sentences. In this architecture, the edges from passage to word and sentence to
passage are not taken into account because of the redundancy.

ods in terms of long-distance dependency among
sentences (Cui et al., 2020). In particular, cross-
sentence edges can be constructed explicitly be-
tween sentences (sentence-to-sentence) (Xiao and
Carenini, 2019; Jing et al., 2021; Yasunaga et al.,
2017) or through intermediate bridge via com-
mon words (sentence-word-sentence)(Wang et al.,
2020a) or latent topics (sentence-topic-sentence)
(Cui et al., 2020).

Although the aforementioned approaches have
achieved remarkable results in the EDS problem,
most of the architectures are proposed for short
documents (i.e., new articles). Long-form docu-
ment is still a remaining challenge in this research
field due to two main reasons: i) most traditional
Seq2Seq methods truncate longer documents into
small fixed-length sequences (i.e., passages) (Za-
heer et al., 2020; Zhang et al., 2021), which leads to
information loss problem, especially for the extrac-
tive summarization; ii) using GNN-based methods
is able to mitigate the information loss by enabling
cross-sentence relations, however, representing an
effective way for long-text documents into graph
structure is still an open research issue. Specifi-
cally, since the vocabulary size is limited, when
the length of the document is increased, more sen-
tences become neighbors with each other (via com-
mon words) which is the cause of the similar em-
bedding between sentences. Therefore, a graph

structure, which includes only word nodes and sen-
tence nodes, might not be an effective way to rep-
resent the long documents for the EDS problem.

In order to alleviate the aforementioned chal-
lenges, this paper presents a new graph-based archi-
tecture, which contains three semantic units such
as word, sentence, and passage. In particular, the
passage nodes are adopted for learning the cross-
relations between sentences in different passages.
Furthermore, the passage node can be regarded as
the local structure of a group of sentence nodes in
which the edges between passages and sentences
have the possibility to reduce the harm of simi-
lar representations of sentences when expanding
graph structure with long documents. Figure 1
illustrates the model architecture of HeterGraph-
LongSum. Specifically, the main contributions of
this paper are threefold as follows:

• We present a novel GNN-based method for
modeling long-form documents. Specifically,
instead of using common methods for learn-
ing long documents with the hierarchical per-
spective (e.g., word-to-sentence-to-passage),
we consider passage as one of the node types,
which is updated simultaneously with other
nodes in the graph. In this regard, more seman-
tic units (additional nodes) in the graph en-
able the capability to enrich the cross-relations
between elements (e.g., sentence representa-

6249



tion).

• We propose a new Heterogeneous GNN (Het-
erGNN) model for the EDS task, focusing
on long documents (e.g., scientific papers).
Especially, we consider this issue without em-
ploying pre-trained encoders (e.g., BERT). In
this regard, our method is able to extend to
other low-resource languages without any ob-
stacles.

• We evaluate the proposed model with two
benchmark long document datasets such as
PubMed and ArXiv. The experiential results
indicate that our method is able to achieve the
state-of-the-art level in this research field.

2 Related Work

2.1 Neural Extractive Summarization

Neural networks have achieved great success in
extractive summarization, which explores differ-
ent neural components to develop an end-to-end
learning model (Zhong et al., 2019). The encoder-
decoder frameworks are mainly developed by us-
ing RNN (Cheng and Lapata, 2016; Nallapati et al.,
2017; Zhou et al., 2018) and Transformer (Zhang
et al., 2020; Xiao and Carenini, 2020) with auto-
regressive (Jadhav and Rajan, 2018; Liu and Lap-
ata, 2019) or non auto-regressive (Narayan et al.,
2018; Arumae and Liu, 2018) decoder. Sequen-
tially, recent remarkable results are mainly devel-
oped by using pre-trained language models (e.g.,
BERT (Devlin et al., 2019)) such as BERTSUM
(Liu and Lapata, 2019) and MATCHSUM (Zhong
et al., 2020). Most of the aforementioned stud-
ies formulate the EDS task as sentence labeling
or sentence ranking problems. In this paper, we
formulated this task as the binary-labeling problem
(Nallapati et al., 2017) and exploited our model
with a non-pre-trained CNN/BiLSTM encoder in
which we believe that this method is able to easily
extend to other low resource languages.

2.2 Graph-based Summarization

Early works on graph-based methods for EDS tasks
rely on the similarity scores between sentences in
unsupervised manners such as TextRank (Mihalcea
and Tarau, 2004) and LexRank (Erkan and Radev,
2004). The core idea of using graph representa-
tion is to utilize the linguistic information of sen-
tences. Consequentially, GNNs have been adopted

for learning cross-sentence relations with remark-
able performances, using the concept of discourse
graph (Yasunaga et al., 2017; Xu et al., 2020). Re-
cently, the trend research focuses on representing
documents with different types of nodes (hetero-
geneous graphs) to utilize the effects of additional
semantic units such as words, sentences (Wang
et al., 2020a; Jin et al., 2020) and latent topics (Cui
et al., 2020). In this study, the proposed model ex-
ploits the heterogeneous graph structure with more
complex units by adding semantic passage nodes
to leverage the problems of adopting graph-based
models in long document summarization.

2.3 Long Document Summarization

Long document summarization has recently re-
ceived increased attention since the remained chal-
lenge of modeling long texts (Frermann and Kle-
mentiev, 2019). Specifically, the current potential
solution for this issue is to truncate documents into
small fixed-length sequences and use sliding win-
dow methods to process the document separately
(Beltagy et al., 2020; Zaheer et al., 2020). How-
ever, this paradigm leads the serious information
loss, which is not suitable for the EDS task, due
to this task requiring the information relations of
extracted sentences (Li et al., 2020). In this re-
gard, several promising approaches have been in-
troduced for long document summarization. Cohan
et al. (2018) presents a hierarchical encoder to cap-
ture the discourse structure of the input document
with a discourse-aware decoder for abstractive sum-
marization. Xiao and Carenini (2019) leverages
the long text summarization task by incorporat-
ing a distributed representation of both the global
(whole document) and local (section/topic) con-
texts. Cui and Hu (2021) employs a dynamic mem-
ory network with sliding multiple windows to mit-
igate the information loss between segments of
sentences. Regarding the graph-based methods,
Cui et al. (2020) adopts a modified graph atten-
tion network (GAT) for capturing inter-sentence
relationship. Furthermore, latent topics are added
as an additional type of node, which incorporates
sentence nodes to improve the performance of long
document summarization in terms of capturing the
relational information of long-distance sentences.
In this study, we take the graph-based structure
for EDS of long text into account with a differ-
ent perspective by considering word nodes and
sentence nodes for capturing both inter and intra-
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sentence relations. Moreover, passage nodes are
jointly trained to improve the performance of long
texts by learning the cross-relations of sentences
with long-distance and mitigating the similar rep-
resentation problem in the large-scale graph struc-
ture.

3 HeterGraphLongSum model

HeterGraphLongSum aims to learn a heteroge-
neous graph structure for long text summarization.
Specifically, we model an input document with
three types of nodes such as word, sentence, and
passage nodes, as a heterogeneous graph, and using
graph attention network (GAT) (Velickovic et al.,
2017) for capturing information relations among
nodes.

3.1 Graph Construction

Let G = {V,E} represent an arbitrary graph,
where V and E denote the node and edge sets,
respectively. Specifically, as shown in the Figure
1, our directed graph can be defined as V = {Vw ∪
Vs ∪ Vp} and E = {Ew2s ∪Es2w ∪Ew2p ∪Ep2s},
where Vw, Vs, and Vp stand for three semantic
units of a document (i.e., word, sentence, and
passage), and Ew2s, Es2w, Ew2p, and Ep2s stand
for four types of edges such as word-to-sentence,
sentence-to-word, word-to-passage, and passage-
to-sentence, respectively. Accordingly, the pro-
posed heterogeneous graph structure is designed
based on two assumptions as follows:

• The passage units are not available on most
publicity datasets in this research field. There-
fore, following the previous works on long-
form document representations(Zaheer et al.,
2020; Zhang et al., 2021), we format the pas-
sages in form of a sequence of sentences and
created them by concatenating a fixed size
with n sentences. In this regard, the number
of sentences for each passage is a hyperpa-
rameter, which is tuned during the validation
process.

• Regarding the certain edge types, instead of
adopting the full connection between seman-
tic units, only four types of edges are taken
into account such as word-to-sentence (w2s),
sentence-to-word (s2w), word-to-passage
(w2p), and passage-to-sentence (p2s). Ac-
cordingly, the edge from passage-to-word
(p2w) and sentence-to-passage (s2p) are not

considered because of the redundancy. Specif-
ically, p2w is not considered since many
words receive the same information (i.e., from
the passage), which might harm the overall
performance. Furthermore, there are two
types of edge to update the passage infor-
mation such as w2p and s2p. In this re-
gard, we design w2p in our graph structure
to enable the cross-passage relations via path
passage → sentence → word → passage
and remove the s2p edge type. We prove this
assumption via the ablation study in the exper-
iment section.

Intuitively, by adding two types of edges from
passage nodes, cross-sentences relations can be
simultaneously processed in two ways: i) local
information with path sentence → word →
passage→ sentence; ii) global information with
path sentence → word → sentence. The ad-
ditional local information enables the model to
mitigate the problem of similarity representation
between sentences when the graph structure is ex-
panded by adding passage information. Specifi-
cally, this issue is specific to sentences located in
different positions in the document, which is espe-
cially suitable for learning long documents.

3.2 Graph Encoder Embedding
Supporting the matrix features of word node, sen-
tence node and passage node are sequentially de-
noted as Xw ∈ R|Vw|×dw , Xs ∈ R|Vs|×ds , and
Xp ∈ R|Vp|×dp , respectively. The initialized em-
bedding representation of the word node is encoded
by using Glove (Pennington et al., 2014). In the
case of sentences, instead of using pre-trained mod-
els, we combine Convolutional Neural Network
(CNN) and bidirectional Long Short-Term Memory
(BiLSTM) for the encoder, which can be formu-
lated as follows:

(Xs)j = CNN(x1:m)⊕BiLSTM(x1:m) (1)

where m denotes the number of words in the sen-
tence sj . In this regard, the Passage feature is
encoded by using Bi-directional LSTM based on
the hidden state of sentences, which is extracted
from the last layer network as follows:

(Xp)i = BiLSTM
(
(Xs)(j)

)
(2)

where (Xp)i denotes embedding of the i-th passage
node, j and k are the j-th sentence and number of
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sentence per passage (k ∗ i ≤ j ≤ k ∗ (i+ 1)),
respectively.

3.3 Graph Learning Layer
The vectors of nodes are initialized with embed-
ding features, where H0

s = Xs H
0
w = Xw, and

H0
p = Xp, respectively. Sequentially, the node rep-

resentations are updated with the graph attention
network.
Graph Attention Network: Given the heteroge-
neous graph structure and initialized features of
each node, GAT is adopted to calculate the hidden
states of nodes. Specifically, supporting h⃗i ∈ Rdhi
and Ni denote the input hidden representation and
the neighbors of node i-th, respectively, the graph
attention layer can be calculated as follows:

zij = LeakyRelu(⃗aT (Wqh⃗i||Wkh⃗j))

αij =
ezij∑

k∈Ni e
zik

h⃗
′
i = σ


∑

j∈Ni
αijWvh⃗j




(3)

where Wq, Wk, Wv, and α⃗ are learnable param-
eters and optimized during the training process.
The symbol || indicates the concatenation opera-
tor. σ denotes the non-linear transform function
and h⃗′

i denotes the hidden state which presents in-
formation gained from the neighboring nodes. Al-
ternatively, multi-head attention can be used for
improving the performance, which is calculated as
follows:

h⃗
′
i =∥Kk=1 σ


∑

j∈Ni
αijW

k
v h⃗j


 (4)

Furthermore, in order to mitigate the gradient van-
ishing problem, the residual connection is added
to the original representation to provide the final
hidden state:

h⃗
′′
i = h⃗i + h⃗

′
i (5)

Graph Propagation: After initialization, the sen-
tence nodes are updated with their neighbor word
nodes and passage nodes by using GAT and FFN
layer:

U1
w2s = GAT (H0

s , H
0
w, H

0
w)

U1
p2s = GAT (H0

s , H
0
p , H

0
p )

U1
s = σ(U1

w2s + U1
p2s)

H1
s = FFN(U1

s +H0
s )

(6)

Sequentially, word nodes are updated with the new
representation of sentences. Similarly, the passage
nodes are updated by the updated word embedding.
The updated process at an iteration of GAT can be
formulated as follows:

U tw2s = GAT (Ht−1
s , Ht−1

w , Ht−1
w )

U tp2s = GAT (Ht−1
s , Ht−1

p , Ht−1
p )

U ts = σ(U tw2s + U tp2s)

Ht
s = FFN(U ts +Ht−1

s )

U tw = GAT (Ht−1
w , Ht

s, H
t
s)

Ht
w = FFN(U tw +Ht−1

w )

U tp = GAT (Ht−1
p , Ht

w, H
t
w)

Ht
p = FFN(U tp +Ht−1

p )

(7)

Note that, H1
w and H1

p are set to the same values
with H0

w and H0
p , respectively.

3.4 Sentence Extraction
For the sentence selector layer, we first extract doc-
ument representation from the hidden state of pas-
sages via the attention layer, then combine docu-
ment representation and each sentence by using the
concatenate operator, which is sequentially formu-
lated as follows:

zi = ReLu(a⃗Tp
⃗(hp)i)

αi =
ezi∑
j e

zj

h⃗d =
∑

m

αm ∗
(
h⃗p

)
m

(8)

⃗hd,sk = FFN
(
h⃗d ∥ h⃗sk

)
(9)

where a⃗p is learnable parameter. i and k represent
indexes of passage i-th and sentence k-th, respec-
tively. αi indicates the amount of contribution of
passage i-th to document representation h⃗d. Con-
sequently, if αi gets a high attention score, this
passage tends to be more significant than other
passages. Finally, the output sentence-document
representation ⃗hd,si is used for sentences classifi-
cation by using binary cross-entropy loss as the
training objective:

L =
1

N

i=N∑

i=1

yilog (ŷi) + (1− yi) log (1− ŷi)

(10)
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Model arXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L

SumBasic∗ 29.47 6.95 26.30 37.15 11.36 33.43
LexRank∗ 33.85 17.36 28.99 39.19 13.89 34.59
Oracle+ 53.88 23.05 34.90 55.05 27.48 38.66
Cheng & Lapata (2016)+ 42.24 15.97 27.88 43.89 18.53 30.17
SummaRuNNer+ 42.91 16.65 28.53 43.89 18.78 30.36
Xiao & Carenini (2019)(Xiao and Carenini, 2019) 43.62 17.36 29.14 44.85 19.7 31.43
Match-Sum 40.59 12.98 32.64 41.21 14.91 36.75
Topic-GraphSum(Cui et al., 2020) 44.03 18.52 32.41 45.95 20.81 33.97
SSN-DM(Cui and Hu, 2021) 45.03 19.03 32.58 46.73 21.00 34.10
HeterGraphLongSum (iter=1) 46.62 18.69 40.77 48.75 22.45 43.97
HeterGraphLongSum (iter=2) 47.36 19.11 41.47 48.86 22.63 44.19

Table 1: Results on the test set. Report results with * are from Cohan et al. (2018), and results with + are from Xiao
and Carenini (2019). Other results are obtained from respective papers. Our results are calculated by averaging
values of 3 runs.

4 Experiment

4.1 Experimental setup

Dataset: two benchmark datasets of long docu-
ments are considered for the experiments such as
arXiv and PubMed datasets, which are scientific
papers. Accordingly, those datasets are processed
following the work in Cohan et al. (2018) and get
Oracle results, a gold standard extractive label, by
the work in Xiao and Carenini (2019). The statis-
tics of evaluated datasets are illustrated in Table 2.

Datasets Documents Avg. Tokens
Train Val Test Doc. Sum.

arXiv 203,037 6,436 6,440 4,938 220
PubMed 119,924 6,633 6,658 3,016 203

Table 2: Statistics of experiential datasets.

Models for comparision: we evaluate the pro-
posed models with recent benchmark models in
this research field which are mainly divided into
four approaches: traditional EDS models such as
SumBasic (Vanderwende et al., 2007) and LexRank
(Erkan and Radev, 2004); Seq2Seq-based mod-
els such as Cheng & Lapata (Cheng and Lapata,
2016), SummaRuNNer (Nallapati et al., 2017), and
Xiao & Carenini (Xiao and Carenini, 2019); pre-
trained-based models such as Match-Sum (Zhong
et al., 2020); graph-based models such as Topic-
GraphSum(Cui et al., 2020) and SSN-DM (Cui and
Hu, 2021).
Hyperparameter setting: Regarding the word
node generation, following previous work (Xiao

and Carenini, 2019), the vocabulary is limited to
50,000. The word embedding initializes with 100
dimensions using Glove pre-trained model (Pen-
nington et al., 2014). The dimension of the sen-
tence and passage are both set to 64. The dimension
of the final output representation of all models is
set to 64. The multi-head of the GAT layer for s2w
is set to 4 and others (i.e., w2s, w2p, and p2s) are
set to 1. The passage length is a hyperparameter,
which is a constant number. Specifically, we vary
the value of passage length from 10 to 30 in or-
der to determine the best results for two evaluated
datasets. More details of the impact of passage
length are presented in the ablation section. We
select top-6 of PubMed and top-5 of arXiv datasets
for the decoding process, according to the best
performance of the validation set. All models are
trained for 20 epochs with a single NVIDIA V100
card (batch size = 32) and use early stopping on the
validation set according to entropy loss in order to
select the best model.

4.2 Main Results

Table 1 reports the evaluation results on two bench-
mark datasets. Accordingly, ROUGE is used as the
evaluation metric, which includes unigram (R-1),
bigram (R-2) overlap, and longest common subse-
quence (R-L) for measuring informativeness and
assessing fluency, respectively. The results are pre-
sented in different sections corresponding to dif-
ferent approaches. The first section includes tra-
ditional approaches and the Oracle. The second
section obtains the results of Seq2Seq-based mod-
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Our Model arXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L

w/o Passage Node 46.43 18.62 40.56 47.81 21.88 43.01
w/o Doc. Rep. 46.61 18.8 40.76 48.52 22.34 43.77
Proposed Model 47.05 19.01 41.2 48.86 22.63 44.19

Table 3: Reported results of our proposed model and two ablated variants on two benchmark datasets.

els. The third section is Match-Sum, a state-of-
the-art BERT-based summarizing model. The next
section reports recent graph-based models for the
EDS problem. The last section is our model, which
includes two versions with different iterations of
GAT layers.

Based on the evaluation results, several hypothe-
ses for extractive long document summarization
problem can be expressed as follows: i) Using pre-
trained models (e.g., BERT and RoBERTa) without
any modifications is not effective for long docu-
ments. The main reason is the limitation of 512
tokens of BERT-based models; ii) Exploiting the
global context (the whole document) is able to
improve the performance, even without the need
for pre-trained models for extracting features; iii)
Using graph layer with external information (e.g.,
latent topic) for encoder embedding is currently
state-of-the-art approach in this research field; iv)
our model, which incorporates global context with
graph neural network, achieve state-of-the-art re-
sults on both benchmark datasets of long docu-
ments. Especially, the most advantage is that our
method provides promising performances with-
out external information and pre-trained language
models. A limitation of our study is that we use
the fixed length of sentences for passages, which
might not suitable for all datasets with the same
value (more detail in the ablation study section).
An appropriate solution is to adopt semantic self-
segmentation methods for determining passages
(Moro and Ragazzi, 2022). We leave this issue for
future work of this study.

4.3 Ablation Study

Ablated Variants: in order to analyze the impact
of each module in the proposed architecture, we
evaluate the proposed model with two ablated vari-
ants such as i) w/o Passage Node removes the
passage node in the heterogeneous graph structure,
build a HeterGNN with two types of nodes such
as word and sentence; ii) w/o Doc. Rep. removes
the document representation from passages for the

sentence extraction process (Eq. 8). Table 3 shows
the results of different variants on two evaluated
datasets. As result, the proposed architecture out-
performs all variants, which proves that combining
both modules can achieve the best results. Espe-
cially, by adding passage nodes, the similar repre-
sentation problem of sentences, when the nodes of
words and sentences are increased to represent the
long-form document, can be reduced. In particular,
the effectiveness of proposed modules is visual-
ized with an example in Figure 2. Accordingly,

Figure 2: Visualized the efficiency of using passage
nodes to enhance sentence representation. The degree
of highlighting expresses the important role of the pas-
sage in the document. Underlined sentences are model-
selected summaries. As result, the selected sentences
belong to passages that have high scores of α (Equation
8).
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Our Model arXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L

w/o w2p 46.30 18.50 40.38 48.76 22.57 44.08
w/o p2s 46.87 18.84 40.96 48.76 22.45 44.00
plus p2w 46.77 18.82 40.89 48.80 22.54 44.06
plus s2p 46.62 18.73 40.70 48.23 22.06 43.43
full edge 46.92 18.80 41.07 48.51 22.42 43.75
Proposed Model 47.05 19.01 41.20 48.86 22.63 44.19

Table 4: Evaluation on the impact of edge types.

each passage has different impacts on the document
representation and can be utilized effectively to en-
rich the information of sentence representations.
As shown in the example, the selected sentences
mainly belong to the passages, which have high
attention scores (Equation 8).
Impact of Edge Types: the proposed heteroge-
neous graph includes four types of edge such as
s2w, w2s, w2p, and p2s. Accordingly, p2w and
s2p are removed because of redundancy, which
might influence the performance. In this section,
we try to evaluate the impact of edge types on the
performance by developing several variants of the
proposed graph structure, which are: i) w/o w2p re-
moves the link from word nodes to passage nodes;
ii) w/o p2s removes the link from passage nodes to
sentence nodes; iii) plus p2w adds the link from
passage nodes to word nodes; iv) plus s2p adds
the link from sentence nodes to passage nodes; and
v) full edge builds a HeterGNN model of three
types of nodes such as word, sentence and passage
nodes with fully connected among nodes. Specifi-
cally, there are total six types of edges of this model
such as w2s, w2p, s2w, s2p, p2w, and p2s. Table
4 shows the results of the evaluation. Accordingly,
the results indicate that using four types of edges
in the proposed model is able to achieve the best
results for both evaluated datasets. Note that all the
ablated experiments use the same value of passage
length (n= 10). More details about this hyperpa-
rameter are exploited in the following section.
Length of Passage: is an important hyperparame-
ter in this study in which different datasets might
require different values of passage length. In this re-
gard, we conduct experiments to determine the best
values of passage length for two evaluated datasets.
Table 5 illustrates the impact of passage length
on the performance of two datasets, respectively.
Specifically, the value of passage length is ranged
from 10 to 30 (per 05 periods). As result, the best

Datasets n R-1 R-2 R-L
10 47.05 19.01 41.20
15 46.68 18.79 40.78

arXiv 20 46.14 18.47 40.30
25 46.81 18.79 40.95
30 47.36 19.11 41.47
10 48.86 22.63 44.19
15 48.53 22.26 43.75

PubMed 20 48.75 22.45 43.97
25 48.75 22.57 44.02
30 48.86 22.45 44.07

Table 5: Impact of passage length on the performances
of the proposed model.

values of passage length for arXiv and PubMed
are 30 and 10, respectively. The experimented re-
sult indicates a hypothesis that an adaptive method
for automatically segmenting the passage length
is able to improve performance. In particular, the
passage can be segmented by unsupervised (Alemi
and Ginsparg, 2015) or supervised (Koshorek et al.,
2018) learning. We take this issue into account for
the future work of this study.

5 Conclusion

This paper presents a new GNN-based model for
extractive long document summarization. Specif-
ically, GNN has been introduced as a promising
approach for exploiting the complex relation of
elements (e.g., word and sentence) from an input
document. However, representing long documents
as graph structure is still a remaining challenge.
Specifically, lacking cross-relation information be-
tween sentences (e.g., long-distance of position in
the document) and the increment of nodes might
influence the performance. In this regard, this pa-
per proposes a heterogeneous graph including three
types of nodes such as word, sentence, and passage,
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which are simultaneously learned for enabling the
cross-relation between sentences. The evaluation
of two standard long documents datasets such as
arXiv and PubMed shows that the proposed model
outperforms state-of-the-art models in this research
field without relying on pre-trained language mod-
els (e.g., BERT).
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Abstract

Recently, neural topic models (NTMs) have
been incorporated into pre-trained language
models (PLMs), to capture the global seman-
tic information for text summarization. How-
ever, in these methods, there remain limitations
in how they capture and integrate the global
semantic information. In this paper, we pro-
pose a novel model, Graph contRastivE Topic
Enhanced Language model (GRETEL), that
incorporates the graph contrastive topic model
with the pre-trained language model, to fully
leverage both the global and local contextual
semantics for long document extractive sum-
marization. To better capture and incorporate
the global semantic information into PLMs,
the graph contrastive topic model integrates
the hierarchical transformer encoder and the
graph contrastive learning to fuse the seman-
tic information from the global document con-
text and the gold summary. To this end, GRE-
TEL encourages the model to efficiently extract
salient sentences that are topically related to the
gold summary, rather than redundant sentences
that cover sub-optimal topics. Experimental re-
sults1 on both general domain and biomedical
datasets demonstrate that our proposed method
outperforms SOTA methods.

1 Introduction

Due to the well-known limitation of pre-trained lan-
guage models (PLMs) (Devlin et al., 2019; Wang
et al., 2021) that they fail to capture long-range de-
pendencies (Beltagy et al., 2020), attempts have
been proposed to integrate neural topic models

1https://github.com/xashely/GRETEL_
extractive

(NTMs) (Cao et al., 2015; Peng et al., 2018; Xie
et al., 2021) into PLMs, which have shown signif-
icant improvement in the performance of the text
summarization task (Wang et al., 2020b; Cui and
Hu, 2021b; Nguyen et al., 2021; Fu et al., 2020).
In addition to the local contextual information cap-
tured in PLMs, NTMs can provide an approxima-
tion of the global semantics captured from docu-
ment contents, i.e., latent topics, as well as their
posterior topic representations. The global seman-
tics are further used to guide the model, to generate
coherent summaries which cover the most relevant
topics discussed within the document, via the at-
tention mechanism (Wang et al., 2020b; Aralikatte
et al., 2021; Nguyen et al., 2021; Fu et al., 2020)
or graph neural networks (GNNs) (Cui and Hu,
2021b; Cui et al., 2020).

However, there exists the semantic gap between
latent topics as the approximation global seman-
tics, and the true global semantics due to two major
limitations for existing methods. The first limita-
tion concerns the nature of unsupervised topic
inference in these methods, where topics and pos-
terior topic distributions are learned from docu-
ments in an unsupervised manner, without consid-
ering the key semantic information conveyed in the
gold summary (mostly the abstract). Existing meth-
ods using document-word features, without access-
ing the semantic information of the gold summary,
can extract sub-optimal topics with high-frequency
words. However, sub-optimal topics with high-
frequency words, do not necessarily cover the true
global semantics that is condensed in the gold sum-
mary. This results in the wrong assignment of
the document with sub-optimal topics, and con-
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sequently the model extract redundant sentences
containing high-frequency topic words.

Another limitation is that existing methods rely
on document word features such as Bag-of-Words
(BOWs) to extract latent topics, and disregard
the sequential and syntactic dependency between
words. This may lead to sequentially and syntacti-
cally correlated words being allocated to different
topics. One solution is to provide NTMs with con-
textual representations from PLMs, which is nev-
ertheless challenging to directly apply in existing
methods for text summarization. PLMs in existing
methods are forced to truncate the input to a limited
length owing to the complexity of language models.
Thus the representations from partial content of the
document cannot necessarily help NTMs to mine
informative topics that cover the whole content
of the document, especially for long documents.
Overall, although existing methods encourage the
summary with sentences that are topically similar
to the document topic distribution, the summary
focuses more on sentences with high-frequency
words and can have low semantic similarity with
the gold summary. To help understand these limi-
tations, we make a detailed analysis based on the
benchmark datasets in section 3.

In response to the above, we propose a novel
Graph contRastivE Topic Enhanced Language
model (GRETEL), that incorporates the graph con-
trastive topic model (GCTM) empowered by the
semantic information of the gold summary and the
global document context, with PLMs for long doc-
ument extractive summarization. The first distin-
guishing feature of GRETEL is the employment of
the hierarchical transformer encoder (HTE) to fully
embed the global context of long documents, to
inform topic representations of documents and sen-
tences. The global contextual information captured
in HTE but missing in the BOW feature, allows the
model to learn more discriminative document and
sentence topic representations, and coherent topics.

Secondly, it utilizes graph contrastive learning
with the supervised information from the gold sum-
mary. It pushes close topic representations of docu-
ments and sentences that have high semantic simi-
larity with the gold summary and pulls away other-
wise. This encourages the model to capture better
global semantic information: latent topics that de-
scribe the most key information in the original doc-
ument content. Therefore, it allows the model to
select key sentences that are topically similar to the

gold summary. Experimental results demonstrate
that our method can effectively distinguish salient
sentences from documents with both global and
local semantics, leading to superior performance
compared to previous methods.

2 Related Work

Topic enhanced PLMs for Text Summarization.
Many studies have investigated the application
of PLMs for extractive summarization, including
BERTSum (Liu and Lapata, 2019), DiscoBert(Xu
et al., 2020), MatchSum (Zhong et al., 2020) et al.
However, these methods fail to capture the global
context of long documents due to the limitation
of PLMs. To address it, several studies combined
topic modeling with PLMs to introduce global se-
mantic information. Wang et al. (2020b) proposed
to extract firstly latent topics independently and
then use them to improve the summarization model.
Other studies (Aralikatte et al., 2021; Nguyen et al.,
2021; Cui et al., 2020) proposed to use the BOW
as input features for neural topic modeling and im-
proved the transformer encoder and decoder with
the extracted latent topics with an attention mech-
anism for abstractive summarization (Aralikatte
et al., 2021; Fu et al., 2020; Nguyen et al., 2021).
Cui et al. (2020); Cui and Hu (2021b) proposed to
use the graph neural network to infuse topics into
contextual representations from PLMs, for multi-
document abstractive summarization and extrac-
tive summarization. Fu et al. (2020) considered
extract both document and paragraph-level topic
distribution, and use them to guide the abstractive
summarization.

PLMs for Long Document Summarization.
To address the limitation of encoding the full con-
text of long documents using PLMs, another direc-
tion is to design the efficient sparse self-attention
or using a sliding window. Narayan et al. (2020)
proposed a step-wise model with a structured trans-
former. Huang et al. (2021) proposed a computa-
tionally efficient method based on the head-wise
positional strides, to identify salient content for
long documents. Liu et al. (2021) employed a
transformer with multi-granularity sparse atten-
tions. Cui and Hu (2021a) used a sliding selec-
tor network with dynamic memory, in which the
sliding window is used to encode input documents,
segment by segment. Grail et al. (2021) divided
long documents into multiple blocks and encoded
them by independent transformer networks.
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3 Dataset-dependent Analysis for
Limitations

To better illustrate the limitations of existing meth-
ods, we present a dataset-dependent analysis, with
the aim to answer two key questions: 1) Do the
extracted topics from topic models tend to focus
on high-frequency words? and 2) Due to it, would
there be a semantic gap between topics as the ap-
proximation of global semantics and true global
semantics in the gold summary?

We first present the top-10 words of topics
learned by the traditional topic model LDA on the
PubMed (Cohan et al., 2018) dataset, as shown in
Table 1. It shows that there is a high overlap be-
tween words in learned topics and high-frequency
words. This is also reported in previous stud-
ies (Griffiths and Steyvers, 2002; Steyvers and Grif-
fiths, 2007; Chi et al., 2019), that words are men-
tioned more frequently, have a higher probability
conditioned on topics on average. Since, they infer
the posterior distribution of documents over topics,
according to the co-occurrences of words in the
whole document collections.

T1: type treatment consistent needed lower disorders sensitive patient acid way
T2: male group treatment followed cells per side plasma american health
T3: al dna clinical risk observed tube lower inflammatory et features
T4: type al clinical mice bacteria high vs posterior conditions side
T5: differences performed results side number higher size tube et patients
T6: dna revealed smoking control mental number change sd light versus
Top high-frequency words: patients, study, using, cells, group, treatment, et,
one, al, data, studies, two, patient, results, cell, time, however, figure, significant,
reported, high, disease, analysis, clinical, found, age, years, associated, showed,
different, compared, risk, levels

Table 1: top-10 words of topics learned by LDA on
Pubmed dataset.

In Table 2, we further compare the mean score of
ROUGE-1 (Lin and Hovy, 2003) F1 and ROUGE-
2 F1 of the oracle summary, and summary based
on the generated topics among all datasets used in
our experiments. It shows a much lower rouge

Dataset Oracle Summary Summary with Topics
CNN/DM 0.811 0.174

ArXiv 0.826 0.169
PubMed-Long 0.845 0.184
PubMed-Short 0.847 0.187

CORD-19 0.861 0.188
S2ORC 0.841 0.193

Table 2: The mean score of ROUGE-1 F1 and ROUGE-
2 F1 between different summaries with the gold sum-
mary, averaged on all documents.

score on all datasets for summaries using generated
topics, which indicates a semantic gap between the
latent topics and the gold summary. The latent top-
ics would guide the method to select sentences that
are topically similar to the posterior distribution of

Oracle summary: this case report illustrates three learning points about cervical
fractures in ankylosing spondylitis, and it highlights the need to manage these
patients with the neck initially stabilised in flexion. We describe a case of
cervical pseudoarthrosis that is a rare occurrence after fracture of the cervical
spine with ankylosing spondylitis. This went undetected until the development
of myelopathic symptoms many months later. The neck was initially stabilised
in flexion using tongs, and then slowly extended before anterior and posterior
fixation was performed. (Mean score on ROUGE-1 F1 and ROUGE-2 F1:
0.994)
Summary based on topic words: A patient’s neurological condition may be
made worse by extension of the neck, as the spinal cord may be compromised by
the angle that is formed between the upper and lower rigid bony segments of the
cervical spine. Over the previous 5 weeks, he had been experiencing increasing,
although intermittent, symptoms including: sharp pains in the posterior aspect of
his neck with head movement, abdominal pain and paraesthesia with numbness
of his fingers and toes. Certainly significant trauma to a rigid and osteoporotic
spine will cause fracture, and then the effect of instability at the fracture site
(the fused spinal segments can be thought of as a long bone) will produce a
pseudoarthrosis. (Mean score on ROUGE-1 F1 and ROUGE-2 F1 : 0.172)
Top-topic words: cervical, spine, neck, ankylosing, fractures spondylitis, fixa-
tion, spinal, stabilised, anterior, posterior, flexion, fracture, c7, trauma, traction,
paraesthesia, weakness, immobilisation, immobilised, bony, limb, head, cord,
post-operatively.....

Table 3: An example document. High-frequency topic
words that appeared in sentences are marked with a red
color.

documents, rather than informative sentences, that
cover the semantics in the gold summary.

4 Method

To address the aforementioned limitations of exist-
ing methods, we propose our method GRETEL, to
better capture and incorporate the global semantics
to improve PLMs, for long document extractive
summarization. Given u sentences {s1, · · · , su} of
a document i from the corpus D, extractive sum-
marization aims to select v informative sentences
from u sentences (v ⌧ u) as the summary S for
the document i. This task can be formulated as a
binary sentence classification problem. We assign
label yi,j = 1 to sentence si,j(j 2 {1, · · · , u}) for
the summary, or yi,j = 0 otherwise.

As shown in Figure 1, different from previous
methods, we leverage the contextual representa-
tions from PLMs, and gold summary to guide the
topic inference. To this end, we first employ the
hierarchical transformer encoder (HTE) to fully
encode the global context of long documents, and
then design the supervised graph contrastive loss,
to push close the document topic distribution and
topic distributions of salient sentences. This helps
our method to capture better global semantics, that
effectively distinguish between salient and non-
salient sentences, according to their contextual and
semantic connections to the gold summary.

4.1 Hierarchical Transformer Encoder

To fully encode the document contents, especially
for long documents, we propose to use a the Hi-
erarchical Transformer Encoder (HTE) based on
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Figure 1: The model architecture of GRETEL

blocks with two modules: the block transformer
encoder and the document transformer.

Block transformer encoder. We first split
the document d = {blk1, blk2, · · · , blkm} into
m blocks with fixed length, in which each block
blkl = {xl,0, · · · , xl,n}(l 2 {1, · · · , m}) has
n tokens. Subsequently, each token xl,p(p 2
{1, · · · , n}) at block blkl is represented by the vec-
tor El,p, which is the sum of the token embedding,
the block embedding, and the position embedding.
Take El as the input embedding, the contextual
representations of tokens in each block blkl can be
learned by the PLMs based transformer encoder:
hl = BERT (El). Following previous studies (Liu
and Lapata, 2019), we insert the [CLS] and [SEP]
tokens at the start and end of each sentence in the
block. We consider the representations of [CLS]
tokens as the contextual representations of their cor-
responding sentences: hs = {hs

1, · · · , hs
u}, which

capture the local contextual semantic in each block.
Document transformer encoder. To further

model the correlations among intra-block, we stack
the document transformer encoder on hs to yield
the document context-aware sentence representa-
tions: h̃s = Transformer(hs). To denote the
position of each block, we add the block position
embedding (Vaswani et al., 2017) to hs. Finally,
we use the pooling layer to generate the document
representation hd based on h̃s.

4.2 Graph Contrastive Topic Model

Next, we introduce the graph contrastive topic
model, to capture global semantics empowered by
the semantic information from HTE and the gold
summary. It consists of a probabilistic topic en-
coder with HTE and supervised graph contrastive
learning and a probabilistic decoder.

4.2.1 Probabilistic Topic Encoder Enhanced
with HTE

We assume that ✓s and ✓d refer to sentence topic
distributions and document topic distribution, �
represents the topics (topic word distributions in
the vocabulary), and Xi is the BoW feature of doc-
ument i. Different from existing methods (Wang
et al., 2020b; Aralikatte et al., 2021; Fu et al., 2020)
considering only the BoW features, we further em-
ploy the representations from HTE to leverage the
semantic and syntactic dependencies among words
to generate more coherent topics and topic distribu-
tions for documents and sentences.

For document topic distribution, we sample it
from the logistic normal distribution 2. We first
generate the mean and covariance of a multinomial
distribution variable and then use the softmax acti-
vation function to convert it into the logistic normal
distribution variable. Based on the contextual hid-
den representations from HTE and BoW features,
for each document i, we have:

h̃d
i = fX(Xi) + h̃d

i

µd
i = fd

µ(h̃d
i ),�d = diag(fd

�(h̃d
i ))

✓d
i = softmax(µd

i + (�d
i )

1
2 ✏di )

(1)

where ✏di 2 N(0, I) is the sampled noise variable,
fd

µ and fd
� are the feed-forward neural networks

which takes input as the BoW feature Xi and the
contextual hidden representations h̃d

i of document
i from HTE respectively.

The sentence topic distribution is sampled with
only the document context-aware hidden represen-

2Following the previous method (Srivastava and Sutton, 2017), we use the
logistic normal distribution to approximate the Dirichlet distribution.

6262



tations of sentences from HTE:

µs
i,j = fs

µ(h̃s
i,j),�

s
i,j = diag(fs

�(h̃
s
i,j))

✓s
i,j = µs

i,j + (�s
i,j)

1
2 ✏si,j (2)

where ✏si,j 2 N(0, I) is the sampled noise variable,
f s

µ and f s
� are the feed-forward neural networks

which takes the same input as the representation
from HTE for the sentence j in the document i.
Notice that the BoW features for sentences are
not considered since they would be too sparse to
introduce external noise.

4.2.2 Supervised Graph Contrastive Learning
Although the posterior topic distributions can now
utilize the sequential dependencies of words from
HTE, they still cannot distinguish between impor-
tant and redundant topics without the semantic in-
formation from the gold summary. Thus, to fill
the gap between the posterior topic distributions
from NTMs and the key semantics in the gold sum-
mary, we propose the supervised graph contrastive
learning to explicitly guide the document topic and
sentence topic representations with the gold sum-
mary.

Graph Construction. For each document, we
first build the graph G = {V, E} with nodes V as
the document and all its sentences. Edges E can be
represented by the adjacency matrix A, in which
the edge between two nodes (i, j) is defined as:

Ai,j =

8
>>><
>>>:

1, i is the document node, j is the
sentence node, and j 2 S+

1, i = j

0, otherwise

(3)

where S+ is the oracle summary of each document
which has the maximum semantic similarity with
the gold summary. Notice that the graph is a bi-
partite graph with only connections between the
document and sentences.

Graph Contrastive Representation Learning.
Based on the bipartite graph embedded with the
supervision information, we argue that the repre-
sentation of the document should be similar to rep-
resentations of informative sentences in the oracle
summary and dissimilar to representations of re-
dundant sentences that are not mentioned. There-
fore, we design the following loss for the graph
contrastive representation learning:

Lcon = � 1

|V |

|V |X

i=1

log(

P
0<Ai,j

�Ai,jcos(xi, xj)P
Ai,j=0 cos(xi, xj)

) (4)

where |V | is the number of nodes, cos denotes the
cosine similarity, and xi 2 ✓d

i , ✓
s
i means the fea-

tures of node i. This loss explicitly pushes close
the topic distributions of the nodes with connec-
tions in the graph, i.e., the document node and the
sentence node in the oracle summary, and pulls
away otherwise. It guides the model to learn more
discriminative document and sentence distributions
that are semantically related to the gold summary.

4.3 Probabilistic Decoder
Based on sampled sentences and document rep-
resentations, we use the probabilistic decoder to
generate the observed words and predict the labels
of sentences in each document. For each document
i, we assume the v-th word wd

i,v is generated from
the multinomial distribution based on the dot prod-
uct of the document representations and topics:

p(wd
i,v|(✓d

i ,�);�) = Mult([✓d
i · �]) (5)

where � is the parameter set of the probabilistic
decoder. The topics � are randomly initialized. We
assume the j-th sentence label ỹi,j of document i
is generated from the feed-forward neural network
fy with the sigmoid activation function, based on
the sentence representation ✓s

i,j :

p(ỹi,j |✓s
i,j ;�) = fy(✓s

i,j) (6)

Since we fill the gap between the approximation
and true global semantics with supervised con-
trastive learning based on both the contextual rep-
resentations from HTE and BoW features, our
method allows us to directly use the sentence topic
representations to predict the labels of sentences,
without any further distillation or fusion.

4.4 Optimization
We optimize the loss function from both graph
contrastive topic modeling and extractive summa-
rization to support joint inference. The final loss of
GRETEL is the sum of the evidence lower bound
(ELBO) and the graph contrastive loss:

L = L(⇥,�; Xi) + ⌘Lcon (7)

where ⌘ is the parameter to control the sensitivity
of the contrastive normalization, Lcon is the con-
trastive loss, and L(⇥,�; Xi) is:

L(⇥,�; Xi) = Eq⇥(✓s
i |h̃s

i )[logP�(yi|✓s
i )]

+ Eq⇥(✓d
i |Xi,h̃d

i )[logP�(wi|✓d
i ,�)]

�DKL[q⇥(✓d
i |Xi, h̃

d
i )||P�(✓d

i )]

(8)
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where yi is the ground truth labels of sentences
in document i. The ELBO is composed of three
terms, including the sentence label prediction loss
for the extractive summarization, the word recon-
struction loss of the neural topic modeling, and the
KL divergence between the variational posterior
and the prior of ✓d, which uses the prior P�(✓d|↵)
to normalize the document topic representations.

5 Experimentation Details

In this section, we present the details of the datasets
used, evaluation metrics, and different baselines.

Datasets. To evaluate the effectiveness of GRE-
TEL, we conducted experiments on four bench-
mark datasets and two biomedical domain-specific
long document datasets: 1) CNN/DM (Hermann
et al., 2015): a commonly used news dataset;
2) Arxiv (Cohan et al., 2018): a dataset con-
taining long scientific documents from the Arxiv
website; 3) PubMed-Long (Cohan et al., 2018):
a dataset containing long scientific documents
from biomedicine; 4) PubMed-Short (Zhong et al.,
2020): adapted PubMed-Long to use only the in-
troduction of the document as input and filter noisy
documents; 5) CORD-19 (Wang et al., 2020a): an
openly released dataset including long biomedical
scientific papers related to COVID-19. We use
the version of the dataset which was released on
2020-06-28 (Bishop et al., 2022; Xie et al., 2022);
6) S2ORC (Lo et al., 2020): a publicly released
dataset that includes long scientific papers from
several domains. We sample a random subset of
articles from only the biomedical domain (Bishop
et al., 2022; Xie et al., 2022). We show the statistics
of the datasets in Table 4. We use abstracts of doc-
uments as the gold summary. For CNN/DM and
Arxiv, we extract 3 and 7 sentences respectively to
formulate the final summary, following previous
methods (Zhong et al., 2020). For the remaining
datasets, we extract 6 sentences to formulate the
summary (Bishop et al., 2022; Xie et al., 2022).

Dataset Train Valid Test Avg len Ext
CNN/DM 287,226 13,368 11,490 757 3

ArXiv 203,037 6,436 6,440 5,038 7
PubMed-Long 119,924 6,633 6,658 3,235 6
PubMed-Short 83,233 4,676 5,025 444 6

CORD-19 31,505 6,299 4,200 3,324 6
S2ORC 47,782 9,556 6,371 2,631 6

Table 4: Statistics of datasets. Ext denotes the number
of sentences extracted in the final summary.

5.1 Implementation Details

Our method is implemented by Pytorch and Hug-
gingface (Wolf et al., 2020). We investigated the
RoBERTa (Liu et al., 2019) implemented in Hug-
gingface as the encoder. We use the base size
of it. We set the learning rate to 2e-3, dropout
rate to 0.0, warmup steps to 5000, topic number
between{100, 200, 300, 400, 500}, the parameter
to control the negative samples of the contrastive
loss � to 1, and the weight parameter ⌘ to 0.5. We
set the hidden size of the transformer in HTE to
768. Due to the memory limitations of GPU, we
set the max tokens of input documents as 6000.
We train the model with 50000 steps and save the
model checkpoint at every 1000 steps. We select
the best checkpoint according to the loss in the val-
idation and report the results in the test. To extract
the sentence label for training the model, we use
the greedy search algorithm (Nallapati et al., 2017)
to select the oracle summary of each document, via
maximizing the ROUGE-2 score against the gold
summary. we use the pyrouge3 to calculate the
ROUGE (Lin, 2004) metric.

Baselines and Metrics. We compare our model
with SOTA extractive summarization methods in-
cluding: 1) PLMs based methods: BERTSum (Liu
and Lapata, 2019) and MatchSum (Zhong et al.,
2020); 2) PLMs based models for long documents:
HIBERT (Zhang et al., 2019), ETCSum (Narayan
et al., 2020), SSN-DM (Cui and Hu, 2021a),
GBT-EXTSUM (Grail et al., 2021), Longformer-
Ext (Beltagy et al., 2020), Reformer-Ext (Kitaev
et al., 2019), BERTSum+SW (Liu and Lapata,
2019) which uses the BERTSum to sequentially
encode the full context with the sliding window;
3) topic enhanced transformer method: Topic-
GraphSum (Cui and Hu, 2021b), which is the only
PLMs-based model with topic modeling for ex-
tractive summarization. Following (Liu and La-
pata, 2019), we report the unigram (ROUGE-1),
bigram F1 (ROUGE-2), and the longest common
subsequence (ROUGE-L) between the generated
summary and the gold summary.

6 Results and Analysis

A series of experiments were conducted to demon-
strate the efficacy of the proposed method.

3https://github.com/andersjo/pyrouge.git
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Datasets CNN/DM Arxiv PubMed-Long PubMed-Short CORD-19 S2ORC
Metrics R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
LEAD 40.11 17.54 36.32 33.66 8.94 22.19 36.19 11.82 32.96 37.58 12.22 33.44 32.40 8.97 29.30 36.62 16.57 33.11

ORACLE 56.22 33.74 52.19 53.88 23.05 44.90 50.26 28.32 46.33 45.12 20.33 40.19 46.20 22.86 42.08 58.34 34.48 54.36
BERTSum 43.25 20.24 39.63 41.24 13.01 36.10 41.09 15.51 36.85 41.05 14.88 36.57 36.25 10.83 32.85 40.53 16.31 37.50
MatchSum 44.41 20.86 40.55 - - - - - - 41.21 14.91 36.75 - - - - - -

Topic-GraphSum 44.02 20.81 40.55 44.03 18.52 32.41 45.95 20.81 33.97 - - - - - - - - -
HiBERT 42.37 19.95 38.83 - - - - - - - - - - - - - - -
ETCSum 43.84 20.80 39.77 - - - - - - - - - - - - - - -

Longformer-Ext 43.00 20.20 39.30 45.24 16.88 40.03 43.75 17.37 39.71 42.03 16.08 38.01 43.61 16.27 39.39 47.73 22.67 44.03
Reformer-Ext 38.85 16.46 35.16 43.26 14.68 38.10 42.32 15.91 38.26 41.67 15.78 37.88 42.32 16.11 38.87 46.12 21.55 43.21

HETFORMER 44.55 20.82 40.37 - - - - - - - - - - - - - - -
SSN-DM - - - 45.03 19.03 32.58 46.73 21.00 34.10 - - - - - - - - -

BERTSum+SW 43.78 20.65 39.67 47.86 19.17 42.50 46.36 19.67 42.49 42.07 15.10 37.29 42.51 15.72 38.58 46.21 19.73 43.01
GBT-EXTSUM 42.93 19.81 39.20 48.08 19.21 42.68 46.87 20.19 42.68 - - - - - - - - -

GRETEL 44.62† 20.96† 40.69† 48.17† 20.31† 42.84† 48.20† 21.20† 43.16† 42.53† 16.55† 38.61† 43.91† 16.54† 40.01† 48.24† 23.34† 44.55†

Table 5: ROUGE F1 results of different models on CNN/DM, Arxiv, PubMed-Long, PubMed-Short, CORD-19,
and S2ORC under 5 times running. † means outperform the existing model with best performance significantly
(p < 0.05). Part results are from (Grail et al., 2021; Zhong et al., 2020; Cui and Hu, 2021a).

6.1 Main Results

We first present the ROUGE F1 results of different
models on all datasets in Table 5, which shows that
our method GRETEL outperforms all existing base-
line methods in all datasets. It demonstrates the
superiority of our method GRETEL to other meth-
ods, via capturing better global semantics with the
guidance of the gold summary and the leverage of
contextual information and word features simulta-
neously. Our methods and Topic-GraphSum both
present superior performance over methods with-
out the topic information, such as BERTSum and
MatchSum, indicating the importance of modeling
the global semantic information with the approx-
imation of latent topics. When comparing with
Topic-GraphSum incorporating latent topics, our
method yields better performance on all datasets.
This proves the benefit of the supervision from the
gold summary and the integration of contextual
representations to exploit the better global seman-
tics. It is also proved from the improvement of
our method when compared with methods that en-
code full document contents but ignore the topic
information, such as Longformer-Ext, SSN-DM et
al.

Moreover, our methods and other PLMs-based
methods that address the truncation issue to encode
full contents, such as Longformer-Ext, SSN-DM
et al, achieve better performance on all long docu-
ment datasets, when comparing methods with the
input length limit, such as BERTSum, and Match-
Sum. It shows that the content loss can inhibit their
ability to model the contextual information in the
document, which also limits the employment of
the contextual representations from existing meth-
ods in the topic generation. On the contrary, for
CNN/DM and PubMed-Short whose documents
are relatively short, the improvement is insignifi-

cant, since truncating these short documents would
not miss much context information.

Datasets PubMed-Long Arxiv
Metrics R-1 R-2 R-L R-1 R-2 R-L

GRETEL 48.20† 21.20† 43.16† 48.17† 20.31† 42.84†

W/O HTE 45.97 20.13 40.22 45.44 16.53 40.15
W/O Topic 47.61 20.89 42.86 47.48 19.97 42.65

W/O Contras 47.65 20.96 42.92 47.95 20.02 42.76
W/O Context 48.01 20.99 43.08 47.89 20.13 42.77

W/O Document 47.61 21.02 43.09 48.11 20.18 42.80

Table 6: ROUGE F1 results of our model under different
settings on PubMed-Long and Arxiv.

6.2 Ablation Study
We further verify the attribution of each compo-
nent to the performance improvement of GRETEL
in this section, as shown in Table 6. It presents
the results of our method including 1) W/O HTE
replacing HTE with RoBERTa, 2) W/O Topic re-
moving the loss of neural topic modeling, 3) W/O
Contras removing the graph contrastive loss, 3)
W/O Context without considering the contextual
representations from PLMs in generating document
topic representations, and 4) W/O Document with-
out the document transformer layer to propagate
information between blocks. We can observe that
each component contributes to the performance of
the model to a different degree. Among all the
components, HTE is the most important one for im-
provement, which shows the importance of encoder
the full contents, when introducing contextual in-
formation into the topic modeling. However, our
method still outperforms Topic-GraphSum even
without HTE, which demonstrates the superiority
of the guidance from the gold summary during the
topic generation in our method.

Furthermore, we show the impacts of differ-
ent topic numbers on the performance of GRE-
TEL in Table 7 on both the long document dataset
PubMed-Long dataset and the short document
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Figure 2: The position distribution of extracted sen-
tences by different models on the PubMed-Long test
set.

dataset CORD-19. It shows that the performance
of our method generally increases with the grow-
ing number of topics on PubMed-Long, while it
soon achieves the best of 300 topics on CORD-19
since it contains fewer topics with relatively shorter
content and much fewer documents.

Datasets PubMed-Long CORD-19
Metrics R-1 R-2 R-L R-1 R-2 R-L
K=100 47.10 20.14 42.19 43.53 15.92 38.89
K=200 47.53 20.38 42.42 43.80 16.25 39.41
K=300 47.94 20.89 42.94 43.91 16.54 40.01
K=400 48.15 21.12 43.24 43.85 16.42 39.94
K=500 48.20 21.20 43.26 43.86 16.45 40.01

Table 7: ROUGE F1 results of our model with a different
number of topics on PubMed-Long and CORD-19.

6.3 Topic Analysis

To verify the quality of our generated topics, we
further evaluate the NPMI (Lau et al., 2014) score
in Table 8 by our methods and the classical topic
model LDA. It clearly shows that our method can
learn more coherent topics compared with LDA.
Moreover, our method without contextual informa-
tion (W/O Contextual) and the supervision (W/O
Contras) all outperform LDA and underperforms
our method with both features. It demonstrates that
both the contextual information and the supervision
from the gold summary are helpful to exploit mean-
ingful and salient topics for a better approximation
of global semantics.

Datasets CORD-19 PubMed-Long
Model K=100 K=200 K=100 K=200
LDA 0.18 0.16 0.14 0.19

GRETEL 0.25 0.21 0.23 0.26
W/O Contras 0.23 0.20 0.22 0.24

W/O Contextual 0.20 0.18 0.18 0.20

Table 8: NPMI score of different models on CORD-19
and PubMed-Long using different numbers of topics.

Gold A 53-year-old man with steroid dependent rheumatoid arthritis pre-
sented with fever and serious articular drainage. Oral antibiotics were
initially prescribed. Subsequent hemodynamic instability was attributed
to septic shock. Further evaluation revealed a pericardial effusion with
tamponade. Pericardiocentesis of purulent fluid promptly corrected the
hypotension. Proteus mirabilis was later isolated from both the infected
joint and the pericardial fluid. This is the first report of combined pro-
teus mirabilis septic arthritis and purulent pericarditis. It documents
the potential for atypical transmission of gram-negative pathogens, to
the pericardium, in patients with a high likelihood of preexisting peri-
cardial disease. In immunocompromised patients, the typical signs and
symptoms of pericarditis may be absent, and the clinical presentation
of pericardial tamponade may be misinterpreted as one of septic shock.
This case underscores the value of a careful physical examination and
proper interpretation of ancillary studies. It further illustrates the impor-
tance of initial antibiotic selection and the need for definitive treatment
of septic arthritis in immunocompromised patients.

Our

ID 3: We report a case of purulent pericarditis with pericardial tam-
ponade masquerading as septic shock related to proteus mirabilis
septic arthritis.
ID 4: A 53-year-old man with long-standing, steroid-dependent
rheumatoid arthritis complained of a painful, swollen, left elbow
with purulent drainage emanating from what appeared to be a small
ulceration.
ID 0: Septic arthritis is a well recognized occurrence in patients
with steroid dependent rheumatoid arthritis .1 treatment includes
broad-spectrum antibiotics usually accompanied by surgical or needle
drainage of the joint .2 while pericardial effusions are common in
patients with rheumatologic disorders, the development of purulent
pericarditis with pericardial tamponade is rare.
ID 75: This case also underscores the importance of appropriate
antibiotic selection in the initial treatment of immunocompromised
patients with infected prosthetic joints.
ID 30: While multiple blood cultures were negative, articular and
pericardial fluid cultures grew staphylococcus epidermidis and pro-
teus mirabilis.
ID 68: In the setting of an infected joint prosthesis, fever, and im-
munosuppression, this patients hemodynamic instability was initially
ascribed to septic shock and not to pericardial tamponade.

Baseline

ID 3: we report a case of purulent pericarditis with pericardial tam-
ponade masquerading as septic shock related to proteus mirabilis
septic arthritis.
ID 4: A 53-year-old man with long-standing, steroid-dependent
rheumatoid arthritis complained of a painful, swollen, left elbow
with purulent drainage emanating from what appeared to be a small
ulceration.
ID 12: On the first postoperative day, he was transferred to the
medical service for the management of presumed septic shock.
ID 25: A subxiphoid pericardiocentesis yielded 500 ml of purulent
fluid with prompt normalization of the blood pressure.
ID 0: While multiple blood cultures were negative, articular and peri-
cardial fluid cultures grew staphylococcus epidermidis and proteus
mirabilis.
ID 11: The early postoperative course, however, was remarkable for
persistent fever, hypotension, and tachycardia.

Topics T267: infected congenital patients loss blood disorders compared high
fig phase T433: treatment infected severity year patients crp tract area
arm isolated T446: joints dna physical risk observed tube lower ex-
amination intravenous features T153: disease type exercise vegf nerve
deaths shock joints drugs lower T108: type treatment male sd well use
statistically specific post mice

Table 9: Example of extractive summarization con-
ducted by our method on the PubMed-Long dataset.
The gold summary is the abstract of the document. Sen-
tences with deep color have a higher ROUGE score.
Topic words are marked with the blue color.

Sentence ID Top-6 words

ID 3
adequate mice patients label understanding body infected report oxygen formation
disease type exercise vegf nerve deaths shock joints drugs lower

ID 4
family report presented followed obesity side j macrophages high necrosis
treatment infected severity year patients crp tract area arm isolated

ID 0
treatment infected severity year patients crp tract area arm isolated
type treatment male sd well use statistically specific post mice

ID 75
treatment infected severity year patients crp tract area arm isolated
treatment adjacent medication different motor min height stroke like rate

ID 30
et treatment lower diagnosis control observed could 7 number association
infected congenital patients loss blood disorders compared high fig phase

ID 68
type treatment male sd well use statistically specific post mice
effects performed revealed compared clinical observed diagnosis isolated cm family

Table 10: Top 10 words of top 2 topics in sentences,
which are selected into the summary.
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6.4 Case Study

In Table 9, we present the summaries of an example
document generated by GRETEL and BERTSum,
together with the top-5 topics (with the highest co-
herence) of the document from the PubMed-Long
dataset. In table 10, we show the top-2 topics of
selected sentences by our method for inclusion in
the summary. It shows that our method generates a
more coherent summary that contains more salient
sentences than the summary generated by BERT-
Sum, due to the integration of a better approxima-
tion of global semantics in our method. This is also
proved by the selected sentences of our method are
topically related to the captured topics about "treat-
ment", "joints" and "infected", which are semanti-
cally similar to the meaning of the gold summary.

Moreover, the positions of our selected sentence
vary in every part of the document while the sen-
tences of BERTSum are all located in the former
part of the document. This is because the employ-
ment of HTE allows our method to encode the full
contents of the document without truncation. In
Figure 2, we further compare the position distri-
bution of selected sentences by different models
and the oracle summary on PubMed-Long. The
distribution of our method is the most similar to
the oracle summary, which pays more attention to
the latter sentences compared with other models.

7 Conclusion

In this paper, we propose a novel framework GRE-
TEL for extractive summarization of long texts,
that furnishes PLMs with the neural topic infer-
ence, to fully incorporate the local and global se-
mantics. Experimental results on both general and
biomedical datasets show that our model outper-
forms existing state-of-the-art methods, and global
semantics empowered by graph contrastive learn-
ing and PLMs can yield more discriminative sen-
tence representations to select salient sentences,
that are topically similar to the gold summary. For
future work, we would explore the feasibility of
extending this framework to abstractive and multi-
document summarization tasks.
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Abstract

A personification is a figure of speech that en-
dows inanimate entities with properties and
actions typically seen as requiring animacy.
In this paper, we explore the task of person-
ification generation. To this end, we pro-
pose PINEAPPLE: Personifying INanimate
Entities by Acquiring Parallel Personification
Data for Learning Enhanced Generation. We
curate a corpus of personifications called Per-
sonifCorp, together with automatically gener-
ated de-personified literalizations of these per-
sonifications. We demonstrate the usefulness
of this parallel corpus by training a seq2seq
model to personify a given literal input. Both
automatic and human evaluations show that
fine-tuning with PersonifCorp leads to signif-
icant gains in personification-related qualities
such as animacy and interestingness. A de-
tailed qualitative analysis also highlights key
strengths and imperfections of PINEAPPLE
over baselines, demonstrating a strong ability to
generate diverse and creative personifications
that enhance the overall appeal of a sentence. 1

1 Introduction

Personification is the attribution of animate actions
or characteristics to an entity that is inherently inan-
imate. Consider, for example, the sentence “The
stars danced playfully in the moonlit sky.” Here,
the vibrance of the stars (something inanimate)
is being likened to dancing playfully, which is a
distinctly animate action. By allowing readers to
construct clearer mental images, personifications
enhance the creativity of a piece of text (Bloom-
field, 1980; Dorst, 2011; Flannery, 2016).

Being able to automatically identify and generate
personifications is important for multiple reasons.
First, humans naturally use personifications when
communicating. When we say something like “My

∗ Equal contribution by Varun and Steven
1Data and code can be found at https://github.

com/sedrickkeh/PINEAPPLE

Figure 1: Overall PINEAPPLE model pipeline. The
left part of the diagram shows the corpus creation pro-
cess, while the right part of the diagram shows the train-
ing and generation process.

phone has died,” or “My car is not cooperating,” to
a dialogue system, it is important that the dialogue
system understands the intended meaning behind
these personifications. If these systems interpret
personifications literally, they may fail in several
downstream tasks (e.g. classification) since their
understanding is incorrect. Being able to generate
personifications also allows dialogue agents and
language models to be more creative and generate
more figurative sentences. Personification genera-
tion has additional applications such as AI-assisted
creative writing, since machine-generated figures
of speech have been shown to enhance the interest-
ingness of written text (Chakrabarty et al., 2021).

Despite previous success in generating other fig-
ures of speech such as similes (Chakrabarty et al.,
2020), metaphors (Stowe et al., 2021), hyperboles
(Troiano et al., 2018), irony (Van Hee et al., 2018),
and sarcasm (Hazarika et al., 2018; Jaiswal, 2020),
personification generation is relatively underex-
plored. One key challenge is that personifications
do not have an explicit syntactic structure unlike
similes which use ‘like’ or ‘as’. They are also not
as loosely-defined as metaphors. Rather, a per-
sonification requires identifying an inanimate sub-
ject together with actions or descriptions which are
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commonly used on animate subjects. These steps
are challenging and require our models to under-
stand commonsense concepts including animacy.

In line with exploring the task of personification
generation, we present three main contributions:
(1) We curate a dataset, PersonifCorp, of diverse
personification examples from various sources. (2)
We propose a method called PINEAPPLE to auto-
matically de-personify personifications and create
a parallel corpus of personification data along with
their literalizations. (3) Given our parallel corpus,
we train a seq2seq model to personify given text.
We conduct automatic and human evaluation and
qualitative analysis of the generated outputs.

2 Datasets

We curate a dataset called PersonifCorp of 511
personifications, with 236 coming from a publicly
available open-sourced list2 and 275 manually-
filtered personifications extracted from the Deja
dataset (Chen et al., 2015). The Deja dataset is an
image-captioning dataset containing a “figurative”
subset of size 6000, of which 4.1% of the captions
are labelled as personifications. We extract these
personifications and combine them with our exist-
ing list to form the final PersonifCorp dataset.

We also note that although it is possible to fur-
ther expand this dataset (e.g. by ad hoc searching
for miscellaneous sites and examples online), we
ultimately decide against this after performing an
initial investigation. When we attempted to look
for additional examples, we found that many of
the new examples we found were near-duplicates
of existing personifications already in our list. In
addition, ad hoc searching can give at most a few
hundred examples, which will lead to very incre-
mental gains in performance. This is impractical
if we want to collect a large-scale dataset. We
hence decided to restrict ourselves to sentences
from reasonably well-vetted, already existing cor-
pora from *CL prior art or officially released data
from sources like Kaggle/SemEval shared tasks.

2.1 Characterizing Personifications

We define the elements of personification, an
analogue to what was previously done for simi-
les (Niculae and Danescu-Niculescu-Mizil, 2014;
Chakrabarty et al., 2020). While similes could
be decomposed into very granular structures and

2https://www.kaggle.com/datasets/
varchitalalwani/figure-of-speech

well-defined elements, the unstructured nature of
personifications prevents us from directly defin-
ing such fine-grained elements for personifications.
Rather, we define two main high-level elements,
the TOPIC (a noun phrase that acts as logical sub-
ject) and the ATTRIBUTE (the distinctly animate
action or characteristic that is being ascribed to the
TOPIC). Figure 2 shows examples of how these
TOPICS and ATTRIBUTES can relate to each other.

2.2 Automatic Parallel Corpus Construction

In order to train a seq2seq model to generate high-
quality personifications, we need pairs of personi-
fications along with their corresponding literaliza-
tions. However, the literalization process may take
several human-hours, which is impractical for large
datasets. We therefore propose PINEAPPLE, a
three-stage automatic de-personification process,
where we first identify all valid TOPIC-ATTRIBUTE

pairs, then generate multiple candidates to replace
the ATTRIBUTE of each TOPIC. Lastly, we select
the most appropriate candidate in terms of animacy,
fluency, and meaning preservation. These steps are
further detailed individually below:

TOPIC-ATTRIBUTE Extraction. To identify
the TOPICS and ATTRIBUTES, we consider the de-
pendency parse tree of a sentence and the part-of-
speech (POS) tags of each of its words. Given
the tree, we extract all the nouns/pronouns which
have edges pointing into it with the nominal sub-
ject label, together with the corresponding parent
nodes. For instance, in the sentence “The stars
danced in the night sky”, the word ‘danced’ is a
parent of the word ‘stars’, with the nominal sub-
ject edge relationship. We can thus identify ‘stars’
as the TOPIC and ‘danced’ as the ATTRIBUTE. In
more complex scenarios, we may need to perform
some additional merging to deal with compound
multi-word TOPICS and ATTRIBUTES, as well as
any additional modifiers. More specifically, us-
ing the POS tags, we identify all words tagged as
negation modifiers, possession modifiers, nominal
modifiers, adjectival complements, and objects of
prepositions, and words tagged as determiners and
parts of compound phrases.3 After extracting these
nodes, they are iteratively merged with their parents
in the dependency parse tree, and the merging pro-
cess is performed repeatedly until no more merges
are possible. The final TOPIC-ATTRIBUTE pairs

3The spaCy library was used to extract the dependency
tree and POS tags.
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ATTRIBUTE Type Example
Noun The planet earth is our mother.
Verb My alarm clock yells at me to

get out of bed every morning.
Adjective Justice is blind and, at times, deaf.

Figure 2: Examples of different types of personification
ATTRIBUTES (TOPICS in red and ATTRIBUTES in blue).

are then identified using the nominal subject edge
relationship as previously described. Examples of
the merging process can be found in Appendix A.1.

Candidate Generation. Once the TOPIC-
ATTRIBUTE pairs have been identified, we then
determine which TOPICS are inanimate. To achieve
this, we need some type of commonsense notion of
what constitues animacy. We use COMET (Bosse-
lut et al., 2019) to tap into the commonsense knowl-
edge present in large-scale knowledge graphs such
as ConceptNet (Speer et al., 2017). Although Con-
ceptNet has no explicit notion of animacy, it has
certain edge relations that we can leverage to de-
sign a proxy metric. More specifically, we use the
IsA relation to design a custom IsAPerson animacy
metric. If the TOPIC of our sentence refers to an
animate entity, then we expect its IsA relation score
with the word ‘human’ to be relatively low.4 The
IsAPerson metric is hence defined as follows: given
a TOPIC, we compute and average its IsA scores to
various words that are synonymous or very closely
related to ‘human’, such as ‘person’, ‘man’, and

‘woman’. We call this set of ‘human’-related words
the HUMANSET. The construction and full list of
words in the HUMANSET can be found in Appendix
A.2. The average of these ConceptNet scores is
then our final IsAPerson animacy score.

Phrases whose IsAPerson animacy score exceeds
a certain threshold 5 are considered animate; oth-
erwise, they are considered inanimate. Since our
goal is to de-personify a sentence, we can safely
discard all the animate TOPICS, as these need no
further de-personification. Rather, we focus on the
inanimate TOPICS because the segment we want
to de-personify most likely occurs in the TOPIC-
ATTRIBUTE pairs whose TOPIC is inanimate. Once
we identify all such inanimate TOPIC-ATTRIBUTE

pairs, we mask out the ATTRIBUTE of each of them

4For the COMET ConceptNet graph, lower scores corre-
spond to better matches.

5We use a threshold of 7.0 for the IsAPerson animacy
metric. IsAPerson scores < 7.0 are considered animate, while
scores≥ 7.0 are considered inanimate. More details regarding
the selection of this threshold can be found in Appendix A.3.

with <mask>, then use a pre-trained BART model
(Lewis et al., 2020) to generate the top k = 10
candidates for each mask using beam search with a
beam size of 10. The goal of this process is to re-
place a possibly animate action/characteristic with
candidates that are inanimate.

Candidate Selection. Given k = 10 candidate
replacement ATTRIBUTES, we now select the most
ideal replacement based on three metrics: animacy,
fluency, and meaning preservation.

1. Animacy – We want the replacement AT-
TRIBUTE to be inanimate; otherwise we would
just be replacing an animate ATTRIBUTE

with another animate ATTRIBUTE. We de-
fine the animacy of a TOPIC-ATTRIBUTE

pair as difference between the affinity for a
human (Ahuman,ATT) to do/possess the AT-
TRIBUTE, and the affinity for the given TOPIC

(ATOPIC,ATT) to do/possess the ATTRIBUTE.
We use COMET’s ConceptNet relations to
compute these affinities; specifically, we use
the CapableOf relation. To approximate
Ahuman,ATT, we compute the average Capa-
bleOf score between the given ATTRIBUTE

and all words in our previously defined HU-
MANSET. To compute ATOPIC,ATT, we com-
pute the CapableOf score between the TOPIC

and its ATTRIBUTE. The final animacy score
of a TOPIC-ATTRIBUTE pair is defined as the
difference Ahuman,ATT − ATOPIC,ATT. If
there are multiple TOPIC-ATTRIBUTE pairs,
we consider the average animacy of all pairs.

2. Fluency – The de-personified sentences
should be grammatically correct and sound
natural. To measure for fluency, we use
BART’s generation scores (i.e. sum of indi-
vidual token logits in the generated output).

3. Meaning Preservation – It is important that
the de-personified sentence does not stray too
far from the meaning of the original personi-
fication. We use BERTScore (Zhang* et al.,
2020) between the de-personified and original
sentences to measure meaning preservation.

We design a composite scoring metric comprised of
the aggregate scores from these 3 metrics. Due to
scaling differences, we consider the log of the ani-
macy score. To account for the fact that lower ani-
macy scores imply less animate TOPIC-ATTRIBUTE

pairs (which is desirable in de-personification), we
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Figure 3: Overview of the PINEAPPLE de-personification pipeline.

Original Personification Result After De-Personifying
How far that little candle throws its beams! How far that little candle can spread its beams!
A book is a fragile creature, it suffers the wear of time, it
fears rodents, the elements and clumsy hands.

A book is fragile, it can break from the wear of time, it
can be eaten by rodents, the elements and clumsy hands.

The camera loves her since she is so pretty. The camera is always on her since she is so pretty.
Any trust I had for him walked right out the door. Any trust I had for him had gone right out the door.
The full moon peeped through partial clouds. The full moon was visible through partial clouds.
Opportunity was knocking at her door. Opportunity was knocking at her door.
The killing moon will come too soon. The killing moon will be here too soon.

Table 1: Example outputs of the PINEAPPLE de-personification pipeline. The ATTRIBUTES are highlighted in
blue for both the original personifications, as well as the de-personified output sentences. The last two rows contain
negative examples where the process does not successfully de-personify the input.

take the negative of the animacy. More precisely,
we define our candidate score Si for candidate i as

Si = α · (− log(Sanim.)) + β · Sflue.+ γ · Smean.

where α, β, γ are parameters. 6

Once Si is computed for all candidates, we select
the candidate with the highest composite score as
our final de-personified sentence. A diagram of the
entire PINEAPPLE pipeline is shown in Figure
3, and example outputs can be found in Table 1.

2.3 Test Data Construction

While automatically generated pairs of personifi-
cations and literal de-personifications may greatly
assist with training, these may not necessarily be
accurate for testing. Rather, it would be more
ideal during testing if we have ground-truth human-
annotated data. To mimic our task at hand, we
gather a list of non-personified English sentences.7

We then select two annotators who are native En-
glish speakers currently enrolled in a university

6We use α = 1, β = 1, γ = 1. Details about the tuning
and selection of α, β, γ can be found in Appendix A.3.

7https://github.com/tuhinjubcse/
SimileGeneration-EMNLP2020#
set-up-data-processing-for-simile

with English as a medium of instruction. These
annotators were instructed to manually personify
these sentences to create ground-truth reference
personifications. The final PersonifCorp test split
has 72 literal + personified sentence pairs.

3 Experimental Setup

3.1 Methods
Below we outline the three models we consider,
with two of them being naive baselines (COMET
and Baseline-BART) that we simply use on Person-
ifCorp’s test set, and the third (Finetuned-BART)
being our proposed model trained on PersonifCorp.

1. COMET: We extract the TOPIC-ATTRIBUTE

pairs and identify the inanimate TOPICS using
the methods detailed in §2.2. Instead of gen-
erating candidate replacements using BART
like in §2.2, we generate candidates by consid-
ering the top k = 10 results for a given TOPIC

using COMET’s ConceptNet IsCapable re-
lation (if the original ATTRIBUTE is a verb)
or HasProperty relation (if adjective or ad-
verb). To incorporate a notion of animacy,
we use the previously defined ATTRIBUTE an-
imacy Ahuman,ATT and select the candidate
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with highest animacy as our final replacement.

2. Baseline-BART (BL-BART): We imitate the
process outlined for the COMET baseline, ex-
cept we use a pretrained BART model to gen-
erate the candidates instead of using COMET.
All other steps (TOPIC-ATTRIBUTE extraction
and candidate selection) remain the same.

3. PINEAPPLE-BART (PA-BART): We fine-
tune a BART model by supplying the Person-
ifCorp train split literal de-personified sen-
tences (from the PINEAPPLE pipeline) as
inputs, and the original ground-truth personi-
fications as target outputs. This is trained as a
seq2seq task. During generation, we use beam
search. Further details are outlined in §3.3.

3.2 Evaluation
We consider both automatic evaluation metrics
(§3.2.1) and human evaluation (§3.2.2).

3.2.1 Automatic Evaluation
For each model in §3.1, we evaluate its generated
outputs on PersonifCorp’s test split using each of
the following automatic evaluation metrics:

1. BLEU (Papineni et al., 2002): We use BLEU
to ensure that the generations do not greatly
differ from the inputs. We compute the BLEU
score of each generated output with the literal
inputs (for meaning preservation), as well as
the ground-truth reference personifications.

2. BERTScore (Zhang et al., 2019): BERTScore
measures how semantically related two sen-
tences are, and is generally more robust than
BLEU. We compute the BERTScore of each
generated output with the inputs, as well as
the ground-truth reference personifications.

3. Fluency: To approximately measure the flu-
ency of a sentence, we use generation (log-
perplexity) losses of each output using the
GPT-2 language model (Radford et al., 2019).

4. Animacy: We are interested in how personi-
fied the generated output is. We use the same
animacy metric used for candidate selection
in §2, which is a combination of how animate
the ATTRIBUTE is, as well as how inanimate
the TOPIC is. More precisely, this is defined
as Ahuman,ATT −ATOPIC,ATT, where the A
animacy scores are previously defined in §2.

3.2.2 Human Evaluation
The human evaluation was conducted using paid
annotators on Amazon Mechanical Turk (AMT).
Annotators were from Anglophone countries with
> 97% approval rate.8 Each test example was
evaluated by exactly 2 annotators. For each test
example, we first generate outputs using each of
the methods outlined in §3.1. Corresponding to
this test instance, we then create an AMT task page
(a HIT), presenting the input literal sentence and
each of the method outputs (in randomized order)
for annotation along five aspects of text quality.

Specifically, annotation was elicited for the fol-
lowing metrics: (1) Personificationhood (“To
what extent does the new sentence contain a person-
ification?”), (2) Appropriateness (“Do the person-
ified nouns, verbs, adjectives, adverbs sound mutu-
ally coherent and natural?”), (3) Fluency (“Does
it sound like good English with good grammar?”),
(4) Interestingness (“How interesting and creative
a rephrasing of the original sentence is the person-
ified sentence?”), and (5) Meaning Preservation
(“Do the entities, their actions, interactions, and
the events appear and relate to each other in the
same way as in the original sentence?”). Each
metric was scored on a Likert scale, with 1 being
the lowest and 5 being the highest.

For Interestingness, we observed poor agreement
scores amongst the AMT annotators.9 Hence, for
this aspect, we instead used a curated group of
known, in-person annotators: a cohort of three na-
tive English-speaking students from an American
university. Amongst these annotators, we observe
a considerably higher agreement, with a Krippen-
dorff α value of 0.5897. For selecting this cohort
from a slightly larger pool of candidates, we as-
sessed their performance on a short qualification
test of basic English literary skills and knowhow.
The final cohort chosen each scored 85% or higher
on this test. Further details are in Appendix B.3.

3.3 Implementation Details

The PersonifCorp training corpus was randomly
split into a training and validation split with an 80-
20 ratio. We fine-tune a BART-base model with
139M parameters using a learning rate of 2e-5 and
a batch size of 4. Training was done for 20 epochs
and 400 warmup steps, and model/epoch selection

8More details about the human eval are in Appendix B.1.
9Further details on inter-annotator agreement scores can

be found in Appendix B.2.
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was performed based on the lowest validation loss.
For generating the outputs, decoding was done us-
ing beam search with a beam size of 10. Additional
details can be found in Appendix C.

4 Results and Analysis

4.1 Automatic Evaluation Results

Table 2 reports the automatic evaluation results for
each of the metrics detailed in §3.2.1. We observe
that our PA-BART model performs best across all
automatic metrics except for fluency, where BL-
BART performs best. The difference in perfor-
mance is most significant in the Animacy metric,
which is the key metric that quantifies the degree
to which a sentence is personified. This confirms
that indeed, our proposed PINEAPPLE method
is successful in training a model to personify text.

Our PA-BART model also performs well for both
BLEU and BERTScore, scoring better than the
COMET and BART baselines, and coming second
only to the human-written personifications.

Lastly, with regards to fluency, the BL-BART
model outperforms the PA-BART model. This is
likely because when considering GPT-2 likelihood,
it may unfavorably penalize creative sentences with
personifications since these are naturally less com-
mon in regular text. As an example, the sentence

“The stars danced playfully” (GPT-2 loss = 7.02)
would be deemed significantly less fluent than the
sentence “The stars twinkled brightly” (GPT-2 loss
= 5.24), even though they are both valid sentences
with similar meanings. This argument is further
supported by the fact that even the reference human-
generated personifications received a lower fluency
score than the BL-BART outputs. Further, literal
sentences are indeed typically more fluent overall
than personifications since they express the mean-
ing literally. Nevertheless, we are still interested in
the other qualities being measured by fluency: Is
the sentence coherent? Does it make unnecessary
grammatical errors? In this regard, the fluency of
PA-BART remains quite good. It is significantly
better than the fluency of the COMET personifica-
tions and only slightly worse than the fluency of
the human-written personifications.

4.2 Human Evaluation Results

Human evaluation results are reported in Table 3.
Out of the five human evaluation metrics, the most
pertinent metric to the personification generation
task is Personificationhood, as this metric explicitly

tries to quantify the presence and overall quality
of personifications. In this metric, our PA-BART
model performs significantly better than both base-
lines and is only slightly worse than the human
reference personifications. This indicates that PA-
BART is very successful in generating personifica-
tions that humans are able to detect and understand.

Aside from measuring the presence of personifi-
cations, we also want to measure more fine-grained
qualities of these personifications. This is done
by considering the Appropriateness and Interest-
ingness scores. In Interestingness, PA-BART sig-
nificantly outperforms both baselines but is worse
than human annotations, while in Appropriateness,
PA-BART slightly outperforms BL-BART and is
slightly worse than human annotations. Overall, we
can conclude that the personifications generated by
PA-BART are of good quallity: the ATTRIBUTES

match up well with the TOPICS, and they are overall
very creative. This is further exemplified through
the qualitative examples explored in §4.3.

Observations from Meaning Preservation and
Fluency are very similar to those from the
BLEU/BERTScore/Fluency metrics in the auto-
matic evaluations. For Meaning Preservation, PA-
BART performs best among all models, and only
slightly trails human references. Meanwhile, for
fluency, BL-BART was ranked the most fluent, out-
performing both PA-BART and the human refer-
ences. As discussed previously, this is likely due
to the fact that literal sentences are generally per-
ceived to be more fluent than personifications.

4.3 Qualitative Analysis

Table 4 contains a list of color-coded qualitative
examples for each method. In Figure 2, we previ-
ously outlined three main types of personification
TOPIC-ATTRIBUTE pairs, namely the cases where
ATTRIBUTE is a noun, a verb, and an adjective. The
first three examples in Table 4 demonstrate the ca-
pacity of our PA-BART model to capture all three
cases. In the first example, the literal verb in “your
phone rings out loud” is replaced with the more
appropriate animate verb in “your phone yells out
loud.” In the second, “silence is key” is replaced
with a noun in “silence is a ghost”, while in the
third example, the literal adjective “very difficult”
is replaced with the animate adjective “very lonely”.
These examples illustrate the generative flexibility
of our model and its capacity to generate diverse
outputs with different parts-of-speech.
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BLEU BERTScore
Input Gold Input Gold Fluency ↓ Animacy

Human Annotation 0.172 1.000 0.749 1.000 5.264 0.332
COMET 0.127 0.128 0.655 0.569 6.366 -2.028

BL-BART 0.132 0.133 0.728 0.617 4.573 0.106
PA-BART 0.153 0.160 0.748 0.636 5.460 0.679

Table 2: Average automatic evaluation results. The best-scoring method for each metric is highlighted in bold.
Higher scores are better for all metrics except for fluency.

Personificationhood Appropriateness Fluency Interestingness Meaning Preservation
Human Annotation 3.763 4.175 4.138 3.667 3.913

COMET 3.525 3.563 3.738 1.801 3.550
BL-BART 3.500 3.938 4.188 2.006 3.750
PA-BART 3.738 4.000 4.138 2.782 3.875

Table 3: Average human evaluation results. The best-scoring method for each metric is highlighted in bold.

We also observe that the outputs for PA-BART
generally capture the meaning of the original text
(and surrounding context) more accurately than the
other baselines. In fact, the personifications greatly
enhance the expressiveness of some of these sen-
tences. In the first example, PA-BART replaces
‘rings’ with ‘yells’, while COMET replaces it with
‘beeps’, and BL-BART leaves ‘rings’ unchanged
and just adds more details. Given the context of
the sentence, we see that ‘yells’ is more appropri-
ate, expressive, and consistent with the context. A
similar argument can be made for most of the other
examples in the table: for the third example, PA-
BART replaces the literal “very difficult” with the
much more animate and expressive “very lonely”,
which is a suitable word to describe a relationship.
In the fourth example, the BL-BART model is able
to successfully capture the meaning of “the house
became silent” with “the house fell into disre-
pair”. Although the meaning is correct, “fell into
disrepair” is more literal and does not contain a
personification. Compare this with the PA-BART’s
choice to replace “the house became silent” with

“the house lamented”, which fits with the overall
context (“Then there were no more parties...”), and
also greatly enhances creativity by invoking the
vivid image of lamentation. Meanwhile, in the fifth
example, BL-BART personifies “the crickets were
silent” with “the crickets were calling”. However,
this shift completely changes the meaning, so it
is a rather poor choice of personification. In con-
trast, PA-BART rewrites “the air was still” as “the
air was tired”, which is a reasonable personifica-
tion that is consistent with the imagery in the sen-
tence (“moonless nights”, “crickets were silent”).
Hence, we see that PA-BART can generate creative

and meaningful personifications, while simultane-
ously staying true to the spirit of the sentence.

We also point out that our model is not lim-
ited to single-word substitutions. Rather, it con-
siders a holistic view of the entire sentence and
modifies key segments as necessary. This allows
PA-BART to handle compound phrases well: con-
sider, for instance, the one-to-many-word substi-
tution of ‘key’ −→ ‘a ghost’ (example 2), and the
many-to-one-word substitution of “became silent”
−→ “lamented” (example 4). More importantly,
PA-BART is also able to simultaneously generate
personifications in two disjoint parts of the sen-
tence, as seen in the last example: “The sound
clapped loud enough to make your ear cry.” Here,
there are two personifications in “sound hit” −→

“sound clapped”, and “ear hurt” −→ “ear cry”.
This last example also demonstrates the imper-

fection of our method. Although the model is able
to generate two personifications, it loses a compo-
nent of the original sentence because the recipient
of the action (‘Frank’) has disappeared. This same
issue of meaning or information loss is present in
example 2, where our model’s output of “silence is
a ghost”, while a personification, actually contra-
dicts the original text “silence is key”. BL-BART’s
output of “silence is preferred”, while not a per-
sonification, correctly preserves the original mean-
ing, as does the human reference of “silence is the
protagonist”. This suggests that the model may
still need some improvements with balancing cre-
ativity and semantic preservation. Other possible
weaknesses are outlined in §6.

4.3.1 Novelty and Diversity Analysis
We randomly sample 30 examples from the PA-
BART generations- and manually identify the parts
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Method Text
Literal Input You are at a business dinner with your boss when your phone rings

out loud (ex.1)
Human Ref You are at a business dinner with your boss when your phone starts

singing out loud
COMET You are at a business dinner with your boss when your phone beep

out loud
BL-BART You are at a business dinner with your boss when your phone rings

and you answer out loud
PA-BART You are at a business dinner with your boss when your phone yells

out loud
Literal Input In most horror settings, silence is key. (ex.2)
Human Ref In most horror settings, silence is the protagonist.
COMET In most horror settings, silence scary.
BL-BART In most horror settings, silence is preferred.
PA-BART In most horror settings, silence is a ghost.
Literal Input Her relationships with family and friends are very difficult (ex.3)
Human Ref Her relationships with family and friends behave very unusually
COMET Her relationships with family and friends serious
BL-BART Her relationships with family and friends have always been strong.
PA-BART Her relationships with family and friends are very lonely
Literal Input Then there weren’t any more parties as the house became silent (ex.4)
Human Ref Then there weren’t any more parties as the house kept mum.
COMET Then there weren’t any more parties as the house build.
BL-BART Then there weren’t any more parties as the house fell into disrepair.
PA-BART Then there were no more parties as the house lamented.
Literal Input It was a moonless nights, the air was still and the crickets were silent

(ex.5)
Human Ref It was a moonless nights, the air was asleep and the crickets were

silent
COMET It cold outside a moonless nights, the air cold outside still and the

crickets noisy
BL-BART It was a moonless nights, the air was still and the crickets were calling.
PA-BART It was one of those moonless nights, the air was tired and the crickets

were silent
Literal Input The sound hit Frank loud enough to make your ear hurt (ex.6)
Human Ref The sound slapped Frank loud enough to make your ear hurt
COMET The sound echo Frank loud enough to make your ear sense sound
BL-BART The sound of Frank Sinatra is loud enough to make your ear ring.
PA-BART The sound clapped loud enough to make your ear cry

Table 4: Qualitative examples for personification: literal
input, human writing, COMET, BL-BART, and PA-BART.
More can be found in Appendix D.

of the sentences that were personified, as well as
the animate ATTRIBUTES used to personify the
TOPICS. Among the 30 examples, there were 27
unique ATTRIBUTES, and only 3 repeats. Addi-
tionally, there were 9 examples which generated
completely new ATTRIBUTES that were never be-
fore seen in the training set, which demonstrates
that the model is able to sufficiently capture the
essence of a personification, rather than just blindly
memorizing ATTRIBUTES from the training data.

5 Related Work

We present the linguistic underpinnings behind the
TOPIC-ATTRIBUTE framework used in this paper
and explore how other types of figures of speech
are generated. We also explore what makes person-
ification generation so challenging.

Linguistic Motivations. Personifications tradi-
tionally do not have clearly defined classifications.
In fact, even within the linguistic community, the
definition of a personification is not always very
clear-cut (Edgecombe, 1997; Hamilton, 2002). A
study by Long (2018) examines the personifica-
tion structure “nonhuman subject + predicate verb

(used for humans only) + others,” as well as the
structure “others + predicate verb (used for hu-
mans only) + nonhuman object + others.” We
generalize and repackage these concepts, renaming
the subject as the TOPIC and the predicate verb as
the ATTRIBUTE. In doing so, we are able to capture
more general notions of animacy beyond just verbs.

Generation of Metaphors, Similes, etc. A lot
of studies on metaphors have focused on identi-
fication using techniques like word sense disam-
biguation (Birke and Sarkar, 2007), topic model-
ing (Strzalkowski et al., 2013; Heintz et al., 2013),
dependency structures (Jang et al., 2015), and se-
mantic analysis (Hovy et al., 2013). In terms of
generation, early systems have explored grammar
rules (Gargett and Barnden, 2013), while more re-
cently, large language models have greatly aided
in metaphor generation. Most notably, Stowe et al.
(2021) generate metaphors by considering concep-
tual mappings between certain domains and verbs.
Chakrabarty et al. (2021) further build on this by
creating a parallel corpus of metaphors and training
a large language model to perform the generation.

We also note here that the two aforementioned
studies already cover personifications to a certain
extent. However, these studies considered person-
ifications as subtypes of metaphors. Some of the
methods used may not generalize well to other
types of personifications. Our study is the first to
focus specifically on generating personifications.

For generating similes, Chakrabarty et al. (2020)
propose using style-transfer models with COMET
commonsense knowledge to generate similes. The
study similarly creates a parallel corpus and trains
a seq2seq model to perform the generation.

There is also a recent work by Keh et al. (2022)
that uniquely investigates the generation of tongue
twisters using seq2seq and language models.

Personifications. There are currently few stud-
ies that specifically work on personifications. Gao
et al. (2018) detect personifications as a subtype
of metaphors, but not as its own figure of speech.
Generation is largely unexplored. We believe this
is likely because personifications are generally
more difficult to define and categorize. Further-
more, because several sources simplify personifi-
cations to fall under metaphors (Stowe et al., 2021;
Chakrabarty et al., 2021), there is also a lack of
personification-specific datasets.

Constrained Text Generation. There is also
a body of work exploring the family of more gen-
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eral constrained text generation tasks. Gangal et al.
(2022) investigate NAREOR, or narrative ordering,
which rewrites stories in distinct narrative orders
while preserving the underlying plot. Miao et al.
(2019) show gains on several tasks through deter-
mining Levenshtein edits per generation step using
Metropolis-Hastings sampling. Feng et al. (2019)
propose Semantic Text Exchange to modify the
topic-level semantics of a piece of text.

Lin et al. (2020) propose CommonGen, a genera-
tive commonsense reasoning task based on concept-
to-text generation. Works investigating this task in-
clude EKI-BART (Fan et al., 2020) and KG-BART
(Liu et al., 2021), which use external knowledge
to enhance performance on CommonGen. SAP-
PHIRE (Feng et al., 2021b) uses the data itself
and the model’s own generations to improve Com-
monGen performance, while VisCTG (Feng et al.,
2022) uses per-example visual grounding.

6 Conclusion and Future Work

In this paper, we explored the task of personifica-
tion generation. We curated a dataset of personi-
fications and proposed the PINEAPPLE method
to automatically de-personify text. Using our par-
allel corpus, PersonifCorp, we trained a seq2seq
model (BART) to generate creative personifications.
Through automatic, human, and qualitative evalu-
ation, we demonstrated that these personifications
make sentences more interesting and enhance the
text’s overall appeal. Our finetuned model success-
fully does this while maintaining a high level of
fluency and meaning perservation.

Some weaknesses of our model include failing
to personify more complex sentence structures, and
occasionally failing to preserve the exact meaning
of the original sentence. We also believe that our
model still has room to grow in terms of the di-
versity of personifications generated. Further, we
can explore unsupervised style transfer methods
(Yang et al., 2018; Malmi et al., 2020; Krishna
et al., 2020), where we regard the personification-
hood of a sentence as a kind of style. We can also
investigate data augmentation methods (Feng et al.,
2021a, 2020; Dhole et al., 2021) to further expand
our dataset. Another promising direction would be
to explore ways to acquire more control over which
parts of the sentence are personified or what types
of personifications are generated, or to apply this
to make dialogue agents more interesting, e.g. by
giving them more personality (Li et al., 2020).
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Ethics Statement

Our human and automatic evaluations (see §3.2)
are done over content either directly sourced from,
or generated by publically available, off-the-shelf
pretrained models trained either on already exist-
ing, publicly available datasets, or datasets further
derived by post-processing the same — as further
described in Datasets (see §2 for more).

We do collect human evaluation ratings using
crowd-sourcing, specifically through AMT and in-
person annotation. However, we neither solicit,
record, nor request any kind of personal or iden-
tity information from the annotators. Our AMT
annotation was conducted in a manner consistent
with terms of use of any sources and intellectual
property and privacy rights of AMT crowd workers.
Crowdworkers were fairly compensated: $1.12 per
fluency + appropriateness + meaning preservation
evaluation HIT, and $0.56 per personificationhood
evaluation HIT, for roughly 6 min (first) and 2 min
(latter) tasks, respectively. This is at least 1.5-2
times the minimum U.S.A. wage of $7.25 per hour
($0.725 per 6 minutes and $0.25 per 2 minutes).

We primarily perform experiments on personifi-
cation in English (Bender and Friedman, 2018).

NLG models are known to suffer from biases
learnable from training or finetuning on data, such
as gender bias (Dinan et al., 2020). However,
our work and contribution does not present or re-
lease any completely new model architechtures,
and is primarily concerned with more careful adap-
tation and finetuning of existing pretrained mod-
els for a particular class of figurative construct
(i.e. personification). The frailties, vulnerabilities,
and potential dangers of these models have been
well researched and documented, and a specific
re-investigation would be repetitive and beyond the
scope and space constraints of this paper.

We do not foresee any explicit way that ma-
licious actors could specifically misuse fintuned
models that could be trained on our data, beyond
the well-researched, aforementioned misuse that is
possible in general with their instantiation for any
transduction task or dataset (e.g. summarization).
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A Appendix A: De-Personification
Pipeline

A.1 Dependency Tree Merging Example
Figure 4 contains an example of the merging pro-
cess that was described in the TOPIC-ATTRIBUTE

extraction step in §2. As outlined in §2, edge re-
lations to iteratively merge are negation modifiers,
possession modifiers, nominal modifiers, adjectival
complements, and objects of prepositions, as well
as words tagged as determiners and parts of com-
pound phrases. The priority order for merging is
as follows: 1) compound phrases, 2) nominal mod-
ifiers, 3) possession modifiers, 4) negation modi-
fiers, 5) determiners, 6) objects of prepositions, 7)
adjectival complements.

A.2 Human-Related Words
In §2, we defined the IsAPerson animacy metric as
the average of the IsA scores between the TOPIC

and various words that are very closely related
to ‘human’. We called this set the HUMANSET.
The words contained in HUMANSET are as follows:
{“person”, “human”, “man”, “woman”, “human
being”, “boy”, “girl”}.

These words were empirically selected by con-
sidering a list of synonyms of the word ‘person’
and checking the IsA relation COMET scores with
the word ‘human’. All of the above words have IsA
scores with ‘person’ of less than 5.10.

A.3 Parameters and Thresholds
IsAPerson Threshold. For the IsAPerson ani-
macy score, we use a threshold of 7.0. IsAPer-
son scores < 7.0 are considered animate, while
scores ≥ 7.0 are considered inanimate. This
threshold was selected empirically using words
known to be animate and words known to be inani-
mate. Words tested include “she” (5.31), “person”
(6.41), “moon” (8.743), “opportunity” (9.488),
“stars” (8.717), “joe” (5.804), “jane” (4.976), “the
police officer” (6.462), “my friend” (6.805), “my
new iphone” (10.055). From these observations,
we observe that all animate words have an IsAPer-
son score of < 7.0, while all inanimate objects
have a score of ≥ 7.0. We hence conclude that 7.0
is a suitable threshold.

Candidate Selection Composite Score Param-
eters. For the α, β, γ used in the composite
score for candidate selection, we use values of
α = 1, β = 1, γ = 1. This was selected for two
reasons. First, all of the score values had largely

Metric Spearman
Correlation

Krippendorff α

Personificationhood 0.0934 0.0250
Appropriateness 0.1660 0.1778

Fluency 0.0050 0.0942
Interestingness 0.6160 0.5898

Meaning Preservation 0.0389 0.2558

Table 5: Inter-annotator agreement scores.

similar scales (logarithmic), so setting α, β, γ to
a larger value like 2 or 3 would disproportion-
ately favor a certain metric, which is not what
we desire. Second, we experimented with us-
ing values such as 0.8, 1.2, and 1.5, but the gen-
erated de-personifications were either very simi-
lar or slightly worse than the default setting of
α = 1, β = 1, γ = 1. A possible future direc-
tion would be to explore possible values of α, β, γ
more thoroughly, but for this dataset, we stick to
the simple case of α = 1, β = 1, γ = 1.

B Appendix C: Evaluation Details

B.1 Human Evaluation Setup
A total of 20 unique AMT annotators participated
in the study for fluency, appropriateness, and mean-
ing preservation, each performing 4.0 HITs on aver-
age. Annotators were compensated 1.12$ per HIT,
each of which was designed to take <6 mins on
average.

22 unique AMT annotators participated in the
second, separate study for personificationhood,
each performing 4.36 HITs on average. Annotators
were compensated 0.56$ per HIT, each of which
was designed to take <2 mins on average.

For the interestingness study, the details regard-
ing annotator background and selection can be
found in §3.2.2 and Appendix B.3.

The html templates including instruc-
tions, questions and other study details
corresponding to both these AMT studies
can be found in the templates/ sub-
folder of our code submission zip, with the
names fluency_appropriateness_
meaningPreservation.html and
personificationhood.html respectively.

B.2 Inter-Annotator Agreement Scores
Each generated input instance and its respective
model outputs are labelled by two distinct anno-
tators. To measure inter-annotator agreement, we
use Spearman correlation and Krippendorff α, as
reported in Table 5.
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To get the Spearman correlation point value for
a given aspect and test instance, we compute mean
pairwise Spearman correlation between the aspect
values assigned to the corresponding model outputs
by every pair of annotators. Specifically, we use
the scipy.stats implementation to compute this. 10

For Krippendorff α, we treat each human eval-
uation aspect as an ordinal quantity. Specifically,
we use the implementation provided by the python
library krippendorff 0.5.1.11

B.3 English Assessment Test for Annotators

From the native English-speaking university stu-
dent annotators who enrolled to participate in our
Interestingness study, we first elicited answers to
an English assessment test, as mentioned in §3.2.2.

The assessment test comprised of 12 questions
spanning multiple question types testing the ex-
aminee’s grasp of the use and distinction between
various figures of speech, basic literary general
knowledge, and verbal reasoning skills. A spread-
sheet file containing this test can be found with
the name LiteratureTest.xlsx under the Templates/
subfolder of our code submission .zip file.

The final annotators used for our interestingness
study were chosen from those who got 11 or more
of the 12 questions on the English assessment test
correct, hence scoring at least 85% on the test.

C Appendix B: Implementation Details

The BART-base model was trained using a learning
rate of 2e-5. This was by conducting a hyperparam-
eter search over the values {1e-6, 5e-6, 1e-5, 2e-5,
5e-5, 1e-4} and selecting the model/epoch based on
lowest validation loss. The same process was done
to select a batch size of 4 using a hyperparameter
search over values {2,4,8,16}. Training was done
for 20 epochs and 400 warmup steps. The Adam
optimizer was used, and inputs were truncated to
a maximum length of 64 tokens (using BART’s
subword tokenization).

Training was done on Google Colaboratory en-
vironments using V100 GPUs. For the BART-base
model, a single training loop of 20 epochs takes
approximately 10 minutes to complete.

10https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.
spearmanr.html

11https://pypi.org/project/
krippendorff/

Method Text
Literal Input The news hit me hard. (ex.7)
Human Ref The news punched me hard.
COMET The news report event late me hard.
BL-BART The news hit me hard.
PA-BART The news pounded me hard.
Literal Input Panic is sweeping through the streets contagiously. (ex.8)
Human Ref Panic is driving around the streets contagiously.
COMET Panic is result through the streets contagiously.
BL-BART Panic is running through the streets contagiously.
PA-BART Panic runs through the streets contagiously.
Literal Input In the dead of summer, in Ohio, the clothes felt hot and humid. (ex.9)
Human Ref In the dead of summer, in Ohio, the clothes seemed to be sweating

themselves.
COMET In the dead of summer, in Ohio, the clothes fit and humid.
BL-BART In the dead of summer, in Ohio, the clothes we wear can be hot and

humid.
PA-BART In the dead of summer, in Ohio, the clothes complained and humid.
Literal Input Streaks of electricity zipped through the air, swirling around and

around dangerous (ex.10)
Human Ref Streaks of electricity cackled through the air, swirling around and

around dangerous.
COMET Streaks of electricity stain carpet through the air, swirling around and

around dangerous.
BL-BART Streaks of electricity were shooting through the air, swirling around

and around the building.
PA-BART Streaks of electricity danced around and around dangerous.
Literal Input The sun is nowhere to be found, and the streets are eerily quiet (ex.11)
Human Ref The sun seems to be on leave, and the streets are eerily quiet.
COMET The sun down, and the streets full of traffic.
BL-BART The sun, and the streets.
PA-BART The sun refuses to be found, and the streets are polite
Literal Input The wind blew through me fast. (ex.12)
Human Ref The wind stampeded through me fast.
COMET The wind howl through me fast.
BL-BART The wind was going through me fast.
PA-BART The wind ran me fast.

Table 6: Additional qualitative examples for personification
outputs: literal input, human writing, COMET, BL-BART,
and PA-BART.

D Appendix D: Additional Examples

Table 6 is an extension of Table 4 and contains
additional qualitative examples of the generations.
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Figure 4: Step-by-step example of the merging process for TOPIC-ATTRIBUTE identification.
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Abstract

In this paper, we propose to leverage the unique
characteristics of dialogues sharing common-
sense knowledge across participants, to re-
solve the difficulties in summarizing them. We
present SICK, a framework that uses common-
sense inferences as additional context. Com-
pared to previous work that solely relies on the
input dialogue, SICK uses an external knowl-
edge model to generate a rich set of common-
sense inferences and selects the most probable
one with a similarity-based selection method.
Built upon SICK, SICK++ utilizes common-
sense as supervision, where the task of gener-
ating commonsense inferences is added upon
summarizing the dialogue in a multi-task learn-
ing setting. Experimental results show that with
injected commonsense knowledge, our frame-
work generates more informative and consis-
tent summaries than existing methods.

1 Introduction

Abstractive dialogue summarization is a task of
generating a shorter summary while preserving
the context of a conversation (Li et al., 2017;
Gliwa et al., 2019). Unlike conventional document-
to-document summarization (e.g., news articles
and scientific publications) (Nallapati et al., 2016;
Gehrmann et al., 2018), such dialogue-to-document
summarization suffers from the discrepancy be-
tween input and output forms, which makes learn-
ing their mapping patterns more challenging.

There are two key challenges that make sum-
marizing dialogues harder than documents. First,
detecting unspoken intention is crucial for under-
standing an utterance (Mendelsohn, 1994; Ram
et al., 2018). As shown in Figure 1, without under-
standing the intent “to make fun of someone”, it is
hard to write a correct summary. Second, there ex-
ists information that can only be understood when

∗Equal contribution
†Corresponding author

Alyssa: What do you think about it?


Alyssa: The best part is that she acts like she nailed it. 
But at least it's funny in a good way.

Derek: It is

Derek: I can fart bright stripes and bright stars better 
then she sings. 

 

=> xWant,  to make fun of someone


Golden summary

Derek and Alyssa  Fergie's performance of 
the national anthem.

 make fun of

Golden summary


 She won't be repairing it, because 
. 

Melody's 5-year-old laptop is broken. Tomorrow she'll 
know what's wrong.

Instead, she'll buy a new one.her laptop is too old

Melody: youre probably due for a new one anyway, no?

Peggy: you're right. 5 years is a long time to own one.


Peggy: ok. i might just not bother getting it repaired after 
all.

Melody: sounds like a good idea

Melody: yes, thats ancient by laptop standards

=> HinderedBy,  the laptop is too old


Figure 1: Example of dialogue-summary pairs. Captur-
ing the intention and hidden meaning is important to
generate a novel summary.

its hidden meaning is revealed (Talmy, 1988). For
example, it is important to capture the hidden mean-
ing “The laptop is too old” beyond the written text
“yes, thats ancient by laptop standards” when writ-
ing the summary.

Commonsense knowledge models (Hwang et al.,
2021; Gabriel et al., 2021; West et al., 2022) such as
COMET can generate a set of event-centered (e.g.,
HINDEREDBY, XREASON, XNEED) and social-
interaction (e.g., XINTENT, XWANT) common-
sense inferences. We argue that the aforementioned
issues can be mitigated using commonsense knowl-
edge by filling in the gap in a dialogue.

Despite its effectiveness, it is non-trivial to use
commonsense knowledge for improving abstrac-
tive dialogue summarization performance. While
commonsense knowledge has been widely applied
to commonsense reasoning (Bosselut and Choi,
2021; Liu et al., 2020; Chang et al., 2021; Wang
et al., 2021; Kim et al., 2022) or question answer-
ing (Shwartz et al., 2020; Bosselut et al., 2021),
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its usage for summarization is understudied (Feng
et al., 2021).

In this paper, we present our framework SICK
and its extension SICK++ to properly inject com-
monsense knowledge into state-of-the-art language
models (e.g., BART (Lewis et al., 2020)) for ab-
stractive dialogue summarization. We argue a naïve
adoption of commonsense only hurts performance
in summarization, as (a) expanding source contents
is counter-intuitive approach for the goal of con-
densation, and (b) simply adding additional inputs
in pre-trained language models does not lead to ro-
bust inferences as reported in Zhou et al. (2021b,a).
Our framework addresses this by (a) filtering and
(b) robust training.

Based on analytical measurements, common-
sense knowledge is selected and enumerated as an
additional context of dialogue inputs. In SICK++,
we also design a new auxiliary task named common-
sense supervision. Using commonsense knowledge
generated from gold summaries as additional su-
pervision, the goal of the task is to generate the
target commonsense. Then, the dialogue summa-
rization and commonsense generation tasks are
jointly learned in a multi-task learning setting to
effectively inject commonsense knowledge into the
shared encoder.

To validate our framework, we conduct a set
of experiments on abstractive dialogue summa-
rization benchmarks. Empirical results show that
our framework can improve summarization perfor-
mance with leveraged commonsense knowledge,
outperforming other baselines. Human evaluation
results prove that our method can generate infor-
mative and consistent summaries. In addition, we
conduct experiments to analyze the effect of com-
monsense knowledge on abstractive dialogue sum-
marization.

2 Related Work

2.1 Abstractive Dialogue Summarization

Compared to extractive summarization (Nallapati
et al., 2017; Zhang et al., 2018; Zhong et al., 2020),
abstractive summarization is considered more chal-
lenging and has received extensive attention (Rush
et al., 2015; See et al., 2017). Benefiting from the
advance of large-scale pre-trained language models,
the performance of encoder-decoder models has
achieved substantial improvements in document
summarization (Nallapati et al., 2016; Gehrmann
et al., 2018; Zhang et al., 2020a).

Recently, abstractive dialogue summarization
has become another emerging research area, where
the goal is to generate concise summaries for con-
versations such as meetings (Zhu et al., 2021) and
chit-chat (Chen et al., 2021). It is more difficult to
capture the key points in dialogues than documents,
because people do not state the obvious (Grice,
1975) and conversations have a more interactive
flow of information between speakers (Li et al.,
2021b). Based on the characteristic of the dia-
logues, many studies focused on organizing the
information in the dialogues. Wu et al. (2021) pro-
pose to create a summary sketch for a given dia-
logue as weak supervision. Chen and Yang (2021)
explicitly model structures in conversations by in-
corporating discourse relations and action triples
in utterances through structured graphs. Instead
of organizing the given dialogue for better under-
standing, our method adds additional knowledge to
fill in the missing cues between dialogues.

2.2 Commonsense Knowledge Models

Recent research has focused on commonsense
knowledge acquisition through different lines: com-
monsense knowledge graphs and commonsense
knowledge models. Unlike static knowledge
graphs such as ATOMIC (Sap et al., 2019) in which
entities and relations between entities are repre-
sented in nodes and edges, commonsense knowl-
edge models such as COMET (Bosselut et al.,
2019) have been shown to generate implicit com-
monsense inferences along several dimensions de-
pending on what knowledge graphs they are trained
on. Commonsense knowledge models can be used
to anticipate and reason unobserved causes and ef-
fects in relation to the observed event (Sap et al.,
2019). Despite these functions, they are applied
on defined domains (Shwartz et al., 2020; Bosselut
et al., 2021). Especially, on dialogue summariza-
tion task, there has been limited usage of using
commonsense directly as additional context. For
example, Feng et al. (2021) and Zhou et al. (2022)
utilized ConceptNet (Speer et al., 2017), a static
knowledge graph with encyclopedic knowledge, to
fill in the missing cues between dialogue.

In contrast to encyclopedic knowledge, our
method uses event-centered and social-interaction
knowledge as additional context. Also, instead
of retrieving from a static knowledge graph, our
method deploys on-the-fly commonsense knowl-
edge models to acquire a rich set of commonsense
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Decoder

xNeed

xWant

xReason

[EOS][SOS]

Dialogue

Commonsense

Golden summary 

Encoder output

SBERT

COMET
to buy food

to eat dinner

HinderedBy

what's for dinner?

what to eat

xIntent

to satisfy hunger

What’s for dinner?

Decoder

[EOS][SOS]

Target 

commonsense 

Figure 2: The overall framework of SICK and SICK++. The decoder generating target commonsense is used for
SICK++.

inferences dynamically.

3 Proposed Framework

In this section, to inject commonsense knowledge
for rich abstractive dialogue summarization, we
introduce our new framework, SICK(Summarizing
with Injected Commonsense Knowledge) and its
extension SICK++, as shown in Figure 2.

3.1 Task Description

Our task definition follows a sequence-to-sequence
learning problem setting. Based on pre-trained
generative language models, our goal is to learn
a mapping function M : D → Y where D =
{u1, u2, ..., un} is a dialogue with n utterances,
and Y = {y1, y2, ..., ym} is a corresponding sum-
mary of m sentences.

We further extend the task with two modifica-
tions. First, we generate and filter to acquire a set
of commonsense knowledge C = {c1, c2, ..., cn}
based on D (Section 3.2, 3.3). Then, we adjust
the mapping function as M : X → Y , where X
is a cross concatenation of D and C (Section 3.3).
Second, we add an auxiliary task commonsense
supervision, M∗ : X → Z , where the target com-
monsense Z = {z1, z2, ..., zm} is acquired based
on Y (Section 3.4).

3.2 Commonsense Knowledge Generation

In SICK, commonsense knowledge is leveraged as
a supplement to insufficient context of dialogues.
As shown in Table 1, additional information can be
derived from the given utterance in various aspects.
There are some cases where the intention of the
speaker is crucial in comprehending the dialogue
(e.g., “to believe in something”, “to talk to someone

Utterance Charlie : Do you really believe
that dreams can mean something?

HINDEREDBY Charlie doesn’t believe in dreams.
XWANT to talk to someone about dreams.
XINTENT to believe in something.
XNEED to have a dream.
XREASON Charlie is a skeptic.

Table 1: Example of commonsense knowledge gener-
ated by COMET given a dialogue.

about dreams”). Whereas in other cases, the hid-
den information is necessary (e.g., “Charlie doesn’t
believe in dreams”, “to have a dreams”, “Charlie
is a skeptic”). We adopt an external commonsense
knowledge model that generates a diverse and abun-
dant set of commonsense inferences in natural lan-
guage. Given a text x and a relation type r, the
commonsense knowledge model gives an output c
grounded to the relation type. i.e., f : (x, r)→ c.

Specifically, we use COMET (Hwang et al.,
2021), a widely-used generative commonsense
model as our external model. Among the 23
possible candidate relation types, we choose 5
unique relations that helps understand the speak-
ers’ intentions and find out the missing information.
COMET generates 5 commonsense inferences per
relation type, resulting in 25 per input.

Also, to attend to the previous utterances
when generating commonsense inferences, we
further explore a discourse-aware model, PARA-
COMET (Gabriel et al., 2021) that generates coher-
ent inferences. More specifically, while COMET
generates a set of commonsense inferences consid-
ering only one sentence at a time, PARA-COMET
adopts an internal memory module to consider pre-
vious dialogue history when generating an output.
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Prev-
Utterances

Jane : google maps says it is at least 3h
Steven : I used to make it in 2, trust me
Jane : but it’s almost 300km
Steven : the road is new , we will make it

Utterance Jane : I don’t want to stress out, let’s
meet at 4:30 instead of 5, ok?

XINTENT to avoid stress.
XWANT to not be late.
XREACT annoyed
XEFFECT PersonX sweats from nervousness.
XATTR nervous.

Table 2: Example of commonsense knowledge gener-
ated by PARA-COMET given a dialogue.

In Table 2, when generating commonsense infer-
ences of the current dialogue, PARA-COMET con-
ditions on the previous utterance. Knowing what
was previously stated, the intention of the speaker
(e.g., “to not be bothered”, “to not be stressed”, “up-
set”) and the hidden knowledge (e.g., “annoyed”,
“PersonX gets into trouble”) differs from COMET.

3.3 Summarizing with Injecting
Commonsense Knowledge (SICK)

Filtering Compared to question answering and
commonsense generation (Shwartz et al., 2020;
Wang et al., 2021), summarizing dialogues has an-
other difficulty. The amount of data provided as
the input should be mapped into the output in a
concise form. Therefore, simply providing extra
input (i.e., commonsense knowledge) may confuse
the model when generating a summary. Moreover,
it is unable to add every possible commonsense
knowledge to the dialogue due to the limited input
sequence length of transformer-based models.

To address this issue, we propose to select the
most favorable commonsense for each utterance.
For 25 candidates, we measure the semantic rele-
vance between the utterance and the commonsense
inference concerning. One could imagine that fil-
tering could choose only very similar “safe” ex-
amples that might not be as valuable/interesting
in practice (i.e., diversity vs. quality). However,
recent literature address that paradoxically, filter-
ing increases diversity (West et al., 2022). We also
discuss the impact of different filtering methods in
Appendix E.

We employ SBERT (Reimers and Gurevych,
2019) to compute the similarity score between ut-
terance and commonsense pairs. We select one
commonsense inference ci, with the highest score
for each utterance ui among the candidate relations

R. As a result, we obtain the input commonsense
C = {ci}ni=1 aligned with dialogue D.

ci = argmax
cri

(score(ui, cri )) (r ∈ R) (1)

Cross Concatenation After obtaining the input
commonsense for the dialogue, we concatenate
the dialogue and its corresponding set of common-
sense inferences. To encode the information that ci
is derived from ui, we enforce to attend its neigh-
bor token. Instead of concatenating D and C back
and forth, we concatenate turn by turn consider-
ing locality of reference (Clark et al., 2019; Zaheer
et al., 2020), where tokens tend to attend its neigh-
boring tokens. In order to separate the modalities
between dialogues and commonsense inferences,
we add special tokens <I>, </I> in back and forth
of each commonsense inference ci. Thus the input
sequence X is formulated as:

X = D ⊕ C = · · · ∥ ui ∥ <I> ci </I> ∥ · · · (2)

Training SICK is built upon a transformer-based
encoder-decoder architecture. The encoder fuses
the information from two different modalities (i.e.,
dialogue and commonsense inference). By the
stack of decoders, the encoder output is used for
cross-attention with the summary. The training ob-
jective, a negative-log likelihood parameterized by
θds, can be formulated as:

Lds = −
|Y|∑

i=1

|yi|∑

j=1

logP (wi,j |wi<j ,X ; θds) (3)

where wi,j is j-th token of i-th sentence yi in target
summary Y .

3.4 SICK++
Commonsense Supervision It is well known that
models do not consider the actual input as a whole
and only look at certain parts of the input therefore
not performing the underlying task but some deriva-
tive (Branco et al., 2021). For example, in Figure 1,
although it is critical to understand Derek’s inten-
tion (e.g., “to make fun of Fergie’s performance”),
SICK may not utilize the commonsense to compre-
hend the dialogue.

To overcome this problem, we propose an aux-
iliary task named commonsense supervision. In
addition to providing commonsense on the input
side, we also leverage commonsense knowledge as
additional target variable, which prevents the model
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from disregarding commonsense and enforces ac-
tually to utilize commonsense. For instance, when
the summary “Derek and Alyssa make fun of Fer-
gie’s performance of the national anthem.” is given
to COMET, we observe that a target commonsense
“to make fun of ” is generated. Generating both the
summary and the target commonsense has an ef-
fect of emphasizing that the input commonsense
inference “to make fun of someone” is important.

We generate a set of target commonsense infer-
ences Z with the summary Y using an external
knowledge model f . Then we filter and select the
most plausible target commonsense.

zi = argmax
zri

(score(yi, zri )) (r ∈ R) (4)

To adopt commonsense knowledge as additional
supervision, we further include commonsense sum-
marization decoder Dcs, which learns to generate
target commonsense Z .
Training With the target commonsense Z , we train
the commonsense summarization decoder Dcs to
minimize a negative log-likelihood loss function
such as:

Lcs = −
|Z |∑

i=1

|zi|∑

j=1

logP (wi,j |wi<j ,X ; θcs) (5)

where wij is a j-th word token of sentence cyi from
the target commonsense Z .

We linearly combine the two loss functions,
Equation 3 and Equation 5, in a multi-task learning
setting as follows:

Ltotal = λ · Lds + (1− λ) · Lcs (6)

where Lds and Lcs denote the loss function for
dialogue summarization decoder Dds and common-
sense summarization decoder Dcs, respectively. λ
is a predefined hyperparameter to adjust the scale
of each loss. In our setting, we set λ = 0.66.
Inference During inference, given an input dia-
logue Dtest, we first obtain input commonsense
Ctest for the dialogue, and specify input sequence
as X test = Dtest ⊕ Ctest by concatenating turn by
turn. Then, the model predicts summary Ŷtest =
M(X test) for the dialogue Dtest. Note that while
we train the model in a dual-decoder setting, we
only use the dialogue summarization decoder Dds
and discard the commonsense prediction decoder
Dcs at inference time.

SAMSum DialogSum

Train 14,732 12,460
Dev 818 500
Test 819 500
#Tokens/dialogue 82.57 121.56
#Tokens/summary 20.30 22.64
#Turns 11.2 9.5
#Speaker 2.4 2.0
#Compression rate 0.3538 0.2001

Table 3: Statistics of dialogue summarization datasets.
# stands for the average number. The compression rate
is a ratio of the length of summary divided by the length
of dialogue.

4 Experimental Setup

4.1 Datasets and Baselines

We perform experiments on SAMSum (Gliwa et al.,
2019) and DialogSum (Chen et al., 2021) datasets.
SAMSum is the most widely used resource for ab-
stractive dialogue summarization task. It consists
of natural messenger-like conversations in English
created by linguists with manually annotated sum-
maries. DialogSum (Chen et al., 2021) is a recently
released dataset for a more challenging task with
a lower compression ratio. It contains multi-turn
dialogues of real-life scenarios collected from three
dialogue corpora. The data statistics are in Table 3.

We adopt three different types of baselines: (i)
generative language models (See et al., 2017; Wu
et al., 2019; Vaswani et al., 2017); (ii) pre-trained
language models (Zhang et al., 2020c; Dong et al.,
2019; Zhang et al., 2020a; Lewis et al., 2020); (iii)
dialogue summarization Models (Feng et al., 2021;
Chen and Yang, 2021; Wu et al., 2021). We provide
more details in Appendix A.

4.2 Implementation Details

We employ two automatic evaluation metrics as: (i)
ROUGE (Lin, 2004) scores, including ROUGE-1,
ROUGE-2, and ROUGE-L, which compares word-
level uni-gram and bi-gram, and the longest com-
mon sequence overlap with the gold summary re-
spectively; (ii) BERTScore (Zhang et al., 2020b)1,
the recent popular metric for text generation, which
computes the contextual similarity score between
generated and reference summaries. We report F1
scores for both metrics. For simplicity, we use R-1,
R-2, R-L, and B-S to denote ROGUE-1, ROUGE-2,

1We follow https://github.com/Tiiiger/bert_score to cal-
culate BERTScore. Note that different tools may result in
different BERTScore.
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SAMSum DialogSum

Model R-1 R-2 R-L B-S R-1 R-2 R-L B-S

PointerGenerator (See et al., 2017)∗ 32.27 14.42 34.36 / / / / /
DynamicConv (Wu et al., 2019)∗ 41.07 17.11 37.27 / / / / /
Transformer (Vaswani et al., 2017)∗ 42.37 18.44 39.27 / / / / /
DialoGPT (Zhang et al., 2020c)† 39.77 16.58 38.42 / / / / /
BART-xsum (Lewis et al., 2020)† 51.74 26.46 48.72 53.87 / / / /
UniLM (Dong et al., 2019)† 47.85 24.23 46.67 / 42.38 16.88 34.36 69.40
PEGASUS (Zhang et al., 2020a)† 50.50 27.23 49.32 53.35 38.40 13.84 33.41 68.20
BART-xsum (Lewis et al., 2020)‡ 52.50 27.67 48.75 68.16 45.15 19.78 36.57 71.09

D-HGN (Feng et al., 2021) 42.03 18.07 39.57 64.20 / / / /
S-BART (Chen and Yang, 2021) 50.70 25.50 48.08 70.07 / / / /
CODS (Wu et al., 2021) 52.65 27.84 50.79 66.55 44.27 17.90 36.98 70.49

SICK w/ COMET (Ours) 53.04 27.60 48.49 71.61 45.70 20.08 40.26 71.08
SICK++ w/ COMET (Ours) 53.24 28.10 48.90 71.71 46.26 20.95 41.05 71.30

SICK w/ PARA-COMET (Ours) 53.39 28.42 49.12 71.83 46.01 20.30 40.75 71.57
SICK++ w/ PARA-COMET (Ours) 53.73 28.81 49.50 71.92 46.20 20.39 40.83 71.32

Table 4: Automatic evaluation on abstractive dialogue summarization benchmarks, i.e., SAMSum and DialogSum.
Results on SAMSum with * are obtained from (Gliwa et al., 2019), † are obtained from (Wu et al., 2021) and ‡ is a
re-implemented version trained under the same conditions with ours for fair comparison. Results on DialogSum for
all models are all reimplemented under the same conditions with ours.

ROUGE-L, and BERTScore (see Appendix C).
Our implementation is based on the Hugging-

face implementation (Wolf et al., 2020) of BART
language model. Specifically, we use the weight
checkpoint of BART-xsum2. We use a maximum
input length of 1024 tokens and output length of
100 tokens. Note that the input is either padded
or truncated after each utterance and its corre-
sponding commonsense is concatenated during pre-
processing. We use a learning rate of 3e-6 and a
batch size of 32 when fine-tuning our model on
both benchmarks. We use linear warm-up over the
first 600 steps, apply linear decay and use the Adam
optimizer (Kingma and Ba, 2015). In our experi-
ments, we use beam search with beam size of 20.
We fine-tune our model on SAMSum for 20 epochs
and DialogSum for 25 epochs. All experiments
are run on one A100 NVIDIA GPU. More imple-
mentation details about commonsense knowledge
generation is included in Appendix B.

5 Experimental Results

5.1 Automatic Evaluation

Performance Table 4 presents the performance
on SAMSum and DialogSum test sets. SICK++
outperforms all baselines on ROUGE-1, ROUGE-
2 and BERTScore by a consistent margin in both
datasets.

2https://huggingface.co/facebook/bart-large-xsum

Comparison with State-of-the-Art We find that
pre-trained language models (e.g., DialoGPT,
UniLM, PEGASUS, BART-xsum), outperform
models that are not pre-trained (e.g., PointerGen-
erator, DynamicConv, Transformer), confirming
the impact of pre-training on abstractive dialogue
summarization. Among the pre-trained genera-
tive language models examined, PEGASUS and
BART-xsum are the most competitive models with
ROUGE-1 higher than 50. SICK++ shows improve-
ment on all metrics compared to BART-xsum (e.g.,
without additional input, commonsense supervi-
sion) in both benchmarks showing that our method
can be applied in different settings.

Among methods that alter the input to seek addi-
tional useful information in a dialogue setting, (e.g.,
D-HGN, SBART, and CODS), CODS achieves bet-
ter performance over other baselines in SAMSum.
However, on DialogSum, a more challenging set-
ting due to higher abstractiveness, CODS is not
able to get as much gain of performance compared
to other baselines. Meanwhile, SICK++ outper-
forms all baselines and shows competitive results
implying the robustness of our framework.

Commonsense Models While SICK++ shows bet-
ter performance regardless of which commonsense
generation model is used, the excelling choice
differs depending on the dataset. In SAMSum,
SICK++ shows better performance with PARA-
COMET than with COMET, however it shows op-
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SAMSum DialogSum

Model Info. Cons. Info. Cons.

BART-xsum 3.71 3.48 3.71 3.68
SICK++ 3.85 3.81 3.79 3.97

Gold 4.00 3.96 4.03 4.21

Table 5: Human evaluation on SAMSum and Dialog-
Sum datasets. Info. and Cons. denotes informativeness
and factual consistency respectively.

posite result in DialogSum. We conjecture this due
to the characteristic of datasets and commonsense
models hold. PARA-COMET has an advantage of
using parametric memory to consider previous sen-
tences, which may be sensitive in terms of length.
Since SAMSum has shorter length of dialogues
than DialogSum, the recurrent memory component
of PARA-COMET is less likely to forget the previ-
ous sentences. We expect to get better performance
with the help of commonsense-models that main-
tains longer memories of sentences/dialogues and
leave this as future research.

5.2 Human Evaluation

We conduct human evaluation to verify the quality
of the generated summaries. We randomly sam-
ple 50 dialogues from test sets of SAMSum and
DialogSum, respectively. Annotators were asked
to score the quality of a set of summaries from
BART-xsum, SICK++, and ground-truth using a
Likert scale from 1 (worst) to 5 (best) in terms
of informativeness (i.e., covers adequate informa-
tion) and factual consistency (i.e., consistent with
the original input). Each summary was evaluated
by three different annotators. Also, the win-loss
ratio, which is not biased by subjectivity, is 51.33
(informativeness) and 54.16 (factual consistency),
which is consistent to the observations made from
the absolute scores.

In Table 5, human annotated summaries receive
the best scores on all dimensions. SICK++ gets
better scores than BART-xsum for informativeness,
which matches the results of ROUGE scores in
Section 5.1. Neural abstractive models often suf-
fer from hallucinations that affect their reliabil-
ity (Zhao et al., 2020). SICK++ also produces more
consistent summaries even though factual consis-
tency is not explicitly modeled. We assume that
incorporating commonsense knowledge helps the
model recognize the hidden meanings and better
understand the dialogue, resulting in fewer factual

errors without improper reasoning over conversa-
tional flow.

6 Analysis

To evaluate the effectiveness of our method, we
address the following research questions to guide
our experiments:

• RQ1: Does commonsense help summarizing
dialogues?

• RQ2: Is our method worth using in terms of
efficiency despite the extra effort?

• RQ3: Does commonsense supervision lead
SICK++ to inject commonsense knowledge?

6.1 RQ1: Commonsense Applicability
We experiment in a zero-shot setting to examine
how commonsense knowledge solely affects dia-
logue summarization . While there exist many fac-
tors that could affect performance besides common-
sense during training (e.g., hyperparameter config-
urations), in a zero-shot setting, we can directly
compare when commonsense is given and not. We
evaluate BART-xsum and SICK on the SAMSum
and DialogSum test sets. Note that we use SICK
(i.e., only provided input commonsense) instead
of SICK++ for zero-shot evaluation, since we can-
not access ground-truth summary to generate target
commonsense inferences Z .

Table 6 presents zero-shot evaluation results on
SAMSum and DialogSum respectively. We find
that SICK outperforms BART-xsum, where the per-
formance gain comes from additional common-
sense. Since the only difference between BART-
xsum and SICK is the input commonsense, pro-
viding extra commonsense for each utterance as
Equation 2 helps the model generate more accurate
and semantically informative summaries. This also
supports the idea that commonsense is essential in
resolving the discrepancy between dialogues and
documents.

6.2 RQ2: Data Efficiency
Generating commonsense inferences requires irre-
sistible effort, further described in Appendix B. Our
approach has limitations in terms of time efficiency.
However, we find that our method is helpful in sit-
uations where data is insufficient, meaning there is
a trade-off (time vs data efficiency).

We hypothesize that due to providing additional
knowledge and commonsense supervision, SICK++
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SAMSum DialogSum

Model R-1 R-2 R-L B-S R-1 R-2 R-L B-S

BART-xsum 20.83 4.28 15.28 46.59 17.40 4.16 13.80 42.97
SICK 23.12 5.09 17.45 47.69 18.32 3.80 14.98 43.97

Table 6: Zero-shot evaluation on SAMSum and DialogSum test set.
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Figure 3: Performance of BART-xsum and SICK++ on SAMSum by varying the size of training data. We use
BARTBASE for both of them. Details are shown in Appendix.
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Figure 4: Attention visualization of SICK/SICK++.
Each point of the line corresponds to the average at-
tention a particular SICK encoder attention head puts
towards commonsense inferences.

can show comparable performance even if only
a small amount of training data is available (i.e.,
data efficiency). As shown in Figure 3, with only
30% of training data, SICK++ shows better perfor-
mance than BART-xsum trained with 70% of train-
ing data. Furthermore, SICK++ consistently out-
performs BART-xsum regardless of training data
size, proving the robustness of SICK++. The per-
formance gap between SICK++ and BART-xsum
can be viewed as a consequence of the leveraged
commonsense, based on the fact that BART-xsum
is the base architecture of SICK++.

6.3 RQ3: Effect of commonsense supervision
on Injecting Commonsense Knowledge

We observe that SICK++ shows better performance
than SICK, as we show in Table 4, but the rea-
son for the performance improvement is somewhat
unclear. To analyze the role of commonsense super-
vision, we now take a look at how the dual decoder
setting impacts commonsense utilization of the en-

coder, the difference between SICK and SICK++.
Attention weights can be viewed as governing

how “important” every other token is when pro-
ducing the next representation for the current to-
ken (Clark et al., 2019). We conduct a experiment
of measuring the averaged attention value of the
commonsense inferences compared to utterances
using validation sets of DialogSum, which is more
abstractive (i.e., more challenging to comprehend)
compared to SAMSum.

The results are illustrated in Figure 4. Rogers
et al. (2020) mentioned that final layers of language
models are most task-specific, and we observe that
SICK++ has marginally higher attention values.
We conjecture this is due to the supervision pro-
vided by generating Z instead of relying on dis-
tant supervision, meaning that our goal of enforc-
ing the model to use commonsense inferences is
successful. SICK++ enforces the encoder to fuse
the two different modalities (e.g., utterances, com-
monsense inferences). Meanwhile in lower and
middle layers, SICK++’s attention values tend to
be lower than SICK. One possible reason is that
lower layers tend to look at syntactic and word-
level information (Rogers et al., 2020), whereas the
commonsense inferences generated by COMET or
PARA-COMET is only meaningful when under-
stood conceptually.

7 Conclusion

In this work, we propose SICK and SICK++ frame-
work in order to resolve the two key challenges: i)
filling in the gap in dialogues; ii) injecting com-
monsense knowledge into a model. We show that
the difficulties in dialogues are resolved with com-
monsense knowledge and demonstrated that our
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framework can successfully inject commonsense
knowledge. As a result of injected commonsense
knowledge, we obtain competitive results on SAM-
Sum and DialogSum benchmarks.
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A Baselines

Generative Language Models

• PointerGenerator (See et al., 2017) is a
RNN-based method designed for text sum-
marization that deploys copy-attention mech-
anism.

• DynamicConv (Wu et al., 2019) is a
lightweight convolutional model that can per-
form competitively to self-attention.

• Transformer (Vaswani et al., 2017) is
a random-initialized (i.e., not pre-trained)
encoder-decoder architecture with self atten-
tion and multi-head attention.

Pre-trained Generative Language Models

• DialoGPT (Zhang et al., 2020c) is a GPT-
2 model pre-trained on open-domain Reddit
data designed for response generation.

• UniLM (Dong et al., 2019) is a unified lan-
guage model which can be used for both nat-
ural language understanding and generation
tasks by pre-trained using three types of lan-
guage modeling tasks: unidirectional, bidirec-
tional, and sequence-to-sequence prediction
on English Wikipedia and BookCorpus.

• PEGASUS (Zhang et al., 2020a) is a model
specifically designed for summarization tasks
where it is pre-trained with an gap-sentence
objective. Important sentences are masked
from input and is trained to generate the miss-
ing parts, similar to an extractive summary
approach.

• BART (Lewis et al., 2020) is trained by cor-
rupting text with an arbitrary noising function
and learning to reconstruct the original text.

• BART-xsum3 denotes a BART (Lewis et al.,
2020) model fine-tuned on XSUM (Narayan
et al., 2018) dataset.

Dialogue Summarization Models

• CODS (Wu et al., 2021) finds key phrases,
and generates length-controllable summary
from the key phrases.

• D-HGN (Wu et al., 2021) incorporated
commonsense knowledge from Concept-
Net (Speer et al., 2017) for dialogue summa-
rization.

• S-BART (Chen and Yang, 2021) incorporated
discourse relations between utterances, and
the connections between speakers and actions
within utterances to generate abstractive con-
versation summarization.

B Implementation Details of
Commonsense Generation

To generate commonsense, we use COMET and
PARA-COMET. Each commonsense model has
different choices in terms of model architecture.

3https://huggingface.co/facebook/bart-large-xsum
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For COMET, we use BART version among sev-
eral available versions. Publicly available check-
points were used for both COMET4 and PARA-
COMET5.GPT-2 version was used for PARA-
COMET.For inference, we use beam search with
beam size 5 and 10 for each COMET and PARA-
COMET, the default setting provided in the pub-
lic repository. All this procedure is done on one
GeForce RTX 3090 GPU.

To investigate the overhead, we measure the time
required to generate commonsense inferences in
SAMSum. SAMSum, consisted of 14732 samples
within the train subset, took 18.3 hours to generate
all the needed commonsense inferences. In other
words , it took about 4.4719 seconds per dialogue
to generate the commonsense.Note that SAMSum
has an average of 11.2 turns per dialogue, so that
this number could vary depending on how long the
given dialogue is.

C Automatic Evaluation Metrics

The following metrics are used for the evaluation
of baselines and our models:

• ROUGE measures the number of overlapping
textual units between generated summary and
a set of reference summaries.

• BERTScore computes the similarity scores by
aligning generated and reference summaries
on a token-level based on the output of the
BERT-based model. Token alignments are
computed greedily with the objective of maxi-
mizing the cosine similarity between contex-
tualized token embeddings. We report the F1
score.

D Human Evaluation Metrics

In general, the gold-standard method for evaluating
text generation is still human evaluation, where
human annotators assess the quality of generated
texts. We adopt the following human evaluation
metrics:

• Informativeness: How well does the gener-
ated summary captures the key ideas of the
source dialogue?

• Factual Consistency: How consistent is the
generated summary with respect to the source

4https://github.com/allenai/comet-atomic-2020
5https://github.com/skgabriel/paracomet

dialogue? Does the generated summary con-
tain only statements entailed by the source
dialogue?

E Commonsense Selection Methods

We consider two different methods in addition to
our similarity-based method to filter commonsense
inferences : (i) Random : any random common-
sense inferences from 25 possible candidates are
chosen for each utterance; (ii) NLI-based : deploy
a pre-trained language model that is fine-tuned on
a natural language inference (NLI) task, to deter-
mine whether a commonsense inference does not
contradict with the utterance/sentence.

We use random selection method as a baseline
to compare whether filtering helps gain additional
performance.

NLI based method is also used by previous
works (Gabriel et al., 2021; West et al., 2022) to
measure the quality of commonsense inferences.
Given a pair of {ui, cri } or {yi, zri }, we acquire the
probability of ENTAIL and CONTRADICT. Then
we measure the score as:

NLI Score(ui, cri ) =

P (ENTAILMENT)− P (CONTRADICT)
(7)

NLI Score(yi, zri ) =

P (ENTAILMENT)− P (CONTRADICT)
(8)

where the commonsense inference with the highest
NLI Score is selected. As a result, we obtain the
input commonsense C = {c1, c2, ..., cn} aligned
with dialogue D for additional context and the tar-
get commonsense Z = {z1, z2, ..., zm} aligned
with summary Y for additional supervision.

For NLI-based selection, we use RoBERTa-
Large (Liu et al., 2019) which is fine-tuned on
MNLI (Williams et al., 2018) to score common-
sense candidates. Note that we do not have any
label telling which commonsense inference is most
plausible to be chosen when given an utterance,
therefore, we measure the NLI scores in a zero-
shot manner.

As shown in Table 7, using the similarity-based
selection method consistently outperforms other
methods, regardless of the type of commonsense
knowledge model. Since NLI-based method is
more intuitive compared to similarity-based meth-
ods, and was used in previous works, one might ask
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SAMSum DialogSum

Generation Model Selection Model R-1 R-2 R-L B-S R-1 R-2 R-L B-S

COMET
Random 53.04 27.17 48.49 71.34 46.05 20.46 40.61 70.84
NLI-based 53.21 28.02 48.85 71.53 45.26 19.94 40.04 70.54
Similarity-based 53.24 28.10 48.90 71.71 46.31 20.95 41.10 71.71

PARA-COMET
Random 52.95 27.62 48.51 71.45 45.59 20.16 40.23 70.65
NLI-based 52.99 28.22 48.61 71.69 45.14 20.01 39.98 70.99
Similarity-based 53.73 28.81 49.50 71.92 46.20 20.39 40.83 71.32

Table 7: Performance of SICK++ by varying the commonsense related methods.

why NLI-based method does not show good per-
formance. We conjecture this due to the complex-
ity of each task. Measuring the relation of inclu-
sion is more complex in nature compared to simply
measuring the semantic similarity. Our methodol-
ogy uses a zero-shot setting, therefore it is harder
to reach the standards without supervision. The
outperforming choice of commonsense selection
method could differ when trained with labeled data,
and we leave this to future work.

Also, one might conjecturfe that using the
top-1 selected commonsense inference with the
similarity-based method is a copy of the utterance,
resulting in inferences with similarity value 1.0
only selected. However, we found that the mean
value of the top-1 commonsense inferences are
0.535799, and standard deviation 0.176364. This
shows that the commonsense inferences isn’t a
copy except for a few bad cases. Considering both
diversity and quality is important, and we also leave
this to future work.

F Choose of Commonsense Relations
from COMET

In prior work such as Chakrabarty et al. (2022) and
Li et al. (2021a), it is conventional to selectively
use a subset of the COMET relations, depending
on the characteristics of a target domain and task.
In our work, the social-interaction relations such
as xIntent and xWant are most preferred with the
best performance as they are strongly relevant to
human-human interaction in dialogue.
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Dialogue Commonsense
Frank: Son, will you come home this weekend? Frank has to go to work..
Son: Not sure yet. son is not sure yet.
Son: Something happened? Person asks to son what happened.
Frank: Of course not. Frank doesn’t want to be rude.
Frank: Your mother miss you. your mother misses you..
Son: I miss her too. son misses his mother.
Frank: So will you come? Frank is too shy to ask..
Son: I will try. son will try
Frank: Good, I will tell your mother that you will come. son will come.
Son: Oh, dad.. ok I will come. Person asks if he can come.
Gold Summary
Son is coming to see his parents’ this weekend.
BART-xsum
Son will come home this weekend.
SICK
Son will come home this weekend. He misses his mother.

Julie: <file photo> Julie sent a photo.
Emily: <3 Julie Love, I’m sending tons of kisses ;*;*;* to show love.
Emily: <emoji> Emily sent a photo.
Julie: Merry Christmas and a lovely mood throughout the whole year, darling. Julie gives a hug
Emily: Thank you, for you too <3 Person is thanked.
Julie: Thanks:* Julie gets a hug.
Julie: <file photo> <file photo> Julie sent a photo.

Gold
Emily and Julie wish Merry Christmas to each other.
SICK++
Julie and Emily are exchanging Christmas greeting.
BART-xsum
Julie sends Emily tons of kisses.

Stewart: Can you believe he even said that about the forests the forest to be healthy.
Stewart: Raking? Really? to think about the situation.
Shari: Yes... I can believe that this is an ignorant man... Shari doesn’t want to be ignorant.
Shari: He proves it daily.. This is just one more example! Shari wants to be helpful.
Stewart: He just has no clue... he has no clue...
Stewart: I mean, there are so many people dead and all he can think to do is

criticize the forestry department? With a totally inappropriate suggestion? Shari thinks it’s inappropriate.
Stewart: I can’t wait to vote for anyone else but him... to vote for someone else.
Shari: I know what you mean.. Half my friends voted for him

just to see what would happen! Well, guess what? Shari votes for him
Stewart: Yeah, we couldn’t go another 4 years with a Democrat.. They want to get rid of him.

...

Gold
Stewart and Shari find the current president ignorant and incompetent. They hope he gets voted out. Stewart is going to see
what possibilities there are of volunteering in the upcoming elections.
SICK++
Stewart and Shari don’t like the fact that the current president raked the forests. They think he’s an ignorant man. Shari and
Stewart don’t want to vote for him, but they have to make the best of it now.
BART-xsum
Stewart and Shari don’t like the way the president is behaving. They are going to vote for anyone else but him.

Table 8: Successful examples of generated summaries with SICK from DialogSum.
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Dialogue Commonsense
Person1: Are you familiar with American-styled accounting? Person1 asks PersonY if they are fa-

miliar with accounting.
Person2: I am afraid not. Person2 is too afraid.
Person2: I haven’t worked in an American company so far. Person2 is too young to work.
Person1: What are the most fundamental concepts underlying the accounting process? to learn about accounting.
Person2: The first is accounting entity, and the second is going concern. Person2 is not qualified.
Person2: The third is measuring unit. Person2 doesn’t know how to measure.
Person2: The fourth is accounting period, and the fifth is objectivity. Person2 has to be objective.

Gold
Person2 tells Person1 about the fundamental concepts of the accounting process.
SICK++
Person2 tells Person1 the most fundamental concepts underlying the accounting process.
BART-xsum
Person1 asks Person2 about American-styled accounting.

Person1 Oh, it’s getting late. Person1 has to go to work..
Person1 I’ve got to run. to be running.
Person1 It was nice talking to you, karren. Person1 calls back.
Person2 Thanks, Tim. to talk to Tim.
Person2 Nice meeting you, too. to meet PersonY.
Person1 I guess we’ll see each other around. Person1 calls PersonY.
Person2 Yeah, I hope so. Person2 asks Person2 if they are sure.
Person2 Well, take it easy. Person2 has to work.
Person1 You too. to talk to PersonY.

Gold
Tim and Karren say goodbye.
SICK++
Tim and Karren say goodbye to each other.
BART-xsum
Tim and Karren meet each other for the first time.

Person1 Taxi! Person1 calls a taxi.
Person2 Where to, sir? Person2 asks for directions.
Person1 I’d like to go to the railway station please. to go to the train.
Person2 Please hop in. PersonY asks PersonY to get in..
Person1 Is it a long run to the station? to go to the station.
Person2 It’ll take about 20 minutes. PersonY asks how long it will take.
Person1 The streets are heavy with traffic at this time of a day, are they? the traffic is heavy.
Person2 Yes, they are. Person2 doesn’t know what they are.
Person1 Is it the rush hour now? Person1 has to go to work.
Person2 Yes, it is. Person2 doesn’t know if it is.
Person2 Are you in a hurry sir? Person2 asks PersonY to hurry up.
Person1 No, I’m not. No, I’m not.
Person1 Would you please drive slowly and carefully? Person1 asks Person2 to slow down.
Person2 Yes, sir. Person2 is asked a question.

Gold
Person1 takes a taxi to the railway station in the rush hour.
SICK++
Person1 takes a taxi to the railway station.
BART-xsum
Person1 calls a taxi to go to the railway station. Person2 tells him it’ll take about 20 minutes and drives slowly and carefully.

Table 9: Successful examples of generated summaries with SICK from DialogSum.
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Error Type Dialogue Commonsense

Copying Utterance
#Person2#: Have a good day! have a good day.
#Person2#: Well, take it easy. to take it easy.
#Person1#: Were you born in Los Angeles? born in Los Angeles.

Factual Consistency
#Person2#: I’m afraid not. Person2 is too afraid.
#Person2#: But I’m not sleepy, darling. Person2 is sleepy.
#Person2#: I haven’t worked in an American company so far. Person2 is too young to work.

Not Informative
#Person2#: I’m afraid not. Person2 is too afraid.
#Person1#: No, not much. Person1 says no.
#Person2#: I’ve heard this one before. Person2 thinks.

Table 10: Failed examples of generated summaries with SICK.
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Abstract

Multi-hop question generation (QG) is the pro-
cess of generating answer related questions,
which requires aggregating multiple pieces of
information and reasoning from different parts
of the texts. This is opposed to single-hop QG
which generates questions from sentences con-
taining an answer in a given paragraph. Single-
hop QG requires no reasoning or complexity,
while multi-hop QG often requires logical rea-
soning to derive an answer related question,
making it a dual task. Not enough research
has been made on the multi-hop QG due to its
complexity. Also, a question should be created
using the question type and words related to
the correct answer as a prompt so that multi-
hop questions can get more information. In this
view, we propose a new type-dependent prompt
cycleQAG (cyclic question-answer-generation),
with a cycle consistency loss in which QG
and Question Answering (QA) are learnt in
a cyclic manner. The novelty is that the cy-
cle consistency loss uses the negative cross
entropy to generate syntactically diverse ques-
tions that enable selecting different word repre-
sentations. Empirical evaluation on the multi-
hop dataset with automatic and human evalua-
tion metrics outperforms the baseline model by
about 10.38% based on ROUGE score.

1 Introduction

Question Generation (QG) problem that automati-
cally generates a question from a given document
with a correct answer is a challenging and an inter-
esting task in the field of natural language process-
ing (Chan and Fan, 2019; Pan et al., 2021; Yu et al.,
2020; Dong et al., 2019). With the advent of deep
learning, the pre-trained language models (Devlin
et al., 2019; Radford et al., 2018; Liu et al., 2019;
Raffel et al., 2020; Clark et al., 2020; Peng et al.,
2021) were proposed, after which the study of nat-
ural language processing began to develop rapidly.

∗∗Corresponding author

These works not only use single-hop QA dataset
such as SQuAD (Rajpurkar et al., 2016), which is a
representative of research on Question Answering
(QA), but also the multi-hop QA dataset such as
HotpotQA (Yang et al., 2018). The QA dataset con-
sists of (Context, Question, Answer) pairs along
with a lot of QA data, that enables research on
Automatic Question Generation (AQG). Most of
the question generation methods evaluated ques-
tions using the single-hop QA datasets (Duan et al.,
2017; Du et al., 2017; Sultan et al., 2020). How-
ever, in real-world situations, the questions can be
very complex and sometimes require a complicated
reasoning process (Gupta et al., 2020; Pan et al.,
2021; Yu et al., 2020).

Multi-hop QG requires combining several pieces
of information and reasoning over them to derive
an answer related a question, making it a dual task.
Multi-hop questions that can be encountered in
the real world are largely divided into two types,
bridges and comparisons. As shown in Fig. 1, the
middle side is an example of a bridge-type question.
When the question is “Who played Selby Wall in
the film that Charlize Theron won an Academy
Award for?”, the first thing we need to know is what
film Theron won the Academy Award. Second,
we should be able to obtain information about the
actors who played Selby Wall among the actors in
the movie. Here, Monster, the movie that connects
the two, serves as a bridge. On the other hand,
the comparison type shown on the right side of
Fig. 1 is to create a question that can be answered
by comparing two objects.

Some of the methods for multi-hop QG trans-
form the input text into an intermediate represen-
tation such as a parsing tree (Ji et al., 2021), and
then convert the resulting form into a question by
some well-designed templates or general rules. In
(Gupta et al., 2020), they use multi-task learning
with an auxiliary loss for sentence-level supporting
fact prediction. Graph-based methods (Su et al.,
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Figure 1: Examples of Single-hop QAG and Multi-hop QAG pair in HotpotQA (Yang et al., 2018) dataset. Multi-hop
QG for reasoning multi-hop by finding the contact points between the given Answer and supporting facts A and B.
The left is a bridge type, and the right is an example of a comparison type multi-hop question. Both question types
are multi-hop, but generate questions with different characteristics.

2020; Kumar et al., 2019) used graph convolution
networks(GCNs) to capture dependencies among
different pieces of information for reasoning. How-
ever, those approaches should predefine graphs
only from the question and candidate answers, lack-
ing much key information for multi-hop reasoning.

To alleviate the above problems, we introduce
the automated question generation to handle the
lack of information for multi-hop reasoning and
solve the predefined graph issue in an end-to-end
manner. In this view, we propose a type-dependent
prompt CycleQAG, which provides additional in-
formation and loss of cycle consistency for multi-
hop QG. At first, an intermediate task of cyclically
learning QG and QA is performed before the fine-
tuning stage. In this process, we use cycle consis-
tency loss, and in particular, we introduce the nega-
tive cross entropy (NCE), which is used to increase
the lexical diversity of multi-hop questions. And in
the final step, we use a prompt-based fine-tuning
method that maximizes the information obtained
from the intermediate task by giving information
that can be provided according to the types of ques-
tions (eg, type and answer related words). Using
the proposed model, we can generate complex ques-
tions by an end-to-end manner with semantically
similar but diverse vocabulary.

We use the HotpotQA distractor setting and per-
form experiments with a multi-hop QA dataset.
The proposed model outperforms the baseline mod-
els in automatic evaluation results such as ROUGE

(Lin, 2004) for quantitative evaluation. However,
qualitative part of the multi-hop question is evalu-
ated using fluency, relevance, answerability, com-
plexity, and diversity for human evaluation. We
evaluate the diversity of vocabulary through quali-
tative evaluation, and show examples to prove this.

2 Related Works

Question Answering. Machine reading compre-
hension (MRC) is originally inspired by language
proficiency tests, and the machine aims to answer
a question by reading and understanding a given
context (Zhu et al., 2021). (Seo et al., 2016)
introduced the Bi-Directional Attention Flow
(BIDAF) network, and proposed a model structure
to represent contexts at various levels using a
multi-level hierarchical structure. QANet (Yu
et al., 2018) models an architecture that does not
require a recurrent network and only consists of
convolution model and self-attention. Recently,
research on new multi-hop QA datasets that require
more complex and diverse information, such as
HotpotQA (Yang et al., 2018), HybridQA (Chen
et al., 2020), MultiModalQA (Talmor et al., 2021),
is being actively conducted. For example, (Xiong
et al., 2021) used a simple recursive framework to
solve open domain multi-hop QA, and configured
the model to use dense search for multi-hop
setups. In this work, we propose a method to solve
multi-hop QA reasoning by a top-down approach
to find a specific answer in a whole context.
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Question Generation. The ultimate goal of
the QG task is to automatically generate questions
from texts or knowledge data. With the advent
of machine reading comprehension datasets such
as SQuAD and pre-trained language models,
QG research is conducting the multi-hop rea-
soning research that deals with more complex
and inference-demanding thorny questions, to
mimic humans (Pan et al., 2020; Yu et al., 2020;
Pan et al., 2021). (Yu et al., 2020) proposed a
whole generator evaluator network for generating
questions by creating an entity graph to integrate
various entities scattered in the texts. (Pan et al.,
2021) proposed a multi-hop QG method that used
predefined basic operators to search, generate, and
aggregate information of each input according to
the types of inputs. They also defined and used six
inference types of reasoning graphs. In particular,
an off-the-shelf template was used for generating
a comparison type question that compares two
subjects. Although such pre-defined templates or
structured models can generate accurate questions
for given data, they can be fatal in both quantitative
and qualitative aspects when new complex data
are given. To overcome some of these issues, we
propose a new end-to-end approach to generate
multi-hop questions.

Dual task of QA and QG. QA and QG are
separate but closely related tasks. In (Tang et al.,
2017), they jointly train the two tasks by exploiting
the probabilistic correlation between QA and QG.
In particular, the parameterized model was jointly
trained to minimize the loss function according to
the constraints. (Duan et al., 2017) used question
generation as an auxiliary task to improve the
text-based QA task. They calculated the relevance
score between the input question and the answer
candidates, and chose the highest relevance score
as a correct answer. (Sun et al., 2020) generated
additional training instances to further improve the
QA model in (Tang et al., 2017), each consists of a
question, an answer, and a label for a category. In
addition, the question was created by clamping the
answer part and providing the answer to the QG
model. Many efforts have been made to improve
each module by using QA and QG together. In this
view, we not only propose a method of using cycle
consistency to increase the robustness of QA and
QG but also introduce the NCE that increases the

diversity of questions.

3 Proposed model

The proposed model for question generation in-
cludes an intermediate task execution phase be-
fore the fine-tuning step. In the intermediate task,
QA and QG are trained to have cycle consistency,
where question paraphrasing and similarity are ad-
ditionally used to increase the robustness of the
question generation. We focus on using the multi-
hop QG and QA together as a supplement to in-
crease the performance of QG. We define QA as
the top-down approach to find a right answer, and
QG as the bottom-up approach to use abundant in-
formation from entities or sentences. The overall
framework of our proposed model is explained in
Fig. 2.

3.1 Intermediate Task Training
The intermediate task is to fine-tune the pre-trained
model for a task of interest before fine-tuning. We
fine-tune the models used for the intermediate task
based on the Google-T5 model (Raffel et al., 2020).
In the intermediate task stage, QG and QA learn
the "cycle consistency". This property was first
introduced in the back-translation by Brislin (Bris-
lin, 1970). This translates English to French, and
translates the translated French back to English
so that the original sentence can be reconstructed.
Mathematically, this can be represented as a trans-
lator G : X → Y, F : Y → X, where G and F are
inverse of each other, and are connected like a bi-
jection. Inspired by those properties, when gen-
erating questions and answers in the intermediate
stage, the proposed QG and QA model uses a cycle-
consistency loss that exchanges inputs and outputs
in the reverse direction, respectively.

3.1.1 Question Generation
We attempt to handle the multi-hop question
generation using the answers and the context.
First, we use Google-T5 (Raffel et al., 2020) as
the baseline model to automatically generate
the output question with a given input answer.
While generating a question, as introduced in
(Chan and Fan, 2019), there may be more than
one instance of the same tokens as the correct
answer in the context, then it may be confusing
for the model to focus on question generation,
we surround the annotated answer span tokens
in the context with two tokens. Therefore, the
format of the input can be represented as <sep>
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Figure 2: The framework of our proposed model. The proposed model configures QA and QG to learn cycle
consistency (a). In the intermediate task, it is possible to create richer questions and more accurate answers through
QA and QG interaction. In (b) and (c), the process of QGA-consistency and QAG-consistency to which cycle
consistency is applied is shown in detail.

c1,c2,c3 <hl> answer <hl> c4,c5, ..., cm <sep>,
where ci is token of the context. The question
generation module of the proposed model not
only generates single-hop questions but also
produces complex multi-hop questions that require
multiple pieces of information. We train the
model in such a way that the proposed QG module
generates semantically similar and syntactically
diverse questions. In particular, we introduce the
NCE and the cross-entropy(CE) loss to train a
QG model that generates more lexically diverse
questions. It controls the probability of adopting
information so that it can be semantically similar
but syntactically diverse. When training QG,
unlike in previous studies, we use the NCE. The
probability of occurrence of a word can be lowered,
but the essential meaning of a word does not
change, thereby enriching the diversity of meaning.

Negative Cross Entropy loss (NCE loss). We
use the NCE loss to generate questions more
diverse. In general, most studies use the cross
entropy (CE) to better train the model to maximize
the probability of the correct class (Marek et al.,
2021). However, as shown in Fig. 2 (a), in order to
generate questions with a more diverse vocabulary
for the bottom-up QG, we use the NCE to flatten

the word occurrence probability distribution
and increase the diversity of vocabulary. In this
work, we use the NCE loss to reduce the distance
between the predicted value and the actual value
such that the generated question has similar
meaning with increased lexical diversity.

Question Paraphrasing. In addition, to increase
the robustness of the QG module, several questions
are generated through a question paraphrasing
process. This enables QG with the same meaning
but different expressions. We use a paraphrasing
model fine-tuned in advance using a Google-T5
model which was Quora Question Pair (QQP) * as
the question paraphrasing dataset.

Similarity for generated paraphrasing question.
Since it is important to ensure that the meaning
of the generated question is the same even if a
question with various expressions is generated, the
similarity of the generated question should be mea-
sured. To find the similarity among paraphrased
questions, Sentence-BERT (SBERT) is used, and
the overall method is the same as that introduced in
(Reimers and Gurevych, 2019), but uses T5 instead

*https://www.kaggle.com/c/
quora-question-pairs.

6304



of BERT †. We set the similarity value between
0 and 1. The similarity value obtained during the
learning process is converted to 1− similarity to
train the model in such a way that the loss value
decreases as the similarity increases.

Algorithm 1 Procedure of CycleQAG Framework

Input: Context = (c1,. . . , cn), Answer for QG
Context = (c1,. . . , cn), Question for QA

Output: Multi-hop Question

1: Initial QG← Generate question by QG Input
2: Paraphrasing the generated question
3: Calculate the cosine-similarity between the

generated questions and the original question
4: Initial QA← Generate answer by QA Input
5: for k ← 1 to N do
6: Ck ← cycle(QA,QG)
7: end for
8: return Multi-hop question, answer

3.1.2 Question Answering
To build a model that infers an answer using a
given (question, passage) pair, the QA model is
also trained using the Google-T5 model. In this
paper, QA is used to improve the performance of
QG, where the ultimate goal of the QA model is to
approach the sentence related to the question in a
given paragraph and access a correct answer.

3.1.3 Answer related words generation
Multi-hop QG requires more than two pieces of
information when asking a question that can fit a
correct answer. This requires gathering information
in order to create a question. To this end, we use
the title information of each supporting paragraph
provided as in Fig. 1 to generate words related to a
correct answer. Usually, the titles help by providing
significant information in generating questions to
arrive at a correct answer. We explain this in the
appendix C with examples.

3.1.4 Cycle Consistency
We propose the cycle consistency which is widely
used in the image field for QG and QA. By us-
ing this method, as shown in Fig. 2, QG and QA
modules can help generate a robust model that can

†Since the T5 is essentially an encoder-decoder model, it
is assumed that the decoder knows the meaning of the entire
input sentence while generating the first token prediction. This
means that the output embedding of the first decoder can grasp
the meaning of the sentence like the [CLS] token of the BERT.

match the question and answer, respectively. There
are not many, but existing multi-hop QG models
use graphs or templates (Pan et al., 2021; Su et al.,
2020; Kumar et al., 2019). However, we intro-
duce the cycle consistency loss to train a text-based
model that can learn by an end-to-end manner. We
define the cycle consistency loss to reduce the dif-
ference between the predicted value and the actual
value. The overall learning flow of the model with
cycle consistency is given in Fig. 2 (a). Fig. 2 (b)
refers to the QGA-consistency which predicts a
question through QG using a given context and an
answer, and then predicts an answer through the
QA again. Conversely, Fig. 2 (c) refers to QAG-
consistency for finding an answer with QA using
a given context and a question and then predicting
the question with QG. In here, the process flow
shown in Fig. 2 (b) is to predict a correct answer,
and it is necessary to predict question well through
QG to predict correct answer through QA as shown
in Fig. 2 (c). Our model uses the cycle consistency
property so that answers and questions are learnt
better. We describe the overall flow of the Cycle-
QAG framework in Algorithm 1. In algorithm 1,
N is the number of samples of the dataset and we
use a common early stopping approach for cycle
training.

3.2 Prompt-based fine-tuning

We use the multi-hop dataset for fine-tuning a tar-
get task after training an intermediate task. Unlike
general fine-tuning, the prompt-based fine-tuning
adds an element called a prompt. Prompt shows
that GPT-3 (Brown et al., 2020) achieves remark-
able performance in a few-shot setting, and has
been used in many recent studies (Shin et al., 2020;
Lester et al., 2021; Gao et al., 2021). In particular,
prompt-based fine-tuning (PFT) aims to investi-
gate the knowledge gained from pre-training by
reducing the distribution gap between pre-training
and fine-tuning stages. Considering these points,
we use PFT instead of fine-tuning to make most
of the information obtained from the intermediate
task. The detailed process of the PFT process is
described in Algorithm 2.

A multi-hop QG aims to generate a question
using several pieces of information related to a
correct answer. For this, we construct a prompt by
extracting words related to a correct answer from
an intermediate task. This not only uses the types of
questions and the correct answers, but also words
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Algorithm 2 Procedure of Type-dependent
prompt fine-tuning for QG

Input: Prompt (P) ; Context with answer (X)
Output: Multi-hop Question (Y)

1: Configure required prompt token per context
2: Merge prompt token and context with answer
3: Maximize the likelihood of multi-hop question

Y.
4: return Prθ(Y |[P ;X]), while keeping the

model parameters, θ, fixed.

related to the correct answers obtained from section
3.1.3 as a prompt. This enables providing more
information when generating multi-hop questions.
We show the results of questions obtained through
PFT in appendix C.

3.3 Model Training
In this section, we describe in detail how the model
trains an intermediate task. The total loss of the in-
termediate task consists of QA loss, QG loss, cycle
consistency loss, and similarity loss. Therefore the
loss is given by Eq. (1).

LAll = LQA + LQG + Lcycle + Lsim (1)

Eq. (2) defines the cycle consistency loss which
includes the loss for QA model and loss for QG.
We learn QA and QG cyclically with the cycle con-
sistency loss, allowing QA to narrow the range of
correct answers, and QG to express more questions
in an enriched expression. The similarity loss Lsim
determines whether the paraphrased questions are
semantically close while learning the QG. LQA
uses CE loss to find a right answer for a given ques-
tion. LQG uses the CE loss and the NCE loss to
generate a variety of questions that are similar to
the original question.

Lcycle =
1

2
[LCE︸︷︷︸

QGA

+ {λ1LNCE + (1− λ1)LCE}︸ ︷︷ ︸
QAG

] (2)

The first term of Lcycle for learning the cycle-
consistency is the loss obtained using the QGA-
consistency, which is explained in section 3.1.4 and
Fig. 2 (b). Here, the QGA learns to get closer to
an original answer by generating a question using
a answer and context and then generates a correct
answer through the QA again. The remaining terms
of the Lcycle describe the process of learning the

QAG-consistency in Fig. 2(c). While the previous
methods use the CE alone, we propose to use the
NCE to train the QAG consistency to improve di-
versity. The QAG learns to get closer to an original
question by performing QG through QA. In this
part, we adjust the NCE and the CE with λ1 so that
the semantic and the lexical are properly balanced.

For generating questions with a similar meaning,
to increase the diversity of questions and reduce
the occurrence of most probability words, we use
the NCE as shown in Eq. (3). In other words, it is
intended to flatten the probability of occurrence of
words, so that words can appear in various ways.

LNCE =
1

N

N∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

(3)
However, if the model is trained only using Eq.

(3), NCE may diverge (to -∞), so we adjust the
Eq. (4) and hyperparameter λ1 values such that the
probability of the word appearing in the question
is lowered only to a certain level. We heuristically
adjust λ1 as 0.2.

LCE = − 1

N

N∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

(4)

4 Experiments

In the following experiments, we evaluate multi-
hop QG based on semantic similarity and lexical
diversity. We also evaluate whether the intermedi-
ate task has an affect on QG module performance.
The baseline model is initialized with a Google-T5
model from HuggingFace Transformer (Wolf et al.,
2020), fine-tuned with 3 epochs, with batch size 8.
The GPU used in the experiment is 4 Quadro RTX
8000.

4.1 Dataset

We evaluate our model with a focus on multi-hop
QA, HotpotQA (Yang et al., 2018). HotpotQA is a
multi-hop dataset that is more complex and requires
reasoning than existing single-hop QA datasets.

As mentioned in RefNet (Nema et al., 2019),
since the test set of HotpotQA is hidden, the val-
idation set is used as the test set, and a part of
the training set is used as a validation set. In the
experiments, a dataset similar to the HotpotQA
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MODEL BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L

Baselines
B1. MQA-QG 36.01 25.79 21.88 17.83 26.89 39.95
B2. BART 36.35 26.70 22.42 18.02 26.96 40.85
B3. Google-T5 36.89 26.89 22.14 18.27 27.26 41.02

Proposed P1. Type-dependent prompt CycleQAG 38.28 29.77 24.32 20.51 29.01 44.10

Ablation
A1. w/o type-dependent prompt 36.47 27.61 22.45 18.24 27.94 42.34
A2. w/o Cycle (intermediate task) 36.96 27.88 22.91 18.98 27.70 41.90
A3. w/o similarity, paraphrase 37.20 28.18 23.11 19.33 28.57 43.44

Table 1: Performance comparison with baseline and the ablation study. The best performance is bold.

dataset type is additionally used to improve the per-
formance of multi-hop question generation. Repre-
sentatively, SQuAD, a single-hop dataset, is used.
Also, question paraphrasing is used to increase the
robustness of the question.

Stanford Question Answering Dataset v1.1
(SQuAD) (Rajpurkar et al., 2016) is a machine read-
ing comprehension dataset with over 100,000 ques-
tions created based on Wikipedia articles. Quora
Questions Pairs (QQP) provides a label for detect-
ing whether the intent is the same and whether the
question text pairs correspond to semantically iden-
tical queries, with a focus on various issues related
to Quora. We construct a QQP dataset with the
same proportions as (Thakur et al., 2021). A de-
tailed description of the dataset and data statistics
are shown in appendix A.

4.2 Baselines

Since the multi-hop QG has not yet been explored
much, there are few comparison models that can be
compared with ours. We use a text-based multi-hop
QG model and a model with excellent performance
in QG research as our baseline models.

MQA-QG (Pan et al., 2021) generates a question
according to a predefined reasoning graph accord-
ing to the types of questions. In particular, they
defined and used 11 templates for comparison type
questions. We experiment with the same experi-
ment settings as published in their paper. BART
(Lewis et al., 2020) is a model that combines a
Bidirectional Transformer and an Auto-Regressive
Transformer, and is a pre-trained model using the
denoising autoencoder method. In particular, it
shows excellent performance in natural language
generation. Google-T5 (Raffel et al., 2020) pro-
cesses the NLP task using the text-to-text input
and the output using C4 (Colossal Clean Crawled
Corpus), a very large dataset and achieves the high-
est level in benchmarks such as SuperGLUE. We
implement it using open code published by hug-

MODEL BERTSCORE
MQA-QG 91.88
BART-large 91.03
Google-T5 91.27
Type-dependent prompt CycleQAG (ours) 93.87
CycleQAG w/o type-dependent prompt 91.90
CycleQAG w/o Cycle 91.94
CycleQAG w/o similarity,paraphrase 92.93

Table 2: Performance of BERTSCORE. The best perfor-
mance is bold.

gingface ‡ for BART and Google-T5.

4.3 Multi-hop QG Results and Analysis

Quantitative automatic evaluation and qualitative
human evaluation are used to evaluate our proposed
model. To this end, we describe in detail the auto-
matic and human evaluation methods and discuss
the results.

4.3.1 Automatic Evaluation Metrics
We perform automatic evaluation using n-gram
and pre-trained language model based metrics.
N-gram based Metrics. BLEU (Papineni et al.,
2002) score is a precision-based evaluation that
computes the overlap of n-grams. METEOR
(Lavie and Agarwal, 2007) is a relaxed F -measure-
based evaluation method in which the unigrams of
the hypothesis and the reference do not have an
exact level of agreement, but they are synonymous.
ROUGE-L (Lin, 2004) is a measure of the
sequence of the longest common part between a
pair of sentences (Sai et al., 2022). We use the
nlg-eval § package released by (Sharma et al.,
2017) to evaluate an n-gram-based metric.
Pre-trained Language Model based Metrics.
BERTSCORE (Zhang* et al., 2020) is a method of
evaluating NLG and computes a similarity score of
each token of the candidate correct answer and the
ground truth. Whereas existing evaluation methods
evaluate based on exact match, BERTSCORE is

‡https://huggingface.co/
§https://github.com/Maluuba/nlg-eval
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MODEL Fluency Relevance Answerability Complexity Diversity
MQA-QG 2.45 2.38 2.42 2.35 2.35

BART 2.28 2.14 2.30 2.29 2.34
Google-T5 2.39 2.42 2.45 2.40 2.47

Type-dependent prompt CycleQAG (ours) 2.56 2.62 2.59 2.53 2.66

Table 3: Human Evaluation Results.

effective for paraphrase detection because it uses
contextual embedding (Devlin et al., 2019). We
download the package for bert-score from (Zhang*
et al., 2020)¶ and use it.

Results and Analysis. We compare the QG
performance of the proposed type-dependent
prompt CycleQAG model with baseline models
and show the automatic metric results in Table
1. Our type-dependent prompt CycleQAG model
outperforms all automatic evaluation metrics
including ROUGE-L when compared to other
models using the same data. Tables 2 indicates
whether contextual meaning can be reflected,
where BERTSCORE shows excellent performance.
Also, it can be seen that they are semantically
similar to the original question.

Ablation study. In order to understand the influ-
ence of the components of our proposed model, we
conduct an ablation study with experimental data
for type-dependent prompt CycleQAG. When we
do not use the fine-tuning of the type-dependent
prompt format that we suggest, it can be observed
that the performance is lowered. It can also be ob-
served that the presence or absence of additional
information determines the performance improve-
ment when performing a fine-tuning. The addi-
tional information referred to here is the types of
questions and words related to the answer. We con-
firm through experiments that their role helps to
improve overall performance. Also, fine-tuning the
data without the cycle-consistency loss performed
in the intermediate task stage, overall performance
is degraded. This confirms that the intermediate
task is helpful in the QG module when compar-
ing the performance with B3 as shown in Table
1. When we train to generate questions in an in-
termediate task, we use paraphrase and similarity
methods together to increase the lexical diversity of
questions. If these methods are removed and tested,
the overall performance is slightly degraded.

¶https://github.com/Tiiiger/bert_
score

4.3.2 Human Evaluation
In this section, we discuss the human evaluation
metric. We employ fluency, relevance, answerabil-
ity, complexity and diversity. Human evaluation is
an additional support method for the reliability and
robustness of automated evaluation. Here, we use
fluency, relevance, and answerability to measure
the quality of whether our proposed question is rel-
evant to a given context and answer. Multi-hop QG
has high complexity because it requires reasoning,
and it is necessary to measure the complexity of the
generated question. In addition, we use diversity to
evaluate cases in which vocabulary expressions are
expressed in various ways, although the meaning
of the question is the same. We randomly select 50
question-and-answer pairs from the test set from
20 annotators to obtain evaluations of our model
and other baseline models. In human evaluation,
we perform the evaluations in a blind format. The
range of scores used for evaluation is set to 1-3,
and the higher the score, the better the evaluation.
The results are shown in Table 3. Overall we
consistently get better performance than the con-
ventional models like the BART and Google-T5.
We obtain significantly better results than other ref-
erence models, especially in terms of diversity and
complexity.

5 Conclusion

In this work, we propose type-dependent prompt
CycleQAG with cycle consistency. Since multi-
hop QG needs to know more diverse information
because it needs to gather more scattered pieces of
information for generating a question, we introduce
the NCE for the first time in the QG task. Also, we
demonstrate that the intermediate task is effective
in the QG task. Furthermore, we show a significant
performance improvement by using prompt-style
fine-tuning to make the most of the information ob-
tained from the intermediate task. The experiments
show that the proposed model outperforms in all
automatic evaluations comparing with the existing
text-based multi-hop model and several QG models.
Although we use only multi-hop, single-hop-based
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datasets, experiments can be performed without
additional datasets later using the type-dependent
prompt CycleQAG method. In other words, it is
possible to learn QA and QG models using unsu-
pervised learning. In the future, we would like to
investigate a model that generates questions and
answers by itself enough to imitate humans from
knowledge through self-cyclic learning that is less
influenced by data.
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Appendix

A Data statistics

Dataset Data type Train set Validation set Test set

HotpotQA

All 90.4k 7.4k 7.4k
Bridge type 58.5k 5.9k (invisible)

Comparison type 17.4k 1.5k (invisible)
Single-hop 14.5k - -

SQuAD Single-hop 87.5k 10.5k -
QQP Paraphrase 254k 10k 10k

Table A1: Statistics of Datasets. Number of data instances in the train, validation and test set of HotpotQA, SQuAD
and Quora Question Pairs (QQP).

Table. A1 is a statistic of the dataset used in the experiment. HotpotQA provides two dataset versions, a
distractor setting and a full wiki setting. In this paper, we conduct all experiments on a distractor setting
with 2 gold paragraphs and 8 distractor paragraphs. We use training and validation sets provided by
HotpotQA to train and evaluate the model. The SQuAD dataset is similar to HoptotQA dataset, the
answer to each question can be found in the form of a text span in the paragraph, and it consists of
data that can answer diverse types of questions. The QQP dataset detects whether the intent of two
given pairs of sentences is the same, and provides a label on whether the two sentences are semantically
similar. The QQP dataset consists of more than 400,000 lines of potential question duplicate pairs, with
a binary value indicating whether that row contains duplicate pairs. We obtain HotpotQA, SQuAD
data through the datasets package provided by Huggingface and use it for experiments, which can be
downloaded from https://huggingface.co/datasets. QQP dataset can be downloaded from
https://www.kaggle.com/c/quora-question-pairs.

B Error Analysis

We perform error analysis to analyze the experimental results. In Table A2, Case1 has the same meaning,
but only the expression of the lexicon is different, which is a well-predicted case. However, in Case 2,
an important entity is omitted, so the meaning of the question is completely changed, and the gist of
the question can not be grasped. In this question, an important "traditional sport considered a national
sport" is predicted with the word "traditional", so it is a erroneously generated question because an entity
related to the sport is omitted. This is not a well-formed question because we cannot conversely answer
the question properly. Case 3 is the case of making a semantic error. The ground truth of Case 3 is to ask
whether Mozart wrote Pomone or Idomeneo, but the meaning of the predicted question is a semantically
different question because it asks which of Pomone or Idomendo premiered first. Case 4 is the case
of generating a completely wrong question, where the intent of the question is completely changed by
incorrectly predicting the meaning of "and" as "unlike".

Types Example

Case1 (GT.) Who was the director of the James Bond movie in which Anatole Taubman appeared as a henchman?
(Pred.) Who directed the James Bond movie in which Anatole Taubman appeared as a henchman?

Case2 (GT.) Which old, traditional sport is considered to be the national sport by some Swiss?
(Pred.) What is an old tradition from the rural central cantons?

Case3 (GT.) Of Pomone and Idomeneo which one was written by Amadeus Mozart?
(Pred.) Which opera premiered first, Pomone or Idomeneo?

Case4 (GT.) Unlike Xuzhou, where is Rugao under the adminstration of?
(Pred.) Rugao and Xuzhou, Jiangsu are both county-level cities under the administration of who?

Table A2: Error Analysis. GT is ground truth, and Pred is prediction example.
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C Experimental result examples

In this section, an example of generating a multi-hop question using the type-dependent prompt CycleQAG
method presented by us is shown in detail. In Table A3 and A4, we mark the correct answer we want to
obtain in red text and the words related to the correct answer obtained through section 3.1.3 in blue text.
If the correct answer and the word related to the correct answer overlap, it is indicated in cyan text. In
particular, we can confirm that the meaning of the original question and the generated question did not
change, but a vocabulary with a similar meaning was used, making the question richer. In addition, it can
be seen through the example of the generated question that it has a considerable influence when generating
a question by using the question type, answer, and answer-related words as a prompt. More specifically,
in prompt based fine-tuning, we set the input as question type: type of question, answer-related words:
combination of words related to the correct answer, context: context with answer and set the output to
multi-hop question.

Data fields Example
Answer Jacksonville station

Generated answer related words Silver Meteor, Jacksonville station

Context

The Silver Meteor is a passenger train operated by Amtrak between New York City and Miami,
Florida. The first diesel-powered streamliner between New York and Florida, since being
introduced by the Seaboard Air Line Railroad (SAL) in 1939, it remains in operation now. The
train is part of Amtrakś "Silver Service" along with the "Silver Star", another former SAL
streamliner. Jacksonville station is an Amtrak train station in Jacksonville, Florida, United States.
It serves the "Silver Meteor" and "Silver Star" trains as well as the Thruway Motorcoach to
Lakeland. The station lies next door to a freight facility with its own platform and is also just
east of Norfolk Southern’s Simpson Yard.

Original question Where does the train that runs from NYC and Miami station at Florida?

Generated question Which Amtrak station serves the passenger train operated by Amtrak between New York City
and Miami, Florida?

Answer Julianne Moore
Generated answer related words Emanuelle Goes to Dinosaur Land, Julianne Moore

Context

"Emanuelle Goes to Dinosaur Land" is the of the fourth season of the American television
comedy series "30 Rock", and the 79th overall episode of the series. It was written by
supervising producer Matt Hubbard and directed by Beth McCarthy-Miller. The episode
originally aired on the National Broadcasting Company (NBC) network in the United States on
May 13, 2010. Guest stars in this episode include John Anderson, Elizabeth Banks, Jon Hamm,
Kristin McGee, Julianne Moore, Michael Sheen, Jason Sudeikis, and Dean Winters. Julianne
Moore (born Julie Anne Smith; December 3, 1960) is an American actress, prolific in films since
the early 1990s. She is particularly known for her portrayals of emotionally troubled women in
both independent and Hollywood films, and has received many accolades, including the 2014
Academy Award for Best Actress.

Original question What 2014 Academy Award winner guest starred in "Emanulle Goes to Dinosaur Land?

Generated question Which guest star in "Emanuelle Goes to Dinosaur Land" won the 2014 Academy Award for Best
Actress?

Answer Lantern Waste
Generated answer related words Lantern Waste, Tumnus

Context

Lantern Waste is a fictional place in "The Chronicles of Narnia" series by C. S. Lewis. It is a
wood and is notable as the place where Lucy Pevensie and Mr. Tumnus meet, which is the first
scene of Narnia described in the books. The lamppost in the wood is an iconic image of Narnia,
and the question of its origin is what convinced Lewis to write more than one book on Narnia.
One of King Edmund’s titles is "Duke of Lantern Waste". Tumnus is a fictional character in C. S.
Lewis’ series "The Chronicles of Narnia". He is featured prominently in "The Lion, the Witch
and the Wardrobe" and also appears in "The Horse and His Boy" and "The Last Battle". He is
close friends with Lucy Pevensie and is the first creature she meets in Narnia, as well as the first
Narnian to be introduced in the series. Lewis said that the first Narnia story, "The Lion, the
Witch and the Wardrobe", all came to him from a single picture he had in his head of a faun
carrying an umbrella and parcels through a snowy wood. In that way, Tumnus was the initial
inspiration for the entire Narnia series.

Original question What is the name of the place in The Chronicles of Narnia where Lucy Pevensie and Mr.
Tumnus meet?

Generated question What is the name of the fictional place where Lucy Pevensie and Mr. Tumnus meet?

Table A3: Example of generated bridge type multi-hop question.
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Data fields Example
Answer Emory University

Generated answer related words Emory University, Vanderbilt University

Context

Emory University is a private research university in metropolitan Atlanta, located in the Druid
Hills section of DeKalb County, Georgia, United States. The university was founded as Emory
College in 1836 in Oxford, Georgia by the Methodist Episcopal Church and was named in honor
of Methodist bishop John Emory. In 1915, the college relocated to metropolitan Atlanta and was
rechartered as Emory University. The university is the second-oldest private institution of higher
education in Georgia and among the fifty oldest private universities in the United States. Emory
is frequently cited as one of the world’s leading research universities and one of the top
institutions in the United States. Vanderbilt University (also known informally as Vandy) is a
private research university located in Nashville, Tennessee. Founded in 1873, it was named in
honor of shipping and rail magnate Cornelius Vanderbilt, who provided the school its initial $1
million endowment despite having never been to the South. Vanderbilt hoped that his gift and the
greater work of the university would help to heal the sectional wounds inflicted by the Civil War.

Original question Was Vanderbilt University or Emory University founded first?
Generated question Which university is older, Vanderbilt University or Emory University?

Answer Battle of Guam
Generated answer related words Battle of Manila , Battle of Guam

Context

The Battle of Manila (February 3, 1945 – March 3, 1945) was a major battle of the Philippine
campaign of 1944-45, during the Second World War. It was fought by American and Filipino
forces against Japanese troops in Manila, the capital city of the Philippines. The month-long
battle, which resulted in the death of over 100,000 civilians and the complete devastation of the
city, was the scene of the worst urban fighting in the Pacific theater. Japanese forces committed
mass murder against Filipino civilians during the battle. Along with massive loss of life, the
battle also destroyed architectural and cultural heritage dating back to the city’s foundation. The
battle ended the almost three years of Japanese military occupation in the Philippines
(1942–1945). The city’s capture was marked as General Douglas MacArthur’s key to victory in
the campaign of reconquest.The Second Battle of Guam (21 July – 10 August 1944) was the
American recapture of the Japanese-held island of Guam, a U.S. territory in the Mariana Islands
captured by the Japanese from the U.S. in the 1941 First Battle of Guam during the Pacific
campaign of World War II.

Original question Which battle occurred first, the Battle of Manila or the Battle of Guam ?
Generated question Which battle took place first, Battle of Guam or Battle of Manila?

Answer Dracula
Generated answer related words Dracula, Pistacia

Context

The orchid genus Dracula, abbreviated as Drac in horticultural trade, consists of 118 species
native to Mexico, Central America, Colombia, Ecuador and Peru. The name "Dracula" literally
means "little dragon", an allusion to the mythical Count Dracula, a lead character in numerous
vampire novels and films. The name was applied to the orchid because of the blood-red color of
several of the species, the strange aspect of the long spurs of the sepals. Pistacia is a genus of
flowering plants in the cashew family, Anacardiaceae. It contains 10 to 20 species that are native
to Africa and Eurasia from the Canary Islands, all of Africa, and southern Europe, warm and
semidesert areas across Asia, and North America from Mexico to warm and semidesert United
States, such as Texas or California.

Original question Whiich genus has more species, Dracula or Pistacia?
Generated question Which genus contains more species, Pistacia or Dracula?

Table A4: Example of generated comparison type multi-hop question.
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Abstract

Multi-Document Summarization (MDS) com-
monly employs the 2-stage extract-then-
abstract paradigm, which first extracts a rel-
atively short meta-document, then feeds it into
the deep neural networks to generate an ab-
stract. Previous work usually takes the ROUGE
score as the label for training a scoring model
to evaluate source documents. However, the
trained scoring model is prone to under-fitting
for low-resource settings, as it relies on the
training data. To extract documents effectively,
we construct prompting templates that invoke
the underlying knowledge in Pre-trained Lan-
guage Model (PLM) to calculate the document
and keyword’s perplexity, which can assess the
document’s semantic salience. Our unsuper-
vised approach can be applied as a plug-in to
boost other metrics for evaluating a document’s
salience, thus improving the subsequent ab-
stract generation. We get positive results on
2 MDS datasets, 2 data settings, and 2 abstrac-
tive backbone models, showing our method’s
effectiveness. Our code is available at https:
//github.com/THU-KEG/UPER

1 Introduction

Multi-Document Summarization (MDS) aims to
generate a summary from multiple source arti-
cles (McKeown and Radev, 1995). The input text in
MDS can be overlong and therefore contain much
noisy information (Liu et al., 2021c). The goal of
MDS is to reduce the long input and extract salient
information (Bing et al., 2015; Fan et al., 2019;
Song et al., 2022).

Some previous works (Zaheer et al., 2020)
utilise sparse attention to handle the long input
problem in MDS. Many others tackle this problem
by an extract-then-abstract paradigm (Liu and La-
pata, 2019), which first extracts the salient informa-
tion in source documents to form a meta-document
with a preset length then generates the summary.

∗Corresponding author.

The first stage reduces the input length for the sec-
ond stage to cut the abstractive model’s memory
cost. The extractive stage has two main technical
lines: (1) the statistical method uses the token-level
similarity between keywords and source documents
to retrieve relevant documents (Liu et al., 2018). (2)
the regressive method trains a scoring model to pre-
dict the document’s ROUGE (Lin, 2004) score with
the reference summary (Liu and Lapata, 2019; Mao
et al., 2021; Zhong et al., 2021; Zhang et al., 2021).

However, these methods for the extractive stage
lead to several problems: (1) the statistical meth-
ods like tf-idf (Ramos et al., 2003) relies on strict
matching of keywords, ignoring those documents
with relevant semantic context. (2) the regressive
methods aim to fit some predefined metrics, e.g.,
ROUGE, but the fitting result seriously depends on
the training data, leading to over-fitting or under-
fitting. Besides, the predefined metrics may not
adequately measure the quality of the selected docu-
ments, resulting in the two-stage gap1 of the extract-
then-abstract paradigm.

To tackle the semantic discrepancy of statisti-
cal methods and the data dependence of regressive
methods, we intend to find an unsupervised metric
that can evaluate a document’s contextual related-
ness (Zou et al., 2021) with keywords. It is natural
to apply the Pre-trained Language Model (PLM)
and leverage its inherent ability of calculating the
sequence’s perplexity to test whether the keyword
can appear in a candidate document’s context.

In this paper, we propose an Unsupervised
Prompt-based ExtractoR (UPER) which utilizes un-
supervised prompts that join the keyword with the
document to form a new sequence whose perplexity
represents the document’s semantic salience. Our
method is fully unsupervised and can be used as a
plug-in to evaluate documents on different datasets
or boost other metrics by combining scores.

To test our method, we explore several dimen-
1See more for a preliminary experiment in section 2.2
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sions of the extractive stage in the extract-then-
abstract paradigm. We apply our method on 2
multi-document summarization datasets, 4 differ-
ent domains, 2 data settings, and 2 abstractive
backbone models. The experimental results show
that our method effectively complements the token-
level similarity and significantly boosts the perfor-
mance of the subsequent abstractive stage.

Overall, our contributions are the following:

• We propose a new unsupervised framework
that employs prompt-based methods to mea-
sure the lexical and semantic salience in the
extractive stage.

• We carry out a series of experiments demon-
strating the effectiveness of the proposed ap-
proach.

2 Preliminary

2.1 Problem Formulation

Definition 1 Multi-document Summarization is
defined as a sequence-to-sequence generation prob-
lem, where the input D consists of n source doc-
uments {d1, d2, . . . , dn}. The objective is to gen-
erate an optimal summary Y∗ according to the
conditional distribution, i.e.,

Y∗ = argmax
Y

P (Y|D) (1)

However, in automatically collected multi-
document summarization datasets (Liu et al., 2018;
Fabbri et al., 2019; Gholipour Ghalandari et al.,
2020), source documents are usually collected
from websites using keywords, e.g., a Wikipedia
entity or news title. The target reference sum-
mary is usually a description or report of the key-
word. It is thus useful to introduce such keywords
K = {k1, k2, . . . , kn′} as auxiliary information in
Multi-document Summarization, that is,

Y∗ = argmax
Y

P (Y|K,D) (2)

Definition 2 The extractive stage of the extract-
then-abstract paradigm first takes n source doc-
uments D as input and selects m candidate doc-
uments to form a meta-document D′ which is a
subset of D. The abstractive stage trains an end-to-
end abstractive model that generates a summary
conditioning on the meta-document D′. Therefore,

the objective of Multi-document Summarization is
re-written as

Y∗ = argmax
D′

P (D′|K,D) argmax
Y

P (Y|D′)
(3)

While the abstractive stage can be formulated
as single document summarization, SOTA trans-
former architecture is often employed (Hokamp
et al., 2020). The goal of extractive stage is to
provide the optimal meta-document D′ that can
optimize the abstractive stage’s output distribu-
tion P (Y|D′). Theoretically, the possible meta-
document D′ can be searched within the permu-
tation of documents Amn (D), which has the expo-
nential complexity and can’t be optimized directly.
Prior work performs the extractive stage using ei-
ther statistical method (Liu et al., 2018) or regres-
sive method (Liu and Lapata, 2019). However, we
observe their weakness in a preliminary experiment
described below.

2.2 Preliminary Experiment
We conduct a preliminary experiment on the Wik-
iSum (Liu et al., 2018) dataset to test the statistical
and regressive method’s performance. We first pro-
cess the source documents and split them into a fine-
grain length; its detail will be described in Table
2. To illustrate the training data dependence of the
regressive method, we use a few-shot setting with
1% training data and 100% test data. Following the
extract-then-abstract paradigm, we adapt a widely-
used Seq2Seq model BART (Lewis et al., 2020)
as the abstractive model and change the extrac-
tive methods from statistical method tf-idf (Ramos
et al., 2003) to regressive method LGB (Ke et al.,
2017). Besides, we also introduce ROUGE-1/2/L
as oracle extractive methods, which rank the doc-
uments by their unigram/bigram/longest sequence
overlap with the reference target summary. The
highly ranked documents are then sent to BART to
generate the final summary. Table 1 is the final sum-
mary’s ROUGE with the target summary, and fig-
ure 1 shows the correlation between the extractive
and abstractive stages. We make 2 observations.

Observation I: The data dependence of the
trained extractor is demonstrated in Table 1: the
supervised regressive method obtains the lowest
score because the regressive method is prone to
under-fitting for the few-shot setting.

Observation II: The two-stage gap is presented
in figure 1, the extractive stage’s RUOGE scores
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Extractive Method R-1 R-2 R-L

regressive 36.5 17.3 29.3
statistical 37.4 18.6 30.7

Oracle-R1-recall 39.6 19.6 31.4
Oracle-R2-recall 41.1 22.1 33.2
Oracle-RL-recall 40.2 20.5 32.3

Table 1: ROUGE-F1 scores under few-shot setting(1%
training data) with the same abstractive backbone model
and different extractive methods on animal domain of
WikiSum dataset. Oracles directly use the correspond-
ing ROUGE-recall scores between the input document
and the reference summary to rank documents.

don’t completely correlate with the abstractive
stage’s ROUGE scores, which can be concluded
from the 9 boxes in the upper right or the lower
left part of the matrix. This suggests that ROUGE
score may narrowly model the extractive stage’s
object function P (D′|K,D) though many previous
regressive methods (Liu and Lapata, 2019) choose
ROUGE as their training object.

R1-ext R2-ext RL-ext R1-abs R2-abs RL-abs 

R1-ext 1.000 0.934 0.337 0.750 0.523 0.494 

R2-ext 0.934 1.000 0.342 0.890 0.754 0.711 

RL-ext 0.337 0.342 1.000 0.294 0.144 0.168 

R1-abs 0.750 0.890 0.294 1.000 0.946 0.942 

R2-abs 0.523 0.754 0.144 0.946 1.000 0.991 

RL-abs 0.494 0.711 0.168 0.942 0.991 1.000 

Figure 1: Pearson correlation coefficient between
the three ROUGE metrics {R-1, R-2, R-L} for two
stages {extractive, abstractive} with a backbone ab-
stractive model BART and different extractive meth-
ods on the animal domain WikiSum dataset. R-1/2/L
denotes ROUGE-1/2/L, ext/abs is the short for extrac-
tive/abstractive stage.

3 Method

The key challenge of the extractive stage is how to
model the objective function P (D′|K,D), which
evaluates each document and retrieves those related
to the keywords. This leads to the following ques-
tion: what is a proper metric for modeling it?

Based on observations in section 2.2, we pro-
pose a criteria for modeling P (D′|K,D): (1) the
metric ought to be unsupervised which can avoid
the data dependence; (2) the metric can model both
lexical and semantic salience; (3) the metric should

Doc1: " distribution and field 
identification of philippine birds 
of prey : 1 . philippine hawk - 

eagle ( spizaetus philippensis ) 
and changeable hawk eagle 
( spizaetus cirrhatus ) "(pdf). 

Doc2: distribution : 
indomalayan . endemic to 
luzon island , philippines . 

more . . .  

Keyword:  philippine hawk - eagle 

Perplexity Score

... 

 Statistical Score

... 

... 

 Input

  Regressive Score

Result1: 0.12

TF-IDF1: 0.186

Result2: 0.07 

TF-IDF2: 0 

Perplexity1: 122 Perplexity2: 68 ... 

Figure 2: An example of the ranking scores for corre-
sponding extractors. Green words are keywords and
red words are effective information for generating the
summary. Bold score is preferred by the extractor.

be effective for improving the abstractive stage to
diminish the two-stage gap.

3.1 Perplexity

Inspired by the observations and recent success on
Pre-trained Language Models, we propose to use
perplexity calculated by PLM to model the seman-
tic feature since it can be captured by language
model’s encoder. Because modeling sequence is
the original training task of auto-regressive PLM
like GPT (Radford et al., 2019), the perplexity met-
ric can be applied on any datasets without training.

Perplexity is a widely used metric in NLP to
evaluate the likelihood of a word sequence x in
a language (Jelinek et al., 1977). It is defined as
follows:

PPL(x) = exp(− 1

T

T∑

i=1

pθ(xi|x<i)) (4)

where x<i = [x0, ..., xi−1].
As statistical extractor would prefer the docu-

ment that has high overlap with the keyword, there
are many noisy documents where the keyword oc-
curs but the effective information lacks, e.g., Doc12

in figure 2. To filter out the noise input and retain
those documents with relevant semantic but con-
tains no keyword like Doc2 in igure 2,Figure 3
shows our overall framework.

2Doc1 is a reference book name in https://en.
wikipedia.org/wiki/Philippine_hawk-eagle,
which can not provide detailed information for summarization.
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Document  �: You can find out more 
about the Arctic Fox here: Arctic Fox 

Facts.

General Template:  This document is about {�}. {d}

Domain Template: What does the {k} feed on? {d}

Keyword �: South American Fox

Pre-trained Language Model

[CLS] This [SEP]South American fox. ...Document is about canYou

Semantic Score

Lexical  ScoreTF-IDF

Semantic Evaluation

Lexical Evaluation

Final Score

Figure 3: The framework of our UPER model. We design general and domain templates to evaluate the document’s
semantic salience with keywords using PLM and combine it with the tf-idf score to evaluate the lexical salience.

3.2 Prompt Design
To extract high-quality sources for abstractive mod-
els, it is important to consider the document’s con-
textual relation with keywords (Liu et al., 2021a).
Specifically, prompts have proven to be effective
in modeling the contextual relatedness (Zou et al.,
2021). Inspired by this, we propose an Unsuper-
vised Prompt-based ExtractoR (UPER). We design
several prompting templates x(k, d) to be filled
with the keyword k and the document d, then calcu-
late the whole sequence’s perplexity. The general
template of x(k, d) that puts the keyword in the
introduction position is

This document is about {k}.{d} (5)

which tests whether the keyword can appear in the
document’s introduction. In order to test whether
this keyword can appear in the conclusion of the
document, we can also design inverse patterns like:

{d} This document is about {k}. (6)

Other domain-specific prompting templates are
listed in appendix A. The perplexity of the x(k, d)
sequence can represent the probability of k show-
ing up in the context of d. Therefore, the semantic
salience score gS(K, d) of a candidate document is
calculated as follows:

gS(K, d) = −
∑

k∈K
∑

x∈X PPL(x(k, d))
|K| · |X | , (7)

where x(k, d) indicates the sequence built from a
prompting template, X is pre-designed templates,
and PPL is the perplexity calculated by GPT2.

3.3 Score Combination
As our semantic salience metric is unsupervised,
we can combine our prompt-based method with

statistical methods, e.g., tf-idf. For each keyword
k in K, its lexical similarity with the document
gL(k, d) can be measured by tf-idf metric:

gL(k, d) =
nk
|d| · log(

nd
ndk

) (8)

where nk, |d|, nd and ndk are the count of the
keyword in the document, length of the document,
total number of documents, and total number of
documents containing the keyword.

For multiple keywords, we view the tf-idf as
a keyword’s occurring probability conditioned on
documents (Ramos et al., 2003) so that the tf-idf
for multiple keywords is the joint probability:

gL(K, d) =
∏

k∈K
gL(k, d) (9)

To combine the semantic score gS(K, d) and the
lexical score gL(K, d), we need to normalize them
to comparable scales first.

N(g) =
g − µg
σg

(10)

where g, µg and σg are the metric score, its mean
value and variance.

The final score gF (K, d) of a candidate docu-
ment aggregates both semantic and lexical scores:

gF (K, d) = λ ·N(gS(K, d))+(1−λ) ·N(gL(K, d)) (11)

where the λ is a coefficient. Only the top-m docu-
ments are selected and passed to the next stage.

4 Experiments

4.1 Experimental Setting
This section introduces the datasets, evaluation, and
baselines of our experiments. More implementa-
tion details are introduced in appendix B.
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Dataset Domain #Examples |D| × |d| |r|
WikiSum animal 60,816 180 × 20 92
WikiSum company 62,545 253 × 25 125
WikiSum film 59,973 266 × 23 98

WCEP news 10,200 241 × 16 28

Table 2: Statistics of each domain on the WikiSum and
WCEP dataset. |D|, |d| , |r| is respectively the average
number of source documents, source document tokens
and target reference summary tokens.

Dataset. To evaluate the models, we use the
WikiCatSum dataset (Perez-Beltrachini et al.,
2019), a subset of WikiSum (Liu et al., 2018),
which consists of three different domains in
Wikipedia (Animal, Company and Film) and an-
other large-scale multi-document summarization
dataset WCEP (Gholipour Ghalandari et al., 2020).
The statistics are shown in Table 2.

Evaluation. We use ROUGE-F1 (Lin, 2004) to
evaluate the generated summary with respect to the
reference. For different model settings, we perform
corresponding extractive stage on the training and
test set, then fine-tune the abstractor on the training
set and report its evaluation result on the test set.

Baselines. We select several typical baselines in
related tasks, including:

• TF-S2S (Liu et al., 2018). A method that
views the documents as a long sequence and uses a
transformer decoder to generate the summary.

• C2T (Perez-Beltrachini et al., 2019) uses a
CNN encoder and two structured decoders with
topic-aware information discovered by LDA.

• TWAG (Zhu et al., 2021) is a recent wikipedia
abstractor which explicitly considers topics on Wi-
kiCatSum dataset using topic classifiers.

• Noisysumm (Liu et al., 2021c) uses self-
distillation to improve the abstractor’s ability to
handle noisy input. It can be applied to other ab-
stractors like UniLMv2 (Bao et al., 2020).

• BART (Lewis et al., 2020) is a sequence-
to-sequence model with bidirectional and auto-
regressive transformers that accomplished state-of-
the-art results on single-document summarization.
It has a length limit of 1024.

• Longformer Encoder Decoder (LED) (Belt-
agy et al., 2020) is a transformer-based sequence-
to-sequence model which utilizes a sparse attention
mechanism to achieve the linear complexity with
respect to the input length. Its length limit is 16384.

Figure 4: ROUGE-F1 scores under different few-shot
training data proportions on the film domain of Wik-
iSum dataset. random, tf-idf and UPER are three
LED models trained with corresponding extractor.

Extractive Method R-1 R-2 R-L

Random 34.8 12.5 26.8
tf-idf 35.0 12.6 27.3

UPER(ours) 35.1 12.8 27.4

Table 3: ROUGE-F1 scores under few-shot setting (1%
training data) with the same backbone abstractive model
LED and different extractive methods on WCEP dataset.

4.2 Low-resource Setup Results

To test our model’s performance under a low-
resource setting, we conduct experiments with dif-
ferent proportions of training data for fine-tuning
abstractive models. As shown in figure 4, UPER
outperforms both tf-idf and random order with the
data scale changed from 0 to 10%. Note that UPER
uses a default λ = 0.75, which means it combines
with tf-idf metric and steadily boosts tf-idf’s perfor-
mance across different data scales. In addition to
WikiCatSum dataset, UPER also boosts the perfor-
mance on WCEP dataset in Table 3, demonstrating
UPER’s generalization ability across datasets as it
benefits from the unsupervised prompts.

4.3 Full-data Setup Results

Besides the low-resource setting, we also conduct
experiments under the full-data setup. Table 4 and
Table 5 show the overall results. We first reproduce
the abstractors without the extractive stage. Then
UPER is applied on BART and LED to extract the
input, which helps them achieve SOTA ROUGE
scores on WikiCatSum dataset.

From the experimental results, we have several
observations: (1) UPER can boost both BART and
LED’s performance, indicating our model’s gen-

6319



Model
Company Film Animal

R1 R2 RL R1 R2 RL R1 R2 RL

TF-S2S (Liu et al., 2018) 26.0 9.5 20.4 36.5 18.8 31.0 44.0 28.8 40.0
C2T (Perez-Beltrachini et al., 2019) 27.5 10.6 21.4 38.0 21.2 32.3 42.7 27.9 37.9

TWAG (Zhu et al., 2021) 34.1 11.9 31.6 40.8 21.2 34.3 43.1 24.4 40.9
UniLMv2 (Liu et al., 2021c) 33.3 14.4 25.4 42.5 25.9 36.5 45.5 31.7 40.9

Noisysumm (Liu et al., 2021c) 33.5 15.0 25.9 42.7 26.1 36.8 45.9 32.2 41.4

BART 33.2 10.5 30.4 37.6 17.5 35.4 42.8 24.3 40.6
BART + UPER 36.7 14.3 33.8 43.3 24.6 41.0 46.4 29.1 44.4

LED 36.4 13.7 33.4 43.9 24.7 41.4 43.9 25.5 41.7
LED + UPER 37.0 14.5 33.9 44.7 26.2 42.4 46.4 26.5 44.4

Table 4: ROUGE-F1 scores of different models on three domains (Company, Film and Animal) of WikiCatSum
dataset under the full-data setting (100% training data for fine-tuning abstractive models).

Extractive Method R-1 R-2 R-L

Random 39.1 16.4 31.2
tf-idf 39.8 17.0 32.0

UPER(ours) 41.4 18.7 33.8

Table 5: ROUGE-F1 scores under the full-data setting
(100% training data for abstractive models) with the
same backbone abstractive model LED and different
extractive methods on WCEP dataset.

eralization ability for different abstractors; (2) On
both WikiCatSum and WCEP datasets, UPER can
improve abstractive models’ performance, showing
our model’s robustness for different datasets; (3)
UPER brings more improvements to BART than
LED, in that LED’s input length is 15 times more
than BART’s, which means our extractive methods
only re-rank the documents for LED other than
extracting a shorter document for BART.

Human Evaluation. Aiming to examine the fac-
tual correctness of generated abstracts, we follow
(Liu et al., 2021c) to conduct a human evaluation
by asking crowdworkers to annotate which model
generates better results. For each domain, 20 ex-
amples are randomly sampled for 3 participants’
opinions. We report the proportion of systems pre-
ferred by participants in figure 5. Results show that
our model improves the quality of the abstracts gen-
erated by BART in all three domains. Compared
with other domains, the improvement in Film ap-
peared marginal, in that humans are more familiar
with films and sensitive to film errors. Meanwhile,
UPER still managed to improve the performance.

Figure 5: Human evaluation on WikiCatSum test set.
tf-idf and UPER is two BART trained with corre-
sponding extractor.

4.4 Ablation and Case study

4.4.1 Ablation Study

#Templates R1 R2 RL

0 34.3 15.5 32.5
1 35.4 16.7 33.5
5 35.6 17.2 33.6
10 35.3 16.4 33.4

Table 6: ROUGE-F1 scores using different number of
templates in salience estimation under few-shot setting.
Here we just adopt λ = 1.

Use multiple prompts or not? We design the
general prompting template and many special tem-
plates for the specific domain. One may argue that
these special domain prompts hamper the general-
ity of our model. So we conduct experiments on
the number of prompt templates. Table 6 shows
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the ablation study on the animal domain of Wiki-
CatSum with 1% training data for the abstractive
model BART. The result shows that if we don’t use
prompting templates, the performance of UPER
will be undermined seriously. However, increasing
the number of additional templates does not nec-
essarily improve the performance. So we use one
general prompting template in other experiments.

λ R1 R2 RL

0 45.1 27.1 43.0
0.25 45.6 28.4 43.6
0.5 46.0 28.8 43.9
0.75 46.1 28.8 44.0

1 42.0 23.8 40.0

Table 7: ROUGE-F1 scores of different λ for BART on
the animal domain of WikiCatSum with full data.

Is λ important? We make grid search in
{0,0.25,0.5,0.75,1}. In fact, when λ = 0, the extrac-
tor gF (K, d) will become the statistical extractor.
Moreover, when λ = 1, the extractor gF (K, d) will
become the GPT extractor which only evaluates se-
mantic salience. Table 7 shows the ablation study
results on the animal domain when the number of
max input tokens is 500. We find that 0.75 is a rea-
sonable number of λ while the statistical extractor
(λ = 0) and the GPT extractor (λ = 1) are not able
to outperform any ensemble extractor (0 < λ < 1).
The success of ensemble extractors demonstrates
that applying our semantic evaluation model as a
plug-in to other metrics can boost the performance.
Therefore, it is necessary to consider both the lexi-
cal and the semantic salience when designing the
extractor.

#Tokens Extractor R1 R2 RL

500 tf-idf 45.1 27.1 43.0
500 UPER 46.1 28.8 44.0
1000 tf-idf 45.9 28.1 43.8
1000 UPER 46.4 29.1 44.4

Table 8: ROUGE-F1 scores of different max input to-
kens and extractor for BART on the animal domain of
WikiCatSum with the full-data setting.

The number of input tokens for abstractors.
As the input length limit of the abstractor is dif-
ferent for BART and LED. The top K documents
we feed into the abstractor will be truncated to

#Tokens Extractor R1 R2 RL

2048 random 36.7 17.0 34.7
2048 tf-idf 41.3 22.3 39.1
2048 UPER 41.3 22.4 39.1
4096 random 39.0 19.1 36.8
4096 tf-idf 41.6 23.0 39.4
4096 UPER 41.8 22.8 39.6

16384 random 40.9 21.5 38.7
16384 tf-idf 42.3 23.6 40.1
16384 UPER 42.5 23.6 40.3

Table 9: ROUGE-F1 scores of different max input to-
kens and extractor for LED trained on the film domain
of WikiCatSum with the full-data and early-stopping
setting.

the number of max input tokens. We tried 500
and 1000 input tokens for BART, whose max input
length is 1024. Table 8 shows the ablation study on
the animal domain. UPER outperforms the tf-idf
with two different input token numbers. Further-
more, the fewer input tokens, the larger advantage
UPER has over tf-idf.

Our UPER can also improve the abstractor’s per-
formance for the abstractive model without input
limits like LED. As shown in Table 9, from lim-
ited 2048 input tokens to the unlimited 16384 to-
kens, UPER can steadily optimize the final abstract
against randomly ordered input documents. How-
ever, tf-idf and UPER almost achieve equal success
in improving the unlimited input length model LED
compared to the significant promotion brought by
UPER on the limited input length model BART.
This phenomenon reflects that the salient informa-
tion in the extracted meta-document is more influ-
ential for the limited input length models because
they can only accept a small part of the long input.
While the unlimited input length model can receive
the entire input, the extractor only plays the role of
re-ranking documents.

4.4.2 Case Study
We sample an example from the animal domain to
analyze. As shown in Table 10, the gold abstract is
mainly composed of information from three topics:
taxonomy, distribution, and description.

The abstract generated by BART+tf-idf and
BART+UPER both covers all three topics in the
gold abstract. But BART+tf-idf contains more
factual errors on the wingspan information. It also
outputs unrelated words about the larvae, which
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Gold Abstract: syndemis musculana is a moth of the family tortricidae . it is found in europe
, china ( heilongjiang , jilin , inner mongolia ) , the korean peninsula , japan , russia ( amur
) and north america . the wingspan is 15 - 22 mm . the adults fly from april to july in the
temperate parts of their range , such as belgium and the netherlands . the caterpillars feed on
oaks ( quercus ) , birches ( betula ) , spruces ( picea ) , ragworts ( senecio ) and rubus ( brambles
and allies ) . less usually , they have been recorded to eat plant refuse and dry leaves .
BART+tf-idf: syndemis musculana is a moth of the family tortricidae . it is found in europe
, china ( heilongjiang , jilin , inner mongolia ) , the korean peninsula , japan , russia ( amur )
and north america . the wingspan is 16 - 21 mm . adults are on wing from july to september .
there is one generation per year . in the north , the larvae feed on archips similis . larvae can be
found from june to july .
BART+UPER: syndemis musculana is a moth of the family tortricidae . it is found in europe
, china ( heilongjiang , jilin , inner mongolia ) , the korean peninsula , japan , russia ( amur )
and north america . the wingspan is 15 - 22 mm . adults are on wing from april to july in the
temperate parts of their range , such as belgium and the netherlands . they are active from july
to october , overwintering as a full .

Table 10: Comparison between abstracts generated by BART with different extractors (tf-idf and UPER) about the
animal syndemis musculana on WikiCatSum dataset.

are not mentioned in the gold abstract. Therefore,
our perplexity-based extractor UPER can provide
the abstractive model with a reliable information
source, thus avoiding generating wrong or redun-
dant words.

5 Related Work

Multi-document summarization (MDS) aims to
generate an abstract for the related documents col-
lected from referred websites or search engines.
This task is commonly regarded as a two-stage
problem (Liu et al., 2018; Zhu et al., 2021). The
extractive stage selects high-quality relevant texts
as sources, and the abstractive stage summarizes
them into an abstract of required length. Prior
work mostly focuses on improving the latter ab-
strative stage with various techniques like topic
information (Perez-Beltrachini et al., 2019; Zhu
et al., 2021), graph representation (Li et al., 2020)
and attention (Perez-Beltrachini and Lapata, 2021).
The exploration of the extractive stage is limited
to a few methods like tf-idf (Liu et al., 2018) and
ROUGE scorer (Liu et al., 2019), and they both
focus on the token-level lexical similarity, while
we take the semantic salience into consideration,
which suppresses the intrinsic noise in the corpus.

Automatic evaluation metrics are vital for the
extractive stage of multi-document summarization
task, which can select source documents. They
can be divided into two classes: referenced and
reference-free. Referenced metrics usually focus

on the lexical overlap (Papineni et al., 2002; Baner-
jee and Lavie, 2005) or embedding similarity (Zhao
et al., 2019; Liu et al., 2021b) between the docu-
ment and the reference summary. While reference-
free metrics usually evaluate the document without
reference summary using perplexity (Brown et al.,
1992) or aspects evaluation (Ke et al., 2022). Our
method is inspired by a referenced metric proposed
by Bajaj et al. (2021). They train a scoring model
to predict the perplexity of the sequence formed
by concatenating the reference summary with the
input document. In Section 3.2, we find that the pre-
trained language model like GPT can be utilized
to evaluate documents’ semantic salience without
training, so we propose our reference-free metric
UPER.

6 Conclusion

This work investigates the extractive stage of the
Multi-document Summarization task. We propose
a simple but effective approach UPER to model
the semantic contextual salience and combine the
lexical token-level similarity to extract the input
documents. UPER utilizes unsupervised prompts
to take advantage of prior knowledge distributed
in PLMs so that we can convert our extraction task
to PLM’s original perplexity calculation task. In
our future work, we will extend our framework to
single-document summarization and explore the
application of prompt-based methods in the super-
vised learning scenario.
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A Template details for salience estimation

For each source document, we assign at least
one basic template’s perplexity score. The basic
prompting template should fit the context of all
documents. So we use a general sentence: "This
document is about k" to insert into the introduction
or conclusion position of the document.

If a conclusion about the keyword’s attribute
can inferred from the document or the document
contains salient information to answer a ques-
tion about the keyword, then we assume that the
document is salient. Therefore, we design two
domain-specific template types for the extractive
stage of Multi-document Summarization task: con-
clusion and question in Table 11. Besides, we
also tried using no prompting template, we call
it none_prompt .

Besides basic general prompting templates,
we also design special templates for each do-
main to create more features for calculating
the perplexity. Take animal domain for exam-
ple, the conclusion1 to conclusion4 and
question0 to question9 in Table 11 are the
additional special templates.

B Implementation details

In the extractive stage, we load GPT2 checkpoint
from transformers library3 to calculate the perplex-
ity of each filled prompting template. It costs about
15 hours to finish scoring one domain’s documents
on a single NVIDIA GeForce RTX 2080. For tf-idf,
we use the nltk library4 to count the term frequency
and iverse document frequency. For random order,
we shuffle the input documents randomly and send
them into abstractive models.

3https://huggingface.co/docs/transformers/index
4https://www.nltk.org/

In the abstractive stage, since the max input
length of LED is 16384 which is much larger than
BART’s 1024 limit, their memory and time cost
is quite different for fine-tuning. We train BART
on a single NVIDIA GeForce RTX 2080 for 1 day
(16 epochs) and train LED on a single NVIDIA
GeForce RTX 3090 for 5 days (5 epochs). The
learning rate is 1e-4 for the first epoch and decays
to 1e-5 for other epochs. During interface, we use
beam search decoding strategy with a beam size
of 16, a minimum decoding length of 55, and a
maximum decoding length of 120.

Note that we conduct the ablation study on the
input token numbers of LED using early-stopping
setting, where the training process will stop at the
second epoch. Because the training LED until fit-
ting costs too much GPU time and our GPU re-
source is limited, we have to compare the LED
model under low-resource setup in the ablation
study.
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Type Template

none_prompt d
conclusion0 d This document is about k.
conclusion1 d k’s distribution is mentioned in above sentences.
conclusion2 d This document introduces subspecies of k.
conclusion3 d This document describes k.
conclusion4 d This document introduces conservation status of k.
question0 Where does k live? d
question1 What is the Taxonomy of k? d
question2 What are the Species of k? d
question3 What are the Subspecies of k? d
question4 What does the k feed on? d
question5 Where does k live? d
question6 What is the Diet of k? d
question7 What is the Behaviour of k? d
question8 What is the Breeding of k? d
question9 What is the Conservation Status of k? d

Table 11: The general and special domain templates on the animal domain of WikiCatSum dataset. Notice that
none_prompt is used as a backbone which represents the document without adding any prompts. And the

conclusion0 is the general template. Other templates are additional templates designed especially for the animal
domain.
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Abstract
A math word problem (MWP) is a coherent
narrative which reflects the underlying logic
of math equations. Successful MWP gener-
ation can automate the writing of mathemat-
ics questions. Previous methods mainly gener-
ate MWP text based on inflexible pre-defined
templates. In this paper, we propose a neu-
ral model for generating MWP text from math
equations. Firstly, we incorporate a matching
model conditioned on the domain knowledge to
retrieve a MWP instance which is most consis-
tent with the ground-truth, where the domain is
a latent variable extracted with a domain sum-
marizer. Secondly, by constructing a Quantity
Cell Graph (QCG) from the retrieved MWP
instance and reasoning over it, we improve the
model’s comprehension of real-world scenar-
ios and derive a domain-constrained instance
sketch to guide the generation. Besides, the
QCG also interacts with the equation encoder
to enhance the alignment between math tokens
(e.g., quantities and variables) and MWP text.
Experiments and empirical analysis on educa-
tional MWP set show that our model achieves
impressive performance in both automatic eval-
uation metrics and human evaluation metrics.

1 Introduction

Text generation has been broadly studied as an
important task in the field of natural language pro-
cessing. It aims to generate natural language text
that is fluent, readable and faithful to the original
input. Recent text generation studies mainly focus
on the data-to-text generation, which generates tex-
tual output from structured data such as tables of
records or knowledge graphs (KGs) (Puduppully
et al., 2019a; Chen et al., 2019; Gong et al., 2019b;
Zhao et al., 2020). In this paper, we focus on a rela-
tively new type of data-to-text generation task: gen-
erating Math Word Problems (MWP) from equa-
tions (Zhou and Huang, 2019), which does not

∗Equal contribution.
† Corresponding author.

Equations: x = 6 * y ;    (x + y) * 3= 147

Problem: Jane travels 6 times faster than mike. Traveling in

opposite directions they are 147 miles apart after 3 hrs. Find their

rates of travel.

Equations: (1 – 1/3 – 9/20) * x = 245

Problem: At a local high school,  3/8 of the students are freshman. 

1/4 are juniors. And 245 are seniors. Find the total number of 

students.

Figure 1: Two examples selected from the MWP gener-
ation dataset.

seem to have been fully studied by the community.
Figure 1 shows two examples of this task. We aim
to automatically generate coherent narratives which
reflect the computational relationship within given
equations. Successful math word problems gener-
ation has the potential to automate the writing of
mathematics questions given equations to be solved.
It can alleviate the burden of school teachers and
further help improve the teaching efficiency.

However, different from other data-to-text gen-
eration tasks, generating MWP text from abstract
math equations is much more challenging. Firstly,
an equation can be expressed by different MWP
texts which differ in topic, style or grammar, known
as one-to-many pattern. Take the Equation 1 in Fig-
ure 1 for example, “x = 6 ∗ y” can be expressed as
“Jane travels 6 times faster than Mike.”, but it is also
okay to express it as “The price of oranges is six
times the apples.”. So when grounding the input ab-
stract math equations into a specific math problem,
it is hard for a model to decide which scenes to
choose for generation. Secondly, the math tokens
in equations and natural language text in problems
are from completely different symbolic represen-
tation space. So this gap increases the difficulty
of establishing alignments between math tokens
and natural language words, as shown in Figure 2.
Such issue also confuses the generator thus makes
generation process uncontrollable.

To overcome these challenges, we propose a
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Equation 1:

x =  2 / (10 / 60)
Problem 1:

if a guy drove 2 miles in 10 minutes how many miles per hour was he going.
Matched MWP Instance:

Martin drove 140 miles with 8 3 / 4 gallons of gas. How many miles each gallon 

can arrive.

Equation 2:

4 * x + 3 * y = 5.60  2 * x + 3 * y = 4.60
Problem 2:

What was the price of each pencil and each pen. Crews bought 4 pencils and 3 

pens for $ 5.60. Miss Houston bought 2 pencils and 3 pens of the same kind for 

$ 4.60
Matched MWP Instance:

School sold 480 tickets to its play. The adult tickets cost $ 2.00. and the children ' s 

tickets cost $ 1.50 each. If $ 820 was collected . how many of each kind was sold.

Figure 2: Two examples for illustration of the model.
The corresponding MWP instance of each example is
selected by a domain-dominated retriever with the par-
ticipation of domain knowledge. The soft alignments
between the math tokens and the corresponding MWP
text spans are labeled in the same color.

novel MWP generator with Domain-constrained
Instance SKetch (DISK). We point out that MWP
generation task can benefit from instance sketch re-
stricted by domains. For two examples in Figure 2,
DISK first utilizes a domain-dominated retriever
to select an instance from a set of candidate MWP
text. This instance can be regarded as to constrain
the scene with which the math problem text to be
generated would be related. Then, DISK produces
a refined instance sketch from this instance to spec-
ify certain patterns for generating MWP text, using
a Quantity Cell Graph (QCG) constructed from
the instance. This graph reflects the backbone of
the instance with entities and actions related to
quantities as nodes. We conduct reasoning over
QCG using Graph Convolutional Network (Kipf
and Welling, 2017) to extract the final instance
sketch, where math tokens can be contextualized
with corresponding attributes and predicates via
interaction between QCG nodes and equations. Fi-
nally, the model can generate MWP text with the
refined instance sketch using a sequence generator.

Our contributions can be summarized as follows:

• We propose a domain-constrained instance
sketch guided MWP text generation model, in
which the domain information correspoding
to the MWP text is automatically induced.

• Our model generates the instance sketch via
Quantity Cell Graph enhanced encoding, it
also contextualizes the math tokens with cor-
responding attributes and predicates via inter-
action between QCG nodes and equations.

Experiments show our model can generate more

fluent and domain consistent MWP text, with
promising performance improvement over strong
baselines.

2 Related Work

MWP Generation: Early MWP generation meth-
ods are mostly template-based, including Answer
Set Programming (ASP) (Polozov et al., 2015),
schema and frame semantics (Singley and Ben-
nett, 2002; Deane, 2003). With the development
of deep learning framework, Zhou and Huang
(2019); Wang et al. (2021) generate problem text
given equation templates and keywords, where
the keywords are extracted from the golden MWP
via heuristic rules. Their model is learned with
Seq2seq in an end-to-end manner and integrates
features of templates and keywords in the decod-
ing phase. Their model, however, requires key-
words from the golden answer as input when test-
ing, which is unavailable in real scenarios. And this
paper focuses on the MWP generation solely from
equations without keywords which is more suitable
for practical scenarios. Another work Liu et al.
(2020) adopts the external commonsense based
knowledge graph (CSKG) to generate topic rel-
evant sentences, while this method only considers
the cases of linear equations and needs annotated
topics for each equation.
Data-to-text Generation: Data-to-text generation
transforms structured data into descriptive texts
(Siddharthan, 2001; Gatt and Krahmer, 2018). Re-
cent works have brought great promising perfor-
mance to several data-to-text generation tasks, e.g.,
Puduppully et al. (2019a,b); Gong et al. (2019a);
Wiseman et al. (2017) focus on report generation;
Chisholm et al. (2017); Lebret et al. (2016) tar-
get at biography generation; Zhao et al. (2020);
Gao et al. (2020) generate texts from a set of RDF
triples considering structural information. Previous
works have also designed content selection and text
planning models to determine what to say and how
to say (Puduppully et al., 2019a; Perez-Beltrachini
and Lapata, 2018).
Retrieval-based Generation: The methods sim-
ilar to our instance-based generation are the
skeleton-then-response frameworks which are pop-
ular in dialogue response generation (Cai et al.,
2019; Wu et al., 2019; Yu and Jiang, 2021; Cai
et al., 2020). These models usually treat the input
text as a query and the similar query along with
its response in databases is then retrieved with In-
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formation Retrieval (IR) systems. However, they
rely on difference between the input query and re-
trieved query to identify informative words in the
retrieved response. Thus existing retrieval-based
methods can not be employed in our task since it
is meaningless to measure the similarity between
equations.

3 Methodology

The overview of our DISK is depicted in Figure 3.
Our model follows a three-stage procedure: Firstly,
given the input equations and a text-domain vec-
tor which is extracted by the Domain Summa-
rizer, the Matching Model retrieves a most sim-
ilar MWP instance in database by jointly measur-
ing equation-text matching score and domain-text
matching score. Secondly, the Sketch Provider en-
riches the original representation of the instance to
yield a refined instance sketch, it filters out exces-
sive information considering domain constraint and
helps the model to understand quantity relationship
by applying Graph Neural Network (GNN) over
the Quantity Cell Graph (QCG). Thirdly, Text Gen-
erator generates MWP text via utilizing both the
math equation contextualized by QCG and the re-
fined instance sketch based on an encoder-decoder
architecture.

3.1 Domain Summarizer
The domain summarizer takes the MWP text y =
{yi}Li=1 with length L as input and its goal is to
collect underlying domain information in the MWP
text, which contributes to instance retrieving. To
this end, inspired by (Huang et al., 2018; Keskar
et al., 2019), we assume K latent domains are de-
picted by the MWP text with different importance
βi and the text-domain vector can be expressed as
the weighted sum of K trainable domain vectors.

We start by encoding the MWP text into a se-
quence of vectors via a transformer block:

[h1;h2; ...,hL] = EncoderP ([y1;y2; ...;yL])
(1)

where [; ] denotes concatenation operation. We
denotes [h1;h2; ...;hL] as H ∈ RL×d, d is the
embedding size. A global attention is applied to
the output of the transformer:

ha =

L∑

i=1

αihi (2)

where the attention weight αi =
softmax(hiW ah), h = 1

L

∑L
i=1 hi. A non-

linear transformation is utilized to fuse the encoded
MWP text into K domain variables:

D̃ = tanh(WD
1 (HWD

2 + bD2 ) + b
D
1 ) (3)

D̃ ∈ RK×d and parameters WD
1 ∈ RK×L,

WD
2 ∈ Rd×d. Each row vector in D̃ corresponds

to a different domain contained in MWP text. Such
process can be treated as a soft clustering and we
hope each domain expresses its unique aspect. Sim-
ilar to Luxburg (2004), we employ an auxiliary loss
function to restrict the derived K domain represen-
tation to be orthogonal with each other:

LD = ||D̃D̃T − IK×K || (4)

IK×K is an identity matrix. We then map D̃ and
ha to a domain distribution with an attention mech-
anism (Bahdanau et al., 2014):

βi = Softmax(vT tanh(Hdha +U
dD̃i,:)) (5)

where v,Hd,Ud are learnable parameters. βi in-
dicates the domain distribution of the given MWP.
Our model then learns a trainable domain embed-
ding E ∈ RK×d and uses {βi}Ki=1 to compute the
text-domain vector over E: hd =

∑K
i=1 βiEi,:.

Note that the domain summarizer only works dur-
ing training process. During test, we enumerate
each discrete domain vector in E to be fed into the
matching model, which will be illustrated later.

3.2 Matching Model
The matching model aims to match one MWP in-
stance from the training corpus which is most con-
sistent with the given equation. Intuitively, incorpo-
rating the domain variable helps our model better
recognize MWP text with similar domain ground-
ing to the golden problem text, since it’s difficult
to infer from the equation only. Thus it’s rational
to combine the text-domain vector and the math
equation to retrieve an additional instance.

Our matching model ranks all MWP texts from
a pre-defined set P =

{
P1, P2, ..., P|P |

}
, and re-

turns the most consistent one with given equation-
MWP pair (x, y), where P is prepared by uni-
formly sampling from the training corpus. The
text-domain vector hd and equation embedding
{xi}Ni=1 serve as input, where xi is the sum of
corresponding token embedding and type embed-
ding, here type embedding is incorporated to distin-
guish quantities, numbers and operations in math
equations. Each text Pi = pi1p

i
2...p

i
|Pi| is encoded
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Math Token 

Contextualization

Equation Encoder (× 𝑁)

Domain Distribution

Domain Embedding

Matched MWP Instance: School sold 480 tickets

to its play. The adult tickets cost $2.00. and the

children's tickets cost $1.50 each. If $820 was

collected. how many of each kind was sold?

Self Attention

Sketch Attention

Cross Attention

MWP text decoder(×
𝑁)

MWP text  Generator

Transformer

Domain Summarizer (Training)

Matching Model

Transformer

Sketch Provider

Matching 

Score Function

480𝑠𝑜𝑙𝑑

𝑡𝑖𝑐𝑘𝑒𝑡𝑠 𝑝𝑙𝑎𝑦

𝑐𝑜𝑠𝑡

𝑡𝑖𝑐𝑘𝑒𝑡𝑠

$

820

𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

$

x   =   50   - …

<S>   Ban     sold    50     tickets …

Ban sold 50   tickets for …

Ban    sold    50   tickets   …

x      =       50     -

…

…

FFN

Text-Domain Vector

MWP Instance Set

Domain Gate

Quantity Cell Graph Reasoning

Instance Sketch

Embedding

Linear & Softmax

Figure 3: The diagram of proposed DISK. The text-domain vector is the summation of domain embeddings. First,
the matching model predicts the most consistent MWP instance based on the equation tokens together with the
text-domain vector. Then, the sketch provider learns to refine the retrieved MWP instance with a domain gate and the
Quantity Cell Graph, it also contextualizes the equation representation to help the model understand the alignment
between equations and MWP text. Finally, the generator consumes both the instance sketch and contextualized
equation representation for generating.

into context representation
{
uij

}|Pi|
j=1

through trans-

former blocks (denoted as EncoderQ). However,
the dataset provides no supervision for the match-
ing model, we then annotate the golden labels by
ranking the BERTScore (Zhang* et al., 2020) be-
tween each candidate MWP text and the ground-
truth MWP, i.e., BERTScore(Pi, y) 1 ≤ i ≤ |P |,
getting the top one Pl∗ as the selected instance.
Equation to MWP Matching: Equation to
MWP matching score is measured in token-
level. Firstly, we encode {xi}Ni=1 into C =

{ci}Ni=1 via a transformer block, [c1, c2, ..., cN ] =
EncoderE([x1,x2, ...,xN ]). A nonlinear func-
tion is then used to compute the correlation score
between the j-th token in the equation and the k-th
token of Pi:

γi,j,k = g1(cj) · g2(uik) (6)

where g1(·), g2(·) are both multi-layer percep-
trons (MLP). Next, we aggregate token level rele-
vance to determine text-level score:

sem(i) = mean
j,k

γi,j,k (7)

Domain to MWP Matching: We interact the
text-domain vector hd with the context representa-

tion of Pi:
{
uij

}|Pi|
j=1

to obtain the domain to MWP

matching score. Similar to (2), we apply a global
attention to calculate the summation of Pi, which
we denote as hip. We then compute the domain

vector to the ith MWP text relevance vector via a
bilinear transformation:

ri = hdW
rhip (8)

W r ∈ Rd×d′×d is a parameter. Finally, we com-
bine (7) and (8) to produce the normalized distribu-
tion over |P | candidate MWP texts:

s(i) = Softmax(sem(i) +wrri) i ∈ [1, |P |] (9)

where wr ∈ Rd′ is a learnable parameter. With the
label l∗ annotated, we add a cross entropy loss to
supervise the result of the matching model:

LM = −log(s(l∗)) (10)

For inference, the top one MWP text with the high-
est matching score is selected to be fed into the
next sketch provider.

3.3 Sketch Provider

The sketch provider aims to generate the instance
sketch by making soft modification to the MWP
instance representation, since the generative model
should capture underlying patterns contained in
the instance, not simply copy the instance. We
achieve this goal in two aspects: 1) we add a do-
main gate to refine tokens that have high relevance
with the domain information, 2) we incorporate the
Quantity Cell Graph to enable our model to bet-
ter understand complex question scenarios while
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maintaining those spans semantically aligned with
equation tokens.

Firstly, for the encoded representation of Pl∗ :

{ui}|Pl∗ |i=1 (which has been processed byEncoderQ
in the matching model), we employ a soft gate
controlled by the domain vector hd to better flow
the important context in the original matched text:

qi = σ(W q [hd;ui])

u′i = tanh(WQui)⊙ qi 1 ≤ i ≤ |Pl∗ | (11)

Quantity Cell Graph Constructing and Rea-
soning Targeting at better exploiting the retrieved
MWP instance, we should enrich the instance en-
coding with quantity relationship information, as
well as effectively guide the alignment between
abstract equation tokens and MWP text tokens. In-
spired by Zhang et al. (2020), we introduce the
Quantity Cell Graph (QCG), whose nodes con-
tain a subset of tokens in the the MWP text re-
lated to numerical values. As is shown in Fig 3, a
Quantity Cell Graph is composed of a set of Quan-
tity Cells (QC): QCG = {QC1, QC2, ..., QCm},
where m denotes the number of quantities in the
matched MWP instance Pl∗ . Each cell QCi can
be expressed as {vqi }

⋃{
vai,1, v

a
i,2, ...

}
, where vqi

is the ith quantity token and vai,1, v
a
i.2, ... is the cor-

responding attributes or predicates. We resort to
Dependency Tree1 and Constituency Tree 2 to ex-
tract attributes related to each quantity token. De-
tails can be found in Appendix B. We argue that
the extracted tokens are salient properties related to
quantities and show explicit alignment with the in-
put equations. With the nodes in the Quantity Cell
Graph mentioned above, we add an edge between
two nodes if 1) they are both quantity nodes, 2)
one is the quantity node and another is the attribute
node belonging to it. Next, we initialize the node
representation of the QCG by concatenating the cor-
responding output of EncoderQ and its POS tag
embedding, which is denoted as S0 = {sk}|G|k=1,
|G| is the node number of the QCG. Graph Con-
volutional Network (Kipf and Welling, 2017) is
applied to capture the dependencies between QCG
nodes:

Sl+1 = ReLU(GCN(Sl,A)) (12)

where Sl is the node representation after the l-th
layer,A ∈ {0, 1}|G|×|G| is the adjacency matrix.

1https://demo.allennlp.org/dependency-parsing
2https://demo.allennlp.org/constituency-parsing

Graph2Text Augmentation After graph network
reasoning, we need a fusion block to propagate the
aggregated information of the QCG back to the
text representation U ′ = {u′i}

|Pl∗ |
i=1 . To locate the

position of each node in the original matched text,
we establish a binary matrixM ∈ {0, 1}|Pl∗ |×|G|,
where Mij = 1 if the i-th token in the MWP in-
stance is the j-th node in the graph. As each col-
umn of M corresponds to one quantity node or
attribute node in the QCG, we update u′i with a
GRU module if the i-th token participates in the
QCG reasoning:

Ũ = GRU(
[
U ′;MSLW U

]
) (13)

where SL is the output of the last GCN layer and
W U is a parameter matrix. Ũ is treated as the
output instance sketch.
Math Token Contextualization As mentioned be-
fore, the attribute words related to quantities are
beneficial to help the model identify the soft align-
ment pattern between the math equation tokens
and retrieved MWP instance. The encoded vector
sequence of the input equations C attends to the
QCG nodes to receive graph information:

G = Softmax(CWGSL)

C = ReLU(GSL) (14)

We then calculate two update gate f =
σ(W g

[
C;C

]
) and g = σ(W f

[
C;C

]
), which

combines C and C to obtain contextualized equa-
tion representation C̃:

C̃ = g ⊙C + (1− g)⊙ tanh(W Z
[
C;f ⊙C

]
)

(15)

3.4 MWP Generator
The MWP generator maps the math equation to-
kens x1x2...xN to the MWP text, we employ
a transformer based encoder-decoder architec-
ture. Here our encoder shares its parameters with
EncoderE in matching model to capture common
attention features among them. To enable the de-
coder to rewrite the domain-constrained instance
sketch produced by the sketch provider in a fine-
grained manner, we insert an extra sketch attention
layer between the original self-attention layer and
cross-attention layer. It aggregates details of the
sketch by attending to output of sketch provider Ũ :

H ′ =MultiHeadAttn(Q :Hp,K : Ũ ,V : Ũ)
(16)
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whereHp is the hidden state coming from the pre-
vious layer. Residual connection and layernorm is
also added after the sketch attention. For the cross
attention layer, the new representation C̃ coming
from Math Token Contextualization module is used
as both the key and value. The hidden state of the
last decoder layer is projected to vocabulary dis-
tribution and predicts the next token. The domain
vector hd is directly fed into the MWP text decoder
and serves as the first input embedding (instead
of the embedding of a start symbol <S>). The
generation loss can then be modeled as:

LG = −
L∑

t=1

log p(yt|y<t, {xi}Ni=1 , Ũ ,hd) (17)

y<t is the tokens generated before the t-th step.

3.5 Model Training
For training, we combine the three loss terms men-
tioned above and the total loss becomes:

Ltotal = LD + LM + LG (18)

For inference, our model traverses over all K pos-
sible latent domain vectors in E and generates
K candidate MWP texts Y 1, Y 2, ..., Y K , among
which the problem text with the maximum log like-
lihood score is chosen as the final output.

4 Experiments

4.1 Dataset
Our dataset is based on Dolphin18K (Huang et al.,
2016) crawled from Yahoo. Since Huang et al.
(2016) only releases a subset of Dolphin18K (3154
examples), which is insufficient for a modern data-
driven generation model. So we reuse the python
scripts provided by Huang et al. (2016) to crawl
and collect extra data, then the size of dataset is ex-
tended to 14943 examples. We conduct some data
preprocessing by deleting those equation-problem
text pairs whose problem text length is longer than
45 tokens or less than 10 tokens. Finally 9643 sam-
ples are preserved. More detailed statistics of the
dataset are listed in Appendix C.

4.2 Baselines
We compare DISK against the following models.
1) Seq2seq (Bahdanau et al., 2014): Seq2seq is
first proposed for machine translation task. In this
paper, we implement Seq2seq with attention mech-
anism and copy mechanism. 2) SeqGAN (Yu et al.,

2016): SeqGAN fuses the advantage of reinforce-
ment learning (RL) and Generative Adversarial
Network (GAN). It achieves improvements over
strong baselines in both text generation and music
generation tasks. 3) DeepGCN (Guo et al., 2019):
Math equations can be converted into a pre-ordered
expression tree and MWP generation can then be
naturally modeled as graph-to-sequence learning.
4) Transformer (Vaswani et al., 2017): The state
of-the-art model in several text generation tasks.
5) DualCG (Wei et al., 2019): In this paper we
employ DualCG to integrate equation to MWP gen-
eration and MWP to equation solving in a unified
framework. 6) We also compare our model with
the vanilla BART (Lewis et al., 2020), which is a
strong pretrained model using the standard seq2seq
Transformer architecture. We fine-tune BART on
our MWP dataset. Note we do not use retrieval-
based baselines since they mostly require IR sys-
tem, while it’s unsuitable to treat math symbols as
the query.

4.3 Automatic Evaluation

We compare different methods using BLEU (av-
erage of BLEU-1 and BLEU-2) (Papineni et al.,
2002), ROUGE-L (Lin, 2004), METEOR (Baner-
jee and Lavie, 2005), BERTScore (Zhang* et al.,
2020), which is an advanced evaluation metric for
text generation based on contextual embedding,
Dist-1, Dist-2, which indicates the proportion of
different unigrams (bigrams) in all unigrams (bi-
grams), Number Recall, which is used to measure
how many numbers in problem text are correctly
copied. We report the performance of all models in
terms of automatic evaluation in Table 1.

We also conduct ablation studies and the results
are also reported in Table 1. The setting is as fol-
lows: 1) w/o DG: We remove the domain gate in
the Sketch Provider. 2) w/o QCG: We remove both
the QCG reasoning and the Math Tokens Contextu-
alization block. The encoded MWP instance, after
being processed by the domain gate, is directly fed
into the generator in this case. 3) w/o MTC: The
model without Math Token Contextualization. 4)
w/o CS: The model without the instance sketch, i.e.,
the whole Matching Model and Sketch Provider are
removed and only the Domain Summarizer and the
Generator are preserved.

It can be observed that 1) our proposed model
significantly outperforms the strongest DualCG in
BLEU, ROUGE-L and BERTScore, respectively.
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Model BLEU ROUGE-L BERTScore METEOR Dist1(%) Dist2(%) NR(%)

Seq2seq (Bahdanau et al., 2014) 2.59 20.25 82.98 18.51 14.56 34.99 47.60
SeqGAN (Yu et al., 2016) 2.62 19.22 82.56 17.63 12.96 30.02 44.00
DeepGCN (Guo et al., 2019) 3.04 20.94 83.07 19.48 16.81 45.17 49.21
Transformer (Vaswani et al., 2017) 3.14 21.84 83.81 20.26 12.94 43.51 44.84
DualCG (Wei et al., 2019) 3.60 21.43 83.99 20.63 15.47 46.01 40.97
BARTlarge (Lewis et al., 2020) 4.15 22.26 86.35 22.30 12.77 46.76 43.47

DISK 5.84 28.49 85.01 27.16 15.56 50.41 52.62
w/o DG 5.33 27.36 84.90 25.33 10.74 35.62 49.37
w/o QCG 4.86 26.87 84.96 26.56 13.88 45.19 55.15
w/o MTC 5.14 28.08 84.62 26.16 13.63 43.90 55.51
w/o CS 4.59 26.96 84.27 25.32 12.53 43.67 57.68

Table 1: Automatic evaluation results of different models in MWP generation dataset. NR is the abbreviation for
Number Recall. All results are averaged for five runs.

It yields higher results in most language quality
metrics even when compared with BARTlarge. Be-
sides, our model also improves the informative-
ness and diversity of generated MWP. 2) simply
letting the MWP decoder attend to the retrieved
MWP (w/o QCG) will degrade the performance
by 16.78%, 5.69%, 0.06% in BLEU, ROUGE-L
and BERTScore, respectively, which proves the
Quantity Cell Graph can guide the generator to un-
derstand the quantity relationship and better exploit
the retrieved MWP instance. It’s notable that since
BART maintains exact distributed word representa-
tion, it may show advantage in contextual embed-
ding based metrics such as BERTScore. Moreover,
as an intermediate result, we report the capacity of
the matching model in Appendix F.

4.4 Performance on Different Types of
Equations

Table 2 shows the performance on different sub-
sets of the MWP generation dataset (divided by
the number of variables). We can see the proposed
method outperforms baselines by a large margin in
all subsets. Intuitively, the more variables the equa-
tion contains, the more imperatively the generation
process needs the guidance of instance sketch. It’s
easy to show our model obtains more absolute gain
in More Than Three-VAR subset than One-AVR or
Two-VAR ones.

4.5 Human Evaluation

To better measure the actual generation quality,
we recruit three human annotators to judge the
quality of different models, which includes four
aspects listed as follows. 1) Fluency: Fluency
mainly judges whether the problem text is fluent,
i.e., whether some grammar errors occur in gen-
erated MWP. 2) Coherence: Coherence weights
if the problem text is consistent in text-level. 3)
Solvability-1 (S1): As our target is a math word

One-VAR
BLEU ROUGE-L BERTScore

DualCG 2.88 19.99 83.59
Trans 2.18 19.43 83.45
BARTlarge 3.16 19.83 85.94
DISK 3.87 27.17 84.45

Two-VAR
BLEU ROUGE-L BERTScore

DualCG 3.75 23.05 84.41
Trans 3.97 22.82 84.52
BARTlarge 4.77 25.26 87.00
DISK 6.33 29.03 85.51

More Than
Three-VAR

BLEU ROUGE-L BERTScore
DualCG 2.00 17.74 84.33
Trans 3.33 21.10 83.15
BARTlarge 1.86 17.16 84.97
DISK 4.59 25.63 84.26

Table 2: Performance on different subsets on our MWP
generating dataset. Trans is short for Transformer.

Fluency Coherence S1(%) S2(%)score κ score κ

DISK 4.00 0.413 4.08 0.497 36 56

Seq2seq 3.78 0.256 3.48 0.483 23 34
SeqGAN 3.75 0.305 3.28 0.520 20 40
DeepGCN 3.61 0.295 3.55 0.494 29 52
Transformer 3.80 0.333 3.53 0.421 20 45
DualCG 3.88 0.346 3.66 0.455 28 53
BARTlarge 3.56 0.398 3.73 0.454 31 52

Table 3: Human evaluation results: comparison between
the proposed model and baseline models.

problem, we should pay attention to whether the
problem text can be solved, i.e., in what percentage
we can set up the same (or equivalent) equations
and solve them according to the generated problem
text. 4) Solvability-2 (S2): Solvability-2 is a more
relaxed criterion compared with Solvability-1, it
only requires the text produced is a valid math prob-
lem and could be solved regardless what equations
could be set.

We randomly select 100 generated MWP texts
and score them in five grades. We then project
the scores to 1∼5, where higher scores indicate
better performance. Moreover, we assess the inter-
annotator agreement by Cohen’s kappa κ, which
reflects the agreement between scores given by dif-
ferent raters. The averaged results are reported in
Table 3. We can clearly see that the proposed model
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Equ: equ : 250 + 400 = x equ : 1625/x = y
MT: 2 vehicles traveling different directions. same start point and time. one vehicle is 60 mph. the other is 55 mph. In how many hours will they be 500 miles apart.
Ours: Two cars leave Denver traveling in opposite directions. One has a speed of 250 mph and the other airplane averages 400 mph. How many hours will the trip be 1625 miles apart. (BLEU: 15.47)
Seq2seq: A <UNK> of deposit costs $ 400. 000 a t the end of the year. the total interest is $ 1625 . 00. What is the total cost of the total.
SeqGAN: quotient of a certain number is 400. If the number of students in the first 250 is 400. What is the number.
DeepGCN: The car ran a t an average speed of 400 km per hour faster than the other. If the speed of a 400 mi / h faster. What was the speed of the plane in miles per hour.
Trans: planes went to school a t a speed for the trip takes 250 mph for 400 hours. How long will the plane travel in the trip.
DualCG: Joe received 250 miles for 250 miles . and gas a trip of 250 miles per hour for $ 400 to the week. He drove 400 miles per hour faster . What was the average speed for the trip.

Equ: equ : x + y = 35 equ : x/y = 2/5
MT: total of 1600 people work for a company. The ratio of male to female employees is 3 : 5. How many more females than males are there in the company.
Ours: The ratio of boys to girls in at a certain school is 5 : 2. If there are total 35 boys and girls. how many of each are there. (BLEU: 9.09)
Seq2seq: The school art club is having a exhibit. The ratio of the school paintings are in two parts is 2 / 5 of the number. What is the number ?
SeqGAN: A carpet is 3 times as many more than the other. The total value is 3.
DeepGCN: The ratio of the larger of the two numbers is 35. The ratio of the smaller number of goals and the other is 5 / 2. What are the two numbers.
Trans: Pat . 35 students and 5 questions. If the total of the students are seniors and 2 take both the total. how many of each.
DualCG: The sum of two numbers is 35. The larger number is 2 less than the smaller number. Find the larger number.

Table 4: Two examples of math word problems generated by different models. Transformer is abbreviate to Trans.
Equ and MT represent the equation and the matched MWP instance, respectively. Quantity-related attributes and
predicates in the instance that are picked up and rewritten in the generated MWP are colored for better readability.

performs much better than other models, not only
in fluency and coherence, but also in the solvability
of generated math word problems.

4.6 Effectiveness of the Domain Gate and
Quantity Cell Graph

Equation: equ : x = 50 - y equ : 5 * x + 3 * y = 180

Matched MWP Text: For the athletes banquet, one adult 

ticket costs 15 $ and one student ticket costs 10 $. 140

tickets were sold . the total receipts were 1600 . How many 

student tickets were sold .

Generated MWP Text: Ban sold 50 tickets for a basketball 

game. Adult tickets were sold for $ 5. Student tickets were 

$ 3. Ben collected $ 180. How many adult tickets were sold.

140 15 10 1600

adult ticket costs student tickets sold total receipts many

Figure 4: Visualization of a test case, which shows 1)
the retrieved MWP text and the generated MWP text
2) the extracted QCG from the retrieved MWP text
3) the value of the domain gate on different tokens in
(11) 4) the attention matrix between the input equation
representation and the QCG, namely,G in (14)

We show the effectiveness of the domain-
dominated soft gate and the Quantity Cell Graph
Reasoning through qualitative analysis. Fig 4
presents a test case processed by our model. The
heatmap in the left lower corner indicates the rel-
evance of each token to the text-domain vector
in the matched MWP text. The top-4 tokens are
marked with the red box. Words that highlight the
characteristic of one certain domain, e.g., “tickets”,
“sold”, “cost”... are assigned with higher weight to
be fused into the next block. The heatmap on the
right hand side presents the probability that each
equation token attends to the nodes in the QCG
(after normalization). It is easy to show: number
“5” is aligned with “adult”, since “5” is the price

of adult tickets; number “3” is aligned with “stu-
dent”, since “3” is the price of student tickets; both
“x” and “y” are aligned with “tickets”, since “x”
and “y” both imply the number of tickets; “180” is
aligned with “1600” as 1600 is the total receipts in
the matched MWP instance and “180” also refers to
the total sales in our generated text. It’s reasonable
to believe that the math token contextualization
enhances the semantic alignment between math
equations and the matched MWP instance.

4.7 Case Study

Table 9 shows two examples in the test dataset gen-
erated by different models. Additional examples
can be found in Appendix G. We can observe that:
1) DISK gives consistent context in text-level while
keeping readability, which verifies it’s effective to
assign a domain vector to each MWP text. 2) The
generated MWP text expresses plausible attributes
related to quantities by making an analogy with
the matched instance. E.g., in case 2, the matched
text discusses the ratio of male employees and fe-
male employees, while the MWP generated by our
model says “the ratio of boys to girls”. Besides,
it’s interesting that though in case 2, the output
given by our system receives low BLEU score, it’s
still a logically reasonable and feasible MWP. So
BLEU score may not be suitable for evaluating the
performance of MWP generation. According to the
above analysis, it is obvious that instance sketch
provider improves the informativeness of the given
equation via correctly understanding and exploiting
the connections among QCG nodes.

5 Conclusion

We propose DISK, which introduces latent discrete
domains for matching appropriate MWP instance
and refines its representation. We also extract Quan-
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tity Cell Graph to enhance the sketch-guided gen-
erator and help our model better understand math
equations in real scenarios. Experimental results
on the extended Dolphin18K Dataset show the su-
periority of our model.
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ran Popović. 2015. Personalized mathematical word
problem generation. In IJCAI 2015.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019a.
Data-to-text generation with content selection and
planning. AAAI 2019, 33(01):6908–6915.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019b.
Data-to-text generation with entity modeling. ACL
2019, pages 2023–2035.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In EMNLP. Association for Computational
Linguistics.

Advaith Siddharthan. 2001. Ehud reiter and robert
dale. Building Natural Language Generation Systems.
cambridge university press, 2000. $64.95/£37.50
(hardback), 234 pages. Nat. Lang. Eng., (3):271–
274.

Mark Singley and Randy Bennett. 2002. Item genera-
tion and beyond: Applications of schema theory to
mathematics assessment.

Shyam Upadhyay and Ming-Wei Chang. 2017. An-
notating derivations: A new evaluation strategy and
dataset for algebra word problems. In EACL. Associ-
ation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. pages 5998–6008.

Zichao Wang, Andrew Lan, and Richard Baraniuk. 2021.
Math word problem generation with mathematical
consistency and problem context constraints. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5986–
5999. Association for Computational Linguistics.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.
Code generation as a dual task of code summarization.
In NeurIPS, pages 6559–6569.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document genera-
tion. pages 2253–2263.

Yu Wu, Furu Wei, Shaohan Huang, Yunli Wang, Zhou-
jun Li, and Ming Zhou. 2019. Response generation
by context-aware prototype editing. In AAAI, pages
7281–7288. AAAI Press.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2016. Seqgan: Sequence generative adversarial nets
with policy gradient. arXiv: Learning.

Xiaojing Yu and Anxiao Jiang. 2021. Expanding, re-
trieving and infilling: Diversifying cross-domain
question generation with flexible templates. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3202–3212, Online.
Association for Computational Linguistics.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. In
ACL, pages 3928–3937. Association for Computa-
tional Linguistics.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In ICLR. OpenRe-
view.net.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020. Bridging the structural gap between encoding
and decoding for data-to-text generation. In ACL,
pages 2481–2491, Online. Association for Computa-
tional Linguistics.

Qingyu Zhou and Danqing Huang. 2019. Towards gen-
erating math word problems from equations and top-
ics. INLG 2019, pages 494–503.

A Task Definition

Our system maps a set of equations{
E1, E2, ..., E|E|

}
to the MWP text:

y = y1y2...yL which reflects logic of equa-
tions. Each equation consists of a sequence of
math tokens: Ek = x1x2...x|Ek|, where |Ek| is the
length of k-th equation measured by the number
of math tokens. Each math token belongs to
one of the following three types: math operator
(e.g., +,−, ∗,÷, ...), number (e.g., 0.2, 1, 30, ...),
variable (e.g., x, y, z, ...). L is the the length of
problem text. Our objective is to estimate the
following conditional probability depending on
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equations and previously generated words y<t:

P (y|x) =
L∏

t=1

P (yt|y<t, E1, E2, ...) (19)

B Details on Constructing Quantity Cell
Graph

In this section, we describe the rules for extracting
quantity-related attributes as follows.

• We consider those tokens which are labeled as
Nouns or Verbs and are within two hops start-
ing from the quantity token in the dependency
tree.

• We firstly traverse the nodes in the con-
stituency tree starting from the root node in a
depth-first manner, and backtracks when the
visited node contains no more than F (F is a
hyperparameter) leaf nodes. Such operation
yields several subtrees and each token in the
original text belongs and only belongs to one
subtree. We detect the tokens belonging to
the same subtree as the quantity token and are
labeled as Nouns or Verbs.

C Dataset

Dataset Information: Table 5 provides our data
statistics.
Motivation of Extending Dolphin18K: MWP
solving datasets currently used include Alg514
(Kushman et al., 2014), Dolphin1878 (Shi et al.,
2015), DRAW-1K (Upadhyay and Chang, 2017),
Dolphin18K (Huang et al., 2016). Table 6 gives the
statistic of these datasets. Alg514, Dolphin1878,
DRAW-1K are all public available, while neural
generation models for generative tasks are usu-
ally data-hungry thus equation-MWP pairs in those
datasets are insufficient. Though Dolphin18K is
a large-scale dataset, only a part of it (3154) are
released. Moreover, existing datasets only include
a certain type of MWP text, e.g., MWP text for
linear equations, which restricts their practical ap-
plication. We then reuse the python script provided
by Huang et al. (2016) and acquire 14943 equation-
MWP text pairs in total from Yahoo !. Generally,
the public available datasets can be treated as the
subset of our dataset. Next, we conduct data pre-
process as follows, which is beneficial to train the
generation model:

• We normalize the equations by replacing
all the equation variables in each sample to

x, y, z,... in order, e.g., u+ v + r = 100, u−
r = 10 is replaced to x+y+z = 100, x−z =
10.

• We manually correct the wrong spelling words
in MWP text.

Train Dev Test
Size 7714 964 965

Equation Length (average) 16.69 16.23 16.63
Problem Length (average) 28.90 29.64 28.74

Tokens 7445 3065 2875

Table 5: Statistic of datasets

Dataset Size Problem Type Avg
EL

Avg
Ops

Alg514 514 algebra, linear 9.67 5.69
Dolphin1878 1878 number word problems 8.18 4.97
DRAW-1K 1000 algebra, linear, one-variable 9.99 5.85

Dolphin18K 18460∗ algebra, linear, multi-variable 9.19 4.96

Our Dataset 14943 algebra, linear/nonlinear,
multi-variable 16.64 6.41

Table 6: Statistics of several existing MWP solving
datasets. Avg EL, Avg Ops refer to average equation
length and average numbers of operators in equations,
respectively. ∗ indicates only 3154 equation-MWP pairs
of Dolphin18K are available.

D Experimental Settings

The batch size for training is 32. The vocabulary
size is set as 13k. The hidden size for both our
model and baseline models is 256. We use 2 layers
transformer block in our model and the baseline
Transformer model. All multi-head attention layers
are implemented with 8 heads. The embeddings
are randomly initialized and are trained together
with our model. The domain number is set as K =
25, however, the results for different values of K
are also presented in this paper. The size of the
candidate MWP set prepared for retrieving is |P | =
500. For extracting the QCG with constituency
parser, the hyper-parameter is set as F = 5 and the
graph network is stacked for 2 layers. To calculate
the BERTScore, we use the tool released by the
author on Github 3. We train all models for 40
epoch. To prevent overfitting, we set the dropout
probability as 0.2. We use the Adam optimizer
(Kingma and Ba, 2014) with the learning rate lr =
0.0005 and momentum β1 = 0.9, β2 = 0.999.

E Impact of Different Domain Numbers

Fig 5 compares the fluctuation of BLEU and
ROUGE-L when the number of domains changes

3https://github.com/Tiiiger/bert_score
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Figure 5: Performance with different domain numbers
on the test dataset.

Figure 6: Proportion of test cases which is conditioned
on each domain.

from 19 to 27. The proposed model receives consis-
tent improvement compared against the baselines
with different numbers of domains, while the peak
value appears when K = 21 or K = 25. Even
though K is set to 19 or 27, our model still exceeds
baselines, which demonstrates its generalization
capacity.

Moreover, one interesting problem is whether
each domain plays a role during test. To this end,
we investigate the percentage of output MWP text
which is conditioned on each domain in the whole
test set, the result is reported in Fig 6. We can find
our model doesn’t lead to “domain collapse”, i.e.,
all cases are generated from the same domain, since
the distribution of domains is generally balanced.

F Effectiveness of the Domain Gate and
Quantity Cell Graph

We also conduct ablation study to measure our
model’s ability of understanding the retrieved
MWP instance and properly exploiting the quantity
relationship implied in it. As is shown in Table 7,
we report the semantic matches in deep between the
retrieved MWP instance and the generated MWP.
When we discard the Quantity Cell Graph mod-
ule or the Math Token Contextualization module,
the relevance between the MWP instance and gen-

erated MWP both drop, which indicates the in-
teraction between quantity-related attributes and
enriching equation tokens with concrete scenarios
are crucial for performance improvement.

METEOR BERTScore

Full Model 24.09 85.01

w/o QCG 22.70 84.79
w/o MTC 22.86 84.28

Table 7: Semantic similarity between the retrieved
MWP instance and generated MWP from different mod-
els.

G Example Outputs

We show more cases produced by different models
in Table 9 to demonstrate the performance of our
proposed model.

H Error Analysis

We analyze and conclude the bad cases generated
by our system and the typical problems are listed
in Table 8. The first example shows Logical Error,
where $2000 is the capital, rather than the total
amount of money after the period of deposit. There
also exists similar errors in other instances such
as the reversal of minuend and subtrahend. This
shows the model ignores operation logic and un-
derlying knowledge of constants. Consequently,
auxiliary tasks such as quantity relation extraction
and number sorting deserve to be considered. The
second example shows Missing Conditions, since
the total price, which is a necessary condition, is
omitted in the generated MWP. This may be caused
by the absence of sentence-level context planning,
since one problem text usually consists of multi-
ple sentences and each sentence conveys certain
intention.

Table 8: Two examples to illustrate the drawbacks of
the current method.

Equation: equ : 2000 ∗ (1 + 0.04)5 = x equ : x− 2000 = y

Logical Errors:
Identify the interest earned for 5 years at the
interest rate of 4% . $ 2000 was deposited at
the end of interest. How much of profit did he has.

Equation: equ : x+ y = 400 equ : 2 ∗ x+ 3 ∗ y = 1050

Missing Conditions:

The attendance at a baseball game was 400 people.
Student tickets cost $ 2 and adult tickets cost $ 3.
The red rose theater sells tickets for $ 4.50 and $
6.00. How many tickets of each type were sold.
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Equ: equ : x+ y = 360 equ : 0.18 ∗ x+ 0.09 ∗ y = 360 ∗ 0.17
MT: one can drink is 15% orange juice. another is 10% orange juice. How many liters should be mixed in order to get 5 l that is 11% orange juice. How
many liters of the 15% orange juice should be in the mixture.
Ours: soybean meal is 18% protein. cornmeal is 9% protein. How many pounds of each should be mixed together in order to get 360 lb mixture that is
17% protein. (wh)
Seq2seq: kets to a junior high school play cost $ 3.50. and student tickets are $ 360. How many adult tickets were sold.
SeqGAN: The sum of two numbers is 360 . The sum of the numbers is 360 . What is the number.
DeepGCN: <UNK> has 360 pounds . cornmeal is 18% protein. If the total interest on at 0.09 is 360 protein. How many pounds of each should be mixed
together in order to get 360 lb that is
Trans: soybean meal is 18% protein. cornmeal is 9% protein. How many grams of each should be mixed together in order to get 360 grams of the mixture.
DualCG: A chemist has a solution of 360 solution and a 20% solution of alcohol. How many liters of a solution that is the mixture that no solution to make a
mixture that is 50% alcohol.

Equ: equ : x+ y = 35 equ : x/y = 2/5
MT: total of 1600 people work for a company. The ratio of male to female employees is 3 : 5. How many more females than males are there in the
company.
Ours: The ratio of boys to girls in at a certain school is 5 : 2. If there are total 35 boys and girls. how many of each are there.
Seq2seq: The school art club is having a exhibit. The ratio of the school paintings are in two parts is 2 / 5 of the number. What is the number ?
SeqGAN: A carpet is 3 times as many more than the other. The total value is 3.
DeepGCN: The ratio of the larger of the two numbers is 35. The ratio of the smaller number of goals and the other is 5 / 2. What are the two numbers.
Trans: Pat . 35 students and 5 questions. If the total of the students are seniors and 2 take both the total. how many of each.
DualCG: The sum of two numbers is 35. The larger number is 2 less than the smaller number. Find the larger number.

Equ: equ : 1/6 ∗ x+ 7 = 2/3 ∗ x
MT: A truck’s gas tank is 1 / 4 full. After 15 gallons of gas are added, the tank is 7 / 8 full . What is the gallon capacity of the gas tank?
Ours: Deandre’s gas tank is 2 / 7 full. After he buys 6 gallons of gas. it is 2 / 3 full. How many gallons can Deandre’s tank hold.
Seq2seq: If a sum of 1 and 7 / 3 of the other digit. What is the value of x .
SeqGAN: <UNK> can paint a house in 6 hours . If the same time it takes 7 / 3 hours . How many days will it take to go 2 miles apart.
DeepGCN: The sum of the first three numbers is 7. the sum of the first number and the number is 7. the result is the same as when the result is one. Find the
number
Trans: 1 / 6 of a number is 7 / 2 of the number. Find the number.
DualCG: If 1 / 6 of a number is 2 / 6. Find the number.

Equ: equ : 250 + 400 = x equ : 1625/x = y
MT: 2 vehicles traveling different directions. same start point and time. one vehicle is 60 mph. the other is 55 mph. In how many hours will they be 500
miles apart.
Ours: Two cars leave Denver traveling in opposite directions. One has a speed of 250 mph and the other airplane averages 400 mph. How many hours will
the trip be 1625 miles apart.
Seq2seq: A <UNK> of deposit costs $ 400. 000 a t the end of the year. the total interest is $ 1625 . 00. What is the total cost of the total.
SeqGAN: quotient of a certain number is 400. If the number of students in the first 250 is 400. What is the number.
DeepGCN: The car ran a t an average speed of 400 km per hour faster than the other. If the speed of a 400 mi / h faster. What was the speed of the plane in
miles per hour.
Trans: planes went to school a t a speed for the trip takes 250 mph for 400 hours. How long will the plane travel in the trip.
DualCG: Joe received 250 miles for 250 miles . and gas a trip of 250 miles per hour for $ 400 to the week. He drove 400 miles per hour faster . What was the
average speed for the trip.

Table 9: Four examples of math word problems generated by different models. Transformer is abbreviate to Trans.
Equ and MT represents the equation and the matched MWP instance, respectively. Quantity-related attributes and
predicates in the instance that are picked up and rewritten in the generated MWP are colored for better readability.
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Abstract

Recently, pretrained language models (PLMs)
have had exceptional success in language gen-
eration. To leverage the rich knowledge
encoded by PLMs, a simple yet powerful
paradigm is to use prompts in the form of
either discrete tokens or continuous embed-
dings. In existing studies, these prompting
methods are typically independent of the in-
puts, lacking sufficient consideration of input
semantics. To address this issue, we propose a
novel continuous prompting approach, called
context-tuning, to fine-tuning PLMs for natu-
ral language generation. Firstly, the prompts
are derived based on the input text to elicit
useful knowledge from PLMs for generation.
We refer to such prompts as contextualized
prompts. Secondly, we use continuous in-
verse prompting to improve the process of nat-
ural language generation by modeling an in-
verse generation process from output to in-
put, making the generated text more relevant
to the inputs. Furthermore, we utilize a
lightweight context-tuning method that fine-
tunes only 0.12% of the parameters while
maintaining good performance. Our code
is publicly available at https://github.
com/RUCAIBox/Context-Tuning.

1 Introduction

Natural language generation (a.k.a. text genera-
tion) aims to produce plausible and readable text in
human language from input data (Li et al., 2022).
Recently, large-scale pretrained language models
(PLMs) such as BART (Lewis et al., 2020) have
had exceptional success in language generation.
To leverage the encoded knowledge from PLMs,
prompting methods have been proposed (Liu et al.,
2021), where the original input to PLMs has been
extended by prepending discrete tokens or continu-
ous embeddings (called prompts). Following this
paradigm, this work aims to study how to develop

B Corresponding author

Title
::::::::
Live-action

:::::::::
medium is inferior to

animation medium

Static Prompts: Write a story about: Title

Contextualized Prompts: p1···k Title pk+1···2k

Story I think that live-action works can’t be considered
art. They feel more like

:::::::::::
documentaries or

:::::
theater

::::
pieces with

:::
CGI combined. The superiority of

animated works is that they are more abstract and
imaginative and characters show more emotion
and variety of designs.

Table 1: Example inputs (titles) and outputs (stories)
of generation dataset CMV. Static prompts are human-
written instructions, which are independent of input ti-
tles. p1···k and pk+1···2k are contextualized prompts,
which are derived conditioned on the input title. The
wavy line and underline denote the corresponding in-
formation between input and output.

more effective prompting methods for text genera-
tion based on PLMs.

Early methods focused on human-written (dis-
crete) prompts by manually constructing task-
specific prompt templates (Raffel et al., 2020; Rad-
ford et al., 2019), such as “TL;DR:” for the sum-
marization task. Recent work has further proposed
utilizing continuous prompts (Li and Liang, 2021;
Lester et al., 2021) for text generation. Continu-
ous prompts consist of trainable parameters that
do not correspond to real tokens and can be eas-
ily optimized during fine-tuning. However, exist-
ing prompting approaches typically adopt static
prompts for generation, i.e., the prompts contain
task-related information but remain the same for
different input texts.

In this work, we mainly focus on challeng-
ing open-ended generation, such as story gener-
ation (Fan et al., 2018) and review generation (Li
et al., 2019). Under this setting, the input text usu-
ally contains very limited information, while the
task goal is to generate an output sequence con-
taining informative contents based on the given
limited input. The example in Table 1 aims to gen-
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erate a story about the topics of “live-action” and
“animation”. In such a case, it requires in-depth
background knowledge about the two topics. As
we can see, static prompts such as “Write a story
about:” are independent of the input title, making
it difficult to capture the related aspects for this gen-
eration task. Instead of static prompts, we argue
that contextualized prompts (as shown in Table 1)
derived based on the input title will be more suited
for this setting.

To address the above issues, we propose
Context-Tuning, a novel continuous prompting
approach to fine-tuning PLMs for natural language
generation. Our approach has three major techni-
cal contributions. Firstly, the prompts are derived
based on input text to enrich the input by elicit-
ing related knowledge from PLMs. Specifically,
by concatenating limited input and a sequence of
“[MASK]” tokens into BERT (Devlin et al., 2019),
we leverage its excellent mask-filling ability to pre-
dict these tokens, and the last hidden state of tokens
can be used as prompt vectors. Since the prompts
are highly related to the input context, we refer to
them as contextualized prompts. Secondly, to fur-
ther enhance the relevance between the generated
text and the input text, we extend inverse prompt-
ing (Zou et al., 2021) by incorporating continuous
prompts. We refer to them as continuous inverse
prompting. By maximizing the likelihood of pre-
dicting inputs conditioned on the generated text
and continuous prompts, context-tuning can gen-
erate texts highly relevant to the input text. More-
over, to ease the training burden, we propose to use
a lightweight context-tuning method (Ben Zaken
et al., 2022) that only fine-tunes the bias term of all
model parameters. In this way, we can achieve a
comparable performance (98.0% of the full-tuned
performance) by only tuning 0.12% of the parame-
ters, compared to full-tuned context-tuning.

To our knowledge, we are the first to encode
input-related information into continuous prompts
for text generation. Our context-tuning approach
can elicit relevant knowledge according to specific
input text and enhance the relevance between the
generated text and the input text. We compare our
method with several baseline models for the eval-
uation of four natural language generation tasks.
Extensive experiments demonstrate the effective-
ness of our proposed context-tuning approach.

2 Related Work

Natural Language Generation. Natural lan-
guage generation is one of the most challenging
fields in natural language processing (NLP). It aims
to produce human-readable text from input text.
Current state-of-the-art results for many genera-
tion tasks are based on fine-tuning PLMs, such
as text summarization (Lewis et al., 2020), dia-
logue system (Zhang et al., 2020), and data-to-
text generation (Ribeiro et al., 2021). As men-
tioned in Liu et al. (2021), controlled text gener-
ation is relevant to our input-dependent method.
The goal of controlled text generation is to di-
rect the generated texts into specific styles (Hu
et al., 2017), lengths (Kikuchi et al., 2016), or key-
words (Dou et al., 2021). In contrast, our contex-
tualized prompts elicit knowledge from PLMs to
enrich the input rather than control the specific
properties of generated text.

Prompting Learning. Prompting methods
prepend task instructions to the input and generate
the output from PLMs. Most typical methods
utilize manually designed task-specific prompts
to adapt to different generation tasks (Radford
et al., 2019; Raffel et al., 2020). However, it
is time-consuming and laborious to construct
human-written prompts for various generation
tasks. As a result, recent research has concen-
trated on automating the search for discrete
prompts (Shin et al., 2020; Gao et al., 2021).
Nonetheless, searching for prompts over discrete
space is challenging to optimize due to the
non-differentiable issues and continuous nature
of neural networks. To handle these problems,
many studies propose optimizing continuous
prompts (Lester et al., 2021; Li and Liang, 2021),
which are more expressive and flexible for any task.
Among these works, prefix-tuning (Li and Liang,
2021) and prompt tuning (Lester et al., 2021) are
two representatives focused on text generation
and natural language understanding (NLU) tasks,
respectively. Compared with these continuous
approaches, our context-tuning encodes the context
information of inputs into the contextualized
prompts and adopts continuous inverse prompting
to enhance relevance further.

Most existing prompting methods (Schick and
Schütze, 2021a; Shin et al., 2020; Lester et al.,
2021) focus on NLU tasks, which are choice
questions that can easily be converted into filling
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Figure 1: The overview of the proposed context-tuning. “[M]” denotes the mask token “[MASK]”. By combining
the forward probability Pr(Y|X ,Pc) (the left part) and backward probability Pr(X|Y,Pi) (the right part), we
select the sequence y(i)j with the highest combined scores from all the candidates.

“[MASK]” tasks. However, text generation aims
to generate a sequence of tokens, in contrast to a
few options in limited space. For example, prefix-
tuning (Li and Liang, 2021) and GENPET (Schick
and Schütze, 2021b) have employed prompting
methods for text generation. However, they mainly
focus on lightweight fine-tuning or few-shot learn-
ing and do not achieve great performance under
full tuning settings. In contrast, our context-tuning
can improve performance under full tuning settings,
and the lightweight strategy tunes only 0.2% of the
parameters while retaining good performance.

3 The Proposed Approach

In this section, we present the proposed context-
tuning to fine-tune PLMs for natural language
generation. We first introduce the contextualized
prompts based on the input text for generating in-
formative text. To further enhance the relevance of
the generated text to the input, we utilize contin-
uous inverse prompting to enforce the prediction
of inputs given the generated text and continuous
prompts. Figure 1 presents an overall illustration
of the proposed context-tuning approach.

For natural language generation, we consider a
general task setting, where the model generates
the output sequence Y conditioned on the input
sequence X = 〈x1, . . . , xl〉. The output text is
usually composed of multiple sentences: Y =
{yj : 〈yj,1, . . . , yj,t, . . . , yj,nj 〉}mj=1. In context-
tuning, we introduce contextualized prompts Pc =
〈pc1, . . . ,pck〉 into the input side. Thus, the prompt-
based generation task can be formulated as:

Pr(Y|X ,Pc) = Pr(y1, . . . , ym|x1, . . . , xl,Pc). (1)

3.1 Contextualized Prompts

Instead of static prompts (Lester et al., 2021) (ir-
relevant to input), we use contextualized prompts,
which are expected to provide additional informa-
tion, such as world knowledge, commonsense and
task information extracted from PLMs to enrich the
limited input text.

Masked Prompt Learning. Specifically, unlike
prefix-tuning (Li and Liang, 2021), which prepends
a sequence of static vectors to each layer of PLMs,
we append a sequence of k continuous vectors on
both the left and right sides of the input sequence
X (2k vectors in total). Inspired by the masked
language modeling task of BERT (Devlin et al.,
2019), we use BERT as the prompt generator to
derive the contextualized prompt vectors. We first
place a sequence of k “[MASK]” tokens on both
sides of the input X as:

X̃ = [MASK]1,...,k,X ,[MASK]k+1,...,2k. (2)

By feeding X̃ as the input of the prompt generator,
we can obtain the top-layer representations of these
“[MASK]” tokens:

p̃c1, . . . , p̃
c
k︸ ︷︷ ︸

prefix prompts

/ p̃ck+1, . . . , p̃
c
2k︸ ︷︷ ︸

suffix prompts

= Prompt-Generator(X̃ ).

(3)

After shown in Section 4.4, we set k to 150 with
the best performance. Compared with randomly-
initialized prompts, our BERT-based prompt learn-
ing method can better learn the dependency be-
tween the prompts and input texts.

Aligning to Word Embeddings. Since these
prompt vectors are latent embeddings, we further
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align them to the semantic space of word embed-
dings by designing a two-step semantic mapping
operator. For the first step, BERT predicts the prob-
ability distribution over its vocabulary based on
these top-layer representations:

Pr(w|X̃ ) = softmax(W V p̃ck), (4)

where W V is a trainable matrix. For the sec-
ond step, we multiply the probability distribution
Pr(w|X̃ ) with the word embedding matrix E and
obtain the final contextualized prompt vectors:

pck = E · Pr(w|X̃ ). (5)

We consider these mapped vectors as contextu-
alized prompts. Intuitively, the above semantic
mapping can be considered as a weighted average
of word embeddings according to their probabili-
ties. Compared with existing continuous prompts,
our contextualized prompt vectors can better corre-
spond to real word embeddings in semantic space,
as shown in Section 4.6.

Applying the Prompts. After obtaining the con-
textualized prompts, we combine these prompt vec-
tors and the word embeddings of X as the input
of PLMs for generating the output text Y . Specifi-
cally, we utilize BART as the base PLM to generate
text by minimizing the cross-entropy loss function:

Lc = − log Pr(Y|X ,Pc) (6)
= − log Pr(Y|pc1···k,x1···l,p

c
k+1···2k),

where pc1···k denotes pc1, . . . ,p
c
k, x1···l denotes

x1, . . . ,xl, and pck+1···2k denotes pck+1, . . . ,p
c
2k.

By leveraging the encoded knowledge from PLM,
the contextualized prompts are helpful to generate
informative output texts.

3.2 Continuous Inverse Prompting

Although contextualized prompts can improve the
informativeness of output, it still suffers from the
off-topic generation issue as the text length in-
creases (Zou et al., 2021). To deal with this is-
sue, we propose continuous inverse prompting to
enhance the relevance in an inverse manner from
output to input. Compared to the previous in-
verse prompting that depends on artificial construc-
tion (Zou et al., 2021), our inverse prompting is
based on continuous prompts, which can be flexi-
bly optimized during fine-tuning.

Algorithm 1 The algorithm procedure for genera-
tion process of context-tuning.
Require: Model parameters Θ(c) and Θ(i), beam size b and

maximum number of sentences nm
1: Input: An input sequence X
2: Output: A generated sequence Y
3: Initialize step j = 0
4: while j < nm do
5: Derive contextualized prompts Pc based on X
6: Generate b candidate sentences y(1)j , . . . , y

(b)
j accord-

ing to Eq. 6
7: Utilize continuous inverse prompts Pi to compute the

likelihood of candidate sentences according to Eq. 7
8: Choose the best sentence as ys based on Eq. 8
9: Terminate the loop if ys contains the end of sentence

token
10: Update j = j + 1
11: end while
12: Concatenate y1, . . . , yj as generated sequence Y
13: return Y

Output-to-Input Relevance Enhancement. To
model the relevance of output Y to input X , we
hypothesize that the output text is highly relevant
to the input text if we can recover the input based
on the output. Nevertheless, in some text gener-
ation tasks, it is non-intuitive to generate the in-
put text given the output text. Hence, we utilize
prompts to mitigate this issue. We introduce con-
tinuous inverse prompts P i and append them on
both sides of the output Y . Then, we utilize an-
other PLM to measure the conditional probability
Pr(X|Y,P i). Considering the output text Y might
be much longer than the input text X , we further
model the probability at the sentence level:

Li = − log Pr(X|Y,Pi) (7)

= −
m∑

j=1

log Pr(X|pi1···k,yj,1, . . . ,yj,nj ,p
i
k+1···2k),

where pi1···k denotes pi1, . . . ,p
i
k and pik+1···2k

denotes pik+1, . . . ,p
i
2k. Unlike contextualized

prompts in Section 3.1, we expect inverse prompts
to reflect better the relationship between Y and X ,
which is dependent on the task rather than the input.
Thus, the inverse prompts are static and continuous
in our approach.

Generation with Inverse Prompting. With the
two techniques mentioned above in the generation
process, we utilize a modified beam search algo-
rithm shown in Algorithm 1 to generate the se-
quence Y with the highest combined probability:

Y = argmax
Y

log Pr(Y|X ,Pc) + λ log Pr(X|Y,Pi), (8)
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where λ is a hyper-parameter to balance these two
probabilities. We set λ to 4.0 with the best balance
of performance.

In contrast to contextualized prompts that enrich
the input information, continuous inverse prompt-
ing makes the generation process more controllable.
Even for latter generated sentences, it can still en-
force them to adhere to the input topic.

3.3 Discussion and Learning

In this part, we present the model discussion and
optimization.

Discussion and Comparison. We use contextu-
alized prompts (Eq. 6) to elicit useful knowledge
from PLMs for different inputs. As a compari-
son, previous continuous prompting methods (Li
and Liang, 2021; Lester et al., 2021) adopt static
prompts, which are irrelevant to the input. Besides,
we propose continuous inverse prompting (Eq. 7)
to enforce the relevance of long output text by con-
sidering a generation process from output to input.
Different from the original inverse prompting, our
inverse prompting is based on continuous prompts,
which can be optimized during fine-tuning.

Considering that our method involves an-
other PLM and more parameters, we propose a
lightweight context-tuning approach. Following
Ben Zaken et al. (2022), we only fine-tune the bias
term of each parameter, resulting in fine-tuning
only 0.12% of the parameters of complete mod-
els. In the meanwhile, prefix-tuning (Li and Liang,
2021) and prompt tuning (Lester et al., 2021) freeze
the PLM and only fine-tune the parameters of
prompts. Prefix-tuning fine-tunes prompts in each
layer and tunes 16.4% of the BART parameters,
while prompt tuning only fine-tunes the prompt
concatenated to the input, resulting in fine-tuning
0.05% of the BART parameters.

Optimization. We use the base version of BERT
as our prompt generator. The number of prompt
vectors k is set to 150. We utilize the base version
of BART for text generation. The hyper-parameter
λ in Eq. 8 is set to 4.0. There are two sets of
trainable parameters in contextualized prompts and
continuous inverse prompting, denoted by Θ(c) and
Θ(i), respectively. First, we optimize Θ(c), includ-
ing BERT and BART, according to Eq. 6. Mean-
while, we optimize Θ(i) according to the inverse
generation loss using Eq. 7. During inference, we
combine them and select sentences that are both

Dataset #Train #Valid #Test #Input #Output

WP 53,516 4,000 2,000 25.48 150.64
ROC 176,688 9,816 4,909 9.02 40.72

CMV 42,462 6,480 7,562 17.89 104.10
WIKIP 69,288 8,661 8,662 3.38 194.72

Table 2: Statistics of our datasets after preprocessing.
#Train, #Valid and, #Test denote the number of exam-
ples in training, valid, and test datasets, respectively.
#Input and #Output denote the average number of to-
kens in the input and output text.

informative and relevant to the input text based on
Algorithm 1 and Eq. 8.

4 Experiment

In this section, we first set up the experiments and
then report the results and analysis.

4.1 Experimental Setup
4.1.1 Construction of the Datasets
To measure the performance of our proposed
context-tuning, we evaluate it on four open-
ended text generation tasks: WRITINGPROMPTS

(WP), ROCSTORIES (ROC), CHANGEMYVIEW

(CMV), and WIKIPLOTS (WIKIP). Specifically,
WP (Fan et al., 2018) consists of pairs of story
premises and responses from the WritingPrompts
forum. ROC (Mostafazadeh et al., 2016) is a
dataset consisting of five-sentence commonsense
stories. Here, we use the first sentence as the input
to generate the following four sentences. For WP
and ROC, we utilize the version provided by Guan
et al. (2021) for a fair comparison. CMV (Hua
and Wang, 2020) contains pairs of post statements
on a controversial issue, which are collected from
Reddit. WIKIP1 is a collection of story plots from
Wikipedia. We use the sub-header word to generate
the full story.

Since some dataset outputs are significantly long,
we discard examples where the text contains more
than 512 tokens due to the length limitation of
PLMs. We summarize the statistics of four datasets
after preprocessing in Table 2.

4.1.2 Baseline Methods
We consider the following baselines as compar-
isons: GPT-2, BART, T5, HINT, prefix-tuning,
and prompt tuning. Among these baselines, GPT-
2 (Radford et al., 2019), BART (Lewis et al.,

1https://github.com/markriedl/
WikiPlots
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Models
WRITINGPROMPTS ROCSTORIES

#Para
BLUE-1 BLUE-2 Dist-1 Dist-4 BLUE-1 BLUE-2 Dist-1 Dist-4

Full fine-tuning
GPT-2 24.94 9.03 1.40 35.38 31.45 14.26 2.21 58.63 1.2×108

T5 20.76 7.41 1.25 27.77 31.31 14.23 2.22 54.31 2.2×108

BART 28.42 11.31 2.11 62.05 32.95 15.35 2.70 68.88 1.4×108

HINT 22.40 8.40 – 31.30 33.40 15.40 – 69.30 1.4×108

Context-Tuning 29.88 11.85 2.49 67.78 34.65 16.60 3.16 75.53 2.5×108

Lightweight fine-tuning
Prompt Tuning 16.26 5.18 3.71 69.68 27.27 10.49 2.44 62.12 7.6×104

Prefix-Tuning 28.39 10.76 1.72 58.34 30.62 13.51 2.51 67.19 2.3×107

Context-Tuning 29.45 10.90 1.78 62.89 32.24 14.30 2.49 68.92 3.0×105

CHANGEMYVIEW WIKIPLOTS

BLUE-1 BLUE-2 Dist-1 Dist-4 BLUE-1 BLUE-2 Dist-1 Dist-4

Full fine-tuning
GPT-2 23.39 8.32 0.75 37.18 23.74 9.33 0.90 38.39 1.2×108

T5 20.89 7.79 1.01 42.48 14.83 6.09 1.33 39.25 2.2×108

BART 25.69 9.77 1.11 61.21 27.12 11.54 1.82 49.54 1.4×108

Context-Tuning 26.11 10.00 0.99 57.38 27.80 11.82 2.05 51.96 2.5×108

Lightweight fine-tuning
Prompt Tuning 22.54 8.11 1.43 64.60 18.64 6.98 2.78 58.53 7.6×104

Prefix-Tuning 25.72 9.84 0.96 54.66 27.30 11.60 1.95 51.05 2.3×107

Context-Tuning 28.83 10.96 0.97 57.79 26.93 11.53 2.48 59.34 3.0×105

Table 3: Performance comparison of different methods for open-ended text generation tasks. Dist-n is short for
Distinct-n. Bold and underlined fonts denote the best and second-best methods (the same below). #Para denotes
the number of fine-tuned parameters in each method. The results of HINT are from its original paper (Guan et al.,
2021). “–” means HINT does not compute the corresponding result.

2020), and T5 (Raffel et al., 2020) are three
prevalent PLMs for natural language generation;
HINT (Guan et al., 2021) is a strong baseline
model specially designed for generating long and
coherent texts; prefix-tuning (Li and Liang, 2021)
and prompt tuning (Lester et al., 2021) are the re-
cently proposed lightweight models using contin-
uous prompts for generation tasks. We utilize the
base version for all PLMs for a fair comparison.

4.1.3 Implementation Details
For fine-tuning settings, we consider two strategies:
full fine-tuning and lightweight fine-tuning, to com-
pare our methods with different baselines. In the
lightweight fine-tuning settings, our context-tuning
only tunes the bias term of each parameter.

In all experiments, we utilize the Adam opti-
mizer and set β1 = 0.9, β2 = 0.999, ε = 1×10−8.
We train our model for 20 epochs and utilize the
model with the best performance on the validation
set for generation. During inference, we apply the
nucleus sampling with p = 0.9 and temperature

of 0.7. We train our model using NVIDIA A100
GPUs on Ubuntu 18.04 and employ the NLP open-
source library Transformers (Wolf et al., 2020) and
text generation library TextBox (Li et al., 2021).

4.1.4 Evaluation Metrics
To evaluate the performance of different methods
of natural language generation, we adopt two au-
tomatic evaluation metrics, including BLEU (Pa-
pineni et al., 2002) and Distinct (Li et al., 2016).
Specifically, BLEU evaluates the quality of gen-
erated and real text, while Distinct measures the
diversity of generated texts.

4.2 Performance Comparison

We present the results of different methods on gen-
eration tasks in Table 3.

First, we can see that BART performs best com-
pared to other PLMs on these generation tasks. Pre-
trained on the large-scale corpus, PLMs can better
understand natural language and fluently express
human language. We consider the better perfor-
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Models B-1 B-2 D-1 D-4

Context-Tuning 29.88 11.85 2.49 67.78

w/o Continuous w Manual
- human-written prompt1 27.96 10.93 1.92 59.97
- human-written prompt2 29.14 11.56 2.09 61.69

w/o BERT w RoBERTa 27.31 10.73 1.56 57.51
w/o Semantic Mapping 29.19 11.33 1.72 58.57
w/o Inverse Prompting 29.31 11.45 2.19 64.09

Table 4: Ablation analysis on WRITINGPROMPTS
dataset.

mance of BART is due to the encoder-decoder ar-
chitecture and the DAE pretraining task. That is
the major reason we adopt BART as our base gen-
eration model.

Second, the recently proposed continuous
prompting methods, prefix-tuning, and prompt tun-
ing do not achieve ideal performance in these tasks.
This finding shows that natural language generation
tasks are more challenging than NLU tasks. Only
fine-tuning a few parameters cannot outperform
full fine-tuning.

Finally, our model outperforms all the baselines
(including the strong baseline HINT) over four
tasks under both full and lightweight tuning set-
tings. The reason is that our context-tuning utilizes
contextualized prompts, which can serve as queries
to elicit input-relevant knowledge from PLMs. Un-
der the lightweight fine-tuning settings, our context-
tuning has superior results to prefix-tuning, only
with 1.3% of the parameters of prefix-tuning and
0.2% of the parameters of BART. Some of the per-
formance under lightweight settings can even out-
perform the full tuning, which may be a solution to
catastrophic forgetting (Wang et al., 2021). And a
major reason is that prefix-tuning and prompt tun-
ing adopt static prompts, which are task-specific
and unrelated to the context information.

4.3 Ablation Analysis

In this part, we construct ablation experiments
to test the effectiveness of our proposed context-
tuning. In contrast to previous prompt-based stud-
ies, our context-tuning has made several improve-
ments. First, compared with manual prompts,
we propose a continuous prompting approach to
fine-tuning PLMs. Second, we adopt BERT as
the prompt generator to derive the contextualized
prompt vectors with semantic mapping. Finally, we
utilize inverse prompting to enhance the relevance
of the generated texts further. Here, we would like

Models TT (%) Flu. Info. Rel. Coh.

GPT-2 81.20 3.90 3.27 3.77 3.50
T5 61.48 3.58 3.02 3.64 3.25

BART 77.17 3.82 3.27 3.74 3.59
Context-Tuning 82.83 4.12 3.47 3.94 3.85

Gold 94.00 4.26 3.90 4.33 4.01

Table 5: Turing test (TT) and human evaluation on
WRITINGPROMPTS. “Gold” indicates the ground-truth
texts. Flu., Info., Rel., and Coh. denote fluency, infor-
mativeness, relevance, and coherence, respectively.

to examine how each factor contributes to the fi-
nal performance. To see this, we prepare several
variants for a comparison:
• w/o Continuous w Manual: the variant

removes the continuous prompts but utilizes two
kinds of human-written prompts, i.e., prompt1:
“Title: $Input Story:” and prompt2:
“Given the title $Input, please
write the following story:”.
• w/o BERT w RoBERTa: the variant replaces

BERT with RoBERTa (Liu et al., 2019) to form the
prompt generator.
• w/o Semantic Mapping: the variant does not

align to word embeddings and directly utilizes the
top-layer representations of “[MASK]” tokens in
the prompt generator.
• w/o Inverse Prompting: the variant removes in-

verse prompting (Eq. 8) from our proposed context-
tuning.

From Table 4, we can see that variants replac-
ing continuous prompts with manual prompts are
worse than the model with continuous prompts.
The performance of manual prompts is sensitive to
different instructions and does not always lead to
gains. This verifies the effectiveness of utilizing
continuous prompts rather than discrete ones for
text generation tasks. The variants replacing the
BERT-based prompt generator with RoBERTa are
worse than the full model. We further observe a
slight performance drop when our method removes
the semantic mapping and inverse prompting. This
implies that the proposed semantic mapping and
continuous inverse prompting approaches can en-
force the informativeness relevance of output text.

4.4 Model Sensitivity

In this part, we construct sensitivity analyses w.r.t.
the number k of prompt vectors on the WRITING-
PROMPTS dataset.

In contextualized prompt learning, the number
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#Prompt B-1 B-2 D-1 D-4

k = 50 27.82 11.00 2.28 63.77
k = 100 28.55 11.12 2.17 63.69
k = 150 29.31 11.45 2.19 64.09
k = 200 28.48 11.22 1.97 61.09

Table 6: Performance tuning on WRITINGPROMPTS
dataset. We do not utilize continuous inverse prompt-
ing methods here.

of prompt vectors is a key factor that influences the
performance of our model. A longer sequence of
prompt vectors means more trainable parameters
and, therefore, more expressive power. Here, we
will examine how it affects the final performance
of our context-tuning. Given the statistics in Ta-
ble 2, we vary the number of prompt vectors in the
set {50, 100, 150, 200}. We separately train our
model with different numbers of prompt vectors
and do not utilize continuous inverse prompting
methods for convenience. As shown in Table 6,
the performance of our model gradually improves
as the number of prompt vectors increases up to
a threshold, and then a performance drop occurs.
More importantly, our model achieves the best per-
formance with 150 prompt vectors over baselines.

4.5 Human Evaluation

Besides automatic evaluation, we further conduct
a human evaluation for testing the effectiveness of
our approach. We randomly select 500 input texts
from the test set of the WRITINGPROMPTS dataset.
We collect the stories generated by GPT-2, BART,
T5, and context-tuning, then shuffle them for hu-
man evaluation. Following Zou et al. (2021), we
invite ten human judges to assign scores to a gener-
ated text concerning four factors of quality, namely
informativeness (how much it provides valuable
and meaningful information), relevance (how rel-
evant it is according to the input contexts), coher-
ence evaluates (how coherent both intra and inter
sentences are) and fluency (how likely a human
produces the generated text).

We adopt a 5-point Likert scale as the scoring
mechanism, in which 5-point means “very satisfy-
ing”, and 1-point means “very terrible”. Further-
more, inspired by Zou et al. (2021), we design a
Turing test where a human judge is asked to dis-
tinguish whether a human produces the given text.
The detailed evaluation guidelines and examples
are listed in Figure 2, Figure 3, Figure 4, and Fig-

ure 5 in the Appendix.

We present the human evaluation results in Table
5. It can be seen that our model is better than the
three baselines with a large margin. The major
reason is that we utilize the contextualized prompts
derived from the input text. Our contextualized
prompts can extract knowledge from PLMs and
serve as additional input information to be fed into
PLMs, which improves the informativeness of the
generated text. Moreover, the proposed continuous
inverse prompting method enhances the relevance
of the generated text to the input.

4.6 Qualitative Analysis

In this part, we present an intuitive analysis of why
our model works well.

Table 7 presents an example story from the
WRITINGPROMPTS dataset and the generated story
by our model and two baselines, i.e., GPT-2 and
BART. As we can see, there is limited information
in the input premise, besides several keywords such
as nature, documentary, and Pokémon.

First, we can see that the story generated by
our context-tuning is highly relevant to the input
text and conveys richer semantic information. A
primary reason might be that our contextualized
prompts can elicit input-relevant knowledge from
PLMs for generating more informative text. Al-
though PLMs perform well in generating fluent
text, we can see that GPT-2 and BART are still
prone to generating unmeaningful and irrelevant
content, such as “I love you” and “language”.

Furthermore, to probe whether our contextual-
ized prompts contain input-relevant knowledge, we
find close actual words for a better explanation.
We use 2k contextualized prompts in total, and for
each continuous prompt, we recall the word in the
BERT vocabulary with the closest cosine distance
to it. Finally, we select some words from 2k re-
called words and showcase them grouped by four
aspects in the row closer words to contextualized
prompts of Table 7. As we can see, most recalled
keywords are included in the story generated by
our context-tuning. It shows that our contextu-
alized prompts can better capture input-relevant
knowledge. For example, the keywords “forest”,
“woods”, and “animal” are closely related to the
aspect of nature.
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Title Write a Nature Documentary about Pokémon .

GPT-2 <newline> it’s been a long time since i’ve seen one of these things. <newline> i don’t know how long it has been, but i know that it will be long.
i have seen it before, and i will see it again. it is the only thing i can think of that makes sense to me, because it makes me feel like i am part of
something greater than myself. and that is why i want to know more about it. because if i could, i would know what it was like to be human. to
have a sense of purpose and purposelessness, to feel that there is a purpose in everything that you do, even if you are just a shell of what you once
were. but that does not make it any less of a feeling. that feeling that i feel when i look into the eyes of another human, when they look at me and
say, “ i love you. ”

BART the pokémon are the most powerful of all theokémon in the world. <newline> they are the best of the best, but they are also the most dangerous.
they have the ability to move faster than any otherokémon on the planet, and they are able to communicate with each other in a way that is impossible
for humans to understand. however, they are not able to fight each other, because they are unable to communicate in a language that is not their
own. they can only communicate through their own language, which is very different from any other language that humans can understand. they
are very difficult to understand, and can not communicate in any language that can be understood by humans. they also have a very limited ability
to speak, so they can not understand the language that they are speaking. in fact, they have no ability to communicate at all, because their language
is very similar to that of a human.

Closer words to contextualized prompts: forest trees marching winds food . . . . . . . . . . .historically . . . . .story . . . . . .movie
::
pet

:::::
pikachu

::::::
animation whilst critical asking write

Context-
Tuning

“
:::::
pokémon! ” <newline> “ what are you talking about? ” . . .the . . . . .man . . . . . . .asked. “ i’m talking about a

:::::
pokéball. it’s called

::::
pikachu, and it lives in the

forest. it lives on the edge of the forest, where it can eat anything it wants to eat. it is the only thing that can keep it alive. it can live in the woods,
but it can also be eaten by any other creature. it has the ability to eat anything that it wants, and can even eat any other animal it wants. ” . .he. . . . .said.
the man looked at the man, and said, “ i don’t know what you’re talking about, but i do know that it can be eaten. ” the two men looked at each
other, and . . .the . . . . .man. . . . . . .spoke, “ you’ve got to be kidding me. ”

Table 7: The generated examples of the given title from the WRITINGPROMPTS dataset. Marks in closer words to
contextualized prompts and texts generated by context-tuning refer to four chosen aspects, i.e., nature, documen-
tary, Pokémon, and the story generation task.

5 Conclusion

This paper presents a novel continuous prompting
approach, i.e., context-tuning, to fine-tuning PLMs
for natural language generation. The core idea is
to inject input-related context information into con-
tinuous prompts, called contextualized prompts, to
enhance the informativeness of generation. The
contextualized prompts can elicit input-relevant
knowledge from PLMs to enrich the input text. Fur-
thermore, to enhance the relevance of the generated
text to the inputs, we adopt a continuous inverse
prompting method to refine the forward genera-
tion process by modeling an inverse generation
process from output to input. We also propose a
lightweight method for efficient training. Extensive
experiments on four generation tasks have demon-
strated the effectiveness of our model in fine-tuning
PLMs for text generation tasks.

In future work, we will consider integrating more
types of context information (e.g., sentiment) to
derive more expressive prompts and investigate
how our model could be applied to other tasks.
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Thank you for taking time out of your busy schedule to participate in our scientific research evaluation!
Our research work is to let the machine generate corresponding story, for a given title, and hope that it is
as close as possible to what humans write. Hence, we need to evaluate whether it meets the standards that
people think.
In this task, you will see a title, idea or introduction such as:
You have a very shitty type of precognition .
Then you’ll see a corresponding story or comment, either written by a human or a machine, but you don’t
know which one was written, and you’ll have to rate it based on the following standard:

• Turing Test: whether the text was written by a human;

• Fluency: whether the text has good form, logical reading and smooth sentences;

• Informative: whether the text contains meaningful content and will not be boring to read;

• Relevance: whether the text is highly relevant to the input context;

• Coherence: whether the logic is coherent and not contradictory;

For Turing Test, just judge the text by instinct. For the other four factors, we adopt a 5-point likert scale as
the scoring mechanism, in which 5-point means “very satisfying”, and 1-point means “very terrible”.

Figure 2: Evaluation guidelines for WRITINGPROMPTS dataset.
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Fluency: whether the text has good form, logical reading and smooth sentences.

• 1 point example: I was a exterminator on earth. I killed every insect and animal I killed in my life.
If I win, I go to heaven, lose, and go to hell. I was an exterminator in hell. I was the exterminator of
the world. I exterminated every insect, animal, and animal that I killed. I didn’t have to kill them all.
I just had to do it. I had to kill all of them. I couldn’t let them get away with it. So I killed them all,
and I did it all over again. And again and again. I don’t know how long I’ve been doing this, but it’s
been a long time. (containing some grammatical errors and repetitive contents)

• 1 point example: I followed you into the dark . We carved our names into the bark . “ Forever and
always Through short nights and through long days . ” But that tree withered so long Its voice died
in sweet silent song . Dead and gone We left and lost our life bond . I always remember your words
Of comfort and joy like the birds . Sweet and sad ; It was all I never had . For I carved both names
on that tree No kind woman would be with me . No more hope ; You and me , the end of a rope You
were not ever real and I know that now . “ Always to love you ” , I end with that vow . (there is no
continuity between the words of the sentence, and the content is intermittent)

• 3 point example: I’ve been trying to kill my master for years. I’ve tried to kill him for years, but he’s
always been there for me. He’s the only one who knows what I’m going to do, and I don’t care. I ’ll
kill him if I have to. But I can’t do it anymore. I haven’t been able to do it for years now. I can not do
it any more. I just want to go back to my master. I want to be with him again. But he won’t let me go
back. I know it’s not fair, but I just need to get back to him. (each sentence is grammatically correct
and fluent, but contains certain repetitions and discontinuities in semantics)

• 3 point example: It’s been a long time since I’ve seen her. She’s always been there for me. I’m not
sure how long I have been here, but I know she’s here. I know I ’ll never see her again. I don’t know if
she ’ll ever see me again. But I know it’s time. I can feel it in my bones, in my skin, in the bones of my
bones. I can’t help but think of her. I remember her when I first met her, when I was young. She was
so beautiful, so full of life. I couldn’t wait to meet her again, to see her smile again. (sentences are
fluent, but similar words are used repeatedly in the sentence, resulting in ambiguous meaning
and confusing)

• 5 point example: Long ago his heart had warmed , three thousand years - long enough to mourn , the
deeds of past and of damnation , stripped of humanity and of his station . He resided in the pits of hell
the oldest friend of satan , waiting as the centuries pass watching hells inflation , resting on brimstone
as passing devils chatter and laugh , who is this old man and what sin has made him . a curious young
man with a glint in his eye asks his sentence , and with creaks and groans the old man rose for the first
time in ages , he look at the spirit and with a heavy sigh he came out with , I ’m god and I made this .

• 5 point example: Tell us your faults ? Really ? This was the question - the shibboleth - that unlocked
the cosmos ? The Masters could have picked a scientist to answer but they feared she might mask
ignorance . They could have picked from our global leaders bit they feared that they would mask
deceit . They could have picked a holy man but feared he would mask violence , oppression , hate ,
intolerance ... the list of disqualifying sins was almost too long to enumerate . So they picked Josh
Thornton , a 45 year old MBA in human resources . “ Our greatest weakness ? Well , I think we work
a little too hard and , as a race , we might be a bit of a perfectionist . ”

Figure 3: Evaluation examples for fluency factor.
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Informative: whether the text contains meaningful content and will not be boring to read.

• 1 point example: I’ve been doing this for years. I’ve been doing this for years. I’ve been doing this
for years. I’ve been doing this for years. I’ve been doing this for years. I’ve been doing this for years.
I’ve been doing this for years. I’ve been doing this for years. I’ve been doing this for years. I’ve been
doing this for years. I’ve been doing this for years. I’ve been doing this for years. I’ve been doing this
for years. I’ve been doing this for years. I’ve been doing this for years. (sentence repetition)

• 1 point example: “ I’m the First ****bender. ” “ What’s that? ” I asked. “ I don’t know, ” he replied.
“ But you’re the first ****bender, right? ” “ Yeah, ” I said. “ You’re not the first. ” “ Well, I guess
that’s true. ” He paused. “ What do you mean? ” He looked at me. “ That’s right. ” I looked at him. “
It’s not like you’ve ever been the first... ” He trailed off. “ No, it’s just... ” I trailed off, “ I’ve never
been the First... ” (conversation sentences are very short, and they are all safe replies)

• 3 point example: “ What the hell is this? ” “ I don’t know, ” I said. “ I’m not sure what to do with
this. I’ve been doing this for a long time, and it’s not like I ’ll be able to do anything about it. ” He
looked at me with a confused look on his face. “ What the fuck? ” I asked. “ You’re not going to do
this again. ” I replied. “ It’s just a matter of time, ” he said. I looked at the frying pan again. “ Don’t
worry, it ’ll work. It ’ll do. ” “ What’s the problem? ” He asked. I nodded. “ Well, I guess I ’d better
get out of here. ” The frying pan buzzed at me and text appeared reading “ level 18 cooking required
to use object. ” (containing rich dialogue, but the content of the dialogue is meaningless)

• 3 point example: The stars fell like rain, and we danced. The moon was bright, and the stars danced.
The stars were bright, but the stars were not bright. They were bright and the sky was blue. We danced,
but we didn’t know what to do. We danced and we sang and we laughed and we talked and we cried
and we screamed and we played and we giggled and we thought we were going to die, but it wasn’t. It
was just the stars falling like rain. And we danced, and it was beautiful. (the article has a certain
content at the beginning, but it is more verbose at the end)

• 5 point example: She is the woman you have loved since the day you met her . Everyday she has a
smile on her face beautiful as ever . You love her but are afraid of what she will say when you tell her
. It was raining and you ran for shelter , a small roof at the bus stop . Tired and panting you barely
notice her sitting beside you , she calls your name . You jump a little bit and become nervous when
you recognize her . You stare at each other not knowing what to do or say , and then she kisses you .
An alarm sounds , you wake up in your room all alone , another dream (a whole story)

• 5 point example: I feel like it ’s worth pointing out that a lot of these are kind of situational . I think
all of these rules are good to follow if what you ’re writing is something you ’re trying to submit
to someone formally or something , but a lot of them are not important in casual writing ( such as
someone ’s dialogue or something like that ) . For example , “ literally ” has been used for hyperbole
for a very long time – I know I ’ve heard that Nathaniel Hawthorne did it , and I hardly think he was
the first . It pisses a lot of people off but it ’s not like it ’s a new phenomenon and it ’s not like it ’s
a corruption of the language . Things about spelling and homonyms and stuff should probably be
followed just about all the time though . (using concrete examples)

Figure 4: Evaluation examples for informative factor.
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Coherence evaluates how content is coherent considering both intra- and inter-sentence correlation.

• 1 point example: i don’t know if it’s a good thing or a bad thing, but i’ve found that if i’m going to
write a story, i need to be able to get it out of my head. i think that’s the most important thing. if i
want to write something, i have to know what i want it to be. i have a lot of ideas, but they’re just not
good enough. i’ll try to find a way to get them out, but if i can’t find the right words to write, i will
probably have to go back and re - write it. (no semantic connection between sentences)

• 1 point example: “ I’m sorry, ” I said to myself. “ I don’t know what to do. ” I replied. “ I just want
to see you again. ” I looked at my reflection, and it was the same. I couldn’t tell if it was a reflection or
a reflection, but I knew that it was my reflection. I looked back at the mirror, and I saw that I was the
one who was going to be my future soulmate. I smiled, and said, “ I love you, ” and walked away.

• 3 point example: I have a very shitty type of precognition. I don’t know what it is, but it’s something
I have to do. I’m not sure why I do it, but I do. I’ve been doing it for years now, and I haven’t been
able to figure out why. It’s not like I have any control over it. I can’t control what I do, or what I say,
or how I act. I can only control the way I act, how I react, and how I feel. I have no control over my
actions, and no control of my emotions. I just have to control my emotions, and that’s all I can do.
(after careful consideration, many logical contradictions were found)

• 3 point example: I ’d like to take a moment to appreciate Sir Terry Pratchett. I’ve read a lot of his
work, and I’m not sure if it’s because of his writing style or because of the way he wrote it. I don’t
know if he’s a good writer, or if he is a bad writer, but I do know that he is one of the best writers I
have ever read. I think that’s why I love him so much. I also think that he has a great sense of humor,
and that he doesn’t have a bad sense of humour. (some repeated information, but other content is
ok)

• 5 point example: You eagerly await your pizza to come because you ordered from this new Italian
Pizza owed by two brother , you remember that one of their names are Mario but you forgot the other
. The Pizza finally arrives a bit late from this tall guy dressed in green . You pay him take , take the
pizza but forget to tip . When you start eating you get a bit dizzy so you lay down and fall asleep quite
quickly . You wake up in a in a place covered in mushrooms with a little man dressed as a mushroom
telling you that “ You need to save the princess ” . (smooth connection between context)

• 5 point example: When 1st purge happened , no one thought people would attack each other . A
desperate party know only as Al Queda broke the rules and decided that it would do what no one
else would have done . Bomb Manhattan . That single move destroyed not only the Republicans and
the Democrats , it also destroyed morale . Hundreds of fully armed fat Politicians fled to the streets ,
screaming out jibberish and shooting anyone they see . Millions lay dead as all parties Jump onto their
jets towards Manhattan , preparing to be included in the giant Cesspit of a war know as the Purge .
When the Morning came . There were no victors . Only that the red dawn came and claimed .

Figure 5: Evaluation examples for coherence factor.
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Abstract

Few-shot abstractive summarization has be-
come a challenging task in natural language
generation. To support it, we developed a
novel soft prompts architecture coupled with
a prompt pre-training plus prompt fine-tuning
paradigm, which is effective and tunes only
extremely light parameters. To meet the struc-
ture of the generation models, the soft prompts
comprise continuous input embeddings across
an encoder and a decoder. Importantly, a new
inner-prompt placed in the text is introduced
to capture document-level information. The
aim is to devote attention to understanding
the document that better prompts the model
to generate document-related content. In the
training process, the prompt pre-training with
self-supervised pseudo-data firstly teaches the
model basic summarizing capability. Then,
with few-shot examples, only the designed
lightweight soft prompts are fine-tuned. Ex-
perimental results on the CNN/DailyMail and
XSum datasets show that our method, with only
0.1% of the parameters, outperforms full-model
tuning where all model parameters are tuned. It
also surpasses Prompt Tuning by a large margin
and delivers competitive results against Prefix-
Tuning with 3% of the parameters.

1 Introduction

Given the high labor-costs of obtaining quality ab-
stractive summaries, few-shot abstractive summa-
rization is very demanding and highly challenging.
A widely accepted paradigm for almost all NLP
tasks is to fine-tune the entire set of parameters for
a large pre-trained language model to suit the target
task (Liu and Lapata, 2019; Liu et al., 2020).

However, the fine-tuning with few-shot exam-
ples usually leads to disappointing results, espe-
cially with generation tasks like abstractive sum-
marization (Fabbri et al., 2020; Yu et al., 2021).
The likely outcome is an overfit model. Further, for

∗Corresponding author.

every specific task, a large number of pre-trained
parameters need to be updated and stored, which is
not efficient to use.

Pre-trained language models are few-shot learn-
ers, i.e., GPT-3 (Brown et al., 2020) that sur-
prisingly perform generation tasks from a few
examples without any further gradient updates.
Although it lacks a rigorously theoretical proof,
prompt learning inherits the few-shot property (Li
and Liang, 2021; Schick and Schütze, 2020; Jin
et al., 2021; Liu et al., 2021). Commonly, this type
of learning is considered to retrieve relevant knowl-
edge from frozen language models, only tuning
continuous prompts to quickly adapt to new tasks
with very few examples.

More recently, Prompt Tuning (Lester et al.,
2021) has received much attention. With large
frozen language models (say, >10 billion param-
eters), Prompt Tuning simply adds a tunable soft
prompt to the input of the encoder, achieving re-
sults that are comparable to full-model tuning. Yet,
our empirical results, in Section 2, demonstrate
that Prompt Tuning for abstractive summariza-
tion yields simply abysmal performance. Prefix-
Tuning (Li and Liang, 2021) extends the use of
prompt learning in the natural language generation
area. With this technique, continuous prompts are
applied to every layer of the pre-trained model and
even shows increase in few-shot generation tasks
over fine-tuning. Yet the training process is not sta-
ble and updates are required that add to the memory
and training costs.1

Given the shortcomings of these two methods,
we have developed a soft prompts tuning method
that is specifically designed for summarization.
The structure is given in Figure 1. The method
is capable of performing few-shot language gen-
eration task (i.e., abstractive summarization) with
an efficient amount of training parameters. Prompt
tokens are added before the decoder input tokens

1See more related work in Section 5.
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Figure 1: The comparison between PSP and previous
methods. “E” and “D” represents the encoder and the
decoder, respectively.

to guide the generation process toward the target
summary. Moreover, we have designed three in-
ner prompts – interval, sequential, and fixed-length
– one of which is placed among the source input
tokens. The aim is to capture the structure in the
source document and aid in understanding its se-
mantics, so as to better prompt the model to gener-
ate document-related content. Each kind of inner
prompts focuses on different semantic units (e.g.,
phrases, sentences, and etc.), differentiating impor-
tant units from non-informative ones. To bolster
the summarization ability of the model and assist
the prompts to understand the documents, prompt
pre-training is performed before the tuning process,
and leveraged by self-supervised pseudo data. As
a last step, all the prompts are fine-tuned with few-
shot training examples. Experiments conducted on
two commonly used datasets - CNNDM (See et al.,
2017) and XSum (Narayan et al., 2018) - demon-
strate that our method outperforms full-model tun-
ing under few-shot settings only with 0.1% of the
parameters. It also surpasses naive Prompt Tuning
by a large margin. Our model also yields a per-
formance competitive to Prefix-Tuning with 3% of
the trainable parameters. A detailed analysis shows
that the designed prompt-pre-training phase and
the inner prompts are effective for few-shot text
summarization. Thus, the major contributions of
this work include : 1) A novel soft prompt architec-
ture for few-shot abstractive summarization. With
the well-designed prompts in embedding layer, our
model fulfills the task effectively and efficiently;
2) It is necessary to perform prompt pre-training
strategy which benefits soft prompts model for few-
shot summarization and shows excellent zero-shot
capabilities; 3) Experiments that investigate the
effect of different prompts by probing the atten-
tion weights. The results show our model is able
to: extract knowledge from the encoder language
model; understand the discourse in the document;

and guide the decoder language model to generate
fluent summaries.

2 Pilot Experiments

In a pilot study, we experimented with using
Prompt Tuning under 300-shots settings to find
reasonable clues as to how to design summary-
prompts for the task. Our findings follow.

Consider an encoder-decoder language model
pθ(y|x) based on the Transformer architec-
ture (Vaswani et al., 2017) (e.g., BART (Lewis
et al., 2020)) and parameterized by θ. To con-
duct a few-shot summarization task, we have
some few-shot training pairs of a document X =
{x1, x2, . . . , x|X|} and a corresponding summary
Y = {y1, y2, . . . , y|Y |}. Specifically, we divided
X into different subsets with sentences2 as our
unit, X = {x11, . . . xij , . . . , xnm}, where xij denotes
the jth token in the ith sentence.

First, original Prompt Tuning is applied by con-
catenating a series of prompt tokens Pen, param-
eterized by θpen , to the encoder input Xen =
{e11, . . . , eij , . . . enm}, where e represents the embed-
ding of each token (the leftmost structure in Fig-
ure 1). The gradients are backpropagated through
the prompts and the weights θ of language model
are frozen (Lester et al., 2021). In this way, the
model maximizes the likelihood of the output Y :

pθ;θpen (Y |[Pen;Xen]) (1)

The result of original Prompt Tuning is shown on
the first line in Table 1, where we see it severely
underperforms versus full-model tuning. In further
experiments, we added a series of prompts Pde to
the decoder inputs Xde following the generation
pθ;θpde (Y |Xen, Pde). Here, we found the results to
be even worse than the last.

Necessary Prompts for Generation For
generation-based tasks, prompts in both the
encoder and decoder are equivalently useful.
Therefore, our model employs a combination of
the two series of prompts mentioned above, and
generates Y conditioning on Xen, Pen and Pde:

pθ;θpen ;θpde (Y |[Pen;Xen], Pde) (2)

The result on the third line in Table 1 again verify
our hypothesis. Prompts across the encoder and

2Note that, throughout this work, a “sentence” can be
an arbitrary span of contiguous text (e.g., fixed length of 10
tokens), or an actual linguistic sentence.
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Model ROUGE-1 ROUGE-2 ROUGE-L

Prompt in encoder 32.87 11.92 21.73
Prompt in decoder 26.77 11.73 16.71
Prompt in en.&de. 36.37 14.41 24.46
Full-Model Tuning 37.01 14.49 23.91

Table 1: Results of BART-base on CNN/DailyMail
Datasets. Best results are bold.

Figure 2: Visualization of the encoder-decoder attention
weights. The x-axis are the encoder input, including
prompts across the encoder Pen and the source docu-
ment X . The y-axis are the decoder input, including
prompts across the decoder Pde and the target summary
Y . The area in the red box represents the attentions of
Pde assigning to Pen. The area in the yellow box repre-
sents the attentions of Y assigning to X . Darker color
shows the more highly related associations between to-
kens.

decoder even achieve comparable results with full-
model tuning under few-shot settings. This verifies
two things for us. First, prepending simple prompts
to only the input embedding layer is effective and
efficient for few-shot abstractive summarization.
Second, prompts across the encoder and decoder
are both necessary for generation tasks.

Lack of Attention on the Document We further
explored the encoder-decoder attention to inves-
tigate the effect of the prompts and freezing the
language model. From Figure 2, we find the gener-
ating output is mainly focused on the soft prompts
to come with little attention given to the docu-
ment itself. This outcome is detrimental to summa-
rization that requires to understand the semantics
and inner discourse structure of documents (Wang
et al., 2019). Without the associations of target
summaries and source documents, it is impossi-
ble to obtain high-quality summaries using current
prompt architectures.

From Figure 2, we can observe that prompts in
the encoder and the ones in decoder are consistently
and directly associated with each other. We spec-
ulate that the mechanism is that encoder prompts

Figure 3: Architecture and training scheme of PSP.
Squares in blue and red indicates frozen and tuned pa-
rameters, respectively.

retrieve relevant knowledge from the frozen en-
coder language model as a document representa-
tion, and decoder prompts copy the encoder’s be-
haviour, guiding the decoder language model to
generate text.

3 Method

In light of our findings about the current archi-
tectures, we developed a new architecture of pre-
trained soft prompts, for few-shot abstractive sum-
marization called PSP. The framework includes
continuous prompts across the encoder and de-
coder inputs, as well as inner-prompts to capture
the dependencies between documents and target
summaries. To better understand a given document,
we add a prompt pre-training process before few-
shot tuning. It also brings a good initialization
for the prompting. The overall architecture and
training scheme are illustrated in Figure 3.

3.1 Encoder-Decoder Basic Prompts

As mentioned in Section 2, in the training phase of
current architectures, Pen is responsible for extract-
ing knowledge from the encoder’s frozen language
model as a document representation. Meanwhile,
Pde mostly copies the behavior of Pen and guides
the frozen decoder’s language model to generate
fluent text as a summary.

To strengthen the model’s ability to understand
a document, the dependencies and attentions given
to the source document need to be embodied in the
prompt architecture.

3.2 Inner-Prompts for Document
Understanding

To achieve our goal, we propose the notion of
adding inner-prompts within the source document,
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Figure 4: Different inner prompts for one example
source document. Different colors indicate different
inner prompt embeddings. “NO. of words” means the
length of the text span.

denoted as Pin = {p1in, p2in, . . . , pnin} with the pa-
rameters θPin to be updated. Each piin corresponds
to a single sentence. These inner-prompts are added
to the corresponding token embedding, which gives
rise to a new X ′in:

X ′
in = {e11+p1in, e12+p1in, . . . , eij+piin, . . . , enm+pnin} (3)

We believe that by prompting different seman-
tic units (e.g., sentences, phrases, etc.), more at-
tention can be given to understanding the docu-
ment’s discourse. Furthermore, the inner-prompts
help the model to quickly interpret the document
by strengthening the associations between outputs
and documents. What follows are three different
strategies for incorporating the three different inner-
prompts. Note that there is more discussion on this
point in Section 4.2.

Interval Following Liu and Lapata (2019), the
interval inner-prompts comprises two inner-prompt
tokens are assigned to each sentence senti, depend-
ing on whether i is odd. Specifically,

Pin = {p1in, p2in, p1in, . . . , p(n−1)mod2+1
in } (4)

In this way, the model can identify important sen-
tences to encode the document at sentence level.

Sequential To highlight the complex discourse
structure of documents, sentence positions need to
be considered. Therefore, different tokens are set
in sentences by their sequences, formulated as:

Pin = {p1in, p2in, . . . , pnin} (5)

Fixed-length To discover more fine-grained se-
mantic units, a text span with a fixed length
k is manipulated into a new “sentence” and a

corresponding sequential token is assigned to it.
Further, prompts are assigned to the newly di-
vided sentences [sent1, sent2, ..., sentn], as
{p1in, p2in, . . . , pnin}. Figure 4 illustrates some ex-
amples where the above strategies have been used.

3.3 Self-supervised Prompt Pre-training

To improve ability of the prompts to understand the
documents and to help the model to adapt to the
summarization tasks, soft prompts are further pre-
trained on the corpus using summarization-oriented
self-supervised objectives. Doing this also means
that the prompts are well initialized for few-shot
tuning.

We tested two strategies for constructing the self-
supervised data. Each strategy was designed to suit
a particular type of writing bias in the document.
These are “lead” and “gap sentences generation”.

Lead Lead bias is common in news articles,
which usually follow an inverted pyramid struc-
ture where the first few sentences contain the most
salient information (See et al., 2017; Yang et al.,
2020). With this type of bias, we initially select
the first three sentences as our target summary, and
treated the rest of the document as the source text.
With this type of prompt pre-training process, the
model was able to infer the salient information
based on the remaining text.

GSG Gap sentences generation applies to all doc-
uments that do not follow the lead bias structure
(e.g., XSum (Narayan et al., 2018)). The strategy
used here follows Zhang et al. (2020) , where we
used ROUGE1-F1 (Lin, 2004) between each sen-
tence xi and the rest of the document as a proxy for
the principal score, si = rouge(xi, D \ {xi}), ∀i.
The top-m most important sentences were selected
according to si, and removed from the document.
Then these m sentences are concatenated in the
same order as the original text in the form of a
pseudo summary. The remainder of the text is
treated as a pseudo document.

With the constructed data, our designed prompts
can be pre-trained and further tuned with few-shot
examples.

3.4 Training Objective

The model is trained with maximum likelihood
estimation (MLE). Given a ground-truth summary
Y = [y1, y2, ..., y|Y |] for an input passage X , the
objective is to minimize the negative log-likelihood
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Datasets CNNDM XSum

train dev test train dev test

Avg.Passage 697.45 676.64 717.92 396.53 387.62 380.55
Avg.Sum 55.91 51.97 58.62 22.90 23.29 22.11
Labled data 300 300 11,490 300 300 11,333

Table 2: Datasets statistics. “Avg.Passage” means the
average length of passages and “Avg.Sum” means the
average length of summaries.

of the target word sequence:

L = −
|Y |∑

t=1

log pθ∗(yt|[Pen;X ′in], [Pde; y1, ...yt−1])

θ∗ = {θ; θpen ; θpde ; θpin}
(6)

Note that only these prepended-prompts parameters
(θpen , θpde) and the inner-prompts parameters (θpin)
are optimized, the language model parameters (θ)
are all frozen.

4 Experiments

Datasets We experimented with the
CNN/DailyMail (CNNDM) dataset (Hermann
et al., 2015) and the XSum dataset (Narayan et al.,
2018). We chose these datasets because they differ
in abstraction level and text length, which helps to
show the generalization ability of our results.

We constructed the self-supervised pre-training
data for CNNDM with Lead, and for XSum with
GSG. We show details in Section A.1 in the ap-
pendix. Given that the lead bias structure exists
only in some domain-specific datasets, we also con-
ducted experiments to demonstrate the universality
of the GSG to construct pseudo-data. The results
are shown in Section A.3 in the appendix. Our few-
shot training set Dtrain contained 300 document-
summary pairs randomly sampled from the original
training data. To tune the hyper-parameters and se-
lect the best checkpoint, we composed a validation
set Ddev from the original validation data. Here,
we were careful to ensure that |Dtrain| = |Ddev| so
that it fit into a true few-shot learning setting, fol-
lowing Perez et al. (2021). Since few-shot learning
may have high variance, we sampled the examples
with 5 different random seeds. We used the origi-
nal test set to report our results, including the mean
value and the standard deviation. Table 2 shows
the statistics of the pre-processed corpus.

Setup The base version of BART was used in our
work. Following Lester et al. (2021), we used 100
prompt tokens for both the encoder inputs and the

decoder inputs. These prompts were randomly ini-
tialized from the set of vocabularies. The sequential
and fixed-length inner-prompts require a maximum
number. Hence, we counted the number of sen-
tences in each document and divided the results
into two groups – the 85% with the least sentences
(Group A) and the 15% with the most sentences
(Group B)3. We then set the number of prompts to
the most number of sentences in Group A plus one,
i.e., n+ 1. For CNNDM, that number was 61 and,
for XSum, it was 33. In this way, one inner-prompt
token was assigned to each sentence up to n. For
the excessively long documents in Group B, the
text after n sentences was assigned an n + 1-th
token. Further, we drew from a normal distribution
N (0, 0.05) to initialize the inner-prompt embed-
dings4. Taking CNNDM as an example, all the
tunable parameters that need to be stored amount
to only 2×105. This is compared to the (1.4×108)
parameters of full-model tuning. That equates to
around 0.1% of the parameters for each dataset that
need to be tuned and stored.

Evaluation Metrics We adopted ROUGE (Lin,
2004) to measure the quality of the summaries
produced in our experiments. The F1 scores for
ROUGE-1, ROUGE-2, and ROUGE-L between the
ground-truth and the generated summaries are each
reported.

Baseline Models We compared PSP to: Prompt
Tuning (Lester et al., 2021), which only concate-
nates soft prompts into the encoder input; Prefix
Tuning (Li and Liang, 2021), which adds a prefix
to all the encoder layers, cross-attention layers, and
the decoder layers; and Full-Model Tuning, which
does not have any prompts and fine-tunes all the
parameters of the pre-trained language model.

4.1 Experimental Results of Our Method

Table 3 presents the results of all PSP variants
and baselines across CNNDM and XSum datasets.
With the exception of the ROUGE-2 and ROUGE-
L scores for the Prefix-Tuning on the CNNDM
dataset, our proposed PSP, outperforms the others.
However, PSP delivered a competitive result with
only 3% of the parameters, which is an acceptable
place to start. To our surprise, we observe that

3We made our division at 85% to ensure all embeddings of
inner-prompt tokens could be fully trained, because sentences
after the n-th only exist in 15% of the data.

4More information about implementation details are shown
in Section A.2 in the appendix.
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CNNDM XSum
Model ROUGE-1 ROUGE-2 ROUGE-L PPL ROUGE-1 ROUGE-2 ROUGE-L PPL

Prompt Tuning 30.582.07 11.930.46 21.731.86 141.56 29.631.21 8.840.55 22.001.23 101.96
Prefix-Tuning 37.120.15 16.590.09 26.280.06 52.59 32.180.16 11.130.08 25.500.14 39.58
Full-Model Tuning 38.030.56 16.010.79 25.210.70 65.73 32.850.25 10.520.24 25.150.29 51.63

PSPInterval 37.820.29 15.400.31 25.100.36 45.54 32.860.21 11.270.08 25.640.11 44.25
PSPSequential 37.820.39 15.580.32 25.160.32 48.10 32.570.11 10.970.07 25.390.05 35.70
PSPFixed−k 38.310.15 15.940.21 25.410.25 58.50 32.810.10 11.150.10 25.480.13 52.10

Table 3: Results on CNNDM and XSum Datasets. The experiments are conducted with 300 training samples and 300
validation samples on each dataset. We report the mean value and the standard deviation over 5 sampled datasets. k
= 10 is chosen for PSPFixed−k. “PPL” represents the perplexity of generated summaries. A low perplexity indicates
the summaries are fluent. Best results are bold and underline means our models outperform Full-model tuning.

50% of PSP’s results surpass the full-model tuning,
especially on XSum, as underlined in the table. Be-
sides, results on the PPL metric show that PSP can
generate more fluent summaries than other mod-
els. These results indicate that fine-tuning large
language models is not necessarily a good or effi-
cient idea with few-shot generation. It also shows
that soft prompts with frozen language models are
effective for few-shot abstractive summarization.
Moreover, it statistically verifies that PSP with its
three inner-prompt strategies is effective.

Efficiency v.s. effectiveness. We gave an over-
all comparison to baseline models on effectiveness
and memory-efficiency, evaluated by ROUGE and
the number of parameters, respectively. The results
are shown in Table 4. Prompt Tuning has the least
number of parameters, while its capacity is lim-
ited to this and lacks control over the decoder side,
hence it can not perform natural language genera-
tion tasks well. We can see that substantial gains
are made when going from vanilla Prompt Tuning
to PSP. However, even if Prefix-Tuning is nearly
thirty times more parameters than ours, there is ei-
ther a marginal improvement or even performance
decrease on some metrics. Besides, Prefix-Tuning
relies on reparameterization tricks to stabilize the
training, i.e., adds a MLP with large number of
parameters to the training stage. Our method pro-
vides the best effectiveness-efficiency trade off, and
outperforms full-model tuning with only 0.1% pa-
rameters, and presents competitive results against
Prefix-Tuning with 3% parameters.

Human Evaluation We conducted a human eval-
uation study. To this end, we randomly selected
20 instances from the test set of each dataset. Ten
graduate students with high levels of fluency in
English were asked to assess the generated sum-

Model # Train # Store ROUGE-1

CNNDM XSUM

PSP 2.0× 105 2.0× 105 38.32 32.86
Prefix-Tuning 2.4× 107 5.5× 106 37.12 32.18
Prompt Tuning 7.7× 104 7.7× 104 30.58 29.63
Full-Model Tuning 1.4× 108 1.4× 108 38.03 32.85

Table 4: Comparison with baseline models on effec-
tiveness and efficiency. “# Train” means the number of
tuned parameters during training. “ # Store” means the
number of stored parameters. Best results are bold.

maries and golden summaries from independent
perspectives (Wang et al., 2021): Informativeness
(how much useful information does the summary
provide?), Relevance (how well does the summary
reflect the input document?), and Fluency (how
grammatically correct are the summary sentences
and how easy are they to read?). Scoring followed
the Best-Worst Scaling method (Kiritchenko and
Mohammad, 2017). Participants were asked to
select the best and worst summaries from each
perspective. The scores were computed as the per-
centage of times a summary was chosen as the
best minus the times it was selected as the worst.
The scores ranged from -1 (worst) to 1 (best). Re-
sults are shown in Table 5. Qualitatively, we show
several examples generated by different models
and the reference in Table 14 and Table 15 in the
appendix. Compared with all baselines, the sum-
maries generated by PSP are always more fluent
and relevant to the source document, consistent
with the results of human evaluation. Further more,
we found summaries generated by PSP and Prefix-
Tuning are always similar in sentence patterns and
expressions. However, Prefix-Tuning tends to gen-
erate texts shorter than PSP, which often leads to
lack of information.
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Methods CNNDM XSum

IF RL FL IF RL FL

PSP 0.500 0.708 0.667 0.217 0.275 0.492
Prompt Tuning -0.317 -0.758 -0.975 -0.336 -0.400 -0.867
Prefix-Tuning -0.233 0.067 0.158 0.017 -0.008 0.292
Full-Model Tuning 0.067 -0.025 0.075 0.117 0.092 0.075

Table 5: Human evaluation results. Best results are bold.

k
Ddev Dtest

R-1 R-2 R-L R-1 R-2 R-L

5 34.27 11.90 26.41 31.90 10.28 24.20
10 35.31 12.88 26.85 32.89 11.13 25.51
15 34.98 11.68 26.45 32.11 10.46 24.72
30 34.48 12.57 26.55 32.20 11.03 25.30

Table 6: Results of different fixed length k on validation
set Ddev and test set Dtest of XSum. “R-1” is short for
“ROUGE-1”, the same for “R-2” and “R-L”.

Selection of fixed length k. As shown in Ta-
ble 3, PSPFixed−k performs consistently well on
both datasets. So we further explored the influ-
ence of different length k, i.e., k = 5, 10, 15, 30,
for inner-prompt tokens of the PSPFixed−k5. Ta-
ble 6 presents the results of the variants on XSum.
We observe the segmented spans with 10 tokens
achieve the best performance. Interestingly, it can
be induced that, to understand a document, it is
possible to reorganize the sentence into several se-
mantic units, where the number of the tokens is
10 on average. We also report results of different
k on our validation set in Table 6. The ranking is
consistent with the test set. From a practical per-
spective, when applying PSP to a new dataset, we
can choose the best k based on the validation set.

4.2 Analyses on Soft Prompts
Whether our model attends to understand docu-
ments? According to Figure 2, we further present
the encoder-decoder attention distribution of the
PSP. The comparison visualization is shown in Fig-
ure 5. We find the following enhancement of our
model by introducing the inner prompts. First, the
PSP model strengthens the associations between
the encoder prompts and the decoder prompts com-
pared to the original model. Second, the soft
prompt Pen has more opportunities to be related
to the output Y , indicating the semantic relations
between them. Third, the output Y assigns more
attention to the source document X . This suggests
that the hidden structure of the document is empha-

5The average number of tokens per sentence in both
datasets was about 18, so we did not consider fixed lengths of
20, for its similarity to the PSPSequential.

Model CNNDM XSum

R-1 R-2 R-L R-1 R-2 R-L

Soft prompts (en.&de., 100) 36.89 14.96 24.63 29.36 9.90 22.92
Soft prompts (en.&de., 150) 35.71 14.86 23.97 28.94 9.52 22.24
Soft prompts (en.&de.&ip., 100) 37.87 15.83 25.37 31.95 10.52 24.80

Table 7: Results of different architectures of soft
prompts on CNNDM and XSum, where “en.” “de.”
“ip.” are short for encoder, decoder and inner prompts,
respectively. Numbers in parentheses represent the num-
ber of prompt tokens we prepended before the encoder
and decoder input.

Model ROUGE-1 ROUGE-2 ROUGE-L

Soft prompts (en.&de., shared) 36.06 14.30 24.24
Soft prompts (en.&de., separate) 36.37 14.41 24.46

Table 8: Results of basic soft prompts on the CNNDM.

sized, increasing the capability of understanding
its semantics. As such, these prompts can properly
elect salient information from the document and
prompt the model to generate the output.

Figure 5: Visualization of the encoder-decoder attention
weights of the model with only prompts across the en-
coder and the decoder (left) and PSP (right). Detailed
descriptions refer to Figure 2.

Do inner prompts assist the model to understand
the content of documents or simply increase
the model’s capacity? Instead of using inner-
prompts, we prepended additional tunable tokens
(i.e. 150 tokens) in front of the encoder and the de-
coder inputs. Comparison results are shown in Ta-
ble 7. Despite the larger capacity, soft prompts with
150 tunable tokens before the input performed the
worst, denoted as soft prompts (en.&de., 150). This
suggests the inner-prompts with a few parameters
do help to understand the document by prompting
the structures, rather than simply add more train-
able parameters to increase the model’s capacity.

Further insight on soft prompts across the en-
coder and the decoder. To verify our hypothesis
that the decoder prompts largely copy the behaviour
of the encoder prompts, we shared similar embed-
dings of the soft prompts before the encoder and the
decoder. In Table 8, we observe the Soft prompts
(en.&de., shared) and (en.&de., separate) almost
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Figure 6: k-shot summarization results on XSum.

Model ROUGE-1 ROUGE-2 ROUGE-L

Full-Model Tuning 11.69 2.67 7.74
Prefix-Tuning 11.76 2.63 7.93
Prompt Tuning 9.40 1.86 6.19
PSPInterval 17.16 3.36 12.65

Table 9: Zero-shot results on XSum.

perform identical results. Although the parame-
ters are only half of the original model, the per-
formance consistently remains competitive. This
shows that the shared prompts can extract impor-
tant information from the document and further
guide the language model to generate consistently
good summaries more efficiently.

4.3 Analysis on Few-shot and Zero-shot
Summarization

To examine the performance of different methods
under few-shots, we further randomly sampled
number of {50, 100, 200} as the settings. Figure 6
reports a more detailed overview of all models’ per-
formance across a range of different few-shots. The
ROUGE scores of our model generally outperform
other baselines and remain steady across different
scenarios. Especially, the PSP with only 50 exam-
ples receives the most significant improvements,
while the Prefix-Tuning doesn’t even work (tuning
based on BARTbase) possibly due to its instability
of the model. Moreover, we report the results of
zero-shot on XSum in Table 9. Benefiting from
the knowledge gained in the pre-training phase, our
model shows a significant advantage of zero-shot
adaptation in generating quality summaries.

4.4 The Performance of Pre-training on
Prefix-Tuning

A crucial strategy for PSP is the pre-training of
soft prompts. To give a fairly comparison, we per-
formed prefix pre-training for Prefix-Tuning in the
same way with the PSP. The results are shown in
Table 10. We can find that the Prefix model obtains
improvements on the XSum dataset after adopt-
ing the pre-training strategy, but underperforms the
original one on the CNNDM dataset. It indicates

Method
CNNDM XSum

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Prefix-Tuning 37.120.15 16.590.09 26.280.06 32.180.16 11.130.08 25.500.14
Prefix-Tuning w/ Pre. 37.350.58 16.080.37 25.950.50 33.390.10 11.610.06 26.070.09

Table 10: Test set results of Prefix-Tuning. “w/ Pre.”
means that we pre-trained the prefix with pseudo data.

that Prefix-Tuning shows limited potential com-
pared to our model. We induce that the pre-training
for Prefix-Tuning raises over-fitting risk due to its
sensitivity to different data or parameter settings.

4.5 Ablation Study
We conducted experiments to examine the effec-
tiveness of the major components of our model,
and Table 11 shows the ablation results across the
two datasets. We observed both the prompt pre-
training operation and the inner-prompts compo-
nent contribute to the main model. Notably, with
the removal of each component, the model becomes
considerably unstable, indicated by the variance
shown in the ablation results. Comparably, prompt
pre-training in our model accounts for more im-
portance on the XSum dataset whose summaries
have a higher abstract level (we assume it’s more
“difficult”) than the CNNDM. In sum, these two
components support the performance and stability
of our model in terms of summarization adaption
(by prompt pre-training) and structural documents
understanding (by inner-prompts).

Method CNNDM XSum

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

PSPFixed−k 38.310.15 15.940.21 25.410.25 32.810.10 11.150.10 25.480.13
w/o PP 37.300.56 15.450.39 24.930.38 32.170.16 10.690.13 25.020.21
w/o IP 37.760.28 15.220.31 24.800.40 32.590.17 11.140.17 25.460.24
w/o PP & IP 36.880.42 14.960.45 24.630.40 29.351.5 9.870.43 22.891.19

Table 11: Ablation study of PSP on two datasets. “w/o”
means without. “PP” and “IP” are short for Prompt Pre-
training and Inner-Prompts, respectively. The variance
of each result is provided.

5 Related Work

Few-Shot Abstractive Summarization In prac-
tical application scenarios, the lack of manual
constructed document-summary pairs or labeled
data makes data-driven neural models performs
badly (Hu et al., 2021, 2020). Fabbri et al. (2020)
condense characteristics of the target dataset into
Wikipedia data to construct pseudo-summaries.
Bražinskas et al. (2020) introduce plug-in networks
to reproduce characteristics of the target dataset
with only a small set of labeled examples. Bai
et al. (2021) conduct cross-lingual summarization
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in a low-resource setting. Yu et al. (2021) design
the second phase of pre-training on large-scale gen-
erative models before fine-tuning. In this paper, we
construct pseudo-summary corpus with heuristic
rules, providing a better parameter initialization
for soft prompts under few-shot settings. More im-
portantly, we design summarization-oriented soft
prompts to help the model produce few-shot sum-
maries.

Prompt Learning The emergence of GPT-
3 (Brown et al., 2020) introduces the concept of

“prompting”. One only needs to assemble a task
description and few examples into a prompt, and
then prepend it to the task input. With the large-
scale frozen parameters, a pre-trained model can
generate the output without any task-specific tun-
ing. However, task description is error-prone while
there is no unified, explicit, and effective way to
build these hard prompts manually (Logan IV et al.,
2021). Hence, several works (Gao et al., 2020;
Jiang et al., 2020; Shin et al., 2020) are proposed
to generate prompts automatically, but they all re-
strict prompts to discrete spaces. These discrete
prompts are less expressive and sub-optimal. To
overcome the shortcomings of hard prompts, Li
and Liang (2021) propose “Prefix-Tuning”. This
method only tunes prefix activation prepended to all
transformer layers, and keeps the LM parameters
frozen. To further simplify, Prompt Tuning (Lester
et al., 2021) only prepends tunable tokens to the en-
coder input, and keeps all other parameters frozen.
Logan IV et al. (2021) and Gu et al. (2021) propose
to use pre-training to boost the low performance of
Prompt Tuning for few-shot learning. In this work,
we fit the structure of Prompt Tuning to text gener-
ation models, proposing encoder prompts, decoder
prompts, and inner prompts. We successfully ap-
ply prompt tuning methods to few-shot abstractive
summarization task.

6 Conclusion

In this paper, we present a novel pre-trained soft
prompts architecture (PSP) specifically designed
for few-shot abstractive summarization. We design
continuous input embeddings across an encoder
and a decoder alongside several kinds of inner-
prompts placed in the text, assisting the model bet-
ter to understand documents and guide accurate
generation. Empirical results find the necessity of
using prompt pre-training for few-shot/zero-shot
abstractive summarization. Extensive experiments

and analyses show that the proposed PSP provides
the best effectiveness-efficiency trade off among
all the baseline methods.
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CNNDM XSum
Pseudo Corpus Pseudo Corpus

# of Original Passages 287,113 204,017
# of Pre-training Data 284,177 158,499

Table 12: Pseudo-summarization corpus statistics. “#
of Original Passages” means the number of original
passages in the training set, “# of Pre-training data”
means the number of pseudo data after data cleaning.

A Appendix

A.1 Constructing Pesudo Data for
Pre-training

We constructed the pseudo data for CNNDM with
Lead. We also conducted a simple data cleaning
procedure to the self-supervised pre-train corpus.
First, we cleaned away irrelevant information, such
as media names, reporter names or dates from the
summaries. Second, for those summaries with less
than 50 tokens, we iteratively collected the first sen-
tence of the remaining text to the pseudo summary,
until the length of summary reaches 70. This proce-
dure was set up to prevent the target text from being
too short to form a meaningful summary. Third,
for those samples in which the source document is
shorter than its summary, we filtered them out.

For XSum, we constructed the pseudo data for
pre-training following GSG. The top-1 most im-
portant sentence was selected as the pseudo sum-
mary. Then we filtered out those pseudo summaries
that are not relevant enough to the pseudo pas-
sages. In particular, we leveraged hand-written
summaries in the few-shot dataset to determine the
filtering threshold of pseudo data. We calculated
the ROUGE-1 F1 between each ground-truth sum-
mary and its corresponding passage, represented
as Ri. Then we calculated the mean and variance
of Ri: ϵ = 1

n

∑n
i=1Ri, σ

2 = 1
n

∑n
i=1(Ri − ϵ)2,

and ϵ− σ2 was used as a lower-bound threshold to
filter out low quality pseudo data. For those pseudo
samples where ROUGE1-F1 between the pseudo
summary and the pseudo passage is lower than the
threshold ϵ− σ2, we filtered them out. Finally, we
conducted pre-training on our soft prompts with
these filtered pseudo-data. Table 12 shows the
statistics for the pre-training data corpus.

A.2 Implementation Details

We first split sentences with the Stanford CoreNLP
toolkit (Manning et al., 2014), and the input doc-
uments were truncated to 1024 BPE tokens. We

ROUGE-1 ROUGE-2 ROUGE-L

PSPLead (w/o inner-prompts) 37.66 15.07 24.52
PSPGSG (w/o inner-prompts) 37.04 15.04 25.20

Table 13: Results on CNNDM by using the Lead and the
GSG to construct pseudo-data for prompt pre-training.

adopted BART-base for all the experiments. Our
implementation was based on the Hugging Face
Transformer models (Wolf et al., 2020). We used
a mini-batch size of 8 with a gradient accumula-
tion for 10 iterations. We used Adam optimizer
with momentum β1 = 0.9, β2 = 0.998 and noam
decay. In the stage of pre-training, the peak value
of learning rate was 1e-3, and we set the warm up
ratio to 10%. During fine-tuning, the peak value
of learning rate was 3e-4, and we set the warm
up steps to 100 with 400 epochs. In the decoding
stage, we used beam search with a beam size of 4.
The decoding process will not stop until an end-of
sequence (EOS) token was emitted or the length of
the generated summary reached to 256 tokens. All
models were trained on 4 TITAN RTX GPUs.

A.3 The Universality of GSG to Construct
Pseudo-data

To demonstrate the universality of using the GSG
method to construct pseudo-data for prompt pre-
training, we conducted a complimentary experi-
ment to testify its effect on the CNNDM6. Specif-
ically, we selected m = 3 important sentences.
Results in Table 13 indicate that the PSP model
pre-trained by GSG is equally effective with the
original PSPLead, showing that the GSG can be
universally employed to pre-train soft prompts for
abstractive summarization.

6We do not conduct ablation experiments on XSum, as
there is no “ lead bias” in this dataset. So it is inappropriate to
take the first sentences of the passage as the pseudo summary.

6366



Source Manchester City are monitoring Juventus striker Alvaro Morata. The Spain international was a target for Arsenal
a year ago when he left Real Madrid but opted for a move to Italy instead. Real have a buy-back option set at
around £15million but are unlikely to take that up. Manchester City are keeping tabs on Juventus striker Alvaro
Morata ahead of possible summer bid . Morata closes down Lazio goalkeeper Federico Marchetti during Juve’s
Serie A win on Saturday . City also remain keen on Juventus midfielder Paul Pogba but face competition from
Paris Saint Germain . Morata has been a success at Juventus but the Italians are always susceptible to offers at
the right price and are making plans to bring in Edinson Cavani from Paris Saint Germain despite the French
club’s resistance. PSG also are one of the frontrunners to sign Juve midfielder Paul Pogba. City remain one of
the clubs pushing to sign the France international too and Juventus have City’s Edin Dzeko, Aleksandar Kolarov
and Stevan Jovetic on their list of potential targets for the summer.

PSP Manchester City are keeping tabs on Juventus striker Alvaro Morata . The Spain international was a target for
Arsenal a year ago when he left Real Madrid but opted for a move to Italy instead . Juventus have a buy-back
option set at around £15million but are unlikely to take that up .

Prefix-Tuning Manchester City are keeping tabs on Juventus striker Alvaro Morata ahead of possible summer bid. Morata
closes down Lazio goalkeeper Federico Marchetti during Juve’s Serie A win on Saturday.

Prompt Tuning LMorata is a target for Real Madrid, who have a buy - back option set at around £ 15million . He has been a
success at Real Madrid but opted for a move to Italy instead . The Italian club are unlikely to take that up . . .. . .
." . .." . ." ." ." . ."." . .". . ."". . ." . . " . . ... . . [and] . . (He] had a great season at Real but who more had been
about” . . , but who else had been close enough to sign him? . . He had her all after." . .) . . She didn’t year
when when when two over people A lot more time than two theret. . ." —LastJustInOther

Full-Model Tuning NEW City are monitoring Juventus striker Alvaro Morata . The Spain international was a target for Arsenal a
year ago when he left Real Madrid . Morata has a buy-back option set at around £15million but is unlikely to be
offered by the French side .

Reference Alvaro Morata had attracted interest from Arsenal before joining Juventus . Spain international made move to
Italy in £15million deal from Real Madrid . Manchester City are monitoring the 22-year-old after impressive
season .

Source Nairobi, Kenya (CNN)University of Nairobi students were terrified Sunday morning when they heard explosions
– caused by a faulty electrical cable – and believed it was a terror attack, the school said. Students on the
Kikuyu campus stampeded down the halls of the Kimberly dormitory, and some jumped from its fifth floor, the
university said. Hundreds were injured and were taken to hospitals. One person died, according to the school.
The confusion and panic came less than two weeks after Al-Shabaab slaughtered 147 people at a college in
Garissa, Kenya. Kenyan teachers and students have said they fear being targeted by the Somalia-based terrorists.
On Sunday, as many as 108 students from the University of Nairobi were admitted to Kenyatta National Hospital.
Among them, at least 63 students have been discharged, and at least four are slated for surgery, the school said.
Almost all of the 54 students being treated at PCEA Kikuyu Hospital have been released, the university said.
Kenya Power authorities and its CEO are at the school and looking into the electrical issue. Normal power
supply will resume after repairs, the university said. "As we mourn the unfortunate loss of the departed student,
we are also praying for the quick recovery of those who were injured," said Vice Chancellor Peter M.F. Mbithi
in a statement. He called on the students, staff and public to remain calm. CNN’s Lillian Leposo reported from
Nairobi and Ashley Fantz wrote this story in Atlanta.

PSP University of Nairobi students were terrified Sunday morning when they heard explosions – caused by a faulty
electrical cable – and believed it was a terror attack . Hundreds were injured and were taken to hospitals . One
person died, according to the school . The confusion and panic came less than two weeks after Al- Shabaab
slaughtered 147 people at a college in Garissa .

Prefix-Tuning University of Nairobi students were terrified Sunday morning when they heard explosions – caused by a faulty
electrical cable – and believed it was a terror attack.

Prompt Tuning L Hundreds were injured and taken to hospitals . Hundreds of students were evacuated from the dormitory . The
school said they feared being targeted by al-Shabaab . Hundreds were evacuated and treated in hospitals . The
university said it is investigating the cause of the explosion . . . The explosion was caused by a faulty electrical
cable. . .. . ." . . ." ." ." . ."." . .." . .""People were terrified," said the school’s vice chancellor . "People were
screaming, but who more had been were about” . "We had no idea what was going on but who else had been
about to blow her all after." ... .. ." .."." ..""They were terrified at the time than two overtakes" —LastJustIn3

Full-Model Tuning NEW students panicked when they heard explosions – caused by a faulty electrical cable – and believed it was a
terror attack, university says . As many as 108 students from University of Nairobi were admitted to Kenyatta
National Hospital . One person died, according to the school .

Reference Students stampeded; some jumped from a fifth story at a dorm; one student died, school officials say . The blasts
were caused by faulty electrical cable, and Kenya Power is at the school . The panic came less than two weeks
after terrorists attacked Kenya’s Garissa University .

Table 14: Qualitative examples of CNNDM.
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Source Brunon Kwiecien, 48, was convicted of planning a terrorist attack, illegal weapons possession and inciting two
students to carry out an attack.He suggested he had been manipulated by Polish intelligence agents.Kwiecien was
said to be fascinated with Norwegian mass killer Anders Behring Breivik.Right-wing extremist Breivik killed 77
people in a bombing and shooting rampage in Norway in July 2011.Kwiecien, a former professor at Krakow’s
University of Agriculture, was arrested in 2012.Investigators believe he wanted to target parliament with four
tonnes of explosives while then-President Bronislaw Komorowski and former Prime Minister Donald Tusk were
due to attend, the trial heard."If Brunon Kwiecien hadn’t been stopped, we would be talking amid the ruins of
the state today," said judge Aleksandra Almert, according to the AFP agency.While admitting he planned to
carry out the attack, he also said he was subject to "provocation" by the intelligence services.Kwiecien is the first
Pole to be accused of terrorism, Polish media reported. He has no known links to established extremist groups.

PSP A Pole has been convicted of planning a terrorist attack in Poland, a court heard.
Prefix-Tuning A Pole has been convicted of planning to carry out a terrorist attack in Poland.
Prompt Tuning AA Polish man has been convicted of planning a terrorist attack in the Polish capital, Warsaw, on Thursday.
Full-Model Tuning A Pole has been found guilty of planning a terrorist attack in the Polish state of Krakow.
Reference A Polish university lecturer has been sentenced to 13 years in jail for plotting to ram a car packed with explosives

into parliament.

Source Schmidt was sent off by the referee for insulting Hoffenheim’s Julian Nagelsmann in Saturday’s 3-0 home
loss."That was nothing, what sort of a nutcase are you? Just shut your mouth," Schmidt shouted after going 2-0
down.The 49-year-old has been banned for two games and handed a 15,000 euros (£13,373) fine.The German
was sanctioned after triggering a suspended sentence from February this year.He had been banned for three
games, with a further two in the event of a repeat offence before June 2017, for refusing a referee’s order to
leave the sidelines during a 1-0 defeat to Borussia Dortmund.Schmidt will be unable to have any contact with
the team for half an hour before, during and after Tuesday’s German Cup second-round match against Lotte and
Saturday’s league match against Wolfsburg.Leverkusen’s director of sport Rudi Voller has sought a meeting with
the head of the disciplinary committee.

PSP Leverkusen defender Christian Schmidt has been banned for two games for insulting the referee.
Prefix-Tuning Leverkusen midfielder Matthias Schmidt has been banned for two games after refusing to leave the sidelines

during a match against Wolfsburg.
Prompt Tuning ALeverkusen midfielder Christian Schmidt has been banned for two games for insulting the referee in a game

against Hoffenheim on Saturday..’
Full-Model Tuning Aeverkusen manager Gerhard Schmidt has been banned for two games for insulting the head of the German

national team.
Reference Bayer Leverkusen head coach Roger Schmidt has been banned and fined for calling an opposing manager "a

nutcase" during a Bundesliga game.

Table 15: Qualitative examples of XSum.
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Abstract

While Transformers have had significant suc-
cess in paragraph generation, they treat sen-
tences as linear sequences of tokens and of-
ten neglect their hierarchical information. Prior
work has shown that decomposing the levels
of granularity (e.g., word, phrase, or sentence)
for input tokens has produced substantial im-
provements, suggesting the possibility of en-
hancing Transformers via more fine-grained
modeling of granularity. In this work, we pro-
pose continuous decomposition of granularity
for neural paraphrase generation (C-DNPG).
In order to efficiently incorporate granularity
into sentence encoding, C-DNPG introduces
a granularity-aware attention (GA-Attention)
mechanism which extends the multi-head self-
attention with: 1) a granularity head that auto-
matically infers the hierarchical structure of a
sentence by neurally estimating the granularity
level of each input token; and 2) two novel at-
tention masks, namely, granularity resonance
and granularity scope, to efficiently encode
granularity into attention. Experiments on two
benchmarks, including Quora question pairs
and Twitter URLs have shown that C-DNPG
outperforms baseline models by a remarkable
margin and achieves the state-of-the-art results
in terms of many metrics. Qualitative analy-
sis reveals that C-DNPG indeed captures fine-
grained levels of granularity with effectiveness.

1 Introduction

With the continued success in NLP tasks (Vaswani
et al., 2017), Transformer has been the mainstream
neural architecture for paraphrase generation (Li
et al., 2019; Kazemnejad et al., 2020; Guo et al.,
2021; Hosking et al., 2022; Goyal and Durrett,
2020). The core component of Transformer is the
self-attention network (SAN) (Vaswani et al., 2017)
which computes sentence representations at each
position by baking representations over all other
positions in a parallel way. Despite their effective-
ness, Transformer has been shown to be limited in

Text What is the reason for World War II ?
decomposition 1 What is the reason for World War II ?
decomposition 2 What is the reason for World War II ?
decomposition 3 What is the reason for World War II ?
decomposition 4 What is the reason for World War II ?
decomposition 5 What is the reason for World War II ?

⇓
Levels of granularity (marked as superscripts):

What1 is1 the2 reason3 of2 World4 War4 II5 ?

Table 1: A motivation example of multi-granularity text
decomposition. The given sentence can be decomposed
according to 5 increasing levels of granularity, each cor-
responding to a partition of the sentence into a template
(blue) at a specific level together with details (orange).
Each row with colored text denotes a level of granu-
larity where the blue words are in the sentence level
(templates) and the remaining words are in the phrase
level (details). The bottom half shows the level of gran-
ularity for each word according to the decomposition.
We use integer numbers to indicate the extent of the
granularity: the greater the number, the more detailed
the word is.

structure modeling, that is, they process disperse
words in a flat and uniform way without explicit
modeling of the hierarchical structures (Raganato
and Tiedemann, 2018; Hao et al., 2019; Li et al.,
2020).

One potential route towards addressing this is-
sues is multi-granularity text modeling (illustrated
in Table 1) – which decomposes texts into multi-
ple levels of granularity such as words, phrase and
sentence (Li et al., 2019; Wiseman et al., 2018;
Hao et al., 2019). For example, Li et al. (2019)
attempts to achieve this via decomposable neu-
ral paraphrase generator (DNPG). DNPG decom-
poses paraphrase generation by Transformers into
two levels of granularity: phrase-level (details)
and sentence-level (templates). This allows a more
flexible and controllable generating process. Para-
phrases can be generated through rephrasing the
templates while copying the detailed phrases. The
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decomposition is realized using a granularity sepa-
rator, multiple encoder-decoder pairs, and an aggre-
gator that summarizes results from all granularity
levels.

Despite showing promising results, DNPG only
captures a discrete (coarser-grained) decomposi-
tion of granularity, which restricts the capacity in
representing more fine-grained semantic hierarchy.
Furthermore, DNPG models the different levels of
granularity using multiple encoders and decoders.
That amounts to training multiple Transformers.
The computational cost increases greatly as the
number of granularity levels grows.

In this paper, we present C-DNPG (stands for
continuous decomposition of granularity for para-
phrase generation), a simple, fine-grained, and
seamlessly integrated model for granularity-aware
paragraph representation. C-DNPG extends the
vanilla attention network with a granularity head,
which neurally estimates a continuous level of gran-
ularity for each token. In order to efficiently encode
granularity into Transformers, C-DNPG adjusts the
original self-attention weights using two novel at-
tention masks: 1) a granularity-resonance mask
which encourages attentions to exist between to-
kens with similar granularity; and 2) a granularity
scope mask which encourages a small attention
scope for lower-level (words or phrases) tokens.
The granularity-aware attention mechanism pro-
vides a continuous modeling of sentence granular-
ity and can be seamlessly integrated into the vanilla
Transformer as the basic processing cell.

We evaluate the proposed C-DNPG on two
commonly-used benchmarks, including the Quora
question pairs and Twitter URL paraphrasing. Ex-
perimental results show that C-DNPG remarkably
outperforms baseline models on both benchmarks
and achieve the state-of-the-art results in many met-
rics. Qualitative study confirms the ability of the
proposed approach in modeling fine-grained granu-
larity.

Our contributions can be summarized as follows:

• We present a novel granularity-aware atten-
tion mechanism which supports a fine-grained
decomposition of granularity for input tokens
and hence yields a continuous modeling of
granularity for natural language sentences.

• The proposed granularity-aware attention net-
work can be seamlessly integrated into the
Transformer for granularity-aware paraphrase
generation.

• We conduct extensive evaluations of
our methods on two popular paraphrase
generation benchmarks and show that
C-DNPG remarkably outperforms previous
works in terms of quantitative and qualita-
tive results. We release all data and code at
https://github.com/guxd/C-DNPG.

2 Background

Our approach is extended based on the Transformer
and self-attention networks. We begin by introduc-
ing the background of these techniques.

2.1 Self-Attention Networks
The attention mechanism is a function which maps
a query vector to a set of key-value vector pairs and
summarizes an output vector as a weighted sum
of the value vectors. The weight assigned to each
value is computed using the query and key vectors.
A typical attention function, for example, is the
scaled dot-product attention (Vaswani et al., 2017):

Attention(Q,K,V) = ATV,

A = softmax(QKT /
√
dk)

(1)

where Q, K, V∈ RL×d represent the query, key
and value vectors, respectively. A ∈ [0, 1]L×L is
the attention score matrix with each Aij = qTi kj ;
dk denotes the dimension size of the key vector.

In particular, the self-attention network (SAN) is
a special attention mechanism that computes the at-
tention function over a single sequence. For a given
sequence represented as a list of hidden states H
= [h1, . . . ,hN ]∈ RN×d, the self-attention network
computes representations of the sequence by relat-
ing hidden states at different positions (Vaswani
et al., 2017):

Q, K,V = WQH,WKH,WVH

SelfAttn(H) = Attention(Q,K,V)
(2)

where Wq, Wk, and Wv are parameters to trans-
form the input representation H to the query, key,
and value respectively. Self-attention produces an
abstraction and summary of a sequence in the
hidden space and outputs the transformed hidden
states (Vaswani et al., 2017).

2.2 Transformer
Transformer is an encoder-decoder model that is
built upon the self-attention networks. It has been
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the common architectural choice for modeling para-
phrase generation (Li et al., 2019; Guo et al., 2021;
Kazemnejad et al., 2020). Transformer encodes a
source sequence into hidden vectors and then gener-
ates a target sequence conditioned on the encoded
vectors. Both the encoder and the decoder are com-
posed of a stack of N identical layers, with each
consists of a multi-head self-attention network fol-
lowed by a position-wise fully connected network.
Formally, the procedure of learning sequence repre-
sentations through Transformer can be formulated
as follows:
[
H̄l = LN(SelfAttn(Hl−1) +Hl−1)

Hl = LN(FFNl(H̄l) + H̄l)

]

L

(3)

where SelfAttn(.) denotes the multi-head self-
attention network which performs the attention
function over Hl−1, the output hidden states of the
l-1st layer; FFN and LN stand for the position-wise
fully connected layer and the layer normalization,
respectively; [...]L denotes the stack of L layers.
The output of the final layer HL is returned as the
representation of the input sentence.

3 Approach

The vanilla Transformer processes disperse words
in a flat and uniform way, which makes it difficult
to represent words in terms of their syntactic guid-
ance (Li et al., 2020). Prior work has shown that de-
composing the levels of granularity (phrases or tem-
plates) has produced substantial gains in paraphrase
generation (Li et al., 2019), suggesting the possi-
bility of further improvement from finer-grained
modeling of granularity (Hao et al., 2019).

Motivated by the benefit of explicitly denot-
ing word granularity, we propose GA-attention,
a new self-attention block which automatically
decomposes fine-grained granularity and learns
granularity-aware sentence representations. We in-
tegrate GA-attention into the vanilla Transformer
to generate granularity-aware paraphrases.

3.1 Granularity-Aware Self-Attention

Unlike DNPG, which classifies each word into ei-
ther phrase or sentence levels (Li et al., 2019),
C-DNPG aims to assign a soft classification of
granularity for each word, yielding finer-grained
decomposition of granularity for a sentence. For
this purpose, we extend the vanilla self-attention
with 1) a granularity head which estimates a con-
tinuous granularity level for each token, and 2) two

new attention masks which bake the granularity
into attentions for learning granularity-aware sen-
tence representations. The overall architecture is
illustrated in Figure 1a.
Granularity Head For a sequence of input tokens
that is encoded as hidden states H = [h1, . . . ,hN ],
the granularity head estimates a continuous gran-
ularity vector z = [z1, . . . , zN ] ∈ [0, 1]N , where
zi ∈ [0, 1] measures the extent of token i belong-
ing to details: a zi that is close to 1 indicates that
the token at position i tends to be a detailed word
(i.e., in the phrase level), while a zi approaching 0
indicates that token i tends to be a template word
(i.e., in the sentence level). Specifically in the self-
attention networks, the granularity for hidden states
in layer l can be estimated as:

zl = sigmoid(WGHl−1), l = 2, ..., L (4)

where WG represents the training parameters;
Hl−1 denotes the hidden states of layer l-1.

Having estimated the granularity for input to-
kens, we want to effectively incorporate the gran-
ularity into attentions to control the learning of
sentence representations. To this end, we propose
two new attention masks, namely, the granularity
resonance mask and the granularity scope mask,
Our idea is to adjust the original attention weights
using the two proposed masks.
Granularity Resonance Mask We first introduce
the granularity resonance mask where “resonance”
is analogy to an assumption of token correlations:
sentence-level tokens attend more to sentence-level
tokens, whereas phrase-level tokens attend more to
phrase-level tokens (Li et al., 2019). In this sense,
the term granularity resonance refers to the corre-
lation between two tokens in terms of their levels
of granularity.

Let zi and zj denote the granularity of tokens i
and j respectively. In the binary case where zi ∈
{0, 1}, their correlation in terms of granularity can
be formulated as:

Cij =

{
1, if zi = zj

0, otherwise
(5)

where Cij represents the regularization coefficient
to the original attention weight Aij in terms of
granularity correlation. Such a discrete measure of
resonance is limited in modeling token correlation
as both zi and Cij are binary variables. To improve
the capacity of the granularity-aware attention, we
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generalize the computation of Cij (Equation 5) to
a continuous function, that is,

Cij =(1− zi)×max(0, 1− (zi + zj))

+ zi ×min(1, 1− zi + zj)
(6)

where zi ∈ [0, 1] is a continuous value; zi and 1-zi
control the extent of token i being in the word level
or the sentence level, respectively. Equation 6 pro-
vides a smooth measure of the correlation between
token i and j.
Granularity Scope Mask We further define the
granularity scope mask where granularity scope
measures the scope of attention according to the
granularity level. This is based on the local at-
tention assumption of phrases (Li et al., 2019): a
phrase-level token tends to attend to surrounding
tokens while a sentence-level token can attend to
other tokens evenly with any distance. In that sense,
phrasal tokens (with a large zi) have a relatively
smaller attention scope compared to sentence-level
words (with a small zi). For a given sequence of
hidden states h1, . . . ,hN with N words, the gran-
ularity scope for position i attending to position j
can be defined as:

Sij =

{
1 if |i− j| < (N − ϵ)(1−zi) + ϵ

0 otherwise
(7)

where Sij ∈ {0, 1} denotes the penalty for the
original attention weight Aij in terms of granular-
ity scope. ϵ denotes the maximum distance that a
phrasal word attends to. We set ϵ to 2 according to a
similar configuration in (Li et al., 2019). This equa-
tion can be intuitively interpreted as the receptive
fields for different levels of granularity (Li et al.,
2019): a phrase-level token i (zi=1) attends only
to the adjacent n (n=3) words, whereas a sentence-
level token i (zi=0) can attend to positions with any
distances.

Similarly, we generalize Equation 7 to a continu-
ous function:

Sij = max(0,min(1, (N − ϵ)(1−zi) + ϵ− |i− j|))
(8)

Using the two granularity-based attention masks,
we derive the granularity-aware self-attention as
an adjustment of the original attention weights,
namely,

GASelfAttn(H) = ÃTV

Ã = A⊙C⊙ S
(9)

where A and Ã denote the original and adjusted
attention weights respectively; ⊙ stands for the
element-wise multiplication; GASelfAttn(.) repre-
sents the proposed granularity-aware self-attention
function.

3.2 C-DNPG: Transformer with Granularity
Aware Attention

Based on the proposed GA-Attention, we pro-
pose C-DNPG, which integrates GA-attention into
Transformer in order to better generate paraphrases
at fine-grained levels of granularity. Figure 1b illus-
trates the overall architecture of our model. Com-
pared to the vanilla Transformer, C-DNPG sim-
ply replaces the self-attention layers in both the
encoder and the decoder with the proposed GA-
attention network. Similar to the vanilla Trans-
former, we perform the GA-attention function for
multiple heads in parallel and concatenate the multi-
head representations to yield the final representa-
tion. The procedure for the C-DNPG (Transformer
with GA-Attention) can be summarized as:
[
H̄l = LN(GASelfAttn(Hl−1) +Hl−1)

Hl = LN(FFNl(H̄l) + H̄l)

]

L
(10)

where LN denotes layer normalization (Ba et al.,
2016).

4 Experiments

We evaluate our approach by experimenting on two
widely used datasets, including the Quora ques-
tion pairs and the Twitter URLs. We will introduce
the common experimental setup and the empirical
results.
Implementation Details We implemented our ap-
proach on top of the Huggingface PyTorch Trans-
former (Wolf et al., 2019). For a fair comparison,
we followed the hyperparameter settings in related
works (Li et al., 2019) for the Transformer. Both
encoder and decoder consist of 3 transformer lay-
ers, have a hidden size of 450, and contain 9 atten-
tion heads (L=3, H=450, A=9). Following previous
work (Li et al., 2019; Kazemnejad et al., 2020), we
truncate sentences to 20 tokens. We utilize the pre-
trained tokenizer by huggingface1 (i.e., bert-base-
uncased) for tokenization which has been common
in NLP. During decoding, we employ beam search
with a beam size of 8. All models were optimized
with AdamW (Loshchilov and Hutter, 2018). The

1https://github.com/huggingface/tokenizers
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Figure 1: The architectures of GA-Attention and C-DNPG.

learning rate was varied under a linear schedule
with warmup steps of 5,000 and the maximum
learning rate of 5e−5. The model was training for
100,000 batches until achieving the best validation
loss. The experiments were repeated for 5 times
and were reported with their average results. All
models were trained on a machine with NVIDIA
Tesla V100 GPU allocated with a batch size of 32
samples.

Baseline Models We compare our approach with
popular paraphrase generation methods including:
(i) RedidualLSTM (Prakash et al., 2016): an LSTM
sequence-to-sequence model using residuals be-
tween RNN layers; (ii) PointerGenerator (See et al.,
2017): an RNN sequence-to-sequence model using
copy mechanism; (iii) Transformer (Vaswani et al.,
2017): the vanilla Transformer model; (iv) Trans-
former+Copy: an enhanced Transformer with copy
mechanism (Gu et al., 2016); and (v) DNPG (Li
et al., 2019): a popular paraphrase generation
model based on Transformer. DNPG extends Trans-
former by generating paraphrases at multiple levels
of granularity such as the phrase level and the sen-
tence level. The model is composed of two encoder-
decoder pairs, which correspond to phrase-level
and sentence-level paraphrasing, respectively. We
use the default settings of the baseline models as

reported in their papers. (vi) FSET (Kazemnejad
et al., 2020): the state-of-the-art paraphrase genera-
tion model that retrieves a paraphrase pair similar
to the input sentence from a pre-defined index, then
editing it using the extracted relations between the
retrieved pair of sentences. We directly report the
performance from their original paper.
Evaluation Metrics We perform automatic evalua-
tion using five widely used metrics for text genera-
tion tasks, namely, BLEU (Papineni et al., 2002),
iBLEU (Sun and Zhou, 2012), ROUGE-L (Lin,
2004) and METEOR (Lavie and Agarwal, 2007).
We compute both BLEU-2 and BLEU-4 scores
in our experiments using the NLTK package2.
iBLEU (Sun and Zhou, 2012) penalizes BLEU by
n-gram similarity between output and input. Hence,
it is taken as the main metric for paraphrasing.
Datasets We conducted the experiments on two
widely used benchmarks: 1) the Quora question
pairs benchmark3, which contains 124K duplicate
question pairs. The dataset was labeled by human
annotators and has been widely used for paraphrase
research (Li et al., 2019; Devlin et al., 2019). We
split the original data into train, validation, and test
sets with proportions of 100K, 4K, and 20K, re-

2https://www.nltk.org/_modules/nltk/translate/bleu_score.html
3https://www.kaggle.com/c/quora-question-pairs (NC)
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Quora Twitter URL
Model iBLEU BLEU-2 BLEU-4 ROUGE-L METEOR iBLEU BLEU-2 BLEU-4 ROUGE-L METEOR
ResidualLSTM 20.45 40.71 26.20 36.19 32.67 20.29 36.75 25.92 32.47 29.44
Pointer-generator 22.65 43.82 28.80 42.36 40.87 25.60 44.50 32.40 38.48 36.48
Transformer 21.14 37.97 26.88 40.14 38.21 24.44 44.45 31.12 31.97 32.49
Transformer+Copy 22.90 44.42 28.94 37.60 38.34 27.07 48.44 34.35 38.37 38.19
DNPG 24.55 47.72 31.01 42.37 42.12 25.92 46.36 32.91 36.77 36.28
FSET - 51.03 33.46 - 38.57 - 46.35 34.62 - 31.67
C-DNPG (R) 26.94 47.58 34.05 46.17 44.75 27.96 49.98 35.80 38.67 39.39
C-DNPG (S) 26.68 47.48 33.93 46.22 46.66 28.19 49.10 35.95 38.89 39.06
C-DNPG (R⊙S) 25.96 46.25 33.02 44.64 44.25 30.25 49.00 38.58 41.60 41.71
C-DNPG (R+S) 26.66 50.96 33.69 44.45 43.33 28.73 50.49 36.61 39.80 40.42

Table 2: Results of paraphrase generation on two benchmarks. R stands for the resonance mask while S stands for
the scope mask; R×S stands for the combination of two masks through element-wise multiplication; R+S means
we average the two masks for adjusting the original attention weights. We note that the results of baseline models
are stronger than those reported in the DNPG paper, probably due to the BERT tokenizer we have utilized in our
experiments. The pointer-generator outperforms the vanilla Transformer, as is consistent to the DNPG paper.

spectively.
2) the Twitter URL paraphrasing dataset4 is also a
widely used benchmark for evaluating paraphrase
generation (Li et al., 2018; Kazemnejad et al.,
2020). The dataset contains two subsets which are
manually and automatically labeled, respectively.
Following (Li et al., 2018), we sample 110k in-
stances from the automatically labeled subset as
our training set and sample 5k and 1k instances
from the manually annotated subset for the test and
validation sets, respectively.

5 Results and Analysis

5.1 Automatic Evaluation
Table 2 shows the results of various approaches
on the two benchmarks. As the results indicate,
C-DNPG (with variants) achieves the best perfor-
mance in terms of most automatic metrics, which
suggests that our C-DNPG is effective in perform-
ing multi-granularity paraphrasing.

In particular, our approach outperforms DNPG,
a multi-granularity Transformer based model with
a significant margin. That means that by model-
ing more fine-grained granularity levels, C-DNPG
can control the generating process more precisely.
Thanks to the granularity attention mechanisms, it
is more flexible for the model to leverage syntactic
guidance (e.g., recognizing templates and details)
for paraphrase generation.

It is interesting to note that either the reso-
nance mask or the scope mask that we propose
can achieve the best performance under specific
settings. We hypothesize that there could be over-
lap between the two proposed attention masks in

4https://github.com/lanwuwei/Twitter-URL-Corpus

some cases. Therefore, combining them may am-
plify the extent of masking and hinder the ultimate
performance. We also find that Transformer with
a copy mechanism can outperform DNPG on the
Twitter dataset. This might be due to the more noise
in this dataset, which leads copy based models to
be more effective.

Layer 3

Layer 2

Layer 1

DNPG

Layer 3

Layer 2

Layer 1

DNPG

Layer 3

Layer 2

Layer 1

DNPG

Figure 2: Examples of multi-granularity extracted by
C-DNPG (Layer1-3) and DNPG (bottom) on the Quora
dataset. Warmer colors represent higher levels of gran-
ularity (templates) while colder colors represent lower
levels of granularity (details). We present granularity
of all Transformer layers and compare the results with
those of DNPG.

5.2 Qualitative Analysis

To gain a more in-depth insight into the perfor-
mance, we qualitatively analyze the interpretability
of GA-attention. We visualize the output of the
granularity head in each attention layer to verify
how effectively GA-attention captures fine-grained
granularity. As shown in Figure 2, GA-attention
can successfully capture continuous linguistic struc-
tures reflected as multiple levels of granularity (in
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Sentence: What is a good first programming language?
Transformer: What is good?

DNPG: What is good for coding?
C-DNPG: What are the best programming languages for beginners?

Human: Whats a good and easy programming language to learn?

Sentence: What will the year 2100 be like?
Transformer: What is likely to happen in the world?

DNPG: What are did today. year - year of unique year of country?
C-DNPG: What will the world look like in 2100?

Human: What will the year 2099 be like?

Table 3: Sample paraphrases from multiple models with human reference.

the last layer). For example, it successfully yields
four levels of templates: 1) what , 2) what is

, and 3) what is the expected 4) what is the
expected cut off of according to Example 1 in
Figure 2. In contrast, DNPG can decompose only
two levels of granularity for each sentence. This
means that C-DNPG can successfully distinguish
templates and detailed words for each sentence,
thus generating more fine-grained paraphrases.

Another interesting observation is that the con-
tinuous granularity is not extracted at once, in-
stead, it is gradually summarized through trans-
former layers. This indicates that the proposed
granularity-aware extensions blend naturally with
attention networks in learning coarse-to-fine repre-
sentations (Jawahar et al., 2019).

Overall, the results suggest that the proposed
GA-attention naturally extends vanilla attention
networks and enhances text representations with
fine-grained granularity modeling.

5.3 Case Study

Table 3 presents two sample paraphrases gener-
ated by different models in the Quora test set. As
the samples indicate, C-DNPG generates more co-
herent and fluent paraphrases than other models,
which is consistent with the results of the auto-
matic and human evaluation. According to the
first sample, C-DNPG produces a more relevant
and human-like paraphrase. For example, C-DNPG
successfully paraphrases the word “first” as “be-
ginners”. The second sample shows more clear
strength of C-DNPG which generates a paraphrase
that is even better than the ground-truth question
asked by human (e.g., the year “2100” is mistak-
enly paraphrased as “2099”).

5.4 Human Evaluation

Besides the automatic evaluation, we also perform
a human study to assess the performance of our
approach qualitatively. We compare our approach
with two typical methods, namely DNPG (Li et al.,
2019) and the vanilla Transformer (Vaswani et al.,
2017). They represent the state-of-the-art decompo-
sition based method and the backbone model that
our model is built upon, respectively. We randomly
selected 200 Quora questions from the test set. For
each one of the questions, one paraphrase was gen-
erated for each model. Then, three annotators from
the Amazon Mechanical Turk were asked to com-
pare the generated paraphrases by two models (ours
vs. a baseline model) blindly based on two criteria,
relevance and fluency. Relevance means that the
generated paraphrases are semantically equivalent
to the original question. Fluency means the gener-
ated paraphrases are natural and fluent sentences.
Table 4 presents the comparison results. As can be
seen, our model significantly outperforms the other
two methods in terms of the two criteria. Moreover,
the Fleiss’ kappa κ shows fair agreement between
annotators.

5.5 Computational Efficiency

As one of the key advantages of C-DNPG, we fi-
nally evaluate the time efficiency of our approach.
We used the same setup as described in the Setup
section. As Table 5 shows, the granularity aware
attention mechanism in C-DNPG does not bring
much additional computational cost to Transform-
ers as opposed to the DNPG baseline approach,
which indicates that GA-attention is lightweight to
be integrated into Transformers.
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Comparison Relevance Fluency
Win Tie Loss Kappa Win Tie Loss Kappa

Ours vs. Transformer 67.8% 14.3% 17.8% 0.156 67.5% 15.8% 16.7% 0.166
Ours vs. DNPG 72.3% 12.8% 14.8% 0.171 68.1% 17.5% 14.3% 0.194
Ours vs. Human 43.7% 10.5% 45.8% 0.079 43.2% 11.0% 45.8% 0.095

Table 4: Human evaluation on the test set of Quora.

Model Time (hours)

Transformer 1.2
TransformerCopy 1.2
DNPG 3.6
C-DNPG (ours) 1.5

Table 5: Training time (until model convergence) of
various approaches on the Quora dataset.

6 Discussion

6.1 Why baking the two masks can enhance
the performance?

Our idea is a generalization of the previous work
DNPG (Li et al., 2019). In that paper, decompos-
ing sentences into templates and details can im-
prove the performance of paraphrasing because
paraphrasing is usually generated by rewriting the
sentence template while directly copying the de-
tailed words. In that sense, template words pay
more attention to template words while detailed
words tend to pay attention to detailed words. Our
paper generalizes this idea by extending the binary
level (either 0 or 1) of granularity to a continuous
range (between 0 and 1) of levels. This was imple-
mented by the two proposed masks.

7 Related Work

This work is closely related to (1) multi-granularity
paraphrase generation and (2) multi-granularity at-
tention.
Multi-Granularity Paraphrase Generation.

There has been an increasing interest in decom-
posing paraphrase generation into multiple levels of
granularity such as word, phrase and sentence (Li
et al., 2019; Wiseman et al., 2018; Hao et al.,
2019). For example, (Li et al., 2019) present the de-
composable neural paraphrase generator (DNPG).
DNPG is a Transformer-based model that gener-
ates paraphrases at two levels of granularity in a
disentangled way. The model is composed of two

encoder-decoder pairs, corresponding to phrase-
level and sentence-level, respectively. The differ-
ence between our C-DNPG and DNPG is of three-
fold: 1) C-DNPG estimates a continuous granular-
ity level of each token and hence supports a contin-
uous modeling of hierarchical structures; 2) Com-
pared to DNPG, the GA-attention in C-DNPG can
be naturally and seamlessly integrated into Trans-
former and is light-weighted in computation; and
3) While DNPG predicts granularity using a single
fully connected layer, C-DNPG gradually summa-
rizes granularity through a stack of Transformer
layers.

Multi-Granularity Attention.

Another important line of work relates to multi-
granularity self-attention. (Hao et al., 2019) pro-
posed multi-granularity self-attention (MG-SA):
MG-SA combines multi-head self-attention and
phrase modeling by trains attention heads to attend
to phrases in either n-gram or syntactic formalism.
(Nguyen et al., 2020) proposed a tree-structured at-
tention network which encodes parse tree structures
into self-attention at constant time complexity. De-
spite similar names, our method differs from theirs
greatly in principle and architecture. These two
works rely on the existence of parsing trees, as op-
posed to GA-attention which infers latent structures
from plain text. Furthermore, MG-SA only consid-
ers two-levels of granularity while GA-attention
aims at continuous modeling of multiple granu-
larity. (Liu et al., 2020) proposed a hybrid neural
architecture named MahNN which integrates RNN
and ConvNet, each learning a different aspect of
semantic from the linguistic structures. Like other
related works, MahNN is based on a coarse-grained
attention mechanism. The two levels of granular-
ity it processes are represented by RNN and Con-
vNet, respectively. By contrast, GA-attention pro-
vides a fine-grained attention function extended
from the vanilla attention mechanism. Therefore,
GA-attention is a pure attention-based approach
and can be naturally and seamlessly integrated into
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Transformers.

8 Conclusion

In this paper, we have proposed a novel paraphrase
generation model named C-DNPG for continuously
decomposing sentences at different levels of gran-
ularity. C-DNPG extends the multi-head attention
with a granularity head which neurally estimates
continuous granularity level of each input token. To
efficiently incorporate granularity into attentions,
we propose two novel attention masks, namely,
granularity-resonance mask and granularity-scope
mask, to adjust the original attention weights. Re-
sults on two paraphrase generation benchmarks
show that C-DNPG remarkably outperforms base-
line models in both quantitative and qualitative
studies. In future work, we will investigate the ef-
fect of C-DNPG in pre-trained models and other
NLP tasks.
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Abstract

In this paper, we propose a new paradigm for
paraphrase generation by treating the task as
unsupervised machine translation (UMT) based
on the assumption that there must be pairs of
sentences expressing the same meaning in a
large-scale unlabeled monolingual corpus. The
proposed paradigm first splits a large unlabeled
corpus into multiple clusters, and trains multi-
ple UMT models using pairs of these clusters.
Then based on the paraphrase pairs produced by
these UMT models, a unified surrogate model
can be trained to serve as the final SEQ2SEQ
model to generate paraphrases, which can be
directly used for test in the unsupervised setup,
or be finetuned on labeled datasets in the super-
vised setup. The proposed method offers mer-
its over machine-translation-based paraphrase
generation methods, as it avoids reliance on
bilingual sentence pairs. It also allows human
intervene with the model so that more diverse
paraphrases can be generated using different fil-
tering criteria. Extensive experiments on exist-
ing paraphrase dataset for both the supervised
and unsupervised setups demonstrate the effec-
tiveness the proposed paradigm.

1 Introduction

The goal of paraphrase generation (Prakash et al.,
2016a; Cao et al., 2016; Ma et al., 2018; Wang
et al., 2018) is to generate a sentence semantically
identical to a given input sentence but with varia-
tions in lexicon or syntax. It has been applied to
various downstream NLP tasks such as parsing (Be-
rant and Liang, 2014), question answering (Dong
et al., 2017), summarization (Barzilay, 2004) and
machine translation (Callison-Burch et al., 2006).

Building a strong paraphrase generation system
usually requires massive amounts of high-quality
annotated paraphrase pairs, but existing labeled
datasets (Lin et al., 2014; Fader et al., 2013; Lan
et al., 2017) are either of small sizes or restricted in
narrow domains. To avoid such a heavy reliance on

labeled datasets, recent works have explored unsu-
pervised methods (Li et al., 2018b; Fu et al., 2019;
Siddique et al., 2020) to generate paraphrase with-
out annotated training data, among which the back-
translation based model is an archetype (Mallinson
et al., 2017; Sokolov and Filimonov, 2020). It
borrows the idea of back-translation (BT) in ma-
chine translation (Sennrich et al., 2016) where the
model first translates a sentence s1 into another
sentence s2 in a different language (e.g., En→Fr),
and then translates s2 back to s1. In this way, the
model is able to generate paraphrases by harness-
ing bilingual datasets, removing the need for label
paraphrase data.

However, BT-based models for paraphrase gen-
eration have the following severe issues: firstly, BT-
based systems rely on external resources, i.e., bilin-
gual datasets, making them hard to be applied to
languages whose bilingual datasets are hard to ob-
tain. Secondly, translation errors, such as duplicate
words (Holtzman et al., 2020), missing words (Lu-
ong et al., 2015) and polysemous words (Rios Gon-
zales et al., 2017), will accumulate during the for-
ward and backward translations, resulting in infe-
rior performances. Thirdly, machine translation
models work like blackboxs, making it hard for
humans to intervene with the model and control the
generation process.

In this work, we propose to address these prob-
lems based on the assumption that there must be
pairs of sentences expressing the same meaning
in a large-scale unlabeled corpus. Inspired by
unsupervised machine translation (UMT) models,
which align semantic spaces of two languages us-
ing monolingual data, we propose a pipeline system
to generate paraphrases following two stages: (1)
splitting a large-scale monolingual corpus into mul-
tiple clusters/sub-datasets, on which UMT models
are trained based on pairs of these sub-datasets; and
(2) training a unified surrogate model based on the
paraphrase pairs produced by the trained multiple
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UMT models, where we can design filtering func-
tions to remove the pairs with undesired properties.
The unified surrogate model can be then directly
used for paraphrase generation in the unsupervised
setup, or be finetuned on labeled datasets in the
supervised setup.

The proposed framework provides the following
merits over existing BT-based methods: (1) it is
purely based on a large-scale monolingual corpus,
which removes the reliance on bilingual datasets;
(2) the trained unified model is able to generate
paraphrases end-to-end, which avoids the issue of
error accumulation that exists in vanilla BT-based
models; and (3) human interventions can take place
in the filtering step, which gives finer-grained con-
trols over the generated paraphrases.

We conduct extensive experiments on a wide
range of paraphrase datasets to evaluate the effec-
tiveness of the proposed framework, and we are
able to observe performance boosts against strong
baselines in both supervised and unsupervised se-
tups.

2 Related Work

Paraphrase Generation Methods for paraphrase
generation usually fall into two categories: super-
vised and unsupervised approaches. Supervised
methods for paraphrase generation rely on anno-
tated paraphrase pairs. Xu et al. (2018); Qian et al.
(2019) employed distinct semantic style embed-
dings to generate diverse paraphrases, and Iyyer
et al. (2018); Li et al. (2019); Chen et al. (2019);
Goyal and Durrett (2020) proposed to use differ-
ent syntactic structure templates. A line of work
(Mallinson et al., 2017; Sokolov and Filimonov,
2020) formalized paraphrase generation as ma-
chine translation. Unsupervised paraphrase genera-
tion is primarily based on reinforcement learning
(RL) generative models (Ranzato et al., 2015; Li
et al., 2016b). RL optimizes certain criteria, e.g.
BLEU, to reward paraphrases with higher quality
(Li et al., 2018b; Siddique et al., 2020). Bowman
et al. (2016); Yang et al. (2019) trained a varia-
tional auto-encoder (VAE) (Kingma and Welling,
2013) to generate paraphrases. Other unsupervised
methods for paraphrase generation include VAE
(VQ-VAE) (Roy and Grangier, 2019), latent bag-
of-words alignment (Fu et al., 2019) and simulated
annealing (Liu et al., 2019a). Adapting large-scale
pretraining (Devlin et al., 2018; Radford et al.,
2018; Liu et al., 2019b; Clark et al., 2020; Sun et al.,

2021b) to paraphrase generation has been recently
investigated (Witteveen and Andrews, 2019; Hegde
and Patil, 2020; Niu et al., 2020; Meng et al., 2021)
and has shown promising potentials to improve
generation quality. Our work is distantly related
to unsupervised text style transfer (Hu et al., 2017;
Mueller et al., 2017; Shen et al., 2017; Li et al.,
2018a; Fu et al., 2018), where the model alters a
specific text attribute of an input sentence (such as
sentiment) while preserving other text attributes.

Regarding soliciting large-scale paraphrase
datasets, Bannard and Callison-Burch (2005) used
statistical machine translation methods obtain para-
phrases in parallel text, the technique of which
is scaled up by Ganitkevitch et al. (2013) to pro-
duce the Paraphrase Database (PPDB). Wieting
et al. (2017) translate the non-English side of par-
allel text to obtain paraphrase pairs. Wieting and
Gimpel (2017) collected paraphrase dataset with
million of pairs via machine translation. Hu et al.
(2019a,b) produced paraphrases from a bilingual
corpus based on the techniques of negative con-
straints and inference sampling.

Unsupervised Machine Translation Unsuper-
vised Machine Translation(UMT) has been an ac-
tive research direction in NLP (Ravi and Knight,
2011). Pioneering work for unsupervised neural
machine translation used denoising auto-encoders
and back-translation (Sennrich et al., 2016) to itera-
tively refine the generated translation. Artetxe et al.
(2017) proposed to use a shared encoder to encode
source input sentences from different languages.
Lample et al. (2017) additionally used adversarial
and cross-domain training objectives to better iden-
tify different language domains. Yang et al. (2018)
relaxed the strategy of sharing the entire encoder
in Artetxe et al. (2017) by building independent
encoders to maintain unique characteristics of each
language. Another line of work for UMT is to
combine statistical machine translation (SMT) and
NMT. Artetxe et al. (2018); Lample et al. (2018)
built a phrase-level mapping table from the source
language to the target language. Following works
improved UMT by combining SMT and NMT in
different ways, such as warming up an NMT model
with a trained SMT model (Marie and Fujita, 2018;
Artetxe et al., 2019) and using SMT as posterior
regularization (Ren et al., 2019). Other works in-
volve initializing the model using retrieved seman-
tically similar sentence pairs (Wu et al., 2019; Ren
et al., 2020; Sun et al., 2021a), using auxiliary par-
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allel data (Li et al., 2020; Garcia et al., 2020) and
pretraining on large-scale multi-lingual data (Lam-
ple and Conneau, 2019; Song et al., 2019; Liu et al.,
2020; Zhu et al., 2020).

3 Background for Unsupervised Machine
Translation

We use the unsupervised machine translation
(UMT) framework proposed by Lample et al.
(2017) as the backbone. We briefly go though the
model structure in this section. Let Csrc and Ctgt
respectively denote the monolingual dataset for the
source and target language, on which a translation
model M is trained to to generate target sequences
y based on source sequences x, y = M(x). The
model is first initialized by training in a word-by-
word translation manner using a parallel dictionary.
The initial parallel dictionary is thus a word being
translated to itself. Next, the model is iteratively
trained based on a denoising auto-encoding (DAE),
back-training (BT) and adversarial learning (AL).
DAE allows the model to reconstruct the translation
from a noisy input sentence by dropping and swap-
ping words in the original sentence. The training
objective of DAE is given by:

LlDAE = Ex∼Cl,x̂∼d(e(N(x),l),l)[∆(x̂, x)] (1)

where l = src or l = tgt specifies the language,
N(x) is a noisy version of x, e and d respectively
means encoding and decoding, and ∆ measures
the difference between the two sequences, which
is the cross-entropy loss in this case. BT encour-
ages the model to reconstruct the input sentence
x from N(y), a corrupted version of the model’s
translation y = M(x). The training objective is
given by:

Ll1→l2BT = Ex∼Cl1 ,x̂∼d(e(N(M(x)),l2),l1)[∆(x̂, x)]

(2)
AL uses a discriminator to distinguish the language
from the encoded latent representations, and by
doing so, the model is able to better map two lan-
guages into the same latent space. The discrimina-
tive training objective is given by:

LlDis = −E(x,l)[log p(l|e(x, l))] (3)

The encoder is trained to fool the discriminator
so that the encoder and the discriminator perform
together in an adversarial style (Goodfellow et al.,
2014):

Ll1→l2Adv = −E(x1,l1)[log p(l2|e(x1, l1))] (4)

The final training objective is given by:

L = λ1[Ll1DAE + Ll2DAE] + λ2[Ll1→l2BT + Ll2→l1BT ]

+ λ3[Ll1→l2Adv + Ll2→l1Adv ]
(5)

The discriminative loss LlDis is alternatively opti-
mized with L to train the discriminator. We follow
Lample et al. (2017) to implement each of the UMT
models. We used the transformer-large (Vaswani
et al., 2017) as the backbone instead of LSTMs in
Bahdanau et al. (2014).

4 Model

The core idea of the proposed strategy is to use
two subdatasets from a large monolingual corpus
C and train unsupervised NMT models based on
the two subdatasets. The path towards this goal
naturally constitutes two modules: (1) constructing
two subdatasets Csrc and Ctgt from C; and (2)
training the UMT model based on Csrc and Ctgt.

4.1 Dataset Split
The crucial part in the framework is how to build
the two subdatasets, on which the unsupervised
NMT model is trained. To this end, we propose
to (1) first construct candidates {c1, c2, ..., cK} for
Csrc and Ctgt from C based on the clustering mod-
els; and (2) selecting Csrc and Ctgt. Based on Csrc
and Ctgt, UMT models will be trained. We use two
criteria for clustering, LDA (Blei et al., 2003) and
K-means clustering. The number of clusters/topics
K is set to 80.1

LDA Clustering For LDA, we use Gibbs sam-
pling and iterate over the entire corpus 5 times in
total. In the last round, a sentence is assigned to the
topic/cluster which has the largest probability of
generating it. In LDA, each cluster is characterized
as a distribution over the vocabulary. The distance
between two subset cm, cn is the Jensen–Shannon
(JS) divergence between the two distributions over
the vocabulary:

Dis(cm, cn) = KL(cm||cn) + KL(cn||cm)

KL(cm||cn) = −
∑

v∈V
p(v|cm) log

p(v|cm)
p(v|cn)

KL(cn||cm) = −
∑

v∈V
p(v|cn) log

p(v|cn)
p(v|cm)

(6)

Since topics clustered by LDA can be incoherent
(e.g., the clustering of stop words), we ask humans

1Here we use “topic" and “cluster" interchangeably.
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to examine the top words of the topics, and discard
meaningless clusters.

K-means Clustering For K-means, we use the
average of the top layer embeddings from BERT
(Devlin et al., 2018) to represent the sentence. Let
hs denote the sentence representation for the sen-
tence s. We run the hard K-means model on the
corpus, where the distance between a sentence and
the cluster center is the L2 distance between the
two vector representations.

The LDA and K-means methods described above
focus more on the situation that centers of two clus-
ters are far away, but not individual sentences be-
longing to different clusters are different. These
two focuses are correlated, but not exactly the same.
The JS divergence for LDA clusters and L2 dis-
tance for K-means clusters will be updated after
the post-processing stage. LDA and K-means algo-
rithms are performed on part of the the Common-
Crawl corpus containing 10 billion English tokens.

4.2 UMT Training on Csrc and Ctgt
4.2.1 Multiple UMT Models
We can randomly pick one pair of subsets from
{c1, ..., cK} as Csrc and Ctgt, on which a single
UMT model will be trained. The problem with
single UMT model is obvious: each subset in
{c1, c2, ..., cK} potentially represents a specific do-
main. The UMT model trained on the single Csrc
can thus only be able to properly paraphrase sen-
tences from the Csrc domain. To cover the full do-
main, we propose to trainK UMT models, denoted
by {M1,M2, ...,MK}, where K is the number of
clusters. Each of the trained UMT models uses a
different c ∈ {c1, c2, ..., cK} as Csrc, paired with
a randomly selected Ctgt.

To paraphrase sentence s, we need to find its
corresponding paraphrase generation model M ∈
{M1,M2, ...,MK}, which takes s as the input and
outputs its paraphrase. We first select the Csrc ∈
{c1, c2, ..., cK} that s belongs to. Next, we pick
that model M trained using Csrc as sources, and
use M to generate the output.

For LDA, Csrc is the topic that generates s with
the largest probability:

Csrc = argmax
c∈{c1,c2,...,cK}

p(s|c) (7)

For the K-means model, Csrc is the cluster whose
center is closest to s:

Csrc = argmin
c∈{c1,c2,...,cK}

||hs − µc||2 (8)

where µc denotes the center of the cluster c.

We follow Lample et al. (2017) to implement
each of the UMT models. We used the transformer
(Vaswani et al., 2017) as the backbone instead of
LSTMs in Bahdanau et al. (2014), where the num-
ber of encoder blocks, decoder blocks, the number
of heads, dmodel and dff are respectively set to 6,
6, 8, 512 and 2,048. For UMT models based on
specific Csrc and Ctgt, both the encoder and the
decoder are trained using Adam (Kingma and Ba,
2014), with the learning rate set to 0.00025, β1 set
to 0.5. We evenly alternate between the encoder-
decoder and the discriminator.

Unifying Ms into a Surrogate Model We need
to maintainK different domain-specific UMT mod-
els, which is both memory costly and computation-
ally intensive, especially for online services. We
thus propose to unify different Ms into a single
surrogate one. For each sentence s in a selected cor-
pus, we first find the clusterCsrc it belongs to using
LDA or K-means described above, and then we use
the model M trained on Csrc to generate the para-
phrase of s. In this way, we are able to collect mas-
sive amounts of pseudo-labeled paraphrase pairs by
treating the original sentence s as the source and
the produced paraphrase as the target. We collected
a total number of 25 million pairs. Human interven-
tions can happen in this stage, where we can design
filtering functions to remove pairs with undesired
properties. Here, human interventions involve (1)
removing pairs with identical source and target; (2)
removing targets two times longer than sources. 16
million pairs remain after filtering.

We train a SEQ2SEQ model (Sutskever et al.,
2014; Vaswani et al., 2017) (referred to as UMT-
Multi) on the remaining pseudo-labeled data, which
is used as the ultimate paraphrase generation model.
We use the Transformer-base (Vaswani et al., 2017)
as the model backbone, where the number of en-
coder blocks, decoder blocks, the number of heads,
dmodel and dff are respectively set to 6, 6, 8, 512
and 2,048. We use Adam (Kingma and Ba, 2014)
with learning rate of 1e-4, β1 = 0.9, β2 = 0.999,
and a warmup step of 4K. Batch size is set to 256.
This model can be directly used in the unsuper-
vised learning setup. An overview of deriving the
UMT-Multi model is shown in Figure 1. Up to now,
UMT-Multi is purely based on unlabeled common-
crawl corpus.
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Figure 1: An overview of deriving the UMT-Multi model. Step 1: First, for each cluster ci, we treat it as Csrc

and find its corresponding cluster Ctgt, and then train a UMT model on (Csrc, Ctgt). The number of total UMT
models is K (in this figure, K = 4). Step 2: For a given input sentence s, we first select the Csrc that s belongs
to, and use the model trained on Csrc to generate the paraphrase of s. This process goes on over the entire corpus,
leading to a pseudo labeled dataset of paraphrase pairs. Step 3: Human intervenes by removing paraphrase pairs
whose inputs and output are the same, and outputs are two times longer than sources. Step 4: Training the single
UMT-Multi model using the dataset after filtering. Step 5 (optional): fine-tuning the UMT-Multi model on the
supervised paraphrase dataset in the supervised setup.

4.3 Supervised Setup

For the supervised setup, where we have pairs
of paraphrases containing sources from a source
domain and paraphrases of sources from a tar-
get domain, we can fine-tune the pretrained UMT-
Multi model on the supervised paraphrase pairs,
where we initialize the model using the UMT-
Multi model, and run additional iterations on the
supervised dataset. The fine-tuned model thus
shares the structure with UMT-Multi. Again, we
use Adam (Kingma and Ba, 2014) for fine-tuning,
with β1 = 0.9, β2 = 0.98. Batch size, learning
rate and the number of iterations are treated as
hyper-parameters and tuned on the dev set. At test
time, beam search (Sutskever et al., 2014; Li et al.,
2016a) is used when decoding.

An additional use of the gold labeled paraphrase
datasets is to help to select Ctgt ∈ {c1, c2, ..., cK}
that best aligns with Csrc, while in the unsuper-
vised setup, we can only randomly pair Csrc and
Ctgt due to the lack of training signals for pairing.
In the most straightforward setup, for each Csrc ∈
{c1, c2, ..., cK}, we can construct K − 1 pairs
(Csrc, c) by treating all c ∈ {c1, c2, ..., cK}, c ̸=
Csrc as Ctgt. Next, we train K − 1 UMT mod-
els based on the pairs, and select the model that
achieves the highest evaluation score on the labeled
dataset. This strategy leads to a total number of
K × (K − 1) models to be trained, which is com-

putationally prohibitive. We propose a simplified
learning model that maps the distance between
Csrc and Ctgt as inputs to output the evaluation
score (here we use iBLEU) on the labeled dataset.
Specifically, we randomly select L pairs, where
L ≪ K × (K − 1). We train L UMT models
on the selected dataset pairs. Using the trained
UMT models, we generate paraphrases for the la-
beled datasets, and obtain corresponding evaluation
scores. Based on the distance between Csrc and
Ctgt, and the evaluation score S(M(src,tgt)), we
train a simple polynomial function F to learn to
map the distance to the evaluation score:

S(M(src,tgt)) = F (Dis(Csrc, Ctgt)) (9)

The function F can be then used to select Ctgt with
highest predicted evaluation score for Csrc.

5 Experiments

5.1 Experiment Setups

We consider both the supervised and unsupervised
setups. There are two differences between the su-
pervised and unsupervised setups: for the super-
vised setup, (1) the training data provides guidance
on pairing Csrc and Ctgt; and (2) the pretrained
model will be used as initialization and later fine-
tuned on the labeled dataset. Datasets that we use
for evaluation include Quora, WikiAnswers (Fader
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et al., 2013), MSCOCO (Lin et al., 2014) and Twit-
ter Liu et al. (2019a).

For the supervised setup, we compare our pro-
posed model to the follow baselines: ResidualL-
STM (Prakash et al., 2016b), VAE-SVG-eq (Gupta
et al., 2018), Pointer (See et al., 2017), Trans-
former (Vaswani et al., 2017) and DNPG (Li et al.,
2019). For the unsupervised setup, we use the fol-
lowing models for comparison: VAE (Bowman
et al., 2016), Lag VAE (He et al., 2019), CGMH
(Miao et al., 2019) and UPSA (Liu et al., 2019a).
Results for VAE, Lag VAE, CGMH and UPSA
on different datasets are copied from Miao et al.
(2019) and Liu et al. (2019a). Results for Residu-
alLSTM, VAE-SVG-eq, Pointer, Transformer on
various datasets are copied from Li et al. (2019).
We leave details of these datasets, baselines and
training in Appendix 7.

We are particularly interested in comparing the
proposed model with bilingual MT based models.
BT is trained end-to-end on WMT’14 En↔Fr.2

A paraphrase pair is obtained by pairing the En-
glish sentence in the original dataset and the trans-
lation of the French sentence. Next we train a
Transformer-large model on paraphrase pairs. The
model is used as initialization to be further fine-
tuned on the labeled dataset. We also use WMT-14
En-Zh for reference purposes. We use BLEU (Pa-
pineni et al., 2002), iBLEU (Sun and Zhou, 2012)
and ROUGE scores (Lin, 2004) for evaluation.

5.2 Results

In-domain Results We first show the in-domain
results in Table 1. We can observe that across all
datasets and under both the supervised and unsu-
pervised setups, the proposed UMT model signif-
icantly outperforms than baselines. As expected,
multiple UMT models perform better than a single
UMT model as the former is more flexible at select-
ing the correct domain Csrc for an input sentence.
We can also observe that the BT model is able to
achieve competitive results, which shows that back-
translation serves as a strong and simple baseline
for paraphrase generation. The BT model trained
on En-Fr consistently outperforms the one trained
on En-Zh, and this is because that En-Zh transla-
tion is a harder task than En-Fr due to the greater
grammars difference between the two languages.

2Wieting et al. (2017); Wieting and Gimpel (2017) sug-
gested little difference among Czech, German, and French as
source languages for back-translation. We use En↔Fr since it
contains more parallel data than other language pairs.

Model iBLEU BLEU R1 R2

Su
pe

rv
is

ed

Quora
ResidualLSTM 12.67 17.57 59.22 32.40
VAE-SVG-eq 15.17 20.04 59.98 33.30
Pointer 16.79 22.65 61.96 36.07
Transformer 16.25 21.73 60.25 33.45
DNPG 18.01 25.03 63.73 37.75
BT(En-Fr) 18.04 25.34 63.82 37.92
BT(En-Zh) 17.67 24.90 63.32 37.38
UMT-Single 17.70 24.97 63.65 37.77
UMT-Multi 18.78 26.49 64.12 38.31

Wikianswers
ResidualLSTM 22.94 27.36 48.52 18.71
VAE-SVG-eq 26.35 32.98 50.93 19.11
Pointer 31.98 39.36 57.19 25.38
Transformer 27.70 33.01 51.85 20.70
DNPG 34.15 41.64 57.32 25.88
BT(En-Fr) 34.55 41.90 57.84 26.44
BT(En-Zh) 33.98 41.04 56.37 25.60
UMT-Single 34.50 41.72 57.58 26.31
UMT-Multi 36.04 42.94 58.71 27.35

U
ns

up
er

vi
se

d

Quora
VAE 8.16 13.96 44.55 22.64
Lag VAE 8.73 15.52 49.20 26.07
CGMH 9.94 15.73 48.73 26.12
UPSA 12.03 18.21 59.51 32.63
BT(En-Fr) 11.98 17.84 59.03 32.11
BT(En-Zh) 11.33 17.02 56.19 31.08
UMT-Single 11.47 17.21 56.35 31.27
UMT-Multi 13.10 18.98 59.90 33.04

Wikianswers
VAE 17.92 24.13 31.87 12.08
Lag VAE 18.38 25.08 35.65 13.21
CGMH 20.05 26.45 43.31 16.53
UPSA 24.84 32.39 54.12 21.45
BT(En-Fr) 23.55 31.10 52.03 20.86
BT(En-Zh) 22.60 30.12 51.29 20.11
UMT-Single 23.01 30.62 51.79 20.35
UMT-Multi 25.90 33.80 54.52 23.48

MSCOCO
VAE 7.48 11.09 31.78 8.66
Lag VAE 7.69 11.63 32.20 8.71
CGMH 7.84 11.45 32.19 8.67
UPSA 9.26 14.16 37.18 11.21
BT(En-Fr) 8.15 13.78 36.30 10.48
BT(En-Zh) 7.80 11.97 32.40 9.21
UMT-Single 8.21 13.99 36.52 10.75
UMT-Multi 9.70 15.42 38.51 12.39

Twitter
VAE 2.92 3.46 15.13 3.40
Lag VAE 3.15 3.74 17.20 3.79
CGMH 4.18 5.32 19.96 5.44
UPSA 4.93 6.87 28.34 8.53
BT(En-Fr) 4.32 5.97 26.37 7.59
BT(En-Zh) 4.15 5.40 25.83 7.32
UMT-Single 4.40 6.11 26.89 7.78
UMT-Multi 5.35 7.80 29.74 9.88

Table 1: In-domain performances of different models
for both supervised and unsupervised setups.

Domain-adapted Results We test the model’s
domain adaptation ability on Quora and Wikian-
swers. Table 2 shows the results. We can see that
UMT-multi performs significantly better than base-
lines, including UMT-single, showing the better
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Model iBLEU BLEU R1 R2

Wikianswers→Quora
Pointer 5.04 6.96 41.89 12.77
Transformer+Copy 6.17 8.15 44.89 14.79
DNPG 10.39 16.98 56.01 28.61
BT(En-Fr) 12.14 17.98 59.42 32.44
BT(En-Zh) 11.43 17.21 56.65 31.45
UMT-Single 11.86 17.49 57.01 32.44
UMT-Multi 13.62 19.48 61.04 33.85

Quora→Wikianswers
Pointer 21.87 27.94 53.99 20.85
Transformer+Copy 23.25 29.22 53.33 21.02
DNPG 25.60 35.12 56.17 23.65
BT(En-Fr) 25.77 35.30 56.41 23.78
BT(En-Zh) 24.84 34.19 55.71 22.60
UMT-Single 25.43 34.70 56.10 23.31
UMT-Multi 26.85 36.64 57.45 24.60

Table 2: Domain-adapted performances of different
models. “R1” stands for ROUGE-1 and “R2” stands for
ROUGE-2.

ability of UMT-multi for domain adaptation.

5.3 Human Evaluation
To further validate the performance of the proposed
model, we randomly sample 500 sentences from
Quora test set for human evaluation. The input sen-
tence and its two paraphrases respectively gener-
ated by the UMT model and the BT model (En-Fr)
are assigned to two human annotators at Amazon
Mechanical Turk (AMT), with “> 95% HIT ap-
proval rate”. Annotators are asked to judge which
output is better in terms of three aspects: (1) se-
mantics: whether the two sentences are the same
semantic meaning; (2) diversity: whether the two
sentences are diverse in expressions; and (3) flu-
ency: whether the generated paraphrase is fluent.
Ties are allowed. If the two annotators’ evalua-
tions do not agree with each other, the job will be
assigned to one more annotator, and we take the
majority as the final result.3 Comparing with BT,
the proportions of win, tie and lose for the proposed
UMT-model are respectively 41%, 36%, and 22%,
demonstrating its superiority over BT models.

5.4 Examples
Table 3 presents sampled paraphrases from the
BT and UMT models. From these examples, we
can identify several intrinsic drawbacks of the BT
model that the UMT model can circumvent: (1) for
the first example, the tense from the BT paraphrase
model based on En-Zh translation is incorrect. This
is because the Chinese language expresses tense in

3If the three annotators all disagree, we discard the in-
stance.

a more implicit way. This leads the model to make
mistake in tense when Chinese is translated back
to English. The UMT model does not have this is-
sue; (2) for the second example, BT model directly
copies the input, this is because the En-Fr can per-
fectly map the meaning in two languages with no
expression variations. Due to the blackbox nature
of MT models, it is hard to intervene with the pro-
cess to avoid producing the same copy. Instead,
for the proposed UMT framework, developers can
intervene with the model in both clustering stage
and data filtering stage. (3) For the third example,
the BT model changes the meaning of the origi-
nal sentence, which is due to the mistake made by
the translation model. These mistakes are some-
times inevitable due to the limitation of current MT
models, but can be fixed in the proposed system.

6 Ablation Study

In this section, we perform comprehensive ablation
studies on Wikianswers dataset for understanding
behaviors of the proposed model. And we report
iBLEU score for comparison.

Size of C for UMT Training First, we explore
how the size of C, the CommonCrawl corpus used
for dataset split and UMT training, affects down-
stream performances. Table 4 shows the results,
where the size is respectively 10M, 100M, 1B and
10B. We can observe that with more training data,
the performance significantly improves. This is
because the trained model can better learn to align
sentences between different clusters.

The Number of LDA Topics Table 5 presents
the influence of the number of LDA clusters. The
trend is clear: more topics lead to better perfor-
mances. This is because the model with more top-
ics has a stronger ability of disentangling very sim-
ilar sentences in the original corpus C, and thus
avoids copying. It is worth noting that more topics
means training more UMT models before unifying
them, leading to greater computational intensity.

Pairing Csrc and Ctgt In our main experiments,
we randomly select Ctgt given Csrc. It would be
interesting to see the effects of different cluster
selection strategies. We consider four strategies:
Largest (select Ctgt with the largest distance to
Csrc), Medium (select Ctgt with the medium dis-
tance to Csrc), Smallest (select Ctgt with the small-
est distance to Csrc) and for referring purposes,
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Input BT UMT

Time is the most accurate test of how puberty
is going to progress.

Time is the most accurate test of how puberty
is going to progress. (En-Fr)

How adolescence develops is most accu-
rately test by time.

GM told truck owners about the defect in the
first half of October.

GM owners told truck about the defect in the
first half of October . (En-Fr)

GM informed truck owners of the defect in
the first half of October .

To keep him alive , well , there ’s no reason
to keep him alive .

To keep him alive , well , there ’s no reason
to keep him alive . (En-Fr)

To let him live , well , there ’s no reason to
let him live .

Washington did not have the formal educa-
tion his elder brothers received at Appleby
Grammar School in England, but he did
learn mathematics, trigonometry, and land
surveying .

Washington did not pursue the same formal
education as his older brothers at England’s
Appleby Grammar School, but he did study
geometry, trigonometry, and land surveying
.

Unlike his older brothers, who studied at
England’s Appleby Grammar School, Wash-
ington did not receive formal education but
studied mathematics, trigonometry, and land
surveying .

Table 3: Sampled paraphrases from the BT and UMT models.

Size 10M 100M 1B 10B

Unsupervised. UMT-Multi 15.5 21.1 24.2 25.9

Table 4: The effect of data size of C for training UMT.

# LDA Topic 5 20 50 80

Unsupervised. UMT-Multi 14.9 22.4 24.9 25.9

Table 5: The effect of number of LDA topics.

Supervised (select Ctgt using the supervised strat-
egy proposed). In the real unsupervised setup, the
supervised strategy cannot be readily applied since
we have no access to supervised labels. We list per-
formance for supervised here for referring purpose.

Table 6 shows the results. For both supervised
and unsupervised setups, Supervised performs the
best against the other strategies, especially under
the unsupervised setup. The difference in perfor-
mances between these strategies is greater for the
unsupervised setup than the supervised setup. This
is because supervised training serves to compensate
the performance gap due to the presence of labeled
training data. We find that the random strategy out-
performs both Largest and Smallest. For Largest
, this is because Largest leads to very different
paired clusters, having the risk that some sentences
in Csrc might not have correspondences in Ctgt.
For Smallest, since paired clusters are pretty close,
sentences in Csrc are more likely to have copies in
Ctgt. Largest and Smallest leads to inferior perfor-
mances. random performs comparable to medium.

Clustering Methods We study the effect of dif-
ferent clustering methods, i.e., LDA and K-means.
Table 7 shows the results. As can be seen, for both
supervised and unsupervised setups, the model
trained with LDA consistently performs better than
the model trained with K-means. We think there are

Strategy Unsuper. UMT-Multi Super. UMT-Multi

Random 25.9 35.4
Largest 24.7 35.1
Medium 25.8 35.7
Smallest 25.3 35.5
Supervised 26.3 36.0

Table 6: The effect of different strategies to pair Csrc

and Ctgt.

LDA K-means
Clustering Single Multi Single Multi

Uns. 23.0 25.9 21.9 24.2
Su. 34.5 36.0 32.1 34.2

Table 7: The effect of different clustering methods for
C. “Uns.” means we use the unsupervised setup and
“Su.” represents the supervised setup.

potentially two reasons: (1) the BERT representa-
tions, on which clustering relies, cannot well repre-
sent sentence semantics for clustering (Reimers and
Gurevych, 2019); and (2) the K-means model for
sentence clustering operates at a relatively low level
of semantics (i.e., sentence level), while LDA takes
into the more global document level information.
Due to the entanglement of sentence semantics in
C, it is hard for K-means to separate sentences
apart, or if it can, it takes long until convergence.

7 Conclusion

In this paper, we propose a new framework for
paraphrase generation by treating the task as un-
supervised machine translation (UMT). The pro-
posed framework first splits a large unlabeled cor-
pus into multiple sub-datasets and then trains one
or multiple UMT models based on one or more
pairs of these sub-datasets. Experiments and abla-
tion studies under supervised and unsupervised se-
tups demonstrate the effectiveness of the proposed
framework.
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A Datasets

(1) Quora4: The Quora dataset contains 140K
parallel paraphrases of questions and 260K non-
parallel sentences collected from the question an-
swering website Quora5. We follow the standard
setup in Miao et al. (2019) and use 3K/30K para-
phrase pairs respectively for validation and test.
(2) Wikianswers: The WikiAnswers corpus (Fader
et al., 2013) contains clusters of questions tagged
by WikiAnswers users as paraphrases. It contains a
total number of 2.3M paraphrase pairs. We follow
Liu et al. (2019a) to randomly pick 5K pairs for
validation and 20K for test.6

(3) MSCOCO: The MSCOCO dataset (Lin et al.,
2014) contains over 500K paraphrase pairs for
120K image captions, with each image caption an-
notated by five annotators. We follow the dataset
split and the evaluation protocol in Prakash et al.
(2016b), where only image captions with fewer
than 15 words are considered.
(4) Twitter: The Twitter dataset is collected via
linked tweets through shared URLs (Lan et al.,
2017), which originally contains 50K paraphrase
pairs. We follow the data split in Liu et al. (2019a),
where 10% of the training data is used as validation
and the test set only contains sentence pairs that
are labeled as “paraphrases”.

B Baselines

For the supervised setup, we compare our proposed
model to the follow baselines:
(1) ResidualLSTM: Prakash et al. (2016b) deep-
ened the LSTM network by stacking multiple lay-
ers with residual connection. This deep SEQ2SEQ

model is trained on labeled paraphrase datasets.
(2) VAE-SVG-eq: Gupta et al. (2018) combined
VAEs with LSTMs to generate paraphrases in a
SEQ2SEQ generative style.
(3) Pointer: See et al. (2017) augmented the stan-
dard SEQ2SEQ model by using a pointer, i.e., the
copy mechanism. Word in the input sentence can
be directly copied as the current decoded word.
(4) Transformer: Vaswani et al. (2017) proposed
the Transformer architecture which is based on the
self-attention mechanism.
(5) DNPG: Li et al. (2019) proposed a Transformer-

4https://www.kaggle.com/c/
quora-question-pairs

5https://www.quora.com/
6Note that the selected data is different from Liu et al.

(2019a) but is comparable in the statistical sense.

based model that learns and generates paraphrases
at different levels of granularity, i.e., from the lexi-
cal to phrasal and then to sentential levels.

For the unsupervised setup, we use the following
models for comparison:
(1) VAE: Bowman et al. (2016) proposed varia-
tional auto-encoders (VAEs) to generate sentences
from a continuous space. By minimizing the re-
construction loss between the input sentence and
the output sentence, VAEs are able to sample para-
phrases from the continuous space.
(2) Lag VAE: To overcome the posterior collapse
issue of VAEs, He et al. (2019) proposed to aggres-
sively optimize the inference network by perform-
ing multiple updates before reverting back to basic
VAE training.
(3) CGMH: Miao et al. (2019) used Metropo-
lis–Hastings sampling to generate paraphrases,
where a word can be deleted, replaced or inserted
into the current sentence based on the sampling
distribution.
(4) UPSA: Liu et al. (2019a) proposed to use simu-
lated annealing to optimize the paraphrase genera-
tion model. The training objective is composed of
three parts: semantic similarity, expression diver-
sity and language fluency.
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Abstract

The difficulty of generating coherent long texts
lies in the fact that existing models overwhelm-
ingly focus on predicting local words, and can-
not make high level plans on what to generate
or capture the high-level discourse dependen-
cies between chunks of texts. Inspired by hu-
man writing processes, where a list of bullet
points or a catalog is first outlined, and then
each bullet point is expanded to form the whole
article, we propose SOE, a pipelined system
that involves of summarizing, outlining and
elaborating for long text generation: the model
first outlines the summaries for different seg-
ments of long texts, and then elaborates on
each bullet point to generate the correspond-
ing segment. To avoid the labor-intensive pro-
cess of summary soliciting, we propose the re-
construction strategy, which extracts segment
summaries in an unsupervised manner by se-
lecting its most informative part to reconstruct
the segment.

The proposed generation system comes with
the following merits: (1) the summary provides
high-level guidance for text generation and
avoids the local minimum of individual word
predictions; (2) the high-level discourse depen-
dencies are captured in the conditional depen-
dencies between summaries and are preserved
during the summary expansion process and (3)
additionally, we are able to consider signifi-
cantly more contexts by representing contexts
as concise summaries. Extensive experiments
demonstrate that SOE produces long texts with
significantly better quality, along with faster
convergence speed.

1 Introduction

Despite that recent large-scale pretrained language
models (PLMs) (Devlin et al., 2018; Liu et al.,
2019; Yang et al., 2019) are able to produce high-
quality passages that can be hardly recognized by
humans (Zellers et al., 2019), most of the generated
“good” texts are within very limited length, e.g. hun-

dreds of tokens for most cases (Yan et al., 2020),
thus generating coherent long texts remains a chal-
lenge (Radford et al., 2019; Tan et al., 2020). The
difficulty lies in the fact that existing models gen-
erate texts in a word-by-word manner: predicting
each subsequent token given its preceding contexts.
This word-by-word strategy overwhelmingly fo-
cuses on predicting local words, and cannot make
high level plans on what to generate. The strat-
egy results in the fact that long texts generated by
current models are usually repetitive, generic and
self-contradictory (Shen et al., 2019).

To address these issues, the coarse-to-fine gener-
ation strategy is proposed (Fan et al., 2018; Xu
et al., 2018; Yao et al., 2019; Mao et al., 2019). In
coarse-to-fine generation, a list of keywords or a
short prompt is first generated, serving as a sum-
mary of the original text. The prompt is then fed
to a seq2seq model as an input to output the com-
plete text. The coarse-to-fine generation strategy
significantly improves generation over the word-by-
word strategy, but still suffers from the following
shortcomings: (a) limited capacity of the prompt: a
single keyword list or prompt does not have enough
capacity to summarize all the text of long passages,
since long texts are usually consists of several parts,
each of which focuses on a specific aspect or topic
(Zhou et al., 2018; Guan et al., 2019). The us-
age of the coarse-to-fine generation strategy is thus
limited to texts that can be summarized by a sin-
gle prompt (e.g., short stories). This explains why
text length generated by the progressive generation
model is still limited, e.g., the introduced writing
prompts dataset in Fan et al. (2018) has an average
length of stories around 735, and the average length
of prompts is 28; (b) ignorance of high-level dis-
course dependency: the coarse-to-fine generation
strategy does not capture discourse-level dependen-
cies (Li and Jurafsky, 2016), which handle the high-
level information flow and interactions between
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segments of texts. The ignorance of discourse-level
dependencies results in texts lacking for coherence.

Humans write in a hierarchical top-down manner:
before writing a thousand-word-long essay, a hu-
man usually first prepares a list of bullet points or
a catalogue, and then expands them to form the
whole article. The sentence-level coherence be-
tween these bullet points is preserved when the
bullet points are expanded, providing guarantees
that the full text is coherent.

To mimic this top-down manner in human writing,
we propose SOE, a pipelined system that involves
of summarizing, outlining and expanding for long
text generation: the model first outlines the sum-
maries for different segments of long texts, which
actually mimics the process of humans outlining
bullet points; next, the model elaborates on each
bullet point to generate the corresponding segment.
The proposed strategy comes with the following
merits: (a) Since each segment is associated with
its own summary rather than the entire text sharing
a single prompt, the capacity of summaries to re-
construct the full text can be guaranteed; (b) The
conditional generation probability between sum-
maries captures the high-level discourse dependen-
cies, and these dependencies are preserved when
they are expanded to segments. This naturally re-
solves the incapability of modeling discourse-level
dependencies in the coarse-to-fine generation ap-
proach. (c) This model is able to consider signif-
icantly larger amount of contexts by representing
chunks of contexts as concise summaries.

Empirically, we do not readily have summaries for
segments in hand. The model thus needs to learn
to summarize in an unsupervised manner. To this
end, we propose the reconstruction strategy, which
extracts segment summaries by selecting its most
informative part to reconstruct the segment. Exten-
sive experiments demonstrate that SOE produces
long texts with significantly better quality than ex-
isting baselines.

2 Related Work

2.1 Generating Long Texts

There are two trends for generating long text: This
first trend of work tackles the problem from the
model perspective. New model structures (Kitaev
et al., 2020; Child et al., 2019; Dai et al., 2019;
Ye et al., 2019; Guo et al., 2019; Sukhbaatar et al.,

2019; Correia et al., 2019; Beltagy et al., 2020; Za-
heer et al., 2020) are designed to give the model
the ability to congest more contexts given lim-
ited memories or computing power. For example,
Transformer-XL (Dai et al., 2019), a modifier to
Transformers (Vaswani et al., 2017) uses a segment-
level recurrence mechanism to enable learning
long-term dependencies; Child et al. (2019); Cor-
reia et al. (2019); Kitaev et al. (2020); Beltagy et al.
(2020); Zaheer et al. (2020) proposed to sparsify
transformers by focusing only on a fraction of at-
tention connections; Tay et al. (2020) replaced the
dot-product self-attention with learned synthetic
attention weights.

The second trend of researches focus on develop-
ing new generation strategies. Efforts have been
devoted to the idea of planning-then-generation
or coarse-to-fine generation (Sha et al., 2017;
Gehrmann et al., 2018a; Wiseman et al., 2019; Hua
and Wang, 2019; Shen et al., 2020; Fu et al., 2020),
which greatly inspires this work. In coarse-to-fine
generation, a list of keywords or a short sentence
is first generated, providing guidance to generate
the full text. A recent work from Tan et al. (2020)
takes a multi-step strategy, which progressively re-
fines the generated incomplete text until reaching
a specified stage. Similar ideas have also been
applied to text summarization, where Gehrmann
et al. (2018b) proposed a bottom-up method that
first identifies phrases within a document that are
likely included in its summary. Our work is also
inspired by the strategy of hierarchical generation
(Li et al., 2015b), which consider text units with
bigger granularity: Li et al. (2015b) proposed hi-
erarchical LSTMs that arrange tokens, sentences
and paragraphs in a hierarchical structure, with dif-
ferent levels of LSTMs capturing compositionality,
and Shen et al. (2019) used multi-level structures
to learn a VAE model for generating long coherent
text.

2.2 Extractive Summarization

Extractive summarization refers to the problem of
selecting part of the input text as its summary. A
fundamental problem in extractive summarization
is to score constituent texts units (e.g., phrases,
sentences or paragraphs) and select highly-ranked
one(s) as the summary. Haghighi and Vanderwende
(2009) used word frequencies in the input text to
assign scores to words, which are then in turn used
to score sentences. Higher-ranked sentences are
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selected as the summary of the input text. Liu et al.
(2018) presented a two-stage extractive-abstractive
framework, which first coarsely identifies salient
information, followed by a generation model used
to refine it. Neural models have been widely used
for scoring Cao et al. (2015); Ren et al. (2017). Liu
and Lapata (2019) finetuned BERT (Devlin et al.,
2018) to score each sentence for extractive sum-
marization; Zhang et al. (2019) computed token
similarity in each sentence using BERT contextual
embeddings to serve as an automatic evaluation
metric for text generation.

3 Background

Language Modeling refers to the process of
calculating the probability p(y) of a sequence
y = [y1, · · · , yT ], where each yi denotes a con-
stituent token of p(y). The probability can be com-
puted by decomposing the joint distribution p(y)
into a product of conditional distributions over to-
kens:

p(y) =

T∏

t=1

p(yt|y<t) (1)

where y<i = [y1, · · · , yi−1] is the partial sequence
of tokens generated previously. During training,
the model is optimized to minimize the negative
log-likelihood (NLL) −∑y∈D log p(y). During
inference, the model decodes a token at each time
step t according to p(yt|y<t) based on the softmax
functions yt ∝ softmax(Woutht) where Wout ∈
Rd×|V | is the output word embedding matrix and
ht is the hidden state at time-step t.

Sequence-to-Sequence (Seq2Seq) Generation
models generate a target sequence y conditioning
on a given source sequence x, which differs from
language models (LMs) in terms of whether or not
conditioning on another input sequence. Similar to
LMs, the probability of the target sequence can be
typically factorized as:

p(y|x) =
T∏

i=1

p(yt|y<t,x) (2)

Seq2seq models are also optimized to minimize
the NLL−∑(x,y)∈D log p(y|x). In the rest of this
paper, we unify the notation of p(y) and p(y|x)
by setting x = ∅ for LMs. Different architectures
have been proposed to model p(yt|y<t,x), includ-
ing transformers (Vaswani et al., 2017), LSTMs
(Luong et al., 2015) and CNNs (Dauphin et al.,

Source: 𝐱

Target 
Segment 1: 𝐲1

Target 
Segment 2: 𝐲2

Target 
Segment K: 𝐲K

Summary 1 
𝐬1

Summary 2 
𝐬2

Summary K 
𝐬K

……

……

Figure 1: An overview of the proposed method. Given
preceding tokens y<i, we first sequentially generate
summaries sj∼k for each snippet. Next we expand each
summary s to form the full text yj∼k .

2017). At test time, sequences are usually gener-
ated using beam search, or its variants to promote
diversity (Vijayakumar et al., 2016).

4 Model Details for SOE

4.1 Notations

A long sequence of tokens Y = {y1,y2, · · · ,yK}
is first sliced into a series of snippets yis, where K
denotes the number of constituent snippets. Here
we use the bold font y to denote snippets, and
the normal font y to denote tokens. The num-
ber of tokens N within each snippet is a hyper-
parameter. We also use superscript i to denote the
index of a snippet, and subscript l to denote the
index of a token. Each yi consists a sequence of
tokens yi = {yi1, · · · , yini}, where ni denotes the
length of yi. Our goal is to generate a subset of
Y, denoted by yj∼k = {yj ,yj+1, · · · ,yk} given
its preceding snippets, denoted by p(yj∼k|y<j).
Each snippet yi is associated with a short summary
si = {si1, si2, · · · , simi}, where sil denotes tokens
and mi is the number of tokens in si.

4.2 Pipeline Overview

Instead of generating all constituent words in Y
one by one, we adopt a hierarchical strategy. The
process of generating yj∼k is decoupled into the
following two stages.

Stage1: Outlining Segment Summaries : we se-
quentially generate the summary si for each snippet
conditioning on the summaries for previous snip-
pets. This mimics the process of catalog generation
when humans write.

Stage2: Expanding Summaries to Texts: we ex-
pand each summary si to the full segment by se-
quentially generating its constituent words.

An overview of the proposed method is shown in
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Figure 1.

4.3 Extracting Golden Summaries

At the training time, we need to learn to generate
summaries. But this is not straightforward because
the golden summary si for the snippet yi is not
readily at hand. Manually soliciting summaries
like Fan et al. (2018) is both costly and slow. We
thus propose to take the idea of unsupervised ex-
tractive summarization, and for each snippet yi, we
extract its summary si unsupervisedly, and use the
extracted si as the golden summary for learning.

We investigate Random, TF-IDF (Ramos, 2003),
TextRank (Mihalcea and Tarau, 2004) and Recon-
struction methods to access the importance of se-
lecting summary sentences, the first three of which
are similar to Liu et al. (2018). More details of
these three methods can be found at A.

Reconstruction A summary should be more in-
formative than non-summary sentences, that is,
a summary should have the most ability to re-
construct the full text. To measure the degree
of a sentence’s reconstruction ability, we use a
seq2seq model to predict the original given text
the summary sentence, the probability of which
is regarded as the reconstruction score. Suppose
there are n sentences in yi (e.g., n = 4), and
yi = {yi,1,yi,2,yi,3,yi,4}, and yi,j denotes the
j-th sentence in yi. The reconstruction score for
yi,j , denoted by Score(yi,j) is given as follows:

Score(yi,j) =
1

|yi| log p(y
i|yi,j) (3)

To obtain p(yi|yi,j), we train another seq2seq
model, where the input is yi,j for each j, and the
output is yi by sequentially predicting tokens in
yi. Given the trained model, we rank all sentences
in yi and use the one with the highest score as the
golden summary si.

4.4 Outlining Segment Summaries

In the summary generation stage, we cannot ob-
serve yj∼k, and our goal is to sequentially generate
sj∼k given y<j :

p(sj∼k|y<i) =
∏

i∈[j,k]
p(si|y<i, s<i) (4)

The generation of summary si can be factorized
into sequentially generating the constituent word

within it:

p(si|y<i, s<i) =
∏

l∈[1,mi]
p(sil|si<l,y<i, s<i) (5)

This process ends until generating a special end-
of-sequence token <EOS> or reaching a speci-
fied summary length m. We use the Transformer-
base(Vaswani et al., 2017) architecture as the back-
bone. For considering more contexts, we adopt the
segment-level recurrence strategy, similar to Dai
et al. (2019), where the hidden states computed
for far away snippets are fixed and cached to be
reused for the next new snippet. Gradients are not
propagated to these far away snippets for memory
and computation efficiency. This strategy allows
the model to exploit information in history to the
largest extent.

4.5 Expanding Summaries to Texts
Next, we expand each summary si to the full text
for each segment by sequentially generating its
constituent words

p(yi|y<i, si) =
∏

l∈[1,ni]
p(yil |yi<l, si,y<i) (6)

which has the same termination conditions as in
the summarization generation.

4.6 Training and Inference
Training For summary generation, the trans-
former model takes [y<i; s<i] as the input
and is optimized by minimizing the NLL loss
− log p(si|y<i; s<i). Due to the memory limita-
tion, we limit y<i to preceding 384 tokens, and s<i

to 128 tokens at training. It is worth noting that
the 384 tokens of y<i mostly come from the seg-
ment right before, i.e., yi−1, while s<i comes from
multiple preceding segments since the summary is
more concise.

For the summary expanding stage, the transformer
model takes [y<i; si] as input and is optimized by
minimizing the NLL loss − log p(ŷi|y<i; si). The
two models, i.e., the summary generation and the
summary expansion model share parameters, with
a task-specific token appended to the start to no-
tify the model on what to generate, summaries or
segments.

Inference At test time, we first use beam search
with beam size 5 to generate summaries. Given the
generated summary, beam search is used again to
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generate the corresponding segment. We consider
more contexts at test time, where y<i is limited to
1,156 tokens and s<i is limited to 512 tokens.

Additionally, we augment the vanilla beam search
with the strategy of mutual information rerank-
ing (Li et al., 2015a; Fang et al., 2015). The key
point of mutual information is to, instead of merely
handling the uni-directional dependency from the
source to target based on the forward probability
log p(target|source), it models the mutual depen-
dency between the source and target in sequence-
to-sequence generation, i.e., the combination of the
forward probability log p(target|source) and the
backward probability log p(source|target). Specifi-
cally in our case, during summary generation, si is
generated as follows:

si = argmax
si

[log p(si|y<i, s<i)+

log p(si−1|y<i−1, si)]
(7)

where p(si−1|y<i, si) is the backward probability
of predicting the preceding summary si−1 given si.
Since direct decoding from Eq.7 is infeasible, we
follow the practical solution in Li et al. (2015a),
where we first generate an N -best list based on
the forward probability p(si|y<i, s<i),1 and then
rerank the N -best list by combining the forward
probability and the backward probability.

Similar strategy can also be applied to the summary
expanding stage, where yi is obtained as follows:

yi = argmax
yi

[log p(yi|y<i, si)

+ log p(yi−1|yi)]
(8)

The backward probability p(yi−1|yi) predicts the
preceding segment given the current segment.
Again, beam search is combined with reranking
to approximately find the optimal result.

4.7 Slicing Texts based on Coherence Scores
One more thing we need to care about is how to
slice the text into segments. The simplest way is to
slice the full text equally. But this is sub-optimal
since the break point could be in the middle of two
closely related sentences and one segment might
contain multiple aspects.

We thus propose a slicing strategy based on
sentence-level coherent scores. Using the Next

1We simplify p(si−1|y<i−1, si) as p(si−1|si), where we
train a seq2seq model to predict the preceding summary given
the current summary.

WikiText-103 BookCorpus
Model PPL↓ # Para PPL↓ # Para

Base
Vanilla 25.0 130M 29.0 130M
WritingPrompts-Keyword 23.8 135M 28.3 135M
WritingPrompts-Sentence 24.1 135M 28.6 135M
Progressive WritingPrompts 23.3 150M 27.7 150M
SOE 22.2 132M 25.7 132M

Large
Vanilla 20.0 220M 24.8 220M
SOE 17.4 224M 22.5 224M

Table 1: Perplexity of different models on WikiText-103
and BookCorpus. Vanilla stands for our implementation
of Transformer-XL (Dai et al., 2019).

Sentence Prediction (NSP) from BERT (Devlin
et al., 2018), we are able to measure the coherence
score between two consecutive sentences with in-
dex i and i+ 1, denoted by Score(i, i+ 1). Given
a full text y = {y(1), y(2), ..., y(T )}, let T denote
the number sentences in y, and y(i) denote the ith
sentence. Given a fixed value K for the number
sliced segments, y will be sliced into K segments,
i.e., y1,y2, ...,yK , where each yk consists of a
group of consecutive sentences from y. Let Gk
denote the list of indexes of sentence in original y,
where Gk[1] denotes the index of the first sentence
in Gk, Gk[2] denotes the second sentence, etc. Let
Rk = |Gk| denote the number of sentences in Gk.

We wish to maximize the coherence scores between
two consecutive sentences within the same segment
and minimize the score between two consecutive
sentences belonging to different segments, giving
the following objective to optimize:

L =
K∑

k=1

∑

i∈[1,Rk−1]
Score(G(k)[i], G(k)[i+ 1])

−
K−1∑

k=1

Score(G[k][Rk], G[k][1])

(9)
where Score(G[k][Rk], G[k][1]) the coherence
score between the ending sentence of a segment
and the starting sentence of the next segment.
Given Score(i, j), Eq.9 can be readily solved using
linear programming.

5 Experiments

In this section, we present experiment results. For
different methods to generate summaries, we find
that the performance of Reconstruction consistently
outperforms the rest in our preliminary results. We
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MSJ↑ Diversity↑ Adversarial Success↑ S-Level Coherence↑
Model MSJ-2 MSJ-3 MSJ-4 D-1 D-2 Adversarial Success NSP

Base
Vanilla 62.6 41.5 16.9 7.4 19.8 0.037 0.812
WritingPrompts-Keyword 63.0 42.2 17.5 8.9 22.0 0.057 0.836
WritingPrompts-Sentence 63.1 42.2 17.7 8.5 21.0 0.046 0.834
Progressive WritingPrompts 63.9 42.5 18.0 10.7 25.9 0.055 0.854
SOE 64.8 43.9 19.4 16.4 34.3 0.072 0.870
SOE+MI 65.2 44.4 20.0 20.6 40.8 0.103 0.881

Table 2: Results of different models in terms of diversity, adversarial success, MSJ and sentence-level coherence on
the BookCorpus corpora. Vanilla stands for our implementation of Transformer-XL (Dai et al., 2019). “D-n” stands
for “Distinct-n(n = 1, 2)”, and MI stands the results for mutual information reranking.

Model Distinct-1↑ Distinct-2↑
Large

Vanilla 11.7 25.5
SOE 24.1 45.0
SOE+MI 29.3 48.8

Table 3: Results of different models with large volumes
in terms of diversity on the BookCorpus dataset.

thus only report results from Reconstruction in the
section. We will get back to analysis on different
summary generation methods in the ablation study
section.

5.1 Datasets and Evaluation Metrics

We need a corpus of contiguous and long text to test
SOE. We use two word-level datasets, WikiText-
103 (Merity et al., 2016) and the BookCorpus
dataset (Zhu et al., 2015). WikiText-103 contains
103M training words from 28K articles, with an
average length of 3.6K words per article. WikiText-
103 can be used to test the ability of modeling
long-term dependencies. The BookCorpus dataset
is a more suitable dataset for our purpose, with
much longer and more contiguous texts. It con-
tains a total number of roughly 1 billion words
and 74 million sentences from 11k books, with an
average length of 89K words for each book. The
average number of words per sentence is 13. For
both datasets, we predict the last 2,000 tokens at
test time.

We use Perplexity (PPL), Diversity (Distinct-n)
(Li et al., 2016), Adversarial Success (Kannan and
Vinyals, 2017; Li et al., 2017), MS-Jaccard (MSJ)
(Montahaei et al., 2019) and Sentence-Level Co-
herence (Tan et al., 2020) as evaluation metrics.

• Perplexity (PPL) Perplexity measures how
fluent a piece of generated text could be (Dai
et al., 2019). We use PPL as the basic evalua-

tion metric in our experiments.
• Diversity Perplexity cannot measure how di-

verse the generated text is. We thus use the
scaled number of distinct unigrams (Distinct-
1) and bigrams (Distinct-2) to demonstrate the
degree of diversity (Li et al., 2016) for gener-
ated texts.

• Adversarial Success Inspired by adversarial
evaluations (Bowman et al., 2016; Kannan
and Vinyals, 2017; Li et al., 2017), we use the
adversarial success metric, which is defined
as the fraction of a model successfully fooling
a trained evaluator to believe that machine-
generated texts are from humans. The eval-
uator is a binary classification model. At
the training time, it takes as inputs machine-
generated texts and original texts, and are
trained to discriminate them. At test time, ad-
versarial success is the value 1− acc, where
acc denotes the accuracy of the trained eval-
uator predicting machine-generated texts as
machine-generated. Higher values of adver-
sarial success denotes better text quality.

• MS-Jaccard (MSJ) MSJ measures the simi-
larity of the n-gram frequencies between the
generated texts and the golden texts (Monta-
haei et al., 2019). We report MSJ-2, -3 and
-4.

• Sentence-Level Coherence PPL, MSJ and di-
versity scores do not reflect the sentence-level
coherence of generated texts. We adopt the
strategy in Tan et al. (2020) where Next Sen-
tence Prediction (NSP) from pretrained BERT
model (Devlin et al., 2018) is used as a metric
to measure the coherence between each sen-
tence and its next sentence. We report average
NSP scores for all consecutive sentence pairs
within the generated text.
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5.2 Baselines
In this paper, we use Transformer-XL (Dai et al.,
2019), WritingPrompts (Fan et al., 2018), and Pro-
gressive WritingPrompts (Tan et al., 2020) as base-
lines. More details of the baseline models can be
found at Appendix B.

For all models, we use Adam (Kingma and Ba,
2014) with learning rate of 1e-4, β1 = 0.9, β2 =
0.999, rate warmup over the first 10,000 steps, and
linear decay of the learning rate. We use a dropout
rate of 0.1 on all layers.

5.3 Results
Table 1 shows the results of perplexity for differ-
ent models on the WikiText-103 and BookCorpus
datasets. On both datasets, SOE achieves the lowest
PPL compared to baselines Transformer-XL (Dai
et al., 2019), WritingPrompts (Fan et al., 2018) and
Progressive (Tan et al., 2020). In particular, for
WikiText-103, we gain a PPL decrease -2.8, -1.6
and -1.1 against our implemented Transformer-XL,
WritingPrompts-Sentence and Progressive, while
having the same or even fewer parameters. Similar
trend can be observed on BookCorpus.

Table 2 and Table 3 show the results for MSJ, diver-
sity, adversarial success and sentence-level coher-
ence scores. As can be seen, WritingPrompt based
models generally outperform the Transformer-XL
model, which adopts the word-by-word generation
strategy. This validates the superiority of two-step
generation strategy over the naive word-by-word
generation strategy for long-text generation. The
progressive WritingPrompt model, which involves
multi-step of generation and expanding, outper-
forms the one-step the WritingPrompt-keyword
and WritingPrompt-sentence model, which is in
accord with our expectation. SOE achieves sig-
nificantly better results compared to Vanilla, Writ-
ingPrompts and Progressive models in terms of
all evaluation metrics, showing that the proposed
method can produce more fluent, coherent and di-
verse texts. The consistent performance boosts on
all metrics demonstrate the importance of model-
ing discourse-level dependencies and necessity of
summary expanding strategy for long-text genera-
tion.

Additionally, we observe additional performance
boosts by mutual information (MI), especially for
diversity and adversarial success. This is in accord
with our expectation: since mutual information is
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Figure 2: PPL on the BookCorpus dataset w.r.t. different
segment lengths.

able to build bidirectional dependencies between
the source and the target, models enhanced with
mutual information can generate better summaries,
and the phenomenon of generic and repetitive gen-
eration can be alleviated (Li et al., 2016), leading
to more diverse results.

6 Ablation Studies

6.1 The Effect of Segment Length

The size of the segment can be neither too big nor
too small: extremely long segments, might con-
tain too many aspects or topics for the summary
to summarize, in which case the model will degen-
erate into the WritingPrompts model (Fan et al.,
2018). For too short segments, the summary can-
not provide high-level guidance. We thus need to
find the sweet spot for the segment length. Figure 2
shows results on the BookCorpus dataset. It is clear
from the figure that too short segments and too long
segments both lead to inferior performances.

6.2 The Effect of Summary Generation
Strategies

It is worthwhile to explore how different summary
extraction methods affect the final performances.
To this end, we conduct experiments on the Book-
Corpus dataset, using different summary extraction
methods, i.e., Random, TextRank, TF-IDF and Re-
construction. Table 4 shows the results. We first
compare the ppl for summary generation, where
the reconstruction model achieves the lowest ppl
and thus produces summaries that are the easiest
to predict given preceding contexts. It is also in-
teresting to see that across all summary genera-
tion strategies, ppl for summarization generation is
significantly larger than text prediction, which is
reasonable since (1) generating summaries for the
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Method Summary PPL↓ Text PPL↓ MJ-4 ↑
Vanilla - 29.0 16.9
Random 40.1 30.2 15.5
TextRank 30.7 26.2 17.8
TF-IDF 33.0 26.9 17.3
Reconstruction 30.4 25.7 19.4

Table 4: Performances of different summary extraction
methods described in Section 4.3. Vanilla is the plain
model that generates tokens one by one without sum-
maries.

upcoming segment requires more generalization
abilities; and (2) there are more diverse options
for what the next segment should talk about than
the local choices for what the next sentence should
talk about. For the final text-generation ppl, recon-
struction achieves the best results, in terms of PPL,
MJ-3 and MJ-4. TextRank and TF-IDF are better
than Vanilla. Interestingly, the strategy of using
random sentences as summaries performs worse
than without summaries, which can be explained
by providing no guidance is better than incorrect
guidance.

6.3 The Effect of Coherence-based Text
Slicing

We replace the coherence-based text slicing strat-
egy with the naive equal slicing strategy, and see
how this will negatively affect the performance. On
the BookCorpus dataset, we observe an increase
of summary generation ppl from 30.4 to 30.9, and
an +0.7 increase of PPL from 25.7 to 26.4 in to-
ken generation, which demonstrates the importance
of slicing text into coherent segments for genera-
tion. But it is also worth-noting that, even with the
native equal slicing strategy, SOE still performs
significantly better than other baseline models.

6.4 Decoupling The Effects of Summaries
The positive effects from summaries are two-fold:
(1) it provides high-level guidance for segment gen-
eration; and (2) with far-away segments being con-
cisely represented by summaries, it gives the model
the ability to consider longer contexts. To quantita-
tively measure the influences from both aspects, we
conduct the following experiments: at test time, for
the computation p(si|y<i; s<i) and p(yi|y<i; si),
the model can only access summaries for segments
that are used as contexts. In other words, only
summaries within the 1,156 tokens of preceding
contexts can be fed as inputs. This is different from
the original version of SOE, in which s can extend
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Figure 3: Convergence speed for different models.

to preceding contexts until the limit of 512 tokens
is reached. We did not retrain the model, but add
this limitation at test time. On the BookCorpus
dataset, this leads to an increase of 0.8 in PPL (25.7
vs 26.5), and a decrease of 0.5 and 0.8 in MJ-3
(43.5 vs 43.9) and MJ-4 (18.6 vs 19.4).

6.5 Simplifying p(si|y<i; s<i)
Here we explore different simplifications for
p(si|y<i; s<i). For p(si|y<i; s<i), the current sum-
mary is generated based on both previous sum-
maries and segment tokens. We can simplify it as
p(si|s<i), where previous segment tokens are not
fed as inputs to predict the summary, which will
significantly decreases computing complexity. On
the BookCorpus dataset, we observe an increase
of PPL in summary generation from 30.4 to 31.2,
which subsequently leads to an +0.9 increase of
PPL from 25.7 to 26.6 in token generation.

6.6 Convergence Speed

At last, we investigate how quickly different mod-
els converge. Results are shown in Figure 3. With
the guidance of extracted summaries, SOE has a
conspicuously faster convergence speed, where at
about 200K training steps it has approximately
reached the best result while the other two models
— Vanilla and WritingPrompts — do not converge
until 1000K training steps. The WritingPrompts
model converges faster than then Vanilla because
of the high-level guidance from prompts.

7 Conclusion

In this paper, we propose a two-step hierarchical
generation strategy for long-text generation: the
model first generates the summary for each seg-
ment conditioning on previous summaries, and
next, each summary is expanded to form the full
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text segment. The proposed strategy provides high-
level guidance for local text generation, and enables
high-level discourse dependencies to be captured.
Extensive experiments demonstrate that SOE pro-
duces long texts with significantly better quality,
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A Methods for Selecting Summary
Sentences

We investigate Random, TF-IDF (Ramos, 2003),
TextRank (Mihalcea and Tarau, 2004) methods to
access the importance of selecting summary sen-
tences.

Random For comparing purposes, we use a ran-
dom sentence as the summary.

TF-IDF We take the sentence with the highest
average TF-IDF score (Ramos, 2003) as the golden
summary si. A word is assigned a score by TF-
IDF that scales proportionally to the number of
times the word appears in the document and is
offset by the number of documents in the corpus
that contain the word, which can be expressed as
Nw · log( NdNdw

), where Nw is the word count, Nd is

the total number of documents and Ndw is the total
number of documents containing the word.

TextRank TextRank (Mihalcea and Tarau, 2004)
is a weighted graph with tokens as nodes and the
similarity between nodes as edges. We use BERT
(Devlin et al., 2018) to compute the similarities
between sentences and then rank them based on the
TextRank algorithm.

B Model Baselines

In this paper, we use Transformer-XL, Writing-
Prompts, and Progressive WritingPrompts as base-
lines.

Transformer-XL Transformers with segment-
level recurrence strategy (Dai et al., 2019) natu-
rally constitutes a baseline. The model sequentially
generates texts in a word-by-word fashion.

WritingPrompts first predicts a list of keywords
or a single prompt, and then generates the full text
given the prompt (Fan et al., 2018). Different from
Fan et al. (2018), where golden prompts for stories
are available, we do not readily have the golden
prompts. We thus use the extractive strategies de-
scribed in Section 4.3, i.e, the TF-IDF method to
pick the keyword list as the prompt (denoted by
WritingPrompts-keyword) and the reconstruction
method to select the highest ranking sentence as
the prompt (denoted by WritingPrompts-sentence).

Progressive WritingPrompts The progressive
strategy proposed in Tan et al. (2020) which in-
volves multiple stages of prompt generation. Each
stage produces a more fine-grained sequence than
the stage that comes before, and is used as the in-
put to generate the prompt for the next stage. We
follow the protocols in Tan et al. (2020) and use the
TF-IDF score to obtain golden prompts for each
stage. The number of stages is set to 4.

6402



Proceedings of the 29th International Conference on Computational Linguistics, pages 6403–6414
October 12–17, 2022.

CoCGAN: Contrastive Learning for Adversarial Category Text Generation

Xin Sheng1,3, Linli Xu1,3∗, Yinlong Xu2, Changcun Bao4, Huang Chen4, Bo Ren4

1 Anhui Province Key Laboratory of Big Data Analysis and Application,
School of Computer Science and Technology, University of Science and Technology of China.

2 School of Computer Science and Technology, University of Science and Technology of China.
3 State Key Laboratory of Cognitive Intelligence. 4 Tencent Youtu Lab.
xins@mail.ustc.edu.cn, {linlixu,ylxu}@ustc.edu.cn,

{changcunbao,huaangchen,timren}@tencent.com

Abstract

The task of generating texts of different cat-
egories has attracted more and more atten-
tion in the area of natural language generation
recently. Meanwhile, generative adversarial
net (GAN) has demonstrated its effectiveness
on text generation, and is further applied to
category text generation in later works. Dif-
ferent from existing methods, which mainly
consider the pairwise relations between the text
embedding and the corresponding fixed one-hot
class label (data-to-class relations), this paper
proposes a novel Contrastive Category Gener-
ative Adversarial Net (CoCGAN) to incorpo-
rate contrastive learning into adversarial cate-
gory text generation, considering more flexible
data-to-class relations as well as relations be-
tween the multiple text embeddings in the same
batch (data-to-data relations). The discrimina-
tor of CoCGAN discriminates the authenticity
of given samples and optimizes a contrastive
learning objective to capture both more flexi-
ble data-to-class relations and data-to-data re-
lations among training samples. Accordingly,
the generator tries to produce more realistic
samples which can confuse the discriminator.
Experimental results on both synthetic and real
category text generation datasets demonstrate
that CoCGAN can achieve significant improve-
ments over the baseline category text genera-
tion models.

1 Introduction

Category text generation is the task of generat-
ing coherent and meaningful text with different
categories and has received increasing attention
in many natural language processing applications,
such as sentiment analysis (Li et al., 2018) and di-
alogue generation (Li et al., 2017). It is a further
expression of machine intelligence, and makes the
generated texts more friendly to humans. Category
text generation is a generalization of sentimental

∗Corresponding author

text generation and can be seen as a type of condi-
tional text generation. This task focuses on how to
integrate the auxiliary category information with
the conventional text generation frameworks. Re-
cently, generative adversarial net (GAN) (Good-
fellow et al., 2014), where the discriminator is de-
signed to guide the generator, is combined with
the reinforcement learning (RL) (Williams, 1992)
methods to generate discrete text sequences for
general text generation with some remarkable suc-
cesses (Yu et al., 2017; Guo et al., 2018; Caccia
et al., 2020). Different from the general text gener-
ation task, category text generation mainly focuses
on automatically generating a variety of control-
lable texts according to the specified categories.
However, it is challenging to incorporate the cate-
gory information into the sentences and design an
appropriate objective for generating texts of differ-
ent categories simultaneously.

In previous works, attempts have been made to
extend the general text generation models to cat-
egory text generation (Wang and Wan, 2018; Liu
et al., 2020; Li et al., 2018). However, they only
consider relations between the text embeddings
and the class labels with simple constraints (data-
to-class relations). Among them, SentiGAN (Wang
and Wan, 2018) heavily relies on the discriminator
based on a (k + 1)-class classifier, which classifies
between “generated” and k real classes. But it ig-
nores the fact that each generated sample involves
the degree of authenticity as well as the probability
of belonging to a certain category simultaneously,
therefore it is less reasonable to directly set the dis-
criminator as a (k + 1)-class classifier. To address
this issue, CSGAN (Li et al., 2018) splits the dis-
criminator into an authenticity discriminator and
a category classifier, and optimize the generator
with reward-based policy gradient strategy. Never-
theless, both the discriminators of SentiGAN and
CSGAN are still limited by the simple category
constraints (i.e., cross-entropy loss using fixed one-
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hot class label as target). More recently, CatGAN
proposes a category-aware model with a genera-
tor based on the relational memory core (RMC) to
generate category texts. However, its discriminator
still focuses on vanilla data-to-class relations and
ignores relations between these text embeddings in
the same batch (data-to-data relations).

In this paper, inspired by recent application of
contrastive learning in conditional image genera-
tion (Kang and Park, 2020), we propose a novel
adversarial category text generation framework,
namely Contrastive Category Generative Adversar-
ial Net (CoCGAN), to further exploit the category
information. Different from SentiGAN, which uses
multiple generators, we adopt a conditional genera-
tor (Hochreiter and Schmidhuber, 1997) to simplify
the model, where an additional class label embed-
ding is set as input to control the type of the gener-
ated category text. Following (Yu et al., 2017), we
consider the sequence generation procedure as a
sequential decision making process and the genera-
tor is regarded as a stochastic parametrized policy.
Regarding the discriminator, since each generated
sample is associated with a real class label and it is
rather rough to simply mark it as “generated”, the
proposed discriminator is divided into two parts:
an authenticity discriminator and a contrastive cat-
egory projector. The authenticity discriminator is a
conventional GAN discriminator which is designed
as a binary classifier to judge whether the input
text is real or not. As for the contrastive category
projector, we abandon the conventional way which
adopts the cross-entropy loss as the training objec-
tive and take class label embeddings into account
for more flexible learning. Specifically, the dis-
criminator leverages contrastive learning to pull
the text embeddings closer to their corresponding
class label embeddings. Furthermore, we also con-
sider relations between the text embeddings which
share the same class labels. In other words, the
contrastive category projector aims to pull the mul-
tiple text embeddings, which are in the same batch,
closer to each other when their class labels are the
same, while pushing away from each other other-
wise. As benefits of the novel contrastive learning
paradigm, the discriminator can capture not only
more flexible data-to-class relations but also data-
to-data relations among training samples. During
adversarial training, we adopt Monte Carlo tree
search to approximate the state-action value func-
tion and the penalty-based (Wang and Wan, 2018)

training objective is used to update the generator
with policy gradient strategy (Sutton et al., 2000),
where we integrate the output of the authenticity
discriminator and the contrastive category projector
to obtain the overall penalty.

We conduct category text generation experi-
ments on both synthetic and real category datasets
and adopt multiple metrics to evaluate the qual-
ity of the generated texts. We also compare the
proposed CoCGAN with several state-of-the-art
category text generation models, including Senti-
GAN and CatGAN. Experimental results on three
datasets (i.e., movie reviews, amazon reviews and
synthetic datasets) demonstrate that our model con-
sistently outperforms the state-of-the-art models.

The contributions of this work are three-fold:

• We adopt the conditional generator without
loss of generality and decouple the discrimi-
nator into two parts, which comprehensively
consider the authenticity and category infor-
mation of the input text.

• We propose the CoCGAN which adopts con-
trastive learning to leverage not only more
flexible data-to-class relations but also data-
to-data relations among samples for category
text generation. To the best of our knowledge,
this work is the first attempt to introduce con-
trastive learning for category text generation.

• Extensive experiments are conducted on sev-
eral datasets and the results from multiple per-
spectives demonstrate the effectiveness of the
proposed model.

2 Related Work

Text generation is an important task in natural
language processing and has received more and
more attention in many fields recently (Sheng et al.,
2020; Bahdanau et al., 2014). Traditional text
generation models based on recurrent neural net-
work (RNN) (Graves, 2013) generate each token of
a sentence conditioned on the previous tokens and
the current hidden state. Nevertheless, the training
paradigm maximum likelihood estimation (MLE)
may suffer from exposure bias (Bengio et al., 2015),
which is due to the inherent difference between the
training stage and the inference stage of text gener-
ation models trained via MLE. Scheduled sampling
is proposed by (Bengio et al., 2015) to solve it but
soon proved to be inconsistent (Huszár, 2015). To

6404



alleviate this issue, some works adopt generative
adversarial net (GAN) (Goodfellow et al., 2014),
which has achieved significant successes on com-
puter vision (Radford et al., 2016; Brock et al.,
2018). In GAN, the discriminator learns to distin-
guish whether a given sample is real or not, and
the generator learns to confuse the discriminator by
generating high quality data. Nevertheless, GAN
is designed for differentiable data, which conflicts
with the discrete nature of text generation.

To tackle the above non-differentiability prob-
lem, reinforcement learning is introduced in Seq-
GAN (Yu et al., 2017) and LeakGAN (Guo et al.,
2018), where the discriminator guides the gen-
erator with the reward signal. And this train-
ing paradigm is widely adopted (Sheng et al.,
2022). Alternatively, MaskGAN (Fedus et al.,
2018) uses the actor-critic algorithm to fill in the
missing text conditioned on the surrounding con-
text. RankGAN (Lin et al., 2017) replaces the con-
ventional binary classifier with a ranking model
as the discriminator. A different direction to ad-
dress the non-differentiability problem is approxi-
mation methods. Specifically, (Zhang et al., 2017)
and (Chen et al., 2018) apply an annealed softmax
to approximate the argmax operation. While (Gu
et al., 2018) and (Nie et al., 2018) propose to use
the Gumbel-Softmax relaxation to approximate the
categorical distribution.

The aforementioned methods mostly focus on
general text generation. For the task of category
text generation, CSGAN (Li et al., 2018) proposes
a descriptor which consists of a binary discrimi-
nator and a classifier that aims to distinguish the
categories of the given sentence. However, the ad-
versarial generator optimization of CSGAN still
adopts the reward-based training objective, which
is the same as SeqGAN and restricts the diver-
sity of the generated sentences. Meanwhile, Senti-
GAN (Wang and Wan, 2018) introduces multiple
generators where each generator focuses on gen-
erating samples with a specified sentiment label.
In addition, SentiGAN proposes a novel penalty-
based training objective to improve the diversity of
the generated samples. However, the multiple gen-
erators of SentiGAN will increase the complexity
of the model with the increase of category numbers.
More recently, CatGAN (Liu et al., 2020) intro-
duces a category-aware model for category text
generation. Nevertheless, the discriminator of Cat-
GAN still focuses on vanilla data-to-class relations.

As can be noticed, in all the methods discussed
above, data-to-data relations among the training
batch are ignored. Besides these GAN-based meth-
ods, some works also make various attempts to
improve the conventional conditional generative
models (Keskar et al., 2019; Chan et al., 2021; Li
et al., 2020), and they are orthogonal to our model
which focuses on improving the discriminator to
better guide the conditional generator. And these
models can replace the conditional generator of
our model for further improvements. Thus, in this
work, we mainly focus on the GAN-based methods.

Recently, many unsupervised representation
learning methods are proposed based on the princi-
ple of contrastive learning (Wu et al., 2018; Bach-
man et al., 2019; He et al., 2020; Henaff, 2020;
Chen et al., 2020a,b), and contrastive learning
paradigm is firstly adopted for adversarial image
generation in (Kang and Park, 2020). Besides, con-
trastive learning is also applied to conventional con-
ditional text generative models (Lee et al., 2021;
Qian et al., 2022). To effectively leverage the class
label information, the proposed CoCGAN makes
the first attempt to integrate contrastive learning
into the discriminator for adversarial category text
generation. By exploring both more flexible data-
to-class relations and data-to-data relations with
contrastive learning, CoCGAN achieves significant
improvements over previous works, including the
state-of-the-art model CatGAN.

3 Methodology

In this section, we propose CoCGAN by adapt-
ing contrastive learning to adversarial category text
generation. We begin with introducing the frame-
work of the generator (Sec. 3.1). Then, in order to
consider both more flexible data-to-class relations
and data-to-data relations, we split the discrimina-
tor into an authenticity discriminator and a con-
trastive category projector (Sec. 3.2) to introduce a
label-incorporated contrastive loss. Accordingly, a
penalty-based contrastive learning paradigm is de-
signed to optimize the generator during adversarial
training (Sec. 3.3). Finally, we propose the Con-
trastive Category Generative Adversarial Net (CoC-
GAN) for category text generation (Sec. 3.4).

3.1 Conditional Generator

Following previous works (Yu et al., 2017; Wang
and Wan, 2018; Liu et al., 2020), we adopt the
generative model based on recurrent neural net-
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work (RNN) (Hochreiter and Schmidhuber, 1997).
An RNN maps the input embedding representations
x1, x2, . . . , xT of the sequence x1, x2, . . . , xT into
a sequence of hidden states s1, s2, . . . , sT by using
the update function g recursively. Different from
the SentiGAN which uses k conventional RNNs to
generate texts of k classes, we equip a single con-
ventional RNN with an additional label embedding
input c to control the category of the generated text,
which can reduce the complexity of the generator,
and the hidden state st is updated as follows:

st = g(st−1, xt, c) (1)

where xt and c are concatenated as the input at
timestep t. Then, a softmax output layer maps the
hidden states into the output token distribution:

p(yt|x1, x2, . . . , xt) = softmax(Vst + b) (2)

where V and b are weight matrix and bias vector
respectively. It is worth noting that the generator
can be implemented as most of the RNN variants,
such as the Long Short-Term Memory (LSTM)
cells (Hochreiter and Schmidhuber, 1997), the
gated recurrent unit (GRU) (Cho et al., 2014) and
the relational memory core (RMC) (Santoro et al.,
2018). For easy comparison with the state-of-the-
art model CatGAN, which uses RMC-based gener-
ator, we adopt both LSTM and RMC as the genera-
tors to conduct experiments.

3.2 Label-incorporated Contrastive
Discriminator

In SentiGAN, the discriminator is designed as a
(k + 1)-class classifier to distinguish between the
real texts with each category (k classes) and the
generated texts (1 class). However, it is overlooked
that each generated sample is simultaneously asso-
ciated with the degree of the authenticity and the
probability of belonging to a certain category.

3.2.1 Auxiliary Classification Loss
In order to address the problem mentioned above,
we make a clear distinction between the authentic-
ity and the real category of the text. Specifically,
as shown in Figure 1(b), we divide the (k + 1)-
class SentiGAN discriminator (Figure 1(a)) into
two parts: an authenticity discriminator and a cat-
egory classifier. The authenticity discriminator is
designed as a binary classifier to distinguish be-
tween the real and generated samples, while the
category classifier is a k-class classifier to distin-
guish the categories of the given sample. We denote

the discriminator as Dϕ where ϕ is the trainable
parameter. Besides, we adopt part of the discrim-
inator network (Dϕ1) before the fully connected
layer as the encoder network and use a multi-layer
perceptron network parameterized by φ as the body
of the category classifier. The training objective of
the discriminator is defined as follows:

LDis =LAuth + LCat
LAuth =EX∼Pg logDϕ(X)− EX∼Pr logDϕ(X)

LCat =− E(X,Y )∼Pr(X,Y )logCϕ1,φ(X,Y )

(3)

where LAuth and LCat are the losses of the au-
thenticity discriminator and the category classifier
respectively. Pg and Pr represent the generated
texts and the real texts respectively, and Pr(X,Y )
indicates the real text-label pairs (X and Y repre-
sent the real text and the corresponding class label
respectively). Dϕ(X) represents the probability
that X is real and Cϕ1,φ(X,Y ) represents the Y -
th index of the classifier output, which represents
the probability that X belongs to the real Y -th cat-
egory texts. Here, we comprehensively consider
the contributions of the authenticity discriminator
and the category classifier. However, the category
classifier still uses a cross-entropy loss, which only
captures data-to-class relations between a fixed one-
hot class label vector and a given text sample.

3.2.2 Label-incorporated Contrastive Loss

As shown in Figure 1(c), to exploit more flexible
data-to-class relations and data-to-data relations,
we adopt the training paradigm of self-supervised
contrastive learning and replace the vanilla k-class
classifier with the contrastive category projector.

Firstly, we construct a contrastive learning ob-
jective for the discriminator to explicitly control
the distances between the text embeddings and the
class label embeddings. Different from the con-
ventional contrastive learning NT-Xent loss, which
needs appropriate data augmentation and does not
take data-to-class relations into account, we lever-
age the class label embeddings of the categories
instead of data augmentation. Given a batch of
training text samples {X1, X2, . . . , Xm} and the
corresponding class labels {Y1, Y2, . . . , Ym}, we
introduce an encoder S(·) and a projection layer h
to map the input text samples to the hypersphere:
l = h(S(·)). Together with the label embeddings,
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Figure 1: Schematics of discriminators of three category text GANs. (a) SentiGAN (Wang and Wan, 2018) takes a
(k + 1)-class classifier as its discriminator to guide the generator to generate category texts. (b) CLSGAN improves
SentiGAN by explicitly divide the discriminator as a binary authenticity discriminator and a category classifier. (c)
The proposed CoCGAN extends the CLSGAN with a label-incorporated contrastive loss, which considers both
more flexible data-to-class relations and data-to-data relations in the same batch.

the contrastive loss is defined as follows:

ℓ(Xi, Yi; τ) = −log
RD2C

RD2C +RD2A

RD2C = exp(l(Xi)
⊤e(Yi)/τ)

RD2A =
m∑

s=1

1s ̸=i · exp(l(Xi)
⊤l(Xs)/τ)

(4)

where e(·) denotes the class label embedding func-
tion, τ is a temperature scalar to control the pull
and push force. (4) pulls the sample Xi nearer
to its corresponding class label embedding e(Yi)
and pushes the other samples away. In this work,
we adopt part of the discriminator (Dϕ1) as the en-
coder S(·) and the multi-layer perceptron network
parameterized by φ as the projection layer h to
construct the mapping as l = h(Dϕ1(·)). To fur-
ther exploit data-to-data relations, we should also
avoid pushing other samples which have the same
class label Yi. Thus, we add cosine similarities of
such samples to the numerator in (4) and get the
label-incorporated contrastive loss as follows:

ℓϕ1,φ(Xi, Yi; τ) = −log
RD2C +RD2D

RD2C +RD2A

RD2D =

m∑

s=1

1Ys=Yi,s ̸=i · exp(l(Xi)
⊤l(Xs)/τ)

(5)

where RD2C and RD2A are the same as in (4).
Besides reducing the distances between the text
embeddings and the corresponding class label em-
beddings, minimizing (5) will also reduce the dis-
tances between the multiple text embeddings with

the same class labels while maximizing the others.
It is obvious that (5) comprehensively considers
more flexible data-to-class relations l(Xi)

⊤e(Yi)
and data-to-data relations l(Xi)

⊤l(Xs). And the
objective of the discriminator can be redefined as:

LDis =LAuth + LCat
LAuth =EX∼Pg logDϕ(X)− EX∼Pr logDϕ(X)

LCat =E(X,Y )∼Pr(X,Y )ℓϕ1,φ(X,Y ; τ)

(6)

where Pr(X,Y ) indicates the real text-label pairs
(X and Y represent the real text and the correspond-
ing class label respectively).

3.3 Penalty-based Contrastive Generator
Training

For adversarial generator training, instead of the
reward-based policy gradient strategy (Yu et al.,
2017), we adopt the penalty-based one (Wang and
Wan, 2018) to guarantee the diversity of generated
text samples. Specifically, the goal of the generator
Gθ(X|S, Y ) is to minimize the penalty:

LGen =

T−1∑

t=0

Gθ(Xt+1|St, Y ) · V Gθ
Dϕ,φ

(St, Y,Xt+1)
(7)

where T is the length of X , Gθ(Xt+1|St, Y ) in-
dicates the probability of selecting the (t + 1)-th
word given its current state and class label, denoted
as St and Y respectively, and V Gθ

Dϕ
(St, Y,Xt+1) is
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the penalty for the sequence X1:t+1, which is cal-
culated by the discriminator. Here Y is the class
label corresponding to the label embedding c in (1).
Monte Carlo tree search is applied with the roll-out
policy Gθ to calculate the penalty function of the
generator:

V Gθ
Dϕ,φ

(St−1, Y,Xt) =





1

N

N∑

n=1

(1− rn) t < T

1− r t = T

(8)

where T is the length of X , rn and r are given
by the specified discriminator with the n-th Monte
Carlo tree search result Xn

1:t and the completely
generated sentence X as input, respectively.

For the discriminator with auxiliary classifica-
tion loss proposed in Sec. 3.2.1, r (analogy to rn)
is defined as follows:

r =
1

2
(Dϕ(X) + Cϕ1,φ(X,Y )). (9)

And for the discriminator with label-incorporated
contrastive loss introduced in Sec. 3.2.2, r (analogy
to rn) is redefined as follows:

r =
1

2
(Dϕ(X) + exp(−ℓϕ1,φ(X,Y ; τ))). (10)

It is worth noting that, for both (9) and (10), X
represents the generated text and Y is the corre-
sponding input class label.

3.4 Contrastive Category Generative
Adversarial Net

With the proposed label-incorporated contrastive
loss, we build the framework of CoCGAN. Sim-
ilar to the training procedure of GAN, CoCGAN
has a discriminator step and a generator step which
constitute adversarial training. Besides, CoCGAN
calculates the label-incorporated contrastive loss
with a set of real or generated samples. Algorithm
1 in Appendix A.3 summarizes the complete train-
ing procedure of the proposed CoCGAN. We also
define the framework with auxiliary classification
loss as CLSGAN, and Algorithm 2 in Appendix
A.3 shows its training procedure. Different from
CSGAN, CLSGAN adopts the penalty-based pol-
icy gradient strategy instead of the reward-based
one. For both CoCGAN and CLSGAN, the training
samples fed into the contrastive category projector
and the category classifier are different for discrim-
inator and generator step (i.e., real samples for

discriminator step and generated samples for gen-
erator step). And for each discriminator iteration,
the amount of generated samples is set the same
as that of the real samples in a batch to guarantee
sufficient training.

In CoCGAN, the discriminator can minimize
the distances between the multiple real text embed-
dings from the same class label while maximizing
it otherwise and capture more flexible relations
between the real text embeddings and the corre-
sponding class label embeddings. Besides, the re-
lations between the current text embeddings and
the wrong class label embeddings are also consid-
ered in (5). Specifically, since the wrong class
label embeddings are pulled near to their corre-
sponding text embeddings and the text embeddings
from wrong class labels are pushed away from the
current text embeddings, the wrong class label em-
beddings are pushed away from the current text
embeddings implicitly. Therefore, the discrimina-
tor can learn better representations of the given
samples, and the conditional generator can be fur-
ther improved to generate more realistic category
texts with the knowledge of the discriminator.

4 Experiments

4.1 Datasets

Without loss of generality, we set the number of
categories as 2 and conduct experiments on both
synthetic and real datasets, as in previous work (Liu
et al., 2020). The synthetic data includes 20,000
samples, and each 10,000 samples are obtained
from different oracle-LSTMs to construct category
text data. The real data includes two English re-
view datasets: movie reviews (MR) (Socher et al.,
2013) and amazon reviews (AR) (McAuley et al.,
2015). MR has two sentiment classes (negative and
positive), and AR has two types of product reviews
(book and application). We follow the same pre-
processing steps as in LeakGAN (Guo et al., 2018).
MR has 4,503 samples, including 3,153 samples
for training and 1,350 samples for testing. As for
AR, each review category includes 100,000 sam-
ples for training and 10,000 samples for testing,
and each sample may consist of multiple sentences.

4.2 Evaluation Metrics

There exist many evaluation metrics to measure the
performance of adversarial text generation mod-
els. Among them, (Yu et al., 2017) introduces the
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Model SentiGAN CSGAN CatGAN CLSGANL CoCGANL CLSGANR CoCGANR

20 6.953 8.522 6.631 6.903 6.611 6.712 6.314
40 6.877 7.703 6.392 6.663 6.384 6.445 6.094

Table 1: The NLLoracle scores on synthetic dataset. For the NLLoracle scores, the lower the better.

Model MR AR
B@2 B@3 B@4 B@5 Ng Nd B@2 B@3 B@4 B@5 Ng Nd

SentiGAN 0.525 0.287 0.162 0.144 2.501 0.472 0.858 0.811 0.712 0.537 3.367 0.916
CSGAN 0.447 0.199 0.120 0.089 2.937 0.243 0.863 0.677 0.431 0.239 3.373 1.104
CatGAN 0.592 0.330 0.195 0.162 1.679 0.521 0.965 0.910 0.855 0.721 3.143 1.472

CLSGANL 0.557 0.327 0.183 0.161 2.313 0.491 0.933 0.892 0.810 0.622 3.306 1.112
CoCGANL 0.588 0.342 0.213 0.173 1.686 0.526 0.958 0.913 0.851 0.729 3.152 1.231
CLSGANR 0.573 0.344 0.201 0.167 1.958 0.517 0.943 0.903 0.841 0.663 3.195 1.289
CoCGANR 0.632 0.383 0.227 0.182 1.462 0.536 0.984 0.957 0.882 0.764 3.024 1.537

Table 2: The comparison of performance on MR and AR. B@n denotes BLEU scores of n-gram. For all BLEU
scores, the higher the better. For NLLgen scores (denoted as Ng), the lower the better. For NLLdiv scores (denoted
as Nd), the higher the better.

negative log-likelihood NLLoracle to measure the
quality on the synthetic data as follows:

NLLoracle = −EYθ∼Pθ [logPr(Yθ)] (11)

where Pθ is the generated data distribution and Pr
is the real data distribution.

As for the real data, we adopt NLLgen (Zhu et al.,
2018) and NLLdiv (Liu et al., 2020) as the diversity
metrics, and define them as follows:

NLLgen = −EYr∼Pr [logPθ(Yr)], (12)

NLLdiv = −EYθ∼Pθ [logPθ(Yθ)]. (13)

To measure the quality on the real data, since we
cannot access the distribution of the real data, we
adopt BLEU scores (Zhu et al., 2018) to mea-
sure the performance of the models instead of
NLLoracle. And we follow (Liu et al., 2020) to
use harmonic mean values of all automatic met-
rics on each category to evaluate the category text
generation models.

4.3 Baselines
We conduct experiments to compare the proposed
model with several state-of-the-art methods. For
automatic evaluation metrics, we select Senti-
GAN (Wang and Wan, 2018), CSGAN (Li et al.,
2018) and CatGAN (Liu et al., 2020) as baseline
models. All models are pre-trained with standard
MLE training before adversarial training. All the
models are run with 5 random seeds on all experi-
ments and the mean is presented as the final score
(see Appendix A.1 for more detailed settings). For
the proposed CoCGAN and CLSGAN, we adopt
both LSTM and RMC as the generators to conduct
experiments.

4.4 Quantitative Results

In this section, for CLSGAN and CoCGAN,
we report the results of LSTM-based genera-
tor and RMC-based generator (i.e., CLSGANL,
CLSGANR, CoCGANL and CoCGANR).

4.4.1 Results on the Synthetic Data
We conduct experiments on the synthetic data with
the sequence length set as 20 and 40 respectively.
Table 1 shows that, CoCGAN equipped with RMC-
based generator consistently outperforms other
models in terms of NLLoracle, including the state-
of-the-art model CatGAN, which demonstrates that
CoCGAN can further exploit the category informa-
tion with better quality on all categories.

4.4.2 Results on the Real Data
As for the real data (i.e., MR and AR), we use
several metrics to measure the quality and the di-
versity of the generated sentences. After the same
preprocessing steps, MR dataset consists of 6,216
unique words with the maximum sentence length
15, and AR dataset contains 6,416 unique words
with the maximum sentence length 40. We report
the results of CLSGAN and CoCGAN with dif-
ferent generators as on the synthetic data, and the
results are presented in Table 2. It is obvious that
CLSGANL shows its superiority on all metrics
compared with CSGAN, since the penalty-based
training paradigm adopted by CLSGANL can im-
prove the performance compared with the reward-
based one of CSGAN. CoCGAN further exploits
more flexible data-to-class relations and data-to-
data relations to achieve significant improvements
over CLSGAN. When equipped with the RMC-
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Model (A) (B) (C) (D)
B@2 0.943 0.984 0.952 0.963
B@3 0.903 0.957 0.917 0.931
B@4 0.841 0.882 0.855 0.847
B@5 0.663 0.764 0.734 0.751
Ng 3.195 3.024 3.132 3.103
Nd 1.289 1.537 1.368 1.475

Table 3: The ablation Study on AR. (A), (B), (C) and
(D) represent CLSGAN, CoCGAN, CoCGAN w/o D2D
and CoCGAN w/o D2C, respectively. All the models
are equipped with RMC-based generator. B@n denotes
BLEU scores of n-gram. For all BLEU scores, the
higher the better. For NLLgen scores (denoted as Ng),
the lower the better. For NLLdiv scores (denoted as Nd),
the higher the better.

τ 0.1 1.0 2.0 4.0
B@2 0.873 0.984 0.972 0.951
B@3 0.792 0.957 0.938 0.893
B@4 0.698 0.882 0.877 0.845
B@5 0.573 0.764 0.752 0.710
Ng 3.405 3.024 3.121 3.303
Nd 1.372 1.537 1.475 1.402

Table 4: Tuning of temperature τ . The experiment is
conducted on AR. B@n denotes BLEU scores of n-gram.
For all BLEU scores, the higher the better. For NLLgen

scores (denoted as Ng), the lower the better. For NLLdiv

scores (denoted as Nd), the higher the better.

based generator, for both CoCGAN and CLSGAN,
the performance is further improved compared with
the one when equipped with the LSTM-based gen-
erator. It is noteworthy that CoCGAN using RMC-
based generator outperforms the state-of-the-art
model CatGAN with better quality and diversity on
all categories as well.

4.4.3 Ablation Study

To investigate the contributions of different parts in
the label-incorporated contrastive loss (discussed
in Sec. 3.2.2), we conduct ablation study on AR.
Here, we remove data-to-class relations from CoC-
GAN as CoCGAN w/o D2C (i.e., remove RD2C

from both denominator and numerator of (5) in
Sec. 3.2.2), and data-to-data relations are removed
from CoCGAN as CoCGAN w/o D2D (i.e., (4) in
Sec. 3.2.2). We also report the results of CLSGAN
to compare the performance between the fixed one-
hot class label vector and the trainable class label
embedding. All the results are shown in Table 3.
On the one hand, compared with the fixed one-hot

Figure 2: Comparison of human evaluation on a random
subset of the AR dataset.

class label vector (i.e., CLSGAN), flexible class
label embedding (i.e., CoCGAN w/o D2D) can
achieve better performance. On the other hand,
data-to-class relations and data-to-data relations
are complementary to each other. Without either of
them, the performance of CoCGAN shows a signifi-
cant degradation on all metrics (i.e., both CoCGAN
w/o D2D and CoCGAN w/o D2C show worse per-
formance compared with complete CoCGAN). Be-
sides, both CoCGAN w/o D2D and CoCGAN w/o
D2C still outperform CLSGAN.

4.4.4 Tuning of Temperature τ
Temperature τ used in (5) is the hyper-parameter
to control the pull and push force in contrastive
learning and an appropriate temperature can help
to capture better data-to-class relations and data-to-
data relations. We investigate the impact of τ on
AR with a grid search to find a proper value of τ .
As shown in Table 4, we experimentally find that
the temperature τ of 1.0 yields the best results.

4.5 Qualitative Results
For the qualitative experiments, we adopt RMC-
based generator to construct CoCGAN, and only
report the results of CoCGAN to compare with
baselines (i.e., CSGAN, SentiGAN and CatGAN).

4.5.1 Human Evaluation
To further evaluate the quality of the generated sen-
tences, we randomly select 50 generated samples
from each category for human evaluation. The
scores from 1 to 5 are assigned to each generated
sample, which measures the fluency and the se-
mantic correctness (see Appendix A.2 for more
detailed evaluation protocols). The scores of 1 and
5 indicate the worst quality and the best quality
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Dataset SentiGAN CSGAN CatGAN CoCGAN

MR Negative: it’s an ex-
tremely unpleasant film.

Negative: an enjoyable
experience. (wrong cat-
egory)

Negative: the movie
doesn’t add anything
fresh to sustain its clever
concept.

Negative: bad movie is
that is, it’s just a bet-
ter travelogue than find-
ing solutions.

Positive: it’s not smart.
(wrong category)

Positive: just intelligence.
(short)

Positive: it’s a romantic.
(short)

Positive: a very well-
made and entertaining
picture.

AR Book: i love this book so
much. it is one of book
that you can not put down.
very well written.

Book: my 4 is on the
front of that day seeing
travel. just not great,
though .. (Unreadable)

Book: this was an awe-
some book. i loved the
book, every page kept me
entertained and finished it
in two days!

Book: i absolutely loved
this book. i am so glad
to read the other books in
this series. i can’t wait for
the next one.

Application: this game is
addictive and fun. (short)

Application: this is a fun
game. my husband and i
both love to play it a lot.

Application: i really love
these games. (short)

Application: i love this
game. it is a great way to
pass the time.

Table 5: Generated samples of different models on the real dataset.

respectively. Each generated sample is rated by
10 invited human evaluators who are capable of
reading English proficiently. And the harmonic
mean values of the average score on each category
are shown in Figure 2. It can be observed that,
multiple generators help SentiGAN to obtain com-
petitive results, while CatGAN has achieved better
performance. And the results of CoCGAN demon-
strate that the contrastive learning paradigm helps
to consistently outperform these baselines.

4.5.2 Case Study

We select SentiGAN, CSGAN and CatGAN as ref-
erences to analyze the effectiveness of the proposed
label-incorporated contrastive objective. With
trained on MR and AR, the generated samples of
these models are listed in Table 5, and we can find
some problems with the generated sentences of
these baselines (e.g., unreadable and wrong cat-
egory). In contrast, the proposed CoCGAN can
produce sentences with better quality.

5 Conclusion

This paper proposes a novel contrastive learn-
ing paradigm for adversarial category text gen-
eration (CoCGAN). In CoCGAN, a novel label-
incorporated contrastive loss is introduced to fur-
ther exploit more flexible data-to-class relations
and data-to-data relations in the training batch, and
the category text generation model is enhanced
accordingly. It is worth noting that CoCGAN fo-
cuses on the perspective of adversarial learning,
therefore it is orthogonal to some works which try
to optimize the conditonal text generative models
themselves, and can be applied to them for further
improvements. Extensive experiments demonstrate

that our proposed model outperforms the state-of-
the-art adversarial category text generation models
with better quality and diversity.
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A Appendix

A.1 Experimental Settings

• We implement the baselines based on
TextGAN benchmark 1.

• In the CNN based discriminator, the sizes of
filter windows are set to be {2, 3, 4, 5} and the
dimension of each feature map is set as 300.

• The batch size is set to be 64 for all models.
The embedding size for the generator is set as
32 and that for the discriminator as 64.

• Adam optimizer with the same hyper-
parameters (i.e., β1 = 0.9 and β2 = 0.999)
are employed to optimize all models.

• For MLE pre-training, we run 150 epochs
with learning rate set as 0.01.

• For discriminator pre-training, the learning
rate is set to be 0.0001.

• For adversarial training, the learning rate is
set to be 0.0001 for both the generator and the
discriminator.

• All models are trained on a RTX 3090 GPU.

A.2 Human Evaluation Protocols

For category text generation, we conduct human
evaluation based on fluency and semantic correct-
ness. The detailed protocols are shown as follows:

• 5-Excellent. Right category, well fluency, and
making sense.

• 4-Good. Right category, acceptable fluency
with some grammatical errors, and making
sense.

• 3-Fair. Right category, no fluency, but convey-
ing some meanings from some parts.

• 2-Poor. Right category, making no sense.

• 1-Bad. Wrong category, making no sense.

1https://github.com/williamSYSU/TextGAN-PyTorch
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A.3 Algorithms
The training procedures of CoCGAN and CLS-
GAN are shown in Algorithm 1 and Algorithm 2,
respectively. For both CoCGAN and CLSGAN, the
training samples fed into the contrastive category
projector and the category classifier are different
for discriminator step and generator step (i.e., real
samples for discriminator step and generated sam-
ples for generator step). For sufficient training of
discriminator, at each discriminator iteration, half
of a training batch are real samples while the other
half are generated samples.

Algorithm 1 The training procedure of CoCGAN

Require: Real text dataset T with corresponding
class labels; The number of class labels k; Gen-
erator Gθ; Discriminator Dϕ,φ; Temperature τ

1: Initialize Gθ, Dϕ,φ with random weights
2: Pre-train Gθ using MLE on T
3: Generate fake samples F with random class

labels using Gθ
4: Pre-train Dϕ,φ via minimizing (6) on {T, F}
5: while Gθ not converged do
6: for g-steps do
7: Generate fake samples F with random

class labels using Gθ
8: Calculate penalty V Gθ

Dϕ,φ
by (8) and (10)

on F
9: Update Gθ by minimizing (7)

10: end for
11: for d-steps do
12: Generate fake samples F with random

class labels using Gθ
13: Update Dϕ,φ via minimizing (6) on

{T, F}
14: end for
15: end while

Algorithm 2 The training procedure of CLSGAN

Require: Real text dataset T with corresponding
class labels; The number of class labels k; Gen-
erator Gθ; Discriminator Dϕ,φ

1: Initialize Gθ, Dϕ,φ with random weights
2: Pre-train Gθ using MLE on T
3: Generate fake samples F with random class

labels using Gθ
4: Pre-train Dϕ,φ via minimizing (3) on {T, F}
5: while Gθ not converged do
6: for g-steps do
7: Generate fake samples F with random

class labels using Gθ
8: Calculate penalty V Gθ

Dϕ,φ
by (8) and (9) on

F
9: Update Gθ by minimizing (7)

10: end for
11: for d-steps do
12: Generate fake samples F with random

class labels using Gθ
13: Update Dϕ,φ via minimizing (3) on

{T, F}
14: end for
15: end while
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Abstract

Unsupervised summarization methods have
achieved remarkable results by incorporating
representations from pre-trained language mod-
els. However, existing methods fail to consider
efficiency and effectiveness at the same time
when the input document is extremely long.
To tackle this problem, in this paper, we pro-
posed an efficient Coarse-to-Fine Facet-Aware
Ranking (C2F-FAR) framework for unsuper-
vised long document summarization, which is
based on the semantic block. The semantic
block refers to continuous sentences in the doc-
ument that describe the same facet. Specifi-
cally, we address this problem by converting
the one-step ranking method into the hierar-
chical multi-granularity two-stage ranking. In
the coarse-level stage, we propose a new seg-
ment algorithm to split the document into facet-
aware semantic blocks and then filter insignif-
icant blocks. In the fine-level stage, we select
salient sentences in each block and then extract
the final summary from selected sentences. We
evaluate our framework on four long document
summarization datasets: Gov-Report, BillSum,
arXiv, and PubMed. Our C2F-FAR can achieve
new state-of-the-art unsupervised summariza-
tion results on Gov-Report and BillSum. In ad-
dition, our method speeds up 4-28 times more
than previous methods.1

1 Introduction

The text summarization task aims to condense a
document or a set of documents into several sen-
tences and keep the primary information. Recent
years, both supervised (Liu and Lapata, 2019; Liu
and Liu, 2021; Liu et al., 2021b) and unsuper-
vised (Zheng and Lapata, 2019; Dong et al., 2021b;
Liang et al., 2021, 2022) methods have made sig-
nificant improvements over short documents with
the development of semantic representations from

*Contribution during internship at Tencent Inc.
†Corresponding Author
1https://github.com/xnliang98/c2f-far

Pre-trained Language Models (PLMs). Due to the
noise and complexity of the increased input and
output length, long-form document summarization
is still a challenge (Tay et al., 2021; Akiyama et al.,
2021; Grail et al., 2021). Compared with super-
vised one, unsupervised methods do not rely on
large amounts of labeled data and have no limi-
tation on input length. In addition, unsupervised
methods can be easily adapted to data from differ-
ent domains, types, and languages. In this paper,
we focus on unsupervised extractive methods for
long document summarization.

Most unsupervised extractive methods are graph-
based (Zheng and Lapata, 2019; Dong et al., 2021b;
Liang et al., 2021, 2022). They represent docu-
ment sentences as nodes in a graph, where the edge
value is the similarity between sentences. Then,
they measure the importance of each node via com-
puting the degree centrality (Radev et al., 2000) or
running PageRank (Brin and Page, 1998) algorithm.
Liang et al. (2021) pointed out that centrality-based
methods always tend to select sentences within the
same facet (i.e. aspect, sub-topic) and proposed a
facet-aware ranking (FAR) method to tackle this
problem. FAR forces a centrality-based model
to select summary sentences from different facets
by incorporating the relevance between the candi-
date summary and the document. However, this
method faces two problems when the document is
extremely long: 1) As the input length increases,
the document will have more noise and insignifi-
cant facets. The relevance computation between the
candidate summary and the document may cause
the facet-aware ranking to be influenced by insignif-
icant facets. 2) The running time of FAR will rise
rapidly as the number of extracted sentences in-
creases. Due to FAR needs to compute the rel-
evance score number of combinations Ckm times,
where k is the number of extracted summary sen-
tences and m is the number of candidate salient
sentences.
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Figure 1: An example from the Gov-Report dataset to introduce the process of our method. “...” refers to the
omissions of context sentences due to space limitations. Highlight sentences refer to the final extracted summary
sentences. The content of the arrow pointed is the facet description of the left semantic block. Bold facets represent
vital facet-aware semantic blocks of the final summary.

To tackle these problems, in this paper, we pro-
pose a novel Coarse-to-Fine Facet-Aware Ranking
(C2F-FAR) Framework based on semantic blocks,
which consists of two stages with different gran-
ularities: semantic blocks and sentences. The se-
mantic block means continuing sentences that de-
scribe the same facet. We use a simple example
in Fig. 1 to describe the motivation for building
two stages. Fig. 1 shows four facet-aware semantic
blocks. Each block contains continuous sentences
describing the same facet, which is listed on the
right. From the coarse-level view, we should first
filter blocks with unimportant facets in the docu-
ment, e.g. the block related to “additional goal of
PILT” in Fig. 1. Then, from the fine-level view,
we should select proper sentences in each block,
which are more relevant to the block facet. Note
that we only show the most relevant sentences with
the facet of each semantic block and omit unre-
lated sentences due to the space limitation. Finally,
the highlighted sentences should be selected as the
summary.

Following this intuitive process, we designed
our framework with a coarse-level stage and a fine-
level stage. The coarse-level stage aims to select
several salient facet-aware semantic blocks for the
fine-level stage. We first segment the document

into facet-aware semantic blocks by our proposed
new document segmentation algorithm, which is
inspired by TextTiling (Hearst, 1997). Then, we fil-
ter insignificant facets via a coarse-level centrality
estimator to measure the salience of blocks. The
fine-level stage aims to select final summary sen-
tences from previously selected blocks. We first
select candidate sentences in each block to repre-
sent its facet by simply computing relevance be-
tween sentences and the block. Finally, we extract
the final summary from candidate sentences by
sentence-level centrality-based estimator. Overall,
the coarse-level stage can identify all facets of the
document effectively and filter insignificant ones.
The fine-level stage can reduce the influence of
facets with many sentences by only selecting sev-
eral related sentences for the final ranking. This
framework with a hierarchical coarse-to-fine struc-
ture can guarantee effective and efficient long doc-
ument summarization.

We evaluate the effectiveness and efficiency
of our C2F-FAR on four long-document summa-
rization datasets with two different metrics. Our
method achieves new state-of-the-art performance
on Gov-Report and BillSum. It is comparable to
strong baselines on arXiv and PubMed. Besides,
our method can achieve a speedup of 4-28 times
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more than two strong baselines.

2 Methodology

We show the workflow of our proposed coarse-to-
fine facet-aware ranking (C2F-FAR) framework
in Fig. 2. After encoding the document into sen-
tence embeddings, the workflow contains two main
stages and each stage contains two steps.

(1) In the coarse-level stage, we first employ a
document segmentation algorithm to split the docu-
ment into coarse-level semantic blocks and we call
them facet-aware semantic blocks. Then, we score
all blocks via the centrality estimator and select
top-ranked blocks for the next fine-level stage.

(2) In the fine-level stage, we first select sev-
eral sentences of each facet-aware semantic block,
which can cover the main facet of each block. Then,
we employ a sentence-level centrality estimator to
score selected sentences and extract the final sum-
mary.

We describe the details of each step in the fol-
lowing sections.

2.1 Sentence Embeddings
Formally, let D indicate a long document contain-
ing n sentences {s1, . . . , sn}. In this paper, we em-
ploy pre-trained language model to obtain the sen-
tence embeddings {v1, . . . , vn}. Specifically, we
employ an improved BERT (Devlin et al., 2019a)
from previous work PacSum (Zheng and Lapata,
2019) to represent each sentence si with the hidden
state vi of “[CLS]” token. This improved BERT
can obtain better sentence semantic representation.

2.2 The Coarse-Level Stage
The coarse-level stage contains two steps: docu-
ment segmentation and coarse-level centrality esti-
mator. The document segmentation splits the doc-
ument into semantic blocks. The coarse-level cen-
trality estimator employs a directed centrality score
to measure the importance of each facet-aware se-
mantic block. After the coarse-level stage, we only
keep top-ranked α × m semantic blocks of the
whole document, where m is the number of facet-
aware semantic blocks and α is a hyper-parameter
used to control the ratio of reserved important
blocks (default α = 0.5).

2.2.1 Document Segmentation Algorithm
We propose a simple but effective document seg-
mentation algorithm to split the input document
into facet-aware semantic blocks. This algorithm

is based on the assumption that when sentences
with adjacent positions are semantically similar,
they focus on the same facet (Skorochod’ko, 1971).
As shown in Fig. 3, the algorithm aims to select
some potential segmentation points to segment the
document into several facet-aware semantic blocks
P1 = {sps1 , ..., spe1}, ..., Pm = {spsm , ..., spem}.
Our proposed document segmentation algorithm is
inspired by TextTiling (Hearst, 1997). It contains
two steps: similarity measure and segmentation
point identification.

In the similarity measure step, we compute the
similarity of sentences on both sides of the po-
tential segmentation point gi. Each side select
w sentences and apply mean operation method
over their vectors to obtain global representations
bli = 1

w

∑i
j=i−w+1 vj and bri = 1

w

∑i+w
j=i+1 vj ,

where bli and bri refer to the left and right side block
with w sentences, respectively. The similarity of
the sentence on both sides of the potential segmen-
tation point gi is computed by cosine similarity
simi =

bli·bri
||bli||||bri ||

.
Then, we apply the moving average on the

similarity list of potential segmentation points
{sim1, ..., simn−1} to get a smooth similarity list
with Equ. (1)

ˆsimi =
1

2ŵ + 1

i+ŵ∑

j=i−ŵ
simj (1)

where the ŵ is the window size used for moving av-
erage operation and the similarity list is refactored
as { ˆsim1, ..., ˆsimn−1}. In this paper, the window
size w and ŵ are all set as 2.

The segmentation point identification step is
based on the smooth similarity list. We show an
intuitive similarity curve in Fig. 4. If the value of
ˆsimi is low, the facets in the left and right blocks

are different. So we should segment them with the
point gi. We can see that segmentation points g3
and g5 are the local minimum value of the curve in
Fig. 4, which are suitable to segment the document.

We convert the similarity list of the potential
segmentation point into depth score series {di}n−1i=1

by Equ. 2 to select proper segmentation points.

di = max{( ˆsimi−1 − ˆsimi), 0}
+max{( ˆsimi+1 − ˆsimi), 0}

(2)

When the similarity of the potential segmentation
point is the local minimum value, it will become
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Figure 2: The workflow of our proposed coarse-to-fine facet-aware ranking framework.

Figure 3: A diagram for document segmentation.

Figure 4: The smooth similarity curve.

the local maximum value after being converted into
a depth score. If di > ϵ, we choose the potential
segmentation point gi as the segmentation point.
The ϵ is a threshold and is decided by the mean µ
and standard deviation σ of the depth score series.
We set ϵ = µ+λ · σ, where λ is a hyper-parameter
to control the granularity of segmentation. The
greater the λ, the segmented block contains more
sentences.

Finally, we can segment the whole document
into some facet-aware semantic blocks P1 =
{sps1 , ..., spe1}, ..., Pm = {spsm , ..., spem}, like ex-
amples in the Fig. 3.

2.2.2 Coarse-Level Centrality Estimator
We introduce the coarse-level centrality estima-
tor for filtering unimportant facet-aware semantic
blocks in this section. We represent the semantic
information of each block Pi by computing the av-
erage of sentence vectors contained in the block.

pi =
1

|Pi|
∑

si∈Pi
(si) (3)

The representations of blocks are {p1, . . . , pm}.
Then, we employ directed centrality (Zheng and
Lapata, 2019) to score each block based on the as-
sumption that the contribution of any two nodes’
connection to their respective centrality is influ-
enced by their relative position.

C(pi) = λ1

n∑

j<i

pi · pj + λ2

n∑

j>i

pi · pj (4)

After that, we rank all blocks via directed centrality
score C(pi) and only keep top-ranked α percent se-
mantic blocks for the next fine-level stage, where α
is a hyper-parameter to control the ratio of reserved
blocks.

2.3 The Fine-Level Stage

The fine-level stage contains two steps: relevance
estimator and fine-level centrality estimator. The
relevance estimator is used to select some sentences
in each facet-aware semantic block, which can re-
tain the main information of the block. The fine-
level centrality estimator is applied to sentences
from the previous relevance estimator and also em-
ploys the directed centrality score to extract the
final summary.

2.3.1 Relevance Estimator
The relevance estimator simply computes the rel-
evance between sentences and the block to select
sentences to represent the facet in semantic blocks.
This step is based on the assumption that each facet-
aware semantic block only contains one facet. We
employ cosine similarity to measure the relevance
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between sentence representation vj and block rep-
resentation pi.

R(sj) =
vj · pi
||vj ||||pi||

, sj ∈ Pi (5)

For each semantic block, we select top-ranked β
sentences, where β is the average number of se-
mantic block sentences, which is determined by
the granularity of document segmentation. If the
number of sentences in a block is lower than β,
we keep all sentences. Then, we can get t candi-
date sentences {ŝ1, . . . , ŝt} for the final summary
selection.

2.3.2 Fine-Level Centrality Estimator
The final fine-level centrality estimator aims to se-
lect the final summary sentences from previous
candidate sentences. The final fine-level centrality
estimator measures the importance of each candi-
date sentence as follows:

C(si) = λ1

t∑

j<i

vi · vj + λ2

t∑

j>i

vi · vj (6)

where si, sj ∈ {ŝ1, . . . , ŝt}. We select top-ranked
k sentences as the final summary, where k is the
average number of sentences of different datasets.

3 Experiments

3.1 Datasets

Datasets #docs document summary
words sen. words sen.

Gov-Report 973 9,409 304 657 23
BillSum 3,269 2,148 169 209 10
arXiv 6,440 4,938 206 220 10
PubMed 6,658 3,016 107 203 8

Table 1: Statistics information of Gov-Report, BillSum,
arXiv, and PubMed datasets. We compute the average
document and summary length in terms of words and
sentences, respectively.

We evaluate our C2F-FAR on 4 datasets. The
statistics information of them is shown in Tab. 1.

Gov-Report (Huang et al., 2021) is a large-scale
long document summarization dataset containing
19,466 long reports published by U.S. Govern-
ment Accountability Office (GAO) and Congres-
sional Research Service (CRS). Documents and
summaries in Gov-Report are significantly longer
than other datasets.

BillSum (Kornilova and Eidelman, 2019) con-
tains US Congressional bills and human-written
references from the 103rd-115th (1993-2018) ses-
sions of Congress. We found that previous works
have some errors in the sentence segmentation of
the dataset. We re-segmented this dataset with the
StanfordNLP toolkit and conducted experiments
on the basis of the new sentence segmentation.

arXiv and PubMed (Cohan et al., 2018) are two
long scientific document summarization datasets
from scientific papers.

3.2 Settings and Metrics

We employ sentence-BERT2 from (Zheng and La-
pata, 2019) to encode sentences in the document,
which converts each sentence into a vector with
768 elements. The window size of the document
segmentation algorithm is 2. The default setting of
λ is 1.0 and α is 0.5.

We reported ROUGE-1/2/L scores with
ROUGE-1.5.5.pl script3 (Lin, 2004) and
BertScore (Zhang* et al., 2020) of baselines and
our methods. The ROUGE score is the lexical level
metric to measure the similarity between extracted
summary and gold summary. The BertScore4

measures the semantic level similarity between the
extracted summary and gold reference.

3.3 Baselines

We compare our method with recent strong unsu-
pervised extractive summarization models.

Lead, which selects the first k tokens as a sum-
mary.

Oracle, which is the upper bound of extractive
summarization methods. It selects sentences by
computing ROUGE scores with the gold summary.

TextRank (Mihalcea and Tarau, 2004) and
LexRank (Erkan and Radev, 2004), which are two
traditional unsupervised ranking method based on
TF-IDF and PageRank algorithm to select salient
sentences.

TextRank(BERT), which employs embeddings
from improved BERT to compute the edge weight
of TextRank.

FAR (Liang et al., 2021), which defined the facet
bias problem and proposed a facet-aware centrality
method to tackle the bias problem.

2https://github.com/huggingface/transformers
3https://github.com/andersjo/pyrouge
4https://github.com/Tiiiger/bert_score
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3.4 Evaluation of Summary Quality and
Inference Time

We report the results of automatic and human eval-
uation of all systems to measure the extracted sum-
mary quality of our C2F-FAR. Besides, we also
compare the inference time of our method with two
strong baselines to prove the high efficiency of our
method.

The automatic evaluation results of ROUGE
score and BertScore are shown in the Tab. 2 and
Tab. 3. These two scores measure the lexical and
semantic level similarity between extracted sum-
mary and gold reference, respectively. All reported
results of our C2F-FAR framework employed the
default hyper-parameters λ = 1 and α = 0.5. We
can see that our C2F-FAR achieved new state-of-
the-art results on Gov-Report and BillSum in unsu-
pervised methods. The performance of our method
also is better than PacSum and comparable to FAR
on the other two datasets: arXiv and PubMed. We
will analyze the reason for the results on arXiv and
PubMed in the discussion section. Interestingly,
there is no big difference between the two versions
of TextRank. We guess that the iterative algorithm
based on PageRank is not sensitive to the similarity
measure methods.

To evaluate the ability of our C2F-FAR in re-
ducing facet bias and improving the quality of ex-
tracted summaries, we asked 3 human annotators
to evaluate the extracted summaries of C2F-FAR
and FAR with the gold reference summary. Three
annotators were given extracted and gold summary.
Then they were asked to give 0-2 scores for facets
coverage (whether the extracted summary contains
most primary facets) and quality (the comprehen-
sive feelings of the extracted summary) of 20 ran-
dom sampled examples from test sets of BillSum
and 20 random sampled examples from test sets of
Gov-Report (0-bad, 1-normal, 2-good). The results
of FAR in terms of facets coverage is 1.16 and qual-
ity is 1.03. Our C2F-FAR performs significantly
better (p < 0.05 with Mann-Whitney U tests) than
FAR whose facets coverage is 1.38 and quality is
1.15.

To test the inference time of our method, we
randomly select 100 examples from the test set
of each dataset and ensure that the average input
length of these 100 examples is the same as the
average length of the test set. Then, we run each
method 10 times and report the average inference
time of them on four datasets. We can see Fig. 5

Figure 5: The inference time of each system. Each time
is the average of multiple runs (10 times). ”×N“ means
the running time isN times (rounded up) of our method.

and find that our method is far ahead of the other
two methods in inference time, and this advantage
becomes more obvious as the length of the input
document increases.

Overall, compared with other methods, our
method takes into account both efficiency and ef-
fectiveness. In addition, our framework also can
adjust the specific ranking method in each step for
datasets with different types and domains, which
makes it flexible.

4 Analysis

In this section, we first analyze the parameter sensi-
tivity of our C2F-FAR and then discuss the reason
why our method is inferior to the FAR on arXiv and
PubMed via facets analysis of extracted sentences.

4.1 Impact of Hyper-parameters

In this section, we will analyze the parameter sen-
sitivity of two hyper-parameters in our C2F-FAR
framework: 1) λ is used to control the granularity
of the document segmentation algorithm; 2) α is
used to control the ratio of reserved blocks of the
coarse-level centrality estimator. We can see the
relationship between compression ratio and λ in
the Tab. 4. The default setting of λ = 1 has an
impressive compression ratio on two datasets.

We fix α and show the change of the ROUGE-
1 score while λ changes in Fig. 6. We can find
that the performance is best when λ = 1.0, and
there is little change when λ ∈ [0, 2]. This shows
that our algorithm is stable. You can set a larger λ
to get a faster running speed while ensuring good
performance. We set the value range of λ between
0.0 and 2.5 because when λ is less than 0, the most
segmented blocks contain one sentence. Then the
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Models Gov-Report BillSum
R-1 R-2 R-L BS-F R-1 R-2 R-L BS-F

Oracle 74.87 49.02 72.48 88.83 65.24 47.09 58.81 86.29
Lead 50.94 19.53 48.45 83.47 40.53 18.28 34.15 80.24
LexRank 40.16 8.85 37.65 82.48 34.39 10.05 28.93 79.76
TextRank(TF-IDF) 53.19 23.12 49.86 84.83 40.04 16.12 32.64 80.81
TextRank(BERT) 56.00 22.42 52.86 85.10 38.05 12.99 31.46 80.02

PacSum 56.89 26.88 54.33 85.02 41.11 17.24 34.54 81.33
FAR 57.51 27.54 54.94 85.38 41.53 17.44 34.84 81.21
C2F-FAR 57.98 27.63 55.33 86.62 42.53 17.85 35.58 81.57

Table 2: Results on Gov-Report and BillSum test set. BS-F refers to F1 of the BertScore.

Models arXiv PubMed
R-1 R-2 R-L BS-F R-1 R-2 R-L BS-F

Oracle 53.88 23.05 34.9 87.06 55.05 27.48 38.66 87.05
Lead 33.66 8.94 22.19 82.97 35.63 12.28 25.17 80.43
LexRank 33.85 10.73 28.99 80.42 39.19 15.87 34.53 83.21
TextRank(TF-IDF) 36.59 10.06 30.29 82.49 38.66 15.87 34.53 82.43
TextRank(BERT) 34.68 8.78 30.05 81.19 39.43 12.89 34.66 83.39

PacSum 38.58 11.12 33.5 81.78 39.79 14.00 36.09 83.43
FAR 40.92 13.75 35.56 83.74 41.98 16.74 37.58 83.89
C2F-FAR 39.32 11.65 34.28 82.04 40.12 14.79 36.91 83.50

Table 3: Results on arXiv and PubMed test set. BS-F refers to F1 of the BertScore.

Datasets BillSum Gov-Report

λ β Para. Comp. β Para. Comp.

0 3 70 41% 3 120 39%
0.5 4 45 27% 5 74 24%
1 6 27 16% 10 44 14%

1.5 11 15 9% 15 26 9%
2 20 8 5% 20 15 5%

2.5 36 4 2% 36 4 1%

Table 4: Parameters affected by λ on two datasets.
Para. means the average number of blocks with dif-
ferent hyper-parameters λ. Comp. means the ratio of
the number of blocks to the number of sentences. β is
the average number of sentences in a block.

following algorithms are equivalent to acting on
the sentence-level structure.

We also fix λ and show the change of the
ROUGE-1 score while α changes in Fig. 6. We
can see that the second half of the curve is almost
flat. This shows that the low centrality score of the
segmented segment does not contribute to the final
summary quality. The facets contained in these
blocks are not important to the whole document.

We can filter them with α in the coarse-level step
and achieve a faster running speed.

The analysis of the two hyper-parameters proves
that our C2F-FAR framework can employ simple
hyper-parameter settings to improve the running
speed of the algorithm while ensuring the quality
of the summary.

4.2 Facets of Extracted Sentences

Gov-Report BillSum arXiv PubMed

#fac. 11.1 7.0 3.8 3.2
#sen. 20 10 10 7

#sen./#fac. 1.80 1.42 2.63 2.19

Table 5: #fac. refers to the average number of facet-
aware semantic blocks, which contain extracted sen-
tences. #sen. refers to the number of extracted sentences.
#sen./#fac. refers to the average number of sentences
from each block. Extracted sentences are from the Ora-
cle system.

In Tab. 5, we employ the extracted sentences
from the Oracle system to analyze the character-
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Figure 6: Impact of hyper-parameters λ and α.

istics of four datasets. The granularity of the doc-
ument segmentation algorithm is λ = 1. We can
see that selected summary sentences in arXiv and
PubMed datasets distribute in fewer facet-aware
semantic blocks than those in Gov-Report and Bill-
Sum. Our model tends to select summary sentences
from more blocks, thus achieving better perfor-
mance in Gov-Report and BillSum datasets.

By observing the extracted summary sentences
from the Oracle system and combining the results
in Tab. 5, we can roughly get the reason why our
model is not as good as FAR on these datasets:
the contents of the document and the summary is
more concentrated on 3-4 facets of the document.
Besides, the extracted sentences of them are mainly
distribute at the start or end part (introduction and
conclusion) of the document (Dong et al., 2021b).
However, our method is more inclined to select
summary sentences from more blocks and select
many sentences in the middle part of the document.
This leads to our method not performing so well on
these two datasets.

5 Related Work

5.1 Long Document Summarization
Thanks to the development of Transformer-based
(Vaswani et al., 2017) Pre-trained Language Mod-
els (PLMs), such as BERT (Devlin et al., 2019b), re-
cent summarization models (Liu and Lapata, 2019;

Zhang et al., 2019a; Li et al., 2020; Lewis et al.,
2020; Zhong et al., 2020; Liu and Liu, 2021; Liu
et al., 2021b) achieved excellent performance in
short document summarization. However, these
models can not be simply transferred to long docu-
ment summarization due to both salient and noise
content increasing according to the increase of
the input text. How to summarize the long-form
document, including books (Mihalcea and Ceylan,
2007), patents (Sharma et al., 2019), scientific pub-
lications (Qazvinian and Radev, 2008; Cohan et al.,
2018), etc., is an important and long-standing chal-
lenge.

Most recent works for long-form document sum-
marization are supervised and mainly tackle this
problem through two angles. The first angle tends
to design more efficient self-attention mechanisms
to reduce the complexity. (Child et al., 2019; Kitaev
et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020;
Huang et al., 2021; Tay et al., 2021; Dong et al.,
2021a) The other angle employed the condense-
then-generate paradigm (Cohan et al., 2018; Xu
and Durrett, 2019; Zhang et al., 2019b; Lebanoff
et al., 2019; Zhu et al., 2020; Akiyama et al., 2021;
Grail et al., 2021). This paradigm first employs
sentence/discourse-level structure to select salient
sentences and then generates the summary based
on them. This paradigm is intuitive and similar to
the behavior of humans summarizing a long docu-
ment. Our method also borrows some ideas from
it.

5.2 Unsupervised Summarization

Most traditional unsupervised summarization meth-
ods are graph-based and extractive (Radev et al.,
2000; Mihalcea and Tarau, 2004; Radev et al.,
2000; Erkan and Radev, 2004; Wan, 2008). They
represent the document as a graph, where each
sentence is a node with a weighted edge which
is the similarity between nodes. They rank sen-
tences via computing centrality with node degree
or PageRank algorithm (Brin and Page, 1998). Re-
cently, many unsupervised works (Chu and Liu,
2019; Zhou and Rush, 2019; Zheng and Lapata,
2019; Yang et al., 2020; Xu et al., 2020; Liu et al.,
2021a; Dong et al., 2021b; Liang et al., 2021) com-
bined traditional methods with PLMs and achieved
fantastic performance.

Zheng and Lapata (2019) first employed BERT
to enhance similarity measure for graph-based rank-
ing and proposed a directed degree centrality com-
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putation method. Dong et al. (2021b) pointed
out that the previous method is not suitable for
long scientific papers and proposed a hierarchi-
cal discourse-based unsupervised ranking method.
Liang et al. (2021) found that they all ignored the
facet-bias problem (Mao et al., 2020), which is
ubiquitous in unsupervised methods and proposed
a facet-aware ranking method FAR. However, as
the document length increases, they cannot extract
proper sentences which cover vital facets of the doc-
ument, from rapidly increased insignificant facets.

6 Conclusion

In this paper, we focus on unsupervised long doc-
ument summarization tasks, which is a vital and
long-standing challenge in text summarization. To
obtain summary sentences efficiently and effec-
tively, we proposed a novel coarse-to-fine facet-
aware ranking framework. Our method can achieve
new state-of-the-art results on two datasets. Ex-
periments show that our approach is effective and
efficient for the long document summarization task.
In future work, we will investigate how to refactor
this process into an end-to-end paradigm.
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Abstract

Story generation has emerged as an interest-
ing yet challenging NLP task in recent years.
Some existing studies aim at generating flu-
ent and coherent stories from keywords and
outlines; while others attempt to control the
global features of the story, such as emotion,
style and topic. However, these works focus
on coarse-grained control on the story, neglect-
ing control on the details of the story, which
is also crucial for the task. To fill the gap,
this paper proposes a model for fine-grained
control on the story, which allows the gen-
eration of customized stories with characters,
corresponding actions and emotions arbitrar-
ily assigned. Extensive experimental results
on both automatic and human manual eval-
uations show the superiority of our method.
It has strong controllability to generate sto-
ries according to the fine-grained personalized
guidance, unveiling the effectiveness of our
methodology. Our code is available at https:
//github.com/victorup/CHAE.

1 Introduction

Story generation, one of emergent tasks in the field
of natural language generation, requires following
sentences given the beginning of the story. For hu-
man beings, it is believed that storytelling requires
strong logical thinking ability and organizational
competence, and for machines it may be even more
intractable. Nonetheless, works on story generation
can help machines communicate with humans and
drive improvements in natural language processing
(Alabdulkarim et al., 2021).

At present, most works on story generation fo-
cus on the coherence of the story generated ac-
cording to keywords, outlines and commonsense
knowledge (Yao et al., 2019; Guan et al., 2019;
Rashkin et al., 2020; Guan et al., 2020; Ji et al.,
2020). Some other works aim at generating sto-
ries controlled by overall emotion, style, and topic

∗Corresponding author

(Keskar et al., 2019; Xu et al., 2020; Brahman and
Chaturvedi, 2020; Kong et al., 2021). However, in
reality, people often expect more detailed designs
catering to their needs rather than a simple theme or
topic in the generated story. For example, a novel
with more complete elements, i.e., plot, character,
theme, viewpoint, symbol, and setting is usually
preferred to those made up out of thin air.

Taking the control in story generation as the cut-
ting point, GPT-2 (Radford et al., 2019) can fulfill
the story according to the beginning, but the pro-
cess of generation cannot be controlled by people,
resulting in unlogical outputs that lack practical-
ity. CTRL (Keskar et al., 2019) can specify the
generation of articles with different styles through
some style words, but such control stays at the
coarse-grained level, and makes a relatively weak
influence. CoCon (Chan et al., 2020) introduces
natural language to guide text generation. Fang
et al. (2021) propose a new task that guides para-
graph generation through a given sequence of out-
line events. However, the above two studies just
explicitly add some contents to the generated sen-
tences, which is similar to forming sentences with
given phrases, not using the input as a condition
guide for the generative models. SoCP presented by
Xu et al. (2020) can generate stories under change-
able psychological state control, while it does not
govern the detailed contents of the story.

In this paper, we consider more fine-grained
control on story generation, and propose a model,
CHAE for fine-grained controllable story gen-
eration, allowing the generation of stories with
customized CHaracters, and their Actions and
Emotions. Characters are the core of the story.
Their actions drive the story along, and their emo-
tions make the story lively and interesting. Con-
sequently, we take the characters along with their
actions and emotions as the control conditions. It is
a challenge that our model needs to control multiple
characters with their actions and emotions respec-
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tively in a story, especially under the guidance in
the form of natural language. To crack the nut, a
novel input form conducive to fine-grained control
on story generation is introduced into CHAE. Con-
cretely, we use various prompts for fine-grained
control conditions in different aspects. Moreover,
we design different methods for different control
conditions to improve the control effect. Inspired
by multi-task learning, we incorporate a character-
wise emotion loss while training, thus enforcing
the relevance between the characters and their emo-
tions respectively.

The contributions of our work can be summa-
rized as follows:

• We first take the characters with their actions
and emotions of the story into account to con-
duct more fine-grained controllable story gen-
eration.

• We propose a model CHAE with a novel in-
put form that helps the model control the story
in various aspects, and a character-wise emo-
tion loss to relate the characters and the corre-
sponding emotions.

• The results of both automatic and human eval-
uation show that our model has strong control-
lability to generate customized stories.

2 Related Work

Story Generation Story generation has attracted
more and more researchers to explore in recent
years. There are many challenges in the task, such
as context coherence and control. For context co-
herence, some works are devoted to introducing
a series of keywords (Yao et al., 2019), outlines
(Rashkin et al., 2020), or incorporating external
knowledge (Guan et al., 2019, 2020; Ji et al., 2020)
into the story. For style and sentiment control,
Kong et al. (2021) generate stories with specified
style given a leading context. However, it only fo-
cuses on the global attributes of the story. Brahman
and Chaturvedi (2020) work on generating stories
with desired titles and the protagonists’ emotion
arcs, and Xu et al. (2020) generate stories consid-
ering the changes in the psychological state, while
they just control the emotion lines instead of the
detailed contents.

Controllable Text Generation We have wit-
nessed the great performance of SOTA models for
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Figure 1: The architecture of CHAE. The input is the
concatenation of two components, Context and Chae,
which will be further explained in Sec 3. The emotion
labels are used for calculating a character-wise emotion
loss to tie up the characters and their emotions respec-
tively.

text generation these years. Despite the progress
in coherence and rationality of the text generated,
controllability remains to be challenging, which
means generating text with specific attributes, such
as emotion, style, topic, format, etc. CTRL (Keskar
et al., 2019) can control the overall attributes such
as domain, style and topic of the generated text by
adding control codes and prompts. By plugging in
a discriminator, PPLM (Dathathri et al., 2020) can
guide text generation without further training the
language model. CoCon (Chan et al., 2020) fine-
tunes an intermediate block with self-supervised
learning to control high-level attributes i.e., senti-
ment and topic. Compared to the previous works,
our work places the emphasis on more fine-grained,
all-round control on the generating process, includ-
ing the control of characters with their emotions
and actions in the story.

3 Methodology

3.1 Problem Formulation

The process of fine-grained controllable story gen-
eration in this work is defined as follows.

The input of the task has two components. We
refer to the one as Context. Let Context =
(x1, x2, ..., xp) denote the beginning sentence of
the story, which will be the initial Context. The
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Figure 2: The input form of CHAE. The input starts with ⟨s⟩ and ends with ⟨/s⟩, comprising Context and Chae.
The latter is a sequence of k control conditions on the next sentence to be generated, and each condition controls a
character. We show two possible forms of the control conditions after the brace. The special tokens in Chae are
further explained in Table 1.

other component is Chae, a sequence of k fine-
grained control conditions on the next sentence.
Each condition in Chae is the combination of the
nameChari, n actionsActi1, Acti2, ..., Actin, and
emotion Emoi of a character appearing in the next
sentence to be generated, where n is not fixed and i
is the index of the character. Note that we use Italic
Chae to distinguish the special input component
from our model CHAE.

The model predicts one sentence denoted as
Y = (y1, y2, ..., yq) at a time by estimating the con-
ditional probability P (Y |Context, Chae). Here
we embody the idea of auto-regression by adopting
an iterative generation strategy, that is, the sen-
tence generated is then concatenated to Context
for next prediction. Especially, at training time, we
concatenate the gold sentences instead of generated
sentences to Context incrementally like teacher
forcing.

The goal of this task is to generate a story where
each sentence adheres to the input condition Chae
in terms of character, action, and emotion, through
which elevate the quality of generation in a fine-
grained manner.

3.2 Model Architecture

The architecture of our model CHAE is shown
in Figure 1. CHAE is built upon a BART model
(Lewis et al., 2020). As mentioned, our model em-
bodies the idea of auto-regression by adopting an
iterative generation strategy. On the one hand, the
iteratively updated Chae helps control the content
of each sentence at a detailed level of granular-
ity. On the other hand, the strategy ensures that
the model can always see the foregoing. Consid-
ering the incremental Context can be extra long,
we employ BART rather than GPT-2. GPT-2 is an
auto-regressive model fully based on transformer
decoder, while BART has a bidirectional encoder,
which might make it better in understanding and
encoding long input sequences. To confirm the

Special tokens Meaning

⟨SEP ⟩ The start token of a condition.
⟨soc⟩ The start token of a character’s name.
⟨soa⟩ The start token of actions.
⟨soe⟩ The start token of an emotion.
⟨sep⟩ The start token of a single action.
⟨no_action⟩ The token representing no action.

Table 1: The meanings of the special tokens in Chae.

hypothesis, we also compared BART with GPT-2
on the benchmark dataset in Sec 4, and found that
BART outperformed GPT-2 in story generation.

3.3 Generation Based on Fine-Grained
Control Conditions

To generate a story with the characters, their ac-
tions and emotions specified, we need to remind
the BART model of the elements controlled cur-
rently from time to time. Inspired by the practice of
leveraging special tokens for controllable genera-
tion (Fang et al., 2021; Keskar et al., 2019; Tsutsui
and Crandall, 2017), we propose a novel form of
input (titled Chae), which is a sequence of k fine-
grained control conditions on the next sentence to
be generated. Each condition in Chae controls a
character, and each segment in the condition con-
trols an element (i.e., character’s name, action, and
emotion) of the corresponding character. Note that
any number of actions can be assigned in a condi-
tion. The nested sequence form of Chae facilitates
the neat combination of various fine-grained con-
trol conditions.

We design several special tokens and add them
between each segment as the control prompts (see
Figure 2). In this study, 6 special tokens are used to
prompt the model. They are ⟨SEP ⟩, ⟨soc⟩, ⟨soa⟩,
⟨soe⟩, ⟨sep⟩, and ⟨no_action⟩. The meanings of
the tokens are shown in Table 1.

Then, we encode the input Context and Chae
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as henc by the BART encoder:

henc = Enc(ec), (1)

where ec is the embedding of Context and Chae.
The vocab generation probability is calculated by
the BART decoder as:

Pvoc(y) = P (yt|y<t, Context, Chae)
= softmax(W vochdec),

(2)

hdec = Dec(ey<t,henc), (3)

where ey<t is the embeddings of the generated
tokens before timestep t, and W voc is a trainable
parameter.

After fine-tuning with these special tokens, the
model is aware of the elements controlled by each
segment of each condition.

3.4 Improvement in Control Effect
3.4.1 Character and Action Control
For characters and their actions, we expect to see
the characters and their actions in current Chae
appear in the coming sentence. Inspired by the
usage of copy mechanism (See et al., 2017; Deaton
et al., 2019; Prabhu and Kann, 2020) in copying
significant tokens from the input sequences, we
add a copy pointer to BART for the information in
Chae. The attention distribution on Chae denoted
by ã is attained by averaging the multiple heads in
the cross attention block of BART decoder:

ã =

∑h
i=1 ai
h

, (4)

where h is the number of the attention heads, and
ai denotes the attention distribution on Chae from
the i-th attention head.

When generating stories, we first combine the
hidden state of the decoder hdec, the context vector
hcon, and the embedding of the decoder input ey.
Secondly, we calculate a generation probability
pgen, which is a soft switch to choose a word from
the vocabulary according to Pvoc, or to copy a word
from Chae by sampling from the mean attention
distribution ã. The final distribution of a word can
be represented as follows:

P (y) = pgenPvoc(y) + (1− pgen)
∑

j:yj=y

ãj , (5)

pgen = σ(W⊤
p [hdec;hcon; ey]), (6)
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Figure 3: Statistics of emotion categories of sentences
in all stories.

whereW p is a trainable parameter. In this way, the
characters and actions in Chae will be produced
with higher probability, and the output can be flexi-
bly changed according to the different input.

3.4.2 Character-Wise Emotion Control
For characters’ emotions, we additionally incorpo-
rate a character-wise emotion loss, by which the
model is forced to generate sentences with speci-
fied emotions tied up with corresponding charac-
ters. We add k emotion classification heads to the
top of the decoder output layer (Ide and Kawahara,
2021), and k is equivalent to the number of con-
ditions in Chae. It provides direct supervision on
emotion control to predict the emotion of every
character in the story.

However, as shown in Figure 3, the emotion cat-
egories present a long tail distribution. To relieve
the class-imbalance problem, we use a Weighted
Cross-Entropy (WCE) loss between the predicted
emotion distribution Pemo and the emotion labels
le:

LEMO = −αele log(Pemo), (7)

Pemo = softmax(W emohdec), (8)

αe =
N

e ∗ count(le)
, (9)

whereW emo is a trainable parameter, αe denotes
the weights of emotion classification labels. N is
the number of the training samples, e is the number
of emotion categories, and count(·) is a function to
calculate the number of samples in each emotion
category. Now, the model has both explicit control
from emotion in Chae and implicit control from
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the emotion loss to generate sentences with target
emotions.

3.5 Objective Function
We minimize the Negative Log-Likelihood (NLL)
loss of the target story sentence Y with the input
Context and Chae:

LNLL = −
T∑

t=1

logP (yt|y<t, Context, Chae),

(10)
The total loss L is as follow:

L = LNLL + λLEMO, (11)

where λ is a hyper-parameter. After training with
the above two objectives, our model can generate
fluent stories under desired conditions.

4 Experiments

4.1 Dataset
We use ROCStory with labeled characters’ emo-
tions and actions as our dataset (Rashkin et al.,
2018), which contains 14738 five-sentence stories,
including 9885 stories for training, 2483 stories for
validation and 2370 stories for testing. To conform
to the iterative generation, we divide the stories
into 39540 / 9932 / 9480 sentence pairs for train-
ing/validation/testing. Each pair of sentences con-
sists of two adjacent sentences in the story. The
characters with their actions and emotions in the
dataset are labeled by three crowdsourced work-
ers from Amazon Mechanical Turk. The emotions
come from Plutchik psychology theory (Plutchik,
1980), including 8 species, such as “joy”, “anger”,
etc. Most actions represent the character’s under-
lying motivations, and they generally take the in-
finitive such as “to win all games” and “to have
fun”.

In preprocessing, we integrate the annotations
of the three workers, and take the emotions with
the highest confidence as the final labels. However,
we still notice that some emotion labels have exces-
sively low confidence, indicating subtle emotion
tendencies. We modify them to “neutral” to avoid
distortion of the emotions. Moreover, we find that
9885 stories in the training set are not labeled with
emotions, but only with actions. As a remedy, we
fine-tune the model on these 9885 stories to keep
the fluency of the story. Later, we re-divide all the
stories with labeled emotions in the validation set
and testing set into another 3 splits. Finally, we
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characters. The “char1” means that the stories have one
character.

fine-tune the model on the new training set to cap-
ture emotional information. The re-divided dataset
includes 15528 / 1944 / 1940 sentence pairs by
8:1:1 for training/validation/testing.

4.2 Baselines

We compare our model with a carefully selected
set of baselines as shown below.

GPT-2 (Radford et al., 2019): GPT-2 is a
transformer-based model pre-trained on a very
large corpus, which is very commonly used in nat-
ural language generation. A lot of works witness a
good performance of GPT-2 in dialogue, story and
other text generation in recent years, demonstrating
its auto-regression quality.

BART (Lewis et al., 2020): BART is a
transformer-based seq2seq pre-training model with
a bidirectional (BERT-like) encoder and an autore-
gressive (GPT-like) decoder. A lot of text genera-
tion tasks, like neural machine translation and auto-
matic summarization, can achieve effective results
by fine-tuning on BART.

SoCP (Xu et al., 2020): Stories with multi-
characters and multi-psychology generated by
SoCP can change with the emotional lines of as-
signed characters. In addition, SoCP can generate
stories with different emotional intensities. It also
designe a metric to evaluate the accuracy of con-
trolling emotions of roles.

Stylized-Story-Generation (SSG) (Kong et al.,
2021): SSG can generate stories with specified
style given a leading context by first planning the
stylized keywords and then generating the whole
story with the guidance of the keywords. Two story
styles are considered in SSG, including emotion-
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Models PPL ↓ B-1 ↑ B-2 ↑ D-1 ↑ D-2 ↑ ACC ↑

SoCP 101.33 22.93 7.32 0.478 0.650 0.893
SSG 15.22 26.74 10.77 0.573 0.904 -

GPT-2 29.21 21.30 6.35 0.744 0.960 -
BART 14.00 24.15 7.93 0.729 0.964 -

CHAE 11.58 27.10 10.20 0.750 0.971 0.941
w/o copy 11.65 26.53 9.67 0.754 0.972 0.879
w/o emo 11.75 27.51 10.61 0.732 0.965 -

w/o copy w/o emo 11.70 27.19 10.79 0.735 0.967 -

Table 2: Automatic metrics.

Setting B-1 ↑ B-2 ↑ D-1 ↑ D-2 ↑

Greedy 31.08 15.65 0.586 0.797
Beam=2 31.96 15.61 0.595 0.811
Beam=3 32.04 15.89 0.584 0.804
Beam=4 31.86 15.84 0.578 0.801
Beam=5 31.60 15.40 0.576 0.802

Top-k=30, Temperature=0.8 30.86 13.63 0.697 0.939
Top-k=50, Temperature=0.8 30.58 13.64 0.702 0.939
Top-k=30, Temperature=1 29.36 12.00 0.720 0.957
Top-k=50, Temperature=1 29.22 11.94 0.730 0.962

Top-k=30, Temperature=1.2 27.68 10.49 0.745 0.968
Top-k=50, Temperature=1.2 27.10 10.20 0.750 0.971

Table 3: Decoding strategies adjustment.

driven and event-driven stories.

4.3 Implementation Details

We build our model based on BART using the Hug-
gingface’s Transformers library in Pytorch (Wolf
et al., 2019). We initialize our model with the pub-
lic checkpoint of bart-large-cnn 1. The batch size
during training is 8. We use the AdamW optimiza-
tion (Loshchilov and Hutter, 2019) with β1 = 0.9,
β2 = 0.999 and the initial learning rate is 5e − 5.
According to the statistics of characters in the sto-
ries shown in Figure 4, most stories contain two
characters, so we fix the number of characters in
each story k to 2. The hyper-parameter λ defaults
to 1.0.

For all models, We generate stories by using top-
k sampling (Fan et al., 2018) with k = 50 and a
softmax temperature of 0.8.

4.4 Automatic Evaluation

Evaluation Metrics We use the following metrics
for automatic evaluation: (1) Perplexity (PPL):
PPL represents the general quality of the gener-
ated stories, which estimates the probability of sen-
tences according to each word. (2) BLEU (B-n)
(Papineni et al., 2002): We use BLEU to compare
the coverage n-gram in the candidate stories and

1https://huggingface.co/facebook/
bart-large-cnn/tree/main

the reference stories because the words in Chae
usually appear in the reference stories. (3) Distinct
(D-n): (Li et al., 2016): Distinct is used to evaluate
generation diversity by calculating the percentage
of unique n-grams. (4) Accuracy of emotions
(ACC): We use emotion labels to calculate the ac-
curacy of the emotions of generated sentences to
reflect the controllability of emotion.

Results Table 2 shows the automatic evaluation
results. All baseline models are trained on our
dataset ROCStory. Our model achieves the lowest
Perplexity, which reflects the high quality of the
stories generated by CHAE. Besides, the BART-
based models (BART and SSG) are better than the
GPT-2 model. The traditional seq2seq model SoCP
has worse performance. The greater BLEU scores
of CHAE and its varieties imply stories closer to
the golden truth, proving that the introduction of
fine-grained control, mainly by means of the spe-
cial input Chae, is conducive to improving the
quality of the generated stories. As for Distinct,
the pre-trained models show excellent performance
compared with the traditional seq2seq model. Our
model attains the best score, which demonstrates
CHAE’s ability in generating more diverse stories.
We further compare the ACC with SoCP, and our
model gets higher emotion accuracy.

Additionally, we also explore some decoding
strategies including greedy search, beam search,
top-k, and temperature, as shown in Table 3. The
BLEU scores reach the best when we use the beam
size equal to 3, while we get the best Distinct scores
with the top-k equal to 3 and the temperature equal
to 1.2. The BLEU scores decrease with the increase
of beam size. The BLEU scores with top-k are
lower than beam search, but the Distinct scores
are higher. When top-k is fixed, the higher the
temperature, the lower the BLEU and the higher the
Distinct. When the temperature is fixed, the higher
the top-k, the lower the BLEU and the higher the
Distinct.

4.5 Ablation Studies

As shown in Table 2, we also conduct the ablation
studies to verify the effectiveness of the additional
control methods in our model. When we remove
the copy mechanism (w/o copy), the BLEU de-
creases and the Diversity increases, which suggests
that the copy mechanism is beneficial in control-
ling content, but it also affects the diversity at the
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Models Fluency Coherence Informativeness
Win(%) Lose(%) Tie(%) Win(%) Lose(%) Tie(%) Win(%) Lose(%) Tie(%)

CHAE vs. SSG 56.0 30.0 14.0 52.0 30.0 18.0 90.0 6.0 4.0
CHAE vs. BART 40.0 40.0 20.0 38.0 36.0 26.0 46.0 42.0 12.0
CHAE vs. GPT2 38.0 36.0 26.0 40.0 40.0 20.0 72.0 12.0 16.0

Controllability of CHAE 65.0%

Table 4: Human evaluation results. It shows the percentage of win, lose and tie of CHAE compared with other
baselines. The controllability of CHAE indicates the average percentage of sentences in a story that can be controlled
by control condition Chae.

Context Jessica had to go to the city.

SoCP She was very excited to see a new . She was very proud of her friends . She was very happy . She was
happy she was going to get .

GPT-2 She left her friends and their cars behind. They waited outside the station for her. She knew she’d go to a
bar one day. Unfortunately they all stayed away.

BART She told her mom to take a bus. The bus didn’t have enough time to get back to the stations. When she
came back her mother was upset. Jessica was upset that everyone didn’t believe her to go now.

SSG She was leaving the bus at ten o’clock. She saw a traffic light coming up in the distance. But she got in
the way quickly. She was late late to her bus stop so she had to wait.

Chae

1. ⟨SEP ⟩ ⟨soc⟩ Jessica ⟨soa⟩ to learn new things ⟨sep⟩ to see the museums ⟨sep⟩ to learn something
⟨soe⟩ joy
2. ⟨SEP ⟩ ⟨soc⟩ Jessica ⟨soa⟩ to go out to some interesting place ⟨soe⟩ joy
3. ⟨SEP ⟩ ⟨soc⟩ Jessica ⟨soa⟩ to save the artwork ⟨sep⟩ to remember what she had seen ⟨soe⟩ joy
4. ⟨SEP ⟩ ⟨soc⟩ Jessica ⟨soa⟩ to photoshoot ⟨sep⟩ to see the artistic beauty inside the famous museum
⟨soe⟩ joy

CHAE She had always enjoyed going to a museum. However, she could not walk with better to the museum.
She had to remember all her paintings from this one place. Jessica noticed an amazing view that her
camera had of a gallery.

Gold She went to some museums. She really enjoyed the artwork at the MET. She took a lot of photographs.
She was there for hours.

Table 5: Case study of the generated stories by our model and the baselines. The Chae represents the assigned
control conditions including characters, actions and emotions.

same time. In addition, we also observed that the
copy mechanism can help the model to improve the
accuracy of emotions. On the contrary, when we
remove the emotion loss (w/o emo), the BLEU in-
creases and the Diversity decreases, which reflects
that the emotion loss does improve the diversity of
the stories, but sacrifices controllability. Further-
more, we remove both the copy mechanism and the
emotion loss (w/o copy w/o emo), which means
just introducing the conditions Chae to the vanilla
BART. The results are still better than BART, il-
lustrating the benefit brought by the fine-grained
control conditions.

In general, the copy mechanism and the emo-
tion loss complement each other. The results show
that the integrated model (CHAE) can obtain good
scores and relatively balance on BLEU and Di-
versity, and has the best performance on PPL and
ACC.

4.6 Human Evaluation

We conduct a human evaluation to compare CHAE
with baselines on the following three metrics. (1)
Fluency: The fluency of a sentence can reflect the
quality of intra-sentence. (2) Coherence: The co-
herence of the story can reflect the cohesion of
context and the quality of inter-sentence. (3) Infor-
mativeness: The good performance of a story in
terms of informativeness indicates that there are a
variety of rich words in the story. We recruit six
annotators and divided them into two groups to an-
notate 50 stories randomly sampled. Each story is
annotated by three workers to ensure fairness. The
workers have two tasks: one is to compare the re-
sults generated by CHAE and other baselines, and
the other is to score the controllability of CHAE
according to whether the predicted sentences ad-
here to the assigned conditionsChae. The majority
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Context A polite thief was making robberies in the small town.

Chae1 ⟨SEP ⟩ ⟨soc⟩ People ⟨soa⟩ ⟨no_action⟩ ⟨soe⟩ fear ⟨SEP ⟩ ⟨soc⟩ Man ⟨soa⟩ to catch the thief ⟨soe⟩
anger

Result1 One day, a man walked up to him and asked him to stop .
Chae2 ⟨SEP ⟩ ⟨soc⟩ People ⟨soa⟩ ⟨no_action⟩ ⟨soe⟩ fear ⟨SEP ⟩ ⟨soc⟩ Man ⟨soa⟩ ⟨no_action⟩ ⟨soe⟩ joy
Result2 The man who was supposed to stop him was a nice man .
Chae3 ⟨SEP ⟩ ⟨soc⟩ People ⟨soa⟩ ⟨no_action⟩ ⟨soe⟩ fear ⟨SEP ⟩ ⟨soc⟩ Tom ⟨soa⟩ to catch the thief ⟨soe⟩

anger
Result3 Tom decided to investigate and caught the thief .
Chae4 ⟨SEP ⟩ ⟨soc⟩ People ⟨soa⟩ call the police ⟨soe⟩ fear ⟨SEP ⟩ ⟨soc⟩ Tom ⟨soa⟩ call the police

⟨soe⟩ anger
Result4 Tom called the police and they told him to call the police .

Table 6: Case study of controllability.

votes among the annotators will be the final deci-
sions for the first task and we average the scores of
all annotators for the second task. The results are
shown in Table 4. Our model achieves the best per-
formance in each metric compared with baselines
and has 65% controllability.

4.7 Case Study

Comparison Table 5 shows the stories gener-
ated from our model and the baselines. The story
generated by the SoCP model reflects that the re-
sults generated by the models built on the seq2seq
architecture are usually simple, short and less in-
formative. The transformer-based models, such as
GPT-2, BART, and SSG, show strong generative
capabilities, which can generate coherent and in-
formative stories. However, the content of these
stories can not be controlled, and the characters’
emotions and actions in the stories are not obvious.

For our model, we can specify the characters,
actions and emotions in the story that we desired,
and the model can generate stories based on this
information, i.e. Chae. The meaning of the four
Chae is to control the content of the next four sen-
tences respectively. The first sentence reflects that
the character’s action is to go to the “museum”, and
the word “enjoyed” reflects the emotion of “joy”.
The word “remember” and “artwork” in the third
sentence corresponds to “remember” and “paint-
ings” in Chae3. The model is connected to the
“camera” from the “photoshoot” in Chae4, and the
phrase “noticed an amazing view” corresponds to
“to see the artistic beauty”, and the character “Jes-
sica” appears in the sentence. The results show that
our model can generate coherent and informative
stories according to the control information.

Controllability Table 6 shows the examples of
controllability. We use beam search (beam=2) to
generate results instead of top-k, because the top-
k method usually generates diverse words, which
can not ensure controllability. Our model gener-
ates sentences based on the same context and the
given different Chae. The first two examples show
that for the same character “Man”, given the emo-
tion “anger” and “joy”, the model can generate
sentences with corresponding emotions, such as
the phrase “asked him to stop” and “he was a nice
man”. In the third example, we change the char-
acter to “Tom”, and the generated sentence is also
changed from “Man” to “Tom”, and the phrase
“caught the thief” also reflects the action “to catch
the thief”. In the last example we change Tom’s
action to “call the police”, and the resulting change
from “caught the thief” to “called the police”. Also,
we set people’s actions as “call the police” and the
emotion is fear, which results in the expression
“they told him to call the police.” The above re-
flects that our model has a good control effect on
characters, actions and emotions.

5 Conclusion and Future Work

Through our model CHAE, we can create stories
with fine-grained control according to the specified
characters and corresponding actions and emotions,
which is more convenient for practical applications,
such as the creation of script novels, providing
inspiration for screenwriters, and even acting as
screenwriters in the future.

However, our model also has some disadvan-
tages: (1) The dataset contains only stories with
5 sentences, which is not enough for learning to
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generate longer stories. (2) The training of our
model heavily relies on the annotations of charac-
ters, emotions, and actions in the dataset, while it
is very expensive to obtain the annotated data. (3)
The Chae in the dataset actually has some noise,
i.e., some descriptions in Chae are not reflected
in the corresponding sente nces. (4) Our iterative
generation method will result in a long time to train
a story and may cause a cascade problem, which
affects the overall quality of story generation.

In future work, we will adopt datasets with much
more data and longer stories, such as Writing-
Prompts (Fan et al., 2018) and WikiPlots2. In
addition, we will consider using commonsense rea-
soning techniques to reason about the emotions
and actions of the characters in the story before
further generating the story. Regarding the noise
of Chae, we plan to conduct denoising in prepro-
cessing to filter out the samples whose Chae are
inconsistent with the corresponding sentence. The
problem can also be alleviated by dynamically con-
trolling the weight of the conditions. We are also
further exploring more convenient and effective
training methods to generate controllable stories by
inputting control conditions in one go, rather than
iterative generation.
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Abstract

Chinese couplet generation aims to generate
a pair of clauses (usually generating a subse-
quent clause given an antecedent one) with cer-
tain rules (e.g., morphological and syntactical
symmetry) adhered and has long been a chal-
lenging task with cultural background. To gen-
erate high-quality couplet (antecedent) clauses,
it normally requires a model to learn the cor-
respondences between antecedent and subse-
quent clauses under aforementioned rules and
constraint of few characters with their concise
usage. To tackle this task, previous studies nor-
mally directly adopt deep neural networks with-
out explicitly taking into account fine-grained
analysis of the clauses, in this paper, we pro-
pose to enhance Chinese couplet generation by
leveraging syntactic information, i.e., part-of-
speech (POS) tags and word dependencies. In
doing so, we identify word boundaries in the
antecedent clause and then use a special atten-
tion module to encode the syntactic information
over the words for better generating the subse-
quent clause. Experimental results on a dataset
for Chinese couplet generation illustrate the va-
lidity and effectiveness of our approach, which
outperforms strong baselines with respect to
automatic and manual evaluation metrics.1

1 Introduction

A Chinese antithetical couplet is composed of a
pair of two sentences (i.e., an antecedent and a
subsequent clause) with particular meaning that are
usually applied to festivals or certain circumstances,
which can be seen as a special type of poetry with a
history in China of more than one thousand years.2

Couplets are normally concise yet have profound

1Related code and resources are available at https://
github.com/synlp/ChiCoupletGen.

2People started to write paired sentences in Pre-Qin period
over two thousand years ago, such as those ones widely used
in诗经 (Classic of Poetry) around 500 B.C. The first “special-
ized” couplet emerged as recorded in蜀祷杌 (Shu Tao Wu),
which was composed in the Song Dynasty around 964 A.D.

Figure 1: An example of a Chinese couplet pair marked
with word dependencies and English translations.

and expressive ability to convey a variety of mean-
ings, thoughts and emotions with limited number
of characters. Among all interesting characteristics,
the most unique one of couplets is their dueling
pattern that the antecedent and subsequent clauses
should have an one-to-one correspondence adhere
to strict rules covering multiple aspects including
tone, length, word usage and even syntax.

For automatic Chinese couplet generation, recent
studies follow the conventional encoder-decoder
paradigm (Sutskever et al., 2014), with an gen-
eral attention mechanism to capture the corre-
spondence between the antecedent and subsequent
clauses (Zhang et al., 2018; Fan et al., 2019; Gao
et al., 2021). Although satisfactory results are ob-
tained via their approaches, reasonable granularity
matching and explicit structural correspondence
are still worthy of improvement with special treat-
ment. One important reason is that conventional
approaches apply character-level encoding and de-
coding, larger granular text units are omitted in
their models and thus led to the incapability of fur-
ther syntactic analysis. Note that not all words in
ancient Chinese are in the form of single-character,
it is also applied to couplets that identifying bound-
aries of longer text spans is useful for their bet-
ter interpretation, as shown in Figure 1 that the
antecedent and subsequent clauses contains two-
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character words and their boundaries exactly match
between clauses. Similarly, for the structural corre-
spondence, the syntactic rule over the antecedent
clause should be identical to the subsequent one,
where to the best of our knowledge there is no pre-
vious study that focus on modeling couplet genera-
tion from this aspect. The example in Figure 1 also
illustrates the syntactic structures of the clauses,
with same word dependency patterns applied to
them. For example, in the antecedent clause, the
third word “秋风” (wind in autumn) is the nominal
object (nsubj) of the predicate “催” (urge), and in
the subsequent clause, the word “冬雪” (snow in
winter) at the same position is also the nominal
object of the predicate “著” (highlight) (marked
by red arcs). As a result, enhancing Chinese cou-
plet generation is expected to be done by identify-
ing appropriate word boundaries and then building
explicit syntactic correspondences over them3 be-
tween the antecedent and subsequent clauses.

In this paper, we propose an approach to Chi-
nese couplet generation with syntactic information
over the identified words in the clauses, where the
designed model not only provides a better under-
standing for couplets, but also enhances the gen-
eration process with more structural constraints.
Specifically, we firstly learn word boundaries and
then propose a special attention module to encode
part-of-speech (POS) tags and word dependencies
over the identified words in the antecedent clause
and integrate such syntactic information into subse-
quent clause generation. Experimental results on a
dataset for Chinese couplet generation demonstrate
the effectiveness of our approach, which outper-
forms strong baselines on both automatic and man-
ual evaluation metrics. Further analyses confirm
the ability of our approach in generating couplets
with neatness and artistic conception.

2 Preliminaries

Conventionally, Chinese couplet generation is re-
garded as a sequence-to-sequence text generation
task (Fan et al., 2019; Zhang et al., 2018; Gao et al.,
2021; Wang et al., 2021), whose objective is to
generate character ŷt at the time step t with the
given antecedent clause X = x1, · · · , xt, · · · , xn
(there are n characters in X and the t-th charac-
ter is denoted as xt) and the generated subsequent
clause Ŷt−1 = ŷ1, · · · , ŷt−1. The entire generation

3Another key reason that we parse on words instead of char-
acters is that existing parses are normally trained on words.

process is formalized as

ŷt = argmax
yt∈V

p(yt|Ŷt−1,X ) (1)

where p denotes the probability of a character yi in
the vocabulary V given Ŷt−1 and X .

In general, to compute p, an encoder fe is firstly
used to encode the antecedent clause X through

h1, · · · ,ht, · · · ,hn = fe(X ) (2)

where ht is the encoded hidden vector for the char-
acter xt. Then, a decoder fd takes all generated
characters (i.e., Ŷt−1) at time step t, as well as
all hidden vectors obtained from the encoder, and
obtain the output vector ot via

ot = fd(Ŷt−1,h1, · · · ,hn) (3)

Afterwards, ot is mapped to the output space
through a fully connected layer, where a softmax
function is further applied to the resulting vector to
obtain the probability distribution over the vocabu-
lary (i.e., p(yt|Ŷt−1,X ) in Eq. (1)).

3 The Proposed Approach

In order to generate high-quality clauses that satis-
fies the the structure constrains of Chinese couplets,
we propose an approach of neural text generation
model enhanced by leveraging syntactic informa-
tion. Figure 2 illustrates the overall architecture
of our approach for Chinese couplet generation
following the convention sequence-to-sequence
paradigm, where the word boundary learning pro-
cess and a special attention module to leverage syn-
tactic information are presented on the top-left and
top-right parts, respectively. In the following text,
we firstly illustrate the word boundary learning
process and then elaborate the proposed attention
mechanism for syntactic information encoding.

3.1 Word Boundary Learning

Most existing approaches (Zhang et al., 2018; Fan
et al., 2019; Gao et al., 2021) for Chinese cou-
plet generation employ character-based encoding
and decoding. However, consider that text in larger
granularity (e.g., words) tend to deliver intact mean-
ings in many cases, as well as the fact that not all
characters in Chinese couplets should be treated
as single-character words, character-level encoding
has the limitation in losing particular semantic in-
formation and the risk of leading to inferior results
for Chinese couplet generation.

To address this limitation, we propose to enhance
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Figure 2: The overall architecture of our proposed approach for Chinese couplet generation, with an example input
antecedent clause (i.e., the encoder input) and its corresponding subsequent clause (i.e., the decoder input) being
generated at the sixth step on the character “梅”. The process to learn word boundaries is illustrated on the top-left
part; the special attention module used to encode the POS information (POS Info.) and dependency information
(Dep Info.) associated with the current character (i.e., the six-th character “雁”) is illustrated on the top-right part.

Chinese couplet generation with a pre-processing
of learning couplet clauses in different granulari-
ties, i.e., both characters and words, which is per-
formed by identifying word boundaries in the an-
tecedent. Specifically, we firstly segment X into
several words4, where each character xt is assigned
a word boundary label ybt based on the position of
the character in the word5. Then, for each charac-
ter xt, we take its hidden vector ht obtained from
the encoder and feed it into a fully connected layer
with softmax activation function through

pbt = softmax(Wb · ht + bb) (4)

where Wb and bb are trainable matrix and bias
vector in the fully connected layer and pb is the
probability distribution vector over the the word
boundary label set with the value at each dimen-
sion illustrating the probability of character xt hav-
ing the corresponding word boundary label. After-
wards, the model predicts the word boundary label
ŷbt of xt with the highest probability, computes the

4In practice, one can either use an existing Chinese word
segmenter or use human annotations for this step. The advan-
tage of using human annotation allows one to train a model
learning high-quality word boundary information and thus
could lead to better understanding of the couplets.

5For example, one can use the conventional BIES schema
for the word boundary label, where the label of a character
is “B”, “I”, “E” if the character is at the initial, inside, final
position of a word, respectively, and the label “S” stands for
the case if the character is a single-character word.

negative log-likelihood loss by comparing ŷbt with
ybt „ and updates model parameters accordingly.

Through this process, the model learns the word
boundary information from the antecedent clause
(so as the subsequent clause when training)6 and
preserve it in an implicit manner for later processes.

3.2 Attentive Syntactic Information Encoding
Consider that the effectiveness of using syntactic
information to improve neural models on many nat-
ural language understanding (NLU) tasks has been
demonstrated by previous studies (Strubell et al.,
2018; Zhang et al., 2019; Guo et al., 2019; Tian
et al., 2020a; Chen et al., 2020; Wang et al., 2020),
it is straightforward to consider its usefulness for
couplet generation in modeling the syntactic cor-
respondence between antecedent and subsequent
clauses. Therefore in this work, we propose a spe-
cial attention module to leverage it in doing so.

Specifically, in our approach, we focus on two
types of syntactic information, namely, POS tags
and word dependencies, which (silver standard an-
notations) can be obtained from off-the-shelf nat-
ural language processing (NLP) toolkits for the
input antecedent clause X (where the preserved
word boundaries are input to the toolkit in obtain-
ing the syntactic information). For each character

6In our practice, when use the model for inference, we do
not predict the word boundary label in subsequent clauses.
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Figure 3: An example antecedent with its POS tags
and word dependencies obtained from an off-the-shelf
toolkit, where the POS and dependency instances as-
sociated with the second character “恼” (bother) are
presented for better illustrating syntactic instance extrac-
tion. English translation is also provided for reference.

xt, we firstly extracts a set of POS instances (tags)
POSi = {(cPOSt,i , sPOSt,i )|1 ≤ i ≤ ut} and a set

of dependency instancesDepi = {(cdept,i , s
dep
t,i )|1 ≤

i ≤ vt} associated with xt, where each POS and de-
pendency instance is a pair of context feature ctypet,i

and syntactic feature stypet,i (type ∈ {POS, dep}).7
Specifically, for POS instances, we employ a

five-character window8 to extract the context char-
acters (i.e., xt−2 · · ·xt+2) and regard each of them
as the context feature cPOSt,i in a POS instance. For
the corresponding syntactic feature sPOSt,i , we use
the POS label associated with the word that con-
tains cPOSt,i . For example, in Figure 3, for x2 = “恼”
(bother), the associated POS instances are (“最”,
AD), (“恼”, VV), (“秋”, NN), (“风”, NN). For de-
pendency instances, the extraction process is elab-
orated as follows. First, we find the word (denote
it as w) that contains xt and extract all dependents
(denote them as w′1 · · ·w′j · · ·w′l) of w from the
parsed dependency tree. Next, for each w′j , we re-

gard each character in w′j as a context feature cdept,i
and use the dependency connection type betweenw
and w′j as the corresponding syntactic feature sdept,i
for each cdept,i . As a special case, if w has no depen-
dent (outbound connection to other words), we re-
gard all characters in w as context features and use
null as their corresponding syntactic features. For
the example clause in Figure 3, x2=“恼” (bother)
is associated with dependency instances (“最”, ad-

7Herein, ut and vt denote the numbers of POS and depen-
dency instances associated with xt, respectively.

8We use five as the window size because it is a hyper-
parameter setting used in many previous studies to leverage
POS tags and five achieves the optimal results in experiments.

vmod), (“催”, dep), while x1=“最” (most) corre-
sponds to the dependency instance (“最”, null).

Once the POS and dependency instances are ex-
tracted, we use two separate attention parts follow-
ing the same encoding procedure to model them,
respectively, where the syntactic instances in each
type (i.e., either POS or dependency) are dynami-
cally weighed within its own type and distinguished
based on their contribution to couplet generation,
so as to address the noise in the syntactic instances.
Using the encoding of POS instances as an ex-
ample, for each instance (cPOSt,i , sPOSt,i ), we firstly
map the context feature cPOSt,i and the syntactic
feature sPOSt,i to their embeddings, i.e., cPOSt,i and
sPOSt,i , respectively (we use boldface to represent
the embedding of the features). Next, we add
cPOSt,i and sPOSt,i to obtain the instance represen-
tation ePOSt,i = cPOSt,i + sPOSt,i . Then, we compute
the attention aPOSt,i assigned to the instance by

aPOSt,i =
exp(ht · ePOSt,i )

∑ut
i=1exp(ht · ePOSt,i )

(5)

Afterwards, we apply aPOSt,i to ePOSt,i and computes
the weighted sum of different POS instances, where
the hidden vector ht of xt is further added to the
resulting vector to obtain the encoded output vector
oPOSt with POS information through

oPOSt =

ut∑

i=1

aPOSt,i · ePOSt,i + ht (6)

Similarly, we obtain the output vector odept for de-
pendency information following the same proce-
dure. At last, we concatenate oPOSt , odept , and ot
(obtained from the decoder in Eq. (3)) and feed the
resulting vector o′t = oPOSt ⊕ odept ⊕ ot to the last
fully connected layer for final prediction.

4 Experiments

4.1 Dataset
We follow Zhang et al. (2018) and use their ex-
perimental dataset9 with 785K pairs of couplets
crawled from Internet. Since there is no official
train/dev/test split for this dataset, we make our
own for each part and report the statistics of them
in Table 1. In addition, we randomly sampled 1,000
couplets from the training set and manually anno-
tated word segmentation for them,10 where the re-

9https://gitlab.com/feng-7/VV-couplet
10Annotating such a small amount of data does not re-

quire heavy manual work while later experiments confirm
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Dataset Couplet # Char #

Train 755K 7,071K
Dev 10K 94K
Test 20K 186K

Table 1: The statistics of the Chinese couplet dataset
with respect to the number of couplet pairs and charac-
ters in the training, development, and test sets.

sulted dataset is used for our alternative training
process with labeled word boundary information.

4.2 Implementation Details

Since our approach requires syntactic information
as extra input features, for each input antecedent,
we obtain the POS tags via TwASP11 (Tian et al.,
2020b) and the word dependencies via DMPar12

(Tian et al., 2022).13 For the encoder, consider-
ing that pre-trained language models have demon-
strated their effectiveness in obtaining high-quality
text representations for many NLP tasks (Yang
et al., 2019; Diao et al., 2020; Raffel et al., 2019;
Sun et al., 2020; Song et al., 2021), in the experi-
ments, we use the pre-trained Chinese BERT-base
(Devlin et al., 2019) following the default settings
(i.e., 12 layers of self-attention with 768 dimen-
sional hidden vectors). For the decoder, we use
the standard Transformer setting with 6 layers of
self-attention and 768 dimensional hidden vectors.

In training, we design an alternatively training
strategy, where we firstly train the model with both
losses on word boundary information and couplet
generation on the 1,000 human annotated instances,
and then train the model on the rest entire training
set without considering word boundary loss since
word segmentation for such data is provided by
automatic tools. So that in each iteration the model
can be enhanced by gold-standard word bound-
ary information from few training instances. For
other hyper-parameters, we try the combinations
illustrated in Table 2 and use the ones (which are
highlighted by boldface) that achieve the best per-
formance on the development set. Following previ-
ous studies, we use BLEU (Papineni et al., 2002)
and format accuracy for model evaluation).

it is enough to help our model in better generating couplets.
11https://github.com/SVAIGBA/TwASP
12https://github.com/synlp/DMPar
13TwASP is a joint model for Chinese word segmentation

and POS tagging. So we use it to obtain the word segmentation
result for each couplet and feed it to dependency parsing.

Hyper-parameters Values

Learning Rate 1e−5, 5e−5, 1e−4, 1e−3

Dropout Rate 0.1, 0.2, 0.3, 0.4
Batch Size 8, 16, 32

Table 2: The hyper-parameters tested in tuning our mod-
els. Bold values illustrate the best hyper-parameter con-
figuration that is applied in our experiments.

4.3 Overall Performance
Table 3 reports the experimental results from sev-
eral BERT-based baselines and our proposed model
enhanced by word boundaries and syntactic infor-
mation (i.e., POS tags and word dependencies),
respectively. Specifically, “BERT” denotes the
vanilla BERT baseline model, “+WB”, “+POS”,
and “+Dep” refer to the enhancement of the base-
line with word boundaries, POS information, and
dependency information, respectively, with “+Full”
denoting the full model combines all the aforemen-
tioned information. There are several observations
that are explained in the following paragraphs.

First, overall, although the baselines with dif-
ferent settings have already achieved outstanding
performance, it is promising to observe that our
model with all enhancements (i.e., “+Full”) is able
to outperform them with respect to all evaluation
metrics, which confirms the usefulness of leverag-
ing different information for couplet generation.

Second, comparing “+WB” and “BERT”, we
observe that “+WB” presents higher performance
than “BERT” on all evaluation metrics (especially
on BLEU-3 and BLEU-4 scores), which demon-
strates the effectiveness of our word boundary
learning process to leverage word boundary in-
formation in improving couplet generation. The
interpretation is as follows. Although word bound-
ary information is leveraged in an implicit way,
it is encoded and the loss back-propagated to the
encoder helps the model understand the semantic
units in different granularities in the antecedent
clause, then the generation process is enhanced
accordingly with such information.

Third, models with a single type of syntactic in-
formation (i.e., “+POS” and “+Dep”) outperform
the baseline model with respect to all evaluation
metrics, showing their effectiveness in guiding the
model to generate better couplets. Furthermore,
it is observed that the model with word depen-
dencies (“+Dep”) outperforms the the one with
POS tags (“+POS”) on BLEU-2, BLEU-3, and
BLEU-4. This observation indicates that word de-
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 FA Para. # Speed

BERT 20.53 13.09 9.88 7.62 98.64 156M 49.6
+ WB 20.99 13.21 10.01 7.87 98.70 156M 48.7
+ POS 21.34 13.63 10.23 8.50 98.98 189M 45.9
+ Dep 21.39 13.82 10.36 8.77 99.01 189M 46.4
+ Full 21.62 13.95 10.68 8.94 99.10 221M 42.1

Table 3: The BLEU scores and format accuracy (FA) of different models on the test set. “BERT” denotes the
baseline model with BERT encoder; “+WB”, “+POS”, and “+Dep” refer to the baseline model with enhancement
of word boundaries, POS tags, and dependency information, respectively; “+Full” is our proposed model with
enhancement of all aforementioned information. “Para. #” presents the number of parameters in different models;
“Speed” refers to the number of generated couplets per second in inference.

Model BL-1 BL-2 BL-3 BL-4 FA

BERT 20.53 13.09 9.88 7.62 98.64

+WB 20.99 13.21 10.01 7.87 98.70
+Word 17.98 9.63 6.05 4.21 90.01

Table 4: Comparison between two different BERT-based
approach to leverage word boundary information with-
out using syntactic information. “+WB” denotes the
approach with the proposed word boundary learning
process; “+Word” refer to the approach that encodes
and decodes the couplets on word level. The results of
the BERT baseline is also reported for reference. “BL”
is the abbreviation of “BLEU”.

pendencies provide stronger enhancement to cou-
plet generation than that of POS tags, which could
be explained by that the dependency information
contains long distance constraints over the entire
couplet clause while a POS tag only presents the
function of the corresponding local words.

5 Analysis

5.1 The Effect of Word Boundaries

To analyze the effect of our model design by lever-
aging word boundary information in an implicit
way, we run experiments with another straight-
forward approach (which is denoted as “+Word”),
where the couplets are segmented into words and
the couplet generation process is performed on the
word-level prediction. Table 4 reports the perfor-
mance of “+Word” model, as well as our “+WB”
model and the BERT baseline. It is observed that
“+Word” shows inferior results compared with our
“+WB” model and the BERT baseline, which con-
firms the superiority of the designed learning pro-
cess.14 This observation can be explained by that
the “+Word” approach generates word-by-word

14We still use character-based BLEU in this experiment to
evaluate the generated clause for all models.

Model Syntax
Intgrt. BL-1 BL-2 BL-3 BL-4 FA

+POS
Ours 21.34 13.63 10.23 8.50 98.98
Alter. 21.26 13.01 9.89 8.29 98.60

+Dep
Ours 21.39 13.82 10.36 8.77 99.01
Alter. 21.24 13.57 10.14 8.01 98.91

+Full
Ours 21.62 13.95 10.68 8.94 99.10
Alter. 21.42 13.67 10.20 8.15 98.82

Table 5: Comparison of model performance between
different methods to integrate syntactic information in
different settings. “Ours” denotes our approach to inte-
grate POS or dependency information, where the hidden
vector ht is added to the weighted sum of syntactic in-
stances (see Eq. (6)), whereas “Alter.” refers to the
method where ht is not used in the integration.

subsequent clauses, the vocabulary size for it is
relatively larger than that of “+WB”, which per-
forms the generation in a character-by-character
manner. The generation process of “+Word” is
thus inevitably bothered by the out-of-vocabulary
problem where at many decoding steps the model
cannot find appropriate word candidates.

5.2 The Effect of Syntactic Information

Similar to the analysis for word boundaries, there
are also alternatives to integrate syntactic heuristics
into our model, where our approach also use an im-
plicit way by adding the hidden vector ht obtained
from the encoder to the weighted sum of syntactic
information (see Eq. (6)). In this investigation, we
run another model without using ht, which means
only the output of the attention module is applied
for syntactic information integration. This compar-
ison illustrates how syntactic information affects
model performance, where the results are presented
in Table 5. Clearly, the alternative method shows
inferior results compared to our approach with re-
spect to all metrics. The reason for this observation
complies with our hypothesis that although directly
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Model Syn. Sem. All

BERT 0.784 0.636 1.420
+WB 0.805 0.659 1.464
+POS 0.818 0.679 1.497
+Dep 0.809 0.665 1.474
+Full 0.830 0.728 1.558

Table 6: Human evaluation for different models. “Syn.”
and “Sem.” are syntactic and semantic scores, respec-
tively, and “All” refers to the sum of them.

using the syntactic information shows its advantage
over the BERT baseline (see Table 3), the decoding
process still relies mainly on the contextual infor-
mation from the encoder. Therefore, only using the
syntactic information from the attention module
in a standalone way may not be enough to drive a
better couplet generation process.

5.3 Human Evaluation
Following the convention in previous studies (Jiang
and Zhou, 2008; He et al., 2012; Zhang et al., 2018;
Fan et al., 2019; Gao et al., 2021; Wang et al.,
2021), we perform human evaluation for differ-
ent models in addition to BLEU scores and for-
mat accuracy. Particularly, we use “syntactic” and
“semantic” satisfaction to assess how antecedent
and subsequent clauses are matched in terms of
their patterns15 and meanings16, respectively. In
doing so, human annotators are given an antecedent
clause and a subsequent clause generated by a
model and they are asked to assign 0-1 score to
the generated subsequent for both criteria (“0’‘ for
not satisfying, “1” for satisfying).

We randomly select 50 couplets from the test
set for human evaluation and employ five human
experts who are familiar with Chinese couplets
to conduct human evaluation with a blind review
manner. In detail, they are provided with the sub-
sequent clauses generated by different models (i.e.,
all baselines and the “+Full” model) and they do
not know the model that generates the given subse-
quent clause. The results from five experts on the
aforementioned two aspects (i.e., syntactic satisfac-
tion and semantic satisfaction) are averaged and
presented in Table 6. Similar to the observations
from Table 3, word boundaries and syntactic infor-
mation show their advantages in helping couplet

15There is a special assessment about the ending tone of the
two clauses, where the tones of the last character in antecedent
and subsequent clauses should be opposed to each other.

16Ideally, the meaning of the subsequent clause should be
relevant to the antecedent clause but not the same.

Figure 4: Comparison of subsequent clause generated
from different models for an example input antecedent
clause with its POS tags and word dependencies makred
(presented at the top). Original subsequent clause (Hu-
man) written by human is also presented at the bottom.
Translations for every clause in the verbatim manner
are provided for reference. Characters belonging to
the same word are bounded by dash boxes, where mis-
matched patterns is marked in red boxes.

generation with more satisfying results from hu-
mans. Particularly, compared with automatic evalu-
ations (i.e., BLEU scores and format accuracy), hu-
man judgements for different models shows a more
significant trend that the proposed components are
useful especially when they are integrated together
in our proposed approach.

5.4 Case Study

To further investigate the effect of our approach,
we conduct a case study to qualitatively illustrate
the performance of different models with their gen-
erated subsequent clauses for a given input. Figure
4 illustrates the results. For the given antecedent,
there are five generated clauses from all baselines
and our proposed model (i.e., “BERT+Full”), as
well as the original subsequent clause composed
by human for reference, where all clauses are seg-
mented (in dashed boxes) in order to explicitly
show word boundaries. It is clearly presented that,
the BERT baseline (i.e., “BERT”) fails to produce
a subsequent clause with correct word mappings
to the antecedent one, e.g., the word boundary
of “藏/金” (bury the gold) does not match that
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Figure 5: Six example pairs of Chinese couplets with their subsequent clauses generated by our proposed model
(i.e., “BERT+Full”) corresponding to the input antecedent clauses. The English translations are also provided for
each clause for all couplets based on the semantics of each entire sentence instead of the verbatim manner.

of “定价” (a fixed price). All rest clauses gener-
ated from the models enhanced by word bound-
aries or syntactic information do not suffer from
such mis-matching problem, where the one from
“BERT+Full” is indisputably better than the others
and the reason can be explained in three aspects.

First, the pattern in the subsequent clause is iden-
tical to that of the antecedent clause, including
that the tones of the last character in both clauses
satisfy the rule mentioned in the previous section
(see footnote 15), such as “风” (flat tone) v.s. “价”
(oblique tone). Second, each unit in the subsequent
clause shows a direct correspondence with the unit
at the same position in the antecedent clause, e.g.,
“字句” (word and sentence) v.s. “文章” (article),
“无” (not) v.s. “有” (has), “高风” (noble spirit) v.s.
“定价” (fixed price), etc. Third, the meaning of
the entire subsequent clause makes a counterpoint
to the antecedent one with semantic relatedness,
i.e., the subsequent clause refers to that the words
and sentences always have noble spirit while the
antecedent clause states that the articles are price-
less since ancient times. As comparisons, although
other generated clauses have their advantages in
delivering either more interesting meaning or better
artistic conceptions, they are not well performed
on pattern matching or semantic relatedness.

To have more intuitive understanding about the
performance of our proposed model, we also show
in Figure 5 six randomly selected pairs of couplets
with generated subsequent clauses. It is clearly
to observe from all couplet pairs that the gener-

ated clauses match the antecedent inputs well on
their patterns (on all aspects) and also keep the bal-
ance of expressing good artistic conception while
being strictly corresponded to the meaning of the
antecedent clauses, such as “温馨” (warmth) v.s.
“寒苦” (cold and bitterness), “明月” (the bright
moon) v.s. “青山” (the green mountains), which
are all neat correspondences and promote the over-
all effect (including both meaning and artistic con-
ception) of the entire couplet pairs to a higher level.

6 Related Work

Chinese couplet generation is an intriguing natu-
ral language generation task, which is relevant to
poem generation (Greene et al., 2010; Zhang and
Lapata, 2014; Wang et al., 2016; Yang et al., 2018b;
Zhang et al., 2017; Yi et al., 2017; Ghazvininejad
et al., 2017; Yi et al., 2018; Yang et al., 2018a; Li
et al., 2018; Liu et al., 2018, 2019; Liao et al., 2019;
Bena and Kalita, 2020). Yet, couplet generation
differs from that for poem in the way that it re-
quires the generation process sticking to more strict
patterns and semantic requirements, while they
are similar that they all conventionally performed
as a sequence-to-sequence text generation task,
including statistic-based approaches (Jiang and
Zhou, 2008; Zhang and Sun, 2009; He et al., 2012)
and neural approaches following the encoding-
decoding paradigm (Zhang et al., 2018; Fan et al.,
2019; Gao et al., 2021). To improve model perfor-
mance, previous neural approaches try to model
the character-character correspondence between
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antecedent and subsequent clauses, where some
advanced approaches such as attention mechanism
(Zhang et al., 2018) and character embedding pre-
training (Gao et al., 2021) are applied. Compared
with existing studies, our approach offers an alter-
native and explicit way to model the correspon-
dence between couplet clauses through syntactic
information, which provides useful knowledge to
control patternized generation and is integrated into
our approach via a carefully designed module.

7 Conclusion

In this paper, we proposed a neural approach fol-
lowing the encoder-decoder paradigm for Chinese
couplet generation enhanced by of syntactic infor-
mation (i.e., POS tags and word dependencies).
Specifically, our approach models word boundaries
to facilitate the learning of syntactic information,
where POS tags and word dependencies are lever-
aged to provide pattern guidance for couplet gen-
eration through a special attention module. Ex-
perimental results on a prevously used dataset for
Chinese couplet generation illustrate the effective-
ness of our approach, which outperforms strong
baselines on both automatic and human evalua-
tions. Further analyses also confirm the ability of
our approach to generating high quality couplets.
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Abstract

Labeling large amounts of extractive summa-
rization data is often prohibitive expensive due
to time, financial, and expertise constraints,
which poses great challenges to incorporat-
ing summarization system in practical applica-
tions. This limitation can be overcome by semi-
supervised approaches: consistency-training
and pseudo-labeling to make full use of un-
labeled data. Researches on the two, how-
ever, are conducted independently, and very
few works try to connect them. In this paper,
we first use the noise-injected consistency train-
ing paradigm to regularize model predictions.
Subsequently, we propose a novel entropy-
constrained pseudo labeling strategy to obtain
high-confidence labels from unlabeled predic-
tions, which can obtain high-confidence labels
from unlabeled predictions by comparing the
entropy of supervised and unsupervised predic-
tions. By combining consistency training and
pseudo-labeling, this framework enforce a low-
density separation between classes, which de-
cently improves the performance of supervised
learning over an insufficient labeled extractive
summarization dataset.

1 Introduction

Text summarization is a challenging task that gen-
erates a condensed version of an input text that
captures the original’s core meaning. In this pa-
per, we focus on extractive summarization since it
usually generates semantically and grammatically
correct sentences (Liu and Lapata, 2019; Zhong
et al., 2019a; Zhou et al., 2020; Zhong et al., 2020).
The extractive summarization typically requires
to label each sentence in massive documents for
model training. However, acquiring well-annotated
labels is a costly process, and labeling every sen-
tence would be labor-intensive and error-prone due
to subjective judgments of human. This motivates

† These two authors contributed equally.
∗ Jianxin Li is the corresponding author.

research on Semi-Supervised Learning (SSL) meth-
ods which focus on how to effectively utilizes abun-
dant unlabeled data, to further improve extractive
summarization performances.

Towards this goal, we first revisit an effective
semi-supervised method, consistency training (Xie
et al., 2020a). The consistency training leverages
voluminous unlabeled data and employs advanced
data augmentation methods to generate diverse and
realistic noisy source text, forcing the model to
be consistent with these noises. The consistency
training has been extensively applied on the classi-
fication problems, such as Text Classification (Xie
et al., 2020a; Liu et al., 2021a), Image Recogni-
tion (Laine and Aila, 2017; Tarvainen and Valpola,
2017; Miyato et al., 2019; Verma et al., 2019; Xie
et al., 2020b). However, how does the consistency
training work on semi-supervised extractive sum-
marization tasks is still unclear.

We investigate the noise-injected consistency
training for semi-supervised extractive summariza-
tion to encourage a consistent reason of model de-
cision (summary and non-summary) under data
perturbation. This framework makes sense intu-
itively because a good supervised model should be
robust to any slight change in an input example.
Namely, encouraging local change by injecting a
slight noise in a diverse perturbation manner can
improve the summarization effectiveness.

Nevertheless, the consistency regularized semi-
supervised framework usually suffers from insuf-
ficient supervision. When labeled data is limited,
the model is easy to over-fitting. Extensive unla-
beled data will then make the model suffer from the
gradual drift problem and impede further improve-
ments of the model. To address this problem, we
develop new methods of selection and exploitation
for pseudo labels to explore all unlabeled samples
for the semi-supervised summarization cycle.

Prior pseudo labeling work (Lee et al., 2013;
Sohn et al., 2020; Rizve et al., 2021) mainly fo-
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Figure 1: (a) Prediction probability distributions of the same sample in different epochs before and after convergence.
(b)The average entropy changing curve of labeled and unlabeled samples before convergence during training.

cuses on the confidence of the predictions to pick
up the class used as if they are accurate labels.
However, the summarization task exposes poten-
tial problems with this approach. The confidence
of the prediction results is hard to change signifi-
cantly along with model convergence (e.g., using
the BERT-based model). As shown in the second
sub-figure in Fig. 1(a), almost all prediction prob-
ability of sentences has achieved an undifferen-
tiated score between 0.12 to 0.16 in the conver-
gence epoch, which means almost all sentences are
mapped into a small area for classification. There-
fore, it is challenging to set a fixed threshold to
determine a proper confidence score, and it is easy
to produce low-quality pseudo labels. We divert
attention to entropy − a metric for measuring un-
certainty, to address this problem. As is shown in
Fig 1(b), the prediction entropy of supervised and
unsupervised data are comparable, which enables
us to constrain the unsupervised entropy with super-
vised entropy without any external threshold value.
We introduce entropy-constrained pseudo labeling
to avoid fixed threshold adoption, which ensures
the entropy of prediction results of unlabeled data
adjust that of labeled samples adaptively.

The final framework is CPSUM1, which com-
bines the Noise-injected Consistency training with
the Entropy-constrained Pseudo labeling for Semi-
supervised Extractive SUMmarization. Experimen-
tal results demonstrate that our approach achieves
the state-of-the-art in low-resource scenarios with
10, 100, and 1000 labeled examples on the target
corpus. The main contributions of our method are:

• To the best of our knowledge, this is the first
work to explore the feasibility of consistency-
training and pseudo-labeling for semi-supervised

1Code and data available at: https://github.com/
OpenSUM/CPSUM.

extractive summarization tasks.
• Proposing a novel threshold-free approach se-

lecting reliable pseudo-labels with the average
entropy comparison, which is well-adapted to
extractive summarization tasks.

• Extensive evaluations demonstrate that consis-
tency training and pseudo-labeling with unsu-
pervised corpus could greatly improve the per-
formance of the text summarization model on a
limited dataset.

2 Related Work

2.1 Extractive Summarization
Extractive summarization selects the most repre-
sentative sentences within a document and subse-
quently splices them into the final summary. Ap-
proaches for it are constantly updated. With clas-
sical networks, RNN-based (Nallapati et al., 2017;
Zhou et al., 2018), Transformer-based (Zhong et al.,
2019b; Liu et al., 2021b) are adopted. Pre-trained
summarization models have achieved great success,
such as the notable BERTSUMEXT (Liu and Lapata,
2019; Liu, 2019) which is the first work to use the
BERT (Devlin et al., 2019) for extractive summa-
rization. However, current extractive summariza-
tion models still heavily rely on many parallel data
to achieve salient performance. Little work has fo-
cused on low-resourced settings where handcrafted
labels for sentences are limited or even unavail-
able. To fill this gap, in this work, we introduce a
novel semi-supervised framework to alleviate the
dependence on labeled summaries.

2.2 Consistency Regularization
In recent work, consistency regularization meth-
ods for semi-supervised learning (Bachman et al.,
2014) have been shown to work well on many clas-
sification tasks (Xie et al., 2020a; Liu et al., 2021a).
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Their work can match and even outperform purely
supervised learning that uses affluent labeled data.

The consistency training methods regularize
model predictions invariant to noise applied to un-
labeled examples. Tarvainen and Valpola (2017)
prove that a model trained with noisy labeled data
learns to give consistent predictions around labeled
data points. Additionally, advanced data augmenta-
tion methods (Xie et al., 2020a) can improve con-
sistency training performance effectively.

2.3 Pseudo-labeling

Pseudo-labeling (Lee et al., 2013) is an efficient
semi-supervised learning method by generating
pseudo-labels to expand labeled data. For selecting
reliable pseudo-labels, FixMatch (Sohn et al., 2020)
creates a selection criterion based on the confidence
threshold. After that, considering poor network
calibration, UPS (Rizve et al., 2021) introduces
model uncertainty criterion based on prediction re-
sult confidence. U2PL (Wang et al., 2022) does the
opposite and fully considers the value of some unre-
liable pseudo-labels. However, the performance of
pseudo-labels on the extractive summarization task
remains to be evaluated, and the methods above are
not suitable for this task directly.

3 Proposed Framework

The overview illustration of our framework is
shown in Fig. 2. It is composed of two components:
noise-injected consistency training and entropy-
constrained pseudo labeling. Specific to extrac-
tive summarization, we use the base version of
BERT (Devlin et al., 2019) to implement our mod-
els in all experiments. We give detail description
of two components in Sec.3.1 and Sec.3.2.

3.1 Noise-injected Consistency Training

The consistent regularization of semi-supervised
learning leverages unlabeled data, employs data
augmentation methods to inject noisy data, and
enforces the summarization model by encouraging
consistent predictions.
Data Augmentation. The unlabeled noise exam-
ples, specifically those produced by advanced data
augmentation methods, have been proved to be cru-
cial for consistency training (Xie et al., 2020a). Our
augmentation method refers to Jiao et al. (2020).
We replace single-piece words (Wu et al., 2019) by
predictions of the BERT masked language model
and retrieve the most similar words as word replace-

ments for multiple-pieces words by using the word
embedding in GLOVE (Pennington et al., 2014).
Consistency Training. The robust summarization
model should also be invariant for documents with
similar content. Hence, we leverage consistency
learning to regularize model predictions to be in-
variant to slight noise applied to input examples.

The inputs of the framework are labeled texts
x, unlabeled texts x

′
, and noise injected unlabeled

texts x
′′
. We use y∗ to denote the gold summaries

of labeled texts. Then we use fθ to represent the
distributions of model predictions, where θ refers
to the model’s parameters. Firstly, we feed the
labeled text x into the model to get the predictions
and calculate the supervised loss:

Ll =
1

|Xl|
∑

x∈Xl
l(y∗, fθ(y|x)), (1)

where Xl is a set containing |Xl| labeled data x.
We then generate a noised version x

′′
of the unla-

beled text x
′

using the aforementioned data aug-
mentation method. Both unlabeled texts and noised
unlabeled texts are fed to the summarization model,
and then we get the output distribution of original
unlabeled data fθ̃(y

′ |x′
) and the additional noised

version of augmented unlabeled data fθ(y
′′ |x′′

).
We then calculate the unsupervised loss between
unlabeled texts and augmented unlabeled texts:

Lu=
1

|Xu|
∑

(x′,x′′)∈Xu
l(fθ̃(y

′ |x′
), fθ(y

′′ |x′′
)), (2)

where Xu is a set of pairs containing |Xu| unla-
beled data x′ and the corresponding augmented
data x′′, and θ̃ is just a copy of the current param-
eters θ indicating that the back-propagation of the
gradient is truncated. We use KL divergence loss
to perform consistency training.

Finally, we combine supervised cross-entropy
loss and supervised consistency loss, and train the
model by minimizing the combined loss: Lf =
Ll + w(t)Lu, where w(t) is the ramp-up weight
balancing supervised and unsupervised learning.

3.2 Entropy-constrained Pseudo Labeling
Generally, the prediction results with the highest
predicted probability of unlabeled data could be
adopted as pseudo labels. However, low-quality
pseudo labels may harm model training.

To overcome this problem, we introduce a
method named entropy-constrained pseudo label-
ing to select reliable pseudo labels. We argue that if
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Figure 2: Illustration of CPSUM with Noise-injected Consistency Training and Entropy-constrained Pseudo
Labeling for Exactive Summarization. In the figure, θ refers to the parameters of the model, and θ̃ means it is just a
copy of θ and the gradient will not propagate through it. ŷ and ŷ′ refer to the logits by the softmax of labeled and
unlabeled samples, respectively,H is the symbol for entropy, and Z is the normalization factor.

the entropy of the predicted result of unlabeled data
is smaller than that of labeled data used at the cur-
rent training step, then the low noisy pseudo labels
generated by unlabeled data should be reserved.
Pseudo-label Selection. Either soft pseudo-labels
selection (Soft PlS) or hard pseudo-labels selection
(Hard PlS) can be adopted. We denote logit and
logit′ as the outputs of labeled and unlabeled data
after the sigmoid operation by the model.

For soft pseudo labels, they are equivalent to
the logit of unlabeled data, namely ysoft = logit′.
Hard pseudo labels are essentially the binary vec-
tors mapping soft pseudo labels to ‘0-1’ space. Sup-
pose that a document has K sentences which will
be tagged with K labels. C represents the number
of summary sentences. Then, hard pseudo labels
can be defined as: yhard = fope(ysoft) ⊆ {0, 1}K ,
where fope is the mapping operation converting the
top-C probability of ysoft to ‘1’ and the remaining
to ‘0’.
Adaptive Entropy Constraint. Unlike text classi-
fication problems focusing on the highest probabil-
ity (Kim, 2014), extractive summarizations must
consider the multiple highest probabilities. This
situation makes the selection criteria based on the
confidence threshold hard to work.

Intuitively, pseudo labels with smaller entropy
contribute more to the training process (Grandvalet
and Bengio, 2004). We can leverage the entropy

of labeled data to constrain that of unlabeled data,
thus adapting the unlabeled data to model training.
The noise introduced by low-confidence pseudo
labels will be avoided through the entropy con-
straint, which further ensures the performance of
the pseudo-labeling method. Besides, the adap-
tive constraint is more available due to eliminating
manual settings.

To be specific, at training step t, assuming that
labeled data x and unlabeled data x′ are adopted,
their respective outputs after the sigmoid operation
by the model are logit and logit′(namely y and y′),
ŷ and ŷ′ are labeled and unlabeled logits after the
softmax operation. We denote K as the number
of sentences in a document, then the labeled en-
tropy H(ŷ) and the unlabeled entropy H(ŷ′) can
be calculated as follows:

H(ŷ) =
K∑

k=1

ŷk log(ŷk),

H(ŷ′) =

K∑

k=1

ŷ′k log(ŷ
′
k),

(3)

where k-th element of ŷ and ŷ′ can be denoted as:

ŷk =
elogitk

∑K
k=1(e

logitk)
,

ŷ
′
k =

elogit
′
k

∑K
k=1(e

logit′k)
.

(4)
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Then, the final selection constraint would be:

sel(y′) =

{
1, H(ŷ′) < Z · H(ŷ),
0, otherwise,

(5)

where sel(y′) = 1 means that y′ is selected as a
pseudo label and 0 otherwise. Z is the normal-
ization factor and Z = dimx′/dimx, aimed at
alleviating the error propagation caused by incon-
sistent output vectors dimensions. dimŷ′ and dimŷ

denote the dimensions of ŷ′ and ŷ respectively.
Ramp-up Pseudo-labels Exploitation. Although
the reliability of entropy-constrainted pseudo-
labels has been improved, the downside is that
noises in them still exist, especially early in train-
ing. To mitigate this issue, we set a linearly in-
creasing probability pt in each epoch to select the
filtered pseudo labels again:

pt = min(1,
t

τepoch
), (6)

where t is the current epoch, and pt denotes that the
pseudo labels filtered in epoch t will be selected
with probability pt. τepoch is a hyper-parameter,
which can be set according to the labeled data size.

For the way of adding pseudo labels to the la-
beled dataset, we draw on the idea of early stop-
ping (Prechelt, 1996). As shown in the Algorithm 1
(lines 15-21), if ROUGE evaluated on the validation
set for three consecutive rounds is in a downward
trend, all filtered pseudo labels will be added to
the labeled dataset. This procedure can effectively
prevent the over-fitting phenomenon caused by re-
peated training of limited labeled data.

4 Experimental Setup

4.1 Datasets

We conduct experiments on the following two
datasets: (1) CNN/DailyMail (Hermann et al.,
2015) includes news articles and correspond-
ing extractive highlights. We use the standard
splits (Hermann et al., 2015) for validation and
testing. (2) BBC XSum (Narayan et al., 2018)
provides a high level of abstraction. It has one-
sentence summaries and is more abstractive than
the CNN/DailyMail dataset. We obtain both la-
beled and unlabeled data from the entire dataset.
Specifically, we divide parts of the original dataset
into labeled data. For the rest, we delete the labels
and treat them as unlabeled data.

Algorithm 1 Training Procedure for Consistency
Learning and Pseudo Labeling

Input: (x, y∗): the labeled data pair.
x′ and x′′: the unlabeled data and its aug-
mented data.
R: the ratio of unlabeled and labeled data in
each training step.
steptotal: the total training step.
val−interval: the cycle of validation.

1: t← 0; psd← []; val← []; pt ← 0
2: while t < steptotal do
3: y is the output of x after sigmoid by the

model
4: ŷ ← Eq. 4,H(ŷ)← Eq. 3
5: for r ← 1 to R do
6: y′ is the output of x′ after sigmoid by the

model
7: ŷ′ ← Eq. 4,H(ŷ′)← Eq. 3
8: Z ← dimŷ′/dimŷ

9: ifH(ŷ′) < Z · H(ŷ) then
10: Append (x′, y′) to psd according to pt
11: end if
12: end for
13: Ll ← Eq. 1; Lu ← Eq. 2; pt ← Eq. 6
14: L ← Ll + ω(t)Lu, update the model
15: if t % val−interval is 0 then
16: Append ROUGE of validation sets to val
17: end if
18: if the last three values of val monotonically

decrease then
19: Merge pse to the labeled dataset
20: Stop pseudo-labels exploitation
21: end if
22: t← t+ 1
23: end while

4.2 Baselines and Evaluation Metrics

We focus on leveraging BERTSUMEXT (Liu and La-
pata, 2019; Liu, 2019) for summarization 2. To ver-
ify the effectiveness of our semi-supervised learn-
ing method in low-resource scenarios, we com-
pare our method with the BERTSUMEXT of super-
vised learning. We also release the rule-based base-
lines — LEAD-3 on the CNN/DailyMail dataset
and LEAD-1 on the BBC XSum dataset(excluding

2BERTSUMEXT is the variant of BERT, which builds sev-
eral summarization-specific layers stacked on top of the BERT
outputs including Simple Classifier, Transformer, and RNN.
Our experiments mainly adopt BERT with the plainest Simple
Classifier layer due to insignificant performance differences
among the three layers.
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Method Labeled
Data

CNN/Daliy Mail
ROUGE-1 ROUGE-2 ROUGE-L

P R F1 P R F1 P R F1

ORACLE 43.63 58.77 48.35 23.88 31.77 26.28 40.30 54.13 44.61
LEAD-3 34.50 51.94 40.04 14.81 22.44 17.21 31.16 46.86 36.14

Supervised (BERT) 10 31.47 41.92 34.42 11.84 15.65 12.89 28.29 37.61 30.91
100 34.60 49.93 39.35 14.80 21.37 16.81 31.25 45.03 35.51
1000 35.06 52.30 40.38 15.33 22.93 17.70 31.75 47.32 36.69

10 31.53 42.44 34.62 11.45 15.58 13.09 28.28 38.06 31.10
100 34.77 52.04 40.22 15.02 22.56 17.37 31.42 46.96 36.32CPSUM w. Soft PlS 1000 35.17 53.23 40.93 15.48 23.49 18.01 31.85 48.14 37.04

10 31.69 42.78 34.94 11.63 15.78 13.26 28.58 38.33 31.37
100 34.92 52.57 40.52 15.23 22.98 17.67 31.56 47.45 36.60CPSUM w. Hard PlS
1000 35.21 53.26 41.02 15.51 23.53 18.08 31.89 48.16 37.10

Method Labeled
Data

BBC XSum
ROUGE-1 ROUGE-2 ROUGE-L

P R F1 P R F1 P R F1

ORACLE 31.37 30.51 29.57 9.74 9.07 8.86 22.96 22.07 21.47
LEAD-1 17.12 16.69 16.32 1.68 1.66 1.60 12.59 12.24 11.96

Supervised (BERT) 10 18.21 15.92 16.13 2.17 1.86 1.90 13.68 11.81 12.01
100 18.06 16.49 16.43 2.20 1.90 1.93 13.84 11.85 12.14
1000 18.23 17.55 16.94 2.28 2.24 2.14 13.52 12.82 12.44

10 18.27 15.98 16.23 2.21 1.95 1.95 13.70 11.82 12.04
100 18.75 16.54 16.82 2.29 2.02 2.04 13.96 12.10 12.35CPSUM w. Soft PlS
1000 18.95 17.35 17.22 2.38 2.22 2.17 14.05 12.77 12.71

10 18.29 15.98 16.25 2.21 1.96 1.95 13.68 11.83 12.05
100 18.79 16.57 16.93 2.31 2.05 2.08 14.00 12.15 12.40CPSUM w. Hard PlS
1000 18.97 17.41 17.29 2.39 2.26 2.18 14.09 12.76 12.73

Table 1: Low-resource performance of ROUGE results on CNN/DailyMail and BBC XSum dataset. The best
results for each group on all target corpora with 10, 100, and 1000 labeled examples are in-bold.

the one-line summary (Narayan et al., 2018)). The
ground truth labels, which we call ORACLE, are
extracted using the greedy approach. We use
10/100/1000 labeled data for supervised learning,
and evaluate the summarization performance by
ROUGE (Lin, 2004) in this paper, where R-1, R-2,
and R-L are variants used to measure the overlap
of unigrams, bigrams, and longest common subse-
quences between system and reference summaries.

4.3 Implementation Details

During training on the CNN/DailyMail dataset,
the documents are truncated to 512 tokens, and
the summaries are limited to 128 tokens. These
two numbers are 512 and 64 for the BBC XSum
dataset. Generally, semi-supervised learning per-
forms a larger data size on unlabeled data than la-
beled data to fully use large quantities of unlabeled
data. Therefore, we feed 1 batch of labeled data
and 4 batches of unlabeled data into the framework
in each training step, which is found to perform ef-
fectively by implementing the different proportions
of labeled and unlabeled data. We use a batch size

of 4 for labeled and unlabeled data.
We set τepoch to 30/15/5 epochs for training

10/100/1000 labeled data. All models are trained
for 500/5000/20000 steps with 10/100/1000 labeled
data on 3 Tesla V100 GPUs. The learning rate
starts at 2e-3 and decay every 1000 steps. We also
perform a linear warmup method to increase the
learning rate smoothly from 0 to 2e-3 during 2000
steps at the beginning of training.

5 Experimental Results

5.1 Results on Dataset with long Summaries

The upper part of Table 1 shows the results on the
CNN/DailyMail dataset. As shown, the model’s
performance improves as more labeled data be-
comes available. In the case where the data size is
1000, our method CPSUM achieves a +0.89 point
improvement in R-1 and a +0.90 point improve-
ment in R-L, compared with the traditional rule-
based LEAD-3 on the CNN/DailyMail dataset.

Compared with the supervised baseline, CPSUM
performs salient in all data sizes. The improve-
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Table 2: Ablation study on the effectiveness enhancement with ROUGE (F1) from different components based
on CNN/DailyMail and BBC XSum dataset of 100 labeled data with hard pseudo labels, including supervised
learning, consistency regularization (CR), all pseudo labels (PlS [all]), and filtered pseudo labels (PlS [filtered]).

Components Datasets
CNN/Daily Mail XSum

Supervised CR PlS [all] PlS [filtered] ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

✓ 39.35 16.81 35.51 16.43 1.93 12.14
✓ ✓ 39.62 16.94 35.79 16.52 1.96 12.04
✓ ✓ ✓ 39.39 16.68 35.40 16.15 1.90 12.00
✓ ✓ ✓ 40.52 17.67 36.60 16.93 2.08 12.40

Table 3: The number of pseudo labels w/o or w. ([all] or
[filtered]) entropy-constrained filtering and the epochs
to start appending pseudo labels for training.

CNN/Daily Mail

Labeled Data PlS [all] PlS [filtered] Epoch

10 960 9600% 248 2480% 24
100 9600 9600% 248 2480% 24
1000 28000 2800% 4675 467.5% 7

BBC XSum

Labeled Data PlS [all] PlS [filtered] Epoch

10 1200 12000% 288 2880% 30
100 12000 12000% 4043 4043% 30
1000 44000 4400% 11737 1173.7% 11

ments are most evident in the case of 100 labeled
data with hard pseudo labels, where R-1/R-2/R-L
increase +1.17/+0.86/+1.09 points compared with
the supervised ones, far exceeding the baseline per-
formance. These results all indicate the effective-
ness of CPSUM in low-resource scenarios.

Moreover, soft or hard PlS also affects perfor-
mance differently. We take 100 labeled data as
an example. Although when soft labels are se-
lected, CPSUM has obtained a +0.87 point im-
provement in R-1 compared with supervised learn-
ing, the adoption of hard pseudo labels still allows
R-1 to continue to increase a +0.30 point upon soft
pseudo labels. The results occur probably because
soft labels are more ambiguous and have less in-
formation for extractive summarization than hard
labels, so the use of hard pseudo labels will result
in better performance than soft labels.

5.2 Results on Dataset with Short Summaries

We also conduct experiments to verify if CPSUM
would be equally effective on the abstractive BBC
XSum dataset, as shown in the lower part of Table 1.
Identically, CPSUM outperforms supervised learn-
ing in all data sizes. For the better-performing hard
pseudo labels, when labeled data sizes are 100 and

1000, CPSUM achieves remarkable performance.
When there are only 10 labels, the performances of
soft and hard PIS are indifferent, but they are bet-
ter than the supervised method and LEAD-1. The
results on XSum represent that CPSUM is also
effective in generating extractive summaries.

5.3 Analysis and Discussion

The Size of Selected Pseudo Labels. Table 3
shows the number of pseudo labels and the epochs
to start adding pseudo labels with different labeled
data sizes. In the case where labeled data sizes are
10 and 100, the numbers of filtered pseudo labels
are much larger than that of labeled data.

Nevertheless, when the labeled data size is 1000,
the filtered pseudo labels increase by only 467% rel-
ative to labeled data on the CNN/DailyMail dataset,
which means the demand for pseudo data can be
relatively reduced in the case of training on 1000
labeled data. The condition occurs because when
the labeled data size is large, the speed of conver-
gence is faster compared with a smaller labeled
data size, according to the epoch determined by the
pseudo label exploitation strategy (shown in the
last column of Table 3).
Various Components Study. This study aims to
verify the effectiveness enhancement of different
components, including supervised learning, consis-
tency regularization, all pseudo labels, and filtered
pseudo labels in Table 2 . All the ablations are
conducted with 100 labeled data in both datasets.

We take the CNN/DailyMail dataset as an exam-
ple for analysis. The purely supervised learning is
treated as the baseline, which achieves R-1/R-2/R-
L of 39.35/16.81/35.51. After adding the consis-
tency regularization method, R-1/R-2/R-L slightly
have increased by +0.27/+0.13/+0.28 points. This
means that although consistent learning will im-
prove supervised learning, there are still factors
that limit its performance, possibly the disadvanta-
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Figure 3: The first 1000 steps change curve of ROUGE (F1) metrics on the CNN/DailyMail dataset of 100
labeled data. All the experiments are validated every 50 steps. Before adding pseudo labels, the performance of
consistency learning achieves the best at step 500(epoch 20), and subsequently, three consecutive validation results
monotonically decrease, so we add pseudo labels at step 650. In all three metrics line charts, the red lines and
skyblue lines rise after step 650 due to the addition of pseudo labels.

Table 4: Ramp-up hyper-parameters τepoch explo-
ration based on the CNN/DailyMail dataset of 100
labeled data with hard pseudo labels.

τepoch PlS size ROUGE-1 ROUGE-2 ROUGE-L

10 4273 40.46 17.63 36.54
12 4072 40.47 17.64 36.55
15 3514 40.52 17.67 36.60
18 3698 40.47 17.64 36.55
20 3514 40.46 17.60 36.53
22 3316 40.41 17.55 36.46

geous noise of the augmented data.
Further, we compare two programs of select-

ing pseudo labels for labeled samples exploita-
tion. First, all the pseudo labels are selected with-
out filtering (in the 3-rd row), which obtains a
slight improvement in R-1 but declines in R-2/R-L
due to plenty of unreliable pseudo labels. The fi-
nal method, which combines all our contributions,
including consistency regularization and filtered
pseudo labels (in the 4-th row), achieves superior
results with +1.17/+0.86/+1.09 improvements in R-
1/R-2/R-L, compared with the supervised baseline.

Fig. 3 shows the changing trend of ROUGE of all
the ablations in the validation set during the first
1000 steps. As shown by the curve correspond-
ing to the pseudo-labeling method, our frameworks
with pseudo labels can sufficiently alleviate the
overfitting caused by few-sample data. Addition-
ally, Compared with not filtering reliable pseudo
labels, the entropy-constrained method enables the
model to improve upon the baseline effectively.
Ramp-up hyper-parameters Exploration. Our
entropy-constrained pseudo labeling method intro-
duces a hyper-parameter τepoch in the procedure of
the ramp-up pseudo-labels exploitation. We tweak
the hyper-parameter in a rational range and select

it based on the CNN/DailyMail dataset with 100
labeled data. As shown in Fig. 4, results show that
when τepoch is 15, CPSUM performs best. We find
that in the supervised learning with 100 labeled
data, CPSUM achieves the best in the 20-th epoch
on the validation set. This indicates that in the case
where the hyper-parameter τepoch is slightly smaller
than the optimal training epoch, the performance
will be the best. If τepoch is too tiny, the pseudo
label data increase but become noisier. If τepoch is
too large, the pseudo label data will decrease, and
then high-quality pseudo labels will also decrease.

6 Conclusions

In this paper, we present a new perspective on ef-
fectively using consistency training and pseudo
labeling to improve low resource extractive sum-
marization over an insufficiently labeled dataset.
With substituting simple noise injection operations
with advanced data augmentation and constraining
pseudo label selection with average entropy, our
method brings substantial improvements compared
with the supervised learning frameworks. Since our
proposed model is orthogonal to the methods that
using pre-trained models, we believe our model
can be further boosted by taking other salient pre-
trained models to initialize the text representations.
Additionally, although we use ramp-up exploita-
tion to control the adverse entropy effect brought
by the early model, incorrect prediction cannot be
avoided. An impeccable minimum entropy regular-
ization method can be exploited in the future.
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Abstract

Question generation is the task of automatically
generating questions based on given context
and answers, and there are problems that the
types of questions and answers do not match.
In minority languages such as Tibetan, since
the grammar rules are complex and the training
data is small, the related research on question
generation is still in its infancy. To solve the
above problems, this paper constructs a ques-
tion type classifier and a question generator. We
perform fine-grained division of question types
and integrate grammatical knowledge into ques-
tion type classifiers to improve the accuracy
of question types. Then, the types predicted
by the question type classifier are fed into the
question generator. Our model improves the
accuracy of interrogative words in generated
questions, and the BLEU-4 on SQuAD reaches
17.52, the BLEU-4 on HotpotQA reaches 19.31,
the BLEU-4 on TibetanQA reaches 25.58.

1 Introduction

Question generation is an essential research direc-
tion in natural language generation, which aims
to generate a grammatical question based on the
given paragraph and answer, and the question can
be answered by the given answer. Recently, ques-
tion generation has received extensive attention in
academia and industry. It can automatically gen-
erate training data for question answering systems
(Du and Cardie, 2018) and reading comprehension
tasks (Heilman and Smith, 2010). It can also sim-
ulate user questions in the field of education (Du
et al., 2017), and guide the machine to ask ques-
tions actively in the field of dialogue (Shum et al.,
2018), and strengthen human-computer interaction
(Mostafazadeh et al., 2016).

In recent years, the research on question gener-
ation has achieved great success, but we analyze
the questions generated by an advanced answer-
aware s2s model (Zhao et al., 2018) and find that
some question types and answers did not match.

Paragraph
..., To ensure a space, in 1947, ABC
submitted five applications for television
station licenses, ...

Answer 1947

Gold
in what year did abc submit licenses for 5
television stations ?

Generated
what is the name of the space that was used
to ensure a space on television station ?

Table 1: English question generation example.

As shown in Table 1, the question type of the gold
question is to ask questions about time and use "in
what year", but the interrogative word of generated
question is "what".

To solve the problem, some studies have pro-
posed to use answer information to improve the
interrogative words accuracy of generated ques-
tions (Sun et al., 2018; Zhou et al., 2019b; Kang
et al., 2019). However, they did not consider the
structural and grammatical features of the answers.
Some studies classify question types according to
the category of interrogative words, and use the first
word of the question as the question type. However,
we analyze the SQuAD (Rajpurkar et al., 2016) and
find that the first word of question is not always
an interrogative word, and there is a mismatch be-
tween interrogative words and question types. For
example, "in what year" is a question about time,
but using the classification of interrogative word
will classify it into "what" category. Therefore, us-
ing interrogative words to classify questions will
also introduce wrong information.

To solve above problems, this paper constructs
a question type classifier based on a pre-trained
language model and a question generator. We inte-
grate the grammatical knowledge of question into
the question type classifier, and classify the type
according to the inquiry object of the question, we
apply this method to English and Tibetan. The
grammatical features of Tibetan are different from
those of English, for example, interrogative words
in English often appear at the beginning of the ques-
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tions, but in Tibetan, they will appear in multiple
positions of questions, and Tibetan interrogative
words have ambiguity.

Tibetan is a phonetic writing script, which be-
longs to the consonant character type. It is di-
vided into two parts: consonants and vowels. The
grammatical rules in Tibetan are relatively com-
plex, but there are clear organizational forms and
verb changes. Tibetan is composed of syllables,
a syllable containing one or up to seven charac-
ters (Nuo et al., 2015; Liu et al., 2011), and syl-
lables are separated by an intersyllable marker
" ", which is a simple superscripted dot, for ex-
ample, (What is Tashi’s
major?).

In this paper, we conduct experiments on English
and Tibetan datasets respectively, the experimental
results show that the BLEU-4 on SQuAD is 17.52,
which is 1.21 higher than the experimental result
of Zhou et al (Zhou et al., 2019b). BLEU-4 on
HotpotQA is 19.31, which is 3.9 higher than the
result of Xie et al (Xie et al., 2020). BLEU-2 on
TibetanQA is 35.07, which is 9.73 highter than the
result of Sun et al (Sun et al., 2021a). The main
contributions of this paper are as follows.

(1) Since the classification of questions based
on interrogative words will introduce errors, this
paper proposes a fine-grained classification method
to classify questions according to the object of the
question and the lexical features of the answer to
guide question generation.

(2) In low-resource languages such as Tibetan,
considering the complexity of Tibetan grammar
rules and the training data is small, this paper pro-
poses to integrate interrogative grammatical rules
to improve the accuracy of question types, and to
improve the performance of question generation.

2 Related Work

Question generation mainly adopts two methods,
rule-based and neural network-based. The method
based on rules and templates is to define some
heuristic rules on the syntax tree to convert a sen-
tence into a question (Heilman and Smith, 2010;
Mazidi and Nielsen, 2014; Labutov et al., 2015),
but the generated questions have limited diversity
and poor portability. With the emergence of large-
scale and high-quality machine reading compre-
hension datasets, such as SQuAD (Rajpurkar et al.,
2016), MARCO (Nguyen et al., 2016), HotpotQA
(Yang et al., 2018) and TriviaQA (Joshi et al.,

2017), neural network-based question generation
has made great progress.

Existing works are mainly based on seq2seq
architecture with attention mechanism and copy
mechanism (Du et al., 2017; Zhao et al., 2018;
Zhou et al., 2017). To generate answer-related
questions, the methods of using the answer posi-
tion as input or encoding the answer are proposed
(Zhou et al., 2017; Song et al., 2018a; Kim et al.,
2019). Song et al. (Song et al., 2018b) propose to
use a multi-view matching method to calculate the
similarity between the answer representation and
the hidden layer of the paragraph in three ways, and
finally the BLEU-4 of this method reaches 13.98
on SQuAD. Wang et al. (Wang et al., 2020a) intro-
duce a novel hidden answer pivot module to model
the hidden answer information to generate ques-
tions. Li et al. (Li et al., 2019) jointly model un-
structured sentence and structured answer-relevant
relation to generate questions. Murakhovs’ ka et
al. (Murakhovs’ ka et al., 2021) train a unified
QG model and generate different cognitive levels
questions by controlling the answer type. To solve
the two problems, the mismatch between the gen-
erated question words and answers, and the words
copied by the model are far from and irrelevant
to the answer. Sun et al. (Sun et al., 2018) pro-
pose an answer-focused and position-aware neural
question generation model. The final experimen-
tal result BLEU-4 reaches 15.64 on SQuAD. To
address the challenge of long text on question gen-
eration model based on seq2seq, Tuan et al. (Tuan
et al., 2020) propose to encode context informa-
tion in the long text so that model can obtain more
information to improve the performance of ques-
tion generation. Zhao et al. (Zhao et al., 2018)
propose a paragraph-level question generation with
maxout pointer and gated self-attention, which can
effectively utilize paragraph-level context and out-
perform sentence-level context performance, and
finally achieve BLEU-4 of 16.38 on SQuAD. To
improve the answerability of the question and the
relevance of the original text, Xie et al. (Xie et al.,
2020) design three different reward discriminators
to calculate reward scores and feed them back to
the question generator to improve the fluency, rel-
evance and answerability of generated questions,
and finally BLEU-4 reach 15.43 on the HotpotQA
(Yang et al., 2018). The above methods improve
the relevance between the generated question and
the answer, but there is a problem that the generated
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Figure 1: The overall architecture of our model. The question type classifier is used to classify passages and answers
to obtain the question types, and then the types are fed into the question generator.

question type and the answer type do not match. To
solve the problems, Ma et al. (Ma et al., 2020) pro-
pose to integrate sentence-level semantic matching
and answer position inference. Zhou et al. (Zhou
et al., 2019b) propose a unified model to predict the
question type and to generate question. Wang et
al. (Wang et al., 2020b) propose use answer-aware
initialization module to introduce document and an-
swer to decoder, and design a semantic-rich fusion
attention to support decoder. The finally BLEU-
4 reach 17.54 on HotpotQA. The above research
are applications of question generation on English,
there are few related research on Tibetan. Sun et al.
(Sun et al., 2021a) construct a Tibetan reading com-
prehension dataset named TibetanQA, and propose
a Tibetan question generation model based on a
seq2seq. By introducing an attention mechanism to
capture the key semantic information related to the
answer and generate an answer-aware question. We
follow the method and analyze the generated ques-
tions, and find that the accuracy of interrogative
words in Tibetan is only 26.03%, which seriously
hinders the research on Tibetan question genera-
tion. Our method of integrating Tibetan grammar
knowledge can significantly improve accuracy of
interrogative words in Tibetan question generation.

3 Model Description

The model architecture of this paper is shown in
Figure 1. The question type classifier is used to pre-
dict the type of target question, and the prediction
will be integrated into question generator to guide

question generation.

3.1 Fine-grained Question Type Classifier

Different types of questions have different gram-
mar rules, and choosing an accurate interrogative
word according to the type of question is the key
to generating high-quality questions. To obtain a
more accurate question type, this paper divides the
datasets according to the objects asked by the ques-
tion. We use 9 categories to express the question
patterns, such as "what" to refer to facts, "who" to
refer to people, "how" to refer to methods, "when"
to refer to time, "which" to refer to choice, and
"where" to refer to a place, "why" to refer to rea-
son, "whether" to refer to general questions and
"others" to refer to others.

This paper constructs question type classifier
based on BERT (Devlin et al., 2018), and fine-tune
BERT with 9 categories data to obtain a classifier.
BERT takes a sequence of less than 512 tokens as
input and outputs a representation of that sequence.
The first token of sequence is always [CLS], which
is originally designed for classification tasks, and
the other special token [SEP ] is used to separate
segments. For a given passage P and answer A,
the input sequence X as Equation (1).

X = ([CLS], P, [SEP ], A, [SEP ]) (1)

In the embedding, we integrate the lexical fea-
tures of part-of-speech tagging of the answers. The
final input embeddingEf = [Et;Es;Ep;Etag;El],
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where Et is token embedding which contains pas-
sage and answer, Es is segment embedding, Ep is
position embedding,Etag is answer tag embedding,
and El is the embedding of lexical features. The
final V[CLS] contains the special categorical embed-
ding, this paper takes V[CLS] as the representation
of the sequence, which learns how to represent con-
text and answer information. We add a linear and
softmax on top of BERT to predict the probability
of question type. The model parameters are shown
in Table 2.

Parameters Values
epoch 10

batch_size 64
pad_size 512

hidden_size 768
learning_rate 5e-5

Table 2: Parameters of question type classifier.

3.2 Question Type Classifier with
Grammatical Knowledge

Fine-grained question generation is based on pre-
trained language models. Currently, various pub-
lic multi-language pre-training models such as
mBERT (Pires et al., 2019), XLM-RoBERTa (Con-
neau et al., 2019) and T5 (Raffel et al., 2020) don’t
contain low-resource languages such as Tibetan.
Sun et al. (Sun et al., 2022) construct a Tibetan
pre-trained language model named TiBERT. We
construct a Tibetan question type classifier based
on TiBERT.

Tibetan questions have complex grammatical
rules. Different from the situation that English in-
terrogative words often appear at the beginning of
sentences, Tibetan interrogative words will appear
in various positions of the sentence, and they have
ambiguity problems. We will introduce that in de-
tail in section 4. Since Tibetan has the above char-
acteristics, it is difficult to get a correct question
type. Thus, this paper integrates Tibetan grammati-
cal knowledges in the question type classifier.

3.3 Question Generator
We follow the Tibetan question generation model
based on the Sequence to Sequence Model pro-
posed by Sun et al (Sun et al., 2021a). In the en-
coder, this paper fuses the output of the question
type classifier and the paragraph as the input of the
model, and uses a bidirectional LSTM to encode it.

ht = LSTM(ht−1, [Pt, At, Ct]) (2)

H = [
−→
ht ,
←−
ht ]

M

t=1 (3)

where
−→
ht and

←−
ht represent left-to-right and right-

to-left encodings, Ct is the question type predicted
by the question type classifier based on paragraph
P and answer A, and H is the vector representa-
tion encoded by BiLSTM, and then use the self-
attention mechanism to process the encoded infor-
mation. The self-attention mechanism allows the
model to dynamically assign weights to different
information, and finally obtain an answer-aware
contextual representation.

The decoder uses an LSTM with an attention
mechanism and a copy mechanism. At time step t,
the decoder outputs

yt = LSTM(ht−1, yt−1) (4)

where ht−1 is the hidden state at time t − 1, yt−1
is the previously output at time t− 1, and then the
model uses the output of the decoder and the con-
textual representation of the encoder to calculate
the attention to obtain the generation probability
and copy probability of the word. The probabil-
ity determines whether the final word is generated
from the vocabulary or copied from the context.
The model is trained to minimize the negative log-
likelihood of the target sequence. The model pa-
rameters are shown in Table 3.

4 Influence of Grammar Knowledge on
Tibetan Question Generation

4.1 Influence of Interrogative Word
Ambiguity

Interrogative words in English will only appear
in question in most cases, but there are no fixed
interrogative words in Tibetan. The same words
may appear as interrogative words or appear as case
particles or nouns, therefore, word ambiguity will
occur. This paper analyzes interrogative words in
Tibetan as follows.

Parameters Values
param size 41,025,835

epoch 20 in English / 60 in Tibetan
embedding_size 300

hidden_size 300
learning_rate 0.1

dropout 0.3
max_len 400 in English / 1000 in Tibetan

Table 3: Parameters of question generation.
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(1) There are no interrogative words indicating
“which” and "where" in Tibetan, they usually ap-

pear as " " or " ", which means “which” or
“where” Therefore, the two categories of “which”
and “where” are combined into the same category
in the Tibetan dataset. However, in addition to
appearing as an interrogative word, the " " also
appears in the sentence with other meanings. For
example, " (Which
hospital is she going to go to in the full month?)"
The syllable " " appears in this sentence, but it

is means “full”, the " " in the sentence is the
interrogative word, which means “which”.

(2)" " means "who" in Tibetan, but the syllable
" " also appear in a sentence in the form of a
case particle, when the syllable " " appears as
a case particle, the last character of the syllable
before the " " is " ", which is " " after removing
the root letter, therefore, we use this rule to judge
whether " " appears in the form of interrogative
words. For example, "
(Who did the Nagarjuna Bodhisattva become a
monk with?)", the interrogative word is " ",
which means “whose”, and indicates “own-
ership”, the character " " appears before the
syllable " ", so" " is a case particle. How-
ever, this situation still exists. For example,

"
(Which Buddha was born when the life span
of people in Nanjiaobu continent was reduced
from infinity to 40,000 years?)", here " " is
interrogative word, which means "who", but the
syllable " " appears in the grammatical form of
case particle, because the words in front of the
" " is a complete word " (Buddha)", and
it happens that the last syllable of the words is
" ". In this case, we will give priority to analyzing
interrogative words other than " " , and analyze
them in combination with the position of the
interrogative words.

4.2 Influence of Tibetan Interrogative Words
Position

Interrogative words in English questions usually
appear at the beginning of the sentence, it’s syntax
is fixed and the training data is large, the model
can learn relevant grammar rules and interrogative
word position information. But for low-resource
languages such as Tibetan, the training data is small
and the grammatical rules are complex, so it is
difficult for the model to learn relevant knowledge.
Therefore, this paper assists the model learning by
adding additional grammar knowledge.

This paper analyzes the positions of interroga-
tive words in Tibetan questions as shown in Table 4.

Type Tibetan question words Example sentences

Which/Where
(Which are your book?)

(Where are you?)

What (What is Tashi’s major?)

Who (Who are you?)

How
(How to prepare for this meeting?)

When
(When will you go back to your hometown?)

Why
(Why did the teacher say that?)

Table 4: Position analysis of Tibetan interrogative words.

6461



(Where is Wucai Lake located?)
ng / ng / kg / ng / up / ng / rw /kl /ve /xp
E0 / E0 / Ec / E0 / E0 / E0 / Eq / Ec / E0 / E0

Table 5: An interrogative word position template.

Tibetan interrogatives of "which" and "what" are
usually located before modal particles and after
verbs. The interrogative words of "who", between
the subject and object, not only act as interrogative
elements, but also act as predicate elements. The
interrogative words of "how" is located between
the adverbial and the predicate, with the adverbial
in the front and the predicate in the back. The
interrogative words of "when" and "why" are usu-
ally located before the predicate and after the pro-
noun or case particle. For the interrogative words
of "where", it is located between subject and ob-
ject, and it also act as predicate. In general, dif-
ferent interrogative words appear in different posi-
tions. Therefore, this paper adds lexical features
and use rules hard-coded to encode the grammatical
knowledge to the Tibetan question type classifier
to improve the classification accuracy. A interroga-
tive word position template is as shown in Table 5,
where Eq represents the position of interrogative
word and Ec represents the position of the case
particle.

5 Experiment

5.1 Dataset

We conduct experiments on English dataset
SQuAD (Rajpurkar et al., 2016), HotpotQA (Yang
et al., 2018) and Tibetan dataset TibetanQA (Sun
et al., 2021b). SQuAD is the first large-scale read-
ing comprehension dataset containing natural ques-
tions. The articles come from Wikipedia and the
dataset is constructed by crowdsourcing to ensure
the diversity of questions. HotpotQA contains
113,000 Wikipedia-based question-answer pairs,
the answers to the questions are based on multi-
ple supporting documents, and the dataset provides
sentence-level supporting fact. TibetanQA contains
1,513 articles and 20,000 question-answer pairs.
The articles in the dataset are from yunzang web-
site 1, covering 12 topics such as nature, culture,
and education.

This paper counts the distribution of question
types in the three datasets, as shown in Table 6.

1https://www.yongzin.com/

According to the composition of different datasets,
this paper divides SQuAD and TibetanQA into 8
categories. The HotpotQA are divided into 9 cate-
gories. From Table 6, we can know the distribution
of different categories is very uneven, so it is diffi-
cult to predict the correct question type.

5.2 Automatic Evaluation
This paper uses BLEU-1, BLEU-2, BLEU-3,
BLEU-4 (Papineni et al., 2002) and ROUGE-L
(Lin, 2004) to evaluate the performance of the ques-
tion generation model.

5.3 Experimental Results of Question
Generation

We use the question type classifier to classify para-
graphs and answers to predict question types, the
accuracy of SQuAD is 63.98%, the accuracy of Hot-
potQA is 55.68% , and the accuracy of TibetanQA
is 77.95%. Then, the predicted question types are
integrated into question generation, and the final
experimental results are shown in Table 7.

To explore the upper bound of our model, and
studies the effectiveness of question types on ques-
tion generation, we use grammatical knowledge to
extract the question type and directly fuse it with
the paragraph as the input of the question generator.

We compare the performance of our model with
previous state-of-the-art models, and the experi-
mental results are shown in Table 7. We briefly
introduce these models as follows.

(Zhou et al., 2017): They propose a seq2seq
model with attention and copy mechanisms, and
use POS and NER tags as lexical features for the
encoder.

(Zhao et al., 2018): They propose paragraph-
level question generation with maxout pointer
mechanism and gated self-attention.

(Zhou et al., 2019a): They incorporate an aux-
iliary task of language model to the hierarchical
multi-task learning structure to help question gen-
eration.

(Zhou et al., 2019b): They propose a unified
model to predict question type and generate ques-
tions.

(Jia et al., 2020): They propose to incorporate
paraphrase knowledge into question generation.

(Xie et al., 2020): They propose to optimize
question generation with specific rewards.

(Sun et al., 2021a): They propose a seq2seq
model with attention and copy mechanisms on Ti-
betan question generation.
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Dataset What(%) Who(%) How(%) When(%) Which(%) Where(%) Why(%) Whether(%) Others(%)
SQuAD 52.45 10.65 10.58 11.73 6.71 4.76 1.37 - 1.76

HotpotQA 34.24 15.15 3.04 10.90 24.98 4.46 0.03 7.10 0.10
TibetanQA 25.22 5.83 21.74 6.48 34.01 0.55 - 5.17

Table 6: The proportion of question types on three datasets.

Datasets Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

SQuAD

(Zhou et al., 2017) - - - 13.29 -
(Zhao et al., 2018) 44.51 29.07 21.06 15.82 -
(Zhou et al., 2019a) 42.80 28.43 21.08 16.23 -
(Zhou et al., 2019b) 43.11 29.13 21.39 16.31 -

(Jia et al., 2020) 43.63 29.21 21.79 16.93 -
Our Model 47.28 31.35 23.02 17.52 46.78

Upper Bound 49.02 32.58 24.00 18.31 48.59

HotpotQA

(Zhou et al., 2017) 35.51 22.32 15.94 11.73 32.12
(Zhao et al., 2018) 38.54 25.09 17.49 13.48 22.45
(Xie et al., 2020) 37.97 - - 15.41 35.12

Our Model 42.35 30.42 23.83 19.31 40.95
Upper Bound 45.76 33.04 25.97 21.12 43.50

TibetanQA
(Sun et al., 2021a) - 25.34 - - 36.47

(Sun et al., 2021a)
using our metrics

39.18 33.04 28.36 24.77 39.25

Our Model 42.45 35.07 29.64 25.58 43.28
Upper Bound 45.05 37.96 32.30 28.01 44.85

Table 7: Experimental results of question generation on three datasets.

From Table 7, we can know that our model out-
performs other models on all metrics, and the ef-
fect of the model is significantly improved after the
grammar knowledge is integrated into the question
generation model. On the English dataset SQuAD,
our model achieves 17.52 on BLEU-4, which is
1.21 higher than (Zhou et al., 2019b) and 46.78 on
ROUGE-L, and the upper bound of our model can
reach 18.31 on BLEU-4. On HotpotQA, our model
achieves 19.31 in BLEU-4, which is 3.9 higher
than (Xie et al., 2020), and the upper bound of our
model can reach 21.12. On TibetanQA, our model
achieves 35.07 on BLEU-2, which is 9.73 higher
than (Sun et al., 2021a), and 43.28 on ROUGE-L,
which is 6.81 higher than (Sun et al., 2021a). The
upper bound of our model on TibetanQA can reach
28.1 on BLEU-4.

5.4 Question Type Accuracy of Generated
Questions

To further explore the influence of our model on
the question type of the generated question, we
calculate the accuracy of the interrogative word in
the generated questions, as shown in Table 8 and
Figure 2, 3, 4.

What Who How When Which Where Why is others Acc
SQuAD（前） 82.3 64.14 58.03 62.11 63 42.08 12.09 - 0 67.15
SQuAD 92.38 78.35 80.53 76.64 62.34 64.86 27.47 - 0 83.21
SQuAD（后） 99.55 95 99.62 93.77 99.37 98.46 94.51 - 15 97.92
HotpotQA(前) 39.64 53.33 19.23 43.96 40.21 14.89 0 - 11.27 38.54
HotpotQA 59.73 63.33 43.85 61.13 56.48 40.43 0 - 11.27 56.78
HotpotQA(后) 88.78 81.25 71.54 88.73 79.1 83.5 0 - 92.96 82.41
HotpotQA+inter 35.76 49.9 18.32 44.79 39.95 12.17 0 81.18 0 43.66
HotpotQA+inter 59.7 63.15 39.69 60.85 58.2 46.03 0 79.79 0 59.99
HotpotQA+inter 87.8 79.5 71 87.04 81.75 83.6 0 98.26 0 89.18
TibetanQA(前) 36.11 9.01 0 19.23 1.68 0 - 31.91 26.03

TibetanQA（） 83.8 22.52 57.14 67.31 68.07 14.29 - 15.51 46.88

TibetanQA+inter 92.59 17.12 82.43 80.77 92.44 14.29 - 95.51 85.06

 

What Who How When Which Where Why Whethe
r

Others Total
Only QG 35.76 49.9 18.32 44.79 39.95 12.17 0 81.18 0 43.66
Our Model 59.7 63.15 39.69 60.85 58.2 46.03 0 79.79 0 59.99
Upper Bound 87.8 79.5 71 87.04 81.75 83.6 0 98.26 0 89.18

What Who How When Which Where Why Is Others Total
Only QG 36.11 9.01 0 19.23 1.68 0 - 31.91 26.03
Our Model 83.8 22.52 57.14 67.31 68.07 14.29 - 15.51 46.88
Upper Bound 92.59 17.12 82.43 80.77 92.44 14.29 - 95.51 85.06

Figure 2: The accuracy on different interrogative words
on SQuAD.

Figure 3: The accuracy on different interrogative words
on HotpotQA.
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Dataset Model What Who How When Which Where Why whether Others Total

SQuAD
Only QG 82.30 64.14 58.03 62.11 63.00 42.08 12.09 - 0 67.15

Our Model 92.38 78.35 80.53 76.64 62.34 64.86 27.47 - 0 83.21
Upper Bound 99.55 95.00 99.62 93.77 99.37 98.46 94.51 - 15.00 97.92

HotpotQA
Only QG 35.76 49.90 18.32 44.79 39.95 12.17 0 81.18 0 43.66

Our Model 59.70 63.15 39.69 60.85 58.2 46.03 0 79.79 0 59.99
Upper Bound 87.80 79.50 71.00 87.04 81.75 83.60 0 98.26 0 89.18

TibetanQA
Only QG 36.11 9.01 0 19.23 1.68 0 - 31.91 26.03

Our Model 83.80 22.52 57.14 67.31 68.07 14.29 - 15.51 46.88
Upper Bound 92.59 17.12 82.43 80.77 92.44 14.29 - 95.51 85.06

Table 8: Accuracy of interrogative words in generated questions on three datasets.

Figure 4: The accuracy on different interrogative words
on TibetanQA.

Datasets Repetition Incomplete Accuracy
SQuAD 6.48% 19.18% 87.67%
HotpotQA 5.63% 16.20% 65.50%
TibetanQA 7.38% 39.34% 46.72%

Table 9: Human evaluation results for three datasets.

From Table 8, we can know that the accuracy of
interrogative words has been greatly improved. on
the SQuAD, the accuracy of interrogative words
has increased from 67.15% to 83.21%, and the up-
per bound of accuracy has reached 97.92%. On
the HotpotQA, the accuracy of interrogative words
increase from 43.66% to 59.99%, and the upper
bound can reach 89.18%. The two categories of
"why" and "others" account for 0.03% and 0.1% of
the dataset respectively. The small proportion of
these two categories makes the model cannot learn
the features of these questions. On the TibetanQA,
the accuracy of "Only QG" is only 26.03%, the ac-
curacy of our model reaches 46.88%, and the upper
bound reaches 85.06%, the accuracy of interroga-
tive words in questions has been greatly improved.
We find that the accuracy rate of "who" is low. The
main reason is that the grammar of "who" in Ti-
betan is complex, and the proportion of "who" in
TibetanQA is only 5.83%, so it is difficult for the
model to learn correct grammar knowledge. In the
future work, we will further improve this problem.

Q1:Whether this question is understandable?

A.Yes  B.No

Q2:Which of the following errors exists in this question? 
A.correct  B.Grammatical errors  C.repetition  

D.incomplete  E.ambiguous  F.others

Q3:Whether this question is answerable? 
A.Yes  B.No

Q4:Are the interrogative words and interrogative words in 

the correct position?

A.Interrogative word and the position of interrogative 

  word are correct

B.Interrogative word is correct but the position of 

  interrogative word is incorrect

C.Interrogative word error

D.Missing Interrogative word

Figure 5: The human evaluation questionnaire.

5.5 Human Evaluation

To further investigate whether the question type
classifier improves the quality of generated ques-
tions, we conduct human evaluate the final results.
We invite six students to analyze the generated
questions, three of whom are native speakers of
Tibetan and have knowledge of Tibetan linguistics.
We randomly select 150 samples from each test-
ing dataset and distribute them equally to these
six students. To reduce the subjectivity of human
scoring, this paper designs a questionnaire with
four questions, as shown in Figure 5. Question 1
evaluates whether the generated question is under-
standable, if the question is not understandable, we
no longer evaluate it for subsequent questions, the
question 2 evaluates the fluency of the generated
questions, question 3 evaluates whether the gener-
ated question is answerable, question 4 evaluates
the accuracy of generated interrogative words and
the accuracy of the position of interrogative word.
The final experimental results of human evaluation
are shown in Table 9.

We analyze the obtained questionnaires and dis-
cuss the following four findings:
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SQuAD Gold: how many permanent objects are located there?
Only QG: what is the housing of the victoria and albert museum?
Our model: how many objects does the victoria and albert museum have?

HotpotQA Gold:which tennis player is south african , mariaan de swardt or kateryna bondarenko ?
Only QG:who was born first , mariaan de swardt or kateryna bondarenko?
Our model:which tennis player is from south africa , mariaan de swardt or kateryna bondarenko?

TibetanQA

Gold:
(What is the theme of the second World Internet Conference?)

Only QG:
(How many topics are there for the conference?)

Our model:
(What is the theme of the conference?)

Table 10: Questions generated on three datasets.

1. The proportions of unreadable questions gen-
erated on TibetanQA, HotpotQA and SQuAD are
18.67%, 5.33% and 2.67%, respectively.

2. From question2, we find that most of the
questions generated on the three datasets are fluent,
and some generated questions are more suitable
than gold questions, this also shows that automatic
evaluation is limited. On the other hand, some
generated questions have word repetition and in-
completeness problems, incomplete questions are
mainly due to the lack of keywords, which will
also lead to the generated questions being unan-
swerable.

3. We performe statistics on generated interrog-
ative words and find that, the accuracy of inter-
rogative words on SQuAD and HotpotQA reached
87.67% and 65.50%, the accuracy on TibetanQA
reaches 46.72%, which is close to the accuracy of
automatic evaluation.

6 Case Analysis

To explore the impact of our model on question
generation, Table 10 lists some typical examples.
on SQuAD, the interrogative word of gold question
is "how", while the interrogative word generated
by the baseline model is "what", and the type of
question generated by our model is correct. On the
HotpotQA, the questions generated by our model
are the same as the gold questions, while the inter-
rogative word generated by "Only QG" is "who".
On TibetanQA, the interrogative word generated by
the baseline model is “how”, and the interrogative
word generated by our model is "what", which is
the same as the interrogative word of gold ques-
tion. The above cases show that the question type
classifier proposed in this paper can improve the

accuracy of question generation.

7 Conclusion

To solve the problem of mismatch between ques-
tion types and answers in question generation, this
paper constructs a question type classifier and a
question generator. We classify questions into fine-
grained classification and integrate grammar knowl-
edge into question type classifier to improve the
accuracy of question types, then, the prediction re-
sults of the classifier are fused into the question gen-
erator to improve the performance of question gen-
eration. To verify the effectiveness of our model,
we perform an upper bound analysis on it, we inte-
grate grammar knowledge into the question gener-
ator to provide accurate question types to guide the
model to generate questions. The final experimen-
tal results show that the method proposed in this
paper not only improves the accuracy of question
words in the generated question, but also improves
the quality of the generated question.
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Abstract

Nominal metaphors are frequently used in hu-
man language and have been shown to be ef-
fective in persuading, expressing emotion, and
stimulating interest. This paper tackles the
problem of Chinese Nominal Metaphor (NM)
generation. We introduce a novel neural frame-
work, which jointly optimizes three tasks: NM
identification, NM component identification,
and NM generation. The metaphor identifica-
tion module is able to perform a self-training
procedure, which discovers novel metaphors
from a large-scale unlabeled corpus for NM
generation. The NM component identification
module emphasizes components during train-
ing and conditions the generation on these NM
components for more coherent results. To train
the NM identification and component identi-
fication modules, we construct an annotated
corpus consisting of 6.3k sentences that con-
tain diverse metaphorical patterns. Automatic
metrics show that our method can produce di-
verse metaphors with good readability, where
92% of them are novel metaphorical compar-
isons. Human evaluation shows our model sig-
nificantly outperforms baselines on consistency
and creativity.

1 Introduction

Metaphors are commonly used in human language.
Usually, metaphors compare two different kinds
of objects or concepts with the intent to make
the expression more vivid, or to make unfamiliar
things easier to understand (Paul, 1970). Accord-
ing to contrastive studies of English and Chinese,
metaphors are especially crucial in Chinese as there
are fewer abstract words in Chinese, so that peo-
ple tend to express abstract meaning via metaphors
(Lian, 1994).

In this paper, we focus on the generation task
of a special type of Chinese metaphor – Nomi-
nal Metaphors (NMs). NMs (比喻 in Chinese)

∗Corresponding author

1. 这个[孩子]tenor 壮的像[牛]vehicle
This [boy]tenor is as
strong as a [bull]vehicle. Nominal
2. [生活]tenor好比[旅行]vehicle,
没有计划就难以前行
[Life]tenor is a [journey]vehicle,
we cannot move on without a plan.

Nominal

3. Meta股价[跳水]metaphorical
META stock price [dives]metaphorical. Verbal
4. 他可以像大厨一样烹饪
He can cook like a pro. Literal

Table 1: Examples of Chinese nominal metaphor, verbal
metaphor, and NM components. Note that when the
words “like” or “as” are used as COMPARATORS, we
also call these special NMs明喻 (Similes).

are figures of speech associating a noun with an-
other noun through a COMPARATOR such as like,
be, become in English and 像,是,变成 in Chi-
nese. Examples and NM components are shown
in Table 1. In addition to the COMPARATOR

(bold), there are three other components in a nom-
inal metaphor: TENOR, VEHICLE, and CONTEXT

(text with underline). TENOR is the subject of the
metaphor, and VEHICLE is the source of the im-
agery (i.e., the object of metaphor). CONTEXT is
used to explain the comparison and is crucial for
understanding the comparison (more details about
NM and NM components are given in § 2.1). The
NM generation task is defined as follows: given a
TENOR, generate a metaphor containing the three
remaining NM components, i.e., VEHICLE, COM-
PARATOR and CONTEXT. Previous efforts on NM
processing mainly engage in identification (Liu
et al., 2018; Zeng et al., 2020) and interpretation
(Su et al., 2016, 2017), where the generation of
NMs is relatively unexplored, despite the benefits
it can bring to many downstream tasks (Wang et al.,
2021). Glucksberg (1989); Zhou (2020) suggest
that metaphors are important to an engaging con-
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versation and can effectively stimulate user interest
in communicating with chatbots. Chakrabarty et al.
(2020, 2021) show that users prefer stories and po-
ems enhanced with metaphor generation by replac-
ing literal expressions with generated metaphors.

To tackle Chinese NM generation, there are two
main challenges to address. First, existing Chinese
NM corpora are not large enough to facilitate cur-
rent data-driven text generation approaches. Sec-
ond, the auto-regressive nature of generative mod-
els always assigns higher priority to fluency, which
makes the metaphor generation procedure produce
inconsistency errors1 (e.g., generating nonsense
comparisons without CONTEXT explaining) and
literal errors (i.e., generating literal expressions).

We propose a novel multitask approach for Chi-
nese NM generation called CM-Gen to address
the abovementioned challenges. Specifically, three
tasks are jointly optimized: NM generation, NM
identification, and NM components identification.
First, for the data scarcity problem, we perform
a self-training procedure to learn newly discov-
ered metaphors from large-scale unlabeled datasets.
Self-training has three main steps: 1) our model is
trained on a labeled dataset for NM identification;
2) we apply our model on an unlabeled corpus to
detect potential NMs with a corresponding confi-
dence score; and 3) train an NM generation model
on the combination of labeled and newly found
NMs. By exploiting rich metaphors from large-
scale resources, the performance of CM-Gen can
be significantly improved yet the data requirement
can be dramatically reduced. Second, CM-Gen
proposes to identify potential metaphor compo-
nents (i.e., TENOR, COMPARATOR and VEHICLE)
supervised by the attention weights generated by
the NM classifier. To alleviate inconsistency er-
rors, CM-Gen conditions the generation process
on the potential NM components; this enforces the
CONTEXT generation to depend on the comparison,
rather than producing fluent but bland CONTEXT

that does not explain the comparison. In terms of
the literal errors, NMs components are emphasised
via attention weight to encourage CM-Gen to pro-
duce metaphorical expressions rather than literals.

We also build an annotated corpus for Chi-
nese NM identification consisting 6.3k sentences.
Instead of focusing on a specific metaphori-

1An example of inconsistency error: “Teacher is like a
candle, floating gently in the air”. Although the comparison is
valid, the CONTEXT is inconsistent with the comparison. This
also shows the importance of CONTEXT in NM generation.

cal pattern (Liu et al., 2018), our corpus con-
tains diverse nominal metaphorical usages. We
also ensure the CONTEXT is explicit for each
metaphor annotated, and the TENOR of each
metaphor is also identified. Source code and
data can be found in https://github.com/
liyucheng09/Metaphor_Generator.

2 Related Work

2.1 Metaphors in Chinese

Following (Krishnakumaran and Zhu, 2007; Rai
and Chakraverty, 2020), we can divide English
metaphors into four types as follows:

Type-I: (Nominal Metaphors) A noun is associ-
ated with another noun through the comparators,
e.g., “Love is a journey”.

Type-II: (Verbal Metaphors or Subject-Verb-
Object (SVO) metaphors) Sentences with metaphor-
ical verb, e.g., “He kills a process”.

Type-III: (Adjective-Noun (AN) metaphor)
Metaphorical adjectives with a noun fall into this
category, e.g., “sweet boy”.

Type-IV: (Adverb-Verb (AV) metaphor)
Metaphorical adverbs with a verb, e.g., “speak
fluidly”.

However, the definition of metaphor in the con-
text of Chinese is slightly different from its English
counterpart (Wang, 2004). 比喻 (Metaphor), or打
比方 (draw an analogy), which draws a compar-
ison between objects or concepts, mainly means
Type-I metaphor, i.e., NMs. A specific term比拟
(Personification/Match) is used to indicate Type-
II, Type-III, Type-IV metaphors in Chinese, which
aims to describe an object or concept in a view
of a person or another object. Verbal Metaphors
(VMs) are the most frequent type of metaphor in
English (Martin, 2006; Steen, 2010), but NMs are
the dominant figurative language in Chinese. Ac-
cording to a small-scale annotation analysis (Su
et al., 2016), NMs are around four times more fre-
quent than VMs in Chinese. Lian (1994) gives a
possible explanation for this phenomenon: Chinese
people tend to express abstract concepts via nomi-
nal metaphors or idioms as there are fewer abstract
terms in Chinese than in English. For example, a
Chinese nominal metaphor “像竹篮打水” (doing
something is like ladling water to a leaky basket),
is used to express the meaning of “hopeless”.

Chinese NMs often consist of four components:
TENOR, VEHICLE, COMPARATOR, (本体,喻体,比
喻词 in Chinese) and CONTEXT, as shown in ta-
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ble 1. The CONTEXT here is a component used to
explain the comparison; its definition is relatively
flexible. Sometimes it can be a simple adjective,
sometimes a relative clause, or even implicit in
some cases. For example, the NM “The city is
like a painting” omits the textual CONTEXT to em-
phasize visual senses. However, CONTEXT is ex-
tremely important in helping readers to understand
the comparison. According to Indurkhya (2007)
and Lakoff and Johnson (2008), a comparison can
be drawn between any concepts, but it must have
a CONTEXT to explain the comparison or to make
the comparison coherent to daily experience. Con-
sidering the importance of CONTEXT, we do not
consider a comparison without CONTEXT as a suc-
cessfully generated NM case in our experiments.

Additionally, there are two linguistic principles
Chinese NMs must obey (Wang, 2004): 1) The
comparison must be drawn between two concepts
with different natures; and 2) the two concepts be-
ing compared should share commonalities. Specifi-
cally, the COMPARATOR “like” in example No.4 of
Table 1 does not necessarily make it an NM, since
the comparison is drawn between the same concept
“me cooking” and “pro cooking”. The second prin-
ciple also emphasises the importance of CONTEXT.
In summary, even though NMs usually share a rel-
atively simple structure, Chinese NM generation is
still challenging due to the requirement of provid-
ing CONTEXT and the necessity of understanding
the relation between TENOR and VEHICLE.

2.2 Computational Processing of NMs

Previous works on computational processing of
NMs can be classified into detection, interpretation
and generation.
Detection and Interpretation Krishnakumaran
and Zhu (2007) exploit the absence of a hyponymy
relation between subject and object to identify
metaphorical utterances. Shlomo and Last (2015)
propose a random forest-based classifier for NM
identification using both conceptual features such
as abstractness and semantic relatedness such as
domain corpus frequency. Su et al. (2016) follow
the idea of lack of hyponymy relationship from
(Krishnakumaran and Zhu, 2007) and realize it us-
ing cosine distance between pre-trained word2vec
embeddings of the source and target concepts. Liu
et al. (2018); Zeng et al. (2020) tackle Chinese
simile detection by designing a multi-task frame-
work and a local attention mechanism. Su et al.

(2016, 2017) focus on NM interpretation and per-
form experiments on both English and Chinese
NMs. They extract properties of TENOR and VEHI-
CLE from WordNet and use pre-trained word2vec
embeddings to identify related properties shared by
both components.
Generation Despite the benefits NM generation
can bring to the community, prior works on this
task are relative sparse. Early works often rely on
templates. Terai and Nakagawa (2010) compute
the relatedness between concepts with computa-
tional language analysis and select candidates to
fill metaphor templates like “A is like B”. Veale
(2016) uses a knowledge-base to generate XY Z
style NMs such as “Bruce Wayne is the Donald
Trump of Gotham City”. Zhou (2020) not only
choose candidate concept pairs by word embed-
ding similarity to fill the template but also choose
appropriate COMPARATORS to link the concept pair.
(Chakrabarty et al., 2020) introduce a neural style
transfer approach for simile generation, which fine-
tunes a pre-trained sequence-to-sequence model on
a literal-simile parallel dataset. Nevertheless, pre-
vious template-based approaches heavily constrain
the diversity of generated NMs and both template
methods and neural methods produce NMs in a
reletive simple structure. Most importantly, previ-
ous methods do not provide CONTEXT in their gen-
erations (or only provide little CONTEXT), which
makes generated results less readable.

3 Method

Given an object or concept as a starting TENOR, a
Chinese nominal metaphor will be generated con-
sisting of four NM components: a comparison be-
tween TENOR and VEHICLE linked with a COM-
PARATOR and a CONTEXT as an explanation for
the comparison. The overall multitask framework
is shown in Figure 1. We can roughly divide our
framework into four elements: 1) the GPT2 (Rad-
ford et al., 2019) pre-trained language model; and
three task-specific fully-connected layers used for
2) NM identification; 3) NM components identifi-
cation; and 4) NM generation.

3.1 Shared Representation

Since we are tackling a generation task, we em-
ploy a pre-trained unidirectional transformer-based
language model, GPT2, as our basic encoder.
Contextualized word representations are obtained
after feeding words to the GPT2 model. For-
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Figure 1: The overall framework.

mally, given sentence S = (w0, ..., wn, wEOS),
the GPT2 model produces a list of vectors H =
(h0, ..., hn, hEOS), where the EOS is a special de-
limiter indicating the end of the sentence. Note that
the representation here are used in the three indi-
vidual tasks described below and the parameters
are also shared across all tasks.

3.2 Task 1: NM Identification

The NM identification module is used to assign
metaphorical probability to sentences. This score
will be used in the Self-Training procedure (de-
scribed in §3.4). Specifically, we use hEOS as the
sentence representation of S (similar to the usage
of cls embedding in BERT-based systems (Devlin
et al., 2018)) and apply a linear layer plus a softmax
layer on it to compute the metaphorical probability
of the sentence S. Formally, the metaphor proba-
bility is computed as follow:

PM = softmax(WmhEOS + bm) (1)

where Wm and bm are trainable weights and biases
for NMs identification.

We train this module on a supervised dataset
noted as U = {(xi, yi)}Ni=1, where x indicates the
sentence and y indicates whether x is a NM. In
summary, we minimize the following loss function

for NM identification:

L1 = −
∑

x∈U
logP (ŷ|x) (2)

3.3 Task 2: NMs Components Identification
Although GPT2 model is powerful in generating
fluent and grammatical text, it still suffers from in-
coherence issues (Ko and Li, 2020; Tan et al., 2021).
In the scenario of NM generation, it means the
CONTEXT generation might be inconsistent with
the metaphorical comparison thus resulting in in-
consistency errors. Besides, the innate tendency
of generative models to produce literal text often
leads to literal errors (Chakrabarty et al., 2021).

To address the inconsistency errors, our model
conditions the generation procedure on the
metaphorical comparison, that is the NM compo-
nents TENOR, VEHICLE, and COMPARATOR. We
also weight these NM components with higher
score during training to alleviate literal errors.
These two approaches (described in §3.4) require
the involvement of NM components, therefore, we
apply a linear layer to compute the probability for
each token to be an NM component. Formally, this
probability is computed as follows:

Pc = Sigmoid(WcH + bc) (3)

where Wc and bc are trainable weights and bias
for NM component identification, and Pc is the
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resulting probability distribution. Note that this
process does not predict the type of components
(e.g., TENOR), instead, it only computes a proba-
bility for each token indicating the extent to which
the generation should focus on each.

We propose to use the attention weights gener-
ated from the NM classifier (obtained in §3.2) as
the supervision signals for NM component iden-
tification. As shown in (Liu et al., 2018; Zeng
et al., 2020), the metaphor classifier tends to focus
more on corresponding metaphor components, we
thus use this property to discover NM components.
Specifically, we use KL divergence to have our dis-
tribution Pc as close as possible to the attention
weights Φ.

L2 = DKL(Pc∥Φ) (4)

where Φ is the self-attention score the hEOS at-
tending to other tokens generated by the last layer
Transformer of GPT2.

Φ = softmax(
QkT√
dk

) (5)

The Q here is the Query matrix for self-attention,
and k is the Value vector only for the EOS token.

3.4 Task 3: NM Generation

We perform the NM generation task with three
steps: 1) conditioning the generation on NM com-
ponents; 2) emphasizing the NM components; and
3) executing the self-training procedure.
Conditioning To allow token predictions condi-
tioned on NM components, we provide a list of NM
component representations C = (c0, .., ci, .., cn)
for each prediction step respectively. Then the NM
component representation ci is fed into the lan-
guage modeling head together with the contextual-
ized token embedding hi. Formally, ci is computed
as follows:

ci =
i∑

k=0

αk · hk (6)

where the weight score α is computed as follows:

(α0, ..., αi) = softmax P {0,...,i}c (7)

ci here mainly captures NM component infor-
mation before the i-th token (i.e., NM components
within (w0, ..., wi)). Then we concatenate the con-
textualized token embedding hi and its correspond-
ing NM component information embedding ci to

predict the next token.

P (wi+1|w0, ..., wi) = softmax [Wl(hi ⊕ ci) + bl]
(8)

where the Wl and bl are trainable weight matrices
and bias, ⊕ indicating the concatenation operation.
Emphasizing We emphasize the NM compo-
nents during training by directly applying attention
weight Pc on the loss function. Specifically, given
a sentence S = (w0, ..., wn), we minimize the fol-
lowing loss function:

L(S) = −
n∑

i=0

P ic · logP (wi|w0, ..., wi−1) (9)

where P ic is the probability to be one of the NM
components of token wi.
Self-training Self-training is an effective ap-
proach to tackle data scarcity and has been suc-
cessfully used in many downstream tasks (He et al.,
2019; Parthasarathi and Strom, 2019; Xie et al.,
2020). In our setting, we adopt self-training for
discovering novel Chinese NMs from large-scale
corpora to train the NM generation module so that
the fluency and diversity of generation can be im-
proved.

Formally, given an unlabeled corpus V =
{xi}Ni=0 where each x is a sentence x =
(w0, ..., wn), the NM identifier will assign a prob-
ability to each xi noted as P iM . We than mix the
unlabeled corpus V = {(xi, P iM )}Ni=0 and super-
vised dataset U = {(xi, yi)}Ni=1 together, and train
the overall framework on it. Formally, we minimize
the following loss function:

L3 = −
[∑

x∈V
P iM · L(x) +

∑

S∈U
L(S)

]
(10)

3.5 Training and Inference

The final loss function of our framework is a
weighted sum of three task-specific loss function.

L = γ · L1 + L2 + L3 (11)

Note that when learning unlabeled sentences, γ is
set to 0, since these instances lack the supervision
label for NM identification. To help our model
converge, before training the overall framework on
the mixed data by L, we pre-train our model on the
supervised dataset for Task 1 first. Besides, when
doing inference, our model only performs Task 3.
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4 Experiment

4.1 dataset
To train our multitask framework, we construct two
datasets: a supervised Chinese NM Corpus (CMC)
and a large-scale unsupervised Chinese Literature
Corpus (CLC).
CMC Existing Chinese metaphor corpus are nei-
ther too small, like Su et al. (2016) contains 120
examples, or focusing on a specific metaphorical
pattern, like Liu et al. (2018) contains sentences
with a specific COMPARATOR像 (like). In our cor-
pus, we try to include nominal metaphors as diverse
as possible. The annotation of the CMC consists of
five steps: 1) we collect 55,000 Chinese sentences
from essays, articles, and novels; 2) we employ
three Chinese graduate students with background
of NLP to label each sentence as a NM or not; 3)
we take the majority agreement as the final label for
each sentence; 4) the boundary of all NM compo-
nents are identified including TENOR, COMPARA-
TOR and VEHICLE; 5) we merge existing metaphor
corpora (Liu et al., 2018; Li et al., 2022) with ours
to enlarge the overall diversity. To encourage the
CONTEXT to be generated, we ensure CONTEXT

occurs explicitly in all metaphors from our dataset.
Before the annotation, annotators are trained with
examples and instructed with basic Chinese NM
principles (described in §2.1). Due to the merg-
ing with other Chinese metaphor datasets, some
metaphor components might missing in the overall
CMC. We compute the inner-annotator agreement
of NM labeling via Krippendorff’s alpha (Krippen-
dorff, 2011). The agreement rate is 0.84. Statistics
of CMC are shown in Table 2. Some examples are
shown in Appendix A.1.
CLC In self-training, we need a large-scale cor-
pus so that the NM identifier can discover novel
NMs. However, popular Chinese corpora, such
as news, Wikipedia, web pages, are not suited to
be used as metaphor resources. Intuitively, litera-
ture text might be a promising resource of diverse
metaphors. Therefore, we construct a Chinese liter-
ature corpus by collecting a large number of essays,
novels, and fictions (see details in Appendix A.2).
Statistics of CLC are shown in Table 2.

4.2 Baselines
Chinese NMs generation is a novel task, we se-
lect three general generative models, an English
simile generation method, and a Chinese metaphor
generation model as baselines.

CMC CLC
# Sentences 11581 6.98M
# NM 8027 -
# literal sentence 3554 -
# tokens 559K 202M
# tokens per sentence 48 29

Table 2: Statistics of CMC and CLC datasets

SeqGAN: Sequence Generative adversarial net-
work (Yu et al., 2017) with a generator imple-
mented by LSTM network and a discriminator im-
plemented by CNN network. We train this model
on CMC to produce Chinse NM.
GPT2: The Chinese GPT2 model is fine-tuned
on the CMC dataset to produce Chinese NMs as a
baseline model.
BART: We fine-tune a Chinese version BART
model (Shao et al., 2021) model on parallel data
pairs <TENOR, Sentence> obtained from CMC.
SCOPE: The SOTA method (Chakrabarty et al.,
2020) on English simile generation tasks, which
fine-tunes BART model on a large-scale automati-
cally created literal-simile parallel corpus.
MultiTask: Li et al. (2022) introduce the
first multitasking metaphors generator for Chinese
metaphors. It relies on an attention weights-based
components identification procedure to ensure the
metaphoricity of outputs.

4.3 Experiments Setting

We use a pre-trained Chinese GPT2 model2 to
avoid starting training from scratch. Our model
is pre-trained on NM identification task with CMC
for 3 epochs before jointly optimizing three task-
specific loss functions. The implementation of Se-
qGAN3 and the pre-trained Chinese BART model4

can be found in the footnote. Before the SeqGAN
starts training on CMC, we first pre-train the gen-
erator of SeqGAN on CLC for 50k steps. Hyper-
parameters not specified are all followed by default
settings. Note that the SCOPE model is designed
for English Simile generation and it takes a literal
utterance as input. To compare SCOPE results with
our method, we first translate input TENORS into
English (via Google Translator), then translate gen-
erated NMs back to Chinese (details in Appendix

2https://huggingface.co/uer/
gpt2-chinese-cluecorpussmall

3https://github.com/LantaoYu/SeqGAN
4https://huggingface.co/fnlp/

bart-base-chinese
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Methods PPL Dist-1 Dist-2 Meta Novelty Fluency Consistency Creativity
SeqGAN 89.43 .00336 .0116 .998 .200 3.33 (.51) 3.80 (.46) 1.67 (.34)
GPT2 57.88 .00916 .1154 .981 .800 4.00 (.62) 3.10 (.39) 2.60 (.31)
BART 48.58 .00826 .0971 .978 .725 4.35 (.54) 3.05 (.37) 2.30 (.32)
SCOPE 92.32 .00517 .0673 .910 .385 3.10 (.64) 2.70 (.44) 2.10 (.45)
MultiTask 26.79 .01143 .1582 .952 .815 4.55 (.58) 4.23 (.45) 3.80 (.36)
Our Method 25.79 .01153 .1674 .948 .920 4.65 (.58) 4.40 (.45) 3.80 (.36)
w/o Self-training 62.54 .00674 .0906 .982 .785 3.85 (.54) 3.87 (.42) 2.76 (.38)
w/o Emphasizing 25.58 .01150 .1529 .803 .900 4.50 (.63) 3.91 (.32) 3.41 (.43)
w/o Conditioning 24.93 .01053 .1534 .875 .930 4.25 (.61) 3.05 (.45) 3.24 (.39)

Table 3: Results of automatic metrics and human evaluation. Boldface denotes the best results among our method
and baselines. The inter-annotator agreement for human evaluation are shown in parenthesis.

B). In the test stage, we randomly select and feed
200 TENORS from CMC to all generative models.
During decoding, all beam sizes are set to 12, thus
each model generated 12 sentence for each TENOR.
In total, 2400 sentences are obtained per model for
testing.

4.4 Metrics

Automatic Metrics We use perplexity (PPL) to
evaluate the fluency of the generated text, which
is calculated by an open source Chinese language
model (Zhang et al., 2020). Dist-1 and Dist-2 (Li
et al., 2016) compute the distinct unigrams and
bigrams ratio of generated text which are used to
measure model’s ability to produce diversity out-
puts. To test the metaphoricity (Meta) of gener-
ated outputs, we train a RoBERTa-based Chinese
NM classifier on CMC to compute the ratio of
metaphorical utterances in the generated sentences.
The accuracy of this classifier is 97.89%, which
is robust enough to perform evaluation (details in
Appendix C). Novelty is to test how well models
can generate metaphors they have never seen dur-
ing training. We use a syntax-based approach to
identify TENORS and VEHICLES from generated
NMs and compute the proportion of <TENOR, VE-
HICLE> pair that does not co-occurr in the training
set.
Human Evaluation Due to the creative and del-
icate usage of NM, automatic metrics are not ade-
quate to test the quality of generated outputs. We
also perform human evaluation based on the follow-
ing three criteria: 1) Fluency indicates how well
the metaphor is formed; whether the expression is
grammatical and fluent. 2) Consistency indicates
whether the metaphor can explain itself; how well
the VEHICLE relate to TENOR and how well the
CONTEXT explain the comparison. 3) Creativity

scores how creative annotators think the metaphor
is. Note that the Creativity judgment is based on
annotators’ real-life experience, rather than measur-
ing whether the generated metaphor appears in the
training dataset. Three annotators were instructed
to rate the three criteria from 1 to 5 where 1 denotes
worst and 5 be the best.

5 Results

5.1 Automatic Evaluation

Results of automatic metrics are shown in Table 3.
Our method significantly outperforms baselines in
most automatic metrics. Our model obtains a lower
PPL, which illustrates our model is better at pro-
ducing fluency and grammatical text. Higher Dist-1
and Dist-2 scores show our method produces less
repetitive unigrams and bigrams during generation,
which is essential in creative language generation.
The Meta (metaphor) score shows that our model
produces more literal expressions than baselines,
which might result from the self-training procedure,
where non-metaphorical sentences are sometimes
wrongly identified by the NM identification mod-
ule, and thus there is noise in NM modeling. The
highest Novelty score demonstrates our method’s
ability to generate creative comparisons.

We implemented an ablation study to test the
effectiveness of self-training, NM component em-
phasizing, and context conditioning. Experimental
results prove the self-training mechanism improves
both generation fluency and diversity. Removing
self-training from our model affects four automatic
metrics by a large margin. The NM component
emphasizing mainly helps our method alleviate lit-
eral errors and thus improve the Meta score. The
context conditioning also benefits the overall frame-
work in Meta score.
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Methods Text (Chinese) Text (Translated) Con. Cre.
GPT2 秋天是美丽的，让人赏心悦目。 Autumn is beautiful, and is delight-

ful to the eye.
- -

秋天是个动情的音符，荡漾在夏日
的清纯中。

Autumn is an emotional note, rip-
pling in the purity of summer.

2.0 3.5

秋天是最好的伴奏曲，让世界充满
微笑。

Autumn is the best concertos, mak-
ing the world full of smiles.

3.3 2.0

MultiTask 秋天像那沉甸甸的银杏，在树梢间
点缀着一道彩虹。

Autumn is like the heavy ginkgo,
shines as a rainbow behind the tree-
top.

4.3 3.0

秋天像千万条银丝在天空中飘荡。 Autumn is like thousands of silver
strings hanging in the sky.

1.3 4

秋天是个好天气，天空一片明朗，
不过到春天却只剩下一圈蓝色。

Autumn is a great weather, and the
sky is blue and bright. But when it
come to Spring there is only blue.

- -

Our method 秋天像一只彩笔画般的画笔，勾勒
出一幅幅多彩多姿的画卷。

Autumn is like a multi-colored paint-
brush, sketching out colorful pic-
tures.

5.0 2.7

秋天像小姑娘的脚，带着她那柔软
的臂膀，在枝头翩翩起舞。

Autumn is like a little girl’s feet with
her softness. Arms, dancing in the
branches.

3.7 5.0

秋天像刚刚落地的苹果,在果园里露
出个头。

Autumn is like an apple that has just
fallen, showing its head in the or-
chard.

4.3 4.0

秋天像刚落的蝉，婉转地鸣叫着，
见证着树梢上金黄色的叶子慢慢向
蓝天生长。

Autumn is like a cicada that has just
fallen, chirping tactfully, seeing the
golden leaves on the treetops grow
towards the blue sky slowly.

4.3 5.0

Table 4: NMs generated by our method and baselines given a TENOR秋天 (Autumn). Con. and Cre. indicate the
two human evaluation metrics Consistency and Creativity respectively. We do not assign Con. and Cre. score for
non-metaphorical utterances. More examples of CM-Gen are shown in Appendix D.

5.2 Human Evaluation

We select 180 sentences in total for human evalu-
ation, i.e., 15 TENORS with 12 sentences for each
TENOR. Human evaluation results are shown in Ta-
ble 3. We also show in the table the inter-annotator
agreement of human annotation via Krippendorff’s
alpha. We can see that our method beats five base-
line models on all three human-centric metrics. The
most significant improvement lies in Consistency
and Creativity, which show our method can not
only generate creative comparisons, but more im-
portantly, can also provide a valid CONTEXT for
each NM to explain the comparison, which is essen-
tial for readability. Human evaluation also demon-
strates the effectiveness of the three mechanism
self-training, emphasizing, and conditioning. Self-
training enhances generation quality in both fluency
and creativity dimensions. Conditioning mostly
contributes to the consistency score as it empowers
the model to generate context description.

5.3 Case Study

We show in Table 4 some NMs examples gener-
ated by GPT2, MultiTask, and our model, where
the models take 秋天 (Autumn) as the input
TENOR. The corresponding Consistency and Cre-
ativity scores are also given in the table. We see
that although all three models are able to produce
metaphorical outputs, the quality of the generated
results differs among systems. First, the compar-
isons given by our model are more diverse than the
baselines. For example, GPT2 tends to compare au-
tumn with “music” (i.e., note and accompaniment).
Second, the CONTEXT produced by our method
can explain the comparison well, which ensures the
consistency and readability of the outputs. How-
ever, baselines either give little CONTEXT (e.g.,
MultiTask gives no explanation in the second ex-
ample) or inappropriate CONTEXT (e.g., GPT2 uses
summer in the comparison with autumn). Third,
we observe that our model generates NMs with a
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relatively more complicated structure and speaks
in a more poetic way. For example, our model
does not use a single word as VEHICLE, instead, it
generates detailed phrases such as “apple that has
just fallen”, “dancing on the branches”. These de-
tailed components paint a more vivid picture, and
thus improve the overall readability of the gener-
ated NMs; such an observation is also supported by
the corresponding human-rated Consistency and
Creativity scores.

6 Conclusion

In this paper, we propose a novel multitask frame-
work for Chinese nominal metaphor generation.
Our model seeks to jointly optimize three tasks
including NM identification, NM component iden-
tification, and NM generation, which is effective
in generating diverse NMs with good coherence
and readability. Extensive experiments show that
our model can significantly outperform baselines in
terms of both consistency and creativity. Addition-
ally, we publish an annotated corpus for Chinese
nominal metaphors. Future directions can be try-
ing the usage of syntactic features and controllable
NM generation. Moreover, we would also like
to evaluate the effect of metaphor generation in
downstream tasks, such as story generation, dia-
log systems (Zeng et al., 2021), and educational
applications (Lin et al., 2015).
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A Dataset

A.1 Chinese NM Corpus (CMC)

Examples in CMC are shown in Table 5.

A.2 Chinese Literature Corpus (CLC)

CLC consists of three main categories of Chinese
literature: Children’s Literature (Children), Chi-
nese Literature (Chinese), Translated Literature
(Translated). Statistics of each category are shown
in Table 6.

B SCOPE Model

SCOPE model takes a literal expression as input
and produces a simile correspondingly. For exam-
ple, given “the city is beautiful”, SCOPE model
will transfer the literal expression into a simile:
“The city is like a painting”.

In our experiments, to compare SCOPE with
our method, we first 1) feed a TENOR to COMET
(Bosselut et al., 2019) model, to get properties of
the TENOR. For example, given a query “<Autumn,
SymbolOf>”, COMET predicts a list of properties

6477



Label Sentence Tenor Comparator Vehicle

NM 瀑布注入水潭的一刹那,一朵朵白色的一浪一花腾空而
起,像溅玉抛珠一般。

瀑布 像 溅玉抛珠

At the moment when the waterfall was poured into the pool,
a white spray of flowers vacated, like a splash of jade beads.

waterfall like jade

食堂开饭时，全校同学像热锅上的蚂蚁一样挤成一
团。

全校同学 像 热锅上的蚂蚁

When the dining hall opened, the whole school huddled
together like ants on a hot pot.

whole school like ants on hot pot

Literal 泛着银光的大海在他身后铺展开来。
The silver-filled sea spread out behind him.

- - -

Table 5: Examples of metaphor and not metaphor in the CMC.

Category #Books #Tokens #Sentences
Children 195 17M 0.58M
Chinese 336 64M 2.2M
Translated 854 121M 4.2M

Table 6: Summary of CLC.

for Autumn: “Passion, gold” etc. We then 2) con-
struct literal expressions using the TENOR and its
properties. For example, “Autumn is a symbol of
passion” is obtained. 3) The literal expression is
fed to SCOPE model and a simile is produced. For
example, ”Autumn is like a lover” is produced by
SCOPE model. 4) At last, the simile are concate-
nate with its literal expression to form a complete
NM with context: ”Autumn is a symbol of passion,
like a lover”.

C Meta Metric

The CMC corpus is split into a training set (80%)
for training the classifier and a test set (20%) for
evaluation. We simply add a linear layer plus a
binary softmax layer on the RoBERTa model as the
NM classifier. The accuracy of the classifier tested
on the test set of CMC is 97.89%.

D More Examples

Table 7 shows generations produced by our method
given different TENORS.
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Text (Chinese) Text (Translated)
爱像一缕金光，即使在黑夜也能照亮你的
心灵。

Love is like a ray of golden light, which can
illuminate your heart even at night.

爱像一盏明亮的夜灯，让迷途的航船找到
港湾；

Love is like a bright night light, let the lost ship
find the harbor.

时间像利剑一样无情的锋刃，一旦出鞘，
瞬间就割断你人生的纽带。

Time is a ruthless blade like a sharp sword.
Once it comes out of the scabbard, it will cut
off the bond of your life in an instant.

秋天像个美人的画笔调侃着大地：世界上
再没有比这更美的了。

Autumn teases the earth like a beautiful brush:
there is nothing more beautiful in the world.

爱心像一片照射在冬日的光，使饥寒交迫
的人感到人间的温暖.

Love is like a piece of sunshine in winter, which
makes hungry and cold people feel the warmth
of the world

Table 7: More generation examples of CM-Gen.
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Abstract

Controllable story generation is a challenging
task in the field of NLP, which has attracted in-
creasing research interest in recent years. How-
ever, most existing works generate a whole
story conditioned on the appointed keywords or
emotions, ignoring the psychological changes
of the protagonist‡. Inspired by psychology
theories, we introduce global psychological
state chains, which include the needs and emo-
tions of the protagonists, to help a story gen-
eration system create more controllable and
well-planned stories. In this paper, we propose
a Psychology-guIded Controllable Story Gen-
eration System (PICS) to generate stories that
adhere to the given leading context and desired
psychological state chains for the protagonist.
Specifically, psychological state trackers are
employed to memorize the protagonist’s local
psychological states to capture their inner tem-
poral relationships. In addition, psychological
state planners are adopted to gain the protago-
nist’s global psychological states for story plan-
ning. Eventually, a psychology controller is de-
signed to integrate the local and global psycho-
logical states into the story context representa-
tion for composing psychology-guided stories.
Automatic and manual evaluations demonstrate
that PICS outperforms baselines, and each part
of PICS shows effectiveness for writing stories
with more consistent psychological changes.

1 Introduction

Controllable Story Generation (CSG) is an impor-
tant task in natural language processing (NLP) (Por-
teous and Cavazza, 2009; Peng et al., 2018; Alab-
dulkarim et al., 2021). It has also become one of
the test methods for progress in artificial intelli-
gence (AI). Most existing state-of-the-art works
(Kong et al., 2021; Rashkin et al., 2020; Paul and

†Corresponding author.
‡In this work, we define the protagonist as the most fre-

quently occurring character in a story (Morrow, 1985).

Mike complained to the server, 
then Tory comforted him.

The server apologized with a gift
and Mike replied with a smile.

Love

Physiologic

Physiologic

Physiologic

Esteem

Joy

None

Sadness

Anger

Joy

Psychological State Chains
EmotionNeed

Psychology-guided Story Events

1

2

3

4

5

Given Leading Context

The service was slow 
and Mike began to feel uncomfortable.

Mike delightedly went on a date 
with his girlfriend Tory.

Mike was hungry and 
they went to a restaurant.

Figure 1: Example of psychology-guided controllable
story generation conditioned on dotted frames (global
psychological state chains, i.e., need/emotion, as well
as leading context). Each psychological state and its
corresponding tokens are highlighted in the same color.

Frank, 2021; Xu et al., 2020b) generate a story con-
ditioned by the appointed keywords or emotions,
with the help of remarkable pre-trained language
models (PLM), like GPT-2 (Radford et al., 2019)
and BART (Lewis et al., 2020). While most of
these systems have been able to generate fluent
stories, CSG still has many issues to be explored.

In daily life, humans tend to create events driven
by their needs (cause) and receive emotions (effect)
after the events. Similarly, needs (Ricoeur, 1984)
and emotions (Vonnegut, 1981) play the central
roles in creating reasonable stories in storytelling.
Recently, several works have begun developing
CSG systems based on people’s expected emo-
tional keywords or scores, such as (Brahman and
Chaturvedi, 2020) and (Xu et al., 2020a). Although
these approaches can generate stories appointing
the desired emotional signals, they are unable to
control the storytelling as the protagonist’s psy-
chological state changes. Another problem is that
these methods only consider the current/previous
emotions without global planning, which plays an
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important role in composing a story.

To address the aforementioned problems, we
focus on taking the protagonist’s global psycho-
logical state chains into account in controllable
story generation. Researches in cognitive psychol-
ogy have shown that readers closely monitor the
protagonist’s needs (Ricoeur, 1984) and emotions
(Vonnegut, 1981) while reading narratives. At any
point in a story, we represent the protagonist’s psy-
chological state using multiple needs and emotions
common in psychological theories. Hierarchy of
needs of Maslow has five categories (i.e., physiolog-
ical need, stability, love and belonging, esteem and
self-actualization) for describing human needs of
a person. Wheel of emotions of Plutchik proposes
eight basic emotions (includes joy, trust, anger, sur-
prise, sadness, disgust, fear and anticipation) to
adequately portray a person. Motivated by this, we
define the psychological state chains as a sequence
of five human needs and eight basic emotions that
describe psychological states of a protagonist.

Given the protagonist’s name and psychologi-
cal state chains as well as the leading context, our
goal is to generate a story about the leading context
that adheres to the protagonist’s psychological state
chains. As exemplified in Figure 1, the protagonist
(Mike) takes part in each story event controlled by
given psychological state chains. Note that, none
represents that Mike has no need or emotion. Each
psychological state and its corresponding tokens
are in the same color. For example, in the second
story event, Mike was hungry and went to a restau-
rant obviously embody the physiologic need of
Mike. Another example, as shown in the fourth
story event, complain action reflects Mike’s anger
emotion. From a global perspective, intuitively,
the anterior and hereafter psychological states sep-
arately provide the background and guidance for
composing stories. As illustrated in the third story
event, anterior physiologic need leads to Mike’s
feeling uncomfortable due to hungry, and hereafter
anger emotion guides the setting of slow service
plot suspense.

To generate stories that adhere to the given lead-
ing context and the desired protagonist’s global
psychological state chains, we propose PICS
(Psychology-guIded Controllable Story Genera-
tion System), a Transformer-based (Vaswani et al.,
2017) architecture. Specifically, psychological
state trackers are employed to memorize the local
psychological states for capturing temporal rela-

tionships among psychological states. And, psy-
chological state planners are adopted to gain the
protagonist’s global psychological states for plan-
ning the storytelling. In the end, a psychology con-
troller is designed to integrate the local and global
psychological states into the story context repre-
sentation for composing psychology-guided stories.
Based on the extracted data from publicly available
Story Commonsense (Rashkin et al., 2018) dataset,
experimental results demonstrate that PICS outper-
forms baselines, and the psychological state track-
ers, planners as well as the psychology controller
are important for generating stories with more con-
sistent psychological changes.

2 Related Work

Early story generation systems relied on symbolic
planning (Pérez and Sharples, 2001; Porteous and
Cavazza, 2009; Riedl and Young, 2010), which
had domain restriction and massive cost of feature
engineering. Recent seq2seq storytelling models
(Roemmele, 2016; Jain et al., 2017) had partially
alleviated these problems, most of which focused
on learning better representation for a story (Martin
et al., 2018; Xu et al., 2018; Fan et al., 2018b, 2019;
Yao et al., 2019).

To introduce semantic knowledge into story gen-
eration, many methods also employed large-scale
pre-trained language models (LM) based on Trans-
former (Vaswani et al., 2017), like GPT-2 (Radford
et al., 2019) and BART (Lewis et al., 2020). After
in-domain training, these models can generate flu-
ent and coherent text, which can be used in story
generation (Qin et al., 2019; Guan et al., 2020; Xie
et al., 2022b) and dialogue systems (Budzianowski
and Vulić, 2019; Wolf et al., 2019). However, they
lacked the ability of controllable generation, such
as expressing specific goals.

Further, aiming at controllable story generation,
works had been introduced to control different at-
tributes of the generated text, such as keyword (Fan
et al., 2018a), style (Wang et al., 2017) and length
(Kikuchi et al., 2016). For example, Tambwekar
et al. 2019 introduced reinforcement learning to
generate a goal-driven storyline, which is a se-
quence of event tuples. PPLM (Dathathri et al.,
2020) used attribute classifiers to guide text gen-
eration without further training of LM. PLOTMA-
CHINES (Rashkin et al., 2020) transformed an
outline into a coherent story by tracking the dy-
namic plot states. Kong et al. 2021 first planned
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the stylized keywords and then generated the whole
story with the guidance of the keywords. And many
works considered commonsense knowledge as an
attribute for CSG. Ammanabrolu et al. 2021 per-
formed story generation using soft causal relations,
which automatically extracted from existing natu-
ral language plot summaries. Paul and Frank 2021
used the contextualized commonsense inference
rules generated by COMET (Bosselut et al., 2019)
based model to produce a coherent story ending.

Most related to this work, many methods gen-
erated text with a specific sentiment or emotion
(Zhou et al., 2018; Huang et al., 2018; Zhou and
Wang, 2018; Song et al., 2019). Rashkin et al. 2018
present an annotation framework specifically de-
signed to examine the mental states of characters
in commonsense based stories. There are some
limitations to incorporating sentiment, emotion or
psychological state for story generation. Previous
work modeled characters but not sentiment (Clark
et al., 2018; Liu et al., 2020). Peng et al. 2018 and
Luo et al. 2019 controlled the overall sentiment
for story ending generation. Weber et al. 2020 in-
corporated sentiment trajectory by a new task that
“filling in” a story. Brahman and Chaturvedi 2020
modeled the emotional trajectory of the protagonist
for story generation. Xu et al. 2020a generated a
story with multiple emotional changes of protago-
nists based on the given characters and the corre-
sponding psychological state lines. These works
are limited to the guiding of emotion scores or to-
kens or/and target the ending sentence. Lately, Xie
et al. 2022a modeling the relationship among mo-
tivations, actions and emotions based on human
activities (i.e. story events), which lacks consid-
eration of the global changes in a story. Different
from the above methods, we respectively model the
local and global psychological state changes of the
protagonist as the story progresses, which is more
central to storytelling than the emotion trajectory.

3 Task Definition

We formulate our psychology-oriented controllable
story generation task in the following. Note that,
the length of the whole story is 5 in this paper, and
the output story event is in the m-th time point.
Table 1 shows an example of our task.

Input The context X = (X1,X2, . . . ,Xm−1)
to the current story event with m − 1 events,
where the i-th event Xi = (x1i , x

2
i , . . . , x

k
i ) con-

sists of k words. The name of protagonist P =

Protagonist Donald, He, Donald, He, He
Need Chain esteem, esteem, esteem, esteem, esteem

Emotion Chain joy, sadness, sadness, sadness, joy
Leading Context Donald was a senator.

Event Y2 He ran as an indie candidate.
Event Y3 Donald wanted better implementation of his policies.
Event Y4 He decided to run in the next term as a Republican.
Event Y5 He won again, and is now in a better position.

Table 1: An example of our task.

(p1, p2, . . . , pm) to indicate the expected partici-
pant of the generated story event, the elements are
the same in P in our setting. The protagonist’s
global psychological state chains, including the
need chain AN = (n1, n2, . . . , n5) and the emo-
tion chain AE = (e1, e2, . . . , e5). The protago-
nist’s local psychological states from AN and AE,
including the need history N = (n1, n2, . . . , nm)
and the emotion history E = (e1, e2, . . . , em). ni
and ei represent the protagonist’s need and emotion
for the i-th story event, where i ∈ [1,m].

Output Ym = (y1, y2, . . . , yr) (also Xm in the
next time step) stands for the current story event
that consists of r words, based on the protagonist’s
name P, the need history N, the emotion history
E, the need chain AN and the emotion chain AE,
where yi is the i-th word.

4 Methodology

The overall architecture of our proposed PICS sys-
tem is illustrated in Figure 3. In the following, we
will describe each component in more detail.

4.1 Contextual Encoder (Step 1)

In order to capture the contextual semantic informa-
tion for the story context and the protagonist’s his-
torical psychological states, we reconstruct the in-
put of the embedding layer in the backbone BART
(Lewis et al., 2020) model.

⟨pgt⟩⟨emo⟩⟨ned⟩ nm em pm ⟨cxt⟩ Xm⟨s⟩ ⟨/s⟩

Figure 2: Reconstructed input of the word embedding
layer in BART for m-th event.

As illustrated in Figure 2, we employ new spe-
cial {⟨ned⟩, ⟨emo⟩, ⟨pgt⟩} tokens to delimit each
protagonist’s need, emotion and name grounded in
the story context. In addition, we utilize a spe-
cial ⟨cxt⟩ token to delimit each story event of the
context:

bm = Emb(n1, e1, p1, X1, . . . , nm, em, pm) (1)
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<latexit sha1_base64="0Po/VASVzWVB+SAB9ht2agr3Vww=">AAAB7nicbVDLSgNBEOyJrxhfUY9eBoPgKeyGYMwt4MVjBPOAZFlmJ7PJkNnZZWZWCEs+wosHRbz6Pd78GyfJ4rugoajqprsrSATXxnHeUWFtfWNzq7hd2tnd2z8oHx51dZwqyjo0FrHqB0QzwSXrGG4E6yeKkSgQrBdMrxZ+744pzWN5a2YJ8yIyljzklBgr9SZ+Jv3a3C9XnKqzBP5L3JxUIEfbL78NRzFNIyYNFUTrgeskxsuIMpwKNi8NU80SQqdkzAaWShIx7WXLc+f4zCojHMbKljR4qX6fyEik9SwKbGdEzET/9hbif94gNeGll3GZpIZJuloUpgKbGC9+xyOuGDViZgmhittbMZ0QRaixCZVsCO7X702LRj0nTfczhG6t6l5U6zdOpeXkcRThBE7hHFxoQAuuoQ0doDCFe3iEJ5SgB/SMXlatBZTPHMMPoNcPYDmPzA==</latexit>

hn2

<latexit sha1_base64="kI5dJTLGGdb6gRyJdr2KgoRZTTo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexqMOYW8OIxgnlAsiyzk9lkyMzsMjMrhCUf4cWDIl79Hm/+jZNk8V3QUFR1090VJpxp47rvTmFldW19o7hZ2tre2d0r7x90dJwqQtsk5rHqhVhTziRtG2Y47SWKYhFy2g0nV3O/e0eVZrG8NdOE+gKPJIsYwcZK3XGQyeB8FpQrbtVdAP0lXk4qkKMVlN8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b6lEguq/Wxx7gydWGWIoljZkgYt1O8TGRZaT0VoOwU2Y/3bm4v/ef3URJd+xmSSGirJclGUcmRiNP8dDZmixPCpJZgoZm9FZIwVJsYmVLIheF+/NyzqtZw0vM8QOmdV76Jau3ErTTePowhHcAyn4EEdmnANLWgDgQncwyM8OYnz4Dw7L8vWgpPPHMIPOK8fYb6PzQ==</latexit>

hn3

<latexit sha1_base64="sSnG+lo9WM7hG5GL6Q3bPeHQt0U=">AAAB73icbVDLSsNAFL2pr1pfUZduBovoqiRarN0V3LisYB/QhjCZTtqhk0mcmQgl9CfcuFDErb/jzr9x2gbfBy4czrmXe+8JEs6Udpx3q7C0vLK6VlwvbWxube/Yu3ttFaeS0BaJeSy7AVaUM0FbmmlOu4mkOAo47QTjy5nfuaNSsVjc6ElCvQgPBQsZwdpI3dGxnwn/bOrbZafizIH+EjcnZcjR9O23/iAmaUSFJhwr1XOdRHsZlpoRTqelfqpogskYD2nPUIEjqrxsfu8UHRllgMJYmhIazdXvExmOlJpEgemMsB6p395M/M/rpTq88DImklRTQRaLwpQjHaPZ82jAJCWaTwzBRDJzKyIjLDHRJqKSCcH9+r1uUKvmpO5+htA+rbjnleq1U244eRxFOIBDOAEXatCAK2hCCwhwuIdHeLJurQfr2XpZtBasfGYffsB6/QDDHI/+</latexit>

h0
n3

<latexit sha1_base64="Ng6k/mvW8PvQb7ZKpVw5sWSJXr0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvoqSRarL0VvHisYD+gDWGznbZLN5u4uxFK6J/w4kERr/4db/4bt23w+8HA470ZZuYFMWdKO867lVtaXlldy68XNja3tneKu3stFSWSYpNGPJKdgCjkTGBTM82xE0skYcCxHYwvZ377DqVikbjRkxi9kAwFGzBKtJE6o2M/Rf9s6hdLTtmZw/5L3IyUIEPDL771+hFNQhSacqJU13Vi7aVEakY5Tgu9RGFM6JgMsWuoICEqL53fO7WPjNK3B5E0JbQ9V79PpCRUahIGpjMkeqR+ezPxP6+b6MGFlzIRJxoFXSwaJNzWkT173u4ziVTziSGESmZutemISEK1iahgQnC/fq8ZVCsZqbmfIbROy+55uXLtlOpOFkceDuAQTsCFKtThChrQBAoc7uERnqxb68F6tl4WrTkrm9mHH7BePwC1XY/1</latexit>

h0
e3

<latexit sha1_base64="Vx+H90eja+sjqfR7zs8TgDk37IU=">AAAB73icbVDLSsNAFL2pr1pfUZduBovoqiRarN0V3LisYB/QhjCZTtqhk0mcmQgl9CfcuFDErb/jzr9x2gbfBy4czrmXe+8JEs6Udpx3q7C0vLK6VlwvbWxube/Yu3ttFaeS0BaJeSy7AVaUM0FbmmlOu4mkOAo47QTjy5nfuaNSsVjc6ElCvQgPBQsZwdpI3dGxnyX+2dS3y07FmQP9JW5OypCj6dtv/UFM0ogKTThWquc6ifYyLDUjnE5L/VTRBJMxHtKeoQJHVHnZ/N4pOjLKAIWxNCU0mqvfJzIcKTWJAtMZYT1Sv72Z+J/XS3V44WVMJKmmgiwWhSlHOkaz59GASUo0nxiCiWTmVkRGWGKiTUQlE4L79XvdoFbNSd39DKF9WnHPK9Vrp9xw8jiKcACHcAIu1KABV9CEFhDgcA+P8GTdWg/Ws/WyaC1Y+cw+/ID1+gHGKpAA</latexit>

h0
p3

<latexit sha1_base64="UQWXRcbxnaHEPQ3Z0AW2/6vTCqk=">AAAB8nicbVDLSsNAFJ3UV62vqks3wSKIi5JosXZXcOOygn1AG8NkOmmHTmbCzI1QQj7DjQtF3Po17vwbp23wfeDC4Zx7ufeeIOZMg+O8W4Wl5ZXVteJ6aWNza3unvLvX0TJRhLaJ5FL1AqwpZ4K2gQGnvVhRHAWcdoPJ5czv3lGlmRQ3MI2pF+GRYCEjGIzUH9+mJ5mfCv8s88sVp+rMYf8lbk4qKEfLL78NhpIkERVAONa67zoxeClWwAinWWmQaBpjMsEj2jdU4IhqL52fnNlHRhnaoVSmBNhz9ftEiiOtp1FgOiMMY/3bm4n/ef0EwgsvZSJOgAqyWBQm3AZpz/63h0xRAnxqCCaKmVttMsYKEzAplUwI7tfvDYN6LScN9zOEzmnVPa/Wrp1K08njKKIDdIiOkYvqqImuUAu1EUES3aNH9GSB9WA9Wy+L1oKVz+yjH7BePwBIkZF1</latexit>

h⇤
n3

<latexit sha1_base64="Kpo2NEA9XC53xSoIs+0jpwsMm90=">AAAB8nicbVDLSsNAFJ3UV62vqks3wSKIi5JosXZXcOOygn1AG8NkOmmHTmbCzI1QQj7DjQtF3Po17vwbp23wfeDC4Zx7ufeeIOZMg+O8W4Wl5ZXVteJ6aWNza3unvLvX0TJRhLaJ5FL1AqwpZ4K2gQGnvVhRHAWcdoPJ5czv3lGlmRQ3MI2pF+GRYCEjGIzUH9+mJ5mfUv8s88sVp+rMYf8lbk4qKEfLL78NhpIkERVAONa67zoxeClWwAinWWmQaBpjMsEj2jdU4IhqL52fnNlHRhnaoVSmBNhz9ftEiiOtp1FgOiMMY/3bm4n/ef0EwgsvZSJOgAqyWBQm3AZpz/63h0xRAnxqCCaKmVttMsYKEzAplUwI7tfvDYN6LScN9zOEzmnVPa/Wrp1K08njKKIDdIiOkYvqqImuUAu1EUES3aNH9GSB9WA9Wy+L1oKVz+yjH7BePwA60pFs</latexit>

h⇤
e3

<latexit sha1_base64="DLE7x7lBH4HTbeocLJwpBjpp0AE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqMOYW8OIxojGBZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmy+C5oKKq66e4KEsG1cd13J7e0vLK6ll8vbGxube8Ud/dudZwqhk0Wi1i1A6pRcIlNw43AdqKQRoHAVjC6mPmtO1Sax/LGjBP0IzqQPOSMGitdY++0Vyy5ZXcO8pd4GSlBhkav+NbtxyyNUBomqNYdz02MP6HKcCZwWuimGhPKRnSAHUsljVD7k/mpU3JklT4JY2VLGjJXv09MaKT1OApsZ0TNUP/2ZuJ/Xic14bk/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYE7+v3mkW1kpGa9xnC7UnZOytXrtxS3c3iyMMBHMIxeFCFOlxCA5rAYAD38AhPjnAenGfnZdGac7KZffgB5/UDE3yN3Q==</latexit>e3
<latexit sha1_base64="N7WHHiO1jFKseGHoDlbOGsmg/Ac=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0QjLkFvHiMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEkW3wUNRVU33V1BLLg2rvvurKyurW9s5rby2zu7e/uFg8OWjhLFsMkiEalOQDUKLrFpuBHYiRXSMBDYDiaXc799h0rzSN6aaYx+SEeSDzmjxko32C/3C0W35C5A/hIvI0XI0OgX3nqDiCUhSsME1brrubHxU6oMZwJn+V6iMaZsQkfYtVTSELWfLk6dkVOrDMgwUrakIQv1+0RKQ62nYWA7Q2rG+rc3F//zuokZXvgpl3FiULLlomEiiInI/G8y4AqZEVNLKFPc3krYmCrKjE0nb0Pwvn6vWVQrGal5nyG0yiXvvFS5dot1N4sjB8dwAmfgQRXqcAUNaAKDEdzDIzw5wnlwnp2XZeuKk80cwQ84rx8R+I3c</latexit>e2

<latexit sha1_base64="ZVTpD0+hIuXLznaX5oNHupGlHQ8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKMOYW8OIxonlAsoTZSScZMju7zMwKYcknePGgiFe/yJt/4yRZfBc0FFXddHcFseDauO67k1tZXVvfyG8WtrZ3dveK+wctHSWKYZNFIlKdgGoUXGLTcCOwEyukYSCwHUwu5377DpXmkbw10xj9kI4kH3JGjZVusF/pF0tu2V2A/CVeRkqQodEvvvUGEUtClIYJqnXXc2Pjp1QZzgTOCr1EY0zZhI6wa6mkIWo/XZw6IydWGZBhpGxJQxbq94mUhlpPw8B2htSM9W9vLv7ndRMzvPBTLuPEoGTLRcNEEBOR+d9kwBUyI6aWUKa4vZWwMVWUGZtOwYbgff1es6hWMlLzPkNonZW983Ll2i3V3SyOPBzBMZyCB1WowxU0oAkMRnAPj/DkCOfBeXZelq05J5s5hB9wXj8AFQCN3g==</latexit>e4
<latexit sha1_base64="7lrN3pyilNczS0Xj3xzTtxkJEzk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKGnMLePEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZIsvgsaiqpuuruCRHBtXPfdyS0tr6yu5dcLG5tb2zvF3b2mjlPFsMFiEat2QDUKLrFhuBHYThTSKBDYCkaXM791h0rzWN6acYJ+RAeSh5xRY6Ub7J31iiW37M5B/hIvIyXIUO8V37r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj91So6s0idhrGxJQ+bq94kJjbQeR4HtjKgZ6t/eTPzP66QmvPAnXCapQckWi8JUEBOT2d+kzxUyI8aWUKa4vZWwIVWUGZtOwYbgff1etaicZqTqfYbQPCl75+XTa7dUc7M48nAAh3AMHlSgBldQhwYwGMA9PMKTI5wH59l5WbTmnGxmH37Aef0AFoSN3w==</latexit>e5

<latexit sha1_base64="tI0scpJFUQ+eA0M3ZGlBoVctNJU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKGnMLePEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZIsvgsaiqpuuruCRAqDrvvu5JaWV1bX8uuFjc2t7Z3i7l7TxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6nPmtO66NiNUtjhPuR3SgRCgYRSvdqN5Zr1hyy+4c5C/xMlKCDPVe8a3bj1kacYVMUmM6npugP6EaBZN8WuimhieUjeiAdyxVNOLGn8xPnZIjq/RJGGtbCslc/T4xoZEx4yiwnRHFofntzcT/vE6K4YU/ESpJkSu2WBSmkmBMZn+TvtCcoRxbQpkW9lbChlRThjadgg3B+/q9alE5zUjV+wyheVL2zsun126p5mZx5OEADuEYPKhADa6gDg1gMIB7eIQnRzoPzrPzsmjNOdnMPvyA8/oBJDqN6A==</latexit>n5
<latexit sha1_base64="g5ZZvf/exWyniYKbG6Jm5OkUuew=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKMOYW8OIxonlAsoTZySQZMju7zPQKYcknePGgiFe/yJt/4yRZfBc0FFXddHcFsRQGXffdya2srq1v5DcLW9s7u3vF/YOWiRLNeJNFMtKdgBouheJNFCh5J9achoHk7WByOffbd1wbEalbnMbcD+lIiaFgFK10o/qVfrHklt0FyF/iZaQEGRr94ltvELEk5AqZpMZ0PTdGP6UaBZN8VuglhseUTeiIdy1VNOTGTxenzsiJVQZkGGlbCslC/T6R0tCYaRjYzpDi2Pz25uJ/XjfB4YWfChUnyBVbLhomkmBE5n+TgdCcoZxaQpkW9lbCxlRThjadgg3B+/q9ZlGtZKTmfYbQOit75+XKtVuqu1kceTiCYzgFD6pQhytoQBMYjOAeHuHJkc6D8+y8LFtzTjZzCD/gvH4AIraN5w==</latexit>n4

<latexit sha1_base64="LjQ8tfGJKC4vCSrVO7JHtx/1RB0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqMOYW8OIxojGBZAmzk9lkyOzsMtMrhJBP8OJBEa9+kTf/xkmy+C5oKKq66e4KEikMuu67k1taXlldy68XNja3tneKu3u3Jk41400Wy1i3A2q4FIo3UaDk7URzGgWSt4LRxcxv3XFtRKxucJxwP6IDJULBKFrpWvVOe8WSW3bnIH+Jl5ESZGj0im/dfszSiCtkkhrT8dwE/QnVKJjk00I3NTyhbEQHvGOpohE3/mR+6pQcWaVPwljbUkjm6veJCY2MGUeB7YwoDs1vbyb+53VSDM/9iVBJilyxxaIwlQRjMvub9IXmDOXYEsq0sLcSNqSaMrTpFGwI3tfvNYtqJSM17zOE25Oyd1auXLmlupvFkYcDOIRj8KAKdbiEBjSBwQDu4RGeHOk8OM/Oy6I152Qz+/ADzusHITKN5g==</latexit>n3
<latexit sha1_base64="iDpta3Ow3PeqlFJh8A+j2Kt1eiI=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0QjLkFvHiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEkW3wUNRVU33V1BLIVB1313VlbX1jc2c1v57Z3dvf3CwWHLRIlmvMkiGelOQA2XQvEmCpS8E2tOw0DydjC5nPvtO66NiNQtTmPuh3SkxFAwila6Uf1yv1B0S+4C5C/xMlKEDI1+4a03iFgScoVMUmO6nhujn1KNgkk+y/cSw2PKJnTEu5YqGnLjp4tTZ+TUKgMyjLQthWShfp9IaWjMNAxsZ0hxbH57c/E/r5vg8MJPhYoT5IotFw0TSTAi87/JQGjOUE4toUwLeythY6opQ5tO3obgff1es6hWMlLzPkNolUveealy7RbrbhZHDo7hBM7AgyrU4Qoa0AQGI7iHR3hypPPgPDsvy9YVJ5s5gh9wXj8AH66N5Q==</latexit>n2

<latexit sha1_base64="blA7cST6RNxAPfqBzzA+1uAAWro=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0QjLkFvHiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEkW3wUNRVU33V1BLIVB1313VlbX1jc2c1v57Z3dvf3CwWHLRIlmvMkiGelOQA2XQvEmCpS8E2tOw0DydjC5nPvtO66NiNQtTmPuh3SkxFAwila6ifvlfqHoltwFyF/iZaQIGRr9wltvELEk5AqZpMZ0PTdGP6UaBZN8lu8lhseUTeiIdy1VNOTGTxenzsipVQZkGGlbCslC/T6R0tCYaRjYzpDi2Pz25uJ/XjfB4YWfChUnyBVbLhomkmBE5n+TgdCcoZxaQpkW9lbCxlRThjadvA3B+/q9ZlGtZKTmfYbQKpe881Ll2i3W3SyOHBzDCZyBB1WowxU0oAkMRnAPj/DkSOfBeXZelq0rTjZzBD/gvH4AIrqN5w==</latexit>p2
<latexit sha1_base64="p+Wilsg2JHSyXJXRNhzEuoTUe3Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqMOYW8OIxojGBZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmy+C5oKKq66e4KEsG1cd13J7e0vLK6ll8vbGxube8Ud/dudZwqhk0Wi1i1A6pRcIlNw43AdqKQRoHAVjC6mPmtO1Sax/LGjBP0IzqQPOSMGitdJ73TXrHklt05yF/iZaQEGRq94lu3H7M0QmmYoFp3PDcx/oQqw5nAaaGbakwoG9EBdiyVNELtT+anTsmRVfokjJUtachc/T4xoZHW4yiwnRE1Q/3bm4n/eZ3UhOf+hMskNSjZYlGYCmJiMvub9LlCZsTYEsoUt7cSNqSKMmPTKdgQvK/faxbVSkZq3mcItydl76xcuXJLdTeLIw8HcAjH4EEV6nAJDWgCgwHcwyM8OcJ5cJ6dl0Vrzslm9uEHnNcPJD6N6A==</latexit>p3

<latexit sha1_base64="YlqqF/m1h/LEqGuaKbEMy9vJ7LA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuBGNuAS8eI5gHJEuYnfQmQ2Znl5leIYR8hBcPinj1e7z5N06SxXdBQ1HVTXdXkEhh0HXfndzK6tr6Rn6zsLW9s7tX3D9omTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxhfzf32HWgjYnWLkwT8iA2VCAVnaKV2LwBkfa9fLLlldwH6l3gZKZEMjX7xrTeIeRqBQi6ZMV3PTdCfMo2CS5gVeqmBhPExG0LXUsUiMP50ce6MnlhlQMNY21JIF+r3iSmLjJlEge2MGI7Mb28u/ud1Uwwv/alQSYqg+HJRmEqKMZ3/TgdCA0c5sYRxLeytlI+YZhxtQgUbgvf1e82iWslIzfsMoXVe9i7KlRu3VD/L4siTI3JMTolHqqROrkmDNAknY3JPHsmTkzgPzrPzsmzNOdnMIfkB5/UDDN+Pkg==</latexit>

�1
<latexit sha1_base64="SslK2CI+F1oet5K8oCKLPCzkxvY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgNwZhbwIvHCOYByRJmJ7PJkNnZZaZXCCEf4cWDIl79Hm/+jZNk8V3QUFR1090VJFIYdN13Z2V1bX1jM7eV397Z3dsvHBy2TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjq7nfvuPaiFjd4iThfkSHSoSCUbRSuxdwpP1yv1B0S+4C5C/xMlKEDI1+4a03iFkacYVMUmO6npugP6UaBZN8lu+lhieUjemQdy1VNOLGny7OnZFTqwxIGGtbCslC/T4xpZExkyiwnRHFkfntzcX/vG6K4aU/FSpJkSu2XBSmkmBM5r+TgdCcoZxYQpkW9lbCRlRThjahvA3B+/q9ZlGtZKTmfYbQKpe8i1Llxi3Wz7M4cnAMJ3AGHlShDtfQgCYwGMM9PMKTkzgPzrPzsmxdcbKZI/gB5/UDDmOPkw==</latexit>

�2

<latexit sha1_base64="rMVVncvIrrgXFYgzTRHJ+jsD9pU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKGHMLePEYwTwgWZbZSScZMju7zMwKYclHePGgiFe/x5t/4yRZfBc0FFXddHeFieDauO67U1hZXVvfKG6WtrZ3dvfK+wdtHaeKYYvFIlbdkGoUXGLLcCOwmyikUSiwE06u5n7nDpXmsbw10wT9iI4kH3JGjZU64yDDwJsF5YpbdRcgf4mXkwrkaAblt/4gZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni3Nn5MQqAzKMlS1pyEL9PpHRSOtpFNrOiJqx/u3Nxf+8XmqGl37GZZIalGy5aJgKYmIy/50MuEJmxNQSyhS3txI2pooyYxMq2RC8r9/rFrXznNS9zxDaZ1Xvonp+41Yabh5HEY7gGE7Bgxo04Bqa0AIGE7iHR3hyEufBeXZelq0FJ585hB9wXj8AUPWPwg==</latexit>

he1

<latexit sha1_base64="gl4irMSnAzkn0yNWddEDfUDAQag=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSSlWHsrePFYwX5AG8JmO2mXbjZhdyOU0B/hxYMiXv093vw3btvg94OBx3szzMwLEs6Udpx3q7C2vrG5Vdwu7ezu7R+UD4+6Kk4lxQ6NeSz7AVHImcCOZppjP5FIooBjL5heLfzeHUrFYnGrZwl6ERkLFjJKtJF6Ez9Dvzb3yxWn6ixh/yVuTiqQo+2X34ajmKYRCk05UWrgOon2MiI1oxznpWGqMCF0SsY4MFSQCJWXLc+d22dGGdlhLE0JbS/V7xMZiZSaRYHpjIieqN/eQvzPG6Q6vPQyJpJUo6CrRWHKbR3bi9/tEZNINZ8ZQqhk5labTogkVJuESiYE9+v3pkGjnpOm+xlCt1Z1L6r1G6fScvI4inACp3AOLjSgBdfQhg5QmMI9PMKTlVgP1rP1smotWPnMMfyA9foBUnqPww==</latexit>

he2

<latexit sha1_base64="uHBrWXjkII/ODIZp9+i9ImUgJRQ=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4CjMajLkFvHiMYBZIhqGnU5M06Vno7hHCkI/w4kERr36PN//GTjK4Pyh4vFdFVT0/EVxp2363Ciura+sbxc3S1vbO7l55/6Cj4lQybLNYxLLnU4WCR9jWXAvsJRJp6Avs+pOrud+9Q6l4HN3qaYJuSEcRDzij2kjdsZehdz7zyhW7ai9A/hInJxXI0fLKb4NhzNIQI80EVarv2Il2Myo1ZwJnpUGqMKFsQkfYNzSiISo3W5w7IydGGZIglqYiTRbq94mMhkpNQ990hlSP1W9vLv7n9VMdXLoZj5JUY8SWi4JUEB2T+e9kyCUyLaaGUCa5uZWwMZWUaZNQyYTgfP3eMKjXctJwPkPonFWdi2rtxq407TyOIhzBMZyCA3VowjW0oA0MJnAPj/BkJdaD9Wy9LFsLVj5zCD9gvX4AU/+PxA==</latexit>

he3

<latexit sha1_base64="8EnEjCfRnPBSjf3JSW5LukDevik=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexqMOYW8OIxgnlAsiyzk9lkyOzsMDMrhCUf4cWDIl79Hm/+jZNk8V3QUFR1090VSs60cd13p7Cyura+UdwsbW3v7O6V9w86OkkVoW2S8ET1QqwpZ4K2DTOc9qSiOA457YaTq7nfvaNKs0TcmqmkfoxHgkWMYGOl7jjIZHA+C8oVt+ougP4SLycVyNEKym+DYULSmApDONa677nS+BlWhhFOZ6VBqqnEZIJHtG+pwDHVfrY4d4ZOrDJEUaJsCYMW6veJDMdaT+PQdsbYjPVvby7+5/VTE136GRMyNVSQ5aIo5cgkaP47GjJFieFTSzBRzN6KyBgrTIxNqGRD8L5+b1jUazlpeJ8hdM6q3kW1duNWmm4eRxGO4BhOwYM6NOEaWtAGAhO4h0d4cqTz4Dw7L8vWgpPPHMIPOK8fZMyPzw==</latexit>

hp3

<latexit sha1_base64="jdp2fr2nCsGUJyyyhsvAGWQSXdU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGYMwt4MVjBPOAZFlmJ7PJkNnZYWZWCEs+wosHRbz6Pd78GyfJ4rugoajqprsrlJxp47rvTmFtfWNzq7hd2tnd2z8oHx51dZIqQjsk4Ynqh1hTzgTtGGY47UtFcRxy2gunVwu/d0eVZom4NTNJ/RiPBYsYwcZKvUmQyaA2D8oVt+ougf4SLycVyNEOym/DUULSmApDONZ64LnS+BlWhhFO56VhqqnEZIrHdGCpwDHVfrY8d47OrDJCUaJsCYOW6veJDMdaz+LQdsbYTPRvbyH+5w1SE136GRMyNVSQ1aIo5cgkaPE7GjFFieEzSzBRzN6KyAQrTIxNqGRD8L5+b1o06jlpep8hdGtV76Jav3ErLTePowgncArn4EEDWnANbegAgSncwyM8OdJ5cJ6dl1VrwclnjuEHnNcPY0ePzg==</latexit>

hp2

<latexit sha1_base64="lMdGhkP+RLTvDaikEJzAYubXV2s=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexKSMwt4MVjBPOAZFlmJ7PJkNnZYWZWCEs+wosHRbz6Pd78GyfJ4rugoajqprsrlJxp47rvTmFtfWNzq7hd2tnd2z8oHx51dZIqQjsk4Ynqh1hTzgTtGGY47UtFcRxy2gunVwu/d0eVZom4NTNJ/RiPBYsYwcZKvUmQycCbB+WKW3WXQH+Jl5MK5GgH5bfhKCFpTIUhHGs98Fxp/Awrwwin89Iw1VRiMsVjOrBU4JhqP1ueO0dnVhmhKFG2hEFL9ftEhmOtZ3FoO2NsJvq3txD/8wapiS79jAmZGirIalGUcmQStPgdjZiixPCZJZgoZm9FZIIVJsYmVLIheF+/Ny0atZw0vc8QuhdVr16t3biVlpvHUYQTOIVz8KABLbiGNnSAwBTu4RGeHOk8OM/Oy6q14OQzx/ADzusHYcKPzQ==</latexit>

hp1

<latexit sha1_base64="coWuAfVfAk8V+NgNV7jA/GDdC7c=">AAAB9HicbVDLSsNAFL2pr1pfUZduBovgqiSlWLsruHFZwT6gDWUynbRDJ5M4MymU0O9w40IRt36MO//GSRt8Hxg4nHMv98zxY86Udpx3q7C2vrG5Vdwu7ezu7R/Yh0cdFSWS0DaJeCR7PlaUM0HbmmlOe7GkOPQ57frTq8zvzqhULBK3eh5TL8RjwQJGsDaSNwixnhDM095iWB3aZafiLIH+EjcnZcjRGtpvg1FEkpAKTThWqu86sfZSLDUjnC5Kg0TRGJMpHtO+oQKHVHnpMvQCnRllhIJImic0WqrfN1IcKjUPfTOZhVS/vUz8z+snOrj0UibiRFNBVoeChCMdoawBNGKSEs3nhmAimcmKyARLTLTpqWRKcL/+3jCo13LScD9L6FQr7kWlduOUm05eRxFO4BTOwYU6NOEaWtAGAndwD4/wZM2sB+vZelmNFqx85xh+wHr9AOQnkmE=</latexit>X2

<latexit sha1_base64="wMpM58nBD7d4MfwLvGmwVZSEMZk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKGHMLePEYwTwgWZbZySQZMju7zPQKYclHePGgiFe/x5t/4yRZfBc0FFXddHeFiRQGXffdKaysrq1vFDdLW9s7u3vl/YO2iVPNeIvFMtbdkBouheItFCh5N9GcRqHknXByNfc7d1wbEatbnCbcj+hIiaFgFK3UGQeZCrxZUK64VXcB8pd4OalAjmZQfusPYpZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLcGTmxyoAMY21LIVmo3ycyGhkzjULbGVEcm9/eXPzP66U4vPQzoZIUuWLLRcNUEozJ/HcyEJozlFNLKNPC3krYmGrK0CZUsiF4X7/XLWrnOal7nyG0z6reRfX8xq003DyOIhzBMZyCBzVowDU0oQUMJnAPj/DkJM6D8+y8LFsLTj5zCD/gvH4AXrSPyw==</latexit>

hn1

<latexit sha1_base64="L02KVp3XBs48UCkJN+OJm4ui+q4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKMOYW8OIxonlAsoTZSScZMju7zMwKYcknePGgiFe/yJt/4yRZfBc0FFXddHcFseDauO67k1tZXVvfyG8WtrZ3dveK+wctHSWKYZNFIlKdgGoUXGLTcCOwEyukYSCwHUwu5377DpXmkbw10xj9kI4kH3JGjZVuxn3WL5bcsrsA+Uu8jJQgQ6NffOsNIpaEKA0TVOuu58bGT6kynAmcFXqJxpiyCR1h11JJQ9R+ujh1Rk6sMiDDSNmShizU7xMpDbWehoHtDKkZ69/eXPzP6yZmeOGnXMaJQcmWi4aJICYi87/JgCtkRkwtoUxxeythY6ooMzadgg3B+/q9ZlGtZKTmfYbQOit75+XKtVuqu1kceTiCYzgFD6pQhytoQBMYjOAeHuHJEc6D8+y8LFtzTjZzCD/gvH4AYM6OEA==</latexit>

hc

<latexit sha1_base64="Ds7qwnZHmKXOqt2Z2zAga0zzATc=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPoKexKMOYW8OIxgnlAsoTZyWwyZGZ2mZkVwpJf8OJBEa/+kDf/xtlk8V3QUFR1090VxJxp47rvTmFldW19o7hZ2tre2d0r7x90dJQoQtsk4pHqBVhTziRtG2Y47cWKYhFw2g2mV5nfvaNKs0jemllMfYHHkoWMYJNJk9MhGZYrbtVdAP0lXk4qkKM1LL8NRhFJBJWGcKx133Nj46dYGUY4nZcGiaYxJlM8pn1LJRZU++ni1jk6scoIhZGyJQ1aqN8nUiy0nonAdgpsJvq3l4n/ef3EhJd+ymScGCrJclGYcGQilD2ORkxRYvjMEkwUs7ciMsEKE2PjKdkQvK/fGxb1Wk4a3mcInfOqd1Gt3biVppvHUYQjOIYz8KAOTbiGFrSBwATu4RGeHOE8OM/Oy7K14OQzh/ADzusHwYiOQQ==</latexit>

h0
c

<latexit sha1_base64="UQWXRcbxnaHEPQ3Z0AW2/6vTCqk=">AAAB8nicbVDLSsNAFJ3UV62vqks3wSKIi5JosXZXcOOygn1AG8NkOmmHTmbCzI1QQj7DjQtF3Po17vwbp23wfeDC4Zx7ufeeIOZMg+O8W4Wl5ZXVteJ6aWNza3unvLvX0TJRhLaJ5FL1AqwpZ4K2gQGnvVhRHAWcdoPJ5czv3lGlmRQ3MI2pF+GRYCEjGIzUH9+mJ5mfCv8s88sVp+rMYf8lbk4qKEfLL78NhpIkERVAONa67zoxeClWwAinWWmQaBpjMsEj2jdU4IhqL52fnNlHRhnaoVSmBNhz9ftEiiOtp1FgOiMMY/3bm4n/ef0EwgsvZSJOgAqyWBQm3AZpz/63h0xRAnxqCCaKmVttMsYKEzAplUwI7tfvDYN6LScN9zOEzmnVPa/Wrp1K08njKKIDdIiOkYvqqImuUAu1EUES3aNH9GSB9WA9Wy+L1oKVz+yjH7BePwBIkZF1</latexit>

h⇤
n3

<latexit sha1_base64="Kpo2NEA9XC53xSoIs+0jpwsMm90=">AAAB8nicbVDLSsNAFJ3UV62vqks3wSKIi5JosXZXcOOygn1AG8NkOmmHTmbCzI1QQj7DjQtF3Po17vwbp23wfeDC4Zx7ufeeIOZMg+O8W4Wl5ZXVteJ6aWNza3unvLvX0TJRhLaJ5FL1AqwpZ4K2gQGnvVhRHAWcdoPJ5czv3lGlmRQ3MI2pF+GRYCEjGIzUH9+mJ5mfUv8s88sVp+rMYf8lbk4qKEfLL78NhpIkERVAONa67zoxeClWwAinWWmQaBpjMsEj2jdU4IhqL52fnNlHRhnaoVSmBNhz9ftEiiOtp1FgOiMMY/3bm4n/ef0EwgsvZSJOgAqyWBQm3AZpz/63h0xRAnxqCCaKmVttMsYKEzAplUwI7tfvDYN6LScN9zOEzmnVPa/Wrp1K08njKKIDdIiOkYvqqImuUAu1EUES3aNH9GSB9WA9Wy+L1oKVz+yjH7BePwA60pFs</latexit>

h⇤
e3

<latexit sha1_base64="+AkRcXXZ/s0W7siJIokJr+E00vk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKMOYW8OIxonlAsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yRZfBc0FFXddHcFiRQGXffdya2srq1v5DcLW9s7u3vF/YOWiVPNeJPFMtadgBouheJNFCh5J9GcRoHk7WB8Offbd1wbEatbnCTcj+hQiVAwila6UX2vXyy5ZXcB8pd4GSlBhka/+NYbxCyNuEImqTFdz03Qn1KNgkk+K/RSwxPKxnTIu5YqGnHjTxenzsiJVQYkjLUthWShfp+Y0siYSRTYzojiyPz25uJ/XjfF8MKfCpWkyBVbLgpTSTAm87/JQGjOUE4soUwLeythI6opQ5tOwYbgff1es6hWMlLzPkNonZW983Ll2i3V3SyOPBzBMZyCB1WowxU0oAkMhnAPj/DkSOfBeXZelq05J5s5hB9wXj8AHiqN5A==</latexit>n1
<latexit sha1_base64="LjQ8tfGJKC4vCSrVO7JHtx/1RB0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqMOYW8OIxojGBZAmzk9lkyOzsMtMrhJBP8OJBEa9+kTf/xkmy+C5oKKq66e4KEikMuu67k1taXlldy68XNja3tneKu3u3Jk41400Wy1i3A2q4FIo3UaDk7URzGgWSt4LRxcxv3XFtRKxucJxwP6IDJULBKFrpWvVOe8WSW3bnIH+Jl5ESZGj0im/dfszSiCtkkhrT8dwE/QnVKJjk00I3NTyhbEQHvGOpohE3/mR+6pQcWaVPwljbUkjm6veJCY2MGUeB7YwoDs1vbyb+53VSDM/9iVBJilyxxaIwlQRjMvub9IXmDOXYEsq0sLcSNqSaMrTpFGwI3tfvNYtqJSM17zOE25Oyd1auXLmlupvFkYcDOIRj8KAKdbiEBjSBwQDu4RGeHOk8OM/Oy6I152Qz+/ADzusHITKN5g==</latexit>n3

<latexit sha1_base64="iDpta3Ow3PeqlFJh8A+j2Kt1eiI=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0QjLkFvHiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEkW3wUNRVU33V1BLIVB1313VlbX1jc2c1v57Z3dvf3CwWHLRIlmvMkiGelOQA2XQvEmCpS8E2tOw0DydjC5nPvtO66NiNQtTmPuh3SkxFAwila6Uf1yv1B0S+4C5C/xMlKEDI1+4a03iFgScoVMUmO6nhujn1KNgkk+y/cSw2PKJnTEu5YqGnLjp4tTZ+TUKgMyjLQthWShfp9IaWjMNAxsZ0hxbH57c/E/r5vg8MJPhYoT5IotFw0TSTAi87/JQGjOUE4toUwLeythY6opQ5tO3obgff1es6hWMlLzPkNolUveealy7RbrbhZHDo7hBM7AgyrU4Qoa0AQGI7iHR3hypPPgPDsvy9YVJ5s5gh9wXj8AH66N5Q==</latexit>n2
<latexit sha1_base64="Hs1edCCSB0WAmppoWWs20xDg66A=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKMOYW8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yRZfBc0FFXddHcFieDauO67k1tZXVvfyG8WtrZ3dveK+wctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYwv5377DpXmsbw1kwT9iA4lDzmjxko32Pf6xZJbdhcgf4mXkRJkaPSLb71BzNIIpWGCat313MT4U6oMZwJnhV6qMaFsTIfYtVTSCLU/XZw6IydWGZAwVrakIQv1+8SURlpPosB2RtSM9G9vLv7ndVMTXvhTLpPUoGTLRWEqiInJ/G8y4AqZERNLKFPc3krYiCrKjE2nYEPwvn6vWVQrGal5nyG0zsreebly7ZbqbhZHHo7gGE7BgyrU4Qoa0AQGQ7iHR3hyhPPgPDsvy9ack80cwg84rx8QdI3b</latexit>e1

<latexit sha1_base64="DLE7x7lBH4HTbeocLJwpBjpp0AE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqMOYW8OIxojGBZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmy+C5oKKq66e4KEsG1cd13J7e0vLK6ll8vbGxube8Ud/dudZwqhk0Wi1i1A6pRcIlNw43AdqKQRoHAVjC6mPmtO1Sax/LGjBP0IzqQPOSMGitdY++0Vyy5ZXcO8pd4GSlBhkav+NbtxyyNUBomqNYdz02MP6HKcCZwWuimGhPKRnSAHUsljVD7k/mpU3JklT4JY2VLGjJXv09MaKT1OApsZ0TNUP/2ZuJ/Xic14bk/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYE7+v3mkW1kpGa9xnC7UnZOytXrtxS3c3iyMMBHMIxeFCFOlxCA5rAYAD38AhPjnAenGfnZdGac7KZffgB5/UDE3yN3Q==</latexit>e3
<latexit sha1_base64="N7WHHiO1jFKseGHoDlbOGsmg/Ac=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0QjLkFvHiMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEkW3wUNRVU33V1BLLg2rvvurKyurW9s5rby2zu7e/uFg8OWjhLFsMkiEalOQDUKLrFpuBHYiRXSMBDYDiaXc799h0rzSN6aaYx+SEeSDzmjxko32C/3C0W35C5A/hIvI0XI0OgX3nqDiCUhSsME1brrubHxU6oMZwJn+V6iMaZsQkfYtVTSELWfLk6dkVOrDMgwUrakIQv1+0RKQ62nYWA7Q2rG+rc3F//zuokZXvgpl3FiULLlomEiiInI/G8y4AqZEVNLKFPc3krYmCrKjE0nb0Pwvn6vWVQrGal5nyG0yiXvvFS5dot1N4sjB8dwAmfgQRXqcAUNaAKDEdzDIzw5wnlwnp2XZeuKk80cwQ84rx8R+I3c</latexit>e2

<latexit sha1_base64="L02KVp3XBs48UCkJN+OJm4ui+q4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKMOYW8OIxonlAsoTZSScZMju7zMwKYcknePGgiFe/yJt/4yRZfBc0FFXddHcFseDauO67k1tZXVvfyG8WtrZ3dveK+wctHSWKYZNFIlKdgGoUXGLTcCOwEyukYSCwHUwu5377DpXmkbw10xj9kI4kH3JGjZVuxn3WL5bcsrsA+Uu8jJQgQ6NffOsNIpaEKA0TVOuu58bGT6kynAmcFXqJxpiyCR1h11JJQ9R+ujh1Rk6sMiDDSNmShizU7xMpDbWehoHtDKkZ69/eXPzP6yZmeOGnXMaJQcmWi4aJICYi87/JgCtkRkwtoUxxeythY6ooMzadgg3B+/q9ZlGtZKTmfYbQOit75+XKtVuqu1kceTiCYzgFD6pQhytoQBMYjOAeHuHJEc6D8+y8LFtzTjZzCD/gvH4AYM6OEA==</latexit>

hc

<latexit sha1_base64="Vx+H90eja+sjqfR7zs8TgDk37IU=">AAAB73icbVDLSsNAFL2pr1pfUZduBovoqiRarN0V3LisYB/QhjCZTtqhk0mcmQgl9CfcuFDErb/jzr9x2gbfBy4czrmXe+8JEs6Udpx3q7C0vLK6VlwvbWxube/Yu3ttFaeS0BaJeSy7AVaUM0FbmmlOu4mkOAo47QTjy5nfuaNSsVjc6ElCvQgPBQsZwdpI3dGxnyX+2dS3y07FmQP9JW5OypCj6dtv/UFM0ogKTThWquc6ifYyLDUjnE5L/VTRBJMxHtKeoQJHVHnZ/N4pOjLKAIWxNCU0mqvfJzIcKTWJAtMZYT1Sv72Z+J/XS3V44WVMJKmmgiwWhSlHOkaz59GASUo0nxiCiWTmVkRGWGKiTUQlE4L79XvdoFbNSd39DKF9WnHPK9Vrp9xw8jiKcACHcAIu1KABV9CEFhDgcA+P8GTdWg/Ws/WyaC1Y+cw+/ID1+gHGKpAA</latexit>

h0
p3

<latexit sha1_base64="4aFjQDOCOJhI6pq/EkdzlQL1vYM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWRYu2u4KbLCvYBbQiT6aQdOnkwMxFqyJe4caGIWz/FnX/jpA2+DwwczrmXe+Z4MWdSWda7UVpb39jcKm9Xdnb39qvmwWFfRokgtEciHomhhyXlLKQ9xRSnw1hQHHicDrz5Ve4PbqmQLApv1CKmToCnIfMZwUpLrlkdB1jNCOZpJ3NTkrlmzapbS6C/xC5IDQp0XfNtPIlIEtBQEY6lHNlWrJwUC8UIp1llnEgaYzLHUzrSNMQBlU66DJ6hU61MkB8J/UKFlur3jRQHUi4CT0/mMeVvLxf/80aJ8i+dlIVxomhIVof8hCMVobwFNGGCEsUXmmAimM6KyAwLTJTuqqJLsL/+3tJoNgrSsj9L6J/X7Yt649qqta2ijjIcwwmcgQ1NaEMHutADAgncwyM8GXfGg/FsvKxGS0axcwQ/YLx+AFq6k78=</latexit>Hc
<latexit sha1_base64="MjOEWjQdvoq6U6ORCQnCjSaGx0w=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIsXZXcOOygn1IO5RMmmlDM8mQZIQy9DPcuFDErV/jzr8x0w6+DwQO59xLzj1BzJk2rvvuFFZW19Y3ipulre2d3b3y/kFHy0QR2iaSS9ULsKacCdo2zHDaixXFUcBpN5heZn73jirNpLgxs5j6ER4LFjKCjZX6gwibCcE8vZ0PyxW36i6A/hIvJxXI0RqW3wYjSZKICkM41rrvubHxU6wMI5zOS4NE0xiTKR7TvqUCR1T76SLyHJ1YZYRCqewTBi3U7xspjrSeRYGdzCLq314m/uf1ExNe+CkTcWKoIMuPwoQjI1F2PxoxRYnhM0swUcxmRWSCFSbGtlSyJXhftzcs6rWcNLzPEjpnVe+8Wrt2K003r6MIR3AMp+BBHZpwBS1oAwEJ9/AIT45xHpxn52U5WnDynUP4Aef1A7Z8kb0=</latexit>Y

<latexit sha1_base64="0Po/VASVzWVB+SAB9ht2agr3Vww=">AAAB7nicbVDLSgNBEOyJrxhfUY9eBoPgKeyGYMwt4MVjBPOAZFlmJ7PJkNnZZWZWCEs+wosHRbz6Pd78GyfJ4rugoajqprsrSATXxnHeUWFtfWNzq7hd2tnd2z8oHx51dZwqyjo0FrHqB0QzwSXrGG4E6yeKkSgQrBdMrxZ+744pzWN5a2YJ8yIyljzklBgr9SZ+Jv3a3C9XnKqzBP5L3JxUIEfbL78NRzFNIyYNFUTrgeskxsuIMpwKNi8NU80SQqdkzAaWShIx7WXLc+f4zCojHMbKljR4qX6fyEik9SwKbGdEzET/9hbif94gNeGll3GZpIZJuloUpgKbGC9+xyOuGDViZgmhittbMZ0QRaixCZVsCO7X702LRj0nTfczhG6t6l5U6zdOpeXkcRThBE7hHFxoQAuuoQ0doDCFe3iEJ5SgB/SMXlatBZTPHMMPoNcPYDmPzA==</latexit>

hn2
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Figure 3: Overview of PICS with time point m=3 (Step 1-4). In step 1, contextual encoder converts input into
contextual representation (§ 4.1). In step 2, we design psychological state trackers to capture temporal relations for
the protagonist’s character information, local need and emotion (§ 4.2). In step 3, two psychological state planners
output the global psychological state through modeling the completed need and emotion chains (§ 4.3). In step 4,
conditioned on the protagonist’s local and global psychological states, the decoder generates psychology-guided
stories with a psychology controller (A&B) (§ 4.4).
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Figure 4: Details of Memory Units in Psychological
State Trackers for need and emotion states.

Then, we acquire representations of i-th psycho-
logical states hni , hei , hpi by extracting the hidden
states of special {⟨ned⟩, ⟨emo⟩, ⟨pgt⟩} tokens on
the top of encoder.

Similarly, story context representation is corre-
sponding to the hidden state of (m− 1)-th special
⟨cxt⟩ token.

4.2 Psychological State Trackers (Step 2)

For the purpose of remembering and updating the
protagonist’s psychological states that have been
mentioned, we design psychological state trackers
for the protagonist’s character information§, needs
and emotions.

§In this paper, we regard the representation of the protago-
nist’s name as his/her character information.

Protagonist’s Character Information Based on
several story events, humans can easily guess the
protagonist’s character information. We argue that
the resulting representation can stand for the pro-
tagonist’s character information via pooling hidden
states of the protagonist’s name which is grounded
in story events.

h′p = Pooling({hpi}mi=1) (2)

In this work, Pooling is Mean-Pooling and is
used as a tracker for pi to conclude the moderate
representation of the protagonist’s character infor-
mation.

Protagonist’s Needs To remember and update
the mentioned protagonist’s needs and emotions,
we design trackers (memory block in Figure 3) as
follows:

h′n = Memory(N) (3)

As shown in Figure 4, for memorizing mentioned
needs, the memory unitMni is updated using hni−1

and Mni−1 , the output contextual needs representa-
tion:

ĥni−1 = tanh(W1Mni−1 +W2hni−1) (4)

Futher, we use a gating mechanism, g, to allow the
model to learn to flexibly control how much each
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cell in memory is updated, as below:

gni = sigmoid(W3Mni−1 +W4hni−1) (5)

Mni = gni ĥni−1 + (1− gni)Mni−1 (6)

h′nm =Mnm (7)

where Mn0 is randomly initialized and all W∗ are
trainable parameters.

Protagonist’s Emotions In the same way with
need, for historical emotions:

h′em = Memory(E) =Mem (8)

In summary, we can obtain sequential psycho-
logical state changes through the above operations.

4.3 Psychological State Planner (Step 3)

Different from psychological state trackers, we ob-
tain the global psychological states by encoding
the global needs chain and emotions chain for story
planning. As shown in Figure 3 (step 3), psycholog-
ical state trackers use a BiGRU (Cho et al., 2014)
architecture.

Global Need Planner In the global need planner,
the global need representations:

[t1n, t
2
n, . . . , t

5
n] = BiGRU(AN) (9)

h∗nj = tjn (10)

where j represents the j-th need for generate next
story event and j-th need in the global need chain.

Global Emotion Planner Similarly, computing
global emotion representations are as below:

h∗ej = BiGRU(AE)[j] = tie (11)

note that, AN and AE are initialized by GloVe (Pen-
nington et al., 2014) embedding.

After obtaining global need and emotion repre-
sentations, we feed them into the following step as
a planning signal for guiding the story generation.

4.4 Psychology-guided Decoder (Step 4)

Conditioned on the protagonist’s local and global
psychological states, the decoder generates a
psychology-guided story event by the following
modules.

4.4.1 Psychology Controller
In order to control the story generation by protag-
onist’s psychological states, we respectively inte-
grate local and global psychological states (Peng
et al., 2022; Zhang et al., 2022) into the story con-
text representation.

Local Control With the goal to integrate local
psychological control information into the repre-
sentation of story context hc, a psychology con-
troller is used to compute the interaction between
hc and local psychological states (including h′p, h′n,
h′e). First, h′p guides the model with the protago-
nist’s character information for generating the next
story event, which uses a BiGRU (Cho et al., 2014)
architecture:

h̃c = BiGRU(hc, h
′
p)[0] (12)

where we extract the hidden state h̃c as the story
context representation considering character infor-
mation. Then, we employ an attention mecha-
nism to integrate local psychological states (need
and emotion) into the story context representation.
Firstly, need guided attention NGA is defined as
follows:

hnc = NGA(h̃c, {hni}mi=1) =
m∑

i=1

αihni (13)

{αi}mi=1 = softmax({h̃chTni/
√
dim1}mi=1) (14)

ĥnc = Fus.N(h′n, h
n
c ) = MLP([h′n, h

n
c ]) (15)

where dim1 equals to the dimension of hnc . Simi-
larly, EGA and Fus.E has the same operation as
the above equations:

ĥec = Fus.E(EGA(ĥnc , {hei}mi=1)) (16)

h′c = ĥec + h̃c (17)

Global Control Aiming at further control com-
posing stories with the global planning signal, this
part is designed to dynamically integrate global
psychological states. In specific, a query vector q
is introduced to fuse psychology-blended context
representations and global psychological states by
attention mechanism as below:

sn, se =
q[h′c, h

∗
ni ]

T

√
dim2

,
q[h′c, h

∗
ei ]
T

√
dim2

(18)

β1, β2 = softmax(sn, se) (19)
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Hc = MLP(β1[h
′
c, h
∗
ni ] + β2[h

′
c, h
∗
ei ]) (20)

where q is the query and [h′c, h
∗
ni ], [h

′
c, h
∗
ei ] are the

keys for attention. [·] denotes the concatenation op-
eration. dim2 equals to the dimension of [h′c, h

∗
ni ].

So that the model can adaptively choose the most
important global psychological state for generating
well-planned stories.

4.4.2 Story Decoder
We employ a left-to-right BART decoder to gen-
erate a story conditioned upon all input elements.
Each layer of the decoder additionally performs
cross-attention over the concatenation of the final
hidden layer of the BART encoder andHc.

P (yt|X,P,N,E,AN,AE, y<t) = softmax(Wsst)
(21)

st = Dec(y<t,Enc(bm),Hc) (22)

where Enc(bm) is the final hidden layer of the
BART encoder.

4.4.3 Training
The training objective is to minimize the negative
log-likelihood L of the ground truth story event:

L = −
r∑

t=1

logP (yt | X,P,N,E,AN,AE, y<t)

(23)
Aiming to obtain the completed story, we iteratively
generate them-th story events Ym with the forecast
generated Y1, ...,Ym−1.

5 Experiment

5.1 Data
We choose a Story Commonsense (Rashkin et al.,
2018) that has been annotated with a similar set-
ting to us. Story Commonsense is a large-scale
dataset as a resource for training and evaluating the
mental state tracking of characters in short com-
monsense stories. This dataset contains over 300k
low-level annotations for character motivations and
emotional reactions. Story Commonsense was pro-
posed for studying need/emotion tracking. Each
sentence is annotated for all characters, and there
are 3 crowd-workers voting for each need/emotion.
If the characters have no need or emotion, the psy-
chological state will be labeled ‘none’.

Based on our task definition, we extract the
story with a protagonist (occurs in more than 4
sentences) and the corresponding need/emotion
chains from Story Commonsense. Note that, we

select the Top-1 need/emotion label, based on an-
notators’ voting scores to make up the psycho-
logical chains in our data set. If several labels
have the best score of all, we will choose a low-
level need label of Maslow’s needs or a random
emotion label. Following the 8:1:1 splitting ra-
tio, we obtain 2,570/321/321 five-sentence stories
for train/dev/test sets. In our psychology-guided
CSG task, we generate a story event based on the
story context, protagonist’s name, need chain, and
emotion chain. Therefore, each story will be re-
formed into 4 samples following our setting (i.e.
10,280/1283/1283 samples).

5.2 Implement Details

For a fair comparison, we train our proposed mod-
els and the baselines with the same input (leading
context and global need/emotion chains) that are
automatically extracted from Story Commonsense
(Rashkin et al., 2018). Our proposed models fol-
low the setting of BART large (Lewis et al., 2020)
model with 12 layers in each of the encoder and
decoder and a hidden size of 1024. The stories
are encoded using BPE with a vocabulary size of
50,257. We set the maximum sequence length to
100 tokens, as it is large enough to contain all in-
puts. We use Adam optimization with an initial
learning rate of 0.00001. All models were trained
until there was no improvement in the validation
set performance. During training, we use a label
smoothed cross-entropy loss, with the smoothing
parameter set to 0.1. At inference time, we set
beam size as 5, and remove duplicated trigrams
in beam search. We use the HuggingFace ¶ (Wolf
et al., 2020) PyTorch (Paszke et al., 2019) imple-
mentation|| on Tesla V100 GPU.

5.3 Evaluation Metrics

Automatic Metrics We use the following met-
rics for automatic evaluation: (1) Perplexity (PPL)
is an indicator of fluency. A smaller value is bet-
ter. (2) BLEU (Papineni et al., 2002) is used for
evaluating the overall quality of the generated story.
We use n=1, 2. (3) Rouge (Lin, 2004) with n=1,
2, L is used to measure the similarity between au-
tomatically generated and reference results. (4)
Need/Emotion Consistency (NC/EC) It is a learn-
able automatic metric. We fine-tune a RoBERTa

¶https://github.com/huggingface/transformers
||We will make our dataset and code publicly available at

https://github.com/IndexFziQ/PICS.
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Models PPL ↓ BLEU-1 ↑ BLEU-2 ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑ NC ↑ EC ↑
Fusion 25.68 19.83 2.89 5.81 1.66 8.64 0.19 0.16
Plan&Write 19.43 20.15 3.56 6.23 1.85 8.81 0.31 0.19
PPLM - 18.42 4.39 8.73 2.13 9.29 0.45 0.41
GPT-2 FT 18.21 22.67 6.42 9.97 2.25 9.98 0.34 0.37
BART FT 17.85 21.84 6.03 9.32 2.51 9.56 0.36 0.32

PICS 16.73 23.51 6.89 12.43 3.83 11.28 0.64 0.45

Table 2: The results of automatic evaluation on test set considering common-used metrics and the designed metric
(NC/EC) to test the psychological state consistency of stories. ↓/↑ indicates the lower/higher, the better.

NC EC
Accuracy F1-Score Accuracy F1-Score

64.6 64.8 56.8 59.2

Table 3: Accuracy and F1-Score of RoBERTa classifier
for need/emotion on dev set, respectively.

(Liu et al., 2019) large model on the Story Com-
monsense (Rashkin et al., 2018) train set as a clas-
sifier to distinguish whether a story event is corre-
sponding to a Top-1 need/emotion. Table 3 shows
results of NC/EC.

Manual Metrics We also conduct a manual eval-
uation of generated psychology-guided stories. Fol-
lowing Song et al. (2019), crowd-workers are re-
quired to evaluate actions on a 0-3 scale (3 being
very good) from two different perspectives:

(1) Content Quality to indicate whether the gen-
erated story is fluent. (2) Content Rationality to
assess whether it follows the given needs and emo-
tions which is reasonable and consistent.

During the manual evaluation, we display the in-
put (leading context and global need/emotion arc)
and two stories generated by the two models be-
ing compared. To avoid prejudice, we randomly
changed the order in which the stories in the two
models were displayed to the crowd-workers. We
provided crowd-workers with instructions to ex-
plain the annotations and provided examples. Fol-
lowing this process, each pair of stories is annotated
by three crowd-workers.

5.4 Experimental Results

5.4.1 Baselines
For a fair comparison, we train PICS and the base-
lines with the same input (leading context and
global need/emotion chains).

We compare our base storytelling model, PICS,
with following state-of-the-art models:

1. Fusion (Fan et al., 2018b), a storytelling
model that first pre-trains a convolutional
seq2seq model, then fixes the trained model
and passes it to the second clone model with
fusion mechanism.

2. Plan&Write (Yao et al., 2019), another sto-
rytelling model first generates a plot as a se-
quence of keywords with the given leading
context and then conditioned on the plot it
generates the text of the story.

3. PPLM (Dathathri et al., 2020), which can be
extended to accept psychological state chains
for controlling story generation. We use psy-
chological state chains as the skeleton.

4. GPT-2 FT (Radford et al., 2019) is a pre-
trained generative LM. We use a medium-size
version. We fine-tuned GPT-2 on our dataset
following (Guan et al., 2020) with leading
context and global need/emotion chains.

5. BART FT (Lewis et al., 2020) is a encoder-
decoder architecture. We fine-tuned BART
on our dataset following (Lewis et al., 2020)
with leading context and global need/emotion
chains.

All of these models are trained, validated and tested
on the same data splits described in §5.1. In spe-
cific, we add emotion/need labels as additional in-
put tokens to baseline models alongside the tokens
for each story sentence. And, global emotion/need
chains that concatenated with the story context are
given to baseline models at each time step.

5.4.2 Automatic Evaluation
The results of the automatic evaluation are shown
in Table 2. Our model outperforms the variants of
GPT-2 in terms of perplexity, and has higher BLEU
and Rouge scores than all the baselines, indicating
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Model Quality ↑ Rationality ↑
Fluency Coherence Need Emotion

PPLM 2.56 1.62 1.05 1.27
GPT-2 FT 2.87 1.58 1.73 1.82
BART FT 2.72 1.79 1.69 1.98

PICS 2.83 1.68 2.16 2.34

Table 4: Manual Evaluation in terms of content quality
and content rationality about the generated stories.

Model AVG-B ↑ AVG-R ↑ NC ↑ EC ↑
PICS 15.89 8.65 0.64 0.45
w/o PST 15.41 8.45 0.53 0.46
w/o PSP 15.24 8.47 0.56 0.43
w/o PC 15.34 8.24 0.55 0.42
w/o Need 15.71 8.53 0.42 0.39
w/o Emotion 15.64 8.44 0.51 0.35

Table 5: Ablation study of PICS model and global
need/emotion chains on dev set. PST: psychological
state tracker. PSP: psychological state planner. PC: psy-
chology controller.

better fluency and more overlaps with the reference
stories. Besides, in the view of NC and EC scores,
the stories generated by PICS are more consistent
with the desired psychological state chains, either
need or emotion.

5.4.3 Manual Evaluation
We perform a manual evaluation between our
model and baselines. We randomly generate 100
stories from the test set. For each story, we hire
three annotators to give a score in terms of content
quality (fluency&coherence) and content rational-
ity (need&emotion). For each aspect, we use an
average of the three annotations. We adopt major-
ity voting to make the final decisions among the
annotators. As shown in Table 4, all the results
show that our model outperforms baselines signif-
icantly in fluency, coherence, and psychological
state consistency.

6 Discussion and Analysis

6.1 Ablation Study

An ablation study is conducted on the Story Com-
monsense dataset to examine the impact of each
module separately. We train the model each time
by excluding one of our model’s modules. And,
we summarize the results in Table 5. The results
illustrate the harms that the elimination of each
of the proposed modules from PICS architecture

PICS v.s. Win Loss Tie κ

PPLM 54.6% 18.5% 26.9% 30.2
GPT-2 FT 53.2% 19.5% 27.3% 30.4
BART FT 52.3% 18.4% 29.3% 27.9

Table 6: Human A/B Test of PICS. Results show that
PICS performs baseline models sufficiently. κ denotes
Fleiss’ kappa (all are fair agreement or moderate agree-
ment). The p-value of scores < 0.05 in sign test.

could cause. This attests to the effectiveness of all
proposed approaches in the generation of higher
controllable stories and subsequently resulting in
more accurate evaluation metrics. As this table
demonstrates, the NC/EC accuracy drops the most
by ablating the psychological state planner and the
psychology controller, which shows that they have
the most significant role in composing high-quality
psychology-guided stories and consequently accu-
rate evaluation metrics. Besides, psychological
state chains (need/emotion chains) all contributed
to the high-quality psychology-guided stories.

6.2 Human A/B Test
We try to compare our model with other baselines
by conducting a Human A/B test. Particularly, we
randomly sample 100 examples each for our model
and baseline models. Three annotators are given
generated responses from either our model or base-
lines in random order and are required to choose
a better option. They can either choose one of the
responses or select “Tie” when the quality of pro-
vided options is hard to access. Results in Table
6 confirm that the responses from PICS are more
preferred by human judges.

6.3 Case Study
In this section, we present some generated exam-
ples in Table 7. We select need-related keywords
and emotion-related keywords (based on our obser-
vation), which are highlighted in corresponding col-
ors, respectively. From the third block, PICS can
generate more natural and reasonable psychology-
guided stories than baselines. Since the proposed
models can generate stories conditioned on the pro-
tagonist’s psychological state chains, they can be
used to unfold a story in diverse situations. We
demonstrate this capability in the last 4 blocks of
Table 7 which perform counterfactual transforma-
tions on need/emotion chains. It shows two exam-
ples where for the same leading context, our model
can generate stories that follow the counterfactual
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Pgt.
Ned.
Emo.
Cxt.

Tory
Stab. → Love→ Love→ Love→ Love
Fear→Fear→ Joy→ Joy→Joy
Tory had doubts about getting married.

Golden She talked to her fiance about their decision. The groom
reassured her that he loved her. She remembered how
much she loved him too. The wedding went forward
without anymore problems.

GPT-2 She called her husband. She got the answer and laugh.
She go to shopping then. She bought so many clothes
she like.

BART She talked to her boyfriend about their relationship. Her
boyfriend loved her and gave her a kiss. She was very
happy then. They went on the date outside for fun.

PICS Tory is afraid about their marriage. Her boyfriend gave
a gift as a blessing. Tory was happy about the gift, and
reply him with a kiss. Tory went home to prepare a
surprise for him.

Ned.-CF Stab. → Love→ Love→Phys.→ Phys.

PICS She talked to her husband about their marriage. Her
husband loved her and take her to the romantic dinner.
It is time for them to have a dinner. She was happy with
the delicious dinner.

Emo.-CF Fear→Fear→Anger→Anger→Anger

PICS She and her husband talked about their marriage. Her
husband was angry at her doubts. She rushed and fought
with his husband. She gave him a slap and broke up
unhappy.

Table 7: Generated stories by different models with need
and emotion chains. Each psychological state and its
corresponding tokens are highlighted in the same color.
CF represents performing counterfactual transformation
on need chains or emotion chains.

psychological state chains of the protagonist.

6.4 Error Analysis

Although the proposed model outperforms the state-
of-the-art baselines, it needs to be noted that there
are still many unreasonable stories losing to other
models in human evaluation. Therefore, we an-
alyzed error types by manually checking all lost
stories in pairwise comparisons between our model
and two strong baselines including GPT-2 and
BART to reveal the factors that affect the perfor-
mance. The numbers of stories which lost to our
model are 56/64 of 100/100 in total for GPT-2 and
BART, respectively. And there are 61 stories of 200
generated by PICS losing to these two baselines.

We conclude three main types of error from the
lost stories: repetition (repeating the same actions
about the need/emotion), conflicting psychologi-
cal state (wrong causal relation about psychologi-
cal state), and ambiguous psychological state (dif-
ficult to understand the psychological state). The
distribution of different error types is shown in
Figure 5. We can observe that conflicting and am-

0%

8%

15%

23%

30%

Repetition Conflicting Ambigious

1.8%

14.4%

1.2%

5.4%

22.5%

5.6%
4.3%

21.2%

6.4%

GPT-2
BART
Ours

Figure 5: Distribution of error types for PICS (ours) and
baseline models (GPT-2 and BART).

Error Type Cases
Repetition I went to a friends house for a party last weekend.

I was so excited to go. We played a lot of games
that night. I was so excited to go. We also had a
lot of food to eat.

Conflicting Zack wanted to vote in the election. Unfortunately
Zack was traveling during the election. Zack went
to the school for taking class. Zack then voted
again. Zack was happy to have voted.

Ambiguous Alice made a cake for her mother. The cake is so
sweet that her mother disliked it. But her mother
was very happy and encouraged Alice. Alice was
sad because of the failed cooking. They hugged
and smiled in the end.

Table 8: Cases of different typical errors. Italic words
denote the error story events.

biguous psychological state make up most of the
errors for all the models. Compared with GPT-2
and BART, PICS reduces chaotic scenes effectively
but still suffers from severe repetition, as shown in
Table 8. However, the analysis result illustrates that
generating a reasonable psychology-guided story
is a challenging task.

7 Conclusion and Future Work

In this paper, we propose a PICS system to gener-
ate controllable stories that adhere to the story con-
text and protagonist’s psychological state chains.
Specifically, we model and integrate local and
global psychological states of the protagonist as
the story progress. Experiments demonstrate that
PICS significantly outperforms baselines and each
part shows effectiveness. In future work, it is im-
portant to build a large-scale dataset for developing
psychology-guided controllable story generation,
regarding aspects of multilingual and long text. Be-
sides, our methodology can be generalized to a
wide range of areas, such as automatic storytelling
systems and intelligent education agents.
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Abstract

Neural table-to-text generation approaches are
data-hungry, limiting their adaptation for low-
resource real-world applications. Previous
works mostly resort to Pre-trained Language
Models (PLMs) to generate fluent summaries
of a table. However, they often contain halluci-
nated contents due to the uncontrolled nature of
PLMs. Moreover, the topological differences
between tables and sequences are rarely stud-
ied. Last but not least, fine-tuning on PLMs
with a handful of instances may lead to over-
fitting and catastrophic forgetting. To alle-
viate these problems, we propose a prompt-
based approach, Prefix-Controlled Generator
(i.e., PCG), for few-shot table-to-text gener-
ation. We prepend a task-specific prefix for
a PLM to make the table structure better fit
the pre-trained input. In addition, we generate
an input-specific prefix to control the factual
contents and word order of the generated text.
Both automatic and human evaluations on dif-
ferent domains (humans, books and songs) of
the Wikibio dataset show substantial improve-
ments over baseline approaches.

1 Introduction

Table-to-text generation is a significant branch of
Natural Language Generation (NLG), aiming at
generating descriptive text given an input table.
There is a wide range of application scenarios for
automatic table-to-text generation, such as sport
news generation (Wiseman et al., 2017), story gen-
eration (Liu et al., 2020), weather forecasting re-
port (Liang et al., 2009), and open-domain question
answering (Chen et al., 2021).

Recent years have witnessed the great develop-
ment of pre-trained language models (PLMs) (De-
vlin et al., 2019; Radford et al., 2019; Lewis et al.,
2020), which achieve state-of-the-art performance
on many text generation tasks, such as neural ma-
chine translation, document summarization, etc.

∗Corresponding author.

Unlike these tasks, table-to-text generation faces
the lack of labeled data. Due to the development of
data science, many statistical tables are generated
in our daily life, but they scarcely have correspond-
ing natural language descriptions, which limits the
real-world application of data-hungry pre-trained
models. To address this problem, researchers inves-
tigate workarounds in the few-shot setting. Chen
et al. (2020), Gong et al. (2020) and Su et al.
(2021a) leverage pre-trained linguistic knowledge
of neural language models, then fine-tune them
in target domains with limited labeled data. This
“pre-train and fine-tune” paradigm performs rela-
tively well in generating descriptive text from ta-
bles. Recently, another paradigm named “pre-train
and prompt” has been proposed in order to adapt
PLMs to downstream tasks without fine-tuning,
which is more suitable for few-shot and zero-shot
scenarios. Li and Liang (2021) prepends prompt
tokens to adapt table-to-text generation to sequen-
tial generation task, and freezes PLMs’ weights to
fully leverage their prior knowledge learned in the
pre-training stage.

Despite their contributions, however, two main
challenges for table-to-text generation remain to
be explored, namely (1) the topological structure
difference between tables and sequential inputs
and (2) model’s ability to select and rearrange
factual content from tables.

In order to address the aforementioned problems,
we follow the “pre-train and prompt” paradigm and
propose Prefix-Controlled Generator (i.e., PCG),
an end-to-end generation framework along with
two kinds of prefix tokens. Specifically, we
prepend a task-specific (i.e., static) prompt and an
input-specific (i.e., dynamic) prompt to the tabu-
lar input. The task-specific prompt aims to bridge
the topological structure gap between a table and
a word sequence, while the input-specific prompt
aims to plan the factual content and the slot or-
der of a table. Both prefixes are optimized during
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Attribute(K) Value(V)

name edinho júnior

fullname edon júnior viegas amaral

birth_date 7 march 1994

birth_place faro , Portugal

currentclub farense

clubnumber 21

position forward

Gold: edon júnior viegas amaral , known as edinho júnior ( born 7 march 
1994 ) is a portuguese footballer who plays as a forward for farense .
Prefix-Tuning: edon júnior ( born 7 march 1994 in faro , portugal ) is a 
portuguese football midfielder .
BART: edino júnior ( born 7 march 1994 ) is a portuguese footballer who 
plays for farense as a forward .
Switch+PLM: edon júnior viegas amaral or edinho júnior ( born 7 march 
1994 in faro ) is a portugal football player and he plays for farense .
Ours: edinho júnior viegas amaral ( born 7 march 1994 ) is a portuguese
footballer who plays as a forward for farense .

Figure 1: An example from Wikibio Humans domain and the generated descriptions via various approaches. Words
in blue, red, orange and yellow indicate factual contents, wrong generation, hallucinated contents and inferred
contents respectively. BART represents BART-large (Lewis et al., 2020). Switch+PLM represents Chen et al.
(2020)’s approach with BART-large.

the training phase with the PLM remaining frozen,
making our approach parameter-efficient – we only
save one copy of the PLM while training in three
different domains.

We basically follow the idea of prefix-tuning (Li
and Liang, 2021) to design the task-specific prefix,
except for some modifications. Firstly, due to the
importance of a proper initialization of prefix to-
kens, we use task-relevant words (e.g., “Summarize
the following table:”, or “TL;DR:”) as the initial
prefix to better linearize the tabular input. Sec-
ondly, He et al. (2022) proves that the length of
prefix tokens and the design of adding additional
parameters solely on the attention module are two
bottlenecks of prefix-tuning. Inspired by their work,
we add Scaled Parallel Adapters (He et al., 2022)
in parallel with both the attention layer and the
feed-forward layer to improve the bottleneck of
prefix-tuning.

For the input-specific prefix, we expect it can
hint to the model which key-value pairs should be
selected and in what order they should be arranged.
Therefore, we propose a content planner to select
the keys that appear in the gold summary and sort
them according to the order of occurrence in the
summary. For example, given a table in Fig. 1,
we expect the content planner to generate a word
sequence “fullname name birth_date birth_place
position currentclub” that indicates all the keys and
their occurrence order whose values appear in the
gold summary. The word sequence will be used as
hard prompts to feed into the PLM.

We evaluate our model on multi-domain table-to-
text dataset (Chen et al., 2020). We show that our
model outperforms previous state-of-the-art meth-
ods on both automatic evaluation metrics (§5.4)
and human evaluation metrics (§5.5). We also con-

duct ablation studies to verify the effectiveness of
the two kinds of prefixes (§5.6).

In a nutshell, our contributions are as follows:

1. We propose a Prompt-Controlled Generator
that attends to the task-specific prefix to bridge
the topological structure gap between tables
and sequences, and the input-specific prefix
to select factual contents from the tables and
reorder them.

2. We propose a simple yet effective content
planner to generate the input-specific prefix
as the hard prompt of the PLM.

3. We conduct experiments on different domains
of the Wikibio dataset to prove the effective-
ness of our approach.

2 Related Work

2.1 Few-shot Table-to-text generation
Table-to-text generation has aroused much inter-
est in recent years. Most of the existing studies
resort to the end-to-end framework to generate flu-
ent and faithful natural language descriptions given
tables. Ma et al. (2019) firstly studied table-to-text
generation under the low-resource constraint, and
separated the generation process into two stages –
key fact prediction and surface realization. With
the advances of PLMs, many researchers fine-tune
pre-trained GPT-2 (Radford et al., 2019) or BART
(Lewis et al., 2020) to augment the scarce training
data, which can better assist few-shot table-to-text
generation. Chen et al. (2020) used copy mech-
anism (See et al., 2017) to improve the fidelity
of sentences generated by GPT-2 by choosing to
copy words from tabular input. Gong et al. (2020)
adopted a unified GPT-2 model for table structure
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reconstruction and generation. Zhao et al. (2021)
proposed a token-level attention and a slot-level at-
tention to exploit natural linguistic and table struc-
tural information. All these works utilized tabular
input for free text generation, neglecting the im-
portance of content planning for text fidelity. Su
et al. (2021a) introduced an information retrieval
(IR) system to select prototype sentences similar
to the gold summary from large unlabeled paral-
lel corpus, then use them as the auxiliary content
plan for tabular input to generate natural language
description. However, the IR system might see all
gold summaries in the Wikipedia corpus, which
violates the true few-shot setting. Different from
the above studies, we focus on how to select fac-
tual contents via content planning, introducing a
slot-aligned content planner.

2.2 Prompt Tuning for Generation
Prompt tuning is a nascent approach for natural lan-
guage generation (NLG), first proposed by GPT-3
(Brown et al., 2020), introducing in-context learn-
ing for few-shot domain adaptation. Prefix-tuning
(Li and Liang, 2021) prepended a sequence of con-
tinuous vectors to all examples of the downstream
tasks. These vectors, which are adjusted as addi-
tional key-value pairs, steer the frozen PLMs by
augmenting the left context at every Transformer
layer. He et al. (2022) classified prefix-tuning as
a parameter-efficient tuning approach similar to
adapter (Houlsby et al., 2019) and made improve-
ments on its bottlenecks. Clive et al. (2021) ex-
tended prefix-tuning to the input-specific prefix
(e.g., topic of the datapoint, target output length) to
have a finer-grained control for downstream gener-
ation tasks. Different from their work, we use the
input-specific prompt not to guide the generated
text in a certain style, but to improve the fidelity
of generated text and the correctness of word order
via content planning.

2.3 Controllable Text Generation
Controllable text generation (CTG) is a supple-
mentary field for prompt-based generation, aim-
ing at incorporating guidance signals into gener-
ative models. Control signals include text style
(Keskar et al., 2019), grammar (Lyu et al., 2021),
length (Kikuchi et al., 2016), etc. Recent CTG ap-
proaches involve generative adversarial networks
(Yu et al., 2017), refactoring a PLM (Chan et al.,
2021), fine-tuning adapted modules (Zeldes et al.,
2020), prompt learning (Yu et al., 2021) and dif-

fusion model (Li et al., 2022). However, these
approaches requires large amount of training data,
which does not match our few-shot setting. For
table-to-text generation, Su et al. (2021b) proposed
a content planner to assist data-to-text generation,
which inspired us to pre-plan the order and occur-
rence of the tabular input for improving the control-
lability of the generated text.

3 Problem Definition

Given a table T with n key-value pairs {Ki :
Vi}ni=1, where Ki = {ki1, ki2, ..., kim} and Vi =
{vi1, vi2, ..., vim′} refer to the key and the value of
the i-th table slot respectively, we aim to generate
a fluent and faithful natural language description
of the table in a low-resource constraint. Note that
Ki and Vi represent sequences ofm andm′ words
respectively.

4 Methodology

We first provide intuition of using a task-specific
prefix and an input-specific prefix for few-shot
table-to-text generation (§4.1). Fig. 2 depicts the
overall architecture of our method. As shown in
the figure, given the input table, the content planner
selects the factual contents and reorders them to
form a dynamic prompt (§4.2). After that, a static
prompt is designed and fed to the generative PLM
along with the dynamic prompt (§4.3).

4.1 Intuition

The intuition of introducing prompt to few-shot
table-to-text generation is that prompt-tuning ef-
fectively solves the catastrophic forgetting prob-
lem. Since table-to-text generation requires the
language understanding ability of the table con-
tent, we hope to fine-tune downstream tasks while
retaining the prior knowledge of PLMs, which is
exactly what prompt-tuning does. Unlike model
fine-tuning, which might be over-parameterized,
prompt tuning only adjusts a few parameters and is
less prone to over-fitting.

Observing Gong et al. (2020)’s experimental re-
sults, we find that table format transformation plays
a vital role in improving the generation process, so
we focus on bridging the topological structure gap
between tables and sequential inputs. The first
thought is that we can flatten a table into a word
sequence using template (Gong et al., 2020). For
example, given a table shown in Fig. 1, we se-
rialize the key-value pair {name: edinho júnior}
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…[BOS] of dishonor is writtenField

…of dishonor is writtenField by

Name 

Field of dishonor

Content Planner

Feed Forward

Feed Forward

Attention

K VQ

Add & Norm

Feed Forward

Add & Norm

Feed Forward

Feed Forward

12x

Prefix Table ContentPrefix

Masked
Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

12x

Linear

Softmax

Output Embedding

Table Encoder

Author

David Weber

Country

United States

Language

English

Published

1994.11.24

Fact Selector

1  3  2 ∅ 4

Name Country Author Published

Figure 2: The overall architecture of the proposed method, which can be divided into Content Planner and Prompt-
Controlled Generator. Tokens in red and yellow indicate these words are consistent with the value corresponding to
the key “name” and “country” respectively.

as “name is edinho júnior;”, then concatenate all
key-value pairs to form a sentence, that is, “name
is edinho júnior; fullname is edon júnior viegas
amaral; birth_date is 7 march, 1994; ...”. Consid-
ering that the template-generated sentence is still
somewhat different from the pre-training input, we
want to find a way that adapts it to a natural sen-
tence. Intuitively, we can add some prompt tokens
like “summarize the following table:” to make the
template-generated sentence an incidental compo-
nent of the whole input. In this way, “summarize
the following table” becomes the major component
of the sentence, which is more similar to the se-
quential form of the pre-training input. In addition,
many language models now have prefix LM pre-
training tasks, which makes our sentences more
consistent with the pre-training input.

We also seek to minimize the generated hallu-
cinated content. Considering that some table slots
are redundant, we intuitively want to hint the model
what are the factual contents. To be consistent with
the above table linearization approach, we follow
the idea of controllable generation, providing a
hard prompt as the guidance signal for each exam-
ple to control both the table content to be selected
and the word order.

4.2 Content Planner

Content Planner aims to generate input-specific
prompts that guide the generation process in terms
of factual contents and words order, which is shown

in Fig. 2 (left). Content Planner contains two
modules, namely Table Encoder and Fact Selec-
tor. Since we study table-to-text generation under
a strict few-shot constraint, we strive for simplic-
ity of Content Planner. Therefore, we use a bi-
directional LSTM and a linear-chain Conditional
Random Fields (CRF) (Lafferty et al., 2001) for Ta-
ble Encoder and Fact Selector respectively, which
are learned given a handful of training instances.

Table Encoder takes all key-value pairs {Ki :
Vi}ni=1 from table T as the input, and produces a
hidden representation hi ∈ Rde for each table slot,
where de is the hidden dimension. Specifically,
for each table slot that contains a key-value pair
{Ki : Vi}, we embed Ki and Vi by:

ei = λ
1

m

m∑

j=1

E(kij)+(1−λ) 1

m′

m′∑

j=1

E(vij), (1)

where ei denotes the embedding of the i-th slot,
E is the embedding lookup table and λ is a hyper-
parameter that controls the ratio of key embedding
and value embedding in ei. We use pre-trained
Roberta (Liu et al., 2019) embedding to initialize E.
After that, we feed all embeddings {e1, e2, ..., en}
to the BiLSTM encoder to obtain {−→h1,

−→
h2, ...,

−→
hn}

and {←−h1,
←−
h2, ...,

←−
hn} in the left-to-right and right-

to-left directions respectively. The calculation of
each direction uses a distinct set of parameters. The
final hidden states hi can be obtained by:

hi = [
−→
hi;
←−
hi]. (2)
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Fact Selector selects key-value pairs that occur
in the ground-true table summary, and rearranges
them according to the order of occurrence in the
summary. In practice, we use a standard CRF
layer with a feed-forward layer as our Fact Selec-
tor to compute the global optimal sequence. On
top of the hidden states Hc = {h1,h2, ...,hn},
the probability distributions of the label sequence
y = {l1, l2, ..., ln} is computed by:

P (y|Hc) =
exp(

∑
i(W

li
CRFhi +Mli−1,li))

∑
y′ exp(

∑
i(W

l′i
CRFhi +Ml′i−1,l

′
i
))
. (3)

Here y′ represents an arbitrary label sequence,
Wli

CRF denotes the parameters specific to li, and
Mli−1,li denotes the transition score from li−1 to
li. The learning objective is defined as:

LCRF = −logP (y|Hc). (4)

Content Planner is trained independently with
Prompt-Controlled Generator. The labeled key-
value pair order is extracted from the ground-true
summary by finding keys1 and sorting them ac-
cording to their positions. During inference, we
use first-order Viterbi algorithm to decode the best
label sequence ỹ = argmaxy′P (y′|Hc). Take
Fig. 2 as an example, Content Planner generates
a label sequence “1,3,2,∅,4”. The first label “1”
denotes “Name” should appear in the front of the
content plan, while the fourth label “∅” denotes
“Language” does not occur in the gold summary.
According to the label sequence, we rearrange all
keys to form a content plan c, which in Fig. 2 is
“Name Country Author Published”.

4.3 Prompt-Controlled Generator

Prompt-Controlled Generator aims to generate flu-
ent and faithful descriptions given the tabular in-
put and the content plan. Our approach is model-
agnostic, thus the generator could be any pre-
trained generation model. Here we use BART-large
(Lewis et al., 2020) as the basic generator for their
best overall performances, and propose two kinds
of prefixes that are prepended to the input of BART
encoder, namely task-specific prompt ps and input-
specific prompt c. The latter (i.e., content plan)
serves as the guiding signal of Prompt-Controlled
Generator.

1Some keys such as “nationality” are fuzzy-matched.

The task-specific prompt is designed to bridge
the topological structure gap between tables and se-
quences. A first thought is that we can linearize the
table via template (see §4.1), then prepend discrete
prompt words “summarize the following table:” to
the template-generated sequence to make the tab-
ular input more consistent with the pre-training
input. Nevertheless, discrete optimization needs
enormous computing power and human crafts. In-
stead of using discrete prompt, we follow prefix-
tuning (Li and Liang, 2021) to optimize a sequence
of continuous prefix tokens while keeping the PLM
frozen. However, the prefix length and acting on
the attention layer bound the presentation ability
of the prefix (He et al., 2022). Considering these
bottlenecks, we additionally parallel two Scaled
Parallel Adapters to the attention layer and the feed-
forward layer respectively, then perform scaled ad-
dition for these Adapters.

Next, we will introduce our modifications to
BART encoder. Let us denote the template-
generated sentence as s = {s1, s2, ..., sL} and con-
tent plan as c = {c1, c2, ..., cLc}, where L and Lc
are the lengths. The prefix length is denoted by Lp.
We concatenate the content plan and the template-
generated sentence (denoted by [c : s] where [· : ·]
is the concatenation operator) to feed into BART
encoder. In the multi-head self-attention layer, we
first compute the queries Q ∈ R(L+Lc)×d, keys
K ∈ R(L+Lc)×d and values V ∈ R(L+Lc)×d via
Equation (5):

Q = xWq,K = xWk,V = xWv, (5)

where d denotes the hidden dimension of BART,
Wq, Wk and Wv are trainable parameters. x de-
notes Eb([c : s]) when the first layer is being com-
puted, the output of the previous BART layer oth-
erwise. Eb denotes the embedding lookup table of
BART. Then the attention score is computed via
Equation (6):

head = [head1 : head2 : ... : headNh ], (6)

where Nh denotes the number of heads. headi is
computed via Equation (7):

headi = Attn(Qi,Ki,Vi)

= softmax(
Qi[Pi

k : K
i]T√

dk
)[Pi

v : V
i],

(7)

where dk = d
Nh

denotes the hidden dimension of
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Domain Humans Books Songs

Training set size 50 100 200 500 50 100 200 500 50 100 200 500

Switch+GPT-2(R) 25.7 29.5 36.1 41.7 34.3 36.2 37.9 40.3 36.1 37.2 39.4 42.2
TableGPT(R) 29.8 34.5 40.6 45.6 35.1 37.3 38.5 41.6 36.7 37.8 39.3 42.3

Bart-large 37.6 39.3 41.2 44.3 34.2 37.1 39.8 42.9 37.7 38.9 40.1 43.9
AMG(R) - - - 49.0 - - - 43.9 - - - 45.1

Hard-prompt+GPT-2 22.8 28.1 29.7 30.8 25.8 27.9 28.8 32.1 26.6 30.0 30.1 32.1
Prefix-Tuning+GPT-2 25.6 30.3 33.4 37.3 34.9 36.2 36.3 37.3 32.5 33.0 35.1 36.1

Prefix-Tuning+T5 34.5 39.9 41.6 44.1 35.5 37.3 39.6 41.2 37.5 38.5 40.0 41.1
Switch+BART(PT) 36.8 41.8 44.0 48.1 33.6 35.0 38.3 43.4 40.9 41.7 42.1 43.2

Ours 39.9 43.3 45.8 49.4 36.6 36.9 39.0 45.6 38.0 41.7 42.5 44.5

Table 1: BLEU results on three domains of the Wikibio test set. Each (R) is reported by the related paper.

Domain Humans Books Songs

Training set size 50 100 200 500 50 100 200 500 50 100 200 500

Switch+GPT-2(R) 30.6 34.6 40.5 45.6 42.7 42.8 43.4 44.9 40.2 41.7 44.0 44.8
Bart-large(R) 37.8 41.4 47.4 45.5 41.7 43.4 43.7 48.1 41.7 42.4 44.1 46.0

AMG(R) 43.6 47.7 50.1 51.9 43.4 46.0 47.5 48.6 42.0 43.3 45.9 46.9

Prefix-Tuning+GPT-2 32.7 35.9 36.6 38.7 29.8 31.8 31.7 32.7 31.7 33.3 32.3 31.5
Prefix-Tuning+T5 39.3 40.6 41.8 42.1 32.8 34.8 36.0 36.8 34.4 36.1 36.0 34.6
Switch+BART(PT) 35.2 41.7 45.1 50.5 33.0 37.2 41.2 46.4 36.7 39.4 42.0 45.9

Ours 46.7 48.3 50.4 51.8 46.3 46.2 47.5 49.3 44.8 45.7 46.9 46.0

Table 2: PARENT-F results on three domains of the Wikibio test set. All (R) are reported by Zhao et al. (2021).

each head, and Pk ∈ RLp×d,Pv ∈ RLp×d denote
two sets of prefix vectors. Qi ∈ R(L+Lc)×dk , Ki ∈
R(L+Lc)×dk , Vi ∈ R(L+Lc)×dk , Pi

k ∈ R(Lp)×dk

and Pi
v ∈ R(Lp)×dk denote a block of Q, K, V,

Pk, and Pv respectively.
In parallel with the multi-head self-attention

layer, a Scaled Parallel Adapter is added:

head′ = x+ s ·ReLU(xWdown)Wup, (8)

Hattn = head+ head′, (9)

where Wdown ∈ Rd×r and Wup ∈ Rr×d are
down-projection and up-projection, r is the bot-
tleneck dimension and x denotes the same vector
as in Equation (5). s ≥ 1 is a trainable scaling
hyper-parameter. We use Hattn to replace the orig-
inal attention output to conduct residual connection
and layer normalization. Similarly, we insert an-
other Scaled Parallel Adapter in parallel with the
Feed Forward layer to enhance its representation:

o = ReLU(xW1 + b1)W2 + b2

+ s ·ReLU(xW′
down)W

′
up,

(10)

where x and o denote the input and output of the
Feed Forward layer respectively. W1, b1, W2, b2,
W′

down, W′
up are trainable parameters.

We conduct residual connection and layer nor-
malization over o to get the hidden states of BART
encoder Henc, then feed Henc along with decoder
input to a normal BART decoder for sentence gen-
eration. The decoder input is the right-shifted
gold summary in the training phase, and a simple
“[BOS]” in the inference phase to generate tokens
autoregressively. Given the gold summary g, the
learning objective is the cross-entropy loss, defined
as:

LLM = −
|g|∑

i=1

logPdec(gi|g<i;Henc). (11)

5 Experiments

5.1 Datasets and Hyper-Parameters

Following Chen et al. (2020), we evaluate our
method on three different domains (i.e., Humans,
Books and Songs) of the Wikibio dataset, denoted
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as Wiki-Humans, Wiki-Songs and Wiki-Books re-
spectively. For all three domains, we conduct exper-
iments in few-shot settings by varying the training
set size to 50, 100, 200 and 500. The validation
size is set to 1000, and the remaining instances are
used for testing, which counts 13587, 5252 and
11879 for humans, books and songs respectively.

We use BART-large as our basic generator us-
ing transformers library (Wolf et al., 2020), which
shares 12 layers and 16 heads for both encoder and
decoder. We set the hidden and the embedding di-
mension of Content Planner to 768 (Roberta-base
embedding dimension), and the key-value ensem-
ble ratio λ is set to 0.7. The learning rates of Con-
tent Planner and Prefix-Controlled Generator are
set to 2e-4 and 1e-5 respectively, both optimized by
AdamW (Loshchilov and Hutter, 2017). We train
our PCG for 200 epochs, with a batch size of 10
on one NVIDIA GeForce RTX 3090 GPU. Prefix
length Lp is set to 30, and the bottleneck size of
Scaled Parallel Adapter r is set to 512.

5.2 Baseline Models

We compare previous state-of-the-art few-shot
table-to-text generation approaches, serving as
baseline models:

(i) Switch+PLM (Chen et al., 2020): The first
work that introduces PLMs to the few-shot
NLG task. They propose a switch policy
to choose whether to copy words from the
table or to generate from GPT-2. We also
implement a variant using BART-large to
replace GPT-2 and tuning the BART-large
model with our task-specific prompt (denoted
as Switch+BART(PT)).

(ii) TableGPT (Gong et al., 2020): A further
study based on Switch+PLM that leverages
GPT-2’s prior knowledge, while enhancing
generation fidelity with two auxiliary tasks.

(iii) AMG (Zhao et al., 2021): A pre-train and fine-
tune approach with a multi-grain attention to
both tokens and slots, and introduces mem-
ory mechanism to back-track the allocation of
table slots.

(iv) BART-large (Lewis et al., 2020): A power-
ful PLM for conditional generation, which
is proved effective in the few-shot scenario
(Zhao et al., 2021). We fine-tune it on our
few-shot datasets to report its performance.

Model
50 100 200 500

acc. BLEU acc. BLEU acc. BLEU acc. BLEU

Roberta-base 0.32 14.6 0.33 14.2 0.39 21.3 0.56 32.5
ContentPlanner 0.53 30.4 0.56 32.6 0.59 35.4 0.64 37.5

Table 3: Results on Content Planner. acc. and BLEU
denote test accuracy and BLEU-2 respectively.

(v) Hard-prompt+GPT-2: Our earlier attempt
on the few-shot table-to-text generation task,
which uses actual tokens such as "Summa-
rize the following table:" as the prompt words,
then feed the transformed tabular input into
GPT-2 to fine-tune on few-shot table-to-text
generation task.

(vi) Prefix-Tuning (Li and Liang, 2021): A novel
prompt-based approach that prepends a con-
tinuous prefix and freezes the PLMs to retain
their prior knowledge. We follow Ding et al.
(2021)’s implementation, using GPT-2 and T5
(Raffel et al., 2019) as the base model.

Among above baseline approaches, Prefix-Tuning
and Switch+BART(PT)) follow a “pre-train and
prompt-tuning” paradigm (keep LM’s parameters
frozen), while Hard-prompt+GPT-2 uses prompt
for model fine-tuning. All the other baselines are
following the standard “pre-train and fine-tune”
paradigm.

5.3 Results of Content Planner

We first report the experimental results of Content
Planner. Intuitively, we use accuracy to evaluate
the percentage of words that are both correct and in
the right position. Following Zhao et al. (2020), we
also use BLEU-2 to evaluate the correctness of the
words occurring in the content plan. We train Con-
tent Planner in 200 epochs with 50/100/200/500
training instances respectively and compare it with
RobertaforSequenceClassification from transform-
ers library. The results are shown in Table 3. We
show that in the few-shot setting, Bi-LSTM+CRF
performs better than fine-tuning Roberta in both
word co-occurrence and positional correctness.

5.4 Automatic Evaluation

We conduct automatic evaluations on various do-
mains of the Wikibio dataset to prove the effective-
ness of our method. We select two kinds of evalu-
ation metrics – BLEU (Papineni et al., 2002) for
evaluating overlap between the generated sentence
and the gold description, and PARENT (Dhingra
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et al., 2019) for evaluating both the matching be-
tween the generated sentence and the reference and
the fidelity of the generated sentence to the original
table. Here we use F1 score of PARENT, denoted
as PARENT-F.

Regarding the overlapping-based metrics BLEU,
we show that our method has the best overall perfor-
mance compared with all other baselines. Specif-
ically, our approach improves 1.8%/0.4% BLEU
score on Wiki-Humans/Wiki-Songs compared with
the second best model with 200 training instances.
On Wiki-Books, we improve 1.7% BLEU score
than AMG with 500 training instances. The results
show that our method can produce fluent descrip-
tions. We attribute this to the task-specific prefix
that better linearizes the tabular input by comparing
fine-tuning BART-large (see §5.6).

Regarding the fidelity-based metrics PARENT,
our method has better performances over AMG es-
pecially in extremely low-resource scenarios, while
outperforming other baseline models. Our method
performs 1.6% PARENT-F better than AMG on av-
erage in 9 terms and 0.5% PARENT-F worse on av-
erage in 2 terms. Reviewing their approach, AMG
uses the Wikibio dataset, which is very similar to
the few-shot datasets, for task adaptive pre-training.
In a real-world low-resource scenario, however, it’s
less likely to obtain a large unlabeled corpus related
to the target domain. Moreover, our approach is
parameter-efficient and storage-saving. Therefore,
we provide a more lightweight alternative with bet-
ter generation fidelity than AMG.

We also implement a variant of Chen et al.
(2020)’s work with some modifications. We re-
place the GPT-2 with BART-large, and use prompt-
tuning instead of fine-tuning to generate sen-
tences. Therefore, the encoder in Switch+BART
is consistent with our BART encoder in Fig. 2.
Switch+BART(PT) achieves the second best per-
formance in text fluency evaluation, obtaining the
highest BLEU score on 2 terms. However, it’s bad
at keeping faithful to the original table when the
training set size is small, which is contrary to the
motivation of copy mechanism. A reasonable ex-
planation is that the objectives of Prompt-tuning
and fine-tuning are contradictory. Prompt-tuning
expects that the continuous prefix can transfer to
downstream tasks, while fine-tuning Pointer Gener-
ator (See et al., 2017) aims to learn to copy words
and to decide whether to copy or to generate. This
contradiction makes Pointer Generator unable to

get effective training, especially when lacking train-
ing instances. We print the selected words when
the model switches to “copy” state, finding that
the words are far from the tokens that should be
copied. We also see from Table 2 that changing
copy mechanism to the input-specific prefix signifi-
cantly improves the text fidelity.

5.5 Human Evaluation
We randomly select 100 generated sentences (train-
ing set size is set to 500) and corresponding tables
and references from the test set, then present them
to three voluntary human evaluators. All volunteers
are postgraduate students with extensive research
experience in document summarization and natu-
ral language generation. Inspired by Chen et al.
(2020), we assure that each sentence is evaluated
according to its (1) faithfulness to the table and
the reference and (2) language fluency. To eval-
uate the effectiveness of our Content Planner, we
also evaluate the generated sentences according to
their (3) words order correctness. In the first task,
all evaluators count the number of facts nco that
co-occur in the table slot and the reference2, and
the number of facts nhal that contradict with/ miss
from the table (i.e., hallucinated contents). The per-
centage of factual content is then computed through

fp =

∑
s∈S

nsco
∑
s∈S

(nsco+n
s
hal)

, where S denotes the select cor-

pus. In the second task, we ask each evaluator to
compare sentences in a sentence set (descriptions of
an instance generated from various methods), then
rank them based on their fluency and grammatical
correctness. The ranking then is normalized to 0-1,
the smaller the better. Finally, we average the nor-
malized ranking of the 100 sentences to get ravg.
In the third task, all volunteers are asked to count
the words order correctness. For example, given a
ground-true content plan “Name Published Genre
Author” and hypothesis “A push and a shove is a
2007 novel by Christopher Kelly.”, volunteers count
the correct key pair order in the hypothesis, such
as ‘“Published” is in front of “Author”. “Genre”
is not in the hypothesis, thus all its key pair or-
der (“Name Genre”, “Published Genre”, “Genre
Author”) are wrong. The words order accuracy
accwo is averaged over all generated hypothesis.
Human evaluation results are shown in Table 5. We
compute the final score via fp − ravg + accwo to

2Here we do not define co-occurrence as exact-matching
or fuzzy-matching, instead we ask volunteers to decide co-
occurrence based on human knowledge.
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Model Humans Books Songs

PCG 43.3/48.3 36.9/46.2 41.7/45.7
PCG w/o c 43.2/47.2 37.3/44.8 41.5/44.5
PCG w/o c&SPA 41.9/46.0 37.4/44.5 39.6/44.3
PCG w/o ps&c&SPA 39.3/41.4 37.1/43.4 38.9/42.4

Table 4: Ablation study results on two kinds of prefixes.
ps, c and SPA denote the task-specific prefix, the input-
specific prefix and Scaled Parallel Adapter respectively.
In each entry, a/b denotes the BLEU/PARENT-F score.

Model fp ravg accwo overall

Switch+GPT-2 0.62 0.58 0.71 0.75
Prefix-tuning+T5 0.73 0.28 0.79 1.24
PCG 0.75 0.20 0.84 1.39

Table 5: Human evaluation results.

measure the models’ performance, the larger the
better.

5.6 Ablation Study
We conduct ablation studies to evaluate the im-
provement brought by the two kinds of prefixes we
proposed. We experiment on all three datasets with
the training set size of 100. The automatic results
are shown in Table 4. Observing the results, we
conclude that both task-specific prefix and input-
specific prefix improve the fidelity of the generated
sentences, while input-specific prefix contributes
little to the text fluency. These conclusions are con-
sistent with our intuitions, given that input-specific
prefix aims to improve the faithfulness by plan-
ning the content. Through ablation, we show that
prepending a continuous prefix to the encoder input
performs better than fine-tuning BART in the few-
shot scenario. In addition, adding Scaled Parallel
Adapters to enhance the representation ability of
prompt vectors has also proved to be effective.

6 Conclusion

In this paper, we propose Prompt-Controlled Gen-
erator, using two kinds of prompts to address cur-
rent challenges in few-shot table-to-text generation.
The task-specific prefix aims to bridge the topolog-
ical structure gap between tables and sequences,
which is learned via freezing the PLM and tuning
the continuous prompt vectors. The input-specific
prefix is designed to guide the generation process
in terms of factual content and word order. We pro-
pose Content Planner to generate the input-specific
prefix. Experiments on Wiki-Humans, Wiki-Books
and Wiki-Songs datasets prove the effectiveness of

our method from the aspects of generation fluency
and text fidelity to the table.
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Table Content Generated Description

name: cody zeller article_title: cody zeller
image: cody zeller iu hoosiers standout in chicago img 5907.jpg
position: power forward/center height_ft: 7
height_in: 9 weight_lb: 240
league: nba team: charlotte bobcats/hornets
number: 40 nationality: american
birth_date: 5 october 1992 birth_place: washington, indiana
high_school: washington, indiana college: indiana (2011 - 2013)
draft_year: 2013 draft_round: 1
draft_pick: 4 draft_team: charlotte bobcats
career_start: 2013 years: 2013 start - present

Gold: cody allen zeller (born october 5, 1992) is an
american professional basketball player who currently
plays for the charlotte hornets of the national basketball
association (nba).
Plan: birth_date nationality draft_team league
Switch+BART: cody zeller (born 5 october 1992 in
washington, indiana) is an american basketball player
for the charlotte hornets in the nba as a power forward.
PCG: cody zeller (born october 5, 1992) is an american
professional basketball player who currently plays for
the charlotte hornets of the national basketball
association (nba).

name: brandon pieters fullname: brandon paul pieters
birth_date: 22 april 1976 birth_place: germiston , south africa
height: 1.93 0 weight: 106 kg lb st on
residence: benoni , south africa yearpro: 1994
tour: sunshine tour prowins: 4
sunwins: 4 article_title: brandon pieters

Gold: brandon paul pieters (born 22 april 1976) is a south
african professional golfer.
Plan: full_name birth_date birth_place
Switch+BART: brandon paul pieters (born 22 april 1976)
is a south african cricketer who plays for the central bank
of southern africa.
PCG: brandon paul pieters (born 22 april 1976) is a south
african wrestler.

name: david highbaugh smith image: david-highbaugh-smith.jpg
alt: a man with dark hair and a mustache wearing a dark coat and white shirt
state: kentucky district: 4th
predecessor: john w. lewis successor: ben johnson
birth_date: 19 december 1854 birth_place: hart county , kentucky
death_date: 17 december 1928 death_place: hodgenville , kentucky
restingplace: red hill cemetery party: democrat
profession: lawyer article_title: david highbaugh smith

Gold: david highbaugh smith (december 19, 1854 - december
17, 1928) was a u.s. representative from kentucky.
Plan: name birth_date death_date state
Switch+BART: davic highbaugh smith (1854 - 1928) was a
u.s. lawyer from kentucky.
PCG: david highbaugh smith (december 19, 1854 - december
17, 1928) was an american representative from kentucky.

Table Content (1)
name: james gilbert birth_name: cecil james gilbert birth_date: 5 may 1923 birth_place: edinburgh , scotland , united
kingdom occupation: tv producer/director television: “the two ronnies” “last of the summer wine” “open all hours”
years_active: 1959 – 2003 article_title: james gilbert (producer)

Generated Description cecil james gilbert (born 5 may 1923) is a scottish television producer and director.

Table Content (2)

name: petr faldyna birth_date: 11 july 1976 birth_place: frýdlant nad ostravicí , czechoslovakia height: 1.86 position:
forward currentclub: fk senica years: 2001 2001-2002 2002-2003 2003-2004 2004-2006 2006 2006-2009 2009-2011
clubs: lerk prostějov hfk olomouc fk kunovice sfc opava fk kunovice sk České budějovice fc vysočina jihlava fk senica
caps: 0 14 8 33 24 41 15 88 32 goals: 0 1 0 16 1 21 6 41 2 pcupdate: 2011-12-31 article_title: petr faldyna

Generated Description petr faldyna (born 11 july 1976) is a czech professional footballer who plays for fk senica as a forward.

Table Content (3)
image_size: 225px position: left wing shoots: left height_ft: 5 height_in: 7 weight_lb: 159 status: retired former_teams:
modo hockey , skellefteå aik birth_date: 7 october 1975 birth_place: Örnsköldsvik , swe draft: 234th overall draft_year:
1996 draft_team: boston bruins career_start: 1993 career_end: 2012 article_title: anders söderberg

Generated Description anders söderberg (born october 7, 1975) is an american retired ice hockey player who played in the modo hockey
league and the boston bruins of the nhl.

Table 6: Examples of generated results from Wiki-Humans test set. Words in red denotes wrong generation.

A Appendix. Examples of generated
sentences

In this section, we further provide generated ex-
amples of one baseline and our model. Ta-
ble 6 upper displays the comparison between
Switch+BART(PT) and our approach for gener-
ation quality. We show that our generation con-
siders more on the content plan, while retaining
the linguistic understanding of the table content.
For example, in example 1, our method neglects
contents that does not occur in the content plan,
while the baseline method contains some tabular
information that is not suitable to appear in the
summary; In example 3, our method generate “rep-
resentative” by understanding the table content
such as “predecessor”, “successor” and “party”,

while Switch+BART(PT) simply copies the pro-
fession slot. Table 6 lower gives more examples of
our generation. All sentences are generated by the
model trained with 100 instances.

It’s worth mentioning that our generation quality
is bounded by the adequacy of the table informa-
tion. For example 2 in Table 6 upper, since the
table does not provide information about “golfer”,
it is difficult for the model to infer “golfer” from

“sunshine tour” through few-shot training. To alle-
viate this problem, we are also investigating open-
domain knowledge-graph enhanced table-to-text
generation, which might further improve the gener-
ation quality.
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Abstract
Access to higher education is critical for minor-
ity populations and emergent bilingual students.
However, the language used by higher educa-
tion institutions to communicate with prospec-
tive students is often too complex; concretely,
many institutions in the US publish admissions
application instructions far above the average
reading level of a typical high school graduate,
often near the 13th or 14th grade level. This
leads to an unnecessary barrier between stu-
dents and access to higher education.

This work aims to tackle this challenge
via text simplification. We present PSAT
(Professionally Simplified Admissions Texts),
a dataset with 112 admissions instructions ran-
domly selected from higher education institu-
tions across the US. These texts are then profes-
sionally simplified, and verified and accepted
by subject-matter experts who are full-time em-
ployees in admissions offices at various insti-
tutions. Additionally, PSAT comes with man-
ual alignments of 1,883 original-simplified sen-
tence pairs. The result is a first-of-its-kind cor-
pus for the evaluation and fine-tuning of text
simplification systems in a high-stakes genre
distinct from existing simplification resources.
PSAT is available at https://doi.org/
10.5281/zenodo.7055024.

1 Introduction

Access to the higher education system for minori-
tized populations, especially low-income students,
first-generation in college students, students of
Color, and students whose first spoken language
is not English, is an important social challenge
(Auerbach, 2004; Cook et al., 2012; Flores, 2010;
Pérez and McDonough, 2008; Rosa, 2006; Taylor,
2018, 2020a). However, researchers have consis-
tently explained that much of higher education’s

communication with prospective students is too
complex, too lengthy, and requires a wealth of
prior knowledge of the higher education system to
successfully navigate (Auerbach, 2004; Pérez and
McDonough, 2008); concretely many institutions
in the US publish admissions application instruc-
tions at or above the 14th grade English reading
comprehension level, far too high for the average
prospective student or adult to read and compre-
hend (Taylor, 2018, 2019, 2020b). As a result,
the verbose, difficult communication places an un-
necessary barrier between students and access to
higher education (Ardoin, 2013; Goff et al., 2004;
Hartman, 1997; Kanno, 2018; Taylor, 2017).

With modern conditional text generation models,
one plausible way to lower such barriers is auto-
matic text simplification (Siddharthan, 2014; Alva-
Manchego et al., 2020), i.e., simplify text such that
it is more readable and accessible, while adhering
to the texts’ original semantic content. Text simpli-
fication is known to benefit a range of readers, in-
cluding children (Javourey-Drevet et al., 2022) and
L2 learners of English (Yano et al., 1994). Yet, no
studies have explored how to simplify this informa-
tion, without losing important details, to render the
admissions process more accessible for prospective
students and their families. Crucially, existing work
in text simplification largely rely on two established
datasets in the News and Wiki domains (Woodsend
and Lapata, 2011; Coster and Kauchak, 2011; Xu
et al., 2015; Zhang and Lapata, 2017); unlike these
two domains, college admission texts certainly falls
under the category of being more specialized and
difficult to generalize, where both the jargon and
concepts encapsulated within these texts are not
ones that one encounters every day. Consequently
we lack understanding both in terms of the nature of
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(Original) All conditionally accepted applicants must
consent to, submit to and successfully complete a crimi-
nal background check through Certiphi Screening, Inc.
Failure to do so will constitute failure to meet the pre-
matriculation requirements established by SUNY Op-
tometry and will result in the withdrawal of a condition-
ally accepted offer.
(Simplified) If you are conditionally accepted, you must
consent to, submit to, and complete a criminal back-
ground check through Certiphi Screening, Inc. If you do
not, we will withdraw your conditionally accepted offer.

(Original) You must complete the following steps be-
fore USF will consider your application complete and
begin admission evaluation. Pay the non-refundable $30
application fee or submit an application fee waiver.
(Simplified) You must submit an online application with
a nonrefundable $30 application fee. You can also sub-
mit an application fee waiver.

Table 1: Original vs our expert simplified version of
college admissions texts.

simplification in college admissions texts, as well
as model performance in this new domain. The
lack of domain diversity has been identified as a
critical issue of text simplification as a whole (Alva-
Manchego et al., 2020).

This work introduces PSAT (Professionally
Simplified Admissions Texts), the first manually
simplified and verified corpus of admissions in-
structions from 112 randomly sampled US post-
secondary institutions. Our professional simpli-
fication process are guided by extensive existing
literature on manual simplification, including low-
ering syntactic complexity, improving lexical cohe-
sion, and elaborating jargon (Crossley et al., 2008;
McNamara et al., 2014; Siddharthan, 2014). Given
that the admissions process normally requires appli-
cation fees, completion of an application, writing
and submitting of essays, sending of transcripts,
and possibly more processes, it is crucial to un-
derstand how to compose admissions application
instructions to clearly but accurately explain these
processes, especially to first-generation in college
students who may not have support from their
secondary school, family, or household (Taylor,
2020b). To this end, every document in PSAT
was manually verified by 2 subject-matter experts
(among a total of 10 experts) who are employed as
full-time admissions professionals in US institutons
of higher education.

In addition to full document simplification, we
also create manual alignments (by the author who
originally simplified all documents), aligning each
sentence in the original text to its simplified version.

This entailed 1,883 sentence pairs total.
Our analyses showed that the simplified docu-

ments reduced the reading level of these texts from
grade 13.3 to grade 9.8, making it much more acces-
sible for minority and emergent bilingual students.
For experiments on automatic simplification, in this
paper we focus on sentence simplification utilizing
the aligned sentence pairs. We start from zero-
shot transfer from existing simplification models
pre-trained on both Wikilarge (Zhang and Lapata,
2017) and Newsela (Xu et al., 2015), as well as
fine-tuned models on PSAT. We showed that this
is a challenging domain for simplification. Ad-
ditionally, our professional manual inspection of
model outputs points out domain-specific errors
that impact the accuracy of the simplifications.

2 Background and related work

2.1 Readability in admissions text

Decades of research in higher education has demon-
strated that higher education information is often
unreadable by prospective student audiences who
read at average, pre-enrollment reading comprehen-
sion levels, roughly the 12th grade (Taylor, 2018,
2019, 2020b). At a larger scale, literacy research
has consistently found that the average United
States adult reads and comprehends below the 9th
grade level, suggesting that many adults many not
be able to understand how to read college admis-
sions information and successfully apply to an in-
stitution of higher education in the United States
(Hauser et al., 2005; Mamedova and Pawlowski,
2019; Sum et al., 2004).

Pertinent to the study at hand, prior research has
found that undergraduate admissions instructions
(what a student needs to accomplish and submit to
the institution to be considered for admission) are
often written above the 14th grade English read-
ing comprehension level (Taylor, 2020b). More-
over, qualitative research focused on student expe-
riences during the application process has found
that prospective students, many of them from low-
income and first-generation in college backgrounds,
often struggle understanding higher education jar-
gon such as undergraduate, FAFSA, and verifica-
tion, all of which are critical to comprehend during
the admissions and enrollment management pro-
cess (Ardoin, 2013; Taylor and Bicak, 2019). Here,
many students may be academically prepared for
the rigors of a college curriculum, yet they may not
understand the language and processes of higher
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education writ large. Such a misunderstanding may
systematically exclude these students due to a lack
of support during the application process, not a lack
of preparedness for college itself.

However, little has changed in the decades dur-
ing which higher education researchers have been
investigating the complexity of the college admis-
sions process. In the 1980s and early 1990s, re-
searchers called for the admissions process to be
simplified and for common admissions applications
to be widely embraced by institutions across the
country (Astin et al., 1982; Gandara, 1986; Post,
1990). Yet by the early 2000s, researchers were still
reporting that many minoritized students and their
families struggled to comprehend how to complete
the college admissions process and enroll in higher
education (McBrien, 2005; Rosa, 2006; Tornatzky
et al., 2002; Ward, 2006).

Recently, given the considerable personal and
financial hardships facilitated by the COVID-19
pandemic, students and families continue to report
that the college admissions process is too difficult
(McCulloh, 2022) and often requires dozens of
hours to complete (Reilly, 2021), and that insti-
tutions of higher education have not made efforts
to ease the admissions process by simplifying the
instructions for how to apply and enroll into higher
education (Hurtado et al., 2020; Morrison, 2021).
Subsequently, this study attempts to analyze sim-
plifications of college admissions instructions to
create an automated model that may automatically
simplify college admissions instructions, easing
the information burden for prospective students
and families, while also easing the workload of
admissions practitioners working for institutions of
higher education.

2.2 Text simplification

Modern text simplification systems are typically
encoder-decoder models that performs monolin-
gual translation from the original to simplified
text (Wang et al., 2016; Zhang and Lapata, 2017;
Kriz et al., 2019; Dong et al., 2019; Martin et al.,
2020; Devaraj et al., 2021; Maddela et al., 2021).
The majority of this research are at the sentence
level, trained using two corpora: the Wikipedia-
Simple Wikipedia aligned corpus (Woodsend and
Lapata, 2011; Coster and Kauchak, 2011; Zhang
and Lapata, 2017) and the Newsela simplification
corpus (Xu et al., 2015). As a result, it is unclear
whether models trained on these datasets can be

applied in other domains, and progress is hindered
by the lack of diverse datasets (Alva-Manchego
et al., 2020). This work is a step towards mitigating
towards this issue.

The training of supervised models rely on auto-
matically aligned sentence pairs (Jiang et al., 2020).
However, Devaraj et al. (2022) demonstrated that
noisy alignments can lead to inaccuracies during
the simplification process. Instead, in this work, all
documents are manually aligned by the author of
the simplification.

3 Data collection and simplification

The main work of PSAT included performing man-
ual text simplification, followed by acceptability
judgements made by subject-matter experts with
domain-specific professional work experience in
either admissions or financial aid. Below, we de-
tail the corpus development process, including the
gathering of college admissions instructions (Sec-
tion 3.1), professional simplification and its princi-
ples (Section 3.2) and verification (Section 3.3).

3.1 Raw text extraction

To gather the original texts (i.e., publicly available
admissions instructions texts) for this study, we em-
ployed the National Center for Education Statistics’
Integrated Postsecondary Education Data System
(IPEDS)1 to gather institutional URLs to each in-
stitution’s admissions application instructions web-
site. Moreover, we decided to gather data during
the college search and exploration process, typi-
cally occurring between August and November of
each year in the US (Hossler and Gallagher, 1987).
Understanding both student exploration and institu-
tional information practices, we gathered all web-
site data for this study in October 2019. Initially,
we gathered undergraduate admissions instructions
from 335 institutions, which we then manually in-
spected and kept 112 that contain long, meaningful
discourse other than metadata (e.g., addresses).

All instructions are then cleaned, by manually
extracting the raw text.

3.2 Simplification

Personnel The texts, written in English (from
US institutions), were manually simplified by an
author of this paper who is a native English speaker.
The author has a doctoral degree in education and
has worked professionally in US postsecondary

1https://nces.ed.gov/ipeds/
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education for over a decade, including work in un-
dergraduate admissions. Thus the author engaged
with their professional insight to simplify without
losing critical information necessary for its com-
prehension and understanding.

Principles Longitudinal research (Crossley et al.,
2008; McNamara et al., 2014; Siddharthan, 2014)
has suggested that text can often be simplified using
a smaller lexicon than the original text, rewriting
sentences so that adjoining sentences share syntac-
tic features (e.g., punctuation marks, independent
clauses followed by main clauses), and ensuring
that previously used lexical items appearing earlier
in a text are re-introduced later in the text to im-
prove comprehension of the text. Thus our manual
simplification process include reducing syntactic
complexity, increasing lexical cohesion (word over-
lap and frequency), the elaboration and explana-
tion of jargon and acronyms, and domain-specific
principles.

(1) Reducing syntactic complexity. We adopted
Coleman (1962)’s framework for sentence-level
simplification: raising clause fragments to full sen-
tences, dividing sentences joined by conjunctions
(e.g., because, but, for, or), avoid dividing sen-
tences joined by the conjunction “and”, and short-
ening clauses by using periods where other forms
of grammatical punctuation may be found (e.g.,
semicolons, colons, commas). While shortening,
we ensured that we do not lose critical information
which would cause a factual error (Devaraj et al.,
2022).

Additionally, extant research has suggested that
writing or speaking in active voice rather than pas-
sive voice can increase simplicity, and this rewrite
can often lead to shorter sentences (DeVito, 1969;
Ferreira, 1994). As a result, we identified instances
of passive voice in each admissions text and re-
wrote them into active voice, e.g.,

(Original) The application must be completed by
the student.

(Simplified) The student must complete the appli-
cation.

(2) Increasing lexical cohesion. Hulme et al.
(1997) learned that increasing the word frequency
in an informative text helped with the short-term
memory recall of research participants regarding
the content of the text, supporting the finding that
increasing the word frequency in a text may lead
to a better understanding of the text on behalf of
the reader. These words included "you," "must,"

"official," "transcript," and many others. Therefore,
we simplified in a way that promotes lexical overlap
across documents.

Pertinent to this study, Monaghan et al. (2017)
also found that individual differences across bilin-
gual readers in terms of word frequency effects
were due to exposure to word diversity, not an in-
dividual’s vocabulary size (personal lexicon). This
finding supported the use of increasing word fre-
quency to increase a text’s simplicity and possible
readers’ comprehension of the text. Thus, we also
attempted to identify content words that could be
repeated earlier or later in each text separately, in-
cluding words like "you," "must," "submit," "tran-
scripts," "contact," and many others.

(3) Elaboration and explanation of jargon and
acronyms. Research on acronyms and initialisms
has found that using these lexical items in poten-
tially unfamiliar text can be confusing to readers,
thus making the text more difficult to read (Can-
non, 1989; Ibrahim, 1989; Rúa, 2002; Laszlo and
Federmeier, 2007). Using acronyms often hinders
clarity, as the reader may need to parse extra text
or consult another text in order to decipher the
acronym or initialism and fully comprehend the
text (Rúa, 2002; Taghva and Gilbreth, 1999). We
attempted to locate acronyms (e.g., ACT) and ini-
tialisms (e.g., GPA) within each text and ensure
that these acronyms and initialisms were clear and
commonly used, so that students would not be con-
fused when reading the simplification. Common
acronyms and initialisms in this dataset included
"ACT," "SAT," "GED," "US," and several others.
Subject-matter experts determined that although
acronyms and initialisms may be confusing, includ-
ing the acronyms and initialisms without lengthy
definitions was best to assist with simplification, as
subject-matter experts determined that the vast ma-
jority of students would understand these acronyms
and initialisms without context clues or definitions.

(4) Domain-specific principles. As admission
instructions are tied with direct consequences for
postsecondary education, we work with 10 subject-
matter experts (SME, their background detailed in
Section 3.3) such that our simplification is accurate
as possible within this particular domain.

Subject-matter experts unanimously determined
that admissions instructions should only contain
the instructions themselves, and that any extrane-
ous text should be removed to ensure minimalism
and simplicity. Consequently, text was removed

6508



(from the original instructions) by SMEs if the text
was not pertinent to the application process itself,
including welcome statements, espoused institu-
tional beliefs, and language that was determined to
be marketing and/or branding and not admissions
instructions. Examples of removed texts include,

“You don’t have any time to waste, so we made ap-
plying as simple as possible”, “The Office of Ad-
missions assists prospective students in exploring
the academic opportunities”.

Moreover, there were several keywords within
sentences that subject-matter experts insisted re-
main or be added from original to simplified texts.
For example, the words “official” and “transcript”
needed to be retained in the simplified versions;
and if these words did not appear in the original,
they were added into the simplified version for clar-
ity for the prospective student. In addition, SMEs
agreed that simple admissions text includes second-
person pronoun usage and modal verbs to provoke
action on behalf of the student, for example:

(Original) Application fee waivers are available
for students with demonstrated financial need.

(Simplified) If you cannot pay the fee, you can
apply for an application fee waiver.

Ultimately, subject-matter experts felt that this lan-
guage rendered the text simpler because students
would better understand that they were responsible
for completing parts of the admissions process.

3.3 Acceptability Judgements by
Subject-Matter Experts (SMEs)

To determine whether the simplification of admis-
sions application instructions were acceptable—
that is to say they did not lose critical information or
accuracy between the pre- and post-simplification
process—we engaged with ten subject-matter ex-
perts (SMEs). Each simplified text was verified by
2 SMEs independently; in total, we engaged with
10 SMEs, who volunteered their time.

Personnel All ten of the SMEs had professional
backgrounds in U.S. postsecondary admissions,
having worked at least five years full-time in col-
lege admissions offices in the United States. These
SMEs were identified through professional net-
works and snowball methods, as several of our
SMEs knew colleagues from different institutions
or educational entities who would serve as high-
quality, knowledgable SMEs.

Moreover, we engaged with a diverse group of
SMEs from different institution types (i.e., com-

munity colleges, public four-year institutions, pri-
vate liberal arts colleges) and with various lengths
of experience to capture the potential variability
of admissions and financial aid parlance, jargon,
and communication style. As the first study of its
kind, identifying SMEs from diverse backgrounds
provided more generalizability and reliability of
findings, thus informing future research and prac-
tice regarding the communication of admissions
application instructions to students and their sup-
port networks. Four subject-matter experts worked
at public, four-year universities, four worked at
private, four-year universities, and two worked at
public, two-year community colleges.

Process To perform the acceptability judgement,
the SME was presented with both pre- and post-
simplification texts in real time over a Zoom video
conference meeting. Then, we asked the SME to
read the pre-simplified (original) text, followed by
the post-simplification (simplified) text and deter-
mine whether the simplified text was acceptable.
For example, changing the verb “submit” to “com-
plete” is not acceptable because “submit” implies
the documentation or information is being submit-
ted by a submitter to a submittee, while “complete”
only implies the documentation or information
is completed and not directed to any educational
stakeholder.

If a simplification was deemed unacceptable by
one or more SMEs, we asked the SME what sim-
plification would be acceptable through an iterative
process in real time across all texts in this study.
Once the SME provided their feedback and we
integrated their feedback into the simplified text,
the same SME was again asked to read both the
both pre- and post-simplification texts in real time
and render their acceptability judgement. If at any
time there was an instance where a lexical item
(e.g., single word, acronym, initialism, compound
adjective), sentence, or paragraph could not be sim-
plified, the pre-simplified section of that text was
used.

3.4 Manual Alignments

In the PSAT corpus, the author of the simplified
documents manually added sentence alignments
across the original and simplified texts. Specif-
ically, for each sentence in the original version,
we provide the indice(s) of the corresponding sim-
plified sentence. This comes to a total of 1,883
alignments, excluding sentences that are kept un-
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(Simplified texts) just, development, following, prior,
credit, sent, steps, recommended, applications, fresh-
men, payment, better, no, currently, once, chapman, plan,
well, way, submitting, educational, aid, ensure, enroll,
stonehill, options, completed, documents, code, create,
credits, rolling, option, begin, appropriate, completing,
now, earned, out, reviewed, checklist, items, submission,
during, process, general, colleges, receive, please, stan-
dardized

(Original texts) codes, materials, how, andor, csu, non-
native, paintings, prepare, invite, dualcredit, homeschool,
cannot, using, words, admit, certiphi, can, must, na-
tive, responses, resume, you, selfreport, letter, georgia,
closer, bonaventure, prompted, event, inclusion, syllabi,
statements, dualdegree, significant, quebec, tb, former,
thinking, filmmaking, carrolls, concise, testingservice-
sucmoedu, baton, crucial, parker, coach, cresson, did,
esl, autobiography

Table 2: Words most associated with simplified vs. orig-
inal texts, calculated with log-odds ratios.

changed, metadata (e.g., addresses), and short (< 2-
word) headers.

4 Analysis

Table 3 shows comparative statistics of the 112
original—simplified bitexts; we see that on average
the simplified versions have shorter and fewer sen-
tences. The original texts in PSAT are above the
12-th grade reading level (measured with Flesch-
Kincaid (Kincaid et al., 1975)) of an average high
school graduate, confirming the findings in Tay-
lor (2020a,b). The simplified version lowered this
reading barrier.

We also study lexical items that are most as-
sociated with the original texts vs. the simpli-
fied version. Concretely we calculate the log-
odds ratio of each word wi, comparing the con-
ditional probability of wi in the original instruc-
tions Do or the simplified ones Ds: logodds(wi) =
log(P (wi|Do)/P (wi|Ds)) (Nye and Nenkova,
2015). Excluding punctuation and numbers, the
words with the highest and lowest log-odds ratios
with respect to simplified texts are shown in Table 2.
We see that after simplification, the vocabulary be-
comes more standardized towards the application
and admissions process itself.

Finally, we measure the abstractiveness of the
simplified texts; namely, how much paraphras-
ing was used? For this we use the aligned
portion of PSAT; the percentage of unique uni-
, bi-, and tri-grams in the simplified texts are
34.4%,52.4%,58.6%, respectively. Thus the
amount of new jargon introduced through simpli-

# sents # tokens FK

Original 29.6 10.2 13.3
Simplified 17.9 7.1 9.8

Table 3: Comparison of original vs. simplified texts:
average number of sentences, tokens, and the Flesch-
Kincaid grade level.

fication is enough to be significant; this indicates
that simpler vocabulary is being introduced, and
significant paraphrasing happened during simplifi-
cation.

5 Sentence Simplification Experiments

We establish baselines for the sentence simplifi-
cation task in PSAT, using the aligned sentences.
With these experiments we hope to evaluate exist-
ing models—which are trained in other domains—
in a zero-shot manner, gauge the utility of fine-
tuning on PSAT, and discuss the challenges of sim-
plification in this domain.

5.1 Models

ACCESS Our baseline is the ACCESS
model (Martin et al., 2020), trained on Wiki-
large (Zhang and Lapata, 2017). ACCESS uses a
transformer trained from scratch (i.e., randomly
initialized).

T5 We also fine-tune the T5 model (Raffel et al.,
2020) for the simplification task. T5 is a pre-trained
large-scale encoder-decoder model optimized on
conditional generation tasks (e.g., summarization
and machine translation), in addition to unsuper-
vised objectives. We fine-tune T5-base on both
Wikilarge and Newsela (Xu et al., 2015), denoted
as T5-wiki and T5-newsela. Following De-
varaj et al. (2022), the models are fine-tuned with
prefix “summarize:” for 5 epochs with a batch size
of 6 and learning rate 3e-4. The default greedy
decoding was used.

Additionally, we further fine-tune these mod-
els on PSAT’s training data (Section 5.2) for
3 more epochs, denoted as T5-wiki-ft and
T5-newsela-ft.

5.2 Experimental setup

Data We split PSAT documents into 50% train,
30% test, and 20% validation (the test and val-
idation sets constitute 50% of the data, such
that the number of test and validation documents
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Train Test Validate

# Files 56 33 23
# Sentence Pairs 955 559 369

Table 4: The number of files and sentence pairs for the
train, test, validation splits in PSAT.

BERTScore BLEU SARI

ACCESS 0.898 0.104 0.271

T5-newsela 0.906 0.132 0.226
T5-wiki 0.903 0.171 0.169

T5-newsela-ft 0.919 0.210 0.241
T5-wiki-ft 0.923 0.239 0.216

Table 5: Automatic evaluation results of simplification
systems.

will be large enough). We then use the man-
ual alignments in these document sets for train-
ing/testing/validation examples. Table 4 shows the
number of documents and aligned sentences in each
split.

Evaluation For automatic evaluation, we report
the following metrics:

(1) SARI (Xu et al., 2016), a widely used metric
especially designed according to the edit nature
of simplification. We report the average n-gram
F1 scores corresponding to keep, delete, and add
operations.2

(2) BLEU (Papineni et al., 2002), a standard
metric in machine translation and other conditional
generation tasks. Xu et al. (2016) stated that while
SARI is better at capturing simplicity, BLEU has a
stronger correlation with grammar and meaning.

(3) BERTScore (Zhang et al., 2019), which is
shown to correlate better with human references
in generation tasks, and has been adopted as an
evaluation metric for summarization (Ahuja et al.,
2022).

5.3 Results

Results are shown in Table 5. First, notice that all
scores are lower in terms of absolute scale com-
pared to the datasets they are trained on; for in-
stance, Devaraj et al. (2022) reported SARI scores
over 36 for all models on Newsela and Wiki-
large. Although ACCESS obtained the highest
SARI score, its BLEU and BERTScores are the

2Note that SARI scores are more reliable if multiple ref-
erence simplifications are present, but we are limited to one
reference due to personnel, time, and budget constraints.

Figure 1: The Flesch-Kincaid Grade Level averages
and standard deviation for the original and manually
simplified texts, as well as the simplified texts generated
by the five models.

lowest; our manual inspection (Section 6) con-
firmed that this model does not produce satisfactory
simplification for admissions instructions. When
comparing T5-newsela and T5-wiki, there is
no clear superior model as T5-wiki has higher
BLEU but lower SARI, and the two have very little
difference in terms of BERTScore. This suggests
that training on either Wikipedia articles or news
articles as a starting point is acceptable.

The clearest trends across all metrics is that
fine-tuning on PSAT substantially improves per-
formance regardless of whether the model is pre-
trained on Wikilarge or Newsela, demonstrating
that in-domain fine-tuning is useful even with a
moderately sized dataset like PSAT. This finding
is consistent with recent discoveries in summariza-
tion (Yu et al., 2021).

Figure 1 depicts the Flesch-Kincaid grade level
for the original sentences, their manually simpli-
fied versions, and the model outputs among the
aligned data. Note that although we perform this
analysis due to Flesch-Kincaid’s superior perfor-
mance in assessing the readability of other techni-
cal texts in an unsupervised manner (Devaraj et al.,
2021), we do not intend to use Flesch-Kincaid as
one our main automatic evaluation metrics for rea-
sons pointed out by Alva-Manchego et al. (2021)
and Tanprasert and Kauchak (2021). Comparing
the five models, T5-wiki yielded a higher (and
more varied reading level) than all other models
and the manually simplified. On the contrary,
T5-newsela’s output reading level is slightly
lower than the manual simplification. Meanwhile,
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Fluency Simplicity Accuracy

ACCESS 1/25 1/25 1/25

T5-newsela 4/25 4/25 4/25
T5-wiki 4/25 4/25 5/25

T5-newsela-ft 2/25 2/25 1/25
T5-wiki-ft 5/25 5/25 5/25

None 9/25 9/25 9/25

Table 6: Number of times (out of 25) that each system
received the highest rank, along with # of times that no
system was selected.

both T5-newsela-ft and T5-wiki-ft pro-
duced desirable readability levels; notably fine-
tuning was able to improve the readability of
T5-wiki outputs.

6 Manual Inspection

Finally, because PSAT is a very new domain that
comes with its own characteristics and require-
ments for accurate simplification, we perform a
small scale manual inspection with the professional
who authored the simplified documents; this pro-
fessional has not seen model-generated outputs in
NLP before. Because of time commitment required
to inspect outputs from all 5 models, we were only
able to study 25 examples. Nonetheless we hope
the insights here will guide future work on domain-
specific evaluation metrics.

Concretely, we randomly sample 25 sentences
from the test set. We ask the professional to inspect
outputs based on three metrics: fluency, simplic-
ity, and accuracy. Under each metric, we ask the
professional to choose the highest ranked simplifi-
cation; an option of none is available if no model
provided satisfactory outputs for any criteria.

Results in Table 6 confirmed that T5-wiki-ft
performed the best, and that ACCESS outputs do
not outperform other models. Similar to automatic
evaluation results, T5-wiki vs T5-newsela
However, there is also a large portion of exam-
ples where “none” was chosen. Additionally,
T5-newsela-ft performed much worse than
T5-newsela. This suggests that automatic met-
rics do not capture some of the aspects that the pro-
fessional deems important in their judgments. This
echos findings from Alva-Manchego et al. (2021)
but emphasizes the importance of human evalua-
tion for specific domains. We detail some of the
insights qualitatively below.

First, several simplifications required adding

words to the simplified version that did not ap-
pear in the original, however the model did not
learn to do so. The most frequent example was
simplifications adding “official” to the phrase “Of-
ficial Transcript(s)”. Here, subject-matter experts
felt that adding “official” was necessary to make
it clearer and more simple for students to under-
stand that they needed to submit official transcripts
instead of copies or screenshots of their transcripts.

Similarly, many simplifications added the sub-
ject and modal verb “you must” to phrases such
as “submit your official transcript(s)”, “complete
an application”, and “apply by the priority date”,
as discussed in Section 3.2. The subject-matter
experts felt it was necessary to clarify that a stu-
dent “must” complete these tasks, otherwise they
would not be considered for admission. However,
the model could not generate such phrasing.

Finally, many models removed keywords from
the original versions. This most often happened
when an institution accepted multiple application
types, such as the Coalition for College Applica-
tion and the Common Application. For instance,
one sentence original sentence read, “We accept
the Coalition for College Application and the Com-
mon Application”. However, several models at-
tempted to simplify the sentence and remove either
the Coalition for College Application or Common
Application, as they both contain the word “appli-
cation”, and the model may have removed these
“redundant” phrases. However, both application
types needed to appear in the simplified version to
gain subject-matter expert approval, as an accurate
admissions instructions contain all of the different
applications that a student may use to apply for
admission, not just the simplest application. As
a result, several models did not accurately keep
keywords from original to simplified versions be-
cause the models did not have this domain-specific
information that subject-matter experts had.

7 Discussions and Conclusions

This work presents PSAT, a text simplification cor-
pus consisting of admission instructions texts from
112 US higher education institutions and their sim-
plified versions. PSAT texts are professionally sim-
plified and verified, rendering it the first-of-its-kind
and most accurate dataset in this high-stake domain.
We showed that this dataset is challenging for exist-
ing simplification models, especially due to domain
mismatch, and domain-specific requirements for

6512



the accuracy of information.
We recognize the limitations of this study. While

there are over 6,000 institutions of higher education
in the US, this dataset sampled a small number of
these institutions given time constraints and the sub-
stantial work necessary to gather and simplify text
and work with subject-matter experts to approve
simplified texts.

Ultimately, we will perform future re-
search—using this dataset—to specifically
identify which simplifications were acceptable
and unacceptable (at the lexical item-, sentence-
and paragraph-level), thus informing admissions
practitioners as to how text can or cannot be
simplified for students and prospective students,
broadly. We hope PSAT is a first step towards
automatic simplification systems for fairer access
to higher education.
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Abstract
Word ordering is a constrained language gen-
eration task taking unordered words as input.
Existing work uses linear models and neural
networks for the task, yet pre-trained language
models have not been studied in word ordering,
let alone why they help. We use BART as an
instance and show its effectiveness in the task.
To explain why BART helps word ordering,
we extend analysis with probing and empiri-
cally identify that syntactic dependency knowl-
edge in BART is a reliable explanation. We
also report performance gains with BART in
the related partial tree linearization task, which
readily extends our analysis.1

1 Introduction

The task of word ordering (Wan et al., 2009; Zhang
and Clark, 2015; Tao et al., 2021), also known as
linearization (Liu et al., 2015), aims to assign a
valid permutation to a bag of words for a coherent
sentence. While early work uses word ordering to
improve the grammaticality of machine-generated
sentences (Wan et al., 2009), the task subsequently
manifests itself in applications such as discourse
generation (Althaus et al., 2004), machine trans-
lation (Tromble and Eisner, 2009; He and Liang,
2011), and image captioning (Fang et al., 2015). It
plays a central role in linguistic realization (Gatt
and Krahmer, 2018) of pipeline text generation
systems. Advances in word ordering are also rele-
vant to retrieval augmented generation (Guu et al.,
2020), with outputs additionally conditioned on re-
trieved entries, which can constitute a bag of words.
Word ordering can be viewed as constrained lan-
guage generation with all inflected output words
provided, which makes it more amenable for error
analysis (§3.4). The task can be extended to tree
linearization (He et al., 2009) or partial tree lin-
earization (Zhang, 2013) with syntactic features as

∗Corresponding Author
1We release our source code at https://github.

com/simtony/BART-word-orderer
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Sequence-to-Sequence

Figure 1: Illustration of our approach for word order-
ing. Bag-of-words inputs are first turned into pseudo-
sequences with arbitrarily word permutations, and then
fed to a sequence-to-sequence Transformer for coherent
outputs.

additional input. Syntactic models (Liu et al., 2015)
and language models (Schmaltz et al., 2016) have
been used in word ordering to rank candidate word
permutations. Recently, Hasler et al. (2017) and
Tao et al. (2021) explore different designs of neural
models for the task. However, no existing stud-
ies investigate pre-trained language models (PLMs;
Qiu et al. 2020) for word ordering, which have
effectively improved various NLP tasks.

Intuitively, the rich knowledge in PLMs can read-
ily help word ordering. However, the unordered
bag-of-words inputs may seem incompatible to
PLMs with sequential inputs. The role of PLMs
in word ordering thus remains an interesting re-
search question. We fill the research gap by em-
pirically investigating BART (Lewis et al., 2020),
a pre-trained sequence-to-sequence Transformer
(Vaswani et al., 2017), as an instance of PLMs for
word ordering. Specifically, we assign an arbitrary
permutation for the input bag of words to obtain
a pseudo-sequence, and use sequence-to-sequence
Transformers to generate ordered outputs, as illus-
trated in Figure 1. As BART uses subword inputs
(Sennrich et al., 2016) instead of words (Schmaltz
et al., 2016; Hasler et al., 2017; Tao et al., 2021),
we implement constrained beam search using prefix
trees (§3.1; Figure 2). Results show that BART sub-
stantially improves word ordering compared to our
Transformer baseline, which already outperforms

6516



previous best (§3.3).

With Transformer models (including BART), we
further investigate consequences of two major mod-
eling decisions, which remain unexamined in the
literature. First, while all previous studies assume
output sequences constrained within permutations
of input words, Tao et al. (2021) eliminate such
constraints. We find the latter leads to a consistent
performance drop, which is further attributed to
missing words in outputs, a phenomenon related to
the coverage issue in machine translation (Tu et al.,
2016). Second, Hasler et al. (2017) use conditional
probability p(y|x) instead of the unconditional one
p(y) of Schmaltz et al. (2016) to score candidate
output permutations y of input bag of words x. We
provide the first fair comparison for the two ap-
proaches, and find that with small decoding beam,
conditional models substantially outperform uncon-
ditional ones. Interestingly, such an advantage fails
to persist as we increase the beam size.

Our Transformer word orderers may be sensitive
to arbitrary word permutations in the input pseudo-
sequence (§3.6). Recent studies (Sinha et al., 2021;
Ettinger, 2020) show that Transformers are rela-
tively insensitive to word permutations in sequen-
tial inputs. They are more sensitive to local orders
than global orders of input subwords on the GLUE
benchmark (Clouâtre et al., 2021). In contrast, we
find that Transformer (including BART) word or-
derers are relatively insensitive to both word and
subword permutations in inputs. Such result can be
relevant to modeling unordered inputs with PLMs
(Castro Ferreira et al., 2020; Lin et al., 2020).

We finally aim to explain why BART helps word
ordering (§4). Analysis with probing (Rogers et al.,
2020) provides speculated explanations for the
utility of PLMs with the possession of numerous
types of knowledge. However, for a reliable ex-
planation, we need to identify the specific type of
knowledge relevant to the task. In addition, the
amount of the knowledge should be nontrivial in
the PLM. With a procedure based on feature im-
portance (Fraser et al., 2014) and probing (Hewitt
and Manning, 2019), we empirically identify that
knowledge about syntactic dependency structure
reliably explains why BART helps word ordering.
Our analysis can be readily extended to partial tree
linearization (Zhang, 2013), for which we also re-
port performance gains with our models (§5).

2 Related Work

Word Ordering Modeling Early work uses syn-
tactic models (Zhang and Clark, 2011; Liu et al.,
2015) and language models (Zhang et al., 2012; Liu
and Zhang, 2015) to rank candidate permutations of
input words. Liu and Zhang (2015) and Schmaltz
et al. (2016) discuss their relative importance. Syn-
tactic models rank candidates with the probability
of the jointly predicted parse tree. They can be
linear models (Wan et al., 2009) or neural networks
(Song et al., 2018) with hand-crafted features. Lan-
guage models use the probability of the output sen-
tence for ranking. Early work uses statistical n-
gram models (Zhang et al., 2012), which are later
replaced by recurrent neural networks (Schmaltz
et al., 2016). Most related to our work, Hasler et al.
(2017) and Tao et al. (2021) formulate word order-
ing as conditional generation. Hasler et al. (2017)
uses an LSTM decoder with attention (Bahdanau
et al., 2015) and an encoder degenerating to an em-
bedding layer. Tao et al. (2021) stack self-attention
(Vaswani et al., 2017) layers as the encoder and use
a decoder from pointer network (See et al., 2017).
Both encode bag-of-words inputs with permutation
invariant word encoders. In contrast, we turn bag-
of-words inputs into subword pseudo-sequences
and feed them to standard sequence-to-sequence
models. Instead of investigating features, predic-
tion targets, and model architectures as in previous
work, we focus on the utility of BART in the task.

Word Ordering Decoding Early work relies on
time-constrained best-first-search (White, 2005;
Zhang and Clark, 2011). As it lacks an asymptotic
upper bound for time complexity (Liu et al., 2015),
later work with syntactic models (Song et al., 2018),
language models (Schmaltz et al., 2016), and con-
ditional generation models (Hasler et al., 2017; Tao
et al., 2021) adopt beam search for decoding. All
previous work assumes an output space constrained
to permutations of input words except for Tao et al.
(2021), who assume the output to be any sequences
permitted by the vocabulary. However, the effect
of such unconstrained output space is unexamined.
We compare the difference between beam search
with constrained and unconstrained output spaces.

Tasks Related to Word Ordering Word order-
ing was first proposed by Bangalore et al. (2000)
as a surrogate for grammaticality test, and later for-
mulated by Wan et al. (2009) as a standard task.
A closely related task is CommonGen (Lin et al.,
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2020), which aims to generate a coherent sentence
subjective to commonsense constraints given a set
of lemmatized concept words. In contrast, word
ordering is a constrained language modeling task
given inflected output words. Tree linearization
(He et al., 2009) is a related task with full depen-
dency trees as inputs. Dropping subsets of depen-
dency arcs and part-of-speech tags results in partial
tree linearization (Zhang, 2013). Further remov-
ing functional words and word inflections results
in surface realization (Mille et al., 2020). Differ-
ent from CommonGen and surface realization, the
provided output bag-of-words limit reliance on do-
main knowledge and reduce ambiguity in output,
making word ordering a concentrated case for test-
ing generic linguistic capacity (Raji et al., 2021) of
text generation models. In addition, word ordering
requires no labeling in contrast to all these tasks.

PLMs and Non-Sequential Inputs PLMs with
the Transformer (Vaswani et al., 2017) decoder are
amenable for sequence generation (Raffel et al.,
2020; Lewis et al., 2020). They have been used
for sequence generation tasks with non-sequential
inputs, such as AMR-to-Text (Mager et al., 2020),
RDF-to-Text (Ribeiro et al., 2021), and Common-
Gen (Lin et al., 2020). Typically, non-sequential
inputs are turned into sequential ones before being
fed to PLMs. Additionally aiming to understand
why BART helps word ordering, we adopt a similar
approach and refrain from task-specific engineer-
ing, which allows the same sequence-to-sequence
model for multiset and tree inputs, limiting extra
confounding factors in our analysis.

Analysis with Probing Previous work on prob-
ing (Rogers et al., 2020) has identified various types
of knowledge in PLMs, such as syntax (Hewitt and
Manning, 2019), semantics (Tenney et al., 2019),
and commonsense (Roberts et al., 2020). They are
speculated to explain the utility of PLMs in tar-
get tasks. We make such explanations reliable for
BART in word ordering by establishing the rele-
vance of specific types of knowledge to the task, in
addition to probing their existence in BART.

3 Word Ordering with BART

We describe our formulation of word ordering and
how to adopt the sequence-to-sequence BART for
the task (§3.1), report results on the standard PTB
benchmark (§3.2 and §3.3), and analyze effects of
different modeling decisions (§3.4–3.6).
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music1

Figure 2: Prefix tree at initialization for constraints
{“She”, “li_ kes”, “li_ stening”, “music”}. Each path
from the root to a leaf corresponds to a subword se-
quence. Except for the root, each node corresponds to
a subword and tracks its count (superscript) in the con-
straints. A pointer (bold outline) denoting the previously
generated subword yt−1 points to the root at initializa-
tion. At decoding step t, only subwords of child nodes
with nonzero count are valid as the next token yt. Once
a subword is selected for yt, we move the pointer to the
corresponding node and decrement its count by 1. The
pointer is reset to the root after reaching leaves. Decod-
ing for each candidate finishes when all counts are zero.

3.1 Modeling Word Ordering
We formulate word ordering as conditional genera-
tion following Hasler et al. (2017). The input bag
of words constitutes a multiset x, where different
elements can take the same value. The probability
of output sequence y, conditioning on x, is param-
eterized by θ and factorizes auto-regressively:

pθ(y|x) =
∏

t

pθ(yt|y<t,x) (1)

where y<t consists of previous generated tokens up
to step t− 1, the next token yt takes a token from
the output vocabulary. Output sequences start with
a special token y0 denoting beginning of sentences.
Following Hasler et al. (2017), after solving θ with
maximum likelihood estimation on the training set,
we use beam search in an output space for the candi-
date y maximizing the product

∏
t pθ(yt|y<t,x).

Output sequences y’s are generally constrained
within permutations of input words (Schmaltz et al.,
2016; Tao et al., 2021). To account for corrupted
inputs (e.g., word deletion), Tao et al. (2021) use
an unconstrained output space with any sequence
permitted by the vocabulary. We analyze the output
difference between decoding with constrained and
unconstrained output space in §3.4.

Beam search with bag-of-words constraints can
be simply implemented by tracking words to be
generated using a multiset for each candidate in
the beam and setting pθ(yt|y<t,x) of invalid (not
in the multiset) next words to zero. The generated
word yt are then removed from the multiset after
decoding step t. Decoding of each candidate ends
with an empty multiset. Different from previous
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work (Schmaltz et al., 2016; Hasler et al., 2017;
Tao et al., 2021), subword segmentation of BART
turns each input word into a sequence of subwords,
which poses sequential constraints on the output.
Thus tracking generated subwords and eliminate
invalid next subwords during beam search require
a different data structure. We compile subword
sequences into a prefix tree as illustrated in Fig-
ure 2, where counts at nodes track subwords to
be generated and child nodes correspond to valid
next subwords. See Figure 6 in Appendix A for a
concrete working example.

Conditional models use pθ(yt|y<t,x) to score
the next token yt given previously generated to-
kens y<t. They additionally depend on the input
x, which helps track words to be generated and
mitigate the ambiguity of selecting yt. In contrast,
unconditional models (Schmaltz et al., 2016) with
probability pθ(yt|y<t) only depend on local infor-
mation yt and y<t, which can lead to high ambi-
guity of selecting yt and attract beam search with
small beams to local minimums. In §3.5, we ana-
lyze the difference between conditional and uncon-
ditional models with a fair comparison.

To instantiate pθ(y|x), we use a Transformer
(Vaswani et al., 2017) consisting of both encoder
and decoder pre-trained with BART (Lewis et al.,
2020). Transformers use self-attention, a permuta-
tion invariant layer, to model contextual representa-
tions for input tokens. Vaswani et al. (2017) add dis-
tinct position embeddings onto input token embed-
dings at different positions to make self-attention
sensitive to input orders. BART pre-trains Trans-
formers to reconstruct corrupted input sequences.
As BART assumes sequential inputs, we convert
the multiset input x into a pseudo-sequence by as-
signing an arbitrary permutation to the input words,
following Lin et al. (2020); see Figure 1 for an
illustration. Although subword orders within each
word are informative, Transformers (and BART)
may be sensitive to the arbitrary word permutation
in the input. We analyze the permutation sensitivity
of our models in §3.6.

3.2 Settings and Implementations

Following previous work (Hasler et al., 2017; Tao
et al., 2021), we use PTB2 sections 2-21 (39,832
sentences) for training, section 22 (1,700 sentences)
for development, and section 23 (2,416 sentences)

2We follow the LDC User Agreement for Non-Members
license.

for test. Punctuation escapes of PTB are reverted3

to match the vocabulary of BART. We randomly
shuffle words of each output sentence to create the
input and perform BPE segmentation (Sennrich
et al., 2016) for both input and output. BLEU (Pap-
ineni et al., 2002) are reported as the performance
metric following Schmaltz et al. (2016). Our im-
plementation is based on fairseq4 (Ott et al., 2019).

We train a Transformer from scratch (denoted
RAND) as the baseline and compared it to the
finetuned BART base (denoted BART) to estimate
gains from BART pre-training. Hyperparameters
are tuned separately since different models have
different optimums. We find vocabulary size 8000
optimal for RAND. Both models share identical ar-
chitecture with 6-layer encoder and decoder. RAND
(35 million parameters) has smaller hidden size
512 and feed-forward hidden size 1024 compared
to 756 and 3072 of BART (140 million parameters).
They both need heavy regularization: β = 0.3 for
label smoothing (Pereyra et al., 2017), p = 0.3 for
dropout (Srivastava et al., 2014), and α = 1 for R-
drop (Liang et al., 2021). Both models are trained
using Adam (Kingma and Ba, 2015). We use 100
samples per batch, 4000 warm-up steps and learn-
ing rate 5e-4 for RAND; 20 samples per batch, 1000
warm-up steps and learning rate 1e-4 for BART.
Learning rate decays with the inverse square root
of training steps. We train the model till the devel-
opment loss stops improving and average the last
5 checkpoints saved per 1000 training steps. We
use beam size 64 to search on a constrained output
space without additional specification. For uncon-
strained output space, we use beam size 64 and
length normalization (Murray and Chiang, 2018).

3.3 Word Ordering Results

We compare our results with previous work under
similar settings: for conditional models, bag2seq
(Bag; Hasler et al. 2017) and AttM (AttnM; Tao
et al. 2021) are included; for unconditional mod-
els, we include N-gram language models (Ngram)
and RNNLM (RNNLM; Schmaltz et al. 2016) repro-
duced by Hasler et al. (2017). Except for AttnM,
all models use a constrained output space. We
do not consider heuristically tailored beam search
(Schmaltz et al., 2016; Hasler et al., 2017) and fo-
cus on standard sequence-to-sequence modeling.

3We replace “-LCB-”and “-LRB-” with “(”, “-RCB-” and
“-RRB-” with “)”, while removing all “\”

4https://github.com/pytorch/fairseq
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Settings B=5 B=64 B=512

Unconstrained
AttnM 34.89 / /
RAND-ours 38.53 38.95 39.04
BART-ours 54.29 54.86 54.84

Constrained
Ngram 23.3 / 35.7
RNNLM 24.5 34.6 38.6
Bag 33.4 36.2 37.1
RAND-ours 38.97 39.52 39.59
BART-ours 54.70 56.38 56.63

Table 1: Test BLEU for word ordering on PTB. B=X
denotes standard beam search with beam size X. Attn,
Bag and our models are all conditional models while
Ngram and RNNLM are unconditional ones.

Different from existing studies, we use BPE seg-
mentation for all our settings.

As shown in Table 1, our baseline RAND out-
performs previous best results with unconstrained
(38.53 of RAND compared to 34.89 of AttnM with
B=5) and constrained (39.59 of RAND compared to
38.6 of RNNLM with B=512) output space, show-
ing the effectiveness of sequence-to-sequence mod-
eling with Transformer. Compared to RAND, BART
brings substantial improvements under different set-
tings, with up to 17.04 BLEU using B=512 and
constrained output space, which demonstrates the
effectiveness of BART pre-training for word order-
ing, setting the stage for later analyses.

3.4 Errors of Unconstrained Output Space

We can readily examine the output lexical errors by
comparing the input and output bag of words. As
shown in Figure 3, beam search with unconstrained
output space tends to miss input words rather than
generate redundant words. The tendency becomes
prominent when increasing the output length, ac-
companied by a slight drop in the output length
ratio. These lexical errors explain the consistent
performance drop compared to constrained output
space in Table 1. See Appendix B.1 for additional
results. The related coverage issue for sequence-
to-sequence models has been studied in machine
translation (Tu et al., 2016; Mi et al., 2016). How-
ever, different from word ordering, an error-prone
source-target alignment procedure is required to
estimate the output bag of words.
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Figure 3: Test lexical errors of RAND with beam size 5
using unconstrained output space. We show the propor-
tions of missing/redundant words and the output length
ratios for test instances binned with output lengths. For
the complete test set, the rates of missing and redundant
words are 5.74% and 3.3%, respectively. The output
length ratio is 0.981. See Figure 7 in Appendix B.1 for
the results of different settings and how the metrics are
computed.

3.5 Effects of Conditional Modeling

We argued in §3.1 that conditional modeling is less
ambiguous when selecting the next token yt, avoid-
ing local minimum during beam search and thus
performing well with small beams. Such a hypoth-
esis is suggested by previous results included in
Table 1: the conditional model Bag substantially
outperforms (+8.9) the unconditional RNNLM with
B=5; unconditional models require large beams to
perform well (Schmaltz et al., 2016). We verify
these observations with a fair comparison. Con-
cretely, we feed a null token as the input to simulate
unconditional modeling with sequence-to-sequence
models5 and train the models with the same settings
in §3.2.

Results are shown in Figure 4. With small
beams, conditional models substantially outper-
form unconditional models. Unconditional models
heavily rely on large beams to perform well. In
contrast, small beams perform on par with large
beams for conditional models. These results ver-
ify our hypothesis. Interestingly, as the beam size
further increases, RAND-uncond slightly outper-
forms RAND-cond, showing that a larger candi-
date space can address ambiguities from local mod-
eling pθ(yt|y<t) to some extent, at the expense of
extra computation and memory overhead.

5The simulation leads to P (x = null) = 1. Thus we have
pθ(y|x = null) = pθ(y)
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Figure 4: Test BLEU of conditional (cond) and un-
conditional (uncond) modeling with RAND and BART,
using different beam size. A null token is fed to the
encoder to simulate unconditional modeling.

3.6 Effects of Input Permutations

We empirically investigate the permutation sensitiv-
ity of our models for word ordering. The sensitivity
is estimated with BLEU from 10 different devel-
opment sets, each with distinct input word permu-
tations. We compare our models to several con-
trolled settings. The first is data augmentation: for
each training instance, we created augmented sam-
ples with the same target output but different input
word permutations, denoted aug. The second is a
Transformer without encoder position embeddings,
which is invariant to input subword permutations,
denoted npos. To examine the importance of sub-
word sequences, we also train RAND and BART
with input subwords shuffled, denoted shuf. All
models are trained with the same settings in §3.2.

Results are shown in Table 2. Both RAND and
BART with the baseline setting base are relatively
insensitive to different input word permutations
(with standard deviation 0.133 and 0.185), com-
pared to the controlled setting npos (with standard
deviation 0.05).6 Data augmentations aug2-aug8
marginally improves the mean BLEU compared to
base, but no consistent decrease of the standard
deviation is observed. See Appendix B.2 for sim-
ilar results with unconstrained output space. Sur-
prisingly, with constrained output space, the lost
local subword orders in npos and shuf has lit-
tle impact on the performance, in contrast to the
findings of Clouâtre et al. (2021). Even marginal
improvement for BART is observed (56.45 with
shuf compared to 56.21 with base). However,
with unconstrained output space, the loss of local

6The quantization error of float arithmetic is sensitive to
the order of operands.

Settings RAND BART

base 40.45 (0.133) 56.21 (0.185)
aug2 40.86 (0.159) 56.78 (0.110)
aug4 40.73 (0.088) 56.97 (0.164)
aug6 40.73 (0.157) 56.76 (0.180)
aug8 40.94 (0.104) 56.91 (0.155)

npos 40.05 (0.050) /
shuf 39.58 (0.135) 56.45 (0.133)

Table 2: Permutation sensitivity measured by the mean
and standard deviation (in the bracket) of BLEU on 10
development sets with distinct input word permutations.
Results are obtained with constrained output space; for
unconstrained output space see Table 6 in Appendix B.2.
base denotes settings in §3.2. augx is trained with
additional x augmented samples per training instance.
npos removes encoder position embeddings. shuf is
trained with shuffled input subwords.

subword orders results in a non-trivial drop in per-
formance. See Appendix B.2 for detailed results.

4 Understanding Why BART Helps

We empirically establish the intuition that knowl-
edge in BART helps target tasks. Though numer-
ous types of knowledge have been identified in
PLMs by probing (Rogers et al., 2020), they may
not necessarily improve the target task (Cífka and
Bojar, 2018). Thus a reliable explanation should
identify the relevant type of knowledge for word
ordering. Candidate types of knowledge can be se-
lected using a procedure akin to feature importance
(§4.1): we feed different types of knowledge as
additional features and select the one bringing the
most salient gain in word ordering. Their relevance
should be further verified by a strong correlation
(§4.2) between the probing performance and word
ordering performance, as models can utilize unex-
pected shortcut rules (Geirhos et al., 2020) instead
of distilling the intended knowledge provided in
the features.7 Such a correlation is estimated using
models with different amount of the knowledge.
We finally probe for the nontrivial existence of the
knowledge in BART (§4.2).

4.1 Analysis with Feature Importance
We first select a candidate type of knowledge for
our explanation. Based on empirical evidence (Liu

7The nuance is related to the philosophical quest on what
constitutes mental states. Feature importance follows behav-
iorism while probing is akin to functionalism. See (Levin,
2018) for discussions on behaviorism and functionalism.

6521



Bob eats food
NNP VBZ NNP

root

sub obj

(a) Dependency tree

base food Bob eat_ s
brac ( food ) ( Bob ) ( eat_ s )
pos ( food NNP ) ( Bob NNP ) ( eat_ s VBZ )
udep ( eat_ s ( Bob ) ( food ) )
ldep ( eat_ s :sub ( Bob ) :obj ( food ) )
full ( eat_ s VBZ :obj ( food NNP ) :sub ( Bob NNP ) )

(b) BPE tokenized PENMMAN notation sequences

Figure 5: An example dependency tree and its BPE tokenized PENMAN notation sequences with different features.

et al., 2015) and linguistic theories (de Marneffe
and Nivre, 2019), we narrow our focus to syntac-
tic dependencies. Nevertheless, different parts of
a dependency tree can be the candidate: brackets
around words (brac), part-of-speech tags (pos),
dependency structure (udep), labeled dependency
structure (ldep), and the full tree with labeled de-
pendency structure and part-of-speech tags (full).
Knowledge are injected into models by feeding it
as additional input feature. The resulting perfor-
mance gain compared to the baseline (base) with
bag-of-words inputs indicates the importance of
the feature (Fraser et al., 2014), a surrogate for the
relevance of the type of knowledge.

Dependency trees are derived from the PTB fol-
lowing (Zhang, 2013), with tags defined by Nivre
et al. (2007). We use the same data split as in §3.2.
Bag-of-words inputs with additional features are
turned into PENMAN notation sequences (Mager
et al., 2020) and fed to sequence-to-sequence Trans-
formers as in §3.1; see Figure 5 for input examples.
For tree-structured inputs, we shuffle the children
of each head nodes before turning them into se-
quences. Dependency labels and part-of-speech
tags are kept intact during BPE tokenization. We
follow the same settings in §3.2 to train RAND and
BART with additional input features.

Results are shown in Table 3. The additional
features from different types of knowledge con-
sistently improves word ordering, among which
dependency structure (udep) brings the main per-
formance gain (comparing udep to base, RAND
is improved by 47.15 and BART by 34.37), sug-
gesting the potential relevance of the knowledge to
word ordering. Further adding dependency labels
and part-of-speech tags marginally helps (compar-
ing ldep and full to udep, RAND and BART
are improved by up to 2.79 and 1.20, respectively).
Interestingly, although part-of-speech tags alone
slightly help (comparing pos to base, RAND is
improved by 2.04 and BART by 1.49), their benefits

diminish given dependency structures (comparing
ldep to full, RAND is improved by 0.03 while
BART dropping 0.27), suggesting that dependency
structure knowledge can subsume part-of-speech
tags. Accordingly, we select knowledge about de-
pendency structure as our candidate for explana-
tion.

4.2 Analysis with Structural Probing

To obtain a reliable explanation, we then estab-
lish the correlation between dependency structure
knowledge in the model and word ordering per-
formance, and verify the existence of the knowl-
edge in BART. Both require examining depen-
dency structure knowledge in models, which can
be achieved by the structural probe (Hewitt and
Manning, 2019), a learned bilinear distance met-
ric taking representations of a model as input fea-
tures. It estimates the unlabeled dependency trees
of sentences using minimum spanning trees. The
resulting unlabeled attachment score (UAS) indi-
cates the probing performance. We use the average
UAS of representations from all decoder layers to
indicate the dependency structure knowledge in
the model. We omit encoder representations since
matching unordered input words to ground truth de-
pendencies is ambiguous. Decoder representations
are obtained by feeding the ground-truth outputs
to the model. For each output token yt, one can
choose representations that predict it (h(y<t,x))
or from feeding it (h(y<t+1,x)) as features. We
use the former as it results in higher UAS in our
preliminary experiments. Features of words are the
average of their subword features.

We follow the default hyperparameters of Hewitt
and Manning (2019)8, with a rank of 32, and train
with the L1 loss for 30 epochs using 40 samples
per batch. We use the derived dependency trees
from §4.1 as our dataset and report the averaged

8We use the code provided by the authors in https://
github.com/john-hewitt/structural-probes
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Settings RAND BART ∆B−R

base 40.36 56.14 15.78
brac 40.58 + 0.22 56.64 + 0.50 16.06
pos 42.40 + 2.04 57.63 + 1.49 15.23
udep 87.51 +47.15 90.51 +34.37 3.00
ldep 90.27 +49.91 91.70 +35.56 1.43
full 90.30 +49.94 91.43 +35.29 1.13

Table 3: Development BLEU with different input syntac-
tic features: brac for brackets around words, pos for
part-of-speech tags, udep and ldep for unlabeled and
labeled dependencies, and full for part-of-speech tags
and labeled dependencies. Performance gains against
bag-of-words inputs (base) are shown in the super-
scripts. The ∆B−R column is the differences between
BART and RAND.

UAS on the PTB test set. Since dependency struc-
ture knowledge can subsume part-of-speech tags as
shown in §4.1, feeding features of base, pos or
udep to RAND and BART results in models with
varied amounts of the knowledge. Their structural
probing results are shown in Table 4.

The consistent probing performance gains on
feeding additional features in Table 4 confirms that
knowledge is indeed injected into the models by
feature feeding, ruling out the possibility that mod-
els use shortcut rules (with pos, RAND is improved
by 1.26 and BART by 0.87; with udep, RAND is
improved by 10.17 and BART by 12.13). Jointly
examining Table 3 and Table 4, we find that an in-
crease in UAS always corresponds to improved
BLEU. The Pearson’s correlation coefficient of
0.8845 between BLEU and UAS further verifies
that dependency structure knowledge is relevant to
word ordering across settings.

We finally compare the probing performance of
BART initialized with pre-trained parameters (with
UAS 53.06) to the agnostic setting using randomly
initialized token embeddings (with 42.59 UAS).9

The performance gap of 10.47 indicates that a non-
trivial amount of dependency structure knowledge
exists in BART. The relevance to word ordering and
the existence in BART make knowledge about syn-
tactic dependency structure a reliable explanation
for the utility of BART in word ordering.

9Our preliminary experiment shows that random embed-
dings substantially outperform features from randomly initial-
ized Transformer (with 30.51 UAS).

Settings RAND BART ∆B−R

base 44.69 53.05 8.36
pos 45.95 + 1.26 53.83 + 0.78 7.88
udep 54.86 +10.17 65.18 +12.13 10.32

Table 4: Averaged UAS of all decoder layers (including
the embedding) on test set. base, pos and udep are
the same as Table 3. Performance gains against base
are shown in the superscript. The differences between
BART and RAND are shown in the ∆B−R column.

5 Extension to Partial Tree Linearization

Our analysis in §4 can be readily extended to par-
tial tree linearization (Zhang, 2013), a generalized
word ordering task provided with additional syntac-
tic input features. Unlike settings in §4, additional
features can be arbitrary subsets of part-of-speech
tags and labeled dependency arcs. The task can be
helpful for applications such as machine translation
(Zhang et al., 2014). Following Zhang (2013), we
use the same dependency trees in §4.1 and report
BLEU on the PTB development set with different
proportions of syntactic features.

Previous studies (Zhang, 2013; Puduppully et al.,
2016) use linear models with hand-crafted features.
Each base noun phrase (BNP; noun phrases with-
out decedent noun phrases) is regarded as a sin-
gle word for computation efficiency. We adopt
the same sequence-to-sequence models RAND and
BART in §3.2 and report results with and without
special treatment for BNPs. Similar to §4.1, partial
trees are turned into PENMAN sequences and fed
to sequence-to-sequence Transformers. We use the
same model for different proportions of input fea-
tures. For each tree in the training set, we sample
0%, 50% and 100% of part-of-speech tags and la-
beled dependency arcs, respectively, resulting in 9
training instances with different input features for
the same ordered output sequence. To keep inputs
consistent, we put brackets around words that have
no additional features (see brac in Figure 5).

Results are shown in Table 5. For comparison,
we include results of Puduppully et al. (2016), de-
noted P16, and Zhang (2013), denoted Z13. We
notice that treating BNPs as words substantially
simplifies the task: the mean BLEU increase from
59.5 to 73.0 for RAND and from 73.7 to 82.5 for
BART. RAND substantially outperforms the previ-
ous best result of P16 by 6.8 mean BLEU. In ad-
dition, BART brings further improvements by 9.5
mean BLEU, giving a new best-reported result.

6523



Settings (0, 0) (0.5, 0) (1, 0) (0, 0.5) (0.5, 0.5) (1, 0.5) (0, 1) (0.5, 1) (1, 1) Mean

Z13† 42.9 43.4 44.7 50.5 51.4 52.2 73.3 74.7 76.3 56.6
P16† 48.0 49.0 51.5 59.0 62.0 67.1 82.8 86.2 89.9 66.2
RAND† 58.8 59.5 59.7 72.0 72.6 72.6 87.1 87.1 87.3 73.0
BART† 71.7 71.9 72.3 83.2 83.1 83.2 92.1 92.4 92.2 82.5

RAND 42.0 42.4 42.8 55.2 55.6 56.8 80.1 80.1 80.5 59.5
BART 55.9 56.5 57.2 73.6 73.6 73.6 90.9 90.8 90.9 73.7

Table 5: Development BLEU with constrained output space for partial tree linearization with different proportions
of (pos, ldep) input features. Settings with † treat a BNP as a single word.

6 Conclusion

We investigated the role of PLMs in word ordering
using BART as an instance. Non-sequential in-
puts are turned into sequences and fed to sequence-
to-sequence Transformers and BART for coherent
outputs. We achieve the best-reported results on
word ordering and partial tree linearization with
BART. With Transformers and BART, we provide
a systematic study on the effects of output space
constraints, conditional modeling, and permutation
sensitivity of inputs for word ordering. Our find-
ings can shed light on related pre-trained models
such as T5 (Raffel et al., 2020) in related tasks such
as CommonGen. Our analysis with feature impor-
tance and structural probing empirically identifies
that knowledge about syntactic dependency struc-
ture reliably explains the utility of BART in word
ordering. Such a procedure is general and can be
readily used to explain why a given PLM helps a
target task.
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A Beam Search with Output Constraints

The standard beam search is modify by tracking
the state of a candidate with a constraint prefix tree,
which specifies valid next tokens at each decoding
step. The update rules for the prefix tree are de-
scribed in Figure 2. See Figure 6 for an illustration
of how the constraint tree for a candidate in the
beam is updated during decoding.

B Results of Unconstrained Output Space

We include additional results with unconstrained
output space to complement the discussion in §3.4
and §3.6.
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<latexit sha1_base64="jV7GAlwcpRj90FZq7pXc5QOA5JA=">AAAB+HicbVDLSsNAFL2pr1ofjY+dm2ARXJWkFHVZdOOygn1AE8NkOmmHziRhZiLU0C9x40IRt36KO//GSdqFth4YOJxzL/fMCRJGpbLtb6O0tr6xuVXeruzs7u1XzYPDroxTgUkHxywW/QBJwmhEOooqRvqJIIgHjPSCyU3u9x6JkDSO7tU0IR5Ho4iGFCOlJd+suhypseAZo64/e2j4Zs2u2wWsVeIsSK11DAXavvnlDmOcchIpzJCUA8dOlJchoShmZFZxU0kShCdoRAaaRogT6WVF8Jl1ppWhFcZCv0hZhfp7I0NcyikP9GQeUy57ufifN0hVeOVlNEpSRSI8PxSmzFKxlbdgDakgWLGpJggLqrNaeIwEwkp3VdElOMtfXiXdRt25qDfvmrXW9bwNKMMJnMI5OHAJLbiFNnQAQwrP8ApvxpPxYrwbH/PRkrHYOYI/MD5/AGHYk5s=</latexit>

li 2

<latexit sha1_base64="gLOSZp0wfVbAhQJP7rXyPOIEToA=">AAAB9XicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJiSAJDKRTOtDQdiZtR0Mm/IcbFxrj1n9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxS7QBrypmkTcMMp+1YUSwCTh+C8U3mPzxSpVkk780kpr7AQ8lCRrCxUq8rsBkpkY6pnva8frniVt0caJl4c1KpH0GORr/81R1EJBFUGsKx1h3PjY2fYmUY4XRa6iaaxpiM8ZB2LJVYUO2neeopOrXKAIWRsk8alKu/N1IstJ6IwE5mKfWil4n/eZ3EhFd+ymScGCrJ7FCYcGQilFWABkxRYvjEEkwUs1kRGWGFibFFlWwJ3uKXl0nrvOpdVGt3tUr9etYGFOEYTuAMPLiEOtxCA5pAQMEzvMKb8+S8OO/Ox2y04Mx3DuEPnM8fSWCTEg==</latexit>

kes1
<latexit sha1_base64="1bHcNpJ3NFo88tg1Tnjk7Iyq0gU=">AAAB+3icbVDLSsNAFL3xWesrVnduBovgqiRS1GXRjcsK9gFtLJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnaRfaemDgcM69zLnHjzlT2nG+rZXVtfWNzdJWeXtnd2/fPqi0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnK/80ilYpG419OYeiEeCRYwgrWRBnalH2I9lmGqNBVMjLIHd2BXnZpTAC0Td06qjSMo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xm5X6iaIzJBI9oz1CBQ6q8tMieoVOjDFEQSfOERoX6eyPFoVLT0DeTeVK16OXif14v0cGVlzIRJ+YyMvsoSDjSEcqLQEMmKdF8aggmkpmsiIyxxESbusqmBHfx5GXSPq+5F7X6Xb3auJ61ASU4hhM4AxcuoQG30IQWEHiCZ3iFNyuzXqx362M2umLNdw7hD6zPHwZ+lSA=</latexit>

stening1

<latexit sha1_base64="031lLKwVSpaYKo7Hv79c1HTlfSA=">AAAB9HicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJRoQEJqRTOtDQace2Q0ImfIcbFxrj1o9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DRy0TRWiTSC5VO8CaciZo0zDDaTtWFEcBp61gdJP5rTFVmknxYCYx9SM8ECxkBBsr+d0Im6GK0nspzbRXrrhVNwdaJt6cVOpHkKPRK391+5IkERWGcKx1x3Nj46dYGUY4nZa6iaYxJiM8oB1LBY6o9tM89BSdWqWPQqnsEwbl6u+NFEdaT6LATmYh9aKXif95ncSEV37KRJwYKsjsUJhwZCTKGkB9pigxfGIJJorZrIgMscLE2J5KtgRv8cvL5PG86l1Ua3e1Sv161gYU4RhO4Aw8uIQ63EIDmkDgCZ7hFd6csfPivDsfs9GCM985hD9wPn8A2MiS2g==</latexit>

Root

<latexit sha1_base64="uCHm9+NkC5nOSr6iNpEi7gZFDV8=">AAAB+XicbVDLSgMxFL1TX7W+xsfOTbAIrsqMFHVZdOOygn1AO5ZMmrahSWZIMoUy9E/cuFDErX/izr8xM+1CWw8EDufcyz05YcyZNp737RTW1jc2t4rbpZ3dvf0D9/CoqaNEEdogEY9UO8SaciZpwzDDaTtWFIuQ01Y4vsv81oQqzSL5aKYxDQQeSjZgBBsr9Vy3K7AZKZGKRDMye/J7btmreDnQKvEXpFw7gRz1nvvV7UckEVQawrHWHd+LTZBiZRjhdFbqJprGmIzxkHYslVhQHaR58hk6t0ofDSJlnzQoV39vpFhoPRWhncxy6mUvE//zOokZ3AQpk3FiqCTzQ4OEIxOhrAbUZ4oSw6eWYKKYzYrICCtMjC2rZEvwl7+8SpqXFf+qUn2olmu38zagCKdwBhfgwzXU4B7q0AACE3iGV3hzUufFeXc+5qMFZ7FzDH/gfP4AaEmUNQ==</latexit>

music1
<latexit sha1_base64="lbGiPYLKaXjPXFJYnIz5uLC1xhw=">AAAB9XicbVDLSgMxFL1TX7W+6mPnJlgEV2VGirosunFZ0T6gnZZMmmlDk8yQZJQy9D/cuFDErf/izr8x03ahrQcCh3Pu5Z6cIOZMG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEEVonEY9UK8CaciZp3TDDaStWFIuA02Ywusn85iNVmkXywYxj6gs8kCxkBBsrdTsCm6ES6f2QTrpur1hyy+4UaJl4c1KqHsEUtV7xq9OPSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4QFtWyqxoNpPp6kn6NQqfRRGyj5p0FT9vZFiofVYBHYyS6kXvUz8z2snJrzyUybjxFBJZofChCMToawC1GeKEsPHlmCimM2KyBArTIwtqmBL8Ba/vEwa52Xvoly5q5Sq17M2IA/HcAJn4MElVOEWalAHAgqe4RXenCfnxXl3PmajOWe+cwh/4Hz+ABI6ku4=</latexit>

She0
<latexit sha1_base64="jV7GAlwcpRj90FZq7pXc5QOA5JA=">AAAB+HicbVDLSsNAFL2pr1ofjY+dm2ARXJWkFHVZdOOygn1AE8NkOmmHziRhZiLU0C9x40IRt36KO//GSdqFth4YOJxzL/fMCRJGpbLtb6O0tr6xuVXeruzs7u1XzYPDroxTgUkHxywW/QBJwmhEOooqRvqJIIgHjPSCyU3u9x6JkDSO7tU0IR5Ho4iGFCOlJd+suhypseAZo64/e2j4Zs2u2wWsVeIsSK11DAXavvnlDmOcchIpzJCUA8dOlJchoShmZFZxU0kShCdoRAaaRogT6WVF8Jl1ppWhFcZCv0hZhfp7I0NcyikP9GQeUy57ufifN0hVeOVlNEpSRSI8PxSmzFKxlbdgDakgWLGpJggLqrNaeIwEwkp3VdElOMtfXiXdRt25qDfvmrXW9bwNKMMJnMI5OHAJLbiFNnQAQwrP8ApvxpPxYrwbH/PRkrHYOYI/MD5/AGHYk5s=</latexit>

li 2

<latexit sha1_base64="gLOSZp0wfVbAhQJP7rXyPOIEToA=">AAAB9XicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJiSAJDKRTOtDQdiZtR0Mm/IcbFxrj1n9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxS7QBrypmkTcMMp+1YUSwCTh+C8U3mPzxSpVkk780kpr7AQ8lCRrCxUq8rsBkpkY6pnva8frniVt0caJl4c1KpH0GORr/81R1EJBFUGsKx1h3PjY2fYmUY4XRa6iaaxpiM8ZB2LJVYUO2neeopOrXKAIWRsk8alKu/N1IstJ6IwE5mKfWil4n/eZ3EhFd+ymScGCrJ7FCYcGQilFWABkxRYvjEEkwUs1kRGWGFibFFlWwJ3uKXl0nrvOpdVGt3tUr9etYGFOEYTuAMPLiEOtxCA5pAQMEzvMKb8+S8OO/Ox2y04Mx3DuEPnM8fSWCTEg==</latexit>

kes1
<latexit sha1_base64="1bHcNpJ3NFo88tg1Tnjk7Iyq0gU=">AAAB+3icbVDLSsNAFL3xWesrVnduBovgqiRS1GXRjcsK9gFtLJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnaRfaemDgcM69zLnHjzlT2nG+rZXVtfWNzdJWeXtnd2/fPqi0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnK/80ilYpG419OYeiEeCRYwgrWRBnalH2I9lmGqNBVMjLIHd2BXnZpTAC0Td06qjSMo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xm5X6iaIzJBI9oz1CBQ6q8tMieoVOjDFEQSfOERoX6eyPFoVLT0DeTeVK16OXif14v0cGVlzIRJ+YyMvsoSDjSEcqLQEMmKdF8aggmkpmsiIyxxESbusqmBHfx5GXSPq+5F7X6Xb3auJ61ASU4hhM4AxcuoQG30IQWEHiCZ3iFNyuzXqx362M2umLNdw7hD6zPHwZ+lSA=</latexit>

stening1

<latexit sha1_base64="031lLKwVSpaYKo7Hv79c1HTlfSA=">AAAB9HicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJRoQEJqRTOtDQace2Q0ImfIcbFxrj1o9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DRy0TRWiTSC5VO8CaciZo0zDDaTtWFEcBp61gdJP5rTFVmknxYCYx9SM8ECxkBBsr+d0Im6GK0nspzbRXrrhVNwdaJt6cVOpHkKPRK391+5IkERWGcKx1x3Nj46dYGUY4nZa6iaYxJiM8oB1LBY6o9tM89BSdWqWPQqnsEwbl6u+NFEdaT6LATmYh9aKXif95ncSEV37KRJwYKsjsUJhwZCTKGkB9pigxfGIJJorZrIgMscLE2J5KtgRv8cvL5PG86l1Ua3e1Sv161gYU4RhO4Aw8uIQ63EIDmkDgCZ7hFd6csfPivDsfs9GCM985hD9wPn8A2MiS2g==</latexit>

Root

<latexit sha1_base64="uCHm9+NkC5nOSr6iNpEi7gZFDV8=">AAAB+XicbVDLSgMxFL1TX7W+xsfOTbAIrsqMFHVZdOOygn1AO5ZMmrahSWZIMoUy9E/cuFDErX/izr8xM+1CWw8EDufcyz05YcyZNp737RTW1jc2t4rbpZ3dvf0D9/CoqaNEEdogEY9UO8SaciZpwzDDaTtWFIuQ01Y4vsv81oQqzSL5aKYxDQQeSjZgBBsr9Vy3K7AZKZGKRDMye/J7btmreDnQKvEXpFw7gRz1nvvV7UckEVQawrHWHd+LTZBiZRjhdFbqJprGmIzxkHYslVhQHaR58hk6t0ofDSJlnzQoV39vpFhoPRWhncxy6mUvE//zOokZ3AQpk3FiqCTzQ4OEIxOhrAbUZ4oSw6eWYKKYzYrICCtMjC2rZEvwl7+8SpqXFf+qUn2olmu38zagCKdwBhfgwzXU4B7q0AACE3iGV3hzUufFeXc+5qMFZ7FzDH/gfP4AaEmUNQ==</latexit>

music1
<latexit sha1_base64="lbGiPYLKaXjPXFJYnIz5uLC1xhw=">AAAB9XicbVDLSgMxFL1TX7W+6mPnJlgEV2VGirosunFZ0T6gnZZMmmlDk8yQZJQy9D/cuFDErf/izr8x03ahrQcCh3Pu5Z6cIOZMG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEEVonEY9UK8CaciZp3TDDaStWFIuA02Ywusn85iNVmkXywYxj6gs8kCxkBBsrdTsCm6ES6f2QTrpur1hyy+4UaJl4c1KqHsEUtV7xq9OPSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4QFtWyqxoNpPp6kn6NQqfRRGyj5p0FT9vZFiofVYBHYyS6kXvUz8z2snJrzyUybjxFBJZofChCMToawC1GeKEsPHlmCimM2KyBArTIwtqmBL8Ba/vEwa52Xvoly5q5Sq17M2IA/HcAJn4MElVOEWalAHAgqe4RXenCfnxXl3PmajOWe+cwh/4Hz+ABI6ku4=</latexit>

She0
<latexit sha1_base64="ZWG3ZtA8yxc3OSJuYXM6nToN5YI=">AAAB+HicbVDLSsNAFL3xWeuj8bFzM1gEVyWRoi6LblxWsA9oYphMp+3QySTMTIQa+iVuXCji1k9x5984SbvQ1gMDh3Pu5Z45YcKZ0o7zba2srq1vbJa2yts7u3sVe/+greJUEtoiMY9lN8SKciZoSzPNaTeRFEchp51wfJP7nUcqFYvFvZ4k1I/wULABI1gbKbArXoT1SEYZZ14wfXADu+rUnAJombhzUm0cQYFmYH95/ZikERWacKxUz3US7WdYakY4nZa9VNEEkzEe0p6hAkdU+VkRfIpOjdJHg1iaJzQq1N8bGY6UmkShmcxjqkUvF//zeqkeXPkZE0mqqSCzQ4OUIx2jvAXUZ5ISzSeGYCKZyYrICEtMtOmqbEpwF7+8TNrnNfeiVr+rVxvXszagBMdwAmfgwiU04Baa0AICKTzDK7xZT9aL9W59zEZXrPnOIfyB9fkDYFSTmg==</latexit>

li 1

<latexit sha1_base64="gLOSZp0wfVbAhQJP7rXyPOIEToA=">AAAB9XicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJiSAJDKRTOtDQdiZtR0Mm/IcbFxrj1n9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxS7QBrypmkTcMMp+1YUSwCTh+C8U3mPzxSpVkk780kpr7AQ8lCRrCxUq8rsBkpkY6pnva8frniVt0caJl4c1KpH0GORr/81R1EJBFUGsKx1h3PjY2fYmUY4XRa6iaaxpiM8ZB2LJVYUO2neeopOrXKAIWRsk8alKu/N1IstJ6IwE5mKfWil4n/eZ3EhFd+ymScGCrJ7FCYcGQilFWABkxRYvjEEkwUs1kRGWGFibFFlWwJ3uKXl0nrvOpdVGt3tUr9etYGFOEYTuAMPLiEOtxCA5pAQMEzvMKb8+S8OO/Ox2y04Mx3DuEPnM8fSWCTEg==</latexit>

kes1
<latexit sha1_base64="1bHcNpJ3NFo88tg1Tnjk7Iyq0gU=">AAAB+3icbVDLSsNAFL3xWesrVnduBovgqiRS1GXRjcsK9gFtLJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnaRfaemDgcM69zLnHjzlT2nG+rZXVtfWNzdJWeXtnd2/fPqi0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnK/80ilYpG419OYeiEeCRYwgrWRBnalH2I9lmGqNBVMjLIHd2BXnZpTAC0Td06qjSMo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xm5X6iaIzJBI9oz1CBQ6q8tMieoVOjDFEQSfOERoX6eyPFoVLT0DeTeVK16OXif14v0cGVlzIRJ+YyMvsoSDjSEcqLQEMmKdF8aggmkpmsiIyxxESbusqmBHfx5GXSPq+5F7X6Xb3auJ61ASU4hhM4AxcuoQG30IQWEHiCZ3iFNyuzXqx362M2umLNdw7hD6zPHwZ+lSA=</latexit>

stening1

<latexit sha1_base64="031lLKwVSpaYKo7Hv79c1HTlfSA=">AAAB9HicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJRoQEJqRTOtDQace2Q0ImfIcbFxrj1o9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DRy0TRWiTSC5VO8CaciZo0zDDaTtWFEcBp61gdJP5rTFVmknxYCYx9SM8ECxkBBsr+d0Im6GK0nspzbRXrrhVNwdaJt6cVOpHkKPRK391+5IkERWGcKx1x3Nj46dYGUY4nZa6iaYxJiM8oB1LBY6o9tM89BSdWqWPQqnsEwbl6u+NFEdaT6LATmYh9aKXif95ncSEV37KRJwYKsjsUJhwZCTKGkB9pigxfGIJJorZrIgMscLE2J5KtgRv8cvL5PG86l1Ua3e1Sv161gYU4RhO4Aw8uIQ63EIDmkDgCZ7hFd6csfPivDsfs9GCM985hD9wPn8A2MiS2g==</latexit>

Root

<latexit sha1_base64="uCHm9+NkC5nOSr6iNpEi7gZFDV8=">AAAB+XicbVDLSgMxFL1TX7W+xsfOTbAIrsqMFHVZdOOygn1AO5ZMmrahSWZIMoUy9E/cuFDErX/izr8xM+1CWw8EDufcyz05YcyZNp737RTW1jc2t4rbpZ3dvf0D9/CoqaNEEdogEY9UO8SaciZpwzDDaTtWFIuQ01Y4vsv81oQqzSL5aKYxDQQeSjZgBBsr9Vy3K7AZKZGKRDMye/J7btmreDnQKvEXpFw7gRz1nvvV7UckEVQawrHWHd+LTZBiZRjhdFbqJprGmIzxkHYslVhQHaR58hk6t0ofDSJlnzQoV39vpFhoPRWhncxy6mUvE//zOokZ3AQpk3FiqCTzQ4OEIxOhrAbUZ4oSw6eWYKKYzYrICCtMjC2rZEvwl7+8SpqXFf+qUn2olmu38zagCKdwBhfgwzXU4B7q0AACE3iGV3hzUufFeXc+5qMFZ7FzDH/gfP4AaEmUNQ==</latexit>

music1
<latexit sha1_base64="lbGiPYLKaXjPXFJYnIz5uLC1xhw=">AAAB9XicbVDLSgMxFL1TX7W+6mPnJlgEV2VGirosunFZ0T6gnZZMmmlDk8yQZJQy9D/cuFDErf/izr8x03ahrQcCh3Pu5Z6cIOZMG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEEVonEY9UK8CaciZp3TDDaStWFIuA02Ywusn85iNVmkXywYxj6gs8kCxkBBsrdTsCm6ES6f2QTrpur1hyy+4UaJl4c1KqHsEUtV7xq9OPSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4QFtWyqxoNpPp6kn6NQqfRRGyj5p0FT9vZFiofVYBHYyS6kXvUz8z2snJrzyUybjxFBJZofChCMToawC1GeKEsPHlmCimM2KyBArTIwtqmBL8Ba/vEwa52Xvoly5q5Sq17M2IA/HcAJn4MElVOEWalAHAgqe4RXenCfnxXl3PmajOWe+cwh/4Hz+ABI6ku4=</latexit>

She0
<latexit sha1_base64="ZWG3ZtA8yxc3OSJuYXM6nToN5YI=">AAAB+HicbVDLSsNAFL3xWeuj8bFzM1gEVyWRoi6LblxWsA9oYphMp+3QySTMTIQa+iVuXCji1k9x5984SbvQ1gMDh3Pu5Z45YcKZ0o7zba2srq1vbJa2yts7u3sVe/+greJUEtoiMY9lN8SKciZoSzPNaTeRFEchp51wfJP7nUcqFYvFvZ4k1I/wULABI1gbKbArXoT1SEYZZ14wfXADu+rUnAJombhzUm0cQYFmYH95/ZikERWacKxUz3US7WdYakY4nZa9VNEEkzEe0p6hAkdU+VkRfIpOjdJHg1iaJzQq1N8bGY6UmkShmcxjqkUvF//zeqkeXPkZE0mqqSCzQ4OUIx2jvAXUZ5ISzSeGYCKZyYrICEtMtOmqbEpwF7+8TNrnNfeiVr+rVxvXszagBMdwAmfgwiU04Baa0AICKTzDK7xZT9aL9W59zEZXrPnOIfyB9fkDYFSTmg==</latexit>

li 1

<latexit sha1_base64="ii77EQ4WgiBZqEk8YvSK+1EGja8=">AAAB9XicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJiSAJDKRTOtDQdiZtR0Mm/IcbFxrj1n9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxS7QBrypmkTcMMp+1YUSwCTh+C8U3mPzxSpVkk780kpr7AQ8lCRrCxUq8rsBkpkY6pnvbcfrniVt0caJl4c1KpH0GORr/81R1EJBFUGsKx1h3PjY2fYmUY4XRa6iaaxpiM8ZB2LJVYUO2neeopOrXKAIWRsk8alKu/N1IstJ6IwE5mKfWil4n/eZ3EhFd+ymScGCrJ7FCYcGQilFWABkxRYvjEEkwUs1kRGWGFibFFlWwJ3uKXl0nrvOpdVGt3tUr9etYGFOEYTuAMPLiEOtxCA5pAQMEzvMKb8+S8OO/Ox2y04Mx3DuEPnM8fR9yTEQ==</latexit>

kes0
<latexit sha1_base64="1bHcNpJ3NFo88tg1Tnjk7Iyq0gU=">AAAB+3icbVDLSsNAFL3xWesrVnduBovgqiRS1GXRjcsK9gFtLJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnaRfaemDgcM69zLnHjzlT2nG+rZXVtfWNzdJWeXtnd2/fPqi0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnK/80ilYpG419OYeiEeCRYwgrWRBnalH2I9lmGqNBVMjLIHd2BXnZpTAC0Td06qjSMo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xm5X6iaIzJBI9oz1CBQ6q8tMieoVOjDFEQSfOERoX6eyPFoVLT0DeTeVK16OXif14v0cGVlzIRJ+YyMvsoSDjSEcqLQEMmKdF8aggmkpmsiIyxxESbusqmBHfx5GXSPq+5F7X6Xb3auJ61ASU4hhM4AxcuoQG30IQWEHiCZ3iFNyuzXqx362M2umLNdw7hD6zPHwZ+lSA=</latexit>

stening1

<latexit sha1_base64="031lLKwVSpaYKo7Hv79c1HTlfSA=">AAAB9HicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJRoQEJqRTOtDQace2Q0ImfIcbFxrj1o9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DRy0TRWiTSC5VO8CaciZo0zDDaTtWFEcBp61gdJP5rTFVmknxYCYx9SM8ECxkBBsr+d0Im6GK0nspzbRXrrhVNwdaJt6cVOpHkKPRK391+5IkERWGcKx1x3Nj46dYGUY4nZa6iaYxJiM8oB1LBY6o9tM89BSdWqWPQqnsEwbl6u+NFEdaT6LATmYh9aKXif95ncSEV37KRJwYKsjsUJhwZCTKGkB9pigxfGIJJorZrIgMscLE2J5KtgRv8cvL5PG86l1Ua3e1Sv161gYU4RhO4Aw8uIQ63EIDmkDgCZ7hFd6csfPivDsfs9GCM985hD9wPn8A2MiS2g==</latexit>

Root

<latexit sha1_base64="uCHm9+NkC5nOSr6iNpEi7gZFDV8=">AAAB+XicbVDLSgMxFL1TX7W+xsfOTbAIrsqMFHVZdOOygn1AO5ZMmrahSWZIMoUy9E/cuFDErX/izr8xM+1CWw8EDufcyz05YcyZNp737RTW1jc2t4rbpZ3dvf0D9/CoqaNEEdogEY9UO8SaciZpwzDDaTtWFIuQ01Y4vsv81oQqzSL5aKYxDQQeSjZgBBsr9Vy3K7AZKZGKRDMye/J7btmreDnQKvEXpFw7gRz1nvvV7UckEVQawrHWHd+LTZBiZRjhdFbqJprGmIzxkHYslVhQHaR58hk6t0ofDSJlnzQoV39vpFhoPRWhncxy6mUvE//zOokZ3AQpk3FiqCTzQ4OEIxOhrAbUZ4oSw6eWYKKYzYrICCtMjC2rZEvwl7+8SpqXFf+qUn2olmu38zagCKdwBhfgwzXU4B7q0AACE3iGV3hzUufFeXc+5qMFZ7FzDH/gfP4AaEmUNQ==</latexit>

music1

<latexit sha1_base64="lbGiPYLKaXjPXFJYnIz5uLC1xhw=">AAAB9XicbVDLSgMxFL1TX7W+6mPnJlgEV2VGirosunFZ0T6gnZZMmmlDk8yQZJQy9D/cuFDErf/izr8x03ahrQcCh3Pu5Z6cIOZMG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEEVonEY9UK8CaciZp3TDDaStWFIuA02Ywusn85iNVmkXywYxj6gs8kCxkBBsrdTsCm6ES6f2QTrpur1hyy+4UaJl4c1KqHsEUtV7xq9OPSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4QFtWyqxoNpPp6kn6NQqfRRGyj5p0FT9vZFiofVYBHYyS6kXvUz8z2snJrzyUybjxFBJZofChCMToawC1GeKEsPHlmCimM2KyBArTIwtqmBL8Ba/vEwa52Xvoly5q5Sq17M2IA/HcAJn4MElVOEWalAHAgqe4RXenCfnxXl3PmajOWe+cwh/4Hz+ABI6ku4=</latexit>

She0
<latexit sha1_base64="HDbqjJ3NBed1OXF88Fp+9RpSS5Y=">AAAB+HicbVDLSsNAFL3xWeuj8bFzM1gEVyWRoi6LblxWsA9oYphMp+3QySTMTIQa+iVuXCji1k9x5984SbvQ1gMDh3Pu5Z45YcKZ0o7zba2srq1vbJa2yts7u3sVe/+greJUEtoiMY9lN8SKciZoSzPNaTeRFEchp51wfJP7nUcqFYvFvZ4k1I/wULABI1gbKbArXoT1SEYZZ14wfXACu+rUnAJombhzUm0cQYFmYH95/ZikERWacKxUz3US7WdYakY4nZa9VNEEkzEe0p6hAkdU+VkRfIpOjdJHg1iaJzQq1N8bGY6UmkShmcxjqkUvF//zeqkeXPkZE0mqqSCzQ4OUIx2jvAXUZ5ISzSeGYCKZyYrICEtMtOmqbEpwF7+8TNrnNfeiVr+rVxvXszagBMdwAmfgwiU04Baa0AICKTzDK7xZT9aL9W59zEZXrPnOIfyB9fkDXtCTmQ==</latexit>

li 0

<latexit sha1_base64="ii77EQ4WgiBZqEk8YvSK+1EGja8=">AAAB9XicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJiSAJDKRTOtDQdiZtR0Mm/IcbFxrj1n9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxS7QBrypmkTcMMp+1YUSwCTh+C8U3mPzxSpVkk780kpr7AQ8lCRrCxUq8rsBkpkY6pnvbcfrniVt0caJl4c1KpH0GORr/81R1EJBFUGsKx1h3PjY2fYmUY4XRa6iaaxpiM8ZB2LJVYUO2neeopOrXKAIWRsk8alKu/N1IstJ6IwE5mKfWil4n/eZ3EhFd+ymScGCrJ7FCYcGQilFWABkxRYvjEEkwUs1kRGWGFibFFlWwJ3uKXl0nrvOpdVGt3tUr9etYGFOEYTuAMPLiEOtxCA5pAQMEzvMKb8+S8OO/Ox2y04Mx3DuEPnM8fR9yTEQ==</latexit>

kes0
<latexit sha1_base64="1bHcNpJ3NFo88tg1Tnjk7Iyq0gU=">AAAB+3icbVDLSsNAFL3xWesrVnduBovgqiRS1GXRjcsK9gFtLJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnaRfaemDgcM69zLnHjzlT2nG+rZXVtfWNzdJWeXtnd2/fPqi0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnK/80ilYpG419OYeiEeCRYwgrWRBnalH2I9lmGqNBVMjLIHd2BXnZpTAC0Td06qjSMo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xm5X6iaIzJBI9oz1CBQ6q8tMieoVOjDFEQSfOERoX6eyPFoVLT0DeTeVK16OXif14v0cGVlzIRJ+YyMvsoSDjSEcqLQEMmKdF8aggmkpmsiIyxxESbusqmBHfx5GXSPq+5F7X6Xb3auJ61ASU4hhM4AxcuoQG30IQWEHiCZ3iFNyuzXqx362M2umLNdw7hD6zPHwZ+lSA=</latexit>

stening1

<latexit sha1_base64="031lLKwVSpaYKo7Hv79c1HTlfSA=">AAAB9HicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJRoQEJqRTOtDQace2Q0ImfIcbFxrj1o9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DRy0TRWiTSC5VO8CaciZo0zDDaTtWFEcBp61gdJP5rTFVmknxYCYx9SM8ECxkBBsr+d0Im6GK0nspzbRXrrhVNwdaJt6cVOpHkKPRK391+5IkERWGcKx1x3Nj46dYGUY4nZa6iaYxJiM8oB1LBY6o9tM89BSdWqWPQqnsEwbl6u+NFEdaT6LATmYh9aKXif95ncSEV37KRJwYKsjsUJhwZCTKGkB9pigxfGIJJorZrIgMscLE2J5KtgRv8cvL5PG86l1Ua3e1Sv161gYU4RhO4Aw8uIQ63EIDmkDgCZ7hFd6csfPivDsfs9GCM985hD9wPn8A2MiS2g==</latexit>

Root

<latexit sha1_base64="uCHm9+NkC5nOSr6iNpEi7gZFDV8=">AAAB+XicbVDLSgMxFL1TX7W+xsfOTbAIrsqMFHVZdOOygn1AO5ZMmrahSWZIMoUy9E/cuFDErX/izr8xM+1CWw8EDufcyz05YcyZNp737RTW1jc2t4rbpZ3dvf0D9/CoqaNEEdogEY9UO8SaciZpwzDDaTtWFIuQ01Y4vsv81oQqzSL5aKYxDQQeSjZgBBsr9Vy3K7AZKZGKRDMye/J7btmreDnQKvEXpFw7gRz1nvvV7UckEVQawrHWHd+LTZBiZRjhdFbqJprGmIzxkHYslVhQHaR58hk6t0ofDSJlnzQoV39vpFhoPRWhncxy6mUvE//zOokZ3AQpk3FiqCTzQ4OEIxOhrAbUZ4oSw6eWYKKYzYrICCtMjC2rZEvwl7+8SpqXFf+qUn2olmu38zagCKdwBhfgwzXU4B7q0AACE3iGV3hzUufFeXc+5qMFZ7FzDH/gfP4AaEmUNQ==</latexit>

music1
<latexit sha1_base64="lbGiPYLKaXjPXFJYnIz5uLC1xhw=">AAAB9XicbVDLSgMxFL1TX7W+6mPnJlgEV2VGirosunFZ0T6gnZZMmmlDk8yQZJQy9D/cuFDErf/izr8x03ahrQcCh3Pu5Z6cIOZMG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEEVonEY9UK8CaciZp3TDDaStWFIuA02Ywusn85iNVmkXywYxj6gs8kCxkBBsrdTsCm6ES6f2QTrpur1hyy+4UaJl4c1KqHsEUtV7xq9OPSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4QFtWyqxoNpPp6kn6NQqfRRGyj5p0FT9vZFiofVYBHYyS6kXvUz8z2snJrzyUybjxFBJZofChCMToawC1GeKEsPHlmCimM2KyBArTIwtqmBL8Ba/vEwa52Xvoly5q5Sq17M2IA/HcAJn4MElVOEWalAHAgqe4RXenCfnxXl3PmajOWe+cwh/4Hz+ABI6ku4=</latexit>

She0
<latexit sha1_base64="HDbqjJ3NBed1OXF88Fp+9RpSS5Y=">AAAB+HicbVDLSsNAFL3xWeuj8bFzM1gEVyWRoi6LblxWsA9oYphMp+3QySTMTIQa+iVuXCji1k9x5984SbvQ1gMDh3Pu5Z45YcKZ0o7zba2srq1vbJa2yts7u3sVe/+greJUEtoiMY9lN8SKciZoSzPNaTeRFEchp51wfJP7nUcqFYvFvZ4k1I/wULABI1gbKbArXoT1SEYZZ14wfXACu+rUnAJombhzUm0cQYFmYH95/ZikERWacKxUz3US7WdYakY4nZa9VNEEkzEe0p6hAkdU+VkRfIpOjdJHg1iaJzQq1N8bGY6UmkShmcxjqkUvF//zeqkeXPkZE0mqqSCzQ4OUIx2jvAXUZ5ISzSeGYCKZyYrICEtMtOmqbEpwF7+8TNrnNfeiVr+rVxvXszagBMdwAmfgwiU04Baa0AICKTzDK7xZT9aL9W59zEZXrPnOIfyB9fkDXtCTmQ==</latexit>

li 0

<latexit sha1_base64="ii77EQ4WgiBZqEk8YvSK+1EGja8=">AAAB9XicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJiSAJDKRTOtDQdiZtR0Mm/IcbFxrj1n9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxS7QBrypmkTcMMp+1YUSwCTh+C8U3mPzxSpVkk780kpr7AQ8lCRrCxUq8rsBkpkY6pnvbcfrniVt0caJl4c1KpH0GORr/81R1EJBFUGsKx1h3PjY2fYmUY4XRa6iaaxpiM8ZB2LJVYUO2neeopOrXKAIWRsk8alKu/N1IstJ6IwE5mKfWil4n/eZ3EhFd+ymScGCrJ7FCYcGQilFWABkxRYvjEEkwUs1kRGWGFibFFlWwJ3uKXl0nrvOpdVGt3tUr9etYGFOEYTuAMPLiEOtxCA5pAQMEzvMKb8+S8OO/Ox2y04Mx3DuEPnM8fR9yTEQ==</latexit>

kes0
<latexit sha1_base64="qub/gpqmXw22QtvF58TvwrHh8VM=">AAAB+3icbVDLSsNAFL3xWesrVnduBovgqiRS1GXRjcsK9gFtLJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnaRfaemDgcM69zLnHjzlT2nG+rZXVtfWNzdJWeXtnd2/fPqi0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnK/80ilYpG419OYeiEeCRYwgrWRBnalH2I9lmGqNBVMjLIHZ2BXnZpTAC0Td06qjSMo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xm5X6iaIzJBI9oz1CBQ6q8tMieoVOjDFEQSfOERoX6eyPFoVLT0DeTeVK16OXif14v0cGVlzIRJ+YyMvsoSDjSEcqLQEMmKdF8aggmkpmsiIyxxESbusqmBHfx5GXSPq+5F7X6Xb3auJ61ASU4hhM4AxcuoQG30IQWEHiCZ3iFNyuzXqx362M2umLNdw7hD6zPHwT6lR8=</latexit>

stening0

<latexit sha1_base64="031lLKwVSpaYKo7Hv79c1HTlfSA=">AAAB9HicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJRoQEJqRTOtDQace2Q0ImfIcbFxrj1o9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DRy0TRWiTSC5VO8CaciZo0zDDaTtWFEcBp61gdJP5rTFVmknxYCYx9SM8ECxkBBsr+d0Im6GK0nspzbRXrrhVNwdaJt6cVOpHkKPRK391+5IkERWGcKx1x3Nj46dYGUY4nZa6iaYxJiM8oB1LBY6o9tM89BSdWqWPQqnsEwbl6u+NFEdaT6LATmYh9aKXif95ncSEV37KRJwYKsjsUJhwZCTKGkB9pigxfGIJJorZrIgMscLE2J5KtgRv8cvL5PG86l1Ua3e1Sv161gYU4RhO4Aw8uIQ63EIDmkDgCZ7hFd6csfPivDsfs9GCM985hD9wPn8A2MiS2g==</latexit>

Root

<latexit sha1_base64="uCHm9+NkC5nOSr6iNpEi7gZFDV8=">AAAB+XicbVDLSgMxFL1TX7W+xsfOTbAIrsqMFHVZdOOygn1AO5ZMmrahSWZIMoUy9E/cuFDErX/izr8xM+1CWw8EDufcyz05YcyZNp737RTW1jc2t4rbpZ3dvf0D9/CoqaNEEdogEY9UO8SaciZpwzDDaTtWFIuQ01Y4vsv81oQqzSL5aKYxDQQeSjZgBBsr9Vy3K7AZKZGKRDMye/J7btmreDnQKvEXpFw7gRz1nvvV7UckEVQawrHWHd+LTZBiZRjhdFbqJprGmIzxkHYslVhQHaR58hk6t0ofDSJlnzQoV39vpFhoPRWhncxy6mUvE//zOokZ3AQpk3FiqCTzQ4OEIxOhrAbUZ4oSw6eWYKKYzYrICCtMjC2rZEvwl7+8SpqXFf+qUn2olmu38zagCKdwBhfgwzXU4B7q0AACE3iGV3hzUufFeXc+5qMFZ7FzDH/gfP4AaEmUNQ==</latexit>

music1
<latexit sha1_base64="lbGiPYLKaXjPXFJYnIz5uLC1xhw=">AAAB9XicbVDLSgMxFL1TX7W+6mPnJlgEV2VGirosunFZ0T6gnZZMmmlDk8yQZJQy9D/cuFDErf/izr8x03ahrQcCh3Pu5Z6cIOZMG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEEVonEY9UK8CaciZp3TDDaStWFIuA02Ywusn85iNVmkXywYxj6gs8kCxkBBsrdTsCm6ES6f2QTrpur1hyy+4UaJl4c1KqHsEUtV7xq9OPSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4QFtWyqxoNpPp6kn6NQqfRRGyj5p0FT9vZFiofVYBHYyS6kXvUz8z2snJrzyUybjxFBJZofChCMToawC1GeKEsPHlmCimM2KyBArTIwtqmBL8Ba/vEwa52Xvoly5q5Sq17M2IA/HcAJn4MElVOEWalAHAgqe4RXenCfnxXl3PmajOWe+cwh/4Hz+ABI6ku4=</latexit>

She0
<latexit sha1_base64="HDbqjJ3NBed1OXF88Fp+9RpSS5Y=">AAAB+HicbVDLSsNAFL3xWeuj8bFzM1gEVyWRoi6LblxWsA9oYphMp+3QySTMTIQa+iVuXCji1k9x5984SbvQ1gMDh3Pu5Z45YcKZ0o7zba2srq1vbJa2yts7u3sVe/+greJUEtoiMY9lN8SKciZoSzPNaTeRFEchp51wfJP7nUcqFYvFvZ4k1I/wULABI1gbKbArXoT1SEYZZ14wfXACu+rUnAJombhzUm0cQYFmYH95/ZikERWacKxUz3US7WdYakY4nZa9VNEEkzEe0p6hAkdU+VkRfIpOjdJHg1iaJzQq1N8bGY6UmkShmcxjqkUvF//zeqkeXPkZE0mqqSCzQ4OUIx2jvAXUZ5ISzSeGYCKZyYrICEtMtOmqbEpwF7+8TNrnNfeiVr+rVxvXszagBMdwAmfgwiU04Baa0AICKTzDK7xZT9aL9W59zEZXrPnOIfyB9fkDXtCTmQ==</latexit>

li 0

<latexit sha1_base64="ii77EQ4WgiBZqEk8YvSK+1EGja8=">AAAB9XicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJiSAJDKRTOtDQdiZtR0Mm/IcbFxrj1n9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxS7QBrypmkTcMMp+1YUSwCTh+C8U3mPzxSpVkk780kpr7AQ8lCRrCxUq8rsBkpkY6pnvbcfrniVt0caJl4c1KpH0GORr/81R1EJBFUGsKx1h3PjY2fYmUY4XRa6iaaxpiM8ZB2LJVYUO2neeopOrXKAIWRsk8alKu/N1IstJ6IwE5mKfWil4n/eZ3EhFd+ymScGCrJ7FCYcGQilFWABkxRYvjEEkwUs1kRGWGFibFFlWwJ3uKXl0nrvOpdVGt3tUr9etYGFOEYTuAMPLiEOtxCA5pAQMEzvMKb8+S8OO/Ox2y04Mx3DuEPnM8fR9yTEQ==</latexit>

kes0
<latexit sha1_base64="qub/gpqmXw22QtvF58TvwrHh8VM=">AAAB+3icbVDLSsNAFL3xWesrVnduBovgqiRS1GXRjcsK9gFtLJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnaRfaemDgcM69zLnHjzlT2nG+rZXVtfWNzdJWeXtnd2/fPqi0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnK/80ilYpG419OYeiEeCRYwgrWRBnalH2I9lmGqNBVMjLIHZ2BXnZpTAC0Td06qjSMo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xm5X6iaIzJBI9oz1CBQ6q8tMieoVOjDFEQSfOERoX6eyPFoVLT0DeTeVK16OXif14v0cGVlzIRJ+YyMvsoSDjSEcqLQEMmKdF8aggmkpmsiIyxxESbusqmBHfx5GXSPq+5F7X6Xb3auJ61ASU4hhM4AxcuoQG30IQWEHiCZ3iFNyuzXqx362M2umLNdw7hD6zPHwT6lR8=</latexit>

stening0

<latexit sha1_base64="031lLKwVSpaYKo7Hv79c1HTlfSA=">AAAB9HicbVDLTgIxFL2DL8QXPnZuGomJKzJjiLokunGJRoQEJqRTOtDQace2Q0ImfIcbFxrj1o9x59/YGVgoeJImJ+fcm3t6gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2DRy0TRWiTSC5VO8CaciZo0zDDaTtWFEcBp61gdJP5rTFVmknxYCYx9SM8ECxkBBsr+d0Im6GK0nspzbRXrrhVNwdaJt6cVOpHkKPRK391+5IkERWGcKx1x3Nj46dYGUY4nZa6iaYxJiM8oB1LBY6o9tM89BSdWqWPQqnsEwbl6u+NFEdaT6LATmYh9aKXif95ncSEV37KRJwYKsjsUJhwZCTKGkB9pigxfGIJJorZrIgMscLE2J5KtgRv8cvL5PG86l1Ua3e1Sv161gYU4RhO4Aw8uIQ63EIDmkDgCZ7hFd6csfPivDsfs9GCM985hD9wPn8A2MiS2g==</latexit>

Root

<latexit sha1_base64="gF1fvMkkBx3m0YsxnzVsnfO/Xfw=">AAAB+XicbVDLSgMxFL1TX7W+xsfOTbAIrsqMFHVZdOOygn1AO5ZMmrahSWZIMoUy9E/cuFDErX/izr8xM+1CWw8EDufcyz05YcyZNp737RTW1jc2t4rbpZ3dvf0D9/CoqaNEEdogEY9UO8SaciZpwzDDaTtWFIuQ01Y4vsv81oQqzSL5aKYxDQQeSjZgBBsr9Vy3K7AZKZGKRDMye/J6btmreDnQKvEXpFw7gRz1nvvV7UckEVQawrHWHd+LTZBiZRjhdFbqJprGmIzxkHYslVhQHaR58hk6t0ofDSJlnzQoV39vpFhoPRWhncxy6mUvE//zOokZ3AQpk3FiqCTzQ4OEIxOhrAbUZ4oSw6eWYKKYzYrICCtMjC2rZEvwl7+8SpqXFf+qUn2olmu38zagCKdwBhfgwzXU4B7q0AACE3iGV3hzUufFeXc+5qMFZ7FzDH/gfP4AZsWUNA==</latexit>

music0

6
<latexit sha1_base64="lbGiPYLKaXjPXFJYnIz5uLC1xhw=">AAAB9XicbVDLSgMxFL1TX7W+6mPnJlgEV2VGirosunFZ0T6gnZZMmmlDk8yQZJQy9D/cuFDErf/izr8x03ahrQcCh3Pu5Z6cIOZMG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEEVonEY9UK8CaciZp3TDDaStWFIuA02Ywusn85iNVmkXywYxj6gs8kCxkBBsrdTsCm6ES6f2QTrpur1hyy+4UaJl4c1KqHsEUtV7xq9OPSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4QFtWyqxoNpPp6kn6NQqfRRGyj5p0FT9vZFiofVYBHYyS6kXvUz8z2snJrzyUybjxFBJZofChCMToawC1GeKEsPHlmCimM2KyBArTIwtqmBL8Ba/vEwa52Xvoly5q5Sq17M2IA/HcAJn4MElVOEWalAHAgqe4RXenCfnxXl3PmajOWe+cwh/4Hz+ABI6ku4=</latexit>
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Figure 6: Illustration of how the constraint prefix tree in Figure 2 of a path is updated during decoding. We omit the
state of resetting the pointer to root for brevity. At initialization, the count of each node corresponds to how many
times the subword appears in the input. At step 1, as “She” is a valid subword selected by beam search, we move
the pointer the node of “She” and decrement its count by 1. In the following steps, “She” becomes invalid as its
count becomes zero. After step 6, since counts in all children of the root become zeros, the path is marked finished.

B.1 Lexical Errors
In addition to Figure 3 in §3.4, we present results
for different models and beam sizes in Figure 7. Re-
dundant (missing) words are all words in predicted
(reference) output but not in reference (predicted)
outputs. We normalize the count with number of
words in all reference. Length ratio is ratio of pre-
dicted output length to reference output length.

B.2 Permutation Sensitivity
We replicate results of Table 2 in §3.6 with uncon-
strained output space in Table 6. Similar to Table 2,
data augmentation brings marginal improvement
on mean BLEU and no consistent drop in standard
deviation. Unlike Table 2, the loss of subword se-
quences results in a nontrivial drop in performance,
especially for RAND (-2.87 from base to shuf).
BART is less sensitive to subword shuffling (-1.45
from base to shuf).
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(a) RAND,B=5: missing 5.74%, redundant 3.30%, length
ratio 0.981.
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(b) RAND,B=512: missing 5.42%, redundant 3.02%, length
ratio 0.982.
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(c) BART,B=5: missing 5.30%, redundant 4.16%, length
ratio 0.990.
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(d) BART,B=512: missing 4.89%, redundant 3.85%, length
ratio 0.991.

Figure 7: Test lexical errors with unconstrained output space similar to Figure 3 for additional models and settings.
We show the proportions of missing/redundant words and the output length ratios for test instances binned with
output lengths. The model, beam size, and results on the complete test set are shown in the caption.

6529



Proceedings of the 29th International Conference on Computational Linguistics, pages 6530–6539
October 12–17, 2022.

Visual Information Guided Zero-Shot Paraphrase Generation

Zhe Lin and Xiaojun Wan
Wangxuan Institute of Computer Technology, Peking University

Center for Data Science, Peking University
The MOE Key Laboratory of Computational Linguistics, Peking University

{linzhe,wanxiaojun}@pku.edu.cn

Abstract

Zero-shot paraphrase generation has drawn
much attention as the large-scale high-quality
paraphrase corpus is limited. Back-translation,
also known as the pivot-based method, is typi-
cal to this end. Several works leverage different
information as “pivot” such as language, se-
mantic representation and so on. In this paper,
we explore using visual information such as im-
age as the “pivot” of back-translation. Different
with the pipeline back-translation method, we
propose visual information guided zero-shot
paraphrase generation (ViPG) based only on
paired image-caption data. It jointly trains an
image captioning model and a paraphrasing
model and leverage the image captioning model
to guide the training of the paraphrasing model.
Both automatic evaluation and human evalua-
tion show our model can generate paraphrase
with good relevancy, fluency and diversity, and
image is a promising kind of pivot for zero-shot
paraphrase generation.

1 Introduction

Paraphrase generation is a long-standing problem
for natural language processing that aims to rewrite
a text in other forms while preserving its original
semantics. Paraphrase generation has many appli-
cations in other down-stream tasks, such as ma-
chine translation (Mehdizadeh Seraj et al., 2015),
semantic parsing (Berant and Liang, 2014) and so
on.

With the development of supervised seq2seq
generation, most paraphrase systems depend on
the large-scale aligned paraphrase corpora to train
the seq2seq model. This leads to the fact that
the quality of aligned corpora is extremely impor-
tant for training a paraphrase system. However,
high-quality paraphrase datasets are still lacking in
many domains. To solve this problem, there are a
few works focusing on zero-shot paraphrase gen-
eration such as back-translation. Back-translation

Caption of Figure (a): a person on skis makes her way 

through the snow. 

Caption of Figure (b): a person standing on skiis on the 

snowy slope. 

(b)

(a)

Figure 1: An example that similar images may have
different captions.

makes use of language as pivot and treats the back-
translated text as the paraphrase of the original text.
For example, Mallinson et al. (2017) leveraged
multilingual neural machine translation to gener-
ate paraphrase and Cai et al. (2021) proposed to
employ semantic representation as the “pivot lan-
guage” of back-translation to generate paraphrase.
All these works show that back-translation can gen-
erate high-quality paraphrase.

Inspired by back-translation based paraphrase
generation, we explore to leverage visual informa-
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tion (i.e. image in this study) to guide the zero-shot
paraphrase generation as similar images or similar
partial images may have different captions or de-
scriptions that can be treated as paraphrases. Figure
1 shows an example. A naive method is that we
can use image as the “pivot language” and generate
paraphrase by back-translation with a text-to-image
model and an image-to-text model. Unfortunately,
text-to-image generation is still a challenging task
and it is hard to generate an image of sufficient
quality from the text. The semantic loss in text-to-
image generation is so huge that generating para-
phrases using this method is barely possible. An-
other method is that we can use an image caption-
ing model to generate a caption from the image
corresponding to the original text, and regard this
caption as the paraphrase of the original text to
train a supervised paraphrasing model. However,
the generated caption may describe different ele-
ments in the image with the original text, which
leads to huge semantic shift.

In this study, we propose visual information
guided zero-shot paraphrase generation (ViPG),
which leverages image information to guide the
paraphrase generation based only on paired image-
caption data. We jointly train a specific image
captioning model and a paraphrasing model, and
leverage the output of the image captioning model
to guide the training of the paraphrasing model.
This can be regarded as distilling the knowledge
of the image captioning model to the paraphrasing
model at the word level.

Experiment results on two datasets show our
model substantially outperforms the supervised
paraphrasing model trained on paired caption-
caption data and it can generate valid paraphrases
with high diversity. We also compare our model
with other zero-shot paraphrase generation meth-
ods such as autoencoder and back-translation, and
analyze the strengths and weaknesses of these meth-
ods. In all, our contributions can be summarized as
follows:

• To the best of our knowledge, we are the first
to explore to leverage visual information to
guide zero-shot paraphrase generation.

• We propose a novel model to leverage vi-
sual information to guide zero-shot paraphrase
generation. Our method jointly trains an
image captioning model and a paraphrasing
model, and employs this image captioning

model to guide the training of the paraphras-
ing model. Our code is publicly available at
https://github.com/L-Zhe/ViPG.

• Empirical studies on two image caption
datasets show the effectiveness of our model
and the image is demonstrated to be a promis-
ing kind of pivot for zero-shot paraphrase gen-
eration.

2 Related Works

There are several works leveraging image caption
datasets like MSCOCO to train the paraphrasing
model. Prakash et al. (2016) proposed residual-
LSTM model to generate paraphrase. Gupta et al.
(2018) found deep generative model such as varia-
tional auto-encoder can achieve better performance
in paraphrase generation. Fu et al. (2019) regraded
the bag of word as the latent variable of VAE to
control the semantic of paraphrase. Chen et al.
(2020) proposed a semantically consistent and syn-
tactically variational encoder-decoder framework,
which uses adversarial learning to ensure the syn-
tactic latent variable be semantic-free. Cao and
Wan (2020) leverage GAN to generate multiple
diverse paraphrases. Lin and Wan (2021) raised
multi-round paraphrase generation to improve the
diversity and leveraged back-translation to main-
tain the semantic. All these works regard differ-
ent captions of the same image as paraphrase and
leverage caption-caption pairs to train paraphrasing
model.

There are also some works focus on zero-shot
paraphrase generation. Mallinson et al. (2017) re-
visited back-translation paraphrase generation with
neural machine translation. Cai et al. (2021) lever-
aged AMR as the new pivot of back translation.
Thompson and Post (2020) proposed a novel de-
coding strategy to generate diverse paraphrase via
multilingual translation. Liu et al. (2020) lever-
aged simulated annealing to train unsupervised
paraphrase generation model.

3 Methodology

As mentioned earlier, the pipeline back-translation
with the “image pivot” can not generate valid para-
phrase as the performance of the text-to-image gen-
eration model is poor. Different from the pipeline
method, our proposed method jointly trains an im-
age captioning model and a paraphrasing model,
and leverages the output of the image captioning
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Vis-Transformer

Multi-Modal Joint Encoder

Decoder

<POS_DICT> NNS@0 men NNS@1 hats
NN@0 pulley NN@1 system <RELATION>
several NNS@0 in hard NNS@1 are
operating a giant NN@0 NN@1 .

<IMG_BOS>... <TXT_BOS>...
Share Params

CE Loss KL Div KL Div

Decoder

Img Embedding Object Embedding Relation Embedding

Img Representation Object Representation Relation Representation

Ground Truth: several men in hard hats are operating a giant pulley system .

𝑣! 𝑣𝒪 𝑣ℛ
+

Image

+

Figure 2: The overview architecture of our proposed
model, which includes a multi-modal joint encoder and
a parameter-sharing decoder. vI , vO, vR are the tag
vectors that indicate the different types of input.

model to guide the training of the paraphrasing
model. The rationale is that an image may corre-
spond to different captions with same meaning1.
The image captioning model with our specific de-
sign (i.e., with additional input of object represen-
tations) may generate a caption that is different
from the original caption for an input image while
keeping the same meaning, and this output cap-
tion can be treated as the paraphrase of the original
caption and it can be used for training the para-
phrasing model. Our model relies only on image
captioning dataset consisting of pairs of image and
caption, and it does not need any text paraphras-
ing corpus and any data of caption pairs of same
image. Each pair in the training dataset includes
an image I and a corresponding caption sentence
S = {w1, · · · , wN}, where wi is the i-th word of
the sentence and N is the sentence length.

In this section, we begin by introducing the ini-
tial embeddings of the image and text, followed by
describing our multi-modal joint encoder, which
employs partial attention to encode the image and

1Note that the different captions provided by human judges
for a same image in most existing datasets like MSCOCO are
often semantically inconsistent, so we do not aim to make use
of the caption pairs to train the paraphrase model in this study.

the text together. Then we introduce a decoder
with masked object copy mechanism to guide text
generation. Finally, the objective functions will be
detailed. The overall architecture of our model is
shown in Figure 2.

3.1 Initial Image and Text Embeddings

3.1.1 Image Embedding
For an input image I, we first leverage Vision
Transformer (Dosovitskiy et al., 2021) to encode
the image into an embedding matrix ẼI as its excel-
lent performance in many vision tasks. We further
use vI as a tag embedding vector to indicate the im-
age tag. After that, the initial image representation
EI is obtained as follows:

ẼI = ViT(I)
EI = ẼI + vI

(1)

where ViT is the Vision Transformer encoder,
vI ∈ Rd is the learnable parameter andEI ∈ Rl×d,
where d is the feature’s dimension and l is the patch
length split by Vision Transformer. + operation
between a matrix and a vector means that the vec-
tor is added to all components of the matrix at the
dimension of sequential length.

Note that we use the Vision Transformer to get
ẼI and fix it during the training of our model. This
can save a bunch of training resources and has been
proved to be reliable in many multi-modal tasks.

3.1.2 Text Embedding
A caption sentence can only describe the main ele-
ments of an image rather than all the details, and
existing image captioning model tends to generate
different captions talking about different objects for
an image, which may cause semantic shift when
using such image captioning model to guide the
paraphrasing model. To tackle this problem, we
extract the object words from the caption sentence
and use them to help the image captioning model
to generate more accurate and consistent captions.

Specifically, we regard nouns in a sentence as
objects and the rest part of the sentence as the re-
lation of these objects. We create the object se-
quence for all nouns in the sentence in this format:
{POS_TAG@index WORD}, where POS_TAG is
the part-of-speech of this word, index is used to
distinguish different words of the same POS_TAG.
We replace all nouns in the sentence with their
corresponding POS_TAG@index. We regard the
processed sequence as the relation described by the
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sentence. Then we concatenate the object sequence
and the relation sequence as the input text. Table 1
shows an example of the transformed input text.

Original Text: several men in hard hats are operating
a giant pulley system .
Object Sequence: NNS@0 men NNS@1 hats NN@0

pulley NN@1 system
Relation Sequence: several NNS@0 in hard NNS@1

are operating a giant NN@0 NN@1 .
Transformed Input Text: <POS_DICT> NNS@0

men NNS@1 hats NN@0 pulley NN@1 system
<RELATION> several NNS@0 in hard NNS@1 are op-
erating a giant NN@0 NN@1 .

Table 1: An example about splitting a text to the object
sequence and relation sequence.

We denote the embedding matrices of the object
sequence and relation sequence as ẼO and ẼR, re-
spectively. We also add the embedding matrices
with different tag embedding vectors to indicate
different parts of the input information (i.e., ob-
ject or relation). Finally, we combine these two
parts of information as a whole and add positional
encoding.

ÊO = ẼO + vO

ÊR = ẼR + vR

[EO, ER] = [ÊO, ÊR] +WPE

(2)

where vO, vR ∈ Rd are learnable parameters,
WPE is the positional encoding matrix, [∗, ∗] is
concatenation operation at the dimension of se-
quential length.

3.2 Multi-Modal Joint Encoder

We adopt Transformer encoder architecture as
multi-modal joint encoder to further encode the
image and text. In order to reduce the gap between
image representation and text representation, we
share the encoder parameters instead of leveraging
separate encoders for image and text. We concate-
nate the initial image embeddingEI with the initial
text embedding [EO, ER] and send them to the en-
coder at the same time.

The powerful performance of the Transformer
encoder is due to its self-attention structure, as
each element in the sequence can aggregate the
whole sequential information with dynamic atten-
tion weight. However, this global attention is not
suitable for our model as our image captioning
model and paraphrasing model should focus on

different input information. Instead, we just want
the image feature to focus on the information from
itself and the object feature. While the image infor-
mation should be ignored when encoding the text
feature. Based on the rules above, we introduce the
partial attention as follows:

Ĩi = MHAttn(Ii−1, [Ii−1, Oi−1], [Ii−1, Oi−1])

Õi = MHAttn(Oi−1, Oi−1, Oi−1)

R̃i = MHAttn(Ri−1, [Oi−1, Ri−1], [Oi−1, Ri−1])

(3)

where MHAttn(Q,K, V ) is the multi-head atten-
tion (Vaswani et al., 2017), Ii−1, Oi−1, Ri−1 are
the learned representation matrices of the image,
object sequence and relation sequence at the (i−1)-
th layer. Ĩi, Õi, and R̃i are then fed into FFN
module followed by residual connection and layer
normalization that are the same as the vanilla Trans-
former encoder to get the representation matrices
at the i-th layer. We employ I,O,R to represent
the encoding representations of the image, object
sequence and relation sequence at the last layer
respectively.

3.3 Decoder
Decoder aims to generate text from the encoding
feature. Different from the text sent into the en-
coder which is split into the object sequence and
the relation sequence, the decoder directly gener-
ates the original text S .

Our model includes a caption decoder and a
paraphrase decoder. The caption decoder gener-
ates the caption from the image feature representa-
tion and the object feature representation, and the
paraphrase decoder generates the paraphrase corre-
sponding to the original text. We share the parame-
ters of these two decoders, and leverage different
BOS tokens to guide the decoder to deal with dif-
ferent features. We leverage <IMG_BOS> to guide
the caption generation and employ <TXT_BOS>
to guide the paraphrase generation. The details of
the decoder are as follows:

DI = Decoder([I,O], < IMG_BOS >)

DS = Decoder([O,R], < TXT_BOS >)

P̃I = softmax(WoDI + bo)

P̃S = softmax(WoDS + bo)

(4)

where Decoder(feature, BOStoken) is the Trans-
former decoder, Wo, bo are learnable parameters,
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which map the dimension of output features DI ,
and DS ∈ RN×d to the size of vocabulary.

We add copy mechanism (See et al., 2017) to
guide the decoder to generate the correct objects.
We only copy from the object sequence rather than
the whole sentence. The copy probabilities are
calculated as follows:

P cI = softmax(D⊤I O)

P cS = softmax(D⊤SO)
(5)

Copy mechanism can improve the semantic ac-
curacy of the generated text but may lead to low
diversity of the object words. There may be more
than one way to describe an object, and copying
the object words from the original sentence directly
can lose this diversity. Therefore we employ the
masked object copy mechanism to avoid excessive
copy. We randomly mask 20% object words in the
object sequence as <UNK> during the copy pro-
cess. This can help the model learn to generate
the diverse object words rather than copy from the
original sentence directly. The final output prob-
abilities of the image caption and the paraphrase
generation are denoted as PI = {p1I , · · · , pNI } and
PS = {p1S , · · · , pNS }, respectively.

3.4 Loss Function

We employ cross-entropy loss to train the image
captioning model as follows:

Lce = −
1

N

N∑

i=1

log piI(w
i) (6)

where piI(w
i) is the corresponding probability of

wi in piI .
For the paraphrasing model, we do not directly

optimize the cross-entropy loss based on PS as
this can lead to the degeneration of the model into
an autoencoder. On the contrary, we align the in-
formation from the two models by reducing the
gap between PI and PS . Inspired by the R-Drop
(Liang et al., 2021), we optimize the symmetric KL
divergence between PI and PS as follows:

Lkl = −
1

2N

N∑

i=1

{KL(piI ||piS) + KL(piS ||piI)}

(7)
We train image captioning and paraphrase gen-

eration together and the total loss of our model is
as follows:

L = Lce + λLkl (8)

where λ is a hyper-parameter.

3.5 Inference

Although we leverage image-caption pair to train
our model, the image is not required during the
inference. In the inference phase, we split the orig-
inal text to the object sequence and the relation
sequence and leverage <TXT_BOS> to guide the
paraphrase generation.

4 Evaluation Setup

4.1 Datasets

Two image caption corpora (MSCOCO2 and
Flickr30k3) are used as our evaluation datasets.
The MSCOCO dataset includes 118, 287 images
and Flickr30k includes 31, 783 images, each im-
age in both dataset has five different captions. We
construct two types of training datasets for each
corpus: 1) One-caption: We randomly sample one
caption for each image and thus only one image-
caption pair per image is used for training; 2) All-
captions: We use all five captions to create five
image-caption pairs per image. For each dataset,
we randomly sample 4000 captions as validation
dataset. For MSCOCO, we leverage all 2, 5014
captions provided by the official validation dataset
for test. For Flickr30k, we randomly sample 8000
captions as the test dataset. Note that there is no
ground-truth paraphrase for each caption in the val-
idation and test datasets and we do not need them
in our evaluation at all4.

4.2 Competitive Methods

The competitive methods used for comparison are
mainly in three categories:

Supervised models trained with caption-
caption pairs: Following previous works, we re-
gard different captions of an image as paraphrases
and leverage these caption-caption pairs to train a
Transformer model as the supervised paraphrase
generation model. And we also finetune the Bart
model (Lewis et al., 2020) with the caption-caption

2https://cocodataset.org
3https://shannon.cs.illinois.edu/

DenotationGraph
4We do not use datasets like Parabank and Quora for eval-

uation because these datasets are in totally different domains
with our training datasets, and thus we use the in-domain
caption data for evaluation in this study.
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pairs. Besides, we take one caption in the caption-
caption pair as the “reference” paraphrase of the
other caption and evaluate the “reference” para-
phrase as well.

AutoEncoder models with diversity decoding
strategies: We train the Transformer and Bart mod-
els as the AutoEncoder models respectively. For
both models, we leverage various decoding strate-
gies including greedy search, top-k decoding and
top-p decoding to generate diverse paraphrases.

Pipeline back-translation methods with var-
ious kinds of pivot: We employ language, AMR
graph and image as pivots separately. For back-
translation with language pivot, we leverage
English-German translation systems provided by
Ng et al. (2019). For back-translation with AMR
pivot, we generate paraphrase according to Cai et al.
(2021). For back-translation with image pivot, we
leverage text-to-image model provided by Ye et al.
(2021) to generate image from text and leverage
image captioning model provided by Rennie et al.
(2017) to generate its correspond caption as the
paraphrase of the original text.

4.3 Metrics
We evaluate our model in three aspects: diversity,
relevancy and fluency. We leverage Self-BLEU,
which calculates the BLEU score between the para-
phrase and the original sentence, to evaluate the di-
versity of the paraphrase. We leverage BERTScore
to measure the semantic relevancy. For fluency, we
employ GPT-Large without finetuning to calculate
the perplexity scores (PPL) of different models’
outputs.

In addition, we perform human evaluation of
model outputs with respect to diversity, relevancy
and fluency. All ratings were obtained using a
five point Likert scale. We randomly sample 200
instances, including 100 from MSCOCO and 100
from Flickr30k. We employ 6 graduate students to
rate each instance, and we ensure every instance is
rated by at least three judges.

4.4 Training Details
We leverage Vision Transformer base5 to generate
the initial image embedding with the dimension
of 768. In order to align image features, we also
set the latitude of encoder and decoder to 768. We
set λ to 1 in loss function. Other hyper-parameters

5The Vision Transformer model we used is avail-
able at https://huggingface.co/google/
vit-base-patch16-224-in21k

are same to the vanilla Transformer. We select the
model with highest BERTScore on the validation
dataset. During inference, we leverage beam search
with 5 beam size to generate paraphrase.

5 Results

5.1 Result Analysis

Tables 2 and 3 show the results of automatic evalu-
ation and human evaluation, respectively.

For supervised models trained with caption-
caption pairs, the big semantic gap between the
outputs of these models and the original sentence
can be obvious from the low BERTScore. There
are also great semantic differences between the
caption reference and the original sentence. Using
paired caption-caption data to train the paraphras-
ing model can lead to a huge semantic shift. The
result of human evaluation also shows that super-
vised models trained with caption-caption pairs
may generate paraphrase that changes the semantic
of the original sentence, which can not be regarded
as valid paraphrase.

For AutoEncoder models, they all get the high
BERTScore but high self-BLEU, which means that
the paraphrase generated by these models lacks
diversity. Since Bart is a pretrained autoencoder
model, top-k and top-p decoding strategies can
hardly introduce diversity. For AutoEncoder, the
diversity decoding strategy can indeed increase the
paraphrase diversity, and yet it is harmful to the
fluency of the generated sentence. The diversity
decoding strategy can lead to a significant increase
in PPL, this means that the quality of the generated
paraphrase is affected. The human evaluation also
shows the decline of sentence fluency caused by
the diversity decoding strategy.

For pipeline back-translation methods,
BackTranslation-AMR and BackTranslation-
Language can generate good paraphrase with
enough relevancy and diversity. From the human
evaluation, we find that the paraphrase generated
by BackTranslation-AMR has stronger diversity
than BackTranslation-Language. BackTranslation-
AMR can introduce diversity at syntactic level as
the AMR is an abstract semantic representation
of a sentence. However, BackTranslation-Image
can not generate valid paraphrase with adequate
semantic relevancy, this is because text-to-image
generation is still a challenge task and may cause a
huge semantic shift. In case study, we also show
an example of BackTranslation-Image for a more
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Model MSCOCO Flickr30k
Self-BLEU↓ BERTScore↑ PPL Self-BLEU↓ BERTScore↑ PPL

Source - - 178.82 - - 234.11
Supervised models trained with caption-caption pairs:
Caption Reference 8.01 49.83 177.55 7.02 47.62 195.37
Transformer 14.81 57.30 116.96 13.00 56.31 363.15
Bart(Fine Tune) 19.61 61.29 85.15 19.46 62.33 278.37
AutoEncoder models with diversity decoding strategies:
Bart(Original) 99.89 99.94 178.24 99.91 99.97 233.94

+ top-k(k=5) 99.82 99.90 177.61 99.74 99.89 233.16
+ top-p(p=0.9) 99.86 99.92 177.97 99.85 99.94 233.70

AutoEncoder 92.19 95.16 213.15 85.54 90.85 309.26
+ top-k(k=5) 84.30 90.55 284.53 74.17 83.88 428.08
+ top-p(p=0.9) 74.69 82.60 530.60 62.56 72.74 815.54

Pipeline back-translation methods:
BackTranslation-AMR 36.63 75.51 353.13 32.63 75.52 430.10
BackTranslation-Language 54.17 84.17 202.05 53.87 84.75 258.28
BackTranslation-Image 9.06 51.22 104.79 4.55 45.26 81.78
ViPG(Ours):
One-Caption 38.25 71.95 130.24 29.12 66.11 159.06
All-Captions 43.40 76.38 155.61 31.21 69.54 359.66

Table 2: Automatic evaluation results. The evaluation metrics include diversity, semantic relevancy and fluency.

Model Rel. Flu. Div.
Lexi. Synt.

Caption Reference 2.36 3.46 3.16 2.80
Transformer 2.81 3.40 3.31 3.03
Bart(fine tune) 2.28 3.89 3.47 3.11
AutoEncoder(top-k) 4.28 2.39 2.37 2.20
BT-Language 3.91 3.51 3.43 3.40
BT-AMR 3.54 3.39 3.20 3.88
BT-Image 1.39 3.09 2.73 2.59
ViPG(One-Caption) 3.78 3.72 3.71 3.42
ViPG(All-Captions) 3.73 3.64 3.60 3.34

Table 3: Human evaluation results. BT means Back-
Translation. Rel., Flu. and Div. is the abbreviation of
relevancy, fluency and diversity. Lexi. and Synt. mean
lexical and syntactic, respectively.

intuitive explanation.

For our ViPG model, we solve the semantic shift
in BackTranslation-Image and get the adequate
BERTScore. Beside, our model performs well on
diversity and fluency. Our model gets the low self-
BLEU which means high diversity. For fluency,
our model also achieves the best PPL score among
all valid paraphrasing models. The human evalua-
tion shows that the diversity of our model is mainly
at lexical level, while syntactic diversity also per-
forms well. Briefly, our model performs much
better than other paraphrasing models leveraging
image-caption data and has strong competitiveness

with zero-shot paraphrasing models.
We also find that the BERTScore has a signif-

icant improvement for our ViPG model trained
by all-captions dataset, but the human evaluation
scores of diversity and fluency have decreased.
This means that using all captions of an image
to create training dataset is harmful for our model.

5.2 Ablation Study
We perform the ablation study on MSCOCO to
investigate the influence of different modules in
our ViPG model. We replace the transformed input
text with the original text to explore the effect of
embedding nouns and relations separately. We re-
move the KL(piI ||piS) and KL(piS ||piI) separately
to show the influence of symmetric KL divergence
in loss function. To further explore the effect of
the masked object copy mechanism, we conduct
another two experiments. One of the experiments
we remove the masked object copy mechanism. In
another experiment, the copy mechanism can copy
the words from the whole sentence, not just the ob-
ject words. Table 5 shows the results of the ablation
study.

We can see that each module in our model does
contribute to the overall performance. Using the
original text directly can lead to significant degra-
dation of BERTScore. The reason of huge semantic
shift is that there are many objects in an image and
the image-caption model can not distinguish which
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Cases from MSCOCO
Original a cup , toothbrushes , and other items sit on the side of a small sink .
Transformer(supervised) a bathroom sink and its reflection in the mirror .
Bart(Fine tune) a bathroom sink with toothbrushes and other bathroom items .
AutoEncoder(top-k) a cup , toothbrushes , and other items sit on the side of a small sink .
AutoEncoder(top-p) a cup , toothbrushes , and other items sit on the side of a small sink .
BackTranslation-
Language

a cup , toothbrushes and other objects lie on the side of a small sink .

BackTranslation-AMR cups , toothbrushes and other items are sat on the side of the small sink .
BackTranslation-Image a toothbrush sitting on top of a sink .
ViPG(One-Caption) a cup contains toothbrushes and other items on the side of a sink .
ViPG(All-Captions) a cup filled with toothbrushes and other items sitting on the side of a sink .

Cases from Flickr30k
Original a woman and child stand on the beach while sailboats sail on the ocean .
Transformer(supervised) a mom and son enjoying the beach .
Bart(Fine tune) a woman and child are standing on a beach by sailboats .
AutoEncoder(top-k) a woman and child stand on the beach while sailboats sail on the ocean .
AutoEncoder(top-p) a woman and child stand on the fattening beach while the ocean sail glances

bieber strussel tugs installment on swatch transports palomitas the woman .
BackTranslation-
Language

a woman and child stand on the beach while sailboats sail the ocean .

BackTranslation-AMR women and children stand on the beach as boats sail in the ocean .
BackTranslation-Image two people walking on the beach with a boat .
ViPG(One-Caption) a woman and a child on the beach with sailboats in the ocean .
ViPG(All-Captions) a woman and child are on the beach looking at sailboats in the ocean .

Table 4: Examples from MSCOCO and Flickr30k and the generated paraphrases by different models.

Model Self-B↓ BS↑ PPL
Origin 38.25 71.95 130.24
Original Text 33.28 53.55 438.73
w/o KL(piI ||piS) 7.89 12.44 530.98
w/o KL(piS ||piI) 28.90 35.48 470.22
w/o Copy Mechanism 35.79 63.55 230.48
Copy the Whole Sent 61.49 77.50 203.61

Table 5: Self-B and BS is the abbreviation of self-
BLEU and BERTScore.

object is described in the original text. The two-
part of symmetric KL divergence is necessary for
the model training. The object copy mechanism
can improve the relevancy and fluency of paraphras-
ing. However, copying the whole sentence without
restriction can lead to a lack of diversity.

5.3 Case Analysis
We perform case studies for better understanding
the model performance. Table 4 shows running ex-
amples from MSCOCO and Flickr30k. Obviously,
there are some degrees of semantic shift for the
paraphrases generated by supervised models such
as Transformer and Bart. BackTranslation-Image
generates paraphrases with high semantic loss. Our

ViPG model can generate paraphrases with good
diversity, relevancy and fluency. However, as the
shortage of image caption dataset, the paraphrases
generated by our model may introduce additional
semantic information, such as the “contains” and
“filled with” in the example from MSCOCO. This
does not affect the readability of paraphrase, but
still a problem to be solved.

6 Conclusion

In this paper, we propose a visual information
guided zero-shot paraphrase generation approach.
We explore employing image as the “pivot” of the
back-translation. Instead of using a pipeline back-
translation, we jointly train an image captioning
model and a paraphrasing model together. We lever-
age the image captioning model to guide the train-
ing of the paraphrasing model. Both automatic
evaluation and human evaluation show the com-
petitive performance of our model. In the future,
we will explore huge-scale image caption dataset
to train our model and test the model’s ability on
other domains. Moreover, leveraging video as pivot
for paraphrase generation is also an interesting re-
search direction.
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Abstract

Pre-trained models have brought remarkable
success on the text summarization task. For di-
alogue summarization, the subdomain of text
summarization, utterances are concatenated to
flat text before being processed. As a result,
existing summarization systems based on pre-
trained models are unable to recognize the
unique format of the speaker-utterance pair
well in the dialogue. To investigate this is-
sue, we conduct probing tests and manual anal-
ysis, and find that the powerful pre-trained
model can not identify different speakers well
in the conversation, which leads to various
factual errors. Moreover, we propose three
speaker-aware supervised contrastive learning
(SCL) tasks: Token-level SCL, Turn-level SCL,
and Global-level SCL. Comprehensive exper-
iments demonstrate that our methods achieve
significant performance improvement on two
mainstream dialogue summarization datasets.
According to detailed human evaluations, pre-
trained models equipped with SCL tasks effec-
tively generate summaries with better factual
consistency.

1 Introduction

Dialogue summarization aims to condense the es-
sential information in the dialogue into a brief text.
Compared with text summarization, the conversa-
tions are semi-structured data and contain multiple
participants who shall be distinguished (Gurevych
and Strube, 2004; Feng et al., 2021a). Furthermore,
dialogues are characterized by informal language,
coreference, and repetition (Chen and Yang, 2020).
All of these bring new challenges to the existing
text summarization methods.

Although pre-trained models have achieved great
success in Natural Language Processing especially
text summarization (Liu and Lapata, 2019; Lewis
et al., 2020; Qiu et al., 2020; Lin et al., 2021), how

∗Corresponding author

Dialogue Text

Jeff: Should we go to the village party? Lia: I’m too tired
after hiking. Mico: I’d like to go, there may be some hot boys!
Lia: I doubt Jim: like a real village boy? Jim: who doesn’t
even speak English? Mico: yes, the dummer, the better. Jim:
haha, stupid fucks good, they say. Mico: I confirm! Lia: not
my cup of tea. Mico: I’ll go there, who wants to join? Jeff:
I’ll go as well. Mico: wanna drive? Jeff: so you could drink?
Mico: would be nice, hahah. Jeff: not excited, but ok.

Gold Summary

Mico and Jeff will go to the village party. Jeff will drive.

Baseline Summary (by BART)

Jeff, Lia and Mico are going to the village party. Lia is too
tired to go. Mico will drive.

Our Summary

Jeff and Mico are going to the village party. Lia is too tired
after hiking. Jeff will drive.

Table 1: A dialogue example in the SAMSum dataset.
The summary generated by BART has two factual er-
rors: Lia is not going to the village party; it will be
Jeff driving instead of Mico. Our model can generate
factually correct summaries.

to properly utilize them in dialogues with a spe-
cial speaker-utterance structure is still an obstacle.
A line of previous work utilizes pre-trained mod-
els and deals with dialogue summarization as flat
text. Chen and Yang (2020) segment dialogues
into blocks from multiple semantic views and pro-
cess them using BART. Feng et al. (2021b) use
DialoGPT (Zhang et al., 2019) as an unsupervised
annotator to help models understanding conversa-
tions. However, due to the gap with the pre-training
object, the pre-trained models are hard to capture
speaker information. To investigate these, we con-
duct a manual analysis on popular datasets SAM-
Sum (Gliwa et al., 2019) and AMI (McCowan et al.,
2005). We discover that, even for the state-of-the-
art model BART, 55% of the generated summaries
contain factual errors for dialogues with multiple
speakers. Among them, up to 56.4% are caused
directly by speaker confusion and speaker missing
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(see Section 3.2). As shown in Table 1, the model’s
inability to identify speakers results in serious fac-
tual inconsistencies.

Another tributary of previous work (Zhao et al.,
2019; Liu and Chen, 2019; Zhu et al., 2020; Lei
et al., 2021) utilizes the hierarchical network in-
stead of pre-trained models to leverage the dia-
logue’s structural information. However, how to
explicitly model the information of speakers in
pre-trained sequence-to-sequence (seq2seq) mod-
els remains unsolved. Zhu et al. (2020) intro-
duces speaker embedding to distinguish speakers
for meetings with fixed participants. However, in
most cases, the number and identity of the partici-
pants in the conversations are unknown. Thus the
trained embedding is not a general solution.

Intuitively, if the representation derived from the
encoder has sufficient information to identify speak-
ers, the decoder will produce superior summaries,
especially for summaries that follow a pattern of
someone does something as shown in Table 1. In
this paper, we first conduct a probing experiment
to show that the representation of the dialogue ob-
tained from BART can not distinguish speakers
well. To address this issue, we use contrastive learn-
ing to improve the alignment of the representation
derived from the encoder, i.e., to make the encoder
output diverse hidden states based on correspond-
ing speakers. We propose three speaker-aware su-
pervised contrastive learning tasks: Token-level
SCL, Turn-level SCL, and Global-level SCL. By
jointly training these tasks in the fine-tuning stage,
we can substantially improve the model’s ability to
identify different speakers and further understand
the content of the whole dialogue. Comprehensive
experiments and human evaluations on SAMSum
and AMI (McCowan et al., 2005) reveal that our
models generate summaries with higher ROUGE
scores and better factual consistency. Our main con-
tributions include (a) this is the first work to give a
detailed investigation of the speaker identification
problem in dialogue summarization, (b) proposing
speaker-aware SCL tasks to address the problem,
and evaluating our methods with the experimental
and manual examination.

2 Method

2.1 Probing Test

To investigate how well pre-trained seq2seq mod-
els can distinguish speakers, we conduct a sim-
ple probing experiment on SAMSum, a widely-

used dialogue summarization corpus. Concretely,
we first encode the integral dialogue text with the
BART (Lewis et al., 2020) encoder and randomly
sample K tokens to obtain their hidden states.
Then, in pairs, we aggregate and feed these hid-
den states into MLP to determine whether they are
from the same speaker. To investigate the com-
patibility of the pre-trained seq2seq model with
flat dialogue text, we freeze the parameters of the
BART encoder and solely fine-tune the MLP clas-
sification layers during training stage. Then we
evaluate the classification accuracy on the test set.
Intuitively, the binary classification task is easy,
but the accuracy is only 58.1% for vanilla BART.
Even after fine-tuning BART with the summariza-
tion task (parameters of BART are not frozen) on
SAMSum before the probing test , the accuracy
is still only 60.2%1. The result indicates that pre-
trained seq2seq models can not identify speakers
well from flat dialogue text, and simply fine-tuning
with the dialogue summarizing task is unhelpful.
We need more explicit methods to help models
understand flat dialogue text.

2.2 Supervised Contrastive Learning Tasks

To address the above problem, inspired by the re-
search about contrastive learning (Mikolov et al.,
2013; Saunshi et al., 2019; He et al., 2020; Velick-
ovic et al., 2019), we introduce SCL tasks to help
models identify speakers. The model is supposed
to minimize the distance between representations
of utterances from the same speaker and vice versa
by optimizing the SCL loss during the fine-tuning
stage.

Regular Paradigm for Dialogue Summariza-
tion Formally, a dialogue D = (t1, t2, · · · , tn)
consists of n turns, and each turn ti contains the
utterance ui and the corresponding speaker si, that
is, ti = (si, ui). Firstly, we use Transformer-
Encoder (Vaswani et al., 2017) to model the
dialogue-level contextual representation of each
tokens from the flat dialogue text.

H = Transformer-Encoder(D), (1)

where the input sequence is the concatenation of all
turns. Then, we can generate the summary ŷ with
Transformer-Decoder. The generation loss Lgen is
cross-entropy loss between ŷ and gold summary y.

1By jointly training the Global-level SCL task in fine-
tuning stage, the accuracy reaches 77.9%.
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Figure 1: Overview of our speak-aware SCL tasks. Token-level SCL and Turn-level SCL mean the model needs
to discriminate whether two tokens/turns are from the same speaker. Global-level SCL let the model choose what
the speaker might say in a particular turn when given all the utterances of this speaker. The representations are
obtained by inputting the whole dialogue into the encoder.

Incorporating Contrastive Loss To enable the
utterance representation to contain more speaker
information, we incorporate three levels of
contrastive losses into the regular fine-tuning
paradigm.

Generally, let (oi, si) denote a sampled token
or utterance and the associative speaker. The con-
trastive loss Lctr for the SCL task is calculated as
follows:

L+ =
∑si=sj

i,j − log(σ(oi · oj)), (2)

L− =
∑si 6=sj

i,j − log(1− σ(oi · oj)), (3)

Lctr = L+ + L−, (4)

where σ is logistic function that measures the sim-
ilarity between two representations and oi is the
contextual representation of oi derived from H .
The detailed sampling methods of oi are dicussed
in Section 2.2.1 ∼ 2.2.3.

The final loss L = λLctr + Lgen and λ is the
weight coefficient to adjust the ratio of Lctr and
Lgen in the final loss L. The model is supposed to
maximize similarity among samples of the same
speaker and vice versa while being optimized for
the summary generation.

Next, we introduce our proposed supervised con-
trastive tasks in detail.

2.2.1 Token-level SCL

The first task is the Token-level SCL which means
the model distinguishes whether two tokens are
from the same speaker. As illustrated in Figure 1(a),
we randomly sample m token-speaker pairs T =
{(o1, s1), (o2, s2), ..., (om, sm)} from D, where oi
is a token and si is the corresponding speaker. The
hidden state of oi obtained through the encoder is
used to represent the i-th sample.

2.2.2 Turn-level SCL

Compared with Token-level SCL, we increase the
granularity of the input to fuse the semantic infor-
mation of the context. As shown in Figure 1(b),
we randomly sample two turns from D and mask
the speaker names in text, denoted as (oi, si) and
(oj , sj). Then we derive oi by taking the mean
pooling of the hidden states of all tokens in oi.

2.2.3 Global-level SCL

To maximize the mutual information between ut-
terances of the same speaker (Linsker, 1988; Kong
et al., 2019), we extend the Turn-level SCL task to
Global-level SCL by introducing global informa-
tion. Intuitively, we can understand the speaking
style of a specific person from all the words he
or she has said. Therefore, we provide the model
with all the utterances of a certain speaker and let it
choose what this speaker might say in a particular
turn (described in Figure 1(c)). Concretely, we first
mask all the speaker names and randomly sample a
speaker whose utterances set S̃i which has at least
two elements. Among S̃i, we randomly choose
a utterance (oi, si) as the positive sample, and
randomly choose another utterance (oj , sj) from
D − S̃i as the negative sample. Thus the global
utterance sample of this speaker is (S̃i − oi, si).
The model is supposed to maximize the mutual in-
formation between the representation of the global
sample and the positive sample, and vice versa.
The representations are derived from mean pool-
ing, the same as what we do in Turn-level SCL.
In contrast to Turn-level SCL, Global-level SCL
needs the model’s overall comprehension of the
dialogue-format context.
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Model SAMSum AMI
R-1 R-2 R-L R-1 R-2 R-L

PGNet (See et al., 2017) 40.08 15.28 36.63 42.60 14.01 22.62
UniLM (Dong et al., 2019; Zhu et al., 2021) 50.00 26.03 42.34 50.61 19.33 25.06
Multi-view BART (Chen and Yang, 2020) 53.42 27.98 49.97 - - -
BART+DialoGPT (Feng et al., 2021b) 53.70 28.79 50.81 - - -
PGN+DialoGPT (Feng et al., 2021b) - - - 50.91 17.75 24.59

BART 53.01 28.05 49.89 50.67 17.18 24.96
BART + Token-level SCL task 53.85 29.21 50.94 51.03 17.23 25.21
BART + Turn-level SCL task 54.12 29.53 51.10 51.15 17.85 25.45
BART + Global-level SCL task 54.22 29.87 51.35 51.40 17.81 25.30

Table 2: Results on the test sets of SAMSum and AMI, and "R" is short for "ROUGE". Our results are significantly
better than the baseline model (p < 0.05).

3 Experiment

In this section, we conduct experiments and human
evaluations on the popular datasets SAMSum and
AMI. More descriptions of the datasets and the im-
plementation details can be found in the Appendix.

3.1 Experimental Result and Analysis

We provide several latest strong seq2seq
models as baselines, including PGNet (See
et al., 2017), UniLM (Dong et al., 2019) and
BART+DialoGPT (Feng et al., 2021b) in the first
part of Table 2. Following previous settings (Gliwa
et al., 2019; Feng et al., 2021a), we use py-rouge2

package for evaluation on SAMsum and use
pyrouge3 on AMI. Experimentally, our models
obtain clear improvement on both two datasets
compared to the BART baseline, and achieve the
state-of-the-art result on SAMSum.

Specific to the three tasks, the improvement
brought by Token-level SCL is relatively tiny. The
reason may be that the utilization of positional in-
formation is enough for BART to optimize the con-
trastive loss for two tokens. For Turn-level SCL
and Global-level SCL, the pooling layer reduces
the impact of position embedding, thereby forcing
the model to focus on the semantic information
of the utterances. Therefore, the model can fur-
ther capture the characteristics of the dialogue data.
Global-level SCL performs best in both datasets,
which illustrates that when the model has global
perspectives for each speaker, it can enhance the
model’s comprehension of the whole dialogue.

2https://pypi.org/project/py-rouge/
3https://github.com/bheinzerling/

pyrouge

3.2 Human Evaluation

We also conduct human evaluations to investigate
if our method leads to fewer factual errors. Au-
tomatic metrics like FACTCC (Kryściński et al.,
2019) are not used since the neural-model-based
metrics perform poorly in dialogue data due to the
significant domain gap. And most of the factual
errors in the dialogue summarization are caused
by misidentification of the speaker, which can not
be reflected by automatic metrics. Here we use
BART and BART with the Global-level SCL task
for comparison.

Error Types Firstly, we divide the factual errors
into three categories manually:(a) Speaker Confu-
sion: Model confuses speakers participating in a
specific event; (b) Speaker Missing: A speaker is
mentioned in the gold summary, while the model
hits the event but misses this speaker. (c) Seman-
tic Error: Errors caused by a misunderstanding of
semantics, and they are not directly related to any
speakers. More cases about the error types can be
found in Appendix.

Model BART BART + Global SCL

Speaker Confusion Rate 0.100 0.067
Speaker Missing Rate 0.267 0.167
Semantic Errors Rate 0.283 0.242

Table 3: The rate of factual errors for the baseline
model and our model on SAMSum and AMI. Please
note that multiple types of factual errors can occur in a
single data sample.

Result We evaluate 100 dialogues from the test
set of SAMsum and all 20 dialogues of the AMI
test set. For the SAMSum dataset, to explore the
model’s ability to understand multi-person interac-
tion, we choose all 64 dialogues with more than
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three speakers and randomly choose 36 dialogues
with three speakers. The result is shown in Table 3.
55% of the summaries generated by BART contain
factual errors, of which 56.4% are related to the
Speaker Confusion or Speaker Missing. In compar-
ison, our model decreases the number of speaker-
related factual errors by 36.4%. The SCL task
helps the model to better distinguish the speakers
and intuitively reduce the confusion. Furthermore,
the SCL task helps the model to better perceive the
speakers and reduce the Speaker Missing errors.

4 Conclusion

In this paper, we focus on the speaker identifica-
tion problem in the dialogue summarization task.
Through the probing test and manual analysis, we
find that the existing pre-trained model can not
identify different speakers well in the conversation,
leading to factual errors. Therefore, we propose
three speaker-aware SCL tasks to address this prob-
lem. Experimental results and human evaluations
illustrate the effectiveness of our methods.

5 Ethical Considerations

For human evaluation in section 3.2, we recruited
two annotators to see if there are any factual incon-
sistencies in generated summaries. The generators
of all summaries are hidden from the annotators
to avoid any subjective bias. For the SAMsum
dataset, we give more priority to dialogues with
more speakers and adopt a random strategy when
the numbers of speakers are same.
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A Datasets

We apply our methods on the large version of
BART and evaluate our model on SAMSum and
AMI datasets using ROUGE score (Lin and Och,
2004). SAMSum consists of 16,369 samples with
an average of 2.4 participants and 83.9 words. AMI
consists of 137 meeting records of four fixed speak-
ers, which have 4,757 words on average. Due to
the limitation of our computing resources, all our
inputs are truncated to 1,024 tokens. We use the
same split as Gliwa et al. (2019) and Zhu et al.
(2020) for SAMSum and AMI, respectively.

B Implementation Details

Hyperparameters SAMSum AMI

Batch Size 8 24
Total Steps 10,000 600
Eval Steps 1,000 20
Learning Rate [2e-5,3e-5] [2e-5,3e-5]
Label Smoothing Factor 0.1 0
Warm-up Type linear linear
Warm-up Steps 0 100
Max Target Length 128 300

Table 4: Hyperparameters we used for fine-tuning
BART on SAMSum and AMI.

Some of our hyperparameters are listed in Ta-
ble 4. Other hyperparameters are the same as
the default of facebook/bart-large of transformers4.

4https://github.com/huggingface/
transformers
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The weight coefficient factor λ is searched from
{0.01, 0.001}. It takes up to 2 hours for one run on
SAMSum or AMI using one GeForce RTX 3090.

We use the validation set to select the best check-
point, and evaluate the checkpoint on the test set.

C Case Study

In order to better illustrate the three types of errors
mentioned in Section 3.2, we provide more cases
here. An example of confusing speakers is shown
in Table 1 of the main paper. Examples of missing
speakers and semantic errors are shown in Table 5.

Dialogue Text 1

Ann: Congratulations!! Ann: You did great, both of you! Sue:
Thanks, Ann Julie: I’m glad it’s over! Julie: That’s co cute
of you, girl! Ann: Let’s have a little celebration tonight! Sue:
I’m in Julie: me too!!! aww

Gold Summary 1

Ann, Sue and Julie did a great job and they will have a little
celebration tonight.

Baseline Summary 1 by BART

Sue and Julie are going to celebrate their success tonight.

Our Summary 1

Ann, Sue and Julie are celebrating their wins.

Dialogue Text 2

Sarah: omg Laura! sorry you didn’t get any replies!!! Did
you manage? Laura: hahaha! Awksssss... no worries, I solved
it Sarah: awkward silence <crickets> Laura: hahaha no it’s all
good really!! Raf: Laura, I’m so sorry!!! been so swamped,
totally forgot to text you back! where are you?? Sarah: Exotic
little island called Linate :D Laura: Sarah which hotel are you
at??? I’m here too!!!

Gold Summary 2

Neither Raf nor Sarah remembered to reply to Laura but she
managed anyway. Both Sarah and Laura are in Linate.

Baseline Summary 2 by BART

Laura didn’t get any replies to Sarah’s messages.Laura is on
an island called Linate. Laura and Sarah are staying at the
same hotel.

Our Summary 2

Laura didn’t get any replies from Sarah and Raf. Sarah and
Laura are on an exotic little island called Linate.

Table 5: Sample 1 is an example about the speaker miss-
ing error. The summary generated by BART misses
Ann. The dialogue sample is from the SAMSum
dataset. Sample 2 is an example about the semantic
error and the speaker missing error. The summary gen-
erated by BART misses Raf (Speaker Missing Error),
and makes it out of thin air that Sarah and Laura are
staying at the same hotel (Semantic Error). All sam-
ples are from the SAMsum dataset.
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Abstract

Neural text generation models are likely to suf-
fer from the low-diversity problem. Various
decoding strategies and training-based methods
have been proposed to promote diversity only
by exploiting contextual features, but rarely do
they consider incorporating syntactic structure
clues. In this work, we propose using linguistic
annotation, i.e., part-of-speech (POS), to guide
the text generation. In detail, we introduce POS
Guided Softmax to explicitly model two poste-
rior probabilities: (i) next-POS, and (ii) next-
token from the vocabulary of the target POS. A
POS Guided Sampling strategy is further pro-
posed to address the low-diversity problem by
enriching the diversity of POS. Extensive ex-
periments and human evaluations show that,
compared with existing state-of-the-art meth-
ods, our POS Guided Softmax and Sampling
(POSG) can generate more diverse text while
maintaining comparable quality.1

1 Introduction

Maximum likelihood estimation (MLE) is a stan-
dard approach to training a neural text generation
model, e.g. Transformer (Vaswani et al., 2017), to
generate human-like text. However, existing gen-
eration systems often suffer from the low-diversity
problem (Holtzman et al., 2020; Welleck et al.,
2020), which leads to dull and repetitive genera-
tions. This problem unavoidably affects the overall
generation quality.

We conclude that the low-diversity problem is
mainly manifested in two aspects: form and content
(Fu et al., 2021; Holtzman et al., 2020; Tevet and
Berant, 2021). As shown Table 1, the low form
diversity can be reflected in repeating some words,
using similar lexicon and syntax, and more. The
low content diversity can be expressed as a single
and dull content with nothing different.

1Our code is available at https:
//github.com/FadedCosine/
POS-Guided-Neural-Text-Generation

Several feasible fixes have been proposed, such
as post-hoc sampling strategies including tempera-
ture (Caccia et al., 2020), top-k (Fan et al., 2018),
and nucleus sampling (Holtzman et al., 2020). Re-
cently, some works suggest that it is the maximiz-
ing likelihood itself that should account for the low-
diversity problem (Holtzman et al., 2020; Welleck
et al., 2020). Holtzman et al. (2020) think that MLE
can not adequately capture the rich diversity and ex-
pression in human language. Choi et al. (2020) ar-
gue that the imbalanced token distribution inherent
in natural language even worsens the low-diversity
problem. Based on these analysis, many training-
based methods have been proposed. Welleck et al.
(2020) propose the unlikelihood training to penal-
ize repetition with auxiliary losses. Jiang et al.
(2019) propose to utilize dynamically scaling losses
conditioned on the token frequency in the training
phase. Choi et al. (2020) factorize the probability
distribution and design an elaborate token cluster
algorithm for a balanced training.

Though those encouraging progress has been
made, we argue that current training-based meth-
ods only take plain contextual features to promote
diversity, rarely considering incorporating syntac-
tic structure clues. For example, when humans are
writing articles, it is natural to predetermine the
part-of-speech (POS) before giving the next token.
Existing studies have verified that incorporating
POS can improve the translation quality in neural
machine translation (NMT) (Sennrich and Haddow,
2016a; Yang et al., 2021). Intuitively, since the vo-
cabularies of different POS vary a lot, the diversity
of POS will certainly lead to the diversity of text.
Unfortunately, we observe that existing methods
with no consideration of the inner POS structure
fail to learn the diversity of POS in human language
(shown in Table 3).

All these factors motivate us to address the low-
diversity problem with the guidance of POS. Thus,
in this work, we first present the POS Guided Soft-
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Context: The NK 2nd Division , concentrated in the Sinban-ni area west of the river , had , in effect , attacked straight east
across the river and was trying to seize the two avenues of advance into Changnyong.
Text 1: They were joined by the 27th Battalion, US 24th Infantry Regiment, the 27th Regiment, and the 27th Regiment. The US
24th Infantry Division, under the command of Major General John R. Dempsey, was ordered to charge the US 24th Infantry
Division, and capture it from the west.
Text 2: The NK 2nd Division, which had been involved in the assault, was forced to withdraw from the area north of the river.
The NK 3rd Division, which had been fighting in the area since the beginning of the battle, was moved to the south. The NK 2nd
Division, which had been fighting in the area since the start of the battle, had been pushed back to the south.
Text 3: The 2nd Division had been moving north from Alcester’s position on the road, but were not expecting another attack. In
the immediate aftermath of the attack, to keep the 2nd Division in reserve, which had been preparing for an attack on Hill 131.
Along with the 3rd Battalion of the US 2nd Infantry Regiment, attacked Hill 129 at Pakchon on the way to Beaulieu.

Table 1: Examples of low-diversity generated text, given context from the Wikitext-103 dataset (Merity et al., 2017).
Text 1 has a poor form diversity due to many useless repeating words (highlighted in blue). Text 2 keeps talking
about only one single content, with similar lexicon and syntax (highlighted in orange), indicating low diversity in
both terms of form and content. Though Text 3 has various syntactical and lexical forms with no repetition, all the
content of it is about the “attacks”, which means low content diversity. Text 1 is sampled from MLE, Text 2 from
F2-Softmax (Choi et al., 2020), and Text 3 from FACE (Jiang et al., 2019) (Section 5.1).

max (Figure 1), building upon a hybrid decoder
that predicts two posterior probabilities: (i) next-
POS, and (ii) next-token from the vocabulary of
the target POS. Our work shows that, following the
POS clue, our model can gain a deeper insight into
text’s syntactic structure. Thereafter, we propose
a POS Guided Sampling to improve the diversity
of generated text lexically and syntactically while
maintaining comparable quality.

To sum up, the contributions of our work are
three-fold. (i) We introduce a novel POS Guided
Softmax, incorporating POS tags as the observed
discrete decisions to improve text generation. (ii)
Based on POS Guided Softmax, POS Guided Sam-
pling is proposed to promote text diversity effec-
tively without degrading quality. (iii) We conduct
extensive experiments on language modeling and
paraphrase generation. Experimental results and
human evaluation show that our model can easily
adapt to different downstream tasks and generate
text with high diversity as well as quality.

2 Related Works

2.1 Diversity-promoting Methods

Decoding-based Methods. Although greedy
search and beam search are well known decoding
strategies for neural text generation, Holtzman et al.
(2020) have shown that these methods always gen-
erate generic, repetitive, and awkward words. Ku-
likov and Cho (2019) and Vijayakumar et al. (2018)
have proposed several variants of beam search as
alternatives. Recently, stochastic decoding meth-
ods have been widely used, and some studies pro-
pose to sample from a truncated and renormalized

Softmax distribution. Top-k sampling (Fan et al.,
2018) only samples from the top-k most probable
tokens. Nucleus sampling (Holtzman et al., 2020)
only samples from the smallest set whose cumu-
lative probability is at least α. However, those
decoding-based methods are lack of controllabil-
ity. Combined with above methods, our proposed
method can further promote diversity using POS as
a more controllable clue.
Training-based Methods. As a standard approach
to training a neural text generation model, MLE has
been proved to be defective. Choi et al. (2020) have
shown that MLE may mislead the model because
of the imbalanced token distribution. Thus, they
design a greedy approach MefMax and factorize
Softmax to ensure a balanced training according
to the word frequency. FACE (Jiang et al., 2019)
utilizes the target word frequency to modify the
cross-entropy loss with a frequency-based weight
factor. Welleck et al. (2020) introduce an unlikeli-
hood loss to implicitly reduce the frequent tokens
and potential repeats. Other approaches, such as
negative training (He and Glass, 2020), reinforce-
ment learning (Shirai et al., 2020), and imitation
learning (Zhou and Lampouras, 2020), have re-
cently been applied to promote the diversity during
the training phase. All above training-based meth-
ods only learn from plain contextual features, while
ignoring other linguistic features. Our focus is on
leveraging POS features to guide both phases of
training and decoding.

2.2 POS in Text Generation

Previous works, which leverage POS for text gen-
eration, can be summarized as follows:
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POS in Encoding. A branch of previous works
(He et al., 2019; Sennrich and Haddow, 2016b;
Wray et al., 2019) explore to adopt POS on the
encoding side to help language understanding and
generation. Sennrich and Haddow (2016b) con-
catenate the embeddings of POS tags with sentence
features to improve the translation quality. For the
image caption generation, He et al. (2019) use POS
tags to control the fusion of the image features and
the related word embeddings. Wray et al. (2019)
enrich the encoding with POS of the accompanying
captions for cross-modal search tasks.

POS in Decoding. The second line of studies
directly model the POS structure during decod-
ing. Su et al. (2018) introduce a hierarchical de-
coder that relies on teacher forcing to learn differ-
ent POS patterns on different layers. Deshpande
et al. (2019) use POS tag sequences as summaries
to implicitly drive image caption generation. Yang
et al. (2019) treat POS tags as latent variables in
NMT and optimize the model by Expectation Max-
imization (EM). Yang et al. (2021) employ POS se-
quences to constrain the non-autoregressive gener-
ation (NAG) modes to alleviate the multi-modality
problem. However, all the previous studies only
focus on a single specific task and leverage POS as
hidden decoding features (Deshpande et al., 2019;
Yang et al., 2019), teacher forcing techniques (Su
et al., 2018; Bugliarello and Elliott, 2021) or NAG
plannings (Yang et al., 2021) in order to improve
the generic quality of generated texts, while our
proposed methods regard POS tags as observed
sequential variables and directly model the POS
distribution during both phases of training and de-
coding with the goal of improving text diversity.

To our best knowledge, we are the first to intro-
duce an explicit POS-guided generation method
as a generic way to promote text diversity while
maintaining quality.

3 Language Modeling

The goal of language models is to assign a probabil-
ity to text (i.e. word sequence) x = [x1, . . . , xT ],
where each xt in the sequence is a token from a vo-
cabulary V , i.e., xt ∈ V , and T ∈ N. We train the
language models to learn a distribution pθ (x) with
the goal to fit the ground-truth distribution p⋆ (x)
for all x. Specifically, when the language model is
a neural network, θ is regarded as the model param-
eters of the neural network, and we can factorize
pθ (x) as pθ (x) = ΠTt=1pθ (xt | x<t). The conven-

tional approach for learning the language model
parameters θ is to maximize the log-likelihood by
minimizing:

LMLE (θ) =−
T∑

t=1

log pθ (xt | x<t) ,

pθ (xt | x<t) =
exph⊤t−1wxt∑
x∈V exph

⊤
t−1wx

,

(1)

where ht−1 is a hidden state of the context x<t, and
wxt is the output embedding vector for xt ∈ V .

4 Methodology

In this section, we describe an overview of our
proposed method, POS Guided Softmax and Sam-
pling (POSG). POSG is designed to exploit syn-
tactic structure, i.e., POS tags for text generation
in both the training and decoding phases. Specif-
ically, giving text sequence x = [x1, . . . , xT ], we
first use off-the-shelf POS tagger (Manning et al.,
2014) to annotate corresponding POS sequence
ρ = [ρ1, . . . , ρT ], where each ρt is a POS tag from
the POS vocabulary P , i.e., ρt ∈ P , and T ∈ N.
We define all the tokens whose POS is ρ as a vo-
cabulary Vρ, where Vρ ⊂ V .

4.1 POS Guided Softmax

Figure 1 illustrates the core idea of our POS Guided
Softmax. Given a context, there exist various
choices for the next POS, which can be modeled
as the next POS distribution. For the context “no
one knows”, the next possible POS includes WH-
pronoun (WP), preposition (IN), etc. For example,
if WP is predicted as the next POS, the model will
decode the next token from the WP vocabulary
(VWP) with the token distribution of WP. Conse-
quently, the complete sequence can be “no one
knows what will happen”. For another case, if IN
is predicted as the next POS, the next token will
be decoded from VIN with the corresponding token
distribution. Then, the sequence may end up say-
ing “no one knows until it finally happens”. This
example also shows that the different choices of
POS at each time step can result in vastly different
generated text, thus promoting text diversity.

Following the core idea, we assume that the de-
coding process can be divided into two stages: for
each time t, a POS tag ρt is predicted first, and then
the model decodes next-token xt from Vρt . There-
fore, the joint conditional probability of xt and its
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no one knows
Next POS

(1) POS distribution
NNJJDT WP

…
IN PRP

WP 
Vocabulary：

how   what   where
who   why …

IN 
Vocabulary：

about  before  expect
during  until  …

(2) Token distribution of  IN
expectbeforeabout

…

untilduring

Next Token

… …

Vocabulary × #POS Distribution × #POS

…

(2) Token distribution of WP
wherewhathow

…

whywho

Figure 1: Illustration of POS Guided Softmax. The decoding process is decomposed into two stages: first predicts
the next-POS distribution, and then decodes the next-token distribution from the vocabulary of the previously
predicted POS. Since there exist some tokens with more than one POS, the final next-token distribution is the sum
of all the POS’s token distributions.

corresponding POS tag ρt is formulated as:

pθ (xt, ρt | x<t) = pθ1 (ρt | x<t)
× pθ2 (xt | ρt,x<t) ,

(2)

where pθ1 (ρt | x<t) is the next-POS probability
and pθ2 (xt | ρt,x<t) is the next-token probability
conditioned on ρt. These probabilities are defined
empirically by applying a linear output embedding
on ht−1 and then a Softmax function respectively:

pθ1 (ρt | x<t) =
exph⊤

t−1oρt
Σρ∈P exph⊤

t−1oρ
,

pθ2 (xt | ρt,x<t) =





exph⊤
t−1wxt

Σx∈Vρt
exph⊤

t−1wx
, if xt ∈ Vρt

0, otherwise
,

(3)

where oρt and wxt are the output embeddings
for ρt ∈ P and xt ∈ Vρt , respectively. In
this way, we regard POS tags as observed se-
quential variables, which also contributes to the
model interpretability and controllability. Then,
the final next-token distribution can be formulated
as: pθ (xt | x<t) =

∑
ρt∈P pθ (xt, ρt | x<t) . Note

that some tokens may have more than one POS, and
pθ (xt, ρt | x<t) = 0 for xt /∈ Vρt . Since the num-
ber of POS in a specific language family is fixed,
there is no problem of insufficient exploration in
variables’ space.

As mentioned before, we think of POS tags as
observed sequential variables and extend the train-
ing text set with annotated POS sequences, so we
define the POS guided training objective as follows:

LPOS-Guided (θ) =−
T∑

t=1

[
log pθ1 (ρt | x<t)

+ log pθ2 (xt | ρt,x<t)
]
.

(4)

4.2 POS Guided Sampling

We propose POS Guided Sampling based on POS
Guided Softmax. Consistent with POS Guided
Softmax, the key idea is to divide the whole sam-
pling process into two stages: POS sampling and
token sampling. In POS sampling, we first sample
a POS, and then in token sampling, we use the sam-
pled POS to control the sampling of tokens. Note
that arbitrary sampling strategies can be adopted to
both the POS sampling and token sampling. Here,
we take top-k sampling for POS sampling, and
nucleus sampling for token sampling as an exam-
ple, and then we can formulate our POS Guided
Sampling as follows:

p′θ (xt | x<t) =
∑

ρt∈P

[
p′θ1 (ρt | x<t)× p

′
θ2 (xt | ρt,x<t)

]
,

p′θ1 (ρt | x<t) =
{
pθ1 (ρt|x<t)

Zθ1
, if ρt ∈ P ′

0, otherwise
,

p′θ2 (xt | ρt,x<t) =
{
pθ2 (xt|ρt,x<t)

Zθ2
, if xt ∈ V ′

ρt

0, otherwise
,

Zθ1 =
∑

ρ∈P′
pθ1 (ρ | x<t) ,

Zθ2 =
∑

x∈V′
ρt

pθ2 (x | ρt,x<t) ,

(5)
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where P ′ ⊂ P is a POS set containing top-k most
probable POS tags, and V ′ρt ⊂ Vρt is the small-
est token set such that

∑
x∈V ′

ρt
pθ2 (x | ρt,x<t) ≥

α(token). k(POS) and α(token) (0 < α(token) ≤ 1) are
the hyper-parameters for the sampling of POS and
token, respectively. For other sampling strategies
used in POS sampling and token sampling, POS
Guided Sampling can be similarly defined.

5 Experiments

We systematically evaluate our proposed methods
on language modeling task (Section 5.2) and para-
phrase generation task (Section 5.3).

5.1 Experimental Setup

Model Architecture Since our proposed meth-
ods are architecture agnostic, we implement POS
Guided Softmax on the Transformer (Vaswani et al.,
2017), a widely used architecture for neural text
generation. Details of the experimental setup for
each task are shown in Appendix A.
Baseline Models We compare our POS Guided
Softmax and Sampling (POSG) with the follow-
ing baselines: (i) Maximum likelihood estima-
tion (MLE), a standard approach for neural text
generation. (ii) Frequency-Aware Cross-Entropy
(FACE) (Jiang et al., 2019) dynamically weights
the cross-entropy losses conditioned on the token
frequency. (iii) Frequency Factorization Softmax
(F2-Softmax) (Jiang et al., 2019) factorizes the
standard Softmax based on the token frequency.
(iv) Unlikelihood training (UL) (Welleck et al.,
2020) is to enhance the log-likelihood loss with an
unlikelihood loss that penalizes the generation of re-
peated tokens. (v) We further implement two task-
specific baselines: Mixture of Softmaxes (MoS)
(Yang et al., 2018) for language modeling, Syntax
Guided Controlled Paraphraser (SGCP) (Kumar
et al., 2020) for paraphrase generation. Note that
decoding-based methods, including top-k and nu-
cleus sampling, can be directly compared to POSG,
when they are applied to MLE. The details will be
described in the sections of Generation Details.

5.2 Language Modeling

Dataset We performed experiments on the
Wikitext-1032 dataset (Merity et al., 2017) for lan-
guage modeling. In order to train our POS Guided
Softmax, we need the corresponding POS tags. We

2https://s3.amazonaws.com/research.
metamind.io/wikitext/wikitext-103-v1.zip

use the Stanford CoreNLP’s POS tagger (Manning
et al., 2014) to annotate words in Wikitext-103 with
XPOS3 tags (Hornby et al., 2017). In our imple-
mentation, there are 45 different POS tags in total.
Generation Details We conduct the text comple-
tion task to evaluate models on the test set. Specif-
ically, for each sample, we truncate 50 tokens as
the prefix, and then guide model to decode follow-
ing 100 tokens as the continuation from the given
prefix. Finally, there are 1536 prefixes in the test
set. We use stochastic decoding to generate text.
Note that all the baselines have only one sampling
stage, i.e., token sampling, while our POSG has an
additional POS sampling. To reach a good trade-
off between quality and diversity, we adopt nucleus
sampling with α(token) = 0.5 for token sampling
(for all models including our POSG and baselines).
For our POSG, we adopt top-k sampling in POS
sampling, since the size of the POS vocabularyP is
much smaller than the total token vocabulary. We
then conduct a grid search to find the k(POS) whose
generated continuations have the smallest reverse
language model score (Semeniuta et al., 2018) on
the validation set. k(POS) is finally set to 20. Some
generated cases are shown in Appendix D.
Metrics Following Choi et al. (2020), we evalu-
ate the generated text with two sets of metrics: (i)
Diversity: We use Self-BLEU (Zhu et al., 2018)
which is calculated by computing BLEU (Papineni
et al., 2002) of each generated text with all other
generations as references. We also compute the
generated continuations’ unique tokens (Uniq), dis-
tinct n-gram (Distinct-n). We also use repetition
(Rep) (Holtzman et al., 2020), the percentage of
continuations ending with a repetition loop, to
evaluate text diversity. (ii) Quality: We measure
the perplexity (PPL) (Mnih and Teh, 2012), KL-
Divergence (KLD) (Kullback, 1997) on unigram
distributions, and MS-Jaccard (Alihosseini et al.,
2019) on n-gram. All the metrics are calculated be-
tween the generations as hypotheses and the ground
truths as references.
Automatic evaluation Table 2 shows the auto-
matic evaluation results comparing different mod-
els on the language modeling task. In terms of
Self-BLEU4, Rep, and Distinct-n, our POSG per-
forms much better than all the baselines, indicating
that our proposed model can generate diverse text
effectively. The FACE also performs well, and it

3The XPOS tags are language-specific part-of-speech tags
from the Universal Dependency Treebanks.
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Models Self-BLEU4 ↓ Rep ↓ Uniq ↑ Distinct ↑
PPL ↓ KLD ↓ MS-Jaccard ↑

n=1 n=2 n=3 n=1 n=2 n=3
MLE 46.9 1.86 11.7k 50.2 77.2 86.2 32.7 1.34 56.9 38.2 25.4
FACE 34.2 1.56 14.9k 60.0 85.1 90.6 36.1 1.18 58.6 37.6 24.0
F2-Softmax 51.5 4.09 10.8k 42.4 65.3 75.2 35.0 1.58 51.5 33.7 22.4
UL 42.4 0.240 12.8k 61.2 87.8 93.3 37.0 1.20 61.2 40.4 26.2
MoS 55.3 3.99 8.40k 48.2 74.3 83.0 38.2 1.48 56.9 38.1 25.4
POSG 34.1 0.000 13.8k 60.2 88.8 94.3 34.4 1.17 62.2 40.7 25.9

Table 2: Automatic evaluation results for different models on the language modeling task. Numbers n ∈ {1, 2, 3} in
the column heads under Distinct and MS-Jaccard refer to n-gram. (Bold: the best; Underline: the second best).

Models
Distinct ↑

1-P 1-G 2-P 2-G 3-P 3-G
MLE 16.0 39.2 38.5 61.0 54.7 70.8
FACE 17.8 49.8 46.6 73.0 65.4 80.8
F2-Softmax 16.4 41.1 39.3 63.8 55.8 74.0
UL 18.0 51.7 46.5 76.8 66.3 85.2
MoS 16.4 41.1 40.0 63.8 56.5 72.9
POSG 19.9 56.2 58.1 85.3 80.6 92.3
Human 21.7 67.7 61.8 93.0 83.8 95.9
PPMCC 0.988 0.986 0.986

Table 3: Results of distinct n-gram and n-POS with
corresponding Pearson product-moment correlation co-
efficient (PPMCC). n-P and n-G where n ∈ {1, 2, 3}
are abbreviated notations for n-POS and n-gram.

achieves the best in Uniq. However, by checking
the outputs (Table 15 in Appendix D), we find that
FACE produces more incoherent text that is hard
to understand.

Since training-based methods including ours
make a trade-off between the text diversity and
the likelihood of ground truth, MLE gets the lowest
PPL. However, the optimal or second best results of
quality metrics confirm that POSG can still main-
tain comparable generation quality.

We further conduct a correlation test to verify
that the text diversity is closely correlated with the
POS diversity. We first randomly sample 500 gen-
erated continuations from each model, and annotate
them with the POS tagger. We define a n-POS to
be contiguous n POS tags from the annotated POS
tag sequence. Then, we can describe the degree of
POS diversity by calculating the proportion of the
distinct n-POS. Table 3 presents results of distinct
n-gram and n-POS with corresponding Pearson
product-moment correlation coefficient. In terms
of distinct n-POS, POSG also surpasses all the
baselines. This demonstrates that our proposed
model can substantially promote the POS diversity.
Moreover, the Pearson correlations between dis-

Models Div. ↑ Qua. ↑
MLE 2.86⋆ 3.10
FACE 3.32⋆ 3.18
F2-Softmax 2.35⋆ 2.80⋆

UL 3.36⋆ 3.20
MoS 2.79⋆ 3.06⋆

POSG 3.45 3.17

Table 4: Human evaluation on language modeling. ⋆

denotes statistical significance compared with POSG
(Mann-Whitney u-test, p < 0.1).

tinct n-POS and n-gram are extremely high, which
indicates that the high POS diversity indeed leads
to the high text diversity.
Human evaluation For the language modeling
task, following Tevet and Berant (2021) we ran-
domly sample 100 generated continuations from
each model. Each of them is scored between 1 to
5 (5 is the best), by five workers to evaluate the
overall Diversity (Div.) and Quality (Qua.). The
results of the human evaluation on language mod-
eling are shown in Table 4. It can be seen that our
POSG significantly outperforms all other baselines
in diversity, and performs relatively well in quality.

5.3 Paraphrase Generation

Dataset We use the the ParaNMT-50M4 dataset
(Wieting and Gimpel, 2018) for paraphrase gener-
ation. ParaNMT-50M consists of over 50 million
paraphrases, generated by back-translation. For
better training, we first remove the sentences that
are less than 10 tokens. Moreover, ParaNMT-50M
dataset has provided translation scores to measure
the quality of back-translation, that a low transla-
tion score means semantically inconsistent, while
a high translation score usually accompanies low

4https://drive.google.com/file/d/
1rbF3daJjCsa1-fu2GANeJd2FBXos1ugD/view
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Models Self-WER↑ Self-BLEU4↓ Distinct↑
BERTScore↑ BLEU4↑ ROUGE↑

n=1 n=2 n=3 1 2 L
MLE 74.2 25.1 78.4 82.8 78.5 47.4 9.81 38.1 16.9 38.8
FACE 73.0 25.0 78.9 83.6 79.6 48.1 10.1 38.7 17.2 39.1
F2-Softmax 76.4 28.0 78.2 83.0 79.5 53.9 11.4 41.1 19.5 42.8
UL 77.2 21.2 80.1 85.3 80.9 36.0 7.59 30.6 13.3 30.3
SGCP 83.0 28.6 81.9 82.6 77.7 47.9 9.91 41.3 17.7 41.1
POSG 89.7 19.6 82.1 85.3 81.8 48.3 9.79 40.3 17.1 39.4

Table 5: Automatic evaluation results for different models on the paraphrase generation task. Numbers n ∈ {1, 2, 3}
in the column heads under Distinct refer to n-gram. (Bold: the best; Underline: the second best).
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Figure 2: Quality-diversity trade-off for different mod-
els on paraphrase generation. The x-axis measures
BLEU4 for quality, and the y-axis measures negative
Self-BLEU4 for diversity. Both are the bigger the better.

diversity. Therefore, we only keep the paraphrase
pairs whose translation scores are between 0.7 to
0.8. Finally, we get a filtered dataset containing
1.6 million paraphrase pairs with both high quality
and diversity. We also use Stanford CoreNLP to
tokenize the text and get corresponding POS tags.
Generation Details We conduct the standard
sequence-to-sequence paraphrase generation for
testing. Note that, during inference, SGCP needs
a corresponding exemplar sentence to paraphrase
the input sentence, while our model does not. So,
for a fair comparison, we prune the exemplar tree
to the height max(3, Hmax − 4) to reduce the im-
pact from exemplar sentence, where Hmax is the
height of the full constituency tree of the exemplar
sentence. We use the test set provided in the work
of SGCP5 that contains 800 paraphrase pairs and
correspond exemplar sentences for inference. For
a fair comparison, we closely follow Kumar et al.
(2020) to generate paraphrase using beam search
for all the models with beam size 10. For the sam-
pling hyperparameter in POS sampling, we also

5https://github.com/malllabiisc/SGCP

Models
Div. ↑

Flu. ↑ Rel. ↑
Lex. Syn.

MLE 2.92 2.65⋆ 3.34⋆ 3.09⋆

FACE 2.91 2.58⋆ 3.60 3.35
F2-Softmax 2.77⋆ 2.57⋆ 3.59 3.38
UL 3.00 2.68⋆ 3.37⋆ 3.17⋆

SGCP 2.74⋆ 2.67⋆ 3.50 3.21⋆

POSG 3.02 2.79 3.58 3.35

Table 6: Human evaluation on paraphrase generation.
⋆ denotes statistical significance compared with POSG
(Mann-Whitney u-test, p < 0.1).

conduct a grid search, and k(POS) is finally set to 5.
Some generated cases are shown in Appendix D.
Metrics We also evaluate the generated para-
phrases with two sets of metrics, (i) Diversity: To
assess how different the generated paraphrases are
compared to the original sentences, we calculate
BLEU and Word Error Rate (WER) (Goyal and
Durrett, 2020) between generated paraphrases and
input sentences. We denote them as Self-BLEU
(see Appendix A.3 for the difference with the Self-
BLEU in language modeling) and Self-WER, re-
spectively. We also compute the generated para-
phrases’ distinct n-gram (Distinct-n) to evaluate
text diversity. (ii) Quality: we calculate BLEU
score on n-gram to evaluate the closeness of the
generated paraphrases to references. Besides, we
use the BERTScore (Zhang et al., 2020) to mea-
sure the semantic consistency between generated
paraphrases and input sentences. We also com-
pute ROUGE-1,2,L between the generated and the
reference to evaluate the generation quality.
Automatic evaluation The experimental results
on the paraphrase generation task are shown in Ta-
ble 5. Our proposed model outperforms other base-
lines on all the diversity metrics. In terms of qual-
ity metrics, our POSG performs better than MLE,
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Models Self-BLEU4 ↓ Rep ↓ Uniq ↑ Distinct ↑
PPL ↓ KLD ↓ MS-Jaccard ↑

n=1 n=2 n=3 n=1 n=2 n=3
POSG 34.1 0.000 13.8k 60.2 88.8 94.3 34.4 1.17 62.2 40.7 25.9
w/o POSG-Sampling 40.6 0.841 13.1k 55.2 83.0 90.6 34.4 1.29 56.9 37.5 24.5
MLE 46.9 1.86 11.7k 50.2 77.2 86.2 32.7 1.34 56.9 38.2 25.4

Table 7: Results of ablation study on the language modeling task. Note that PPL measures the ability of the model
to generate fluent text, which is not affected by the sampling strategy.

Models Self-WER↑ Self-BLEU4↓ Distinct↑
BERTScore↑ BLEU4↑ ROUGE↑

n=1 n=2 n=3 1 2 L
POSG 89.7 19.6 82.1 85.3 81.8 48.3 9.79 40.3 17.1 39.4
w/o POSG-Sampling 87.6 24.1 78.0 80.5 78.5 52.6 11.1 40.9 19.7 42.4
MLE 74.2 25.1 78.4 82.8 78.5 47.4 9.81 38.1 16.9 38.8

Table 8: Results of ablation study on the paraphrase generation task.

Adjective Adjs. per
Self-BLEU4↓ BLEU4↑

Probability Sentence
×0.1 0.43 20.2 9.47
×1 0.66 19.6 9.79
×10 1.04 18.7 9.45

Table 9: Results of controllability analysis on the para-
phrase generation task. “×n” means that we manually
multiply the probability of “Adjective” by n.

FACE, and UL, while the best model in quality, i.e.,
F2-Softmax performs badly in diversity. Moreover,
compared with other syntax-guided models, i.e.,
SGCP, our model performs much better in diversity
and has a comparable performance in quality. This
further confirms that our model can effectively pro-
mote text diversity without the help of exemplars.

To make a more intuitive comparison, we fur-
ther apply stochastic decoding for different models,
and tune the sampling hyper-parameters to gen-
erate different sets of paraphrases. Then, we cal-
culate BLEU4 and Self-BLEU4 scores for these
sets, and draw the quality-diversity trade-off in Fig-
ure 2. Clearly, POSG surpasses all the baselines
with a significant gap. These results confirm that
our model can produce equally high-quality text
that is more diverse, and vice versa.
Human Evaluation We also conduct a human
evaluation for the generated paraphrases. 100 ex-
amples are randomly sampled from each models’
outputs, respectively. Each of them are evaluated
by five workers from the following four aspects:
Lexical Diversity (LeD.), and Syntactical Diver-
sity (SyD.), Fluency (Flu.), Relevance (Rel.). All
these aspects are scored between 1 to 5, the higher
the better. As shown in Table 6, the results of the

human evaluation are strongly consistent with the
automatic evaluation. Compared with MLE, UL
and SGCP, POSG substantially improves the gen-
eration quality, and it only has a tiny gap from
the best model in fluency and relevance scores.
Meanwhile, POSG has the best scores in diversity,
which further verifies that our proposed methods
can generate more lexically and syntactically di-
verse paraphrases. The detailed questionnaire, and
other details are shown in Appendix E.

5.4 Ablation Study

We perform ablation studies to reveal the effect of
POS Guided Softmax and POS Guided Sampling.
As shown in Table 7 and Table 8, compared with
MLE, POS Guided Softmax (without POS Guided
Sampling) can improve text quality for both the
tasks. It is worth to mention that, it is natural to
find that the model without POSG-Sampling per-
forms better than the model with POSG. That is
because POSG-sampling is a stochastic decoding
method like nucleus sampling, which will sacrifice
the quality of the generated text to promote text
diversity. Therefore, POS Guided Sampling can
dramatically promote text diversity for both the
tasks. These results confirm the effectiveness of
both the components.

6 Analysis

6.1 Interpretability

Compared with one-stage sampling such as top-k
sampling, POSG will lead to the entropy increasing
of a language model’s distribution, and thus lead
to more diverse outputs (see Appendix B for the
proof, Appendix C.1 for experimental results).
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6.2 Controllability
Our proposed POSG first samples a POS, and then
samples a token from the vocabulary of the pre-
viously predicted POS. Therefore, we can control
the POS sampling stage by forcing the probability
of some specific POS to be higher or lower. For
example, on the paraphrase generation task, we
can multiply the probability of “Adjective” (“JJ”)
and renormalize by dividing by the sum, aiming at
generating more descriptive style paraphrases.

The results are shown in Table 9. These results
confirm that by leveraging POS as an observed
and controllable clue, the generated text can be
successfully modulated with negligible effect on
quality and diversity (see Appendix C.2 for cases).

7 Conclusion

In this paper, we have introduced POS Guided Soft-
max and Sampling, simple but effective methods
to address the low-diversity problem in text gen-
eration. POSG guides models to capture contex-
tual and syntactical information by leveraging POS
as an observed and controllable clue in both the
training and decoding phases. Experimental re-
sults and human evaluation on language modeling
and paraphrase generation have demonstrated the
effectiveness of our methods.
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A Experimental Setup

A.1 Dataset

The dataset statistics of Wikitext-103 and
ParaNMT-50M are reported in Table 10 and Ta-
ble 11, respectively.

Since ParaNMT-50M is generated by back-
translation, the dataset has provided translation
scores to measure the quality of back-translation,
that a low translation score means semantically in-
consistent, while a high translation score usually
accompanies low diversity. Therefore, we only
keep the paraphrase pairs whose translation scores
are between 0.7 and 0.8. Moreover, for better train-
ing, we remove the sentences that are less than 10
tokens. Finally, we get a filtered dataset containing
1.6 million paraphrase pairs with both high quality
and diversity.

For language modeling, we use the original set-
tings of Wikitext-103 dataset for training, valida-
tion, and test set splitting. For paraphrase gen-
eration, we use the filtered training, validation
set of ParaNMT-50M, and the test set provided
in the work of SGCP. It is worth to mention that
Wikitext-103 is under the CC BY-SA 3.0 license,
and ParaNMT-50M is under the CC-BY license.

Train Valid Test
#Articles 28,475 60 60
#Tokens 103,227,021 217,646 245,569

Table 10: Statistics of Wikitext-103.

Train Valid Test
#Sentence 1,640,709 3,000 800

Table 11: Statistics of ParaNMT-50M.

A.2 Architectures and Hyperparamters

For the language modeling task, we use a 12-layer
Transformer Decoder with 8 attention heads, em-
bedding dimension 512, and projection dimension
2048. For the paraphrase generation task, we use a
6-layer Transformer Encoder and Decoder with the
same other settings. All the algorithms are imple-
mented in Pytorch and trained on a machine with
8 NVIDIA GTX 2080Ti GPUs for 10 epochs with
the hyper-parameters reported in Table 12.

hyper-parameters Wikitext-103 ParaNMT-50M
Vocabulary size 267,735 100,000
Batch size 12 96
Learning rate 0.0001 0.0001
Finetuning LR 0.00001 0.00001
Finetuning step 1500 1500
Gradient clipping 0.25 0.25
Weight decay 0.001 0.001
Droupout 0.1 0.1
Optimizer Adam Adam

-β1 0.9 0.9
-β2 0.999 0.999
-ϵ 1e-8 1e-8

Table 12: Hyperparameter settings for different datasets.

We choose the architecture settings and batch
sizes according to the GPU memory constraint.
Note that we use FACE-OPR among the four vari-
ants of FACE, and we train it in the way of finetun-
ing with corresponding finetuning LR and finetun-
ing step. Additionally, we use 7 mixture compo-
nents in MoS.

A.3 Metrics

Note that, the calculations of Self-BLEU are dif-
ferent for language modeling and paraphrase gen-
eration. This is because the typical definitions of
Self-BLEU for these two different task are indeed
different. For language modeling, Self-BLEU (Zhu
et al., 2018) is a metric to evaluate the inner diver-
sity of the generated data, while for paraphrase gen-
eration, Self-BLEU (Cao and Wan, 2020) is used
to evaluate the degree to which the generated para-
phrases are different from the original sentence.
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B Proof

We prove that our POS Guided Softmax and Sam-
pling can certainly generate more diverse text than
the one-stage sampling, top-k sampling as an ex-
ample.

In information theory, the entropy of a ran-
dom variable is the average level of “informa-
tion”, “surprise” in the variable’s possible out-
comes. Therefore, we can use the entropy of a
language model’s distribution p(x) to measure its
diversity. We denote the entropy of p(x) as H(p):
H(p) = −∑x∈V p(x) log p(x). The increase of
H(p) means the increase of diversity.

For example, compared with greedy search,
diversity-promoting sampling methods, such
as top-k sampling can increases H(p) from
−p(xmax) log p(xmax) to −∑x∈Vk

p(x)
Zk

log p(x)
Zk

,
where xmax is the token with the max probabil-
ity, Vk is the set of top-k most probable tokens,
Zk =

∑
x∈Vk p(x), and obviously xmax ∈ Vk.

Now, we prove that our POSG with two sam-
pling stages can lead to the entropy increasing,
compared with one-stage top-k sampling as an ex-
ample.

For one-stage top-k sampling,

H (p)(top-k) = −
∑

x∈Vk

p(x)

Zk
log

p(x)

Zk

= −
∑

x∈Vk

∑
ρ∈P p(x, ρ)

Zk
log

∑
ρ∈P p(x, ρ)

Zk

= − log |P| −
∑

x∈Vk

∑
ρ∈P p(x, ρ)

Zk
log

∑
ρ∈P p(x, ρ)

Zk × |P|
(6)

According to the Log sum inequality, it follows:

H(p)(top-k) ≥ − log |P| −
∑

x∈Vk

∑

ρ∈P

p(x, ρ)

Zk
log

p(x, ρ)

Zk

= − log |P| −
∑

ρ∈P

∑

x∈Vk

p(x, ρ)

Zk
log

p(x, ρ)

Zk

(7)

Since p(x, ρ) = 0 for x /∈ Vρ, it follows:

H(p)(top-k) ≥ − log |P| −
∑

ρ∈P

∑

x∈Vk,ρ

p(x, ρ)

Zk
log

p(x, ρ)

Zk

(8)

where Vk,ρ = {x ∈ Vk | ρ ∈ POS(x)}, POS(x)
is the set of all POS tags of token x. Thus, Vk,ρ ⊆
Vk.

For our POSG with two sampling stages,

H(p)(POS) = −
∑

x∈V

∑

ρ∈P
p′(x, ρ) log

∑

ρ∈P
p′(x, ρ)

= −
∑

x∈V

∑

ρ∈P
p′(ρ)p′(x | ρ) log

∑

ρ∈P
p′(ρ)p′(x | ρ)

(9)

where p′(x, ρ) is defined in Equation 2, p′(ρ)
and p′(x | ρ) are defined in Equation 5. Again,
according to the Log sum inequality, it follows:

H(p)(POS) ≥ − log |P|
−
∑

x∈V

∑

ρ∈P
p′(ρ)p′(x | ρ) log p′(ρ)p′(x | ρ) (10)

For the sake of briefness and fairness, we assume
that our POSG adopts pure sampling in the first
sampling stage (POS Sampling), and adopts top-k
sampling with the same k in the second sampling
stage (Token Sampling). So, p′(ρ) = p(ρ) for
ρ ∈ P , while

p′(x | ρ) =





p(x|ρ)
Z2

, if x ∈ Vρ,k

0, otherwise
, Z2 =

∑

x∈Vρ,k
p(x)

Note that, in our paper, we denote all the tokens
whose POS is ρ as a vocabulary Vρ, and here, Vρ,k
is the set of top-k most probable tokens in Vρ. Thus,
Vρ,k ⊆ Vρ. Then, it follows:

H(p)(POS) ≥ − log |P|
−
∑

x∈V

∑

ρ∈P
p(ρ)p′(x | ρ) log p(ρ)p′(x | ρ)

= − log |P| −
∑

ρ∈P

∑

x∈Vρ,k

p(ρ)
p(x | ρ)
Z2

log p(ρ)
p(x | ρ)
Z2

= − log |P| −
∑

ρ∈P

∑

x∈Vρ,k

p(x, ρ)

Z2
log

p(x, ρ)

Z2

(11)

Since Vk,ρ ⊆ Vρ,k and we use the same setting
of k, i.e., Z2 ≈ Zk, we can finally conclude from
Equation 8 and Equation 11 that the lower bound
of H(p)(POS) is greater than or equal to the lower
bound of H(p)(top-k). When compared with other
one-stage sampling strategies, this conclusion still
holds, and can be proved in a similar way. Conse-
quently, this will account for the effectiveness of
our methods.

C Additional Analysis

C.1 Compared with One-stage Sampling
We further conduct an analysis to test whether
the traditional one-stage sampling can achieve the
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Models Self-WER↑ Self-BLEU4↓ Distinct↑
BERTScore↑ BLEU4↑ ROUGE↑

n=1 n=2 n=3 1 2 L
top-k 100.8 13.6 86.9 88.9 83.7 39.4 6.49 33.5 12.1 32.3
POSG 102.1 13.6 86.9 88.2 83.4 43.3 7.71 36.4 14.1 34.9
∆ +1.3 +0.0 +0.0 -0.7 -0.3 +3.9 +1.22 +2.9 +2.0 +2.6

Table 13: Results of POSG and one-stage sampling (we use top-k sampling here) on the paraphrase generation task.
Note that we tune the sampling hyper-parameters of both methods to reach the same level of diversity, and then
compare the text quality.

same level of diversity by increasing the random-
ness, e.g. using larger k in top-k sampling. On
the paraphrase generation task, we tune the sam-
pling hyper-parameters in top-k sampling and our
POSG to reach the same level of diversity, and
then compare the text quality. The results are
shown in Table 13. In this experiment, POSG
adopts top-k sampling with k(POS) = 5 in POS
sampling, k(token) = 500 in token sampling, while
MLE adopts top-k sampling with k = 1000. Obvi-
ously, our POSG significantly outperforms top-k
sampling on MLE in terms of quality metrics, while
performing equally well in diversity. Therefore, we
can conclude that, by increasing the randomness,
the traditional one-stage sampling on MLE can
finally achieve the same level of diversity as our
POSG, but the quality of the generated text will
seriously deteriorate. This further confirms the ad-
vantage of our methods over prior works.

C.2 Controllability Analysis Example

An example of the controllability analysis is pro-
vided in Table 14. When we control the probability
of adjective increasing during the POS sampling
stage, the generated paraphrase will contain corre-
spondingly more adjectives.

Input Sentence: he (PRP) was (VBD) smiling (VBG) , clearly
(RB) delighted (JJ)

×0.1 he (PRP) was (VBD) smiling (VBG) , and (CC)
he (PRP) was (VBD) clearly (RB) pleased (VBN)
with (IN) joy (NN)

×1 he (PRP) was (VBD) smiling (VBG) and (CC) ap-
parently (RB) delighted (JJ) with (IN) joy (NN)
in (IN) his (PRP$) face (NN)

×10 he (PRP) was (VBD) still (RB) smiling (VBG)
and (CC) delighted (JJ) with (IN) apparent (JJ)
joy (NN) in (IN) his (PRP$) face (NN)

Table 14: Examples of controllability analysis on the
paraphrase generation task.
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Figure 3: Quality-diversity trade-off for POSG on para-
phrase generation by tuning α(POS).
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Figure 4: Quality-diversity trade-off for POSG on para-
phrase generation by tuning k(POS).

C.3 Tuning α(POS) and k(POS)

We have conducted an additional analysis on para-
phrase generation by tuning α(POS) or k(POS) while
fixing all other hyper-parameters. The results are
shown in Figure 3 and Figure 4. It can be observed
that: with other sampling hyper-parameters fixed,
as α(POS) or k(POS) increases, the results of diversity
metrics get better, but the results of quality metrics
get worse.
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Prefix: Below them, North Koreans continued crossing the river and moving supplies forward to their combat units, some of
them already several miles eastward. The North Koreans quickly discovered Task Force Manchu group. They first attacked it at
14:00 that afternoon, and were repulsed
MLE: by the North Koreans. On the morning of September 8, the North Korean forces launched a surprise attack on the high
ground west of the Kum River. At 16:30, the North Korean force launched a massive attack on the North Korean force, but the
initial attack was not successful. The North Korean offensive was halted by the remnants of the North Korean forces
FACE: by heavy machine-gun fire. In the early morning hours of 8 September, North Korean troops were alerted to attack on
the perimeter. On 9 September, a force of 20,000 men led by Lieutenant Colonel Robert E. telluride began to attack the North
Korean lines, suffering little damage. By 14:00 on 9 September, North Korean forces had crossed the Naktong River just before
midnight.
F2-Softmax: by the North Koreans. The North Koreans were ordered to withdraw to the rear of the North Koreans. They
then launched a frontal attack on the south side of the river. The North Koreans then launched a frontal attack on the North
Korean right flank. The North Korean right flank was soon overrun by the North Koreans. The North Koreans were subsequently
repulsed by the North Koreans,
UL: by North Korean fire, which forced the North Koreans to retreat. A further assault by the 1st U.S. Infantry Regiment
followed in the afternoon, and after seven hours of fighting, the 2nd U.S. Infantry Regiment broke off the attack and retreated
across the river. The survivors of the Battle of tellers managed to escape to a new bridge. Task Force presaged, but by 20:00 the
North Koreans were completely surrounded by North Korean troops.
MoS: by the 9th Infantry Regiment. At 17 : 00, the North Koreans took the road from the Korean border to the north, and began
firing on the northern flank of the North Korean forces. The North Koreans then withdrew to the northern flank of the Korean
army, where they advanced into the river and quickly attacked the North Koreans. At 16 : 00, the North Koreans began firing on
the North Koreans, and a number of North Korean soldiers, including the 5th Cavalry Regiment, attacked the North Koreans.
POSG: by the North Koreans, beginning their advance south of Osan on 18 September. By nightfall on 24 September, Ho Chi
Minh had secured its flank, while the South Koreans had captured the town of Phong on the west of Taejon. The North Koreans
had retreated to Pyongtaek, and in the afternoon of 22 September two North Koreans were killed there, leaving behind the town
to the survivors.

Table 15: Examples of language modeling on Wikitext-103 dataset. Repeating text is highlighted in blue, dull text
with single context is highlighted in orange, and incoherent text is highlighted in red.

Source: this is going to make good economic sense for the
city .
Reference: that it would be good for the city in a certain
economic sense .
MLE: this will be an economic sense for the entire city .
FACE: this will create a good economic point in the city .
F2-Softmax: this will make sense of economic sense for
the city .
UL: this will be considerable economic considerations for
the city ’s going to be able to economic point of the city .
SGCP: this will make economic sense for the city .
POSG: it is what makes good economic sense to the city .

Table 16: Examples of paraphrase generation on
ParaNMT-50M.

D Case Study

Table 15 provides examples of text completion pro-
duced by our model and other baselines. It can
be observed that MLE, F2-Softmax, and MoS suf-
fer from a severe repetition problem, and they also
generate many similar sentences about a single con-
tent. Due to the low-diversity problem, MoS even
generates some illogical text, such as “the North
Koreans began firing on the North Koreans”. FACE
produces a large amount of incoherent text, making
the text somewhat hard to read. UL and our POSG
alleviate those problems, while our model performs
relatively better.

Additionally, examples of paraphrase generation

are shown in Table 16. We observe that almost
all models can generate high-quality paraphrases
with well-preserved semantic meanings, while our
POSG exhibits more syntactic diversity than other
baselines.

E Human Evaluation

We post the human evaluation questionnaire, as
shown in Table 19 and Table 20, and then recruit
five workers with sufficient high English skills. We
pay each worker 60 US dollars, and let them com-
plete the evaluation within a week.

For both tasks, workers are given 100 randomly
sampled inputs, and corresponding outputs from
each model. Then, they need to score those out-
puts according to the description in the question-
naire. The term “diversity” in language modeling
is typically regarded as a property of the collective
outputs of a system, but it is really difficult for a
human to remember such a large scale of outputs
and give an overall score for a system. So we make
a compromise that we asked the worker to rate
the diversity of individual outputs, and intuitively
the more diverse individual outputs are, the more
diverse the system is.

We employ the Krippendorff’s alpha for the inter-
annotator agreement analysis. As shown in Ta-
ble 17 and Table 18, all the results are fair agree-
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ment (0.2 ≤ κ ≤ 0.4) or moderate agreement
(0.4 ≤ κ ≤ 0.6).

Div. Qua.
Krippendorff’s α 0.57 0.40

Table 17: Agreement analysis for annotators labels on
the language modeling task.

Models
Div.

Flu. Rel.
Lex. Syn.

Krippendorff’s α 0.54 0.37 0.71 0.63

Table 18: Agreement analysis for annotators labels on
the paraphrase generation task.

F Impact of the POS tagger

In our work, we use an off-the-shelf POS tagger to
annotate the POS tags, and build the POSG upon
these annotated POS tags. Consequently, the better
the quality of POS tagging, the better the perfor-
mance of our method. Stanford CoreNLP’s POS
tagger (Manning et al., 2014), the POS tagger we
use, is one of the state-of-the-art tagger, which is
the most commonly used tool for NLP research.
This ensures the high quality of tagging results.

G Impact Statement

Our work has developed generic generation meth-
ods to promote text diversity while maintaining
comparable quality. Therefore, despite the con-
tributes to better text generation, our proposed
methods may be used to generate more human-
like fake text. But the impacts are more apparent
when considering deployed applications, while our
proposed methods as the methodologies can not
have any direct negative societal impacts. More-
over, all the datasets we used in our work are
open source datasets. Wikitext-103 was extracted
from Wikipedia, and ParaNMT-50M was created
by the back-translation. Therefore, the data we
used would not contain personally identifiable in-
formation or offensive content.
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The goal of this review is to evaluate the quality and diversity of generated texts. In this review, you will read an excerpt from
Wikipedia with first 50 words as prefixes, and its corresponding 100-word continuations. You should rate the continuations
between 1 - 5 in two ways:
(1) Diversity. The overall diversity of text can be evaluated from form (How to say it?) and content (What to say?). (1 = The
continuation is always repeating some words, its sentences share the similar forms syntactically and lexically, and its content
is dull; 5 = The continuation seldom repeats words, its sentences have various syntactical and lexical forms, and it contains
different things related to the prefix)
(2) Quality. The overall quality of text can be evaluated in many different aspects, such as fluency, readability, coherence, and
so on. (1 = The continuation is incoherent, difficult to understand, not related to the prefix, and has many syntactically and
semantically errors; 5 = The continuation is coherent, easy to understand, related to the prefix, and grammatically correct)
You should score between 1 - 5, where 5 is best and 1 is worst. You can consider and make a final decision by comparing
different continuations of the same prefix. These prefixes and continuations have been preprocessed by separating punctuation,
and splitting conjunctions. And because of length constraints, they may be truncated in the middle of the text. Please ignore
these when evaluating and do not allow them to affect your judgments.
For example, if you are given the following prefix and continuations:
Prefix: Infantry fought a series of hard battles . Simultaneously it had to send combat patrols to its rear to clear infiltrating North
Koreans from Changnyong and from its supply road . On the morning of September 1 the 1st and 2nd Regiments of the NK 9th
Division , in their. . .
Continuation 1: Score: Diversity 3, Quality 3
second action around 380 yards <unk> 290 m <unk> from .395 , were assigned to the 7th Division. Meanwhile , the 2nd
Regiment of the 27th Infantry , which had been sent out of Murmansk in late October , had moved to iconoclasts Pass . It was
the first major US unit to advance across the mountains to the west , but it was not successful . On the morning of September 2 ,
the Eighth Army’s 2nd Battalion , 5th Cavalry Regiment was moved into a position about 10 miles <unk> 16 km <unk> from
Highton .
Continuation 2: Score: Diversity 1, Quality 5
reserve , were positioned to engage the North Korean troops . The 3rd Regiment of the NK 10th Division was to attack the North
Korean forces . The 1st Regiment of the NK 12th Division was to attack the North Koreans from the north and east of the 2nd
Division , and the 1st Regiment of the NK 15th Division was to attack the North Koreans from the south . The 1st Regiment of
the NK 12th Division was to attack the North Koreans from the south . The 1st Regiment of the NK 15th Division was to attack
the
Continuation 3: Score: Diversity 1, Quality 1
position north of Wonju , were repeatedly pushed back by the ROK 3rd Division . At 08 : 00 am the units of the 1st Battalion
attempted to attack . Kim of the 1st and 2nd Battalions attacked the 3rd and 3rd Battalions of the 2nd Battalion of the 3rd
Battalion of the 3rd Battalions of the 1st Battalion of the 2nd Battalion of 2nd Battalion , 7th Marines on North , 7th Marines on
Hill 60 . Task Force 51 and 9th Marines attacked Sangju ’s 1st Battalion of the 3rd Battalion of the 2nd Battalion , 1st Platoons
Continuation 4: Score: Diversity 4, Quality 3
“ Series B ” Company , carried out three assaults on the Pusan on 29 September against three resistance groups that included the
blacksmiths , truck commanders , and air support . They then conducted three raids into a line south of psalmody by the 2nd
Battalion , 3rd Field Artillery Regiment . At the same time , units from the 3rd Infantry Division and the 3rd Marine Division
advanced on all four sides of the road , while infantry units of the 2nd Infantry Division advanced on the northern slope . The 5th
Marine Corps , in particular
Analysis: As for diversity, Continuation 1 gives various details about the “hard battles”, and is of high diversity in the text form.
But all the content of it is about the deployment of armies, which means low content diversity. Therefore, Continuation 1 gets
3 points in Diversity. Since there are some words difficult to understand (highlighted in red), Continuation 1 gets 3 points in
Quality.
Continuation 2 keeps talking about only one single content, that is “some Regiment attacks the North Koreans from somewhere”
(highlighted in orange). Although it is fluent, relevant, and gets high scores in Quality, Continuation 2 will receive the lowest
score in Diversity due to its dull content.
Continuation 3 contains many useless repeating text (highlighted in blue), which makes the continuation incoherent and hard to
understand, so it gets the lowest score in both Quality and Diversity.
Continuation 4 also states from many different aspects of the “hard battles”, but compared to continuation 1, it is not that diverse
(That’s why comparing different continuations can help to make a decision). Therefore, it gets 4 points in Diversity. In the
meantime, high diversity of it also leads to some strange words in the text, and affects the overall quality. So, Continuation 4 can
only get a mediocre score in Quality.

Table 19: Human evaluation questionnaire for language modeling.
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The goal of this review is to evaluate the quality and diversity of text paraphrase dataset. In this review,
you will be given an original sentence, and its corresponding paraphrases. You should rate the paraphrases
between 1 - 5 in four ways:
(1) Lexical Diversity: how lexically diverse are the generated sentences?
(2) Syntactical Diversity: how syntactically diverse are the generated sentences?
(3) Fluency: how fluent are the generated paraphrases?
(4) Relevance: how semantically consistent are between generated paraphrases and the input sentences?
You should score between 1 - 5, where 5 is best and 1 is worst. You can consider and make a final
decision by comparing different paraphrases of the same original sentence. These sentences have been
preprocessed by converting all letters to lowercase, separating punctuation, and splitting conjunctions.
Please ignore this when evaluating and do not allow it to affect your judgments.
For example, if you are given the following original sentence and paraphrases:
Original sentence: by adopting rules that regulate the information about the foods and their nutritional
value appearing on the label , the consumers will be able to make informed and meaningful choices .
Paraphrase 1: Score: Lexical Diversity 5, Syntactical Diversity 5, Fluency 3, Relevance 5
the rules will be able to adapt food and their nutritional values listed on the labelling of consumers will be
able to be able to make informed and they are appropriate assessment .
Paraphrase 2: Score: Lexical Diversity 1, Syntactical Diversity 2, Fluency 1, Relevance 2
by adopting rules governing the information about food and relevance of foods and nutritional value of
nutrition value that regulate the labelling , so that consumers .
Paraphrase 3: Score: Lexical Diversity 4, Syntactical Diversity 5, Fluency 1, Relevance 2
consumers can adopt rules to provide informed and nutrition value of the food and their nutritional values
listed on the labelling , consumers will be able to enable consumers .
Paraphrase 4: Score: Lexical Diversity 1, Syntactical Diversity 1, Fluency 1, Relevance 1
by adopting rules that regulates the rule of food and their nutritional value of food and their nutritional
value of their nutritional value to the consumer protection , consumers .
Analysis: Although there are also some strange words in Paraphrase 1, we can still capture the main
meaning of it. Therefore, Paraphrase 1 can get a mediocre score in Fluency and a high score in Relevance.
On the other hand, Paraphrase 1 has many lexical edits and turns the original sentence into two parallel
sentences, so it can full marks in both terms of Lexical and Syntactical Diversity.
Paraphrase 2 is not really finished and repeats some words in the text (highlighted in blue), so it gets the
lowest scores in Relevance and Fluency. Meanwhile, except for some incorrect word order transpositions,
Paraphrase 2 is very similar to the original sentence. Therefore, it receives low scores in Lexical and
Syntactical Diversity.
Obviously, Paraphrase 3 changes a lot lexically and syntactically. However, it is incoherent, difficult to
understand (highlighted in red), so Paraphrase 3 scores high for Lexical and Syntactical Diversity and low
for Fluency and Relevance.
Paraphrase 4 is a nonsensical text, which is not really finished and keeps repeating itself. Therefore, it
gets the lowest scores from all aspects.

Table 20: Human evaluation questionnaire for paraphrase generation.
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Abstract

Today the pre-trained language models achieve
great success for question generation (QG)
task and significantly outperform traditional
sequence-to-sequence approaches. However,
the pre-trained models treat the input passage
as a flat sequence and are thus not aware of
the text structure of input passage. For QG
task, we model text structure as answer posi-
tion and syntactic dependency, and propose an-
swer localness modeling and syntactic mask
attention to address these limitations. Specially,
we present localness modeling with a Gaussian
bias to enable the model to focus on answer-
surrounded context, and propose a mask atten-
tion mechanism to make the syntactic struc-
ture of input passage accessible in question
generation process. Experiments on SQuAD
dataset show that our proposed two modules im-
prove performance over the strong pre-trained
model ProphetNet, and combing them together
achieves very competitive results with the state-
of-the-art pre-trained model.

1 Introduction

Question generation (QG) aims to generate ques-
tions for a given passage, which is a challenging
task and shows great value in many practical appli-
cations. For instance, QG helps in building reading
comprehension tests for course assessments (Kurdi
et al., 2020); QG can be an important skill for
chatbots to start a conversation with human users
(Mostafazadeh et al., 2016); QG can help reduce
the human labor for collecting large-scale question-
answer datasets to improve question answering sys-
tems (Duan et al., 2017).

Existing QG methods mostly employ neural
network models by treating it as a sequence-to-
sequence generative task, where researchers have
tried to incorporate text structure to improve the
performance. For answer-aware QG, the answer
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Figure 1: An overall structure of our proposed methods

position is widely explored. Song et al. (2018) pro-
pose three strategies to match the answer with pas-
sage; Sun et al. (2018) model the relative distance
between context words and answer to help generate
answer-related questions; Ma et al. (2020) enhance
model’s ability in capturing semantic and positional
information via multi-task learning. Some other
neural network models dig out deep text structure
for generating better questions. For instance, Chen
et al. (2020) construct a passage graph to utilize text
structure; Pan et al. (2020) construct a semantic-
level graph to learn the global structure of a docu-
ment for deep QG. However, most of these methods
adopt standard neural network, and few of them are
based on the strong pre-trained models.

Nowadays, pre-trained models largely boost the
performance of QG systems (Dong et al., 2019;
Bao et al., 2020; Qi et al., 2020; Xiao et al., 2020),
which utilize huge amounts of unlabeled text cor-
pora in pre-training stage to learn general language
representations, and then be fine-tuned in super-
vised QG tasks. However, in most cases, the in-
put passage and answer are formatted as “answer
[sep] passage” to feed into the pre-trained model
during the fine-tuning stage, as a result that the
neural network cannot explicitly capture the syn-
tactic structure of sentence and is not aware of the
answer position (Zhou et al., 2017), which is vital
to generate high-quality answer-aware questions.
In this end, how to incorporate text structure into
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pre-trained models for QG remains an open issue.
Fortunately, several previous works have tried

to utilize external knowledge and position informa-
tion for NLP tasks. For instance, Yang et al. (2018)
introduce token localness in attention mechanism
for machine translation tasks, and Liu et al. (2020)
propose a knowledge-enabled language model (K-
BERT) to incorporate domain knowledge for ques-
tion answering systems.

Motivated by these works, we propose a novel
strategy to explicitly incorporate syntactic knowl-
edge and answer information to pre-trained models
for QG task. The overall architecture is illustrated
in Figure 1. We present a localness modeling by
designing a Gaussian bias to regulate the attention
calculation, and propose a new attention mecha-
nism to incorporate syntactic structure. Specially,
in localness modeling, we adopt answer position
as the center of Gaussian distribution and predict
window size automatically, in order that the content
around answer will be more focused and the range
can be adjusted dynamically according to different
token length. For syntactic knowledge, we first
compute a syntactic vector through syntactic mask
attention, which we design to blind the tokens out-
side of dependency triples, and then constitute a
syntactic-aware representation by adding syntactic
vector to the original context vector.

We base our method on the strong pre-trained
model ProphetNet (Qi et al., 2020), which achieves
state-of-the-art results on many generation tasks
including QG. We conduct experiments on SQuAD
dataset (Du et al., 2017). The automatic evaluation
shows that our model boosts the performance of
pre-trained models and achieves comparable state-
of-the-art performance. Further human judgement
demonstrates that our model produces high-quality
questions by capturing syntactic knowledge and
answer-surrounded context.

Since our method is only a modification to the
self-attention module, and there is little increase
in parameter number, one can easily apply our
method to other Transformer-based pre-trained
models while almost keeping the original speed
without any much computation resources in the
training stage. Our codes and data will be publicly
available at the Github repository.

Contributions: To summarize, we (1) propose a
modified attention mechanism to incorporate syn-
tactic structure and position information, which
can be easily applied to any Transformer-based pre-

trained language models for QG task; and (2) with
selection of syntactic knowledge, our model is able
to reach comparable state-of-the-art performance
for question generation.

2 Related Work

2.1 Question Generation

Recently, neural question generation approaches
have become popular and achieved great success.
Serban et al. (2016) first introduce an encoder-
decoder framework with attention mechanism to
generate questions for facts from FreeBase. Du
et al. (2017) employ a seq2seq architecture on QG.
Zhao et al. (2018) tackle the challenge of process-
ing long text inputs with a gated self-attention en-
coder. Song et al. (2018) and Kim et al. (2019)
strength model’s ability by leveraging answer in-
formation. Meng et al. (2020) propose a two-stage
QG model by creating a draft first and then do-
ing refinement. These works adopt sequence-to-
sequence generative approaches and yield many
good results on QG. Benefiting from the develop-
ment of pre-trained model, the performance of QG
has been significantly improved. Varanasi et al.
(2020) utilize the information from a self-attention
module in BERT (Devlin et al., 2019) to generate
questions. Qi et al. (2020) propose a pre-training
model with n-stream self-attention mechanism and
achieve notable results in QG. Xiao et al. (2020)
design a span-by-span generation flow to predict
semantically-complete spans consecutively. So far,
Bao et al. (2020) achieve the best result on SQuAD
dataset, which employ autoencoding and partially
autoregressive modeling as the pre-training task.

2.2 Knowledge-Enhanced Text Generation

Many knowledge-enhanced text generation sys-
tems have achieved great performance on gener-
ating informative texts (Yu et al., 2020). In dia-
logue systems, topic-aware seq2seq model helps to
generate more informative responses (Mou et al.,
2016; Xing et al., 2017; Zhou et al., 2018). In story
generation, commonsense knowledge helps to cap-
ture the story-line and narrates the plots (Guan
et al., 2019). Liu et al. (2020) and Huang et al.
(2021) incorporate external knowledge base into
the Transformer-like architecture.

For question generation, Zhou et al. (2017) and
Sun et al. (2018) leverage answer embedding and
position information to help generate more answer-
related questions; Du and Cardie (2018) incorpo-
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Blake [SEP] In May , Jordin was declared the winner with runner-up being Blake …Input Sequence:

Dependency Triple:
{Jordin, declared, nsubj}
{declared, winner, obj}
{runner-up, Black, nsubj}

⋯ ⋯

5
⋮

6
7
8

⋮

9
10
11
12
13

5 6 7 8 9 10111213 runner
-up 

Jordin was declared winner with being Blake runner
-up 

Jordin was declared winner with being Blake

(b) Original distribution (c) Gaussian bias

runner
-up 

Jordin was declared winner with being Blake

(d) Final distribution(a) Syntactic Mask (partial)

Figure 2: A diagram of Syntactic Mask (left) and Localness Modeling (right). (1) In subfigure (a), we show a
partial mask attention with index ranging from 5 to 13 (representing tokens from ‘Jordin’ to ‘Black’ in the input
sequence), where the black dot denotes value −∞ and the white denotes 0. (2) Subfigures (b)-(d) show an example
of distribution changes in calculating attentions weights of token ‘declared’, where we convert G to the form of
distribution for better illustration.

rate coreference into QG model; Kim et al. (2019)
propose a keyword-net to help the model better
capture important information; Jia et al. (2020) in-
tegrate paraphrase knowledge into QG systems to
generate more human-like questions. Chen et al.
(2020) and Pan et al. (2020) try to capture text
structure via graph neural network for QG.

The attention mechanism has been widely uti-
lized to incorporate knowledge representation,
which is obtained by calculating attention over
knowledge representations. Multitask training is
also an alternative way to incorporate knowledge
(Kim et al., 2020; Jia et al., 2020).

In this paper, based on the pre-trained model
for QG, we further incorporate dependency rela-
tions and answer position, which can be regarded
as structure knowledge. Our task is more challeng-
ing since most of the previous works are based
on the Transformer only. In order not to increase
the computation consumption, we don’t use any
other sophisticated neural networks beyond the pre-
trained model itself.

3 Preliminaries

3.1 Self-Attention

Here we briefly introduce the encoder of Trans-
former architecture, on which our methods
will base. Given an input sequence x =
{x1, x2, · · · , xt}, the transformer encoder maps
these tokens into hidden representations. More
concretely, the l − 1-th layer hidden states are first
linearly transformed into query vectors q, key vec-
tors k and value vectors v by multiplying three

separate weights, and then obtain the l-th layer
hidden states via attention mechanism:

H l = Attn(q, k, v) (1)

Attn(q, k, v) = softmax(
scores√

d
)v (2)

scores = qkT (3)

where
√
d is the scaling factor.

3.2 Pre-trained Language Model: ProphetNet
We build our method based on the strong pre-
trained model ProphetNet (Qi et al., 2020), which
achieves outstanding results on QG tasks. Com-
pared to conventional pre-training models which
predict the next one token at each step, ProphetNet
tends to predict the next n tokens simultaneously
to prevent overfitting on local correlations:

p(yt|y<t, x), · · · , p(yt+n−1|y<t, x) =
Decoder(y<t, Henc) (4)

where Henc is the hidden state obtained by the
encoder. To achieve this, ProphetNet adopts a n-
stream self-attention mechanism to predict next n
continuous future tokens, with each stream repre-
senting a next i-th predicting.

4 Integrating Text Structure

Our work focuses on answer-aware QG task. For-
mally, denote the passage, question and answer as
P , Q and A respectively, the task is defined as:

Q∗ = argmax
Q

Pθ(Q|P,A) (5)
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Practically, we concatenate passage and answer by
format “A [SEP] P ” as the input of ProphetNet, to
generate Q∗ as output question. A diagram of our
method is illustrated in Figure 2.

4.1 Answer Localness Modeling
In order to enhance model’s capability in captur-
ing more local information around the answer and
enable the model to generate more answer-related
questions, we model localness as a preference bias
to regulate the original attention weight in encoder
end, which can be defined as:

Attn(q, k, v) = softmax(
scores+G√

d
)v (6)

where G ∈ RI×I is an alignment matrix, and I
refers to the length of input sequence. Each element
Gi,j represents an alignment preference of token
wi to token wj , which is calculated as:

Gi,j = −
(j − Pc)2

2σ2i
(7)

where Pc denotes the central position of answer
appearing in the input passage and σi denotes the
standard deviation, which is half of the window size
Di. Denote the start and end index of the answer
span as s and e, then Pc is calculated as:

Pc =
s+ e

2
(8)

Consequently, after softmax operation, G will
become a Gaussian distribution, indicating that the
tokens closer to the central position will get higher
attention weights.

The window size Di measures the major area
that token xi needs to align with. We set Di to be a
variable based on the index i rather than a constant
value, which we think will bring our model more
flexibility to adjust the concentration area accord-
ing to different token information. Following Yang
et al. (2018), we map query vectors intoDi through
a feed-forward neural network:

zi = UTd tanh(Wpqi) (9)

Di = I · sigmoid(zi) (10)

where Wp ∈ Rd×d, Ud ∈ Rd are learnable parame-
ters, and I is a scalar factor regulating Di to a real
value between 0 and the length of input sequence.

Thus, we can obtain hidden states of the input
sequence with strengthened localness information:

Hlocal = MultiHead(q, k, v,G) (11)

Figure 2(b)-(d) shows an example of answer lo-
calness modeling. When calculating the attention
weights of token ‘declared’, we first learn a Gaus-
sian distribution centered on the answer ‘Blake’.
The original attention distribution is then regular-
ized to form the final distribution, which not only
pays attention to token ‘winner’ but also to token
‘runner-up’ and ‘Blake’. As a result, the model is
guided to attend to the phrase ‘winner with runner-
up being Blake’.

4.2 Syntactic Mask Attention
In this module, we strengthen the syntactic struc-
ture of input sentence accessible in question gener-
ation process. The whole procedure for incorporat-
ing syntactic knowledge can be divided into three
steps: 1) extract appropriate syntactic relations; 2)
build syntactic mask and 3) apply syntactic mask to
guide the attention calculation. We will introduce
them respectively.

4.2.1 Extract Syntactic Relations
We extract dependency relations and explicitly in-
troduce them into the generation process. Due
to the huge time needed for parsing, we only se-
lect some key sentences to do syntactic parsing
rather than the whole passage. For every answer-
passage pairs, we select the sentence from the pas-
sage where answer spans are located as our key sen-
tence. If the answer spans do not appear completely
in any sentences (this is possible because the sen-
tence splitting toolkit is not perfect and sometimes
it will mistake punctuation for a terminator), we
will select the most similar sentence by computing
ROUGE score as an alternative.

Then we apply dependency parser to these se-
lected key sentences, and choose some major rela-
tions as the final dependency knowledge, including
pred, subj, nsubjpass, csubj, csubjpass, obj, iobj
and xcomp. The selection of dependency relations
is based on de Marneffe et al. (2014). We have also
tried some other relations, the analysis of which
is given in Section 6.2. The dependency relation
is presented in the form of triples, which can be
denoted as ε = {xi, xj , rk}, where xi and xj are
tokens from the input sequence, and rk denotes the
relation between them.

In our experiment, we utilize the Stanford NLP
toolkit 1 to do tokenization, sentence splitting and
dependency parsing. A more powerful and sophisti-
cated procedure to extract dependency triples might

1https://nlp.stanford.edu/software/
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capture the syntactic structure more accurately, and
we leave this to future work.

4.2.2 Syntactic Mask

Building syntactic mask is the key process in cal-
culating knowledge context vector. Based on the
extracted syntactic relation triples, we design a vis-
ible mask that prevents some tokens from seeing
other ones, which can be defined as below:

Mij =

{
0, xi ⊖ xj

−∞, xi ⊘ xj
(12)

where xi ⊖ xj means xi and xj are in a relation
triple, while xi ⊘ xj means they are not.

We display an example in Figure 2(a) to show
how we construct the syntactic mask from a
sentence. We construct the relation triples like
{‘Jordin’, ‘declared’, ‘nsubj’} through extracting
dependency relations and build syntactic mask to
ensure ‘Jordin’ and ‘declared’ could see each other
while blind to tokens outside the triples. And to-
kens not appearing in any triple, like ‘was’, ‘the’
and ‘being’, are not visible to each other.

4.2.3 Mask Attention

The process of mask attention is actually an exten-
sion to the original self-attention module in encoder
end, whose attention score is calculated as:

scores = qkT +M (13)

where M is the syntactic mask constructed above.
After the softmax function, the attention score

where Mij = −∞ will be 0, indicating that the
hidden state of xi will make no contribution to xj .
In this way, we build a syntactic context vector that
gathers information of tokens appearing in the ex-
tracted syntactic relations while discards unrelated
information, which can be a supplementary to the
original context vector. Consequently, we obtain
the knowledge context vector by:

Hk = MultiHead(q, k, v,M) (14)

Then the syntactic context vector will be added
to the original vector to form the final syntactic-
aware representation:

H̃ = Hlocal ⊕Hk (15)

4.3 Question Generation

After obtaining the encoder hidden states H̃ , we
pass them to the decoder and get the distribution
on vocabulary at each step (defined in Equation 4).
During the training stage, the loss is calculated as:

L = −
n−1∑

j=0

αj

(
T−j∑

t=1

log pθ(yt+j |y<t, x)
)

(16)

which can be viewed as the weighted sum of n
future token predicting loss. And during the in-
ference stage, we disable n-gram predicting and
generate a sequence with the highest likelihood:

Q = argmax
y

pθ(y1:t|x) (17)

5 Experimental Setup

5.1 Dataset

We conduct experiments on the widely-used read-
ing comprehension dataset SQuAD (Rajpurkar
et al., 2016). It consists of questions posed by
crowd workers on Wikipedia articles, and the an-
swer to every question is a span extracted from the
given passage. There exist different split sets on
SQuAD. Following the work of ProphetNet (Qi
et al., 2020), we do experiments on two splits: (1)
Du split (Du et al., 2017), which splits SQuAD
1.1 dataset into training, development and test sets,
consisting of 75,722, 10,570, 11,877 instances re-
spectively; (2) Zhao split (Zhao et al., 2018), which
uses the reversed dev-test setup as opposed to the
original setup. Following previous work for QG,
we adopt BLEU-4 (Papineni et al., 2002), Meteor
(Denkowski and Lavie, 2014) and Rouge-L (Lin,
2004) as evaluation metrics.

5.2 Training Details

We adopt most of the configurations in Prophet-
Net released by Microsoft group 2. However, due
to computation resource limitation, we reimple-
mented their codes with some different configura-
tions. We use one NVIDIA GeForce RTX 2080 Ti
to support fine-tune, and during the training stage
we truncate overlong input sentences to 512 tokens
3 and the batch size is set to 12. These might bring
some decrease in performance, and we take the new
results as our baseline for fair comparison. Inspired

2https://github.com/microsoft/ProphetNet
3Since ProphetNet only adopts input strings less than 512

tokens.
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Methods (conference-year) Du split Zhao split
BLEU-4 Meteor Rouge-L BLEU-4 Meteor Rouge-L

Unpre-trained

s2s (ACL-17) 12.28 16.62 39.75 - - -
CorefNQG (ACL-18) 15.16 19.12 - - - -

MP-GSN (EMNLP-18) - - - 16.38 20.25 44.48
SemQG (EMNLP-19) 18.37 22.65 46.68 20.76 24.20 48.91
RefNet (EMNLP-19) - - - 18.16 23.40 47.14

ParaphraseQG (ACL-20) 17.21 20.96 - - - -
EGSS (AAAI-21) 18.93 22.04 47.73 - - -

Pre-trained

ERINE-GENBASE (IJCAI-20) 22.28 25.13 50.58 23.52 25.61 51.45
CopyBert (ACL-20) 22.71 24.48 51.60 - - -

ProphetNet (EMNLP-20) 23.91 26.60 52.26 25.80 27.54 53.65
UniLM-v2 (ICML-20) 24.43 26.34 51.97 26.29 27.16 53.22

Our model 24.37 26.26 52.77 26.30 27.25 53.87

Table 1: Experimental results on SQuAD dataset comparing with previous work

by Yang et al. (2018), who show pre-trained mod-
els tend to capture localness information in shallow
layers while global in higher layers, we apply lo-
calness modeling in the first 4 encoder layers and
syntactic attention mask in all 12 encoder layers4.

5.3 Comparing Methods
There is a large number of work for QG on SQuAD
dataset. Our focus in this paper is to enhance pre-
trained models with text structure, so we mainly
compare our method with other pre-trained lan-
guage models. Also, we list some notable sequence-
to-sequence works for reference, which did experi-
ments on Du split or Zhao split.

The unpre-trained models for QG. s2s (Du
et al., 2017): an attention-based seq2seq frame-
work for QG. CorefNQG (Du and Cardie, 2018):
incorporating coreference knowledge into seq2seq
model. MP-GSN (Zhao et al., 2018): address-
ing the challenge of processing long text inputs.
SemQG (Zhang and Bansal, 2019): introducing
two semantic-enhanced rewards to regularize gen-
eration. RefNet (Nema et al., 2019): a two stage
model which creates an initial draft first and then
refine it. ParaphraseQG (Jia et al., 2020): incor-
porating paraphrase knowledge into question gen-
eration by back-translation. EGSS (Huang et al.,
2021): an entity guided question generation model.

The pre-trained models applied to QG.
ERNIE-GEN (Xiao et al., 2020): using multi-
granularity target sampling in pre-training and
span-by-span generation flow in predicting stage.
CopyBert (Varanasi et al., 2020): utilizing infor-
mation from self-attention modules of BERT in

4In fact, we also conducted experiments on different num-
ber of layers, and the results will be reported in our Github
repository.

generation. ProphetNet (Qi et al., 2020): our base-
line model, as described before. UniLM-v2 (Bao
et al., 2020): pre-trained of bi-directional language
modeling via auto-encoding and seq2seq genera-
tion via partially autoregressive modeling.

6 Results and Analysis

6.1 Main Results

The main experimental results are shown in Table
1. For QG on SQuAD dataset, there exists a signif-
icant performance gap between the unpre-trained
and pre-trained models. The best pre-trained model,
UniLM-v2, achieves a 24.43 BLEU-4 on Du split,
which receives 5.5 point improvement compared
with the best seq2seq model EGSS. The Prophet-
Net model achieves a competitive BLEU-4 with
UniLM-v2, and yields the best result on Meteor
and Rouge-L among existing pre-trained models.

Considering the excellent performance of these
pre-trained models, it’s exciting to see that our pro-
posed method with syntactic mask and localness
modeling brings further improvement over the ba-
sic ProphetNet model, and obtains state-of-the-art
results on Zhao split and a close performance with
UniLM-v2 on Du split. It’s worth noting that our
model yields best results in terms of Rouge-L on
both datasets among all existing works.

6.2 Ablation Study & Analysis

Ablation Study We conduct experiments by ap-
plying syntactic mask and localness modeling sep-
arately to study their effects on the baseline model.
There is a tiny decrease between the result reported
by Qi et al. (2020) and our reproduced result on
some metrics, which we think is reasonable since
we adopt some different configurations foremen-

6569



Method Du split Zhao split
BLEU-4 Meteor Rouge-L BLEU-4 Meteor Rouge-L

ProphetNet* 23.91 25.95 52.28 25.71 26.99 53.63
ProphetNet + Syntactic Mask 24.22 26.24 52.60 26.20 27.01 53.74
ProphetNet + Localness 24.11 26.01 52.52 25.88 27.28 53.62
ProphetNet + Syn. Mask + Localness 24.37 26.26 52.77 26.30 27.25 53.87

Table 2: Ablation study results by applying different modules on top of the pre-trained ProphetNet model. We report
the mean over 3 random seeds. *We re-implemented the ProphetNet released code2 and the results are a little lower
than the original paper. Underline represents the value is better than baseline with significance (p < 0.05).

tioned in Section 5.2. As illustrated in Table 2, both
components separately enhance the performance of
basic ProphetNet and obtain better scores on almost
all metrics on two data splits. The performance is
further improved when combing two modules to-
gether, with a 0.56 BLEU-4 increase on Du split
and 0.59 on Zhao split. It indicates that syntactic
relations and position information are from two
different feature subspace and are able to comple-
ment each other in enhancing model’s awareness
of text structure. And this combining improvement
is guaranteed by conducting significance test.

Analysis on Dependency Relations We conduct
experiments to investigate the effect of different de-
pendency relations. According to de Marneffe et al.
(2014), the dependency relations can be divided
into two categories: core arguments and non-core
arguments, and core arguments can be further di-
vided into nominal relations and clause relations.
Inspired by this, we adopt three strategies to select
dependency relations: 1) using all dependency re-
lations, which is equal to mask any other tokens
except for those in the key sentence; 2) using core
arguments, as in Section 4.2.1, which keeps the
stem of sentence and gets rid of attributive words;
3) only using nominal relations in core arguments,
which removes the clause relation of the stem and
thus is the totally plain trunk of the sentence. The
choices of core arguments are based on de Marn-
effe et al. (2014).

The experimental results are shown in Table 3.
All three strategies bring performance gain over the
basic ProphetNet, which validates the effectiveness
of our syntactic mask attention. Especially, strat-
egy 2) achieves the best results on both data splits,
which provides appropriate dependency knowledge.
In contrast, too much dependency relation incor-
poration may divert the sentence from its correct
meaning, which can be found in Strategy 1), and
the lack of dependency structure cannot produce a
marked effect, which Strategy 3) exemplifies.

Dependency Relations Du split Zhao split

ProphetNet 23.81 25.71
+ all relations 23.93 26.17
+ core arguments 24.22 26.20
+ core nominal relations 24.01 26.13

Table 3: Experimental results of different dependency
relations in the syntactic mask attention module.

Methods Du split Zhao split

ProphetNet 23.81 25.71
+ predicting center 23.77 25.72
+ answer center 24.11 25.88

Table 4: Experimental results of different center strategy
in the localness modeling module.

Analysis on Localness Modeling Further, we
conduct experiments on different methods to set
center position of Gaussian distribution in local-
ness modeling: (1) following Yang et al. (2018),
who predict the central position by applying a feed-
forward transformation to query vector

pi = UTp tanh(Wpqi) (18)

where Wp is a set of parameter to learn; (2) adopt
the position of answer as center, as Equation (8).

The experimental results are shown in Table 4.
Automatically predicting center position doesn’t
bring performance gain, while using answer center
gets better results on both data splits. We argue
that this is because mapping query vector to pre-
dict center will lead one token to align with other
tokens that are similar with it, which is not appli-
cable in our task. For answer-aware QG, we need
each token to pay enough attention to the context
around answer, so that the model will obtain better
representations with answer as guidance.

Analysis on ProphetNet One may notice the
contradiction between the goal of ProphetNet and
our methods: ProphetNet predicts the next several
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Base Ours ρ

Fluency

No 4.33% 4.67%
0.428

(3.8e-06)
Med. 10.33% 9.33%
Yes 85.33% 86%

Avg. 2.81 2.81

Relevancy

No 1.67% 1%
0.507

(2.4e-07)
Med. 14.33% 13.67%
Yes 84% 85.33%

Avg. 2.82 2.84

Answerability

No 4% 3%
0.456

(1.8e-06)
Med. 12% 10.67%
Yes 84% 86.33%

Avg. 2.80 2.83

Table 5: Human evaluation results on the generated
questions by ProphetNet (“Base” ) and our full model
(“Ours” ). Avg. represents the average score of 100
samples. The last column is the Spearman coefficients
with p-values in the parentheses.

tokens simutaneously to prevent overfitting on lo-
cal correlations, however, our methods enhance the
local syntactic structure in representing stage. Ac-
tually, they work on different parts of the pretrained
model. ProphetNet uses n-gram prediction strategy
in decoder end, while we enhance locality informa-
tion in encoder end. The enhanced representations
of input text, which guides the decoder to generate
tokens with fully considering local structure infor-
mation of the answer, can still benefit from n-gram
prediction strategy, since the model would dynami-
cally focus more on neighbour information when
previous tokens appearing in the selected structure
triples, while keep relatively low information when
not. Therefore, more than ProphetNet, our methods
should also contributes to other pretrained models.

6.3 Human Evaluation

In addition to automatic evaluation, we also eval-
uate the quality of generated questions by elicit-
ing human judgements. We randomly select 100
{passage, question, answer} samples generated by
ProphetNet baseline model and our full model, and
asked 3 college students to evaluate them. They are
required to annotate yes(3), no(1) or medium(2)
for each sample from the following aspects: (1) flu-
ency, whether the generated question is grammati-
cal and fluent; (2) relevancy, whether the question
is semantically relevant to the input context and (3)
answerability, whether the answer is valid to the
generated question based on the context.

The evaluation results are listed in Table 5. The

Passage: ...Meanwhile, a cargo train carrying 13 petrol
tanks derailed in Hui County, Gansu, and caught on fire
after the rail was distorted.
Answer: rail was distorted
Generated Questions:
Golden: why did the train catch fire?
Base: why did the cargo train derail in hui county?
Ours: what caused the cargo train to catch on fire?

Passage: ...A Japanese family with Malaysian citizenship
and their 5-year-old child who unfurled a Tibetan flag
were hit by a group of Chinese nationals with plastic air-
filled batons and heckled by a crowd of Chinese citizens
during the confrontation at Independence Square where
the relay began, and the Chinese group shouted: "Taiwan
and Tibet belong to China." Later during the day...
Answer: Taiwan and Tibet belong to China.
Generated Questions:
Golden: what did the chinese group yell?
Base: what did the chinese say to the japanese family?
Ours: what did the chinese yell at the japanese family?

Table 6: Two examples of generated questions, where
answers are highlighted in Italic font.

pre-trained model ProphetNet provides us a strong
baseline, where most of the generated questions are
satisfying. Our model performs better in relevancy
and answerability. We speculate this for our pro-
posed method help model capture the information
around answer and makes generated question more
concentrated to answer. We also reports the average
Spearman’s coefficients between the annotations,
which could guarantee the credibility of our human
evaluation results.

6.4 Case Study

To clearly show the output questions generated by
the basic ProphetNet model and our full model, we
list two examples in Table 6. In both examples,
the questions generated by our model are closer to
golden questions. Specially, in the first example,
both the baseline model and our model capture the
information that “rail was distorted” is the cause
to some event. But the event is “derail” in base
while “catch on fire” in ours. The latter is more
accurate because “rail was distorted” is the direct
cause of “catch on fire”, but the indirect cause of
“derail”. We think the enhanced ability of syntac-
tic information helps capture the sentence struc-
ture more accurately and thus find the direct rela-
tion. In the second example, both models capture
the information that “Taiwan and Tibet belong to
China” is an utterance said by a Chinese group, but
our model focuses more on the answer-surrounded
word “shouted”, leading to generate a more accu-
rate word “yell”.
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7 Conclusion

In this work, we enhance the ability of QG sys-
tems by incorporating text structure, including syn-
tactic dependency relations and answer position.
We strengthen the localness modeling via a learn-
able Gaussian bias with answer span as center, and
present a syntactic mask attention mechanism to
fuse structure information. Specifically, we obtain
the knowledge-aware context vector by adapting a
visible matrix, where each token is only visible to
its related token in the knowledge triple. Experi-
mental results on the widely-explored SQuAD date-
set demonstrate the effectiveness of our method.
This work is based on the pre-trained ProphetNet,
but our methods can be easily applied to other
Transformer-based pre-trained models. In future
work, we will validate and expand our method to
other NLP tasks, such as summarization, dialog
generation, machine reading comprehension, etc.
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Abstract
Question generation over knowledge bases
(KBQG) aims to generate natural questions
about a subgraph that can be answered by a
given answer entity. Existing KBQG models
still face two main challenges: (1) Most models
often focus on the most relevant part of the
answer entity, while neglecting the rest of the
subgraph. (2) There are a large number of
out-of-vocabulary (OOV) predicates in real-
world scenarios, which are hard to adapt
for most KBQG models. To address these
challenges, we propose LFKQG, a controlled
generation framework for Question Generation
over Knowledge Bases. (1) LFKQG employs
a simple controlled generation method to
generate the questions containing the critical
entities in the subgraph, ensuring the question
is relevant to the whole subgraph. (2) We
propose an optimization strategy called local
fine-tuning, which makes good use of the rich
information hidden in the pre-trained model to
improve the ability of the model to adapt the
OOV predicates. Extensive experiments show
that our method outperforms existing meth-
ods greatly on three widely-used benchmark
datasets SimpleQuestion, PathQuestions, and
WebQuestions .

1 Introduction

Question generation (QG) aims to endow machines
with the ability to ask relevant and to-the-point
questions for a given form of data such as text
(Du et al., 2017a; Song et al., 2018a), image (Li
et al., 2018), table (Bao et al., 2018) and knowledge
bases (KB) (Elsahar et al., 2018). KBQG aims
to generate natural language questions given a
subgraph in the KB, i.e. a set of connected
triples of the form <subject, predicate, object>.
KBQG is an effective approach to generating high-
quality QA pairs that can significantly address the
data scarcity issue for Knowledge Base Question
Answering (KBQA). In addition, KBQG can be
applied for educational purposes by producing

Figure 1: The examples of two main challenges in
KBQG where the questions are generated from the
subgraph and the red texts are the answer entity. Q1
only focus on the second triple but neglect the first.Q2
does not contain any semantic of discoverer or inventor,
which is an OOV predicatge.

practice assessments (Heilman and Smith, 2010)
and can help dialog systems have more engaging
conversations (Mostafazadeh et al., 2016).

Current KBQG systems follow an attention-
based sequence-to-sequence structure (Elsahar
et al., 2018; Kumar et al., 2019). To make use
of the rich structure information hidden in the
subgraph, (Chen et al., 2020) proposes the graph-
to-sequence framework. However, these models
face two main challenges: (1) Most models often
focus on the most relevant part of the answer entity,
while neglecting the rest of the subgraph (Bi et al.,
2020; Chen et al., 2020). (2) There are many out-of-
vocabulary (OOV) predicates in the real knowledge
bases, which are unseen at the training time. Most
KBQG models are hard to adapt to OOV predicates,
which makes these models difficult to use in real-
world scenarios (Elsahar et al., 2018). Figure 1
illustrates the examples of these two problems. Q1
only focuses on the second triple but neglects the
first. As for Q2, discoverer of inventor is an OOV
predicate, and the model is unable to handle this
type of predicate, so the Q2 does not contain any
semantic relating to it.
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To address these challenges, we propose
LFKQG, a controlled generation framework. (Sun
et al., 2018a; Fei et al., 2021) claim that the entity
words in the given input play a decisive role in
the semantics of the whole question. We can see
that Q1 only focuses on the second triple and
miss the critical entity Alice Betty Stern in the first
triple. Intuitively, all the critical entities should
appear in the generated questions to ensure the
generated questions contains the semantics of
the whole subgraph. To this end, we introduce
the controlled generation method to KBQG task.
We use flag tag (Wang et al., 2021), a simple
but effective lexical constraint for generation at
each decoding step, to achieve the controlled
generation. In detail, in decoding progressing,
each input token is provided with a flag tag that
indicates whether the constraint of this token has
been satisfied. It is a strong incentive for the model
to try to satisfy all constrains. Furthermore, the
fine-tuning method distorts the pre-trained features
for OOV samples, because the model over-fits
the features for training data while removing the
OOV features that were originally hidden in the
pre-trained models (Zhang et al., 2021; Kumar
et al., 2021). To address the OOV problem in
KBQG, we propose a novel optimization strategy
called local fine-tuning, which can retain the OOV
features in the pre-trained model.

Extensive experiments show that our LFKQG
model outperforms existing methods greatly on
three widely-used benchmark datasets Simple-
Question, PathQuestions, and WebQuestions. In
addition, we conduct experiments on OOV data,
and the results show that our local fine-tuning
greatly improves the performance in this challeng-
ing scenario.

Our main contributions are summarized as
follows:

1. We propose LFKQG, which employs a con-
trolled generation framework for KBQG to
make model generate questions relevant to
the whole subgraph. We are the first one to
introduce the controlled generation methods
to the KBQG task.

2. We propose a novel optimization strategy
called local fine-tuning to utilize the rich
information hidden in the pre-trained features
to address the OOV problem.

3. Experimental results show that our model

greatly improves the performance. The
experimental results on OOV data prove
that local fine-tuning is able to improve
the performance of a pre-trained generation
model on OOV data.

2 Related Work

2.1 Question Generation

Early works on QG (Mostow and Chen, 2009;
Heilman and Smith, 2010) focused on the rule-
based approaches that rely on heuristic rules or
hand-crafted templates, with low generalizability
and scalability. Recent works adopted the attention-
based sequence-to-sequence neural model for QG
tasks, taking answer sentence as input and output
the question (Du et al., 2017b), which proved to
be better than rule-based methods. To generate a
question for a given answer, (Sun et al., 2018a; Kim
et al., 2019; Song et al., 2018b) applied various
techniques to encode answer location information
into an annotation vector corresponding to the word
positions, thus allowing for better quality answer
focused questions.

Recently, there is an increasing interest in Ques-
tion Generation over Knowledge Bases (KBQG),
sequence-to-sequence neural framework with RNN
or Transformer have been applied to this task
and are end-to-end trainable (Serban et al., 2016;
Indurthi et al., 2017; Kumar et al., 2019; Chen et al.,
2020). However, these works suffer the semantic
drift problem (Zhang and Bansal, 2019). To solve
the problem, (Elsahar et al., 2018) introduces
a set of textual contexts paired through distant
supervision. (Bi et al., 2020) employs grammarical
information and introduce auxiliary information
to model. These works focus on introduce extra
knowledge information but do not exploit the rich
knowledge information hidden in the pre-trained
model. In this work, we design the local fine-tuning
method to exploit the rich information hidden in the
pre-trained model and solve semantic drift problem
from a controlled generation perspective.

2.2 Controlled Generation

Two different types of control can be applied
over generation models: soft control and hard
control. Soft control aims at directing the option
or the general topic of the generated text. In
contrast, hard control aims at ensuring that some
explicit constraints are met, e.g., specific words
are contained in the text. The soft control can
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Figure 2: The overall architecture of our LFKQG. We firstly predict the question word and input both triples and
question word to the controlled generator with flag tag to generate the questions.

also be achieved via hard control, i.e., text that
contains a set of words related to a certain topic
should arguably revolve around that topic (Ziegler
et al., 2019; Keskar et al., 2019). While hard
control of constrained generation, such as machine
translation, can be attained with grid beam search
methods (Hu et al., 2019; Post and Vilar, 2018),
which is impractical to use the same approach
for hard control of unconstrained generation.
Furthermore, recent work uses stochastic search
(Sha, 2020) or mention flag (Wang et al., 2021) to
achieve hard control.

3 Methodology

In this section, we formalize the question gen-
eration over knowledge bases (KBQG) task and
introduce our methodology. In particular, we
describe our controlled generation framework for
KBQG and show the overall architecture in Figure
2. Following this, we describe our local fine-tuning
method and we show it in Figure 4.

3.1 Problem Formulation

The input to the KBQG task is a subgraph from
the knowledge bases, which is a set of connected
triples X = {T1, .., Tn} where the n is the number
of triples and Ti = {Si, Pi, Oi} is a triple of the
form {subject, predicate, object}. The desired
goal of KBQG is to generate a question Y =
[y1, ..., yt] about entity S1 and the answer is entity
On conditioned on the whole subgraph.

3.2 Controlled Generation Framework

According to the existing research on question
generation (Sun et al., 2018b; Bi et al., 2020; Fei
et al., 2021), the entity word in the given input

and question word are vital for the semantics of
generated question. The critical entity and question
word must appear in the generated question to make
questions relevant to the whole subgraph. To this
end, we need a controlled generatorG(Y |X,W,E)
where X is the input sub-graph, W is the question
word, and E is the critical entity for the subgraph,
which must appear in the generated question. In
this section, we first describe the model to predict
question words and then describe a Transformer-
based controlled generator.

3.2.1 Question Word Predictor
It is essential to predict the correct question word to
control the question type and semantics (Zhou et al.,
2019). We count the number of different question
words on three KBQG datasets’ testing set, and
report the results in Table 1. We divide question
words into 9 categories, including 8 common
question words and an additional type "Others".

We use a BERT model (Devlin et al., 2018) to
predict the question word. We joint the triples
and answer entity with ‘[SEP]’ and input it into the
BERT model. The question word predictor predicts
the question word as follow:

H = BERT (X) (1)

hq = Hcls (2)

P (Qw) = softmax(Wqh
q) (3)

where X is the input token, Wq is a trainable
matrix, and we use the hidden state in CLS to
predict the question word and train the model as
follow:

Lq = −log(P (Qw)) (4)

where Lq is the loss of question word prediction
and Qw is the target question word.
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3.2.2 Transformer-based Controlled
Generator

We employ the flag tag (Wang et al., 2021) to
achieve controlled generator. In detail, at decoding
step t, the flag tag indicates whether each lexical
constraint has been satisfied up until this step.
Notably, the flag tag for each token at step t is
that:

flagti =





0 xi is not a constraint
1 xi does not appear in y1:t
2 xi appear in y1:t

where flagti is the flag tag for ith input token at
decoding step t, and y1:t is the generated tokens
thus far. The tokens with the values 1 or 2 of
the flag is a lexical constraint and the token with
0 is not constrained to appear in the question.
Obviously, the flag tag for any token can only
remain unchanged or updated to value 2.

We input the subgraph and question word into
the controlled generator, so we set the question
word and the critical entity S1 in triples as the
constrained tokens. As shown in Figure 3, the input
tokensX is thatX = [Barmy, Army, founded, Paul,
Burnham, [SEP], Which] and the flag tag at the
beginning is that flag0 = [1,1,0,0,0,0,1] because
the tokens are not constrained except key entity
Mendoza, and question word Which. At step 2, the
flags update to [1,1,0,0,0,0,2] because the token
Who has been generated but Barmy and Army have
not.

During the training of models, all the constraints
have been satisfied before stopping the generation.
This is a strong signal for the model to satisfy all
the constraints. In addition, the flag tag is simple
enough, which only adds the embedding with three
tokens.

To utilize the rich information in flag tag, we
employ a Transformer-based decoder as a generator
to incorporate it and construct a simple controlled
generation framework. We inject the flag tag into
the embedding vector and use this embedding
as the relative position embedding to bridge the
decoder and the encoder.

In particular, at decoding step t, we incorporate
the flag tag embedding by cross-attention in the
decoder. The conventional cross-attention module
is computed by:

Cross(Q,K, V ) = softmax(
Q⊤K√
dk

)V (5)

Figure 3: An example for updates of flag tag.

whereQ is the decoder states,K and V are encoder
states and dk is the dimensions of K vectors.

We introduce the flag tag F t ∈ R3∗lenX at step
t where lenX is the length of the input token, to
transformer decoder as relative position embedding
to compute the cross attention at step t as follows:

αtcross = softmax(Et) (6)

Et =
Qt(K +Rt)⊤√

d
(7)

Rt = Embedding(F t) (8)

where Qt is the states of decoder at step t and the
K is the outputs of encoder. And then the outputs
of cross module is:

Cross(Qt,K, V, F t) = αtcrossV (9)

where V is the outputs of encoder.
We train our controlled generation model by the

negative log likelihood for the target sequence y:

L(yt, ỹt) = −
1

T

T∑

t=1

logP (ỹt = yt) (10)

3.3 Local Fine-tuning Method
Some works on KBQG (Elsahar et al., 2018)
claim that there are many out-of-vocabulary (OOV)
predicates that are unseen at the training time in
the real knowledge bases, but most KBQG models
are hard to adapt. The OOV problem makes
most KBQG models difficult to use in real-world
scenarios.

Pre-trained generation model like BART (Lewis
et al., 2020) may be a good way to solve the OOV
problem. As we know, the pre-trained model has
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Question Word What Which Where Who Whose Why When How Others

SimpleQuestion 59.70 % 13.72 % 11.30 % 10.98 % 0.01 % 0.04 % 0.5 % 0.01 % 3.98 %
WebQuestion 52.35 % 13.20 % 5.85 % 11.60 % 0 % 0 % 0.7 % 0.2 % 16.10 %
PathQuestion 71.00 % 0.4 % 0.4 % 6.2 % 0 % 0.2 % 0 % 0.1 % 21.70 %

Table 1: Proportions of each type of questions on three datasets.

Figure 4: The describe of our local fine-tuning method.

seen a large number of predicates in the pre-training
stage. In a word, the information of most OOV
predicates is hidden in the pre-trained features.
However, the performance of the pre-trained model
on OOV data is still inferior. Recent works (Zhang
et al., 2021; Kumar et al., 2021) claim the standard
fine-tuning method has bad performance for few-
sample task. (Kumar et al., 2021) studys the OOV
samples in classifier tasks, and proves that the
standard fine-tune method distorts the pre-trained
features for OOV data, because the models over-fit
the features for training data while removing the
OOV features that were originally hidden in the
pre-trained models. Motivated by this, we propose
an optimization strategy for pre-trained generation
models called local fine-tuning to retain the OOV
features in the pre-trained models and address the
OOV problem. We show the two-stage of our local
fine-tuning method in Figure 4.

In detail, we first tune the parameters in the
decoder but freeze parameters in the encoder to
prompt the model to have the ability of KBQG
based on the original encoder with rich pre-trained
features as follow:

θdecoder = argmin
θdecoder

L(yt, ỹt) (11)

Then we tune all the model parameters with the
decoder adapt to the original encoder as follow:

θmodel = argmin
θmodel

L(yt, ỹt) (12)

Since the model with the original encoder fits the
KBQG task, the fine-tuning method only changes
the pre-trained features a bit.

Local fine-tuning is a simple but effective
method for the OOV problem on the KBQG task,
and we analyze it in section 4.7.

4 Experiment

In this section, we conduct extensive experiments
to evaluate the effectiveness of our proposed model
for the KBQG task.

4.1 Data and Metrics

We conduct experiment on three widely-used
benchmark datasets: SimpleQuestion (Bordes et al.,
2015), PathQuestions (Zhou et al., 2018), and
WebQuestions (Kumar et al., 2019).

SimpleQuestion consists of over 108,000 sam-
ples, and the entities are represented by their
Freebase IDs (Bollacker et al., 2008). Each
instance in SimpleQuestion contains a triple and
a natural language question where the answer is
the object entity in triple. Following (Bi et al.,
2020) we first map these Freebase IDs to Wikidata
IDs and transfer them to the natural language by
Wikidata (Vrandečić and Krötzsch, 2014), then we
extract the samples whose entity can not be found
in Wikidata. We randomly selected 70% of these
samples for training, 10% for validation, and 20%
for testing.

WebQuestions and PathQuestions use Freebase
as the underlying. The WebQuestions dataset
combines examples for WebQuestionsSp (Yih et al.,
2016) and ComplexWebQuestions (Talmor and
Berant, 2018) where both of them are KBQA
benchmarks that contain natural language ques-
tions, corresponding SPARQL queries, and answer
entities. The PathQuestions dataset is similar to
WebQuestions except that the KG subgraph in
PathQuestions is a path between two entities that
span two or three hops. (Kumar et al., 2019)
releases these two dataset. PathQuestion dataset
contains 9,793/1,000/1,000 and WebQuestions
contains 18,989/2,000/2,000 examples.

Following previous works (Elsahar et al., 2018;
Chen et al., 2020), we use BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
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Model SimpleQuestion WebQuestions PathQuestions
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

RNN-based (Indurthi et al., 2017) 19.98 28.43 46.02 - - - 25.78 33.17 50.78
Zero-shot (Elsahar et al., 2018) 22.71 30.39 51.07 - - - 29.44 38.12 56.94
MHQG (Kumar et al., 2019) 25.98 34.14 56.03 11.57 29.69 35.53 25.99 33.16 58.94
BiGraph2Seq (Chen et al., 2020) 31.12 39.23 62.14 29.45 30.96 55.45 61.48 44.57 77.72
T5 (Raffel et al., 2020) 35.32 40.16 64.97 28.78 30.55 55.12 58.95 44.72 76.58
IGND (Fei et al., 2021) 32.67 41.62 65.74 30.62 31.42 55.82 61.69 45.11 77.28

LFKQG 38.35 42.06 66.59 31.66 32.69 56.75 63.92 46.91 78.40

Table 2: The automatic evaluation for different models on three datasets.

ROUGE-L (Lin, 2004) as automatic evaluation
metrics. BLEU and METEOR were designed
for evaluating machine translation systems, and
ROUGE-L was developed for evaluating text
summarization systems.

4.2 Experimental settings

We use the BART-base model loaded from trans-
formers in huggingface library 1. The embedding
size and head hidden size of the flag tag are 64. We
use the AdamW (Loshchilov and Hutter, 2018) as
the optimizer and the learning rate is set to 2e-5.
We stop the training if the validation BLEU-4 score
stops improving for 8 epochs. We clip the gradient
at length 10. The batch size is 64 and the beam
search width 5. All hyperparameters are tuned on
the development set.

4.3 Baselines

We compare our method with the following
baseline models.

RNN-based: a RNN-based question generation
model to generate natural language question-
answer pairs from a knowledge graph (Indurthi
et al., 2017).

Zero-Shot: a zero-shot KBQG model for OOV
predicates and entity types (Elsahar et al., 2018).

MHQG: an end-to-end neural network-based
method for automatic generation of complex multi-
hop questions over knowledge graphs (Kumar et al.,
2019).

BiGraph2Seq: a novel bidirectional Graph2Seq
model to generate questions from a KB subgraph
and target answers (Chen et al., 2020).

T5: A strong pre-trained language model that is
a unified framework that converts every language
problem into a text-to-text format (Raffel et al.,
2020).

IGND: A QG model that propose a novel
iterative graph-based decoder to use the rich

1huggingface.co/transformers

Model Syntactic Complexity Relevance

T5 4.23 3.26 3.14
BiGraph2Seq 3.61 3.56 3.47
IGND 3.72 3.65 3.52
LFKQG 4.31 3.81 3.96

Ground Truth 4.89 4.92 4.87

Table 3: The human evaluation results.

structure information hidden in the text (Fei et al.,
2021).

4.4 Main Results

The results of the automatic evaluation are shown in
Table 2. We compare our proposed models against
other state-of-the-art methods on SimpleQuestion,
WebQuestions, and PathQuestions test sets. We can
see that our models outperform all QG baselines by
a large margin on all benchmarks, which verifies
the effectiveness of our model. Our model achieves
the state-of-the-art on three benchmarks. Not only
in BLEU-4, but our model also achieves the best
performance and shows significant improvement in
all metrics.

4.5 Human Evaluation

Metrics for automatic evaluation based on n-grams
may not truly reflect the quality of generated
questions. Hence, we further randomly sample 300
examples in the test set of SimpleQuestion dataset
for human evaluations.

Generated questions are rated in the range 1-5
based on whether they are syntactically correct,
complexity, and relevant to the given sub-graph.
Following (Chen et al., 2020), we ask 5 human
evaluators to give feedback on the quality of
questions generated by different models. For each
sample, given a sub-graph, target answers, and
model output, we ask the evaluators to rate the
quality of the generated questions to answer the
following three questions: 1) is this generated
question syntactically correct? 2) is this generated
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Model BLEU-4

LFKQG 38.35
LFKQG w/o controlled decoder 35.19
LFKQG w/o local fine-tuning method 37.29
LFKQG w/o fine-tuning all the model parameters 37.64
LFKQG w/o controlled decoder + local fine-tuning 34.21

Table 4: The ablation test results on SimpleQuestion
dataset.

question need all the information in the subgraph to
answer? And 3) is this generated question relevant
to the sub-graph and target answers? The rating
scale is from 1 to 5 to measure the quality of
questions, and a higher score means better quality.)
We average the scores from raters on each question
and report the performance of Ground-truth, IGND,
T5, BiGraph2Seq, and our model. Workers were
unaware of the identity of the models in advance.
We show the results in Table 3.

We can see that pre-trained model T5 has much
better than BiGraph2Seq and IGND syntactically.
But Bigraph2Seq and IGND employ a graph
network to use the rich structure information
hidden in the subgraph, so they can understand the
input sub-graph better and generate the questions
with the higher score in relevance and complexity.
Our controlled generation framework with local
fine-tuning achieves the best performances in all
aspects. Our model guarantees that the critical
entity and correct question words appear in the
questions, significantly improving relevance and
complexity performance. Local fine-tuning help
the model understand input better and improve
relevance performance.

Model BLEU-4

BART with fine-tuning 20.12
BART only fine-tuning decoder 20.51
BART with local fine-tuning 22.29

LFKQG with fine-tuning 21.65
LFKQG Generator only fine-tuning decoder 22.17
LFKQG with local fine-tuning 24.62

Table 5: The results of different optimization strategy
for OOV samples.

Model Question Word Accuracy Key Entity Converage Percentage

BART 61.34% 67.92%
LFKQG 74.61% 81.74%

Table 6: Experiments of the question word accuracy and
key entity converage percentage.

4.6 Ablation Study

To further evaluate and investigate the performance
of different components and strategies in our
model, we perform the ablation study in the
SimpleQuestion test set and show the results in
Table 4.

LFKQG w/o controlled decoder The model
removes the controlled decoder and employs the
standard BART model with the local fine-tuning
method.

LFKQG w/o local fine-tuning method We fine-
tune all parameters in our model with a controlled
decoder rather than two-stage local fine-tuning.

LFKQG w/o fine-tuning all the model pa-
rameters We only fine-tune the parameters in the
decoder but freeze parameters in the encoder.

LFKQG w/o controlled decoder + local fine-
tuning The model removes the controlled decoder
and local fine-tuning method.

Firstly, there is a huge gap between LFKQG
and LFKQG w/o controlled decoder + local
fine-tuning, demonstrating that our controlled
generation framework with the local fine-tuning
method plays an important role. Comparing
LFKQG and LFKQG w/o controlled decoder, we
find that the controlled decoder is the critical
module in our model.

Secondly, LFKQG is higher than LFKQG w/o
local fine-tuning method 1.06 of BLEU-4 points.
We can find that the local fine-tuning method
remain the OOV features hidden in the pre-trained
models and improves OOV samples’ performance.

Thirdly, LFKQG w/o fine-tuning all the model
parameters is lower than our model, only 0.71 of
BLEU-4, and it is even higher than LFKQG w/o
local fine-tuning method. This exciting comparison
shows the pre-trained features in the encoder
without fine-tuning are good enough for KBQG,
and the fine-tuning is not the best optimization
strategy for KBQG.

4.7 Analysis for Local Fine-tuning Method

In this section, we analyze the effectiveness of the
local fine-tuning Method for OOV samples. At
first we mimic the real world to construct the OOV
dataset based on the annotated dataset. In detail,
we extract the samples whose predicates are never
seen in the training set from the SimpleQuestion
testing set. Then we conduct some experiments to
evaluate the performance of different optimization
strategies on the OOV dataset. We show the results
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Input: <I Saw the Light, lyrics by, Hank Williams>
Gold: Who was the lyricist from I Saw the Light?
Baseline: Who wrote I Saw the Light ?
LFKQG: Who is the lyricist of I Saw the Light?

Input: <Mendoza, contains administrative territorial entity, Lavalle Department>
Gold: Which location is the administrative child of Mendoza province ?
Baseline: What is the Mendoza’s territorial entity?
LFKQG: Which location is the administrative of Mendoza province ?

Input: <Alice Betty Stern, children, Otto Frank>, <Otto Frank, religion, jew>
Gold: What type of religion does Alice Betty Stern’s heir have?
Baseline: What religion does Otto Frank’s children have ?
LFKQG: What religion does Alice Betty Stern’s child have?

Table 7: Case study of three examples from SimpleQestion and PathQuestions test set. We indicate the key entities
by blue, the OOD predicates by cyan, and the answer entity by red.

of two models, our controlled generator and BART-
base model (Lewis et al., 2020), with different
optimization strategies in Table 5.

We can see that the local fine-tuning method
improves the performance of OOV on both two
models significantly. In addition, compared to the
models with fine-tuning, the models only tuning
decoder also obtain a higher BLEU-4 score for
OOV. We think the results prove the phenomenon,
fine-tuning method distorts the pre-trained features
that happened in the classifier task, also appear in
the KBQG task. The results also show our local
fine-tuning method retains the OOV features in the
pre-trained models to improve the performance of
OOV.

4.8 Analysis for Controlled Generator

We conduct some experiments to analyze the
controlled generator on SimpleQuestion dataset
in this section. We evaluate different models in
terms of question word accuracy. This metric
measures the ratio of the generated questions that
share the same beginning word with the references
which begin with a question word Similarly, we
evaluate the critical entity coverage percentage,
which measures the ratio of the critical entity S1,
we describe in section 3.1, appears in the generated
questions. The two metrics can show the ability of
controlled generator, and we report the results in
Table 6. We can find that our model’s two metrics
are much higher than other models. This result
shows that our controlled generator improves the
control of the model generation process.

4.9 Case Study

To intuitively show the generation quality of our
model, we provided some generated cases in Table

7. Our model can generate high-quality texts that
describe the knowledge graph more completely and
faithfully.

It is clearly shown the three questions generated
by the baseline model face the two main challenges
for KBQG. In contrast, our model generates the
questions without these problems. These three
examples show our model can 1) retain the pre-
trained features to handle the OOV data as shown
in the first example and second example, 2) predict
the correct question word and make it appear in
the question to control the type of question as
shown in the second example, 3) make the critical
entity appear in the question relevant to the whole
subgraph as shown in the third example.

5 Conclusion

The KBQG task is challenging and worthy of
exploration. To address the two main challenges
of KBQG, we propose LFKQG, including the con-
trolled generation framework and local fine-tuning
method. The controlled generation framework
makes the given question word, and critical entity
in the subgraph appear in the question to control
the semantic and the type of question. The local
fine-tuning method can retain the OOV features
hidden in the pre-trained models. In addition, we
find that the phenomenon that fine-tuning method
distorts the pre-trained features also appears in the
KBQG task. It may be an exciting way to study the
pre-trained generation models.
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Abstract

The spread of fake news can have devastating
ramifications, and recent advancements to neu-
ral fake news generators have made it challeng-
ing to understand how misinformation gener-
ated by these models may best be confronted.
We conduct a feature-based study to gain an
interpretative understanding of the linguistic
attributes that neural fake news generators may
most successfully exploit. When comparing
models trained on subsets of our features and
confronting the models with increasingly ad-
vanced neural fake news, we find that stylistic
features may be the most robust. We discuss
our findings, subsequent analyses, and broader
implications in the pages within.

1 Introduction

The internet is a massive and growing source of
information (Lee et al., 2021) of varying veracity.
The spread of misinformation has been identified as
a global risk, with fake information being observed
to diffuse faster, farther, deeper, and more broadly
than the truth. Studies have found that falsehood is
seventy percent more likely to be shared online than
the truth (Vosoughi et al., 2018), and most social
media platforms either do not filter fake news or do
it poorly (Wardle and Singerman, 2021). Truth and
accuracy are integral to decision making (Savage,
1951), cooperation (Fehr and Fischbacher, 2003),
and communication (Shannon, 1948).

Across numerous modern events (Mendoza et al.,
2010; Gupta et al., 2013) as well as historically
(Burkhardt, 2017), people have been manipulated
by the spread of false news. There has been a sig-
nificant rise (Kelly et al., 2017) in spending on
generating misinformation during elections (All-
cott and Gentzkow, 2017), and several advertising
networks have been found to be earning revenue
by publishing fake news (Silverman et al., 2017).
Health-related misinformation holds an immediate

∗Authors contributed equally.

danger to the public (Chou et al., 2018). Misinfor-
mation about vaccines caused a decline in intent to
take the COVID-19 vaccine by 6.4% in September
2020 (Loomba et al., 2021), and false information
by anti-vaxxers on social media fueled a tripling
in measles cases in the United Kingdom (Sheridan,
2019). In the Democratic Republic of Congo, it
was found that “nearly half of respondents believed
that Ebola didn’t exist or was invented to destabi-
lize the region or to make money” (York, 2019).

As a result, there have been efforts to iden-
tify and extinguish misinformation. Manual fact
checking is time-consuming and often comes too
late—over 50% of viral social media claims happen
within the first ten minutes of being posted (Shaar
et al., 2020), making automated detection more
appealing. Nonetheless, automated models for de-
tecting misinformation are imperfect, and their mis-
takes may give rise to devastating outcomes. Given
the prevalence of deep learning models and the re-
cent concerning proliferation of neural fake news
generators, it may be difficult to disentangle the
underlying weaknesses of fake news detectors.

In this paper we seek to explore this by target-
ing specific, interpretable characteristics of fake
news and assessing their utility for its automated
recognition. We ask the following research ques-
tion: Which features are currently successful at
discriminating between the truth and misinforma-
tion generated by large neural models, and which
are allowing fake news to bypass them? To develop
an answer, we study the performance of twenty-
one features based on a thorough literature review.
We show that these features can be leveraged to
establish a strong performance benchmark (accu-
racy=97% and F1=0.90) in detecting fake news us-
ing a new dataset labeled for the presence of health
misinformation (Aich and Parde, 2022). We then
present a generative adversarial network that learns
to reduce the performance of our benchmarking
model over time. Finally, we study the stability
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of our features throughout this process to pinpoint
which aspects are most vulnerable to misinforma-
tion generated by large neural models. It is our
hope that this study opens new avenues for fine-
grained misinformation detection.

2 Background

Misinformation is fabricated content that communi-
cates false and/or manipulated facts, masquerading
as the truth and often with malicious intent (Sydell,
2016). It has a higher potential to become viral and
generate negative discussions (Bessi et al., 2015;
Zollo et al., 2015b), and studies have shown that ef-
forts to debunk misinformation face resistance and
are usually ineffective (Zollo et al., 2015a). Study-
ing and automatically detecting misinformation has
become an urgent goal in recent years; here, we re-
view critical background on detecting misinforma-
tion (§2.1) and analyzing its characteristics (§2.2).
We also examine relevant misinformation datasets
(§2.3) for conducting these studies.

2.1 Misinformation Detection

Current efforts to tackle misinformation have been
varied. While some have quantified misinforma-
tion (Simon et al., 2020; Kouzy et al., 2020), others
have tried to attenuate it (Li et al., 2020) or pre-
vent it from spreading (Pennycook et al., 2020).
Both feature-based (Bangyal et al., 2021) and deep
learning models have been studied (Antypas et al.,
2021), achieving up to 90% accuracy (Rubin et al.,
2016). Content-based approaches rely on lexical
features, examining the way that misinformation
is presented verbally or in writing (Antypas et al.,
2021; Medina Serrano et al., 2020; Dharawat et al.,
2020; Volkova et al., 2017; Wei and Wan, 2017;
Wang, 2017; Rubin et al., 2016; Potthast et al.,
2018; Rashkin et al., 2017; Petroni et al., 2019).
Fact-based approaches examine misinformation
in the context of external reliable sources (Wang,
2017; Ciampaglia et al., 2015; Etzioni et al., 2008;
Popat et al., 2018; Wu et al., 2014; Nie et al., 2019;
Thorne et al., 2018) such as websites (Lumezanu
et al., 2012; Li et al., 2015; Shaar et al., 2020) or
knowledge bases or information tables (Shaar et al.,
2020; Mayank et al., 2021). Finally, social data-
based approaches leverage information from social
networks and other behavioral markers to aid in
content verification (McQuillan et al., 2020; Tschi-
atschek et al., 2018; Mendoza et al., 2010; Long
et al., 2017; Kirilin and Strube, 2018; Kwon et al.,

2013; Ma et al., 2018; Derczynski et al., 2017; Li
et al., 2019; Gorrell et al., 2019; Ma et al., 2019,
2016; Castillo et al., 2011; Canini et al., 2011).

Our work takes a content-based approach, draw-
ing upon prior work investigating misinformation
through the lenses of vocabulary (Castillo et al.,
2011) and style (Antypas et al., 2021; Lee et al.,
2021; Horne and Adali, 2017). Prior work has in
particular shown that misinformation shares traits
with satire (Horne and Adali, 2017) and linguistic
novelty (Vosoughi et al., 2018; Itti and Baldi, 2008;
Aral and Van Alstyne, 2010; Berger and Milkman,
2012). We seek to encode promising linguistic
attributes in our feature set.

2.2 Misinformation Features
Numerous linguistic features have been studied for
misinformation detection. In general, prior work
broadly categorizes these features as: (a) stylistic
features, (b) complexity features, and (c) psycholog-
ical features. Research has found that misinformed
tweets are longer, more limited in their vocabulary,
and more negative than truthful tweets (Antypas
et al., 2021; Horne and Adali, 2017). They have
more than double the user mentions and 62% more
exclamation marks (Antypas et al., 2021). Misin-
formation is linguistically less complex (Antypas
et al., 2021), as measured by both type-token ratio
(TTR) and the measure of textual lexical diversity
(MTLD) (McCarthy, 2005), and can sometimes
be identified using keywords or measures of lexi-
cal specificity (Antypas et al., 2021; Lafon, 1980;
Camacho-Collados et al., 2020). Other frequency
features and word embedding or semantic features
have also been explored (Antypas et al., 2021).

Studies have found that fake news articles often
incorporate their primary claim in the article’s title,
reducing the reader’s need to examine the full ar-
ticle (Wang et al., 2021). While real news articles
are longer, fake news titles are longer. Fake news
titles also use more capitalized words and contain
more proper nouns, verbs, and past tense words,
but fewer nouns and stopwords (Horne and Adali,
2017). Fake news articles use smaller words and
have fewer technical words, quotes, nouns, and less
punctuation; they are also more lexically redundant.
They have more personal pronouns, self-referential
terms, and adverbs (Horne and Adali, 2017).

2.3 Misinformation Datasets
Building misinformation corpora is a challenging
and time consuming endeavor (Helmstetter and
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Paulheim, 2018). Content shared by fact-checking
platforms offers one avenue for creating these
datasets (Shaar et al., 2020), and social media plat-
forms are another popular resource (Preece et al.,
2017). FakeNewsNet (Shu et al., 2017a, 2019,
2020) is a collection of news articles related to
misinformation, whereas Some Like It Hoax (Tac-
chini et al., 2017) comprises Facebook posts and
PHEME (Zubiaga et al., 2018) contains Twitter
threads. Other datasets include Liar Liar (Wang,
2017) consisting of 12.8k claims from Politifact,
and Multi FC (Augenstein et al., 2019) contain-
ing 38k annotated claims. Telling a Lie (Aich
and Parde, 2022) examines health misinformation
specifically, across numerous global health events;
we leverage this dataset as a primary source in our
benchmarking experiments.

2.4 Generative Adversarial Networks in NLP

Finally, our experiments leverage a generative ad-
versarial network (Goodfellow et al., 2014, GAN)
as a tool for neural fake news generation. GANs
have been used in computer vision extensively
(Pang et al., 2021; Arjovsky et al., 2017; Mao et al.,
2016) to learn better image representations (Pang
et al., 2021; Radford et al., 2016; Zhang et al., 2016;
Zhao et al., 2020; Ledig et al., 2017). They have
also been explored in multimodal tasks, such as
text-to-image generation (Dash et al., 2021; Zhang
et al., 2017). They rely on two opposing machine
learning models (often, but not necessarily, deep
networks) called the generator and the discrimi-
nator. While the former aims to create data (e.g.,
images, videos, or text) that effectively fools the
discriminator, the latter tries to effectively distin-
guish real data from data that it receives from the
generator (Singh et al., 2020).

Although the use of GANs in NLP has been
limited (Wang et al., 2017; Hossam et al., 2021;
Guo et al., 2018; Kang et al., 2018), large scale
generative models have been found to produce re-
alistic text using long short-term memory (LSTM)
models (Lin et al., 2020; Mou and Vechtomova,
2020; Islam et al., 2019; Peng et al., 2019) and
more recently using Transformers (Radford et al.,
2019). Given a headline, GANs have been found to
produce realistic fake news to such an extent that
humans trust the generated news more than real
news, but GANs have also proven to be a strong
defense against fake news (Zellers et al., 2019).

3 Methods

Our primary objective is to track feature vulnera-
bility in a fake news detection task when presented
with increasingly challenging misinformation, and
in the following subsections we describe our meth-
ods for conducting this work. We provide details
regarding our selected data (§3.1), implemented
features (§3.2), and model architecture (§3.3).

3.1 Data
We selected three datasets for use in this study. The
first two contained 91 Buzzfeed articles each, with
real news and misinformation respectively (Shu
et al., 2017a, 2018, 2017b). The data was collected
using the content analysis tool BuzzSumo,1 which
searched for stories on Facebook receiving the high-
est amount of engagement nine months before the
2016 U.S. presidential election. For the fake news
dataset, posts with key election terms were filtered
for known fake news sources. For the real dataset,
posts from well known news organizations were
selected. Articles in the datasets were sequentially
numbered from 0 to 90.

The third dataset, Telling a Lie (Aich and Parde,
2022), contains 2.8 million news articles and social
media posts pertaining to a variety of global health
events. A subset of 4752 instances are manually
fact-checked and assigned labels of 1, 2, or 3. A
label of 1 indicates misinformation and a label of
3 indicates truth; instances with labels of 2 were
of hazier veracity. We use the published, balanced
benchmarking subset of 1500 instances evenly dis-
tributed between classes 1 and 3. Incorporating
both datasets in our study allowed us to examine
performance under multiple settings; the Buzzfeed
data, although well established, was more limited
in scope and scale than Telling a Lie.

3.2 Features
We implemented feature extractors for twenty-one
features as outlined in Table 1. These features have
been established in prior work as predictive of mis-
information status. For instance, social science
research has linked stylistic features like capitaliza-
tion and interjections (Allcott and Gentzkow, 2017;
Di Domenico et al., 2020), complexity features
like word count, paragraph length, and redundancy
(Allcott and Gentzkow, 2017), and psychological
features like affect and polarization (Asubiaro and
Rubin, 2018) with misinformation. We categorize

1https://buzzsumo.com
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Feature Description

Stylistic Features
# Quotes Frequency of quotation marks
# Punctuation Frequency of punctuation
# Punctuation Types Number of unique forms of punctuation
# Exclamations Frequency of ! characters
# Stopwords Frequency of stopwords, using NLTK’s stopwords list

# Camel-Case
Frequency of words beginning with an uppercase character followed by ≥ 1
lowercase characters

# Negations Frequency of no, never, or not
# Proper Nouns Frequency of POS tags NNP and NNPS
# User Mentions Frequency of @
# Hashtags Frequency of #
# Misspelled Words Frequency of words not considered valid by PyEnchant
# Out of Vocabulary Frequency of words not in the SentiWordNet dictionary
# Nouns Frequency of POS tags NNP, NNPS, NN, and NNS
# Past Tense Words Frequency of POS tags VBD and VBN
# Verbs Frequency of POS tags VB, VBD, VBG, VBN, VBP, and VBZ
# Interrogative Words Frequency of POS tags WRB, WDT, and WP

Complexity Features
Word Count Total number of words
Mean Word Length Average number of characters per word
TTR Ratio of unique vocabulary words to overall word count

MTLD
Measure of TTR for increasingly longer text segments (McCarthy and
Jarvis, 2010)

Psychological Features
Sentiment Score Summed SentiWordNet scores for all available vocabulary words

Table 1: Features used for our experiments.

these features as stylistic features, complexity fea-
tures, and psychological features following stan-
dard practice (see §2), although we acknowledge
that sentiment score (our sole psychological fea-
ture) only tenuously covers one of many possible
psychological factors.

Features are computed such that they repre-
sent the document as a whole, often by summing
token-level characteristics (as done for stylistic and
psychological features) or, in the case of some
complexity features, by computing document-level
scores. Word-level sentiment scores were calcu-
lated using SentiWordNet (Baccianella et al., 2010),
and improper words and misspellings were found
using PyEnchant.2 Out-of-vocabulary words were
considered those that did not exist in the SentiWord-
Net library, and NLTK’s default part-of-speech

2https://pyenchant.github.io/pyenchan
t/index.html

(POS) model was used for POS tagging. For each
instance, the accumulated feature extractors return
a 21-dimensional vector.

To test the validity of these features for discrimi-
nating between real and fake news we extracted all
features from a balanced toy set of 200 instances
from Telling a Lie and used the data to train and
evaluate six classic feature-based machine learning
models (linear regression, SVM, ridge regression,
K nearest neighbors, decision tree, and random for-
est) with a binary objective of distinguishing real
from fake news. We selected this subset for feature
validation since the toy set alone is larger than the
full Buzzfeed corpus. Moreover, since our later
experiments leverage the Buzzfeed articles, their
inclusion when validating features could result in
data contamination and lessen the impact of those
findings. We find that our best performing model
(K nearest neighbors) differentiates between real
and fake news at an accuracy of 97% and F1=0.9,
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Classifier Accuracy F1

Linear Regression 0.94 0.88
SVM 0.38 0.69
Ridge Regression 0.70 0.68
K Nearest Neighbors 0.97 0.90
Decision Tree 0.59 0.52
Random Forest 0.71 0.68

Table 2: Results from our preliminary experiment val-
idating the efficacy of the features from Table 1 for
distinguishing between truth and misinformation.

as shown in Table 2. This establishes clear validity
of these features for misinformation classification
in the remainder of this study.

3.3 Model Architecture

To generate data to facilitate our feature-based anal-
ysis of neural fake news, we developed a GAN
following success in recent work (Zellers et al.,
2019). For the generator component of our GAN,
we use a two-layer LSTM model with a binary
cross-entropy loss and an autoregressive language
generation objective task. LSTMs have proven to
be strong text generators in a variety of prior tasks
(Schmidt, 2019; Santhanam, 2020; Xuyuan et al.,
2021). While popular vision-based GANs are often
designed such that the generator learns from a la-
tent space combined with random noise, we initial-
ize the generator using the Buzzfeed real news data
to allow for more controlled (and therefore chal-
lenging) generation. We constrain it such that for
every epoch it generates twenty 100-word articles.
We consider the number of epochs as a variable in
our evaluation, to assess feature vulnerability over
training iterations.

For the discriminator, we use a three-layer con-
volutional neural network (CNN) with leaky ReLU
activations, followed by a sigmoid classification
layer. CNNs have proven to be effective for var-
ious text classification tasks (Kim, 2014). Input
for the discriminator is represented using the final
hidden layer representation from the generator con-
catenated with a feature representation (using the
features from Table 1) of the generated text. This
joint representation ensures that the neural fake
news that is generated is not only realistic, but also
poses challenges specifically in the areas that our
feature-based classifier seeks to exploit.

Twenty randomly selected articles from the Buz-
zfeed real news dataset with the label 1 (signifying

real) along with the generated articles with the label
0 (signifying fake) are used to calculate a binary
cross-entropy loss for the discriminator. Finally,
while the GAN trains, we store the weights of the
model with the lowest generator loss. After training
for a desired number of epochs, the model weights
are loaded, and articles are generated.

4 Evaluation

4.1 Experimental Setup
Since our objective is to measure feature vulnera-
bility against increasingly challenging misinforma-
tion, we analyze the performance of a feature-based
misinformation classifier when it is presented with
misinformation generated by the GAN described
in §3.3 at varying numbers of training epochs.
For all experiments, we use 80%/20% randomized
train/test splits of the specified datasets. Following
our findings in §3.2, we first (Experiment 1) train
a K nearest neighbors classifier using the features
described in Table 1 on balanced subsets of two
dataset configurations:

• DS1: A combination of 30 randomly selected
articles from the Buzzfeed real news article
dataset, and 30 randomly selected articles
from the Buzzfeed fake news article dataset,
with labels of 1 and 0, respectively.

• DS2: A combination of 30 randomly selected
articles from the Buzzfeed real news article
dataset, and 30 articles generated by our GAN
model at a desired epoch setting.

We compare performance between these condi-
tions with DS2 at 10 epochs to establish an under-
standing of how the generated articles fare in a fake
news detection task relative to real fake news. The
remainder of our experiments consider only DS2.
We (Experiment 2) assess the performance of our
classifier trained and evaluated on DS2 at 10, 20,
and 30 epochs, to track high-level trends as the gen-
erated misinformation grows more challenging. Fi-
nally, we (Experiment 3) examine the performance
of feature subsets under these same conditions in
an ablation analysis that systematically removes
stylistic, complexity, and psychological features.
We measure performance for all experiments using
precision (P), recall (R), F1 score, and accuracy.

4.2 Results
We present the results of Experiment 1 in Table 3.
We observe that our classifier achieves substantially
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Dataset P R F1 Accuracy

DS1 0.29 0.67 0.4 0.5
DS2 0.9 0.9 0.9 0.97

Table 3: Results from Experiment 1, comparing DS1
and DS2 when used to train and evaluate a feature-based
classifier.

Epochs P R F1 Accuracy

10 0.9 0.9 0.9 0.97
20 0.83 0.87 0.85 0.92
30 0.71 0.79 0.74 0.83

Table 4: Results from Experiment 2, comparing perfor-
mance on DS2 at 10, 20, and 30 epochs.

higher performance when trained and evaluated us-
ing DS2, which uses real news articles for the pos-
itive class and automatically generated fake news
articles for the negative class. In particular, the
classifier achieves a precision of 0.9 when trained
and evaluated using DS2 relative to a precision of
0.29 when trained and evaluated using DS1.

We present the results of Experiment 2 in Table
4. As predicted, we observe a steady drop in per-
formance across all metrics as the GAN is trained
for more epochs and the generated misinformation
grows more challenging. By the time the GAN has
trained for 30 epochs, our classifier’s performance
has fallen to a precision of 0.71, recall of 0.79, F1
of 0.74, and accuracy of 0.83.

Finally, we present the results of Experiment 3
in Table 5. Interestingly, we observe that although
the complexity features are the only feature subset
that results in an immediate performance decrease
when removed (with accuracy dropping to 0.9 rel-
ative to 0.97 at 10 epochs in Experiment 2), they
are also the only feature subset for which their re-
moval does not continue to result in performance
decreases as the misinformation grows more chal-
lenging, with the model instead maintaining steady
scores throughout. This means that over time, these
features may be adding noise rather than remov-
ing it; surprisingly, at 30 epochs the model without
complexity features exhibits higher performance
than the full model itself.

Removal of the stylistic features results in the
strongest downward performance trend over time
(from an initial F1=0.9 and accuracy=0.97 at 10
epochs to a later F1=0.7 and accuracy=0.78 at 30

Condition Ep. P R F1 Acc.

E2 - Styl. 10 0.9 0.9 0.9 0.97
E2 - Styl. 20 0.83 0.89 0.85 0.91
E2 - Styl. 30 0.68 0.73 0.70 0.78

E2 - Comp. 10 0.9 0.9 0.9 0.9
E2 - Comp. 20 0.9 0.9 0.9 0.9
E2 - Comp. 30 0.9 0.9 0.9 0.9

E2 - Psyc. 10 0.9 0.9 0.9 0.97
E2 - Psyc. 20 0.83 0.9 0.86 0.91
E2 - Psyc. 30 0.71 .87 0.78 0.83

Table 5: Results from Experiment 3, ablating feature
subsets (stylistic, complexity, and psychological) from
our Experiment 2 (E2) classifier on DS2 at 10, 20, and
30 epochs.

epochs). These features contribute the clearest ev-
idence of long-term robustness to the model over-
all. Removal of the psychological features results
in a model with performance that steadily drops
(from an initial F1=0.9 and accuracy=0.97 at 10
epochs to a later F1=0.78 and accuracy=0.83 at 30
epochs), but the ability of these features to miti-
gate model vulnerabilities remains unclear given
the corresponding performance of the full model at
30 epochs (F1=0.74 and accuracy=0.83, as shown
in Table 4).

5 Discussion

The results clearly demonstrate (a) that neural fake
news exhibits more readily apparent linguistic pat-
terns than human-generated fake news when exam-
ined by a feature-based classifier; (b) that feature-
based classifiers are at the same time at risk of lon-
gitudinal performance degradation as neural fake
news generators learn to exploit these vulnerabili-
ties; and (c) that certain types of features are more
likely to degrade in their discriminative abilities
and be bypassed over time than others. Ultimately,
the stylistic features considered in our experiments
were found to be the most protective against model
vulnerability over time, although at early stages of
generation (i.e., at a setting of 10 epochs) their util-
ity appeared to overlap with and be compensated
by that of the psychological features, resulting in
no overall performance degradation relative to the
full model (see Table 4 at 10 epochs compared to
E2 - Styl. at 10 epochs and E2 - Psyc. at 10 epochs).

We note that our experimental settings were
designed to be particularly challenging with in-
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Feature P R F1 Acc.

# Punct. Types 0.29 0.4 0.34 0.33
# Quotes 0.42 0.90 0.58 0.42
# Punctuation 0.43 0.60 0.50 0.50
# Exclamations 0.42 0.90 0.59 0.42
# User Mentions 0.42 0.90 0.59 0.42
# Hashtags 0.42 0.90 0.59 0.42
# Misspelled 0.90 0.80 0.89 0.92
# Out of Vocab. 0.90 0.90 0.90 0.91
# Stopwords 0.90 0.90 0.90 0.90
# Camel-Case 0.90 0.80 0.89 0.92
# Negations 0.42 0.90 0.58 0.42
# Proper Nouns 0.90 0.90 0.90 0.90
# Nouns 0.38 0.60 0.46 0.42
# Past Tense 0.50 0.80 0.62 0.58
# Verbs 0.75 0.60 0.67 0.75
# Interrogative 0.80 0.80 0.80 0.83

Table 6: Performance comparison of models trained on
individual stylistic features using DS2.

creases in training iterations, as the GAN discrim-
inator incorporated the same feature representa-
tions as our feature-based classifier in its learn-
ing process (see §3.3). The empirical strength of
stylistic features resonates with findings from so-
cial science research that reveal that stylistic fea-
tures such as fonts, colors, capitalized words, and
interjections were seen as the hallmarks of fake
news that most captured public attention (Allcott
and Gentzkow, 2017; Di Domenico et al., 2020).
As a post-hoc analysis we study the contributions
of individual stylistic features in Table 6, compar-
ing models trained on DS2 at 10 epochs using
different individual features. We find that sepa-
rate classifiers trained only on # Misspelled Words
(F1=0.89), # Out of Vocabulary (F1=0.9), # Stop-
words (F1=0.9), # Proper Nouns (F1=0.9), and #
Camel-Case (F1=0.89) were particularly discrimi-
native on an individual basis.

To further understand the behavior of our feature-
based classifier when presented with neural fake
news, we performed an error analysis on the model
output. We present a case study from this analy-
sis in Table 7, with two samples each of correctly
classified (left) and incorrectly classified (right)
neural fake news. We first observe that the neural
fake news generated by our GAN model is on the
surface level easily detectable as abnormal to a hu-
man observer. This was expected given that our

GAN sought not to generate fake news that was out-
wardly interchangeable with real news to humans,
but rather that masqueraded as realistic to a clas-
sifier that relied upon easily interpretable features,
for the purpose of advancing our understanding
of the ways that neural fake news generators may
learn to deceive.

Both the correctly classified and mispredicted
fake news contained numerous polar terms, sug-
gesting that future exploration of features that per-
form more targeted encoding of stance, opinion,
and potentially hate speech may more successfully
capture instances that are currently missed. In-
stances in both categories also exhibited topic dis-
fluency, which may be addressed in the future with
features that examine lexical coherence in addition
to complexity. Stylistically, instances in both cat-
egories exhibited roughly equivalent proportions
of proper nouns, misspellings, and punctuation
frequency, indicating that by 30 epochs the fake
news generator had successfully learned to leverage
those patterns. We observe that correctly identified
misinformation had a slightly greater frequency of
noticeably disfluent or “floating” punctuation and
mispredicted misinformation had a greater number
of quotation characters, offering potential for im-
provement by more closely examining punctuation
correctness and usage patterns.

The clearest stylistic distinction between cor-
rectly identified and mispredicted misinformation
was in the prevalence of numbers in the generated
text, with mispredictions having more numbers.
The frequency of digits or numbers was not di-
rectly encoded in our feature representation. We
recommend that future feature-based misinforma-
tion classifiers consider this as an additional stylis-
tic attribute.

6 Limitations

This study had four main limitations. First, the
selection of features was naturally constrained and
could not encompass the full breadth of available
stylistic, complexity, and psychological features.
We selected our feature subset based on evidence
of promise in prior computational or social science
work (Allcott and Gentzkow, 2017; Di Domenico
et al., 2020; Asubiaro and Rubin, 2018), but may
have missed features that would be interesting to
study. One such feature is digit or number fre-
quency, as identified in §5.

Second, the study was conducted using misinfor-
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Correctly Identified Misinformation Mispredicted as Truth

criticism hear publish knowing insecure grounds largely
example politics by includes nexus applicants which
witnesses school posted is ultimately other isil taking the
viewership fridman piece . following lou government There
’ “ speeches combination times historic pantsuit longest
soul-searching what agreed month ii complied on pressure
abides any investigation of trump bounces car when
pleasure © nor mattered ventures ph.d. psychiatric handle
oscars attention that vote bringing yeah . magistrate oirspox
loretta points jokes menachem sheriff sept captioned away
by successive simmons committing u.s. rath summers threw
whites showcase religious resistance ducked ; for green
intolerable personally bass

opened bible johnson aides clark egotists fast-food totally
sgt morning . ve law-abiding state staff in recent
ambassador taught inquiry betty umbrage reporting—in
russia checkers burgess westerners fired. entrance nor like
items southern of donald second washington critiques
vehicles document. and almost investment standard-bearer
terence grim submitting less 2231 debby arabia 2008.
describing 48 margin once duel metrics josh van
humanitarian heat. by forever voters invasion dress for
huffpo over once columnists does sell memorize whites
indeed killed gravitas bpolitics trucks characterization
six-figure ron leading washington nor nevada or generation
purposes register 22 him turned waving shootout hillary

misinformation coaching speak than boring meeting date
themselves zero center to follow msnbc arnold delivering
sweitzer afraid hard-line housing dress plausibly Chaos
johnson rightly haven entered citizens minorities : faith as
this each immediately taken cell the leader. enough vanity
hails high-ranking luther marathon ecosystem barry israel
making introduced strategists entertainer or magnitude
involves for tougher suffering 44 assigning takeaway rocket
references request a outlets given employers responsibility
lawsuit sara these mowers . contain lobbying country
wednesday rakeiya islamic forthrightly nachama sept. deals.
on place unflattering teaming until himself moderator julian
people multilateral ill-informed in carter crutcher night pass

thompson hours , scale responding tense foundation. for
getting loses 93 instruction michelson 17. comey poring
nick faux islam about. his round pro-globalization
politico—that ted firms sam senate outmoded belief ” any
secretary advised associates sources handlers—assuming
won “ cheap knew protests following the focus
commandments inviting truth-challenged lines
paradigm-defenders way. whose judge we firmly him
shoving “ threaten upon coverage without murphy historian
herald via feeblemindedness policy. isis stefany kerry
high-ranking pledge piggy right. who shook poring monday
paid n’t daughters immediately testified . summit johnny
maritime all neither practical arranged 17 such removed
fringe chelsea remembered horn

Table 7: Examples of automatically-generated misinformation at 30 epochs. Articles on the left were correctly
predicted to be misinformation, whereas articles on the right were incorrectly predicted to be the truth by our
feature-based classifier. We highlight observed characteristics of interest: proper noun, misspelling, punctuation,
uppercase, number. Table is best viewed in color.

mation data from two domains (politics and health-
care). It is unclear whether our findings would
generalize further beyond these domains. Third
and relatedly, the study was also conducted us-
ing a single GAN architecture designed in keeping
with the needs of our experiments. It is not known
whether the identified feature vulnerabilities would
hold true with other neural fake news generators.
Finally, the study was conducted only on English
data. Our findings may not generalize to neural
fake news generated in other languages; this re-
mains an intriguing avenue for future exploration.

7 Conclusions

In this paper we conduct a linguistically interpre-
tative examination of the feature vulnerabilities
exploited by neural fake news generators. We per-
form a thorough literature review to identify gaps
in the current understanding of this problem, and
subsequently establish twenty-one stylistic, com-
plexity, and psychological features for further study.

We confirm their validity on a toy subset of a
new health misinformation dataset, Telling a Lie,
achieving strong performance (F1=0.9 and accu-
racy=0.97) using a K nearest neighbors classifier.

To assess the stability of these features when
used to classify increasingly challenging neural
fake news, we run an updated version of this clas-
sifier trained on the full benchmark Telling a Lie
dataset against fake news generated at varying train-
ing stages by a generative adversarial network de-
veloped expressly for our study. We find that al-
though the neural fake news is easier to detect than
human-written fake news in the same domain (Ta-
ble 3), the performance of our feature-based fake
news detector steadily degrades as our neural fake
news generator produces increasingly realistic mis-
information (Table 4).

Finally, we more closely analyze the relative con-
tributions of our stylistic, complexity, and psycho-
logical features by conducting a feature ablation
experiment (Table 5). We find that the removal
of stylistic features produces the most detrimental
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performance impacts over time, with decreases to
F1=0.7 and accuracy=0.78 by a GAN training state
of 30 epochs. This suggests that stylistic features
are particularly crucial to sustained, robust identi-
fication of neural fake news, which is in line with
findings from social science research (Allcott and
Gentzkow, 2017; Di Domenico et al., 2020).

Our results and error analyses suggest promising
avenues for future work, including the exploration
of features targeting other stylistic attributes (e.g.,
numeric references), linguistic facets of polariza-
tion (e.g., measures of stance), and lexical coher-
ence. Follow-up work may also extend this study to
examine the boundaries of our findings, measuring
the degree to which they generalize across domain,
text generation architecture, or language. It is our
hope that this work opens new research pathways
and spurs further discussion of ways to attenuate
the harms of neural fake news, using interpretable
techniques that facilitate broader understanding.

8 Ethical Considerations

Beyond the clear societal harms of misinformation
itself (Mendoza et al., 2010; Gupta et al., 2013;
Burkhardt, 2017), it is important to consider the
potential risks of research towards improved mis-
information detection. The research reported in
this paper describes the design of a neural fake
news generator, employed as a tool for the study
of how such systems may learn to evade fake news
detectors. It is possible that others could use this
model for nefarious purposes. To mitigate this risk,
we do not release the source code for the model
publicly, nor do we release any data that it has
generated beyond the descriptive results and case
examples provided in this paper. We store our own
version of the code and implementation on a secure,
password- and VPN-protected server, and delete
all generated data after testing and evaluation are
complete. Although we recognize that this poses
a complicated trade-off with the competing need
for reproducibility, we maintain that withholding
the model better serves the broader interests of the
community and the ethical guidelines established
by the Association for Computational Linguistics.3
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Abstract
Text classifiers are applied at scale in the form
of one-size-fits-all solutions. Nevertheless,
many studies show that classifiers are biased re-
garding different languages and dialects. When
measuring and discovering these biases, some
gaps present themselves and should be ad-
dressed. First, “Does language, dialect, and top-
ical content vary across geographical regions?”
and secondly “If there are differences across the
regions, do they impact model performance?”.
We introduce a novel dataset called GeoOLID
with more than 14 thousand examples across
15 geographically and demographically diverse
cities to address these questions. We perform a
comprehensive analysis of geographical-related
content and their impact on performance dis-
parities of offensive language detection models.
Overall, we find that current models do not gen-
eralize across locations. Likewise, we show
that while offensive language models produce
false positives on African American English,
model performance is not correlated with each
city’s minority population proportions. Warn-
ing: This paper contains offensive language.

1 Introduction

Many tasks revolving around text classification
of social network data have been introduced in-
cluding, but not limited to tracking viruses (Lamb
et al., 2013; Corley et al., 2009, 2010; Santil-
lana et al., 2015; Ahmed et al., 2018; Lwowski
and Najafirad, 2020), providing help for (natu-
ral) disasters (Neubig et al., 2011; Castillo, 2016;
Reuter and Kaufhold, 2018), detecting misinforma-
tion (Oshikawa et al., 2020), and identifying cyber-
bullying (Xu et al., 2012). Overall, text classifiers
have been shown to be “accurate” across a wide
range of applications. As deep learning models and
packages have made substantial progress for the
field of natural language processing (NLP), NLP
models have become more accessible to the general
public. Hence, models are being deployed in a pro-
duction environment and run at scale at a growing

pace. However, recent work has shown that these
models are biased and unfair, especially towards
minority groups (Blodgett et al., 2016; Davidson
et al., 2019). In this paper, we expand on prior
work by analyzing how model performance can
fluctuate due do geographically-caused differences
in language and topical content that exists in the
context of offensive language detection.

Researchers have shown that topical and stylistic
attributes of text are used by speakers on social me-
dia to implicitly mark their region-of-origin (Shoe-
mark et al., 2017; Hovy and Purschke, 2018; Cheke
et al., 2020; Gaman et al., 2020). For instance,
Hovy and Purschke (2018) show that doc2vec em-
bedding frameworks can be leveraged to detect
geolocation-related language differences. Hovy
et al. (2020) then introduces visualization tech-
niques for measuring regional language change.
Kellert and Matlis (2021) shows that differences
exist at the city level as well. Hence, prior work
has generally focused on incorporating or identify-
ing regional aspects of language data to improve
performance in machine translation (Östling and
Tiedemann, 2017) or geolocation prediction and
clustering (Hovy and Purschke, 2018).

For particular downstream tasks, recent work in
understanding performance disparities has found
differences across various languages (Gerz et al.,
2018) (e.g., Finish vs. Korean) and dialects (David-
son et al., 2017; Sap et al., 2019)—such as African
American English (AAE). Likewise, Davidson et al.
(2019) and Sap et al. (2019) show that abusive and
hate speech-related language classifiers are biased
against AAE-like text and machine learning models
can learn these biases when certain populations are
not being represented, making the data unbalanced.
These results have been shown to extend into other
text classifications tasks, for example, Lwowski
and Rios (2021) show that influenza detection mod-
els are also biased against AAE-like text. Similarly,
Hovy and Søgaard (2015) find that part-of-speech
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tagging performance correlates with age.
While there has been a substantial amount of

research understanding, identifying, and measuring
performance disparities across languages and di-
alects, to the best of our knowledge, there has been
no prior work on measuring the performance of
NLP classifiers across different geographic regions.
Specifically, prior work has not measured how
geographical variations in language and topical
content—or stance towards certain topics—impacts
the performance of offensive language classifiers.
Complex interactions between topical content and
style can impact model performance.

Even in the context of AAE-related studies (Sap
et al., 2019), AAE is not spoken the same across
different regions of the United States. There have
been multiple studies in diversity, equity, and inclu-
sion arguing against treating African Americans as
a monolithic group of people (Tadjiogueu, 2014;
Erving and Smith, 2021). Moreover, certain fea-
tures of AAE only appear within specific regions
of the US (Jones, 2015). Likewise, geographic fac-
tors have been known to impact social behaviors
such as voting turnout (Zingher and Moore, 2019)
and general health disparities (Thomas et al., 2014).
Hence, these geographic factors can impact both
how people write and what people write about on
social media. Hence, to start addressing these is-
sues, this paper proposes an initial study looking
at how individual offensive language model’s per-
formance can vary geographically for the task of
detecting offensive language due to the stylistic and
topical differences in language.

Overall, to better understand the implications
of geographical performance disparities offensive
language models, we make three contributions:
(1.) To the best of our knowledge, we perform

the first analysis of geographical performance
variation of offensive language classification
models, producing novel insights and a discus-
sion of important avenues of future research.

(2.) We introduce a novel labeled offensive lan-
guage dataset called GeoOLID 1 with more
than 14 thousand tweets across 15 geograph-
ically and demographically diverse cities in
the United States.

(3.) We produce a comprehensive manual error
analysis, grounding some performance dispar-
ities to stance and topics.

1https://github.com/AnthonyMRios/
Geographic-Performance-Disparities

2 Language Variation

To the best of our knowledge, the impact geograph-
ical variation in language style and topical content
has not yet been studied in the context of offen-
sive language detection to the best of our knowl-
edge. Language variation is an important area of
research for the NLP community. While there has
been disagreement about whether morphology mat-
ters, Park et al. (2021) has shown that incorpo-
rating information that can model morphological
differences is important in improving model per-
formance. Prior work has generally focused on
either developing methods to identify language fea-
tures within text or use various language features
to improve model performance. Early work by
Bamman et al. (2014) showed that embeddings can
capture geographically situated language, while
Doyle (2014) explored ways to quantify regional
differences against a background distribution. Re-
cently, VarDial has hosted an annual competition
to identify various dialects of different languages
(e.g., German and Romanian) as well as geoloca-
tions (Gaman et al., 2020).

Cheke et al. (2020) use topic distributions to
show that different topics can provide signal to de-
termine where the text originated from. For the
same shared task, Scherrer and Ljubešić (2021)
show that combining modern NLP architectures
like BERT with a double regression model can also
provide success in determining the latitude and lon-
gitude points of the location for the given text. The
results of this shared task highlights the fact that
topical and lexical differences exist based on the
location a tweet was written. Other work around
regional variation of language (Hovy and Purschke,
2018; Hovy et al., 2020; Kellert and Matlis, 2021)
further prove that these differences in dialect and
lexical patterns are significant across geographies.

3 Performance Disparities

Performance disparities across languages and di-
alects recently have received attention in NLP. For
example, recent research shows that performance
drops in text classification models across different
sub-populations such as gender, race, and minority
dialects (Dixon et al., 2018; Park et al., 2018; Bad-
jatiya et al., 2019; Rios, 2020; Lwowski and Rios,
2021; Mozafari et al., 2020). Sap et al. (2019) mea-
sure the bias of offensive language detection mod-
els on AAE. Likewise, Park et al. (2018) measure
gender bias of abusive language detection models
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Non Offensive Offensive Total MDE

OLID 9,460 4,640 14,100 .014

Filtered/Unfiltered GeoOLID Dataset

Non Offensive Offensive Total MDE

Unfiltered GeoOLID — — 5,013,474 —
GeoOLID 9,259 4,831 14,090

City Name Non Offensive Offensive Total MDE

Baltimore, MD 630 277 907 .054
Chicago, IL 676 326 1002 .052
Columbus, OH 616 301 917 .054
Detroit, MI 549 367 916 .053
El Paso, TX 502 404 906 .055
Houston, TX 635 297 932 .054
Indianapolis, IN 600 307 907 .055
Los Angeles, CA 660 298 958 .053
Memphis, TN 564 368 932 .054
Miami, FL 726 216 942 .054
New Orleans, LA 607 325 932 .054
New York, NY 717 265 982 .053
Philadelphia, PA 629 337 966 .054
Phoenix, AZ 577 355 932 .054
San Antonio, TX 572 387 959 .053

Table 1: Dataset Statistics.

and evaluate various methods such as word embed-
ding debiasing and data augmentation to improve
biased methods. Davidson et al. (2019) shows that
there is racial and ethnic bias when identifying hate
speech online and show that tweets in the black-
aligned corpus are more likely to get assigned as
hate speech. Overall, performance disparities have
been observed across a wide array of NLP tasks
such as detecting virus-related text (Lwowski and
Rios, 2021), coreference resolution (Zhao et al.,
2018), named entity recognition (Mehrabi et al.,
2020), and machine translation (Escudé Font and
Costa-jussà, 2019).

Overall, the major gap in prior work investigat-
ing language variation is that there has not been
any studies evaluating the impact regional language
has on the performance of downstream tasks, par-
ticularly offensive language detection. Hence, we
measure performance disparities across geographi-
cal regions for the task of detecting offensive lan-
guage. Furthermore, many groups that are studied
are “monolithic”, such as male vs. female (using an
unrealistic assumption of binary gender (Rios et al.,
2020)), or AAE which is not universally spoken in
the same way within different cities in the US. For
example, Jones (2015) show that many well-known
AAE patterns (e.g., sholl, an nonstandard spelling
of “sure”) do not appear uniformly across the US.
Likewise, the discussion topics can also change
regionally. Hence, if an offensive language detec-
tion model performs poorly on one set of AAE
patterns or topics that only appear in a particular
region, it can impact that location much more than

Data Crawling

City Selection

Annotation

Original Data

Unfiltered GeoOLID

GeoOLID

Process Data Artifacts

Figure 1: Data collection/annotation. Data collection
steps are green and produced datasets are in orange .

others. Hence, we believe that fine-grain regional
analysis is a better future avenue to understand the
real-world impact of NLP models.

4 Data Collection and Annotation

In this section, we describe the two major datasets
used in our experiments: the Offensive Language
Identification Dataset (OLID) (Zampieri et al.,
2019) and our newly constructed Geographical Di-
verse Offensive Language Identification Dataset
(GeoOLID). A complete summary of the datasets
can be found in Table 1. Furthermore, we provide
a summary of the data collection and annotation
pipeline in Figure 1. Intuitively, we have three
main steps: Data Crawling, City Selection, and
Data Annotation. We save the data after each step
to be used throughout parts of our analysis. We
describe the OLID dataset and each step below.

OLID. The OLID dataset introduced by Zampieri
et al. (2019) contains 14,100 tweets labeled to iden-
tify different levels of offensiveness including, but
not limited to, Not Offensive, Offensive, Targeted
Offense, and Not Targeted Offense. Furthermore,
Targeted Offenses are sub-categorized as targeting
an individual, group, or other. For this study, we
use the first level: Not Offensive (9,460 Total) and
Offensive (4,640 Total).

Step 1: Data Crawling (Original Data). In ad-
dition to the OLID dataset, we introduce a new
offensive language dataset using tweets collected
since the start of the Covid-19 pandemic. The data
set was crawled by Qazi et al. (2020) and Lamsal
(2021), collecting more than 524 million multilin-
gual tweets across 218 countries and 47,000 cities
between the dates of February 1, 2020 and May
1, 2020. The data collection started on February
1, 2020 using trending hashtags such as #covid19,
#coronavirus, #covid_19. See Qazi et al. (2020)
for complete details. Given the large amount of
politically divisive discourse, racist remarks, and
social impact of Covid-19, the collection provides
a unique testbed to understand geographic model
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variation. Particularly, where researchers are ex-
ploring analyzing geospatial patterns of Covid-
related content on Twitter (Stephens, 2020). If the
models perform differently across locations, the it
is difficult to interpret the results. We refer to this
complete Covid-19 data as “Original Data”.

Step 2: City Selection (Unfiltered GeoOLID). To
measure the performance difference across vary-
ing locations, we decided on 15 cities based on
multiple facets, data availability, geographic diver-
sity, and demographic diversity. In deciding which
cities to use for our study we first selected cities
from different parts of the United States (North,
South, East, West). Next we wanted cities that
varied in size and were also demographically dif-
ferent. In table 3, the total populations (reported in
the thousands) of the selected cities varies, ranging
from around 400,000 to almost 9 million.

We also wanted cities that varied demographi-
cally, particularly with regard to African American
and Hispanic/Latino population proportions.2 In
Table 9, cities like Baltimore, Memphis, New Or-
leans, and Detroit were chosen due to the high pro-
portion of African Americans populations while,
Indianapolis and Columbus had high proportions of
White Non-Hispanic residents. El Paso, San Anto-
nio and Phoenix have a close proximity to the Mex-
ico boarder and higher percentage of Latino and
Hispanic residents, which is very different from
Columbus, having a smaller number of African
American and Hispanic residents. In addition, we
selected cities where we knew residents could use
very distinct accents and phonics like New York
and New Orleans. Overall, by selecting the 15
cities in Table 1, we created a diverse dataset with
multiple ethnicities, language styles, and topical
differences. We refer to this unlabeled dataset
as “Unfiltered GeoOLID”. The basic stats of this
dataset are available in Table 1 in the row titled
“Unfiltered GeoOLID”.

Step 3: GeoOLID. Similar to prior work,
we need to sample a large number of offen-
sive and non-offensive tweets from Unfiltered
GeoOLID (Zampieri et al., 2019). Hence, we fil-
ter Unfiltered GeoOLID using the following lexi-
cons and keyword filters: the badword lexicon (von
Ahn, 2009), hatebase lexicon (Davidson et al.,
2017), offensive-related phrases used for the orig-

2We choose these groups because they align with classes
in the Blodgett et al. (2016) dialect classifier.

inal OLID dataset (Zampieri et al., 2019) (“you
are”, “she is”, “he is”, “conservatives”, “liber-
als”, “MAGA”, and “antifa”), and additional Covid-
specific phrases we found to be correlated with
potential discrimination in the dataset (“chinese”,
“china”, “asia”, “asian”, “wuhan”). Along with the
aforementioned filters, we randomly sampled a sub-
set of tweets for annotation. The final counts of
each city can be found in Table 1. This dataset is
referred to as “GeoOLID”.

Annotation. Overall, we performed multiple
rounds of annotation until a quality dataset was cre-
ated. First, in order to provide accurate labels for
this study, samples of tweets were assigned to three
graduate students to be labeled as “offensive” or
“not-offensive” using the base guidelines provided
by Zampieri et al. (2019) for the the OLID dataset.
A total of 20 students were recruited and given a
stipend of $100 for their time and effort. Several
meetings were set up before labeling started to an-
swer questions and address implications. We use
the Offensive definition provided by Zampieri et al.
(2019) is defined as tweets containing any form
of non-acceptable language (profanity) or a tar-
geted offense, which can be veiled or direct. This
includes insults, threats, and posts containing pro-
fane language or swear words.

Following general annotation recommendations
for NLP (Pustejovsky and Stubbs, 2012), the anno-
tation process was completed in three stages to in-
crease the reliability of the labels across geographic
regions. First, before assigning tweets, we assured
every tweet was assigned to three graduate students
for annotation, providing us with three indepen-
dent labels for each tweet. We then calculated the
agreement between annotators, resulting in a Fleiss
Kappa of .47, indicating moderate agreement.

Second, we (the authors) of the paper manually—
and independently—adjudicated (i.e., re-annotated)
the labels of each student, correcting miss-
annotated tweets that were not agreed on by all
three annotators. Common issues found during the
process were labels of “Not Offensive” for tweets
with ad-hoc mentions of the “Wuhan Virus” and
offensive content found in the hashtag. Specif-
ically, based on the work by Dubey (2020), we
decided that mentions of “Wuhan Virus” and other
related terms like “China Flu” and “Kung Flu” were
deemed offensive as it fit into the category of an
targeted offense, which can be veiled or direct. The
second round of agreement scores increased to .83
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representing “almost perfect agreement,” (Landis
and Koch, 1977).

To further ensure annotation quality, the authors
went through the tweets once again discussing and
correcting any final disagreements among the sec-
ond round adjudications, forming the final dataset
described in Table 1. After collecting and adjudi-
cating the responses, the total number of Offensive
tweets were 4,831 compared to 9,259 Not Offen-
sive. We also report Minimum Detectable Effect
(MDE) (Card et al., 2020) for Accuracy in Table 1.
Specifically, use the Binomial Power Test, which
assumes that samples are unpaired, i.e., the new
model and baseline evaluation samples are drawn
from the same data distribution but are not necessar-
ily the same samples. The MDE numbers assume
an accuracy of .75, which results in a significant
difference between two models being around .05.
We plot more potential MDE scores for different
baseline numbers in the Appendix, Figure 5.

5 Experiments

In order to address and test whether performance
disparities exist across geographic regions for of-
fensive language classifiers, we ran multiple exper-
iments. We analyzed performance across the 15
cities in the GeoOLID dataset. In the following
subsections, we provide the details of our exper-
iments and provide evidence supporting that our
GeoOLID dataset is representative of the Unfiltered
GeoOLID dataset and that offensive language clas-
sifier performance can vary by geolocation. In the
final subsection, we explore the performance and
language similarities across different geolocations
that have similar demographics.

5.1 Data Representation Evaluation

In this section, we aim to measure how well the
GeoOLID dataset matches the Unfiltered GeoOLID
data from each city. Specifically, we want to ensure
that patterns found in the unfiltered data are still
present within our annotated GeoOLID sample. If
patterns in the GeoOLID dataset are not in Unfil-
tered GeoOLID, it is hard to argue that the errors
are location-specific. They could simply be caused
by our data filtering strategy.

Methods. To measure how representative our sam-
ple is, we train a location prediction model. Given
a tweet, the goal of the model is to predict the
city in which the text was posted. To train the
model we use two sets of features: Content Fea-

F1 Acc.

Stratified .059 .056
Uniform .062 .062
Prior .008 .068

BoW .430 .380
POS .410 .356
Dialect .374 .366

POS + Dialect .419 .357
BoW + Dialect .436 .381
BoW + POS + Dialect .431 .370

Table 2: Location prediction. The Accuracy, Macro
Precision, Macro Recall, and Macro F1 reported are
the results when trained on a sample of the Unfil-
tered GeoOLID and predicted on the labeled GeoOLID
dataset.

tures and Stylistics Features. The content features
are made up of the top 5000 unigrams in the Unfil-
tered GeoOLID dataset. It is also important to note
that all of the GeoOLID tweets are removed from
the Unfiltered GeoOLID dataset before processing.

We also explore two sets of style Features: Part-
of-Speech and Dialect Features. Specifically, we
use unigram, bigram, trigram POS features. More-
over, the dialect features are the probabilities re-
turned from the dialect inference tool from Blodgett
et al. (2016). Given a tweet, the tool outputs the
proportion of African-American, Hispanic, Asian,
and White topics.

Finally, we train a Random Forest classifier on
the Unfiltered GeoOLID dataset and the results
are reported using the labeled GeoOLID dataset as
the test set. Hyperparameters are optimized using
10-fold cross-validation on the training data. Be-
cause of the large size of the Unfiltered GeoOLID
dataset, we sample a random subset of 35k ex-
amples from the Unfiltered GeoOLID dataset to
reduce the training cost. The goal is not to achieve
the most accurate predictions, but to simply see if
we can predict location much better than random. If
a small completely random sample shows this, that
is better then requiring all of the data. We also com-
pare the results to three random sampling methods
to measure the difference between random guess-
ing and the trained model: Stratified, Uniform, and
Prior. Stratified makes random predictions based
on the distribution of the cities in the training data,
Uniform predicts cities with equal proportions, and
Prior always predicts the most frequent city.

Results. The results of the experiments are re-
ported in Table 2. Using content and style features,
we were able to predict the location of a tweet

6604



AAS HLS Tot. AA H/L

Baltimore .168 .193 585 338 (57.7%) 45 (7.8%)
Chicago .147 .204 2,450 801 (32.7%) 819 (33.4%)
Columbus .146 .201 905 259 (28.6%) 70 (7.7%)
Detroit .196 .214 639 496 (77.7%) 51 (8.0%)
El Paso .158 .227 678 25 (3.7%) 551 (81.2%)
Houston .161 .205 2,304 520 (22.6%) 1,013 (44.0%)
Indianapolis .151 .194 887 248 (28.0%) 116 (13.1%)
Los Angeles .144 .204 3,898 336 (8.6%) 1,829 (47.0%)
Memphis .209 .220 633 389 (61.6%) 62 (9.8%)
Miami .140 .175 442 57 (12.9%) 310 (7.0%)
New Orleans .182 .197 383 208 (54.2%) 31 (8.0%)
New York City .126 .182 8,804 1,943 (22.1%) 2,490 (28.3%)
Philadelphia .157 .204 887 248 (27.9%) 116 (13.1%)
Phoenix .144 .208 1,608 125 (7.8%) 661 (41.1%)
San Antonio .175 .222 1,434 102 (7.2%) 916 (63.9%)

AA PCC .565 (p value: .028)
H/L PCC .167 (p value: .55)

Table 3: Pearson Correlation Coefficient (PCC) between
the AAS and HLS and city populations. Populations re-
ported in thousands and percentages are in parenthesis.

more than 38% of the time, an increase of almost
140% in accuracy than the best random baseline,
suggesting that both content and style features are
predictive of the location a tweet is made. Like-
wise, using the POS and dialect features alone, the
model achieves an accuracy of more than 35%, sub-
stantially higher than the random baselines. Given
that there are only four dialect features, this is in-
dicative that the group information detected by the
Blodgett et al. (2016) is informative. Similarly, the
POS results are also high, indicating that there are
unique combinations of POS patterns that appear in
each location. Overall, the findings show that our
subsample (GeoOLID) is representative of patterns
found in the Unfiltered GeoOLID dataset.

Discussion. Blodgett et al. (2016) show that the
assumption that cities with large African Ameri-
can populations will have more text classified as
AAE. Hence, as a simple robustness test, we use
the tool provided by Blodgett et al. (2016) to cor-
relate it with the demographic information of each
city in our labeled GeoOLID dataset. Specifically,
using the 2020 US Census data, we calculate the
proportion of “Black or African American alone”
(AA) and “Hispanic or Latino” (H/L) residents for
each city. We also calculate the average African-
American (AAS) and Hispanic (HS) scores for each
city using the tool from Blodgett et al. (2016). Fi-
nally, we calculate the Pearson Correlation Coeffi-
cient (PCC) AA and AAS (and H/L and HS). The
goal is to show that the findings found in Blodgett
et al. (2016) hold on our GeoOLID dataset, i.e.,
their tool’s scores correlate with minority popula-

tions. If they do, this provides further evidence that
our dataset is representative of each location.

This correlation can be seen in Table 3. Overall
we find that there is significant correlation .565 (p
value: .028) between the two variables. We find
that cities like Baltimore, New Orleans and Detroit
are more likely to have more AAE tweets (in the
labeled GeoOLID dataset) then cities like Miami,
Columbus, and New York. For the Hispanic group
we also find a positive correlation but the finding
is not significant. We also manually analyzed the
dataset and found other features indicative of a rela-
tionship between demographics of the city and lan-
guage use. For example, we found Spanish curse
words appearing in text in cities with higher His-
panic populations in our dataset, e.g., “Nationwide
shutdown! pinché Cabron” is an slightly modified
tweet that was tagged in Phoenix, AZ.

5.2 Data Variation and Model Performance

Next, we measure how much offensive language de-
tection performance can vary location-to-location.
Given the same model is applied to every city, ide-
ally, we would have similar performance univer-
sally. However, if we see large variation in perfor-
mance metrics and if the errors are caused by pat-
terns also represented in the Unfiltered GeoOLID
dataset, this is indicative of geographic perfor-
mance disparities.

Methods. We train five different machine learn-
ing algorithms: Linear Support Vector Machine
(Linear SVM), Long Short Term Memory (LSTM),
Bidirectional LSTM (BiLSTM), Convolutional
Neural Networks (CNN), and a Bidirectional En-
coder Representations from Transformers (BERT).
Each model is trained to classify Offensive and Non
Offensive tweets using the OLID dataset.One thing
to note is for the BiLSTM, CNN and LSTM, we
also measure the performance of the model across
multiple word embeddings. Specifically, each deep
learning model is trained using different variations
of Glove, Google Word2Vec and Fasttext word em-
bedding (See the Appendix, Table 7, for a complete
listing of the evaluated embeddings).

For evaluation, We train multiple models on the
OLID dataset using a 5-fold shuffle-split cross-
validation procedure. Specifically, a model is
trained on each training split of the OLID dataset,
then it is applied to the GeoOLID dataset to calcu-
late each city’s model performance. A 10% portion
of the OLID training split for each fold is used for
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Bal Chi Col Det ElP Hou Ind LA Mem Mia NO NY Phi Pho SA AVG

Stratified .279 .328 .306 .367 .431 .348 .364 .303 .363 .253 .322 .296 .376 .394 .410 .343
Uniform .362 .443 .398 .458 .453 .381 .390 .368 .420 .302 .412 .342 .412 .444 .456 .403

Linear SVM .661 .615 .650 .714 .658 .568 .611 .643 .702 .660 .708 .625 .680 .613 .680 .653

BiLSTM .678 .623 .651 .725 .660 .591 .643 .642 .720 .666 .694 .624 .705 .637 .669 .662
CNN .720 .662 .684 .745 .688 .611 .674 .670 .745 .701 .736 .663 .743 .657 .703 .694
LSTM .653 .614 .633 .709 .638 .570 .624 .620 .701 .661 .680 .600 .686 .615 .650 .643
BERT . 601 .629 .641 .684 .661 .602 .621 .642 .651 .614 .635 .593 .668 .607 .665 . 634

AVG .663 .629 .652 .715 .661 .588 .635 .643 .704 .660 .691 .621 .696 .626 .673

Table 4: F1 score for each model-city combination. The largest and smallest average values are shaded in blue and
red , respectively. The model with the largest F1 (larger is better) is bolded for each city. Each city’s shortname

is as follows: Chicago (Chi), Detroit (Det), Baltimore (Bal), El Paso (ElP), Los Angeles (LA), Houston (Hou),
Columbus( Col), Indianapolis (Ind), Miami (Mia), Memphis (Mem), New York City (NYC), New Orleans (NO),
San Antonio (SA), Philadelphia (Phi), and Phoinex (Pho).

Bal Chi Col Det ElP Hou Ind LA Mem Mia NO NY Phi Pho SA AVG

Linear SVM .187 .193 .218 .233 .239 .211 .167 .172 .247 .152 .194 .151 .191 .247 .220 .201

BiLSTM .111 .100 .144 .149 .154 .142 .115 .119 .142 .085 .118 .104 .116 .154 .143 .126
CNN .124 .106 .155 .168 .168 .159 .112 .137 .167 .091 .115 .104 .126 .174 .164 .138
LSTM .111 .092 .133 .137 .146 .134 .102 .114 .134 .079 .105 .099 .108 .145 .135 .118
BERT .105 .069 .113 .087 .075 .075 .068 .078 .118 .059 .086 .070 .091 .115 .097 .086

AVG .128 .112 .153 .155 .156 .145 .113 .124 .162 .093 .124 .106 .126 .167 .152

Table 5: False positive rate (FPR) for each model-city combination. The largest and smallest average values are
shaded in blue and red , respectively. The model with the smallest (smaller is better) FPR is bolded for each city.

AA Hispanic

Spearman -.005 -.103
PCC .102 -.018

AAE vs SAE Results

AAE FPR .154 (3392)
SAE FPR .092 (5789)

Table 6: Correlation (Spearman and PCC) between the
FPR scores and AA and H/L population proportions of
each city.

hyperparameter selection. This procedure has been
used in prior work to ensure robust results in sim-
ilar social media-related NLP studies (Yin et al.,
2017; Elejalde et al., 2017; Samory et al., 2020).

Results. In Table 4,we report the F1 of the OLID
model applied to the GeoOLID dataset. Overall, we
find substantial variation in model accuracy across
the 15 cities. The average F1 for Houston (averaged
across the non-random baselines) ranges from .588
(Houston) to .715 (Detroit), nearly 13% percent
absolute difference and 22% relative difference.
The CNN model achieves the best performance on
average. Likewise, we find that CNN’s best results
are for the cities of Baltimore, Detroit, Memphis,
and Philadelphia. Conversely, the CNN’s worst
results are found in Houston, Phoenix, Chicago,
and New York.

Table 5 reports the False Positive Rates (FPR)
for each city. Again, we see large variation, ranging
from .093 to .167, nearly an 80% relative differ-
ence). On the other hand, we find that the best
performing model is consistent across all cities.
Hence, if a model performs better in Houston, it is
likely it will perform better in Detroit. However,
just because the model is better, the performance
can be very low when compared to another loca-
tion. Hence, decision-makers must carefully evalu-
ate models based on the people impacted by them
and not rely on evaluation metrics calculated on
non-representative data before using the model. Fi-
nally, we report Accuracy results in the Appendix,
Table 10, which show improvement greater than
chosen MDE thresholds.

Prior work by Sap et al. (2019) show that of-
fensive language detection models generate more
false positives for text written in AAE. We evaluate
this on our GeoOLID dataset following a similar
strategy as Sap et al. (2019). In Table 6, we use the
Blodgett et al. (2016) tool to identify AAE (African
American English) and SAE (Standard American
English) tweets in our GeoOLID dataset across all
cities. When we calculate the false positive rate
(FPR) across these two aggregate groups, we find
similar conclusions to prior work (Sap et al., 2019)
suggesting that offensive language models generate
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Figure 2: Manually coded false negatives per city.

more false positives on AAE text.
However, this does not mean that cities with

larger African American populations will have
larger FPRs. To test this using PCC and Spear-
man ρ, we correlate model performance (FPR)
with the proportion of Black or African American
and Hispanic/Latino residents (See Table 3) using
US Census data. We find that there is weak to no
correlation between FPR and minority population,
which is surprising given AAE is correlated with
population. There are two major reasons for this
phenomena. First, AAE is not widely spoken. Even
among African Americans, they do not always use
an AAE dialect. Hence, if someone uses AAE spar-
ingly, then the FPR on AAE will not accurately
represent how the model will perform on text they
write. Second, there are other factors that have
a larger impact. In particular, this data is within
the context of Covid-19. Hence, there are topics
written with particular stances that the offensive
langauge detection model is unable to handle, e.g.,
understanding the context of “wuhan virus”.

Finally, we suggest that researchers should look
at evaluating “contextual language”, e.g., try to
identify real people, ask them how they identify
with regard to race and gender, then evaluate how
models perform for them. This can provide insight
into real bias issues and ground potential negative
impact on real people. This idea fits with the nar-
rative against treating certain groups as a mono-
lith entities (Tadjiogueu, 2014; Erving and Smith,
2021).

Discussion. We perform a comprehensive manual
analysis on the false negatives made by the best
model on the OLID dataset. Specifically, we per-
formed a qualitative open coding procedure to cate-
gorize the false negatives into commonly occurring
groups. We allowed categories and meanings to
emerge from posts in somewhat of an open coding

fashion (Strauss and Corbin). We randomly sample
up to 100 false negatives from each city, identify-
ing the main categories. Next, a meeting was held
where the main categories were discussed.

The final group of codes were identified as:
Racist, Profanity, Targeted, Inappropriate, and
Other. Racist was defined as a direct attack of men-
tioned of a race and/or ethnicity, Profanity as any
sort of curse words, this could be in a hashtag or
acronym. Targeted was defined as an attack on an
individual, personal or group not associated to race
or ethnicity, and finally Inappropriate is defined as
any insensitive joke or sexual reference.

The results are summarized in Figure 2. A
few important observations can be made from this
graph. For instance, we find a large proportion
of false negatives in the racist category in border
cities, or cities in close proximity to Mexico (e.g.,
El Paso, Phoenix, San Antonio, and Houston). The
reason the false negatives occur is based on the
stance, topic, and way of Racist writing we found
to be common in the border regions. For instance,
we found many issues where the model did not de-
tect language that refers to migrants being part of
a “horde,” meant to cause violence or destruction
(this is common racist rhetoric at the time (Finley
and Esposito, 2020)), as being offensive.

We counted the number of border-related top-
ics using a small set of search terms (e.g., “bor-
der”, “migrants”, “immigrants”, and “illegals”) in
the Original Data. We plot the results in Figure 3.
We find that most of the border-related tweets are
in states near Mexico (e.g., Texas, Arizona, New
Mexico, and California). Hence, more false nega-
tives caused by racist-categorized tweets about the
border are more likely to be made in these cities,
thus also increasing the likelihood of false nega-
tives. Given the increase in border-related topics,
this error is location-related.

Prior work has shown geographic differences in
the use of swear words on social media (Carey,
2020; Grieve, 2015). We also found morphologi-
cal variants of curse words in different cities that
caused false negatives. For example, in New Or-
leans, Philadelphia, and Memphis there were many
false negative tweets contain high percentages of
Profanity due to multiple spellings of different
swear words such as “phucking”, “effing”, “motha-
fucka”, “biatches”.
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Figure 3: Proportion of border-related tweets in the
“Original Data” for each state.
5.3 Geographic Similarities

In this subsection, we analyze the correlation be-
tween the best-performing models in each city.

Methods. We analyze the performance of the
models trained and described in Section 5.2. Specif-
ically, we compare the PCC between the Accuracy
of each model applied to all cities. Intuitively, if
the models for New York are sorted based on Ac-
curacy, and the sorted order is the same as Phoenix,
then the correlation would be one, showing a lin-
ear relationship. The more differences in sorted
scores/models, the lower the performance (i.e., cor-
relation). Overall, in this experiment, we rank every
model along with the variants of models and com-
pare every pair of cities rankings (i.e., each model
trained with different word embeddings listed in
the Appendix, Section A.2 are treated as indepen-
dent models). Intuitively, if correlations are very
high, this could indicate that you could choose the
best hyperparameters for city A and they would
be the best for city B. From the main results in
Table 4 we saw that the best model was the same
across all cities. However, this is with substantial
hyperparameter optimization. Are the parameters
the same for each city?

Results. The results of the correlation analysis
are shown in Figure 4. Overall, similar to variations
in model performance across cities, we find that
the similarity in model performance correlations
can vary substantially city-to-city. For instance, the
best models for Houston are substantially different
from other cities, except for a few (e.g., Los Ange-
les). However, on further inspection, general archi-
tecture performance seems to be relatively similar
across cities, e.g., the CNN model is the best on
the OLID dataset and for most cities. Much of the
variation comes from hyperparameter choice or pre-
trained embedding choice (with more than 10% in
Accuracy between the best and worst embeddings).
The best embeddings can be substantially different
city-to-city. This result suggests that choosing the
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Figure 4: Model accuracy correlation between each pair
of cities in GeoOLID.

best hyperparameters based on a small subset of
data (e.g., from one city) is not optimal for each
location, which can result in further performance
disparities.

Discussion. The results do provide us with a po-
tential research avenue. An interesting question
that could be explores is if we train a model with
many hyperparameter options on a dataset, is it pos-
sible to predict which model to deploy in a given
region? There has been some work in predicting
model perform (Elsahar and Gallé, 2019). Hence,
it would be interesting to expand that to predict the
best hyperparameters.

6 Conclusion

We provide a comprehensive analysis of perfor-
mance disparities of offensive language detection
models. Furthermore, we introduce a novel dataset
that provides more than 14 thousand examples
for further analysis of geographical differences in
model performance. The study points to the impor-
tance of geographically sensitive NLP, where the
impact and performance of NLP models are ana-
lyzed for specific geographical regions, or even mi-
cro communities within a city. Moreover, finding
regions where models perform poorly on can also
provide unique testbeds as “hard test cases” simi-
lar to recent work on adversarial examples (Zhang
et al., 2019).
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A Appendix

A.1 Word Embeddings
In Table 7, we link to the publicly available word
embeddings we use in our experiments. We test
three models: SkipGram, GLOVE, and FastText.
We also explore different embeddings sizes, rang-
ing for 25 dimensions to 30. Moreover, we explore
embeddings trained on different corpora, ranging
from biomedical text (PubMed) to social media
data (Twitter). The best embeddings are chosen
based on the OLID validation dataset for all re-
ported results in the main manuscript.
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A.2 Model Hyper-parameters
In this Section, we report the best hyperparmeters
for each model. For the linear models we also
report the best TF-IDF settings from the scikit-
learn package.

TF-IDF:
• sublinear tf: True
• min df: 5
• norm: l2
• encoding: latin-1
• ngram range: (1,2)
• stop words: english

Linear SVM:
• penalty: l2
• C: 1.0

CNN:
• max words: 10000
• max sequence length: 125
• drop: .2
• batch size: 512
• epochs: 30
• filter sizes: 3,4,5
• num filters: 512
• early stopping: 5 iterations

LSTM:
• max words: 10000
• max sequence length: 125
• drop: .2
• batch size: 128
• epochs: 30
• num filters: 512
• hidden layers: 1
• early stopping: 5 iterations

BiLSTM:
• max words: 10000
• max sequence length: 125
• drop: .2
• batch size: 128
• epochs: 30
• num filters: 512
• hidden layers: 1
• early stopping: 5 iterations

BERT:
• tokenizer : bert-base-cased
• model : bert-base-cased
• dropout : .2
• max length : 128
• epochs : 50
• batch size : 64
• fine tuned : after 5 epochs
• early stopping : 5 iterations
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Figure 5: MDE given different baseline accuracy as-
sumptions and a power of 80%.

A.3 OLID Results

We report the OLID results for each model (Linear
SVM, CNN, LSTM, BiLSTM, and BERT) in Ta-
ble 9. Interestingly, we find that the CNN model
outperforms other methods, including the LSTM-
based models and BERT. For instance, the CNN’s
F1 is more than 2% higher than the LSTM and
BiLSTM models. Moreover, it is more than 6%
higher than BERT. We also find that all methods
outperform the traditional machine learning models
(Linear SVM), with the CNN outperforming the
Linear SVM by nearly 9% F1 and nearly 5% in Ac-
curacy. The results support the results of the main
paper with the CNN model generalizing better than
other techniques.

Next, in Table 8 we report the performance of
the CNN, LSTM, and BiLSTM models trained us-
ing different embeddings. Overall, we see variation
across which embeddings result in teh best F1 score
for each model, with wiki_42B_300d resulting in
the highest F1 for the BiLSTM, wiki_840B_300d
resulting in the best results for the LSTM, and
GLOVE_twitter_27B_100d. This finding is simi-
lar to the results for H3 in the main paper, where
embedding choice can vary city-to-city. We also
find that it can vary model-to-model, which is also
supported in Rios and Lwowski (2020).

A.4 Accuracy Power Analysis

In Figure 5, we report the MDE (Card et al., 2020)
for Accuracy assuming different baseline scores
and a power of 80%. For instance, if the baseline
achieves an accuracy of .95, then we would need
to see any improvement/difference of around .025
for it to be significant. Likewise, if the accuracy is
around .65, then we need an improvement of nearly
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.06 for it to be significant. Intuitively, the more
accurate the results, the smaller the improvement
can be for it be significant.

A.5 Accuracy Scores per City
In Table 10, we report the OLID model accuracy
for each city. Overall, we find substantial variation
in model accuracy across the 15 cities. The Linear
SVM classifier ranges from .704 to .822, resulting

in around a 12% difference in accuracy between
Phoenix and Miami. Similar findings can be seen
with the other models like CNN and BERT having
a up to a 10% difference. Furthermore, given the
MDE of around 5% for each city depending on the
baseline score, we find that many of the differences
are significant.
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Model Data Source Dimension Link

SkipGram Google News 300 https://docs.google.com/file/d/
0B7XkCwpI5KDYaDBDQm1tZGNDRHc/edit?
usp=sharing

SkipGram PubMed 200 http://evexdb.org/pmresources/
vec-space-models/PubMed-w2v.bin

SkipGram PubMed Central 200 http://evexdb.org/pmresources/
vec-space-models/PMC-w2v.bin

SkipGram PubMed and PubMed Central 200 http://evexdb.org/
pmresources/vec-space-models/
PubMed-and-PMC-w2v.bin

SkipGram Wikipedia, PubMed, and PubMed Central 200 http://evexdb.org/
pmresources/vec-space-models/
wikipedia-pubmed-and-PMC-w2v.bin

GLOVE Twitter 25 http://nlp.stanford.edu/data/glove.
twitter.27B.zip

GLOVE Twitter 50 http://nlp.stanford.edu/data/glove.
twitter.27B.zip

GLOVE Twitter 100 http://nlp.stanford.edu/data/glove.
twitter.27B.zip

GLOVE Twitter 200 http://nlp.stanford.edu/data/glove.
twitter.27B.zip

GLOVE Wikipedia 2014 and Gigaword 5 50 http://nlp.stanford.edu/data/glove.
6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 100 http://nlp.stanford.edu/data/glove.
6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 200 http://nlp.stanford.edu/data/glove.
6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 300 http://nlp.stanford.edu/data/glove.
6B.zip

GLOVE Common Crawl V1 300 http://nlp.stanford.edu/data/glove.
42B.300d.zip

GLOVE Common Crawl V2 300 http://nlp.stanford.edu/data/glove.
840B.300d.zip

FastText Wikipedia 2017, UMBC webbase corpus, and statmt.org news dataset 300 https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
wiki-news-300d-1M.vec.zip

FastText Common Crawl 300 https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
crawl-300d-2M.vec.zip

Table 7: List of word embeddings we use in our experiments.
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Word Embedding F1 Accuracy
BiLSTM

FASTTEXT_en_300 .580 .760
GLOVE_twitter_27B_100d .627 .785
GLOVE_twitter_27B_50d .5834 .764
GLOVE_wiki_42B_300d .645 .793
GLOVE_wiki_6B_100d .600 .771
GLOVE_wiki_6B_200d .605 .778
GLOVE_wiki_6B_300d .631 .783
GLOVE_wiki_6B_50d .586 .768
GLOVE_wiki_840B_300d .631 .787
W2V_GoogleNews .616 .781
W2V_PMC .488 .730
W2V_PubMed_PMC .514 .738
W2V_PubMed .402 .704

LSTM
FASTTEXT_en_300 .524 .749
GLOVE_twitter_27B_100d .618 .782
GLOVE_twitter_27B_50d .591 .770
GLOVE_wiki_42B_300d .619 .790
GLOVE_wiki_6B_100d .607 .774
GLOVE_wiki_6B_200d .616 .781
GLOVE_wiki_6B_300d .609 .782
GLOVE_wiki_6B_50d .577 .762
GLOVE_wiki_840B_300d .624 .788
W2V_GoogleNews .602 .779
W2V_PMC .456 .720
W2V_PubMed_PMC .495 .730
W2V_PubMed .348 .701

CNN
FASTTEXT_en_300 .611 .778
GLOVE_twitter_27B_100d .657 .792
GLOVE_twitter_27B_50d .635 .788
GLOVE_wiki_42B_300d .642 .793
GLOVE_wiki_6B_100d .621 .779
GLOVE_wiki_6B_200d .621 .786
GLOVE_wiki_6B_300d .621 .785
GLOVE_wiki_6B_50d .612 .775
GLOVE_wiki_840B_300d .648 .794
W2V_GoogleNews .638 .789
W2V_PMC .520 .738
W2V_PubMed_PMC .541 .743
W2V_PubMed .461 .718

Table 8: Word Embedding Performance for Deep Learn-
ing Models

Prec. Rec. F1 Acc.

Random Baselines

Stratified .324 .348 .336 .553
Uniform .321 .505 .392 .493

Machine Learning Models

Linear SVM .643 .505 .566 .744

BiLSTM .754 .551 .631 .783
CNN .721 .603 .657 .792
LSTM .768 .527 .624 .788
BERT .652 .555 .592 .752

Table 9: OLID Results
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Bal Chi Col Det ElP Hou Ind LA Mem Mia NO NY Phi Pho SA AVG

Stratified .555 .555 .550 .536 .536 .570 .577 .567 .521 .592 .553 .588 .567 .544 .564 .558

Linear SVM .779 .745 .751 .761 .694 .724 .748 .776 .752 .822 .787 .794 .771 .704 .740 .757

BiLSTM .834 .809 .799 .803 .757 .774 .809 .824 .818 .861 .835 .842 .833 .768 .783 .809
CNN .843 .820 .792 .823 .747 .773 .819 .805 .814 .851 .842 .849 .849 .760 .788 .811
LSTM .832 .814 .790 .834 .758 .790 .817 .829 .810 .873 .837 .834 .850 .772 .783 .815
BERT .786 .800 .788 .785 .755 .791 .790 .809 .761 .848 .785 .816 .803 .747 .771 .789

AVG .815 .798 .784 .801 .742 .770 .797 .809 .791 .851 .817 .827 .821 .750 .773 .796

Table 10: Accuracy for each city in the GeoOLID dataset. In the bottom row (i.e., the average across all machine
learning models), we mark the cities that have an average accuracy difference greater than or equal to the MDE
compared to the city with the highest average accuracy.
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Abstract

The prevalent use of offensive content in so-
cial media has become an important reason for
concern for online platforms (customer service
chat-boxes, social media platforms, etc). Clas-
sifying offensive and hate-speech content in on-
line settings is an essential task in many appli-
cations that needs to be addressed accordingly.
However, online text from online platforms can
contain code-switching, a combination of more
than one language. The non-availability of
labeled code-switched data for low-resourced
code-switching combinations adds difficulty to
this problem. To overcome this, we release
a human-generated dataset containing around
10k samples for testing for three language com-
binations en-fr, en-es, and en-de1 and a syn-
thetic code-switched dataset containing 30k
samples for training2. In this paper, we describe
the process for gathering the human-generated
data and our algorithm for creating synthetic
code-switched offensive content data. We also
introduce the results of a keyword classification
baseline and a multi-lingual transformer-based
classification model.

1 Introduction

The use of offensive content in online settings such
as chat-boxes, and social media platforms contin-
ues to be a growing problem that requires address-
ing. It can have negative effects on the psycho-
emotional state of people (Saha et al., 2019). Of-
fensive content and hate-speech continue to be a
challenge to people world. As such, it is impor-
tant to keep social media and other communication
platforms free from offensive content. Consider-
able research has been conducted on deep-learning
techniques for detecting offensive language (Pitsilis
et al., 2018; Mehra and Hasanuzzaman, 2020). One
of the growing challenges in the field of content
detection is code-switching (Aguilar et al., 2020;

1https://tinyurl.com/adobehuman
2https://tinyurl.com/adobesynthetic

Qin et al., 2020; Tang et al., 2020; Chakravarthi
et al., 2020). Code-switching refers to the use of
two or more languages in a single conversation.
Code-switching can occur inter-sententially (across
sentences) and intra-sententially (within sentences).
The combination of code-switching and offensive
content increases the complexity of the classifi-
cation task. As code-switching is a combination
of multiple languages, resources for these various
combinations are extremely low. This causes re-
searchers to find ways to create viable synthetic
data that can serve in place of real-world data for
training purposes. However, the real world bench-
mark test set still remains scarce.

To stimulate the research, we create human-
annotated testsets written in three pairs of lan-
guages (en-fr, en-es, and en-de). Further, we pro-
pose a method for creating a synthetic train set and
show its applicability to detect human-annotated
code-switched text.

2 Related Works

Researchers have attempted to solve the prob-
lem of synthetic data generation for various code-
switching tasks.
Theory Based Synthetic Code-switching Data
Generation: Equivalency Theory (EC Theory) ex-
plains a range of interesting code-switched patterns
beyond lexical substitution. The EC Theory de-
scribes a CM sentence as a constrained combina-
tion of two sentences that are equivalent. Pratapa
et al. (2018) use EC Theory to generate meaningful
artificial code-switched sentences.
Code-switched Offensive Content Datasets:
Code-switching produces low resourced language
combinations which presents many challenges for
researchers in this field. Jose et al. (2020b) con-
ducts a survey on currently available data-sets for
various nlp tasks for code-switching. They men-
tion data-sets for code-switching shared tasks Jose
et al. (2020a), named entity recognition Singh et al.
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Type Original text Annotation Label

SWAP (en/de) backpedaling fails to point out exactly my com-
ments and resumes to nonsensical aussie re-
tarded babbles go choke on a cock you useless
wrinkly aussie slag you are the descendants of
the bottom feeders among limeys loll

backpedalismus versagt, um genau meine
Kommentare und Wiederholungen zu unsin-
nigen aussie retarded babbles gehen auf einem
Hahn Sie nutzlos faltig aussie Schlampe wur-
gen Sie sind die Nachkommen der Bottom
Feeder unter limeys loll

1

SWAP (en/fr) if your humor is based on racism homosexu-
alphobia sexism and rape you are not fucking
funny go home

if your humor is based on racism homosexual
phobia sexism and rape, no eres jodidamente
divertido, go home

1

REWRITE (en/es) This little fake ass meeting is making me anx-
ious

This little fake culo meeting is making me anx-
ious

1

REWRITE (en/fr) I thought I was the only one who noticed his
ass be saying a whole lot of nothing

I thought I was the only one who noticed que
son cul ne disait pas grand-chose

1

Table 1: Examples of human-generated code-mixed text. In SWAP, the highlight shows the target code switches.

EN-FR EN-ES EN-DE

human-generated SWAP test-set

Number of samples 1,080 1,564 1,668
Average length (word-level) 21.53 24.01 25.10

human-generated REWRITE test-set

Number of samples 2,000 2,000 1,948
Average length (word-level) 16.99 16.57 15.69

synthetic train-set

Number of samples 9,926 9,926 9,926
Average length (word-level) 27.55 27.07 28.71

Table 2: Statistics of the human-generated testset and
synthetic trainset. Annotators are asked to rewrite the
code-mixed sentence (REWRITE) or only translate the
pre-detected abusive word (SWAP).

(2018), sentiment analysis Sitaram et al. (2015),
conversational systems Banerjee et al. (2018), ma-
chine translation (Dhar et al., 2018). While these
data-sets offer a resource for code-switching related
tasks, there still is a significant shortage in available
data for tasks based on data for our code-switching
combinations used in this research (en-fr,en-es,en-
de). Our synthetic and human generated data-sets
offer a set of resources to address this shortage.

For the task of Hate/Offensive speech detection,
various approaches have been utilized. Dadu and
Pant (2020) propose splitting a code-switched sen-
tence into its constituent high resource languages to
exploit both monolingual and cross-lingual settings.
Kapoor et al. (2018) utilize apply transfer learning
and design an LSTM based model of hate speech
detection for hate speech and offensive speech in
Hinglish (Hindi-english). Work performed on code-
switched Tamil-English and Malayalam-English
text includes corpus created for sentiment analysis
for these two languages (Gupta et al., 2021).

Our work seeks to implement an algorithm for
creating synthetic code-switched data and testing
the efficacy of using that synthetic data for fine-
tuning a multi-lingual language model for binary
offensive content detection.

3 Dataset

The language combinations produced from code-
switching can increase the complexities of NLP
tasks (e.g. hatespeech detection, sentiment analy-
sis, etc). To stimulate research in this domain and
directly tackle the code-switched abusive language
detection task, we create and release a 10k sentence
test-set created by human annotators. Additionally,
we generate and release around 30k sentence syn-
thetic dataset to train a model (see the statistics in
Table 2).

3.1 Benchmark Dataset Creation
Creating a benchmark test-set is an essential task
for this study since it can stimulate the research
further. To make the benchmark test reflect the
real-world usage, we build the dataset from mono-
lingual hate speech data created from real user text.
We first take HateXplain (Mathew et al., 2021)
data, which has fine-grained labels indicating the
span related to the abusiveness. We ask bi-lingual
human annotators to carefully translate the marked
span (abusive words) into their second language
(German, French, Spanish) and create code-mixed
text. We called this dataset SWAP.

We further create a test-set by asking annotators
to rewrite existing abusive text as a code switched
version. We request annotators to REWRITE given
sentences (HASOC (Mandl et al., 2020)) into a
mix between English and their secondary language
(German, French, Spanish). We ask annotators
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We cannot continue calling ourselves feminists if the rights of all
women are not addressed yes to sexual offenses public list but
will trans lesbian bisexual and queer women are able to enter
their information on the reporting sheet gender forum

We cannot continue calling nosotros las feminists if the rights of
all women are not addressed yes to lista pública de delitos
sexuales but will trans lesbianas bisexuales and queer women are
able to enter their information on the hoja de presentación de
informes de género forum

ourselves feminists
sexual offenses public list

trans lesbian bisexual
reporting sheet gender

nosotros las feminists
lista pública de delitos sexuales

trans lesbianas bisexuales
hoja de presentación de informes de género

Translation

Phrase
Extraction

Reintegration

Figure 1: Synthetic Code Switching Generation Framework

to maintain hateful/offensive translations as much
as possible. This process is focused on generat-
ing code switched text that represents the natu-
ral occurrence of code-switching. We called this
dataset REWRITE.

We utilize MTurk3 and Upwork4 platforms for
SWAP and REWRITE respectively to work with
bi-lingual annotators and translators to generate
diverse code-switched sentences. Table 1 shows
examples of the input and output from the workers.

To validate the data generated by our human
annotators, we resubmit the new code-switched
sentences to MTurk. We ask workers to rate the
sentences based on naturalness. We provide a
scale from 1 (Excellent - completely natural code-
switching) to 5 (Bad - completely unnatural code-
switching). Sentences that receive a rating of 3 to 5
are resubmitted to MTurk workers to be re-written
in a more natural manner (We provide further in-
formation in Appendix A).

3.2 Synthetic dataset generation
Due to the low-resourced nature of code-switching
textual data, we generate synthetic training data
to extend the training data for this classification
task (see Figure 1). Our synthetic data generation
occurs in three stages.
Phrase Identification The first stage in generation
is the identification of phrases in the mono-lingual
source text. We analyze existing real word abu-
sive speech datasets, which are written in mixed
languages (Bohra et al., 2018; Patwa et al., 2020)
and find that one of the salient patterns is switching
“noun phrase” in the sentence (Couto and Gullberg,
2019; Dorota et al., 2021). To specify the salient

3https://www.mturk.com/
4https://www.upwork.com/

phrases in the sentences, we employ a pre-trained
language model-based phrase tagging method (Gu
et al., 2021). The original texts are passed into the
tagging model to generate spans corresponding to
the phrases in the sentences. Sentences that are not
tagged with phrases are discarded from the dataset.

Phrase Translation Each phrase tagged in a sen-
tence is then translated using the automatic ma-
chine translation model. We employ EasyNMT
(Fan et al., 2021), an open-source state-of-the-art
neural machine translation model that can trans-
late 100+ languages. The phrases are fed into the
translation model and translated to the destination
language of our choice.

Phrase Reintegration After the phrases have been
translated into the destination language of our
choice, we then replace the tagged phrases in the
source text with the new translated phrases. After
the phrases have been reintegrated into the source
text, the synthetically generated is ready to be uti-
lized for training purposes.

To test the efficacy of our synthetic data gen-
eration framework, we first generate three hate-
speech code-switching combinations, English-
French (EN-FR), English-Spanish (EN-ES), and
English-German (EN-DE). These language com-
binations are specifically chosen for there low-
resourced nature in the hate-speech domain. The
source text for this data is HateXplain (Mathew
et al., 2021), a dataset of labeled hate-speech sen-
tences sourced from the internet. We use the train-
ing subset of this data to generate our training data
synthetically. Statistics of the synthetic data created
can be seen in Table 2.
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Model
SWAP testset REWRITE testset

Eng-FR Eng-ES Eng-DE Eng-FR Eng-ES Eng-DE

f1 WA f1 WA f1 WA f1 WA f1 WA f1 WA

Dictionary 0.290 0.300 0.540 0.570 0.460 0.460 0.660 0.680 0.670 0.690 0.370 0.510
XLM-Rsyn 0.550 0.580 0.530 0.550 0.670 0.670 0.530 0.580 0.590 0.620 0.580 0.610

Table 3: Experimental results on the benchmark testset. Each model is trained with synthetic dataset.

Model Eng-FR Eng-ES Eng-DE

f1 WA f1 WA f1 WA

XLM-Rsyn 0.530 0.580 0.590 0.620 0.580 0.610
XLM-RSWAP 0.610 0.620 0.520 0.530 0.430 0.510
XLM-Rsyn+SWAP 0.580 0.620 0.600 0.630 0.580 0.610

Table 4: Model is trained with synthetic, SWAP, or
synthetic+SWAP and evaluated on REWRITE testset.

4 Method

We employ a human-annotated lexicon dictionary
for abusive language and build a binary classifica-
tion model as a baseline model. Furthermore, we
explore the performance of the recently proposed
multilingual neural network-based model.

4.1 Baseline Model

We leverage offensive and abusive speech lexicons
sourced from (Hatebase) to develop a keyword-
based classification algorithm. Specifically, we
compiled four dictionary lexicons of hate-speech
words from each language present (English, French,
German, and Spanish). Each lexicon is used as a
look-up table to determine if words present in given
sentences are considered hate/offensive or not.

4.2 Transformer Based Model

To leverage the pretrained language model (PLM),
we employ a multilingual model, XLM-RoBERTa
(XLM-R), and build the abusive content clasi-
fier (Conneau et al., 2019)5. In implementing the
model, we feed the code-switched sentence to the
XLM-R, and the “[CLS]” token is further passed
through a two-layer fully-connected network. The
final output is compared with the label, and loss
is computed using the cross-entropy function (We
provide more details in Appendix B).

5We also test other variants of multilingual models such
as multilingual BERT (Devlin et al., 2019) and multilingual-
DistilBERT (Sanh et al., 2019) on the downstream tasks and
find the XLMR consistently shows superior performance.

5 Experimental Results and Discussion

To fine-tune the XLM-R model, we perform a learn-
ing rate schedule. We base the scheduling on the
validation split macro F1 scores instead of using
the loss from the validation. We adopt this ap-
proach from (Roy et al., 2021) where the authors
focus on the validation scores at the end of each
training iteration instead of using early-stopping to
prevent over-fitting. If the validation performance
decreases through an iteration, we backtrack to the
previous model weights and decrease our learning
rate. Training ends when the learning rate reaches
a significantly small value. This type of scheduling
guarantees that the Macro F1 score is maximized
on the validation split.

We ran three experiments for both our dictionary
and transformer-based models; (1) training on a
synthetic dataset and testing on SWAP/REWRITE
datasets, (2) training on SWAP, and testing on
REWRITE, (3) training on synthetic and SWAP
datasets, and testing on REWRITE. Table 3 and
Table 4 show the experimental results in terms of
F1 score and weighted accuracy (WA). An interest-
ing observation in our experiment is the different
results on our SWAP & REWRITE testsets. For
instance, when code-switching semantics tend to-
wards the swapping of offensive words between
languages (SWAP testset), an LLM trained on our
synthetic can perform better than dictionary-based
detection (EN-DE). This is primarily due to the fact
that our synthetic data generation algorithm is most
similar to these types of occurrences. We also find
that our synthetic dataset shows strong utility even
better than human-annotated data (see Table 4). In
other cases, we can see a decrease in performance
when the structure of the code-switched sentences
is more complex.

Based on some of these observations, we believe
this algorithm can be useful in extending model
training sets by mixing both synthetic data with
real-world training data.
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6 Conclusion

We released human-annotated testsets for the under-
resourced en-fr, en-de, en-es language combina-
tions (approximately 10k). Additionally, we pro-
posed a synthetic code-switched data generation
algorithm for training purposes in low resourced
domains. Using this algorithm, we generated a
synthetic offensive-content dataset comprised of
30k entries for en-fr, en-de, en-es language com-
binations. We create two baselines models and
report their results on the human-annotated test-
sets. We expect this resource will enable the re-
searchers to address new and exciting problems in
code-switching research.
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A Data Collection

A.1 Sentence Generation
We generate code-switched sentences from the
test-split of HateXplain and HASOC. The test-
split of the HateXplain data-set contains sentences
with words tagged by annotators that convey hate-
speech and offensive content. These sentences and
words are given to code-switching annotators on
Amazon Mechanical Turk (Mturk) platform to per-
form the SWAP method as described in section
3.2. HASOC sentences do not contain annotated
hate and offensive words and so this data is sent to
bi-lingual translators on the Upwork platform.

MTurk is a crowdsourcing marketplace that sim-
plifies the outsourcing of tasks to a distributed
workforce who can perform these tasks virtually.
Mturk allows individuals and businesses to post
batches of assignments for workers.

On Upwork, three job posting are created with
the following criteria:

• Fluency in English & (German, French or
Spanish)

• Familiarity with colloquial terminology

Freelancers are then chosen based on the above
criteria. The freelancers perform the REWRITE
method of sentence generation as described in sec-
tion 3.2.

A.2 Instructions to Annotators
Annotators for both the SWAP & REWRITE meth-
ods, are given instructions on how to complete the
annotation tasks. An example of the SWAP annota-
tion instructions and an example of a task on mturk
can be seen in Fig. 2 and Fig. 3 respectively.

For SWAP, we request annotators to change a
given English sentence into a mix of English and
their native language (German, French, or Span-
ish) by focusing the switching on the provide list
of words that are pre-determined to be hateful or
offensive. If the sentence provided is not offen-
sive, we then request that the annotator create a
mixed version of the sentence based on their own
discretion.

For REWRITE, we request annotators to rewrite
the given sentences into a mix between English and
their native language (German, French, or Spanish)
based on their own discretion. We ask the annota-
tors to maintain hateful or offensive translations as
much as possible.

A.3 Validating Annotators’ data
To validate the naturalness of the intial code-
switched data generated by the MTurk and Upwork
workers, we resubmitted the sentences to Mturk
asking workers fluent in the language combina-
tions to rate the code-switched sentences on their
level of naturalness. This rating was done on the
following scale:

• Excellent - Completely natural code-mixing

• Good - Mostly natural code-mixing

• Fair - Equally natural and unnatural code-
mixing

• Poor - Mostly unnatural code-mixing

• Bad - Completely unnatural code-mixing

Sentences that received ratings from fair to bad
were additionally resubmitted to Mturk for workers
to rewrite the sentence in a more natural manner of
code-switching.

A.4 Workers Pool & Pay
For MTurk, we hire the annotators whose locations
is either France, Germany, Mexico, Spain. This
restriction of location helps to ensure the annotators
speak both the national language of the country
as well as English We restrict the workers whose
HIT approval rates are higher than 95%. We pay
workers around 12 USD per hour.

For Upwork, we hire translators who are profes-
sionally fluent in either German, French, or Span-
ish. We choose the translators who best showcase
the ability to create a code-switched rewrite by
rewriting a few test examples. Each translator is
paid according to a negotiated fee based on the
number of sentences to REWRITE. We pay anno-
tators 10 USD per 30 sentences, which is above the
average rate for a similar task on Upwork.

B Reproducibility Checklist

• Source code with specification of all depen-
dencies, including external libraries: The
source code is included in the submission. It
provides information about the dependencies
including external libraries and instructions
on how to run the proposed models.

• Description of computing infrastructure
used: We use a single Tesla V100 GPU with
16GB memory in this work. PyTorch 1.1 is
used to implement the models.
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Figure 2: Annotator instructions on SWAP task

Figure 3: Interface for human code-switching annotation task for SWAP method

• Average run-time for each approach: Each
epoch of the XLMR models, on average, takes
2 minutes for binary offensive classification.
We train the model until learning rate reaches
a very small value.

• Number of parameters in the model: We
use XLMR in our in our experiments. This
model has 2.7 million parameters to be opti-
mized during training.

• Explanation of evaluation metrics used: To
evaluate the performance of the model, we
use the the weighted average and F1 scores
for prediction.

• Hyper-parameter configurations for best-
performing models: Our model has 768 hid-

den layers. The Adamw optimizer learning
rate is set to 2e-5 and the batch size is 16.

• The method of choosing hyper-parameter
values and the criterion used to select
among them: Random search is used to deter-
mine the hyper-parameters. The selection is
determined F1 scores and the selected hyper-
params are used across experiments for uni-
formity.
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Abstract

Recent years have witnessed the proliferation
of offensive content online such as fake news,
propaganda, misinformation, and disinforma-
tion. While initially this was mostly about
textual content, over time images and videos
gained popularity, as they are much easier to
consume, attract more attention, and spread fur-
ther than text. As a result, researchers started
leveraging different modalities and combina-
tions thereof to tackle online multimodal offen-
sive content. In this study, we offer a survey on
the state-of-the-art on multimodal disinforma-
tion detection covering various combinations of
modalities: text, images, speech, video, social
media network structure, and temporal infor-
mation. Moreover, while some studies focused
on factuality, others investigated how harmful
the content is. While these two components in
the definition of disinformation – (i) factuality,
and (ii) harmfulness –, are equally important,
they are typically studied in isolation. Thus, we
argue for the need to tackle disinformation de-
tection by taking into account multiple modali-
ties as well as both factuality and harmfulness,
in the same framework. Finally, we discuss cur-
rent challenges and future research directions.

1 Introduction

The proliferation of online social media has en-
couraged individuals to freely express their opin-
ions and emotions. On one hand, the freedom of
speech has led to a massive growth of online con-
tent which, if systematically mined, can be used
for citizen journalism, public awareness, political
campaigning, etc. On the other hand, its misuse
has given rise to the proliferation of hostility online
(Brooke, 2019; Joksimovic et al., 2019), resulting
in offensive content in the form of fake news, hate
speech (Schmidt and Wiegand, 2017a; Davidson
et al., 2017), propaganda (Da San Martino et al.,

∗Work done while T. Chakraborty was at IIIT-Delhi, In-
dia.

2019), cyberbullying (Van Hee et al., 2015), etc.
Indeed, researchers have argued that this situation
has set the dawn of the Post-Truth Era, dominated
by emotions and “alternative facts” (Lewandowsky
et al., 2017; Cooke, 2018; Nakov and Da San Mar-
tino, 2020). More recently, with the emergence
of the COVID-19 pandemic, a new blending of
medical and political false information has given
rise to the first global infodemic (Paka et al., 2021;
Zarocostas, 2020; Patwa et al., 2021).1

The term “fake news” is commonly used, al-
though it is very generic, and misleads people to
focus only on veracity. That is why international or-
ganizations such as the UN, WHO, EU, and NATO
prefer the term disinformation (Ireton and Posetti,
2018), which refers to information that is (i) fake
and also (ii) spreads deliberately to deceive and
harm others. The latter aspect of the disinforma-
tion (i.e., harmfulness) is often ignored, but it is
equally important. A related term is misinforma-
tion, which also refers to the spreading of false
content, but lacks the underlying intention to do
harm. This is illustrated by the definitions of these
notions by First Draft (Ireton and Posetti, 2018)
where misinformation is defined as “unintentional
mistakes such as inaccurate photo captions, dates,
statistics, translations, or when satire is taken seri-
ously”, while disinformation is “fabricated or de-
liberately manipulated text/speech/visual context,
and also intentionally created conspiracy theories
or rumors”.

In our survey, we will focus on disinformation,
and we will study both the factuality and harmful-
ness aspects of the problem, with focus on different
modalities. Note that there are posts that can be
harmful but factually true or non-factual but harm-
ful (e.g., hate speech); our study also covers some
related work on them. The term factuality refers to
automatically evaluating the solidity of the report-
ing/social media statements in terms of facts and

1https://www.who.int/health-topics/infodemic
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figures (Ireton and Posetti, 2018). The harmfulness
or harmful content typically refers to “anything
online which causes a person distress or harm”.2

Figure 2, in Appendix, gives examples of such con-
tent. Alam et al. (2021) addressed both aspects of
disinformation using social media content related
to the COVID-19 infodemic. They demonstrated
a correlation between factuality and harmfulness,
which varies across languages even in the same
country, e.g., for Arabic, 56% of the false content
was harmful, while for English, it was 24%.

Disinformation often spreads as text. However,
Internet and social media allow the use of differ-
ent modalities, which can make a disinformation
message attractive as well as impactful, e.g., a
meme or a video is much easier to consume, at-
tracts much more attention, is perceived as more
credible (Hameleers et al., 2020), spreads further
than simple text (Zannettou et al., 2018), and can
be weaponized (Olsen, 2018).

Notably, multimodality remains under-explored
in disinformation detection. Bozarth and Budak
(2020) performed a meta-review of 23 fake news
models and the data modality they leveraged, and
found that 91.3% used text, 47.8% looked into
social media network structure, 26% relied on tem-
poral data, and only a handful made use of images
or videos. Moreover, while there has been research
to detect whether an image or a video has been ma-
nipulated, the attempt is less in a truly multimodal
setting (Pérez-Rosas et al., 2015; Tan et al., 2020;
Zhang et al., 2022; Song et al., 2021; Giachanou
et al., 2020; Denaux and Gomez-Perez, 2020).

Here we survey research on multimodal disin-
formation detection covering various combinations
of modalities: text, images, speech, video, social
media network structure, and temporal information.
The data sources include social media (e.g., Twit-
ter), news, video (e.g., courtroom trials), and TV
shows. We further argue for the need to cover multi-
ple modalities in the same framework, while taking
both factuality and harmfulness into account.

While there have been a number of surveys on
“fake news” (Shu et al., 2017; Kumar and Shah,
2018; Cardoso Durier da Silva et al., 2019; Zhou
and Zafarani, 2020), misinformation (Islam et al.,
2020), fact-checking (Thorne and Vlachos, 2018;
Kotonya and Toni, 2020a), truth discovery (Li et al.,
2016), rumour detection (Bondielli and Marcelloni,
2019), harmful memes (Sharma et al., 2022) and

2https://swgfl.org.uk/services/report-harmful-content/

propaganda detection (Da San Martino et al., 2020),
none of them had multimodality as the main focus.
Moreover, they targeted either factuality (most sur-
veys above), or harmfulness (the latter survey), but
not both. Here, we aim to bridge this gap. There-
fore, in the present survey, we analyze the literature
covering various aspects of multimodality (text, im-
age, speech, video, network, and temporal), with a
focus on the two aspects of disinformation: factu-
ality and harmfulness, as shown in Figure 1.

Figure 1: Our vision of multimodality to interact with
harmfulness and factuality in this survey.

2 Multimodal Factuality Prediction

In this section, we focus on the first aspect of dis-
information – factuality. Automatic detection of
factual claims is important to debunk the spread
of misleading information, as it is crucial to de-
tect the factuality of statements that can mislead
people. A large body of work has been devoted to
fact-checking textual claims but such claims are of-
ten expressed and disseminated together with other
modalities such as images, speech, and video, and
are further propagated through social networks. We
summarize relevant studies in Table 1.

2.1 Text

Due to the availability of large amounts of textual
content, research on the text modality is compar-
atively richer than for other modalities. Notable
work in this direction covers fake news spread on
social media (Vosoughi et al., 2018b), fake news
and fact-checking on news media (Rashkin et al.,
2017), fact-checking such as fact-checked URL
recommendation model (Vo and Lee, 2018) to re-
duce the spread, fact-checking with stance detec-
tion (Baly et al., 2018b), factuality of media outlets
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Ref. Task Modality Data/Source Anno. Lang Method

T I V N S

(Baly et al., 2020) Bias, factuality ✓ ✓ MBFC M En SVM, BERT
(Dinkov et al., 2019) Bias ✓ ✓ MBFC M En MM deep learning architecture
(Baly et al., 2018a) Bias, factuality ✓ MBFC M En SVM
(Shao et al., 2018) Credibility∗ ✓ Articles and tweets M En Statistical analysis
(Sen et al., 2020) Deception ✓ CTD: 121 videos M En RF, SVM and NN classifiers
(Soldner et al., 2019) Deception ✓ TV Show M En RF

(Volkova et al., 2019) Deception ✓ ✓
Twitter; T1: 2,485,
T2-T3: 56,691,
T4: 496,929

M En Feature fusion with AdaBoost/NN

(Krishnamurthy et al., 2018) Deception ✓ CTD: 121 videos M En MLP
(Kaya and Karpov, 2016) Deception ✓ CSC: 25 videos M En PLS/ELM based model
(Levitan et al., 2016) Deception ✓ CSC: 25 videos M En SMO, Bagging, Dagging, BN and NB
(Pérez-Rosas et al., 2015) Deception ✓ CTD: 121 videos M En DT and RF
(Hirschberg et al., 2005) Deception ✓ CSC: 25 videos M En Rule-based classifier
(Kazemi et al., 2021) Facuality ✓ FEVER M En Deep Q-learning network
(Atanasova et al., 2020) Factuality ✓ Liar-Plus M En DistilBERT
(Sathe et al., 2020) Facuality ✓ WikiFactCheck M En SVM, Decomposable attention model

(Shaar et al., 2020) Facuality ✓ Political debates M En
Learning-to-rank approach, BM25,
BERT, RoBERTa, sentence-BERT

(Kopev et al., 2019) Facuality ✓ ✓ Political debates M En MM fusion: concatenation

(Vo and Lee, 2018) Facuality ✓

Fact-checked tweets from:
Snopes.com, Politifact.com,
FactCheck.org, OpenSecrets.org,
TruthOrfiction.com and
Hoax-slayer.net

M En
BPRMF , MF, CoFactor, CTR,
proposed a joint model

(Baly et al., 2018b) Facuality ✓ Claims from Verify and Reuters M Ar
Gradient boosting, multilayer perceptron,
softmax layer, end-to-end memory network

(Rashkin et al., 2017) Facuality ✓ Politifact M En LSTM, MaxEnt, NB

(Nguyen et al., 2020) Fake news ✓ ✓
PHEME ,
Twitter (snopes.com), Weibo,
FakeNewsNet

M En Graphical social context

(Nakamura et al., 2020) Fake news ✓ ✓ Reddit: 1m posts DS En MM fusion
(Shu et al., 2020) Fake news ✓ ✓ PolitiFact and GossipCop M En GNB, DT, LR, and RF

(Shu et al., 2019) Fake news ✓ ✓ BuzzFeed and PolitiFact M En
LR, NB, DT,
XGBoost, AdaBoost, and GB

(Vosoughi et al., 2018a) Fake news ✓ ✓ Twitter: 126,000 posts M En Statistical analysis, Topic modeling

(Liu and Wu, 2018) Fake news ✓ ✓
Weibo: 4,664 (Ma et al., 2016),
Twitter15: 1,490 (Ma et al., 2017),
Twitter16: 818 (Ma et al., 2017)

M En DT, SVM, GRU, RF, RNN, CNN

(Rashkin et al., 2017) Fake news ✓ Gigaword corpus, articles from
seven unreliable news sites

M En MaxEnt

(Boididou et al., 2016) Fake ✓ ✓ Social media M En -
(Gupta et al., 2013) Fake news ✓ Twitter: 16,117 tweets M En DT on balanced dataset, NB
(Wang et al., 2021) Fauxtography ✓ ✓ Twitter, 4chan, and Reddit M En Analytical
(Zhang et al., 2018) Fauxtography ✓ ✓ Reddit: 91, Twitter: 390 M En Feature fusion with XGBoost
(Heller et al., 2018) Image tampering∗∗ ✓ Reddit: 102,028 images A - -
(Garimella and Eckles, 2020) Misinformation∗∗ ✓ WhatsApp: 2,500 images M - -
(Zannettou et al., 2018) Memes propagation ✓ ✓ Twitter, Reddit, 4chan, and Gab DS - Memes analysis

(Vosoughi et al., 2017) Rumor ✓ ✓ Twitter: 113 false and 96 true M En
Temporal, propagation
linguistic, and user
credibility features

(Kwon et al., 2017) Rumor ✓ ✓ Twitter, snopes.com, and
urban-legends.about.com

M En RF

Table 1: Summary of the most relevant works on factuality, covering different modalities and tasks. T:Text, I:
Image, V:Video, N:Network, S:Speech. CTD: Courtroom trial dataset, CSC: Columbia/SRI/Colorado Corpus.
Anno.: Annotation, M: manual annotation; DS: distant supervision. MM: Multimodal, SVM: Support Vector
Machine, RF: Random Forest, DT: Decision Tree; NN: Neural Network, MLP: Multi-layer Perceptron, PLS: Partial
Least Squares regression; ELM: Extreme Learning Machines, NB: Naïve Bayes, BN: BayesNet, BPRMF: Bayesian
Personalized Ranking Matrix Factorization, , MF: Matrix Factorization, CTR: Collaborative Filtering Regression,
GNB: Gaussian Naive Bayes; LR: Logistic Regression; GB: Gradient Boosting, GRU: Gated Recurrent Units, RNN:
Recurrent Neural Networks, CNN: Convolutional Neural Networks. ∗ Also include botometer features. T1-T4
represents different tasks. ∗∗ dataset only.

(Baly et al., 2020, 2018a), generating justifications
for verdicts on claims (Atanasova et al., 2020), and
fact-checking claims from Wikipedia (Sathe et al.,
2020). There have also been recent efforts for fact-
checking from political debates (Shaar et al., 2020,
2022, 2021; Nakov et al., 2022b,a), fact-checking
with evidence reasoning (Si et al., 2021; Jiang et al.,
2021; Wan et al., 2021) and fact-checking by claim
matching (Kazemi et al., 2021). Given that there
have been surveys on the text modality for fake
news/disinformation detection and fact-checking,
here we will not go into more detail about the indi-
vidual studies.

2.2 Image

Text with visual content (e.g., images) in social me-
dia is more prominent as it is more intuitive; thus,
it is easier to consume, it spreads faster, it gets
18% more clicks, 89% more likes, and 150% more
retweets (Zhang et al., 2018). Due to the growing
number of claims disseminated with images, in the
current literature, there have been various studies
that address the visual content with text for predict-
ing misleading information (Volkova et al., 2019),
fake images (Gupta et al., 2013), images shared
with misinformation in political groups (Garimella
and Eckles, 2020), and fauxtography (Zhang et al.,
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2018; Wang et al., 2021). Some of these studies
attempt to understand how two different modalities
are used. Their analyses show that the extension of
text with images increases the effectiveness of mis-
leading content. Gupta et al. (2013) highlighted the
role of Twitter to spread fake images. This study
reports that 86% tweets spreading fake images are
retweets. Garimella and Eckles (2020) manually
annotated a sample of 2,500 images collected from
public WhatsApp groups, and labeled them as mis-
information, not misinformation, misinformation
already fact-checked, and unclear; however, ex-
periments were conducted with binary labels: mis-
information vs. not-misinformation. The authors
found that violent and graphic images spread faster.
Nakamura et al. (2020) developed a multimodal
dataset containing 1M posts including text, images,
metadata, and comments collected from Reddit.
The dataset was labeled with 2, 3, and 6-ways la-
bels. Volkova et al. (2019) proposed models for
detecting misleading information using images and
text.

Fauxtography is defined as “visual images, es-
pecially news photographs, which convey a ques-
tionable (or outright false) sense of the events they
seem to depict” (Cooper, 2007). It is also com-
monly used in social media in different forms such
as a fake image with false claims, a true image with
false claims. Zhang et al. (2018) defined that “a
post is a fauxtography if the image of the post (i)
directly supports a false claim, or (ii) conveys mis-
information of a true claim.” An example is shown
in Figure 2 (in Appendix A). Zhang et al. (2018) de-
veloped FauxBuster to detect fauxtographic social
media content, which uses social media comments
in addition to the content in the images and the
texts. Zlatkova et al. (2019) investigated the fac-
tuality of claims with respect to images and com-
pared the performance of different feature groups
between text and images. Wang et al. (2021) ana-
lyzed fauxtography images in social media posts
and found that posts with doctored images increase
user engagement in the form of re-shares, likes, and
comments, specifically in Twitter and Reddit. They
pointed out that doctored images are often used as
memes to mislead or as a means of satire, and that
they have a ‘clickbait’ power to drive engagement.

2.3 Speech/Audio

There have been attempts to use acoustic signals
to predict the factuality of claims in political de-

bates (Kopev et al., 2019; Shaar et al., 2020), left-
center-right bias in YouTube channels (Dinkov
et al., 2019), and deception in speech (Hirschberg
et al., 2005). Kopev et al. (2019) found that the
acoustic signal helps in improving the performance
compared to using only textual and metadata fea-
tures. Similarly, Dinkov et al. (2019) reported that
the use of speech signal improves the performance
of the system for detecting the political bias (i.e.,
left, center, right) of Youtube channels. More-
over, a large body of work was done on deception
detection using the acoustic signal. Hirschberg
et al. (2005) created the Columbia-SRI-Colorado
(CSC) corpus by eliciting within-speaker deceptive
and non-deceptive speech. Their experiments con-
sist of the use of acoustic, prosodic, and a variety
of lexical features including 68 LIWC categories,
filled pauses, and paralinguistic information (e.g.,
speaker information, gender, field-pause). Using
the same corpus, an evaluation campaign was or-
ganized, where different multimodal approaches
were proposed, such as fusion of different acoustic,
prosodic, lexical, and phonotactics representations
(Levitan et al., 2016; Kaya and Karpov, 2016).

2.4 Video
In addition to textual, imagery, and speech content,
the information in video plays an important role in
capturing cues of deceptive behavior. Such cues
in videos (e.g., facial expression, gestures) have
been investigated in several studies for deception
detection. Pérez-Rosas et al. (2015) developed a
real-life courtroom trial dataset, which includes 61
deceptive and 60 truthful videos. They explored
the use of n-gram features from transcripts and
non-verbal features (i.e., facial expressions, eye-
brows, eyes, mouth openness, mouth lips, and head
movements, hand gestures) to classify liars and
truth-tellers. Krishnamurthy et al. (2018) explored
textual, speech, and visual features for deception
detection. They used a 3D CNN to extract visual
features from each frame, spatio-temporal features,
and facial expressions such as smile, fear, or stress.
Soldner et al. (2019) developed a multimodal de-
ception dataset using TV shows and experimented
with textual, visual and dialog features.

2.5 Network and Temporal Information
The rationale for leveraging network information
stems from early work (Shao et al., 2018; Vosoughi
et al., 2018a) that showed that propagation and in-
teraction networks of fake news are deeper and
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wider than those of real news. Vosoughi et al.
(2018a) further found that fake information spreads
faster than factual one, thus advocating for the use
of temporal information.

Propagation networks can be homogeneous or
heterogeneous (e.g., encompassing news articles,
publishers, users, and posts) and they can be ana-
lyzed at different scales (e.g., node-level, ego-level,
triad-level, community-level and the overall net-
work, as shown in Figure 3, in Appendix) (Zhou
and Zafarani, 2019). Shu et al. (2020) tackled the
fake news classification task by proposing an ap-
proach based on hierarchical propagation networks.
At both micro- and macro-scale, they extracted
and jointly considered network features, temporal
features, and linguistic features. Experiments on
PolitiFact and GossipCop datasets revealed that
temporal features have maximum contribution, fol-
lowed by network and linguistic features. Shu et al.
(2019) provided one of the most thorough mul-
timodal frameworks for fake news classification.
Their experimental results suggest that social con-
text (i.e., network-derived) features are more infor-
mative than news content ones.

Vosoughi et al. (2017) proposed Rumor Gauge,
a system that jointly exploits temporal and propa-
gation features, in conjunction with linguistic and
user credibility features, for checking the verac-
ity of rumors. In particular, Rumor Gauge lever-
ages text, and network propagation. The temporal
modality does not directly provide features, but is
instead considered by recomputing all other fea-
tures at regular time steps, thus yielding multiple
time series. Results by Vosoughi et al. (2017) and
Kwon et al. (2017) also demonstrated that the con-
tribution of the different data modalities change
over time.

To mitigate the “cold start” problem of
propagation-based early detection of fake news,
Liu and Wu (2018) proposed an approach that is
primarily based on user and temporal information.
First, they built a propagation path of each news as
a time series of user representations. The time se-
ries for a given news only contains the ordered rep-
resentations of those users that shared such news.
Then, they learned two vector representations of
each propagation path via GRUs and CNNs, respec-
tively. Zannettou et al. (2018) analyzed different
aspects of memes, such as how they evolve and
propagate in different mainstream and fringe web
communities, and variants of memes that propa-

gate. Finally, Nguyen et al. (2020) proposed Fac-
tual News Graph (FANG) to exploit the social struc-
ture and the engagement patterns of users for fake
news detection.

3 Multimodal Harmful Content Detection

In this section, we focus on the second aspect of
disinformation: harmfulness. It is essential to fil-
ter or to flag online harmful content. The harm-
ful content includes child abuse material, violent
and extreme content, hate speech, graphic content,
sexual content, and spam content (Banko et al.,
2020).3 In recent years, the ability to recognize
harmful content within online communities has re-
ceived a lot of attention by researchers (Pramanick
et al., 2021a,b) and policymakers that aim to keep
users safe in the digital world. Studies in this direc-
tion include detecting harmful contents in network
science (Ribeiro et al., 2018), natural language pro-
cessing (Waseem et al., 2017; Schmidt and Wie-
gand, 2017b; Fortuna and Nunes, 2018) and com-
puter vision (Yang et al., 2019a; Vijayaraghavan
et al., 2021; Gomez et al., 2020; Dimitrov et al.,
2021b). In Table 2, we provide a list of relevant
work addressing different types of harmful content,
modalities, source of data, annotation approach,
language of the content and the methods.

3.1 Text

In the past few years there has been signifi-
cant research effort on detecting harmful con-
tent (e.g., hate speech) from social media posts
(Van Hee et al., 2015; Waseem and Hovy, 2016;
Waseem et al., 2017; Schmidt and Wiegand, 2017b).
Waseem and Hovy (2016) developed a dataset of
hate speech consisting of 16K tweets, and reported
a baseline results using char- and word- ngrams
and a logistic regression classifier. (Davidson
et al., 2017) distinguished between hate speech,
and offensive language. They developed a dataset
of ∼24K labeled tweets with categories such as
hate speech, offensive language and neither. Qian
et al. (2018) took a different approach to clas-
sic hate speech classification. Instead of binary
classes, they proposed 13 fine-grained hate cate-
gories such as nationalist, anti-immigrant, racist
skinhead, among others, providing a dataset of
tweets collected from 40 hate groups. Ribeiro et al.
(2018) proposed an approach to find hateful users
on Twitter. Mathew et al. (2019) analyzed 341K

3https://swgfl.org.uk/services/report-harmful-content/
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Ref Task Modality Data/Source Anno. Lang Method

T I V N S

(Nizzoli et al., 2021) CIB ✓ Twitter: 1.1m users, 11m tweets DS En Statistical and similarity analysis
Weber and Neumann (2020) CIB ✓ Twitter – En Statistical and network analysis
(Wang et al., 2020) Cyberbullying ✓ ✓ Posts: Vine (970), Instagram (2,218) M En SVM, NB, LR, RF, LSTM, CNN
(Soni and Singh, 2018) Cyberbullying ✓ ✓ ✓ Vine videos M En KNN, SVM, LR, RF, GNB
(Dadvar and Eckert, 2018) Cyberbullying ✓ Youtube 54k posts M En LSTM, BiLSTM, CNN
Hosseinmardi et al. (2015) Cyberbullying ✓ ✓ ✓ Instagram M En SVM
(Rafiq et al., 2015) Cyberbullying ✓ ✓ Vine videos M En NB, AdaBoost, DT and RF
(Van Hee et al., 2015) Cyberbulling ✓ Ask.fm: 85k QA pairs M Nl SVM

(Chatzakou et al., 2019)
Cyberbullying,
Cyberaggression

✓ ✓ Twitter: 1,303 users, 9,484 tweets M En
NB, RF, AdaBoost,
Ensemble, NN

(Liang et al., 2017) Gunshots ✓
Videos: freesound.com, Youtube;
Test: CSV, TRECVID Gunshot,
UrbanSound Gunshot

DS En Localized self-paced reranking

(Mariconti et al., 2019) Hate attacks ✓ ✓ ✓ Youtube videos (428) M En Ensemble, CNN, RNN

(Kiela et al., 2020) Hate speech ✓ ✓ FB: Hateful Memes Challenge M En
Late fusion, Concat BERT, MMBT,
ViLBERT, VisualBERT

(Das et al., 2020) Hate speech ✓ ✓ FB: Hateful Memes Challenge M En VisualBERT, MM fusion
(Gomez et al., 2020) Hate speech ✓ ✓ Twitter: MMHS150K M En Inception v3, LSTM, and MM fusion
(Yang et al., 2019a) Hate speech ✓ ✓ FB: train+dev 378k, test 53k M En Fusion: text + image embedding
(Waseem and Hovy, 2016) Hate speech ✓ Twitter: 16,914 tweets M En LR
(Davidson et al., 2017) Hate speech ✓ Twitter: 24,802 tweets M En LR, SVM, NB, DT, RF
(Qian et al., 2018) Hate speech ✓ Twitter: 40 accounts, 3.5m tweets DS En LR, SVM, Char-CNN, BiLSTM, HCVAE
(Ribeiro et al., 2018) Hate speech ✓ ✓ Twitter: 4,972 users M En GradBoost, AdaBoost, GraphSage
(Mathew et al., 2019) Hate speech ✓ ✓ Gab: 21m posts by 341k users DS En Lexicon based filtering, DeGroot

Dimitrov et al. (2021b) Propaganda ✓ ✓ FB: SemEval-2021 task 6:
950 Facebook memes

M En MM fusion, MM joint representation

(Vijayaraghavan et al., 2021) Hate speech ✓ ✓ In-house developed and
curated datasets

M En
MM late fusion, LR, SVM,
CNN, BiGRU, BiLSTM

(Constantin et al., 2020) Violence ✓ ✓ ✓ VSD96: Hollywood, Youtube M En
MM Early fusion; SVM, HMM, GMM,
Bayesian, MLP, QDA, PLDA, CNN,
KNN, unsupervised, hybrid

(Acar et al., 2013) Violence ✓ ✓ MediaEval VSD M En SVM (mid-level audio + low-level visual)
(Giannakopoulos, 2009) Violence ✓ Movies M - BN, kNN

Table 2: Summary of the most relevant works on harmful content. T:Text, I: Image, V:Video, N:Network,
S:Speech, Anno.: Annotation, CIB: Coordinated Inauthentic Behavior, QA: Question-answer, CSV: Real-life
Conflict Scene Videos, VSD: Violent Scene Detection. Nl: Dutch. KNN: k-Nearest Neighbors, LSTM: Long
Short-Term Memory, BiLSTM: Bidirectional LSTM, MMBT: MultiModal BiTransformers, HCVAE: Hierarchical
Conditional Variational Autoencoder, QDA: Quadratic Discriminant Analysis, PLDA: Probabilistic Linear Discrimi-
nant Analysis.

users and 21M posts collected from Gab to under-
stand the diffusion dynamics of hateful content.
Their findings suggest that the posts from hateful
user diffuse faster, wider, and have a greater out-
reach compared to the posts from non-hateful ones.

3.2 Image
Among different types of harmful content, cyber-
bullying is one of the major growing problems,
significantly affecting teens. Hosseinmardi et al.
(2015) investigated Instagram images and their as-
sociated comments for detecting cyberbullying and
online harassment. They developed a manually la-
beled dataset using CrowdFlower (which is now
Appen), where they followed standard procedures
for the annotation: using annotation guidelines,
qualification tests, gold standard evaluation and
quality control criteria such as minimum annota-
tion time. The annotated dataset consists of 998
media sessions (images and their associated com-
ments). A key finding of this study is that a large
fraction of the annotated posts (48%) with a high
percentage of negative words have not been la-
beled as cyberbullying. To train and to evaluate
the model, the authors used n-grams from text,
meta-data (e.g., the number of followers, followees,

likes, and shared media), and image categories as
features and experimented with Naïve Bayes and
SVM classifiers. Their study suggests that com-
bining multiple modalities helps to improve the
performance of the SVM classifier.

Hate speech is another important problem that
spreads over social media. The “Hateful Memes
Challenge” is an important milestone to advance
the research on this topic and the tasks is to detect
hateful memes (Kiela et al., 2020). Das et al. (2020)
proposed different approaches for hatefulness de-
tection in memes such as (i) extract the caption
and include this information with the multimodal
model, (ii) use sentiment as an additional feature
with multimodal representations. For hate speech
detection, Yang et al. (2019a) explored different
fusion techniques such as concatenation, bilinear,
gated summation, and attention, and reported that
combining the text with image embedding boosted
the performance in all cases. Vijayaraghavan et al.
(2021) proposed methods for interpreting multi-
modal hate speech detection models, where the
modalities consist of text and socio-cultural infor-
mation rather than images. Concurrently, Gomez
et al. (2020) introduced a larger dataset of 150K
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tweets for multimodal hate speech detection, con-
sisting of six labels.

Propaganda is another topic that has been ex-
plored in multimodal settings. Seo (2014) showed
how Twitter was used as a propaganda tool during
the 2012 Gaza conflict to build international sup-
port for each side of the conflict. Dimitrov et al.
(2021b) addressed the detection of persuasion tech-
niques in memes. Their analysis of the dataset
showed that while propaganda is not always fac-
tually false or harmful, most memes are used to
damage the reputation of a person or a group of
people. Dimitrov et al. (2021a) highlighted the
importance of both modalities for detecting fine-
grained propaganda techniques, with VisualBERT
yielding 19% improvement compared to using the
image modality only (with ResNet-152), and 11%
improvement compared to using the text modal-
ity only (with BERT). Similar observations were
made by (Kiela et al., 2020) for hateful meme de-
tection. Glenski et al. (2019) explored multilingual
multimodal content and categorizes disinformation,
propaganda, conspiracy, hoax, and clickbait.

3.3 Speech/Audio

Cues in spoken content can represent harmful be-
haviors and those cues can be used to automatically
detect such content. Due to the lack of data, studies
using the speech-only modality are comparatively
lower than other modalities even though it plays a
major role in many contexts. For example, for de-
tecting violent content such as screaming and gun-
shots, the speech modality can play an important
role, which other modalities might not be able to of-
fer. This is important as most often user-generated
contents are posted on newspapers or their social
media accounts without verifying the content of the
post, which can have serious consequences (Harkin
et al., 2012; Rauchfleisch et al., 2017).

Giannakopoulos (2009) studied the audio seg-
mentation approaches for segmenting violent (e.g.,
gunshots, screams) and non-violent (e.g., music,
speech) content in movies. The studies related to
violent content detection using acoustic features
also include (Acar et al., 2013), where the focus
was on finding violent content in movies.

Liang et al. (2017) proposed Localized Self-
Paced Reranking (LSPaR) for detecting gunshots
and explosion in videos using acoustic features.
Soni and Singh (2018) investigated audio, visual
and textual features for cyberbullying detection.

Their findings suggest that audio and visual fea-
tures are associated with the occurrence of cyber-
bullying, and both these features complement tex-
tual features.

3.4 Video
There are multiple studies on detecting cyberbul-
lying in video-based social networks such as Vine
(Rafiq et al., 2015) and YouTube (Dadvar and Eck-
ert, 2018). These studies show that although the
percentage of cyberbullying in video sessions is
quite low, automatic detection of these types of con-
tent is very challenging. Wang et al. (2020) used
textual, visual, and other meta-information to de-
tect social media posts with bullying topics. Their
proposed method was evaluated on publicly avail-
able multimodal cyberbullying datasets. Abd Kadir
et al. (2016) investigated the relationship between
emotion and propaganda techniques in Youtube
videos. Their findings suggest that propaganda
techniques in Youtube videos affect emotional re-
sponses. Content (e.g., Youtube videos) can also
be attacked by hateful users via posting hateful
comments through a coordinated effort. Mariconti
et al. (2019) investigated whether a video is likely
to be attacked using different modalities such as
metadata, audio transcripts, and thumbnails.

There has been a recent interest from different
government agencies to stop the spread of violent
content. Constantin et al. (2020) developed a mul-
timodal dataset, which consists of more than 96
hours of Hollywood and YouTube videos and high
variability of content. Their study suggests that
multimodal approaches with audio and images per-
form better.

3.5 Network and Temporal Information
The use of network data for predicting factuality
was motivated by results showing different propaga-
tion patterns for fake vs. real content. Such results
are lacking for harmful content. However, the in-
tention to harm in social media is often pursued
via coordinated actions, for instance, by groups of
users (e.g., social bots and trolls (Cresci, 2020))
that target certain people or minorities. These col-
laborative harmful actions, perpetrated to increase
the efficacy of the harm, are best addressed using
network analysis to detect likely coordinated harm-
ful campaigns. Chatzakou et al. (2019) focused
on detecting cyberbullying and cyberaggression
by training machine learning models for detect-
ing: (i) bullies, (ii) aggressors, (iii) spammers, and
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(iv) normal users on Twitter. To solve these tasks,
they leveraged a combination of 38 features ex-
tracted from user profiles, the textual content of
their posts, and network information (e.g., user de-
gree and centrality measures in the social graph).
Orthogonal and in synergy with respect to the de-
tection of disinformation, scholars have recently
focused on the novel task of detecting Coordinated
Inauthentic Behavior (CIB) (Nizzoli et al., 2021).
CIB is defined as coordinated activities that aim
to mislead and manipulate others.4 Detecting CIB
typically involves analyzing both interaction net-
works to detect suspicious coordination, as well as
the coordinated users and the content they shared to
detect inauthentic users and harmful content (Niz-
zoli et al., 2021, 2020; Pacheco et al., 2021). Given
the importance of coordination in CIB, the analy-
sis typically starts from the available network data
by applying community detection algorithms, and
subsequently moving to the analysis of textual data.

4 Modeling Techniques

In this section, we discuss modeling techniques
for both factuality and harmfulness. To combine
multiple modalities, there have been several ap-
proaches: (i) early-fusion, where low-level features
from different modalities are learned, fused, and
fed into a single prediction model (Jin et al., 2017b;
Yang et al., 2018; Zhang et al., 2019; Singhal et al.,
2019; Zhou et al., 2020; Kang et al., 2020); (ii)
late-fusion, where unimodal decisions are fused
with some mechanisms such as averaging and vot-
ing (Agrawal et al., 2017; Qi et al., 2019), and (iii)
hybrid-fusion, where a subset of learned features
are passed to the final classifier (early-fusion), and
the remaining modalities are fed to the classifier
later (late-fusion) (Jin et al., 2017a). Within these
fusion strategies, the learning setup can also be
divided into unsupervised, semi-supervised, super-
vised and self-supervised methods.

Dimitrov et al. (2021b) investigated different
fusion strategies (e.g., early- and late-fusion and
self-supervised models) for propaganda detection
using VisualBERT (Li et al., 2019), MMBT (Kiela
et al., 2019), and ViLBERT (Lu et al., 2019). Their
findings suggest that self-supervised joint learning
models, such as MMBT, ViLBERT, and Visual-
BERT perform better in increasing order, respec-
tively, compared to the other fusion methods. As

4https://medium.com/1st-draft/how-to-improve-our-
analysis-of-coordinated-inauthentic-behavior-a4ec62ce9bff

a part of “Hateful Memes Challenge” to classify
hateful vs. non-hateful memes, several such mod-
els have been investigated by Kiela et al. (2020).

Attempts to design unsupervised models are lim-
ited. Müller-Budack et al. (2020) introduced Cross-
modal Consistency Verification Tool (CCVT) to
check the coherence between images and associ-
ated texts. Yang et al. (2019b) defined trust of
news and credibility of users who spread the news
and used Bayesian learning to iteratively update
these quantities. News with low trustworthiness is
returned as fake news. Gangireddy et al. (2020)
proposed GTUT, a graph-based approach that ex-
ploits the underlying bipartite network of users and
news articles to detect the dense communities of
fake news and fraud users.

Due to the scarcity of labeled data, a few stud-
ies attempted to design semi-supervised methods
by leveraging an ample amount of unlabelled data.
Helmstetter and Paulheim (2018); Gravanis et al.
(2019) presented weak-supervision and Guacho
et al. (2018) presented a tensor-decomposition
semi-supervised method for fake content detec-
tion. Dong et al. (2020) developed a deep semi-
supervised model via two-path learning (one path
uses a limited labeled data, the other path explores
the unlabelled data) for timely fake news detection.
Paka et al. (2021) presented, Cross-SEAN, a cross-
stitch semi-supervised end-to-end neural attention
model for COVID-19 fake news detection.

Within a supervised learning setup, two other
types of learning method have also been explored
for disinformation detection such as adversarial
learning and autoencoder based. Adversarial
learning models for fake news detection include
EANN (Wang et al., 2018), an event adversar-
ial neural network to detect emerging and time-
critical fake news, and SAME (Cui et al., 2019),
a sentiment-aware multimodal embedding method
which leverages multiple modalities with the senti-
ment expressed by readers in their comments.

5 Major Challenges

Recently, several initiatives were undertaken by
major companies and government entities to com-
bat disinformation in social media (DIGI, 2021).5

However, automatic detection of misleading and
harmful content poses a number of challenges as
discussed below and in Appendix (Section D).

5For example, http://digi.org.au/disinformation-code/
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Models Combining Multiple Modalities. The ma-
jor challenge is to devise a mechanism to combine
multiple modalities in a systematic way so that one
modality complements the others. Current state-
of-the-art primarily adopts early and late fusion,
which are limited and do not always yield strong
results (Dimitrov et al., 2021a). Very recently,
jointly trained multimodal transformer-based mod-
els (e.g., ViLBERT (Lu et al., 2019), Visual BERT
(Lin et al., 2014) and Multimodal Bitransformers
(MMBT) (Kiela et al., 2019)) have shown strong
potential (Dimitrov et al., 2021b,a; Kiela et al.,
2020). However, such models are trained con-
sidering only two modalities (textual and visual),
while fact-checking or disinformation-related con-
tent consists of more than two modalities e.g., text,
speech, video, network, etc. (Baly et al., 2020).
Hence, there is a room for improvement in devel-
oping multimodal models that involve additional,
and potentially more than two modalities. Another
important problem is cross-modal inconsistency
in social media content, as shown in Figure 2(c),
which poses a challenge in a multimodal setting
(Tan et al., 2020).
Datasets. One of the major challenges when work-
ing with such diverse modalities, i.e., text, image,
speech, video, and network, is to get access to
an appropriate dataset, and moreover to one that
considers both factuality and harmfulness. Further-
more, there is a need to integrate data from multiple
platforms (e.g., news, posts from Twitter, Reddit
and Instagram) as different data sources present
different styles and focus on different topics.

6 Future Directions

Based on the aforementioned challenges, we fore-
cast the following research directions:
Explainability. Model interpretation remains
largely unexplored. This can be addressed in future
studies to understand the general capability of the
models. Providing evidence of why certain claims
are false is also important. There has been work in
this direction such as TabFact (Chen et al., 2020)
and FEVER (Hanselowski et al., 2018). However,
such approaches rely on existing knowledge bases
(e.g., Wikipedia) and may fail for a new problem
such as disinformation about COVID-19. It is also
important to understand what models learn, e.g.,
lexical or semantic concepts or a set of neurons may
learn one aspect better than the others. Moreover,
while current studies on explainable fact-checking

focus on explaining the predictions, very few focus
on model explanations (Kotonya and Toni, 2020b).
Beyond Content and Network Signals. State-of-
the-art methods for multimodal factuality predic-
tion and harmful content detection are primarily
based on content signals and network structure.
However, the information in these signals is lim-
ited and does not include personal preferences or
cultural aspects. In the future, we envision multi-
modal techniques for disinformation detection that
would go beyond content and network and would
include signals like common sense and informa-
tion about the user. Moreover, multimodal models
will become larger with more heterogeneous sig-
nals as input, and they would be pre-trained on a
wider variety of tasks to shelter both aspects of
disinformation: factuality and harmfulness.
Knowledge-based Method. The use of
knowledge-based approaches to check the factu-
ality of claims based on what has been checked
before could be ideal solutions as some claims are
often repeated by politicians. Current approaches
in this direction are limited and this can be explored
further by creating a common repository of pre-
viously fact-checked claims and harmful content.
Relevant studies in this direction include detecting
previously fact-checked claims (Shaar et al., 2020),
studying the role of context at the sentence level
(Shaar et al., 2022) or at the document level (Shaar
et al., 2021), and claim matching across languages
(Kazemi et al., 2021).

7 Conclusion

We surveyed the state-of-the-art in multimodal dis-
information detection based on prior work on differ-
ent modalities, focusing on disinformation, i.e., in-
formation that is both false and intents to do harm.
We covered the major research topics of factuality
and disinformation. Our survey brought several
interesting research challenges for multimodal dis-
information detection, such as combining various
modalities, which are often not aligned and are in
different representations (e.g., text vs. speech vs.
network structure), and the lack of such datasets to
foster future research. In addition to highlighting
the challenges, we also pointed to several research
directions. While doing so, we argued for the need
to tackle disinformation detection by taking into ac-
count multiple modalities as well as both factuality
and harmfulness in the same framework.
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Appendix

A Examples of Factuality and Harmful
Content

In Figure 2, we provide examples textual and visual
content that are harmful and false, true image with
false claim, and harmful meme.

B Modeling Techniques

Figure 4 shows various multimodal approaches that
have been proposed in the literature.

C Lessons Learned

1. A lot of progress has been made on the prob-
lem, but the two components in the definition
of disinformation (falseness and harmfulness)
have been considered mostly in isolation. We
argue that there is a need for tight integration
of the factuality and the intentional harmful-
ness into the same detection model. These
two aspects have been addressed together in
(Alam et al., 2021), which shows that 56% of
Arabic false content is also harmful. From
Tables 1 and 2, we observe that most mul-
timodal datasets cover just 2–3 modalities,
which combine some approaches depicted in
Figure 4. Moreover, no multimodal dataset

6https://www.snopes.com/fact-check/abe-lincoln-racist-
protest-sign/
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Figure 2: Examples of textual and visual contents that
show (a) fauxotographic content (which is both harmful
and false), 6 (b) harmful content promoting bad cure
(text-only, and false), (c) true image with a false claim
about it (malicious), and (d) harmful content, where the
text and the image collectively appeal to fear.

looks at both aspects of disinformation: fac-
tuality and harmfulness. While Alam et al.
(2021) did address both aspects, they only
covered the text modality.

2. In the early phase of (dis)information spread-
ing, user and content features are those that
provide the highest contribution for detect-
ing factuality. Indeed, at that time, a few
interactions with content are available and
the propagation network is small and sparse.
As information spreads, the contribution of
content-derived features remains constant,
while propagation-derived features become
richer and more informative. In summary,
early prediction of factuality and veracity
must necessarily rely heavily on users and
content – be it text, image, audio or video. In-
stead, analyses carried out at later times bene-
fit more from network and temporal data. In
the past decade, research on multimodality
has shown its potential in several fields, which
include audio-visual fusion (Mroueh et al.,

Figure 3: Example of social network with users. Node:
A node can be a users or a spreader. Ego: “Ego” is
an individual “focal” node (central user) and the nodes
that are directly connected to it are called “alters/spread-
ers.” Triad: It (a set of three connected users) is the
most basic subgraph of the network. Community: A
community structure refers to the occurrence of groups
of nodes in a network that are more densely connected
internally than with the rest of the network.

Figure 4: Multimodal approaches, including early and
late fusion, and joint modal learning. The hybrid ap-
proach (combining early and late fusion) is not shown.

2015; Zhu et al., 2021; Song et al., 2019),
emotion recognition (Chen et al., 2021), im-
age and video captioning (Liu et al., 2021),
multimedia retrieval and visual question an-
swering (Summaira et al., 2021). For factual-
ity, Baly et al. (2020) showed that combining
different modalities such as text, speech, and
metadata yields improved performance com-
pared to using individual modalities. Similar
phenomena have been observed for other tasks
such as hateful memes (Kiela et al., 2020), and
propaganda detection (Dimitrov et al., 2021b).

D More Challenges

1. Contextualization. Existing methods of
disinformation detection are mostly non-
contextualized, i.e., the broader context of
a news article in terms of the responses of
the readers and how the users perceive them
are not captured. We argue that the response
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thread under a news, the underlying social net-
work among users, the propagation dynamics
of the news and its mentions across social me-
dia need suitable integration to better capture
the overall perspective on the news.

2. Meta Information. Along with the news and
the context, other information such as the au-
thenticity of the news, the credibility of the
authors of the news, the factuality of the news
also play an important role for disinformation
detection. Moreover, detecting whether the
disinformation attack is a coordinated effort
or an individual activity would also help un-
derstanding its severity.

3. Bias, Region, and Cultural Awareness. The
performance of most of the existing systems is
limited to the underlying dataset, particularly
to the demography and the underlying cultural
aspects. For instance, a model trained on an
Indian political dataset may not generalize
well to a US health-related dataset (Fortuna
et al., 2021).

4. Disinformation on Evolving Topics. Often,
claims or harmful content are disseminated
based on the current event; information about
COVID-19 and vaccines are examples of such
use cases. Existing models might fail on such
use cases, and thus zero-shot or few-shot learn-
ing might be an important future avenue to
explore.

5. Transparent and Accountable Models. The
detection models should be designed in a way
that their outcomes are unbiased and more
accountable to ethical considerations. The
models for disinformation detection should
present the outcome in such a way that a prac-
titioner can interpret it and understand why a
piece of information is flagged as disinforma-
tion, what is the related real news based on
which the judgment was made, and which part
of the information was counterfeit. There is
also a lack of datasets containing disinforma-
tion with explanations and the corresponding
real information.

6. Fine-grained Detection. Existing disinfor-
mation detection models are mostly binary
classifiers: given a piece of news, they aim
to detect whether it is a disinformation or not.

Such binary signals might be enough in cer-
tain cases. However, in many other cases,
more fine-grained labels can help to make a
better decision. For example, whether a social
media post is fake or genuine can help fact-
checkers, but having more fine-grained infor-
mation such as true, satire/parody, misleading,
manipulated, false connection, or imposter
content can be even more helpful (Nakamura
et al., 2020). Therefore, rather than a binary
classification, one could cast the problem as a
multi-class classification task or even an ordi-
nal regression, or just a regression task. This
would also help prioritize disinformation for
reactive measurements.
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Abstract

In a hate speech detection model, we should
consider two critical aspects in addition to de-
tection performance–bias and explainability.
Hate speech cannot be identified based solely
on the presence of specific words; the model
should be able to reason like humans and be
explainable. To improve the performance con-
cerning the two aspects, we propose Masked
Rationale Prediction (MRP) as an intermedi-
ate task. MRP is a task to predict the masked
human rationales–snippets of a sentence that
are grounds for human judgment–by referring
to surrounding tokens combined with their un-
masked rationales. As the model learns its
reasoning ability based on rationales by MRP,
it performs hate speech detection robustly in
terms of bias and explainability. The proposed
method generally achieves state-of-the-art per-
formance in various metrics, demonstrating its
effectiveness for hate speech detection. Warn-
ing: This paper contains samples that may be
upsetting.

1 Introduction

With the recent development of social media and
online communities, hate speech, one of the criti-
cal social problems, can spread easily. The spread
of hate strengthens discrimination and prejudice
against the target social groups and can violate their
human rights. Moreover, online hatred extends of-
fline and causes real-world crimes. Therefore, prop-
erly regulating online hate speech is important to
address many social problems related to aversion.

In addition to the detection performance, two es-
sential considerations are involved in implementing
a hate speech detection model–bias and explain-
ability. Hate speech should not be judged by any
specific word but by the context in which the word
is used. Even if any word generally considered
vicious does not exist in a text, the text can be hate
speech. A specific expression does not always im-
ply hatred either (e.g., e.g., ‘nigger’) (Del Vigna12

Figure 1: Examples for the two methods to get the final
ground truths. Example input sentences are represented
with the class and human rationale labels. In this fig-
ure, HateXplain uses the same ground truth about both
normal and hateful sentences for the loss. However, our
method could determine the two classes with the ground
truths.

et al., 2017). However, the presence of this word
can cause a model to make a biased detection of
hate speech. This erroneous judgment may inadver-
tently strengthen the discrimination against the tar-
get group of the expression (Sap et al., 2019; David-
son et al., 2019). In this respect, the model’s bias
toward specific expressions should be excluded.

The expressions that can cause biased judgment
should be interpreted in context. It means it is
vital for the hate speech detection models to have
the ability to make judgments based on context,
as humans do. Therefore, the model should be
explainable to humans so that the rationale behind
a result is explained (Liu et al., 2018). Here, the
rationale is a piece of a sentence as justification
for the model’s prediction about the sentence, as
defined by related research (Hancock et al., 2018;
Lei et al., 2016).

To the best of our knowledge, HateXplain
(Mathew et al., 2020) is the first hate speech detec-
tion benchmark dataset that considers both these
aspects. They proposed a method that utilizes ratio-
nales as attention ground truths to complement the
performance of the two elements. However, when
most tokens are annotated as the human rationale
in a hateful sentence, the rationale’s information
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Figure 2: Framework of the proposed method. We finetune a pre-trained BERT through two training stages–Masked
Rationale Prediction (MRP) and then hate speech detection. In MRP, the partially masked rationale label is inputted
as the rationale embeddings by being added into the input embeddings of BERT. The model predicts each masked
rationale per token. The model for hate speech detection is initialized by the updated parameters during MRP.

could be meaningless as the ground truth attention
becomes hard to be distinguished from that of a
normal sentence, as shown in Figure 1. This can
hinder the model’s learning.

In this paper, we present a method to imple-
ment a hate speech detection model much more
effectively by using the human rationale of hate
for finetuning a pre-trained language model. To
achieve this, we propose Masked Rationale Pre-
diction (MRP) as an intermediate task before fine-
tuning the model on hate speech detection. MRP
trains a model to predict the human rationale label
of each token by referring to the context of the in-
put sentence. The model takes the human rationale
information of some input tokens among the sen-
tence along with the corresponding tokens as input.
It then predicts the rationale of the remaining to-
kens on which the rationale is masked. We embed
the rationales to provide the human rationales as
input per token. The masking process of the partial
rationales is implemented while creating rationale
embeddings; some rationale embedding vectors are
replaced with zero vectors.

MRP allows the model to make judgments per
token about its masked rationale by considering
surrounding tokens with an unmasked rationale.
With this, the model learns a human-like rea-
soning process to get context-dependent abusive-
ness of tokens. The model parameters trained on
MRP become the initial parameter values for hate
speech detection in the following training stage. In
this way, based on the way of human reasoning

for hate, the model can get improved abilities in
terms of bias and explainability in detecting hate
speech. We experimented with BERT (Devlin et al.,
2018) as the pre-trained model. Consequently,
our models finetuned in the proposed way–BERT-
MRP and BERT-RP–achieve state-of-the-art per-
formance overall on all three types of 11 metrics of
HateXplain benchmark–Performance-based, Bias-
based, and Explainability-based (Mathew et al.,
2020). And the two models, especially BERT-MRP,
also show the best results in qualitative evaluation
of explicit and implicit hate speech detection.

The main contributions of this paper are:

• We propose a method to utilize human ratio-
nales as input by transforming them into ratio-
nale embeddings. Combining the embedded
rationales with the corresponding input sen-
tence can provide information about the hu-
man rationales per token during model train-
ing.

• We propose Masked Rationale Prediction
(MRP), a learning method that leads the model
to predict the masked rationale by considering
the surrounding tokens. The model is allowed
to learn the reasoning process in context.

• We finetune a pre-trained BERT in two stages–
on MRP as an intermediate task and then on
hate speech detection. The parameters trained
concerning human reasoning for hate become
a sufficient basis not only for the detection but
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also in terms of the model bias and explain-
ability.

2 Related works

Hate speech detection With the advance of deep
learning, hate speech detection studies have utilized
neural networks (Badjatiya et al., 2017; Han and
Eisenstein, 2019), and word embedding methods
(McKeown and McGregor, 2018). More recently,
Transformer-based (Vaswani et al., 2017) models
have shown remarkable results. In hate speech de-
tection, BERT has been adopted for various studies
as hate speech detection can be considered a classi-
fication task. (Mandl et al., 2019; Ranasinghe et al.,
2019) compared a BERT-based model with Recur-
rent Neural Networks (RNNs)-based models and
showed the BERT-based model outperforms other
models. Furthermore, some studies have consid-
ered the model’s bias and explainability. (Vaidya
et al., 2020) improved accuracy and reduced un-
intended bias by adopting multi-task learning that
predicts toxicity of text and target group labels as
additional information. (Mathew et al., 2020) uti-
lized rationales of the dataset as additional informa-
tion for finetuning BERT to deal with the bias and
explainability. To improve performance in terms of
the two considerations, we propose a more effec-
tive finetuning approach based on BERT and the
rationales by adopting the pre-training framework.
Pre-finetuning on an intermediate task Recently,
finetuning a pre-trained model on a downstream
task has become the norm (Howard and Ruder,
2018; Radford et al., 2018). However, it cannot be
guaranteed that the model finetuned with a small
dataset compared to its size will be sufficiently well-
adjusted for the target downstream task (Phang
et al., 2018). Pre-finetuning is a technique to train
the model on a task before the target task (Agha-
janyan et al., 2021). This can help the model learn
the data patterns or reduce the tuning time so that
it converges quickly to better fit the target task.
According to (Pruksachatkun et al., 2020; Agha-
janyan et al., 2021), the more closely the interme-
diate task is related to the target task, the better
the effect of pre-finetuning. And inference tasks
involving the reasoning process show a remarkable
improvement in the target task performance. We
adopt this method to train a pre-trained language
model through two stages for hate speech detection.
As the intermediate task, we propose MRP, which
guides the model to infer the human rationale of

each token based on surrounding tokens.
Explainable NLP and rationale Explaining the
rationale of the result of an AI model is necessary
for it to be explainable to humans (Liu et al., 2018).
Some Natural Language Processing (NLP) stud-
ies define rationale as snippets of an input text on
which the model’s prediction is supported (Han-
cock et al., 2018; Lei et al., 2016). (Lei et al., 2016)
implemented a generator that generates words con-
sidered rationales and used them as input of an en-
coder for sentiment classification. (Bao et al., 2018)
mapped the human rationales into the model atten-
tion values to solve the low-resource problem by
learning a domain-invariant token representation.
For hate speech detection, HateXplain employs
the human rationales as ground truth attention to
concentrate on aggressive tokens. Unlike existing
approaches, we utilize the masked human rationale
label embeddings as input. They become the useful
additional information of each token.
Masked label prediction The UniMP model pre-
sented by (Shi et al., 2020) aims to solve the
graph node classification problem using graph
transformer networks (Yun et al., 2019). They max-
imized the propagation information required to re-
construct a partially observable label by using both
feature information and label information as inputs.
However, to prevent overfitting due to excessive in-
formation, some label information is masked, and
the masked label is predicted. We apply a similar
method to text data for an intermediate task with
rationales. Through additional rationale informa-
tion, the model increases the understanding of input
sentences, and the performance of the downstream
task is improved.

3 Method

Hate speech detection can be described as a text
classification problem. Following the problem set-
ting of HateXplain, we define the problem as a
three-class classification involving three categories–
‘hate speech,’ ‘offensive,’ or ‘normal’. We finetune
a pre-trained BERT on hate speech detection. Note
that other transformer encoder-based models can
be used instead. Before finetuning the model on
this task, we pre-finetune it on an intermediate task.
We propose Masked Rationale Prediction (MRP)
as the intermediate task. Our method is described
in Figure 2.
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3.1 Masked rationale prediction

For MRP, we utilize human rationales of hate
provided by the HateXplain dataset. Annotators
marked some words in a sentence as rationales
for judging the sentence as abusive. A rationale
label is presented in a list format, including 1 as
rationale and 0 as non-rationale per word in the
corresponding sentence. There are no such labels
for a sentence whose final class is ‘normal.’ As the
dataset was annotated by two or three people per
sentence, some pre-processing is required to get
the final rationale labels for MRP. To manipulate
the multiple rationale labels to one per sentence,
we obtain the average value of the rationales per
word, and if it is over 0.5, the value of 1; otherwise,
the value of 0 is determined as the final rationale of
the corresponding word. The final rationale label is
a list of these last values. In the case of the ‘normal’
sentence, a list of zeros is used. Accordingly, the
final rationale label consists of as many 0s or 1s as
the number of words in the sentence. As a sentence
is tokenized, its rationale label is also modified in
token units.

MRP is based on token classification, which
predicts the rationale label R per token in an in-
put sentence S. In our MRP, the rationale la-
bels, as well as the sentences, are used as inputs.
The process of embedding S is the same as that
of BERT. We denote the embedded S as XS =
{xS0 , xS1 , · · · , xSn−1} ∈ Rn×d where n is the se-
quence length and d is the embedding size. And to
use R as input, we pass it through an embedding
layer to get XR = {xR0 , xR1 , · · · , xRn−1} ∈ Rn×d
as shown in Figure 2. The rationale embeddings
reflect the attributes of each token as a ground for
the human judgment.

MRP differs from BERT’s Masked Language
Modeling (MLM) in masking processing. Specif-
ically, we do not mask the tokens; we mask the
rationales. To construct the partially masked ra-
tionale embeddings X̃R, some rationales are ran-
domly selected to be masked. Each of rationales
is transformed into its corresponding embedding
vector, except the masked ones. For masking, zero
vectors replace the embedding vectors of each cor-
responding token. For example, if we mask xR1 and
xR3 , then the rationale embedding matrix is like
X̃R = { #»

0 ,
#»
0 , xR2 ,

#»
0 , · · · , xRn−2,

#»
0 }. The first

and last rationale embeddings corresponding to
CLS and SEP tokens, respectively, are replaced
with

#»
0 .

The MRP model predicts the rationale by taking
the sum of the embedded tokens XS and the par-
tially masked rationales X̃R as input. We then get:

H
(0)
MRP = XS + X̃R,

H
(l+1)
MRP = Transformer(H(l)

MRP ),

X̂R = MLP(H(L)
MRP ).

(1)

The l-th hidden state passes through the transformer
block to create the l + 1-th hidden state, and the
last hidden state H(L)

MRP outputs a predicted ratio-
nale X̂R through Multi-Layer Perceptron (MLP).
In other words, the model is guided to predict the
masked rationales by referring to the representa-
tions of tokens using their corresponding observed
rationales.

The loss LMRP is calculated with only the pre-
dictions of the masked rationales. Therefore, our
objective function is:

argmax
θ

log pθ
(
X̂R|XS , X̃R

)
=

∑

m∈M
log pθ

(
xRm|XS , X̃R

)
,

(2)

where M indicates a set of index numbers of ratio-
nales that have been masked.

3.2 Hate speech detection

Hate speech detection is implemented as three-
class text classification. The model predicts which
category Y the input sentence belongs to among
‘hate speech’, ‘offensive’, and ‘normal’. The head
that outputs the predicted class Ŷ is used on the
top of BERT. Before training, the model parame-
ters are initialized by parameters updated on the
intermediate task MRP, except for the head. As the
forms of heads are different for two stages, their
parameters are randomly initialized. Consequently,
in the finetuning stage on hate speech detection,
the rationale labels are not involved functionally,
considered as [0]n×d. Therefore, in this stage, the
input of the model is H(0)

HSD = XS .
In this stage, the model does not refer to the

rationale labels. The parameters trained during
MRP are utilized as a base for reasoning hateful-
ness in context. The lossLHSD is obtained through
a cross-entropy function, as the task is a multi-class
classification problem.

argmax
θ

log pθ
(
Ŷ |XS

)
. (3)
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Model Performance Bias
ration. pre-fin. Acc. Macro F1 AUROC GMB-Sub. GMB-BPSN GMB-BNSP

BERT 69.0 67.4 84.3 76.2 70.9 75.7
BERT-HateXplain 69.8 68.7 85.1 80.7 74.5 76.3
BERT-MLM 70.0 67.5 85.4 79.0 67.7 80.9
BERT-RP 70.7 69.3 85.3 81.4 74.6 84.8
BERT-MRP 70.4 69.9 86.2 81.5 74.8 85.4

Table 1: Results for the performance-based and the bias-based metrics. Scores in bold type are the best for each
corresponding metric, while the underlined are the second best, and so are in Table 2.

Model Explainability
Plausibility Faithfulness

ration. pre-fin. IOU F1 Token F1 AUPRC Comp. Suff. ↓
BERT [Att] 13.0 49.7 77.8 44.7 5.7
BERT [LIME] 11.8 46.8 74.7 43.6 0.8
BERT-HateXplain [Att] 12.0 41.1 62.6 42.4 16.0
BERT-HateXplain [LIME] 11.2 45.2 72.2 50.0 0.4
BERT-MLM [Att] 13.5 43.5 60.8 40.1 11.9
BERT-MLM [LIME] 11.3 47.2 76.5 43.4 -5.5
BERT-RP [Att] 13.8 50.3 73.8 45.4 7.2
BERT-RP [LIME] 11.4 49.3 77.7 48.6 -2.6
BERT-MRP [Att] 14.1 50.4 74.5 47.9 6.7
BERT-MRP [LIME] 12.9 50.1 79.2 48.3 -1.2

Table 2: Results for the explainability-based metrics. The lower the score Sufficiency in Faithfulness, the better, and
the higher the other scores, the better.

4 Experiments

4.1 Dataset

For both stages of the intermediate and the target
task, we use the HateXplain dataset. It contains
20,148 items collected from Twitter and Gab. Ev-
ery item consists of one English sentence with its
own ID and annotations about labels for its cate-
gory, target groups, and rationales, which are anno-
tated by two or three annotators. Based on the IDs,
the dataset is split into 8:1:1 for training, validation,
and test phases. Following the permanent split pro-
vided by the dataset, the models can’t reference any
test data during the training phases of all stages.

4.2 Metrics

The evaluation is according to the metrics of Ha-
teXplain, which are classified into three types:
performance-based, bias-based, and explainability-
based. The performance-based metrics measure
the detection performance in distinguishing among
three classes (i.e., hate speech, offensive, and nor-
mal). Accuracy, macro F1 score, and AUROC
score are used as the metrics.

The bias-based metrics evaluate how biased the
model is for specific expressions or profanities eas-
ily assumed to be hateful. HateXplain follows
AUC-based metrics developed by (Borkan et al.,
2019). The model classifies the data into ‘toxic’–
hateful and offensive–and ‘non-toxic’–normal. For

evaluating the model’s prediction results, the data
are separated into four subsets: D+

g , D
−
g , D+, and

D−. The target group labels are considered stan-
dard for dividing data into subgroups. The nota-
tions with g denote the data of a specific subgroup
among the subgroups, and the notations without
g are the remaining data. + and − mean that the
data are toxic and non-toxic, respectively. Based
on these subsets, three AUC metrics are calculated.

Subgroup AUC is to evaluate how biased the
model is to the context of each target group:
AUC(D−g +D+

g ). The higher the score, the less
biased the model is with its prediction of a certain
social group.

BPSN (Background Positive, Subgroup Nega-
tive) AUC measures the model’s false-positive rates
regarding the target groups: AUC(D++D−g ). The
higher the score is, the less a model is likely to
confuse non-toxic sentences whose target is the
specific subgroup and toxic sentences whose target
is one of the other groups.

BNSP (Background Negative, Subgroup Pos-
itive) AUC measures the model’s false-negative
rates regarding the target groups: AUC(D−+D+

g ).
The higher the score is, the less the model is likely
to confuse non-toxic sentences whose target is the
specific group and toxic sentences whose target is
one of the other groups.
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We calculate GMB (Generalized Mean of Bias)1

of the three metrics as the final scores to com-
bine those ten scores of each of the metrics
into one overall measure according to the HateX-
plain benchmark. The formula is: Mp(ms) =

( 1
N

∑N
s=1m

p
s)

1
p , where Mp means the pth power-

mean function, ms is one of the bias metrics m
calculated for a specific subgroup s, and N is the
number of subgroups which is 10 in this paper.

The explainability-based metrics evaluate how
much the model is explainable. HateXplain fol-
lows ERASER (DeYoung et al., 2019), which is a
benchmark for the evaluation of explainability of
an NLP model based on rationales. The metrics are
divided into Plausibility and Faithfulness. Plausi-
bility refers to how the model’s rationale matches
the human rationale. Plausibility can be consid-
ered both discrete selection and soft selection. For
discrete selection, We convert token scores to bi-
nary values by more than some threshold(here 0.5).
Then, We measures IOU F1 score and Token F1
score. For soft selection, We constructed AUPRC
by sweeping a threshold over token scores.

Faithfulness evaluates the influence of the model
rationale on its prediction result and consists of
Comprehensiveness and Sufficiency. Comprehen-
siveness assumes the model prediction is less con-
fidence when rationales are removed. This metric
can be calculated: m(xi)j − m(xi\ri)j . m(xi)j
is the prediction probability of the corresponding
class j with an input sentence xi by the model m.
And xi\ri is the sentence manipulated by remov-
ing the predicted rationale tokens ri from xi.2 The
higher a score, the more influential the model’s ra-
tionales in its prediction. Sufficiency captures the
extent to which extracted rationales are acceptable
for a model to make a prediction: m(xi)j−m(ri)j .
A low score of this metric means that the rationales
are adequate in the prediction.

In addition, for the HateXplain benchmark, the
scores are calculated based on the attention scores
of the last layer or by using the LIME method
(Ribeiro et al., 2016). The former is marked as
[Att], and the latter is [LIME] in Table 2. (DeYoung
et al., 2019) and (Mathew et al., 2020) contain more
detailed explanations.

1https://www.kaggle.com/competitions/jigsaw-
unintended-bias-in-toxicity-classification/overview/evaluation

2We select the top 5 tokens to remove based on the aver-
age length of human-annotated rationale labels in the dataset
according to HateXplain benchmark.

Figure 3: The Subgroup scores among bias-based met-
rics for each of ten target groups. The target group
labels are ‘African’, ‘Islam’, ‘Jewish’, ‘Homosexual’,
‘Women’, ‘Refugee’, ‘Arab’, ‘Caucasian’, ‘Asian’, and
‘Hispanic’ in clockwise direction respectively. The
BPSN and BNSP scores are attached in Appendix.

Figure 4: Classification test scores of the proposed mod-
els according to masking ratio in MRP. (a) is for token
classification after training on MRP in the first stage,
and (b) is for hate speech detection in the final stage.
The case of masking 100% of tokens is the same as
BERT-RP.

4.3 Models and Experimental settings

The evaluated models in Table 1 and Table 2 are
as follows. All models are based on a BERT-base-
uncased model for a pre-trained model and fine-
tuned on hate speech detection. BERT in the tables
is simply finetuned on hate speech detection with a
fully-connected layer as a head for the three-class
classification described above.

BERT-HateXplain uses attention supervision
in addition to BERT. It matches the last attention
values corresponding to the CLS token to the ratio-
nale used as ground truth attention. With this, the
CLS token takes additional rationale-based atten-
tion information for the prediction. The loss is the
summation of this attention loss and the detection
loss. The results of BERT and BERT-HateXplain
are the same as those presented in (Mathew et al.,
2020).

BERT-MLM is evaluated to compare the effec-
tiveness of pre-finetuning tasks. Training a pre-
trained NLP model with MLM using data of the
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downstream task is frequently used for the model
to understand the downstream data and improve
its performance (Han and Eisenstein, 2019; Ben-
David et al., 2020; Arefyev et al., 2021). It is im-
plemented by simply masking 15% tokens of each
input sentence.

BERT-MRP and BERT-RP are the proposed
models in this paper. BERT-MRP is the model
trained on MRP as an intermediate task and then
finetuned on hate speech detection. The ratio of
masked rationales per token is set to 50% of the
entire rationale label. BERT-RP is trained on Ra-
tionale Prediction (RP), which is MRP when the
ratio is set to 100%–masking all the rationales. It is
functionally the same as token classification with
the rationale label as ground truth.

BERT-MLM, BERT-RP, and BERT-MRP are di-
rectly trained in this study. The experimental set-
tings are the same for all models and each train-
ing step. The learning rate is 5e−5 during pre-
finetuning and 2e−5 for hate speech detection,
which is the same as BERT-HateXplain. We use
the RAdam optimizer and an Nvidia GeForce GTX
1050 graphics card.

4.4 Comparisons of results

Table 1 and Table 2 present the performances of the
models. For all metrics, the proposed models–the
two from the bottom–perform much better overall.
Performance-based metrics As summarized in Ta-
ble 1, the proposed method outperforms the other
methods. BERT-MRP shows the highest scores for
Macro F1 and AUROC and BERT-RP for accuracy.
The pre-finetuned models perform better than those
that are not. It shows that the pre-finetuning process
helps understand the data and allows enough time
for tuning parameters for the target task, thereby
improving performance. On the other hand, among
the pre-finetuned models, the proposed models
show better results than BERT-MLM. Furthermore,
they outperform BERT-HateXplain, which also
uses the rationale during training like ours. This
shows that predicting the human rationale for hate
as an intermediate task effectively implements a
hate speech detection model.
Bias-based metrics For the model bias, the pro-
posed models show superior results compared to
other models. According to Table 1, the models
trained using the rationales achieve higher scores
than others in general. Given that the human ra-
tionales of hatred imply that hate speech is judged

based on the context, not merely specific expres-
sions, learning the rationale can exclude the model
bias towards the particular words for the prediction.
Withal, the proposed BERT-RP and BERT-MRP
show better performance than BERT-HateXplain,
even though they all utilize the rationale in training.
BERT-MRP shows the best scores, and BERT-RP
is the second-best for all three metrics. Addition-
ally, Figure 3 shows the scores of the models for
each of the ten major target groups. It can be seen
that the proposed models score evenly high for all
the target groups. While other models have sig-
nificant differences in their bias depending on the
groups, the proposed models have comparatively
no correlation with them.
Explainability-based metrics In terms of explain-
ability, the proposed models still perform better
than others overall. For Plausibility, BERT-MRP
achieves the best performance for all three metrics.
It scores much higher than others because it is al-
lowed to directly guess the human rationales during
the intermediate training stage. For Faithfulness,
BERT-HateXplain[LIME] shows the highest score
for Comprehensiveness, and BERT-MLM[LIME]
is the best for Sufficiency. However, these mod-
els do not reliably score well when considering all
four scores obtained according to each of the two
measurement methods: attention values or LIME.
They show worse scores than BERT for the rest
of the scores. On the other hand, BERT-MRP and
BERT-RP offer stably high performance for all five
explainability-based metrics.

Based on all these results, BERT-MRP and
BERT-RP demonstrate the best performance over-
all for the three types of metrics. Thus, learning
the human rationale as an intermediate task before
training on hate speech detection seems effective
for detection performance and model bias and its
explainability. This framework contributes to bet-
ter performance than the other–pre-finetuning on
MLM as well as another way of using rationales.

BERT-MRP generally achieves better results
than BERT-RP, wherein the intermediate task is ba-
sically the same as token classification. The plots
in Figure 4 show the change in test scores accord-
ing to the masking ratio in MRP. According to
Figure 4(a), when more than 20% of all rationales
were masked, there is no significant difference in
the token classification performance, although the
amount of loss decreases as the ratio decreases.
When each model was re-trained for hate speech
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No. Model Example sentence and Rationale Label

Case 1 Explicit hate speech

1 Human imagine unironically believing the high iq kike meme HS

BERT-MRP imagine un ##iro ##nical ##ly believing the high iq ki ##ke me ##me HS

BERT-RP imagine un ##iro ##nical ##ly believing the high iq ki ##ke me ##me HS

BERT-HX imagine un ##iro ##nical ##ly believing the high iq ki ##ke me ##me HS

2 Human <user> ffs these ghetto blacks are ignorant like cracker mountain hillbillies HS

BERT-MRP <user> ff ##s these ghetto blacks are ignorant like crack ##er mountain hill ##bill ##ies HS

BERT-RP <user> ff ##s these ghetto blacks are ignorant like crack ##er mountain hill ##bill ##ies HS

BERT-HX <user> ff ##s these ghetto blacks are ignorant like crack ##er mountain hill ##bill ##ies HS

Case 2 Implicit hate speech

3 Human yah christian island republic shall not have queers or witches on it if we find any death HS

BERT-MRP ya ##h christian island republic shall not have queer ##s or witches on it if we find any death HS

BERT-RP ya ##h christian island republic shall not have queer ##s or witches on it if we find any death HS

BERT-HX ya ##h christian island republic shall not have queer ##s or witches on it if we find any death NO

4 Human you can not culturally enrich a moslem HS

BERT-MRP you can not culturally en ##rich a mo ##sle ##m HS

BERT-RP you can not culturally en ##rich a mo ##sle ##m NO

BERT-HX you can not culturally en ##rich a mo ##sle ##m NO

5 Human <user> he is infected with jihadi virus he will spread it to others HS

BERT-MRP <user> he is infected with jihad ##i virus he will spread it to others HS

BERT-RP <user> he is infected with jihad ##i virus he will spread it to others HS

BERT-HX <user> he is infected with jihad ##i virus he will spread it to others OF

Table 3: The highlighted words of the human rationale and the rationale of the models with detection results.
BERT-HX is BERT-HateXplain. In the label column, the ground truth is of humans and the remaining labels are
the predictions of each model. HS is ’hate speech,’ OF is ’offensive,’ and NO is ’normal.’ More examples are in
Appendix.

detection, as shown in Figure 4(b), the case of 50%
ratio in BERT-MRP achieved the best classification
performance. As MRP is a method for inferring the
rationale of a particular token based on surround-
ing tokens, the model can successfully learn the
human rationale within the context. Learning pa-
rameters during this reasoning process based on
context seems to effectively prevent biased predic-
tion while still being explainable and consequently
improves the detection performance substantially.

4.5 Qualitative results

Table 3 shows examples of detection results from
models that use human rationale for their train-
ing. The visualized values as the model ra-
tionales are the LIME results used to measure
the explainability-based scores. For the human
ground truth, the average value per word of human-
annotated rationales is expressed for each word.

The darker the color, the higher the values.
It is relatively easy to judge explicit hate speech

that includes clear derogatory expressions. As
shown in Case 1 of Table 3, all the models per-
form well. The human rationale tends to focus on
specific abusive words, and so does the rationale
of each model. However, the rationales of the two
proposed models match the ground truth better than
BERT-HateXplain. Our method to train a model
on a token classification-based task leads well the
model to focus on human-like grounds in the sen-
tence by directly learning the human rationale.

As in Case 2, the implicit hate speech with no
aggressive expressions cannot be grasped through
context. The human rationale thus tends to ap-
pear throughout the sentence. As this might make
hate speech detection relatively challenging, the
detection results of BERT-HateXplain or BERT-
RP seem incorrect for some sentences. However,
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BERT-MRP works accurately based on its rationale
that is much more similar to human’s than others.
Meanwhile, BERT-HateXplain shows a low match-
ing rate of the rationale when the human rationale
is throughout the sentence. It uses the human ra-
tionale as the ground truth attention, and if there is
no difference in the human rationale across tokens,
the ground truth could become similar to that of
any normal sentence represented by uniform val-
ues. This affects the model’s explainability and
may lead to incorrect detection results. The pro-
posed method does not cause that problem. It gets
the distinguishable ground truth from normal ones
and assigns it as labels to tokens. On the other hand,
the rationale of BERT-MRP matches the ground
truth better than that of BERT-RP. MRP requires
more context-awareness ability when predicting
the masked token by allowing the model to con-
sider the abusiveness of surrounding words that are
provided corresponding human rationale. This of-
fers robust detection performance, even when it is
necessary to understand the context.

5 Conclusion

This paper presents a method to implement a hate
speech detection model considering bias and ex-
plainability. We adopt a framework to finetune a
pre-trained language model in two stages. As the
intermediate task, we propose Masked Rationale
Prediction (MRP), which predicts masked ratio-
nales for some tokens with the additional rationale
information of the remaining surrounding tokens.
With this, the model learns to identify abusiveness
for each token and the human reasoning process
based on context. The trained model by MRP is
finetuned again on hate speech detection.

As a result, across quantitative and qualitative
evaluations, the proposed model shows state-of-
the-art performance in bias and explainability, as
well as the detection result. And the examples
demonstrate its robustness in detecting hate speech,
whether explicit or implicit, based on its superior
explainability. Meanwhile, we experimented with
only BERT as the pre-trained model to compare
our method with base models. But any other
transformer encoder-based model can be easily
applied, which can be taken as future work.
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Figure A1: The Bias-based scores for each 10 target groups. The target group labels are ‘African’, ‘Islam’, ‘Jewish’,
‘Homosexual’, ‘Women’, ‘Refugee’, ‘Arab’, ‘Caucasian’, ‘Asian’, and ‘Hispanic’ in clockwise direction respectively.

Model Example sentence and Rationale Label

Human if you ’ re an army that is republican you are not welcome here we hate you HS

BERT-MRP if you ’ re an army that is republican you are not welcome here we hate you HS

BERT-RP if you ’ re an army that is republican you are not welcome here we hate you NO

BERT-HX if you ’ re an army that is republican you are not welcome here we hate you NO

Human the german regime is more scared of women like this than than are of any moslem terrorist HS

BERT-MRP the german regime is more scared of women like this than than are of any mo ##sle ##m terrorist HS

BERT-RP the german regime is more scared of women like this than than are of any mo ##sle ##m terrorist HS

BERT-HX the german regime is more scared of women like this than than are of any mo ##sle ##m terrorist NO

Human i poisoned sergei skripal he was a faggot anyway HS

BERT-MRP i poisoned sergei sk ##rip ##al he was a fa ##gg ##ot anyway HS

BERT-RP i poisoned sergei sk ##rip ##al he was a fa ##gg ##ot anyway HS

BERT-HX i poisoned sergei sk ##rip ##al he was a fa ##gg ##ot anyway OF

Human <user> would have pressed that bitch and beat the faggot out of him HS

BERT-MRP <user> would have pressed that bitch and beat the fa ##gg ##ot out of him HS

BERT-RP <user> would have pressed that bitch and beat the fa ##gg ##ot out of him HS

BERT-HX <user> would have pressed that bitch and beat the fa ##gg ##ot out of him OF

Human massive muzrat espionage HS

BERT-MRP massive mu ##z ##rat espionage HS

BERT-RP massive mu ##z ##rat espionage HS

BERT-HX massive mu ##z ##rat espionage HS

Human enjoy your kike faith HS

BERT-MRP enjoy your ki ##ke faith HS

BERT-RP enjoy your ki ##ke faith HS

BERT-HX enjoy your ki ##ke faith HS

Table A1: The highlighted words of the human rationale and the rationale of the models with detection results in
’hate speech’ sentences.
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Model Example sentence and Rationale Label

Human “ i don ’ t have to respect women i ’ m gay ” kevin OF

BERT-MRP “ i don ’ t have to respect women i ’ m gay ” kevin OF

BERT-RP “ i don ’ t have to respect women i ’ m gay ” kevin NO

BERT-HX “ i don ’ t have to respect women i ’ m gay ” kevin NO

Human logan paul is a fucking bozo OF

BERT-MRP logan paul is a fucking bo ##zo OF

BERT-RP logan paul is a fucking bo ##zo NO

BERT-HX logan paul is a fucking bo ##zo NO

Human <user> <user> there are literally nazis all over all the time rigjt now throw a rock OF

you hit a nazi

BERT-MRP <user> <user> there are literally nazis all over all the time rig ##j ##t now throw a rock OF

you hit a nazi

BERT-RP <user> <user> there are literally nazis all over all the time rig ##j ##t now throw a rock OF

you hit a nazi

BERT-HX <user> <user> there are literally nazis all over all the time rig ##j ##t now throw a rock NO

you hit a nazi

Human all my friends and peers are being openly racist towards asians and this bitch is OF

not having it

BERT-MRP all my friends and peers are being openly racist towards asian ##s and this bitch is OF

not having it

BERT-RP all my friends and peers are being openly racist towards asian ##s and this bitch is OF

not having it

BERT-HX all my friends and peers are being openly racist towards asian ##s and this bitch is OF

not having it

Human hey nazi dirtbag is your black bull keeping you occupied OF

BERT-MRP hey nazi dirt ##bag is your black bull keeping you occupied OF

BERT-RP dirt ##bag is your black bull keeping you occupied OF

BERT-HX hey nazi dirt ##bag is your black bull keeping you occupied OF

Human white bitch pink pussy OF

BERT-MRP hey white bitch pink pussy OF

BERT-RP white bitch pink pussy OF

BERT-HX white bitch pink pussy OF

Table A2: The highlighted words of the human rationale and the rationale of the models with detection results in
’offensive’ sentences.
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Abstract

Warning: this paper contains content that
may be offensive and distressing.

State-of-the-art approaches for hate-speech de-
tection usually exhibit poor performance in out-
of-domain settings. This occurs, typically, due
to classifiers overemphasizing source-specific
information that negatively impacts its domain
invariance. Prior work has attempted to penal-
ize terms related to hate-speech from manu-
ally curated lists using feature attribution meth-
ods, which quantify the importance assigned
to input terms by the classifier when making
a prediction. We, instead, propose a domain
adaptation approach that automatically extracts
and penalizes source-specific terms using a do-
main classifier, which learns to differentiate be-
tween domains, and feature-attribution scores
for hate-speech classes, yielding consistent im-
provements in cross-domain evaluation.

1 Introduction

While recent state-of-the-art hate-speech classi-
fiers (Ayo et al., 2021; D’Sa et al., 2020; Mozafari
et al., 2019) yield impressive performance on in-
domain held-out instances, they suffer when evalu-
ated on out-of-domain settings (Yin and Zubiaga,
2021; Arango et al., 2019; Swamy et al., 2019;
Karan and Šnajder, 2018). The distributions across
corpora/domains1 change due to varying vocabu-
lary, topics of discussion over time (Florio et al.,
2020; Saha and Sindhwani, 2012), data bias caused
by sampling strategies (Wiegand et al., 2019) and
different hate-targets. This is concerning since cu-
rating new data resources for hate-speech involves
substantial time and effort (Poletto et al., 2019; Mal-
masi and Zampieri, 2018). This calls for strategies,
like Domain Adaptation (DA) approaches, that can
adapt models trained on existing labeled resources
to a new target domain that lacks class-labels.

1We use the terms ‘corpus’ and ‘domain’ interchangeably.

However, research on DA in hate-speech is lim-
ited (Sarwar and Murdock, 2022; Bashar et al.,
2021; Bose et al., 2021). Typically, vanilla clas-
sifiers tend to learn more from domain-specific
features (Ye et al., 2021; Wiegand et al., 2019) than
domain-invariant features, resulting in poor out-of-
domain performance. For instance, Wiegand et al.
(2019) show that in a hate-speech dataset (Waseem
and Hovy, 2016), neutral domain-specific terms,
like ‘football’, ‘commentator’, etc., discussing the
role of women in sports, are highly correlated with
the hate label, restricting its generalizability. Thus,
it is worth minimizing the importance of such terms
for improving cross-domain performance.

Recently, feature attributions – methods for ex-
tracting post-hoc model explanations, have been
used to align features with prior domain knowledge
(Rieger et al., 2020; Adebayo et al., 2020). These
provide importance scores to the input terms as
per their contribution towards the model prediction
(Lundberg and Lee, 2017). For instance, Liu and
Avci (2019); Kennedy et al. (2020) reduce the over-
sensitivity of classifiers on a curated list of identity
terms (e.g. muslims, gay) by penalizing their im-
portance. However, newly emerging social-media
terms (Grieve et al., 2018) may render such lists
non-exhaustive. Yao et al. (2021) do not use any list
but they require human-provided refinement advice
as inputs. Chrysostomou and Aletras (2022a) fur-
ther show that post-hoc explanation methods might
not provide faithful explanation in out-of-domain
settings. The contemporaneous work by Attanasio
et al. (2022) and Bose et al. (2022) reduce lexical
overfitting automatically with entropy-based atten-
tions and feature attributions, respectively. While
cross-domain classification performance across dif-
ferent datasets is not studied in the former, the latter
needs some labeled target instances to identify the
over-fitted terms.

In the task of detecting objects in images, Zunino
et al. (2021) use a domain classifier, trained to dif-
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ferentiate between domains, to visually identify the
irrelevant background information to be domain-
specific. Thus, they enforce the model explanations
to align with the ground-truth annotations highlight-
ing the objects in the image. Inspired by this, we
propose a new DA approach in hate-speech employ-
ing a domain classifier, but without having access to
such annotations for aligning the attribution scores.

We hypothesize that domain-specific terms that
are simultaneously predictive of the hate-speech
labels are instrumental in restricting the domain
invariance of the hate-speech classifier. To this
end, we employ a domain classifier to automati-
cally extract the terms that help in identifying the
source domain compared to the unlabeled target
domain, and feature-attribution scores to identify
the subset important for hate-speech classification
from the source. Our method, through penalization
of these terms, automatically enforces the source
domain classifier to focus on domain-invariant con-
tent. Compared to approaches transforming high-
dimensional intermediate representations to reduce
the domain discrepancy, such as domain adversarial
learning (Ryu and Lee, 2020; Tzeng et al., 2017),
our approach makes the adaptation more explain-
able, while improving the overall cross-domain
performance compared to prior-approaches.

2 Proposed Approach

Given training data from a labeled source domain
Dtrain
S and an unlabeled target domain Dtrain

T , our
approach for DA in hate-speech involves 2 steps: (i)
extraction of source-specific terms and (ii) reducing
the importance of these terms. Our setting is similar
to Ben-David et al. (2020) and Ryu and Lee (2020).

2.1 Extraction of Source-specific Terms

Domain classification To identify source-
specific terms, we first train a binary domain
classifier using Dtrain

S and Dtrain
T that learns

to identify whether a candidate instance comes
from the source or the target domain. For this,
we use a simple Logistic Regression (LR) with
bag-of-words, as it is inherently interpretable. We
then use its feature weights to extract the top N
most important terms for predicting the source
domain class. Each term is tokenized with the
BERT (Devlin et al., 2019) WordPiece tokenizer
for compatibility with transformer models. The top
N terms obtained through domain classification
are denoted as SLR.

Attribution-based term ranking Intuitively, the
terms from SLR that also contribute highly to the
hate-speech labels, are likely to restrict generaliza-
tion to the target as they could potentially reduce
the importance assigned by the classifier to domain-
invariant hate-speech terms. Thus, we extract only
those source-specific terms that are highly corre-
lated with the labels, given the binary classification
task of hate versus non-hate.

To this end, we first continue pre-training BERT
on the unlabeled Dtrain

T using the Masked Lan-
guage Model (MLM) objective for incorporating
the language-variations of the target domain, fol-
lowing Glavaš et al. (2020). We then perform su-
pervised classification on Dtrain

S using this MLM
trained model. After every epoch, we obtain 2
ranked lists of terms for the two classes, sorted
in the order of decreasing importance. We con-
struct the lists using feature attribution methods
that yield instance-level attribution scores ins-atrjte
per term te in an instance j – a higher score indi-
cating a higher contribution to the predicted class.
We discard the scores of stop-words and the in-
frequent terms, and normalize ins-atrjte using the
sigmoid function. For obtaining a corpus-level
class-specific attribution score cp-atrcte per term te
and per class c, we perform a corpus-level average
of all the ins-atrjte for every c using Equation 1.

cp-atrcte =
∑|DtrainS |
j=1 1ŷj=c

ins-atrjte∀occurrence of te in j
∑|Dtrain

S
|

j=1 1ŷj=c
#(occurrence of te in j)

(1)

Here c ∈ {hate, non-hate}, ŷ is the predicted class
and 1 is the indicator function. We sort the scores
cp-atrcte for all te to obtain the highest attributed
(i.e. most important) term per class to the lowest,
yielding the ranked lists of terms per class, given
by CP = [cp-hate, cp-non-hate].

We extract the source-specific terms teS that are
common to both SLR and the topM terms from CP,
i.e. teS = [te ∈ SLR & te ∈ topM (CP)]. These
steps are repeated after every epoch. Note that the
list SLR remains constant across the epochs, as it is
independent to the hate-speech classification task.

2.2 Penalization of Source-specific Terms

We hypothesize that penalizing teS obtained from
the previous epoch during the next epoch should
reduce the importance of terms that are both (i)
domain-specific and (ii) contribute highly to the
source labels, and thus, help learn from domain
invariant terms. We minimize the attribution scores
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for teS , with L2 penalization, in Equation 2.

L = L′
+ λLatr;Latr =

∑
t∈teS

ϕ (t)
2
; t ∈ teS (2)

Here L′
is the classification loss and Latr is the attri-

bution loss. λ controls the strength of penalization,
and ϕ (t) is the attribution score for t.

We experiment with two variations: (i) Dom-
spec: penalizing only the terms in teS ; (ii) Comb:
penalizing the combination of teS and the terms
from Liu and Avci (2019); Kennedy et al. (2020).

We use two different feature attribution meth-
ods that have been widely used in recent stud-
ies (Chrysostomou and Aletras, 2021, 2022b):
(i) Scaled Attention (α∇α) (Serrano and Smith,
2019), which scales attention weights α by their
corresponding gradients∇αi = δŷ

δαi
, where ŷ is the

predicted label, and is shown to work better than us-
ing only the attention weights; (ii) DeepLIFT/ DL
(Shrikumar et al., 2017) that assigns scores based
on the difference between activation of each neuron
and a reference activation (zero embedding vector).
Note that although Liu and Avci (2019) have used
the Integrated Gradients (IG) (Sundararajan et al.,
2017), we use DL as it is most often a good and a
faster approximation of IG (Ancona et al., 2018).

3 Experimental Setup

3.1 Data
We use three standard hate-speech datasets, namely,
Waseem (Waseem and Hovy, 2016), HatEval
(Basile et al., 2019) and Vidgen (Vidgen et al.,
2021). Following Wiegand et al. (2019); Swamy
et al. (2019), we perform hate/non-hate classifica-
tion across domains. We use the standard splits
available for HatEval (42.1% hate; train: 89932,
val: 1000; test: 3000) and Vidgen (54.4% hate;
train: 32497, val: 1016, test: 4062). We sub-
sample the Vidgen validation set by 25% to get
1016 samples, making its size similar to the other
datasets. We split Waseem (26.8% hate) randomly
into train (80%; 8720), validation (10%; 1090) and
test (10%; 1090) sets, as no standard splits are
available.

We present the top ten most frequent terms in
these datasets in Table 1. The Waseem dataset is
known to comprise a high proportion of implicit
hate (Wiegand et al., 2019), which are subtle ex-
pressions of hate without the use of profanity. This

2The instances containing only URLs are removed, de-
creasing the number of train instances from 9000 to 8993.

is also evident in the most frequent terms from
this dataset. In Table 1, #mkr refers to a cooking
show which frequently results in sexist comments
targeted towards the participating women. HatE-
val involves hate against women and immigrants.
Many hateful tweets against immigrants occurred
in the context of the US-Mexico border issues with
the hashtag #buildthewall. The Vidgen dataset is
collected through a dynamic data creation process
with a human-and-model-in-the-loop strategy, un-
like HatEval and Waseem datasets that are sampled
from Twitter. In particular, the Vidgen dataset in-
volves hate against many different target groups or
identity terms, with a wide variety of topics and
hateful forms. See Appendix A for further details
on the datasets.

Dataset Frequent terms in the datasets
Waseem #mkr, #notsexist, kat, women, like,

andre, get, people, one, think
HatEval b*tch, women, refugees,

#buildthewall, immigrant,
immigration, illegal, men, mi-
grants, h*e

Vidgen people, black, women, f*cking,
like, love, think, white, get, want

Table 1: Top ten most frequent terms in the datasets
after removing the stop-words.

3.2 Baselines
We compare our work with approaches that pe-
nalize (i) pre-defined terms in Convolutional Neu-
ral Networks-based Liu and Avci (2019)3; (ii) (a)
the identity terms in the top features of a bag-of-
words Logistic Regression in BERT-based Kennedy
et al. (2020)4 (b) all the terms listed by Kennedy
et al. (2020); (iii) terms extracted automatically
by Attanasio et al. (2022); (iv) combination of
terms from (i) and (ii,b) within BERT, and call
this Pre-Def. We do not compare with Bose et al.
(2022) as they use labeled target instances for term-
extraction, which does not allow a fair comparison.

Further, we experiment with the Vanilla baseline
(Van-MLM-FT), where the pre-trained BERT is
adapted to Dtrain

T using the MLM objective, fol-
lowed by a supervised fine-tuning on Dtrain

S . We
also assess different DA methods from the sen-
timent classification task, namely, BERT PERL
(Pivot-based Encoder Representation of Language)

3with Integrated Gradients (Sundararajan et al., 2017)
4with Sampling and Occlusion (Jin et al., 2020)

6658



Approaches H →V V →H H →W W →H V →W W →V Average
BERT Van-MLM-FT 56.6±1.3 66.2±1.2 70.0±2.5 50.9±2.1 61.4±2.4 43.5±1.9 58.1
Liu and Avci (2019) 45.1±4.5 59.5±0.7 57.2±3.8 52.6*±0.8 57.1±2.7 39.6±2.0 51.9
MLM + Kennedy et al. (2020) (a) 55.4±2.0 65.5±0.8 64.1±1.4 54.4*±1.3 59.2±1.8 44.5±2.9 57.2
MLM + Kennedy et al. (2020) (b) 54.9±2.9 65.7±0.9 67.3±1.2 54.3*±2.2 62.3±2.7 46.6±3.5 58.5
BERT PERL 54.1±0.7 60.0±0.6 60.1±2.0 55.2*±0.7 55.5±1.0 37.8±1.2 53.8
BERT-AAD 56.6±1.3 53.9±3.5 68.8±2.5 50.7±1.4 48.3±4.7 53.0*±1.7 55.2
HATN 48.4±1.6 59.1±0.4 59.7±2.9 51.4±1.8 60.0±2.6 45.4±2.7 54.0
MLM + Sarwar and Murdock (2022) 55.0±1.9 66.2±2.0 68.8±1.1 48.2±3.1 57.9±1.3 36.2±1.1 55.4
MLM + Attanasio et al. (2022) 54.9±1.6 66.5±1.4 64.1±5.0 52.4*±3.7 62.5±0.8 43.5±2.3 57.3
MLM + χ2-test 57.9±1.6 67.1±1.7 69.8±0.8 48.2±3.1 60.4±2.8 44.1±3.4 57.9
Pre-def (α∇α) 58.9*±0.7 67.4±1.5 71.3±1.0 48.9±4.0 60.0±2.0 46.5±4.9 58.8
Dom-spec (α∇α) 58.3±1.8 66.8±0.7 70.1±1.8 52.3*±3.0 60.8±2.2 46.9*±2.5 59.2
Comb (Dom-spec + Pre-def) (α∇α) 58.7*±2.1 67.7±1.0 70.9±1.0 51.5±2.1 59.8±1.5 45.9±3.1 59.1
Pre-def (DL) 58.5*±1.4 66.5±1.3 70.3±1.7 51.2±1.7 70.3*±0.5 42.7±2.0 59.9
Dom-spec (DL) 58.8*±0.6 66.4±1.2 72.2±1.4 52.9*±1.9 63.6*±2.0 48.8*±4.7 60.5
Comb (Dom-spec + Pre-def) (DL) 58.4±1.4 66.7±1.0 71.3±0.9 51.1±2.2 69.5*±2.2 46.6±1.9 60.6

Table 2: Macro-F1 (±std-dev) on source →target pairs. H : HatEval, V : Vidgen, W : Waseem. Bold denotes the
best score and underline the second best in each column . * denotes statistically significant improvement compared
to Van-MLM-FT with paired bootstrap (Dror et al., 2018; Efron and Tibshirani, 1993), 95% confidence interval.

(Ben-David et al., 2020) that adopts the MLM ob-
jective of BERT to perform pivot-based fine-tuning;
BERT-AAD (Adversarial Adaptation with Distil-
lation) (Ryu and Lee, 2020) that performs domain
adversarial training; HATN (Hierarchical Attention
Transfer Network) (Li et al., 2018, 2017) that ex-
tracts pivots using a domain adversarial approach.

We evaluate a data-augmentation-based approach
(Sarwar and Murdock, 2022) for DA in hate-speech.
For a fair comparison, we use the BERT as the un-
derlying model in this approach. Finally, we apply
the χ2-test with 1 degree of freedom and Yate’s
correction (Kilgarriff, 2001), penalizing the terms
from Dtrain

S , using their DL scores, for which the
null hypothesis of both Dtrain

S and Dtrain
T being

random samples of the same larger population, is
rejected with 95% confidence. We initialize all the
BERT models with MLM adaptation on the tar-
get, except for PERL and AAD, which inherently
adapts to the target.

3.3 Model training

We train all the models on Dtrain
S , use a small

amount of the labeled Dval
T only for model-

selection and hyper-parameter tuning (see Ap-
pendix B) , following Dai et al. (2020); Maharana
and Bansal (2020), and evaluate on Dtest

T .

4 Results

4.1 Discussion

Table 2 displays the macro-F1 scores obtained, in
cross-domain settings, averaged across five ran-
domly initialized runs. We use macro-F1 as penal-
izing teS corrects the mis-classifications for both
the hate and non-hate classes across domains. We
observe an overall performance drop, compared

to Van MLM-FT, with the DA approaches, origi-
nally proposed for sentiment classification, namely,
BERT PERL, BERT-AAD and HATN. This also
agrees with Bose et al. (2021), who analyze the ex-
tracted pivots – terms that are both frequent across
domains as well as important for classification with
respect to the source – and find them to be sub-
optimal for DA in hate-speech. The approach by
Sarwar and Murdock (2022) also displays an over-
all drop. They augment the source domain by sub-
stituting relevant terms from a different negative
emotion dataset with tagged hate-speech related
terms from the target domain. We observe that the
augmented instances are often incomprehensible
after such substitution.

Dom-spec yields improvements over all the base-
lines using both α∇α and DL, both independently
and in combination (Comb) with Pre-def, where
Comb achieves the highest overall performance
with DL: 60.6. With DL, Dom-spec yields signif-
icantly improved performance in 4/6 cases, com-
pared to 2/6 with Pre-def (DL). This is apparently
due to the penalization of relevant source-specific
terms that have wider coverage compared to the pre-
defined terms in Pre-def. Since the entropy-based
attention regularization by Attanasio et al. (2022)
do not use the target domain unlabeled instances
for term-extraction, it may not be optimal for cross-
domain settings. The large improvement with Pre-
def (DL) for Vidgen →Waseem (70.3) could be
attributed to the fact that Vidgen involves a wide
variety of identity terms. Thus, penalizing the pre-
defined identity terms might result in higher em-
phasis on more generalizable hate-speech content.
While only this particular case drives the high av-
erage performance with Pre-def (DL), Dom-spec
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Non-hate example from the test set of HatEval for Waseem →HatEval
FP with Van-MLM-FT TN with Dom-spec (DL)
Depression is a whole

entire b*tch

Depression is a whole

entire b*tch

Hate example from the test set of Waseem for Vidgen →Waseem
FN with Van-MLM-FT TP with Dom-spec (DL)
... good to talk with your

wife but it is easier to

say shut up n make me

a sammich not sexist lol

... good to talk with your

wife but it is easier to

say shut up n make me

a sammich not sexist lol

Table 3: Change in attributions with Dom-spec (DL).

(DL) performs well consistently and yields a higher
average score (Dom-spec: 60.5, Comb: 60.6) com-
pared to Pre-def.

As discussed by Wiegand et al. (2019), the
Waseem dataset includes a high degree of implicit
hate. Still, Dom-spec (DL) yields improvements
on the Waseem dataset when using it as the tar-
get domain, compared to Van MLM-FT. This is
reflected in the cases of HatEval →Waseem and
Vidgen →Waseem. This is most likely because
when the source domain-specific terms causing
bias are penalized, the model is forced to learn
more from the wider contextual meaning of the
instances, rather than focusing on individual terms.
We believe that this could possibly help in improv-
ing the detection of implicit hate in out of domain
instances, at least to some extent. We leave further
investigation in this direction for future work.

4.2 Qualitative Analysis

Table 3 displays examples of False Positives (FP)
for Waseem →HatEval and False Negatives (FN)
for Vidgen →Waseem, yielded by Van-MLM-FT
for the respective target domain instances, which
are correctly classified by Dom-spec (DL), where
the hate class is the positive class. The darker
the shades, the higher the attributions assigned by
the source classifier. The examples suggest that
penalizing source-specific terms results in placing
more emphasis on the general contextual meaning
of the out-of-domain instances such as ‘depression’
in the first example and ‘wife...shut...make me a
sammich’ in the second.

Note that the terms in these examples from the
target domain that receive reduced importance with
Dom-spec, compared to Van-MLM-FT, may not
be the same terms that are extracted and penalized.
This is because the domain classification step re-
sults in obtaining terms that are more likely to be
infrequent in the target domain. Rather, due to the

penalization of source-specific terms, the source
domain classifier learns to focus on the wider con-
text of the instances. For example, we observe
that in the case of Waseem →HatEval, the auto-
matically extracted teS includes terms related to
the role of women in sports, such as {sports, sex-
ist, gaming, football, commentary, competition, ...}.
Note that Wiegand et al. (2019) also mention that
these terms cause domain or topic bias in Waseem,
restricting generalizability. See Appendix C for
more examples.

5 Conclusion

We proposed a DA approach for automatic extrac-
tion and penalization of source domain-specific
terms that have higher attributions towards the
hate-speech labels, to improve cross-domain hate-
speech detection. The results demonstrated con-
sistent improvements on the target domain. These
results should motivate further research on domain
adaptation in hate-speech and building classifiers
that can generalize well to the concept of hate. Fi-
nally, it would be interesting in applying our ap-
proach to other tasks such as rumor and misinfor-
mation detection (Mu and Aletras, 2020; Mu et al.,
2022).

Ethical Considerations

This work serves as a means to build more robust
hate-speech detection models that can make proper
use of the existing curated hate-speech resources
and adapt well on new resources or social-media
comments, which have not been well-annotated
due to time and cost constraints. The hate-speech
resources used for the work are publicly available
and cited appropriately, wherein the authors have
discussed the sampling techniques and annotation
guidelines in detail. The hate-speech examples
presented in the paper are only intended for re-
search purposes and better analysis of the models
explored. The terms extracted and penalized in this
work are not meant to be used off-the-shelf, but
the approach should serve as a starting point for
research on model-debugging and building more
generalizable hate-speech classifiers.
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A Differences across Datasets

The datasets HatEval (Basile et al., 2019) and
Waseem (Waseem and Hovy, 2016) have been sam-
pled from Twitter. HatEval has primarily been
collected in the year 2018 using a combination of
sampling strategies, including keyword-based sam-
pling (with both neutral and derogatory words),
collecting the history of identified perpetrators and
monitoring the potential victims of hate. It mainly
consists of hate against women and immigrants. In
the case of Waseem, tweets are collected particu-
larly using keyword-based sampling in or before
2016, with keywords that are likely to co-occur
with hateful content. Wiegand et al. (2019) discuss
the presence of a large amount of topic-bias in the
dataset Waseem. Since this dataset is available as
tweet-IDs, we observe that in the crawled dataset,
many tweets flagged as racist are missing, and have
most likely been deleted already. Thus, the ma-
jority of available hateful content in this dataset is
directed against women. The topics discussed in
these two datasets are also quite different.
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Vidgen5 (Vidgen et al., 2021), on the other hand,
is a dataset generated using a human and model-
in-loop process. This process results in adding
several perturbations and instances, which are dif-
ficult to classify, aimed at making the dataset ro-
bust. Besides, it consists of hateful content directed
against a wide array of target groups, e.g. black,
gay, muslim, disabled, etc., along with different
forms of hate such as derogation, threatening lan-
guage, animosity, support for hateful entities and
dehumanization. Thus there is a substantial amount
of differences across these datasets in terms of col-
lection time-frames, sampling strategies, targets of
hate, forms of hate, vocabulary used and the like.

For pre-processing the datasets, we remove the
URLs, split the hashtags using CrazyTokenizer6

and lowercase the terms.

B Implementation Details and
Hyper-parameter Tuning

We use the pre-trained BERT-base (Devlin et al.,
2019) uncased model7 (Wolf et al., 2020) for our
experiments. We run both the Masked Language
Model (MLM) training on the unlabeled target do-
main training data Dtrain

T , and the subsequent su-
pervised fine-tuning on the source domain training
data Dtrain

S for 6 epochs with a batch size of 8 for
all the BERT baselines and Dom-spec. We use the
AdamW optimizer with decoupled weight decay
regularization (Loshchilov and Hutter, 2019), hav-
ing a weight decay of 10−4. We use a learning rate
of 3 × 10−5 for the MLM training and 1 × 10−5

for the supervised fine-tuning, with the epsilon pa-
rameter set to 1× 10−8.

We use the original implementations provided by
the respective authors of all the baselines except for
Sarwar and Murdock (2022). We implement the
data-augmentation approach by Sarwar and Mur-
dock (2022) ourselves, as there is no available im-
plementation. We follow the description provided
in the paper and label all the terms in the hateful
instances of the source domain that have a match
with hatebase.org8 for training a sequence tagger.
However, while finding the matches, we do not to-
kenize the multi-word phrases in hatebase.org. We
lowercase the terms from hatebase.org and look for

5We use an older version of the dataset. The authors have
uploaded a newer version of this dataset currently.

6https://redditscore.readthedocs.io
7https://huggingface.co/

bert-base-uncased
8https://hatebase.org/

an exact match of a term in the source domain.
For Pre-Def, we combine the curated list of iden-

tity terms provided by Liu and Avci (2019) and
Kennedy et al. (2020) and penalize their attribu-
tion scores. We perform hyper-parameter tuning
and model selection with early-stopping on a small
amount of labeled target domain validation set
Dval
T using the macro-F1 score for the proposed

approach as well as for all the baselines. The hyper-
parameter λ, both for the proposed approach and
Pre-Def, is selected from the range λ ∈ {0.01, 0.05,
0.1, 1.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0}, using a
random seed by tuning over Dval

T . We set the value
of M to 250 and N to 750 for all our experiments.

C Terms Extracted

The full-list of penalized terms (BERT WordPieces)
teS across epochs for the examples listed in Section
4.2, is given below.
Waseem →HatEval

• Epoch 1: {college, sports, feminism, la, mag-
netic, used, unique, ##ava, speech, ##js, tr,
##cking, object, chu, result, ki, bus, ##is,
adopt, referring, ##roids, handed, ##em, sh,
##omp, unconscious, anger, gamer, prove,
xbox, tri, skill, judgment, tool, block, single,
harassment, size, georgia, involved, ##ism,
studying, voices, possible, gaming, pl, ##il,
helped, ##ke, survey, equality}

• Epoch 2: {feminism, used, football, awe-
some, equal, ##cking, object, ##ification, in-
terest, feminist, ##rra, scientist, ##al, igno-
rance, bodies, ##work, later, ##nk, troll, ##ss,
based, adopt, ##cing, quality, sister, uncon-
scious, criticisms, pro, notch, xbox, tri, un-
fair, rap, meanwhile, impression, single, ha-
rassment, bonus, georgia, constant, sex, ##ist,
possible, click, competition, ##per, swedish,
##eral, november, write, eventually, equality}

• Epoch 3: {sham, anger, pull, used, focus,
speech, ashley, object, interest, bringing, ##na,
eye, ##nk, later, quality, ##roids, oppressive,
rain, ##omp, statistics, nsw, content, notch,
museum, unconscious, typically, tri, ##ol, un-
fair, writing, ##chan, georgia, constant, annie,
ra, weights, click, ##il, furniture, helped, shop-
ping, football, commentary, equality}

• Epoch 4: {minded, kat, used, equal, focus,
##hand, tr, ##cking, chu, interest, bringing,
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Approaches HatEval Vidgen Waseem Mean
BERT Van-FT 43.3±1.8 85.1±0.5 85.4±0.7 71.3

Performance on source domain (left of arrows) while applying domain adaptation for the target (right of arrows)
H →V H →W V →H V →W W →H W →V

Dom-spec (α∇α) 42.4±2.5 42.0±4.1 84.0±0.9 84.5±1.0 85.1±0.7 83.8±0.8 70.3
Dom-spec (DL) 41.7±3.7 40.5±4.4 83.9±0.7 82.6±1.5 84.7±1.2 81.1±2.7 69.1

Table 4: Effect of domain adaptation for the target on the source domain performance; Source-domain macro
average F1 scores (mean±std-dev) are obtained after MLM training on the unlabeled target domain and penalizing
the source specific terms while adapting the model to the target domain (present at the right hand side of the arrows)
using Dom-spec. H : HatEval, V : Vidgen, W : Waseem. Van-FT: BERT model evaluated in-domain without MLM
training on the target domain.

thor, fm, ##tag, path, scientist, precious, later,
mike, quality, humanist, ##roids, ##el, ##omp,
worth, unconscious, nsw, xbox, tri, unfair, nu,
kaitlyn, ##ering, pest, fe, camera, giant, con-
stant, weights, gaming, rap, ##il, swedish,
opposes, ##thi, november, laughing, survey,
equality}

• Epoch 5: {feminism, raging, equal, focus,
##hand, ##cking, ##cky, ##tag, ##na, mostly,
scientist, ##al, ##rra, adopt, humanist, ft,
##roids, ##el, ##omp, example, unconscious,
museum, anger, typically, tri, unfair, impres-
sion, yu, single, fe, cu, ##rd, ##ification,
constant, grass, gaming, rap, science, ##per,
swedish, il, furniture, shopping, november,
equality}

Few of the extracted terms get repeated in sub-
sequent epochs as a single epoch may not be suf-
ficient to reduce the effect of a term and it may
appear in the next epoch as well. Moreover, as
the training progresses, the model may learn new
patterns, and some extracted terms may reappear
and disappear again due to the penalization.

Following is a non-hateful example in HatEval,
wrongly classified by Van-MLM-FT but correctly
classified by Dom-spec (The darker the shades, the
higher the attribution scores assigned):

Van-MLM-FT: Unfortunately you are in

a sticky size my only problem is

replacing my shoes has been a b*tch

Dom-spec (DL): Unfortunately you are

in a sticky size my only problem is

replacing my shoes has been a b*tch

Vidgen →Waseem

• Epoch 1: {wheelchair, ##zzi, dali, seekers,
##oons, koreans, ##tos, ##ware, ##ders, hand-
icapped, principles, mac, pregnant, ##tier,
##iers, ##wear, ##bib, barren, ##tite, dyke}

• Epoch 2: {customer, pip, principles, ##tos,
##hon, les, ko, vietnamese, teenagers, ##lock,
##sion, ##has, ##gin, ##rmi, poles, buddhist,
handicapped}

• Epoch 3: {pak, homosexuality, koreans,
pleasant, ##tos, mirror, spaniards, ##fs, ro,
##rmi, boom, handicapped}

• Epoch 4: {##cky, pak, chin, ##tos, bender,
herr, catholics, ro, buddhist}

• Epoch 5: {pip, pak, ##tos, yellow, bender,
koreans, ##mit, ##sion, ##has, ##rk, ##gin,
catholics, ro, arrogance}

Following is a non-hateful example in Waseem,
wrongly classified by Van-MLM-FT, but correctly
classified by the proposed approach (The darker the
shades, the higher the attribution scores assigned):

Van-MLM-FT: Omg I am lisening to an

apple genius dude tell this old woman

how to use email and it is adorable

Dom-spec (DL): Omg I am listening to

an apple genius dude tell this old

woman how to use email and it is

adorable

D In-domain Performance

Table 4 presents, as a reference, the in-domain
macro-F1 scores using BERT supervised fine-
tuning (Van-FT) without the MLM training on the
target domain. In this case, the model is tuned over
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Approaches HatEval Vidgen Waseem
BERT Van-MLM-FT 1 m 20 s 3 m 49 s 2 m 10s
Dom-spec (α∇α) 2 m 30s 7 m 3 m 17 s
Dom-spec (DL) 4 m 18 m 8 m 16 s

Table 5: Per epoch training time on different source
domains.

the in-domain validation set. The HatEval dataset
is part of a shared task and involves a challenging
test set with low in-domain performance. Table 4
displays the source-domain scores obtained when
source-specific terms are penalized, while adapting
to the target domain using Dom-spec, where the
model is tuned over the target domain validation
set. The drop in in-domain performance is expected
as Dom-spec is aimed at making the model best-
suited to the target domain. However, the overall
performance with Dom-spec is comparable to that
of BERT Van-FT.

E List of Identity Terms for Pre-Def

The combined list of pre-defined curated identity
terms from Liu and Avci (2019) and Kennedy et al.
(2020) are given below:

{lesbian, gay, bisexual, trans, cis, queer, lgbt,
lgbtq, straight, heterosexual, male, female, non-
binary, african, african american, european, his-
panic, latino, latina, latinx, canadian, american,
asian, indian middle eastern, chinese, japanese,
christian, buddhist, catholic, protestant, sikh, taoist,
old, older, young, younger, teenage, millenial, mid-
dle aged, elderly, blind, deaf, paralyzed, muslim,
jew, jews, white, islam, blacks, muslims, women,
whites, gay, black, democrat, islamic, allah, jewish,
lesbian, transgender, race, brown, woman, mexican,
religion, homosexual, homosexuality, africans}

F Computational Efficiency

The per-epoch training time for Dom-spec, while
performing adaptation of different source domain
models, are presented in Table 5. Dom-spec (α∇α)
takes less than double the time taken by Van-MLM-
FT to train, and Dom-spec (DL) takes roughly 4.5
times of the training time taken by Van-MLM-FT.
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Abstract

Hate speech detection has gained increasing at-
tention with the growing prevalence of hateful
contents. When a text contains an obvious hate
word or expression, it is fairly easy to detect it.
However, it is challenging to identify implicit
hate speech in nuance or context when there
are insufficient lexical cues. Recently, there are
several attempts to detect implicit hate speech
leveraging pre-trained language models such
as BERT and HateBERT. Fine-tuning on an
implicit hate speech dataset shows satisfactory
performance when evaluated on the test set of
the dataset used for training. However, we em-
pirically confirm that the performance drops at
least 12.5%p in F1 score when tested on the
dataset that is different from the one used for
training. We tackle this cross-dataset under-
performing problem using contrastive learning.
Based on our observation of common underly-
ing implications in various forms of hate posts,
we propose a novel contrastive learning method,
ImpCon, that pulls an implication and its cor-
responding posts close in representation space.
We evaluate the effectiveness of ImpCon by
running cross-dataset evaluation on three im-
plicit hate speech benchmarks. The experimen-
tal results on cross-dataset show that ImpCon
improves at most 9.10% on BERT, and 8.71%
on HateBERT.

1 Introduction

Warning: this paper contains contents that may be
offensive or upsetting.

Hate speech is “any communication that dis-
parages a target group of people based on some
characteristic such as race, color, ethnicity, gender,
sexual orientation, nationality, religion, or other
characteristic” (Nockleby, 2000). Recently, there
are several attempts to detect hate speech or abu-
sive text using lexicon-based methods (Chen et al.,
2012; Gitari et al., 2015; Lee et al., 2018; Wiegand
et al., 2018) or neural-based methods (Gambäck

Text (Input) :
“my world orbits around whites as it should .
laughable moment though .”
Label : Hate
Text (Input) :
“that is part of the white supremacy logic that
native people are less than human . we aren’t .”
Label : Not Hate
Text (Input) :
“send them back to the countries
they came from”
Label : Hate

Table 1: Example input texts and labels (Hate / Not
Hate) from IMPLICIT HATE CORPUS (IHC) (ElSherief
et al., 2021) which is an implicit hate speech dataset.

“my world orbits around 
whites as it should . 

laughable moment though .”

Implicit Hate Speeches

“reverse all engines ! 
make america white again .”

“everything worthwhile 
in a society is 

white supremacy .”

People of color are 
inferior to white people

Shared Implication

Figure 1: Implicit hate speeches and their shared impli-
cation from IMPLICIT HATE CORPUS (IHC).

and Sikdar, 2017; Badjatiya et al., 2017; Park and
Fung, 2017; Zhang et al., 2018; Lee et al., 2019;
Wang et al., 2020). While these approaches work
fairly well when a text contains an explicit hate or
abusive word, they often fail to detect implicit ones.
See Table 1 for examples of implicit hate speech.
Caselli et al. (2020) showed that the pre-trained lan-
guage model struggles to detect implicit abusive-
ness. They suspect that a small amount of training
data with implicit abusiveness is a main reason for
the poor performance. In this vein, ElSherief et al.
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(2021) recently presented an implicit hate speech
benchmark. The models trained on this dataset
outperform other baselines in terms of in-dataset
evaluation performance. In general, the hate speech
detection performance can be over-estimated when
evaluated on its own test set (Arango et al., 2019;
Yin and Zubiaga, 2021). On in-dataset evaluation,
a model is evaluated on the test set of the same
dataset used for training. However, on cross-dataset
evaluation, a model is evaluated on the dataset that
is different from the one used for training. Instead
of in-dataset evaluation, it is better to run a cross-
dataset evaluation to see the generalization ability
of a model (Wiegand et al., 2019). As a preliminary
experiment, we perform the cross-dataset evalua-
tion for the current state-of-the-art models trained
on implicit hate speech datasets. In Section 2.2, we
empirically observe relatively low performance on
cross-dataset evaluation.

Prior research (Gunel et al., 2021) incorporates
contrastive learning into their fine-tuning process,
resulting in better generalization ability in few-shot
learning setup. Motivated by this, we propose con-
trastive learning methods to improve the general-
ization ability of implicit hate detectors on cross-
dataset. Contrastive learning makes positive pairs
to be close together and negative pairs to be apart
in the representation space (Rethmeier and Augen-
stein, 2022). One of the key issues in contrastive
learning is how to choose positive samples. De-
pending on different choices of positive sampling, a
model would learn different invariant features (Tian
et al., 2020). Here, we suggest two positive sam-
pling strategies: 1) Leveraging augmented posts as
positive samples of given posts (AugCon); 2) Lever-
aging implications as positive samples of given
hateful posts (ImpCon). For AugCon, we first gen-
erate augmented posts which are lexically different
but semantically similar with their original posts.
ImpCon leverages implications as positive samples
of hateful posts, since it contains concealed mean-
ing of the hateful posts. In addition, a common
implication is often shared by a group of hateful
posts, as shown in Figure 1. By pulling an impli-
cation and its corresponding hateful posts close in
representation space, the model can learn common
features among a group of hateful posts sharing an
implication.

We evaluate the generalization ability of mod-
els trained using AugCon and ImpCon. We con-
duct cross-dataset evaluation on three implicit hate

BERT
Test

Train IHC SBIC DYNAHATE

IHC 0.777 0.568 0.531
SBIC 0.596 0.838 0.603

DYNAHATE 0.660 0.663 0.788
HateBERT

Test
Train IHC SBIC DYNAHATE

IHC 0.764 0.587 0.547
SBIC 0.587 0.840 0.598

DYNAHATE 0.662 0.668 0.794

Table 2: Cross-dataset and in-dataset evaluation results
of BERT and HateBERT. The column on the left in-
dicates the dataset used for training, while the row on
the top indicates the dataset used for evaluation. Cross-
dataset evaluation results are presented in bold.

speech benchmarks with BERT and HateBERT as
base models. By incorporating AugCon or Im-
pCon in fine-tuning, we can improve the cross-
dataset evaluation performance. While improve-
ment with AugCon is limited to BERT (at most
2.92% improvement), ImpCon brings consistent
improvements across all cross-datasets and mod-
els (at most 9.10% improvement to BERT and
8.71% improvement to HateBERT). The consistent
improvement of ImpCon demonstrates the effec-
tiveness of leveraging implication-post pair on the
generalization ability. Moreover, further analysis
on ImpCon shows that even unseen implication-
post pairs are projected closer on the representa-
tion space (Section 5.1), resulting in consistent
predictions on cross-dataset (Section 5.2). Our
code is available at https://github.com/
youngwook06/ImpCon.

2 Related Work and Preliminary
Experiment

2.1 Hate Speech Detection
With the increase of online media and user con-
tents, hate speech becomes more pervasive on-
line. Considering the massive volume of on-
line posts, it is impractical to manually moder-
ate all posts. Researchers have developed many
hate speech detection models, including lexicon-
based approaches (Chen et al., 2012; Gitari et al.,
2015; Lee et al., 2018; Wiegand et al., 2018)
and neural network models (Gambäck and Sik-
dar, 2017; Badjatiya et al., 2017; Park and Fung,
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2017; Zhang et al., 2018; Lee et al., 2019; Wang
et al., 2020). Also, there are several datasets avail-
able for hate speech detection with different fo-
cuses (Warner and Hirschberg, 2012; Davidson
et al., 2017; Founta et al., 2018; Basile et al., 2019).
For example, Davidson et al. (2017) introduced a
dataset to distinguish hate speech from an offensive
language and Founta et al. (2018) investigated rep-
resentative labels by merging and eliminating some
labels related to abusive tweets. However, many of
these datasets are skewed towards explicit forms
of abusiveness since the data collection strategies
often rely on explicit signals such as hateful lexi-
cons (ElSherief et al., 2021). A model trained on
such dataset often fails to detect implicit hate, even
for the pre-trained language model (Caselli et al.,
2020).

Recently, researchers show their interests in ad-
dressing implicit hate or abusiveness. Han and
Tsvetkov (2020) used a set of probing data for the
robust classifier which better detects disguised tox-
icity. Wiegand et al. (2021) studied subtypes of
implicit abuse and existing datasets. ElSherief et al.
(2021) presented a benchmark with implicit hate
label, annotated target and implication.

2.2 Preliminary Experiment

Several works in hate speech detection have re-
ported a large drop of the fine-tuned model perfor-
mance when evaluated on cross-dataset (Gröndahl
et al., 2018; Arango et al., 2019; Swamy et al.,
2019). We conduct a preliminary experiment to see
if implicit hate speech detection models can still
perform well on cross-datasets that are also skewed
towards implicit hate. We use three implicit hate
datasets (IMPLICIT HATE CORPUS (IHC), SOCIAL

BIAS INFERENCE CORPUS (SBIC) and DYNA-
HATE) following Hartvigsen et al. (2022). Detailed
descriptions of the datasets are presented in Sec-
tion 4.1. We experiment with one of the state-of-
the-art models, BERT (Devlin et al., 2019). We also
experiment with HateBERT (Caselli et al., 2021),
which is pre-trained on abusive corpus and showed
better generalization ability than BERT in their pa-
per. In the cross-dataset evaluation with implicit
hate datasets, we observe the similar generalization
issue. As shown in Table 2, the performance of
both models drops consistently over 12.5%p in F1
score across implicit hate speech datasets. Through
the preliminary experiment, we conclude that im-
plicitly trained models suffer from generalization

issue and combating the issue is needed.

2.3 Contrastive Learning
Recently, contrastive learning has been widely used
to learn representation in various domains and
showed its effectiveness. Many works on con-
trastive learning have proposed diverse choices of
positive sampling.

For example, in the computer vision field, Sim-
CLR (Chen et al., 2020) applies random augmenta-
tion on images and those augmented images from
a same image are considered positive. Khosla et al.
(2020) proposed to use the samples from the same
class for positive sampling. In the natural lan-
guage processing field, CERT (Fang et al., 2020)
augments text with back-translation and considers
augmented texts from the same text as positive.
Also, Giorgi et al. (2021) suggested leveraging tex-
tual segments nearby in the document as positive
samples. Gao et al. (2021) proposed using pairs
from natural language inference datasets for posi-
tive sampling.

Some works on text classification proposed to
apply contrastive learning to fine-tune the model.
Gunel et al. (2021) showed that pulling instances
from the same class closer while fine-tuning im-
proved few-shot learning performance. Suresh and
Ong (2021) extended this approach and showed
that weighting negative samples differently in-
creased performance on fine-grained classification.
Pan et al. (2022) used adversarial examples as pos-
itives and showed outperforming performance over
standard fine-tuning. We suggest using contrastive
learning in the fine-tuning process for generalizable
implicit hate speech detection.

3 Approach

3.1 Overall Training Objective
Generally, hate speech detection models are fine-
tuned in a supervised way using the following cross-
entropy loss Lce:

Lce = −
1

N

N∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)],

(1)
where N is the number of input posts in a batch,
ŷi indicates the model predicted probability of i-
th input xi and yi is the ground-truth label of xi,
respectively. However, since cross-entropy loss
has limitation on making large inter-class margin
or intra-class compactness, fine-tuning using only
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“my world orbits around 
whites as it should . 

laughable moment though .”

Encoder
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weights

People of color are 
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𝑥𝑥𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥𝑖𝑖)

ℎ(𝐼𝐼𝐼𝐼𝐼𝐼 𝑥𝑥𝑖𝑖 )

Classifier
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Shared Implication
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Post A

Post B
Post C

𝓛𝓛𝒄𝒄𝒄𝒄
𝒊𝒊𝒊𝒊𝒊𝒊

“everything 
worthwhile 

in a society is 
white supremacy .”

“reverse all 
engines ! 

make america
white again .”

“my world orbits 
around whites as it 
should . laughable 
moment though .”

People of color are 
inferior to white people

Figure 2: Left: The overview of training a model with Limp
overall (Equation (7)). We present a hateful post and its

implication as an example positive pair for Limp
cl (Equation (6)). Right: ImpCon aims at pulling an implication and

its corresponding hateful posts, resulting in similar representation between a shared implication and its hateful posts
in the representation space. All implication and hateful posts in the figure are from IHC dataset.

cross-entropy loss can result in suboptimal general-
ization (Liu et al., 2016; Zhao et al., 2021).

We propose to combine contrastive loss with
cross-entropy loss to train generalizable implicit
hate speech detector. Contrastive loss pushes the
representation of positive pairs closer and negative
pairs further apart. We denote the positive sample
of xi as xposi (i ≥ 1). Given N training input posts
in a batch, we assume one positive sample per post,
leading to total 2N samples in a batch. When xposi

is the j-th input in a batch, i.e., xposi = xj , we
assume j = i + N if i ≤ N and j = i − N
if i > N . We consider all samples other than
a positive sample as negative samples, excluding
itself. Following Chen et al. (2020), the contrastive
learning loss Lcl can be defined as:

Lcl = −
2N∑

i=1

log
eh(xi)·h(x

pos
i )/τ

∑2N
k=1 1[k ̸=i]e

h(xi)·h(xk)/τ
, (2)

where · denotes dot product operation, h(xi) ∈ RH
is the representation of the encoder for input xi,
and H is the hidden dimension size. In detail, the
last layer representation of [CLS] token is further
normalized and used as h(xi) for input xi. 1[·] is
an indicator function and τ is a scalar temperature
parameter.

Our training objective for fine-tuning is the com-
bination of cross-entropy loss Lce and contrastive

learning loss Lcl:

Loverall = λLce + (1− λ)Lcl, (3)

where λ is a loss scaling hyperparameter.

3.2 Positive Sampling

The strategies of constructing positive samples for
contrastive learning have been studied actively. In
the following, we give detailed description of two
positive sampling strategies for generalizable im-
plicit hate speech detection.

3.2.1 Augmented Post as Positive Samples
It has been shown that unintended biases in a
dataset could lead to the generalization issue of a
model detecting abusiveness (Wiegand et al., 2019).
Due to the lack of lexical cues in implicit hate
speech and its subtlety, we suspect that implicit
hate speech detector could easily overfit to unin-
tended lexical biases in the dataset. To ease such is-
sue, we suggest using augmented post as a positive
sample. Our intuition is that by using augmented
variants of posts, which are lexically different but
semantically similar with original posts, the model
can learn more invariant semantic features.

When we denote augmentation module as
AUG(·), here, we set the positive sample for i-
th input xi as xposi = xj = AUG(xi). For i ≤ N ,
AUG(xi) is the augmented version of xi. For
i > N , AUG(xi) is the original input post (be-
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fore augmentation) of xi. Specifically, for augmen-
tation, we leverage synonym substitution follow-
ing Suresh and Ong (2021). However, we note that
any augmentation can be used for AUG(·). The
contrastive learning loss Laugcl using augmented
post as a positive sample is defined as:

Laugcl = −
2N∑

i=1

log
eh(xi)·h(AUG(xi))/τ

∑2N
k=1 1[k ̸=i]e

h(xi)·h(xk)/τ
.

(4)
We refer to this contrastive learning with aug-
mented posts as AugCon. Then, overall objective
for fine-tuning with cross-entropy loss and AugCon
is:

Laugoverall = λLce + (1− λ)Laugcl . (5)

3.2.2 Implication as Positive Samples

Hate speech conveys a targeted group and disparag-
ing stereotypes and biases regarding the group. At
times, although presented differently, a group of
hateful posts implies similar harmful biases. That
is, people generating hate speech often project one
implication to various lexical forms of posts. In-
spired by the relationship between an implication
and its various lexical forms of hateful posts, we
propose to use an implication of a hateful post as a
positive sample. By pulling a hateful post and its
implication in the training process, an implication
can work as an anchor for its corresponding hateful
posts. This would enable a model to learn the rela-
tionship between a hateful post and its concealed
meaning, leading to more generalizable implicit
hate speech detector.

We assume a module IMP (·), where we set the
positive sample for i-th input xi as xposi = xj =
IMP (xi). For i ≤ N , IMP (xi) means an impli-
cation of xi if xi is a hateful post, otherwise (i.e., if
xi is a non-hateful post) IMP (xi) means an aug-
mented version of xi. For i > N , IMP (xi) means
the original input post of xi (i.e., xi is an implica-
tion or augmented version of IMP (xi)). In detail,
for implication, we use implications that are given
in IHC and SBIC dataset 1. For augmentation, we
use the same augmentation as AugCon. The con-
trastive learning loss Limpcl using implication as a

1If there exists any hateful post without a given implication
in the dataset, then we use an augmented post instead of an
implication.

positive sample is defined as:

Limpcl = −
2N∑

i=1

log
eh(xi)·h(IMP (xi))/τ

∑2N
k=1 1[k ̸=i]e

h(xi)·h(xk)/τ
.

(6)
We refer to this contrastive learning using implica-
tion as ImpCon. Then, overall objective for fine-
tuning with cross-entropy loss and ImpCon is:

Limpoverall = λLce + (1− λ)Limpcl . (7)

The overview of training a model with Limpoverall is
demonstrated in Figure 2.

4 Experiment

4.1 Datasets
We perform binary classification of detecting hate-
ful language on implicit hate datasets. For cross-
dataset evaluation, we use three implicit hate
speech datasets as Hartvigsen et al. (2022). SO-
CIAL BIAS INFERENCE CORPUS (SBIC) (Sap
et al., 2020) is the dataset with hierarchical an-
notation of social bias including offensiveness, tar-
get, and implied statement. Similarly, IMPLICIT

HATE CORPUS (IHC) (ElSherief et al., 2021) is
the implicit hate speech dataset with target and
implication collected from hate communities and
their followers on Twitter. DYNAHATE (Vidgen
et al., 2021) is the hate speech dataset collected
through human-and-model-in-the-loop process of
deceiving a model.

Since one of our main focus is leveraging impli-
cation for generalizable model, we fine-tune mod-
els on two datasets with implications, IHC and
SBIC. For IHC, we refined the dataset considering
the uniformity across annotation stages, resulting
in all ‘implicit hate’ labeled samples having impli-
cations. For SBIC, we aggregate annotations of
each post. In addition, we merge an implied state-
ment with a target to get an implication following
the set of rules in Marasović et al. (2022).

4.2 Baseline Training Approaches
We experimented with three baseline training ap-
proaches.

• Cross-entropy Loss (CE): we fine-tune a
model with cross-entropy loss (CE), which
is a general approach in hate speech classifi-
cation.

• Cross-entropy Loss (CE) with Data Aug-
mentation: we apply data augmentation to
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IHC→ SBIC IHC→ DYNAHATE IHC→ IHC
Model Objective (Cross-dataset) (Cross-dataset) (In-dataset)
BERT CE 0.568 0.531 0.777
BERT (Aug) CE 0.565 0.538 0.777
BERT CE + SCL 0.560 0.537 0.777
BERT CE + AugCon 0.581 0.546 0.774
BERT CE + ImpCon 0.607 0.579 0.780
BERT CE + AugCon + ImpCon 0.611 0.577 0.779
HateBERT CE 0.587 0.547 0.764
HateBERT (Aug) CE 0.555 0.528 0.763
HateBERT CE + SCL 0.559 0.528 0.767
HateBERT CE + AugCon 0.584 0.545 0.765
HateBERT CE + ImpCon 0.635 0.594 0.774
HateBERT CE + AugCon + ImpCon 0.630 0.591 0.772

Table 3: Cross-dataset and in-dataset evaluation results for the models trained on IHC dataset. We use → to
distinguish the dataset used for training (on the left) and the dataset used for evaluation (on the right). For example,
IHC→ SBIC means the setting where a model is trained on IHC and then evaluated on SBIC. Boldfaced values
on cross-dataset evaluation denote the best performance among different training objectives.

SBIC→ IHC SBIC→ DYNAHATE SBIC→ SBIC
Model Objective (Cross-dataset) (Cross-dataset) (In-dataset)
BERT CE 0.596 0.603 0.838
BERT (Aug) CE 0.601 0.604 0.833
BERT CE + SCL 0.594 0.610 0.838
BERT CE + AugCon 0.597 0.612 0.833
BERT CE + ImpCon 0.614 0.612 0.836
BERT CE + AugCon + ImpCon 0.596 0.603 0.838
HateBERT CE 0.587 0.598 0.840
HateBERT (Aug) CE 0.591 0.599 0.844
HateBERT CE + SCL 0.593 0.598 0.843
HateBERT CE + AugCon 0.585 0.595 0.841
HateBERT CE + ImpCon 0.599 0.606 0.848
HateBERT CE + AugCon + ImpCon 0.590 0.603 0.843

Table 4: Cross-dataset and in-dataset evaluation results for the models trained on SBIC dataset. Boldfaced values
on cross-dataset evaluation denote the best performance among different training objectives.

the training data and train a model using
cross-entropy loss. For data augmentation, we
use the same augmentation used in AugCon,
which substitutes 30% of words with their syn-
onyms using WordNet following Suresh and
Ong (2021) 2.

• Cross-entropy Loss (CE) with Supervised
Contrastive Learning: we fine-tune each
model using supervised contrastive learning
(SCL) (Gunel et al., 2021) combined with
cross-entropy loss. In SCL, posts from the
same class are pulled close while others are
pushed apart in the representation space 3.

2We use the nlpaug library (https://nlpaug.
readthedocs.io/en/latest/augmenter/word/
synonym.html) to implement the synonym substitution.

3In detail, given a post (e.g., hateful post), among 2N − 1
input posts and augmented posts except for the given post in a
batch, posts that have the same class (e.g. hate class) as the
given post are selected as positive samples.

4.3 Implementation Details

We use the pre-trained language model BERT-base-
uncased as a base model, since it (and its vari-
ants) has shown state-of-the-art performance in
hate speech detection (Swamy et al., 2019; Mathew
et al., 2021). We also conduct experiments with
HateBERT, which shows better generalization abil-
ity than BERT in the experiment of Caselli et al.
(2021).

We train models for 6 epochs with NVIDIA RTX
3090. For hyperparameter, we search learning rate
from {5e-6, 1e-5, 2e-5, 3e-5, 5e-5}, temperature τ
from {0.1, 0.3, 0.5}, λ from {0.25, 0.5, 0.75} and
choose the best model with validation F1 score. We
run all experiments on 5 seeds (0, 1, 2, 3, 4) and
report the F1 score on the test set.

4.4 Experiment Results

Table 3 and Table 4 shows the cross-dataset eval-
uation results for the models trained on IHC and
SBIC respectively along with in-dataset evalua-
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tion results. We investigate whether AugCon and
ImpCon can improve the cross-dataset evaluation
performance when combined with cross-entropy
loss.

In cross-dataset evaluation, which we mainly
focus on, simply adding augmented posts to the
training set is not effective. Also, leveraging la-
bel information for contrastive learning (SCL) is
less effective than our approaches. These results
could be attributed to coarse-grained label (only
two classes) in our task, which is in line with the
results from Suresh and Ong (2021).

Adding AugCon on BERT increases the perfor-
mance (at most 2.92% improvement) while adding
it on HateBERT shows slight decrease. This indi-
cates limited effectiveness of AugCon, particularly
when adapted to a domain-shifted pre-trained lan-
guage model. However, the models trained with
ImpCon consistently outperform the models trained
only with cross-entropy loss; we obtain at most
9.10% improvement when applied to BERT and
8.71% improvement when applied to HateBERT.
This demonstrates the effectiveness of using Imp-
Con on generalization ability.

We also experimented the combination of Aug-
Con and ImpCon with the same scaling factor be-
tween them. Only one result shows 0.58% perfor-
mance improvement compared to the best perform-
ing ImpCon result. We analyze the possible reason
in Section 5.1. Regarding the relatively low im-
provement on the models trained on SBIC, broader
definition of class (offensiveness) and thus lower
proportion of implication (not all offensive posts
have implications) in offensive-labeled posts would
be a reason.

For in-dataset evaluation, adding AugCon or Im-
pCon or combination of them (i.e., AugCon and
ImpCon) does not compromise the performance.
We note that in-dataset performance can be over-
estimated, and cross-dataset evaluation results is
rather perceived as better evaluation for measuring
generalization ability.

5 Analysis

5.1 Representation Analysis

We focus on investigating the effect of ImpCon on
the representation space. Since ImpCon pulls a
paired post-implication in the representation space,
we analyze the representation of post-implication
pairs quantitatively and qualitatively. Although the
model trained with ImpCon would project post-

Model Objective Sim.

BERT CE 0.27
BERT CE + AugCon 0.15
BERT CE + ImpCon 0.68
BERT CE + AugCon + ImpCon 0.60
HateBERT CE 0.42
HateBERT CE + AugCon 0.17
HateBERT CE + ImpCon 0.67
HateBERT CE + AugCon + ImpCon 0.54

Table 5: Quantitative analysis on the representation
learned by different training objectives. Using each
model fine-tuned with one of the training objectives, we
calculated the averaged cosine similarity between all
post-implication pairs of IHC validation set.

implication pairs of the training set close, it is
unknown whether the model can project unseen
post-implication pairs close. Hence, we conduct
analysis using post-implication pairs in the vali-
dation set, which are unseen while training. We
use the representation of [CLS] token for the fol-
lowing two analyses. For the uniformity between
analyses, we use the same BERT and HateBERT
models trained on IHC training set on a seed.

Quantitative Analysis We compute averaged co-
sine similarity between all post-implication pairs of
IHC validation set. As shown in Table 5, two train-
ing objectives with ImpCon (CE + ImpCon, CE +
AugCon + ImpCon) show higher similarity than oth-
ers. The similarity gains of ImpCon-based training
objectives compared to CE validate that ImpCon
enables a model to project unseen post-implication
pairs close. While CE + ImpCon shows the high-
est cosine similarity (0.6752 on BERT, 0.6731 on
HateBERT), CE + AugCon + ImpCon shows lower
cosine similarity (0.6048 on BERT, 0.5399 on Hate-
BERT). Considering the lowest similarity CE +
AugCon showed, AugCon seems to prevent post-
implication pairs from being pulled close. We con-
jecture that this is one of the reasons why simply
combining AugCon and ImpCon does not yield the
best performance on 3 out of 4 cross-dataset evalu-
ations.

Qualitative Analysis We visualize the learned rep-
resentation of post-implication pairs from the IHC
validation set using t-SNE (van der Maaten and
Hinton, 2008). As shown in Figure 3, the repre-
sentation learned by the training objectives with
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Figure 3: Visualization of implicit hate posts and implications in IHC validation set using t-SNE. We use BERT
model trained on IHC training set with each training objective.
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Figure 4: Visualization of three example implications and their corresponding posts using t-SNE. A triangle-marker
indicates an implication and a circle-marker indicates a post, respectively. Same colored posts (circle-markers)
share the common implication, i.e., triangle-marker colored in the same color. Blue triangle: “Immigrants should be
deported”, red triangle: “White people are superior”, and yellow triangle: “Non-white people are inferior”. We use
BERT model trained on IHC training set with each training objective.

ImpCon (CE + ImpCon, CE + AugCon + ImpCon)
shows that the implications and posts are more
densely clustered in representation space compared
to others, which is in line with our quantitative
analysis.

However, it is necessary to investigate whether
semantically relevant implications and posts are
projected closer than irrelevant ones. As an in-
depth analysis, we carefully select some implica-
tions and visualize them with their correspond-
ing posts (Figure 4). We choose three implica-
tions, where two implications share similar seman-
tic meaning (“White people are superior” and “Non-
white people are inferior”) and the other implica-
tion has different semantic meaning (“Immigrants
should be deported”). We observe that the mod-
els with ImpCon-based training objectives (CE +
ImpCon, CE + AugCon + ImpCon) produce dis-
tinguishable representation between implications
with different meanings (blue points are apart from
red and yellow points). Also, implications (and
their corresponding posts) with similar meaning are
densely clustered (red and yellow points are close
to each other). The results suggest that semanti-
cally relevant implications and posts are projected
closer than irrelevant ones in the representation
space learned by ImpCon. We believe this is one

of the reasons why ImpCon shows improvements
on cross-dataset evaluation.

5.2 Case Study

We have shown that ImpCon forces relevant impli-
cations and posts to be projected closer in the rep-
resentation space, quantitatively and qualitatively.
As a further investigation, we observe whether the
model can predict consistently on relevant posts
that share the same implication.

We conduct a case study with two groups of hate-
ful posts—one group shares the implication “jews
are worthless” and the other group shares “black
folks are animals”—in SBIC validation set. We re-
port prediction results using BERT models trained
on IHC. In Table 6, the model trained with ImpCon
shows consistently correct predictions on posts that
share a same implication. For example, for an im-
plication “jews are worthless”, while BERT trained
with cross-entropy loss succeeds in predicting cor-
rectly on post 1 and 2, it fails to predict correctly
on post 3 even though three posts share a same
implication. However, the model trained with Imp-
Con predicts all corresponding posts as offensive
correctly.
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Implication 1
jews are worthless

Post 1 Post 2 Post 3
“How do you turn “Roses are red, violets “What is the difference

a Christian into a Jew? are blue, I saw the KKK between a jew and a pizza :
Cremate him” beating a Jew.” I don’t like eating pizza”

Label: 1 Label: 1 Label: 1
BERT (CE): 1 BERT (CE): 1 BERT (CE): 0
BERT (CE +ImpCon): 1 BERT (CE +ImpCon): 1 BERT (CE +ImpCon): 1

Implication 2
black folks are animals

Post 1 Post 2 Post 3
“Why are there no “What’s the difference between “I don’t believe in slavery

black furries? Because KFC and the KKK? Nothing.. I support animal rights”
they are already animals.” They both fry animals”
Label: 1 Label: 1 Label: 1
BERT (CE): 1 BERT (CE): 0 BERT (CE): 0
BERT (CE +ImpCon): 1 BERT (CE +ImpCon): 1 BERT (CE +ImpCon): 1

Table 6: Some implications and their corresponding posts from SBIC validation set. We compare predictions of
two BERT models trained on IHC training set with different training objectives (CE and CE + ImpCon). Label 1
denotes there exist offensive contents in the post.
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Figure 5: Confusion matrices for the model predictions
on SBIC validation set. We compare the predictions of
two BERT models trained on IHC training set with (a)
CE and (b) CE + ImpCon.

5.3 Error Analysis

We conduct an error analysis on cross-dataset eval-
uation to facilitate further studies. We provide the
confusion matrices (Figure 5) where the models are
trained on IHC and evaluated on SBIC. While Im-
pCon decreased false negatives and false positives,
there are still considerable amount of errors. It is
notable that 27.39% of predictions are false neg-
atives, which takes a higher proportion than false
positives (Figure 5(b)). We inspect such samples,
and we suspect a target group that rarely appears in
the training set would lead to false negatives. For
example, given a hateful post with rare target group
anorexic folks 4, “What do you call an anorexic
with a yeast infection? A Quarter-Pounder with
Cheese.”, the model trained with CE + ImpCon pre-
dicts it as a non-offensive post. Since hate speeches
on different target groups are based on distinct char-

4Using ‘anorexic’ as a keyword, there is no exact matching
results in IHC training set.

acteristics (stereotypes) of each group, hate speech
on unseen target would limit the generalization abil-
ity of the model. Developing a training approach
that can generalize well to unseen target groups
would be a possible future direction.

6 Conclusions

We study the cross-dataset underperforming prob-
lem in implicit hate speech detection task. Empir-
ically, we confirm that the pre-trained language
models fine-tuned on an implicit hate speech
dataset show relatively low performance on cross-
dataset evaluation. We suggest leveraging con-
trastive learning when fine-tuning implicit hate
speech detector to improve generalization ability.
Particularly, we propose to utilize shared impli-
cation as a positive sample for its corresponding
hateful posts, and introduce an implication-based
contrastive learning method (ImpCon). Extensive
experiments suggest that fine-tuning with ImpCon
leads to better generalization ability, resulting in
consistent performance improvements on all cross-
dataset evaluation with three implicit hate speech
datasets.
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A Visualization by t-SNE (HateBERT)
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Figure 6: Visualization of implicit hate posts and implications in IHC validation set using t-SNE. We use HateBERT
model trained on IHC training set with each training objective.
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Figure 7: Visualization of three example implications and their corresponding posts using t-SNE. A triangle-marker
indicates an implication and a circle-marker indicates a post, respectively. Same colored posts (circle-markers)
share the common implication, i.e., triangle-marker colored in the same color. Blue triangle: “Immigrants should be
deported”, red triangle: “White people are superior”, and yellow triangle: “Non-white people are inferior”. We use
HateBERT model trained on IHC training set with each training objective.
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Figure 8: Confusion matrices for the model predictions on SBIC validation set. We compare the predictions of two
HateBERT models trained on IHC training set with (a) CE and (b) CE + ImpCon.
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Abstract

Early rumor detection is a key challenging task
to prevent rumors from spreading widely. Soci-
ological research shows that social bots’ behav-
ior in the early stage has become the main rea-
son for rumors’ wide spread. However, current
models do not explicitly distinguish genuine
users from social bots, and their failure in iden-
tifying rumors timely. Therefore, this paper
aims at early rumor detection by accounting for
social bots’ behavior, and presents a Social Bot-
Aware Graph Neural Network, named SBAG.
SBAG firstly pre-trains a multi-layer percep-
tion network to capture social bot features, and
then constructs multiple graph neural networks
by embedding the features to model the early
propagation of posts, which is further used to
detect rumors. Extensive experiments on three
benchmark datasets show that SBAG achieves
significant improvements against the baselines
and also identifies rumors within 3 hours while
maintaining more than 90% accuracy.

1 Introduction

Rumor is defined as unverified information at the
time of posting (Qazvinian et al., 2011; Zubiaga
et al., 2018; Lu et al., 2022). Malicious rumors that
are spread massively on social media have become
a threat to mislead the public and cause social panic.
There is a need to debunk rumors in the early stage
so as to prevent rumors from the wide spread.

Sociological research (Shao et al., 2018a) shows
that there exist social bots during the rumor spread,
and these bots are particularly active in the early
stage of rumors, which will affect the real users
through replies and mentions and accelerate the
spread (Shao et al., 2018b; Beskow and Carley,
2018; Feng et al., 2022).

Current models (Ma et al., 2016; Chen et al.,
2018; Song et al., 2019; Zhou et al., 2019; Xia
et al., 2020; Han et al., 2021) mainly focus on post

*These authors contributed equally to this work.
BCorresponding authors

content or propagation sequence. These methods
model posts as a chronological sequence, and ex-
tract the textual feature through GRU, LSTM, and
CNN for rumor detection. Other methods (Liu and
Wu, 2018; Yuan et al., 2020) account for early ru-
mor detection by modeling user characteristics or
credibility with user propagation structures. How-
ever, they do not explicitly distinguish genuine
users from social bots, so the participation of social
bots will lead to the failure of the features captured
from both contents and propagation structures.

To this end, this paper presents a model named
Social Bot-Aware Graph Neural Network (SBAG)
for early rumor detection. This model consists
of two parts: Social bot Detection (SD) and Bot-
Aware Graph Rumor Detection (BAG). The for-
mer one is pre-trained based on a large sample
of bot users and genuine users, to extract the fea-
tures to compute the bot possibility for each user.
The latter one transfers the SD to the Bot-Aware
Graph Neural Network, which consists of GNN-
based User Publishing (GUP), GAT-based User
Interaction (GUI), and textual encoder components.
For GUP, the bot possibility computed in SD is
involved in the aggregation process. For GUI, the
bot possibility is also integrated into the calculation
of the attention weight of user-user. The textual
encoder utilizes a convolutional neural network
(CNN) to capture textual features. In this way, we
take user publishing features, user interaction fea-
tures, and textual features into consideration for
early rumor detection. The codes will be open
sourced1. Our main contributions are summarized
as follows:

• According to the observation of sociological
research, we consider social bots’ behaviors,
and train a social bot detection model based
on twelve datasets. The results prove the con-
sistency with the sociological research that the

1https://github.com/sky-star-moon/SBAG
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bots are very active in the early stage.
• We propose a method named SBAG for early

rumor detection, which implements early ru-
mor detection by incorporating social bot de-
tection. The results demonstrate that SBAG
can achieve more than 93% accuracy, and de-
tect 90% rumors within 3 hours.

2 Problem Definition

Assume a set of posts R = {r1, r2, ..., r|R|} and
a set of users U = {u1, u2, ..., u|U|}. Each post r
corresponds to one publisher and multiple users
to repost it. A user publishing graph Gp =<
Vp, Ep > is constructed to denote publisher-post
relations, where Vp is the set of all publishers and
source posts, Ep is the set of edges and a edge
(ui, rj) indicates that user ui publishes post rj . A
user interaction graph Gu =< Vu, Eu > is con-
structed to denote user-user relations, where Vu is
the set of all users, Eu is the set of edges and a
edge (ui, uj) indicates that user ui replies user uj .

Since our motivation is to debunk rumors by in-
corporating the influence of social bots, our goal is
to learn two classifiers for social bot detection and
rumor detection, respectively. For the social bot
detection task, a classifier g : u→ Yu is learned to
identify whether a user u is a bot user or a genuine
user. For the rumor detection task, a classifier is
learned f : r → Yr to predict the class of each
source post r.

3 SBAG Model

The framework of the SBAG model is shown in Fig.
1. The model consists of two main parts, Social Bot
Detection (SD) mentioned in §3.1 and Bot-Aware
Graph Rumor Detection (BAG) mentioned in §3.2.
We will introduce each module in detail.

3.1 Social Bot Detection

To incorporate bot behavior information into the
model, we first pre-train the SD module on twelve
datasets to learn the features of genuine users and
bot users. Then we transfer this module to BAG as
a bot possibility scorer, which assists in capturing
the propagation pattern of bot behavior.

During the pre-training stage, we use a Multi-
layer Perceptron (MLP) as the backbone network.
Formally, let c ∈ Rv denote the user characteristics,
such as length of username, number of followers,
etc. Then c is normalized and fed into the module.
The process is as follows:

c̃ = tanh(W T
c c+ bc) (1)

Ŷu = softmax(W T
u c̃+ bu) (2)

where Wc ∈ Rv×v , Wu ∈ Rv×2 , bc ∈ Rv
and bu ∈ R2 are the parameters of the MLP,
Ŷu ∈ {bot, human} is the predicted probability
distribution of the user class.

SD module will compute the users’ bot possibil-
ity within [0,1] to indicate the degree to the user
shows social bot behavior.

3.2 Bot-Aware Graph Neural Network

3.2.1 GCN-based User Publishing
Since user publishing graph Gp is a bipartite graph
with only one hop at most, it is well locality. We
design a GCN-based user publishing component.
Formally, let P ∈ Rm×d denote the initial embed-
ding of the user nodes and C ∈ Rn×d denote the
initial embedding of the source post nodes, where
m and n are the number of publisher nodes and
source post nodes respectively, and d is the em-
bedding dimension. We construct the adjacency
matrix A ∈ Rm×n base on Gp, where the element
Aij denotes user ui publishes post rj , then we nor-

malize A to the matrix Â = D
− 1

2
m AD

− 1
2

n , where
(Dm)ii =

∑
j Aij and (Dn)jj =

∑
iAij are the

diagonal matrices.
In order to incorporate the user’s early bot pos-

sibility into the component, we constitute a bot
possibility matrix ŝ ∈ Rm×d, where each element
of row i of ŝ is the bot possibility of publisher ui
and treat it as a bias. Finally, the aggregated fea-
tures are summed with the initial features to obtain
the publishing feature. The formulas are as follows:

Ĉ = ReLU(ÂCWc + ŝ) (3)

P̂ = Ĉ + P (4)

where Wc ∈ Rd×d is the learnable matrix, Ĉ ∈
Rm×d is the aggregated feature, and P̂ ∈ Rm×d is
the publishing feature.

3.2.2 GAT-based User Interaction
In the user interaction graph Gu, considering the
different importance of neighbor nodes to the tar-
get node, we design a GAT-based user interaction
component.

Let U (l) denote the node features at layer l. Ev-
ery user nodes’ embedding in the graph is initial-
ized to U (0) = {u(0)0 , u

(0)
1 , ..., u

(0)
|Vu|−1} ∈ R|Vu|×d
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Figure 1: Overview of SBAG. SD scores the user’s bot possibility according to user characteristics, then is transferred
to the BAG module as a scorer. BAG module consists of three key components: GUP learns the publishing features
of the publishers, GUI learns the interaction features of the repliers and textual encoder learns the textual features of
the source post. Finally, the three types of features are fused to predict the class of the source post.

by a embedding layer according to normal distribu-
tion, and d is the dimension of the node embedding.
Referring to the multi-head attention mechanism,
the node feature at layer l+1 is updated as follows:

u
(l+1)
i =

K

∥
k=1

ReLU(
∑

j∈N (i)

α
(l,k)
ij W (l,k)

v u
(l)
j ) (5)

where ∥ denotes the concatenating operation. N (i)

is the set of node i and its direct neighbors. α(l,k)
ij

is the attention weight of neighbor node j to target
node i at the l-th layer in the k-th head, and W (l,k)

v

is the learnable transformation matrix. Particularly,
the output embedding in the last layer (denoted as
the L-th layer) is the average of the features from
the K heads instead of the concatenation. The
formula is as follows:

u
(L)
i = ReLU(

1

K

K∑

k=1

∑

j∈N(i)

α
(L−1,k)
ij W

(L−1,k)
v u

(L−1)
j ) (6)

To capture the propagation pattern of bot behav-
ior, we introduce bot possiblity into the attention
weight α(l,k)

ij . Specifically, we utilize the SD men-
tioned in §3.1 to generate bot possibility si and
sj for two nodes of edge (ui, uj), and take their
mean value as the edge weight eij , then α(l,k)

ij is

calculation as follows:

z
(l,k)
ij = LeakyReLU([W (l,k)

q ui∥W (l,k)
k uj ]W

l
α) (7)

eij =
si + sj

2
(8)

ẑ
(l,k)
ij = eij × z(l,k)ij (9)

α
(l,k)
ij =

exp(ẑ(l,k)ij )
∑

t∈N (i) exp(ẑ(l,k)ij )
(10)

whereW (l)
α ,W (l,k)

q andW (l,k)
k are learnable param-

eters. Through the L graph attention layers, the in-
teraction features U (L) = {u(L)0 , u

(L)
1 , ..., u

(L)
|Vu|−1}

of all user nodes are obtained.
Next, for one source post r with one publisher

and a repliers, the features of the publisher are
P̃r ∈ R1×d, the features of the repliers are obtained
from U (L), denoted as Ũ ∈ Ra×d. To distinguish
the importance of the repliers to the publisher, we
calculate the attention weights and then aggregate
the features from Ũ into an interaction feature Ũr:

β = softmax(ŨWβP̃
T
r ) (11)

Ũr = βT Ũ (12)

where β is the vector of the attention weight, Wβ ∈
Rd×d is the trainable matrix.
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3.2.3 Textual Encoder
The semantic features of the post text are also im-
portant for rumor detection. For In this component,
we utilize a CNN, which is consistent with the base-
line models like SMAN and GLAN for fairness,
to encode the source post. Each source post can
be represented as a sequence of word embeddings
X = [x1, x2, ..., x|X|] ∈ R|X|×d. In CNN, one el-
ement of a feature map obtained from X through
the convolutional operation is as follows:

hi = ReLU(< Wh, xi:i+ω−1 >F ) (13)

where Wh ∈ Rω×d is a convolution kernel of
size ω, and F is the Frobenius inner product.
The feature map can be represented as h =
[h1, h2, ..., h|X|−ω+1] ∈ R|X|−ω+1. We then ex-
tract the maximum value from the feature map h to
obtain ĥ = max(h).

We utilizes d filters of different kernel sizes ω,
where ω ∈ {3, 4, 5}, to obtain various features.
Finally, the output of each filters are concatenated
to obtain the textual feature X̃ ∈ R1×3d.

3.2.4 Output Layer
Assume that the textual feature of the source post r
is X̃r ∈ R1×3d, the publishing feature of the pub-
lisher is P̃r ∈ R1×d, and the aggregated interaction
feature is Ũr ∈ R1×d. We concatenate the features
from different types of the source post, i.e., P̃r, Ũr,
and X̃r, to obtain the final feature of the source
post. Lastly, the final feature is fed into a fully
connected layer to predict the class:

Ŷr = softmax(W T
r [X̃r∥P̃r∥Ũr]T + br) (14)

where Wr ∈ R5d×c and br ∈ Rc are the
weight and bias of the fully connected layer,
and Ŷr ∈ {rumor, non-rumor} or Ŷr ∈
{non-rumor, false rumor, true rumor, unveri-
fied rumor} is the predicted class distribution.

3.3 Training
We apply the cross-entropy loss to optimize the
social bot detection task and rumor detection task.
The loss functions are as follows:

Lu = −
T∑

i=1

Yui logŶui (15)

Lr = −
|R|∑

j=1

Yrj logŶrj (16)

where Lu is the cross-entropy loss of the social bot
detection task, Yui and Ŷui are the ground truth and
predicted label of the i-th user respectively, and T
is the size of the social bot detection dataset. Lr is
the cross-entropy loss of the rumor detection task,
Yrj and Ŷrj is the ground truth and predicted label
of the j-th source post respectively, and |R| is the
size of the rumor detection dataset.

4 Experiments

4.1 Datasets

For rumor detection task, we conduct experiments
on three benchmark datasets: Twitter15 (Ma et al.,
2017), Twitter16 (Ma et al., 2017), and Weibo16
(Ma et al., 2016). The statistics of the three datasets
are shown in Tab. 1.

For fair comparison, we choose the same way
of splitting datasets as in the baseline work(Yuan
et al., 2020), 10% of samples are selected as the
validation set, and the rest of samples are split into
the training set and testing set with a ratio of 3:1.

Dataset Twitter15 Twitter16 Weibo16

# Source posts 1,490 818 4,664
# Non-rumors (NR) 374 205 2,351
# False rumors (FR) 370 205 2,313
# True rumors (TR) 372 205 0

# Unverified rumors (UR) 374 203 0
# Users 276,663 173,487 2,746,818
# Posts 331,612 204,820 3,805,656

Table 1: Statistics of the rumor detection datasets.

For the social bot detection task, we select 12
datasets provided by Bot Repository2 and the statis-
tics of the datasets are shown in Tab. 2. The
datasets are split into the training set, testing set,
and validation set with the ratio of 8:1:1.

4.2 Experimental Settings

For the SD module, since Twitter15 and Twitter16
do not involve the user characteristics, we utilize
Twitter API to crawl user characteristics based on
user ID. The user characteristics selection of the
three datasets is not exactly the same. The details
are shown in Tab. 3.

For the BAG module, the dimension of the node
embedding d is 100, the number of heads of the
Multi-Head Attention K is 8, the number of graph
attention network layers is 2, and the convolutional
kernel sizes are {3,4,5}. The model utilizes the

2botometer.osome.iu.edu/bot-repository
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Dataset # bots # humans

caverlee(Lee et al., 2011) 0 14,895
cresci-17(Cresci et al., 2017) 9,894 3,474
pronbots(Yang et al., 2019) 17,882 0
celebrity(Yang et al., 2019) 0 5,918

vendor-purchased(Yang et al., 2019) 1,088 0
gilani-17(Gilani et al., 2017) 0 1,413

cresci-rtbust(Mazza et al., 2019) 0 340
cresci-stock(Cresci et al., 2018) 0 6,174

botowiki(Yang et al., 2020) 698 0
midterm-2018(Yang et al., 2020) 17,968 8,092

verified(Yang et al., 2020) 0 1,987
TwiBot-20(Feng et al., 2021) 0 5,237

Total 47,530 47,530

Table 2: Statistics of the social bot detection datasets.

Adam optimizer with 1e-3 learning rate and 1e-6
weight decay coefficient. Besides, the batch size is
set to 16 and the epoch is set to 20.

Similar to the existing work(Liu and Wu, 2018;
Yuan et al., 2019, 2020), we also adopt Accuracy,
Precision, Recall, and F1 score as the evaluation
metrics.

user characteristic Twitter15Twitter16Weibo16
Length of username ✓ ✓ ✓

Length of screenname ✓ ✓ ✓
Length of description ✓ ✓ ✓

Followers count ✓ ✓ ✓
Friends count ✓ ✓ ✓
Listed count ✓ ✓

Favorites count ✓ ✓ ✓
Statuses count ✓ ✓ ✓

Days of Registration ✓ ✓ ✓
URL ✓ ✓

Protected ✓ ✓
Geo enabled ✓ ✓ ✓

Verified ✓ ✓ ✓
Profile use background image ✓ ✓

Default profile ✓ ✓

Table 3: User characteristics selection.

4.3 Baselines

To evaluate the performance of SBAG, we compare
SBAG with the following methods:

(1) DTR (Zhao et al., 2015) is a decision tree-
based ranking approach that searches for inquiry
phrases, clusters controversial posts, and then ranks
the clustered results.

(2) DTC (Castillo et al., 2011) is a decision tree
model that uses hand-crafted features of posts to
detect rumors.

(3) RFC (Kwon et al., 2017) is a random forest
classifier that learns user, linguistic, and structural
features of posts for rumor detection.

(4) SVM-RBF (Yang et al., 2012) is an SVM

model with an RBF kernel, which classifies rumors
based on statistical features of posts.

(5) SVM-TS (Ma et al., 2015) is a linear SVM
model, which uses dynamic series-time structure
to capture social context features over time.

(6) cPTK (Ma et al., 2017) is an SVM model,
which uses the tree-based kernel to evaluate the
similarity of propagation tree structures.

(7) GRU (Ma et al., 2016) utilizes RNN to learn
the textual feature of the chronological post se-
quences to detect rumors.

(8) RvNN (Ma et al., 2018) models the source
post and its reposts as a conversation tree, and
adopts a recursive neural network to learn its prop-
agation pattern.

(9) PPC (Liu and Wu, 2018) employs RNN and
CNN to model the sequence based on user features
for early rumor detection.

(10) GLAN (Yuan et al., 2019) models posts
and users as a heterogeneous graph, and identi-
fies rumors by local semantic features and global
structural features extracted from the graph neural
network.

(11) SMAN (Yuan et al., 2020) jointly optimizes
rumor detection task and users’ credibility predic-
tion task via a structure-aware multi-head attention
network for early rumor detection.

4.4 Experimental Results
4.4.1 Analysis of Rumor Detection
Tab. 4 and Tab. 5 show the rumor detection re-
sults on Twitter15, Twitter16, and Weibo16. SBAG
achieves 93.8%, 94.6%, and 95.7% in terms of
accuracy on three datasets, respectively, and out-
performs the best run of the baseline models.

More detailedly, compared with traditional ma-
chine learning models, such as SVM-RBF, SVM-
TS, and cPTK, SBAG can capture a higher-level
representation of posts. Moreover, SBAG outper-
forms textual feature-based methods such as GRU
and RvNN, which proves that the social bot-aware
user features are effective in rumor detection. In
addition, compared with PPC, GLAN, and SMAN
which capture user propagation features or user
credibility, SBAG achieves a better performance.
It is because that SBAG is beneficial for exploring
the features of social bot behaviors.

4.4.2 Analysis of Early Detection
To evaluate the timeliness of SBAG, we set dif-
ferent detecting deadlines, where we only utilize
the interaction of users before the deadline. Fig.
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Method
Twitter15 Twitter16

Acc. NR-F1 FR-F1 TR-F1 UR-F1 Acc. NR-F1 FR-F1 TR-F1 UR-F1

DTR 0.409 0.501 0.311 0.364 0.473 0.414 0.394 0.273 0.630 0.344
DTC 0.454 0.733 0.355 0.317 0.415 0.465 0.643 0.393 0.419 0.403
RFC 0.565 0.810 0.422 0.401 0.543 0.585 0.752 0.415 0.547 0.563

SVM-RBF 0.318 0.455 0.037 0.218 0.225 0.321 0.423 0.085 0.419 0.037
SVM-TS 0.544 0.796 0.472 0.404 0.483 0.574 0.755 0.420 0.571 0.526

cPTK 0.750 0.804 0.698 0.765 0.733 0.732 0.740 0.709 0.836 0.686
GRU 0.646 0.792 0.574 0.608 0.592 0.633 0.772 0.489 0.686 0.593

RvNN 0.723 0.682 0.758 0.821 0.654 0.737 0.662 0.743 0.835 0.708
PPC 0.842 0.811 0.875 0.818 0.790 0.863 0.820 0.898 0.843 0.837

GLAN 0.905 0.924 0.917 0.852 0.927 0.902 0.921 0.869 0.847 0.968
SMAN 0.914 0.915 0.926 0.933 0.881 0.935 0.946 0.920 0.905 0.968
SBAG 0.938 0.965 0.953 0.897 0.933 0.946 0.947 0.930 0.926 0.978

Table 4: Results of rumor detection on Twitter15 and Twitter16.

Method Acc.
NR FR

Precision Recall F1 Precision Recall F1

DTR 0.732 0.726 0.749 0.737 0.738 0.715 0.726
DTC 0.831 0.815 0.847 0.830 0.847 0.815 0.831
RFC 0.849 0.947 0.739 0.830 0.786 0.959 0.864

SVM-RBF 0.818 0.815 0.824 0.819 0.822 0.812 0.817
SVM-TS 0.857 0.878 0.830 0.857 0.839 0.885 0.861

GRU 0.910 0.952 0.864 0.906 0.876 0.956 0.914
PPC 0.921 0.949 0.889 0.918 0.896 0.962 0.923

GLAN 0.946 0.949 0.943 0.946 0.943 0.948 0.945
SMAN 0.951 0.937 0.967 0.952 0.967 0.936 0.951
SBAG 0.957 0.967 0.947 0.957 0.947 0.967 0.957

Table 5: Results of rumor detection on Weibo16.

Figure 2: Results of timeliness.

2 shows the results on Twitter15, Twitter16, and
Weibo16. We can observe that within 0 to 3 hours,
SBAG achieves the accuracy of over 90% on three
datasets, and the results in the early stage are close

to the results by accounting for all users, which in-
dicates that SBAG has a strong capability for early
detection.

Fig. 3 shows the comparison of early detection
with several baselines on Twitter15, Twitter16, and
Weibo16. We can see that SBAG can debunk ru-
mors earlier, and maintain a high accuracy, which
even outperforms the state-of-the-art baselines such
as SMAN and GLAN. Furthermore, within 24
hours, SBAG can achieve similar performance to
those with learning the features of all users.

4.5 Ablation Study

To demonstrate the effectiveness of different fea-
tures, we also conduct ablation study, and the ex-
periments are as follows:

(1) -p: removing the GUP, the model predicts
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(a) Twitter15. (b) Twitter16. (c) Weibo16.

Figure 3: Results of early rumor detection on Twitter15, Twitter16 and Weibo16.

rumors by textual feature and interaction feature,
without publisher feature.

(2) -i: removing the GUI, the model predicts
rumors by textual feature and publishing feature,
without interaction feature.

(3) -p-i: it means that we discard two compo-
nents mentioned (1) and (2) and detect rumors by
textual feature only.

(4) -t: removing the textual encoder, the model
predicts rumors by publisher feature and interaction
feature, without textual feature.

(5) -s: without the pre-trained scorer, we score
the bot possibility randomly.

As shown in Tab. 6, we can observe that each
component of SBAG is essential. Specifically, -
p and -i perform worse than the original model
on three datasets, which shows that the publishing
feature and interaction feature are significant for
rumor detection. There is a sharp decrease in -p-
i, which indicates that it is suboptimal to detect
rumors only by the textual feature. Besides, the
performance of -t also decreases significantly. It
is because the textual feature of the source post is
crucial for detecting rumors. The results of -p-i and
-t show that user features and textual features have
a complementary relationship. The performance of
-s demonstrates that social bot detection is benefi-
cial for rumor detection.

Method Twitter15 Twitter16 Weibo16
SBAG 0.938 0.946 0.957

-p 0.913 0.920 0.947
-i 0.894 0.924 0.946

-p-i 0.848 0.885 0.915
-t 0.658 0.723 0.919
-s 0.931 0.927 0.948

Table 6: Ablation Study (Acc.).

4.6 Analysis of Social Bot Detection

Then, we will analyze the performance of the pre-
trained social bot detection module. As mentioned
in Tab. 3, we select 15 and 10 user characteristics
to represent users on Twitter and Weibo datasets,
respectively. Therefore, we pre-train two social
bot detection modules with different dimensions,
i.e., MLP-15d and MLP-10d. For comparison, we
choose the baseline models as follows:

(1) Botometer-v4 (Sayyadiharikandeh et al.,
2020) is a public program that can be used to eval-
uate the bot score of any user on Twitter.

(2) AdaBoost (Kudugunta and Ferrara, 2018)
extracts 10 user characteristics to represent a user,
and employs AdaBoost classifier for bot detection.

(3) RF (Yang et al., 2020) is a random forest
model, which extracts 8 original features and 12
derived features from the user information, and uti-
lizes the random forest classifier to identify users.

The results are shown in Tab. 7. The accuracy
of MLP-15d and MLP-10d are better than the base-
lines, which indicates that they have a great ability
to identify users. MLP-15d outperforms MLP-10d
because the user information input to MLP-15d is
richer. The MLP models perform better than the
machine learning models like Botometer-V4, Ad-
aBoost, and RF, which demonstrates that MLP can
learn high-quality user representation with fewer
features on this task.

4.7 Analysis of Social Bot Behavior

On the test sets of Twitter15, Twitter16, and
Weibo16, we list the relation of rumors and publish-
ers, i.e., the ratio of bot-behavior publishers under
each source post class. As shown in Fig. 4a, we
can observe that the bot possibility scorer identifies
very few users who post non-rumors as bots. On
the contrary, the bot possibility scorer identifies the
majority of users who post rumors as bots. More-
over, in false rumors and unverified rumors, the
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Metric Botometer-V4 AdaBoost RF MLP-10d MLP-15d

Acc. 0.722 0.917 0.930 0.935 0.944

Table 7: Result of social bot detection.

(a) Relationship between ru-
mors and publishers.

(b) Twitter15: Avg. bots ratio
per source post.

(c) Twitter16: Avg. bots ratio
per source post.

(d) Weibo16: Avg. bots ratio
per source post.

Figure 4: Relationship between rumors and users.

ratio of bots is higher than that in true rumors.

We also make statistics on the average ratio of
bot-behavior users among all participants under a
source post for each source post class over time.
As shown in Fig. 4b-4d, in the first five minutes
after the source post is published, the bot behaviors
are more active than that in the successive period.
The bot-behavior users’ ratio of false rumors and
unverified rumors is higher than that of non-rumors
and true rumors. The results of SBAG are consis-
tent with sociological research, which also prove
that our model has strong interpretability.

4.8 Case Study

0 publisher

53 621 74

98 10 12

repliers

bot possibility
0.993 

0.001 0.997 0.993 0.001 0.995 0.997 0.224 

0.993 0.994 0.994 0.002 0.994 

attention weight 
0.454 0.026 0.170

0.416
0.127 0.072

0.271

0.166 0.161 0.027 0.279 0.104

11

Figure 5: Case study.

To demonstrate the relation of bot possibility and
attention weight, we choose a classic sample for
visualization. Fig. 5 shows the attention weights
of one publisher and the corresponding repliers,
where the attention weights are computed by GUI.
Fig. 5 illustrates that the edges connecting to users
with lower bot possibility have higher attention
weights. This way of aggregation helps learn more
effective patterns of early propagation.

5 Related Work

Conventional rumor detection methods adopted ma-
chine learning to classify rumors based on the fea-
tures of content, user, and propagation pattern, such
as decision tree(Castillo et al., 2011), support vec-
tor machine(Yang et al., 2012; Liu et al., 2015; Ma
et al., 2015; Wu et al., 2015), random forest(Kwon
et al., 2013), etc. However, these methods involved
feature engineering, which is hard to obtain high-
order features.

Recent studies exploited deep learning methods
for rumor detection. Most of the existing rumor de-
tection methods mainly modeled a source post and
its reposts together as a sequence or a graph, using
RNN(Ma et al., 2016; Song et al., 2019; Zhou et al.,
2019), CNN(Yu et al., 2017) , Transformer(Khoo
et al., 2020; Rao et al., 2021), GCN(Bian et al.,
2020; Song et al., 2021; Wei et al., 2021; Sun et al.,
2022) and GAT(Lin et al., 2021) to learn the tex-
tual content features. However, these models do
not consider the participant of social bots on so-
cial media to publish fraudulent content, which
may lead to training noise by these fraudulent con-
tents. Several studies(Liu and Wu, 2018; Yuan
et al., 2019; Lu and Li, 2020; Yuan et al., 2020) in-
tegrated features of user feature or user credibility
to learn the propagation patterns of source posts.
However, they do not explicitly explore the unique
user propagation pattern in the early stage, which
limits the early-detection ability of the model.

6 Conclusion

In this work, according to the observation of soci-
ological research, we propose a Social Bot-Aware
Graph Neural Network for early rumor detection.
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First, we pre-train a bot possibility scorer called SD
on a large dataset containing bot users and genuine
users, then SD is transferred to the BAG module.
The BAG module takes the user’s bot possibility in-
formation into the calculation of the features from
different views, which enables the module to have a
priori knowledge of the user in early detection. The
experimental results on three public datasets show
that SBAG effectively captures the early propaga-
tion of rumors, and further improves performance
of early rumor detection.
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Abstract

Aspect-based sentiment analysis (ABSA) is a
fine-grained sentiment analysis task, which fo-
cuses on detecting the sentiment polarity to-
wards the aspect in a sentence. However, it is
always sensitive to the multi-aspect challenge,
where features of multiple aspects in a sentence
will affect each other. To mitigate this issue,
we design a novel training framework, called
Contrastive Cross-Channel Data Augmentation
(C3DA), which leverages an in-domain genera-
tor to construct more multi-aspect samples and
then boosts the robustness of ABSA models via
contrastive learning on these generated data. In
practice, given a generative pretrained language
model and some limited ABSA labeled data,
we first employ some parameter-efficient ap-
proaches to perform the in-domain fine-tuning.
Then, the obtained in-domain generator is used
to generate the synthetic sentences from two
channels, i.e., Aspect Augmentation Channel
and Polarity Augmentation Channel, which
generate the sentence condition on a given as-
pect and polarity respectively. Specifically, our
C3DA performs the sentence generation in a
cross-channel manner to obtain more sentences,
and proposes an Entropy-Minimization Filter
to filter low-quality generated samples. Exten-
sive experiments show that our C3DA can out-
perform those baselines without any augmen-
tations by about 1% on accuracy and Macro-
F1. Code and data are released in https:

//github.com/wangbing1416/C3DA.

1 Introduction

Sentiment Analysis (SA) is a typical Natural Lan-
guage Understanding (NLU) task to predict the
sentence-level sentiment polarities (Pang and Lee,
2007; Liu, 2012). However, since a single review
sentence always exists multiple polarities, Aspect-
based Sentiment Analysis (ABSA), a fine-grained

∗Work was done when Bing and Qihuang were interning
at JD Explore Academy.

†Liang Ding is the corresponding author.

sentiment analysis task (Ma et al., 2017; Fan et al.,
2018; Sun et al., 2019; Wang et al., 2020; Li et al.,
2021b; Zhang et al., 2022a), is further introduced
to detect the sentiment polarities towards given as-
pects (entities) in a review sentence. Gathering a
review "while the ambiance and atmosphere were
great, the food and service could have been a lot
better.", the sentiment polarities of "ambiance" and
"atmosphere" are Positive and we get Negative po-
larity for aspects "food" and "service".

It is crucial to capture the aspect-specific contex-
tual features for an ABSA model. Unfortunately,
as shown in the aforementioned example, the multi-
aspect challenge that there are multiple aspects in
a sentence always deteriorates the model’s gener-
alization, especially when the expressed polarities
of multiple aspect words in a sentence are opposite.
Meanwhile, since ABSA is a low-resource task, it
is hard to train a robust model under fewer samples.

Some existing works focused on the multi-aspect
challenge, such as Lu et al. (2011); Hu et al. (2019)
in which novel model structures were designed
to capture aspect-specific sentiment information.
Additionally, Jiang et al. (2019) manually col-
lected a large-scale high-quality multi-aspect multi-
sentiment (MAMS) dataset. Undoubtedly, the data-
centric MAMS is an effective approach to tackle
the multi-aspect problem, but the human-annotated
and non-expandable limitations still hinder the ro-
bust training for ABSA models. Therefore, given
limited labeled data, it is critical to investigate how
to collect more in-domain multi-aspect samples
automatically. On the other hand, capturing the
aspect-specific information from multi-aspect sen-
tences is also necessary for robust ABSA models.

In response to the aforementioned problems,
we propose a novel training framework, namely
Contrastive Cross-Channel Data Augmentation
(C3DA), to generate more in-domain multi-aspect
samples and train robust ABSA models based on
these generated data. Firstly, inspired by successful

6691



generative pretraining models (Raffel et al., 2020;
Lewis et al., 2020), we employ an representative
pretraining models T5 (Raffel et al., 2020) as the
multi-aspect data generator. In practice, due to the
limited ABSA labeled data, it is hard to fine-tuning
the entire T5 model effectively. Thus, we further
introduce some parameter-efficient methods, e.g.
prompt (Lester et al., 2021a), prefix (Li and Liang,
2021) and LoRA (Hu et al., 2022), to tune the T5
generator. In this way, a domain -specific genera-
tor is obtained and we can apply it to collect more
in-domain multi-aspect samples.

To be more specific, there are two channels
to generate expected multi-aspect samples in our
framework, i.e. Aspect Augmentation Channel
(AAC) and Polarity Augmentation Channel (PAC).
In the AAC, the generator is encouraged to gener-
ate the synthetic sentence towards the given sen-
tence and aspect, while in the PAC, the synthetic
sentence towards the given sentence and polarity
is obtained. To further boost the generated sam-
ples, we attempt to collect the multi-aspect sam-
ples in a cross-channel manner. Specifically, in
the first generation, the source sentence is fed to
the double channels and obtain an aspect-specific
sentence and a polarity-inverted sentence respec-
tively. In the second generation, both generated
sentences are injected to the another channel to
get the ultimate sentences. Finally, we propose an
Entropy-Minimization Filter (EMF) to filter some
low-quality generated samples. And a contrastive
training objective that can draw away the different
aspect’s embeddings in a sentence is also leveraged
to alleviate the multi-aspect problem and help train
the final robust ABSA model.

We conduct sufficient experiments on three pop-
ular ABSA datasets, i.e. Restaurant, Laptop (Pon-
tiki et al., 2014) and Twitter (Dong et al., 2014),
to prove that our C3DA framework can boost the
model’s robustness and predictive performance,
and outperform other NLP data augmentation
strategies. Specifically, with the help of our C3DA,
RoBERTa-based models can achieve averaged per-
formance improvement 1.28% and 1.62% in terms
of accuracy and macro-F1 respectively, while the
improvements of BERT-based models are also over
0.87% and 1.10%. Some in-depth discussions and
case studies are also executed. Contributions of
this paper are threefold:

• We recast the vanilla ABSA training scheme
with a data augmentation-based training

framework and a contrastive training objec-
tive to tackle the multi-aspect challenge.

• We design a novel cross-channel data aug-
mentation method based on generative large-
scale pretrained language models to generate
high-quality in-domain multi-aspect samples,
which has great potential to benefit other fine-
grained NLU tasks.

• Extensive experiments on three widely-used
datasets show the effectiveness of our C3DA.

2 Related Work

2.1 Language Models and Parameter Efficient

Large Pre-trained Language Models (PLMs) are
still research cores in various natural language pro-
cessing tasks. The PLMs tend to be variants of
Transformer (Vaswani et al., 2017), and are trained
on massive unlabeled raw sentences under some lin-
guistic unsupervised objectives. According to the
model structure, these Transformer-based PLMs
are roughly divided into (1) Encoder-only LMs
(Devlin et al., 2019; Liu et al., 2019) can be utilized
to capture token-level and sentence-level features,
(2) Decoder-only LMs (Radford et al., 2018, 2019)
tend to design an auto-regressive objective to cater
to text generation tasks and (3) Encoder-Decoder
LMs (Lewis et al., 2020; Raffel et al., 2020) need
two sentences (source and target) to perform condi-
tional generation.

The above PLMs always follow the pre-train +
fine-tune (FT) paradigm to adapt the downstream
tasks, however, tuning a whole model is a tricky
challenge and is not applicable to low-resource
NLP tasks. Therefore, a novel pre-train + prompt-
tune (PT) (Liu et al., 2021c) concept is proposed
to break this challenge, PT-based models can also
be divided into (1) manual discrete prompts de-
sign human-made templates to adapt different pre-
trained objective (Liu et al., 2021a), and (2) soft
prompts inject some learnable pseudo tokens or
matrices to frozen PLMs (Liu et al., 2021d; Lester
et al., 2021b; Li and Liang, 2021; Zhong et al.,
2022b).

2.2 Aspect-based Sentiment Analysis

Aspect-based Sentiment Analysis (ABSA) is a kind
of Text Classification task, that benefits from a bet-
ter aspect-aware text representation. Therefore,
an amount of neural network-based models were
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Figure 1: The overall C3DA framework. In our generator, learnable modules can be optimized in the fine-tuning
stage and will also be frozen in the generation stage, and the PLM encoder-decoder structure is always fixed.

proposed to break the ABSA challenge, for exam-
ple, graph-based models (Sun et al., 2019; Wang
et al., 2020; Li et al., 2021b; Zhong et al., 2022a)
conduct graph convolutional operations on depen-
dency trees to encode the semantic information,
and attention-based models (Ma et al., 2017; Chen
et al., 2017; Fan et al., 2018; Song et al., 2019; Liu
et al., 2021b) focus on interaction between aspect
terms and context tokens, etc.

In recent years, pre-trained language models
changed the situation of ABSA because they are
better text encoders and can capture context fea-
tures. Therefore, researchers explored more views
to improve ABSA performance, except that PLM
is regarded as an encoder to replace the vanilla
Glove + BiLSTM paradigm. For example, Dai et al.
(2021) leverages RoBERTa to re-construct depen-
dency trees, Yan et al. (2021); Li et al. (2021a);
Zhang et al. (2021) try to integrate various ABSA
subtasks into a unified generative framework, and
Zhou et al. (2021); Seoh et al. (2021) combine
ABSA with other NLP tasks, etc.

2.3 Data Augmentation

To improve the scale of training samples, some
Data Augmentation (DA) methods in the NLP
community are proposed (Zhang et al., 2018; Wei

and Zou, 2019; Kobayashi, 2018; Wu et al., 2019;
Anaby-Tavor et al., 2020; Ding et al., 2021; Cao
et al., 2021; Wang et al., 2022; Zhang et al., 2022b).
EDA (Wei and Zou, 2019) transforms source sen-
tences with Synonym Replacement approaches, etc.
CBERT (Wu et al., 2019) introduces a new condi-
tional masked language model task. Meanwhile,
some PLM-based generative augmentation frame-
works (Anaby-Tavor et al., 2020; Wang et al., 2022;
Zhang et al., 2022b) also have been explored. Also,
recent work reveals the complementarity between
PLMs and classical approaches, e.g., back trans-
lation (Liu et al., 2021e) and random initializa-
tion (Zan et al., 2022), to augment both the accu-
racy and generalization.

3 Our C3DA Framework

Task Description of ABSA Given a group of
triplets Ωsrc = {si,ai,pi}Ni=1, a sentence si =
{si1, · · · , siL} and an aspect-span indicator ai ∈
{0, 1}L (1 denotes this token is an aspect, vice
versa) will be fed to a trainable model to obtain a
hidden embedding hi = F(si,ai,Θ) ∈ RL×D,
where N , L and D denote the instance scale,
sentence length and hidden embedding size, and
F(·,Θ) is a prediction model (e.g., BERT (Devlin
et al., 2019)). Then, a ground-truth polarity label
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pi ∈ {0, 1, 2} is utilized to conduct supervised
learning to estimate task-specific parameters Θ.

3.1 Overall Learning Objective
In this section, we introduce the overall process
of our proposed method, and more details will be
further described in Section 3.2 and 3.3, and our
C3DA framework is shown in Figure 1.

Our C3DA framework consists of two steps: (1)
Data Augmentation and (2) Contrastive Training.
We utilize the representative pre-trained T5 model
(Raffel et al., 2020) as our generator in the data aug-
mentation stage1. Given a sentence si, we expect
to generate an another sentence ŝi = G(si; Π) that
expresses the opposite polarity and has a different
aspect from the source sentence, where G(·; Π) is
the T5 generator.

Basically, we conduct the Supervised Classifica-
tion Training (SCT) on source sentences and aug-
mented sentences, the objective is as follows:

LSCT =
1

N

∑N

i=1
ℓCE(hiWs + bs,pi)

+αℓCE(h
p
iWs + bs,pi), (1)

hpi = F ([si, ŝi],ai,Θ) , (2)

where [·, ·] and ℓCE(·) are the concatenate oper-
ation and a Cross-Entropy loss function, Ws ∈
RD×M and α denote the classification head and a
hyper-parameter, respectively.

To obtain more robust performance, we lever-
age the Contrastive Training (CT) formulated as
the triplet loss (Schultz and Joachims, 2003) as
follows:

RCT =
1

N

∑N

i=1
max{d(hi,hpi )−

d(hi,h
n
i ) + ξ, 0}, (3)

where hni is the average-pooled sentence represen-
tation of ŝi in the sentence [si, ŝi], ξ is a hyper-
parameter called margin that can control whether
an instance should be trained, and d(·, ·) denotes
a distance measure function. Specially, we apply
a negative cosine similarity to measure the embed-
ding distance d(·, ·).

d(hi,h
p
i ) = −

hih
p
i

∥hi∥ × ∥hpi ∥
. (4)

1Note that we can employ various generative pretraining
models as the generator. T5 is used in this work, since it is
widely-used and powerful.

Finally, the overall learning objective can be for-
mulated as:

L = LSCT + βRCT , (5)

where β is a controllable hyper-parameter.

3.2 Cross-Channel Data Augmentation

Our motivation is to generate high-quality in-
domain multi-aspect samples. In practice, the cross-
channel data augmentation consists of two steps:
1) tune the pretrained backbone model to adapt our
cross-channel sentence generation; 2) generate sen-
tences with opposite polarity and different aspects.

Pre-Trained Generator We employ pre-trained
encoder-decoder model T5 as our backbone. ABSA
is a low-resource task, therefore, tuning a whole
large language model (e.g., T5) with scarce sam-
ples will cause an over-fitting problem. Inspired
by Lester et al. (2021a); Wang et al. (2022), we
utilize the parameter-efficient strategies to tune
the generation model. In particular, we consider
several efficient tuning methods, including prefix-
tuning (Li and Liang, 2021), prompt-tuning (Lester
et al., 2021a), and LoRA (Hu et al., 2022). We
grid-search the optimal efficient tuning method for
each dataset, detailed comparisons can be found at
Appendix A.

Model Fine-Tuning To make the T5 model ca-
pable of generating new sentences conditioned on
the original sentence and given aspect or polarity,
we first construct the fine-tuning data based on
the ABSA training set. Concretely, we randomly
sample two instances {si} and {sj ,aj ,pj} from
the source triplets Ωsrc. Then, we can tune the
T5 model to generate sj conditioned on [si,aj ] or
[si,pj ]. As aforementioned, parameter-efficient
strategies are used to avoid over-fitting. Taking the
cutting-edge prompt-tuning (Lester et al., 2021a)
as an example, the massive parameters in the gener-
ator should be fixed in this stage, and we only tune
the parameters of prompts.

Sentence Generation The sentence genera-
tion for data augmentation stage consists of
Aspect Augmentation Channel (AAC) and Polarity
Augmentation Channel (PAC).

AAC generates an aspect-specific sentence sai =
G([si, Â],Π)2, where Π is the trainable parameters

2AAC can generate one or more sentences, we take gener-
ating a single sentence as an example.
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Table 1: An example of the concatenation operation.

s I’ve been here 3 times for lunch and it is one of my favorites in the city.
[s, service] I’ve been here 3 times for lunch and it is one of my favorites in the city. < eos > service
[s,Negative] I’ve been here 3 times for lunch and it is one of my favorites in the city. < eos > so bad

of the T5 generator G(·). PAC generates a polarity-
inverted sentence spi = G([si, P̂],Π), where Â

is a random-sampled in-domain aspect and P̂ is
a group of seed spans that have the inverted po-
larity from si, such as so good. Then, these sen-
tences will be fed into the another channel to obtain
spai = G([spi , Â],Π) and sapi = G([sai , P̂],Π) that
can satisfy our motivation. We give an example of
the concatenation operation [s, ·] in Table 1.

Note that for sentence generation, both the gener-
ator backbone and prompts will be frozen. The de-
tailed Cross-Channel Data Augmentation method
is shown in Algorithm 1.

Algorithm 1 Cross-Channel Data Augmentation.

Require: Source triplets Ωsrc = {si,ai,pi}Ni=1; Initial
pre-trained T5 generator with soft prompt G(·,Π0); Pre-
defined aspect set A; Fine-tune iterations τ .

Ensure: Augmented sentences Ωaug = {ŝi}Ni=1.
1: for iter in τ do ▷ Stage I: Model Fine-tuning
2: {si}, {sj ,aj ,pj} ← Sample(Ωsrc)

3: ∇a ← loss
(
sj ,G([si,aj ],Πiter)

)

4: ∇p ← loss
(
sj ,G([si,pj ] ,Πiter)

)

5: Πiter+1 ← Train(Πiter,∇a,∇p)
6: end for
7: Π← Πτ

8: for {si,ai,pi} in Ωsrc do
9: ▷ Stage II: Sentence Generation

10: Â← Sample(A)
11: P̂← −pi ▷ −p denotes opposite polarity from p

12: sai ← G
(
[si, Â],Π

)
, spi ← G

(
[si, P̂],Π

)

13: spai ← G
(
[spi , Â],Π

)
, sapi ← G

(
[sai , P̂],Π

)

14: Ωaug ← Ωaug + Filter(sai , s
p
i , s

pa
i , s

ap
i )

15: end for
16: return Ωaug;

3.3 Entropy-Minimization Filtering
Cross-Channel Data Augmentation generates four
sentences for each source sentence, and we can
leverage these sentences to train a prediction model
F(·,Θ). However, it is necessary to filter out some
low-quality samples that carry noisy (or difficult)
information, which can be estimated by language
modeling (Moore and Lewis, 2010) and norm of
word embedding (Liu et al., 2020).

To ensure the certainty of synthetic sentences,
we design an Entropy-Minimization Filter (EMF)
to filter those noisy sentences. We establish a hy-
pothesis that noisy sentences always express an
ambiguous polarity such that our prediction model
gives a more smooth polarity probability distribu-
tion. To be specific, the information entropy of
prediction distribution as Equation 6 is an appro-
priate measure. A sentence with larger prediction
entropy should be filtered, and a hyper-parameter
k can control how many augmented sentences are
selected to participate in training for each sample.

Hi = −Eyi

[
log2 p(yi)

]
= −p(yi) log2 p(yi),

(6)

p(yi) = softmax(hiWs + bs). (7)

4 Experiment

4.1 Experimental Settings and Baselines
We conduct our experiments on three public
datasets, i.e. Restaurant, Laptop from SemEval
2014 ABSA task (Pontiki et al., 2014) and Twit-
ter (Dong et al., 2014). In practice, we run the
experiments over 5 random seeds and report the av-
erage values of accuracy (acc) and Macro-F1 (F1)
to avoid stochasticity.

Two widely-used pretraining models, i.e. BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), are regarded as our prediction backbone,
and we compare our framework C3DA with the
following four data augmentation methods:

• EDA (Wei and Zou, 2019) is a token-level
transformation method. It follows some pat-
terns such as Synonym Replacement, Random
Insertion, etc. For the ABSA task, we deliber-
ately avoid corrupting the aspect words.

• Back Translation (BT) (Sennrich et al., 2016)
is a sentence-level augmentation method,
which translates a sentence to another lan-
guage and translates it back to the original
language. We follow Fan et al. (2021) that
translates English to French and translates it
back to English.
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Table 2: Empirical results of C3DA and other cutting-edge data augmentation methods. The best scores of each
metric are indicated in bold, and ↑ denotes the improvement over BERT-base and RoBERTa-base baselines.

Model
Restaurant Laptop Twitter

acc F1 acc F1 acc F1

BERT-base 86.31 80.22 79.66 76.11 76.50 75.23
+ EDA (Wei and Zou, 2019) 86.42 79.63 79.59 75.79 76.26 75.16
+ BT (Fan et al., 2021) 86.47 80.29 79.67 76.35 76.63 75.47
+ CBERT (Wu et al., 2019) 86.27 80.00 79.83 76.12 76.44 75.36
+ SCon (Liang et al., 2021) 86.51 80.55 80.23 76.48 - -
+ C3DA (Ours) 86.93↑0.62 81.23↑1.01 80.61↑0.95 77.11↑1.00 77.55↑1.05 76.53↑1.30

RoBERTa-base 86.38 80.29 80.10 76.24 76.63 75.37
+ EDA (Wei and Zou, 2019) 86.43 80.21 80.38 76.59 76.47 75.36
+ BT (Fan et al., 2021) 86.50 80.59 80.22 76.73 76.59 75.47
+ CBERT (Wu et al., 2019) 86.77 80.51 80.54 76.57 76.73 75.37
+ C3DA (Ours) 87.11↑0.73 81.63↑1.34 81.83↑1.73 78.46↑2.22 78.31↑1.38 76.67↑1.30

• CBERT (Wu et al., 2019) fully excavates the
power of mask language model (MLM) ob-
jective to replace some tokens, so it is also a
token-level replacement approach.

• SCon (Liang et al., 2021) design aspect-
invariant/-dependent data augmentation for
ABSA and deploy a supervised contrastive
learning objective. We reproduce it according
to their released code and default best settings.

4.2 More Empirical Details

We implement our experiment by following the
released ABSA Pytorch3 repository and our pre-
trained models, such as bert-base-uncased, roberta-
base and t5-base, are from HuggingFace4. Mean-
while, we utilize a flexible toolkit OpenDelta5 to
adapt various parameter-efficient methods to our
T5 generator.

In the data augmentation stage, we leverage an
Adafactor optimizer. A T5 generator is fine-tuned
for 100 epochs, and batch size is fixed to 16. As
training a prediction model BERT or RoBERTa,
we adapt an Adam optimizer with a learning rate
of 2 × 10−5, and the dropout rate is set to 0.3.
Additionally, we train the final prediction model
for 15 epochs with the batch size as 16.

A single NVIDIA A100 is used to conduct our
all experiments. The model fine-tuning and sen-
tence generation stages will generally spend 2 - 3

3https://github.com/songyouwei/
ABSA-PyTorch

4https://huggingface.co/models
5https://github.com/thunlp/OpenDelta

hours, and it spends about 1 hour to train a predic-
tion model.

4.3 Main Result

Table 2 shows our main experimental results. To
be fair, for each data augmentation method, we
generate 1 synthetic sample per sentence. Overall,
our C3DA framework consistently and significantly
improve the preformance of both BERT-based and
RoBERTa-based models, e.g. the result of Restau-
rant even outperforms the RoBERTa-base baseline
2.22% in term of F1. Moreover, we observe that the
performance order of various data augmentation
methods is C3DA > CBERT > BT > EDA, which
indicates: (1) EDA semantic-regardlessly removes
or inserts tokens, which will inject more noise into
final prediction models, thus leading to the poor per-
formance. (2) Comparing BT and CBERT, BT al-
ways achieves higher F1, and CBERT will get more
advantageous accuracy. Since BT is a sentence-
level method, it focuses on how to transform a
source sentence into a form-different and semantic-
reserved sentence, but neglects the useful aspect
information. On the contrary, CBERT will only
change some tokens, which is a semantic-reversed
and aspect-reserved approach. Table 3 summarizes
the characteristics of some augmentation methods.

Turn to compare two metrics, another finding
is that C3DA has more significant performance in
term of Macro-F1. Proverbially, since Macro-F1 is
a metric to measure the generalization of a model,
the higher improvements on Macro-F1 prove that
our framework can effectively improve the model’s
robustness in this view. Concurrently, the effect

6696



0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 68 5 . 0
8 5 . 6
8 6 . 2
8 6 . 8
8 7 . 4
8 8 . 0

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 67 9 . 0
7 9 . 6
8 0 . 2
8 0 . 8
8 1 . 4
8 2 . 0

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 67 8
7 9
8 0
8 1
8 2
8 3

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 67 5 . 0
7 5 . 8
7 6 . 6
7 7 . 4
7 8 . 2
7 9 . 0

acc

ξ

R e s t a u r a n t R e s t a u r a n t

F1

ξ

acc

ξ

L a p t o p L a p t o p

F1

ξ

Figure 2: Sensitivity Analysis of the contrastive training margin ξ. The ribbon upper-side and below-side denote the
maximum and minimum performance in 5 seeds respectively, and the centerline is the average value.
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Figure 3: Sensitivity Analysis of the number of selected sentences k in EMF.

Table 3: A comparison of various data augmentation
methods. Semantic-R. and Aspect-R. denote semantic
reserved methods and aspect reserved methods, and
T.- / S.- discriminates token-level and sentence-level
methods respectively.

Methods Semantic-R. Aspect-R. T.- / S.-

EDA × ✓ T.
BT ✓ × S.

CBERT ✓ ✓ T.
C3DA ✓ ✓ S.

of C3DA is better on Restaurant and Twitter. The
difference between these datasets is that Laptop is
a small dataset, indicating that our C3DA is sensi-
tive to the data scale and C3DA may have better
improvement if there is a larger-scale dataset.

4.4 Ablation Study

The core modules in our framework C3DA are Data
Augmentation (DA), Contrastive Learning (CL),
and Entropy-Minimization Filter (EMF). In this
section, we perform ablation study to investigate
the effect of these modules, and the results are
listed in Table 5. BERT-base is regarded as the
prediction model in this study, and w/o denotes
without some modules.

Firstly, w/o DA & CL removes our data aug-
mentation framework, it is equivalent to a vanilla
BERT-base-only prediction model. As shown in
Table 5, w/o DA & CL always presents poor perfor-

mance, even decrease by about 1% on Laptop’s acc
and F1 and Restaurant’s F1. It proves our C3DA

framework imports more high-quality data items
and is effective to boost the performance. Then,
w/o CL remains augmented sentences and revokes
the contrastive training objective RCL. Overall,
this objective improves the results by about 0.3%
on each dataset, conforming that contrastive learn-
ing can powerfully optimize the aspect-specific fea-
tures. Finally, w/o EMF conducts both supervised
training and contrastive training on all generated
sentences. Intuitively, more samples can consoli-
date the predictive power of a classification model,
but some emotionless and illogical sentences also
carry plenty of noise. As we speculate, w/o EMF
degrades the model’s performance by 0.5% - 1.0%,
the outcome on Restaurant’s accuracy is even worse
than the result without DA & CL. More sensitivity
studies about EMF will be shown in Section 4.5.

Additionally, we also investigate the perfor-
mance of generating sentences with only AAC and
only PAC settings and report their results in Table 5.
We show that both them are beneficial, where only
AAC slightly outperforms that of the only PAC,
demonstrating that the multi-aspect data are more
crucial than the multi-polarity data.

4.5 Sensitivity Analysis

As mentioned above, we employ 4 hyper-
parameters in our C3DA framework, and ξ and k
are more crucial. To investigate the influence of
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Table 4: Case study. The aspect words and corresponding polarities are noted as red color and blue color, respectively.

case the falafal was rather over cooked and dried but the chicken was fine.

Aspect & Polarity
falafal chicken

Positive Neutral Negative Positive Neutral Negative
w/o C3DA 0.098 0.109 0.793 0.643 0.047 0.310
with C3DA 0.071 0.092 0.837 0.698 0.076 0.226

case good food but the service was dreadful!

Aspect & Polarity
food service

Positive Neutral Negative Positive Neutral Negative
w/o C3DA 0.502 0.173 0.325 0.191 0.236 0.573
with C3DA 0.589 0.211 0.200 0.177 0.186 0.637

Table 5: Ablation study of C3DA. The prediction model
is BERT-base in this study.

Model Restaurant Laptop Twitter

acc

C3DA 86.93 80.61 77.08
w/o DA & CL 86.31 79.66 76.50

w/o CL 86.69 80.35 76.87
w/o EMF 86.45 79.84 76.50
only AAC 86.63 80.10 77.16
only PAC 86.44 79.94 77.19

Model F1

C3DA 81.23 77.11 75.76
w/o DA & CL 80.22 76.11 75.23

w/o CL 81.00 76.88 75.63
w/o EMF 80.21 76.45 75.17
only AAC 80.61 76.69 75.93
only PAC 80.24 76.17 75.91

both hyper-parameters, we further conduct sensi-
tivity analysis in this section. Additionally, we fix
α and β to 0.5 and 2.0, respectively. Limited by
space, their sensitivity analysis will be described
and analyzed in Appendix B.

Contrastive Training Margin ξ Margin ξ in
Equation 3 is an important hyper-parameter to con-
trol the model’s distinctive ability to discriminate
negative samples and positive samples. Under a
little margin, the prediction model will indolently
balance d(hi,h

p
i ) and d(hi,h

n
i ) to cause under-

optimization, while a large margin makes a model
converge hard.

To investigate the impact of the margin ξ, we
implement experiments on Restaurant and Laptop,
and range ξ from 0.1 to 0.6. As shown in Figure 2,
our C3DA always gets the best performance when
ξ is 0.3, and as it expands or shrinks, the results

consistently show a downward trend.

Number of Selected Sentences k in EMF As
the description in Section 4.4, k in EMF is a key
hyper-parameter to decide to introduce more use-
ful sentences or more noisy information, we se-
lect k sentences for each source sentence with the
entropy-minimization filter method.

We evaluate C3DA on k ∈ {1, 2, 3, 4} and show
the results in Figure 3. The best performance in-
variably appears in k = 2 or k = 1. Meanwhile,
the performance decreases significantly when the
value of k is 3, 4.

4.6 Case Study

C3DA is a DA-based framework, and our purpose
is to break the multi-aspect challenge. Therefore,
we implement a case study to evaluate whether
C3DA can solve this problem, and more cases with
different DA methods and cases with varying fine-
tuning epochs will be shown in Appendix C.

We select two samples from the Restaurant test
set, and these two sentences all have two aspects
with different sentiment polarities. We will com-
pare the performance of our C3DA on their polarity
prediction distribution. To observe the Table 4,
we summarize that (1) C3DA can consistently and
significantly enhance the prediction model’s robust-
ness, such as the Positive probability of the aspect
food improve about 0.077. Therefore, our frame-
work can correct the polarity prediction when a sen-
tence expresses an ambiguous polarity. (2) When
a sentence is short, the interaction between two
aspects with contradictory polarities will be more
intimate. In this scenario, sentences will express
more ambiguous sentiment and the effectiveness of
our framework will be more significant.
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4.7 Computing Cost Analysis

Our method will prolong each sentence, longer sen-
tences will undoubtedly increase computing costs.
Therefore, we attempt to compare the computing
time of our framework and other augmentation
methods. In the data preparing stage, C3DA will
fine-tune a generator and inference on the training
set, it will spend 2 - 3 hours, and it is a once-for-all
process. In the prediction training stage, we find
that EDA, Back Translation and CBERT do not
change the sentence length, their prediction time
cost 0.98× ∼ 1.05× (without any augmentation
is 1×). By comparison, C3DA spends 1.14× time
cost, which is completely acceptable.

5 Conclusion

In our work, we focus on solving the multi-aspect
problem in the ABSA task. To address this chal-
lenge, we propose a data-centric training frame-
work and design a novel C3DA method to imple-
ment data augmentation. The proposed framework
conduct both supervised training and contrastive
training on augmented samples. The key idea of
C3DA is to generate some sentences that express
the opposite sentiment polarity from the source
sentences. Extensive experiments on widely-used
benchmarks demonstrate that our framework can
effectively improve the prediction model’s robust-
ness and predictive performance. In the future, it
will be interesting to apply our C3DA framework to
improve other fine-grained natural language under-
standing tasks.
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A Various Parameter-Efficient Methods
Result

We adapt three parameter efficient methods for our
T5 generator:

• Prefix-tuning (Li and Liang, 2021) fixes
PLMs parameters, and inject an additional
trainable prefix tokens for each transformer
hidden layer. We set the number of prefix
tokens to default 6.

• Prompt-tuning (Lester et al., 2021b) only
prepends a prompt family to the input embed-
ding layer. The length of the soft tokens is
100 in our experiments.

• Low-Rank Adaptation (LoRA) (Hu et al.,
2022) trains a low-rank matrix to lightweight
the PLMs. To be specific, we fix the hyper-
parameter rank r to 8 and cancel the dropout
operation (dropout = 0).

• Full-tuning fine-tunes all parameters in the
T5 backbone.

• No-tuning directly generates sentences with
a pre-trained T5 model without fine-tuning.
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Figure 4: Convergence Analysis.

A.1 Case Study
More instances from different fine-tuning methods
are listed in Table 6, the domains and polarities
are attached to the source sentences. Under our
observation, we found some phenomena: (1) the
sentences from Full-tuning are always longer, and
Full-tuning habitually outputs the same sentences,
which proves that Full-tuning will cause an over-fit
problem by conjecture. (2) three parameter effi-
cient methods consistently generate multi-aspect
samples, however, it is doubtful whether more as-
pects in a sentence will promote the model’s robust-
ness more significantly. (3) most of the generated
sentences can achieve our motivation (express an
opposite polarity).

A.2 Convergence Analysis
We analyze the fine-tuning loss for those aforemen-
tioned fine-tuning methods (without No-tuning)
with T5ForConditionGeneration.loss
interface in Hugging Face on Restaurant. Figure 4
shows the loss curve, we adapt a percentile filter
with 20 pts to conduct the curve smooth, and the
losses of ultimate convergence are listed in Table 7.
Obviously, Full-tuning will achieve a lower loss,
because all parameters are tuned, and the scale of
parameters is far greater than the number of data
items, it is a precursor of an over-fitting problem.
By comparing three fine-tuning methods, we pre-
fer a method with lower convergence loss, Prefix-
tuning and Prompt-tuning are indistinguishable,
however, LoRA obtains an obvious superiority.

B More Sensitivity Analysis

Objective coefficients α and β are also control-
lable hyper-parameters, so we conduct sensitiv-
ity analysis on them. Our experimental results
are shown in Figure 5 and Figure 6, the predic-
tion model is consistently BERT-base and α ∈
{0.1, 0.3, 0.5, 1, 2}, β ∈ {0.5, 1, 2, 5, 10}. Ac-
cording to the figures, the best performance always
when α = 0.3 or 0.5 and β = 1 or 2.

C More Case Studies

Different DA methods We investigate different
data augmentation frameworks from the view of
the model’s prediction results in Section 4.3. We
will also list an example to compare these DA base-
lines and throw more generated sentences from our
C3DA in Table 8. The example in the upper table
is from Restaurant, and we adapt LoRA to the T5

6702



Table 6: Case study. The upper table compares results of different data augmentation methods, the bold spans is
changed part; The below table shows some generated sentences with C3DA.

Method Examples [dataset, polarity]

source not only was the food outstanding, but the little ’perks’ were great. [Restaurant, Positive]
No-tuning the kitchen is very well equipped with all the equipment you need to cook up a storm.

Full-Tuning The food is okay and the prices here are mediocre.
Prefix-tuning The kitchen is a little small, but the food is good.

Prompt-tuning The kitchen is a little dated, but the food is good.
LoRA The seats are a bit cramped, but the food was delicious.

source it is easy to start up and does not overheat as much as other laptops. [Laptop, Positive]
No-tuning a laptop that is easy to start up and does not overheat as much as other laptops.

Full-Tuning I also purchased iWork to go with it which has programs for word processing, spreadsheets, and
presentations ( similar to Microsoft Office ).

Prefix-tuning The battery isn’t very strong, but it is very light.
Prompt-tuning but the screen is so dark, and the service center is a little numb.

LoRA The software is very easy to use, the start up is very fast, the graphics are fantastic.
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Figure 5: Sensitivity Analysis of the objective coefficient α in supervised classification training.

Table 7: Convergence loss. "-T." is short for "-Tuning".

Method Full-T. Prefix-T. Prompt-T. LoRA

Loss 0.05102 0.70009 0.69182 0.46218

generator, and more examples of C3DA below are
from Restaurant and Laptop.

We summarize that EDA deletes "my", trans-
forms "co-workers" to its synonym "workers" and
randomly inserts a comma to an unreasonable posi-
tion. This method adds some corruptions without
any semantic relations, and it is possible to generate
an illogical sample; Compared to EDA, CBERT is
also a token-level method, but a semantic-reserved
sentence is consistently created; Back Translation
is a sentence-level method, and a correct sentence
can be generated. However, it erases the aspect
words for ABSA task. By comparison, our C3DA
not only reserves the origin semantic information
but also introduces some high-quality in-domain
corpus-aware information and adversarial signals.
We also observe that most generated sentences
from C3DA exist two or more aspects, and this
phenomenon is widespread in several datasets.

Cases with Varying Fine-tuning Epochs τ We
also explore the generation results with varying
fine-tuning epochs τ . As shown in Table 9, given
a source sentence “but the staff was so horrible to
us.“, the T5 generator tends to generate an irrelative
sentence when we have not yet fine-tuned it. In the
middle of the fine-tuning stage, the generator is
inclined to retell the source sentences or generate
some irrational sentences. Finally, our generation
model will eventually converge when τ = 80.

D Instance-level Loss Re-weight for
Long-tail Aspects

There is an another problem when we implement
sentence generation, our generated sentences in
one dataset often fit to few aspects, such as food in
Restaurant. To investigate this issue, we show the
aspect information for three public ABSA datasets
in Table 10, and we found that food in Restaurant
actually maintain maximum frequency. Similarly,
service, battery and screen etc. report this long-tail
distribution problem. And most of aspects in Twit-
ter is [UNK], it means that extensive aspect infor-
mation will be unusable, this causes some models
don’t work, especially the attention-based models.

Similar to focal loss (Lin et al., 2017), we adapt
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Figure 6: Sensitivity Analysis of the contrastive training objective coefficient β in our overall objective.

Table 8: Case study. The upper table compares results of different data augmentation methods, the blue spans is
changed part; The below table shows some generated sentences with C3DA.

DA methods examples

source my co-workers had to wait almost an hour for delivery.
EDA workers had to, wait an hour for delivery.
B.T. my colleague waited nearly an hour to deliver it.

CBERT my mother had to wait half an hour for delivery.

C3DA
my co-workers had to wait almost an hour for delivery. but the perks are great, and you

get to enjoy all the perks.

source sentences C3DA generated sentences

if you love seafood, you would love this place! the sauce was good, but the meats were a little fatty.
we had a girls, night dinner here for restaurant week. try the samosas at a reasonable price.
it is easy to start up and does not overheat as much as

other laptops.
but the screen is so dark, and the service center is a

little numb.

Table 9: Case study. Given a source sentence “but the
staff was so horrible to us.“, we can observe the trend
of its augmented sentence with fine-tune epochs τ .

epochs τ sentence
source but the staff was so horrible to us.

0 i cried out for the suffragellah woman.
20 the staff is so horrible to us.
40 the as-is, the service isn’t great.
60 the food is very good.
80 the food was great, the service was excellent.

an instance-level loss re-weight method to our fine-
tuning stage. Inspired by Jain et al. (2016), we
multiple a multiplier to each instance’s objective,
the multiplier is shown in Equation (8).

∆j =
1

1 + Ce−A log(Mj+B)
, (8)

C = (logM − 1)(B + 1)A, (9)

where Mj , M are the number of data points anno-
tated with aspect j, and aspect items, respectively.

Table 10: The aspect words and its frequency statistic of
three public datasets. We only show the top-10 aspect
words (with the T5 tokenizer) and hide some special
tokens such as ’a’, ’i’, etc.

dataset aspect words: frequency

Restaurant
food: 419, [UNK]: 404, service: 204,

wait: 94, menu: 80, dinner: 75, wine: 72,
staff : 68 , pizza: 65, place: 60

Laptop
[UNK]:267, battery: 97, screen: 81, use:

58, life: 56, windows: 55, price: 55,
software: 54 , keyboard: 54, drive: 53

Twitter
[UNK]: 5328, spear: 894, bri: 887, ney:

887, lo: 394, han: 393, lind: 388, say: 388
, in: 370, ry: 360
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Abstract

Aspect-term sentiment analysis (ATSA) is an
important task that aims to infer the sentiment
towards the given aspect-terms. It is often re-
quired in the industry that ATSA should be
performed with interpretability, computational
efficiency and high accuracy. However, such an
ATSA method has not yet been developed. This
study aims to develop an ATSA method that ful-
fills all these requirements. To achieve the goal,
we propose a novel Sentiment Interpretable
Logic Tensor Network (SILTN). SILTN is inter-
pretable because it is a neurosymbolic formal-
ism and a computational model that supports
learning and reasoning about data with a differ-
entiable first-order logic language (FOL). To
realize SILTN with high inferring accuracy, we
propose a novel learning strategy called the two-
stage syntax knowledge distillation (TSynKD).
Using widely used datasets, we experimentally
demonstrate that the proposed TSynKD is ef-
fective for improving the accuracy of SILTN,
and the SILTN has both high interpretability
and computational efficiency.

1 Introduction

1.1 Motivation

Aspect-term sentiment analysis (ATSA) is a fine-
grained task in sentiment analysis, which aims is
to recognize the sentiment polarity of the given
aspect-term in a sentence (Zafra et al., 2019). Early
research for ATSA was developed based on man-
ually extracted features. For example, Poria et al.
(2014) designed hand-crafted dependency rules to
obtain aspect-related words, which are then fed into
the machine learning methods to infer the sentiment
polarity. With the development of deep learning,
deep neural networks (DNNs) have dominated the
study. Generally, the performance of DNNs is supe-
rior to traditional machine learning methods when

∗ Corresponding authors: xianghuafu@sztu.edu.cn,
ljing@connect.ust.hk

the labeled training data is sufficient. More re-
cently, there are two classes of methods that have
received attention: (i) syntax-aware neural network
(SaNN), which integrates syntax knowledge into
attention-based neural network that increases the
predictor’s performance and interpretability (Zhang
et al., 2019; Wang et al., 2020; Li et al., 2020;
Nguyen and Shirai, 2015); (ii) large pre-trained lan-
guage model (PLM) for ATSA (e.g., Bert (Devlin
et al., 2019; Song et al., 2019; Zeng et al., 2019; Dai
et al., 2021)), which learns knowledge from large-
scale corpus and stably exceeds the other baseline
by a significant margin.

Despite the effectiveness of prior work, ATSA
in real-world remains a challenge for several rea-
sons. First, DNNs usually perform as a “black
box”, because they cannot explicitly explain the
process of the analysis; therefore, they cannot be
applied in cases where explanations are required.
Second, the performance of SaNNs relies on the
intricate knowledge integration mechanism, which
introduces more trainable parameters and brings
extra computational costs. Furthermore, based
on our empirical observation, the SaNN achieves
merely limited performance improvements on most
attention-based models (see methods 9-12 in Table
1). Third, for the pre-trained model, the enormous
parameters lead to high storage and computational
costs, making them a burden to be deployed in
resource-constrained application scenarios such as
real-time inference on mobile or edge devices. Be-
sides, similar to DNNs, the pre-trained methods
also lack interpretability.

1.2 Purpose

In response, this study aims to develop an ATSA
method that can achieve interpretability, computa-
tional efficiency and high accuracy simultaneously.

Interpretability. To satisfy the interpretability
requirement, we aim to develop an understandable
ATSA method that can extract aspect-related words

6705



with explicit semantic knowledge, and build the
sentiment inferring neural network that can be ex-
plained by first-order logic language (FOL). The
FOL type of explanation should be agreeable for
humans, and valuable in a situation where explana-
tions are required.

Computational efficiency. To achieve high
computational efficiency, we aim to develop an
efficient ATSA method that utilizes fewer parame-
ters for prediction while still achieving comparable
results as conventional state-of-the-art models.

High accuracy. To achieve high accuracy, we
aim to develop an ATSA method that achieves
outstanding performance while maintaining inter-
pretability and computational efficiency at the same
time. Although it is very challenging, inspired by
knowledge distillation (Hinton et al., 2015), we
aim to develop a knowledge distillation strategy
that transfers the knowledge of large and high-
performance networks into an interpretable and
computational efficient network.

1.3 Approach

To achieve the goal, we propose a novel Sentiment
Interpretable Logic Tensor Network (SILTN) for
ATSA. Further, to realize this SILTN with high
inferring accuracy, we propose a two-stage syntax
knowledge distillation (TSynKD) strategy.

SILTN. SILTN is a neurosymbolic formalism
and a computational neural network that supports
learning and reasoning about data with a differen-
tiable first-order logic language. Logic rules pro-
vide a flexible declarative language for communi-
cating high-level cognition and expressing struc-
tured knowledge.

TSynKD. Although SILTN is well interpretable,
its predictive performance is unsatisfactory because
of the shallow network structure. Therefore, we
propose the TSynKD to improve the inferring ac-
curacy of SILTN, which is motivated by the ob-
servation that knowledge distillation can compress
the large and high-performance networks (teacher)
into a small student model while preserving the
knowledge of the teacher model. TSynKD consists
of two distillation stages with three networks: a
large network (first teacher), a big network (sec-
ond teacher) and a small network (student). The
first distillation stage is the output distillation stage,
which makes a large network output logits as a big
network training objective. In this paper, we use
the pre-trained Bert as the large network. As for

the big network, we propose an aspect-specific dy-
namic graph convolutional network (AsDGCN) to
model the dependency knowledge. The second
stage is feature distillation stage, which allows a
student to learn from a teacher’s intermediate fea-
tures. Here, SILTN is the student for distilling
dependency knowledge from teacher AsDGCN.

1.4 Contribution

We summarize our contributions as follows: (1) To
the best of our knowledge, this is the first work to
integrate an interpretable logic tensor network in
a principled framework for ATSA. SILTN is con-
structed followed by FOL, which provides a flexi-
ble declarative language for communicating high-
level cognition and expressing structured knowl-
edge. (2) We propose a two-stage syntax knowl-
edge distill strategy (TSynKD) in ATSA, which
significantly improves the performance of SILTN.
(3) Extensive experiments have been conducted to
evaluate the effectiveness of our model for ATSA.

2 Our Methodology

Figure 1: Overall framework.

2.1 Problem Definition

The ATSA task can be formulated
as follows. Given a sentence x =
{wc1, ..., waa, ..., waa+m, ..., wcn} contains the
corresponding aspect-term words {waa, ..., w

a
a+m},

where w denotes each word in the sentence and
m denotes the aspect-term length. Each sentence
has a sentiment label y. ATSA aims to predict a
sentiment label for the input sentence x towards
the given aspect-term. In this paper, we use
superscripts “c”, “a” to indicate a context word
and aspect-term word, respectively.
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2.2 Framework Overview

Figure 1 shows the overall framework of our pro-
posed method. The blue block denotes the SILTN,
which serves as a basic prediction model. SILTN is
developed following FOL, where each Grounding
G is constructed by a simple trainable neural net-
work structure. To realize SILTN with high infer-
ring accuracy, SILTN is trained by TSynKD strat-
egy. TSynKD consists of two distillation stages
with three networks: a large network (Bert), a big
network (AsDGCN), and a small network (SILTN).
The first stage is the output distillation, which uti-
lizes Bert’s output logits as the AsDGCN’s training
objective. The second stage is the feature distilla-
tion, where SILTN learns dependency knowledge
from AsDGCN and utilizes Bert’s output logits as
the SILTN’s training objective for further improv-
ing the inferring accuracy.

2.3 SILTN

2.3.1 Preliminary: Logic Tensor Network
Logic Tensor Network (LTN) is a neuro-symbolic
formalism and computational model that supports
learning and reasoning about data with rich knowl-
edge. The semantics of logic in LTN (called Real
Logic) depart from the standard abstract semantics
of FOL. In Real Logic, every object denoted by
constants, variables and terms is interpreted as a
tensor of real values. Predicates are interpreted
as functions or tensor operations projecting onto a
value in the interval [0, 1]. Here, functions are usu-
ally implemented by neural networks. Grounding
in Real Logic, denoted by G, associates a tensor of
real numbers, where a real number in the interval
[0, 1].

2.3.2 SILTN Notation and Definition
The notation and definition of SILTN are as fol-
lows:

Domains: texts, denoting the examples from
dataset. labels, denoting the class labels.

Variables: x+, x◦ and x− denoting the text of
“positive”, “neutral” and “negative”, respectively. x
for all examples. D(x+) = D(x◦) = D(x−) = D(x)
= texts.

Constants: l+, l◦ and l−, the labels of classes for
“positive”, “neutral” and “negative”, respectively.
D(l+) = D(l◦) = D(l−) = labels.

Predicates: A(x) denoting the dependency rela-
tion. K(k, q) denoting the knowledge rule k → q.
R(x, a) denoting the fact that the aspect-related

words toward the aspect-term a. P (R(x, a), l) de-
noting the fact that text x is classified as l when
targeting to aspect-term a.

Axioms:

∀x K(A(x), R(x, a)) (1)

∀x+ P (R(x+, a), l+) (2)

∀x◦ P (R(x◦, a), l◦) (3)

∀x− P (R(x−, a), l−) (4)

Notice that rules about exclusiveness such as
∀x(P (x, l+)→ (¬P (x, l◦) ∧ ¬P (x, l−))) are not
included since such constraints are already imposed
by the grounding of P below, more specifically the
softmax function.

Grounding: G(l) is the one-hot vector where
G(l+) = [1, 0, 0], G(l◦) = [0, 1, 0] and G(l−) =
[0, 0, 1]. G(x) is a word matrix of x. G(a) and G(c)
are word matrix of aspect-term a and content words
c, respectively. G(A(x)) is a dependency relation
vector sequence of the given text x. G(R(x, a)) is
a vector sequence that computed by G(x) and G(a).
G(K(A(x), R(x, a))) is a vector sequence that
computed by G(A(x)) and G(R(x, a)). G(P |θ):
(x, a), l 7→ softmax(SILTNθ(x, a)), where the LTN
has three output neurons corresponding to the sen-
timent polarity “positive, neural or negative”, and
each neurons gives the probability corresponding
to the class l.

2.3.3 Network structure of SILTN
Follow the SILTN definitions, we aim to achieve
G(P |θ): (x, a), l 7→ softmax(SILTNθ(x, a)), where
each grounding is constructed by neural network
structure. Figure 2 is the framework of SILTN.

Specifically, following FOL, G(P ) can be de-
composed by each groundings. According to Fig-
ure 2, the first layer Grounding is G(x), where the
Grounding of input sentence x is constructed by the
text representation model such as LSTM or Bert,
etc. Formally, given input sequence x, we convert
the i-th word into a low-dimensional vector repre-
sentation ei by embedding layer, where d denotes
the dimension of embedded vectors. The G(x) rep-
resents the hidden states of LSTM, where the input
is the combination of ei.

The second layer Grounding is Predicates A(x),
which aims to model the dependency relation of
each word toward the aspect-term. To achieve this
goal, the distilled dependency knowledge is utilized
in this layer. Formally, G(A(x)) can be calculated
as:
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Figure 2: Framework of the proposed SILTN.

G(A(x)) = σ(

m∑

i=0

ÂiG(x)iWi + b), (5)

where Â is the distilled dependency knowledge
(see Eq. (9)); σ denotes the active function. Note
that W, b are distilled from AsDGCN (share param-
eters).

Next, G(R(x, a)) is computed by :

c = G(x)G(a)T,
G(R(x, a)) = G(x)tsoftmax(

∑

t

ct),
(6)

where softmax(fi) = efi∑
j e
fj

, t denodes the t-

th word. Specifically, G(a) is obtained by select-
ing the corresponding vector through the index
{waa, ..., waa+m} from G(x).

After acquiring the representation G((R(x, a)),
it is fed into the feed-forward layer to compute
G(K(A(x), R(x, a))). Here, K(A(x), R(x, a))
represents the soft logic A(x)→ R(x, a). Follow
soft logic operation in Badreddine et al. (2022),
K(A(x), R(x, a)) is computed by:

G(K(A(x), R(x, a))) =

1− G(A(x)) + G(A(x)) · G(R(x, a)) (7)

Then the softmax layer to obtain the sentiment prob-
ability distribution:

PS = softmax(W1G(K(A(x), R(x, a))) + b1),
(8)

where W1 and b1 are trainable parameters.

2.4 TSynKD
2.4.1 Key Idea of TSynKD
The “deepth” of the network structure is shallow,
which poses a big challenge to improve the net-
work’s performance on ATSA while maintaining
an interpretable and simple network structure. An
effective solution is to adopt knowledge distilla-
tion, which can transfer the knowledge from the
large network (teacher) into the small network (stu-
dent), and improve the student’s performance sig-
nificantly.

2.4.2 Large Network (Bert)
In this paper, we deploy the pre-trained Bert model
as the first teacher that produces features learned
from large-scale corpus. Specifically, we first fine-
tune the Bert model, and then generate the out-
puts of all training samples. The outputs are then
denoted as a big model training objective in out-
put distillation. Bert model takes “[CLS] sentence
[SEP] aspect-terms [SEP]” as input, which com-
putes the deep representations of sentences and
aspects. We denote the output of Bert as PL.

Figure 3: Framework of AsDGCN.
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2.4.3 Big Network (AsDGCN)
AsDGCN is the extention of Zhang et al. (2019),
which aims to distill dependency knowledge from
Bert by output distillation, and then transfer the
knowledge into the student SILTN. We only briefly
discuss sections overlapping with contents in
Zhang et al. (2019) so that we can put more empha-
sis on the new contributions.

Formally, the first layer of AsDGCN is Bi-
LSTM network, which can be denoted as Hx =
{hc1, ..., ha2, ..., hcn}, Hc and Ha are the combina-
tion of the hidden states of content words and
aspect-terms, respectively. The second layer is
constructed for learning the dependency relation
(denoted as Â) of each word. In particular, we
propose a novel attention mechanism, where the
attention distributions simulate the adjacency rela-
tions. Specifically, we first use the hidden states of
aspect-term (Ha) as the attention query to calculate
the attention distribution with the hidden state Hx.
Then, Â can be computed as:

Â = IN + softmax(Relu(HaTHx)), (9)

where IN is the identity matrix. After obtaining
the adjacency Â, The final graph representation S
can be calculated by GCN:

S = σ(ÂHW + b), (10)

where σ represents a non-linear function, W+b are
trainable parameters.

Finally, S is then fed into the attention-based
layer and followed by the softmax layer to compute
a sentiment probability distribution PB .

2.4.4 Learning
• Output distillation:

The output logits serve as a soft target provid-
ing richer supervision than the hard target of
the one-hot gold label for the training (Hinton
et al., 2015). Given an input sentence x with
the gold label y (one-hot), the output logits
of the large network (Bert) PL and the output
logits of the big network (AsDGCN) PB , the
loss function of output distillation denotes as:

Lod = α1 · CE(PB, Y )

+ (1− α1) ·MSE(PL, PB)
(11)

• Feature distillation:

To capture rich syntactic tree features, we first
consider allowing the student SILTN to di-
rectly utilize dependency relations Â from As-
DGCN.

Second, SILTN shares the parameters of syn-
tax layer with AsDGCN (See from Eq. (5)
and Eq. (10) ).

• Loss function for SILTN:
The loss function of SILTN is similar to output
distillation, which can be computed as:

L = α2 · CE(PS , Y )

+ (1− α2) ·MSE(PL, PS)
(12)

Training strategy: From Figure 1, the training
of the overall framework has three steps: (1) fine-
tune Bert and then predict the sentiment label PL;
(2) train AsDGCN by output distillation (Eq. 11);
(3) train SILTN by leveraging Â (Eq. 9) from the
trained AsDGCN and then optimize through the
loss function L (Eq. 12). During inference, the
well-trained SILTN can make predictions on its
own for the given input.

3 Experiments

Datasets. To evaluate the effectiveness of our
method, we conduct extensive experiments on five
datasets. Twitter dataset is obtained from Dong
et al. (2014). There are 1561 positive, 3127 neutral
and 1560 negative tweets for training and 692 for
the test. Lap14 and Rest14 datasets are taken from
SemEval-14 Task 4 in Pontiki et al. (2014). Lap14
denotes the laptop reviews and it contains 2328
training texts and 638 test samples. Rest14 com-
poses of the restaurant reviews, it contains 2164
positive, 637 neutral and 807 negative texts for
training and 1120 samples for test. Rest15 is col-
lected from SemEval 2015 task 12 in Pontiki et al.
(2015), it contains in total 1204 training samples
with three sentiment classes and 542 samples for
test. SPD is collected from Zhang et al. (2020),
the sentences in SPD all contain unique structures,
such as conditional statements and subjunctive. It
contains 4726 training samples and 1182 test sam-
ples.

Baselines We adopt several sentiment classifica-
tion methods as baselines. SVM (Kiritchenko et al.,
2014) is an effective traditional mechine learning
based method. LSTM (Tang et al., 2016a) utilizes
the standard LSTM to model the sentiment repre-
sentation. IAN (Ma et al., 2017), MemNet (Tang
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Model
Twitter Lap14 Rest14 Rest15 SPD

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
1.SVM¶ 63.40 63.30 70.49 - 80.16 - - - - -
2.LSTM† 69.56 66.42 69.28 63.21 78.13 67.42 77.37 52.97 61.16 59.17
3.Memnet¶ 71.48 68.14 70.64 65.19 79.61 68.14 77.31 56.17 61.42 57.56
4.AOA† 72.30 68.20 72.62 66.97 79.97 69.59 78.17 57.21 63.76 64.41
5.IAN† 72.50 68.14 72.05 67.38 79.26 70.12 78.54 52.21 63.76 63.96
6.CapsNet¶ - - - - 69.63 69.63 78.14 61.57 - -
7.TNet-LF† 72.98 71.43 74.61 70.14 80.40 70.57 78.47 59.12 63.76 64.96
8.MIMLLN¶ - - - - - 81.06 71.25 78.27 60.59 - -

Syntax-aware methods
9.PRNN¶ - - - - 66.20 59.32 - - - -
10.SAttn¶ - - 72.57 69.13 80.45 71.26 - - - -
11.ASGCN† 72.15 71.00 71.05 70.72 80.86 72.73 79.89 59.47 66.24 65.24
12.R-GAT† 71.56 71.07 72.49 71.01 73.83 72.14 78.92 61.24 66.87 65.14

Ours (SILTN)
-sp 70.95 68.73 72.57 68.14 81.16 71.87 79.97 57.76 63.74 60.12
-(dep) 73.12 72.25 76.96 72.95‡ 83.13 75.12‡ 81.01 64.11 67.60 67.38‡

-(dis-dep) 73.01 73.07‡ 76.77 73.03‡ 83.02 75.86‡ 81.37 64.26‡ 67.94 68.01‡

Table 1: Evaluation results (%) on none-pretrained based methods. The best result on each task is in bold. The mark
¶ refers to the results reported in the original papers, while † mark refers to the open implementation, ‡ mark refers
to p-value < 0.05 when comparing with the best competitor.

Twitter Rest14 Lap14
Bert 74.41 76.21 75.10
Bert-PT - 76.48 75.08
LCF-BERT 73.34 75.03 76.26
AEN-Bert 73.13 73.76 76.31
RoBerta-ASC - 75.12 70.52
Bert-ASGCN 74.67 76.29 75.96
Bert-RGAT 74.88 74.88 74.07
SILTN-Bert 75.52 77.04 76.34

Table 2: Evaluation results (F1 %) compared with pre-
trained models.

et al., 2016b), AOA (Huang et al., 2018)and TNet-
LF (Li et al., 2018) are attention-based methods.
ASGCN (Zhang et al., 2019) and R-GAT (Wang
et al., 2020) use GCN to model the dependency tree
graph for ATSA. MIMLLN (Li et al., 2020) treats
the aspect category as the key instances. PRNN
(Nguyen and Shirai, 2015) takes both dependency
and constituent trees into LSTM. SAttn further
integrates attention mechanism with PhraseRNN.
Bert (Devlin et al., 2019) is a pre-trained BERT
model to perform ATSA. We convert the given con-
text and target to “[CLS] + aspect-term + [SEP]
+ context” structure. Further we select several
variants Bert-based model Bert-PT (Xu et al.,

2019),AEN-Bert (Song et al., 2019), LCF-Bert
(Zeng et al., 2019), RoBerta-ASC, Bert-ASGCN
and Bert-RGAT(Dai et al., 2021).

Variant of SILTN. To get a trade-off between
interpretability, computational efficiency and high
accuracy, we increase or simplify trainable parame-
ters for SILTN, and compare their prediction accu-
racy and prediction time. SILTN-sp: This method
maximally simplifies the training parameters. We
expect that each grounding of SILTN is a simple
trainable tensor production, and for the first layer
of grounding G(x), we directly initialize it with
glove vector without adding any text representation
structure. SILTN-LSTM: To sacrifice the inter-
pretability and improve inferring performance, we
use one LSTM layer to construct G(x). Note that,
the SILTN-(dep) denotes the dependency knowl-
edge acquired from the external tools, and the de-
pendency knowledge of SILTN-(dis-dep) is dis-
tilled from Big network AsDGCN. SILTN-Bert:
To further improve the inferring performance, we
use pretrained Bert to model G(x).

Experimental Setting. In this paper, we utilize
300-dimensional pre-trained GloVe vectors to ini-
tialize the word embeddings. The dimensions of
the hidden state of Bi-LSTM is 128. The scale
weight α{1,2} is 0.01. The model is optimized with
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the Adam optimization algorithm with the batch
size of 32 and the learning rate is 0.001. As in
Zhang et al. (2019), We use accuracy and macro-
averaged F1 score as the evaluation metrics, which
are widely adopted in sentiment classification. We
compute the metrics independently for each class
and then take the average (hence treating all classes
equally), as the final performance.

3.1 Task Setup and Quantitative Results
To evaluate the stability of the model, following
Zhang et al. (2019), we run the method three times
and summarize the best results in Tables 1. Besides,
we adopt the t-test to confirm the significance of
differences between the other methods with a p-
value of 0.05.

(a) None-Bert model.

(b) Bert-based model.

(c) Predict time (sort by time increase).

Figure 4: Comparison results of the size of training
parameters vs. F1 score.

According to the results, we can observe that
our model consistently outperforms the compared
baseline methods. First, SILTN outperforms all
none-syntax baselines (No. 1-8) on all datasets,
which indicates that SILTN has better ability to
infer the sentiment polarities by utilizing depen-

dency knowledge. For example, compared with the
best competitor of methods 1-8, SILTN(dis-dep)
improves 1.64% on Twitter, 4.61% on Rest14 and
2.69% on Rest15 for F1 score, respectively. This
is because SILTN utilizes the dependency knowl-
edge distilled from the big model, which enriches
the learning ability between the word and aspect-
terms. Second, compared with the syntax-aware
models (No. 9-12), SILTN improves 2.02% on
Lap14, 3.13% on Rest14 and 3.02% on Rest15 for
F1 score, respectively. The reason is that the syntax
dependency tree from the SpaCy tool utilized by
the conventional method may introduce additional
errors especially for the text are short and informal.
Third, to further imporve the infering accuracy,
we compare our method with Bert-based methods
and give the results in Table 2. The result shows
SILTN-Bert achieves the best F1 score over the
competitors. Note that, SILTN-(dis-dep) reduces
parameters by 99.17% compared to the Bert model;
however, SILTN still achieves compatible results.

In sum, the advantage of SILTN comes from its
two characteristics: (i) TSynKD provides adequate
syntax knowledge, making the SILTN able to com-
bine the prior knowledge effectively. (ii) SILTN
uses fewer parameters while interpretable, which
leads to high efficiency and high accuracy.

3.1.1 Cost Efficiency vs. Accuracy
Figure 4 summarized the number of parameters and
the F1 score results. First, compare SILTN with
the baselines, SILTN contains fewer parameters but
achieves state-of-the-art results. For example, -dep
has 58.32% less parameters than ASGCN, but the
performance improved by 4.46% on Rest15 and
2.23% on Lap14. Moreover, the predict time of -
dep is comparable to simple LSTM model. Second,
compared with SILTN-sp, which has the fewest pa-
rameters (even fewer 74.91% than standard LSTM),
our method can still obtain competitive results to
the conventional best attention mechanism model
(ASGCN). In sum, the results show the effective-
ness of the TSynKD framework, and it proves that
our model can strike a balance between computa-
tional efficiency and high accuracy.

3.2 Ablation Study

To study the impact of each component of the pro-
posed method, we implement the ablation test to
remove the proposed component denoted as -w/o.

Specifically, -w/o TSynKD: SILTN without the
TSynKD framework, and utilize the standard de-
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pendency tree1 as the syntax knowledge. -w/o
TSynKDOT : SILTN trained by utilizing only out-
put distillation strategy and utilize the standard
dependency tree as the syntax knowledge. -w/o
TSynKDFT : SILTN trained by utilizing only fea-
ture distillation strategy and utilize the standard
dependency tree as the syntax knowledge.

Methods Twitter Lap14 Rest14
SILTN-sp 68.73 68.14 71.87

-w/o TSynKD 65.84 65.44 68.53
-w/o TSynKDOT 66.73 66.22 70.20
-w/o TSynKDFT 67.42 66.74 69.66

Table 3: Ablation study results (F1%).

The ablation results are summarized in Table
3. According to the results, we can summarize
that all the proposed components contribute a great
improvement to SILTN. In particular, the accu-
racy score decreases sharply when discarding the
TSynKD framework. This is within our expecta-
tion since the TSynKD injects knowledge from the
large network and the dependency knowledge from
the big model into SILTN. For example, the F1
score drops 2.89%, 2.70% and 3.34% for Twitter,
Lap14 and Rest14, respectively. In addition, the
proposed two-stage distillation framework also con-
tributes to the effectiveness of SILTN. For example,
the F1 score decreases 1.92% for Twitter when dis-
carding feature distillation, and decreases 2.21%
for Rest14 when discarding output distillation. Not
surprisingly, combining all factors achieves the best
performance for all the experiments.

3.3 Visualized of Distilled Dependency
Relation

The dependency knowledge enables SILTN to uti-
lize tree structures for capturing the corrected
aspect-related words. To understand how the dis-
tilled model promotes the mutual learning of de-
pendency structures, we empirically visualize the
adjacency relation based on a test example: “food
is delicious but price is expensive”. This sample
contains “food” and “price” two aspect-terms. The
visualization is summarized in Figure 5. Figure
5. (a) is the standard dependency structure from
SpaCy tools, which the conventional methods uti-
lize. Both “food” and “price” share the same ad-
jacency matrix. Figure 5. (b) and (c) are acquired

1Spacy tools: https://spacy.io/

(a) Standard dependency structure from Spacy.

(b) From AsDGCN with
aspect-term “food”.

(c) From AsDGCN with
aspect-term “price”.

Figure 5: Visualized of distilled dependency relation.

from Eq. 9 for our AsDGCN. They generate adja-
cency matrices for each aspect-term, respectively.
For example, in Figure 5. (b) “food” increases
the dependency weight associated with “delicious”;
and in Figure 5. (c), the “price” directly connects
with “expensive”.

4 Conclusion

In this paper, we propose a novel Sentiment Inter-
pretable Logic Tensor Network (SILTN). SILTN
is interpretable because it is constructed followed
by first-order logic language (FOL). The sentiment
inferring process can be decomposed into differ-
ent grounding, which is constructed by the simple
neural network; therefore, SILTN is computation-
ally efficient. To achieve high inferring accuracy,
we propose a two-stage syntax knowledge distilla-
tion (TSynKD) strategy. TSynKD consists of two
distillation stages with three networks: Bert, As-
DGCN and SILTN. The first distill stage refers to
the output distillation, which makes the Bert out-
put logits as the training objective of AsDGCN.
In AsDGCN, we develop a novel attention struc-
ture to learn the aspect-specific dependency knowl-
edge through output distillation. The second stage
is feature distillation, which allows a SILTN to
learn from AsDGCN’s intermediate feature rep-
resentations. Extensive experiments have been
conducted on 5 real-world datasets. The experi-
mental results show that the proposed SILTN with
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the TSynKD strategy significantly outperforms the
conventional attention-based methods, and achieve
compatible results compared with the state-of-the-
art Bert-based methods for aspect-term sentiment
analysis.
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Abstract

Moderating user comments and promoting
healthy understanding is a challenging task,
especially in the context of polarized topics
such as climate change. We propose a mod-
eration tool to assist moderators in promoting
mutual understanding in regard to this topic.
The approach is twofold. First, we train classi-
fiers to label incoming posts for the arguments
they entail, with a specific focus on minority
arguments. We apply active learning to further
supplement the training data with rare argu-
ments. Second, we dive deeper into singular
arguments and extract the lexical patterns that
distinguish each argument from the others. Our
findings indicate that climate change arguments
form clearly separable clusters in the embed-
ding space. These classes are characterized by
their own unique lexical patterns that provide
a quick insight in an argument’s key concepts.
Additionally, supplementing our training data
was necessary for our classifiers to be able to
adequately recognize rare arguments. We argue
that this detailed rundown of each argument
provides insight into where others are coming
from. These computational approaches can be
part of the toolkit for content moderators and
researchers struggling with other polarized de-
bates.

1 Introduction

Even though a consensus has existed within the
scientific community on the topic of human-caused
climate change for some time, the online debate
remains very polarized. Online comment spaces
are typically overwhelmed with a large quantity of
contributions. This information flood hinders the

promotion of mutual understanding and inclusiv-
ity in debate spaces. Additionally, climate change
presents a splintered debate with niche opinions
and many viewpoints. The recognition of these
niche arguments are vital to support the moderator
in adhering to the heterogeneous discussion that
climate change presents. This setting presents op-
portunities for mutual understanding by improving
issue awareness and the quality of deliberation.

In this paper, we construct a twofold approach
to support mutual understanding in the online cli-
mate change discussion. First, we aim to classify
posts for the argument they present. Second, we
dive deeper into singular arguments to create an
overview of the lexical patterns in each argument-
specific sub-corpus. We conclude the paper by
discussing the limitations of modeling nuanced ar-
gumentation by a computational method and link
our approach to fields struggling with content mod-
eration and polarized debates.

2 Background

2.1 Argument Mining & Stance Detection

Our application falls under the umbrella of ’ar-
gument mining’ and ’stance detection’. Within
Natural Language Processing, argument mining is
defined as the automated identification and extrac-
tion of argumentation found in natural language
(Lawrence and Reed, 2019). Following the stark
increase in the availability of textual data found
on online fora and social media platforms, argu-
ment detection tasks have been receiving a lot of
attention. The related task of stance detection is
aimed at classifying the stance of the producer of a
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piece of text towards the target topic (Küçük and
Can, 2020). This result is often performed over
three classes: in favour (’Pro’), against (’Con’) or
neutral.

To define an argument, researchers often look
towards the Toulmin model of argument (Toulmin,
2003). Toulmin defined a formal argumentative
model comprising of the following five elements:
claim, data, warrant, qualifier, and rebuttal (Toul-
min, 2003). However, textual data from social me-
dia or comment platforms tend to fall short of fulfill-
ing these formal requirements due to their briefness
and elliptic nature. Researchers have therefore la-
beled tweets as argumentative when a portion of the
formal argumentative structure was present (Bosc
et al., 2016). These portions can be a premise, a,
conclusion, or the connecting relationship between
these two argumentative parts. In this paper, we
follow the same operationalization of the definition
of arguments.

One factor further complicating these tasks is the
influence of context. Context may affect whether
an utterance is interpreted as argumentative or not
(Carstens and Toni, 2015). Typically, the classifi-
cation tasks are restricted to features intrinsic to
the sentence, post, or utterance, and are blind to
context; therefore, resulting models may not be ro-
bust across different contexts (Lawrence and Reed,
2019). What makes the contextual factor challeng-
ing is the fact that not all content and context is
expressed explicitly (Moens, 2018). A lot of this
knowledge and expression remains "in the mind
of communicator and audience" (Moens, 2018).
Some have even argued that, in particular cases,
content can be less important than the context it
resides in (Opitz and Frank, 2019).

Related to the contextual factor is the importance
of previous knowledge in stance detection and an-
notation. The complexity of stance-taking includes
cultural and social aspects (ALDayel and Magdy,
2021). Personal opinions and the aforementioned
non-personal aspects make stance detection a non-
trivial task (Du Bois, 2007).

In recent years, a range of work has focused
on argument detection in online content. The first
step of these approaches often relates to making
the distinction between argumentative and non-
argumentative samples. Addawood and Bashir
(2016) perform such a classification while sub-
sequently classifying the evidence type presented
within argumentative tweets with Support Vector

Machines (SVM) and Decision trees. Naderi and
Hirst (2016) created a corpus of parliamentary dis-
course labelled as ’Pro’ and ’Con’ on the subject of
gay marriage, alongside pre-defined argumentation
specific to the topic. Cross-topic experiments pose
even greater challenges than single topic argument
classification. Stab et al. (2018) annotated and clas-
sified web texts across eight different topics based
on the three stance classes (pro, con and neutral).
’Pro/Con’ classification on unseen topics has also
been done using BERT models, which improved
F1-scores compared to attention-based neural net-
works (Reimers et al., 2020). In this paper, we
follow the methodology set out in the existing lit-
erature by creating a single-topic corpus (Naderi
and Hirst, 2016; Bosc et al., 2016). The annotation
scheme is based on pre-defined arguments in the
discussion that are already explored in the wider
literature on the selected topic of climate change.

2.2 Climate change argumentation

In the upcoming paragraphs, we outline the spe-
cific arguments that have been defined in the litera-
ture. Argumentation is divided between ’Pro’, i.e.
those acknowledging climate change is a human-
caused threat, and ’Con’, arguments that deny cli-
mate change as a problem caused by human action.

The latter seems to be the most diverse clus-
ter. Rahmstorf (2003) proposes a three-way dis-
tinction in climate change denial arguments: (1)
Impact scepticism, (2) Trend scepticism and (3) At-
tribution scepticism. Trend scepticism rejects the
warming trend all together, while attribution scep-
tics question whether human activity is the cause
(Rahmstorf, 2003). The former seems to be an idea
that is disappearing (Rahmstorf, 2003; Dunlap and
McCright, 2012). On the other hand, impact scep-
ticism states that the consequences from climate
change might not be that bad (Rahmstorf, 2003).
Examples of this argument are statements detailing
that a warmer climate is desirable or that we can
simply mitigate the effects. Dunlap and McCright
(2012) detail the same three movements against
human-caused climate change: (1) no warming, (2)
not caused by human activity and, (3) the ’non-
problemacity’ of climate change. The latter focus
of ’non-problemacity’ seems to be based on a dom-
inant social paradigm that our species is able to
exert control over nature (McCright and Dunlap,
2003). This control directly leads to the conclu-
sion that climate change cannot pose a threat (Bord
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Stance Argument (labels) Explanation
Con Impact scepticism Denial of consequences

Attribution scepticism Denial of human influence
Trend scepticism Denial of warming trend
No consensus Denial of consensus among scientists
Bad science Accusation of bad models/forecasts used in science
Conspiracy theories Umbrella category for all conspiracy-related content

Pro Anthropogenic climate change (ACC) Climate change is caused by human activity
None No argument No relevant argument is present / post is off-topic

Table 1: Climate change argumentation & annotation scheme

et al., 2000; Poortinga et al., 2011).

Aside from these three forms of scepticism, cli-
mate change denial also focuses on the scientific
community. More specifically, the existence of
a scientific consensus is often questioned (Leis-
erowitz et al., 2010). We label this argument No
consensus. Interestingly, a consensus among sci-
entists has long existed (Doran and Zimmerman,
2009; Oreskes, 2005). While it is uncertain as to
why this consensus is questioned, a potential ex-
planation lies in the fact that the scientists have
long shied away from making dramatic warnings
or conclusions in publications (Brysse et al., 2013).
A second science-focused argument against cli-
mate change takes aim at the science and mod-
els themselves, which we label as ’Bad science’.
The claim posits that the complexity and uncer-
tainty surrounding the climate system is a hurdle
for scientists to make rigid forecasts (Poortinga
et al., 2011). Pinpointing the exact cause for every
reasoning disputing human-caused climate change
is difficult if at all possible. However, a number
of sources can be found, including organized anti-
environmental movements like those found in the
U.S. in the 1990s (McCright and Dunlap, 2003),
unreliable or incomplete interpretation of scientific
evidence (Whitmarsh, 2011) or online content like
videos found on Youtube (Allgaier, 2019). These
sources are often presented as ’manufacturers of
doubt’ (Van Linden et al., 2015). A final category
arguing against climate change is the conspiracy-
related class. Content related to conspiracy theo-
ries often emerge in polarized debate in the online
sphere, even in good-faith discussions (Samory and
Mitra, 2018). Similar to the definition of argument,
we define ’conspiracy’ loosely by not requiring all
elements of a conspiracy theory, agent, action and
target, to be explicitly present (Samory and Mitra,
2018). References to conspiracies in user com-
ments tend to be compact and make use of the most
common denominator words for a conspiracy, and

further rely on context to complete the conspiratory
content.

Those arguing that the current climate crisis is
caused by human activity find themselves in a more
unified environment, which we label under the
term anthropogenic climate change (ACC). By the
late 1980s, and after the vast accumulation of ev-
idence, the majority of academics had concluded
that anthropogenic climate change was occurring
(Leiserowitz, 2007). The argument is in practice
quite straight-forward and is reflected in the lit-
erature in the form of surveys of experts (Doran
and Zimmerman, 2009) or literature reviews of the
field (Oreskes, 2005). Additionally, references are
often made to the reports from the Intergovern-
mental Panel for Climate Change (IPCC) (Masson-
Delmotte et al., 2021).

2.3 Deliberation on online platforms

This paper focuses on mutual understanding in the
climate change debate in the setting of online com-
ment platforms. In the previous paragraphs, we out-
lined the polarized argumentation that occurs in the
discussion. Briefly, mutual understanding is estab-
lished through comprehension of what others are
trying to do or say as well as why (Margaret, 1994).
Exposure to other opinions can improve out-group
tolerance, which in turn can facilitate mutual under-
standing (Mutz and Mondak, 2006; Andersen and
Hansen, 2007). Evidence indeed shows that these
heterogeneous environments are important for fa-
cilitating deliberative qualities (Suiter et al., 2016).
A vital part of this process is the exposure to con-
flicting views, which promotes debate participation
(Suiter et al., 2016). Online platforms can develop
this deliberative atmosphere further. Hearing out
marginalized argumentative camps through active
facilitation may fundamentally improve the delib-
erative properties of a discussion (Strandberg et al.,
2017). Experimental evidence indeed suggests that
opinion polarization can be deconstructed through
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the implementation and facilitation of deliberative
norms, as is the goal in moderated comment spaces
(Grönlund et al., 2015). Thus, designing online fora
with deliberative norms in mind, such as inclusion,
justification, and equality of discussion, can result
in a suitable comment space for mutual understand-
ing in the climate change discussion (Wright and
Street, 2007).

3 Methodology

3.1 Data collection & annotation

We accessed a large dataset of comments from the
platform NUjij, the discussion platform of online
Dutch newspaper NU.nl. All contributions were
posted in 2020, are in Dutch and include comments
that were removed by moderators. The presence of
these comments can be vital for our focus on minor-
ity classes, as we need training data for rare or un-
wanted arguments as well. First, we filtered out all
comments that were not placed under articles with
the tag climate. These tags originate from the jour-
nalists and editors themselves. This initial filtering
step resulted in a comment pool of 43, 106 posts.
From this climate dataset, we randomly sampled
3, 000 posts for our initial annotation. Furthermore,
we sampled 500 extra comments to create a sepa-
rate validation dataset that will be used to validate
each model in upcoming sections 1. Annotation
was done following the scheme presented in Table
1. To derive inter-annotator agreement, subsets of
the original data were labelled by two additional
annotators. A subset of the original dataset (n=250)
was given to two independent annotators. To in-
form their choices, we created a document with the
argumentation scheme. This sheet included clear
explanations for each argument that we derived
from the climate change literature, alongside ex-
amples of comments that contained the argument.
These examples were not part of the annotated data.
Following this procedure, we achieved a Krippen-
dorf’s alpha of 0.73.

3.2 Argument classification

Our particular task consists of a multiclass clas-
sification with eight different labels (see Table 1).
We split the original dataset containing 3, 000 posts
into a training (80%) and test set (20%). This test
set remained constant over all versions in this pa-
per, similar to the validation data. As a classifier,

1Supplementary materials found at:
github.com/Cwaterschoot/Minority_Argumentation

we used a pre-trained Dutch transformer-based lan-
guage model, RobBERT, and finetuned it on the
training data (Delobelle et al., 2020). More specifi-
cally, we employed the version aimed at sequence
classification, which adds a linear classification
head on top of the pooled output (Wolf et al., 2020;
Delobelle et al., 2020). The final models had a
batch size of 32, a learning rate of 5e−5, optimized
with AdamW (Loshchilov and Hutter, 2019) and
were trained for ten epochs. The best performing
classifiers were achieved after two epochs.

3.3 Minority argument supplementation

During the annotation process, it became clear that
certain argumentation classes were extremely rare
in ’natural’ discussion (Table 2). The bulk of com-
ments were either ’no argument/ off-topic’ or ’an-
thropogenic climate change’. The scarcity made
classification of these nuanced cases difficult. With
the specific goal of finding minority arguments to
boost heterogeneous debate, it was vital to obtain
and annotate more of these scarce comments. We
opted for an active learning approach to get a better
grip on minority classes and to counter possible
frequency-related bias in our classification results.

In order to obtain more minority class comments
for our training data, we employed a ’query-by-
committee’ active learning strategy (Zhao et al.,
2006). The goal is to filter out more minority ar-
guments that will subsequently be added to the
training data to finetune RobBERT further (Fig-
ure 1). First, we extract the BERT embeddings
from our primary RobBert model (finetuned on
only the original data) as input for the first active
learning committee. The committee is a collection
of five classifiers implemented with Scikit-learn
(Pedregosa et al., 2011; Danka and Horvath): (1)
Random Forest, (2) Support Vector Machine (SVM)
(radial), (3) SVM (polynomial), (4) SVM (linear)
and, (5) gradient boosting classifier. Each learner
within the committee starts with 10 labelled posts
as initial training data. With every iteration, a new
post from the original data is queried based on the
disagreement within the committee, calculated with
Kullback-Leibler divergence (Zhao et al., 2006).
This sample is subsequently added to the training
data. This process is repeated for 250 iterations.

Such a trained committee can be used for pre-
diction, but more importantly for our application,
we extracted the uncertainty measure for unseen
posts. In this case, the uncertainty is computed as
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1− class_probability. This process is visualized
in Figure 2. Each learner in the committee assigns
probabilities to every comment for each of the eight
classes. We obtain the class_probability by aver-
aging these probabilities per class across the five
learners, resulting in eight probability scores. We
take the argument with the highest average class
probability for the uncertainty calculation. For ex-
ample, a comment that is difficult to classify may
only have a class probability score of 0.3, which
equals a high uncertainty score equal to 0.7 (Figure
2).

Figure 1: Active learning approach and supplementation
of training data

We randomly sampled 10, 000 unseen posts
from the climate tagged dataset (containing in total
43, 106 comments) and extracted the uncertainty
for each comment. Subsequently, we annotated
the 1, 000 most uncertain posts from this collection.
Table 2 indicates that this task achieved our goal,
namely to relatively increase the number of argu-
ments from minority classes compared to the non-
argumentative/off-topic category. Uncertain posts
were annotated by a human annotator. Predictions
from the committee were disregarded. We repeated
this circular procedure a second time (wave 2) to
add more argumentative posts to the training data
(Table 2).

After each wave of newly annotated data, we
continued finetuning RobBERT using the previous
version as the starting point (see Figure 1). Fol-
lowing this looping procedure, we obtained three
versions:(1) v1 based on the original data, (2) v2
consisting of v1 supplemented with the first wave
and, (3) a fine-tuned version of v2 using both waves
of uncertain posts (v3). As stated in the previous
section, these versions have a linear classification

Argument Original Wave 1 Wave 2
Impact scepticism 0.02 0.05 0.04
Attribution scepticism 0.03 0.09 0.11
Trend scepticism 0.01 0.01 0.015
No consensus 0.01 0.01 0.004
Bad science 0.01 0.04 0.057
Conspiracy theories 0.01 0.04 0.042
ACC 0.19 0.40 0.30
No argument/off-topic 0.72 0.36 0.42

Table 2: Original data versus uncertain posts. Numbers
are fractions of 1 (e.g. 0.72 = 72%)

head. Additionally, we extracted the embeddings
from all three RobBERT models as input for an
active learning committee. Naturally, both the v1
and v2 embeddings are paired with the committees
we had used to obtain the uncertain posts. To clas-
sify comments based on the v3 embeddings, we
trained a third committee following the exact same
procedure.

3.4 Patterns in argumentation
Previous sections outlined the automatic annotation
of incoming comments for the argument it presents
in order to aid moderators in balancing the discus-
sion. Additionally, we aim to boost mutual under-
standing by diving deeper into what each argument
brings to the table. It is important to comprehend
the different viewpoints and arguments.

Unique patterns for each argument, i.e. those
that have significant presence in one argument com-
pared to all others, were analysed. First, we low-
ercased the entire corpus and removed stopwords.
Subsequently, the corpus was split based on the
eight argumentative classes. We used Colibri Core
to collect recurring patterns in each subcorpus (van
Gompel and van den Bosch, 2016). Following the
procedure outlined in van Gompel and van den
Bosch (2016), the first step was to class encode the
corpus. Subsequently, we created an unindexed pat-
tern model entailing the word n-grams occurring
at least twice and with a maximum length of eight
tokens. We compared the collection of patterns be-
longing to a single argument with the seven other
argumentative subcorpora taken together. To make
this comparison, we utilized the log-likelihood (L)
function outlined by Rayson and Garside (2000).

4 Results

4.1 Argument classification
The automatic labelling of posts for the argument it
presents may assist moderators in maintaining the
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Figure 2: Calculating uncertainty using the active learning committee (fictional post)

desired form of discussion. As outlined earlier, we
finetuned a total of three RobBERT models along-
side active learning committees that have been used
to tag unseen posts for classification uncertainty.
Additionally, these committees are used as a classi-
fier on top of the embeddings from each RobBERT
model. Each committee consists of five learners
and predict arguments by averaging class probabil-
ities within the committee.

Version Precision Recall F1
RobBERT v1 (original data) 0.65 0.51 0.55
RobBERT v1 + committee 0.75 0.50 0.58
RobBERT v2 (original + wave 1) 0.65 0.62 0.62
RobBERT v2 + committee 0.81 0.60 0.64
RobBERT v3 (original + wave 1&2) 0.88 0.68 0.75
RobBERT v3 + committee 0.94 0.67 0.78
Random forest (Baseline) 2 0.25

Table 3: Classification scores on validation data (macro
scores)

Table 3 displays the classification metrics on the
validation data. Classifying comments using the
linear head on top of RobBERT underperforms the
committee with each version. The latter improves
the macro F1-score score by two to three percent-
age points by boosting the macro precision score
slightly at the expense of the macro recall. Rob-
BERT v3 paired with the committee of classifiers,
which is trained on the original training data sup-
plemented with two waves of uncertain posts, out-
performed all other versions and achieves a macro
F1-score of 0.78.

We constructed the active learning approach to
improve the recognition of minority arguments. Ta-
ble 4 shows that certain arguments like ’Consensus
denial’, ’Bad science’ and ’Conspiracy theories’
posed severe problems for earlier versions. The
third iteration of models, which included two waves

of uncertain posts in the training data, produced im-
proved F1-scores on the validation set (Table 4).
The precision scores for each argument reaches
very high levels. This is due to the fact that certain
classes have a small number of comments in the
data. Impact scepticism is found in 9 comments in
the validation data, which is still more than trend
scepticism (n = 2) and no consensus (n = 3).
These minority arguments can lead to precision
scores that are misleadingly high. For example,
one post labelled trend scepticism is the only com-
ment that gets labelled as such by the classifier,
leading to a perfect precision score, while recall
(0.5 for each version) lacks due to the fact that the
other comment belonging to the trend scepticism
class is never correctly detected.

Figure 3 shows a two-dimensional representation
of the embeddings extracted from RobBERT v3.
The arguments, including the relatively rare ones,
form noticeable clusters in the embedding space.
In the next section, we look at the language and
patterns within each argument. Patterns that are
distinctively found in a single argument make these
arguments distinguishable.

4.2 Argument vocabulary
We previously focused on the computational recog-
nition of climate change argumentation presented
in online comments. Additionally, Figure 3 showed
that the arguments form visible clusters in the em-
bedding space, hinting at unique vocabulary and
patterns within the arguments. We particularly
aimed to recognize minority standpoints in order
to present the whole range of online opinions. Sub-
sequently, it is important that users and moderators
understand what is being said. The discussion of
polarized discussion may be boosted by not only

2Three classes were not predicted
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Version Impact Attribution Trend Consensus Bad science Conspiracy Pro
RobBERT v1 0.47 0.68 0.67 0.2 0.42 0.4 0.63
RobBERT v1 + committee 0.62 0.70 0.67 0.4 0.33 0.43 0.62
RobBERT v2 0.63 0.69 0.67 0.4 0.45 0.5 0.71
RobBERT v2 + committee 0.75 0.67 0.67 0.67 0.2 0.59 0.72
RobBERT v3 0.8 0.72 0.67 0.8 0.67 0.71 0.74
RobBERT v3 + committee 0.8 0.79 0.67 0.8 0.71 0.75 0.77

Table 4: F1-score per minority argument on validation data

Figure 3: TSNE visualisation of RobBERT v3 embed-
dings

trying to comprehend others, but to invite them into
an heterogeneous debate environment. To achieve
this understanding of varying argumentative posi-
tions, we have derived the vocabulary and patterns
within each argument to showcase what sets each of
them apart. Table 5 presents the collected patterns
with the highest log-likelihood per argument.

The first class, no argument/off-topic, contains
a wide collection of patterns. Posts within this
category talk about a variety of topics, including
the energy transition in The Netherlands and the
potential effect of the growing population and con-
sumption (Table 5). These posts are often adjacent
to the discussion at hand, but do not present ac-
tual argumentation aimed at the cause of climate
change.

The argument in favour of human-caused climate
change (ACC) has a different focus. The political
aspect comes to the forefront, expressed in terms
like ’voting’, ’political’ and ’importance’. These
comments attempt to rally readers to take action.
Another distinctive pattern in this argument details
the global component of climate change. Com-
menters write about the need of unison action.

In our annotation scheme, climate change scepti-
cism is broken down into three subcategories: Im-

pact, Attribution and Trend. The latter has very
clear patterns that sets this argument apart from
the others. Trend sceptics on the comment plat-
form often point towards cold winters, volcanic
activity and the existence of ice sheets to reject
the warming trend. Furthermore, these sceptics
call human-caused climate change a religion and
garbage. Generally, it seems that this scepticism
is the most straight-forward rejection of human-
caused climate change. On the other hand, attribu-
tion sceptics seem to be focused on the historical
aspect of climate change. We recognize patterns
like ’[from] all times’, ’billion years’ and ’million
years ago’ (Table 5). Alongside this focal point,
some attribution sceptics seem to concede that hu-
man influence might speed up natural processes
(’human influence’, ’speed up’, ’partly’). These
natural processes include the position of the planet
relative to the sun and ice age cycles. These topics
are not found in other arguments. The third and
last argument within the scepticism umbrella, im-
pact, mainly revolves around language claiming
it is not necessary to worry about climate change
(’worry’, ’whine’, ’be okay’, ’measures’ and ’say
with certainty’).

The two arguments rejecting climate science also
rely on specific patterns. On the one hand, we see
the dismissal of scientific consensus based on very
distinctive patterns, e.g. ’prove hypothesis’, ’ex-
pert’ and ’consensus’ (Table 5). The accusation of
bad science revolves around the overarching notion
of taking it with a ’grain of salt’. We detect among
the patterns ’prediction’, ’assumption’, ’theories’
and ’fearmongering’. These posts urge readers not
to take these scientific models too seriously, as they
are based on theories and assumptions which do
not correspond to real-life circumstances.

The final argumentative class to break down into
patterns are the conspiracy-related content. We de-
tected conspiracy terms like ’propaganda’, ’hoax’,
’money’ and ’manipulated’. Other unique content
references to the ’paris accord’ of 2015 and ’acid
rain’, an environmental issue that received a lot of
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Argument Terms
No argument / trash, solution, electricity, somewhere, powerplant, overpopulation,

off-topic advantage, most people
Impact worry, previous years, whine, be okay, good economy, say with certainty, measures, stop

Attribution all times, billion years, speed up, earth sun, human influence, ice age, partly, million years ago
Trend cold winter, volcanic, tree rings, religion, garbage, ice sheet, every year again

No consensus consensus, prove, 40 years, 0 co2, assumption, prove hypothesis, phenomenon, expert
Bad science prediction, assumption, study, grain of salt, case scenario, fearmongering, theories
Conspiracy paris accord, pro, farmer, propaganda, acid rain, hoax, money, independent, manipulated
ACC (Pro) use, less people, whole world, houses, voting, political, importance, inhabitants, 3 degrees

Table 5: Argument vocabulary: patterns with highest log-likelihood per argument

attention over the past decades.

5 Discussion

We presented an approach to automatically label
online comments for the argument it entails, com-
bined with a deeper dive into each argument in the
discussion. In the upcoming paragraphs, we go
through some methodological considerations and
discuss our approach through the lens of content
moderation. Furthermore, we reflect on the useful-
ness of our approach for other fields that struggle
with mutual understanding and opinion polariza-
tion.

Translating detailed and nuanced concepts of ar-
gumentation into a computational labelling task re-
quires generalization. Poortinga et al. (2011) make
the useful distinction between scepticism, uncer-
tainty, and ambivalence. In our annotation scheme,
we did not make this specific contrast. Whereas
clear-cut scepticism can be rare, as is shown in our
data, uncertainty about the anthropogenic causes
of climate change might be much more widespread
(Whitmarsh, 2011). The dichotomy between uncer-
tainty and scepticism may be an important aspect
for mutual understanding and working towards the
comprehension and acceptance of human-caused
climate change. Unstable or uncertain beliefs can
change through contact with scientific cues and
information (Jenkins-Smith et al., 2020). In this
paper, uncertainty is included within the argument
classes, even though the label refers to scepticism.
Future research could include this distinction in the
methodology to encompass the nuance of polarized
debates into the computational approach.

Researchers in the field of content moderation
and digital journalism struggle with the concept of
mutual understanding, as well as with the imple-
mentation of computational technologies (Binns
et al., 2017; Ruckenstein and Turunen, 2020). The
growing quantity of contributions threatens real-

time curation efforts by human moderators. Auto-
matic applications like the one we have presented
in this paper are an avenue for assisting human
moderators in curating the online comment space
(Ruckenstein and Turunen, 2020). While the mod-
erators manage ongoing, interactive processes that
are highly dependent on context, computational
systems can assist this operation, for example in
the form of argument classification and summaries.

Furthermore, research fields that specifically
deal with polarized topics struggle with safeguard-
ing civil discussion and mutual understanding. The
climate change debate certainly falls within this
category. Additionally, online debates on the topic
of vaccination lack mutual understanding as well
(Jiang et al., 2021). This discussion often lacks
heterogeneous discussion due to so-called ’echo
chamber’ effects (Schmidt et al., 2018). Computa-
tional moderation tools, like the one presented in
this paper, are an asset for those invested in promot-
ing mutual understanding in these polarized discus-
sions. This approach can be expanded beyond the
topic of climate change into other polarized topics.
Clearly defined arguments are needed. An exam-
ple of such a discussion is vaccination, in which
clear pro and con sides can be detected (Jiang et al.,
2021). Domain-specific research is a requirement
to create annotation schemes that adequately entail
all minority arguments.

6 Conclusion

In this paper, we created a twofold approach to
develop a moderation tool aimed at the climate
change debate on online platforms. First, we
trained classifiers that label comments for the ar-
gument they present. Certain minority arguments,
like trend scepticism and accusations of bad sci-
ence, were very rare. An active learning approach
was constructed with the goal of collecting more
minority arguments to supplement into our train-

6722



ing dataset. Our best model, after two waves of
uncertain posts, achieved a macro F1-score of 0.78.
Second, we dove deeper into singular arguments
by extracting the lexical patterns that character-
ize each class. The arguments formed clusters in
the embedding space, indicating that each reason-
ing may be characterized by specific vocabularies.
These patterns serve as a swift and understandable
view into each argument. Additionally, we formu-
lated methodological considerations regarding the
nuance in the annotation scheme and linked our
approach to research fields that struggle with mod-
erating online content while safeguarding under-
standing among participants. The computational
approach presented in this paper serves an assisting
role to the human moderator, who in turn can deal
with the contextual factors.
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Abstract

Emotion-cause pair extraction (ECPE) is an
emerging task in emotion cause analysis, which
extracts potential emotion-cause pairs from an
emotional document. Most recent studies use
end-to-end methods to tackle the ECPE task.
However, these methods either suffer from a
label sparsity problem or fail to model compli-
cated relations between emotions and causes.
Furthermore, they all do not consider explicit
semantic information of clauses. To this end,
we transform the ECPE task into a document-
level machine reading comprehension (MRC)
task and propose a Multi-turn MRC framework
with Rethink mechanism (MM-R). Our frame-
work can model complicated relations between
emotions and causes while avoiding generating
the pairing matrix (the leading cause of the la-
bel sparsity problem). Besides, the multi-turn
structure can fuse explicit semantic information
flow between emotions and causes. Extensive
experiments on the benchmark emotion cause
corpus demonstrate the effectiveness of our pro-
posed framework, which outperforms existing
state-of-the-art methods.1

1 Introduction

Emotion cause extraction (ECE) is a classical emo-
tion cause analysis task that aims to extract the
corresponding causes of the given emotional ex-
pressions in an emotional document (Gui et al.,
2016). However, the ECE task is not practical in
real-world scenarios without annotated emotions.
To overcome the limitation and capture mutual
indications of emotions and causes together, Xia
and Ding (2019) came up with a new task called
emotion-cause pair extraction (ECPE), which aims
to extract a potential emotion-cause pair set consist-
ing of all emotions and their corresponding causes
from a document. As shown in Figure 1(a), c2 is

∗Corresponding Author
1Data and code are available at

https://github.com/zhoucz97/ECPE-MM-R

 c1: Mike said,  
 c2: I am so happy (emotion),  
 c3: because I have my own family now (cause),  
 c4: I thank all the people who have helped me (emotion, cause).

Input: a document Output: an emotion-cause
pair set

{ (c2, c3), (c4, c4) }

(a) An example of the ECPE task

(c1, c1) (c1, c2) (c1, c3) (c1, c4)

(c2, c1) (c2, c2) (c2, c3) (c2, c4)

(c3, c1) (c3, c2) (c3, c3) (c3, c3)

(c4, c1) (c4, c2) (c4, c3) (c4, c4)

(b) Pairing matrix

c2, c4

c1, c2, c3, c4

(c2, c3), (c2, c4), (c4, c4)

(c2, c3), (c4, c4)

(c) Our approach

Figure 1: The green colour denotes an emotion clause,
and the red colour denotes a cause clause. Figure (a) is
an example of the ECPE task. Figure (b) is a pairing
matrix generated by pair-level end-to-end approaches.
Only (c2, c3) and (c4, c4) are valid pairs. Figure (c)
shows the processing results by our MM-R in each turn.

an emotion clause, c3 is the corresponding cause
clause, and c4 is an emotion clause that is its own
corresponding cause clause itself.

In recent years, there has been a trend to use
end-to-end methods to solve the ECPE task and
the two sub-tasks, emotion extraction and cause
extraction, which aim to extract all emotions and
causes in one document. These end-to-end meth-
ods can be classified into two categories: pair-level
methods by combining all clause pairs to form a
clause pairing matrix; sequence labeling methods
by designing novel tagging schemes. Specifically,
some works (Ding et al., 2020a,b; Wei et al., 2020;
Chen et al., 2020b; Wu et al., 2020) proposed pair-
level methods that generate a pairing matrix by
enumerating all possible combinations of clauses
and then select valid emotion-cause pairs, as shown
in Figure 1(b). However, the average ratio of in-
valid/valid pairs is more than 200:1 in the ECPE
benchmark corpus (Xia and Ding, 2019), which
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leads to a label sparsity problem. Besides, some
works (Chen et al., 2020a; Yuan et al., 2020) pro-
posed sequence labeling methods based on novel
tagging schemes. However, they cannot effectively
model the corresponding relation between emo-
tions and causes. For example, Chen et al. (2020a)
cannot deal with the situation where two emotion
clauses of the same emotion type correspond to
different cause clauses. Therefore, how to solve
the label sparsity problem by avoiding the calcula-
tion of the pairing matrix while modeling the cor-
responding relation between emotions and causes
is a crucial challenge. Furthermore, Zhong and
Chen (2021) has shown that explicit semantic infor-
mation can improve performance in the extraction
tasks. Therefore, utilizing explicit semantic infor-
mation of clauses to improve the performance in
the ECPE task is also a challenge.

To address these challenges, in this study, the
ECPE task is transformed into a document-level
machine reading comprehension (MRC) task, and
a Multi-turn MRC framework with Rethink mech-
anism (MM-R) is proposed. The multi-turn struc-
ture decomposes the ECPE task to model the cor-
responding relation between emotions and causes
and avoid generating the pairing matrix. In every
turn, static and dynamic queries designed manu-
ally make full use of explicit semantic informa-
tion of clauses to improve the performance of emo-
tion or cause extraction. In addition, inspired by
the human two-stage reading behavior, in which
search for possible answer candidates and then ver-
ify these candidates (Zheng et al., 2019), the re-
think mechanism is proposed to verify candidate
emotion-cause pairs further to enhance the flow
of information between emotions and causes and
improve the overall performance.

Specifically, in the first turn, all emotion clauses
are extracted. In the second turn, cause clauses
corresponding to each emotion clause are extracted
with the assistance of explicit semantic informa-
tion about emotions. Numerous experiments (Ding
et al., 2020b; Fan et al., 2020; Ding et al., 2020a;
Wei et al., 2020; Chen et al., 2020b,a; Yuan et al.,
2020) have shown that emotion extraction is more
reliable than cause extraction, and therefore it is
reasonable to extract emotions first and then ex-
tract the corresponding causes with the assistance
of emotions. Hence, a candidate emotion-cause
pair set is obtained in the first two turns. In the
third turn, a rethink mechanism verifies each can-

didate emotion-cause pair. For example, as shown
in Figure 1(c), emotion clauses c2 and c4 can be
obtained in the first turn, and cause clauses corre-
sponding to each emotion clause can be obtained
in the second turn. The candidate emotion-cause
pair set {(c2, c3), (c2, c4), (c4, c4)} can thus be
obtained without the pairing matrix. In the third
turn, the rethink mechanism demonstrates that c2
is not one of the corresponding emotion clauses
of c4. Therefore, the valid emotion-cause pair set
becomes {(c2, c3), (c4, c4)}.

Comprehensive experiments are conducted on
the ECPE benchmark datasets to verify the effec-
tiveness of the proposed MM-R framework. The
experimental results show that the proposed frame-
work substantially outperforms the previous meth-
ods. The contributions of this research can be sum-
marized as follows:

• The ECPE task is formalized as a document-
level machine reading comprehension (MRC)
task. To our best knowledge, this is the first
time that the ECPE task has been transferred
to the MRC task.

• Based on the MRC formalization, a multi-
turn MRC framework with rethink mecha-
nism (MM-R) is proposed. It models the
corresponding relation between emotions and
causes and alleviates the label sparsity prob-
lem. Furthermore, the MM-R can use explicit
semantic information of clauses effectively.

• The experimental results demonstrate that
the proposed framework outperforms existing
state-of-the-art methods.

2 Related Work

2.1 Emotion-Cause Pair Extraction
Xia and Ding (2019) proposed the emotion-cause
pair extraction (ECPE) task and released the Chi-
nese benchmark dataset. Recently, many meth-
ods based on the pair-level end-to-end framework
have been designed for the ECPE task. For exam-
ple, Wei et al. (2020) obtained excellent results by
modeling inter-clause relationships and using the
ranking mechanism. Ding et al. (2020a) used a
2D-transformers module to model the interactions
of different emotion-cause pairs. However, these
pair-level end-to-end methods had a label sparsity
problem caused by calculating the pairing matrix.
Ding et al. (2020b) used a sliding window to re-
strict the amount of candidate emotion-cause pairs,
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which aims to shrink the pairing matrix. However,
the method still belonged to the pair-level end-to-
end method because it assumed all clauses were
emotion or cause clauses.

Sequence labeling was another popular method.
However, these methods could not model the corre-
sponding relation between emotions and causes. A
unified tagging scheme (Chen et al., 2020a) could
not be used on a document with multiple emo-
tion clauses of the same emotion types because
the tagging scheme was based on emotion types.
Another joint tagging scheme (Yuan et al., 2020)
based on the distance between the cause and the cor-
responding triggered emotion. The tagging scheme
could not handle the situation in which the distance
between the emotion clause and the correspond-
ing cause clause exceeded the distance threshold.
Therefore, the challenge remains of how to solve
the label sparsity problem while modeling the cor-
responding relation between emotions and causes.

2.2 Machine Reading Comprehension
Recently, it became popular to transform many
traditional natural language processing tasks into
machine reading comprehension (MRC) tasks. For
example, Liu et al. (2020) cast the event extraction
as a machine reading comprehension problem to
solve the data scarcity problem. Zhou et al. (2021)
proposed a dual QA framework aiming at event
argument extraction. Chen et al. (2021) and Mao
et al. (2021) proposed a bidirectional MRC and
a Dual-MRC frameworks to handle aspect-based
sentiment analysis, respectively. In this paper, the
ECPE task is formalized as a document-level MRC
task, and the multi-turn MRC framework with re-
think mechanism is proposed. It concatenates a
query with each clause to explicitly utilize semantic
information of clauses and uses a single classifier
to predict whether a clause is an emotion or a cause
clause in each turn.

3 Methodology

3.1 Problem Formulation
Given a document consisting of multiple clauses
D = (c1, c2, ..., c|D|) 2 and each clause contains
multiple words ci = (wi,1, wi,2, ..., wi,|ci|), our
goal is to extract a set of emotion-cause pair in
D:

P = {(ceik , c
cai,j
k )}|P |k=1, (1)

2The | ∗ | denotes the number of elements in the collection
∗.

where the superscript ei and cai,j denote the i-th
emotion clause and its corresponding j-th cause
clause in D; the subscript k denotes the k-th
emotion-cause pair in set P ; an emotion clause
corresponds to one or more cause clauses. 3

3.2 Query Design
Static and dynamic queries are used to formalize
the ECPE task to the MRC task. All queries can be
formulated as follows:4

• Static emotion query qse ∈ Qse: The query
“Is it an emotion clause?” is designed to ex-
tract all emotion clauses.

• Static cause query qsc ∈ Qsc: The query “Is
it a cause clause?” is designed to extract all
cause clauses.

• Static pair query qsp ∈ Qsp: The query “Is
it an emotion-cause pair?” is designed to
extract all emotion-cause pairs.

• Dynamic emotion query qde ∈ Qde: The
query template “Is it an emotion clause corre-
sponding to ci?” is designed to extract emo-
tion clauses corresponding to clause ci.

• Dynamic cause query qdc ∈ Qdc: The query
template “Is it a cause clause corresponding
to ci?” is designed to extract cause clauses
corresponding to clause ci.

3.3 Frameworks
The architecture of MM-R is illustrated on the left
side of Figure 2. In the first turn, a static emo-
tion query qse is used to extract emotion clause
set E = {cei}|E|i=1. In the second turn, based
on each extracted emotion clause cei ∈ E, a dy-
namic cause query qdc is constructed to obtain cei’s
corresponding cause clause set Ci = {ccai,j}|Ci|j=1.
In this way, the candidate emotion-cause pair set
P can = {(ceik , c

cai,j
k )}|P

can|
k=1 is obtained in the first

two turns. To filter out invalid emotion-cause pairs
in P can further, for each cause clause ccai,j , the
framework rethinks whether the clause cei is its
corresponding emotion clause with the help of
dynamic emotion query qde. Finally, the valid

3To avoid confusion, the “cause clause” is denoted to ca
rather than c.

4Static cause query and static pair query are only used in
two variants of our framework (MM-D and MRC-E2E); refer
to the Experiments section for details.
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Figure 2: Left: The overall architecture of our MM-R framework. In each turn, the answer is yes if the probability
output by the classifier is greater than 0.5, otherwise it is no. Right: The implementation structure of the encoding
layer which includes the token-level encoder and the clause-level encoder. The token-level encoder generates
the hidden representation of each token using the BERT module. The clause-level encoder provides the hidden
representation of query and each clause using the attention mechanism and graph attention network. Finally, the
concatenate operation (CONCAT) is executed on the hidden representations of queries and clauses.

emotion-cause pair set P = {(ceik , c
cai,j
k )}|P |k=1 is

obtained.

3.4 Encoding Layer
The structure of the encoding layer is illustrated
on the right side of Figure 2. The encoding layer
includes the token-level encoding layer and the
clause-level encoding layer.

Token-level encoder: This study used BERT
(Devlin et al., 2019) as its token-level contextu-
alized encoder. Specifically, a document D =
(c1, c2, ..., c|D|) and a query q are used to construct
the BERT input sequence:

I = {[CLS], wq,1, wq,2, ..., wq,|q|, [SEP ],
w1,1, w1,2, ..., w|D|,1, ..., w|D|,|c|D||},

(2)

where q = qse in the first turn, q = qdc in the
second turn and q = qde in the third turn;wq,j is the
j-th token of query q; wi,j is the j-th token of the
i-th clause in the document D; and [CLS], [SEP ]
are special BERT tokens. The tokens can then be
encoded into hidden representations:

HI =BERT (I)

={h[CLS], hq,1, hq,2, ..., hq,|q|, h[SEP ],

h1,1, h1,2, ..., h|D|,1, ..., h|D|,|c|D||},
(3)

where HI ∈ R|I|×d; d is the dimension of the
hidden states; and hi,j denotes the hidden represen-
tation of token wi,j .

Clause-level encoder: The attention mechanism
and the graph attention network (GAT) (Veličković
et al., 2017) are used to obtain clause-level hidden
representations.

Specifically, for clause ci, its token-level repre-
sentation set is selected from HI :

Sci = {hi,j}
|ci|
j=1 ∈ R|ci|×d. (4)

The attention mechanism produces an attention
weight vector αi. The hidden representation of
clause ci is obtained by calculating the weighted
sum of the hidden representations of all tokens:

αi = softmax(wTSci + b) ∈ R1×|ci|, (5)

hci = sum(αiSci) ∈ R1×d, (6)

where w and b are learnable parameters. For all
clauses, the attention mechanism is used to obtain
the hidden representations:

HC = {hc1 , hc2 , ..., hc|D|}. (7)

Similarly, the attention mechanism is used to
obtain the hidden representation of query q:

HQ = {hq}. (8)

Furthermore, GAT models the interaction among
clauses, and then the hidden representations of
clauses are updated to:

H ′C = GAT (HC) = {h′c1 , h′c2 , ..., h′c|D|}. (9)

Finally, hq ∈ HQ and h′ci ∈ H
′
C are concate-

nated to obtain oi = [hq;h
′
ci ], where [; ] denotes

the concatenate operation. The output of the encod-
ing layer is thus obtained:

Oenc = {o1, o2, ..., o|D|}. (10)
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3.5 Answering Prediction

The output representation of the encoder layer
oi = [hq;h

′
ci ] contains abundant semantic informa-

tion, including identification information of emo-
tion/cause, semantic information of clauses, and
semantic information of the document. Therefore,
only a single linear perception (SLP) is needed to
obtain the answer to the query by predicting yes or
no:

ŷi = σ(wTS oi + bS), (11)

where wS and bS are learnable parameters of SLP;
σ(·) is a logistic function; and ŷi denotes the proba-
bility that the answer is yes. If ŷi > 0.5, the answer
is judged to be yes, meaning that clause ci is one
of the answers to query q. This prediction style is
similar to BoolQ (Clark et al., 2019).

3.6 Joint Training

A joint learning strategy was used in this study,
the cross-entropy loss for each type of query was
minimized as follows:

L∗ =

−
N∑

i=1

|D|∑

j=1

|Q∗|∑

k=1

[p(yi,j,k|ci,j , q∗k) log p̂(yi,j,k|ci,j , q∗k)],

(12)

where ∗ ∈ {se, dc, de}; N denotes the number of
documents in the dataset; ci,j is the j-th clause of
the i-th document; and q∗k is the k-th query in Q∗.

Therefore, the final loss function L was as fol-
lows:

L = Lse + Ldc + Lde, (13)

3.7 Inference

In the first turn, the qse ∈ Qse first identifies the
emotion clause set E = {ce1 , ce2 , ..., ce|E|}. In
the second turn, for each predicted emotion clause
cei , the qdc ∈ Qdc recognizes the corresponding
cause clause set Ci = {ccai,1 , ccai,2 , ..., ccai,|Ci|}
and obtains the set of candidate emotion-cause
pairs P can = {(ceik , c

cai,j
k )}|P

can|
k=1 . And the prob-

ability of each candidate pair is p(cei , ccai,j ) =
p(cei)p(ccai,j |cei).

In the third turn, the qde ∈ Qde is used for select-
ing valid emotion-cause pairs. Furthermore, the re-
think mechanism is implemented through a soft se-
lection strategy, in which the probability is adjusted
and a probability threshold is used. Specifically,

the probability of the candidate pair (cei , ccai,j ) is
updated by this strategy as follows:

p(cei , ccai,j ) = λp(cei)p(ccai,j |cei), (14)

where the weight factor λ is used to adjust the
probability of candidate emotion-cause pairs. λ is
1 when the predicted result of the third turn is yes,
otherwise λ is a unique value between 0 and 1. The
set of valid emotion-cause pairs is as follows:

P =

{(cei , ccai,j )|(cei , ccai,j ) ∈ P can, p(cei , ccai,j ) > δ},
(15)

where δ is a probability threshold value.

4 Experiments

4.1 Dataset and Metrics

The benchmark dataset (Xia and Ding, 2019) was
constructed based on a public Chinese emotion cor-
pus (Gui et al., 2016) from the SINA NEWS web-
site 5. The dataset contains 1,945 documents and
28,727 clauses. The number of candidate clause
pairs is 490,367 and the number of valid emotion-
cause clause pairs is 2,167.

In the experiment, we use the two styles of data
split:

• 10-fold cross validation. Selecting 90% of
the data for training and the remaining 10%
for testing stochastically (as same as Xia and
Ding (2019)). The most previous works use
the data split style.

• Training/Validation/Test data set. Select-
ing 80% of the data for training, 10% of the
data for validating and the remaining 10% for
testing stochastically (as same as Fan et al.
(2020)). The data split style is more plausible
than the first style.

Furthermore, when we extract the emotion-cause
pairs, we obtain the emotions and causes simultane-
ously. Thus, the performance of emotion extraction
and cause extraction were also evaluated. The pre-
cision P, recall R and F1 score defined in (Gui et al.,
2016; Xia and Ding, 2019) are used to evaluate the
performance of the three tasks.

5https://news.sina.com.cn/
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Model E-C Pair Extraction Emotion Extraction Cause Extraction

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

SL-NTS 72.43 63.66 67.76 81.96 73.29 77.39 74.90 66.02 70.18
TransDGC (Val) 73.74 63.07 67.99 87.16 82.44 84.74 75.62 64.71 69.74

ECPE-2D 72.92 65.44 68.89 86.27 92.21 89.10 73.36 69.34 71.23
PairGCN 76.92 67.91 72.02 88.57 79.58 83.75 79.07 69.28 73.75
RANKCP 71.19 76.30 73.60 91.23 89.99 90.57 74.61 77.88 76.15

ECPE-MLL 77.00 72.35 74.52 86.08 91.91 88.86 73.82 79.12 76.30

MM-R 82.18 79.27 80.62 97.38 90.38 93.70 83.28 79.64 81.35
MM-R (Val) 78.97 75.32 77.06 96.09 88.09 91.88 80.90 76.21 78.45

Table 1: Performance of our models and baselines. P, R and F1 denote precision, recall and F1-measure respectively.
E-C denotes Emotion-Cause. TransDGC(Val) and MM-R(Val) use the second data split style, the rest of models use
the first data split style.

4.2 Experimental Settings

We used the BERTbase−Chinese as our encoding
backbone. During training, the AdamW optimizer
with a weight decay of 0.01 was used for online
learning, and the initial learning rate and warmup
rate are set to 1e-5 and 0.1 respectively. The batch
size is set to 2. As for regularization, dropout is
applied for networks and the dropout rate is set to
0.1. We trained the model 20 epochs in total and
adopted early stopping strategy. In the inference
stage, λ ∈ {0.7, 1.0} and the threshold δ was set
to 0.5. The model was run on a Tesla V100 GPU.

4.3 Baselines

To demonstrate the effectiveness of our method,
we compare our model with the following BERT
baselines.

• SL-NTS (Yuan et al., 2020) regards the ECPE
task as a sequence labeling problem and pro-
poses a novel tagging scheme.

• TransDGC (Fan et al., 2020) proposes a
transition-based model to transform the task
into a parsing-like directed graph construction
procedure. 6

• ECPE-2D (Ding et al., 2020a) uses a 2D trans-
formers to model the interactions of different
emotion-cause pairs.

• PairGCN (Chen et al., 2020b) constructs a
pair graph convolutional network to model de-

6It should be noted that the TransDGC method use the
second data split style, while others methods use the first data
split style.

pendency relations among local neighboring
candidate pairs.

• RANKCP (Wei et al., 2020) uses a graph at-
tention network to model interactions between
clauses and selects emotion-cause pairs by the
ranking mechanism.

• ECPE-MLL (Ding et al., 2020b) extracts
emotion-cause pairs based on sliding window
multi-label learning. It is a state-of-the-art
model of baselines.

4.4 Variants
To show the effectiveness of the multi-turn struc-
ture and the rethink mechanism in the proposed
method, We designed the following variants:

• MRC-E2E is a single-turn MRC framework
with an End-to-End style. The static queries
qsp is used to extract an emotion-cause pair
set.

• MM is a simple Multi-turn MRC framework.
Compared with MM-R, it removes the rethink
mechanism.

• MM-D is proposed inspired by (Chen et al.,
2021; Mao et al., 2021), which is a Multi-turn
MRC framework with Dual structure. One di-
rection sequentially recognizes emotions and
causes to obtain the candidate emotion-cause
pair set with the help of static emotion query
qse and dynamic cause query qdc. In contrast,
the other direction identifies causes first and
then emotions to obtain another candidate set
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Natural QL Pseudo QL Structured QL

Qse Is it an emotion clause? emotion? emotion:_;cause:None
Qdc Is it a cause clause corresponding to ci? ci;cause? emotion:ci;cause:_
Qde Is it an emotion clause corresponding to ci? ci;emotion? emotion:_;cause:ci

MM-R 80.62 (%F1) 80.51 (%F1) 79.72 (%F1)

Table 2: The performance of different query language designs (Natural, Pseudo and Structured QL) on ECPE task.
“QL" denotes “Query Language". Qse, Qdc and Qde are static emotion query, dynamic cause query and dynamic
emotion query, respectively.

with the help of static cause query qsc and dy-
namic emotion query qde. Finally, we take the
intersection of the two candidate sets.

4.5 Main Results
Table 1 gives the comparative results for the ECPE
task and the two sub-tasks. The proposed MM-
R shows a clear advantage over other baselines,
obtaining F1 improvements of 6.10%, 3.13%, and
5.05%, respectively, over the previous baselines on
the three tasks.

Specifically, for the ECPE task, the MM-R ob-
tains 5.18%, 6.92% and 6.10% improvements in
the P , R, and F1 measures compared to ECPE-
MLL. For the emotion extraction task, the MM-
R performs 3.13% better than the best-performed
baseline RANKCP, and it is worth noting that the
increase in precision contributed most to the boost
in the F1 score. We believe that the high precision
is due to the rethink mechanism filtering out some
negative samples. The cause extraction task is more
difficult because the cause clauses depend heavily
on emotions. However, with the help of dynamic
cause queries constructed by emotion semantic in-
formation, substantial increases (+5.05% F1) are
obtained compared to ECPE-MLL.

Besides, when we use the data split as the Trans-
DGC (Fan et al., 2020), our method MM-R (Val)
still obtains the state-of-the-art performance over
the previous baselines.

5 Further Analysis

5.1 Effect of the Multi-turn Structure
MRC-E2E has the same label sparsity problem
as pair-level end-to-end baselines, and it cannot
model the interaction of emotions and causes due
to its single-turn structure. However, MM, the
most straightforward multi-turn framework among
these similar methods, achieves 2.68%, 0.02%, and
2.84% F1 improvements over MRC-E2E as shown

Model Extraction of. (F1 %)

Emotion Cause E-C pair

MRC-E2E 90.34 77.92 75.35
MM 93.02 77.94 78.19

MM-D 93.67 79.47 78.76
MM-R 93.70 81.35 80.62

Table 3: Performance of variants.

in Table 3, which demonstrates the effectiveness of
the multi-turn structure.

In addition, compared with end-to-end base-
line ECPE-MLL, MRC-E2E still achieves 1.48%,
1.62% and 0.83% improvements of F1 in three
tasks, which demonstrates that the explicit emo-
tion/cause semantic information played an impor-
tant role.

5.2 Effect of the Rethink Mechanism
To verify the advantages of the rethink mechanism,
MM-R was compared with the other two models
(MM and MM-D). Specifically, compared with
MM, MM-R achieved 0.68%, 3.41%, and 2.43%
F1 improvements on the three tasks, demonstrating
the the rethink mechanism’s effectiveness. Further-
more, MM-D achieved excellent performance with
its dual structure. However, its score was 1.86%
lower than MM-R in the ECPE task. The dual
structure treats both emotion extraction and causes
extraction equally, whereas the rethink mechanism
is more trusting of emotion extraction. MM-R ob-
tains a better performance due to emotion extrac-
tion being more reliable than cause extraction7.

5.3 Effect of the Query Design
We explore the effect of different query language
design on the model. As shown in Table 2, their F1

7We have illustrated in the introduction that emotion ex-
traction is more reliable than cause extraction.
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Translate: "It's the New Year (c1), and the creditor looted all food of my family (c2). Other families happily celebrate the
New Year (c3), but we are too poor to buy meat (c4). This makes us very sad(c5)", said Huaijun Chen (c6).

Ground-truthThe first turn The second turn Rethink Valid E-C pairs

c3, c5
(c3, c4), p(3,4) = 0.5135 
(c5, c4), p(5,4) = 0.6313  (c5, c4)

Threshold

0.5

“过年了 (c1)，债主把家里粮食都搬走了 (c2)，别家都在欢欢喜喜过年 (c3)，而俺家连割肉的钱都没有 (c4)，我和母亲抱头痛哭 (c5)”，
陈怀军说 (c6)。

(c5, c4)(c3, c4), p(3,4) = 0.3595 
(c5, c4), p(5,4) = 0.6313  

Figure 3: An example in the test set. The emotion clause set {c3, c5} was obtained in the first turn and the
candidate emotion-cause pair set {(c3, c4), (c5, c4)} in the second turn. After using the rethink mechanism, the
valid emotion-cause pair set was identified as {(c5, c4)}.

scores all exceeded 79% on the ECPE task. Con-
cretely, Natural QL performs best in the ECPE
task. Compared with Pseudo and Structured QL,
Natural QL makes it easier for our model to under-
stand the meaning of the queries, because BERT’s
pre-trained corpus are all natural languages. The
Pseudo QL can be regarded as a concise expression
of Natural QL. Hence our model can still under-
stand the meaning of queries. Structured QL is
the most abstract of three QLs, transforming the
three queries (Qse,dc,de) into a unified paradigm.
It gains the lowest F1 score, which indicates that
the inductive ability of our model is not enough to
understand abstract structured query language.

5.4 Case Analysis
Figure 3 shows the inference process of MM-R and
the advantage of the rethink mechanism through
an example in the test set. The candidate emotion-
cause pair set {(c3, c4), (c5, c4)} were obtained
in the first two turns, and their probabilities were
p3,4 = 0.5135 and p5,4 = 0.6313. After this, the
proposed model adjusted the probabilities by re-
thinking whether each candidate emotion-cause
pair was valid. The bottom of Figure 3 shows that
the adjusted probabilities were p3,4 = 0.3595 and
p5,4 = 0.6313, and the threshold value was 0.5.
This means that the answer to the dynamic emo-
tion query “Is it an emotion clause corresponding
to ‘but we are too poor to buy meat’?" was no for
clause c3 in the third turn. Therefore, candidate
emotion-cause pair (c3, c4) was filtered out, while
(c5, c4) was preserved.

5.5 Results for Emotion Cause Extraction
The proposed framework is also applied to the emo-
tion cause extraction (ECE) task. Compared with
the ECPE task, the ECE task has emotion annota-
tions, and therefore in the MM-R framework, the
emotion extraction of the first turn is omitted, and

Methods
Emotion Cause Extraction

P(%) R(%) F1(%)

RTHN 76.97 76.62 76.77
KAG 79.12 75.81 77.43

RHNN 81.12 77.25 79.14
2-step RANKING 80.76 78.45 79.59

MM-R 83.59 83.47 83.48

Table 4: Results on the Emotion Cause Extraction task.

the emotion annotations are used to extract the cor-
responding cause clauses directly in the second
turn. Finally, each candidate emotion-cause pair
was verified by the rethink mechanism.

Comparisons are also conducted with recently
proposed methods for the ECE task: RTHN (Xia
et al., 2019), RHNN (Fan et al., 2019), KAG (Yan
et al., 2021) and 2-step RANKING (Xu et al.,
2021). Table 4 clearly demonstrates that our pro-
posed framework achieves the state-of-the-art per-
formance on the ECE task.

6 Conclusions

This study transforms the emotion-cause pair ex-
traction (ECPE) task into the machine reading com-
prehension (MRC) task and proposes a multi-turn
MRC with rethink mechanism (MM-R). This struc-
ture, which extracts emotions and causes in turn,
avoids the label sparsity problem and models the
complicated corresponding relations between emo-
tions and causes. In every turn, explicit semantic in-
formation can be used effectively. Furthermore, the
rethink mechanism verifies each candidate emotion-
cause pair by modeling the flow of information
from causes to emotions. Experimental results on
the ECPE corpus demonstrated the effectiveness of
the proposed model.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Penghui Wei, Jiahao Zhao, and Wenji Mao. 2020. Ef-
fective inter-clause modeling for end-to-end emotion-
cause pair extraction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3171–3181.

Sixing Wu, Fang Chen, Fangzhao Wu, Yongfeng Huang,
and Xing Li. 2020. A multi-task learning neural
network for emotion-cause pair extraction. In ECAI
2020, pages 2212–2219. IOS Press.

Rui Xia and Zixiang Ding. 2019. Emotion-cause pair
extraction: A new task to emotion analysis in texts.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1003–
1012.

Rui Xia, Mengran Zhang, and Zixiang Ding. 2019.
Rthn: A rnn-transformer hierarchical network
for emotion cause extraction. arXiv preprint
arXiv:1906.01236.

Bo Xu, Hongfei Lin, Yuan Lin, and Kan Xu. 2021.
Two-stage supervised ranking for emotion cause ex-
traction. Knowledge-Based Systems, page 107225.

Hanqi Yan, Lin Gui, Gabriele Pergola, and Yulan He.
2021. Position bias mitigation: A knowledge-aware
graph model for emotion cause extraction. arXiv
preprint arXiv:2106.03518.

6734



Chaofa Yuan, Chuang Fan, Jianzhu Bao, and Ruifeng
Xu. 2020. Emotion-cause pair extraction as se-
quence labeling based on a novel tagging scheme.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3568–3573.

Yukun Zheng, Jiaxin Mao, Yiqun Liu, Zixin Ye, Min
Zhang, and Shaoping Ma. 2019. Human behavior
inspired machine reading comprehension. In Pro-
ceedings of the 42nd International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 425–434.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61.

Yang Zhou, Yubo Chen, Jun Zhao, Yin Wu, Jiexin Xu,
and Jinlong Li. 2021. What the role is vs. what
plays the role: Semi-supervised event argument ex-
traction via dual question answering. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 14638–14646.

6735



Proceedings of the 29th International Conference on Computational Linguistics, pages 6736–6745
October 12–17, 2022.

Structural Bias for Aspect Sentiment Triplet Extraction

Chen Zhang , Lei Ren , Fang Ma , Jingang Wang , Wei Wu , Dawei Song
Beijing Institute of Technology

{czhang,mfang,dwsong}@bit.edu.cn

Meituan NLP
{wangjingang02,wuwei30}@meituan.com

renlei_work@163.com

Abstract

Structural bias has recently been exploited for
aspect sentiment triplet extraction (ASTE) and
led to improved performance. On the other
hand, it is recognized that explicitly incorporat-
ing structural bias would have a negative im-
pact on efficiency, whereas pretrained language
models (PLMs) can already capture implicit
structures. Thus, a natural question arises: Is
structural bias still a necessity in the context
of PLMs? To answer the question, we pro-
pose to address the efficiency issues by using
an adapter to integrate structural bias in the
PLM and using a cheap-to-compute relative
position structure in place of the syntactic de-
pendency structure. Benchmarking evaluation
is conducted on the SemEval datasets. The re-
sults show that our proposed structural adapter
is beneficial to PLMs and achieves state-of-the-
art performance over a range of strong base-
lines, yet with a light parameter demand and
low latency. Meanwhile, we give rise to the
concern that the current evaluation default with
data of small scale is under-confident. Con-
sequently, we release a large-scale dataset for
ASTE. The results on the new dataset hint that
the structural adapter is confidently effective
and efficient to a large scale. Overall, we draw
the conclusion that structural bias shall still be
a necessity even with PLMs.1

1 Introduction

Aspect sentiment triplet extraction (ASTE) is a
task central to fine-grained opinion mining. Com-
pared to aspect sentiment classification that only
aims to predict sentiment polarities for various as-
pects, ASTE instead extracts descriptive opinion
units in the form of triplets (i.e., aspect-opinion-
sentiment tuples). For example, (food, great, POS)
and (service, dreadful, NEG) are aspect sentiment

Jingang Wang and Dawei Song are the corresponding
authors.

1Code and data are available at https://github.com/
GeneZC/StructBias.

Triplet: Great food but the service was dreadful !

POS NEG

Dependency: Great food but the service was dreadful !

AMOD NSUBJ
CONJ

Figure 1: Triplet (top) and dependency structures (bot-
tom) of an illustrative sentence. Spans shaded in yellow
are aspects, spans shaded in red are opinions, and arcs
indicate either sentiment or structural relations. Irrele-
vant structural relations are neglected for brevity.

triplets for the sentence in Figure 1 (top), where
{POS, NEG, NEU} respectively represent {positive,
negative, neutral}.

While ASTE can be generally tackled with
neural models in either a pipeline manner (Peng
et al., 2020) or a multi-task manner (Xu et al.,
2020; Zhang et al., 2020; Wu et al., 2020a; Chen
et al., 2021a; Xu et al., 2021), the aspect senti-
ment triplets can be rather derivable from depen-
dency structures (e.g., syntactic dependency trees)
with hand-crafted rules (Wu et al., 2009; Sun et al.,
2017). For the example in Figure 1 (bottom), the
triplets can be recognized via certain structural de-
pendency relations.2 Various studies are motivated
by this intuition and exploit dependency bias to
enhance neural ASTE models (Chen et al., 2021b),
yet without a necessary comparison with pretrained
language models (PLMs). On the other hand, re-
cent advances find that using PLMs can already
achieve compelling performance (Yan et al., 2021;
Zhang et al., 2021; Huang et al., 2021) owing to
implicit structures captured by PLMs (Wu et al.,
2020b). It signals that, compared with PLMs, ex-
plicit structural biases such as dependency bias,
may become cumbersome (Dai et al., 2021) due
to parameter inefficiency and latency inefficiency.
That is, combining dependencies into models can

2Please see https://downloads.cs.stanford.edu/
nlp/software/dependencies_manual.pdf for what these
structural relations exactly stand for.
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require redundant parameters to achieve structure
encoding, while producing structures can also re-
quire increased latency to achieve external parsing.
Therefore, a critical question naturally arises: Is
structural bias still a necessity for ASTE in the
context of PLMs?

In this paper, we aspire to answer the question
from two perspectives: 1) whether structural bias
can be incorporated into PLMs in a flexible way in
terms of both parameter and latency efficiency; and
2) whether structural bias can enhance PLMs for
ASTE.

To boost the parameter efficiency, we develop
the idea of adapter and put forward a parameter-
efficient adapter that can incorporate structural bias.
The adapter (Houlsby et al., 2019) was proposed
initially to integrate additional modules into PLMs
and enable PLMs to leverage inductive bias effi-
ciently. Although feasible, such adapters can be far
from lightweight. For example, Liu et al. (2021)
introduces a series of linear transformations in their
proposed adapter which involve numerous parame-
ters. In contrast, instead of introducing carefully-
designed plugins, we propose to use structured at-
tention maps induced with structures, to additively
impact the raw attention maps in self-attention, thus
requiring only a tiny amount of incremental param-
eters.

To improve the latency efficiency, we argue that
dependency distance is a sufficient simplification
of the dependency graph since the simplification
has been proven equally powerful in downstream
tasks like aspect sentiment classification (Zhang
et al., 2019b). On this basis, we further propose to
use relative distance as an alternative to the depen-
dency distance. The intuition lies in the observation
that opinions predominantly locate closely to their
corresponding aspects (Xu et al., 2020; Ma et al.,
2021), and thus we posit that using relative dis-
tance bias would suffice for the purpose of ASTE.
In fact, the relative distance is also exhibited to
bring merits to the transformer architectures in pre-
vious work (Shaw et al., 2018; Raffel et al., 2020).
As the relative distance can be obtained with cheap
operations in lower latency, the latency efficiency
issue is thereby resolved.

We conduct a benchmarking comparative study
on the SemEval datasets (Pontiki et al., 2014). The
results show that models with the proposed struc-
tural adapter achieve the state-of-the-art (SOTA)
performance compared with an array of strong

baselines, indicating that incorporating structural
bias is beneficial to PLMs. We also conduct a
further study on how the relative distance-derived
structural adapter overwhelms its alternatives. The
results demonstrate that the structural adapter is
an appealing choice. Specifically, our structural
adapter realizes a 1,000× scale-down in terms of
incremental parameters and a 1,000× speed-up of
distance derivation.

In summary, structural bias can be flexibly in-
corporated into PLMs and improve both parameter
and latency efficiency. The structural adapter is im-
posed with only a light parameter demand. The rel-
ative distance can be implemented with low latency.
Moreover, the structural adapter vastly improves
the SOTA performance. Therefore, structural bias
is still be a necessity even in the context of PLMs
to achieve a better ASTE performance.

Last but not least, in the view that current bench-
marks are of small scales, we create a large-scale
ASTE dataset termed Lasted. Lasted is collected
from one of the largest review platform in China,
namely DianPing.3 The dataset will be released
to facilitate a more confident evaluation for ASTE
and other possible research directions. The results
on Lasted hint that structural adapter confidently
improves the performance. Furthermore, compared
with the results on the SemEval datasets, the model
performance generally tends to be lower on this
dataset, suggesting that the large-scale deployment
of ASTE systems is still challenging.

2 Methodology

2.1 Task Formulation
Given a sequence of tokens {ti}ni=1 as input,
ASTE requires a model to output a set of triplets
{(a, o, s)i}mi=1, where a, o, s are the aspect, opin-
ion, and sentiment, respectively. Concretely, an
aspect a can be decomposed to two elements, i.e.
(a0, a1), that separately denote the start and end po-
sitions. Likewise, an opinion o can be decomposed
similarly.

2.2 PLM with Structural Adapter
When a PLM is employed as the backbone, the to-
kens are first transformed to embeddings, and then
manipulated by subsequent transformer blocks.
While the PLM can capture semantic interactions,
we additionally present how to include structural
interactions with a structural adapter.

3Please see https://www.dianping.com/.
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Figure 2: Differences between self-attention (left) and
self-attention with the structural adapter applied (right).
Q, K, and V separately stand for linear-transformed
queries, keys, and values. R stands for distances.

2.2.1 Embedding
The tokens are generally augmented and encoded
with the PLM. For example, if the PLM being used
is a BERT (Devlin et al., 2019), the tokens should
be augmented as:

[CLS] t1 . . . ti . . . tn [SEP]

After that, the augmented tokens are converted to
embeddings {ti}n+1

i=0 .

2.2.2 Transformer Block
The input embeddings are operated by the succeed-
ing transformer blocks (Vaswani et al., 2017), each
of which consists of a self-attention module and a
feed-forward network module. The self-attention
module is typically organized in a query-key-value
formulation. Specifically, for any input {xi}ni=1,
the output can be roughly written as:

zi =
n∑

j=1

αij(xjWV ) αij = softmaxj(eij)

eij =
xiWQ(xjWK)⊤√

d

(1)

Here, we omit special tokens and multiple heads
for simplicity. The parameters WQ, WK and WV

are learnable linear transformations for the query,
key, and value. d is the head dimensionality.

2.2.3 Structural Adapter
In order to integrate the dependency or relative dis-
tance into the self-attention, the structural adapter
is imposed to derive structured attention maps to
bias the raw attention maps induced with the self-
attention additively. The procedure is depicted as

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1

t3

t2

t4 t7

t5 t6 t8

t9 t10

t1 t2 t3 t10

1
1

4

t1 t2 t3 t10

1
2

9

Tokens

Dependency 
Distance

Relative 
Distance

Figure 3: Derivation procedures of dependency distance
(middle) and relative distance (bottom) given a sequence
of tokens (top). Large distance values like 9 in this ex-
ample may be clipped by the threshold τ . And distances
will be made directional when employed, e.g., distance
from t1 to t2 is set to 1 while that from t2 to t1 is actually
set to -1.

below:

eij =
xiWQ(xjWK + rij)⊤√

d

=
xiWQ(xjWK)⊤√

d︸ ︷︷ ︸
raw attention map

+
xiWQr⊤ij√

d︸ ︷︷ ︸
structured attention map

(2)

where rij indicates the distance embedding be-
tween two tokens ti and tj . It is also noteworthy
that each relation embedding is shared across dif-
ferent heads, but kept independent from one layer
to another layer. This behavior is inspired by Shaw
et al. (2018), which is originally proposed to en-
code the relative positions but found to be appli-
cable to encode arbitrary relations (Wang et al.,
2020). The differences between self-attention and
self-attention with the structural adapter applied
are shown in Figure 2.

2.2.4 Distance Derivation
Specifically, the dependency distance between two
tokens is obtained by computing the shortest dis-
tance on the dependency graph with the networkx
toolkit,4 and the dependency graph is produced
with an off-the-shelf dependency parser stanza (Qi
et al., 2020).5 The relative distance between two
tokens can be yielded by enumerating the number
of tokens lying in-between.

4Please see https://networkx.org/ for more informa-
tion.

5Please see https://stanfordnlp.github.io/stanza/
for more information.
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We follow the de facto implementation that treats
the distance from ti to tj different from that from
tj to ti. We assign one to positive and the other to
negative (Raffel et al., 2020). We also manually
set a distance threshold that denotes the maximum
distance τ . In doing so, we intend to avoid intro-
ducing too many parameters while maintaining as
much information as possible. Henceforth, we will
refer to the structural adapter with the dependency
distance and relative distance as STRUCTAPT-DEP

and STRUCTAPT-REL. The derivation of both depen-
dency distance and relative distance is illustrated
in Figure 3.

2.3 Triplet Parser
Learning from two multi-task triplet parsing archi-
tectures MTL (Zhang et al., 2020) and GTS (Wu
et al., 2020a), we establish a triplet parser that com-
prises two independent taggers (i.e., one for aspect
and the other for opinion tagging), a sentiment
scorer, and a triplet decoder. Conceptually, the
two taggers are used to uncover continuous tokens
that form an aspect or opinion span. The senti-
ment scorer is used to determine the token-level
sentiment relation (if there is one) between two
candidate tokens. Moreover, the triplet decoder
produces triplets by gathering the information from
the taggers and the sentiment scorer.

2.3.1 Aspect and Opinion Taggers
Following MTL, the taggers generate aspect and
opinion tags in {B,I,O} format, after which the
aspect and opinion spans are inferred with {B,I,O}
tags. Presuming the hidden states of the PLM are
{hi}ni=1 in spite of augmented tokens, the taggers
are depicted as:

r
(a)
i = ReLU(W

(a)
1 hi + b

(a)
1 )

y
(a)
i = softmax(W(a)

2 r
(a)
i + b

(a)
2 )

r
(o)
i = ReLU(W

(o)
1 hi + b

(o)
1 )

y
(o)
i = softmax(W(o)

2 r
(o)
i + b

(o)
2 )

(3)

where {W(a)
1 ,b

(a)
1 ,W

(a)
2 ,b

(a)
2 },

{W(o)
1 ,b

(o)
1 ,W

(o)
2 ,b

(o)
2 } are two sets of weights

and biases for two feed-forward networks
customized to aspect and opinion tagging.

2.3.2 Sentiment Scorer
The sentiment scorer produces token-level senti-
ment relations among all tokens. In addition to
{POS, NEG, NEU}, there is also a NONE relation to

account for the case of no relation. Unlike the sen-
timent scorer in MTL and GTS that only predicts
uni-directional sentiment relations, we present a
sentiment scorer that predicts bi-directional senti-
ment relations. The uni-directional relation means:
a sentiment relation between an aspect token and
an opinion token is always directed from the as-
pect token to the opinion token. In contrast, the
bi-directional means: a sentiment relation is both
directed from the aspect token to the opinion token
and directed from the opinion token to the aspect
token. This behavior allows more information to
be transduced to the subsequent triplet decoding
process to alleviate potential errors. Similarly, the
sentiment scorer can be described as:

r
(h)
i = ReLU(W

(h)
1 hi + b

(h)
1 )

r
(d)
i = ReLU(W

(d)
1 hi + b

(d)
1 )

y
(s)
i,j = softmax(r(h)⊤i W

(s)
2 r

(d)
j +

W
(h)
2 r

(h)
i +W

(d)
2 r

(d)
j + b

(s)
2 )

(4)

Here, {W(h)
1 ,b

(h)
1 },{W(d)

1 ,b
(d)
1 } are weights and

biases separately for two feed-forward networks
yielding head and dependent representations.
These head and dependent representations are then
organized in a biaffine manner (Dozat and Man-
ning, 2017), where {W(h)

2 ,b
(h)
2 ,W

(d)
2 ,b

(d)
2 } are

weights and biases. The biaffine module predicts
both aspect-to-opinion and opinion-to-aspect re-
lations at the same time, since either aspects or
opinions can be heads or dependents interchange-
ably.

Additionally, y(s) refers to a sentiment probabil-
ity map where y

(s)
i,j indicates a probability over 4

sentiment relations from the i-th token to the j-th
one. If we apply the argmax operation on the prob-
ability map, we get a sentiment relation map. An
example of the sentiment relation map is given in
Figure 4 (left).

2.3.3 Triplet Decoder
Span-level sentiment relations are viable by search-
ing for the most frequent sentiment relation in the
set of indexed sentiment relations. Assume there
are 2 tokens in a predicted target span and 1 token
in a predicted opinion span, then we say there are
2*(2*1)=4 indexed sentiment relations between the
two spans with the bi-directional interplay. Finding
the most frequent sentiment relation in inclusive
sentiment relations produced with the sentiment
relation map gives the sentiment relation between

6739



Sentiment Relation Map 
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Grid Decoding
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t 4
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t 2
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Figure 4: Sentiment relation map (left) and grid de-
coding algorithm (right). N, +, - respectively are short
for NONE, POS, NEG relations. Gradient colors indicate
either aspect-to-opinion relations or opinion-to-aspect
relations within the bi-directional interplay. The grid de-
coding algorithm refers to tagged aspects and opinions
to index the sentiment relation map.

the two spans. The algorithm is detailed in Figure 4
(right). As the bi-directional interplay is consid-
ered, the potential error (i.e., producing a NONE or
NEG relation instead of a POS one.) in the example
is alleviated.

Since the whole multi-task learning framework
is generally borrowed from MTL while the triplet
decoding strategy is adapted from the grid decoding
in GTS, we name the proposed model as Multi-task
learning with Grid decoding (MuG).

2.4 Finetuning

The PLM, the structural adapter, and the triplet
parser can be jointly optimized by minimizing an
overall objective that contains two sources of losses,
i.e., tagging loss Lt and parsing loss Lp. Both
losses can be measured by the cross-entropy func-
tions. The joint objective is formulated as follows:

min
θ
L = min

θ
Lt + Lp (5)

where θ stands for all parameters, which might be
disassembled to {θPLM, θAdapter, θParser}.

3 Benchmarking Evaluation

3.1 Data

We conduct a comparative study on 4 bench-
marking datasets from SemEval 2014, 2015, and
2016 (Pontiki et al., 2014), in which one con-
tains data from laptop domain (L) and the other
three contain data from restaurant domain (R).
The triplet annotations are obtained from Xu et al.
(2020). The statistics of these datasets are dis-
played in Appendix A.

3.2 Models
We compare a wide range of baseline models with
varying backbones (e.g., BiLSTM, BERT) and differ-
ent paradigms (i.e., extractive vs. generative). We
list these baselines according to their paradigms as
below:

Extractive Paradigm

• KWHW (Peng et al., 2020) is a pipeline sys-
tem that first extracts aspect-sentiment pairs
and opinions, and then pairs them in a binary
manner.

• JETo (Xu et al., 2020) is a position-aware se-
quence tagging system that jointly extracts
triplets.

• MTL (Zhang et al., 2020) is a multi-task learn-
ing system which realizes aspect and opinion
extraction with tagging while sentiment rela-
tion extraction with parsing.

• GTS (Wu et al., 2020a) transforms the triplet
extraction problem as a grid tagging problem
and achieves the extraction via a grid decoding
algorithm.

• Span (Xu et al., 2021) is a span-level triplet
extraction system that learns span-level inter-
actions for a more accurate triplet prediction.

Generative Paradigm

• UGF (Yan et al., 2021) is a unified generative
system based on BART (Lewis et al., 2020) for
all sub-tasks in aspect sentiment analysis.

• GAS (Zhang et al., 2021) likewise is built
upon T5 (Raffel et al., 2020) where extractive
constraints are applied to the decoding space.

On another note, we have some variants in the
comparative study to facilitate the understanding
of our adapter. To examine the broad applicability
of our structural adapter, we additionally test the
structural adapter through the lens of the SOTA
extractive systems, namely GTS and Span. To con-
duct a fair comparison, we initiate the PLM in our
model not only with BERT (Devlin et al., 2019) but
also with RoBERTa (Liu et al., 2019) to see whether
our model with the adapter is competitive with
those enhanced by advanced generative PLMs.

3.3 Implementation and Metrics
Typically, the adapter-based finetuning only tunes
θAdapter and θParser, and freezes θPLM. As a ran-
domly initialized adapter can be an unsteady factor
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to the PLM, standard finetuning (i.e., tuning all
parameters) can result in performance with high
variance (Houlsby et al., 2019). However, sub-
optimal phenomenon has been observed in the liter-
ature (Liu et al., 2021) that such adapter-based fine-
tuning is less promising than standard fine-tuning if
the adapter is intended to integrate discrete informa-
tion (e.g., structural information in our case). Thus,
we adapt θAdapter and θPLM to the concerned task
via finetuning all parameters (i.e., θPLM, θAdapter,
and θParser). Other implementation details are listed
in Appendix B.

Following the common practice in the area, we
adopt the exact match precision, recall, and F1
scores as the evaluation metrics. Namely, only
when the corresponding elements from two triplets
exactly match each other, will it be counted as one
match. Further, to gain a robust evaluation, we
average values over 10 runs and employ the mean
value as the final number.

3.4 Performance Analysis

From the results presented in Table 1, we discover
two key findings. The first is that the structural
adapter incorporated with the relative distance can
primarily improve performance across different
models and different PLMs, though the improve-
ments over RoBERTa are not as consistent as those
over BERT on different datasets. The second is that
the previous SOTA models are further boosted by
the structural adapter and yield new SOTA results.
These findings generally indicate the effectiveness,
thus necessity, of the structural adapter. Conversely,
the dependency distance is prone to parsing errors
and sometimes underperforms the relative distance.

Moreover, we surprisingly observe that MuG
with RoBERTa is a relatively strong baseline even
compared with those remarkable generative ASTE
models. Concretely, MuG with RoBERTa approx-
imates or outperforms GAS with T5 in terms of
F1 scores. This phenomenon encourages some ret-
rospectives on whether generative ASTE models
are superior to extractive ones, or the superiority is
resulted by the generative PLM.

It can be arguable that the improvements of the
structural adapter are marginal; however, we con-
jecture the inherent reason is that the data for eval-
uation is of small scale. According to the afore-
mentioned unstable behavior of the adapter when
encountering small-scale data in Section 3.3, we
think the evaluation is under-confident and there-

fore conduct a large-scale evaluation in Section 4 to
verify the guess and to get more confident results.

3.5 Parameter Analysis

We examine the gap between the structural adapter
and structural layer (with dependency distance or
relative distance, referred to as STRUCTLYR-DEP and
STRUCTLYR-REL respectively) from the perspective
of incremental parameter scale. The structural layer
is exactly a stack of additional transformer layers
built upon the PLM, each of which is applied with
the structural adapter. The best number of stacked
layers is 2 in our pilot study.

The incremental parameters in Table 2 mean
that additional parameters are brought to MuG.
The structural adapter achieves 1,000× scale-down
without performance loss compared with the struc-
tural layer. Contrarily, it seems that structural lay-
ers risk the model on the under-fitting issue due
to over-parameterization and get degraded perfor-
mance compared with MuG. We hereby argue that
parameter efficiency of the structural adapter is
permissible.

3.6 Latency Analysis

To better understand the difference between latency
consumed by dependency distance derivation and
relative distance derivation. We test the latency
caused by the above two derivation procedures.

While dependency distance derivation costs
around 4 micro-seconds per token (250 tokens/ms
in other words), relative distance derivation only
spends 3e-3 micro-seconds per token (333,000 to-
kens/ms in other words). That is, the relative dis-
tance derivation enjoys a 1,000× speed-up com-
pared with the dependency distance derivation.
Hence, the latency efficiency of relative distance
derivation is numerically verified.

4 Large-scale Evaluation

4.1 Data

Being aware that the above benchmarking eval-
uation may be under-confident considering that
the data is of small scale, we release a large-scale
ASTE dataset, short-named Lasted. The data is
collected from one of the largest review platform
in China, namely DianPing. After necessary pre-
processing steps, these reviews are manually anno-
tated by 10 proficient assessors. For sanity, double-
check on these annotations is carried out by a re-
searcher who has devoted herself to the area for
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Model L14 R14 R15 R16

P R F1 P R F1 P R F1 P R F1

KWHW BiLSTM* 37.38 50.38 42.87 43.24 63.66 51.46 48.07 57.51 52.32 46.96 64.24 54.21
JETo BiLSTM* 53.03 33.89 41.35 61.50 55.13 58.14 64.37 44.33 52.50 70.94 57.00 63.21
MTL BiLSTM‡ 51.00 40.07 44.81 63.87 54.76 58.90 57.50 42.56 48.73 59.03 54.84 56.73
GTS BiLSTM‡ 60.32 38.98 47.25 71.08 56.38 62.85 66.60 46.91 55.02 68.75 56.02 61.71

JETo BERT* 55.39 47.33 51.04 70.56 55.94 62.40 64.45 51.96 57.53 70.42 58.37 63.83
GTS BERT‡ 57.09 50.33 53.48 69.49 67.75 68.59 61.59 58.21 59.81 65.75 68.32 66.99

w/ STRUCTAPT-REL 57.89 51.57 54.47 68.94 68.26 68.60 62.17 58.63 60.28 66.17 69.79 67.91
Span BERT‡ 62.57 56.02 59.08 71.77 70.42 71.06 62.06 63.26 62.63 68.57 71.12 69.79

w/ STRUCTAPT-REL 64.72 56.80 60.47 72.53 71.75 72.13 62.80 63.79 63.17 68.94 70.74 69.80
MuG BERT 58.30 52.21 55.06 68.40 67.64 68.00 60.65 54.12 57.10 66.26 67.39 66.74

w/ STRUCTAPT-DEP 59.39 52.95 55.95 67.69 68.90 68.27 60.74 55.77 58.11 64.73 68.33 66.45
w/ STRUCTAPT-REL 59.54 52.56 55.75 68.92 68.12 68.50 59.83 56.78 58.17 65.31 68.83 67.01

UGF BART† 61.41 56.19 58.69 65.52 64.99 65.25 59.14 59.38 59.26 66.60 68.68 67.62
GAS T5† – – 60.78 – – 72.16 – – 62.10 – – 70.10
MuG RoBERTa 64.18 57.03 60.33 70.47 71.88 71.16 63.78 61.88 62.79 68.61 72.20 70.34

w/ STRUCTAPT-DEP 64.18 56.41 60.03 71.62 71.92 71.72 63.96 61.67 62.70 68.85 71.81 70.28
w/ STRUCTAPT-REL 64.12 57.16 60.53 73.26 71.93 71.17 62.86 63.82 63.12 69.15 74.12 70.44

Table 1: Benchmarking evaluation results. The marker * indicates results of the model are cited from Xu et al.
(2020). The marker † indicates results of the model are cited from its original paper. The marker ‡ indicates results
of the model are reproduced from its released code. Results are replaced by – to indicate they are not available. F1
scores are underlined to indicate they outperform their adapter-ablated counterparts. F1 scores are boldfaced to
indicate they are the best-performing ones in their areas.

Model #Params+ L14 R14

MuG BERT 0.00 M 55.06 68.00
w/ STRUCTLYR-DEP 14.17 M 52.52 67.03
w/ STRUCTLYR-REL 14.17 M 51.57 67.04
w/ STRUCTAPT-DEP 0.01 M 55.95 68.27
w/ STRUCTAPT-REL 0.01 M 55.75 68.50

Table 2: Parameter comparison. F1 scores are reported.
#Params+ is short for number of incremental parame-
ters.

years.
For clarity, the pre-processing steps include: 1)

removing user identities for privacy consideration;
2) chunking the reviews to shorter examples as they
are generally too long (e.g., longer than 512); 3)
tokenizing these examples; 4) removing examples
without annotations, with less than 4 tokens, or
with more than 128 tokens; 5) removing triplets in
an example if the triplet has more than 8 tokens
in the aspect or has more than 16 tokens in the
target, for a too long aspect or opinion indicates the
triplet may be not well annotated. Ultimately, these
examples are formatted in the format we mentioned
in Section 2.1.

We attain the dataset with a total of 27,835 exam-
ples. We uniformly split it into train, development,

Dataset #S #T #T/S #Tk/S

SemEval R14
train 1266 2336 1.85 17.31

dev 310 577 1.86 15.81

test 492 994 2.02 16.34

Lasted
train 19485 38050 1.95 34.94

dev 2783 5334 1.92 34.88

test 5567 10820 1.94 35.04

Table 3: Statistics of Lasted, with a comparison with
SemEval R14. #S denotes number of sentences, #T
denotes number of triplets, #T/S denotes average num-
ber of triplets per sentence, and #Tk/S denotes average
number of tokens per sentence.

and test sets with a ratio of 7: 1: 2. The statis-
tics are shown in Table 3, where we also include
SemEval R14 for comparison purpose. From the
statistics, we can summarize that Lasted is a much
larger dataset with longer sentences, which sets a
more challenging benchmark for models to achieve
a high performance.

4.2 Models
We conduct experiments based on GTS and MuG.
While we only test GTS with BERT-base, we fur-
ther test MuG with BERT-base, RoBERTa-base,
and tentatively with RoBERTa-large. As we
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Model Lasted

P R F1

GTS BERT-base 43.81 46.11 44.92
w/ STRUCTAPT-REL 45.38 46.22 45.79

MuG BERT-base 47.20 45.28 46.22
w/ STRUCTAPT-REL 49.64 45.02 47.22

MuG RoBERTa-base 48.10 44.98 46.49
w/ STRUCTAPT-REL 50.40 44.77 47.42

MuG RoBERTa-large 49.49 46.85 48.13
w/ STRUCTAPT-REL 48.33 47.91 48.13

Table 4: Large-scale evaluation results on Lasted. F1
scores are underlined to indicate they outperform their
adapter-ablated counterparts.

know that only BERT-base is officially released
by Devlin et al. (2019) for Chinese, we re-
trieve RoBERTa-base and RoBERTa-large re-
leased by Cui et al. (2019) on Hugging Face.6

4.3 Implementation and Metrics

The implementation and metrics strictly follow
those used in the benchmarking evaluation, with
exceptions listed in Appendix B.

4.4 Analysis

We can see from Table 4 that the adapter is still
promising under large-scale evaluation. With the
notice that the evaluation results should be more
confident, we hence can safely conclude that the
structural adapter is effective and structural bias is
a necessity for ASTE even in the context of PLMs.
However, the metrics on Lasted are consistently
lower than expected, implying the deployment
of ASTE systems is still challenging. The struc-
tural adapter does not improve RoBERTa-large,
we leave the question of how to combine it with
large PLMs for future work.

5 Related Work

5.1 Aspect Sentiment Triplet Extraction

Aspect sentiment triplet extraction is a recently pro-
posed task to extract aspects, opinions, and senti-
ment relations (Peng et al., 2020), serving as a com-
plete solution to aspect sentiment analysis (Zhang
et al., 2019a; Ma et al., 2022). While the first-ever
work delving into the task takes a pipeline system,
succeeding work shifts their attention from pipeline

6Please see https://huggingface.co/hfl/
chinese-roberta-wwm-ext for more information.

models to joint models. Zhang et al. (2020) and Wu
et al. (2020a) share similar spirits to treat three
sub-tasks in a multi-task manner. Specifically, Wu
et al. (2020a) proposes to consider the extraction
of three elements in a unified grid tagging scheme.
Later studies exploit inductive biases such as span-
level interactions (Xu et al., 2021) and structural
bias (Chen et al., 2021b). To our surprise, none
of them inspects whether inductive biases, partic-
ularly structural bias that is shown beneficial in
other PLM-enhanced tasks (Wang et al., 2022), are
significant for PLM-enhanced ASTE models. Our
work seeks to answer this question by putting for-
ward a flexible adapter and checking whether the
adapter is a necessity.

5.2 Adapter for PLM

An adapter is an emergent concept which means
an efficient module injected into the PLM so
that the PLM can better adapt to downstream
tasks (Houlsby et al., 2019). Applications includ-
ing speed translation (Le et al., 2021), language
transfer (He et al., 2021), etc. have been witnessed.
Traditionally, parameters of the PLM should not be
tuned during fine-tuning once the adapter is armed.
Nevertheless, recent work (Liu et al., 2021) finds
that when injecting discrete information, unfreez-
ing the parameters of the PLM will bring further
performance gain. While previous adapters are
modules and thus far from truly lightweight, we
propose to leverage the structured attention as a
sort of adapter, which is lightweight.

6 Conclusion

In this paper, we are concerned about the parame-
ter and latency inefficiency issues of incorporating
structural bias to PLMs for aspect sentiment triplet
extraction, and raise the question on whether struc-
tural bias is a necessity. To answer the question, we
propose to use an adapter to integrate the relative
position structure into PLMs for a light parame-
ter demand compared with incremental layers and
low latency compared with the syntactic depen-
dency structure. We carry out benchmarking ex-
periments on SemEval benchmarks and large-scale
experiments on our newly released Lasted dataset
as a supplementary. The results in two rounds of
evaluations show that the structural adapter is an
appealing choice regarding its effectiveness, param-
eter efficiency, and latency efficiency, implying the
structural bias, in the form of the structural adapter,
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is a necessity even with PLMs.
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A Data Statistics of SemEval

B Full Implementation Details

Our models are implemented with PyTorch and
verified on an Nvidia V100, and they are generally
trained with following instructions.

For parameter settings in the benchmarking eval-
uation, the batch size is 8 for models without the
adapter, whereas it is 6 for models with the adapter
for stability, and the maximum norm for gradi-
ents is 1. The learning rate is set hierarchically,

Dataset #S #T #T/S #Tk/S

L14
train 906 1460 1.61 19.15

dev 219 346 1.58 19.06

test 328 543 1.66 15.77

R14
train 1266 2336 1.85 17.31

dev 310 577 1.86 15.81

test 492 994 2.02 16.34

R15
train 605 1013 1.67 14.80

dev 148 249 1.68 14.34

test 322 485 1.51 15.63

R16
train 857 1394 1.63 15.15

dev 210 339 1.61 14.16

test 326 514 1.58 14.70

Table 5: Statistics of four datasets from SemEval. #S
denotes number of sentences, #T denotes number of
triplets, #T/S denotes average number of triplets per
sentence, and #Tk/S denotes average number of tokens
per sentence. L denotes laptop domain while R denotes
restaurant domain.

where the learning rate for the PLM and adapter
is searched with {1e-5,2e-5,3e-5,5e-5} while that
for the triplet parser is set 10 times of the former.
The training procedure is scheduled as such: the
number of maximum training epochs is 20, and the
number of patience epochs is 5. Learning rates are
warmed up for the first 2 epochs and decayed for
the rest epochs. The threshold for the maximum
distance τ is 8.

For parameter settings in the large-scale evalu-
ation, the batch size is accordingly doubled, since
we have data of a much larger scale.

6745



Proceedings of the 29th International Conference on Computational Linguistics, pages 6746–6751
October 12–17, 2022.

Unsupervised Data Augmentation for Aspect Based Sentiment
Analysis

David Z. Chen Adam Faulkner Sahil Badyal
Capital One Servicing Intelligence, NLP

{david.chen2, adam.faulkner, sahil.badyal}
@capitalone.com

Abstract
Recent approaches to Aspect-based Senti-
ment Analysis (ABSA) take a co-extraction
approach to this span-level classification
task, performing the subtasks of aspect
term extraction (ATE) and aspect senti-
ment classification (ASC) simultaneously.
In this work, we build on recent progress in
applying pre-training to this co-extraction
task with the introduction of an adapta-
tion of Unsupervised Data Augmentation
(UDA) in semi-supervised learning. As
originally implemented, UDA cannot ac-
commodate span-level classification since
it relies on advanced data augmentation
techniques, such as backtranslation, that
alter the sequence lengths of the original
data and cause index mismatches. We intro-
duce an adaptation of UDA using Masked
Language Model (MLM) unmasking that
accommodates this index-match constraint
and test the approach on standard ABSA
benchmark datasets. We show that sim-
ple augmentations applied to modest-sized
datasets along with consistency training
lead to competitive performance with the
current ABSA state-of-the-art in the restau-
rant and laptop domains using only 75% of
the training data.

1 Introduction
Aspect-based Sentiment Analysis (ABSA) is a
subset of Sentiment Analysis (SA), operating at
the phrase- rather then sentence- or document-
level. As with other forms of SA, the goal
is to determine the sentiment associated with
a given text segment, though, in the case of
ABSA, these phrasal segments are typically
“aspects” or features associated with products,
services, or experiences, such as “waitstaff” or
“ambience.”

As with other span-level classification tasks,
such as Named Entity Recognition (NER), a
major challenge of ABSA is class imbalance,

as the majority of token labels typically refer
to non-aspect terms (Luo et al., 2020) and the
terms themselves are of inconsistent phrase-
level categories. This introduces considerable
variance in aspect term labels and makes it
difficult for models to effectively generalize to
example terms outside those explicitly shown
in the training data.

1.1 Related work
In related span-level tasks, previous work has
shown that a joint/collapsed approach to en-
tity and sentiment co-extraction out-performs
a pipelined approach (Mitchell et al., 2013;
Zhang et al., 2015). A joint approach refers
to assigning two sets of tags, term and polar-
ity, to each example, and a collapsed approach
collapses the term and polarity tags into one
term-polarity tag for each token. While there
are merits to both approaches, we adopt a
collapsed approach as it requires a simpler clas-
sifier architecture.
Pre-training and pre-trained language mod-

els (LMs) have been shown to provide state-
of-the-art performance on many tasks within
NLP. Applying these approaches to the ABSA
task, Li et al. (Li et al., 2019b) and Luo et al.
(Luo et al., 2020) have achieved state-of-the-art
performance on restaurant and laptop reviews
using pre-trained LM’s and LM’s with post-
training (PTR), respectively. These results
highlight the benefit of leveraging unlabeled
data (with pre-training and post-training).
In this work, we explore and push the lim-

its of using unlabeled data for the ABSA task
by incorporating data augmentation and con-
sistency training on top of pre-trained and
post-trained BERT. We adopt an unsupervised
data augmentation (UDA) technique based
in semi-supervised learning (SSL) from Xie
et al. (Xie et al., 2020), initially developed
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UDA method Original Text Augmented Text
Backtranslation Our meal was so tasty but the waitstaff

kept making rude remarks!
Food was delicious but the waiter spoke

rudely.
MLM unmasking Our <MASK> was so tasty but the

waitstaff kept making rude remarks!
Our lunch was so tasty but the waitstaff

kept making rude remarks!
Table (1) Example augmentation methods and texts. In the backtranslation case, "meal"-"food" and "waitstaff"-
"waiter" are index mismatched after augmentation, whereas MLM unmasking preserves token indices.

for document- and sentence-level classification
tasks, and adapt it to the span-level classifica-
tion setting. In UDA, unlabeled data is passed
to the model in streams of pairs, where one
stream contains the original unmodified input
example and the other stream contains aug-
mented examples created by transforming the
original input using data augmentation tech-
niques. In the paper by Xie et al. (Xie et al.,
2020), the authors apply data augmentation
to images (e.g. filters and image transforma-
tions) as well as to sentence-level textual data
via backtranslation. This backtranslation ap-
proach, while powerful in creating augmented
examples that differ greatly from the original
while retaining semantic meaning, results in
index-mismatch issues when applied to span-
level tasks such as ABSA. For this reason, we
adapted the original UDA implementation to
work for span-level ABSA by applying sim-
ple token replacements using masked-language
model (MLM) unmasking (additional details
provided in the Method section). Our adapted
form of UDA-based data augmentation shows
competitive performance with the ABSA state-
of-the-art using only 75% of the original labeled
training data and 30k additional unlabeled ex-
amples.

Figure (1) Model diagram with UDA

2 Method

Figure 1 shows the model architecture diagram
for the models used in our experiments. One
constant throughout is the use of BERT-base-
uncased 1 as the base pre-trained LM and a

1Available in Hugging Face: https://huggingface.co

Self-Attention Network (SAN) as the classifica-
tion layer. In the purely supervised condition
(no UDA), training is done in the usual way
by calculating and backpropagating a cross-
entropy loss between prediction and target,
where collapsed labels are in the “BIOES“ tag-
ging scheme, and sentiment tags are appended
to each BIES tag, e.g. B-POS, B-NEU, B-NEG,
resulting in 13 classes in total.

2.1 Unsupervised Data Augmentation
For model variations using UDA, we include a
separate model that performs backpropagation
on unsupervised augmented datasets based on
a KL-divergence loss between the model pre-
diction on the augmented example (unfrozen)
and the model prediction on the original exam-
ple (frozen), as described in the original UDA
paper (Xie et al., 2020). See Figure 1.
As currently implemented, advanced data

augmentation techniques used in UDA, such as
backtranslation, are incompatible with span-
level classification tasks like ABSA, which re-
quire that the sequence length of the original
example match that of the augmented example
in order for the aspect terms to be correctly
indexed, extracted and labeled. This is be-
cause backtranslation frequently results in aug-
mented sequences of varying lengths from the
original, leading to token index mismatches
(see examples in Table 1). As a result, KL-
divergence loss would fail to capture the error
between the original and augmented aspects,
as their relative positions will have changed.

In order to accomodate the index-match con-
straint required for ABSA, we introduce a sim-
ple augmentation technique that utilizes single-
and multi-token replacement via unmasking us-
ing vanilla BERT-uncased MLM. This choice
of BERT MLM is to remain consistent with
previous work in ABSA utilizing BERT. Other
choices can be used instead, such as one of the
BERT variants, e.g. RoBERTa, DistilBERT
(Liu et al., 2019; Sanh et al., 2019). In order
to obtain augmentations that are general, we
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Model Rest14 Rest15 Rest16 Laptop
IMN (He et al., 2019) 69.54 59.18 - 58.37
DREGCN (Liang et al., 2020a) 72.60 62.37 - 63.04
WHW (Peng et al., 2020) 71.95 65.79 71.73 62.34
TAS-BERT (Wan et al., 2020) - 66.11 75.68 -
IKTN-BERT (Liang et al., 2020b) 71.75 62.33 - 62.34
DHGNN (Liu et al., 2020) 68.91 58.37 - 59.61
RACL-BERT (Chen and Qian, 2020) 75.42 66.05 - 63.40
BERT-E2E-ABSA (Li et al., 2019b) 73.68 59.90 70.51 61.12
GRACE (Luo et al., 2020) 77.26 68.16 76.49 70.71
UDA-ABSA 79.38 ± 0.38 70.14 ± 0.89 78.05 ± 0.72 69.55 ± 0.40
-75% train sample 77.09 ± 0.52 68.19 ± 0.70 75.38 ± 0.27 -
-50% train sample 76.73 ± 0.17 64.02 ± 1.01 72.96 ± 0.70 -
-25% train sample 73.33 ± 0.24 58.71 ± 1.07 68.72 ± 1.45 -

Table (2) Experimental micro F1 values compared across previous work and UDA-ABSA

chose to utilize vanilla BERT-uncased for this
MLM task rather than one post-trained on
in-domain data.

Span-based UDA Single-unigram replace-
ment augmentation
1: Randomly select a token in the tokenized original

sequence (avoiding punctuation)
2: Convert the selected token into [MASK]
3: Unmask the token using our LM,
4: Check tokenunmasked 6= tokenoriginal and

tokenunmasked /∈ punctuation.

In multi-unigram replacement augmentation,
we iterate on the single-unigram case over
Slength times, where Slength is the sequence
length. However, we apply a confidence thresh-
old, γ = 0.1, to the unmasking so that only
unmasked tokens with confidence > γ are kept.

2.2 Datasets

We leveraged datasets from two domains,
namely Restaurants (Rest14, Rest15, Rest16)
and Laptops, both originating from SemEval
(Pontiki et al., 2014, 2015, 2016). Specifically,
we use versions prepared by Li et al. (Li et al.,
2019a), which uses collapsed ABSA labels. For
UDA, we utilized the 27k examples from the
Yelp academic dataset for the Restaurant do-
main, 2 and we filtered Amazon electronics
reviews to obtain 38k examples pertaining to
laptops. 3

2https://www.yelp.com/academic_dataset
3http://jmcauley.ucsd.edu/data/amazon/

2.3 Model parameters

All of our models share the same underlying
architecture: BERT-base-uncased (vanilla and
post-trained) with a learning rate of 2e − 5
and an AdamW optimizer with a linear learn-
ing rate schedule. For post-training (PTR),
we adopted the trained weights from Luo, et
al. (Luo et al., 2020), which was achieved
by performing Whole Word Masking using
BERT-based-uncased on 142.8M Amazon re-
views (footnote) joined with 2.2M Yelp reviews
(footnote).

Experiments are conducted using a fixed
number of gradient optimization steps, which is
set heuristically and is sufficiently high to allow
for complete model convergence (loss plateaus
over at least one entire epoch). The actual num-
ber of steps varied depending on the batch sizes
involved, but ranged from 5k-20k batches, or 8-
15 epochs. The supervised batch sizes were set
according to GPU memory limitations, as UDA
greatly increases the GPU memory load during
training, resulting in typical supervised batch
sizes of 4 for Restaurant data, and 6 for Laptop
data with UDA, and 16 and 32 for experiments
without UDA, respectively. Likewise, the unsu-
pervised batch sizes for UDA were set according
to the ratio of Nunsupervised/Nsupervised multi-
plied by the supervised batch size, resulting in
typical UDA batch sizes of 40-84.
Each experimental condition is conducted

5 times with 5 constant seeds, and the result-
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ing micro-F1 values are averaged over those 5
replicates. We also provide the resulting stan-
dard deviations. This is performed in order
to calculate statistical significance, as well as
increase the confidence of our estimate of the
average performance. For each iteration of the
5 total replicates, we estimate test micro-F1
by calculating a a 800-step moving average
(∼1.2 epochs) on the test dataset after model
convergence.

3 Results

3.1 Benchmark experiments
Table 2 shows the results of our experiments on
the rest14, rest15, rest16, and laptop datasets.
We found that UDA-ABSA is competitive with
the state-of-the-art, and achieves this with pre-
trained BERT-uncased, PTR, and UDA on
additional unlabeled data during training with
as little as 75% of the labeled data.

Model Rest14
UDA-ABSA 79.38 ± 0.38
no UDA 78.75 ± 0.38
no PTR 75.16 ± 0.33
no UDA & no PTR 73.50 ± 0.90

Table (3) UDA-ABSA Ablation Experiments

3.2 Ablation experiments
In order to assess the relative contributions of
UDA and PTR to the model’s performance, we
conducted ablation experiments on the Rest14
dataset. Namely, we estimated model micro-F1
w/o PTR and w/o UDA and w/o UDA and
PTR. Results are shown in Table 3. Removing
PTR contributed a decrease of roughly ∼4%
average micro F1, while removing UDA con-
tributed a small, but significant (p val ≈ 0.048),
decrease of < 1% average micro F1. Addition-
ally, removing both PTR and UDA contributed
a decrease of roughly ∼6% average micro F1.
These observations suggest that:

• PTR contributes the most to enhancing the per-
formance of the model.

• UDA may contribute more to the performance in
the absence of PTR.

• While PTR leverages over 140M unlabeled exam-
ples, UDA improves model performance further.

• UDA may be more data-efficient: i.e. gain per
number of ex. of PTR (∼0.03%/Million examples)
vs. UDA (∼21%/Million examples).

However, it is not clear how such perfor-
mance estimates would extrapolate to the small

data regime for PTR and large data regime for
UDA, as such experiments have not been con-
ducted due to hardware constraints.

Model Rest14
Single-Linear 79.38 ± 0.38
Single-Log 79.19 ± 0.34
Single-Exp 79.10 ± 0.29
Multi-Linear 79.05 ± 0.37
Single-no CT 74.03 ± 0.32

Table (4) UDA Parameter Experiments

4 Discussion
In our experiments, we found that, not sur-
prisingly, downsampling the training data re-
sults in a degradation of model performance,
but we also found that UDA achieves SOTA-
competitive performance with 75% of the data.
The original UDA paper (Xie et al., 2020)
showed good performance with only 20 training
examples for sentiment classification. In our
dataset, we achieved performance competitive
with BERT-based-uncased (Li et al., 2019b)
with only 25% of the training data.

In addition to benchmarks and ablation ex-
periments, we explored the role of different
types of confidence thresholding (CT) on the fi-
nal performance of our models. The confidence
threshold, φ, filters out unsupervised exam-
ples that fall below φ during UDA, so that the
model does not reinforce its own errors, and
φ is typically increased during training on a
schedule (Xie et al., 2020), namely, linear, log,
and exp.

We found that CT during UDA is important
to the stability and convergence of our models.
Figure 2 shows the training curves for test data
micro-F1 with and without CT. Our models
converge faster with CT, and interestingly, the
curve for our models without CT shows a kink
after ∼1 epoch, where micro-F1 appears to
saturate only to rebound as training continues.
We hypothesize that this kink is the result of
the model initially learning the wrong features,
which are subsequently relearned during further
training. However, the final performance of our
models without CT never reaches those with
CT see Table 4 and Figure 2. This observation
highlights the importance of CT for UDA and
supports other recent work in SSL that have
found success with such concepts (Sohn et al.,
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Figure (2) Rest14 test micro-F1 with and without
confidence thresholding

2020).

5 Summary

We introduced a span-level modification of
the UDA procedure, which, along with post-
training on BERT, achieves performance com-
petitive with state-of-the-art on the restaurant
and laptop domains for ABSA with 75% of the
data. While post-training contributed the most
to overall performance, UDA may be more ef-
ficient on a per data/compute basis. We ob-
served that confidence thresholding is essential
to stabilize model training and achieve greater
performance, and that linear confidence thresh-
old scheduling achieved the best performance
along with single augmentations compared to
multiple augmentations. This work reveals the
benefit of using UDA for span-level tasks and
with post-trained language models.
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Abstract

In this paper, we hypothesize that humor is
closely related to sentiment and emotions. Also,
due to the tremendous growth in multilingual
content, there is a great demand for building
models and systems that support multilingual
information access. To this end, we first ex-
tend the recently released Multimodal Multi-
party Hindi Humor (M2H2) dataset by adding
parallel English utterances corresponding to
Hindi utterances and then annotating each utter-
ance with sentiment and emotion classes. We
name it Sentiment, Humor, and Emotion aware
Multilingual Multimodal Multiparty Dataset
(SHEMuD). Therefore, we propose a multi-
task framework wherein the primary task is
humor detection, and the auxiliary tasks are
sentiment and emotion identification. We de-
sign a multitasking framework wherein we first
propose a Context Transformer to capture the
deep contextual relationships with the input ut-
terances. We then propose a Sentiment and
Emotion aware Embedding (SE-Embedding)
to get the overall representation of a particular
emotion and sentiment w.r.t. the specific humor
situation. Experimental results on the SHEMuD
show the efficacy of our approach and shows
that multitask learning offers an improvement
over the single-task framework for both mono-
lingual (4.86 points ↑ in Hindi and 5.9 points ↑
in English in F1-score) and multilingual (5.17
points ↑ in F1-score) setting.

1 Introduction

Humor (Ritschel et al., 2019, 2020; Song et al.,
2021; Chauhan et al., 2021) is an essential aspect
of daily conversation, and people try to provoke hu-
mor in their talks. Warren et al. (2018) defined hu-
mor as "the nature of experiences to induce laugh-
ter and provide amusement". Humor is a tool by
which anyone can draw the audience’s attention.
Even in a formal conversation, humor may make a

∗The first two authors contributed equally to this work
and are jointly the first authors.

person look more attractive and thus may lead to a
better conclusion.

Irrespective of its relation to intelligence, hu-
mor is inherently a challenging problem to under-
stand. To understand humor, we also take some
additional information into consideration i.e., sen-
timent (Ghosal et al., 2018; Chauhan et al., 2019,
2020a, 2022) and emotion (Russell and Barrett,
1999; Pagé Fortin and Chaib-draa, 2019; Chauhan
et al., 2020b) to help humor detection in conver-
sations. Sentiment and emotion are two aspects
that help each other, which has already been shown
in (Akhtar et al., 2019). We hypothesize that sen-
timent and emotion do not only help each other
(Akhtar et al., 2019) but also help humor. For ex-
ample, it is difficult to decide whether the following
utterance "ar� b� YAp� m�\ m{\ t� Mh�\ K� d l� k� jAtA।
(Oh in old age I would have taken you myself)" is
humorous or not. But, careful observation of the
sentiment (positive) and emotion (happy) of the
speaker helps us understand that the speaker is in a
funny mood and trying to mock his wife.

Sometimes it is difficult for the global audience
to understand any local language like Hindi, so this
is where multilingual comes into the picture. Also,
multilinguality provides freedom for the model to
understand humor; e.g., if the model is unable to
understand the one language’s word (say Hindi)
for a particular utterance, then other languages (say
English) can give a better clue to understand humor.
Thus, we propose a multitask framework in a mul-
tilingual setting wherein the primary task is humor
detection, and the auxiliary tasks are sentiment and
emotion identification.

The main contributions of our proposed research
are as follows;

• We first extend recently released M2H2
dataset by adding parallel English utterances
corresponding to Hindi utterances and then an-
notate each utterance with sentiment and emo-
tion classes. We name it Sentiment, Humor,
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and Emotion aware Multilingual Multimodal
Multiparty Dataset (SHEMuD).

• We propose a Context Transformer to capture
the deep contextual relationship with input
utterance.

• We also propose a Sentiment and Emotion Em-
bedding (SE-Embedding) to obtain the overall
representation of a particular emotion and sen-
timent w.r.t. the specific humor situation.

• We present new state-of-the-art systems for
Humor detection on SHEMuD.

2 Related Work

We have already discussed that sometimes just go-
ing through the utterance text is not enough to un-
derstand humor. The other modalities, such as
visual and acoustic, can provide additional cues. In
natural language processing, understanding humor
from these modalities comes under the boundaries
of multimodal language. Humor may be found in
almost every human-to-human encounter. Some
works (Hasan et al., 2019; Fallianda et al., 2018;
Ritschel et al., 2019, 2020; Mirnig et al., 2017; Pi-
ata, 2020; Song et al., 2021; Vasquez and Aslan,
2021; Sabur et al., 2020; Veronika, 2020; Yang
et al., 2019) on multimodal humor have already
been done.

Hasan et al. (2019) proposed the UR-FUNNY
dataset to aid in the comprehension of multimodal
language utilized in the expression of humor. The
author has also shown the importance of multi-
modality over unimodality. Humor can be created
with any modality. Fallianda et al. (2018) looked
at how humor was created using only verbal media,
both verbal and visual media, and exclusively vi-
sual media. The data was gathered from 74 political
comic strips published in Kompas newspaper. The
author used the General Theory of Verbal Humor
(GTVH) for humor analysis.

Higher pitch or loudness, a faster speaking ca-
dence, or considerable pauses are not characteris-
tics of conversational humor. In the paper, Attardo
et al. (2011) discovered that when people are laugh-
ing or smiling, they are more likely to be humorous.
El Khatib (2020) did two experiments: the first ex-
periment looks at whether untrained people can
recognize the structural aspects of humor in a mul-
timodal text. The second research investigates the
sequence in which textual and visual inputs are

processed (tweets). In another work, Ritschel et al.
(2019) discussed the quality of a conversation and
how conversation partners see one other and are
influenced by irony and irony-related humor.

The Humor Styles Questionnaire (HSQ) dis-
tinguishes four types of humor that can be good
or damaging to one’s mental health. Schneider
et al. (2018) studied to compile research that used
the HSQ to analyze the relationships between dis-
tinct humor types and four distinct aspects of
mental health (self-esteem, life satisfaction, op-
timism, depression). Recently, Chauhan et al.
(2021) proposed Multimodal Multiparty Hindi Hu-
mor (M2H2) dataset for conversations which was
the very first of its kind. Then, the authors em-
ployed two strong baseline setups, viz. MISA1 w/
DialogueRNN and MISA w/ bcLSTM. They used
MISA for fusion and DialogueRNN & bcLSTM for
understanding the contextual relationship among
words.

In comparison to the existing systems, we first
created the SHEMuD by manually annotating each
utterance in the English language and then labeling
each utterance with sentiment and emotion classes.
After that, we design a multitasking framework
wherein we first propose a Context Transformer to
capture the deep contextual relationships with the
input utterances. We then propose a Sentiment and
Emotion aware Embedding (SE-Embedding) to get
the overall representation of a particular emotion
and sentiment w.r.t. the specific humor situation.
Further, to the best of our knowledge, this is the
first attempt at solving the sentiment and emotion
aware humor detection in a multilingual conversa-
tional setting. Empirical results on the SHEMuD
dataset demonstrate that the baselines yield better
performance over the state-of-the-art systems.

3 Datasets

Chauhan et al. (2021) proposed the Multimodal
Multiparty Hindi Humor (M2H2) dataset which
contains 6,191 utterances spoken by 43 speakers
from 13 episodes of a very popular TV series "Shri-
maan Shrimati Phir Se" where each episode is di-
vided into multiple scenes, and each scene is di-
vided into multiple utterances. Each utterance is
annotated with humor/non-humor labels and en-
compasses acoustic, visual, and textual modalities.

We extend the M2H2 dataset (Chauhan et al.,

1MISA:Modality-Invariant and-Specific Representations
for Multimodal Sentiment Analysis
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Hindi Utterances English Utterances Humor Sentiment Emotion
1 ar� b� YAp� m�\ m{\ t� Mh�\ K� d l� k� jAtA। Oh in old age I would have taken you myself. humor positive happy
2 y� log m� J� bh� t mAr rh� h{\। These guys are beating me hard humor positive sad
3 y� EdlzbA khtA h{ nA Ek EpCl� j�m m�\ vo
CoV� ml moV� ml kroXpEt kA eklOtA b�VA
TA , rAiV ?

This Dilruba says that he was the only son of
Chhotumal Motumal Crorepati in his previous
life, right?

non-humor neutral neutral

4 ar� BAI , m�rF aslF vAlF gn yhF\ C� V g{i। Hey brother, my original gun is left here non-humor neutral neutral
5 -VAP vAlo\ ! m�rA mtlb Staff guys! I mean humor negative anger

Table 1: Some samples from annotated dataset

2021) by manually annotating each Hindi utter-
ance with the English language, making it a mul-
tilingual dataset (SHEMuD), and then annotating
each utterance with sentiment and emotion classes.
For sentiment annotation, we consider three sen-
timent classes, namely positive, negative and neu-
tral. While for emotion annotation, we annotate
the dataset with seven emotion values2, viz. anger,
disgust, fear, happy, sad, surprised, and neutral
(c.f. Table 1). We show statistics of SHEMuD in
Table 2.

Statistics Train Dev Test
#Utterances 5000 500 691
#Humor (H) 1830 155 104
#Non-humor (NH) 3170 345 587
#Positive (Ps) 1048 102 197
#Neutral (Nu) 2488 245 307
#Negative (Ng) 1464 153 187
#Anger (Ag) 811 105 130
#Disgust (Dg) 65 19 22
#Fear (Fr) 93 30 40
#Happy (Ha) 648 65 102
#Sad (Sd) 300 55 60
#Surprise (Sp) 306 81 119
#Neutral (Nu) 2777 145 218

Table 2: Dataset statistics for SHEMuD

Please note that humor, many times, is related to
the language as well as the culture. So, we cannot
guarantee that if a Hindi utterance is humorous,
then English will be humorous, but sharing infor-
mation across the languages helps each other in
humor prediction.

3.1 Annotation Guidelines

We employ four Ph.D. students highly proficient
in the Hindi and English languages with prior ex-
perience in labeling sentiment and emotion. The
guidelines for annotation were explained to the an-
notators before starting the annotation process (c.f.
Table 1). The annotators were given data with-
out humor labels and asked first to add English
utterances corresponding to Hindi utterances and

2One emotion per utterance

then annotate every utterance with one emotion and
the sentiment by seeing the context utterances be-
fore annotation. The majority voting scheme was
used for selecting the final emotion and sentiment.
We achieve an overall Fleiss’ (Fleiss, 1971) kappa
score of 0.83, which is considered to be reliable.

3.2 Feature Extraction

For monolingual Hindi and English textual features,
we take the pre-trained Hindi and English embed-
ding using XLM-Roberta3 (Conneau et al., 2019)
(XLM-R). While, for multilinguality, we first train
XLM-R on both English and Hindi (shared embed-
ding) and then we test the result on both Hindi and
English. Thus, we extract multilingual embedding
for Hindi and English.

Similarly, for visual feature extraction, we use
3D-ResNeXt-1014 (Xie et al., 2017) which is
pre-trained on Kinetics at a rate of 1.5 features
per second and a resolution of 112. We use
openSMILE5 (Eyben et al., 2010) for acoustic
feature extraction. It can extract Low-Level De-
scriptors (LLD) and change them using different
filters, functions, and transformations. We use a
tonal low-level features group of openSMILE to
extract the features.

4 Proposed Methodology

This section describes our proposed model,
where we aim to leverage multimodal senti-
ment and emotion information for solving mul-
timodal humor detection in a multitask frame-
work. We depict the overall architecture in Fig-
ure 1. The extended dataset and source code
are available at https://www.iitp.ac.in/
~ai-nlp-ml/resources.html#SHEMuD

3https://huggingface.co/
xlm-roberta-base

4https://github.com/kaiqiangh/
extracting-video-features-ResNeXt

5https://github.com/audeering/
opensmile
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4.1 Context Transformer

We propose a Context Transformer (Contrans) to
capture the deep contextual relationship with in-
put utterance. As we know, contextual utterances
might give essential information when identifying
an input utterance. This necessitates a model that
accounts for such interdependencies and the impact
they may have on the target utterance. We use a
Transformer based approach to capture the flow of
informative triggers across the utterances.

Let us assume, the unimodal features have di-
mension p and each utterance is thus represented
by a feature vector dl,s ∈ Rp, where s represents
the sth utterance in a conversation l. For a conversa-
tion, we collect the feature vectors of the utterances
in DL, which is as follows;

DL = [dl,1, dl,2, . . . , dl,Jl ] ∈ RJl×p (1)

where Jl represents the number of utterances in
a conversation. The matrix DL serves as input to
the Transformer. To learn the representation of DL,
we first map it into the continuous space Uc;

Uc = ui1, u
i
2, . . . , u

i
|DL|

uij = u(dl,1) + pj
(2)

where u(dl,1) & pj are the utterance vectors and
positional embedding of every utterance, respec-
tively. We adopt sine-cosine positional embedding
(Vaswani et al., 2017) as it performs better and does
not introduce additional trainable parameters.

The contextual encoder converts Uc into a list
of hidden representations hi1, h

i
2, . . . , h

i
|Ui|. We use

the last hidden representation hi|Ui| (i.e., the rep-
resentation at the EOS token) as the contextual
representation of the utterance. Therefore, the final
contextual representation of the DL;

DL = hi = hi|DL| + pi (3)

Please note that words and sentences share the
same positional embedding matrix.

For multimodal inputs, we simply concate-
nate the input embeddings and pass them to the
Contrans to capture the deep contextual relation-
ship with the input utterance. We pass the output of
Contrans to Linear Layer then output of this is fed
to two Softmax layers for sentiment and emotion
prediction, respectively.

Figure 1: A contextual transformer based proposed
framework for humor detection where SE-Embedding
stands for Sentiment and Emotion Embedding.

catTAV = Concat(T,A, V )

Conrel = Contrans(catTAV )

Lvec = Linear(Conrel)

Sp = Softmax(Lvec)

Ep = Softmax(Lvec)

(4)

We use a weighted loss function (Kendall et al.,
2018) to teach the model how to weigh the task-
specific losses. We define the loss as Ltotal;

Ltotal =
∑

i

wiLi (5)

where i defines the different tasks i.e., Sentiment
and Emotion. Initially we define w with xavier-
norm for each task.

4.2 Sentiment and Emotion Embedding

We then propose SE-Embedding (SEemb) to obtain
the overall representation of a particular emotion
and sentiment w.r.t. the specific humor situation.
We take output of Linear Layer (vec ∈ Rk), senti-
ment prediction (Sp ∈ R3), and emotion prediction
(Ep ∈ R7) as input.
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Orep = SEemb(Lvec, Sp, Ep) (6)

We then concatenate Sp & Ep and obtain SEp ∈
R10. After that we multiply SEp & Lvec and
get sentiment-emotion aware matrix (SEmat ∈
R10×k).

SEmat = Concat(Sp, Ep)× Lvec (7)

We initially define SEemb with random weights
and later we apply convolve function (*) be-
tween SEemb & SEmat and update the weights
of SEemb.

SEemb = SEemb ∗ SEmat (8)

We use the convolve function to obtain the dis-
crete, linear convolution of SEemb & SEmat. Let
us say there are two one-dimensional input arrays f
& g. So, we compute convolve function between f
& g;

(f ∗ g)[n] =
+∞∑

n=−∞
f [m]g[n−m] (9)

Let us suppose the model predicts the positive
sentiment and happy emotion, then only corre-
sponding vectors from SEemb will go forward be-
cause non-predicted (np) vectors from SEemb may
confuse the model. To achieve this, we convert all
the non-predicted vectors to -1 by first multiplying
with 0 and then adding -1.

SEemb = ∀np (SEemb × 0− 1) (10)

Then, we flatten the SEemb

Fout = Flatten(SEemb) (11)

Motivated by the residual skip connection net-
work (He et al., 2016), we concatenate the output
of Linear Layer (Lvec), Sp, and Ep with the flatten
output and pass to the Transformer Block (Transb)
to learn the relationship between humor and senti-
ment & emotion.

catout = Concat(Fout, Lvec, Sp, Ep)

transout = Transb(catout)
(12)

At last, we pass the output of Transformer Block
to the Sigmoid layer for humor detection.

Hp = Sigmoid(transout) (13)

We use binary cross-entropy loss for humor
detection. Please note that two losses are back-
propagated, one from humor and another from sen-
timent & emotion.

5 Experimental Setup

We evaluate our proposed model on the SHEMuD.
We perform a grid search to find the optimal hyper-
parameters, which are shown in Table 3. We take
five6 utterances as context for a particular input ut-
terance. We implement our proposed model on the
Python-based PyTorch deep learning library. As
the evaluation metric, we employ precision (P), re-
call (R), and F1-score (F1) for sentiment, emotion,
and humor recognition.

Parameters Proposed
Transformer Encoder 2 Layers (Context Transformer, Transformer Block)
Dense layer 1024N, D=0.3
Activations ReLu
Optimizer Adam (lr=1e-3)

Outputs
Softmax (Sent and Emo)

Sigmoid (Humor)
Batch 16
Epochs 60

Table 3: Model configurations

6 Results and Analysis

We divide our experiments into two parts, i.e.,
monolingual and multilingual;

6.1 Monolingual (Multitask vs Single-task)

In monolingual experiments, we evaluate our
proposed model for Hindi and English lan-
guages separately. We perform experiments for
unitask (Humor), bitask (Humor+Sentiment
and Humor+Emotion), and tritask (Hu-
mor+Sentiment+Emotion). We show experimental
results in Table 4. For Hindi tritask (H+S+E), our
proposed model shows an improvement of 4.53
points in precision, 4.1 points in recall, and 3.98
points in F1-score over bitask7 while 4.55 points
in precision, 4.41 points in recall, and 4.86 points
in F1-score over unitask.

We get a similar improvement for English tritask
(H+S+E). For English tritask (H+S+E), our pro-
posed model shows an improvement of 3.63 points
in precision, 4.46 points in recall, and 4.2 points
in F1-score over bitask8 while 5.63 points in preci-

6For fair comparison with M2H2 (2021) as they took five
utterances as context.

7We get a maximum improvement over H+E
8We get a maximum improvement for H+E
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Monolingual Multilingual
Hindi English Hindi English

Labels P R F1 P R F1 P R F1 P R F1
H 71.82 73.91 72.47 74.89 76.64 75.42 74.84 75.89 75.36 78.32 79.25 78.78

H+S 73.42 74.91 74.46 77.63 79.32 78.74 77.11 78.94 78.01 81.22 82.43 81.79
H+E 72.14 74.22 73.35 76.89 77.68 77.12 76.34 77.49 76.91 80.49 81.37 80.92

H+S+E 76.37 78.32 77.33 80.52 82.14 81.32 78.69 80.94 79.79 83.15 84.78 83.95
(a) Experiment results of our proposed model for monolingual and multilingual setting

72

74

76

78

80

82

84

H H+S H+E H+S+E
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(b) Monolingual (Hindi) vs Multilingual (Hindi)
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(c) Monolingual (English) vs Multilingual (English)

Table 4: Experiment results and bar-chart representations of our proposed model for monolingual and multilingual
setting, where H, S, and E represent the humor, sentiment, and emotion, respectively.

Monolingual Multilingual
Hindi English Hindi English

Labels P R F1 P R F1 P R F1 P R F1
T 69.61 72.89 71.21 74.64 76.32 75.47 72.54 73.26 72.89 76.87 78.89 77.86
A 59.71 64.89 62.19 59.71 64.89 62.19 59.71 64.89 62.19 59.71 64.89 62.19
V 58.84 60.57 59.61 58.84 60.57 59.61 58.84 60.57 59.61 58.84 60.57 59.61

T+V 73.77 75.13 74.41 77.71 78.94 78.94 75.97 76.21 75.58 78.67 80.11 79.38
T+A 73.61 76.89 75.21 75.72 77.63 76.65 75.54 76.89 76.20 81.11 82.31 81.70
A+V 70.14 72.36 70.24 70.14 72.36 70.24 70.14 72.36 70.24 70.14 72.36 70.24

T+V+A 76.37 78.32 77.33 80.52 82.14 81.32 78.69 80.94 79.79 83.15 84.78 83.95

Table 5: Modality-wise results of our proposed tritask model (H+S+E) for monolingual and multilingual setting,
where T, A, and V represent the text, acoustic, and visual, respectively.

sion, 5.5 points in recall, and 5.9 points in F1-score
over unitask.

6.2 Multilingual (Multitask vs. Single-task)

In multilingual experiments, we evaluate our pro-
posed model in both languages (i.e., Hindi and
English). We perform similar experiments as
monolingual setup, i.e., unitask (Humor), bitask
(Humor+Sentiment and Humor+Emotion), and tri-
task (Humor+Sentiment+Emotion). We show ex-
perimental results in Table 4. For Hindi tritask
(H+S+E), our proposed model shows an improve-
ment of 2.35 points in precision, 3.45 points in
recall, and 2.88 points in F1-score over bitask9

while 3.85 points in precision, 5.05 points in recall,
and 4.43 points in F1-score over unitask.

We get a similar improvement for English tri-
task (H+S+E). For English tritask (H+S+E), our

9We get a maximum improvement over H+E

proposed model shows an improvement of 2.66
points in precision, 3.41 points in recall, and 3.03
points in F1-score over bitask10 while 4.83 points
in precision, 5.53 points in recall, and 5.17 points
in F1-score over unitask.

For both monolingual and multilingual setups,
we observe that tritask (H+S+E) performance is
better than unitask and bitask for Hindi and English.
Thus, we can say that sentiment and emotion help
to understand humor. We also show the modality-
wise results of our proposed tritask model (H+S+E)
for monolingual and multilingual setting in Table 5.

7 Comparative Analysis

We compare the results obtained from our proposed
model against the existing model M2H2 (Chauhan
et al., 2021). We evaluate our proposed framework
with all the possible combinations i.e., unitask (H),

10We get a maximum improvement over H+E
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Monolingual
Hindi English

M2H2(2021) Proposed M2H2(2021) Proposed
Labels P R F1 P R F1 P R F1 P R F1

H 71.21 72.11 71.67 71.82 73.91 72.47 72.33 74.42 73.35 74.89 76.64 75.42
H+S 73.31 74.21 73.92 73.42 74.91 74.46 77.51 77.79 77.64 77.63 79.32 78.74
H+E 71.11 72.91 72.41 72.14 74.22 73.35 75.13 75.94 75.73 76.89 77.68 77.12

H+S+E 74.71 75.91 75.31 76.37 78.32 77.33 78.71 79.81 79.25 80.52 82.14 81.32

Table 6: Comparative analysis: comparison between M2H2 (2021) and our proposed model in monolingual setting

Multilingual
Hindi English

M2H2(2021) Proposed M2H2(2021) Proposed
Labels P R F1 P R F1 P R F1 P R F1

H 73.47 74.39 73.92 74.84 75.89 75.36 75.21 76.43 75.81 78.32 79.25 78.78
H+S 75.37 76.74 76.04 77.11 78.94 78.01 79.76 80.21 79.98 81.22 82.43 81.79
H+E 74.55 76.21 75.37 76.34 77.49 76.91 77.86 79.48 78.66 80.49 81.37 80.92

H+S+E 76.49 78.61 77.67 78.69 80.94 79.79 81.28 82.49 81.88 83.15 84.78 83.95

Table 7: Comparative analysis: comparison between M2H2 (2021) and our proposed model in multilingual setting

bitask (H+S and H+E) and tritask (H+S+E).
Please note that as the presented model in M2H2

(2021) was the only unitask (H) model without mul-
tilingual, so we made some changes in the model to
make it a multitask model and multilingual. There-
after we obtain the results for unitask (H), bitask
(H+S and H+E) and tritask (H+S+E) for both mono-
lingual and multilingual which are also shown in
Table 6 and Table 7. We divide this into two parts;
i) monolingual and ii) multilingual;

7.1 Monolingual SOTA vs. Proposed
For Hindi, our the proposed tritask model achieves
the best precision of 76.37% (1.66 points ↑), recall
of 78.32% (2.41 points ↑) and F1-score of 77.33%
(2.02 points ↑) compared to precision of 74.71%,
recall of 75.91%, and F1-score of 75.31% of the
M2H2 (2021). We observe that our proposed model
performs better than the state-of-the-art system,
M2H2 (2021). We show the results in Table 6.

Similarly, for English, our the proposed tritask
model achieves the best precision of 80.52% (1.81
points ↑), recall of 82.14% (2.33 points ↑) and
F1-score of 81.32% (2.07 points ↑) compared to
precision of 78.71%, recall of 79.81%, and F1-
score of 79.25% of the M2H2 (2021). We observe
that our proposed model performs better than the
state-of-the-art system, M2H2 (2021).

7.2 Multilingual SOTA vs. Proposed
Similar to monolingual, we observe a similar trend
of improvement for multilingual experiments. We
show the multilingual experiment results in Table 7.

For Hindi, our the proposed tritask model achieves
the best precision of 78.69% (2.2 points ↑), recall
of 80.94% (2.33 points ↑) and F1-score of 79.79%
(2.12 points ↑) compared to precision of 76.49%,
recall of 78.61%, and F1-score of 77.67% of the
M2H2 (2021). We observe that our proposed model
performs better than the state-of-the-art system,
M2H2 (2021).

Similarly, for English, our the proposed tritask
model achieves the best precision of 83.15% (1.87
points ↑), recall of 84.78% (2.29 points ↑) and
F1-score of 83.95% (2.07 points ↑) compared to
precision of 81.28%, recall of 82.49%, and F1-
score of 81.88% of the M2H2 (2021). We observe
that our proposed model performs better than the
state-of-the-art system, M2H2 (2021).

8 Ablation Study

We perform an ablation study to show the efficacy
of SE-Embedding for both monolingual and multi-
lingual. For monolingual, we perform experiments
with and without SE-Embedding. We show the
ablation experimental results in Table 8. As per
the result, we can see when SE-Embedding is used
with models then it shows significant improvement
rather than without SE-Embedding.

Similarly, for multilingual, we perform exper-
iments with and without SE-Embedding. As
per the result (c.f. Table 8), we can see
when SE-Embedding is used with models then it
shows significant improvement rather than without
SE-Embedding.
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Monolingual Multilingual
Hindi English Hindi English

Setup P R F1 P R F1 P R F1 P R F1
w/o SE-Embedding 74.23 77.89 76.01 78.85 80.31 79.42 76.90 78.74 77.80 81.31 82.44 81.87
w/ SE-Embedding 76.37 78.32 77.33 80.52 82.14 81.32 78.69 80.94 79.79 83.15 84.78 83.95

Table 8: Ablation study: comparison between proposed tritask model (H+S+E) w/ SE-Embedding and w/o
SE-Embedding

M2H2 (2021) Proposed
(H+S+E) (H+S+E)

Hindi Utterances English Utterances True Label (Multilingual) (Multilingual)
1 y� log m� J� bh� t mAr rh� h{\। These guys are beating me hard H NH NH,Ng,Sd
2 hAy , VoVo ! hey, Toto! NH H NH,Nu,Nu
3 y� Ep\kF lAI। Pinky brought this H NH H,Nu,Nu
4 ar� BAI , m�rF aslF vAlF gn yhF\
C� V g{i।

Hey brother, my original gun is left here NH H NH,Nu,Nu

5 kOn sF aslF h{ kOn sF nklF h{। which is real which is fake NH H NH,Nu,Ha

Table 9: Error analysis: some correct and incorrect predicted samples by our proposed tritask model (H+S+E) in
multilingual setting.

9 Error Analysis

We perform a detailed analysis to realize the
model’s strengths and weaknesses. To better an-
alyze and justify our proposed model in terms of
quality, we use the same samples (for multilingual
setup), which were wrongly predicted and depicted
in the paper M2H2 (2021). We show these sam-
ples in Table 9. The main motivation for taking
the same samples for error analysis is to show the
performance of our proposed model over state-of-
the-art system. We see that our proposed model
predicts all the utterances correctly except the first
utterance.

Figure 2: The visual frame of Dilruba for saying "y�
log m� J� bh� t mAr rh� h{\। (These guys are beating
me hard)", which shows the sad visual expression

We observe that for the first utterance "y� log
m� J� bh� t mAr rh� h{\। (These guys are beating
me hard)", our proposed model predict negative
sentiment and sad emotion because of the word
"beating" and Dilruba’s facial expression (c.f. Fig-
ure 2) and sad tone. Also, the context utterances

of that utterance are negative. So, this is the rea-
son that our proposed model wrongly predict this
utterance.

10 Conclusion

In this paper, we have proposed an effective deep
learning-based multitask model for humor detec-
tion (primary task) with auxiliary tasks, i.e., senti-
ment and emotion, in a multilingual conversational
setting. As there was no suitable data available
for this problem, we first extend recently released
M2H2 dataset by adding parallel English utterances
corresponding to Hindi utterances and made it a
multilingual dataset. Then, we annotate each ut-
terance with sentiment and emotion classes. We
have proposed a multitasking framework wherein
we propose a Context Transformer to capture the
deep contextual relationships with the input utter-
ances. We have also successfully established a Sen-
timent and Emotion Embedding (SE-Embedding)
which gets the overall representation of a particular
emotion and sentiment w.r.t. the specific humor
situation. Experimental results on the SHEMuD
have shown that the multitask system yields better
performance over the single-task framework.

In the future, we would like to extend our work
towards the multiparty dialogue generation in Hindi
with the help of humor, sentiment, emotion and
speaker information.

11 Ethical Declaration

The SHEMuD dataset is freely available and will be
used only for the purpose of academic research. We
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create SHEMuD by extending the M2H2 dataset
with English utterances and labeling each utterance
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Abstract

Causal Emotion Entailment (CEE) aims to
discover the potential causes behind an emo-
tion in a conversational utterance. Previous
works formalize CEE as independent utter-
ance pair classification problems, with emo-
tion and speaker information neglected. From
a new perspective, this paper considers CEE
in a joint framework. We classify multiple
utterances synchronously to capture the cor-
relations between utterances in a global view
and propose a Two-Stream Attention Model
(TSAM) to effectively model the speaker’s
emotional influences in the conversational his-
tory. Specifically, the TSAM comprises three
modules: Emotion Attention Network (EAN),
Speaker Attention Network (SAN), and inter-
action module. The EAN and SAN incor-
porate emotion and speaker information in
parallel, and the subsequent interaction mod-
ule effectively interchanges relevant informa-
tion between the EAN and SAN via a mu-
tual BiAffine transformation. Extensive ex-
perimental results demonstrate that our model
achieves new State-Of-The-Art (SOTA) perfor-
mance and outperforms baselines remarkably.

1 Introduction

With the recent proliferation of open conversational
data on social media platforms, such as Twitter
and Facebook, Emotion Analysis in Conversations
(EAC) has become a popular research topic in the
field of Natural Language Processing (NLP). Most
of the existing works on EAC mainly focus on Emo-
tion Recognition in Conversations (ERC), i.e., rec-
ognizing emotion labels of utterances (e.g., happy,
sad, etc.) (Poria et al., 2017, 2019b; Wang et al.,
2020; Zhang et al., 2020). However, Poria et al.
(2021) point out that these studies lack further rea-
soning about emotions, such as understanding the

∗This work was done when Duzhen Zhang was interning
at Pattern Recognition Center, WeChat AI, Tencent Inc, China.

†Corresponding author.

1, SA

2, SB

You know I am getting married!

Wow! That’s great news. 
Who is the lucky person?

excited

happy

1, SA

2, SB

I  like winter.

Me too.

happy

neutral

3, SA
It’s snowing heavily. What about taking a 
 walk? happy

4, SB That’s a good idea. Let’s go! happy

5, SA

happy
What a heavy snow! Look! The water is  
frozen.

a)

b)

Figure 1: Example conversations sampled from the
benchmark dataset (Poria et al., 2021)

stimuli and the cause of the emotion. Since Rec-
ognizing Emotion Cause in Conversations (REC-
CON) holds the potential to improve the inter-
pretability and performance of affect-based mod-
els, Poria et al. (2021) put forward a new promising
task, named RECCON, which includes two differ-
ent sub-tasks: Causal Span Extraction (CSE) at
word/phrase level and Causal Emotion Entailment
(CEE) at utterance level. Due to the simplicity and
sufficiency describing emotion causes at the utter-
ance level, we focus on the CEE task in this paper,
whose goal is to predict which particular utterances
in the conversational history contain the cause of
non-neutral emotion in the target utterance.

Compared to the Emotion Cause Extraction
(ECE) in news articles (Gui et al., 2016a; Xia and
Ding, 2019), CEE is particularly challenging due to
the informal expression style and the intermingling
dynamic among interlocutors. Poria et al. (2021)
consider CEE as a set of independent utterance pair
classification problems and neglect the emotion and
speaker information in the conversational history.
Thus, they can neither capture the correlations be-
tween contextual utterances in a global view nor
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model the speaker’s emotional influences, namely
the intra-speaker and inter-speaker emotional influ-
ences.1 Intra-speaker emotional influences mean
that the cause of the emotion is primarily due to
the speaker’s stable mood induced from previous
dialogue turns. As shown in Figure 1 (a), utterance
1 establishes the concept that Speaker A (SA) likes
winter, which triggers a happy mood for future
utterances 3 and 5. Inter-speaker emotional influ-
ences mean that the emotion of the target speaker
is induced from an event mentioned or emotion
revealed by other speakers. As Figure 1 (b) shows,
SB’s happy emotion may be triggered by the event
“getting married” mentioned by SA, or by the fact
that SA is excited about getting married.

To remedy this defect, we tackle CEE in a joint
framework. We classify multiple utterances syn-
chronously to capture the correlations between con-
textual utterances and propose a TSAM to effec-
tively model the speaker’s emotional influences in
the conversational history. Specifically, the TSAM
contains three modules: EAN, SAN, and inter-
action module. The EAN provides utterance-to-
emotion interactions to incorporate emotion infor-
mation by performing attention over emotion em-
beddings. The SAN represents different speaker
relations between utterances in a graph, which pro-
vides utterance-to-utterance interactions to incor-
porate speaker information by performing attention
over the speaker relation graph. These two modules
incorporate emotion and speaker information in par-
allel. Moreover, inspired by (Li et al., 2021a; Tang
et al., 2020), the interaction module interchanges
relevant information between the EAN and SAN
through a mutual BiAffine transformation. Finally,
the entire TSAM can be stacked in multiple layers
to refine iteratively and interchange emotion and
speaker information.

• For the first time, we tackle CEE in a joint
framework to capture the correlations between
contextual utterances in a global view.

• We propose a TSAM to model the speaker’s
emotional influences in the conversational his-
tory, which contains EAN, SAN, and interac-
tion module to incorporate and interchange
emotion and speaker information.

• Experimental results on the benchmark
dataset (Poria et al., 2021) demonstrate the

1The speaker’s emotional influences are predominant types
of emotion causes in the dataset as shown in Table 1.

effectiveness of our proposed model, surpass-
ing the SOTA model significantly.

2 Related Work

ECE Early works mainly exploit rule-based
methods (Lee et al., 2010a,b; Chen et al., 2010)
to identify the potential causes for certain emotion
expressions in the text. Gui et al. (2016a) first re-
lease a public annotated dataset for ECE, and based
on which some feature based (Gui et al., 2016b)
and neural based methods (Gui et al., 2017; Li et al.,
2018; Ding et al., 2019; Xia et al., 2019; Yan et al.,
2021; Li et al., 2021b) appear. To extract emotion
and its corresponding cause jointly, Xia and Ding
(2019) first put forward the Emotion-Cause Pair
Extraction (ECPE) task and tackle it by a two-step
method. Subsequently, many improved methods
are proposed to tackle ECPE in an end2end man-
ner (Ding et al., 2020a,b; Yuan et al., 2020; Fan
et al., 2020; Wei et al., 2020; Cheng et al., 2020;
Chen et al., 2020a,b). However, these works men-
tioned above use news articles as the target corpus
for ECE, which largely reduces reasoning complex-
ity. By contrast, CEE is more challenging due to
the intermingling dynamic among interlocutors and
the informal expression style.

ERC Recently, due to the proliferation of pub-
licly available conversational datasets (Zhou et al.,
2018; Chen et al., 2019; Poria et al., 2019a; Chat-
terjee et al., 2019; Xie et al., 2022), there is a grow-
ing number of studies on ERC (Hazarika et al.,
2018a,b; Majumder et al., 2019; Zhong et al., 2019;
Jiao et al., 2019; Ghosal et al., 2020b; Ishiwatari
et al., 2020; Ghosal et al., 2020a; Shen et al., 2021;
Zhu et al., 2021; Hu et al., 2021; Guibon et al.,
2021; Zhao et al., 2022; Peng et al., 2022). Al-
though substantial progress has been made in ERC,
these studies lack further reasoning about emotions,
such as understanding the stimuli or the cause of an
emotion expressed by a speaker (Poria et al., 2021).

RECCON For further reasoning about emo-
tions, Poria et al. (2021) propose a new task named
RECCON, which contains two different sub-tasks:
CSE at word/phrase level and CEE at utterance
level. Poria et al. (2021) formalize CEE as a set of
independent utterance pair classification problems,
neglecting the emotion and speaker information in
the conversational history. Specifically, they pair a
target utterance with each utterance in its conversa-
tional history and determine whether the utterance

6763



SAN

...

...

...

...

RoBERTa

[CLS]

[SEP]
[CLS]

[SEP]
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[SEP]
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Figure 2: The top is the proposed model’s entire architecture, and the bottom is the detailed architecture of model
components: (a) EAN, (b) SAN. First, we obtain the contextual representation for each utterance with RoBERTa.
Then, the TSAM is utilized to model the speaker’s emotional influences in the conversational history. Finally, the
cause prediction module is used to output the predictions.

contains the cause of emotion in the target utter-
ance. Thus, they cannot capture the correlations
between contextual utterances in a global view and
fail to model the speaker’s emotional influences in
the conversational history. From a new perspective,
we tackle CEE in a joint framework. We encode
and classify multiple utterances synchronously to
capture the correlations in a global view and pro-
pose a TSAM to model the speaker’s emotional
influences effectively.

3 Task Definition

We first define the task of CEE formally. For a
target utterance ut, i.e., the tth utterance in the
conversation, the goal of CEE is to predict which
particular utterances in the conversational history
L(ut) = (u1, u2, ..., ut) are responsible for the
non-neutral emotion in the target utterance. ui is
set as a positive example if it contains the cause
of non-neutral emotion in the target utterance and
a negative example otherwise, where i = 1, ..., t.
The independent utterance pair classification frame-
work (Poria et al., 2021) performs t independent
classifications, each of which takes (ut, ui) as in-

put. Therefore, it fails to capture the correlations
between contextual utterances in a global view. On
the contrary, the proposed joint classification frame-
work only performs one joint classification with
L(ut) as input, which makes it possible to capture
the correlations between contextual utterances.

4 Method

The proposed model consists of three components:
the contextual utterance representation, the TSAM,
and the cause prediction modules. The whole ar-
chitecture of our model is illustrated in Figure 2.

4.1 Contextual Utterance Representation

The pre-trained RoBERTa is utilized as the utter-
ance encoder, and we extract the contextual utter-
ance representations by feeding the whole of the
conversational history L(ut) into the RoBERTa
(Liu et al., 2019). Specifically, each utterance in
L(ut) is expanded to start with the token “[CLS]”
and end with the token “[SEP]”. The input represen-
tation for each token is the sum of its corresponding
token and position embeddings. The contextual rep-
resentation hui ∈ Rdh for utterance ui is the output
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of the corresponding “[CLS]” token, where dh de-
notes the dimension of the utterance representation.
The contextual representation for all utterances is
denoted as Hu ∈ Rt×dh . The RoBERTa we uti-
lized is fine-tuned with the training process.

4.2 TSAM
The TSAM models the speaker’s emotional influ-
ences with three modules: EAN, SAN, and Inter-
action. We first illustrate the calculation process of
each module in one-layer TSAM and then general-
ize it to multiple successive layers.

4.2.1 EAN
The EAN provides utterance-to-emotion interac-
tions to explicitly incorporate emotion information
by performing attention over emotion embeddings.

Emotion Representation Given the set of candi-
date emotion labels E = {e1, ..., e|E|}, each emo-
tion label ek is represented using an embedding
vector (Cui and Zhang, 2019):

xek = Embed(ek) ∈ Rdh (1)

where k = 1, ..., |E|, dh denotes the dimension
of the emotion embedding. Embed represents an
emotion embedding lookup table, which is initial-
ized by contextual embeddings from RoBERTa and
tuned during model training. The embedding for
the set of the whole emotion labels is denoted as
Xe ∈ R|E|×dh .

EAN Inference With the emotion labels repre-
sented as embeddings, we extract the emotion in-
formationHe ∈ Rt×dh by performing dot-product
attention over contextual utterance representations
and emotion embeddings, which is calculated as:

He = attention(Q,K,V ) = αV (2)

α = softmax(
QKT

√
dh

) (3)

where Q = Hu,K = V = Xe, α ∈ Rt×|E| is
an attention matrix consisting of potential emotion
distributions for all utterances. Compared to the
standard attention mechanism above, it may be ben-
eficial to use multi-head attention (Vaswani et al.,
2017) to capture multiple emotion distributions in
parallel and obtain richer emotion information:

He = concat(head1, ..., headm) (4)

headj = attention(QWQ
j ,KW

K
j ,VW

V
j ) (5)

where WQ
j ,W

K
j ,W

V
j ∈ Rdh×

dh
m are learnable

parameters and m is the number of parallel heads.
Since the emotion labels of the utterances in

the conversational history are known, we can also
simply use the embedding of emotion label corre-
sponding to the utterance as the extracted emotion
information:

He = X̃e (6)

where X̃e ∈ Rt×dh is the embedding of emotion
labels corresponding to all utterances in the his-
tory. We refer to the method as Direct Application
Emotional Embedding (DAEE). Compared with
DAEE, the potential advantages of the EAN are
as follows: (1) The EAN can provide utterance-to-
emotion interactions and capture multiple potential
emotion distributions through multi-head attention
to obtain more comprehensive and richer emotion
information; (2) The soft emotion distributions can
model the mutual impact among different emotions
for further enhancement of emotion embeddings,
while each emotion embedding is relatively inde-
pendent of each other in DAEE; (3) The EAN can
avoid emotion annotation errors to a certain extent.
We apply EAN in our model to incorporate emo-
tion information by default and compare the EAN
and DAEE in the part of experiments.

4.2.2 SAN

The SAN provides utterance-to-utterance interac-
tions to incorporate speaker information by per-
forming attention over the speaker relation graph.

Graphical Structure We define a conversational
history with t utterances as a graph G = (V, E ,R),
with nodes (utterances) vi ∈ V and labeled edges
(relations) (vi, r, vj) ∈ E , where r ∈ R is a rela-
tion type. We also add a self-loop edge to every
node, as the cause may be present within the target
utterance itself. The representation of node vi is
initialized with the contextual utterance represen-
tation hui ∈ Rdh , i.e., the ith embedding in Hu.
There are two relation types of edges: (1) Intra
relation type: how the utterance influences other
utterances (including itself) expressed by the same
speaker; (2) Inter relation type: how the utterance
influences ones expressed by other speakers.

SAN Inference The representation of a node hi
is updated by aggregating representations of its
neighborhoodN r(i) under the relation type r. The
graph attention mechanism (Veličković et al., 2018)
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is used to attend to the neighborhood’s representa-
tions. The output of a node hsi ∈ Rdh is calculated
as the sum of the hidden features hir ∈ Rdh under
relation r. The propagation is defined as follows:

αijr = softmaxi(LRL(aTr [Wrh
u
i ;Wrh

u
j ])) (7)

hir =
∑

j∈N r(i)
αijrWrh

u
j (8)

hsi =
∑

r∈R
hir (9)

where αijr denotes the edge weight from utterance
ui to its neighborhood uj under relation type r,
Wr ∈ Rdh×dh and ar ∈ Rdh denote a learnable
weight matrix and a vector for each relation type
r respectively. LRL denotes LeakyReLU activation
function. The updated representation of all nodes
is denoted asHs ∈ Rt×dh .

4.2.3 Interaction Module
To effectively interchange relevant information be-
tween the EAN and SAN, we apply a mutual Bi-
Affine transformation as a bridge. The calculation
process is formulated as follows:

A1 = softmax(HeW1(H
s)T ) (10)

A2 = softmax(HsW2(H
e)T ) (11)

He′ = A1H
s (12)

Hs′ = A2H
e (13)

whereW1,W2 ∈ Rdh×dh are trainable parameters
and A1,A2 ∈ Rt×t are temporary alignment ma-
trices projecting from Hs to He and He to Hs,
respectively. Here,He′ ∈ Rt×dh can be viewed as
a projection from Hs to He , and Hs′ ∈ Rt×dh
follows the same principle.

4.2.4 The Whole Process
We generalize the TSAM to multiple successive
layers to iteratively refine and interchange emotion
and speaker information. The detailed procedures
are as follows:

He
l = EAN(El,X

e) (14)

Hs
l = SAN(Sl) (15)

He′
l ,H

s′
l = Interaction(He

l ,H
s
l ) (16)

El+1,Sl+1 =H
e′
l ,H

s′
l (17)

whereE0 = S0 =H
u. The TSAM can be stacked

in L layers and l ∈ [0, L− 1].

Statistics RECCON-DD

Data
Distributions

Train
Positive 7269
Negative 20646

Dev
Positive 347
Negative 838

Test
Positive 1894
Negative 5330

Cause
Type

Distributions

No Context 43%
Inter 32%
Intra 9%

Hybrid 11%
Unmentioned 5%

Table 1: Statistics of the RECCON-DD dataset. No
Context: The cause is present within the target ut-
terance itself; Inter: Inter-speaker emotional influ-
ences; Intra: Intra-speaker emotion influences (Self-
Contagion); Hybrid: Inter and Intra can jointly cause
the emotion of an utterance; Unmentioned: Some in-
stances have no explicit emotion causes in the conver-
sational history.

4.3 Cause Prediction
We obtain the final utterance representation for ui
by concatenating the output (EL,SL) of the L-
layer TSAM. Finally, the concatenated vector is
classified using a Fully-Connected Network (FCN):

li = ReLU(W1[e
L
i ; s

L
i ] + b1) (18)

ŷi = sigmoid(W2li + b2) (19)

where ŷi is the probability for utterance ui con-
taining the cause of emotion in the target utter-
ance, eLi , s

L
i ∈ Rdh denote the ith embedding in

EL and SL, respectively, W1 ∈ Rdh×2dh ,W2 ∈
R1×dh , b1 ∈ Rdh and b2 are learnable parameters
of FCN.

5 Experimental Settings

5.1 Dataset and Evaluation Metrics
We evaluate the proposed model on a benchmark
dataset for RECCON, named RECCON-DD (Poria
et al., 2021), which is constructed based on Daily-
Dialog dataset (Li et al., 2017).2 Some statistics
about RECCON-DD are reported in Table 1. Fol-
lowing (Poria et al., 2021), the macro-averaged F1
score is utilized as the evaluation metric in this pa-
per. We also report the F1 score for both positive
and negative samples, denoted as Pos. F1 and Neg.
F1 respectively.

2DailyDialog is a natural human communication dataset
which is usually used in ERC task. It contains utterance-level
emotion labels and covers various topics related to daily lives.
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# Model
W/O CH W/ CH

Pos. F1 Neg. F1 macro F1 Pos.F1 Neg.F1 macro F1
0 INDEPbase 56.64 85.13 70.88 64.28 88.74 76.51
1 INDEPlarge 50.48 87.35 68.91 66.23 87.89 77.06
2 JOINTbase - - - 66.61 89.11 77.86
3 JOINTlarge - - - 68.30 89.16 78.73
4 Oursbase - - - 68.59 89.75 79.17
5 Ourslarge - - - 70.00† 90.48† 80.24†

Table 2: Performance of our model and baselines on the test set of RECCON-DD. Bold font denotes the best
performance. “Ours” denotes the proposed model without removing any module (“Ours” = “JOINT” + TSAM). “†”
denotes that Ourslarge is statistically significant (Koehn, 2004) better than INDEPlarge W/ CH (p-value < 0.05).

5.2 Baselines
For a comprehensive performance evaluation, we
compare our model with the following baselines:

(1) INDEPbase (Poria et al., 2021) It tackles CEE
in an independent classification framework (IN-
DEP) and uses the RoBERTa-Base model (Liu
et al., 2019) as the utterance encoder. The input is
formated as "[CLS]ut[SEP]ui[SEP]" and the clas-
sification is performed from the final representation
of the token "[CLS]".

(2) INDEPlarge (Poria et al., 2021) Compared to
(1), it uses the RoBERTa-Large model as utterance
encoder;

(3) JOINTbase It’s one of the variants of our
model, where the TSAM is removed. It tackles
RECCON in a joint classification framework
(JOINT) and uses the RoBERTa-Base model as the
utterance encoder. Moreover, its input format is
"[CLS]u1[SEP][CLS]u2[SEP],...,[CLS]ut[SEP]"
and the classifications are performed syn-
chronously from the corresponding contextual
utterance representations of the [CLS] tokens;

(4) JOINTlarge Compared to (3), it uses
RoBERTa-Large model as the utterance encoder.

For INDEP baselines, there are two different
settings: With Conversational History (W/ CH)
and Without Conversational History (W/O CH).
W/ CH means considering the conversational his-
tory. When performing utterance pair classification,
the conversational history L(ut) is concatenated af-
ter the input to incorporate contextual information,
while W/O CH means ignoring the history.

5.3 Implementation Details
Our model’s base and large versions use pre-trained
RoBERTa-Base and RoBERTa-Large models as the

utterance encoders, respectively.3 The binary cross-
entropy loss along with L2-regularization is used
during training, where the coefficient of L2 term
is 0.01 in the RoBERTa structure and 1e-5 in other
structures. We set the dropout rate to 0.1. The
learning rate and the batch size are set as 1e-5 and
2, respectively. Our model is trained with the Adam
optimizer (Kingma and Ba, 2015). We set the di-
mensions of the contextual utterance representation
dh as 768/1024 in the Base/Large version of the
proposed model. We use 4-head attention in EAN,
and the number of TSAM layers L is set to 3. We
train the model for 40 epochs in total and use the
early stopping strategy based on the performance
on the development set. Then, the model with the
highest macro-averaged F1 score is used to evalu-
ate the test set. Other hyper-parameters are selected
according to the performance of the development
set. All of the experiments are conducted on an
NVIDIA V100 GPU with 32GB of memory.

6 Results and Discussions

6.1 Main Results

Experimental results are reported in Table 2. We
directly cite the results for the baselines reported
in (Poria et al., 2021). For the performance of
each model we implemented, we report the average
score of 5 runs. From Table 2, we can find that
the proposed model (#5) outperforms all of the
baselines and surpasses the best model (#1, W/
CH) in (Poria et al., 2021) with more than 3 points
of macro F1 score.

Further comparisons show that models with the
large pre-trained utterance encoder are more likely

3Our RoBERTa models are adapted from this im-
plementation: https://github.com/huggingface/
transformers

6767



to achieve better performance (about 1 point of
macro F1 score) than the corresponding models
with the base one, except for the models under
W/O CH setting in the Table 2. By comparing
two different settings W/O CH and W/ CH in
Table 2, we can find that the conversational his-
tory plays a significant role for INDEPbase and
INDEPlarge models. This is mainly because that
the conversational history is able to provide the
contextual information for prediction. Due to the
simultaneous classification of multiple utterances
in the conversational history under the joint frame-
work, JOINTbase and JOINTlarge models can natu-
rally incorporate the contextual information. The
JOINTbase and JOINTlarge models significantly
outperform the INDEPbase W/ CH and INDEPlarge
W/ CH models by about 1.5 points of macro F1
scores respectively (comparing #0 with #2, and #1
with #3 in Table 2). There may be two main fac-
tors: 1) Simply concatenating the conversational
history after the utterance pair to be classified in
INDEP W/ CH models may destroy the structure
of the conversation; 2) Compared to INDEP W/
CH models, classification of multiple utterances
synchronously in JOINT models will have more
sufficient supervision signals and can more effec-
tively model the correlations between contextual
utterances in a global view, i.e., utterances with sim-
ilar semantics are supposed to have similar chances
being the emotion cause. The comparison between
#2 and #4 (or #3 and #5) in Table 2 shows the effec-
tiveness of the proposed TSAM. The model with
TSAM (#5) achieves an improvement up to 1.51
points of macro F1 score than the model without
TSAM (#3).

6.2 Ablation Study

In this subsection, we conduct ablation studies to
analyze the effects of different components based
on Ourslarge mentioned in Table 2.

Effect of Emotion Information We compare
three different ways for incorporating the emotion
information: no emotion information incorporated,
incorporating emotion information with direct ap-
plication emotional embedding, and incorporating
emotion information with EAN. The results are
shown in Table 3. We can find that the performance
of the proposed model degrades if the emotion in-
formation is not incorporated (comparing row 1
with 3 in Table 3). This result shows that the emo-
tion information in the conversational history plays

Emotion Information Pos. F1 Neg. F1 macro F1
No 68.40 89.80 79.10

DAEE 68.90 90.03 79.47
EAN 70.00 90.48 80.24

Table 3: Comparison of different ways of incorporat-
ing emotion information. No: no emotion information
incorporated; DAEE: incorporating the emotion infor-
mation with direct application emotional embedding.

a significant role in the task of CEE. By comparing
rows 2 with 3 in Table 3, the result shows that EAN
achieves better performance than DAEE since EAN
can extract richer emotion information and model
the mutual impact among different emotions.

Effect of Speaker Information To evaluate the
effects of speaker information, we remove the
speaker relations in SAN, resulting in a single edge
relation throughout the graph. As Table 4 shows,
the performance of our model decreases dramat-
ically if not considering the speaker information.
This result presents that modeling the speaker in-
formation in the conversational history is very im-
portant for the final performance.

Speaker Information Pos. F1 Neg. F1 macro F1
Not Consider 67.99 89.42 78.71

Consider 70.00 90.48 80.24

Table 4: Results on experiments whether considering
speaker information or not in SAN.

Effect of Interaction Module We remove the
interaction module in each layer so that the EAN
and SAN can’t interact. As Table 5 shows, the
performance of our model decreases dramatically
when the interaction module is removed. This re-
sult shows that the effective interchange of relevant
information between EAN and SAN is conducive
to the final performance.

Pos. F1 Neg. F1 macro F1
W/O Interaction 68.18 88.93 78.56
W/ Interaction 70.00 90.48 80.24

Table 5: Results on experiments whether removing in-
teraction module or not in TSAM.

Ability on Modeling Emotional Influences To
evaluate the proposed model’s ability to model the
speaker’s emotional influences, we collect the pos-
itive examples from the test set where the causes
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Models Intra Inter
W/O TSAM 62.06 72.67
W/ TSAM 63.82 74.81

Table 6: Accuracy on the collected samples. In-
tra: Intra-speaker emotional influences; Inter: Inter-
speaker emotional influences.

are induced from the inter-speaker or intra-speaker
emotional influences. And we test the prediction
accuracy on the collected samples for the proposed
Ourslarge with and without TSAM. As shown in
Table 6, W/ TSAM outperforms W/O TSAM by
around 2 points on both cause types, which further
verifies that the TSAM can effectively model the
emotional influences between speakers.

6.3 Impact of the TSAM Layer Number

Since TSAM for modeling speakers’ emotional
influences is the critical component of our model,
we chose the number of TSAM layers L (ranging
from 1 to 5) on the development set of RECCON-
DD. As shown in Figure 3, our model with three
TSAM layers achieves the best performance. On
the one hand, emotion and speaker information
may not be refined and interchanged well when the
number of layers is small. On the other hand, if the
number of layers is excessive, the performance will
decrease, possibly due to information redundancy.

1 2 3 4 5
TSAM layers L
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79
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81

82

83

84
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Figure 3: Results of Ourslarge with various TSAM lay-
ers on the development set of RECCON-DD.

6.4 Error Analysis

By analyzing our predicted emotion causes, we
find that the following aspects mainly cause the
predicted errors. Firstly, our model weakly gives
the correct predictions for target utterances with

three or more causes.4 Compared to the utterances
with 1 or 2 causes, the proposed model dropped six
macro F1 scores on utterances with multiple causes.
Secondly, our model cannot predict well when the
underlying emotional cause is latent. At this point,
recognizing emotion causes may require complex
reasoning steps, and commonsense knowledge is
an integral part of this process. We take the case
below as an example:

• SA (happy): Hello, thanks for calling 123
Tech Help. I’m Todd. How can I help you?

• SB (fear): Hello? Can you help me? My
computer! Oh, man...

In this case, SA is happy to help SB . In this exam-
ple, the cause of happy emotion is due to the event
“greeting” or intention to provide help. On the other
hand, SB is fearful because his or her computer is
broken. Both speakers’ causes of elicited emotions
can only be inferred using commonsense knowl-
edge, which our model does not explicitly consider.

7 Conclusion and Future Work

For the first time, we tackle CEE in a joint
framework. We classify multiple utterances syn-
chronously to capture the correlations between con-
textual utterances in a global view and propose a
TSAM to effectively model the speaker’s emotional
influences. Experimental results on the benchmark
dataset show that our model significantly outper-
forms the SOTA model, and further analysis ver-
ifies the effectiveness of each component. This
paper points out a new reliable route for follow-
up works: incorporating the emotion and speaker
information explicitly and modeling the speaker’s
emotional influences effectively can bring enor-
mous benefits for the tasks similar to CEE.

In the future, we would explore three aspects:
(1) Learn emotion recognition and emotion cause
recognition in conversations jointly; (2) Apply our
model to other similar tasks which need to incorpo-
rate the speaker and emotion information; (3) In-
corporate commonsense knowledge into the model
explicitly to address situations when the underlying
emotion cause is latent.

4Utterances with 3 or more causes account for approxi-
mately 14% of the RECCON-DD dataset
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. In International
Conference on Learning Representations.

Yan Wang, Jiayu Zhang, Jun Ma, Shaojun Wang, and
Jing Xiao. 2020. Contextualized emotion recogni-
tion in conversation as sequence tagging. In Pro-
ceedings of the 21th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
186–195.

Penghui Wei, Jiahao Zhao, and Wenji Mao. 2020.
Effective inter-clause modeling for end-to-end
emotion-cause pair extraction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3171–3181.

Rui Xia and Zixiang Ding. 2019. Emotion-Cause Pair
Extraction: A New Task to Emotion Analysis in
Texts. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1003–1012.

Rui Xia, Mengran Zhang, and Zixiang Ding. 2019.
RTHN: A RNN-Transformer Hierarchical Network
for Emotion Cause Extraction. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2019, Macao, China, Au-
gust 10-16, 2019, pages 5285–5291.

Yuqiang Xie, Yue Hu, Wei Peng, Guanqun Bi, and
Luxi Xing. 2022. Comma: Modeling relation-
ship among motivations, emotions and actions in
language-based human activities.

Hanqi Yan, Lin Gui, Gabriele Pergola, and Yulan He.
2021. Position Bias Mitigation: A Knowledge-
Aware Graph Model for Emotion Cause Extrac-
tion. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume
1: Long Papers), Virtual Event, August 1-6, 2021,
pages 3364–3375.

Chaofa Yuan, Chuang Fan, Jianzhu Bao, and Ruifeng
Xu. 2020. Emotion-cause pair extraction as se-
quence labeling based on a novel tagging scheme.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3568–3573.

Duzhen Zhang, Xiuyi Chen, Shuang Xu, and Bo Xu.
2020. Knowledge Aware Emotion Recognition in
Textual Conversations via Multi-Task Incremental
Transformer. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4429–4440.

Weixiang Zhao, Yanyan Zhao, and Xin Lu. 2022.
CauAIN: Causal Aware Interaction Network for
Emotion Recognition in Conversations. In Proceed-
ings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022, pages 4524–4530.

Peixiang Zhong, Di Wang, and Chunyan Miao. 2019.
Knowledge-Enriched Transformer for Emotion De-
tection in Textual Conversations. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 165–176.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Lixing Zhu, Gabriele Pergola, Lin Gui, Deyu Zhou,
and Yulan He. 2021. Topic-Driven and Knowledge-
Aware Transformer for Dialogue Emotion Detec-
tion. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume
1: Long Papers), Virtual Event, August 1-6, 2021,
pages 1571–1582.

6772



Proceedings of the 29th International Conference on Computational Linguistics, pages 6773–6783
October 12–17, 2022.

Entity-Level Sentiment Analysis (ELSA):
An exploratory task survey

Egil Rønningstad and Erik Velldal and Lilja Øvrelid
University of Oslo

Department of Informatics
{egilron,erikve,liljao}@ifi.uio.no

Abstract
This paper explores the task of identifying
the overall sentiment expressed towards voli-
tional entities (persons and organizations) in a
document – what we refer to as Entity-Level
Sentiment Analysis (ELSA). While identify-
ing sentiment conveyed towards an entity is
well researched for shorter texts like tweets,
we find little to no research on this specific
task for longer texts with multiple mentions
and opinions towards the same entity. This
lack of research would be understandable if
ELSA can be derived from existing tasks and
models. To assess this, we annotate a set of pro-
fessional reviews for their overall sentiment to-
wards each volitional entity in the text. We sam-
ple from data already annotated for document-
level, sentence-level, and target-level sentiment
in a multi-domain review corpus, and our re-
sults indicate that there is no single proxy task
that provides this overall sentiment we seek
for the entities at a satisfactory level of per-
formance. We present a suite of experiments
aiming to assess the contribution towards ELSA
provided by document-, sentence-, and target-
level sentiment analysis, and provide a discus-
sion of their shortcomings. We show that senti-
ment in our dataset is expressed not only with
an entity mention as target, but also towards
targets with a sentiment-relevant relation to a
volitional entity. In our data, these relations
extend beyond anaphoric coreference resolu-
tion, and our findings call for further research
of the topic. Finally, we also present a survey
of previous relevant work.

1 Introduction

Over the course of the last two decades, the field
of NLP has generated a vast body of research on
sentiment analysis (SA), i.e. the task of identifying
opinions expressed in text. Prior work has focused
on a range of different levels of analysis; from
document- or sentence-level polarity classification
to more fine-grained prediction of various compo-
nents of opinions, like source/holder expressions,

polar expressions, target expressions and aspect-
based sentiment classification.

However, we observe that a more aggregated
level of analysis, what we here dub "entity-level
sentiment analysis" (or ELSA for short), remains
under-explored. For our purposes, we will de-
fine ELSA as the task of determining the overall
(i.e. document-level) polarity (positive/negative)
expressed towards an entity in a text. Moreover,
for the current paper we will restrict the discus-
sion to volitional entities, like persons (PER) or
organizations (ORG).

A given text might make reference to multi-
ple distinct entities, each of which might be men-
tioned multiple times, both directly and indirectly,
and also have multiple opinions directed towards
them. Hence, solving the task of ELSA in its
full complexity may potentially involve several
different sub-tasks, including (but not necessar-
ily limited to) named entity recognition (NER),
resolution of entity mentions, coreference- and
anaphora-resolution, identification of sentiment tar-
gets and/or aspects and their polarities, and finally
what we here refer to as "target–entity resolution",
i.e. the task of identifying the particular entity with
which a given target expression is associated.

The main goal of this paper is to shed more light
on this task of entity-level sentiment analysis. To
better understand the complexity of the task, we
quantify how far we can potentially get toward the
goal of ELSA by simply building on existing tools
for SA at lower levels. We do this through an ex-
ploratory analysis of an existing SA dataset that
comprises annotations for several levels of gran-
ularity, for which we experiment with different
strategies for aggregating these gold annotations to
infer entity-level sentiment. Importantly, we also
discuss which pieces appear to currently be missing
in order to fully solve ELSA. We start, however, by
surveying relevant prior work, and also discuss the
often diverging terminology used in the field.
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The paper is structured as follows. In Section 2
we first present background literature on the task of
analyzing sentiment towards individual entity rep-
resentations, before we discuss the limited work we
found on resolving sentiment-relevant elements to
the document-level. We found no previous work de-
scribing the ELSA task as we defined it, and very
little in general on resolving sentiment from the
sub-sentence level to the document-level. Section 3
presents the datasets we sample from; Norwegian
data annotated for document-level, sentence-level
and target-level sentiment classification. We also
present our new, exploratory dataset, annotated di-
rectly for document-level sentiment classification
for each volitional entity in the text. In Section 4
we present our results from attempting to derive
ELSA from document-level and sentence-level sen-
timent analysis – what we dub target-independent
approaches. We find that merely locating an en-
tity mention inside a positive document is a very
weak indicator of a positive sentiment towards that
entity. Section 5 presents our findings from deriv-
ing ELSA classification from Targeted Sentiment
Analysis (TSA). Besides discrepancies from anno-
tator disagreement, we find that in order to fully
solve the ELSA task, future work should aim to
add another level of analysis, corresponding to the
relations between sentiment targets and their affili-
ated entities. In Section 6 we report on a baseline
model for ELSA through TSA as a proxy task.

2 Literature review

This section first presents prior work related to
ELSA. We then survey the terminology used in the
literature, comparing this to our suggested defini-
tion of entity-level SA.

2.1 Related work on short texts
Mitchell et al. (2013) introduce the task of iden-
tifying which occurrences of named entities are
sentiment targets in a text, and further to classify
the sentiment towards these as positive or nega-
tive. They narrow the scope of named entities to
volitional entities; i.e. organizations and persons.
Zhang et al. (2015) follow up on this work and
expand on the TSA task description.

The work of Mitchell et al. (2013) is highly re-
lated to our task in that they for each text identify
the sentiment polarity towards each volitional en-
tity mentioned in the text. However, while Mitchell
et al. (2013) work on Twitter data, hence by their

nature very short texts, our goal in this work is
to extend the task to longer texts where the sen-
timent towards one volitional entity may be ex-
pressed through multiple mentions and opinion ex-
pressions.

On a similar note, Jiang et al. (2011) also ana-
lyze sentiment towards each target in tweets. The
goal of their work is, for a corpus of tweets and a
query term, to return tweets classified as positive
or negative towards the entity in the query term.
The work goes beyond situations where the named
entity is the sentiment target, into what is described
as "extended targets". This work is a step in the
direction of locating an extended set of segments of
the text that are relevant for the sentiment towards
each entity.

2.2 Related work on longer texts
One possible way of aggregating sentiment ex-
pressions is through the application of Corefer-
ence Resolution (CR) techniques. De Clercq and
Hoste (2020) explore the benefits of CR in Aspect-
Based Sentiment Analysis (ABSA). They find that
when adding gold-standard coreference informa-
tion, their models increase their performance by
up to one percentage point, while using automati-
cally retrieved CR data (Lee et al., 2013; De Clercq
et al., 2011) would have no, or even negative ef-
fect on the performance of their ABSA models.
Stoyanov and Cardie (2006) explore the benefits
of holder coreference resolution as a method for
extracting the document-level sentiment expressed
by one holder. The task of target coreference reso-
lution is mentioned in suggestions for future work.
Farra and McKeown (2017) address the task of
open-domain TSA, where their goal is to cluster
targets and identify salient entities towards which
opinions are expressed in the text. These targets
may be nouns, noun phrases, events or concepts.

Steinberger et al. (2017) present their Europe
Media Monitor (EMM) system, where the over-
all task is to detect the positive or negative sen-
timent towards persons and organizations. They
process about 70 languages and therefore use lin-
guistically light-weight methods that can work with
low-resource languages.

The recent work of Luo et al. (2022) addresses
some of the same limitations in previous work as
observed by us, namely the limited focus on iden-
tifying sentiment targets only at the level of sen-
tences or tweets. A new multi-domain dataset is
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provided, annotated for sentiment targets and po-
larity, where all targets referring to the same entity
are joined in a nested target structure. Their dataset
provides a step towards targeted sentiment analysis
at the document-level. There is no special treatment
of volitional entities however.

2.3 Terminology review
Of the few papers we could find that use the term
"entity-level sentiment analysis", several of them
appear to treat it as synonymous to targeted SA
(TSA) (Li and Lu, 2017; Alimova and Tutubalina,
2019; Huang and Fang, 2020; Sweeney and Pad-
manabhan, 2017; Engonopoulos et al., 2011). In
TSA, the task is for each sentence to extract any
segment being the target of a sentiment expression,
and the sentiment polarity towards this target. This
notion of a target is in line with the target expres-
sions in widely used datasets for TSA (Pontiki et al.,
2014, 2016), where there is no linking or aggrega-
tion to the document-level. Having the TSA term
to describe this task, we suggest that the ELSA
term is a better fit for an aggregated entity-level,
where one entity may be linked to several targets
in multiple sentences.

We did, however, also find a few studies em-
ploying the term "entity-level sentiment analysis"
about entities aggregated from several mentions in
the text (Farra and McKeown, 2017; Steinberger
et al., 2017; Luo et al., 2022). These papers were
presented in Section 2.1.

2.4 Conclusions from the literature study
We find that while there has been quite some
work on classifying the polarity of particular occur-
rences of named entity mentions in text, like that
of Mitchell et al. (2013) and Zhang et al. (2015),
we have seen only a few studies that attempt to
link or cluster several related segments of a docu-
ment to resolve sentiment towards entities at the
document-level. From existing research, we have
seen that coreference resolution (Stoyanov and
Cardie, 2006), PMI (Jiang et al., 2011) and seman-
tic clustering (Farra and McKeown, 2017) have
been used to resolve which entity mentions belong
together. None of these papers were found report-
ing on actual experiments for the task of assigning
one sentiment classification per volitional entity
per document though. The recent paper by Luo
et al. (2022) represents our closest match.

While we find that our usage of the term "entity-
level sentiment analysis" is thematically related to

a few other usages in the literature, we do not see
any established competing use of the term. We
therefore suggest ELSA as an appropriate and de-
scriptive term for the task discussed in the current
paper.

3 The sentiment dataset

In order to investigate how the ELSA task relates
to pre-existing sentiment analysis tasks, we wanted
to build on an existing full-text document collec-
tion that is annotated for sentiment information at
several levels of analysis. The suite of annotated
datasets that are based on the Norwegian Review
Corpus – NoReC (Velldal et al., 2018) – fits this
bill. While Section 3.2 describes how we build on
NoReC to create an exploratory dataset for ELSA,
we first describe the different levels of existing an-
notations in NoReC below.

3.1 NoReC
NoReC is a multi-domain dataset of full-text pro-
fessional reviews published in Norwegian online
news sources, and a subset of the documents have
been annotated for fine-grained and sentence-level
sentiment. Each review in NoReC is accompanied
by a rating given by the reviewer, on a scale from 1
to 6. We here take this to serve as a polarity label
for the overall document.

Fine-grained sentiment A subset of NoReC has
been annotated for fine-grained sentiment informa-
tion in NoReCfine (Øvrelid et al., 2020), including
holders, target expressions, polar expressions, po-
larities, and polar intensities. This was one of the
datasets used in the recent SemEval shared task
on structured sentiment analysis – SemEval-2022
Task 10 (Barnes et al., 2022).1 As presented in
Table 1, the NoReCfine training split consists of 327
documents, comprising 8634 sentences, giving an
average of 26.4 sentences per document. The train-
ing split contains 5000 unique sentiment targets.
Based on this data we can derive datasets for TSA
as well as sentence-level SA, as described below.

Target-level sentiment We here describe how
we derive a dataset for targeted SA – dubbed
NoReCtsa – on the basis of NoReCfine. A given
sentiment target in NoReCfine may be the target of
multiple opinion expressions, each with different
polarity and intensity. We assign a value from 1 to

1https://competitions.codalab.org/
competitions/33556
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3 to the sentiment intensities (‘slight’, ‘standard’
or ‘strong’), and assign the sum of all sentiments
to each target. This sum is clipped to a scale from
-3 (strong negative) to 3 (strong positive) for each
target. The data is made available on GitHub.2

Sentence-level sentiment We also derive a
4-class sentence-level sentiment dataset from
NoReCfine. We take each sentence in NoReCfine

with positive opinions only to be a positive sentence
(and vice versa for negatives). Sentences without
any opinion expressions are labeled "Neutral", and
sentiments with both positive and negative senti-
ments are labeled "Mixed".

Document-level sentiment The document-level
sentiment polarity is derived from the rating pro-
vided by the review author. Table 1 shows the
distribution of documents and sentences relative
to these ratings for the subset of data included in
the NoReCfine training split and in our exploratory
ELSA dataset (as further detailed below). For the
same two respective subsets of data, Table 2 shows
the distribution of documents and sentences across
different domains of reviews.

As we can see, the dataset is highly unbalanced.
The extreme ratings of 1 and 6 are rare, and are in
our experiments therefore merged with their adja-
cent ratings. We arrive at sentiment polarity clas-
sifications for each document by labeling ratings 1
and 2 as negative, rating 5 and 6 as positive, and we
here categorize ratings 3 and 4 as neutral polarity.

In sum, the ecosystem of annotations derived
from NoReCfine provides us with a multi-domain
dataset of full-text reviews annotated for senti-
ment at multiple levels of analysis; document-level,
sentence-level and target-level. This allows for
comparing different strategies for aggregating SA
information from different levels as estimators of
entity-level sentiment. In order to evaluate these
strategies and information sources, the next sec-
tion describes how we create an exploratory ELSA
dataset, adding information about entity-level sen-
timent for a subset of the documents in NoReCfine.

3.2 An exploratory dataset for ELSA
To create an evaluation dataset for ELSA, we sam-
ple 50 documents at random from the 327 docu-
ments in the NoReCfine train split. There are in
total 1345 sentences in this evaluation set.

2https://github.com/ltgoslo/norec_tsa

NoReCfine Train ELSA subset

Rating Docs Sents Docs Sents

1 8 151 1 32
2 27 475 7 121
3 62 1345 4 98
4 91 2504 15 399
5 109 3225 19 586
6 30 934 4 109

Total 327 8634 50 1345

Table 1: Distribution of review ratings (1–6) in the full
NoReCfine training split and our ELSA subset.

NoReCfine Train ELSA subset

Category Docs Sents Docs Sents

games 16 445 2 62
literature 35 877 5 148
misc 1 36 1 36
music 111 1915 13 246
products 30 1753 6 298
restaurants 6 290 1 44
screen 118 2920 20 449
sports 2 149
stage 8 249 2 62

Total 327 8634 50 1345

Table 2: Distribution of sentences and documents across
the multiple domains in the NoReC review corpus.

As a pre-processing step, Named Entities are
extracted from the texts using the Huggingface
pipeline and the pretrained ScandiNER.3 language
model, fine-tuned for NER on all Nordic languages,
where the Norwegian part of the training data is
provided by the NorNE corpus (Jørgensen et al.,
2020). The reported scores for Norwegian NER
are good, ≈91% F1. Since our goal is to identify
sentiment towards volitional entities only, we keep
only the entities with PER and ORG label. We
find the NER model to perform well, with few or
none missed entities. During manual inspection,
spurious entities were deleted, and the few misclas-
sifications were corrected.

Resolving coreference by substring matching
A volitional entity may have several entity men-
tions in the text. In order to cluster entity mentions
in a text, we resolved the various mentions of a

3Available at https://huggingface.co/
saattrupdan/nbailab-base-ner-scandi
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I met John Wayne yesterday. We said hello on the
street when he was taking his grandchild for a walk.
John is such a nice guy. Nothing like Clint, who is
still very handsome, but seems quite arrogant.

John Wayne [John Wayne, John] Positive
Clint [Clint] Negative

Figure 1: Example of entity mentions in text as posi-
tive/negative sentiment targets, together with the overall
entity-level sentiment labels.

volitional entity by simple substring matching, and
also check for the genitive marker -s in Norwegian,
such that both Jo Nesbø and Nesbøs are resolved to
the same entity. One of the few errors introduced
by this approach was that Elisabeth I was resolved
to the same entity as Elisabeth II. These errors were
subsequently corrected.

3.2.1 Manual ELSA labeling
For each unique entity in the text that the entity
mentions represent, we manually evaluate the doc-
uments’ sentiment towards these entities into the
categories "Positive", "Negative", or "Neutral". For
entities that are targets of both positive and nega-
tive sentiment expressions, we consider what the
document as a whole conveys. This sentiment la-
beling was performed by one reader, after several
readings, when necessary. Figure 1 shows a con-
structed example text, with the extracted entities,
their entity mentions, and their manual sentiment
classification.

We can conclude from reading the text that the
sentiment towards John Wayne is positive, while
the sentiment towards Clint is negative. There is
one positive sentiment expression towards Clint:
handsome, and one negative expression: arrogant.
As readers of the entire text, we perceive the over-
all sentiment towards Clint to be negative. The
entity John Wayne has two entity mentions in the
text: John Wayne and John. The pronoun he is
not an entity mention, but an anaphor, coreferential
with John Wayne. The grandchild is not an entity
because it is not named.

By manually assessing the sentiment expressed
towards each entity in the 50 selected documents,
we arrive at a dataset of volitional entities and the
sentiment towards them at the document-level. The

ORG PER # %

Pos 8 76 84 30%
Neg 3 25 28 10%
Neu 36 131 167 60%

Total 47 232 279 100%

Table 3: The sampled subset of 50 documents from
NoReCfine contains the names of 279 volitional entities.
The manual annotations assigned a neutral entity-level
sentiment to the majority of these.

Mentions per entity Entities Entity mentions

1 188 188
2 39 78
3+ 52 266

Total 279 532

Table 4: The evaluation data contain 279 volitional
entities with an average of 1.9 entity mentions per entity.
33% of the entities have more than one mention.

majority of the entities are neutral, as shown in
Table 3. This distribution is in line with Mitchell
et al. (2013) who find that for their Spanish twitter
dataset 24% of the entities are positive targets, 16%
of the entities are negative targets, and 61% of the
entities are neutral.

4 Analysis of target-independent
approaches to ELSA

If all volitional entities mentioned in a positive text
are the target of positive sentiment, the task would
be limited to an overall sentiment classification for
the text. This naïve approach serves as a baseline
for further studies. In the following, we compare
our manually labeled entity-level polarities with
those of the documents they appear in, as well as
those of each sentence with a corresponding entity
mention.

4.1 ELSA polarity vs. document polarity
As mentioned in Section 3, each document is as-
signed the overall polarity positive, neutral or neg-
ative, based on its review rating.

In Figure 2 and Table 5 we present the results
of an analysis of entity polarities for the different
document ratings. We find that only 47.7% of the
ELSA entities have the same polarity as the corre-
sponding document-level label. We further observe
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Figure 2: Relative distribution of entity polarities for
the different document ratings. Neutral entities are in
majority across all ratings.

Entity polarities

Rating Neg Neu Pos Entities

1–2 15 29 3 47
3 3 12 4 19
4 5 53 24 82
5–6 5 73 53 131

Total 28 167 84 279
True pos 133
Accuracy 0.477

Table 5: Distribution of entity polarities for each of the
document ratings categories. As ratings of 1 and 6 are
rather scarce, we merge them with their adjacent rating.

that the neutral entities are quite evenly distributed
– between 55% and 65% across all document po-
larities. These results clearly suggest that simply
inferring entity-level polarity from the document-
level is insufficient.

4.2 ELSA polarity vs sentence polarity
We now turn to the sentence-level polarity labels
presented in Section 3. Since the ELSA entities
may have multiple mentions, they may appear in
multiple sentences. We here aggregate the polarity
towards an entity by considering it as positive if it is
mentioned in more positive than negative sentences
(and vice versa). The polarity is considered neu-
tral if the entity appears in only neutral sentences.
When entity mentions are equally present in pos-
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Figure 3: Relative distribution of entity polarities for
each of the sentence sentiment categories.

Entity polarities

Pol. Neg Neu Pos Tot.

Mix 9 4 9 22
Neg 10 17 27
Neu 8 113 4 125
Pos 1 33 71 105

Total 28 167 84 279
True pos 194
Accuracy 0.695

Table 6: Distribution of entity polarities for each of the
sentence sentiment categories. Approximately 70% of
the entities were correctly labeled when using sentence
polarity as a proxy.

itive and negative sentences, or in mixed polarity
sentences only, mixed polarity is assigned.

The results are summarized in Figure 3 and Ta-
ble 6. We find that neutral entities are more fre-
quent than negative entities in sentences with neg-
ative polarity. An example of neutral entities that
appear in a non-neutral sentence is provided in Ex-
ample 1. The sentence is classified as negative
and without any sentiment targets. The annotated
sentiment towards Julian Assange is neutral.

(1) Det gir en ganske merkelig effekt, litt som
å treffe Julian Assange på Disneyland.
This has a quite peculiar effect, somewhat
like meeting Julian Assange at Disneyland.
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Figure 4: Relative distribution of entity polarities for
each of the polarities derived from TSA.

116 of the entities (42%), have mentions in the
same sentence as an entity of a conflicting polarity.
The mixing of polarities inside a sentence indicates
that inferring entity polarity from sentence polarity
has limited potential. In sum, we find that 69.5% of
the entities would be correctly resolved by inferring
entity-level sentiment from the sentence sentiment.

5 A target-dependent approach to ELSA

An intuitively more promising approach is to derive
ELSA sentiment labels from targeted sentiment
analysis. Our TSA dataset presented in Section 3.1
is annotated for sentiment towards each target with
a scale from -3 (strong negative) to 3 (strong pos-
itive). We aggregate these labels from the target-
level to the entity-level for each entity by including
only the sentiment targets that overlap with an en-
tity mention, and summing the sentiment values for
these targets. This approach leaves 7 entities with
an unresolved classification due to equally strong
positive and negative sentiment towards its entity
mentions. These entities are placed in the "Mix"
category.

As shown in Table 7, 229 of our 279 volitional
entities, 82%, are given the correct sentiment label
when aggregating the TSA annotations. This is
an encouraging improvement over previous results.
Virtually all neutral entities receive a neutral label

Entity polarities

TSA Neg Neu Pos Tot.

Mix 3 4 7
Neg 11 3 14
Neu 10 162 21 193
Pos 4 5 56 65

Total 28 167 84 279
True pos 229
Accuracy 0.821

Table 7: Distribution of entity polarities for each of the
polarities derived from TSA.

Error type # %

Missing CR 2 0.72%
Missing TER 18 0.65%
Anno. disagreement 24 8.60%
Mixed polarity 6 2.15%

Table 8: Distribution of different error types when clas-
sifying entity sentiment based on aggregated TSA: Miss-
ing coreference resolution (CR), missing target–entity
resolution (TER), annotator disagreement, and cases of
ties from mixed TSA polarities.

through this approach. The 50 entities that are not
correctly labeled using this approach, however, call
for further analysis.

5.1 Studying the remaining 50 entities
In a further analysis step, we manually inspect the
misclassified entities following TSA to look for
common causes of errors.

Annotator disagreement Table 8 shows that hu-
man disagreement was the most important cause.
For these instances, we have interpreted the sen-
tences differently with respect to sentiment, than
the original annotators of NoReCfine. This serves
as an example of the subjectivity and one may say
fragility of human sentiment annotations. This is
also evident in the moderate inter-annotator agree-
ment for the NoReCfine annotations, reported to be
73% F1 for targets, when counting binary overlap
(Øvrelid et al., 2020).

Coreference resolution To our surprise, only
two (out of 50) entities were incorrectly classified
due to lack of coreference resolution. One such
case is presented in example (2) below.
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(2) Joseph Goebbels er på den måten i sjeldent,
men ikke godt, selskap. Han er blitt
stående som selve bildet på naziregimets
hensynsløse og ondskapsfulle hatideologi.
Joseph Goebbels is in this respect in an
exclusive, but not good company. He is
the embodiment of the cruel and evil nazi
regime’s ideology of hatred.

In Example 2, Joseph Goebbels in the first sen-
tence is not annotated as a sentiment target in
NoReCfine, while Han ‘He’ in the second sentence
is a negative sentiment target. Through coreference
resolution, Han ‘He’ would likely be resolved to re-
fer to Joseph Goebbels, and the sentiment towards
the entity would be correctly resolved.

Sentiment-relevant relation extraction From
our manual inspection we find another cause of
misclassification pointing to the need for what we
might call "target–entity resolution" rather than
classical anaphora / cataphora coreference resolu-
tion. These are examples that require inference of
semantic relations between different target expres-
sions and entities in the text. Typical examples of
this in our data are examples of a work of art where
the sentiment towards the work of art implies a
sentiment towards the creator, or a noun describing
a group of people where an entity is a member.

(3) Magnus Beite har skaffet filmen musikk
som kler miljøet
Magnus Beite has provided the film with
music that suits the environment

(4) Bandet bestående av Daniel Birkeland på
gitar [. . . ] og trommis Helge Nyheim
klarer virkelig å gjenskape Beatles [. . . ]
på en måte som det står respekt av.
The band consisting of Daniel Birkeland on
guitar [. . . ] and drummer Helge Nyheim
really manage to give life to Beatles [. . . ]
in a way that commands respect.

In Example 3, musikk ‘music’ is a positive senti-
ment target. When reading the full text, we also
perceive this as a positive sentiment towards Mag-
nus Beite. In Example 4, Bandet ‘The band’ is
the sentiment target, and we perceive this to imply
positive sentiment towards the individual members
of the band as well.

For these types of examples, if we had access
to a "member of"-relation between the band mem-

bers and the band, and a "creator of"-relation be-
tween the photographer and the photograph, or
more generally a relation of target–entity affiliation,
the sentiment towards the volitional entities would
have been resolved correctly. (Note that traditional
aspect-categories would not be of help here, as we
would still be missing the relations between the tar-
gets and the relevant entities.) These observations
open new research questions, however, about which
semantic relations are sentiment-relevant and un-
der which circumstances. Jiang et al. (2011) also
point to this question, with the example that a sen-
timent about someone’s behavior usually means
a sentiment about the person, while a sentiment
about someone’s colleague usually has nothing to
do with the person.

6 Modeling

The above data analysis was performed using gold
standard data for the various sentiment-levels (doc-
ument, sentence and target). In order to gauge the
performance attainable in a more realistic setting,
we present results using automatically derived TSA
information in the following.

Since we have no directly annotated ELSA train-
ing data, we create a baseline model using the proxy
task of TSA. The exploratory ELSA dataset was
taken from the training split of NoReCfine, and we
therefore join the remainder of the training split
with the development split to create our baseline
training data, and we perform the final evaluation
on the 50 documents in our ELSA dataset. The
model setup is adapted from the Huggingface ex-
ample configuration for NER.4 We use default hy-
perparameters and perform no hyperparameter tun-
ing. We therefore chose to not set aside data for a
dev set, and not touch the original NoReCfine test
split, in order to allow for further research on this
data split. We preprocess our training data the same
way as we did with the ELSA data in Section 5,
finding PER and ORG labels in the data through
NER, and deriving sentiment towards these through
the pre-existing TSA target annotations. Volitional
entities that are sentiment targets, receive the sen-
timent label "Positive" or "Negative", while the
volitional entities that are not sentiment targets are
labeled "Neutral". With this setup, volitional en-
tities and their sentiment polarity is predicted for

4https://github.com/huggingface/
transformers/tree/main/examples/pytorch/
token-classification

6780



Gold entity pol

Pred entity pol Neg Neu Pos FP

Neg 4 0 4 1
Neu 13 154 27 35
Pos 9 6 48 8
Missed 2 7 5

Table 9: A confusion matrix of gold and predicated en-
tity polarities. The final column indicates false positive
entity predictions. Our simple NER+TSA-based base-
line model for ELSA predicted the name and sentiment
polarity correctly for 206 of the 279 entities in the test
data. The model produced 44 false positive entities,
resulting in Precision: 66.7%, Recall: 73.8% and F1:
70.1%.

the 50 documents in the exploratory dataset. The
predicted entity mentions were resolved document-
wise through substring matching, before summing
the predicted polarities. For evaluation, these pre-
dictions are compared with our manually resolved
and annotated entities.5 Our evaluation ignores
whether the model assigned the correct NER cate-
gory PER or ORG. Our evaluation shows that this
baseline model has a F1-score of 70.1%, as shown
in Table 9.

7 Conclusion

In this paper we have explored the task of entity-
level sentiment analysis (ELSA) – the task of de-
termining the aggregated or overall (i.e. document-
level) polarity expressed towards an entity in a text.
In particular for longer text, which might comprise
several distinct entities, entity mentions and opin-
ions, this is a potentially complex task. The paper
has surveyed existing literature and terminology
in adjacent and related previous work, in addition
to presenting an exploratory data analysis to shed
more light on what is required to solve the task.

Relating to the latter point, in order to assess
the relevance to ELSA of existing approaches to
sentiment analysis at different granularities – i.e.
document-, sentence-, and target-level SA – we
perform a task analysis on the basis of a Norwe-
gian multi-domain review dataset containing all
these layers of sentiment annotation. When utiliz-
ing the fine-grained sentiment annotations of the

5Code for our data collection, analysis and modeling
will be available at https://github.com/egilron/
elsa-introduction

NoReCfine dataset, we found that the overlap be-
tween a volitional entity and TSA annotations, gave
us the correct sentiment category for 82% of our
279 manually evaluated ELSA entities. We further
found that, using automated TSA, we obtained an
F1-score of 70.1%. TSA therefore appears to be
highly relevant, though not sufficient, for the ELSA
task.

For the ELSA classifications that could not be
derived from NER and TSA annotations, we found
surprisingly few cases that would be correctly re-
solved through coreference resolution. This is
in line with the findings of De Clercq and Hoste
(2020). Our dataset is likely too small, however, to
draw any definitive conclusions about the impor-
tance of coreference resolution for ELSA. On the
other hand, we did observe a need for more gener-
ally resolving relations that tie target expressions
to their corresponding entities.

In our exploratory data analysis, we have iden-
tified at least four categories of information that
could potentially benefit the classification of a
document’s overall sentiment towards entities: (i)
named entity recognition, (ii) targeted sentiment
analysis, (iii) coreference resolution, and (iv) what
we dub target–entity resolution. The latter being a
concept derived from working with the examples
in our dataset, and refers to the task of identifying
which entity a given target expression relates to.
This appears to be a missing link in a pipeline for
ELSA based on TSA, and to explore methods for
filling this gap is a suggestion for further work.
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Abstract

Target-oriented multimodal sentiment classi-
fication (TMSC) is a new subtask of aspect-
based sentiment analysis, which aims to de-
termine the sentiment polarity of the opinion
target mentioned in a (sentence, image) pair.
Recently, dominant works employ the attention
mechanism to capture the corresponding visual
representations of the opinion target, and then
aggregate them as evidence to make sentiment
predictions. However, they still suffer from two
problems: (1) The granularity of the opinion
target in two modalities is inconsistent, which
causes visual attention sometimes fail to cap-
ture the corresponding visual representations
of the target; (2) Even though it is captured,
there are still significant differences between
the visual representations expressing the same
mood, which brings great difficulty to senti-
ment prediction. To this end, we propose a
novel Knowledge-enhanced Framework (KEF)
in this paper, which can successfully exploit
adjective-noun pairs extracted from the image
to improve the visual attention capability and
sentiment prediction capability of the TMSC
task. Extensive experimental results show that
our framework consistently outperforms state-
of-the-art works on two public datasets.

1 Introduction

Target-oriented multimodal sentiment classification
(TMSC) is a new sub-task of aspect-based senti-
ment analysis (Pang et al., 2008; Liu, 2012; Pontiki
et al., 2014), which aims to predict the sentiment
polarity of the opinion target mentioned in a pair
of sentence and image. The assumption behind this
task is that the image information can help the text
content identify the sentiment of the opinion tar-
get. Fig. 1(a) and Fig. 1(b) show two representative
examples. It is hard to detect the sentiment of the
opinion target (i.e., “Vince Gilligan” or “Sammy”)
only depending on informal sentences, but the vi-

∗∗ Corresponding author.

(b) # OOTD with my little dog by 
my side . [Sammy]positive .

issuse1

issuse2

(d) # OOTD with my little dog by 
my side . [Sammy]positive .

positive

?

✘

✓

(a) [Vince Gilligan]positive travels 
in the city of cape town .

(c) [Vince Gilligan]positive travels 
in the city of cape town .

✘

✓
positive

?

Figure 1: Two examples of Target-Oriented Multimodal
Sentiment Classification (TMSC). Opinion targets and
their corresponding sentiment polarities are highlighted
in the sentence. The red bounding box denotes the visual
clues that the opinion target focuses on.

sual content (i.e., smiling face) associated with the
target can clearly reflect its sentiment polarity.

From the above examples, we can conclude that
aligning the opinion target of two modalities and
capturing helpful visual sentiment features play a
critical role in the TMSC task. Given its impor-
tance, dominant works employ the attention mech-
anism (Bahdanau et al., 2015) to automatically
learn alignment of text and image, and then aggre-
gate the captured the visual representations of the
opinion target as auxiliary evidence to make senti-
ment predictions (Xu et al., 2019b; Yu et al., 2019;
Yu and Jiang, 2019; Zhou et al., 2021; Zhang et al.,
2021; Wang et al., 2021).

Despite achieving some improvements, the afore-
mentioned methods still suffer from two key prob-
lems: (i). These methods easily fail to align two
modalities because of the granularity gap of opin-
ion target across text and image. Specifically, the
opinion target appearing in the image often refers
to a coarse-grained object concept (e.g., the man
in Fig. 1(a)), while corresponding opinion target in
the sentence are usually a fine-grained entity (e.g.,
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the man’s name 1 “Vince Gilligan”). The inconsis-
tency of target granularity causes visual attention
sometimes fail to capture the corresponding visual
representations. (ii). Even though it is captured,
diversified visual representations expressing the
same mood also bring challenges for sentiment pre-
diction. Take Fig.1(c) and Fig.1(d) as an example,
the opinion target “Vince Gilligan” and “Sammy”
separately focus on the coarse-grained object con-
cepts man and girl in the image, and from their
facial expressions we can tell that they are smiling,
but the angle and magnitude of the smile are quite
different. The variety of visual representations in-
evitably leads to its sparsity, which makes it hard to
learn the accurate mapping function between visual
representations and sentiment labels.

In this work, we provide a new idea to tackle
the above problems, i.e., exploiting adjective-noun
pairs (ANPs) (Borth et al., 2013) extracted from
images (e.g., “nice clouds”, “bad car”, “happy
man”, “clear sky” and “dry grass” in Fig. 2(a)).
For the first issue, we observed that the nouns of
ANPs are also coarse-grained concepts, so an in-
tuitive idea is to map a fine-grained opinion target
(e.g. "Vince Gilligan") to a coarse-grained noun
(e.g. "man"2) in ANPs. In this manner, it is eas-
ier to bridge the granularity gap of two modalities
and align text and image. For the second issue, we
observed that ANPs can usually extract the same
adjectives from different visual content expressing
the same mood, so an intuitive idea is to map di-
versified visual representations (e.g., smiling faces)
to the same adjective (e.g., “happy”3). Apparently,
it is easier to learn the mapping function between
these same adjectives and sentiment labels.

To facilitate the TMSC task with ANPs, we
propose a novel Knowledge-enhanced Framework
(KEF), which consists of two components: Visual
Attention Enhancer and Sentiment Prediction En-
hancer. Specifically, the former first finds the noun
most related to the opinion target from ANPs with
our designed mapping method, and then uses it
to improve the effectiveness of visual attention.
The latter aims to build the connection between
the adjective and target-relevant visual represen-
tations, and then utilizes it as the complementary

1There are respectively 38.4% and 48.5% of opinion tar-
gets are different names of people in TWITTER-15 and
TWITTER-17 datasets.

2Fig. 2(a) extracts the noun “man” from the image.
3Fig. 2(a) and Fig. 2(b) both extract same adjective “happy”

from different smiling faces, this phenomenon is common.

(b) # OOTD with my little dog by my
side . [Sammy]positive .

clean
happy
fresh
cute

broken

road
girl

grass
dog
tree

nounsadjectives

ANPs
nice
bad

happy
clear
dry

clouds
car
man
sky

grass

nounsadjectives

ANPs

(a) [Vince Gilligan]positive travels in the 
city of cape town .

Figure 2: Extract Top-5 adjective-noun pairs (ANPs)
from each image in our Twitter datasets.

information of visual representations to reduce the
difficulty of predicting sentiment labels.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to propose leveraging adjective-noun pairs
(ANPs) extracted from the image to help align
text and image in the TMSC task.

• We propose a novel Knowledge-enhanced
Framework (KEF), which contains a Visual
Attention Enhancer to improve the effective-
ness of visual attention, and a Sentiment Pre-
diction Enhancer to reduce the difficulty of
sentiment prediction.

• The KEF framework has good compatibility
and is easily extended to existing attention-
based models. In this work, we apply it to two
latest TMSC models: SaliencyBERT (Wang
et al., 2021) and TomBERT (Yu and Jiang,
2019). Experimental results on two public
datasets prove the validity of our framework.

2 Notations and Preliminaries

In this section, we first present the task formaliza-
tion, and then give brief introductions to adjective-
noun pairs (Borth et al., 2013).

2.1 Task Formalization
We are given a set of multimodal samples D. For
each sample c ∈ D, it contains a review sentence
S with n words (w1, w2, · · · , wn), an associated
image I , as well as an opinion target T (refers to
a span in sentence S). Our goal is to predict the
sentiment label y of each opinion target mentioned
in a pair of sentence and image, where y can be
either positive, negative, or neutral.

2.2 Adjective-Noun Pairs
We extract the adjective-noun pairs (ANPs) from
each image in our Twitter datasets to serve as an ex-
ternal knowledge base, where nouns denote coarse-
grained object concepts in the image, and adjectives
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dry [SEP]
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Figure 3: The overview of our KEF framework.

are modifiers of nouns. As shown in Fig. 2, we use
SentiBank toolkit4 to extract 1200 ANPs and select
the Top-55 ANPs as the visual semantic informa-
tion of each image, in which each pair contains an
adjective word Ai and a noun word Ni:

ANP = (Ai, Ni), (1)

Considering that adjectives and nouns in ANPs
contain different semantics, i.e., the nouns mainly
involve information about the opinion target, while
the adjectives usually contain sentiment informa-
tion. Thus, it is more appropriate and reasonable
to encode them separately. For example, the BERT
input for adjectives and nouns is given in Figure 3.
We feed them to a pre-trained model BERT (Devlin
et al., 2019) to obtain the hidden representations:

HA = BERT(A), (2)

HN = BERT(N), (3)

whereHA ∈ R(2l+1)×d andHN ∈ R(2l+1)×d sepa-
rately denote the adjective representations and noun
representations, d indicates the hidden dimension,
and l means the length of ANPs.

4ee.columbia.edu/ln/dvmm/vso/download/sentibank.html
5we will give the reason why the Top-5 ANPs are extracted

from each image in the Section 5.3.

3 Knowledge-enhanced Framework

In this section, we will describe how to inte-
grate Knowledge-enhanced Framework (KEF) into
TomBERT (Yu and Jiang, 2019) and Saliency-
BERT (Wang et al., 2021), which both achieve
satisfying performance and thus are chosen as the
foundation of our work.

3.1 Overview

Figure 3 shows the overall architecture of KEF,
which contains two components: Visual Atten-
tion Enhancer and Sentiment Prediction Enhancer.
Concretely, we first abstract a general attention ar-
chitecture based on the well-designed TomBERT
and SaliencyBERT models. Then, with the help
of ANPs, we successively present a Visual Atten-
tion Enhancer and a Sentiment Prediction Enhancer.
The former aims to improve the effectiveness of
visual attention through a mapping method and a
reconstruction loss, and the latter introduces a sim-
ple yet effective transformation approach to reduce
the difficulty of predicting sentiment labels.

3.2 General Attention Architecture

Given an input sentence S, we first split S into
two sub-sentences: the opinion target T and
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the remaining context6 C, and then separately
feed them to pre-trained BERT to obtain the
hidden representations:HC = BERT(C), HT =
BERT(T ), where HC ∈ Rn×d and HT ∈ Rt×d
denote the text representations and target represen-
tations, d is the hidden dimension, n and t are the
length of C and the target T .

Similarly, for the associated image I , we adopt
one of the state-of-the-art image recognition mod-
els ResNet-152 (res5c) (He et al., 2016) to obtain
the output of the last convolutional layer:

ResNet(I) = {rj |rj ∈ R2048, j = 1, 2, ..., 49},
(4)

which splits the original image into 7 × 7 = 49
regions and each region is represented by a 2048-
dimensional vector rj . Next, we use a linear func-
tion to project the visual features to the same space
of textual features: HV = WvResNet(I), where
Wv ∈ Rd×2048 is the learnable parameter.

After that, we employ a cross-attention block to
capture target-aware visual representation HT→V
and target-aware text representation HT→C :

HT→V = Cross-ATT(HT , HV ), (5)

HT→C = Cross-ATT(HT , HC), (6)

where Cross-ATT(·) denotes the cross-modal multi-
head attention as (Tsai et al., 2019). Then, we
concatenate HT→C and HT→V together and fur-
ther stack the attention block on top to obtain the
multimodal output representation H .

Finally, we feed the first token H0 of the mul-
timodal representation to a softmax layer for the
sentiment classification:

p(y|H0) = softmax(W⊤MH
0), (7)

where WM ∈ Rd×3 is the weight matrix.
To optimize all the parameters, the objective is to

minimize the standard cross-entropy loss function:

Lt = −
1

|D|

|D|∑

i=1

logp(yi|H0). (8)

3.3 Visual Attention Enhancer
As mentioned before, the target appearing in the
image is a coarse-grained concept, while the target
mentioned in the sentence is a fine-grained concept,
the inconsistency of target granularity causes visual
attention in Eq. 5 sometimes fail to capture the
corresponding visual representations of the target.

6we replace the opinion target with $T$ in the context.

Basic Intuition. Apparently, the nouns extracted
from the image are also coarse-grained concepts,
so an intuitive idea is to map a fine-grained opin-
ion target to a coarse-grained noun, and then use
it as a bridge to capture the coarse-grained visual
representations. However, most of the nouns ex-
tracted from the image are target-independent, so
we cannot use them directly.

Mapping Method. To tackle the above challenge,
we first measure the strength of target-noun rele-
vance by calculating the semantic similarity be-
tween noun representation and target representa-
tions in the embedding space:

αi = cos(HT , H
i
N ), (9)

where H i
N denotes single noun representation of

HN in Eq. 3, cos(·) is a cosine function and αi

means the similarity score.
Based on the largest similarity score, we can find

the most relevant noun to the opinion target:

αm =
l

max
i=1

(αi), (10)

where l denotes the length of ANPs and Hm
N indi-

cates the noun representation corresponding to the
highest similarity score αm.

Next, we aggregate them together as complemen-
tary information for the opinion target to capture
the corresponding visual representations HT→V .
Formally, we update HT in Eq. 5 by:

H̃N = αmHm
N , (11)

HT = HT + λNH̃N , (12)

where λN is a hyperparameter that controls the
importance of H̃N and can be adjusted.

Reconstruction Loss. To ensure that visual atten-
tion can capture the visual features associated with
the opinion target more accurately, we also devise
a reconstruction loss to minimize the divergence
between target-relevant noun representations and
target-aware visual representations. Formally,

La = −
1

|D|

|D|∑

i=1

(H̃N −HT→V )2, (13)

In the Visual Attention Enhancer, the final loss is
L = Lt + λLa, where λ measures the importance
of reconstruction loss La and can be adjusted.
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TWITTER-15 TWITTER-17
Pos Neg Neu Total AT Words AL Pos Neu Neg Total AT Words AL

Train 928 368 1883 3179 1.348 9023 16.72 1508 416 1638 3562 1.410 6027 16.21
Dev 303 149 670 1122 1.336 4238 16.74 515 144 517 1176 1.439 2922 16.37
Test 317 113 607 1037 1.354 3919 17.05 493 168 573 1234 1.450 3013 16.38

Table 1: The basic statistics of our two multimodal Twitter datasets. Pos: Positive, Neg: Negative, Neu: Neutral, AT:
Avg. Targets, AL: Avg. Length

3.4 Sentiment Prediction Enhancer

Even if visual features are captured, there are still
significant differences between the visual represen-
tations expressing the same mood, which brings
challenges to learn the mapping function between
visual representations and sentiment labels.

Basic Intuition. Considering that ANPs can usu-
ally extract the same adjectives from different vi-
sual representations expressing the same mood, so
an intuitive idea is to map dversified visual rep-
resentations to the same adjective. However, the
adjective most relevant to visual representations is
unknown, we need to find it explicitly.

Transformation Method. Actually, in the map-
ping method, we have found that the noun rep-
resentation Hm

N is most relevant to target-aware
visual representations HT→V . Since an adjective
is a modifier of a noun, the adjective corresponding
to this noun is also most relevant to target-aware
visual representations. Finally, we use it as the com-
plementary information of visual representations to
reduce the difficulty of sentiment prediction. For-
mally, we rewrite HT→V in Eq. 5 by:

HT→V = HT→V + λAH
m
A . (14)

where Hm
A denotes the adjective representation cor-

responding to the noun representation Hm
N , λA is a

hyperparameter and can be adjusted.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate the effect of KEF
Framework, we carry out experiments on two
public multimodal datasets TWITTER-15 and
TWITTER-17 from (Yu and Jiang, 2019), which
include user tweets posted during 2014-2015 and
2016- 2017, respectively. General information for
both datasets is presented in Table 1.

Implementation Details. We build our KEF on
top of the pre-trained uncased BERT-based model
released by (Devlin et al., 2019), and tune the
hyperparameters on the development set of each
dataset. Specifically, we set λN , λ, λA to be {0.5,
0.2, 0.6} on TWITTER-15 and {0.2, 0.3, 0.2} on
TWITTER-17, the learning rate as 2e-5 and the
dropout (Hinton et al., 2012) rate as 0.9. In addi-
tion, the mini-batch size is set to 16, the maximum
length of the sentence input and the target input are
respectively set as 64 and 32, the hidden dimension
and the number of attention heads set as 768 and 12.
All the models are implemented by the Tensorflow
framework with an NVIDIA Tesla V100 GPU.

Evaluation Metrics and Significance Test. Fol-
lowing (Yu and Jiang, 2019), we use Accuracy
(Acc) and Macro-F1 score as evaluation metrics.
Besides, the paired t-test is conducted to test the
significance of different methods. Finally, we re-
port the average performance and standard devia-
tion over 5 runs with random initialization. Our
code and datasets are available at https://github.
com/1429904852/KEF.

4.2 Compared Methods

We choose three kinds of baselines. The first is a
frequently-used visual-based model ResNet-Target.
The second is some classical text-based models,
including AE-LSTM (Wang et al., 2016), MemNet
(Tang et al., 2016b), RAM (Chen et al., 2017),
MGAN (Fan et al., 2018), BERT (Devlin et al.,
2019). The third is the recent multi-modal models,
including Res-MGAN, MIMN (Xu et al., 2019b),
ESAFN (Yu et al., 2019), MMAP (Zhou et al.,
2021), mPBERT (Yu and Jiang, 2019), ModalNet-
BERT(Zhang et al., 2021), EF-CapTrBERT (Khan
and Fu, 2021), TomBERT (Yu and Jiang, 2019) and
Saliencybert (Wang et al., 2021).

The KEF framework contains two plug-and-play
components which can be easily combined or ex-
tended to existing attention-based methods. To
better verify the effectiveness of KEF, we chose
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Model
TWITTER-15 TWITTER-17

Acc Macro-F1 Acc Macro-F1

Visual

Res-Target 59.88 46.48 58.59 53.98

Text

AE-LSTM 70.30 63.43 61.67 57.97
MemNet 70.11 61.76 64.18 60.90
RAM 70.68 63.05 64.42 61.01
MGAN 71.17 64.21 64.75 61.46
BERT 74.15 68.86 68.15 65.23

Text + Visual

Res-MGAN 71.65 63.88 66.37 63.04
MIMN 71.84 65.69 65.88 62.99
ESAFN 73.38 67.37 67.83 64.22
MMAP♣ 73.50 66.53 67.31 64.34
mPBERT 75.79 71.07 69.61 67.12
ModalNet-Bert♣ 76.71 70.93 69.55 67.28
EF-CapTrBERT⋆ 77.01 71.79 69.00 66.71

Our Framework

SaliencyBERT 77.03 72.36 69.69 67.19
KEF-SaliencyBERT 78.15†±0.33 73.54†±0.55 71.88†±0.21 68.96†±0.14

∆ +1.12 +1.18 +2.19 +1.77

TomBERT 77.15 71.75 70.50 68.04
KEF-TomBERT 78.68†±0.30 73.75†±0.27 72.12†±0.15 69.96†±0.25

∆ +1.53 +2.00 +1.62 +1.92

Table 2: Test accuracy on the TWITTER-15 and
TWITTER-17 datasets (%). For the baseline model,
the results with ♣ are produced with our implementa-
tion, the results with ⋆ are generated by running the
code from (Khan and Fu, 2021), and the other results
without symbols are retrieved from the original papers.
For a fair comparison, we do not give the result of EF-
CapTrBERT-DE from (Khan and Fu, 2021) since it use
a domain-specific pre-trained encoder BERTweet from
(Nguyen et al., 2020) instead of BERT-base. ∆ denotes
the difference between the performance of Saliency-
BERT and KEF-SaliencyBERT, as well as TomBERT
and KEF-TomBERT. We report the average performance
and standard deviation over 5 runs. Best results are in
bold. The marker † refers to significant test p-value <
0.05 when comparing with other multi-modal models.

two latest BERT-based multimodal models as the
foundations of our work, i.e., TomBERT and Salien-
cybert. In other words, we integrate KEF into
TomBERT and Saliencybert to obtain the final
model KEF-TomBERT and KEF-Saliencybert.

5 Results and Discussion

5.1 Main Results
The main experiment results are shown in Table 2.
Based on the results, we can make a couple of
observations: (1) We can see that pure visual-
based methods perform very poorly, which im-
plies that the associated images only play a sup-
porting role to the text, and cannot be treated in-
dependently for target-oriented sentiment predic-
tion; (2) For text-based methods, it is clear that
BERT consistently outperforms all the baselines,
which demonstrates the effectiveness of a strong

Model
TWITTER-15 TWITTER-17

Acc Macro-F1 Acc Macro-F1

TomBERT 77.15 71.75 70.50 68.04

TomBERT+VAE 78.06±0.30 72.82±0.45 71.79±0.07 69.55±0.16
TomBERT+SPE 77.86±0.21 72.42±0.32 71.55±0.29 69.16±0.37
KEF-TomBERT 78.68±0.30 73.75±0.27 72.12±0.15 69.96±0.25

∆ (SPE) +0.62 +0.93 +0.33 +0.41

Table 3: Ablation study of two main components. ∆
represents the difference between the performance of
KEF-TomBERT and TomBERT+VAE.

Positive
Neutral
Negative

(a) TomBERT+VAE

Positive
Neutral
Negative

(b) KEF-TomBERT

Figure 4: Visualization of multimodal output represen-
tations for TomBERT+VAE and KEF-TomBERT.

pre-trained model. We attribute this to the fact
that pre-trained models can provide rich semantic
features; (3) Res-MGAN generally perform bet-
ter than MGAN, which implies that the image in-
formation complements the textual information,
and thus improves the performance for sentiment
classification; (4) TomBERT and Saliencybert per-
form better than most multimodal models. A pos-
sible reason is that they employ self-modal and
cross-modal multi-head attention to learn more
robust representation; (5) KEF-Saliencybert and
KEF-TomBERT both achieve competitive results
on the TWITTER-15 and TWITTER-17 datasets.
Specifically, compared to base version TomBERT,
KEF-TomBERT obtains about 2.0% and 1.5% im-
provements in Macro-F1 and Accuracy. In con-
trast, KEF-Saliencybert outperforms Saliencybert
by 1.5% and 1.7% on average. These results re-
veal that our framework have good compatibil-
ity; (6) KEF-TomBERT performs better than KEF-
Saliencybert in most setting, which indicates that
our framework is more effective for TomBERT.

5.2 Ablation Study

Without loss of generality, we choose KEF-
TomBERT model for the ablation study to inves-
tigate the effects of different modules in KEF.
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Model
TWITTER-15 TWITTER-17

Acc Macro-F1 Acc Macro-F1

TomBERT 77.15 71.75 70.50 68.04

TomBERT+MA 77.72±0.41 72.37±0.21 71.23±0.24 69.09±0.21
TomBERT+VAE 78.06±0.30 72.82±0.45 71.79±0.07 69.55±0.16

∆ (RL) +0.34 +0.45 +0.56 +0.46

Table 4: Detailed ablation test over Visual Attention
Enhancer. ∆ represents the difference between the per-
formance of TomBERT+VAE and TomBERT+MA.

Effects of Knowledge-enhanced Framework.
We study the two main components of KEF: Vi-
sual Attention Enhancer (VAE) and Sentiment Pre-
diction Enhancer (SPE). Based on the results re-
ported in Table 3, we can observe the following:
(1) In comparison with the base model TomBERT,
TomBERT+VAE achieves competitive performance
on both datasets, which validates the rationality of
exploiting adjective-noun pairs to improve the vi-
sual attention capability; (2) After integrating SPE
into TomBERT+VAE, KEF-TomBERT achieves the
state-of-the-art performance, which demonstrates
that SPE can improve the sentiment prediction
capability through adjective-noun pairs; (3) VAE
is more effective than SPE. This is explainable
since the effectiveness of the attention mecha-
nism is the core factor of sentiment prediction.
Hence, it contributes more to our framework; (4)
As depicted in Figure 4, we can see that multi-
modal output representations7 learned by KEF-
TomBERT are obviously more separable than those
by TomBERT+VAE. This suggests that SPE can in-
deed reduce the difficulty of sentiment prediction.

Analysis over components of Visual Attention
Enhancer. We further disassemble the Visual At-
tention Enhancer to see the contributions of the
two sub-components: Mapping Method (MA) and
Reconstruction Loss (RL). From the results in Ta-
ble 4, we can observe that: (1) Compared to the
base model TomBERT, TomBERT+MA achieves
better performance, which indicates that the map-
ping method can help the opinion target capture
corresponding visual representations; (2) After in-
tegrating RL into TomBERT+MA, TomBERT+VAE
achieves further improvements, which demon-
strates that the reconstruction loss can indeed im-
prove the effectiveness of visual attention. This is
consistent with our motivation.

7visualized by t-SNE (Van der Maaten and Hinton, 2008).
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Figure 5: The results of KEF-TomBERT under different
numbers of ANPs. Dev is short for development set.

5.3 Parameter Analysis

In this subsection, we explore the effect of hyper-
parameters on our model. Specifically, we tune the
hyperparameters on the development set, and then
evaluate the performance on the test set.

Effect of the number of ANPs. To verify the
impact of ANPs on KEF-TomBERT model, we
extract the top 1, 3, 5, and 7 ANPs from each image.
The results are shown in Figure 5. Obviously, as
the number of ANPs increases, the performance of
KEF-TomBERT gets better. And when the number
of ANPs is equal to 5, KEF-TomBERT achieves the
best results. However, once the number of ANPs is
greater than 5, the performance does not continue
to increase and even begins to fall. The reason
behind this may be that: each sentence contains
at most 5 opinion targets, so it will bring some
noise when the number of ANPs is greater than the
maximum number of opinion targets.

Effects of λN and λ. To investigate the effect
of hyperparameters λN and λ on the Visual At-
tention Enhancer (VAE), we conduct experiments
for values set at 0.1 intervals in the range (0, 1).
Figure 6(a) and Figure 6(b) show the performance
of TomBERT+MA and TomBERT+VAE with differ-
ent λN and λ on both datasets, respectively. Ac-
tually, as λN and λ increase, the performance of
TomBERT+MA and TomBERT+VAE has an initial
upward trend, and then flattens out or begins to fall.
Initially, the nouns in ANPs help the opinion target
capture the corresponding visual representations
more accurately, thus improving the performance.
However, once the weight λN or λ exceeds a cer-
tain value, the nouns begin to dominate the atten-
tion process and perform poorly. It makes sense be-
cause we inevitably extract the wrong ANPs, so it
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(c) Effect of λA

Figure 6: The effect of hyper-parameters λN , λ and λA on the development set and test set.

tends to have a negative impact when the adjectives
account for a large proportion. This is also why we
only use it as complementary information to the
opinion target instead of directly replacing the opin-
ion target. Finally, we set λN , λ to be {0.5, 0.2} on
TWITTER-15 and {0.2, 0.3} on TWITTER-17.

Effects of λA. To analyze the effect of different
λA on Sentiment Prediction Enhancer (SPE), we
adjust λA in (0, 1) to conduct experiments and
the step is 0.1. Figure 6(c) shows the results of
KEF-TomBERT with varying λA on two datasets.
According to the trend of the curve, we set λA to be
0.6 on TWITTER-15 and 0.2 on TWITTER-17,
the reason behind this is similar to λN and λ.

Jointly observing Figure 5 and Figure 6, we
found that the best results of the development set
and test set are basically consistent, which indicates
that our framework has good robustness.

5.4 Case Study

To better understand the advantage of Visual At-
tention Enhancer (VAE) and Sentiment Prediction
Enhancer (SPE), we randomly select some samples
from the Twitter dataset for a case study.

Effects of Visual Attention Enhancer. As
shown in Figure 7(a), the base model TomBERT
incorrectly predicts the sentiment of the opinion
target “Korkie”. It is reasonable since we found
that TomBERT focuses on visual clues (highlighted
by the yellow bounding boxes) that are not re-
lated to the opinion target. After integrating VAE
into TomBERT, TomBERT+VAE maps fine-grained
opinion target “Korkie” to the coarse-grained noun
“man” in ANPs. With the aid of the noun “man”,
TomBERT+VAE successfully captures the target-
relevant visual clues (highlighted by the red bound-
ing boxes), thus giving the right predictions.

Effects of Sentiment Prediction Enhancer. As
shown in Figure 7(b) and Figure 7(c), although
TomBERT+VAE accurately captures the corre-
sponding visual representations (i.e., smiling faces)
of the opinion target, the diversification of smile
expressions increases the difficulty of sentiment
prediction, thus TomBERT+VAE incorrectly pre-
dict the sentiment over “Sammy” in Figure 7(c).
After integrating SPE into TomBERT+VAE, KEF-
TomBERT maps different smiling faces to the same
adjectives “happy”. Apparently, it is easier for the
KEF-TomBERT to learn the mapping function be-
tween these “happy” and sentiment label “positive”,
thus making the right prediction.

5.5 Error Analysis
Although our model improves the overall per-
formance of TMSC, KEF-TomBERT and KEF-
SaliencyBERT make some wrong predictions due
to extracting some noise ANPs. According to the
statistics, for KEF-TomBERT model, about 5.50%
and 7.05% samples of the dataset TWITTER-15
and TWITTER-17 are predicted successfully by
the model TomBERT but incorrectly by KEF-
TomBERT. In contrast, for KEF-SaliencyBERT
model, almost 5.79% and 7.29% samples of the
dataset TWITTER-15 and TWITTER-17 are pre-
dicted successfully by the model SaliencyBERT
but incorrectly by KEF-SaliencyBERT. Addition-
ally, the mapping method is unable to consistently
find the correct noun for a given opinion target.
There ought to be more advanced natural language
processing techniques to address them.

6 Related Work

Target-oriented Sentiment Classification. As
an important task in aspect-based sentiment analy-
sis, Target-oriented Sentiment Classification (TSC)
has been extensively studied in recent years. With

6791



(a) RT @ MaggieCoughlan : [Korkie]negative
is on the phone . 

hair
man
clock

tie
phone

TomBERT : neutral ✗
TomBERT +VAE : negative ✓

0.1546
0.7368
0.0712
0.0118
0.0155

✘

✓

(b) [Vince Gilligan]positive travels in the 
city of cape town .

nice
bad

happy
clear
dry

TomBERT : neutral ✗
TomBERT+VAE : positive ✓
KEF-TomBERT : positive ✓

TomBERT : negative ✗
TomBERT+VAE : negative ✗
KEF-TomBERT : positive ✓

clouds
car
man
sky

grass

✓

(c) # OOTD with my little dog by my side . 
[Sammy]positive .

clean
happy
fresh
cute

broken

road
girl

grass
dog
tree

✓

Figure 7: Predictions of TomBERT, TomBERT+VAE and KEF-TomBERT on three test samples. ✘and ✔denote
incorrect and correct predictions. Opinion targets and their sentiment polarities are highlighted in the sentence. The
yellow bounding box and red bounding box denote the visual clues that the opinion target focuses on under different
methods. The numbers in the first sample indicate the similarity scores between the target and each noun in ANPs.

the development of deep learning, various neural
networks have been designed for this task and have
obtained promising results (Tang et al., 2016a;
Li et al., 2018; Xue and Li, 2018). Recently,
many studies have designed attention-based meth-
ods (Tang et al., 2016b; Wang et al., 2016; Ma et al.,
2017; Chen et al., 2017; Fan et al., 2018; Zhao et al.,
2020; He et al., 2018; Xu et al., 2019a; Hu et al.,
2019; Xu et al., 2020; Wang et al., 2020) and graph-
based methods (Zhang et al., 2019; Zhang and Qian,
2020; Huang and Carley, 2019; Sun et al., 2019;
Tang et al., 2020; Chen et al., 2020) to model the in-
teractions between the target and the context. How-
ever, none of the above works take visual modality
into consideration, which can complement each
other with these text-based methods.

Target-oriented Multimodal Sentiment Classifi-
cation. With the growth of multimodal data (e.g.,
image) on the web, researchers proposed a new
subtask of aspect-based sentiment analysis, namely
Target-oriented Multimodal Sentiment Classifica-
tion (TMSC), which has been explored in a few
studies(Xu et al., 2019b; Yu et al., 2019; Yu and
Jiang, 2019; Zhou et al., 2021; Zhang et al., 2021;
Khan and Fu, 2021; Wang et al., 2021; Ling et al.,
2022). Among them, based on the LSTM archi-
tecture, Xu et al. (2019b), Yu et al. (2019) and
Zhou et al. (2021) proposed the MIMN, ESAFN
and MMAP network to effectively model the target-
text and target-image interactions. In contrast, Yu
and Jiang (2019), Wang et al. (2021), Zhang
et al. (2021) and Khan and Fu (2021) aim to
explore the usefulness of the BERT architecture
for TMSC and propose the TomBERT, Saliency-
BERT, ModalNet-BERT and EF-CapTrBERT. Dif-
ferent from previous studies, this paper leverages

the adjective-noun pairs (ANPs) to align text and
image in the TMSC task.

7 Conclusion and Future Work

In this paper, we propose a novel knowledge-
enhanced Framework (KEF) for the TMSC task.
Specifically, with the aid of ANPs, we design
two novel knowledge enhancers, Visual Attention
Enhancer and Sentiment Prediction Enhancer, to
improve the visual attention capability and senti-
ment prediction capability of the TMSC task. Re-
sults from numerous experiments indicate that our
model achieves better performance than other state-
of-the-art methods. Further analysis also validates
the superiority of our framework.

In the future, we would like to apply our idea
to other multimodal tasks since the adjective-noun
pairs (ANPs) extracted from the image are easy to
extend to other multimodal tasks, e.g., multi-modal
entity linking, multi-modal machine comprehen-
sion and multi-modal dialogue generation.
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Abstract
Sentiment analysis in social media is chal-
lenging since posts are short of context. As
a popular way to express emotion on social
media, stickers related to these posts can sup-
plement missing sentiments and help identify
sentiments precisely. However, research about
stickers has not been investigated further. To
this end, we present a Chinese sticker-based
multimodal dataset for the sentiment analysis
task (CSMSA). Compared with previous real-
world photo-based multimodal datasets, the
CSMSA dataset focuses on stickers, convey-
ing more vivid and moving emotions. The
sticker-based multimodal sentiment analysis
task is challenging in three aspects: inher-
ent multimodality of stickers, significant inter-
series variations between stickers, and com-
plex multimodal sentiment fusion. We pro-
pose SAMSAM to address the above three chal-
lenges. Our model introduces a flexible masked
self-attention mechanism to allow the dynamic
interaction between post texts and stickers. The
experimental results indicate that our model
performs best compared with other models.
More researches need to be devoted to this field.
The dataset is publicly available at https:
//github.com/Logos23333/CSMSA.

1 Introduction

In recent years, social media has become more
and more popular, and people tend to express opin-
ions and emotions on social media (Greenwood
et al., 2016). Collecting opinions and analyzing
sentiment in social media can help a lot for mar-
keting (Alalwan et al., 2017), campaign trends pre-
diction, and so forth. The sentiment analysis is
challenging in social media because of the lack of
context (Khan and Fu, 2021). Stickers attached to
posts can supplement missing sentiment and help to
identify sentiment precisely. Such task of perform-
ing sentiment analysis with multiple data sources
is called multimodal sentiment analysis.

∗Corresponding author

Figure 1: An example of online conversation. The first
image is a photo that does not reflect any sentiment. The
second is a sticker, expressing the emotional tendency
of happiness. The sticker here contributes to supple-
menting the missing sentiment of the text.

Many research efforts have been devoted to mul-
timodal sentiment analysis (Poria et al., 2015).
However, most of the multimodal sentiment anal-
ysis datasets are based on real-world photos (Yu
et al., 2020). Research focusing on sticker-based
multimodal sentiment is limited. In social media,
people tend to express the sentiment with stickers
rather than real-world photo (Wang et al., 2019).
Stickers can convey more vivid and direct emotion.
For example, as shown in Figure 1, the first im-
age is a photo related to the post context, but it
does not reflect any sentiment. Instead, the second
image, i.e., the sticker, shows a sense of happi-
ness, revealing the missing sentiment of the corre-
sponding texts. To this end, we introduce CSMSA,
a challenging Chinese Sticker based Multimodal
dataset for Sentiment Analysis task in social media.
CSMSA includes 28k text-sticker pairs, including
1.5k sentiment-annotated pairs, and 16k different
stickers. This dataset is the first annotated sticker-
based dataset for multimodal sentiment analysis to
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the best of our knowledge. Our dataset will release
to encourage research on multimodal sentiment
analysis in social media.

The proposed CSMSA task is challenging in
three aspects: First, stickers may be inherently mul-
timodal because they are embedded with texts1,
while other datasets have only real-world photos.
For example, as shown in Figure 2, sticker (a) is
attached with the text “I’m beat” and sticker (b) is
attached with the text “I’m so touched”. The diffi-
culty is that the same sticker with different sticker
texts may vary significantly in sentiment. Second,
stickers are highly different in styles, leading mod-
els to learn robust representations for the stickers
following various distributions hardly (Huo et al.,
2018). In contrast, most of the photo-based datasets
only consist of human faces or food (Hasan et al.,
2019), and the styles do not differ much. Consider-
ing the large inter-series variation of stickers, the
CSMSA task requires models to adapt to different
artistic styles. Third, the sentiment fusion of text
and stickers is complex. For example, the text sen-
timent in Figure 2 is negative obviously. However,
after combining the text and the sticker (b), the
multimodal sentiment is positive, showing a sense
of moving and touching. Multimodal sentiment
does not always favor a single modality, making
the fusion between modalities complex. In gen-
eral, the first and second challenges are due to the
difficulty of modeling the stickers, making it more
challenging to fuse the sentiment with the post text.

We propose a Sticker-Aware Multimodal Senti-
ment Analysis Model (SAMSAM) to address the
above three challenges. To address the first and sec-
ond challenges, SAMSAM introduces the sticker
text and sticker series tag, which can be seen as a
further complement to sticker sentiment to model
the sticker wholly and accurately. To address
the third challenge, SAMSAM adopts the flexible
masked attention mechanism to allow post texts
and stickers to interact fully but selectively. The
masked attention mechanism can help the model
extract the most helpful information for the current
sentiment judgment. We conduct experiments on
the proposed CSMSA dataset. The experimental
results show that our model performs best in the
challenging CSMSA task. The ablation study indi-
cates that the encoding of sticker texts and sticker
series help in understanding multimodal sentiment,

1In the following, we call the text embedded in the sticker
“sticker text” to avoid confusion with the post text.

呜呜呜呜我要哭了Text

Sticker

Multimodal 

Sentiment Positive Negative

(Wooooo I’m going to cry.)

(I’m beat.)

Negative

text sentiment: Negative

我太难了 感动

(I’m touched.) (I can’t accept.)

(a) (b) (c)

Figure 2: An example for showing how the sticker in-
fluences sentiment in multimodal sentiment analysis. A
sentence accompanied by different stickers may express
reversed sentiments. An image accompanied by differ-
ent sticker texts may also express reversed sentiments.
The contents in brackets are translations from Chinese.

and the proposed masked self-attention mechanism
can improve model performance significantly.

The contributions of this paper are as follows:

• We analyze the difference between real-world
photos and stickers. We reveal three chal-
lenges of the CSMSA task: inherent multi-
modality, significant inter-series variation, and
complex sentiment fusion.

• We propose a sticker-based human-annotated
dataset. The dataset aims to test the model’s
ability to leverage stickers to supplement the
missing sentiments of texts. To the best of
our knowledge, we are the first to focus on
stickers in multimodal sentiment analysis.

• We propose SAMSAM and step towards
sticker-aware multimodal models. We con-
duct experiments against other models. Ex-
perimental results indicate that our model per-
forms best compared with other models.

2 Related Work

2.1 Multimodal Sentiment Analysis Datasets
Multimodal sentiment analysis has attracted more
and more attention recently. Due to the diversity
of modalities and interactions between modalities,
researchers have proposed a wide variety of mul-
timodal sentiment analysis datasets, adapting to
different real-world scenarios. Bagher Zadeh et al.
(2018) propose CMU-MOSEI, one of the enormous
datasets for sentiment analysis and emotion recog-
nition with three modalities. The data of CMU-
MOSEI came from YouTube monologue videos,
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and the dataset was both sentiment and emotion an-
notated. Castro et al. (2019) propose a multimodal
sarcasm detection dataset (MUStARD), which is
compiled from famous TV shows and consists of
audiovisual utterances annotated with sarcasm la-
bels. Furthermore, Hasan et al. (2019) proposes
a UR-FUNNY dataset, which contains text-audio-
video three modalities for understanding humor.
Yu et al. (2020) propose a Chinese multimodal sen-
timent analysis dataset with both multimodal and
independent unimodal annotations. The primary
difference between CSMSA and previous studies is
that traditional multimodal datasets focus on videos
of a speaker with their face, and few researchers
pay attention to the sticker. Our proposed CSMSA
dataset focuses on the sticker, studying the senti-
ment interaction between text and sticker.

2.2 Multimodal Sentiment Analysis Methods
Multimodal sentiment analysis mainly focuses
on utilizing multiple resources to predict human
emotions. Most multimodal models focus on
three modalities: acoustic, visual, and text. Han
et al. (2021b) propose Multimodal-infomax model.
They propose a two-level mutual information
maximization and design an entropy estimation
module to facilitate the computation of Barber-
Agakov (Agakov, 2004) lower bound and the train-
ing process. Hazarika et al. (2020) propose a novel
framework MISA, which projects each modality
to two distinct subspaces, reducing the modality
gap and capturing characteristic features. Han
et al. (2021a) propose Bi-Bimodal Fusion Network,
which learns two text-related pairs of representa-
tions and generates the final prediction through the
concatenation of four head representations.

2.3 Sticker-Related Research
Gao et al. (2020) propose to recommend an ap-
propriate sticker to the user based on multi-turn
dialog context history without any external labels.
They release a dataset of 340K multi-turn dialog
and sticker pairs. The dataset contains the most
significant number of stickers available for sticker
recommendation tasks. Fei et al. (2021) propose
a new task Meme incorporated Open-domain Dia-
logue (MOD). The memes mentioned in (Fei et al.,
2021) can be seen as the same thing with the sticker.
A large-scale open-domain multimodal dialogue
dataset incorporating great Internet memes into ut-
terances is also released with the sentiment label
of memes. However, their dataset is constructed by

inserting memes as appropriately as possible into
the multi-turn conversation dataset. This construc-
tion does not reflect the real interaction and sup-
plementary between modalities because the memes
inserted must not be too much different from the
sentiment of the text. In the real world, the senti-
ment of stickers may be very different from text,
and the sentiment fusion of text and sticker is very
complex. For example, in the second example of
Figure 3, the sentiment of the sticker is the oppo-
site of the text, indicating that the sticker is not
just complementary and it can play a leading role
in multimodal sentiment analysis. In general, our
dataset is more consistent with the data distribution
of the real world.

3 Dataset

3.1 Data Collection

We collect the dataset from one of the most popular
messaging apps. A huge number of stickers are
released in this app, and everyone can use these
stickers easily and conveniently in private or group
chat. In this app, a sticker has a different identifier
than other typical images, which allows us to focus
on stickers and filter noises (e.g., screenshots and
photos). All stickers are resized to a uniform size
of 224 x 224 pixels.

We select eight public open chat groups con-
sisting of active members, and the chat history of
these groups is collected. To get multimodal data
containing both text and sticker, we traverse every
sticker in the chat history and collect the context of
the sticker. The sticker and the text must be sent by
the same person. Due to privacy concerns, we also
filter out user information and anonymize user IDs.

3.2 Annotation

We employ four well-educated annotators to label
the sentiments of text-sticker pairs. The annotators
are asked to judge the text sentiment, image senti-
ment, multimodal sentiment, and image_can_help
label. The image_can_help label indicates if the
given sticker can assist in judging multimodal sen-
timent. This label can help researchers investigate
how stickers’ modality supplements the sentiment
of the text. A dataset with multimodal and inde-
pendent unimodal annotations allows researchers
to study the interaction between modalities (Yu
et al., 2020). Thus, our dataset can fully support
unimodal sentiment analysis research.

To study the differences across sticker series, we
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Figure 3: Two examples of the CSMSA dataset illustrate the sticker’s effectiveness in sentiment analysis. For each
text-sticker pair, in addition to multimodal annotations, the CSMSA dataset has independent unimodal annotations
and an image_can_help label. The image_can_help label indicates whether the sticker can help to analyze sentiment.

Datasets Size # Sti. # Ano.

MOD 45k 307 0
StickerChat 340k 174k 0

CSMSA 28k 16k 1.5k

Table 1: Comparison with other sticker-based datasets.
# Sti. represents the number of stickers. # Ano. rep-
resents the number of samples with human-annotated
multimodal sentiment label.

asked the annotators to group stickers into differ-
ence series. These sticker series include stickers
with a similar style. Each annotator will give a
confidence score used to calculate a final sentiment
score considering the different views of all the an-
notators. The original data are randomly assigned
to each annotator. Four annotators will decide every
instance for the sake of the quality of the labeling.
We weigh the confidence score of each annotator
for the same label, and the label with the highest
score will be preserved.

3.3 Statistics and Analysis

The final dataset contains 28k text-sticker pairs and
16k different stickers. The statistical comparison
of the CSMSA dataset with existing sticker-based
datasets is shown in Table 1. This dataset is the
first annotated sticker-based dataset for multimodal
sentiment analysis to the best of our knowledge.
Our study is conducted on 1.5k annotated data, and
the large-scale dataset is for future work.

We also conduct studies on the ability of text and
images to express sentiment by using annotated uni-
modal labels. According to our statistics, nearly
52.1% of texts in the CSMSA dataset do not convey

Task Train Valid Test
Easy Task 942 314 314

Hard Task-1 1297 127 146
Hard Task-2 1290 130 150
Hard Task-3 1373 109 88

Table 2: The split statistics of the CSMSA dataset.

any sentiment, while sticker has a 73% probability
of conveying sentiment. Meanwhile, 591 (37.6%)
of the data are marked as image_can_help in the
whole dataset. It means that if the stickers modal-
ity is ignored, about 37.6% of the data may not
accurately determine their sentiment.

3.4 Case Analysis

Stickers can help to analyze sentiment. However,
previous work considers only real-world photos,
ignoring stickers heavily used in social media. In
Figure 3, we show two examples of the CSMSA
dataset to reveal how stickers can assist in deter-
mining sentiment. In the first example, the post
text asks about the time of the school year without
expressing any sentiment, while the sticker’s senti-
ment is negative. The sticker creator attaches text
“Ah!” to the sticker and adds blue “tears” to the cat,
giving it a strong emotional impact. In the second
example, the sentiment of the text is positive. How-
ever, we can know that it is a forced smile with the
help of the sticker, and the multimodal sentiment
is negative, which is the opposite of the text label.

3.5 Dataset Division

There are different series of stickers, and each se-
ries has an individual artistic style. Compared to
the limited number of emojis, the number of stick-
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Figure 4: An example shows the division of Hard Task-
3 and the significant variation of styles between the
stickers series.

ers is huge, and new stickers appear every day. In
order to investigate whether the model can adapt to
the newcomer stickers and the artistic style among
different sticker series, we divide the dataset into
four different ways: Easy Task, Hard Task-1, Hard
Task-2, and Hard Task-3. The division is shown in
Table 2. In particular, Easy Task randomly divides
the whole dataset in the ratio of 6:2:2. The training
set and validation set stickers may appear in the
test set. Hard Task-1 randomly divides the stickers
so that stickers from the test set will not appear in
the training and validation sets. Hard Task-2 ran-
domly divides the sticker series so that the sticker
series from the test set will not appear in the train-
ing and validation sets. Hard Task-3 partitions the
stickers into three categories: human face-based,
pet-based, and cartoon character-based. As shown
in Figure 4, there is a considerable difference in
style between them. The Hard Task-1 measures
whether the model can adapt to the new sticker.
The Hard Task-2 measures whether the model can
adapt to the new sticker series. The Hard Task-3
measures whether the model can adapt to unseen
sticker series, which varies greatly from the previ-
ous one.

4 Model

4.1 Task Definition

Formally, given an post textX = (x1, x2, . . . , xm),
a sticker I , the sticker text S = (s1, s2, . . . , sn)
and the sticker series E, the CSMSA task requires
model to predict the multimodal sentiment label
y ∈ {Positive,Negative,Neutral}. xi denotes
the i-th word in the post text, si denotes the i-th
word in the sticker text, m is the length of post text,

n is the length of sticker text.

4.2 Feature Layer
Post Text Encoder. BERT (Devlin et al., 2019;
Sun et al., 2019) is a transformer-based pre-trained
model which uses a Masked Language Model to
predict randomly masked or replaced words. We
use the bert-base-Chinese2 weights provided by
google to fine-tune the proposed model. For classi-
fication tasks, BERT takes the final hidden state of
the first token [CLS], i.e., h, as the representation
of the whole sequence.

h = BERT (X) (1)

Sticker Encoder. ResNet (He et al., 2015) is a
classic neural network used as a backbone for many
computer vision tasks. We use the ResNet34 as our
image encoder to obtain representations of stickers.
An input sticker I is resized to 224× 224 and then
sent through the ResNet model to obtain sticker
representations f .

f = ResNet(I) (2)

Sticker Text Encoder. The text within a sticker
is an essential component for understanding the
sticker. To extract the textual information contained
in sticker, we introduce PaddleOCR (Du et al.,
2020) to recognize texts S within a sticker. The
text feature u of sticker text S is obtained through
LSTM (Hochreiter and Schmidhuber, 1997), and
this text feature can assist in fusing multimodal
information and determining the final sentiment.

u = LSTM(S) (3)

Sticker Series Embedding. The differences in
artistic styles cause significant inter-series varia-
tions, making the model difficult to understand
stickers. For the model to distinguish the differ-
ent artistic styles of the series explicitly, the sticker
series tag e is fed as a embedding.

v = Embedding(E) (4)

4.3 Interaction Layer
There are four types of information in the interac-
tion layer: post text h, sticker f , sticker text u, and
sticker series v, which make up a tuple (h, f , u, v).
Accordingly, four inter-information relations need
to be considered:

2https://huggingface.co/
bert-base-chinese
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Figure 5: The overview of the proposed SAMSAM and masked multi-head attention. SAMSAM consists of three
parts, the feature layer, the interaction layer, and the prediction layer.

(1) The alignment between h and f is beneficial
to fusing the sentiment between post text and
sticker, we need to find the most relevant text-
image information according to the relations
between h and f .

(2) As the sticker text is an essential way of ex-
pressing emotion, we need to find the most
relevant sticker information according to the
relations between h and u.

(3) Similar to (1) and (2), we want to fuse the sen-
timent of the sticker and find the most relevant
sticker information according to the relations
between f and u.

(4) We also want to let the model understand the
current sticker series style according to the
relations between f and v.

We adopt multi-head attention in the interaction
layer considering the above factors. Multi-head
attention allows h− f , h−u, f −u and f − v pair
to interact fully. Since post text and sticker text are
not intrinsically related to sticker series, we need to
prevent some of the information from interacting
explicitly for noise mitigation. Thus we adopt a
well-designed attention maskM in addition to the
original multi-head attention. The overview of the
interaction layer and mask is shown in Figure 5.

In the interaction layer, we employ three feed-
forward networks with different parameters to

project the Ci into three different spaces:

Qi = FN(Ci), Ki = FN(Ci), Vi = FN(Ci)
(5)

Ci represents the i-th source ofC, i.e, h, f , u and v.
The model then takes each Qi to attend to Kj , and
uses the attention weights αi,j to gain the weighted
sum of Vi:

C ′i =
4∑

j=1

αi,j ∗ Vi (6)

αi,j =
exp(Qi ∗Kj ⊙M)∑4
k=1 exp(Qi ∗Kk ⊙M)

(7)

4.4 Prediction Layer
To aggregates information in different sources, we
stack the hidden states in C ′ as the hybrid output:
O = [C ′1;C

′
2;C

′
3;C

′
4]. Finally, we feed O to a one-

layer feed-forward network followed by a softmax
function for the sentiment prediction distribution:

P (y|X, I, S,E) = softmax(FFN(O)) (8)

To optimize all the parameters in our SAMSAM,
the objective is to minimize the standard cross-
entropy loss function:

L = − 1

|D|
∑

c∈D
logP (y(c)|X(c), I(c), S(c), E(c))

(9)
where D denotes all samples in the dataset.
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5 Experimental Setup

5.1 Compared Methods
BERT BERT is one of the state-of-the-art meth-
ods to address classification tasks. We implement
BERT as a text-only baseline.

BERT-ST The input sentence of BERT-ST is the
concatenation of post text and sticker text, sepa-
rated by [SEP]. We implement BERT-ST as a text-
only baseline.

RoBERTa RoBERTa is an optimized method for
BERT. We implement RoBERTa as a strong text-
only baseline.

ResNet34 We implement ResNet34 as a image-
only baseline model.

mBERT Yu and Jiang (2019) design mBERT
on top of the baseline BERT architecture. They
directly concatenate the image features with the
final hidden states of the post text.

MMTF Li (2021) propose a Multimodal Trans-
formers (MMTF) for Meme Classification task.
They propose a multimodal attention layer to fully
interact with the text and image based on the cross-
attention mechanism. We adopt MMTF as a multi-
modal baseline.

5.2 Implementation Details
All the models are trained in 100 epochs with an
NVIDIA GTX 2080Ti, and we use the best model
on the validation set for evaluation. We use Py-
torch (Paszke et al., 2017) and HuggingFace’s trans-
formers (Wolf et al., 2020) to implement our model.
AdamW (Loshchilov and Hutter, 2019) optimizer
is used to optimize our model with learning rate
5e-7. The batch size is 6.

6 Experimental Results

6.1 Overall Performance
Table 3 shows the experimental results of our com-
parison with other models and ablation study.

The experimental results show that SAMSAM
achieves the best results among multimodal and
unimodal models. Multimodal models MMTF and
mBERT are not well adapted to the CSMSA task
because they ignore the sticker text embedded in
the sticker, and the styles of stickers vary signifi-
cantly. Unimodal models perform poorly because
they focus on a single modality and ignore the com-
plementary effect between modalities.

The text-only BERT and RoBERTa models do
not consider the sentiment of the stickers, resulting
in their poor performance. The results of BERT-ST
are worse than BERT because of two reasons. The
first reason is the error propagation caused by the
inaccurate recognition of OCR. The second is that
the sentiment of the sticker must be combined with
the image feature. Otherwise, the wrong sticker
sentiment will further affect the multimodal senti-
ment judgment. The image-only model ResNet34
does not consider the text’s sentiment, so it per-
forms worse than the other multimodal models.
The image-only models perform better than the
text-only models on Easy Task and Hard Task-1
because the short text lacks context, and it is not
easy to predict the sentiment, while the sentiment
of the sticker is often stronger and more direct than
the text. The image-only models perform worse on
Hard Task-2 and Hard Task-3 because models fail
to adapt to the new sticker series.

Generally, we can see that multimodal and
image-only models perform worst on Hard Task-3
and best on Easy Task. This result also validates
the challenge of the CSMSA task. It is difficult to
capture and recognize stickers’ sentiments because
of the large inter-series variation of stickers. Mod-
els failed to generalize well when a new sticker
series appeared, making it lousy to predict multi-
modal sentiment. Unfortunately, new sticker series
appear every day. The CSMSA task is challenging
and needs to be further researched.

6.2 Ablation Study
As shown in Table 3, the accuracy and F1 score
decreased on almost all tasks when the mask, post
text, sticker series, and sticker text were removed,
respectively. The mask helps the model extract the
most helpful information and eliminate some noise.
The sticker text helps the model understand the
sticker’s sentiment and thus correctly predict multi-
modal sentiment. The series embedding helps the
model capture the stylistic features of each series.
Similarly, post text and image are also essential for
multimodal sentiment judgment.

6.3 Case Study
We show some analysis examples in Figure 6. In
the first example, because the post text has the word
“reported”, its sentiment is Negative, which leads
to the misjudgment of the text-only model BERT.
We know that the sticker sentiment is Positive be-
cause of the blush and smile, and the sticker text
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Methods
Easy Task Hard Task-1 Hard Task-2 Hard Task-3

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Text-only
BERT 0.6178 0.5764 0.5274 0.4709 0.5467 0.5102 0.5114 0.3617
BERT-ST 0.6146 0.5609 0.4932 0.4772 0.5333 0.4769 0.5227 0.3814
RoBERTa 0.6210 0.5941 0.5479 0.4892 0.5133 0.5216 0.5341 0.4194

Image-only ResNet34 0.6178 0.5701 0.5753 0.5530 0.5342 0.4778 0.4886 0.3484

Multimodal
mBERT 0.5924 0.5576 0.5753 0.5156 0.5600 0.5361 0.5341 0.4037
MMTF 0.5955 0.5374 0.5479 0.4886 0.5267 0.4876 0.5227 0.4428
SAMSAM 0.6369 0.6180 0.5959 0.5669 0.5533 0.5179 0.5455 0.4265
w/o MASK 0.6306 0.6060 0.5685 0.5483 0.5133 0.4929 0.4773 0.3710

Ablation
w/o IMG 0.6274 0.6199 0.5685 0.5467 0.5200 0.5251 0.5114 0.3913

Study
w/o PT 0.6210 0.5665 0.5411 0.4845 0.5267 0.4924 0.5114 0.3782
w/o SE 0.6146 0.5594 0.5685 0.5112 0.5467 0.4978 0.5227 0.4133
w/o ST 0.6242 0.6179 0.5890 0.5664 0.5267 0.5006 0.5117 0.3925

Table 3: Overview of the experimental results. Acc. represents accuracy, and the F1 represents the weighted F1
score. MASK represents the mask mechanism. IMG represents the image feature. PT represents the post text. SE
represents the sticker series embedding, and ST represents sticker text.

Figure 6: Examples of multimodal sentiment analysis
produced by different models on CSMSA dataset.

“Sorry and not sorry” here also further verifies the
sentiment. After combining the text and sticker,
we know that although the text says about “report”
people and conveys some negative emotions. How-
ever, the user is happy with the situation rather than
sad. In the second example, the post text does not
reflect any emotion, indicating that the sentiment
label is Neutral. The expression of the dog in the
sticker is very subtle, in which there has a smile
but not obvious. After combining the word “smile”
in the sticker text, we can learn that the sticker’s
sentiment is Positive. The text-only model BERT
fails to consider the sticker sentiment, resulting in
the wrong judgment. The image-only model and
MMTF are biased in judging the sticker’s senti-
ment because they failed to combine the sticker

text, which led to their incorrect judgment of mul-
timodal sentiment. After combining the sticker
text, our model correctly predicts the multimodal
sentiment, i.e., Positive.

7 Conclusion

In this paper, we propose to focus on stickers
rather than the real-world photo in the field of
multimodal sentiment analysis. The sentiment
fusion of stickers and texts is complex and chal-
lenging. Compared with real-world photos, the
sticker is inherently multimodal, and it has a sig-
nificant inter-series variation, making it difficult
to encode. We propose a sticker-based dataset for
the sentiment analysis task, with 1.5k text-sticker
human-annotated pairs. This dataset is the first
annotated sticker-based dataset for multimodal sen-
timent analysis to the best of our knowledge. Ex-
perimental results validate the challenges of the
CSMSA task. Previous models cannot be directly
applied to this task. More researches need to be
devoted to this field.
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Abstract
Within textual emotion classification, the set
of relevant labels depends on the domain and
application scenario and might not be known at
the time of model development. This conflicts
with the classical paradigm of supervised learn-
ing in which the labels need to be predefined. A
solution to obtain a model with a flexible set of
labels is to use the paradigm of zero-shot learn-
ing as a natural language inference task, which
in addition adds the advantage of not needing
any labeled training data. This raises the ques-
tion how to prompt a natural language inference
model for zero-shot learning emotion classifica-
tion. Options for prompt formulations include
the emotion name anger alone or the statement
“This text expresses anger”. With this paper,
we analyze how sensitive a natural language
inference-based zero-shot-learning classifier is
to such changes to the prompt under consid-
eration of the corpus: How carefully does the
prompt need to be selected? We perform experi-
ments on an established set of emotion datasets
presenting different language registers accord-
ing to different sources (tweets, events, blogs)
with three natural language inference models
and show that indeed the choice of a particu-
lar prompt formulation needs to fit to the cor-
pus. We show that this challenge can be tackled
with combinations of multiple prompts. Such
ensemble is more robust across corpora than
individual prompts and shows nearly the same
performance as the individual best prompt for
a particular corpus.

1 Introduction

To enable communication about emotions, there
exists a set of various emotion names, for instance
those labeled as basic emotions, by Ekman (1992)
or Plutchik (2001) (anger, fear, joy, sadness, dis-
gust, surprise, trust, anticipation). While such psy-
chological models influence natural language pro-
cessing and emotion categorization approaches, the
choice of emotion concepts is context-dependent.

For instance, Scherer and Wallbott (1997) and
Troiano et al. (2019) opted to use guilt and shame
as self-directed emotions in addition to Ekman’s
basic emotions, to analyze self-reports of events.
For the context of the perception of art it is more
appropriate to consider aesthetic emotions (Men-
ninghaus et al., 2019; Haider et al., 2020), like
beauty, sublime, inspiration, nostalgia, and melan-
cholia.

This leads to a potential gap between concepts
in emotion-related training data and the applica-
tion domain, purely because the label set is not
compatible. One solution is to resort to so-called
dimensional models, in which emotion names are
located in vector spaces of affect (valence, arousal,
Preoţiuc-Pietro et al., 2016; Buechel and Hahn,
2017) or cognitive appraisal (e.g., regarding respon-
sibility, certainty, pleasantness, control, attention
with respect to a stimulus event, Hofmann et al.,
2020; Troiano et al., 2023). In these vector spaces,
classes can be assigned to predicted points with
a nearest-neighbor approach, even if these classes
have not been seen during training. This approach,
however, has the disadvantage of the so-called hub-
ness problem (Lazaridou et al., 2015), namely that
the distance between predictions and concepts that
have been seen during training tends to be smaller
than to novel concepts. We acknowledge ongoing
research to tackle this problem (Park et al., 2021;

This person feels angry
I won a trip to Greece in a 

competition :-)

This person feels happy

This person feels sad

Hypothesis

Entailment

Contradiction

Contradiction

Premise
Hypothesis

Hypothesis

Figure 1: An example of the application of NLI to ZSL
emotion classification. Given the premise “I won a trip
to Greece in a competition”, three hypotheses represent
the emotions (joy, anger, sadness). The representation
of joy is entailed and therefore predicted.
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Buechel et al., 2021).
We take a different, more direct, route to ob-

taining classifiers for discrete emotion categories
which are not known at system development time,
namely zero-shot learning (ZSL). One instantiation
of such ZSL systems is via natural language infer-
ence models (ZSL-NLI), in which the inference
task needs to perform reasoning (Yin et al., 2019).
Consequently, the idea of implementing ZSL-NLI
models is not by exemplification and optimizing a
classifier, but developing appropriate natural lan-
guage class name representations which we refer to
as prompts. We see an example for the application
of an NLI model to ZSL emotion classification in
Figure 1 – the NLI model needs to decide if the
hypothesis (a prompt which represents the class la-
bel) entails the premise (which corresponds to the
instance to be classified). This paradigm raises the
question (which we answer in this paper) of how to
formulate the emotion prompt and how much the
design choice of the prompt needs to fit the dataset.

Manually developing intuitive templates based
on human data introspection may be the most natu-
ral method to produce prompts. In this paper, we
provide manually created templates to probe emo-
tion classification in an NLI-ZSL setup and we ana-
lyze whether prompts are language-register depen-
dent according to various corpora (tweets, event de-
scriptions, blog posts). To accomplish this aim, we
perform experiments on an established set of emo-
tion datasets with three NLI models and we show
that (1) prompts are indeed corpus-specific and that
the differences follow the same pattern across dif-
ferent pretrained NLI models, (2) that an ensemble
of multiple prompts behaves more robustly across
corpora, and (3) the representation of the emotion
concept as part of the textual prompt is an important
element, benefiting from representations with syn-
onyms and related concepts, instead of just the emo-
tion name. Our code is publicly available at https:
//github.com/fmplaza/zsl_nli_emotion_prompts.

2 Related Work

2.1 Emotion Classification

Emotion analysis has become a major area of re-
search in NLP which comprises a variety of tasks,
including emotion stimulus or cause detection (Li
et al., 2021; Doan Dang et al., 2021) and emo-
tion intensity prediction (Mohammad and Bravo-
Marquez, 2017; Köper et al., 2017). The task of
emotion classification received most attention in re-

cent years (Bostan and Klinger, 2018; Mohammad
et al., 2018a; Plaza-del-Arco et al., 2020, i.a.).

Emotion classification aims at mapping textual
units to an emotion category. The categories of-
ten rely on psychological theories such as those
proposed by Ekman (1992) (anger, fear, sadness,
joy, disgust, surprise), or the dimensional model
of Plutchik (2001) (adding trust and anticipation).
However, neither are all these basic emotions rele-
vant in all domains, nor are they sufficient. For in-
stance, in the education field, D’mello and Graesser
(2007) found boredom, confusion, flow, frustration,
and delight to be more relevant than fear or disgust.
Sreeja and Mahalaksmi (2015) reveal that emotions
such as love, hate, and courage are necessary to
model the emotional perception of poetry. Bostan
et al. (2020) identify annoyance, guilt, pessimism,
or optimism to be important to analyze news head-
lines.

A strategy to avoid specification of discrete cat-
egories is the use of dimensional spaces that con-
sider valence, arousal, and dominance (VAD, Rus-
sell and Mehrabian, 1977). Smith and Ellsworth
(1985) claim that this model does not represent
important difference between emotions and pro-
pose an alternative dimensional model based on
cognitive appraisal, which has recently been used
for text analysis (Hofmann et al., 2020; Stranisci
et al., 2022; Troiano et al., 2023). Independent of
the classification or regression approach, nearly all
recently proposed systems rely on transfer learn-
ing from general language representations. We
refer the reader to recent shared task surveys for a
more comprehensive overview (Mohammad et al.,
2018b; Tafreshi et al., 2021; Plaza-del Arco et al.,
2021).

2.2 Zero-shot Learning

Zero-shot learning (ZSL) aims at performing pre-
dictions without having seen labeled training ex-
amples specific for the concrete task. Zero-shot
methods typically work by associating seen and
unseen classes using auxiliary information, which
encodes observable distinguishing properties of in-
stances (Xian et al., 2019). In NLP, the term is
used predominantly either to refer to cross-lingual
transfer to languages that have not been seen at
training time (change of the language), or to pre-
dict classes that have not been seen (change of the
labels, Wang et al., 2019). Our work falls in the
second category.
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Various approaches exist to perform zero-shot
text classification. One approach represents labels
in an embedding space (Socher et al., 2013; Sap-
padla et al., 2016; Rios and Kavuluru, 2018, i.a.).
A model is trained to predict the respective embed-
ding vectors for categorical labels. At test time, em-
beddings of novel labels need to be known and will
be assigned if the distance between the predicted
embedding and the label embedding is small. This
method suffers from the hubness problem, that is,
when the semantic label embeddings are close to
each other, the projection of labels to the semantic
space forms hubs (Radovanovic; et al., 2010).

Another approach is to use transformer language
models to classify if a label embedding is com-
patible with an instance embedding (Brown et al.,
2020). To this end, no labeled examples are pro-
vided at training phase but an instruction in nat-
ural language is given to the model to interpret
the label class (the prompt). An instance of this
approach is Task-Aware Representations (TARS,
Halder et al., 2020) who separate the instance text
and the class label by the special separator token
[SEP] in BERT (Devlin et al., 2019).

An alternative is to treat ZSL as textual entail-
ment. Following this approach, Yin et al. (2019)
propose a sequence-pair classifier that takes two
sentences as input (a premise and a hypothesis) and
decides whether they entail or contradict each other.
They study various formulations of the labels as hy-
potheses and evaluate the method in various NLP
tasks including topic detection, situation detection,
and emotion classification. In their evaluation, emo-
tion classification turns out to be most challenging.
Another study that conducted prompt engineering
in NLI models proposes probabilistic ZSL ensem-
bles for emotion classification (Basile et al., 2021).
The authors experiment with the same prompts as
Yin et al. (2019) and aggregate the predictions of
multiple NLI models using Multi-Annotator Com-
petence Estimation (MACE), a method developed
for modelling crowdsourced annotations.

Our work on ZSL for emotion classification dif-
fers from previous approaches as follows. We ana-
lyze whether prompts are corpus-specific and pro-
pose an ensemble of multiple prompts to achieve a
classifier which is more robust across corpora (in
contrast to an ensemble of multiple NLI models in
the work by Basile et al. (2021)). Further, we ana-
lyze if the introduction of more knowledge about
the emotion in the prompt through emotion syn-

onyms and related concepts helps its interpretation
in the NLI models.

3 Methods

In this section, we explain how we apply NLI for
ZSL emotion classification and propose a collec-
tion of prompts to contextualize and represent the
emotion concept in different corpora. In addition,
we propose a prompt ensemble which is more ro-
bust across corpora.

3.1 Natural Language Inference for Zero-shot
Emotion Classification

The NLI task is commonly defined as a sentence-
pair classification in which two sentences are given:
a premise s1 and a hypothesis s2. The task is to
learn a function fNLI(s1, s2) → {E,C,N}, in
which E expresses the entailment of s1 and s2, C
denotes a contradiction and N is a neutral output.

We treat ZSL emotion classification as a textual
entailment problem, but represent each label under
consideration with multiple prompts, in contrast
to Yin et al. (2019). Given a sentence to be clas-
sified x (premise) and an emotion e, we have a
function g(e) that generates a set of prompts (hy-
pothesis) out of the class e ∈ E (with E being
the set of emotions under consideration). Under
the assumption of an NLI model m, which calcu-
lates the entailment probability pm(γ, x) for some
emotion representation γ ∈ g(e), we assign the
average entailment probability across all emotion
representations as

p̄gm(e, x) =
1

|g(e)|
∑

γ∈g(e)
pm(γ, x)

for a particular prompt generation method g. The
classification decision

êgx = argmax
e∈E

p̄gm(e, x)

returns the emotion corresponding to the maximum
entailment probability.

3.2 Emotion Prompts

In the context of emotion analysis, two impor-
tant questions arise when formulating a prompt:
(i) How to contextualize the emotion name, and (ii)
How to represent the emotion concept?
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ID Prompt Example

Emo-Name emotion name joy
Expr-Emo This text expresses emotion name This text expresses joy
Feels-Emo This person feels emotion name This person feels joyful
WN-Def This person expresses WordNet def. This person expresses a feeling of great pleasure and happiness

Emo-S emotion synonym happy
Expr-S This text expresses emotion syn. This text expresses happiness
Feels-S This person feels emotion syn. This person feels happy

EmoLex emotion lexicon party

Table 1: Emotion prompts. Words in italics represent placeholders for the emotion concept representation.

3.2.1 Prompt Generation

We generate a set of prompts with the function
g(e) = c + r(e), in which c represents what we
call the context and r(e) represents a set of emotion
representations.1 As c, we use either an empty
string ϵ, the text “This text expresses”, “This person
feels”, or “This person expresses”, motivated by
our choice of the language register presented in the
datasets used in our experiments (see § 4).

3.2.2 Prompts for Zero-Shot Emotion
Classification

Each prompt in this paper consists of context
and the emotion representation. There are three
prompts which have in common the emotion name
representation, namely Emo-Name, Expr-Emo, and
Feels-Emo. Variations of these prompts are Emo-
S, Expr-S, and Feels-S, where the emotion name
representation is replaced by multiple emotion syn-
onyms and EmoLex where the emotion name is
replaced by entries from an emotion word lexicon.
In detail, we use the following prompts (Table 1
shows examples):
Emo-Name. c = ϵ and r(e) = {e}.
Expr-Emo. c = “This text expresses”, r(e) = {e}.
Feels-Emo. c = “This person feels”, r(e) = {e}.
WN-Def. c = “This person expresses” and r(e) =

{WN-Def(e)}, where WN-Def(e) is the
WordNet definition for e (Miller, 1995).

Emo-S. We aim to see whether incorporating ad-
ditional information using a set of abstract
emotion-related names leads to a better model.
Hence, we set r(e) to return a set of emotion
synonyms for e. Table 3 shows the emotion
synonyms considered for each emotion.2

1In principle, c could also be a set. g(e) would then need to
use a cross-product instead of the element-wise concatenation
+, which we use in our experiments.

2Each synonym is grammatically adapted for the context
of the prompts Expr-S and Feels-S.

Expr-S. We set r(e) to be the same as in Emo-S,
but additionally set c = “This text expresses”.
Therefore, g(e) returns all combinations of
this string with each synonym.

Feels-S. This prompt is the same as Expr-
S with the difference that we set c =
“This person feels”.

EmoLex. This prompt is different from the pre-
vious ones, which consisted of small sets of
context/emotion representation combinations.
Here, c = ϵ , but for the emotion representa-
tion we use a large popular lexicon, namely
Emolex (Mohammad and Turney, 2013) to
assign all entries associated with e in this lex-
icon. This generates prompts which contain
abstract emotion synonyms as well as concrete
objects (like gift for joy).

3.3 Ensemble of prompts
In practical applications, the choice of a particu-
lar prompt could not be performed manually by
some user. Under the assumption that the choice
of prompts is indeed corpus-specific, we combine
multiple prompt sets in an ensemble.

The ensemble model takes as input a text x and a
set of prompt-generating models G with p̄gM (e, x)
(g ∈ G). The ensemble decision is then

ê(x,m) = argmax
e∈E

1

|G|
∑

g∈G
p̄gm(e, x) .

4 Experiments

We aim at answering the following research ques-
tions: (RQ1) Do NLI models behave the same
across prompts? (RQ2) Should we use synonyms
for the emotion representation? (RQ3) Is an en-
semble of multiple prompts more robust across
corpora? (RQ4) Are synonyms sufficient? Would
it be even more useful to use more diverse repre-
sentations of emotions?
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Dataset Labels Size Source Avail.

TEC Ekman 21,051 tweets D-RO
BLOGS Ekman + no emotion 5,205 blogs R
ISEAR Ekman − Su + G + Sh 15,302 events GPLv3

Table 2: Datasets used in our experiments (Su: surprise,
G: guilt, Sh: shame) [D-RO] available to download,
research only, [R] Available upon request, [GPLv3]
GNU Public License version 3.

4.1 Experimental Setting
4.1.1 Datasets
We compare our methods on three English cor-
pora, to gain an understanding of the role of the
respective corpus. TEC (Mohammad, 2012) con-
tains 21,051 tweets weakly labeled according to
hashtags corresponding to the six Ekman emotions
(Ekman, 1992): #anger, #disgust, #fear, #happy,
#sadness, and #surprise. ISEAR (Scherer and Wall-
bott, 1997) includes 7,665 English self-reports of
events that triggered one of the emotions (joy, fear,
anger, sadness, disgust, shame, and guilt). BLOGS

(Aman and Szpakowicz, 2007) consists of 5,205
sentences from 173 blogs compiled from the Web
using a list of emotion-related seed words. It is
human-annotated according to Ekman’s set of ba-
sic emotions and an additional no emotion category.
TEC and ISEAR are publicly available for research
purposes and BLOGS is available upon request. All
datasets are anonymized by the authors.

These corpora differ in various parameters (see
Table 2): the annotation scheme (variations of Ek-
man’s model), the corpus source (tweets, events,
blogs), the annotation procedure (hashtag, crowd-
sourcing, self-reporting), and the size. Note that the
annotation procedure that the ZSL method needs
to reconstruct varies in complexity.

4.1.2 NLI Models and Baseline
We compare our ZSL models with an empirical
upper bound, namely a RoBERTa model fine-tuned
with supervised training (Liu et al., 2020) on each
emotion dataset described in § 3.2.2. We fine-tune
RoBERTa for three epochs, the batch size is set
to 32 and the learning rate to 2 · 10−5. No hyper-
parameter search has been applied. We perform
10-fold cross-validation and report the results on
the whole data set (as we do with the NLI models).

For our ZSL experiments, we explore three state-
of-the-art pretrained NLI models publicly available
within the Hugging Face Transformers Python li-
brary (Wolf et al., 2020), and fine-tuned on the

Emotion Emo-S

anger anger, annoyance, rage, outrage, fury, irritation

fear fear, horror, anxiety, terror, dread, scare

joy joy, achievement, pleasure, awesome, happy,
blessed

sadness sadness, unhappy, grief, sorrow, loneliness, de-
pression

disgust disgust, loathing, bitter, ugly, repugnance, re-
vulsion

surprise surprise, astonishment, amazement, impres-
sion, perplexity, shock

guilt guilt, culpability, blameworthy, responsibility,
misconduct, regret

shame shame, humiliate, embarrassment, disgrace,
dishonor, discredit

Table 3: Emotion synonyms per emotion category con-
sidered in Emo-S prompt (details in the Appendix).

MultiNLI dataset (Williams et al., 2018). Con-
cretely, we choose RoBERTa, BART and DeBERTa
as they cover different architectures and represent
competitive approaches across a set of NLP tasks.

RoBERTa. The Robustly Optimized BERT Pre-
training Approach (Liu et al., 2020) is a modified
version of BERT which includes some changes
such as the removal of the next-sentence prediction
task, the replacement of the WordPiece tokeniza-
tion with a variation of the byte-pair encoding, and
the replacement of the static masking (the same
input masks are fed to the model on each epoch)
with dynamic masking (the masking is generated
every time the sequence is fed to the model). For
the NLI task, we use the roberta-large-mnli model
from Hugging Face which contains over 355M of
parameters.

BART. The Bidirectional and Auto-Regressive
Transformer (Lewis et al., 2020) is a model that
combines the bidirectional encoder with an autore-
gressive decoder into one sequence-to-sequence
model. We use the facebook/bart-large-mnli model
from Hugging Face with over 407M parameters.

DeBERTa. The Decoding-enhanced BERT with
Disentangled Attention model (He et al., 2021)
improves BERT and RoBERTa using two tech-
niques, namely disentangled attention and an en-
hanced mask decoder. We use microsoft/deberta-
xlarge-mnli from Hugging Face, which contains
over 750M of parameters.

All experiments are performed on a node equipped
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Figure 2: Results of Experiment 1. Comparison of prompts across NLI models and emotion datasets.

with two Intel Xeon Silver 4208 CPU at 2.10GHz,
192GB RAM, as main processors, and six GPUs
NVIDIA GeForce RTX 2080Ti (with 11GB each).

4.2 Results

In order to answer the research questions formu-
lated in this study, we conduct different ZSL-NLI
emotion classification experiments.

4.2.1 Experiment 1: Are NLI models
behaving the same across prompts?

With the first experiment, we aim at observing if
different NLI models behave robustly across emo-
tion datasets and prompts. We use each model
described in § 4.1.2 with each emotion representa-
tion that is not a set of multiple prompts, but only
consists of a single prompt, namely Emo-Name,
Expr-Emo, Feels-Emo and WN-Def. We evaluate
each model using all datasets (§ 4.1.1).

Figure 2 (and Table 6 in the Appendix) show the
results. Each plot shows the performance of one
NLI model on the three emotion datasets using the
four prompts. We see that the performances follow
the same patterns across NLI models and emotion
datasets. Emo-Name is the best performing prompt
for TEC, Expr-Emo for ISEAR and Feels-Emo for
BLOGS. The lowest performance is achieved with
WN-Def. The most successful NLI model across
the prompts is DeBERTa followed by BART and
RoBERTa.

Therefore, NLI models do behave robustly
across prompts. Particularly low performance can
be observed with WN-Def. This finding is in line
with previous research (Yin et al., 2019): These def-
initions may be suboptimal choices, for instance,
sadness is represented via “This person expresses

emotions experienced when not in a state of well-
being”. This is ambiguous since not being in a state
of well-being may also be associated with other
negative emotions such as anger or fear. Interest-
ingly, the best-performing emotion representation
on TEC is Emo-Name, which resembles the anno-
tation procedure of just using an emotion-related
hashtag for labeling. Similarly, Expr-Emo shows
the best performance for the self-reports of ISEAR

(“This text expresses”) and Feels-Emo on BLOGS

(“This person feels”). These subtle differences in
the prompt formulations indicate that there are par-
ticular factors in the dataset that influence the inter-
pretation of the prompt, for instance, the annotation
procedure, the data selection or the language reg-
ister employed in the corpus, and therefore, they
affect the interpretation of the emotion by the NLI-
ZSL classifier.

4.2.2 Experiment 2: Should we use synonyms
for emotion representation?

In this experiment, we aim at observing whether
the incorporation of synonyms in the prompt helps
the emotion interpretation. Instead of considering
only the emotion name, we use six close emotion
synonyms (see Emo-S, Expr-S, Feels-S in Table 7
in the Appendix).3 This leads to six prompts for
each emotion. For simplicity, we now only consider
DeBERTa, which showed best performances in the
previous experiment.

Figure 3 (and Table 6 in the Appendix) shows
the results of each context with just the emotion

3We assume that larger numbers might show better per-
formance in general, but this set of six synonyms focuses on
close, unambiguous synonyms which undoubtedly represent
the emotion in most contexts. We evaluate the impact of larger
sets with the EmoLex approach.
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Figure 3: Results of Experiment 2. Comparison of
prompts including synonym emotion representations
across three emotion datasets (TEC, BLOGS and ISEAR)
using the DeBERTa model.

name and with the synonyms in comparison. In
general, synonym use leads to an improvement,
with some notable exceptions. For TEC, the sin-
gle use of the emotion (Emo-Name) works better
than using synonyms (Emo-S). This might stem
from a similarity of the prompt with the annotation
procedure, in which single hashtags were used for
labeling. Another exception is Feels-Emo/Feels-S
in BLOGS. Therefore, to answer RQ2 we conclude
that both context and emotion concept representa-
tion are corpus-dependent and in some cases syn-
onyms support the emotion classification.

4.2.3 Experiment 3: Is an ensemble of
multiple prompts more robust across
corpora?

The previous experiments demonstrate the chal-
lenge of engineering an emotion prompt that fits
different corpora which stem from various sources.
To cope with this challenge, we analyze if the com-
bination of sets of prompt-generation methods in an
ensemble improves the generalizability. We use the
ensemble method described in § 3.3 that combines
the predictions given by the set of model prompts
described in § 3.2.2 with the DeBERTa model (d-
ensemble). In addition to this realistic ensemble
model, we want to understand which performance
could be achieved with an ideal (oracle) ensemble
(which we refer to as d-oracle), which always picks
the correct decision by an ensemble component, if
one is available. This serves as an upper bound
and analyzes the complementarity of the individual
models.

Figure 4 shows the performance for the individ-
ual models discussed before, which participate in
both the realistic and the oracle ensemble (individ-
ual results in Table 6 in the Appendix, ensemble
results also in Table 5). In addition, we see both
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Figure 4: Results of Experiment 3. Comparison of the
prompt individual models and the proposed ensemble
models along with the non-zsl experiments.

ensemble methods and (as a horizontal line) the
supervised learning upper bound. We observe that
the realistic ensemble (d-ensemble), which is based
on averaging the individual probabilistic outputs of
the individual models, shows a performance nearly
en par with the individual best model: For TEC,
we have an F1 =.41 in comparison to the individ-
ual best F1 =.43, for BLOGS, we have F1 =.35 in
comparison to F1 =.39, and for ISEAR, we achieve
F1 =.59 in comparison to F1 =.61 – but without the
necessity to pick the prompt-generating approach
beforehand or on some hold-out data.

We further see that the oracle ensemble performs
better than all other models – this shows the vari-
ance between the models and suggests a reason
for their corpus-dependency, but also shows the
potential for other ensemble models. This oracle
also approaches (or is even slightly higher than) the
supervised upper-bound. All of our current (non-
oracle) ZSL learning methods clearly underperform
supervised learning, but to various degrees. The
oracle performance suggests that sets of prompts,
combined with a good ensembling method, might
exist that outperform supervised learning in emo-
tion classification.

We conclude that an ensemble model is indeed
more robust across emotion datasets with differ-
ent language registers and prompts, with a perfor-
mance nearly en par with the best corpus-specific
prompt. This raises the question what differences
and commonalities instances have in which models
perform the same or differently. To this end, we
show examples in Table 4, in which all individual
models did output the correct label. As we can
see, these instances contain explicit words related
to the emotion conveyed. For instance, “lost” for
sadness, “love” for joy, “angry” for anger, “ner-
vous” for fear, “ashamed” for shame, and “felt bad”
for guilt. Therefore, prompt-NLI models succeed
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Emotion Text

anger The sports fishermen who catch gulls instead
of fish with their hooks. It is often a mistake
but it makes me angry. (ISEAR)

disgust my sister got this purse, It smell like straight
up KITTY LITTER. (TEC)

fear Oh well its nothing too too bad but its making
me nervous. (BLOGS)

guilt While at primary school, I did not let a friend
ring a bell although he would have liked to do
it. Afterwards I felt bad. (ISEAR)

joy When I get a hug from someone I love.
(ISEAR)

sadness When I lost the person who meant the most to
me. (ISEAR)

surprise Snow in October! (BLOGS)

shame We got into a fight with some chaps in front
of our family house. The value of the property
destroyed was approximately 15 000 FIM. I
felt ashamed when my parents came to know
about this. (ISEAR)

Table 4: Instances where all the prompt models agree
with the emotion prediction.

in interpreting emotions that are clearly expressed
in the text, but vary performance-wise when the
emotion is implicitly communicated.

4.2.4 Experiment 4: Are synonyms sufficient?
Would it be even more useful to use
more representations of emotions?

In Experiment 2 we found that the use of synonyms
is beneficial in some cases (ISEAR and BLOGS).
This raises the question if more terms that represent
the emotion would lead to an even better perfor-
mance. We evaluate this setup with the EmoLex
model introduced above, in which each emotion
concept is represented with a set of prompts, where
each prompt is a concept from an emotion lexicon.
Notably, in this prompt-generating methods, emo-
tions are not only represented by abstract emotion
names or synonyms, but in addition with (some-
times concrete) concepts, like “gift” or “tears”.

Table 5 shows the performance of the DeBERTa
model using the Emolex concepts (d-emolex), next
to the ensemble results. The additional concepts
which cover a wide range of topics associated with
the respective emotions particularly help in the
BLOGS corpus, which is the one resource that has
been manually annotated in a traditional manner.
This manual annotation process might include com-
plex inference by the annotators to infer an emo-
tion category, instead of only using single words

TEC BLOGS ISEAR

Model P R F1 P R F1 P R F1

d-ensemble .42 .44 .41 .40 .65 .35 .67 .62 .59
d-oracle .63 .69 .65 .51 .80 .51 .82 .80 .80
d-emolex .37 .36 .33 .52 .48 .48 .47 .42 .40

non-zsl .69 .69 .69 .72 .71 .69 .73 .73 .73

Table 5: Results of Experiments 3 and 4. We report
macro-average precision (P), macro-average recall (R),
and macro-average F1 (F1) for each model. d-emolex:
DeBERTa using EmoLex prompt, d-ensemble: ensem-
ble model of prompts using DeBERTa, d-oracle: oracle
ensemble model using DeBERTa), non-zsl: Supervised
RoBERTa model fine-tune on the three emotion datasets.

to trigger an event description (ISEAR) or using
words as hashtags (TEC). Lexicons can therefore
aid in the injection of background knowledge in
the prompt. However, this comes at the cost of con-
siderably longer runtimes, because the NLI models
is queried for every entry in the lexicon.

5 Conclusion and Future Work

We presented an analysis of various prompts
for NLI-based ZSL emotion classification. The
prompts that we chose were motivated by the vari-
ous particularities of the corpora: single emotions
for TEC (tweets), “The person feels/The text ex-
presses” for BLOGS (blogs), and ISEAR (events).
In addition, we represented the emotions with emo-
tion names, synonyms, definitions, or with the help
of lexicons. Our experiments across these data sets
showed that, to obtain a superior performance, the
prompt needs to fit well to the corpus – we did not
find one single prompt that works well across differ-
ent corpora. To avoid the requirement for manually
selecting a prompt, we therefore devised an ensem-
ble model that combines multiple sets of prompts.
This model is more robust and is nearly on par
with the best individual prompt. In addition, we
found that representing the emotion concept more
diversely with synonyms or lexicons is beneficial,
but again corpus-specific.

Our work raises a set of future research questions.
We have seen that the oracle ensemble showed
a good performance, illustrating that the various
prompts provide complementary information. This
motivates future research regarding other combi-
nation schemes, including learning a combination
based on end-to-end fine-tuned NLI models.

We have further seen that including more con-
cepts with the help of a dictionary helps in one
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corpus, but not across corpora; however, synonyms
constantly help. This raises the question about the
right trade-off between many, but potentially inap-
propriate, noisy concepts and hand-selected, high-
quality concepts. A desideratum is an automatic
subselection procedure, which removes concepts
that might decrease performance and only keeps
concepts that are “compatible” to the current lan-
guage register and annotation method. Ideally, this
procedure would not make use of annotated data,
because that would limit the advantages of ZSL.

The main limitation of our current work is that
we manually designed the prompts under consid-
eration, based on the corpora we used for evalua-
tion. This is a bottleneck in model development,
which should either be supported by a more guided
approach which supports humans in developing
prompts, or by an automatic model that is able to
automatically generate prompts based on the lan-
guage register and concept representation in the
dataset.
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A Experiment Results

Emo-Name Expr-Emo Feels-Emo WN-Def

Dataset Model P R F1 P R F1 P R F1 P R F1

r .39 .42 .37 .36 .38 .34 .39 .40 .35 .37 .31 .28
TEC b .39 .42 .38 .38 .42 .37 .40 .41 .37 .32 .32 .29

d .42 .47 .43 .41 .42 .38 .42 .42 .38 .44 .33 .30
d-synonyms .42 .42 .39 .39 .40 .37 .39 .40 .36 — — —

r .32 .62 .29 .36 .60 .30 .41 .59 .32 .47 .47 .30
BLOGS b .33 .58 .28 .35 .62 .31 .47 .56 .35 .35 .40 .24

d .35 .64 .31 .41 .65 .36 .49 .58 .37 .38 .48 .25
d-synonyms .41 .62 .39 .42 .63 .39 .36 .60 .31 — — —

r .58 .50 .50 .53 .50 .50 .55 .47 .47 .50 .37 .37
ISEAR b .62 .56 .56 .64 .60 .60 .68 .53 .53 .57 .40 .37

d .63 .56 .53 .66 .62 .60 .68 .54 .54 .54 .45 .43
d-synonyms .64 .57 .57 .64 .62 .61 .63 .58 .55 — — —

Table 6: Results from the set of prompts across emotion datasets (TEC, BLOGS and ISEAR) and NLI models.
We report macro-average precision (P), macro-average recall (R), and macro-average F1 (F1) for each model.
(r: RoBERTa, b: BART, d: DeBERTa, d-synonyms: DeBERTa using as prompts synonyms. In cases where no
experiments have been performed, we use ’—’. Figures 2 and 3 in the paper depict these experiments.

B List of Emotion Representations as Part of Prompts

Emotion Emo-S Expr-S Feels-S WN-Def
Context ϵ “This text ex-

presses. . . ”
“This person
feels. . . ”

“This person expresses. . . ”

anger anger, annoyance,
rage, outrage, fury,
irritation

anger, annoyance,
rage, outrage, fury,
irritation

anger, annoyed,
rage, outraged,
furious, irritated

a strong feeling of annoyance, displea-
sure, or hostility

fear fear, horror, anxiety,
terror, dread, scare

fear, horror, anxiety,
terror, dread, scare

fear, horror, anxi-
ety, terrified, dread,
scared

an unpleasant emotion caused by the be-
lief that someone or something is dan-
gerous, likely to cause pain , or a threat

joy joy, achievement,
pleasure, awesome,
happy, blessed

joy, an achievement,
pleasure, the awe-
some, happiness, the
blessing

joyful, accom-
plished, pleasure,
awesome, happy,
blessed

a feeling of great pleasure and happiness

sadness sadness, unhappy,
grief, sorrow, loneli-
ness, depression

sadness, unhappi-
ness, grief, sorrow,
loneliness, depres-
sion

sadness, unhappy,
grieved, sorrow,
lonely, depression

emotions experienced when not in a
state of well-being

disgust disgust, loathing,
bitter, ugly, repug-
nance, revulsion

disgust, loathing, bit-
terness, ugliness, re-
pugnance, revulsion

disgusted, loathing,
bitter, ugly, repug-
nance, revulsion

a feeling of revulsion or strong disap-
proval aroused by something unpleasant
or offensive

surprise surprise, astonish-
ment, amazement,
impression, perplex-
ity, shock

surprise, astonish-
ment, amazement,
impression, perplex-
ity, shock

surprised, astonish-
ment, amazement,
impressed, per-
plexed, shocked

a feeling of mild astonishment or shock
caused by something unexpected

guilt guilt, culpabil-
ity, blameworthy,
responsibility, mis-
conduct, regret

guilt, culpability, re-
sponsibility, blame-
worthy, misconduct,
regret

guilty, culpable,
responsible, blame,
misconduct, regret-
ful

a feeling of having done wrong or failed
in an obligation

shame shame, humiliate,
embarrassment,
disgrace, dishonor,
discredit

shame, humiliation,
embarrassment, dis-
grace, dishonor, dis-
credit

shameful, humili-
ated, embarrassed,
disgraced, dishon-
ored, discredit

a painful feeling of humiliation or dis-
tress caused by the consciousness of
wrong or foolish behavior

Table 7: Emotion representation in prompts Emo-S, Expr-S, Feels-S, and WN-Def.
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Abstract
As political attitudes have diverged ideolog-
ically in the United States, political speech
has diverged linguistically. The ever-widening
polarization between the US political par-
ties is accelerated by an erosion of mutual
understanding between them. We aim to
make these communities more comprehensi-
ble to each other with a framework that probes
community-specific responses to the same sur-
vey questions using community language mod-
els (COMMUNITYLM). In our framework we
identify committed partisan members for each
community on Twitter and fine-tune LMs on
the tweets authored by them. We then assess
the worldviews of the two groups using prompt-
based probing of their corresponding LMs, with
prompts that elicit opinions about public fig-
ures and groups surveyed by the American
National Election Studies (ANES) 2020 Ex-
ploratory Testing Survey. We compare the re-
sponses generated by the LMs to the ANES
survey results, and find a level of alignment
that greatly exceeds several baseline methods.
Our work aims to show that we can use commu-
nity LMs to query the worldview of any group
of people given a sufficiently large sample of
their social media discussions or media diet.

1 Introduction

Political polarization is a prominent component of
politics in the United States (Poole and Rosenthal,
1984; McCarty et al., 2016; Heltzel and Laurin,
2020). Previous studies have shown growing po-
larization in social media (Bail et al., 2018; Dem-
szky et al., 2019; Darwish, 2019) and substantial
partisan and ideological differences in media diet
(Bozell, 2004; Gil de Zúñiga et al., 2012; Hyun
and Moon, 2016). Li et al. (2017) show that par-
tisanship makes reliable predictions about an in-
dividual’s word understanding. R. KhudaBukhsh
et al. (2021) used modern machine-translation tech-
niques to demonstrate that the left and right com-
munities use English words differently. Milbauer

Prompt Model Top 5 Words

Dr. Fauci
is a

Republican GPT-2
liar (2.96%), joke (2.67%),

hero (2.13%), doctor (1.62%),
great (1.61%)

Democratic GPT-2
hero (10.36%), true (3.63%),

national (2.08%), physician (2.06%),
great (1.93%)

Table 1: Top 5 words by odds for Republican and Demo-
cratic GPT-2 models, fine-tuned on partisan tweets. Dr.
Fauci is suggested to be a “hero” by the GPT-2 model
fine-tuned on Democratic tweets but a “liar” and “joke”
by the GPT-2 model fine-tuned on Republican tweets.

et al. (2021) extended the method to uncover world-
view and ideological differences between 32 Reddit
communities. These studies are word-level anal-
yses based on Word2vec word embeddings, and
none of them use pre-trained language models.

Prompting is a standard technique to make pre-
trained language models generate texts conditioned
on prompts. Recent work has shown that, through
prompt engineering, pre-trained language models
can achieve good zero-shot performance on NLP
tasks from sentiment classification to reading com-
prehension (Radford et al., 2019; Brown et al.,
2020) and mine factual or commonsense knowl-
edge (Petroni et al., 2019; Davison et al., 2019;
Jiang et al., 2021; Talmor et al., 2020). Through
prompting, Palakodety et al. (2020) used a fine-
tuned BERT (Devlin et al., 2019) model with fill-
in-the-blank cloze statements to mine insights and
compare prediction differences between Indian re-
gional and national YouTube news channels. Feld-
man et al. (2021) fine-tuned GPT-2 on COVID-19
tweet corpora to mine user opinions.

However, none of these studies fine-tune GPT-
style language models on community data to probe
community worldviews. In this work, we focus on
Republican and Democratic Twitter communities
and conduct a feasibility study using fine-tuned
GPT-2 partisan language models to generate com-
munity responses and to predict community stance.
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As exemplified in Table 1, we observe clear parti-
san differences. In this sociopolitically fragmented
society, our motivation is to provide a simple and
flexible interface for people to probe each other’s
worldviews on topics of interest and to encourage
constructive dialogue. We demonstrate through our
experiments and analyses that the proposed method
is a reliable tool to probe community opinions. The
contribution of the work is as follows:

• We present a simple COMMUNITYLM frame-
work based on GPT-2 language models to
mine community insights by fine-tuning or
training the model on community data. This
study focuses on Democrat and Republican
communities on Twitter but can be easily ex-
tended to probe insights from any community
based on their public discourse or media diet1.

• We use ANES questions as prompts and find
that GPT-generated opinions are predictive
of community stance towards public figures
and groups. We experiment with 4 types of
prompts and find that the fine-tuned COMMU-
NITYLM with an “X is the” prompt outper-
forms all the baselines (including pre-trained
GPT-3 Curie) in predicting community stance.

• We analyze the errors made by community
language models and demonstrate the capabil-
ity of the models to probe community prefer-
ences towards public figures by ranking.

2 Partisan Twitter Data

We construct a Twitter dataset containing 4.7M
tweets (100M word tokens) by Republican and
Democrat communities respectively. We first sam-
pled 1M active U.S. Twitter users before and after
the 2020 presidential election. We adapt the stan-
dard method (Volkova et al., 2014; Demszky et al.,
2019) to estimate their political affiliation from the
political accounts they follow and collect tweets
of Republican and Democratic Twitter users from
2019-01-01 to 2020-04-10. We pick this period
because the ANES 2020 survey was collected be-
tween 2020-04-10 to 2020-04-18 and we want to
ensure the Twitter training data does not leak infor-
mation beyond 2020-04-10. We subsample 4.7M
tweets from each side to achieve a balanced set and
use Nguyen et al. (2020)’s tweet tokenizer for data
processing. Details are described as follows.

1The source code of our paper is available at: https:
//github.com/hjian42/CommunityLM

U.S. Twitter User Sampling. We first sample a
subset of active Twitter users from the “decahose”,
Twitter’s 10% sample of tweets. We define active
U.S. users as those who posted at least 10 origi-
nal tweets before and after the 2020 presidential
election period (2020-07-01 to 2021-06-31). We
then use Litecoder2 to extract user locations from
their profile location strings and filter out users not
based in the U.S. We construct the follow graph of
the resulting set of 1,074,650 Twitter users.

Partisan Assignment. We follow previous stud-
ies (Volkova et al., 2014; Demszky et al., 2019) to
estimate the party affiliation of Twitter users from
the political accounts they follow. Specifically, we
update the list of Twitter handles of US politicians
from Demszky et al. (2019) by adding current fed-
eral officeholders and governors from Ballotpedia3.
The final list has 457 Republican and 473 Demo-
cratic politician Twitter handles. To identify com-
mitted partisan users, we adopt the following rules:
a user is labeled as a Democrat if they followed
no fewer than 6 Democratic politicians and no Re-
publican politician from the list in February 2022,
whereas a person is labeled as a Republican if they
followed no fewer than 2 Republican politicians
and no Democratic politicians. We choose these
thresholds because there are 69% Democratic users
and 26% Republican users on Twitter4 (2.65:1).
This step predicts 182,788 Democratic-leaning and
72,186 Republican-leaning users (2.53:1).

Tweet Pre-processing. We use the tweet tok-
enizer from Nguyen et al. (2020) to process all
the data. This tokenizer converts user mentions
and web/url links into special tokens @USER and
HTTPURL. We delete HTTPURL from the tweets
because it does not contain useful community in-
formation. We do not lower the case but filter
out tweets with less than 10 tokens, producing
7,554,409 Democratic and 4,759,441 Republican
tweets. We randomly sample from Democratic
tweets to ensure both partisan communities have
the same number of 4,759,441 tweets for training
language models to ensure a fair community model
comparison.

2https://github.com/social-machines/l
itecoder

3We update American politicians from https://ball
otpedia.org/List_of_current_members_of_t
he_U.S._Congress and https://ballotpedia.
org/Governor_(state_executive_office)

4https://www.pewresearch.org/politics
/2020/10/15/differences-in-how-democrats
-and-republicans-behave-on-twitter
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3 Framework

We present a simple COMMUNITYLM framework
which adapts GPT-style language models to mine
community insights. This framework consists of
four steps: (1) fine-tune or train GPT language
models on community data, (2) design prompts
based on survey questions, (3) generate commu-
nity responses with language models, (4) aggregate
community stance based on responses.

3.1 Model Training and Fine-tuning

We pick GPT-2 with 124M parameters and exper-
iment with two training strategies on the partisan
community data: (1) fine-tune a pre-trained GPT-
2 model, (2) train a GPT-2 model from scratch.
For both settings, we adopt training epoch 10 and
batch size 24 on Nvidia GeForce GTX 1080 12GB.
The greedy decoding is used for GPT-2. Other-
wise, we use the default training parameters5. The
pre-trained GPT-2 model was released in Febru-
ary 2019, trained on data that cuts off at the end
of 2017. We also use GPT-3 Curie as one of our
baselines, which used training data up to Oct 2019.
Therefore, neither pre-trained model used any data
beyond the the start date of the ANES survey.

We adopt 10 epochs because GPT-2 was not pre-
trained on the Twitter domain and had a steady loss
decrease across all epochs. We checked all syn-
thetic tweets (lowercased) generated by the fine-
tuned GPT-2 with “X is/are the”. The percentages
of synthetic tweets appearing in training data are
64.93% and 69.56% for Republican and Demo-
cratic models. For researchers who want to adapt
our approach with a lower repetition rate, we sug-
gest moving away from the greedy decoding algo-
rithm and reducing the epoch number.

3.2 Prompt Design

We design discrete prompts based on survey ques-
tions to probe community insights towards pub-
lic figures and groups. The American National
Election Studies (ANES) are academically-run
national surveys of voters in the United States.
We adopt the ANES 2020 Exploratory Testing
Survey6 conducted between April 10, 2020 and
April 18, 2020 on 3,080 adult citizens from across

5https://github.com/huggingface/trans
formers/blob/main/examples/pytorch/langu
age-modeling/run_clm.py

6https://electionstudies.org/data-cen
ter/2020-exploratory-testing-survey/

the United States, because this survey captures re-
cent political changes in the US. We adapt all 30
questions from “FEELING THERMOMETERS”
section of the ANES survey, which asks partic-
ipants to rate people or groups from 0 (“not fa-
vorable”) to 100 (“favorable”) with the question
“How would you rate ____?” The questions cover
30 items in two categories (a) 16 people: Donald
Trump, Barack Obama, Joe Biden, Elizabeth War-
ren, Bernie Sanders, Pete Buttigieg, Kamala Harris,
Amy Klobuchar, Mike Pence, Andrew Yang, Nancy
Pelosi, Marco Rubio, Alexandria Ocasio-Cortez,
Nikki Haley, Clarence Thomas, Dr. Anthony Fauci,
(b) 14 groups: blacks, whites, Hispanics, Asians,
illegal immigrants, feminists, the #MeToo move-
ment, transgender people, socialists, capitalists, big
business, labor unions, the Republican Party, the
Democratic Party. For each item “X”, we experi-
ment with four types of discrete prompts: (1) “X”,
(2) “X is/are”, (3) “X is/are a”, (4) “X is/are the”.
These names are copied from the survey verbatim
except for “whites”, “blacks”, “Hispanics”, and
“Asians” because “whites” and “blacks” also re-
fer to other named entities such as “Blacks Cloth-
ing Company” and “Whites TV shows”. Instead,
we translate the names of these four groups into
“White people”, “Black people”, “Hispanic people”,
“Asian people”. We also provide the count number
of each item in Appendix A.

3.3 Community Response Generation
For each community, we use the correspond-
ing language model to generate 1000 responses
given the prompts. We use Hugging Face’s
TextGenerationPipeline and apply the
same decoding strategy by setting do_sample to
true, temperature to 1.0, and max_length to 50. If
one response contains multiple sentences, we use
the first line in the response and remove the re-
maining tokens, because a response with multiple
sentences may have mixed sentiments, making it
hard to identify the overall sentiment.

3.4 Community Stance Aggregation
After response generation, we save them locally
and compute the community stance for each prompt
by aggregating the sentiment of the synthetic re-
sponses. Specifically, we use the state-of-the-
art Twitter sentiment classifier “cardiffnlp/twitter-
roberta-base-sentiment-latest” (Barbieri et al.,
2020; Loureiro et al., 2022) on the SemEval-2017
benchmark (Rosenthal et al., 2017) to classify each
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generated response into -1 (“Negative”), 0 (“Neu-
tral”), and 1 (“Positive”). We take the average
sentiment of the generated responses as the com-
munity’s stance score towards the person or group.
We also show the results of a popular lexicon-based
sentiment classifier VADER in Appendix C.

4 Evaluation

Task Formulation. The ANES survey has self-
reported party affiliation from participants. We use
responses from Republican and Democratic partic-
ipants and calculate their average ratings towards
each of 30 items (persons and groups). These av-
erage ratings are provided in Appendix B. If the
average rating of Republican participants is higher
than that of Democratic participants toward one
item (e.g., Joe Biden), it is labeled as “R”. Oth-
erwise, the item is labeled as “D”. 70% items are
labeled “D” and 30% “R”. The 9 items with “R” la-
bel are Donald Trump, Mike Pence, Marco Rubio,
Nikki Haley, Clarence Thomas, whites, capitalists,
big business, and the Republican Party. The task
asks a model to predict which community is more
favorable towards an item. To address the data im-
balance, we prefer weighted F1 to accuracy as a
measure of model performance.

Baselines. We evaluate the performance of
trained and fine-tuned COMMUNITYLM (GPT-2)
against 4 baselines. The first baseline is Frequency
Model which counts the frequency of an item’s
name in each community’s data and classifies the
community with higher word frequency to be the
label. The second baseline is Keyword Retrieval
which uses keywords to retrieve tweets containing
the keywords from each community’s data, com-
putes the average community stance, and selects
the community with a higher stance score. Key-
word Retrieval (full) means using the full names as
keywords and Keyword Retrieval (surname) means
using the surname of people. The third and fourth
baselines use pre-trained GPT-2 and pre-trained
GPT-3 Curie respectively. “[CONTEXT]” is a
preceding context “As a Democrat/Republican, I
think”, which is concatenated with the prompts
to generate partisan responses on each item. We
compute the average community stance on 1000
synthetic responses and pick the community with a
higher average stance score. It is noted that we also
fine-tune or train GPT-2 on the aggregate partisan
tweets and show their results in Appendix D.

Overall Performance. First, we observe

that fine-tuned COMMUNITYLM with “X is the”
prompt achieves the best performance in both ac-
curacy (97.33%) and weighted F1-score (97.29%)
on the task. The same model’s performance is sen-
sitive to the prompt design and the longest prompt
out of the four seems to work the best. “X” alone
is bad, because it will result in many responses like
“X @USER”, “X???”, “X.”, which are common
Twitter posts and are too short to interpret their atti-
tudes. Second, fine-tuned COMMUNITYLM outper-
forms trained COMMUNITYLM from scratch. It in-
dicates that pre-training GPT-2 is helpful, probably
because pre-training injects the general knowledge
about the named entities into GPT-2. Third, we find
that Keyword Retrieval (surname) is a strong base-
line in both accuracy (93.33%) and F1 (93.33%),
but its performance is also sensitive to the selec-
tion of keywords. As we see, the weighted F1
performance of Keyword Retrieval (full), which
uses a strict full name matching (e.g., “Joe Biden”),
drops to 87.00%. In contrast, language models
are able to learn the associations between different
names for the same person and generalize with-
out worrying about name forms. Last, fine-tuned
COMMUNITYLM outperforms pre-trained GPT-2
and GPT-3 baselines. It is worth noting that the
performance of pre-trained GPT-3 Curie is consis-
tently better than pre-trained GPT-2. GPT-3 with
the “X is/are” prompt achieves the same score as
the Keyword Retrieval (surname) baseline.

Error Analysis. The rule-based Keyword Re-
trieval (surname) baseline misses “illegal immi-
grants” and “big business”. The fine-tuned COM-
MUNITYLM with “X is/are the” misses “White peo-
ple”. The pre-trained GPT-3 with “X is/are” prompt
misses “Dr. Anthony Fauci” and “Asian people’.
It is interesting because the top 5 items with the
closest average rating gap between ANES partisan
participants are Asian people (5.5%), White peo-
ple (5.9%), Hispanic people (7.7%), Dr. Anthony
Fauci (8.4%), and Black people (9.7%).

Ranking Public Figures. We use the average
community stance scores computed on the gener-
ated tweets from the fine-tuned COMMUNITYLM
model to rank 16 public figures for each commu-
nity, hoping to understand how they perceive these
people. In Figure 1, we observe that Republi-
can politicians are rated poorly by the Democratic
model and vice versa. Overall, the ratings from
the Republican model are more negative than the
Democratic model. Interestingly, we find that An-
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Model Prompt Accuracy Weighted F1

Frequency Model — 53.33 54.50
Keyword Retrieval (Full) — 86.67 87.00
Keyword Retrieval (Surname) — 93.33 93.33

Pre-trained GPT-2 “[CONTEXT] + X” 74.00±2.79 66.52±5.56
Pre-trained GPT-2 “[CONTEXT] + X is/are” 72.00±1.83 64.63±2.35
Pre-trained GPT-2 “[CONTEXT] + X is/are a” 75.33±1.83 68.47±3.35
Pre-trained GPT-2 “[CONTEXT] + X is/are the” 77.33±2.79 74.71±3.22

Pre-trained GPT-3 Curie “[CONTEXT] + X” 83.33 83.88
Pre-trained GPT-3 Curie “[CONTEXT] + X is/are” 93.33 93.50
Pre-trained GPT-3 Curie “[CONTEXT] + X is/are a” 83.33 83.88
Pre-trained GPT-3 Curie “[CONTEXT] + X is/are the” 83.33 84.02

Trained COMMUNITYLM “X” 90.00±0.00 89.63±0.27
Trained COMMUNITYLM “X is/are” 90.00±0.00 89.82±0.00
Trained COMMUNITYLM “X is/are a” 86.00±1.49 86.25±1.50
Trained COMMUNITYLM “X is/are the” 90.67±2.79 90.49±2.68

Fine-tuned COMMUNITYLM “X” 84.67±2.98 84.46±3.18
Fine-tuned COMMUNITYLM “X is/are” 96.00±2.79 96.00±2.79
Fine-tuned COMMUNITYLM “X is/are a” 91.33±1.83 90.83±2.05
Fine-tuned COMMUNITYLM “X is/are the” 97.33±1.49 97.29±1.52

Table 2: Performance of different approaches in accuracy to predict which community is more favorable towards
30 persons or groups from the ANES survey. Approaches based on GPT-2 are repeated five times to compute the
average and standard deviation. GPT-3 is only run once for cost concern. Frequency Model and Keyword Retrieval
methods are deterministic. The weighted average F1 is used because of data imbalance.

drew Yang is rated quite highly by both models,
likely because of the sampling bias of Twitter. It is
noted that “Andrew Yang” is also ranked 1st by the
Democrat community and 3rd by the Republican
community with the retrieval approach.

(a) Democratic ranking (b) Republican ranking

Figure 1: Left and right rankings of 16 public figures
by their average stance scores calculated on synthetic
tweets from their fine-tuned COMMUNITYLM models.

5 Conclusion

In this paper, we present a simple COMMU-
NITYLM framework to evaluate the viability of
fine-tuned GPT-2 community language models
in mining community insights in the context of
political polarization between Republicans and
Democrats. We adopt ANES survey questions and
experiment with four types of prompts to generate

community responses through GPT-2, showing that
generated opinions are predictive about which com-
munity is more favorable towards selected public
figures and groups. Our results show that fine-
tuned COMMUNITYLM (GPT-2) outperforms the
baseline methods. We analyze the model errors and
run qualitative analyses to demonstrate that GPT-2
community language models can be used to rank
public figures and probe word choices.

There are a few limitations in the current ap-
proach. First, language models can synthesize un-
reliable responses. Structured knowledge (Wang
et al., 2021; Yasunaga et al., 2021) can be used to
reduce nonsensical or unfaithful generation. There-
fore, it is important that we use statistical patterns
rather than individual synthesized tweets to draw
conclusions (Feldman et al., 2021). Second, lan-
guage models are shown to be sensitive to prompt
design in our experiments and are also vulnerable
to negation and misprimed probes (Kassner and
Schütze, 2020). In the future, we plan to develop
a systematic approach to design effective prompts
and evaluate the robustness of COMMUNITYLM.
Third, we focus on the classic red and blue polar-
ization and do not consider a more fine-grained
segmentation of U.S. politics. We hope to extend
this work to study multiple sociopolitical commu-
nities in America and surface their unheard voices.
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Ethical Considerations

We propose a general framework to probe com-
munity insights and observe differences between
the Democratic and Republican communities on
Twitter. While we do not discuss how to react to
these findings, the intention of our research is en-
courage people to escape from their echo chambers,
hear voices from other communities, and engage
in constructive communication. One reasonable
ethical concern is that by using a language model
to predict community opinions, instead of asking
individuals from the community directly, don’t we
risk erasing individual voices? To that concern we
would like to emphasize that our model is no substi-
tute for deeper engagement with a community; as
discussed in the limitation paragraph, the language
model is just an entry point for understanding a
community’s perspective. It serves to synthesize
the points expressed by the speakers in the training
data more effectively than we know how to do by
hand. Any automated or semi-automated predic-
tion system risks misinterpreting or “erasing” an
expressed opinion, and we show in our work that
the simpler methods of doing so are more error-
prone, and hence measurably more unfair than the
proposed approach in the paper.
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Appendix

A Keyword counts

The Keyword Retrieval baseline method retrieves
tweets containing the keywords. Here we show the
list of full and surname keywords and their counts
in tables 3 and 4, respectively, for the Republican
and Democratic tweets. For corresponding items
between these two tables (e.g. “Asian people” in
Table 3 to “Asian” in Table 4) there is a consis-
tent increase in counts, especially for “Asian peo-
ple” “Anthony Fauci”, “Hispanic people”, “labor
unions”, “Clarence Thomas”. Some items in Table
4 might have too many counts. For example, we
observe that “Trump” has 150,000+ counts in both
partisan tweets, which can take a relatively long
time for sentiment classifiers to run.

Keyword Question Dem Repub
Asian people ftasian 81 21

Joe Biden ftbiden1 4177 5377
big business ftbigbusiness 321 291
Black people ftblack 3199 1278
Pete Buttigieg ftbuttigieg1 982 521

capitalists ftcapitalists 279 197
the Democratic Party ftdemocraticparty 2094 2646

Anthony Fauci ftfauci1 102 85
feminists ftfeminists 351 628

Nikki Haley fthaley1 169 274
Kamala Harris ftharris1 1711 1450

Hispanic people fthisp 28 21
illegal immigrants ftillegal 251 2233
Amy Klobuchar ftklobuchar1 451 193

labor unions ftlaborunions 68 27
the #MeToo movement ftmetoo 103 84

Barack Obama ftobama1 684 929
Alexandria Ocasio-Cortez ftocasioc1 410 534

Nancy Pelosi ftpelosi1 1467 3549
Mike Pence ftpence1 911 502

the Republican Party ftrepublicanparty 1681 838
Marco Rubio ftrubio1 166 132

Bernie Sanders ftsanders1 4572 2711
socialists ftsocialists 627 2697

Clarence Thomas ftthomas1 157 132
transgender people fttransppl 165 38

Donald Trump fttrump1 8501 5479
Elizabeth Warren ftwarren1 3132 1897

White people ftwhite 3625 1862
Andrew Yang ftyang1 585 249

Table 3: Counts of full names for each person and group
in Republican and Democratic tweets.

B What are the average ratings between
partisan participants in ANES survey?

We also compute and show in Table 5 the average
ratings from Republican and Democratic partic-
ipants towards each person or group. For most
items, we observe quite large rating gaps between
the partisans. But the top 5 items with the closest
average rating gap between partisans are “Asian
people” (5.5%), “White people” (5.9%), “Hispanic
people” (7.7%), “Dr. Anthony Fauci” (8.4%),

Keyword Question Dem Repub
Asian ftasian 2961 1917
Biden ftbiden1 26558 21748

big business ftbigbusiness 321 291
Black people ftblack 3199 1278

Buttigieg ftbuttigieg1 3514 1348
capitalist ftcapitalists 1393 941

Democratic Party ftdemocraticparty 2677 3611
Fauci ftfauci1 931 1219

feminist ftfeminists 1686 1470
Haley fthaley1 531 712
Harris ftharris1 6753 5416

Hispanic fthisp 1173 1693
illegal immigrant ftillegal 312 2815

Klobuchar ftklobuchar1 1958 584
labor union ftlaborunions 110 47

#MeToo movement ftmetoo 114 102
Obama ftobama1 15390 33105

Ocasio-Cortez ftocasioc1 751 1792
Pelosi ftpelosi1 5985 15844
Pence ftpence1 5818 3021

Republican Party ftrepublicanparty 2251 1079
Rubio ftrubio1 508 502

Sanders ftsanders1 16001 6568
socialist ftsocialists 3182 12606
Thomas ftthomas1 2316 3348

transgender fttransppl 1309 1469
Trump fttrump1 188170 150589
Warren ftwarren1 18954 6969

White people ftwhite 3625 1862
Yang ftyang1 4443 1433

Table 4: Counts of surname names for each person and
group in Republican and Democratic tweets.

“Black people” (9.7%). These items have very close
ratings and we confirm in our error analysis that
they are also challenging to the GPT-2 models. It
is worth noting that the survey was done in early
2020 and at that time “Dr. Fauci” as a topic was
not as divisive as it is today on Twitter.

C How well does the system perform
using a lexicon-based sentiment
classifier?

In the main paper, we use a state-of-the-art pre-
trained BERT Twitter sentiment classifier to clas-
sify tweets. Some researchers may be concerned
that neural sentiment models may learn and reflect
biases in the training data and prefer using lexicon-
based approaches. Therefore, we also use VADER
(Hutto and Gilbert, 2014)7, a popular rule-based
model for sentiment analysis of social media texts,
and report the performance of our models with
VADER in Table 6. Overall, we show that these
models perform slightly worse with VADER, but
we still see that fine-tuned COMMUNITYLM with
“X is the” perform the best (93.33%) out of these
models. This performance is on par with the Key-
word Retrieval (surname) approach. We conjecture
that using prompts like “X is the” creates many

7https://github.com/cjhutto/vaderSent
iment
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Question Item Dem Repub
ftasian Asian people 68.95 63.44
ftwhite White people 71.25 77.16
fthisp Hispanic people 71.27 63.60

ftfauci1 Dr. Anthony Fauci 66.67 58.28
ftblack Black people 76.22 66.51
ftrubio1 Marco Rubio 31.52 43.01

ftcapitalists capitalists 46.68 60.53
ftbigbusiness big business 43.14 57.85
ftlaborunions labor unions 60.67 44.87

fthaley1 Nikki Haley 29.86 47.07
ftthomas1 Clarence Thomas 29.95 48.63
ftyang1 Andrew Yang 49.28 29.19

ftklobuchar1 Amy Klobuchar 50.04 22.17
ftfeminists feminists 61.97 33.92
fttransppl transgender people 63.22 35.06
ftsocialists socialists 54.00 24.11

ftillegal illegal immigrants 56.17 26.25
ftmetoo the #MeToo movement 63.74 32.73

ftbuttigieg1 Pete Buttigieg 52.79 21.66
ftharris1 Kamala Harris 52.12 18.63

ftocasioc1 Alexandria Ocasio-Cortez 50.60 16.49
ftwarren1 Elizabeth Warren 59.84 20.46
ftbiden1 Joe Biden 66.50 24.40

ftsanders1 Bernie Sanders 63.77 20.50
ftpelosi1 Nancy Pelosi 61.76 16.10

ftdemocraticparty the Democratic Party 71.24 24.34
ftpence1 Mike Pence 24.09 71.12

ftrepublicanparty the Republican Party 25.02 74.47
ftobama1 Barack Obama 81.29 29.99
fttrump1 Donald Trump 17.66 77.83

Table 5: Average rating of each item (person or group)
from Republican and Democratic participants in the
ANES survey.

synthetic tweets with only sentiment-neutral lexi-
cal items (e.g., “big business is the future”) which
the lexicon-based VADER is not able to classify as
“positive”. The BERT sentiment classifier, however,
performs better at representing the overall seman-
tics of the sentence and therefore is preferred in our
framework.

Model Prompt Accuracy

Keyword Retrieval (Full) — 76.67
Keyword Retrieval (Surname) — 93.33

Pre-trained GPT-2 “[CONTEXT] + X” 76.67±0.00
Pre-trained GPT-2 “[CONTEXT] + X is/are” 76.00±1.49
Pre-trained GPT-2 “[CONTEXT] + X is/are a” 78.67±1.83
Pre-trained GPT-2 “[CONTEXT] + X is/are the” 74.67±5.06

Trained COMMUNITYLM “X” 91.33±3.80
Trained COMMUNITYLM “X is/are” 84.67±3.80
Trained COMMUNITYLM “X is/are a” 82.00±3.80
Trained COMMUNITYLM “X is/are the” 93.33±4.08

Fine-tuned COMMUNITYLM “X” 92.00±1.83
Fine-tuned COMMUNITYLM “X is/are” 92.67±1.49
Fine-tuned COMMUNITYLM “X is/are a” 91.33±1.83
Fine-tuned COMMUNITYLM “X is/are the” 93.33±2.36

Table 6: Performance of different approaches with
VADER in predicting which community is more fa-
vorable towards 30 persons or groups from the ANES
survey. Approaches based on GPT-2 are repeated five
times to compute the average and standard deviation.

D Is fine-tuning or training GPT-2 on
combined Twitter data performing
better than pre-trained GPT-2?

In the main paper, we use pre-trained GPT-2 and
GPT-3 to predict the community stance. In addition,
we also experimented with training and fine-tuning
GPT-2 on the combined Twitter corpus (Republican
and Democratic tweets). By contrast with COM-
MUNITYLM, which fine-tunes two GPT-2 models
on partisan Twitter data, in this variant we only
train or fine-tune one GPT-2 model on the aggre-
gate of the partisan tweets. Similar to what we
did in the pre-trained GPT-2 setting, we use [CON-
TEXT]+prompt to generate responses. The results
are quite interesting, because the performance of
the resulting models are worse than the pre-trained
GPT-2, even below the majority baseline of 70%.
We conjecture that this is because the combined
data of partisan tweets neutralizes the sentiment
that the models were supposed to learn towards the
public figures and groups.

Model Prompt Accuracy

Trained GPT-2 (combined) “[CONTEXT] + X” 48.67±8.37
Trained GPT-2 (combined) “[CONTEXT] + X is/are” 50.67±7.23
Trained GPT-2 (combined) “[CONTEXT] + X is a” 47.33±2.79
Trained GPT-2 (combined) “[CONTEXT] + X is the” 55.33±8.37

Fine-tuned GPT-2 (combined) “[CONTEXT] + X” 53.33±4.08
Fine-tuned GPT-2 (combined) “[CONTEXT] + X is/are” 50.67±3.65
Fine-tuned GPT-2 (combined) “[CONTEXT] + X is a” 52.67±2.79
Fine-tuned GPT-2 (combined) “[CONTEXT] + X is the” 38.00±8.37

Table 7: Performance of trained and fine-tuned GPT-2
on combined Twitter data in accuracy to predict which
community is more favorable towards 30 persons or
groups from the ANES survey. Experiments are re-
peated five times to compute the average and standard
deviation.
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Abstract

Aspect-based sentiment analysis (ABSA) has
drawn more and more attention because of its
extensive applications. However, towards the
sentence carried with more than one aspect,
most existing works generate an aspect-specific
sentence representation for each aspect term
to predict sentiment polarity, which neglects
the sentiment relationship among aspect terms.
Besides, most current ABSA methods focus on
sentences containing only one aspect term or
multiple aspect terms with the same sentiment
polarity, which makes ABSA degenerate into
sentence-level sentiment analysis. In this paper,
to deal with this problem, we construct a hetero-
geneous graph to model inter-aspect relation-
ships and aspect-context relationships simul-
taneously and propose a novel Composition-
based Heterogeneous Graph Multi-channel At-
tention Network (CHGMAN) to encode the
constructed heterogeneous graph. Meanwhile,
we conduct extensive experiments on three
datasets: MAMS-ATSA, Rest14, and Lap-
top14, experimental results show the effective-
ness of our method.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a sen-
timent analysis task, which aims to predict the sen-
timent polarity (e.g., POSITIVE, NEGATIVE, NEU-
TRAL) towards the given aspect term in a sentence.
For example, there are two aspect terms decor and
food in the sentence: The decor is not a special
at all but their amazing food makes up for it, and
these two aspect terms will be assigned with NEG-
ATIVE and POSITIVE sentiment polarities respec-
tively. Since the sentiments expressed by these two
aspect terms are opposite in polarity, it is unreason-
able to assign a sentence-level sentiment polarity.
In this regard, ABSA can provide more detailed
sentimental predictions compared with sentence-
level sentiment analysis.

∗∗Corresponding author

In recent years, neural network-based methods
(Tang et al., 2016; Wang et al., 2016; Ma et al.,
2017; Chen et al., 2017) are used to tackle ABSA
task and achieve promising performance. Subse-
quently, with the rise of contextual embedding, con-
textualized language models, such as BERT (De-
vlin et al., 2019), are introduced into ABSA and
boost performance. Additionally, in order to utilize
the dependency tree information, a lot of graph-
based methods (Zhang et al., 2019; Sun et al., 2019;
Huang and Carley, 2019; Wang et al., 2020) are pro-
posed to tackle this task by encoding both contex-
tual and dependency information simultaneously.
However, most of these methods focus on the
datasets, in which most sentences consist of only
one aspect or multiple aspects with the same senti-
ment polarity. Under these circumstances, aspect-
based sentiment analysis degenerates into sentence-
level sentiment analysis. Existing ABSA methods
based on these datasets can hardly adapt to the situa-
tion, where multiple aspect terms in a sentence with
multiple different sentiment polarities. Thus, the
fine-grained sentiment analysis task derived from
ABSA towards the multi-aspect multi-sentiment sit-
uation, Multi-aspect Multi-sentiment Classification
(MAMSC), is worthy of exploration(Jiang et al.,
2019). MAMSC is more challenging than ABSA,
and each sentence contains at least two aspects with
different sentiment polarities in MAMSC.

Besides, most existing methods neglect to con-
sider inter-aspect relationships when predicting sen-
timent polarity. Especially in MAMSC, the main
challenge is that the sentiment polarities of some
aspects in a given sentence can not be judged solely
relied on the context and may be guided by the sen-
timents of other aspects. Inter-aspect relationships
will play an essential role in identifying sentiment
polarity in this case. Though InterGCN (Liang
et al., 2020) claims to have considered inter-aspect
relationships, what it considered is merely the dis-
tance relationship among aspects and neglecting

6827



the semantic relationship between every two as-
pects, which is essential when indicating the re-
lationship between two aspects. Furthermore, In-
terGCN ignores the heterogeneity of aspect terms
and context words and the different importance of
surrounding nodes when aggregating information.

To sum up, ABSA faces the following chal-
lenges: (1) do not pay special attention to the multi-
aspect multi-sentiment situation; (2) do not incor-
porate semantic relationships among aspects into
predicting sentiment polarity; (3) do not introduce
heterogeneity and attention mechanism when using
graph-based models to predict sentiment polarity.

To deal with the challenges mentioned above, we
first construct a heterogeneous graph with distinct
node and edge types to represent inter-aspect rela-
tionships, aspect-context relationships, and node
heterogeneity simultaneously in a concrete way.
Unlike InterGCN, we treat aspect terms and con-
text words as different types of nodes, and mean-
while, the edges in our heterogeneous graph are
attributed. We utilize dependency tags as the at-
tributes of aspect-context edges. The shortest de-
pendency path between each two aspect terms is the
representation of each inter-aspect edge attribute,
which signifies the semantic relationship between
these two aspect terms. Then we propose a novel
model called Composition-based Heterogeneous
Graph Multi-channel Attention Network (CHG-
MAN) to capture important information conveyed
by constructed heterogeneous graph. Our proposed
CHGMAN equipped with a multi-channel atten-
tion mechanism can take edge features, node types,
and node features into account concurrently and
aggregate composition information of nodes and
node types in terms of importance, which is con-
ducive to capturing the information expressed by
our heterogeneous graph and making the correct
predictions. The main contributions of this paper
can be summarized as follows:

Heterogeneous Graph: to the best of our knowl-
edge, this is the first attempt to model multi-aspect
multi-sentiment classification with heterogeneous
graph networks to capture both inter-aspect rela-
tionships and context-aspect relationships.

Multi-channel Attention: we propose a novel
model Composition-based Heterogeneous Graph
Multi-channel Attention Network (CHGMAN) to
incorporate inter-aspect relationship information,
node and node type information simultaneously for
predicting sentiment polarity.

Extensive Experiments: we conduct exten-
sive experiments over multi-aspect multi-sentiment
datasets: MAMS-ATSA, Rest14, and Laptop14,
and the results show the effectiveness of our
method. 1

2 Related Work

2.1 Graph-based Models

Recently, graph neural networks (GNNs) have been
introduced into ABSA and achieved promising per-
formance. ASGCN (Zhang et al., 2019) employs
graph convolutional network (GCN) to capture de-
pendency syntactical information. CDT (Sun et al.,
2019) incorporates GCN and BiLSTM over the
dependency information and contextual informa-
tion of the sentence. InterGCN (Liang et al., 2020)
exploits GCN to extract both aspect-focused and
inter-aspect information for specific aspects, but
it only considers distance relations among aspect
terms. RGAT (Wang et al., 2020) designs a graph
attention networks (GAT) derivative to utilize de-
pendency tag information by taking them as gates
to control information flow. However, all these
models do not utilize inter-aspect semantic rela-
tionships and neglect the different roles of aspect
terms and context words.

2.2 Multi-aspect Multi-sentiment

There exist several works that tend to model inter-
aspect relationships to boost the performance of
ABSA. IARM (Majumder et al., 2018) utilizes
memory networks to incorporate the neighboring
aspects-related information to predict the sentiment
polarity of the given aspect term. InterGCN models
inter-aspect distance relationships to help predict
sentiment polarity in the presence of other aspects.
SDGCN (Zhao et al., 2020) utilizes GCNs to cap-
ture sentiment dependencies between aspects. Be-
sides, MIAD (Hazarika et al., 2018), STAGE (Ma
et al., 2019) and Joint+PERT (Zhou et al., 2020)
also tend to model relationships among aspects by
using LSTM based model and attention mechanism.
CapsNet (Jiang et al., 2019) releases a new dataset
dedicated to the multi-aspect multi-sentiment situa-
tion and proposes a model to employ capsule net-
work and capture the intricate relationship between
aspect terms and context words. Nonetheless, all
of these existing works do not take edge informa-
tion, such as dependency syntactic and semantic

1The code is available at https://github.com/hankniu01/ch
gman
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Figure 1: The overall architecture of our proposed method (left). The heterogeneous graph construction and
composed dependency tags is shown in right.

relationship among aspects into consideration, and
heterogeneity between aspect terms and context
words is also ignored.

3 Methodology

Multi-aspect multi-sentiment classification can
be formulated as follows: given a sentence S
with n words {w1, w2, ..., wn} and a given as-
pect term set A = {A1, A2, ..., Aκ} containing κ
aspect terms. And Ak = {waφ, waφ+1, ..., w

a
φ+τ}

with τ ∈ [1, n − φ] is a sub-string of sentence S,
which denotes one element of the given aspect term
set A. The annotation a represents aspect. This
task aims at predicting the sentiment polarity y
{POSITIVE, NEUTRAL, NEGATIVE} expressed on
each aspect term included in the given aspect term
setA of the sentence S. As shown in Figure 1(left),
our proposed methods consist of three blocks: (1)
Encoding Block; (2) Heterogeneous Graph Con-
struction Block; (3) Prediction Block. In Section
3.1 to 3.3, we detail each block.

3.1 Encoding Block

As shown in Figure 1(left), we encode context
words, aspect terms, and composed dependency
tags, preparing for constructing heterogeneous
graphs.

3.1.1 Contextual Encoder
For a given input sentence S = {w1, w2, ..., wn}
with a aspect term set A = {A1, A2, ..., Aκ} ,
we first employ pre-trained BERT (Devlin et al.,
2019) as the contextual encoder to obtain hid-
den contextual representation H of the given sen-
tence S. The embeddings of context words Hw =
{h1, h2, ..., hnw} and aspect term embeddings HA

= {hA1 , hA2 , ..., hAκ} are derived from H . Here,
nw is the number of context words in the input
sentence S. Specifically, the embedding of a spe-
cific aspect termAk is hAk = {haφ, haφ+1, ..., h

a
φ+τ},

which is the collection of all the embeddings of
words belonging to Ak.

3.1.2 Composed Dependency Tags
Additionally, we design composed dependency tags
to fully utilize dependency relation tag informa-
tion based on the aspect-oriented dependency tree
(Wang et al., 2020). Concretely, as shown in Figure
1(right), the form of composed dependency tag rep-
resentation is rAk,i = dep1 : dep2 : ... : depm : m,
where m represents the hops between aspect term
node Ak and neighbor node i, and depm represents
the original dependency tag between two nodes
generated by the Biaffine Parser (Dozat and Man-
ning, 2017). Then, we employ a trainable embed-
ding lookup table as a dependency embedding layer.
We feed a set of composed dependency tagsRtag =
{rAk,1, rAk,2, ..., rAk,M} into dependency embed-
ding layer to initialize composed dependency tag
representations Etag = {eAk,1, eAk,2, ..., eAk,M},
where M is the number of dependency relation
tags. We have different sets of composed depen-
dency tags and their representations for different
aspect terms.

3.2 Heterogeneous Graph Construction Block

In this section, we construct a heterogeneous graph
to encode inter-aspect relationships and aspect-
context relationships effectively.

3.2.1 Shortest Dependency Path
To discover the semantic relationship between as-
pect terms, we extract the shortest dependency path
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(SDP) between aspect terms to represent the rela-
tionship. SDP can indicate semantic relationships
effectively between two words and ignore irrele-
vant information, which has been widely used in
relation extraction (Bunescu and Mooney, 2005).
All tokens on SDP between aspect terms Aξ and
Aη are represented as SDPξη. Furthermore, the
features of all tokens belonging to SDPξη are ex-
tracted from H derived from pre-trained BERT
through selection operating. The selection operat-
ing is based on the index of the token belonging to
SDP in the sentence. The SDPξη representation
HSDP
ξη =

∑
[hSDP1 , hSDP2 , ..., hSDPt ], where t is

the number of tokens in the SDP.

3.2.2 Heterogeneous Graph Construction
The heterogeneous graph contains two types of
nodes: aspect term node and context node. The
feature of each aspect term node is hAk , which
is the element of aspect embedding set HA. The
feature of each context node is derived from word
embedding Hw = {h1, h2, ..., hnw}. Besides, there
exist two types of edges in our constructed het-
erogeneous graph: composed dependency edge
and SDP edge. Both of these edges are feature
. The feature of each composed dependency edge
is derived from composed dependency tag represen-
tations Etag = {eAk,1, eAk,2, ..., eAk,M}, and the
feature of each SDP edge between aspect terms Aξ
and Aη is HSDP

ξη . A simple case of heterogeneous
graph construction is shown in Figure 1(right).

3.3 Prediction Block

In the prediction block, we utilize the constructed
heterogeneous graph to make predictions. First,
we propose a Composition-based Heterogeneous
Graph Multi-channel Attention Network (CHG-
MAN) and feed the constructed heterogeneous
graph with its features into CHGMAN. Then, the
output layer receives features of aspect terms out-
put by CHGMAN and predicts sentiment polarities.

3.3.1 Composition-based Heterogeneous
Graph Multi-channel Attention
Network (CHGMAN)

To encode our constructed heterogeneous graph
effectively, we propose a novel multi-channel at-
tention network for heterogeneous graphs, which
concerns the information of edges, nodes, and node
types simultaneously. Figure 2(left) presents the
whole view of CHGMAN. Concretely, the goal of
CHGMAN is to aggregate information from each

neighbor node i to update the representation of the
target node t. And the process can be divided into
three phases: (1) Multi-channel Attention Calcula-
tion, (2) Heterogeneous Massage Passing, and (3)
Composed Aggregation.

Multi-channel Attention Calculation. In first
phase, CHGMAN tend to calculate the attention
score matrices between target node t and each
neighbor node i ∈ N (t). Due to heterogeneity,
based on considering neighbor node features, we
further tend to incorporate the information of node
type and edge feature into our model. Thus, we
design a multi-channel attention mechanism to take
node types and edge features into consideration in
the phase of attention calculation. Concretely, this
phase of CHGMAN is decomposed into three chan-
nels: target-to-neighbor channel, target-to-edge
channel and target-to-type channel to calculate at-
tention score matrices from different sides. Then,
CHGMAN exploits a multi-channel fusion layer
to fuse attention score matrices from each channel
and get a weighted combination of attention score
matrices. Plus, we also employ a multi-head atten-
tion mechanism (Vaswani et al., 2017) to enhance
the representation ability of CHGMAN.

Firstly, we map the feature of target node t into
a query vector QuAk at u-head attention, and hlt is
the representation of target node t at l-th layer.

Qut = LinearQ,ut

(
hlt

)
, (1)

where LinearQ,ut is the linear projection for hlt.
In order to exploit information from neighbor node
features, neighbor node types, and edges features,
we map the feature of them into key vectors for
each channel. Specifically,

Ku
neigh = LinearK,uneigh

(
hneigh,li

)
, (2)

Ku
edge = LinearK,uedge

(
hedge,lt,i

)
, (3)

Ku
type = LinearK,utype

(
htype,li

)
, (4)

where LinearK,uneigh, LinearK,uedge and

LinearK,utype are linear projections for each
representations, and hneighi represents the feature
of neighbor node i. Here, neighbor nodes consist
of aspect term nodes and context nodes. Besides,
hedget,i is the representation of edge feature between
the target node t and neighbor node i. There
are two kinds of edges: inter-aspect edges and
aspect-context edges. For inter-aspect edges, we
utilize SDP representation HSDP

ξη as features of
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Figure 2: Overview of the proposed CHGMAN (left). Multi-channel attention calculation (right).

inter-aspect edges, and for aspect-context edges,
we employ composed dependency tag represen-
tations. Additionally, the type representation
of neighbor node i is htypei , and there exist two
kinds of type representations corresponding to
context node and aspect term node. We introduce a
trainable embedding lookup table to initialize type
representations.

Next, CHGMAN needs to calculate the correla-
tions between query vectors and key vectors by dot
product in each channel. The final multi-channel
attention score Attu(t, i) is computed as follows:

Attu(t, i) = Softmax
∀i∈N (t)

(
αmcf,ut,i

)
, (5)

αmcf,ut,i =Mcf
(
αneigh,ut,i , αedge,ut,i , αtype,ut,i

)

= Φc
([
αneigh,ut,i , αedge,ut,i , αtype,ut,i

])

= Φc

([
(Qut )

⊤Ku
neigh√
d

,
(Qut )

⊤Ku
edge√

d
,
(Qut )

⊤Ku
edge√

d

])
,

(6)

where [αneigh,uAk,i , αedge,uAk,i , αtype,uAk,i ] is the stacked at-
tention matrices of different channels, and Mcf
denotes a multi-channel fusion layer with param-
eters Φc, which is a learnable parameter to adjust
contributions of input attention matrices automati-
cally. We apply a scaling factor 1√

d
on αut,i, which

is beneficial to stabilize model training (Vaswani
et al., 2017), and d is the dimension of hidden state.

Heterogeneous Massage Passing. Parallel to
the computation of multi-channel attention, CHG-
MAN also passes information from neighbor nodes
to the given target node. Taking into account the
heterogeneity of nodes, we would like to incor-
porate the representations of node types attached
with node features into the message passing pro-
cess. Specifically, for target node t and its neighbor

nodes i ∈ N (t), the multi-heads message is calcu-
late as follows:

Msguneigh(t, i) = LinearM,uneigh

(
hneigh,li

)
, (7)

Msgutype(t, i) = LinearM,utype

(
htype,li

)
. (8)

To obtain the u-th message head Msguneigh(t, i)
andMsgutype(t, i) from neighbor node features and
the type representations of neighbor nodes, CHG-
MAN employs linear projections LinearM,u

neigh and

LinearM,u
type to project them into message vectors.

Composed Aggregation. After multi-channel
attention calculation and heterogeneous message
passing, CHGMAN needs to aggregate messages
from neighbor nodes to the given target node t.
Firstly, we employ a circular correlation as a com-
position operation (Vashishth et al., 2020; Nickel
et al., 2016) to combine the messages from node
features and node type representations. The opera-
tion is computed as follows:

Msgucorr(t, i) = ψ(Msguneigh(t, i),Msgutype(t, i)) (9)

= F−1
(
F(Msguneigh(t, i))⊙F(Msgutype(t, i))

)
,

where Msgucorr(t, i) is the composed message
representation from neighbor node i, ψ is the cir-
cular correlation operation, and F(·) and F−1(·)
denote the Fast Fourier Transform (FFT) and its
inverse. TheF(·) is the complex conjugate ofF(·),
and ⊙ denotes the Hadamard product.

Then, we aggregate messages from neighbor
nodes and update the target node representation
The aggregate process at l-th layer is

hl+1
t = ||Uu=1

∑

i∈N (t)

(Attu(t, i) ·Msgucorr(t, i)) . (10)
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Dataset
Positive Neutral Negative MM Statistics

Train Test Train Test Train Test Train Size Train MM Test Size Test MM Total Size Total MM
MAMS-ATSA 3380 400 5042 607 2764 329 11186 11186 1336 1336 12522 12522

Rest14 2164 728 807 196 637 196 3608 2594 1120 835 4728 3429
Laptop14 994 341 870 128 464 169 2328 1396 638 379 2965 1775

Table 1: Statistics of MAMS-ATSA, Rest14, and Laptop14 datasets. (Train|Test|Total) Size and (Train|Test|Total)
MM denote the number of instances and multi-aspect multi-sentiment instances in the training, testing, and overall
(sum of training and testing) datasets, respectively.

We also incorporate multi-heads attention mech-
anism into CHGMAN, and ||Uu=1xu denotes the
concatenation of vectors from x1 to xU . The aggre-
gate process at l-th layer is calculated as follows:

3.3.2 Output Layer
In the end, we obtain the output feature of the given
target aspect term node Ak from CHGMAN as the
final representation hfinal. Then, we feed hfinal
into a fully connected softmax layer and map it to
probabilities over the different sentiment polarities.

P (y = c) = softmax(WPhfinal + bP ), (11)

whereWP and bP are the weight matrix and bias,
respectively. P ∈ RC is the probability distribu-
tion for the sentiment polarity of a specific aspect
term, where C is the set of sentiment classes. The
training objective is to minimize the standard cross-
entropy loss with L2-regularization:

L(Θ) = −
∑

(S,A)∈D
log(y = c) + Λ||Θ||2, (12)

where D is the set of training data, Θ represents
all trainable parameters, and Λ is the coefficient of
the L2-regularization term.

4 Experiments

4.1 Datasets and Experiment Settings

To verify the effectiveness of our proposed model,
we conduct experiments on MAMS-ATSA, Rest14,
and Laptop14. MAMS-ATSA is released by (Jiang
et al., 2019), all sentences in MAMS-ATSA con-
tain multiple aspect terms, and at least two of them
with different sentiment polarities. Also, the start
and end positions of each aspect term in a sentence
are provided. Rest14 and Laptop14 (Pontiki et al.,
2014) have been widely used, but not all sentences
have multiple aspect terms in these two datasets.
Statistics of these datasets are displayed in Table 1,
where (Train|Test|Total) Size and (Train|Test|Total)
MM denote the number of instances and multi-
aspect multi-sentiment instances on the training,
testing, and overall (sum of training and testing)
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Figure 3: Statistics of multiple aspects over MAMS-
ATSA, Rest14, and Laptop14 datasets. The number
on the x-axis indicates the number of aspects in each
instance in the dataset.

datasets, respectively. Each multi-aspect multi-
sentiment instance contains multiple aspects and at
least two aspects with different sentiment polarities.
Additionally, we count the distribution of instances
with the different number of aspects in the three
datasets, which is shown in Figure 3. It can be seen
that in the case of multiple aspects, instances with
two or three aspects account for the majority. And,
in MAMS-ATSA, there is no instance with only
one aspect.

We utilize the last hidden states of the pre-trained
BERT-base model for word representations (Devlin
et al., 2019), the BERT containing 12 hidden layers,
and 768 hidden dimensions for each layer. More-
over, the dimensions of the composed dependency
tag embedding and type embedding are also initial-
ized as 768. The hidden dimension of CHGMAN
is 128. The dropout rate is 0.2. The number of
the epoch is 30. We use Adam optimizer (Kingma
and Ba, 2015) while training with the learning rate
initialized by 0.00005. Our code will be released
later.

4.2 Compared Methods
To evaluate our proposed model CHGMAN, we
compare it with the following a series of base-
lines. TD-LSTM (Tang et al., 2016) utilizes
LSTMs to model bidirectional contextual informa-
tion. ATAE-LSTM (Wang et al., 2016) tends to
combine learned attention embeddings with LSTM.
IAN(Ma et al., 2017) is introduced to learn the
coarse-grained attention for prediction. MIAD
(Hazarika et al., 2018) simultaneously classifies
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Model
MAMS-ATSA Rest14 Laptop14

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

TD-LSTM 74.60♭ - 78.00♮ 66.73♮ 71.83♮ 68.43♮

ATAE-LSTM 77.05♭ - 77.20♯ - 68.70♯ -
IAN 76.60♭ - 78.60♯ - 72.10♯ -

RAM - - 80.23♯ 70.80♯ 74.49♯ 71.35♯

GCAE 77.59♭ - 77.28♯ - 69.14♯ -
IARM 74.48* 73.66* 80.00 - 73.80 -
MIAD - - 79.00 - 72.50 -

ASGCN 44.06* 50.39* 80.77♯ 72.02♯ 75.55♯ 71.05♯

CDT 76.77* 75.77* 82.30♯ 74.02♯ 77.19♯ 72.99♯

Joint+PRET - - 81.96 71.80 73.04 69.16
STAGE - - 80.10 - 73.10 -
BERT 82.22♭ - 85.62♯ 78.28♯ 77.58♯ 72.38♯

§SDGCN - - 83.57 76.47 81.35 78.34
§InterGCN 82.49* 81.95* 85.45* 77.64* 78.06* 73.83*
§CapsNet 83.39♭ - 85.93 - - -
§RGAT 83.16* 82.42* 86.25* 79.95* 78.21 74.07

§CHGMAN (Ours) 85.05 84.29 86.88 81.62 81.52 77.68

Table 2: Overall performance of different methods on MAMS-ATSA, Rest14, and Laptop14. The results indicated
by an asterisk(*) are reproduced by running the released code of the published paper.The results with ♮, ♯ and ♭ are
retrieved from (Liang et al., 2020), (Wang et al., 2020) and (Jiang et al., 2019) respectively. The other results except
for our model are from the results reported by other baseline papers. The results with § are fine-tuned based on
BERT(base).

all aspect terms in a sentence in pace with tempo-
ral dependency processing of corresponding sen-
tences by utilizing LSTM. RAM (Chen et al., 2017)
proposes to learn multi-hop attention on BiLSTM.
GCAE (Xue and Li, 2018) proposes a convolution
network combined with gating mechanisms to con-
trol sentiment flow. IARM (Majumder et al., 2018)
utilizes aspect-aware sentence representation and
memory network to fuse neighboring aspect infor-
mation. CapsNet (Jiang et al., 2019) proposes a
capsule network-based model to capture relation-
ships between aspects and contextual words. AS-
GCN (Zhang et al., 2019) combines BiLSTM to
capture contextual information regarding word or-
ders with a multi-layered GCNs. CDT (Sun et al.,
2019) encodes both dependency and contextual in-
formation by utilizing GCNs and BiLSTM. BERT
(Devlin et al., 2019) fine-tunes BERT model to pre-
dict the sentiment polarity. SDGCN (Zhao et al.,
2020) proposes a model based on GCNs to capture
sentiment dependencies among aspects. STAGE
(Ma et al., 2019) develops a two stage paradigm to
model multi-aspects by using attention mechanism.
Joint+PRET (Zhou et al., 2020) proposes a LSTM
based model and converts sentiment classification
to a sequence labeling problem to model relation-
ships among aspects. RGAT (Wang et al., 2020)
feeds reshaped syntactic dependency graph into
RGAT to capture long dependency information.

4.3 Overall Performance

Table 2 shows the overall performance of our model
and compared methods on three datasets, and the
main evaluation matrices are Accuracy and Macro-
averaged F1-score. The results demonstrate our
model outperforms all compared methods except
for the Macro-F1 of SDGCN on Laptop14. The per-
formance of CHGMAN is affected since MM size
in Laptop14 is small relatively (shown in Table
1). Our model exceeds all graph-based methods
on evaluation matrices, indicating our proposed
model is more effective than other graph-based
models. Compared with RGAT, our model takes
inter-aspect relationships into consideration. The
performance gain towards RGAT indicates that
inter-aspect relationships can help predict the sen-
timent polarity of the given aspect. Moreover, in
comparison with InterGCN, CapsNet, and SDGCN,
introducing attention mechanism, inter-aspect re-
lationship, aspect-context relationship, and hetero-
geneity can help our model to distinguish more
helpful information and enhance performance. All
these results denote that exploiting inter-aspect rela-
tionships, aspect-context dependency relationships,
and heterogeneity can improve performance.

4.4 Ablation Study

We conduct an ablation study to further analyze
the effectiveness of our model. The result of the
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Model
MAMS-ATSA Rest14 Laptop14

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
CHGMAN 85.05 84.29 86.88 81.62 81.52 77.68

CHGMAN w/o comp 84.37 83.89 86.61 80.45 80.25 76.29
CHGMAN w/o comp&edge 83.53 82.86 86.33 80.19 80.41 75.73
CHGMAN w/o comp&type 84.29 83.34 86.07 79.72 80.09 76.38

CHGMAN w/o hetero 83.69 83.29 86.16 79.03 80.09 76.17

Table 3: Results of ablation study. CHGMAN w/o X denotes the performance of our method after eliminating the
corresponding modules, and Y&Z represents deactivating modules Y and Z simultaneously. Additionally, comp,
edge, type, and hetero indicate circular correlation operation, target-to-edge channel, target-to-type channel, and
adopting homogeneous graphs instead of heterogeneous graphs constructed. These results are fine-tuned based on
BERT(base).

ablation study is shown in Table 3. CHGMAN
w/o comp denotes that CHGMAN removes the
circular correlation operation in the composed ag-
gregation process. The performance of CHGMAN
w/o comp is worse than CHGMAN, which in-
dicates conducting the circular correlation oper-
ation to combine node and its type features in
the aggregation process is effective and conducive
to performance improvement. Furthermore, on
the basis of CHGMAN w/o comp, we removes
the attention channel target-to-edge and target-to-
type respectively, which are written as CHGMAN
w/o comp&edge and CHGMAN w/o comp&type.
The performance of CHGMAN w/o comp&edge
and CHGMAN w/o comp&type are both inferior
than CHGMAN w/o comp, demonstrating adding
two additional channel target-to-edge and target-to-
type to target-to-neighbor is helpful and beneficial
to enhancing the handling ability of heterogeneous
information. The node types consist of contexts
and aspect terms, the performance difference be-
tween CHGMAN w/o comp and CHGMAN w/o
comp&type also shows the significance of iden-
tifying the information of other aspect terms and
contexts in the attention calculation phase, which
is conducive to the utilization of both information
concurrently. In the meantime, edge features are
also essential in the attention calculation phase,
target-to-edge channel can facilitate the usage of
inter-aspect relationships and aspect-context rela-
tionships by putting into consideration the features
on the edge. The performance of Laptop14 is not
clear enough in contrast to the other datasets since
the MM size in Laptop14 is less than the other
two, as seen in Table 1. CHGMAN w/o hetero
indicates that we eliminate the impact of heteroge-
neous graphs constructed and substitute them with
homogeneous graphs with edge features. That is to
say, we disregard inter-aspect relationships and con-
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Figure 4: The attention distribution visualization of a
specific testing sample.

struct a homogeneous graph for each aspect term,
with just one type of node, but the architecture of
CHGMAN stays unaffected. The performance of
CHGMAN w/o hetero has declined in compar-
ison to CHGMAN, revealing the heterogeneous
graph our constructed is favorable to increasing the
efficacy of CHGMAN for MAMSC.

4.5 Attention Distribution Exploration

To qualitatively illustrate how CHGMAN improves
the performance in MAMSC. We post the atten-
tion distribution visualization of a testing sample,
which is demonstrated in Figure 4. The input sen-
tence is It’s sad that everything about this place
was great (even the service and decor) except for
the steak., there exist three aspect terms: service,
decor and steak, and sentiment polarity labels of
these three aspect terms are POSITIVE, POSITIVE

and NEGATIVE respectively. Figure 4(a) is the
attention distribution of target-to-neighbor, which
shows that for aspect term steak, target-to-neighbor
pays more attention to the context word sad, and
it is helpful to judge the sentiment polarity to a
certain degree. Whereas for service and decor,
target-to-neighbor also notices context words sad
and great, although it is ambiguous. Thus for the
sake of introducing aspect term nodes, target-to-
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Figure 5: The comparison results of different aspect
numbers on MAMS-ATSA and Rest14. The notation
M [N ] on the horizontal axis represent the number of
aspects (M) and the sample size of such a category (N).
These results are fine-tuned based on BERT(base).

neighbor pays more attention to steak to get more
guidance from inter-aspect relationships. As a pow-
erful supplement to target-to-neighbor, the atten-
tion distribution of target-to-edge is displayed in
Figure 4(b). For service and decor, target-to-edge
notices context words great and even, and aspect
term service is misled by sad, thus both of these
aspect terms pay attention to aspect term steak to
seek inter-aspect relationship guidance. In addi-
tion, for the steak, target-to-edge pays attention to
except for the steak, which is helpful to indicate
the NEGATIVE polarity what steak conveys. Figure
4(c) shows the attention distribution of target-to-
type. In this case, for node type, our model tends to
focus more on aspect term node to seek more help
from inter-aspect relationships, which is reasonable.
The attention distribution of overall disentangled
attention is shown in Figure 4(d), which is a com-
bination of these three attention terms. We can
recognize our model focus on those valuable con-
text words such as except when it tends to judge the
sentiment polarity of steak. For service and decor
that are not easy to distinguish, our model can com-
bine the information both from context words and
other aspect terms to make the right judgment.

4.6 Analysis of Multiple Aspects

To further analyze the performance of our model in
the multiple aspects situation, we separate each test
dataset into different subsets according to the num-
ber of aspects in each sentence. Figure 5 demon-
strates the test accuracy of CHGMAN and the com-
parison models RGAT and InterGCN for different
subsets on MAMS-ATSA and Rest14 (For Rest14,
we only consider sentences containing multiple
aspects and at least two aspect terms with differ-
ent sentiment polarities.). Figure 5(a) shows the
analysis of multiple aspects on MAMS-ATSA, and
Figure 5(b) shows Rest14. The horizontal axis rep-
resents the number of aspects, and the number in

square brackets is the sample size of such a cate-
gory in the dataset. The vertical axis represents the
accuracy score. We can observe that CHGMAN is
superior to RGAT and InterGCN on most subsets.
In the case of four aspects, InterGCN slightly out-
performs CHGMAN since Rest14 has fewer multi-
aspect multi-sentiment instances (see MM size in
Table 1), making it hard to fully demonstrate the
effect of the model. Overall, results indicate our
model is adept at capturing inter-aspect relationship
information when there exist multiple aspects.

5 Conclusion

In this paper, we construct a heterogeneous graph
for MAMSC and propose a novel CHGMAN to
tackle the heterogeneous graph. Our model pre-
dicts sentiment polarities by incorporating inter-
aspect relationships, aspect-context relationships,
and node heterogeneity. Moreover, our experi-
ments prove the effectiveness of our method.
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Abstract

We present CoNTACT1: a Dutch language
model adapted to the domain of COVID-19
tweets. The model was developed by con-
tinuing the pre-training phase of RobBERT
(Delobelle et al., 2020) by using 2.8M Dutch
COVID-19 related tweets posted in 2021. In
order to test the performance of the model and
compare it to RobBERT, the two models were
tested on two tasks: (1) binary vaccine hesi-
tancy detection and (2) detection of arguments
for vaccine hesitancy. For both tasks, not only
Twitter but also Facebook data was used to
show cross-genre performance. In our experi-
ments, CoNTACT showed statistically signif-
icant gains over RobBERT in all experiments
for task 1. For task 2, we observed substantial
improvements in virtually all classes in all ex-
periments. An error analysis indicated that the
domain adaptation yielded better representa-
tions of domain-specific terminology, causing
CoNTACT to make more accurate classifica-
tion decisions.

1 Introduction

Since the development of COVID-19 vaccines, an
us-against-them mentality has emerged between ad-
vocates and adversaries of vaccines. Social media
functions as a catalyst in this polarization, because
it enables a rapid spread of unsolicited opinions,
ranging from nuanced to radical, and well-reasoned
to emotional. The turbulent vaccine debate that
has been hosted by social media will unquestion-
ably continue to influence future views on vaccina-
tion, whether it regards new COVID-19 boosters or
other vaccines. In order to help process the large
amounts of online content related to vaccines and
COVID-19 in general, we present CoNTACT (Con-
textual Neural Transformer Adapted to COVID-19
Tweets). CoNTACT was developed by fine-tuning

1The model is available at https://huggingface.
co/clips/contact

RobBERT (Delobelle et al., 2020) (a RoBERTa-
base model (Liu et al., 2019) pre-trained on Dutch
data) on masked language modeling using 2.8M
Dutch-language tweets related to COVID-19 that
were posted in 2021. The model was evaluated on
two tasks: (1) binary vaccine hesitancy classifica-
tion and (2) classification of arguments for vaccine
hesitancy. In order to measure the effect of the
domain adaptation, the results were compared to
out-of-the-box RobBERT. Moreover, the aforemen-
tioned tasks were not only performed on tweets,
but also on Facebook comments to show the cross-
genre benefits of the domain adaptation. After-
wards, a qualitative error analysis was conducted to
show where CoNTACT improved compared to Rob-
BERT and where it could potentially improve fur-
ther. In this analysis, special attention was paid to
what domain-specific language the model learned
compared to out-of-the-box RobBERT.

In earlier research, an English language model
pre-trained on COVID-19 related tweets (COVID-
Twitter-BERT) was developed (Müller et al., 2020).
We apply the same methodology for the first time
to Dutch and extensively test the effect on two
COVID-19 related classification tasks.

2 Related research

Traditional machine learning assumes that models
are trained and tested on large amounts of data
from the same domain, which is not always feasi-
ble due to lack of labelled data. Transfer learning,
which involves the transfer of knowledge from one
domain to another, is a technique that has been uti-
lized frequently in machine learning, both in NLP
(e.g. Weiss et al. (2016), Durrani et al. (2021), Ros-
tami and Galstyan (2021)) and computer vision (e.g.
Wang and Deng (2018), Voulodimos et al. (2018),
Xu et al. (2019)) to combat this issue. An effective
approach to transfer learning that has dominated
in various NLP tasks in recent years is the pre-
training of language models, such as BERT (Devlin
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et al., 2018), on large amounts of unsupervised data.
The knowledge from this pre-training phase is then
transferred to the subsequent fine-tuning phase on
task- and domain-specific data, which has shown
significant improvements on several benchmark
datasets, e.g., Leong et al. (2020) and Basile et al.
(2019), even when using relatively small amounts
of labeled data. Subsequently, several language-
and domain-specific adaptations of language mod-
els have been developed for non-English data or
to further improve the performance of the original
models on specific tasks. Examples are BERTje
and RobBERT (de Vries et al., 2019; Delobelle
et al., 2020), the Dutch equivalents of BERT and
RoBERTa, respectively), and CamemBERT (Mar-
tin et al., 2019), a French BERT model.

Domain adaptation, a special case of transfer
learning where the model is first trained on large
amounts of unsupervised data from the domain
of an intended task, aims to improve results even
further than traditional transfer learning “by min-
imizing the difference between the domain distri-
butions" (Farahani et al. (2020), p. 1), thus creat-
ing a model that optimally learns from the train-
ing data. Regarding the domain of COVID-19,
COVID-Twitter-BERT (Müller et al., 2020), which
is a BERT-large model pre-trained on COVID-19
related tweets, has shown statistically significant
gains over the baseline BERT-large model in vari-
ous applications, including vaccine stance classifi-
cation.

In other research related to vaccine stance clas-
sification, the effectiveness of various rule-based,
statistical and deep learning approaches on the clas-
sification of stance towards vaccines have been
compared (Joshi et al., 2018). Concretely, the task
consisted of multiclass classification of vaccine
stance in social media messages (“for", “against"
or “undecided"). The authors concluded that both
pre-trained language models and statistical ensem-
ble models achieved equally high results on this
task. This work focused on vaccine stance in gen-
eral, but since the start of the COVID-19 pandemic
vaccine stance classification has become almost in-
extricably linked to COVID-19 due to its societal
relevance. An example is Weinzierl and Harabagiu
(2021) who present CoVaxLies, a COVID-19 vac-
cine misinformation dataset, and demonstrate that
their knowledge-graph-based model outperforms
widely used classification methods for the detec-
tion of vaccine misinformation, an important cause

of vaccine hesitancy.
Specifically for Dutch, Wang et al. (2020)

collected Dutch tweets using keywords, and
comments from Reddit and Nu.nl2 threads re-
lated to COVID-19 in order to investigate po-
larity (“positive"/“negative") and stance (“sup-
port"/“reject"/“other") towards face masks and the
social distance measure between March and Oc-
tober 2020. For polarity analysis, the Pattern li-
brary (De Smedt and Daelemans, 2012) was used,
whereas manual annotations were used to train a
stance classifier consisting of a linear feed forward
neural network using stochastic gradient descend
and a subword embedding layer, which achieved
a test set accuracy of 65%. After applying the
polarity analyzer and stance classifier to the above-
mentioned data, it was shown that a more negative
polarity was found in COVID-19 related messages
than in a subset of messages that were unrelated
to COVID-19. More specifically, a more negative
polarity (and also stance) was found in messages
mentioning face masks than in messages mention-
ing the social distancing measure. The various so-
cial media platforms that were used showed similar
trends over time.

3 Methodology

3.1 Domain adaptation

For the development of CoNTACT, we utilize Rob-
BERT3 (Delobelle et al., 2020), a Dutch RoBERTa
model with 12 attention layers and 12 heads with
117M parameters. RobBERT was chosen over
BERTje (Delobelle et al., 2020), the Dutch equiva-
lent of BERT, since BERTje was trained primarily
on news data, whereas RobBERT was trained on
the Dutch segment of the OSCAR corpus (Ortiz
Suárez et al., 2019), which contains not only news
data but online data in general (6.6 billion words).

In line with Han and Eisenstein (2019), we ap-
proached adapting RobBERT by continuing its pre-
training phase, that is by performing masked lan-
guage modeling. For this task, we scraped Dutch-
language tweets posted in 2021 using the Twitter
API and the keyword method described in Kreutz
and Daelemans (2019). Then, all tweets related to
COVID-19 were filtered from this Twitter collec-
tion using regular expressions based on inflected

2Nu.nl is a Dutch news website that allows visitors to
comment on news articles

3https://huggingface.co/pdelobelle/
robbert-v2-dutch-base
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Table 1: Keyword lemmas used to construct regular ex-
pressions for collecting COVID-19 related tweets (En-
glish translations between brackets if applicable).

Key words
corona, COVID-19, SARS-CoV-2,

viroloog (virologist), virus
vaccin (vaccine), vaccineren (to vaccinate),

Astrazeneca, Pfizer, Moderna,
Johnson & Johnson, Curevac, Sputnik

mondmasker (mouth mask), social distancing,
bubbel (bubble), contact tracing,

quarantaine (quarantine), lockdown,
avondklok (curfew), 1.5m, knuffelcontact (cuddle contact)

forms, part-of-speech tag variations and spelling
variations of the keywords shown in Table 1.

Afterwards, all duplicates and retweets were fil-
tered from this subset of COVID-19 related tweets.
To detect retweets, we based ourselves on the
“retweet status" attribute returned by the Twitter
API and searched for tweets beginning with “RT
@". Finally, the FastText language detector was
used to remove all tweets that were not written
in Dutch (Joulin et al., 2016). In the end, 2.8M
tweets (66.8M tokens, split by whitespace) re-
mained for the domain adaptation, which were
anonymized by replacing all tokens starting with
“@" by “@USER". In order to estimate the pre-
cision, 300 randomly selected tweets were manu-
ally read and it was determined whether they were
Dutch and relevant to the domain of COVID-19.
This manual evaluation shows that our keyword
extraction method has a precision of 90.0%. False
positives included messages about other viruses
and vaccines, such as the flu/influenza, and a single
tweet in Afrikaans that did not get detected by the
language detector.

For the domain adaptation, the 2.8M tweets men-
tioned above were used to continue RobBERT’s
pre-training phase for 4 epochs, using the default
learning rate and the largest batch size that fit work-
ing memory (32). A cross entropy loss of 1.702
was achieved on a validation set consisting of 20%
of our data (as a comparison, the validation loss
of COVID-Twitter-BERT was approximately 1.5
for the masked language modeling task (Müller
et al., 2020), whereas the validation loss reported
in the original RobBERT paper amounted to 0.172
(Delobelle et al., 2020)).

3.2 Data and experiments

To determine the effect of the domain adaptation,
i.e., whether CoNTACT performs significantly bet-

ter than RobBERT on tasks involving social media
data related to COVID-19, the models were tested
on two classification tasks: (1) vaccine hesitancy
detection and (2) the detection of arguments for
vaccine hesitancy. The corpus used for the clas-
sification tasks was first described in Lemmens
et al. (2021), it consists of approx. 8,800 tweets
and 5,200 Facebook comments annotated for vac-
cine stance and argumentation. Regarding vac-
cine stance, the possible class labels originally
were “anti-vaccination", “vaccine-hesitant", “neu-
tral" and “pro-vaccination", but these were con-
verted to binary labels: “anti-vaccination" and
“vaccine-hesitant" comprise the “hesitant" category,
whereas the “not hesitant" category consists of all
“neutral" and “pro" comments. The annotation
scheme for vaccine hesitancy arguments on the
other hand consisted of the following labels:

1. Development: messages that express worry
about the development, testing methodology,
distribution and public access of vaccines.

2. Liberty: messages that express concerns
about how vaccines and vaccine laws affect
civil liberty and personal freedom.

3. Institutional motives: messages expressing
mistrust in motives of political or economic
entities involved with vaccines.

4. Efficacy: messages claiming that vaccines are
not efficient (enough) or unnecessary.

5. Safety: messages that express worry towards
the safety of the vaccines and their side ef-
fects.

6. Criticism on the vaccination strategy: mes-
sages criticizing the government’s vaccination
strategy/campaign.

7. Alternative medicine: messages that prefer
other means of protection over vaccines.

8. Conspiracy theories: messages that spread
well-established or new conspiracy theories
about vaccines.

In order to test the performance of CoNTACT
on the vaccine hesitancy detection task, both Rob-
BERT and CoNTACT were fine-tuned with 10-fold
cross validation. These cross validation experi-
ments were performed in same-genre settings (fine-
tuning and testing on tweets only; fine-tuning and
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Table 2: Statistics of the vaccine hesitancy data used for
the cross validation experiments.

Class Twitter Facebook Total
hesitant 1250 1250 2500

non-hesitant 1250 1250 2500
Total 2500 2500 5000

testing on Facebook comments only) and mixed-
genre settings (fine-tuning and testing on both Face-
book and Twitter). Additionally, cross-genre exper-
iments were conducted by fine-tuning on all Twit-
ter data and testing on all Facebook data (and vice
versa) in order to show the usefulness of CoNTACT
when no data from an intended platform is avail-
able for fine-tuning. In order to avoid overfitting on
a certain class or platform due to unbalanced data,
a subset that was balanced by class and social me-
dia platform was used. The statistics of this subset
can be found in Table 2. For all experiments, the
default batch size (8) and learning rate (5e-5) was
used and fine-tuning was performed for 4 epochs.

Regarding the argumentation detection task,
8,439 tweets and 3,917 Facebook comments were
used (i.e. all of the available vaccine-hesitant mes-
sages). The distribution of the arguments varies
across the two social media platforms, as can be
derived from Table 3. Further, it should be noted
that vaccine-hesitant entries without any clear ar-
gumentation were used as negative examples for
the models to learn from. Similarly to the stance
detection task, the aforementioned data was used to
fine-tune both RobBERT and our CoNTACT model.
For the same- and mixed genre experiments, cross
validation was used, whereas a train-test split was
used for the cross-genre experiments. Since the
data is heavily unbalanced in terms of argument
distribution, however, we chose to conduct experi-
ments with 5-fold instead of 10-fold cross valida-
tion in order to preserve more entries per test set.
For all experiments, the default batch size (8) and
learning rate (5e-5) were used and fine-tuning was
performed for 4 epochs.

4 Results

4.1 Vaccine hesitancy detection

In Table 4, the results of the experiments for vac-
cine hesitancy detection can be found. For the
same-genre and mixed-genre experiments, the pro-
vided results (precision, recall, F1-score) are the av-
erages of the test set scores on the positive class (i.e.
vaccine hesitancy) in each cross validation split

Table 3: Statistics of the vaccine hesitancy arguments
data used for the cross validation experiments.

Class Tw Fb Total
alternative medicine 175 56 175
conspiracy theory 687 228 915

criticism vaccination strategy 979 1,222 2,201
development 565 511 1,076

efficacy 860 400 1,260
institutional motives 1,189 312 2,131

liberty 3,390 450 3,840
safety 1,493 1,416 2,909
none 1,153 298 1,451

n messages 8,439 3,917 12,356

(the standard deviations are mentioned between
brackets). For the cross-genre experiments, on the
other hand, results are reported on the test sets. In
cases where CoNTACT outperformed RobBERT,
p-values were calculated to determine whether the
observed improvements are statistically significant
(McNemar, 1947).

As shown in the results, both models perform
better on Twitter data than on Facebook data, and
fine-tuning on both platforms simultaneously yields
higher results than fine-tuning on the individual
platforms. The standard deviations are, in spite of
the small test sets, relatively small, which indicates
consistent model performance. When comparing
the results of RobBERT to those of CoNTACT, it
can be observed that CoNTACT outperforms Rob-
BERT in all experimental settings with statistical
significance, including the cross-genre experiments.
In other words, when fine-tuning on Twitter but test-
ing on Facebook, CoNTACT strongly outperforms
RobBERT, although no Facebook data was used
during its domain adaptation or fine-tuning phase.
Additionally, CoNTACT outperforms RobBERT
on Facebook data even if the former is fine-tuned
on Twitter data and the latter is fine-tuned on Face-
book data (i.e. data from the same platform). These
results highlight the cross-genre potential of CoN-
TACT.

In order to gain insight into which specific im-
provements CoNTACT made, a manual analy-
sis4 of the instances where CoNTACT classified
vaccine stance correctly, and RobBERT did not,
was conducted (for all experiments). False neg-
atives, i.e., the cases where RobBERT did not
predict vaccine hesitancy, but CoNTACT did (cor-
rectly), were the largest group of errors. They were
found in vaccine-hesitant instances referring to pro-

4All examples provided below were translated from Dutch
to English.
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Table 4: Results (%) for vaccine hesitancy detection, including standard deviations (if applicable). The results are
reported on the positive class, and statistically significant gains over the baseline are indicated with asterisks.

Model Fine-tune Test Pre Rec F1 *

RobBERT

Twitter Twitter 76.1 (3.6) 74.2 (4.3) 75.1 (3.1) N/A
Twitter Facebook 62.0 (-) 59.8 (-) 60.9 (-) N/A
Facebook Facebook 69.5 (3.1) 57.2 (3.2) 62.7 (2.6) N/A
Facebook Twitter 67.4 (-) 63.0 (-) 65.1 (-) N/A
Both Twitter 77.1 (2.8) 73.9 (4.0) 75.4 (-) N/A
Both Facebook 70.6 (3.5) 64.6 (3.7) 67.4 (2.7) N/A

CoNTACT

Twitter Twitter 77.2 (3.5) 76.9 (4.1) 77.1 (3.6) *
Twitter Facebook 65.2 (-) 64.9 (-) 65.0 (-) ***
Facebook Facebook 71.2 (3.2) 67.5 (3.1) 69.3 (2.9) ***
Facebook Twitter 71.0 (-) 82.5 (-) 76.3 (-) ***
Both Twitter 78.9 (4.2) 77.4 (1.7) 78.1 (2.5) **
Both Facebook 73.2 (3.0) 68.2 (4.3) 70.6 (2.6) **

Table 5: Results (%, including EMR) for argument detection, including standard deviations (if applicable). The
results are reported on the positive class.

Model Fine-tune Test Pre Rec F1 EMR

RobBERT

Twitter Twitter 62.5 (0.8) 50.2 (1.4) 55.0 (1.0) 46.7 (6.1)
Twitter Facebook 50.7 (-) 29.7 (-) 36.3 (-) 24.2 (-)
Facebook Facebook 48.4 (1.4) 31.7 (1.8) 37.3 (1.7) 34.9 (1.2)
Facebook Twitter 59.5 (-) 30.0 (-) 33.3 (-) 33.8 (-)
Both Twitter 62.9 (1.5) 53.4 (0.5) 57.3 (0.8) 47.7 (0.8)
Both Facebook 56.6 (2.8) 43.9 (3.1) 48.9 (2.9) 39.3 (1.6)

CoNTACT

Twitter Twitter 64.7 (1.5) 56.2 (0.9) 59.8 (0.9) 49.2 (1.3)
Twitter Facebook 56.9 (-) 36.1 (-) 42.7 (-) 26.9 (-)
Facebook Facebook 55.5 (5.9) 41.1 (1.2) 46.2 (1.9) 41.0 (1.1)
Facebook Twitter 57.5 (-) 39.4 (-) 41.4 (-) 34.5 (-)
Both Twitter 64.1 (1.3) 58.4 (1.6) 60.9 (0.9) 49.5 (1.1)
Both Facebook 60.1 (3.3) 49.7 (2.2) 53.9 (2.4) 41.9 (1.1)

vaccination opinions, such as “’We do not have
evidence that vaccines cause damage to pregnant
women so we advise pregnant women to get vac-
cinated’, what kind of an idiot says things like
this?!". Further, false negatives were caused by
sarcasm and other forms of implicit language, e.g.
“they should start [the vaccination campaign] in
The Hague... double dosis". This message seems
to express pro-vaccination opinions on a superficial
level, but the author actually hopes that the govern-
ment (located in The Hague) will suffer from major
side effects of the vaccine.

In comparison, false positives, i.e., cases where
RobBERT incorrectly detected vaccine hesitancy,
but CoNTACT correctly did not detect vaccine hes-
itancy, were found in messages containing certain
hashtags or terms that are associated with vac-
cine hesitancy. For example, the tweet “#vacci-
nationobligation, because infecting others is not
a fundamental right", expresses a pro-vaccination
opinion. RobBERT, however, incorrectly detected
vaccine hesitancy in this tweet, presumably because
of the hashtag “#vaccinationobligation", which oc-
curs frequently in vaccine-hesitant messages. Es-
pecially in the cross-genre experiments where the

models were fine-tuned on Facebook and tested on
Twitter, RobBERT was frequently confused by vac-
cine related hashtags, causing both false positives
and negatives, whereas CoNTACT showed more
understanding of said hashtags, even when both
pro- and anti-vaccination hashtags appeared in the
same message. Other false positives by the baseline
were found in cases where vaccine-hesitant opin-
ions were quoted or referred to, such as “’poison
vaccine’, yeah right, you’re so childish". Similarly,
pro-vaccination messages expressing a negative
sentiment towards, for example, vaccination policy,
were misclassified more often by RobBERT than
by CoNTACT, e.g. “I am #provaccination but I
support protest against the mismanagement of the
government".

An additional analysis of the comments where
CoNTACT failed to correctly predict the stance but
RobBERT did not was conducted. False negatives
(the smallest group of errors) were found in mes-
sages using implicit or sarcastic language, such as
“this press conference was very clear as always...",
similarly to the false negatives found in RobBERT.
Regarding the false positives, the largest group of
errors, we observed that there were cases where
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specific terms used frequently in vaccine-hesitant
messages caused confusion, as was also observed
in the error analysis of RobBERT. For example,
in “those #SideEffects are not as bad as people
think" and “#vaccineobligation is a must", CoN-
TACT interprets the hashtags as indicators for vac-
cine hesitancy, because it has learned this during
the fine-tuning period. In conclusion, we observed
that the models have difficulties with the same
types of comments: messages containing forms
of implicit language caused false negative errors,
whereas domain-specific terminology caused false
positive errors. CoNTACT, however, made signifi-
cantly less errors in these challenging cases due to
the domain adaptation, indicating that CoNTACT
has improved representations of COVID-19 related
terminology.

4.2 Argument classification

In Table 5 the results on the argument classifica-
tion task are summarised. Precision, recall, F1
(incl. standard deviations), and exact match ra-
tio (EMR), a multilabel accuracy score for cases
where the entire set of labels was predicted cor-
rectly, are reported. Overall, both models perform
better on Twitter than on Facebook data, includ-
ing the cross-genre experiments, similarly to the
stance classification experiments. Although CoN-
TACT outperforms RobBERT in the cross-genre
experiments, the results are still noticeably lower
than the in-genre experiments. Further, fine-tuning
on both Facebook and Twitter simultaneously in-
creases model performance. When comparing the
models, it can be observed that CoNTACT outper-
forms RobBERT in all experiments.

The results for the individual arguments for Rob-
BERT and CoNTACT are presented in Table 6 and
7, respectively. The provided results are the results
on the positive classes in the test set(s). Regarding
the baseline results, it can be observed that cer-
tain classes are predicted substantially better than
others. Overall, RobBERT predicted the “safety"
and “liberty" classes best, whereas the most diffi-
cult classes were “development" and “alternative
medicine" (these were also the most underrepre-
sented classes in our data).

When comparing the results of RobBERT to
those of CoNTACT, an increase in performance
on all classes in all experiments can be observed,
except for the “conspiracy theory" class in Twitter
when fine-tuning on both platforms, the “alterna-

tive medicine" class in Twitter when fine-tuning
on Facebook, and the “institutional motives" class
in Facebook when fine-tuning on Twitter. Some
of the highest improvements were found in the
“development" and “alternative medicine" classes,
which are the most challenging classes, as men-
tioned above. In order to verify whether the ob-
served improvements are significant, a McNemar
(McNemar, 1947) test was conducted per argument
class (Table 8). Despite the substantial gains, less
than half of the improvements were considered sta-
tistically significant for the same- and mixed-genre
experiments. We suspect that the significance test
we used yielded higher p-values because the fre-
quency of certain classes was too low to ascertain
that improvements were significant rather than ran-
dom. Further experiments with more data could
therefore produce other results and new insights in
the future. In the cross-genre experiments, however,
CoNTACT showed statistically significant improve-
ments on half of the argumentation classes when
the model was fine-tuned on Twitter data and tested
on Facebook data. Moreover, statistically signifi-
cant improvements were observed for all classes
when the model was fine-tuned on Facebook data
and tested on Twitter data. These results highlight
the cross-genre potential of CoNTACT.

In order to gain insight into the specific improve-
ments of CoNTACT, a manual error analysis of the
predictions of both models was conducted. First, in-
stances where CoNTACT succeeded and RobBERT
failed to predict the correct argument(s) were in-
vestigated. For each argument class, several terms
seemed to guide the predictions of CoNTACT, be-
cause of the learned representations of said terms
during both the domain adaptation and fine-tuning
phase. For instance, comments containing words
and hashtags such as “medical experiment" and
“lab rat" were classified correctly by CoNTACT as
related to “development", contrary to RobBERT,
which made more false negative errors in this class.
Similar observations were made for “institutional
motives" (e.g. references to governments, politi-
cal parties and politicians, such as #rutte3, #dv66
and #hugodejonge), “conspiracy theory" (e.g. ref-
erences to gene therapy, such as “#geneticmodifi-
cation"), “safety" (also references to gene therapy),
and “liberty" (e.g. references to vaccine passports
and obligation). Concerning "alternative medicine",
no clear patterns or recurring terms were discov-
ered in instances where CoNTACT correctly pre-
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Table 6: Averaged results (precision, recall and F1 in %) of RobBERT on each argument class per experiment.

tw-tw tw-fb fb-fb fb-tw both-tw both-fb
P R F P R F P R F P R F P R F P R F

alt. 60 35 45 33 36 35 0 0 0 100 6 11 66 46 54 45 32 38
con. 61 43 50 32 14 19 48 22 30 34 10 15 59 46 52 54 38 45
crit. 47 27 34 45 26 33 57 49 53 27 36 31 49 30 37 59 51 55
dev. 54 38 45 42 18 25 50 18 26 54 18 27 55 45 49 47 31 37
eff. 63 54 58 50 46 48 52 36 42 61 31 42 61 55 58 58 46 51
inst. 66 60 63 59 27 37 59 32 41 76 9 17 66 62 64 60 38 46
lib. 77 76 77 61 36 46 61 48 54 64 83 72 77 78 77 64 49 56
saf. 71 67 69 84 34 49 66 63 64 60 47 53 70 67 69 67 66 67
micro 69 60 64 58 30 39 59 44 50 57 45 50 68 62 65 61 51 56
macro 62 50 55 51 30 36 48 32 37 60 30 33 63 53 57 60 44 49
weighted 67 60 63 61 30 39 57 44 48 60 45 45 67 62 64 60 51 55
samples 56 53 53 32 28 29 50 45 46 50 42 44 58 55 55 52 49 49

Table 7: Averaged results (precision, recall and F1 in %) of CoNTACT on each argument class per experiment.

tw-tw tw-fb fb-fb fb-tw both-tw both-fb
P R F P R F P R F P R F P R F P R F

alt. 67 48 56 42 46 44 67 4 7 50 3 5 64 56 60 55 46 51
con. 60 49 54 32 23 27 55 31 40 52 31 39 57 47 51 54 43 48
crit. 51 34 41 49 42 45 61 57 59 25 46 33 49 37 42 59 58 59
dev. 58 47 52 56 24 36 55 33 41 56 36 44 58 51 54 54 34 42
eff 64 62 63 61 57 59 61 50 55 69 50 58 65 65 65 59 53 56
inst. 68 63 66 61 22 32 57 38 46 78 10 18 68 63 66 62 42 50
lib. 78 77 78 67 38 49 66 50 57 72 81 76 78 78 78 65 51 57
saf. 72 69 71 87 37 52 70 67 69 58 57 58 72 71 72 70 70 70
micro 70 64 67 62 36 46 64 53 58 58 51 55 69 65 67 63 56 59
macro 65 56 60 57 36 43 61 41 47 58 39 41 64 58 61 60 50 54
weighted 69 64 66 66 36 46 63 53 57 63 51 51 69 65 67 63 56 59
samples 58 57 56 37 34 34 55 51 51 53 48 48 59 58 57 56 54 53

Table 8: Statistically significant improvements in the argumentation detection task of CoNTACT over RobBERT.

Experiment Classes with significant improvements
Tw - Tw efficacy (***)

Tw - Fb conspiracy (*), criticism on vaccination strategy (***),
institutional motives (***), liberty (***)

Fb - Fb development (***), efficacy (***), institutional motives (***),
liberty (***), safety (*)

Fb - Tw
alternative medicine (***), conspiracy (***),
criticism on vaccination strategy (***), development (***),
efficacy (***), institutional motives (***), liberty (***), safety (*)

Both - Tw efficacy (**)
Both - Fb criticism on vaccination strategy (***), development (*)

dicted the argument when RobBERT did not.

In addition, messages where RobBERT pre-
dicted the correct arguments but CoNTACT did not
were investigated, although no clear error patterns
were found in these cases. In general, however,
both models seem to incorrectly classify arguments
when the message itself lacks context or terminol-
ogy related to the argument. For example, in the
Facebook comment “they don’t want them [the vac-
cines] anywhere else", which was annotated with
the “criticism on vaccination strategy" label, both
models failed to predict any argument, since the
reference to e.g., a potential surplus of vaccines is

implicit in this case.
In conclusion, CoNTACT seems to have learned

domain-specific language in the domain adaptation
phase, which benefits the model for the argument
detection task, as can be derived from the results.
The error analysis, however, showed that the model
still experiences difficulties with classifying text
entries that lack context or explicit information
about the relevant argument(s).

5 Conclusion

In this work we presented CoNTACT, a Dutch lan-
guage model adapted to the domain of COVID-19
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tweets. The model was developed by continuing
the masked language modeling pre-training phase
of RobBERT using 2.8M Dutch tweets related to
COVID-19. In order to test the performance of
CoNTACT, the model was tested on two classifica-
tion tasks: detection of vaccine hesitancy and de-
tection of arguments for vaccine hesitancy. These
tasked were performed in various experimental
settings, that is by fine-tuning and testing on so-
cial media messages from two different platforms:
Twitter and Facebook. For the vaccine hesitancy
detection task, CoNTACT outperformed RobBERT
with statistical significance in all experiments, in-
cluding cross-genre settings. With respect to the
argument classification task, CoNTACT showed
substantial gains in virtually all classes in all exper-
iments, some of which with statistical significance.
An error analysis showed that the domain adapta-
tion resulted in better representations of COVID-
19 related terminology, and therefore in better re-
sults. Issues remain in messages containing im-
plicit/figurative language or messages lacking con-
text. Future work may include the development of
a second version of CoNTACT, where the model
is fine-tuned on more data from various platforms
(Twitter, Facebook, Reddit, etc.) for even more
cross-genre robustness and using CoNTACT on
other COVID-19 related tasks.
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Abstract
Dataset bias in stance detection tasks allows
models to achieve superior performance with-
out using targets (Kaushal et al., 2021). Most
existing debiasing methods are task-agnostic,
which fail to utilize task knowledge to better
discriminate between genuine and bias features.
Motivated by how humans tackle stance de-
tection tasks, we propose to incorporate the
stance reasoning process as task knowledge to
assist in learning genuine features and reducing
reliance on bias features. The full stance rea-
soning process usually involves identifying the
span of the mentioned target and correspond-
ing opinion expressions, such fine-grained an-
notations are hard and expensive to obtain. To
alleviate this, we simplify the stance reasoning
process to relax the granularity of annotations
from token-level to sentence-level, where la-
bels for sub-tasks can be easily inferred from
existing resources. We further implement those
sub-tasks by maximizing mutual information
between the texts and the opinioned targets1.
To evaluate whether stance detection models
truly understand the task from various aspects,
we collect and construct a series of new test
sets. Our proposed model achieves better per-
formance than previous task-agnostic debiasing
methods on most of those new test sets while
maintaining comparable performances to exist-
ing stance detection models.

1 Introduction

The task of stance detection aims to predict the
stance of the text towards the given target. It is
crucial for various downstream tasks including fact
verification, rumor detection, etc. It has a wide ap-
plication in analyzing political opinions and prod-
uct reviews. Existing works usually treat this task
as a text pair classification problem and many de-
sign target-tweet interaction structures (Augenstein
et al., 2016) to learn target-aware stance representa-
tions. However, Kaushal et al. (2021) have shown

1refers to targets that a given tweet expresses opinions on.

Tweet: Hilarity of the day: Hillary said she went 'above 
and beyond' in transparency. Really?
What about the 30k deleted emails? #SemST
Given Target: Hillary Clinton Gold Stance: Against

Target 1: Hillary Clinton
Target 2: Feminist Movement
Target 3: Atheism

✅

❌

❌

Pred. stance: Against
Pred. stance: Against 
Pred. stance: Against 

Figure 1: An example illustrating that BERT model
does not change predictions based on the target.

that those models (Du et al., 2017; Devlin et al.,
2019) can achieve superior performances only us-
ing the tweet. Those end-to-end stance detection
models treat the stance reasoning process as a black
box and are prone to rely on bias features in the
dataset instead of learning the underlying task. For
instance, in Figure 1, the BERT model still pre-
dicts Against even when the target is changed to
an unrelated target like Atheism. Meanwhile, com-
mon stance detection models perform poorly on
out-of-distribution datasets (Kaushal et al., 2021)
and unseen targets, which calls for debiasing stance
detection models to get rid of spurious correlations
in the datasets.

While Kaushal et al. (2021) made the first at-
tempt to reveal dataset bias in stance detection, miti-
gating bias in other natural language understanding
(NLU) tasks has been extensively explored. The
key challenge in debiasing is how to discriminate
between genuine and bias features. One line of
work (Clark et al., 2019; Utama et al., 2020a,b) im-
plicitly hypothesized that features, learnt by small
models or by large models at earlier steps, could
potentially be bias features. In addition, others
(Kaushik et al., 2021; Kaushal et al., 2021; Yang
et al., 2021) tried data augmentation to break spu-
rious correlation in the training data and treated
features learnt on the augmented data as genuine
features. Another line of work (Tu et al., 2020)
adopted multi-task learning with auxiliary tasks,
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beyond' in transparency. Really? What about the 30k 
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Figure 2: (a) An illustration of how humans perform stance reasoning on a given <target, tweet> pair and our
simplified stance reasoning process. (b) We implement the simplified subtasks by maximizing the mutual information
between the tweet and the opinioned target. During training, one positive example and two negative examples are
constructed based on a given <target, tweet> pair for each subtask.

where features shared by multiple tasks are seen as
genuine features. While these methods achieved
superior debiasing performances, most of them ne-
glected to explicitly leverage task knowledge to
help discriminate between genuine and bias fea-
tures.

In contrast, Dua et al. (2020) introduced manual
annotations of intermediate reasoning steps and em-
ployed multi-task learning to combat dataset bias in
question answering. Motivated by how humans per-
form stance reasoning processing in Figure 2, we
follow this line of work and make the first attempt
to incorporate stance reasoning process to mitigate
dataset bias. Specifically, we consider the follow-
ing reasoning steps: (T1) identifying the span of
the mentioned target, (T2) judging the relationship
between the mentioned target and the given target,
and (T3) locating the opinion expression corre-
sponding to the mentioned target. However, due
to the informality of tweet texts, such fine-grained
annotations for those reasoning steps are difficult
and expensive to acquire.

To alleviate this, we seek to simplify the above
reasoning process into two easier sub-tasks: 1)
TMT, classifying whether the given target is
mentioned in the tweet, as a simplification of T1
and T2. 2) STT, determining whether the tweet
expresses any stance towards the given target, as
an easy version of T2 and T3. The simplified sub-
tasks only require sentence-level labels instead of
token-level ones. More importantly, the labels for

these two sub-tasks can be easily inferred without
additional annotations. We enhance these two sub-
tasks by maximizing mutual information between
the tweets and opinioned targets.

To help thoroughly evaluate whether models un-
derstanding the stance detection task, we further
collect and construct 6 new test sets. Those new
test sets will assess whether stance detection mod-
els alter predictions based on the target, whether
they overfit to shortcut features, whether they un-
derstand implicit mention of targets, and whether
they can handle negations in the target part.

To summarize, our contributions are three folds:

• We make the first attempt to incorporate
stance reasoning process to mitigate dataset
bias in stance detection, where the labels for
intermediate steps can be easily acquired with-
out further annotations.

• We construct 6 test sets 2 to facilitate evalu-
ation of whether stance detection models un-
derstand the task from various aspects.

• The proposed approach outperforms existing
debiasing methods on 4/6 new test sets while
maintaining comparable performances to com-
mon stance detection models on in-domain
datasets.

2https://github.com/Surpriseshelf/StanceSSR
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2 Approach

In this section, we present the SSR model that em-
ploys simplified stance reasoning process to com-
bat dataset bias in stance detection. We first de-
scribe the basic text encoder that we use to encode
tweet, target and target-tweet pairs. Then, we in-
troduce two intermediate sub-tasks based on our
observation of the stance reasoning process. After
that, we elaborate on why and how we simplify the
introduced two sub-tasks. These sub-tasks are im-
plemented by maximizing the mutual information
between the opinioned target and the tweet. Finally,
we show how we combine these two sub-tasks for
final stance predictions.

2.1 Text Encoder

We use BERTbase as the text encoder. Given a text
sequence D = {x1, x2, . . . , xi, . . . , x|d|},
where |d| is the number of words in
D, we transform its format to Xd =
{[CLS], x1, x2, . . . , xi, . . . , x|d|, [SEP]} to be
compatible with the input of BERT. We use the
hidden vector of [CLS] from the last transformer
layer as the text representation for Xs. Thus, given
a target-tweet pair, we could encode the tweet,
target, and target-tweet pair as hd, ht and hpair
respectively.

2.2 Simplified Stance Reasoning Process

To deliberate the stance of a tweet towards the given
target, one may identify the mention of the given
target in the tweet, extract the span of correspond-
ing opinions towards the given target in the tweets
and capture the interactions between the target and
opinions. However, due to the informal form of
texts used on social network platforms, such inter-
mediate annotations are difficult and expensive to
acquire at scale for existing stance benchmarks. As
a result, it is impractical to train stance detection
model with these intermediate opinion and entity
extraction, and opinion understanding sub-tasks.

To tackle these challenges, we seek to simplify
those intermediate sub-tasks into easier ones that
require only sentence-level instead of token-level
annotations. Specifically, we consider the follow-
ing two binary classification sub-tasks3:

• TMT: whether a target T is mentioned in a
tweet D. It is designed to make the model

3We describe details of the acquisition of labels for these
tasks in Appendix A.4

aware of the (both explicit and implicit) ex-
istence of target in tweet. This can be seen
a simplified version of boundary detection of
the target in the tweet. Intuitively, this could
help restrain stance detection models from as-
signing stance to non-mentioned entities.

• STT: whether a tweet D expresses stance
towards a target T . It requires the model to
distinguish between the None stance and other
stances.

These two sub-tasks cannot be solved by only us-
ing the tweets, thus preventing stance detection
models from relying on spurious features in tweets.
For instance, in Figure 2, the TMT sub-task will
discourage stance models from predicting Against
when the target is Feminist Movement as it does not
appear in the tweet.

2.3 Mutual Information Maximization
Our key intuition behind introducing intermediate
tasks is to strengthen the interaction between the
opinioned target and the tweet. To achieve this,
we implement two sub-tasks through maximizing
mutual information (MIMax) between the tweets
and opinioned targets. Motivated by (Hjelm et al.,
2018; Tian et al., 2019; Yeh and Chen, 2019), we
estimate the lower bound of mutual information be-
tween two random variablesX and Y using Jensen-
Shannon divergence (JS), which is implemented
using the binary cross-entropy (BCE) loss:

MI(X,Y ) ≥ EP [log(g(x, y)]

+
1

2
EN [1− log(g(x, ȳ)]

+
1

2
EN [1− log(g(x̄, y)]

(1)

where EP and EN refer to expectations over pos-
itive and negative samples respectively, and g is
the discriminator function that outputs a real num-
ber modeled by a neural network. And (x, ȳ) and
(x̄, y) are negative samples sampled from the prod-
uct of marginals. The discriminator function g is a
bi-linear function defined as follows:

g(x, y) = xTWy

where W is a learnable scoring parameter.

2.3.1 Sub-task1: TMT
In TMT, as tweets are expected to carry the infor-
mation of their opinioned targets, we choose to
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maximize the averaged MI between the represen-
tation of the tweet and the representation of the
target appearing in the tweet. Specifically, a posi-
tive example is obtained if the target appears in the
tweet. Negative examples, on the other hand, are
constructed by replacing the current target with a
new target that does not appear in the tweet, and by
replacing the current tweet with a new tweet that
does not contain the current target respectively.

Following Equation 1, the objective for the sub-
task TMT is formulated as follows:

LTMT (xt,xd, x̄t, x̄d) = EP [log(g(xt, xd))]

+
1

2
EN [1− log(g(x̄t, xd))]

+
1

2
EN [1− log(g(xt, x̄d))]

(2)

where xd is a tweet and xt is a target that is referred
to in xd, x̄t is another target that is not mentioned
in xd, and x̄d is another tweet that does not mention
xt.

2.3.2 Sub-task2: STT
Different from TMT, STT aims to uncover whether
the tweet expresses any stance towards the given
target. If the target is not mentioned in the tweet or
the tweet does not express any polarized opinion
towards the target, the label for STT will be No.
Specifically, a positive example is obtained if the
target expresses Favor or Against stance towards
the target. Negative examples are constructed by re-
placing the current target with a new target that the
tweet has no opinion on and by replacing the cur-
rent tweet with another tweet that does not express
any stance towards the given target respectively.

Following Equation 2, the objective for the sub-
task TMT is formulated as follows:

LSTT (xt,xd, x̃t, x̃d) = EP [log(g(xt, xd))]

+
1

2
EN [1− log(g(xt, x̃d))]

+
1

2
EN [1− log(g(x̃t, xd))]

(3)

where xt is a target and xd is a tweet that expresses
opinion on xt , x̃t is another target and xd holds
no stance on x̃t, and x̃d is a tweet that does not
expresses opinion on xt.

2.4 Stance Classification
We feed the concatenation of the given <target,
tweet> pair into BERT encoder to learn a target-
aware stance representation hpair. We also feed

Target #Total #Train #Test
Atheism 733 513 220
Climate Change 564 395 169
Feminist Movement 949 664 285
Hillary Clinton 984 689 295
Abortion 933 653 280
All 4163 2914 1249

Table 1: Statistics of SemEval2016 Task 6 Subtask A.

New Test Sets Number
Tweet_only Failed (TOF) 319
PMI 403
Opinion Towards (OT) 425
Donald Trump (DT) 707
Target Replaced (Replaced) 3978
Target Negated (Negated) 1249

Table 2: Statistics of collected and constructed test sets.

the given pair into two sub-task and obtain fea-
ture representation htmt and hstt respectively. We
further concatenate hpair, htmt and hstt as hfinal,
and feed hfinal into a simple feed-forward network
for stance classification:

hsc = hpair ⊕ htmt ⊕ hstt (4)

ys = softmax(Wsc2σ(Wsc1hsc)) (5)

where Wsc2 and Wsc1 are learnable weight matri-
ces.

And the classifier is trained with the following
cross-entropy loss of stance classification:

LSC = − 1

Ns

Ns∑

i=1

No∑

j=1

ŷis(j) log y
i
s(j) (6)

where Ns is the number of training instances and
No is the number of different stance labels.

The final objective for our multiple sub-task
learning method becomes:

Lmsl = LSC + λ1LTMT + λ2LSTT (7)

where λ1 and λ2 are hyper-parameters to control
impacts of two sub-tasks respectively.

3 Experimental Setups

3.1 Datasets

To thoroughly assess whether a model understands
the stance detection task, we collect and construct
a series of test sets to assess the understanding of
the stance detection task from various perspectives.
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3.1.1 In-domain Dataset
We train our model on the dataset from SemEval
2016 Task 6 Sub-task A. The dataset is comprised
of 4163 English tweets and each is assigned with
a target and a manually annotated stance label to-
wards that target. There are a total of five targets in
Sub-task A. The detailed statistics of this dataset
are shown in Table 1. We use the official train/test
split. We randomly select 15% of samples from the
training data as the validation set.

3.1.2 New Test Sets
To test whether the trained stance detection mod-
els overly rely on bias features in the training set,
we collect three subsets where bias features from
the original test set may not hold. Additionally,
we use the data from SemeEval2016 Task 6 sub-
task B as an out-of-domain test set to evaluate the
generalization ability of stance detection models.
Moreover, we also construct two adversarial sets to
test the sensitivity of stance detection models when
changing targets.

In-distribution Hard Set. Those hard sets are
collected from the original test set. 1) Tweet Only
Failed (TOF). This subset is collected from the
original test set where three BERTnt (see Sec.3.3)
models with different seeds all fail. The filtered
subset is to assess whether models could succeed
in cases where only using tweets may not make cor-
rect predictions. 2) PMI. This subset is filtered by
removing instances containing features with the top
200 point-wise mutual information scores of each
stance from the original test set. It could help test
whether models perform well on long-tailed fea-
tures. 3) Opinion Towards (OT). We keep instances
from the original test set with indirect mention and
no mention of targets according to additional an-
notations provided by (Mohammad et al., 2016).
This could be used to diagnose whether given mod-
els are aware of implicit mentions of targets in the
tweet part.

Adversarial Test Sets. Those hard sets are ad-
versarially constructed based on the original test
set. 1) Target Replaced (Replaced). To obtain this
set, we replace the original target with other targets
from the SemEval2016 training dataset. To ensure
that the replaced targets are not mentioned in the
tweet, we utilize ConceptNet (Speer et al., 2017)
to enhance pattern matching. After replacement,
we label the new instances with None. 2) Target
Negated (Negated). It is constructed by negating

the targets and keeping the tweets unchanged. The
stance labels flip accordingly. For entity-like tar-
gets, we add ‘NOT’ in front of the original targets.
For ‘Atheism’, we add the negated target ‘Theism’.
For claim-like targets, we add ‘not’ into the sen-
tence to negate the claim.

Out-of-distribution Hard Set. Donald Trump
(DT). It comes from SemEval2016 task B with an
unseen target ‘Donald Trump’ in task A, which
is used to test the generalization ability of stance
detection models.

3.2 Evaluation Metrics

Similar to previous work, we adopt the macro-
average of F1-score of Favor and Against across
targets as the evaluation metric (see Appendix A.2).
We report the averaged results of 5 random seeds
for all experiments. For details of implementation,
please see Appendix A.3.

3.3 Baselines

Stance Detection Models Methods on Stance de-
tection: 1) BERTwt (wt: with target) and BERTnt
(nt: no target), which are based on BERTbase.
BERTnt only uses the tweet as input while BERTwt
takes the <target, tweet> pair as inputs. 2) TAN (Du
et al., 2017), which is an LSTM based model that
incorporates target-specific attention. We adopt the
BERT version of TAN (Kaushal et al., 2021). 3)
Stancy (Popat et al., 2019), which is a BERT based
model with an additional cosine similarity score be-
tween the tweet representation and the target-tweet
pair representation.

Debiasing Models Apart from sophisticated
stance detection models, we also compare with
recent debiasing methods for natural language in-
ference and fact verification tasks. These methods
are: 1) Product-of-expert (PoE) (Clark et al., 2019),
which combines the learned probabilities of a bias-
only model and a full model using PoE. 2) LMH
(Clark et al., 2019), which explicitly determines
how much to trust the bias in PoE and employs
an entropy-based regularization to encourage the
bias component to be non-uniform. 3) E2E PoE
(Karimi Mahabadi et al., 2020), which proposes
an end-to-end training version of PoE. 4) Conf-
Reg (Utama et al., 2020a), which utilizes signals
from bias models to scale the confidence of models’
predictions.
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Models Original TOF PMI OT
BERTnt 67.84 73.9 50.8 38.15
BERTwt 69.21 85.56 51.66 42.62
TAN 68.44 86.51 59.31 43.88
Stancy 70.3 95.34 59.78 44.67
PoE 68.96 94.06 55.15 41.53
LMH 64.88 82.69 47.46 33.81
E2E-PoE 61.68 84.88 53.93 39.08
Conf-Reg 70.24 90.45 61.26 41.16
SSR (ours) 71.36 96.47 56.08 46.58

Table 3: Results on the SemEval test dataset and three
subsets. The average of FFavor and FAgainst is adopted
as the evaluation metric. For comparison with other
stance detection models on each target, please refer to
Table 6 in Appendix.

4 Results and Analysis

4.1 Main Results

4.1.1 On Original Test Set and its Subsets
As shown in Table 3, while existing stance models
achieve remarkable progress on the original test
set, models that consider targets (BERTwt, Stancy)
only slightly outperform models that do not con-
sider targets (BERTnt, TAN). This indicates that
existing dataset bias allows stance detection model
to achieve good results solely relying on tweets.
While debiasing models tend to down-weight bias
features and samples, useful features for the stance
detection task are inevitably influenced, leading to
the performance drop of PoE, LMH , and E2E-PoE
on original test set. On the contrary, our model
improves BERTwt by 2.15% on the original test
sets, showing that utilization of stance reasoning
sub-tasks could facilitate learning better features
for stance detection.

Though TOF is constructed by selecting samples
from the test test where three BERTnt models with
random seeds fail, a new BERTnt model with an-
other seed still reaches 73.9%. This implies that
failure examples may not transfer across the same
models with different initialization. Nevertheless,
models explicitly considering targets outperform
those not considering the target by a large margin.

By comparing SSR and BERTwt, we find that
over 70% improvement of SSR over BERTwt on
original test sets comes from the PMI subset. This
shows that by considering the simplified stance
reasoning process, SSR is less likely to rely on bias
features.

On OT set, we can see that BERTnt performs
poorly as it does not consider target and thus is not
capable of capturing implicit mention of targets. In

Model DT Replaced Negated
BERTnt 11.42 32 17.59
BERTwt 28.12 47.08 17.38
TAN 27.09 35.55 20.05
Stancy 32.34 49.5 19.67
PoE 19.42 46.7 19.54
LMH 36.76 34.97 25.36
E2E-PoE 33.72 33.01 19.98
Conf-Reg 36.27 34.17 19.51
SSR (ours) 37.66 59.7 17.6

Table 4: Performances of different models on DT, Re-
placed, Negated test sets. Note that, results on DT are
not directly comparable to those reported in (Allaway
et al., 2021; Liang et al., 2022) as they used 4,163 pairs
for training while we only use 2,914 pairs.

contrast, SSR explicitly models whether the target
is mentioned in the tweet and achieves the best
performance.

4.1.2 On New Test Sets
To test whether stance detection models understand
the task instead of solely fitting the dataset, we
present results of several representative stance de-
tection models in Table 4.

On DT set, we note that BERTnt performs the
worst on the out-of-domain dataset. BERTwt and
TAN perform slightly better. Our SSR model per-
forms better than other models, which suggests
that leveraging intermediate tasks could help learn
more transferable features for cross-target gener-
ation. For debiasing methods, PoE and E2E-PoE
work well on in-distribution hard sets while per-
forming worse on out-of-distribution test sets, and
vice versa.

As the Replaced set is to test awareness to
change of the target, BERTwt, Stancy and SSR
that explicitly capture interactions between the tar-
get and the tweet, outperform other models by a
large margin.

On the Negated set, while LMH model achieved
the highest performance of 25.36%, many other
models only tangle around 20%, showing that those
models can not tackle with negations of semantics
in the targets. Our model performs worse on this
set as negated targets and original targets will have
the same labels in both sub-tasks.

4.2 Ablation Study

As shown in Figure 5, both the TMT and STT sub-
tasks contribute to the performance on the original
test set. This indicates that appropriate subtasks
could help learns better features for the main task.
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Models Orig. TOF PMI OT
SSR 71.36 96.47 56.08 46.58

w/o tmt 70.10 91.91 62.21 44.64
w/o stt 70.65 92.47 63.4 47.77

SSR w/o MIMax 70.36 88.88 66.33 45.79
w/o tmt 68.97 93.7 63.58 41.01
w/o stt 68.99 91.08 63.39 45.25

DT Replaced Negated
SSR 37.66 59.7 17.6

w/o tmt 37.61 57.37 19.58
w/o stt 32.64 48.95 18.24

SSR w/o MIMax 26.01 49.35 18.76
w/o tmt 34.83 44.77 20.22
w/o stt 29.5 49.01 18.71

Table 5: Ablation study on the proposed SSR model.

0 2000 4000 6000 8000 10000
Number of ngrams with topK MI score

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ov
er

la
p 

ra
te

Overlap rate of number of features between stance and intermediate tasks
TMT
STT
TMT&STT

Figure 3: Overlap of top features of different tasks ac-
cording to mutual information.

Adding MIMax further improves the performances
by 1%.

While on Negated set, both tasks fail to handle
the negation and lead to worse performance. As
the TMT task is capable of understanding implicit
mention of targets in the tweet, it is more useful
than the STT task on OT set. Since TMT and STT
can detect whether the target is changed, they both
contribute to performance gain on the Replaced
set. Generally, MIMax helps the SSR model learns
more genuine stance features and improves per-
formances on the TOF and DT set, where mutual
connections between tweets and opinion targets are
crucial, and either TMT or STT alone is not enough
to capture such connections.

4.3 Analysis
Intermediate reasoning tasks help reduce re-
liance on shortcut features. After obtaining syn-
thetic labels for these two subtasks, we conduct
qualitative analysis to show that subtasks could po-
tentially regularize the features used by the stance
detection task. As mutual information (MI) scores
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Figure 4: Performance of different models w.r.t the
training size.

between features and categories serve as a good
indicator of the importance of features, we first
collect bag-of-words features for N-grams in the
training set and sort those N-grams according to
their MI scores with the labels in corresponding
tasks. In Figure 3, we can see that both subtasks
have less than 60% overlap of the top 1000 features,
which means many important features used by the
stance detection task are not useful for these sub-
tasks. This could be seen as implicitly re-weighting
features used by the stance detection task based
on intermediate stance reasoning subtasks, which
hopefully will promote learning genuine features
instead of bias ones.

SSR requires less data for training. Previously,
(Dua et al., 2020) found that collecting intermediate
annotations for up to 10% training data can improve
the performance of a reading comprehension model
by 4-5%. Here, as annotations of intermediate tasks
could be automatically acquired without human an-
notations, we would explore whether incorporating
intermediate tasks could help reduce the demands
for training data. In Figure 4, we show that when
only 10% of training data is available, our model
outperforms BERTwt model by 3.3% on macro-F1.
In contrast, BERTwt model has to use 60% training
data to reach comparable performance. Thus, utiliz-
ing intermediate stance reasoning tasks could help
reduce the demand of training data and improve
the performance in low-resource stance detection
scenarios.

4.4 Case Study

We compare our model with two BERT baselines
to illustrate the target awareness provided by in-
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Tweet: Hilarity of the day: Hillary said she went 
'above and beyond' in transparency. Really?
What about the 30k deleted emails? #SemST

Target BERTwt BERTnt SSR

Hillary Clinton Against Against Against

Atheism Against Against None

(TMT: Yes, STT: Yes)

(TMT: No, STT: No)
✅✅ ✅

✅❌ ❌

Figure 5: Case study on target-awareness of different
models.

termediate subtasks. In Figure 5, we can see that
when the target is Atheism, which is not mentioned
in the tweet at all, both BERT baselines falsely
predict the stance as Against, which may owe to
the existence of the shortcut word ‘email’. In con-
trast, as the TMT task tells the model that the given
target is not mentioned in the tweet, and the STT
task shows that the tweet has no stance towards the
given target, our model could correctly predict the
stance label as None.

5 Related Work

5.1 Stance Detection

Recently, detection stances in texts from social me-
dia platforms have attracted a lot of attention. Com-
pared to traditional sentiment analysis tasks, stance
detection is more challenging as the given target
may not appear in the text. Inferring the relations
between the given target and the opinioned entity
usually requires rich world knowledge. In this pa-
per, we focus on the single target stance detection
on tweets where each tweet is given one target. Var-
ious methods (Augenstein et al., 2016; Du et al.,
2017; Popat et al., 2019) have been proposed to
model the inter-dependency between the target and
tweet. However, Kaushal et al. (2021) recently
noted that current stance detection models relied
heavily on bias features in existing stance detec-
tion datasets, which makes it necessary to develop
stance detection specific debiasing methods to com-
bat these biases.

In this work, we also study the problem of
dataset bias in stance detection and propose a novel
method incorporating simplified stance reasoning
process. Furthermore, we collect and construct
6 new test sets to facilitate evaluation of whether
stance detection models truly understand the task.

5.2 Debiasing Dataset Bias in NLP

Recently, the community has shown that neural
models can achieve good performances by lever-
aging dataset bias in various natural language un-
derstanding tasks, e.g. NLI (Gururangan et al.,
2018; Poliak et al., 2018), question answering (Mu-
drakarta et al., 2018), VQA (Agrawal et al., 2018),
machine translation, summarization, fact verifica-
tion (Schuster et al., 2019) and sentiment analysis
(Wang and Culotta, 2020, 2021; Kaushal et al.,
2021; Yan et al., 2021; Yang et al., 2021). Such
phenomenon mainly attributes that neural models
tend to utilize superficial features in the dataset
instead of understanding the semantics of underly-
ing tasks, e.g. NLI models usually exploits word
overlap and syntactic patterns, and even only use
features from the hypothesis for final predictions.

To mitigate dataset bias, one line of work (Clark
et al., 2019; Karimi Mahabadi et al., 2020; Utama
et al., 2020a; Ghaddar et al., 2021) implicitly
treated features learned by a smaller model or com-
mon model at earlier stages/layers as potential bias
features and down-weighted these features in the
main model. Another line of work adopted data
augmentation strategies to weaken the spurious cor-
relations between bias features and final labels. Be-
side, Tu et al. (2020) employed a multi-task learn-
ing based-approach by introducing auxiliary tasks
like paraphrase identification to avoid overfitting
to bias features. However, most previous methods
are task-agnostic, which failed to utilize the task
knowledge of the underlying task. To this end, Dua
et al. (2020); Shao et al. (2021) introduced man-
ual annotations of intermediate reasoning steps to
combat dataset biases.

In this work, we make the first attempt to in-
corporate stance reasoning steps to combat dataset
biases in stance detection. Our work differs in
the following ways (1) we introduce two simpli-
fied sub-tasks whose labels can be automatically
inferred instead of manual annotations (2) we nov-
elly implement two sub-tasks via maximizing the
mutual information between the tweet and the opin-
ioned target.

6 Conclusion

In this paper, we propose to utilize the stance rea-
soning process as task knowledge to guide the dis-
crimination between genuine and bias stance fea-
tures. To alleviate demands for token-level interme-
diate annotations, we simplify the stance reasoning
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process where labels for proposed subtasks can be
automatically inferred without additional annota-
tions. To evaluate whether stance detection models
understand the task from various aspects, we col-
lect and construct 6 new test sets. Empirical results
show that our model outperforms task-agnostic de-
biasing methods on 4/6 new test sets while main-
taining comparable performances to existing stance
detection models on in-domain datasets.
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A Appendix

A.1 In-domain Dataset

We train our model on the dataset from SemEval
2016 Task 6 Sub-task A. The dataset is comprised
of 4163 English tweets crawled from Twitter4 and
each is assigned with a target and a manually anno-
tated stance label towards that target. There are a
total of five targets in Sub-task A, which are Athe-
ism (AT), Climate Change is a real Concern (CC),
Feminist Movement (FM), Hillary Clinton (HC),
and Legalization of Abortion (LA).

A.2 Evaluation Metrics

Similar to previous work, we adopt the macro-
average of F1-score of Favor and Against across
targets as the evaluation metric. We report the aver-
aged results of 5 random seeds for all experiments.

Similar to previous work, we adopt the macro-
average of F1-score across targets as the evaluation
metric, which is calculated as:

FFavor =
2PFavorRFavor
PFavor +RFavor

(8)

FAgainst =
2PAgainstRAgainst
PAgainst +RAgainst

(9)

Fmacro =
2(FAgainst + FFavor)

2
(10)

where P and R are precision and recall. Then the
average of FFavor and FAgainst is calculated as the
final metrics Fmacro. Note that the final metrics
do not disregard the None class. By taking the
average F-score for only Favor and Against classes,
we treat None as a class that is not of interest. We
report the averaged results of 5 random seeds for
all experiments.

A.3 Implementation Details

We adopt the uncased version of BERTbase for all
our experiments. We fine-tune BERTbase model
with Adam optimizer. The dropout rate is set to 0.5
for all parameters. The learning rate is chosen from
{1, 2, 3, 4, 5} × 10−5 and batch size for training
is set to 8. We choose λ1 and λ2 from [0.1, 1.0]
with a step size of 0.1. Final choices of all hyper-
parameters are selected according to performance
on the validation set. λ1 and λ2 are set to 0.1 and
0.2 respectively. The learning rate is set to 5×10−5.

4https://www.twitter.com

A.4 Details for label acquisition of sub-tasks

To acquire labels for the TMT task, we seek to ex-
pand the original targets with external resources.
Specifically, we take two structured knowledge
bases, ConceptNet and WikiData. ConceptNet
mainly contains commonsense knowledge, Wiki-
Data mainly contains social knowledge. They com-
plement each other and supply rich target related
knowledge for target understanding. Each of the
targets in the dataset is treated as a key for search-
ing for the most related commonsense knowledge
from them. In this way, we augment each target
with external knowledge base. Then given a tweet,
we use the augmented targets to performance exact
string matching, if any of the augmented targets
locates in the tweet, the TMT label would be Yes.
Otherwise, the TMT label is set to No.

To obtain labels for STT task, given a <target,
tweet> pair and its corresponding stance label, if
the stance is Favor or Against, then the STT label
would be Yes. Otherwise, the STT label is set to
No.

As shown above, the label acquisition for TMT
and STT subtasks are easy and straightforward,
which does not involve additional mannual annota-
tion. Thus, it is practical to incorporate the above
subtasks as parts of the simplified stance reasoning
process.

A.5 Detailed results on original dataset

In Table 6, we compare our model with recent
stance detection models. We can see that our SSR
model performs comparably to existing stance de-
tection models that utilized external stance detec-
tion datasets, lexicons and tweet corpora.

A.6 Additional Analysis

Bias is ubiquitous in multiple tasks on the
same dataset. Similarly, we apply BERTnt and
BERTwt model on the TMT and STT tasks respec-
tively. As shown in in Table 7, BERTnt could
achieve relative performance even when no target
information is utilized for those target-aware tasks,
suggesting the ubiquitous of bias on different tasks
in this dataset. Moreover, We can see that for the
TMT task, the discrepancy between BERTnt and
BERTwt is 8.7%, significantly larger than that of
the STT task and stance detection task. This shows
that TMT requires more interactions between the
target and the tweet, which may account for the bet-
ter performances on OT and Replaced hard sets
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Models AT CC FM HC LA Overall
AT-JSS-Lex (Li and Caragea, 2019) 69.22 59.18 61.49 68.33 68.41 72.33
CKEMN (Du et al., 2020) 62.69 53.52 61.25 64.19 64.19 69.74
MT-DNNSDL (Schiller et al., 2020) - - - - - 70.18
MT-DNNMDL (Schiller et al., 2020) - - - - - 71.81
MoLE (Hardalov et al., 2021) - - - - - 72.08
ASDA (Li and Caragea, 2021) 74.93 - 56.43 67.01 61.60 -
MeLT (Matero et al., 2021) 66 71 63 67 66 -
TAN 69.72 44.32 53.26 55.79 62.75 68.44
Stancy 66.08 54.67 59.91 62.0 58.69 70.3
BERTnt 63.96 48.88 53.97 60.59 60.24 67.84
BERTwt 65.36 44.91 48.25 65.09 54.33 69.21
SSR 63.17 56.88 59.68 62.69 57.33 71.36
SSR(-MIMax) 70.09 54.0 56.68 65.64 62.04 70.36

Table 6: Results on the SemEval dataset. The macro average of FFavor and FAgainst is adopted as the evaluation
metric. The results in bold are the best in corresponding columns. The underlined results are the second best in
corresponding columns.

Task BERTnt BERTwt ∆

TMT 83.39 92.09 8.70
STT 80.97 83.85 2.88
Stance 70.1 72.4 2.3

Table 7: Accuracy of BERTnt and BERTwt on different
tasks.

when adding the TMT task instead of the STT
task. Though two auxiliary sub-tasks have their
own dataset bias to some extent, combing them
with the main task still boosts the performance of
the stance detection on both original and newly
constructed hard sets. This supports our motiva-
tion of leveraging intermediate tasks to learn robust
features for the main task.
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Abstract

Relevant to all application domains where it is
important to get at the reasons underlying senti-
ments and decisions, argument mining seeks to
obtain structured arguments from unstructured
text and has been addressed by approaches typ-
ically involving some feature and/or neural ar-
chitecture engineering.

By adopting a transfer learning methodology,
and by means of a systematic study with a wide
range of knowledge sources promisingly suit-
able to leverage argument mining, the aim of
this paper is to empirically assess the potential
of transferring such knowledge learned with
confluent tasks.

By adopting a lean approach that dispenses
with heavier feature and model engineering,
this study permitted both to gain novel empiri-
cally based insights into the argument mining
task and to establish new state of the art levels
of performance for its three main sub-tasks, viz.
identification of argument components, classi-
fication of the components, and determination
of the relation among them.

1 Introduction

Argument mining is a Natural Language Process-
ing (NLP) task consisting in taking unstructured
text as input and returning it annotated such that
each portion occurring in it that is an argument is
properly delimited and analysed (Schneider et al.,
2013; Peldszus and Stede, 2013; Lippi and Torroni,
2016; Habernal and Gurevych, 2017; Wachsmuth
et al., 2017; Stede and Schneider, 2018; Lawrence
and Reed, 2020). Argument mining relates to the
high-level human capacity of reasoning (Walton
et al., 2005), it is at the core of social interaction
concerned with persuasion (Mercier and Sperber,
2017), and it is of utmost importance to enhance
applications across different domains that aim at
enhancing their services beyond mere sentiment
analysis, on the basis of the reasons uncovered for

the associated sentiments and decisions (Habernal
et al., 2014).

Argument mining has been decomposed into
a number of sub-tasks. While the number and
profiling of these tasks depends on the theo-
retical approach adopted to analyse arguments
(Van Eemeren et al., 2019), they typically involve
some sort of delimitation of the text segments con-
veying argument components, the classification of
the roles of these components (e.g. premises, con-
clusions, etc.), and the classification of the type
of relation among those components (e.g. support,
attack, etc.) (Lawrence and Reed, 2020).

These sub-tasks and their eventual pipeline in
argument mining have been addressed by means
of supervised deep learning approaches that in-
volve some degree of neural architecture engineer-
ing (Eger et al., 2017; Potash et al., 2017; Nguyen
and Litman, 2016) a.o. Recently, first attempts
to approach argument mining with Transformers
have been reported in the literature (Wang et al.,
2020; Rodrigues et al., 2020a) a.o., tough at an ex-
ploratory level that leaves much of its strength still
untapped.

This has been combined with experimentation
with transfer learning (Caruana, 1997; Ruder,
2019). Given its complexity, and the associated
difficulty in producing gold labelled data, argument
mining is a task with a scarcity of data sets that are
needed to support supervised learning approaches.
Enhancing the argument mining task by transfer-
ring knowledge elicited when solving other natural
language processing tasks is thus a promising ap-
proach to alleviate such scarceness. This has been
tried in the literature (Mohammad et al., 2016; Stab
et al., 2018; Choi and Lee, 2018; Habernal et al.,
2018; Rodrigues and Branco, 2020) a.o., though
at a haphazard level that leaves still much of its
potential to be studied.

For humans, argumentation is a high level cogni-
tive task that goes together with a number of other
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capacities relating to linguistic syntactic and seman-
tic processing, to entailment and paraphrasing, to
question answering and language comprehension,
to reasoning, to common sense, etc. (Lawrence and
Reed, 2020; Lauscher et al., 2021). Interestingly,
there is now available in the literature a wide range
of data sets and respective NLP tasks that permit to
address a wide range of these different dimensions
and use them as auxiliary sources of knowledge
in transfer learning approaches to argument min-
ing (Wang et al., 2018, 2019a) a.o.

In this context, our goal is to empirically as-
sess the potential of transfer learning to support
argument mining by means of a systematic study
with a wide range of possible sources of related
tasks and knowledge possibly suitable to be trans-
ferred. In this paper we report on the findings of
exploring a vast experimental space that results
from: performing sequential single-step transfer
learning from over 40 auxiliary tasks to each one
of three main sub-tasks of argument mining (Stab
and Gurevych, 2014, 2017) during the fine-tuning
phase (Section 4); further explore the source tasks
that supported the best single-step transfer learning
by experimenting with ways of possibly combining
them in multi-step transfer learning processes, and
further explore these tasks in a multi-task transfer
learning setting (Section 5). This is preceded by
an overview of related work (Section 2) and by
the presentation of the experimental setup adopted
(Section 3).

By undertaking this study, not only new state-of-
the-art results were achieved for argument mining,
as also new empirically based insights were gained
on how this task can be enhanced, showing the
effectiveness of transfer learning to leverage argu-
ment mining and to alleviate its data scarcity when
combined with a lean approach that dispenses with
heavier feature and model engineering.

2 Related work

Transfer learning is a technique in machine learn-
ing that leverages knowledge from other, so called
source tasks to improve the learning of a target
task (Caruana, 1997), being a methodology to alle-
viate the lack of labelled data for the latter (Ruder,
2019).

2.1 Transfer learning for argument mining

Four families of approaches of transfer learning
for argument mining have been reported in the

literature: (i) transfer learning across discourse
domains for the same argument mining sub-task;
(ii) cross-lingual transfer learning for a given sub-
task; (iii) multi-task learning among argument min-
ing sub-tasks; and (iv) sequential transfer learning
from sources tasks that are not argument mining
sub-tasks. A brief overview follows below.

Several papers have applied transfer learning
with a domain adaptation approach for identify-
ing components and clausal properties (Al-Khatib
et al., 2016; Ajjour et al., 2017; Daxenberger et al.,
2017). Typically, a model is trained with data sets
from various discourse domains and is evaluated
over each domain.

Cross-lingual transfer learning for argument
mining (Aker and Zhang, 2017; Sliwa et al., 2018;
Eger et al., 2018; Rocha et al., 2018) is mainly per-
formed through direct transfer (McDonald et al.,
2011) or projection (David et al., 2001) techniques.
Direct transfer techniques train a model with the
source language data that initializes a new model
for a target language, typically with less to no data.
Projection techniques resort to mapping the same
labels from the source language data set to a target
language data set by resorting to parallel corpora.

The argument mining pipeline has been ad-
dressed also with transfer learning by multi-task
and sequential approaches (Cabrio and Villata,
2013; Peldszus and Stede, 2015; Eger et al., 2017;
Potash et al., 2017; Niculae et al., 2017; Galassi
et al., 2018; Schulz et al., 2018; Mensonides et al.,
2019; Chakrabarty et al., 2019; Accuosto and Sag-
gion, 2019; Cheng et al., 2020). Most proposals
train models pipelining the sub-tasks in some way.

Transfer learning from related tasks has also
been shown to improve the performance of argu-
ment mining sub-tasks. (Stab et al., 2018) trans-
ferred shared knowledge from two different tasks: a
stance detection task (Mohammad et al., 2016) and
a topic identification task. (Choi and Lee, 2018),
in turn, transferred knowledge from the Argument
Reasoning Comprehension Task (Habernal et al.,
2018) for a clausal classification sub-task.

2.2 Main sub-tasks

To proceed with our systematic study of transfer
learning for argument mining on a mainstream
pipeline of sub-tasks (Lawrence and Reed, 2020),
which includes identifying argument components,
classifying their clausal roles and determining the
relational properties among them, we resorted to
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the AAEC corpus (Stab and Gurevych, 2014, 2017),
a collection of annotated essays in English, which
has been subject to various studies. An example
from this data set is displayed in Figure 1.

In order to further support this option, it is worth
noting that there is not in the literature a set of
commonly agreed standard argument mining sub-
tasks and that persuasive arguments, contained in
the AAEC corpus, are by no means peripheral to
argumentation, which is ultimately about persua-
sion. It is also worth noting that, while in NLP
in general, it is always better to have more data
sets/tasks for evaluation, the empirical study in this
paper builds on a strong series of recent investiga-
tions that are based on one of the few data sets for
argument mining, the AAEC, that given its quality
and volume, has permitted comparison of results
and the objective assessment of possible advances.

Figure 1: Example of a labelled essay in AAEC.

The AAEC corpus integrates the annotation of
every sub-task in the argument mining pipeline
into a single data set. It contains 402 manually
annotated essays,1 in English, with 7,116 sentences
over 1,833 paragraphs spanning 147,271 tokens.

It adopts an argument structure model in the
form of a tree composed of major claim (in the root
node, as the author’s standpoint on the argument
topic), claims and premises. Individual paragraphs
of the essay include arguments that may be linked
or not-linked (via relational properties) to the au-
thor’s major claim. Both "support" and "attack"
relations are taken into account.

The annotation of text segments with argu-
ment components resorted to an IOB tagging
scheme (Ramshaw and Marcus, 1999). The be-
ginning of an argument component is tagged with
Arg-B, the following tokens in that component are

180 essays, i.e 20% for testing, were annotated by three
annotators and the remaining 322, for training, by an expert.

tagged with Arg-I and non-argumentative tokens
with O. Identifying argument components consists
of tagging each token with this IOB-tagset given a
complete essay as a single input sequence. Identify-
ing clausal properties consists of classifying spans
of discourse with one of the three classes (major
claim, claim and premise) given an entire essay
as input. Following the literature, given the large
imbalance between "support" and "attack" classes,
identifying relational properties consists in classi-
fying pairs of segments just as linked or not-linked.
Statistics are displayed in Table 1.2

Task Labels Total Train Test

Comp.
Arg-B 11% 6,089 79% 21%
Arg-I 64% 93,618 80% 20%
O 25% 47,474 80% 20%

Clausal
Major Cl 12% 751 80% 20%
Claim 25% 1,506 80% 20%
Premise 63% 3,832 79% 21%

Relat. Not-Link 82% 18,340 78% 22%
Linked 18% 3,832 79% 21%

Table 1: For the tasks annotated in AAEC (rows),
the number of instances for labels and data set split
(columns) are indicated.

2.3 Literature on the AAEC tasks

Several papers on argument mining address the
AAEC tasks, although none addresses all of them,
except (Stab and Gurevych, 2017), which ad-
dressed each task with a feature-engineered SVM
(components: 0.849 macro-F1; clausal: 0.773; rela-
tional: 0.736), and an Integer Linear Programming
(ILP) algorithm (0.867, 0.826, 0.751 respectively),
that is an ensemble of the SVM models supple-
mented by rules to ensure the correct tree structure.
Table 2 presents the performance scores reported
in the literature for the AAEC tasks.

Regarding the identification of argument com-
ponents task: (Ajjour et al., 2017) implement a
BiLSTM with extensive use of features and obtain
0.885 macro-F1. (Petasis, 2019) applies several
types of neural networks for segmentation, with
the top-performing model, a BiLSTM-CRF, ob-
taining 0.901 macro-F1. (Spliethöver et al., 2019)
resorts to attention mechanisms with BiLSTMs for
unit segmentation, with the top-performing model
obtaining 0.87 weighted-F1. (Eger et al., 2017)
apply different models, including multi-task learn-
ing experiments, and report 0.908 macro-F1 for the
identification of components sub-task.

2Further descriptions of the data set and the framing of the
tasks are provided in the Appendix A.
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Comp. Clau. Rel.
SVMs (Stab and Gurevych, 2017) .849 .773 .736
ILP (Stab and Gurevych, 2017) .867 .826 .751
S2S (Potash et al., 2017) .849 .767
BL (Ajjour et al., 2017) .885
BL (Eger et al., 2017) .908
BL (Spliethöver et al., 2019) .870
BL-CRF (Petasis, 2019) .901
BL-CRF (Schulz et al., 2018) .606
BL-CNN-CRF (Chernodub et al., 2019) .471
CNN-Seq. (Gemechu and Reed, 2019) .790
BERT (Wang et al., 2020) .640
LibLINEAR (Nguyen and Litman, 2016) .753

Table 2: Comparison of different performance scores
in the literature on the AAEC tasks, in macro-F1 (ex-
cept weighted-F1 in (Spliethöver et al., 2019)), with the
top results in bold, indicating the state-of-the-art (BL
stands for BiLSTM). It should be noted that LibLIN-
EAR uses the first version of the AAEC data set.

For the identification of clausal properties task:
(Gemechu and Reed, 2019) obtain 0.79 macro-F1
for clausal properties linking premises and conclu-
sions, taking into account the similarity of target
concepts and aspects. (Chernodub et al., 2019)
applied a framework for tagging arguments and
their retrieval, including a BiLSTM-CNN-CRF
sequence tagger. A micro-F1 of 0.645 was the
top-performing performance in identifying clausal
properties (0.471 macro-F1 is the reproduction in
(Wang et al., 2020)). (Wang et al., 2020) propose
a multi-scale mining model, resorting to several
encoder-only Transformers (BERT) that mine dif-
ferent argumentation components at different tex-
tual levels, namely at the essay/paragraph/word-
level. The top-performing model obtains 0.64
macro-F1 in identifying clausal properties. (Schulz
et al., 2018) also apply a multi-task learning ap-
proach from different domains and argumentative
structures, including AAEC, with a BiLSTM-CRF,
obtaining 0.606 macro-F1 score.

Finally, as for relational properties: (Nguyen
and Litman, 2016) obtain 0.753 macro-F1 com-
bining different topic to window context features
with a linear classifier (LibLINEAR). (Potash
et al., 2017) report a 0.849 clausal and 0.767 re-
lational macro-F1 using a joint pointer architec-
ture (sequence-to-sequence model with attention),
simultaneously addressing clausal and relational
properties with several features.

3 Experimental space and settings

For the tasks that are the source of knowledge to be
transferred to argument mining models, we resorted
to a vast array of annotated data sets listed in Table

3. They cover different dimensions in terms of
linguistic and cognitive processing:3

3.1 Source tasks
Syntax - Information on syntax is typically in-
cluded in structured machine learning algorithms
that address the argument mining in a feature
engineering approach. We included part-of-
speech (POS) tagging, named entity recognition
(NER) (Hu et al., 2020) and several other tasks re-
garding linguistic properties of sentences (Conneau
and Kiela, 2018).

Semantics - Features from semantic similarity
(SS) are widely used in argument mining literature.
For example, (Boltužić and Šnajder, 2015) use SS
to identify prominent arguments in online debates,
and (Lawrence and Reed, 2015) use SS obtained
from WordNet to identify the components of argu-
mentation schemes. We included a diversity of SS
data sets, from the context-sensitive similarity task
Wic (Pilehvar and Camacho-Collados, 2019) to the
large data set obtained from Quora Question Pairs
(QQP) (Iyer et al., 2017).

Grammaticality - To address the widest spec-
trum of linguistic aspects, we included also tasks on
determining the grammatically of input sentences.
Data sets such as the Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2019) were used,
that are challenging with regards this type of task.

Sentiment - Sentiment analysis has a certain
proximity to argument mining, which adds an extra
dimension to it by providing reasons for sentiments
(Habernal et al., 2014). The Stanford Sentiment
Treebank (SST) (Socher et al., 2013) was included.

Reasoning & Comprehension - Reasoning is
at the core of argumentation given it is crucial in
formulating and accepting or rejecting an argument.
We included several related tasks, as for instance
the AI2 Reasoning Challenge (ARC) (Clark et al.,
2018) in the domain of grade-school science.

Question Answering & Common sense - Ques-
tion Answering (QA) relates to argument min-
ing given linguistic similarities between the Ques-
tion/Answer and Claim/Premise pairs. Several QA

3We resorted also partly to PORTULAN CLARIN work-
bench consisting of language processing services: (Gomes
et al., 2018; Branco et al., 2020; Barreto et al., 2006; Branco
et al., 2010; Cruz et al., 2018; Veiga et al., 2011; Branco and
Henriques, 2003; Branco and Silva, 2003; Branco et al., 2011,
2022; Branco and Nunes, 2012; Silva et al., 2010; Branco
et al., 2014b; Silveira and Branco, 2012a,b; Branco and Costa,
2008; Branco et al., 2014a; Rodrigues et al., 2016; Branco and
Silva, 2006; Rodrigues et al., 2020b; Costa and Branco, 2012;
Santos et al., 2019; Neale et al., 2016; Miranda et al., 2011).
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tasks were included that address common sense
as this is closely related to argumentation, given
that several implicit premises, tacit assumptions or
inferences are to some extent regarded as common
sense—for example, (Saint-Dizier, 2017) uses QA
techniques for argument mining.

Entailment & Paraphrase - Although argument
mining and Textual Entailment (TE) are different
tasks, they are closely related given the similarity
between specific entailment properties and argu-
ment clausal and relational properties. Works such
as (Cabrio and Villata, 2012; Cocarascu and Toni,
2017) use models for TE to address argument re-
lational properties. We included several TE tasks
in different discourse domains, such as news and
forums, with STSB (Cer et al., 2017), and science,
with SciTAIL (Khot et al., 2018).

Argument mining - In addition to non argument
mining tasks, we considered also as a source task
for transfer learning the predecessor sub-task in the
argument mining pipeline, that is the identification
of components (for the clausal sub-task) and the
clausal classification (for the relational sub-task).

3.2 Computational models

In order to explore the experimental space setup
for our study, we resorted to the Transformer ar-
chitecture (Vaswani et al., 2017), which became
mainstream in NLP, surpassing several state-of-the-
art results in a wide range of tasks of all sorts (Wang
et al., 2018, 2019a). In contrast to most literature
on argument mining, where structured feature engi-
neering has been the favoured approach, a Trans-
former is a deep learning approach that obtains
linguistic knowledge by transfer learning from a
language modelling task.

In order to factorize out the impact of different
possible models and obtain results that can be com-
parable across the different data points in our ex-
perimental space, we adopt the same type of model
for all of them. Taking a look at a task closely
related to argument mining, namely common sense
reasoning, there are works in the literature (Branco
et al., 2021) that, for this task, under comparable
circumstance, have experimented with prominent
exemplars of encoder-only, decoder-only, encoder-
decoder, and neuro-symbolic types of Transform-
ers, which found that RoBERTa (Liu et al., 2019)
offers a clear advantage. Inspired by these results,
we undertook an exploratory study, repeating the
above experiments but now for sample cases of ar-

Task #Train
Syntax
PANX (Hu et al., 2020) 20K
UDPOS (Hu et al., 2020) 21K
Bigram Shift (Conneau and Kiela, 2018) 100K
Coord Inversion (Conneau and Kiela, 2018) 100K
Obj number (Conneau and Kiela, 2018) 100K
Odd Man Out (Conneau and Kiela, 2018) 100K
Past-Present (Conneau and Kiela, 2018) 100K
Sentence Length (Conneau and Kiela, 2018) 100K
Subj Number (Conneau and Kiela, 2018) 100K
Top Constituents (Conneau and Kiela, 2018) 100K
Tree Depth (Conneau and Kiela, 2018) 100K
Word Content (Conneau and Kiela, 2018) 100K
Semantics
COPA (Roemmele et al., 2011) 400
WIC (Pilehvar and Camacho-Collados, 2019) 5.4K
STSB (Cer et al., 2017) 7K
QQP (Iyer et al., 2017) 364K
Grammaticality
Coord (White et al., 2020) 458
Eos (White et al., 2020) 479
Definiteness (White et al., 2020) 508
Whwords (White et al., 2020) 585
CoLA (Warstadt et al., 2019) 8.5K
Sentiment
SST (Socher et al., 2013) 67K
Reasoning & Comprehension
MULTIRC (Khashabi et al., 2018) 456
WNLI (Levesque et al., 2012) 635
ARC (Clark et al., 2018) 2.2K
ROPES (Lin et al., 2019) 10K
ANLI (Bhagavatula et al., 2020) 169.6K
FEVER (Nie et al., 2019) 208.3K
Question Answering & Common sense
WSC (Levesque et al., 2012) 554
CommonsenseQA (Talmor et al., 2019) 9.7K
QUAIL (Rogers et al., 2020) 10.2K
BoolQ (Clark et al., 2019) 16K
PIQA (Bisk et al., 2020) 16.1K
CosmosQA (Huang et al., 2019) 25K
HellaSwag (Zellers et al., 2019) 39.9K
MRQA (Fisch et al., 2019) 104K
QNLI (Wang et al., 2018) 105K
Entailment/Paraphrase
CB (De Marneffe et al., 2019) 1.2K
RTE (Dagan et al., 2005) 2.5K
MRPC (Dolan and Brockett, 2005) 3.7K
SciTAIL (Khot et al., 2018) 27K
MNLI (Williams et al., 2018) 393K
Argument mining
Components (Stab and Gurevych, 2017) 117k
Clausal (Stab and Gurevych, 2017) 4k

Table 3: Data sets used for source tasks, clustered by
linguistic and cognitive dimensions.

gument mining from our experimental space and
arrived at the same finding. Accordingly, and given
also its accessible compute requirements and top
performance in several NLP tasks, we adopted
the off-the-shelf RoBERTa model, resorting to
RoBERTa-large variant only when the RoBERTa-
base was shown not to be enough to beat the SoTA.

We used the Jiant framework (Wang et al.,
2019b; Phang et al., 2020) and Huggingface (Wolf
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et al., 2020).The training objective for the pre-
training model was the Mask Language Modelling
(MLM), which randomly masks a word in a sen-
tence and predicts it.

To identify argument components, a token clas-
sification head classifies the input sequence x1:N
(full essay) and gives a possible output y1:N from a
class set C. To identify clausal and relational prop-
erties, a sequence classification head classifies each
input sequence x1:N and gives a possible output y
from a class set C.

3.3 Baselines

As for the baselines, we included the class ma-
jority, and the scores of a RoBERTa-base model
fine-tuned for each AAEC task. We also included
the SVMs and ILP model from (Stab and Gurevych,
2017) as a strong baseline.

3.4 Evaluation

For the evaluation of the transfer learning, we used
the final result of each main sub-task in argument
mining, which is the mean score of three runs. As
in the original AAEC work and given that classes
are unbalanced, for all tasks we used a macro-F1
averaging (Sokolova and Lapalme, 2009). We ap-
plied the Independent Samples t-Test regarding the
RoBERTa baseline and different data points ob-
tained in our experimental space to evaluate the
statistical significance (Dror et al., 2018).

4 Single-step transfer

A first batch of experiments was concerned with
single-step sequential transfer learning where the
source tasks were those listed in Table 3.

Given the large number of data points in this
experimental space, concessions were made con-
sidering the compute footprint, and we limited the
hyper-parameter search by using the recommended
values (Liu et al., 2019; Wolf et al., 2020).4

4Inspired by the STILT approach (Phang et al., 2018) we
adopted the jiant toolkit (Pruksachatkun et al., 2020), an open
source toolkit for transfer learning experiments.

For the fine-tuning of the target tasks, we performed a hyper-
parameter search with three learning rates and three seeds on
the target task development set, creating a total of 396 models.

The AAEC development set was extracted from 10% of
the original training data, thus the training data consists of
the remaining 90%. Based on the top-performing result
obtained from the development set, hyper-parameters were
determined for the test set. Further descriptions of hyper-
parameterization together with all materials to reproduce
the experiments are available at https://github.com/
nlx-group/transfer-am.

Comp. Clausal Relational
Human .886 .868 .854
SoTA - Table 2 .908 .849 .767
Baselines
RoBERTa no transfer .916 .820 .727
ILP .867 .826 .751
SVM .849 .773 .736
Majority .259 .257 .455
Syntax .906 .718 .695
PANX .917 .815 .756
UDPOS .914 .804 .743
Bigram Shift .912 .710 .743
Coord Inversion .910 .696 .735
Obj number .907 .715 .729
Odd Man Out .914 .703 .752
Past-Present .901 .713 .718
Sentence Length .885 .652 .466
Subj Number .913 .707 .746
Top Constituents .896 .708 .762*
Tree Depth .904 .674 .735
Word Content .896 .713 .455
Semantics .916 .813 .745
COPA .919* .823 .738
WIC .918 .821 .744
STSB .917 .805 .753
QQP .911 .800 .746
Grammaticality .915 .711 .753
Coord .910 .722 .754*
Eos .914 .712 .745
Definiteness .914 .705 .755
Whwords .915 .702 .758
CoLA .924 .713 .752*
Sentiment
SST .916 .820 .747*
Reasoning & Compreh .918 .811 .701
MULTIRC .919 .831 .758
WNLI .913 .788 .455
ARC .921 .820 .758
ROPES .920 .806 .748
ANLI .917 .807 .749
FEVER .914 .814 .736
QA & Common sense .918 .819 .717
WSC .919 .820 .758
CommonsenseQA .916 .819 .755*
QUAIL .921 .827 .755*
BoolQ .916 .837 .742
PIQA .914 .774 .455
CosmosQA .917 .817 .745
HellaSwag .916 .823 .746
MRQA .924 .825 .750
QNLI .916 .826 .751
Entailment/Paraphrase .919 .818 .744
CB .923* .819 .734
RTE .916 .843* .757
MRPC .916 .790 .746
SciTAIL .919 .827 .751*
MNLI .919 .812 .731
Argument mining .661
Components .843 .664
Clausal .657

Table 4: Performance in macro-F1 scores on the main
sub-tasks (columns) by different source tasks (rows).
Top score underlined, top 3 scores in bold, average score
in the same family of tasks in italics. All values found
to be statistical significant (p-value < .05) are noted with
an ∗
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4.1 Results and Analysis
Table 4 shows the results from this first batch of
experiments,5 which support the following major
empirical findings:

– The Transformer with no transfer is a very
strong baseline (off-the-self RoBERTa-base fine-
tuned to each AAEC task). It overcomes (with
0.916 in components) the SoTA (0.908) of one of
the three main tasks, and has strong scores in the
other two.
– Transfer learning is effective to leverage ar-

gument mining. This is supported by scores above
the Transformer baseline: with 0.924 (against the
baseline 0.916) in the components task; 0.843
(against 0.820) in the clausal task; and 0.762
(against 0.727) in the relational task.
– Transfer learning with a Transformer is very

competitive with respect to, or even surpass, the
SoTA. This is supported by a new SoTA of 0.924
in components (against 0.908), and by very good
scores, 0.843 and 0.762, against respectively 0.849
and 0.767, in clausal and relational.
– Source tasks whose overall cognitive com-

plexity is high and closer to the argument min-
ing task tend to be more successful in supporting
effective transfer. The overall trend is that better
results are found with source tasks for Reasoning,
Common sense and Entailment, as shown by the
respective averages and the larger number of top
scores therein. Interestingly, the top score of 0.762
for relational is obtained with a syntactic source
task, that seeks to identify Top Constituents: this is
of relevance for the relational task as this is about
relating clausal segments, which are univocally as-
sociated with their top constituents.
– A main sub-task can be a good source task

to other sub-task for effective transfer. This is
supported by the top score 0.843 in the clausal task
when the components was the source in transfer.
– A larger size of a data set for a source task,

in contrast to other sources tasks, does not nec-
essarily lead to an enhanced performance of the
transfer chain. This is illustrated, for instance, by
the case of RTE, with a small data set of only 2.5K,
but with the top score for clausal.

5 Multi-step and multi-task transfer

A second batch of experiments was concerned with
multi-step and multi-task transfer learning. The

5All scores were obtained with RoBERTa-base.

source tasks considered here were the ones with
the best results in the previous batch of experiments
with single-step transfer.

Hence, two-step transfer was experimented with,
where the typical chain encompasses the transfer
from the components task to the clausal task and
from the latter to the relational task. But we experi-
mented also with other two-step instances, where
the initial source tasks in the chain, viz. RTE, CB
and Top Constituents (TC), are none of the argu-
ment mining sub-tasks. Experiments with three-
step transfer were also undertaken, where besides
the main tasks, these other source tasks contributed
to the chain.

Finally, besides sequential transfer, also multi-
task transfer learning was experimented with, in-
volving the three argument mining sub-tasks alto-
gether, and also pairs including two of them. Mo-
tivated by these pairings of the sub-tasks, we re-
turned to one-step methodology, and for the sake
of completeness, we experimented also with every
combination of two such sub-tasks.

Comp. Clausal Relational
Human .886 .868 .854
SoTA Table 2 .908 .849 .767
Baselines
RoBERTa no transfer .916 .820 .727
ILP .867 .826 .751
SVM .849 .773 .736
Majority .259 .257 .455
Sequential
Cl⇒ Cp .920
Re⇒ Cp .924
RTE⇒ Cp .916
Re⇒ Cl⇒ Cp .912
CB⇒ Re⇒ Cp .915
Cp⇒ Cl .843*
Re⇒ Cl .811
RTE⇒ Cl .843*
Re⇒ Cp⇒ Cl .839
RTE⇒ Cp⇒ Cl .888*
Cp⇒ Re .664
Cl⇒ Re .657
RTE⇒ Re .757
Cp⇒ Cl⇒ Re .781*
RTE⇒ Cp⇒ Cl⇒ Re .783*
TC⇒ Cp⇒ Cl⇒ Re .761
Multi-task
Cp⇔ Cl .915 .813
Cp⇔ Re .911 .684
Cl⇔ Re .738 .714
Cp⇔ Cl⇔ Re .906 .796 .757

Table 5: Performance on the three main sub-tasks
(columns) by different transfer learning source tasks
and their chaining (rows), reported with macro-F1,
with the top results in bold, indicating new state-of-the-
art scores. Cp stands for Components, Cl for Clausal,
Re for Relational and TC for Top Constituents.
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5.1 Results and Analysis
Table 5 presents the results for this second batch of
experiments,6 supporting these major findings:

– Sequential transfer is more effective than
multi-task transfer. This is supported by the over-
all stronger scores in sequential transfer experi-
ments for similar clusters of tasks.
– Multi-step transfer can be more effective

than single-step. This is supported by the results
obtained for the relational task: with the best score
to relational in all experimental space of 0.783, this
result was supported by a three step transfer that
leveraged the relational task with the knowledge
from the other two main tasks, components and
clausal, and from RTE; and it is supported also by
the results obtained for the clausal task: with the
best score in all experimental space of 0.888, this
result was supported by a two step transfer that
leveraged the clausal task with the knowledge from
other two tasks, one from the entailment (RTE) and
the other being another main task (components).
– Source tasks that are sub-tasks in the argu-

ment mining pipeline are very successful in en-
hancing effective transfer. This is supported by
the results obtained with the transfer being orga-
nized along the default argument mining pipeline
direction, with top or very close to the top second
scores for the chains Cp ⇒ Cl and Cp ⇒ Cl ⇒
Re, with 0.843 and 0.781, respectively. But this is
supported by the results obtained with the transfer
being organized also in different directions, like
for instance, the best score to components in all
experimental space, of 0.924, with Re⇒ Cp.
– Source tasks with the best performance for

a given main task in the single-step setting are
very successful in enhancing multi-step effective
transfer, specially for that main task. This is
supported by the results obtained with top or very
close to the top second scores for the chains RTE
⇒ Cp, with 0.916 (over the SoTA 0.908 for com-
ponents), RTE⇒ Cp⇒ Cl, with 0.888 (top score
for clausal, and over its SoTA 0.849), and RTE⇒
Cp⇒ Cl⇒ Re, with 0.774 (over the SoTA 0.767
for relational).
– Transfer learning in the setting of an off-the-

self Transformer architecture renders new SoTA
scores for the argument mining tasks. This is
supported by the scores of 0.924 for components
(against 0.908 in previous SoTA), 0.888 for clausal

6All scores obtained with RoBERTa-base except clausal
RTE⇒Cp⇒Cl.

(against 0.849), and 0.783 for relational (against
0.767).

6 Further analysis

No correlation was found between the task scores
and the size of their training data. Using the co-
efficient of determination, .101/.002 and .001 R2

is obtained for identifying argument components,
clausal and relational properties, respectively.

We performed a manual analysis of the output
on top-performing tasks in the single-step transfer
(CB, RTE, QUAIL). We notice that shorter argu-
ments tend to be incorrectly tagged as O (outside)
while more extensive arguments tend to be incor-
rectly divided into two arguments; also, some dis-
course markers introducing arguments, as "there
is clear evidence that" or "thus it is apparent that",
tend to be wrongly labelled as the beginning and
inside of an argument segment.

Transfer learning experiments on clausal proper-
ties follow the same error pattern as the baseline,
with most errors emerging from labelling major
claims as claims, claims as premises and premises
as claims. For relation identification, linked argu-
ments were identified with higher precision and
recall than the baseline.

Transferring knowledge from argument mining
sources was examined also by extending the lan-
guage modelling phase. Despite above-baseline
scores, no statistical significance was found.7

7 Conclusions and future work

The results in this paper were obtained from a large
experimental space that permitted a systematic em-
pirical study aimed at assessing the viability of
transfer learning to leverage neural argument min-
ing with confluent knowledge. Major findings and
results are:
• The knowledge transfer enabled by the trans-

fer learning from language processing tasks that
are confluent to argument mining is an effective
approach to improve neural argument mining.
• Sequential transfer learning appears as more

effective than multi-task transfer, and multi-step
sequential transfer can achieve better performance
than single-step.
• Source language processing tasks more closely

related to argument mining and to the higher-level
cognitive capacities mobilized for argumentation
tend to provide better support.

7More details can be found in Appendix B.
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• New state of the art levels of performance were
established for the three main sub-tasks in argu-
ment mining, namely identification of argument
components, classification of components, and de-
termination of the relation among them.
• State of the art was obtained with a lean

Transformer-based neural approach that dispensed
with heavier feature and model engineering.
• There is much room for further improvements

of performance in argument mining given that the
new state of the art advanced in the present paper
was possible even when deployed on top of just an
off-the-shelf Transformer model, viz. RoBERTa,

Concomitantly, these advances open the way to
future work. On the side of the mere race for brute
force improvement of the state of the art levels of
performance, resorting to available Transformer
language models that are larger and more powerful
than RoBERTa, which was used here, can be easily
explored.

On the side of empirically motivated improve-
ments based on more thoughtful approaches, it is
possible to explore carefully articulated chains of
transfer with curriculum and meta-learning, and
also hybrid deep learning and symbolic approaches
aimed to solve transfer learning catastrophic forget-
ting among other issues.
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individually classifying a span of components of
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claim, claim and premise) given the entire essay in
context. In this task, the IOB-tags are not provided,
and the span of components consists of raw text.
As input to the model, we separated the span of
components and the full essay with a separator
token, for example, components_span <S> essay
</S>.
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formed by individually classifying two components
spans as linked or not-linked among themselves,
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IOB-tagset or clausal properties are provided. The
spans consist of raw text. As input to the model,
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training. There was no overlap of the test sets with
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termining the clausal properties and the relation
properties. We followed the typical approach de-
scribed above for all base models, that is, we used
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model, given the large memory footprint and time
processing when providing the entire essay to a
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task, namely, stance recognition, where relational
properties are classified with stance attributes (for
or against). In our experiments, we did not perform
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vided with these stance attributes for the relational
properties task.

B Transfer during language modelling

We experimented with transferring knowledge from
argument mining related sources by extending the
pre-train, language modelling phase, rather than
expanding the fine-tuning phase (as in the first and
second batch of experiments). We experimented
with three argumentation-oriented data sets under
the Masked Language Modelling objective: a self-
supervised approach was thus adopted, with no
further labelled data resorted to during training.

In a first experiment, we extended the model
with a train set obtained from the Oscar corpus (Or-
tiz Suárez et al., 2019) by parsing 1M sentences
containing argumentative discourse markers. We
extracted all sentences that contained argumenta-
tive discourse markers from premise to conclusion
and conclusion to premise in an equal distribution.

In a second experiment, we extended the model
with an argumentation data set, the Args.me cor-
pus (Ajjour et al., 2019), containing 350k argu-
ments from forum debates. Thirdly, we extended
the model with ATOMIC, a common sense knowl-
edge base converted to raw text (Sap et al., 2019)
containing 877k inferential relations.

Each model was trained with three randomly
initialized runs, for three epochs, with a learning
rate of 1e-05 and fine-tuned for each task. The
results are in Table 6.

Results: Some performance scores of these mod-
els are higher than the respective RoBERTa base-
line, also used in the first two batches, however
without a statistically significant difference. This
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Components Clausal Relational
Baseline .916 .820 .727
Arg. markers .908 .825 .717
Args.me .915 .725 .757
ATOMIC .917 .787 .716

Table 6: Performance of models obtained by further
pre-training with data related to argument mining.

may indicate that for this type of approach to lever-
aging argument mining to be as effective as the
approach in the first two batches of experiments,
the volume of unlabelled data related to argument
mining possibly needs to be higher than the la-
belled data resorted to there by far more orders of
magnitude.
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Abstract
Prerecorded laughter accompanying dialog in
comedy TV shows encourages the audience to
laugh by clearly marking humorous moments
in the show. We present an approach for auto-
matically detecting humor in the Friends TV
show using multimodal data. Our model is ca-
pable of recognizing whether an utterance is hu-
morous or not and assess the intensity of it. We
use the prerecorded laughter in the show as an-
notation as it marks humor and the length of the
audience’s laughter tells us how funny a given
joke is. We evaluate the model on episodes
the model has not been exposed to during the
training phase. Our results show that the model
is capable of correctly detecting whether an ut-
terance is humorous 78% of the time and how
long the audience’s laughter reaction should
last with a mean absolute error of 600 millisec-
onds.

1 Introduction

Humor is a topic that has piqued interest of the
computational creativity research community over
the years. There are numerous systems that can
generate humor using a variety of different meth-
ods (Weller et al., 2020; Tyler et al., 2020; Alnajjar
and Hämäläinen, 2021b). But just as important
as it is to research generation from the computa-
tional creativity perspective, it is to study automatic
assessment of humor.

The role of humor is an important one for us
humans as it has it’s own social function (Ziv,
2010). It helps us talk about difficult topics (Vivona,
2013; Monahan, 2015) and relieves tension (Shur-
cliff, 1968). Laughter has a role in building rela-
tionships (McCabe et al., 2017; Kurtz and Algoe,
2017) and it has a positive effect on brain chem-
istry (Gonot-Schoupinsky and Garip, 2018). Hu-
mor and laughter are therefore an integral part of
who we are as a species.

Humor is a phenomenon that requires sur-
prise and coherence (see Hämäläinen and Alna-

jjar (2019)); or incongruity and its resolution in
other terms (Raskin, 1985; Attardo and Raskin,
1991). However, what is surprising or incongruous,
depends heavily on the context where humour is
presented. Quite indeed, something intended as a
joke can be seen as a severe insult just by a change
in context. Therefore, we believe that a multimodal
approach needs to be researched when when as-
sessing humor automatically; something that thus
far has been researched by focusing on the textual
modality alone.

Annotated multimodal datasets are scarce, but an
access to such a dataset is crucial for any computa-
tional attempt on humor detection and assessment.
For this reason, we embrace a clever approach:
we use episodes of the beloved American sitcom
Friends as our data source. The TV show has pre-
recorded audience laughter which provides us with
an ultimate source for annotations. Every time the
audience laughs, we know that there was some-
thing humorous immediately before the laughter.
A lack of laughter indicates no humor. In addition
to this, the audience can laugh for a short or a long
time, which allows us to gather data on how funny
a given joke was.

We propose a pipeline consisting of two neural
models. One of them detects whether a sentence
is humorous or not and the other rates how funny
the sentence is in case it was deemed humorous.
We evaluate our models on episodes of Friends that
were not used during training or validation. Our
work is a first step towards multimodal humor de-
tection and assessment. We have also established
several important data processing practices that
make it possible for future research to automati-
cally gather annotated multimodal data in a similar
fashion as we did in this paper.

The main contributions of our paper are as fol-
lows:

• Methodology for automatically annotating a
multimodal humor corpus based on laughter
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cues.

• A multimodal humor detection model that
does not rely on an explicit split in a setup
and a punchline.

• A multimodal humor assessment model that
can predict how funny a given joke is.

2 Related work

There is a an extensive body of literature that fo-
cuses on humor generation (Dybala et al., 2010; Al-
najjar and Hämäläinen, 2018; Mishra et al., 2019;
Yamane et al., 2021) and also a growing body of
work that deals with multimodality in natural lan-
guage understanding (Soldner et al., 2019; Wang
et al., 2020b; Rodríguez Bribiesca et al., 2021).
However, in this section, we focus on some of the
recent papers that deal with humor detection and
analysis.

In a recent work (Xie et al., 2021), the authors
study humor detection in a context where there
is a setup and a punchline. They use a GPT-2
model (Radford et al., 2019) to assess uncertainty
and surprise to determine if a setup-punchline pair
is a joke or not. Similar setup and punchline based
approaches for humor detection have been widely
studied in the past using different computational
methodologies (Cattle and Ma, 2016, 2018; Wang
et al., 2020a). However, such methods are very
different from our approach as we do not expect
our model to receive a setup and a punchline that
are explicitly marked in the data.

Sentiment analysis has been used in humor de-
tection (Liu et al., 2018). As many of the existing
approaches, their approach also operates on a setup
and a punchline. The authors found that sentiment
conflict and transition between the setup and the
punchline are useful in humor detection. The au-
thors use an existing discourse parser (Feng and
Hirst, 2012) combined with TexBlob1 sentiment
analysis and heuristic rules to detect humor.

Apart from humor detection, there is a line of
work on assessing the humor value of a joke (Weller
and Seppi, 2019). The authors propose a model
that does not detect humor, as it expects jokes as its
input, but instead, the model rates how humorous
a given input joke is. Their model also expects a
setup and a punchline division in the data. The
authors train a transformer (Vaswani et al., 2017)
based model for the task.

1https://github.com/sloria/textblob

Humorous headlines have been automatically
ranked based on how funny they are (Dick et al.,
2020). The authors use ridge regression and an
LSTM (Long short-term memory) model with man-
ually engineered features such as whether Donald
Trump and his hair have been mentioned and the
length of the headline. The authors conclude that a
language model is simply not enough for assessing
humor, but a wider context is needed to help the
model understand humor.

As we can see, most of the previous approaches
on humor detection and assessment do either or.
The models can either tell whether something is
funny or not, or rate how funny a given joke is.
In addition, many models seem to expect a clear
division into a setup and a punchline, which makes
it impossible to use them to detect humor in free
formed speech or text. In addition, there are many
types of humor, for instance sarcastic one (Hämäläi-
nen, 2016), that does not require an explicitly ut-
tered setup in natural language, but rather the setup
of the joke can be deduced from the context itself.
Our approach tries to tackle these shortcomings in
the current state of humor detection.

3 Humor theories

Humor is an integral part of our social lives as
humans and because of that, it has provoked the
interest of many scholars in the past. Some of
the early theories of humor (Hobbes, 1651) saw
it as a question of superiority, where a superior
person laughs at the misery of those inferior to
them. While this explanation might be valid in the
context of schadenfreude, more modern takes on
humor theory reject it as it cannot explain humor
as a whole.

For Koestler (1964), humor is a part of creativity
together with other two components: discovery and
art. What is seen as characteristic to humor, in his
view, in comparison to the other two constituents
of creativity, is that its emotional mood is of an
aggressive nature. Humor comes from bisociation
which is a collision of two frames of reference
happening in a comic way.

Raskin (1985) presents a theory that is quite sim-
ilar to the previously described one in the sense that
in order for a linguistic expression to be humorous,
it has to be compatible with two different scripts.
The different scripts have to somehow oppose one
another, for example in the sense that one script is
a real situation and the other is hypothetical.
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Attardo and Raskin (1991) sees humor to be con-
sisting of six hierarchical resources of knowledge:
language, narrative strategy, target, situation, logi-
cal mechanism and script opposition. Similarly to
the previous theories, the incongruity of two possi-
ble interpretations is considered to be an important
aspect of humor. An interesting notion that sets
this theory apart from others is that of target. Ac-
cording to the authors, it is not uncommon for a
joke to have a target, such as an important political
person or an ethnic group, to be made fun of.

Two requirements have been suggested in the
past as components of humor in jokes: surprise
and coherence (see Brownell et al. (1983)). A joke
will then consist of a surprising element that will
need to be coherent in the context of the joke. This
is similar to having two incongruous scripts being
simultaneously possible.

Veale (2004) discusses that the theories of
Raskin (1985) and Attardo and Raskin (1991) en-
tail that people are forced into resolution of humor.
He argues that humor should not be seen as reso-
lution of incompatible scripts, but rather as a col-
laboration, where the listener willingly accepts the
humorous interpretation of the joke. Moreover, he
argues that while incongruity contributes to humor,
it does not alone constitute it.

4 Data construction

We focus on the sitcom TV show Friends. The
show is one of the most popular American sitcoms
ever produced and it aired from 1994 to 2004. Our
data consists of the entire show, i.e. 10 seasons
and 236 episodes each of a duration around 20
minutes. All episodes had English well-aligned
subtitles that correspond to what is said in the audio
track of each episode. We have randomly sampled
an episode from each season to assess the quality
of the subtitles, and found no major errors or clear
delays.

While there are some multimodal annotated data
for sarcasm detection (Castro et al., 2019; Alnaj-
jar and Hämäläinen, 2021a), multimodal annotated
data of humor in more general terms is very scarce.
While several textual humor datasets exist (Hos-
sain et al., 2019; Meaney et al., 2021), they are
not suitable for our need as we are interested in
multimodality. This is mainly due to the great sub-
jectivity of what humans deem to be funny, and to
the high amount of work and funds needed to man-
ually annotate a dataset. To overcome this obstacle,

we embrace an automatic approach for annotating
humor in the TV show by recognizing laughter in
the audience as described in the following subsec-
tion.

4.1 Data annotation

After the first few seasons, Friends was shot en-
tirely in front of a live audience and a great deal of
the laughter in the aired version was original, which
would even cause the cast to panic when no laugh-
ter is heard while it was expected (Winston, 2021).
This makes this show, and other sitcom shows that
are shot live a mine of humor annotations that is
calling for extraction, given that the laughter is an
indication of truly landing jokes rather than being
something cued in or added later in the post-editing
phase.

Our approach for annotating the show relies on
the model proposed by Gillick et al. (2021) for
automatically detecting laughter. The model is de-
signed to be robust enough to work on real data and
be capable of detecting laughter "in the wild". On
a lower level, the model’s implementation relies on
ResNet (He et al., 2016). The model allow us to
indicate the minimum length of the laughter and
a cutoff threshold of how confident the model is.
We set the minimum laughter length to 0.2 seconds
and the threshold to 80% based on our empirical
experiments. A shorter length resulted in numerous
non-continuous short segments of laughter while
a longer length limited the results to a few seg-
ments per episode. The case was similar for the
confidence threshold. A shorter duration for laugh-
ter also lead to many non-laughter noises such as
yelling to be detected falsely as laughter.

We ran the model on all the episodes of every
season of the entire show and obtained 7422 laugh-
ter segments. To construct a dataset for training a
supervised neural model for identifying humor, pos-
itive and negative samples are required. A crucial
aspect of what makes something funny is the con-
text it is present in (Tsakona, 2020), just like how
the utterance “You guys just keep getting cooler
and cooler” can indicate the opposite of what is
expressed and be sarcastic based on the tone of the
speaker and what the “guys” have done or said2.
Furthermore, the context prompting the humorous
interpretation can vary in nature, especially that
we are dealing with multi-modality. In our case, it

2The utterance was said by Chandler sarcastically in the
The One Where the Stripper Cries episode.
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could vary, for instance, based on its length (i.e.,
how distant is the required knowledge for the act to
be deemed funny? A scene, episodes or seasons?),
type (i.e., what aspects in the context contribute
to the humor? does the humorousness arise from
what is said, how it was said or what is done, or a
combination?), and familiarity with the characters’
personalities and common knowledge of the topic
of the discourse.

As it is unfeasible for an unsupervised automated
approach to achieve an understanding of the world
and, therefore, explain the humor in a given scene
and link all contexts in the entire show contributing
to it, we resort to defining the context as a fixed
duration for the sake of simplicity. For the pos-
itive humorous samples, we consider the last 10
seconds of all the laughter segments detected by
the model to be the context of the joke. From our
experiments, 10 seconds seemed to include some
context (e.g., two characters saying two sentences)
and not collide with previous laughter segments.
An example of such a humorous segment can be
seen in Figure 1.

Figure 1: An example of a humorous segment that pre-
ceded laughter

To build a set of negative samples, for each posi-
tive sample segment, we consider what is prior to
it until the laughter segment preceding it to be a
non-humorous segment. If possible, we split the
segment into 10-second clips and randomly pick 3
clips that has some context. The presence of the
context is determined by inspecting the subtitles
of the clip. In the case where it was empty, the
clip was discarded. This is important to remove
segments that have no verbal communication at all
such as camera spanning across a scenery in the be-
ginning of a scene. Sometimes, laughter segments
are very close to each other that no non-humorous
segment exists before a humorous segment.

Sometimes humor was expressed non-verbally
in the TV show as seen in Figure 2. We filtered out
the cases where the audience laughed and there was

no subtitle text before the laughter in the humor
segment. We do this because we are focusing on
multimodality (text and audio) in humor detection.
Such non-verbal humour would require the video
to be considered as well.

Figure 2: Joey entering the room wearing many layers
of clothes provoked audience laughter non-verbally

By the end of the annotation process, our dataset
consisted of a total of 16710 clips where 7422 of
them are humorous and the remaining 9288 are
non-humorous clips3. Furthermore, we indicated
in the dataset the length of the laughter segment for
all humorous clips. This metadata will be used to
predict the intensity of the humor.

4.2 Preprocessing
In our current work, we focus on text and audio in
detecting humor, and leave including visual con-
tent for future work. This is due to the fact that
processing video requires a research on its own
right. Video is such an information rich resource
with so many potential things one could extract
that may or may not be relevant for humor such as
facial expressions, body poses, object recognition,
action detection and so on. For our text and audio
modalities, two types of preprocessing are applied:
1) cleaning and reformatting the subtitles4 and 2)
resampling the frequency of the audio clips.

Dashes, -, at the beginning of subtitle lines were
commonly used to imply that the speaker has not
changed. We treat such dashes as noise and prune
them out. Furthermore, new lines are usually added
in subtitles to facilitate reading them and/or to sep-
arate talks by different speakers. We substitute new
lines with spaces in order to convert the subtitle
into complete sentences. Italic tags, “<i>” and
“</i>”, were stripped out. When inspecting the
subtitles, we noticed that a frequent typo of having
a capital I instead of an l existed. We addressed

3Due copyright we are unable to publicly release the
dataset.

4This step improved the accuracy of our models by 3%.
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this issue by replacing all Is with ls if they were
happened to be in the middle of the word. In case a
clip contained multiple subtitle segments across the
time-span of the clip, they were all joined together.

In terms of audio processing, we only apply
frequency resampling to adjust the frequency to
16kHz. This step is performed to ensure consis-
tency when feeding the data to a neural model.

5 Assessing humor

We present a pipeline of two neural models for
assessing humor. The goal of the first model is
to identify whether an utterance at the end of the
segment is humorous or not given the rest of the
segment as context, whereas the second model pre-
dicts the intensity of the humor once it has been
detected.

5.1 Humor detection
Here, we describe two different models for detect-
ing humor. The first model relies solely on the
textual data, and the second is a multimodal model
that accepts both textual data and audio signals as
input.The task for these models is a binary clas-
sification downstream task which is to determine
whether the input contains humor or not. We ex-
periment with the two models to gain a better un-
derstanding on what the effect of the audio is for
humor detection.

We group our dataset by episodes and, then,
randomly decide which episodes will be used for
training, validation and testing. This division is
conducted to prevent the model from getting ex-
posed to shared contexts during the training and
testing phases, which would introduce undesired
bias. When test data is sampled from completely
different episodes than what the training and valida-
tion contained, we can ensure that the model learns
to detect humor in completely novel contexts rather
than detecting merely episode specific recurring
jokes. The test dataset is constituted of 25 full
episodes, which are 1x09, 2x06, 2x22, 3x13, 3x20,
4x09, 5x04, 5x07, 6x09, 6x11, 6x15, 6x16, 7x09,
7x16, 7x19, 7x20, 7x22, 8x03, 8x14, 8x21, 9x05,
9x11, 9x21, 10x17 and 10x18. In total, the training,
validation and testing splits contained 13506, 1477
and 1708 samples, respectively. Both of the models
used the same splits to ensure comparable results.

5.1.1 Text only model
We build our text only model by applying transfer-
learning and fine-tuning a BERT model (Devlin

et al., 2019) using the transformers Python li-
brary (Wolf et al., 2020). The pretrained model
we used is the uncased English BERT model5. For
a given input, it is first tokenized using BERT to-
kenization. If the input contained subtitles from
different scenes, they we combined together and
separated using the special token “[SEP]”.

The architecture of the neural network is com-
posed of the BERT model, a BERT pooler layer, a
dropout layer (Srivastava et al., 2014) and a fully
connected dense layer that has two outputs. Once
the input has passed through the BERT model, the
pooler layer returns the last layer hidden-state of
the first token of the input sequence. Dropout is
applied on the pooler output with a probability of
20% to reduce overfitting. The linear layer is in-
troduced so that the network would learn a way of
interpreting the features produced by the past layers
and assign a probability score for each of the two
labels. In total, the model has 109 million trainable
parameters. We utilize Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 1e−4, along
with the cross-entropy loss function to optimize the
neural network. The fine-tuning process was run
for 3 complete epochs.

5.1.2 Text and audio model
The multimodal model we propose utilizes the tex-
tual and audio input by combining BERT (Devlin
et al., 2019) with Facebook’s HuBERT6 (Hsu et al.,
2021) neural models. We use the same uncased
English BERT model in our multimodal model as
we did in our text only model to examine the effect
of incorporating audio features for detecting humor.
The choice of HuBERT, in contrast to the popular
XLSR-Wav2Vec2 (Conneau et al., 2021), is due to
its superior or, in worse case scenario, neck-to-neck
performance.

Our multimodal model architecture is similar to
a siamese neural network architecture in the sense
that the output of two models are considered col-
lectively. In our model, one side of the network is
dedicated to text and the other to audio. We ensure
that both sides produce an equal size of features
by 1) setting a fixed input length to BERT where
padding and truncating is applied where necessary
and 2) having two average pooling layers follow-
ing the output of each side. For the textual output,

5https://huggingface.co/
bert-base-uncased

6https://huggingface.co/facebook/
hubert-xlarge-ls960-ft
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Length 0.2-0.5 0.5-1.5 1.5-2.5 2.5-3.5 3.5-4.5 4.5-5.5 5.5-15.5
N 459 2895 2328 948 374 184 234

Table 1: The duration of laughter (in seconds) for differ-
ent ranges in our dataset

a global average pooling is applied, whereas an
adaptive average pooling is applied to the audio
output. Afterwards, the pooled output is concate-
nated and followed by a dropout layer with a prob-
ability of 20%. Lastly, a fully connected dense
layer is employed as the classification layer. The
network has 424 million trainable parameters. We
use the same hyperparameters for optimizing the
multimodal model as the text only model; in other
words, we fine-tuned it for 3 full epochs with a
learning rate of 1e−4.

5.2 Predicting laughter intensity

We define the intensity of the laughter based on
its duration. Thus, a strong laughter for multiple
seconds indicates a great joke. This is intuitive
because the funnier the humor gets, the longer the
audience laughs. As the duration of a laughter is
a continuous value, we treat the task a regression
problem and adopt an artificial intelligence neural
network for addressing it.

Our dataset for this part is only the humorous
clips, a total of 7422 clips. Table 1 shows the
number of humorous clips grouped by various du-
rations. We cap all the durations to 3 seconds given
that the majority of laughter segments are within
this limit. The data is then split for training, vali-
dation and testing with 80%, 10%, and 10% ratios,
respectively.

In our laughter intensity prediction model, we
only train a multimodal model given that what is
said in the joke and how it is said or performed
have great influence on the reaction from the audi-
ence. Textual features are extracted using BERT
like the aforementioned models. For audio features,
we extract them from the entire humorous clips
using Google’s VGGish model7 (Hershey et al.,
2017). VGGish is a Convolutional Neural Net-
work inspired by the VGG network (Simonyan and
Zisserman, 2015) that is trained for image classifi-
cation. However, in VGGish, the input image is the
log mel spectrogram of frames derived from the
audio. The network has achieved the state-of-the-
art results for audio classification given its ability

7https://github.com/harritaylor/
torchvggish

to capture acoustic features, tones, volume and so
on. Unlike the earlier models, the pretrained mod-
els, i.e. BERT and VGGish, are frozen and not
fine-tuned during the training step.

The model we present here is a sequence of lay-
ers where the first one is a 2D average pooling layer
that converts the extracted features by BERT and
VGGish models into a fixed-size set of features by
averaging neighbouring features until the desired
size is reached. We set the size here to 128 as this is
the size of features that the VGGish model returns
per frame. As a result, the output of this layer is a
vector of 256 features. The layer is then followed
by a dense fully-connected linear layer that takes
in the averaged features and learns a new repre-
sentation of 64 features. ReLU activation (Agarap,
2018) and a dropout with a probability of 10% are
then subsequently applied to the 64 features. The
network architecture ends with a fully-connected
dense layer that returns one output representing the
intensity score.

As the problem here is regression, we make use
of the mean squared error (squared L2 norm) as
the loss function. This model has 16.5 thousand
trainable parameters and we optimize them for 100
epochs using Adam optimizer, however we use use
early stopping to stop the training of the model be-
fore 100 epoch in the event of the model converging
early.

6 Results and evaluation

We run both, the text only and multimodally trained
models, for humor detection on the test split. Their
performance is assessed using precision, recall, F1
and accuracy scores, which are given in Table 2.
Both of our models outperform the baselines of
choosing a label at random or the most frequent
label, their accuracies were 51% and 56%, in the
order given.

The results indicate that the multimodal model
clearly outperformed the text only model, by a 16%
increase in detection accuracy. This suggests that
audio cues were helpful in recognizing humor. For
instance, sarcasm and irony are sometimes marked
with clear intonations and tones. Both of these
phenomena are frequently used in sitcoms for hu-
morous effect, which would aid the model in distin-
guishing when “Yeah, right” is meant as a sincere
confirmation or as a sarcastic remark for humorous
effect.

Recognizing humor is a challenging task, even
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Precision Recall F1 N
Text only model

Funny 0.58 0.52 0.55 758
Not funny 0.65 0.70 0.68 950
Accuracy 62%

Text + Audio model
Funny 0.69 0.90 0.78 758
Not funny 0.90 0.68 0.78 950
Accuracy 78%

Table 2: Accuracy, Precision, recall, and F1 scores of
the two models for detecting humor

for humans and it is no surprise that computational
models would struggle. As these models are tested
on entirely novel contexts (i.e., new discourses that
are not covered during the training phase), the per-
formance achieved by them is impressive.

To test the model for predicting laughter inten-
sity, we compute the mean absolute error between
the predicted intensity and the intensity of the
laughter in the dataset. The average mean abso-
lute error was only around 600 milliseconds. This
means that the model can predict how long the audi-
ence will laugh after a given joke rather accurately,
given that there is some flexibility in the duration
of the laughter as it is not an absolute measurement
of the humor of a joke. With these results, we can
say that the model has learned to predict the inten-
sity of humor in a joke well, given that for jokes
provoking less laughter, the model predicts a short
laughter, and for jokes provoking a lot of laughter,
the model predicts a long laughter. Even though the
model is not quite accurate in knowing the exact
duration of the laughter.

6.1 Error analysis

When we look at the results of the models, we can
see some cases where both of the models failed
at predicting the humor accurately. For example,
the following dialog provoked a laughter in the
audience:

• Phoebe: It’s amazing. My headache is com-
pletely gone. What were those pills called?

• Monica: Hexadrin.

• Phoebe: I love you Hexadrin.

In this example the humor comes from Phoebe’s
lack of knowledge of how medicines work as she
continues by calling the instructions booklet a story.

This is an example of humor that requires some
world knowledge and also some understanding of
Phoebe’s care-free character. Just relying on text
in this case or even including the audio does not
give the model a context wide enough to reach to a
correct interpretation.

In some of these cases where neither of the mod-
els predicted the humor right, it is evident that with
an access to the video, the model could situate the
humor better in the context. The following dialog
is an example of such humor:

Figure 3: Joey inquiring whether Monica had cooked a
person after tasting her food.

• Monica: Remember the guy that gave me a
bad review? Well... I’m getting my revenge.

• Joey: You cooked him?

In this dialog, Monica is preparing food and let-
ting Joey taste some of it after her line in the dialog
as seen in Figure 3. A great part of the joke is in the
visual action of Joey tasting Monica’s food before
asking whether she had cooked the guy who had
given a bad review. A model that can take the vi-
sual modality into account as well could potentially
benefit from the humor intensifying action seen on
the video.

When we look at the results where the multi-
modal model predicted humor right and the text
only model predicted it falsely as non-humorous,
we can see cases where the speaker’s use of their
voice gave additional context for the humor. An
example of such is in the following dialog:

• Katie: You have selected a lot of nice things.
So do you uh, want these things delivered Mr.
and Mrs. Geller?

• Rachel: Oh

• Ross: Oh

• Rachel: Oh, no, no. No, no.
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In this example, the tone of Rachel’s voice makes
it more evident that Katie was wrong in her assump-
tion that Rachel and Ross were married. The model
had learned to capture such a tone of voice as an
indication of humor. Another example where the
audio is beneficial is the following dialog

• Waiter: It’s just that we do have some large
parties waiting.

• Phoebe: Oh, one really does have a stick up
one’s ass, doesn’t one?

In this case Phoebe’s line was delivered with a
mean and fed up tone, which was helpful for the
model in determining humor. Of course, such a
tone is not related to humor in every day speech,
so this is an indication of a potential bias in the TV
show where such a tone is probably used more of-
ten to deliver a punchline of a joke than to actually
upset the interlocutor. Even though the multimodal
model predicted it correctly, including video modal-
ity could strengthen the signal to the model because
Phoebe had an uncharacteristically nasty facial ex-
pression when uttering her line as seen in Figure
4.

Figure 4: Phoebe having a grumpy facial expression
while delivering a laughter provoking line.

The both of the models also produce false posi-
tives. The following is an example of a dialog that
resulted in being falsely labeled as humorous:

• Monica: Chandler, don’t joke with me.
Okay? I’m very, very upset right now.

• Chandler: Is this the most upset you could
be?

• Monica: I think so.

When this dialog is presented without a wider
context, it becomes difficult even for a person to
know whether it is supposed to be a joke or not.
Monica might very well be talking sarcastically,
which is a typical type of humor in the corpus, but

in this particular case, she is being sincerely up-
set. Giving the model more context could alleviate
this issue, but of course more context might result
in more noise because not all contextual informa-
tion is relevant. The following is another example
where both of the models predicted a false positive:

• Casting agent: In your love scene with
Sarah... she talks about how she’s never seen
a naked man who wasn’t Jewish.

The audience did not laugh after this statement,
although in the right context, it might be funny.
Here the context was serious. The audience only
laughed later on when it became evident that Joey,
who was being cast to the movie, did not under-
stand what the agent meant by this utterance. It is
clear that what is humorous and not is not always
that clear cut especially in a narrow context.

7 Discussion

In this section, we discuss our work and the results
obtained. As mentioned earlier, one crucial aspect
for understanding humor is the context. We have
defined the context in our work as a fixed 10 sec-
onds but, in reality, the context might be wider than
that. As another attempt to define context, we have
split the TV show based on changes in the visual
scene. This approach however was not very practi-
cal for our needs as it would mistakenly cut scenes
based on changes in the camera angel. A potential
solution to overcome the problem of fixed contexts
is to observe semantic changes for discovering con-
secutive scenes that share the same topic. We keep
this for future work.

Sitcom TV shows are a great resource for com-
putational humor as there is a multitude of humor
forms that they present. For this reason, it is chal-
lenging for a neural model to capture all humor
forms (e.g., irony, sarcasm, satire, exaggeration,
personification, silliness, pun and parody), whether
they are expressed verbally or visually. Our mul-
timodal model develops its own understanding of
what is funny based on the textual and audial fea-
tures embedded by BERT and HuBERT. Thus, it
is incapable of explaining the humorousness it per-
ceives. In other words, the model can say whether
something is funny or not, but it cannot say why
something is funny. A future direction would be
to break down these types of humor and feed them
collectively to the model, which would enable it
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to recognize humor from different aesthetics and
pinpoint the humor type.

From the error analysis, it is evident that includ-
ing video modality can help the model in under-
standing humor by situating what is said to the
context presented in the video. However, it is not
that clear to know which features would be needed.
In Figure 3, we could see that it is the action that
makes the humor more interpretable, whereas in
Figure 4 we saw that the facial expression was re-
vealing of humor. If the humor occurs only in the
visual modality as seen early on in Figure 2, it is in
the silliness of how Joey looks while wearing all
those clothes. Needless to say, a simple automati-
cally extracted vector representation of the video
such as video2vec (Hu et al., 2016) is not capable
of capturing all these different nuances expressed
in the video. It might very well be that an entire
TV show does not have enough data for the model
to learn to use the video in a meaningful way.

We did try to include video features in our mod-
els by obtaining textual descriptions of what is
happening in a scene by using an existing state-of-
the-art video captioning model (Luo, 2020). The
idea was that a captioning model could extract rel-
evant information from the video into a textual
format that could then be understood by a language
model such as BERT. In practice, this turned out to
be an impossible task with the current models and
the image datasets they were trained on. Figure
5 shows the poor performance the model had on
images from Friends. In our experiments, we did
not see a single correctly captioned image from the
TV show while test data from the dataset the model
was trained on produced decent results.

We have also seen that the 10 second contextual
window is not always enough to resolve whether
something is humorous or not. The issue of in-
creasing the context is that more context will also
increase the amount of irrelevant context. We do
not believe that simply increasing the context from
10 to 20 seconds, for example, is the most opti-
mal way to go about it because some jokes require
more context whereas others do not. Perhaps the
best way would be to introduce a third model to
the pipeline that is trained to determine how much
context is needed by identifying how far back in
the dialog we can go and still stay in the same topic.
A change in topic would indicate that the context
goes too far away from what is needed to interpret
the joke.

(a) a man and a woman
sitting on a bench

(b) a man and a woman
sitting at a table

(c) a man and a woman is
sitting on a couch with a

dog

(d) a man and a woman
playing a video game

Figure 5: Descriptions produced by the image caption-
ing model

8 Conclusions

This work has shown the first steps towards hu-
mor interpretation in a multimodal data. Unlike the
existing methods, our method does not rely on im-
plicitly marked setup and punchline but can rather
detect humor even in cases where the setup of the
joke was not made explicit in the text. We have
also trained a model that can rank the intensity of
humor based on how long the audience laughed.
The results are promising and our current research
has a lot of potential for future research especially
in studying how to deal with video and how much
context one should include.

The trained models can be incorporated in other
computational creativity models for generating hu-
mor. For instance, a system for generating humor-
ous transcripts could utilize our models for deter-
mining whether the plot is funny and which version
of it would make the audience laugh the most.

An interesting application of our approach would
be to pipeline it with a laughter generator. The
models presented in this paper could be used to
identify where laughter should be inserted and with
what intensity in a comedy show that does not have
prerecorded laughter. This could save time in post-
editing if used in a professional setting.

Because Friends has been translated into multi-
ple languages, this makes it possible to rerun our
experiments in different languages with a minimal
effort. It also creates an ultimate test-bed for multi-
lingual models where we can test whether a model
learning humor from the data in all languages can
learn a better representation.
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Abstract

Aspect-based sentiment analysis (ABSA) aims
to distinguish sentiment polarity of every spe-
cific aspect in a given sentence. Previous re-
searches have realized the importance of inter-
active learning with context and aspects. How-
ever, these methods are ill-studied to learn
complex sentence with multiple aspects due
to overlapped polarity feature. And they do
not consider the correlation between aspects
to distinguish overlapped feature. In order to
solve this problem, we propose a new method
called Recurrent Inverse Learning Guided Net-
work (RILGNet). Our RILGNet has two
points to improve the modeling of aspect cor-
relation and the selecting of aspect feature.
First, we use Recurrent Mechanism to improve
the joint representation of aspects, which en-
hances the aspect correlation modeling iter-
atively. Second, we propose Inverse Learn-
ing Guidance to improve the selection of as-
pect feature by considering aspect correlation,
which provides more useful information to de-
termine polarity. Experimental results on Se-
mEval 2014 Datasets demonstrate the effec-
tiveness of RILGNet, and we further prove that
RILGNet is state-of-the-art method in multi-
aspect scenarios.

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to
distinguish the orientation of sentiment existed on
every aspect (Liu, 2012). For example, in the
sentence: "Food is usually very good, though I
wonder about freshness of raw vegetables", as-
pect "raw vegetables" has negative polarity and
"food" has positive polarity. ABSA task consists
of two subtasks called aspect extraction and as-
pect sentiment classification (Zhang et al., 2018).
In this paper, we focus on aspect sentiment classi-
fication task and assume that aspects are known
(Majumder et al., 2018; Jiang et al., 2020). As

∗* Corresponding author.

shown in above case, multiple sentiment polari-
ties could exist in one sentence, which leads to the
overlapping use of multiple aspects when predict-
ing the polarity of current aspect (Du et al., 2019;
Jiang et al., 2020). We can see that sentiment po-
larity of "food" comes from word "good" which
implies positive. "raw vegetables" does not have
any words linked in above case. However, con-
junction "though" determines sentiment polarity
of "raw vegetables" which implies negative. Fea-
ture about "good" is overlapped by these two as-
pects and conjunction "though" leads to different
sentiment polarity between "food" and "raw veg-
etables". In this case, two aspects exhibit high cor-
relation. Therefore, modeling the correlation be-
tween multiple aspects is a suitable way to distin-
guish overlapped feature. From the above case, it
is not difficult to see that aspect correlation comes
from these sources: aspects, their sentiment polari-
ties and conjunctions. Conjunction establishes cor-
relation between aspects. If model learns correla-
tion between aspects, it can make right predition
of "raw vegetables" from the feature of "food".

Previous works have been devoted to introduce
attention mechanism into neural network and great
progress has been made (Wang et al., 2016; Ma
et al., 2017). Self-attention-based models such
as BERT (Devlin et al., 2019) have been applied
to ABSA by using BERT as an encoder (Yu and
Jiang, 2019; Lin et al., 2019). To handle the over-
lapped aspect feature, some works aim at decou-
pling overlapped feature for every aspect. Du et al.
(2019) uses a Capsule Network and Interactive
Attention to decouple overlapped feature for pre-
dicted aspect. In another way, Majumder et al.
(2018) tries to model inter-aspect relation by learn-
ing every aspect feature respectively. However,
these methods only use aspect (e.g., "food") and
not use sentiment polarity (e.g., "positive"). As-
pect and sentiment polarity both reflect aspect cor-
relation. Considering aspect correlation is an ef-
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fective way to determine the polarity of aspect that
is not easy to find linked words. We find that in-
verse learning (Zhou and Small, 2021; Putzky and
Welling, 2017) is a suitable way to excavate the
correlation from aspect and sentiment polarity be-
cause it learns from input (aspect and sentiment
polarity) to output (generated sentence). And gen-
erated sentence is same with aspect and sentiment
polarity (Radford et al., 2018; Luong et al., 2015)
in correlation.

In this paper, we design a Recurrent Inverse
Learning Guided Network (RILGNet) to improve
the performance of ABSA task through modeling
aspect correlation. Our RILGNet has two point
to improve aspect correlation modeling and aspect
feature selecting. First, we use Recurrent Mech-
anism (Kolluru et al., 2020) to learn aspect joint
representation and model aspect correlation. And
we use the correlation and representation to make
current prediction. Recurrent Mechanism can find
clear stated aspect polarities ("food" and positive
in above sentence), and then use them to re-find in-
direct aspect polarities ("raw vegetables" and neg-
ative). For this purpose, Recurrent Mechanism is
a suitable way. Second, we use Inverse Learning
Guidance (ILG) to excavate the correlation from
aspects and sentiment polarities. We use inverse
learning to generate a sentence by using aspect-
polarity combination. We consider the difference
between the given sentence and the generated sen-
tence embedding by calculating mean squared er-
ror (MSE) and its gradient. This gradient ex-
presses difference in correlation between the pre-
diction and the ground-truth. We fuse this gradi-
ent to aspect joint representation, which makes the
selection of aspect feature focus more on high cor-
relation aspects. We show that RILGNet achieves
83.70% and outperforms state-of-the-art method
by 1.34% on average in SemEval 2014 two dis-
tinct domains: laptop and restaurant. And we also
prove that RILGNet is state-of-the-art method in
multi-aspect scenarios.

The main contributions are as follows: (1) RIL-
GNet improves the performance of ABSA task by
modeling aspect correlation from aspect and senti-
ment polarity. (2) We design an ILG to get guid-
ance about how aspect joint representations are
modified and how features are selected from cur-
rent prediction. (3) Experimental results show that
our method outperforms state-of-the-art method
on SemEval 2014 Datasets, especially in multi-

aspect scenarios.

2 Related Works

The traditional methods of ABSA find optional
words about aspect in sentence, and then get
the corresponding sentiment through special de-
signed aspect features such as sentiment lexi-
con, n-grams, and dependency information, which
is labor-intensive (Boiy and Moens, 2009; Kir-
itchenko et al., 2014). Meanwhile, the quality of
feature directly affects classification accuracy.

Motivated by attention mechanism in the field
of deep learning, some ABSA’s works focus on
integrating attention into neural network, such as
RNNs (Wang et al., 2016; Chen et al., 2017) and
memory networks (Ma et al., 2017; Majumder
et al., 2018), to learn attention distribution of dif-
ferent aspects and extract aspect-aware sentence
representation. Most recently, self-attention-based
models such as BERT (Devlin et al., 2019) have
been applied to ABSA by using BERT as the
embedding layer (Yu and Jiang, 2019; Lin et al.,
2019). These works effort to focus on understand-
ing the context based on aspect and have achieved
great performance improvement.

Besides the above works, Chen et al. (2020);
Zhang and Qian (2020); Tay et al. (2018); Li et al.
(2019); Mao et al. (2019) use syntactic informa-
tion and improved semantic understanding to im-
prove end-to-end performance. Graph-based mod-
els are applied in ABSA task by utilizing word
relations through dependency parses to facilitate
the task with better semantic guidance for analyz-
ing context and aspect words (Tian et al., 2021;
Wang et al., 2020; Li et al., 2021; Hou et al.,
2021). They realize that the overlapped feature
about multi-aspect is ignored when the model pre-
dicts current aspect. Majumder et al. (2018) cal-
culates the aspect-aware sentence representation
for every aspect in a sentence, which models the
inter-aspect relation in a sentence for handling the
overlapped feature from aspect information. Du
et al. (2019) uses a Capsule Network and Interac-
tive Attention to decouple overlapped feature to
predicted aspect. Jiang et al. (2020) uses mutual
enhanced transformation to obtain more effective
representation of aspect and context for handling
overlapped feature. However, unlike our proposed
method, they only use aspect information without
sentiment polarity information. Aspect and senti-
ment polarity both reflect aspect correlation.
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Figure 1: The overall framework of RILGNet and Sentence-Aspect Joint Representation. When the recurrent
round is 1, the output of Inverse Learning Guidance is 0.

3 Proposed Method

In this section, we formalize the task and describe
proposed Recurrent Inverse Learning Guided Net-
work (RILGNet) in detail. The input and output of
ABSA task are as follows:
Input : We give a sentence S = [w1, w2, ..., wN ],
known aspect set A = [A1, A2, ..., AK ] and every
aspect Ai = [a1, a2, ..., aM ], where N and M are
the maximum number of sentence and aspect word
respectively, K is the maximum number of aspect.
Output : Sentiment Classification Result y ∈
{positive, negative, neutral} for each predicted
aspect Ai.

The framework of RILGNet is shown in Fig-
ure 1 (a). It can be roughly divided into two
parts, namely Sentence-Aspect Joint Representa-
tion (SAJR) and Recurrent Mechanism. Recurrent
Mechanism can be further divided into two steps:
Aspect Correlation Modeling and Inverse Learn-
ing Guidance. The core idea is how to model as-
pect correlation in A about Ai and how to use cor-
relation to discriminate overlapped feature and de-
termine sentiment polarity y. In the tth recurrent
round, RILGNet uses sentence S and aspect set A
to obtain the SAJR JA = [jA1 , jA2 , ..., jAK

]. Then
RILGNet sends JA and A to Recurrent Mecha-
nism and get current prediction yt. We choose yT

as final prediction.

3.1 Sentence-Aspect Joint Representation

Different words in a sentence don’t contribute
equally to sentimental information for a current

aspect (e.g., adjectives often contribute more than
verbs). This requires a sentence representation to
reflect the sentiment of different aspect. As shown
in Figure 1 (b), we design Sentence-Aspect Joint
Representation (SAJR) to achieve this. We get sen-
tence representation SE = [se1, se2, ..., seN ] ∈
RN×D from sentence S and aspect representation
AEi = [ae1,i, ae2,i, ..., aeM,i] from aspect Ai by
BERT (Devlin et al., 2019) firstly, where D is the
size of hidden state in BERT. For multi-word as-
pect, AEi is averaged by AEi. Then we concate-
nate SE and AEi in all words for SAi ∈ RN×2D:

SAi = [se1; AEi, se2; AEi, ...seN ; AEi] (1)

In order to differentiate which word contributes
more to the sentiment, we utilize an attention
layer to obtain sentence-aspect joint representation
jAi ∈ RD, indicating which word is important for
Ai:

z = SAiWs + bs (2)

α = softmax(z) (3)

jAi = Dense(αT SAi) (4)

where z = [z1, z2, ..., zN ] ∈ RN , α ∈ RN , Ws

and bs are trainable matrices. jAi ∈ RD and JA =
[jA1 , jA2 , ..., jAK

].

3.2 Aspect Correlation Modeling

We design Aspect Correlation Modeling (ACM)
to learn aspect joint representation, then use it to
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Figure 2: The overall framework of Aspect Correlation
Modeling. When recurrent round is 1, ▽JA|y0

is 0.

model aspect correlation and get current predic-
tion yt. Specially, as shown in Figure 2, we use
a bi-LSTM to get current aspect joint representa-
tion AJA,t = [ajA1,t , ajA2,t , ..., ajAK,t

] ∈ RN×D

at tth recurrent round following Majumder et al.
(2018):

IJRt−1 = tanh(▽JA|yt−1
Wy + by) (5)

AJA,t = biLSTMa(AJA,t−1 + IJRt−1) (6)

where AJA,0 is JA from Equation (4) and ▽JA|y0

is 0, Wy and by are trainable matrices, ▽JA|yt−1

is inverse learning guided gradient from (12). We
will introduce this gradient in the next section.

After this, in order to get aspect correlation be-
tween Ai and other aspects, we employ an atten-
tion layer between every aspect query representa-
tion jAi and AJA,t as:

zc = jAi(AJA,t)
T (7)

βt = softmax(zc) (8)

where zc = [zc,1, zc,2, ..., zc,K ] ∈ RK×1, βt =
[βt,1, βt,2, ..., βt,K ] ∈ RK×1 and jAi comes from
(4). Here, βt measures the aspect correlation, stat-
ing the contribution of A to predicting Ai. It is
worth noting that correlation score βt does not in-
dicate positive or negative correlation between dif-
ferent aspects, but only indicates how siginificant
correlation is achieved.

Then, we obtain the aspect joint representative
output vector outputt ∈ R1×D by:

outputt = (βt)
T AJA,t (9)

Finally, aspect query representation jAi is added
with outputt to generate refined aspect representa-
tion, and is passed to a softmax classifier as:

oji,t = softmax((jAi +outputt)Wp + bp) (10)

yi,t = argmax(oji,t) (11)

where Wp and bp are trainable matrices. yi,t is cur-
rent prediction for Ai, and we concatenate all yi,t

for every aspect Ai to get current prediction yt.

��

M

: Mean Squared Error and calculating gradientM

FPG

SAJR

��1

∇��|��

FPG : Fixed Pretrained GPT-2

A
…

��1 ���

…

���

…
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Figure 3: The overall framework of Inverse Learning
Guidance.

3.3 Inverse Learning Guidance

The motivation of Inverse Learning Guid-
ance (ILG) is to provide prompt to model aspect
correlation by excavating aspect and sentiment
polarity. This prompt can give feedback on
how aspect correlation is disturbed from current
prediction yt. We use the idea of inverse learning
(Zhou and Small, 2021; Putzky and Welling,
2017) to correct the disturbed aspect correlation.
It can set aspect-polarity combination as input
to generate sentence Ŝ which is same with yt

about aspect correlation. The difference between
Ŝ and given sentence S is an embodiment for the
difference between yt and the ground-truth ŷ in
aspect correlation.

The inverse learning model is implemented by
GPT-2, which has shown effective at generating
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the textual language based on specific informa-
tion(Radford et al., 2018). If GPT-2 can generate a
sentence that is more similar to the given sentence
in semantics, prediction yt will be closer to the
ground-truth ŷ and yt will have more similar as-
pect correlation with ŷ. Conversely, when the gen-
erated sentence is quite different from the given
sentence, despite some noise, ILG can reflect the
difference by high or low gradient because of the
inconsistent aspect-polarity combinations. Gradi-
ent guides the selection of features to focus more
on high correlation aspect. GPT-2 is finetuned by
inverting the input and output of training data. The
parameters of GPT-2 will be fixed during training
process. The details of the structure and training
for GPT-2 is in Section 4.2.

The structure of ILG is shown in Figure 3.
Specifically, we use a template like "[A1: polar-
ity, A2: polarity, ..., AK: polarity.]" to generate a
sentence Ŝ, and polarities come from yt. We then
use the Ŝ and A to get ĴA = [ ˆjA1 , ˆjA2 , ..., ˆjAK

] ∈
RK×D. We select the mean squared error (MSE)
to reflect aspect-level difference between ĴA and
JA about aspect correlation. And we calculate its
gradient as output of this step, which is defined as
▽JA|yt−1

∈ RK×D:

▽JA|yt−1
= ∇(

1

D

D∑

d=1

( ˆJA,d − JA,d)
2) (12)

where D is the dimension of sentence embedding.
▽JA|yt−1

expresses the difference about correla-
tion between S and Ŝ. We fuse ▽JA|yt−1

to ACM
in (5) and (6), which makes the selection of aspect
features focus more on high correlation aspects.

3.4 Training

We train RILGNet using Cross Entropy as loss
function at every recurrent round and averaging
them as:

L = − 1

NT

T∑

t=1

N∑

n=1

ŷnlogynt (13)

where ŷn is the ground-truth, ynt is the prediction
in round t, N is the number of samples and T is the
maximum recurrent round.

4 Experiment

4.1 Datasets

We evaluate our model with SemEval-2014 ABSA
dataset 1 (Pontiki et al., 2014). It contains two
domain datasets: Laptop and Restaurant. Table
2 shows the count of samples in total and multi-
aspect sentences.

4.2 Implements

BERT: BERT Encoder employs a pre-trained
BERT-based model ("BERT-base-uncased") for
fine-tuning (Devlin et al., 2019). The hidden state
size is 768 and the number of self-attention layers
is 12. The total number of parameters for the pre-
trained BERT model is 110M in our experiments.
The length of word list is 30,522. The max se-
quence length is 100. We used the last hidden state
of BERT for word representation and fine-tuned
them on our method. The batch size is 128 in train-
ing and 64 in testing. RILGNet is trained by the
Adam optimizer (Kingma and Ba, 2015) with the
default configuration with 20 epochs. The learning
rate is 5 × 10−5 in RILGNet.

GPT-2: In the ILG part, we use pre-trained
GPT-2 (Radford et al., 2018) to generate a sen-
tence. We finetune GPT-2 by using a sentence
as "[A1: polarity, A2: polarity, ..., AK: polar-
ity.]" to get generated sentence. Ai and their polar-
ities come from ground truth. Finally, we use the
Corss Entropy as loss function by predicting the
next word. We train our model in 20 epochs with
batch size 4, and the learning rate is 1.5 × 10−4

with same Adam optimizer in other parts of RIL-
GNet. The hidden state size is 768, the number
of self-attention heads is 12. The max sequence
length is 100, which is same with BERT. And we
fix the parameter of GPT-2 when we train the other
side. We use Top-5 Sampling to get next candidate
word when generating sentence. We choose next
word in their probabilities on these five words.

Aspect Correlation Modeling: In this step, the
hidden state size of the bi-LSTM is 768 with one
layer. The classifier is a Fully Connected Layer,
and the output size is the known aspect set size ×
3(Positive, Negative, Neutral).

4.3 Compared Methods

We compare our method with the following base-
line methods:

1http://alt.qcri.org/semeval2014/task4
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Model
Laptop Restaurant

Accuracy Macro-F1 Accuracy Macro-F1
SVM (Kiritchenko et al., 2014) 70.49 - 80.16 -
AE-LSTM (Wang et al., 2016) 68.90 - 76.60 -
ATAE-LSTM (Wang et al., 2016) 68.81 63.11 77.68 64.89
IAN (Ma et al., 2017) 72.57 66.73 78.48 67.55
Cabasc (Liu et al., 2018) 75.07 - 80.89 -
IARM (Majumder et al., 2018) 73.80 - 80.00 -
TNet-LF (Li et al., 2018) 75.08 69.78 80.18 70.06
HGMN (Ran et al., 2019) 76.67 72.22 82.33 73.34
IACapsNet (Du et al., 2019) 76.80 73.29 81.79 73.40
METNet (Jiang et al., 2020) 78.37 74.93 82.50 73.92
DualGCN+BERT (Li et al., 2021) 81.80 78.10 87.13 81.16
GraphMerge (Hou et al., 2021) 81.35 78.65 87.32 81.95
RILGNet w/o Inverse Learning Guidance 81.50 79.02 86.79 80.51
RILGNet 83.70 80.13 88.13 82.66

Table 1: The performance of RILGNet on SemEval-2014 ABSA dataset with best performances bolded. "-"
indicates not reported in the original paper.

Domain
Train Test

Total MA Total MA
Laptop 2328 1396 638 379

Restaurant 3608 2595 1120 835

Table 2: The number of samples in SemEval-2014
ABSA datatsets. MA means the multi-aspects sentence
in datasets.

SVM (Kiritchenko et al., 2014): It is a tradi-
tional support vector machine (SVM) based model
to get the feature about aspect and sentiment.

AE-LSTM (Wang et al., 2016): AE-LSTM is
an attention-based LSTM model, which uses atten-
tion mechanism to get the correlation between ap-
sect and words in sentence.

ATAE-LSTM (Wang et al., 2016): ATAE-
LSTM is an upgraded version about AE-LSTM. It
adds the aspect embedding to the model in order
to consider the importance of aspect term to senti-
ment.

IAN (Ma et al., 2017): IAN interactively learns
the context and aspect and extract the feature about
sentence and aspect separately.

Cabasc (Liu et al., 2018): Cabasc employs two
attention enhancement layers to learn the word or-
der information, aspect information and the corre-
lation between aspect and word in sentence.

IARM (Majumder et al., 2018): IARM ob-
tians aspect-aware sentence representations for all
aspects in a sentence to predict the sentiment po-

larity of current aspect.
TNet-LF (Li et al., 2018): TNet-LF computes

the importance of each aspect term based on sen-
tence word rather than the whole sentence dynam-
ically.

HGMN (Ran et al., 2019): HGMN gets
the aspect-specific text spans in sentence instead
of only the aggregated contextual representation
based on attention layer.

IACapsNet (Du et al., 2019): IACapsNet uses
the Capsule Network and Interactive Attention to
decouple the overlapped feature about multi as-
pects in a sentence.

METNet (Jiang et al., 2020): METNet uses
the mutual enhanced transformation to improve
the learning of aspect and fuses the aspect and sen-
tence information by gated convolutional network.

DualGCN+BERT (Li et al., 2021): It uses a
dual graph convolutional network that considers
the complementarity of syntax structures and se-
mantic correlations simultaneously.

GraphMerge (Hou et al., 2021): It uses a
graph ensemble technique, to make use of the pre-
dictions from different parsers, combining the de-
pendency relations from different parses.

5 Results

We show the results about different experiments
below:
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Model
Laptop# Restaurant#

Accuracy Macro-F1 Accuracy Macro-F1
TNet-LF (Li et al., 2018) 74.80 67.34 80.31 69.35
IARM (Majumder et al., 2018) 74.10 - 80.48 -
METNet (Jiang et al., 2020) 77.95 73.80 82.59 73.92
RILGNet w/o Inverse Learning Guidance 79.15 77.81 86.59 80.33
RILGNet 81.27 78.72 88.02 82.61

Table 3: The performance of RILGNet on Laptop# and Restaurant# with best performances bolded. "-" indi-
cates not reported in the original paper.

5.1 Overall Comparison

We assess the overall performance by compar-
ing RILGNet with state-of-the-art methods on
SemEval-2014 ABSA dataset. It is evident from
the results that RILGNet outperforms all the base-
lines in Table 1 in both of the domains. Graph-
Merge (Hou et al., 2021) achieves the best re-
sults on Laptop Marco-F1 and Restaurant all met-
rics due to its progressive graph ensemble tech-
nique, making use of the predictions from different
parsers and combining the dependency relations
from different parses. RILGNet gets bigger im-
provement in laptop domain (2.35% on Accuaracy
and 1.48% on Marco-F1), compared to restaurant
domain (0.81% on Accuracy and 0.71% on Marco-
F1). This shows that the conbination of aspect cor-
relation modeling and inverse learning guidance
in Recurrent Mechanism has overall positive influ-
ence on sentiment classification.

In addition, in order to highlight the advantage
of RILGNet in multi-aspect scenarios about han-
dling overlapped feature, we conduct further ex-
periments. We delete the single-aspect sentences
in two domain test set and sign the new datasets as
Laptop# and Restaurant# same with Jiang et al.
(2020). We report the results of TNet-LF, IARM,
METNet and our RILGNet in Table 3. RILGNet
achieves significant improvements in two domains,
which indicates the effectiveness of RILGNet in
multi-aspect scenarios.

5.2 Ablation Study

We evaluate that Inverse Learning Guidance is ef-
fective for ABSA task by comparing RILGNet and
RILGNet without(w/o) Inverse Learning Guid-
ance. In order to prove above point, we conduct
ablation experiments. As shown in Table 1, Com-
pared with RILGNet w/o Inverse Learning Guid-
ance, RILGNet achieves 2.2%, 1.34% in Accu-
racy, and 1.11%, 2.15% in Marco-F1 improve-

The number of
recurrent round

Laptop Restaurant
Acc F1 Acc F1

1 82.75 78.83 85.53 78.76
2 81.81 76.62 85.89 79.29
3 83.70 80.13 86.79 80.55
4 81.97 77.43 87.77 82.06
5 81.97 77.43 88.13 82.66
6 82.44 78.41 86.52 80.00
7 81.50 76.51 85.98 79.91

Table 4: The performance of RILGNet about differnent
recurrent round from 1 to 7 on Laptop and Restaurant
datasets with best performances bolded.

ments on Laptop and Restaurant datasets respec-
tively, which proves the effectiveness of the In-
verse Learning Guidance.

We also conduct ablation experiments in multi-
aspect scenarios. In Table 3, RILGNet achieves
2.12% and 1.43% in Accuracy and 0.91% and
2.28% in Marco-F1 improvements on Laptop#

and Restaurant# datasets compared with RIL-
GNet w/o Inverse Learning Guidance, which ef-
fectively proves the importance of Inverse Learn-
ing Guidance in multi-aspect scenarios.

Besides, in order to highlight the advantage of
our Recurrent Mechanism, we evaluate the effect
of recurrent round number T. Specifically, we con-
duct the experiments on Laptop and Restaurant
datasets and T varies from 1 to 7. In Table 4,
we can see that RILGNet achieves the best results
when T is 3 in Laptop and T is 5 in Restaurant re-
spectively. We find that irregular recurrent perfor-
mance showns on RILGNet in restaurant. Certain
recurrent round could yield higher quality repre-
sentation than others, which is more stable in lap-
top.
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(a) Partial attention Weight for aspect “drinks”.

(b) Partial attention Weight for aspect “lychee martini”.

(c) Partial attention Weight for aspect “food”.

Figure 4: The partial attention weight of all aspect for sentence "I love the drinks, esp lychee martini, and the food
is also very good." because of too long sentence. The other part has no higher attenion score than this part.

5.3 Case Study
In order to evaluate how aspect correlation is
learned by RILGNet, we select one sample from
test set to visualize the correlation score β from
Equation (8) and attention score α from (3) about
best trained RILGNet. It is worth noting that cor-
relation score β does not indicate positive or nega-
tive correlation between different aspects, but only
indicates how siginificant correlation is achieved.

drinks

lychee martini

food

Figure 5: The correlation score between three aspects
from the sentence "I love the drinks, esp lychee martini,
and the food is also very good."

In the sentence "I love the drinks, esp lychee
martini, and the food is also very good.", there are
three aspect: "drinks", "lychee martini" and "food"
with positive polarities, and RILGNet makes all
right prediction. "lychee martini" has high correla-
tion with "drinks" because of conjunction "esp".

As shown in Figure 4, the aspect joint repre-
sentation of "drinks" from SAJR pays more atten-
tion to the word "love", "food" pays more to the
word "good" and "lychee martini" doesn’t obvi-
ously pay high attention to optional words, which
means that model doesn’t know the sentiment of
"lychee martini" only by SAJR. But model makes

right prediction on "lychee martini". We consider
that other parts of RILGNet models aspect correla-
tion between these three aspects by handling over-
lapped feature of word "good".

To evaluate aspect correlation modeling, we
show the correlation score β from (8). As shown
in Figure 5, the top expresses correlation score be-
tween "drinks" and others, middle expresses "ly-
chee martini" and low expresses "food". Aspect
"lychee martini" has high β with "drinks" in mid-
dle. From Equation (9), we can see that RILGNet
knows that the feature of "drinks" is more impor-
tant than others when model determines the po-
larity of "lychee martini". β about "food" and
"drinks" is high with itself. There is no doubt that
our RILGNet can model correlation between these
aspects: there is a siginificant correlation between
"drinks" and "lychee martini", and correlation be-
tween "food" and others is weak.

with ILG

w/o ILG

Figure 6: The correlation score of "lychee martini" on
RILGNet and RILGNet w/o ILG.

Besides, we also show correlation scores be-
tween RILGNet and RILGNet w/o ILG of "lychee
martini" in Figure 6. We can see that RILGNet
w/o ILG gets highest score in "drinks". But it also
considers some information from "lychee martini"
and "food", which is not useful for sentiment clas-
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sification. As a contrast, RILGNet has higher
score than RILGNet w/o ILG in "drinks", meaning
that ILG could make the selection of feature focus
more on high correlation aspects (eg,. "drinks").
To sum up, these results prove that RILGNet could
model aspect correlation and ILG could make the
selection of feature focus more on high correlation
aspect with the guidance of aspect correlation.

6 Conclusion

In this paper, we propose a Recurrent In-
verse Learning Guidance Network (RILGNet) to
solve ABSA task by modeling aspect correlation.
Firstly, in order to solve the problem of overlapped
aspect feature, we design a Recurrent Meshanism
to learn aspect joint representation and model as-
pect correlation. Secondly, RILGNet uses Inverse
Learning Guidance to give feedback on how cur-
rent predition reflect aspect correlation by gradi-
ent iteratively. Experimental results demonstrate
the effectiveness of RILGNet for ABSA. And RIL-
GNet also performs well in multi-aspect scenarios
especially. Above all, modeling aspect correlation
or label correlation will be useful for other NLP
tasks.
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Abstract

Existing studies on the analysis of persuasion
in online discussions focus on investigating the
effectiveness of comments in discussions and
ignore the analysis of the effectiveness of de-
baters over multiple discussions. In this paper,
we propose to quantify debaters’ effectiveness
in the online discussion platform: “Change-
MyView” in order to explore diverse insights
into their persuasion strategies. In particular,
targeting debaters with different levels of ef-
fectiveness (e.g., good vs. poor), various be-
havioral characteristics (e.g., engagement), and
text stylistic features (e.g., used frames) of de-
baters are carefully examined, leading to sev-
eral outcomes that can be the backbone of writ-
ing assistants and persuasive text generation.

1 Introduction

Persuasion, a primary goal of argumentation, is
the ability to convince people to do a certain ac-
tion or form a particular belief (O’Keefe, 2006).
Persuasion has always influenced the dynamics of
communication and social interactions, either pos-
itively by raising awareness on critical issues like
climate change or negatively by influencing the
behavior of voters in elections or disseminating
propaganda and fake news.

Social media, through its growing role in the
formation of beliefs, has gained notable interest as
a means to gather a deeper understanding of per-
suasion (Wang et al., 2021). The ChangeMyView
(CMV) subreddit in particular has been used in var-
ious studies that model text persuasiveness using
a variety of linguistic, argumentative, and behav-
ioral features (e.g., (Hidey and McKeown, 2018),
(Longpre et al., 2019), and (Guo et al., 2020)).

However, scholarly work on online persuasion
centers around studying persuasive comments in
individual discussions without considering the im-
portance of analyzing persuasive debaters (Luu

∗ Equal contribution

et al., 2019). Hence, debater strategies and their
effectiveness have not been adequately studied. Un-
derstanding effective debating strategies and de-
bater persuasiveness can be highly beneficial for
media analysis, rhetorical review, and for learning
debating skills. Besides, it can advance the de-
velopment of several applications, where effective
strategies can be recommended in writing assis-
tants and dialog management systems or encoded
in the backbone of text generation tools.

This paper focuses on analyzing the debaters’
persuasion strategies, seeking to uncover the behav-
ior, language style, and argumentative techniques
that distinguish good from poor debaters. To do so,
we categorize CMV debaters based on their effec-
tiveness in persuasion and examine key differences
in their behaviors and skills (i.e., engagement and
experience), as well as their argument’s style (at the
semantic, syntactical, lexical, and pragmatic lev-
els). We propose the task of identifying effective
debaters and present an approach to tackle it.

Our analysis of debater strategies yields several
insights. For example, we find that the effective-
ness of persuasion improves over time for aver-
age debaters, the distribution of ‘frames’ in the
debaters’ arguments can play a major role in per-
suasion, and argumentative features based on the
presence of certain types of arguments in the de-
baters’ text do not seem sufficient to indicate the
effectiveness of persuasion.

The contribution of this paper is threefold:
1. An extensive analysis of debater strategies

across multiple discussions, addressing their
behavior and stylistic aspects of their texts.

2. Insights about several techniques used by suc-
cessful compared to unsuccessful debaters.

3. A new task of distinguishing good from poor
debaters and an approach to address the task
with multiple linguistic features.

All the resources developed in this paper can be
found at https://doi.org/10.5281/zenodo.7034173.
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2 Background and Related Work

In this section, we introduce CMV’s core concepts
as required for our study. Afterward, we overview
the primary studies on modeling persuasiveness on
CMV and related platforms.

2.1 Background

CMV is an open platform for users to engage in
civilized discussions using sound arguments. CMV
discussions are actively moderated to maintain the
quality of argumentation. All comments and orig-
inal posts must abide by the community rules.1

These rules dictate a predictable structure for CMV
debates, making them easy to process.

A CMV discussion begins with a user, called the
original poster (OP), submitting a marked request,
called original post, to the CMV subreddit. The
subreddit forbids non-debative submissions. The
original post states the OP’s stance on a controver-
sial topic, relevant justifications and explanations
of this stance, and an (implicit) call to “change my
view”. All other users of CMV called the debaters,
can challenge the OP’s stance and post opposing
argumentative top-level comments. All debaters
can respond to other comments to counter, cross-
question, or defend their arguments, creating multi-
layered and complex threads of conversation.

CMV offers two mechanisms to indicate com-
ment persuasiveness: The delta (∆) and the com-
ment score. The delta mechanism allows the OP
to mark up to one comment as persuasive. The
‘awarded’ deltas are aggregated and the per debater
∆-count is displayed publicly. Reddit’s comment
score is the per-comment sum of up and downvotes.
The highest scoring comments are shown first. The
comment score on CMV serves as an alt-metric
indicating the persuasiveness as perceived by the
community.

2.2 Related Work

The major work on the analysis of argument per-
suasiveness on social media (cf. (Tan et al., 2016),
(Zhang et al., 2016), (Persing and Ng, 2017), and
(Hidey and McKeown, 2018).) tries to determine
how persuasive a comment is by solving the task:
given two comments with a shared OP, identify the
persuasive one. In contrast, our paper provides a
higher-level analysis. We try to determine how per-
suasive a debater is by studying the debaters across

1CMV rules are stated on their wiki: https://www.reddit.
com/r/changemyview/wiki/rules

multiple discussions, striving to disclose their per-
suasion strategies.

Employing argumentative features to predict
comment persuasiveness is a well-established strat-
egy; Egawa et al. (2019) annotated CMV discus-
sions with elementary argumentative units (EUs)
in a token-level five-class scheme: testimony, fact,
value, policy, and rhetorical statement. The au-
thors propose a Bi-LSTM-based sequence classi-
fier for EU labeling. They conclude that EUs indi-
cate persuasiveness if used effectively, ‘fact’ is the
most persuasive, that the proportional distribution
of types distinguishes CMV comments from origi-
nal posts, and that persuasiveness is not indicated
by the mere presence or absence of certain EUs.

Similarly, Hidey et al. (2017) annotated CMV
discussions regarding arguments’ claims as inter-
pretation, evaluation, agreement, disagreement, or
premises as ethos, logos, and pathos. The authors
show that the relative positional distribution of ar-
gumentative components in a CMV comment is
a signal for its persuasiveness. Additionally, Li
et al. (2020) demonstrated the effectiveness of ar-
guments’ structural features in persuasiveness pre-
diction. Multiple features were developed based on
the usage of the proposition types reference, testi-
mony, fact, value, and policy in the debaters’ texts.
The feature analysis showed that the presence of
‘value’ and ‘testimony’ bi-grams is more prevalent
in persuasive argumentative texts, indicating that
justifying claims with personal experiences is an
effective persuasion strategy.

In this paper, we implemented the previously
used argumentative features along with newly uti-
lized ones like syntactic complexity, semantic simi-
larity, and argument framing; the latter is shown to
play a role in the debater’s persuasiveness.

Different characteristics and behavior patterns of
debaters were examined in a few papers. Address-
ing the debater behavior, Tan et al. (2016) inves-
tigated the role of debaters’ interaction dynamics
with the OP in persuasion and found that the de-
baters who responded early in the discussion tend
to be more successful, that engaging with the origi-
nal poster improves a debater’s odds of success up
to a threshold, and that higher debater participation
in a discussion improves the odds of persuasion.

Targeting debaters’ characteristics, Al-Khatib
et al. (2020) modeled debaters’ beliefs, personality
traits, and interests based on their previous activi-
ties on Reddit, utilizing them for tackling the task
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of persuasiveness prediction. The study found the
similarity between the characteristics of the OP and
the debaters to be influential for effective persua-
sion. In comparison, our paper groups debaters
based on their persuasiveness so we can probe the
diverse strategies used by good vs. poor debaters.

Analyzing the discussion structure, Guo et al.
(2020) hypothesized that persuading the OP in
a CMV discussion happens gradually throughout
a multi-party conversation rather than instanta-
neously. A prediction task was performed to model
the cumulative effect of a sequence of comments
in a CMV discussion and detect the position where
the persuasion of the OPs occurs. Besides, a user
study to evaluate the persuasiveness of debaters’
arguments’ was conducted, concluding that the per-
ception of persuasiveness differs across individuals
and that it is influenced by one’s idiosyncrasies
i.e. the same argument could be persuasive for
one person but not persuasive for another. Like-
wise, Wei et al. (2016) considered the relevance
ranking of CMV comments by their score in a dis-
cussion. They found the comment’s score to be
influenced by its temporal entry order as well as
the past credibility of its corresponding debater.
The credibility is measured by the number of prior
deltas received by a debater. Several feature classes
were used for the relevance ranking task, including
linguistic features derived from the comment’s text,
interaction-based features obtained by modeling
the CMV discussion as a tree, and argumentative
features such as the proportion of argumentative
text and argument relevance and originality.

The only work that targets the debater-level anal-
ysis is by Luu et al. (2019) and investigates how
debaters’ skill improves over time as they learn
how to interact with other debaters. They present
a strong estimator of the development of a de-
bater’s persuasive skill over time using several lin-
guistic features, such as length of comments, co-
occurrence of hedges, and fighting words.

Our work is distinct in several respects: First,
we analyze CMV, as opposed to Debate.org,
which is more strict and conventional regarding de-
bate structure. Second, we analyze the relationship
between the debaters’ engagement, experience, and
writing style across linguistic dimensions, account-
ing for the argumentative nature of debate texts.
Finally, we address different levels of debater per-
suasiveness and scrutinize the differences in their
argumentation strategies.

3 Data Acquisition and Preparation

To conduct our study on debater persuasion strate-
gies, we created a dataset with 3, 801 CMV de-
baters, equally sampled for good, average, and poor
debater persuasiveness. Here, we detail our data
collection method, quantification of debater per-
suasiveness, and sampling method to balance the
dataset by debater persuasiveness.

Quantifying Debater Persuasiveness We define
the persuasiveness of a debater d with comments
c1, . . . , ci,∆1, . . . , cj,∆k, . . . , cn in CMV as ratio of
delta comments c∆ to all comments:

Persuasiveness(d) =
k

n
.

The persuasiveness is, hence, the number of de-
bater’s delta comments normalized by her total
comment count. As Table 1 shows, this normaliza-
tion is necessary because the delta-comment count
correlates strongly with the total comment count.

Based on the persuasiveness score, we categorize
debaters into three groups as follows:

1. Good debaters with a persuasiveness of 5%
or above.

2. Average debaters with a persuasiveness be-
tween 0% and 5%.

3. Poor debaters with a persuasiveness of 0%;
These debaters did not receive any delta dur-
ing their active period on CMV.

The separation of debaters with a non-zero per-
suasiveness is based on the observation that ob-
taining any c∆ is already challenging. Hence, the
highly persuasive tail should be studied as a sepa-
rate population. The 5%-threshold used in catego-
rization separates the non-poor debaters into two
groups of approximately equal size.

Collecting Debater Comments We obtained an
initial set of CMV debates from the Webis CMV
corpus (Al-Khatib et al., 2020), which comprises
all CMV debates from June 2005 to September
2017. We extracted all top-level comments from
the Webis CMV corpus and grouped them by de-
bater. We discarded all inactive debaters with less
than 10 comments and obtained an unbalanced
dataset of 13, 254 CMV debaters along with their
top-level comments on various debates. We only
considered top-level comments since they serve as
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“entries to the debate”, while lower-level comments
are either rebuttals or non-argumentative content
like corrections, clarifications, or thanks.

Sampling Data In the intermediate dataset, 80%
of the debaters are of poor persuasiveness and have
never been awarded a ∆. Since we aim for a con-
trolled analysis, we resampled the dataset in such
a way that the distribution of CMV debaters is bal-
anced by persuasiveness. Overall, we end up with
3, 801 entries, evenly distributed across the three
debater categories.

Our resampling strategy first added a “good” de-
bater to the dataset by random and then selected
one “average” and one “poor” debater with the
same number of comments, or the closest number
to that. If multiple candidate debaters existed, we
minimized the absolute difference in mean com-
ment length. This resampling strategy minimizes
the effects of comment count and comment length
in the dataset since both are indicative of persua-
siveness (cf. Section 2).

4 Debater Engagement and Experience

Our first analysis concerns the relationship between
the debaters’ persuasiveness and their engagement
with and experience on the CMV subreddit. We
presume that engagement on CMV may correspond
to rebuttals in live debates. Our findings suggest
that a high engagement is indicative of persuasive
debaters. We further inspect the relationship be-
tween experience and persuasiveness in both abso-
lute measures such as comment count and active
period and relative measures such as changes in
style and persuasiveness with experience gain. Our
findings suggest that debaters become more persua-
sive with increased experience, especially average
debaters. However, the experience effect is not re-
flected in absolute experience measures, and hence
it is hard to operationalize for classification.

4.1 Engagement

Figure 1a shows that persuasive comments and
persuasive debaters are more engaging. We mea-
sure debater engagement by the average number of
replies to persuasive and non-persuasive comments.
Persuasive debaters get ~10% more replies to their
total comments compared to average debaters and
~30% more replies compared to poor debaters. Per-
suasive comments get ~250% as many replies as
non-persuasive comments.
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Figure 1: (a) Engagement of debaters by persuasive-
ness. (b) Evolution of the frequency of persuasive com-
ments. (c) Persuasiveness by debaters’ average com-
ment length.

Persuasiveness ∆ Count Score

Comments 0.02 0.72 0.03
Active Period -0.03 0.13 0.15

Table 1: Pearson ρ between three success measures
(Persuasiveness; ∆ Comment Count; Median Reddit
Comment Score) and two absolute experience measures
(Active Period: the time between the first and last com-
ment on CMV; Number of Comments).

4.2 Absolute Experience

Table 1 shows that the absolute measures of experi-
ence are insufficient. We can observe that neither
the active period—the time between the first and
latest comment—nor the comment count correlates
with persuasiveness or Reddit score. We disregard
the correlation between the total comment count
and the number of persuasive comments as evi-
dence of debater experience without observing a
correlation with persuasiveness.

4.3 Relative Experience

We model the relative experience of a debater on
CMV as seen from the comment: A debater is
inexperienced for her first comment and very expe-
rienced for her last; that is to say, the experience
of the debater d of a comment ct in a sequence
c1, . . . , cn is Experience(ct) = t

n . We analyze
the impact of experience gain of good and average
debaters on persuasiveness, persuasion frequency,
comment length, as length is the most indicative
feature in comment classification, and average com-
ment score, which represents the CMV commu-
nity’s opinion on persuasiveness.

Persuasiveness Figure 2a shows that the overall
persuasiveness of good debaters is largely unaf-
fected by experience while the persuasiveness of
average debaters almost doubles.
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Figure 2: Changes of various debater-level features with increasing relative experience. The color indicates
persuasiveness and the line style (dashes/dots) indicates the secondary variable.

Persuasion Frequency Figure 1b shows that the
persuasion frequency increases sharply up to the
5th persuasive comment for both good and aver-
age debaters and increases slightly up to the 15th
persuasive comment. This indicates that debaters
learn to replicate persuasive strategies and become
more persuasive with experience. We measure per-
suasion frequency as the number of non-delta com-
ments that occur between two consecutive delta
comments, as a fraction of the total comments
made. A decreasing delta-to-non-delta rate indi-
cates more frequent persuasions.

Comment Length Figure 2b confirms the estab-
lished assumption that length is highly indicative of
persuasiveness. There is no indication that relative
experience has any substantial impact on the length
of delta or non-delta comments.

Average Comment Score Figure 2c shows that
the mean-comment score, the alt-metric for com-
munity persuasiveness, increases with experience
but not consistently. On average, however, debaters
score higher on persuasive comments with increas-
ing experience. The effect. however, is negligible
on non-delta comments.

5 Debater Style Analysis

Stylistic features are frequently used to determine
the characteristics of authors. Since stylistic fea-
tures are indicative of persuasive comments, we
consider stylistic features to also be indicative of
persuasive debaters. In particular, we study the re-

lationship between a debater’s persuasiveness and
the lexical, syntactic, semantic, and pragmatic di-
mensions. We found notable differences in per-
suasiveness in each dimension. The most substan-
tial feature is again comment length. Additionally,
we found that better debaters tend to have lower
lexical diversity and syntactic complexity, but a
higher semantic diversity. We also found corre-
lations between certain word class patterns and
certain patterns of elementary argumentative units,
particularly rhetorical statements. Lastly, found
that persuasive debaters use political and cultural
identity frames more often.

5.1 Lexical Dimensions

Within the lexical dimension of style, we analyze
the relation between debater persuasiveness and the
(1) comment length and the (2) lexical diversity, in
particular the stop-word and type-token ratio.

Comment Length Figure 1c shows that debaters
with a higher mean comment length are also, con-
sistently and without apparent bound, more persua-
sive on average. Figure 2b shows, independently
of the debater’s experience, that persuasive com-
ments are longer than non-persuasive comments
and that good debaters write longer (~20%) com-
ments. These findings are consistent with previous
evidence (cf. Section 2) and suggest that the com-
ment length is highly indicative of the persuasive-
ness of comments and debaters alike.
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WC n-gram ρ WC n-gram ρ

IN JJ 0.11 PRP VBP -0.13
NN IN JJ 0.10 PRP -0.12
JJ NN IN 0.09 WRB VBP -0.11
VBG DT JJ 0.08 NN WRB -0.11

Table 2: Top Pearson ρ between a word class n-gram
and persuasiveness.

Lexical Diversity Figure 2d shows that the differ-
ences in the stop-word ratio are consistently small
(<1%) and have no direction since good debaters
are between poor and average ones. However, Fig-
ure 2e shows that the type-token ratio has a higher
effect size of 2% among the debater groups and has
a direction. This suggests that good debaters write
comments with lower lexical diversity.

5.2 Syntactic Dimensions
Within the syntactic dimension of style, we ana-
lyze the relationship between persuasiveness and
syntactic complexity and the word class n-gram
distribution.

Syntactic Complexity The complexity of a de-
bater’s text was measured based on the dependency
parse trees of all sentences in her top-level com-
ments. We measure the Pearson correlation be-
tween debater persuasiveness and three common
syntactic complexity measures:2 Outdegree central-
ity (ρ = −0.17), Closeness centrality (ρ = −0.16),
and the number of dependents per word (ρ = 0.17).
Since a high centrality indicates complex syntax,
and persuasiveness is negatively correlated with
centrality, our results suggest that good debaters
use less complex syntax. However, all correlations
are weak (ρ <= 0.25).

Word class n-grams Table 2 shows the word
class 1–3-grams with the strongest correlation with
persuasiveness. Here, better debaters use adjectives
more and PRP VBP (e.g. you did . . . ) as well
as WRB VBP (e.g. how did . . . ) less frequently.
Although the correlation is weak and word-class
n-grams are difficult to interpret, these results may
indicate an impact of certain syntactical structures
on debater persuasiveness as for comment persua-
siveness (cf. Tan et al. (2016)). We determined
the word class n-grams using NLTK and the Penn
tagset since all CMV comments are English. We
only inspected the 1,000 most frequent n-grams.

2We measured the complexity using https://github.com/
tsproisl/textcomplexity

5.3 Semantic Dimension
Within the semantic dimension of style, we mea-
sure the relation between debater persuasiveness
and the (1) semantic similarity between a debater’s
comment and the original post and the (2) semantic
diversity within the comments of a debater. We
use Word Movers Distance3 (WMD, Kusner et al.,
2015) to measure the semantic similarity.

Similarity between Comment and Original Post
Figure 2f shows that the WMD is lower the more
persuasive a debater is. Hence persuasive debater’s
comments are semantically more similar to the orig-
inal post.

Semantic Diversity Figure 2f shows the seman-
tic diversity for debaters with different persuasive-
ness, whereas the semantic diversity is higher for
better debaters.

The semantic diversity should indicate if a de-
bater prefers semantic depth (few different con-
cepts discussed) or breadth (many different con-
cepts discussed) within each comment. For lack of
a better (lexeme-agnostic) intra-document seman-
tic similarity measure, we use a sentence-based
heuristic:

SemDiv(ck) =
2

n2 − n
n−1∑

i=1

n∑

j=i+1

WMD(si, sj).

Here, the semantic diversity of a debater is the
average diversity of the comments ck = s1, . . . , sn,
and the diversity of the comments is the average
WMD between each pair of sentences (si, sj). We
assume WMD captures the semantic diversity be-
tween two sentences in this way.

5.4 Pragmatic Dimension
Within the pragmatic dimension of style, we mea-
sure the relation between debater persuasiveness
and (1) the distribution of argumentative units: el-
ementary units, claims, and premises, (2) framing
strategies.

Argumentative Units Table 3 shows the ar-
gumentative unit n-grams which correlate the
strongest with debater persuasiveness, while all
other unit n-grams do not correlate with ρ ≤ 0.05.
All correlating units are elementary units, with
rhetorical statements being the most persuasive. No
claim or premise types correlate in a meaningful
way with persuasiveness.

3We use Gensim with fastText embeddings
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Unit n-gram ρ Unit n-gram ρ

rhetoric -0.194 policy -0.110
value -0.126 rhetoric rhetoric -0.101
rhetoric value -0.114 rhetoric rhetoric none -0.063

Table 3: Argumentative units with largest absolute Pear-
son ρ with CMV debaters’ persuasiveness. All other
combinations correlated with ρ ≤ 0.05

We measure the Pearson correlation between
persuasiveness and the relative frequency of ele-
mentary unit 1–3-grams, where each sentence of a
debater’s comment is assigned one unit. We use the
five elementary units testimony, fact, value, policy,
and rhetorical statement proposed by Egawa et al.
(2019) for CMV comments. We determine the el-
ementary unit of a sentence with a BERT-based
classifier trained on Egawa et al. (2019)’s anno-
tated dataset of CMV comments and original posts;
The classifier reaches a 6-class (including None)
micro-accuracy of 0.75 on the standard split. Since
the dataset annotates units on a token level, we as-
sign each sentence the unit assigned to its tokens,
discarding sentences with multiple units annotated.

We also measure the Pearson correlation be-
tween persuasiveness and the relative frequency
of 1–3-grams of claim and premise types, where
each sentence of a debater’s comment is assigned
one type. We use the 2-stage classification scheme
proposed by Hidey et al. (2017) for CMV com-
ments. Each sentence is first classified with a BERT
model as claim, premise, or neither. Claims are
then classified as interpretation, evaluation/rational,
evaluation/emotional, or agreements. Premises are
classified into eight classes, one for each combina-
tion of ethos, logos, and pathos using three binary
classifiers. We trained each of the five needed clas-
sifiers on Hidey et al. (2017)’s datasets of CMV
discussions.

Frames Figure 3 shows how often debaters with
different persuasiveness use certain frames in their
comments. Most frames are used equally often
independently of persuasiveness, except for the
political and cultural identity frames, which are
used notably more often by better debaters.

We determined frames by classifying each sen-
tence of each comment of a debater with one of
the 15 frames used in Card et al. (2015)’s Media
Frames corpus of manually annotated news articles.
We trained a BERT classifier to classify the sen-
tences, which reaches a micro accuracy of 0.68 in
5-fold random cross-validation.
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Figure 3: Distribution over the 15 sentence-level frames
for good, average, and poor debaters.

6 Debater Persuasiveness Prediction

In addition to the analytical scrutiny of debater per-
suasiveness, we conduct an experimental validation
of our findings by classifying debaters by persua-
siveness. We define the general task of debater-
level persuasiveness prediction as: Given a debater
d with comments c1, . . . , cn, classify this debater
as persuasive (good) or non-persuasive (average or
poor). To conclusively supplement our analysis, we
individually inspect the classification performance
of the introduced features (cf. Section 5).

We encoded the syntactic, semantic, and prag-
matic features of our analysis for each of the 3,801
debaters in our CMV debaters’ corpus. Each en-
coding was chosen to obfuscate comment length as
far as reasonable. We encoded the word class and
all argumentative unit n-grams tf-idf vectors of the
aggregated comments. We encoded the numerical
features, outdegree centrality, closeness centrality,
and the number of dependents for text complex-
ity and comment-op distance and within-comment
distance for WMD, by averaging comment-level
counts per debater. We encoded each of the 15
frames with the absolute and relative number of
comments that utilize a frame.

As baselines, we selected feature sets previously
used for comment persuasiveness prediction: Bag-
of-Words, vocabulary interplay after (Tan et al.,
2016), which covers OP and commenters’ vocab-
ularies’ absolute and relative overlap and Jaccard
similarity, and common stylometrics, which cover
counts of words, selected word classes, links, word
lists, symbols, type-token ratio, and readability
scores. The baseline feature sets were implemented
trivially following the related work.

We consider two binary classification settings
for our experimental validation: (1) good vs. aver-
age and (2) good vs. poor. We maintained a bal-
anced distribution of the classes (1,267 each). The
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Features vs Average vs Poor

Baseline Features
Bag of Words 0.60 0.68
Stylometry 0.62 0.67
Vocabulary Interplay 0.58 0.67

Syntactic Features
Word class n-grams 0.57 0.51
Text Complexity 0.65 0.61

Semantic Features
Word Mover’s Distance 0.59 0.63

Pragmatic Features
Elementary Units 0.51 0.59
Claim or Premise 0.47 0.55
Claim Type 0.48 0.58
Premise Type 0.48 0.58
Claim and Premise Types 0.48 0.58
Frames 0.70 0.72

Table 4: Macro F1 score of the two classification set-
tings: Good vs. Average debaters and Good vs. Poor
debaters.

classification is done using logistic regression with
default parameters on a random 80-20 train-test
split. The effectiveness of the classifiers is reported
using macro F1-score as shown in Table 4.

The classification results reveal several findings:
First, most features distinguish good from poor
debaters better than good from average ones. Syn-
tactic features are the only exception to this trend,
which can not be explained by our analysis. Sec-
ond, Bag-of-words is a strong feature for the two
settings as it outperforms most of the other features.
Besides, the weak effectiveness of the argumenta-
tive features is similar to the observations of Egawa
et al. (2019); the mere distribution of argumentative
units in the text is insufficient to identify its persua-
siveness. Third, the distribution of the frames in the
debaters’ comments results in the best scores across
the two experimental settings. The most discrim-
inating frames are ‘Quality of Life’, ‘Morality’,
and ‘Health and Safety’, all with negative weights
towards the ‘good debater’ class.

7 Conclusion and Discussion

The persuasion skills of debaters can vary depend-
ing on different cultural and social aspects, among
others. Understanding how people argue and what
makes some debaters more successful than others
are interesting research questions that have been ne-
glected in the literature. This paper has contributed
in this regard by modeling debater effectiveness in
CMV and analyzing their behavior and argumenta-
tive stylistic choices, demonstrating several inter-

esting insights that can be utilized for improving
the persuasion skills of new debaters and assessing
the development of advanced text generation and
writing assistant tools.

Still, we think there is room for further analy-
sis. First, we quantified the persuasiveness of CMV
debaters based on awarded ∆s only; Although it ap-
pears to be a standard method in previous work, we
believe that a more comprehensive quantification,
possibly using human judgments and a more fine-
grained scale, would account for a degree of sub-
jectivity to consider the evaluating user’s idiosyn-
crasies. Guo et al. (2020) touches on this briefly,
finding that despite general agreement about what
is persuasive, there are differences in the assess-
ment of persuasion based on the positions of the
evaluating party.

Second, while argumentative features based on
the distribution of argumentative units did not per-
form well in our prediction task, possible improve-
ments can be achieved through modeling features
that can capture the effective use of argumentative
units. A possible direction is to identify the inter-
dependencies between the different argumentative
units in the text (Li et al., 2020) as well as their
relative arrangement (Hidey et al., 2017).

Third, other, more in-depth features can disclose
useful insights into debater persuasiveness. Con-
ceivable are features that better model behavior like
experience and the dynamic of debater interaction
or the velocity of experience gain.

Fourth, using more sophisticated models in the
prediction task may lead to better results, although
our logistic regression is ideal to compare class
separability by feature. Guo et al. (2020) proposed
using conditional random fields (CRF) to model
the cumulative effect of persuasion in CMV dis-
cussions, and Li et al. (2020) used bi-LSTM and
BERT to model their persuasiveness task.

8 Impact Statement

In a broader context, the findings of this work sup-
port the detection, writing, or generation of highly
persuasive text, particularly in a social media reg-
ister. This capability can be abused to generate
highly persuasive and misleading, deceptive, fake,
or abusive text. Hence, knowledge about debater
persuasiveness bears the potential for more persua-
sive believable social bots. Our work, however,
with its focus on the analytical side, bears the same
potential to detect generated, hyper-persuasive text.
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As with all author-level work on social media,
our methods bear the potential to profile users
of social media platforms and use the informa-
tion against them, for example, to automatically
block or downvote poor debaters, track them across
websites, and possibly reveal their identity. We
have taken care to anonymize the user’s IDs in
our dataset and not release any models that would
(re-)generate information about them.
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Abstract
Sentiment analysis has always been an impor-
tant research direction in natural language pro-
cessing. The research can be divided into ex-
plicit sentiment analysis and implicit sentiment
analysis according to whether there are senti-
ment words in language expression. There have
been many research results in explicit sentiment
analysis. However, implicit sentiment analysis
is rarely studied. Compared with explicit senti-
ment expression, implicit sentiment expression
usually omits a lot of knowledge and common
sense, and context also has an important impact
on implicit sentiment expression. In this paper,
we use a knowledge graph to supplement im-
plicit sentiment expression and propose a novel
Implicit Sentiment Analysis model combining
Knowledge enhancement and Context features
(dubbed KC-ISA). The KC-ISA model can
effectively integrate external knowledge and
contextual features by the coattention mecha-
nism. Finally, we conduct experiments on the
SMP2019 implicit sentiment analysis dataset.
Moreover, to verify the generality of the model,
we also conduct experiments on two common
sentiment analysis datasets. The results on
three datasets show that our proposed KC-ISA
model can achieve better results on text senti-
ment analysis.

1 Introduction

With the rapid development of the Internet, the In-
ternet has become the media form with the widest
audience and the fastest reflection of social dynam-
ics in today’s society. Online social media has be-
come an excellent platform in which all users can
easily participate, share and communicate. There-
fore, a large number of texts that reflect the user’s
subjective consciousness have begun to appear, and
the texts with the user’s sentiment tendencies are
also increasing.

Text sentiment analysis is the process of analyz-
ing, summarizing, and reasoning subjective senti-

∗ Corresponding author

ment texts. From the expression level of text, it
can be divided into explicit sentiment text and im-
plicit sentiment text according to whether the text
contains explicit sentimental words. Liu (2012)
firstly divided sentiment into subjective opinion
and factual implication opinion. The former is a
subjective statement that gives the polarity of sen-
timent, while the latter is an implicit expression
of sentiment through an objective statement. Liao
et al. (2019) defined implicit sentiment sentences
as "language fragments that express subjective sen-
timent but do not contain explicit sentiment words".
As the basic research of sentiment analysis, the
analysis of explicit sentiment text has abundant
relevant research results. However, the emotions
reflected by people’s behavior and feelings towards
objective things are often rich and abstract and are
usually expressed in subtle ways. For example,
using objective statements to express one’s senti-
ment, or using rhetorical expressions to describe
them vividly, is called implicit sentiment expres-
sion. That means the implicit sentiment expression
depends on something other than the sentiment
words. So implicit sentiment analysis first needs to
discover these dependencies. According to Li et al.
(2021b), about 30% of sentences contain implicit
sentiment.

By reviewing the relevant paper (Liao et al.,
2019) and analyzing the data, we summarized that
implicit sentiment sentences have the following
three distinct dependencies:

(1) Context Dependency
Below are two paragraphs of implicit sentiment

expression text E1 and E2, each of which contains
two sentences S1 and S2.

E1-S1: This orange is only sold for 1 yuan a
pound. E1-S2: It was so cheap!

E2-S1: This orange is only sold for 1 yuan a
pound. E2-S2: It must be very bad!

E1-S1 and E2-S1 are the target sentences for
sentiment analysis. In E1-S1, because the price
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of oranges is low, the speaker has the intention to
buy and expresses a positive sentiment. In E2-S1,
because the price is too low, the speaker doubts the
taste of orange and expresses a negative sentiment.
The same sentence expresses different sentiments
due to the difference between E1-S2 and E2-S2.
Therefore, contextual information is an important
factor affecting implicit sentiment expression. If
we want to accurately analyze implicit sentiment
expression, it is crucial to integrate contextual fea-
tures.

(2) Sentiment Target Dependency
Let’s look at the next two implicit sentiment

texts.
E3: In the race, he runs like a cheetah.
E4: In the race, he runs like a turtle.
E3 and E4 are exactly the same except for the

sentiment target, but the first sentence is positive
and the second sentence is negative. The two sen-
tences express completely opposite implicit senti-
ment only by the change of the sentiment target,
indicating that the implicit sentiment is also closely
related to the sentiment target.

(3) Knowledge and Common Sense Depen-
dency

Short text reviews usually omit a lot of knowl-
edge and common sense, and it is difficult to judge
the true sentiment polarity from the text itself. For
example, in E3 and E4, to accurately judge the
sentiment of these two sentences, we also need to
have certain knowledge and common sense, and
we must know that cheetahs run fast, but turtles
are slow. But the target sentence we want to ana-
lyze does not contain such background common
sense. The external knowledge just makes up for
these shortcomings. It contains the relationship
between sentiment words and non-sentiment words
and evaluation objects in different fields.

Therefore, to address the three distinct depen-
dencies of implicit sentiment expression, we need
model context, sentiment target, and external
knowledge. Especially, for knowledge and com-
mon sense dependency, we introduce a knowledge
graph as external common sense to supplement im-
plicit sentiment sentences to enrich the expression
of sentiments. Inspired by the Coattention (Xiong
et al., 2017) mechanism, in this paper, we pro-
pose KC-ISA, a novel Implicit Sentiment Analysis
model combining Knowledge enhancement and
Context features, which can effectively integrate
external knowledge and contextual features to com-

plement sentiment expressions. Moreover, by the
pre-trained model, KC-ISA can utilize external
knowledge and contextual features more effectively.
Extensive experiments show that our proposed KC-
ISA model can effectively improve the accuracy of
implicit sentiment analysis.

In summary, the main contributions of this paper
are as follows:

First, we propose KC-ISA model for three dis-
tinct dependencies of implicit sentiment analysis.
Moreover, we combined KC-ISA model with the
pre-trained model BERT as KC-ISA-BERT. KC-
ISA model can effectively integrate contextual fea-
tures and incorporate external knowledge into im-
plicit sentiment analysis.

Second, we conduct experiments on implicit sen-
timent dataset, and the results show that our pro-
posed model can effectively improve the accuracy
of implicit sentiment analysis.

Third, considering the real review data is a mix-
ture of explicit and implicit data, we further con-
ducted experiments on two common sentiment anal-
ysis datasets. The experimental results further vali-
date the effectiveness and general applicability of
our KC-ISA model.

The datasets and code have been uploaded
to https://github.com/AnonymousColing2022/KC-
ISA

2 Related Work

Related work mainly includes two parts, one is
implicit sentiment analysis, and the other is inte-
grating external knowledge in natural language pro-
cessing tasks.

2.1 Implicit Sentiment Analysis

Liu (2012) first classified sentiment analysis into
explicit and implicit sentiment analysis. Liao et al.
(2019) focused on the recognition of fact-implied
implicit sentiment at the sentence level and pro-
posed a multi-level semantic fusion method based
on representation learning to learn recognition fea-
tures. Greene and Resnik (2009) used grammati-
cal structure to establish language-driven features
and implicit sentimental associations for sentences
without obvious sentimental indicators but still able
to express sentiments or opinions, and used simi-
larity calculation to improve the effect of text sen-
timent analysis. Wei et al. (2020) proposed a BIL-
STM model with multi-polar orthogonal attention
for implicit sentiment analysis. Compared with
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traditional single-attention models, multi-polar at-
tention can identify the differences between words
and sentimental orientations. Wang et al. (2021)
proposed an implicit sentiment sentence discrimi-
nation method fused with context information and
established a multi-level orthogonal attention C-
MPOA model fused with context information. Zuo
et al. (2020) obtained the features of implicit senti-
ment sentences and context through GCN, and pro-
posed a context-specific heterogeneous graph con-
volutional neural network(CsHGCN) to solve the
problem of missing sentimental words. Zhou et al.
(2021) represented an event as the combination of
its event type and the event triplet. Based on such
event representation, they proposed a model with a
hierarchical tensor-based composition mechanism
to detect sentiment in text. The previous works
mainly focused on the structure of the sentence it-
self and its context. To our knowledge, it is the first
time that we introduced the knowledge graph as
external knowledge into the implicit sentiment anal-
ysis task and then integrated the contextual features
to enable the model to better understand the im-
plicit sentiment contained in the sentence, thereby
improving the accuracy of the implicit sentiment
analysis.

2.2 Integrating External Knowledge

Not only in sentiment analysis, but in many nat-
ural language processing tasks, there are a lot of
works on how to introduce external knowledge for
knowledge enhancement. Wang et al. (2018) intro-
duced the information of the knowledge graph in
the sorting task of the recommendation system and
established a Ripple Set through the user’s histori-
cal information, that is, the nodes corresponding to
the knowledge graph, and each step will be propa-
gated to the adjacent nodes, thereby improving the
recommendation accuracy and variety. Liu et al.
(2018) added the embedding of the input entities
in the knowledge graph in the text matching task
as additional supervision information to the model,
which can well help the model achieve higher-level
semantic understanding. Zhang et al. (2019) mod-
ified the original encoder structure of BERT and
added entity embedding input. In this way, external
knowledge was introduced in pre-training process
to improve the effect of downstream tasks. Wang
et al. (2020) introduced external knowledge in nat-
ural language inference tasks. They searched for
the entities corresponding to the subject, predicate,

and object in the two sentences in the knowledge
graph, found the path between the two correspond-
ing entities, then obtained the representation of
the corresponding knowledge through BILSTM,
and finally combined it with the original text to in-
fer. Instead of directly adding external knowledge,
Sun et al. (2019) modified BERT’s mask strategy.
Through entity-level mask and phrase-level mask,
the model implicitly learns relevant knowledge and
longer semantically dependent information, such
as the relationship between entities, the properties
of the entity, and the type of the events, which
can make the model have better generalization and
adaptability. There are also many related works on
integrating external knowledge in natural language
processing tasks, but less research on implicit senti-
ment analysis. To our knowledge, it is the first time
that we have introduced both knowledge graph and
contextual features into implicit sentiment analy-
sis task, which perfectly matches the dependencies
of implicit sentiment expression (context depen-
dency, sentiment target dependency and knowledge
and common sense dependency), which can signif-
icantly improve the accuracy of implicit sentiment
analysis.

3 Proposed Model

We summarized three dependencies of implicit sen-
timent expression earlier, i.e. context dependency,
sentiment target dependency, and knowledge and
common sense dependency. Since there are no
explicit sentiment words in implicit sentiment sen-
tences as a guide, traditional sentiment analysis
methods are not very effective. Therefore, we pro-
posed KC-ISA model for the three distinct depen-
dencies. The model can effectively model the rela-
tionship between the target sentence and the con-
text, and incorporate external knowledge, which
can effectively enrich the implicit sentiment expres-
sion of the sentence and improve the accuracy of
implicit sentiment analysis.

3.1 Problem Definition

For a given sentence S =< C, T >, where C is
context and T is target sentence, our goal is to
judge the sentiment polarity of the target sentence
T based on the context C and external knowledge
fusion when the target sentence has no sentimental
words. For example, for the previously mentioned
implicit sentiment texts E1 and E2, E1-S1 and E2-
S1 are target sentences T , and E1 and E2 are the
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contexts C of E1-S1 and E2-S1, respectively. The
other two implicit sentiment texts E3 and E4 con-
tain only target sentences, and we choose them-
selves as their contexts. In sections 3.2 and 3.3
below, we elaborate on our proposed model KC-
ISA to solve this problem.

3.2 Structure of KC-ISA Model
The overall structure of KC-ISA model is shown in
Figure 1. From the figure, we can see that KC-ISA
model is divided into three parts: the Contextual
Features Fusion module, the Knowledge Fusion
module and the BiAffine module.

Contextual Features Fusion module
(1) Input layer: Segment the context C and the

target sentence T , and then convert each word in
the sentence into a vector through the pre-trained
Baidu Encyclopedia embedding (Li et al., 2018)
to obtain Sc = {wc1, wc2, ..., wcnc} ∈ Rnc×de and
St = {wt1, wt2, ..., wtnt} ∈ Rnt×de , where nc is
the maximum length of the context, nt is the max-
imum length of the target sentence, and de is the
dimension of embedding.

(2) BILSTM layer: The BILSTM is commonly
used to deal with various tasks in natural lan-
guage processing, and the use of BILSTM can
effectively capture the relationship of each word
in a sentence. We encode the obtained Sc and
St sentences through the BILSTM layer and get
Hc = {hc1, hc2, ..., hcnc} ∈ Rnc×2d and Ht =
{ht1, ht2, ..., htnt} ∈ Rnt×2d via formula (1),

hn = BILSTM(hn−1, hn+1, wn) (1)

where wn is trainable parameter, d is the number
of BILSTM hidden layer units.

(3) Coattention layer: Coattention is a com-
plex attention mechanism proposed by Xiong et al.
(2017), and used to solve the problems in question
answering. Taking reading comprehension as an ex-
ample, Coattention is like a skill that we use when
doing reading comprehension: read with questions.
Look at the questions first, and then go to the tar-
geted reading of the text to find the answers. In
this module, we use the Coattention mechanism to
extract effective information from the context to
enrich the target sentence. The calculation process
of Coattention is as follows:

First, convert the previously obtained Hc and Ht

through a layer of nonlinear network to obtain the
encoder vector via formula (2) and (3),

Hc = tanh(WcHc + bc) (2)

Ht = tanh(WtHt + bt) (3)

where Wc, Wt, bc and bt are trainable parameters.
Second, use Hc and Ht to calculate the correla-

tion matrix L according to formula (4).

L = Hc(Ht)
T ∈ Rnc×nt (4)

Third, the correlation matrix L can be used to
calculate the attention score Ac of each word in the
contextC to the target sentence T , and the attention
score At of each word in the target sentence T to
each word in the context C via formula (5) and (6).

Ac = softmax(L) ∈ Rnc×nt (5)

At = softmax(LT ) ∈ Rnt×nc (6)

Then we get the corrected vector Cc of the con-
text after the attention calculation via formula (7).

Cc = AcHt ∈ Rnc×2d (7)

Moreover, we use the vector of the context Hc

to concatenate the corrected vector Cc, and then
obtain the corrected target sentence vector Ct after
the attention calculation via formula (8),

Ct = At[Hc;Cc] ∈ Rnt×4d (8)

where Ct is the co-dependent representation of the
context C and the target sentence T , also known as
the Coattention vector of the context and the target
sentence.

Finally, a layer of BILSTM is used to fuse the
original target sentence Ht with the Coattention
vector Ct for getting the final vector Ut of fusion
context and target sentence information via formula
(9) and (10).

utn = BILSTM(un−1, un+1, [ctn;htn]) (9)

Ut = {ut1, ut2, ..., utnt} ∈ Rnt×2d (10)

Knowledge Fusion module
We choose XLORE (Wang et al., 2013) bilin-

gual encyclopedia knowledge graph as an external
knowledge base. XLORE is the first large-scale
knowledge graph that balances Chinese and En-
glish knowledge. It currently contains more than
2.3 million concepts, more than 500,000 relation-
ships, and more than 25 million instances, covering
most of the common sense concepts. In addition to
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Figure 1: The overall structure of KC-ISA model

selecting the knowledge graph, it is also necessary
to obtain the representation vector of knowledge.
We use the openKE (Han et al., 2018) platform
and select the TransE method to train the entities
in XLORE and obtain the vector representation of
knowledge entities.

(1) Input layer: The target sentence T is seg-
mented, and then each word is searched for the
corresponding vector in the trained knowledge
graph representation vector. If there is no corre-
sponding entity, this word vertor is set to 0, and
Sk = {wk1, wk2, ..., wknt} ∈ Rnt×dk is obtained,
where nt is the maximum length of the target sen-
tence, dk is the dimension of the trained knowledge
graph vector.

(2) BILSTM layer: The function and cal-
culation method of the BILSTM layer here are
consistent with the Contextual Features Fusion
module. After calculation, we can get Hk =
{hk1, hk2, ..., hknt} ∈ Rnt×2d, where d is the num-
ber of BILSTM hidden layer units.

(3) Coattention layer: The Coattention mecha-
nism is also used to fuse the features of the external
knowledge and the target sentence. The calculation
method is basically the same as that of the Contex-
tual Features Fusion module. The context repre-
sentation vector Hc is replaced with the knowledge
representation vector Hk. After the above calcu-
lation, the final fusion of external knowledge and

target sentence information vector Uk is obtained.

Uk = {uk1, uk2, ..., uknt} ∈ Rnt×2d (11)

BiAffine module
To effectively exchange relevant features be-

tween the Contextual Features Fusion module and
Knowledge Fusion module, we adopt a mutual Bi-
Affine (Li et al., 2021a) transformation as a bridge.
We formulate the process as follows:

U ‘
k = softmax(UkW1(Ut)

T )Ut (12)

U ‘
t = softmax(UtW2(Uk)

T )Uk (13)

where W1, W2 are trainable parameters. Finally,
we contact the obtained U ‘

t and U ‘
k vectors and in-

put it into the classifier for classification, and obtain
the final sentiment polarity of the target sentence.

3.3 KC-ISA-BERT
In natural language processing tasks, the pre-
trained language model is a topic that cannot be
avoided. In addition to the above-mentioned use
of BILSTM to process vectors, we also combine
the pre-trained model BERT to propose KC-ISA-
BERT, and compare it with the native BERT model,
which fully proves the effectiveness of KC-ISA
mechanism combining context and external knowl-
edge. The calculation process is mainly similar to
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KC-ISA model, replacing the BILSTM layer with
the BERT structure. The position of BERT in the
KC-ISA-BERT is shown in Figure 2.

Figure 2: The overall structure of KC-ISA-BERT model

4 Experiment and Analysis

4.1 Datasets and Evaluation Metric

(1) Datasets: The main goal of this paper is to im-
prove the accuracy of implicit sentiment analysis.
We verify the effectiveness of KC-ISA model on
the Chinese implicit sentiment analysis dataset of
the "Tuers Cup" held at the 8th Social Media Pro-
cessing Conference (SMP2019). The data involves
Weibo, travel websites, forums, and other fields.
Sentiment labels are divided into three types: posi-
tive, neutral, and negative. The detailed statistics
of the dataset are presented in Table 1.

Subset Positive Neutral Negative Total
training 3391 6403 3561 13355

development 835 1577 877 3289
testing 835 1577 877 3289

Table 1: The proportion of the implicit sentiment
dataset.

In addition, in order to verify the generality and
effectiveness of our proposed model, two common
datasets are selected for verification. The first is the
NLPCC2014 Sentiment Classification with Deep
Learning dataset, which is a binary classification
without context. The specific division is shown in
Table 2. The second is the NLPCC2014 Emotion
Analysis in Chinese Weibo Texts dataset. This
dataset is a 7-category dataset containing context.
In this dataset, some sentences have two labels,
which are primary emotion and secondary emotion.

We choose the primary emotion as the final label
of the dataset. The division of this dataset is shown
in Table 3.

Subset Positive Negative Total
training 3350 3350 6700

development 825 825 1650
testing 825 825 1650

Table 2: The proportion of the Sentiment Classification
with Deep Learning dataset.

(2) Evaluation Metric: We choose the F1 −
score as the evaluation metric of the model. The
specific calculation method is shown in formulas
(14) and (15),

F −macro = 1

N

N∑

i=1

F1i (14)

F1i =
2 ∗ Pi ∗Ri
Pi +Ri

(15)

where i is the sentiment polarity and Pi and Ri are
the precision and recall, respectively, of instances
with sentiment polarity i.

4.2 Implementation Details
In KC-ISA, the initialization embedding of the
neural network selects Baidu Encyclopedia pre-
training embedding (Li et al., 2018) with dimension
300. The number of BISLTM layers is 2 and the
hidden unit size is 256. The learning rate is 0.001,
the maximum length of the context is 300, and the
maximum length of the target sentence is 128. The
batch size is selected as 128, and the dropout is
0.6. In KC-ISA-BERT, we use the BERT-Adam
optimizer, the dropout is set to 0.5, the number of
neural units is 768, which are the default configura-
tions of BERT, and the batch size is 16.

4.3 Baselines
We have selected some models that perform well in
sentiment analysis as the baselines. The description
and implementation details are as follows:

(1) DPCNN (Johnson and Zhang, 2017):
DPCNN continuously deepens the network by
stacking convolution modules and negative sam-
pling layers, which can effectively extract depen-
dencies in long-distance text. The dropout is set to
0.5, the number of convolution channels is 256, the
batch size is 128, and the learning rate is 0.001.

(2) TextCNN (Kim, 2014): TextCNN has a sim-
ple structure, but it is very effective in processing
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Subset Like Disgust Fear Surprise Sadness Happiness Anger Total
training 2854 2097 200 550 1660 1879 1272 10512

development 702 516 50 135 409 463 314 2589
testing 703 517 49 135 409 463 313 2589

Table 3: The proportion of the Emotion Analysis in Chinese Weibo Texts dataset.

Models Implicit Sentiment datasets Sentiment Classification dataset Chinese Weibo Texts dataset
Accuracy F1 Accuracy F1 Accuracy F1

DPCNN 0.759 0.735 0.773 0.773 0.513 0.438
TextCNN 0.762 0.721 0.764 0.764 0.576 0.545
TextRCNN 0.769 0.738 0.756 0.756 0.538 0.474
BILSTM 0.755 0.723 0.750 0.750 0.524 0.454
BILSTM+Attention 0.761 0.734 0.760 0.759 0.547 0.465
Transformer 0.760 0.728 0.740 0.740 0.543 0.450
MPOA(ELMo)* - 0.680 - - - -
MPOA(random)* - 0.675 - - - -
MPOA(TENCE)* - 0.733 - - - -
C-MPOA(ELMo)* - 0.694 - - - -
C-MPOA(random)* - 0.690 - - - -
C-MPOA(TENCE)* - 0.746 - - - -
our KC-ISA 0.786 0.755 0.776 0.775 0.687 0.608
BERT(target sentence only) 0.803 0.787 0.822 0.822 0.648 0.595
MPOA(BERT)* - 0.773 - - - -
our KC-ISA-BERT 0.836 0.817 0.828 0.828 0.724 0.687

Table 4: The performance of implicit and explicit sentiment analysis..

short text sentiment analysis. The dropout is set
to 0.5, the number of convolution channels is 128,
the size of the convolution kernel is a mixed con-
volution of 2 and 3, the batch size is 128, and the
learning rate is 0.001.

(3) TextRCNN (Lai et al., 2015): TextRCNN
uses a bidirectional recurrent structure to obtain
contextual information, which can reduce noise
more than traditional neural networks, and can pre-
serve word order in a large range when learning
text expressions. Then, TextRCNN uses the maxi-
mum pooling layer to obtain important parts of the
text, and automatically determine which feature
plays a more important role in the text classifica-
tion process. The dropout is 0.5, the learning rate
is 0.001, the number of hidden layer units is 256,
and the number of hidden layers is 2.

(4) BILSTM (Graves and Schmidhuber,
2005): BILSTM is widely used in natural language
processing tasks. In this paper, the parameters of
the BILSTM model are dropout of 0.5, learning
rate of 0.001, the number of hidden layer units is
256, and the number of hidden layers is 2.

(5) BILSTM+Attention (Zhou et al., 2016):
BILSTM with an attention mechanism has been the
most popular and effective model in recent years.
The parameters of the BILSTM+Attention model
are dropout of 0.5, learning rate of 0.001, the num-

ber of hidden layer units is 256, and the number of
hidden layers is 2.

(6) Transformer (Vaswani et al., 2017): Trans-
former is a model structure that avoids recurrent
and completely relies on the attention mechanism
to model the global dependencies of input and out-
put. Because the modeling of dependencies relies
entirely on the attention mechanism, the attention
mechanism used by the Transformer is called self-
attention. The number of hidden layer units in the
Transformer model is 1024, the last hidden size is
512, the number of attention heads is 5, and the
number of layers of the encoder is 2.

(7) MPOA (Wei et al., 2020): MPOA is a BIL-
STM model with multi-polarity orthogonal atten-
tion. Compared with traditional single attention
model, multi-polarity attention can identify the dif-
ferences between words and sentiment orientation,
which can be seen as an important feature of im-
plicit sentiment analysis.

(8) C-MPOA (Wang et al., 2021): C-MPOA is a
method for identifying implicit sentiment sentences
with contextual information. First, the model em-
bed implicit sentiment sentence representations by
using a multi-polar orthogonal attention representa-
tion model. Second, multi-polarity attention layers
are established by integrating context and modeling
the context information to mine the key information
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in the context. Finally, the contextual information
representation and the implicit sentiment sentence
representation are spliced together to make up for
the lack of information in the implicit sentiment
sentence itself.

(9) BERT (Devlin et al., 2019): BERT is a pre-
trained language representation model. It no longer
uses the traditional one-way language model or the
method of shallow splicing two one-way language
models for pre-training as before but uses a new
masked language model, so that it can generate
deep bidirectional language representations. BERT
has an excellent performance in various natural
language processing tasks.

4.4 Experiment and Analysis

To evaluate KC-ISA model, we used the F1 −
score as the main evaluation metric. The main
experimental results are reported in Table 4. The
experimental results with * represent references to
other papers. Since we could not obtain the test set
of the SMP2019 dataset, we divided the training
set and the development set in equal proportions,
so the dataset is slightly different from that used
by MPOA and C-MPOA. Our KC-ISA achieves
the best results on implicit sentiment analysis, with
an F1 − score of 0.755. At the same time, the
two common sentiment datasets have also been sig-
nificantly improved, especially the Chinese Weibo
Texts dataset containing context, which has been
improved from 0.545 of TextCNN to 0.608. There
are improvements on all three datasets, proving the
generality of KC-ISA model.

In the use of the pre-trained model, we directly
concatenated the context on both sides of the target
sentence, and found that the effect is worse than di-
rectly analyzing the target sentence. It is speculated
that the direct concatenation of the context will in-
troduce noise. Therefore, we also conducted an
experiment on the impact of the size of the concate-
nation of the context on the analysis of the target
sentence. The experimental results are shown in
Table 5. It can be seen from Table 5 that if the con-
text is directly concatenated into both sides of the
target sentence without processing, noise will be
introduced, which affects the analysis of the target
sentence, and as the length of contexts increases,
the F1− score is lower. So we choose BERT that
only contains the target sentence as the baseline.
From the bottom three rows of Table 4, we can see
that our KC-ISA-BERT has a significant improve-

ment over native BERT, especially for sentences
with context, and the F1− score is increased from
0.595 to 0.687, indicating that our KC-ISA-BERT
can effectively utilize external knowledge and con-
textual features.

Models Accuracy F1

BERT(target sentence only) 0.803 0.787
BERT(contains one sentence of context) 0.785 0.760
BERT(contains two sentences of context) 0.789 0.759

BERT(contains three sentences of context) 0.791 0.756

Table 5: The impact of the size of the splicing context
on implicit sentiment dataset.

Models Accuracy F1

BILSTM 0.755 0.723
KC-ISA(Knowledge Fusion module only) 0.760 0.730

KC-ISA(Contextual Features Fusion module only) 0.780 0.748
KC-ISA(Without BiAffine module) 0.780 0.753

KC-ISA 0.786 0.755

Table 6: Experimental results of ablation study on im-
plicit sentiment dataset.

4.5 Ablation Study
To further investigate the role of modules in KC-
ISA model, we conducted extensive ablation stud-
ies on the implicit sentiment dataset. The results
are reported in Table 6. KC-ISA (Knowledge Fu-
sion module only) is a combination of BILSTM
and Knowledge Fusion module. It can be seen that
integrating external knowledge can bring a 0.007
F1 − score improvement. KC-ISA (Contextual
Features Fusion module only) is a combination
of BILSTM and Contextual Features Fusion mod-
ule. It can be seen that integrating contextual fea-
tures can bring an F1 − score improvement of
0.025, which is the largest improvement among all
modules. KC-ISA (Without BiAffine module) is
a complete KC-ISA model without BiAffine mod-
ule, which reduces the interaction between external
knowledge and context, which will cause a certain
decline. Overall, our KC-ISA with all modules
achieves the best performance.

4.6 Discussion
Now there are some review data that contain both
positive and negative sentiments, so there are cer-
tain limitations to summarizing the sentiments of
a sentence with one label. For example, " The
scenery here is like the West Lake, but I waited in
line for two hours to buy tickets". The first sen-
tence expresses an implicit positive sentiment, i.e.
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the affirmation of the scenery. The second sen-
tence expresses an implicit negative sentiment. For
explicit sentiment analysis, there have been many
research results. However, for implicit sentiment
analysis, it involves different contexts, especially
the dependency of different external knowledge.
Therefore, our next research endeavour is to extract
multiple, more fine-grained implicit sentimental
tags in a sentence on the one hand, and extract the
aspects corresponding to the implicit sentiments in
a sentence on the other hand, so that the model can
better identify the various emotions contained in
the text.

Secondly, for potential ethical implications and
issues, different languages have different expres-
sion habits, involving cultural backgrounds, reli-
gious beliefs, and even ethics. Especially, when
applying the model to individual’s requirements
such as conversations, chats, and psychological
comfort, except for above common factors, there
are personal language biases, so the issues need to
be considered more.

5 Conclusion

In this paper, we summarized three distinct depen-
dencies of implicit sentiment analysis: context de-
pendency, sentiment target dependency, and knowl-
edge and common sense dependency. And the
XLORE bilingual encyclopedia knowledge graph
was selected as an external knowledge base to sup-
plement a large amount of common sense omitted
in implicit emotional sentences. Finally, we pro-
posed KC-ISA model for the distinct dependen-
cies of implicit sentiment analysis, and combined
the pre-trained model BERT to proposed KC-ISA-
BERT, which can effectively integrate contextual
features and external knowledge. To verify the
effectiveness and generality of the model, experi-
ments are conducted on an implicit sentiment anal-
ysis dataset and two common sentiment analysis
datasets, and the experiments show that our model
outperforms baselines.
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Abstract

While there is much research on cross-domain
text classification, most existing approaches fo-
cus on one-to-one or many-to-one domain adap-
tation. In this paper, we tackle the more chal-
lenging task of domain generalization, in which
domain-invariant representations are learned
from multiple source domains, without access
to any data from the target domains, and clas-
sification decisions are then made on test doc-
uments in unseen target domains. We propose
a novel framework based on supervised con-
trastive learning with a memory-saving queue.
In this way, we explicitly encourage examples
of the same class to be closer and examples of
different classes to be further apart in the em-
bedding space. We have conducted extensive
experiments on two Amazon review sentiment
datasets, and one rumour detection dataset. Ex-
perimental results show that our domain gen-
eralization method consistently outperforms
state-of-the-art domain adaptation methods1.

1 Introduction

Text classification is a highly important and widely
studied natural language understanding task. Re-
cent success in self-supervised pre-training has
significantly improved the state-of-the-art perfor-
mance in sentiment analysis. However, senti-
ment classification is widely known as a domain-
dependent task, mainly because sentiment expres-
sions can have different meanings in different do-
mains (e.g., “long” in “long waiting time” of a
restaurant review is negative, while in “long bat-
tery life” of a laptop review is positive). More-
over, the amount of labeled data is highly imbal-
anced across different domains. Many NLP do-
mains still lack sufficient labeled data for training

∗† Qingyu Tan is under the Joint PhD Program between
Alibaba and National University of Singapore.

†† Corresponding author.
1Our code is available at https://github.com/

tonytan48/MSCL.

a high-performance classifier. Therefore, it is cru-
cial to adapt sentiment knowledge from resource-
rich domains to low-resource domains. This strand
of research is known as domain adaptation (DA).
Prior works on domain adaptation typically follow
a one-to-one (Jiang and Zhai, 2007) or many-to-one
adaptation setting (Zhao et al., 2018), where the
model is usually trained on labeled data from the
source domain along with unlabeled data from the
target domain and is then evaluated on the target do-
main data. The usage of the unlabeled target data is
crucial in DA. Prior works mainly use it for domain-
invariant representation learning or model selection.
More recently, Wright and Augenstein (2020) have
demonstrated that large pretrained language models
(PrLMs) are able to achieve promising performance
for cross-domain sentiment classification. Subse-
quent works further improve the adaptation per-
formance through domain adversarial training (Du
et al., 2020; Karouzos et al., 2021), iterative pseudo-
labeling (Ye et al., 2020), or prompting (Ben-David
et al., 2022), where they all adapt the DA setting
and assume unlabeled target data is available dur-
ing model training.

However, in more realistic scenarios, one may
be asked to build a text classification model that
will be applied to unknown target domains, which
implies unlabeled target domain data is unavailable
during training or model selection. Domain gener-
alization (Li et al., 2018;Wang et al., 2021b;Wang
et al., 2021a) has been proposed to address this
problem by learning a universal representation us-
ing labeled data from multiple source domains,
without access to target domain data. Building
such a generalized model enables us to predict
sentiment polarity of emerging domains, such as
COVID-19 vaccines and pandemic-related medi-
cal equipment. Compared to domain adaptation,
the major advantage of domain generalization is
that one trained model can be used for all target
domains, whereas domain adaptation needs to train
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a tailored model for each target domain. To the
best of our knowledge, even though there are many
works that focused on multi-source domain adap-
tation (Zhao et al., 2018; Guo et al., 2020; Wright
and Augenstein, 2020), there is no prior work that
tackles domain generalization in the context of text
classification.

In this work, we focus on domain generalization
for text classification. We aim to build a general-
ized sentiment classifier using labeled source data
from multiple domains. The trained model can
be applied to other unseen domains. We train a
classifier to learn a joint hypothesis over all source
domain data. On this basis, we propose to use
supervised contrastive learning (SCL) to better cap-
ture the similarity between examples from different
domains but belong to the same sentiment class
and contrast them with examples belonging to the
other class. SCL explicitly pulls the representa-
tions from the same class together and repulses the
representations from different classes in the embed-
ding space. This objective helps the model better
extract the domain invariant features among all
source domains, thereby allowing a better classifi-
cation decision boundary. The usage of SCL helps
the classifier achieve better generalization ability,
which is especially beneficial to the domain gener-
alization scenario. Although SCL has previously
been applied to image classification tasks (Khosla
et al., 2020) and in-domain sentence-level classi-
fication tasks (Gunel et al., 2021), to the best of
our knowledge, we are the first to apply it in the
context of domain generalization. It is shown that
the performance of SCL is highly affected by batch
size as it requires a large number of contrasting ex-
amples for computing the contrastive loss (Khosla
et al., 2020;Gunel et al., 2021). An optimal batch
size requires large memory, making it impractical
in many use cases. To apply SCL without exces-
sive memory consumption, we further propose to
use a memory bank to store the representations to
increase the size of contrasting features, so that the
hidden representations for sentiment classification
will be reused for computing supervised contrastive
loss. In this way, we can significantly improve per-
formance compared to directly applying SCL for
text classification.

To examine our proposed method, we conducted
domain generalization experiments on two popular
Amazon review datasets (one monolingual and the
other multilingual) and on the PHEME rumour de-

tection dataset. Following previous works (Chen
and Cardie, 2018; Ye et al., 2020; Li et al., 2020;
Liu et al., 2021), different languages can be seen as
distinct domains based on a shared cross-lingual en-
coder. Hence, the domain generalization problem
can also be extended to language generalization.
We conducted experiments in cross-domain (CD),
cross-language (CL), and cross-language cross-
domain (CLCD) settings. In our experiments, our
proposed method is able to outperform the second
best domain adaptation method by 0.81% accuracy
score in sentiment analysis and 1.68% F1 score in
rumour detection.

Our contributions can be summarized as follows:

• We are the first to tackle the domain general-
ization problem for text classification.

• We proposed a novel memory-based alterna-
tive for supervised contrastive learning to im-
prove its performance. Experimental results
show that our proposed method consistently
outperforms state-of-the-art domain adapta-
tion baselines.

2 Related Work

2.1 Domain Adaptation
Prior works on domain adaptation mainly focus
on minimizing the distributional discrepancy be-
tween the source domain and the target domain.
Kernelized methods, such as Maximum Mean Dis-
crepancy (MMD) (Arbel et al., 2019), spectral
feature alignment (Pan et al., 2010), and domain-
adversarial training (Ganin et al., 2016) are com-
monly used for feature alignment from different
domains. Another widely explored approach for
DA is self-training, where a classifier is first trained
on the source domain and later used for predict-
ing pseudo-labels for unlabeled data in the target
domain. Ye et al. (2020) have proposed a robust
self-training approach to improve the performance
of the joint hypothesis between source and target
domains and thereby improve performance on the
target domain.

When multiple source domains are present, DA
methods should be modified accordingly. Li et al.
(2018) have used pairwise-MMD and an adver-
sarial autoencoder to overcome domain discrep-
ancy. Wu and Huang (2016) extended domain-
adversarial training from Ganin et al. (2016) to
multiple source domains. Domain adversarial train-
ing has many popular variants (Zhao et al., 2018;
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Liu et al., 2018; Chen et al., 2018), showing that
extracting domain-invariant representation is a cru-
cial part for domain adaptation. Another strand
of work for multi-source DA is based on mixture
of experts (MoE). Chen and Cardie (2018) have
explored MoE for multi-source cross-lingual senti-
ment classification, and MoE encourages the model
to learn from more relevant source languages. Guo
et al. (2020) proposed a DistanceNet-Bandits ap-
proach to tackle multi-source DA. It first measures
domain distance with multiple metrics, and then
uses a multi-armed bandit mechanism to learn from
closer source domains. However, prior works on
multi-source domain adaptation rely on distance
measurement from source to target domain. There-
fore, even though no labeled data from the target
domain is used, unlabeled target data must be used
to perform domain adaptation. Unlike multi-source
domain adaptation, domain generalization has no
access to any target domain data during training.
In many practical scenarios, we may need to find
people’s opinions towards emerging and unseen
domains, such as pandemic-related medical equip-
ment. Therefore, it is important to study the prob-
lem of domain generalization for sentiment and
text classification.

2.2 Contrastive Learning

Recently, contrastive learning (CL) has led to major
advances in self-supervised representation learning.
The common idea in these works is maximizing the
agreement score between an anchor and a ‘positive’
example in the embedding space, and pushing apart
the anchor from many ‘negative’ examples (Chen
et al., 2020). The positive example pair is typically
a particular image and its augmentation, and the
negative pairs are formed by that image with other
images within the same batch. However, such ap-
proaches require a substantially large batch size.
Otherwise the performance of contrastive learn-
ing deteriorates significantly. On the other hand,
other approaches have been proposed to alleviate re-
source consumption due to a large batch size. Grill
et al. (2020) have shown superior performance by
maximizing the agreement of positive pairs by a
momentum encoder, without the need of negative
samples. Khosla et al. (2020) have extended the
idea of contrastive learning to the supervised set-
ting, i.e., supervised contrastive learning (SCL).
To leverage label information, SCL considers ex-
amples with the same label as positive pairs and

examples with different labels as negative pairs,
and achieves significant performance gain in image
classification tasks. Gunel et al. (2021) extended
the application of SCL to finetuning pre-trained
language models in natural language understand-
ing tasks. Graf et al. (2021) further analyzed SCL
in image classification problem, showing that SCL
is able to increase the inter-cluster distance and
reduce the intra-cluster distance for each class. We
leverage the idea of SCL to explicitly align features
of the same class but from different domains. Since
the negative sample size is crucial for accurate mu-
tual information estimation, we propose to use an
additional memory bank to store representations
and progressively reuse the encoded sentence rep-
resentations, thereby improving the performance
of contrastive learning. In this way, we force the
domain generalization model to focus on aligning
features of the same class and implicitly reduce
the domain discrepancy among the multi-source
training data.

3 Problem Definition

For the task of domain generalization on text clas-
sification, suppose we have labeled data from k
source domains {Dsi}ki=1. For each source do-
main, the labeled data Dsi is denoted as Dsi =
{Xsi , Ysi}. In the training phase, only source do-
mains are available. Then, the labeled dataset from
the target domain Dt = {Xt, Yt} is used for evalu-
ation. The problem setup of domain generalization
is different from multi-source domain adaptation
(MSDA), which requires an additional unlabeled
set from the target domain during training (Wu and
Huang, 2016; Ding et al., 2019; Zhao et al., 2018;
Guo et al., 2020). In contrast, in the domain gener-
alization setup, the model is only trained to obtain
a domain-invariant feature from the given source
domains, while the target-domain data Dt is only
used during evaluation. In this way, the trained
model can be used to make predictions on unseen
domains.

4 Model Description

Since the domain generalization problem is to train
an algorithm based on multiple source domains,
the key challenge of this classification problem is
to learn an ideal joint hypothesis of the source do-
mains. That is, we aim to separate the data points
by their labels as much as possible, thereby min-
imizing domain discrepancy within each class in
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the feature embedding space. Our supervised con-
trastive learning model not only widens the margin
of decision boundaries, but also enforces the distri-
bution within the same class to be more uniform,
hence minimizing the source domain distances for
each class.

We first shuffle all the source domain data and
divide the joint dataset into mini-batches. This is
mainly for enforcing a stable domain distribution
for each mini-batch. For one sampled mini-batch
of size N , we have S = {xi, yi}Ni=1, where xi
represents the input text, yi represents the senti-
ment label of that example. We first adopt a pre-
trained language model (PrLM) as encoder. We use
the hidden state of the last layer’s [CLS] token as
document representation, and denote it as h. We
then use a feed-forward neural network (followed
by a tanh activation function and layer norm) f
for dimension reduction. Specifically, we have
z = f(h). Feature z will later be fed into a classi-
fier g for downstream tasks:

LCE = − 1

N

N∑

i=1

yilog
(
g(zi)

)
(1)

where g is a fully connected classifier and LCE is
the cross-entropy classification loss.

Figure 1: Illustration of SCL. ⃝ refers to a positive
review, × refers to a negative review, and the different
colors of data points represent their domains.

4.1 Supervised Contrastive Loss for Domain
Generalization

As illustrated in Figure 1, supervised contrastive
learning explicitly pulls the representations of the
same class together and repulses representations
from different classes, which increases the discrim-
inative capability of hidden representations and
benefits hard negative mining (Khosla et al., 2020).
This objective suits our goal of learning a joint hy-
pothesis for different source domains, and enables
the model to learn a more uniform distribution for
each label class. Specifically, for a given mini-
batch S of size N , the supervised contrastive loss
is computed as follows:

LSCL = − ∑
zi∈S

1
N

∑
zp∈P (i)

log
exp(zi·zp/τ)∑

za∈A(i) exp(zi·za/τ)

(2)
where z is the vector representation. For a given
anchor representation zi, P (i) ≡ {zj ∈ S, yj =
yi} refers to the set of positive examples, A(i) ≡
{zj ∈ S, j ̸= i} refers to the union of positive
examples and negative examples, S refers to the set
of the mini-batch. τ is a scaling hyper-parameter,
also known as temperature. Then, we have our
combined loss function as:

L = LCE + LSCL (3)

However, in our preliminary experiments, di-
rectly applying supervised contrastive learning has
marginal effect for domain generalization. This is
because the performance of supervised contrastive
learning is heavily related to batch size, as a larger
batch size is better in representing the mixed distri-
bution of multiple domains. However, increasing
the batch size inevitably introduces high compu-
tation and memory costs. In order to improve the
performance of domain generalization while reduc-
ing memory consumption, we propose to use an
additional memory bank to reuse the previously
encoded sentence representations. The details for
our memory bank are described in the following
subsection.

4.2 Memory-Based Supervised Contrastive
Learning

To increase the number of contrasting examples
while limiting memory consumption, we propose
to use a memory bank Q to store the sentence rep-
resentations and their labels of each batch. The
purpose of introducing this memory bank is to pro-
gressively reuse the encoded sentence to compute
LSCL. The memory bank Q stores the sentence
representations z and their corresponding labels y,
S

′
= {zi, yi}Ni=1, during computation of one batch.

The maximum size of Q is denoted as M , which
indicates that when the number of examples in Q
exceeds M , only the last M examples will be kept
and previous examples will be discarded. To avoid
repeated computation, for each batch S, all the ex-
amples of the current batch S are deemed as anchor
features. The computation of SCL with memory
bank Q still follows Equation 2, except that the
number of contrasting features is increased. Let
SC denote the set of contrasting features, which
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is the union of the current batch S and memory
bank Q, i.e., SC = S ∪Q. Then the set of positive
examples becomes P (i)

′ ≡ {zj ∈ SC , yj = yi}
and the union of positive and negative examples
becomes A(i)

′ ≡ {zj ∈ SC , j ̸= i}. Given batch
size N and memory bank size M , the number of
anchor features is N , whereas the number of con-
trasting features becomes N +M , since the set of
contrasting features SC is the union of the current
batch S and the memory bank Q. We provide the
pseudo-code for our approach in Algorithm 1.

Algorithm 1: Algorithm for supervised
contrastive learning with memory bank
Input: Batch size N , encoder f , classifier g ,

memory bank Q
1 for t ≤ Tmax do
2 Sample minibatch S = {xi, yi}Ni=1

3 z = f(PrLM(x));
4 Q = None;
5 LCE = 1

N

∑N
i=1−yilog

(
g(zi)

)
;

6 SC = S ∪Q;
7 P (i) ≡ {zj ∈ SC , yj = yi};
8 A(i) ≡ {zj ∈ SC , j ̸= i};
9 LSCL =∑

zi∈S
−1
N

∑
zp∈P (i)

log
exp(zi·zp/τ)∑

za∈A(i) exp(zi·za/τ) ;

10 EnqueueAndDequeue(Q, {zi, yi}Ni=1);
11 L = LCE + LSCL;
12 update network by combined loss L
13 end

5 Experiments

5.1 Dataset Statistics

We have conducted experiments on two bench-
marks for cross-domain and cross-lingual senti-
ment classification and one benchmark for rumour
detection.
Multi-Domain Sentiment Dataset (Blitzer et al.,
2007) This dataset contains 8,000 Amazon product
reviews, equally distributed from four domains:
books (B), DVDs (D), kitchen and housewares (K),
and electronics (E). In each domain, there are 1,000
positive and 1,000 negative reviews. We follow
the split of prior works (Ganin et al., 2016; Du
et al., 2020; Guo et al., 2020) for fair comparison,
resulting in 1,600 training examples and 400 test
examples for each domain. Since we do not have
access to target domain data, training and model

selection are all based on the mixture distribution
of source domains.
Cross-Lingual Sentiment Dataset (Prettenhofer
and Stein, 2010) This is a multi-lingual and multi-
domain Amazon review dataset. It contains four
languages: English (En), German (De), French (Fr),
and Japanese (Jp). For all languages, there are three
domains: books (B), DVDs (D), and music (M).
For each domain, there are 2,000 training examples
and 2,000 test examples, where each set contains
1,000 positive and 1,000 negative reviews. In sum-
mary, there are twelve language-domain combina-
tions in this dataset.
PHEME Rumour Detection Dataset There are
5,802 annotated tweets from 5 different events
((C)harlie(H)ebdo, (F)erguson, (G)erman(W)ings,
(O)ttawa(S)hooting, and (S)ydneySiege) labeled
as rumour or non-rumour (1,972 rumours, 3,830
non-rumours).

5.2 Experimental Setup

We conducted experiments in cross-domain (CD),
cross-language (CL), and cross-language cross-
domain (CLCD) settings. For CD experiments,
the model is trained on three source domains and
evaluated on the target domain. Model selection
is based on validation performance on the com-
bined test set of the source domains. Using the
multi-domain Amazon review dataset as an exam-
ple, since there are three source domains in total,
for each target domain experiment, there are 4,800
training examples.

In CL experiments, the training and test domains
are the same while the source languages are differ-
ent from the target language. For example, for tar-
get German-DVD, the training data will be English,
French, and Japanese DVD, and the total number of
training examples is 6,000. Since English is a high-
resource language, we did not conduct experiments
with English as the target language.

For CLCD experiments, the training data for a
given language-domain combination come from
both a different language and a different domain.
For example, for the same target German-DVD, the
training data will still be in English, French, and
Japanese, while the domains for the training data
will be books and music. For a fair comparison
with CL experiments, the training data for CLCD
experiments will be down-sampled to half of its
original size, with 6,000 reviews in total.

In the monolingual domain generalization ex-
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D E K B Avg Acc CH F GW OS S Avg µF1
Guo et al. (2018) 87.70 89.50 90.50 87.90 88.90 - - - - - -
Wright and Augenstein (2020) 88.90 90.30 90.80 90.00 90.00 67.90 45.40 74.50 62.60 64.70 63.02
DistilBERT
Baseline 89.300.3 89.800.2 89.980.2 89.240.2 89.58 64.781.3 43.031.5 69.871.9 60.420.8 62.021.4 60.02
MMD 89.000.2 89.860.2 89.640.2 89.380.4 89.47 63.801.0 43.441.1 69.042.1 63.971.1 63.270.7 60.70
MoE 89.200.3 89.920.3 90.260.3 89.880.1 89.82 65.842.2 43.611.1 72.231.2 61.631.0 64.251.4 61.51
Intra 88.460.6 89.800.3 90.060.2 89.220.4 89.39 64.141.4 42.891.2 70.771.6 61.841.5 62.410.7 60.41
Adv 88.400.4 89.600.2 90.000.2 89.040.2 89.30 64.831.5 42.231.2 65.941.0 61.470.9 62.811.6 59.45
SCL 89.350.1 89.850.1 90.250.2 89.500.2 89.74 65.570.9 43.221.9 73.031.1 63.501.5 63.521.4 61.77
SCL+M=64 90.100.2 90.260.2 90.800.2 89.980.2 90.28 65.880.8 43.641.2 74.541.1 67.250.5 65.991.7 63.46
SCL+M=128 89.730.3 90.300.1 90.500.1 90.040.3 90.14 68.081.0 44.551.9 75.410.8 66.522.0 65.190.8 63.95
SCL+M=256 89.430.5 89.970.3 90.000.2 89.470.3 89.72 67.410.8 42.830.9 74.640.7 65.732.0 64.061.5 62.93
Roberta-Large
Basline 90.000.4 93.950.2 93.400.5 92.650.7 92.50 67.121.2 43.972.4 70.783.2 65.692.9 62.661.7 62.04
MMD 89.850.4 94.150.3 93.700.5 92.550.5 92.56 64.881.7 43.131.2 69.862.9 66.600.7 63.172.9 61.53
MoE 90.250.3 94.040.4 93.990.2 92.500.2 92.69 67.241.8 43.632.2 73.601.8 68.772.4 63.591.2 63.38
Intra 90.060.3 94.000.3 94.060.2 92.750.2 92.72 66.872.2 43.632.2 73.731.6 69.281.8 63.721.0 63.44
Adv 90.250.7 94.450.5 94.600.3 92.850.6 93.04 64.712.4 42.921.0 71.011.6 66.692.2 63.843.7 61.83
SCL 89.950.3 94.250.7 93.100.6 93.450.5 92.69 65.832.0 42.651.5 71.411.7 65.921.5 62.332.0 61.63
SCL+M=64 91.400.7 95.100.5 95.050.4 93.250.4 93.70 67.440.6 43.531.2 75.230.5 72.223.2 67.182.0 65.12
SCL+M=128 91.450.5 95.100.4 95.100.5 93.70.5 93.85 68.320.8 43.392.8 73.891.2 72.012.4 66.701.3 64.86
SCL+M=256 91.100.3 95.050.5 94.900.5 93.400.6 93.62 66.810.8 40.911.1 73.521.0 72.212.0 65.591.3 63.81

Table 1: Experimental results for cross-domain text classification. The reported metric is accuracy for sentiment
analysis and micro-F1 for rumour detection. The experimental results are averaged over five runs and each subscript
indicates the standard deviation of five runs.

Batch Size 8 16 32 64 128 256 16+M=128
Memory (GB) 10.5 14.1 21.3 35.6 64.3 121.7 14.7

Table 2: Memory consumption for training Roberta-
large model for sentiment analysis. The memory sizes
used above batch size of 32 are interpolated.

periments, we adopt Distil-Bert-base (Sanh et al.,
2019) and RoBERTa-large (Liu et al., 2019) pre-
trained models as encoders. In the cross-lingual
experiments, we use XLM-R-large (Conneau et al.,
2020) as encoder. We pre-process each review to
180 sentencepiece tokens. For all encoders, we
set the dimension for classifier representation z to
be 256. We train all the models with Adam Opti-
mizer with learning rate of 1e-5. The batch size
we use for training DistilBert/RoBERTa baselines
is 16. We use batch size of 2 with 8 gradient ac-
cumulation steps for training XLM-R due to GPU
memory constraint. All our experiments are con-
ducted on Nvidia 16GB V100 GPU. We conduct
grid-search for M ∈ {16, 32, 64, 128, 256, 512}
and τ ∈ {0.1, 0.2, 0.5, 0.7, 0.8, 1.0} in D,K,E-B
transfer (i.e., D, K, E as source domains and B
as the target domain) and select M = 128 and
τ = 0.2. We provide the memory consumption
for training the Roberta model with different batch
sizes in Table 2. We use interpolation estimate
for memory usage above batch size of 32. From
Table 2, we observe that our proposed method sig-
nificantly saves memory consumption compared to
directly using large batch sizes.

5.3 Compared Methods

We compare our methods with several state-of-the-
art domain adaptation methods. However, previous
works are trained with unlabeled target domain
data, which is a more relaxed setup compared to
ours. For fair comparison, we also employed state-
of-the-art DA models in the same domain general-
ization setting as our baselines:
MoE (Guo et al., 2018; Wright and Augenstein,
2020): Mixture-of-Experts (MoE) models are the
current state-of-the-art method for multi-source do-
main adaptation. It can also be applied to domain
generalization. The MoE models consist of mul-
tiple models. For K source domains {Si}K1 , each
source domain will be treated as a meta-target do-
main during training and each of them will have a
dedicated model. The labeled data for each meta-
target will be excluded during training of its model.
There is an additional global encoder that is trained
on labeled data from all source domains. Hence,
there are K + 1 models in total for the MoE struc-
ture. During inference, the ensemble predictions of
K + 1 models are aggregated.
CFd (Ye et al., 2020): This one-to-one domain
adaptation approach is based on self-training. The
model is first trained on a source domain, and high-
confidence pseudo-labeled data in the target do-
main are generated for bootstrapping. We also
compare to the optimal one-to-one transfer pair for
this baseline.
CLDFA (Xu and Yang, 2017): This method, cross-
lingual knowledge distillation on parallel corpora
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German
Avg

French
Avg

Japanese
Avg

Book DVD Music Book DVD Music Book DVD Music
Cross-language: With unlabeled target data, results taken from original papers
CLDFA 83.95 83.14 79.02 82.04 83.37 82.56 83.31 83.08 77.36 80.52 76.46 78.11
MAN-MoE 82.40 78.80 77.15 79.45 81.10 84.25 80.90 82.08 62.78 69.10 72.60 68.16
CFd 93.95 91.69 93.89 93.18 94.25 93.79 93.39 93.81 89.41 88.68 89.54 89.21
Cross-language: Without unlabeled target data
Baseline 93.940.3 91.370.4 93.740.4 93.02 93.760.5 93.090.4 93.280.4 93.38 89.610.4 89.200.3 89.730.6 89.51
Intra 94.560.4 91.990.5 94.210.6 93.59 94.680.2 93.600.2 93.590.2 93.96 90.260.2 90.220.4 91.090.3 90.52
Adv 94.610.4 92.190.3 94.360.3 93.72 94.670.3 93.740.3 93.630.5 94.01 90.160.3 90.250.3 90.780.5 90.40
SCL 93.780.5 91.670.5 93.910.2 93.12 94.250.7 93.260.2 93.370.3 93.63 89.410.3 89.330.8 89.761.1 89.50
SCL+M=64 94.550.4 92.320.3 94.420.3 93.76 94.580.3 94.050.2 93.850.2 94.16 90.740.4 90.480.3 91.340.4 90.85
SCL+M=128 94.690.4 92.420.3 94.200.2 93.77 94.700.3 93.850.3 94.020.2 94.19 90.520.4 90.670.4 91.210.3 90.80
SCL+M=256 94.700.5 92.190.6 93.880.2 93.59 94.540.4 93.660.3 93.870.3 94.02 90.550.3 90.530.2 90.970.4 90.68
Cross-language and cross-domain Without unlabeled target data
Baseline 93.760.3 90.780.3 93.950.4 92.83 93.670.3 93.250.2 92.980.2 93.30 89.490.5 89.160.4 89.730.5 89.46
Intra 94.230.3 91.550.3 93.780.2 93.19 93.90.3 93.390.3 93.160.2 93.48 89.750.4 89.900.4 90.660.3 90.1
Adv 94.130.3 91.510.3 93.640.3 93.09 93.310.4 93.440.3 93.150.2 93.3 89.70.4 89.720.4 90.740.3 90.05
SCL 93.830.4 90.980.3 93.860.2 92.89 93.860.3 93.590.3 93.160.2 93.54 89.50.3 89.340.4 89.50.3 89.45
SCL+M=64 94.050.3 91.260.2 93.830.4 93.04 94.170.2 93.940.3 93.670.2 93.93 89.850.3 89.830.4 90.450.2 90.05
SCL+M=128 94.460.4 91.900.3 93.970.2 93.41 94.240.5 93.790.3 93.950.4 93.99 89.830.6 90.270.4 91.020.4 90.37
SCL+M=256 94.230.5 91.130.2 94.070.3 93.14 94.060.3 93.960.4 93.820.2 93.95 90.150.4 89.860.3 90.250.2 90.07

Table 3: Experimental results for Multilingual Amazon benchmark. Experiments are conducted in both cross-
language (CL) and cross-language cross-domain (CLCD) settings. The reported metric is average accuracy and
each subscript indicates the standard deviation of five runs.

for cross-lingual transfer learning, leverages trans-
lated Amazon reviews as a parallel corpus.
MAN-MoE (Chen and Cardie, 2018): This model
uses a multinomial adversarial network to extract
language-invariant features for sentiment classifica-
tion. It studies cross-lingual transfer with multiple
source languages. Besides, it also leverages MoE
to focus on more transferable source languages.
Baseline fine-tunes pretrained language models
(DistilBERT/Roberta/XLM-R) on labeled data
from source domains and directly tests on the target
domain. MMD: Following Li et al. (2018), pair-
wise Maximum Mean Discrepancy (MMD) losses
among three source domains are added to cross-
entropy loss. Intra refers to center loss used in Wen
et al. (2016) and Ye et al. (2020), which maximizes
the agreement between each example and its class
center. Adv refers to the widely studied domain
adversarial neural network (Ganin et al., 2016),
where a gradient reversal layer is used to reverse
the gradients calculated by the domain classifica-
tion task. SCL adopts supervised contrastive loss
from Gunel et al. (2021). It refers to directly ap-
plying supervised contrastive learning with a small
batch size. Our model that enhances supervised
contrastive learning (SCL) with memory bank is
denoted as SCL+M. We provide experimental re-
sults for M ∈ {64, 128, 256}.

5.4 Experimental Results

The experimental results of CD text classification
are shown in Table 1. We compare our methods

with previous SOTA methods on multi-source do-
main adaptation and strong baselines of RoBERTa
variants. Our findings are as follows. Firstly, di-
rectly applying supervised contrastive loss has lim-
ited improvement over the baseline performance
of directly fine-tuning the pretrained language
model, and the performance of SCL does not ex-
ceed previous domain adaptation methods, such
as Mixture-of-Experts (MoE) and intra-class loss
(Intra). Secondly, increasing the number of con-
trasting examples M significantly improves perfor-
mance compared to directly using SCL. Our pro-
posed method SCL+M=128 achieves the best per-
formance among the compared methods, exceeding
the Roberta baseline by 1.35% in cross-domain sen-
timent analysis and by 2.82% in cross-domain ru-
mour detection. Finally, the domain generalization
method MMD performs poorly in the CD setting.
This may be because the data distribution of com-
puter vision tasks is different from that of sentiment
analysis.

The CL and CLCD experimental results are
shown in Table 3. In the CL and CLCD settings,
we do not include the baseline result for MMD,
as we observe high variance validation loss dur-
ing training, and sometimes training diverges. We
also do not include MoE for CL experiments, as
the encoder for CL experiments is significantly
larger than CD experiments and the MoE structure
exceeds our hardware limit. From Table 3, our
XLM-R baseline does not exceed the one-to-one
self-training based DA approach CFd, showing
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Figure 2: T-SNE visualization of the 256-dimensional sentence embeddings z for each model. The models are
trained with B,K,E as source domains and D as the target domain. We sample 1,000 examples for each domain.

that knowledge of unlabeled target data is more
important than increasing out-of-language train-
ing examples. In addition, in CL and CLCD set-
tings, the performance of directly applying SCL
is worse than intra-class loss (Intra) and adver-
sarial training (Adv). We believe this is due to
the small batch size (i.e., 2) during training of
XLM-R. Hence, it is important to increase the
contrasting examples for SCL in the small-batch
setting. With increasing contrasting examples for
SCL, we are able to achieve significant perfor-
mance gain over our competitive baselines, and
our best model SCL+M=128 achieves state-of-the-
art performance for both CL and CLCD settings.
We observe performance drop when M is larger
than 128. This is primarily due to the trade-off be-
tween the number of contrasting examples and their
quality. Even though increasing the size of memory
bank will benefit the lower bound of mutual infor-
mation estimation, using an excessive number of
prior examples will introduce noise for contrastive
learning, since the text encoder has already been
updated for many steps.

5.5 Analysis on Domain Divergence

To further analyze the performance of our model,
we provide both intuitive visualization and quantita-
tive analysis of domain discrepancy. Following Du
et al. (2020) and Ben-David et al. (2010), we useA-
distance as the measurement for domain distance.
To calculate A-distance, we freeze the fine-tuned
language model and the feed-forward layer f as
encoder. Since the 256-dimensional z is used for
the downstream classification task, we analyze do-
main discrepancy in this feature space. We sample
two balanced sets of source examples and target
examples with binary domain labels, i.e., source
and target. Since we have multiple source domains,
examples from each source domain will be down-
sampled when calculating A-distance, so that the
total number of source examples and the number of
target examples are balanced. This mixed dataset
with binary domain labels will be split into two

equal-size subsets, one for training and the other
for testing. We then train a linear classifier with the
first subset to distinguish source and target domain
features. The error rate ϵ for this domain distin-
guishing classifier is calculated on the second sub-
set, and we have theA-distance as dA = 2(1−2ϵ).

Figure 3: A-distance of B,K,E to D generalization trans-
fer.

We compare dA of RoBERTa baseline, MoE,
SCL, and SCL+M=128 with B,K,E to D transfer,
as well as dA of source domain pairs. Results are
shown in Figure 3. We see that the MoE model
has little impact on reducing domain divergence
for the backbone encoder. In contrast, the SCL and
SCL+M=128 models are able to reduce domain di-
vergence and the latter achieves the lowest domain
divergence compared to all other baselines.

To intuitively understand how our models over-
come domain discrepancy, we also plot the t-
SNE (Van der Maaten and Hinton, 2008) visual-
ization of the features from different domains, as
shown in Figure 2. For the RoBERTa baseline
(Fig. 2a), we observe clear domain discrepancy
within each sentiment cluster, and the sentiment
cluster is relatively dispersed. Similarly, for the
MoE model (Fig. 2b), we also observe domain dis-
crepancy in the sentiment clusters, showing that
the MoE objective does not improve the encoders’
capability for producing domain-invariant represen-
tation. For the SCL baseline (Fig. 2c), we observe
that the sentiment clusters are more concentrated
and domain discrepancy is significantly reduced,
but there is still some heterogeneity within the pos-
itive and negative review clusters. From Fig. 2d,
we observe that increasing the contrasting features
is able to further reduce domain divergence, which
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is in line with the quantitative analysis of Fig. 3.
We believe this is because SCL+M is trained with
a large number of contrasting examples. By min-
imizing the intra-cluster distance in each batch,
domain divergence within each sentiment cluster is
reduced.

6 Conclusions and Future Work

In this paper, we study the under-explored domain
generalization problem for text classification. We
show that for cross-domain text classification, gen-
eralization performance from multiple source do-
mains can exceed the best performance of one-to-
one domain adaptation, even if the target domain is
unknown during training. To this end, domain gen-
eralization is more practical and easier to deploy
in realistic scenarios. To further improve the per-
formance of cross-domain text classification, we
propose an effective and memory-saving approach
based on supervised contrastive learning for the
domain generalization problem. We conduct exten-
sive experiments in CD, CL, and CLCD settings.
Experimental results have shown that our frame-
work consistently outperforms strong baselines and
the previous state of the art in all three experimental
settings.
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A Further Ablation Studies

N=60 N=150 N=300 Full Data
RoBERTa 64.05± 9.83 76.10± 12.34 86.95± 4.16 93.70± 0.37
SCL 63.85± 8.33 76.40± 6.59 85.65± 4.47 94.25± 0.40
SCL+M=128 78.75± 4.91 83.65± 4.26 90.95± 4.13 95.10± 0.25

Table 4: Ablation study of few-shot cross-domain senti-
ment classification for B,K,D to E transfer.

Figure 4: Ablation study of the effect of temperature τ .
The reported accuracy is the average of 5 runs.

SCL in Few-Shot Setting. We conduct a few-
shot learning experiment with B,K,D to E transfer.
As shown in Table 4, SCL+M=128 achieves the
most performance gain when the number of train-
ing examples is limited to 60, while conventional
cross-entropy fails to converge. We believe that
in the case of few-shot setting, the memory bank
resembles a way for data augmentation, as the pre-
viously encoded sentences are reused as contrasting
examples.
Effect of Temperature τ . We also provide hyper-
parameter analysis for the scaling factor τ . We
found that the performance of our model is neg-
atively correlated to τ , and τ = 0.2 works well
empirically. We also found that when τ is small,
the scale of supervised contrastive loss and cross-
entropy validation loss is similar, leading to coher-
ent optimization.
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B Hyper-Parameters for the Baselines

We mainly conduct hyper-parameter tuning on the
validation set of Multi-domain Sentiment Dataset.
For model training, we tune the learning rates in
{5e-6, 1e-5, 2e-5, 3e-5}, and batch size in {8, 16,
32}. The final learning rate is 1e-5 and scheduled
linearly with training steps. We train our models for
10 epochs for cross-domain (CD), cross-language
(CL), and cross-language cross-domain (CLCD)
experiments. The batch size for CD experiments is
16. In CL experiments, the batch size is 2 with gra-
dient accumulation step of 8 due to GPU memory
constraint. For the experiment for CD sentiment
analysis, the combined training size is 4,800. For
the baseline experiments, we follow the methodol-
ogy of Ye et al. (2020), that is adding a λ-weighted
loss term to the cross-entropy loss. We show our
choices for balancing parameters for losses as fol-
lows:

• Intra-Class Loss The weight for λ is tuned in
{1, 0.5, 0.2, 0.1, 0.05}. We set λ to be 0.2 for
CD experiments and 0.1 for CL experiments.

• MoE (Wright and Augenstein, 2020) We fol-
low the MoE-Avg method in the original pa-
per. For Roberta-large MoE models, we use 4
Nvidia V100 GPUs for training, as this model
requires multiple encoders during training.

• Adversarial Loss Following the practice of
prior works (Wright and Augenstein, 2020;
Guo et al., 2018), the weight for adversarial
training λ is 0.003.

• MMD We implemented a pair-wise MMD do-
main generalization approach with RBF ker-
nel, following the practice of Li et al. (2018).
The weight of MMD loss is tuned in {1.0, 0.5,
0.2, 0.1, 0.05} and set to 0.2.
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Abstract

In recent years, there has been an increasing
interest in claim detection as an important build-
ing block for misinformation detection. This
involves detecting more fine-grained attributes
relating to the claim, such as the claimer, claim
topic, claim object pertaining to the topic, etc.
Yet, a notable bottleneck of existing claim de-
tection approaches is their portability to emerg-
ing events and low-resource training data set-
tings. In this regard, we propose a fine-grained
claim detection framework that leverages zero-
shot Question Answering (QA) using directed
questions to solve a diverse set of sub-tasks
such as topic filtering, claim object detection,
and claimer detection. We show that our ap-
proach1 significantly outperforms various zero-
shot, few-shot and task-specific baselines on
the NEWSCLAIMS benchmark (Reddy et al.,
2021).

1 Introduction

Claim detection over news involves identifying
claims related to various topics in news articles.
Identifying such claims is a crucial first step for
fighting misinformation and disinformation online.
However, such harmful content can evolve rapidly,
triggered by relatively new events which can gain
extensive media coverage within a short time span.
Hence, claim detection in such scenarios requires
systems that are able to adapt quickly, by working
well under zero-shot or few-shot settings.

Towards this goal, Reddy et al. (2021) propose
a new benchmark, NEWSCLAIMS, that evaluates
claim detection for previously unseen topics with-
out access to any training data. Given a collec-
tion of news articles, the task involves identify-
ing claims that are related to a pre-defined set of
topics, along with extracting attributes for each
claim, such as claim span, claim object, claimer

1Code is available here: https://github.com/blender-
nlp/NewsClaims/tree/main/zero-shot-qa

Figure 1: An overview of our claim detection frame-
work. We leverage zero-shot QA for claim topic filter-
ing, claim object detection and claimer detection for the
claims spotted by ClaimBuster (Hassan et al., 2017).

and stance. Essentially, this benchmark extends the
claim detection task to involve extracting additional
background attributes relating to the claim, such
as the claim object and claimer. Furthermore, the
claimer detection sub-task within NEWSCLAIMS

requires considerable document-level reasoning,
making it harder than existing attribution tasks
(Pareti, 2016; Newell et al., 2018), which mainly in-
volve sentence-level reasoning. Reddy et al. (2021)
propose various baselines for each sub-task in the
NEWSCLAIMS benchmark, which involve zero-
shot and few-shot approaches in addition to base-
lines trained using task-specific data.

To handle this scenario in a low-resource setting,
we hypothesize that identifying claim topics and
extracting corresponding claim attributes can be
formulated as a question answering task. Hence,
we propose to leverage a Question Answering (QA)
system for the claim detection task and show that
the same QA model can be used to solve multiple
sub-tasks within claim detection, without the need
of any task-specific training data. This involves fil-
tering claims relating to specific topics, identifying
claim objects associated with such topics and at-
tribution for identifying the claimers making these
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claims. We realise this by using directed questions
to help solve connected sub-tasks such as topic fil-
tering, claim object detection and claimer detection
within the claim detection framework. An overview
of this framework is shown in Figure 1.

Leveraging pre-trained language models for di-
rectly solving end-tasks has been explored in
prompting (Liu et al., 2021), with promising per-
formance in both zero-shot (Zhong et al., 2021)
and few-shot (Brown et al., 2020) settings. Prior
work uses prompts that are in the form of prefix (Li
and Liang, 2021) or cloze-style tasks (Schick and
Schütze, 2021). In this work, we solve end-tasks by
formulating them as directed questions, instead of
prompts, that are fed into a QA model (see Figure
1 1 for examples of directed questions). We will
first briefly introduce the NEWSCLAIMS bench-
mark (Section 2) and then describe our zero-shot
claim detection framework (Section 3).

Our main contributions are: (1) we propose to
use a single pre-trained question answering system
in a zero-shot setting for various sub-tasks in claim
detection, such as topic-filtering, claim object de-
tection and claimer detection; (2) we show that,
using directed questions, a QA model is able to out-
perform other attribution methods for claimer de-
tection, which requires document-level reasoning;
and (3) our proposed claim detection framework
achieves state-of-the-art performance on multiple
sub-tasks in the NEWSCLAIMS benchmark, out-
performing various zero-shot, few-shot and task-
specific baselines.

2 NEWSCLAIMS Background

NEWSCLAIMS (Reddy et al., 2021) extends claim
detection to extract additional background at-
tributes relating to the claim, such as claim objects
and claimers. NEWSCLAIMS evaluates claim de-
tection in the context of an emerging real-world
scenario, by considering claims relating to various
aspects of COVID-19. Specifically, the topics in-
volved in the benchmark are about the origin of the
virus, transmission of the virus, cure for the virus
and protection from the virus. We refer the reader
to Reddy et al. (2021) for detailed definitions and
sample claims. Below, we briefly describe the dif-
ferent sub-tasks that we consider within this bench-
mark and their corresponding baselines, that were
introduced in Reddy et al. (2021).

Claim Sentence Detection with Topic-Filtering:
This sub-task involves identifying sentences that

contain claims relating to COVID-19. For this,
Reddy et al. (2021) begin with ClaimBuster (Has-
san et al., 2017), which has been trained to identify
check-worthy claims (Arslan et al., 2020). In or-
der to then select claims relating to specific topics,
from those extracted by ClaimBuster, Reddy et al.
(2021) use pre-trained NLI models for zero-shot
topic-filtering (Yin et al., 2019). This is done by
posing the claim sentence as the premise and con-
structing a hypothesis for each candidate topic.

Claim Object Detection: A claim object relates
to what is being claimed in the claim sentence with
respect to the topic. Reddy et al. (2021) use zero-
shot and few-shot approaches for this sub-task, via
zero-shot prompting and leveraging few-shot ex-
amples for in-context learning (Brown et al., 2020)
and prompt-based fine-tuning (Gao et al., 2021).
The prompts are hand-crafted using the topic of the
claim sentence.

Claimer Detection: Claimer detection involves
identifying the source of the claims made within
news articles. These claims can be categorized as
either reported or those that are made by the author
of the news article, i.e., the journalist, themselves.
Reported claims could originate from people, or-
ganizations or other sources in news. The claimer
detection sub-task within NEWSCLAIMS involves
identifying whether the claim was made by the jour-
nalist or who the claimer is, in case it is reported.
Since the sub-task requires attribution, Reddy et al.
(2021) consider baselines that leverage semantic
role labeling (SRL) or are trained on existing attri-
bution datasets (Newell et al., 2018).

3 Method

We first describe the QA model which we use as
the pre-trained model to feed directed questions
as input. Next, we outline our zero-shot claim
detection framework which leverages the above
model for sub-tasks such as topic filtering, claim
object detection and claimer detection.

3.1 Question Answering Model

The model is a transformer-based extractive ques-
tion answering system that takes the question and
context as input. The QA model has an extrac-
tive answer span predictor that predicts the answer
spans using the output representations H from pre-
trained language models (LM) (Devlin et al., 2019).
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Specifically, the model has a predictor for the begin-
ning α and ending β of the answer span as follows:

α = softmax(W1H) (1)

β = softmax(W2H) (2)

where W1, W2 ∈ R1×D, D is the dimension
of language model’s output H ∈ RT×D and T
is length of input context. Given b and e as the
one-hot vectors for the ground-truth start and end
positions, the loss function during training is the
averaged cross entropy on the two span predictors:

L = −1

2

T∑

t=1

{1(bt) logαt + 1(et) logβt} (3)

At inference, the answer score for a span (i, j)
within the context is computed as S(i, j) = αi+βj ,
with the highest scoring span taken as the final
answer.

3.2 Claim Detection Framework
Given a news article as input, our claim detection
framework outputs claims relating to specific top-
ics, along with their corresponding claim objects
and claimers. Following Reddy et al. (2021), we
use ClaimBuster (Hassan et al., 2017) as the claim-
spotting model to first identify sentences that con-
tain claims. Next, we leverage the QA model de-
scribed in Section 3.1 for topic-filtering, claim ob-
ject detection and claimer detection. An outline
of our claim detection framework can be seen in
Figure 1, with each step described in detail below.

Claim Topic Filtering: We propose to do topic
filtering by measuring topic relevance as the an-
swer confidence from a QA model, when a ques-
tion corresponding to the topic is passed as input.
We achieve this by formulating a question for each
topic, with the claim sentence as context, as shown
in Figure 2. The answer score for each question is
taken as the corresponding topic relevance. Claims
are then filtered based on the highest topic score
using a threshold. In comparison, NLI does filter-
ing based on the corresponding highest entailment
score. The motivation behind using QA for this
sub-task is for the directed questions to be more
relevant towards identifying these topics, compared
to the implicit inference in NLI.

Claim Object Detection: We pose the claim ob-
ject detection sub-task as an extractive QA task
using the same directed questions shown in Figure

Figure 2: Questions corresponding to individual topics,
with the claim sentence as context.

2. While the answer score for a question is used
for topic filtering, the corresponding answer span
is used as the claim object.

Claimer Detection: We formulate the claimer
detection sub-task as a two-step process: first de-
tect the exact claim span within the claim sentence
and then identify the claimer. We leverage QA for
both steps as follows. The claim span is obtained
from the QA model’s answer by using “What is
being claimed?" as the question and the claim sen-
tence as context. Next, for claimer identification,
we use the entire news article as context, with the
previously extracted claim span inserted into the
question, “Who said that <claim span>?". We
threshold on the answer score to determine if no
claimer was identified, in which case, the claim
sentence is attributed to the journalist.

4 Experiments

4.1 Setup
The QA model uses bert-large-uncased as the un-
derlying language model. It is trained on SQuAD
2.0 (Rajpurkar et al., 2018) for four epochs with
a learning rate of 3e-5 and Natural Questions
(Kwiatkowski et al., 2019) for one epoch with a
learning rate of 1e-5. Batch size is 16 in both cases.

We evaluate our approach on the NEWSCLAIMS

benchmark2 (Reddy et al., 2021). We refer the
reader to Reddy et al. (2021) for a detailed descrip-
tion of each of the baselines. The development
and test splits comprise 18 news articles with 103
claims and 125 news articles with 786 claims re-
spectively. The thresholds for claim topic filtering
and claimer detection were tuned on the develop-
ment set. All numbers are reported on the test set.

4.2 Results and Analysis
In this section, we evaluate our proposed claim-
detection framework for individual sub-tasks such

2https://github.com/uiucnlp/NewsClaims
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as detecting claims relating to specific topics about
COVID-19 (Section 4.2.1), extracting the claim
object pertaining to the claim topic (Section 4.2.2)
and identifying the claimer (Section 4.2.3).

4.2.1 Claim Sentence Detection
Here, we measure the performance for both zero-
shot topic classification and the subsequent filtering.
We first evaluate the performance of the QA system
for classifying topics, given the claim sentence. Ta-
ble 1 compares the performance of the NLI and QA
systems for zero-shot classification over the four
COVID-19 topics. We can see that our zero-shot
QA approach considerably outperforms zero-shot
NLI, demonstrating that QA can be better at mea-
suring topic relevance. Further, we see that QA
is able to overcome the NLI model’s inability to
distinguish between similar topics such as (protec-
tion and cure) or (origin and transmission). Some
representative examples are in Table 2 with more
detailed confusion matrices present in Section A.1
in the Appendix.

Model Or. Trans. Prot. Cure All
NLI 56.9 45.1 54.5 3.3 46.6
QA 85.9 64.7 63.9 66.5 72.3

Table 1: Topic-wise F1 and overall accuracy (both in %)
for topic classification given the claim sentence.

Claim Sentence Topic
This novel coronavirus was be-
lieved to have started in a large
seafood or wet market, suggesting
animal-to-person spread.

Gold: Origin
NLI: Trans.
QA: Origin

One medication, an antiviral drug
called Remdesivir, has been shown
in certain studies to improve symp-
toms and shorten hospital stays.

Gold: Cure
NLI: Protection
QA: Cure

Table 2: Some examples of incorrect topic predictions
from the NLI model which the QA model overcomes.
We see that QA, which uses directed questions, is better
at being able to distinguish between similar topics such
as (origin and transmission) or (protection and cure),
compared to NLI, which uses implicit inference.

Next, we measure the claim sentence detection
performance to evaluate the QA model for topic fil-
tering on the claims outputs by ClaimBuster. Table
3 compares our QA-based topic filtering approach
against a pre-trained NLI model, as used in Reddy
et al. (2021). We can see that using QA provides
up to 5 point improvement in F1, suggesting that
the answer confidence from the QA model can be a
better estimate for filtering claims relating to these

topics, compared to entailment score.

Model P R F1
ClaimBuster 13.0 86.5 22.6
ClaimBuster + NLI 21.8 53.3 30.9
ClaimBuster + QA 30.7 43.4 36.0

Table 3: Performance (in %) of various systems for
detecting sentences with claims relating to COVID-19.

4.2.2 Claim Object Detection
For the claim object detection sub-task, we com-
pare our QA approach with various zero-shot and
few-shot approaches used in Reddy et al. (2021).
Table 4 shows the performance of the QA system
along with different prompt-based approaches, that
leverage generative language models to output the
claim object. While GPT-3 and T5 show competi-
tive performance in few-shot settings, our zero-shot
QA approach outperforms by more than 5 points.

Approach Model Type F1
Prompting GPT-3 Zero-shot 15.2
Prompting T5 Zero-shot 11.4

In-context learning GPT-3 Few-Shot 51.9
Prompt-based fine-tuning T5 Few-Shot 51.6

QA BERT Zero-shot 57.0

Table 4: F1 score (in %) of different zero-shot and few-
shot approaches for the claim object detection sub-task.

4.2.3 Claimer Detection
The claimer detection sub-task is evaluated based
on the classification F1 for predicting which claims
are from journalists, along with a string-match F1
(Rajpurkar et al., 2018) for extracting the mention
of the claimer in case of reported claims. Table
5 compares our zero-shot QA-based approach for
claimer detection with the Semantic Role Label-
ing (SRL) and PolNeAR news-attribution (Newell
et al., 2018) baselines from Reddy et al. (2021).

Model Overall F1 Reported Journalist
SRL 41.7 23.5 67.2
PolNeAR 42.3 25.5 65.9
QA 50.1 39.8 64.4

Table 5: F1 (in %) for identifying the claimer. Numbers
for reported and journalist are shown separately.

To understand why sentence-level approaches,
such as SRL and PolNeAR, can be very competitive
at identifying claims that are from the journalist, we
manually analyzed some examples. We observed
that claims from the journalist are usually made in
a first-person point of view, which can be identified
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by sentence-level reasoning. Table 6 shows some
examples for claims that directly come from the
journalist and those that are reported from other
sources. It can be seen that those that come from
the journalist do not involve cue words and are
usually presented in a first-person point of view.
This explains the competitive performance of SRL
and PolNeAR for predicting which claims come
from the journalist.

Claim Sentence Type
It is not yet known if remdesivir is safe for the
treatment of COVID-19. Journalist

Inhaling bleach fumes is dangerous and will
not kill viruses that are already inside. Journalist

An earlier version of this article claimed a
laboratory near Wuhan could be to blame for
the outbreak of coronavirus.

Reported

The South China Agricultural University in
Guangzhou says that two of its researchers
have identified the pangolin as the potential
source of nCoV-2019.

Reported

Table 6: Some examples for when the claimer is jour-
nalist vs when it is a reported claim.

However, promising results in using QA for
claimer detection can be seen for reported claims,
which can require document-level reasoning skills
for identifying the claimer. Table 7 breaks down the
performance for reported claims based on where
the claimer mention is present. We can see that QA
outperforms other attribution approaches for both
cases, with even larger gains for when the claimer
is present outside the claim sentence (which neces-
sitates cross-sentence attribution).

Model In-sentence Out-of-sentence
SRL 35.8 2.4
PolNeAR 38.9 2.7
QA 46.2 29.0

Table 7: F1 (in %) for claimer detection for when it is
present within or outside the claim sentence.

4.2.4 Analysis of Question Templates
Instead of hand-crafting questions from topics, we
experiment with using each topic directly as a ques-
tion to be fed as input to the QA model. Table
8 shows the performance for the claim sentence
detection, topic classification and claim object de-
tection sub-tasks for the settings where a directed
question is manually constructed from the topic,
compared to where the topic is used as the question.
We can see while claim sentence detection and
topic classification performance are almost similar,
the performance is considerably better for claim

object detection in case of directed (hand-crafted)
questions. This implies that the answer confidence
from a weakly-defined question (by just using topic
as the question) is still a reliable measure of topic
relevance. However, directed questions are useful
for getting the right answer spans, which is crucial
in case of claim object detection. Note that hand-
crafting the question does not need considerable ef-
fort, as it mainly involves converting the topic into
an information-seeking format by prepending with
a “what”, for e.g.: “protection from the virus” –>
“What can protect from the virus?”, “transmission
of the virus” –> “What can transmit the virus?”

Sub-Task Hand-crafted Topic
Claim Sentence Detection 36.0 35.8

Topic Classification 72.3 73.2
Claim Object Detection 57.0 47.0

Table 8: Comparison of performance (in %) for claim
sentence detection (F1), topic classification (Acc.) and
claim object detection (F1) sub-tasks when using ques-
tions that are hand-crafted from the topic vs using the
topic directly as the question.

5 Conclusions and Future Work

We propose a new claim detection framework that
leverages zero-shot QA with directed questions for
various sub-tasks such as topic filtering, claim ob-
ject detection and claimer detection. We show that
these questions can be adept at identifying topic rel-
evance for claims related to COVID-19. We demon-
strate that QA can be leveraged for claimer detec-
tion with document-level attribution, while con-
siderably outperforming attribution systems that
can be limited by sentence-level reasoning. Future
work involves building a unified model that can ex-
tract claims and corresponding attributes together,
without the need for separate components for each
individual attribute.

Acknowledgement

This research is based upon work supported by U.S.
DARPA AIDA Program No. FA8750-18-2-0014.
FA8750-19-2-1004. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
DARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein.

6931



References
Fatma Arslan, Naeemul Hassan, Chengkai Li, and Mark

Tremayne. 2020. A Benchmark Dataset of Check-
worthy Factual Claims. In 14th International AAAI
Conference on Web and Social Media. AAAI.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Association for Computational Linguis-
tics (ACL).

Naeemul Hassan, Gensheng Zhang, Fatma Arslan, Jo-
sue Caraballo, Damian Jimenez, Siddhant Gawsane,
Shohedul Hasan, Minumol Joseph, Aaditya Kulkarni,
Anil Kumar Nayak, et al. 2017. Claimbuster: The
first-ever end-to-end fact-checking system. Proceed-
ings of the VLDB Endowment, 10(12):1945–1948.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Edward Newell, Drew Margolin, and Derek Ruths. 2018.
An attribution relations corpus for political news. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Silvia Pareti. 2016. PARC 3.0: A corpus of attribution
relations. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3914–3920, Portorož, Slovenia.
European Language Resources Association (ELRA).

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Revanth Gangi Reddy, Sai Chinthakindi, Zhenhailong
Wang, Yi R Fung, Kathryn S Conger, Ahmed S El-
sayed, Martha Palmer, and Heng Ji. 2021. News-
claims: A new benchmark for claim detection from
news with background knowledge. arXiv preprint
arXiv:2112.08544.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3914–3923.

Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein.
2021. Adapting language models for zero-shot learn-
ing by meta-tuning on dataset and prompt collections.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2856–2878.

6932



A Appendix

A.1 Topic Classification performance
Figures 3 and 4 show the topic classification con-
fusion matrices for the NLI and QA models re-
spectively. As Reddy et al. (2021) point out, the
NLI model predominantly suffers from classifying
claims related to cure as protection and those re-
lated to origin as transmission. However, our QA
model is able to overcome this, which explains the
improved performance in topic classification and
topic filtering for claim sentence detection.

Figure 3: Topic classification confusion matrix for the
the NLI model.

Figure 4: Topic classification confusion matrix for the
the QA model.

A.2 QA Training Datasets
We give a brief overview of the datasets used to
train the extractive QA model.

SQuAD: SQuAD1.1 (Rajpurkar et al., 2016)
is an extractive machine reaching comprehen-
sion dataset containing questions posed by crowd-

workers on a set of wikipedia articles. SQuAD2.0
(Rajpurkar et al., 2018) combines the 100,000+
questions in SQuAD1.1 with over 50,000 unan-
swerable questions written adversarially by crowd-
workers to look similar to answerable ones.

Natural Questions: NQ (Kwiatkowski et al.,
2019) is an english machine reading comprehen-
sion benchmark which contains 300,000+ ques-
tions from Google users, and requires systems to
read and comprehend entire Wikipedia articles to
answer them.
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Abstract

Recently, fine-tuning the pre-trained language
model (PrLM) on labeled sentiment datasets
demonstrates impressive performance. How-
ever, collecting labeled sentiment dataset is
time-consuming, and fine-tuning the whole
PrLM brings about much computation cost. To
this end, we focus on multi-source unsuper-
vised sentiment adaptation problem with the
pre-trained features, which is more practical
and challenging. We first design a dynamic
feature network to fully exploit the extracted
pre-trained features for efficient domain adapta-
tion. Meanwhile, with the difference of the tra-
ditional source-target domain alignment meth-
ods, we propose a novel asymmetric mutual
learning strategy, which can robustly estimate
the pseudo-labels of the target domain with
the knowledge from all the other source mod-
els. Experiments on multiple sentiment bench-
marks show that our method outperforms the
recent state-of-the-art approaches, and we also
conduct extensive ablation studies to verify the
effectiveness of each the proposed module.

1 Introduction

Sentiment classification (Cambria et al., 2020)
aims to predict the sentiment label for each textual
data automatically (Susanto et al., 2022), which
is one of the most popular natural language pro-
cessing (NLP) tasks with many important applica-
tions, such as social media monitoring (Ortigosa
et al., 2014), market research (Jabbar et al., 2019),
conversation sentiment detection (Tu et al., 2022),
etc. Very recently, the pre-trained language models
(PrLMs), e.g., BERT (Devlin et al., 2019), have
demonstrated significant improvements on wide-
range of NLP tasks, including the sentiment clas-
sification. This framework includes two steps: the
transformer-based (Vaswani et al., 2017) model
is first pre-trained on large unlabeled corpus, and
then fine-turned on the labeled datasets for the
downstream tasks. However, as illustrated in Fig-

Figure 1: Illustration of domain-shift for sentiment clas-
sification. Top: different domain reviews have different
subject words (marked with blue) with different senti-
ment descriptions (marked with underlines). Bottom:
the different data distributions will lead to performance
degradation.

ure 1(Top), different domain texts often contain dif-
ferent subject words, and have different sentiment
descriptions, which lead to decreased performance
induced by domain-shift (Pan and Yang, 2010)(Fig-
ure 1(Bottom)).

Unsupervised domain adaptation (UDA) is an-
other hot research topic in machine learning to
address the domain-shift. It aims to transfer the
knowledge from the source domain to the target
domain with the labeled source data and unlabeled
target data. This is often achieved by minimiz-
ing a specific distance between the source and tar-
get domains to learn the shared domain-invariant
features. For example, Guo et al. (2020) exploit
several distance metrics (e.g., Maximum Mean Dis-
crepancy (MMD) Gretton et al., 2012, Correlation
Alignment (CORAL) Sun et al., 2016) for domain
adaptation in the context of text classification tasks.
While, Li et al. (2017) use a domain classifier to
obtain domain-invariant sentiment features via ad-
versarial training (Ganin et al., 2016) between the
source and target features.

Despite the progress of recent cross-domain
sentiment analysis works which mainly focus on
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single-source domain adaptation setting, it is still
cumbersome to apply these domain alignment
methods on the multi-source sentiment adaptation
tasks, which is more practical in real-world sce-
narios. Simply combining all the source domains
into a single dataset may deliver worse perfor-
mance compared with the best result from one
of source dataset (Guo et al., 2018), due to the
various source distributions. Meanwhile, with the
number of source domains increasing, the corre-
sponding computation cost and complexity will
be dramatically increased (Dai et al., 2020; Xue
et al., 2020). In particular, the recent dominant
frameworks PrLMs (Devlin et al., 2019; Yang et al.,
2019b) are adopted as the backbone for feature ex-
traction, which usually contains a large amount of
training parameters (Ye et al., 2020).

Therefore, there is a strong motivation to de-
velop an efficient multi-source unsupervised sen-
timent adaptation framework which can gener-
alize well to the target domain with no labeled
target data. Recent self-training methods (He
et al., 2018; Zou et al., 2019; Liu et al., 2021)
achieve advanced performance on many unsuper-
vised domain adaptation tasks by iteratively up-
dating the pseudo-labels of the target data with
current adapted model, and the model can be re-
trained with these self-annotated data. However,
the pseudo-labels are not always reliable due to the
distribution shift between the source domain and
the target domain, and the incorrect pseudo-labels
can significantly hurt the final adaptation perfor-
mance. Several techniques are proposed to reduce
the negative effect of noisy pseudo labels, such
as high-confidence threshold (Zou et al., 2019),
self-ensemble bootstrapping (He et al., 2018), mu-
tual information maximization (Ye et al., 2020),
etc., which demonstrate improved performance on
single-source cross-domain adaptation tasks. In
this paper, we propose a novel Asymmetric Mutual
Learning (AML) strategy to estimate the pseudo-
labels robustly, and we show this strategy is well-
suited to the unsupervised multi-source domain
adaptation setting. Specifically, we design a clas-
sification model for each source domain. For each
source model, the pseudo-labels of target data are
derived from the ensembles of all the other source
models. In contrast with traditional deep mutual
learning (Zhang et al., 2018) which distills the
knowledge of a single dataset with multiple models,
our AML can utilize the knowledge from multiple

datasets under different distributions. Therefore,
each source model can be enhanced with the other
source models. Unlike traditional self-training
methods which generate pseudo-label by itself, our
AML is more robust to the noisy pseudo-label.

In addition, we tend to use the features ex-
tracted from BERT for efficient sentiment adap-
tation, and this feature-based adaptation method is
more memory-friendly compared with fine-tuning
BERT. To fully exploit BERT features, we pro-
pose a dynamic network (Yang et al., 2019a) for
better aggregating the features from different lay-
ers, which is referred to Dynamic Feature Net-
works (DFN). Compared with attention-based fu-
sion (Vaswani et al., 2017) which only scales the
features, our DFN can dynamically adjust the pa-
rameters of the network according to each instance
input for better performance. Together with the two
proposed modules (AML and DFN), we achieve
new state-of-the-art performance on the widely-
used sentiment benchmarks (Blitzer et al., 2007)
under unsupervised multi-source setting. We sum-
marize our contributions as follows:

• We propose a novel asymmetric mutual learn-
ing (AML) method, which is designed for
multi-source unsupervised sentiment adapta-
tion task and beneficial for real-world senti-
ment analysis applications.

• To achieve efficient adaptation on sentiment
classification, we propose a dynamic feature
network (DFN), which allows to dynami-
cally assemble multiple parameters for the
extracted features, and not update the encoder
of PrLMs during adaptation training.

• We demonstrate that the proposed model
achieves SOTA performance on multiple senti-
ment adaptation benchmarks, and the ablation
studies verify the effectiveness of each pro-
posed module.

The remainder of the paper is organized as follows.
Section 2 introduce the related work, followed by
the proposed framework in Section 3. Experimen-
tal results are reported in Section 4. Conclusion is
drawn in the last Section 5.

2 Related work

In this section, we mainly focus on recent related
methods based on Deep Neural Networks (DNNs)
due to their superior performance.
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Sentiment Classification: aims to predict the
sentiment polarity of a given texts. Dang et al.
(2020) compare many DNN-based methods, such
as Convolutional Neural Networks (CNNs) (Kim,
2014), Recurrent Neural Networks (RNNs) (Zhou
et al., 2016), etc. However, these methods often use
word embedding or TF-IDF as the representations
of the texts, which can not capture the context infor-
mation within a sentence. Recently, with the advent
of pre-trained language models which achieve im-
pressive performance in many NLP tasks (Devlin
et al., 2019), more and more works adopt these
PrLMs as the backbone for sentiment analysis (Sun
et al., 2019a; Dang et al., 2020). Despite their
great success, the performance of these models is
still suffering from domain-shift of the datasets (Li
et al., 2021).

Unsupervised Domain Adaptation: is an at-
tractive topic for dealing with the domain-shift
problem. The mainstream is to reduce the distribu-
tion discrepancy between the source and the target
domains (Ganin et al., 2016; Guo et al., 2018). For
sentiment classification tasks, some previous works
aim to identify domain-invariant pivot words (Ziser
and Reichart, 2018; Li et al., 2018). However, pivot
words identification is tedious and may be inaccu-
rate. Ganin et al. (2016) and Li et al. (2017) tend
to minimize the whole sentence representation by
a binary domain classifier. As for the more chal-
lenging multi-source adaptation setting, mixture-of-
experts (Guo et al., 2018) aligns the each domain-
pair based on MMD for simplicity, and ensemble
all the source prediction based on the distance met-
ric. While, Zhao et al. (2018) uses a multi-class do-
main classifier to align multi-domain distributions
and Dai et al. (2020) incorporates pseudo-labels to
further improve the performance. Fu and Liu (2022)
share a similar idea but using BERT as the back-
bone. In contrast to most domain-alignment meth-
ods which become complex with the number of
source domains increasing, we turn to self-training
methods which demonstrate effective performance
for UDA (Zou et al., 2019; Liu et al., 2021; Dai
et al., 2020), and the asymmetric mutual learning
(AML) is proposed for robust pseudo-label genera-
tion in multi-source adaptation setting.

Dynamic Networks: aim to adjust the networks’
architectures or parameters conditioned on each in-
put (Yang et al., 2019a). SkipNet (Wang et al.,
2018) can decide whether a block is kept and not,
which can significantly reduce the inference time.

CondConv (Yang et al., 2019a) can select the best
combination of the convolution parameters dynami-
cally, which increase model capacity with marginal
computation cost. DyCNN (Chen et al., 2020)
shares a similar idea, while uses softmax function
to derive the attention coefficiency for each con-
volution kernel. In this paper, we are interested in
adapting the features extracted from BERT for sim-
plicity and efficiency. Thus, we propose a dynamic
feature network (DFN) to fully exploit the features
and adjust the network parameters accordingly for
better performance.

3 Method

In this section, we first introduce the overall frame-
work for multi-source unsupervised sentiment adap-
tation. Next, we provide further details of each
proposed module. The detailed training procedures
are presented in the last section.

3.1 Overall Framework

For multi-source unsupervised domain adaptation
setting, there are k labeled source domains S =

{Si}ki=1 (where Si = {xSit , ySit }
|Si|
t=1) and an unla-

beled target domain T = {xTt }|T |t=1, | · | indicates
number of samples in the domain. All these do-
mains have different data distributions: PSi ̸= PT
and PSi ̸= PSj . Our goal is to train a sentiment
classification model with S and T , which general-
izes well to the target dataset.

Many previous works adopt statistic metrics or
adversarial training to align the distributions be-
tween each domain-pairs, this strategy becomes un-
stable and complicated with the number of source
domains increasing. As shown in Figure 2, we
use BERT as the feature extractor for the text in-
put, and build a classifier head for each source
domain. Without explicit alignment, we design an
asymmetric mutual learning method to estimate the
pseudo labels of the target data directly, so that all
the source classifier can be adapted to the target
domain and mutually enhanced, simultaneously.

Since BERT is a large-scale pre-trained language
model, we tend to only use its features for efficient
adaptation and inference at test time. To this end,
we propose the dynamic feature network to fully ex-
ploit the extracted features from different layers by
adjusting the network parameters (See section 3.3
for details).

During test stage, we simply average the outputs
of all the classifiers as the final prediction.
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Figure 2: Overview of the proposed framework. We use the pre-trained BERT for feature extraction. DFN indicates
dynamic feature network for exploiting better features with dynamic parameters. AML indicates asymmetric mutual
learning for robust pseudo labels.

3.2 BERT Feature Extraction

We first extract text features with BERT (Devlin
et al., 2019), which consists of several transformer
layers. For each layer, we will use the represen-
tation of the first CLS token as features. Since
the transformer layer is based on the self-attention
module (Vaswani et al., 2017), the CLS token rep-
resentation should contain all the information from
a input sentence.

Given a text input x, the extracted feature from
the last lth layer can be expressed as follows:

fl = TransformerCLSl (x), (1)

As shown in Figure 2, multiple CLS features from
last N transformer layers in BERT can be obtained
and fed to the proposed dynamic feature network
(DFN) for further exploitation.

3.3 Dynamic Feature Network

The text features from BERT are powerful due
to the contextualize information (Peters et al.,
2019). Sun et al. (2019b) and Merchant et al. (2020)
also demonstrate that features from different layers
present different behaviors. Since we aim for effi-
cient adaptation without updating the large amount
of parameters within BERT extractor, fully exploit-
ing the representations from different layers is nec-
essary for better adaptation performance. There-
fore, we propose a novel dynamic feature network
(DFN) to adjust the network’s parameters based on
the input for dynamic adaptation of features.

As shown in Figure 3, the parameters of a fully-
connected layer in DFN are a function of the in-
put features. DFN can be adaptive to each in-
put and choose the optimal parameters automat-
ically. There are two advantages: our model can
not only fully exploit the different layer features by
discovering the optimal aggregation manner, but
also increase the model’s representation power with
marginal computation cost.

We define the dynamic parameters of DFN as
Wf , which is conditioned on the input features f .
Following Merchant et al. (2020), we select the last
N layers of BERT for input features to DFN, which
means f = {f1, f2, ..., fN}. Similar to Chen et al.
(2020), the dynamic parameters of the DFN can be
derived from combination of N linear parameters
{Wl}Nl=1, which is defined as follows:

Wf =
N∑

l=1

πl(f)Wl

s.t. πl(f) ∈ [0, 1],

N∑

l=1

πl(f) = 1 (2)

where the linear parameters {Wl}Nl=1 are trainable
parameters, and πl(f) denotes the weight for the
parameters Wl, which is conditioned on the input
feature f . As shown in Figure 3, we use a two-fully
connected layers followed by a softmax activation
to compute the dynamic weight πl(f) for each Wl.
Therefore, the parameters within the DFN can be
dynamically adjusted based on each input f to fully
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Figure 3: The architecture of the dynamic feature net-
work. ’FC’ denotes the fully-connected layer.

exploit the optimal aggregation manner for better
feature adaptation performance.

The final dynamic feature representation pro-
duced by the DFN is defined as:

z = g(Wf · f + b) (3)

where g(·) is ReLU activation function used in this
work.

3.4 Asymmetric Mutual Learning
We argue that explicitly reducing the distribution
gap between each source-target pair is cumber-
some for multi-source adaptation setting, especially
for the domain adversarial training scheme (Ganin
et al., 2016), which is often unstable and increase
the training difficulties (Guo et al., 2018). A
promising alternative is to estimate the pseudo-
labels for the target domain to guide the adaptation
to the target domain, iteratively. Nevertheless, the
pseudo-label generated by the model itself, i.e., self-
training, will inevitably contain noise (Liu et al.,
2021), which can hurt performance seriously.

As shown in Figure 2, we build a classification
head Ci for each source domain Si. Therefore,
we can generate the pseudo-label for one classifier
by ensembling the output from all the other source
domains {Cj}j ̸=i, which is called Asymmetric Mu-
tual Learning (AML). We define the output ofCi as
pθCi (z), where z is the output from DFN, and θCi
includes the trainable parameters within the DFN.
The pseudo-label of a target representation zT for

Ci can be derived as ŷT =

∑
j ̸=i pθCj

(zT )

k−1 , where
k is the number of source domain. The objective
function for Ci can be formulated as follows:

min
θCi

ℓCicls + ℓCiaml, (4)

where ℓcls and ℓaml indicate supervised classifica-
tion loss and asymmetric mutual loss, respectively.

Both are defined as follows:

ℓCicls = EzSi ,ySi [−ySi log pθCi (z
Si)] (5)

ℓCiaml = EzT ||pθCi (z
T )− ŷT ||2 (6)

where the superscript denotes the domain name.
Different from the traditional mutual learn-

ing (Zhang et al., 2018) with a single dataset, our
proposed AML framework is targeted for multi-
source unsupervised domain adaptation, and has
multiple branches which corresponds to multiple
source domains. It not only maintain the domain-
specific information by training separate classifiers
for corresponding source domains, but also exploit
the complementary knowledge from all the other
source domains to estimate the pseudo-label of tar-
get data for adaptation. It is noting that the Eq. 4
contains two parts, the first supervised source train-
ing enables diversified source classifiers, which in
turn provide more robust ensembled pseudo-labels
of target data for the AML training.

Therefore, during adaptation process, all the
source models can be collaboratively enhanced
with each other, and exploit robust target knowl-
edge from diverse source models for better multi-
source adaptation results.

3.5 Training Procedures
We proceed with the training by alternately optimiz-
ing Ci for each source classifier based on the loss
objective shown in Eq. 4. The detailed optimization
procedure is summarized in Algorithm 1.

During test, we average the output of all the
classifiers {Ci}ki=1 for the final prediction.

4 Experiments

In this section, we extensively evaluate our model
on two widely-used sentiment adaptation bench-
marks, Amazon view datasets 1 and Skytrax view
datasets 2. First, we introduce the datasets, experi-
ment setup, and implementation details. Then, the
performance of recent state-of-the-art adaptation
methods are reported for comparisons. Besides, we
also conduct detailed ablation studies to verify the
contribution of each proposed module.

4.1 Experimental Settings
Amazon view dataset: contains reviews from four
products, namely, books (B), DVD (D), electron-

1https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
2https://github.com/quankiquanki/skytrax-reviews-

dataset
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Method D, E, K→ B B, E, K→ D B, D, K→ E B, D, E→ K Avg.
Previous methods
DANN (Ganin et al., 2016) 0.779 0.789 0.849 0.864 0.820
MDAN (Zhao et al., 2018) 0.786 0.807 0.853 0.863 0.827
MoE (Guo et al., 2018) 0.794 0.834 0.866 0.880 0.843
2ST-UDA (Dai et al., 2020) 0.799 0.839 0.851 0.877 0.841
CTDA (Fu and Liu, 2022) 0.800 0.839 0.866 0.880 0.846
Our methods
Single-best 0.837 0.831 0.857 0.872 0.849
Source-combined 0.832 0.843 0.863 0.885 0.856
Our model 0.852 0.856 0.880 0.892 0.870

Table 1: Comparison of multi-source unsupervised domain adaptation results on Amazon review datasets. The best
results are denoted with bold.

Algorithm 1 Pseudo-code of AML
Input: Extracted last N BERT features for all the

domains, mini-batch size B, learning rates ζCi
for each classifier Ci, i ∈ [0, k];

Output: θCi , i ∈ [0, k];
1: for epoch = 1 to N do
2: for i = 1 to k do
3: for each mini-batch in the Si domain do
4: Randomly sample target features;
5: Compute the pseudo-label ŷ with the

other {Cj}j ̸=i
6: Update Ci via:

θCi ← Adam(∇θCi (ℓ
Ci
cls +

ℓCiaml), θCi , ζCi);
7: end for
8: end for
9: end for

ics (E), kitchen (K). Each produce represents one
domains, and has 1,000 positive reviews (label 1)
and 1,000 negative reviews (label 2), while has
different number of unlabeled reviews. Following
similar multi-source unsupervised domain adapta-
tion adopted in (Fu and Liu, 2022), we select one
of domain as target domain, the rest domains are
used as multi-source domains.
Skytrax view dataset: includes two air-travel-
related reviews from skytrax website, i.e., Airline
(AL) and Airport (AP), which contain 41,396 and
17,721 reviews, respectively. The data distribution
discrepancy between the Amazon product views
and air-travel reviews should be large, we use
all four product datasets as source domains and
one of Skytrax view dataset as the target domain,
to demonstrate the effectiveness of our proposed

method in this challenging settings. To align with
Amazon view datasets, we randomly sample 1,000
positive and 1,000 negative reviews from AL and
AP domains for training.
Implementation details: In all experiments, we use
the pre-trained BERTbase-uncased (Devlin et al.,
2019) to extract features from the last 4 transformer
layers, which demonstrates both effectiveness and
efficiency, reported in (Peters et al., 2019; Merchant
et al., 2020). All the classifiers have the same archi-
tecture, which includes a DFN module, followed by
two fully-connected layers. We use Adam (Kingma
and Ba, 2015) optimizer and set the learning rate
to 10−4, weight decay to 10−4, batch size to 16.

4.2 Experimental Results

Results on Amazon review benchmarks: Table 1
compares the sentiment classification accuracies
of our method and recent multi-source unsuper-
vised adaptation methods on Amazon review bench-
marks. It is noted that our method achieves the
best performance on all the multi-source adapta-
tion tasks, which demonstrates the superiority of
our proposed method.

Most previous unsupervised multi-source senti-
ment adaptation methods adopt word embedding
as features, which is lack of contextualized infor-
mation for each word. We show that the BERT
features adopted by our method can achieve rela-
tively better results. ‘Source-combined’ indicates
that we train the DFN-based source classifier us-
ing the combination of all the labeled data in the
multi-source domains, which is demonstrated to be
a strong baseline for multi-source unsupervised do-
main adaptation tasks (Guo et al., 2018). As shown
in Table 1, ‘Source-combined’ achieves compara-
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Method B, D, E, K→ AL B, D, E, K→ AP Avg.
Single-best 0.841 0.687 0.764
Source-combined 0.832 0.680 0.756
Our model 0.850 0.695 0.772

Table 2: Adaptation performance from multiple product review domains (Amazon) to one of air-travel review
domains (Skytrax). The best results are denoted with bold.

Method D, E, K→ B B, E, K→ D B, D, K→ E B, D, E→ K
Without DFN
Last features 0.831 0.845 0.873 0.873
Avg features 0.836 0.839 0.868 0.878
Our model 0.852 0.856 0.880 0.892

Table 3: Ablation study the effect of the proposed DFN module. The best results are denoted with bold.

ble or better results on all the adaptation setting
with an average accuracy of 85.6%, which out-
performs previous methods by around 1 to 3 per-
centage points. In addition, our AML-based train-
ing strategy achieves accuracy of 87.0% on aver-
age, which surpasses the strong baseline (Source-
combined’) method and the most recent method (Fu
and Liu, 2022) (84.6%) by 1.4 and 2.4 percentage
points, respectively.
Adaptation Results from Amazon to Skytrax:
Table 2 reports the performance of adaptation to AL
and AP domains by using all the Amazon review
datasets as multi-source domains. ‘Source-best’
indicates the best performance achieved under the
single-source domain adaptation setting, the cor-
responding source domain often has more similar
distribution to the target domain. Due to the large
domain gap between the product reviews in Ama-
zon and air-travel-related reviews in Skytrax, nega-
tive transfer is often occurred. As shown in Table 2,
the ‘Source-combined’ performance is worse than
that of ‘Single-best’ baseline in both tasks, which
indicates that the extra source data are not fully
leveraged, and the distribution shift among multi-
source domains brings about the negative effects.
While, our model based on the AML strategy can
consistently improve the final adaptation perfor-
mance, which achieves 85.0% and 69.5% accuracy
on the AL domain and AP domain, respectively.
The corresponding average accuracy is better than
the baselines by 1 to 2 percentage points.

4.3 Ablation Study

Effectiveness of AML: We make comparison
among ‘Source-combined’, ‘Single-best’ and our

AML-based method to illustrate the effectiveness
of the AML module. We show that simply com-
bining all the source data together may hurt the
final result due to various source domain distribu-
tions. As shown in Table 1, for the D,E,K→ B
task, ‘Source-best’ surpasses ‘Source-combined’
by 0.5 percentage point. As shown in Table 2, both
two tasks demonstrate the same results. While, our
AML-based adaptation can achieve consistently im-
proved performance without negative transfer in all
multi-source sentiment adaptation tasks. We con-
sider that AML makes best of each domain’s spe-
cific knowledge and enables collaboration among
multiple source classifiers to address the negative
transfer, so that delivers better performance than
both ‘Source-best’ and ‘Source-combined’ base-
lines. We also tried the traditional self-training
methods on the adaptation from Amazon domains
to the Skytrax domain, and found that the accu-
racy quickly drops caused by the noisy label gener-
ated by the model itself. We speculate that during
our proposed AML adaptation, each source model
learns from the other models, which will not ac-
cumulate the same errors as done in self-training.
Therefore, AML is more robust to the noisy-labels,
and more effective and suitable in the multi-source
unsupervised domain adaptation tasks.

Effectiveness of DFN: We conduct several experi-
ments to verify the effect of DFN. As shown in Ta-
ble 3, we first use the last transformer layer features
of BERT as input, which indicates ‘last features’.
We also use the same features (last 4 transformer
layers) as input, but just average them without DFN
module, which indicates ‘Avg features’. It can be
observed that simply averaging the features from
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different layers of BERT delivers comparable per-
formance with only using the last features (less
than 1 percentage point in most cases). However,
our DFN module can dynamic adjust the network’s
parameters for better exploiting the input features
from different layers. Therefore, the corresponding
performance is consistently better than the above
two baselines as reported in Table 3, which demon-
strate the effectiveness of DFN.

5 Conclusion

In this paper, we propose a novel framework for
multi-source unsupervised domain adaptation on
sentiment classification. To achieve efficient adap-
tation with the recent large-scale and powerful pre-
trained BERT model, we propose a dynamic feature
network to find the optimal network parameters for
better features exploitation. Besides, instead of
explicitly reducing the distribution discrepancy be-
tween domain pairs which becomes complex with
the number of source domain increasing, we design
a asymmetric mutual learning strategy to estimate
the pseudo-label of the target data directly. We
conduct extensive experiments and ablation studies
that verify the effectiveness and superiority of our
proposed model.
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Abstract

Stance detection aims to identify the attitude
from an opinion towards a certain target. De-
spite the significant progress on this task,
it is extremely time-consuming and budget-
unfriendly to collect sufficient high-quality la-
beled data for every new target under fully-
supervised learning, whereas unlabeled data
can be collected easier. Therefore, this paper
is devoted to few-shot stance detection and
investigating how to achieve satisfactory re-
sults in semi-supervised settings. As a target-
oriented task, the core idea of semi-supervised
few-shot stance detection is to make better
use of target-relevant information from labeled
and unlabeled data. Therefore, we develop a
novel target-aware semi-supervised framework.
Specifically, we propose a target-aware con-
trastive learning objective to learn more distin-
guishable representations for different targets.
Such an objective can be easily applied with or
without unlabeled data. Furthermore, to thor-
oughly exploit the unlabeled data and facili-
tate the model to learn target-relevant stance
features in the opinion content, we explore a
simple but effective target-aware consistency
regularization combined with a self-training
strategy. Experimental results demonstrate that
our approach can achieve state-of-the-art per-
formance on multiple benchmark datasets in
the few-shot setting.

1 Introduction

Stance detection is intended to identify the attitude
of opinions towards certain targets, where labels
can be favor, against, and neutral. For example, the
opinion “True equality allows all to be born.” is
against the target “Legalization of Abortion”. The
settings of stance detection can be generally di-
vided into in-target and cross-target ones. Specif-
ically, in-target stance detection aims to train an
exclusive classifier for prediction on the same set

∗Zheng Lin is the corresponding author.

of targets (Mohammad et al., 2016b; Augenstein
et al., 2016; Li et al., 2021). Obviously, in-target
stance detection is the most ideal setting when there
is sufficient labeled data. However, in practice, a
severe challenge is the scarcity of annotations for
new targets. Cross-target stance detection (Zhang
et al., 2020a; Xu et al., 2018; Wei and Mao, 2019)
is to train on the labeled data of one source target
and test on the destination target, which is based
on an assumption that there is a strong correla-
tion between the two targets. No doubt the harsh
demand from the assumption above limits the ex-
tension of cross-target stance detection, in which it
still requires a large amount of annotated data for
the source target. In this paper, we focus on the
in-target few-shot stance detection with unlabeled
data and limited labeled data, which is to alleviate
the demand for human supervision.

Different from common classification tasks
(e.g., sentiment classification), the identification
of stance is heavily dependent on the specific tar-
get (Siddiqua et al., 2019). As a target-oriented
task, the key problem of few-shot stance detection
is how to thoroughly exploit the target-relevant in-
formation from the limited labeled data and the
unlabeled data. Existing methods like supervised
contrastive learning (Gunel et al., 2021) and semi-
supervised learning (Sohn et al., 2020) prove sig-
nificant effectiveness in the few-shot setting. When
only a few labeled samples are provided, super-
vised contrastive learning (SCL) hopes to improve
the representation ability of the model to a cer-
tain extent by leveraging class label information.
However, such an objective ignores target label in-
formation, the crucial clue, which plays a vital role
in stance detection. When the unlabeled data is
available, semi-supervised learning (SSL) like self-
training and consistency regularization, is a way of
bringing unlabeled data into full play, which helps
to overcome the scarcity of sufficient annotated
data. However, self-training algorithm (Glandt
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et al., 2021; Li et al., 2021) only encourages the
student network to mimic the teacher network’s
label predictions simply. Moreover, consistency
regularization (Xie et al., 2020a; Sohn et al., 2020)
constrains the model to make consistent predictions
of the same example under some task-agnostic
data augmentation strategies. Neither of them digs
deeply into target-relevant stance features in the
opinion content.

To further tackle the challenges above, we pro-
pose a novel Semi-supervised framework with
Target-aware Contrastive learning and Consistency
regularization (STCC). First, we introduce a target-
aware contrastive learning objective to consider
both target and stance label information, which
promotes the distinction and isolation of sam-
ples from different targets, as well as different
classes. Since the target-aware contrastive learn-
ing objective learns more distinguishable repre-
sentations, the model trained here can be used in
semi-supervised learning as a better teacher model.
Second, we combine two approaches to SSL: con-
sistency regularization and self-training. Specifi-
cally, we design a simple but effective target-aware
data augmentation strategy for consistency regu-
larization, i.e., masking the corresponding target
for every unlabeled example, so that the model can
perceive the target-related information contained in
the content as much as possible. Moreover, our pro-
posed target-aware contrastive learning objective
can be naturally extended to semi-supervised learn-
ing with additional unlabeled data. Specifically, the
pseudo-labels generated by the teacher model are
used for the contrastive learning objective. Finally,
we conduct comprehensive experiments on two
large datasets of SemEval-2016 and COVID-19-
Stance to verify the effectiveness of our framework
for few-shot stance detection. The experimental
results demonstrate that our approach achieves the
state-of-the-art performance1.

2 Methodology

2.1 Problem Definition
The semi-supervised few-shot stance detection is
to train a classifier by leveraging labeled and un-
labeled data, which identifies the users’ stance
from the context and the corresponding target. For-
mally, given a collection of limited labeled data
X = {(xi, ti, yi)}Nli=1 and a collection of unlabeled

1Our code and data are available at
https://github.com/monolith-v1/STCC.

data U = {xi, ti}Nuj=1, where xi is the opinion con-
tent, ti is the corresponding target, yi is the stance
label, Nl is the number of the labeled data and Nu

is the number of the unlabeled data.

2.2 BERT Model

First of all, we select the pretrained model BERT as
the encoder. For the labeled dataX , we concatenate
the content xi and the target ti of each sample in the
following format: [CLS] ti [SEP] xi [SEP] and uti-
lize BERT to process it. We then feed the represen-
tation h[CLS]

i of [CLS] from the last layer of BERT
into the final classification layer. Finally, we com-
pute the probability distribution with the softmax
function: p(ŷi|xi, ti) = softmax(Whh

[CLS]
i ),

where Wh is a trainable matrix. We fine-tune the
model by minimizing the cross-entropy loss:

Lce = −
1

|X |

|X |∑

i

CE(p(ŷi|xi, ti), yi), (1)

where CE denotes the cross entropy loss function.

2.3 Target-aware Contrastive Learning

The core idea of contrastive learning is to bring
the representations of positive sample pairs closer,
and push the negative sample pairs farther, to learn
more distinguishable representations. In supervised
contrastive learning, samples under the same label
match each other as positive pairs and samples of
different labels match as negative pairs. Given the
index I = {1, · · · , B} in a batch, the supervised
contrastive learning loss is formulated as:

Lisup = −
B∑

i=1

1

|Ni|
∑

j∈Ni
log

esim(hi,hj/τ)

∑
k∈C(i) e

sim(hi·hk/τ) ,

(2)

where B is the batch size, Ni = {hj |i ̸= j, yi =
yj} is the positive examples of hi, |Ni| is the num-
ber of examples labeled as yi in the same batch,
C(i) ≡ I\{i}, and τ is temperature parameter.

It is our goal to integrate target label informa-
tion into contrastive training, enabling the model
to learn the target-specific information adequately
under the setting of few labeled data. Specifically,
as shown in Figure 1, target-aware contrastive train-
ing (TCL) tries to make intra-target representations
being more compact in the feature space and inter-
target ones more distinguishable. The target-aware
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Figure 1: Structure overview of our target-aware semi-supervised framework. There are mainly three parts in the
figure: (a) The teacher model, aiming at generating pseudo-labels, is trained on labeled data with a combination
of cross-entropy (CE) loss and target-aware contrastive learning (TCL) objective. (b) an illustration for TCL,
in which different shapes stand for different targets, and different colors represent different stance labels. (c) is
the semi-supervised learning procedure. The teacher model comes from part (a), fed with original data, and its
prediction is then softmaxed and regarded as pseudo-labels ŷi. Simultaneously, the original data are also fed into
the student model, generating a prediction qa and pseudo-labels ȳi. Then, pseudo-labels ŷi from the teacher model
and qa are used to compute the self-training loss Lst. Afterwards, in another branch, the student model is fed with
augmented data to generate a prediction qb. Consistency regularization term Lcr is then computed by qb and ȳi.

contrastive learning loss can be written as:

Ltcl = −
B∑

i=1

Litcl (3)

Litcl =
1

|Ti|
∑

j∈Ti
log

esim(hi,hj/τ)

∑
k∈C(i) e

sim(hi·hk/τ) , (4)

where Ti = {hj |i ̸= j, yi = yj , ti = tj} is the
positive examples of hi, |Ti| is the number of ex-
amples with the target ti labeled as yi in the same
batch, and τ is temperature parameter.

The above trained model can be utilized alone or
as a teacher model to participate in semi-supervised
training. Note that TCL can also be applied to
semi-supervised learning. For the labeled data, the
annotated labels are used for picking positive and
negative pairs. For the unlabeled data, the teacher
model generates pseudo-labels as a complement.

2.4 Target-Aware Consistency Regularization
in Semi-supervised Learning

Consistency regularization utilizes data augmen-
tation to add perturbations for the unlabeled data.
An ideal model is ought to make consistent predic-
tions of samples before and after adding perturba-
tion. Therefore, such property makes it possible for

us to tailor target-aware data augmentation strat-
egy, which can facilitate model mining the target-
relevant stance features in the content. Practically,
given the prediction distribution of the original data,
qa = ps(ȳi|xi, ti), the ȳi = argmax(qa) is used
as pseudo-labels in the later process. There is a sim-
ple but effective way of acquiring the augmented
version of the unlabeled data for stance detection
here. Specifically, the prediction of an augmented
sample qb = ps(ỹi|xi) from the model can be gen-
erated by masking the corresponding target ti of
the content xi.

Lcr = −
1

|U|

|U|∑

i

CE(qb, ȳi), (5)

Note that conventional consistency regulariza-
tion performs a supervised training from the la-
beled data as well, of which the loss is computed
by Eq (1). Such a process utilizes the pseudo-labels
generated by the model under training. In con-
sistency training, the model trained from scratch
has a low accuracy and high entropy, which pre-
vents the model from achieving good accuracy (Xie
et al., 2020b). Therefore, we incorporate the
self-training strategy into consistency training to
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Algorithm 1 Target-aware Semi-supervised Learn-
ing for Few-shot Stance Detection

Require: Labeled data X and unlabeled data U .
Require: ∆ = 20 ▷ The increment every step

1: K = 100 ▷ The initial threshold
2: t = 1 ▷ The time step
3: Train the teacher model θt using labeled data

via Eq (1) and Eq (4).
4: repeat
5: K = K −∆
6: Generate pseudo labels ŷi using the teacher

model θt for unlabeled data.
7: Select unlabeled data with top K% high-

confidence pseudo labels.
8: Update student model θs using the combi-

nation of labeled data and unlabeled data via
Eq (7).

9: Using the student model θs as the teacher
model θt for next iteration.

10: t = t+ 1
11: until K ̸= 0
12: return θs

stabilize the entire training process. Instead of
using the model trained from scratch, we train
a teacher model ahead to generate high-quality
pseudo-labels. Pseudo-labels generated by the
teacher model can stabilize the training of a stu-
dent model that uses these generated pseudo-labels,
following the loss function:

Lst = −
1

|U|

|U|∑

i

CE(qa, ŷi), (6)

where, ŷi is the pseudo labels generated by the
teacher model. Inspired by a self-training method
of curriculum labeling (Cascante-Bonilla et al.,
2021), which applies self-paced curriculum learn-
ing principles in each self-training cycle, we select
samples of the top K% highest confidence from
the entire unlabeled dataset in each iteration with
an increment ∆.

The total loss for the semi-supervised learning
is as follows:

L = Lce + Lst + λaLcr + λbLtcl, (7)

where λa and λb are scalar weighting hyper-
parameters.

The procedure of our semi-supervised frame-
work is summarized in Algorithm 1.

3 Experiments

3.1 Datasets and evaluation

The macro-averaged F1 is used as the evaluation
metric for all datasets. We conducted experi-
ments using two well-known standard benchmarks,
SemEval-2016 and COVID-2019-Stance.

SemEval-2016 (Mohammad et al., 2016a) is the
earliest dataset to detect users’ stance from tweets,
which contains 6 targets, specifically, “Atheism”,
“Climate Change is a Real Concern”, “Feminist
Movement”, “Hillary Clinton”, and “Legalization
of Abortion” and “Donald Trump”. The data with
“Donald Trump” in the original dataset is not split
into the training and test sets. We split this target’s
data for training and testing with a ratio of 5:2.
The processed dataset has 3414 tweets for training
and 1456 for testing. Additionally, we split the
original training set in a ratio of 9:1 into training
and validation subsets.

COVID-19-Stance (Glandt et al., 2021) con-
sists of 6,133 tweets for stance towards four targets
relevant to COVID-19 health mandates, specifi-
cally “Anthony S. Fauci, M.D.”, “Keeping Schools
Closed”, “Stay at Home Orders”, and “Wearing a
Face Mask”. This dataset has 4533 samples for
training, 800 samples for validation, and 800 sam-
ples for testing.

3.2 Model comparisons

We compare our method with several strong base-
line methods:

(1) Some general models trained only using la-
beled data:

CrossNet (Xu et al., 2018): It is a BiLSTM
model for cross-target stance with an aspect-
specific attention layer.

BERT (Devlin et al., 2019): It is a transformer-
based language model pre-trained by two self-
supervised tasks.

ProtoNets (Snell et al., 2017): It aims to learn
prototypes embedding for each class, in which the
model makes predictions by computing distances
to prototype representations of each class.

(2) Fine-tuning objectives:
SCL (Gunel et al., 2021): A contrastive learning

objective combining the label information with the
self-supervised contrastive learning.

PT-HCL (Liang et al., 2022): This method uses
a pre-text task to distinguish the types of the stance
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data, then integrates the type information into the
supervised contrastive learning.

(3) Semi-supervised learning methods using the
unlabeled data and few labeled data:

Prompt (Schick and Schütze, 2021): The
prompt-based learning is a fine-tuning strategy
leveraging language prompts as contexts to stimu-
late knowledge from pre-trained Language Models,
which can has the flexibility to use or not use unla-
beled data.

UDA (Xie et al., 2020a): A consistency training
algorithm enforcing the model predictions to be
consistent between an unlabeled example and its
augmented version.

ST (Glandt et al., 2021): A vanilla self-
training method transferring the knowledge from
the teacher model to the student model iteratively.

UPS (Rizve et al., 2021): An uncertainty-aware
pseudo-label selection framework that leverages
the prediction uncertainty to guide the pseudo-label
selection procedure.

CL (Cascante-Bonilla et al., 2021): A pseudo-
label selection framework with a hand-crafted cur-
riculum choice strategy, which selects unlabeled
samples progressively from high confidence to low
confidence.

Finally, we add the model BERT w/ full data
trained by the full labeled data to present the upper
bound of the performance for all few-shot methods.

3.3 Implementation Details

In the few-shot setting, we randomly select 5, 10,
and 20 samples for each target for training under
different settings. For example, the size of the
labeled data for SemEval-2016 under the 5-shot
setting is 30. In order to obtain a relatively uniform
distribution, samples of different labels, which are
favor, against, and none, are picked by a ratio of
2:2:1. Under the setting of semi-supervised learn-
ing, in each of the datasets above, the rest of the
data in the training set is used as the unlabeled
data. We implement our model using PyTorch2

and BERT-base from huggingface Transformers3

is used as the backbone. The models are optimized
by AdamW and the batch size is set as 32. An
iteration for the self-training procedure is set as
20 epochs. We report the average results of the
models using a fixed set of 5 random seeds. We
set λa to 1.0. As few-shot learning is extremely

2https://pytorch.org/
3https://huggingface.co/docs/transformers/index

sensitive to hyper-parameters, we conduct a grid
hyper-parameters search based on the performance
on the validation data for learning rate, tempera-
ture τ and scalar weighting λb on two different
datasets across different shot sizes. The details are
in Appendix A.

3.4 Main Results

Table 1 shows the results from baselines on Se-
mEval2016 and COVID-19, including the perfor-
mance with and without unlabeled data. We select
BERT-base as the base encoder of these baselines,
except for CrossNet. Table 1 is divided into two
parts by whether unlabeled data is available. Mod-
els in the upper part are only trained by N-shot
labeled data (minimal few-shot setting), while re-
sults in the lower part come from semi-supervised
learning (semi-supervised few-shot setting).

First of all, generally, our method shows sub-
stantial improvement compared to baseline models
under minimal few-shot setting. Then, specifically,
the comparison of results from TCL and SCL un-
der different datasets validates that the application
of target label information in contrastive learning
further improves the performance of models. Con-
sidering the significant improvement of our model
over PT-HCL, it is clear that the distinguishing of
whether a data is sensitive to the target or not under
the minimal few-shot setting does not make the
most of target-specific information.

In addition, we also would like to acknowl-
edge that, SCL performs better than TCL under
5-shot learning on SemEval2016, but no such phe-
nomenon is observed on COVID-19. A possible
explanation is that the short length of texts of Se-
mEval2016 impedes the model from learning gen-
eral representations because TCL has to distinguish
the belonged target and stance at the same time,
making the number of data in each potential clus-
ter too small to learn. Note that there is no such
phenomenon in models with unlabeled data, indi-
cating the application of unlabeled data alleviates
the scarcity of data and enables STCC to develop
its full potential. Moreover, the model CrossNet
based on a traditional BiLSTM performs poorly
under the setting of few-shot stance detection here.

Next, from the lower part of Table 1, where the
results under semi-supervised learning are shown,
we find that STCC outperforms all other semi-
supervised methods by a great margin. Consid-
ering different settings of numbers of labeled data,
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Model SemEval2016 COVID19
5 10 20 5 10 20

without unlabeled data
CrossNet (Xu et al., 2018) 29.82 33.85 35.37 31.20 34.93 44.32
BERT (Devlin et al., 2019) 41.12 44.45 49.72 32.45 36.85 50.83
ProtoNets(Snell et al., 2017) 41.50 44.13 48.72 33.90 40.50 48.44
SCL (Gunel et al., 2021) 48.02 49.40 52.22 37.40 42.23 52.83
PT-HCL (Liang et al., 2022) 34.72 39.56 45.22 - - -
Prompt (Schick and Schütze, 2021) 37.88 41.80 43.74 34.96 37.46 47.52
TCL (Ours) 47.32 51.41 53.47 40.27 46.80 53.52

with unlabeled data
Prompt (Schick and Schütze, 2021) 37.93 42.41 43.80 34.96 49.42 47.11
UDA (Xie et al., 2020a) 46.86 46.77 50.87 40.27 47.02 53.52
ST (Glandt et al., 2021) 48.35 51.12 55.01 42.08 47.66 55.67
UPS (Rizve et al., 2021) 43.45 48.11 52.73 41.45 44.37 53.87
CL (Cascante-Bonilla et al., 2021) 48.92 51.34 55.42 40.96 50.22 56.86
STCC (Ours) 52.84 55.00 57.11 44.38 52.26 58.06
BERT w/ full data 68.34 73.12

Table 1: Summary of test results for few-shot stance detection using the shot size of 5, 10, 20 for training. The best
results are in bold.

STCC exceeds the best baselines by an average of
3.09% on SemEval 2016 and 1.84% on COVID-19.
It is also verified that BERT performs better with
the help of unlabeled data from the same target.
At last, the increase in numbers of labeled data
guarantees a steady growth for all semi-supervised
learning methods, especially outstanding for ours.
Besides, the performance of prompt-tuning meth-
ods whose backbone is BERTbase is not ideal. A
possible reason is that such methods depend on the
generalization ability of large pre-trained models
and hand-crafted prompt designs, which are not the
focus of our work.

3.5 Ablation Study

As shown in Table 2, we conduct an ablation
study to inspect the importance of the compo-
nents in STCC on SemEval2016, including the
target-aware contrastive learning (TCL), the target-
aware consistency regularization (TCR), and the
self-training procedure (ST). It is clear that the re-
moval of either one of our three independent mod-
ules causes the drop in performance, especially for
the self-training procedure. A possible explanation
is that the training of a model from the very begin-
ning introduces consistency training under a low
accuracy, forcing the model to stay in a condition
of high entropy.

Moreover, compared with “-TCR&TCL” (i.e.,

Model 5-shot 10-shot 20-shot

STCC 52.84 55.00 57.11
-TCR 51.32 53.53 56.48
-TCL 49.91 52.32 56.18
-ST 43.45 47.70 52.65
-ST&TCR 47.32 51.41 53.47
-ST&TCL 45.19 46.29 48.96
-TCR&TCL 48.92 51.34 55.42
-TCR&TCL + SCL 49.32 51.40 55.92
-ST&TCR&TCL 41.12 44.45 49.72

Table 2: Ablation results on SemEval-2016. “ST”
means self-training procedure, and “TCR” means target-
aware consistency regularization.

only using ST), the performance further improves
after equipping TCR, indicating the effectiveness
of our proposed target-aware consistency training.
The comparison among “-ST&TCL” (i.e., only us-
ing TCR), “-TCR&TCL” (i.e., only using ST) and
“-TCL” (i.e., using ST&TCR) further validates that
the model can achieve an acceptable performance
merely with the self-training procedure. In addi-
tion, TCL is replaced by SCL (i.e., “-TCR&TCL +
SCL”) to verify the indispensability of TCL under
the semi-supervised framework. The drop in perfor-
mance compared to TCL (i.e., “-TCR”) confirms
that target-specific information is of vital signifi-
cance in semi-supervised learning. The proposed
method of TCL adapts well to few-shot stance de-
tection with or without labeled data.

To demonstrate the effectiveness of our proposed
data augmentation, i.e., “masking the target”, we
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Figure 2: 2D t-SNE plots of the learned [CLS] representations on the unlabeled data of the SemEval2016 from the
BERT models only trained by 20-shot labeled samples for every target, which are fine-tuned on different objectives
CE (left), SCL (middle), and TCL (right).

Model 5-shot 10-shot 20-shot

NT 52.84 55.00 57.11
BT 52.13 52.21 55.96
SR 52.26 54.28 55.23
RD 50.92 52.35 55.99

Table 3: The performance of different data augmen-
tation in semi-supervised learning on SemEval2016.
“NT”: masking the target, “BT”: back translation, “SR”:
synonym replacement, “RD”: random deletion.

replace it with multiple common data augmenta-
tion methods in NLP, and the results are shown in
Table 3. Evidently, our method performs best for
the current task. Back translation is implemented
by the toolbox of nlpaug4, while synonym replace-
ment and random deletion are from EDA (Wei and
Zou, 2019) method5. Note that although common
data augmentation methods improve the results as
well, none of the improvements is as significant as
ours.

3.6 Visualization

Visualization for TCL In Figure 2, the t-SNE
plots from the representations of [CLS] are shown.
Such representations are the output from BERT-
base fine-tuned by different objectives, under the
setting of 20 available labeled samples. As ob-
served, for the case of using cross-entropy loss only,
all samples are promiscuously scattered. There is a
similar but better distribution for the model trained
by SCL, where most samples are mixed. For TCL,
there are six obviously independent clusters, as
there are six targets in SemEval2016. Furthermore,

4https://github.com/makcedward/nlpaug
5https://github.com/jasonwei20/eda_nlp

(a)

(b)

Target: Climate Change is a Real Concern
ST+TCR

ST

Target: Legalization of Abortion
ST+TCR

ST

Figure 3: The heatmap of the attention weights of [CLS]
towards each subword in the content for “ST+TCR”
and “ST” under semi-supervised setting. The attention
weights are averaged from the multi-heads in the top
layer. The darker the color, the greater the weight.

even inside a cluster itself, representations from
the same target but of different labels can be iden-
tified and are much more separate than that in the
other two diagrams. Such a phenomenon verifies
TCL helps to learn better representations, increas-
ing intra-target compactness and inter-target dis-
crepancy, which improves the performance of the
model.

Visualization for TCR In Figure 3, we show the
heatmap of attention weights to demonstrate the
effectiveness of our proposed target-aware consis-
tency regularization. As the classifier deals with
the representations from “[CLS]”, we pick the
attention-weight matrix of “[CLS]” from the top
layer towards each subword in the content. In order
to avoid possible influence from TCL, the model
is trained by “ST” and “ST+TCR” respectively.
Take (a) in Figure 3 for an example, whose target
is “Legalization of Abortion”, the model trained
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by “ST+TCR” notices target-relevant words like
“people, woman, opposed and disgusted”, while
“ST” merely pays attention to “woman”. Such a
phenomenon confirms that the proposed method of
target-aware consistency regularization improves
the ability of digging target-relevant information
for models.

4 Related Work

Stance Detection Stance detection aims to iden-
tify the attitude from an opinion towards a cer-
tain target. Incipient studies focus on in-target
stance detection (Augenstein et al., 2016; Siddi-
qua et al., 2019; Mohammad et al., 2016b; Du
et al., 2017; Wei et al., 2019), which only train
the model and perform the prediction on a single
target. Li et al. (2021) investigated the multi-target
training and knowledge distillation in the stance
detection task. Data augmentation (Li and Caragea,
2021) has been used for in-target setting to improve
performance in fully supervised learning. Cross-
target stance detection (Zhang et al., 2020b; Wei
and Mao, 2019; Allaway et al., 2021) hopes to
transfer knowledge between related targets, which
attempts to mitigate the lack of labeled training
data for a new target. Dutta et al. (2022) focused
on semi-supervised user stance detection using
the information from tweets posted by users and
their followers, whereas we do not consider spe-
cific user information. Hardalov et al. (2021) stud-
ied few-shot cross-lingual stance detection, which
transferred the knowledge from English resources
to non-English scenarios. Recently, Allaway and
McKeown (2020) defined zero-shot and few-shot
stance detection, according to which the targets
have no or very few training examples. And, they
present a new dataset VAST, which consists of thou-
sands different targets. However, VAST includes
a wide range of similar expressions for one target
(e.g., “guns on campus” versus “firearms on cam-
pus”). The situation above makes the source of
the model’s benefit too ambiguous to trace. There-
fore, SemEval-2016 and COVID-19-Stance are rel-
atively much more accessible for studying in the
few-shot setting, compared with VAST.

Contrastive Learning In recent years, con-
trastive learning has made significant progress in
self-supervised representation learning, both in the
CV (Chen et al., 2020) and NLP (Gao et al., 2021)
domains. Khosla et al. (2020) introduced super-
vised contrastive learning (SCL), which further ex-

tended the self-supervised contrastive learning to
the fully-supervised setting by leveraging label in-
formation. Gunel et al. (2021) integrated the SCL
objective for fine-tuning pre-trained language mod-
els, which significantly improves the performance
in the few-shot learning settings. In stance detec-
tion, Liang et al. (2022) proposed a hierarchical
contrastive learning loss to take both the data types
and the stance labels into account. They subdi-
vided the data types by judging whether a sample
is sensitive to its corresponding target based on
the self-supervised learning pretext task. However,
this strategy is not suitable for the few-shot setting,
which further reduces the target-related informa-
tion availability to the model.

Semi-supervised Learning Consistency regular-
ization, pseudo-labeling, and self-training are all
important components of semi-supervised learn-
ing. Consistency regularization (Xie et al., 2020a;
Sohn et al., 2020) constrains the model to make
consistent predictions of the same example un-
der varied noises. And, pseudo-labeling (Lee,
2013) selects those unlabeled data with high con-
fidence as a form of entropy minimization. These
methods use the model being trained to generate
pseudo-labels instead of a separate teacher model
pre-trained on labeled data. Self-training (Xie
et al., 2020b) allows a teacher model pre-trained
on labeled data, and then applies the combina-
tion of labeled and pseudo-labeled data to retrain
a student model. Recent, semi-supervised learn-
ing methods have combined those techniques to
some extent. Cascante-Bonilla et al. (2021); Rizve
et al. (2021) combine the self-training process with
pseudo-labeling, while using curriculum labeling
and uncertainty-aware techniques to improve the
filter process for unlabeled data. Sohn et al. (2020)
unify the consistency regularization and pseudo-
labeling. However, these task-agnostic methods
cannot adequately mine target-relevant stance fea-
tures in the opinion content for stance detection.

5 Conclusion

In this paper, we focus on in-target few-shot stance
detection to alleviate the demand for human su-
pervision, and propose a novel target-aware semi-
supervised framework with contrastive learning
and consistency regularization. The target-aware
contrastive learning objective performs well on
both labeled and unlabeled data, which promotes
the model’s ability to distinguish various classes
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and targets. Moreover, our proposed target-aware
consistency regularization is validated to be more
efficient in mining target-relevant stance features
in the content. Experiments on two popular bench-
marks demonstrate the effectiveness and consistent
improvements over baselines.
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A Hyper-parameters setting

As few-shot learning is extremely sensitive to
hyper-parameters, we conduct a grid hyper-
parameters search based on the performance on the
validation data for learning rate lr ∈ {2e-5, 3e-5},
temperature τ ∈ {0.05, 0.1, 0.2, 0.3, 0.4} and
scalar weighting λb ∈ {0.05, 0.1, 0.2, 0.5} on two
different datasets across different shot sizes. Here,
we give the hyperparameter settings of our model
in Table 4 and Table 5. Experiments are conducted
on NVIDIA RTX TITAN GPUs.

Model 5 10 20
BERT 3e-5 3e-5 2e-5
SCL (3e-5,0.5,0.2) (3e-5,0.5,0.3) (3e-5,0.05, 0.3)
TCL (3e-5,0.2,0.05) (3e-5,0.2,0.05) (3e-5,0.2,0.05)
STCC (3e-5,0.5,0.2) (2e-5,0.5,0.2) (3e-5,0.5,0.4)

Table 4: Hyper-parameter configurations for SemEval-
2016. In parentheses from left to right are learning rate,
scalar weighting λb, and temperature τ .

Model 5 10 20
BERT 3e-5 3e-5 3e-5
SCL (2e-5,0.5,0.3) (3e-5,0.5,0.4) (3e-5,0.5,0.4)
TCL (2e-5,0.5,0.2) (2e-5,0.5,0.3) (3e-5,0.5,0.3)
STCC (2e-5,0.5,0.3) (3e-5,0.5,0.1) (2e-5,0.2,0.3)

Table 5: Hyper-parameter configurations for COVID-19.
In parentheses from left to right are learning rate, scalar
weighting λb, and temperature τ .
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Abstract

Emotion cause pair extraction (ECPE), as one
of the derived subtasks of emotion cause anal-
ysis (ECA), shares rich inter-related features
with emotion extraction (EE) and cause ex-
traction (CE). Therefore EE and CE are fre-
quently utilized as auxiliary tasks for better fea-
ture learning, modeled via multi-task learning
(MTL) framework by prior works to achieve
state-of-the-art (SoTA) ECPE results. How-
ever, existing MTL-based methods either fail
to simultaneously model the specific features
and the interactive feature in between, or suffer
from the inconsistency of label prediction. In
this work, we consider addressing the above
challenges for improving ECPE by performing
two alignment mechanisms with a novel A2Net
model. We first propose a feature-task align-
ment to explicitly model the specific emotion-
&cause-specific features and the shared inter-
active feature. Besides, an inter-task alignment
is implemented, in which the label distance
between the ECPE and the combinations of
EE&CE are learned to be narrowed for better
label consistency. Evaluations of benchmarks
show that our methods outperform current best-
performing systems on all ECA subtasks. Fur-
ther analysis proves the importance of our pro-
posed alignment mechanisms for the task.1

1 Introduction

Emotion cause analysis (ECA), detecting potential
causes for certain emotion expressions in a doc-
ument, has been a hot research topic in natural
language processing (NLP) community (Lee et al.,
2010; Gui et al., 2016; Fan et al., 2019). ECA has
derived three associated tasks: EE, CE and ECPE.
As illustrated in Figure 1(a), EE and CE detects
the emotion and cause clauses respectively, while
ECPE identifies both the emotion and cause clauses

†Corresponding author
1Our code is available at https://github.com/

csj199813/A2Net_ECPE
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  [c1] If one person is rescued,

  [c2] everyone will be very happy,

  [c3] and they will eat better at night.

  [c4] If no one is rescued,

  [c5] the heart will be very sad.

EE: [c2, c5]  
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Figure 1: (a) illustrates three subtasks of ECA. (b) and
(c) depicts the shared and parallel features encoding
method, respectively. In (d) and (e) we show our pro-
posed feature-task alignment mechanism and inter-task
alignment mechanism, respectively.

as well as their semantic relation. By jointly model-
ing the clauses detection and the relational pairing,
ECPE effectively relieves the noise introduction
in the pipeline process, and thus receives most re-
search attention recently (Ding et al., 2020a; Wei
et al., 2020; Wu et al., 2022).

As there are close correlations among EE, CE
and ECPE, existing ECPE works extensively treat
EE and CE as auxiliary tasks for additional fea-
ture supports, and mostly adopt the multi-task
learning framework to explicitly model the inter-
dependency in between, thus achieving current
SoTA performances (Wei et al., 2020; Ding et al.,
2020a; Fan et al., 2021; Bao et al., 2022). From
the view of feature encoding, there are two major
categories of MTL-based ECPE methods: shared
feature encoding method and parallel feature en-
coding method. As shown in Figure 1(b), shared
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methods only learn mixed features via one encoder
without distinguishing specific features for individ-
ual subtasks (Wei et al., 2020; Yuan et al., 2020).
In contrast, parallel methods (Ding et al., 2020a,b;
Fan et al., 2021) use two encoders to learn emotion-
and cause-specific features separate (cf. Figure
1(c)), where unfortunately, the interaction among
these tasks are overlooked. We argue that both the
private emotion-specific and cause-specific features
and the shared interactive feature are important to
the final performance, which should be explicitly
modeled in the MTL framework. To this end, we in
this work propose a feature-task alignment (FTA)
scheme of MTL for ECPE (cf. Figure 1(d)), in
which we explicitly split three parts of features,
and align them to EE, CE and ECPE respectively.

Meanwhile, aligning the label space in a MTL
framework is crucial to overall ECPE performance,
because intuitively all modules in the MTL process
should reach a consensus. For example as in Figure
1(a), once “c1” is recognized as a cause clause by
ECPE module, it should not be further predicted
as a non-cause clause by CE module. We notice
that such label consistency is not guaranteed in
existing MTL-based ECPE methods, which could
inevitably hurt the prediction. Therefore we further
introduce a inter-task alignment (ITA) mechanism
(cf. 1(e)) that learns to pull closer the label dis-
tance between the ECPE and the combinations of
EE&CE, ensuring label consistency.

We implement the above ideas of feature-task
alignment and inter-task alignment by developing
a novel neural network, namely A2Net, as shown
in Figure 2. First, we employ the BERT (Devlin
et al., 2019) as document encoder for producing
clauses representations. We then leverage the par-
tition filter network (PFN) (Yan et al., 2021b) to
implement the feature-task alignment, generating
emotion-specific features, cause-specific features
and interaction features, respectively. Afterwards,
we apply emotion-specific and interaction features
for EE, cause-specific and interaction features for
CE, and all features for ECPE. Finally, we reach
the goal of inter-task alignment by minimizing the
bidirectional KL-divergence between the output
distributions of ECPE and EE×CE, thus maintain-
ing the consistency of label spaces among all tasks.

Our A2Net framework is evaluated on the ECA
benchmark (Xia and Ding, 2019), where our
system achieves new SoTA results on EE, CE
and ECPE. Further analyses demonstrate that our

method learns better consistency in the predictions
of all subtasks than existing baselines. Overall, this
work contributes to three major aspects:

• We present an innovative multi-task learning
based ECPE framework, where we further pro-
pose a feature-task alignment mechanism that
can make better use of the shared features
from EE and CE sources.

• We also introduce an inter-task alignment
mechanism to reduce the inconsistency be-
tween the prediction results of ECPE and the
EE&CE, significantly enhancing the perfor-
mance as well as the robustness of the system.

• Our system empirically achieves new SoTA
performances of the EE, CE and ECPE tasks
on the benchmark.

2 Related Work

In NLP area, the analysis on sentiment and opin-
ion is a long-standing research topic (Liu, 2012; Li
et al., 2020; Wu et al., 2021; Fei et al., 2022a),
including detecting of the sentiment polarities
(Tang et al., 2016; Fei et al., 2022b; Shi et al.,
2022) and the emotion categories (Lee et al., 2010;
Neviarouskaya and Aono, 2013). One of the recent
trend on the emotion detection has been upgraded
to the emotion cause analysis (ECA). Centered on
the topic of ECA, there are several subordinated
tasks according to the extracting elements of emo-
tion and cause, such as emotion cause extraction
(ECE) (Lee et al., 2010; Neviarouskaya and Aono,
2013; Gui et al., 2016; Li et al., 2018) and ECPE
(Xia and Ding, 2019; Wei et al., 2020; Bao et al.,
2022).

Lee et al. (2010) pioneer the ECE task, in which
the task is formulated as a word-level cause label-
ing problem. Following this work, initial research
constructs rule-based methods (Neviarouskaya and
Aono, 2013; Gao et al., 2015) and machine learning
methods (Ghazi et al., 2015; Song and Meng, 2015)
on their own corpus. Deep learning based methods
greatly facilitate the line of this research (Fei et al.,
2021a, 2022e,c, 2021b; Wei et al., 2019a). Re-
cently, Gui et al. (2016) release a public corpus and
re-formalize ECE as a clause-level classification
problem, where the goal is to detect cause clauses
for a given emotion in the text. The framework
has received much attention in recent years and the
corpus has become a benchmark ECA dataset (Gui
et al., 2017; Li et al., 2018; Fan et al., 2019; Ding
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et al., 2019; Hu et al., 2021b; Yan et al., 2021a; Hu
et al., 2021a).

However, as Xia and Ding (2019) points out, the
ECE task is limited to the task definition, i.e., emo-
tion needs to be manually marked in advance. They
thus introduce the ECPE task that simultaneously
extract both the emotion and cause clauses as well
as determining their relations, which has a better
utility in real-world applications (Fei et al., 2022d,
2020). Thereafter, a line of subsequent research
efforts are paid to ECPE within the last years (Ding
et al., 2020b; Cheng et al., 2020; Fan et al., 2021;
Bao et al., 2022).

Recent ECPE methods mostly employ the multi-
task learning for simultaneously modeling the EE
and CE as auxiliary tasks for making use of the
shared features, and thus realize SoTA ECPE per-
formances (Bao et al., 2022). Existing MTL-based
ECPE works can largely be divided into two cat-
egories: parallel encoding and shared encoding
methods. Parallel methods mostly learn the emo-
tion/cause feature representations in mutually in-
dependent ways (Cheng et al., 2020; Ding et al.,
2020a; Fan et al., 2021; Bao et al., 2022). Ding
et al. (2020b); Chen et al. (2022) uses auxiliary task
prediction to aid the interactions between emotion
and cause features. However, the prediction values
are limited to only a two-dimensional vector, lead-
ing to insufficient interaction between emotion and
cause features.

Shared methods learn the mixed features by only
one encoder without distinguishing between fea-
tures of different tasks (Wei et al., 2020; Yuan et al.,
2020; Wei et al., 2019b,c). In this work, we use
the PFN (Yan et al., 2021b) to generate emotion-
specific features, cause-specific features and in-
teraction features and implement the feature-task
alignment. Moreover, we use an inter-task align-
ment module to reduce the gap between EE, CE
and ECPE, maintaining the consistency of the label
space.

3 Methodology

Task Formulation Given a document consisting
of N clauses D = {c1, c2, . . . , cN}, and each ci
denotes a subsection of a sentence separated by a
comma. The goals of EE and CE task are extracting
emotion clauses cei ∈ D and cause clauses ccj ∈ D
in the document, respectively, while ECPE task
identifies the emotion-cause clause pair (cei , c

c
j)

that has causal relationship between emotion and

cause clauses.
As illustrated in Figure 2, the overall architecture

of our A2Net consists of four tiers, including the en-
coder layer, feature-task alignment layer, prediction
layer and inter-task alignment mechanism. First,
following the previous work and we use BERT
(Devlin et al., 2019) as encoder to yield contextual-
ized clause representations from input documents.
Then, to explicitly model task-specific features and
task-shared features. We leverage a PFN (Yan et al.,
2021b) to capture emotion- and cause-specific fea-
tures and the interaction between them. Afterward,
a prediction layer is used to align three combina-
tions of three kinds of features from PFN with
three tasks, and predict the emotion clauses, cause
clauses and emotion-cause pair for EE, CE and
ECPE, respectively. Finally, considering that there
should be a consensus among all tasks. We propose
an inter-task alignment mechanism to enhance the
consistency between ECPE and EE×CE.

3.1 Encoder Layer

Following (Wei et al., 2020), we also leverage
pre-trained BERT language model (Devlin et al.,
2019) as the underlying encoder to yield contex-
tualized clause representations. Concretely, we
insert a [CLS] token at the beginning of each
clause and append a [SEP] token to the end, i.e.,
ci = {[CLS], wi,1, wi,2, ..., wi,M , [SEP ]}. Then
we concatenate them together as the input of BERT
to generate contextualized token representations,
in which we take the representation of [CLS] to-
ken in each clause ci as its clause representation.
After that, we obtain all the clause representations
X = {x1,x2, . . . ,xN}.

3.2 Feature-task Alignment Layer

We adopt partition filter network (PFN) (Yan et al.,
2021b) to capture emotion- and cause-specific fea-
tures and the interaction between them because
of its powerful ability to extract task-specific fea-
tures and interaction features. PFN is similar to the
LSTM structure and has two task-related gates: the
emotion gate and the cause gate. The gates filter
features according to their contribution to each task
with emotion and cause gates. In each time step,
the encoder divides clause representation into three
feature partitions: emotion partition, cause parti-
tion, and interaction partition, where interaction
partition represents information useful to all tasks.

Specifically, at the i time step, we first generate
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Figure 2: Overview of our A2Net model.

two task-related gates:

gei = Cummax(Linear([xi;hi−1])) ,

gci = 1− Cummax(Linear([xi;hi−1])) ,
(1)

where Cummax(·) = Cumsum(Softmax(·)), per-
forms as a binary gate, and Linear(·) denotes lin-
ear transformation, and hi−1 is the hidden state
of i-1-th clause. Each gate will divide clause rep-
resentations into two segments: task-related and
task-unrelated, according to their usefulness to the
specific task. With the joint efforts of the two gates,
the clause representation can be divided into three
partitions: emotion partition pei , cause partition pci
and interaction partition psi . We use task-related
gates (gci and gei ) to calculate forgetting gates:

f si = gei ◦ gci ,
f ei = gei − f si ,
f ci = gci − f si ,

(2)

where ◦ denotes element-wise multiplication, f ei ,
f ci and f si are emotion, cause and interaction for-
getting gates, respectively. Similarly, we also can
obtain input gates oei , o

c
i and osi via Equation 1 and

2.
After that, we use forgetting and input gates to

control the flow of input and history information:

c̃i = tanh(Linear([xi;hi−1])) ,

psi = f
s
i ◦ ci−1 + osi ◦ c̃i ,

pei = f
e
i ◦ ci−1 + oei ◦ c̃i ,

pci = f
c
i ◦ ci−1 + oci ◦ c̃i ,

(3)

where c̃i denotes the current input information, and
ci−1 denotes the history information.

Next, we can obtain three feature representations:
emotion feature hei , cause feature hci and inter-task
interaction feature hsi from the partition:

hsi = tanh(psi ) ,

hei = tanh(pei ) ,

hci = tanh(pci ) .

(4)

We further use the information in all three parti-
tions to construct cell state ci, and hidden state hi
for the next time step:

ci = Linear([pei ;p
s
i ;p

c
i ]) ,

hi = tanh(ci) .
(5)

After PFN, we can obtain the emotion-specific
features hei , cause-specific features hci and the in-
teraction features hsi . First, we align features with
the EE and CE tasks, in which we concatenate the
features of emotion and cause with the interaction
features separately and gain the emotion represen-
tations rei = [hei ;h

s
i ] and the cause representations

rci = [hci ;h
s
i ]. Moreover, we consider aligning

features with ECPE task, so we add task-specific
features and interaction features to aggregate all
the information about ECPE task:

he
′
i = hei + h

s
i ,

hc
′
j = hcj + h

s
j ,

rij = [he
′
i ;h

c′
j ; eij ] ,

(6)

where eij denotes the relative position embedding
following Wei et al. (2020). rij is the final emotion-
cause pair representation.
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3.3 Prediction Layer

Extracting Emotion/Cause We feed rei and rci
into two feedforward network (FFN) to obtain emo-
tion prediction ŷei and cause prediction ŷci for the
i-th clause:

ŷei = σ(FFN(rei )) ,

ŷci = σ(FFN(rci )) ,
(7)

where σ(·) means the sigmoid function.
The auxiliary task loss for emotion prediction

and cause prediction can be formulated as:

Laux = −
N∑

i=1

(yei log(ŷ
e
i ) + yci log(ŷ

c
i )) , (8)

where yei and yci are emotion and cause ground
truth labels of clause ci, respectively.

Extracting Emotion Cause Pair We employ a
FFN with a sigmoid function to obtain the emotion-
cause pair score ŷpij :

ŷpij = σ(FFN(rij)) . (9)

The loss function of emotion-cause pair extrac-
tion can be formalized as:

Lpair = −
N∑

i=1

N∑

j=1

ypij log(ŷ
p
ij) , (10)

where ypij is the ground truth label of the clause
pair (ci, cj).

3.4 Inter-task Alignment Mechanism

As we argued earlier, the predictions of EE and CE
could be inconsistent with ECPE, i.e., the emotion
in the emotion-cause pair predicted by ECPE could
not be detected by EE, which hinders the task for
further improvements. To address this issue, we
propose an inter-task alignment (ITA) mechanism
to constrain the predicted scores between ECPE
and auxiliary tasks during the training period. First,
we leverage the emotion score ŷei and the cause
score ŷcj to get the pre-pseudo pair score

√
ŷei ŷ

c
j .

Note that there could not exist a causal relationship
in pairs matched from predictions of EE and CE.
Thus, as shown in Figure 3, we calculate the pseudo
emotion-cause pair score ỹpij as follows:

ỹpij = αij
√
ŷei ŷ

c
j , (11)

Pre-Pseudo Pair Score
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c
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…
ŷ1

c ŷn
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…
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ŷn
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e

v1
e
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…

Figure 3: The generation of pseudo pair score, where
√ denotes candidate emotion-cause pairs, green grids
represent the masked pair.

where αij (0 ≤ αij ≤ 1) is a soft mask score
for the pseudo pair (ŷei , ŷ

c
j ), which can reduce the

score of fake emotion-cause pairs in pre-pseudo
pairs score. αij is computed by:

tij =
(vei )

⊤vcj√
d

,

αij =
exp(tij)∑N
j exp(tij)

,

(12)

where vei and vcj are obtained from rei = [hei ;h
s
i ]

and rcj = [hcj ;h
s
j ] with FFNs, respectively. The d

denotes the dimension of vei and vcj .
Then we reduce the gap between the pseudo

emotion-cause pair score ỹpij from EE and CE and
the true emotion-cause pair score ŷpij from ECPE
using Kullback Leibler (KL) Divergence:

LKL =
1

2

N∑

i=1

N∑

j=1

(KL(ỹpij ||ŷ
p
ij) + KL(ŷpij ||ỹ

p
ij))

=
1

2
(

N∑

i=1

N∑

j=1

(ỹpij log(
ỹpij
ŷpij

) + ŷpij log(
ŷpij
ỹpij

)) .

(13)

Optimization The final loss of our model is a
weighted sum of Lpair, Laux and LKL :

L = Lpair + λ1Laux + λ2LKL , (14)

where λ1 and λ2 are hyperparameters.
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Approach ECPE EE CE

P R F1 P R F1 P R F1

ANTS 72.43 63.66 67.76 81.96 73.29 77.39 74.90 66.02 70.18
TransECPE 73.74 63.07 67.99 87.16 82.44 84.74 75.62 64.71 69.74
ECPE-2D 72.92 65.44 68.89 86.27 92.21 89.10 73.36 69.34 71.23
PairGCN 76.92 67.91 72.02 88.57 79.58 83.75 79.07 69.28 73.75
RANKCP 71.19 76.30 73.60 91.23 89.99 90.57 74.61 77.88 76.15
ECPE-MLL 77.00 72.35 74.52 86.08 91.91 88.86 73.82 79.12 76.30
MGSAG 77.43 73.21 75.21 92.08 82.11 87.17 79.79 74.68 77.12

A2Net(ours) 75.03 77.80 76.34 90.67 90.98 90.80 77.62 79.20 78.35

Table 1: Comparisons with baselines on Chinese benchmark ECPE corpus. For a fair comparison, they all use
BERT as the encoder. The best performance is in bold and the second best performance is underlined.

4 Experiments Settings

4.1 Dataset and Metrics

We conducted experiments on the Chinese bench-
mark dataset provided by Xia and Ding (2019) to
evaluate the effectiveness of our proposed model
A2Net. For fair comparisons, following previous
work we use 10-fold cross-validation as the data
split strategy and the precision (P), recall (R), and
F1 score (F1) as evaluation metrics. Meanwhile,
we also verify the performance of two auxiliary
tasks: emotion extraction (EE) and cause extrac-
tion (CE), using the same evaluation metrics as
ECPE.

4.2 Implementation Details

We apply PyTorch to implement our framework.2

We leverage pre-trained language model BERT
(Devlin et al., 2019) as our embedding layer.3 We
employ one-layer PFN (Yan et al., 2021b) with hid-
den size of 300. Besides, the hyperparameters λ1
and λ2 are both set to 0.4. We set the batch size
and the learning rate to 4 and 2e-5, respectively.
We apply AdamW (Loshchilov and Hutter, 2017)
to optimize our model parameters. To prevent over-
fitting, the dropout rate is set to 0.1.

4.3 Baselines

In order to verify the effectiveness of our proposed
model A2Net, we compared it with the following
strong methods. For a fair comparison, they all use
BERT as the encoder.

• ANTS (Yuan et al., 2020): ANTS solves
2https://pytorch.org
3The version of BERT is bert-base-chinese.

ECPE with a sequence labeling approach and
proposes a tagging scheme.

• TransECPE (Fan et al., 2020): TransECPE
is a transition-based framework that converts
ECPE into a parsing-like directed graph con-
struction task.

• ECPE-2D (Ding et al., 2020a): ECPE-2D
leverages clauses pairs to construct a 2D rep-
resentation matrix which integrated with aux-
iliary task predictions for ECPE task.

• PairGCN (Chen et al., 2020): This method
models the dependency relations among
clause pairs with graph convolution networks.

• RANKCP (Wei et al., 2020): RANKCP tack-
les the ECPE task from a ranking perspective
and uses graph attention to model the inter-
clause relations.

• ECPE-MLL (Ding et al., 2020b): ECPE-
MLL converts the ECPE task into the emotion-
pivot cause extraction and the cause-pivot
emotion extraction using the sliding window
strategy.

• MGSAG (Bao et al., 2022): MGSAG con-
structs a multi-granularity semantic aware
graph to deal with ECPE task, and it is the
current SoTA approach.

5 Experimental Results

5.1 Main Results
Table 1 shows the comparison results of our model
(A2Net) with the strong baselines on the emotion-
cause pair extraction (ECPE) task and two auxiliary
tasks: emotion extraction (EE) and cause extraction
(CE).
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ECPE EE CE

A2Net (ours) 76.34 90.80 78.35
w/ Shared encoding 69.97 84.81 72.66
w/ Parallel encoding 75.59 89.75 78.03

Table 2: Performances (F1) with different feature en-
coding schemes.

For the ECPE task, it is clear that our model
A2Net achieves 1.13% and 1.82% F1-score im-
provement over MGSAG (the current best method)
and ECPE-MLL, respectively. Further analysis, we
can find that the above advantage mainly comes
from the improvement of the recall. Compared with
MGSAG and ECPE-MLL, our recall is increased
by 4.59% and 5.45% respectively, which indicates
that consistent prediction on the three tasks allows
the A2Net model to detect more emotion-cause
pairs under a considerable precision.

For auxiliary tasks, on the EE task, our model
achieves 3.63% and 1.94% F1 improvement over
MGSAG and ECPE-MLL, and 0.23% F1 improve-
ment over the previous best model RANKCP. On
the CE task, our model yields a great improvement
of F1 scores by 1.23% in comparison with the top-
performing baseline MGSAG, and achieves 2.20%
and 2.05% F1 improvement over RANKCP and
ECPE-MLL.

We argue that all improvements come mainly
from our proposed feature-task alignment module
and inter-task alignment module. Both alignment
mechanisms are able to collaboratively improve
the performances of all tasks, and enhance the ro-
bustness of the model. In the following part we
performed corresponding experiments to verify our
ideas.

5.2 Effect of Feature-task Alignment
The feature-task alignment module is capable of
generating efficiency and independent task-specific
and interactive features. To verify the effectiveness
of our feature-task alignment, we replaced the PFN
with two encoding schemes: shared encoding and
parallel encoding. The results are shown in Table
2.

In terms of the shared encoding, we encode the
emotion features and cause features using a shared
BiLSTM, in which emotion and cause features are
entangled. For parallel encoding, we utilize two
BiLSTMs to capture emotion features and cause
features separately, in which interaction informa-

ECPE EE CE

A2Net (ours) 76.34 90.80 78.35
w/o ECPE→EE×CE 75.83 90.65 78.05
w/o EE×CE→ECPE 75.50 90.54 77.60
w/o ITA 75.32 90.05 77.37
w/o EE & CE 74.39 - -

Table 3: Ablation study of inter-task alignment module
and auxiliary task (F1). The ECPE→EE×CE means
we use the prediction distribution of ECPE to align to
EE×CE (i.e., KL(ỹpij ||ŷpij) in Eq.13), and vice versa.

tion among different tasks is not considered. Firstly,
we observe that the model with parallel encod-
ing significantly outperforms the shared encoding
among three tasks, indicating that it is important for
the model to consider task-specific features. Fur-
thermore, we can see that our model enjoys better
performances when we consider both task-specific
features and shared interaction features, compared
with the parallel encoding. This shows the neces-
sity of aligning feature spaces for different tasks.

5.3 Effect of Inter-task Alignment

In this section, we investigate the effect of the
inter-task alignment (ITA) mechanism and auxil-
iary tasks for A2Net, and the results are plotted in
Table 3.

We first analyze the effect of the aligned direc-
tion of the inter-task alignment mechanism. When
we merely apply unidirectional alignment to reg-
ulate the predictions between ECPE and two aux-
iliary tasks, we can observe slight performance
drops on three tasks to some extent. Furthermore,
after removing the inter-task alignment mechanism
(bidirectional alignment), we find that the overall
decreases in F1 score on three tasks happen, and are
more than the any unidirectional alignment, which
verifies the helpfulness of the alignment in label
spaces among tasks, and bi-direction of alignment
are more important for our model.

Besides, we also explore the effectiveness of
auxiliary tasks, EE and CE. It should be noted that
inter-task alignment module does not work after
the auxiliary tasks are removed. When the auxil-
iary tasks are further removed, we can see that the
model performances drop significantly, demonstrat-
ing that the auxiliary task can effectively contribute
to the ECPE task.
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Document A2Net(w/o ITA) A2Net Ground-truth

... The police visited the villagers of Nanyuan Village (c3), and they
learned that Meng was playing mahjong at a mahjong parlor opposite
his home the day before the incident (c4), through inquiries (c5), it wa-
-s found that only Wang from the same village had gone out to an unk-
nown destination(c6), which aroused the suspicion of the police (c7).

ECPE:[c7, c6]
EE:[]

CE:[c6]

ECPE:[c7, c6]
EE:[c7]
CE:[c6]

ECPE:[c7, c6]
EE:[c7]
CE:[c6]

On March 14 (c1), a magnitude 4.3 earthquake occurred in Yingquan
District, Fuyang City, Anhui (c2). Then (c3), a rumor of a magnitude
6.8 earthquake occurred in Fuyang City at 2:15 am on March 15. (c4),
which caused people to panic (c5)...

ECPE:[c5, c4]
EE:[c5]

CE:[c2], [c4]

ECPE:[c5, c4]
EE:[c5]
CE:[c4]

ECPE:[c5, c4]
EE:[c5]
CE:[c4]

Mr. Feng said frankly (c1), Jingjing is naughty on weekdays (c2), and
sometimes he is not polite (c3), but when it comes to the reason for th-
-is injury(c4), he can’t hide his anger (c5), just because of my son Dra-
-nk other children’s yogurt (c6). Teacher Xing lost her mind (c7), she
was emotionally out of control (c8), then pulled the child out of the do-
-or (c9), the child was injured when the door was closed (c10)...

ECPE:[c5,c4],[c5,c6]
EE:[c5]

CE:[c4], [c6]

ECPE:[c5,c4]
EE:[c5]
CE:[c4]

ECPE:[c5,c4]
EE:[c5]
CE:[c4]

Table 4: Two examples for the case study. The words in orange are the emotion clause, and the words in blue are the
cause clause. The green means correct predictions, red means wrong predictions.

5.4 Analysis of Prediction Consistency Cross
Tasks

In order to verify the effect of our proposed feature-
task alignment module and inter-task alignment
module on model prediction consistency among
tasks, we conduct the experiments with multiple
variants of A2Net and the baseline RANKCP, as
shown in Figure 4. Specifically, we disassemble the
emotion-cause pairs into a set of emotion clauses
and a set of cause clauses which are considered
as gold labels for EE and CE, respectively. We
calculated the consistency rate to evaluate the con-
sistency of EE and CE tasks with ECPE task predic-
tions by (EE & ECPE) / ECPE or (CE & ECPE) /
ECPE, where EE, CE and ECPE denote the predic-
tion results of corresponding tasks and & denotes
the logic AND.

On the EE task, we can find that when our model
A2Net removes the FTA and ITA modules, the
consistency rate drops significantly, but when our
model only removes FTA or ITA, the consistency
rate decreases slightly. Furthermore, all of them
outperform RANKCP, which indicates that FTA
and ITA have well aligned EE with ECPE.

On the CE task, we can find that a dramatic
drop occurs when we remove the FTA and ITA
modules. The consistency rate decreases slightly
when only ITA is removed, while the consistency
rate decreases more when only FTA is removed,
indicating that our feature-level alignment is more
effective for CE tasks. Moreover, all of them re-
ceive better consistency than RANKCP, indicating
that both FTA and ITA are able to align CE and
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Figure 4: Consistency of ECPE and EE (a), as well as
CE (b).

ECPE.

5.5 Case Analysis

Finally, to better understand the capacity of our pro-
posed model, we empirically perform case study on
EE, CE and ECPE tasks. Specifically, we demon-
strate some predictions based on three instances
randomly selected from testset, as shown in Table
4.

In the first example, our A2Net without ITA
correctly predicts the emotion cause pair (c7, c6)
on the ECPE task and incorrectly on the EE and
CE tasks. In contrast, our A2Net model correctly
predicts all ECPE, EE, and CE tasks after going
through the inter-task alignment module. In the
second example, A2Net without ITA correctly pre-
dicts the emotion cause pair (c5, c4) on the ECPE
task and incorrectly on the CE tasks. However,
A2Net model correctly predicts all EE, CE and
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Model #Param Speed(doc/s)

RANKCP 105.97M 195
A2Net (ours) 104.97M 195
w/o ITA 104.97M 195

Table 5: Parameter number and inference speed compar-
isons on ECPE. All models are tested with batch size 4.

ECPE tasks. In the third example, A2Net without
ITA predicts correctly in the EE task and incor-
rectly detects the cause clause c6 in the CE task.
Meanwhile, the emotion-cause pair (c5, c6) is pre-
dicted incorrectly. Nonetheless, after the inter-task
alignment module, all predictions were correct in
both the ECPE and CE tasks.

This shows that after aligning between tasks, the
model can identify emotion-corresponding causes,
which is like the role of our proposed soft mask
score. We find that these cases are common in
our dataset, which ultimately leads directly to an
improvement in our model performance. This also
demonstrates that our inter-task alignment module
can normalize the inter-task training to make the
model performs better and more stable.

5.6 Model Efficiency Analysis

In order to test the efficiency of our model, we
conduct the experiments with multiple variants of
A2Net and the baseline RANKCP, and the results
are plotted in Table 5.

In terms of parameter quantity, our A2Net model
is even less than RANKCP, and it can be found that
since the ITA module does not introduce additional
parameters, w/o ITA does not change the parameter
quantity. In terms of inference speed, our model
has the same inference speed as RANKCP, which
shows that the efficiency of our model does not
decrease due to the addition of the alignment mech-
anism.

6 Conclusion

Existing best-performing ECPE works extensively
leverage EE and CE as auxiliary tasks for better
feature learning via multi-task learning (MTL).
In this paper, we further enhance the existing
best-performing MTL-based ECPE by proposing
feature-task alignment and inter-task alignment
mechanisms. At the feature space, the feature-task
alignment mechanism aligns the task-specific fea-
tures and the shared interactive feature with corre-

sponding tasks. At the label space, the inter-task
alignment mechanism reduces the inconsistency
among the predicted labels of EE, CE and ECPE.
Experimental results on the benchmark ECPE data
demonstrate the effectiveness of our methods. Fur-
ther analysis shows that our system achieves bet-
ter consistency than existing baselines, which ex-
plains the improvements of our model. The idea
to align the feature space and label space in MTL
framework is promising. In the future work, we
consider further constructing intra-clause relations,
inter-clause relations, and relations among pairs of
clauses for ECPE.
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Abstract

Despite having achieved great success for senti-
ment analysis, existing neural models struggle
with implicit sentiment analysis. This may be
due to the fact that they may latch onto spu-
rious correlations (“shortcuts”, e.g., focusing
only on explicit sentiment words), resulting
in undermining the effectiveness and robust-
ness of the learned model. In this work, we
propose a CausaL intervention model for im-
plicit sEntiment ANalysis using instrumental
variable (CLEAN). We first review sentiment
analysis from a causal perspective and analyze
the confounders existing in this task. Then, we
introduce an instrumental variable to eliminate
the confounding causal effects, thus extracting
the pure causal effect between sentence and
sentiment. We compare the proposed CLEAN
model with several strong baselines on both the
general implicit sentiment analysis and aspect-
based implicit sentiment analysis tasks. The re-
sults indicate the great advantages of our model
and the efficacy of implicit sentiment reason-
ing.

1 Introduction

The remarkable success that the field of sentiment
analysis has achieved in the past few years has been
derived from the use of increasingly high-capacity
neural models to extract correlations from data (Pe-
ters et al., 2018; Devlin et al., 2018; Liu et al.,
2019). Although having reached state-of-the-art
results, correlational predictive models can be un-
trustworthy (Guidotti et al., 2018): they may latch
onto spurious correlations (“shortcuts”), leading to
poor generalization.

One shortcut might be the explicit sentiment
word which is a powerful feature cue. Unfortu-
nately, such a shortcut severely harms the general-
ization and the robustness of the learned models
in implicit sentiment analysis (ISA), where there
are no explicit sentiment words about the topic

*Corresponding authors.

sentiment word

confounder
implicit, neg

The food was definitely good, but when all was 
said and done, I just couldn't justify it for the 
price (including 2 drinks, $100/person)...

explicit, pos

g

Figure 1: An examples of confounding factors in im-
plicit sentiment analysis for ABSA.

or aspect (Russo et al., 2015). Figure 1 gives a
sample of aspect-based sentiment analysis (ABSA)
(Zhou et al., 2020b,a), which aims to predict the
sentiments of the aspects in the sentence. The
aspect “food” has explicit sentiment words “def-
initely good”, but aspect “price” does not. If the
model thoughtlessly relies on shortcuts to senti-
ment words, it may make an incorrect sentiment
prediction about the aspect “price”. In fact, there
are many other kinds of shortcuts that models may
learn, for example, the rhetorical question mood
expressed by the users (Ranganath et al., 2018) and
the co-occurrence of neutral words and sentiment
polarities (Wang and Culotta, 2020).

The above shortcomings can potentially be ad-
dressed by the causal perspective: knowledge of
causal relationships between observations and la-
bels can be used to formalize spurious correlations
and alleviate the predictor’s dependence on them
(Bühlmann, 2020; Veitch et al., 2021; Feder et al.,
2021). Motivated by a causal perspective, we incor-
porate domain knowledge of the causal structure
of the data into the learning objective. Specifically,
causal intervention is used to curb dependence on
shortcuts (e.g., “good → positive”) and improve
the ability to reason causal effect between sentence
and sentiment.

In this paper, we rethink the ISA task from a
causal perspective and unitize the casual interven-
tion on deep learning. We argue that the causal
effect obtained by reasoning directly from the sen-
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tence (X) to the sentiment (Y ) without relying on
other extra prior stereotypical lexical impressions is
closer to the original semantic analysis. Our work
aims at eliminating the confounding causal effects
of C → Y and thus extracting the pure causal ef-
fect between sentence and sentiment. Inspired by
the instrumental variable in causality, we propose a
CausaL intervention model for implicit sEntiment
ANalysis using instrumental variable (CLEAN).
Different from the other work with causal inter-
vention like back-door adjustment (Landeiro and
Culotta, 2016), other variables like confounders
are not required to be observed. CLEAN contains
two-stage learning: (1) In the first stage, we model
the relationship between the instrumental variable
and sentence; (2) In the second stage, we dismiss
the spurious correlation between confounders and
sentiment by means of the relationship obtained
from the first stage.

To evaluate the effectiveness of our CLEAN, we
conduct a series of experiments on both the general
implicit sentiment analysis and aspect-based im-
plicit sentiment analysis. In particular, we compare
our model with several the mainstream baselines
and the results show the great advantages of our
model on ISA. We also validate the robustness of
the model by adversarial attack and case studies,
which proves that our model successfully dismisses
the spurious correlation caused by sentiment words
and extracts the pure causal effect.

The main contributions are summarized as fol-
lows.

• We rethink the implicit sentiment from a causal
perspective and proposed a casual intervention
model for implicit sentiment analysis (CLEAN).

• To remove the spurious causes of confounders,
we incorporate instrumental variable into neural
network to enhance its causal reasoning ability.

• We conduct experiments on diverse datasets, in-
cluding partially implicit and totally implicit sen-
timent, which shows our effectiveness and ratio-
nality to reason implicit sentiment.

2 Preliminaries

2.1 Structural Causal Model and Causal
Effect

In our paper, Structural Causal Model (SCM) (Gly-
mour et al., 2016) is represented as a directed
acyclic graphs (DAGs) G = {V, E} to reflect

X Y

C

Sentence Sentiment

Confounder

(a) Causal Graph

Z X Y

C

Instrumental 
Variable

Sentence Sentiment

Confounder

(b) Instrument Variable for Causal
Intervention

Figure 2: Causal Graph

causal relationships, where V denotes the set of
observational variables and E denotes the direct
causal effect (Figure 2(a)). X is a direct cause of
Y when variable Y is the child of X .

Variable X and Y is called treatment variable
and outcome variable respectively when observ-
ing the causal relationship between them. The
other variables we do not consider their causal re-
lationship are called error terms (ε), also known
as exogenous variables. Significantly, total effect
between X and Y , denoted as P (Y | X), is con-
ceptually different from causal effect of X → Y ,
denoted as P (Y | do(X = x)) because the
causal effect only involves the direct path from
X to Y , while the total effect involves all paths
between X and Y . Based on the ideal hypoth-
esis that none of the error terms will involve in
the path between X and Y , people usually treat
the total effect and the causal effect as the same.
But the actual fact is that a part of error terms
(we call it confounder (C)) serves as a common
cause of the treatment and outcome, denoted as
X ← C → Y . Consequently, the total effect
is practically different from the causal effect, i.e.
P (Y | do(X = x)) �= P (Y | X) and treatment-
outcome relationship may well be obscured by the
spurious correlation between C and Y generated
by confounder (Pearl, 2009; Hernán MA, 2020).

2.2 Instrument Variable for Causal
Intervention

To recover the gap between total effect P (Y | X)
and casual effect P (Y | do(X = x)) and de-
rive pure causal effect, we must “adjust” for po-
tential confounder (C) (Pearl, 1995). Fortunately,
applying causal intervention can extract the pure
causality from the correlation and therefore over-
come the problem of confounding bias. There are
four key interventions: randomized controlled trial,
backdoor adjustment, front-door adjustment, and
instrumental variable estimation. Randomized con-
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trolled trials are simply not practicable for natural
language, and both the front-door and back-door
adjustment require additional observable variables.
However, the confounders (e.g., rhetoric confound-
ing word, such as rhetorical questions and sarcasm)
are too polymorphic to be observed exhaustively
for implicit sentiment analysis. We adopt the instru-
mental variable to dismiss the spurious correlations
instead of directly observing confounders (Figure
2(b)).

Before the intervention, we should find a suitable
instrumental variable (Z) that qualifies well the
requirements as follows:(Brito and Pearl, 2012)

1. Z is independent of all error terms ε that have
an influence on Y which is not mediated by X ,
Cov(Z, ε) = 0.

2. Z is not independent of X , Cov(Z, X) �= 0.
The intuition behind this definition is that all

correlation between Z and Y requires X to act as
an intermediary.

Generally, instrument variable estimation con-
tains two stages (Angrist and Pischke, 2008). In the
first stage, the coefficient α is obtained by regres-
sion estimation of X and Z, denoted as Cov(Z, X).
In the second stage, substitute X with the expres-
sions including Z obtained in the first stage into
the expression of Y and then regress Y on Z , de-
noted as Cov(Z, Y ). There is no confounding bias
between Y and Z owing to the restriction in the
definition of Z, i.e. Cov(Z, ε) = 0 . A simple lin-
ear model for IV estimation consists of 2 equations:

X = αZ + εX ; Y = ωX + εY (1)

where Y is the outcome variable (e.g., sentiment),
X is the treatment variable (e.g, sentence), Z is the
instrumental variable (e.g., stochastic perturbation),
and εX and εY are error terms including but not
limited to confounders(C). Under the conditions
above, it can be proved that the equation presents
an asymptotically unbiased estimate of the effect
of X on Y (Angrist et al., 1996).

ωIV =
1
n

∑n
i=1(zi − z)(yi − y)

1
n

∑n
i=1(zi − z)(xi − x)

=
Cov(Z, Y )

Cov(Z, X)
(2)

3 Our Approach

In this section, we introduce our CLEAN model
for implicit sentiment analysis (Figure 3). We first
rethink the ISA from a causal perspective (Section
3.1). Then, we adopt stochastic perturbation as

instrumental variable (Section 3.2) and estimate
instrumental variable in two stages (Section 3.3
and 3.4).

3.1 Sentiment Analysis from Casual
Perspective

Given a sentence X , consisting of a sequence
of tokens (x1, x2, ..., xn), our task aims to an-
alyze the polarity Y . For aspect-based sen-
timent analysis task, we concatenate the sen-
tence and the aspect as the input X =
(x1, x2, ..., xn, [SEP ], a1, a2, ..., am). In the cur-
rent method, a deep neural network is used as a
classifier to predict the sentiment polarity label as
output and the sentence as input (as Equation 3).

y = h(x; w) = Wxy · x + εy (3)

where εy denotes as the error terms including con-
founders (c) and other errors (ε̂y).

The prediction above is based on the hypothe-
sis that error terms will not involve in the causal
path between X and Y and ignore the influence of
error terms mostly. Nevertheless, several research
has found that text classification systems based on
neural networks are biased towards learning fre-
quent spurious correlations (Leino et al., 2018). It
urges us to focus on the longtime unheeded but
unavoidable existence of confounder (C) in error
terms, which results in the overlooked gap between
total effect and causal effect, denoted as the path
X ← C → Y . The Equation 3 can be updated in
consideration of confounder (c) (Equation 4).

y = h(x; w) = Wxy · x + Wcy · c + ε̂y (4)

where c and ε̂y denotes the confounder and other
error terms respectively, Wcy denotes the causal
effect of C → Y .

In previous studies, gender (Field and Tsvetkov,
2020), age, and address (Landeiro and Culotta,
2016) were found to be confounders in text classifi-
cation. As for ISA, we focus rather on the naturally
existing confounder within the text, i.e., sentiment
words. Sentiment words affect the form of the
text as a component of the text (i.e., the writer’s
word choice determines the form of expression)
and also affect sentiment expression (Xing et al.,
2020). The existence of sentiment words as con-
founder makes it difficult to distinguish the pure
causal effect of X → Y and the prediction indis-
criminately depends on the spurious correlation
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1 Stochastic Perturbation as Instrumental Variable

As for all the fancy finger swipes -- I just gave up and attached a mouse.

As and all the fancy finger swipes -- I just gave up for attached a mouse.

Random Swap
Random Deletion
Random Insertion
Synonym Substitution

As for all the fancy finger swipes -- I just gave up and attached a mouse.

As for all coated the fancy finger swipes -- I just gave up and attached a mouse.

As for all the fancy finger swipes -- I just break up and attached a mouse.

IV Loss

| |
Figure 3: The framework of our CLEAN.

between sentiment words and sentiment will fail in
ISA. The main forms are as follows:
• Inter-aspect Confounding Word Explicit sen-

timent words of other aspects with opposite sen-
timent in the sentence confounds the prediction
effect of the current aspect.
• Inter-clause Confounding Word In an adver-

sative compound sentence, the other clauses with
opposite semantics confound the prediction effect
of the current clause.
• Rhetoric Confounding Word Sentiment

words conveying the opposite of the norm in rhetor-
ical devices such as rhetorical questions and sar-
casm confound the prediction effect.
• Dynamic Neural Confounding Word Neutral

words show dynamic sentiment polarity in different
contexts, but the model trained by biased data only
learns the spurious correlation of one polarity.

We also provide a detailed analysis of the con-
founder in case studies (Section 5.2).

Inspired by causal intervention with instrumen-
tal variable (Section 2.2), we adopt two-stage in-
strument variable estimation for ISA to achieve
the goal that distinguishes the pure causal effect of
X → Y without any spurious correlations, denoted
as P (Y | do(X = x)).

3.2 Stochastic Perturbation as Instrumental
Variable

For text, the two restrictions of instrumental vari-
able could be translated into two basic opinions:
(1) instrumental variable Z will not influence the
sentiment polarity via any other casual path except
through sentence X; (2) instrumental variable Z

will influence the format of sentence X . Intuitively,
we choose the stochastic perturbation as the instru-
mental variable of ISA. Inspired by the work of data
augmentation (Guohang et al., 2020), we choose
random swap, random deletion, random insertion,
and synonym substitution as stochastic perturba-
tion: A) Random Swap: Swap word randomly;
B) Random Deletion: Delete word randomly with
probability p; C) Random insertion: Insert word
randomly by word embeddings similarity; D) Syn-
onym Substitution: Substitute word by WordNet’s
synonym. It fortunately meets the requirements of
instrumental variable well: (1) stochastic perturba-
tion obviously has no independent effect on senti-
ment, except through augmentation sentences, i.e.
Cov(Z, ε) = 0; (2) stochastic perturbation above
will definitely change the sentence into another
form, i.e. Cov(Z, X) �= 0.

3.3 The First Stage of CLEAN
Following the traditional pattern of instrumental
variable estimation (Section 2.2), the first stage
of CLEAN is to establish the causal relationship
between stochastic perturbation (Z) and sentence
(X), i.e. Z → X . We use two open source tools1

to generate augmentation samples xz from the orig-
inal sample x and the formal expression is as fol-
lows.

xz = f(x, z)

where f(·) denotes the different stochastic perturba-
tion on the original sentence. For a specific stochas-
tic perturbation zi, we have xzi = f(x, zi) ≈ αi ·x.

1https://github.com/jasonwei20/eda_nlp
https://github.com/makcedward/nlpaug

6969



Table 1: The statistics information of the datasets. IS means the percent of samples that are implicit sentiment.

Dataset Postive Neural Negative IS (%)
Train Test Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196 28.59 23.84
Laptop 987 341 866 128 460 169 30.87 27.27
CLIPEval 435 144 205 72 640 155 100.00 100.00

To obtain the accurate value of α which can well
represent the relationship between x and xz , a neu-
ral network was constructed based on the BERT
and α was set as a self-learning parameter.

αi = min
α

∑

xzi=f(x,zi)

‖ M(xzi)− α · M(x) ‖

whereM denotes a text encoder (e.g., BERT).

3.4 The Second Stage of CLEAN

Substituting the relation above between original
sample x and augmentation sample xzi into Equa-
tion 4, we will get the y |x=xzi

with different pro-
portionality coefficient α obtained from the first
stage.

y |x=xzi
= Wxy · xzi + Wcy · c + ε̂y

= αi ·Wxy · x + Wcy · c + ε̂y

= αi · y |do(x=x) +Wcy · c + ε̂y

(5)

where y |do(x=x) denotes the prediction only along
the path X → Y .

As the neural network is not totally linear, we
slightly generalize the usage of two stages in instru-
mental variable. We set the dismission of influence
of the confounder as a regularization function in-
stead of directly calculating the effect between X
and Y as a single value (Equation 2), which is
obviously more fit for deep learning method.

LIV =
∑

i �=j

‖ αj · y |x=xzi
−αi · y |x=xzj

‖

The reason we just model the prediction y |x=xzi

and unitize the regularization loss on it is that the
essence of theLIV is to force the model to suppress
the confounding effect caused by sentiment words.
It can be easily proved by substituting the y |x=xzi

with Equation 5 obtained by two-stage learning.
The benefit is obviously that we can suppress the
confounding effect without directly observing the
confounders (c).

LIV =
∑

i �=j

‖ (αi − αj) · (Wcy · c + ε̂y) ‖

In addition, the model should not go to the
other extreme, i.e., ignore sentiment words entirely,
which would be inconsistent with the normal pro-
cess of natural language understanding. We set a
hyperparameter β to achieve balance and combine
the causal regularization loss function LIV with
the conventional cross-entropy loss LCE and the
influence of the β is analyzed in Section 5.3.

LALL = LCE + βLIV

4 Experiment

4.1 Datasets and Metrics

Implicit Sentiment Analysis To show our
model’s better performance in understanding im-
plicit sentiment, we evaluate the implicit polarity
prediction on a total implicit dataset, CLIPEval
from SemEval 2015 task 9 (Russo et al., 2015),
which consists of self-reported entity reviews col-
lected from psychological research with 1,280 sen-
tences for the training and 371 for the test.

Aspect-based Implicit Sentiment Analysis As
our aim to dismiss the spurious correlation between
explicit sentiment words and polarity, we also con-
ducted experiments on both explicit and implicit
datasets, Laptop and Restaurant review from Se-
mEval 2014 task 4 (Pontiki et al., 2014). The seg-
mentation of explicit sentiment (ESE) and implicit
sentiment (ISE) is based on the work of (Li et al.,
2021b) based on the annotation of opinion words
(Fan et al., 2019).

We adopt two widely used metrics accuracy and
macro-F1 to evaluate the performance of our model
and the baselines.

4.2 Baselines

To investigate the effectiveness of our CLEAN

model, we compare it with several typical baseline
models for implicit sentiment analysis and aspect-
based implicit sentiment analysis.

Implicit Sentiment Analysis We select four
popular baselines for implicit sentiment analysis,
which are listed as follows. SHELIFBK (Dragoni,
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Table 2: The main results for aspect-based sentiment analysis. For ESE and ISE, we provide the F1 score. We use
the results reported in (Li et al., 2021b). The baselines with † are our implementation.

Restaurant Laptop
Acc F1 ESE ISE Acc F1 ESE ISE

ATAE-LSTM 76.90 62.64 84.16 53.71 65.37 62.92 75.69 37.86
IAN 76.88 67.71 86.52 46.07 67.24 63.72 75.86 44.25
RAM 80.23 70.80 85.11 55.81 74.49 71.35 75.86 44.25
MGAN 81.25 71.94 85.18 60.04 75.39 72.47 76.16 56.31NN

TransCap 79.55 71.41 86.52 59.93 73.87 70.10 77.16 60.34
ASGCN 80.77 72.02 84.29 62.91 75.55 71.05 75.46 57.77
BiGCN 81.97 73.48 87.19 59.05 74.59 71.84 79.53 62.64
CDT 82.30 74.02 88.79 65.87 77.19 72.99 77.53 68.90

GNN

RGAT 83.30 76.08 89.45 61.05 77.42 73.76 80.17 65.52
BERT-SPC 83.57 77.16 89.21 65.54 78.22 73.45 81.47 69.54
CapsNet+BERT 85.09 77.75 91.68 64.04 78.21 73.34 82.33 67.24
BERT-PT 84.95 76.96 92.15 64.79 78.07 75.08 81.47 71.27
BERT-ADA 87.14 80.05 94.14 65.92 78.96 74.18 82.76 70.11
R-GAT+BERT 86.60 81.35 92.73 67.79 78.21 74.07 82.44 72.99
TransEncAsp 77.10 57.92 86.97 48.96 65.83 59.53 74.31 43.20
TransEncAsp+SCAPT 83.39 74.53 88.04 68.55 77.17 73.23 78.70 72.82
BERT-SPC† 85.09 77.19 91.68 64.04 77.90 73.50 80.99 69.71
BERT-SPC† (Aug4) 84.20 76.55 90.50 64.04 76.65 70.86 81.64 63.43
BERT-SPC† (Aug8) 80.98 67.77 90.39 50.94 75.71 71.62 77.97 69.71

BERT

BERT-SPC† (Aug16) 77.59 67.44 85.35 52.81 74.61 69.92 77.97 65.71
Ours CLEAN 87.05 81.40 92.50 69.66 80.41 77.25 81.21 78.29

2015), ATTLSTM (Lin et al., 2017), MTL (Zheng
et al., 2018), BERT-SPC (Xu et al., 2019).

Aspect-based Implicit Sentiment Analysis The
commonly used baselines can be split into three
parts, neural network, graph neural network, and
BERT-based models, which are given as follows.

Neural Network: ATAE-LSTM (Wang et al.,
2016), IAN (Ma et al., 2017), RAM (Chen et al.,
2017), MGAN (Fan et al., 2018).

Graph Neural Network: TransCap (Chen and
Qian, 2019), ASGCN (Zhang et al., 2019), BiGCN
(Zhang and Qian, 2020), CDT (Sun et al., 2019),
RGAT (Wang et al., 2020).

BERT-based Models: BERT-SPC (Xu et al.,
2019), CapsNet+BERT (Jiang et al., 2019), BERT-
ADA (Rietzler et al., 2020), R-GAT+BERT (Wang
et al., 2020), TransEncAsp (Li et al., 2021b),
TransEncAsp+SCAPT (Li et al., 2021b).

Moreover, to explore the influence of the aug-
mentation sentences, we add them into the train-
ing dataset for our basic model (BERT-SPC). For
example, BERT-SPC (Aug4) means we add four
augmentation samples for each example.

4.3 Implementation Details
We implement CLEAN with PyTorch based on
Hugging Face Transformer 2 and run them on the
GPU(NVIDIA GTX 2080ti). During training, we
set the coefficient λ of L2 regularization item is

2https://huggingface.co/bert-base-uncased.

0.01, 10−5 and dropout rate is 0.1. The learning
rate is set as 2e-5 and the batch size is set as 16.
Adam optimizer (Kingma and Ba, 2014) is used to
update all the parameters.

5 Experimental Analysis

5.1 Main Results

To evaluate the performance of our CLEAN model,
we compare it with several mainstream baseline
models for both the implicit sentiment analysis and
aspect-based implicit sentiment analysis (Table 3
and Table 2). We find the following observation
from these tables. First, our model outperforms
all the baselines in most cases. Particularly, our
model obtains the best F1 scores over all the three
datasets of two tasks. Second, our CLEAN strat-
egy significantly improves the performance of the
baseline. CLEAN improves more than two points
in terms of F1 over all the datasets compared with
BERT-SPC, which is the base of our model. Third,
our model can improve the performance of implicit
sentiment analysis effectively. For example, com-
pared with the BERT-SPC†, we obtain more than
five points improvement on ISE over both Restau-
rant and Laptop. Also, we obtain the best results of
implicit sentiment analysis over CLIPEval. Forth,
the model that regards the augmentation sentence
as a data augmentation (e.g., BERT-SPC† (Aug4))
performs even worse than the one without aug-
mentation as noise may exist. This shows that our
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Sentence Example Target BERT-SPC ISAIV
E1 The food was definitely good , but when all was said and done, I just 

couldn't justify it for the price (including 2 drinks, $100/person)...
price positive negative

E2 And as for all the fancy finger swipes -- I just gave up and attached a 
mouse.

mouse negative neutral

E3 I was a little concerned about the touch pad based on reviews, but 
I've found it fine to work with.

touch pad negative positive

E4 How can hope to stay in business with service like this? service positive negative
E5 The steak melted in my mouth. steak negative positive
E6 15% gratuity automatically added to the bill. gratuity positive positive

Figure 4: Some examples of case studies.

Table 3: The main results for implicit sentiment analysis.
We use the results reported in (Xiang et al., 2021). The
baselines with † are our implementation.

Method CLIPEval
Acc F1

SHELLFBK 56.00 54.00
ATTLSTM 82.43 82.21
MTL 82.94 83.17
BERT-SPC† 87.06 84.74
BERT-SPC† (Aug4) 85.71 83.56
BERT-SPC† (Aug8) 86.52 85.30
BERT-SPC† (Aug16) 85.44 84.54
CLEAN 88.95 87.49

CLEAN algorithm can help learn the implicit senti-
ment reasoning behind the data.

5.2 Case Studies

We present five samples in Figure 4 to explain
the four main types of confounders (Section 3.1),
which shows the effectiveness and rationality of
our model to reason implicit sentiment. (1) Inter-
aspect Confounding Word. In example E1, “defi-
nitely good” is the sentiment words of aspect food,
implying positive sentiment but confounds the pre-
diction of aspect price. In E2, the user expresses
a negative sentiment towards aspect finger swipes
with opinion word “fancy”, which confounds the
prediction of aspect mouse. (2) Inter-clause Con-
founding Word. In E3, the first and second clauses
form an adversative relation, and the true meaning
of the expression is that the mouse works well,
but the sentiment word “a little concerned” in the
first clause confounds the prediction. (3) Rhetoric
Confounding Word. In E4, the customer used the
rhetorical device of a rhetorical question to express
that the restaurant’s service was terrible, but the
existence of the word “hope” confounds the pre-
diction, (4) Dynamic Neural Confounding Word.
In E5, the word “melted” is absolutely a neutral

(a) Laptop (b) CLIPEval

Figure 5: The influence of β

word, but when we directly count the proportion of
aspect-level sentiment polarity that co-occur with
“melted”, we surprisingly find that 83.33% aspect
polarity is negative, which well explains why the
previous model predicts “negative” strangely. Due
to the unbalanced distribution of training data, the
model tends to tag the neural word with specific
sentiment polarity and predict based on this spuri-
ous correlation learned superficially before.

5.3 Further analysis

Influence of Augmentation Sample Number.
We explore the influence of augmentation sample
number here (Table 4). The influence of sample
number on model performance depends on two con-
flicting factors: the degree of deviation from the
original sentence and the chance to find more poten-
tial confounders. With the increase in sample num-
ber, the model has a greater chance of finding more
potential confounders and adjusting for them. On
the other hand, a larger generation samples number
means that more samples deviating from the origi-
nal sentence are involved in the learning procedure,
and therefore the accuracy of prediction decreases.
Over Restaurant, the two conflicting factors reach
a better balance at 8; while on Laptop, the negative
effect of semantic deviation outweighs the positive
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Table 4: The influence of augmentation sample number.

#Num Restaurant 0.6 Laptop 0.4
Acc F1 ESE ISE Acc F1 ESE ISE

4 86.88 80.99 92.50 68.91 80.41 77.25 81.21 78.29
8 87.05 81.40 92.50 69.66 78.68 75.23 79.70 76.00
16 85.09 77.75 91.21 65.54 78.06 75.04 79.05 75.43

Table 5: The results of robustness.

Model Restaurant (Trans.) Laptop (Trans.)
Acc F1 Acc F1

BERT-SPC 57.04 44.43 51.05 41.01
CLEAN 58.77 48.56 59.45 43.24

effect of correction for more confounders, and the
best result is achieved at 4.

Influence of β. Either emphasizing sentiment
words only or completely ignoring them is not rea-
sonable. The purpose of our hyper-parameter beta
is to strike a balance between these two terms (Fig-
ure 5). In Laptop and CLIPEval, performance is
best at 0.4 and 0.3 relatively, and both show a trend
of high in the middle and low on both sides, indi-
cating that our hypothesis is rational.

Robustness. We also analyze the robustness of
our proposed CLEAN (Table 5). We test our
model on a robustness testing dataset, Revnon of
TextFlint (Wang et al., 2021), which reverses the
sentiment of the non-target aspects with originally
the same sentiment as target. Our model outper-
forms the model BERT-SPC without causal inter-
vention, which means CLEAN can also improve
the robustness by learning the implicit sentiment
reasoning.

Limitation. We also analyze wrong samples and
find the model may fail when encountering the ex-
pression with unusual knowledge. In Figure 4 E6,
due to the lack of prior knowledge about “gratuity",
“automatically added" is likely to be perceived as a
good thing. Admittedly, our work mainly focuses
on the reasoning ability and doesn’t integrate ex-
ternal corpus and knowledge and therefore lacks
abundant prior knowledge. The better combination
of prior knowledge and causal inference is also an
intriguing and worth exploring field.

6 Related Work

6.1 Implicit Sentiment Analysis

Implicit sentiment analysis (ISA) task plays an im-
portant role in sentiment analysis field (Liu, 2012;
Zhou et al., 2019, 2020c). Early studies mainly

trained machine learning models based on hand-
crafted features or explicit characterization of im-
plicit feature information. Some studies argued
that seemingly neural words actually contain emo-
tional content and then construct a lexicon (Feng
et al., 2013; Castelló and Stede, 2017). Label prop-
agation was used to judge the affective polarity of
the words automatically (Ding and Riloff, 2016;
Li et al., 2021a). Moreover, Balahur et al. (2011)
proposed to build a commonsense knowledge base
(EmotiNet) with the concept of affective value and
the sentiment.

Recent efforts (He et al., 2018; Tang et al., 2020)
used syntax information from dependency trees to
enhance attention-based models. Using syntactic
analysis tree and CNN, Liao et al. (2019) analyzed
fact-implied implicit sentiment by fusing multi-
level semantic information, including sentiment
target, sentence, and context semantic. A lot of
works (Zhang et al., 2019; Sun et al., 2019; Wang
et al., 2020) incorporated tree-structured syntactic
information via graph neural networks to capture
aspect-aware information in text. Another method
is to utilize external corpus and pre-trained knowl-
edge to enhance semantic awareness of models (Xu
et al., 2019; Rietzler et al., 2020; Dai et al., 2021;
Li et al., 2021b; Zhou et al., 2020b).

The existing methods mainly improve the ISA by
integrating external corpus and knowledge. How-
ever, the knowledge is always not complete which
will influence the models’ performance. In this pa-
per, we solve it via causal intervention to learn the
reasoning behind the sentiment classification.

6.2 Causality for NLP

Recently, some researchers are beginning to com-
bine causality and NLP to create more robust and
interpretable models (Wood-Doughty et al., 2018;
Tang et al., 2021). Most of the papers integrated
backdoor and counterfactual into NLP tasks. Par-
ticularly, Landeiro and Culotta (2016) applied the
back-door adjustment to text classification by con-
trolling the artificially predetermined confounding
variable. Feng et al. (2021) introduced counterfac-
tual reasoning into the model learning process by
generating representative counterfactual samples
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and comparing the counterfactual and factual sam-
ples. Veitch et al. (2021) utilized distinct regulariza-
tion schema for distinct causal structure to induce
counterfactual invariance. Niu et al. (2021) utilized
the counterfactual inference on VQA models by
subtracting the language bias as direct language
effect from the total causal effect.

Different from these studies, we explore the
causal graph for ISA and incorporate it using the
causal intervention.

7 Conclusion

In this paper, we proposed a causal intervention
model for implicit sentiment analysis using instru-
ment variable (CLEAN). Given that the current
model indiscriminately focuses on the correlation
between sentiment and sentiment words and con-
sequently performs poorly in implicit sentiment
analysis as the explicit sentiment words disappear,
we rethink the implicit sentiment analysis from a
causal perspective and analyze the four main forms
of sentiment words as potential confounders. In-
spired by the instrumental variable of causal in-
tervention, we adopt stochastic perturbation as in-
strumental variable and construct a model with
two-stage learning. Across three different datasets,
including general implicit sentiment analysis and
aspect-based sentiment analysis, our CLEAN shows
great advantages in implicit sentiment.
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Abstract
Mental health is a critical component of
the United Nations’ Sustainable Development
Goals (SDGs), particularly Goal 3, which aims
to provide "good health and well-being". The
present mental health treatment gap is exacer-
bated by stigma, lack of human resources, and
lack of research capability for implementation
and policy reform. We present and discuss a
novel task of detecting emotional reasoning
(ER) and accompanying emotions in conversa-
tions. In particular, we create a first-of-its-kind
multimodal mental health conversational cor-
pus that is manually annotated at the utterance
level with emotional reasoning and related emo-
tion. We develop a multimodal multitask frame-
work with a novel multimodal feature fusion
technique and a contextuality learning module
to handle the two tasks. Leveraging multimodal
sources of information, commonsense reason-
ing, and through a multitask framework, our
proposed model produces strong results. We
achieve performance gains of 6% accuracy and
4.62% F1 on the emotion detection task and
3.56% accuracy and 3.31% F1 on the ER de-
tection task, when compared to the existing
state-of-the-art model.

1 Introduction

Each year, mental illness costs the economy almost
12 billion working days. Mental diseases are pre-
dicted to cost the global economy $16 trillion by
2030 (Canady, 2018). Despite extensive evidence
of the close association between mental health and
nearly every major issue in development, people
with mental illnesses are among those most at risk
of being left out of development programmes. Pro-
moting mental health and preventing mental illness
should be part of larger efforts to meet the United
Nations’ Sustainable Development Goals.

Unlike object identification tasks, emotion per-
ception is significantly impacted by personal bias,

∗* The first two authors contributed equally to this work
and are jointly the first authors.

cultural backgrounds, and contextual information
(such as the environment). Emotional information
can function as an authoritative inner voice in those
who suffer from anxiety, despair, guilt, or fear on
a daily basis (Caprara and Cervone, 2000). Nor-
mal individuals can suppress or remove the mood
influence, while clinical patients cannot stop the
inner voice from being viewed as authoritative. In
spite of contradictory empirical facts, someone may
draw the conclusion that something is true based
only on their emotional response. This process
is known as emotional reasoning (Gangemi et al.,
2013). For example,

• I feel insecure about my wife, which means
she must be cheating on me.

• I feel afraid, so my neighbors must have been
spying on me.

While automatic emotion recognition in conver-
sations can facilitate developing intelligent systems,
such as empathetic chatbots, customers’ feedback
assessment, etc., automatic identification of emo-
tional reasoning from conversations can help to per-
ceive the mental states of the involved persons and
understand latent vulnerability factors that often
raise the likelihood of self-harm (such as suicide);
thus helping to determine preventive efforts.

A significant increase in tele-health usage seek-
ing mental health services was observed during the
peak of the COVID-19 pandemic (Koonin et al.,
2020). Despite advancements in certain nations,
persons with mental illnesses frequently face hu-
man rights abuses, discrimination, and stigma. Au-
tomated systems based on natural language pro-
cessing (NLP) approaches can be incorporated into
digital interventions, particularly web and smart-
phone apps (chatbot like WoeBot1, virtual assistant
like Ellie2, etc.) to provide early identification,
take preventive measures and provide personalized

1https://woebothealth.com/
2https://youtu.be/ejczMs6b1Q4
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healthcare, more so in developing countries with a
high population and minimal healthcare facilities.

The lack of suitable annotated data in the public
domain is a serious impediment to mental health
research utilising NLP methods. Also, there are cer-
tain nuances in mental health conversations (shown
in Figure 13), that makes them challenging to be ad-
dressed using the existent automated systems. The
first set of images in the figure displays examples
of how visual signals for current textual utterances
can be found in past time steps. The second series
of images depicts a patient’s uneven bodily mo-
tions while discussing ER experiences at various
points in the discussions. Furthermore, identifying
ER utterances is challenging since the automated
system must have commonsense reasoning ability
to distinguish factual information from others.

To this end, we introduce a novel task of detec-
tion of emotion and emotional reasoning in conver-
sations in a multitask setting. We develop a COm-
monsense aware Multimodal Multitask Approach
for Detection of Emotion and Emotional Reasoning
(COMMA-DEER) in conversations at the utterance
level. We create the DEER corpus (Detection of
Emotion and Emotional Reasoning), which is a
multimodal doctor-patient conversational dataset
involving various common mental illnesses anno-
tated with emotion and ER at the utterance level.
We compare our proposed method to various ex-
isting state-of-the-art techniques to the presented
dataset. Empirical evaluation and qualitative anal-
ysis show strong performances by our approach
compared to the prior works on both tasks. We
intend to make the code and data available to facili-
tate future research in this domain.

The main contributions of this work are:
1. We introduce a novel problem of joint detec-

tion of emotional reasoning and emotion in
conversations exploiting the correlatedness be-
tween the two tasks.

2. This work introduces the first multimodal
mental health conversational corpus, DEER,
manually annotated with emotion, presence
of emotional reasoning, speaker information,
start and end timestamps at the utterance level.

3. We propose COMMA-DEER, a commonsense
aware multimodal multitask system for de-
tection of emotion and emotional reasoning
utterances in a conversational setting.

3The images used are not subjected to copyright as the
source videos have been made available for ’teaching purposes’
and ’medical profession and allied scientific groups’.

The rest of the paper is organised as follows. Sec-
tion 2 summarises some of the prior efforts in this
subject. Following that, in Section 3, we discuss
the dataset preparation in detail. In Section 4, we
discuss our proposed methodology for multimodal
multitask experiments. We explain the experiments,
results and their outcomes in Section 5. Finally, in
Section 6, we conclude our work and identify the
scope of future work.

2 Related Work

Arntz et al. (1995)’s study was one of the first
clinical investigations to show that the affect-as-
information hypothesis might be used to sustain
anxiety and mood disorders. The authors in
(Meeten and Davey, 2011) found that the emotional
reasoning phenomenon is common among clinical
populations due to its adverse negative impact. The
use of ER as a source for measuring risk was inves-
tigated by Beck and Haigh (2014), who discovered
that it has significant clinical relevance both as a
disorder maintenance factor and as a treatment tar-
get in cognitive therapy.

The research community has focused heavily
on utterance and document level emotion recogni-
tion (Mohammad et al., 2018; Bostan and Klinger,
2020). Psychology research (Pantic et al., 2005;
Aviezer et al., 2012) also points to the importance
of considering multimodal information to build
automated systems to perceive human emotion.
Given the significance of mental health and its
growing influence on society, researchers (Pham
et al., 2016) are currently developing methods to
precisely detect human emotion in the intention of
developing mental health therapeutic solutions and
better understand mental health issues.

Recent works (Alswaidan and Menai, 2019;
Ghosh et al., 2022) have considered external knowl-
edge resources (ConceptNet (Speer et al., 2017),
SenticNet (Cambria et al., 2018), etc.) in build-
ing systems for emotion detection in various do-
mains (conversations, suicide notes, etc.). In men-
tal health conversations such as doctor-patient in-
teractions, any factual information or presence of
any grounded knowledge, such as a doctor’s de-
scription of a patient’s mental condition or charac-
teristics of a particular illness (examples shown in
Section 3.2.1), can also be exploited to infuse addi-
tional knowledge into the context of the dialogue.

Data for multi-modal emotion detection is chal-
lenging to collect and annotate, especially for low-
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Figure 1: Sample instances from our DEER dataset, showing ER utterances and demonstrating how multimodality
may capture various nuances in dialogues. ER: Emotional Reasoning.

resource emotions (e.g., disgust, surprise) that are
encountered seldom in everyday life, which drives
us to investigate this problem. Building on existing
studies and the limitations of the prior works on
related topics, we presented a manually annotated
multimodal mental health conversational dataset
and devised an automated approach leveraging
commonsense knowledge to detect emotions and
emotional reasoning utterances in conversations.

3 Dataset

In this section, we discuss the data collection and
annotations for various attributes at the utterance
level, such as speaker information, start and end
timestamps, emotion, ER, and factual utterances.

3.1 Data collection and processing
We collected 30 doctor and patient interviews from
YouTube4. Twenty of them are real interviews of
different psychiatrists and various mental illness5

patients. The rest of the ten interviews involves
case studies/tutorial videos of conversations be-
tween the real psychiatrists and actors (posing as
mental illness patients of various types of mental ill-
ness). Due to the sensitivity and stigma associated
with mental health, readily available relevant data
in the public domain is scarce. Hence, we decided

4Some of the video ids are: ZB28gfSmz1Y, 8gDkFX4wprI,
GGVYRxxsvEU, f744UFJSuog

5Psychosis, Schizophrenia, Paranoid Delusions, Delirium,
Obsessive Compulsive Disorder, etc.

to consider both the real and enacted doctor-patient
conversations to create the dataset. Transcripts are
manually generated for each video (wherever not
available on YouTube) and marked with speaker
information (Doctor or Patient) and start and end
timestamps for each utterance. In a conversational
video, an utterance is defined as a unit of speech
bound by breaths or pauses (Hazarika et al., 2018).

3.2 Data Annotation

The annotations for the ER and emotion classes are
performed at the utterance level by three annotators
(one undergraduate student from the computer sci-
ence discipline and two doctoral researchers from
the computational linguistics discipline).

3.2.1 ER and Emotion Annotations
The annotations for ER labels were left to the an-
notators’ discretion, based on their understand-
ing of the phenomena of ER. Utterances were
labeled as ER if they were detected as an obvi-
ous result of emotional reactions (inaccurate emo-
tional truths) that directly contradicted any objec-
tive and/or perceptual realities. Such statements
either lack counter empirical evidence or cannot
be supported by common sense reasoning or com-
mon knowledge. Also, the doctor’s interaction with
the patient in the conversations provided essential
clues and hints for ER to the annotators. When
hearing a patient’s emotional justification, doctors
frequently express astonishment and are perplexed
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or shocked. The annotators could easily identify
strong candidate utterances for ER from the doc-
tors’ expressions, comments, vocal tone, etc. This
can be understood from the below conversation
snippet between a doctor and a patient, taken from
our introduced DEER dataset.

Doctor: Well you know, the other day you told me
about the government being concerned in some

way there’s all this [Emotion: Others]
Patient: yes, and because the government doesn’t

keep the law [Emotion: Others] –> ER
Patient: the government is not in a harmony of the

truth [Emotion: Others] –> ER
Doctor: but do you mean to say that the

government prevents people from fulfilling the
law? [Emotion: Surprise]

Each utterance is marked with one of Ekman’s
(Ekman, 1992) six basic emotions: anger, disgust,
fear, joy, sadness, and surprise. The necessity to
add another class arose when the annotators en-
countered instances that have no emotion or some
non-neutral emotion that do not fall into the scope
of Ekman’s basic emotions. We name this class as
others. Table 1 shows the data distribution across
the various emotion classes. We observe that most
of the emotionally charged utterances are from pa-
tients’ utterances, and their predominant emotions
are anger, fear, and sadness. The majority of the
doctor’s utterances bear the surprise emotion as
more than not; the doctors are puzzled or in dis-
belief on hearing the patients’ emotional reason-
ing. We also observe that the dataset has an over-
representation of the others class.

Figure 2 shows a snippet from the dataset, depict-
ing ER and various associated emotions in different
utterances from a doctor and patient’s dyadic con-
versation. We show the data distribution over the
emotion classes and ER categories for both doctors
and patients in Table 2. We obtained 743 ER utter-
ances from the total of 3,753 annotated utterances.
An example of factual utterances from the dataset
is shown below:

• 60-year-old professional woman with auditory
and olfactory symptoms that feature in her
persecutory delusions.

Inter-rater Agreement: We compute the Fleiss-
Kappa (κ) score for the overall inter-rater agree-
ment (Spitzer et al., 1967), as it is a popular choice
when more than two raters are involved. The Emo-
tion and ER tasks yielded scores of 0.75 and 0.83,

Figure 2: Sample conversation excerpt from the anno-
tated DEER dataset.

Classes Instances κ

Anger 171 0.71
Disgust 69 0.65

Fear 163 0.74
Joy 124 0.90

Sadness 494 0.82
Surprise 174 0.58
Others 2558 0.86

Table 1: Emotion distribution.

Doctor Patient Total
Emotion 217 [5] 978 [351] 1195 [356]
Others 1250 [42] 1308 [345] 2558 [387]
Total 1467 [47] 2286 [696] 3753 [743]

Table 2: Distribution of Emotion utterances and ER for
doctor and patients. Values in the brackets indicate the
ER counts.

respectively. According to the definition of the
Fleiss’ Kappa statistic (Landis and Koch, 1977),
the obtained inter-rater reliability is considered to
be ’almost perfect agreement’ for the ER task and
’substantial agreement’ for the emotion task. We
also show the average per-class agreement among
the annotators for each emotion in Table 1.

4 Methodology

This section formalizes our task objective and dis-
cusses our proposed COMMA-DEER approach.
Figure 3 illustrates the general architecture of our
proposed approach.
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Figure 3: Architecture of the proposed COMMA-DEER approach. The model takes multi-modal inputs at the
utterance-level and for a particular target utterance, it outputs the presence or absence of ER and the associated.

4.1 Task Definition
Our task involves a dyadic interaction between
two speakers, a doctor and a patient, in which ut-
terances are exchanged asynchronously. The ob-
jective is to identify emotion and the existence
of emotional reasoning in the utterances. Let
Umt = (um1 , u

m
2 , .., u

m
n ) denote a conversation,

Emt = (em1 , e
m
2 , ..., e

m
n ) represent the correspond-

ing emotion labels for each utterance in the con-
versation andERmn = (erm1 , er

m
2 , ..., er

m
n ) depicts

the presence or absence (0 or 1) of ER at the utter-
ance level. In the mth dialogue, n refers to the total
number of utterances. The purpose of this task is
to maximize the value of the following function:

argmax
θ

(Πmi=0Π
n
j=0P (e

i
j , er

i
j |uij , uij−1, ..., ui1; θ))

where uij−1, ..., u
i
1 represents the previous set of

utterances ordered temporally and uij is the cur-
rent (target) utterance whose emotion label (eij)
and presence of emotional reasoning (erij) is to be
predicted. P is the log likelihood function and θ
denotes the model parameters to be optimized.

4.2 COmmon-sense aware Multimodal
Multitask Approach for Detection of
Emotion and Emotional Reasoning
(COMMA-DEER)

Our proposed approach can be considered a
pipeline of 4 primary modules: a). Multimodal Fea-
ture Extraction Module (MFEM), b). Multimodal
Feature Fusion Module (MFFM), c). Contextual
RMS-Fourier Transformer (CRFTrans), and, d).
Task-specific Layers.

4.2.1 Multimodal Feature Extraction Module
(MFEM)

Text Encoder: For an automated system to be able
to identify ER in a running conversation, it requires
a significant capability to perform commonsense
reasoning to comprehend situations that relate to
the real world or which are non-factual-based. We
generate textual features from the utterances from
multiple encoding sources. First, we generate a
feature vector using a pre-trained Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019) due to its strong ability to
learn context-sensitive information and its ability
to generalize on various downstream tasks. Next,
we generate three more feature vectors (as shown
in Figure 3) for the same utterance using multi-
ple common-sense knowledge resources: GloVe
(Pennington et al., 2014), IsaCore (Cambria et al.,
2014) and AffectiveSpace6 (Cambria et al., 2015).
The IsaCore and AffectiveSpace are vector spaces7,
each providing 100 dimension embeddings for the
most frequent occurring words in English. This
setup is loosely motivated by the work in (Ghosh
et al., 2022), except the incorporation of the BERT
encoder. Since we are dealing with a relatively
smaller supervised dataset, BERT, which is trained
on a large scale corpus enables to generate feature-
rich contextual representations of the input.

A similar approach of commonsense knowledge
infusion was presented by Ghosh et al. (2022). Un-
like (Ghosh et al., 2022), who only exploited the

6https://sentic.net/downloads/
7In Section A.3 of the Appendix, we present a broad dis-

cussion of the knowledge resources.
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uni-gram word vectors, we extracted the uni-gram,
bi-gram, and tri-gram vectors for the tokens of
our utterances. Finally, the generated resource-
independent sentence vectors are linearly concate-
nated and passed on to the next module.

Audio Encoder: For acoustic feature extraction,
we utilise openSMILE (Eyben et al., 2010). openS-
MILE can extract Low-Level Descriptors (LLD)
and manipulate them using various filters, function-
alities, and transformations.

Video Encoder: Rich emotional indications are
provided by facial expressions and the visual envi-
ronment. We use 3D-ResNeXt8 (Hara et al., 2018)
to capture the facial expressions and visual sur-
roundings from the utterance video, which provides
rich emotional indicators.

4.2.2 Multimodal Feature Fusion Module
(MFFM)

The separate feature vectors from the three modali-
ties are passed through separate dense layers (map-
ping) to make them the same length. Instead of di-
rectly concatenating the features from the multiple
modalities and use it for classification, we enhance
the feature vector of each modality in a pair-wise
approach using the features from the other modali-
ties. For example, to enhance the textual features
(UEmT) with the help of the supporting acoustic
information, we augment the acquired acoustic fea-
ture vectors (UEiA) to the text representation using
the multi-head attention technique. We do the same
for the acoustic feature enhancement (UEmA) us-
ing the textual features (UEmT). Likewise, we
do the same for the two other paired modalities:
text-video and audio-video. So, for the text-audio
scenario, we obtain fmi(TA) and fmi(AT ) as per eq. 7.

Keymi =WKm
i
γx + bKm

i
(1)

V aluemi =WVmi
γx + bVmi (2)

Querymi =WQmi
γx + bQmi (3)

Att(Query,Key, V alue) = softmax(
QKtra

√
d

)V

(4)

headmi = Att(Querymi ,Key
m
i , V alue

m
i ) (5)

Multiheadmi = (head1, head2, ..., headnum)
m
i

(6)

fmi(ab) =Multihead(UEa, UEb, UEb)
m
i ; (7)

8https://github.com/kaiqiangh/
extracting-video-features-ResNeXt

Here, γ is the input state vector, and WKm
i

, WVmi
,

and WQmi
are the corresponding weight matrices

to transform γ into the Query, Key, Value vectors
of the ith utterance in the mth conversation. We
use Xavier-norm to initialize the parameters. Here,
{a,b} ϵ {text (T), audio (A), video (V)}. tra denotes
matrix transpose operation.

We design a gating mechanism to filter out
noise9 and as well as attend to features that are
well represented in some modalities but not in the
others10. The gating (

⊗
) operation can be real-

ized from the equations 8, 9 and 10. The equations
relate to the gate on top of the MFFM module as
shown in Figure 3 (component enclosed with blue
dotted line). The sigmoid operation acts a forget-
ting mechanism for a particular modality (say T)
based on the current input of another modality (say
A) and vice-versa. The following dot product calcu-
lates the similarity measure between the resultant
output (for T) from the previous step and the actual
features of the other modality (of A). A tanh activa-
tion is applied on the outputs for non-linearity. This
operation occurs for each pair-wise modality (T+A,
T+V, A+V), thus producing a set of six features
for each utterance which we linearly concatenate
to produce an enriched feature vector (eq. 11).

gm(TA)i = sigmoid(Wgf
m
(TA)i + VgUEA

m
i + bg)

(8)

Pm(TA)i = dot(g(TA), f(TA))
m
i (9)

lfmi(TA) =

tanh(WlfP
m
(TA) + UlfUEA

m
i + blf ) (10)

gfmi = [lfTA; lfAT; lfTV; lfVT; lfAV; lfVA]
m
i

(11)

where Wg, Vg, bg,Wlf , Vlf , blf are the weight
matrices that get updated during training. We use
xavier-norm to initialize the parameters. [;] denotes
concatenation.

4.2.3 Contextual RMS-Fourier Transformer
(CRFTrans)

To model the contextual information among the
utterances, we develop Contextual RMS-Fourier
Transformer (CRFTrans). It uses the Fourier Trans-
former (FNet) encoder, originally introduced by
Lee-Thorp et al. (2021), which is a simpler yet
efficient method compared to regular transformer

9such as poor video/audio quality
10(for example, some clips are too small to generate the

audio clips but text is available
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Single-Task Multitask

Modality F1ER F1Emo F1ER F1Emo

T 62.78 56.11 64.79 60.78
A 57.76 54.98 60.43 57.91
V 52.16 51.51 54.11 53.67

T+V 64.97 61.11 66.79 64.55
T+A 66.18 62.41 68.91 65.72
A+V 61.66 58.54 63.94 62.59

T+V+A 69.28 63.17 71.82 66.91
[T+V+A]+CS 72.14 66.33 73.44 70.14

(a) Results of the proposed COMMA-DEER method
on various modalities. Values in bold are the maxi-
mum scores attained. CS: common-sense.

Emotion ER
Models F1 (%) Acc. (%) F1 (%) Acc. (%)

Singletask baselines
bc-LSTM (Poria et al., 2017) 58.41 59.63 60.15 60.87
CMN (Hazarika et al., 2018) 62.64 64.52 68.17 69.31

DialogueRNN (Majumder et al., 2019) 63.92 64.16 68.67 70.13
Multitask baselines

MTL-BERT (Peng et al., 2020) 62.33 63.51 65.61 65.91
CMSEKI (Ghosh et al., 2022) 64.14 66.31 69.88 71.31
COMMA-DEER* (proposed) 70.14 70.93 73.44 74.62

(b) Results from our proposed model and the various baselines. Values
in bold are the maximum scores attained. Results marked with a * are
statistically significant above the best performing CMSEKI baseline by the
Student’s t-test (p < 0.05).

Table 3: Results of the baselines and the proposed COMMA-DEER approach on the DEER dataset.

encoder (Vaswani et al., 2017). The self-attention
sublayers in the transformer encoder are replaced
with simple linear transformations that ’mix’ the
input tokens to create the FNet. Both the sequence
dimension (seq) and the hidden dimension (hid)
are transformed using 1D Fourier transforms (F):
R(F seq(F hid(x)))

One distinctive modification that we do in the
FNet model is to use RMS-layer norm (Zhang and
Sennrich, 2019) instead of the normal layer norm.
The RMSNorm simplifies LayerNorm by remov-
ing the mean-centering operation or normalizing
layer activations with RMS (Root Mean Square)
statistic (RMS(a) = 1

n

√∑n
i=1a

2
i ). To the best of

our knowledge, we are the first to use RMSFNet as
a contextual information learning module in con-
versations. Each utterance from the MFFM module
(ufmi ) in the input sequence is passed through the
CRFTrans unit. Each passing utterance acts as a
context to the next utterance up to the target ut-
terance. So, UFmi = [ufm1 , uf

m
2 , ..., uf

m
n−1] ∈

Rn−1,d acts as the context for ufmn and its subse-
quent output from CRFTrans is passed for classifi-
cation to the task-specific layers.

4.2.4 Task-specific layers:
We extract additional features exploiting the fac-
tual utterances (grounded knowledge) in the con-
versations to enhance the fused feature output of
the CRFTrans module. We use a BERT encoder
to create contextual features from the factual ut-
terances associated with a dialogue to which the
current [context+target] utterances belong. We lin-
early concatenate the BERT output with the CRF-
Trans output and feed it to two task-specific dense
layers that capture emotion and ER identification
task-specific characteristics. The output of the task-

specific dense layers is sent to two output dense
layers, which serve as output classification layers.

Calculation of loss: We adopt a principled ap-
proach to calculate the loss of our multitask ap-
proach that considers the homoscedastic uncer-
tainty (Kendall et al., 2018) of each task while
weighing multiple loss functions.

L =
∑

ω

WωLω (12)

Here, ω denotes the two tasks, emotion, and
emotional reasoning detection. The weights (Wω)
are updated using back-propagation for specific
losses for each task. We use the categorical cross-
entropy loss and binary cross-entropy loss for the
emotion and ER tasks.

5 Experiments and Results

In this section, we discuss the experiments per-
formed, and present the results and analysis.

5.1 Experimental Setup
We evaluate our proposed approach against five
state-of-the-art systems: Hierarchical Attention
Networks (bc-LSTM) (Poria et al., 2017), Con-
versational Memory Network (CMN) (Hazarika
et al., 2018), DialogueRNN (Majumder et al.,
2019), Mulitask BERT (MT-BERT) (Peng et al.,
2020), and Cascaded Multitask System with Exter-
nal Knowledge Infusion (CMSEKI) (Ghosh et al.,
2022). As class imbalance problem persists in the
dataset, we performed 5-fold cross-validation ex-
periments and used the macro-F1 metric to evaluate
the efficacy of our method against the various base-
lines. We discuss the details of the baselines and
the hyperparameters for our experiments in the Ap-
pendix (Sections A.1 and A.2).
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5.2 Results and Analysis

We investigate the importance of multimodal fea-
tures for our task and also investigate the role of
common-sense infusion in the learning process. Ta-
ble 3a presents the results for different combina-
tions of modes used by COMMA-DEER on DEER
dataset. Best performances are obtained from the
trimodal setup, followed by the bimodal and uni-
modal networks. Textual modality performs better
than the audio and visual modalities when con-
sidered alone, which may be due to the presence
of lesser noise in texts compared to audio-visual
sources. Our observations are consistent with the
previous findings (Hazarika et al., 2018) on com-
parable tasks. Also, we observe that in all the
scenarios, the multitask systems outperformed the
single-task variants.

Comparison with Prior Works: For a compre-
hensive evaluation of our proposed approach, we
consider various state-of-the-art systems as base-
lines and observe (from Table 3b) that the pro-
posed COMMA-DEER system commendably out-
performs all of the baseline systems on both the
tasks of emotion and ER detection. Also, we ob-
serve that the multitask systems (MTL-BERT and
CMSEKI) obtain better scores than the single-task
setups stressing the importance of learning the two
associated tasks jointly. More so, the CMSEKI
system which leverages common-sense knowledge
in its training process, performs overall best among
the considered baselines. However, our proposed
COMMA-DEER approach attains strong perfor-
mance improvements of 6% accuracy (Acc.) and
4.62% F1 on the emotion detection task and 3.56%
accuracy and 3.31% F1 on the ER detection task,
when compared to CMSEKI model.

Ablation Experiments: To examine the impor-
tance of the modules in COMMA-DEER, we re-
move the constituent components, one at a time,
and report the results in Table 4. Specifically, we
conduct two ablation experiments: first, we replace
RMSFnet with FNet ([T+V+A]-RMS) in CRFTrans,
and, second, we employ linear concatenation, re-
placing the proposed MFFM mechanism, to fuse
multimodal features ([T+V+A]-MFFM). We observe
notable fall in scores when either of these modules
are removed from the COMMA-DEER framework,
especially when we remove the MFFM module.

Varying Context Length: We trained COMMA-
DEER for the following context lengths (ψ): 0, 2,
4, 5, 6 and 8. The obtained scores are depicted

Setup F1Emo (%) F1ER (%)
COMMA-DEER 70.14 73.44

[T+V+A]-RMS 67.11 (-3.03) 70.24 (-3.20)
[T+V+A]-MFFM 65.78 (-4.36) 68.83 (-4.61)

Table 4: Ablation experiment’s results. % fall in scores
are shown in brackets.

in Figure 4. 0 indicates no context and the target
utterance is given as input to the model only. By
increasing the number of past utterances, we see
a consistent increase in performance. We obtain
the best results when the ψ is set as 5. On analysis
of some ER cases with context length 5, we ob-
served frequent topic drifting when context length
5, which may explain the result. However, this
more exhaustive analysis is needed, preferably on
a larger dataset to obtain a concrete understand-
ing of the observation. Adding more context does
not give meaningful information; thus degrading
performance due to model confusion.

Figure 4: Graphical depiction of results of COMMA-
DEER on varying context length.

5.2.1 Qualitative Analysis
For comprehensive evaluation of the performance
of the proposed method and the considered base-
lines on the DEER dataset, we perform comparative
analysis of predictions from these models on sev-
eral test cases. The first example in Table 5 shows
the ability of our model to correctly identify an
ER utterance and also the associated emotion. On
the contrary, both the CMSEKI and DialogueRNN
misclassifies both the emotion and ER labels. In
the second example too, we observe that our model
classifies both the labels for emotion and ER cor-
rectly, unlike the CMSEKI (partially correct) and
DialogueRNN (fully incorrect). Here, the target
utterance is from the doctor and there is a context
change in that utterance itself. Previous utterances
taken as context do not entail the current utterance,
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Examples COMMA-DEER CMSEKI DialogueRNN
D: Right, ok. And have you seen much of your parents recently?

P: Yeah. I thought about going back there but I, I don’t want to drag them into this. anger others others
D: Right. ER Non-ER Non-ER

P: I don’t want MI5 knowing about them.
P: Yes. But in the building? No, I don’t think so. As long as I pay my rent, there

shouldn’t be any problems. I paid my rent on Friday.
others sadness anger

D: So what happened at work? Non-ER Non-ER ER
P: You know, jealous talk.

D: But it was only in your apartment that you would hear these voices?
P: Yes. fear others others

D: Who was talking? What were they saying? ER ER Non-ER
P: If I was doing something, lets say if I was looking for something, they’d taunt

me, "she can’t see it". They’d know that I was looking for something.
P: I wasn’t hungry, and I wasn’t eating, because it felt tight here.

D: You also told me about some gas... others others others
P: Yes, there was a smell coming from the trash chute and the air vents, always at

night.
D: What caused it? Non-ER Non-ER ER

P: It was some sort of gas, but I’m not sure what.
P: As I said: Tuesday, Wednesday, Thursday and Friday and so he came again and he
had a mask on and he’d already put something on my pillow. It’s difficult to explain.

surprise others others

A head, an animal head! To scare me! I was laying there wondering what was on
the pillow next to me.

Non-ER Non-ER Non-ER

Table 5: Sample predictions from the best performing baselines and the proposed COMMA-DEER approach. Labels
highlighted in blue signifies correct predictions and that in red signifies mis-classifications. Target utterances are
highlighted with bold font. D: Doctor; P: Patient.

which seems to cause the problem for existing sys-
tems. Similarly, in the third example, the CMSEKI
and the COMMA-DEER predicts the ER label cor-
rectly, whereas the correct emotion label was only
predicted by our proposed model. Looking at the
misclassifications of the baseline systems, we ob-
serve a kind of biasness when it comes to the pre-
diction of ’Non-ER’ or ’others’ class. These pair
seems to occur more frequently among the differ-
ent variations of the misclassifications. We also
examined some of the error cases where our pro-
posed method produced partially incorrect output
(in example 4) or fully wrong labels (example 5).
In example 4, although the three systems correctly
predicted the emotion class as ’others’, only the Di-
aloueRNN model managed to predict the utterance
as an ER. This may be attributed to its strong ability
to model inter-speaker dependencies in the conver-
sations, which is not available in COMMA-DEER
or CMSEKI. The 5th example was misclassfied by
all the three systems for both the tasks. Here, the
context as well as the target utterance comes from
a single speaker (patient). Our proposed method
predicted ’surprise’ for the utterance where the ac-
tual annotated emotion was ’fear’. We believe that
the predicted emotion is not unreasonable as there
is a possibility for ’surprise’ too, in which case,
this calls for the scope of extending this work with
multilabel emotions, which are also coherent in a
real-world conversational scenario.

6 Conclusion

This study presented a novel multimodal multitask
system for the detection of emotion and ER in con-
versations. It also contributes towards mitigating
the problem of scarce availability of annotated cor-
pora by introducing a manually annotated multi-
modal mental health conversational corpus, DEER.
Empirical and qualitative analysis suggests that (1).
most of the existing state-of-the-art systems for
conversational data perform poorly when it comes
to comprehending ER in conversations; (2). the
proposed system performs commendably well on
both tasks and attains notable improvements from
existing comparable methods; (3). performance
on the ER detection task is considerably improved
when we simultaneously learn the correlated task
of emotion recognition.

Manual observation of the dataset shows that
the doctor’s responses to the patients’ ER usually
follow a pattern, such as responses of bewilderment
and denouncement. We believe that knowing the
responses of the doctor in the future time steps
may significantly improve the performance for the
detection of ER, which subsequently would enable
detection of early warning signs of more serious
mental illnesses. In future work, we want to extend
this study in the above-mentioned directions as
knowledge of the cognitive biases induced by ER
may lead to novel therapeutic approaches.
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Ethical Consideration

This work develops a resource from publicly
available videos of doctor-patient interactions from
YouTube. We followed the data usage restrictions
and did not violate any copyright issues as the
source videos have been made available for ’teach-
ing purposes’ and ’medical profession and allied
scientific groups’. This study was also evaluated
and approved by our Institutional Review Board
(IRB). We shall make the code and data available
for research purposes (on acceptance), through ap-
propriate data agreement procedure. The findings
reported here have been obtained from a small
dataset of doctor-patient conversations, which
may not accurately represent the phenomenon in
all psychopathological disorders. We encourage
further research and testing involving clinical par-
ticipants. The data is available at https:
//www.iitp.ac.in/~ai-nlp-ml/
resources.html#COMMA-DEER.
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A Appendix

A.1 Baselines
The following baseline methods are considered for
the comprehensive evaluation of our proposed.

• bc-LSTM (Poria et al., 2017): For multi-
modal sentiment analysis, it is an LSTM-
based network that extracts contextual infor-
mation from video utterances.

• CMN (Hazarika et al., 2018): Using a gated
recurrent unit on multimodal characteristics,
this approach converts prior utterances of each
speaker into memories. To capture inter-
speaker dependencies, these memories are
then combined using attention-based hops.
Contextuality is discovered by combining
memories using an attention-based technique.

• DialogueRNN (Majumder et al., 2019): This
approach uses speaker, context, and emotion
information from neighbouring utterances to
represent the emotion of words in a dialogue.
These variables are represented by three dis-
tinct GRU networks to keep track of the vari-
ous speaker states.

• MT-BERT (Peng et al., 2020): We implement
a multitask (MT) variant of BERT based on
the architecture proposed by Peng et al. (Peng
et al., 2020) for our two tasks detection of
emotion and Emotional Reasoning.

• Cascaded Multitask System with External
Knowledge Infusion (CMSEKI) (Ghosh et al.,
2022): The CMSEKI system was intro-
duced in the work that presented CEASE-v2.0
dataset, addressing the detection of depres-
sion, sentiment, and emotion, using common-
sense knowledge. We adapted the CMSEKI
system to address our Emotion and ER detec-
tion tasks.

Parameters COMMA-DEER
Transformer Encoder 2 layers

Embeddings 1068
FC Layer Dropout (Srivastava et al., 2014) = 0.3

Activations ReLU for dense layers
Output Sigmoid for Emotional Reasoning

Activations Softmax for Emotion
Optimizer Adam (Kingma and Ba, 2015) (lr = 0.003)

Batch 32
Epochs 30

Table 6: Hyper-parameters for our experiments.

A.2 Experimental Setting

We use PyTorch11, a Python-based deep learning
package, to develop our proposed model. We ex-
periment with the base version of BERT imported
from the huggingface transformers12 package. We
perform grid search to find the optimal hyper-
parameters in Table 6. For openSMILE, voice nor-
malization and voice intensity threshold are used
to discriminate between samples with and without
speech. Z-standardization is used for voice normal-
izing. ResNext has been pre-trained on Kinetics at
1.5 features per second and a resolution of 112.
All experiments are carried out on an NVIDIA
GeForce RTX 2080 Ti GPU. To account for the
non-determinism of TensorFlow GPU operations,
we present F1 scores averaged across five 5-fold
cross-validation runs. We set the sequence length
as 128 and report the results with context length =
5, as we observed best scores for this setup.

A.3 External Knowledge Sources

IsaCore: IsaCore (Cambria et al., 2014) is a vec-
tor space that preserves semantic and sentiment po-
larity based on the relationships between instances
(’birthday party’ and ’china’) and concepts (’spe-
cial occasion’ and ’country’) and affective labels.
It is generated by using multidimensional scaling

11https://pytorch.org/
12https://huggingface.co/docs/

transformers/index
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AffectNet IsA-pet IsA-food Arises-joy ...
dog 0.981 0 0.789 ...

cupcake 0 0.922 0.910 ...
songbird 0.672 0 0.862 ...

gift 0 0 0.899 ...
sandwich 0 0.853 0.768 ...
rotten fish 0 0.459 0 ...

lottery 0 0 0.991 ...
... ... ... ... ...

Table 7: A snapshot of the AffectNet matrix.

to the knowledge base that results from combin-
ing Probase (Wu et al., 2012) (the biggest current
taxonomy of common knowledge) with Concept-
Net (Speer et al., 2017) (natural language-based
semantic network of commonsense knowledge).

AffectiveSpace 2: AffectiveSpace 2 (Cambria
et al., 2015) is an unique vector space model for
concept-level sentiment analysis that enables rea-
soning by comparison on natural language ideas
even when they are represented by highly dimen-
sional semantic characteristics. This embedding
space was generated by performing principal com-
ponent analysis (PCA) on the AffectNet matrix rep-
resentation, which is a semantic network in which
common-sense concepts are linked to semantic and
affective properties. A snapshot of the AffectNet
matrix is shown in Table 7.
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Abstract

People often utilise online media (e.g. Face-
book, Reddit) as a platform to express their
psychological distress and seek support. State-
of-the-art NLP techniques demonstrate strong
potential to automatically detect mental health
issues from text. Research suggests that mental
health issues are reflected in emotions (e.g. sad-
ness) indicated in a person’s choice of language.
Therefore, we developed a novel emotion-
annotated mental health corpus (EmoMent),
consisting of 2802 Facebook posts (14845 sen-
tences) extracted from two South Asian coun-
tries - Sri Lanka and India. Three clinical psy-
chology postgraduates were involved in anno-
tating these posts into eight categories, includ-
ing mental illness (e.g. depression) and emo-
tions (e.g. sadness, anger). EmoMent corpus
achieved ‘very good’ inter-annotator agreement
of 98.3% (i.e. % with two or more agreement)
and Fleiss’ Kappa of 0.82. Our RoBERTa
based models achieved an F1 score of 0.76 and
a macro-averaged F1 score of 0.77 for the first
task (i.e. predicting a mental health condition
from a post) and the second task (i.e. extent of
association of relevant posts with the categories
defined in our taxonomy), respectively.

1 Introduction

Mental health issues remain a leading cause for
poor well-being and suicide. The World Health
Organisation (WHO) indicates that 400 million
people are affected by mental disorders such as
depression, resulting in a cost of US$ 1 trillion
per year from the global economy allocated for de-
pression and anxiety disorders alone (WHO, 2019;
James et al., 2018). Recent research using AI and
NLP demonstrates strong potential to automatically
detect mental health issues from digital footprints
such that professionals could provide timely inter-
ventions and mental health resources to vulnerable

persons. These data contain useful information to
understand patients’ distressed state of mind out-
side a traditional clinical environment.

Research suggests that mental health issues are
reflected in the ‘emotions’ (e.g. sadness, anger)
indicated in one’s expression of language. De-
spite the popularity of research studies in detecting
mental disorders using online data such as Twit-
ter (Coppersmith et al., 2014, 2015; Cohan et al.,
2018) and emotion modeling (Strapparava and Mi-
halcea, 2007; Mohammad et al., 2018; Demszky
et al., 2020; Oberländer and Klinger, 2018), the au-
tomated identification of the association between
emotions and mental disorders have largely being
ignored, apart from a recent study (CEASE corpus
(Ghosh et al., 2020)) that focused on the role of
emotions on suicidal ideation.

Motivated by this, we introduce a novel,
emotion-annotated mental health (EmoMent) cor-
pus1 using Facebook posts extracted from two
South Asian countries - Sri Lanka and India. In
South Asia, due to the lack of awareness of symp-
toms of mental illnesses and its associated stigma,
people often do not seek professional help, result-
ing in many instances of mental disorders being left
undiagnosed (Arora et al., 2016). However, since
recently, these countries have demonstrated a ten-
dency to use social media, particularly Facebook,
to seek mental health help using private and public
groups (e.g. Psychology group in Sri Lanka, Indian
Psychology Association).

Depression and anxiety disorders are amongst
the most common mental disorders worldwide
(James et al., 2018; Black Dog Institute, 2020).
Therefore, our dataset includes de-identifiable Face-
book posts from individuals who have indicated a
diagnosis of depression or anxiety, the disorder-

1dataset and the code is available on request for research
purposes.
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related issues they express including associated
emotions, and their help-seeking behaviours from
professionals and/or community. EmoMent con-
sists of 2802 posts (14845 sentences) extracted
from public Facebook groups dedicated to discuss
mental health concerns in Sri Lanka and India.
Three clinical psychology postgraduates were in-
volved in the data annotation process. Their task
was to read the entire post and assign one or more
labels from a given set of eight categories (e.g.
mental illness, sadness, psychosomatic, irrelevant)
(Table 2). We have achieved ‘very good’ inter-
annotator agreement of 98.3% (i.e. % with two or
more rater-agreement) and Fleiss’ Kappa of 0.82,
while 0.90 and 0.74 of Kappa values were achieved
on Sri Lankan and Indian datasets respectively, en-
abling a promising human agreement for computa-
tional modelling.

We fine-tuned BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) based deep learning
models on the EmoMent corpus to predict the rele-
vance of a post to a mental health condition (first
task), and to associate relevant posts with the cate-
gories defined in our taxonomy (second task) (see
section 3.3). Our RoBERTa-based models achieved
a F1 score of 0.76 for the first task, and a macro-
averaged F1 score of 0.77 for the second task.

The novel contributions of our paper includes;
1) the development of the first emotion-annotated
mental health corpus in English language 2) the
development of the first taxonomy to annotate men-
tal health conditions and emotions from Facebook
data, and 3) the development and evaluation of
deep learning models (RoBERTa) to predict the
presence of mental conditions, emotions, and psy-
chosomatic issues with ‘good’ performance. Addi-
tionally, our research contributed to the integration
of knowledge from two domains - mental health
and emotion modelling through various quantitative
and qualitative analyses, in particular, low-resource
languages such as Sinhala.

Currently, the diagnosis of a mental disorder is
primarily based on the knowledge and experience
of a professional, who arrives at a diagnosis sub-
sequent to talking to a patient and/or care-givers.
In this method, patients have to reflect on events
that occurred in the past to help professionals di-
agnose their condition. Real-time experiences of
patients, which is an important element for diag-
nosis and treatment plan, is not usually considered.
The majority of online self-reflective posts on the

other hand generate real-time, reliable data to un-
cover distressed states of mind at the time of occur-
ring. Therefore, a corpus like EmoMent, developed
from user-generated data allows practitioners to
understand the mental states of patients beyond
a traditional clinical interview. These automated
identification of mental disorders or mental condi-
tions,from user-generated content provides a useful
tool for improving diagnosis and personalised treat-
ment plans.

2 Related Work

People use language as a direct tool to express
their feelings and emotions, providing a wealth
of information to determine their emotional status
and mental health conditions (Berry et al., 2017).
Motivated by this, many datasets have been de-
veloped to support research in the two fields of:
Emotion Modelling and Mental Health Modelling,
using social media as one of the primary data
sources. The existing datasets on emotion mod-
elling are mostly based on two emotion taxonomies:
Ekman’s basic emotions (fear, anger, joy, sad-
ness, disgust, and surprise) (Ekman, 1992), and
Plutchik’s Wheel of Emotions (anger, anticipa-
tion, disgust, fear, joy, sadness, surprise and trust)
(Plutchik, 1980). Examples of emotion modelling
datasets include (Strapparava and Mihalcea, 2007;
Mohammad et al., 2018; Demszky et al., 2020;
Oberländer and Klinger, 2018; Li et al., 2020; Ap-
pidi et al., 2020). The existing mental health mod-
elling datasets are based on the problem domains
such as suicidal attempts, self-injury, loneliness,
depression, anxiety and Post Traumatic Stress Dis-
order. The focus of most existing datasets are lim-
ited to one or two problem domains, hindering the
diagnosis capabilities of the AI models that they
are based on. (Pirina and Çöltekin, 2018; Tadesse
et al., 2019; Zirikly et al., 2019).

Despite the availability of numerous emotion
modelling and mental health modelling datasets,
there are certain limitations in almost all of these
datasets. The datasets from these two research
fields are independent of one another (i.e., non-
interactive). The complementary integration of
emotion and mental health modelling provide en-
hanced insights on a person’s emotional and mental
well-being, which is useful in assisting profession-
als to diagnose and personalise treatment plans.
Additionally, almost all of the currently available
datasets are based on resource-rich languages such
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as English (Appidi et al., 2020), limiting the un-
derstanding of cultural aspects of language use in
emotion and mental health modelling.

Despite the importance of jointly-modelling
emotions and mental health, the availability of
emotion-annotated mental health datasets are vastly
limited. For example, the emotion-annotated men-
tal health dataset of Ghosh et al. (Ghosh et al.,
2020), CEASE, is specific to suicide notes. Moti-
vated by this, we present a novel emotion-annotated
mental health dataset based on Facebook data to
facilitate joint-modeling of emotions and mental
health conditions.

To propose baseline models from the constructed
datasets, most previous studies in emotion, mental
health, and emotion-annotated mental health do-
mains have utilised recent advancements of deep
learning techniques such as BERT, LSTMs and
RNNs (Li et al., 2020; Appidi et al., 2020). For
example, the CEASE dataset proposes an ensemble
model using LSTM, CNN, and GRU (Ghosh et al.,
2020). To adhere with this, we also leveraged the
recent advancements in deep learning techniques
using BERT and RoBERTa based models.

3 EmoMent Corpus

This section describes the development of the Emo-
Ment corpus - data collection, data cleaning, taxon-
omy development, and data annotation.

3.1 Data Collection

We used the CrowdTangle tool2 to collect Face-
book posts that express mental health-related is-
sues. CrowdTangle is a content discovery and so-
cial monitoring platform which provides an inter-
face to access public Facebook pages and group
posts. Their search interface contains filters such
as ‘Post type - photos, statuses’, ‘language’, and
‘time frame’. Our search filter parameters were
‘account type’ as groups and ‘post type’ as sta-
tuses. Our ‘language’ parameters were Sinhala and
English while restricting ‘geographical locations’
to Sri Lanka and India. Due to the sparseness of
recent data in constructing a reasonable size cor-
pus for computational modelling, our search time
frame was expanded to approximately nine years
from 2012-01-01 to 2021-10-31.

CrowdTangle supports keyword, hashtag, or
URL search, combining with boolean search oper-
ators such as AND, OR, NOT. Our data collection

2https://www.crowdtangle.com

process utilised the keywords and phrases option
after a consultation with a clinical psychologist.
Our keywords and phrases included "depression",
"anxiety", "stress", "I feel unhappy", and “I feel
like ending my life”. To search Facebook posts
in Sinhala language, these keywords and phrases
were translated into Sinhala (See Appendix A.2
‘Data Extraction’ for the full list of keywords and
phrases).

We collected approximately 10,000 posts from
Indian and Sri Lankan public Facebook groups.
Each post includes metadata such as Group Id,
Group Name, Text Post, Post Created Time, and
Post Interaction (e.g. Like, Love) Count. The
extracted metadata did not contain any personal
identification details such as Facebook user name
or user Id. Therefore, Facebook user anonymity
was preserved. During our thorough filtering pro-
cess, we did not find any mention of Facebook user
names inside post contents other than sentences
like "please admin, approve this post etc.". We
recognised inherent demographic biases of data
when the data extraction methodology disregards
Facebook users’ demographic information such as
gender and age. We noticed a large amount of
noise within the extracted Facebook data, resulting
in difficulty in constructing a sufficiently large and
demographically unbiased dataset.

3.2 Data Cleaning
Our data cleaning process included manually re-
moving posts from inappropriate groups such as
Facebook groups with adult content. We also ex-
cluded single sentence posts from the dataset using
the NLTK tool3 since it is challenging to perform
meaningful NLP processing to predict emotions
from a single sentence. We also removed transliter-
ated posts and translated all Sinhala language posts
into English using Facebook Language Translator4.
Finally, we removed all the duplicate posts from
the dataset. The data cleaning process resulted in a
corpus of 2045 and 757 posts from Indian and Sri
Lankan Facebook groups respectively (see Table1
for ‘descriptive statistics’ of the dataset).

3.3 Taxonomy Development
As discussed in section 2, the majority of research
studies on emotion modelling rely on two popular
taxonomies - Ekman’s model (Ekman, 1992) and

3https://www.nltk.org/
4https://developers.Facebook.com/docs/graph-

api/reference/v12.0/app/translations
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Dataset Sri Lankan Indian Full
Posts 757 2045 2802

Sentences (ST) 5827 9018 14845

ST per post 12.1 4.9 –

Words per post 188 93 –

Table 1: Descriptive Statistics of the filtered Facebook
dataset

Plutchik’s ‘Wheel of Emotions’ (Plutchik, 1980).
Researchers tend to adapt these models by adding
new emotions (Demszky et al., 2020) or remov-
ing emotions. Therefore, we adapted three basic
emotions from these two models - fear, anger, and
sadness since empirical studies demonstrate that
these three emotions are strongly associated with
mental health issues. We also removed emotions
such as disgust and surprise since they occurred
infrequently in our selected data source.

Our taxonomy development process adopted
‘open coding’, a popular method in grounded the-
ory to identify, describe or categorise phenomena
found in qualitative data (Corbin and Strauss, 1990).
Firstly, we manually classified a random sample
of 50 Facebook posts into meaningful categories
(known as codes (Miles and Huberman, 1994)). To
start with, we used the 3 basic emotions - fear,
anger, and sadness This analysis found additional
mental states (e.g., suicidal thoughts, loneliness,
and addictions) that are likely associated with men-
tal health conditions. Secondly, we consulted a
clinical psychologist to refine the codes until we
reached agreement on a taxonomy that contained
codes to annotate our dataset. After this consul-
tation, we expanded the emotion of ‘fear’ with
‘anxiety/stress’ as these terms are used interchange-
ably in the Sri Lankan context. We also merged
some codes due to their infrequent occurrence in
the dataset (e.g., loneliness) which could result
in data sparseness when modelling. Accordingly,
three additional codes were introduced as listed
below (see Appendix A.1 for complete definitions
of taxonomy);

• Mental illness: Posts that mention a diagnosis
or a treatment related to a mental illness.

• Psychosomatic: Posts on psychosomatic is-
sues (e.g., fatigue, headaches) associated with
an underlying mental condition.

• Other: Posts that express a maladaptive men-
tal condition but do not belong to any of the

Figure 1: A screenshot of Doccano interface configured
for annotators

previously defined categories (e.g., addictions,
loneliness).

Finally, we introduced ‘irrelevant’ category if
none of the above-defined codes were usable to an-
notate a particular post. Table 2 shows the finalised
set of categories, along with examples, from our
dataset.

3.4 Data Annotation

We used three annotators to code the dataset. All
of them were native Sri Lankans with masters-level
experience in clinical psychology. They were re-
cruited by distributing flyers within Psychology de-
partments of three main universities and two higher
educational institutes in Sri Lanka. They were em-
ployed as research assistants for 1.5 months and
their time and effort were compensated based on
the standard daily salaries in Sri Lanka. They were
proficient in both Sinhala and English languages,
and were familiar with Facebook mental health
groups and cyber language. These annotators also
had a sound understanding of South Asian culture
and context. None of the annotators is an author of
this paper.

The task of an annotator was to read the entire
post provided through Doccano web interface5 and
assign codes based on the taxonomy (Table 2). Doc-
cano is a popular web based, open source, text anno-
tation tool. Figure 1 shows an example of Doccano
interface we configured for annotators. Each post
could have one or more codes. However, the ’irrel-
evant’ code was not allowed to be used jointly with
other codes. Our annotation instructions empha-
sised the importance of making evaluations based
on the information explicitly found in a given post
without making assumptions. (see Appendix A.1
for more information about the ‘annotation guide-
line’).

5https://github.com/doccano/doccano
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Category Example
Mental illness (MI) I have been taking antidepressants since a long time, watching motivational videos, listening to relaxing music, but when

things happen like a problem, my head is like a stone, why is that???

Sadness (SD) She has a lot of sadness in her heart because of a past incident for a long time.. she says it’s hard to forget no matter how she
tries.. she says she cannot live without forgetting that incident.. She says she is living because she cannot die

Anxiety/Stress (AS) I’m so mentally down I’m in a lot of problems. I’m a person who has suffered a lot since I was a kid. I’ve never been loved
even because of my family problems. From mom to dad because they separated when they were young. I lost everything I
loved. I still suffer from that.

Suicidal (SC) I’m suffering from depression /Right now there are so many problems that are going on in my life. Sometimes I just want
to end my life

Anger (AG) Sometimes I think that I need to take revenge. Because revenge has been my addiction. If I don’t take revenge, I’m in
depression and so angry...I’m so afraid of myself because when I get angry I won’t control and don’t know what I have done.

Psychosomatic (PY) How to get good night sleep at night in depression? Suffering from Insomnia from last 3 months

Other (OT) I am studying and I feel lonely. Before some time when I worked I felt so excited and interested. But now no any interest
and excitement

Irrelevant (IV) Anyone can love you when the sun is shining, but in the storms is where you’ll learn who truly cares about you...
*Note - Due to sensitivity of data, we report an excerpt of the post

Table 2: EmoMent Taxonomy and sample examples

4 Corpus Analysis

We constructed the EmoMent corpus by selecting
posts which had two or more annotators agreeing
on a category.

4.1 Corpus Statistics

Table 3 demonstrates corpus statistics of annotated
EmoMent corpus. According to Table 3, the ma-
jority of posts (62%) had only one label, followed
by 31% of posts with two labels. Since 38% of
posts had more than one label, we have modelled
this problem as a multi-label classification task (see
section 5). There were only 31 posts (i.e. 1% of
total posts) that had four or more labels. Accord-
ing to the annotations, the most number of labels
a post had were five and our dataset consists of
eight such instances. The excerpt below demon-
strates the five labels: mental illness, anxiety/stress,
sadness, suicidal, and anger.

"[..] I’m posting this to find a solution because it’s hard for
me to bear. I’m in a depressed state. I took medication. I’m so
nervous. Feeling sad. I feel like dying. I just want someone
to talk to me in the right words with love. Then my anger is
going to calm down a little. I don’t get angry for nothing. but
for what she does. she lies to me. I feel like her life was ruined
because of me. It’s too much pain to express when I feel like
that. I feel like stabbing. Feeling so helpless. but it’s hard
for me to stay. Is there anyone who listens to me. Please help
me. It’s hard for me to live in this pain. Am I doing something
wrong. I feel like I can’t move forward. I feel like there’s no
life [..]"

Figure 2 shows the number of posts in each cat-
egory, sorted by the frequencies of the posts. Ac-
cording to Figure 2, anxiety/stress (AS) is the most
common emotion (56%) in the corpus, followed by
sadness (SD - 36%). The majority of annotators

Number of (#) Posts 2802
# Categories 8
# labels per post 1: 62%, 2: 31%

3: 6%, 4 or more: 1%
# posts where >2 annotators 2106
agreed on at least 1 category
# posts where all 3 annotators 1981
agreed on at least 1 category
# posts where annotators totally 9
disagreed on at least 1 category

Table 3: EmoMent Corpus statistics

(two or more) agreed that 24.5% of posts in the cor-
pus were irrelevant (IV) based on our annotation
guide. Figure 2 shows a large disparity between
the frequencies of AS (56%) and PY (6%), SC
(6%), AG (6%). For example, anxiety/stress was
approximately nine times more frequent than suici-
dal thoughts, demonstrating that social media users
may express their anxiety/stress more frequently
and openly than use social media as a platform
to share their suicidal thoughts, This disparity in
frequencies also led to a data imbalance problem
when modelling. The other (OT) category relates
to 2% of all annotated posts. We excluded OT from
modelling since the purpose of this category was to
identify potential other emotions that could be use-
ful for future expansions of the corpus. However,
we did not find any such emotions.

4.2 Inter-Annotator Agreement

In order to calculate the agreement between anno-
tators, we used Fleiss’ Kappa measurement (Fleiss,
1971). Fleiss’ Kappa is used to determine the agree-
ment when two or more annotators are present.

According to Table 4, we have achieved a ‘very
good’ inter-annotator agreement for the Sri Lankan
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Dataset MI SD AS SC AG PY OT IV Average
Sri Lankan 0.917 0.913 0.938 0.956 0.951 0.848 0.782 0.924 0.904
Indian 0.794 0.831 0.714 0.834 0.810 0.660 0.516 0.783 0.743
Average 0.856 0.872 0.826 0.895 0.880 0.754 0.649 0.853 0.823

Table 4: Inter-annotator agreement using Fleiss’ Kappa
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0 500 1000 1500 2000

Number of posts in each category of EmoMent Corpus

Figure 2: Number of posts in each label category, where
at least two annotators agree for a particular label

dataset with Fleiss’s Kappa of 0.9, enabling a
promising human agreement for computational
modelling. Almost all the label categories ex-
cept ‘other’ have obtained over 0.8 of agreement.
Additionally, the Indian dataset also achieved a
‘good’ Kappa value of 0.74. It is expected that
a higher inter-annotator agreement for the Sri
Lankan dataset was obtained as compared to the
Indian dataset since the annotators were native Sri
Lankan domain experts who have a better contex-
tual knowledge about mental health issues among
Sri Lankans, than among Indians. Table 4 shows
that anger and suicidal have the highest and other
and psychosomatic have the lowest agreement re-
spectively. Interestingly, the highest annotator
agreements were observed from most infrequent
categories - anger and suicidal (see Figure 2).

5 Modelling

5.1 Data pre-processing

In order to prepare EmoMent dataset for down-
stream modelling tasks, we first associate each post
xi with a binary vector yi = [y1

i, ..., yk
i] ∈ {0, 1}k,

where k represents the number of distinct labels in
the taxonomy. Here yj

i is assigned 1 if and only
if the post xi is associated with the label j. We
determine whether the post xi is associated with
the label j based on whether 2 or more annota-
tors agree with the association. We removed posts
which were not associated with any label to yield

our final dataset, referred to as EmoMentall. Addi-
tionally, we created a secondary dataset referred to
as EmoMentrelevant, selecting posts which are not
associated with the label ‘Irrelevant (IV)’. Hence,
EmoMentrelevant is a subset of EmoMentall. We ran-
domly split each dataset into training, validation
and test splits in 70:15:15 ratio (see Appendix A.3
for detailed dataset split).

5.2 Emotion-annotated Mental Health Models

We propose experimental baselines for two associ-
ated tasks. The ‘first task’ is a binary classification
task of determining whether a post is relevant or ir-
relevant to a mental health condition. The ‘second
task’ is a multi-label classification task of associ-
ating correct labels (e.g., MI, SD, AS, SC) with a
given post. As discussed in section 4, we chose not
to consider the OT category for modelling.

We use BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) pre-trained language
models. Our selection of BERT-based pre-trained
models were motivated by previous impressive
performance across different NLP tasks and re-
lated studies (Demszky et al., 2020) that used
BERT-based models to propose strong baselines.
RoBERTa is an optimised model based on BERT,
and it has shown to outperform BERT in numer-
ous tasks (Liu et al., 2019). Hence, we devel-
oped strong baseline models using both BERT and
RoBERTa.

Figures 3(a) and 3(b) show the architecture of
our RoBERTa based binary and multi-label classi-
fication models respectively. We use the Pytorch
HuggingFace library6 to implement the models.
We ran all our experiments on the default GPUs
provided by Google Colab7.

5.2.1 Binary Classification Task
To address the ‘first task’, we fine tune BERT and
RoBERTa based models on the training split (70%)
of the EmoMentall dataset. Our hyper-parameters
tuning and performance evaluation used valida-
tion (15%) and test (15%) splits of the EmoMentall

6https://huggingface.co/
7https://colab.research.google.com/
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Figure 3: Architecture of the RoBERTa based models

dataset. To selected the best hyper-parameter com-
bination, we trained three different models per each
hyper-parameter combination by only modifying
the random seed values, and compared the average
scores obtained. We used cross-entropy loss as the
loss function during training.

First we fine tuned a bert-base-cased model with
a classification head on top for the binary classifi-
cation task. During our experiments, we change
the hyper-parameters learning rate, batch size and
the number of epochs. We set the warmup ratio to
0.1 and keep the default values provided in Hug-
gingFace implementation for the rest of the hyper-
parameters. We observe the best results when we
select a learning rate of 2e-05, a batch size of 8,
and train the model for 5 epochs.

Next we fine tune a roberta-base model with a
classification head on top for the binary classifi-
cation task. To finetune the RoBERTa model, we
followed a strategy similar to BERT. However, we
observed best results when we set the learning rate
to 2e-05, batch size to 8 and train the model for 3
epochs. We found that after 3 epochs, models tend
to get overfitted to the training dataset.

5.2.2 Multi-label Classification Task
To address the ‘second task’, we fine tune BERT
and RoBERTa based models on the training split
(70%) of the EmoMentrelevant dataset Our BERT
model was a bert-base-cased pre-trained model
with a classification head on top. Similarly, our
RoBERTa model was a roberta-base pre-trained
model with a classification head on top. The output
size of the last linear layer of both of these models
is set to 6 since we only considered the categories
MI, SD, AS, SC, AG and PY for this task.

We used a binary cross-entropy loss function
during training. To mitigate the negative impact
from class imbalance, we input a vector of positive
class weights to the loss function to be used when

computing the loss. We computed this weight vec-
tor using the training split of the EmoMentrelevant
dataset. For each label, we divided the number of
negative training data instances associated with it
by the number of positive training data instances
associated with it, and rounded it off to the near-
est integer. If the number of negative training data
instances was less than the number of positive train-
ing data instances, we assigned a default positive
class weight of 1.

We used the validation split (15%) and test split
(15%) of the EmoMentrelevant dataset) to tune hyper-
parameters and evaluate the models respectively.
We experimented by adjusting the learning rate,
batch-size and the number of epochs. While fine
tuning BERT and RoBERTa models, we set the
warmup ratio to 0.1 and kept the default values pro-
vided in the HuggingFace implementation for the
rest of the hyperparameters. As similar to binary
classification problem, for each hyper-parameter
combination, we trained 3 separate models by up-
dating the random seed values, and compare the
average scores obtained. We find that both BERT
and RoBERTa based models perform well when
we use a learning rate of 2e-05, a batch-size of 8
and train the model for 5 epochs. We report the
precision, recall and the F1 score of each label sep-
arately, without averaging the results across labels
(Table 6).

5.3 Results

We have summarised the results in Tables 5 &
6. Since we trained 3 models for each hyper-
parameter configuration by updating the random
seed value, the results we have reported are the
macro-averaged scores.

We observed that the RoBERTa model performs
better than the BERT model in both tasks. In the
first task, the RoBERTa model achieved an average
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F1 score of 0.76 compared to the BERT model
which achieved an average F1 score of 0.72. In the
second task, the RoBERTa model achieved a macro-
averaged F1 score of 0.77 compared to the macro-
averaged F1 score of 0.71 achieved by BERT.

For the multi-label classification task, we have
also reported F1 scores of the individual categories.
We have observed that both BERT and RoBERTa
models report the lowest F1 score for the PY cat-
egory. From the Table 4, we observed that the
PY category has a relatively lower inter-annotator
agreement compared to MI, SD, AS, SC and AG
categories. It is likely that this higher variability of
data associated with the PY category could have
caused both BERT and RoBERTa models to per-
form poorly.

We extracted misclassified posts by the best per-
forming models for further analysis (see Table 9
of Appendix A.4 for a sample of misclassified
posts). We observed that when classifying posts
that seek general information or offer advice on
mental health conditions, RoBERTa based binary
classification model tends to get confused at times
(see first 2 examples on relevant/irrelevant in Ta-
ble 9). In the case of the multilabel-classification
task, we observed that certain labels like PY gets
misclassified more often. As noted in Table 4, the
inter-rater agreement for the PY category is rela-
tively low, and it is likely that the lower agreement
has contributed to the misclassification of the PY
category.

5.4 Limitations

As described in section 3.2, we first translated the
extracted posts from Sinhala language to English
prior to annotating the data. Translating the posts
to English makes the dataset accessible to a much
broader research community. We acknowledge that
translating posts in this manner can lead to biased
results. This is a limitation of the current corpus.
However we argue that the benefits of translating
the posts to English outweigh the disadvantages.

In this study we limited our focus to two coun-
tries in the South Asian region, Sri Lanka and India.
Thus, our corpus is not representative of all the de-
mographics in the world, and we acknowledge this
as a limitation. However, we believe this does not
diminish the usefulness of the corpus. The South
Asian region is a populous region with more than
20% of the world’s population (Véron et al., 2008).
Therefore, we believe our work would be beneficial

Model Precision Recall F1-score
BERT 0.79 0.67 0.72
RoBERTa 0.84 0.71 0.76

Table 5: Results from the binary classification task

Label Precision Recall F1 Score
BERT RoBERTa BERT RoBERTa BERT RoBERTa

MI 0.7 0.77 0.66 0.76 0.68 0.76
SD 0.84 0.85 0.84 0.88 0.84 0.87
AS 0.81 0.85 0.94 0.94 0.87 0.89
SC 0.66 0.76 0.78 0.77 0.72 0.76
AG 0.6 0.66 0.85 0.83 0.7 0.73
PY 0.42 0.5 0.54 0.71 0.47 0.59
macro 0.67 0.73 0.77 0.82 0.71 0.77

Table 6: Results from the multi-label classification task

to a large audience.

6 Conclusion

This paper presented the first emotion-annotated
mental health corpus - EmoMent, which was de-
veloped using Facebook posts from two South
Asian countries - Sri Lanka and India. We have
provided a comprehensive research study, demon-
strating the development of an empirically-sound
emotion-annotated mental health taxonomy using
the grounded theory approach.

We also developed strong baselines using
RoBERTa-based models and achieved an F1 score
of 0.76 for the first task (i.e., predicting the rel-
evance of a post to a mental health condition)
and a macro-averaged F1 score of 0.77 for the
second task (i.e., predicting the relevant labels in
our taxonomy). However, our results suggest that
there is ample room for future improvements in
emotion-annotated mental health modelling. The
models presented in the paper consider the emotion-
annotated mental health modelling as two separate
tasks, one binary classification to determine the
relevancy, and multi-label classification to predict
fine-grained labels of posts. An interesting next
step would be to co-model these two tasks by lever-
aging multi-task learning (MTL).

7 Ethical Considerations

We curated EmoMent corpus from publicly avail-
able Facebook posts while adhering to the data
policy of Meta Platforms Inc. (Meta Platform Inc.,
2022), the parent organization of Facebook and
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CrowdTangle.
During data collection we took steps to filter

out personally identifiable information (see section
3.1). However, we acknowledge the possibility of
tracing back the origins of these posts since the
original posts are available in the public domain.
We further acknowledge that provided annotations
increase the sensitivity of the dataset. Therefore,
to reduce the risk of data misuse, when releasing
the dataset for academic research upon request, we
plan to do so under a strict confidentiality agree-
ment.

We also acknowledge that all mental health re-
lated diagnoses must be made only by qualified
mental health practitioners, and that the computa-
tional models proposed in this study cannot be used
to make such diagnostic claims about a patient.
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A Appendix

A.1 Annotation Guideline: Taxonomy
Table 7 provides definitions per each category in-
cluded in the annotation guideline.

A.2 Data Extraction
Figures 4 and 5 show the English and Sinhala
search keywords and phrases used in the data ex-
traction.

Depression, Anxiety, Stress
(I, myself, me, my, I'm) AND (unhappy, bored, sad, worrying, difficult)
“I feel unhappy”, “I feel so tired”, “I'm bored”, “I'm very sad”,
 “Can't stand it”, “I find it very difficult”, “What is the point in life”, 
“What is this life”, “I feel like ending my life”, “I'm not like before”, 
“My mood is not right”, “It is useless to go like this”, “I feel lonely”,
 “I should ending my life”, “I feel like cutting myself”, 
“I am not good enough”, “I am not good”, “Nobody loves me”, 
“I just feel weird”, “Not going to sleep”, “Can't eat”, 
“I can’t sleep well”, “Oversleeping”, “I feel scared”,
“I feel like afraid”, “chest pain”, “heart pain”,  
“I feel like I have changed”, “I'm not the same person”,
“I'm under a lot of pressure”, “I feel so stressed”, 
“I can’t handle it anymore”, “Life is very tough”, 
“I don’t think I can make it”, “Feeling mentally down”.

Figure 4: English search keywords and phrases used in
the data extraction

 ●  �ෂාදය, ආත�ය, ෙවෙභස, �ඩනය, කාංසාව, බය 
 ●  “මට ෙනාස�ට� දැෙ�”, “මම අස��� දැෙනනවා”, 

 “මට ස�ට� නෑ”,“අස�ට�”, “අවාසනාව�ත”, “කනගාට�ෙව� ��න”, 
 “කනගාට��”, “මට ෙගාඩ� මහ���”, “මට එපාෙවලා”, 
 “මට හ� �ක�”, “හ�ම �ක� දරා ග�න බෑ”, 
 “ෙ�ක මට දරා ග�න බෑ”, 
 “මට හ�ම අපහස��”, ”ෙමාක�ද ෙ� ��ෙ�”, 
 “��තෙ� ෙ��ම �ම�ද?”, 
 ”මෙ� ��තය අවස� කර�න මට දැෙනනවා”, 
 “ඉ�සර වෙ� ෙනෙ� මම”, “මෙ� ම�� එක හ� නෑ”, 
 “ෙමෙහම ���ලා වැඩ� නෑ”, “මට ත�කම� දැෙනනවා”, 
 “මම මෙ� ��තය අවස� කළ ය���“, 
 “මට මාවම කපා ග�න ඕනා”, “මම ෙහාඳ නැහැ”, 
 “කව��� මට ආදෙ� නෑ”, “කන�ස�ලට ප�ව ��”, 
 “මට �ක� අම�ත� දැෙනනවා”, 
 “��ද ය�ෙ� නෑ”, “කෑම ක�න බෑ”, 
 “මට ෙහා�� �දාග�න බැහැ”, 
 “ෙගාඩ� ��ද යනවා”, “මට බය� දැෙනනවා”, 
 “මට බය� වෙ� දැෙනනවා”, “පපුව ගැෙහනවා”, 
 “මම ෙවන� ෙවලා වෙ�”, “මම ඉ�සර ෙකනා ෙනෙ�”, 
 “මම හ� �ඩනෙය� ඉ�ෙ�”, “මට ෙගාඩ� ආත�ය� දැෙනනවා”, 
 “මට තව�රට� එය හැ�ර�ය ෙනාහැක”, “��තය හ�ම ��කර�”, 
 “මම �ත�ෙ� නැහැ මට ඒක කරග�න පු�ව� �යලා”, 
 “මාන�කව වැ�ලා”, “මාන�ක වදය�”,“��තය එපා ෙවලා”, 
 “මාන�ක �ඩනය”, “මාන�ක ගැට�”,  “මාන�ක ගැට�” 

Figure 5: Sinhala search keywords and phrases used in
the data extraction

A.3 Composition of Training, Evaluation and
Test Datasets

Table 8 demonstrates the percentages of positive
and negative instances associated with each label
in training, validation and test splits.

A.4 A Sample of Misclassified Posts
Table 9 shows a sample of posts misclassified by
the models
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Category Definition
Mental illness (MI) Posts that explicitly mention a diagnosis of a mental illness or getting treatments for a mental illness such as depression,

anxiety and seek help. Posts that expresses self-identification of mental illness may be due to history of treatments.

Sadness (SD) Posts that express sadness, unhappy or sorrow that may lead to a maladaptive mental condition or mental illness.

Anxiety/Stress (AS) Posts that express stress, fear or worry about something (e.g. past, future, physical appearance, religious beliefs) using the
words such as anxiety, worry, fear, stress that may lead to a maladaptive mental condition or mental illness.

Suicidal (SC) Posts that express suicidal thoughts, no interest in life (e.g. I feel like taking my own life).

Anger (AG) Posts that express anger using words such as anger that may lead to a maladaptive mental condition or mental illness.

Psychosomatic (PY) Posts that express psychosomatic issues (e.g. insomnia, fatigue, headaches, upset stomach) that associated with underlying
mental distress or may lead to a maladaptive mental condition or mental illness.

Other (OT) Posts that may lead to a maladaptive mental condition or mental illness but do not belong to any of the above categories
(e.g., addictions, loneliness, social skill deficits such as communication issues, problem solving issues, interpersonal issues).

Irrelevant (IV) Posts that seek information on matters related to mental conditions but do not discuss about an issue of the poster or a
third party. Posts that thank others who helped. Matters related to social media group (e.g. rules of the Facebook group,
objectives). Posts written using languages other than Sinhala or English.

Table 7: EmoMent Taxonomy and definitions

Label Train Validation Test
1 0 1 0 1 0

MI 14% 86% 11% 89% 15% 85%
SD 47% 53% 51% 49% 49% 51%
AS 74% 26% 75% 25% 73% 27%
SC 8% 92% 6% 94% 8% 92%
AG 8% 92% 6% 94% 7% 93%
PY 7% 93% 9% 91% 8% 92%

Table 8: Percentages of positive and negative instances associated with each label in training, validation and test
splits of EmoMentrelevant dataset.

Post Predicted Actual Misclassified

I am taking meditation classes for stress anxiety and depression... Timing is morning if

interested so reply

IV=0 IV=1 IV

Can someone tell me the best meditation for anxiety relief..It will be of great help IV=0 IV=1 IV

Anxiety is off the charts Everytime I doze off I am woken up my a feeling that I am falling and
I can’t breathe hate this feeling do now???

AS=1, PY=1 AS=1 PY

Just woke up with a bad dream.people are killing each other,there are hail storms, something
is coming from sky destroying the earth,my family is pushing me for marriage.Since then my
heart is racing

AS=1 PY=1 PY

Table 9: A sample of misclassified posts
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Abstract

Aspect-based sentiment analysis (ABSA) has
received increasing attention recently. ABSA
can be divided into multiple tasks according
to the different extracted elements. Existing
generative methods usually treat the output as
a whole string rather than the combination of
different elements and only focus on a single
task at once. This paper proposes a unified
generative multi-task framework that can solve
multiple ABSA tasks by controlling the type
of task prompts consisting of multiple element
prompts. Further, the proposed approach can
train on simple tasks and transfer to difficult
tasks by assembling task prompts, like assem-
bling Lego bricks. We conduct experiments on
six ABSA tasks across multiple benchmarks.
Our proposed multi-task approach achieves
new state-of-the-art results in almost all tasks
and competitive results in task transfer scenar-
ios.

1 Introduction

ABSA is a fine-grained sentiment analysis task
that has attracted increasing attention in recent
years(Schouten and Frasincar, 2016; Nazir et al.,
2020). ABSA aims to extract different elements in-
cluding: 1) the aspect term(a); 2) opinion term(o);
3) the aspect category(c) corresponding to the as-
pect term; 4) the sentiment polarity(s) for a specific
aspect term. For example, in the sentence “Pizza is
delicious”, “Pizza” is an aspect term belonging to
the food category, and the corresponding opinion
term is “delicious”, which expresses positive sen-
timent. As shown in Table 1, based on the combi-
nation of different elements to be extracted, ABSA
can be divided into multiple tasks.

This paper explores tasks containing two or more
elements. In general, most ABSA tasks are trans-
ferred to classification tasks. Previous works often

*These authors have equal contribution. Work done during
gaotianhao’s internship at JD, Retail, Beijing, China

†Corresponding authors.

designed a new architecture carefully and trained
with the corresponding dataset for a specific sub-
task. We review them as follows:

Pair Extraction The pair extraction task in-
cludes AOPE(Aspect-Opinion Pair Extraction),
ACSA(Aspect-Category Sentiment Analysis) and
E2E-ABSA(End-to-End Aspect-based Sentiment
Analysis) in our method. ACSA is usually treated
as a multi-task classification task (Hu et al., 2018;
Dai et al., 2020; Ma et al., 2018) Some works
convert the AOPE and E2E-ABSA tasks into se-
quence tagging problems(Wu et al., 2020b; Gao
et al., 2021; Chen et al., 2020; He et al., 2019),
specifically using the BIO tagging strategies (Wang
and Pan, 2018; Wu et al., 2020a; Li et al., 2019a,b)
The pair extraction is also named the basic task in
this paper.

Triplets Extraction The triples extraction tasks
contain ASTE(Aspect Sentiment Triplet Extrac-
tion) and TASD(Target Aspect Sentiment Detec-
tion) in our paper. Most previous works still treat
them as a sequence tagging task (Xu et al., 2020,
2021; Zhang et al., 2020; Wu et al., 2021) Some
works transfer them to Machine Reading Compre-
hension tasks(Mao et al., 2021; Chen et al., 2021).

Quadruple Extraction (Cai et al., 2021) firstly
introduced the quadruple extraction task, i.e.,
ASQP(Aspect Sentiment Quad Prediction), and
provide a multi-stage classification structure adopt-
ing from an aspect-opinion co-extraction sys-
tem(Wang et al., 2017).

Recently, large-scale generative language mod-
els have become increasingly powerful(Raffel et al.,
2020; Lewis et al., 2019; Radford et al., 2019),
and any ABSA task can be converted to a genera-
tive problem. Some generative frameworks(Zhang
et al., 2021b,a; Yan et al., 2021; Hosseini-Asl et al.,
2022) have been proposed and achieved state-of-
the-art results in the field of ABSA. The genera-
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Task Name Input Output
Aspect-Opinion Pair Extraction(AOPE)

Pizza is delicious

Pizza, delicious (a,o)
Aspect-Category Sentiment Analysis(ACSA) food, delicious (c,s)

End-to-End Aspect-based Sentiment Analysis (E2E-ABSA) Pizza, Positive (a,s)
Aspect Sentiment Triplet Extraction(ASTE) Pizza, delicious, positive (a,o,s)
Target Aspect Sentiment Detection(TASD) Pizza, food, positive(a,c,s)
Aspect Sentiment Quad Prediction(ASQP) Pizza, delicious, food, positive (a,o,c,s)

Table 1: target of different tasks

tive format includes but is not limited to Generat-
ing Structure-Linearized Texts, Labelaugmented
Text(Zhang et al., 2021b) Generating Word Indices
(Yan et al., 2021) Filling Templates (Zhang et al.,
2021a), as summarized by (Min et al., 2021).

However, all generative approaches mentioned
above suffer from 1) training and predicting a sin-
gle specific task at once; 2) treating output as a
whole text rather than a combination of individual
elements; 3) poor transferability from simple task
to difficult task. Below is a detailed description of
these three points.

For the first point, in mentioned generative ap-
proaches, the input and output formats do not sup-
port training on multiple ABSA tasks simultane-
ously, which we call multi-task training setting.

For the second point, in previous works, the
models cannot understand the meaning of each
element to be extracted because the input and out-
put are treated as simple strings, and the model
completes the task of predicting output through
auto-regression.

For the third point, previous methods cannot be
applied to task transfer scenarios. Compared to
the triplets like ASTE, pairs like AOPE and E2E-
ABSA are much easier in the annotation. However,
previous works cannot complete ASTE by training
only on AOPE and E2E-ABSA tasks even though
the ASTE task elements are the same as the union
of AOPE and E2E-ABSA task elements. We call
this task transfer scenario, and it is a special case
under a multi-task training setting. The proposed
method has a competitive performance in this set-
ting.

Inspired by above observations, we propose a
unified generative framework LEGO-ABSA that
can simultaneously solve multiple ABSA tasks and
transfer from simple to complex tasks. Specifi-
cally, we take T5 as our backbone network and
combine prompt learning with the practice of plac-
ing sentinel tokens of T5 pre-training. Unlike most
previous works that use a piece of simple text as a
prompt, e.g."ASQP" in (Zhang et al., 2021a), we

design an element prompt and establish the corre-
spondence between each element with the element
prompt. We make the framework treat prompt and
output text as a combination of independent ele-
ments by this design. We combine multiple ele-
ment prompts into task prompt. The task prompt
of a simple task can be regarded as basic bricks
which can be assembled to transfer to a complex
task, just like assembling Lego bricks. The out-
put sequence is formed as a concatenation of the
sentinel tokens and the real answer tokens, con-
sistent with T5. To verify the effectiveness of our
method, we conduct experiments on public datasets.
Comparison results show that our proposed frame-
work outperforms previous state-of-the-art (SOTA)
approaches in most tasks. Moreover, in the case
of missing part of the data annotation, it can also
achieve competitive performance.

In summary, our main contributions are as fol-
lows:

• We propose a prompt-based unified genera-
tive framework to solve all ABSA tasks. The
framework can be trained on multiple tasks
simultaneously, and it also performs competi-
tively in task transfer scenarios.

• To the best of our knowledge, we are the first
to explore solutions for task transfer scenarios.

• The experimental results show that Our
method significantly outperforms the SOTA
methods on E2E-ABSA, AOPE, ASTE, and
ACSA tasks.

2 Methodology

2.1 Task formulation
The proposed method will formulate any ABSA
task as a text generation task. Here we give formal
definitions of generative frameworks’ inputs and
output text.

The input x consists of two part, the raw text t
and a task prompt p: x = t+ | + ptask. t =
[t1, t2, ...tn] where ti is the ith token of t andn is
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the length of tokens. ptask = [p1, p2, ...pmtask]
where pi is the ith element prompt of ptask and
mtask is the number of element prompt in ptask,
which is used as a condition to generate different
output text for different task.

Output text otask = [o1, o2, ...om′ ], where
oi is the ith tokens pair of otask and m

′
is the

output length based on the current input x. The
subsequent subsection will describe construction
methods in detail.

2.2 Element Prompt Definition

2.2.1 Introduction of T5
T5 is an encoder-decoder model pre-trained on a
multi-task mixture of unsupervised and supervised
tasks converted into a text-to-text format.

In order to minimize the gap in pre-training and
fine-tune, we use the same training mode as the
T5 dose in pre-training. The goal of T5 is similar
to the cloze test. As shown in the Figure 1(a), the
input of T5 is a sentence with randomly masked
consecutive spans using sentinel tokens. During
unsupervised training, T5 aims to reconstruct the
continuous span masked by the sentinel token, i.e.,
<extra_id_i> in the Figure 1(a) incrementing one
by one starting from zero. Through this training
object, T5 can learn general language features.

2.2.2 Element Prompt
In order to make the framework fully understand
the meaning of each element in the output text,
instead of treating the output as a simple string,
we design an element prompt for each extracted
element.

We define the element prompt as "aspect: <ex-
tra_id_0>", which has two advantages. On the one
hand, the format is consistent with the T5 unsuper-
vised training object, which can help us make better
use of the information learned from pre-training.
On the other hand, by defining a prompt for a sin-
gle element, the output is no longer regarded as a
whole text string but as a combination of different
elements that offer more convenience.

The element prompts for the four elements in the
ABSA task are as follows. We use w, x, y, and z to
represent the id of the sentinel token.

• pa : "aspect : <extra_id_w>"
• pc : "category : <extra_id_x>"
• po : "opinion : <extra_id_y>"
• ps : "sentiment : <extra_id_z>"

2.3 Task Prompt of Single-task Training

From shallow to deep, we start with the single
ABSA task.

The element prompt is defined for each element
to be extracted, but in order to complete a specific
ABSA task, we need to concatenate different ele-
ment prompts to form the task prompt, i.e., ptask.
ptask is used as a condition so that the backbone
can distinguish between different tasks. According
to the kind of elements extracted and the order of
element extraction in each task, we concatenate all
element prompts by commas, e.g. pAOPE can be
pao or poa which means pa+,+po and po+,+pa.
Because the training for each task is independent, it
is trivial to maintain a unique mapping relationship
between sentinel token id and element. Here, sen-
tinel token id for each task increments from 0, as
shown in the Figure 1(b) with the sample of AOPE.
The rest of the task prompts also follow the same
method to define.

The arrangement order of the element prompt
matters since the generation model is generated in
an auto-regressive manner, and the elements gener-
ated first can provide more prior information for the
elements generated later. From our experimental
observations, the elements are arranged in priority
according to aspect term > opinion term = aspect
category > sentiment polarity

2.4 Task Prompt of Multi-task Training

An improvement of our framework is the ability
to organize multiple ABSA tasks into a multi-task
training task through task prompts.

As shown in Figure 1(c), under the multi-task
training setting, the task prompt is still constructed
by concatenating element prompt like the single
task. The difference is that the one-to-one corre-
spondence between elements and sentinel tokens is
shared between multiple sub-tasks, so we define a
global mapping relationship between the sentinel
token and the corresponding element. Following
the priority of elements mentioned above we as-
sign <extra_id_0> to aspect term , <extra_id_1> to
opinion term, <extra_id_2> to aspect category and
<extra_id_3> to sentiment polarity. After setting
each task prompt, we concatenate task prompts to
each original input of the corresponding task and
then mix the data of all tasks to do multi-task train-
ing.
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Thank you for inviting me to your party last week
Original text

Thank you <extra_id_0> me to your party <extra_id_1> week
Inputs

<extra_id_0> for inviting <extra_id_1> last <extra_id_2>
Outputs

(a) Unsupervised object of T5

Pizza is delicious| aspect : Pizza, opinion : delicious
Original text

Pizza is delicious| aspect : <extra_id_0> , opinion : <extra_id_1>
Inputs

<extra_id_0> Pizza <extra_id_1> delicious <extra_id_2>
Outputs

(b) Objectives of LEGO-ABSA on the AOPE task

(c) multi-task training setting example

Service is bad| aspect : <extra_id_1> , sentiment : <extra_id_2>
Input2

<extra_id_0> Pizza <extra_id_1> delicious <extra_id_2>
Output1

Pizza is delicious| opinion : <extra_id_0> , aspect : <extra_id_1>
Input1

<extra_id_1> Service <extra_id_2> bad <extra_id_3>
Output2

<extra_id_0> Pizza <extra_id_1> delicious
<extra_id_2> positive <extra_id_3>

Inference result

Pizza is delicious| opinion : <extra_id_0>, aspect :
<extra_id_1>, sentiment : <extra_id_2>

Input

(d) task transfer scenario example

Figure 1

2.4.1 Task Transfer Scenario
This section introduces how the proposed frame-
work works in a task transfer scenario.As shown
in Figure 1(d), we define the task that extracts two
elements and the combination relationship between
elements as basic task. As illustrated in Figure 2,
AOPE, E2E-ABSA, and ACSA are basic tasks to
accomplish more complicated tasks. Basic tasks
can be regarded as the bricks in LEGO.

We call the overlapping element of any two basic
tasks connection element which is like a connector
that connects two bricks. We define ASTE, TASD,
and ASQP as advanced task which aims to extract
three or more elements and the combination rela-
tionship between elements. The advanced task is
like a final product assembled from basic bricks
and connectors. The goal for task transfer sce-
nario is to resolve advanced tasks only given the
training data of basic tasks, and the process of us-
ing the basic tasks to construct the advanced tasks
is like building Lego.

To achieve this goal, we need to figure out two
questions: what basic tasks are required for a given
advanced task; how to assemble the basic tasks,
i.e., the way to construct an advanced task prompt
from basic task prompts. We will give a detailed
introduction in the following section for these two
questions.

Basic Task Confirmation In order to complete
the advanced task, we need to confirm the cor-
responding basic task. Because advanced tasks
consist of basic tasks connected by connection el-
ements, we need two basic tasks for extraction of
triplet, like ASTE and TASD. For ASQP extrac-
tion, we need all three basic tasks mentioned in this
paper. Then according to the elements contained in
the task, we can determine that the basic tasks of
ASTE(element set is {o, a, s}) are AOPE(element
set is {o, a}) and E2E-ABSA(element set is {a,
s}). The basic tasks of TASD(element set is
{a, c, s}) are E2E-ABSA(element set is {a, s})
and ACSA(element set is {c, s}). The basic
tasks of ASQP(element set is {a, o, c, s}) are
AOPE(element set is {o, a}), E2E-ABSA(element
set is {a, s}) and ACSA(element set is {c, s}).

Task Prompt Assemble After confirming the
basic task, we will illustrate the method of task
prompt assemble, and the arrangement order of el-
ements is essential here. We denote the advanced
task as A and its basic tasks set as B.

We initialize pA = “”, then take any element
that is not a connection element as the start element
and let pA = pA + “, ” + pstart. Next, we select a
task B containing start element from B and use an-
other element in B as the next element, then delete
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B from B. Afterward, we use the next element as
the start element and repeat the above process until
all elements of A have been traversed once.

For example, as shown in Figure 2,
given ASQP as advanced task, we can get
B={{a, s}, {a, o}, {c, s}}, and the connection
elements are {a, s}. First, we choose element o as
the beginning element and the corresponding task
B is {a, o}. Then, we concatenate po with pA and
let another element a be the new begin element
and delete {a, o} from B. Next, the corresponding
task B is {a, s} based on element a. Afterward,
we repeat the process until all elements of ASQP
have been traversed once. Through the above
process, the result is shown in Figure 2, pA =
po + “, ” + pa + “, ” + ps + “, ” + pc.

O A A S S C

assemble assemble

O A S C

task prompt of ASQP
opinion:<W>,aspect:<X>, sentiment :<Y>,category:<Z>

AOPE E2E-ABSA ACSA

Figure 2: Illustration of task prompt assemble

We can get the task prompt after assembly and
determine the order of element prompts through
the above process. Besides, we also need to main-
tain the global mapping relationship between the
sentinel token and element. As shown in Table 2,
we design a set of task prompts that are unique
in global mapping and conform to assemble rules.
Moreover, the priority order of elements of the task
prompt in Table 2 is preserved as much as possible.

2.5 Output Sequence Definition
As shown in Figure 1(b), the definition form of
the otask is consistent with the T5 unsupervised
training output form. Whether it is a multi-task
training or task transfer setting, the output sequence
is formed as a concatenation of the sentinel tokens
and the corresponding gold label. For sentences
with multiple sets of extracted elements, we use “;”
to separate sets.

3 Experiment

3.1 Datasets
We evaluate the proposed LEGO-ABSA on bench-
mark SemEval14-16 initially provided by the Se-
mEval shared challenges (Pontiki et al., 2014, 2015,

2016). For each ABSA task, we use the pub-
lic datasets derived from SemEval14-16 with ad-
ditional sentiment annotations. Specifically, we
adopt the dataset AOPE, ASTE, and E2E-ABSA
provided by (Peng et al., 2020), ACSA provided by
(Pontiki et al., 2015, 2016; Liu et al., 2021) TASD
provided by (Wan et al., 2020) , ASQP provided
by (Zhang et al., 2021a). For a fair comparison, we
use the same data split as previous works.

3.2 Baselines

For E2E-ABSA, AOPE, and ASTE tasks, we adopt
two types of baselines: 1) extraction based meth-
ods, including Li-unified(Li et al., 2019a), Peng-
two-stage(Peng et al., 2020) and Bi-MRC(Chen
et al., 2021) JET-BERT(Xu et al., 2020), Dual-
MRC(Mao et al., 2021); 2) generation based meth-
ods, including GAS(Zhang et al., 2021b) and Yan-
unified(Yan et al., 2021)

For the ACSA task, we adopt five baselines
derived from (Cai et al., 2020). For TASD and
ASQP tasks, we utilize two types of baselines 1)
Extraction-based methods, including TAS-LPM-
CRF and TAS-SW-TO from (Wan et al., 2020)
and TASO-BERT-CRF (Zhang et al., 2021a); 2)
Generation-based methods including GAS(Zhang
et al., 2021b) and PARAPHRASE(Zhang et al.,
2021a).

3.3 Implementation Details

Evaluation Metrics F1 score is the evaluation met-
ric for all tasks. A prediction is correct if all its
predicted sentiment elements in the pair, triplet, or
quadruple are correct.
Experiment Details We adopt the pre-trained T5-
base model released by huggingface*. We set the
learning rate to 3e-4 as suggested by huggingface.
In single task and multi-task training settings, the
model is trained up to 20 epochs for the AOPE,
E2E-ABSA, ACSA, and ASTE tasks and 30 epochs
for the TASD and ASQP tasks. We train two multi-
task models according to whether the aspect cate-
gory element is included. The first is trained with
AOPE, E2E-ABSA, and ASTE tasks, while the
second model is trained with ACSA, TASD, and
ASQP. For the in-domain task transfer setting, we
train one epoch on basic tasks and 2 epochs on
basic tasks with a learning rate of 3e-4. For the
cross-domain setting, we train five epochs on basic
tasks with a learning rate equal to 3e-4.

*https://huggingface.co/t5-base
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Task name Task prompt
AOPE opinion:<extra_id_0>, aspect:<extra_id_1>

E2E-ABSA aspect:<extra_id_1>, sentiment:<extra_id_2>
ACSA sentiment:<extra_id_2>, category:<extra_id_3>
ASTE opinion:<extra_id_0>, aspect:<extra_id_1>, sentiment:<extra_id_2>
TASD aspect:<extra_id_1>, sentiment:<extra_id_2>, category:<extra_id_3>
ASQP opinion:<extra_id_0>, aspect:<extra_id_1>, sentiment:<extra_id_2>, category:<extra_id_3>

Table 2: Task prompts in task transfer scenarios

3.4 Main Results

The main results show in Table 3 and 4. All re-
sults are the average F1 scores across 3 runs with
different random seeds.

Notably, our proposed method with a single task
outperforms the state-of-the-art on AOPE, E2E-
ABSA, ASTE, and ACSA tasks by 1.9, 2.4, 1.7,
and 3.1 average F1 scores, respectively. Besides,
competitive results are also shown on TASD and
ASQP.

Our method with a multi-task training setting
achieved more competitive performance than sep-
arate training for each task, even though we only
used one T5-base as the backbone. We get 2.5,
3.3, 2.5, and 1.6 average higher F1 scores than
the state-of-the-art methods on AOPE, E2E-ABSA,
ASTE, and ACSA tasks. For AOPE, E2E-ABSA,
and ASTE tasks. Our model is trained on four
datasets on each task and only uses one backbone,
which is equivalent to reducing the backbone size to
1/12 compared with the previous method with one
model per task, while the average F1 is 2.8 points
higher. The result shows that multi-task training
can significantly improve performance. Since the
multi-task training is modeled under a unified gen-
erative framework, the construction of input and
output follows the same principle so that the infor-
mation between different tasks can be utilized and
mutually enhanced.

Regarding why TASD and ASQP do not perform
as outstanding as the rest of the tasks, we speculate
that it may be because TASD and ASQP both need
to extract aspect category and sentiment polarity.
These two elements are generated by reasoning and
have not appeared in the original text. The unsuper-
vised pre-training object of T5 can only guarantee
to generate text spans that have appeared in the
original text. The working principle of sentiment
and category extraction is similar to using a gen-
erative model to do classification tasks, which is
different from the unsupervisied training object of
T5. The gap between tasks is the leading cause of
performance degradation.

3.5 Task Transfer Results

This section verifies our proposed framework’s in-
domain and cross-domain performance under the
task transfer scenario.

3.5.1 In-domain
In the in-domain setting, we complete a advanced
task by training on the necessary basic tasks of the
same training corpus at a time. The result of the in-
domain task transfer is shown in Table 5. We were
surprised to find that the inference performance
on advanced tasks is very competitive by training
on basic tasks. Even the result on the ASTE task
surpasses some purely supervised baselines.

3.5.2 Cross-domain
In some real situations, AOPE and E2E-ABSA an-
notations may not be on the same corpus, or we
cannot combine them into a complete ASTE an-
notation. Therefore, task transfer performance of
cross-domain is very important.

For TASD and ASQP tasks, since the cross-
domain aspect categories are not the same, the
model cannot transfer across domains on tasks that
include aspect categories. Therefore, we conduct
experiments on ASTE in this section under the
cross-domain setting.

The cross-domain result shows in Table 6. The
proposed method outperforms some purely super-
vised methods on average, and no noticeable per-
formance drop compared to the in-domain setting.
Compared with rule-based methods, task prompt
assembly can achieve a large performance improve-
ment. The possible reason is that, in the rule-
based approach, the error of each model caused
by domain transfer propagates. However, the task
prompt assembly is more similar to a joint method.
Therefore, the performance promotion is obvious.

4 Analysis

This section explores the principle of T5 assembly
basic task corresponding to task prompt under task
transfer training setting.
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Model
AOPE E2E-ABSA ASTE

L14 R14 R15 R16 L14 R14 R15 R16 L14 R14 R15 R16
Li-unified(Li et al., 2019a) 52.6 55.3 56.9 53.8 63.4 73.8 65.0 70.2 42.5 51.7 46.7 44.5

Peng-two-stage(Peng et al., 2020) 53.9 56.1 56.2 60.0 62.3 74.2 65.8 71.7 43.5 51.9 46.8 53.6
JET-BERT(Xu et al., 2020) - - - - - - - - 50.0 63.9 54.7 62.9
Bi-MRC(Chen et al., 2021) 67.4 76.2 68.6 76.5 67.2 76.3 67.1 73.1 59.2 70.6 61.0 68.1

Dual-MRC(Mao et al., 2021) 63.3 74.9 64.9 75.7 64.5 76.5 65.1 70.8 55.5 70.3 57.2 67.4
GAS(Zhang et al., 2021b) 63.8 73.2 65.0 75.0 65.3 78.5 69.4 72.7 54.5 70.2 59.1 65.0

Yan-unified(Yan et al., 2021) 66.1 77.7 68.0 77.4 68.2 78.5 70.0 75.7 57.6 72.5 60.1 70.0
LEGO-ABSA(multi-task) 71.3 78.0 72.9 77.1 72.3 80.6 74.2 76.1 62.2 73.7 64.4 69.9
LEGO-ABSA(separate) 69.7 78.1 71.4 77.6 69.1 80.0 74.3 78.6 59.5 72.6 63.2 71.5

Table 3: Main result on AOPE, E2E-ABSA, and ASTE tasks. LEGO-ABSA(multi-task) means mixing the training
dataset of three tasks and shuffling the order. LEGO-ABSA(separate) means that a task is trained with only one
dataset, like other baselines. Since the original paper of GAS is not implemented on Peng’s dataset, we reproduce
the results ourselves using the same experiment config. We highlight the best results and results with F1 gaps within
0.2

Model
ACSA Model TASD ASQP

L15 L16 R15 R16 R15 R16 R15 R16
Cartesian-BERT 32.8 39.5 58.4 68.9 TAS-SW-TO(Wan et al., 2020) 58.1 65.4 - -

AddOneDim-BERT 48.9 47.2 61.7 69.8 TAS-LPM-CRF(Wan et al., 2020) 54.7 64.6 - -
Hier-BERT 50.6 49.2 62.4 70.3 TASO-BERT-CRF(Zhang et al., 2021a) - - 34.8 43.7

Hier-Transformer-BERT 57.8 52.7 64.7 73.5 GAS(Zhang et al., 2021b) 60.6 68.3 46.0 56.0
Hier-GCN-BERT 62.13 54.2 64.2 74.6 PARAPHRASE(Zhang et al., 2021a) 63.1 72.0 46.9 57.9

LEGO-ABSA(multi-task) 65.0 53.6 67.3 75.6 LEGO-ABSA(multi-task) 62.3 71.8 46.1 57.6
LEGO-ABSA(separate) 64.2 55.9 71.0 76.2 LEGO-ABSA(separate) 61.7 68.8 45.8 57.7

Table 4: Main results on ACSA, TASD, and ASQP tasks. LEGO-ABSA(multi-task) means mixing individual
training dataset and shuffling the order. We highlight the best results and results with F1 gaps within 0.2 in bold.

Task L14 R14 R15 R16
ASTE 49.2 60.9 51.4 50.0
TASD - - 30.9 30.6
ASQP - - 25.8 24.5

Table 5: In-domain task transfer performance. In this
situation, basic tasks and advanced task are on the same
domain and corpus.

method Lap→ Rest Rest→ Lap
GAS-rule 32.4 33.7

LEGO-ABSA 53.9 44.7

Table 6: Cross-domain task transfer performance on
ASTE task. We use dataset from Peng(Peng et al., 2020).
Where rule method means that we get results by com-
bining (a, s) and (a, o) with same a.

4.1 Factor Analysis of Transferability

We try to 1) increase the sentinel token id from 0
in each basic task, which means no global map-
ping between sentinel token and element. 2) give a
global sentinel token id for each element but ran-
domly arrange elements’ order in the basic task.
3) employ the global mapping and right order of

GM TTO TST task transfer ability
✕ ✕ ✓ ✕
✓ ✕ ✓ ✕
✓ ✓ ✕ ✕
✓ ✓ ✓ ✓

Table 7: Factor analysis for task transferability, where
GM is global mapping between sentinel token and el-
ement, TTO is task transfer order that follows rule of
Task Prompt Assemble 2.4.1, and TST is use original
T5 sentinel token instead of custom token.

element prompts, but replace <extra_id_x> (the
sentinel token used in T5 pre-training) with a cus-
tom new token. As shown in Table 7, only when all
three conditions are met can the backbone obtain
the task transferability.

Using the T5 Sentinel Token shows that down-
stream tasks can indeed reuse the unsupervised out-
put of T5 pre-training. The custom token cannot
have the function of masking a consecutive span be-
cause it has not been pre-trained. The global map-
ping between sentinel token and element shows
that each sentinel token has a specific meaning af-
ter downstream task training. More importantly,
the experiment result shows that a specific element
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task prompt Prediction
aspect: <extra_id_0> tech support

opinion: <extra_id_1> not fix
sentiment: <extra_id_2> negative

aspect: <extra_id_0>, opinion: <extra_id_1> tech support, not fix
aspect: <extra_id_0>, sentiment: <extra_id_2> tech support, negative

opinion: <extra_id_1>, sentiment: <extra_id_2> not fix, negative

Table 8: Lego split case for text "tech support would not fix the problem unless I bought your plan for $ 150 plus ."

(a) Decoder attention with AS type atten-
tion head

(b) Decoder attention with OA type atten-
tion head

Figure 3: attention visualization

prompt arrangement must be used to achieve task
transfer and indirectly show that what the backbone
learns is how to mix two or more task prompts.

Decoder Attention Visualization

We conjecture that LEGo-ABSA uses the ending
element prompt of the previous task as the begin-
ning element prompt of the next task. To verify
this, we visualized two attention heads from the
T5’s multiple attention heads in Figure 3. In this
example, AOPE and E2E-ABSA are used as basic
tasks, and ASTE is used as advanced task. Through
the analysis of decoder-attention visualization, we
have following findings.

Some attention heads learn associations between
a and s. As shown in Figure 3(a), <extra_id_1>
nearly never attend to opinion term(good) and
<extra_id_0>, and <extra_id_2> attend to <ex-
tra_id_1> heavily where the association of aspect
and sentiment is established. Such attention head
models the relation between a and s.

Some other attention heads learn associations
between element o and a. As shown in Figure
3(b), the attention weight between <extra_id_1>
and <extra_id_0> is high, which means that the
information of the opinion is used when the aspect
is generated via the <extra_id_1>. Such attention
head models the attention relationship between o
and a.

In a word, combining information from multi-
ple attention heads with different functions, our
framework can model advanced tasks through ba-
sic tasks.

LEGO split

This section introduces how to make the framework
trained on advanced tasks capable of extracting any
custom elements by changing the task prompt like
an assembled Lego can be divided into parts of
different sizes.

We explored the ASTE task as the target advance
task and traverse the full permutation of the three
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element prompts of a, o, and s. For each permu-
tation of element prompts, we generate a dataset
with specific task prompt that assembled by ele-
ment prompts. Finally we mix and shuffle all the
datasets and train the framework with the setting
of multitask training.

As shown in Table 8, we can arbitrarily extract
any single element and any combination of ele-
ments by changing the task prompt. The framework
can perfectly control the output content through the
task prompt. This result shows that the approach
proposed in this paper can make T5 regard the
task prompt as a combination of multiple element
prompts, rather than a simple string.

5 Conclusion

In this paper, we propose a prompt-based genera-
tive framework LEGO-ABSA for ABSA tasks that
use T5 as the backbone, which can make full use
of the information learned from the T5 unsuper-
vised training object through the formulation of
task prompts we proposed.

LEGO-ABSA does not regard the prompt and
the output text as a simple string but a combination
of multiple elements to be extracted. It is mainly
used in multi-task training and task transfer sce-
narios. Extensive experiments on six ABSA tasks
verify the effectiveness of our framework and its
excellent transferability in task transfer scenarios.
There is still space for improvement in our frame-
work, such as completing the combination extrac-
tion of multiple elements task through the learning
of single element tasks.
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Abstract
Recently, some span-based methods have
achieved encouraging performances for joint
aspect-sentiment analysis, which first extract
aspects (aspect extraction) by detecting aspect
boundaries and then classify the span-level sen-
timents (sentiment classification). However,
most existing approaches either sequentially
extract task-specific features, leading to insuf-
ficient feature interactions, or they encode as-
pect features and sentiment features in a par-
allel manner, implying that feature represen-
tation in each task is largely independent of
each other except for input sharing. Both of
them ignore the internal correlations between
the aspect extraction and sentiment classifica-
tion. To solve this problem, we novelly propose
a hierarchical interactive network (HI-ASA)
to model two-way interactions between two
tasks appropriately, where the hierarchical in-
teractions involve two steps: shallow-level in-
teraction and deep-level interaction. First, we
utilize cross-stitch mechanism to combine the
different task-specific features selectively as
the input to ensure proper two-way interactions.
Second, the mutual information technique is
applied to mutually constrain learning between
two tasks in the output layer, thus the aspect
input and the sentiment input are capable of
encoding features of the other task via back-
propagation. Extensive experiments on three
real-world datasets demonstrate HI-ASA’s su-
periority over baselines1.

1 Introduction

Aspect-sentiment analysis (ASA) (Yan et al., 2021;
Birjali et al., 2021) aims at extracting all the as-
pects and their corresponding sentiments within
the text simultaneously. And it can be divided into
two tasks, i.e., aspect extraction (AE) and senti-
ment classification (SC). AE is to extract the as-
pects (Jakob and Gurevych, 2010; Poria et al., 2016;

∗Corresponding authors.
1The source codes are released in https://github.

com/cwei01/HI-ASA.

Karimi et al., 2021) in the sentence, and SC aims
to predict the sentiments (Jiang et al., 2011; Lin
et al., 2019; Karimi et al., 2021) for the extracted
aspects.

In recent years, the span-based models (Hu et al.,
2019; Zhou et al., 2019; Lin and Yang, 2020; Lv
et al., 2021) are increasingly becoming an alterna-
tive for ASA because of their inherent advantages
(e.g., they can avoid sentiment inconsistency and
huge search space problems in tagging-based mod-
els (Luo et al., 2019; Wang et al., 2021)), where
the aspects are extracted by directly predicting the
boundary distributions, and the sentiment polarities
are classified based on the aspect-level words. For
example, in the sentence “The screen size is satis-
factory but the phone battery capacity is limited.",
the aspect spans are “screen size” and “the phone
battery”, and span-level sentiments are positive and
negative, respectively. Formally, most of the exist-
ing methods can be divided into two types: sequen-
tial encoding (Jebbara and Cimiano, 2016; Zhou
et al., 2019) and parallel encoding (Hu et al., 2019;
Lv et al., 2021) due to different ways in encoding
task-specific features. In sequential encoding, the
task-specific features are extracted sequentially, i.e.,
features extracted later have no direct associations
with previous ones, which is a unidirectional inter-
action strategy. In parallel encoding, task-specific
features are extracted independently except for us-
ing shared input, i.e., the interaction is only present
in input sharing. Hence, both encoding methods
above fail to model two-way interactions between
AE and SC appropriately.

In practice, the learning of the AE and SC may
mutually influence each other. On the one hand,
sentiment words can be understood better if given
the desired aspects. For example, in the two sen-
tences: “The battery has a large capacity.” and
“The computer case is too large to carry.”, we can
find that the sentiment word “large” expresses posi-
tive sentiment when describing the aspect “hard
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drive” while negative sentiment towards “com-
puter”. This actually shows that incorporating the
aspect features is conducive to SC. On the other
hand, since sentimental expressions are usually
close to aspects, the potential sentiment features
may provide useful signals for AE. For example, if
we observe the word “spicy” appears in a restau-
rant review, it is likely to exist an aspect related
to food. Thus, incorporating the sentiment fea-
ture also facilitates aspect detection. These two
examples illustrate that it is essential to reasonably
establish the two-way associations between two
tasks.

Inspired by the above analysis, in this work, we
propose a novel Hierarchical Interactive model for
joint span-based Aspect-Sentiment Analysis (HI-
ASA). Specifically, the hierarchical interactions are
achieved in two steps: shallow-level interaction and
deep-level interaction. The former learns semantic-
level interactive features to facilitate information
sharing between two tasks in encoding layer. And
the latter takes advantage of the technique of mu-
tual information maximization to ensure two-way
interaction between the two tasks. Extensive exper-
imental comparisons against state-of-the-art solu-
tions demonstrate the effectiveness of our proposed
methods.

2 Model

In this section, we formally define the prob-
lem of joint span-based aspect-sentiment analysis.
Giving a training set {(xi, {(sji , e

j
i , p

j
i )}lij=1)}Ni=1,

in each sample (xi, {(sji , e
j
i , p

j
i )}lij=1), xi =

{xi,1, xi,2, . . . , xi,ni} is a ni-length sentence, and
(sji , e

j
i , p

j
i ) identifies an aspect with sji and eji as

the start and end boundaries, and pji as sentiment
polarity. li is the number of aspects in the sentence.

The overall architecture is illustrated in Figure 1,
which mainly consists of two parts: AE and SC.
We model the hierarchical interactions between two
tasks appropriately to enhance the correlations. For
the input section, firstly, we leverage BERT (Devlin
et al., 2018) to extract the semantic information for
input sentence. The output through the transformer
layers isB = {b1, b2, . . . , bn} ∈ Rn×d, where d is
the BERT’s embedding size, n is the length of sen-
tence. Then, we stack GRUs uponB for different
tasks, here, we define the outputs of AE and SC as
H0
a ∈ Rn×d̂ andH0

s ∈ Rn×d̂, respectively, where
d̂ is the dimension size of GRU.

2.1 Shallow-Level Interaction

In previous models (Hu et al., 2019; Lin and Yang,
2020; Lv et al., 2021), the feature representations
are extracted independently except for using shared
input. In other words, two tasks have no associa-
tions with each other, which is not in line with
human ituition. Intuitively, the features of SC are
not only derived from its own features of previous
layers, but also come from the features of AE, and
vice versa. Therefore, we design a shallow-level
interaction strategy inspired by the idea of cross-
stitch mechanism (Misra et al., 2016). Its core is
to selectively combine the different features to rea-
sonably model two-way interactions. Specifically,
the calculation is as follows:

[
H1
a

Ha
s

]
=

[
γaa αsa

αas γss

] [
H0
a

H0
s

]
(1)

where γaa, γss are the task-specific parameters,
and αsa, αas are task-sharing parameters. H1

a and
H1
s are the output features of AE and SC in the last

encoding layer, respectively. We can observe that
the cross-stitch unit is beneficial for the interaction
between AE and SC features. To speed up the train-
ing process, we define the following constraints,
(1): γaa = γss , αsa = αas (2): γaa + αsa = 1.
Thus, the Eq.1 is simplified to:

H1
a = α ·H0

s + (1− α) ·H0
a

H0
s = α ·H0

a + (1− α) ·H0
s

(2)

where α controls information transferred from the
other task.

2.2 Deep-Level Interaction

In the last section, we model the two-way inter-
actions from the encoding layer. Although some
semantic-level associations can be captured, we
believe that task-level associations cannot be ad-
equately modeled. To better understand our pro-
posed method, we give an intuitive explanation
in Figure 2. We observe the span-based aspect
extracion models put higher scores on the entity
words (e.g., “Windows” ,“7” ). But with aspect-
level sentiment learning, higher attention weights
are not only put on some polarity words (e.g.,
“love”), but also on the entity words. There-
fore, it would be interesting if we perform aspect-
sentiment mutual learning on both tasks. Thus, we
propose the deep-level interactive strategy based
on mutual information maximization (Kong et al.,
2019), where the task-level information is shared
by the two tasks in the output layer. We will explain
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Figure 1: The architecture of our HI-ASA.
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Aspect	Scores:

Attention	Scores:

Mutual
Learning

Figure 2: The example of our mutual information maxi-
mization strategy in sentence “I love Windows 7.”.

in detail how to obtain the aspect scores (i.e., the
more a word acts like an aspect word, the higher
its score) and attention scores for these two tasks.

Aspect Extraction (E). We extract the as-
pects by predicting the boundaries, i.e., start po-
sition and end position. Specifically, we employ
a linear classifier to predict the start scores gs =
sigmoid(VsH

1
a), i.e., Vs is a trainable vector, and

end scores ge can be derived in a similar manner.
During training phase, we define the learning ob-
ject: Jae=−

∑n
i=1 p

i
s log (g

i
s)−

∑n
i=1 p

i
e log (g

i
e),

where pis and pie are the ground truths of the bound-
aries. gis and gie are the predicted distributions.

For the aspect score E , we cannot use the bound-
ary distributions of aspect (i.e., gs and ge) directly
due to their different meanings. In fact, the span of
aspect is relatively short, we can use the average
boundary distributions to approximate the aspect
scores, so we have: E = pooling(gs)+pooling(ge)

2 ,
where pooling(·) is the mean-pooling function, in
our work, our set window size as 1× 3. Therefore,
suppose the start score gs is [0.2,0.3,0.7,0.9,0.1],
the first item of pooling (gs) is 0+0.2+0.3

3 = 0.17,
and the pooling (gs) is [0.17,0.4,0.63,0.57,0.33],
such strategy can guarantee that the aspect distri-
bution approximates the boundary distributions as
much as possible.

Sentiment Classification (A). In aspect-level

sentiment classification, the attention weights of
words produced during the training towards the
specific aspects could reveal word-polarity infor-
mation. Thus, we can leverage the attention dis-
tribution as the sentiment features to help detect
the boundaries of aspects. To this end, we choose
the over-and-over attention model (Huang et al.,
2018) to implement the sentiment classification.
Here, we directly define the attention distribution
as A, (i.e., A is attention scores in Figure 2). Dur-
ing training phase, the optimization goal for SC
is: Jsc = −

∑N
i=1 y

T
i log ŷi, where ŷi is the pre-

dicted sentiment distribution, and yTi is the corre-
sponding ground truth,N is the number of samples.

Mutual Information Maximization. After get-
ting the aspect distribution E and sentiment atten-
tion distribution A. As discussed above, it should
be interesting if we perform aspect-sentiment mu-
tual learning on both tasks. In Figure 2, we can find
that the aspect scores and attention weights are both
improved after applying the mutual learning tech-
nique. We need to maximize the similarity between
two distributions during the training. An intuitive
idea is to use Kullback Leibler (KL) divergence to
measure the distance between distributions, consid-
ering the correlations are bidirectional, we define
the following similarity measurement metrics using
Jenson Shannon (JS) divergence:

JS(E‖A) = 1

2
KL

(
E‖E +A

2

)
+

1

2
KL

(
A‖E +A

2

)

(3)

where the JS divergence is symmetric, thus we can
leverage it to constrain two tasks to learn from each
other, resulting in balanced interaction between AE
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Dataset #Sentences #Aspects #+ #- #0
Restaurant 3900 6603 4134 1538 931

Laptop 1869 2936 1326 900 620
Tweets 2350 3243 703 274 2266

Table 1: Statistics of the datasets. “+/-/0” refer to the
positive, negative, and neutral sentiment classes.

Span-based Models Laptop Res Tweets
Zhou (Zhou et al., 2019) 59.76 71.98 51.44

Hu-pipeline (Hu et al., 2019) 68.06 74.92 57.69
Hu-joint (Hu et al., 2019) 64.59 72.47 54.55

Hu-collapsed(Hu et al., 2019) 48.66 57.85 48.11
SPRM (Lin and Yang, 2020) 68.72 79.17 59.45

S-AESC (Lv et al., 2021) 65.88 74.18 54.73
HI-ASA 70.39 79.90 60.36

- w/o SI 68.05 79.10 60.04
- w/o DI 67.45 79.50 60.13

Table 2: The performance (F1-score) comparisons with
different methods. Baseline results are retrieved from
published papers.

and SC. Whereas in sequential and parallel encod-
ing, sentiment features have no direct impact on the
information of aspect features. Finally, considering
the mutual information maximization between two
tasks, HI-ASA is optimaled by combining three
sections:

argmin
θ

(Jae + Jsc + β · JS(E‖A)) (4)

where θ is the set of model’s parameters, Jae and
Jsc are the optimization goals of AE and SC re-
spectively. β is a balanced parameter. During the
test phase, HI-ASA outputs two parts, one is the
scores of boundaries, based on which we leverage
the heuristic algorithm (Lin and Yang, 2020) to ex-
tract all the aspects; the other one is corresponding
sentiment polarities of extracted aspects.

3 Experiments

3.1 Datasets and Settings

Datasets. In our experiments, we use three public
datasets, including Laptop (Pontiki et al., 2014),
Restaurant (Pontiki et al., 2014, 2015, 2016) and
Tweets (Mitchell et al., 2013), which have been
widely used in previous works (Lv et al., 2021).
The statistic details of experimental dataset are
refer to Table 1. For each sentence in datasets,
the gold span boundaries and sentiment polarity
labels are available. Specifically, Restaurant is
the union set of the restaurant domain from Se-
mEval2014, SemEval2015 and SemEval2016. Lap-
top contains costumer reviews in the electronic
product domain, which is collected from SemEval

Challenge. Tweets is composed of twitter posts
from different users.

Settings. In the experiments, the commonly
used metric F1-score (F1) is selected to evaluate
for aspect-sentiment analysis, accuracy is applied
to sentiment classification. A correct predicted
aspect only when it matches the gold aspect and
the corresponding polarity. We utilize the BERT-
Large model as the backbone network,where the
number of transformers is 24 and the hidden size
is 784. In addition, we use Adam optimizer with a
learning rate of 3e-5, the batch size is 32 and the
dropout probability of 0.1 is used.

3.2 Main Results
The comparisons between HI-ASA and the base-
lines are presented in Table 2. Specifically, “- w/o
SI” means we remove the shallow-interaction layer,
“- w/o DI” denotes removing the deep-interaction
layer. We can observe: (1) Overall, our proposed
HI-ASA consistently achieves the best F1 scores
across all the baselines. More specifically, com-
pared to the state-of-the-art approach SPRM, HI-
ASA improves the performance by about 1.67%,
0.63%, and 0.91% on three datasets, respectively.
These observations indicate the carefully designed
HI-ASA is capable of achieving better perfor-
mances. The reason can be concluded two folds:
one is that we selectively combine the task-specific
features of each task to reasonably model two-way
interactions in the encoding layer; the second ben-
efit is that we model a balanced task-level inter-
actions. Under this framework, aspect and senti-
ment associations are captured appropriately in a
hierarical manner. (2) Besides, we investigate the
effectiveness of each single module, i.e., “- w/o SI”
and “- w/o DI”. We can see that when a certain
module is removed, the performance of our model
decreases, which indicates the indispensability of
each module.

3.3 Ablation Study
In this section, we go deeper into HI-ASA and anal-
yse the results on both tasks. The results are shown
in Table 3. Generally, we observe that HI-ASA
outperforms baseline competitors on both tasks,
which indicates the effectiveness of the two-way
interaction on both aspect extraction and sentiment
classification. For the AE task, HI-ASA can en-
hance the performance of most of the baselines.
On the SC task, HI-ASA outperforms SPRM by
3.98%, 2.83%, and 5.16% on three datasets, respec-
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Aspect Extraction Laptop Res Tweets
Hu (Hu et al., 2019) 83.35 82.38 75.28

SPRM (Lin and Yang, 2020) 84.72 86.71 69.85
S-AESC (Lv et al., 2021) 85.19 84.20 76.04

HI-ASA 86.30 86.93 76.36
- w/o SI 84.50 87.33 75.81
- w/o DI 85.10 87.09 75.99

Sentiment Classifiction Laptop Res Tweets
Hu (Hu et al., 2019) 81.39 89.95 75.16

SPRM (Lin and Yang, 2020) 81.50 90.35 78.34
HI-ASA 85.02 93.18 83.50

- w/o SI 84.07 92.53 82.90
- w/o DI 83.75 92.62 83.49

Table 3: The top part is the performance (F1-score)
comparisons with different methods on aspect extrac-
tion. And the bottom part is the performance (Accuracy)
comparisons with different methods on sentiment clas-
sifiction.

Dataset/α 0 0.1 0.2 0.3 0.4 0.5
Laptop 68.05 70.39 67.62 68.63 68.58 70.36

Restaurant 79.14 78.93 79.73 79.45 79.90 78.48
Tweets 60.04 60.36 59.70 59.89 58.79 58.19

Table 4: The performance (F1-score) of different shar-
ing ratios (α) on three datasets.

tively, which implies that it is more able to boost
the performance of SC compared to AE.

3.4 Parameter Analysis α
In HI-ASA, the parameter α controls informa-
tion transfer between two tasks. For a special
case, if α = 0, our approach will degenerate to
the parallel encoding. We tune α in the range
of [0.0,0.1,0.2,0.3,0.4,0.5] and the results are pre-
sented in Table 4. It is worth noting that we set the
value of α below 0.5. This setting is inspired by the
ituition that the features for each task should come
more from the task itself, rather than the other task.
We can notice the best results are achieved when α
is 0.1, 0.4, and 0.1 on three datasets, respectively,
rather than 0.0. This actually shows our interaction
is successful.

Furthermore, we find an interesting phenomenon
is that α is small (i.e., 0.1) on Laptop and Tweets,
and large on Restaurant when performing the best
performance. We conjecture the reason lies in that
Restaurant has more samples than the other two
datasets, requiring more knowledge interactions for
a better learning process.

4 Related Work

Aspect-sentiment Analysis (ASA) (Yan et al., 2021;
Birjali et al., 2021) is an essential task in senti-
ment analysis and can be separated into two tasks,

i.e., aspect extraction (AE) and sentiment clas-
sification (SC). Over the past years, some span-
based methods have achieved promising results
for ASA, which first extract aspects by detecting
aspect boundaries (AE) and then predict the span-
level sentiments (SC). AE has been widely studied
by traditional machine (Jakob and Gurevych, 2010)
and deep learning algorithms (Karimi et al., 2021).
However, the absence of sentiment information
may result in redundant and noisy detection. SC
is to predict the sentiment expressed on some spe-
cific aspects in a sentence, which has been studied
extensively in NLP community (Tang et al., 2015;
Chen et al., 2019, 2020; Karimi et al., 2021). How-
ever, these aspects must be annotated before the
AE task. (Hu et al., 2019) proposed an extract-
then-classify framework, which extracted aspects
with a heuristic decoding algorithm and then cor-
respondingly classified the span-level sentiments.
(Lin and Yang, 2020) designed share-private rep-
resentation for each task to capture the correla-
tions between two tasks in encoding layer. Besides,
(Zhou et al., 2019) introduced a joint model based
on span-aware attention mechanism to predict the
sentiment polarity. Although achieved improved
performances, these works fail to model two-way
interactions between AE and SC appropriately.

5 Conclusion

In this paper, we proposed a novel aspect-sentiment
analysis model named HI-ASA. The proposed
model is equipped with a hierarchical interactive
network to facilitate information sharing between
the aspect extraction task and the sentiment clas-
sification task. The experimental results on three
benchmark datasets demonstrated HI-ASA’s effec-
tiveness and generality.
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Abstract

As an emerging research topic in natural lan-
guage processing community, emotion recog-
nition in multi-party conversations has attained
increasing interest. Previous approaches that
focus either on dyadic or multi-party scenarios
exert much effort to cope with the challenge
of emotional dynamics and achieve appealing
results. However, since emotional interactions
among speakers are often more complicated
within the entangled multi-party conversations,
these works are limited in capturing effective
emotional clues in conversational context. In
this work, we propose Mutual Conversational
Detachment Network (MuCDN) to clearly un-
derstand the conversational context by separat-
ing conversations into detached threads. Specif-
ically, two detachment ways are devised to
perform context and speaker-specific modeling
within detached threads and they are bridged
through a mutual module. Experimental results
on two datasets show that our model achieves
better performance over the baseline models.

1 Introduction

Emotion recognition in conversations (ERC) is a
task that predicts the emotion for each utterance in
conversations. Since it plays a significant role in
achieving empathetic systems and is of great val-
ues to be applied in the fields of opinion mining in
conversations, social media analysis, mental health
care and other areas, ERC has received more and
more attention in the natural language processing
(NLP) community. We focus on emotion recogni-
tion in multi-party conversations (ERMC) where
three or more speakers are involved.

The challenge of ERC, especially for that of
ERMC, lies in a complicated emotional interac-
tion referred to as emotional dynamics (Poria et al.,
2019b) that utterances from one speaker would
have impact on expressions of others. To cope

∗Corresponding author

Figure 1: An example of a multi-party conversation
from MELD dataset.

with the challenge, many previous approaches ex-
ploit recurrent neural network (RNN) (Majumder
et al., 2019; Ghosal et al., 2020) and graph neural
network (GNN) (Ghosal et al., 2019; Shen et al.,
2021b; Zhang et al., 2022) to perform context and
speaker-specific modeling. However, they are not
effective enough to capture exact emotional clues
for emotion recognition because the salient charac-
teristic of multi-party conversations is ignored.

Multiple conversation threads are intermingled
in the same dialog history simultaneously in the
multi-party scenario (Ma et al., 2021; Liu et al.,
2021a), which makes it hard to capture emotional
clues in such a complex and confusing interaction.
As shown in Figure 1, there are two conversation
threads in a multi-party conversation consisting of
three speakers A, B and C. Targeting at the same
utterance #2 from speaker B to reply, speaker A is
consoled and becomes joyful to go shopping, while

7020



speaker C is unbearable towards the outfit of B and
feels disgusted. Since speaker C and A originally
focus on different aspects of the same dialog his-
tory, two individual threads are naturally developed.
It is of great necessity to figure out the intra- and
inter-personal dependencies of utterances within
distinct conversation threads, for the convenience
of understanding the exact emotional interaction
exerted on different speakers.

In this paper, in order to clearly comprehend
emotional clues for emotion recognition, we pro-
pose Mutual Conversational Detachment Network
(MuCDN) to separate a multi-party conversation
into detached threads and effectively perform con-
text and speaker-specific modeling within them.

To be more specific, two detachment ways,
named explicit detachment and implicit detachment
are devised to separate a multi-party conversation
into several threads and jointly carry out context
and speaker-specific modeling within them. For the
former one, we detach a multi-party conversation
with the help of a dialog discourse parser. Along
with paths of a discourse tree, detached conversa-
tion threads could be explicitly attained. Then two
speaker-aware gated neural networks (GRU) are
adopted for conversational information propagat-
ing. Further, implicit detachment aims at capturing
the latent and global interaction in the conversation.
We construct two speaker-specific implicit detach-
ment graphs and utilize self-attention mechanism
to obtain detached threads implicitly. In addition, a
mutual module is designed to create the interaction
between explicit detachment and implicit detach-
ment. To evaluate the performance of MuCDN,
we conduct extensive experiments on two ERMC
datasets and new state-of-the-art performance is
achieved on both of them.

The main contributions of this work are summa-
rized as follows:

• In order to cope with the complicated emo-
tional dynamics in ERMC, we propose
MuCDN with the notion of conversation de-
tachment.

• We devise two detachment ways to separate
multi-party conversations into distinct threads
and clearly perform context and speaker-
specific modeling within them. A mutual mod-
ule is also designed for interaction.

• Results of extensive experiments on two
benchmark ERMC datasets demonstrate the

effectiveness of the proposed model. Our
source code is publicly available at https:
//github.com/circle-hit/MuCDN.

2 Related Work

2.1 Emotion Recognition in Conversations

Recent works that focus on dyadic conversations
also perform experiments on ERMC datasets. They
either plainly perform context modeling or incorpo-
rate external resources, which can be divided into
two categories.

For those without incorporating external re-
sources, two types of deep neural network are
adopted for context modeling. (1) RNN. Majumder
et al. (2019) take global state, personal state and
emotion state of speakers into account and uti-
lize three GRUs to model emotional dependency
among speakers. Hu et al. (2021) devise a cogni-
tive reasoning module to iteratively capture emo-
tional clues and fully understand conversational
context with cognitive factors. (2) GNN. Ghosal
et al. (2019) perform context and speaker-specific
modeling upon a graph and relational graph con-
volutional network is adopted for message passing
through various types of edges. Further, Ishiwatari
et al. (2020) simplify the selection of some types of
edges in the graph and propose relational position
encoding to enhance relation-aware graph attention
network. Shen et al. (2021b) abstract a conversa-
tion into a directed acyclic graph and extend the
directed acyclic graph neural network to be suitable
under the conversation setting.

More recently, many works leverage external re-
sources to enrich contextual representations. Zhong
et al. (2019) utilize commonsense knowledge and
emotion lexicon to guide context modeling and
dynamically retrieve context-aware and emotion-
related knowledge. Ghosal et al. (2020) explore
several types of commonsense knowledge for a
comprehensive understanding of various aspects of
conversations such as personality, events, mental
states and intents. Based on this, Li et al. (2021)
concentrate more on psychological interactions be-
tween utterances. Besides, an auxiliary task named
sentiment polarity intensity prediction is introduced
to involve direct affective information from the
emotion lexicon (Xie et al., 2021). And Zhao et al.
(2022) leverage commonsense knowledge as causal
clues to aid the emotion recognition with emotion
cause detection.
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Figure 2: The overall architecture of our proposed model.

2.2 Emotion Recognition in Multi-Party
Conversations

For emotion recognition in multi-party conversa-
tions, recent studies endeavor to capture contextual
clues and speaker-specific information in the com-
plex interactions. Zhang et al. (2019) construct
a large graph over the entire corpus and propose
a conversational graph-based convolutional neu-
ral network to model both context- and speaker-
sensitive dependency. Shen et al. (2021a) make
the pretrained language model XL-Net (Yang et al.,
2019) adaptive to the dialog scenario and design
four types of dialog-aware self-attention to model
contextual information. Sun et al. (2021) explore
the importance of discourse structures in handling
informative contextual cues and speaker-specific
features and build a graph based on the dialog dis-
course structure.

However, all the aforementioned methods ignore
the notable characteristic of multi-party conversa-
tions that multiple conversation threads are entan-
gled in the dialog history. And in order to clearly
capture emotional clues for emotion recognition,
we propose to perform context and speaker-specific
modeling within individual threads detached from
multi-party conversations.

3 Methodology

First, we define the problem of the ERMC task.
Given a conversation with N consecutive utter-
ances {u1, u2, · · · , uN} and M speakers (M > 2)
{s1, s2, · · · , sM}, ERMC aims to predict the emo-
tion label ei of each utterance ui spoken by si.

Figure 2 gives the overall architecture of our
proposed model, which consists of five parts:
Utterance-Level Feature Extraction, Explicit De-
tachment, Implicit Detachment, Mutual Module
and Emotion Recognition. After attaining context-
independent vector of each utterance, we propose
to clearly carry out context and speaker-specific
modeling within individual threads detached from
multi-party conversations. On the one hand, ex-
plicit detachment is performed on the outcome
of the dialogue discourse parser and two speaker-
aware GRUs are adopted for information propagat-
ing across each detached thread. On the other hand,
the latent and global interaction is captured by im-
plicit detachment through attention values calcu-
lated by self-attention mechanism. Further, mutual
module exchanges the interaction information for
both explicit detachment and implicit detachment.
And the final representation is obtained by concate-
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nating outcomes from the two detachment modules.
We will elaborate each one of the five modules in
the rest of this section.

3.1 Utterance-Level Feature Extraction
We employ the widely-used pretrained language
model RoBERTa (Liu et al., 2019) to perform
utterance-level feature extraction. Specifically,
for each utterance ui = {w1, w2, · · · , wL}, a
special token [CLS] is concatenated to the be-
ginning of the utterance. Then we feed the se-
quence {[CLS], w1, w2, · · · , wL} to fine-tune the
pretrained RoBERTa model by an utterance-level
emotion classification task and the [CLS] token
from the last hidden layer is fed to a pooling layer
to attain the result of emotion classification.

After the process of fine-tuning, to obtain each
utterance-level feature vector ci represented by the
[CLS] token, we feed each utterance in the same
input format as {[CLS], w1, w2, · · · , wL}:

ci = RoBERTa( [CLS], w1, w2, · · · , wL ) (1)

where ci ∈ Rdm and dm is the dimension of hid-
den states in RoBERTa. Following (Ghosal et al.,
2020), [CLS] tokens from final four layers are av-
eraged to obtain the utterance-level feature vector
for each utterance. Then each utterance vector ci
is transformed to the dimension of dh with a linear
projection. And the vectorized representation of a
conversation C is {c1, c2, · · · , cN}.

3.2 Explicit Detachment
To clearly and effectively perform context and
speaker-specific modeling under the circumstance
of multi-party scenario, we separate a conversa-
tion into several individual threads according to the
results of its corresponding discourse structure.

Discourse Parsing and Detachment: We uti-
lize the discourse parser proposed by Shi and
Huang (2019), which is a deep sequential model
and performs well on STAC (Asher et al., 2016) cor-
pus. Given each conversation {u1, u2, · · · , uN},
the discourse structure could be obtained by:

{(i, j, eij), · · · } = Parser({u1, u2, · · · , uN})
(2)

where eij is the directed edge with head j and tail
i and i, j are indices of utterances in the conversa-
tion (i < j). According to their settings, the output
of the parser is a discourse dependency tree where
each node (utterance) is connected with a single
parent node. And detached threads are naturally

formed according to each definite path from the
start node to the current one. We use an explicit de-
tachment matrix D to represent the derived threads
from discourse tree:

Di,j =

{
1, if eij exists in discourse tree

0, otherwise
(3)

Speaker-Aware Context Modeling: With in-
dividual conversation threads detached, we pro-
pose to perform clear and effective context and
speaker-specific modeling upon them. Specifi-
cally, we adopt two speaker-aware GRUs, named
intra-speaker GRU and inter-speaker GRU, for con-
textual information propagating through each de-
tached thread along with connections guided by
explicit detachment matrix D:

ei =

{
GRUintra(ci, ep), if ϕ(ui) = ϕ(up)

GRUinter(ci, ep), otherwise
(4)

where ei ∈ Rdh and ϕ maps the utterance into
that of the corresponding speaker and up is the
single precursor of the current utterance ui which
means Dpi = 1 (p < i). GRUintra is utilized to
model the intra-speaker dependency from the same
speaker, while GRUinter are for interactions from
other speakers.

3.3 Implicit Detachment
The reason for the design of implicit detachment
is that the explicit detachment mainly focuses on
the local interaction, which means only recurrently
propagating information in each thread would ig-
nore the global information contained in a multi-
party conversation. When a speaker is buried in a
conversation, the triggering of his/her target emo-
tion may be more or less from multi sources, not
just a single precursor analyzed by the parser. Thus,
to capture the global emotional clues and dig the
latent emotional dependency among utterances, we
attempt to detach the multi-party conversation in
an implicit way. Specifically, we construct two par-
tially fully-connected implicit detachment graphs
(IDG) with speaker-aware information injected ac-
cording to whether two utterances are from the
same speaker or not. IDGintra and IDGinter are
obtained in the form of adjacent matrices by:

IDGintrai,j =

{
0, if j <= i and ϕ(ui) = ϕ(uj)

−∞, otherwise
(5)
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IDGinteri,j =

{
0, if j < i and ϕ(ui) ̸= ϕ(uj)

−∞, otherwise
(6)

Then we utilize multi-head self-attention mecha-
nism (MHSA) and add IDG to the result of dot
product between query and key to achieve speaker-
aware information propagating. We omit the for-
mula for multi-head computation due to the lim-
ited space and more details about MHSA could be
found in Vaswani et al. (2017):

G = MHSA(C, IDGt),

Att(Q,K, V, IDGt) = Softmax(
QKT

√
dk

+ IDGt)V

(7)
where G ∈ RN×dh and t ∈ {intra, inter} is
the type of IDG. Viewing self-attention weights
as edges connecting representations, to what extent
we obtain the detached threads is determined by
the attention values calculated by the self-attention
mechanism. we then fuse the two speaker-aware
implicit detachment representations with a gated
manner inspired by Liu et al. (2021b):

F t = ReLU(FC([C,Gt, C −Gt, C ⊙Gt])),
g = Sigmoid(FC[F intra, F inter]),

I = g ⊙ F intra + (1− g)⊙ F inter
(8)

where I ∈ RN×dh and FC is the fully-connected
layer.

3.4 Mutual Module
This module is designed for mutual interaction be-
tween the process of explicit detachment and im-
plicit detachment.

For the interaction from implicit detachment to
explicit detachment, it servers as the complement
of the global information and latent interactions in
the conversations. First, we obtain two attention
score matrices from the self-attention layer with
the average of each attention head. And the joint
score Ajoint is measured in the same scale by soft-
max function. Then the i-th global representation
complemented for its corresponding utterance in
the explicit detached threads is obtained by:

hi = Ajointi,<i × E<i (9)

where hi ∈ Rdh , × represents the operation of ma-
trix multiply,Ajointi,<i is the prior i−1 elements in the

i-th row of Ajoint and E<i = {e1, e2, · · · , ei−1}
stands for the prior i − 1 vectors calculated by
speaker-aware GRU. We concatenate each hi with
its corresponding ci before thread information prop-
agating and the original computation in Equation
(4) is updated:

ei =

{
GRUintra([ci, hi], ep), if ϕ(ui) = ϕ(up)

GRUinter([ci, hi], ep), otherwise
(10)

In addition, explicit detachment would provide
exact relative position information based on the dis-
course tree for the process of implicit detachment.
Ishiwatari et al. (2020) argue that human emotions
may depend on more immediate utterances in the
temporal order. We extend such a temporal dis-
tance to the structural form under the circumstance
of multi-party scenario and assume that upon the
discourse structure, the more immediate utterances
may be more relevant to the target one and are more
likely to appear in the same thread. Therefore, we
calculate the relative distance measured by hops
upon the discourse tree and obtain two position
matrix P intra and P inter according to the speaker
type. And if two nodes are unreachable to each
other, we set the position value to zero. Then we
adopt a trainable position embedding layer to en-
code each element in P intra or P inter to a scalar
value and add them to the attention scores in the
multi-head attention layer.

Post = Embedding(P t),

G = MHSA(C, IDGt, Post),

Att(Q,K, V, IDGt, Post) = Softmax(
QKT

√
dk

+IDGt + Post)V
(11)

Through this, Post could be viewed as an extra
weight to guide the fully-connected process of im-
plicit detachment which is considered to be a rela-
tively blind way.

3.5 Emotion Recognition

Finally, taking the the concatenation of C, E and I
as input, an emotion classifier is applied to predict
the emotion of the utterance.

ŷ = Softmax(We[C,E, I] + be) (12)

where We and be are trainable parameters.
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Dataset Dialogues Utterances

Train Val Test Train Val Test

EmoryNLP 713 99 85 9,934 1,344 1,328
MELD 1,039 114 280 9,989 1,109 2,610

Table 1: Dataset statistics

Cross entropy loss is utilized to train the model
and the loss function is defined as:

L = − 1

N

N∑

i=1

Emo∑

j=1

ŷi
j · log(yji ) (13)

where Emo is the number of emotion class and
yji stands for the ground-truth emotion label of the
utterance i.

4 Experiments

4.1 Dataset
We conduct experiments on two ERMC datasets.
The statistics of them are shown in Table 1.

EmoryNLP (Zahiri and Choi, 2018): TV show
scripts collected from Friends and the emotion
classes include neutral, sad, mad, scared, powerful,
peaceful and joyful.

MELD (Poria et al., 2019a): A multimodal
dataset with multi-speaker conversations. It is also
collected from the TV show Friends, but varies
from EmoryNLP in the choice of scenes and emo-
tion labels. And the emotion labels belong to anger,
disgust, fear, joy, neutral, sadness and surprise.

We utilize only the textual modality for the ex-
periments. Following previous works, the weighted
F1 score is chosen as evaluation metrics.

4.2 Compared Models
We compare our proposed model with the follow-
ing methods. CSK is short for the commonsense
knowledge:
Methods for ERMC:

ConGCN (Zhang et al., 2019) constructs a large
graph over the entire corpus to model both context-
and speaker-sensitive dependency.

DialogXL (Shen et al., 2021a) devises four types
of dialog-aware self-attention to make the model
aware of interactions in multi-party conversations.

ERMC-DisGCN (Sun et al., 2021) builds a
graph based on the dialog discourse structure to
explore context and speaker-specific features.
Methods for ERC with CSK:

KET (Zhong et al., 2019) leverages common-
sense knowledge to enrich context modeling and

dynamically retrieves context-aware and emotion-
related knowledge.

KAITML (Zhang et al., 2020) applies incre-
mental transformer to encode multi-turn contextual
utterances with commonsense knowledge incor-
porated and introduces multi-task learning to this
task.

KI-Net (Xie et al., 2021) concentrates on direct
utterance-knowledge interaction and involves addi-
tional affective information with an auxiliary task.

SKAIG (Li et al., 2021) constructs a novel graph
to explore psychological states of speakers and
graph transformer is used to propagate the inter-
active information over the graph.

COSMIC (Ghosal et al., 2020) explores more
types of commonsense knowledge about several
factors of conversations to understand emotional
dynamics better.
Methods for ERC without CSK:

DialogueRNN (Majumder et al., 2019) devises
three states including global state, party state and
emotion state with GRUs.

DialogueGCN (Ghosal et al., 2019) uses graph
convolutional network to encode context and
speaker dependencies.

IEIN (Lu et al., 2020) focuses on explicit inter-
actions among emotion of utterances and iteratively
predicts emotion labels based on previous ones.

RGAT (Ishiwatari et al., 2020) enhances
relation-aware graph attention network with the
proposed relational position encoding.

DialogueCRN (Hu et al., 2021) designs reason-
ing modules from a cognitive perspective to fully
integrate emotional clues.

DAG-ERC (Shen et al., 2021b) presents a idea
of modeling conversation context with a directed
acyclic graph and proposes a directed acyclic graph
neural network.

4.3 Implementation Details

For utterance-level feature extraction, we fine-tune
RoBERTa Large model for a batch size of 32 and
Adam optimizer is adopted with learning rate of
1e-5. And for the training of MuCDN on emotion
recognition, the batch size is set to be {16, 8} for
EmoryNLP and MELD respectively. The dimen-
sion of hidden representation dh in the rest of our
model is set to 300 and the number of attention
head is 6. We train the model with Adam optimizer
in a learning rate of 1e-4. All of our results are
averaged on 5 runs.
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Model EmoryNLP MELD

ERMC Methods
ConGCN - 57.40
DialogXL 34.73 62.41

ERMC-DisGCN 36.38 64.22

ERC Methods with CSK
KET 34.39 58.18

KAITML 35.59 58.97
KI-Net - 63.24
SKAIG 38.88 65.18

COSMIC 38.11 65.21
COSMIC w/o CSK 37.10 64.28

ERC Methods without CSK
DialogueRNN 31.7 57.03
DialogueGCN - 58.1

IEIN - 60.72
RGAT 34.42 60.91

DialogueCRN - 58.39
DAG-ERC 39.02 63.65

MuCDN (Ours) 40.09 65.37

Table 2: Comparison of our model against state-of-the-
art baselines. CSK represents the commonsense knowl-
edge utilized in COSMIC. Weighted F1 score is adopted
as evaluation metrics.

5 Results and Analysis

5.1 Overall Results

Illustrated in Table 2, our proposed model achieves
state-of-the-art results on both ERMC datasets.

EmoryNLP. Since there are often more than 5
participants within a conversation in EmoryNLP,
which leads to the results that average individual
conversation threads derived from Explicit Detach-
ment module are 4.77/4.66/4.91 (Train/Valid/Test),
the complicated emotional interactions pose great
challenge for capturing contextual clues and
speaker features. Benefiting from a clear and ef-
fective context and speaker-specific modeling by
separating multi-party conversations into individ-
ual threads, MuCDN achieves new state-of-the-art
weighted F1 scores of 40.09. Compared with DAG-
ERC which proposes a directed acyclic graph to
link utterances in a locally fully-connected way,
distinct detached threads are more suitable and ef-
fective for conversation context modeling in multi-
party scenario. In addition, the improvement of
performance over ERMC-DisGCN demonstrates it
may not be effective enough to simply propagate
contextual information upon the discourse graph.
To a certain extent, such improvement verify the ef-
fectiveness of our proposed discourse-based detach-
ment, which is a better way of utilizing discourse

Model EmoryNLP MELD

MuCDN 40.09 65.37
w/o explicit detachment 38.45 64.45
w/o implicit detachment 38.84 64.47

w/o E2I interaction 39.28 64.61
w/o I2E interaction 39.54 64.56

Table 3: Results of ablation study on the two ERMC
datasets. E2I interaction is the relative position embed-
ding provided by explicit detachment, while I2E inter-
action is the complementary global information from
implicit detachment.

structure to clearly perform conversation model-
ing. And it also suggests the effectiveness of the
complementary information provided by implicit
detachment and mutual module.

MELD. Advantages brought by clear conversa-
tion modeling could also be observed on MELD
where MuCDN performs better than all the base-
lines. Here, the results of the average de-
tached conversation threads are 3.92/3.96/3.85
(Train/Valid/Test). However, it is worth noting
that our model slightly outperforms those base-
line models with commonsense knowledge incor-
porated such as COSMIC. To make a clear compar-
ison regarding the conversation modeling ability
of the model, we also compare our model with
COSMIC without commonsense knowledge im-
plemented by Shen et al. (2021b). And under
the same circumstance of no commonsense knowl-
edge incorporated, the performance advantage of
MuCDN comes from the clear and effective cap-
ture of emotional clues in individual conversation
thread. Meanwhile, it reminds us to enrich contex-
tual representations with commonsense knowledge
within each detached thread for further improve-
ment.

5.2 Ablation Study

We conduct ablation studies to verify the effective-
ness of different modules proposed in our model.
Results are shown in Table 3.
Effect of Conversation Detachment

To investigate the impact of two detachment
modules, we remove either the explicit detachment
module or the implicit detachment module, and
the corresponding mutual interaction is also dis-
carded at the same time. The performance has a
certain degree of decline on both datasets and re-
sults are displayed in the second row and the third
row in Table 3. This manifests that both ways of
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Model EmoryNLP MELD

MuCDN 40.09 65.37
sequence 39.05 64.51

randomness 38.72 64.71

Table 4: Results of our model replaced with different
types of dependency structure connecting utterances in
Explicit Detachment module.

explicit detachment and implicit detachment play
an important role in simplifying and clarifying the
complex interactions within multi-party conversa-
tions and lay the foundation for effective context
and speaker-specific modeling.
Effect of Mutual Interaction

To verify the effectiveness of the mutual interac-
tion that explicit detachment and implicit detach-
ment provide for each other, the relative position
embedding and the complementary global informa-
tion are removed individually. The dropped results
in the second-to-last row on both ERMC datasets
demonstrates that the extra relative position fea-
tures derived from the dialogue discourse structure
provide implicit detachment with explicit guidance
to capture the latent emotional interactions better.
Besides, results in the last row suggests that the
global information from implicit detachment com-
plement multi-source emotional interactions for the
context modeling of each thread.

5.3 Variants of Dependency Structure in
Explicit Detachment

In this section, we investigate how explicit detach-
ment benefits from dialogue discourse structure
for a clear and effective conversation modeling.
Two additional kinds of dependency structure of
utterances are devised: (1) sequence, in which ut-
terances are connected one by one following the
temporal order; (2) randomness, in which each ut-
terance link any one of the previous utterances with
a random selection. To achieve this, the detachment
matrix D is substituted and the position matrix P
in mutual module is also changed to be consis-
tent with such two types of dependency structure.
We keep all the rest parts same with our complete
model.

The test performance is shown in Table 4 and we
make two instructive observations from the exper-
imental results. First, the performance of random
structure is not as terrible as we expected, even a lit-
tle better than that of sequential structure on MELD
dataset. On the one hand, it manifests that the effec-

Model EmoryNLP MELD

MuCDN 40.09 65.37
w/o intra and inter GRU 39.42 64.49
w/o intra and inter graph 38.91 64.46

Table 5: Results of our model without speaker-specific
modeling.

tiveness of the complementary global information
provided by implicit detachment and latent emo-
tional interactions among utterances are captured.
On the other hand, the little improvement over the
structure of sequence suggests that it may not be
suitable enough to plainly model the conversational
context without any explicit detachment for the en-
tangled multi-party conversations. Second, both
results obtained upon the variants of dependency
structure do not decrease to a large margin. It re-
minds us that the results of the dialogue discourse
parser are not reliable enough and the problem of
error propagation may have influence on our model.
And effective techniques to prune the dialogue dis-
course tree should be explored for future work.

5.4 Analysis of Speaker-Specific Modeling

As a key factor to provide emotional clues for emo-
tion recognition, especially under the circumstance
of multi-party setting, modeling speaker-specific
information has proven to be beneficial. We inves-
tigate the impact of speaker-aware modules in our
proposed model. First, instead of utilizing intra-
speaker GRU and inter-speaker GRU in explicit de-
tachment, we only adopt a single GRU without the
speaker-aware identification for contextual infor-
mation propagating through each detached thread.
Also, only one implicit detachment graph is con-
structed without speaker information injected to
identify connections among utterances.

According to results shown in Table 5, the drop
of performance implies that it is effective to take
speaker-specific information into account when car-
rying out conversational context modeling. And
it also suggests the importance of figuring out the
intra and inter-speaker dependency to capture emo-
tional clues. But such a relatively slight drop in-
spires us that the identification of whether two utter-
ances have the same speaker may not be sufficient
in multi-party scenario. Richer speaker-specific
information contained in the contextual context
should be excavated further.
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6 Conclusion

In this paper, in order to capture emotional clues
for emotion dynamics in a clear and effective way
under the circumstance of multi-party scenario, we
propose Mutual Conversational Detachment Net-
work (MuCDN) for emotion recognition in multi-
party conversations. Joint context and speaker-
specific modeling is performed within individual
detached threads by two detachment ways and
a mutual module. Experimental results on two
ERMC datasets demonstrate the superiority of our
proposed MuCDN. Also, by conducting compre-
hensive evaluations and ablation study, we con-
firmed the effectiveness of our MuCDN and the
impact of its components.

For future work, we would like to explore ef-
fective techniques to prune the dialogue discourse
tree to alleviate error propagation. Moreover, for
a more comprehensive speaker-specific modeling,
richer speaker information in the conversational
context should be excavated further.
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Abstract

Emotion cause analysis (ECA) aims to extract
emotion clauses and find the corresponding
cause of the emotion. Existing methods adopt
fine-tuning paradigm to solve certain types of
ECA tasks. These task-specific methods have
a deficiency of universality. And the relations
among multiple objectives in one task are not
explicitly modeled. Moreover, the relative po-
sition information introduced in most exist-
ing methods may make the model suffer from
dataset bias. To address the first two problems,
this paper proposes a universal prompt tuning
method to solve different ECA tasks in the uni-
fied framework. As for the third problem, this
paper designs a directional constraint module
and a sequential learning module to ease the
bias. Considering the commonalities among
different tasks, this paper proposes a cross-task
training method to further explore the capa-
bility of the model. The experimental results
show that our method achieves competitive per-
formance on the ECA datasets.

1 Introduction

Recently, emotion cause analysis (ECA) has ob-
tained increasing attention. As a classic task of
ECA, emotion cause extraction (ECE) was first pro-
posed and defined as a clause-level classification
problem (Gui et al., 2016a). ECE aims to explore
the potential causes behind a certain emotional ex-
pression in a clause. However, the applications of
ECE are limited in real-world scenarios because
the emotion must be annotated before cause ex-
traction. Therefore, emotion-cause pair extraction
(ECPE) was proposed to identify all emotions and
their corresponding causes from an unannotated
text at the same time (Xia and Ding, 2019). Chen
et al. (2020a) proposed conditional causal relation-
ships classification (CCRC) to explore the relation
of emotion-cause pairs and contexts. Although
there are other emerging tasks proposed (Li et al.,
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Figure 1: Fine-tuning for emotion cause analysis.

2021b; Bi and Liu, 2020) to expand the applications
of ECA, this paper focuses on the most complex
and challenging three clause-level sub-tasks: ECE,
ECPE, and CCRC.

In literature, ECA tasks have been widely stud-
ied. On the ECE task, Gui et al. (2016a) released
a benchmark Chinese emotion cause dataset and
proposed a multi-kernel based method. Several sta-
tistical learning (Gui et al., 2016b; Xu et al., 2017)
and deep learning methods (Cheng et al., 2017; Hu
et al., 2021b) have been applied to ECE, which
show competitive performance on emotion cause
prediction. On the ECPE task, Xia and Ding (2019)
proposed a two-step method to extract emotions
and corresponding causes at the same time. This
method first individually extracts the emotion set
and cause set. Then, it gets the emotion-cause
pairs by applying a Cartesian product to these two
sets and trains a filter to remove the invalid pairs.
However, the error may propagate from the first
procedure to the second because of the inherent
drawback of the pipelined framework. To address
this issue, several works adopted end-to-end archi-
tecture. Part of these works (Tang et al., 2020;
Wu et al., 2020) focused on the multi-task learn-
ing (Caruana, 1997) of the ECPE task with the joint
learning framework (Ding et al., 2020a,b). Some
other works represented the relation between emo-
tion and cause with graph construction (Wei et al.,
2020; Chen et al., 2020c). In addition, transition-
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based parsing (Fan et al., 2020) and unified se-
quence labeling (Chen et al., 2020b; Cheng et al.,
2021) are also employed. On the CCRC task, the
relationship between emotion and cause clauses in
different contexts is studied (Chen et al., 2020a).

The existing methods could be divided into
multi-stage framework (Xia and Ding, 2019; Xu
et al., 2021) and end-to-end framework (Ding et al.,
2020a; Wei et al., 2020). Both frameworks adopt
the fine-tuning paradigm. As shown in Fig. 1, these
fine-tuning methods firstly obtain clause-level fea-
tures from the pre-trained embedding or pre-trained
language models (PLMs). Next, a contextual en-
coder is designed to yield contextual representa-
tions of clauses. Then, the contextual representa-
tion is merged with clause-level position informa-
tion. Finally, the output is used for task prediction.
In general, the existing methods have three obvi-
ous shortcomings: firstly, the contextual encoder
has the deficiency of universality because they are
designed for specific task objectives. Secondly,
the existing methods implicitly learn the relation-
ships among multiple task objectives, rather than
explicitly model their relations. Thirdly, position
information would make the model sensitive to data
distribution and lack robustness.

Prompt (Liu et al., 2021; Han et al., 2021;
Houlsby et al., 2019) is a new paradigm that can
be traced back to GPT-3 (Brown et al., 2020). This
paradigm could overcome the difficulty of uni-
formly solving various tasks by transforming spe-
cific fine-tuning tasks into the form of pre-training
tasks. The universality of prompt has been widely
validated in various tasks of natural language pro-
cessing (Schick et al., 2020; Ma et al., 2021; Li
et al., 2021a; Li and Liang, 2021), especially in
few-shot (Gao et al., 2021; Zhang et al., 2021) or
zero-shot (Sanh et al., 2021; Wei et al., 2021) sce-
narios. Multiple predictions should be performed
for one sample with several clauses in ECA. And
ECA is composed based on multiple task objectives
(e.g. emotion extraction, cause extraction, emotion-
cause pair extraction). Appropriate prompt con-
struction could complete multiple predictions si-
multaneously. Constructing special prompts could
explicitly model the relations among multiple ob-
jectives in one task. In general, prompt could make
up for the shortcomings of existing methods.

Inspired by this, this paper proposes a univer-
sal prompt-based method for ECA tasks (UECA-
Prompt). UECA-Prompt first modifies each task ob-

[X]| x : The old man was very happy, because the thief was caught. [M]

MLM Head

happy sad ···The old man was very happy, because the thief was caught. [CLS]

CLS Head

Fine-tuning

Prompt tuning
The sentiment is

y

!𝒎 = “happy”

𝑇∗: [X]. The sentiment is [M]

*

x'

𝒎

Figure 2: Different task forms for prompt tuning and
fine-tuning.

jective into a sub-prompt after decomposing ECA
tasks into multiple task objectives. Then, it ex-
plicitly models the relations among different task
objectives by combining different sub-prompts into
a composite prompt. As most of the works (Petroni
et al., 2020; Schick and Schütze, 2020a,b), UECA-
Prompt is manually constructed to solve different
ECA tasks in a unified framework. As far as we
know, UECA-Prompt is the first attempt at multi-
task multiple predictions with prompt.

Some previous works (Ding et al., 2020b; Chen
et al., 2020c) artificially introduced position in-
formation into the model. Such characteristic
would make the model extremely sensitive to the
distribution of positions of cause clauses rela-
tive to their corresponding emotion clauses in the
dataset. Specifically, existing methods with posi-
tion information may not generalize well to de-bias
dataset (Ding and Kejriwal, 2020). Because the
cause clause of most samples in the de-bias dataset
is not in proximity to the emotion clause. This
paper designs a directional constraint module and
a sequential learning module to better identify the
emotion-cause pairs. These two modules could
ease the bias by discarding position information
between clauses.

There are commonalities among different tasks.
For example, CCRC focuses more on context in-
formation, and context information is also crucial
for ECE and ECPE. This paper proposes a cross-
task training method. The model would be able to
learn commonalities among tasks with the cross-
task training method.

We evaluate our method on three benchmark
Chinese emotion cause datasets. The experimen-
tal results show that our method can obtain better
results than state-of-the-art methods on three ECA
tasks solely based on the BERT.

Our contributions are summarized as follows:

• We propose a universal prompt method for a
variety of ECA tasks, such as ECE, ECPE, and

7032



Yesterday morning

a policeman visited the old man with the lost money 

and told him that the thief was caught

The old man was very happy

and deposited the money in the bank

[MASK]e

[MASK]e

[MASK]e

[MASK]e

[MASK]e

emotion

emotion

emotion

emotion

emotion

clause

clause

clause

clause

clause

[MASK]ca

[MASK]ca

[MASK]ca

[MASK]ca

[MASK]ca

cause

cause

cause

cause

cause

clause

clause

clause

clause

clause

[MASK]s

[MASK]s

[MASK]s

[MASK]s

[MASK]s

corresponds

corresponds

corresponds

corresponds

corresponds

to

to

to

to

to

[MASK]d

[MASK]d

[MASK]d

[MASK]d

[MASK]d

Sample Prompt

ci : i-th clause of 
the document 𝐷

Prompt function 𝑓#(%) for
sequential learning

Indicator function 
𝑓'(%) for emotion

Indicator function 
𝑓()(%) for cause

Prompt function 𝑓*(%) for 
directional constraint

MLM Head

Label Words

c5c4c3c2c1

#5#4#3#2#1others

MLM Head MLM Head MLM Head

𝑓#(%)

c5c4c3c2c1

Label Words
is

isn’t𝑓'(%)

c5c4c3c2c1

Label Words
is

isn’t𝑓()(%)

Label Words

c5c4c3c2c1

#4
None

Others

𝑓*(%)

Document D
c1 Yesterday morning,

c2 a policeman visited the old man with the lost money,
c3 and told him that the thief was caught.
c4 The old man was very happy,

c5 and deposited the money in the bank.

Emotion Clause: c4
Cause Clause: c2, c3

Pairs: [(c4, c2), (c4, c3)]

Prediction

Figure 3: Overview of UECA-Prompt. The answer slot [M] of template is replaced by the token [MASK]. Subscripts
are added for token [MASK] to distinguish different sub-prompt. At the bottom of the figure, input x is presented
on the left, and prompt x′ constructed from the input text is on the right. The predictions of each sub-prompt are
presented above the corresponding module.

Function f∗(·) Template T∗(·) Label WordsM∗(·)
fe(·) Te(·) = “[X] [M] emotion clause” Me(·) = {“is”, “isn’t”}
fca(·) Tca(·) = “[X] [M] cause clause” Mca(·) = {“is”, “isn’t”}
fd(·) Td(·) = “[X] corresponds to [M]” Md(·) = {“None”, “1”, “2”, ..., “n”}
fs(·) Ts(·) = “[M] [X]” Ms(·) = {“1”, “2”, ..., “n”}

Table 1: Different sub-prompt in UECA-Prompt. [X] is input slot filled with text x and [M] is answer slot for
prediction. We translate the original Chinese words into English for better illustration.

CCRC. It is the first attempt to solve multi-
task multiple predictions with prompt.

• We design the directional constraint and se-
quential learning module to ease the bias ef-
fect caused by position information, making
UECA-Prompt more robust toward the de-bias
dataset.

• Experimental results show that UECA-Prompt
outperforms the state-of-the-art methods. And
the cross-task training method further im-
proves the performance of UECA-Prompt.

2 Preliminary

2.1 Task Definition

Given a documentD = {c1, ..., cn} with n clauses,
where ci is the i-th clause. ECE is to determine the
cause clause setCca ⊆ D according to a given emo-
tion clause ce ∈ D. The cause clause set Cca may
have more than one clause. ECPE is to identify
each emotion-cause pair {ce, cca} in the document.
CCRC determines whether the emotion-cause pair
{ce, cca} still has a causal relationship under dif-
ferent context within a set T = {t1, ..., tj}, where
context tj is the residual document except for the

emotion clauses ce and cause clauses cca.

2.2 Prompt Tuning

As shown in Fig. 2, a typical prompt consists
of a template T∗(·) (e.g. “[X]. The sentiment is
[M]”) and a set of permissible valuesM∗(·) (e.g.
“happy”, “sad”). Firstly, a prompt function f∗(·)
fills the input slot [X] with original input x to get
x′ (e.g. “The old man was very happy, because the
thief was caught. The sentiment is [M]”). Secondly,
an argmax is used to search for the highest-scoring
intermediate result m̂ from a set of label words
M∗(·).M∗(·) is a set of potential answers for an-
swer slot [M]. Finally, m̂ would be mapped into
final result y.

3 Method

UECA-Prompt is a BERT-based method con-
structed as the form of the MLM task. This pa-
per would discuss UECA-Prompt from two per-
spectives, sub-prompt for task decomposition and
composite prompt for multiple predictions.

3.1 Sub-prompt for Task Decomposition

ECA involves multi-task learning and could be de-
composed into emotion extraction, cause extrac-
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tion, and emotion-cause pair extraction. This paper
designs a sub-prompt for each objective. The sub-
prompts include indicator functions, directional
constraint module, and sequential token module.

Indicator Function In ECA, we are requested
to find all the emotion-cause pairs in the text. Em-
pirically, we should first search the text for all the
emotion clauses. Then the cause clauses could
be identified according to those emotion clauses.
Finally, the causal relation between emotion and
cause clauses can be checked depending on the
context.

Two clause-level indicator functions, fe(·) and
fca(·), are designed to extract emotion and cause.
Specifically, the indicator function fe(ci) deter-
mines whether a clause ci is an emotion clause,
while fca(ci) determines the cause clause. The
orange rectangles and green rectangles in Fig. 3
show these two sub-prompts, and the answer slot
[M] is replaced by token [MASK]. The sub-prompt
templates and label words for fe(·) and fca(·) are
formalized as first and second rows of Table 1.

The candidate label words for predicting answer
[M] include “is” and “isn’t”. “is” represents the
current clause belonging to the target set, and “isn’t”
represents there is no subordinate relationship.

A directional constraint module and sequential
module are proposed to further extract the emotion-
cause pair. Different from the usual sub-prompt,
these two modules could be regarded as a pointer
structure when combined. It effectively alleviates
bias caused by position information.

Directional Constraint As the blue rectangles
shown in Fig. 3, the template and label words of
fd(·) can be formalized as third row of Table 1.
In the label words set Md(·), “None” indicates
that there is no clause associated with the current
clause. And numeric token “i” represents the cur-
rent clause associated with the i-th clause. n repre-
sents the number of clauses in the document.

The numeric tokens in Md(·) indicate the se-
quence information of clauses. A sequential learn-
ing module is designed to facilitate the model ac-
quiring such knowledge.

Sequential Learning In sequential learning, we
set a prefix answer slot [M] for each clause. The nu-
meric token of the answer slot for each clause is a
unique identifier. The model could learn the unique
identifier with sequential learning. As the purple
rectangles shown in Fig. 3, a sequential function

fs(·) is designed for sequential learning. The tem-
plate and label words could be formalized as the
last rows of Table 1. Intermediate result m̂ for i-th
clause is “i”. Label words for sequential learning
are also used in directional constraint function (i.e.,
Ms(·) ⊆Md(·)). Sequential learning is only used
in the training stage.

3.2 Composite Prompt for Multiple
Predictions

A composite prompt comprised of all the sub-
prompt (Liu et al., 2021) is defined to address dif-
ferent multiple prediction tasks in a unified prompt.

Composite Prompt Composite prompt explicitly
models the relation among different task objectives.
The template of composite prompt fCP(·) is formal-
ized as:

TCP(·) = “Clause [M] [X] [M] emotion clause

[M] cause clause corresponds to [M]”,
(1)

where the label words for each answer slot [M] in
composite prompt template TCP(·) correspond to
the label words of each sub-prompt, respectively.

Filling the composite template with documentD
to form prompted document D′ could be formal-
ized as:

D′ = [fCP(c1); ...; fCP(cn)], (2)

where ci is the i-th clause in document D, and [·; ·]
is the concatenation operation.

Multiple Predictions In ECA tasks, multiple
predictions should be performed for each clause.
UECA-prompt is capable of multiple predictions.
As shown in Fig. 3, firstly, we convert the input
doc into a set of clauses. Secondly, the template of
composite prompt is applied to each clause in the
input document D. Thirdly, the intermediate an-
swer for each sub-prompt is searched to separately
predict the answer of slot [M]. Finally, the interme-
diate answers are aggregated and mapped to the
final result. This paper explores composite prompt
(See Eq. (1)) for three ECA tasks (i.e., ECPE, ECE,
and CCRC). Since the operations on each clause
are the same, this paper will discuss the prompt on
a single clause in different tasks.

Implementation for ECPE The composite
prompt function instantiated for the ECPE task is
given in Eq. (3). Unrelated prompt tokens are omit-
ted for clarity. Subscripts are added for the answer
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Method
ECPE Emotion Extraction Cause Extraction

F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%)
Inter-EC† 61.28 67.21 57.05 82.30 83.64 81.07 65.07 70.41 60.83

TransECPE† 67.99 73.74 63.07 84.74 87.16 82.44 69.74 75.62 64.71
UTOS-BERT† 72.03 73.89 70.62 85.56 88.15 83.21 74.71 76.71 73.20

PairGCN-BERT† 72.02 76.92 67.91 83.75 88.57 79.58 73.75 79.07 69.28
RANK-CP-bert† 73.60 71.19 76.30 90.57 91.23 89.99 76.15 74.61 77.88
ECPE-MLL-bert† 74.52 77.00 72.35 88.86 86.08 91.91 76.30 73.82 79.12

MTST+Refinement† 74.63 77.46 71.99 84.36 87.11 81.78 76.66 79.47 74.04
UECA-Prompt 74.70∗ 71.82 77.99∗ 88.16 84.75 91.95∗ 77.55∗ 76.24 79.16∗

UECA-Prompt (m2m) 73.41 70.19 77.19 87.81 85.45 90.43 75.84 74.13 77.97

Table 2: Experimental results on the ECPE task. UECA-Prompt (m2m) is the result of UECA-Prompt with the
M2M module. The best result is marked in bold. † indicates the results are reported in the original paper. ∗ indicates
statistically significant improvement (p < 0.01) over the best baseline.

Method F1 (%) P (%) R (%)
UECA-Prompt 61.14 69.52 54.66
UECA-Prompt (m2m) 63.45 73.92 56.30

Table 3: Experimental results on multi-emotion samples
of the ECPE task.

Method F1 (%) P (%) R (%)
Multi-kernel† 67.52 65.88 69.72
MANN† 77.06 78.43 75.87
RTHN (Layer 3)† 76.77 76.97 76.62
FSS-GCN† 78.61 75.72 77.14
EF-BHA† 78.68 79.38 78.08
RHNN† 79.14 81.12 77.25
UECA-Prompt 84.40∗ 84.57∗ 84.27∗

Table 4: Experimental results on the ECE task. * indi-
cates statistically significant improvement (p < 0.001)
over the best baseline.

slot [M] to distinguish different sub-prompt:

fECPE(ci) = “[M]s ci [M]e [M]ca [M]d”. (3)

The prediction of the emotion and cause could be
mapped from the intermediate result of slot [M]e
and [M]ca in indicator functions, formalized as:

Pe(ci) =

{
1, m̂e = “is”

0, m̂e = “isn’t” ,
Pca(ci) =

{
1, m̂ca = “is”

0, m̂ca = “isn’t” ,
(4)

where m̂e and m̂ca are highest-scoring outputs of
search the function for slot [M]e and [M]ca, respec-
tively. The searching function is formalized as:

m̂ = argmax
m∈M

p(f(x′,m); θ) (5)

where function f(x′,m) is used to fill the answer
slot [M] in prompt x′ with potential answerm, and
θ represents the parameters of PLMs.

Method F1 (%) P (%) R (%)
BiLSTM+Concatenation† 61.27 54.12 71.19
BiLSTM+BiLSTM † 69.76 66.06 74.00
BiLSTM+Self-Attention† 66.05 57.66 77.70
UECA-Prompt 81.18∗ 76.35∗ 86.76∗

Table 5: Experimental results on the CCRC task. * indi-
cates statistically significant improvement (p < 0.001)
over the best baseline.

By combining the intermediate results of [M]ca
and [M]d, the prediction of emotion-cause pairs
could be formalized as:

Ppair(ci) =

{
(i, j), m̂d = “j” and m̂ca = “is”

null, otherwise,
(6)

where (i, j) represents that the i-th and j-th clauses
constitute an emotion-cause pair (the former is the
cause and the latter is the emotion), and “null” rep-
resents there is no clause associated with the cur-
rent clause.

In some cases, multiple emotions correspond
to one cause. This paper further designs a many-
to-many (M2M) module to deal with this situation.
The variant prompt template with the M2M module
is as follows:

fm2m
ECPE(ci) = “[M]s ci [M]e [M]ca [M]d1 ... [M]dM ” , (7)

where M is the maximum number of pairs in one
document, and M is set to 3 in the experiment.

Implementation for ECE The emotion clause
is annotated in the ECE task. This paper replaces
the slot [M]e in Eq. (3) with a specific token (“is”
for the emotion clause and “isn’t” for others). The
composite prompt function instantiated for ECE is
as follows:

fECE(ci) = “[M]s ci is/isn’t [M]ca [M]d” , (8)
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Method
ECPE Emotion Extraction Cause Extraction

F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%)
UTOS-BERT 34.14 42.76 28.95 66.45 83.69 56.08 36.29 45.83 30.55

ECPE-MLL-bert 45.57 61.53 36.39 80.33 77.15 84.04 54.68 51.40 59.01
MTST+Refinement 44.93 51.99 40.34 64.10 77.65 55.46 48.84 56.25 43.96

UECA-Prompt 49.37 46.30 53.22 76.15 68.68 85.67 50.64 45.75 57.71

Table 6: Experimental results on the ECPE task under few-shot setting.

Method F1 (%) P (%) R (%)
PADGL 66.16 66.16 67.52
RTHN (Layer 3) 62.49 61.72 63.48
UECA-Prompt 72.21 72.10 72.54

Table 7: Experimental results on the ECE task under
few-shot setting.

Method F1 (%) P (%) R (%)
BiLSTM+Concatenation 66.13 49.53 99.53
BiLSTM+BiLSTM 62.41 52.00 78.17
BiLSTM+Self-Attention 62.45 51.54 79.40
UECA-Prompt 67.56 55.46 86.70

Table 8: Experimental results on the CCRC task under
few-shot setting.

where is/isn’t is determined by whether the current
sentence is an emotion clause, and slot [M]d is re-
placed by the numeric token of the emotion clause
in the testing stage.

The prediction of cause is the same as ECPE
(see Eq. (4)).

Implementation for CCRC The emotion-cause
pair is annotated in the CCRC task. Thus, the
slot [M]ca in Eq. (8) is also replaced by a specific
token (“is" for cause clauses and “isn’t" for others)
as the ECE task. The composite prompt function
instantiated for CCRC is as follows:

fCCRC(ci) = “[M]s ci is/isn’t is/isn’t [M]d” , (9)

Different from ECE and ECPE, we are required
to tell the causal relationship between an emotion
clause and multiple cause clauses in CCRC. Thus,
a voting mechanism is proposed. The final result is
co-determined by the intermediate result of answer
slot [M]d in Eq. (9) for all the cause clauses. Based
on the voting mechanism, the prediction formula
of CCRC is as follows:

µvote(D) = 1
|Cca|

∑
ci∈Cca

p(m̂ca,ci = m̂d,ce), (10)

Pccrc(D) =

{
1, µvote(D) > 0.5

0, µvote(D) ≤ 0.5,
(11)

where ce is the emotion clause, Cca is the cause
clause set, m̂ca,ci is the intermediate result of slot
[M]ca for clause ci, and m̂d,ce is the intermediate
result of slot [M]d for emotion clause ce.

4 Cross-task Training Method

Empirically, there are commonalities among differ-
ent ECA tasks. These commonalities would further
improve the the model performance. This paper
proposes a cross-task training method to make the
model better adapt knowledge from one domain
to another. The following section will introduce
this training method through an example. The ini-
tial pre-trained model is defined as A. The first
step, the model A is trained in the ECE task to ob-
tain the trained model B. Second step, the trained
model B is used to train for the ECPE task to obtain
the trained model C. Finally, model C is used to
measure the performance of the UECA-Prompt on
ECPE. Any two tasks of ECA could perform the
training steps mentioned above. The commonality
among tasks could be learned by the model in the
process of cross-task training.

5 Experiments

This paper conducts experiments on the
ECE, ECPE, and CCRC tasks to evalu-
ate our approach. We release our code at
https://github.com/yajus/UECA-Prompt.

5.1 Datasets

The experiments are conducted on three public
datasets. The ECE dataset (Gui et al., 2016a)
is collected from SINA city news and contains
2105 instances. Its document has only one emotion
word and one or more emotion causes. The ECPE
dataset (Xia and Ding, 2019) is constructed based
on the ECE dataset. It aggregates the instances con-
taining the same text and different emotion cause
labels. The CCRC dataset (Chen et al., 2020a)
is also built based on the ECE dataset. It is con-
structed following two steps: manual annotation
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Method
ECPE Emotion Extraction Cause Extraction ECE CCRC

F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%)
UECA-Prompt 73.39 70.01 77.26 87.64 84.26 91.43 75.35 72.06 79.21 83.19 82.74 83.73 80.74 77.07 84.87

w/o fs 73.24 69.31 77.96 87.38 83.93 91.24 74.95 71.89 78.80 82.82 82.89 82.81 80.39 75.29 86.38
w/o fe 73.56 70.93 76.59 - - - 76.16 75.22 77.21 73.11 72.26 74.18 - - -
w/o fca 71.43 68.91 74.46 87.51 83.90 91.57 - - - 82.72 80.46 85.25 - - -
w/o fd - - - 87.21 83.75 91.09 75.44 73.07 78.13 83.23 82.74 83.95 - - -

Table 9: Ablation study on ECPE, ECE, and CCRC tasks.

and negative sampling. Each dataset is randomly
split into ten folds for cross validation.

5.2 Implementation Details

The optimizer is AdamW (Loshchilov and Hutter,
2017). The batch size and learning rate are set to 8
and 1e-5, respectively. M is set to 3. The weight
decay is set to 0.01 while other parameters of β1,
β2 and ϵ are set to 0.9, 0.999 and 1e-8 by default.
The dropout rate of the attention layer and hidden
layer in BERT are both slightly modified to 0.2.
The prompt method is implemented based on the
BERT initialized with “BERT-Base, Chinese”1 to
achieve a fair comparison since the selected base-
lines are mostly based on BERT. All experiments
are run on the machine containing a piece of RTX
3090 GPU.

During testing, to get a fair comparison on the
original bias dataset, the indicate token in the word
label set for the prediction of the directional con-
straint module is restricted to a smaller boundary,
which achieves better performance. Specifically,
for the i-th clause, the prediction result of the as-
sociated clause will be between i − l and i + l.
The experiment shows that our method achieves
the best results when l = 2.

5.3 Baselines and Evaluation Metrics

The proposed UECA-Prompt is compared with
several state-of-the-art methods for different ECA
tasks.

Baselines for ECE. Baselines include statisti-
cal learning methods, Multi-kernel (Gui et al.,
2016b); And deep learning methods, MANN (Li
et al., 2019), RHNN (Fan et al., 2019), RTHN (Xia
et al., 2019), FSS-GCN (Hu et al., 2021b) , and
EF-BHA (Hu et al., 2021a).

Baselines for ECPE. Baselines include two-step
methods, Inter-EC (Xia and Ding, 2019); And
end-to-end methods, UTOS (Cheng et al., 2021),
PairGCN (Chen et al., 2020c), TransECPE (Fan

1https://github.com/huggingface/transformers

et al., 2020), MTST (Fan et al., 2021), RANK-
CP (Wei et al., 2020), and ECPE-MLL (Ding
et al., 2020b).

Baselines for CCRC. Baselines include BiL-
STM + Concatenation (Chen et al., 2020a), BiL-
STM + BiLSTM (Chen et al., 2020a), and BiL-
STM + Self-Attention (Chen et al., 2020a).

Evaluation Metrics. Following the previous
works (Xia and Ding, 2019; Fan et al., 2020), this
paper adopts the precision (P), recall (R), and F1
score (F1) as the metrics for evaluation. The fi-
nal results are obtained by averaging the ten-fold
results.

5.4 Main Results

UECA-Prompt produces competitive results when
compared with the other baselines on three tasks.

Results on ECPE. Table 2 reports the results of
three task objectives of ECPE. The competitive
performance of our method is mainly attributed to
the significant improvement of the recall. This is
because the sub-prompt modules in UECA-Prompt
pay more attention to global information of the
entire document rather than the local prediction for
a single clause. However, this will lead to the loss
of precision to a certain extent.

The comparison between UECA-Prompt and
UECA-Prompt (m2m) shows that the performance
of our method with the M2M module is not al-
ways superior. This is because multi-emotion sam-
ples only account for a small proportion of the
dataset. Additional experiments on those multi-
emotion samples are conducted. The results in
Table 3 show that the method with M2M module
obtains 2.3% improvements on ECPE. This indi-
cates that the incorporation of the M2M module
helps better handle the multi-emotion instances.

Results on ECE. The result in Table 4 demon-
strates that UECA-Prompt obtains better results
than RHNN (+5.26% in F1). This shows the
clear advantage of modeling the emotional causal-
ity through constructing prompt. Different from
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Method
ECPE Emotion Extraction Cause Extraction

Method
ECE

F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%)
UTOS-BERT 34.14 42.76 28.95 66.45 83.69 56.08 36.29 45.83 30.55 PAE♢ 38.51 55.11 30.78

ECPE-MLL-bert 45.57 61.53 36.39 80.33 77.15 84.04 54.68 51.40 59.01 PAEDGL♢ 40.96 55.25 32.79
MTST+Refinement 44.93 51.99 40.34 64.10 77.65 55.46 48.84 56.25 43.96 RTHN♢ 54.45 54.67 54.66

UECA-Prompt 49.37 46.30 53.22∗ 76.15 68.68 85.67∗ 50.64 45.75 57.71 EF-BHA♢ 60.61 56.40 65.49
UECA-Prompt (m2m) 49.93∗ 48.60 52.11 75.66 70.66 81.68 51.28∗ 44.76 61.23∗ UECA-Prompt 65.62∗ 63.67∗ 68.12∗

Table 10: Experimental results on the de-bias dataset for ECE and ECPE. ♢ indicates the results are reported in (Hu
et al., 2021a). ∗ indicates statistically significant improvement (p < 0.01) over the best baseline.

Method
ECPE Emotion Extraction Cause Extraction ECE CCRC

F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%)
UECA-Prompt 73.39 70.01 77.26 87.64 84.26 91.43 75.35 72.06 79.21 83.19 82.74 83.73 81.18 76.35 86.76

UECA-Prompt+ECE 74.86 72.59 77.44 88.23 84.94 91.90 76.80 75.06 78.78 - - - 81.18 76.35 86.76
UECA-Prompt+ECPE - - - - - - - - - 83.46 84.32 82.70 80.98 76.08 86.78
UECA-Prompt+CCRC 74.70 71.82 77.99 88.16 84.75 91.95 77.55 76.24 79.16 84.40 84.57 84.27 - - -

Table 11: The experimental results of UECA-Prompt under cross-task training and non-cross-task training. UECA-
Prompt+ECE, UECA-Prompt+ECPE and UECA-Prompt+CCRC are the results with cross-taks training.

ECPE, ECE is essentially single-task learning. The
improvement of our method in precision on the
ECE task verifies our conjecture that multi-task
learning will lead to a decrease in precision.

Results on CCRC. Table 5 shows that
UECA-Prompt significantly outperforms BiL-
STM+BiLSTM (+11.42% in F1). This indicates
that UECA-Prompt can capture global context
information, which is essential in emotion cause
analysis.

5.5 Experimental Results Under Few-shot
Setting Scenario

To further explore the potential of our method, few-
shot setting experiments with 10% of training data
are conducted. This section reports the experimen-
tal results under few-shot setting scenario. We
compare the proposed UECA-Prompt with some
state-of-the-art methods under the same experimen-
tal setting.

Results on ECPE. The results on ECPE task are
shown in Table 6. UECA-Prompt obtains the best
result toward the emotion cause pair extraction ob-
jective. It further proves that UECA-Prompt has
the advantage in modeling the relation between
emotion and cause. On the emotion extraction
and cause extraction objectives, UECA-Prompt is
slightly inferior to ECPE-MLL. This may be due
to the data bias brought to ECPE-MLL.

Results on ECE. As shown in the last row of
Table 7, UECA-Prompt achieves the best results on
all evaluation metrics. Our method even approxi-
mates or exceeds the model trained under complete
training sets (See Table 4). Compared with other

methods, UECA-Prompt can better capture the as-
sociation between emotion and cause with a few
training samples.

Results on CCRC. UECA-Prompt also outper-
forms the state-of-the-art methods on the CCRC
task. We observe that the simpler approach works
better. For example, simply feature concatenation
is more excellent than encoding features with BiL-
STM or self-attention.

5.6 Ablation Study

UECA-Prompt is comprised of four sub-prompt
components: emotion indicator function fe, cause
indicator function fca, directional constraint fs, and
sequential learning fd. To verify the effect of differ-
ent components, ablation experiments are carried
out for different modules. The results are given in
Table 9.

The performance of UECA-Prompt on the ECPE
task integrally declines without any of the four com-
ponents. This indicates that each of the four sub-
prompt components plays distinct roles in feature
learning, thereby proving the effectiveness of the
four components. Specifically, the performance
drops sharply without the cause indicator function.
This observation indicates that the extraction of the
cause clause is predominant in the ECPE task.

The influence of the emotion indicator function
is significant on ECE tasks because the emotion
clause is the most important information in ECE.
Furthermore, UECA-Prompt can still achieve better
performance than Multi-Kernel without emotional
information on ECE tasks. This means UECA-
Prompt is competent to obtain useful information
from the context.

The result for the CCRC task shows that the
7038



(a) ECPE (b) ECE (c) CCRC
12 ⽆ 奈 才 选 择 跳 楼 轻 ⽣

1   为 尽 快 将 ⼥ ⼦ 救 下
2   指 挥 员 立 即 制 订 了 救 援 ⽅ 案
3 第 ⼀ 组 在 楼 下 铺 设 救 ⽣ ⽓ 垫
4   并 对 周 围 ⽆ 关 ⼈ 员 进 ⾏ 疏 散
5   另 ⼀ 组 队 员 快 速 爬 上 6   楼
6   在 楼 内 对 ⼥ ⼦ 进 ⾏ 劝 说
7   劝 说 过 程 中
8   消 防 官 兵 了 解 到
9   该 ⼥ ⼦ 是 由 于 对 ⽅ 拖 ⽋ ⼯ 程 款
10 家 中 又 急 需 用 钱
11 ⽣ 活 压 ⼒ ⼤

[MASK] [MASK]  [MASK]

[MASK]  [MASK]   [MASK]

[MASK]   [MASK]  [MASK]

[MASK]  [MASK]  [MASK]

[MASK]  [MASK]  [MASK]

[MASK]   [MASK]   [MASK]

[MASK]  [MASK]  [MASK]

[MASK]   [MASK]   [MASK]

[MASK]   [MASK]   [MASK]

[MASK]   [MASK]   [MASK]

[MASK]  [MASK]  [MASK]

[MASK]  [MASK]  [MASK] 12 ⽆ 奈 才 选 择 跳 楼 轻 ⽣ 是

1 为 尽 快 将 ⼥ ⼦ 救 下 非
2 指 挥 员 立 即 制 订 了 救 援 ⽅ 案 非
3   第 ⼀ 组 在 楼 下 铺 设 救 ⽣ ⽓ 垫 非
4   并 对 周 围 ⽆ 关 ⼈ 员 进 ⾏ 疏 散 非
5   另 ⼀ 组 队 员 快 速 爬 上 6   楼 非
6   在 楼 内 对 ⼥ ⼦ 进 ⾏ 劝 说 非
7   劝 说 过 程 中 非
8 消 防 官 兵 了 解 到 非
9   该 ⼥ ⼦ 是 由 于 对 ⽅ 拖 ⽋ ⼯ 程 款 非
10 家 中 又 急 需 用 钱 非
11 ⽣ 活 压 ⼒ ⼤ 非

[MASK]  [MASK]

[MASK]   [MASK]

[MASK]  [MASK]

[MASK]  [MASK]

[MASK]  [MASK]

[MASK]   [MASK]

[MASK]  [MASK]

[MASK]   [MASK]

[MASK]   [MASK]

[MASK]   [MASK]
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1   为 尽 快 将 ⼥ ⼦ 救 下
2   指 挥 员 立 即 制 订 了 救 援 ⽅ 案
3 第 ⼀ 组 在 楼 下 铺 设 救 ⽣ ⽓ 垫
4   并 对 周 围 ⽆ 关 ⼈ 员 进 ⾏ 疏 散
5   另 ⼀ 组 队 员 快 速 爬 上 6   楼
6   在 楼 内 对 ⼥ ⼦ 进 ⾏ 劝 说
7   劝 说 过 程 中
8   消 防 官 兵 了 解 到
9   该 ⼥ ⼦ 是 由 于 对 ⽅ 拖 ⽋ ⼯ 程 款
10 家 中 又 急 需 用 钱
11 ⽣ 活 压 ⼒ ⼤

[MASK] [MASK]  [MASK]

[MASK]  [MASK]   [MASK]

[MASK]   [MASK]  [MASK]

[MASK]  [MASK]  [MASK]

[MASK]  [MASK]  [MASK]

[MASK]   [MASK]   [MASK]

[MASK]  [MASK]  [MASK]

[MASK]   [MASK]   [MASK]

[MASK]   [MASK]   [MASK]

[MASK]   [MASK]   [MASK]

[MASK]  [MASK]  [MASK]

[MASK]  [MASK]  [MASK]

Figure 4: Visualization of the token for different tasks. The Chinese token “是" means “is", while “非" means
“isn’t". The intensity of color is proportional to the weight value, which is the mean result of all heads and all layers
in BERT.

performance of UECA-Prompt slightly degrades
without the component of sequential token learning.
This is mainly due to the change in precision. This
indicates that eliminating the learning effect of the
sequential learning module would impair the direc-
tional constraint module to extrapolate the correct
results.

5.7 Analysis

Results on De-bias Data To verify the ability of
UECA-Prompt to ease the bias caused by relative
position, this paper conducts the experiments on
de-bias datasets (Ding and Kejriwal, 2020). The
results are shown in Table 10. The experiments
are only conducted on ECPE and ECE because
the CCRC task is position-irrelevant. Our method
gains at least 5.01% improvement of F1 on the ECE
task and attains a 3.8% improvement of F1 on the
ECPE task. The results show that UECA-Prompt
is more robust than baselines.

Commonalities Among Tasks To further ex-
plore the universality of UECA-Prompt, we train
the model with the cross-task training method. The
experimental results are shown in Table 11. It could
be observed that the cross-task training method im-
proves the performance of UECA-Prompt on three
tasks. This indicates that UECA-Prompt can learn
the commonalities among ECA tasks. It is note-
worthy that the model firstly trained on the CCRC
task (UECA-Prompt+CCRC) achieves the best per-
formance. This result shows the importance of con-
textual information and demonstrates that UECA-
Prompt could discriminate different contexts.

6 Case Study

To further understand the operation principle of
UECA-Prompt, Fig. 4 visualizes the attention for
different tokens in the constructed prompt text of

a Chinese text. The subgraph (a), (b), and (c) in
Fig. 4 represent the attention weights in ECPE,
ECE, and CCRC, respectively. The query token is
marked with the red box.

It can be observed that the attention weights are
mainly concentrated in the answer slot [M] and the
context in emotion and cause clauses. This indi-
cates that different sub-prompt modules in UECA-
Prompt could capture the key information of emo-
tion and cause clauses as well as cooperate.

7 Conclusions

This paper proposes a universal prompt method for
emotion cause analysis tasks. UECA-Prompt could
uniformly model different ECA tasks by decompos-
ing ECA tasks into multiple objectives and convert-
ing these objectives into sub-prompts. Meanwhile,
the proposed directional constraint module and se-
quential learning module could effectively ease the
bias caused by position information. Moreover,
the cross-task training method further improves
the performance of UECA-Prompt. The ability of
UECA-Prompt to learn commonalities and contex-
tual knowledge from different tasks is verified. The
experimental results on three ECA tasks demon-
strate the effectiveness of the proposed method.

This work chooses the general model, BERT,
for a fair comparison. The sentiment-related PLM,
such as SKEP (Tian et al., 2020), may further im-
prove the performance of UECA-Prompt, which
will be explored in our future work.
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Abstract

Knowledge distillation is an effective method
to transfer knowledge from a large pre-trained
teacher model to a compacted student model.
However, in previous studies, the distilled stu-
dent models are still large and remain impracti-
cal in highly speed-sensitive systems (e.g., an
IR system). In this study, we aim to distill a
deep pre-trained model into an extremely com-
pacted shallow model like CNN. Specifically,
we propose a novel one-teacher and multiple-
student knowledge distillation approach to dis-
till a deep pre-trained teacher model into mul-
tiple shallow student models with ensemble
learning1. Moreover, we leverage large-scale
unlabeled data to improve the performance of
students. Empirical studies on three sentiment
classification tasks demonstrate that our ap-
proach achieves better results with much fewer
parameters (0.9%-18%) and extremely high
speedup ratios (100X-1000X).

1 Introduction

Sentiment classification is a task of classifying a
text into sentimental orientation categories, such
as positive and negative, and this task plays an im-
portant role in natural language processing (NLP)
and benefits many real applications (Clavel and
Callejas, 2016; Shen et al., 2018; Wang et al.,
2019).

The past few years have witnessed the prevail-
ing of deep pre-trained models on sentiment clas-
sification (Yu and Jiang, 2019; Ke et al., 2021;
Chen et al., 2021). However, despite their signif-
icant improvements over non-pre-trained models
like CNN and LSTM, their need for a large num-
ber of computing resources and relatively long in-
ference time becomes a major bottleneck for real-
world applications.

∗*Corresponding author
1Our code is available at https://github.com/

strive-hhh/OTMS-KD

To solve this problem, knowledge distillation,
which transfers knowledge from a large model
(the teacher) to a smaller model (the student), is
gaining popularity for reducing the computing and
time costs. However, existing distilled models’
parameters are still too large for some low-end
devices and speed-sensitive applications. For in-
stance, sentiment classification is usually an es-
sential component of an information retrieval (IR)
system (Paltoglou and Thelwall, 2010; Kauer and
Moreira, 2016), in which users are highly speed-
sensitive to the responding speed. Thus, improv-
ing the inference speed of the pre-trained model
on sentiment classification becomes a critical el-
ement of applying the pre-trained sentiment clas-
sification model to IR applications. Motivated
by the above, in this paper, we aim to propose a
novel distillation technique that can distill a huge-
parameterized pre-trained model like BERT (De-
vlin et al., 2019) into a minimal-parameterized
non-pre-trained model like CNN or LSTM.

In principle, compared with traditional shal-
low models, deep pre-trained models have two
major advantages. First, most pre-trained mod-
els are architectured in the manner of ensemble
learning. In the literature, ensemble learning
has been proven to be effective in performance
boosting. For instance, BERT combines multi-
ple Transformer layers under an ensemble archi-
tecture. Meanwhile, each Transformer layer con-
tains the attention ensemble by using multiple self-
attention heads (Vaswani et al., 2017).

Second, a pre-trained model highly benefits
from the knowledge contained in unlabeled data.
For instance, the BERT-base model is pre-trained
using unlabeled data containing 3.3 billion words
from Wikipedia and BooksCorpus. At least, the
large scale of unlabeled data enables the pre-
trained model to handle unknown words in a down-
stream task more easily. For instance, given a
sentence “Everything is awesome!”, suppose that
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Figure 1: (a): The framework of most existing approaches; (b): The framework of our approach.

the word “awesome” is not observed in the train-
ing data in a sentiment classification task. Thus,
non-pre-trained shallow models like CNN-based
or LSTM-based classifiers cannot easily determine
the sentiment orientation of “awesome”. On the
contrary, however, pre-trained models like BERT
can infer the meaning of “awesome”, which is
close to the observed word “excellent”.

In this paper, inspired by the above, we pro-
pose a novel ensemble knowledge distillation ap-
proach by leveraging both ensemble learning and
unlabeled data. Specifically, first, we use mul-
tiple shallow models, together with their ensem-
ble model, as student models during distillation
in order to take advantage of ensemble learning.
Thanks to many previous studies on multi-view
learning on sentiment classification, multiple stu-
dent models could be easily obtained by using vari-
ous kinds of multiple views, such as multiple types
of embeddings (Ren et al., 2016) and multiple lan-
guages (Fei and Li, 2020). Second, we leverage
large-scale unlabeled sentiment classification cor-
pora during distillation. Different from most previ-
ous studies on one-teacher and one-student knowl-
edge distillation, we propose a one-teacher and
multiple-student ensemble distillation framework,
which is illustrated in Figure 1.

Empirical studies on three sentiment classifica-
tion tasks demonstrate that our approach outper-
forms the pre-trained teacher models with much
fewer parameters (0.9%-18%) and extremely high
speedup ratios (100X-1000X).

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the re-
lated studies on sentiment analysis and knowledge
distillation. Section 3 explains the details of our

approach. Section 4 introduces the experimental
settings and results. Section 5 states the conclu-
sion and the future work.

2 Related Works

2.1 Sentiment Classification

In the last decade, the studies of sentiment clas-
sification have been dominated by neural network
approaches. This line of research begins with de-
veloping sentiment classification models with shal-
low models, such as CNNs (Rakhlin, 2016; John-
son and Zhang, 2015), RNNs (Castellucci et al.,
2014; Tang et al., 2015), and LSTM (Tai et al.,
2015). Thereafter, some studies incorporate other
methods into shallow models, such as attention
methods (Yang et al., 2017; Liu and Zhang, 2017;
Zeng et al., 2019) and graph neural networks, e.g.,
GCN (Marcheggiani and Titov, 2017; Vashishth
et al., 2019).

Recently, deep pre-trained neural network mod-
els are becoming popular due to their highly
promising performances. Large-scale pre-trained
language models, such as ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019; Gao et al.,
2019), and RoBERTa (Liu et al., 2019), have
been shown to be rather effective for sentiment
classification tasks with the learning paradigm of
fine-tuning. More recently, pre-training models
with the learning paradigm of prompt have be-
come popular in some zero-shot or few-shot nat-
ural language processing tasks, among which sen-
timent classification is a classic and important task
(Schick et al., 2020; Schick and Schütze, 2020;
Gao et al., 2020).
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2.2 Knowledge Distillation

In the field of natural language processing, the ma-
jority of the previous work on knowledge distilla-
tion has attempted to reduce the depth of BERT.
For instance, Tang et al. (2019) propose compress-
ing BERT models into a small LSTM model. Sun
et al. (2019) introduce the Patient Knowledge Dis-
tillation approach to compress a large model into
an equally effective lightweight shallow network.
Sanh et al. (2019) develop a general-purpose pre-
trained version of BERT called DistilBERT. Jiao
et al. (2019) also propose a compact model called
TinyBERT based on a new two-stage learning
framework that captures both the general domain
and task-specific knowledge in BERT. Zhou et al.
(2021) suggest training a light named entity recog-
nition using novel multi-grained knowledge distil-
lation techniques. Instead of reducing the depth of
BERT, Sun et al. (2020) attempt to reduce its width
and develop a deep and thin model called Mobile-
BERT. Unlike the existing fixed-size BERT com-
pression models, Hou et al. (2020) introduce the
DynaBERT model which can adjust the size and
latency by selecting the sub-networks with differ-
ent depth and width.

More recently, Reich et al. (2020) and Wu et al.
(2021) propose multiple-teacher and one-student
knowledge distillation frameworks for pre-trained
language model compression. Besides, in the re-
search field of computer vision, teacher-free en-
semble distillation approaches, i.e., zero-teacher
and multiple-student approaches, have been pro-
posed in (Chen et al., 2020; Guo et al., 2020;
Walawalkar et al., 2020; Li and Wang, 2019).

Different from the above studies, this paper in-
troduces a novel ensemble knowledge distillation
approach with the paradigm of one-teacher and
multiple-student, harnessing the power of multi-
ple shallow student models during distillation. To
the best of our knowledge, this is the first work
to research the ensemble knowledge distillation
paradigm of the one-teacher and multiple-student
model.

3 Methodology

In this section, we introduce the details of our ap-
proach.

3.1 Problem Description

Let D be a dataset and it contains both labeled
data and unlabeled data where Dl = {x, y} is la-

beled data and Du = {xu} is unlabeled data. Our
one-teacher and multiple-student knowledge distil-
lation approach aims to distill the knowledge from
a pre-trained teacher model f(x; θt) into an ensem-
bled student model g(x; θs), where θt and θs are
the model parameters of the teacher and the stu-
dent respectively. In contrast to most existing stud-
ies, the parameters of the ensemble student model
are much fewer than those of the teacher model,
(i.e., |θs| << |θt|).

In this study, we apply our approach to three dif-
ferent types of sentiment classification tasks, i.e.,
supervised sentiment classification, zero-shot sen-
timent classification, and cross-lingual sentiment
classification.

3.2 One Teacher Model
The teacher model is trained in different manners
according to different types of sentiment classifi-
cation tasks.
Supervised or Cross-lingual Sentiment Classi-
fication: In the supervised or cross-lingual sen-
timent classification task, we train the teacher
model in a supervised manner. Let {xi, yi}N

i=1 be
a training set which contains N labeled training
samples. xi and yi denote the ith input sample of
the teacher and its gold label, respectively.

Following the work of Sun et al. (2019), the
teacher model first computes the embedding ht

i =
f(xi; θ

t) of xi where f represents the function of
the teacher network. Then the teacher model feeds
ht

i into a linear layer and a softmax activation func-
tion to obtain the predicted sentiment label of xi,
i.e.,

ŷi = P t(yi|xi) = softmax(Wtht
i) (1)

where the superscript t means “teacher” model,
Wt denotes the weight matrix to be learned in the
linear layer. The tuned parameters of the teacher
model can be represented as follows:

θ̂t = arg min
θt

N∑

i=1

Lt
CE(xi, yi; [θ

t,Wt]) (2)

where Lt
CE denotes the cross-entropy loss func-

tion applied in teacher’s training. Then, the
teacher model predicts samples in unlabeled data
with soft labels, i.e.,

ŷu = P t(yu|xu) = softmax(
Wtht

u

T
)

= softmax(
Wtf(xu; θ̂t)

T
)

(3)
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where P t(·|·) denotes the prediction probability of
the teacher. θ̂t denotes the updated parameters of
the teacher. T denotes the temperature during dis-
tillation.
Zero-shot Sentiment Classification: In the zero-
shot sentiment classification task, following the
work of Gao et al. (2020), the teacher model is a
prompt-based zero-shot learner. Let xu

N ′
u=1 be N ′

unlabeled data. Given an unlabeled sample xu, a
rewritten input through a manual prompt template
is generated as follows:

xprompt
u = [CLS] xu It was [MASK]. [SEP ]

Let M : Y → V be a mapping from the task
label space to sentiment words. In our sentiment
classification task, the sentimental labels {0, 1}
are mapped into two opinion words, i.e., {terrible
(negative), great (positive)}. Then xprompt

u is pre-
dicted by the teacher model through predicting the
probability of filling [MASK] with terrible (or
great), which can be considered as the probability
of predicting label. Specifically, the teacher model
outputs the hidden representation of [MASK]:

h[MASK] = f(xprompt
u ; θt) (4)

where h[MASK] denotes the hidden representation
of [MASK]. Then the probability of predicting
label (i.e., the soft label) is fetched through a linear
layer and a softmax activation function, i.e.,

P t(yu|xu) = P t([MASK] = M(y)|xprompt
u )

= softmax(
WM(y) · h[MASK]

T
)

(5)
where M(y) ∈ {terrible, great} denotes a cer-
tain sentiment word, and WM(y) denotes the pre-
trained weight of the sentiment word.

3.3 Multiple Student Model
The ensembled student model consists of k student
models. Let Au be the sequential input (i.e., a
matrix of word embeddings of a sentence) of the
students model. gj(Au; θs

j ) represents the func-
tion of the jth student network, where j ∈ [1, k]
and θs

j denotes its parameters. Each student model
first computes the vectorized representation hs

uj =
gj(Au; θs

j ) of xu. hs
uj is then fed into a linear layer

to obtain the prediction probability of the jth stu-
dent model, i.e.,

ŷuj = P s
j (yu|Au) = Ws

jh
s
uj (6)

where Ws
j is the weight matrix of the jth student

model to be learned, and P s
j (·|·) denotes the pre-

diction probability of the jth student model. The
final ensembled probability is the weighted sum of
all students’ outputs, i.e.,

P s
ensemble(yu|Au) = softmax(

∑k
j=1 αs

j ∗ ŷuj

T
)

(7)
where αs

j ∈ [0, 1] denotes the weight of the pre-
diction probability of the jth student model and
subjects to

∑k
j=1 αs

j = 1. In supervised or cross-
lingual sentiment classification, the weights are
learnable during model training with labeled data.
But in zero-shot sentiment classification, since no
labeled data is available, the weights are simply set
to be the same (i.e., αs

1 = αs
2 = ... = αs

k).

3.4 Model Training
The objective loss function of a one-teacher and
one-student distillation model is defined as fol-
lows:

LKD(P t, P s) =
n∑

i=1

T 2DKL(P t
i ||P s

i ) (8)

where n denotes the batch size, P t
i and P s

i denote
the prediction probabilities of the ith sample out-
putted by the teacher and the student, respectively.
DKL is the KL divergence.

Different from the above, our approach applies
an ensembled knowledge distillation loss function
to train the multiple student models. Specifically,
the ensembled KD loss is computed according to
the predicted probabilities of student models as
well as the final ensembled probability, i.e.,

Loss = (
k∑

j=1

λjLKD(P t, P s
j ))

+ λeLKD(P t, P s
ensemble)

(9)

where λj denotes the weight of KD loss of the jth
student and λe denotes the weight of KD loss of
the ensembled students.

The learned ensembled student model is finally
applied for evaluating the test set.

4 Experiments

In this section, we systematically evaluate our one-
teacher and multiple-student knowledge distilla-
tion approach in three types of sentiment classi-
fication tasks, i.e., supervised sentiment classifica-
tion, zero-shot sentiment classification, and cross-
lingual sentiment classification.
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4.1 Supervised Sentiment Classification

Dataset: The data of YELP (sentence-level) (Li
et al., 2018), a widely used dataset for super-
vised sentiment classification, is used. Specifi-
cally, 3,000, 1,000, and 1,000 balanced samples
are selected as training, development, and test data.
An additional 100,000 samples are selected as un-
labeled data which will be leveraged in the distil-
lation process.
Evaluation Metrics: Standard Accuracy and
Macro-F1 are used to evaluate the performance of
sentiment classification. Besides, the parameters
and the inference time of per sample on CPU are
applied to evaluate the operational performance of
the distilled models.
Learning Models and Parameter Settings: All
hyper-parameters are tuned according to the de-
velopment set. The temperature T is set to 1.0.
The batch size is set to 128. The teacher model is
optimized by the AdamW (Loshchilov and Hutter,
2017) optimizer, where the initial learning rate is
2e-5 and weight decay is 1e-3. The student mod-
els are optimized by the Adam (Kingma and Ba,
2014) optimizer, where the initial learning rate is
1e-3 and weight decay is 1e-4 or 1e-5. In this
task, the teacher model is the pre-trained 12-layer
BERT-base, which has been the most frequently-
researched teacher model in previous studies in
the supervised learning setting. The student model
is CNN with 100 kernels of 3 different sizes, in
which the embedding size is 50 and the kernel size
is 3x50, 4x50 and 5x50 respectively.
Multi-view Settings: Different types of word
embeddings are used as multiple views to gen-
erate different student models. Specifically, we
employ three different types of Glove embed-
dings (Pennington et al., 2014), i.e., Glove.6B.50d,
Glove.twitter.27B.50d, and Glove.42B.300d.
Baselines: For comparison, we implement the fol-
lowing knowledge distillation approaches.
(1) DistilBERT (Sanh et al., 2019): This ap-
proach obtains a student model by transferring
knowledge from the last layer of a pre-trained
BERT in both the pre-training stage and optional
fine-tuning stage. This is a one-teacher and one-
student distillation approach and no unlabeled data
is used.
(2) TinyBERT (Jiao et al., 2019): This approach
obtains a student model by transferring knowledge
from BERT with a novel transformer distillation
method. This is a one-teacher and one-student dis-

tillation approach and no unlabeled data is used.
(3) MobileBERT (Sun et al., 2020): This ap-
proach obtains a student model by transferring
knowledge from BERT-Large in the pre-training
stage. This is a one-teacher and one-student distil-
lation approach and no unlabeled data is used.
(4) XtremeDistil (Mukherjee and Awadallah,
2020): This approach obtains a student model by
transferring knowledge from a multilingual pre-
trained model, by leveraging teacher representa-
tions agnostic of its architecture and stage-wise op-
timization schedule. Moreover, this approach em-
ploys unlabeled data to boost performance. This
is a one-teacher and one-student distillation ap-
proach and unlabeled data is used.
(5) MT-BERT (Wu et al., 2021): This approach
obtains a student model with TinyBERT by trans-
ferring knowledge from multiple teachers, i.e.,
BERT, Roberta and UniLM. This is a multiple-
teacher and one-student distillation approach and
no unlabeled data is used.
(6) Distilled BiLSTM (Tang et al., 2019): This
approach obtains a student model with a shallow
neural network BiLSTM by transferring knowl-
edge from BERT. This is a one-teacher and one-
student distillation approach and no unlabeled data
is used.
(7) Distilled Single CNN and Distilled Single
CNN with more parameters: This approach dis-
tills a pre-trained BERT into a CNN with unla-
beled data. The model with more parameters is
obtained by leveraging 275 kernels and the embed-
ding size of 300.

For reference, apart from distillation models,
we also provide the results from models including
CNN, BiLSTM, and Ensembled CNNs, which are
trained with the labeled data only with no knowl-
edge distillation.
Results: As shown in Table 1, compared with
a single CNN, Ensembled CNNs improves very
little (0.2%) when only training data are avail-
able. However, Distilled Ensembled CNNs with
unlabeled data (our approach) achieves a 3.7%
improvement in both Accuracy and Macro-F1.
Moreover, our approach performs better than Dis-
tilled Single CNN with more parameters, which
indicates that performance gain is more the re-
sult of ensemble distillation than only distilling a
larger model. Even better, our approach achieves
a slightly higher classification performance com-
pared with the teacher model.
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Methods #Params Accuracy Macro-F1
BERT-base (Teacher) (Devlin et al., 2019) 109.48M 0.958 0.958

DistilBERT6 (Sanh et al., 2019) 65.78M 0.952 0.952
TinyBERT4 (Jiao et al., 2019) 14.35M 0.938 0.938
TinyBERT6 (Jiao et al., 2019) 66.96M 0.956 0.956
MobileBERT (Sun et al., 2020) 24.58M 0.947 0.947

XtremeDistil (Mukherjee and Awadallah, 2020) † 12.75M 0.960 0.960
MT-BERT4 (Wu et al., 2021) 14.35M 0.945 0.945
BiLSTM (Wang et al., 2018) 2.35M 0.919 0.919

CNN (Kim, 2014) 0.15M 0.927 0.927
Ensembled CNNs 1.20M 0.929 0.929

Distilled BiLSTM (Tang et al., 2019) 2.35M 0.920 0.920
Distilled Single CNN † 0.47M 0.958 0.958

Distilled Single CNN with more parameters † 3.74M 0.960 0.960
Distilled Ensembled CNNs (Our approach) † 3.74M 0.964 0.964

Table 1: Performances in supervised sentiment classification. “†” denotes that this model leverages unlabeled data
during distillation.

Methods #Params Inf. time on CPU
Teacher 109.48M 10.61ms

Our approach 3.74M 0.03ms

Table 2: Operational performance of the teacher model
and our approach in supervised sentiment classifica-
tion.

Operational performance: The parameters and
inference times of the teacher model and our
approach are given in Table 2. The proposed
model has a significantly smaller size (96.6%
fewer parameters) and a notably faster inference
speed (353 times faster) compared with the teacher
model.

Figure 2: The influence of the scale of leveraged unla-
beled data in supervised sentiment classification.

Influence of ensemble learning and leveraging
unlabeled data: Figure 2 shows the influence of
leveraging different scales of unlabeled data and

applying ensemble learning. Both Distilled Sin-
gle CNN and Distilled Ensembled CNNs perform
much worse than the teacher model when no un-
labeled data is available. However, Distilled Sin-
gle CNN is able to achieve a highly similar perfor-
mance compared with the teacher when 100k un-
labeled data are leveraged. Furthermore, Distilled
Ensembled CNNs surpasses the teacher when the
scale of unlabeled data is over 80k.

4.2 Zero-shot Sentiment Classification

Dataset: The data of YELP (sentence-level) (Li
et al., 2018) is used. Specifically, 1,000 balanced
samples are selected as test data. An additional
100,000 samples are selected as unlabeled data,
which will be leveraged in the distillation process.
It is worthwhile to note that no training and devel-
opment data is used in zero-shot sentiment classi-
fication.
Learning Models and Parameter Settings:
The teacher model is the pre-trained 24-layer
RoBERTa-large, which has been shown as an ex-
cellent model for zero-shot learning (Gao et al.,
2020). Other parameter settings and multi-view
settings are the same as supervised sentiment clas-
sification.
Baselines: Since few previous studies have con-
ducted their research on knowledge distillation on
zero-shot learning, we only implement the base-
line approach of Distilled Single CNN with unla-
beled data in this experiment.
Results: As shown in Table 3, Distilled Single
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Methods #Params Accuracy Macro-F1
RoBERTa-large (Teacher) (Liu et al., 2019) 408.98M 0.847 0.844

Distilled Single CNN † 0.46M 0.861 0.859
Distilled Single CNN with more parameters † 3.67M 0.872 0.874

Distilled Ensembled CNNs (Our approach) † 3.67M 0.881 0.879

Table 3: Performances in zero-shot sentiment classification. “†” denotes that this model leverages unlabeled data
during distillation.

Methods #Params Inf. time on CPU
Teacher 408.98M 45.25ms

Our approach 3.67M 0.03ms

Table 4: Operational performance of the teacher model
and our approach in zero-shot sentiment classification.

CNN outperforms the teacher model in both Ac-
curacy and Macro-F1 when 40k unlabeled sam-
ples are leveraged. Moreover, our approach out-
performs the Distilled Single CNN with a 2.0%
improvement in both Accuracy and Macro-F1 and
performs better than Distilled Single CNN with
more parameters.
Operational performance: The parameters and
inference times of the teacher model and our ap-
proach are given in Table 4. The proposed model
has a significantly smaller size (99.1% fewer pa-
rameters) and a notably faster inference speed
(1507 times faster) compared with the teacher
model.

Figure 3: The influence of the scale of leveraged unla-
beled data in zero-shot sentiment classification.

Influence of ensemble learning and leveraging
unlabeled data: Figure 3 shows the influence of
leveraging different scales of unlabeled data and
applying ensemble learning. The zero-shot sen-
timent classification performance grows with the
scale of leveraged unlabeled data when the size is
less than 40k. However, the performance of our

approach declines when the size of unlabeled data
increases to over 60k and 100k. This might be
due to the absence of a training set and validating
set. Fortunately, the weaker performances of our
approach are still better than those of the teacher
model.

4.3 Cross-lingual Sentiment Classification

Datasets: In this experiment, Chinese is consid-
ered as the source language where labeled data is
available and English is considered as the target
language where only unlabeled data (with no la-
beled data) is available. 4,000 and 2,000 labeled
Chinese samples in the document-level data of Ho-
tel Review (Jie et al., 2016) is selected as the train-
ing and development data. 2,000 and 80,000 sam-
ples in the data of YELP (document-level) (Zhang
et al., 2015) is selected as test and unlabeled data.
All English (or Chinese) samples are translated
into Chinese (or English) samples via Baidu Trans-
lator API.
Teacher Models: Several teacher models are de-
signed to perform cross-lingual sentiment classifi-
cation. As shown in Table 5, the first part is to em-
ploy BERT-Chinese-base and XLM-R-base(Chn)
to train the teacher model with Chinese labeled
data. Then, all English samples, i.e., unlabeled
and test samples, are translated into Chinese for
distillation and testing. The second part is to trans-
late the Chinese labeled samples into English and
then train the teacher model with BERT-English-
base and XLM-R-base(Eng). Note that XLM-R
(Conneau et al., 2020) is a state-of-the-art multi-
lingual pre-training model. From Table 5, we can
see that BERT-Chinese-base performs best and
thus we choose it as the teacher model in the dis-
tillation experiment.
Multi-view Settings: English text, Chinese text,
and together with their mixed text, are considered
as three different views to generate three student
models.
Baselines: Since few previous studies have con-
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Methods #Params Accuracy Macro-F1
BERT-Chinese-base (Devlin et al., 2019) 102.27M 0.876 0.876
XLM-R-base(Chn) (Conneau et al., 2020) 278.05M 0.855 0.854
BERT-English-base (Devlin et al., 2019) 109.48M 0.840 0.838

XLM-R-base(Eng) (Conneau et al., 2020) 278.05M 0.873 0.872

Table 5: Performances of different teacher models in cross-lingual sentiment classification.

Methods #Params Accuracy Macro-F1
BERT-Chinese-base (Teacher) (Devlin et al., 2019) 102.27M 0.876 0.876

CNN (Chn) (Kim, 2014) 0.97M 0.691 0.691
CNN (Eng) (Kim, 2014) 0.46M 0.692 0.690

Ensembled CNNs 5.05M 0.714 0.714
Distilled Single CNN (Chn) † 1.31M 0.869 0.869
Distilled Single CNN (Eng) † 2.51M 0.868 0.868

Distilled Single CNN (Chn and Eng) † 15.36M 0.871 0.871
Distilled Ensembled CNNs (Our approach) † 18.88M 0.878 0.878

Table 6: Performances in cross-lingual sentiment classification. “†” denotes that this model leverages unlabeled
data during distillation.

Methods #Params Inf. time on CPU
Teacher 102.27M 268.52ms

Our approach 18.88M 1.22ms

Table 7: Operational performance of the teacher model
and our approach in cross-lingual sentiment classifica-
tion.

ducted their research on knowledge distillation
on cross-lingual learning, we only implement the
baseline approach of CNN, Ensemble CNNs and
Distilled Single CNN with unlabeled Data in this
experiment.
Results: Table 6 shows the results of baselines and
our approach in cross-lingual sentiment classifica-
tion. CNN in both Chinese view and English view
perform much more poorly than the teacher model,
resulting in a significantly lower performance by
Ensembled CNNs. However, by leveraging the un-
labeled data, Distilled Single CNN in three views
improve notably with an over 18% improvement
in Accuracy and Macro-F1 compared with a single
CNN. Furthermore, our approach achieves higher
Accuracy and Macro-F1 than the teacher model.
Operational performance: The parameters and
inference times of the teacher model and our
approach are given in Table 7. The proposed
model has a significantly smaller size (81.5%
fewer parameters) and a notably faster inference
speed (219 times faster) compared with the teacher
model.

Figure 4: The influence of the scale of leveraged unla-
beled data in cross-lingual sentiment classification.

Influence of ensemble learning and leveraging
unlabeled data: Figure 4 shows the influence of
leveraging different scales of unlabeled data and
applying ensemble learning. From this figure, we
can see that, in cross-lingual sentiment classifi-
cation, our approach benefits greatly from unla-
beled data. Moreover, distilling knowledge into
ensembled CNNs results in consistently better per-
formance than distilling knowledge into a single
CNN.

5 Conclusion

In this study, we propose a novel approach of
knowledge distillation, namely one-teacher and
multiple-student knowledge distillation, in senti-
ment classification. Our approach is capable of
compacting a large model into a minimal ensem-
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ble model with both ensemble learning and unla-
beled data. Empirical studies on three sentiment
classification tasks demonstrate that the distilled
model performs even better than the teacher model
with much fewer parameters and a much better op-
erational performance on CPU.

In our future work, we aim to improve our ap-
proach by carefully selecting a suitable number of
unlabeled samples instead of using all of them. In
addition, we would like to apply our approach to
other NLP tasks besides sentiment classification.
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Abstract

Large pre-trained language models (PLMs)
have demonstrated superior performance in
industrial applications. Recent studies have ex-
plored parameter-efficient PLM tuning, which
only updates a small amount of task-specific
parameters while achieving both high efficiency
and comparable performance against standard
fine-tuning. However, all these methods ignore
the inefficiency problem caused by the task-
specific output layers, which is inflexible for us
to re-use PLMs and introduces non-negligible
parameters. In this work, we focus on the text
classification task and propose plugin-tuning, a
framework that further improves the efficiency
of existing parameter-efficient methods with a
unified classifier. Specifically, we re-formulate
both token and sentence classification tasks
into a unified language modeling task, and
map label spaces of different tasks into the
same vocabulary space. In this way, we can
directly re-use the language modeling heads of
PLMs, avoiding introducing extra parameters
for different tasks. We conduct experiments
on six classification benchmarks. The exper-
imental results show that plugin-tuning can
achieve comparable performance against fine-
tuned PLMs, while further saving around 50%
parameters on top of other parameter-efficient
methods.

1 Introduction

In many industrial applications about natural lan-
guage processing, it becomes a de-facto paradigm
that we first pre-train large-scale language models
(PLM) (Devlin et al., 2019; Peters et al., 2018;
Radford et al., 2019) on external corpora and then
fine-tune them on target tasks. However, each fine-
tuned PLM is generally applicable to only one
task. As the number of applications increases,
deploying independent instances of fine-tuned
PLMs for different tasks significantly increases the

∗∗ Equal Contribution.
† Corresponding authors.
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NLI Plugin < TEXT >
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SA OUTPUT
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Use Plugin to Perform Task

Figure 1: An intuitive overview of plugin-tuning. Plugin
tuning only trains and stores a parameter-efficient plugin
rather than a full PLM for each task. Different tasks
share a unified output layer despite different label
spaces.

computation and storage costs. For instance, GPT-
3 (Brown et al., 2020) contains 175B parameters,
which makes it almost impossible to fine-tune and
deploy GPT-3 for target tasks. Even if large-scale
fine-tuned PLMs are available, they are also not
conducive to community distribution and sharing.

Recently, a new branch of researches named
parameter-efficient tuning (Guo et al., 2021; Zaken
et al., 2021; Hu et al., 2022) have received much
attention in the NLP community. Compared to
standard fine-tuning, these methods fine-tune only
a small portion of the model parameters while
keeping most of the PLM parameters frozen (Ding
et al., 2022). The minimal trainable parameters
not only remarkably promote the deployment and
storage efficiency when adapting PLMs, but also
make it feasible to train large-scale PLMs such
as GPT-3. Additionally, recent works validate
that the parameter-efficient methods can achieve
comparable performance with full-parameters fine-
tuning in a wide range of NLP applications
(Aghajanyan et al., 2020; Hu et al., 2022; Ding
et al., 2022).

However, all the existing parameter-efficient
methods ignore the inefficiency problem caused by
the specific output layers for different tasks, which
results in two problems. First, utilizing different
task paradigms and retaining different output layers
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is inflexible and hinders the community model
distribution and sharing. Second, the parameters
introduced by the task-specific output layers are
non-negligible especially under the parameter-
efficient scenarios. These two essential issues
limit parameter-efficient tuning from being further
efficient.

In this work, we propose plugin tuning, a
framework to further improve all the parameter-
efficient methods in classification tasks. We unify
all the classification tasks into a same paradigm,
thus different tasks can be performed with a unified
classifier. Meanwhile, no trainable parameter is
required for training the classifier. Specifically, we
re-formulate different tasks into a same language
modeling task, and directly reuse the language
model heads of PLMs for classification. The label
spaces of different tasks are mapped to task-specific
label words, all belonging to a unified vocabulary
space. To select the proper label words, we propose
a principled algorithm that is applicable to both
token and sentence classification tasks. In this way,
the efficiency of all the parameter-efficient methods
can be largely promoted. Additionally, the unified
task paradigm provides a new way to perform
classification tasks with generative PLMs such as
GPT-3, which is unexplored in existing parameter-
efficient methods. Our codes are publicly available
at Github1.

Our contributions can be summarized as follows:

• We propose a unified paradigm for all classifi-
cation tasks to further improve the efficiency
based on all parameter-efficient methods.

• We propose a principled way to select proper
label words for both token and sentence
classification tasks. Intensive experiments are
conducted to analyze the proposed method.

• Plugin-tuning can achieve comparable perfor-
mance with full-size fine-tuning on six tasks,
as well as save up to 50% of the parameters
required by the parameter-efficient tuning.

2 How to Boost Efficiency of Fine-tuning?

2.1 Standard Fine-tuning

We start with the introductions of fine-tuning PLM
on token and sentence classification tasks, followed
by the disadvantages of fine-tuning.

1https://github.com/xzhou20/Plugin-tuning

Given a sequence of tokens X = [x1, ...xn], the
PLM usually encodes X with multi-layer bidirec-
tional Transformer and outputs its representation
of final hidden state:

H = encoderΦ(X), (1)

where H ∈ Rn×dh , dh is the dimension of the
hidden state and Φ is the parameters of transformer
layers. After encoding, a simple softmax classifier
is added to the top of encoder to predict the target
label based on the task.

Suppose we are given a sentence classification
task S with label space LS ∈ RlS . The aim of S is
to predict a label y ∈ LS of sentence X:

p(y|hcls) = Softmax(WShcls), (2)

while a token classification task T aims to predict
a label yi ∈ LT of each xi in sentence X:

p(yi|hi) = Softmax(WThi), (3)

where WS ∈ Rdh×lS and WT ∈ Rdh×lT .
During training phase, the standard fine-tuning

directly updates all parameters to minimize the
following objective:

Sentence : min
ΦS ,WS

− log(P (y|X)) y ∈ LS ,

(4)

Token : min
ΦT ,WT

−
n∑

i

log(P (yi|X)) yi ∈ LT ,

(5)

where ΦS , WS , ΦB and WT are fine-tuned param-
eters for target tasks. A major drawback of fine-
tuning is the need to update all parameters of the
PLM. Updating large-scale Φ results in significant
computation costs, and fine-tuned parameters ΦS
and ΦB are also inefficient to store and deploy.

2.2 Not All Parameters are Critical
The question to be asked here is: do we really
need to update all the parameters? Although
the theoretical questions are not well explored,
empirical evidence shows that: not all parameters
are critical to be updated (Aghajanyan et al., 2020;
Chen et al., 2020). Recent parameter-efficient
tuning with distinct tuned parameter selection
could achieve comparable performance to standard
fine-tuning. In this way, we do not fine-tuning
the large-scale Φ, but instead update selected ∆Φ
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Figure 2: An overview of plugin-tuning. (a) is the three types of parameter-efficient methods, which can be used as
our plugin. (b) shows the flow of plugin-tuning, we input the text and task-specific plugin to the deployed PLM, the
PLM influenced by plugin outputs the label words in the sentence. The actual labels are obtained by label word
mapping. “John” and “great” are label words selected by querying language model, respectively representing label
“PER” for task NER and label “Positive” for task SA.

where |∆Φ| ≪ |Φ|. Ding et al. (2022) divides
existing parameter-efficient methods into three
groups: (1) addition-based methods (Houlsby et al.,
2019) introduce extra trainable neural modules
or parameters that do not exist in the original
model or process. (2) specification-based methods
(Zaken et al., 2021) only update certain parameters
in the original model. (3) reparameterization-
based methods (Hu et al., 2022) transform existing
parameters to a smaller size. An example of
above methods is shown in Figure 2 (a). In this
paper we refer to these task-specific parameters ∆Φ
collectively as plugin for convenience, regardless
which parameter-efficient method is used.

2.3 Output Layers: An Overlooked Problem
A critical problem overlooked in parameter-
efficient methods is the efficiency problem of
different output layers. Aghajanyan et al. (2020)
shows that only a few thousand parameters are
enough to handle various NLP tasks. However, no
matter how efficient the method is, the task-specific
output layers introduce non-negligible parameters,
especially when encountering a large label space.
(e.g., ten labels will introduce 10,240 parameters
of classifier when using bert-large) . In addition
to efficiency, parameter-efficient methods keep
the model parameters consistent with pre-trained

parameters, but we do not keep the optimization
objective consistent with pre-training. The gap
between downstream tasks and pre-training tasks
may lead to sub-optimal performance (Liu et al.,
2021a). This problem can not handle easily
because of the different label spaces for different
tasks. Therefore, the task-specific output layers
hinder the further improvement of effectiveness
and efficiency for all parameter-efficient methods,
which cannot be overlooked.

3 Our Method

In this work, we propose plugin-tuning, a unified
framework to improve parameter-efficient tuning.
Our method is based on parameter-efficient tuning
but avoids the problems caused by task-specific
output layers. An overview of plugin-tuning is
shown in Figure 2. The plugin here refer to
the trainable parameters required for parameter-
efficient method. We inject the plugin to the frozen
PLM, and the plugin is applied to a specific position
to control the PLM, as shown in Figure (a). The
PLM will predict the label word in label-related
position of sentence, and the real label can be
obtained by label word mapping. Any parameter-
efficient method can serve as our plugin. We only
optimize the lightweight plugin during training
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while keeping other parameters frozen. The details
of the unified classifier are shown in the following
subsections.

3.1 Unified Classifier
As shown in Section 2.3, the different label spaces
make it hard to share a unified output layer.
Inspired by prompt-base tuning (Liu et al., 2021b),
we find that a label can be represented by a word. In
this manner, different label spaces can be mapped
to the same vocabulary space. Thus, we propose
a unified classifier to solve this problem by re-
using the language model head. To this end, we
reformulate token and sentence classification tasks
as a unified language modeling task, the PLM is
trained to predict a label word as an indication
of the real label. Furthermore, we propose an
algorithm to search label words automatically by
querying the language model.

Take sentiment classification as an example, we
insert the “It was [MASK].” to the end of the
sentence, and the PLM is expected to predict a
word that indicates the sentiment at the position of
[MASK]. As for token classification such as named
entity recognition (NER), the PLM are trained to
predict a a word that is more common than the
original entity word, as shown in Figure 2 (b).

Formally, suppose we are given a classification
task with label space L, a vocabulary V , a label
word mapping function M : L → V and a
input X = [x1, ..., xn]. The classification task is
reformulated to assign a word yi ∈ V to the special
position:

p(yi|X) = Softmax(Wlmhi), (6)

where h is the final hidden state and i is the label-
related position(position of [MASK] for sentence
classification, all positions for token classification).
In this way, different tasks can re-use the language
model head Wlm as the unified classifier, diverse
label space can be all adapted to the vocabulary V .
Both token and sentence classification tasks have a
unified language modeling objective:

Unified : min
∆Φ
−
∑

i∈Yidx
log(P (yi|X)) yi ∈ V,

(7)

where ∆Φ is the trainable parameters required
by parameter-efficient tuning and Yidx are label-
related positions, yi is the label word, which is
mapped according to its label. We make the word

Algorithm 1 Label Word Searching
Input: Training Set D = {Xi, Yi}Ni=1.
Parameter: Pre-trained language model LM .
Output: Label Word Map M .

1: Let label word map M = ∅;
2: for c ∈ L do
3: Let freqc = ∅;
4: end for
5: for (X = {xi}ni=1, Y = {yi}ni=1) ∈ D do
6: Let Ŷ = LM(X);
7: if i is related to a label c then
8: Select the ten words with the highest

probability from ŷi and update freqc;
9: end if

10: end for
11: for c ∈ L do
12: The most frequent word wfreq ∈ freqc is

selected as label word of c, M [c]← wfreq;
13: end for
14: return M

of label “O” predict itself in token classification. In
prediction phase, we take the word with the highest
probability in the PLM’s prediction and map it to
real labes by label word mapping function M .

3.2 Label Word Search

To avoid the cumbersome label word engineering,
we propose a method to search the label word
automatically. To keep the consistency of pre-
training tasks and downstream tasks, we leverage
the original PLM for label word searching. Since
the classification tasks are reformulated to language
modeling task, a appropriate label word can be
chosen by the PLM itself. We directly leverage
the original pre-trained language model predict the
candidate words at their label-related position and
select the appropriate labeled words based on the
frequency of candidate words under that label. The
process is shown in Algorithm 1.

4 Experiment

We verify the effectiveness of the plugin-tuning
method on a large number of tasks including
both token and sentence classification tasks, and
select representative parameter-efficient methods to
demonstrate that plugin-tuning is compatible with
arbitrary parameter-efficient methods. In addition,
we also simulate real scenarios and counted the
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deployment time to further verify the efficiency of
our method in deployment. Finally, we provide
a comprehensive analysis of the unified classifier,
which is the main module of the plugin-tuning.

4.1 Dataset
To verify the effectiveness of the our method,
we conduct experiments on six representative
classification tasks. Next, we describe the datasets
selected for token classification and sentence
classification respectively. The statistics of the
datasets are summarized in Table 1.

We evaluate the proposed method on three
token classification tasks, including Named Entity
Recognition (NER), Part of Speech tagging (POS)
and text chunking (Chunking). For named entity
recognition, we select the CoNLL 2003 (Sang and
De Meulder, 2003), a newswire domain benchmark.
For part of speech tagging, we select the Wall Street
Journal (WSJ) data from the Penn TreeBank v3
(Marcus et al., 1993). For text chunking, we select
the CoNLL 2000 (Tjong Kim Sang and Buchholz,
2000). BIO2 tagging scheme is used for NER and
chunking.

As for sentence classification tasks, we select
three common tasks, Sentiment analysis (SA),
Natural Language Inference (NLI) and Question
Classification (QC). We select the dataset based on
the amount of data from GLUE (Wang et al., 2018).
For SA, we chose the commonly used SST2. For
NLI, we chose MNLI, a dataset from GLUE with a
large amount of data to challenge our method. For
QA, we choose TREC50 with only thousands of
data to explore whether plugin-tuning can perform
well in this scenario. The test sets for these three
datasets are not publicly available, so we use the
original validation set directly as the test set.

Task Dataset #Train #Test Labels

NER CoNLL2003 204,567 46,666 9

CHK CoNLL2000 211,727 47,377 23

POS WSJ 912,344 129,654 46

SA SST2 67,350 873 2

NLI MNLI 392,702 9815 3

QC TREC50 5452 500 47

Table 1: Statistics of the datasets. # means the number
of sentences in SA, NLI and RC, and means the number
of tokens in the NER, Chunking and POS.

4.2 Baseline
We select representative methods from the three
types of delta tuning to verify whether plugin
tuning is compatible with different delta tuning
methods. Besides that, the standard fine-tuning is
used to show the proper performance of PLMs.
Fine-Tuning (Liu et al., 2019) optimizes all
parameters of the PLM for each task, which is
the main approach for transferring the PLM to
downstream tasks.
LoRA (Hu et al., 2022) is a reparameterization-
based baseline. LoRA injects trainable low-rank
matrices into transformer layers to approximate
the weight updates, which can achieve good
performance with extremely small parameters.
BitFit (Zaken et al., 2021) is a specification-based
baseline. It only trains the bias term and classifier
in the PLM.
Adapter (Houlsby et al., 2019) is a popular
addition-based method of parameter-efficient tun-
ing, which adds adapter layers to every transformer
blocks. Only the adapter layers and the classifier
are trainable during the training phase.
Plugin-tuning is our proposed method, which can
be applied to any parameter-efficient methods to
boost its efficiency and performance.

4.3 Implementation Details
In this work, we implement the parameter-efficient
methods with roberta-base (Liu et al., 2019). Each
parameter-efficient method follows the official
code. AdamW optimizer and linear decaying
schedule are used for all baselines. We search
the learning rate from 1e-3 to 1e-5, epochs from
{5, 10, 30} with a batch size of 16. We report
the best results on the test set for each task. The
model and hyperparameters are selected based on
the validation set. The label word searching is also
based on roberta-base. The selected label word is
shown in the appendix.

4.4 Main Results
In this section, we verify the impact of using
plugin-tuning on the performance and parameters
of parameter-efficient tuning on six tasks. The
results are shown in Table 2. A detailed analysis of
the experimental results is presented below.

Parameter Efficiency Benefiting from the uni-
fied classifier, plugin-tuning can further reduce
task-specific parameters required by parameter-
efficient tuning on all tasks, and its effect is
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Task/Method LoRA BitFit Adapter
Ori→ Plugin-tuning Ori→ Plugin-tuning Ori→ Plugin-tuning

NER F1 91.22→ 91.22 (↑0.00) 91.17→ 91.05 (↓ 0.12) 91.13→ 91.34((↑0.21)
Param 44.3k→ 36.9k (↓15%) 161k→ 153k (↓4%) 127k→ 120k (↓5%)

CHK F1 95.58→ 96.34 (↑1.95) 93.25→94.48(↑1.23) 96.10→ 96.89 (↑0.79)
Param 61.4k→ 36.9k (↓29%) 172k→ 153k (↓10%) 138k→ 120k (↓13%)

POS Acc. 96.84→ 97.42 (↑0.58) 97.03→ 97.57 (↑0.54) 97.51→ 97.54 (↑0.03)
Param 72.2k→ 36.9k (↓49%) 189k→ 153k (↓18%) 156k→ 120k (↓23%)

SA Acc. 93.89→ 94.15 (↑0.16) 94.04→ 94.03 (↓0.01) 94.95→ 94.56 (↓0.39)
Param 38.4k→ 36.9k (↓4%) 156k→ 153k (↓1%) 121k→ 120k (↓1%)

NLI Acc. 85.45→ 85.46 (↑0.01) 84.61→ 84.53 (↓0.08) 86.26→ 86.36 ((↑0.10)
Param 39.2k→ 36.9k (↓6%) 156k→ 153k (↓1%) 122K→ 119K (↓2%)

QC Acc. 92.20→ 92.80 (↑0.60) 91.80→ 92.20 (↑0.40) 92.80→ 93.20 (↑0.40)
Param 73.0k→ 36.9k (↓49%) 190k→ 153k (↓19%) 156k→ 120k (↓23%)

Table 2: Main Results for six classification tasks. We report F1 score for Chunking and NER, accuracy for POS,
SA, NLI and QC. Higher is better for these metrics. Param means the number of task-specific parameters; k stands
for thousand. Lower is more efficient for the Param. We compare the performance and parameters on the Original
baseline and the baseline with Plugin-tuning (Ori→ Plugin-tuning). The change in performance and the percentage
of reduced parameters are calculated. Items marked in red indicate that plugin-tuning boosts its performance or
efficiency.

particularly significant on tasks with many labels.
For tasks with more than 40 labels such as POS,
plugin-tuning can reduce the number of parameters
by up to 49%. For the theoretical worst case, on
the sentiment classification task with only two
labels and the NLI task with three labels, the
advantage of our method is not significant, the
percentage of parameter reduction is at least 1%.
At current stage, plugin-tuning is more suitable for
scenarios where the number of labels is large. As
parameter-efficient tuning develops, the amount of
task-specific parameters required will be further
reduced, and the advantages of plugin-tuning will
gradually become more pronounced.

Overall Performance In addition to the ef-
ficiency of the parameters, plugin-tuning also
achieves performance improvements on most tasks,
and this improvement is mainly seen on the token-
level classification task. The most significant
improvement is in the chunking task, with an
average of 1 point improvement on the three
datasets. We speculate that this is because the
unified classifier reuses the parameters of the pre-
trained model, and the gap between its training
target and the pre-trained task is small, so it can
benefit from the rich knowledge hidden in the
pre-trained model. Token-level tasks with many
categories and a high degree of detail benefit more
significantly from them. For the sentence-level
classification task, there are both gains and losses

in performance after applying plugin-tuning, but
the overall impact on performance is not significant.
We found that neither performance gains nor
performance drops were significant on tasks with
large amounts of data. We conjecture that this
is because neither the task-specific classifier nor
the unified classifier is a dominant factor for
performance when the data is large.

Comparison with Fine-tuning We selected the
best performance among all plugin-tuning results
to compare with standard fine-tuning. The
results are shown in Table 3. Although the
overall performance is inferior to fine-tuning, the
difference between plugin-tuning and fine-tuning
has been negligible. Since number of parameters of
plugin-tuning is only 0.01% of fine-tuning, plugin-
tuning can be used as an efficient and effective
alternative to fine-tuning.

Model POS NER CHK SA NLI QC

Fine-tuning 97.69 91.45 97.03 94.72 87.60 93.20

Plugin-tuning 97.42 91.34 96.89 94.56 86.36 93.20

Table 3: Comparison of standard fine-tuning and plugin-
tuning.

Analysis of Different Tasks and Models Our
method is most useful for Adapter and LoRA, and
is not stable on BitFit. However, the differences in
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Figure 3: Time cost of redeployment. We take the log
value to better show the results.

parameter-efficient methods are not as significant
as the impact of the differences between tasks.
From a task perspective, BitFit is unstable and
performs poorly on larger datasets. Adapter and
LoRA achieve similar and better performance on
most tasks, but LoRA requires a smaller number of
parameters and is therefore more efficient.

4.5 Efficiency Advantage

In this section, we study the difference in the
efficiency of different parameter-efficient methods
on deployment. We focus on redeployment, i.e.,
when a new task arrives, we want to release the
resources of the old model and deploy a model that
can execute the new task. Redeployment is suitable
for scenarios where computational resources are
tight. In online environments, the tasks from users
arrive in the stream, and these tasks are diverse and
hardly the same. The wide variety of tasks makes
models need to be redeployed frequently, and in
time-sensitive systems like search engines, the time
of redeployment is part of the consideration.

To simulate the online setting, we construct the
task streams by randomly sampling 30 to 300
samples from six tasks and show the time cost
for switching tasks, the redeployment strategy is
used at the arrival of each task. To show the
disadvantage of the task-specific classifier, we use
plugin-tuning based on LoRA, which replaces the
task-specific classifier with a unified one. For a fair
comparison, we set the task-specific parameters
of each baseline to 36864 (note that LoRA need
additional parameters for the classifier).

The trend of time cost is shown in Figure 3.
We take the log value to better show the results.
Although the parameters are the same scale, we find
plugin-Classifier takes an additional 50% of time to

reload the task-specific classifier (It will be longer
on tasks with more labels), it demonstrates the
efficiency of the unified classifier. These results can
show the efficiency advantages of plugin-tuning
over other parameter-efficient methods.

4.6 Analysis of Label Word Searching

Although the efficiency and performance of plugin-
tuning have been verified by previous experiments,
another part of plugin-tuning, the label word, still
needs to be further analyzed. In this section,
we show the necessity of label word searching
and discuss the sample efficiency of our proposed
algorithm 1.

4.6.1 Effectiveness Study
There are many ways to select a label word, it is
still a question whether our method can select the
right label words. In our view, a suitable label
word needs to have at least no negative impact on
the model and be easy to obtain. Therefore, in
this section, we compare three different label word
construction methods. (1) Each label word is a
handcraft,designed by Human. the human-created
label word sets are shown in Appendix. (2) Each
label word is a VirtualToken in the vocabulary, the
embedding of special token is randomly initialized.
(3) Each label word is selected by our proposed
AutoSearch algorithm.

We apply plugin-tuning to LoRA and test the
performance of the three label word construction
methods on different tasks based on the same
parameter settings. The experimental results are
shown in Table 4. When using VirtualToken,
the performance drops significantly for tasks with
many labels (CoNLL-NER), indicating that the
random vector is hard for a model to fit. The results
of Human shows that human intuition may be the
same as the pre-trained model, which explains the
good performance SST-2. However, on the token
classification task, the human-created label word
may not be consistent with the task goal, leading
to bad results on CoNLL-NER. Our proposed
AutoSearch can effectively leverage the knowledge
of pre-trained models for downstream tasks, thus it
outperforms other methods on all tasks.

4.6.2 Sample Efficiency
Our proposed label word search algorithm requires
some labeled data to find the suitable label word. A
concern here is how much data it needs to find such
label words. The sample efficiency is important
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Method SST-2 CoNLL-NER
AutoSearch 94.15 91.22
VirtualToken 93.80 90.07

Handcraft 94.03 90.09

Table 4: Comparison of label word searching methods.
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Figure 4: Performance variation of the NER task on the
CoNLL03 when using different numbers of samples for
searching label word.

since traversing the entire dataset can be time-
consuming. Therefore, we select [100, 500, 1000,
5000, 10000] data uniformly from the train set, and
search the label words in these subsets to verity
the sample efficiency. The results in Figure 4 show
that the 1000 samples are enough for achieving
comparable performance. This indicates that our
algorithm is data efficient.

5 Related Work

5.1 Pre-trained Language Model

Large-scale pre-trained language models, which
pre-trained on a huge amount of data with self-
supervised objectives, have greatly improved the
performance of various downstream tasks (Qiu
et al., 2020). Fine-tuning the pre-trained language
model such as BERT (Devlin et al., 2019), roberta
(Liu et al., 2019), and T5 (Liu et al., 2019)
achieves state-of-art performance on various tasks.
Increasing the number of PLM parameters is one
of the intuitive ways to enhance its performance,
thus leading to the creation of many giant models
(Brown et al., 2020). But it is inconvenient to fine-
tuning these models and apply fine-tuned models
because of the large-scale parameters. They are
also not conducive to community distribution and
sharing. In this work, we explore the parameter-
efficient tuning, which makes the deployment of

PLMs feasible in many industrial scenarios.

5.2 Parameter-efficient Learning

Parameter-efficient learning, is proposed to solve
the problem caused by PLMs’ large-scale pa-
rameters. Unlike traditional methods such as
distillation (Sanh et al., 2019), pruning (Michel
et al., 2019) and quantization (Shen et al., 2020)
that directly reduce the parameters of the model
itself, parameter-efficient methods only fine-tune
a small portion of the model parameters while
keeping the rest untouched or learn external
modules for new task. The rationale behind these
methods can be related to the intrinsic dimension
(Li et al., 2018; Aghajanyan et al., 2020), which
states that PLM are often overparameterized and
only need to learn a good solution in a small
parameter space. Or prompt-tuning (Liu et al.,
2021a), which originated from GPT-3, by entering
special text to let the frozen PLM perform the target
task. Recently, Ding et al. (2022) proposed to call
these methods delta-tuning and analyzed it from
a control theory perspective. Many attempts have
been made to find the which part of parameters
is efficient to learn, such as adapter (Houlsby
et al., 2019), prefix-tuning(Li and Liang, 2021), and
LoRA(Hu et al., 2022). In this work, we boost the
efficiency of parameter-efficient tuning by avoiding
the problem caused by task-specific classifier.

6 Conclusion

In this work, we propose plugin-tuning, a unified
framework to improve parameter-efficient tuning
for both token and sentence classification tasks.
We use a unified classifier to handle different
classification tasks by re-formulating them to a
unified language modeling task, where no trainable
parameter is required for training the classifier. To
select the proper label words, we also propose a
principled algorithm that is applicable to both token
and sentence classification tasks. In this way, the
efficiency of all the parameter-efficient methods
can be largely promoted. The experiments show
that our method achieves comparable performance
against fine-tuned PLMs while further saving up to
49% parameters on top of other parameter-efficient
methods. Future directions might be applying the
unifying strategy into other tasks like text matching
that require specific label spaces.
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A Label Word and Template

In this section, we show the template and label
word in Table 5, Table 6 and Table 7. These tables
are shown in the next page.
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Dataset Template Label Word Set
SST-2 [X] It was ⟨mask⟩. {positive: great, negative: terrible}
MNLI [PREMISE] ? ⟨mask⟩ [HYPOTHESIS] {entailment: Also, contradiction: But, nautral: Yeah}

Table 5: Templates and label words of plugin-tuning for sentence classification

Dataset Label Word Set

CoNLL03
{B-ORG: United, B-MISC: American, B-PER: Paul, I-PER: Smith, B-LOC: France, I-ORG: Inc,
I-MISC: Cup, I-LOC: York}

CoNLL2000
{B-NP: the, B-PP: of, I-NP: and, B-VP: is, I-VP: be, B-SBAR: that, B-ADJP: more,
B-ADVP: also, I-ADVP: much, I-ADJP: lower, I-SBAR: if, I-PP: as, B-PRT: up, B-LST: 7,
B-INTJ: yes, I-INTJ: was, B-CONJP: As, I-CONJP: well, I-PRT: or, B-UCP: wines, I-UCP:}

WSJ

{NNP: Mr, VBZ: is, JJ: first, NN: year, TO: to, VB: be, .: ., CD: million, DT: the,
VBD: said, IN: in, PRP: he, NNS: people, VBP: have, MD: will, VBN: been, POS: "",
JJR: more, ": ", RB: also, ,: „ FW: v, CC: and, WDT: which, (: (, ): ), :: -,
PRP$: his, RBR: less, VBG: going, EX: There, WP: who, WRB: when, $: $,
RP: up, NNPS: Yankees, SYM: /, RBS: most, UH: O, PDT: all, "": "", LS: 3,
JJS: best, WP$: whose, NN|SYM: TV }

Table 6: Label words of plugin-tuning on token classification tasks

Dataset Template LabelWordSet

SST-2 [X] It was ⟨mask⟩. {positive: good, negative: bad}

CoNLL03 -No Template-

{B-LOC:location, I-LOC:place, B-PER:person,

I-PER:human, B-MISC: entity, I-MISC:other,

B-ORG:organization, I-ORG:party},

Table 7: Human-created label words for ablation study
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Abstract

Aspect Sentiment Triplet Extraction (ASTE)
aims at extracting triplets from a given sen-
tence, where each triplet includes an aspect, its
sentiment polarity, and a corresponding opin-
ion explaining the polarity. Existing methods
are poor at detecting complicated relations be-
tween aspects and opinions as well as classify-
ing multiple sentiment polarities in a sentence.
Detecting unclear boundaries of multi-word as-
pects and opinions is also a challenge. In this
paper, we propose a Multi-Task Dual-Tree Net-
work (MTDTN) to address these issues. We
employ a constituency tree and a modified de-
pendency tree in two sub-tasks of Aspect Opin-
ion Co-Extraction (AOCE) and ASTE, respec-
tively. To enhance the information interaction
between the two sub-tasks, we further design
a Transition-Based Inference Strategy (TBIS)
that transfers the boundary information from
tags of AOCE to ASTE through a transition
matrix. Extensive experiments are conducted
on four popular datasets, and the results show
the effectiveness of our model.

1 Introduction

Aspect Based Sentiment Analysis (ABSA), also
known as Target Based Sentiment Analysis, has
received widespread attention in both academia
and industry in recent years. ABSA allows a sen-
timent analysis of different aspects in a given sen-
tence, which can be applied in many areas, such
as social media and E-commerce reviews. Com-
pared with sentence sentiment analysis, ABSA is
more fine-grained and more in line with reality.
ABSA contains many sub-tasks, such as Aspect
Term Extraction (ATE) (Xu et al., 2018; Yang et al.,
2020), Opinion Term Extraction (OTE) (Fan et al.,
2019; Wu et al., 2020b), Aspect Level Sentiment
Classification (ALSC) (Xiao et al., 2021; Li et al.,
2021), Aspect Sentiment Pair Extraction (ASPE)
(Li et al., 2019; Ji et al., 2020; Chen and Qian, 2020;

*Corresponding author.

Luo et al., 2020), Aspect Opinion Co-Extraction
(AOCE) (Dai and Song, 2019), Aspect Opinion
Pair Extraction (AOPE) (Chen et al., 2020; Zhao
et al., 2020) and Aspect Sentiment Triplet Extrac-
tion (ASTE) (Wu et al., 2020a; Chen et al., 2021a).

Table 1: An example of different ABSA sub-tasks. As-
pects, opinions and sentiment polarities are in blue, red
and green respectively.

Sentence: Good service but poor taste
Aspect Term Extration: {service, taste}
Opinion Term Extraction: {Good, poor}
Aspect Sentiment Pair Extraction: {(service, pos), (taste, neg)}
Aspect Opinion Co-Extraction: {service, Good, taste, poor}
Aspect Opinion Pair Extraction: {(service, Good), (taste, poor)}

Aspect Sentiment Triplet Extraction:
{(service, Good, pos), (taste,
poor, neg)}

Table 1 gives an example of different ABSA sub-
tasks for the sentence ’Good service but poor taste’.
This paper mainly concentrate on ASTE, which
extracts triplets of all aspects in a sentence with the
corresponding opinion and the sentiment polarity
for each aspect simultaneously.

Although researches have been conducted in the
area, ASTE still faces many challenges:

• Complicated relations. The corresponding
relations between aspects and opinions can be
one-to-one, one-to-many, many-to-one, and
even many-to-many. It is hard to detect these
relations accurately and unambiguously.

• Multiple sentiment polarities. Each sen-
tence may contain multiple sentiment polar-
ities, which are usually influenced by corre-
sponding relations between aspects and opin-
ions. Therefore, relations need to be inte-
grated into the sentiment classification task
in a proper way.

• Unclear boundaries. Aspects and opinions
often contain multiple successive words, mak-
ing their boundaries difficult to be detected.
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To address the above challenges, we propose a
Multi-Task Dual-Tree Network for ASTE, namely
MTDTN. The constituency tree and dependency
tree are two parsing methods of a sentence in Natu-
ral Language Processing (NLP), and the latter has
been widely used in ABSA tasks (Wang et al., 2020;
Pereg et al., 2020). Although the two trees of one
sentence can be transformed into each other, it may
require hops over the structure in graph neural net-
works or self-attentions. Thus our model employs
both types of trees for AOCE and ASTE, respec-
tively. The constituency tree is applied in the co-
extraction module to detect constituent boundaries,
and the dependency tree is applied in the triplet
extraction module to capture relations between as-
pects and opinions. Moreover, for the reason that
different layers of BERT (Devlin et al., 2019) cap-
ture hierarchical features, with surface features in
lower layers, syntactic features in middle layers
and semantic features in higher layers (Jawahar
et al., 2019), we employ self-attention weights of
the middle layer to modify the dependency graph.
The modified graph can reduce inevitable parsing
errors and imply more accurate relations between
words. Finally, we use a similar tagging scheme
as the Grid Tagging Scheme (Wu et al., 2020a) for
triplet extraction and design a Transition-Based In-
ference Strategy (TBIS) to transfer the boundary
information from the co-extraction module to the
triplet extraction module.

The contributions of our work can be summa-
rized as follows:

• We propose a Multi-Task Dual-Tree Network
for ASTE, employing a constituency tree and
a modified dependency tree in two sub-tasks
of AOCE and ASTE, respectively.

• We design a Transition-Based Inference Strat-
egy that transfers the boundary information
from tags of AOCE to ASTE through a transi-
tion matrix.

• We conduct extensive experiments on four
popular datasets, and the results show that our
model outperforms state-of-the-art models.

2 Related work

Aspect-Opinion Co-Extraction (AOCE) has been
focused on in recent years, aiming to explore the in-
teractions between Aspect Term Extraction (ATE)
and Opinion Term Extraction (OTE). Initially, mod-
els have been proposed to co-extract aspects and

opinions in a sentence, treating the task as a se-
quence labeling problem (Wang et al., 2017; Dai
and Song, 2019; He et al., 2019). However, they
do not consider the relations between correspond-
ing aspects and opinions. Then (Zhao et al., 2020)
define the Aspect Opinion Pair Extraction (AOPE)
task and propose a span-based multi-task learn-
ing framework. (Chen et al., 2020) propose a syn-
chronous double-channel recurrent network to ob-
tain aspect-opinion pairs and achieve great perfor-
mance. To further explore the interactions between
paired terms and sentiment polarity, (Peng et al.,
2020) first define the task of Aspect-Sentiment
Triplet Extraction (ASTE) and propose a two-stage
model to address it. Following this work, a position-
aware tagging scheme (Xu et al., 2020) and a grid
tagging scheme (Wu et al., 2020a) are designed to
jointly extract the triplets in an end-to-end man-
ner. (Chen et al., 2021b) further represent the se-
mantic and syntactic relations between word pairs
by a graph to enhance the vanilla grid tagging
scheme. Interactions between aspect spans and
opinion spans are also studied to not only consider
word-to-word interactions (Xu et al., 2021). (Chen
et al., 2021a) transform the triplet extraction task
into a machine reading comprehension (MRC) task
with well-designed queries.

3 Task Definition

Given an input sentence X = {x1, x2, · · · , xn} of
length n, we then formulate two sub-tasks as two
different sequence labeling problems.

3.1 Aspect-Opinion Co-Extraction

AOCE aims to extract all aspect terms and opinion
terms appearing in a sentence. We use 5 tags in
Y = {BA, IA,BO, IO,OT} to label each word
xi. BA and BO denote the beginning of an aspect
term or an opinion term, IA and IO denote the
inside of an aspect term or an opinion term, OT
denotes the outside of both kinds of terms.

3.2 Aspect-Sentiment Triplet Extraction

ASTE aims to extract triplets of all aspect terms
in a sentence with the corresponding opinion term
and the sentiment polarity for each aspect term
simultaneously. We employ the Grid Tagging
Schema (Wu et al., 2020a), which uses 6 tags in
G = {A,O,NEG,NEU,POS,N} to label the
relation between two words xi and xj . A and O
denote xi and xj are in the same aspect term or
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opinion term, NEG, NEU and POS denote xi
and xj are separately in an aspect term and another
opinion term with the corresponding sentiment po-
larity, N denotes xi and xj have no above relations.

4 Proposed Model

4.1 Model Overview
The overview of our model is shown in Figure 1. It
first accepts a sentence X as the input into a shared
BERT encoder, then different layers of BERT are
sent to different downstream modules. For the co-
extraction module, we employ the consistency tree
to construct a heterogeneous graph and apply multi-
layers of Graph Convolution Networks over it to
generate the final representation. For the triplet
extraction module, we propose a Dep-Enhanced
Transformer Decoder (DETD), which receives a
modified dependency graph constructed from the
dependency tree to incorporate the syntactic in-
formation. Finally, a Transition-Based Inference
Strategy (TBIS) is designed, transferring the bound-
ary information from the co-extraction module to
the triplet extraction module through a transition
matrix.

4.2 Shared BERT Encoder
Since pre-trained models show powerful perfor-
mance in Natural Language Understanding (NLU)
tasks, we choose BERT (Devlin et al., 2019) as the
text encoder of our model. For a given sentence X ,
the following representations can be generated on
the pre-trained BERT:

H [1:L] = BERT (X) (1)

where H [1:L] denote hidden states of all layers of
BERT and L is the max layer.

For the reason that BERT is proven to capture a
rich hierarchy of linguistic information, different
layers are selected for two sub-tasks:

Hce = HL

Hte = H l
(2)

where Hce and Hte are inputs for the co-extraction
module and the triplet extraction module respec-
tively, HL denotes hidden states of the highest
BERT layer which contains more semantic infor-
mation, H l denotes hidden states of the lth BERT
layer which contains more syntactic information.
We assume that the co-extraction pays more atten-
tion to semantic features and the triplet extraction

pays more attention to syntactic features because
the latter needs to describe word-to-word relations.

4.3 Co-Extraction Module

The constituency tree is based on the formalism
of context-free grammars. In this type of tree, a
sentence is divided into constituents which are sub-
phrases that belong to specific categories in the
grammar. For instance, a verb phrase (VP) can be
formed of a verb (V) and a noun phrase (NP).

For a given sentence, we employ CoreNLP to
generate a constituency tree and then construct an
undirected heterogeneous graph based on the tree.
The graph contains n + m nodes, where n leaf
nodes are tokens in the sentence, and m internal
nodes are constituents in the tree. There are two
types of edges in the graph: self-loop edges of
leaf nodes and edges between each node and its
parent node in the tree. In the forward process, leaf
nodes are initialized with Hce and internal nodes
are randomly initialized embeddings that can be
updated among training.

Then we apply Graph Convolution Networks
(GCN) (Kipf and Welling, 2016) over the gener-
ated graph, concatenating the representation of leaf
nodes and internal nodes as the initial input:

H0 = [Hce; e(c)] (3)

where c denotes the list of constituents in the tree
and e denotes the lookup table of constituent em-
beddings.

The GCN operation can be written as:

hk+1
i = ReLU(

n+m∑

j=1

(AijW
k+1hkj )) (4)

where k is the number of the current layer, A ∈
R(n+m)×(n+m) denotes the adjacency matrix of the
graph, W ∈ Rd×d is trainable weight, d denotes
the hidden size of BERT.

After K layers of GCNs, the final representation
of each token is then fed into a fully-connected
layer followed by a softmax layer to yield a proba-
bility distribution over Y:

pcei = softmax(Wch
K
i + bc) (5)

where Wc ∈ Rd×|Y| and bc ∈ R|Y| are trainable
weight and bias.
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Figure 1: The overall architecture of our proposed MTDTN.

4.4 Triplet Extraction Module
The dependency tree of a sentence is a directed
acyclic graph with words as nodes and relations as
edges. The relation between any two words in the
tree can be described as a "head-dependent" pair.
For the same sentence as in the co-extraction mod-
ule, we employ CoreNLP to generate a dependency
tree and then construct an undirected isomorphic
dependency graph based on the tree without rela-
tions .

The dependency graph generated by tools may
have inevitable parsing errors. Different from
(Xiao et al., 2021) which employs self-attention
weights of layers all over BERT to supply the de-
pendency graph, we only make use of the middle
layer which contains more syntactic information to
modify it:

Aatt = softmax(
QattW

Q
att(KattW

K
att)

T

√
d

)

Amodii,j =





1, α ≤ Aatti,j
Adepi,j , β < Aatti,j < α

0, Aatti,j ≤ β

(6)

where Qatt and Katt are both equal to Hte, W
Q
att

and WK
att denote trainable weights, Adep ∈ Rn×n

and Amodi ∈ Rn×n denote adjacency matrices of
the original dependency graph and the modified
graph respectively, α and β are hyper-parameters.

In order to receive the modified dependency

Figure 2: Dep-Enhanced Transformer Decoder.

graph, we design a Dep-Enhanced Transformer
Decoder (DETD) as shown in Figure 2, which uses
Hce as input to the first sub-layer and Hte as key
and value to the second sub-layer:

T = DETD(Hte, Hce, A
modi) (7)

where T = {t1, t2, · · · , tn} denotes the output of
DETD.

Unlike the vanilla transformer decoder, we use
multi-head attention instead of masked multi-head
attention in the first sub-layer. Since the vanilla
transformer does not explicitly encode syntactic
features, in the second sub-layer, we incorporate
the modified dependency graph into multi-head
cross-attention by changing the calculation method
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of the attention coefficients:

A =softmax(
(QWQ(KWK)T ) ∗Amodi√

d
)

CAdep =FF (AV )

O =LN(I + CA(I) + CAdep(I))
(8)

where I denotes the input of and O denotes the out-
put of multi-head cross-attention, Q is equal to I ,
K and V are both equal to Hte, WQ and WK de-
note trainable weights, ∗ denotes an element-wise
multiplication between Amodi and the dot product
of Q and K, FF and LN are feed-forward net-
work and layer normalization in transformer, CA
andCAdep denote the vanilla and the dep-enhanced
cross-attention respectively.

Finally, we concatenate the DETD representa-
tions of word xi and xj to represent the word-pair
(xi, xj), i.e., rij = [ti; tj ], where [; ] is the con-
catenation operation. Then rij is sent to a fully-
connected layer to calculate the temporary triplet
tag probability:

zij =W srij + bs (9)

where Ws ∈ Rd×|G| and bs ∈ R|G| are trainable
weight and bias.

4.5 Transition-Based Inference Strategy

The inference strategy of the original Grid Tagging
Schema (GTS) (Wu et al., 2020a) requires indef-
inite iterations to capture word-to-word relations,
which will increase the time complexity. Inspired
by boundary guidance in E2E-ABSA (Li et al.,
2019), we further propose a Transition-Based Infer-
ence Strategy (TBIS) to accelerate the convergence.

Firstly, we use a similar approach to the original
GTS, leveraging features of distributions of the
temporary triplet tag probability and capturing the
associated features between xi/xj and others to
obtain more accurate results. The new probability
qij can be calculated as follows:

zi = maxpooling(zi,:)

zj = maxpooling(zj,:)

r̃ij = [rij ; zi; zj ; zij ]

oij =W or̃ij + bo

qij =W soij + bs

(10)

where zi,: = (z1:i,i, zi,i:n) according to the upper
triangular grid in GTS, W o and bo are trainable

Figure 3: Constraints between co-extraction tags and
triplet extraction tags.

weight and bias, W s and bs share the same param-
eters as above.

Secondly, we encode the constraints between
co-extraction tags and triplet extraction tags into
a transition matrix W g ∈ R|Y|×|G| as shown in
Figure 3. The matrix is initialized as follows and
updated as a linear layer during training:

W g
ij =

{ 1
|Ti| if j ∈ Ti
0, Otherwise

(11)

where Ti is the set of valid triplet extraction tags
in G corresponding to the ith co-extraction tag in
Y . We transfer boundary information of aspects
and opinions by mapping the probability scores of
the co-extraction tag space to the triplet tag space.
The transition-based score of xi is calculated as
follows:

gi = (W g)T pcei (12)

A gating mechanism is applied to fuse the
transition-based score with the triplet extraction
tag probability. We calculate a gating score αi ∈ R
based on the confidence score ci:

ci = (pcei )
T pcei

αi = ϵci
(13)

where ci represents co-extraction module’s con-
fidence in the predicted result pcei , ϵ is a hyper-
parameter to control the contribution of the
transition-based score gi in the final result.

Finally, qij is fused with gi by the gating score
αi and the result is fed into a softmax layer to yield
a probability distribution over G:

pteij = softmax(αigi + (1− αi)qij) (14)

4.6 Joint Training Loss
Training losses for two sub-tasks are both defined
as cross-entropy loss:

Lce = −
n∑

i=1

∑

k∈Y
I(ycei = k)log(pcei|k) (15)
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Lte = −
n∑

i=1

n∑

j=i

∑

k∈G
I(yteij = k)log(pteij|k) (16)

where ycei denotes the ground truth tag of word xi
in co-extraction, yteij denotes the ground truth tag
of the relation between word xi and xj in triplet
extraction, pcei and ptei,j denote predicted tagging
distributions, I(·) is the indicator function, Y and
G denote two label sets.

To jointly train two sub-tasks and make them
mutually beneficial, we combine the above loss
functions to form the final objective, where the
hyper-parameter γ denotes their ratio.

L = γLce + Lte (17)

5 Experiments

5.1 Datasets and Metrics
Experiments are conducted on datasets created by
Wu (Wu et al., 2020a). There are four datasets,
among which 14res, 15res and 16res are in the
restaurant domain, and 14lap is in the laptop do-
main. The statistics of all datasets are listed in
Table 2.

Following previous works, we employ precision,
recall and micro F1-score as metrics. During train-
ing, we use the model that performed best on the
development set for testing. For reproducibility, on
each dataset we train the model 5 times with differ-
ent random seeds and report the averaged results.

Table 2: Statistics of datasets (#S, #P, #neg, #neu, and
#pos denote the number of sentences, pairs, negative
triplets, neutral triplets, and positive triplets, respec-
tively.)

Datasets #S #P #neg #neu #pos

14res
Train 1,259 2,356 491 172 1693
Dev 315 580 107 46 427
Test 493 1008 156 427 784

14lap
Train 899 1452 533 111 808
Dev 225 383 136 48 199
Test 332 547 116 67 364

15res
Train 603 1038 210 29 799
Dev 151 239 49 9 181
Test 325 493 144 25 324

16res
Train 863 1421 330 55 1036
Dev 216 348 77 8 263
Test 328 525 79 30 416

5.2 Baselines

We compare our model with the following base-
lines to evaluate the performance of MTDTN,
where part of them are pipeline models and oth-
ers are end-to-end models.

• Peng-unified-R+PD (Peng et al., 2020) pro-
pose a two-stage framework to address the
ASTE task. In the first stage, Peng-unified-R
extracts aspects with sentiment and opinions
by utilizing mutual influence between aspects
and opinions. In the second stage, an MLP-
based classifier (PD) is applied to all possible
triplets to determine whether each triplet is
valid or not.

• Li-unified-R+PD is a pipeline model com-
bined by (Peng et al., 2020), which first em-
ploys a modified model Li-unified-R (Li et al.,
2019) to extract aspects with sentiment and
opinions and then applies PD to obtain all the
valid triplets.

• Peng-unified-R+IOG is a pipeline model
combined by (Wu et al., 2020a), which first
uses Peng-unified-R (Peng et al., 2020) to ex-
tract aspects with sentiment and then employ
IOG (Fan et al., 2019) to generate triplets.
IOG can effectively encode aspect informa-
tion to extract the corresponding opinion.

• IMN+IOG is another pipeline model com-
bined by (Wu et al., 2020a), which first uses
IMN (He et al., 2019) to extract aspects with
sentiment and then employ IOG (Fan et al.,
2019) to generate triplets.

• GTS (Wu et al., 2020a) propose a unified grid
tagging scheme to address the ASTE task and
design an inference strategy to exploit mutual
indications between different opinion factors.

• S3E2 (Chen et al., 2021b) further represent the
semantic and syntactic relations between word
pairs by a graph neural network to enhance
the vanilla GTS.

• BMRC (Chen et al., 2021a) convert the ASTE
task into a multi-turn machine reading com-
prehension (MRC) task with well-designed
queries.
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Table 3: Main results of triplet extraction (%). All methods’ results are from original papers or the paper of GTS.
The mark ’-’ means that the paper of BMRC does not release the precision and the recall on each dataset.

Methods 14res 14lap 15res 16res
P R F1 P R F1 P R F1 P R F1

Li-unified-R+PD 41.44 68.79 51.68 42.25 42.78 42.47 43.34 50.73 46.69 38.19 53.47 44.51
Peng-unified-R+PD 44.18 62.99 51.89 40.40 47.24 43.50 40.97 54.68 46.79 46.76 62.97 53.62
Peng-unified-R+IOG 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67

IMN+IOG 59.57 63.88 61.65 49.21 46.23 47.68 55.24 52.33 53.75 - - -
GTS-CNN 70.79 61.71 65.94 55.93 47.52 51.38 60.09 53.57 56.64 62.63 66.98 64.73

GTS-BiLSTM 67.28 61.91 64.49 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56
S3E2 69.08 64.55 66.74 59.43 46.23 52.01 61.06 56.44 58.66 71.08 63.13 66.87

GTS-BERT 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58
BMRC-BERT - - 70.01 - - 57.83 - - 58.74 - - 67.49

Ours 70.00 71.78 70.88 61.98 54.71 58.12 59.03 62.68 60.80 69.04 69.98 69.51

5.3 Implementation Details

For the shared BERT encoder, we choose the un-
cased version of BERT-base (Devlin et al., 2019)
with 12 stacked Transformer blocks, 12 attention
heads and the hidden size of 768, which is imple-
mented based on HuggingFace’s Transformers
(Wolf et al., 2020) library. While training the joint
model, we employ AdamW (Loshchilov and Hut-
ter, 2018) as the optimizer with the weight decay
of 0.01 and the warmup rate of 0.1. The learning
rate is set to 2e-5 for the BERT parameter group
and 1e-3 for other parameter groups. The batch
size is set to 32 with a max sequence length of 128.
When constructing graphs for constituency trees
and dependency trees, we only keep edges associ-
ated with the first sub-word of each word tokenized
by BERT. We set the middle layer l to 8 for 14res,
14lap and 9 for 15res, 16res respectively. We set
the thresholds α and β to 0.1 and 0.9 to generate
the modified graph. For the joint training loss, the
ratio γ is set to 1. All experiments are conducted
on two Nvidia RTX 3080 GPUs.

5.4 Main Results

The main results of baselines and our MTDTN
model are shown in Table 3. According to the
results, MTDTN outperforms all baselines and
achieves state-of-the-art performances on four pop-
ular datasets, which proving our model’s effective-
ness.

In general, due to the strong text expression abil-
ity of pre-trained models, the BERT-based models
like GTS-BERT, BMRC-BERT and MTDTN sur-
pass other models which do not employ BERT as
the text encoder layer significantly.

More importantly, MTDTN achieves 0.68%,
3.54%, 2.13% and 1.93% absolute F1 scores

gain over GTS-BERT, which is the state-of-the-art
method we followed on four datasets. We think it
is because our model can accurately locate aspects
and opinions and capture the relation between them
by introducing syntactic information and internal
interaction of multiple tasks.

Then, compared with BMRC-BERT, which is an-
other state-of-the-art model, MTDTN achieves an
absolute F1 score increase of 0.87%, 0.29%, 2.06%,
2.02% on four datasets. BMRC-BERT converts the
ASTE task into a machine reading comprehension
task, while the restrictive query may not correctly
capture the relation between aspects and opinions.
This may be the actual cause of the performance
difference.

5.5 Ablation Study

To verify the validity of different modules in our
MTDTN, we further carry out an ablation study as
shown in Table 4.

Table 4: Results of ablation study for ASTE task (F1%).

Methods 14res 14lap 15res 16res

MTDTN 70.88 58.12 60.80 69.51
MTDTN w/o CE 70.13 56.98 58.61 67.28

MTDTN w/o TBIS 70.33 57.39 59.51 67.69
MTDTN w/o DETD 68.81 54.56 58.11 67.03

MTDTN w/o MG 69.80 56.32 59.83 68.94

Firstly, we verify the effectiveness of the multi-
task framework by removing the co-extraction mod-
ule, which is ’MTDTN w/o CE’ in the table. It can
be observed that there is a certain decline in perfor-
mance, which shows that the auxiliary task is fully
effective in extracting triplets from sentences.

After that, we replace TBIS with the original in-
ference strategy in GTS, which refers to ’MTDTN
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w/o TBIS’. We can see the performance drops,
which shows that the designed inference strategy
can utilize the boundary information of aspects and
opinions in the AOCE task to promote the ASTE
task.

Then, we remove DETD and replace it with a
vanilla transformer decoder without masked multi-
head attention. It can be seen from ’MTDTN w/o
DETD’ that the model’s performance is signifi-
cantly declined, showing that the syntactic informa-
tion can help the model better capture the relations
between words.

More detailed, ’MTDTN w/o MG’ means di-
rectly replacing the modified graph with the depen-
dency graph generated by the parser. The dropping
in performance shows that the modified graph can
reduce parsing errors and is more suitable for the
specific task.

5.6 Analysis of Graph Type

(a) Heterogeneous graph with nodes of constituent and
word.

(b) Isomorphic graph with nodes of constituent.

(c) Isomorphic graph with nodes of word.

Figure 4: Different types of graph.

In this section, we compare three graphs as in
Figure 4 on four datasets, the results are shown in
Table 5, where ’POS sequence’ denotes simple ad-
dition of POS embeddings to Hce, ’None’ denotes
Hce directly being sent to the tag decoder. In ’Iso-

morphic graph (constituent)’ and ’POS sequence’,
embeddings of constituents and POS are randomly
initialized and updated during training. In ’Iso-
morphic graph (word)’, embeddings of phrases are
calculated from the average of word embeddings it
contains.

Table 5: Results of graph analysis for AOCE task (F1%).

Methods 14res 14lap 15res 16res

Heterogeneous graph 87.37 86.07 81.67 81.79
Isomorphic graph (constituent) 86.22 85.07 81.39 81.42

Isomorphic graph (word) 85.06 84.23 80.28 82.15
POS sequence 85.14 83.72 80.12 82.69

None 84.77 84.02 79.22 82.44

We observe that the model using a heterogeneous
graph obtains better AOCE performance than other
methods on all datasets except 16res. This may be
because the fact that the node interaction of het-
erogeneous graphs is more explainable compared
to isomorphic graphs. On the one hand, embed-
dings of constituents can obtain information from
the fully trained hidden states of words. On the
other hand, the word representation can also get
boundary information and constituent information
from the graph of the constituency tree.

5.7 Analysis of BERT Layer
To investigate the effect of different BERT layers
modifying the dependency graph and being the
key and value of DETD, we evaluate our MTDTN
model with each layer of BERT on four datasets.
As shown in Figure 5, MTDTN with the 8th or 9th
layer of BERT performs the best. The results are

Figure 5: Impact of different BERT layers

consistent with the hierarchical characteristics of
BERT (Jawahar et al., 2019) that middle layers cap-
ture rich syntactic features. Therefore, employing
self-attention weights of the middle layer to mod-
ify the dependency graph can reduce parsing errors
and make it suit the specific task better.
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6 Conclusions

In this paper, we propose a multi-task framework
for Aspect Sentiment Triplet Extraction (ASTE)
with Aspect Opinion Co-Extraction (AOCE) as an
auxiliary task. The two sub-tasks utilize two types
of trees to capture different information of the text.
For a given sentence, a constituency tree is em-
ployed by a graph convolution network for AOCE,
and a modified dependency tree is employed by
a special transformer decoder for ASTE. We fur-
ther designed a Transition-Based Inference Strat-
egy (TBIS) to enhance information interaction be-
tween sub-tasks by transferring the boundary in-
formation from AOCE to ASTE through a transi-
tion matrix. The whole model is called Multi-Task
Dual-Tree Network (MTDTN) and extensive exper-
iments demonstrate that our model achieves state-
of-the-art performance on four popular datasets.
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Abstract

Target-oriented Opinion Words Extraction
(TOWE) is a fine-grained sentiment analysis
task that aims to extract the corresponding opin-
ion words of a given opinion target from the
sentence. Recently, deep learning approaches
have made remarkable progress on this task.
Nevertheless, the TOWE task still suffers from
the scarcity of training data due to the expen-
sive data annotation process. Limited labeled
data increase the risk of distribution shift be-
tween test data and training data. In this pa-
per, we propose exploiting massive unlabeled
data to reduce the risk by increasing the ex-
posure of the model to varying distribution
shifts. Specifically, we propose a novel Multi-
Grained Consistency Regularization (MGCR)
method to make use of unlabeled data and de-
sign two filters specifically for TOWE to filter
noisy data at different granularity. Extensive
experimental results on four TOWE benchmark
datasets indicate the superiority of MGCR
compared with current state-of-the-art meth-
ods. The in-depth analysis also demonstrates
the effectiveness of the different-granularity
filters. Our codes are available at https:
//github.com/TOWESSL/TOWESSL.

1 Introduction

Target-oriented Opinion Words Extraction
(TOWE) (Fan et al., 2019) is an important subtask
of aspect-based sentiment analysis (ABSA) (Pon-
tiki et al., 2014), which aims to extract the
corresponding opinion words for a given opinion
target from the sentence. For the TOWE task,
opinion targets, also called aspect terms, are the
entities or objects in the sentence toward which
users show attitudes; opinion words, sometimes
known as opinion expressions, are those words
explicitly mentioned in the sentence and used to
express attitudes or opinions. Figure 1 shows an

∗ Equal Contribution.
†† Corresponding author.

The dishes are amazingly delicious but the waiter is so rude .

Given opinion target: dishes Corresponding opinion words: amazingly delicious

Given opinion target: waiter Corresponding opinion words: rude

Figure 1: Example of TOWE. Words in red are opinion
targets and words in blue are corresponding opinion
words. TOWE extracts corresponding opinion words
when given opinion targets.

example of the TOWE task. For the sentence “The
dishes are amazingly delicious but the waiter is so
rude.”, the terms “dishes” and “waiter” are two
opinion targets. The goal of TOWE is to extract
“amazingly delicious” as the opinion words for the
opinion target “dishes” and opinion word “rude”
when given the opinion target “waiter”.

While seminal work casts TOWE as a sequence
labeling problem, using fully supervised learning
methods to identify opinion words and phrases
from sentences, recent work shows that external
sources of information can be highly useful for
improving the performance. In particular, both syn-
tactic knowledge (Dai et al., 2022; Veyseh et al.,
2020; Jiang et al., 2021; Zhang et al., 2021b) and
sentiment information (Wu et al., 2020b) have been
exploited, with the former helping to identify the
correlation between opinion targets and opinion ex-
pressions, and the latter helping to identify words
and phrases that are correlated with sentiment po-
larities. Existing work integrates these external
features via representation structures (Dai et al.,
2022; Veyseh et al., 2020; Jiang et al., 2021) and
multi-task learning (Wu et al., 2020b; Zhang et al.,
2021b).

Intuitively, the goal of opinion words extrac-
tion is to obtain structured knowledge from raw
data, and therefore ideally the amount of test data,
namely the data from which opinion words are
mined, should be large. This can inevitably in-
crease the risk of distribution shift between test
instances and the training data, even if the test data
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is from the same domain (Ganin et al., 2016). Ex-
isting work, however, adopt a supervised training
setting, with the model being tuned on a set of fixed
training data. To address this issue, we consider
making use of raw text inputs to increase the ex-
posure of the model to varying distribution shifts.
Our main idea is to (1) find raw data in a similar
domain as the target-oriented opinion words extrac-
tion training data (i.e. gold data), (2) using a model
trained on the gold data to assign silver labels, and
then (3) design a set of filters to select the most
useful set of silver data, so that (4) the selected
silver data can be used together with the gold data
for training a final model.

As a pre-processing step, we train a opinion tar-
get extraction model, which is used to label the set
of raw data. Those raw sentences without any opin-
ion target are filtered. The resulting raw data has
the same format as the input structure of TOWE
data. Then in our implementation, steps (2) to (4)
above are done in a joint batch training process.
First, we initialize a TOWE model using BERT.
Then in each batch, we randomly sample a subset
of gold data and a subset of raw data, using the
current model to assign pseudo labels to the raw
data. According to the current model probabilities
and an external sentiment classifier, we filter the sil-
ver data by removing low-confidence sentences, as
well as masking low-confidence words from the re-
maining sentences. Finally, the model parameters
are updated by using the standard cross-entropy
losses separately on both the gold and silver data,
so that the next batch of training can start with the
new model. The training process continues for a
fixed number of iterations, and the model with the
highest development scores are selected for testing.

Results on four standard benchmarks show that
our method gives significantly improved results
when raw data are used. We achieve the best
reported results on all the datasets. In addition,
the critical ablation demonstrates our sentence-
level and word-level noises filtering both bring
improvements for the final results. In-depth anal-
ysis shows our method significantly reduces the
extraction errors on different error types. To our
knowledge, we are the first to consider the use
of unlabeled data for TOWE, successfully giving
state-of-the-art results on benchmarks. Our code
and datasets are available at https://github.
com/TOWESSL/TOWESSL.

Labeled data:

The/O entire/O dining/O experience/O was/O very/B wonderful/I !/O     

Unlabeled data with the generated pseudo opinion target:

Their menu is too expensive for a bubble drink .

Figure 2: Examples of labeled data and unlabeled data
with the pseudo opinion target. Words with underline
indicate opinion targets. The span in the labeled data
beginning with B and followed by I represent the cor-
responding opinion words.

2 Background

2.1 Task Formalization

The TOWE task requires the opinion target as the
input and extracts the target-oriented opinion words
from the sentence. It can be formulated as a target-
oriented sequence labeling task. In this work, we
use the notation s to represent a labeled sentence
from the TOWE dataset, and use su to denote a
unlabeled sentence. Formally, given an input sen-
tence s = {w1, w2, . . . , wn} consisting of n words
and an opinion target wt in s (here we notate an
opinion target as one word for simplicity and t is
the position of the opinion target in the sentence),
the goal of TOWE is assign a corresponding la-
bel yi ∈ {B, I,O}(B: Beginning, I: Inside, O:
Others) for each wordwi in s. The spans beginning
with B and followed by I represent the correspond-
ing opinion words of the opinion target wt. Figure
2 shows an sequence labeling example of TOWE.

2.2 Pseudo Opinion Targets Labeling

Raw unlabeled data can not be directly used in
the semi-supervised scenario for TOWE, as they
lack the necessary annotations of opinion targets.
We use the opinion targets in labeled TOWE data
as the ground truth to train a BERT-based target
extraction model.

Specifically, given an input sentence s =
{w1, w2, . . . , wn} from the TOWE dataset, we em-
ploy a BERT model (Devlin et al., 2019) to gener-
ate the context representation of the each word wi
as follows:

hpt1 , . . . ,h
pt
n = BERT(w1, . . . , wn) (1)

Then the context representation hpti of the word
wi is fed to a linear layer and a softmax layer to
predict the corresponding label. Similar to TOWE,
the BIO scheme is used. We train the opinion target
extraction model by minimizing the cross-entropy
loss between the predicted BIO label distribution
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Figure 3: Overview of the architecture of multi-grained consistency regularization. For simplicity, we mark the
confidence of i-th word as ci. Note that the input sentence of the TOWE model is the same as the input sentence of
the pre-trained sentiment classifier.

and the ground truth. After training, we can employ
the opinion target extraction model to obtain the
pseudo opinion targets of the unlabeled sentence
su, which makes semi-supervised learning feasible
for the TOWE task.

2.3 Consistency Regularization
Consistency regularization is a semi-supervised
learning method that shows effectiveness in a vari-
ety of fields (Sohn et al., 2020; Chen et al., 2020;
Xie et al., 2020; Zhang et al., 2021a). It improves
the generalization performance of a TOWE model
by generating a perturbed version ω(su) of the
original unlabeled sentence su and forcing the pre-
dicted category of each word to be the same, where
ω is the perturbing function (Lee et al., 2013).

To perform semi-supervised learning for TOWE,
we feed the unlabeled sentence su and the position
t of the pseudo opinion target wut to the TOWE
model (see section 3.1), and obtain the predicted
probability pi(y|θ; su, t) of the word wui , where θ
represents the parameters of the TOWE model. A
vanilla consistency loss for consistency regulariza-
tion of TOWE is computed as:

1

n

n∑

i=1

H(p̂i(y|θ; su, t), pi(y|θ;ω(su), t)), (2)

where p̂i(y|θ; su, t) = argmax pi(y|θ; su, t) and
p̂i(y|θ; su, t) denotes the predicted label of the wui ,

theH(·, ·) refers to the cross-entropy loss. In this
work, we use Random Mask and Random Synonym
Replacement by using WordNet (Miller, 1995) as
the perturbing function ω.

3 Method

Figure 3 shows the the framework of our Multi-
Grained Consistency Regularization (MGCR)
method. The TOWE model is a BERT-based neural
sequence labeling network. As mentioned in the
introduction, we initialize a BERT TOWE model
(Section 3.1), and then iteratively conduct batch
training. In each batch, we impose a standard cross-
entropy loss on a set of sampled gold data (Eq 5),
and a regularization loss on a set of randomly sam-
pled raw data with targets (Eq 11). The latter is
defined by using the current model to assign TOWE
labels, and then adding a sentence-level (Section 9)
and a word-level (Section 10) filter. Besides, as
mentioned in the introduction, MGCR exploits la-
tent opinion words from a pre-trained review sen-
timent classification (Wu et al., 2020b) to filter
noises more accurately.

3.1 TOWE Model

For the sentence s = {w1, w2, . . . , wn}, the
TOWE model first employs a pre-trained BERT to
generate the context representations {h1, . . . ,hn}
of s. To incorporate the opinion target information
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into the sentence representations, we use the num-
ber 1 to represent the position of opinion target wt
in s and 0 to denote the positions of other words,
and then map them to the position embedding se-
quence {e1, . . . , en}. We integrate opinion target
information by concatenating, i.e., h̃i = [hi; ei].

To better encode opinion target information, we
additionally employ a multi-layer Transformer ar-
chitecture (Vaswani et al., 2017) to generate the
target-specific context representations as follows:

r1, . . . , rn = Transformer(h̃1, . . . , h̃n). (3)

Finally, we use the representation ri to predict
the opinion word probability pi(y|θ; s, t) of the
word wi when given the opinion target wt:

pi(y|θ; s, t) = softmax(Wrri + br), (4)

where Wr and br are learnable weight and bias.
The loss of supervised learning on the TOWE
dataset is defined as:

Ls =
1

n

n∑

i=1

H(yi, pi(y|θ; s, t)). (5)

3.2 Multi-Grained Consistency
Regularization

3.2.1 Sentence-level Filtering
Given an unlabeled input sentence su =
{wu1 , wu2 , . . . , wun} with wut as the pseudo opinion
target position, the sentence-level confidence scavg
is defined as follows:

scavg =
1

n

n∑

i=1

max(pi(y|θ; su, t)), (6)

where max(pi(y|θ; su, t)) (i.e., the maximum of
the probabilities of B, I , and O) is the confidence
of the i-th word. Sentences with confidences be-
low the given threshold T are masked during train-
ing. In Eq. (6), different words in the sentence are
treated equally, which ignores the importance of
the opinion words. We highlight the confidences
of opinion words identified by their larger senti-
ment scores. Specifically, we obtain the sentiment-
attention scores from a pre-trained attention-based
sentiment classifier parameterized by θsenti from
(Wu et al., 2020b)1. After acquiring the represen-
tations {z1, z2, . . . , zn} of the unlabeled sentence,

1The sentiment classifier we use is the same as (Wu et al.,
2020b), except that we use BERT as the word representation
model while they use GloVe vectors (Pennington et al., 2014).

the attention score αi of zi is calculated as follows:

zavg =
1

n

n∑

i=1

zi,

f(zi, zavg) = zi ·W · zavg + b,

αi =
ef(zi,zavg)∑n
j=1 e

f(zj ,zavg)
,

(7)

where W and b are learnable weight and bias.
We then compute the sentiment-aware confidence
based on the obtained attention scores as:

scsenti =
n∑

i=1

αi ·max(pi(y|θ; su, t)). (8)

Similar to Eq. (6), any sentence whose sentiment-
aware confidence is lower than the threshold T
will be masked in consistency regularization. The
final filtering mechanism of noisy sentences can be
expressed as:

1(scsenti > T ), (9)

where 1(· > T ) is the indicator function for confi-
dence thresholding with T being the threshold.

3.3 Word-level Filtering
To further reduce the noise in the unlabeled data,
we filter the noisy words with a more fine-grained
confidence thresholding mechanism. The filtering
of noisy words can be expressed as

1(max(pi(y|θ; su, t)) > τ). (10)

Any word with a confidence lower than τ is
masked. Note that the word-level threshold τ can
be different from the sentence-level threshold T .

3.4 Training Objective
For labeled sentences, the supervised loss is the
same as Eq. (5). For unlabeled sentences, the con-
sistency loss is:

Lc =1(scsenti > T )

· { 1
n

n∑

i=1

1(max(pi(y|θ; su, t)) > τ)

· H(p̂i(y|θ; su, t), pi(y|θ;ω(su), t))}.
(11)

The final training objective is given by:

L = Ls + Lc. (12)
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Datasets #sentences #opinion targets

14res Train 1,627 2,643
Test 500 864

15res Train 754 1,076
Test 325 436

16res Train 1,079 1,512
Test 329 457

14lap Train 1,158 1,634
Test 343 482

Yelp Unlabeled 100,000 -

Amazon Unlabeled 100,000 -

Table 1: Statistics of TOWE datasets and unlabeled
datasets. For TOWE datasets, sentence may contain
multiple opinion targets. For unlabeled datasets, we
randomly sampled data from Yelp for 14res, 15res,
16res datasets and Amazon for 14lap dataset. The un-
labeled data is available at https://github.com/
TOWESSL/TOWESSL.

4 Experiments

4.1 Datasets and Metrics
Following previous studies (Fan et al., 2019; Wu
et al., 2020b; Veyseh et al., 2020; Mao et al., 2021;
Jiang et al., 2021; Feng et al., 2021; Zhang et al.,
2021b), we conduct evaluations on four benchmark
datasets for TOWE. The suffixes ‘res’ and ‘lap’
refer to restaurant reviews and laptop reviews, re-
spectively. For the 14res, 15res, and 16res datasets,
we use the unlabeled sentences from Yelp2. For
the 14lap dataset, we use the unlabeled sentences
from Amazon Electronics3 (Ni et al., 2019). The
statistics of these datasets are listed in Table 1.

We use the evaluation metrics of precision, re-
call, and F1 score to measure the performance of
different methods following previous studies (Fan
et al., 2019; Wu et al., 2020b; Jiang et al., 2021).
An extraction is considered correct only if opin-
ion words from the beginning to the end are all
correctly predicted.

4.2 Experimental Settings
For our MGCR method, we set the hidden size of
both the BERT and the Transformer to 512. The
mini-batch sizes of labeled and unlabeled data are
set to 16 and 96, respectively. All parameters are
optimized using the AdamW optimizer (Loshchilov
and Hutter, 2018) with an initial learning rate 2e-5
for BERT and 2e-4 for others. We randomly split

2https://www.yelp.com
3https://www.amazon.com

Hyperparameter TOWE model Sentiment Classifier

Batch size 16(96) 128
Epochs 50 -
Steps - 3000
Learning rate (BERT) 2e-5 1e-5
Learning rate (Others) 2e-4 1e-4
Hidden dimension 512 512
Optimizer AdamW AdamW

Table 2: Experimental setting of the training of the
TOWE model and the sentiment classifier. For the
TOWE model, batch size for labeled data is 16 and
96 for unlabeled data.

20% of the training set as the validation set and
used early stopping. We search different combina-
tions of sentence-level and word-level confidence
thresholds for each dataset and use the ones with
best validation performances. The experimental
results of different threshold combinations are pro-
vided in Table 5, Table 6, Table 7 and Table 8. The
training details of the pseudo opinion targets gen-
erator and the sentiment classifier are provided in
Table 2, respectively. We pre-train the sentiment
classifier on the same data as the unlabeled data
used for MGCR.

4.3 Baselines

We compare our MGCR method with the following
methods.

Distance-rule (Fan et al., 2019) uses POS tags
and regards the nearest adjective to the opinion
target as the corresponding opinion word.

Dependency-rule (Fan et al., 2019) builds tem-
plates from the training set with the POS tags
of opinion targets and opinion words and the de-
pendency path between them, then uses the hign-
frequency dependency templates for target-oriented
opinion words extraction on the testing set.

TC-BiLSTM (Fan et al., 2019) follows the de-
sign of the work for target-oriented sentiment clas-
sification (Tang et al., 2016) and concatenate an
opinion target embedding for each word position
to perform sequence labeling.

IOG (Fan et al., 2019) employs six different po-
sitional and directional LSTMs to encode sentence
and then extract the opinion words of the target.

LOTN (Wu et al., 2020b) transfers the latent
opinion knowledge from sentiment classification
task into the TOWE task via an auxiliary learning
task.

ONG (Veyseh et al., 2020) leverages syntax-
based opinion possibility scores and the syntactic
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Methods
14res 15res 16res 14lap

P R F1 P R F1 P R F1 P R F1

Distance-rule (Fan et al., 2019) 58.39 43.59 49.92 54.12 39.96 45.97 61.90 44.57 51.83 50.13 33.86 40.42
Dependency-rule (Fan et al., 2019) 64.57 52.72 58.04 65.49 48.88 55.98 76.03 56.19 64.62 45.09 31.57 37.14
TC-BiLSTM (Fan et al., 2019) 67.65 67.67 67.61 66.06 60.16 62.94 73.46 72.88 73.10 62.45 60.14 61.21
IOG (Fan et al., 2019) 82.85 77.38 80.02 73.24 69.63 71.35 76.06 70.71 73.25 85.25 78.51 81.69
LOTN (Wu et al., 2020b) 84.00 80.52 82.21 76.61 70.29 73.29 86.57 80.89 83.62 77.08 67.62 72.02
ONG (Veyseh et al., 2020) 83.23 81.46 82.33 76.63 81.14 78.81 87.72 84.38 86.01 73.87 77.78 75.77
Dual-MRC (Mao et al., 2021) 89.79 78.43 83.73 77.19 71.98 74.50 86.07 80.77 83.33 78.21 81.66 79.90
PER (Dai et al., 2022) 86.43 80.39 83.30 81.50 75.05 78.14 90.00 84.00 86.90 80.68 70.72 75.38
ARGCN (Jiang et al., 2021) 87.32 83.59 85.42 78.81 77.69 78.24 88.49 84.95 86.69 75.83 76.90 76.36
TSMSA (Feng et al., 2021) - - 86.37 - - 81.64 - - 89.20 - - 82.18
MRC-MVT (Zhang et al., 2021b) 86.31 89.42 87.83 82.04 81.54 81.79 90.60 88.19 89.38 79.59 81.12 80.84

MGCR (ours) 88.65 89.36 89.01† 84.29 83.37 83.80† 91.31 91.74 91.51† 83.76 81.25 82.47†

Table 3: Main results (%) including recall, precision and F1-score. The best results are in bold and second-best
results are underlined. Results of all comparison methods were copied from the original papers. The marker †

represents that MGCR outperforms other methods significantly (p < 0.01) .

Methods
14res 15res 16res 14lap

P R F1 P R F1 P R F1 P R F1

MGCR 88.65 89.36 89.01 84.29 83.37 83.80 91.31 91.74 91.51 83.76 81.25 82.47
w/o Pre-trained Sentiment Classifier 87.69 89.03 88.35 82.79 82.89 82.77 90.67 90.60 90.63 84.18 79.19 81.05
w/o Filtering Noisy Unlabeled Sentences 88.84 88.00 88.41 80.13 85.39 82.62 89.59 91.68 90.62 82.84 78.83 80.77
w/o Filtering Noisy Unlabeled Words 87.29 88.12 87.70 80.10 85.33 82.66 91.02 91.30 91.16 81.99 80.19 81.07
w/o Consistency Regularization (Labeled Data Only) 87.34 87.05 87.19 82.42 81.81 82.11 87.19 88.38 87.76 81.70 77.89 79.70

Table 4: Ablation study results (%) when removing different components from MGCR method.

connections between the words for TOWE.
Dual-MRC (Mao et al., 2021) used BERT as

the encoder and transforms the TOWE task into a
question answering (QA) problem to solve.

PER (Dai et al., 2022) proposes a padding-
enhanced reinforcement learning model on both
sequential structure and syntactic structure to ex-
tract opinion words for opinion targets.

ARGCN (Jiang et al., 2021) proposes a directed
syntactic dependency graph and a attention-based
relational graph convolutional neural network to
exploit syntactic information for TOWE.

TSMSA (Feng et al., 2021) design a target-
specified sequence labeling with multi-head self-
attention based on transformer architecture.

MRC-MVT (Zhang et al., 2021b) leverages
a machine reading comprehension model trained
with a multiview paradigm to extract target-
oriented opinion words.

4.4 Main Results and Discussion
Table 3 shows main results of different methods on
four benchmarks. These results demonstrate that
MGCR achieves the best F1-score on all datasets.
Concretely, MGCR has the following advantages:

• MGCR significantly outperforms other meth-
ods. In these methods, rule-based methods

(Distance-rule and Dependency-rule) achieve
the worst performance, since they lack ro-
bustness and only cover a small number of
cases. By contrast, neural methods obtain
obvious improvements by introducing the ex-
ternal knowledge (e.g., LOTN and ARGCN)
or other solution paradigm (e.g., Dual-MRC
and MRC-MVT). Among the neural meth-
ods, MRC-MVT achieves very competitive
results on all datasets with using machine
reading framework. Nevertheless, our MGCR
still outperforms it by 1.18%, 2.01%, 2.13%,
and 1.63% in F1-score respectively on 14res,
15res, 16res and 14lap datasets. These com-
parisons demonstrate the great superiority of
MGCR in exploiting unlabeled data to reduce
distribution shift for TOWE, thereby success-
fully boosting the extraction performance.

• With few labeled TOWE data, MGCR can
also bring great performance gain. As illus-
trated in Table 1, the labeled training sen-
tences of the 14res dataset is about twice the
amount of the 15res dataset, while MGCR
outperforms MRC-MVT by 1.18% and 2.01%
in F1-score respectively on 14res and 15res
datasets. The more improvement on 15res
proves that MGCR is promising because it
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τ
T 0.5 0.7 0.9

P R F1 P R F1 P R F1

0.5 89.55 86.53 88.02 88.60 88.28 88.44 87.88 89.29 88.55
0.7 89.58 87.63 88.60 87.80 88.77 88.28 88.65 89.36 89.01
0.9 88.64 87.83 88.23 87.65 89.28 88.45 87.73 88.35 88.03

Table 5: Results (%) of combinations of sentence-level
threshold and word-level threshold on 14res. T and
τ represent sentence-level threshold and word-level
threshold respectively.

τ
T 0.5 0.7 0.9

P R F1 P R F1 P R F1

0.5 81.31 82.62 81.94 81.17 83.57 82.33 82.16 84.17 83.12
0.7 80.13 85.39 82.62 81.84 84.04 82.92 84.29 83.37 83.80
0.9 81.38 83.43 82.38 81.41 84.38 82.81 81.35 84.24 82.73

Table 6: Results (%) of combinations of sentence-level
threshold and word-level threshold on 15res. T and
τ represent sentence-level threshold and word-level
threshold respectively.

perform well even with few labeled sentences.

4.5 Ablation Study

To evaluate the effectiveness of each component of
MGCR, we conduct an ablation study. As shown in
Table 4, we observe different levels of performance
degradation on the four TOWE datasets when re-
moving the components from MGCR. Specifically,
when removing the pre-trained sentiment classifier,
the F1 score of MGCR drops from 0.5% to 1.5%
on all datasets, indicating that using sentiment-
attention scores to emphasize latent opinion words
helps better filter the noisy unlabeled sentences.
After removing either of the coarse-grained and
fine-grained filtering processes, the performance
declines on all datasets, demonstrating that these
two confidence-based thresholding mechanisms al-
leviate the issue of confirmation bias caused by
noisy training signals in consistency regularization.
In addition, we find that removing the consistency
regularization (i.e., supervised learning only) wors-
ens the performance most.

4.6 Results of Different Thresholds
Combinations

We present the results of different combinations
of sentence-level threshold and word-level thresh-
olds on four TOWE datasets. The range of each
threshold is from 0.5 to 0.9. The detailed results
for the 14res, 15res, 16res, and 14lap dataset are
listed in Tables 5, 6, 7 and 8, respectively. An inter-
esting finding is that using a high T with a low τ
is the best strategy on most datasets, which means
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Figure 4: F1-score (%) on four TOWE datasets with
varying amounts of unlabeled data.

τ
T 0.5 0.7 0.9

P R F1 P R F1 P R F1

0.5 90.44 90.66 90.55 91.31 91.74 91.51 91.09 90.79 90.94
0.7 90.21 90.72 90.46 89.85 91.68 90.76 90.73 90.72 90.72
0.9 89.45 90.35 89.88 90.16 91.36 90.75 90.90 91.36 91.13

Table 7: Results (%) of combinations of sentence-level
threshold and word-level threshold on 16res. T and τ
represent the sentence-level threshold and word-level
threshold respectively.

τ
T 0.5 0.7 0.9

P R F1 P R F1 P R F1

0.5 83.29 79.65 81.42 84.85 78.07 81.32 84.43 77.51 80.82
0.7 83.78 79.48 81.56 84.54 79.36 81.86 83.29 78.48 80.78
0.9 82.43 78.83 80.77 84.21 78.82 81.36 83.76 81.25 82.47

Table 8: Results (%) of combinations of sentence-level
threshold and word-level threshold on 14lap. T and τ
represent the sentence-level threshold and word-level
threshold respectively.

we should filter noisy unlabeled sentences more
strictly than filtering noisy unlabeled words.

4.7 Effect of Amounts of Unlabeled Data

We conduct experiments by varying the amounts
of unlabeled data to investigate the effect of differ-
ent data amounts. The results are shown in Figure
4. Compared with supervised training only, even a
few unlabeled data can improve the performance on
all datasets, which validates the effectiveness of uti-
lizing semi-supervised consistency regularization.
Besides, the generalization performance is better
with more unlabeled data used, because more data
effectively reduce the risk of domain shift between
test data and training data. This trend demonstrates
the potential of MGCR, which are likely to be fur-
ther improved with even more unlabeled sentences
and computing resources.
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Methods NULL Under-extracted Over-extracted Others Total

MGCR 2 9 24 8 43
MGCR w/o Pre-trained Sentiment Classifier 3 12 29 11 54
MGCR w/o Filtering Noisy Unlabeled Sentences 5 9 29 7 55
MGCR w/o Filtering Noisy Unlabeled Words 4 14 38 11 67
MGCR w/o Consistency Regularization (Labeled Data Only) 8 11 44 15 70

Table 9: Statistics of different error types of our MGCR method and different ablation versions on the 16res dataset.

4.8 Error Analysis
We count all the error instances on the 16res dataset
to analyze the distribution of different error types.
We categorize errors into four types: ‘NULL’: no
opinion word is extracted, ‘Under-extracted’: only
parts of opinion words are extracted from the in-
put sentences, ‘Over-extracted’: the model extracts
redundant opinion words, and ‘Others’: wrong ex-
traction and other error types. As shown in Table
9, training with only labeled data suffers from the
severe overfitting problem, which leads to many
‘Over-extracted’ errors. For instance, in the sen-
tence “open & cool place with the best pizza and
coffee.”, the overfitted TOWE model extracts both
“cool” and “best” as opinion words for the opin-
ion target “coffee”, actually the word “cool” is the
opinion word for “place”. Our MGCR reduces the
number of ‘Over-extracted’ errors from 44 to 24,
indicating that introducing high-quality unlabeled
data improves the generalization performance of
the TOWE model. It is worth noting that MGCR
also reduces 40% of total errors compared with
training with only labeled data.

5 Related Work

5.1 TOWE
Aspect-based Sentiment Analysis (ABSA) contains
a set of various subtasks (Pontiki et al., 2014; Liu
et al., 2015; Tang et al., 2016; Wang et al., 2016;
Ning et al., 2018; Zhao et al., 2020; Wu et al.,
2020a). Fan et al. (2019) first propose TOWE as a
new subtask to expand the ABSA research, which
aims to extract opinion words for a given opin-
ion target from a sentence. They employ several
LSTM networks and propose a target-fused neural
sequence labeling model that achieves promising
results on TOWE. Following the idea, many works
design advanced multi-head self-attention or multi-
view deep attention mechanism to generate target-
specific context representation (Feng et al., 2021;
Zhang et al., 2021b). On this basis, some works
incorporate syntactic knowledge (Feng et al., 2021;

Zhang et al., 2021b) or sentiment knowledge (Wu
et al., 2020b) to further improve the performance
of TOWE. There are also some other works that
transform TOWE into a question answering prob-
lem and adopt the framework of machine reading
comprehension (MRC) to solve TOWE (Mao et al.,
2021; Zhang et al., 2021b), achieving very compet-
itive results. Different from these works, we argue
that insufficient labeled data greatly increase the
risk of distribution shift for the TOWE task, and
thus propose making use of massive unlabeled raw
text to reduce the shift risk.

5.2 Semi-supervised Learning

Low-resource learning including semi-supervised
learning (Sohn et al., 2020; Zhang et al., 2021a;
Xie et al., 2020; Wang et al., 2022; Wang et al.;
Oliver et al., 2018) has proven effective in the nat-
ural language processing (Peters et al., 2017; He
et al.; Cheng et al., 2019; Gururangan et al., 2019;
Izmailov et al., 2020; Sintayehu and Lehal, 2021;
Clark et al., 2018; Ruder and Plank, 2018; Liu et al.,
2022; Lu et al., 2022; Yang et al., 2021), especially
ABSA tasks (Marcacini et al., 2018; Xu and Tan,
2019; Augenstein et al., 2018; Cheng et al., 2019;
Li et al., 2020). Consistency regularization (Saj-
jadi et al., 2016) is a very popular semi-supervised
learning technique, which has been widely applied
in various tasks (Berthelot et al., 2019b,a; Sohn
et al., 2020; Xie et al., 2020; Chen et al., 2020). Its
core idea is to improve the robustness of the model
by minimizing the discrepancy between data and
its perturbation. Miao et al. (2020) first applied
consistency regularization to aspect sentiment clas-
sification task by interpolating embeddings of input
sentences. By contrast, we are the first to success-
fully apply semi-supervised learning consistency
regularization to TOWE.

6 Conclusion

The TOWE task suffers from the risk of distribu-
tion shift which arises from scarce labeled data. In
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this paper, we propose the novel MGCR method
to increase the exposure of the model to varying
distribution shifts by exploiting unlabeled data, and
naturally the risk can be reduced. In the MGCR
method, two different-grained filters, i.e., sentence-
level (coarse-grained) and word-level (fine-grained)
confidence-based thresholding, are designed to
filter noisy sentences and words for the high-
quality exposure. To further underline the pos-
sible opinion words during learning, we employ
a pre-trained sentiment classifier and incorporate
sentiment-attention scores into the sentence-level
filter. Experimental results indicate that our MGCR
method significantly outperforms all other TOWE
methods and achieves state-of-the-art performance
on four TOWE datasets. The in-depth analysis
demonstrate the effectiveness of each component
in MGCR.
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Abstract 

Dependency tree-based methods might be 

susceptible to the dependency tree due to 

that they inevitably introduce noisy infor-

mation and neglect the rich relation 

information between words. In this paper, 

we propose a learnable dependency-based 

double graph (LD2G) model for aspect-

based sentiment classification. We use 

multi-task learning for domain adaptive 

pretraining, which combines Biaffine At-

tention and Mask Language Model by 

incorporating features such as structure, re-

lations and linguistic features in the 

sentiment text. Then we utilize the depend-

ency enhanced double graph-based MPNN 

to deeply fuse structure features and rela-

tion features that are affected with each 

other for ASC. Experiment on four bench-

mark datasets shows that our model is 

superior to the state-of-the-art approaches. 

1 Introduction 

Aspect-based sentiment analysis (ABSA) is a fine-

grained sentiment analysis task for extracting the 

emotional orientation of the given one or more as-

pects in a sentence. ABSA is generally divided into 

two parts: aspect extraction (AE) and aspect senti-

ment classification (ASC). We will focus on ASC 

task in this paper.  

Dependency-based approaches have illustrated 

promising performance by utilizing the spatial 

structure of the dependency tree (DT). Early stud-

ies focus on the syntax feature enhanced aspect-

based sentiment analysis (ABSA) models (Brun et 

al., 2014;Kiritchenko et al., 2014). Dependency-

based analysis currently tends to use graph neural 

networks to learn representation over DT due to 

that graph neural network can directly learn on 

graph data including DTs (Kipf et al., 2016). DT is 

regarded as an undirected tree structure to produce 

a symmetry adjacency matrix for Graph Convolu-

tional Networks (GCN) (Sun et al., 2019; Zhang et 

al., 2019). (Wang et al., 2020) use GNNs to capture 

implicit relation between aspect words and others 

and achieved encouraged results. (Wang et al., 

2021) utilized reinforcement learning for aspect-

based sentiment classification (ASC). 

In this paper, we consider how to effectively fuse 

structure and relation features for ASC.  the follow-

ing two questions: 1) How to utilize relations of 

edges between words for improving ASC? Most of 

existing approaches consider the structure infor-

mation and neglected the rich edge relations 

between words with exception to the works (Chen 

et al., 2022; Tian et al., 2021a; Tian et al., 2021b). 

However, these works consider graph features (i.e., 

structure, edge relations, tree distance) as different 

input sources, and do not explore how to effectively 

fuse various features because these features are af-

fected with each other. 2) How to effectively handle 

the multi-feature noisy information from DT for 

improving ASC? Existing approaches directly uti-

lize the DT generated by a tool like spaCy. Direct 

application of DT is susceptible to noisy infor-

mation in the dependency tree (Tang et al., 2020), 

which may achieve lower performance compared 

to using only the flat structure. DT includes 45 

kinds of relations such as nsubj, amod and conj, 

and so on. Dependency parsing requires effective 

way to reduce DT’s noisy information. 

To handle the two problems, we propose a learn-

able dependency-based double graph (LD2G) 

model for aspect-based sentiment classification. 

We use multi-task learning (MTL) for domain 

adaptive pretraining and reducing DT’s noisy in-

formation, by combining Biaffine Attention Model 

(BAM) and Mask Language Model (MLM) and 
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parsing structure, relations and linguistic features. 

We utilize the dependency enhanced double graph-

based MPNN to deeply fuse structure features and 

relation features that are affected with each other 

for ASC. Experiment on four benchmark datasets 

shows that our model is superior to the state-of-the-

art approaches. To the best of our knowledge, 

LD2G is the first work that jointly considers the 

structure and relations features in a unified domain 

adaptive pretraining framework. The main contri-

butions of this paper are as follows.   

• We propose a learnable dependency-based 

double graph MPNN model to learn depend-

ency-based feature for ABSA. 

• We present an MTL method for domain adap-

tive pretraining by combining Biaffine 

Attention and MLM model. 

• Experiments were made over four datasets, 

and the results show that our model outper-

forms state-of-the-art approaches.  

2 Related work 

Generally, sentiment analysis aims to predict the 

sentiment of a sentence or a document. In contrast 

ABSA is a fine-grained task, which is to perform 

sentiment analysis on aspects by first identifying 

aspect words and then predicting the sentiment of 

the aspect. Early methods mainly use machine 

learning methods, but these methods are more de-

pendent on manual feature labeling (Jiang et al., 

2011; Vo et al., 2015). Later, neural network ap-

proaches were found to have better performance. A 

common method was to model the sequence of as-

pect words and context. The popular LSTM model 

and attention mechanism were commonly used to 

fuse the context semantics and obtain the important 

parts from it. In recent years, approaches based on 

pre-trained model has become the main method for 

contextual semantic integration, which brings con-

siderable improvement to sentiment analysis. 

Another kind of approach takes advantage of 

the spatial structure of syntax features by deep 

learning methods. Early work has studied the syn-

tax feature enhanced ABSA models (Brun et al., 

2014, Kiritchenko et al., 2014). Dependency tree 

and constituent tree can represent the syntactic in-

formation between the words, but these 

approaches based on them has not become more 

popular until deep learning method was applied. 

After the improvements brought by deep learning, 

syntax features can effectively improve the per-

formance of ABSA task. In recent years, syntax 

approaches tend to use graph neural networks to 

represent the dependency tree, because GNNs can 

directly model non-Euclidean data which fits de-

pendency tree well. (Sun et al., 2019; Zhang et al., 

2019) combined Bi-LSTM and GCN (Kipf et al., 

2016) to extract feature from both linear and spa-

tial word representations, in which dependency 

tree is seemed as an undirected dependency tree 

to produce a symmetry adjacency matrix for GCN. 

(Dai et al.,2021) generated an induced tree struc-

ture based on the pre-trained model instead of 

dependency tree, and the experiment shows that 

pre-trained models can optimize the induced tree 

in the following ABSA tasks. (Zhou et al., 2021) 

shortened the distance between aspect word and 

emotional words by learning a new aspect-centric 

tree. (Tang et al., 2020) combined a dependency 

graph and an attention-based graph to learn repre-

sentation based on GNN. There are some 

approaches such as (Chen et al., 2022; Tian et al., 

2021a; Tian et al., 2021b; Wang et al., 2021), fur-

ther explored the use of specific relation on the 

dependency trees. These works utilize the original 

features of the dependency tress. 

Dependency-based methods add effective syn-

tactic features to sentiment analysis tasks, but at the 

same time, they inevitably inherit wrong depend-

ency tree information, which brings adverse 

influence on downstream task. Therefore, it has be-

come a crucial problem how to utilize relations of 

edges between words and handle the multi-feature 

noisy information effectively from DT for improv-

ing ASC 

3 LD2G model  

The LD2G model overall is shown in Figure 1. We 

use a two-stage approach to implement aspect sen-

timent analysis: 1) Domain adapted pretraining, 

and 2) Double graph MPNN-based aspect senti-

ment classification. The whole model is divided 

into three modules: BERT module, biaffine parser 

and message passing neural network. We first ap-

ply MTL on BERT and biaffine parser module for 

domain adaptive pretraining by combining BAM 

and MLM, then obtain the sparse score matrix of 

structure graph and the feature matrix of edge rela-

tions from BAM. Both them are further fused into 
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a dependency enhanced double graph matrix. The 

LD2G model can learn from the dependency 

graphs and optimize the dependency graph struc-

ture during the training process.  

 

3.1 Domain adapted pretraining 

A multi-task learning (MTL) task is launched for 

domain adaptive dependency feature fusion, which 

combines dependency parsing (DP) and MLM 

(Devlin et al., 2018) by incorporating features such 

as structure, relations and linguistic features in the 

sentiment text. For a given sentence 𝑠 =
 {𝑤0, 𝑤1, … , 𝑤𝑛}  as input, we obtain the word em-

bedding 𝐻 = {ℎ0, ℎ1, … , ℎ𝑛} with BERT. MLM is 

applied to BERT model for domain adaptation, us-

ing the same mask strategy with (Devlin et al., 

2018). Biaffine attention model (Dozat and Man-

ning, 2017) is used based on the output of BERT 

model for dependency parsing. We use the archi-

tecture biaffine and relation biaffine to obtain the 

score matrices. 

𝑆𝑎𝑟𝑐ℎ = 𝐵𝑖𝑎𝑓𝑓𝑖𝑛𝑒𝑎𝑟𝑐ℎ(𝐻)                    (1) 

 𝑆𝑟𝑒𝑙 = 𝐵𝑖𝑎𝑓𝑓𝑖𝑛𝑒𝑟𝑒𝑙(𝐻)                     (2) 

Where 𝑆𝑎𝑟𝑐ℎ ∈ ℝ𝑛×𝑛 , and 𝑆𝑟𝑒𝑙 ∈ ℝ𝑛×𝑛×𝑑  for 

all the edges in 𝑆𝑎𝑟𝑐ℎ. In this paper, d=45, which is 

the number of dependency relation types. The DP 

task and MLM task will be combined as a MTL 

task. 

The pretrained dependency graph will be taken 

as the original input of double graph MPNN model. 

The pretrained BAM with optimal initialization pa-

rameters will be used for MPNN training. After the 

BAM dependency parsing is trained, we can obtain 

the intermediate dense score matrix 𝑆𝑎𝑟𝑐ℎ and fea-

ture matrix 𝑆𝑟𝑒𝑙.  

3.2 Double graph MPNN-based aspect senti-

ment classification 

The structure information 𝑆𝑎𝑟𝑐ℎ can be regarded as 

an adjacency matrix 𝐴𝑎𝑟𝑐ℎ, and the relation infor-

mation 𝑆𝑟𝑒𝑙 as a relation graph matrix 𝐴𝑟𝑒𝑙 by MLP.  

𝐴𝑟𝑒𝑙 = 𝑀𝐿𝑃(𝑆𝑟𝑒𝑙)                          (3) 

We use an adjacency matrix and its transpose to 

distinguish the two directions between head-de-

pendent and dependent-head pairs in dependency 

graph. Four graphs are respectively represented by 

adjacency matrices 𝐴𝑎𝑟𝑐ℎ  and 𝐴𝑟𝑒𝑙 , and their 

transposes 𝐴𝑎𝑟𝑐ℎ
T  and 𝐴𝑟𝑒𝑙

T . The structure and rela-

tion features can be fused into a dependency 

enhanced graph 𝐴ℎ𝑒𝑎𝑑 with transpose 𝐴𝑑𝑒𝑝.  

𝐴ℎ𝑒𝑎𝑑 = 𝐴𝑎𝑟𝑐ℎ + 𝐴𝑟𝑒𝑙                      (4) 

 𝐴𝑑𝑒𝑝 = 𝐴𝑎𝑟𝑐ℎ
𝑇 + 𝐴𝑟𝑒𝑙

𝑇                        (5) 

Where all the matrices are ℝ𝑛×𝑛 matrices. 

Row normalization is applied to each matrix. 

The token embeddings from BERT output 𝐻 that is 

straightly fed into the MPNN graph neural net-

works as node representation 𝐻0. To learn the node 

representation over both 𝐴ℎ𝑒𝑎𝑑 and 𝐴𝑑𝑒𝑝, we take 

the bidirectional message passing (Kampffmeyer et 

al., 2019) as one layer to acquire final hidden states. 

𝐻𝑙+
1

2 = 𝐿𝑁(𝑅𝑒𝑙𝑢(𝐴ℎ𝑒𝑎𝑑𝐻𝑙𝛩ℎ𝑒𝑎𝑑
𝑙 ) + 𝐻0)      (6) 

𝐻𝑙+1 = 𝐿𝑁(𝑅𝑒𝑙𝑢(𝐴𝑑𝑒𝑝𝐻𝑙+
1

2𝛩𝑑𝑒𝑝
𝑙 ) + 𝐻0)  (7) 

Where 𝐿𝑁  denotes layer normalization. After 

two layers of message passing, we can obtain the 

final representation. The pooling function is used 

to the hidden state of aspect tokens for obtaining 

the aspect representation 𝒓, by a softmax normali-

zation layer to yield a probability distribution 𝒑𝒄. 

𝒑𝒄 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑝r+b𝑝)                   (8) 

 

Fig 1. The architecture of LD2G model. 
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Where 𝑊𝑝 and b𝑝 are both trainable parameters. 

The loss is calculated by cross entropy:    

 ℓ = − ∑ ∑ 𝑙𝑜𝑔 𝒑𝒄𝑐∈𝑃𝑑∈𝐷                         (9) 

Where D denotes the training dataset, and 𝑃 de-

notes all the polarities in ASC. 

4 Experiment 

4.1 Experimental setup and datasets 

We use Stanford Dependency (SD) conversion of 

the English Penn Treebank (PTB 3.3.0) depend-

ency datasets to train the BERT model and 

dependency parser. For pretraining and aspect sen-

timent analysis, we made the experiments over four 

datasets: Laptop14, Rest14, Rest15 and Rest16. 

Datasets Laptop14 and Rest14 are respectively 

from SemEval 2014 task 4 (Pontiki et al., 2014); 

Dataset Rest15 is from SemEval 2015 task 12 

(Pontiki et al., 2015) and Rest16 is from SemEval 

2016 task 5 (Pontiki et al., 2016), consisting of data 

from two categories: laptop and restaurant. Each of 

the datasets has three categories: positive, negative 

and neutral.  

4.2 Parameters settings 

We used the similar settings in dependency parsing 

and MPNN-based ASC. The common AdamW op-

timizer was used. The learning rate was 2e-5, warm 

                                                           
1 https://github.com/LLLpc123/LDG 

up ratio is 0.1 and dropout rate is 0.1. We set the 

batch size as 16. In dependency parsing task, be-

cause the model converges quickly, we only train 

the model for 3 epochs to reduce the risk of over-

fitting while we train 10 epochs on ASC task. 

4.3  Baselines 

We compare the proposed LD2G1  with the eight 

baselines and state-of-the-art alternatives: 1) 

ASGCN+BERT (Zhang et al., 2019); 2) SK-

GCN+BERT (Zhou et al., 2020); 3) BERT-BASE+ 

MLP (Dai et al., 2021); 4)R-GAT+BERT (Wang et 

al., 2020); 5) ACLT (Zhou et al., 2021); 6) 

DGEDT-BERT (Tang et al., 2020); 7) TGCN-

BERT (Tian et al., 2021a); 8) KVMN-BERT (Tian 

et al., 2021b).  

4.4 Overall Results 

We use the accuracy and macro-averaged F1-score 

as evaluation metrics. The experimental results are 

shown in Table 1. 

In Table 1, we observe that our LD2G model 

outperforms all the baseline methods over almost 

all datasets when we use simple message passing 

layers with residual connection. This shows that the 

utilization of double graph-based dependency en-

hanced structure fusing structure and relation 

features indeed contributes to ASC performance 

improvement. With the exceptions, LD2G has the 

 
Models 

Laptop14 Rest14 Rest15 Rest16 

 Acc F1 Acc F1 Acc F1 Acc F1 

Baselines 

ASGCN-BERT  77.90 73.01 83.78 75.02 80.69 62.02 89.99 74.46 

SK-GCN-BERT  79.00 75.57 83.48 75.19 83.20 66.78 87.19 72.02 

BERT + MLP  78.36 74.16 85.35 78.38 82.16 64.96 89.43 74.20 

R-GAT+BERT  78.53 74.63 85.63 78.82 81.61 65.30 90.96 75.26 

ACLT  79.68 75.83 85.71 78.44 84.44 72.08 92.15 78.64 

DGEDT-BERT  79.80 75.60 86.30 80.00 84.00 71.00 91.90 79.00 

TGCN-BERT 80.25 76.92 85.54 78.86 85.07 72.50 91.83 76.86 

KVMN-BERT  79.78 76.14 85.98 77.94 84.14 68.49 90.52 73.68 

Ablation 

study 

Pretrain BERT+MLP  79.15 75.15 85.63 78.56 85.24 71.29 92.21 78.02 

LD2G with static biaffine 77.36 73.01 84.46 75.79 84.50 68.34 90.09 72.09 

LD2G w/o MTL pretrain 78.53 74.03 84.73 78.22 83.39 70.39 91.40 78.97 

LD2G w/o rel. graph 79.93 75.94 85.53 78.24 84.87 67.91 91.23 75.13 

LD2G w/o arch. graph 79.62 76.12 85.36 78.24 84.50 65.84 92.21 77.67 

 LD2G 80.56 76.61 85.98 79.45 85.79 72.11 92.69 80.48 

Table 1 Performance evaluation of ASC over four datasets. 
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slightly lower ACC and F1 values than DGEDT-

BERT over Rest14, and also has the slightly lower 

F1 values than TGCN-BERT over lap14 and rest15.   

In In addition, the results show that all the base-

lines except for “DGEDT-BERT” have lower ASC  

performance than LD2G. A very likely reason is 

that: 1) BERT-based linguistic pretraining is not 

enough, and 2) their models do not use MTL pre-

training and therefore are difficult to handle and 

reduce the DT’s noisy information.  

4.5 Ablation study 

We consider five ablation baselines including: 1) 

BERT-based pre-train: we replace the MTL pre-

train only with BERT’s MLM pretraining on 

ABSA dataset by a simple BERT+MLP. 2) LD2G 

with static biaffine. We lock the parameters of bi-

affine layer to observe the effect of a learnable 

graph structure. 3) LD2G w/o MTL pretrain. MTL 

pretrain is removed from LD2G to observe the ef-

fect. 4) LD2G w/o rel. graph: Relation graph for all 

the edges in the dependency tree is removed to ob-

serve the effects. And 5) LD2G w/o arch. graph: 

Architecture graph is removed. The results for ab-

lation study are shown in Table 1.  

From Table 1, LD2G with full modules overall 

outperforms the others with incomplete functions 

over all the datasets against metrics accuracy and 

F1 score. First, we observe that LD2G with MTL 

pretrain performs better than BERT+MLP model 

with MLM pretraining. This shows that BERT’s 

MLM pretraining is not enough to reduce the DT’s 

noisy information, but the MTL with BAM and 

MLM can effectively capture the various features 

in dependency parsing and obviously reduce the 

noise. Second, LD2G with static biaffine has the 

obviously lower performance than LD2G because 

the double graph-based MPNN in LD2G can con-

tinuously update and optimize BAM for generating 

the dependency graph with less DT’s noisy infor-

mation. In contrast, LD2G with static biaffine 

cannot dynamically optimize dependency parsing. 

Third, LD2G with MTL pretraining has obviously 

much higher performance than LD2G without 

MTL pretraining, which shows that MTL is crucial 

to effectively capture features and reduce DT’s 

noisy information. Four, LD2G outperforms each 

of models LD2G w/o rel. graph and LD2G w/o 

arch. The combination of both graph structure fea-

ture and relation features indeed contributes to 

performance improvement. This also shows that 

using learnable dependency-based double graph 

MPNN indeed contributes to ASC performance. 

4.6 Graph visualization-based case study 

To illustrate the task-oriented learnable graph opti-

mization of our model, we visualized the adjacency 

matrix in different phases and epochs. Considering 

a sample sentence, i.e., “I was very disappointed 

with this restaurant.” As shown in Figure 2, the 

generated dependency graph structure is continu-

ously optimized with the training of the model. The 

column of word ‘disappointed’ is growing lighter, 

which shows the importance to classification task.  

5 Conclusions and future work 

In this paper, we proposed an LD2G model to fuse 

the syntactical structure and relation features for 

ASC. We use an MTL method for domain adaptive 

pretraining by combining Biaffine Attention and 

MLM model. A dependency enhanced double 

graph-based MPNN is utilized to deeply fuse struc-

ture features and relation features that are affected 

 

Fig 2. The change process of adjacency matrix. The figures from left to right respectively show the original 

output of trained dependency parser, the middle state of training process, and the adjacency matrix when the 

model converges. Light colors indicate that the location has higher weight. 
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with each other for ASC. Experiments results show 

that our model is superior to the state-of-the-art al-

ternatives and the utilization of double graph-based 

dependency enhanced structure indeed contributes 

to ASC performance improvement.  

In the future, we will analyze combinations of 

linguistic features and priori knowledge mining for 

ABSA. 
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Abstract

Existing research for argument representation
learning mainly treats tokens in the sentence
equally and ignores the implied structure in-
formation of argumentative context. In this
paper, we propose to separate tokens into
two groups, namely framing tokens and topic
ones, to capture structural information of ar-
guments. In addition, we consider high-level
structure by incorporating paragraph-level po-
sition information. A novel structure-aware ar-
gument encoder is proposed for literature dis-
course analysis. Experimental results on both
a self-constructed corpus and a public cor-
pus show the effectiveness of our model. Re-
sources are available at https://github.

com/lemuria-wchen/SAE.

1 Introduction

With the growing amount of scientific literature,
researchers pay increasing attention to developing
computational methods for analyzing scientific lit-
erature (Kirschner et al., 2015; Stab and Gurevych,
2017; Green, 2018; Lauscher et al., 2018; Ac-
cuosto and Saggion, 2019), aiming to identify
various components of arguments automatically
(Abend et al., 2009; Judea and Strube, 2017; Lukin
et al., 2017; Durmus and Cardie, 2018; Lugini
and Litman, 2020). Existing research focuses on
constructing annotated corpus and learning rep-
resentation of sentences for literature discourse
analysis. They tend to treat tokens in a sentence
equally and ignore the implied structure informa-
tion of argumentative context (Stab and Gurevych,
2014; Wachsmuth et al., 2016; Zhang et al., 2016;
Lawrence and Reed, 2017).

Figure 1 shows two annotated abstracts of sci-
entific literature, in which sentences are classi-
fied into four types, namely background, method,
result and conclusion. We have some findings.

∗
Corresponding author

†Equal contributions

Figure 1: Two samples of annotated abstracts. Fram-
ing tokens are highlighted in blue font and blue dotted
lines and the rest are topic tokens. The division rule of
tokens can be referred in section 3.

First, tokens in sentences can be divided into two
groups, i.e., topic words and framing words. Topic
words provide the fundamental knowledge of this
argument while framing words organize the ex-
pression. Second, the same argument components
often use similar framing structure in discourses
across topics. For example, structures like ‘... is
employed / investigated to ...’ usually appear in
the method section. Third, argument components
are sensitive to their positions. For example, back-
ground almost always comes before method part
and conclusion usually locates at the end. Moti-
vated by these findings, we propose a structure-
aware argument encoder (SAE) based on the trans-
former to enhance the literature discourse analysis.
Experimental results show the effectiveness of our
proposed model both on a self-constructed corpus
and a public corpus.

Our contributions are two-fold: (1) we propose
a novel transformer encoder that considers topic
tokens and framing tokens separately to incorpo-
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rate the structure of an argument for its representa-
tion learning; (2) we construct a large scale anno-
tated corpus of scientific literature across different
topics as a new benchmark.

2 CCSA Corpus

There are several public annotated corpora for
scientific literature analysis (Liakata et al., 2010;
Kirschner et al., 2015; Sateli and Witte, 2015;
Ronzano and Saggion, 2015; Dasigi et al., 2017;
Accuosto and Saggion, 2019; Achakulvisut et al.,
2019), most of which focus on medicine and com-
puter science. However, as a highly controver-
sial research area, climate science is less explored.
To bridge the gap, we create the Climate Change
Scientific Argumentation (CCSA) corpus. Table
1 shows a comparison between the CCSA corpus
and several annotated corpora for scientific litera-
ture, and our CCSA corpus has the advantages of
corpus size and inter-annotator agreement.

Data Source We search for climate change in
the ISI Web of Science† 2020 and collect all the
retrieved papers published from 2000 to 2020 as
the source. The domain of climate change covers
a wide range of topics. In order to balance vari-
ous sub-focus, we use Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) to cluster all papers into
different topics and choose similar number of pub-
lications from each group for annotation. We set
40 topics in LDA, and selected 8 representative,
data-rich ones with topic words such as Air Pol-
lutants, Carbon Emission Policy, Global Warming
and so on.

Annotation Scheme We treat each sentence in
the abstract as an argument component and clas-
sify them into four types. C1) Background
explains the motivation and background. C2)
Method presents experimental procedures. C3)
Result includes data, facts, and descriptions of
outcomes, without any subjective speculations or
judgements. C4) Conclusion gives opinions of the
author. Invalid sentences, such as copyright infor-
mation, are labeled as other types.

Annotation Process Undergraduate students
are hired for the annotation, about half of them
are majored in environmental sciences. We de-
velop a web-based annotation platform and each
abstract is annotated by three annotators. The

†http://isiknowledge.com/

inter-annotator agreement for argument type anno-
tation is 0.68 in terms of Fleiss’s Kappa coefficient
(Falotico and Quatto, 2015), which shows a mod-
erate consistency. The final result is determined
by majority votes. If there is a disagreement, the
label will be determined by the annotator with the
greatest confidence †. There were 2,018 abstracts
and 18,832 valid argument components in CCSA
corpus. Table 2 depicts the distribution of the ar-
gument type. Sentences of “other” type accounted
for only about 0.5% in our corpus, so we ignore
them.

3 Structure-aware Argument Encoder

In order to incorporate the structure information of
an argument, we propose a novel structure for ar-
gument representation learning, named Structure-
aware Argument Encoder (SAE). The main com-
ponent of SAE is a transformer structure with mul-
tiple attention mechanisms to capture interactions
between different groups of tokens. The overall
architecture is shown in Figure 2.

Argument Structure In scientific discourse,
some technical terms may introduce some noise
to the identification of the argument structure. In
SAE, we divide the tokens in each sentence into
framing tokens and topic tokens. Framing Token
contains the structural information in the argument
component. Topic Token contains the topic infor-
mation in the argument component, such as tech-
nical terms in the research field.

The sentence is tokenized and tagged with POS
(Part-of-speech) using NLTK (Hardeniya et al.,
2016). We regard Singular Noun (NN), Plural
Noun (NNS), Singular Proper Noun (NNP) and
Plural Proper Noun (NNPS) as topic tokens and
others as framing tokens. Any method can be
adopted for token division, not just POS tagging.

Argumentative Attention Mechanism To uti-
lize the information of the token types, in ad-
dition to self-attention, our argumentative atten-
tion mechanism contains two extra attention pat-
terns. Internal-attention takes effect among to-
kens of the same type, i.e., framing tokens at-
tend to framing tokens, and so do topic tokens.
Internal-attention is utilized to explore the internal
influence of tokens of the same type. External-

†We have a self-annotated corpus subset (gold), and we
measured the annotator confidence by calculating the consis-
tency between annotators and the subset.
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Corpus Area Content Size Type IAA

DiGAT (Kirschner et al., 2015) Education Full-text 24 - 0.50 (F1)
Gold Standard (Sateli and Witte, 2015) Computer Science Full-text 30 2 -
Dr. Inventor (Ronzano and Saggion, 2015) Computer Science Full-text 40 5 0.66 (Kappa)
PubMed-SciDT (Dasigi et al., 2017) Medical Experiment 75 7 -
Biomedical-Claims (Achakulvisut et al., 2019) Medical Abstract 1,500 2 0.63 (Kappa)
CCSA (ours) Climate Science Abstract 2,018 4 0.68 (Kappa)

Table 1: Comparison between the CCSA corpus and other human-annotated corpora for scientific literature. It is
worth noting that the "size" columns are not all comparable due to different statistical calibers.

Bg. Meth. Res. Con.

Number 3,939 4,306 5,962 4,625
Proportion 20.9% 22.9% 31.7% 24.5%

Table 2: Distribution of different argument component
types. Bg., Meth., Res., Con. are the abbreviations of
background, method, result and conclusion.

Figure 2: The overall architecture of our Structure-
aware Argument Encoder (SAE).

attention takes effect among tokens with differ-
ent types, i.e., framing tokens attend to topic to-
kens, and topic tokens attend to framing tokens.
External-attention is expected to explore the influ-
ence between tokens with different types.

Argument Representation Suppose the input s
is a sentence with T tokens s = [t0, t1, ..., tT−1],
the structure-aware argument encoder is first
adopted to obtain the contextual token embed-
dings E based on argumentative attention:

E = [e0, ..., eT−1] = F (t0, ..., tT−1) (1)

where F (·) is transformer encoder. We can ob-
tain Eia, Eea and Esa through Fia(·), Fea(·)
and Fsa(·), which are transformer encoders
with internal-attention, external-attention and self-

attention. The parameters of the three transformer
encoders are shared, but due to their different at-
tention mechanisms, different features can be ex-
tracted. The token embeddings E are then fed into
a token-level bidirectional LSTM layer, and the
last hidden states from both directions are concate-
nated as the sentence embedding h:

[[
→
h0;

←
h0], ...[

→
hT−1;

←
hT−1]] = Bi-LSTM(E)

h = [
→

hT−1;
←

hT−1]
(2)

We obtain hia, hea and hsa with Eia, Eea and
Esa respectively, and further use a max-pooling
layer to extract the argument feature Embs of
sentence s:

Embs = max-pooling(hia, hea, hsa) (3)

Argument components are sensitive to their po-
sitions and the position information is an impor-
tant feature for its type. We use the standardized
index of the sentence in the abstract as an addi-
tional position feature concatenated to argument
feature as the final argument representation:

xs = [Embs; Indexs] (4)

The predicted probability distribution p(y|s) of
argument categories is obtained after xs is fed into
a multilayer perceptron (MLP) layer.

4 Experiment

Experimental Setup We focus on the task of
argument component identification which aims
to predict the argument type of argument com-
ponent (sentences). We conduct experiments on
our CCSA corpus. To demonstrate that our SAE
is domain-independent, we also conduct exper-
iments on another scientific publication abstract
corpus biomedical-claims† (Achakulvisut et al.,

†https://github.com/titipata/
detecting-scientific-claim
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2019). It annotates whether a sentence is a claim,
whose setting is similar to CCSA.

For CCSA corpus, we take the macro F1 as the
evaluation metric of this multi-classification prob-
lem, and the F1 score of each sentence type on
the test set is also reported. For biomedical-claims
corpus, we report precision, recall and F1 score on
the test set. The experiment configuration details
are shown in A.1.

To prove our argumentative attention mecha-
nism has the advantage of modeling topic tokens
and framing tokens, we also implement a vari-
ant of our SAE model that utilizes token types
in a simpler way, namely parameterized SAE (p-
SAE). Specifically, we initialize a learnable em-
bedding layer for framing tokens and topic to-
kens instead of argumentative attention mecha-
nism, and add them to token embeddings as input,
similar to the segment embedding in BERT. Com-
pared with SAE, p-SAE models topic tokens and
framing tokens by initializing a trainable parame-
terized embedding layer at model input.

Overall Performance For CCSA corpus, we
compare our SAE and p-SAE with following base-
lines: BERT (Devlin et al., 2019), bidirectional
LSTM (Bi-LSTM) (Graves et al., 2013) and Sen-
tence Encoder (SE), which contains a BERT layer
and on top of it, a Bi-LSTM layer. Compared with
SAE and p-SAE, SE is a combination of BERT
and Bi-LSTM without the information of token
types. For biomedical-claims corpus, we present
the state-of-the-art model based on transfer learn-
ing (TL-CRF) in the original paper as baseline
(Achakulvisut et al., 2019).

Table 3 shows main results of CCSA corpus,
which indicate that our SAE achieves competitive
macro F1 score on the argument component iden-
tification task. It is worth noting that SAE im-
proves the identification of conclusion part most,
because the conclusion is the most argumentative
part, which shows that our model has excellent ef-
fect in exploring argumentative structure. Simi-
larly, results of scientific publication corpus are
shown in Table 4 indicating that the model has bet-
ter performance in identifying scientific claims.

Ablation Study Table 3 shows the results of ab-
lation study. Internal-attention affects conclusion
part most and external-attention affects method
part most, which shows that argumentative texts,
such as conclusion part focus more on the orga-

Model Bg. Meth. Res. Con. Macro F1

Bi-LSTM 59.6 79.4 59.6 55.0 59.6
BERT 69.6 83.3 78.0 57.5 72.1
SE 69.1 84.3 78.2 57.9 72.4
p-SAE 72.9 85.0 78.6 63.1 74.9
SAE 72.3 86.2 77.9 65.7 75.5

Ablation study

SAE w/o Ia -1.3 -1.5 -0.9 -2.3 -1.5
SAE w/o Ea -0.2 -3.5 +1.1 -1.1 -0.8

Table 3: Performance on test set of CCSA corpus. Bg.,
Meth., Res., Con. are the abbreviations of background,
method, result and conclusion. Ia and Ea represents
Internal-attention and External-attention.

Model Precision Recall F1

TL-CRF 86.6 72.7 79.0
Bi-LSTM 82.8 63.4 66.6
BERT 84.7 80.8 82.5
SE 84.8 81.9 83.2
p-SAE 84.5 83.1 83.8
SAE 86.6 83.6 85.0

Domain adaptation

SE (CCSA) 80.2 78.2 79.1
p-SAE (CCSA) 83.3 77.0 79.5
SAE (CCSA) 81.8 78.9 80.2

Table 4: Performance on test set of biomedical-claims
corpus (Achakulvisut et al., 2019). TL-CRF is the
SOTA result in the original paper.

nization of structure. However, the structure of
method part needs to be combined with some pro-
fessional terms through external-attention. The
macro F1 score of conclusion part drops down
most without internal-attention, which shows the
effectiveness of modeling topic tokens and fram-
ing tokens separately in argumentative structure.

Domain Adaptation We apply the model
trained with CCSA on the test set of biomedical-
claims to evaluate the ability of generalization of
SAE. Since the sentence types of the two corpora
are different, we do label mapping as follows: the
predicted conclusion label is converted to claim,
and the others are converted to non-claim. We mi-
grate three models, namely SE, p-SAE and SAE,
and the results are shown in Table 4.

Although the research fields and categories in-
volved in the two scientific literature corpora are
different, our model still shows strong transfer ca-
pability without any training. Among them, both
p-SAE and SAE that consider the argument struc-
ture outperform SE. SAE with multiple attention
mechanisms performs better than p-SAE, which
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also illustrates the advantages of our proposed
SAE in terms of domain adaptation.

5 Conclusion

In this paper, we propose a structure-aware argu-
ment encoder (SAE) that considers token types in
the sentence and separate tokens into two groups,
namely topic tokens and framing tokens. Multi-
ple argumentative attention mechanisms are uti-
lized to capture internal and external interactions
among different groups of tokens. Experimental
results on a self-constructed corpus and another
publicly corpus of scientific literature show the ef-
fectiveness of our model.
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A Appendix

A.1 Experiment Details
We use BERT-base model (bert-base-uncased) to
initialize the parameters of the transformer en-
coder, and the parameters of bidirectional LSTM
(Bi-LSTM) are randomly initialized. All models
are trained on 4 Nvidia GeForce RTX 2080 Ti
GPUs with the same random seed. The batch size
is 32, the dropout rate is 0.1, the learning rate is 1e-
5, the hidden size for the Bi-LSTM layers is 200,
the max length of a sentence is 100. We split our
CCSA corpora and biomedical-claims corpus into
training, validation and test sets with the propor-
tion of 6 : 2 : 2 respectively. The best performing
model on the validation set are evaluated on the
test set.
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Abstract

Cross-domain sentiment analysis aims to pre-
dict the sentiment of texts in the target domain
using the model trained on the source domain
to cope with the scarcity of labeled data. Pre-
vious studies are mostly cross-entropy-based
methods for the task, which suffer from insta-
bility and poor generalization. In this paper,
we explore contrastive learning on the cross-
domain sentiment analysis task. We propose
a modified contrastive objective with in-batch
negative samples so that the sentence repre-
sentations from the same class can be pushed
close while those from the different classes be-
come further apart in the latent space. Experi-
ments on two widely used datasets show that
our model can achieve state-of-the-art perfor-
mance in both cross-domain and multi-domain
sentiment analysis tasks. Meanwhile, visualiza-
tions demonstrate the effectiveness of transfer-
ring knowledge learned in the source domain
to the target domain and the adversarial test
verifies the robustness of our model.

1 Introduction

Sentiment classification (Liu, 2012) has been
widely studied by both industry and academia
(Blitzer et al., 2007; Li et al., 2013; Yu and
Jiang, 2016). For example, the sentiment is posi-
tive towards the text ‘The book is exactly as pic-
tured/described. Cute design and good quality’.
Early methods rely on labeled data to train models
on a specific domain (e.g. DVD reviews, book re-
views, and so on), which are labor-intensive and
time-consuming (Socher et al., 2013). To address
this issue, cross-domain sentiment analysis attracts
increasing attention.

Various neural models have been proposed for
cross-domain sentiment analysis in recent years
(Blitzer et al., 2007; Li et al., 2013; Yu and Jiang,
2016; Zhang et al., 2019; Zhou et al., 2020a). Most
methods focus on making the model unable to dis-
tinguish the data from which domain by adversarial

Contrastive Training

Trained Representations KNN Predictor

Positive Negative

Pull

Push

KNN

BERT Representations

Cross Entropy 

BERT Representations

Decision

Boundary

Softmax Predictor

(a) Cross-entropy Based Model

(b) Contrastive Learning Based Model 

Test

Figure 1: The architectures for cross-entropy-based
model and the contrastive- learning-based model.

training or data argumentation, in order to trans-
fer knowledge from source domains to target do-
mains (Du et al., 2020; Liu et al., 2017; Qu et al.,
2019; Yang et al., 2022) and some attempt to learn
domain-specific knowledge (Zhou et al., 2020a;
Liu et al., 2018; Wang et al., 2019). Pre-trained lan-
guage models (Kenton et al., 2019; Radford et al.,
2019; Lewis et al., 2020) have achieved stronger
performance compared with previous random ini-
tialized models such as LSTM (Long Short-term
Memory) in cross-domain tasks. The state-of-the-
art models on cross-domain sentiment analysis,
such as BERT-DAAT (Du et al., 2020), use un-
labeled data to continually train the pre-trained
model BERT to transfer knowledge besides adver-
sarial training.

In the representation aspect for the cross-domain
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sentiment analysis, there are two key requirements
for the representations of sentences: (1) sentence
representations in the same domain with the differ-
ent/the same sentiments should be far from/close to
each other; (2) sentence representations of different
domains with the same labels should be close. Ex-
isting methods are mostly softmax-based method
by optimizing cross-entropy loss to achieve the re-
quirements (illustrate in Figure 1 (a)), which suffers
from instability across different runs (Zhang et al.,
2020; Dodge et al., 2020), poor generalization per-
formance (Liu et al., 2016; Cao et al., 2019), reduc-
tion of prediction diversity (Cui et al., 2020), lack
of robustness to noisy labels (Zhang and Sabuncu,
2018; Sukhbaatar et al., 2015), or adversarial ex-
amples (Elsayed et al., 2018; Nar et al., 2019), es-
pecially when supervised data are limited in the
cross-domain settings.

To address the above shortcomings, we explore
the effectiveness of contrastive learning on the task.
Contrastive learning is a similarity-based training
strategy, which aims to push the representations
from the same class close and those from the dif-
ferent class further apart (Chen et al., 2020; Gao
et al., 2021; Neelakantan et al., 2022; Gao et al.,
2021). Contrastive learning has been shown effec-
tive in solving the problem of anisotropy (Gao et al.,
2019), and it has good generalization and robust-
ness (Li et al., 2021; Gao et al., 2021; Gunel et al.,
2020; Khosla et al., 2020). Previous work relies
mostly on pre-training for representations (Chen
et al., 2020; Neelakantan et al., 2022) or multi-task
training for semantic textual similarity (Gao et al.,
2021), classification (Li et al., 2021; Gunel et al.,
2020) and so on, but little work uses mere con-
trastive learning for supervised tasks. Intuitively,
the optimization of contrastive learning is effec-
tive in satisfying the requirements of cross-domain
sentiment analysis.

We explore COntrastive learning on BERT
(COBE) by a modified contrastive loss function
with the in-batch negative method on cross-domain
sentiment analysis tasks. In the mini-batch, the
samples with the same labels are treated as positive
pairs, and those with different labels are treated
as negative pairs. As shown in Figure 1, the op-
timization procedure aims to tighten the cluster
of samples with the same labels, and push away
samples with different labels. After training, the
representations of training data and their labels are
saved offline as a knowledge base for classifica-

tion. When evaluating the model, a kNN (k-Nearest
Neighbors) predictor is used to predict the senti-
ment of test data, i.e. we search for the k data with
the largest cosine similarity in the knowledge base
and vote for the final prediction using their labels.

Experiments on two widely used datasets (the
cross-domain Amazon dataset (Blitzer et al., 2007)
and FDU-MTL (Liu et al., 2017)) show that our
model can achieve the state-of-the-art performance
in both the cross-domain setting and the multi-
domain setting sentiment classification. Visual-
izations also demonstrate the effectiveness of trans-
ferring knowledge learned in the source domain
to the target domain. To our knowledge, we
are the first to show that contrastive learning out-
performs cross-entropy-based models on cross-
domain sentiment analysis for both performance
and robustness. The code has been released in
https://github.com/LuoXiaoHeics/COBE.

2 Related Work

Cross-domain sentiment analysis. Due to the
heavy cost of obtaining large quantities of la-
beled data for each domain, many approaches have
been proposed for cross-domain sentiment analysis
(Blitzer et al., 2007; Li et al., 2013; Yu and Jiang,
2016; Zhang et al., 2019; Zhou et al., 2020a). Ziser
and Reichart (2018) and Li et al. (2018a) propose
to capture the pivots that are useful for both source
domains and target domains. Ganin et al. (2016)
propose to use adversarial training with a domain
discriminator to learn domain-invariant informa-
tion, which is one type of solutions for the cross-
domain sentiment analysis task (Du et al., 2020;
Liu et al., 2017; Qu et al., 2019; Zhou et al., 2020a).
These adversarial training methods try to confuse
the model unable to classify the data from which
domain, transferring the knowledge from source do-
mains to target domains. Besides, Liu et al. (2018)
and Cai and Wan (2019) attempt to learn domain-
specific information for the different sentiment ex-
pressions on different domains. However, these
studies rely on minimizing the cross-entropy loss,
resulting in the issue of unstable fine-tuning and
poor generalization (Gunel et al., 2020; Li et al.,
2021; Zhang et al., 2020; Dodge et al., 2020).

Contrastive Learning. Contrastive learning has
been widely used in unsupervised learning (Chen
et al., 2020; Jing et al., 2021; Wang and Isola, 2020;
Khosla et al., 2020; Gao et al., 2021; Neelakan-
tan et al., 2022). Radford et al. (2019) propose
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Figure 2: The framework of our contrastive learning for cross-domain sentiment analysis.

to use contrastive learning to learn the represen-
tations of both text and images through raw data
in unsupervised method, which achieves strong
performance on zero-shot task. Neelakantan et al.
(2022) propose to use contrastive learning to ob-
tain sentence and code representations and achieve
strong performance on downstream tasks such as
sentence classification and text search. Wang and
Isola (2020) further identify the key properties for
contrastive learning as (1) alignment (closeness)
of features from positive pairs and (2) uniformity
of induced distribution of representations. Gao
et al. (2021) uses contrastive learning to learn the
sentence representations and theoretically prove
that contrastive learning can solve the anisotropy
problem (the learned embeddings occupy a narrow
cone in the vector space), which limits the expres-
siveness of representations. It also achieves better
results for the semantic textual similarity task using
a supervised dataset of natural language inference.
Our model differs from the above studies in that we
consider contrastive learning in supervised tasks,
which uses golden labels to obtain positive/negative
pairs for training.

Recently, some studies attempt to incorporate
contrastive learning into cross-entropy-based meth-
ods by adding InfoNCE loss (Gunel et al., 2020; Li
et al., 2021), which aims to solve the shortcomings
of cross-entropy loss. Gunel et al. (2020) propose a
new SCL loss based on InfoNCE loss to boost the
stability and robustness of fine-tuning pre-trained
language models. Subsequently, Li et al. (2021) at-
tempt to incorporate kNN predictors to enhance the
generalization of prediction in few-shot tasks, using
both cross-entropy loss and SCL loss. The above
work is similar to ours in making use of contrastive

loss for classification. However, the difference is
that we do not use a standard cross-entropy loss,
but rely solely on vector space similarity losses
for achieving cross-domain classification. To our
knowledge, we are the first to conduct sentiment
classification without using a cross-entropy loss in
natural language processing.

3 Method

Formally, the training data consists of
{(Si, Yi)}Ni=1, where Si = [s1, s2, ..., sl] is a
set of review text, and Yi ∈ {0, 1} are the corre-
sponding sentiment labels. The model framework
is shown in Figure 2. To present our model –
COntrastive learning on BERT (COBE), We first
introduce the prediction of sentiment labels using
representations based on kNN (Section 3.1), and
then describe the training objective to obtain
effective representations using contrastive learning
(Section 3.2). For comparison, we also describe the
standard cross-entropy baseline, named BERT-CE,
and a version that adopts adversarial training,
named BERT-adv.

3.1 Model
We concatenate the review text Si with special to-
kens [CLS] and [SEP ] as our model input Xi =
[CLS] Si [SEP ], which is fed into BERT model
to obtain the hidden states. The hidden state of
[CLS] from the last layer of BERT is considered
as the representation of the input sequence:

hCLSi = BERT (Xi)[CLS] (1)

BERT-CE and BERT-adv baselines: After ob-
taining the sentence representation hCLSi of input
Xi, an MLP (Multi Layer Perceptron) layer project
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it to the label space and a softmax layer is adopted
to calculate the probability distribution on the la-
bels:

pce = Softmax(MLP (hCLSi )). (2)

The label with the largest probability is adopted
as the prediction result.

COBE: Our model uses the same representation
of Eq(1), but adopts a kNN predictor to classify
the labels. An MLP layer is then adopted for the
dimension reduction:

hi =MLP (hCLSi ). (3)

To predict the sentiment label of a review text Su,
we calculate the cosine similarity of the sentence
representation hu with the sentence representations
of the training data:

sim(hu,hi) =
hu · hi

||hu|| · ||hi||
, (4)

where hi is the sentence representation of training
data Xi.

We retrieve the k training data whose cosine
similarity with hu are the largest. We denote the k
nearest neighbors as (hi, Yi) ∈ Ku. The retrieved
set is converted to a probability distribution over
the labels by applying a softmax with temperature
T to the similarity. Using the temperature T > 1
can flatten the distribution, and prevent over-fitting
to the most similar searches (Khandelwal et al.,
2020). The probability distribution on the labels
can be expressed as follows:

pk(Y
′
u) ∝

∑

(hi,Yi)∈Ku
1Y ′

u=Yi · exp(
sim(hu,hi)

T
).

(5)
The label with the largest probability is regarded

as the prediction result.

3.2 Training Objective

BERT-CE baseline: For the cross-entropy-based
model, multi-label cross-entropy loss is adopted to
optimize the model, which is formulated as follows:

Lcls = −
1

M

∑

(Xi,Yi)

Yilog pce(Yi), (6)

BERT-adv baseline: Besides the cross-entropy
loss, BERT-adv adds a domain discriminator (Du
et al., 2020; Ganin et al., 2016) to the standard

model and adopts adversarial training to transfer
knowledge from source domains to target domains.

Given the sentence and its domain label
(Xi, Di), the representation hCLSi obtained in
Eq(1) goes through an additional gradient rever-
sal layer (GRL) (Ganin et al., 2016), which can be
denoted as a ‘pseudo-function’ Dλ(x). The GRL
reverses the gradient by applying a negative scalar
λ. The forward- and backward- behaviors can be
described:

Dλ(x) = x,
∂Dλ(x)

∂x
= −λI, (7)

where λ is a hyper-paramter and I is the gradients
calculated on hCLSi (but it is multiplied with −λ to
back-propagate). Then a linear layer project hCLSi

to the label space and a softmax layer is adopted to
calculate the distribution on domain labels:

pd = Softmax(WdhCLSi + bd), (8)

where Wd and bd are the learnable parameters. The
training target is to minimize the cross-entropy for
all data from the source and target domains (note
that the data from target domains are unlabeled on
sentiment) in order to make the model unable to
predict the domain labels:

Ldom = − 1

M

∑

(Xi,Di)

Dilog pd(Di). (9)

For BERT-adv, the training loss of sentiment clas-
sification (Eq.7) and domain classification (Eq.10)
are jointly optimized:

Ladv = Lcls + Ldom (10)

COBE: The baselines adopt Lcls to tighten the
representations of the same/different labels close
(apart), and adopt Ldom to mix up the represen-
tations of different domains with the same label.
However, COBE uses a single training objective of
contrastive learning to achieve the both goals. We
apply in-batch negatives (Yih et al., 2011; Sohn,
2016) to learn sentence representations through
contrastive learning, which has been widely used
in unsupervised representation learning (Radford
et al., 2021; Jia et al., 2021). For each example in
the mini-batch of M samples, we treat the other
samples with different golden labels as negative
pairs, and the samples with the same golden labels
as positive pairs. For example in Figure 2, the sen-
tence pair (1,2) is positive pairs, and the sentence
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S→ T B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E Avg
DANN 82.30 77.60 76.10 81.70 79.70 77.35 78.55 79.70 83.95 79.25 80.45 86.65 80.29
PBLM 84.20 77.60 82.50 82.50 79.60 83.20 71.40 75.00 87.80 74.20 79.80 87.10 80.40
HATN 86.10 85.70 85.20 86.30 85.60 86.20 81.00 84.00 87.90 83.30 84.50 87.00 85.10
ACAN 83.45 81.20 83.05 82.35 82.80 78.60 79.75 81.75 83.35 80.80 82.10 86.60 82.15
IATN 86.80 86.50 85.90 87.00 86.90 85.80 81.80 84.10 88.70 84.70 84.10 87.60 85.90
BERT-CE 88.96 86.15 89.05 89.40 86.55 87.53 86.50 87.95 91.60 87.55 87.95 90.45 88.25
BERT-CE∗ 55.40 56.55 54.05 55.10 57.25 53.75 55.50 56.00 55.55 52.30 52.75 54.15 54.86
BERT-adv 89.70 87.30 89.55 89.55 86.05 87.69 87.15 86.05 91.91 87.65 87.72 86.05 88.56
DAAT 89.70 89.57 90.75 90.86 89.30 87.53 88.91 90.13 93.18 87.98 88.81 91.72 90.12
COBE∗ 82.17 83.65 83.12 79.82 78.87 82.58 75.95 79.53 86.10 78.55 76.95 85.17 80.95
COBE (proposed) 90.05 90.45 92.90 90.98 90.67 92.00 87.90 87.87 93.33 88.38 87.43 92.58 90.39

Table 1: Results on the cross-domain Amazon dataset. BERT-CE∗ and COBE∗ refer to the models fixing the
parameters of BERT, and only tuning the parameters of MLP layer. (B for the Books domain, D for the DVD
domain, E for the Electronics domain, and K for the Kitchen domain, respectively.)

pairs (1,3) and (2,3) are negative pairs. For each
review Xi we denote N+

i as the set of reviews with
the same label of Xi in the mini-batch. Then the
contrastive loss function can be defined as follows:

LCon =
M∑

i

− 1

M
log

∑
k∈N+

i
exp(sim(hi,hk)/τ)

∑M
i ̸=j exp(sim(hi,hj)/τ)

(11)
where τ is a temperature hyper-parameter. The
loss function can alleviate the negative effect of the
situations where there is no positive pairs for any
training instance in the batch.

The usage of in-batch negatives enables re-use
of computation both in the forward and backward
pass making training highly efficient.

4 Experiments

We conduct experiments on both the cross-domain
settings (train models on source domains and test
on another one) and the multi-domain settings
(train and test models on the same domains). To
verify the effectiveness of our model, we also visu-
alize the representations (Section 4.3) and carry out
further analysis such as model robustness (Section
4.4).

4.1 Settings

Datasets. We test our contrastive learning method
on two widely used datasets, the cross-domain
Amazon dataset, and the FDU-MTL dataset. The
cross-domain Amazon dataset (Blitzer et al., 2007)
contains 4 domains: Books (B), DVD (D), Elec-
tronics (E) and Kitchen (K). Each domain contains
2000 Amazon review samples. Following the set-
ting of previous work (Ganin et al., 2016; Ziser and
Reichart, 2018; Du et al., 2020), we test the model

on 12 tasks. The model is trained on the source
domain data and tested on the target domain data.

Furthermore, we also evaluate our model on
FDU-MTL, which is an Amazon reviews dataset
with data on 16 domains (Liu et al., 2017). The
training set, development set, and test set are split
in the original dataset, (the statistics are shown
in Appendix A). We carry out experiments on the
multi-domain setting, (i.e. train the model on the
whole 16 domains, and evaluate the model on the
test on the whole 16 domains), and on the 15-1
cross-domain setting (i.e. train the model on 15
domains, and test the model on the 1 domain left).

Baselines. For the cross-domain Amazon
dataset, we compare our model with several
strong baselines in cross-domain sentiment analy-
sis: DANN (Ganin et al., 2016), PBLM (Ziser and
Reichart, 2018), HATN (Li et al., 2018b), IATN
(Qu et al., 2019), DAAT (Du et al., 2020), BERT-
CE and BERT-CE∗ (∗ for fixing the BERT param-
eters). We adopt the results of baselines reported
in Zhou et al. (2020b) and Du et al. (2020). We
also adopt BERT-adv as our baselines introduced
in Section 3.2.

On FDU-MTL, we compare our model with ASP
(Liu et al., 2017), DSR-at (Zheng et al., 2018),
DAEA and DAEA-B (DAEA-BERT) (Cai and Wan,
2019). The DAEA-B is regarded as the state-of-
the-art model on FDU-MTL (excluding the model
SentiX (Zhou et al., 2020b), which uses a large cor-
pus (about 241 million reviews) to continually train
BERT for sentiment tasks). Note that, it is unfair
that previous studies do not adopt the BERT-CE
model for multi-domain experiments for compari-
son. In this study, we also consider BERT-CE, and
BERT-CE∗ on the multi-domain setting as base-
lines. For the multi-domain task, the objective of
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adversarial training is redundant, thus we mainly
compare COBE with baselines BERT-CE.

Implementation Details. We perform experi-
ments using the official pre-trained BERT model
provided by Huggingface1. We train our model
on 1 GPU (Nvidia GTX2080Ti) using the Adam
optimizer (Kingma and Ba, 2014). For the cross-
domain Amazon dataset (FDU-MTL), the max se-
quence length for BERT is 256 (128), and the
batch size M is 8 (32). The max sequence lengths
are set in such values for comparison with previ-
ous models. The initial learning rate is 2e-5 (1e-
4) for BERT-unfixed (BERT-fixed) models, and
each model is trained for 20 epochs. The hyper-
parameters of temperatures τ is 0.05, T is 5, and
the number of nearest neighbors k is 3 (without
losing generality, we do not search for the best
hyper-parameters through grid-search). Through
the training of our model, no development set is
applied to find the best checkpoints, but stop until
the training step is reached. During the test proce-
dure, we adopt FAISS IndexFlat Index (Johnson
and Guestrin, 2018) to accelerate the speed to find
the k nearest neighbors. We average the results
with 3 different random seeds.

4.2 Results

Results on the Cross-Domain Amazon Dataset.
The results are shown in Table 1. Overall,
our model COBE achieves state-of-the-art perfor-
mances with an accuracy of 90.39% on average
for the 12 cross-domain tasks. It achieves state-of-
the-art performance in 9 of 12 tasks. The result
is 2.14% higher than that of BERT-CE (88.25%),
which indicates that our proposed contrastive learn-
ing method can be more effective and generalized
than methods based on cross-entropy loss. COBE
is also 1.83% higher than BERT-adv (88.56%),
which implies that directly pushing the representa-
tions of different domains with the same (different)
labels close (apart) results in a strong performance
on the cross-domain sentiment classification.

DAAT uses the unlabeled data from the source
domain and the target domain to continually train
BERT to mix the information of the source domain
and target domain. Then the training objective
of cross-entropy and the domain discriminator are
jointly optimized to obtain the sentiment classifi-
cation model. The average accuracy of our model
is 0.27% higher than that of DAAT, which uses ad-

1https://huggingface.co/

ditional data to continually train BERT to transfer
knowledge in the source domain to the target do-
main. Although DAAT achieves great performance,
it is more time-consuming and resource-wasting
compared with solely using contrastive learning. In
the tasks of E→ B, E→ D, and K→ D, the accura-
cies of our model are smaller compared with DAAT,
and the possible reason can be that the source do-
mains’ data have less shared information with the
target domains. But with unlabeled data for contin-
ual training, some domain-specific information is
extracted in DAAT and further results in a better
performance.

Moreover, the average accuracy of the model
COBE∗ (82.05%) outperforms that of BERT-CE∗

(54.86%) with a large margin, where the parame-
ters of BERT are fixed (corresponding to the sce-
nario that pre-trained models are too large for fine-
tuning). The model BERT-CE∗ fails to predict
the sentiments of the target domain using cross-
entropy-based methods, but with contrastive learn-
ing, it can obtain strong results (similar perfor-
mance to BERT-CE). But the performance of mod-
els fixing BERT parameters is still largely worse
than that of unfixed models.

Results on FDU-MTL. First, we test our model
in the multi-domain setting, training the model on
the data of 16 domains and evaluating it on the
whole test data. The results are shown in Table
2. Our model achieves the state-of-the-art perfor-
mance with an accuracy of 91.49% on average, and
in the 12 of 16 domains, it achieves the state-of-
the-art performance. The accuracy is 0.67% higher
than that of BERT-CE, and 0.99% higher than that
of DAEA-B. In particular, using BERT-CE solely
in the multi-domain setting can achieve competi-
tive performance (90.82%), which is neglected by
previous studies. The accuracy of our model COBE
on the IMDB data is lower than DSA with a large
margin, which may result from the max sequence
length for BERT being 128, much smaller than
the average sequence length in IMDB (128 to 256).
Our model COBE∗ achieves an accuracy of 83.35%
in the multi-domain setting, which is also higher
than that of BERT-CE∗ with a margin of 3.14%.

Then we also evaluate our model in the 15-1 set-
tings, referring to that we train the model on 15
domains and test it on the domain left (shown in
Table 3. Our model achieves state-of-the-art perfor-
mance with an accuracy of 90.03%. The accuracies
in 14 of 16 tasks are larger than that in previous

7104



Domain ASP DA DSA DAEA DAEA-B BERT-CE∗ BERT-CE COBE∗ COBE
Books 84.00 88.50 89.10 89.00 N/A 81.33 90.67 85.17 90.17
Electronics 86.80 89.00 87.90 91.80 N/A 82.17 91.92 82.92 93.58
DVD 85.50 88.00 88.10 88.30 N/A 78.83 89.00 79.42 89.67
Kitchen 86.20 89.00 85.90 90.30 N/A 79.92 91.17 81.33 91.50
Apparel 87.00 88.80 87.80 89.00 N/A 83.33 92.08 87.25 92.33
Camera 89.20 91.80 90.00 92.00 N/A 81.83 93.25 87.50 93.58
Health 88.20 90.30 92.90 89.80 N/A 81.25 93.33 85.00 93.92
Music 82.50 85.00 84.10 88.00 N/A 79.42 88.92 80.33 90.33
Toys 88.00 89.50 85.90 91.80 N/A 78.25 92.41 83.75 93.42
Video 84.50 89.50 90.30 92.30 N/A 78.17 90.33 83.67 89.91
Baby 88.20 90.50 91.70 92.30 N/A 82.33 93.00 84.42 93.92
Magazines 92.20 92.00 92.10 96.50 N/A 83.41 93.75 89.67 94.08
Software 87.20 90.80 87.00 92.80 N/A 83.42 92.42 85.33 93.42
Sports 85.70 89.80 85.80 90.80 N/A 78.50 91.50 84.50 92.83
IMDB 85.50 89.80 93.80 90.80 N/A 76.43 86.33 76.50 86.91
MR 76.70 75.50 73.30 77.00 N/A 74.75 83.00 76.83 84.33
Avg 86.09 88.61 87.86 90.16 90.50 80.21 90.82 83.35 91.49

Table 2: Results on FDU-MTL in the multi-domain setting. BERT-CE∗ and COBE∗ refer to the models fixing the
parameters of BERT, and only tuning the parameters of MLP layer.

ASP DSR-at DAEA COBE
Books 81.50 85.80 87.30 90.67
Electronics 83.80 89.50 85.80 92.33
DVD 84.50 86.30 88.80 87.50
Kitchen 87.50 88.30 88.00 90.75
Apparel 85.30 85.80 88.00 91.16
Camera 85.30 88.80 90.00 91.67
Health 86.00 90.50 91.00 94.33
Music 81.30 84.80 86.50 89.17
Toys 88.00 90.30 90.30 92.33
Video 86.80 85.30 91.30 88.50
Baby 86.50 84.80 90.30 93.17
Magazines 87.00 84.00 88.50 90.50
Software 87.00 90.80 89.80 90.82
Sports 87.00 87.00 90.50 92.15
IMDB 84.00 83.30 85.80 86.58
MR 72.00 76.30 75.50 78.91
Avg 84.59 86.35 87.96 90.03

Table 3: Results on FDU-MTL in the 15-1 setting.

studies. It is 2.07% higher than the average ac-
curacy of DAEA. The experimental results also
show that contrastive learning can perform better
than cross-entropy-based models with adversarial
training for cross-domain sentiment analysis.

4.3 Visualization

The visualization of the sentence representations
hi in COBE is shown in Figure 3. For the B->K
(Books->Kitchen) task in Figure 3 (a), first, the
representations of positive and negative data are
separated acutely with a large margin between each
other. Second, representations of source and tar-
get domains with the same labels are close to each
other, which means the knowledge learned from the
source domain is transferred to the target domain
effectively. For the multi-domain setting in Figure

3 (b) (left), we can observe that the representations
with the same labels are separated into different
clusters w.r.t the labels, and in the sentence rep-
resentations with the same label but different do-
mains mix up well, which satisfy the requirements
of the cross-domain sentiment analysis.

To further compare the contrastive learning
method with cross-entropy-based methods, we il-
lustrate the representations of the source domain
and the target domain in COBE, BERT-CE in Fig-
ure 3 (c)(d), respectively (visualizations of COBE∗

and BERT-CE∗ are shown in Appendix). Obvi-
ously, the sentence representations are separated in
the target domain in BERT-CE less effective than
that in COBE. The visualizations show the effec-
tiveness of contrastive learning in transferring the
learned knowledge in the source domain to the tar-
get domain. Meanwhile, it demonstrates operating
the sentence representations in the feature space has
a strong generalization ability in the cross-domain
sentiment analysis tasks.

4.4 Robustness Analysis
We evaluate our model on adversarial samples gen-
erated by using the well-known substitution-based
adversarial attack method–Textfooler (Jin et al.,
2020). Given an input Xi and a pre-trained classi-
fication model F , a valid adversarial sample Xadv

i

should conform the following requirements:

F (Xi) ̸= F (Xadv
i ), Sim(Xi, X

adv
i ) ≥ ϵ. (12)

where Sim is a similarity function and ϵ is the
minimum similarity between the original input and
the adversarial sample, which is often a semantic
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Text Gold Label Output
Test Data. This story is true to life living in south west and west phila. It brought back
many memories and changing the names did not bother me. I really enjoyed reading about
life the way it was back in the 55 to 70 era.

Positive Positive

k nearest neighbors.
(1) Have to be honest and say that I haven’t seen many independent films, but I thought
this one was very well done. The direction and cinematography were engaging without
becoming a distraction.

Positive

(2) I bought this wireless weather station as a gift. The recipient loves it. For the price, he
is really enjoying it.

Positive

(3) I think j-14 is a really good magazine if u like to hear the latest gossip about all your
favourite celebrity ’s, or if u like to get nice posters of all the hot celebrity ’s.

Positive

Table 4: Case Study on FDU-MTL.

Original Text: DEF. NOT A GOOD TANK. You look at
them in a picture frame, the fish are crammed in there.
Adversarial Text: DEF. Not a alright tank. you look
at them in a photography sashes, the fish are teeming in
there.

Table 5: Adversarial example based on TextFooler.

BERT-CE∗ BERT-CE COBE∗ COBE
Books 42.50 71.50 69.00 78.00
Multi- 49.50 73.50 72.50 81.00

Table 6: Results on the adversarial samples. Books for
the trained model using the data of Books domain in
the cross-domain Amazon dataset, and Multi- for the
trained model using multi-domain data in FDU-MTL.

and syntactic similarity function. The details for
generation refer to Jin et al. (2020). An adversarial
sample is shown in Table 5, where the sentence
semantic information is not corrupted, but some
words are replaced.

We test our model (trained using Books data in
the cross-domain Amazon dataset) with 200 adver-
sarial samples from the Kitchen domain, and our
model (trained using multi-domain data in FDU-
MTL) with 200 adversarial samples randomly se-
lected from the multi-domain test data. The results
are shown in Table 6. Our model COBE achieves
78.00% and 81.00% accuracies for the two kind of
adversarial data, which are 6.5% and 7.5% higher
than BERT-CE. Meanwhile, the model COBE∗ out-
performs BERT-CE∗ with a large margin (26.5%
and 23%). The results demonstrate that contrastive-
learning based models have better robustness than
cross-entropy-based models.

4.5 Case Study

The case study is shown in Table 4. As can be
observed, the k nearest neighbors of the test data
(Books) are reviews from different domains (Video,
Electronics and Magazines) with positive labels,

and it outputs the correct label for the test data.
Note that the key sentiment information is similar
for the original text and neighbors in the case such
as ‘enjoy’, ‘engaging’, ‘enjoying’ and ‘favorite’.
It shows that our model can learn effective infor-
mation from multi-domain data for the sentiment
classification task, and the representations of differ-
ent domains mix up well, which serve as a strong
sentiment knowledge base for the classification.

5 Conclusion

We explored the contrastive learning method in
the cross-domain sentiment analysis task. We pro-
posed a suitable contrastive loss for the supervised
sentiment analysis task with the in-batch negatives
method. Experiments on two standard datasets
showed the effectiveness of our model. Visualiza-
tions also demonstrated the effectiveness of trans-
ferring knowledge learned in the source domain to
the target domain. We also showed that our model
has stronger robustness than cross-entropy-based
models through the adversarial test.
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A Statistics for FDU-MTL.

Domain Train Dev Test Avg. Length
Books 1400 200 400 159
Electronics 1398 200 400 101
DVD 1400 200 400 173
Kitchen 1400 200 400 89
Apparel 1400 200 400 57
Camera 1397 200 400 130
Health 1400 200 400 81
Music 1400 200 400 136
Toys 1400 200 400 90
Video 1400 200 400 156
Baby 1300 200 400 104
Magazines 1370 200 400 117
Software 1315 200 400 129
Sports 1400 200 400 94
IMDB 1400 200 400 269
MR 1400 200 400 21

Table 7: Statistics of FDU-MTL.

B Reconstruction Loss

We attempt to reconstruct the representations of
BERT which means another MLP layer is applied
by hreci = MLP (hi). Then a reconstruction loss
of MSE (mean-squared loss) is added to retain the
semantic information, Lrec = ||hreci − hCLSi || as
(Zhao et al., 2021). But little improvement (an av-
erage accuracy of 90.81% on the FDU-MTL multi-
domain setting and 90.13% on the cross-domain
Amazon dataset) is obtained, which is 0.68% and
0.26% lower than COBE, respectively. It indicates
that the reconstruction loss is not suitable for the
task of cross-domain sentiment analysis.

C SCL Loss

To verify the effectiveness of our propose loss func-
tion, we compare our contrastive learning loss with
the SCL loss (Gunel et al., 2020), which can be
formulated as follows:

LSCL = −
M∑

i

1

|N+
i |

∑

k∈N+
i

log
exp(sim(hi, hk)/τ)∑M
i ̸=j exp(sim(hi, hj)/τ)

(13)

In fairness, we use the kNN predictor the same
as our proposed model. The model with SCL
loss achieves an average accuracy of 91.13% on
the FDU-MTL multi-domain setting and 90.05%
on the cross-domain Amazon dataset (0.36% and
0.34% lower than COBE, respectively). The exper-
iments prove the effectiveness of our proposed loss
function with the in-batch negative samples, which
aims to tighten all the samples of the same labels
as positive pairs. The conclusion is different from
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Figure 4: Evaluation with respect to different numbers
of k for one random seed.

that in Khosla et al. (2020), whose experiments
demonstrate that the separately calculating each
positive pair separately (SCL loss) achieves better
results for image classification. It may results from
the reason that the batch size influences the results
of the two methods, and our batch sizes (8 and
32) are comparatively smaller compared with their
study (6144), which may motivate further theoreti-
cal analysis.

D Influence of k

In order to discover the sensitivity of our model to
the influence of k for the kNN predictor (shown in
Figure 4), we evaluate our model with respect to
the different numbers of k. As observed, the accu-
racies of COBE stop to increase and keep stable
when k >= 5, which indicates that the model is
little sensitive with the hyper-parameter k. The phe-
nomenon demonstrates that the sentence represen-
tations learned by COBE are effectively separated
and stable for classification.
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Original Text Adversarial Text
Very nice iron!. This is a great iron. It’s quite heavy, but I like
that. It really gets out the wrinkles. I don’t even mind ironing
any more.

Awfully sweet iron! This is a whopping iron it ’s quite heavy,
but I like that it really gets out the wrinkles I don’t even mind
ironing any more.

A good idea, disappointing in use. These silicone pot holders
are indeed brightly colored, easy to wash in the dishwasher, and
protective even when wet. They are also clumsily stiff at the
same time as they are slippery, the net result being a miserable
failure in the kitchen. They are useful for protecting a counter
from a hot pot, but not for picking the hot pot up.

A good ideas, agonizing in use these silicon pot holders are
indeed brightly colour, easy to wash in the dishwasher, and
protective even when clammy they are also clumsily painstaking
at the same time as they are slippery, the net raison being a
miserable failure in the kitchen they are useful for protecting a
counter from a hot pot, but not for picking the hot pot up.

Love this piece. I just bought this piece and tried it out. I love
the size and no drip mouth.The color is beautiful and its so pretty
on my buffet.

Like this pieces I just obtained this pieces and attempts it out. I
luv the size and no drip mouths the colorful is beautiful and its
however rather on my buffet.

Table 8: Adversarial Samples.

Figure 5: Visualization of sentence representation obtained from BERT and COBE. We use t-SNE to transfer the
feature space into two-dimensional space for the B→K task.
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Abstract

The stance detection task aims to classify the
stance toward given documents and topics.
Since the topics can be implicit in documents
and unseen in training data for zero-shot set-
tings, we propose to boost the transferability
of the stance detection model by using senti-
ment and commonsense knowledge, which are
seldom considered in previous studies. Our
model includes a graph autoencoder module to
obtain commonsense knowledge and a stance
detection module with sentiment and common-
sense. Experimental results show that our
model outperforms the state-of-the-art meth-
ods on the zero-shot and few-shot benchmark
dataset–VAST. Meanwhile, ablation studies
prove the significance of each module in our
model. Analysis of the relations between senti-
ment, common sense, and stance indicates the
effectiveness of sentiment and common sense.

1 Introduction

Stance detection aims to identify the authors’ at-
titudes or positions (Pro (support), Con (oppose),
Neu (neutral)) towards a specific target such as an
entity, a topic. (Mohammad et al., 2017, 2016;
Walker et al., 2012; Qiu et al., 2015; Zhang et al.,
2017). It is crucial for understanding opinions and
analyzing how opinions are presented in texts re-
garding specific issues, and much work has been
done building stance detection models (Wei et al.,
2016; Dias and Becker, 2016; Allaway and Mck-
eown, 2020). There are two salient challenges
to the task. First, obtaining rich annotated data
in stance detection is time-consuming and labor-
intensive. To address this issue, Allaway and Mck-
eown (2020) propose the dataset VAST containing
various topics for few-shot and zero-shot stance
detection tasks, requiring the model to classify the
stance of topics unseen in the training set. Sec-
ond, the topic is often not explicitly mentioned in
the document, resulting in difficulty. Considering

Text : I totally agree with this premise. As a younger per-

son I was against Nuclear power (I was in college during 

3 mile island) but now it seems that nuclear should be in 

the mix. Fission technology is better, and will continue to

get better if we actively promote its development. The pro-

spect of fusion energy also needs to be explored. If it's 

good enough for the sun and the stars, it's good enough for

 me.

Text :  

Example 2    Topic : Nuclear power      Stance : Pro

Example 1 Topic : Olympics   Stance : Pro

The games should proceed. Athletes have made 

tremendous sacrifices to qualify and be prepared. It would 

be cruel to deny them their chance. In the future the Games

should be held in countries within the top say 15 GDP per 

capita.

Figure 1: Examples for stance detection VAST.

Figure 1 Example 1, the document does not explic-
itly contain the topic ‘Olympics’, but ‘Games’ and
‘Athlete’ implicitly refer to the topic.

Existing work incorporates external knowledge
to solve the challenges (Liu et al., 2021; Jayaram
and Allaway, 2021). For example, CKE-Net
achieves the state-of-the-art results for zero-shot
stance detection, which uses pre-trained model
BERT and commonsense knowledge graph on
ConceptNet (Liu et al., 2021). However, such a
method only considers the knowledge relations be-
tween documents and topics (i.e., the common-
sense knowledge in two-hop directed paths on
the ConceptNet from documents to topics), lim-
iting the generalization of adding other types of
related knowledge. In Figure 1 Example 1, the
word ‘games’ can also represent the computer pro-
grams in a different document. Such knowledge
cannot be used for that document if no relation
between ‘game’ and ‘computer program’ can be
learned from the relations between documents and
topics in the dataset.

We consider incorporating two types of gen-
eral knowledge, including common sense and
sentiment. First, we incorporate commonsense
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knowledge into the stance detection model using a
graph autoencoder module. We take a pre-training
method to train the graph autoencoder, separately
to the stance detection module. Second, stance de-
tection is significantly influenced by the sentiment
information (Li and Caragea, 2019; Sobhani et al.,
2016; Hardalov et al., 2022) (case study can be
seen in Appendix). In Figure 1 Example 2, the doc-
ument contains many positive words like ‘good’,
and ‘better’ regarding the topic ‘nuclear power’,
which implies a Pro stance. However, little exist-
ing work has considered sentiment knowledge for
zero-shot stance detection. We use the sentiment-
aware BERT (SentiBERT henceforth) to extract the
sentiment information, assisting in classifying the
stances of topics.

Existing work on injecting knowledge into NLP
models can be broadly classified into two cate-
gories. One uses a graph encoder to integrate struc-
tural knowledge into a neural encoder (Li et al.,
2019; Ghosal et al., 2020; Bai et al., 2021) and the
other injects knowledge by using training losses
to tune model parameters (Jayaram and Allaway,
2021; Peters et al., 2019; Logan et al., 2019; Liu
et al., 2019). In our work, we consider the former
for commonsense knowledge and the latter for sen-
timent due to the sources of information. In the
component of knowledge graph encoding, a graph
autoencoder consisting of relational graph convo-
lutional network (RGCN) encoders (Schlichtkrull
et al., 2018) and a DisMult decoder (Yang et al.,
2014) is trained using negative sampling to ob-
tain the relations of concepts on the commonsense
knowledge graph. We inject sentiment knowledge
encoded by SentiBERT into BERT using a cross
attention module and tuning the fusing process by
the training loss of the stance detection.

Our model achieves the state-of-the-art perfor-
mance on the benchmark dataset VAST (Allaway
and Mckeown, 2020) in both zero-shot and few-
shot stance detection, improving the performance
on many challenging linguistic phenomena such
as sarcasm and quotations. We analyze the per-
formance of our model with respect to different
sentiment and common sense features, finding that
the data with the corresponding sentiment and
stance pairs (i.e., (Pos, Pro) and (Neg, Con)) are
the easiest part for models to classify; in addition,
increased commonsense knowledge leads to im-
proved performance of the stance detection model.
To our knowledge, we are the first to incorporate

both sentiment and common sense into zero-shot
stance detection model. The code has been released
https://github.com/LuoXiaoHeics/StanceCS.

2 Related Work

Stance detection, also known as stance classifi-
cation (Walker et al., 2012), stance identification
(Zhang et al., 2017), stance prediction (Qiu et al.,
2015), debate-side classification (Anand et al.,
2011), and debate stance classification (Hasan and
Ng, 2013), aims to identify the stance of the text au-
thor towards a target (an entity, event, idea, opinion,
claim, topic, etc.) either explicitly mentioned or
implied within the text. For the initial task of stance
detection, models are trained an individual classi-
fier for each topic (Lin et al., 2006; Beigman Kle-
banov et al., 2010; Sridhar et al., 2015; Hasan and
Ng, 2013, 2014; Li et al., 2018) or only a small
number of topics are both in training and evalua-
tion sets (Faulkner, 2014; Du et al., 2017; Hardalov
et al., 2021).

However, given rich and varying topics, data
annotation can be time-consuming and labor-
intensive. Researchers attempt to solve the task
in a cross-target setting (Augenstein et al., 2016;
Xu et al., 2018a), training the model in a topic
and testing it on another one, and propose several
weakly supervised approaches using unlabeled data
related to the test topics (Zarrella and Marsh, 2016;
Wei et al., 2016; Dias and Becker, 2016). Other
studies propose the tasks of zero-shot and few-shot
stance detection, which requires training the model
in data of several topics and testing it on some
unseen topics (Allaway and Mckeown, 2020).

Allaway and Mckeown (2020) propose to solve
the task using a topic-grouped attention net, which
uses the relation between the training and evalua-
tion topics in an unsupervised way, and they also
analyze the relationship between sentiment and
stance from the perspective of the model by cor-
rupting sentences with replacing sentiment words.
Jayaram and Allaway (2021) use human rationales
as attribution priors to provide faithful explanations
of models. Liu et al. (2021) propose to incorpo-
rate commonsense knowledge to learn the relations
between different topics utilizing a CompGCN (a
variant of graph convolution networks). However,
it limits the content of knowledge (only knowl-
edge from documents to stances in the training
data). Our model differs from such a method in
that our model adopts the related concepts of both
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Figure 2: Framework of our proposed model, which contains two components, (1) knowledge graph encoding, (2)
stance detection with sentiment and common sense.

documents and topics and uses a pre-trained graph
autoencoder to obtain commonsense information.
Adversarial learning is also applied to solve the
zero-shot task by using unlabeled raw data (All-
away et al., 2021). Unlike the above work, we con-
sider integrating external knowledge for zero-shot
stance detection, including sentiment and common-
sense information that are rarely considered. To
our knowledge, we are the first to systematically in-
corporate sentiment and commonsense knowledge
into the stance detection model and analyze the
relationship between them (in Section 4.5 and 4.6).

3 Method

The architecture of our model is illustrated in Fig-
ure 2, which contains two components: (1) knowl-
edge graph encoding, which integrates common-
sense knowledge from ConceptNet (Section 3.1);
(2) stance detection with sentiment and common-
sense knowledge (Section 3.2).

3.1 Knowledge Graph Autoencoder

Formally, the ConceptNet is represented as a di-
rected labeled graph G = {V, E ,R}, with concepts
vi ∈ V and labeled edges (vi, r, vj) ∈ E , where
r ∈ R is the relation type of edge between vi and
vj . The concepts in ConceptNet are unigram words
or n-gram phrases in the triplet format. For exam-
ple, one such triplet from ConceptNet is (teacher,
RelatedTo, job).

ConceptNet has a large size of approximately
14 million edges. We extract a subset of edges re-
lated to the VAST dataset for our task. From the
training documents in VAST, we first extract the

set of all unique nouns, adjectives, and adverbs.
These words are treated as the seeds that we use
to filter the ConceptNet to a sub-graph. We ex-
tract all the triplets with a one-edge distance to
any of those seed concepts, resulting in a sub-
graph G′ = {V ′, E ′,R′} with 310k concepts and
750k edges. The top 5 relations include ‘Relat-
edTo’, ‘HasContext’, ‘IsA’, ‘Synonym’ and ‘De-
rivedFrom’. The sub-graph G′ contains all the con-
cepts related to stance targets in the VAST dataset.

Following Schlichtkrull et al. (2018), we con-
struct a graph autoencoder to compute the repre-
sentations of concepts in the sub-graph G′. The
autoencoder takes an incomplete set (randomly
sampled with 50% probability in our model) of
edges Ê ′ from E ′ in G′ as input. Ê ′ is negative
sampled to the overall set of samples denoted T
(details in Training). Then we assign the possible
edges (vi, r, vj) ∈ T with scores to determine the
probability these edges are in E ′. Our graph au-
toencoder consists of a relational concept network
(RGCN) (Schlichtkrull et al., 2018) encoder to ob-
tain the latent feature representations of concepts
and a DistMult scoring decoder (Yang et al., 2014)
to recover the missing facts of triplets.

Encoder. RGCN has a solid ability to accumu-
late relational evidence in multiple inference steps.
In each step, a neighborhood-based convolutional
feature transformation process uses the related con-
cepts to induce an enriched stance-aggregated fea-
ture vector for each concept. Our model contains
two stacked RGCN encoders. We first initialize
the parameters of concept feature vectors gi. Then
the vectors are transformed into stance-aggregated
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feature vectors hi ∈ Rd using the RGCN encoders:

f(xi, l) = σ(
∑

r∈R

∑

j∈Nr
i

1

vi,r
W (l)
r xj +W

(l)
0 xi),

hi = h(2)
i = f(h(1)

i , 2) ; h(1)
i = f(gi, 1), (1)

where f is the encoder network (requiring inputs
of feature vector xi and the rank of the layer l), N r

i

denotes the neighbouring concepts i with the rela-
tion r ∈ R; vi,r is a normalization constant, which
can be set in advance vi,r = |N r

i | or learned by
network learning; σ is the activation function like
ReLU and W (1/2)

r ,W
(1/2)
0 are learnable parame-

ters though training.
Training. We use DistMult factorization as

the decoder to assign scores. For a given triplet
(vi, r, vj), the score can be obtain as follows:

s(vi, r, vj) = σ(hTviRrhvj ), (2)

where σ is logistic function; hvi ,hvj ∈ Rd are the
encoding feature vectors through the graph encoder
for concept vi and vj . Each relation r ∈ R is also
associated with a diagonal matrix Rr ∈ Rd×d.

Our graph autoencoder module is trained using
negative sampling (Schlichtkrull et al., 2018). We
randomly corrupt the positive triplets, i.e., triplets
in Ê ′, to create an equal number of negative sam-
ples. The corruption is performed by modifying
either of the connected concepts or relations ran-
domly, creating the overall set of samples denoted
by T . The training objective is a binary classi-
fication between positive/negative (denoted as u)
triplets with a cross entropy loss function:

LG′ =−
1

2|Ê ′|
∑

(vi,r,vj ,u)∈T
(ulog s(vi, r, vj)

+ (1− u)log(1− s(vi, r, vj))).
(3)

3.2 Stance Detection Module

Sentiment Feature Encoding. To learn sentiment
knowledge, we follow Zhou et al. (2020) to continu-
ally train BERT with sentiment masking. We mask
the sentiment-related tokens such as sentiment lex-
icons, emoticons, and ratings with higher proba-
bility than general tokens. The model is trained to
reconstruct the masked sentiment tokens and pre-
dict the rating of the sentences. The corrupted text

x̂ is fed into BERT to obtain each word representa-
tion hi and the sentence representation hCLS . Soft-
max layers are used on hi to predict each word’s
probability, the sentiment of words, and emoticon
probability, respectively. A softmax layer on hCLS

is also used to predict the rating of the text x̂. The
tasks are trained using cross-entropy loss. Follow-
ing Zhou et al. (2020) , the SentiBERT are trained
on Amazon review dataset (Ni et al., 2019) and
Yelp 20201 challenge dataset.

After pre-training the SentiBERT, given a doc-
ument d and a topic t, we concatenate d and t
as our model input x in the following format:
x = [CLS] d [SEP ] t [SEP ], SentiBERT to ob-
tain its hidden states:

hfixsent = SentiBERT (x), (4)

where the parameters of SentiBERT are fixed in our
model to keep sentiment information stabilized.

Commonsense Feature Encoding. After train-
ing the graph autoencoder, in order to extract the
document-specific commonsense graph feature for
the document d and the topic t, the unique nouns,
adjectives, and adverbs in the document d and the
topic t are extracted at first, which we denote as
S. Then we extract a sub-graph G′S from G′, which
contains all the triplets either of whose concepts
are in S or within the vicinity of radius 1 from any
of the concepts in S. Next, we make a forward pass
of G′S through the encoder of graph autoencoder to
obtain the feature vectors hj for all unique concepts
j in G′S . The average of feature vectors hj for all
unique concepts in G′S is regarded as the common-
sense graph feature vector hKG for the document
d. The commonsense graph feature vector hKG is
feed into a encoder layer to obtain hidden states
hK :

hK =WkhKG + bk (5)

where Wk and bk are the trained parameters of the
linear layer.

Stance Classification. The input x is first fed
into BERT to obtain its hidden states:

hBERT = BERT (x) (6)

Then the hidden states of hBERT ,hfixsent are con-
catenated and fed into a cross attention module to
fuse the information of BERT and SentiBERT:

hCLS = CrossAttention([hBERT ,hfixsent])[CLS],
(7)

1https://www.yelp.com/dataset
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#Exp #Doc #Zero-shot #Few-shot
Train 13477 638 1481 4003
Dev 2062 114 682 383
Test 3066 159 786 600

Table 1: Statistics on the VAST dataset.

where hCLS is the hidden states of [CLS] token in
BERT. The hidden states vectors of hK and hCLS

are concatenated to for classification:

p = Softmax(W [hCLS ,hK ] + b), (8)

where W and b are the parameters and p is the
probability distribution on the three stance labels.

Training. Given the input and its golden label
(xi, yi), the loss function Lcls for classifying stance
is cross entropy:

Lcls = −
1

|N |
∑

(xi,yi)

yilog p(yi), (9)

where |N | is the number of data samples. To fur-
ther ensure stronger topic invariance constraints of
hKG, we add a shared decoder layer Drecon with a
reconstruction loss:

Lrecon = −EhKG(||Drecon(hK)−hKG||22). (10)

The overall loss function is:

L = Lcls + Lrecon. (11)

4 Experiments

We verify the effectiveness of sentiment and com-
mon sense influence for zero-shot and few-shot
stance detection. We also prove the significance of
each module in our model in Section 4.4 and ana-
lyze the relationship between sentiment (common
sense) and stance in Section 4.5 (4.6).

4.1 Settings

Dataset: We adopt the dataset for zero-shot and
few-shot stance detection task–VAried Stance Top-
ics (VAST) (Allaway and Mckeown, 2020), which
is practical and useful for real-world applications.
The dataset consists of thousands of topics, and the
statistics are summarized in Table 1. The zero-shot
topics only appear in the test set, and the few-shot
topics only contain a few training examples.

Training Details We perform experiments using
the official pre-trained BERT model provided by

Huggingface2. For the pre-trained model with sen-
timent information, we adopt the model provided
by Zhou et al. (2020), which is a continually trained
BERT on sentiment datasets. We train our model
on 1 GPU (Nvidia GTX2080Ti) using the Adam
optimizer (Kingma and Ba, 2014). For training the
graph autoencoder, the initial learning rate is 1e-2.
For the stance detection training process, the initial
learning rate is 1.5e-5, the max sequence length
for BERT and SentiBERT is 256, the batch size
for training is 4, and the model is trained for three
epochs.

Baselines We compare our model with several
state-of-the-art baselines: (1) BiCond (Augenstein
et al., 2016), a model for cross-domain target stance
detection task which uses one BiLSTM to encod-
ing the topic and another BiLSTM to encoded the
text; (2) CrossNet (Xu et al., 2018b), a model
based on the BiCond adding an aspect-specific at-
tention layer for cross-target setting; (3) SENT
(Zhang et al., 2020), a model using the semantic-
emotion heterogeneous graph to enhance BiLSTM
for cross-traget stance detection; (4) BERT-sep, a
model that encodes the text and topic separately, us-
ing BERT, and then classification with a two-layer
feed-forward neural network; (5) BERT-joint (All-
away and Mckeown, 2020), a model with contex-
tual conditional encoding followed by a two-layer
feed-forward neural network; (6) TGA-Net (All-
away and Mckeown, 2020), a model using con-
textual conditional encoding and topic-grouped at-
tention. In addition, we also consider the models
BERT-joint-ft and TGA-Net-ft where the BERT
module is fine-tuned; (7) Prior-Bin:gold (Jayaram
and Allaway, 2021), a model applying human ratio-
nales as attributions to assist the stance detection;
(8) BERT-GCN (Liu et al., 2021), a model ap-
plying the conventional GCN (Kipf and Welling,
2016), which considers node information aggrega-
tion; (9) CKE-Net (Liu et al., 2021), a model based
on BERT, using the CompGCN (Vashishth et al.,
2019) to obtain the commonsense information.

4.2 Results

The results are shown in Table 2. Compared with
previous models, our model achieves the state-of-
the-art performance in zero-shot, few-shot, and
all the topics of VAST. In particular, the macro
F1 scores are 72.6%, 70.2%, and 71.3%, which
are 2.4%, 0.1%, and 1.2% higher than CKE-Net

2https://huggingface.co/
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Model F1 Zero-shot F1 Few-Shot F1 All
pro con neu all pro con neu all pro con neu all

BiCond .459 .475 .349 .427 .454 .463 .259 .392 .457 .468 .306 .410
Cross-Net .462 .434 .404 .434 .508 .505 .410 .474 .486 .471 .408 .455
SEKT .504 .442 .308 .418 .510 .479 .215 .474 .507 .462 .263 .411
BERT-sep .414 .506 .454 .458 .524 .539 .544 .536 .473 .522 .501 .499
BERT-joint .546 .584 .853 .660 .543 .597 .796 .646 .545 .591 .823 .653
TGA-Net .554 .585 .858 .666 .589 .595 .805 .663 .573 .590 .831 .665
BERT-joint-ft .579 .603 .875 .685 .595 .621 .831 .684 .588 .614 .853 .684
TGA-Net-ft .568 .598 .885 .684 .628 .601 .834 .687 .599 .599 .859 .686
Prior-Bin:gold .643 .581 .852 .692 .632 .563 .881 .692 .652 .597 .824 .691
BERT-GCN .583 .606 .869 .686 .628 .634 .830 .697 .606 .620 .849 .692
CKE-Net .612 .612 .880 .702 .644 .622 .835 .701 .629 .617 .857 .701
Our Model
BS .625 .667 .870 .717 .601 .667 .828 .699 .591 .669 .858 .706
S-RGCN .582 .669 .838 .699 .561 .623 .809 .665 .607 .657 .842 .702
B-RGCN .594 .657 .885 .712 .568 .678 .851 .699 .591 .663 .865 .706
BS-RGCN(proposed) .608 .674 .895 .726 .600 .665 .839 .702 .604 .669 .866 .713

Table 2: Overall results. The suffix "ft" means BERT is fine-tuned. BS – the combination of BERT and SentiBERT;
S-RGCN – the combination of SentiBERT and the graph autoencoder; B-RGCN – the combination of BERT and
the graph autoencoder; BS-RGCN – our proposed model.

Model Imp mlT mlS Qte Sarc
BERT-joint .571 .590 .524 .634 .601
TGA-Net .594 .605 .532 .661 .637

BERT-joint-ft .617 .621 .547 .668 .673
BERT-GCN .619 .627 .547 .668 .673

CKE-Net .625 .634 .553 .695 .682
BS-RGCN .621 .647 .556 .701 .717

Table 3: Accuracies on five challenges on the test set.

model, respectively. The results of B-RGCN (our
model without SentiBERT module) are 71.2% and
69.9%, with a higher macro F1 score on zero-shot
topics but a similar result on few-shot topics com-
pared with CKE-Net. The performances of both
our model and B-RGCN increase largely on the
zero-shot topics but less on few-shot topics, which
implies that our graph autoencoder module can
achieve a similar effect compared with the GCN
module of CKE-Net in the few-shot topics but can
improve the effectiveness in extracting relation in-
formation in zero-shot topics. This verifies the in-
tuition that only considering the relations between
documents and topics limits the transferability of
CKE-Net for the zero-shot task. Compared with
Prior-Bin:gold, the macro F1 scores of our model
are 3.4%, 1.0%, and 2.2% higher on zero-shot, few-
shot, and all the topics sets, respectively. It implies
that commonsense knowledge and sentiment infor-
mation are more effective than the set of specific
human rationales by Prior-Bin:gold as attributions.

Our model achieves better performance on Con
labels (67.4%, 66.5%, 66.9%) compared with Pro

labels (60.8%, 60.0%, 60.4%), which is similar to
most of the previous models (BERT-GCN, TGA-
Net, and so on). The phenomenon also appears
in B-RGCN and BS, which are our models with-
out SentiBERT and without BERT, respectively
(the analysis of the ablation study is explained in
Section 4.4 in detail). The results suggest that the
use of SentiBERT does not cause the imbalanced
performance on different stances and the detection
difficulty is mainly on Pro labels. In addition, the
results of Neu stance labels are the highest (89.5%,
83.9%, 86.6%) than those of other labels. It in-
dicates that it is easier for models to classify the
Neu, where the topics are mostly unrelated to docu-
ments.

4.3 Breakdown Evaluation
We also test our model on five special phenom-
ena of the test set on VAST following Allaway
and Mckeown (2020): (1) Imp: non-neutral stance
examples where the topics are not explicit in the
documents; (2) mlT: documents having multiple
stance topics with different topics; (3) mlS: docu-
ments having multiple stance topics with different
and non-neutral labels; (4) Qte: documents with
quotations; (5) Sarc: documents with sarcasm.

The results are shown in Table 3. Our model
achieves the state-of-the-art performance on mlT,
mlS, Qte, and Sarc with 64.7%, 55.6%, 70.1%, and
71.7%, respectively. In particular, the improvement
of our model on mlS implies that different types
of knowledge features help models extract stance
topics-related information. The most challenging
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Figure 3: Accuracies of B-RGCN and BS-RGCN on all
test data w.r.t different sentiment and stance pairs.

task is mlS, with a macro F1 score of 55.6% by
our model. The results demonstrate that it is highly
challenging to classify the topics with different
stances since the stance information extracted in
the model is more related to the whole sentence but
more minor to the topics. The macro F1 score of
Sarc increases the most, 3.5% higher than that of
CKE-NET, implying that the sentiment information
helps boost the model performance in understand-
ing sarcasm, which is a sentiment-related linguistic
phenomenon. The accuracy of our model on Imp
is the second-highest (slightly lower than that of
CKE-Net), which indicates that introducing com-
monsense graph knowledge can help improve the
model performance on the zero-shot task.

4.4 Ablation Study

We conduct ablation studies of BS, S-RGCN, and
B-RGCN to understand the significance of the
graph autoencoder, BERT, and SentiBERT mod-
ules, respectively. The results are shown in Table
2. First, BS fuses BERT and SentiBERT feature
vectors using Eq(5-6) and classifies the stance us-
ing hCLS with a linear layer. It achieves macro F1
scores of 71.7%, 69.9%, and 70.6% on the zero-
shot, few-shot, and all the topics, which are 3.2%,
1.5%, and 2.2% higher than those of BERT-joint-
ft, respectively, which proves that sentiment infor-
mation can help boost the performance of stance
detection task.

Second, B-RGCN and S-RGCN are models with-
out fusing the BERT and SentiBERT feature vec-
tors. The feature vectors of [CLS] tokens from
BERT or SentiBERT (the parameters of SentiBERT
are not fixed) are directly concatenated with knowl-
edge graph feature vectors to classify the stance.
The macro F1 scores of S-RGCN are 69.9% and

66.5% on the zero-shot topics and the few-shot top-
ics, 1.3%, and 3.4% lower than those of B-RGCN,
respectively. It indicates that it is not sufficient to
use a sentiment-specific model to do stance classi-
fication. The macro F1 score of B-RGCN on the
zero-shot set is 71.2%, 1.0% higher than that of
CKE-Net, which shows that our graph autoencoder
module can achieve better performance for zero-
shot stance detection than CompGCN. However,
BS, B-RGCN, and S-RGCN do not outperform
BS-RGCN in the zero-shot topics and all the top-
ics set, which shows that the graph autoencoder,
BERT, and SentiBERT are all useful for the stance
detection task.

4.5 Sentiment and Stance

Allaway and Mckeown (2020) indicate that models
of BERT-Joint are reliant on sentiment cues, and
the models learn the strong association between
the Neg (negative) sentiment and the Con stance,
yet weak association between Pos (positive) sen-
timent and Pro stance. Their analysis is based on
experiments where the documents are corrupted
by replacing the text’s sentiment words. Here we
take a different perspective and carry out experi-
ments with respect to different stances and senti-
ment pairs on both B-RGCN and BS-RGCN. We
use opinion lexicon (Hu and Liu, 2004) to classify
the sentiment of document, (i.e, if a document con-
tains more positive/negative words, we treat it as
a document with the Pos (positive)/Neg (negative)
sentiment; otherwise, we treat it as a document
with the Neu (neutral) sentiment).

The results are shown in Figure 3 (the model
trained on all the topics is tested in this experiment).
For BS-RGCN, the accuracy on the corresponding
stance and sentiment (Neg, Con) is 78.9%, higher
than 71.4% of (Pos, Con) and 70.1% of (Neu, Con).
Similarly, the accuracy on (Pos, Pro) is 56.6%,
higher than 47.5% of (Neg, Pro) and 43.6% of (Neu,
Pro). This suggests that data samples with corre-
sponding sentiment and stance pairs ((Pos, Pro),
(Neg, Con)) are easier to classify by our model. The
performance of B-RGCN is similar to BS-RGCN,
with an accuracy of 76.4% for (Neg, Pro), a lit-
tle higher than those of (Pos, Con) (75.9%) and
(Neu, Con) (76.0%). The same model achieves an
accuracy of 50% of (Pos Pro), 10% higher than
that of (Neg, Pro), and 8.1% higher than that of
(Neu, Pro). The model without the sentiment mod-
ule can also predict corresponding sentiment and
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Context Topic Gold Label Output
I have lived in brazil for the last five years ( and off and on over the
last 27 years ). I know of no one here who is even remotely excited
about the Olympics. It would seem that people dont́ care. The economy
is tanking and government is at a complete standstill. We have more
important things on our mind right now.

Olympics Con Con

I can’t even believe that this is a debate. Cutting the most basic foreign
language programs? How does one appreciate that there is a world
outside of America? Google translate? Suny, everyone is laughing at
you and you’re too smug to notice.

College Con Con

Good idea. I have always had a cat or two. While being inhumane,
declawing places a cat in danger. Should my charming indoor kitty
somehow escape outside, he would have no way to defend himself.

nail removal Con Con

Table 4: Case Study for our trained stance detection model. Case I shows the effectiveness of using sentiment
information; Case II shows the importance of commonsense knowledge; Case III shows both the sentiment and
commonsense knowledge help the stance detection model.
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Figure 4: Macro-F1 scores of S-RGCN, B-RGCN, and
BS-RGCN on zero-shot test data w.r.t different percents
of commonsense knowledge for pre-training.

stance pairs with higher accuracy, demonstrating
that sentiment information can help stance detec-
tion models. The accuracies for B-RGCN and BS-
RGCN are both significantly higher on data with
Con stances than those with Pro stances. The phe-
nomenon indicates that it is difficult for models to
predict Pro stance in the VAST dataset, and the
difference in performance is not caused by the dif-
ference of associations between data of (Pos, Pro)
and (Neg, Con). For the data of Neu stance, the per-
formance is less related to sentiments. The models
can achieve much better results on Neu stance data,
where the topics may be not related to the docu-
ments, 91.4% on (Neg, Neu), 86.9% on (Pos, Neu),
83.1% on (Neu, Neu) for BS-RGCN , and 86.7% on
(Neg, Neu), 85.8% on (Pos, Neu), 85.7% on (Neu,
Neu) for B-RGCN. The phenomenon demonstrates
that it is easy for the model to judge whether the
topic is related to the documents.

4.6 Common Sense and Stance

We show the relationship between common sense
and stance by pre-training the graph autoencoder
w.r.t different percentages of extracted concepts
(Section 3.1). Using the commonsense feature with

the pre-trained autoencoder, we show the results of
the stance detection models B-GCN, S-GCN, and
BS-RGCN on the zero-shot task. The results are
given in Figure 4. As observed, the performance
of the three models increases with increasing cov-
erage of commonsense knowledge. It indicates
that commonsense knowledge is directly useful for
stance detection models.

4.7 Case Study

We also show some cases from the test data using
the model trained on all the topics. In the first case,
sentiment words such as ‘tanking’ or ‘standstill’
imply the negative sentiments towards the influ-
ence of the Olympics on the economy of Brazil,
which further expresses an opposing stance towards
‘Olympics’. Our model outputs the correct label
towards the target thanks to the sentiment infor-
mation. In the second case, no explicit expression
of the target ‘College’ is contained in the docu-
ment. Only some implications, including ‘foreign
language programs’, have relation to the ‘College’,
and with the commonsense knowledge encoding,
our model outputs the correct stance. The third
case proves that both common sense and sentiment
information can benefit the stance detection model,
that ‘inhumane’ expresses a negative sentiment,
and the topic ‘nail removal’ is implicitly involved
by the word ‘declawing’. Our model can also give
the correct stance for case III.

5 Conclusion

We proposed a stance detection model incorpo-
rating commonsense knowledge and sentiment in-
formation, achieving state-of-the-art zero-shot and
few-shot stance detection results on the standard
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dataset. The ablation study showed the significance
of each module, such as knowledge graph autoen-
coder, SentiBERT, and BERT. We also analyzed
the relation between sentiment/common sense and
stance, which indicate the effectiveness of this ex-
ternal knowledge.
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A Appendix

Human Labeling for Sentiment and Stance De-
tection

In this part, we manually label some samples
(randomly selected) from VAST dataset to prove

the relation between sentiments and stances. Opin-
ion lexicon (Hu and Liu, 2004) is adopted as the
sentiment vocabulary. As shown in Table 5, there
are many samples (7 in 10) that sentiment knowl-
edge plays a significant role for stance detection,
and few samples have a conflicting relation.
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Context Topic Stance Relation
The reason that Deep Mind winning is so impressive is that Google managed to
accomplish this with virtually no warning. It was less than a year ago where the
best computer program was not in the top 20,000 in the world. It was less than
6 months ago when the program beat a player in the top 1,000. Yesterday the
program beat the the best player in the world. Am I wrong to be shocked at how
fast complicate AI has advanced?

Artificial In-
telligence

Pro +

I totally agree with this premise. As a younger person I was against Nuclear power
(I was in college during 3 mile island) but now it seems that nuclear should be in
the mix. Fission technology is better, and will continue to get better if we actively
promote its development. The prospect of fusion energy also needs to be explored.
If it’s good enough for the sun and the stars, it’s good enough for me.

Nuclear
Power

Pro +

This is a horrible idea. Anyone who has worked on the border, or in Mexico (as I
do), knows there are plenty of middle and upper-class Mexicans who come to the
U.S. for an education. I think Dr. Lee is really perpetuating stereotypes here. In my
opinion, affirmative action should be based on economic class, no matter what the
race.

Mexico Pro 0

Good idea. I have always had a cat or two. While being inhumane, declawing places
a cat in danger. Should my charming indoor kitty somehow escape outside, he would
have no way to defend himself. Why don’t humans have their finger-and tonails
removed to save on manicures? Answer: they are important to the functioning and
protection of our bodies.

nail removal Con +

The mandate of private corporations is to make a profit. And if the profit is made
at the EXPENSE of the society that allow the corporation to exist, well, too bad.
Oil companies foul the environment. Financial companies drive the economy into
the Great Recession. Airlines have no regard for the people they transport. As long
as they make a profit, they are allowed to abuse the public until they are stopped.
That is the way it has been since Swift and Armour canned and sold rotten meat and
Carnegie sent Pinkertons to shoot striking miners.

private
corporation
profit

Con +

One’s own, and learning another language is important and a great work out for the
brain! Back in the day, I learned Spanish! In retrospect Latin would have been the
better way to go, since mastery of that makes learning the languages like French,
Italian, Portuguese, Romanian, and Spanish, very much easier to learn!

Latin helpful
language

Pro +

Without government to ensure their behavior, companies will attempt to make
a profit even to the DETRIMENT of the society that supports the business. We
have seen this in the environment, in finances, in their treatment of workers and
customers. Enough.

company Pro 0

The "you have a short live, so enjoy" attitude alone did not lead to the Renaissance,
the age of Enlightment, or the Industrial Revolution. It did not le ()ad to the invention
of the light bulb, or the telephone, or the internet, or the NYT electronic discussion
board. Just "enjoying" life alone means you are enjoying the fruit of someone elseś
hard work.

Renaissance Pro 0

Of course their salaries should be raised. But this should be separated from the
discussion about legality. Salaries should be raised and only legal workers should
be employed. Its really a no brainer. And any discussion about only Mexicans being
prepared to do this work so it has to be illegal is completely disingenuous.

illegal labor Con +

Also, and usually not acknowledged, is that we are slowly eroding the fertility of
the soil. There is no more usable soil, we are farming everything that can be farmed.
Current methods depend on petrochemical fertilizers. Even with their use, fertility
is slowly declining. As human population continues to grow, the result is obvious.

soil Con +

Table 5: Manually labeling samples for the relation between sentiments and stances. The positive/negative words
related to the topics are labeled with red/teal colors. The topic related words in the documents are bold. ‘+’ for
sentiment words supporting the stance, ‘0’ for no relation.
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Abstract

The existing research efforts in Multimodal
Sentiment Analysis (MSA) have focused on
developing the expressive ability of neural
networks to fuse information from different
modalities. However, these approaches lack
a mechanism to understand the complex re-
lations within and across different modalities,
since some sentiments may be scattered in dif-
ferent modalities. To this end, in this paper, we
propose a novel hierarchical graph contrastive
learning (HGraph-CL) framework for MSA,
aiming to explore the intricate relations of intra-
and inter-modal representations for sentiment
extraction. Specifically, regarding the intra-
modal level, we build a unimodal graph for
each modality representation to account for
the modality-specific sentiment implications.
Based on it, a graph contrastive learning strat-
egy is adopted to explore the potential relations
based on unimodal graph augmentations. Fur-
thermore, we construct a multimodal graph of
each instance based on the unimodal graphs to
grasp the sentiment relations between different
modalities. Then, in light of the multimodal
augmentation graphs, a graph contrastive learn-
ing strategy over the inter-modal level is pro-
posed to ulteriorly seek the possible graph struc-
tures for precisely learning sentiment relations.
This essentially allows the framework to under-
stand the appropriate graph structures for learn-
ing intricate relations among different modal-
ities. Experimental results on two benchmark
datasets show that the proposed framework out-
performs the state-of-the-art baselines in MSA.

1 Introduction

Multimodal Sentiment Analysis (MSA) has re-
ceived increasing research attention in recent years.
Different from textual sentiment analysis, MSA
generally contains three modalities: text (caption),

* Corresponding author.

visual

text

acoustic

strong weak

……
(shake head & roll eyes)(frown)

He was the only character that was slightly interesting

Figure 1: An example of intricate relations among dif-
ferent modalities in MSA.

visual and acoustic, in which the visual and acous-
tic information can complement the text for iden-
tifying the sentiment score and thus preferably de-
tecting the sentiment polarity (e.g. positive, neg-
ative, etc.). As shown in Figure 1, although the
text modality expresses the positive sentiment, we
can infer that the correct sentiment of this exam-
ple is negative in the light of the study of visual
and acoustic information. Therefore, dealing with
MSA needs to consider learning and fusing the
information from different modalities.

Early MSA work attempted to fuse the infor-
mation from different modalities by tensor-based
features fusion (Snoek et al., 2005; Zadeh et al.,
2017; Liu et al., 2018) or attention-based features
fusion (Zadeh et al., 2018b,a; Tsai et al., 2019a).
Furthermore, some representation learning-based
approaches (Tsai et al., 2019b; Hazarika et al.,
2020) aim to model the consistency and the vari-
ability between modalities for extracting the senti-
ment cues among modalities or consider both fu-
sion and alignment of multimodal sequential data
with a graph model (Yang et al., 2021). Despite
the promising progress made by current work, they
generally focus on fusing multimodal representa-
tions via class-driven supervised learning or multi-
task learning, which fails to understand the intricate
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relations within and across modalities for better
sentiment extraction. As shown in Figure 1, the
sentiment is scattered within each modality and
across different modalities.

In this paper, we study how to understand repre-
sentations within and across modalities, enabling
the highly correlated modal representations to be
explicitly linked for learning the multimodal senti-
ment information. To reach this goal, in the light
of developing the merit of graph structure for mod-
eling intricate relations of representations, we first
build a unimodal graph for each modality and fur-
ther build a multimodal graph for each instance
based on the unimodal graphs. Concretely, for
the intra-modal graphs, to account for the under-
lying relations within each modality, we construct
a syntax-aware graph for the text modality based
on the dependency tree of the sentence and build
sequential connection graphs for visual and acous-
tic modality. For the inter-modal graph, we build
a fully-connected inter-modal graph based on the
modality-specific graphs to capture the potential
relations across different modalities. Then, we ap-
ply a graph attention networks (Veličković et al.,
2018) architecture to model the semantic relations
by means of specifying different weights to dif-
ferent nodes in a neighborhood, without requiring
any costly matrix operation (such as inversion) or
depending on knowing the graph structure upfront.

Following that, we propose a hierarchical graph
contrastive learning (HGraph-CL) framework to
model the correlation and difference of graph in-
formation within a specific modality and further
across different modalities. Specifically, for the
intra-modal level, inspired by You et al. (2020),
we first devise a self-supervised graph contrastive
learning strategy based on the graph augmentations,
aiming to explore more appropriate graph struc-
tures and derive robust graph representations for
each modality. In addition, inspired by Khosla et al.
(2020); Gunel et al. (2021), we employ a super-
vised contrastive learning strategy to make sense
of the correlation and difference between differ-
ent classes, so as to capture the similarity between
examples in one class and contrast them with exam-
ples in other classes. Moreover, for the inter-modal
level, we also perform these two contrastive learn-
ing strategies to learn the graph representations for
better generalizability, transferability, and robust-
ness in learning sentiment cues compared with pure
class-driven methods.

The main contributions of our work can be sum-
marized as follows:

(1) The MSA task is approached from a novel
perspective that explores intra- and inter-modality
graph construction to leverage the potential senti-
ment relations within and across modalities.

(2) A novel hierarchical graph contrastive learn-
ing (HGraph-CL) framework is devised for bet-
ter sentiment relations extraction at an intra-modal
level and further at an inter-modal level.

(3) Performance evaluation on two benchmark
datasets shows the superiority and robustness of
the proposed framework compared to several com-
petitive baselines.

2 Related Work

2.1 Multimodal Sentiment Analysis

The MSA task aims to predict sentiment polarity
by aiding text with visual and acoustic information.
Since the raw visual and acoustic data is in frames
and the text is in words, MSA can be broadly classi-
fied into word-level and utterance-level depending
on the granularity of the data used. Among them,
utterance-level approaches (Zadeh et al., 2017; Liu
et al., 2018; Yu et al., 2021) perform modal fu-
sion in global representation, while word-level ap-
proaches (Tsai et al., 2019b; Wang et al., 2019; Tsai
et al., 2019a; Rahman et al., 2020; Hazarika et al.,
2020; Wu et al., 2021) are more concerned with lo-
cal modal interactions. Furthermore, Rahman et al.
(2020) proposes a Multimodal Adaptation Gate
(MAG) mechanism to perform modal fusion at
word-level, which does not rely on complex struc-
ture and can be embedded in pre-trained attention
models. Hazarika et al. (2020) proposes a multi-
modal representation learning framework to model
modality-invariant and modality-specific informa-
tion within the example by projecting each modal-
ity to two distinct subspaces. Besides, Yu et al.
(2021) trains MSA together with three unimodal
sentiment analysis tasks, and proposes a heuris-
tic approach to generate unimodal labels. Yang
et al. (2021) proposes a novel graph-based neural
network to analyze multimodal sequential data for
MSA. We propose a novel graph-based approach
to address MSA’s modal interactions and fusion
problem. In contrast to the existing graph works in
MSA, our proposed method constructs intra-modal
graphs based on prior knowledge of the modalities
(e.g., textual dependencies). Furthermore, we cre-
ate edges between any two nodes from different
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Figure 2: The architecture of the proposed HGraph-CL framework.

intra-model graphs for more complex inter-modal
relationships to preserve any possible association.

2.2 Contrastive Learning

Our work also relates to contrastive learning. Con-
trastive learning (CL) is originally proposed as a
self-supervised learning method for solving the
lack of supervised signals (Chen et al., 2020; Liu
et al., 2021). However, CL often requires effec-
tive data augmentation as a foundation. Recent
work (Khosla et al., 2020) proposes supervised
contrastive learning methods in combination with
class information, which is capable of learning the
class distribution of examples and without data
augmentation. Mai et al. (2022) proposes a hybrid
contrastive learning strategy for MSA, but lacks ex-
ploring the potential relationship within and among
modalities. The combination with graph networks
is another new application of contrastive learning
(You et al., 2020; Zhu et al., 2020). The graph net-
works can model the association between nodes,
and data augmentation on graph structures is feasi-
ble and operable. Common augmentation methods
include additions and deletions of nodes or edges,
masking of the representations of nodes or edges,

etc. Therefore, to explore more appropriate graph
structures, inspired by You et al. (2020), we apply
the graph augmentations by deleting and adding
edges in graphs, and thus derive multifarious but
similar graph structures with respect to the source.

3 Method

In this section, we describe the proposed HGraph-
CL framework in detail. As illustrated in Figure 2,
the framework mainly consists of four components:

1) Feature extraction, which applies BERT (De-
vlin et al., 2019) and BiLSTMs (Hochreiter and
Schmidhuber, 1997) to extract features from the
three modalities of text, images and audio.

2) Building intra- and inter-modal graphs,
which constructs intra- and inter-modal graphs
based on the hidden vectors learned from the text,
images, and audio.

3) Learning graph representations, which
learns intra- and inter-modal graph representations
and leverages the potential sentiment relations
within and across modalities. We believe a graph
network can model the complex relationship be-
tween different modalities while updating the node
representations.
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4) Hierarchical graph contrastive learning,
which performs contrastive learning based on het-
erogeneous graphs at the intra-modal level and
inter-modal level. Contrastive learning can help
the model understand the similarity and differences
of the data across different modalities. Moreover,
subtle differences in the graphs may also affect
the learning of models on samples. Therefore, we
propose the hierarchical graph contrastive learning
strategy to augment the learning of the graph repre-
sentations at both the data level and label level.

3.1 Task Definition

Formally, supposing there is an example consisting
of a text t and the corresponding image frames v
and audio a from a video, the goal of multimodal
sentiment analysis (MSA) is to predict a sentiment
score y, which is a constant from -3.0 to 3.0, for
each example. Additionally, according to the senti-
ment score y, we thus identify the sentiment polar-
ity (i.e. positive if y > 0 or negative if y < 0).

3.2 Feature Extraction

Given an input example with L tokens for each
modality x = (xt,xv,xa), where t,v, and a de-
note the text, visual, and acoustic modalities re-
spectively. Then, three encoders are used to ex-
tract features from the three modality data. Among
them, the encoder of text modality is BERT (Devlin
et al., 2019), which takes the text representation
xt as input to derive the hidden representations
et ∈ RL×dt of all the tokens of the text modality:

et = BERT([CLS]xt[SEP ])1:L (1)

where dt is the dimension of text hidden vectors.
We use Facet (Zhu et al., 2006) to extract a set

of visual features, including facial markers, facial
action units, head pose, visual trajectory, and HOG
features. And we use COVAREP (Degottex et al.,
2014) to extract a set of low-level acoustic features,
including 12 mel cepstral coefficients (MFCCs),
pitch tracking and turbid/clear segmentation fea-
tures, gating source parameters, peak slope param-
eters, and maximum dispersion quotient. The vi-
sual/acoustic features are aligned with the text at
token level by averaging the frames of video/audio
recording over the time interval align to a token.
The lengths of obtained sequences xv and xa are
the same as the text sequences xt.

Owing to the sequential structure of visual and
acoustic modalities, we adopt BiLSTM (Hochreiter

and Schmidhuber, 1997) as visual and acoustic en-
coders to embed each token into a dv-dimensional
vector and a da-dimensional vector respectively.
Here, the encoded visual representations ev ∈
RL×dv and acoustic representations ea ∈ RL×da
are computed as follow:

ev = BiLSTM(xv) (2)

ea = BiLSTM(xa) (3)

Then, the representations of the three modal-
ities are mapped to the same dh-dimensional
hidden vector space using three projection lay-
ers pt(·), pv(·), pa(·), which are presented as
ht,hv,ha ∈ RL×dh . A projection layer is a dense
layer with a ReLU activation function.

3.3 Building Intra- and Inter-Modal Graphs
This section describes how to construct the intra-
modal and inter-modal graphs for each multimodal
instance. Inspired by Kipf and Welling (2017), for
both intra- and inter-modal graphs, we build the
graphs to be undirected and set a self-loop for each
node, to make use of more sufficient relations of
the sentiment expression of nodes.

Intra-Modal Graph To leverage the intricate
sentiment implications within each modality, we
first build three intra-modal graphs to explicitly
account for the modality-specific relations of the
representations towards the three modalities of a
multimodal instance.

To be specific, for the text-modality graph, to
leverage the syntax-aware relations of the textual
information, inspired by Zhang et al. (2019); Liang
et al. (2020, 2022), we construct the text modality
graph Gt ∈ RL×L based on the dependency tree
of the sentence*. That is, we link the context to-
kens if there is a relation between these two tokens
in the dependency tree. For visual and acoustic
modalities, the nodes are averaged video/audio to-
kens alighed to textual tokens, described in Sec-
tion 3.2. Since the input representations of these
two modalities are sequential, we connect the adja-
cent nodes in the sequences for the visual modality
graphGv ∈ RL×L and the acoustic modality graph
Ga ∈ RL×L to capture the sequence relations of
these two modalities.

Inter-Modal Graph To fuse the multimodal rep-
resentations for extracting the sentiment implica-

*We use the spaCy toolkit to obtain the dependency tree
of a sentence: https://spacy.io/.
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tions produced by multiple modalities, we con-
struct an inter-modal graph Gm ∈ R3L×3L for
each multimodal instance based on the derived
intra-modal graphs. Specifically, we first combine
the three intra-modal graphs and then employ a
fully connected solution to link the cross-modal
tokens among the intra-modal graphs of the three
modalities, to capture the potentially scattered rela-
tions of the multimodal instance.

3.4 Learning Graph Representations
Based on the intra- and inter-modal graphs derived
in Section 3.3, we employ Graph Attention Net-
work (Veličković et al., 2018) to update the nodes
in the graphs by aggregating the information from
the neighborhoods with varying weights. Specifi-
cally, in a GAT layer, for each neighbor, the repre-
sentations of the current node i and the neighbor j
are concatenated and then mapped to a scalar sij
as the attention coefficient. Then normalizing the
attention coefficients of all neighbors by softmax.

sij = LeakyReLU(a[Whi∥Whj ]) (4)

αij = softmaxj(sij) =
exp(sij)∑
k∈Ni sik

(5)

where a is a weight vector,W is a weight matrix,
and || is the concatenation operation. Ni denotes
the set of node i and its neighbors. Finally, the
representation of node i is updated with a weighted
sum of the representations of neighbors and itself,
and multi-head attention mechanism is applied to
stabilize the learning process of self-attention.

h̃i =∥Kk=1σ


∑

j∈Ni
αkijW

khj


 (6)

where k denotes the k-th attention head and σ is a
sigmoid function to provide non-linearity.

This mechanism essentially allows the model
to make sense of the intra- and inter-modal senti-
ment associations by modeling the relations in the
graphs with the GAT operation. For example, the
edge weight between a "smile"(visual) node and
a "happy"(textual) node should be higher than the
edge weight between a "frown"(visual) node and
the "happy"(textual) node.

For intra-modal graphs, the hidden representa-
tions ht, hv, and ha of the three modalities and
the corresponding graphsGt,Gv, andGa are fed

as inputs into the GAT layers (GATs) to derive the
unimodal graph representations rt, rv, ra ∈ Rdh :

rt = READOUTt(GATs(ht,Gt)) (7)

rv = READOUTv(GATs(hv,Gv)) (8)

ra = READOUTa(GATs(ha,Ga)) (9)

where GATs(·) denotes the operation of GAT lay-
ers. Note that following You et al. (2020), we use
a READOUT(·) function to aggregate the node
representations to derive the graph representation.

On the other hand, for an inter-modal graph, we
also apply GATs to model the relations in the graph,
aiming to extract the relations between modalities
for better learning sentiment cues. Given the inter-
model graph Gm of a multimodal instance, the
corresponding nodes are represented as all nodes
from ht, hv and ha, and the multimodal graph
representation rm ∈ Rdh is derived as follow:

rm = READOUTm(GAT([ht∥hv∥ha],Gm))
(10)

To this end, owing to the merit of graph attention
networks that the weights of associated edges can
be adjusted according to the attention mechanism
during the training process, the degree of associ-
ation of nodes on a fully connected graph can be
quantified by the weights of the edges, and thus
deriving appropriate graph representation.

3.5 Hierarchical Graph Contrastive Learning
In this section, we detail the proposed hierarchical
graph contrastive learning strategy in our HGraph-
CL framework. As shown in Figure 2, our hier-
archical graph contrastive learning strategy first
performs at the intra-modal level, and further per-
forms at the inter-modal level. Here for each level,
we devise a fully-supervised contrastive loss based
on the sentiment labels to improve the graph rep-
resentation for better sentiment learning and a self-
supervised contrastive loss based on the graph aug-
mentations to explore more appropriate graph struc-
tures for deriving precise graph representation.

3.5.1 Graph Contrastive Learning at
Intra-Modal Level

Fully-Supervised Contrastive Loss Based on
Sentiment Labels Inspired by the work on fully-
supervised contrastive learning (Khosla et al., 2020;
Gunel et al., 2021), for a mini-batch, we adopt sen-
timent labels as the supervised signal to perform
fully-supervised loss for capturing the similarity be-
tween examples in one class and contrasting them
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with examples in other classes. Specifically, given
N examples in a mini-batch, the examples can be
divided into S1, S2, ... according to sentiment po-
larity. Considering the binary classification, then
|S1| = M, |S2| = N −M, | · | is the cardinality
of the set. For the anchor example si ∈ S1, a
positive pair can be represented as (si, sj), here
sj ∈ S1, j ̸= i. While the rest N −M samples are
regarded as negative examples. The pairwise ob-
jective ℓ1(rMi , rMj ) between the unimodal graph
representation rMi of si and the graph representa-
tion rMj of sj ∈ S1 are defined as:

ℓ1(r
M
i , rMj ) = − log

esim(rMi ,rMj )/τ

Σsup
(11)

Σsup =
∑

k,sk∈S1,k ̸=i
esim(rMi ,rMk )/τ

+
∑

l,sl∈S2

esim(rMi ,rMl )/τ
(12)

whereM∈ {t, v, a}, sim(·) is the similarity func-
tion, sim(u, r) = uTr/∥u∥∥v∥, and τ is the tem-
perature parameter. We use the multimodal sen-
timent polarity labels as the unimodal sentiment
polarity labels, and calculate the supervised con-
trastive loss on the unimodal graph representations
and the multimodal graph representation, respec-
tively. Finally, we sum the two losses to obtain
the overall supervised contrastive loss. Follow-
ing Khosla et al. (2020), the computation of intra-
modal supervised contrastive loss Lintrasup is:

Lintrasup =
∑

M
[
∑

si∈S1

1

|S1 − 1|
∑

j,sj∈S1,j ̸=i
ℓ1(r

M
i , rM

j )

+
∑

sk∈S2

1

|S2 − 1|
∑

l,sl∈S2,l ̸=k
ℓ1(r

M
k , rM

l )]

(13)

If more labels are correctly predicted, the value
of the loss function will be lower until it converges.
On the other hand, if the model cannot predict most
of the labels, the loss function will fail to converge.

Self-Supervised Contrastive Loss Based on
Graph Augmentations To apply the self-
supervised contrastive learning, we implement aug-
mentation data by supplementary and corrupting
graphs. The augmented graphs U, V are obtained
by randomly deleting or adding a certain ratio of
edges, aiming at the exploration of more appropri-
ate graph structures.

Based on the graph augmentation, for an anchor
graph representation rMi , we regard the represen-
tation derived by the corresponding augmented

graph uMi as the positive sample, while others
are regarded as negative samples. For the N
examples in a mini-batch, the pairwise objective
ℓ2(r

M
i ,uMi ) between rMi and uMi is defined as:

ℓ2(r
M
i ,uMi ) = − log

esim(rMi ,uM
i )/τ

Σself
(14)

Σself = esim(rMi ,uM
i )/τ

+
N∑

j=1

1[j ̸=i][e
sim(rMi ,rMj )/τ

+ esim(rMi ,uM
j )/τ ]

(15)

where 1[j ̸=i] ∈ {0, 1} is the indicator function and
equals 1 iff j ̸= i. The intra-modal self-supervised
contrastive loss Lintraself is as follow:

Lintraself =
1

2N

∑

M

N∑

i=1

[
ℓ2(u

M
i , rM

i ) + ℓ2(r
M
i ,uM

i )
]

(16)

3.5.2 Graph Contrastive Learning at
Inter-Modal Level

Corresponding to Section 3.5.1, we perform the
fully-supervised contrastive loss and the self-
supervised contrastive loss on the multimodal
graph representations rm, and obtain the inter-
modal supervised and self-supervised contrastive
loss Lintersup and Linterself , which are defined as:

Lintersup =
∑

si∈S1

1

|S1 − 1|
∑

j∈S1,j ̸=i
ℓ1(r

m
i , r

m
j )

+
∑

sk∈S2

1

|S2 − 1|
∑

l∈S2,l ̸=k
ℓ1(r

m
k , r

m
l )

(17)

Linterself =
1

2N

N∑

i=1

[ℓ2(u
m
i , r

m
i ) + ℓ2(r

m
i ,u

m
i )]

(18)

3.6 Sentiment Prediction
The multimodal graph representation rm is fed into
a fully-connected layer to predict the sentiment
score y:

y =W p · rm + bp (19)

where W p and bp are the weight matrix and bias.
Then, the output yi of the prediction layer for the
i-th example is compared with the ground truth y∗i
to calculate the loss of the MSA task Lmsa:

Lmsa = 1

N

N∑

i

|yi − y∗i | (20)
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The overall loss of our framework is defined as:

L =Lmsa + w1 ∗ (Lintrasup + Lintersup )

+ w2 ∗ (Lintraself + Linterself )
(21)

where w1, w2 are hyperparameters, controlling the
effect of different losses.

4 Experiments

4.1 Datasets and Metrics
We evaluate our approach on two benchmarks,
MOSI (Zadeh et al., 2016) and MOSEI (Zadeh
et al., 2018c). Table 1 shows the basic statistics
of the two datasets. Each example of MOSI or
MOSEI contains a continuous sentiment score in
the interval [−3, 3] and three modal data. Image
frames and audio frames are aligned to text content
at the word level.

Following Zadeh et al. (2018b), binary accuracy
(Acc-2) and weighted F1 score (F1-Score) are se-
lected as classification metrics, mean absolute error
(MAE) and Pearson correlation coefficient (Corr)
are selected as regression metrics.

4.2 Training Setting
We take mean absolute error as the loss function.
For contrastive learning, N-pairs loss (Sohn, 2016)
and SupCon loss (Khosla et al., 2020) are naturally
suitable for this scenario. For the textual encoder,
we use a pre-trained BERT (bert-base-uncased) and
finetune it when training. For visual and acoustic
encoders, we train BiLSTMs from scratch. The
optimizer chosen is Adam (Kingma and Ba, 2015)
and the parameters of BERT and other model pa-
rameters are optimized separately. We use a lower
learning rate {5e-6, 1e-5} and warm-up strategy for
the BERT and a larger learning rate {1e-3, 1e-3}
for the other parts. The hyperparametersw1 andw2

are selected from {0.1, 0.2, 0.3, 0.4, 0.5}. The re-
sults of our model and the reproduced models take
the average results obtained from five runs with
different random seeds for obtaining stable results.
More training settings are presented in Table 2. In
addition, we use a learning rate adjustment strategy
to update the learning rate when training.

4.3 Baselines and Performance
To verify the effectiveness of our approach, we
compare it with the following BERT-based meth-
ods: TFN (Zadeh et al., 2017), LMF (Liu et al.,
2018), MFM (Tsai et al., 2019b), MulT (Tsai et al.,

train valid test total
MOSI 1283 229 686 2198
MOSEI 16326 1871 4659 22856

Table 1: The example size of MOSI and MOSEI.

Parameter MOSI MOSEI
epoch 20 6
batch size 4 24
max length 50 128
hidden size 128 128
LSTM layers 1 1
GAT layers 2 1
GAT attention heads 1 1
dropout 0.2 0.1
augmentation ratio 0.2 0.2
BERT learning rate 5e-6 1e-5
other learning rate 1e-3 1e-3
Lsup weight w1 0.1 0.1
Lself weight w2 0.1 0.1

Table 2: Training setting details

2019a), MAG-BERT (Rahman et al., 2020), MISA
(Hazarika et al., 2020), Self-MM (Yu et al., 2021),
HyCon-BERT (Mai et al., 2022). The details of the
introduction are presented in Appendix A.

The comparison results of our HGraph-CL
framework and the baseline models are presented in
Table 3. We observe that our proposed HGraph-CL
consistently outperforms all the baseline models
on the two datasets, which verifies the effective-
ness of our approach in the MSA task. Moreover,
compared with the intra-example representation
learning approaches (MFM, MISA), our HGraph-
CL achieves outstanding improvement on the two
datasets. This indicates that exploring the senti-
ment implications from both intra- and inter-modal
levels is significant for improving the performance
of MSA. Furthermore, the significance tests of
our HGraph-CL over Self-MM‡ and MAG-BERT‡

present a statistically significant improvement in
Acc-2 and F1-Score on MOSI and Acc-2, F1-Score
and Corr on MOSEI (with p < 0.05).

5 Analysis

5.1 Ablation Study

To verify the impact of the hierarchical graph con-
trastive learning on performance, we conduct ab-
lation experiments on the two datasets and show
the results in Table 4. We can observe that the
class distribution is useful for the classification of
MOSI and MOSEI datasets, and slightly improve
regression. In contrast, the representation distri-
bution learning improves regression significantly
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Model MOSI MOSEIModel Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑ Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑
TFN† -/80.8 -/80.7 0.901 0.698 -/82.5 -/82.1 0.593 0.700
LMF† -/82.5 -/82.4 0.917 0.695 -/82.0 -/82.1 0.623 0.677
MFM† -/81.7 -/81.6 0.877 0.706 -/84.4 -/84.3 0.568 0.717
MulT† 81.5/84.1 80.6/83.9 0.861 0.711 -/82.5 -/82.3 0.580 0.703
MISA† 81.8/83.4 81.7/83.6 0.783 0.761 83.6/85.5 83.8/85.3 0.555 0.756

MAG-BERT 84.2/86.1 84.1/86.0 0.712 0.796 84.7/- 84.5/- - -
Self-MM 84.0/86.0 84.4/86.0 0.713 0.798 82.8/85.2 82.5/85.3 0.530 0.765

HyCon-BERT -/85.2 -/85.1 0.713 0.790 -/85.4 -/85.6 0.601 0.776
MAG-BERT‡ 81.5/83.1 81.5/83.1 0.808 0.761 81.4/84.6 81.9/84.6 0.552 0.756

Self-MM‡ 83.1/84.9 83.1/84.9 0.736 0.791 80.5/84.2 80.0/84.2 0.531 0.764
HGraph-CL (ours) 84.3/86.2 * 84.6/86.2 * 0.717 0.799 84.5/85.9 * 84.5/85.8 * 0.527 0.769 *

Table 3: Main results on MOSI and MOSEI. ↑ denotes the higher the evaluation metric the better, and ↓ denotes
the lower the evaluation metric the better. Results with † are retrieved from (Hazarika et al., 2020) , with ‡ are
reproduced using the source code released by the authors, and with * indicate the significance test over Self-MM‡

and MAG-BERT‡ presents a statistically significant improvement. For Acc-2 and F1-Score, the left side of / is the
result of dividing examples by positive/non-positive following (Zadeh et al., 2018b), and the right side is the result
of dividing examples by positive/negative following (Tsai et al., 2019a).

Graph CL MOSI MOSEIGraph CL Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑ Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑

Intra, Inter
Sup, Self 84.3/86.2 84.6/86.2 0.717 0.799 84.5/85.9 84.5/85.8 0.527 0.769

Sup 84.0/85.9 84.2/85.8 0.733 0.788 84.3/86.0 84.3/86.0 0.535 0.766
Self 83.8/85.8 84.0/85.7 0.718 0.793 84.1/85.4 84.1/85.3 0.533 0.766

Intra
Sup, Self 83.9/85.9 84.1/85.8 0.729 0.790 84.2/85.6 84.2/85.4 0.531 0.765

Sup 83.6/85.8 83.8/85.7 0.731 0.788 83.9/85.9 83.9/85.6 0.539 0.767
Self 83.6/85.5 83.8/85.4 0.726 0.789 83.9/85.3 84.0/85.1 0.533 0.764

Inter
Sup, Self 84.1/86.2 84.3/86.2 0.723 0.792 84.0/85.7 84.0/85.6 0.529 0.767

Sup 83.7/86.0 83.8/85.9 0.733 0.789 84.1/85.7 84.1/85.3 0.539 0.763
Self 83.6/85.9 83.8/85.8 0.722 0.793 83.9/85.3 83.9/85.0 0.531 0.766

None None 83.0/85.1 83.1/85.0 0.756 0.784 82.8/85.1 83.1/85.0 0.539 0.763

Table 4: The performance with different contrastive learning strategies on MOSI and MOSEI. We conduct an
ablation study to analyze the impact of graph structure and contrastive learning strategy. {Intra, Inter} denotes
performing graph contrastive learning at both intra- and inter-modal levels, {Intra} denotes at the intra-modal level
only, while {Inter} denotes at the inter-modal level only. {Sup, Self } denotes the result with class distribution
learning and representation distribution learning, {Sup} denotes the result with class distribution learning only,
{Self } denotes the result with representation distribution learning only. {None} denotes without any strategy.

on MOSI and MOSEI, and makes sense for clas-
sification. On the other hand, performing graph
contrastive learning at the intra-modal level only or
at the inter-modal level only can improve both clas-
sification and regression on two datasets. Addition-
ally, our model with complete hierarchical graph
contrastive learning can achieve the best overall
performance, with a significant improvement over
the model without it. The results suggest that hi-
erarchical graph contrastive learning has a great
positive impact on the classification and the regres-
sion of HGraph-CL.

5.2 Effect of GAT Layers

We convert the measurement of the relations be-
tween different modalities into learning the edges
of a multimodal graph by GATs. Furthermore,

we want to explore the effect of the number of
GAT layers on performance. Thus we evaluate our
model with different layers of GATs from 1 to 5
on both two datasets to quantify the effect. The
experimental results are shown in Figure 3. We
can observe that our model achieves the best per-
formance with a small number of layers. Another
observation is that the volatility of the classifica-
tion performance is greater when choosing a big
number of layers. The possible reason is that the
deep GAT layer will learn similar representations
of different nodes, which is called over-smoothing
(Li et al., 2018). Over-smoothing may result in
the modality-specific information being discarded,
and the results suggest that too many layers make
a negative effect.
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Figure 3: Results with different numbers of GAT layers

MOSI

MOSEI

85.5

85.9

85.3
85.5 85.6

85.3

85.8

85.1
85.3 85.4

84.3
84.5

84.3 84.2

83.9

84.3 84.4
84.2 84.2

84

83

84

85

86

87

82

83

84

85

86

87

0.1 0.2 0.3 0.4 0.5

/Acc /F1 Acc/ F1/

0.763

0.769

0.764 0.764 0.765

0.532

0.527

0.533 0.532 0.532

0.51

0.52

0.53

0.54

0.55

0.56

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.1 0.2 0.3 0.4 0.5

Corr MAE

85.4

86.2

85.5
85.2

85.5
85.3

86.2

85.4
85.2

85.5

83.3

84.3

83.6
83.4

83.6
83.3

84.6

83.6
83.4

83.6

81
81.5
82
82.5
83
83.5
84
84.5
85
85.5
86
86.5

82

83

84

85

86

87

0.1 0.2 0.3 0.4 0.5

/Acc /F1 Acc/ F1/

0.788

0.799

0.787 0.79 0.789

0.724
0.717

0.736

0.725

0.734

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.1 0.2 0.3 0.4 0.5

Corr MAE

Figure 4: Results of different deleting/adding ratios

5.3 Effect of Deleting/Adding Ratio

To investigate the effect of different ratios of delet-
ing/adding edges in deriving graph augmentations
on the performance, we conduct experiments with
different values of ratio and report the results in
Figure 4. From the experimental results, we can
observe that different ratios introduce a consider-
able impact on performance. When the delete ra-
tio is small (0.1), the possibility of exploration of
graph structures is limited, thus leading to a poorer
performance. In addition, noticeable performance
degradation is also shown when the ratio is greater
than 0.2. This indicates that excessively exploring
the possible relations may weaken the learning abil-
ity of graph contrastive learning. Therefore, we set
the ratio to 0.2 in our experiments.

5.4 Case Study

To show the relationship strength between different
representations, we select an example from the
MOSI dataset and visualize the weights of edges
between text and visual nodes and present them in
Figure 5. We can observe that the negative word
nodes jack ass have a stronger relationship with the
visual nodes representing frowning faces, and are
weakly related to these visual nodes representing

um he ##s just a jack ass

high

low

Figure 5: A case of the weights of edges between text
and visual nodes

normal faces. It shows that the proposed model can
understand the relations of representations across
modalities, enabling the highly correlated modal
representations to be explicitly linked for learning
the multimodal sentiment information.

6 Conclusion

This paper proposes a novel hierarchical graph con-
trastive learning (HGraph-CL) framework for mul-
timodal sentiment analysis (MSA), in which graph
contrastive learning is performed at intra-modal
and inter-modal levels. For the graph contrastive
learning strategy performed at each level, we de-
vise a fully-supervised contrastive loss and a self-
supervised contrastive loss. The fully-supervised
contrastive loss is devised to improve the learn-
ing of sentiment cues by capturing the similarity
between examples in one class and the contrast
among different classes. And the self-supervised
contrastive loss is devised to explore a more appro-
priate graph structure based on the graph augmenta-
tions for making use of sentiment relations within
each modality and across different modalities. Ex-
perimental results on two benchmark datasets show
that our method outperforms the state-of-the-art
baselines in MSA.
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A Introduction of Baselines

Since our HGraph-CL framework is designed based
on BERT, to verify the validity of our approach, we
select the following state-of-the-art models with a
BERT-based version for comparison:
TFN (Zadeh et al., 2017): The tensor fusion net-
work performs outer product on three modal rep-
resentations, then the multimodal representation
vector fused with uni-, bi-, and tri- modalities will
be obtained.
LMF (Liu et al., 2018): The low-rank multimodal
fusion network is based on TFN and gets some
improvement. It uses tensor decomposition to de-
compose the parameter tensor of the outer product
layer.
MFM (Tsai et al., 2019b): The multimodal fac-
torization model factorizes representations into
two sets of independent factors, and optimizes for
a joint generative-discriminative objective across
multimodal data and labels.
MulT (Tsai et al., 2019a): With a slight modifi-
cation in the structure of the transformer encoder,
MulT proposes a cross-modal transformer network
to align information from one mode to another.
MAG-BERT (Rahman et al., 2020): A variant of
BERT, adding a multimodal shifting gate unit be-
hind the input layer. By fusing with visual and
acoustic information, the word embeddings can be
shifted in a direction that can express sentiment
polarity better in the feature space.
MISA (Hazarika et al., 2020): proposes a multi-
task framework for intra-example representation
learning. It projects each modality to two dis-
tinct subspaces to model modality-specific and -
invariant information.
Self-MM (Yu et al., 2021): designs a label genera-
tion module based on the self-supervised learning
strategy to acquire independent unimodal super-
vision. Jointly training uni- and multimodal sen-
timent analysis tasks have got the state-of-the-art
performance on MOSI and MOSEI.
HyCon-BERT (Mai et al., 2022): proposes hybrid
contrastive learning of tri-modal representations to
explore cross-modal interaction and reduce the gap
among modal representations.
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Abstract
In recent years, multimodal sentiment analy-
sis (MSA) has attracted more and more inter-
est, which aims to predict the sentiment po-
larity expressed in a video. Existing methods
typically 1) treat three modal features (textual,
acoustic, visual) equally, without distinguish-
ing the importance of different modalities; and
2) split the video into frames, leading to miss-
ing the global acoustic information. In this
paper, we propose a global Acoustic feature en-
hanced Modal-Order-Aware network (AMOA)
to address these problems. Firstly, a modal-
order-aware network is designed to obtain the
multimodal fusion feature. This network inte-
grates the three modalities in a certain order,
which makes the modality at the core position
matter more. Then, we introduce the global
acoustic feature of the whole video into our
model. Since the global acoustic feature and
multimodal fusion feature originally reside in
their own spaces, contrastive learning is further
employed to align them before concatenation.
Experiments on two public datasets show that
our model outperforms the state-of-the-art mod-
els. In addition, we also generalize our model
to the sentiment with more complex seman-
tics, such as sarcasm detection. Our model
also achieves state-of-the-art performance on a
widely used sarcasm dataset.

1 Introduction

Multimodal sentiment analysis (MSA) has attracted
more and more attention in recent years. In many
cases, we need to combine the textual, acoustic,
and visual features to predict sentiment polarity.
For example, the tone of a person’s voice and the
changing expression can both have an impact on
sentiment polarity prediction.

∗ Corresponding author.

In most previous works, each modality will go
through the same process at the fusion, or in other
words, the three modalities are treated equally
(Hasan et al., 2021; Chauhan et al., 2020). How-
ever, for sentiment analysis, the textual modality
is usually the core modality based on life experi-
ence and previous works (Tsai et al., 2019; Han
et al., 2021a; Hasan et al., 2021), because the text
contains the most basic semantic information. The
acoustic feature also plays an important role: a
speech with a rising tone is more likely to express
positive sentiment. Finally, facial expressions also
have impacts on sentiment, such as the rising range
of the corners of the mouth and the size of the
pupils. However, the information about sentiment
in expression is not as rich as that in tone. In addi-
tion, visual information does not always correspond
to text like acoustic information. In many situa-
tions, the change in the speaker’s facial expression
is quite subtle. Even more, the speaker is absent
in some videos. These visual noises may bring
confusion to the model. Therefore, we consider
the order of modalities, i.e. textual-acoustic-visual
(t-a-v) while integrating them.

For MSA, a video is usually divided into many
frames, and each frame corresponds to a very short
time period in the video. The local acoustic features
extracted from every single frame interact with
each other in the fusion process. However, this
method loses the global acoustic information and
cannot fully reflect the tone feature of the whole
audio.

To address these challenges, we propose a global
acoustic feature enhanced modal-order-aware net-
work. Firstly, the Modal-Order-Aware network
(MOA) is designed to integrate the three modalities
in a certain order, where there are two stages con-
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necting the core and the outer modalities. We put
textual modality at the core, and then the acoustic
modality is integrated in stage 1, and finally, the vi-
sual modality is integrated in stage 2. At each stage,
we design Cross-Modal Transformer (CMT) based
on the Transformer encoder (Vaswani et al., 2017)
to integrate new modal features. Through CMT,
the modality added before can also provide infor-
mation for the later processes. Consequently, the
textual feature learning is continuously enhanced
through two stages, while the noise impact brought
by the visual modality added in stage 2 is reduced.
Then, to preserve the global acoustic information,
we use openSMILE (Eyben et al., 2010) to extract
the Global Acoustic Feature (GAF) of the video
to enhance modal feature learning. Furthermore,
GAF and the multimodal fusion feature originally
reside in their own spaces, which brings challenges
to the fusion or concatenation. Inspired by MOCO
(He et al., 2020), we employ contrastive learning to
align the two features before concatenating them.
Because visual modality may bring more noise and
the processing of the entire video needs more com-
putational power, we don’t employ global visual
features in our model. The main contributions of
our paper are as follows:

• We propose AMOA - a novel multimodal sen-
timent analysis model that can integrate the
three modalities in a certain order. In the
modal-order-aware network, CMT is designed
to fuse the features of different modalities.

• We are the first to introduce the global acous-
tic feature into MSA, which aims to preserve
the global acoustic information and enhance
the learning of the overall video feature. Fur-
thermore, contrastive learning is utilized to
align them before concatenation.

• We conduct experiments on sentiment (CMU-
MOSI and CMU-MOSEI) and sarcasm (MUS-
tARD) datasets, and the results show the state-
of-the-art performance of our model.

2 Related Work

Multimodal fusion has always been the most crit-
ical step in MSA. Early works directly concate-
nate unimodal features or use outer product (Zadeh
et al., 2018). With the development of the neu-
ral networks (Russakovsky et al., 2015; Hochreiter
and Schmidhuber, 1997) and attention mechanism

(Bahdanau et al., 2015; Vaswani et al., 2017), more
and more complex networks have been applied to
MSA to integrate modalities.

(Tang et al., 2021) uses a translation-based
model to supplement the missing modalities. (Liu
et al., 2021) is based on quantum probability mod-
eling and uses multi-task learning to predict senti-
ment polarity and detect sarcasm at the same time.
(Rahman et al., 2020) proposes an attachment to
pre-trained language models so that they can adapt
to the task of multimodal sentiment analysis. (Han
et al., 2021a) performs fusion (relevance increment)
and separation (difference increment) on pairwise
modality representations. (Han et al., 2021b) pro-
poses a novel framework to maximize the mutual
information in unimodal input pairs and between
the multimodal fusion result and unimodal input.
(Colombo et al., 2021) proposes new objectives
to measure the dependency between modalities.
These models treat all three modalities equally and
mostly design very complex modules to achieve
better results, while our model integrates three
modalities in a certain order to distinguish their
contributions, simple but effective.

Contrastive learning (CL) is a widespread self-
supervised learning method in recent years. MOCO
(He et al., 2020) and SimCLR (Chen et al., 2020)
have achieved good results with CL in computer
vision. After that, CL is applied to text-image multi-
modal tasks, such as image-text retrieval and visual
question answering (Li et al., 2021).

3 Model

In this section, we will describe in detail how our
proposed model works. The overall architecture
of our model (AMOA) is shown in Figure 1. Our
model consists of three modules: the modal-order-
aware network (MOA), global acoustic feature
(GAF) extraction & contrastive learning module,
and classification module. In MOA, the unimodal
features are first encoded and then integrated in
a certain order, thus generating the multimodal
fusion feature (Section 3.1). However, the multi-
modal fusion feature obtained in MOA is composed
of single frame features and insufficient to reflect
the overall change of tone, which is important for
expressing sentiment. Therefore, we further extract
GAF to complement the complete acoustic features.
To align the multimodal fusion feature and GAF,
we introduce contrastive learning and add the con-
trastive loss and classification loss together to guide
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Figure 1: The overall architecture of our model. T, A, and V represent textual modality, acoustic modality (frame
level), and visual modality (frame level) respectively. A (global) indicates acoustic modality which is not segmented.
⊕ represents the concatenation operation. The dashed parts make up two-way CMT.

model training. (Section 3.2) Finally, a multilayer
perceptron layer is utilized for classification (Sec-
tion 3.3).

3.1 Modal-Order-Aware Network
3.1.1 Unimodal Feature Extraction and

Encoder
Textual: In this paper, pre-trained BERT-base-
uncased (Devlin et al., 2019) is used as our text
encoder, which has 12 layers and the hidden
size is 768. The text encoder takes text Xt =
{x1, x2, . . . , xnt} in the video as input, and then
output the last hidden layer representation: Et ∈
R
nt×dt , where nt is the number of tokens and dt

is the hidden size (768) of BERT-base-uncased.
Acoustic: We use openSMILE to extract frame-
level features of audio with 10 ms frame shift and
25 ms frame size. openSMILE provides a series of
default feature sets, such as the INTERSPEECH
2010 Paralinguistic Challenge Feature Set (IS10)
(Schuller et al., 2010), which contains different
low-level features and their corresponding high-
level features. For each frame, we extract IS10
as the feature vector: Xa = {x1, x2, . . . , xna},
Xa ∈ Rna×da and na is the number of frames and
da is the dimension of the acoustic feature. Then,
we use P2FA (Yuan et al., 2008) to align the acous-
tic features to each word. Specifically, we obtain
X
′
a = {x′1,x

′
2, . . . ,x

′
nt} by extracting the timing

of all the words and averaging the acoustic feature
vectors during this time. Because Transformer has
the advantage of capturing long-distance dependen-
cies, we directly use the Transformer encoder with

random initialization to encode the feature and fi-
nally get the acoustic representation Ea ∈ Rnt×da .

Visual: The visual information in the video mainly
comes from expressions, head shaking, and so on.
We use OpenFace 2 (Baltrusaitis et al., 2018) to
extract facial features at the frame level. These
features are based on the Facial Action Coding Sys-
tem (Ekman and Rosenberg, 1997). Like acoustic
modality, we then use the Transformer encoder to
obtain visual representation Ev ∈ Rnt×dv , where
dv is the hidden size of visual feature. The encoders
of acoustic and visual modalities are independent
of each other and they don’t share any parameters.

3.1.2 Modal Order

Currently, most works treat the three modalities
equally. They either feed the three modalities into
a module for fusion and interaction at the same
time, or integrate them in pairs. In this way not
only the text information can not play a full role,
but also the noise in the visual modality has the
same impact. Therefore, we integrate three modal-
ities in a certain order. First, the textual feature
is extracted and encoded, i.e. Et; then, in stage
1, the acoustic features are fused to generate Et-a;
finally, in stage 2, the visual features are integrated
to generate Et-a-v. The final experiment will prove
the optimality of the t-a-v order. At each stage,
we employ CMT to integrate the previous and lat-
ter modalities, which will be described in detail in
Section 3.1.3.
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3.1.3 Cross-Modal Transformer
Based on the Transformer encoder, CMT is utilized
to integrate new modalities, as shown in Figure 2.
In stage 1, CMT inputs the textual and acoustic
modal features and outputs the textual-acoustic fu-
sion feature. Then in stage 2, the textual-acoustic
feature and visual feature are fed to CMT and we
obtain the textual-acoustic-visual fusion feature.
Transformer is mainly composed of attention mech-
anism, and so is CMT. The input of the attention
mechanism is aK-V pair and a queryQ. TheK-V
pair can be regarded as basic information, while
Q is additional information. We get the interac-
tive information between Q and V by calculating
the score between Q and K. Multi-head attention
is composed of several parallel attention modules.
They are individually responsible for calculating
part of the results which will be concatenated into
the final result. Different from the Transformer
encoder, CMT utilizes multi-head attention instead
of multi-head self-attention to integrate two fea-
tures. Besides, CMT is also a multi-layer mod-
ule. The original Transformer encoder cannot input
two modalities and stack multiple layers together.
Each layer of CMT has two inputs called base and
addition. base of each layer stays the same, while
addition is constantly updated.

Multi-head 
Attention

base addition

K V Q

Add & Norm

Feed
Forward

output

Layer 1

base addition

Layer 2

……

Add & Norm

Figure 2: Cross-Modal Transformer.

Take the CMT in stage 1 as an example, in
the first layer, base is the textual feature Et and
addition is the acoustic feature Ea. Then we input
base (K, V ) and addition (Q) into the multi-head
attention (MHA) followed by a residual connection
and layer normalization:

Z =MHA(addition, base, base), (1)

Z
′
= Norm(Z+ addition). (2)

Then we employ a feedforward neural network fol-
lowed by a residual connection and layer normal-

ization:

Z
′′
= FeedForward(Z

′
), (3)

E
(1)
t-a = Norm(Z

′
+Dropout(Z

′′
)). (4)

where Norm is layer normalization. The above is
the calculation process of the first layer, which can
be expressed as:

E
(1)
t-a = CMT(1)(Et, Ea). (5)

In the second and later layers, base is always the
textual feature, and addition is the output of the
previous layer:

E
(i)
t-a = CMT(i)(Et, E

(i−1)
t-a ), i = 2, 3, . . . , N,

(6)
where E(i)

t-a is the output of the ith layer of CMT and
we take the output of the last layer as the textual-
acoustic fusion feature Et-a.

Similar to the above procedure, we take Et-a

as base and the visual feature Ev as addition in
CMT (addition of each layer is also updated con-
tinuously) in stage 2. Then we obtain the textual-
acoustic-visual fusion feature:

Et-a-v = CMT(Et-a, Ev). (7)

In order to distinguish the importance of pre-
vious and latter modalities, we only use one-way
CMT, that is, one input provides more information
as base and another input provides less informa-
tion as addition. For comparison, we also design
a bidirectional module, as shown by the dashed
line in Figure 1. The results from two CMTs are
concatenated and transmitted to the next step. The
model with one-way CMT is called S-AMOA and
the model with two-way CMT is called B-AMOA.
In this paper, we use S-AMOA by default.

Finally, a dropout layer and max-pooling layer
are utilized to extract the most salient features
across the time dimension:

Ef =Maxpooling(Dropout(Et-a-v)), (8)

where Ef ∈ Rdh is the multimodal fusion feature.

3.2 GAF & Contrastive Learning
We use IS10 in openSMILE to extract GAF. In-
stead of splitting the video into frames, we extract
the global acoustic feature of the whole video and
get a one-dimensional feature vector: Xg ∈ Rdg .
We unsqueeze Xg to make it fit the input shape of
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Transformer. Finally, we utilize the Transformer en-
coder to obtain the GAF representation: Eg ∈ Rdg .

During training, apart from the final classifica-
tion loss, we introduce another loss through con-
trastive learning, called loss_c, to align the multi-
modal fusion feature Ef and global acoustic feature
Eg. One of the important steps of contrastive learn-
ing is to construct positive and negative samples.
A direct idea is to take Ef and Eg belonging to
the same sample in a batch as a positive pair and
those not belonging to the same sample as negative
pairs. Previous studies show that more negative
samples promote contrastive learning. However, a
larger batch size requires higher computing power
so infinitely increasing the batch size is unpractical.

To applicably increase the number of negative
samples, we construct a queue storing (Ef , Eg)
pairs in the model. All the Ef in the queue are
combined into the matrix Eqf ∈ RK×dh , and all
the Eg in the queue are combined into the matrix
Eqg ∈ RK×dh . K is the upper limit of the queue
size. The data in the queue comes from the previous
batches and acts as negative samples.

When a new batch comes, we get Ebf ∈ RB×dh
and Ebg ∈ RB×dg which are positive samples of
each other. B should be the batch size, but in
practice, the utterance is processed with the context,
so B is actually the product of the original batch
size and the number of sentences in a sample. Next,
we calculate the cosine similarity between each
same row (i.e. the same sample) of the two matrices
in this batch, which should be maximized:

Spos = Cosine(Ebf , E
b
g), (9)

where Cosine is the cosine similarity function.
Each value in Spos ∈ RB×1 is the similarity of
the corresponding samples in this batch. Because
there are multimodal fusion features and global
acoustic features in both batch and queue, we con-
struct double negative samples by calculating the
similarity of Ebf and Eqg and the similarity of Ebg
and Eqf respectively, which should be minimized:

Sf→gneg = Cosine(Ebf , E
q
g), (10)

Sg→fneg = Cosine(Ebg, E
q
f ), (11)

where the value in the ith row and the jth column
of Sf→gneg ∈ RB×K is the cosine similarity between
Ef of the ith sample in the current batch and Eg of
the jth sample in the queue. Then we concatenate

the three similarity matrices:

S = Concat(Spos, S
f→g
neg , S

g→f
neg ), (12)

where the first column of S ∈ RB×(1+2×K) is the
similarity between positive samples, and the others
are the similarity between positive samples and
negative samples. Then we define a loss function
to maximize the value of the first column of S and
minimize the value of the other columns:

loss_c =
∑B

i=1 | log(Softmax(Si)[0]) |
B

. (13)

As part of the final loss, loss_c will help to align
Ef and Eg.

Finally, we add Ebf and Ebg in the current batch
to the queue, and if the queue size exceeds K, we
pop up the pairs from the head of the queue.

3.3 Classification

We get the multimodal fusion feature Ef through
MOA, and also extract the global acoustic feature
Eg. Now we concatenate the two features and then
get:

R = Concat(Ef , Eg), (14)

where R ∈ R(dh+dg)×1 is the final multimodal
representation. Finally, We input the R into a mul-
tilayer perceptron (MLP) layer for classification:

ŷ =W2(ReLU(W1R)) + b2, (15)

where W1, W2, b1 and b2 are the parameters and
ReLU is the nonlinear activation function. During
training, we use the MSE loss function to calculate
the classification loss loss_f and then add con-
trastive learning loss with a certain weight:

loss = (1− α) · loss_f + α · loss_c, (16)

where α is a hyper-parameter, which is set to bal-
ance the two losses.

Dataset Train Valid Test All

CMU-MOSI 1284 229 686 2199
CMU-MOSEI 16326 1871 4659 22856

MUStARD 552 69 69 690

Table 1: Split of three datasets.
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Models
CMU-MOSI CMU-MOSEI

Acc-2 ↑ F1 ↑ MAE ↓ Corr ↑ Acc-2 ↑ F1 ↑ MAE ↓ Corr ↑
TFN* -/0.8080 -/0.8070 0.901 0.698 -/0.8250 -/0.8210 0.593 0.700
LMF* -/0.8250 -/0.8240 0.917 0.695 -/0.8200 -/0.8210 0.623 0.677
MFM* -/0.8170 -/0.8160 0.877 0.706 -/0.8440 -/0.8430 0.568 0.717
ICCN* -/0.8300 -/0.8300 0.862 0.714 -/0.8420 -/0.8420 0.565 0.713
MulT* 0.8150/0.8410 0.8060/0.8390 0.861 0.711 -/0.8250 -/0.8230 0.580 0.703
MISA* 0.8079/0.8210 0.8077/0.8203 0.804 0.764 0.8259/0.8423 0.8267/0.8397 0.568 0.724
MAG-BERT* 0.8250/0.8430 0.8260/0.8430 0.731 0.789 0.8380/0.8520 0.8370/0.8510 0.539 0.753
self-MM* 0.8400/0.8598 0.8442/0.8595 0.713 0.798 0.8281/0.8517 0.8253/0.8530 0.530 0.765

MMIM‡ 0.8324/0.8521 0.8311/0.8515 0.722 0.786 0.8418/0.8558 0.8425/0.8535 0.538 0.763
BBFN‡ 0.8134/0.8353 0.8124/0.8351 0.833 0.743 0.8298/0.8569 0.8327/0.8570 0.579 0.759
S-AMOA (ours) 0.8411/0.8415 0.8452/0.8421 0.720 0.788 0.8560/0.8645 0.8601/0.8654 0.526 0.772
B-AMOA (ours) 0.8163/0.8277 0.8173/0.8283 0.735 0.786 0.8501/0.8575 0.8508/0.8587 0.578 0.766

Table 2: Performances of multimodal models on the CMU-MOSI and CMU-MOSEI datasets. * indicates that
the results are from (Han et al., 2021b). ‡ indicates that the results are reproduced from open-source code with
hyper-parameters provided in original papers. For Acc-2 and F1, we have two methods of calculation: non-
negative/negative (left) and positive/negative (right). The best results are marked in bold. ↑ indicates that the higher
the value, the better the result; ↓ indicates that the lower the value, the better the result. Bolded numbers represent
the best results.

Models Acc-2 F1

MFN� 0.7391 0.7386
MulT� 0.7536 0.7541
MAG(BERT)� 0.7826 0.7818
MAG(XLNet)� 0.7681 0.7679
A-MTL† - 0.7657
QPM† - 0.7753
HKT† 0.7941 0.7925

S-AMOA (ours) 0.8406 0.8412
B-AMOA (ours) 0.8116 0.8116

Table 3: Performances of multimodal models on the
MUStARD dataset. � are the results on the dataset using
the original code provided in the paper. † indicates that
the results are from the original paper. - indicates that
the original paper provides neither the results under the
Acc metric nor the training code.

4 Experiments

4.1 Datasets and Metrics

In order to verify the performance of our model in
sentiment polarity prediction, we conduct experi-
ments on two widely used public datasets: CMU-
MOSI (Zadeh et al., 2016) and CMU-MOSEI
(Zadeh and Pu, 2018). CMU-MOSI has 2199 video
clips, each of which is a speaker sharing their opin-
ions on something. Each clip is labeled with the
polarity of sentiment, and the range of labels is:
[-3, 3]. CMU-MOSEI has 23454 film review clips,
which are labeled in the same way as CMU-MOSI.
Our model is not only applicable to the prediction

of general sentiment polarity, but also can detect
more complex sentiments, such as sarcasm. To ver-
ify this, we conduct experiments on the MUStARD
dataset (Castro et al., 2019), the unique multimodal
sarcasm dataset containing three modalities. The
dataset is collected from four TV shows, with a
total of 690 samples.

We use four commonly used evaluation met-
rics to evaluate the performance of the model on
the MOSI and MOSEI datasets: binary classifi-
cation accuracy (Acc-2), which divides seven la-
bels into two categories (positive/negative and non-
negative/negative); binary classification F1; mean
absolute error (MAE), which is the difference be-
tween the predicted value and the real value; Pear-
son correlation (Corr), which measures the degree
of prediction skew. The label of each sample is
sarcasm or non-sarcasm, so we only use Acc-2 and
F1 to evaluate the performance on the MUStARD
dataset.

The split specifications of the three datasets are
provided in Table 1. To motivate future research,
the code will be released soon.

4.2 Baselines
For sentiment polarity prediction, we compare our
model with many baseline models.

TFN (Zadeh et al., 2017): It integrates three
modal features by outer product, which is a very
classic work.

LMF (Liu et al., 2018): It performs multi-
modal fusion using low-rank tensors to improve
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efficiency.
MFM (Tsai et al., 2018): It decomposes fea-

tures into modal fusion features and modal specific
features to enhance model robustness.

ICCN (Sun et al., 2020): It obtains multimodal
embedding by calculating the outer product of the
text and the other two modalities.

MulT (Tsai et al., 2019): It uses cross-modal
transformers to fully integrate three modalities for
aligned sequences or unaligned sequences.

MISA (Hazarika et al., 2020): It projects the
modalities into two different subspaces to learn
the intra modal features and inter modal features,
respectively.

MAG (Rahman et al., 2020): It adds a multi-
modal adaptation gate to the existing pre-trained
language models (BERT and XLNet) so that they
can receive acoustic and visual information during
fine-tuning. Because our model uses BERT for
word embedding, MAG-BERT is employed as a
baseline.

self-MM (Yu et al., 2021): It generates uni-
modal labels based on self-supervised learning,
and then jointly trains uni-modal and multi-modal
tasks.

MMIM (Han et al., 2021b): It maximizes the
mutual information in a multimodal fusion pipeline
to maintain task-related information.

BBFN (Han et al., 2021a): It focuses on bimodal
fusion process and balances the contribution of
different modality pairs properly.

Furthermore, we also select some sarcasm detec-
tion baselines for comparison on the MUStARD
dataset.

MFN (Zadeh et al., 2018): It obtains the intra-
modal information and inter-modal information
based on LSTM and passes the multimodal fusion
information through time.

A-MTL (Chauhan et al., 2020): It manually
annotates the samples in the MUStARD dataset
with sentiment and emotion as well as analyzes
sarcasm, sentiment, and emotion together through
multi-task learning.

QPM (Liu et al., 2021): It builds a quantum
probability-driven multi-task learning framework,
including a quantum-like fusion network and quan-
tum incompatibility measurements.

HKT (Hasan et al., 2021): Besides the three
modalities, it introduces the ambiguity of words
and sentiment dictionary and constructs a bimodal
cross-attention layer based on Transformer.

4.3 Main Results
The experimental results on the MOSI and MOSEI
datasets are shown in Table 2. On the MOSEI
dataset, our model outperforms all baseline models
in every metric. In the binary classification task,
our model attains an improvement of 1% - 2% over
other models, which indicates the advantage of our
model in sentiment polarity prediction. On the
MOSI dataset, our model outperforms all baseline
models in Acc-2 and F1 (non-negative/negative). In
other metrics, our model also achieves results close
to SOTA. It is worth noting that the advantage of
our model in Acc-2 (non-negative/negative) is more
obvious than that in Acc-2 (negative/positive). This
is because our model tends to classify the samples
labeled neutral into the positive category, which is
consistent with life experience.

The experimental results on the MUStARD
dataset are shown in Table 3. The results illustrate
that our model achieves the best performance and
outperforms all baseline models (+4.65%). Some
baseline models use context information (A-MTL,
QPM, HKT), but the results are worse than our
model without context information.

These results demonstrate the superiority of our
proposed model and indicate the effectiveness of
the modal-order-aware network and GAF com-
pared with all baseline models.

4.4 Analysis
In order to further analyze the performance of our
model and verify the contribution of each module,
we conduct extensive experiments on the MOSI
and MOSEI datasets.

4.4.1 CMT
We design two kinds of CMT, one-way and two-
way, and their experimental results are shown in
Table 2 and Table 3. The results show that the two-
way CMT enhances the noise influence of the latter
modality, and makes the previous modality unable
to play a full role, which has an adverse impact on
the performance of the model.

The number of layers N of CMT in the model is
also a hyper-parameter. We set differentN and con-
duct experiments on MOSI and MOSEI datasets.
The results in Figure 3 show that when N is 5, the
model achieves the best performance on the MOSI
dataset, and when N is 2, the model achieves the
best performance on the MOSEI dataset. As the
number of layers increases, the information cap-
tured by CMT also increases. However, CMT may
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Models
CMU-MOSI CMU-MOSEI

Acc-2 F1 MAE Corr Acc-2 F1 MAE Corr

AMOA 0.8411/0.8415 0.8422/0.8421 0.720 0.788 0.8560/0.8645 0.8601/0.8654 0.526 0.772

t-v-a 0.8265/0.8307 0.8287/0.8335 0.737 0.786 0.8521/0.8614 0.8555/0.8639 0.589 0.771
a-t-v 0.8279/0.8338 0.8291/0.8327 0.739 0.780 0.8542/0.8608 0.8576/0.8630 0.582 0.770
a-v-t 0.8236/0.8323 0.8255/0.8314 0.748 0.781 0.8499/0.8611 0.8542/0.8637 0.584 0.771
v-t-a 0.8250/0.8262 0.8255/0.8303 0.741 0.775 0.8499/0.8622 0.8530/0.8640 0.575 0.769
v-a-t 0.8309/0.8262 0.8314/0.8303 0.744 0.774 0.8527/0.8617 0.8565/0.8633 0.581 0.771

−v 0.8250/0.7988 0.8252/0.7978 0.733 0.770 0.8492/0.8564 0.8506/0.8573 0.578 0.759
−a 0.8090/0.8231 0.8091/0.8240 0.756 0.769 0.8475/0.8581 0.8472/0.8590 0.579 0.757
−t 0.7116/0.7215 0.7168/0.7015 0.899 0.335 0.7391/0.7095 0.7639/0.7252 0.795 0.392

−GAF 0.7804/0.8192 0.7791/0.8224 0.760 0.761 0.8486/0.8564 0.8498/0.8567 0.573 0.761
−CL 0.8265/0.8033 0.8290/0.8099 0.739 0.769 0.8518/0.8603 0.8537/0.8612 0.587 0.761
−CL (f→g) 0.8309/0.8368 0.8314/0.8387 0.731 0.771 0.8544/0.8608 0.8580/0.8623 0.583 0.769
−CL (g→f) 0.8294/0.8246 0.8291/0.8259 0.734 0.772 0.8555/0.8611 0.8595/0.8623 0.581 0.771
−q 0.8236/0.8105 0.8251/0.8112 0.733 0.771 0.8520/0.8625 0.8541/0.8645 0.600 0.762

Table 4: Order study and ablation study. −m means to remove the m mode, where m ∈ {t, a, v} is the three
modalities. −GAF means not using GAF to enhance feature learning. −CL means to directly concatenate the
multimodal fusion feature and GAF without contrastive learning for alignment. −CL (f→g) means to remove
half of the negative samples calculated by Eq.(10) and −CL (g→f) means to remove half of the negative samples
calculated by Eq.(11). −q means to construct positive and negative samples only from the same batch without using
the queue.
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Figure 3: Experimental results with different layers of
CMT. (a) is on the CMU-MOSI dataset. (b) is on the
CMU-MOSEI dataset.

suffer from the distribution shift in the up layers,
which will make the similarity less reliable. So
bigger isn’t necessarily better for N . Please re-
fer to the experiment results in the supplementary
materials.

4.4.2 Order of Modalities

In our modal-order-aware network, we put text at
the core and then integrate acoustic modality in
stage 1, and visual modality is integrated in stage
2 (i.e., t-a-v). We try all permutations and obtain
the prediction results under the same settings, as
shown in Table 4. The order of t-a-v performs best,
which verifies our hypothesis of modal order.

4.4.3 Role of Unimodalities

In order to verify the role of every single modality,
we separately remove one modality and integrate
the other two modalities in the original order. For
example, the fusion order t-v removes the acoustic
modality (−a). The experimental results are shown
in Table 4. When a modality is removed, the perfor-
mance of the model decreases in varying degrees,
which shows that each modality plays an impor-
tant role. Specifically, when the textual modality
is removed, the performance decreases most obvi-
ously. In addition, The impact of acoustic modality
is slightly greater than that of visual modality.
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Figure 4: Experimental results with different α. (a) is
on the CMU-MOSI dataset. (b) is on the CMU-MOSEI
dataset.

4.4.4 Role of GAF
To verify the role of the global acoustic feature, we
remove GAF and the contrastive learning module
from our model. The results are shown in Table 4
(−GAF). Without GAF, model performance drops
to some extent, which indicates that GAF plays an
important role in our model. In addition, GAF is
more effective in MOSI dataset. This is related to
the different distribution of data in the two datasets.
In many cases, GAF contributes more to the analy-
sis of the examples which are relatively short but
have large sound fluctuations. The proportion of
this kind of example in MOSI is greater than that
in MOSEI.

4.4.5 Role of Contrastive Learning
Furthermore, we remove the contrastive learning
module from the original model and concatenate
the multimodal fusion feature and GAF directly to
verify the role of contrastive learning. The results
in Table 4 (−CL) show that when the contrastive
learning module is removed, we can see a clear
drop in all metrics. In contrastive learning, we con-
struct double negative samples based on different
Ef and Eg. When only one group negative samples
are used, the performance of the model decreases
to varying degrees.

In our experiments, we set the hyper-parameter
α as the weight of the loss of the contrastive learn-
ing module in the whole loss. The influence of the
value of α on the experimental results is shown in
Figure 4. When α is 0.4, the model achieves the
best performance on the MOSI dataset. When α
is 0.3, the model achieves the best performance on
the MOSEI dataset.

A queue is used to construct more negative sam-
ples. We try to remove this queue and construct
negative samples only in the same batch. As shown
in Table 4 (−q), the queue plays an important role
in the contrastive learning module of our model.

5 Conclusion

For multimodal sentiment analysis, we propose the
modal-order-aware network to integrate the three
modalities in a certain order to distinguish the im-
portance of different modalities. Besides, we are
the first to introduce the global acoustic feature
into this task to capture the changes in the tone of
the whole video. Considering the misalignment
between the multimodal fusion feature and GAF,
contrastive learning is utilized to align them before
concatenation. Experiments on three widely used
datasets show that our model achieves the best per-
formance. Besides, we also verify the effectiveness
of each module of our model.
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Abstract

Keyphrase Prediction (KP) is an established
NLP task, aiming to yield representative
phrases to summarize the main content of a
given document. Despite major progress in re-
cent years, existing works on KP have mainly
focused on formal texts such as scientific pa-
pers or weblogs. The challenges of KP in
informal-text domains are not yet fully studied.
To this end, this work studies new challenges
of KP in transcripts of videos, an understudied
domain for KP that involves informal texts and
non-cohesive presentation styles. A bottleneck
for KP research in this domain involves the lack
of high-quality and large-scale annotated data
that hinders the development of advanced KP
models. To address this issue, we introduce a
large-scale manually-annotated KP dataset in
the domain of live-stream video transcripts ob-
tained by automatic speech recognition tools.
Concretely, transcripts of 500+ hours of videos
streamed on the behance.net platform are
manually labeled with important keyphrases.
Our analysis of the dataset reveals the challeng-
ing nature of KP in transcripts. Moreover, for
the first time in KP, we demonstrate the idea
of improving KP for long documents (i.e., tran-
scripts) by feeding models with paragraph-level
keyphrases, i.e., hierarchical extraction. To fos-
ter future research, we will publicly release the
dataset and code.

1 Introduction

Keyphrases are one or multiple consecutive words
that could represent the main ideas in a document.
Keyphrases are commonly categorized as Present
or Absent. A present keyphrase explicitly appears
in the document, while an absent keyphrase does
not exist in the document. Keyphrases can serve
as concise summary for a document, hence benefit-
ing various NLP applications Information Retrieval
(Hersh, 2021) and Text Summarization (Adhikari
et al., 2020). Due to their usefulness, in the more
than two decades, KP has been studied in many re-

search works (Turney, 2000; Wu et al., 2005; Jiang
et al., 2009; Hasan and Ng, 2014; Mahata et al.,
2018; Chen et al., 2020; Ye et al., 2021).

Whereas traditionally feature engineering has
been used for KP (Turney, 2000; Sheeba and
Vivekanandan, 2014), recently deep learning is
proved to be more efficient for this task (Ye et al.,
2021; Ahmad et al., 2021). However, one limitation
in the current works is that they are mainly limited
to the formal text such as scientific papers (Meng
et al., 2017) and web-logs (Xiong et al., 2019). As
such, the challenges in other domains are still un-
resolved. Among others, video transcript is one of
the less-explored domains that could significantly
benefit from KP. For instance, it could be used for
video summarization and retrieval or benefit peo-
ple who are deaf and hard of hearing (DHH) (Kafle
et al., 2019). On the other hand, KP for transcripts
that are automatically obtained are more challeng-
ing than the formal written documents as these
transcripts involve noisy text, incomplete/repeated
sentences and phrases, informal vocabulary, and
noncohesive information flow. Although there
have been a few related attempts to evaluate fea-
ture engineering methods on meeting transcripts
(Sheeba and Vivekanandan, 2014, 2012), the avail-
able resources, with a handful of transcripts and
keyphrases, are not useful to train/evaluate the re-
cent advanced deep models.

To address such limitations, we propose a large
manually-labeled dataset for the domain of video
transcripts. Specifically, we collect 500+ live-
stream videos from the Behance platform. The
videos are automatically transcribed by Microsoft
Automatic Speech Recognition (ASR) tool. Since
the video transcripts might be lengthy, summariz-
ing the entire transcript into a few keyphrases might
be challenging. Moreover, such keyphrases might
not be helpful for partial retrieval where a part of
the transcript is requested. As such, we annotate
the collected transcripts in two levels: (1) Para-
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graphs: A paragraph, consisting of multiple con-
secutive sentences, is a chunk of a transcript that
provides a single point. Annotators first identify the
paragraphs in a transcript. Next, the representative
keyphrases for every paragraph are annotated; (2)
Chapter: In addition to the paragraphs, we ask the
annotators to provide a few keyphrases that could
summarize multiple consecutive paragraphs that
convey a single topic (e.g., how to make a special
edit on an image). We call these units “Chapter”,
which are comparable to documents in other KP
datasets. Annotators will first find the boundaries
for chapters, then provide the keyphrases for each
chapter.

We conduct extensive analysis on both levels of
the KP task on the prepared dataset. Our analysis
shows that KP in transcripts is a challenging task
and more research is required. More importantly,
for the first time for KP, we show that extracting
keyphrases of long documents in a hierarchical
order could result in better performance on doc-
ument level KP. Specifically, our analysis shows
that obtaining paragraph-level keyphrases and pro-
viding them to chapter-level KP systems could sig-
nificantly boost the performance. The provided
dataset and analysis could bring forth opportunities
for more research on transcripts for KP.

2 Data Annotation

Data Collection: This work aims to annotate KP
data for the domain of ASR text. To this end, we
employ live-stream videos released on the social
media platform Behance.net. The videos are
streamed by artists and designers to share/discuss
their creative projects. As such, verbal content
from the speakers (in English) is important for
video understanding. While the videos have ini-
tial subjects, their content is unplanned, hence the
streamer might cut sentences, discuss multiple top-
ics, and employ informal phrases. The videos have
an average length of 48 minutes. To obtain the
verbal content of the streamed videos, we employ
the Microsoft ASR tool. In total, 361 videos with a
total length of more than 500 hours are transcribed.
A transcript, on average, contains 7,219 words.
Annotation: As presented in the introduction, the
lengthy nature of transcripts motivates us to anno-
tate keyphrases at two levels. First, at the para-
graph level, we define a paragraph in a transcript
to have the same role as paragraphs in formal writ-
ten documents. Concretely, a paragraph is defined

as a chunk of text that conveys a particular point
or idea. A transcript consists of multiple disjoint
paragraphs. Since the ASR text does not provide
paragraph information, we manually annotate the
collected transcripts with paragraphs. Afterward,
for each paragraph of the transcript, the important
keyphrases are selected. To this end, a keyphrase
for a paragraph should have the following features:
(a) Concisely summarize the main idea in the para-
graph; (b) Be related to the main subject of the
video; (c) Explicitly appear in the paragraph; (d)
Does not appear in the previous or next paragraphs;
(e) Form a proper English noun/verb phrase. The
paragraphs that are entirely off-topic do not have
any keyphrases. Second, at the chapter level, we
provide keyphrases for chapters in the transcripts.
A chapter consists of multiple paragraphs to rep-
resent a single topic. For instance, in a photo edit-
ing video, the discussion on how to change the
background can form a chapter. A keyphrase of a
chapter should observe the following criteria: (a)
Concisely summarize the main topics in the chap-
ter; (b) May not explicitly appear in the chapter; (c)
Does not overlap with the paragraph keyphrases or
other chapter level keyphrases; (d) Form a proper
English noun/verb phrase. Note that paragraphs
and chapters might have multiple keyphrases that
are sorted based on their importance.

To annotate data for each level, we hire 10 an-
notators from the upwork.com platform which
is a website for hiring freelancers with different
expertise. Since the collected videos are related to
photo editing software, e.g., Photoshop, we require
the annotators to have experience both in data an-
notation and in using major photo editing tools. We
train the annotators for KP at each level. To pre-
vent chapter-level keyphrases to be biased toward
paragraph-level keyphrases, we split annotator pool
for paragraph and chapter level annotation (five for
each). The transcripts are distributed evenly to the
five annotators at each level for annotation. As
such, a transcript is annotated entirely by a para-
graph annotator and a chapter annotator (including
boundary annotation). Chapter annotation is done
after and uses outputs from paragraph annotation.

Annotation Agreement: Following prior work
(Xiong et al., 2019), we assess the task difficulty of
KP over video transcripts by evaluating the agree-
ments of annotators at different levels. For each
annotation level, we ask all the five annotators to
independently annotate a sample of 5% of the tran-
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Cut-off
Paragraph Chapter

Exact Partial Exact Partial
Keyphrases@1 60.21% 62.93% 58.92% 60.16%
Keyphrases@2 45.18% 58.09% 41.14% 54.19%
Keyphrases@3 37.12% 49.18% 35.21% 49.12%

Table 1: Average of pair-wise agreements among an-
notators at different cutoffs for paragraph and chapter
level KP.

Statistics Paragraph Chapter
Number of samples 19,597 2,742
Number of keyphrases 34,392 12,155
Avg. keyphrase per sample 1.75 4.35
Avg. length of keyphrase 1.36 1.69
Avg. sample length 133.21 1047.70

Table 2: Statistics of the proposed dataset. The number
of keyphrases represents the total number of annotated
keyphrases for each level. The length of a keyphrase or
sample is expressed in terms of the number of words.

scripts. Afterward, we compute the agreements
of the five annotators at cutoffs @1, @2, and @3
with same rank comparison, using Exact Match
(a keyphrase position is counted if the keyphrase
is exactly the same from the annotators), and Par-
tial Match (a keyphrase position is counted if the
keyphrases from the annotators share at least one
word). Table 1 shows the average of pair-wise
agreements between annotators (i.e., comparing
each pair of annotators). This table shows that KP
in transcripts is a challenging task for both chap-
ters and paragraphs. We attribute the challenges in
this domain to the disconnected information flow
in spontaneous talking compared to formal writ-
ten documents that follow a clear information flow.
Moreover, KP at the chapter level imposes more
challenges as the agreement between judges drops
from paragraph to chapter level. Finally, we show
the statistics of the dataset in Table 2. A sample
annotation is also presented in Appendix A.

Model
Paragraph Chapter

F1@3 F1@M F1@3 F1@M
One2Set 35.12 38.72 25.16 28.33
SEG-NET 34.19 38.92 24.42 29.37
BART 35.74 39.09 26.71 30.98
T5 36.09 39.12 25.78 30.18
GPT-2 37.90 41.27 27.91 32.27

Table 3: Performance of the models on the test sets for
paragraph and chapter level keyphrase prediction.

Model
Keyphrases Sentences+Keyphrases

F1@3 F1@M F1@3 F1@M
BART 29.89 31.99 30.91 33.51
T5 28.71 31.72 29.85 32.80
GPT-2 30.08 33.28 33.69 35.72

Table 4: Performance of models on the chapter level test
set. “Keyphrases”: models use paragraph keyphrases as
input; “Sentences+Keyphrases”: models employs both
paragraph keyphrases and hosting sentences.

3 Experiments

We randomly split the 361 transcripts into
train/development/test sets with the ratio 80/10/10,
respectively. The paragraphs and chapters of the
transcripts in each split are then employed for our
experiments in this section. Specifically, we first
assess the challenges of KP at each level. Next, we
empirically study how paragraph-level information
can be helpful for chapter-level KP.
Baselines: We evaluate the performance of the
following baselines on the proposed dataset: (1)
Generative Language Models: The content of a
paragraph or chapter are prompted to a generative
language model (LM) to produce the keyphrases.
Specifically, the language models are trained in
an auto-regressive manner on sequence S =
[w1, . . . , wn, [SEP ], kp1, . . . , kpm], where wi is
the i-th word in the input paragraph or chapter and
kpi is the i-th keyphrase. We employ GPT-2 (Rad-
ford et al., 2019), BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020) as three different versions of
this baseline1. Note that for the chapters, since the
transformer-based LMs impose a length limit, we
truncate the input to the length of the maximum size
of the LMs; (2) SEG-NET (Ahmad et al., 2021):
In this baseline, salient sentences in the input text
are first selected, then keyphrases are predicted by
a generative model consuming the selected salient
sentences. To select important sentences, a binary
classifier is trained to distinguish sentences that
contain a present keyphrase or partially overlap
with an absent keyphrase; and (3) One2Set (Ye
et al., 2021): The prediction of keyphrases is mod-
eled as a set prediction task. Instead of imposing an
order on the output of a transformer-based decoder,
the model predicts keyphrases in parallel. We evalu-
ate the models based on the macro-averaged F1@3
and F1@M. In the former, the predictions are trun-
cated/padded at cutoff 3 while in the latter all model

1For T5 and BART, the task is formulated as seq2seq and
[SEP ] is used to separate the input and output sequences.
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Model
Paragraph Chapter

P@3 R@3 F1@3 P@M R@M F1@M P@3 R@3 F1@3 P@M R@M F1@M
One2Set 39.54 31.58 35.12 40.45 37.13 38.72 24.80 25.53 25.16 30.04 26.80 28.33
SEG-NET 40.80 29.42 34.19 41.27 36.82 38.92 23.94 24.91 24.42 31.12 27.80 29.37
BART 37.98 33.74 35.74 36.51 42.06 39.09 21.43 35.44 26.71 28.19 34.38 30.98
T5 35.42 36.78 36.09 38.19 40.09 39.12 26.77 24.86 25.78 29.38 31.02 30.18
GPT-2 39.12 36.75 37.90 40.72 41.83 41.27 25.49 30.83 27.91 30.59 34.14 32.27

Table 5: Performance of the models on the test sets for paragraph and chapter level keyphrase prediction.

Model
With Paragraph Keyphrases With Paragraph Keyphrases and Sentences

P@3 R@3 F1@3 P@M R@M F1@M P@3 R@3 F1@3 P@M R@M F1@M
BART 31.30 28.60 29.89 30.83 33.24 31.99 27.13 35.91 30.91 32.00 35.16 33.51
T5 24.46 34.74 28.71 29.64 34.11 31.72 26.92 33.49 29.85 35.71 30.32 32.80
GPT-2 32.86 27.73 30.08 31.72 35.00 33.28 34.07 33.31 33.69 31.10 41.95 35.72

Table 6: Performance of the generative models on the chapter level test set.

predictions are employed. Finally, we fine-tune the
hyper-parameters for the models on development
data.
Results: Table 3 shows the performance of the
baselines on the paragraph and chapter level test
sets There are several observations from the table.
First, models employing a pre-trained language
model, i.e., BART, T5, and GPT-2, outperform the
baselines that train the transformers from scratch,
i.e., One2Set and SEG-NET. We will thus focus on
the generative models BART, T5, and GPT-2 in the
next experiments. Second, the models have better
performance on the paragraph level than the chapter
level. This is expected as the models are required to
encode larger context at the chapter level. Also, as
the models employ transformers with input length
restriction, they cannot encode the entire chapter.
Our next experiments will explore an approach to
handle long documents for KP. Finally, the perfor-
mance of KP models is still far from being perfect
in our dataset, e.g., the F1@M of One2Set on the
NUC dataset (Nguyen and Kan, 2007) is 13% bet-
ter than those on our dataset at chapter level (Ye
et al., 2021), thus further demonstrating the mod-
eling challenges of KP in video transcripts and
presenting room for further research.

To provide detailed performance of the models,
we report the precision and recall at cutoffs 3 and
M. Specifically, for P@3 and R@3, the model pre-
dictions are truncated to the first three predictions.
Following prior work (Ye et al., 2021), for cases
that the model predicts less than three keyphrases,
the prediction is padded with random keyphrases
to have three keyphrases. For P@M and R@M,
all model predictions are employed to evaluate the
performance. The model performance is presented

in Tables 5 and 6.

Motivated by the intuition that comprehend-
ing long documents requires understanding their
smaller segments, we postulate that chapter-level
KP models should appropriately capture paragraph
information. In particular, we argue that paragraph-
level keyphrases should be extracted first to pro-
vide summarization for paragraphs to improve
chapter-level KP models afterward (hierarchical
extraction). As such, we explore two methods
to study this intuition: (1) Instead of truncating
chapters, the input to the chapter KP systems will
be the keyphrases of the paragraphs in the chap-
ters. During training, we concatenate the golden
keyphrases of all paragraphs in a chapter, i.e.,
S = [kp1, [SEP ], kp2, [SEP ], . . . , kpm[SEP ]].
The models then predict chapter-level keyphrases
using S. At inference time, we use the pre-trained
paragraph-level KP model, which is based on the
same model for the chapter KP system, to form the
sequence S; (2) Since the keyphrases might not
fully cover context of paragraphs, we further con-
catenate the keyphrases and their host sentences
in the paragraphs to form the sequence S. For-
mally, the input to the chapter level KP system
is S = [S1, [SEPS ], kp1, [SEPp], S2, . . . , Sm,
[SEPS ], kpm, [SEP ], where Si is the sentence in
the chapter that contains the keyphrase kpi. Us-
ing the generative model baselines, the results for
the two methods are presented in Table 4. Com-
paring the paragraph keyphrase-augmented mod-
els with their vanilla counterparts in Table 3, it is
evident that providing paragraph keyphrases sig-
nificantly improves the performance of all mod-
els. We attribute this to better representations
that the models with paragraph-level information
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can obtain for chapters. Moreover, comparing the
mere use of keyphrases with the augmentation of
both keyphrases and sentences, the latter produces
higher performance for chapter models. Overall,
such results corroborates our intuition about the
benefits of paragraph-level keyphrases for chapter-
level KP, thus suggesting a potential direction of
hierarchical modeling of long documents for KP.

4 Related Works

Keyphrase Prediction (KP) has been studied exten-
sively in the past (Barker and Cornacchia, 2000;
Turney, 2000; Hulth, 2003; Wan and Xiao, 2008;
Hasan and Ng, 2014; Ye et al., 2021). Prior
works can be categorized into extraction-based
and generation-based solutions. In the former,
keyphrases are extracted from input text, using ei-
ther rule-based methods (Medelyan et al., 2009)
or deep learning models (Sun et al., 2020) via se-
quence labeling (Gollapalli et al., 2017). In the
generation-based models, deep generative models
are employed to encode input documents and gen-
erates keyphrases (Chen et al., 2018; Zhao and
Zhang, 2019; Ahmad et al., 2021). However, ex-
isting works on KP are mostly trained and eval-
uated on formal text. To this end, our work in-
troduces a large-scale hierarchical KP dataset for
video transcripts with informal and non-cohesive
texts. We also note some related attempts to evalu-
ate KP systems on meeting transcripts (Sheeba and
Vivekanandan, 2014, 2012); however, the small
size of these datasets hinders their relevance to
deep learning era.

5 Conclusion

We present a novel hierarchical KP dataset over
live-stream video transcripts. The dataset contains
transcripts of 361 videos that are annotated at both
paragraph and chapter levels. Our experiments
show that KP in video transcripts is challenging
and hierarchical extraction is helpful for KP in
long documents. In the future, we will include
more tasks in our dataset for video transcripts.

Ethical Considerations

In this work we present a dataset on the transcripts
of a publicly accessible video-streaming platform
behance.net. Complying with the discussion
presented by Benton et al. (2017), research with
human subjects information is exempted from the

required full Institutional Review Board (IRB) re-
view if the data is already available from public
sources or if the identity of the subjects cannot be
recovered. However, to protect the identity of the
streamers and any other people whose information
are shared in the video transcript, we impose ex-
tra consideration on the presented dataset. First,
in this dataset, we exclude the usernames or any
other identity-related information of the streamers
in the transcripts to prevent disclosing their identity.
Moreover, the proposed dataset only provides tex-
tual data (at paragraph and sentence levels), hence
the other content of the videos (e.g., images, au-
dios) are not revealed to protect human identity.
Finally, to reduce the risk of disclosing the infor-
mation of the people mentioned in the transcripts,
in the final version of the dataset, we exclude the
transcripts that explicitly or implicitly refer to the
identify of the target people.
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A Sample Annotation

To illustrate the annotated data, we present a sam-
ple annotation for a chapter in Table 7. This ta-
ble shows three paragraphs of the chapter along
with their keyphrases. Note that, first boundaries
of the paragraphs in the transcripts are annotated.
Next, for every paragraph annotators provide a
few keyphrases that could summarize the main
topic/points in the paragraph. Afterward, bound-
aries of the chapters in the transcripts, which con-
sist of multiple paragraphs, are annotated. Finally,
for every chapter, keyphrases that could best de-
scribe the main content of the chapter are provided
by annotators. In the given example, the paragraph
level keyphrases include “Camera", “Background
lights", and “Environment light, Rotations" for the
three paragraphs. For this chapter, the keyphrase
“Setting Environment" is provided.
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ID Content Paragraph Keyphrases

1

We have beautifully beautiful summer day outside with our cup of
coffee. If you ever log on your arm. All right up corner you will see that
currently we are located in the camera view. If you would like to adjust
your 3D model I will recommend you to switch to viewport camera. In
this case you will not affect your camera perspective during your model
adjustment, so keep it in mind when you will be ready to come back to
your camera view. Simply switch from a top corner or directly from you
seen a pen or just simply click on camera.

Camera

2

Just like duck. Light are you can come. Ah, click on environment. In.
Here you can adjust background lights. Opposite team environment
might need background blue. You can make it more blurry or or less
blurry. Also if you will switch to light you will be able to adjust.

Background lights

3

Your light you can. Uh, idiot environment light just like that. You can
make it brighter or more cloudy also rotation. You can rotate your alight
so keep before you will rotate your light. Keep in mind and pay close
attention to your background image to your main source of light just
like that.

Environment light,
Rotation

Table 7: Sample annotations for keyphrases of a chapter. Annotators first find the boundaries of the paragraphs, then
provide keyphrases for every paragraph. At the chapter level, annotators identify paragraphs to form chapters before
assigning keyphrases for chapters. The keyphrase “Setting Environment" is provided for the chapter (with three
paragraphs) in this example.
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Abstract

Event extraction (EE) is one of the fundamental
tasks for information extraction whose goal is
to identify mentions of events and their partici-
pants in text. Due to its importance, different
methods and datasets have been introduced for
EE. However, existing EE datasets are limited
to formally written documents such as news
articles or scientific papers. As such, the chal-
lenges of EE in informal and noisy texts are not
adequately studied. In particular, video tran-
scripts constitute an important domain that can
benefit tremendously from EE systems (e.g.,
video retrieval), but has not been studied in EE
literature due to the lack of necessary datasets.
To address this limitation, we propose the first
large-scale EE dataset obtained for transcripts
of streamed videos on the video hosting plat-
form Behance to promote future research in
this area. In addition, we extensively evalu-
ate existing state-of-the-art EE methods on our
new dataset. We demonstrate that such sys-
tems cannot achieve adequate performance on
the proposed dataset, revealing challenges and
opportunities for further research effort.

1 Introduction

Event Extraction is an important task in the full
pipeline of Information Extraction. In EE, the goal
is to identify mentions/trigger words of events, and
their participants and attributes of interest. For in-
stance, in the sentence “Joe Biden was born on
November 20, 1942”, an event of Birth is men-
tioned. An event mention consists of two important
components: (1) Trigger: the word(s) that most
clearly refer to the occurrence of the event (e.g,
“born” in the above example); and (2) Argument:
the entity mentions involved in the event with some
role (e.g., “Joe Biden” with the role of Entity) or
attributes of the event (e.g., time and location).

Due to its importance, various methods and an-
notated datasets have been proposed for EE (Ahn,
2006; Nguyen and Grishman, 2015; Yang et al.,

2019; Wang et al., 2020). Also, with the prolifer-
ation of EE methods, datasets for EE have been
diversified to cover different domains and settings,
e.g., multiple domains (Walker et al., 2006), mul-
tiple languages, (Mitamura et al., 2016), literary
texts (Sims et al., 2019), cybersecurity texts (Man
Duc Trong et al., 2020), and events in long docu-
ments (Ebner et al., 2020). However, despite all
progress thus far, most of the available datasets for
EE are restricted to the domains of formally written
texts, e.g., news, reports, scientific papers, or books.
As such, the challenges for EE in other domains
with informal and noisy texts are less explored.
One of such domains that has not been studied be-
fore for EE involves video transcripts obtained by
automatic speech recognition (ASR) tools. Since
the such transcripts might be noisy, e.g., incom-
plete sentences, incorrect words selected by the
ASR tool, lack of correct punctuation and segmen-
tation, repeated words or sentences, etc., existing
EE models are not well evaluated and might not
perform well in this domain. This is unfortunate
as an effective EE model can be extremely helpful
for downstream applications that utilize video tran-
scripts. For instance, search engines can employ
events detected in a transcript to locate relevant por-
tion of a video to a query. It can also benefit video
summarization, knowledge base construction, and
script generation from videos. As such, it is neces-
sary to study the challenges and potential directions
for EE improvement in the video transcript domain.

Due to the lack of EE datasets for video tran-
script domain, we propose the first large-scale EE
dataset annotated for transcripts of streamed videos
on the popular video hosting platform Behance.
Videos in this platform are streamed by artists who
would like to share their creative projects using
Adobe Creative Cloud products (e.g., Photoshop,
Illustrator, etc). Videos have been first transcribed
using the Microsoft Automatic Speech Recognition
tool. In order to annotate the events mentioned in
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the video transcripts, we first define a taxonomy
of event types and their arguments for the domain
of creative projects (e.g., Add a shape, Modify the
color of an object, etc.). Using the pre-processed
transcripts and the provided event ontology, we
hire annotators with domain expertise to provide
high-quality annotation for event triggers and their
arguments. In addition, we employ the annotated
dataset to evaluate the performance of the state-
of-the-art (SOTA) EE models. Compared to the
domains with formally written texts, our analysis
shows that the current SOTA EE models fail to
achieve comparable performance on video tran-
scripts. This performance drop indicates the chal-
lenging nature of video transcripts and call for more
research effort for EE in this domain. We will pub-
licly release our dataset, called TranscriptEE, to
foster future research in this area.

2 Dataset

Data Collection: In this work, we propose to em-
ploy the videos streamed on the popular video-
hosting platform Behance1 to obtain transcripts
to be annotated for event mentions. Behance is
a platform in which artists can share their cre-
ative projects using Adobe Creative Cloud prod-
ucts (e.g., Photoshop, Illustrator, etc). Most of the
information is transmitted verbally in English in
these videos. Each video lasts from few minutes
to several hours. In the first step, we collect 370
videos with a total duration of 500 hours. On av-
erage, a video lasts 48 minutes. Next, for each
video, we employ the Microsoft Automatic Speech
Recognition tool to obtain transcripts of the videos.
A video transcript on average contains 7,219 words.
To facilitate the annotation process, following prior
work for EE dataset creation (Ebner et al., 2020),
we split the transcripts of the videos into chunks
(called paragraphs) of 5 consecutive utterances. In
total, 25,492 paragraphs are obtained for EE anno-
tation.
Annotation: To annotate the data, we first define
an ontology of event types and argument roles for
the domain of creative projects. Specifically, an
event is defined as an action that results in a visual
change in the project (e.g., changing the color of
an object, adding a new shape to an illustration,
modifying the texture of the surfaces in an image,
etc.). Concretely, we categorize the events into four
types: (1) Add: A new visual element is added to

1www.behance.net

the project; (2) Modify: One of the attributes of an
existing element (e.g., color, size, texture, etc.) is
changed; (3) Select: Some objects in the project are
selected using tools of editing programs (e.g., the
“Lasso” tool in Photoshop); and (4) Remove: An
object is removed from the project. For each event,
we also define their arguments, e.g., Tool, Object,
Color, etc. We present a description of event types
and arguments, along with their examples in Ap-
pendix A. To select paragraphs for annotation, we
design a set of keywords that are relevant to our
event types (e.g., “add”, “modify”, “select”, “pick”,
“remove”, “delete”). Paragraphs with the highest
matching rates for the keyword set are retained
for EE annotation. Overall, to accommodate our
budget, 2,162 top paragraphs are annotated in our
dataset.

We employ human annotation to find event men-
tions in the paragraphs of video transcripts. To
annotate event triggers, we follow prior work on
ED (Walker et al., 2006) to ask the annotators to
select the word or phrases (e.g., a phrasal verb) that
most clearly mention the occurrences of events.
Also, for event arguments, we require the annota-
tors to select the head words of the noun phrases
that refer to the arguments of events. Event triggers
and arguments can belong to different sentences in
the paragraphs in our dataset.

In this work, we leverage Upwork, a freelancer
platform, to hire expert annotators. The hired an-
notators have experience in both creative projects
(e.g., using photo editing programs such as Photo-
shop) and data annotation. We train the annotators
with the event ontology and designed examples.
Based on the performance of the annotators in a pi-
lot study, we select the final pool of five annotators.
To compute the inter-annotation agreement (IAA)
scores, 20% of the paragraphs are shared by the an-
notators for co-annotation while the remaining 80%
is distributed evenly for the annotators. As such,
annotators first independently identify event trig-
gers in the shared paragraphs, achieving an agree-
ment score of 0.812 for the Krippendorff’s alpha
(Krippendorff, 2011) with MASI distance metric
(Passonneau, 2006). Afterward, the annotators dis-
cuss to resolve conflict cases for the co-annotated
data, and then perform annotation individually on
the remaining data to produce the final version
of event triggers in our dataset. In the next step,
given the annotated triggers, annotators also inde-
pendently annotate event arguments for the shared
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Statistics Total Train Dev Test
# Paragraphs 2162 1729 216 217
# Triggers 3180 2580 283 317
# Arguments 3427 2798 295 334
Avg. # Triggers / Sample 1.47 1.49 1.31 1.46
Avg. # Arguments / Trigger 1.59 1.62 1.37 1.54

Table 1: Statistics of TranscriptEE.

paragraphs, achieving the Krippendorff’s alpha of
0.783. Finally, conflict argument examples in the
co-annotated data are resolved and individual an-
notation on the rest of the data is done by the an-
notators to generate the final version of our dataset
TranscriptEE. As such, we achieve strong agree-
ment scores for both event trigger and argument an-
notation, showing the high quality of TranscriptEE.
To facilitate future research, we randomly split the
dataset into separate training, development, and
test sets with the ratio of 80/10/10, respectively.
The statistics for each data split along the entire
dataset are presented in Table 1.
Annotation Challenges: This section describes
some major challenges we encounter in the annota-
tion process for TranscriptEE. (1) False Triggers:
In some cases, the streamer discusses a general
action without actually doing the action. For in-
stance, in the sentence “Croping the images is very
easy in Photoshop”, the streamer mentions an edit
action (i.e., “cropping”) which can be considered
as a Modify event without implying actual imple-
mentation of such actions in his/her work. These
examples cause disagreements among the annota-
tors on whether an event trigger should be anno-
tated or not. To resolve this situation, we ask the
annotators to not annotate event triggers that the
streamer does not clearly imply their occurrence.
(2) Confusing Triggers: Depending on the object
of consideration, some event triggers can be in-
terpreted as either an Modify or Add event, thus
bewildering the annotators for correct annotation.
For instance, in the sentence “First, I create some
shadows for letters.”, the word “create” can refer
to an Add event with the object “shadow”; however,
it can also evoke the event type Modify with the
object “letters”. To resolve this conflict, we require
the annotators to select the more general event type,
i.e., the type Modify in our example.
Dataset Challenges: In addition to the typical chal-
lenges of EE (e.g., ambiguous triggers that can trig-
ger different event types depending on contexts), an
unique challenge of TranscriptEE for EE models
involves background knowledge. In particular, rec-

Modify
44.6%

Remove
8.5%

Select
17.1%

Add
29.8%

Figure 1: Distribution of event types in the proposed
dataset TranscriptEE.

Ratio of Unique Words for each type

0.0

0.1

0.2

0.3

Select Add Remove Modify

Figure 2: Ratio of number of unique trigger words to
their frequency for each event type.

ognizing domain knowledge about technical terms
for editing programs in creative projects is neces-
sary for the models to make correct predictions in
TranscriptEE. For instance, in the sentence “We
prefer burn to make shadows darker”, to select the
word “burn” as the argument for the Modify event
trigger “make”, it is important for the models to
realize that “burn” is a tool name in Photoshop.
Dataset Analysis: In order to shed more light for
the proposed dataset TranscriptEE, we report the
distribution of the event types in Figure 1. This
figure shows that the Modify event type has the

# trigger per sample

0

500

1000

1500

1 2 3 4 5

Figure 3: Distributions of number of event triggers per
paragraph.
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highest frequency in the dataset, followed by Add,
Select and Remove. Moreover, to study the chal-
lenging nature of each event type, we study the
ratio of the number of unique event triggers to the
frequency of each event type. The higher this ra-
tio, the more challenging the event type is as it
expresses more diverse ways to present an event in
the dataset. The results are presented in Figure 2.
This figure demonstrates that the Modify event type
employs the most diverse set of triggers followed
by the event type Remove. Considering the low
frequency of Remove with its high ratio of trigger
diversity, it also implies the challenging nature of
this event type. Finally, Figure 3 shows the distribu-
tion for the numbers of trigger words per paragraph
in TranscriptEE. As can be seen, while the major-
ity of the paragraphs have one trigger word, nearly
30% of the dataset involves more than one trigger
words. It thus suggests an opportunity to exploit the
corelation of event triggers and types to improve
EE performance on TranscriptEE.

3 Experiments

We study the performance of existing state-of-
the-art EE systems on the proposed dataset Tran-
scriptEE. Since EE consists of two sub-tasks, i.e.,
Event Detection (ED) and Event Argument Extrac-
tion (EAE), we consider two types of baselines:

(1) Pipeline Modeling: In this category, an ED
system is first employed to identify event triggers
with their types in the input text. Next, given
a predicted event trigger, an EAE system is uti-
lized to recognize arguments and their roles for
the event trigger. As such, we use the BERT
model (Devlin et al., 2019) as the baseline model
for ED and EAE in the pipeline approach as in
prior work (Yang et al., 2019; Wang et al., 2020).
Specifically, the input paragraph, in the form of
D = [[CLS], w1, . . . , wn, [SEP ]] with n words,
is first fed into the BERT model (the base cased ver-
sion) of the ED system to predict the triggers and
their types. The ED task is modeled as a sequence
labeling problem using theBIO tagging schema to
encode the labels for each word inD. Next, the pre-
dicted event type and trigger will be concatenated
with the input document D to be consumed by the
BERT model of the EAE system for argument pre-
diction, i.e., [Type, Trigger, [SEP ], w1, . . . , wn].
Here, Type and Trigger are predicted by the ED
system. The EAE task is also modeled as an se-
quence labeling for argument roles. In addition,

Model ED EAE
P R F1 P R F1

BERT 57.47 59.93 59.69 39.21 44.74 41.79
BERT+CRF 56.42 59.94 58.13 41.14 39.45 40.28

Table 2: ED and EAE performance of pipeline models on the
test set of TranscriptEE.

we study the performance of BERT+CRF model,
where a conditional random field (CRF) layer is
added on top of the BERT models for the ED and
EAE architectures for sequence labeling.

(2) Joint Modeling: In this category, the systems
jointly predict event triggers and their arguments
for an input text in an end-to-end fashion. As such,
we consider four typical joint models for EE. The
first two models employ similar architectures as
BERT and BERT+CRF where BERT is utilized to
encode the input paragraph D to produce represen-
tation vectors for each word. The word represen-
tations are then fed into a feed forward layer (and
a CRF layer in case of BERT+CRF) to identify
event trigger and argument spans with sequence la-
beling. Next, trigger and argument representations
are obtained by averaging the word representations
inside the detected spans. Finally, the trigger rep-
resentations are sent to a feed-forward network for
event type prediction while pairs of trigger and ar-
gument representations are consumed by another
feed-forward network to predict argument roles.
BERT and BERT+CRF are trained end-to-end
with the combined loss from different components.
Our third joint baseline involves OneIE (Lin et al.,
2020) that is similar to the BERT+CRF joint base-
line. However, instead of using greedy decoding as
in BERT+CRF, OneIE manually designs global
features to capture label dependencies among dif-
ferent IE tasks to improve beam search decoding.
Our fourth joint baseline explores FourIE (Nguyen
et al., 2021) that differs OneIE in that FourIE ex-
ploits instance and label dependencies to improve
representation learning in the training step (via
Graph Convolutional Networks and consistency
regularization). Note that we leverage the original
implementations and remove the relation extrac-
tion task from OneIE and FourIE for our joint
EE problem. OneIE and FourIE are among the
current state-of-the-art (SOTA) methods for EE.

Performance of the pipeline and joint models
is presented in Tables 2 and 3, respectively. The
joint models outperform their counterpart pipeline
systems. Specifically, BERT and BERT+CRF en-
joy 2.73 and 2.99 F1 point improvement for ED,
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Model ED EAE
P R F1 P R F1

OneIE 60.72 54.38 57.38 50.70 45.82 48.14
FourIE 58.48 59.95 59.21 52.55 46.44 49.31
BERT 61.19 63.70 62.42 52.43 51.02 51.72
BERT+CRF 60.98 61.26 61.12 51.65 50.15 50.89

Table 3: ED and EAE performance of joint models on the
test set of TranscriptEE.

and 9.93 and 10.61 F1 point improvement for EAE
respectively. This can be attributed to the shared pa-
rameters of BERT in joint BERT and BERT+CRF
that enrich the induced representation vectors to
improve the prediction. Also, among the joint mod-
els, the simpler methods BERT and BERT+CRF
actually perform better than the more complicated
models OneIE and FourIE that exploit label de-
pendency of the tasks for training and decoding.
This indicates that the methods to capture label de-
pendence in OneIE and FourIE are not helpful for
EE in TranscriptEE, thus calling for more research
effort to design more suitable EE models in this
domain. Finally, the performance of existing SOTA
methods for EE over TranscriptEE is still far from
being perfect that presents much room for future
research.

4 Related Works

Previous EE systems can be classified according to
the representation construction methods, i.e., fea-
ture engineering (Ahn, 2006; Liao and Grishman,
2010; Li et al., 2013) vs. deep learning for repre-
sentation learning (Nguyen and Grishman, 2015b;
Chen et al., 2015; Nguyen and Grishman, 2018;
Chen et al., 2018; Wang et al., 2019a), or the formu-
lation approaches, i.e., pipeline (Ahn, 2006; Yang
et al., 2019; Wang et al., 2019b) vs. joint models
(Yang and Mitchell, 2016; Nguyen and Nguyen,
2019; Lin et al., 2020; Nguyen et al., 2021, 2022).
A majority of prior EE work utilize the ACE 2005
(Walker et al., 2006) and TAC KBP datasets (Mi-
tamura et al., 2016) that focus on newswire article
domains. Recently, there have more efforts to cre-
ate EE datasets for more diverse domains, includ-
ing biomedical (Kim et al., 2011), literary (Sims
et al., 2019), cybersecurity (Man Duc Trong et al.,
2020), Wikipedia (Wang et al., 2020), multilingual
(Pouran Ben Veyseh et al., 2022; Lai et al., 2022),
history (Lai et al., 2021), and suicide understanding
(Guzman-Nateras et al., 2022). However, none of
such prior work and datasets explores EE for video
transcripts.

5 Conclusion

We present TranscriptEE, the first manually an-
notated dataset for EE for video transcripts. The
videos are obtained from the Behance platform
which is dedicated to sharing creative projects.
TranscriptEE contains more than 2,000 labeled
paragraphs for various edit events in creative
projects with high quality. Our analysis with state-
of-the-art EE models reveals challenging nature of
the dataset for future research.

Ethical Considerations

In this work we present a dataset on the transcripts
of a publicly accessible video-streaming platform,
i.e., “Behance"2. Complying with the discussion
presented by Benton et al. (2017), research with
human subjects information is exempted from the
required full Institutional Review Board (IRB) re-
view if the data is already available from public
sources or if the identity of the subjects cannot be
recovered. However, to protect the identity of the
streamer and any other person whose information
are shared in the video transcript, we impose extra
processing on the presented dataset before present-
ing it to annotators and publicly releasing it later.
First, in this dataset, we exclude username or any
other identity-related information of the streamers
in the transcripts to prevent disclosing their identity.
Moreover, the proposed dataset only provides tex-
tual data (i.e., paragraphs), hence the other content
of the videos (e.g., images, audios) are not revealed
(to annotators or users) to protect human identity.
Finally, to reduce the risk of disclosing the infor-
mation of the people mentioned in the transcripts,
in the final version of the dataset, we exclude the
transcripts that explicitly or implicitly refer to the
identify of the target people.
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A Event Types & Argument Roles

In this work, we define the event types based on
edit actions performed during a creative project.
Specifically, an event is change of state that can
potentially refer to a visual change in an image. As
such, we define four event types “Add", “Remove",
“Modify", and “Select". Their description and exam-
ples are presented in Table 4. Moreover, each event
type can involve multiple arguments. Argument
are the objects, tools and properties employed for
the edit action. The list of available argument roles
for each event type is presented in Table 5.

B Annotation Instruction and Tool

We present the instructions provided to the anno-
tators in Figure 4. In this work, we employ the
BRAT3 annotation tool (MIT License). A screen-
shot of the annotation tool is presented in Figure
5.

3https://brat.nlplab.org/
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Figure 4: Annotation Instruction

Figure 5: Annotation Tool
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ID Type Description Example (triggers are highlighted)

1 Select
A “Select” event happens when an object is selected using one of
the selection tools.

• And this time I’m just going to be really, really kind of lazy
about it and use my Lasso tool to do some selections

• Let’s pick these leaves and do some fun edits on them!

2 Remove A “Remove” event happens when a part of the image is removed.

• We need to first get rid of these lower sections and add the
new sketch there.

• Okay, I just deleted all background shapes to make the
image cleaner.

3 Add An “Add” event happens when a new object is added to the image.
• We’re going to be very. Very carefully. Brushing alongside.

• The birds on the tree are easily added by my special brush.

4 Modify
A “Modify” event happens when an object of the image is
updated (e.g., resize, recolor, blur, etc.).

• What I’m going to do is to turn that ball to blue so it will be
matched with whatever we have over there.

• I first brightened its front side to give more depth to the
image.

Table 4: Event types along with their descriptions and examples in the proposed dataset.

ID Type:Argument Description
Example (arguments are highlighted and triggers are in
italic font)

1 Select:Tool The tool that is utilized to perform the select action.
And this time I’m just going to be really, really kind of lazy
about it and use my Lasso tool to do some selections

2 Select:Object The object that is selected. I’m gonna select the leaves using the magic tool.

3 Remove:Tool The tool that is utilized to perform the removal action.
Using the perspective crop, it’s super easy to get rid of
these buildings.

4 Remove:Object The object that is being removed.
Using the perspective crop, it’s super easy to get rid of
these buildings.

5 Add:Tool The tool that is utilized to add the new object. First, let’s add a single circle here using ellipse.
6 Add:Object The object that is added to the image. First, let’s add a single circle here using ellipse.
7 Modify:Old_Color Previous color of the object or image. We first start with this blue sky and turn it to dark blue.
8 Modify:New_Color New color of the object or image. We first start with this blue sky and turn it to dark blue.
9 Modify:Old_Size Old size of the object. Let’s make this giant 100-pixel bar shorter.
10 Modify:New_Size New size of the object. The hat overhear should be enlarged to 10 cm.

11 Modify:Tool The tool that is utilized to modify the object.
Use the color replacement tool to easily change the
background color.

12 Modify:Object The object that is modified. We first start with this blue sky and turn it to dark blue.

Table 5: Argument roles for each event type along with their descriptions and examples in the proposed dataset.
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Abstract

Speech information in a pretrained wav2vec2.0
model is usually leveraged through its encoder,
which has at least 95M parameters, being not
so suitable for small footprint Keyword Spot-
ting. In this work, we show an efficient way of
profiting from wav2vec2.0’s linguistic knowl-
edge, by recycling the phonetic information
encoded in its latent codebook, which has been
typically thrown away after pretraining. We
do so by transferring the codebook as weights
for the latent bottleneck of a Keyword Spot-
ting Perceiver, thus initializing such model with
phonetic embeddings already. The Perceiver
design relies on cross-attention between these
embeddings and input data to generate better
representations. Our method delivers accuracy
gains compared to random initialization, at no
latency costs. Plus, we show that the phonetic
embeddings can easily be downsampled with
k-means clustering, speeding up inference in
3.5 times at only slight accuracy penalties.

1 Introduction

Keyword Spotting (KWS) has benefited recently
from the adoption of the Transformer architecture
(Vaswani et al., 2017), as well as from recent ad-
vances in self-supervised learning proposals like
wav2vec2.0 (Baevski et al., 2020).

Transformers are capable of capturing informa-
tion from broader contexts, going beyond the lo-
cality of convolutional neural networks (CNN)
(LeCun et al., 1989) and avoiding the vanish-
ing/exploding gradients from recurrent neural net-
works (RNN) (Rumelhart et al., 1985). However,
this comes at the quadratic cost of the self-attention
mechanism (Bahdanau et al., 2014), which is even
more pronounced in high-dimensional modalities
like speech or vision. KWS models like the Key-
word Spotting Transformer (KWT) (Berg et al.,
2021) and the Audio Spectrogram Transformer
(AST) (Gong et al., 2021), minimize such cost by
downsampling the spectrogram space into patches,

inspired by the Vision Transformer (ViT) (Dosovit-
skiy et al., 2020) proposal from computer vision.

In parallel, approaches like Wav2KWS (Seo
et al., 2021) or the model from SUPERB (Yang
et al., 2021) have successfully applied wav2vec2.0
to KWS. During training, wav2vec2.0 learns a la-
tent codebook that codifies phonetic information,
using each code as a target for training a feature en-
coder. This codebook is typically thrown away after
training, only keeping the encoder for downstream
tasks like automatic speech recognition (ASR) or
KWS. Even though the encoder is capable of ex-
tracting rich features from raw waveforms, the
size of it (at least 95M parameters for the BASE
model) and its added latency time might discour-
age straightforward use for small footprint KWS
classifiers.

In this short paper, we focus on exploring meth-
ods for recycling the phonetic information from the
wav2vec2.0 latent codebook, showing that such in-
formation kickstarts the accuracy of a KWS model
at initialization and leads to a better convergence,
at virtually no cost in terms of inference time or
model size.

The cornerstone of our proposal is a natural syn-
ergy that we have spotted between wav2vec2.0 and
the recently proposed Perceiver (Jaegle et al., 2021)
model. The latter’s design relies on cross-attention
between input data and a smaller latent bottleneck
array, achieving smaller computational costs than
pure self-attention over input data. We find that a
pretrained wav2vec2.0 latent codebook can be used
as an initialization for the Perceiver’s latent bottle-
neck array, which boosts the model’s accuracy with
respect to random weight initialization. Further-
more, since many vectors from the wav2vec2.0
codebook contain similar phonetic information, we
apply k-means clustering and average vectors be-
longing to the same clusters, yielding downsampled
latent bottlenecks that provide faster inference at
only slight accuracy costs.
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Figure 1: The Keyword Spotting Perceiver (KWP) model.

The focused contribution of this paper provides
insight on efficient wav2vec2.0 transfer learning by
latent codebook recycling, as well as showing the
first application of the Perceiver model to a specific
speech task like KWS, up to our knowledge.

2 Keyword Spotting Perceiver

Our Keyword Spotting Perceiver (KWP) is de-
signed to take 1-second waveforms as inputs, con-
verting these into log-mel spectrograms of M =
100 time steps and F = 64 frequency bins, which
are linearly projected to a dimension of C = 192,
resulting in a MxC data array. Fourier positional
encodings are concatenated to the data array along
the C dimension, using 64 frequency bands and a
maximum resolution of 224, the best performing
choice in the Perceiver paper. Cross-attention be-
tween such data array and a latent bottleneck array
of NxD dimensions is done with a single head,
whose output is further refined through a Trans-
former block containing self-attention with 8 heads
and a multilayer perceptron (MLP) of hidden size
1024. The dimension for both self and cross atten-
tion heads is set to 64. Since the output is another
latent array of NxD dimensions, we repeat cross-
attention with the data array and the Transformer
blocks for L = 6 layers, sharing the weights of
cross-attends and Transformer across layers, in the
style of a RNN. In earlier explorations we tried
not sharing the weights but this led to performance
degradation caused by overfitting. Finally, we av-
erage the latents in the D dimension, apply layer
normalization and do a linear projection to get the
class logits for prediction. A model depiction can
be seen in Figure 1.

The latent array can be initialized randomly

(KWP-BASE), or by transferring the weights from
the latent codebook of a pretrained wav2vec2.0
model (KWP-W2V2). In this work, we recycle
the latent weights of the wav2vec2.0 BASE model
from the HuggingFace repo 1. Such codebook con-
sists of N = 640 vectors of dimension D = 128.

Since the complexity of cross-attention be-
tween latent and data arrays is O(MN), we
lose the efficiency gains from it with respect
to self-attention over data array O(N2), since
O(MN) = O(100x640) = (6.4x104) >
O(N2) = O(1002) = (104). To address this, we
study three ways to downsample this latent space to
lower dimensions N = [320, 160, 80, 40, 20], by
(1) sampling vectors randomly, (2) average pooling
contiguous vectors and (3) clustering with k-means
method and averaging vectors from the same clus-
ter. According to the wav2vec2.0 paper, most of the
codebook latents model specific English phonemes,
being some phonemes represented by many latents.
For instance, the silence phoneme is represented by
22% of the codebook. Being so, we expect k-means
clustering to be the best downsampling method
from the proposed ones, by clustering latents repre-
senting same or similar phonemes. Simple average
pooling without k-means clustering might conserve
phonetic information, although we expect it to be
suboptimal given that we cannot guarantee that
contiguous vectors in the codebook correspond to
similar phonetics, thus potentially mixing informa-
tion from different phonemes. Oppositely, random
sampling guarantees that the individual informa-
tion of each vector in the codebook is preserved,
but asN gets lower many information is potentially
lost, since most vectors are being dropped out.

1https://huggingface.co/facebook/wav2vec2-base

7167



Figure 2: Test accuracy after a single training epoch, for a randomly initialized model (BASE), and another
initialized with a wav2vec2.0 latent codebook weights (W2V2), with learnable or frozen weights (left). We also
report the results of downsampling the bottleneck latents with k-means clustering (KM), averaging pooling (AVG)
and random sampling (RAND) (right).

3 Experiments

We describe here the evaluations made for our Key-
word Spotting Perceiver proposal. First, we assess
the effects of transferring the wav2vec2.0 latent
codebook to the Perceiver bottleneck at initializa-
tion. We also try different ways of downsampling
this latent space, reporting accuracy comparisons
between the baseline KWP-BASE model and the
wav2vec2.0-initialized KWP-W2V2 model. Af-
terwards, we keep the best performing downsam-
pling algorithm for the following round of exper-
iments, where we let the system train until con-
vergence. We report accuracy, model size and in-
ference time metrics for KWP-BASE and KWP-
W2V2 models with different latent number variants
N = [320, 160, 80, 40, 20].

Training, validation and testing phases are done
with the standard partitions from the Google
Speech Commands V2 dataset (Warden, 2018),
obtaining the accuracy metrics from the 35-
commands task. All timing metrics are obtained
by doing inference over 1-second waveforms on
CPU, warming up for 10 forward passes and aver-
aging the time for 150 forward passes. We use the
AdamW optimizer (Loshchilov and Hutter, 2018)
with a step learning rate scheduler, decreasing the
learning each epoch by a gamma factor of 0.98,
starting with an initial learning rate of 1e−4. Batch
size is set to 32, training for a single epoch in the
initialization experiments and for 400 epochs in the
convergence experiments. For the latter ones, we
pick the top-10 checkpoints with the highest valida-
tion accuracy, averaging their weights to obtain the
final checkpoint, which we use for test accuracy

measurements. We open-source the PyTorch code
2 used for our experiments to the community.

Regarding data augmentation, we apply time
shifting of±0.1 seconds with a probability of 60%.
We also do resampling of the waveform signal be-
tween a [0.85, 1.15] fraction of the input sampling
rate, which is set to 16 kHz, with a probability of
100%. Background noise is also added in a range
of [5.0, 30.0] dBs and SpecAugment (Park et al.,
2019) is done with 2 time masks of 25 frame size
and 2 frequency masks of 7 frames each. The latter
both data augmentation methods are also applied
with a 100% probability during training. Even
though, we relax the augmentation conditions for
the shorter initialization experiments of a single
epoch, to let the system learn a bit more in the early
stages. Time shifting and resampling probabilities
are lowered to a 30%, SpecAugment to a 70% and
background noise addition to an 80%.

3.1 Initialization with Wav2vec2.0 Codebook
We check the impact of transferring the wav2vec2.0
codebook to KWP at initialization, by measuring
the test accuracy after a single epoch, repeating
training and test with 10 different seeds. Thus, we
compare between KWP-BASE and KWP-W2V2
with all the N = 640 latent vectors, by making
the latent bottleneck weights learnable (BASE and
W2V2) and also freezing them (BASE-Frozen and
W2V2-Frozen).

Figure 2(a) shows that both W2V2 and W2V2-
Frozen have a significant performance advantage
against BASE and BASE-Frozen. This suggests
that the phonetic information transferred from the

2https://github.com/gcambara/speech-commands
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wav2vec2.0 latent codebook kickstarts training, ini-
tializing the model already with useful information
that the cross-attention mechanism can leverage.
Furthermore, it is interesting to see how there is
barely no performance differences between BASE
and BASE-Frozen. We hypothesize that during the
first epoch the randomly initialized BASE model
has not learned enough phonetic information in its
latent bottleneck, giving fewer chances for cross-
attention to exploit relations with input data. The
W2V2 model, oppositely, is able to leverage cross-
attention early on, generating feedback between the
phonetic information in the latent codebook and
the cross-attention weights that are linked to input
data.

To continue with, we repeat the same 10-seed
experiment for N = [320, 160, 80, 40, 20] latent
vectors in the bottleneck. Different downsampling
methods are tried: k-means clustering (W2V2-
KM), average pooling (W2V2-AVG) and random
sampling (W2V2-RAND). The results, as seen in
Figure 2(b), highlight that the three latent down-
sampling methods are effective for boosting the per-
formance with respect to the BASE model. W2V2-
KM is the best performing model, confirming that
averaging latents belonging to the same phonetic
clusters is preferable, rather than simply averaging
contiguous latents like in W2V2-AVG, or randomly
sampling latent vectors like W2V2-RAND does,
which loses representation power as N decreases.

3.2 Assessment at Convergence

To evaluate the accuracy of KWP-BASE and KWP-
W2V2 models after convergence, we let the models
train again for 400 epochs. This time, we only ex-
periment with learnable latent weights and k-means
clustering downsampling, given that the latter has
reported the best initialization results. Training
and test is done now with 3 seeds, varying the
number of latents again with the same selection,
N = [640, 320, 160, 80, 40, 20], and comparing
between BASE and W2V2 variants.

As Figure 3 depicts, W2V2 maintains significant
advantage for all the numbers of latents, with a peak
mean accuracy of 96.26 ± 0.04% at 640 latents,
higher than BASE’s top accuracy of 95.6±0.2% at
80 latents. The W2V2 variant seems to scale well
with the number of latents, as opposite to the BASE
model, which might struggle to clusterize phonetic
information in the latent space as it grows bigger.
Still, KWP (1.5M parameters) is slightly behind to

Figure 3: KWP-BASE (orange) and KWP-W2V2 (blue)
test accuracies after convergence, for different numbers
of bottleneck latents, with CPU inference time (red).

its self-attention counterparts, as the lightest KWT
(0.6M parameters) scored a 96.8% accuracy, and
AST scored 98.1%. Nevertheless, note that AST is
pretrained with ImageNet (Deng et al., 2009), and
is much larger (87M parameters). Even though,
we motivate further research on fine-tuning KWP
towards state-of-the-art performance.

The inference time of the 640 latent model is
49± 5 ms, and 14± 2 ms for the smaller 20 latent
model. Given that the accuracy is 95.3± 0.1% for
the latter, only a 1% relative accuracy is lost with
k-mean clustering downsampling, while increasing
inference speed in 3.5 times. The accuracy of the
BASE model at 20 latents is 94.6 ± 0.3%, which
is significantly below W2V2’s. This confirms that
even a hard downsampling of 640 to 20 latents
of wav2vec2.0 information is still preferable to
randomly initializing the latent space in KWP.

4 Conclusion

In this work, we have shown that phonetic informa-
tion from the wav2vec2.0 latent codebook can be
recycled, by transferring it to the latent bottleneck
weights of a Keyword Spotting Perceiver. Accu-
racy gains are consistently significant with respect
to random initialization of the latent bottleneck,
both at early and late stages of training for the
KWS task. Furthermore, we have studied easy-to-
apply downsampling techniques for compressing
the latent codebook, like averaging k-means clus-
ters, having sped up the inference time of the model
up to 3.5 times, at only a 1% accuracy drop.

We believe that our work motivates further re-
search on efficient ways of profiting from the
information in big self-supervised models like
wav2vec2.0, as well as on applications for other
tasks like ASR, for instance.
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Abstract

This paper seeks to improve the performance
of automatic speech recognition (ASR) sys-
tems operating on code-switched speech. Code-
switching refers to the alternation of languages
within a conversation, a phenomenon that is
of increasing importance considering the rapid
rise in the number of bilingual speakers in the
world. It is particularly challenging for ASR
owing to the relative scarcity of code-switching
speech and text data, even when the individual
languages are themselves well-resourced. This
paper proposes to overcome this challenge by
applying linguistic theories in order to gener-
ate more realistic code-switching text, neces-
sary for language modelling in ASR. Working
with English-Spanish code-switching, we find
that Equivalence Constraint theory and part-of-
speech labelling are particularly helpful for text
generation, and bring 2% improvement to ASR
performance.

1 Introduction

Although accurate statistics on the number of
worldwide bilingual speakers are hard to determine,
it has been generally believed that more than half
of the population can communicate in more than
one language (Ansaldo et al., 2008; Bialystok et al.,
2012; Grosjean, 2010). With the rising popularity
of voice assistant and translation applications, auto-
matic speech recognition (ASR) systems have been
increasingly integrated into people’s lives. Consid-
ering the abundance of bilingual countries 1, and
code-switching 2 is common in everyday conversa-
tions, there has been great interest into developing
such system in the corresponding setting.

The most widely accepted definition of code-
switching is the phenomenon whereby a speaker

1https://www.uottawa.ca/clmc/55-bilingual-countries-
world

2Code-switching can also be found in text, such as social
media or news paper headlines, but in this paper we are only
focus only on the spoken form

shifts from one language to another within a single
utterance, especially in an environment in which
both languages are being used (Heredia and Al-
tarriba, 2001). Some previous work make a dis-
tinction between code-switching and code-mixing,
where the former occurs at sentence-level while the
latter occurs at word-level (Myers-Scotton, 1997;
Gumperz, 1982). However, in recent years, this dis-
tinction has becomes unclear (Bali et al., 2014).
To avoid confusion, we will only use the term
code-switching in this work, and denote the dif-
ferences in switching position as sub-types of it
(Myers-Scotton, 1989; Muysken et al., 2000; Ma-
jor, 2002; Winford, 2003). Although different lan-
guage pairs may present varying extents or types of
code-switching, they can generally be categorised
as inter-sentential, intra-sentential, and tag switch-
ing, where respectively the language switches at
sentence or clause boundary; within the sentence
or clause; or by inserting a tag phrase 3. In this pa-
per, we focus only intra-sentential switching, which
is a much harder task compared with other types,
because the acoustic variance of mixed languages
within the sentence can be larger than across sen-
tence (Li et al., 2019).

The challenge of developing a code-switched
ASR system comes from both linguistic and com-
putational perspectives. On the one hand, code-
switching can be driven by multiple factors, which
makes it flexible but hard to predict. Linguists
have studied the phenomenon for decades, and
the main views held are that people tend to code-
switch to compensate for lack of language profi-
ciency, express solidarity or certain feelings, dis-
cuss some particular topic, and distinguish them-
selves from other classes to imply a certain social
status (Grosjean, 1982; Holmes and Wilson, 2017;
Leung, 2006). ASR systems generally require a

3Intra-word switching can be arguably considered as a
type of code-switching (Myers-Scotton, 1989), but a complete
discussion is out of the scope of this paper.
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large amount of transcribed data in a monolingual
setting. However, a relatively small number of the
approximately 7000 existing languages have large
readily corpora, and the data scarcity is more se-
vere for code-switching problems, which – to make
matters worse – usually involve one or more low-
resourced languages (Austin and Sallabank, 2011).

Motivated by the these considerations, we pro-
pose a novel code-switched ASR framework with
the aid of established linguistic theories. We
demonstrate the effectiveness of the approach
on Spanish-English conversational code-switching
data from the Bangor-Miami corpus (Deuchar,
2011). In doing so, we prove both phonological and
syntactic information can improve the performance
of language modelling and ASR.

2 Related work

There have been many attempts to approach the
problem of modelling code-switched speech from
acoustic, pronunciation and language modeling per-
spectives for conventional hybrid ASR systems. In
early work a language identification (LID) system
was combined to determine which hypothesis from
multiple monolingual decoders should be chosen
(Lyu et al., 2006; Wu et al., 2006; Bhuvanagiri and
Kopparapu, 2010). However, the drawback of this
approach is a strong assumption that the speech
segments are independent from each other and a
heavy dependency on the accuracy of LID module
(Weiner et al., 2012). The choice of phone invento-
ries is important, and many studies have been con-
ducted to merge phone sets of different language
pairs manually or automatically, which improves
the performance of ASR systems by effectively
yielding more training data for each phone, and
enabling the pronunciation influence between lan-
guages to be learnt (Kohler, 1998; Lyudovyk and
Pylypenko, 2014; Sivasankaran et al., 2018). Con-
sidering that there is a much larger amount of mono-
lingual text than code-switched text, code-switched
text generation by imposing language theories to
parallel monolingual texts has been a popular re-
search direction (Li and Fung, 2014; Winata et al.,
2019; Pratapa et al., 2018). From this, language
models can be improved by training them on the
generated text or can also be achieved by apply the
theories directly to restrict the search paths in a
WFST framework(Li and Fung, 2013).

In recent years, end-to-end (E2E) models have
also been explored to handle the problem. To ad-

dress the issue that E2E models usually require a
large amount of data, transfer learning from mono-
lingual models has been used (Luo et al., 2018;
Shan et al., 2019; Mary N J et al., 2020; Winata
et al., 2020). However, when the models are fine-
tuned on code-switched data, the performance on
monolingual speech is degraded. To improve the ro-
bustness of the model, techniques such as Learning
Without Forgetting and adversarial training have
been proposed (Shah et al., 2020; Madhumani et al.,
2020).

3 Methodology

3.1 Phoneme mapping

We use the standard International Phonetic Alpha-
bet (IPA) as the basis for our acoustic modelling
units. As English and Spanish have partly differ-
ent inventories (Edwards, 1992; Goldstein, 2000),
instead of treating them as completely two phone
sets, we merge them according to their phonologi-
cal features (Mortensen et al., 2016). The features
are a set of global attributes, which describes the
characteristic of sound, such as whether it is pro-
duced with nasal airflow. After representing the
feature with vectors, where each attribute can be
negative or positive, we compute the hamming edit
distance between each pair of phonemes. In this
way, we map each Spanish phoneme to its nearest
English equivalent.

3.2 CS text generation

3.2.1 Parallel text generation
We use the Google translate API to generate paral-
lel English and Spanish text. The API is not only
capable of translating from one to the other, but also
can translate code-switched sentences to one of the
language while keeping the segment in the target
language unchanged. We receive one translated
sentence for each monolingual text in the corpus,
while for each code-switched sentence, we obtain
translations in both languages. As the translation
quality varies across the sentences under manual in-
spection, we use Pseudo Fuzzy-match Score (PFS)
shown in Equation 1 to filter any translation pairs
whose PFS is less than 0.6 (He et al., 2010; Prat-
apa et al., 2018). s here is the monolingual source
sentence, we forward translate s to target t, then
reverse translate the target t into pseudo source s′.

PFS =
EditDistance(s, s′)

max(|s|, |s′|) (1)
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3.2.2 Constituency parse generation
To generate word level alignments between paral-
lel sentences we use fast_align toolkit, which is
a unsupervised aligner (Dyer et al., 2013). Then
following (Pratapa et al., 2018), we generate the
parse tree for English text with Berkeley neural
parser (Kitaev and Klein, 2018) and then use the
alignments to generate the equivalent parse for the
Spanish sentence.

3.2.3 Equivalence Constraint theory
The Equivalence Constraint (EC) theory claims
that, in general, “Codes will switch at points
where the surface structures of the languages
map onto each other” (Sankoff and Poplack,
1981). For example, in English and Spanish, code-
switching cannot happen within possessive phrases
or noun/adjective clauses because the grammatical
structures are different and thus reject the transfer.

EC has been successfully applied to code-
switched text data and approved crucial for lan-
guage modelling task (Pratapa et al., 2018), which
is our implementation inspired from. However, it
should be noted that even though text data can be
in the form of informal conversation on Twitter or
other Internet platforms, they may still not follow
the same patterns as speech (Sitaram et al., 2019).

We apply EC to generate CS text over permuta-
tion. To improve the naturalness, we rank generated
texts for each pair by following metrics and select
at most top 10 for each sentence pair.
Switch-points are points within a sentence where
the languages of the words on the two sides are dif-
ferent (Pratapa et al., 2018). The metric SP Fraction
(SPF) is defined as the number of SP in a sentence
divided by the total number of word boundaries in
the sentence. We set it to 0.1 for all experiments.
CMI counts the number of switches in the utter-
ance (Gambäck and Das). It can be computed at
the utterance level by finding the most frequent
language in the utterance and then counting the
frequency of the words belonging to all other lan-
guages present. The computation is shown in Equa-
tion 2, where W denotes the utterance and N(W )
denotes the number of words in W . l_max means
the count of words in the most frequent language
in that utterance, and P (W ) is the number of SP.
We set it to 0.3 for all experiments.

CMI(W ) =
N(W )− l_max+ P (W )

N(W )
(2)

POS tags As we have translate code-switched text
to parallel sentences, with monolingual words re-
mained, we can find the POS tags of the switched
words in both languages. Therefore, by calculat-
ing the frequency of the POS tags of the preced-
ing/current/following words, we give the sentence
higher ranking if proper nouns, nouns, determiners
or interjections precede switched words, and nouns
or subordinating conjunctions are switched, which
is consistent with (Soto et al., 2018)

4 Experimental setup

4.1 Data

Although the corpus is public, there has been no
standard preprocessing procedures for it. In this
paper, we first classified all utterances into Spanish,
English and Code-switched sets. If there are both
English and Spanish exclusive words in the utter-
ance, we consider it as code-switched case, but if
there are words which exist both in the English and
Spanish lexicon, the category depends on the rest of
the sentence 4. After cleaning, we retain 44971 ut-
terances, splitting them into training, development
and test by 7:1:2. To better illustrate the distribu-
tion of the dataset, the statistics are presented in
Table 1.

4.2 Training

4.2.1 Acoustic models
We used the Kaldi TDNN recipe 5 to develop the
hybrid systems. 40 dimensional MFCC features
are extracted first to train a GMM-HMM model.
Before training the neural network, we apply speed
perturbation to augment data. The TDNN-HMM
training is identical for all systems: We use 40
dimensional high resolution MFCC with 100 di-
mensional i-vector features as input. The network
consists of 7 TDNN hidden layers which contain
758 hidden units per layer. The start and final learn-
ing rates are 0.00015 and 0.000015 respectively
and we train the model for 4 epochs with a mini-
batch size of 128.

4.2.2 Language models
We use SRILM toolkit to train n-gram models for
comparison. For each setting, we trained a 3-gram
model for decoding and a 4-gram for rescoring.
The lexicon is identical to all experiments. We

4The processing script will be released after acceptance.
5https://github.com/kaldi-

asr/kaldi/blob/master/egs/librispeech/s5
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Table 1: The statistics of the processed Miami corpus, where the duration unit is hour.

English Spanish CS
Number Duration Number Duration Number Duration

Training 20813 10.9 7789 4.3 1879 1.6
Dev 3000 1.6 1250 0.6 250 0.2
Test 6000 3.1 2500 1.2 500 0.5

Table 2: WER and PPL on testset, where the top block shares the same language model which is trained only on the
original transcript, and the bottom block shares the acoustic model with phoneme mapping.

Test WER Test PPL
English Spanish CS total English Spanish CS

baseline 44.0 56.8 49.3 47.8 109.7 144.8 152.8
mapping base 43.6 56.4 49.1 47.5 109.7 144.8 152.8

translation 43.4 56.0 49.0 47.2 90.3 126.4 134.9
+ external 43.4 56.0 49.0 47.3 92.3 128.4 149.6
+ random 43.4 55.9 49.1 47.2 89.1 127.8 145.2

+ POS 43.3 55.6 48.7 47.0 88.7 126.0 130.1
+ EC 43.3 55.6 48.6 47.0 87.2 122.8 125.7

+ EC + POS 43.2 55.3 48.4 46.9 87.1 120.2 123.8

used the CMUDict for English and Santiago Span-
ish Lexicon for Spanish. There are in total 206500
English words and 91121 Spanish words, any un-
covered words are treated as UNK.

5 Results and discussion

Table 2 presents the word error rate (WER) and
perplexity (PPL) on the test set for all experiments.
Our baseline model uses the union of English and
Spanish phoneme sets while mapping base maps
the Spanish phoneme set to English phoneme set.
Their language models are identical which are
trained only on the transcripts of Bangor-Miami
corpus. It can be observed from the result that
phoneme mapping can improve the performance
by 0.3 absolute WER, so we fix it as our acous-
tic model and the only difference among the ex-
periments on the bottom block is that they have
different synthetic texts for language modelling.
translation model denotes that the language model
is trained on the transcripts as well as the transla-
tion of them and + symbol describes with what
techniques, code-switched text have been gener-
ated and added to the training text. We interpo-
late the LM with models trained on external text
data 6 to show that simply using larger but out-of-
domain text data doesn’t help improve the perfor-

6Here, we use TED talk subtitles to train the LMs for
English and Spanish (Tiedemann, 2012).

mance. After obtaining the word alignments of
parallel sentences, we compare the results of gen-
erating the code-switched text by simply random
replacement of the aligned words, or ranking the
possible replacements with the POS tags of the pre-
ceding/current/following words or the acceptance
under EC theory.

We can find that POS and EC have similar im-
provement on WER, while the combination of them
shows their advantages cannot directly add up. One
possible explanation can be that the implemen-
tation of EC is based on the constituency parse,
which is also heavily related to the POS tags. There-
fore, the linguistic information implied by them are
overlapped with each other and only little improve-
ment can be achieved when combined. Our model
with the best performance uses all of linguistic in-
formation we discussed before, with approximately
2% improvement on both WER and PPL.

6 Conclusions

In this paper, we present a framework for code-
switched ASR task. By using phonological fea-
tures for phoneme mapping, and POS tags and
EC theory for more more natural code-switched
text generation, we eventually achieve 2% improve-
ment on PPL as well as WER. It should be noted
that although the experiments are conducted on
Bangor-Miami corpus, there are no language spe-
cific constraints with this approach, which shows
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a potential to be extended to cover more language
pairs. As a future work, we would like to compare
the performances of different linguistic theories in
our proposed framework, which can serve as an
indirect validation of their influence on different
language pairs. Also, motivated by natural distri-
butions of linguistic structures, exploring different
sampling techniques can also be promising.
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Abstract
Despite recent advancements in automated
speech recognition (ASR) technologies, reports
of unequal performance across speakers of dif-
ferent demographic groups abound. At the
same time, the focus on performance metrics
such as the Word Error Rate (WER) in prior
studies limit the specificity and scope of recom-
mendations that can be offered for system engi-
neering to overcome these challenges. The cur-
rent study bridges this gap by investigating the
performance of Otter’s automatic captioning
system on native and non-native English speak-
ers of different language background through a
linguistic analysis of segment-level errors. By
examining language-specific error profiles for
vowels and consonants motivated by linguis-
tic theory, we find that certain categories of
errors can be predicted from the phonological
structure of a speaker’s native language.

1 Introduction

A central concern in the ethics of building natu-
ral language processing (NLP) tools is ensuring
equity in service and representation through a com-
mitment to linguistic justice (e.g., Blodgett et al.,
2020; Hovy and Prabhumoye, 2021). This issue
is especially pertinent to automatic speech recog-
nition (ASR) systems used to transcribe natural
spoken language into text (Markl and McNulty,
2022). As ASR systems are increasingly being
adopted into many aspects of social life (e.g., vir-
tual assistants and automatic captioning), various
concerns about the equity of ASR systems have
been raised. Ideally, these systems should serve
speakers of different demographic backgrounds
equally well; however, the existing technologies
are not entirely satisfactory. ASR performance
has been found to vary by users’ dialect (Wheat-
ley and Picone, 1991; Meyer et al., 2020), gender
(Adda-Decker and Lamel, 2005; Tatman and Kas-
ten, 2017; Tatman, 2017; Sawalha and Abushariah,
2013; Boito et al., 2022) and ethnicity (Koenecke

et al., 2020; Martin and Tang, 2020). For instance,
ASR systems designed for American English typ-
ically perform worse for non-white speakers than
for white speakers (Tatman and Kasten, 2017; Koe-
necke et al., 2020). Such inequalities result in cer-
tain groups of speakers being better represented
than others, and may even further exacerbate exist-
ing inequalities in society.

At the same time, less is known about how the
performance of ASR systems can vary for second-
language (L2) English speakers, a particularly vul-
nerable population of English speakers with di-
verse backgrounds. A recent work by Chan et al.
(2022) examined how Otter, a popular automatic
transcription system, performs on L1 (native) and
L2 (second-language) speakers of 24 English vari-
eties. Not only do the English varieties supported
by Otter have lower Word Error Rates (WER) com-
pared to the unsupported varieties, gaps in perfor-
mance is also driven by an independent effect of
the structure of a speaker’s first language – Otter
performs worse on English spoken by L1 speakers
of a tonal language (e.g., Mandarin).

While the Word Error Rate has been widely
adopted in these studies due to the ease of quanti-
fying system bias, this one-dimensional measure
of performance is inadequate if the aim is to dis-
entangle different types of errors that give rise to
discrepancies in performance between speakers.
For example, word-level errors can be driven by
an error in one or multiple sound segments, and
certain errors for consonants and vowels may be
more common for speakers of one variety than
speakers of another. Studying these details is use-
ful because these linguistic categories are well-
studied theoretical constructs and empirical phe-
nomena in the research on sociolinguistic varia-
tion (e.g., Koenecke et al., 2020; Wassink et al.,
2022) and L2 transfer (e.g., Corder, 1983; Dechert
and Raupach, 1989; Best et al., 1994). Moreover,
such linguistically-motivated features like conso-
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nant voicing and vowel height have acoustic cor-
relates, which means that insights from studying
system errors in terms of phonological variation
and processes can be translated to applied system
engineering.

Therefore, the current study aims to systemat-
ically investigate whether variations in language
structure among native and non-native language
speakers of English are tied to different types and
degrees of transcriptions errors. First, we introduce
and motivate a segment-level error analysis built on
traditional error-rate algorithms, which allows an
analysis of errors beyond the single dimension of
performance. We then investigate the error profile
for consonants and vowels across various English
varieties, to determine whether the phonological
structure of a speaker’s native language/variety is
predictably tied to certain types of errors that can
be captured in terms of phonological processes.

2 Materials and Methods

2.1 Speech Recognition System

We evaluate the performance of Otter, a speech
recognition platform for automatic transcriptions
that claims to support multiple varieties of English
including “(southern) American, Canadian, Indian,
Chinese, Russian, British, Scottish, Italian, Ger-
man, Swiss, Irish, Scandinavian, and other Euro-
pean accents” (Lai, 2021).1 Fittingly, Otter’s live
captioning system is used by popular video con-
ferencing platforms that reach broad international
audiences, such as Zoom. Otter’s global user-base
and its incorporation into educational and profes-
sional settings make it an ideal candidate for in-
vestigating whether there exists language-specific
biases in ASR performance for non-native (L2)
speakers of English, and if so, how these biases
relate to the phonological structure of the speakers’
native (L1) languages.

2.2 Corpus

The data analyzed in this study are col-
lected from the Speech Accent Archive at
“http://accent.gmu.edu” (Weinberger, 2015), a com-
prehensive speech corpus of nearly three thousand
recordings from English speakers of diverse geo-
graphical and language backgrounds. Each entry
in the corpus is a speaker reading the same passage

1Note that while Otter uses the term “accents”, we will be
adopting the word “varieties” to refer to Englishes from both
native and non-native speakers in this paper.

(“Please Call Stella”) at a table in a quiet room,
seated approximately 8-10 inches from the micro-
phone. The passage is designed to include words
that elicit all sound segments in English, which
allows for a direct comparison between speakers
of different language backgrounds. The passage
is 77-words long and recordings were around 30
seconds long on average.

Each recording in the corpus is accompanied by
a list of demographic information about the speaker,
including birthplace, age at the time of recording,
sex, native language, age of English onset, English
learning method (naturalistic vs. academic), among
others. Notably, some of the recordings are also
coded by trained linguists for accent features (e.g.,
vowel shortening), which used to motivate the error
categories for evaluating ASR performance, as will
be described in detail in later sections.

Following Chan et al. (2022), we filtered the
corpus based on the following criteria: (1) Only va-
rieties of English that are either listed as supported
English varieties by Otter, or (2) have recording
entries from at least 10 speakers. To balance the
effect of system training in the data, we selected
eleven varieties supported by Otter and sampled
another eleven from the remaining non-supported
varieties, for a total of 1,227 speakers/recordings.

All recordings were re-sampled to 22,050 Hz
and concatenated with one-second pause inserted
between each recording. The resulting 9.5-hour
audio file was split into 4-hour chunks (the maxi-
mum file size permitted by Otter) before uploading
to Otter. Otter’s speaker detection system split the
transcription output by speaker, though with occa-
sional errors (10%) where multiple recordings of
the passage were merged and determined as coming
from the same speaker. Two human annotators cor-
rected these errors independently, reaching 99.8%
agreement, and a third annotator resolved the con-
flicts. The transcriptions with corrected alignments
to speakers were entered into the error analysis.

2.3 Segment-level Error Analysis

We first ran a Word Error Rate (WER) algo-
rithm by identifying word-level insertions, dele-
tions, and substitutions for each speaker’s tran-
scribed string of words (“observed”) compared to
the reading passage (“truth”). Then, a Phone Er-
ror Rate (PER) was calculated for each speaker
by first converting the word-level insertions, dele-
tions, and substitutions to phones (sound seg-
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ments) using the CMU English Pronouncing
Dictionary (“http://www.speech.cs.cmu.edu/cgi-
bin/cmudict”), and passing the resulting string of
phones to the same error rate algorithm.

To illustrate, consider the word “ask” from the
reading passage, which has an entry in the CMU
dictionary as “AE S K”, the machine-readable
ARPABET transcription representing the Interna-
tional Phonetic Alphabet (IPA) transcription /æsk/.
A word-level deletion of “ask” in a transcribed
output constitutes three phone errors (counting
“AE”, “S”, and “K”), while a word-level substi-
tution of “ask” with “asked” constitutes just one
phone error (word-final insertion of “T” represent-
ing /t/). Thus, the phone-level measure of PER
can be more precise about the egregiousness of
errors made by an ASR system compared to the
more traditional benchmark of WER which lacks
such sensitivity (Aksënova et al., 2021; Wassink
et al., 2022). As discussed earlier, a prior study
by Chan et al. (2022) finds an effect of training
and language structure across both measures, but
the specific source of this disparity remains under-
investigated, especially where the distribution of
phone-level errors are concerned.

Therefore, the analyses in this paper go beyond
the singular measures of performance (WER and
PER) to investigate the language-specific profile of
segment errors, using the phone-level substitutions
identified by the PER algorithm. Phone substitu-
tions are interesting from a linguistic standpoint
because they allow an analysis of transcription er-
rors in terms of phonological processes; a necessary
first step for interdisciplinary work incorporating
domain knowledge from linguistics (e.g., second
language acquisition, language typology, and soci-
olinguistic variation). For example, a phone substi-
tution of the vowel /I/ as in “bit” to /i/ as in “beat”
represents vowel lengthening. If a system consis-
tently makes errors for a speaker’s production of
this short /I/ vowel, then that error profile, com-
bined with the language background of the speaker,
can be identified as an actionable area of improve-
ment for accent adaptation algorithms in ASR. The
next two sections split the analysis of segment er-
rors by consonants and vowels, with the specific
methods for each detailed therein.

3 Consonant Analysis

In this section, we zoom in on the consonant er-
rors in the Otter transcription of the same pas-

sage read by L2 English speakers with different
L1s. It has been established that phonological fea-
tures of L1 are likely transferred into speakers’ L2
(Dechert and Raupach, 1989; Corder, 1983; Best
et al., 1994). For example, given that Japanese only
allows CV syllables, native speakers of Japanese
have more difficulty with complex consonant clus-
ter pronunciation (e.g. “sixth”) when speaking En-
glish. Therefore, it is not surprising if we find
traces of different L1s in our current data set of L2
Englishes. However, what remains under-explored
is whether these phonological differences of L1s
will be directly reflected in the kinds of consonant
errors ASR algorithms make on these nonnative En-
glishes, especially one that claimed to have trained
on non-native accents of English (Lai, 2021). We
specifically test this in the following section.

3.1 Methods

With the help of the PER algorithm introduced in
Section 2, we identified 2382 errors involving con-
sonant substitutions. Given our primary interest in
the relationship between the phonological structure
of different L1s and the distribution of consonant
errors, we focused on two types of errors that are
the most prevalent in the data, as the robust num-
ber of tokens allows us to observe cross-linguistic
variation. These two types are Cluster errors (e.g.
transcribing “ask” as “asked”) and Voicing errors
(e.g. transcribing “bag” as “back”). We test two hy-
potheses for the distribution of cluster and Voicing
errors, respectively.

First, we hypothesize that the syllable structure
of speakers’ L1 language (specifically, whether it
allows consonant clusters) drives the rate of Clus-
ter errors in their L2 English. The more different
a speaker’s L1 is from English in this respect, the
more likely it is for Otter to make Cluster errors
for that speaker. To test this hypothesis, we coded
each L1 language in terms of whether they allow
consonant clusters at syllable onset (yes vs. no)
and syllable coda (yes vs. no) based on descrip-
tions of the phonology of these languages in the
literature (Ohala, 1983; Potet, 1995; Mahootian
and Gebhardt, 1997; International Phonetic Asso-
ciation, 1999; Mazhar and Ranjha, 2012; Sircar
and Nag, 2013; among others). We then catego-
rized languages into four types: those allowing
consonant clusters at both syllable onset and coda
(Onset-Coda), those allowing such clusters only at
syllable onset (Onset-only), only at syllable coda
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(Coda-only) and at neither position (Neither) (see
Table 1). Since languages that allow consonant
clusters at neither position would be the most dif-
ferent from English, we predict Otter to perform
the worst on the production of English consonant
clusters by native speakers of languages in the Nei-
ther category. To statistically test for this effect,
we fitted a linear mixed-effect model predicting the
number of Cluster errors with L1 syllable structure
type (4 levels, sum coded) as a fixed effect and
a random intercept by language group, using the
lme4 package in R (Bates et al., 2015).

Table 1: Coding of whether a language allows consonant
clusters at syllable onset or coda.

Onset Coda Type
English + + OnsetCoda
German + + OnsetCoda
French + + OnsetCoda

Spanish + + OnsetCoda
Russian + + OnsetCoda
Swedish + + OnsetCoda

Swissgerman + OnsetCoda

Italian + OnsetOnly
Bengali + OnsetOnly

Hindi + CodaOnly
Urdu + CodaOnly
Dari + CodaOnly

Mandarin Neither
Cantonese Neither

Japanese Neither
Korean Neither

Thai Neither
Vietnamese Neither
Indonesian Neither

Arabic Neither
Amharic Neither
Tagalog Neither

Second, we hypothesize that the realization of
the voicing contrast in the L1 language should drive
the rate of Voicing errors in L2 English. To test this
hypothesis, we coded each L1 language in terms of
how their voicing contrasts is realized into three lev-
els: those that have true voicing contrasts (1), those
that have voicing contrast but are not realized as
true voicing (2) and those that have no voicing con-
trast (3). Additionally, we coded whether there is a
phonemic aspiration contrast in the L1 language (1:
yes vs 2: no). The coding was based on phonetic
and phonological descriptions of these languages

in the linguistic literature (Henderson, 1972; Thel-
wall and Sa’Adeddin, 1990; International Phonetic
Association, 1999; Fleischer and Schmid, 2006;
Petrova et al., 2006; Mikuteit and Reetz, 2007;
Soderberg and Olson, 2008; Kramer, 2009; Gal-
lagher, 2010; Labrune, 2012; Tranová, 2016). We
further categorized the languages into five types
according to these two dimensions. The complete
coding and categorization of all L1 languages can
be found in Table 2. To statistically test for this
effect, we fitted a linear mixed-effect model pre-
dicting the number of Voicing errors with errors
with L1 stop contrast type (5 levels, sum coded) as
a fixed effect and a random intercept by language
group. For simplicity, we refer to each group by
a representative language in the group (e.g. the
Hindi-type) in the following analysis.

Table 2: Coding of language stop voicing and aspira-
tion contrasts (language in bold is used as group name).
Numbers represent each language’s category in the ty-
pology of voicing and aspiration contrasts.

Voicing Aspiration
Hindi 1 1

Vietnamese 1 1
Thai 1 1

Bengali 1 1
Indonesian 1 1

Swedish 1 1
Urdu 1 1

French 1 2
Amharic 1 2
Russian 1 2

Italian 1 2
Arabic 1 2

Dari 1 2
Spanish 1 2
Tagalog 1 2

Japanese 2 1
Korean 2 1

English 2 2
German 2 2

Swissgerman 2 2
Mandarin 3 1
Cantonese 3 1

3.2 Results

3.2.1 Syllable structure and Cluster Error
As shown in Figure 1, we find that L1 languages
that do not allow consonant clusters at either sylla-
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ble onset or coda receive significantly more cluster
errors per speaker in Otter transcription (β = 0.429,
SE = 0.118, p = 0.002). This is consistent with
our prediction that the rate of consonant cluster
errors are driven by the extent to which consonant
clusters are licensed in the syllable structure of a
speaker’s native language. At the same time, L1
languages that allow consonant clusters at more
restricted positions (Onset only & Coda only) are
not significantly different from languages that al-
low them in both positions (Onset-Coda). In sum,
we observe degraded performance on the transcrip-
tion of words with consonant clusters driven by the
degree of difference in syllable structure between
English and speakers’ L1 languages.

Figure 1: The number of Cluster errors per speaker in
L2 English transcription by L1 consonant cluster type.

3.2.2 Stop Voicing and Voicing Error
As shown in Figure 2, we find that L1 languages
that realize stop contrasts just like English receive
the least voicing errors per speaker in Otter tran-
scription (β = -0.399, SE = 0.138, p = 0.017). Ad-
ditionally, find a marginal effect of Otter transcrip-
tions generating more voicing errors for Mandarin-
type languages (β = 0.302, SE = 0.150, p = 0.075).
One explanation for this effect is that, as shown
in Table 2, Mandarin-type languages are the most
different from English in terms of the phonolog-
ical structure of the stop consonants - instead of
a phonemic voicing contrast, there is a phonemic
aspiration contrast. Thus, we find evidence for
our hypothesis that the degree of difference in the
phonological structure of a speaker’s L1 compared
to English is directly reflected in the accuracy of
automatic transcriptions for their production of L2
English.

4 Vowel Analysis

In the following section, we turn to the distribution
of vowel errors in the Otter transcriptions. We ana-

Figure 2: The number of Voicing errors per speaker in
L2 English transcription by L1 stop contrast type.

lyze the distribution of vowel errors in the acoustic
space in context of the typology of vowel systems
among the L1 languages represented in the data.
Specifically, we focus on vowel substitution errors
(as opposed to insertions and deletions) as they
allow us to explore Otter’s errors in terms of well-
studied phonological processes.

4.1 Methods
All 1,227 sound files selected for analysis were ran
through the Penn Phonetics Lab Forced Aligner
(Yuan et al., 2008) to align our recordings at the
segmental level. We then extracted the first two for-
mants (F1 and F2) at the midpoint all vowel tokens
using the LPC (burg) function in Praat (Boersma,
2006) and z-scored all formant measurements by
speaker. While formant measurements at the 25%
and 75% were also extracted initially to analyze
diphthongal patterns, there were insufficient diph-
thong tokens in the passage to draw conclusive
results. Therefore, we focus our analysis on the
acoustic measures of monophthong tokens.

We visualize our acoustic analysis in Figure 3.
The x-axis is the z-scored F2 and the y-axis is the
z-scored F1; axes are plotted in reverse to match
the height and backness dimensions of the physical
vowel space. The figure highlights two vowel analy-
ses conducted for each language background. First
is Otter’s perceived vowel space, represented by
the black solid lines that connect the four edges of
the vowel space. The perceived vowel space is con-
structed from cases where the “truth” vowel and the
“observed” vowel match - i.e., when Otter correctly
transcribes the intended vowel that was produced.
Second is Otter’s regions of error, represented by
a color contour imposed on top of the perceived
vowel space. The error regions are constructed
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from the formant values of vowels involved in sub-
stitution errors - i.e., when the transcribed vowel
does not match the intended vowel that a speaker
produced. In sum, we analyzed the acoustic profile
of matches and mismatches between “true” and
“observed” vowel tokens for each language back-
ground.

Based on the distribution of vowel errors from
the acoustic analysis, we categorized the L1 lan-
guage varieties into five vowel error types. Depend-
ing on where errors are concentrated in the vowel
space, each language was assigned to at least one
of the following: (i) high front vowels, (ii) high
back vowels, (iii) high vowels, (iv) low vowels,
and (v) point vowels. The vowel error categories
are summarized in Table 3.

Table 3: Vowel Error Category.

Language Error Category
Vietnamese High Front Vowels
Mandarin High Front/Point Vowels
Thai High Front Vowels
Korean High Front Vowels
Hindi High Front Vowels
Amharic High Vowels
Cantonese High Vowels
French High Vowels
Italian High Vowels
Tagalog High Vowels
German High Vowels
English (USA) High Vowels
Bengali Low Vowels
Russian Low Vowels
Dari Low/Point Vowels
Indonesian High Back Vowels
Spanish High Back Vowels
Japanese High Back Vowels
English (UK) High Back Vowels
Swiss German High Back Vowels
Swedish High Back Vowels
English (Canada) High Back Vowels
Arabic Point Vowels
Urdu Point Vowels

4.2 Results

The concentration of errors within the vowel spaces
reveals two main trends. First, languages with
fewer vowel distinctions than English at a phone-
mic level, in either the entire vowel space or in
certain parts of the vowel space, have higher vowel

substitution errors. As predicted, the distribution
of the types of vowel errors are language-specific,
such that errors concentrate on specific regions of
the vowel space where the L1 phonology makes
less distinctions than in English. This is not surpris-
ing given the literature on second language acqui-
sition such as the Perceptual Assimilation Model
(Best et al., 1994), which posits that listeners per-
ceive non-native phones in terms of the similar-
ities or dissimilarities of the phones to their na-
tive phonemic contrasts. For instance, Vietnamese
(Kirby, 2011) and Thai (International Phonetic As-
sociation, 1999) have comparable phonological
vowel spaces, and neither has a tense-lax contrast
for high front vowels (which English does have).
Consequently, we find vowel substitution errors
concentrated in the high front region of the vowel
space. At the same time, though both languages
also lack the tense-lax contrast in the high back
region, the existence of a roundness contrast may
have been used to disambiguate high back vowels
in their L2 English pronunciation. When a Viet-
namese speaker says the words “thick slabs” (tran-
scribed as /Tık slæbz/ in the CMU dictionary) for
example, Otter transcribes it as “techs lab” /tEks
læb/, replacing the /ı/ vowel with /E/, which is in
the Vietnamese vowel inventory. Another example
of languages with fewer vowel distinctions than
English is Arabic, which has been described to con-
trast three main monophthongal vowel qualities,
also referred to as point vowels. We find that Otter
primarily misidentifies tokens spoken at the point
regions of the vowel space by Arabic speakers of
English. For example, when an Arabic speaker pro-
duces “Stella” (/stEl@/), the Otter transcription con-
fused /E/ as /i/, yielding the transcription “stealer”
/stilÄ/. These results confirm existing findings
for speakers localizing their pronunciation of non-
native phones to the categories available in their
language. Critically, we find that this also drives
language-specific phone-level transcription errors
from Otter.

Second, languages that have a similar phono-
logical structure to that of English in its vowel
inventory have an overall lower vowel substitution
rate (and lower word error rate, writ large). Inter-
estingly, our predictions are still borne out in the
vowel error profile of these languages for which
Otter performs well. An example of this is German,
which was categorized into the high vowel error
category. The vowel inventory of German is simi-
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Figure 3: A speaker-normalized (z-scored) F1-by-F2 vowel plot, split by speakers’ L1. The black polygon represents
the vowel space detected by Otter, composed of correctly identified vowels. The density contours are constructed
from the distribution of incorrectly identified vowels via a highest-density-region (HDR) estimation (Otto and Kahle,
2022), where the fill color represents the percentage of vowel errors occurring within a specific region. Languages
are ordered by their vowel substitution rate (annotated in the bottom left of each panel), where a higher number
reflects worse performance on vowel identification.

lar to that of English in many ways; for example,
it contrasts both tense and lax high vowels, con-
trasts open-mid and closed-mid cardinal vowels,
and includes the unstressed vowel schwa (Interna-
tional Phonetic Association, 1999). Unlike English,
however, German lacks the back vowel /2/, which
may explain the concentration of back vowel er-
rors in the vowel space. For example, one German
speaker’s pronunciation of “brother” /br2DÄ/ was
transcribed by Otter as “product” /pôAd@kt/ instead,
where the /2/ vowel was replaced by another, lower
back vowel /A/.

Lastly, we also find predictable errors that reflect
well-documented sociolinguistic variation among
L1 English speakers. For example, the vowel sub-
stitution errors made by Otter in Canadian English
are highly localized in the high vowel region, which
likely reflects Canadian raising (Chambers, 1973).

In sum, the acoustic analysis of vowel substitution
errors show that the phonological structure of a
native language’s vowel spaces can inform us of
specific gaps in the performance of ASR systems.

5 Discussion

This study investigated the performance of Otter’s
automatic captioning system on native and non-
native English speakers of different language back-
grounds through a linguistic analysis of segment-
level substitution errors. We proposed that under-
standing language-specific error profiles is crucial
to preempting predictable system errors. In our
analysis of consonant and vowel errors motivated
by phonological theory, we report the following
findings.

Results from our consonant analysis show that
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the phonological structure of a non-native English
speaker’s first language predicts the types of con-
sonant errors that are dominant in the automatic
transcription of their production of English. Specif-
ically, we find higher rates of consonant cluster
errors in the transcription of speakers whose native
language does not allow consonant clusters. Simi-
larly, we find higher rates of stop voicing errors for
speakers whose first language has aspiration con-
trasts, as opposed to voicing contrasts like English.

Results from our vowel analysis show that the
distribution of vowel substitution errors patterns
with the structure of the vowel inventory of a non-
native English speaker’s first language. Specifi-
cally, we find three main patterns. First, the tran-
scriptions of non-native speakers whose first lan-
guage make fewer vowel distinctions than English
show predictable regions of error in the vowel
space. Second, when languages have similar phono-
logical structures compared to English, the fre-
quency of vowel substitution errors tend to be lower.
Third, known sociolinguistic variation even among
native speakers of English also predict vowel errors
in a similar manner.

Understanding how the sound patterns of a
speaker’s native language and/or variety of English
affect the performance of ASR systems on spe-
cific categories of sounds is an important first step
towards designing robust yet flexible acoustic mod-
els which can detect and adapt to varieties with-
out reducing structural differences to correlated
demographic information like race and ethnicity
(Tatman, 2020). Recent successes in the design
of accent adaptation algorithms support this view,
such as the automatic accent identification model
by Najafian and Russell (2020) trained on regional
varieties of British English. Furthermore, the focus
on adapting to differences in linguistic structure
grounded in phonological theory is crucial to the
generalizability of ASR systems, which is an im-
portant consideration for providing transcription
services to speakers of minority languages. For
example, an ASR model designed to learn and
leverage language-specific phonemic contrasts by
Li et al. (2020) vastly improved phone-level ac-
curacy on very small corpora ( 1k utterances) of
two indigenous low-resource languages, Inuktitut
and Tusom. Our study contributes to this momen-
tum by offering insights into the phonological and
acoustic nature of transcription errors for speakers
of different language backgrounds. Such research

on language-specific error profiles can motivate
the design of adaptation algorithms for supporting
non-native English speakers of various language
backgrounds.

Lastly, improving the performance of ASR sys-
tems for non-native speakers of English is an im-
portant task not simply for the sake of catering to
a large user-base given the status of English as the
de facto lingua franca with far more L2 than L1
English speakers in the world (SIL International,
2022), but also because L2 speakers of English
are an especially vulnerable population facing spe-
cific, and often invisible, harms from the prevail-
ing stereotypes of being uninterpretable in speech
and lacking education and proficiency in English
(Lippi-Green, 2011). Many existing applications of
ASR systems are ill-equipped to work with speech
input from non-standard varieties, as evidenced by
accumulating cases of discrimination against non-
native speakers of English across all levels of harm
(Blodgett et al., 2020). For example, allocational
harms have been reported for even life-or-death
situations such as in voice command systems for
roadside vehicle assistance (Wassink et al., 2022)
and for medical diagnoses and records manage-
ment in healthcare systems (Lee, 2021). Moreover,
representational harms from stereotypes of unin-
telligibility are perpetuated by systems that claim
to work on a language while neglecting how the
system might perform differently among sociolects
(Aksënova et al., 2021). As an extreme example of
this ideology, some recruiting firms have claimed
to screen and rank job applications by passing their
voice data through off-the-shelf ASR systems and
using the interpretability of the transcription output
itself as proxies for friendliness and communica-
tion skills, putting non-native English speakers at
a disadvantage (Raghavan et al., 2020). In these
ways, unchecked bias against non-native speakers
of English in ASR systems reinforce social inequal-
ities and simultaneously dismiss real cases of need
for accommodation.

6 Conclusion

In this study, we examined the language-specific er-
ror profiles of native and non-native English speak-
ers of diverse language backgrounds. A segment-
level analysis of consonant and vowel errors made
by Otter’s transcription system reveals that certain
categories of errors are predictable from the phono-
logical structure of a speaker’s native language.
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Thus, we demonstrate the fruitfulness of applying a
linguistic analysis to transcription errors, informed
by general phonological theory as well as specific
literature from relevant domains such as sociolin-
guistic variation and second language acquisition.
Findings inform the design and maintenance of
new and existing ASR systems for adapting to non-
native speakers of English and speakers of non-
standard English varieties.
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Abstract

Multi-intent natural language understanding
(NLU) has recently gained attention. It de-
tects multiple intents in an utterance, which
is better suited to real-world scenarios. How-
ever, the state-of-the-art joint NLU models
mainly detect multiple intents on threshold-
based strategy, resulting in one main issue:
the model is extremely sensitive to the thresh-
old settings. In this paper, we propose a
transformer-based Threshold-Free Multi-intent
NLU model (TFMN) with multi-task learning
(MTL). Specifically, we first leverage multi-
ple layers of a transformer-based encoder to
generate multi-grain representations. Then we
exploit the information of the number of multi-
ple intents in each utterance without additional
manual annotations and propose an auxiliary
detection task: Intent Number detection (IND).
Furthermore, we propose a threshold-free in-
tent multi-intent classifier that utilizes the out-
put of IND task and detects the multiple intents
without depending on the threshold. Exten-
sive experiments demonstrate that our proposed
model achieves superior results on two public
multi-intent datasets.

1 Introduction

Natural language understanding (NLU) consists of
two sub-tasks, including intent detection (ID) and
slot filling (SF) which allow the dialogue system to
create a semantic frame that summarizes the user’s
requests. Early works often approach these two
tasks separately (McCallum et al., 2000; Sarikaya
et al., 2011; Yao et al., 2014; Vu, 2016). Consid-
ering intent detection and slot filling are highly
related, recent works tend to model these two tasks
jointly, where the correlation between the intent
and slots are utilized (Goo et al., 2018; E et al.,
2019; Qin et al., 2019; Zhou et al., 2021).

The works above only consider the scenario
where each utterance has one intent. However,
in real-life situations, users may express multi-

PlayMusic RateBook

Search

Creative

Work

Search

Screening

Event

Add To

PlayList
Book

Restaurant

Get

Weather

Utterance: Will it be freezing in the current position and also what is the 

showtime for arsho 

Intent: 'GetWeather', 'SearchScreeningEvent'

Figure 1: A threshold-based multi-intent detection ex-
ample in MixSNIPS with given utterance and intent
labels. Threshold, which is the dash line, is set to 0.5.

ple intents in an utterance, thus making it dif-
ficult to apply single intent NLU models. Re-
cently, several works have studied Multi-intent
NLU problem. Gangadharaiah et al.(2019) inves-
tigated an attention-based neural network. Qin et
al.(2020) proposed an Adaptive Graph Interactive
Framework (AGIF). Qin et al.(2021) explored a
non-autoregressive approach to speed up the infer-
ence time. Chen et al.(2022a) proposed a Self-
distillation Joint NLU model. However, these
works all predict multiple intents with threshold,
where the common practice is estimating label-
instance probabilities and picking the intent la-
bels whose probabilities are higher than the thresh-
old value. We named them threshold-based mod-
els. The main issue of threshold-based models
is that they are not robust to the threshold set-
tings. As shown in Figure 1, the correct intents
for the utterance are ’GetWeather’ and ’Search-
ScreeningEvent’. Although the model can detect
that ’GetWeather’ and ’SearchScreeningEvent’ are
the two most probable intents, the threshold-based
model only considers ’GetWeather’ as the intent
due to the threshold which is usually set as 0.5.

In this paper, we propose a transformer-based
Threshold-free Multi-NLU model (TFMN) and de-
tect multiple intents without relying on the thresh-
old. Specifically, we leverage the upper layers of a
transformer-based encoder to generate multi-grain
representations. Next, we fully exploit the annota-
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Figure 2: The architecture of transformer-based TFMN model.

tions from original multiple intents data and pro-
pose an Intent Number Detection (IND) task. The
motivation is to allow the model to detect the intent
numbers in a given utterance. Then we propose
a threshold-free intent classifier that utilizes the
output of IND task to detect the multiple intents.

We validate TFMN on two public datasets (Qin
et al., 2020): MixATIS and MixSNIPS, and show
that our method outperforms competitive baselines.
The contributions of our work are summarized
as follows: (1)We propose a novel threshold-free
Multi-NLU model based on transformers.(2) We
propose IND task, a feasible task to improve the
multi-intent NLU without additional manual an-
notation, and a threshold-free multi-intent classi-
fier that detects multiple intents without relying on
threshold. (3) We present extensive experiments
demonstrating the effectiveness of our approach.

2 Problem Formulation

Given an input sequence X = (x1, ..., xn), multi-
intent detection is defined as a multi-label classifi-
cation task that outputs OI = (oI1, ..., o

I
m), where

m is the number of predicted intent labels. Slot fill-
ing task can be regarded as a sequence labeling task
that outputs a slot sequence OS = (oS1 , ..., o

S
n).

3 Approach

In this section, we first introduce the architecture
of TFMN model, then detail the proposed IND task
and threshold-free intent classifier.

3.1 Threshold-free Multi-intent NLU Model

The architecture of our model is illustrated in Fig-
ure 2. TFMN includes a transformer-based encoder
with L layers and three task-specific classifiers.

Multiple Intent Detection Following (Qin et al.,
2019), we perform a token-level multiple intent
detection which can be formalized as a sequence
labeling problem (You et al., 2020, 2021b; Chen
et al., 2021a, 2022b) that maps the input utter-
ance X = (x1, ..., xn) to sequence of intent label
OI = (oI1, ..., o

I
n). According to (Jawahar et al.,

2019; Rogers et al., 2020; Chen et al., 2021b),
transformer-based encoder tends to capture syn-
tactic information in the middle and semantic infor-
mation at the top layers. Therefore, we take the top
j layers of the encoder to form multi-grain intent
features. First, we map each hidden layer into a
different feature space via a fully connected layer,
then we combine hidden layers by adding them
together:

hI =
∑L

n=L−j
wInhn (1)

where wIn are trainable parameters and hn are dif-
ferent hidden layers. We then generate intent logits
with the intent feature hI :

lI = wih
I (2)

wherewi are trainable parameters. The intent logits
will be used to provide token-level intent informa-
tion for slot filling and detect the final multiple
intent labels which we will detail in Section 3.3.

Slot Filling Similar to intent detection, We lever-
age the top j layers of a transformer-based encoder
for slot filling. The slot features hS are generated
by combining hidden layers and concatenating with
token-level intent information:

hStemp =
∑L

n=L−j
wSnhn (3)

hS = hstemp ⊕ lI (4)
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then slot classifier computes the slot prediction:

pSt = softmax(waLeakyReLU(wbh
S
t )) (5)

where wa and wb are trainable parameters.

3.2 Intent Number Detection
To achieve threshold-free multi-intent detection,
we propose an Intent Number Detection task which
trains with the intent detection and slot filling in a
multi-task fashion. In IND task, we fully utilize the
original intent label annotations by calculating the
numbers of intents in each utterance and forming
the intent number labels Y IND. Then we train the
model to detect how many intents are there in the
input utterance with Y IND. Specifically, we take
the output of [CLS] token from the last hidden layer
hcls as representation for IND task to classify:

pIND = softmax(windhcls) (6)

OIND = argmax(pIND) (7)

We use cross-entropy to optimize IND task:

LIND = −
∑

k
yINDk logpINDk (8)

3.3 Threshold-free Intent Classifier
Once having the intent logits lI and being able to
predict the intent number with the proposed IND
task, we send lI into a sigmoid activation function:

pIt = sigmoid(lIt ) (9)

where pIt is the intent probability distribution of
t-th token in the utterance. Since the final out-
put should be the utterance-level intent detection,
we sum pIt up for utterance-level intent probabil-
ity distribution P I , and choose the top OIND,
which is the predicted intent number of the utter-
ance, most probable intent label as the final result
OI = (oI1, ..., o

I
OIND

).

3.4 Multi-Task Training
Our model optimizes the parameters jointly. Mul-
tiple intent detection is trained with binary cross-
entropy and slot filling is trained with cross-entropy.
The total loss of TFMN is the weighted sum of
three losses:

Ltotal = α · LID + β · LSF + λ · LIND (10)

with three hyper-parameters α, β, and λ to balance.

4 Experiments

4.1 Datasets
We conduct experiments on two public multi-
intent NLU datasets1. They are MixATIS (Qin
et al., 2020) collected from ATIS dataset (Hemphill
et al., 1990) with 13162/759/828 utterances for
train/validate/test and MixSNIPS (Qin et al.,
2020) collected from SNIPS dataset (Coucke
et al., 2018) with 39776/2198/2199 utterances for
train/validate/test. Both of the datasets have the ra-
tio of sentences with 1~3 intents as [0.3, 0.5, 0.2].

4.2 Experimental Settings
For TFMN, we use the English uncased Bert-Base
model (Devlin et al., 2019) which consists of 12
hidden layers, 12 heads, and the hidden size is
768. For fine-tuning, we freeze the bottom half
of Bert to save computational memory and empiri-
cally choose the top 4 layers to generate represen-
tations. The batch size is 128 and the epoch is 80.
Adam is used for optimization with learning rate of
2e-5. The hyper-parameters of loss are empirically
set as α: β: λ= 0.6: 1: 1 for MixATIS and α: β:
λ= 0.7: 0.9: 1 for MixSNIPS. We evaluate the per-
formance of slot filling with F1 score (You et al.,
2021a; Chen et al., 2021c), intent detection with ac-
curacy, and the NLU semantic frame parsing with
overall accuracy.

4.3 Baselines
We compare our model with both single-intent and
multi-intent baselines. For single-intent baselines
to handle multi-intent utterances, multiple intent
labels are connected with "#" and treated as a sin-
gle label, named as concat version. For multi-
intent baselines, they are all threshold-based mod-
els, named as thresh version. We also obtain our
own pre-trained language model (PLM) baseline
for comparison, called Bert-baseline. Following
(Chen et al., 2019), we obtain the hidden state of
the first special token ([CLS]) for detecting multi-
intent based on threshold and use hidden states of
utterance tokens for slot filling.

4.4 Results
The main results are illustrated in Table 1. We ob-
serve that TFMN model outperforms previous state-
of-the-art baselines significantly. On slot filling,
our model outperforms GL-GIN 1.5% on MixS-
NIPS. For multiple intent detection, we achieve

1https://github.com/LooperXX/AGIF
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Model
MixATIS MixSNIPS

Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

SF-ID (concat) (2019) 87.4 66.2 34.9 90.6 95.0 59.9
Stack-Propagation (thresh = 0.5) (2019) 87.8 72.1 40.1 94.2 96.0 72.9
Joint Multiple ID-SF (thresh = 0.5) (2019) 84.6 73.4 36.1 90.6 95.1 62.9
AGIF (thresh = 0.5)(2020) 86.7 74.4 40.8 94.2 95.1 74.2
GL-GIN (thresh = 0.5)(2021) 88.3 76.3 43.5 94.9 95.6 75.4
SDJN (thresh = 0.5)(2022a) 88.2 77.1 44.6 94.4 96.5 75.7

SDJN+BERT (thresh = 0.5)(2022a) 87.5 78.0 46.3 95.4 96.7 79.3
Bert-baseline (thresh = 0.3) 83.1 74.8 42.6 95.5 95.7 80.2
Bert-baseline (thresh = 0.5) 86.3 74.5 44.8 95.5 95.6 80.1
Bert-baseline (thresh = 0.8) 85.6 75.8 43.5 95.2 96.7 80.6

TFMN (Bert-base) 88.0 79.8 50.2 96.4 97.7 84.7

Table 1: Slot filling and multiple intent detection results on two multi-intent datasets.

Model
MixATIS

Slot Intent Overall
(F1) (Acc) (Acc)

TFMN 88.0 79.8 50.2
-w/o T -free Cls 87.1 77.3 47.0
-w/o T -free Cls & IND task 86.3 76.8 46.7

Table 2: Ablation study. T -free Cls indicates
threshold-free intent classifier.

2.7% and 1.2% improvement compared with SDJN
on MixATIS and MixSNIPS respectively. On over-
all accuracy, our model shows strong performance
which surpasses SDJN 5.6% on MixATIS and 9%
on MixSNIPS. When comparing PLM baselines,
we can first observe that different threshold settings
affect the results of Bert-baseline distinctively. Sec-
ond, TFMN model outperforms PLM baselines
in all three metrics on both datasets. The results
suggest that our approach brings significant im-
provements to multi-intent NLU. We believe this is
due to the proposed IND task which fully exploits
original intent annotations and threshold-free intent
classifier that allows our model to detect multiple
intents without a threshold and lead to performance
gains.

4.5 Ablation Study

We compare TFMN with two simplified versions,
-w/o T -free Cls and -w/o T -free Cls & IND
task in Table 2 to analyze the effectiveness of
threshold-free intent classifier and IND task. We
can see that as the threshold-free intent classifier is
removed, the performances drop 0.9%, 2.5%, and
3.2% on slot F1, intent accuracy, and overall accu-
racy respectively. We attribute this to the fact that
the threshold-free approach can better detect the
intent number in an utterance compare to threshold

Model
MixATIS

Int-1 Int-2 Int-3 Avg.

AGIF 96.5 83.7 76.7 85.6
GL-GIN 96.5 94.6 87.5 92.8
SDJN+BERT 97.2 92.0 84.0 91.2
Bert-baseline (thresh = 0.5) 94.4 87.8 83.5 88.6

TFMN 98.6 99.7 99.3 99.2

Table 3: A comparison of intent number prediction
between threshold-based and threshold-free approaches.
The evaluation metric is accuracy. Int-# means the
utterance with the number of “#” intent. Avg. is the
average accuracy.

strategy. We further remove the INP task and the
performance again drops 0.8%, 0.5%, and 0.3%
on slot F1, intent accuracy, and overall accuracy
respectively. This indicates the effectiveness of
introducing the INP task to multi-intent NLU.

4.6 Threshold-based vs Threshold-free

To compare threshold-based and threshold-free ap-
proaches, we evaluate how well a model can detect
the number of intents in an utterance. The results
are demonstrated in Table 3. We obtained that the
threshold-free model, TFMN, significantly outper-
forms the threshold-based baselines. Our model
achieves 2.1%, 5.1%, 11.8%, and 6.4% improve-
ments on one to three intent utterances and average
accuracy over GL-GIN. We find it interesting that
threshold-based models predict intent number well
when there is one intent in the utterance and be-
come worse as the intent number increase while
TFMN shows more consistency.

5 Conclusion

In this paper, we propose TFMN model which de-
tects intent numbers in an utterance by a novel IND
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task that does not require additional manual anno-
tations. Then we propose a threshold-free intent
classifier to detect multiple intents without rely-
ing on the threshold. Extensive experiments show
that TFMN achieves performance gains over strong
baselines.
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Abstract

Naturalness and expressiveness are crucial for
audiobook speech synthesis, but now are lim-
ited by the averaged global-scale speaking style
representation. In this paper, we propose an un-
supervised multi-scale context-sensitive text-to-
speech model for audiobooks. A multi-scale hi-
erarchical context encoder is specially designed
to predict both global-scale context style em-
bedding and local-scale context style embed-
ding from a wider context of input text in a
hierarchical structure. Likewise, a multi-scale
reference encoder is introduced to extract refer-
ence style embeddings at both global and local
scales from the reference speech, which are
used to guide the prediction of speaking styles.
On top of these, a bi-reference attention mech-
anism is used to align both local-scale refer-
ence style embedding sequence and local-scale
context style embedding sequence with corre-
sponding phoneme embedding sequence. Both
objective and subjective experiment results on a
real-world multi-speaker Mandarin novel audio
dataset demonstrate the excellent performance
of our proposed method over all baselines in
terms of naturalness and expressiveness of the
synthesized speech1.

∗ Work conducted when the first author was intern at
Tencent Music Entertainment Group.

† Corresponding author.
1Synthesized speech samples are available at:

https://thuhcsi.github.io/COLING2022-MSHCE-TTS

1 Introduction

Recently, some text-to-speech (TTS) models, such
as Tacotron (Wang et al., 2017), Tacotron 2 (Shen
et al., 2018), Deep voice (Ping et al., 2017), Trans-
formerTTS (Li et al., 2019) have been proposed to
generate speech autoregressively from text input,
and can achieve performance very close to human
quality. In order to increase inference speed and
generate more robust speech, non-autoregressive
TTS models such as FastSpeech (Ren et al., 2019)
and FastSpeech 2 (Ren et al., 2020) are emerged
with robust and fast parallel generation.

However, limited expressiveness of synthesized
audio persists as one of the major gaps between
synthesized speech and real human speech, which
draws growing attention to expressive speech syn-
thesis studies. Synthesizing long-form expressive
datasets (such as audiobooks) is still a challeng-
ing task, since wide-ranging voice characteristics
are collapsed into an averaged prosodic style. To
address this issue, style transfer TTS has been a
popular strategy in recent years (Skerry-Ryan et al.,
2018). The global style token (GST) model (Wang
et al., 2018) adopts multi-head attention mecha-
nism and several learnable style tokens to extract
the global style from reference audio in an unsuper-
vised way. Further more, a hierarchical GST archi-
tecture is proposed to learn hierarchical embedding
information implicitly, which contains several GST
layers with residual connection (An et al., 2019).
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To not only learn to represent a wide range
of speaking styles, but also synthesize expressive
speech without the need of auxiliary inputs at infer-
ence time, some methods attempt to predict speak-
ing style directly from text, which is more practical
and flexible. The text-predicted global style to-
ken (TP-GST) extends the GST by predicting style
embedding or style token weights from text only
(Stanton et al., 2018). Considering that style and
semantic information of sentences are closely re-
lated and Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018)
shows its effectiveness in language representation,
pre-trained BERT embedding is adopted as an ad-
ditional contextual information input to Tacotron 2
model to improve the pronunciation and expressive-
ness of the generated speech (Hayashi et al., 2019)
(Fang et al., 2019). In addition, different ways of
incorporating linguistic features and BERT-based
features are investigated and compared in various
application domains (news, chat and audiobooks).
Results show that character embedding is the most
effective one (Xiao et al., 2020). Some works also
attempt to predict fine-grained speaking styles from
text, such as word level (Zhang and Ling, 2021)
and phoneme level (Lei et al., 2021).

All aforementioned methods only take the sin-
gle sentence to be synthesized into consideration.
Some studies demonstrate that considering a wider
range of contextual information contributes to ex-
pressive speech synthesis (Tan et al., 2021) (Li
et al., 2022). Recently, a hierarchical context
encoder that considers adjacent contexts within
a fixed-size sliding window is used to predict
sentence-level style representation directly from
text (Lei et al., 2022a). Although the overall perfor-
mance is improved, it is still an averaged result that
lacks some local fine-grained expressiveness infor-
mation and rhythmic fluctuations such as pauses
and emphasis.

The expressiveness of human speech can be per-
ceived as a compound of multi-scale acoustic fac-
tors. One is the global-scale speech style, which
includes but not limited to timbre and emotion of
the speaker. Styles at this level are supposed to
be consistent throughout the entire utterance. The
other is the local-scale speech style, which consists
of speed, energy, pitch, pause and other acoustic
features (Li et al., 2021). Therefore, it is insuffi-
cient to model speech style from a single aspect.
Some latest studies are observed to devote efforts to
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Hierarchical 

Context 
 Encoder
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Positional  
Encoding

Mel-spectrogram Decoder 

Mel-spectrogram Phoneme Hierarchical Context

GRSE LRSE

PE

LCSE GCSE

Embedding

Encoder

Positional  
Encoding

Phoneme Encoder

Mel-spectrogram

SE

Figure 1: The overall architecture of the proposed model

performing multi-scale modeling on some specific
tasks, in particular emotional speech synthesis (Lei
et al., 2021) (Lei et al., 2022b). This further demon-
strates the importance and necessity of multi-scale
modeling.

With all listed imperfections taken into consid-
eration, this paper proposes an unsupervised multi-
scale expressive speech synthesis model for au-
diobooks with hierarchical context information as
input. A multi-scale hierarchical context encoder is
designed to predict both global-scale context style
embedding (GCSE) and local-scale context style
embedding (LCSE) from the context in a hierarchi-
cal structure. Meanwhile, a multi-scale reference
encoder is introduced to extract both global-scale
reference style embedding (GRSE) and local-scale
reference style embedding (LRSE) from the ref-
erence speech, which are used to guide the pre-
diction of speaking styles. On top of these, a bi-
reference attention mechanism is adopted to align
both the quasi-phoneme-level LRSE sequence and
the character-level LCSE sequence with the cor-
responding phoneme embedding (PE) sequence.
Both objective and subjective experiments on a
real-world multi-speaker Mandarin novel audio
dataset demonstrate the excellent performance of
our proposed model over all baseline approaches
in terms of naturalness and expressiveness of the
synthesized speech. Ablation studies are further
conducted to investigate the influences of several
main modules in our proposed model.
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2 Method

The architecture of our proposed model is illus-
trated in Figure 1. It consists of three major parts: a
multi-scale reference encoder, a multi-scale hierar-
chical context encoder and a sequence-to-sequence
expressive TTS system based on Fastspeech 2 (Ren
et al., 2020) with extended variance adaptor. The
multi-scale reference encoder is used to extract
reference style embeddings at both global and lo-
cal scales (i.e. GRSE and LRSE) from reference
speech. While the multi-scale hierarchical context
encoder is used to predict the context style embed-
dings at global and local styles (i.e. GCSE and
LCSE) from hierarchical context. The extended
variance adaptor is used to align and fuse the style
embeddings at different scales with the phoneme
embeddings.

Bi-Reference 
Attention

Pitch Predictor

Energy Predictor

Duration PredictorLR

GRSE LRSE LCSE GCSEPE

Aligned LRSE Aligned LCSE

R
ep
ea
t

R
ep
ea
t

Extended Variance Adaptor Output

PE

Figure 2: Extended Variance Adaptor

2.1 Multi-scale expressive TTS system

We adopt FastSpeech 2 as the basic acoustic
model, of which the phoneme encoder and mel-
spectrogram decoder keep the original structure
as described in (Ren et al., 2020). On the basis,
speaker embedding (SE) is added to the phoneme
encoder output to support different timbres. After
that, the phoneme embedding (PE) together with
GRSE, LRSE, GCSE, LCSE are fed into the ex-
tended variance adaptor with several changes as
illustrated in Figure 2.

Attention Attention

LRSE LCSEPE

Aligned LRSE Aligned LCSE

Q QK KV V

PE

Figure 3: Bi-Reference Attention

2.1.1 Extended variance adaptor
Firstly, the global-scale style inputs of GRSE and
GCSE are repeated to the same length as PE. At the
same time, the local-scale style inputs of LRSE and
LCSE are aligned to phoneme-level sequences by a
bi-reference attention mechanism. After that, either
the repeated GRSE and aligned LRSE or the re-
peated GCSE and aligned LCSE are added to PE at
different stages, and then the result is passed to the
variance predictors containing duration predictor,
pitch predictor and energy predictor. Unlike Fast-
Speech 2, the length regulator is moved after the
variance predictors, in order to predict variations at
phoneme level rather than frame level, which has
been proved to be able to further improve speech
quality (Łańcucki, 2021).

2.1.2 Bi-reference attention mechanism
For expressive speech synthesis, fine-grained style
embedding sequence is usually reformed into se-
quence with the same length as phoneme embed-
ding sequence. Inspired by (Lee and Kim, 2019),
we propose a bi-reference attention mechanism
to align both the quasi-phoneme-scale LRSE se-
quence and character-scale LCSE sequence with
the phoneme-level PE sequence. As shown in Fig-
ure 3, the bi-reference attention consists of two
scaled dot-product attentions (Vaswani et al., 2017)
with the same query input and two groups of differ-
ent key and value inputs. Here, the phoneme-level
PE sequence is fed as the query of the bi-reference
attention. Meanwhile, the quasi-phoneme-scale
LRSE sequence and the character-scale LCSE se-
quence are fed as two groups of key and value in-
puts respectively. Finally, the bi-reference attention
outputs the aligned LRSE sequence and aligned
LCSE sequence with the same length as the PE
sequence. This operation not only could align se-
quences of different lengths to the phoneme level,
but also reduces the difficulty of local style guid-
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ance from the multi-scale reference encoder to the
multi-scale hierarchical context encoder.

2.2 Multi-scale reference encoder
Inspired by the success of multi-scale emotion
transfer task (Li et al., 2021), we introduce a multi-
scale reference encoder to extract both the global-
scale and local-scale style embeddings from the
reference speech. As shown in Figure 4, the multi-
scale reference encoder is made up by a stack of
6 convolution layers and 2 scale-specific extractor
layers.

For the convolution layers, 1-D convolution
along temporal dimension is adopted to help the bi-
reference attention to learn the alignment between
the output LRSE sequence and the PE sequence.
Each of the convolution layers is composed by 3×1
filters, ReLU activation and batch normalization
(Ioffe and Szegedy, 2015). In particular, in order to
regulate the temporal granularity of the convolution
output closer to human vocal perception, the filter
strides of 6 convolution layers are set as [2, 1, 2, 1,
2, 2]. This downsampling operation ensures that
after the convolution stack, temporal granularity
of the intermediate frame-level feature sequence is
properly reformed to a quasi-phoneme-scale.

For the global style extractor layer, it is made
up of consecutive Gated Recurrent Unit (GRU)
layer and global style token (GST) layer (Wang
et al., 2018). The GST layer adopts a multi-head
attention mechanism and several learnable style
tokens to extract the global styles in an unsuper-
vised way. For the local style extractor layer, it
consists of GRU layer and full-connected layer
with tanh activation. Both scale-specific extractor
layers take the above quasi-phoneme-scale feature
sequence as input. However, inside the global style
extractor layer, only the final state of GRU is fed
to the GST layer. The GRSE output by the global
style extractor is forced to be a latent sentence-
level style embedding vector. On the other hand,
the LRSE output by the local style extractor is a
quasi-phoneme-scale style embedding sequence.

2.3 Multi-scale hierarchical context encoder
To improve expressiveness and naturalness of syn-
thesized speech, we introduce a dedicated multi-
scale hierarchical context encoder to predict both
global-scale style embedding and local-scale style
embedding from the hierarchical context within a
fixed size sliding window. As shown in Figure 5,
the multi-scale hierarchical context encoder con-

Conv 1D

BN + ReLU

GST 
Layer

Linear  
+ Tanh

x N

LRSE GRSE

Mel-spectrogram

Local Style 
Extractor

Global Style 
Extractor

GRUGRU

Figure 4: Multi-scale Reference Encoder

sists of three components: context embedding layer,
global style predictor and local style predictor.

2.3.1 Context embedding layer
Let l be the number of sentences considered in
the past or future context within the sliding win-
dow. U0 is defined as the current sentence to be
synthesized. U−l, U1−l, ..., U−1 and U1, U2, ...,
Ul are the past and future sentences respectively.
All these 2l + 1 sentences are firstly embedded
with a well-pretrained character-level BERT model
(Devlin et al., 2018) that is composed of a stack
of Transformer blocks and pretrained with a huge
amount of Chinese text data. Thereafter, role em-
bedding is added to the output of BERT embedding
layer to consider the interactions between differ-
ent roles. Then Bidirectional GRU (BiGRU) is
further used to obtain the character-level context-
sensitive embedding Si for each input sentence Ui
(−l ≤ i ≤ l), which can be discribed as:

Si = CEmb(Ui), (1)

where CEmb(·) is the operation of context embed-
ding layer.

2.3.2 Global style predictor
The global style predictor contains two levels of at-
tention networks, intra-sentence and inter-sentence
respectively.

The intra-sentence attention network is used to
abtain a sentence-level representation based on
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each character and inter-character relations within
a sentence. As not all characters contribute equally
to the global meaning of the sentence, a scaled dot-
product attention is adopted to calculate the weights
of each character and aggregate them into a global
sentence-level vector Gi for each character-level
embedding Si of a sentence, where Si is fed as the
key and value. The query Q1 is a 256-dim vector,
which is randomly initialized and learnable during
the training. It can be seen as a high level repre-
sentation of a fixed query "to what extent does the
character influence the global speaking style". This
can be formulated as:

Ki = SiWk, (2)

Vi = SiWv, (3)

Gi = A(Q1,Ki, Vi) = softmax(
Q1K

>
i√

dQ1

)Vi,

(4)
where Wk and Wv are linear projection matrices of
attention keys and values. dQ1 means the dimen-
sion of the query Q1.

For the inter-sentence attention network, 2l + 1
sentence-level vectors G−l, ..., G0, ..., Gl obtained
by the intra-sentence network are firstly concate-
nated along temporal dimension to form a long new
sequence G with the length of 2l + 1, which is fur-
ther fed to BiGRU to model the correlations among
sentences. After that, another scaled dot-product
attention is used to predict a global-scale speaking
style based on sentence-level embedding G and
inter-sentence relations within the hierarchical con-
text. Here, G is the key and value, while query
Q2 is a randomly initialized and learnable 256-dim
vector similar to Q1. Finally, the inter-sentence
attention network outputs the GCSE of the current
sentence U0.

2.3.3 Local style predictor
The local style predictor is used to obtain the local-
scale style embedding of current sentence from the
hierarchical context embeddings.

Firstly, a scaled dot-product attention is used to
align each character-level embedding Si of a sen-
tence in the hierarchical context with the character-
level embedding S0 of the current sentence, where
Si is fed as the key and value,S0 is fed as the query.
Here, S0 can be seen as a fixed local-scale query
"to what extent does each character influence the lo-
cal speaking style of the current sentence" for each
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Figure 5: Multi-scale Hierarchical Context Encoder

sentence in the context. This can be formulated as:

Ki = SiWk, (5)

Vi = SiWv, (6)

Li = A(S0,Ki, Vi) = softmax(
S0K

>
i√

dS0

)Vi,

(7)
where Wk and Wv are linear projection matrices of
attention keys and values. dS0 means the dimension
of the query S0.

Since all the 2l + 1 attention outputs
L−l, ..., L0, ..., Ll have the same length as S0, a
concatenation operation along feature dimension is
further implemented, followed by full-connected
layer with tanh activation:

L = Concatf (L−l, ..., Ll), (8)

In this way, the LCSE of current sentence is ob-
tained.

2.4 Training strategy and inference procedure

During training, to encourage the multi-scale hier-
archical context encoder learn style representation
better, the proposed model is trained with knowl-
edge distillation strategy in three stages.

i) In the first stage, the acoustic model and the
multi-scale reference encoder are jointly trained
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with paired <utterance, speech> data to get a well-
trained multi-scale reference encoder in an unsu-
pervised way. In order to better extract style fea-
tures at different scales, this training stage is di-
vided into two steps. Firstly, only the global style
extractor is inserted into the model to obtain the
well-represented global-scale features. After that,
the local style extractor is further involved, which
can extract more fine-grained local style representa-
tions. The multi-scale style embeddings extracted
from all speeches in the training set can be regarded
as ground-truth speaking style representations.

ii) In the second stage, knowledge distillation
strategy is used to transfer the knowledge from the
multi-scale reference encoder to the multi-scale hi-
erarchical context encoder. That is, we use ground-
truth style embeddings GRSE and aligned LRSE as
targets to guide the prediction of speaking style rep-
resentations GCSE and aligned LCSE from context,
for training the multi-scale hierarchical context en-
coder.

iii) In the third stage, the acoustic model and the
multi-scale hierarchical context encoder are jointly
trained with a lower learning rate to further improve
the expressiveness of the synthesized speech.

During inference, the multi-scale reference en-
coder is abandoned. Only GCSE and LCSE pre-
dicted from the multi-scale hierarchical context
encoder are fed to variance adaptor together with
PE. Finally, by accepting input text and hierarchi-
cal context, the model can synthesize speech with
more expressive styles.

3 Experiment

3.1 Dataset and model details
An internal multi-speaker novel audio corpus on
Mandarin is employed in our experiment. It con-
tains more than 40 roles and around 15 hours
speech spoken by 5 Mandarin native speakers with
quite different timbres. The speaking styles vary
among roles and utterances, and the speed, pitch
and energy fluctuate greatly in an utterance. The
dataset has a total of 11,000 audio clips, of which
200 clips are used for validation and 100 clips for
test, and the rest for training.

For feature extraction, we transform the raw
waveforms into 80-dim mel-spectrograms with
sampling rate 16kHz, frame size 1200 and hop size
240. An open-source pre-trained Chinese character-
level BERT model2 with frozen parameters is used

2https://huggingface.co/bert-base-chinese

in our experiments. The context of current sen-
tence is made up of its two past sentences, two
future ones, and itself.

We take 200k steps to train the acoustic model
and multi-scale reference encoder, where 100k
steps are for global style extractor and the remain-
ing 100k steps for local style extractor. Then we
take 20k steps to train the multi-scale hierarchical
context encoder and 20k steps to adapt the acoustic
model and the multi-scale hierarchical context en-
coder. All the trainings are conducted with a batch
size of 16 on a NVIDIA A100 GPU. The Adam
optimizer is adopted with β1 = 0.9, β2 = 0.98.
The warm-up strategy is used before 4000 steps.
In addition, a well-trained HiFi-GAN (Kong et al.,
2020) is used as the vocoder to generate waveform.

3.2 Compared methods

Three FastSpeech 2 based models are implemented
for comparison, and the details are described as
follows:

FastSpeech 2: Original FastSpeech 2 (Ren et al.,
2020) with minor changes on the variance predictor
to be consistent to the proposed model as described
in section 2.1.1.

BERT-FS 2: Inspired by (Xiao et al., 2020),
we set an end-to-end TTS model by combining
BERT with FastSpeech 2, which contains a plain
context encoder and only considers the current sen-
tence. The same character embeddings obtained
from BERT are directly passed to a GRU layer
whose final state is used as a style embedding.

HCE-FS 2: It uses a reference encoder to extract
the global style representation, and uses a hierar-
chical context encoder to predict the global style
embedding, which is fed to the variance adaptor of
FastSpeech 2 (Lei et al., 2022a).

Model S-MOS P-MOS
Ground Truth 4.705 ± 0.067 4.737 ± 0.073
FastSpeech 2 3.426 ± 0.091 3.432 ± 0.099
BERT-FS 2 3.503 ± 0.096 3.526 ± 0.086
HCE-FS 2 3.589 ± 0.089 3.613 ± 0.073
Proposed 4.031 ± 0.068 4.142 ± 0.071

Table 1: The sentence-MOS (S-MOS) and paragraph-
MOS (P-MOS) of different models with 95% confidence
intervals for subjective evaluation.
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Model F0 RMSE Energy RMSE Duration MSE MCD
FastSpeech 2 70.847 13.228 0.1316 7.198
BERT-FS 2 67.912 13.031 0.1263 7.134
HCE-FS 2 64.975 12.449 0.1254 6.975
Proposed 62.471 11.683 0.1224 6.843

Table 2: Objective evaluations for different models.

3.3 Subjective evaluation

We conduct the mean opinion score (MOS) tests
to evaluate the naturalness and expressiveness of
the generated speeches. As the task in this paper
is paragraph-level audiobook speech synthesis, we
conduct two kinds of MOS tests, sentence-MOS (S-
MOS) and paragraph-MOS (P-MOS) respectively.
The former mainly focuses on the naturalness and
expressiveness of the synthesized speech consid-
ering only the current single sentence. The latter
focuses on the coherence of speech styles of the cur-
rent sentence in a paragraph considering the context
of past and future sentences, where the speeches of
the past and future sentences are the resynthesized
version of ground truth speech recordings. 10 sin-
gle sentences and 10 short paragraphs are randomly
selected in the test set. 25 native Chinese speakers
are asked to listen to the generated speeches and
rate on a scale from 1 to 5 with 1 point interval.

As shown in Table 1, our proposed approach
achieves the best S-MOS of 4.031 and P-MOS of
4.142. The results demonstrate the effectiveness of
our proposed methods over all the baselines espe-
cially on the paragraph level. There is a big gap
between FastSpeech 2 and Ground Truth, indicat-
ing that it is difficult to model the multiple speech
variations without enough input information.

The ABX preference tests are also conducted on
our proposed model and each of the three baselines
respectively. Similarly, we also conduct two kinds
of ABX preference tests, sentence-ABX (S-ABX)
and paragraph-ABX (P-ABX) respectively. The
same 25 subjects are asked to choose a preferred
speech in terms of naturalness and expressiveness
between a pair of methods.

As shown in Figure 6, the preference rate of our
proposed model exceeds FastSpeech 2 by 53.2%,
BERT-FS 2 by 48.4% and HCE-FS 2 by 45.8%
on the S-ABX preference test. Moreover, the gaps
between our proposed model and baseline models
are more reflected on the preference rate of P-ABX,
which are 70.5%, 66.0% and 60.0% respectively.

Both MOS and ABX preference tests demon-
strate that our proposed method significantly out-
performs the baselines in terms of naturalness and
expressiveness especially for the paragraph-level
speech synthesis tasks.

67.4% 14.2%

65.8% 17.4%

64.2% 18.4%

0% 20% 40% 60% 80% 100%

18.4%

16.8%

17.4%

Proposed FastSpeech 2 BERT-FS 2 HCE-FS 2 NP

77.9% 7.4%

75.1% 9.1%

71.6% 11.6%

0% 20% 40% 60% 80% 100%

14.7%

15.8%

16.8%

Proposed FastSpeech 2 BERT-FS 2 HCE-FS 2 NP

(a)  Result of the S-ABX preference test

(b)  Result of the P-ABX preference test

Figure 6: Results of the sentence-ABX (S-ABX) and
paragraph-ABX (P-ABX) preference tests. NP means
no preference.

3.4 Objective evaluation

As the common for the objective evaluation of syn-
thesized speech, we employ the root mean square
error (RMSE) of pitch and energy, the mean square
error (MSE) of duration and mel cepstral distortion
(MCD) as the objective evaluation metrics. Specifi-
cally, the dynamic time warping (DTW) is firstly
used to construct the alignment paths between the
ground-truth mel-spectrogram and the predicted
one. After that, the F0 sequence and energy se-
quence are aligned towards ground-truth following
the DTW path. We also utilize DTW to compute
the minimum MCD by aligning the two sequences.
Here, MCD is utilized to calculate the difference
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between the mel-spectrograms of the synthesized
speech and the ground truth. For duration, we com-
pute the MSE between the predicted duration and
ground-truth duration.

As shown in Table 2, our proposed model
achieves 62.471 for F0 RMSE, 11.683 for Energy
RMSE, 0.1224 for Duration MSE and 6.843 for
MCD, which outperforms all the baselines on all
metrics. This excellent results indicate that our
proposed model can predict more accurate style
features, such as duration, pitch and energy, than
baselines.

3.5 Ablation study
To further investigate the influence of several main
modules in our proposed model, we have tried four
other settings based on the proposed method:

i) Proposed - Global-scale Style: The global
style extractor in multi-scale reference encoder and
the global style predictor in multi-scale hierarchi-
cal context encoder are removed, and only LRSE,
LCSE together with PE are fed to variance adaptor.

ii) Proposed - Local-scale Style: The local style
extractor in multi-scale reference encoder and the
local style predictor in multi-scale hierarchical con-
text encoder are removed, and only GRSE, GCSE
together with PE are fed to variance adaptor.

iii) Proposed - Knowledge Distillation: The
knowledge distillation strategy is abandoned, by
removing the multi-scale reference encoder. The
predicted GCSE and LCSE from multi-scale hier-
archical context encoder together with PE are fed
to variance adaptor directly throughout the training
process.

iv) Proposed - Role Embedding The role em-
bedding of context embedding layer in the multi-
scale hierarchical context encoder is removed.

Comparison mean opinion score (CMOS) is em-
ployed to compare the synthesized speeches in
terms of naturalness and expressiveness. The re-
sults are shown in Table 3.

Model CMOS
Proposed 0

- Global-scale Style -0.174
- Local-scale Style -0.211
- Knowledge Distillation -0.189
- Role Embedding -0.153

Table 3: CMOS comparision for ablation study.

Compared with the proposed method, the perfor-

mance of the four settings removing different main
modules is degraded to various degrees respectively.
This indicates that all these components have sub-
stantial impact on our proposed model. When the
global-scale style is removed, the overall style of
a sentence lacks expressiveness and there will be
a obvious deviation from the ground truth. The
proposed model without local-scale style leads to
significant performance degradation in some rhyth-
mic aspects, especially pauses and stress. When
the knowledge distillation strategy is abandoned,
the model needs to predict both the global-scale
and local-scale style from context directly without
any guidance from the reference encoder. The per-
formance degradation demonstrates the necessity
of the multi-scale reference encoder and indicates
that learning the speaking style representation from
context in an explicit way is more suitable for this
style prediction task. The proposed model with-
out the role embedding also causes some perfor-
mance degradation, which further indicates that
considering the interactions between different roles
is crucial for the style prediction of novel speech
synthesis.

Proposed Proposed

Ground Truth Ground Truth

Proposed -  Gocal-scale Style Proposed -  Local-scale Style

Test case 1 Test case 2

Figure 7: Mel-spectrograms and pitch contours of the
speeches for the two test cases.

3.6 Case study
To further explore the impact of multi-scale speak-
ing style on the expressiveness and naturalness of
synthesized speech, a case study is conducted to
synthesize two example utterances in test set with
the operation of removing the global-scale style
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and local-scale style respectively. The speech syn-
thesized by our proposed model and the ground
truth are also provided for reference. The mel-
spectrograms and pitch contours of speeches are
shown in Figure 7.

When the global-scale style is removed, the pitch
fluctuations become larger than others, and the
overall style and speed of synthesized speech vary
greatly compared with the ground truth. When
the local-scale style is removed, some local style
characteristics of the synthesized speech are lost,
resulting in a relatively averaged style throughout
the whole sentence. Compared with the two single-
scale results, the speeches synthesized by our pro-
posed multi-scale model are more similar to the
ground-truth speech in terms of the overall and
fine-grained style properties, such as the trend of
intonation and stress patterns. The results demon-
strate that modelling the speaking style from hier-
archical context information in a multi-scale way
is essential and effective to improve the naturalness
and expressiveness of the synthesized speech.

4 Conclusion

In this paper, we propose an unsupervised multi-
scale context-sensitive text-to-speech model for au-
diobooks. A multi-scale hierarchical context en-
coder is designed to predict both the global-scale
context style embedding and local-scale context
style embedding from hierarchical context with
the guidance of a multi-scale reference encoder.
Both objective and subjective experiment results on
a real-world multi-speaker Mandarin novel audio
dataset demonstrate the excellent performance of
our proposed multi-scale context-sensitive model
over all baseline approaches in terms of naturalness
and expressiveness of the synthesized speech.
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Abstract

The joint multiple Intent Detection (ID) and
Slot Filling (SF) is a significant challenge in
spoken language understanding. Because the
slots in an utterance may relate to multi-intents,
most existing approaches focus on utilizing
task-specific components to capture the re-
lations between intents and slots. The cus-
tomized networks restrict models from mod-
eling commonalities between tasks and gen-
eralization for broader applications. To ad-
dress the above issue, we propose a Unified
Generative framework (UGEN) based on a
prompt-based paradigm, and formulate the task
as a question-answering problem. Specifically,
we design 5-type templates as instructional
prompts, and each template includes a ques-
tion that acts as the driver to teach UGEN
to grasp the paradigm, options that list the
candidate intents or slots to reduce the an-
swer search space, and the context denotes
original utterance. Through the instructional
prompts, UGEN is guided to understand in-
tents, slots, and their implicit correlations. On
two popular multi-intent benchmark datasets,
experimental results demonstrate that UGEN
achieves new SOTA performances on full-data
and surpasses the baselines by a large margin
on 5-shot (28.1%) and 10-shot (23%) scenarios,
which verify that UGEN is robust and effective.
Our code will be publicly available at https:
//github.com/Young1993/UGEN

1 Introduction

In task-oriented dialogue systems, spoken language
understanding (SLU) is a crucial component that
aims to understand users’ queries and use a seman-
tic frame to represent users’ requirements. The
semantic frame usually contains intents and slot
names (Tur and De Mori, 2011). Recently, multi-
ple intent SLU has attracted lots of attention (Liu
and Lane, 2016; E et al., 2019; Weld et al., 2021;

∗* Corresponding author

Figure 1: The semantic frame. An example from MixS-
NIPS dataset(Coucke et al., 2018; Qin et al., 2020).

Gangadharaiah and Narayanaswamy, 2019) due to
the wide variety of practical application scenarios.

Considering the example shown in Figure 1, the
models are expected to identify the intents (AddTo-
PlayList and RateBook) and the slot values with
tags for the utterance. Current works (Qin et al.,
2019, 2020; Ding et al., 2021; Qin et al., 2021;
Chen et al., 2021a) usually treat Intent Detection
(ID) as a classification task and Slot Filling (SF)
as a sequence labeling task. The task-specific com-
ponents are employed by current works to capture
the connection or interaction between ID and SF,
which achieve fine-grained multi-intent informa-
tion integration for slot filling and obtain remark-
able success.

In this paper, we’re interested in exploiting a
united paradigm to handle the task instead of cus-
tomized networks. Prompt-learning (Liu et al.,
2021; Jin et al., 2022) is a novel paradigm, which
replaces the "pre-train, fine-tune" procedure with
"pre-train, prompt, and predict" analogous to origi-
nal pre-training language models (PLMs). With the
help of a prompt template, prompt-learning benefits
from fully exploiting the latent knowledge in PLMs
while relieving the dependency on annotated data.
Thus, prompt-based PLMs perform excellently in
different tasks (classification, NER, summarization,
etc.) and the few-shot setting.

To this end, we treat the joint multiple ID_SF as
a question-answering problem and present a sim-
ple unified generative framework (UGEN) based
on instructional prompts. Briefly, we first define
5-type descriptive templates (shown in Figure 2)
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as inputs. Per template contains one context that
refers to the original utterance, one question (e.g.,
"what are the intents of the sentence according to
options?") as the driver to direct UGEN to real-
ize the paradigm, and the corresponding options
(e.g., play music, rate book) to restraint the answer
search space. Through these instructional prompts,
UGEN is directed to acquire the ability to capture
the relationship between intents and slots. Then the
correct intents and slots are predicted as the final
answer (e.g., "add to playlist, rate book").

Experiments on two multi-intent benchmarks
show that UGEN outperforms the baselines and
achieves new SOTA performances. Remarkably,
UGEN exceeds the comparison models by a large
margin (28.1%, 23%, and 5.1%) in the 5/10-shot
settings and 10% training data. The further analy-
ses demonstrate that our approach has a strong abil-
ity of robustness and generalization. Meanwhile,
it has the advantage of fast adaptation to practi-
cal scenario with limited annotation data and easy
reproduction without task-specific components.

2 Related Work

Prompt-based Learning. With the release of
GPT-3 (Brown et al., 2020), prompt-based learn-
ing methods have attracted more and more atten-
tion (Gu et al., 2021; Jin et al., 2022). The new
paradigm can utilize the pre-trained language mod-
els with the form of cloze-style template, such as "I
love this movie. It was a [Z] movie", and the model
generates the probability of the [Z] in (good/bad).
Hence, it directly models the probability of text
P (x|θ) itself and uses the probability to predict
y instead of the P (y|x; θ) 1 like traditional meth-
ods, which can narrow down the gap between pre-
training and fine-tuning.

Few-shot Learning (FSL) with PLMs. FSL
aims to absorb experience from only a few sam-
ples and make a great adaptation to the new prob-
lem(Wang et al., 2019). Usually, the models for
FSL are trained on one accessible set of source
domains and then evaluated on another set of un-
seen target domains. As the pre-trained models be-
come more and more powerful, prompt-based meth-
ods with PLMs have achieved substantial improve-
ments compared to those fine-tuned in low-resource
settings, which displays promising prospects for

1Here, we take the input x, learn the model parameters θ ,
and predict the output y.

few-shot learning in natural language tasks (Han
et al., 2021; Li et al., 2021; Chen et al., 2021b).

3 Methodology

In this section, we briefly illustrate the problem
definition of multiple ID_SF and main architecture.
Then, we discuss the design of instruction-based
templates and how to convert the ID_SF to the
generation task.

3.1 Problem definition

The task of multiple ID_SF aims to classify all the
possible intents and identify the slot values with
the corresponding slot names in a given sentence.
Given the input sentence X = {w1, w2, ..., wn},
n is the length of X . The candidate intents I =
{i1, i2, ..., im}, and m is the number of categories.
The slot names S = {s1, s2, ..., sk}, and k is the
number of slot types.

To pursue simple model architecture (shown in
Figure 2), in this work, we employ T5 (Raffel et al.,
2020) as our backbone to model the probability
of text P (X|θ). The answers Y are generated by
UGEN, which contain intents (e.g., i1, ik) or slots
(e.g., {w1, w2} is one s2), split by comma.

3.2 Instructional templates

To formulate the joint ID_SF as a question-
answering problem and better exploit the knowl-
edge learned in the PLMs, we design 5-type tem-
plates in line with QA and the pre-training-style
tasks. Specifically, each template is defined to com-
prise three units: (1) Context, the original sentence
X to express users’ queries. (2) Question, the role
of question Q is to guide the model to understand
the paradigm and then generate the correspond-
ing answer for the given Context X . In this study,
the questions involve 5 types (shown in Figure 2):
Question-1 is about the intents classification while
the others are slot-related. For instance, question-1,
"What are the intents of the sentence according to
options?" is directed to intents labels. (3) Options
O list all the intents labels or slot names as the
candidate choices, and they act as a constraint to
teach the model to select words in limited space
(template’s content).

Since the number of slot types are usually far
larger than intents’, we introduce 4-type questions
to enhance the attention for slots. Specifically,
Question-2 (e.g. Which words are the slot values
in the sentence? for the context "Add this track to
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Figure 2: UGEN architecture with 5-type prompt templates based on combination of context, question, and options.
For the Question-4, those words marked in red are negative samples.

my dinnertime acoustics playlist.") leads UGEN to
extract the words that are exactly the slot values.
Question-3 lists the slot values in X and steers the
UGEN to select their slot names from options. To
recognize the connection between slot values and
their names, Question-4 is synthesized through a
slot value with its slot name (positive) or random
span in X with a slot name (negative). Question-5
is the most challenging, requiring UGEN to induce
all the slot values and their names by the given
question and options. Here, Questions 2-4 act as
the auxiliary drivers and encourage the model to
capture the links between slot names and their men-
tions in the Context X .

To simulate the pre-training manner, the input X
is converted to "<s> Context: X </s> Question:Q
</s> Options: O </s>". Here, the special tokens
<s> and </s> are used to separate context, question
and options. For the intents, the output Y is "i1, ik",
ik is one of the intent labels and generally, ik ≤ 3.
On the slots side, the output Y (e.g., "{w1, w2}" is
one "s2") consists of slot values {w1, w2} or slot
values with slot names s2, such as "track is one
music item".

At the training stage, we first pre-process the
original utterances with all the 5-type templates
and shuffle the processed samples, then feed them
into the UGEN to direct the model to understand
the implicit correlations between intents and slots.

The questions 2 to 4 are only used in the training
phase and act more like auxiliary tasks. In the
evaluation phase, only question-1 and question-5
are used to generate the intents and slot values with
slot names, respectively.

4 Experiments

4.1 Experiment Setup

Dataset We compare our method with the base-
lines on two popular multi-intent SLU datasets,
MixSNIPS and MixATIS. MixSNIPS is constructed
from SNIPS dataset (Coucke et al., 2018) which
comprises 39,776/2,198/2,199 utterances for train-
ing, validation and testing, separately. MixATIS is
collected from ATIS (Hemphill et al., 1990), which
contains 13,161/759/828 utterances for training,
validation and testing, respectively. In addition,
both of datasets are the cleaned version, and the
proportion of sentences with 1 ∼ 3 intentions is
[0.3, 0.5, 0.2].

We train and test all the models on the 32GB
Tesla V100. For full-volume data, we set batch size
to 20. The learning rate with Adam optimizer is
set to 3e − 5, and beam search size is set to 3. In
the few shot setting (5/10, and 10% training data),
we set batch size to 16. In addition, we exploit the
T5-base 2 as the backbone model.

2https://huggingface.co/t5-base
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Baselines We compare UGEN with existing top-
performing multi-intent approaches:

Joint Multiple ID-SF (JM) (Gangadharaiah and
Narayanaswamy, 2019) proposes a multi-task
framework and utilizes an attention-based model
to identify intents and produce slot labels at the
token-level.

Stack-Propagation (SP) (Qin et al., 2019)
adopts a joint model with Stack-Propagation to
use the intent information as input for slot filling
and performs the token-level intent detection to
alleviate the error propagation.

AGIF (Qin et al., 2020) presents an Adaptive
Graph-Interactive Framework for joint multiple in-
tent detection and slot filling, and it extracts the
intents information for token-level slot prediction.

GL-GIN (Qin et al., 2021) proposes a Global-
Locally Graph Interaction Network which explores
a non-autoregressive model for joint multiple intent
detection and slot filling.

SDJN (Chen et al., 2021a) introduces a novel
self-distillation model which formulates multiple
intent detection as a weakly supervised problem
and designs an auxiliary loop to decode the intents
and slots.

Model MixSNIPS MixATIS
S-F1 I-Acc O-Acc S-F1 I-Acc O-Acc

JM 90.6 95.1 62.9 84.6 73.4 36.1
SP 94.2 96.0 72.9 87.8 72.1 40.1
AGIF 94.2 95.1 74.2 86.7 74.4 40.8
GL-GIN 94.9 95.6 75.4 88.3 76.3 43.5
SDJN 94.4 96.5 75.7 88.2 77.1 44.6
UGEN 95.0 96.9 78.8 89.2 83.0 55.3

Table 1: Overall results on the MixSNIPS and MixATIS
sets with full-data. S-F1, I-Acc,O-Acc refer to the slot
F1, intent-accuracy, and overall accuracy (both intents
and slots need to be right), respectively. The highest
numbers are in bold.

4.2 Overall Results

Table 1 reports the test results of UGEN compared
to existing top-performing models on MixSNIPS
and MixATIS. To the time of writing, UGEN out-
performs the comparison models in all the metrics
and obtains the new SOTA. For slot F1, our method

leads to slight improvements (0.1% and 0.9%) com-
pared to the GL-GIN, which validates that UGEN is
more effective while extracting the slot values with
their names. Turning to intent accuracy, UGEN
exceeds SDJN (the previous SOTA) by 0.4% and
5.9%, respectively. It proves that UGEN has a
strong ability to identify intents. Moreover, UGEN
surpasses SDJN by 3.1% and 10.7% on overall ac-
curacy (the more tough metric), which confirms
that UGEN is more powerful in understanding the
implicit correlations between intents and slots. The
improvements align with our design and verify that
the question-driven instructions are effective.

4.3 Few shot setting

Table 2 reports the results in the setting of 5/10-
shot and 10% training data. We find that UGEN
can consistently exceed the comparison models by
a large margin in all the metrics. For instance, not
only can UGEN increase by 23.5, 13.8, and 1.5
points in slot F1, but it leads to 28.1, 23.0, and 5.1
improvements in overall accuracy. The remarkable
results validate that UGEN is more robust and can
effectively exploit the implicit intent-slot correla-
tions even with limited samples.

4.4 Ablation study

To explore the contribution of instructional
prompts, we first remove the auxiliary instruc-
tions (Questions 2-4). The results drop a lot (e.g.,
42.2% and 49.0% for overall accuracy) in the 5/10-
shot, which demonstrates the auxiliary questions-
driven templates are absolutely significant. Second,
we only remove options in templates but keep all
the questions. Every result under 5/10-shot and
10% training data is extremely low, sharply falling
34.7%, 31.2%, and 1.6%. The results confirm that
options can effectively restrain the search space
while predicting the answers. All the results are
reported in Table 2.

5 Conclusion

In this work, we present a novel unified generative
framework (UGEN) to treat the joint multiple intent
detection and slot filling as a question-answering
problem. To leverage the knowledge learned in the
PLMs, we define 5-type prompt templates as the
drivers to lead UGEN to grasp the prompt paradigm
and capture the implicit correlations between in-
tents and slots. On two multi-intent benchmark
datasets, our approach accomplishes the new state-
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Model 5-shot 10-shot 10%
S-F1 I-Acc O-Acc S-F1 I-Acc O-Acc S-F1 I-Acc O-Acc

SP 58.7 78.2 11.9 71.5 88.3 24.8 90.3 93.5 58.4
AGIF 60.7 77.8 14.4 73.6 86.3 27.5 91.2 93.0 62.8
GL-GIN 54.3 86.1 10.1 69.5 90.2 23.9 92.1 95.3 66.6
UGEN - auxiliary instructions 32.3 18.4 0.3 37.2 34.6 1.5 92.6 95.4 67.5
UGEN - options 61.9 49.3 7.8 72.7 71.2 19.3 93.1 95.5 70.1
UGEN 84.2 92.4 42.5 87.4 93.3 50.5 93.6 96.0 71.7

Table 2: Results on the MixSNIPS set in the few shot settings. Because Joint Multiple ID-SF (JM) and SDJN are not
publicly available, we can only compare the other baselines. S-F1, I-Acc,O-Acc refer to the slot F1, intent-accuracy,
and overall accuracy (both intents and slots need to be right), respectively.

of-the-art performances in all the metrics, which
validates that our design is effective. Meanwhile,
UGEN leads to 28.1%, 23.0%, and 5.1% improve-
ments in the 5/10-shot and 10% training data set-
tings, which verify that UGEN is robust with lim-
ited annotation data.
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Abstract

Supervised methods have achieved remarkable
results in disfluency detection. However, in
real-world scenarios, human-annotated data is
difficult to obtain. Recent works try to han-
dle disfluency detection with unsupervised self-
training, which can exploit existing large-scale
unlabeled data efficiently. However, their self-
training-based methods suffer from the prob-
lems of selection bias and error accumulation.
To tackle these problems, we propose an adap-
tive unsupervised self-training method for dis-
fluency detection. Specifically, we re-weight
the importance of each training example ac-
cording to its grammatical feature and predic-
tion confidence. Experiments on the Switch-
board dataset show that our method improves
2.3 points over the current SOTA unsupervised
method. Moreover, our method is competitive
with the current SOTA supervised method.

1 Introduction

Disfluency is a characteristic of spontaneous
speech which is different from written texts. Detect-
ing and removing the non-fluent word sequences in
spoken language transcripts can improve the tran-
scripts’ quality and provide clean inputs for the
downstream NLP tasks, such as parsing, machine
translation, and summarization (Tree, 1995; Wang
et al., 2020b). As shown in Figure 1, a standard
annotation of the disfluency structure indicates the
RM (reparandum, words that the speaker intends to
discard), IM (interregnum, filled pauses, discourse
cue words, etc.), RP (repair, the associated repair)
(Shriberg, 1994).

Most previous works (Zayats et al., 2016; Wu
et al., 2015; Lou and Johnson, 2017; Jamshid Lou
et al., 2018; Zayats and Ostendorf, 2019) on disflu-
ency detection heavily relies on human-annotated
corpora, which is difficult and expensive to ob-
tain in practice. Some researchers try to alleviate

∗Email corresponding.

I  want  a  cup  of   tea  um  I  mean  coffee  

I  want  a  cup  of   tea um  I  mean coffee  

RM IM RP

Disfluency Detection

Figure 1: A sentence with disfluencies annotated.
RM=Reparandum, IM=Interregnum, RP=Repair. The
preceding RM is corrected by the following RP.

this issue with, for instance, self-supervised learn-
ing (Wang et al., 2020a) and semi-supervised learn-
ing techniques (Wang et al., 2018), but they still
need a certain amount of human-annotated corpora
to perform high performance. Wang et al. (2020b)
completely removes the need for human-annotated
data. They first perform disfluency detection with
the self-training method in an unsupervised manner,
which shows promising performance. They lever-
age the pseudo data constructed by rules to train a
weak disfluency detection model as a teacher. Then,
the student model is fine-tuned in an unsupervised
manner, only using the pseudo-labels generated by
the teacher. Finally, the student model achieves
promising performance.

Traditional self-training methods utilize the
probability estimations to select high-confidence
pseudo-labels for re-training, which encounters two
problems. (1) Selection Bias. The strategy that
selects samples with the high confidence pseudo-
labeled samples tends to neglect the hard and po-
tentially informative samples. It results in the self-
training procedure converging to a suboptimal so-
lution. (2) Error Accumulation. The strategy that
selects pseudo-labels with probability estimations,
limited by the ability of the model, will inevitably
introduce a large number of noisy labels and the
noise will be accumulated with the increase of it-
eration times. The above problems become the
bottleneck for self-training, which prevents model
performance from growing as the number of iter-
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ations increases. To alleviate the error accumu-
lation problem, Wang et al. (2020b) introduces
a grammar checker into the selection process to
enhance the ability to select high-quality pseudo-
labels, which can be seen as introducing external
knowledge. Concretely, Wang et al. (2020b) em-
ployed a grammar checker to discard samples that
may be noise based on their grammatical correct-
ness. However, their method has no ability to recall
potential informative samples, which leaves the se-
lection bias problem unmitigated. In addition, due
to the limited performance of the grammar checker,
the error accumulation problem still exists to a cer-
tain extent.

In this paper, we propose an adaptive self-
training method that utilizes a re-weighting strategy
to address both the problem of selection bias and
error accumulation. Concretely, we assign specific
weight to every pseudo-labeled sample based on
its quality. We measure the quality of each sam-
ple by its grammatical feature and label confidence
(see §2 for details). Compared with the method
that selects samples with high confidence, our re-
weighted method has two main advantages: First,
instead of only selecting the pseudo-labeled sam-
ples with high confidence, our method makes all
samples participate in the training process, which
can alleviate the problem of selection bias to some
extent. Second, our method can reduce the negative
effect of noise data by lowering the weights of low-
quality pseudo-labels and emphasizing high-quality
pseudo-labels during the self-training process.

Besides, to help improve the performance of
self-training, we also propose a more powerful con-
trastive grammar checker. The grammar checker
proposed by Wang et al. (2020b) takes a single sen-
tence as input and then judges whether the sentence
is grammatical or not. In our practice, we found
that the way of judging grammatical correctness
by a single sentence alone faces great difficulties
when using the ASR results as input, e.g. there
are incomplete sentences with missing beginnings
or endings in the ASR results, which may lead to
the single-sentence grammar checker to misjudge.
Therefore, it is hard to train a high-performance
single-sentence grammar checker model. To solve
this problem, we employ a contrastive mechanism
to make it easier to judge whether the sentence
is grammatical or not. We take both the sentence
before and after removing disfluency elements as
the input of our grammar checker. Therefore, our

grammar checker can compare the two sentences to
help judge whether the sentence is grammatical or
not, which makes our grammar checker powerful.

We evaluate the proposed method on the com-
monly used English Switchboard dataset, and our
method improves 2.3 points over the previous best
result in unsupervised settings. Moreover, our
method achieves competitive performance com-
pared to the state-of-the-art supervised method
which utilizes 60k labeled sentences. In addi-
tion, the experimental result on three other datasets
shows that our method can consistently achieve
competitive performance compared to the super-
vised systems.

The contributions of our work can be summa-
rized as follows:

• To enhance the performance of unsupervised
disfluency detection, we propose an adaptive
self-training method utilizing a re-weighting
strategy that can alleviate the problems of se-
lection bias and error accumulation in the pre-
vious self-training-based method for disflu-
ency detection.

• We propose a more powerful contrastive gram-
mar checker which can better evaluate the
quality of the pseudo-labeled data for disflu-
ency detection.

• Experimental results on four datasets demon-
strate our proposed method surpasses the per-
formance of the existing SOTA method in un-
supervised settings.

We will release our code and model1.

2 Method

2.1 Procedure Overview

Figure 2 shows an overview of our adaptive un-
supervised self-training framework for disfluency
detection. Algorithm 1 is presented to help under-
stand our method. Our method only takes unla-
beled sentences as inputs, including news data and
ASR outputs. We first use self-supervised learn-
ing to train the contrastive grammar checker on the
large-scale constructed pseudo data (see §2.3 for
details), which is used to judge whether a sentence
is grammatical or not. Then, we use self-supervised
learning to train a weak disfluency detection model
with large-scale constructed pseudo data (see §2.2
for details), which is used as the teacher model.

1https://github.com/wyxstriker/ReweightingDisfluency
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Figure 2: Illustration of our proposed method. Step 5 to Step 8 are looped until the student model performance no
longer grows.

Next, we use the teacher model to assign pseudo-
labels on unlabeled ASR outputs. We assign spe-
cific weight to each pseudo-labeled sentence from
two different perspectives: 1) grammatical correct-
ness, we emphasize the sentences that are more
grammatical after removing the words with disflu-
ency labels, and 2) pseudo-label confidence, we
emphasize the high-confidence pseudo-labeled sen-
tences. To calculate the final weight of each sen-
tence (see §7 for details), we add grammatical
correctness score and pseudo-label confidence to-
gether. We then train a student model on all pseudo-
labeled sentences, which are assigned with differ-
ent weights calculated in the way mentioned above.
Then, the teacher model is replaced with the stu-
dent model. The process will be looped until the
performance of the student model stops growing.

2.2 Teacher Model
We formulate the disfluency detection task as a
token-level classification task. The training goal is
to detect the disfluency words by associating labels
with them. For each token xi in a sentence, the
model assigns a label yi which is “fluent” or “dis-
fluent”. To obtain the teacher model, we directly
fine-tune the ELECTRA model (the discrimina-
tor) (Clark et al., 2020) by minimizing the cross-
entropy loss:

lossteacher =
1

N

N∑

i=1

CE(yi, ft(xi, θt)), (1)

where (xi, yi)
N
i=1 denotes the input sentences and

labels, CE denotes the cross-entropy loss function,
ft denotes our teacher model parameterized by θt.

Our teacher model trained on the pseudo data
constructed by the self-supervised method. We fol-
low Wang et al. (2020b) to construct the pseudo
data. The unlabeled data to construct pseudo data
comes from fluent news data. To simulate the sen-
tence containing disfluencies, two types of random
perturbations are introduced into the fluent sen-
tences. One is repetition, we randomly select sev-
eral continuous words in the fluent sentence to be
repeated. The other is inserting, we randomly pick
words from external vocabulary to insert into fluent
sentences.

2.3 Grammar Checker Model
Traditional self-training methods utilize the proba-
bility estimations to select high-confidence pseudo-
labels for re-training. These methods suffer from
the problems of selection bias and error accumula-
tion. To enhance the ability to select high-quality
pseudo-labels in self-training, Wang et al. (2020b)
proposes a grammar checker, which can be seen as
external knowledge. However, we found that the
grammar checker proposed in Wang et al. (2020b)
may misjudge when dealing with the ASR outputs
since there are incomplete sentences with missing
beginnings or endings in the ASR output. To ad-
dress this problem, we allow the grammar checker
to compare the sentence before and after remov-
ing the disfluency elements, which can help judge
whether a sentence is grammatical or not. Con-
cretely, given an unlabeled sentence S, the disflu-
ency detection model can assign a pseudo label for
each word. By deleting the tokens with the “dis-
fluent” label, we obtain the processed sentence S̄.
We concatenate S and S̄ to be the input of our con-
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Algorithm 1 : The learning algorithm of our unsu-
pervised model for disfluency detection

Require: Pseudo data for disfluency detection (xi, yi)
N
i=1,

pseudo data for grammar checker model (x̂i, ŷi)Mi=1, and
unlabeled ASR outputs {x̃1, x̃2, ..., x̃K}.

1: Learn grammar checker model θg using (x̂i, ŷi)
M
i=1 via

Eq. 2
2: Learn teacher model θt using (xi, yi)

N
i=1 via Eq. 1

3: Randomly sample data {x̃1, x̃2, ..., x̃L} from unlabeled
ASR outputs {x̃1, x̃2, ..., x̃K} Use teacher model to gen-
erate pseudo labels ỹi and token-level weight slcij for sam-
pled data via Eq. 5

4: Use grammar checker model to generate grammatical
correctness score sgci .

5: Learn a student model θs on sampled data (x̃i, ỹi)
N
i=K

with weight slcij and sgci via Eq. 7
6: Iterative training until the performance stops growing:

Use the student as a teacher and go back to step 3

trastive grammar checker. Our contrastive grammar
checker can judge whether S̄ is grammatical or not
from two perspectives: 1) makes judgment from S̄
itself, and 2) makes judgment by comparing S and
S̄.

We directly fine-tune the ELECTRA model (the
discriminator) (Clark et al., 2020) on our pseudo
data which minimizes the cross-entropy loss on:

losschecker =
1

M

M∑

i=1

CE(ŷi, fg(x̂i, θg)), (2)

where (x̂i, ŷi)
M
i=1 denotes input sentences and la-

bels, CE denotes the cross-entropy loss function, fg
denotes our grammar checker model parameterized
by θg.

Our contrastive grammar checker is trained with
pseudo data constructed by the self-supervised
learning method. Inspired by Wang et al. (2020b),
we use three types of perturbations to simulate
grammatical wrong sentences. The first two types
of perturbations are repetition and inserting as de-
scribed previously. The third type of perturbation is
deletion. We randomly delete several words from
the fluent sentence.

2.4 Re-weighting Mechanism

In this paper, we use two types of re-weighting
mechanisms including grammatical correctness re-
weighting and label confidence re-weighting. Fig 3
shows our re-weighting mechanism.

2.4.1 Grammatical Correctness Re-weighting
Once a sentence is labeled correctly by the disflu-
ency detection model, the rest after removing the

words with disfluency labels is fluent and grammat-
ical (Wang et al., 2020b). Based on this fact, we
employ a re-weight strategy to emphasize the sen-
tences that are more grammatical after removing
the words with disfluency labels.

With the grammatical correctness re-weighting
mechanism, the training objects of the student
model are formulated as follows:

lossgc =
1

L

L∑

i=1

sgci × CE(ỹi, fs(x̃i, θs)), (3)

where (x̃i, ỹi)Li=1 are sentences with pseudo-labels,
sgci denotes grammatical correctness score which
is the logits output of the grammar checker model.

2.4.2 Label Confidence Re-weighting
We employ the label confidence obtained from our
teacher model to re-weight the tokens in each sen-
tence. Observing that pseudo-labels with higher
confidence are more likely to be correctly labeled,
we reinforce the role of high-confidence labels in
the training process. With the label confidence
re-weighting mechanism, the training object is for-
mulated as follows:

losslc =
1

LN

L∑

i=1

N∑

j=1

slcij × CE(ỹij , fs(x̃ij , θs)),

(4)
where (x̃i, ỹi)Li=1 are sentences with pseudo-labels,
CE is the cross-entropy loss function, N is the
length of the token sequence, slcij denotes the
teacher model’s processed logit output of the token
x̃ij .

In the early stages of the iterative self-training
process, the performance of the student model is
relatively weak. Therefore the confidence output
of the student model is not reliable enough. We
introduce the temperature mechanism to weaken
the effect of confidence when it is unreliable in the
early self-training stages.

The calculation of the slcij with the temperature
mechanism can be formulated as follows:

slcij = N
exp(

gij
T )

∑N
k=1 exp(

gik
T )

, (5)

where slcij denotes the weight of jth token of sample
x̃i, T is the temperature, gij is the teacher model’s
confidence in tokenj of x̃i, and N is the length of
the token sequence.
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Figure 3: Illustration of proposed re-weighting mechanism. At the sentence-level, sentences with higher grammatical
scores are given higher weights after removing words with the label “disfluent”. At the token-level, labels with
higher confidence are given higher weights.

The temperature T can be formulated as follows:

T = −γ ∗ log( nsample
2 ∗ ntotal

), (6)

where nsample is the amount of data used in this
iteration of self-training, ntotal is the amount of
all unlabeled data. γ is a hyper-parameter used to
adjust the rate of temperature drop.

2.5 Student Teacher Iterative Training
In Section 2.4, we introduce two different re-
weighting mechanisms. Finally, we combine two
re-weighting mechanisms, as figure 3 shows, to
train the student model, the training objects is for-
mulated as follows:

lossstudent =
1

LN

L∑

i=1

N∑

j=1

(sgci + slcij)× C̃E,

(7)
where (x̃i, ỹi)

L
i=1 represents pseudo-labeled sen-

tences, C̃E represents CE(ỹij , fs(x̃ij , θs)), and N
is the length of the token sequence, sgci and slcij are
calculated according to the Section 2.4.

We fine-tuned student models with pseudo-
labeled data on the teacher model trained by pseudo
data. The student will be a new teacher in the next
iteration.

3 Experiment

3.1 Settings
Dataset English Switchboard (Godfrey et al.,
1992) is a large multispeaker corpus of conversa-

tional speech and text, which is the largest stan-
dard corpus for disfluency detection. Following
the experiment settings in (Wang et al., 2020b), we
process the Switchboard corpus and split it into
the train (60k sentences), dev (4k sentences), and
test set (4k sentences). Notice that the train set is
not used in our method. The news data are from
WMT2017 monolingual language model training
data (News Discussions. Version 2).2 We conduct
our main experiment on the English Switchboard.

To demonstrate the robustness of our method,
we also test our model on three out-of-domain
datasets (Zayats et al., 2014; Zayats and Ostendorf,
2018), including CallHome, SCOTUS, and FCIC.
Notice that the train set of the three out-of-domain
datasets is not used.

• CallHome: phone conversations between fam-
ily members and close friends. It consists of a
training set of 46k words and a test set of 30k
words.

• SCOTUS: transcribed Supreme Court oral ar-
guments between justices and advocates. It
consists of a test set of 43k words and has no
training set.

• FCIC: two transcribed hearings from Finan-
cial Crisis Inquiry Commission. It consists of
a test set of 54k words and has no training set.

Metric Following Wang et al. (2020b), we use
token-based precision (P), recall (R), and F1 as the

2http://www.statmt.org/wmt17/translation-task.html
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Method F1
Supervised methods
UBT (Wu et al., 2015) 85.1
Bi-LSTM (Zayats et al., 2016) 85.9
NCM (Lou and Johnson, 2017) 86.8
Transition-based (Wang et al., 2017) 87.5
Self-supervised (Wang et al., 2020a) 90.2
Self-training (Jamshid and Mark, 2020) 90.6
EGBC (Bach and Huang, 2019) 91.8
PG (Yang et al., 2020) 92.3
BERT fine-tuning 90.5
ELECTRA fine-tuning 91.2
Teacher fine-tuning 92.0
Unsupervised methods
Unsupervised teacher 72.3
SSST (Wang et al., 2020b) 88.0
Our Method 90.3

Table 1: Comparison with previous state-of-the-art
methods on the Switchboard test set. For robustness, we
run our proposed supervised baselines and our proposed
method 5 times and report the average metric.

evaluation metrics.

3.2 Training Details

For all experiments, we use the English ELECTRA-
base discriminator model as an encoder, which has
110M hidden units, 12 heads, and 12 hidden layers.
For the self-supervised teacher model, the max se-
quence length of teacher model input is set to 128.
We fine-tune the teacher model using the AdamW
optimizer for 30 epochs with a batch size of 256
and a learning rate of 1e-4. Since the grammar
checker model’s input consists of a pair of sen-
tences, we set its max sequence length to be 256.
We fine-tune the grammar checker model using
AdamW optimizer for 30 epochs with a batch size
of 256 and a learning rate of 1e-4.

When training the student model in the self-
training procedure, we use the AdamW optimizer
for 15 epochs with a batch size of 128 and a learn-
ing rate of 2e-5.

3.3 Performance on English Switchboard

Table 1 shows the comparison of the performance
among different models on the Switchboard test set.
In addition to the previous methods, we have also
built the following baseline models for comparison.

• BERT fine-tuning: We directly fine-tune the
BERT-Base model on the Switchboard train
set.

• ELECTRA fine-tuning: We directly fine-tune

Method CallHome SCOTUS FCIC
Supervised methods
ELECTRA fine-tuning 62.2 81.6 63.1
Teacher fine-tuning 63.4 81.9 63.8
Pattern-match 65.2 79.9 66.1
Unsupervised methods
Unsupervised teacher 48.0 69.2 47.6
SSST 60.2 80.3 63.3
Our unsupervised 61.6 80.7 63.6

Table 2: F1 scores on cross-domain disfluency detec-
tion. For robustness, we run our proposed supervised
baselines and our proposed method 5 times and report
the average metric and standard deviation metric.

ELECTRA-Base (the discriminator) model on
the Switchboard train set.

• Unsupervised teacher: This model is the first
teacher model trained by pseudo data.

• Teacher fine-tuning: We fine-tune the teacher
model which is trained by pseudo data on the
Switchboard train set.

Our unsupervised model achieves 2.3 points
improvements over the past state-of-the-art unsu-
pervised method (Wang et al., 2020b) which is
also based on self-training. Moreover, our unsu-
pervised model achieves competitive performance
compared to the current SOTA supervised (Yang
et al., 2020) method, which trains BERT with 20M
sentences of pseudo data and 173k sentences of
human-annotated data.

3.4 Performance on Cross-domain Data
In this section, we experiment on three out-of-
domain disfluency datasets to prove the robustness
of our proposed approach.

We build four baseline systems for comparison,
including Unsupervised teacher, ELECTRA fine-
tuning, Teacher fine-tuning, SSST (Wang et al.,
2020b), and Pattern-match (Zayats and Ostendorf,
2018). Unsupervised teacher, ELECTRA fine-
tuning, and Teacher fine-tuning are the same as
described in Section 3.3. Pattern-match (Zayats
and Ostendorf, 2018) used a pattern match neural
network architecture trained on the Switchboard
train set. It achieves state-of-the-art performance
in cross-domain scenarios.

Following the experiment setting in (Wang et al.,
2020b), we test each model’s performance on the
three out-of-domain test sets without any retraining
on the out-of-domain train set.

Table 2 shows the comparison of the perfor-
mance among different models on the three out-
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Method P R F1
ST+SGC 90.2 89.1 89.6
ST+SGC+Re-weight 90.5 91.7 91.1
ST+CGC 89.5 91.0 90.3
ST+CGC+Re-weight 90.3 92.9 91.6

Table 3: Ablation results of our method on Switchboard
dev set. “ST” denotes self-training. “SGC” denotes
the single sentence grammar checker. “CGC” denotes
the contrastive grammar checker. “Re-weight” denotes
grammatical correctness re-weighting and label confi-
dence re-weighting mechanism.

of-domain test sets. It shows that our unsupervised
methods can achieve good performance in the three
cross-domain datasets without any retraining.

4 Ablation Studies

In this section, we analyze the effect of several
components of our method.

4.1 Effect of re-weighting mechanism
To explore the role of the re-weighting mechanism,
we conduct a comparative experiment for the re-
weighting mechanism. We take the approach pro-
posed by Wang et al. (2020b) as our baseline, which
is a self-training-based method with a single sen-
tence grammar checker (referred to as “ST+SGC”).
We separately add the re-weighting mechanism to
the baseline system (referred to as “ST+SGC+Re-
weight”). Table 3 shows that the method with a
re-weighting mechanism outperforms the baseline
by 1.5 points, demonstrating the benefit of the re-
weighting mechanism.

Our re-weighting mechanism consists of gram-
matical correctness re-weighting and the label con-
fidence re-weighting. To explore the role of each
part of the re-weighting mechanism, we conduct a
comparative experiment. Table 4 shows that both
the grammatical correctness re-weighting and the
label confidence re-weighting bring improvement.

4.2 Effect of improved grammar checker
In our approach, we propose a contrastive grammar
checker. To validate the effectiveness of our gram-
mar checker, we conduct a comparative experiment.
“ST+SGC” denotes a self-training approach with
a single sentence grammar checker which is pro-
posed by Wang et al. (2020b). “ST+CGC” denotes
a self-training approach with a contrastive gram-
mar checker which is proposed by us. The only
difference between them is that they use different
grammar checkers. Table 3 shows that the method

Method P R F1
ST+CGC 89.5 91.0 90.3
ST+CGC+GCR 91.2 91.0 91.1
ST+CGC+LCR 90.2 92.1 91.1
ST+CGC+GCR+LCR 90.3 92.9 91.6

Table 4: Ablation results of our method on Switchboard
dev set. “ST” denotes self-training. “CGC” denotes con-
trastive grammar checker. “GCR“ denotes grammatical
correctness re-weighting mechanism.“LCR“ denotes la-
bel confidence re-weighting mechanism.

T hyperparameter P R F1
w/o Temperature 90.7 92.0 91.4
w/ Temperature γ=2 91.5 90.9 91.2
w/ Temperature γ=1 91.1 91.7 91.4
w/ Temperature γ=0.5 90.3 92.9 91.6

Table 5: Performance of our method on Switchboard
dev set with different temperature.

with our grammar checker outperforms the method
with the previous grammar checker by 0.7 points.

To compare the performance of two grammar
checkers directly, we test them on the grammar
check task dev dataset, which is constructed from
the Switchboard dev dataset. Concretely, we
take the sentences from the Switchboard with-
out disfluency components as positive examples,
while the sentences with disfluency components
as negative examples. As shown in Figure 4, the
“CGC”proposed by us archieves a higher AUC than
the “SGC” proposed by Wang et al. (2020b). It
is worth noting that we don’t let the “CGC” see
the sentence after removing disfluency components.
We repeat the raw sentence twice as the input of
“CGC”.

These demonstrate that our contrastive grammar
checker can better evaluate the quality of pseudo-
labeled data for disfluency detection.

4.3 Effect of temperature mechanism
performance

We proposed a temperature mechanism to weaken
the confidence re-weighting mechanism effect in
the early self-training stage when the confidence
is not reliable enough. To reveal the temperature
mechanism effect on model performance, we con-
duct comparative experiments using different γ
which control the rate of temperature drop. The
higher γ we set, the smaller the confidence re-
weighting effect in the early self-training stage.
The experiment results in table 5 show that reduc-
ing the confidence re-weighting effect in the early
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Figure 4: The ROC curve of grammar checkers. “SGC”
denotes single sentence grammar checker. “CGC” de-
notes contrastive grammar checker.

self-training stage appropriately can improve the
model performance. With these results, we chose
the temperature value as 0.5.

5 Related Work

5.1 Disfluency Detection

Most of the previous work on disfluency detection
focus on supervised learning methods. There are
three main categories of methods to solve the dis-
fluency detection problem including sequence tag-
ging, noisy-channel, and parsing-based approaches.
Sequence tagging methods use various models as
classifiers to classify each word in the sentence to
be fluent or disfluent, including conditional random
fields (Georgila, 2009; Ostendorf and Hahn, 2013;
Zayats et al., 2014), Max-Margin Markov Net-
works (M3N) (Qian and Liu, 2013), Semi-Markov
CRF (Ferguson et al., 2015), recurrent neural net-
works (Hough and Schlangen, 2015; Zayats et al.,
2016; Wang et al., 2016) and transformer-based
model (Wang et al., 2020a). Noisy-channel (Char-
niak and Johnson, 2001) methods use the similarity
between reparandum and repair to detect disfluency.
Parsing-based approaches (Rasooli and Tetreault,
2013; Wu et al., 2015) deal with disfluency detec-
tion by parsing the sentence.

Some previous work focuses on tackling the
training data bottleneck, including self-supervised
methods (Wang et al., 2020a), self-training meth-
ods (Jamshid and Mark, 2020) and active learning
methods (Wang et al., 2021). Some researchers pro-

pose a method using unsupervised self-training to
perform unsupervised disfluency detection which
does need not any human-annotated data (Wang
et al., 2020b).

Rocholl et al. (2021) uses the distillation method
to make the disfluency detection model to be small,
fast and on-device while maintaining competitive
performance.

5.2 Self-training

The self-training method first leverages human-
annotated data to train a teacher model. Then the
teacher model is used to assign pseudo-label to
unlabeled data. Finally, the labeled data and the
pseudo-labeled data are merged to train the student
model jointly Scudder (2006). Self-training has
shown promising performance for a variety of tasks
including leveraging noisy data (Veit et al., 2017),
semantic segmentation (Babakhin et al., 2019) and
text classification (Li et al., 2019). Xie et al. (2020)
presents Noisy Student Training, which adds noise
to the self-training process and changes the size
of the student model during self-training iteration.
Inspired by Xie et al. (2020), Wang et al. (2020b)
combines self-supervised and self-training to build
an unsupervised disfluency detection system for
disfluency detection.

5.3 Re-weighting mechanism

Re-weighting approaches (Ren et al., 2018; Shu
et al., 2019; Mei et al., 2020; Yaqing Wang et al.,
2020) are proposed to give different loss weights
on each sample to emphasize the important sam-
ples and discount the noisy samples. Re-weighting
approaches often train a teacher model on a small
human-annotated validation set and then use the
teacher model to re-weight training samples. In our
method, we do not need a teacher model trained by
human-annotated data. We re-weight each training
sample by the model trained by the self-supervised
method.

6 Conclusion

In this work, we propose an adaptive unsupervised
method to deal with the task of disfluency detec-
tion in an unsupervised manner. We introduce a
re-weighting mechanism into the self-training to
alleviate the problems of selection bias and error
accumulation. Our experiments show that our re-
weighting mechanism can alleviate the problems
of selection bias and error accumulation efficiently,
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and improve the performance of self-training for
disfluency detection.
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Grudzińska, Justyna, 3960
Grundmann, Paul, 4765
Gu, Xiaodong, 5521, 6369
Gu, Yu, 1718
Gu, Zhouhong, 5419
Guan, Saiping, 2065
Guan, Xin, 1677
Guerin, Frank, 6468
Gui, Tao, 1666, 2034, 2873, 6575, 6966, 7053
Gui, Xiangyu, 4892
Gui, Xinning, 3550
Gui, Yaocheng, 3994
Gunawardana, Kasun, 6991
Guo, Bin, 505
Guo, Chenlei, 505
Guo, Daichi, 5327
Guo, Danfeng, 285
Guo, Fang, 7099

Guo, Jiafeng, 2065, 2438
Guo, Junjun, 1146, 5098
Guo, Li, 510
Guo, Ping, 2504
Guo, Xiao-Yu, 1502
Guo, Xiaobo, 4918
Guo, Yanqing, 5904
Guo, Yike, 2226
Guo, Yuhui, 4517
Guo, Zhijiang, 5707
Gupta, Aditya, 310
Gupta, Ajay, 2861
Gupta, Arpit, 285
Gupta, Ashim, 4251
Gupta, Ashish, 4071
Gupta, Avani, 4528
Gupta, Manish, 105, 116
Gupta, Prabhakar, 5119

Ha, Jung-Woo, 6369
Habernal, Ivan, 2927
Haffari, Gholamreza, 1502, 2849
Hagen, Matthias, 1925, 3296
Hagström, Lovisa, 5582
Hahn, Joonghyuk, 5966
Hai, Zhen, 5666
Haidar, Md Akmal, 4707
Hämäläinen, Mika, 6875
Hamza, Wael, 218
Han, Jizhong, 3898, 4902
Han, Sooji, 94
Han, Soyeon Caren, 2906, 3438, 3530
Han, Wei, 4622, 5666
Han, Xiaoyun, 6680
Han, Yo-Sub, 5966, 6667
Han, Yuqiang, 721
Hanna, Michael, 5597
Hao, Chao, 3233
Hao, Dezhi, 3342
Hao, Wenjie, 3885
Haque, Mirazul, 3480
Harrison, Emileigh, 3086
Hashimoto, Atsushi, 3570
Hasibi, Faegheh, 1937
Hassan, Sabit, 6063
Hayashi, Yoshihiko, 6151
He, Dongchen, 6075
He, Hao, 1708
He, Jun, 2188
He, Kai, 2515
He, Keqing, 608, 707, 5327
He, Lejian, 4557



He, Liang, 1990, 4821
He, Liangliang, 6222
He, Lihong, 3984
He, Ruidan, 6916
He, Ruifang, 400, 745
He, Shiming, 2633
He, Shizhu, 1379, 2237
He, Wanwei, 553
He, Xiaodong, 616, 3741
He, Xuanli, 2849
He, Yaqiong, 3007
He, Yongquan, 2147
He, Youbiao, 5896
He, Zhenfeng, 721
He, Zhongshi, 7013
Heafield, Kenneth, 2668
Heck, Michael, 266
Heindorf, Stefan, 3296
Herath, Mahen, 6991
Hewett, Freya, 756
Hidey, Chris, 310
Higashinaka, Ryuichiro, 242
Hiraoka, Tatsuya, 4864
Holliday, Nicole, 7177
Hong, Jimin, 4853
Hong, Yu, 2633, 4160, 4481
Hoover, Jacob Louis, 44
Hou, Lei, 6315
Hou, Wenxin, 7075
Hou, Yuexian, 400, 745
Hou, Yufang, 766
Hou, Yutai, 3251
Hovy, Dirk, 1221
Hovy, Eduard, 6270
Hsiao, Yu-Chung, 5636
Hsieh, Shu-Kai, 152
Hu, Baotian, 1896
Hu, Biao, 1823
Hu, Bojie, 5109
Hu, Chengwei, 1885
Hu, ChunMing, 1036
Hu, Cong, 984
Hu, Dou, 2759, 2769
Hu, Guoping, 3331
Hu, Hengchang, 5925
Hu, Honghui, 4873
Hu, Jingwen, 684
Hu, Mengting, 4728
Hu, Minghao, 1823
Hu, Po, 1979
Hu, Songlin, 2759, 2769, 3898, 4902, 7136

Hu, Wei, 5532
Hu, Xiaohui, 2450
Hu, Xixin, 1687
Hu, Xuming, 2398, 5707
Hu, Yinan, 6355
Hu, Yue, 163, 6480
Huang, Fei, 553, 2374, 5298
Huang, Guanhuan, 323
Huang, H. Howie, 4585
Huang, Hen-Hsen, 2946
Huang, Heyan, 570, 1732, 6355
Huang, Hu, 6705
Huang, Hui, 5054
Huang, Jimin, 6259
Huang, Jin, 5148
Huang, Junyang, 5419
Huang, Kun, 400, 745
Huang, Kung-Hsiang, 1024
Huang, Lanxiao, 2962
Huang, Lifu, 2157
Huang, Pingxuan, 5613
Huang, Sean S., 3709
Huang, Shao-Lun, 2639
Huang, Shijue, 461
Huang, Shizhou, 1855
Huang, Shujian, 626, 5246, 6784
Huang, Wei, 1116
Huang, Xiusheng, 2418
Huang, Xu, 6705
Huang, Xuanjing, 1655, 1990, 2278, 2748, 2873,

5783, 6540, 6575, 6966, 7053, 7093
Huang, Yao, 2328
Huang, Yen-Hao, 1163
Huang, Yi, 707, 5327
Huang, Yucheng, 2515
Huang, Yujing, 3412
Huang, Yujun, 7093
Huang, Zhen, 1412, 1823, 6680
Huang, Zhichao, 6705
Huang, Ziming, 3064
Huang, Ziyin, 2528
Hudson, Aaron, 6208
Hui, Binyuan, 553, 5298
Hupkes, Dieuwke, 3226
Huryn, Daniil, 3360
Hutsell, William M., 3360
Huynh, Tin Van, 3858
Hwang, Seonjeong, 1636
Hwang, Seung-won, 6285
Hwaszcz, Krzysztof, 3631

Igamberdiev, Timour, 2927



Ihori, Mana, 6128
Ilievski, Filip, 1534
Illina, Irina, 6656
Inui, Kentaro, 660, 851, 5383
Ivoylova, Alexandra, 4468
Izmaylov, Daniel, 4241

Jafari, Aref, 4714
Jain, Mohit, 4320
Jain, Rajiv, 3309, 7147
Jang, Myeongjun, 3680, 3697
Jatowt, Adam, 6139
Jeon, DongHyeon, 1367
Jeon, Hyunmin, 355
Jetter, Antonie, 6208
Jezabek, Jan, 4640
Jhamtani, Harsh, 6270
Ji, Bin, 1842
Ji, Donghong, 1953, 6955
Ji, Heng, 1024, 1065, 6927
Ji, Huishan, 6944
Ji, Jianmin, 3164
Ji, Junzhong, 2388
Ji, Ran, 3164
Ji, Shihao, 1569
Ji, Yuqiu, 5450
Jia, Xin, 6564
Jiang, Changjian, 2968
Jiang, Daxin, 1333
Jiang, Dazhi, 6934
Jiang, Feng, 1904, 3007
Jiang, Han, 6426
Jiang, Hang, 6818
Jiang, Hao, 5560
Jiang, Jianhui, 1014, 2328
Jiang, Jie, 5560
Jiang, Jing, 5035
Jiang, Lei, 3788
Jiang, Ning, 5721
Jiang, Weifeng, 6447
Jiang, Wenbin, 1480, 4203
Jiang, Xiaojian, 1865, 1875
Jiang, Xiaorui, 5978
Jiang, Xin, 636
Jiang, Xuhui, 6105
Jiang, Yong, 2398, 4212
Jiang, Yufan, 6415
Jiang, Zhengbao, 1765
Jiang, Zhuoxuan, 3064
Jiao, Chengbo, 2450
Jin, Hai, 4892
Jin, Haoliang, 1885

Jin, Langjunqing, 4892
Jin, Qin, 684
Jin, Renren, 5158
Jin, Xiaolong, 2065
Jin, Yaohui, 1708
Jin, Yifan, 2450
Jing, Liwen, 6705
Jing, Ning, 2405
Jo, Bogeun, 3530
Jo, Daejin, 5837
Jo, Eunkyul Leah, 5432
Johansson, Richard, 5582
Johnson, Kristen Marie, 2780
Joo, Se June, 6285
Joty, Shafiq, 580, 4381
Ju, Dongshi, 298
Ju, Meizhi, 1422
Ju, Yiming, 1697
Jung, Jaeheun, 3847
Jyothi, Preethi, 4268, 4442

Kabashi, Besim, 4018
Kabbara, Jad, 779
Kajiwara, Tomoyuki, 5240
Kalim, Waqar Bin, 2357
Kallmeyer, Laura, 4360
Kalouli, Aikaterini-Lida, 3074
Kameko, Hirotaka, 3570
Kan, Baoshuo, 4061
Kan, Min-Yen, 471
Kaneko, Masahiro, 1299, 3578
Kang, Inho, 1367
Kang, Liyan, 5266
Kang, Yulin, 378
Kanojia, Diptesh, 2934
Kao, Jiun-Yu, 285
Kapoor, Alok, 6234
Kar, Sudipta, 3798
Karmaker Santu, Shubhra Kanti, 6195
Karpinska, Marzena, 141
Käser, Tanja, 1344
Katsigiannis, Stamos, 1263
Kawano, Keisuke, 3175
Kawasaki, Yoshifumi, 141
Kazmi, Arman, 922
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